Statistics for Data Science Concept Notes

Last Edit: 2021.01.22 Written By: Sujeong Cha

--- POPULATION ---**SAMPLE** 2 Frequentist Bayesian Descriptive Inferential Approach Approach **Statistics Statistics** (EDA) (CDA) Random Variable (Probability + Distribution) Study Design

1. Study Design

- a. Study Types & Sampling
- b. Variable Types

2. Descriptive Statistics

- a. Types of Descriptive Stats.
- b. Charts & Graphs

3. Random Variables

- a. Probability
- b. Random Variables
- c. Expectations
- d. Random Process
- e. Markov Chains

4. Frequentist Inference

- a. Estimation
- b. Hypothesis Testing

5. Bayesian Inference

- a. Estimation
- b. Bayesian Hypothesis Testing

^{*} EDA: Exploratory Data Analysis, CDA: Confirmatory Data Analysis

1. Study Design

a. Study Types & Sampling Techniques

b. Variable Types

Types	Scale	Category	Order	Equal Intervals	True Zero	Example
Qualitative (Categorical)	Nominal	Y	N	N	N	Gender
	Ordinal	Y	Y	N	N	A, B, C
Quantitative (Numerical) Discrete/Continuous	Interval	Y	Y	Y	N	Year, IQ
	Ratio	Y	Y	Y	Y	Weight, Age

2. Descriptive Statistics

a. Types of Descriptive Statistics

Measures of Central Tendency

- Mean / median / mode
 * uni-/bi-/multi-modal or no mode
- Hildebrand Rule: is it symmetric?
 : H=(mean-median) / std
 → sufficiently symmetric if |H| < 0.2

Measures of Frequency

- Frequency (Counts)
- Relative frequency (in %)
- Cumulative frequency (only when ordered)

Measures of Position

- Percentile
- Quartile
- IQR (Q3-Q1)
- z-score

$$Z = \frac{x - \mu}{\sigma}$$

Measures of Dispersion

$$S^2 = \frac{\Sigma (x_i - \overline{x})^2}{n - 1}$$

- Range / variance / standard deviation
 * std: same unit → easier to interpret
- To compare between variables,
 Coefficient of variation = std / mean ("risk/reward ratio")
- Empirical Rule: 68-95-99.7%
- * can apply only to bell-shaped curves
- Chebyshev's Theorem:
 P(within K stds) > 1-(1/K2)
 * can apply to any type of distribution

Measures of Dependence

- **Covariance**: measure of joint variability
- Correlation coefficient: cov / std(x)std(y)
- Covariance matrix: covariance between every pair of features

$$cov_{x,y} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{N-1}$$

b. Charts & Graphs

Qualitative	Pie chart, Bar chart, Pareto chart (bars in descending order)
Quantitative	Histogram(1D), Boxplot (five-number summary) (1D) Scatter plot (2D), Line Graph (2D)

Appendix. Sample Covariance Matrix

$$C=rac{1}{n-1}\sum_{i=1}^n{(X_i-ar{X})(X_i-ar{X})^T}$$

• Using the sample covariance matrix, we can express the variation in every direction

$$var(\overrightarrow{v}^T\overrightarrow{x_1}, \cdots, \overrightarrow{v}^T\overrightarrow{x_n}) = \overrightarrow{v}^T \Sigma(\overrightarrow{x_1}, \cdots, \overrightarrow{x_n}) \overrightarrow{v}$$

• Using eigendecomposition of the covariance matrix,

$$CV = VL \implies C = VLV^{-1}$$
: particular case of Singular Value Decomposition

- 1) **PCA**: eigenvectors & eigenvalues characterize the variation of the data in every direction
- 2) Whitening: decorrelate (eliminate the linear skew) to reveal underlying nonlinear structure

$$\vec{y_i} = \sqrt{L}^{-1} V^T \vec{x_i}$$
 (the covariance of y becomes an identity matrix)

3. Random Variables

a. Probability

Interpretation	 Frequentists: relative frequency in the long run Propensity: experimental probability Bayesian (Subjectivists): degree of belief 			
	Probability Axioms			
	 For any event A, 0 ≤ P(A) ≤ 1 ΣP(A) = 1 Complement Rule: P(not A) = 1 – P(A) 			
	<u>Probability Rules</u>			
	4. Addition Rule: $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ for Disjoint: $P(A \text{ or } B) = P(A) + P(B)$			
	5. Conditional Probability: P(A B) = P(A and B) / P(B) C. Independence: P(A.B C) = P(A C)P(B C)			
Rules	6. Multiplication Rule: P(A and B) = P(A)P(B A) for Independence: P(A and B) = P(A)P(B)			
	Chain Rule: $P(A \text{ and } B \text{ and } C) = P(A)P(B A)P(C A,B)$			
	(cf) Pairwise independence does not imply joint independence. Independence does not imply conditional independence or vice versa.			
	<u>Applications</u>			
	7. Bayes' Rule: $P(A B) = P(A)P(B A) / P(B)$ - by Rule #5 and #6 -			
	8. Law of Total Probability: $P(S) = \Sigma P(S \text{ and Ai}) = \Sigma P(Ai)P(S Ai)$ - by Rule #4 and #6 -			

Appendix. Basic Counting Rules

- **Combination**: order **DOES NOT** matter (→ divide more!)
- **Permutation**: order matters
- **Special Permutation**: number of distinguishable permutations

$${}_{n}C_{r}=rac{n!}{r!(n-r)!} \hspace{1cm} {}_{n}P_{r}=rac{n!}{(n-r)!} \hspace{1cm} rac{n!}{n_{_{1}}!n_{_{2}}!...n_{_{k}}!}$$

b. Random Variable

Random Variables

(cf) RV (uncertainty) vs Realization (revealed outcome/value)

Discrete Random Variables (Probability Mass Function)

- Bernoulli: $P(X=x) = p^{x} (1-p)^{1-x}$ E[X] = p V[X] = p(1-p)only two possible outcomes
 - **Binomial** B(n,p): $P(X=x) = {}_{n}Cx p^{x} (1-p)^{n-x} E[Y] = {}_{n}p \qquad V[Y] = {}_{n}p(1-p)$

sum of n i.i.d Bernoulli (count of success)

Poisson Pois(λ): $P(X=x) = \frac{\lambda^{\kappa} e^{-\lambda}}{k!}$ $E[X] = \lambda$ $V[X] = \lambda$ count of successes over area/time (no upper limit)

can be modeled as a B(n, λ /n): (success or failure within 1/n interval) * repeat n times

- **Geometric** Geo(p): $P(K=k) = (1-p)^{k-1}p$ E[X] = 1/p $V[X] = (1-p)/p^2$ success on kth Bernoulli trial memorylessness: the distribution of waiting time until a certain event DOES NOT depend on how much time has elapsed already $\Rightarrow P(X>m+n \mid X\geq m) = P(X>n)$
- Hypergeometric: $P(X=x) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}} \qquad E[X] = n\frac{K}{N} \qquad V[X] = n\frac{K}{N}\frac{(N-K)}{N}\frac{N-n}{N-1}$

k success in n draws w/o replacement from N population (K is total possible success)

Continuous Random Variables (Probability Density Function)

- **Uniform** unif(a,b): $P(X=x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \text{ } E[X] = \frac{1}{2}(a+b) \text{ } V[X] = \frac{1}{12}(b-a)^2 \\ & \text{otherwise} \end{cases}$ constant likelihood across interval Equivalent to a beta distribution with a=b=1
- Exponential $\exp(\lambda)$: $P(X=x) = \lambda e^{-\lambda x}$ $E[Y] = \frac{1}{\lambda}$ $V[Y] = \frac{1}{\lambda^2}$ time between the events in a Poisson process memorylessness: the distribution of waiting time until a certain event DOES NOT depend on the event between the event because of the event between the event because of the event between the ev
- how much time has elapsed already \Rightarrow P(X>m+n | X≥m) = P(X>n)

 Normal N(µ, σ 2): P(X=x) = $\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2$
- **Beta** Beta(α , β): $P(X=x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\int_0^1 u^{\alpha-1}(1-u)^{\beta-1} du}$

Appendix 1. Gaussian Mixture Model

- Gaussian random vectors: multidimensional generalization of Gaussian random variables
 - Property 1) <u>linear transformation</u> of Gaussian random vectors are also Gaussian
 - Property 2) marginals of Gaussian random vectors are also Gaussian
- Gaussian Mixture Model: discrete marginal + continuous conditional

$$\sum_{d \in R_D} p_D(d) F_{C|D}(c|d)$$

- data from continuous distribution whose parameters are chosen from a discrete set
- a popular technique for clustering

Appendix 2. Sampling from Distribution

- **Inverse-transform sampling**: a sample of Uniform \rightarrow set $x := F_X^{-1}(u)$
- Rejection sampling:
 - Why do we need it? When we cannot easily sample from f(x), there exists another density g(x) from which it is easy for us to sample (ex. Normarl, t-distribution as built-in functions)
 - How does it work? sample from a proposal function $q(x) \rightarrow$ sample from u(0,1)

$$\rightarrow$$
 y = u * M * q(x) \rightarrow accept if u * M * q(x) \leq p(x)

c. Expectation of Random Variables

Mean	• $E[X] = \sum x P(X=x)$ "first moment"			
Median	• $\{x \mid P(X \le x) \ge 0.5, P(X \ge x) \ge 0.5\} \rightarrow May \text{ not be unique for discrete R.V.}$			
Variance	• $V[X] = \sum (x-\mu)^2 P(X=x)$ "second centered moment"			
Covariance	 Cov(X,Y) = E((X-E(X))(Y-E(Y)))= E(XY)-E(X)E(Y) Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y) 			
Correlation Coefficient	 = Cov(X,Y) / σ_Xσ_Y "normalized covariance" To what extent X and Y are "linearly" related Between -1 and 1 (can be proven with Cauchy-Schwarz inequality) Independence implies un-correlation, but un-correlation does not imply independence (ex. U=X+Y, V=X-Y) (however, <i>under Gaussian</i>, un-correlation implies independence) 			
Conditional Expectation	 E(g(X,Y) X):= h(X) where h(x):=E(g(X,Y) X=x) Conditional expectation is a random variable! ("function of X") Iterated expectation: E(g(X,Y)) = E(E(g(X,Y) X)) 			

Appendix. Bounding Probabilities using Mean and Variance

- Markov's inequality: $X a \ 1_{X \ge a} \ge 0 \Rightarrow P(X \ge a) \le \frac{E(X)}{a}$ (X is a nonnegative random variable)
- Chebyshev's inequality: $P(|X E(X)| > a) \le \frac{V \operatorname{ar}(X)}{a^2}$

If Var(X)=Std(X)=1, equivalent to "Chebyshev's Theorem" from Part 2

d. Random Process

Random Variable Model uncertain quantities that "evolve in time"	random variable $\widehat{X}(t) \text{ random variable}$ $\widehat{X}(t) \text{ mean of } \widehat{X}(t)$ $R(t1, t2) \text{: autocovariance of } X(t)$ $\omega = 2$ $\omega = 1$ $\omega = 0$ $\text{(Discrete or Continuous) Time}$ • Wide/Weakly stationary: $\mu_{\widehat{X}}(t) = \mu \text{ (constant)}, R_{\widehat{X}}(t_1, t_2) = R_{\widehat{X}}(t_1 + \tau, t_2 + \tau) \text{ (shift invariant)}$		
Examples	IID Sequences • Identical and mutually independent distribution for any i (discrete-time) • Fully characterised by the associated pdf/pmf (strictly stationary) • $\mu_{\tilde{X}}(i) := E(\tilde{X}(i)) = \mu$ $R_{\tilde{X}}(i,j) = \sigma^2 if i = j, \ 0 \ otherwise$ Gaussian Process • Fully characterised by its mean function and autocovariance function • Strict- and wide-sense stationary Poisson Process • (1) $\tilde{N}(t_2) - \tilde{N}(t_1)$ is a Poisson RV with parameter $\lambda(t_2 - t_1)$ (2) $\tilde{N}(t_2) - \tilde{N}(t_1)$ & $\tilde{N}(t_4) - \tilde{N}(t_3)$ independent (if no time overlaps) • $\mu_{\tilde{X}}(t) := E(\tilde{X}(t)) = \lambda t$ $R_{\tilde{X}}(t_1, t_2) := \lambda \min(t_1, t_2)$ • not stationary (mean not constant) Random Walk • Models a sequence of steps in random directions • $\mu_{\tilde{X}}(t) := 0$ $R_{\tilde{X}}(i,j) := \min(i,j)$ • not stationary (not shift invariant)		
Convergence	Convergence in Distribution • Cdf of $\tilde{X}(i)$ converges pointwise to the cdf of another random variable X • Weaker than convergence with P=1 / in mean square / in probability • ex) Binomial approximation of Poisson Law of Large Numbers • Assume: (1) well-defined mean, (2) finite variance • Weak LLN: moving average converges in mean square to μ • Strong LLN: average converges to μ in probability		

Central Limit Theorem

- Assume: (1) finite variance, (2) independent sample w/ replacement
- The distribution of sample means tend towards Normal

$$\sum_{i=1}^{n} X_{i} \to N(n\mu, n\sigma^{2}) \Rightarrow \frac{\sum_{i=1}^{n} X_{i}}{n} \to N(\mu, \frac{\sigma^{2}}{n})$$

- ⇒ Justifies the use of Gaussian distributions to model data
- ex) Normal approximation to Binomial

$$X \sim Bin(n,p) \simeq N(np, npq) \Rightarrow p = X/n \sim N(p, pq/n)$$

e. Markov Chains

Markov Chains

- Markov property: the future is conditionally independent from the past given the present (ex) IID sequences, Random Walk
- 0.3 0.7
- Time-homogeneous Markov Chains: the same transition probabilities for all t
 - Initial state vector and Transition matrix completely specify THMC

$$\vec{p}_{\widetilde{X}(i)} = T_{\widetilde{X}}^i \, \vec{p}_{\widetilde{X}(0)},$$

State vector for E 0.3 0.7

Property

Irreducible

- for any state x, the probability of reaching every other state in a finite number of steps is non-zero (can reach every state)
- All states are recurrent (cf) recurrent: P(coming back)=1 *vs* transient state: P(coming back) < 1
- Have a single stationary distribution by P-F Theorem (Appendix)
 - Stationary distribution = eigenvector of T with eigenvalue = 1
 - Reversibility ($(T_{\widetilde{X}})_{kj}\vec{p}_j=(T_{\widetilde{X}})_{jk}\vec{p}_k$.) implies stationarity

Aperiodic

Period = 1

* **period**: the largest integer m such that it is only possible to return to x in a number of steps that is a multiple of m

Ergodic Markov Chains

its state vector converges to the stationary distribution for any initial state vector

Application: Markov Chain Monte Carlo (MCMC) Sampling

- Design an irreducible aperiodic Markov chain and sample from the stationary distribution
- Mixing(burn-in) time: takes time until convergence → discard the samples from this period
- Metropolis-Hastings algorithm:
 - 1) Generate a candidate by using the transition matrix $P(C=k|X(i-1)=j) = T_{ki}$
 - 2) Set X(i) = C with the acceptance probability $P_{acc}(j,k) = min(T_{jk}P_k/T_{kj}P_j,1)$
 - → Produce a reversible, therefore stationary, Markov Chain
- Advantages:
 - 1) Works well when sampling from high-dimensional distributions
 - 2) Depends on the distribution only through the ratio (full pmf/pdf not needed)
 - → Useful for sampling from posterior distributions in the Bayseian framework

Appendix. Perron-Frobenius Theorem

If P is a stochastic matrix such that all the entries are strictly positive,

- 1) 1 is an eigenvalue of P and there exists an eigenvector $\mu \in \Delta n$ associated with 1
- 2) The eigenvector associated with 1 are unique up to scalar multiple
- 3) For all $x \in \Delta n$, $P^t x \to \mu$ in limit

4. Frequentist Statistics

a. Estimation

Assumption	 Parameters are unknown but fixed → cannot make probabilistic statements about the parameters 			
Point Estimate	Method of Moments • Adjust the parameters of a distribution so that the moments of the distribution coincide with the sample moments of the data • (ex) sample mean & variance: unbiased and consistent Maximum Likelihood Estimate (MLE) • Consistent but not always unbiased • (ex) least-square estimator, lasso estimator			
Interval Estimate	Confidence Interval • Quantify the estimator's accuracy ("soft estimate") ** if we had infinite data, we do not need a CI • Approximated using Central Limit Theorem because the sample mean follows Normal(μ , σ^2/n) • If σ is unknown, use t-score * StandardError $\left(\bar{x} - z^* \frac{\sigma}{\sqrt{n}}, \bar{x} + z^* \frac{\sigma}{\sqrt{n}}\right)$			
Non-parametric Distribution Estimate	• [CDF] Empirical cdf: unbiased and consistent estimator of the true cdf • [PDF] Kernel Density Estimation (KDE): many samples close to $x \to the$ estimate at x should be large $\widehat{f}_{h,n}(x) := \frac{1}{n} \sum_{i=1}^n k\left(\frac{x-x_i}{h}\right)$			

Appendix. Analyzing Estimators

• Mean Square Error $MSE[Y] = E[(Y-E(Y))2] + (E(Y)-\gamma)2 = variance + bias$

• Unbiased $E(Y) = \gamma$

 $\bullet \quad \text{Consistent} \qquad \qquad \text{converges to the true value as } n \to \infty$

* the sample median is always a consistent estimator unlike the sample mean

b. Hypothesis Testing: Reject or Fail to Reject

Hypothesis Testing: Did the patterns in the data came from random fluctuations?

** Frequentist perspective: either reject or fail to reject (can't compute probability)

- Null Hypothesis (=,≤,≥) vs. Alternative Hypothesis
- P-value: the probability of observing a result more extreme than the observations under H0
- Type I Error (α ; false positive; significance level) **Type II Error** (β; false negative)

Power (1-β): probability of rejecting H0 when it is indeed false

Parametric Testing

One sample

for mean and proportion

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

t-test

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$
 with df = n-1

Two sample

$$z = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

Unpaired
$$t=\frac{\bar{x}_1-\bar{x}_2}{\sqrt{s^2\left(\frac{1}{n_1}+\frac{1}{n_2}\right)}}$$
 with t-test

$$s^2 = rac{\displaystyle\sum_{i=1}^{n_1} (x_i - ar{x}_1)^2 + \displaystyle\sum_{j=1}^{n_2} (x_j - ar{x}_2)^2}{n_1 + n_2 - 2}$$

Paired t-test

$$t = \frac{\bar{d}}{s_d / \sqrt{n}} \quad \text{with df = n-1}$$

Non-parametric Testing

One sample

Target variance

Chi-square for variance

$$\chi^2 = \frac{(n-1)\cdot s^2}{\sigma^2}$$

Chi-square Goodness-of-fit (right-tail) H₀: from the hypothesized distribution

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$
 with df = class-1

Two sample

Chi-square for Independence (right-tail) H₀: two categorical variables are ind.

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i,j} - E_{i,j}\right)^{2}}{E_{i,j}} \text{ with } df = (r-1)(c-1)$$

Permutation Test

H₀: two datasets are from the same dist. (invariant to permutations)

 $(t_{\text{diff}}(\vec{x}) := t(\vec{x}_A) - t(\vec{x}_B)$ for each permutation $p = P\left(t_{\text{diff}}(\vec{X}) \ge t_{\text{diff}}(\vec{x})\right) = \frac{1}{m} \sum_{i=1}^{m} 1_{t_{\text{diff},i} \ge t_{\text{diff}}(\vec{x})}$

Generalization

Analysis of Variance (ANOVA)

Multiple **Testing**

H₀: no difference in the means between groups (right-tail)

Source	SS	df	MS	F	Sig.
Between	ss _b	k-1	MS _b	MS _b /MS _w	p value
Within	ss_w	N-k	MS_w		
Total	SS. + SS	NL1			

Bonferroni's Method

Guarantees that the desired significance level a holds simultaneously for all the tests.

$$p_i \leq \frac{\alpha}{2}$$

Reject the null hypothesis if $p_i \leq \frac{\alpha}{n}$ Can be proven by the union bound

5. Bayesian Statistics

a. Estimation

	Parameters are unknown and random			
	ightarrow can be described probabilistically			
	<u>Bayes' Theorem</u> : $P(\Theta X) \propto P(X \Theta)P(\Theta)$			
	• Prior distribution $P(\Theta)$: encodes uncertainty about the model			
Accumption	• Likelihood $P(X \Theta)$: how the data(evidence) depend on the parameters			
Assumption	• Posterior distribution $P(\Theta X)$: update uncertainty about the model			
	★ Conjugate priors: the prior and the posterior belong to the same family			
	(ex) Beta distributions are conjugate priors when likelihood is binomial			
	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)} \beta(a,b) := \int_{u} u^{a-1} (1-u)^{b-1} du$			
	Minimum mean-square-error estimation (MMSE)			
	• Posterior mean $E(\Theta X=x)$ minimizes the mean square error			
	Maximum-a-posteriori estimation (MAP)			
	Posterior mode (maximum of the pdf/pmf of the posterior) minimizes			
Point Estimate	the probability of error			
TOMO Estamato	$P\left(\theta_{\mathrm{other}}(\vec{X}) eq \vec{\Theta}\right) \ge P\left(\theta_{\mathrm{MAP}}(\vec{X}) eq \vec{\Theta}\right)$			
	Under a uniform prior, MAP equals to MLE			
	→ frequentist view can be understood as having a uniform prior			
	1 O			
Interval Estimate	Credible Interval			
	Interval in the posterior distribution within which an unobserved			
	parameter value falls with a particular probability			
	·			

b. Bayesian Hypothesis Testing

ullet Quantitative measure of much evidence there is for H_a relative to H_b given the data

$$K = \frac{P(H_b|\mathbf{y})}{P(H_a|\mathbf{y})} = \frac{P(H_b)}{P(H_a)} \underbrace{\frac{P(\mathbf{y}|H_b)}{P(\mathbf{y}|H_a)}}_{P(\mathbf{y}|H_a)} \quad \begin{array}{l} \textbf{Bayes Factor} \\ \textbf{Can be calculated} \\ \textbf{using MCMC method} \end{array}$$

- Model selection based on Bayes factors:
 - 1) calculate the expected loss for choosing $H_a := P(H_b|y)L(H_a|H_b)$ and similarly for H_b
 - 2) take the model which minimizes the expected loss (Bayesian decision)