

Introduction to **Machine Learning and Data Mining**

(Học máy và Khai phá dữ liệu)

Khoat Than

School of Information and Communication Technology
Hanoi University of Science and Technology

Contents

- Introduction to Machine Learning & Data Mining
- Supervised learning
 - Linear regression
- Unsupervised learning
- Practical advice

Linear regression: introduction

- Regression problem: learn a function y = f(x) from a given training data $D = \{(x_1, y_1), (x_2, y_2), ..., (x_M, y_M)\}$ such that $y_i \cong f(x_i)$ for every i
 - Each observation of **x** is represented by a vector in an n-dimensional space, e.g., $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{in})^T$. Each dimension represents an attribute/feature/variate.
 - п Bold characters denote vectors.
- Linear model: if f(x) is assumed to be of linear form

$$f(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_n x_n$$

- $w_0, w_1, ..., w_n$ are the regression coefficients/weights. w_0 sometimes is called "bias".
- Note: learning a linear function is equivalent to learning the coefficient vector $\mathbf{w} = (w_0, w_1, ..., w_n)^T$.

Linear regression: example

What is the best function?

x	у		
0.13	-0.91		
1.02	-0.17		
3.17	1.61		
-2.76	-3.31		
1.44	0.18		
5.28	3.36		
-1.74	-2.46		
7.93	5.56		

Prediction

- For each observation $\mathbf{x} = (x_1, x_2, ..., x_n)^T$
 - The true output: c_x
 (but unknown for future data)
 - Prediction by our system:

$$y_x = w_0 + w_1 x_1 + ... + w_n x_n$$

- □ We often expect $y_x \cong c_x$.
- Prediction for future observation $\mathbf{z} = (z_1, z_2, ..., z_n)^{\mathsf{T}}$
 - Use the previously learned function to make prediction

$$f(\mathbf{z}) = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{z}_1 + \dots + \mathbf{w}_n \mathbf{z}_n$$

Learning a regression function

- Learning goal: learn a function f* such that its prediction in the future is the best.
 - Its generalization is best.
- Difficulty: infinite number of functions
 - How can we learn?
 - Is function f better than g?
- Use a measure
 - Loss function or generalization error are often used to guide learning.

Loss function

Definition:

□ The error/loss of the prediction for an abservation $\mathbf{x} = (x_1, x_2, ..., x_n)^T$

$$r(\mathbf{x}) = [c_x - f^*(\mathbf{x})]^2 = (c_x - w_0 - w_1 x_1 - ... - w_n x_n)^2$$

□ The expected loss over the whole space:

$$E = E_x[r(x)] = E_x[c_x - f^*(x)]^2$$

 $(\mathbf{E}_{\mathsf{x}} \text{ is the expectation over } \mathbf{x})$

■ The goal of learning is to find f* that minimizes the expected loss:

$$f^* = \operatorname{arg\,min}_{f \in \boldsymbol{H}} \boldsymbol{E}_x \left[r(\boldsymbol{x}) \right]$$

- H is the space of functions of linear form.
- But, we cannot work directly with this problem during the learning phase. (why?)

Cost, risk

Empirical loss

- We can only observe a set of training data $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_M, \mathbf{y}_M)\}$, and have to learn f from \mathbf{D} .
- Empirical loss (residual sum of squares):

$$RSS(f) = \sum_{i=1}^{M} (y_i - f(\mathbf{x}_i))^2 = \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$

- \square RSS/M is an approximation to $\mathbf{E}_{\mathsf{x}}[\mathsf{r}(\mathbf{x})]$.
- Many learning algorithms base on this RSS and its variants.

Methods: ordinary least squares (OLS)

■ Given **D**, we find f* that minimizes RSS:

$$f^* = \arg\min_{f \in H} RSS(f)$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$
(1)

- This method is often known as ordinary least squares (OLS).
- Find w* by taking the gradient of RSS and the solving the equation RSS'=0. We have:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Where **A** is the data matrix of size $M_X(n+1)$, whose the ith row is $\mathbf{A}_i = (1, x_{i1}, x_{i2}, ..., x_{in})$; \mathbf{B}^{-1} is the inversion of matrix \mathbf{B} ; $\mathbf{y} = (y_1, y_2, ..., y_M)^T$.
- \square Note: we assume that $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is invertible.

Methods: OLS

- Input: $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$
- Output: w*
- Learning: compute

$$\mathbf{w}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

- Where **A** is the data matrix of size $M_X(n+1)$, whose the ith row is $\mathbf{A}_i = (1, x_{i1}, x_{i2}, ..., x_{in})$; \mathbf{B}^{-1} is the inversion of matrix \mathbf{B} ; $\mathbf{y} = (y_1, y_2, ..., y_M)^T$.
- \square Note: we assume that $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is invertible.
- Prediction for a new x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

Methods: OLS example

X	у	
0.13	-1	
1.02	-0.17	
3	1.61	
-2.5	-2	
1.44	0.1	
5	3.36	
-1.74	-2.46	
7.5	5.56	

$$f^*(x) = 0.81x - 0.78$$

Methods: limitations of OLS

- OLS cannot work if ATA is not invertible
 - If some columns (attributes/features) of A are dependent, then A will be singular and therefore A^TA is not invertible.
- OLS requires considerable computation due to the need of computing a matrix inversion.
 - Intractable for the very high dimensional problems.
- OLS very likely tends to overfitting, because the learning phase just focuses on minimizing errors on the training data.

Methods: Ridge regression (1)

• Given $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$, we solve for:

$$f^* = \arg\min_{f \in \mathbf{H}} RSS(f) + \lambda \|\mathbf{w}\|_2^2$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - A_i \mathbf{w})^2 + \lambda \sum_{j=0}^{n} w_j^2$$
(2)

□ Where $\mathbf{A}_i = (1, x_{i1}, x_{i2}, ..., x_{in})$ is composed from \mathbf{x}_i ; and λ is a regularization constant (λ > 0). $\|\mathbf{w}\|_2$ is the L² norm.

Tikhonov, smoothing an illposed problem

Zaremba, model complexity minimization

Bayes: priors over parameters

Andrew Ng: need no maths, but it prevents overfitting!

Methods: Ridge regression (2)

Problem (2) is equivalent to the following:

$$w^* = \arg\min_{\boldsymbol{w}} \sum_{i=1}^{M} (y_i - \boldsymbol{A}_i \boldsymbol{w})^2$$
 (3) Subject to $\sum_{j=0}^{n} w_j^2 \le t$

- for some constant t.
- The regularization/penalty term: $\lambda ||w||_2^2$
 - \square Limits the magnitute/size of \mathbf{w}^* (i.e., reduces the search space for f^*).
 - Helps us to trade off between the fitting of f on **D** and its generalization on future observations.

Methods: Ridge regression (3)

We solve for w* by taking the gradient of the objective function in (2), and then zeroing it. Therefore we obtain:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Where **A** is the data matrix of size $M_X(n+1)$, whose the ith row is $\mathbf{A}_i = (1, x_{i1}, x_{i2}, ..., x_{in})$; \mathbf{B}^{-1} is the inversion of matrix \mathbf{B} ; $\mathbf{y} = (y_1, y_2, ..., y_M)^T$; \mathbf{I}_{n+1} is the identity matrix of size n+1.
- Compared with OLS, Ridge can
 - Avoid the cases of singularity, unlike OLS. Hence Ridge always works.
 - Reduce overfitting.
 - But error in the training data might be greater than OLS.
- Note: the predictiveness of Ridge depends heavily on the choice of the hyperparameter λ .

Methods: Ridge regression (4)

- Input: $\mathbf{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_M, y_M)\}$ and $\lambda > 0$
- Output: w*
- Learning: compute

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

Prediction for a new x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

Note: to avoid some negative effects of the magnitute of y on covariates \mathbf{x} , one should remove \mathbf{w}_0 from the penalty term in (2). In this case, the solution of \mathbf{w}^* should be modified slightly.

An example of using Ridge and OLS

The training set **D** contains 67 observations on prostate cancer, each was represented with 8 attributes. Ridge and OLS were learned from **D**, and then predicted 30 new observations.

	Ordinary Least	
W	Squares	Ridge
0	2.465	2.452
Icavol	0.680	0.420
lweight	0.263	0.238
age	-0.141	-0.046
lbph	0.210	0.162
svi	0.305	0.227
lcp	-0.288	0.000
gleason	-0.021	0.040
pgg45	0.267	0.133
Test RSS	0.521	0.492

Effects of λ in Ridge regression

• $\mathbf{W}^* = (\mathbf{w}_0, S1, S2, S3, S4, S5, S6, AGE, SEX, BMI, BP)$ changes as the regularization constant λ changes.

LASSO

■ Ridge regression use L² norm for regularization:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - A_i \mathbf{w})^2$$
, subject to $\sum_{j=0}^{n} w_j^2 \le t$ (3)

Replacing L² by L¹ norm will result in LASSO:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - \mathbf{A}_i \mathbf{w})^2$$

Subject to $\sum_{j=0}^{n} |w_j| \le t$

Equivalently:

$$w^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - A_i \mathbf{w})^2 + \lambda ||\mathbf{w}||_1$$
 (4)

■ This problem is non-differentiable → the training algorithm should be more complex than Ridge.

LASSO: regularization role

- The regularization types lead to different domains for **w**.
- LASSO often produces sparse solutions, i.e., many components of w are zero.
 - Shinkage and selection at the same time

Figure by Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=58258966

OLS, Ridge, and LASSO

The training set **D** contains 67 observations on prostate cancer, each was represented with 8 attributes. OLS, Ridge, and LASSO were trained from **D**, and then predicted 30 new observations.

NA/	Ordinary Least	Ridge	LASSO
W	Squares	Niuge	LASSU
0	2.465	2.452	2.468
Icavol	0.680	0.420	0.533
lweight	0.263	0.238	0.169
age	-0.141	-0.046	
lbph	0.210	0.162	0.002
svi	0.305	0.227	0.094
lcp	-0.288	0.000	
gleason	-0.021	0.040	
pgg45	0.267	0.133	
Test RSS	0.521	0.492	0.479

Some weights
are 0

→ some
attributes may
not be
important

References

- Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Statistical Learning. Springer, 2009.
- Tibshirani, Robert (1996). "Regression Shrinkage and Selection via the lasso". Journal of the Royal Statistical Society. Series B (methodological). Wiley. 58 (1): 267–88.

Exercises

- Derive the solution of (1) and (2) in details.
- Derive the solution of (2) when removing w_0 from the penalty term.