One way of formulating last lecture's theorem

N(t) = number of nodes in binary tree t.

L(t) = number of leaves in binary tree.

Theorem 1

A binary tree with n nodes has at most $\lceil \frac{n}{2} \rceil$ leaves.

For all $t \in B$ and all $N \in \mathbb{N}$, let S(t,n) = "that n nodes" and let AL(t,n) = "t has at most n leaves". Denote $P(n) = \forall t \in B.[S(t,n) \text{ IMPLIES } AL(t, \left\lfloor \frac{n}{2} \right\rfloor)]$ "

Prove $\forall n \in \mathbb{N}.p(n)$ using strong induction on n.

Another way of formulating the theorem

Recursive Definition of B

Base Case: the empty tree is in B

Constructor Case: If $t_1, t_2 \in B$ and r is a node, then $t := t_1 - r - t_2 \in B$ where $left(t) = t_1$, $right(t) = t_2$

Let
$$g: B \to \{T, F\}$$
 be such that $g(t) = "L(t) \le \left\lceil \frac{N(t)}{2} \right\rceil$ "

$$N:B\to\mathbb{N}$$

Base Case

N(empty tree)=0

Constructor Case

$$N(t)=1+N(left(t))+N(right(t))$$

$$L: B \to \mathbb{N}$$

Base Cases

$$L(\text{empty tree}) = 0$$

$$L(\text{one node tree}) = 1$$

Constructor Case:

$$L(t) = L(left(t)) + L(right(t))$$

To prove $\forall t \in B.q(t)$, we use structural induction.

Let $t \in B$ be arbitrary

Case 1: t is the empty tree

$$N(t) = 0, L(t) = 0$$

so
$$L(t) = 0 = \left\lceil \frac{0}{2} \right\rceil = \left\lceil \frac{N(t)}{2} \right\rceil$$

Case 2: $t := t_1 - r - t_2$:

Assume
$$q(t_1)$$
 and $q(t_2)$, by definition $L(t_1) \leq \left\lceil \frac{N(t_1)}{2} \right\rceil$ and $L(t_2) \leq \left\lceil \frac{N(t_2)}{2} \right\rceil$

Then
$$L(t) = L(t_1) + L(t_2)$$
, $N(t) = N(t_1) + N(t_2) + 1$

So
$$L(t) \le \left\lceil \frac{N(t_1)}{2} \right\rceil + \left\lceil \frac{N(t_2)}{2} \right\rceil \le \ldots \le \frac{N(t)+1}{2}$$

Since
$$N(t)$$
 is an integer, we have $L(t) \leq \left\lfloor \frac{N(t)+1}{2} \right\rfloor \leq \left\lceil \frac{N(t)}{2} \right\rceil$

structural induction $\forall t \in S.p(t)$. can be proved using strong induction.

Let E_0 = set of elements of S due to base case

 E_1 = set of elements of S obtained from elements of E_0 by applying constructor case once.

 $E_i = \text{set of elements of } S \text{ obtained from elements of } E_{i-1} \text{ by applying constructor case } i \text{ times.}$

We can see $S = \bigcup_{i>0} E_i$

Let $q(i) = \forall t \in E_i.p(t)$, then we can prove $\forall i \in \mathbb{N}.q(i)$ using strong induction on i instead of structural induction.

Theorem 2

Every integer greater than n = 1 can be written as a product of primes

Proof. Suppose the claim is false. Let n be the smallest integer greater than 1 that cannot be written as a product of prime.

If n is prime, then n is a product of 1 prime, thus n is composite.

So there exist integers m, k > 1 such that $n = m \times k$

But m and k are both less than n, so they can both be written as a product of primes.

Hence $n = m \times k$ can be written as a product of primes.

This contradicts the definition of n, hence the claim is true.

QUOD ERAT DEM

Definition 1

A set S is partially ordered if there exist $R: S \times S \to \{T, F\}$ such that $\forall x \in S. \forall y \in S. \forall z \in S.$

$$R(x,x) = T$$
 (reflexive)

$$R(x,y)$$
 AND $R(y,x)$ IMPLIES $x=y$ (antisymmetry)

$$R(x,y)$$
 AND $R(y,z)$ IMPLIES $R(x,z)$ (transitivity)

In this case R is called a partial order.

Examples:
$$(\mathbb{Z}, \preceq)$$
, (\mathbb{R}, \preceq) , $(P(\{1, 2, 3\}), \subseteq)$

Not example:

$$R(x,y) = \mathbb{C}$$
 with " $|x| \leq |y|$ "; we can see $|i| \leq |1|$ and $|1| \leq |i|$ but $|i| \neq |1|$ thus not antisymmetry.

H=hockey teams, R(t,t') if t has beaten by t', we can see it is not transitive.

Definition 2

A set S is totally ordered if there exists a partial order $R: S \times S \to \{T, F\}$ such that $\forall x, y \in S, R(x, y)$ OR R(y, x) (comparability), R is a total order.

Examples: $\mathbb{R}, \mathbb{Z}, \leq \text{Not example}$:

$$P(\{1,2,3\}),\subseteq$$
: since $\{1,2\} \not\subseteq \{2,3\}$ and $\{2,3\} \not\subseteq \{1,2\}$, thus not totally ordered.

Definition 3

A totally ordered set S is <u>well-ordered</u> if every non-empty subset $S' \subseteq S$ has a smallest element m, That is, R(m, x) = T for all $x \in S'$

 \leq is a well ordering for \mathbb{N}

 \leq is NOT a well ordering for \mathbb{Z} (negatives) or \mathbb{Q}^+ (archimedean)

This is an example for \mathbb{Z} : $x \leq y$ IFF [(|x| < |y|) OR (|x| = |y|) AND $x \leq y)$

$$0 \leq -1 \leq 1 \leq -2 \leq 2 \cdots$$
 is a well ordering for \mathbb{Z}

This is an example for \mathbb{Q}^+ :

Consider ordering based on $\max\{\text{numerator}, \text{denominator}\}\$ when written in reduced form i.e. $\gcd(\text{numerator}, \text{denominator}) = 1$ and then by value

$$\frac{1}{1} \preceq \frac{1}{2} \preceq \frac{2}{1} \preceq \frac{2}{3} \preceq \frac{3}{2} \preceq \frac{3}{1}$$

Definition 4

If \leq is a well ordering, then $x \prec y$ means " $x \leq y$ and $x \neq y$ ".

Suppose \leq is a well ordering of the set S. Then to prove $\forall e \in S.p(e)$:

To obtain a contradiction, suppose $\forall e \in S.P(e)$ is false.

Let $C = \{e \in S \mid P(e) = F\}$ be the set of counterexamples to P.

 $C \neq \emptyset$; by definition of the previous 2 lines

Let e be the smallest element of C; (since S is well ordered and C is non-empty)

Let $e' = \dots$;

 $e' \in C$:

 $e' \prec e;$

This is a contradiction (contradicting e is the smallest such element in C)

Thus using contradition, we show that $\forall e \in S.p(e)$ is true.

Theorem 3

Every positive rational number $\frac{m}{n}$ can be expressed in reduced form.

Proof.

Suppose there exist $m, n \in \mathbb{Z}^+$ such that $\frac{m}{n}$ cannot be expressed in reduced form;

Let $C = \{ m \in \mathbb{Z}^+ \mid \exists n \in \mathbb{Z}^+ \text{ such that } \frac{m}{n} \text{ cannot be expressed in reduced form} \};$

Then $C \neq \emptyset$.

Since Z^+ is well ordered, and $\emptyset \neq C \subseteq \mathbb{Z}^+$, C has a smallest element m_0 .

By definition of C there exists $n_0 \in \mathbb{Z}^+$ such that $\frac{m_0}{n_0}$ cannot be expressed in reduced form.

In particular, $gcd(m_0, n_0) > 1$ (otherwise it is in reduced form).

Let p be a prime factor of $gcd(m_0, n_0)$;

Let $m_0' = \frac{m_0}{p} \in \mathbb{Z}^+;$

Let $n_0' = \frac{n_0}{p} \in \mathbb{Z}^+;$

Since $\frac{m'_0}{n'_0} = \frac{m_0}{n_0}$, it cannot be expressed in reduced form.

Hence $m'_0 \in C$ such that $m'_0 < m_0$;

The above line is a contradiction.

Therefore, every positive rational number $\frac{m}{r}$ can be expressed in reduced form.

QUOD ERAT DEM

Theorem 4

For every positive integer i, let E(i) = "The subset of $[i] = \{j \in \mathbb{Z}^+ \mid j \leq i\}$ that contain an even number of elements". Let U(i)="subsets of [i] that contain an odd number of elements". For all $i \in \mathbb{Z}^+$. $|E(i)| = |U(i)| = 2^{i-1}$

Proof.

For every $i \in \mathbb{Z}^+$, let $P(i) = |E(i)| = |U(i)| = 2^{i-1}$."

Suppose $\forall i \in \mathbb{Z}^+.P(i)$ is false;

Let $C = \{i \in \mathbb{Z}^+ \mid NOT(P(i))\};$

Then $C \neq \emptyset$;

Since C is well ordered, it has a smallest element x;

 $x \neq 1$ since $\{1\}$ has $1 = 2^{x-1}$ subset which contains an even number of elmeents, \emptyset ; 1 subset which contains an odd number of elements, $\{1\}$.

Let $E'(x) = \{ S \in E(x) \mid x \in S \};$

Then $E(x) = E'(x) \dot{\cup} E(x-1);$ |E(x)| = |E'(x)| + |E(x-1)|;

There is a 1 to 1 correspondence etween E'(x) and U(x-1) (we can add x from one in U(x-1) or remove x from one in E'(x));

Hence |E'(x)| = |U(x-1)|;

Hence |E(x)| = |U(x-1)| + |E(x-1)|

 $x - 1 \notin C$ so $= 2^{x-2} + 2^{x-2} = 2^{x-1}$

 $|U(x)| = 2^{x-1}$ by symmetry or $|U(x)| = 2^x - |E(x)| = 2^{x-1}$ (alternating);

Thus $x \notin C$, this is a contradiction.

ERAT

Definition 5 – Countable + Uncountable Sets

A function $f: A \to B$ is suejective or <u>onto</u> means

$$\forall y \in B. \exists x \in A. (f(x) = y),$$

when A and B are finite sets, we can conclude $|B| \leq |A|$. A non-empty set C is <u>countable</u> if there is a surjective function from \mathbb{N} to C.

Every non-empty finite set is conutable.

Proof. Suppose the elements of C are $c_0, c_1, \ldots, c_{n-1}$ define $f: \mathbb{N} \to C$ by $f(i) = c_i$ for $i \in \{0, 1, \ldots, n-1\}, f(i) = c_{n-1}$ for $i \geq n$. Then f is surjective, thus C is countable.

QUOD ERAT DEM

The empty set is also considered to be countable.

Any well ordered set is countable.

Suppose A and B are countable, then $A \cup B$ is countable, $A \times B = \{(a,b) \mid a \in A \text{ AND } b \in B\}$ is also countable. For \mathbb{Z} : f(0) = 0, f(2i-1) = -i for i > 0, f(2i) = i for i < 0, so \mathbb{Z} is countable.

For $\mathbb{N} \times \mathbb{N}$: we use the diagonal argument, from top left to bottom right, we can list all the elements of $\mathbb{N} \times \mathbb{N}$ (insdert the 2D table here, where the row is \mathbb{N} and with i; column is \mathbb{N} and with j, then there is a mapping of (i,j) to $(i,j) \in \mathbb{N} \times \mathbb{N}$). If A is countable and $B \subseteq A$, then B is also countable.

Lemma 1

If A is nonempty and conutable, then there exists a surjective function $f: A \to B$ then B is countable.

Ø