1、试将下列问题改写成线性规划问题的标准形式。

$$\max \left\{ \min \left(\sum_{i=1}^{m} a_{i1} x_{i}, \sum_{i=1}^{m} a_{i2} x_{i}, \dots, \sum_{i=1}^{m} a_{in} x_{i} \right) \right\}$$
s.t.
$$\begin{cases} x_{1} + x_{2} + \dots + x_{m} = 1 \\ x_{i} \geq 0 \quad i = 1, 2, \dots, m \end{cases}$$

●解答如下:

解:
$$\triangle Y = \min\left(\sum_{i=1}^{m} a_{i1} \chi_{i}, \sum_{i=1}^{m} a_{i2} \chi_{i}, \sum_{i=1}^{m} a_{i3} \chi_{i}, ..., \sum_{i=1}^{m} a_{in} \chi_{i}\right)$$

2、若如下线性规划问题:

$$\left\{\max S = C_1X, AX = b, X \geq 0\right\}$$
的最优解 \mathbf{X}_1 ,
$$\left\{\max S = C_2X, AX = b, X \geq 0\right\}$$
的最优解是 \mathbf{X}_2 ,证明: $\left(C_2 - C_1\right)\left(X_2 - X_1\right) \geq 0$

3、写出下列问题的标准型形式,并求对偶问题

(1)
$$\min z = 2x_1 + 2x_2 + 4x_3$$

$$\begin{cases} 2x_1 + 3x_2 + 5x_3 \ge 2\\ 3x_1 + x_2 + 7x_3 \le 3\\ x_1 + 4x_2 + 6x_3 \le 5\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

●解答如下:

3.解:11) 标准型:

$$\max_{x \in \mathbb{Z}' = -2x_1 - 2x_2 - 4x_3}$$

$$\sum_{x_1 + 3x_2 + 5x_3 - x_4 = 2}^{2x_1 + 3x_2 + 5x_3 - x_4 = 2}$$

$$\sum_{x_1 + 4x_2 + 6x_3 + x_6 = 5}^{3x_1 + 4x_2 + 6x_3 + x_6 = 5}$$

$$\sum_{x_1, x_2, x_3, x_4, x_5, x_6 > 0}^{3x_1 + 4x_2 + 6x_3 + x_6 = 5}$$

(2) 标准型:

(2)
$$\max z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases}
-x_1 + x_2 - x_3 - 3x_4 = 5 \\
6x_1 + 7x_2 + 3x_3 - 5x_4 \ge 8 \\
12x_1 - 9x_2 - 9x_3 + 9x_4 \le 20 \\
x_1, x_2 \ge 0, x_3 \le 0
\end{cases}$$

对偶问题:

max
$$W = 2y_1 + 3y_2 + 5y_3$$

$$\begin{cases}
2y_1 + 3y_2 + y_3 & \leq 2 \\
3y_1 + y_2 + 4y_3 & \leq 2
\end{cases}$$

$$5y_1 + 7y_2 + 6y_3 & \leq 4$$

$$y_1 \ge 0, y_2 \le 0, y_3 \le 0$$

对偶问题:

$$min$$
 $W = SY_1 + 8Y_2 + 20Y_3$
 $\begin{cases} -Y_1 + 6Y_2 + |2Y_3| \\ Y_1 + 7Y_2 - 9Y_3| \ge 2 \\ -Y_1 + 3Y_2 - 9Y_3| \le 3 \\ -3Y_1 - 5Y_2 + 9Y_3 = 4 \\ Y_1 无限働, Y_2 \le 0, Y_2 \ge 0 \end{cases}$

4、用对偶单纯形法求解下列线性规划问题

$$\min z = 4x_1 + x_2 + 3x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \ge 5 \\ x_1 - x_2 - 4x_3 \ge 3 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

●解答如下:

4.解: 原式的标准形式为:

max
$$Z' = -4x_1 - x_2 - 3x_3$$

$$\begin{cases} x_1 + x_2 + x_3 - x_4 = 5 \\ x_1 - x_2 - 4x_3 - x_5 = 3 \\ x_1, x_2, x_3, x_4, x_5 > 6 \end{cases}$$

将标准形式两边同乘一约解件两边同乘一

根据上式列春护解过程如下:

	Cj	→	-4	-1	-3	0	0			
_	XB	Ь	Χ,	X 2	X3	X4	χς			
<u>CB</u> 0	X4	-5	-1	[-1]	-1	1	0			
0	×2	-3	-1	- 1	4	0	1			
<u> </u>			-4	-1_	-3	0	0			
-1	Χ,	7	1	1	1	-1	0			
0	χ ₂	-8	[-2]	O	3	1	1			
	ورا		-3	σ	-2	-1	0			
-1	χ ₂	I	0	1	<u> </u>	$-\frac{1}{2}$	1/2			
-4	Х,	¥	1	0	-3/2	$-\frac{1}{2}$	- 1			
_					4					

最优解: X*= (4,1,0,0,0)^T

最低值: min Z= - max Z'=-[(-4)x4+(-1)x1]= 17

5、请用单纯法求解下列 LP 问题的最优解

$$\max \quad z = 6x_1 + 2x_2 + 12x_3$$

$$s.t \begin{cases} 4x_1 + x_2 + 3x_3 \le 24 \\ 2x_1 + 6x_2 + 3x_3 \le 30 \\ x_1, \quad x_2, \quad x_3 \ge 0 \end{cases}$$

●解答如下:

5. 解: 将原式化为标准形式如下:

max
$$Z = 6x_1 + 2x_2 + 12x_3$$

$$\begin{cases} 4x_1 + x_2 + 3x_3 + x_4 = 24 \\ 2x_1 + 6x_2 + 3x_3 + x_5 = 30 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

列展求解过程如下:

Cs CB X	в в					
	8 0	Χt	X2	X3	Χψ	Х5
0 X4	24	4	1	[3]	1	0
ο χ	30	2	6	3	D	١
		6	2	12	0	0
12 X ₂	, 8	3	<u>1</u>	1	1/3	0
o x ²	6	-2	5	0	-1	1
δj		-10	- z	0	-4	0

6、试用对偶理论证明该问题的最优值不超过25.

$$\max w = 4x_1 + 7x_2 + 2x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \le 10 \\ 2x_1 + 3x_2 + 3x_3 \le 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- ●解答如下:
 - 6. 解: 原问题的对偶问题为:

$$\begin{cases} y_1 + 2y_2 \ge 4 \\ 2y_1 + 3y_2 \ge 7 \\ y_1 + 3y_2 \ge 2 \\ y_1, y_2 \ge 0 \end{cases}$$

品知 Y=(=,2)是对偶问题-个网络解

由对偶理论知原问题的解心于等于对偶问题的解

、访问题的最优值不超过了

7、试用线性规划最优解的性质,验证 X=(0,2,0,0,2)T 是否是下列问题的最优解。

$$\max z = x_1 + 4x_2 + 3x_3$$

$$s.t.\begin{cases} 2x_1 + 2x_2 + x_3 \le 4\\ x_1 + 2x_2 + 2x_3 \le 6\\ x_j \ge 0; j = 1, 2, 3 \end{cases}$$

●解答如下:

7. 假设 X=(0,2,0,0,2) 是诚问题的最优解

原问题标准式为:

$$\begin{cases}
2x_1+2x_2+3x_3+x_4=4 \\
x_1+2x_2+3x_3+x_5=6 \\
x_1 > 0, \quad x_1 > 1, 2, 3, 4, 5
\end{cases}$$

对偶问题为:

min
$$W = 4y_1 + 6y_2$$

$$\begin{cases}
2y_1 + y_2 > 1 \\
2y_1 + 2y_2 > 4 \\
y_1 + 2y_2 > 3 \\
y_1 > 0, \ var_{21}, 2
\end{cases}$$

对偶问题标绘为:

min
$$W = 4y_1 + 6y_2$$

$$\begin{cases}
2y_1 + y_2 - y_3 = | \\
2y_1 + 2y_2 - y_4 = 4 \\
y_1 + 2y_2 - y_5 = 3 \\
y_2 > 0, i = 1, 2, 3, 4, 5
\end{cases}$$

· (/2 , /4) = (0, 0)

将其代人对偶问题标准式查可得:

$$\begin{cases} 2y_1 - y_3 = 1 \\ 2y_1 = 4 \\ y_1 - y_2 = 3 \end{cases} \quad \begin{cases} y_1 = 2 \\ y_3 = 3 \\ y_2 = -1 \end{cases}$$

" 5--1 不满足约束条件

i. χ=(0,2,0,0,2) T不是原问题的最优解.

8、试用对偶单纯形法求解下列问题的最优解

$$\min w = 2x_1 + 3x_2 + 4x_3$$
s.t. $x_1 + 2x_2 + x_3 \ge 3$

$$2x_1 - x_2 + 3x_3 \ge 4$$

$$x_i \ge 0, i = 1, 2, 3$$

●解答如下:

8. 解:将原式化为标准形式

$$\max \ Z = -2X_1 - 3X_2 - 4X_3$$

$$\begin{cases} X_1 + 2X_2 + X_3 - X_4 = 3 \\ 2X_1 - X_2 + 3X_3 - X_5 = 4 \\ X_2 \ge 0, \ \ \vec{t} = 1, 2, 3, 4, 5 \end{cases}$$

将标准形式约束条件两边同乘一得:

$$max \quad Z = -2x_1 - 3x_2 - 4x_3$$

$$\begin{cases}
-x_1 - 2x_2 - x_3 + x_4 = -3 \\
-2x_1 + x_2 - 3x_3 + x_5 = -4 \\
x_1 > 0, x_2 = 1, 2, 3, 4, 5
\end{cases}$$

列表求解过程如下:

	$G_j \rightarrow$		-2	-3	-4	0	0
$C_{\mathcal{B}}$	$\chi_{\mathcal{B}}$	6	χ,	X 2	X3	×μ	Χς
0	X4	-3	-1	-2	-1	1	0
0	Xz	-4	[-2]	1	-3	0	1
_	σj		-2	-3	-4	0	0
0	Χų	-1	0	$\left[-\frac{5}{7}\right]$	2	-1-	- 1/2
- Z	χ_1	2) 1	$-\frac{1}{2}$	3	0	- 1
	σ_{j}		0	-4	-1	0	-1
-3	X ₂	25	0	1	- =	- 3	7
-2	χı	11	1	0	75	-블	
	σ_{j}		0	0	- 9/5	-8	- 1

最优解 X*=(+,+,0,0,0) 最优值: min W=-max Z=-[(-2)x+(-3)x+]=35

9、对于下列线性规划原问题,已知其对偶问题的最优解为 $y_1=1.2$, $y_2=0.2$ 试用对偶理论求出原问题的最优解.

$$\max z = x_1 + 2x_2 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 \le 20 \\ 2x_1 + x_2 + 3x_3 + 2x_4 \le 20 \\ x_1, \dots, x_4 \ge 0 \end{cases}$$

●解答如下:

9.原问题标准形约:

max
$$Z = x_1 + 2x_0 + 3x_3 + 4x_4$$

$$\begin{cases} x_1 + 2x_2 + 2x_3 + 3x_4 + x_5 = 20 \\ 2x_1 + x_2 + 3x_3 + 2x_4 + x_6 = 20 \\ x_1, x_2, x_3, x_4, x_5, x_6 > 0 \end{cases}$$

对偶问题为:

min
$$W = 20y_1 + 20y_2$$

$$\begin{cases}
y_1 + 2y_2 \geqslant 1 \\
2y_1 + 3y_2 \geqslant 2
\end{cases}$$

$$2y_1 + 3y_2 \geqslant 3
\end{cases}$$

$$3y_1 + 2y_2 \geqslant 4
\end{cases}$$

$$y_{11}y_2 \geqslant 0$$

对偶问题标准形约:

min
$$W = 20y_1 + 20y_2$$

 $y_1 + 2y_2 - y_3 = 1$
 $2y_1 + y_2 - y_4 = 2$
 $2y_1 + 3y_2 - y_5 = 3$
 $3y_1 + 2y_2 - y_6 = 4$
 $y_1, y_2, y_3, y_4, y_5, y_6 = 0$

?Y1=1,2 Y2=0,2代从新得:

由互补松弛定理可知原问题解与对偶问题解对应关系如下:

 $X_1 = X_2 = X_5 = X_6 = 0$

将其代入厦网题 标准式中得.

$$\begin{cases} 2X_3 + 3X_4 = 20 & \text{i. } \begin{cases} X_3 = 4 \\ 3X_3 + 2X_4 = 20 \end{cases} & \text{i. } \begin{cases} X_4 = 4 \end{cases}$$

"原问题最优解为 X*= (0,0,4,4) T

最优值为: Z*= 3x4+4x4=28

10、用动态规划方法求下列非线性问题的最优解:

$$\max Z = x_1^2 x_2 x_3^3$$
s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 6 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

●解答如下:

10. 解: 0=6 问题是求为(6)

新書:
$$u=b$$
 トラ地と 大手 33(0)

 $f_{3}(b) = \max_{0 \le X_3 \le \frac{L}{d_3}} \left\{ X_3^3 \cdot f_2(b-X_3) \right\} = \max_{0 \le X_3 \le 6} \left\{ X_3^3 \cdot f_2(b-X_3) \right\} = \max_{0 \le X_3 \le 6} \left\{ 0, f_2(5), 8f_2(4), 27f_2(3), 64f_2(2), 128f_2(1), 216f_2(0) \right\}$
×为整數

×为整數

$$f_{2}(5) = \max_{\substack{0 \leq X_{2} \leq 5 \\ \text{X泊整}}} \left\{ \chi_{2} \cdot f_{4}(5-\chi_{2}) \right\} = \max_{\substack{0 \leq X_{2} \leq 5 \\ \text{X泊整}}} \left\{ 0, f_{1}(4), 2f_{1}(3), 3f_{1}(2), 4f_{1}(1), 5f_{1}(0) \right\} = \max_{\substack{0 \leq X_{2} \leq 5 \\ \text{X泊整}}} \left\{ 0, |6, 18, 12, 4, 0 \right\} = 18$$

x泊整数 8f2(4) = 8·
$$\max_{0 \le x_2 \le 4} \{x_2 \cdot f_1(4-x_2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(1), 4f_1(0)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 3f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 2f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le x_2 \le 4} \{0, f_1(3), 4f_1(2), 4f_1(2), 4f_1(2)\} = 8\cdot \max_{0 \le$$

次方を
× 力を数
コチュ(3)=27・ max
$$\{x_2 \cdot f_1(3-x_2)\}$$
 = 27・ max $\{0, f_1(2), 2f_1(1), 3f_1(0)\}$ = 27・ max $\{0, 4, 2, 0\}$ = 108
スカセッシュンション・ max $\{x_2 \cdot f_1(3-x_2)\}$ = 27・ max $\{0, f_1(2), 2f_1(1), 3f_1(0)\}$ = 27・ max $\{0, 4, 2, 0\}$ = 64

$$x_1$$
 电数

$$64 f_2(z) = 64 \cdot \max_{0 \le x_1 \le 2} \{x_2 \cdot f_1(z-x_2)\} = 64 \cdot \max_{0} \{0, f_1(1), 2f_1(0)\} = 64 \cdot \max_{0} \{0, 1, 0\} = 64$$

$$64 f_2(z) = 64 \cdot \max_{0 \le x_1 \le 2} \{x_1 + x_2 + x_1 + x_2 + x_2 + x_1 + x_2 +$$

- **11**、设 x^* 是线性规划问题: $\{\max S = cx; Ax = b; x \ge 0\}$ 的最优解,最优值为 S^* , $k \ge 0$ 为某一常数,分别在讨论以下情况时,求解线性规划问题的最优解和最优值,用 x^* 或 S^* 表示。(15 分)
 - (1) 目标函数变为 $\max S = k(cx)$, 约束条件不变;
 - (2) 目标函数不变,约束条件变为Ax = kb;
- (3) 目标函数变为 $\max S = \frac{1}{k}(cx)$,约束条件变为Ax = kb。

- 11. (1) 最优解: x*; 最优值: KS*
 - (2) 最优解: KX*; 最优值: KS*
 - (3) 最低解: kX*; 最低值: S*

- **12**、若线性规划问题存在可行解的集合 D={ X | AX=B x≥0},证明集合 D 是凸集。**解答如下:**
- 12.证明: 设线收规划问题为:

$$\max_{S: \frac{1}{2}} \frac{Z = CX}{\sum_{j=1}^{n} P_j X_j = b}$$

$$\sum_{j=1}^{n} P_j X_j = b$$

C标LP问题的所编

13、利用对偶理论证明下列线性规划问题无最优解

$$\min z = x_1 - x_2 + x_3$$
s.t.
$$\begin{cases} x_1 - x_3 \ge 4 \\ x_1 - x_2 + 2x_3 \ge 3 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

●解答如下:

13 原间歇的对偶问题为:

max
$$W = 4y_1 + 3y_2$$

$$\begin{cases} y_1 + y_2 \le 1 \\ -y_2 \le -1 \\ -y_1 + 2y_2 \le 1 \\ y_1, y_2 \ge 0 \end{cases}$$

易知对偶问题无听分解,更无最优解

心原问题也无最优解

14、用动态规划方法求解下列问题:

$$\max Z = 2x_1^2 + 3x_2 + 5x_3$$

s.t
$$\begin{cases} 2x_1 + 4x_2 + x_3 = 8 \\ x_i \ge 0 \end{cases}$$
 $(i = 1, 2, 3)$

●解答如下:

$$\frac{1}{3}k=3$$
 $\int_{3}(S_{3})=\max_{0\leq x_{3}\leq S_{3}}\{Sx_{3}\}=SS_{3}$

$$\begin{array}{rcl}
&= \max_{S_{2}} \left\{ 4 - 1/\chi_{2} + SS_{2} \right\} = SS_{2} \\
&= \max_{0 \leq \chi_{2} \leq \frac{\pi}{4}} \left\{ 4 - 1/\chi_{2} + SS_{2} \right\} = SS_{2} \\
&= \max_{0 \leq \chi_{1} \leq \frac{\pi}{2}} \left\{ 2\chi_{1}^{2} + \int_{2} (S_{2}) \right\} = \max_{0 \leq \chi_{1} \leq \frac{\pi}{2}} \left\{ 2\chi_{1}^{2} + 5(S_{1} - 2\chi_{1}) \right\} \\
&= \max_{0 \leq \chi_{1} \leq 4} \left\{ 2\chi_{1}^{2} - 10\chi_{1} + 40 \right\}
\end{array}$$

· 2X12-10X1+40是凸函数

: 极值点在湍点处取

** 当火」=の日 2火²-10火」+40=40 当火」=4日 2火²-10火」+40=32

> 、协问题最优解为 X*=(0,0,8) 最优值为 Z*=40

15、用分支定界法求下列整数规划问题的最优解和最优值。

$$\max Z = 4x_1 + 3x_2$$
 s.t
$$\begin{cases} 3x_1 + 2x_2 \le 25 \\ 4x_1 + 5x_2 \le 50 \\ x_1, x_2 \ge 0, 且均取整数 \end{cases}$$

·· 诚问题最优解为: X1=5 X2=5 数=5 数=5

16、假设某地需要建设 5 个厂房 B1、B2、B3、B4、B5,指派三个建筑公司 A1、A2、A3 完成厂房的建设,每家建筑公司最多承建 2 个厂房。求使总费用最少的指派方案。

●解答如下:

16. 解: 每家建筑公司最多参建 2个厂房, 网络公司房制成 2份, 并增加 B6 厂房

17、设有 8 个工件 A_1 , A_2 , …, A_8 要在一台机器上加工,加工时间 t_i 和交货日期 d_i 如下表所示:

		A_2						
t_i	5	10	2	2	4	6	7	3
d_i	34	18	10	8	6	22	28	9

试求: (1) 对于 $1 \parallel L_{max}$ 问题,求最优调度序列。

(2) 对于 $1 \parallel \sum U_j$ 问题,求调度序列,使得误期交货的工件最少。

●解答如下:

17. (1) 根据 EDD规则网络最优调的: (As, A4, A8, A3, A2, A6, A7, A1)

(2) 根据 EDD 规则初始化建装

Áù	As	A4	Ag	Az	Az	Á6	A ₇	A۱
ti	4	2	3	2	10	6	7	5
c_i	4	6	9	[[21	27	34	39
dì	6	8	9	10	18	22	28	34

将As移出得新表:

Αù	AH	Ag	Ag	Az	Af	A	A	A ₅
4i	,	3	2	10	6	7	5	4
Ci	2	5	7	17	23	30	35	39
di	8	9	[0	18	22	28	34	6

将A2形出得新表:

A ₁ A ₅ A ₂	Δ,					
		A_6	Az	Ag	Ι Δ.,	Aì
5 4 10	7	6	2	3	714	
25 29 39	W	13	7	+	7	
34 6 18	28	22	10	9	8	
		13	7 1°	3	2	ti Ci di

幽前6项都不误期,是最优方案

调度例为(A4, A8, A3, A6, A7, A1, A5, A6) 误期为2件: A5、A2· 18、对于调度问题 $P_m \parallel C_{\text{max}}$, 其中, m = 3, n = 9, t = (5, 4, 2, 8, 6, 3, 7,1,9,11). 求最优调度。

●解答如下:

··最析網段为: P.上條次进行 J10、J1、J3、B3; B.上條次进行 J4、J5、J2; B.上條次进行 J4, J7, J6

19、有如下表的 8 件物品,有容积均为 20 的相同箱子若干,请分别用 NF、BF、FF、BFD、FFD 算法求装入下列 8 件物品所需最少箱子数。

物品	I_{1}	I_{2}	$I_{\overline{3}}$	I_{4}	$I_{_{5}}$	I_{6}	I_{7}	$I_{_{8}}$
W_j	12	14	8	4	16	6	10	2

●解答如下:

19.解:设需要箱3数为 N

ONF填法:

② BF集法:

@ FF ⊈从:

将脚品重量从大到小进约排序得卷:

柳品]r	五	74	17	I_3	I_6	Ιų	I_8
w_j	16	14	JZ	10	8	6	4	2

田 BFD 算法:

⑤ FFD算法:

20、求下列最小指派问题的最优分配,有1人要做2项工作,其余3人每人做1项工作。

21、用标号算法求下图中 s→t 的最大流量,并找出最小割。

●解答如下:

选取僧†链: S→V1→V5→V3→t

反向追踪结果如下:

选取僧广链书: S→ Vs→ V4→t , 反向追踪结果如下:

选取增广链为: S→V₂ →V₃ →t 反向追踪结果如7:

选取館↑链:5→12→13→も

晌追踪结果如:

此时标号无法继续, 社的图集(V, V)={(\$, V,), (s, V,), (v, V,), (V, V)

:割條容量 C(V, V)=Cs1+Cs5+C25+C23=4+3+3+4=14