# Introduction DS351

# Main principle

- ▶ Predictors  $X = (X_1, X_2, ..., X_p)$
- ▶ Response *Y*

## Main principle

- ▶ Predictors  $X = (X_1, X_2, \dots, X_p)$
- ▶ Response *Y*

**Assumption**: There's some function f and error  $\epsilon$  such that

$$Y = f(X) + \epsilon$$

Here, Y and  $\epsilon$  are **random variables**.

- ▶ Predictors  $X = (X_1, X_2, ..., X_p)$
- ▶ Response *Y*
- Let  $\widehat{Y} = \widehat{f}(X)$  where  $\widehat{f}$  is an estimate of f.

- ▶ Predictors  $X = (X_1, X_2, \dots, X_p)$

Let 
$$\widehat{Y} = \widehat{f}(X)$$
 where  $\widehat{f}$  is an estimate of  $f$ .

Performance of 
$$\hat{f}$$
 is measured by

 $\mathbf{E}(Y-\widehat{Y})^2 = \mathbf{E}[f(X) + \epsilon - \widehat{f}(X)]^2$ 

 $= [f(X) - \hat{f}(X)]^2 + Var(\epsilon).$ 

## Our goals

► Minimize the reducible error.

## Our goals

- ▶ Minimize the reducible error.
- ► Find relevant predictors.

#### Our goals

- Minimize the reducible error.
- Find relevant predictors.
- ▶ Find the relationship between  $X_i$  and Y e.g. would increasing the value of  $X_i$  increases the value of Y?

#### Bias-Variance trade-off

To create a model, we split data into Training set+Test set

#### Bias-Variance trade-off

To create a model, we split data into Training set+Test set

Fix a data point  $(x_0, y_0)$  in the test set.

Treat  $\hat{f}$  as  ${\bf random}$  depending on the training set that we sampled from the population.

#### Bias-Variance trade-off

To create a model, we split data into Training set+Test set

Fix a data point  $(x_0, y_0)$  in the test set.

Treat  $\hat{f}$  as **random** depending on the training set that we sampled from the population. It can be shown that

$$\mathbf{E}(y_0 - \hat{f}(x_0))^2 = \text{Var}(\hat{f}(x_0)) + [\text{Bias}(\hat{f}(x_0))]^2 + \text{Var}(\epsilon).$$

# Example



# Example



#### Bias-Variance tradeoff

