组合计数

请在11月23日课前提交纸质作业.

- 1. (6 分) 化简 $\sum_{k=0}^{n} {n \choose k} \min(k, n-k)$, 使得结果不出现求和号。
- 2. (6 分) 给定一个函数 $f: 2^{[n]} \to \mathbb{R}$ 。证明如果定义 $\tilde{f}(S) = \sum_{T \supset S} f(T)$,那么

$$f(S) = \sum_{T \supset S} (-1)^{|T \setminus S|} \tilde{f}(T)$$

Remark: 对于一组有限集 A_1, \ldots, A_n 和 $\Omega = A_1 \cup A_2 \cup \cdots \cup A_n$ 。如果定义

$$f(S) = |\{x \in \Omega | \forall i \in [n], x \in A_i \iff i \in S\}|,$$

那么题目结论可以推出容斥原理。

Remark: 对称地, 如果定义 $\hat{f}(S) = \sum_{T \subset S} f(T)$, 那么

$$f(S) = \sum_{T \subset S} (-1)^{|S \setminus T|} \hat{f}(T)$$

- 3. (10 分) 令 $M \in \operatorname{Mat}_{n,n}(\mathbb{F})$ 是一个有限域 \mathbb{F} 上的 $n \times n$ 矩阵。定义 M 是一个 MDS (maximum distance separable) 矩阵,当且仅当对任何不同的 $x, x' \in \mathbb{F}^n$,(Mx, x) 和 (Mx', x') 至少在 n+1 个位置不同。不难证明以下命题等价,
 - a. *M* 是 MDS 矩阵;
 - b. M 可逆, 且 M^{-1} 是 MDS 矩阵;
 - c. M 的任何子矩阵满秩;
 - d. 考虑方程 $(y_1, ..., y_n) = M(x_1, ..., x_n)$,任意固定 $x_1, ..., x_n, y_1, ..., y_n$ 中的 n 个变量,方程 仍有解;
 - e. 考虑方程 $(y_1, ..., y_n) = M(x_1, ..., x_n)$,任意固定 $x_1, ..., x_n, y_1, ..., y_n$ 中的 n 个变量,方程 有唯一解。

由等价命题 c 可以看出,当 $|\mathbb{F}|$ 足够大时,大部分矩阵都是 MDS 矩阵。因此,可以说 MDS 刻画了"一般的"矩阵。

(1) 若 $M \in \text{Mat}_{n,n}(\mathbb{F})$ 是一个 MDS 矩阵, 求出满足 $(x_{n+1}, \ldots, x_{2n}) = M(x_1, \ldots, x_n)$ 且 x_1, \ldots, x_{2n} 均不为 0 的解的个数。

提示: 对每个集合 $S \subseteq [2n]$, 计算满足 $(x_{n+1},\ldots,x_{2n})=M(x_1,\ldots,x_n)$ 且 $x_i=0 \iff i \in S$ 的解的个数。

(2) 记上问求出的解的个数为 L。证明

$$\left|L - \frac{(|\mathbb{F}| - 1)^{2n}}{|\mathbb{F}|^n}\right| \le 2^{2n}.$$

- 4. $(8 \, \mathcal{G})$ 在一块 $n \, \mathcal{G}$ $n \, \mathcal{G}$ 一共 $n \times n$ 个格子的棋盘上放棋子,需要保证每行每列恰好有两个棋子,每种方法都有一个权重,试求在以下两种情况下,所有不同的可行放法的权值之和:
 - (1) 每个格子上最多只能放一个棋子,且每种放法的权值均为1。
 - (2) 格子上可以放两枚棋子,假设当前方案中有x个格子放了两枚棋子,该方案的权值为 $(\frac{1}{2})^x$ 。 两种情况选一种做即可。设大小为 $n \times n$ 的棋盘的答案为 f_n ,写出 $\{f_n\}$ 的通项公式或递推式均可。提示:可以考虑将每个列看成一个点,每个在第i列和第j列包含的棋子的行表示第i个点和第j个点之间连一条边。考察得到的图有什么样的性质,以及如何计数。