Mathematische Grundlagen der Informatik 1 Matrizen und Lineare Algebra

W. Gansterer, K. Schindlerová

3. Mai 2020

Überblick

- Eigenwerte, Eigenvektoren, Basistransformation
 - Determinante
 - Eigenwerte, Eigenvektoren

Eigenwerte, Eigenvektoren, Basistransformation

Determinante

Charakteristikum von *quadratischen* Matrizen, das einer Matrix einen Skalar zuordnet.

- Ein Gleichungssystem ist genau dann eindeutig lösbar, wenn die Determinante ihrer Koeffizientenmatrix ungleich 0 ist.
- Ist die Determinante gleich 0, dann ist das Gleichungssystem entweder unlösbar oder hat unendlich viele Lösungen.

Beispiel

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e \\ f \end{pmatrix}$$
 hat formal die Lösungen $x = \frac{ed - bf}{ad - bc}$, $y = \frac{af - ce}{ad - bc}$

- $ad bc \neq 0 \Leftrightarrow$ eindeutige Lösung
- $ad bc = 0 \Leftrightarrow$ keine eindeutige Lösung, Rang der Koeffizientenmatrix < 2

Determinante

Jede quadratische Matrix hat eine Determinante:

Determinante

Die Determinante ist eine Funktion det : $K^{n \times n} \to K$ mit den folgenden Eigenschaften:

- (D1) $\det I = 1$
- (D2) Sind die Zeilen/Spalten einer Matrix linear abhängig, so ist deren Determinante gleich 0.
- (D3) $\forall \lambda \in K$; $v \in K^n$; i = 1, 2, ..., n gilt (z_i Zeilenvektoren):

$$det(z_1, ..., \lambda z_i, ..., z_n) = \lambda det(z_1, ..., z_i, ..., z_n)
det(z_1, ..., z_i + v, ..., z_n) = det(z_1, ..., z_i, ..., z_n) +
det(z_1, ..., v, ..., z_n)$$

Notation: |A| := det(A)

Wichtige Eigenschaften

- Eine Matrix (und somit auch eine lineare Abbildung) ist nur dann invertierbar, wenn ihre Determinante ungleich null ist.
- Anschauliche Interpretation für Matrizen aus $K^{2\times 2}$ und aus $K^{3\times 3}$ (bis auf das Vorzeichen):
 - Im $K^{2\times 2}$ gibt die Determinante die Fläche des von den Zeilen-/Spaltenvektoren aufgespannten Parallelogramms an
 - Im $K^{3\times3}$ das Volumen des von den Zeilen-/Spaltenvektoren aufgespannten Körpers (Parallelepiped/Spat)
 - Analog im $K^{n \times n} \dots \rightarrow n$ -dimensionales Volumen
- Eindeutigkeit: Es gibt genau eine Determinantenfunktion det: K^{n×n} → K mit den Eigenschaften (D1), (D2), (D3).

Wichtige Eigenschaften

 Die Determinante einer Matrix ist gleich der Determinante der transponierten Matrix

$$\det(A) = \det(A^T)$$

• Für Matrizen $A, B \in K^{n \times n}$ gilt:

$$\det(AB) = \det(A) \cdot \det(B)$$

• Für invertierbare Matrizen $A \in K^{n \times n}$ gilt daher:

$$\det(A^{-1}) = \det(A)^{-1}$$

Spezialfall: 2×2 **Matrix** \rightarrow "Hauptachse minus Nebenachse"

$$det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$$

Flächeninhalt/Volumen:
$$A_{Parallelogramm} = |det(\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix})|$$

Ist der Winkel zwischen den beiden linear unabhängigen Vektoren (gegen den UZS gemessen) kleiner als 180° , so ist det positiv, ansonsten negativ. Bei linear abhängigen Vektoren (Winkel = $0^\circ, 180^\circ$) ist det = 0.

Variante 1: elementare Zeilenumformungen / Gauß-Algorithmus

Wiederholung: Elementare Zeilenumformungen

- Vertauschen zweier Zeilen
- ② Addition/Subtraktion des λ -fachen einer Zeile z_i zu einer anderen Zeile z_i ($i \neq j$)
- **1** Multiplikation einer Zeile mit einem Skalar $\lambda \neq 0$

Variante 1: elementare Zeilenumformungen / Gauß-Algorithmus

- Das Vertauschen zweier Zeilen kehrt das Vorzeichen der Determinante um.
- Die Addition des λ -fachen einer Zeile zu einer anderen ändert die Determinante nicht.
- Multipliziert man eine Zeile mit einem Skalar $\lambda \in K$, so gilt:

$$\det(z_1,\ldots,\lambda z_i,\ldots,z_n)=\lambda\det(z_1,\ldots,z_i,\ldots,z_n)$$

Beweise siehe Hartmann . . .

Berechnung der Determinante mit Gauß-Algorithmus

- Erzeuge "obere Dreiecksform" mit elementaren Zeilenumformungen
- ⇒ Determinante = Produkt der Einträge auf der Hauptdiagonale
 - Viele Operationen ändern die Determinante nicht; manche Operationen muss man sich merken:
 - ullet Zeilenvertauschung o det mit -1 multiplizieren
 - ullet Multiplikation mit Skalar $\lambda
 ightarrow \det$ mit dem Kehrwert $1/\lambda$ multiplizieren

	Α			1		I
1	0	0	1	0	0	
1	0	1	0	1	0	-i
0	1	3	0	0	1	
1	0	0	1	0	0	
0	0	1	-1	1	0	
0	1	3	0	0	1	-3 ii
1	0	0	1	0	0	
0	0	1	-1	1	0	↓
0	1	0	3	-3	1	1
1	0	0	1	0	0	
0	1	0	3	-3	1	
0	0	1	-1	1	0	
	ı			A^{-1}		

Zeilenvertauschungen: 1 keine Multiplikation mit Skalaren $\rightarrow det(A) = -1 \cdot (1 \cdot 1 \cdot 1) = -1$

Auf A^{-1} wurden genau die gleichen Operationen angewandt (nur in umgekehrter Reihenfolge)

$$\Rightarrow$$
 $det(A^{-1}) = -1$

Berechnung der Determinante mit Gauß Algorithmus

keine Zeilenvertauschungen, skalare Multiplikation nur mit $\frac{16}{15}$

$$\Rightarrow$$
 $det(A) = \frac{15}{16} \cdot (1 \cdot -1 \cdot 16 \cdot 1) = -15$

Variante 2: Entwicklung nach einer Zeile / Spalte

Entwicklungssatz von Laplace

Sei $A \in K^{n \times n}$ und A_{ij} die $(n-1) \times (n-1)$ -Matrix, die aus A entsteht, wenn man die i-te Zeile und die j-te Spalte streicht. Dann gilt:

- $\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} \dots$ Entwicklung nach der i-ten Zeile
- $\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det A_{ij} \dots$ Entwicklung nach der j-ten Spalte

Entwicklungssatz von Laplace

- Auswählen einer beliebigen Zeile oder Spalte als Pivot-Zeile/Spalte
- Pür jedes Element in der Pivot-Zeile/Spalte: die korrespondierende Spalte/Zeile, in der das Element steht (sowie die Pivot-Zeile/Spalte selbst) streichen und die Determinante der übrigen Matrix mit dem Element multiplizieren, wobei sich das Vorzeichen aus folgendem

Schachbrettmuster ergibt:
$$\begin{pmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & & \\ \vdots & & \ddots & \end{pmatrix}$$

Summation dieser Produkte

 \dots kann rekursiv so lange fortgesetzt werden, bis nur noch die Determinanten von 2×2 Matrizen zu berechnen sind

Beispiele: Entwicklungssatz von Laplace

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = (-1)^{1+1} \begin{vmatrix} a & e & f \\ h & i \end{vmatrix} + (-1)^{1+2} \begin{vmatrix} d & f \\ g & i \end{vmatrix} + (-1)^{1+3} \begin{vmatrix} d & e \\ g & h \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$$

$$\begin{vmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{vmatrix} = a \begin{vmatrix} f \\ j \\ k \\ o \end{vmatrix} \begin{vmatrix} g \\ k \\ l \\ o \end{vmatrix} - b \begin{vmatrix} e & g \\ i & k & l \\ m & o & p \end{vmatrix} + c \begin{vmatrix} e & f \\ i & j \\ m & n \end{vmatrix} \begin{vmatrix} e & f \\ l \\ m & n \end{vmatrix} - d \begin{vmatrix} e & f \\ i & j & k \\ m & n & o \end{vmatrix} = a \left(-g \begin{vmatrix} j & l \\ n & p \end{vmatrix} + k \begin{vmatrix} f & h \\ n & p \end{vmatrix} - o \begin{vmatrix} f & h \\ j & l \end{vmatrix} \right) - b(\dots) + c(\dots) - d(\dots)$$

Beachten Sie:

Als Pivot-Zeilen/Spalten eignen sich vor allem jene mit möglichst vielen Nullen!

Wichtige Zusammenhänge

Satz

Sei $A:K^n\to K^n$ eine lineare Abbildung. Dann sind folgende Aussagen äquivalent:

- $det(A) \neq 0$
- Rang(A) = n
- ker(A) = 0, $das\ heißt$, $dim\ ker(A) = 0$
- Die Spalten (Zeilen) von A sind linear unabhängig.

Außerdem sind folgende Aussagen äquivalent:

- det(A) = 0
- Rang (A) < n
- dim ker (A) > 0
- Die Spalten (Zeilen) von A sind linear abhängig.

Eigenwerte, Eigenvektoren

Definition

Sei $A: K^n \to K^n$ eine lineare Abbildung. $\lambda \in K$ heißt Eigenwert von A, wenn es einen Vektor $\underline{v \neq 0}$ gibt mit der Eigenschaft $Av = \lambda v$. Der Vektor $v \in K^n$ heißt Eigenvektor zum Eigenwert $\lambda \in K$, wenn gilt $Av = \lambda v$.

... oder einfacher:

Eigenvektoren sind jene Vektoren des Urbildraumes, die nach der Abbildung ihre Richtung behalten und lediglich um einen Skalierungsfaktor (Eigenwert) gestreckt werden.

• Eine Richtungsänderung ist möglich: $\lambda < 0 \Rightarrow$ der Eigenvektor dreht sein Vorzeichen um

Beispiel: Drehung um den Ursprung

$$D_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

- Außer dem Nullpunkt wird jeder Punkt gedreht, kein Vektor $v \neq 0$ bleibt also fest, und damit gibt es keine reellen Eigenwerte und Eigenvektoren.
- Ausnahmen:
 - $\alpha = 0^{\circ}, k \cdot 360^{\circ}$: jeder Vektor ist Eigenvektor zu $\lambda = 1$
 - $\alpha = (2k-1) \cdot 180^{\circ}$: jeder Vektor ist Eigenvektor zu $\lambda = -1$

Beispiel: Spiegelung

$$S_{\alpha} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

•
$$S_{\alpha} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} (\cos \alpha - \lambda)x + \sin \alpha & y = 0 \\ \sin \alpha & x + (-\cos \alpha - \lambda)y = 0 \end{pmatrix}$$

- ullet Hat nicht-triviale Lösung \Leftrightarrow Determinante = 0 \dots Eigenwerte von $\mathcal{S}_{\!lpha}$
- Für jeden Eigenwert erhalten wir ein Gleichungssystem in den beiden Unbekannten x und y
- Lösen dieser Gleichungssysteme liefert die Eigenvektoren

- Eine Zahl λ ist genau dann ein Eigenwert, wenn es dazu einen Eigenvektor $\neq 0$ gibt.
- Der Kern von $A \lambda I$ muss also *mehr* als den Nullvektor enthalten, seine Dimension muss ≥ 1 sein.
- Es muss daher gelten: $det(A \lambda I) = 0$.

Es gilt allgemein:

Satz

 λ ist Eigenwert der linearen Abbildung $A \Leftrightarrow \det(A - \lambda I) = 0$.

Die Menge der Eigenvektoren

Definition

Ist $\lambda \in K$ Eigenwert der linearen Abbildung A, so bezeichnet man die Menge der zu λ gehörenden Eigenvektoren

$$T_{\lambda} := \{ v \in K^n \mid Av = \lambda v \}$$

als Eigenraum zum Eigenwert λ .

Zur Berechnung von Eigenvektoren

$$Av = \lambda v \Leftrightarrow Av = \lambda Iv \Leftrightarrow Av - \lambda Iv = 0 \Leftrightarrow (A - \lambda I)v = 0$$

Daraus können wir folgende Schlüsse ziehen:

- \Rightarrow Der Eigenraum T_{λ} zum Eigenwert λ ist der Kern der Abbildung $(A \lambda I)$
- \Rightarrow Der Eigenraum T_{λ} zu einem Eigenwert λ ist ein Untervektorraum (da der Kern einer linearen Abbildung ein Untervektorraum ist!)

Zur Berechnung von Eigenvektoren

$$Av = \lambda v \Leftrightarrow (A - \lambda I)v = 0$$

Erinnern wir uns: λ ist genau dann ein Eigenwert, wenn es dazu einen Eigenvektor $v \neq 0$ gibt.

- \Rightarrow Der Kern von $(A \lambda I)$ muss mehr als den Nullvektor enthalten, er muss Dimension > 1 haben
- $\Rightarrow \lambda$ ist Eigenwert der linearen Abbildung A genau dann, wenn $\det(A \lambda I) = 0$.

Eine mögliche Vorgehensweise, um Eigenwerte und -vektoren zu berechnen:

- **①** Aufstellen des charakteristischen Polynoms $det(A \lambda I)$
- ② Berechnen der Eigenwerte λ_i durch Lösen der charakteristischen Gleichung $\det(A \lambda I) = 0$
- **9** Berechnung der Eigenvektoren v_i für jeden Eigenwert λ_i durch $(A \lambda I)v = \vec{0}$

Zusammenfassung

Folgende Aussagen sind äquivalent:

- Die Matrix A ist invertierbar
- Die Matrix A hat vollen Rang
- Die Matrix A ist regulär
- Die Determinante der Matrix A ist ungleich null
- Das Gleichungssystem Ax = b ist eindeutig lösbar
- Das Gleichungssystem Ax = b hat einen nulldimensionalen Lösungsraum
- Das homogene Gleichungssystem Ax = 0 hat nur die triviale Lösung
- Der Kern der linearen Abbildung f(x) = Ax hat die Dimension 0
- Die lineare Abbildung f(x) = Ax ist bijektiv