Math 651 – Homework exercises 02/15/2013

- 1. Let $p: X \to Y$ be a surjective continuous map. Show that p is a quotient map if and only if it takes saturated closed sets to saturated closed sets.
- 2. Let $p:X\to Y$ be a quotient map. Show that if A is a saturated open set or a saturated closed set, then $p|_A:A\to p(A)$ is a quotient map.
- 3. (The Characteristic Property of the Quotient Topology is characteristic.) Let $p: X \to Y$ be a surjective function, where X is a topological space. Consider two topologies on Y, denoting the resulting topological spaces by Y_1, Y_2 , and the functions $p_i: X \to Y_i$

Suppose both Y_1 and Y_2 have the property that for every topological space Z and every $f:Y_i\to Z$, that f is continuous if, and only if, $f\circ p_i:X\to Z$ is. Show that $Y_1=Y_2$.

Thus, since the quotient topology has this property, it is the unique topology on Y with this property.