Race - 1:
$$\frac{22}{22}$$
. Mass of toxygen molecule = $\frac{320my}{(02)}$

Mass of t molecule of $\frac{50}{22}$ = $\frac{800my}{20}$
 $\frac{10}{200}$ = $\frac{4}{10}$
 $\frac{4}{200}$ = $\frac{4}{10}$
 $\frac{4}{200}$ = $\frac{4}{10}$
 $\frac{4}{200}$ = $\frac{4}{10}$

$$\frac{\text{Race-2}}{13}$$
 $\frac{3}{13}$ $\frac{13}{13}$ $\frac{127}{(4)}$ $\frac{127}{(4)}$ $\frac{127}{(4)}$ $\frac{13}{(4)}$

Mole Concept

Atomic mass of an element = 50

(i) RAM = 50 amy

Muss of 1 atom in gram = $\frac{50}{6.02 \times 10^{23}}$ or = $50 \times 1.63 \times 10^{23}$

(ii) Molar mass = $\frac{50}{6.02 \times 10^{23}} \times \frac{6.02 \times 10^{23}}{6.02 \times 10^{23}} = \frac{50 \text{ g}}{6.02 \times 10^{23}} = \frac{25}{50 \times 3001 \times 10^{23}} \times \frac{10^{23}}{2.662 \times 10^{23}} = \frac{25}{2.662 \times 10^{23}} \times \frac{10^{23}}{2.662 \times 10^{23}} = \frac{25}{2.662 \times 10^{23}} \times \frac{10^{23}}{2.662 \times 10^{23}} = \frac{10^{23}}{2.662 \times 10^{23}}$

Mole Concept

Ex. Find the no. days required to spent 1 mol Rupees
of you spent 1 millian per second? An 106 Rs

$$10^{6} \text{ Rs}$$
 $\frac{1}{6 \times 10^{23}}$ $\frac{6 \times 10^{23}}{15^{6}}$ $\frac{15^{6}}{15^{6}}$ $\frac{15^{6}}{15^{6}}$ $\frac{15^{6}}{15^{6}}$

No of days =
$$\frac{8 \times 10^{16}}{66 \times 60 \times 24}$$

= $\frac{10^{16}}{60 \times 24}$
= 6.344×10^{12} days
= 6944000000000

Mole Concept

Mole + 7th basic SI unit of measurment of amount of substance.

· Definition: : 10 The one mole is mass of substance that is exactaly equals to its molar mass.

449 Co2 contains = 1 moles of co2

329 SO2 Contains = 0.5 mole of So2

1809 H20 Contains = 10 mole:

No of moles = Gliven mass & mol

Find

SOME IMPORTANT DEFINITIONS

= 208/m

= 49 g = 0.5 mol. 988/mol

the mass of 2 moles of Heavy water? (P20) 2x2+/6 Moles - Given mass molan mass $\lambda = \frac{\chi}{20} \quad \chi = 40 \, gram$

Mole Concept

Definition (2) for gas

1 mole is volume of gas that contains 22.4 L volume at (NTP/STP)

- · Volume of a container containing co2 is
 - = 0.5 moles.

Mole Concept

Definition (3): The 1 mole is amount of substance that contains exactly 6.022×10²³

No of poorticles. (atoms/molecules/10ns)

Ex. Find the most moles of 0_2 if a container contain 3.01×10^{22} molecules of 0_2 ?

No of moles of $0_2 = \frac{3.01 \times 10^{22}}{2.02 \times 10^{22}} = 0.05$

1.996482×10²³ g _____ 1 atom of c-12
$$= \frac{12}{1.996482 \times 10^{23}} = 6.02 \times 10^{23}$$

$$= NA.$$
19m4 = $\frac{1}{12} \times 1.996482 \times 10^{23}$

$$(lamu = \frac{1}{NA})$$

Mole Concept

MOLE

Mole: standard definition:

One mole is the amount of a substance that contains as many entities or particles as there are atoms in exactly 12 g (or 0.012 kg) of the C-12 isotopte.

Molar Mass (Mw):

The mass of 1 mole of a substance in gram is called its molar mass.

Molar mass of
$$NO_2 = 14 + 2 (16) = 46 g$$

$$= 6.02 \times 10^{23} = NA$$

$$= 0.996482 \times 10^{-29}$$

$$= 12$$

Mole Concept

Ex. Find the no of molecules of
$$0_2$$
 containing $3.2 \, \text{mg}$ of 0_2 .

No of moder of
$$o_2 = \frac{3.2 \times 10^3 \text{ g}}{3.2 \text{ g/mol}} = 10^4 \text{ mol}$$
.

No of molecules of
$$0_2 = 10^4 \times 6.02 \times 10^{23}$$

= 6.02×10^{19} molecules.

Mole Concept

Finid No of oxygen atom in of ozone (03) 60 moledy Ex.

No of oxygen atom = 60 x 3 = 180 atom

Formula

(No of atoms = No of molecules x Atomicity)

No of atoms = No of moles of molecule XNA Xatomsuly

(No of atoms = No of moles of atom x NA

Mole Concept

Ex:
$$\rightarrow$$
 H sample of gas contains 3 moles of O_2 : O_2 : 0

(i) No of moles of
$$0 = 3 \times 2 = 6 \text{ moles}$$
.

(2) No of molecular plan - 3×14

(3) No of molecular of
$$O_2 = 3 \times NA$$

(3) No of atoms of $O = 6 \times NA$

3 : X

Mole Concept Ex find the no of each atoms in emoles

No of moles of N atom = 4

$$X = 4$$

No of Nibogen atom = 4 NA