SVM

osimpson

April 24, 2021

1 Basics

Theorem 1. The distance between two parallel hyperplanes, $a^Tx = b_1$, $a^Tx = b_2$ is $\frac{|b_1 - b_2|}{\|a\|}$.

Proof. Let p_1 be a point on the first plane, and let p_2 be the point on the second plane closest to p_1 . The distance between p_1 and p_2 is the distance between the hyperplanes. This distance is along the normal vector which passes through p_1 to p_2 . The direction of the normal vector is a. For a quick proof of this, consider two points x_1, x_2 on the hyperplane. Both points satisfy the equation $a^Tx = b_1$, so we have that $a^T(x_2 - x_1) = 0$, and since $x_2 - x_1$ defines an arbitrary line on the hyperplane, a is orthogonal to the hyperplane. Therefore, a vector orthogonal to the hyperplane that goes through p_1 to p_2 is given by $p_1 + a\lambda = p_2$.

Then $||p_2 - p_1|| = ||p_1 + a\lambda - p_1|| = |\lambda| \cdot ||a||$. We can solve for λ using the hyperplane equations:

$$a^{T}(p_{2} - p_{1}) = b_{2} - b_{1}$$

$$a^{T}(a\lambda) = b_{2} - b_{1}$$

$$\lambda \|a\|^{2} = b_{2} - b_{1}$$

$$\lambda = \frac{b_{2} - b_{1}}{\|a\|^{2}}$$
(1)

Thus, $||p_2 - p_1|| = \frac{|b_2 - b_1|}{||a||}$