

amadeus

Scientific Corner - Forecasting methodology

Thomas Fiig

© 2014 Amadeus IT Group S.

RM Solutions fully integrated into Altéa platform

1____

Forecasting - Overview

Definition of the traffic flow

		Schedule	
Legs	OSLCPH CPHSFO		
Departure time	13:25 15:35		
Point of Sale	DK		
Point of Origin	DK		
Direction	Outbound	Douting	
Travel purpose	Leisure	Routing	
Passenger type	I		
Previous airlines	DY		
Next airlines	UA		
Previous cities	BGO		
Next cities	LAX]]	

Historical Data Management

Input Data

Reservations

Historic PNR

Inventory (traffic flow level)

- Interventions (Segment limits)
- Current Inventory counters
- Availability per depdate, dbd.
- Schedule information

DCS

No-show

ETS

Ancillary revenue

Revenue Accounting

Coupons (Tickets information)

Fare Quote

Fares (ATPCO), Tax, Airline specific tax

Airline Data

Carrying Cost (variable cost)

Market Data

- Competitor prices (QL2/Infare)
- Total Demand
- Schedules

Schedule data are shared instantaneously to all RM modules.

Taxes and fare rules interpretation requires unique knowledge of pricing.

Yield estimation

Yield Estimation: High level view

Yield generation overview

Data sources

Yield generation overview

Revenue accounting data

- Historical coupon information with historical price and proration records
- Objectives:
 - Compute **historical yields** from historical prices
 - Size passenger traffic to weight fares in the computation of **future yields**

Fare Filing data

- Prices currently on sale (fares+surcharges+taxes), retrieved by Priced Fare Matrix
- Objectives:
 - Estimate what the customer will pay
 - Derive **future yields** from new prices on sale

3____ Forecasting – Schedule Match

Historical Data Management

Determine Significant Historical Flows

Actual flight schedules

- Virtual schedule is an sequence of flight schedules. (VSID)
- Schedules within a virtual schedule cannot be overlapping.
- Each routing is uniquely mapped to a virtual schedule.

Schedule Match Algorithm

Single leg

• Schedules are joined into virtual schedules.

Algorithm:

- Rank schedules according to sum of pax.
- Determine boundary as largest range where there are no overlap.
- Join schedules and repeat.

Schedule Match Algorithm

Single leg

• Schedules are joined into virtual schedules.

Algorithm:

- Rank schedules according to sum of pax.
- Determine boundary as largest range where there are no overlap.
- Join schedules and repeat.

Aggregating thin routings to base O&D

Forecasting – Estimation

Forecast Quality Measurements

Forecast Quality Measurements

Parametric Forecasting Model

Single fare family

$$fcst_{r,c}(\boldsymbol{p},dep,dbd|pol=\{c\}) = vol(\boldsymbol{p},dep,dbd) \times MNL(\boldsymbol{f},\boldsymbol{\beta}) =$$

$$gm_r \ w_k s_m \left(1 + a_1 sin\left(2\pi\frac{doy}{365}\right) + a_2 cos\left(2\pi\frac{doy}{365}\right)\right) e^{-\gamma \cdot \frac{\mathbf{5}}{dbdc}} (1 - e^{-\gamma}) MNL(\boldsymbol{f},\boldsymbol{\beta})$$
Volume

Choice prob.

	Description	Factor	Parameters	# Par.
(1)	Grand mean	$f_{GM,r}(\boldsymbol{p}_{GM}) = gm_r; \ r = 1, \dots, R$	$\boldsymbol{p}_{GM}=(gm_1,\ldots,gm_R)$	R
(2)	Day of week	$f_{DOW}(\boldsymbol{p}_{DOW}, dep) = w_k; \ k = 1,, 7$	$\boldsymbol{p}_{DOW} = (w_1, \dots, w_7)$	6
(3)	Special periods	$f_{SPEC}(\boldsymbol{p}_{SPEC}, dep) = s_m; m = 1,, M$	$\boldsymbol{p}_{SPEC} = (s_1,, s_M)$	M-1
(4)	Seasonality	$f_{SEAS}(\boldsymbol{p}_{SEAS}, dep) = \left[1 + a_1 \sin\left(2\pi \frac{doy}{365}\right) + a_2 \cos\left(2\pi \frac{doy}{365}\right)\right]$	$\boldsymbol{p}_{SEAS}=(a_1,a_2)$	2
(5)	Differential build-up	$f_{DBU}(\boldsymbol{p}_{DBU}, dbd) = e^{-\gamma \cdot dbd}(1 - e^{-\gamma})$	$oldsymbol{p}_{DBU}=\gamma$	1
(6)	Choice prob. (1 fare fam.)	$f_{PROB,c}(\boldsymbol{p}_{PROB} pol = \{c'\}) = e^{V(f,\boldsymbol{\beta})}/(1 + e^{V(f,\boldsymbol{\beta})})$	$\boldsymbol{\beta} = (\beta_{FF}, \beta_f)$	2

Parameters levels

- Traffic flows partitioned into aggregation units.
- Within agg. unit only one volume parameter per flow. All other parameters shared by the agg. unit.
- Number of free vol. parameters: R+M+9.
- Number of free beta parameters:
 1 preference per FF.,
 1 elasticity per passenger segment.
- Robust: Parsimonious use of parameters, provides robustness for sparse data.

Choice probability

MNL model in Altéa RMS by customer type

A potential customer can choose between different alternatives: buy product (in Fare Family CYM) or NoBuy.

$$p_C + p_Y + p_M + p_{NoBuy} = 1$$

Choice determined by the perceived relative utility of alternatives. The utility is different for everyone.

Depends partly on individual specific factors such as if travelling for work, or whether bringing children on the trip.

$$V_i = \beta_{0,i} - \beta_1 \cdot f_i$$

$$p_i = \frac{e^{V_i}}{\sum_j e^{V_j}}$$

Estimation

Estimation methodology log likelihood

Assume the arrival rate is Poisson distributed; and the choice prob. follow a
multinomial distribution => Total likelihood of model parameters is the product of the
two distributions, given the historical booking observations in C,Y, and M.

$$Likelihood(Vol, \boldsymbol{\beta} \mid n_C, n_Y, n_M, n_{NoBuy}) = Pois(Vol) \text{ Multinom}(\boldsymbol{\beta}, n_C, n_Y, n_M, n_{NoBuy})$$

• It can be simplified into a log-likelihood function:

 $LL = \sum_{obs} (n_{tot} \ln(fcst) - fcst + \sum_{i \in C, Y, M} n_i \ln(p_i^*))$

 p_i^* is the prob of buying the alternative i *given* that the customer buys something*)

Solution $(\partial LL_{\omega}/\partial \mathbf{p})(\mathbf{p}^*) = \mathbf{0}, (\partial LL_{\omega}/\partial \mathbf{\beta})(\mathbf{\beta}^*) = \mathbf{0}$

Iterate until convergence

- Consistent solution: All forecast components solved simultaneously.
- Separable equations:

 Due to parametric model are decomposed into separate components.
- Unique optimum: Each forecast component is convex in the unknown parameters.
- Analytical solution:
 Properties of MSE and BIAS error measures enable an analytical solution.
- Advantages:
 - Robustness
 - Accuracy
 - Computational Speed

Page 25

Jack-knife resampling techniques on retrospective forecast

- Jack-knife resampling techniques
 - Construct N resampled datasets from the original sample data, by repeatedly splitting into a training S_j^{train} and a test dataset S_j^{test} based on the departure dates.
- Compare retrospective forecast with historical observations
 - Compare at the lowest level. Aggregate in various dimensions.

Comparison of booked and retrospective forecast

- Total no. of book: 7,780.
- Total no. of obs.: 1.4×10^6
- Total no. parameters: 33
- No systematic errors: The forecasting model accurately captures the underlying factors.

Comparison of booked and retrospective forecast (continued)

 Excellent forecast quality for all forecast components: Observed here for DOW and Special period.

Comparison of booked and retrospective forecast (continued)

- Excellent forecast quality across class dimension: Provides accurate estimates of the sell-up forecast parameters
- Excellent forecast quality for flow volume: Observed here over two decades.

5 Build Routings

Rules based

Matching the future schedules with historical schedules.

- Builds (all) feasible O&D schedules incl. OAL schedules and selects closest match to historic departed.
- New flights (DOW) automatically handled by forecast parameters.
- New destinations/frequencies:
 Automatic sponsors based on proximity.
- •Dead-ends. Re-route dead-ends to alternative if appropriate.
- Live PNRs used to create new traffic flows.
- Interventions used to create user defined CNX

Research - Improved Build Routings

- Different travel solutions possible.
- A potential customer can choose between different alternatives.
- Demand is split between the alternatives.
- Choice determined by the perceived relative utility of alternatives.

 $p_2 = 18\%$ AMSTPE
TPENRT

 $p_3 = 2\%$ AMSBKK BKKTPE
TPENRT

Trip Duration (T)
All flights and Layovers

Number of Stops (S)

Or number of connections

Schedule Utility V

$$p_i = \frac{e^{V_i}}{\sum_j e^{V_j}}$$

Trigonometric Time Preferences

(depTime, arrTime)

$$V_i = \beta_S \cdot S_i + \beta_t \cdot T_i + \sum_{k=1}^3 \beta_{Sk} \cdot \sin(2k\pi t) + \beta_{Ck} \cdot \cos(2k\pi t)$$

6____

Marginal Revenue Transformation

Simplified fare-structures → Spiralling Down

Marginal Revenue Transformation

Marginal Revenue Transformation

Adjusted yields (traffic flow)

Independent class demand (traffic flow)

- Marginal Revenue Transformation calculates the marginal revenue and demand of accepting a booking considering the risk of buydown.
- Marginal Revenue are calculated daily for all traffic flows, depdates and days to departure.
- The adjusted fares are used in both optimization and availability calculation.
- This ensures the right controls apply consistently in the real-time availability decision.

Fare Families from a RM perspective

Definition:

- The fare structure consists of two or more fare families. Each fare family has the same set of restrictions (within a family price is the only difference).
- Shown are the open fares in flex (f) and the open fare in economy (p). f-p is the up-grade level.
- RM objective: max total revenue requires:
 - Forecasting: Demand model that for any policy (p,f) predicts the demand in economy and flex.
 - Optimization: Determine the set of efficient policies (p,f) by path. The ordering sequence of the policies. Bidprice for the legs.

Application Fare Families

- Convex hulls by time frame

Research on adaptive forecast

Should inventory be included in the model?

Correlation coefficient between current and future bookings

Correlation plot below bet8ween Corr[INV(dtd), INV(0)-INV(dtd)] ~ 0
suggests that INV does not provide any information of remaining demand.

Not the full story!

We know more: INV evolution

Confidential

Adaptive Forecasts

Adjusted Forecast - Correction

 $fcst_{r,c}(\boldsymbol{p}, dep, dbd|pol = \{c\}) = vol(\boldsymbol{p}, dep, dbd) \times MNL(\boldsymbol{f}, \boldsymbol{\beta}) =$

$$(a \times gm_r \ w_k s_m \left(1 + a_1 \sin\left(2\pi \frac{doy}{365}\right) + a_2 \cos\left(2\pi \frac{doy}{365}\right)\right) e^{-\frac{dtd}{dtd_c}} (1 - e^{-\gamma}) MNL(\boldsymbol{f}, \boldsymbol{\beta})$$

- Adaptive forecast constructed from existing forecast using linear affinities
- Two scale parameters:
 - Volume scale (a)
 - Booking horizon scale: (dtd critical)

Adaptive Forecasts

Effect on an active Flow Date

Correlation graph

Historical PU Curves - Examples

© 2016 Amadeus S.A.S.

Adaptive Forecasting - Example cases

Not enough learning, bad results

Adaptive Forecasting - Example cases

Good learning

© 2016 Amadeus S.A.5

Adaptive Forecasting - Example cases

We can't always predict - No Data

Confidential

Adaptive Forecasting

Promising results.

Forecast quality measured as:

$$Err = \frac{Fcst - Bkd}{Bkd}$$

- Current forecast: Err 0.54
- Adaptive forecast: Err 0.30
- Data has been cleaned so that active data is without cancellations. Hence the benefit will be reduced in the real world.

8____Conclusion

PODS Benchmark studies*)

Relative revenue performance

Comparison between forecasting models 1

	Altéa O&D forecast model	Traditional forecast models	PODS
Volume forecast by DOW, Seasonality, Special day, Trends	Yes (estimation done in consistently)	Yes (estimation done in multiple steps)	No (Only seasonality possible)
Un-constraining	Yes (Done implicitly by minimize constrained forecast error)	Yes (Done explicitly by unconstraining obs. Cannot be observed/verified	Yes (Done explicitly by unconstraining obs. Cannot be observed/verified
Forecasts type	Net-forecasts (True survived bookings from PNRs)	Gross-forecasts (Most advanced. Canc method 3 from PODS)	Net and Gross- forecasts (Currently testing)
Use live data in estimation	No (Only departed observations used)	Yes/No (Can use live data but issue with canc.)	Yes/No (Available, but currently not used)
Cancellations	Yes (Forecast for no-show and cancellations)	Yes (Forecast for no-show and cancellations)	Yes (Currently testing)
Estimation methodology	Parametric Analytical using all historical data	Parametric/Non- parametric Update forecast parameters based on historical obs.	Non-parametric Update forecast parameters based on historical obs.
Calibration	Automated Self-calibrating every week using historic data	Manual Done at installation	Automated During warm-up

Comparison between forecasting models 2

	Altéa O&D forecast model	Traditional forecast models	PODS
O&D Traffic flow, O&D data collection	Yes (Booked, Yield, Taxes, Ava at the detailed level)	(Yes) (Limited access to Ava. and Tax at O&D level)	(Yes) Access to AVA. Tax excluded. All flows significant.
Supported fare structures	Fenced, Fenceless, Fare Families	Fenced, Fenceless, Fare Families NOT supported	Fenced, Fenceless, Fare Families
Monitoring forecast quality	Yes (Constructed to minimize constrained forecast error)	No (Fenced fare str. Or base demand for fenceless.)	No (Fenced fare str. Or base demand for fenceless.)
Estimation of the Volume at O&D traffic flow level	Yes	Yes	Yes
Estimation of the sell- up rate (Willingness to pay)	Yes	No/(Yes) (normally at segment level)	No/(Yes) (currently frat5 input, but can be estimated system-wide by product)
Robustness on sparse data	Yes (Due to all data being used in estimation; Parsimonious use of forecast parameters)	No (Unstable due to updates based on latest obs. to parms. at lowest level)	No/Yes Estimators for WTP by market tested were insufficient.
Use live inventory in forecast	No Correlation assumed to be zero	No/Yes (Live data can be included)	No/Yes (Available, but currently not used)

Key scientific elements of forecasting and price-sensitivity management

- The Altéa platform provides high quality of data to support the forecasting and WTP estimation.
- _ Holistic forecaster optimizes forecast accuracy by estimating all forecast parameters (un-constraining, volume, WTP, product preference) in a single process.
- _ The RM system is automatically recalibrated weekly.
- Manual inventory overrides are no longer required to limit the spiral down: risk of buy-down is automatically measured and converted into dynamic fare adjustments.
- _ Fare modifiers are automatically computed and applied in both network optimization and in the availability processor.
- User interventions at the traffic flow level allow adjustment of demand and WTP. The interventions trigger re-forecasting and reoptimization (including partial network) which are then propagated in real-time to the availability processor.

_ Thank you

You can follow us on: AmadeusITGroup

amadeus.com/blog amadeus.com

amadeus