HomeWork_4

Name: 卫焱滨 (Wei Yanbin)

SID: 11710823

chapter 3

Exercise 3.9

Writing 151 and 214 as follows:

Decimal	2's complement	Signed Integer
151	10010111	-105
214	11010110	-42

Decimal:

$$-105 + (-42) = -147$$

-147 < -128 The result is -128.

Binary:

10010111 + 11010110 produces a downward overflow. So 10010111 + 11010110 = -128 (In Decimal)

Exercise 3.10

Writing 151 and 214 as follows:

Decimal	2's complement	Signed Integer
151	10010111	-105
214	11010110	-42

Decimal:

$$-105 - (-42) = -63$$

Because -63 belongs to the range [-128 —127] . The result is -63.

Binary:

10010111 - 11010110 = 11000001. No overflow. The result is 11000001 = -63.

Exercise 3.12

62(octal) = 110010(binary) 12(octal) = 001010(binary)

Table:

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial	00101 0	000000 110010	000000 000000
1	1:0 => No operation	001010	000000 110010	000000 000000
	2:shift left multiplicand	001010	000001 100100	000000 000000
	3:shift right multiplier	000101	000001 100100	000000 000000
2	1a:1 => Prod=Prod+Mcand	000101	000001 100100	000001 100100
	2:shift left multiplicand	000101	000011 001000	000001 100100
	3:shift right multiplier	000010	000011 001000	000001 100100
3	1:0 => No operation	000010	000011 001000	000001 100100
	2:shift left multiplicand	000010	000110 010000	000001 100100
	3:shift right multiplier	000001	000110 010000	000001 100100
4	1a:1 => Prod=Prod+Mcand	000001	000110 010000	000111 110100
	2:shift left multiplicand	000001	001100 100000	000111 110100
	3:shift right multiplier	000000	001100 100000	000111 110100
5	1:0 => No operation	000000	001100 100000	000111 110100
	2:shift left multiplicand	000000	011001 000000	000111 110100
	3:shift right multiplier	000000	011001 000000	000111 110100
6	1:0 => No operation	000000	011001 000000	000111 110100

Iteration	Step	Multiplier	Multiplicand	Product
	2:shift left multiplicand	000000	110010 000000	000111 110100
	3:shift right multiplier	000000	110010 000000	000111 110100

Hardware diagram:

Exercise 3.13

 $62(\text{hex}) = 0110\ 0010(\text{binary})\ 12(\text{hex}) = 0001\ 0010(\text{binary})$

Table:

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial	0001001 0	00000000 01100010	00000000 00000000
1	1:0 => No operation	00010010	00000000 01100010	00000000 00000000
	2:shift left multiplicand	00010010	00000000 11000100	00000000 00000000
	3:shift right multiplier	0000100 <i>1</i>	00000000 11000100	00000000 00000000
2	1a:1 => Prod=Prod+Mcand	00001001	00000000 11000100	00000000 11000100
	2:shift left multiplicand	00001001	00000001 10001000	00000000 11000100
	3:shift right multiplier	00000100	00000001 10001000	00000000 11000100
3	1:0 => No operation	00000100	00000001 10001000	00000000 11000100
	2:shift left multiplicand	00000100	00000011 00010000	00000000 11000100
	3:shift right multiplier	00000010	00000011 00010000	00000000 11000100
4	1:0 => No operation	00000010	00000011 00010000	00000000 11000100
	2:shift left multiplicand	00000010	00000110 00100000	00000000 11000100
	3:shift right multiplier	00000001	00000110 00100000	00000000 11000100
5	1a:1 => Prod=Prod+Mcand	00000001	00000110 00100000	00000110 11100100
	2:shift left multiplicand	00000001	00001100 01000000	00000110 11100100
	3:shift right multiplier	00000000	00001100 01000000	00000110 11100100
6	1:0 => No operation	00000000	00001100 01000000	00000110 11100100
	2:shift left multiplicand	00000000	00011000 10000000	00000110 11100100
	3:shift right multiplier	00000000	00011000 10000000	00000110 11100100
7	1:0 => No operation	00000000	00011000 10000000	00000110 11100100
	2:shift left multiplicand	00000000	00110001 00000000	00000110 11100100
	3:shift right multiplier	00000000	00110001 00000000	00000110 11100100
8	1:0 => No operation	00000000	00110001 00000000	00000110 11100100
	2:shift left multiplicand	00000000	01100010 00000000	00000110 11100100
	3:shift right multiplier	00000000	01100010 00000000	00000110 11100100

Hardware diagram:

