Shaft optimization tool test case Christian	Parra
Material Prop	other sel
reli	ability = 99.99%
Ju-13881 19/6	1 = 1.2 1 = . (well rounded)
	= 1.5
$M_a = \frac{5600 - 1000}{2}$ $T_a = \frac{1800}{2}^{-0}$ $T_a = 9001b$ -in	
Ma = 2000 lb-in	
$Tm = \frac{1800 + 0}{2}$ S'e = .5 Su (be Su 2 200 rsi)	
$Mm = \frac{5000 + 1000}{2}$ $T_m = 900 \text{ lb-in}$ $S'e = 37.5 \text{ Ksi}$	
$M_{m} = 3000 lb - in$	
Kal Surface factor) (6 (Size factor) Kc=Kd=1 Ke (reliability) Trachined - guess for agagy.	
Kb= 9 initially (e= 70)	
So Ka = 2.7 (75 rsi)	
Ka=.85999	
So: Se= Kakbrordke S'e	
= (.85999)(.9)(1)(1,702)(37.5 KS1)	
Se=20.374 Ksi	
.Kf. and Kfs initial guesses from table loc nod.	
For $\frac{r}{d} = .1$ $K_f = 1.7$, $K_{fS} = 1.5$	
. goodman line	• • • • • •
$d = \frac{16n}{\pi} \left\{ \frac{1}{Se} \sqrt{4(K_f M_0)^2 + 3(K_f S T_0)^2} + \frac{1}{Su_4} \sqrt{4(K_f M_m)^2 + 3(K_f S T_m)^2} \right\}$	
[
······································	
d= 16(1.5) 1 H12.2002+2115.90012	
$d = \frac{16(1.5)}{\pi} \left\{ \frac{1}{2037^{40}} \left\{ \frac{1}{1.7 \cdot 2000} + \frac{1}{3(1.5 \cdot 900)^{2}} + \frac{1}{750000} \left\{ \frac{1}{1.7 \cdot 3000} + \frac{1}{3(1.5 \cdot 900)^{2}} + \frac{1}{3(1.5 \cdot 900)^{2}} \right\} \right\}$	
^L	
$d = \left[7.639 \left\{ .35293 + .13953 \right\} \right]^{1/3}$	
d = 1.55529 in	

Page 1 of 2

now go to iteration
finding 9.9s, K_{ϵ} , K_{ϵ} s finding Q_{ϵ} finding $Q_{$
$K_{b} = \frac{1.55529 \text{ in}}{3}$ $r = .15553$ and using $S_{4} = 75$ $K_{4} = 16$
K ₀ = 8385
9s=.86 (fig 6-27)
$K_{f} = 1.492$ $K_{fS} = 1.301$
new Se = Ka Kb Kb ted Ke Sle = (.8599)[.8385)(.702)(37.5) Se = 18.98) KSI
· [· · · · · · · · · · · · · · · · · ·
$d = \left[\frac{16n}{\pi} \left\{ \frac{1}{S_e} \sqrt{4(K_f M_o)^2 + 3(K_f S T_o)^2} + \frac{1}{S_{ut}} \sqrt{4(K_f M_m)^2 + 3(K_f S T_m)^2} \right\} \right]$
1 Jy3
$J = \left(\frac{1611.5}{\pi}\right) \left\{\frac{1}{18981.851} \left[\frac{1}{18981.851} \left[\frac{1}{12010} - 900\right]^2 + \frac{1}{750000} \left[\frac{1}{12010} + \frac{1}{12000} - \frac{1}{12010} + \frac{1}{12000} + \frac{1}{120000} + \frac{1}{12000} + \frac{1}{120000} + \frac{1}{1200000} + \frac{1}{1200000} + \frac{1}{12000000} + \frac{1}{120000000000000000000000000000000000$
$d = \left[7.639 \left\{ .33165 + .1222 \right\} \right]^{3/3}$
d = 1.5135 in