Team Number:	#5			
Team Captain: S	Sriharsha Aitharaju			
Team Members: <u>Daniel Rodriguez</u>				
	Fernando Sosa			
	Kzzy Centeno			
	Robert Law			

Activity on

PART I: (15 Points):

Problem 1.1 (5 Points) The response variable of the observed data and the fitted prediction are listed in the following table.

Response (Y)	Model I Prediction (\hat{Y}_1)	Model II Prediction (\hat{Y}_2)
3	3.2	3.3
4	4.3	4.2
5	4.9	4.8
6	5.7	5.9
7	6.9	7.1

1. Calculate the sum squared of error of Model I and Model II.

Response (Y)	Model I Prediction (\hat{Y}_1)	Difference	(Difference)^2	
3	3.2	-0.2	0.04	
4	4.3	-0.3	0.09	
5	4.9	0.1	0.01	
6	5.7	0.3	0.09	
7	6.9	0.1	0.01	
		SSE1	0.06	$(\sum (Y - \widehat{Y}_1))^2$
				$SSE = \frac{(\sum (Y - \widehat{Y}_1))^2}{N - 1}$
Response (Y)	Model II Prediction (\hat{Y}_1)	Difference	(Difference)^2	
3	3.3	-0.3	0.09	
4	4.2	-0.2	0.04	
5	4.8	0.2	0.04	
6	5.9	0.1	0.01	
7	7.1	-0.1	0.01	
		SSE2	0.0475	

ISC 4241 – Activity #2

2. Calculate the average squared error of Model I and Model II.

Response (Y)	Model I Prediction (\widehat{Y}_1)	Difference	(Difference)^2	
3	3.2	-0.2	0.04	
4	4.3	-0.3	0.09	
5	4.9	0.1	0.01	
6	5.7	0.3	0.09	
7	6.9	0.1	0.01	$ASE = \frac{(\sum (Y - \widehat{Y}_1))^2}{N}$
		ASE1	0.048	$ASE = \frac{1}{N}$
Response (Y)	Model II Prediction (\widehat{Y}_1)	Difference	(Difference)^2	
3	3.3	-0.3	0.09	
4	4.2	-0.2	0.04	
5	4.8	0.2	0.04	
6	5.9	0.1	0.01	
7	7.1	-0.1	0.01	
		ASE2	0.038	

3. Calculate both R_I^2 and R_{II}^2 .

Beenense (V)	Model I Prediction (\widehat{Y}_1)			Y-Ybar	
Response (Y)		Difference	(Difference)^2	4	
3	3.2	-0.2	0.04	1	
4	4.3	-0.3	0.09	0	
5	4.9	0.1	0.01	1	
6	5.7	0.3	0.09	4	
7	6.9	0.1	0.01	10	0.976
5		(R^2)1	0.24		
Response (Y)	Model II Prediction (\hat{Y}_1)			Y-Ybar	
		Difference	(Difference)^2	4	
3	3.3	-0.3	0.09	1	
4	4.2	-0.2	0.04	0	
5	4.8	0.2	0.04	1	
6	5.9	0.1	0.01	4	
7	7.1	-0.1	0.01	10	0.981
5		(R^2)2	0.19		

4. Calculate both MAPE_I and $\mathit{MAPE}_\mathit{II}$

ISC 4241 – Activity #2

Response (Y)	Model I Prediction (\widehat{Y}_1)	Difference	Difference/Response
3	3.2	-0.2	-0.066666667
4	4.3	-0.3	-0.075
5	4.9	0.1	0.02
6	5.7	0.3	0.05
7	6.9	0.1	0.014285714
5		MAPE1	-0.01147619
Response (Y)	Model II Prediction (\hat{Y}_1)	Difference	Difference/Response
3	3.3	-0.3	-0.1
4	4.2	-0.2	-0.05
5	4.8	0.2	0.04
6	5.9	0.1	0.016666667
7	7.1	-0.1	-0.014285714
5		MAPF2	-0.02152381

5. Calculate both MAE_{I} and MAE_{II}

Measure	Model I	Model II
SSE	0.06	0.0475
ASE	0.048	0.038
R ²	0.976	0.981
MAPE	1.15%	2.15%
MAE	0.2	0.18

Problem 1.2 (10 Points) Work on Problem 1, Problem 2, and Problem 3 in the Textbook (Chapter 5 on Page 219)

1. Using basic statistical properties of the variance, as well as single-variable calculus, derive (5.6). In other words, prove that
$$\alpha$$
 given by (5.6) does indeed minimize $Var(\alpha X + (1-\alpha)Y)$.

$$\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}},$$

$$O^2_X = Var(X) \quad ; \quad O^2_Y = Var(Y) \quad ; \quad O_{XY} = (X,Y)$$

$$Var(XX + (1-X)Y)$$

$$\Rightarrow X^2 O^2_X + (1-X)^2 O^2_Y + 2X(1-X) O_{XY}$$

$$\Rightarrow \frac{d}{dx}(X^2 O^2_X + (1-X)^2 O^2_Y + 2X(1-X) O_{XY}) = 0$$

$$\Rightarrow 2XO^2_X + (1-X)^2 O^2_Y + 2XO^2_Y + 2O_{XY} - 4XO_{XY} = 0$$

$$\Rightarrow 2XO^2_X + O_Y - O_{XY}$$

$$O^2_X + O_Y - 2O_{XY}$$

- 2. We will now derive the probability that a given observation is part of a bootstrap sample. Suppose that we obtain a bootstrap sample from a set of n observations.
 - (a) What is the probability that the first bootstrap observation is not the jth observation from the original sample? Justify your answer.
 - (b) What is the probability that the second bootstrap observation is *not* the *j*th observation from the original sample?
 - (c) Argue that the probability that the jth observation is not in the bootstrap sample is $(1-1/n)^n$.

- (d) When n = 5, what is the probability that the jth observation is in the bootstrap sample?
- (e) When n = 100, what is the probability that the jth observation is in the bootstrap sample?
- (f) When n = 10,000, what is the probability that the jth observation is in the bootstrap sample?
- (g) Create a plot that displays, for each integer value of n from 1 to 100,000, the probability that the jth observation is in the bootstrap sample. Comment on what you observe.
- (h) We will now investigate numerically the probability that a bootstrap sample of size n = 100 contains the jth observation. Here j = 4. We repeatedly create bootstrap samples, and each time we record whether or not the fourth observation is contained in the bootstrap sample.

```
> store <- rep(NA, 10000)
> for(i in 1:10000){
    store[i] <- sum(sample(1:100, rep=TRUE) == 4) > 0
}
> mean(store)
```

Comment on the results obtained.

2. a) WE USE THE FORMULA N= # OF OBSERVATIONS $1 - \frac{1}{2}$ b) same as above c) NO (1 - 1) WOULD NOT BE AS 1 - 1 IS THE COPPECT WAY a) n=S $1 - \left(1 - \frac{1}{5}\right)^5 = 0.67$ e) n = 100 $1 - \left(1 - \frac{1}{100}\right)^{100} = 0.63$ f) n=10000 $\begin{vmatrix} 1 - (1 - 1) \\ 10000 \end{vmatrix} = 0.63$

- 3. We now review k-fold cross-validation.
 - (a) Explain how k-fold cross-validation is implemented.
 - (b) What are the advantages and disadvantages of k-fold cross-validation relative to:
 - i. The validation set approach?
 - ii. LOOCV?

- a) Using n for observations and k for observations randomly split up in the data set we use the equation n / k. We can now use the average of k to obtain the MSE estimate. The observations we used to split up is used as a validation set.
- b) i.
- K-Fold Validation can be applied to almost all learning algorithms
- The computation time for K-Fold Validation is approximately K times of the computation time of "Validation Set Approach" that is acceptable for most learning algorithms
- 5-Fold or 10-fold validation have been shown to yield the test error rate that suffer neither from excessively high bias nor from very high variance.
- Disadvantages are that there may be overestimation when based on a few observations ii. The LOOCV
 - The LOOCV method can have a shorter computation time but in special cases

PART II Programming (15 Points)

Data Used: "House_Prices_PRED.CSV" with three variables: ID, House_Price (observed value), and P_House_Price (Model Predicted Value).

Problem 2.1 (0 Points) Read the CSV file "House_Prices_PRED.CSV"

Problem 2.2 (**3 Points**) Write a program to calculate the sum squared of error and the average squared error of the Model (i.e., P_House_Price).

Problem 2.3 (3 Points) Write a program to calculate the R² of the Model (i.e., P House Price).

Problem 2.4 (3 Points) Write a program to calculate the MAPE of the Model (i.e., P_House_Price).

Problem 2.5 (**3 Points**) Write a program to calculate the MAE of the Model (i.e., P_House_Price).

Problem 2.6 (3 Points) Write a program to produce a residual plot with residual on the Y-axis and observed value (House_Price) and to impose a loess line on the graph.

PART II Programming (15 Points)

Problem 2.1 (0 Points) Read the CSV file "House_Prices_PRED.CSV"

```
In [ ]: import pandas as pd
         import statsmodels.formula.api as smf
         houses = pd.read csv('House Prices PRED.csv')
         houses = houses.iloc[: , 1:]
         houses.head()
Out[ ]:
            P_SalePrice SalePrice
         0 206307.7360
                         208500
         1 179044.5328
                         181500
         2 217258.4337
                         223500
         3 161547.6322
                         140000
         4 272594.2471
                         250000
```

Problem 2.2 (3 Points) Write a program to calculate the sum squared of error and the average squared error of the Model (i.e., P_House_Price).

```
import numpy as np

#sum of differences squared
sumDif2 = np.sum((houses['SalePrice'] - houses['P_SalePrice'])**2)
#sum of differences squared divided by # of rows
print("SSE = ",sumDif2)
print("ASE = ",sumDif2/houses.shape[0])

SSE = 740014639177.1643
ASE = 506859341.9021673
```

Problem 2.3 (3 Points) Write a program to calculate the R2 of the Model (i.e., P_House_Price).

```
In []: #Y minus YBar Squared
  ySubMean2 = np.sum((houses['SalePrice'] - houses['SalePrice'].mean())**2)
  #1 minus sum of differences squared divided by y minus ybar squared
  print("R^2 = ", (1 - sumDif2/ySubMean2))
R^2 = 0.9196327362106914
```

Problem 2.4 (3 Points) Write a program to calculate the MAPE of the Model (i.e., P_House_Price).

```
In []: dif = np.abs(houses['SalePrice'] - houses['P_SalePrice'])
DifdivY = np.sum(np.divide(dif, houses['SalePrice']))
# sum of differences divided by actual value times, divided by number of rows, times 1
print("MAPE = ", (DifdivY*(1/houses.shape[0]) * 100), "%")
MAPE = 7.026392138631052 %
```

Problem 2.5 (3 Points) Write a program to calculate the MAE of the Model (i.e., P_House_Price).

```
In [ ]: dif = np.sum(np.abs(houses['SalePrice'] - houses['P_SalePrice']))
# sum of differences divided by number of rows
print("MAE = ", dif*(1/houses.shape[0]))

MAE = 12470.833673842466
```

Problem 2.6 (3 Points) Write a program to produce a residual plot with residual on the Y-axis and observed value (House_Price) and to impose a loess line on the graph.

```
In [17]: from matplotlib import pyplot as plt
import seaborn as sns
houses['Residual'] = houses['SalePrice'] - houses['P_SalePrice']

plt.scatter(houses['SalePrice'], houses['Residual'])
plt.show()
sns.lmplot(x='SalePrice', y='Residual', data=houses)
```


Out[17]: <seaborn.axisgrid.FacetGrid at 0x7f88ae09b290>

