Algebra Lineare e Geometria Analitica

26 maggio 2020

Indice

1	1 Spazi Vettoriali		2
2	2 Associare Vettori a Punti		3
3	3 Somma di Vettori		4
4	4 Sottospazi Vettoriali		5
5	5 Dipendenza Lineare e Basi		6
6	6 Matrici		7
7	7 Il Determinante		8
	7.1 Definizione e prime proprietà		8
	7.2 Teorema di Laplace		9
	7.3 Altre proprietà e teorema di Binet		0
	7.4 Determinante e sistemi di equazioni lineari	. 1	1
	7.5 Determinante e rango di una matrice		

Spazi Vettoriali

Associare Vettori a Punti

Somma di Vettori

Sottospazi Vettoriali

Dipendenza Lineare e Basi

Matrici

Il Determinante

7.1 Definizione e prime proprietà

Definizione 1. Come oggetto matematico il determinante è una funzione

$$det_n: \{Matrice \ n \times n\} \longmapsto \Re$$

Ci sono bijezioni tra:

L'importanza del det_n è che trova l'invertibilità della matrice: $det(M) \neq 0$ sse M è invertibile. Inoltre, c'è un algoritmo che calcola $det_n(M)$. Si noti che det_n fornisce un modo di mostrare che una matrice è invertibile senza trovare la matrice inversa.

Teorema 7.1.1. Esiste una sola funzione

$$f: (\Re^n)^n = \{vettoricolonnain \Re^n\} \longmapsto \Re$$

che soddisfa le proprietà 1, 2, 3, 4. Questa funzione è il determinante det_n .

Proprietà del determinante 1. $(\vec{v}_1, \dots, \vec{v}_n \text{ denotano vettori colonna di } \mathbb{R}^n \in \lambda \in \mathbb{R}.)$

1.
$$det_n(\underline{v}_1,\ldots,\underline{v}_i+\underline{w},\underline{v}_{i+1}\ldots v_n) = det_n(\underline{v}_1,\ldots,\underline{v}_i+\ldots,\underline{v}_n) + det_n(\underline{v}_1,\ldots,\underline{w},\underline{v}_n)$$

 $\forall i=1,\ldots n$

2.
$$det_n(\underline{v}_1, \dots, \lambda \underline{v}_i, \underline{v}_{i+1}, \dots \underline{v}_n) = \lambda det_n(\underline{v}_1, \dots, \underline{v}_i + \dots, \underline{v}_n)$$

 $\forall i = 1, \dots n$

3.
$$det_n(\underline{v}_1, \dots, \underline{w}, \underline{w}, \underline{v}_{i+2}, \dots \underline{v}_n) = 0$$

 $\forall i = 1, \dots n$

4.
$$det_n(Id_n) = 1$$
, dove $Id = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & 1 \end{pmatrix}$

Nota 1. Le proprietà 1 e 2 sono la multilinearità di n

La proprietà $\bf 3$ è chiamata proprietà alternante; tale proprietà per una funzione multilineare in n è equivalente a:

$$det_n(\vec{v}_1,\ldots,\vec{v}_i+,\vec{v}_{i+1}\ldots v_n) = -det_n(\vec{v}_1,\ldots,\vec{v}_{i+1}+,\vec{v}_i\ldots v_n)$$

Dimostrazione. (del teorema precedente del caso speciale di n=2). Supponiamo che f soddisfi 1, 2, 3, 4. Calcoliamo $f\begin{pmatrix} a & b \\ c & d \end{pmatrix}$

7.2 Teorema di Laplace

Teorema 7.2.1 (di Laplace). Sia $A = (a_{ij})$ una matrice $n \times n$, e sia $(a_{k1}, a_{k2}, \dots, a_{kn})$ la sua k-esima riga. Allora abbiamo la seguente uguaglianza:

$$det(A) = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} det(a_{kj})$$

$$dove \ A_{kj} = \begin{pmatrix} a_{11} & a_{11} & \dots & a_{1n} \\ a_{21} & \dots & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{k1} & \dots & a_{kj} & a_{kn} \\ \vdots & & & \vdots \\ a_{n1} & \dots & \dots & a_{1n} \end{pmatrix}$$

Osservazioni 1. $^{(1)}$ La formula dipende dalla riga k, ma il det(a) no.

 $^{(2)}$ C'è uno sviluppo simile del determinante attraverso una h-esima colonna invece della k-esima riga:

$$det(A) = \sum_{i=1}^{n} (-1)^{i+h} a_{ih} det(a_{ih})$$

 $^{(3)}$ Queste sono definizioni ricorsive, ciò significa che il determinante di una matrice $n \times n$ è espresso in funzione del determinante della matrice $(n-1) \times (n-1)$

Esempio 1. Dato det(a) = a, si scriva la formula per il determinante di una generica matrice 2×2 e si controlli che coincida con quello derivato nella dimostrazione 7.1.

Sia $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, con la formula di Laplace abbiamo, sviluppando secondo la prima riga,

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (-1)^{1+1} a \det(d) + (-1)^{1+2} b \det(c) = ad - bc$$

Esempio 2. Si calcoli il determinante si
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix}$$

Sviluppiamo di nuovo il determinante secondo una riga. Si noti che è sempre conveniente scegliere una riga con il più alto numero di zeri. Perciò scegliamo o la prima o la seconda riga. Prendiamo la seconda:

$$\det \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix} = (-1)^{2+1} 1 \det \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix} + (-1)^{2+2} 1 \det \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$
$$= -(-3) + 4 + 1 = 8$$

7.3 Altre proprietà e teorema di Binet

Proprietà del determinante 2. La funzione determinante, oltre alle proprietà definite (vedi 7.1):

- ullet Multilinearità in n
- Alternanza
- det(Id) = 1

ha le seguenti:

- 1. $det(A) = det({}^{t}A)$, dove ${}^{t}A$ è la matrice trasposta di A.
- 2. Se A è una matrice triangolare, cioè

$$A = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ * & \dots & a_{nn} \end{pmatrix} \quad \text{o} \quad A = \begin{pmatrix} a_{11} & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix},$$

allora $det(A) = a_{11} a_{22} \dots a_{nn}$

Dimostrazione. Per induzione sull'ordine n della matrice:

Base:
$$n = 2$$
, $det \begin{pmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{pmatrix} = a_{11} a_{22}$ (vedi 7.1 e 7.2)

Passo induttivo: supponiamo che l'asserzione sia valida per ogni matrice fino all'ordine n-1. Per la formula di Laplace (7.2):

$$\det \begin{pmatrix} a_{11} & \dots & \dots & 0 \\ \vdots & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ * & \dots & \dots & a_{nn} \end{pmatrix} = a_{11} \det \begin{pmatrix} a_{22} & \dots & 0 \\ \vdots & \ddots & \vdots \\ * & \dots & a_{nn} \end{pmatrix}$$

$$\stackrel{per ipotesi induttiva}{=} a_{11} (a_{22} \dots a_{nn})$$

3. In generale $det(A+B) \neq det(A) + det(B)$. Comunque,

Teorema 7.3.1 (di Binet). det(AB) = det(A) det(B)

4. È conseguenza immediata del teorema di Binet:

Teorema 7.3.2 (corollario). Se A è invertibile, allora $det(A^{-1}) = \frac{1}{det(A)}$

Dimostrazione. Applichiamo il teorema di Binet a $Id_n = A^{-1}A$:

$$1 = det(Id_n) = det(A^{-1}A) \stackrel{Binet}{=} det(A^{-1}detA)$$

- 5. La relazione tra operazioni elementari e il determinante richiama le tre operazioni elementari sulle righe e sulla matrice:
 - a. scambiare le due righe
 - b. moltiplicare una riga per $\lambda \neq 0$
 - c. sostituire r_i con $r_i + \alpha r_i$.

Cosa succede al determinante dopo che applichiamo un'operazione elementare?

- Operazione a. Il determinante è moltiplicato per -1. Per vedere questo, si noti che scambiare $r_i \in r_j$ (j > i) è lo stesso che fare j - i - 1 scambi consecutivi su $r_i \in j - i - 1$ scambi consecutivi su r_j . Quindi scambiamo consecutivamente un numero dispari di volte. Ora applichiamo l' "equivalente" proprietà alternante del determinante (vedi 7.1).
- Operazione b. Il determinante resta invariato:

$$det(\ldots, r_i + \alpha r_j, \ldots) = det(\ldots, r_i, \ldots) + \alpha det(\ldots, r_j, \ldots, r_j, \ldots)$$

$$det(\ldots, r_i + r_j, \ldots) = (-1)^{j-i-1} \underbrace{\det(\ldots, r_j, r_j, \ldots)}_{=0}$$
 per l'operazione a .

Ma $det(\ldots, r_j, r_j, \ldots) = 0$ per l'alternanza di c. (vedi 7.1). Così abbiamo provato che $det(\ldots, r_i + \alpha r_i, \ldots) = det(A)$

7.4Determinante e sistemi di equazioni lineari

Sia Ax = b un sistema di equazioni lineari con A una matrice quadrata (vedi 6.4). Allora:

1. Il sistema ammette una soluzione sse $det(A) \neq 0$

2. In quel caso la soluzione (c_1,\ldots,c_n) è unica e tale che

$$c_i = \frac{\det(A_1 \dots |\underline{b}| \dots A_n)}{\det(A)}$$

dove A_i è il j-esimo vettore colonna di A.

Esempio 3. Controlliamo se
$$\begin{cases} 2x + z - 2 = 0 \\ -y - 3z + 2 = 0 \end{cases}$$
 ha un'unica soluzione e in quel caso troviamola.
$$-x + y - z = 0$$
 La matrice $A \stackrel{.}{\text{e}} \begin{pmatrix} 2 & 0 & 1 \\ 0 & -1 & 3 \\ -1 & 1 & -1 \end{pmatrix}$ e $\underline{b} = \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$
$$det(A) = 2 \det \begin{pmatrix} -1 & -3 \\ 1 & -1 \end{pmatrix} + \det \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix} = 2(1+3) + (-1) = 7 \Rightarrow \exists! \text{ soluzione}$$
Per il teoreme precedente, persiamo esprimere la soluzione general e soluzione general e soluzione general e soluzione general e soluzione.

Per il teorema precedente, possiamo esprimere la soluzione come $\underline{c} = (c_1, c_2, c_3)$ con:

$$c1 = \frac{\det \begin{pmatrix} 2 & 0 & 1 \\ -2 & -1 & -3 \\ 0 & 1 & -1 \end{pmatrix}}{7} = \frac{1}{7} \left(2 \det \begin{pmatrix} -1 & -3 \\ 1 & -1 \end{pmatrix} + \det \begin{pmatrix} -2 & -1 \\ 0 & 1 \end{pmatrix} \right) = \frac{1}{7} (8 - 2) = \frac{6}{7}$$

$$c1 = \frac{\det \begin{pmatrix} 2 & 2 & 1 \\ 0 & -2 & -3 \\ -1 & 1 & -1 \end{pmatrix}}{7} = \frac{1}{7} \left(2 \det \begin{pmatrix} -2 & -3 \\ 0 & -1 \end{pmatrix} - \det \begin{pmatrix} 2 & 1 \\ -2 & -3 \end{pmatrix} \right) = \frac{1}{7} (4 + 4) = \frac{8}{7}$$

$$c1 = \frac{\det \begin{pmatrix} 2 & 0 & 2 \\ 0 & -1 & -2 \\ -1 & 1 & 0 \end{pmatrix}}{7} = \frac{1}{7} \Big(2 \det \begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix} + \det \begin{pmatrix} 0 & -1 \\ -1 & 1 \end{pmatrix} \Big) = \frac{1}{7} (4 - 2) = \frac{2}{7}$$

7.5 Determinante e rango di una matrice

Il determinante è definito solo per le matrici quadrate. Comunque, è possibile usare il concetto di determinante per ottenere informazioni riguardo qualunque matruce.

Definizione 2. Sia A una matrice. Una sottomatrice di A è una matrice ottenuta togliendo alcune righe e alcune colonne da A.

Definizione 3. Un **minore** di ordine k di una matrice A è il determinante di una sottomatrice quadrata di A di ordine k.

Esempio 4. Sia A la matrice $\begin{pmatrix} 3 & 0 & -1 & 2 \\ 1 & 2 & 2 & 1 \\ 0 & -1 & -1 & 2 \end{pmatrix}$. Una sottomatrice quadrata di ordine 2 è $B = \begin{pmatrix} 3 & -1 \\ 0 & -1 \end{pmatrix}$. Il suo minore associato è det(B) = -3.

Teorema 7.5.1. Sia A una qualunque matrice. Allora il rango di A è uguale al più grande ordine di minori non nulli di A.

Esempio 5. Consideriamo la matrice A scritta sopra: è una matrice 3×4 , perciò $rank(A) \ge 2$ per il teorema.

Ci sono due possibilità:

- 1. \exists minore non nullo di ordine 3 di A
- 2. Tutte le matrici di ordine 3 di A hanno det = 0

In A ci sono quattro sottomatrici quadrate di ordine 3. Comunque non è necessario controllare il determinante di tutte queste: per il teorema (o anche solo osservandole), abbiamo che le colonne

$$\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 e $\begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$ sono linearmente indipendenti, dunque dobbiamo controllare se uno dei vettori colonna

rimanenti sia linearmente indipendenti con queste. Questo significa calcolare solo due minori invece di quattro.

$$\begin{pmatrix} 3 & 0 & -1 \\ 1 & 2 & 2 \\ 0 & -1 & -1 \end{pmatrix} = 1 \neq 0, \text{ quindi } rank(A) = 3.$$