

Representation of NURBS as Controlled Iterated Functions Systems

L. Morlet, M. Neveu, S. Lanquetin, et C. Gentil LE2I - University of Burgundy Curves & Surfaces 2018

- 1 Introduction
- 2 Quadratic and cubic NURBS
- Generalization
- **4** Conclusion

Lucas MORLET C&S 2018 1 / 2⁻

Lucas MORLET C&S 2018 2 / 21

Lucas MORLET C&S 2018 2 / 21

Lucas MORLET C&S 2018 2 / 21

ITERATED FUNCTIONS SYSTEMS (IFS)

Definition

- An IFS is a set of contractive transformations { T₀ ... T_n} iteratively applied to a compact
- After an infinity of iterations, the same self-similar structure appears whatever the starting compact is.
- This structure, called the attractor, is unique and only depends on the transformations

Barnsley fern ©Wikipedia

CONTROLLED IFS AUTOMATONS

CIFS automatons are created in this way:

- Every state is an attractor
- Every transition is a transformation

Lucas MORLET C&S 2018 4 / 2⁻²

UNIFORM QUADRATIC B-SPLINES: CHAIKIN ALGORITHM

Let a uniform quadratic B-Spline defined by the control polygon $P = [P_1, P_2, P_3]$.

It is also defined by the polygon $Q = [Q_{1b}, Q_2, Q_{2b}, Q_3]$:

$$Q_i = \frac{1}{4}P_{i-1} + \frac{3}{4}P_i$$
 et $Q_{ib} = \frac{3}{4}P_i + \frac{1}{4}P_{i+1}$

Lucas MORLET C&S 2018 5 / 21

INTRODUCTION

UNIFORM QUADRATIC B-SPLINES: CIFS AUTOMATON

$$\mathcal{L}: P = [P_1, P_2, P_3] \mapsto Q_{\mathcal{L}} = [Q_{1b}, Q_2, Q_{2b}]$$

 $\mathcal{R}: P = [P_1, P_2, P_3] \mapsto Q_{\mathcal{R}} = [Q_2, Q_{2b}, Q_3]$

$$m{M_L} = egin{pmatrix} rac{3}{4} & rac{1}{4} & 0 \ rac{1}{4} & rac{3}{4} & 0 \ 0 & rac{3}{4} & rac{1}{4} \end{pmatrix} \qquad m{M_R} = egin{pmatrix} rac{1}{4} & rac{3}{4} & 0 \ 0 & rac{3}{4} & rac{1}{4} \ 0 & rac{1}{4} & rac{3}{4} \end{pmatrix}$$

Lucas MORLET C&S 2018 6 / 21

INTRODUCTION

NON UNIFORM RATIONAL B-SPLINES

Definition

A NURBS of degree d composed in m pieces is defined by :

Control polygon : $P = [P_0 \dots P_{n-1}]$ n = m+dNodal vector : $T = [t_0 \dots t_{v-1}]$ v = n+d-1Inter-nodal vector : $U = [u_0 \dots u_{v-2}]$ $u_i = t_{i+1} - t_i$

Mid-node insertions ⇔ Inter-node doublings

Blossoming functions $\mathcal{B}(t_i \dots t_j) = \{t_i \dots t_j\}$

Properties

Symmetry
$$\{\ldots t_i \ldots t_i \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonal
$$C(t) = \{t \dots t\}$$

Multi-affinity
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consecutivity
$$P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

Blossoming functions $\mathcal{B}(t_i \dots t_j) = \{t_i \dots t_j\}$

Properties

Symmetry
$$\{\ldots t_i \ldots t_i \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonal $C(t) = \{t \dots t\}$

Multi-affinity
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consecutivity $P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$

Blossoming functions $\mathcal{B}(t_i \dots t_j) = \{t_i \dots t_j\}$

Properties

Symmetry
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonal
$$C(t) = \{t \dots t\}$$

Multi-affinity
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consecutivity
$$P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

Blossoming functions $\mathcal{B}(t_i \dots t_j) = \{t_i \dots t_j\}$

Properties

Symmetry
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonal
$$C(t) = \{t \dots t\}$$

Multi-affinity
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consecutivity $P_i: \{t_i, t_{i+1} \dots t_{i+d-1}\}$

Blossoming functions $\mathcal{B}(t_i \dots t_j) = \{t_i \dots t_j\}$

Properties

Symmetry
$$\{\ldots t_i \ldots t_j \ldots\} = \{\ldots t_i \ldots t_i \ldots\}$$

Diagonal
$$C(t) = \{t \dots t\}$$

Multi-affinity
$$\{\ldots t\ldots\} = \frac{b-t}{b-a}\{\ldots a\ldots\} + \frac{t-a}{b-a}\{\ldots b\ldots\}$$

Consecutivity
$$P_i : \{t_i, t_{i+1} \dots t_{i+d-1}\}$$

LIMIT CURVE POINT OF A UNIFORM QUADRATIC B-SPLINE

We compute $\mathcal{C}\left(t_{ib}=\frac{t_i+t_{i+1}}{2}\right)$ as a function of the control polygon P

- $C(t_{ib})$ can also be defined as a function of the polygon Q
- Q is computed as a function of P thanks to Chaikin algorithm

Lucas MORLET C&S 2018 9 / 21

- Introduction
- Quadratic and cubic NURBS
- Generalization
- 4 Conclusion

Lucas MORLET C&S 2018 10 / 21

MID-NODE INSERTIONS FOR QUADRATIC NURBS

NON-UNIFORM QUADRATIC TRANSFORMATIONS

$$\mathcal{L}: \begin{cases} P = [P_1, P_2, P_3] \\ U = [u_1, u_2, u_3] \end{cases} \mapsto \begin{cases} Q_{\mathcal{L}} = [Q_{1b}, Q_2, Q_{2b}] \\ V_{\mathcal{L}} = [u_1, u_2, u_2] \end{cases}$$

$$\mathcal{R}: \begin{cases} P = [P_1, P_2, P_3] \\ U = [u_1, u_2, u_3] \end{cases} \mapsto \begin{cases} Q_{\mathcal{R}} = [Q_2, Q_{2b}, Q_3] \\ V_{\mathcal{R}} = [u_2, u_2, u_3] \end{cases}$$

$$M_{\mathcal{L}}(u_1, u_2, u_3) = \begin{pmatrix} \frac{u_1 + 2u_2}{2(u_1 + u_2)} & \frac{u_1}{2(u_1 + u_2)} & 0 \\ \frac{u_2}{2(u_1 + u_2)} & \frac{2u_1 + u_2}{2(u_1 + u_2)} & 0 \\ 0 & \frac{u_2 + 2u_3}{2(u_2 + u_3)} & \frac{u_2}{2(u_2 + u_3)} \end{pmatrix}$$

$$M_{\mathcal{R}}(u_1, u_2, u_3) = \begin{pmatrix} \frac{u_2}{2(u_1 + u_2)} & \frac{2u_1 + u_2}{2(u_1 + u_2)} & 0\\ 0 & \frac{u_2 + 2u_3}{2(u_2 + u_3)} & \frac{u_2}{2(u_2 + u_3)}\\ 0 & \frac{u_3}{2(u_2 + u_3)} & \frac{2u_2 + u_3}{2(u_2 + u_3)} \end{pmatrix}$$

Lucas MORLET C&S 2018 12 / 21

QUADRATIC NURBS CIFS AUTOMATON

Lucas MORLET C&S 2018 13 / 21

NON-UNIFORM CUBIC TRANSFORMATIONS

Cubic NURBS are defined at least by :

- 4 control points;
- 6 nodes;
- 5 inter-nodes.

This correspond to the two transformations $\mathcal L$ and $\mathcal R$:

$$\mathcal{L}: \begin{cases} P = [P_0, P_1, P_2, P_3] \\ U = [u_0, u_1, u_2, u_3, u_4] \end{cases} \mapsto \begin{cases} Q_{\mathcal{L}} = [Q_{1b}, Q_2, Q_{2b}, Q_3] \\ V_{\mathcal{L}} = [u_1, u_1, u_2, u_2, u_3] \end{cases}$$

$$\mathcal{R}: \begin{cases} P = [P_0, P_1, P_2, P_3] \\ U = [u_0, u_1, u_2, u_3, u_4] \end{cases} \mapsto \begin{cases} Q_{\mathcal{R}} = [Q_2, Q_{2b}, Q_3, Q_{3b}] \\ V_{\mathcal{R}} = [u_1, u_2, u_2, u_3, u_3] \end{cases}$$

Lucas MORLET C&S 2018 14 / 2⁻¹

CUBIC NURBS CIFS AUTOMATON

Lucas MORLET C&S 2018 15 / 21

- Introduction
- Quadratic and cubic NURBS
- 3 Generalization
- **4** Conclusion

Lucas MORLET C&S 2018 16 / 21

GENERALIZATION

GENERALIZATION TO ANY DEGREE BY DOUBLING INTER-NODES

degree 1: $W \mapsto WW$

 \mapsto WW

degree 2: $VWX \mapsto VVWWXX$

 \mapsto VVWWXX

degree 3 : UVWXY → UUVVWWXXYY

→ UUVVWWXXYY

degree 4: $TUVWXYZ \mapsto TTUUVVWWXXYYZZ$

 \mapsto TTUUVVWWXXYYZZ

• The length of the inter-node vector is (2d-1)

• The number of states of the CIFS automaton is 4(d-1)

Lucas MORLET C&S 2018 17 / 21

GENERALIZATION TO SURFACES BY "TENSOR-PRODUCT"

Lucas MORLET C&S 2018 18 / 21

- Introduction
- Quadratic and cubic NURBS
- 3 Generalization
- **4** Conclusion

Lucas MORLET C&S 2018 19 / 21

CONCLUSION

Main interest of this new formalism

- Several parametric surfaces are handle in a same way
- Common representation permits common tools

Lucas MORLET C&S 2018 20 / 21

Work in progress

2009, Cashman: NURBS with Extraordinary Points,
 High-degree non-uniform Rationnal Subdivision Schemes

Lucas MORLET C&S 2018 20 / 21

MAIN REFERENCES

- 1988, Barnsley: Fractals everywhere
- 2015, Sokolov : Boundary Controlled Iterated Function Systems
- 2018, Morlet: Barycentric Combinations Based Subdivision Surfaces

Thanks for your attention

lucas.morlet@u-bourgogne.fr

Lucas MORLET C&S 2018 21 / 2