Introducción a la Lógica y la Computación. Tercer Examen Parcial 23/11/12.

Apellido y Nombre:

email:

nota	1	2	3	4	2

- [2ptos] Decidir si son verdaderas o falsas las siguientes afirmanciones y justificar como corresponda.
 - (a) Sea A un autómata finito determinístico tal que $\epsilon \in L(A)$. Entonces el estado inicial de A es estado final.
 - (b) Sea A un autómata finito no determinístico con transiciones ϵ tal que $\epsilon \in L(A)$. Entonces el estado inicial de A es estado final.
 - (c) Sea e una expresion regular arbitraria. Entonces $L(e^*) = L((e^*)^*)$.
 - (d) Para toda e expresion regular $L(e^*)$ es un lenguaje infinito.
 - (e) Sea L un lenguaje libre de contexto. Si $L \subseteq L'$ entonces L' es libre de contexto.
 - (f) Sea L un lenguaje regular y L' un conjunto finito de cadenas. Entonces $L \cup L'$ es regular.
- (2) [3ptos] Sea el ϵ -NFA $\mathcal{A} = \langle \{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_1, q_2\} \rangle$ donde δ viene dada por la siguiente tabla de transición:

	a	b	ϵ
q_0	$\{q_1\}$	$\{q_2\}$	Ø
q_1	$\{q_1,q_2\}$	Ø	Ø
q_2	Ø	Ø	$\{q_0\}$

- (a) Hacer el diagrama de transición de A.
- (b) Usar el algoritmo de determinización para definir un DFA que reconozca el mismo lenguaje.
- (3) [2ptos] Dado el siguiente ϵ -NFA, utilizar la construccion de Kleene para obtener una expresión regular con el mismo lenguaje

(4) [3ptos] Dar una gramática G libre de contexto para $L = \{a^nb^{2n+1} \mid n \geq 0\}$. Mostrar que L no es regular. [Recordatorio: Es fácil equivocarse al diseñar G. Hacer algunas derivaciones para convencerse de que se generan todas y sólo las cadenas de L.]