5.8 The saturation concentration of dissolved oxygen in freshwater can be calculated with the equation

$$\ln o_{sf} = -139.34411 + \frac{1.575701 \times 10^5}{T_a} - \frac{6.642308 \times 10^7}{T_a^2} + \frac{1.243800 \times 10^{10}}{T_a^3} - \frac{8.621949 \times 10^{11}}{T_a^4}$$

where o_{sf} = the saturation concentration of dissolved oxygen in freshwater at 1 atm (mg L⁻¹); and T_a = absolute temperature (K). Remember that $T_a = T + 273.15$, where T = temperature (°C). According to this equation, saturation decreases with increasing temperature. For typical natural waters in temperate climates, the equation can be used to determine that oxygen concentration ranges from 14.621 mg/L at 0 °C to 6.949 mg/L at 35 °C. Given a value of oxygen concentration, this formula and the bisection method can be used to solve for temperature in °C.

- (a) If the initial guesses are set as 0 and 35 °C, how many bisection iterations would be required to determine temperature to an absolute error of 0.05 °C?
- **(b)** Based on **(a)**, develop and test a bisection M-file function to determine T as a function of a given oxygen concentration. Test your function for $o_{sf} = 8$, 10 and 14 mg/L. Check your results.
- **5.10** Water is flowing in a trapezoidal channel at a rate of $Q = 20 \text{ m}^3/\text{s}$. The critical depth y for such a channel must satisfy the equation

$$0 = 1 - \frac{Q^2}{gA_c^3}B$$

where $g = 9.81 \text{ m/s}^2$, $A_c = \text{the cross-sectional area (m}^2)$, and B = the width of the channel at the surface (m). For this case, the width and the cross-sectional area can be related to depth y by

$$B = 3 + y$$

FIGURE P5.9

and

$$A_c = 3y + \frac{y^2}{2}$$

Solve for the critical depth using (a) the graphical method, (b) bisection, and (c) false position. For (b) and (c) use initial guesses of $x_l = 0.5$ and $x_u = 2.5$, and iterate until the approximate error falls below 1% or the number of iterations exceeds 10. Discuss your results.

5.11 The Michaelis-Menten model describes the kinetics of enzyme mediated reactions:

$$\frac{dS}{dt} = -v_m \frac{S}{k_s + S}$$

where S = substrate concentration (moles/L), $v_m = \text{maximum}$ uptake rate (moles/L/d), and $k_s = \text{the half-saturation}$ constant, which is the substrate level at which uptake is half of the maximum [moles/L]. If the initial substrate level at t = 0 is S_0 , this differential equation can be solved for

$$S = S_0 - v_m t + k_s \ln(S_0/S)$$

Develop an M-file to generate a plot of S versus t for the case where $S_0 = 8$ moles/L, $v_m = 0.7$ moles/L/d, and $k_s = 2.5$ moles/L.

5.13 Figure P5.13a shows a uniform beam subject to a linearly increasing distributed load. The equation for the resulting elastic curve is (see Fig. P5.13b)

$$y = \frac{w_0}{120EIL}(-x^5 + 2L^2x^3 - L^4x)$$
 (P5.13)

Use bisection to determine the point of maximum deflection (i.e., the value of x where dy/dx = 0). Then substitute this value into Eq. (P5.13) to determine the value of the maximum deflection. Use the following parameter values in your

FIGURE P5.13

computation: L = 600 cm, E = 50,000 kN/cm², I = 30,000 cm⁴, and $w_0 = 2.5$ kN/cm.

5.14 You buy a \$35,000 vehicle for nothing down at \$8,500 per year for 7 years. Use the bisect function from Fig. 5.7 to determine the interest rate that you are paying. Employ initial guesses for the interest rate of 0.01 and 0.3 and a stopping criterion of 0.00005. The formula relating present worth P, annual payments A, number of years n, and interest rate i is

$$A = P \frac{i(1+i)^n}{(1+i)^n - 1}$$

5.16 The resistivity ρ of doped silicon is based on the charge q on an electron, the electron density n, and the electron mobility μ . The electron density is given in terms of the doping density N and the intrinsic carrier density n_i . The electron mobility is described by the temperature T, the reference temperature T_0 , and the reference mobility μ_0 . The equations required to compute the resistivity are

$$\rho = \frac{1}{qn\mu}$$

where

$$n = \frac{1}{2} \left(N + \sqrt{N^2 + 4n_i^2} \right)$$
 and $\mu = \mu_0 \left(\frac{T}{T_0} \right)^{-2.42}$

Determine N, given $T_0 = 300$ K, T = 1000 K, $\mu_0 = 1360$ cm² (V s)⁻¹, $q = 1.7 \times 10^{-19}$ C, $n_i = 6.21 \times 10^9$ cm⁻³, and a desired $\rho = 6.5 \times 10^6$ V s cm/C. Employ initial guesses of N = 0 and 2.5×10^{10} . Use (a) bisection and 5.17 A total charge Q is uniformly distributed around a ringshaped conductor with radius a. A charge q is located at a distance x from the center of the ring (Fig. P5.17). The force exerted on the charge by the ring is given by

$$F = \frac{1}{4\pi e_0} \frac{q \, Qx}{(x^2 + a^2)^{3/2}}$$

where $e_0 = 8.9 \times 10^{-12} \, \mathrm{C}^2 / (\mathrm{N \, m}^2)$. Find the distance x where the force is 1.25 N if q and Q are $2 \times 10^{-5} \, \mathrm{C}$ for a ring with a radius of 0.85 m.

5.18 For fluid flow in pipes, friction is described by a dimensionless number, the *Fanning friction factor f*. The Fanning friction factor is dependent on a number of parameters related to the size of the pipe and the fluid, which can all be represented by another dimensionless quantity, the *Reynolds number* Re. A formula that predicts *f* given Re is the *von Karman equation*:

$$\frac{1}{\sqrt{f}} = 4 \log_{10} \left(\text{Re} \sqrt{f} \right) - 0.4$$

Typical values for the Reynolds number for turbulent flow are 10,000 to 500,000 and for the Fanning friction factor are 0.001 to 0.01. Develop a function that uses bisection to solve for f given a user-supplied value of Re between 2,500 and

1,000,000. Design the function so that it ensures that the absolute error in the result is $E_{a,d} < 0.000005$.

5.19 Mechanical engineers, as well as most other engineers, use thermodynamics extensively in their work. The following polynomial can be used to relate the zero-pressure specific heat of dry air c_p kJ/(kg K) to temperature (K):

$$c_p = 0.99403 + 1.671 \times 10^{-4} T + 9.7215 \times 10^{-8} T^2 \\ -9.5838 \times 10^{-11} T^3 + 1.9520 \times 10^{-14} T^4$$

Develop a plot of c_p versus a range of T = 0 to 1200 K, and then use bisection to determine the temperature that corresponds to a specific heat of 1.1 kJ/(kg K).

5.20 The upward velocity of a rocket can be computed by the following formula:

$$v = u \ln \frac{m_0}{m_0 - qt} - gt$$

where v = upward velocity, u = the velocity at which fuel is expelled relative to the rocket, $m_0 =$ the initial mass of the rocket at time t = 0, q = the fuel consumption rate, and g = the downward acceleration of gravity (assumed constant = 9.81 m/s²). If u = 1800 m/s, $m_0 = 160,000$ kg, and q = 2600 kg/s, compute the time at which v = 750 m/s. (Hint: t is somewhere between 10 and 50 s.) Determine your result so that it is within 1% of the true value. Check your answer.