Funkcionalna analiza: 1. domača naloga

Skrajni rok za oddajo rešitev je 24. 4. 2020. Rešitve oddajte po elektronski pošti na naslov marko.kandic@fmf.uni-lj.si. Dovoljena je uporaba dostopne literature v knjižnici ali na spletu. Sodelovanje s kolegi je prepovedano. Vse odgovore dobro utemeljite!

- 1. Naj bo e = (1, 1, ...) vektor samih enic.
 - (a) Dokaži, da velja $c = c_0 \oplus \mathbb{F}e$.
 - (b) Vektorski prostor $c = c_0 \oplus \mathbb{F}e$ opremimo z normo

$$||x \oplus \lambda e|| := \max\{||x||_{\infty}, |\lambda|\}.$$

Dokaži, da je $(c, \|\cdot\|)$ Banachov prostor, ki je topološko izomorfen $(c, \|\cdot\|_{\infty})$.

2. Za vse $f \in C[0,1]$ in $x \in [0,1]$ definiramo

$$(Tf)(x) = f(0) + \int_0^x f(t) dt.$$

- (a) Dokaži, da je T omejen linearen operator in izračunaj njegovo normo.
- (b) Naj bo $Y=\{g\in C^1[0,1]:\ g'(0)=g(0)\}.$ Dokaži, da je imT=Y.
- (c) Ali je Y Banachov prostor glede na normo $\|\cdot\|_{\infty}$?
- (d) Dokaži, da je Y neskončnorazsežen.
- (e) Določi lastne vrednosti operatorja T.
- 3. Naj bo X normiran prostor in Y zaprt podprostor s končno kodimenzijo.
 - (a) Dokaži, da obstaja tak zaprt podprostor $Z \vee X$, da je $X = Y \oplus Z$.
 - (b) Dokaži, da sta normirana prostora X/Y in Z topološko izomorfna.
- 4. Naj bo Y zaprt podprostor normiranega prostora X in naj bo $\pi\colon X\to Y$ kvocientna projekcija.
 - (a) Dokaži, da je preslikava $\Phi \colon (X/Y)^* \to Y^{\perp}$, podana s predpisom $\Phi \colon f \mapsto f \circ \pi$, izometrični izomorfizem.
 - (b) Utemelji, da sta prostora Y^{**} in $Y^{\perp\perp}$ Banachova, in dokaži, da sta izometrično izomorfna.
- 5. Naj bo X Banachov prostor in $\Phi: X \to X^*$ taka linearna preslikava, da za vsak $x \in X$ velja $\Phi(x)(x) = 0$.
 - (a) Dokaži, da za vse $x, y \in X$ velja $\Phi(x)(y) = -\Phi(y)(x)$.
 - (b) Dokaži, da je Φ omejena.
- 6. Naj zaporedje $(x_n)_{n\in\mathbb{N}}$ Banachovega prostora X konvergira proti x, zaporedje omejenih linearnih funkcionalov $(f_n)_{n\in\mathbb{N}}$ na X pa naj šibko* konvergira proti funkcionalu f. Dokaži, da zaporedje $(f_n(x_n))_{n\in\mathbb{N}}$ konvergira proti f(x).