Лабораторная работа

Наблюдение за процессом трёхстороннего рукопожатия протокола TCP с помощью программы Wireshark

Топология

Задачи

Часть 1. Подготовка программы Wireshark к захвату кадров

• Выберите необходимый интерфейс сетевого адаптера для захвата кадров.

Часть 2. Захват, поиск и анализ кадров

- Захват данных веб-сеанса с узлом https://mospolytech.ru/.
- Поиск соответствующих кадров для веб-сеанса.
- Анализ данных, содержащихся в кадрах, включая IP-адреса, номера портов и флаги управления TCP.

Общие сведения

В данной лабораторной работе необходимо использовать программу Wireshark для захвата и изучения кадров, генерируемых браузером компьютера, использующим HTTP-протокол, и веб-сервером, например https://mospolytech.ru/. При запуске приложения (например HTTP или FTP) на узле, протокол TCP устанавливает соединение между взаимодействующими узлами с помощью трёхстороннего рукопожатия. Например, при работе в Интернете через веб-браузер компьютера трехстороннее рукопожатие устанавливает соединение между компьютером и веб-сервером. У компьютера может быть одновременно несколько активных сеансов TCP с разными узлами.

Примечание. В этой лабораторной работе предполагается, что компьютер имеет доступ к Интернету.

Необходимые ресурсы

1 компьютер с OC Windows с доступом в Интернет и установленной программой Wireshark.

Часть 1. Подготовка программы Wireshark к захвату кадров

В части 1 требуется запустить программу Wireshark и выбрать необходимый интерфейс для начала захвата кадров.

Шаг 1. Определение адресов интерфейсов ПК.

Для выполнения лабораторной работы необходимо определить IP-адрес своего компьютера и физический адрес сетевого адаптера (MAC-адрес).

a. Откройте окно командной строки на компьютере и введите команду ipconfig /all

и нажмите на клавиатуре ВВОД.

```
Физический адрес.: 84-34-97-7B-F1-39DHCP включен.: ДаАвтонастройка включена.: ДаЛокальный IPv6-адрес канала: fe80::a037:4716:80af:f844%19(Основной)IPv4-адрес.: 192.168.1.33(Основной)Маска подсети: 255.255.255.0Аренда получена.: 3 августа 2022 г. 8:42:16Срок аренды истекает.: 7 августа 2022 г. 0:13:19Основной шлюз.: 192.168.1.1DHCP-сервер.: 192.168.1.1IAID DHCPv6: 327431319DUID клиента DHCPv6: 00-01-00-01-2A-01-21-AF-C0-25-E9-16-EA-26DNS-серверы.: 192.168.1.1
```

b. IP- и физический адреса, связанные с выбранным адаптером Ethernet, будут являться тем адресом источника, который нужно искать при анализе захваченных кадров.

Шаг 2. Запустите программу Wireshark и выберите необходимый интерфейс.

а. Запустите программу Wireshark.

Всё готово к загрузке или захвату

b. В списке интерфейсов выберите необходимый интерфейс. Сетевой анализатор Wireshark × Файл Редактирование Просмотр Запуск Захват Анализ Статистика Телефония Беспроводной Инструменты Применить дисплейный фильтр ... <Ctrl-/> + Добро пожаловать в Wireshark ...используя этот фильтр: 🔲 Введите фильтр захвата ... ▼ Все интерфейсы показаны ▼ Беспроводная сеть Ethernet Алреса: fe80::a037:4716:80af:f844, 192.168.1.33 Нет фильтра захвата **Учить** Руководство Пользователя · Вики · Вопросы и Ответы · Списки Рассылки Вы работаете с Wireshark 3.6.7 (v3.6.7-0-g4a304d7ec222). Вы получаете обновления автоматически.

Примечание. Если указано несколько интерфейсов, убедитесь в том, что IP-адрес выбранного интерфейса **соответствует тому, что вы записали в шаге 1b**.

Нет Пакетов

Профиль: Default

Часть 2: Захват, поиск и анализ кадров

Шаг 1: Нажмите кнопку Старт, чтобы начать захват данных.

- а. Откройте в браузере веб-сайт https://mospolytech.ru/.
- **b**. Сверните окно браузера и вернитесь в программу Wireshark. Остановите процесс захвата данных. Вы увидите захваченный трафик, как показано ниже.

Примечание. Преподаватель **может предложить для исследования другой веб-сайт**.

c. Окно захвата кадров активно. Найдите столбцы Source (Источник), Destination (Назначение) и Protocol (Протокол).

Шаг 2: Найдите соответствующие кадры веб-сеанса.

Если компьютер только что включён и еще не использовался для доступа к Интернету, в захваченных данных можно проследить весь процесс взаимодействия, включая работу протокола разрешения адресов (ARP), службы доменных имен (DNS) и процесс трёхстороннего рукопожатия TCP. В примере захвата в части 2, шаг 1 показаны все пакеты, которые компьютер должен отправить на адрес https://mospolytech.ru/. В рассматриваемом примере на компьютере уже была запись ARP для основного шлюза, поэтому он сначала создал DNS-запрос для сопоставления https://mospolytech.ru/.

a. В кадре **509** примера показан DNS-запрос от компьютера к DNS-серверу, на сопоставление доменного имени https://mospolytech.ru/ и IP-адреса веб-сервера. Компьютер должен знать IP-адрес до отправления первых данных на веб-сервер.

Выделите соответствующий кадр в **Вашем** окне Wireshark и определите IP-адрес DNS-сервера, запрошенного компьютером.

b. Кадр **510** является ответом DNS-сервера, содержащим IP-адрес https://mospolytech.ru/.

Примечание. Чтобы отобразить все необходимые данные, измените размеры окон программы Wireshark.

Выделите соответствующий кадр в Вашем окне Wireshark и назовите IP-адрес https://mospolytech.ru/, содержащийся в ответе DNS-сервера.

- **с**. Найдите соответствующий кадр (в показанном примере это кадр **512**), начинающий процедуру трёхстороннего рукопожатия TCP.
- **d**. Если получено много пакетов, связанных с TCP-соединением, воспользуйтесь фильтром программы Wireshark. В поле фильтра программы Wireshark введите tcp и нажмите на клавиатуре **ВВОД**.

Шаг 3: Изучите данные, содержащиеся в кадрах, включая IP-адреса, номера портов TCP и флаги управления TCP.

- а. В показанном примере кадр 512 показывает начало (содержит первый сегмент) трёхстороннего рукопожатия между компьтером и веб-сервером https://mospolytech.ru/. В окне Вашего Wireshark на панели списка кадров (верхняя часть основного окна) выделите соответствующий кадр. После этого в двух нижних панелях будет выделена строка и отображена декодированная информация из кадра. Изучите данные о инкапсулированном TCP сегменте в средней части основного окна Wireshark.
- **b**. На панели сведений о кадрах нажмите на значок слева от строки Transmission Control Protocol (Протокол управления передачей данных), чтобы

просмотреть подробную информацию о ТСР сегменте.

c. Слева от Flags (Флаги) нажмите на значок . Обратите внимание на порты источника и назначения, а также на установленные флаги.

Примечание. Измените размеры окон программы Wireshark, чтобы отобразить всю необходимую информацию.

Назовите номер порта источника ТСР.

Как можно охарактеризовать порт источника?

Назовите номер порта назначения ТСР.

Как можно охарактеризовать порт назначения?

Какие установлены флаги?

Какие значения имеют относительный последовательный номер и номер подтверждения?

d. Чтобы выбрать следующий сегмент в трёхстороннем рукопожатии, в меню программы Wireshark выберите пункт **Запуск**, а затем **Следующий Пакет в Диалоге**.

В примере кадр **513** содержит следующий сегмент в трёхстороннем рукопожатии. Это ответ веб-сервера https://mospolytech.ru/ на исходный запрос для начала сеанса.

Назовите номера портов источника и назначения.

Какие установлены флаги?

Какие значения имеют относительный последовательный номер и номер подтверждения?

e. Изучите третий (последний) сегмент трёхстороннего рукопожатия (в данном примере его содержит кадр **514**), нажав на соответствующий кадр в верхней части окна Вашего Wireshark:

Какие установлены флаги?

исходным значением является единица. Соединение ТСР установлено. Можно начать передачу данных между компьютером-источником и веб-сервером. **f**. Закройте программу Wireshark.

Вопросы на повторение

- 1. В программе Wireshark доступны сотни фильтров. В большой сети может быть множество различных типов трафика. Какие три фильтра Wireshark будут наиболее полезны сетевому администратору?
 - 2. Как ещё можно использовать программу Wireshark в производственной сети?