Modelo de deep learning fast.ai para a detecção de neoplasias cutâneas

```
1 from google.colab import drive
  2 drive.mount('/content/drive')

→ Mounted at /content/drive
 1 !ls
→ drive sample_data
```

Bibliotecas e Banco de Dados

```
1 #Carregar toda vez que acionar a biblioteca FASTAI
2 #Recarregar notebook quaisquer alterações feitas em qualquer biblioteca usada.
3 %reload_ext autoreload
4 %autoreload 2
5 #Garantir que todos os gráficos plotados sejam mostrados
6 %matplotlib inline
1 #Carga bibliotecas
2 from fastai.vision.all import *
3 from fastai.metrics import '
4 import pandas as pd
5 from pathlib import Path
6 import matplotlib.pyplot as plt
7 import numpy as np
8 import os
9 from glob import glob
10 import seaborn as sns
1 base_skin_dir = os.path.join('', 'drive/MyDrive/archive')
3 #Banco de metadados de imagens
4 csv_path = "drive/MyDrive/archive/HAM10000_metadata.csv"
5 skin_df = pd.read_csv(csv_path)
```

Análise Exporatória de Dados

```
1 # Amostra descritiva do banco de imagens
 2 skin_df.sort_values(by="image_id")
₹
              lesion\_id
                            image_id dx
                                                                localization
                                            dx_type
                                                    age
     4349 HAM_0000550 ISIC_0024306
                                           follow_up 45.0
                                                           male
     4263 HAM_0003577 ISIC_0024307
                                           follow_up 50.0
                                                           male lower extremity
                                       nv
     4217 HAM_0001477 ISIC_0024308
                                           follow_up 55.0
                                                          female
                                                                          trunk
          HAM_0000484 ISIC_0024309
                                       nv follow_up
     3587
                                                    40.0
                                                           male
                                                                         trunk
     1451 HAM_0003350 ISIC_0024310 mel
                                               histo
                                                   60.0
                                                           male
                                                                         chest
     1721 HAM_0004304 ISIC_0034316 mel
                                              histo 85.0
                                                           male upper extremity
     1888 HAM_0006376 ISIC_0034317 mel
                                               histo 70.0
                                                          female
           HAM_0000344 ISIC_0034318
      121
                                      bkl
                                              histo 55.0
                                                           male
                                                                          trunk
     7440 HAM_0000747 ISIC_0034319
                                               histo 30.0
                                                                          trunk
                                                           male
     7363 HAM_0002244 ISIC_0034320
                                              histo 25.0 female
                                                                         chest
    10015 rows × 7 columns
 1 # Contagem de imagens por neoplasia
 2 dx = skin_df['dx'].value_counts().sort_index()
```

```
3 print(dx)
```

akiec bcc

```
18/06/2025, 20:30
                                                                 neoplasias cutaneas fastai ipynb - Colab
         bk1
                  1099
         df
                   115
                  1113
         mel
                  6705
                   142
         vasc
         Name: dx, dtype: int64
      1 # Contagem de imagens por categorias de neoplasia
      2 categories = dx.index.values
      3 print(categories)
      4
      5 counts = dx.values
      6 print(counts)
        ['akiec' 'bcc' 'bkl' 'df' 'mel' 'nv' 'vasc']
         [ 327 514 1099 115 1113 6705 142]
      1 #Estatísticas básicas dos dados
      2 skin_df.describe(exclude=[np.number])
    ₹
                    lesion_id
                                   image_id
                                                dx dx_type
                                                               sex localization
                        10015
                                      10015 10015
                                                      10015
                                                            10015
                                                                           10015
          count
                         7470
          unique
                                      10015
                                                          4
                                                                 3
                                                                              15
           top
                 HAM_0003789 ISIC_0027419
                                                nv
                                                       histo
                                                              male
                                                                            back
           freq
                                              6705
                                                       5340
                                                              5406
                                                                            2192
      1 #Identificacao da estrutura do banco de dados
      2 skin_df.info()
    <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10015 entries, 0 to 10014
         Data columns (total 7 columns):
          #
              Column
                            Non-Null Count Dtype
         ---
          0
              lesion_id
                            10015 non-null object
          1
              image_id
                            10015 non-null
                                            object
                            10015 non-null object
          2
          3
              dx_type
                            10015 non-null
                                            object
                            9958 non-null
                                            float64
              age
                            10015 non-null object
              sex
              localization 10015 non-null object
         dtypes: float64(1), object(6)
         memory usage: 547.8+ KB
```

Podemos observar que não há valores nulos

```
1 imageid_path_dict = {os.path.splitext(os.path.basename(x))[0]: x
                         for x in glob(os.path.join(base_skin_dir, '*', '*.jpg'))}
 2
 4 lesion_type_dict = {
 5
       'nv': 'nevos melanocíticos',
       'mel': 'dermatofibroma',
 6
       'bkl': 'Lesões semelhantes a ceratose benigna',
        'bcc': 'Carcinoma basocelular',
 8
       'akiec': 'Queratose actínica',
 9
       'vasc': 'lesões vasculares',
10
11
        'df': 'Dermatofibroma'
12 }
 1 tile_df = pd.read_csv(os.path.join(base_skin_dir, 'HAM10000_metadata.csv'))
 2 tile_df['path'] = tile_df['image_id'].map(imageid_path_dict.get)
 3 tile_df['cell_type'] = tile_df['dx'].map(lesion_type_dict.get)
 4 tile_df['cell_type_idx'] = pd.Categorical(tile_df['cell_type']).codes
 5 tile df.sample(3)
\overline{z}
              lesion_id
                             image_id dx dx_type
                                                             sex localization
                                                                                                                                      path
                                                      age
           HAM_0000959 ISIC_0030189 bkl
                                                                           face drive/MyDrive/archive/HAM10000_images_part_2/ISIC_0030189.jpg
                                               histo 75.0 female
 1 bar, ax = plt.subplots(figsize=(10,10))
 2 sns.histplot(skin_df['age'])
  3 plt.title('Figura 5: Histograma de Idade dos Pacientes', size=16)
```

→ Text(0.5, 1.0, 'Figura 5: Histograma de Idade dos Pacientes')


```
1 value = skin_df[['localization', 'sex']].value_counts().to_frame()
2 value.reset_index(level=[1,0], inplace=True)
3 temp = value.rename(columns = {'localization':'location', 0: 'count'})
4
5 bar, ax = plt.subplots(figsize = (12, 12))
6 sns.barplot(x = 'location', y='count', hue = 'sex', data = temp)
7 plt.title('Localização da doença por gênero', size = 16)
8 plt.xlabel('Doença', size=12)
9 plt.ylabel('Frequência/Contagem', size=12)
10 plt.xticks(rotation = 90)
```


Amostra estatística de 1000 registros

```
1 # Definindo o gráfico de coluna por distribuição
 {\tt 2} \ \mathsf{def} \ \mathsf{plotPerColumnDistribution} (\mathsf{df, nGraphShown, nGraphPerRow}) :
      nunique = df.nunique()
       df = df[[col for col in df if nunique[col] > 1 and nunique[col] < 50]] # Para fins de exibição, escolha colunas que tenham entre
4
 5
       nRow, nCol = df.shape
 6
      columnNames = list(df)
       nGraphRow = (nCol + nGraphPerRow - 1) / nGraphPerRow
       plt.figure(num = None, figsize = (6 * nGraphPerRow, 8 * nGraphRow), dpi = 80, facecolor = 'w', edgecolor = 'k')
9
       for i in range(min(nCol, nGraphShown)):
10
           plt.subplot(nGraphRow, nGraphPerRow, i + 1)
           columnDf = df.iloc[:, i]
11
           if (not np.issubdtype(type(columnDf.iloc[0]), np.number)):
12
13
               valueCounts = columnDf.value_counts()
14
               valueCounts.plot.bar()
15
           else:
16
              columnDf.hist()
17
           plt.ylabel('qde')
18
           plt.xticks(rotation = 90)
           plt.title(f'{columnNames[i]} (column {i})')
19
20
       plt.tight_layout(pad = 1.0, w_pad = 1.0, h_pad = 1.0)
21
       plt.show()
```

```
1 # Gerando a amostra
2 df1 = skin_df.sample(n=1000, random_state=1)
3
4 df1.dataframeName = 'HAM10000_metadata.csv'
5 nRow, nCol = df1.shape
6 print(f'Há {nRow} linhas e {nCol} colunas')
```

→ Há 1000 linhas e 7 colunas

1 plotPerColumnDistribution(df1, 4, 2)

Verificando o equilíbrio dos dados

```
1 categories = ['Queratoses actínicas', 'Carcinoma basocelular', 'Queratose benigna', 'Dermatofibroma', 'Melanoma maligno', 'Nevos mela 2 3 num_classes = len(categories)
```

```
1 import matplotlib.pyplot as plt
2 import seaborn as sns
3
4 def plot_equilibre(categories, counts):
5
6    plt.figure(figsize=(12, 8))
7
8    sns_bar = sns.barplot(x=categories, y=counts, saturation=0.75, palette = "flare")
9    sns_bar.set_xticklabels(categories, rotation=45)
10
11    plt.title('Equilibrio dos dados de treino')
12    plt.show()
```

1 plot_equilibre(categories, counts)


```
1 #Definindo a localização das imagens
2 path = Path('drive/MyDrive/archive/')
3 Path.BASE_PATH = path
4 path.ls()
```

(#7)
[Path('HAM10000_metadata.csv'),Path('hmnist_28_28_L.csv'),Path('hmnist_28_28_RGB.csv'),Path('hmnist_8_8_L.csv'),Path('hmnist_8_8_RGE

Renomeando variáveis

```
1 short_to_full_name_dict = {
2     "akiec" : "Doença de Bowen", # forma muito precoce de câncer de pele
3     "bcc" : "carcinoma basocelular" , # câncer basocelular ou câncer de pele branca
4     "bkl" : "lesões semelhantes a ceratose benigna", # tumor de pele não canceroso
5     "df" : "dermatofibroma", # saliências arredondadas não cancerosas
6     "mel" : "melanoma", # câncer de pele
7     "nv" : "nevos melanocíticos", # mole não canceroso
8     "vasc" : "lesões vasculares", # condição da pele
9 }
```

Obtendo imagens do arquivo

```
1 # retorna apenas a coluna dx e id da imagem
2 img_to_class_dict = skin_df.loc[:, ["image_id", "dx"]]
3 # retorna colunas como listas em um dict
4 img_to_class_dict = img_to_class_dict.to_dict('list')
5 # retorna um id de imagem de mapeamento dict para o nome da doença
6 img_to_class_dict = {img_id : short_to_full_name_dict[disease] for img_id,disease in zip(img_to_class_dict['image_id'], img_to_class_7 [x for x in img_to_class_dict.items()][:5]
```

```
[('ISIC_0027419', 'benign keratosis-like lesions'),
    ('ISIC_0025030', 'benign keratosis-like lesions'),
    ('ISIC_0026769', 'benign keratosis-like lesions'),
    ('ISIC_0025661', 'benign keratosis-like lesions'),
    ('ISIC_0031633', 'benign keratosis-like lesions')]

1 # path.stem retorna o nome do arquivo sem sufixo
2 def get_label_from_dict(path):
3    return img_to_class_dict[path.stem]
```

Construindo um bloco de imagens DataBlock

```
1 dblock = DataBlock(
      # Designação das variáveis independentes e dependentes
3
      blocks = (ImageBlock, CategoryBlock),
      # Para obter uma lista desses arquivos e retornar uma lista de todas as imagens nesse caminho
4
      get_items = get_image_files,
      # Divida nossos conjuntos de treinamento e validação aleatoriamente
      splitter = RandomSplitter(valid_pct=0.2, seed=42),
      # Estamos dizendo ao fastai qual função chamar para criar os rótulos em nosso conjunto de dados, no nosso caso é uma variável in
      get_y = get_label_from_dict,
9
10
      # DihedralItem todas as 4 rotações de 90 graus e para cada:
      # 2 flips horizontais -> 8 orientações
11
12
      item_tfms=[Resize(448), DihedralItem()],
      # Escolhe um recorte escalado aleatório de uma imagem e a redimensiona para o tamanho
14
      batch_tfms=RandomResizedCrop(size=224, min_scale=0.75, max_scale=1.0))
15
16 img_path = "drive/MyDrive/archive/HAM10000_images_part_1"
17 # cria dataloader usando img_path
18 dls = dblock.dataloaders(img_path, bs=64) # bs = tamanho do lote
```

Visualizando as imagens

Observações dessas imagens serão anotadas abaixo. Primeiro, farei mais algumas verificações para confirmar que nossas categorias são apenas "doença de Bowen", 'carcinoma basocelular', 'lesões semelhantes a ceratose benigna', 'dermatofibroma', 'nevos melanocíticos',

 $\overline{\mathbf{T}}$

'melanoma', 'lesões vasculares ':

```
1 print(dls.vocab)

The print(dls.vocab)

The print(dls.vocab)

The print(dls.vocab)

The print(dls.vocab)

The print(dls.vocab)

The print(dls.vocab)
```

Vamos visualizar o tamanho dos nossos conjuntos de dados:

```
1 len(dls.train_ds), len(dls.valid_ds)

→ (4000, 1000)
```

Treine um modelo simples

epoch	train_loss	valid_loss	accuracy	time
0	2.107257	1.014550	0.733000	01:19
epoch	train_loss	valid_loss	accuracy	time
0	1.162495	0.803819	0.793000	01:23
1	0.910802	0.594211	0.835000	01:22
2	0.679382	0.481674	0.837000	01:23
3	0.553778	0.479971	0.841000	01:22

```
1 # Definindo a taxa de aprendizagem em relação as perdas
2 lr_min,lr_steep = learn.lr_find(suggest_funcs=(minimum, steep))
```



```
1 print(f"Minimum/10: {lr_min:.2e}, steepest point: {lr_steep:.2e}")
```

→ Minimum/10: 5.25e-06, steepest point: 1.10e-06

treinando fit_one_cycle por 3 ciclos para ter uma ideia de quão preciso seria o modelo com resnet34.

```
1 learn = vision_learner(dls,resnet34, metrics = accuracy)
2 weights='IMAGENET1K_V1'
3 learn.fit_one_cycle(3,1e-2)
```

_	epoch	train_loss	valid_loss	accuracy	time
	0	1.484736	1.193570	0.713000	01:26
	1	0.915688	0.601399	0.812000	01:39
	2	0.632683	0.461788	0.835000	01:28

Aplicando o algoritmo Resnet
34 observamos uma taxa de acurácia de 83,5 %

Descongelamento e Transferência de Aprendizagem

```
1 learn.unfreeze()
 1 lr_min,lr_steep = learn.lr_find(suggest_funcs=(minimum, steep))
₹
       0.9
               steep
       0.8
     SS 0.7
       0.6
       0.5
                                            10-2
                                                   10-1
                               10-4
                                      10-3
           10-
                             Learning Rate
 1 print(f"Minimum/10: {lr_min:.2e}, steepest point: {lr_steep:.2e}")
→ Minimum/10: 6.31e-08, steepest point: 1.32e-06
 1 learn.fit_one_cycle(30 ,lr_max=slice(1e-4, 1e-2))
```

₹	epoch	train_loss	valid_loss	accuracy	time
	0	0.511097	0.513052	0.824000	01:39
	1	0.503994	0.662045	0.796000	01:44
	2	0.514480	0.839405	0.729000	01:41
	3	0.530039	0.771729	0.793000	01:36
	4	0.558221	0.647117	0.794000	01:45
	5	0.567121	0.679792	0.792000	01:35
	6	0.575276	0.434001	0.852000	01:36
	7	0.539968	4.668460	0.733000	01:35
	8	0.536520	0.603031	0.791000	01:34
	9	0.484933	0.473026	0.845000	01:36
	10	0.464415	0.553452	0.788000	01:37
	11	0.420540	0.503143	0.831000	01:34
	12	0.406005	0.475321	0.829000	01:36
	13	0.376242	0.486368	0.830000	01:37
	14	0.363214	0.460963	0.843000	01:37
	15	0.349533	0.492556	0.830000	01:36
	16	0.311974	0.649859	0.853000	01:36
	17	0.282202	0.420920	0.866000	01:36
	18	0.272512	0.503506	0.837000	01:35
	19	0.235566	0.334372	0.886000	01:37
	20	0.209646	0.382954	0.875000	01:36
	21	0.189831	0.320385	0.896000	01:36
	22	0.171440	0.348050	0.897000	01:35
	23	0.149904	0.329796	0.898000	01:36
	24	0.120866	0.334872	0.901000	01:36
	25	0.114491	0.336159	0.906000	01:35
	26	0.099070	0.340293	0.907000	01:37
	27	0.098978	0.332594	0.907000	01:36
	28	0.087987	0.331241	0.911000	01:35
	29	0.087777	0.334828	0.911000	01:35

1 O modelo com fast.ai chegou a taxa de 91,1%

1 learn.recorder.plot_loss()

y salvando o modelo

1 learn.save('model1')

Path('models/model1.pth')

Interpretação do modelo

- 1 interp = ClassificationInterpretation.from_learner(learn)
- 2 interp.plot_confusion_matrix(figsize=(6,6), dpi=60)

As 6 principais perdas

1 interp.plot_top_losses(6, nrows=6)

→

Prediction/Actual/Loss/Probability

benign keratosis-like lesions/dermatofibroma / 13.14 / 1.00