

Product Data

AQUAZONE™ 50RHC006-060 50RVC009-060 Standard Efficiency Water Source Heat Pumps

Horizontal — 1/2 to 5 Nominal Tons
Vertical — 3/4 to 5 Nominal Tons

Single-package horizontally and vertically mounted water source heat pumps with solid-state controls.

- Compact cabinet design
- Performance certified to ARI/ISO/ASHRAE 13256-1
- Waterloop (boiler/tower) application use with an operating temperature range of 60 F to 95 F
- Mute package available for quiet operation
- Three service panels for compressor section for easy maintenance
- Meets new ASHRAE 90.1 performance requirements
- Backward compatibility for replacing older Carrier and other manufacturers' units
- Flexible and reliable controls accommodate all systems
- Modulating reheat option available for added dehumidification capability

Features/Benefits

Carrier's Aquazone™ standard efficiency water source heat pumps (WSHPs) are an efficient, compact alternative for all boiler/tower and retrofit applications

Operating efficiency

Carrier horizontal and vertical water source heat pumps are designed for quality and high performance over a lifetime of operation. Aquazone standard efficiency units offer cooling EERs (energy efficiency ratios) to 13 and heating COPs (coefficients of performance) to 4.6. Efficiency ratings stated are in accordance with standard conditions under ARI/ISO/ASHRAE Standard 13256-1 and provide among the highest ratings in the industry, exceeding ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers) 90.1 Energy Standards.

Features/Benefits (cont)

High quality construction and testing

All units are manufactured to meet extensive quality control standards. An automated control system provides continuous monitoring of each unit and performs quality control checks as equipment progresses through the production process. Standard construction features of the Carrier Aquazone™ units include:

Cabinet — Heavy gage galvanized sheet metal cabinet construction enables part standardization (i.e., minimal number of parts) and modular design. Cabinet interior surfaces are lined with $\frac{1}{2}$ in. thick, $1\frac{3}{4}$ lb acoustic type insulation. Sheet metal surfaces are treated for maximum corrosion protection to ensure resilience for long term vitality. Compact cabinet dimensions fit tight space limitations in both horizontal and vertical configurations.

Compressor — Aquazone standard efficiency units include a rotary compressor in sizes 006 through 012, a reciprocating compressor in sizes 018 through 048 and a scroll compressor in size 060 units. Compressors are mounted on an isolated system (i.e., from the cabinet) that maximizes vibration isolation and minimizes transmission to the unit structure.

Blower and motor assembly — Permanent split capacitor (PSC) three-speed (two-speed for 575 v) blowers are provided with all units to satisfy many air distribution applications. Blower upgrades are available for high-static conditions. Fan speed control

allows reduced sound operation. Blower motors operate at lower temperatures to help improve the reliability of the water source heat pump.

Refrigeration/water circuit —

Most units have a sealed refrigerant circuit including a high-efficiency rotary, reciprocating or scroll compressor. Simplified refrigerant circuits provide easy maintenance, higher accuracy and excellent performance. Also standard are a reversing valve (4-way valve), water-to-refrigerant coaxial (tube in tube) coil, and enhanced aluminum fin/rifled copper tube air to refrigerant heat exchanger coil.

A modulating reheat option is available to provide 100% reheat and neutral supply air to the space.

ARI/ISO — Aquazone units have ARI (Air Conditioning & Refrigeration Institute)/ISO, NRTL (Nationally Recognized Testing Lab), or CSA (Canadian Standards Association) labels and are factory tested under normal operating conditions at nominal water flow rates. Quality assurance is provided via testing report cards shipped with each unit to indicate specific unit performance under cooling and heating modes. Water source heat pumps are New York City MEA (Materials Equipment and Acceptance) 60-00-E rated.

Quiet operation

Fan motor isolation and hermetic compressor springs provide sound isolation, cabinets are fully insulated to reduce noise transmission, low speed blowers are used for quiet operation through reduced outlet air velocities,

and air-to-refrigerant coils are designed for lower airflow coil face velocities.

Design flexibility

Airflow configurations for horizontal units are available in four patterns including left or right return, and left, right, or back discharge. Horizontal units are field convertible from left or right discharge to back discharge. Vertical units are available in four airflow patterns including top discharge with front, right or left return. Standard water temperature range between 60 F and 95 F offers maximum design flexibility for boiler/tower applications. Water flow rates as low as 1.5 gpm per ton assist with selection from a various range of circulating pumps. Factory-installed options are offered to meet specific design requirements.

Safe, reliable operation

Standard safety features for the refrigerant circuit include a high-pressure switch, low-pressure sensor to detect refrigerant loss. Equipment safety features include water loop temperature monitoring, voltage protection, water coil freeze protection, and standard electronic condensate overflow shutdown. All safety features are tested and run at the factory to assure proper operation of all components and safety switches.

All components are carefully designed and selected for endurance, durability, and carefree day-to-day operation.

Table of contents

	Page
Features/Benefits	1-4
Model Number Nomenclature	5
ARI/ISO Capacity Ratings	5
Physical Data	6
Options and Accessories	7-9
Dimensions	10,11
Selection Procedure	12,13
Performance Data	14-29
Electrical Data	30
Typical Piping and Wiring	31
Typical Wiring Schematics	32,33
Typical Control Wiring	34
Application Data	35-39
Guide Specifications	40-43

The Aquazone™ unit is shipped to provide internal and external equipment protection. Shipping supports are placed under the blower housing and compressor feet. In addition, horizontal and vertical units are both mounted on oversized pallets with lag bolts for sturdiness and maximum protection during transit.

Ease of installation

The Aquazone unit is packaged for simple low cost handling and requires minimal installation. All units are pre-wired and factory charged with refrigerant. Horizontal units include factory-installed hangar isolation brackets. Vertical units have an internally trapped condensate drain to reduce labor associated with installing an external trap for each unit. Water connections (FPT) and condensate drains (FPT) are anchored securely to the unit cabinet.

Simple maintenance and serviceability

The Aquazone WSHP units are constructed to provide easy maintenance. All units allow access to the compressor section from 3 sides and have large removable panels for easy access. Additional panels allow access to the blower and control box sections.

The blower housing assembly can be serviced without disconnecting ductwork from the dedicated blower access panel. Blower units come with permanently lubricated bearings for worry-free performance. Blower inlet rings allow blower wheel removal without having to remove the housing or ductwork connections.

Electrical disconnection of the blower motor and control box is easily accomplished via quick disconnects on each component.

Easy removal of the control box from the unit provides access to all refrigeration components.

The refrigeration circuit is easily tested and serviced through high and low pressure ports integral to the refrigeration circuit.

Maximum control flexibility

Aquazone water source heat pumps provide reliable control operation using a standard microprocessor board with flexible alternatives for many direct digital control (DDC) applications including

the Carrier Comfort Network® (CCN) and open protocol systems.

Carrier's Aquazone standard unit solid-state control system, the Complete C, provides control of the unit compressor, reversing valve, fan, safety features, and troubleshooting fault indication features. The Complete C control is one of the most user friendly, low cost, and advanced control boards found in the WSHP industry. Many features are field selectable to provide the ultimate in field installation flexibility. The overall features of this standard control system include:

50 va transformer assists in accommodating accessory loads.

Anti-short cycle timer provides a minimum off time to prevent the unit from short cycling. The 5-minute timer energizes when the compressor is deenergized, resulting in a 5-minute delay before the unit can be restarted.

Random start relay ensures a random delay in energizing each different WSHP unit. This option minimizes peak electrical demand during start-up from different operating modes or after building power outages.

High and low pressure refrigerant protection safeguards against unreliable unit operation and prevents refrigerant from leaking.

Condensate overflow sensor is an electronic sensor mounted to the drain pan. When condensate pan liquid reaches an unacceptable level, the unit is automatically deactivated and placed in a lockout condition. The sensor recognizes 30 continuous seconds of overflow as a fault condition.

High and low voltage protection provides safety protection from excessive or low voltage conditions.

Automatic intelligent reset will automatically restart unit 5 minutes after shutdown if the fault has cleared. Should a fault occur 3 times sequentially, lockout will occur.

Accessory output output (24 v) is provided to cycle a motorized water valve or damper actuator with compressor in applications such as variable speed pumping arrangements.

Performance Monitor (PM) is a unique feature that monitors water temperatures to warn when the heat pump is operating inefficiently or beyond typical operating range. Field

selectable switch initiates a warning code on the unit display.

Water coil freeze protection (selectable for water or antifreeze) provides a field selectable switch for water and water/glycol solution systems which initiates a fault when temperatures exceed the selected limit for 30 continuous seconds.

Air coil freeze protection (check filter operation) provides a field selectable switch for assessing excessive filter pressure drop. The switch initiates a fault when temperatures exceed the selected limit for 30 continuous seconds.

Alarm relay setting is a selectable 24 v or pilot duty dry contact for activating a remote alarm.

Electric heat option is an output provided on the controller for operating two stages of emergency electric heat.

Service Test mode with diagnostic LED (light-emitting diode) allows service personnel to check the operation of the WSHP and control system efficiently. Upon entering Test mode, time delays speed up, and the Status LED flashes a code to indicate the last fault experienced. This mode provides easy fault diagnosis; based on the fault code that the status LED flashes, Carrier troubleshooting tables provide easy reference to typical problems.

LED visual output indicates high pressure, low pressure, low voltage, high voltage, air/water freeze protection, condensate overflow, and control status via a LED panel.

Carrier PremierLink™ controller adds reliability, efficiency, and simplification

The PremierLink direct digital controller can be ordered as a factory-installed option. Designed and manufactured exclusively by Carrier, the controller can actively monitor and control all modes of operation as well as monitor the following diagnostics and features: unit number, zone temperature, zone set point, zone humidity set point, discharge air temperatures, fan status, stages of heating, stages of cooling, outdoor-air temperature, leaving-air temperature, leaving water temperature, alarm status, and alarm lockout condition.

Features/Benefits (cont)

The PremierLink™ controller has 38.4K baud communications capability and is compatible with *ComfortLink*™ controls, CCN and *ComfortVIEW*™ software. Contact your local Carrier representative for more details. Adding the Carrier CO₂ sensor in the conditioned space provides ASHRAE 62-99 compliance and Demand Control Ventilation (DCV). A DCV control strategy is especially beneficial for a water source heat pump system to minimize the energy used to condition ventilation air. In combination with energy efficient Aquazone™ units, DCV may be the most energy efficient approach ever developed for a water source heat pump system.

The PremierLink peer-to-peer, Internet ready communicating control is designed specifically for CV

(constant volume) and VVT® (Variable Volume/Variable Temperature) applications. This comprehensive controls system allows water source heat pumps to be linked together to create a fully functional HVAC (heating, ventilation, and air conditioning) automation system.

Open protocol for diverse control

— The LON controller option is ideal when building automation requires interoperability across diverse control platforms. This LONMark® compliant offering can operate as standalone or as a part of Local Operating Network (LON) via the LONWORKS® FTT-10 Free Topology communication network. Pre-engineered application specific to Aquazone water source heat pumps and digital wall sensors communicating over Sensor Link (S-Link)

communication protocol completes a system of networked control.

Humidity control — Aquazone 50RHC,RVC units provide very good latent capacity and are an excellent choice for controlling humidity within a zone in many applications. The latent capacity of the units can be increased based on zone conditions with either the use of fan speed control and a humidistat or with the modulating reheat option. The Deluxe D controls option provides fan speed control based on relative humidity and is an effective, low-cost means of controlling humidity. For certain applications in which a significant amount of latent capacity is required, the modulating reheat option is a good solution.

Model number nomenclature

50RHC,RVC STANDARD EFFICIENCY

50RH C 018 S C 3 0 1 3 0

Aquazone™ Water Source Heat Pump
50RH – Horizontal Configuration
50RV – Vertical Configuration

Efficiency Type
C – Standard efficiency

Size – Nominal Tons

*006 – 1/2
 009 – 3/4
 012 – 1
 018 – 1-1/2
 024 – 2
 030 – 2-1/2
 036 – 3
 †041 – 3-1/2
 042 – 3-1/2
 048 – 4
 060 – 5

Airflow Configuration

50RHC Units			50RHC High-Static Units		
Code	Return	Discharge	Code	Return	Discharge
S	Left	Right	D	Left	Right
E	Left	Back	F	Left	Back
Z	Right	Left	A	Right	Left
B	Right	Back	C	Right	Back
50RVC Units			50RVC High-Static Units		
Code	Return	Discharge	Code	Return	Discharge
**F	Front	Top	M	Left	Top
L	Left	Top	G	Right	Top
R	Right	Top	**H	Front	Top

Controls

C – Complete C Microprocessor Control
D – Deluxe D Microprocessor Control
L – Complete C with LON
M – Deluxe D with LON
 ††**P** – PremierLink™ DDC Control

LEGEND

LON — Local Operating Network,
 via LONWORKS®
 Open System Protocol

*Horizontal only.

†Vertical only.

**Available in sizes 018-030 only.

††Available with Complete C only.

***Must order Deluxe D controls. Available on
 sizes 50RVC018-036 and 50RVC042-060 only.

Water Circuit Options
0 – None

Operating Range

3 – Standard Range (60 to 95 F)
4 – Standard Range (60 to 95 F)
 with Mute Package

Packing

1 – Single Pack

Revision Code

0 – Current Revision

V-Ph-Hz

1 – 575-3-60
3 – 208/230-1-60
4 – 265-1-60
5 – 208/230-3-60
6 – 460-3-60

Heat Exchanger

A – Copper with E-Coated Air Coil
C – Copper
*****D** – Copper with E-Coated Air Coil
 and Modulating Reheat
*****E** – Copper and Modulating Reheat
J – Cupro-Nickel with E-Coated
 Air Coil
N – Cupro-Nickel

NRTL/C

ENERGY STAR

ARI/ISO capacity ratings

50RHC,RVC	LIQUID FLOW (Gpm)	AIRFLOW (Cfm)	WATER LOOP HEAT PUMP			
			Cooling 86 F		Heating 68 F	
			TC Btuh	EER Btuh/W	TC Btuh	COP
006	1.7	220	6,400	12.5	8,300	4.2
009	2.3	325	8,300	12.7	10,800	4.3
012	3.0	400	11,500	12.7	14,300	4.2
018	4.5	600	18,200	12.3	22,000	4.2
024	6.0	800	23,800	13.0	27,800	4.6
030	7.5	1000	28,000	12.2	33,500	4.4
036	9.5	1200	35,000	12.0	45,500	4.2
041	10.5	1325	37,700	12.0	47,500	4.2
042	11.0	1350	41,000	12.0	52,600	4.2
048	12.0	1600	47,100	12.2	58,200	4.4
060	15.0	2000	58,000	12.0	76,800	4.2

LEGEND

COP — Coefficient Performance
EER — Energy Efficiency Ratio
TC — Total Capacity

NOTES:

1. A water-to-air heat pump using water or brine circulating in a common piping loop functioning as a heat source/heat sink.
2. The temperature of the water or brine loop is usually mechanically controlled within a temperature range of 60 F to 90 F.
3. Certified in accordance with the ARI/ISO Standard 13256-1 Certification Program, which replaces ARI Standard-320.
4. Cooling capacities based upon 80.6 F db (dry bulb), 66.2 F wb (wet bulb) entering-air temperature.
5. Heating capacities based upon 68 F db, 59 F wb entering-air temperature.
6. All ratings based upon 208 volt operation.
7. 50RHC,RVC units are designed for use in water loop heat pump applications only.

Physical data

PHYSICAL DATA — AQUAZONE™ 50RHC,RVC006-060 UNITS

UNIT 50RHC,RVC	006*	009	012	018	024	030
COMPRESSOR (1 each)		Rotary			Reciprocating	
FACTORY REFRIGERANT CHARGE R-22 VERTICAL (oz)	—	14	14	26	38	37
FACTORY REFRIGERANT CHARGE R-22 HORIZONTAL (oz)	14	14	14	25	38	37
PSC FAN MOTOR & BLOWER						
Fan Motor Type/Speeds	PSC/3	PSC/3	PSC/3	PSC/3	PSC/3	PSC/3
Fan Motor (hp) Std, High Static	1/25, —	1/10, —	1/10, —	1/8, 1/6	1/4, 3/4	3/4, 3/4
Blower Wheel Size (Dia x W) Std, High Static	5 x 5, —	5 x 5, —	6 x 5, —	8 x 7, 8 x 7	9 x 7, 9 x 7	9 x 7, 10 x 8
WATER CONNECTION SIZE FPT — Entering and Leaving (in.)	1/2	1/2	1/2	1/2	3/4	3/4
HORIZONTAL						
Air Coil						
Dimensions (H x W)	10 x 15	10 x 15	10 x 15	16 x 22	16 x 22	16 x 22
Total Face Area (ft²)	1.04	1.04	1.04	2.44	2.44	2.44
Tube Size (in.)	3/8	3/8	3/8	3/8	3/8	3/8
Fin Spacing (fpi)	12	12	12	12	12	12
Number of Rows	2	2	3	2	3	3
Return Air Filter — 1-in. Throwaway (Qty — Size)	1 — 10 x 18	1 — 10 x 18	1 — 10 x 18	1 — 16 x 25	1 — 16 x 25	1 — 16 x 25
Weight						
Operating (lb)	103	105	114	181	189	197
Packaged (lb)	103	115	124	186	194	202
Corner** (lb)						
Left Front	37	38	42	66	70	74
Left Rear	23	23	25	40	42	43
Right Front	24	24	26	42	43	45
Right Rear	19	20	21	33	34	35
VERTICAL						
Air Coil						
Dimensions (H x W)	—	10 x 15	10 x 15	20 x 17.25	20 x 17.25	20 x 17.25
Total Face Area (ft²)	—	1.04	1.04	2.4	2.4	2.4
Tube Size (in.)	—	3/8	3/8	3/8	3/8	3/8
Fin Spacing (fpi)	—	12	12	12	12	12
Number of Rows	—	2	3	2	3	3
Return Air Filter — 1-in. Throwaway (Qty — Size)	—	10 x 18	10 x 18	1 — 20 x 20	1 — 20 x 20	1 — 20 x 20
Weight						
Operating (lb)	—	105	114	181	189	197
Packaged (lb)	—	115	124	186	194	202

UNIT 50RHC,RVC	036	041†	042	048	060
COMPRESSOR (1 each)		Reciprocating			Scroll
FACTORY REFRIGERANT CHARGE R-22 VERTICAL (oz)	42	50	51	66	74
FACTORY REFRIGERANT CHARGE R-22 HORIZONTAL (oz)	41	—	51	66	74
PSC FAN MOTOR & BLOWER					
Fan Motor Type/Speeds	PSC/3	PSC/3	PSC/3	PSC/3	PSC/3
Fan Motor (hp) Std, High Static	1/2, 3/4	3/4, —	3/4, 3/4	3/4, 1	1, 1
Blower Wheel Size (Dia x W) Std, High Static	9 x 8, 10 x 8	9 x 8, —	9 x 8, 10 x 8	10 x 10, 12 x 10	11 x 10, 11 x 10
WATER CONNECTION SIZE FPT — Entering and Leaving (in.)	3/4	3/4	3/4	1	1
HORIZONTAL					
Air Coil					
Dimensions (H x W)	20 x 25	—	20 x 25	20 x 35	20 x 35
Total Face Area (ft²)	3.47	—	3.47	4.86	4.86
Tube Size (in.)	3/8	—	3/8	3/8	3/8
Fin Spacing (fpi)	14	—	12	12	12
Number of Rows	2	—	3	3	3
Return Air Filter — 1-in. Throwaway (Qty — Size)	1 — 20 x 28 or 2 — 20 x 14	—	1 — 20 x 28 or 2 — 20 x 14	1 — 20 x 24 or 1 — 20 x 14	1 — 20 x 24 & 1 — 20 x 14
Weight					
Operating (lb)	203	—	218	263	278
Packaged (lb)	209	—	224	270	285
Corner** (lb)					
Left Front	75	—	81	98	103
Left Rear	44	—	48	58	61
Right Front	47	—	50	60	64
Right Rear	37	—	39	47	50
VERTICAL					
Air Coil					
Dimensions (H x W)	24 x 21.25	20 x 17.25	24 x 21.25	24 x 28.25	20 x 28.25
Total Face Area (ft²)	3.62	2.4	3.62	4.71	4.71
Tube Size (in.)	3/8	3/8	3/8	3/8	3/8
Fin Spacing (fpi)	14	11	12	12	12
Number of Rows	2	4	3	3	3
Return Air Filter — 1-in. Throwaway (Qty — Size)	1 — 24 x 24	1 — 20 x 20	1 — 24 x 24	1 — 14 x 24 & 1 — 18 x 24	1 — 14 x 24 & 1 — 18 x 24
Weight					
Operating (lb)	203	207	218	263	278
Packaged (lb)	209	212	224	270	285

LEGEND

PSC — Permanent Split Capacitor

*Size 006 available in 50RHC unit only.

†Size 041 available in 50RVC unit only.

**Approximate weights for standard 50RHC units only.

NOTE: All standard units have grommet compressor mountings, and 1/2-in. and 3/4-in. electrical knockouts.

Options and accessories

ITEM	FACTORY-INSTALLED OPTION	FIELD-INSTALLED ACCESSORY
Aquazone™ Thermostats		X
Ball Valves		X
Cupronickel Heat Exchangers	X	
Deluxe D Control System	X	
E-Coated Airside Coil	X	
Filter Rack		X
Fire-Rated Hoses		X
High-Static Blower	X	
Hose Kit Assemblies		X
LONMark® Compliant Controller	X	
Loop Controller		X
Modulating Reheat	X	
PremierLink™ Controller	X	
PremierLink Accessories		X
Remote Sensors		X
Solenoid Valves		X
Sound Attenuation (Mute) Package	X	
Y Strainers		X

Factory-installed options

Cupronickel heat exchangers are available for higher corrosion protection for applications such as open tower, geothermal, etc. Consult the water quality guidelines for proper application and selection of this option.

Deluxe D control system provides the same functions as the Complete C control system while incorporating additional flexibility and functions including:

Thermostat input capabilities — Accommodate emergency shutdown mode and night setback with override (NSB) potential. Night setback from low temperature thermostat with 2-hour override is initiated by a momentary signal from the thermostat.

Compressor relay staging — Used with dual stage units (units with 2 compressors and 2 Deluxe D controls) or in master/slave applications.

Boilerless electric heat control system — Allows automatic changeover to electric heat at low loop water temperature.

Intelligent reversing valve operation — Minimizes reversing valve operation for extended life and quiet operation.

Thermostat type select (Y, O or Y, W) — Provides ability to work and select heat pump or heat/cool thermostats (Y, W).

Reversing valve signal select (O or B) — Provides selection for heat pump O/B thermostats.

Dehumidistat input — Provides fan control for dehumidification operation.

Multiple units on one thermostat/wall sensor — Provides communication for up to three heat pumps on one thermostat.

Boilerless changeover temperature — Provides selection of boilerless changeover temperature set point.

Accessory relays — Allow configuration for multiple applications including fan and compressor cycling, digital night

setback (NSB), mechanical night setback, water valve operation, and outside air damper operation.

E-Coated airside coil is available for highly corrosive environments. This is an excellent option for coastal areas, marine applications or other areas in which corrosion may be an issue.

High-static blower is available in all sizes for the 50RHC,RVC units. This option specifically increases airflow at various static pressure conditions, providing even more flexibility to Carrier's high blower performance offered by the standard models.

Modulating reheat diverts condenser water through a water-to-air coil that is placed after the evaporator coil. The modulating reheat valve automatically adjusts reheat capacity based upon leaving-air temperature and loop entering-water temperature to provide 100% reheat and neutral supply air to the space. The modulating reheat option is only available on 50RVC018-036 and 50RVC042-060.

PremierLink™ controller is compatible with the Carrier Comfort Network® (CCN) and other building automation systems (BAS). This control allows users the access and ability to change factory-defined settings, thus expanding the function of the standard unit.

Sound attenuation package (mute package) is available for applications that require especially low noise levels. With this option, a double application of sound attenuating material is applied to the internal divider, side panels, top and bottom panels. Sound attenuating material is also added to the fan housing. Spring isolation is added to the compressor mounting. The mute package in combination with standard unit noise reduction features (i.e., as mentioned previously) provide sound levels and noise reduction to the highest degree.

Options and accessories (cont)

Field-installed accessories

Aquazone™ thermostats are both attractive and multi-functional, accommodating stand-alone water source heat pump installations.

Programmable 7-day thermostat — The programmable 7-day thermostat offers 2-stage heat, 2-stage cool, auto changeover, copy command, 4 settings per day, fully electronic, 24 vac, backlit LCD, keypad lockout, no batteries required, 5-minute compressor protection, NEVERLOST™ memory, 3 security levels, and temperature display in degrees F or C.

Programmable 7-day light-activated thermostat — The programmable 7-day light-activated thermostat offers the same features as the 7-day programmable thermostat, and also includes occupied comfort settings with lights on and unoccupied energy savings with lights off.

Programmable 7-day flush-mount thermostat — The programmable 7-day flush-mounted thermostat offers same features as the 7-day programmable thermostat including locking coverplate with tamper proof screws, flush to wall mount, holiday/vacation programming, set point limiting, dual point with adjustable deadband, O or B terminal, and optional wall or duct-mounted remote sensor.

Programmable 5-day thermostat — The programmable 5-day thermostat offers 2-stage heat, 2-stage cool, auto changeover, 5-minute built-in compressor protection, locking cover, temperature display in degrees F or C, keypad lockout, backlit display, 5-1-1 programming, O or B terminal, dual set point with adjustable deadband, configurable display, self-prompting program, and 4 settings per day.

Non-programmable thermostat — The non-programmable thermostat offers 2 heat stages, 2 cool stages, auto changeover, 5-minute built in compressor protection, locking cover, temperature display in degrees F or C, keypad lockout, large display, backlit display, O or B terminal, dual set point with adjustable deadband, and a backplate with terminals.

Ball valves (brass body) used for shutoff and balancing water flow. The valves are available with memory, memory stop, and pressure temperature ports. The valves are UL-listed brass body, ball and stem type with Teflon seats and seals and are available in five sizes (1/2, 3/4, 1, 1 1/4, 1 1/2 in.).

Filter rack (2 in.) is available in place of the standard 1-in. return air filter to enhance the filtration system of the water source heat pump. The 2-in. filter rack does not include filters.

Fire-rated hoses are 2 ft long and have a fixed MPT on one end and a swivel with an adapter on the other end. Hose kits have both a supply and return hose and are stainless steel or galvanized. Five sizes are available (1/2, 3/4, 1, 1 1/4, 1 1/2 in.).

Hose kit assemblies provide all the necessary components to hook up a water-side system. Supply hose includes a ported ball valve with pressure/temperature (P/T) plug ports, flexible stainless steel hose with swivel and nipple. Return hose includes a ball valve, preset automatic balancing valve (gpm) with two P/T ports, flexible stainless steel hose with a swivel and nipple, balancing valve, and low-pressure drop water control valve.

LONMark® compliant controller contains the factory-loaded Aquazone water source heat pump application for an interoperable control solution.

Loop controller with six stages (2 stages for heating and 4 stages for heat rejection):

- Loop temperature alarms
- Two pump single loop flow monitoring with the ability to manually select the lead pump
- Loop water temperature sensor test circuit
- Functional test simulation from operator keypad
- Real timeclock, industrial noise ratings
- Loop water temperature control switch.

PremierLink™ accessories provide a fully integrated WSHP DDC system. Accessories include supply air temperature sensors (with override and/or setpoint adjustment), communicating room sensors, CO₂ sensors (for use in demand control ventilation), and linkage thermostats (to control multiple units from one thermostat).

Remote sensors are available for Aquazone flush mount thermostats and for wall (wired and wireless) or duct mounted applications.

Solenoid valves (brass body) offer 6.5 watt coil, 24 volt, 50/60 Hz, 7.5 va with slow operation for quiet system application. Three sizes are available (1/2, 3/4, 1 in.).

Y strainers (bronze body) are "Y" type strainers with a brass cap, and have a maximum operating pressure rating of 400 psi. Strainer screen made of stainless steel. Available with blow down valves. Six sizes are available (1/2, 3/4, 1, 1 1/4, 1 1/2, 2 in.).

CARRIER AQUAZONE™ THERMOSTATS

**7-DAY PROGRAMMABLE/
LIGHT-ACTIVATED PROGRAMMABLE**

**7-DAY PROGRAMMABLE
FLUSH MOUNT**

**5-DAY PROGRAMMABLE/
NON-PROGRAMMABLE**

LON WALL SENSORS

SENSOR ONLY

SENSOR WITH OVERRIDE

**SENSOR WITH SETPOINT ADJUSTMENT,
OVERRIDE AND DIGITAL LCD**

PREMIERLINK™ COMMUNICATING CONTROL

Dimensions

HORIZONTAL DIMENSIONAL DATA

50RHC006-060 UNITS

50RHC UNIT	OVERALL CABINET			WATER CONNECTIONS				ELECTRICAL KNOCKOUTS			DISCHARGE CONNECTIONS duct flange (± 0.10 in.)					RETURN CONNECTION using return air opening					
	A Width	B Depth	C Height	1 — In		2 — Out		Water Loop FPT Size	H 1/2-in. Cond.	J 1/2-in. Cond.	K 3/4-in. Cond.	L	M Supply Height	N Supply Depth	O	P	Q Return Depth	R Return Height	S	T	
				D	E	F	G		Therm	Low Voltage	Power Supply										
006-012	in. cm	19.1 48.5	34.1 86.6	11.0 27.9	9.6 24.4	0.8 2.0	1.8 4.4	0.8 2.0	1/2 1.3	8.1 20.6	5.1 13.0	2.1 5.4	0.8 1.9	8.9 22.7	6.7 17.0	5.2 13.3	1.3 3.3	16.1 41.0	9.8 25.0	1.1 2.7	0.6 1.5
018	in. cm	20.1 51.1	43.1 109.5	17.1 43.4	15.3 38.9	2.4 6.1	1.9 4.9	2.1 5.3	1/2 1.3	12.1 30.8	9.1 23.2	6.1 15.6	2.6 6.6	13.3 33.8	9.9 25.1	4.1 10.5	1.3 3.3	23.0 58.4	15.0 38.1	1.1 2.8	1.0 2.5
024-030	in. cm	20.1 51.1	43.1 109.5	17.1 43.4	15.3 38.9	2.4 6.1	1.9 4.9	2.1 5.3	3/4 1.9	12.1 30.8	9.1 23.2	6.1 15.6	2.6 6.6	13.3 33.8	9.9 25.1	4.1 10.5	1.3 3.3	23.0 58.4	15.0 38.1	1.1 2.8	1.0 2.5
036-042	in. cm	20.1 51.1	47.1 119.6	21.1 53.6	18.8 47.6	2.2 5.5	4.7 11.9	1.2 3.0	3/4 1.9	16.1 41.0	13.1 33.3	10.1 25.7	2.5 6.3	16.1 40.9	11.0 27.9	3.0 7.7	2.5 6.4	25.9 65.8	19.0 48.3	1.1 2.8	1.0 2.5
048	in. cm	24.1 61.2	54.1 137.4	21.1 53.6	19.4 49.2	5.9 14.9	4.3 11.0	2.3 5.8	3/4 2.5	16.1 41.0	13.1 33.3	10.1 25.7	3.7 4.4	16.1 46.0	13.7 34.8	4.1 10.3	1.3 3.2	35.9 91.2	19.0 48.3	1.1 2.8	1.0 2.5
060	in. cm	24.1 61.2	54.1 137.4	21.1 53.6	19.4 49.2	5.9 14.9	4.3 11.0	2.3 5.8	1 2.5	16.1 41.0	13.1 33.3	10.1 25.7	1.7 4.4	18.1 46.0	13.7 34.8	4.1 10.3	1.3 3.2	35.9 91.2	19.0 48.3	1.1 2.8	1.0 2.5

NOTES:

- Condensate is $3/4$ -in. (19.1 mm) FPT copper.
- Horizontal unit shipped with filter bracket only. This bracket should be removed for return duct connection.
- Hanger kit is factory installed.
- Verify high static option discharge connection dimensions with Carrier.

AIRFLOW CONFIGURATION

Code	Return	Discharge
S	Left	Right
E	Left	Back
Z	Right	Left
B	Right	Back

VERTICAL DIMENSIONAL DATA

Legend
 CAP=Control Access Panel
 CSP=Compressor Service Panel
 BSP=Blower Service Panel
 ASP=Alternate Service Panel

* Note: Shaded areas are recommended service areas, not required.

50RVC009-060 UNITS

50RVC UNIT	OVERALL CABINET			WATER CONNECTIONS						ELECTRICAL KNOCKOUTS			DISCHARGE CONNECTION duct flange installed (± 0.10 in.)					RETURN CONNECTION using return air opening					
	A Width	B Depth	C Height	1		2		3		Water Loop FPT Size	J 1/2-in. cond	K 1/2-in. cond	L 3/4-in. cond	M	N	O Supply Width	P Supply Depth	Q	R	S Return Depth	T Return Height	U	
				D In	E Out	F In	G Out	H Condensate	I Condensate		Low Voltage	Low Voltage	Power Supply										
009-012	in. cm	19.1 48.5	19.1 48.5	22.0 55.9	1.4 3.6	2.8 7.1	9.4 24.0	2.8 7.1	6.1 15.6	2.3 5.9	1/2 1.3	2.9 7.3	5.9 14.9	8.9 22.5	8.9 22.7	5.1 12.9	9.0 22.9	9.0 22.9	5.5 14.0	2.1 5.3	16.2 41.1	9.9 25.1	0.7 1.9
018	in. cm	21.5 54.6	21.5 54.6	39.0 99.1	1.8 4.5	3.8 9.7	15.2 38.6	3.6 9.1	8.1 20.6	2.3 5.8	1/2 1.3	4.1 10.5	7.1 18.1	10.1 25.7	6.4 16.1	3.8 9.5	14.0 35.6	14.0 35.6	5.3 13.6	2.3 5.8	18.3 46.5	20.2 51.3	0.7 1.9
024-030	in. cm	21.5 54.6	21.5 54.6	39.0 99.1	1.8 4.5	3.8 9.7	15.2 38.6	3.6 9.1	8.1 20.6	2.3 5.8	3/4 1.9	4.1 10.5	7.1 18.1	10.1 25.7	6.4 16.1	3.8 9.5	14.0 35.6	14.0 35.6	5.3 13.6	2.3 5.8	18.3 46.5	20.2 51.3	0.7 1.9
036 & 042	in. cm	21.5 54.6	21.5 54.6	44.0 111.8	2.0 5.1	3.7 9.4	16.2 41.1	2.6 6.6	10.4 26.4	2.3 5.8	3/4 1.9	4.1 10.5	7.1 18.1	10.1 25.7	6.4 16.1	3.8 9.5	14.0 35.6	14.0 35.6	5.1 13.1	2.3 5.8	22.8 57.9	24.2 61.4	0.7 1.9
041	in. cm	21.5 54.6	21.5 54.6	39.0 99.1	1.7 4.4	3.6 9.1	16.4 41.7	2.6 6.6	8.1 20.6	2.3 5.8	3/4 1.9	4.1 10.5	7.1 18.1	10.1 25.7	6.4 16.1	3.8 9.5	14.0 35.6	14.0 35.6	5.3 13.6	2.3 5.8	18.3 46.5	20.2 51.3	0.7 1.9
048-060	in. cm	24.0 61.0	32.5 82.6	46.0 116.8	1.8 4.5	5.9 14.9	16.7 42.4	2.3 5.8	10.1 25.7	2.3 5.8	1 2.5	4.1 10.5	7.1 18.1	10.1 25.7	6.9 17.4	7.3 18.4	16.0 40.6	18.0 45.7	5.1 13.1	2.3 5.8	29.3 74.4	24.2 61.4	0.7 1.9

NOTES:

- Condensate is $3/4$ in. (19.1 mm) FPT.
- Filter bracket extending from unit 2.5 in. (6.4 cm). This bracket should be removed when connecting return duct.
- Discharge flange field installed.

AIRFLOW CONFIGURATION

Code	Return	Discharge
F	Front	Top
L	Left	Top
R	Right	Top

Selection procedure (with 50RHC024 example)

I Determine the actual cooling and heating loads at the desired dry bulb and wet bulb conditions.

Assume cooling load at desired dry bulb 80 F and wet bulb 65 F conditions are as follows:

Given:

Total Cooling (TC) 22,100 Btuh
Sensible Cooling (SC) 16,500 Btuh
Entering-Air Temperature db 80 F
Entering-Air Temperature wb 65 F

II Determine the following design parameters.

Entering water temperature, water flow rate (gpm), airflow (cfm), water flow pressure drop and design wet and dry bulb temperatures. Airflow cfm should be between 300 and 450 cfm per ton. Unit water pressure drop should be kept as close as possible to each other to make water balancing easier. Enter the 50RHC024 Performance Data tables and find the proper indicated water flow and water temperature.

For example:

Entering Water Temp 90 F
Water Flow (Based upon
12 F rise in temp) 4.5 gpm
Airflow cfm 700 cfm

III Select a unit based on total cooling and total sensible cooling conditions. Unit selected should be closest to but not larger than the actual cooling load.

Enter tables at the design water flow and water temperature. Read the total and sensible cooling capacities.

NOTE: Interpolation is permissible, extrapolation is not.

For example:

Enter the 50RHC024 Performance table at design water flow and water temperature. Read Total Cooling, Sensible Cooling and Heat of Rejection capacities:

Total Cooling 23,500 Btuh
Sensible Cooling 17,800 Btuh
Heat of Rejection 30,300 Btuh

Read the Heat Capacity. If the Heat Capacity exceeds the design criteria, it is acceptable.

NOTE: It is quite normal for water source heat pumps to be selected on cooling capacity only since the heating output is usually greater than the cooling capacity.

IV Determine the correction factors associated with the variable factors of dry bulb and wet bulb using the Corrections Factor tables found in this book.

Using the following formulas to determine the correction factors of dry bulb and wet bulb:

- Corrected Total Cooling = tabulated total cooling x wet bulb correction x airflow correction.
- Corrected Sensible Cooling = tabulated sensible cooling x wet/dry bulb correction x airflow correction

V Determine entering air and airflow correction using the Corrections Factor tables found in this book.

The nominal airflow for 50RHC024 is 800 cfm. The design parameter is 700 cfm.

$$700/800 = 88\% \text{ of nominal airflow}$$

Use the 88% row in the Airflow Correction table.

The Entering Air Temperature wb is 65 F. Use the 65 F row in the Entering Air Correction table.

Using the following formulas to determine the correction factors of entering air and airflow correction:

Table	Ent Air	Airflow	Corrected
Corrected Total Cooling	= 23,500 x 0.964 x 0.987 =	22,360	
Corrected Sensible Cooling	= 17,800 x 1.076 x 0.949 =	18,176	
Corrected Heat of Rejection	= 30,300 x 0.971 x 0.985 =	28,980	

Compare the corrected capacities to the load requirements established in Step I. If the capacities are within 10% of the load requirements, the equipment is acceptable. It is better to undersize than oversize as undersizing improves humidity control, reduces sound levels and extends the life of the equipment.

VI Water temperature rise calculation and assessment.

Calculate the water temperature rise and assess the selection using the following calculation:

$$\text{Actual Temperature Rise} = \frac{\text{Correction of Heat Rejection}}{\text{gpm} \times 500}$$

For example, using the Corrected Heat of Rejection from the last step:

$$\text{Actual Temperature Rise} = \frac{28,980}{4.5 \times 500} = 12.9 \text{ F}$$

If the units selected are not within 10% of the load calculations, review what effect changing the gpm, water temperature and/or airflow will have on the corrected capacities. If the desired capacity cannot be achieved, select the next larger or smaller unit and repeat Steps I through VI.

VII ARI/ISO/ASHRAE 13256-1 Conversion

Performance standard ARI/ISO/ASHRAE 13256-1 became effective on January 1, 2000 and replaced the existing ARI Standards 320 Water-Loop Heat Pumps (WLHP), 325 Ground-Water Heat Pumps (GWHP), and 330 Ground-Loop Heat Pumps (GLHP).

The ARI/ISO Standard incorporates a consistent rating methodology for including fan and pump energy for calculating cooling capacity, heating capacity, and energy efficiency ratios (EER). This simplifies the use of rating data for heat pump performance modeling in seasonal energy analysis calculations, and allows for direct rating comparisons across applications.

a) ISO Capacity and Efficiency Equations

The following equations are used to calculate and correct cooling capacity, heating capacity, and respective EER:

$$\text{ISO Cooling Capacity} = (\text{Cooling Capacity in Btuh}) + (\text{Fan Power Correction in Watts} \times 3.412)$$

$$\text{ISO Cooling EER} = (\text{ISO Cooling Capacity in Btuh}/3.412)/(\text{Power Input in watts} - \text{fan power correction in watts} + \text{pump power correction in watts}) = \text{Watts/Watts}$$

NOTE: Do not divide ISO Cooling Capacity by 3.412 to obtain Btuh/Watts.

$$\text{ISO Heating Capacity} = (\text{Heating Capacity in Btuh}) - (\text{Fan Power Correction in Watts} \times 3.412)$$

$$\text{ISO Heating EER} = (\text{ISO Heating Capacity in Btuh}/3.412)/(\text{Power Input in watts} - \text{fan power correction in watts} + \text{pump power correction in watts}) = \text{Watts/Watts}$$

NOTE: Do not divide ISO Heating Capacity by 3.412 to obtain Btuh/Watts.

Refer to English to SI conversion table in this book.

b) Identify the design conditions corrected for air and water conditions.

$$\text{Airflow Cfm} = 700 \text{ cfm}$$

Water Flow

$$(\text{Based upon } 12 \text{ F rise in temp}) = 4.5 \text{ gpm}$$

$$\text{External Static Pressure} = 0.4 \text{ in. wg}$$

$$\text{Water Pressure Drop} = 8.1 \text{ ft of head}$$

$$\text{Power input} = 2,010 \text{ watts}$$

$$\text{Cooling Capacity} = 22,360 \text{ Btuh}$$

c) Perform Fan Power Correction Adjustment

Use the following formula to calculate Fan Power Correction:

Fan Power

$$\begin{aligned}\text{Correction} &= (\text{Cfm} \times 0.472) \times (\text{External Static Pressure} \times 249)/300 = \text{Watts} \\ &= (700 \times 0.472) \times (0.4 \times 249)/300 \\ &= 110 \text{ Watts}\end{aligned}$$

d) Perform Pump Power Correction Adjustment

Use the following formula to calculate Pump Power Correction:

Pump Power

$$\begin{aligned}\text{Correction} &= (\text{Gpm} \times 0.0631) \times (\text{Pressure Drop} \times 2,990)/300 \\ &= \text{Watts} \\ &= (4.5 \times 0.0631) \times (8.1 \times 2,990)/300 \\ &= 23 \text{ Watts}\end{aligned}$$

e) Perform capacity and EER calculations

Use the following formula to calculate capacity and EER:

ISO Cooling

$$\begin{aligned}\text{Capacity} &= (\text{Cooling Capacity}) + (\text{Fan Power Correction} \times 3.412) \\ &= 22,360 + (110 \times 3.412) \\ &= 22,735 \text{ Btuh}\end{aligned}$$

f) Perform Corrections by using the ISO Equations

$$\begin{aligned}\text{ISO EER} &= (\text{ISO Cooling Capacity}/3.412)/(\text{Power Input} - \text{Fan Power Correction} + \text{Pump Power Correction}) \\ &= \text{Watts/Watts}\end{aligned}$$

NOTE: Do not divide ISO Cooling Capacity by 3.412 to obtain Btuh/Watts.

$$\begin{aligned}&= (22,735/3.412)/(2,010 - 110 + 23) \\ &= 3.47 \text{ Watts/Watt} \\ &= 11.82 \text{ Btuh/Watt}\end{aligned}$$

Performance data

50RHC006 — 220 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING				HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW	THA
60	0.9	0.7	1.7	7.6	5.1	0.49	9.3	7.5	0.58	5.5
	1.1	1.2	2.9	7.8	5.1	0.47	9.4	7.7	0.59	5.7
	1.7	2.0	4.5	8.0	5.2	0.44	9.5	8.1	0.60	6.0
70*	0.9	0.7	1.6	7.1	5.0	0.54	9.0	8.3	0.61	6.2
	1.1	1.2	2.7	7.4	5.0	0.52	9.2	8.6	0.62	6.5
	1.7	1.9	4.4	7.6	5.1	0.49	9.3	8.9	0.63	6.8
80	0.9	0.7	1.6	6.6	4.8	0.59	8.6	9.0	0.63	6.9
	1.1	1.2	2.7	6.9	4.9	0.57	8.8	9.3	0.64	7.1
	1.7	1.8	4.3	7.2	5.0	0.54	9.0	9.6	0.65	7.4
85*	0.9	0.7	1.5	6.3	4.7	0.60	8.3	9.4	0.64	7.2
	1.1	1.1	2.6	6.6	4.8	0.59	8.6	9.6	0.65	7.4
	1.7	1.8	4.2	6.9	4.9	0.56	8.8	10.0	0.66	7.7
90	0.9	0.7	1.5	5.9	4.6	0.62	8.1	9.7	0.65	7.5
	1.1	1.1	2.6	6.3	4.7	0.61	8.3	10.0	0.66	7.7
	1.7	1.8	4.1	6.6	4.8	0.59	8.6	10.3	0.68	8.0
95	0.9	0.6	1.5	5.6	4.5	0.63	7.7	Operation Not Recommended		
	1.1	1.1	2.6	5.9	4.6	0.62	8.0			
	1.7	1.8	4.1	6.3	4.7	0.60	8.3			

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btuh.

50RHC,RVC009 — 325 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING				HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW	THA
60	1.1	2.4	5.6	9.3	7.0	0.58	11.3	9.6	0.70	7.2
	1.7	3.1	7.2	9.6	7.1	0.54	11.5	10.0	0.72	7.6
	2.3	4.0	9.3	9.7	7.2	0.53	11.5	10.2	0.73	7.8
70*	1.1	2.3	5.4	8.9	6.8	0.63	11.1	10.5	0.73	8.0
	1.7	3.0	6.9	9.2	7.0	0.59	11.2	10.9	0.74	8.4
	2.3	3.9	9.0	9.4	7.0	0.57	11.3	11.1	0.75	8.5
80	1.1	2.3	5.2	8.4	6.5	0.69	10.8	11.3	0.75	8.7
	1.7	2.9	6.7	8.8	6.7	0.65	11.0	11.7	0.77	9.1
	2.3	3.8	8.8	8.9	6.8	0.63	11.1	11.9	0.77	9.3
85*	1.1	2.2	5.1	8.2	6.4	0.72	10.6	11.6	0.76	9.0
	1.7	2.9	6.7	8.5	5.5	0.58	10.8	12.2	0.78	9.5
	2.3	3.7	8.6	8.7	6.7	0.66	10.9	12.4	0.79	9.8
90	1.1	2.2	5.1	7.9	6.2	0.75	10.5	12.1	0.78	9.4
	1.7	2.8	6.6	8.3	6.4	0.71	10.7	12.7	0.79	10.0
	2.3	3.7	8.5	8.4	6.5	0.69	10.8	13.0	0.81	10.3
95	1.1	2.2	5.0	7.6	6.0	0.79	10.3	Operation Not Recommended		
	1.7	2.8	6.5	8.0	6.3	0.74	10.5			
	2.3	3.6	8.4	8.1	6.4	0.72	10.6			

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btuh.

Performance data (cont)

50RHC,RVC012 — 400 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING				HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW	THA
60	1.5	2.3	5.3	12.7	9.0	0.82	15.5	13.0	1.00	9.5
	2.3	4.5	10.3	13.1	9.2	0.77	15.7	13.6	1.02	10.1
	3.0	6.4	14.9	13.2	9.2	0.74	15.8	13.9	1.03	10.4
70*	1.5	2.2	5.1	12.1	8.7	0.90	15.2	14.4	1.05	10.8
	2.3	4.3	9.9	12.6	8.9	0.84	15.5	15.0	1.07	11.4
	3.0	6.2	14.3	12.8	9.0	0.82	15.6	15.3	1.08	11.7
80	1.5	2.1	4.9	11.4	8.3	0.98	14.7	15.6	1.09	11.9
	2.3	4.2	9.7	11.9	8.6	0.92	15.1	16.3	1.11	12.5
	3.0	6.0	13.9	12.1	8.7	0.90	15.2	16.6	1.12	12.7
85*	1.5	2.1	4.9	11.0	8.1	1.02	14.4	16.2	1.11	12.4
	2.3	4.1	9.5	11.5	8.3	0.96	14.8	16.8	1.13	13.0
	3.0	6.0	13.8	11.8	8.5	0.94	15.0	17.1	1.14	13.2
90	1.5	2.1	4.8	10.5	7.8	1.07	14.1	16.7	1.13	12.9
	2.3	4.1	9.4	11.1	8.1	1.01	14.5	17.3	1.14	13.4
	3.0	5.9	13.6	11.4	8.3	0.98	14.7	17.6	1.15	13.7
95	1.5	2.1	4.8	10.0	7.6	1.11	13.8	Operation Not Recommended		
	2.3	4.0	9.3	10.6	7.9	1.05	14.2			
	3.0	5.8	13.4	10.9	8.0	1.03	14.4			

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btu/h.

50RHC,RVC018 — 600 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING			HEATING			
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW	THA
60	2.3	2.1	4.8	20.2	14.8	1.37	24.8	19.9	1.54	14.6
	3.4	3.0	7.0	20.9	15.1	1.28	25.3	20.7	1.57	15.4
	4.5	4.3	9.8	21.3	15.2	1.24	25.6	21.1	1.58	15.7
70*	2.3	2.0	4.6	19.3	14.4	1.48	24.4	21.6	1.60	16.1
	3.4	2.9	6.7	20.0	14.7	1.39	24.7	22.4	1.63	16.8
	4.5	4.1	9.5	20.3	14.9	1.36	24.9	22.7	1.64	17.1
80	2.3	1.9	4.5	18.3	13.8	1.58	23.7	23.1	1.65	17.4
	3.4	2.8	6.5	19.1	14.3	1.50	24.2	23.8	1.68	18.1
	4.5	4.0	9.2	19.4	14.4	1.47	24.4	24.1	1.69	18.3
85*	2.3	1.9	4.4	17.6	13.4	1.63	23.1	23.7	1.68	18.0
	3.4	2.8	6.4	18.6	14.0	1.56	23.9	24.4	1.71	18.6
	4.5	3.9	9.1	18.9	14.2	1.52	24.1	24.7	1.72	18.8
90	2.3	1.9	4.4	16.7	12.9	1.67	22.4	24.3	1.70	18.5
	3.4	2.7	6.3	17.9	13.6	1.61	23.4	24.9	1.73	19.0
	4.5	3.9	9.0	18.3	13.8	1.58	23.7	25.3	1.74	19.4
95	2.3	1.9	4.3	15.7	12.3	1.72	21.5	Operation Not Recommended		
	3.4	2.7	6.3	17.1	13.1	1.65	22.7			
	4.5	3.8	8.9	17.6	13.4	1.63	23.2			

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btuh.

Performance data (cont)

50RHC,RVC024 — 800 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING			HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	THA
60	3.0	2.0	4.6	25.5	19.1	1.71	31.3	26.3	1.74
	4.5	3.8	8.9	25.8	19.2	1.62	31.4	27.4	1.78
	6.0	6.4	14.9	26.0	19.3	1.58	31.4	28.0	1.80
70*	3.0	1.9	4.4	24.9	18.7	1.85	31.2	28.6	1.83
	4.5	3.7	8.5	25.3	19.0	1.76	31.3	29.7	1.87
	6.0	6.2	14.3	25.5	19.1	1.71	31.3	30.1	1.89
80	3.0	1.9	4.3	23.9	18.0	1.97	30.6	30.5	1.90
	4.5	3.6	8.3	24.6	18.5	1.89	31.0	31.3	1.94
	6.0	6.0	13.9	24.9	18.7	1.84	31.2	31.6	1.95
85*	3.0	1.8	4.2	23.2	17.6	2.03	30.2	31.2	1.93
	4.5	3.6	8.2	24.1	18.2	1.95	30.8	31.9	1.97
	6.0	6.0	13.8	24.5	18.4	1.91	31.0	32.1	1.98
90	3.0	1.8	4.2	22.4	17.2	2.08	29.5	31.8	1.96
	4.5	3.5	8.1	23.5	17.8	2.01	30.3	32.3	1.99
	6.0	5.9	13.6	23.9	18.1	1.97	30.6	32.4	2.00
95	3.0	1.8	4.1	21.5	16.6	2.13	28.7	Operation Not Recommended	
	4.5	3.5	8.0	22.7	17.3	2.07	29.8		
	6.0	5.8	13.4	23.2	17.6	2.03	30.2		

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btu/h.

50RHC,RVC030 — 1000 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING			HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW
60	3.8	1.6	3.6	28.8	21.3	2.00	35.7	31.2	2.22
	5.6	2.8	6.5	29.2	21.5	1.91	35.7	32.1	2.24
	7.5	4.4	10.1	29.4	21.7	1.87	35.7	32.6	2.25
70*	3.8	1.5	3.5	28.1	21.0	2.17	35.5	33.3	2.26
	5.6	2.7	6.2	28.7	21.2	2.06	35.7	34.1	2.28
	7.5	4.2	9.7	28.9	21.3	2.01	35.7	34.6	2.29
80	3.8	1.5	3.4	26.9	20.4	2.34	34.9	35.0	2.30
	5.6	2.6	6.1	27.7	20.8	2.23	35.4	35.8	2.33
	7.5	4.1	9.4	28.1	20.9	2.18	35.5	36.2	2.34
85*	3.8	1.4	3.3	26.2	20.1	2.43	34.5	35.8	2.33
	5.6	2.6	6.0	27.1	20.5	2.32	35.0	36.6	2.36
	7.5	4.0	9.3	27.5	20.7	2.27	35.3	36.9	2.37
90	3.8	1.4	3.3	25.4	19.7	2.50	33.9	36.6	2.36
	5.6	2.6	5.9	26.4	20.1	2.41	34.6	37.2	2.38
	7.5	4.0	9.2	26.8	20.4	2.35	34.9	37.5	2.40
95	3.8	1.4	3.2	24.5	19.2	2.57	33.3	Operation Not Recommended	
	5.6	2.5	5.8	25.6	19.7	2.49	34.1		
	7.5	3.9	9.1	26.1	20.0	2.44	34.4		

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btuh.

Performance data (cont)

50RHC,RVC036 — 1200 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING			HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW
60	4.5	1.8	4.1	38.2	26.8	2.74	47.6	39.0	2.94
	6.8	3.2	7.4	39.0	26.9	2.58	47.8	41.4	3.03
	9.0	5.1	11.8	39.3	27.1	2.50	47.8	42.6	3.07
70*	4.5	1.7	3.9	36.6	26.3	2.95	46.6	43.9	3.12
	6.8	3.1	7.2	37.8	26.7	2.80	47.3	46.2	3.21
	9.0	4.9	11.3	38.3	26.8	2.72	47.6	47.2	3.25
80	4.5	1.7	3.8	34.4	25.6	3.15	45.1	47.9	3.28
	6.8	3.0	7.0	35.9	26.2	3.01	46.2	49.7	3.36
	9.0	4.8	11.0	36.7	26.4	2.94	46.7	50.5	3.40
85*	4.5	1.6	3.8	33.1	25.0	3.24	44.1	49.5	3.35
	6.8	3.0	6.9	34.8	25.8	3.11	45.4	50.9	3.42
	9.0	4.7	10.9	35.6	26.0	3.05	46.0	51.5	3.45
90	4.5	1.6	3.7	31.6	24.3	3.34	43.0	50.8	3.41
	6.8	2.9	6.8	33.5	25.2	3.21	44.5	51.8	3.47
	9.0	4.6	10.7	34.4	25.6	3.15	45.1	52.1	3.50
95	4.5	1.6	3.7	30.1	23.5	3.43	41.8	Operation Not Recommended	
	6.8	2.9	6.7	32.0	24.6	3.31	43.3		
	9.0	4.6	10.6	33.0	25.0	3.25	44.1		

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btu/h.

50RVC041 — 1325 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING				HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW	THA
60	5.3	1.0	2.2	40.0	29.0	2.78	49.4	43.1	3.21	32.2
	7.9	2.2	5.1	40.5	29.0	2.67	49.6	44.7	3.28	33.5
	10.5	4.0	9.3	40.9	29.0	2.62	49.8	45.5	3.32	34.1
70*	5.3	0.9	2.1	39.1	29.0	3.00	49.4	46.6	3.37	35.1
	7.9	2.1	5.0	39.7	29.0	2.86	49.4	48.1	3.43	36.3
	10.5	3.9	8.9	39.9	29.0	2.79	49.4	48.8	3.46	36.9
80	5.3	0.9	2.1	37.9	28.4	3.24	49.0	49.6	3.50	37.6
	7.9	2.1	4.8	38.8	28.9	3.09	49.3	50.8	3.56	38.7
	10.5	3.8	8.7	39.1	29.0	3.01	49.4	51.4	3.58	39.2
85*	5.3	0.9	2.0	37.0	27.8	3.36	48.5	50.9	3.56	38.7
	7.9	2.1	4.8	38.1	28.5	3.21	49.1	52.0	3.61	39.7
	10.5	3.7	8.6	38.5	28.8	3.13	49.2	52.6	3.64	40.1
90	5.3	0.9	2.0	35.9	27.1	3.48	47.7	52.0	3.61	39.7
	7.9	2.0	4.7	37.3	27.9	3.33	48.6	53.0	3.66	40.5
	10.5	3.7	8.5	37.8	28.3	3.26	48.9	53.5	3.68	40.9
95	5.3	0.9	2.0	34.4	26.3	3.58	46.7	Operation Not Recommended		
	7.9	2.0	4.6	36.2	27.3	3.45	47.9			
	10.5	3.6	8.4	36.9	27.7	3.38	48.4			

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btuh.

Performance data (cont)

50RHC,RVC042 — 1350 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING			HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW
60	5.3	1.0	2.4	43.2	31.0	3.03	53.5	46.8	3.47
	8.0	2.7	6.2	43.8	31.0	2.89	53.6	48.9	3.58
	11.0	5.5	12.7	44.2	31.0	2.84	53.9	50.0	3.63
70*	5.3	1.0	2.3	42.3	30.8	3.29	53.5	51.2	3.69
	8.0	2.6	6.0	42.9	30.9	3.11	53.5	53.3	3.79
	11.0	5.3	12.2	43.2	31.0	3.02	53.5	54.4	3.83
80	5.3	1.0	2.2	40.8	30.2	3.58	53.0	55.1	3.87
	8.0	2.5	5.8	41.9	30.7	3.38	53.4	57.0	3.95
	11.0	5.2	11.9	42.3	30.8	3.28	53.5	58.0	3.98
85*	5.3	1.0	2.2	39.6	29.7	3.72	52.3	56.9	3.94
	8.0	2.5	5.8	41.1	30.4	3.53	53.1	58.6	4.01
	11.0	5.1	11.8	41.6	30.6	3.43	53.3	59.5	4.04
90	5.3	0.9	2.2	38.2	29.0	3.85	51.3	58.4	4.00
	8.0	2.5	5.7	40.0	29.9	3.67	52.6	60.1	4.06
	11.0	5.0	11.6	40.8	30.2	3.58	53.0	60.8	4.08
95	5.3	0.9	2.2	36.4	28.0	3.96	49.9	Operation Not Recommended	
	8.0	2.4	5.6	38.7	29.2	3.81	51.7		
	11.0	5.0	11.5	39.6	29.7	3.72	52.3		

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btu/h.

50RHC,RVC048 — 1600 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING			HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	kW
60	6.0	1.2	2.9	50.2	35.8	3.67	62.7	52.1	3.70
	9.0	2.9	6.7	50.9	36.1	3.48	62.8	54.6	3.79
	12.0	5.3	12.3	51.2	36.3	3.39	62.8	56.0	3.84
70*	6.0	1.2	2.8	48.8	35.4	3.96	62.3	57.4	3.89
	9.0	2.8	6.5	49.8	35.6	3.76	62.6	59.9	3.98
	12.0	5.1	11.8	50.2	35.8	3.66	62.7	61.1	4.02
80	6.0	1.2	2.7	46.6	34.8	4.25	61.1	62.0	4.05
	9.0	2.7	6.3	48.2	35.3	4.05	62.0	64.2	4.13
	12.0	5.0	11.5	48.8	35.4	3.95	62.3	65.2	4.16
85*	6.0	1.2	2.7	45.2	34.3	4.38	60.2	64.0	4.12
	9.0	2.7	6.2	47.1	34.9	4.20	61.4	66.0	4.18
	12.0	4.9	11.3	47.9	35.2	4.10	61.8	66.9	4.21
90	6.0	1.1	2.6	43.5	33.5	4.51	58.9	65.7	4.18
	9.0	2.7	6.1	45.7	34.5	4.34	60.5	67.6	4.23
	12.0	4.8	11.2	46.7	34.8	4.24	61.1	68.4	4.25
95	6.0	1.1	2.6	41.6	32.6	4.62	57.4	Operation Not Recommended	
	9.0	2.6	6.1	44.1	33.8	4.47	59.3		
	12.0	4.8	11.0	45.2	34.3	4.38	60.2		

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

*ARI 320 points (bold printing) are shown for comparison purposes only. These are not certified data points.

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btuh.

Performance data (cont)

50RHC,RVC060 — 2000 CFM NOMINAL AIRFLOW

EWT (F)	GPM	PRESSURE DROP		COOLING			HEATING		
		PSI	Ft Wg	TC	TSC	kW	THR	TC	THA
60	7.5	4.4	10.1	60.5	43.1	4.36	75.4	63.0	5.02
	11.3	7.6	17.5	61.2	43.2	4.17	75.5	67.4	5.17
	15.0	11.5	26.7	61.6	43.3	4.08	75.5	69.8	5.25
70*	7.5	4.2	9.7	59.0	42.9	4.68	74.9	72.6	5.34
	11.3	7.3	16.9	60.1	43.1	4.46	75.3	77.0	5.49
	15.0	11.1	25.6	60.5	43.2	4.36	75.4	79.2	5.56
80	7.5	4.1	9.4	56.8	42.4	5.04	74.0	80.6	5.61
	11.3	7.1	16.4	58.3	42.8	4.80	74.7	84.4	5.74
	15.0	10.8	25.0	59.0	42.9	4.68	74.9	86.2	5.80
85*	7.5	4.0	9.3	55.4	42.0	5.23	73.3	83.9	5.73
	11.3	7.0	16.2	57.2	42.5	4.98	74.1	87.3	5.84
	15.0	10.7	24.6	57.9	42.7	4.86	74.5	88.7	5.89
90	7.5	4.0	9.2	53.9	41.4	5.44	72.4	86.8	5.82
	11.3	6.9	16.0	55.8	42.1	5.17	73.5	89.5	5.91
	15.0	10.5	24.3	56.7	42.4	5.04	73.9	90.6	5.95
95	7.5	3.9	9.1	52.1	40.5	5.66	71.4	Operation Not Recommended	
	11.3	6.8	15.8	54.3	41.6	5.38	72.7		
	15.0	10.4	24.0	55.3	42.0	5.24	73.2		

LEGEND

EWT — Entering Water Temperature (F)
GPM — Gallons Per Minute
TC — Total Capacity (MBtuh)
THA — Total Heat of Absorption (MBtuh)
THR — Total Heat of Rejection (MBtuh)
TSC — Total Sensible Capacity (MBtuh)

NOTES:

1. Interpolation is permissible, extrapolation is not.
2. All entering air conditions are 80 F db (dry bulb) and 67 F wb (wet bulb) in cooling and 70 F db in heating.
3. All performance data is based upon the lower voltage of dual voltage rated units.
4. See Performance Correction tables for operating conditions other than those listed above.
5. Data table does not reflect ISO pump or fan corrections.
6. Performance capacities shown in thousands of Btu/h.

AIRFLOW CORRECTION TABLE

AIRFLOW		HEATING			COOLING			
CFM Per Ton of Cooling	% of Nominal	Heating Cap	Power	Heat of Ext	Total Cap	Sens Cap	kW	THR
300	75%	0.966	1.051	0.939	0.970	0.899	0.953	0.967
325	81%	0.976	1.037	0.956	0.979	0.924	0.966	0.976
350	88%	0.985	1.023	0.973	0.987	0.949	0.979	0.985
375	94%	0.993	1.012	0.987	0.994	0.975	0.990	0.993
400	100%	1.000						
425	106%	1.006	0.991	1.010	1.005	1.026	1.008	1.005
450	113%	1.011	0.982	1.020	1.009	1.051	1.016	1.010
475	119%	1.014	0.975	1.027	1.011	1.077	1.022	1.013
500	125%	1.017	0.968	1.033	1.013	1.102	1.027	1.016

LEGEND

EXT — Extraction
 THR — Total Heat of Rejection (MBtuh)

NOTE: 400 cfm is nominal airflow.

ENTERING AIR CORRECTION TABLES

HEATING CORRECTIONS			
Ent Air DB (F)	Heating Capacity	Power	Heat of Ext
45	1.044	0.803	1.123
50	1.042	0.847	1.107
55	1.037	0.888	1.086
60	1.028	0.927	1.062
65	1.016	0.965	1.033
68	1.007	0.986	1.014
70	1.000	1.000	1.000
75	0.980	1.033	0.963
80	0.957	1.065	0.921

COOLING CORRECTIONS

Ent Air WB (F)	Total Cooling Cap	Sens Cooling Cap Multiplier - Entering DB (F)							kW	THR
		70	75	80	80.6	85	90	95		
60	0.858	0.812	1.062	1.217	1.229	*	*	*	0.982	0.886
65	0.964	0.622	0.876	1.076	1.098	1.240	*	*	0.996	0.971
66.2	0.986	0.577	0.822	1.032	1.055	1.214	*	*	0.999	0.989
67	1.000	0.547	0.785	1.000	1.024	1.192	1.362	1.508	1.000	1.000
70	1.049	—	0.630	0.864	0.891	1.086	1.236	1.399	1.004	1.039
75	1.113	—	—	0.580	0.609	0.814	1.027	1.218	1.007	1.089

LEGEND

DB — Dry Bulb
 THR — Total Heat of Rejection
 WB — Wet Bulb

*Sensible capacity equals total capacity.

NOTE: ARI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling — 80.6 F db/66.2 F wb and Heating — 68 F db/59 F wb.

CONVERSION TABLE — ENGLISH TO SI

MEASUREMENT	CONVERSION
Airflow	Airflow (lps) = CFM x 0.472
Water Flow	Water flow (lps) = Gpm x 0.0631
External Static Pressure	ESP (Pascal) = ESP (in. wg) x 249
Water Pressure Drop	PD (Pascal) = PD (ft of head) x 2,990

LEGEND

ESP — External Static Pressure
 PD — Pressure Drop

Performance data (cont)

50RHC,RVC BLOWER PERFORMANCE

50RHC,RVC	RATED CFM	MIN CFM	FAN SPEED	EXTERNAL STATIC PRESSURE (in. wg)																	
				0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.70	0.80	0.90	1.0		
006*	220	150	HI MED LO			310 260 210	300 250 200	290 240 190	280 230 180	270 210 160	250 200 150	230 190	210	180							
009	325	225	HI MED LO			410 390 340	400 370 330	380 360 322	360 340 310	350 320 300	330 310 280	320 290 260	300 280 250	280 260 220							
012	400	300	HI MED LO			470 420 360	460 410 360	450 400 350	440 390 340	430 380 320	420 370 320	400 360 310	390 350 300	380 340 290	320						
018	600	450	HI MED LO	700 620	690 600	760 680 590	740 670 580	720 660 570	710 650 560	700 630 540	680 620 540	650 600 520	600 560 490	550 520 460	460 430						
018 High Static	600	450	HI MED LO	750 670	740 660	720 640	710 630	700 620	690 610	760 600	750 590	730 660	710 650	690 630	650 600	530 490	430 390				
024	800	600	HI MED LO	1010 820	1000 810	990 800	980 790	960 780	940 770	920 760	900 750	1000 880 730	970 860 720	930 830 700	870 770 650	770 700 600	690 600				
024 High Static	800	600	HI MED LO					1030	1010	980	960		1040 930	1010 900	1030 970 870	950 890 790	840 750 710	700 620			
030	1000	750	HI MED LO	1250 1120	1230 1100	1200 1070	1180 1050	1150 1030	1120 1010	1160 1090	1130 1070	1100 1040	1070 1010	1030 970 870	950 890 790	840 750 710					
030 High Static	1000	750	HI MED LO	1050	1040	1030	1010	990	980	960	940	1130 910	1080 880	1160 1030	1040 930	920 820	800 750	750			
036	1200	900	HI MED LO	1520 1150	1500 1150	1480 1140	1460 1140	1430 1130	1400 1130	1370 1120	1350 1110	1320 1100	1270 1070	1210 1040	1110 940	960	840				
036 High Static	1200	900	HI MED LO	1360 1030	1350 1020	1340 1010	1330 1010	1320 1000	1310 1000	1300 990	1280 980	1530 1260	1500 1250	1470 1230	1400 1150	1290 1070	1170 910	960			
041†	1325	950	HI MED LO	1380 1230	1370 1220	1350 1200	1330 1190	1300 1180	1260 1150	1220 1120	1170 1080	1120 1030	1080 990	1040 950	890						
042	1350	1050	HI MED LO	1640 1490	1610 1470	1580 1440	1550 1420	1520 1390	1490 1370	1450 1340	1410 1310	1370 1270	1330 1230	1290 1190	1190 1120	1100 1010					
042 High Static	1350	1050	HI MED LO	1390	1380	1370	1360	1350	1340	1550 1340	1540 1320	1520 1310	1500 1300	1470 1280	1460 1280	1450 1250	1380 1180	1240 1080	1080		
048	1600	1200	HI MED LO	1940 1770	1920 1750	1900 1730	1880 1710	1980 1690	1950 1670	1910 1650	1860 1610	1770 1570	1740 1510	1710 1450	1740 1330	1680 1450	1490 1330	1280			
048 High Static	1600	1200	HI MED LO	2050 1850	2050 1850	2040 1840	2020 1830	1990 1810	1970 1800	1940 1780	1920 1760	2060 1730	2040 1700	2010 1670	1960 1600	1880 1510	1790 1380	1790 1380	1660 1220	1510	
060	2000	1500	HI MED LO	2240 2050	2240 2050	2230 2040	2220 2020	2200 1990	2160 1970	2120 1940	2090 1920	2060 1890	2040 1880	2010 1870	1960 1850	1880 1830	1790 1780	1660 1670	1510		
060 High Static	2000	1500	HI MED LO	2400 2160	2400 2160	2390 2150	2380 2150	2370 2140	2360 2110	2340 2080	2320 2060	2300 2040	2270 2030	2240 2020	2200 1980	2130 1930	2060 1880	1980 1800	1890 1750	1790 1620	1530

*Size 006 available in 50RHC unit only.

†Size 041 available in 50RVC unit only.

NOTES:

1. Gray areas denote ESP (external static pressure) where operation is not recommended.
2. Units factory shipped on medium speed. Other speeds require field selection.
3. All airflow is rated at lowest voltage if unit is dual voltage rated, i.e., 208 v for 208-230 v units.

4. All units ARI/ISO/ASHRAE 13256-1 rated on high fan speed.

5. Only two-speed fan (HI and MED) available on 575-v units.

6. For wet coil performance first calculate the face velocity of the air coil (Face Velocity [fpm] = Airflow [cfm]/Face Area [sq ft]). Then for velocities of 200 fpm increase the static pressure by 0.03 in. wg, 300 fpm by 0.08 in. wg, 400 fpm by 0.12 in. wg, and 500 fpm by 0.16 in. wg.

7. Airflow in cfm with dry coil and clean air filter.

50RVC BLOWER PERFORMANCE WITH THE MODULATING REHEAT OPTION

REHEAT ESP LOSS			
Coil Face Velocity (fpm)	018, 024, 030 (in. wg)	036, 042 (in. wg)	048, 060 (in. wg)
200	0.060	0.049	0.038
250	0.070	0.055	0.040
300	0.090	0.068	0.045
350	0.124	0.091	0.059
400	0.164	0.129	0.094
450	0.252	0.221	0.189
500	0.380	0.350	0.320

NOTE: For 50RVC units with reheat coil applications, calculate coil face velocity of the entering air. From the table above find the external static pressure loss for the reheat application. *This loss includes the wet coil loss.*

Example:

Reheat coil loss can be determined from the above table. Coil velocity (fpm) = Airflow (cfm)/Face Area (sq ft).

1. 50RVC036 has a face area of 3.63 sq ft (see Physical Data table).
2. At 1,100 cfm, coil velocity (fpm) = $1,100/3.63 = 303$ fpm.
3. From above table, it will be necessary to subtract 0.068 from the blower performance external static pressure.
4. On medium speed, the 50RVC036 (without reheat — see blower table) can deliver 1,100 cfm at 0.40 in. wg; with the reheat coil, it now delivers 1,100 cfm at 0.33 in. wg (includes adder for wet coil).
5. To compensate, high speed fan should be used to overcome pressure drop of reheat coil.

50RVC BLOWER PERFORMANCE WITH WET COIL

COIL FACE VELOCITY (fpm)	WET COIL REDUCTION (in. wg)
200	0.030
250	0.055
300	0.080
350	0.100
400	0.120
450	0.140
500	0.160

Example:

Wet coil loss can be determined from the above table. Coil velocity (fpm) = Airflow (cfm)/Face Area (sq ft).

1. 50RVC036 has a face area of 3.63 sq ft (see Physical Data table).
2. At 1,100 cfm, coil velocity (fpm) = $1,100/3.63 = 303$ fpm.
3. From above table, it will be necessary to subtract 0.080 from the blower performance external static pressure.
4. On medium speed, the 50RVC036 (without dry coil — see blower table) can deliver 1,100 cfm at 0.40 in. wg; with a wet coil, it now delivers 1,100 cfm at 0.32 in. wg.
5. If unit has reheat option, reheat coil pressure drop already includes adjustment for wet coil (Reheat ESP Loss table).

Performance data (cont)

OCTAVE BAND SOUND POWER LEVEL (dB re 1 pW) STANDARD UNIT

50RHC,RVC	MODE	SPEED	DUCTED DISCHARGE OCTAVE BAND FREQUENCY (Hz)							FREE INLET COMBINED WITH CASING RADIATED OCTAVE BAND FREQUENCY (Hz)						
			125	250	500	1000	2000	4000	8000	125	250	500	1000	2000	4000	8000
006*	FAN ONLY	LOW	68.0	61.0	59.0	61.0	55.0	52.0	48.0	61.0	58.0	57.0	54.0	46.0	40.0	33.0
		HIGH	65.0	64.0	57.0	59.0	54.0	51.0	49.0	61.0	61.0	58.0	54.0	47.0	41.0	36.0
	COOLING	LOW	64.0	59.0	58.0	59.0	50.0	51.0	49.0	62.0	58.0	56.0	52.0	44.0	42.0	39.0
006*		HIGH	66.0	62.0	57.0	58.0	54.0	50.0	47.0	63.0	60.0	58.0	55.0	51.0	43.0	39.0
	HEATING	LOW	63.0	59.0	60.0	59.0	54.0	46.0	47.0	61.0	58.0	58.0	52.0	48.0	37.0	37.0
		HIGH	65.0	61.0	56.0	56.0	48.0	47.0	47.0	62.0	59.0	57.0	53.0	45.0	40.0	39.0
009	FAN ONLY	LOW	68.0	60.0	57.0	59.0	54.0	51.0	49.0	61.0	57.0	55.0	52.0	45.0	39.0	34.0
		HIGH	67.0	63.0	56.0	58.0	54.0	51.0	49.0	63.0	60.0	57.0	53.0	47.0	41.0	36.0
	COOLING	LOW	65.0	60.0	57.0	59.0	54.0	51.0	49.0	63.0	59.0	55.0	52.0	48.0	42.0	39.0
009		HIGH	67.0	62.0	56.0	58.0	54.0	51.0	48.0	64.0	60.0	57.0	55.0	51.0	44.0	40.0
	HEATING	LOW	65.0	60.0	58.0	58.0	53.0	47.0	47.0	63.0	59.0	56.0	51.0	47.0	38.0	37.0
		HIGH	67.0	63.0	56.0	57.0	52.0	48.0	48.0	64.0	61.0	57.0	54.0	49.0	41.0	40.0
012	FAN ONLY	LOW	68.0	59.0	55.0	57.0	53.0	50.0	50.0	61.0	56.0	53.0	50.0	44.0	38.0	35.0
		HIGH	68.0	62.0	55.0	58.0	54.0	52.0	50.0	64.0	59.0	56.0	53.0	47.0	42.0	37.0
	COOLING	LOW	66.0	62.0	57.0	59.0	54.0	52.0	50.0	64.0	61.0	55.0	52.0	48.0	43.0	40.0
012		HIGH	68.0	64.0	56.0	58.0	54.0	52.0	49.0	65.0	62.0	57.0	55.0	51.0	45.0	41.0
	HEATING	LOW	67.0	61.0	56.0	58.0	51.0	48.0	47.0	65.0	60.0	54.0	51.0	45.0	39.0	37.0
		HIGH	69.0	65.0	56.0	58.0	53.0	50.0	49.0	66.0	63.0	57.0	55.0	50.0	43.0	41.0
018	FAN ONLY	LOW	62.0	57.0	58.0	55.0	53.0	51.0	45.0	61.0	54.0	51.0	48.0	43.0	38.0	37.0
		HIGH	69.0	64.0	63.0	58.0	52.0	57.0	52.0	66.0	59.0	56.0	53.0	49.0	44.0	38.0
	COOLING	LOW	67.0	57.0	57.0	55.0	52.0	50.0	44.0	66.0	64.0	54.0	53.0	48.0	44.0	41.0
018		HIGH	72.0	64.0	63.0	61.0	59.0	58.0	44.0	66.0	64.0	54.0	53.0	48.0	44.0	43.0
	HEATING	LOW	67.0	57.0	57.0	55.0	52.0	50.0	44.0	67.0	65.0	56.0	53.0	47.0	44.0	43.0
		HIGH	72.0	64.0	63.0	61.0	59.0	58.0	44.0	67.0	65.0	56.0	53.0	47.0	44.0	43.0
024	FAN ONLY	LOW	64.0	60.5	61.5	59.0	58.0	56.0	47.0	63.0	57.5	54.5	52.0	48.0	43.0	39.0
		HIGH	69.5	66.5	65.0	64.5	61.0	60.5	54.0	66.5	61.5	58.0	55.5	52.0	47.5	40.0
	COOLING	LOW	66.5	58.5	59.5	57.0	55.0	53.0	46.5	65.5	65.5	56.5	55.0	51.0	47.0	43.5
024		HIGH	72.5	65.0	65.5	62.0	61.0	60.0	55.0	67.5	66.0	58.5	57.0	53.0	49.0	45.0
	HEATING	LOW	69.5	59.5	60.0	57.5	55.0	53.0	46.0	68.5	66.5	57.0	55.5	51.0	47.0	43.0
		HIGH	74.0	66.0	65.5	62.5	61.0	60.0	54.5	69.0	67.0	58.5	57.5	53.0	49.0	44.5
030	FAN ONLY	LOW	68.0	65.0	65.0	64.0	62.0	61.0	55.0	65.0	61.0	58.0	56.0	53.0	48.0	41.0
		HIGH	71.0	69.0	68.0	68.0	66.0	65.0	59.0	67.0	64.0	60.0	58.0	55.0	51.0	42.0
	COOLING	LOW	69.0	66.0	65.0	64.0	62.0	61.0	56.0	65.0	67.0	59.0	57.0	54.0	50.0	46.0
030		HIGH	71.0	69.0	68.0	67.0	65.0	65.0	60.0	68.0	67.0	61.0	58.0	55.0	51.0	47.0
	HEATING	LOW	71.0	68.0	66.0	64.0	61.0	59.0	52.0	71.0	69.0	60.0	58.0	54.0	50.0	45.0
		HIGH	74.0	69.0	68.0	67.0	64.0	62.0	56.0	71.0	69.0	61.0	59.0	55.0	51.0	46.0
036	FAN ONLY	LOW	66.5	63.5	65.0	63.5	61.5	60.5	55.0	63.5	59.5	58.0	55.5	52.5	47.5	41.0
		HIGH	72.0	69.5	69.5	69.5	68.0	66.5	61.5	68.0	64.5	61.5	59.5	57.0	52.5	44.5
	COOLING	LOW	72.0	65.0	65.0	63.5	61.5	61.5	55.5	68.0	66.0	59.0	56.5	53.5	50.5	45.5
036		HIGH	74.5	69.0	69.0	68.5	67.0	67.0	61.0	71.5	67.0	62.0	59.5	57.0	53.0	48.0
	HEATING	LOW	73.0	67.5	66.5	64.5	61.5	61.0	55.0	73.0	68.5	60.5	58.5	54.5	52.0	48.0
		HIGH	78.0	69.5	69.5	68.5	66.0	64.5	58.5	75.0	69.5	62.5	60.5	57.0	53.5	48.5
042	FAN ONLY	LOW	68.0	65.0	68.0	61.0	59.0	57.0	52.0	62.0	58.0	58.0	55.0	52.0	47.0	41.0
		HIGH	74.0	71.0	69.0	69.0	65.0	63.0	58.0	69.0	65.0	63.0	61.0	59.0	54.0	47.0
	COOLING	LOW	67.0	64.0	66.0	60.0	58.0	56.0	50.0	71.0	65.0	59.0	56.0	53.0	51.0	45.0
042		HIGH	74.0	71.0	69.0	67.0	64.0	63.0	58.0	75.0	67.0	63.0	61.0	59.0	55.0	49.0
	HEATING	LOW	71.0	67.0	68.0	63.0	60.0	59.0	56.0	75.0	68.0	61.0	59.0	55.0	54.0	51.0
		HIGH	78.0	74.0	70.0	68.0	64.0	64.0	60.0	79.0	70.0	64.0	62.0	59.0	56.0	51.0
048	FAN ONLY	LOW	71.0	67.0	69.0	62.0	59.0	58.0	53.0	65.0	60.0	59.0	56.0	52.0	48.0	42.0
		HIGH	76.0	75.0	70.0	70.0	66.0	64.0	60.0	71.0	69.0	64.0	62.0	60.0	55.0	49.0
	COOLING	LOW	68.0	66.0	70.0	64.0	63.0	59.0	54.0	72.0	67.0	63.0	60.0	58.0	54.0	49.0
048		HIGH	74.0	72.0	70.0	68.0	65.0	64.0	59.0	75.0	68.0	64.0	62.0	60.0	56.0	50.0
	HEATING	LOW	71.0	66.0	69.0	63.0	60.0	58.0	55.0	75.0	67.0	62.0	59.0	55.0	53.0	50.0
		HIGH	78.0	74.0	71.0	69.0	65.0	64.0	60.0	79.0	70.0	65.0	63.0	60.0	56.0	51.0
060	FAN ONLY	LOW	77.0	71.0	69.0	67.0	64.0	64.0	60.0	74.0	66.0	62.0	58.0	54.0	51.0	44.0
		HIGH	82.0	77.0	74.0	74.0	70.0	70.0	66.0	76.0	71.0	65.0	63.0	60.0	57.0	51.0
	COOLING	LOW	77.0	70.0	68.0	66.0	64.0	64.0	60.0	74.0	74.0	64.0	60.0	58.0	53.0	50.0
060		HIGH	81.0	76.0	73.0	74.0	70.0	71.0	68.0	74.0	69.0	64.0	64.0	60.0	57.0	50.0
	HEATING	LOW	77.0	62.0	57.0	54.0	49.0	52.0	45.0	74.0	66.0	63.0	60.0	55.0	51.0	44.0
		HIGH	83.0	77.0	74.0	74.0	70.0	70.0	67.0	76.0	70.0	65.0	64.0	60.0	56.0	49.0

*Size 006 available in 50RHC unit only.

NOTES:

1. All performance is Sound Power Level in dB referenced to 1 picoWatt.
2. Data based on sound measurements made in a reverberant room on representative units from each cabinet size in accordance with ARI standard 260-2000.
3. Ratings for medium speed can be obtained through interpolation.
4. Size 50RVC041 unit data not available at time of printing.

OCTAVE BAND SOUND POWER LEVEL (dB re 1pW) MUTE CONSTRUCTION

50RHC,RVC	MODE	SPEED	DUCTED DISCHARGE OCTAVE BAND FREQUENCY (Hz)							FREE INLET COMBINED WITH CASING RADIATED OCTAVE BAND FREQUENCY (Hz)						
			125	250	500	1000	2000	4000	8000	125	250	500	1000	2000	4000	8000
006*	FAN ONLY	LOW HIGH	68 65	61 64	59 57	61 59	55 54	52 51	48 49	61 61	58 58	57 54	54 54	46 47	40 41	33 36
	COOLING	LOW HIGH	67 65	60 60	58 55	62 57	54 54	56 50	52 46	65 62	59 58	56 56	55 54	48 51	47 43	42 38
	HEATING	LOW HIGH	61 60	60 58	60 53	60 54	54 46	45 47	45 47	59 57	59 56	58 54	53 51	48 43	36 40	35 39
009	FAN ONLY	LOW HIGH	68 67	60 63	57 56	59 58	54 54	51 51	49 49	61 63	57 60	55 57	52 53	45 47	39 41	34 36
	COOLING	LOW HIGH	68 66	61 60	57 54	62 57	58 54	56 51	52 47	66 63	60 58	55 55	55 54	52 51	47 44	42 39
	HEATING	LOW HIGH	63 62	61 60	58 53	59 55	53 50	46 48	45 48	61 59	60 58	56 54	52 52	47 47	37 41	35 40
012	FAN ONLY	LOW HIGH	68 68	59 62	55 55	57 58	53 54	50 52	50 50	61 64	56 59	53 56	50 53	44 47	38 42	35 37
	COOLING	LOW HIGH	69 67	63 62	57 54	62 57	58 54	57 52	53 48	67 64	62 60	55 55	55 54	52 51	48 45	43 40
	HEATING	LOW HIGH	65 64	62 62	56 53	59 56	51 51	47 50	45 49	63 61	61 60	54 54	52 53	45 48	38 43	35 41
018	FAN ONLY	LOW HIGH	62 69	58 62	57 61	54 59	50 54	49 53	43 49	61 66	55 57	50 54	47 50	40 45	36 40	35 35
	COOLING	LOW HIGH	66 71	55 62	56 63	53 59	50 56	47 55	40 49	65 66	62 63	53 56	51 54	46 48	41 44	37 39
	HEATING	LOW HIGH	66 71	55 62	56 63	53 59	50 56	47 55	40 49	65 66	62 63	53 56	51 54	46 48	41 44	37 39
024	FAN ONLY	LOW HIGH	64 69	61 65	60 63	58 57	55 56	54 51	45 46	63 66	58 60	53 56	51 52	45 48	41 43	37 37
	COOLING	LOW HIGH	66 71	56 63	59 65	55 60	53 58	50 57	42 51	65 66	63 64	56 58	53 55	49 50	44 46	39 41
	HEATING	LOW HIGH	69 73	57 64	59 65	56 60	53 58	50 57	42 51	68 68	64 65	56 58	54 55	49 50	44 46	39 41
030	FAN ONLY	LOW HIGH	68 71	66 67	64 66	63 65	59 62	59 61	53 56	65 67	62 62	57 58	55 55	50 51	46 47	39 39
	COOLING	LOW HIGH	68 70	64 67	64 68	62 65	60 62	58 62	52 56	64 67	65 65	58 61	55 56	52 52	47 48	42 43
	HEATING	LOW HIGH	70 73	66 67	65 68	62 65	59 61	56 59	48 52	70 70	67 67	59 61	56 57	52 52	47 48	41 42
036	FAN ONLY	LOW HIGH	66 72	64 68	64 67	62 66	59 64	58 62	53 59	63 68	60 63	57 59	54 56	50 53	45 48	39 42
	COOLING	LOW HIGH	71 73	63 67	64 69	62 66	59 64	58 64	51 57	67 70	64 65	58 62	55 57	51 54	47 50	41 44
	HEATING	LOW HIGH	72 77	65 68	66 69	63 66	59 63	58 62	51 55	72 74	66 68	60 62	57 58	52 54	49 51	44 45
042	FAN ONLY	LOW HIGH	68 74	66 69	67 67	60 66	56 61	55 59	50 55	62 69	59 63	57 61	54 58	49 55	45 50	39 44
	COOLING	LOW HIGH	66 73	62 69	65 69	58 65	56 61	53 60	46 54	70 74	63 65	58 63	54 59	51 56	48 52	41 45
	HEATING	LOW HIGH	70 77	65 72	67 70	61 66	58 61	56 61	52 56	74 78	66 68	60 64	57 60	53 56	51 53	47 47
048	FAN ONLY	LOW HIGH	71 76	68 73	68 68	61 67	56 62	56 60	51 57	65 71	61 67	58 62	55 59	49 56	46 51	40 46
	COOLING	LOW HIGH	67 73	64 70	69 70	62 66	61 62	56 61	50 55	71 74	65 66	62 64	58 60	56 57	51 53	45 46
	HEATING	LOW HIGH	70 77	64 72	68 71	61 67	58 62	55 61	51 56	74 78	65 68	61 65	57 61	53 57	50 53	46 47
060	FAN ONLY	LOW HIGH	77 82	72 75	68 72	66 71	61 66	62 66	58 63	74 76	67 69	61 63	57 60	51 56	49 53	42 48
	COOLING	LOW HIGH	76 80	68 74	67 73	64 72	62 67	61 68	56 64	73 73	72 67	73 64	68 62	56 57	60 54	55 46
	HEATING	LOW HIGH	76 82	60 75	56 74	52 72	47 67	49 67	41 63	73 75	64 68	62 65	58 62	53 57	48 53	40 45

*Size 006 available in 50RHC unit only.

NOTES:

1. All performance is Sound Power Level in dB referenced to 1 picoWatt.
2. Data based on sound measurements made in a reverberant room on representative units from each cabinet size in accordance with ARI standard 260-2000.
3. Size 50RVC041 unit data not available at time of printing.

Electrical data

50RHC,RVC ELECTRICAL DATA

50RHC,RVC UNIT SIZE	VOLTS-PHASE 60 Hz	VOLTAGE MIN/MAX	COMPRESSOR		STANDARD UNITS				MODULATING REHEAT UNITS			
			RLA	LRA	Fan Motor FLA	Total Unit FLA	Min Circuit AMP	Max Fuse/HACR	Reheat Pump FLA	Total Unit FLA	Min Circ AMP	Max Fuse/ HACR
006*	208/230-1	197/254	2.9	17.7	0.40	3.3	4.1	15	—	—	—	—
	265-1	239/292	2.5	15.0	0.35	2.8	3.5	15	—	—	—	—
009	208/230-1	197/254	3.9	22.2	0.80	4.7	5.7	15	—	—	—	—
	265-1	239/292	3.3	18.8	0.70	4.0	4.8	15	—	—	—	—
012	208/230-1	197/254	5.3	27.9	0.80	6.1	7.5	15	—	—	—	—
	265-1	239/292	4.2	22.2	0.70	4.9	6.0	15	—	—	—	—
018	208/230-1	197/254	8.6	49.0	1.00	9.6	11.7	20	0.80	10.4	12.5	20
	265-1	239/292	8.1	44.0	0.86	8.9	11.0	15	0.70	9.6	11.7	15
024	208/230-1	197/254	9.8	56.0	1.50	11.3	13.8	20	0.80	12.1	14.6	20
	265-1	239/292	9.1	55.0	1.30	10.4	12.7	20	0.70	11.1	13.4	20
024	208/230-3	197/254	6.7	51.0	1.50	8.2	9.9	15	0.80	9.0	10.7	15
	460-3	414/506	3.5	25.0	0.76	4.2	5.1	15	0.70	4.9	5.8	15
030	208/230-1	197/254	11.2	61.0	3.00	14.2	16.9	25	0.80	15.0	17.7	25
	265-1	239/292	10.0	58.0	2.70	12.7	15.2	25	0.70	13.4	15.9	25
030	208/230-3	197/254	6.9	55.0	3.00	9.9	11.7	15	0.80	10.7	12.5	15
	460-3	414/506	3.6	28.0	1.70	5.3	6.2	15	0.70	6.0	6.9	15
036	208/230-1	197/254	15.4	82.0	1.80	17.2	21.1	35	0.80	18.0	21.9	35
	265-1	239/292	14.4	83.0	2.00	16.4	20.0	30	0.70	17.1	20.7	35
036	208/230-3	197/254	9.6	70.0	1.80	11.4	13.8	20	0.80	12.2	14.6	20
	460-3	414/506	4.9	33.0	1.24	6.1	7.4	15	0.70	6.8	8.1	15
041†	208/230-1	197/254	16.2	96.0	3.00	19.2	23.2	35	—	—	—	—
	208/230-3	197/254	10.3	75.0	3.00	13.3	15.8	25	—	—	—	—
042	460-3	414/506	4.3	40.0	1.70	6.0	7.1	15	—	—	—	—
	575-3	518/633	4.3	34.0	1.40	5.7	6.8	15	—	—	—	—
042	208/230-1	197/254	17.1	105.0	3.00	20.1	24.3	40	0.80	20.9	25.1	40
	208/230-3	197/254	10.7	85.0	3.00	13.7	16.4	25	0.80	14.5	17.2	25
042	460-3	414/506	5.3	42.0	1.70	7.0	8.3	15	0.70	7.7	9.0	15
	575-3	518/633	3.7	31.0	1.50	5.2	6.1	15	—	—	—	—
048	208/230-1	197/254	18.3	102.0	3.40	21.7	26.3	40	1.07	22.7	27.3	45
	208/230-3	197/254	12.6	91.0	3.40	16.0	19.2	30	1.07	17.1	20.3	30
048	460-3	414/506	5.7	42.0	1.80	7.5	8.9	15	1.00	8.5	9.9	15
	575-3	518/633	4.7	39.0	1.40	6.1	7.2	15	—	—	—	—
060	208/230-1	197/254	25.6	170.0	4.30	29.9	36.4	60	1.07	31.0	37.4	60
	208/230-3	197/254	14.7	124.0	4.30	19.0	22.7	35	1.07	20.1	23.8	35
060	460-3	414/506	7.4	59.6	2.50	9.9	11.8	15	1.00	10.9	12.8	20
	575-3	518/633	5.9	49.4	1.90	7.8	9.3	15	—	—	—	—

LEGEND

FLA — Full Load Amps
HACR — Heating, Air Conditioning and Refrigeration
LRA — Locked Rotor Amps
RLA — Rated Load Amps

*Size 006 available in 50RHR unit only.

†Size 041 available in 50RVC unit only.

NOTES:

1. HACR circuit breaker in U.S.A. only.
2. All fuses Class RK-5.
3. The modulating reheat option is only available on 50RVC018-036 and 50RVC042-060 units.
4. All 460 v units require a four (4) wire power supply with neutral. Reheat pump is rated 265 v and is wired between one hot leg and neutral.
5. The 50RVC048 and 50RCV060 460 v units reheat pump is preliminary data pending UL approval.

Typical piping and wiring

TYPICAL INSTALLATION — 50RHC UNITS

TYPICAL VERTICAL INSTALLATION — 50RVC UNITS

Typical wiring schematics

TYPICAL AQUAZONE™ COMPLETE C CONTROL WIRING

LEGEND

AL	— Alarm Relay Contacts
BM	— Blower Motor
BMC	— Blower Motor Capacitor
BR	— Blower Relay
CAP	— Capacitor
CB	— Circuit Breaker
CC	— Compressor Contactor
CO	— Sensor, Condensate Overflow
FP1	— Sensor, Water Coil Freeze Protection
FP2	— Sensor, Air Coil Freeze Protection
HP	— High-Pressure Switch
HWTS	— High Leaving Water Temperature Switch
JW1	— Jumper, Alarm

LOC	— Loss of Charge Pressure Switch
MV	— Motorized Valve
P1	— Field Wiring Terminal Block
PM	— Performance Monitor
PSC	— Permanent Split Capacitor
RV	— Reversing Valve Coil
TRANS	— Transformer
TXV	— Thermostatic Expansion Valve
— — —	Field Line Voltage Wiring
— - -	Field Low Voltage Wiring
— · —	Printed Circuit Trace
— · · —	Optional Wiring

*Optional wiring.

NOTES:

1. Compressor and blower motor thermally protected internally.
2. All wiring to the unit must comply with NEC and local codes.
3. Transformer is wired to 265 v (BRN) lead for 265/1/60 units, or 208 v (RED) lead for 208/1/60. For 230/1/60 switch RED and ORG leads at L1 and insulate RED lead. Transformer is energy limiting or may have circuit breaker.
4. FP1 thermistor provides freeze protection for water. When using antifreeze solutions, cut JW3 jumper.
5. Typical Aquazone thermostat wiring shown. Refer to thermostat installation instructions for wiring to the unit. Thermostat wiring must be Class 1 and voltage rating equal to or greater than unit supply voltage.
6. 24-v alarm signal shown. For dry alarm contact, cut JW1 jumper and dry contact will be available between AL1 and AL2.
7. Transformer secondary ground via control board standoffs and screws to control box. (Ground available from top two standoffs as shown.)
8. For high or low speed remove BLU wire from BR 'NO' and replace with BLK or RED wire respectively. Tape off unused terminal.
9. Both DIP switches need to be in the ON position.
10. Aquastat is supplied with unit and must be wired in series with hot leg to the pump. Aquastat is rated for voltages up to 277 v.

TYPICAL AQUAZONE™ DELUXE D CONTROL WIRING

LEGEND

AL	— Alarm Relay Contacts	MV	— Motorized Valve
BM	— Blower Motor	P1	— Field Wiring Terminal Block
BMC	— Blower Motor Capacitor	PM	— Performance Monitor
CAP	— Capacitor	RVS	— Reversing Valve Solenoid
CB	— Circuit Breaker	TRANS	— Transformer
CC	— Compressor Contactor	TXV	— Thermostatic Expansion Valve
CO	— Sensor, Condensate Overflow	 — Field Line Voltage Wiring	
FP1	— Sensor, Water Coil Freeze Protection	 — Field Low Voltage Wiring	
FP2	— Sensor, Air Coil Freeze Protection	 — Printed Circuit Trace	
HP	— High-Pressure Switch		
HWTS	— High (Leaving) Water Temp Switch		
JW1	— Jumper, Alarm		
LOC	— Loss of Charge Pressure Switch		

NOTES:

1. Compressor and blower motor thermally protected internally.
2. All wiring to the unit must comply with NEC and local codes.
3. Transformer is wired to 208 v (RED) lead for 208/3/60. For 230/3/60 switch RED and ORG leads at L1 and insulate RED lead.
4. FP1 thermistor provides freeze protection for water. When using anti-freeze solutions, cut JW3 jumper.
5. Typical Aquazone thermostat wiring shown. Refer to thermostat installation instructions for wiring to the unit. Thermostat wiring must be Class 1 and voltage rating equal to or greater than unit supply voltage.
6. 24-v alarm signal shown. For dry alarm contact, cut AL2 dry jumper and dry contact will be available between AL1 and AL2.

7. Transformer secondary ground via control board standoffs and screws to control box. (Ground available from top two standoffs as shown.)
8. Blower motor is factory wired for medium and high speeds. For any other combination of speeds, attach the lower speed wire to fan speed relay N.O. wire.
9. Aquastat is supplied with unit and must be wired in series with hot leg to the pump. Aquastat is rated for voltages up to 277 v.

Typical control wiring

PREMIERLINK™ CONTROLLER APPLICATIONS WITH COMPLETE C CONTROL

PREMIERLINK CONTROLLER APPLICATIONS WITH DELUXE D CONTROL

Application data

Aquazone™ water source heat pumps are available in a flexible, efficient array of models, which can be used in all types of water loop, ground water, and ground loop type systems. Aquazone products provide optimal energy efficient solutions and adapt to the most challenging design requirements.

Water loop system

Water loop (or boiler/tower) system applications typically include a number of units plumbed to a common piping system. For optimal performance, this system should be designed between 2.25 and 3 gpm per ton of cooling capacity. The system is comprised of highly efficient packaged reverse cycle heat pump units interconnected by a water loop. The water circuit serves as both a sink and source for heat absorption and rejection and is designed for entering water temperatures between 60 F and 90 F. Within this temperature range units can heat or cool as required from the same water source. Transferring heat from warm to cold spaces in the building, whenever they coexist, conserves energy rather than creating new heat.

Refer to the **Carrier Water Source Heat Pump System Design Guide** for assistance designing water loop systems. The guide includes a practical approach for the most current design recommendations including:

- product application including horizontal, vertical, console, rooftop and water-to-water applications
- ventilation methods and system design including energy recovery
- acoustical considerations for different product types
- addressing IAQ issues such as condensate removal, humidity control
- air distribution design including diffuser selection/layout and ductwork design
- hydronic system design including pipe sizing/layout and boiler/tower sizing
- control configurations such as stand alone, DDC, DCV, and VVT®
- Water Source Heat Pump Efficiency/Operational Cost Comparison chart
- System variations such as a system without a boiler, variable pumping, and VAV for interior use

Condensate drainage

Venting — Properly vent condensate lines to prevent fan pressure from causing water to hang up in the piping. Condensate lines should be pitched to assure full drainage of condensate under all load conditions. Use chemical treatment to remove algae in the condensate pans and drains in geographical areas that are conducive to algae growth.

Trapping — Condensate trapping is a necessity on every water source heat pump unit. A trap is provided to prevent the backflow of moisture from the condensate pan and into the fan intake or downstream into the mechanical system.

The water seal or the length of the trap depends on the positive or negative pressure on the drain pan. As a rule of thumb, size the water seal 1 in. for every 1 in. of negative pressure on the unit. The water seal is the distance from the bottom of the unit condensate piping connection to the bottom of the condensate drain line run-out piping. Therefore, the trap size should be double the water seal dimension.

Horizontal units — Horizontal units should be sloped toward the drain at a 1/4 in. per foot pitch. If it is not possible to meet the pitch requirement, a condensate pump should be designed and installed at the unit to pump condensate to a building drain. Horizontal units are not internally trapped; therefore an external trap is necessary. Each unit must be installed with its own individual trap and means to flush or blow out the condensate drain. It is not acceptable to use a common trap or vent for multiple units. The condensate piping system should not be designed with a pipe size smaller than the drain connection pipe size.

Vertical units — Vertical units use a condensate hose inside the cabinet that acts as a trapping loop, making an external trap unnecessary. Install each unit with its own vent and means to flush or blow out the condensate drain lines. Do not install a common trap or vent on vertical units.

Water conditioning

In some applications, maintaining proper water quality may require higher corrosion protection for the water-to-refrigerant heat exchanger. Water quality varies from location to location and is unique for each job. Water characteristics such as pH value, alkalinity, hardness, and specific conductance are important when considering any WSHP application. Water typically includes impurities and hardness that must be removed. The required treatment will depend on the water quality as well as type of system. Water problems fall into three main categories:

1. Scale formation caused by hard water reduces the heat transfer rate and increases the water pressure drop through the heat exchanger. As water is heated, minerals and salts are precipitated from a solution and deposited on the inside surface of the pipe or tube.
2. Corrosion is caused by absorption of gases from the air coupled with water on exposed metal. Corrosion is also common in salt-water areas.
3. Organic growths such as algae can reduce the heat transfer rate by forming an insulating coating on the inside tube surface. Algae can also promote corrosion by pitting.

NOTE: In most commercial water loop applications, Aquazone WSHP units use copper water-to-refrigerant heat exchanger. Units can also be equipped with a Cupronickel heat exchanger for applications where water is outside the standard contaminant limits for a copper heat exchanger.

Application data (cont)

COMPLETE C AND DELUXE D ELECTRONIC CONTROL FEATURES COMPARISON

BASIC FEATURES	COMPLETE C	COMPLETE C WITH LON	DELUXE D	DELUXE D WITH LON
High and Low Refrigerant Pressure Protection	S	S	S	S
Water Coil Freeze Protection	S	S	S	S
True 24 VA Thermostat Signals	S	S	S	S
Thermostat Inputs Compatible with Triacs	S	S	S	S
Condensate Overflow Sensor	S	S	S	S
Anti-Short-Cycle Time Delay	S	S	S	S
Random Start	S	S	S	S
Alarm (selectable dry contact or 24 VA)	S	S	S	S
Water Valve Relay	S	S	S	S
Water Valve Relay with Compressor Delay	N/A	N/A	S	S
Emergency Shutdown	N/A	DDC	S	DDC
Night Setback with Override	N/A	DDC	S	DDC
Outdoor Air Damper Control	N/A	N/A	S	S
ADVANCED FEATURES				
Intelligent Reset	S	S	S	S
High and Low Voltage Protection	S	S	S	S
Air Coil Freeze Protection	S	S	S	S
Freeze Set Point Field Select (water, antifreeze)	S	S	S	S
Electric Heat Control Outputs	S	S	S	S
Boilerless Electric Heat Control	N/A	N/A	S	S
Intelligent Reversing Valve Operation	N/A	DDC	S	S
High/Low Fan Speed Outputs	N/A	N/A	S	S
Intelligent Fan Speed Control	N/A	N/A	S	S
Thermostat Type Select (Y,O or Y,W)	N/A	N/A	S	N/A
Reversing Valve Signal Select (O or B)	N/A	N/A	S	N/A
Dehumidistat Input	N/A	N/A	S	S
Reheat Dehumidification Control*	N/A	N/A	O	O
Multiple Units on One Thermostat/Wall Sensor	N/A	DDC	S	DDC
SERVICE AND RELIABILITY FEATURES				
Service Test Mode	S	S	S	S
LED Fault and Status Lights	S	S	S	S
Fault Memory After Reset	S	S	S	S
Unit Performance Sentinel	S	S	S	S
Harness-Type Factory Wiring Connections	S	S	S	S
Fully Noise-Tested Design	S	S	S	S
CE Approval	S	S	S	S
Removable Low Voltage Connector	N/A	N/A	S	S
DDC/ENERGY MANAGEMENT FEATURES				
LONMark® Compliant	N/A	S	N/A	S
BACnet™ Compliant	N/A	N/A	N/A	N/A
Johnson N2 Compliant	N/A	N/A	N/A	N/A
Modbus Compliant	N/A	N/A	N/A	N/A
Leaving Air and Water Temperature Sensor	N/A	S	N/A	S
Digital Wall Sensor	N/A	O	N/A	O

LEGEND

COMPLETE C-LON	— Complete C with LONMark Controller
DDC	— Direct Digital Control
DELUXE D-LON	— Deluxe D with LONMark Controller
N/A	— Not Available
O	— Optional
S	— Standard

*Available on some units.

WATER QUALITY GUIDELINES

CONDITION	HX MATERIAL*	CLOSED RECIRCULATING†
Scaling Potential — Primary Measurement		
Above the given limits, scaling is likely to occur. Scaling indexes should be calculated using the limits below.		
pH/Calcium Hardness Method	All	N/A
Index Limits for Probable Scaling Situations (Operation outside these limits is not recommended.)		
Scaling indexes should be calculated at 150 F for direct use and HWG applications, and at 90 F for indirect HX use. A monitoring plan should be implemented.		
Ryznar Stability Index	All	N/A
Langelier Saturation Index	All	N/A
Iron Fouling		
Iron Fe ²⁺ (Ferrous) (Bacterial Iron Potential)	All	N/A
Iron Fouling	All	N/A
Corrosion Prevention**		
pH	All	6 - 8.5 Monitor/treat as needed.
Hydrogen Sulfide (H ₂ S)	All	N/A
Ammonia Ion as Hydroxide, Chloride, Nitrate and Sulfate Compounds	All	N/A
Maximum Chloride Levels	Copper CuproNickel 304 SS 316 SS Titanium	N/A N/A N/A N/A N/A
Erosion and Clogging		
Particulate Size and Erosion	All	<10 ppm of particles and a maximum velocity of 6 fps. Filtered for maximum 800 micron size.
Brackish	All	N/A

LEGEND

HWG — Hot Water Generator

HX — Heat Exchanger

N/A — Design Limits Not Applicable Considering Recirculating Potable Water

SS — Stainless Steel

*Heat exchanger materials considered are copper, cupronickel, 304 SS (stainless steel), 316 SS, titanium.

†Closed recirculating system is identified by a closed pressurized piping system.

**If the concentration of these corrosives exceeds the maximum allowable level, then the potential for serious corrosion problems exists.

Sulfides in the water quickly oxidize when exposed to air, requiring that no agitation occur as the sample is taken. Unless tested immediately at the site, the sample will require stabilization with a few drops of one Molar zinc acetate solution, allowing accurate sulfide determination up to 24 hours after sampling. A low pH and high alkalinity can cause system problems, even when both values are within ranges shown. The term pH refers to the acidity, basicity, or neutrality of the water supply. Below 7.0, the water is considered to be acidic. Above 7.0, water is considered to be basic. Neutral water contains a pH of 7.0.

To convert ppm to grains per gallon, divide by 17. Hardness in mg/l is equivalent to ppm.

Application data (cont)

Acoustical design

Sound power levels represent the sound produced by the source, the WSHP unit, with no regard to attenuation between the source and the space. Acoustical design goals are necessary to provide criteria for occupied spaces. These goals help ensure that people are comfortable and can communicate effectively over the air conditioning system and other background noise sources.

Acoustical design goals are desirable sound pressure levels within a given conditioned space and are represented by Noise Criteria (NC) curves. Noise Criteria (NC) curve levels represent a peak over a full spectrum of frequencies. A high value in a low frequency band has the same effect on NC level as a lower value in a high frequency band. It is important that sound levels be balanced over the entire spectrum relative to the NC curve. The lower the NC criteria curve, the more stringent the room acoustical design must be to meet the design goals.

It is important to know how to convert the unit ratings from sound power (L_w) to sound pressure (L_p). This conversion depends on the specifics of the installation's acoustic environment.

Assessing an area's acoustical design means comparing the sound pressure (L_p) with the NC curve for the selected area.

Some of the factors that affect conversion of sound power to sound pressure and consequent NC level include:

- Type of acoustical ceiling
- Use of metal or flex duct
- Absorption in the occupied space
- Location in the occupied space
- Open or closed layout plan
- Use of open or ducted returns
- Orientation of unit to occupant
- Use of lined or unlined duct

OCTAVE BAND SOUND PRESSURE LEVEL (L_p) ASSOCIATED WITH NC CURVES

NOISE CRITERIA CURVES	OCTAVE BAND SOUND PRESSURE LEVEL (L_p)							
	Frequency (Hz)							
	63	125	250	500	1000	2000	4000	8000
NC-15	49	36	26	17	17	14	12	11
NC-20	52	41	33	27	22	19	17	16
NC-25	54	45	38	31	27	24	22	21
NC-30	58	49	41	36	31	29	28	27
NC-35	61	53	45	40	36	34	33	32
NC-40	64	57	50	45	41	39	38	37
NC-45	67	61	54	49	46	44	43	42
NC-50	71	64	58	54	51	49	48	47
NC-55	74	68	63	58	56	54	53	52
NC-60	77	71	67	63	61	59	58	57
NC-65	80	75	71	68	66	64	63	62

Modulating reheat option

The modulating reheat option diverts condenser water through a water-to-air coil that is placed after the evaporator coil. The modulating reheat valve automatically adjusts reheat capacity based upon leaving air temperature and loop entering water temperature to provide 100% reheat and neutral supply air to the space.

NOTE: The modulating reheat option is only available on 50RVC018-036 and 50RVC042-060 units.

The modulating reheat option can be applied to a number of common applications, such as:

- classrooms
- condominiums
- apartments
- computer rooms
- high latent load spaces, such as auditoriums, theaters, and convention centers
- indoor swimming pool space conditioning
- humid climates

Equipment selection — If the unit will be used for space cooling, a unit with at least enough capacity to satisfy the building sensible load should be selected. If the latent cooling load is not satisfied by the selection, a larger unit with enough latent capacity will be required. If the unit will be used for dehumidification purposes only, the latent capacity is the only necessary consideration.

NOTE: In some cases, the high static option may be required for applications with higher static ductwork, as the reheat coil adds a small amount of resistance to the air stream.

50RVC LATENT CAPACITY AT 85 F (29.4 C) EWT

50RVC UNIT SIZE	LATENT CAPACITY (MBtuh)	MOISTURE REMOVAL		POWER (kW)
		(lb/hr)	(kg/hr)	
018	4.7	7.7	2.0	1.4
024	6.1	5.7	2.6	1.8
030	6.8	6.4	2.9	2.0
036	9.6	9.0	4.1	2.8
042	11.0	10.3	4.7	3.2
048	12.7	11.9	5.4	3.7
060	15.2	14.2	6.4	4.5

Sound control

Analyzing the projected sound level in the conditioned space caused by a WSHP unit located in a ceiling plenum is quite involved. The key is to have good sound power ratings (L_w) in dB on the equipment to determine the sound attenuation effect of the ductwork, ceiling and room. Aquazone™ equipment includes standard attenuating features and offers an advanced mute package. In addition, Carrier provides suggestions for unit sound design around the WSHP.

Horizontal units

Use the following guidelines for layout of Aquazone horizontal units to minimize noise:

1. To select quietest equipment, obtain sound power ratings in accordance with latest standards from manufacturers.
2. Do not locate units over a space with a required noise criteria of 40 or less. Instead, locate units above less sensitive noise areas such as above or in equipment rooms, utility closets, restrooms, storage rooms, or above corridors.
3. Provide at least 10 feet between WSHP units to avoid the additive effect of two noise sources.
4. Provide an acoustical pad underneath the WSHP unit in applications where the unit must be mounted above noise sensitive areas such as private offices or conference rooms. The pad attenuates radiated noise. Be sure the pad has an area at least twice that of the WSHP footprint.
5. Maximize the installed height above the suspended ceiling.
6. Be sure the WSHP unit is located at least 6 feet away from any ceiling return grille to prevent line-of-sight casing noise to reach the space below.
7. Suspend horizontal WSHP unit from the ceiling with hangers that use spring or neoprene type isolators to reduce vibration transmission.
8. Use flexible electrical connections to the WSHP unit. DO NOT USE RIGID CONNECTIONS.
9. Use flexible loop water and condensate piping connections to the WSHP unit.
10. Use a canvas duct connector to connect the WSHP discharge flange to the downstream duct system to reduce vibration-induced noise.
11. Provide acoustic interior lining for the first 20 feet of discharge duct, or until the first elbow is reached. The elbow prevents line-of-site sound transmission in the discharge duct.
12. Provide turning vanes in ductwork elbows and tees to reduce air turbulence.
13. Size the sheet metal supply duct with velocities no greater than 1000 fpm.
14. Ensure ductwork is rigid.
15. Use round ducts whenever possible to further reduce noise.
16. Allow at least 3 equivalent duct diameters of straight duct upstream and downstream of the unit before allowing any fittings, transitions, etc.
17. Seal all penetrations around duct entering the space.
18. Provide a 4-ft run-out duct made of flexible material to connect a diffuser to the supply trunk duct. The flex duct provides an “attenuating end-effect” and reduces duct-transmitted sound before it reaches the space. Flex ductwork typically reduces sound by 6 dB.

19. Locate the run-out duct balancing damper as far away from the outlet diffuser as possible. Locating the balancing damper at the trunk duct exit is best.
20. If return air is drawn through a ceiling plenum, provide an acoustically lined return duct elbow or “L” shaped boot at the WSHP to eliminate line-of-sight noise into the ceiling cavity and possibly through the ceiling return air grilles. Face the elbow or boot away from the nearest adjacent WSHP unit to prevent additive noise.
21. Do not hang suspended ceiling from the ductwork.

Vertical units

All guidelines established for horizontal units also apply for vertical units. In addition, since vertical units tend to be installed in small equipment rooms or closets, the following additional guidelines apply:

1. Mount the unit on a pad made of high-density sound absorbing material such as rubber or cork. Extend the pad beyond the WSHP unit footprint by at least 6 inches in each direction.
2. Since the unit returns airflow through a grille mounted in a closet door, provide a sound barrier or some other modification of the closet to prevent line-of-sight noise into the conditioned space.
3. Follow good duct design practice in sizing and locating the connection of the WSHP discharge to the supply duct system. Use an elbow with turning vanes bent in the direction of the fan rotation to minimize turbulence. Make any duct transitions as smooth and gradual as possible to further minimize turbulence and loss of fan static pressure.

Solenoid valves

In applications using variable flow pumping, solenoid valves can be field installed and operated from the control board in the Aquazone™ WSHP unit.

Freeze protection

Applications where systems are exposed to outdoor temperatures below freezing (32 F) must be protected from freezing. The most common method of protecting water systems from freezing is adding glycol concentrations into the water. Use design care when selecting both the type and concentrations of glycol due to the following:

- equipment and performance may suffer with high concentrations of glycol and other antifreeze solutions
- loss of piping pressure may increase greatly, resulting in higher pumping costs
- higher viscosity of the mixture may cause excess corrosion and wear on the entire system
- acidity of the water may be greatly increased, promoting corrosion
- glycol promotes galvanic corrosion in systems of dissimilar metals. The result is corrosion of one metal by the other, causing leaks.

Guide specifications

Packaged Water Source Heat Pumps

HVAC Guide Specifications

Size Range: **6,400 to 58,000 Btuh**

Cooling Capacity

8,300 to 76,800 Btuh

Heating Capacity

Carrier Unit: **50RHC, 50RVC**

Part 1 — General

1.01 SYSTEM DESCRIPTION

- A. Install water source heat pumps, as indicated on the plans with capacities and characteristics as listed in the schedule and the specifications that follow. Units shall be Carrier unit 50RHC (horizontal) or model 50RVC (vertical) configurations.
- B. Units shall be supplied completely factory built and capable of operation with an entering water temperature range from 60 to 95 F. Equivalent units from other manufacturers can be proposed provided approval to bid is given 10 days prior to bid closing.
- C. Units shall be individually packaged with wooden skid covered with protective corner posts and plastic stretch wrapping for maximum protection.

1.02 QUALITY ASSURANCE

- A. All equipment listed in this section must be rated in accordance with ARI/ASHRAE/ISO 13256-1 performance standard and CSA. The units shall have ARI/ISO, NRTL, and CSA labels.
- B. All units shall be factory tested under normal operating conditions at nominal water flow rates. This testing shall generate a report card to be shipped with each unit stating performance in both Heating and Cooling modes.
- C. Serial numbers will be recorded by factory and furnished to contractor for ease of unit warranty status. Units that are tested without water flow rates are not acceptable.

Part 2 — Product

2.01 EQUIPMENT

A. General:

1. The horizontal and vertical heat pumps shall be fabricated from heavy gage galvanized sheet metal. All interior surfaces shall be lined with 1/2 in. thick, 1 1/2 lb acoustic type fiberglass insulation. All fiberglass shall be coated and have exposed edges tucked under flanges to prevent the introduction of glass fibers into the airstream. All insulation must meet NFPA 90A.
2. Units shall be prewired and precharged in factory.

B. Unit Cabinet:

1. Units must be field convertible from side to back or back to side discharge with no additional parts or unit structure modification. Units will

have factory-installed hanger brackets and isolation grommets.

2. Horizontal units shall have one of the following airflow arrangements: Right-Discharge/Left-Return; Left-Discharge/Right-Return; Back-Discharge/Left-Return; or Back-Discharge/Right-Return as shown on the plans.
3. Vertical units shall have one of the following airflow arrangements: Left-Return/Top-Discharge, Front-Return/Top-Discharge, or Right-Return/Top-Discharge. All vertical units will be supplied from the factory internally trapped.
4. If units with these arrangements are not used, the contractor is responsible for any extra costs incurred by other trades.
5. Cabinets shall have separate openings and knockouts for entrance of line voltage and low voltage control wiring. Contractor must ensure that units can be easily removed for servicing and coordinate locations of electrical conduit and lights with the electrical contractor.
6. All units must have a minimum of three access panels for serviceability of compressor compartment. If other arrangements make servicing difficult, the contractor must provide access panels and clear routes to ease service. Architect must approve any changes in layout.
7. All units must have an insulated panel separating the fan compartment from the compressor compartment.
8. Units with the compressor in the airstream are not acceptable.

C. Fan and Motor Assembly:

1. Units rated 60,000 Btuh and under shall have a direct-drive centrifugal fan. The fan motor shall be 3-speed, permanently lubricated, PSC (permanent split capacitor) type with internal thermal overload protection.
2. Blower shall have inlet rings to allow removal of wheel and motor from one side without removing housing.
3. Units supplied without permanently lubricated motors must provide external oilers for easy service.
4. The fan motor shall be isolated from the fan housing by torsionally flexible isolation grommets. The fan and motor assembly must be capable of overcoming the external static pressures as shown on the schedule.
5. Cfm/static pressure rating of the unit shall be based on a dry coil and a clean filter in place.

D. Refrigerant Components:

1. Units shall have a sealed refrigerant circuit including a highly efficient rotary compressor (sizes 006 to 012), reciprocating compressor (sizes 018 to 048), or scroll compressor (size 060) designed for heat pump operation.
2. Units shall have a capillary tube assembly for refrigerant metering, an enhanced aluminum lanced fin and rifled copper tube refrigerant to air heat exchanger, a reversing valve, a coaxial (tube-in-tube) refrigerant-to-water heat exchanger.
3. Hermetic reciprocating compressors shall be internally isolated. The compressor will be mounted on isolating grommets. The grommets will be secured to a heavy gage compressor plate that has rubber grommet isolation from the cabinet base. Compressor shall have thermal overload protection and be located in an insulated compartment away from airstream to minimize sound transmission.
4. Refrigerant-to-air heat exchangers shall use enhanced lanced aluminum fins and rifled copper tube construction rated to withstand 450 psig refrigerant working pressure.
5. Refrigerant-to-water heat exchangers shall be of copper inner-water tube and steel refrigerant outer tube design, rated to withstand 450 psig working refrigerant pressure and 450 psig working water pressure. Plate-to-plate heat exchangers cannot be used.
6. Refrigerant metering shall be accomplished by capillary tube assembly only. Units intended for use in standard operating range with entering water temperatures from 60 to 95 F.
7. Reversing valves shall be four-way solenoid activated refrigerant valves, which shall fail to heating operation should the solenoid fail to function. If the reversing valve solenoid fails to cooling, a low temperature thermostat must be provided to prevent over-cooling an already cold room.

E. Drain Pan:

The drain pan shall be constructed to inhibit corrosion and be fully insulated. Drain outlet shall be located on pan to allow complete and unobstructed drainage of condensate. Vertical units will have a factory-installed trap inside of cabinet. The standard unit will have solid-state electronic condensate overflow protection. Mechanical float switches are not acceptable.

F. Filter:

1. Units shall have a factory installed 1 in. wide filter bracket for filter removal from either side. Units shall have a 1 in. thick throwaway type fiberglass filter.

2. The contractor shall purchase one spare set of filters and replace factory shipped filters on completion of start-up.
3. Filters shall be standard sizes. If units use non-standard filter sizes then the contractor shall provide 12 spare filters for each unit.
4. Field-installed 2 in. filter brackets and 2 in. fiberglass throwaway filters on all units can be installed by contractor.

G. Controls and Safeties:

1. Electrical:
 - a. A control box shall be located within the unit compressor compartment and shall contain a 50 va transformer, 24-volt activated, 2 or 3 pole compressor contactor, terminal block for thermostat wiring and solid-state controller for complete unit operation. Electro-mechanical operation is not acceptable.
 - b. Units shall be nameplated for use with time-delay fuses or HACR circuit breakers. Unit controls shall be 24-volt and provide heating or cooling as required by the remote thermostat/sensor.
2. Piping:
 - a. Supply and return water connections shall be copper FPT fittings and shall be securely mounted flush to the cabinet corner post allowing for connection to a flexible hose without the use of a back-up wrench.
 - b. All water connections and electrical knock-outs must be in the compressor compartment corner post as to not interfere with the serviceability of unit. Contractor shall be responsible for any extra costs involved in the installation of units that do not have this feature.
3. Unit Controls:
 - a. Safety controls including a high-pressure switch, a low-pressure sensor, and a low water and low air temperature sensor. Access fittings shall be factory installed on high and low pressure refrigerant lines to facilitate field service.
 - b. Activation of any safety device shall prevent compressor operation via a lockout device. The lockout shall be reset at the thermostat or at the contractor-supplied disconnect switch.
 - c. Units which may be reset only at the disconnect switch only shall not be acceptable.

Guide specifications (cont)

4. The standard Complete C control electronic control system shall interface with a heat pump (Y,O) wall thermostat (mechanical or electronic). The control system microprocessor board shall be specifically designed to protect against building electrical system noise contamination, EMI, and RFI interference. The control system shall have the following features:

- a. 50 va transformer.
- b. Performance Monitor (PM). The PM warns when the heat pump is running inefficiently.
- c. Anti-short cycle time delay on compressor operation time delay shall be 5 minutes minimum.
- d. Random start on power up mode.
- e. Low voltage protection.
- f. High voltage protection.
- g. Unit shutdown on high or low refrigerant pressures.
- h. Unit shutdown on low water temperature.
- i. Water coil freeze protection (selectable for water or antifreeze).
- j. Air coil freeze protection (check filter switch).
- k. Condensate overflow shutdown.
- l. Option to reset unit at thermostat or disconnect. Fault type shall be retained in memory if reset at thermostat.
- m. Automatic intelligent reset. Unit shall automatically reset 5 minutes after trip if the fault has cleared. Should a fault reoccur 3 times sequentially then permanent lockout will occur.
- n. Ability to defeat time delays for servicing.
- o. Light-emitting diodes (LEDs) to indicate high pressure, low pressure, low voltage, high voltage, air/water freeze protection, condensate overflow and control status.
- p. The low-pressure switch SHALL NOT be monitored for the first 90 seconds after a compressor start command to prevent nuisance safety trips.
- q. Remote fault type indication at thermostat.
- r. Selectable 24-v or pilot duty dry contact alarm output.
- s. 24-v output to cycle a motorized water valve with compressor contactor.
- t. Electric heat output to control two stages of electric heat.
- u. Service test mode for troubleshooting and service.

H. Special Features:

1. Factory-Installed Options:
 - a. Optional cupronickel coaxial water-to-refrigerant heat exchangers.

b. Optional electronic Deluxe D Control shall have all the features of the Complete C control with the following additional features:

- 1) 75 VA transformer.
- 2) A removable thermostat connector.
- 3) Random start on return from night setback.
- 4) Intelligent reversing valve operation for extended life and quiet operation.
- 5) Night setback control from low temperature thermostat, with 2-hour override initiated by a momentary signal from the thermostat.
- 6) Dry contact night setback output for digital night setback thermostats.
- 7) Ability to work with heat/cool (Y, W) thermostats.
- 8) Ability to work with heat pump thermostats using O or B reversing valve control.
- 9) Single grounded wire to initiate night setback, or emergency shutdown.
- 10) Boilerless system control can switch automatically to electric heat at low loop water temperature.
- 11) Dehumidistat input providing fan control for dehumidification operating.
- 12) Multiple units connected to one sensor providing communication for up to 3 water source heat pumps.
- 13) Selection of boilerless changeover temperature set point.
- 14) Compressor relay staging for dual stage units or in master/slave applications.

c. E-Coated Airside Coil:

Provides protection from corrosion in coastal areas, marine applications or other areas in which corrosion may be an issue.

d. High-Static Blower:

Provides increased airflow at various static pressure conditions. Available in all sizes for 50RHC,RVC units.

e. Modulating Reheat Option:

Unit shall include a water-to-air coil placed after the evaporator coil.

f. Carrier PremierLink™ Controller:

This optional control will function with CCN and ComfortVIEW™ software. It shall also be compatible with ComfortLink™ controllers. It shall be ASHRAE 62-99 compliant and Internet ready. It shall accept a CO₂ sensor in the conditioned space and be Demand Control Ventilation (DCV) ready. The communication rate must be 38.4K or faster. It shall include an integrated economizer controller.

g. Optional Mute package shall consist of high technology sound attenuating materials that are strategically applied to the cabinet, in addition to the standard system, to further dampen sound.

2. Field-Installed Accessories:

- a. Aquazone™ Thermostat Controls:
 - 1) Programmable multi-stage thermostat with 7-day clock, holiday scheduling, large backlit display and remote sensor capability.
 - 2) Programmable 7-Day Light Activated Thermostat offers occupied comfort settings with lights on, unoccupied energy savings with lights off.
 - 3) Programmable 7-Day Flush Mount Thermostat offers locking coverplate with tamper proof screws, flush to wall mount, dual point with adjustable deadband, O or B terminal, and optional remote sensor.
 - 4) Programmable 5-Day Thermostat offers 2 stage heat, 2 stage cool, auto changeover, 5-minute built-in compressor protection, locking cover included.
 - 5) Non-programmable Thermostat with 2 heat stages, 2 cool stages, auto changeover, 5-minute built-in compressor protection, locking cover included.
 - 6) Loop Controller with six stages (2 stages for heating and 4 stages for heat rejection).
 - 7) Filter Rack (2 in.) to enhance the filtration system of the water source heat pump.

NOTE: Filter rack does not include filters.

- 8) Fire-Rated Hoses kits with a fixed MPT on one end and a swivel with an adapter on the other end. Hose kits can be either stainless steel or galvanized.
- 9) Ball Valves (Brass Body) for shut off and balancing water flow. Available with memory, with memory stop, and pressure temperature ports.
- 10) Y Strainers (Bronze Body) "Y" type configuration with a brass cap. Maximum operating pressure rating of 450 psi. Strainer screen made of stainless steel.
- 11) Solenoid Valves (Brass Body) provide slow operation for quiet system application.
- 12) Hose Kit Assemblies includes a ported ball valve with pressure temperature (P/T) plug ports, flexible stainless steel hose with swivel and nipple.
- 13) Return hose includes a ball valve, preset measure flow (gpm) with two P/T ports, flexible stainless steel hose with a swivel and nipple.
- 14) Remote sensors for Aquazone flush-mount thermostats.
- 15) PremierLink™ accessories for providing a fully integrated DDC system. Accessories include supply air temperature sensors, communicating room sensors, CO₂ sensors, and linkage thermostats.

Carrier Corporation • Syracuse, New York 13221

10-05

Carrier
A United Technologies Company

Manufacturer reserves the right to discontinue, or change at any time, specifications or designs without notice and without incurring obligations.

Book 11
Tab 5a

New Book 11
Tab 1IP4a

Pg 44

Catalog No. 04-52500003-01

Printed in U.S.A.

Form 50RHC,RVC-3PD

Replaces: 50RHC,RVC-2PD