La especificación de las Máquinas de Turing

0. Componentes.

 $\underline{Memoria}$. Es una cinta infinita, dividida en casilleros, cada uno de los cuales está ocupado por un $\underline{simbolo}$. Los símbolos conforman un $\underline{alfabeto}$ finito Σ que incluye al menos dos símbolos, uno de los cuales es distinguido, será representado #, y denominado \underline{blanco} . En cada momento de la ejecución de una máquina la cinta contendrá un número finito de símbolos distintos de #.

Uno de los casilleros de la cinta es distinguido y llamado el corriente. Por extensión, el símbolo que ocupa ese casillero es llamado el símbolo corriente.

<u>Control.</u> El control de ejecución está dado por una tabla cuyas claves son parejas formadas por un estado y un símbolo del alfabeto, y cuyos datos asociados son también parejas, formadas por una acción y un estado.

Los estados constituyen un conjunto finito Q que contiene dos elementos distinguidos \mathtt{i} y \mathtt{h} , llamados respectivamente el estado inicial y el estado terminal de la máquina. El estado terminal no forma parte de ninguna clave de la tabla.

Las acciones son: 1, \mathbf{r} y σ donde σ es cualquier símbolo, con los significados respectivos de mover el casillero corriente un lugar a la izquierda, moverlo un lugar a la derecha, y sobreescribir el símbolo corriente con σ sin mover el casillero corriente.

1. Operación.

<u>Configuraciones.</u> Llamamos configuración de una máquina de Turing a una pareja formada por un estado y una cinta (con un cierto contenido). La idea es que, dada una configuración y la tabla de control queda determinada la ejecución ulterior de la máquina. Cada máquina comenzará en el estado i y un cierto contenido (inicial) de la cinta y cambiará sucsivamente de configuración, de acuerdo a las reglas que presentamos aquí debajo.

<u>Notación.</u> En estas reglas la notación a usar para denotar (el contenido de) la cinta es la de letras x, y, s, σ para símbolos y la notación de vector usual para secuencias de símbolos. El símbolo corriente aparecerá subrayado. Los estados serán denotados por q, q'. Una transición entre una configuración γ y otra δ será notada $\gamma \triangleright \delta$. Por otro lado, la tabla de control de la máquina será llamada \mathcal{T} y la operación de lookup sobre ella será notada $\stackrel{\mathcal{T}}{\mapsto}$.

Reglas.

$$\frac{(q,s) \overset{\mathcal{T}}{\mapsto} (\mathtt{l},q')}{(q,\overline{ys}\,y\,\underline{s}\,\overline{xs}) \triangleright (q',\overline{ys}\,\underline{y}\,s\,\overline{xs})}$$

$$(q,s) \stackrel{\mathcal{T}}{\mapsto} (\mathtt{r},q')$$
$$(q,\overline{ys}\,\underline{s}\,\underline{x}\,\overline{xs}) \triangleright (q',\overline{ys}\,\underline{s}\,\underline{x}\,\overline{xs})$$

$$\frac{(q,s) \stackrel{\mathcal{T}}{\mapsto} (\sigma, q')}{(q, \overline{ys} \, \underline{s} \, \overline{xs}) \triangleright (q', \overline{ys} \, \underline{\sigma} \, \overline{xs})}$$

Una ejecución de una máquina de Turing es una secuencia de transiciones que comienza con una configuración donde el estado es i. Una ejecución finita exitosa es una que arriba a una configuración cuyo estado es h. Los lookups fallidos dan lugar a la cancelación de la ejecución.