## MATH211: Linear Methods I

Matthew Burke

Thursday 18<sup>th</sup> October, 2018

# Lecture on Thursday 18th October, 2018

Closest points

Cross product

Applications

Misc

#### Last time

Orthogonality

Projections

Closest points

# Closest points

## Line given by parametric equations



First we project onto the direction of the line:

$$\overrightarrow{PA} = \frac{d}{\|d\|} \cdot (Q - P) \frac{d}{\|d\|}$$

and then we can find A:

$$A = P + \frac{d}{\|d\|} \cdot (Q - P) \frac{d}{\|d\|}$$

(Use same technique for line in  $\mathbb{R}^n$  also.)

# Line given by normal



In this picture

$$\overrightarrow{PB} \| \overrightarrow{AQ}$$
 and  $\overrightarrow{PA} \| \overrightarrow{BQ}$ 

First we project onto the normal:

$$\overrightarrow{PB} = \frac{n}{\|n\|} \cdot (Q - P) \frac{n}{\|n\|}$$

and then we can find A:

$$A = Q - \frac{n}{\|n\|} \cdot (Q - P) \frac{n}{\|n\|}$$

(Use same technique for (n-1)-dimensional hyperplane in  $\mathbb{R}^n$  also.)

## Closest points on skew lines



## Closest points on skew lines



### Example

Find the closest point to

$$Q = \left[ \begin{array}{c} 3 \\ 2 \\ -1 \end{array} \right]$$

on the line

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + s \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

# Example

Example

Find the closest point to

on the line with equation 4x + 3y = -3.

Example

Find the closest point to

$$\left[\begin{array}{c}2\\3\\0\end{array}\right]$$

on the plane with equation 5x + y + z = -1.

### Examples

#### Example

Given the two lines

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

find points A on the first line and B on the second line such that the distance A to B is minimised.

# Cross product

## Motivation for cross product

The cross product  $u \times v$  measures how non-parallel u and v are.

$$u||v \iff \exists k. \ ku = v$$

which in  $\mathbb{R}^3$  means

$$ku_1 = v_1$$
  $u_1v_2 - u_2v_1 = 0$   
 $ku_2 = v_2$   $\implies$   $u_2v_3 - u_3v_2 = 0$   
 $ku_3 = v_3$   $u_3v_1 - u_1v_3 = 0$ 

### Definition of cross product

#### Definition

The cross product  $u \times v$  of u with v is

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_2v_3 - u_3v_2 \\ u_3v_1 - v_3u_1 \\ u_1v_2 - u_2v_1 \end{bmatrix}$$

Note that the the order has changed.

## Trigonometric definition of cross product



Alternatively:

$$u \times v = ||u|||v|| \sin \theta n$$

where n is the unit vector given by the 'right hand rule'.

# Properties of the cross product

#### **Theorem**

Let  $\vec{u}$ ,  $\vec{v}$  and  $\vec{w}$  be in  $\mathbb{R}^3$ .

- 1.  $\vec{u} \times \vec{v}$  is a vector.
- 2.  $\vec{u} \times \vec{v}$  is orthogonal to both  $\vec{u}$  and  $\vec{v}$ .
- 3.  $\vec{u} \times \vec{0} = \vec{0}$  and  $\vec{0} \times \vec{u} = \vec{0}$ .
- 4.  $\vec{u} \times \vec{u} = \vec{0}$ .
- 5.  $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$ .
- 6.  $(k\vec{u}) \times \vec{v} = k(\vec{u} \times \vec{v}) = \vec{u} \times (k\vec{v})$  for any scalar k.
- 7.  $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$ .
- 8.  $(\vec{v} + \vec{w}) \times \vec{u} = \vec{v} \times \vec{u} + \vec{w} \times \vec{u}$ .

### Example

### Example

Find  $\mu \times \nu$  where

$$u = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \text{ and } v = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

#### Example

Find all vectors orthogonal to

$$\left[\begin{array}{c}1\\-3\\2\end{array}\right] \text{ and } \left[\begin{array}{c}0\\1\\1\end{array}\right]$$

## Examples

## Example

Use a normal vector to give an equation for the plane passing through

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ -2 \\ 3 \end{bmatrix}$$

# **Applications**

# Area of a parallelogram



The area of the parallelogram is:

$$\|u\|\|v\|\sin\theta = \|u \times v\|$$

# Triple scalar (box) product

#### Definition

If u, v and w are vectors in  $\mathbb{R}^3$  then the *triple scalar product* (or box product) of u, v and w is

$$u \cdot (v \times w)$$

Note that the order of the vectors matters. In fact

#### Lemma

$$u \cdot (v \times w) = \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix}$$

which shows that it is the signed volume of the parallelepiped generated by u, v and w.

### **Examples**

#### Example

Find the area of the triangle having vertices

$$\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

#### Example

Find the volume of the parallelepiped determined by the vectors

$$\left[\begin{array}{c}2\\1\\-1\end{array}\right], \left[\begin{array}{c}1\\0\\2\end{array}\right] \text{ and } \left[\begin{array}{c}2\\1\\1\end{array}\right]$$

## Misc

# Cauchy-Schwarz inequality



If e is a unit vector then

$$|e \cdot v| \leq ||v||$$

More generally:

$$|u\cdot v|\leq \|u\|\|v\|$$

which is the *Cauchy-Schwarz* inequality.

## Triangle inequality

#### Theorem

If u and v are vectors in  $\mathbb{R}^n$  then

$$||u + v|| \le ||u|| + ||v||$$

#### **Theorem**

If u and v are vectors in  $\mathbb{R}^n$  then

$$|||u|| - ||v||| \le ||u - v||$$

# The Lagrange identity

#### Theorem

If u and v are in  $\mathbb{R}^3$  then

$$||u \times v||^2 = ||u||^2 ||v||^2 - (u \cdot v)^2$$

#### Example

Find equations for the lines through

$$\left[ egin{array}{c} 1 \ 0 \ 1 \ \end{array} 
ight]$$

that meet the line

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$

at the two points distance three from (1, 2, 0).

# Examples

#### Example

The diagonals of a parallelogram bisect each other.

#### Example

If ABCD is an arbitrary quadrilateral then the midpoints of the four sides form a parallelogram.