Actividad EVALUABLE 1 (Repaso de PRELIMINARES)

Responder de forma razonada a las cuestiones que se plantean.

Leandro Jorge Fdez. Vega DGIFM

1. Se denota por (Ω, \mathcal{A}, P) el espacio probabilístico base. Se considera la siguiente definición de medida de probabilidad:

Definition 1 $P: \mathcal{A} \longrightarrow [0,1]$, es una función de probabilidad si satisface los siguientes tres axiomas:

$$A1 P(A) \ge 0, \forall A \in \mathcal{A}$$

A2
$$P(\Omega) = 1$$

A3 Para cualquier secuencia $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{A}$ de sucesos disjuntos

$$P\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}P(A_n).$$

Demostrar, a partir de la definición anterior, las siguientes propiedades:

- a) $P(\emptyset) = 0$.
- b) Probabilidad del suceso complementario: $p(A^c) = 1 P(A)$:
- c) Aditividad finita para procesos disjuntos: $P\left(\bigcup_{n=1}^{N} A_n\right) = \sum_{n=1}^{N} P(A_n)$.
- d) Probabilidad de la diferencia y monotonía: $B\subseteq A\in\mathcal{A},\ P(A-B)=P(A)-P(B),\ P(B)\leq P(A).$
- e) $A, B \in \mathcal{A}, P(A \cup B) = P(A) + P(B) P(A \cap B).$
- f) Principio de inclusión-exclusión para la unión finita de sucesos no disjuntos.
- g) Subaditividad: $P(\bigcup_{n\in\mathbb{N}}A_n) \leq \sum_{n\in\mathbb{N}}P(A_n)$.
- h) Designaldad de Boole: $P(\bigcap_{n\in\mathbb{N}}A_n)$. $\geq 1-\sum_{n\in\mathbb{N}}P(A_n^c)$

A)
$$P(\emptyset) = 0$$

Sec. $A_1 = A$ $A_n = \emptyset$ $\forall n \ge 2$, $n \in \mathbb{N}$
 $P(A) = P(\bigcup_{n \in \mathbb{N}}^{A_n}) = \underbrace{P(A_n)} = P(A) + \underbrace{P(\emptyset)}_{n = 2}^{\infty} P(\emptyset) = 0$
 $= P(A) = P(A) + \underbrace{P(\emptyset)}_{n = 2}^{\infty} P(\emptyset) = 0 \Rightarrow P(\emptyset) = 0$, $P(\emptyset) = 0$, $P(\emptyset)$

B)
$$P(A^c) = 1 - P(A)$$

Sec $A_1 = A$ $A_2 = A^c$ $A_n = Q$ $\forall n \ge 3$
 $P(x) = P(QA_n) = P(A_n) = P(A_n) + P(A_n) = 1 = 1$
 $P(A^c) = 1 - P(A_n)$

C)
$$P(\bigcup_{n=1}^{N}A_{n}) = \sum_{n=1}^{N}P(A_{n})$$
, $A_{i}\cap A_{i} = \emptyset$

Vitige [1-N]

Sea NINEN

Tomemos la sucessión $A_{i} \neq \emptyset$, $\forall n \in \mathbb{N}$,

 $A_{i} = \emptyset$ $\forall n > \mathbb{N}$; con $A_{i}\cap A_{j} = \emptyset$ $\forall i \neq j \in \mathbb{N}$
 $P(\bigcup_{n=1}^{N}A_{n}) = P(\bigcup_{n \in \mathbb{N}}A_{n}) = \sum_{n \in \mathbb{N}}P(A_{n}) = \sum_{n=1}^{N}P(A_{n})$

Pues $P(A_{n}) = \emptyset$ $\forall A_{n} \in A/(n > \mathbb{N})$

D)
$$B \subseteq A \in A$$
, $P(A-B) = P(A) - P(B)$, $P(B) \subseteq P(A)$
Veamos $P(A-B) = P(A) - P(A \cap B)$
 $VA_1B \in A$, $A = (A-B) \cup (A \cap B) = 0$
 $P(A) = P((A-B) \cup (A \cap B)) = P(A-B) + P(A \cap B) = 0$
 $P(A-B) = P(A) - P(A \cap B)$
 $Si \quad B \subseteq A \implies A \cap B = B \implies P(A-B) = P(A) - P(B)$
 $P(A-B) = P(A) - P(B) \ge 0 \implies P(B) \le P(A)$

F) P(AUB) = P(A)+P(B)-P(A)B) VAIBEA

$$A = (A - B) \cup (A \cap B) = 0$$
 $P(A) = (P(A - B) \cup (A \cap B)) = P(A - B) + P(A \cap B)$
 $P(B) = P((B - A) \cup (B \cap A)) = P(B - A) + P(B \cap A)$
 $P(A) + P(B) = P(A - B) + P(A \cap B) + P(B - A) + P(B \cap A) = 0$
 $P(A) + P(B) = P(A \cap B) = P(A - B) + P(B - A) + P(B \cap A) = 0$
 $P(A) + P(B) = P(A \cap B) = P(A - B) + P(B - A) + P(B \cap A) = 0$
 $P(A - B) \cup (B - A) \cup (B \cap A) = 0$
 $P(A \cup B) = P(A) + P(B) = 0$
 $P(A \cup B) = P(A) + P(B) = 0$

$$H) P(\bigcap_{n \in \mathbb{N}} A_n) \ge 1 - \underset{n \in \mathbb{N}}{\mathbb{Z}} P(A_n)$$