Introdução à Computação Gráfica

Claudio Esperança Paulo Roma Cavalcanti

Estrutura do Curso

- Ênfase na parte prática
- Avaliação através de trabalhos de implementação
 - C / C++
 - OpenGL c/ GLUT
- Grau (nota) baseado no êxito, na qualidade e na criatividade das soluções

Conteúdo do Curso

- Introdução
- Gráficos vetoriais e matriciais
- Dispositivos gráficos
- Programação gráfica com OpenGL
- Geometria
- Câmeras e projeções
- Modelagem geométrica
- Cor
- Iluminação local e global

- Colorização (shading)
- Visibilidade
- Recorte
- Rasterização
- Mapeamentos
 - Textura
 - Rugosidade
 - Ambiente
- Técnicas sobre imagens
 - Dithering
 - Quantização de cores
 - Codificação

Plataforma para desenvolvimento

- Ambiente Windows
 - Compiladores Cygwin ou Mingw32
 - Fonte deve ser compilável em Linux
 - (Ferramentas proprietárias não são aceitáveis)
- Ambiente Linux
 - gcc / g++
 - Mesa
 - (ferramentas instaladas por default na maioria das distribuições)

Bibliografia

- Computer Graphics Principles and Practice Foley - van Dam - Feiner - Hughes 2nd edition in C - Addison and Wesley
- Notas do Curso ministrado na Universidade de Maryland pelo Prof. David Mount
 - ftp://ftp.cs.umd.edu/pub/faculty/mount/427/427lects.ps.gz
 - http://www.lcg.ufrj.br/~esperanc/CG/427lects.ps.gz
- Apostila Prof. Paulo Roma
 - http://www.lcg.ufrj.br/compgraf1/downloads/apostila.pdf
 - http://www.lcg.ufrj.br/compgraf1/downloads/apostila.ps.gz

Bibliografia OpenGL

- OpenGL® Programming Guide, 2nd Edition. Mason Woo, Jackie Neider, Tom Davis. Addison Wesley.
 - http://www.lcg.ufrj.br/redbook
- Manual de referência online
 - http://www.lcg.ufrj.br/opengl
- Sítio oficial do OpenGL
 - www.opengl.org

Computação Gráfica

Análise (reconhecimento de padrões) **Modelos Imagens** Matemáticos Síntese (rendering) Modelagem **Processamento** de Imagens

Disciplinas relacionadas

- Computação
 - Algoritmos
 - Estruturas de Dados
 - Métodos Numéricos
- Matemática
 - Geometria,
 - Álgebra Linear

- Física
 - Ótica
 - Mecânica
- Psicologia
 - Percepção
- Artes

Aplicações

- Desenho Assistido por Computador (CAD)
- Desenho Geométrico Assistido por Computador (CAGD)
- Sistemas de Informações Geográficas (GIS)
- Visualização Científica
- Visualização Médica
- Educação
- Entretenimento

Representações Gráficas

- Gráficos "Vetoriais"
 - Representados por coleções de objetos geométricos
 - Pontos
 - Retas
 - Curvas
 - Planos
 - Polígonos

- Gráficos "Matriciais"
 - Amostragem em grades retangulares
 - Tipicamente, imagens digitais
 - Matrizes de "pixels"
 - Cada pixel representa uma cor
 - Dados volumétricos
 - Imagens médicas
 - Cada pixel representa densidade ou intensidade de algum campo

Representações Vetoriais

- Permitem uma série de operações sem (quase) perda de precisão
 - Transformações lineares / afim
 - Deformações
- Por que "quase"? Estruturas de dados utilizam pontos e vetores cujas coordenadas são números reais
 - É necessário usar aproximações
 - Representação em ponto-flutuante
 - Números racionais
- Complexidade de processamento = O (nº vértices / vetores)
- Exibição
 - Dispositivos vetoriais
 - Dispositivos matriciais (requer amostragem, i.e., rasterização)

Representações Matriciais

- Representação flexível e muito comum
- Complexidade de processamento = O (nº de pixels)
- Muitas operações implicam em perda de precisão (reamostragem)
 - Ex.: rotação, escala
 - Técnicas para lidar com o problema
 - Ex.: técnicas anti-serrilhado (anti-aliasing)
- Exibição
 - Dispositivos matriciais
 - Dispositivos vetoriais (requer uso de técnicas de reconhecimento de padrões)

Conversão entre representações

Dispositivos Gráficos

- Dispositivos vetoriais
 - Terminais gráficos vetoriais (obsoletos)
 - Traçadores (plotters)
 - Dispositivos virtuais
 - Ex.: Linguagens de descrição de página (HPGL / Postscript)
 - Rasterização implícita
- Dispositivos Matriciais
 - Praticamente sinônimo de dispositivo gráfico
 - Impressoras, displays

Displays

- Resolução espacial
 - ◆ Tipicamente de 640x480 até 1600x1200
 - Tendência de aumento
- Resolução no espaço de cor
 - Monocromático (preto e branco)
 - Praticamente restrito a PDAs e equipamentos de baixo custo
 - Tabela de cores
 - Cada pixel é representado por um número (tipicamente 8 bits de 0 a 255) que indexa uma tabela de cores (tipicamente RGB 24 bits)
 - Poucas (ex.: 256) cores simultâneas mas cada cor pode ser escolhida de um universo grande (ex.: 2²⁴)
 - Problema da quantização de cores
 - RGB
 - Cor é expressa por quantidades discretas de vermelho (*red*), verde (*green*) e azul (*blue*)
 - Tipicamente 24 bits (8 bits para cada componente)
 - Quando o número de bits não é divisível por 3, a resolução do azul costuma ser menor que das outras 2 componentes

Arquitetura de Sistemas Gráficos

Arquitetura de Sistemas Gráficos

Processador (acelerador) gráfico

- Hardware especializado
- Uso de paralelismo para atingir alto desempenho
- Alivia a CPU do sistema de algumas tarefas, incluindo:
 - Transformações
 - Rotação, translação, escala, etc
 - Recorte (clipping)
 - Supressão de elementos fora da janela de visualização
 - Projeção (3D →2D)
 - Mapeamento de texturas
 - Rasterização
 - Amostragem de curvas e superfícies paramétricas
 - Geração de pontos a partir de formas polinomiais
- Normalmente usa memória separada da do sistema
 - Maior banda

Programação Gráfica

- À primeira vista: basta desenhar
 - Uma subrotina para desenhar cada tipo de objeto
- Mas ...
 - Como fazer interação?
 - Como estruturar a cena?
 - Como controlar os atributos dos objetos?
 - Como resolver problemas de visibilidade?
 - Como suportar diversos dispositivos gráficos?
 - Como fazer programas independentes dos sistemas operacionais?
- Ferramentas:
 - APIs gráficas (ex.: OpenGL, PHIGS, Java3D)
 - Camadas de interface com o S.O. / sistema de janelas