

Hackathon: Energía Hidropredictiva

Grupo 3: Código Lyoko

Pablo Ben Lestón

Iván González Cortegoso

Hugo Miguel Reboreda

Cristián Pérez Gómez

Brais Pérez Vázquez

Datos Disponibles

Tiempo Meteorológico

- 2132 puntos repartidos por toda España
- 24 características
- Medición cada 6 horas

Caudal Aforos

- 5 Aforos
- Medición del caudal diario

Caudal Emplazamientos

- 5 Emplazamientos
- Medición del caudal diario
- Predicción de 26 fechas

0 0 0 0 0 0 0 0 0

Preprocesado: Esquema de Entrada

Tiempo Metereológico: Reducción del 99% de las mediciones (De 2132x4=8528 mediciones por día a 12x5=60 mediciones) *Características:* reducción a menos de la mitad de las características (De 46 características a 20)

Modelos

- Único modelo para los 5 emplazamientos
- Entrada: 20 Características
- Salida: 2 Características
 - (Predicción 24h, Predicción 48h)
- Modelos con Mejores Resultados:
 - ExtraTreeRegressor: Arboles de decisión
 - LSTM: Predicción series temporales

Modelo: ExtraTreeRegressor

- Agregación de árboles de decisión aleatorizados.
 - Cada árbol es entrenado independientemente con conjunto de datos aleatorios.
 - Agregación: Bootstrap Aggregating.
- Parámetros:
 - Número de arboles: 100
- Entrenamiento: Kfold Cross Validation
 - 7 Particiones
 - Generadas Aleatoriamente

Resultados: ExtraTreeRegressor

Fold \ Métricas	24 Horas	48 Horas
Fold 1	5.89	6.98
Fold 2	4.81	6.32
Fold 3	6.29	8.13
Fold 4	5.65	7.98
Fold 5	5.95	7.75
Fold 6	6.62	7.89
Fold 7	5.81	7.63

Modelos: LSTM

- Red Neuronal Recurrente para predecir series temporales.
- Modelo más complejo -> Necesita más datos.
- Entrenamiento sin validación ni test.
 - Aplicación de numerosas técnicas para paliar sobreentrenamiento.
- Modelo:
 - BiLSTM
 - Capa Normalización
 - LSTM
 - Capa Normalización
 - Capa de Atención
 - Dropout
 - Capa Completamente Conectada
- Entrada: **7 intervalos de tiempo** (una semana)
- Encontrar el modelo óptimo -> Complejo

Comparativa y Eficiencia Energética

ExtraTreeRegressor

- Mejores Resultados
 - *MAE*: **24.13 m3/h**
 - Consumo 0.0011KWh

LSTM

- Peores Resultados
 - MAE: 24.44 m3/h
 - Consumo 0.0057KWh

5 Veces Más

- Energy consumed for RAM: 0.000127 kWh. RAM Power: 5.860208988189697 W
- Energy consumed for all GPUs: 0.000052 kWh. Total GPU Power: 3.697161563355793 W
- Energy consumed for all CPUs: 0.001012 kWh. Total CPU Power: 42.5 W
- 0.001191 kWh of electricity used since the beginning.

- Energy consumed for RAM: 0.000449 kWh. RAM Power:
 5.860208988189697 W
- Energy consumed for all GPUs: 0.001978 kWh. Total GPU Power: 36.948914255800524 W
- Energy consumed for all CPUs: 0.003351 kWh. Total CPU Power: 42.5 W
- 0.005778 kWh of electricity used since the beginning.

Conclusiones

Análisis

- Reducción 99% Datos
- ExtraTreeRegressor
 - Más Sencillos
 - Más Eficientes
 - Mejores Resultados
 - Menor Escalabilidad
- LSTM
 - Más Complejo
 - Más Ineficiente
 - Mayor Escalabilidad

Aplicación

- 1. Gestión de recursos
- 2. Prevención de riesgos
- 3. Hidroelectricidad
- 4. Monitorizar Cambio Climático

Próximos Avances

- 1. Aumentar los datos:
 - Más Emplazamientos
 - Más Intervalo de Tiempo
- 2. Conocimiento Metereológico
- Implementación en un Entorno Real