CMPT285 Homework 4 (due Tuesday, Feb. 25)

- 1. (Problem 1 on page 152 from Rosen) Why is f not a function from \Re to \Re if
 - f(x) = 1/x?
 - $f(x) = \sqrt{x}$?
 - $f(x) = \pm \sqrt{x^2 + 1}$?
- 2. (Problem 9 on page 153 from Rosen) Find these values.
 - [3/4].
 - [7/8].
 - $\bullet \lceil -3/4 \rceil$.
 - [-7/8].
 - [3].
 - \bullet $\lfloor -1 \rfloor$.
 - $\lfloor 1/2 + \lceil 3/2 \rceil \rfloor$.
 - $\lfloor 1/2 \lfloor 3/2 \rfloor \rfloor$.
- 3. (Problem 21 on page 153 from Rosen) Give an explicit formula for a function from the set of integers to the set of positive integers that is
 - one-to-one but not onto.
 - onto, but one-to-one.
 - one-to-one and onto.
 - neither one-to-one nor onto.
- 4. (Problem 23 on page 153 from Rosen) Determine whether each of the following is a bijection from \Re to \Re .
 - f(x) = 2x + 1.
 - $f(x) = x^2 + 1$.
 - $f(x) = x^3$.
 - $f(x) = (x^2 + 1)/(x^2 + 2)$.
- 5. (Problem 35 on page 154 from Rosen) If f and $f \circ g$ are onto, does it follow that g is onto? Justify your answer.
- 6. (Problem 3 on page 167 from Rosen) What are the terms a_0, a_1, a_2 , and a_3 of the sequence $\{a_n\}$, where a_n equals
 - $2^n + 1$?
 - $(n+1)^{n+1}$?

- |n/2|?
- $|n/2| + \lceil n/2 \rceil$?
- 7. (Problem 29 on page 169 from Rosen) What are the values of these sums?
 - $\sum_{k=1}^{5} (k+1)$
 - $\sum_{k=0}^{4} (-2)^k$
 - $\sum_{k=1}^{10} 3$
 - $\sum_{k=0}^{8} (2^{k+1} 2^k)$
- 8. (Problem 3 on page 176 from Rosen) Determine whether each of these sets is countable or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
 - all bit strings not containing the bit 0.
 - all positive rational numbers that cannot be written with denominators less than 4.
 - the real numbers not containing 0 in their decimal representation.
 - the real numbers containing only a finite number of 1s in their decimal representation.