

Edexcel A Level Maths: Pure

7.4 Further Applications of Differentiation

Contents

- * 7.4.1 Applications of the Second Derivative
- * 7.4.2 Points of Inflection
- * 7.4.3 Connected Rates of Change

Head to www.savemyexams.com for more awesome resources

7.4.1 Applications of the Second Derivative

Your notes

Applications of the Second Derivative

What applications of the second derivative do I need to know?

- The **second order derivative** (or simply **second derivative**) is encountered at AS level
 - At AS level second derivatives are used to help determine the nature of a stationary point
- At A level you need to be able to use the second derivative to determine if a function is convex or concave on a given interval
 - Where a function is **convex** its graph 'curves up' and its tangent lines lie below the graph
 - Where a function is **concave** its graph 'curves down' and its tangent lines lie above the graph

- It's the sign of the second derivative (+ or -) that's important:
 - A function f(x) is **convex** on a given interval if and only if $f''(x) \ge 0$ for every value of x in the interval
 - A function f(x) is **concave** on a given interval if and only if $f''(x) \le 0$ for every value of x in the interval

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Copyright © Save My Exams. All Rights Reserved

Examiner Tip

• To get full marks in an exam your working needs to include the condition for a function to be convex or concave.

Worked example

Find the interval on which the function

$$f(x) = 2x^3 - 6x^2 + 13x - 7$$
 is convex.

$$f'(x) = 6x^2 - 12x + 13$$
 FIND FIRST DERIVATIVE

 $f''(x) = 12x - 12$ FIND SECOND DERIVATIVE

 $f(x) = 12x - 12$ STATE CONDITION FOR FUNCTION TO BE CONVEX

12x ≥ 12

x ≥ 1

f(x) IS CONVEX ON THE INTERVAL [1,∞)

Copyright © Save My Exams. All Rights Reserve

7.4.2 Points of Inflection

Your notes

Points of Inflection

What is a point of inflection?

- At AS level you encountered points of inflection when discussing **stationary points**
 - When the sign of the first derivative (ie of the gradient) is the same on both sides of a stationary point, then the stationary point is a point of inflection

Copyright © Save My Exams. All Rights Reserved

- A point of inflection does not have to be a stationary point however
- A point of inflection is any point at which a curve changes from being convex to being concave
 - This means that a point of inflection is a point where the second derivative changes sign (from positive to negative or vice versa)

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Copyright © Save My Exams. All Rights Reserved

• To find the points of inflection of a curve with equation y = f(x):

Page 7 of 18

Head to www.savemyexams.com for more awesome resources

STEP 5

PUT THE x-COORDINATES INTO f(x) TO FIND CORRESPONDING y-COORDINATES

Copyright © Save My Exams. All Rights Reserved

WHEN CHOOSING TEST VALUES OF x 'TO THE LEFT OF' (i.e. A LITTLE BIT LESS THAN) AND 'TO THE RIGHT OF' (i.e. A LITTLE BIT MORE THAN) THE x COORDINATE OF A POSSIBLE POINT OF INFLECTION

- · DO CHOOSE A CONVENIENT POINT WHERE POSSIBLE (x = 0 AND x = 1 ARE BOTH VERY EASY TO PUT INTOFORMULAS FOR EXAMPLE)
- · DO NOT HOWEVER CHOOSE AN x VALUE TO THE LEFT OR RIGHT THAT JUMPS PAST THE x-COORDINATE OF ANOTHER POSSIBLE POINT OF INFLECTION!

Examiner Tip

• Remember – the first derivative (ie the gradient) does NOT have to be zero at a point of inflection!

✓ Worked example	

Your notes

2

Find any point(s) of inflection for the curve with equation $y = e^x(2x^2 + 5x + 4)$.

In your answer, give coordinates accurate to 3 decimal places.

STEP 1:
$$f(x) = e^{x}(2x^{2} + 5x + 4)$$
 $f'(x) = e^{x}(2x^{2} + 5x + 4) + e^{x}(4x + 5)$

• PRODUCT RULE

 $f'(x) = e^{x}(2x^{2} + 9x + 9)$

STEP 2:
$$f''(x) = e^x(2x^2 + 9x + 9) + e^x(4x + 9)$$

$$f''(x) = e^x(2x^2 + 13x + 18)$$
FIND SECOND DERIVATIVE

• PRODUCT RULE AGAIN

STEP 3:
$$e^{x}(2x^{2} + 13x + 18) = 0$$

 $2x^{2} + 13x + 18 = 0$ ($e^{x} > 0$ FOR ALL x)
 $(2x + 9)(x + 2) = 0$
 $x = -4.5$ $x = -2$

STEP 4: WHEN
$$x = -5$$
,
 $f''(x) = e^{-5}(2(-5)^2 + 13(-5) + 18)$
 $= 3e^{-5} > 0$

CHECK SIGN OF $f''(x)$
TO LEFT AND RIGHT
OF EACH POINT

Page 10 of 18

SOLVE f''(x) = 0

WHEN
$$x = -3$$
,
 $f''(x) = e^{-3}(2(-3)^2 + 13(-3) + 18)$
 $= -3e^{-3} < 0$

WHEN
$$x = 0$$
,
 $f''(x) = e^{0}(2(0)^{2} + 13(0) + 18)$
 $= 18 > 0$

f"(x) CHANGES SIGN AT BOTH POINTS, SO BOTH ARE POINTS OF INFLECTION

STEP 5: WHEN
$$x = -4.5$$
, $y = e^{-4.5}(2(-4.5)^2 + 5(-4.5) + 4) = 0.24439...$ FIND y-COORDINATES

FIND

WHEN
$$x=-2$$
,
 $y = e^{-2}(2(-2)^2 + 5(-2) + 4) = 0.27067...$

THE POINTS OF INFLECTION ARE (-4.5, 0.244) AND (-2, 0.271)

Copyright © Save My Exams. All Rights Reserved

7.4.3 Connected Rates of Change

Your notes

Connected Rates of Change

What are connected rates of change?

• In situations involving more than two variables you can use the **chain rule** to connect multiple rates of change into a single equation

e.g. THE VOLUME V,OF, A CUBE IS INCREASING AT A CONSTANT RATE OF 3 cm³ PER SECOND.

ASSUMING THAT THE SHAPE REMAINS CUBICAL AT ALL TIMES, FIND THE RATE OF CHANGE OF THE SIDE LENGTH, S, IN cm PER SECOND AT THE MOMENT WHEN S = 5 cm.

FOR A CUBE, $V = s^3$

SO
$$\frac{dV}{ds} = 3s^2$$

USE DIFFERENTIATION TO GET THE 'MISSING' DERIVATIVE FROM THE CHAIN RULE EQUATION

SO
$$\frac{ds}{dt} = \frac{\frac{dV}{dt}}{\frac{dV}{ds}} = \frac{3}{3s^2} = \frac{1}{s^2}$$
 REARRANGE

WHEN s = 5,

$$\frac{ds}{dt} = \frac{1}{5^2} = \frac{1}{25} \text{ cm/sec}$$

Copyright © Save My Exams. All Rights Reserved

- Equations involving derivatives (ie rates of changes) are known as differential equations
 - These can be solved using methods of integration (see Differential Equations)
 - However setting up the equation from the information given can involve the chain rule and connected rates of change

Your notes

e.g. A RIGHT-ANGLED TRIANGLE HAS A BASE OF 3p cm
AND A HEIGHT OF 2p cm, WHERE p > 0 IS A PARAMETER
THAT IS INCREASING OVER TIME. THE RATE OF
INCREASE OF p IS SUCH THAT THE RATE OF INCREASE
OF THE THE AREA OF THE TRIANGLE, A, IS PROPORTIONAL
TO THE SQUARE ROOT OF p. WRITE DOWN A DIFFERENTIAL
EQUATION FOR THE RATE OF CHANGE OF p.

WHERE k IS A POSTITVE CONSTANT

THE AREA OF THE TRIANGLE IS

$$A = \frac{1}{2} \times 3p \times 2p = 3p^2$$

SO
$$\frac{dA}{dp} = 6p$$

THEN
$$\frac{dA}{dt} = \frac{dA}{dp} \times \frac{dp}{dt}$$
$$k\sqrt{p} = 6p\left(\frac{dp}{dt}\right)$$

SUBSTITUTE
AND REARRANGE

$$AND \quad \frac{dp}{dt} = \frac{k\sqrt{p}}{6p}$$

$$\frac{dp}{dt} = \frac{k}{2}$$
 (WHERE k IS A POSITIVE CONSTANT)

at 6/p

Copyright © Save My Exams, All Rights Reserved

• Note from the examples above that you will often need to differentiate a formula to get one of the rates of change you need

Examiner Tip

- These problems can involve a lot of letters be sure to keep track of what they all refer to.
- Be especially sure that you are clear about which letters are variables and which are constants these behave very differently when differentiation is involved!

Worked example	
	li
	H
	li
	H
	li
	H

Your notes

2

In a manufacturing process, plastic spheres are produced in such a way that the volume, V, of a sphere increases at a constant rate of $10~\rm cm^3$ per second. Find the rate of change of the surface area, A, of a sphere at the moment when the surface area is equal to $32\pi~\rm cm^2$.

$$V = \frac{4}{3} \text{Tr}^3$$
 (WHERE r IS THE RADIUS)

WRITE V IN TERMS OF A

$$A = 4\pi r^2$$

$$A^{\frac{3}{2}} = (4 \pi r^2)^{\frac{3}{2}} = 8 \pi^{\frac{3}{2}} r^3 = 8 \pi \sqrt{\pi} r^3$$

$$\frac{8\pi\sqrt{\pi}r^3}{6\sqrt{\pi}} = \frac{4}{3}\pi r^3$$
 SO $V = \frac{1}{6\sqrt{\pi}}A^{\frac{3}{2}}$

AND
$$\frac{dV}{dA} = \frac{3}{2} \times \frac{1}{6\sqrt{11}} A^{\frac{3}{2}-1} = \frac{1}{4\sqrt{11}} A^{\frac{1}{2}}$$

DIFFERENTIATE TO FIND THE 'MISSING' DERIVATIVE

SO
$$\frac{dV}{dt} = \frac{dV}{dA} \times \frac{dA}{dt}$$

SUBSTITUTE
AND REARRANGE

$$10 = \frac{1}{4\sqrt{11}} A^{\frac{1}{2}} \left(\frac{dA}{dt} \right)$$

AND
$$\frac{dA}{dt} = \frac{40\sqrt{11}}{A^{\frac{1}{2}}} = 40\sqrt{\frac{11}{A}}$$

WHEN
$$A = 32\Pi$$
,

$$\frac{dA}{dt} = 40\sqrt{\frac{\Im}{32\Im}} = \frac{40}{\sqrt{32}} = 5\sqrt{2} \text{ cm}^2/\text{sec}$$

Copyright © Save My Exams, All Rights Reserved

