Lab Manual for Embedded System Design

Lab No. 7

Interfacing DC Motor with Arduino & PWM

Objectives

In this lab students are introduced to Pulse width modulation (PWM), motor driver and interfacing of DC motor with Arduino Uno

LAB # 7

PWM & DC motor interfacing with Arduino Uno

Introduction

Pulse width modulation (PWM):

Pulse width modulation (PWM) is an important feature in Arduino Uno, it is used to control the brightness of LED or speed of a DC motor by varying the duty cycle of PWM. Figure 7.1 shows PWM signals with different duty cycles.

Fig 7.1: PWM signals

Arduino Uno has pin no 3, 5, 6 9,10 & 11 that can be used to generate a PWM signal, these pins are labelled with (~) sign on Arduino Uno board. Arduino IDE has a built in function analogWrite () that is used to generate PWM signal.

analogWrite (0) means a signal of 0% duty cycle.

analogWrite (127) means a signal of 50% duty cycle.

analogWrite(255) means a signal of 100% duty cycle.

DC Motor Driver:

DC motor can be interfaced to Arduino Uno through L298N motor driver. L298N is a dual channel H-bridge IC capable of controlling two Dc motors. Simplified circuit diagram of H-bridge is shown in figure 7.2:

Fig 7.2: Single channel H-bridge.

When transistors Q1 & Q4 are on and Q2 & Q3 are off, motor runs in clock wise direction, similarly when Q1 & Q4 are off and Q2 & Q3 are on, motor runs in anti-clock wise direction. Diode across the transistors are to prevent back EMF from the motor.

Time Boxing

0		
Activity Name	Activity Time	Total Time
Login Systems + Setting up Proteus & Arduino	3 mints + 5 mints	8 mints
Environment		
Walk through Theory & Tasks	60 mints	60 mints
Implement Tasks	80 mints	80 mints
Evaluation Time	30 mints	30 mints
	Total Duration	178 mints

Objectives

To Study the PWM generation & DC motor Interfacing with Arduino Uno.

Lab Tasks/Practical Work

1. Write a program to generate a PWM signal with duty cycles (25%, 50%, 75% & 100%)


```
Code:

void setup() {
  pinMode(11,OUTPUT);
  }

void loop() {

analogWrite(11,63.75); /25 % duty cycle
  delay(200);
  analogWrite(11,127); // 50 % duty cycle
  delay(200);
  analogWrite(11,191); // 75 % duty cycle
  delay(200);
  analogWrite(11,255); // 100 % duty cycle
  delay(200);
}
```

2. Write a program to interface DC motor with Arduino Uno.


```
Code:
int in1=10;
int in2=9;
int en=8;

void setup()
{
     pinMode(in1, OUTPUT);
     pinMode(in2, OUTPUT);
     . pinMode(en, OUTPUT);
}
```

```
void loop()
       digitalWrite(en, HIGH);
                                            // Activating the Channel 1 of L293D.
                                            // Making the in1 at HIGH Logic Level.
       digitalWrite(in1, HIGH);
       digitalWrite(in2, LOW);
                                            // Making the in2 at LOW Logic Level.
                                           // Wait for 5 seconds.
       delay(5000);
       digitalWrite(en, LOW);
                                            // De-Activating the Channel 1 of L293D.
       delay(1000);
                                            // Wait for 1 seconds.
       digitalWrite(en, HIGH);
                                            // Activating the Channel 1 of L293D.
       digitalWrite(in2, HIGH);
                                            // Making the in2 at HIGH Logic Level.
       digitalWrite(in1, LOW);
                                            // Making the in1 at LOW Logic Level.
       delay(5000);
       digitalWrite(en, LOW); // De-Activating the Channel 1 of L293D.
       delay(1000);
}
```

3. Write a program in Arduino Uno to control the speed of DC motor using PWM.