Worksheet 5 (September 22nd and 24th)

1. Determine which of the following sets are subspaces of the indicated vector spaces and give reasons. For any sets that are subspaces, find a matrix A such that $W_i = Null(A)$ or $W_i = Col(A)$.

(a)
$$W_1 = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a - 2b = c, 4a + 2c = 0 \right\} \subseteq \mathbb{R}^3,$$

(b) $W_2 = \left\{ \begin{bmatrix} a - b \\ c \\ a + c \\ a - 2b - c \end{bmatrix} : a, b, c \in \mathbb{R} \right\} \subseteq \mathbb{R}^4,$
(c) $W_3 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a \cdot b \ge 0 \right\} \subseteq \mathbb{R}^2.$
(d) $W_4 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} : a^2 + b^2 \le 1 \right\} \subseteq \mathbb{R}^2.$

Also sketch the sets W_3 and W_4 and give geometric reasons why W_3 and W_4 either are or are not subspaces of \mathbb{R}^2 .

2. Is
$$H = \left\{ \begin{bmatrix} a+1 \\ a \end{bmatrix} : a \text{ in } \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^2 ? Why or why not? Is $K = \left\{ \begin{bmatrix} a+1 \\ b \end{bmatrix} : a \text{ and } b \text{ in } \mathbb{R} \right\}$ a subspace of \mathbb{R}^2 ? Why or why not?

3. Are the following subspaces of $M_{2\times 2}$, the set of all 2×2 matrices?

(a) S, the set of all
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, such that $ad - bc = 0$

- (b) V, the set of all 2×2 matrices such that $B^T = B$
- **4.** For the 3×5 matrix

$$A = \begin{bmatrix} 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

determine the nullspace, Nul(A), of A. Write your answer as the span of a set of vectors.

5. Consider the 2×2 matrix

$$A = \begin{bmatrix} 2 & -6 \\ -5 & 15 \end{bmatrix}.$$

Determine which of the following vectors

$$\begin{bmatrix} -6 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 15 \end{bmatrix}, \begin{bmatrix} 4 \\ -10 \end{bmatrix}$$

belong to the column space, Col(A), of A. Also, find B such that Col(A) = Nul(B).

6. Let us consider the vector space $M_{m \times n}$ of $m \times n$ -matrices. We can think of a **grayscale picture** consisting of $m \times n$ many pixels as a matrix $(a_{ij})_{1 \le i \le m, 1 \le j \le n}$ in this vector space where all the a_{ij} 's are between 0 and 1. Here the entry a_{ij} of a grayscale picture represents the grayscale value of the pixel at position i, j in this picture. So the value 1 means the pixel is white and 0 means the pixel is black. Many operations on this vector space correspond to functions your favorite image manipulation software can carry out. For example, let P_1 and P_2 be two grayscale pictures. Then taking the linear combination $\frac{1}{2}P_1 + \frac{1}{2}P_2$ is the same as blending the two pictures together. For example,

In this exercise we will look at a few other operations.

- (a) Which vector space operation of $M_{m \times n}$ corresponds to changing the brightness of a grayscale picture?
- (b) Let P be a grayscale picture and let B be the $m \times n$ -matrix all whose entries are 1. Calculating B-P correspond to which function of your favorite image manipulation software?
- (c) Let suppose that m = n. Let P be a grayscale picture and let C be the $m \times m$ -matrix of the form

$$\begin{bmatrix} 0 & \dots & 0 & 1 \\ \vdots & 0 & 1 & 0 \\ 0 & \dots & 0 & \vdots \\ 1 & 0 & \dots & 0 \end{bmatrix}.$$

What happens to the picture P if you multiply it with C from left (ie. calculate CP)? What happens to P if you multiply it with C from right?

The following may be useful in the above problems:

Definition. A subspace of a vector space V is a subset H of V that has three properties:

- (1) The zero vector V is in H.
- (2) For each \mathbf{u} and \mathbf{v} in H, $\mathbf{u} + \mathbf{v}$ is in H. (In this case, we say H is closed under vector addition.)
- (3) For each **u** in H and each scalar $c \in \mathbb{R}$, $c\mathbf{u}$ is in H. (In this case, we say H is **closed under scalar multiplication**.)

Theorem. If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in a vector space V, the the subset span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ of V, is also a subspace of V.

Theorem (Zero Test). If H is a **subset** of the vector space V, and the zero vector $\mathbf{0}$ is **not** in H, then H is **not** a subspace of V. (Caution: The converse of the zero test is not always true!)

Definition. The **nullspace** of an $m \times n$ matrix A, written Nul(A), is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$. In other words,

$$Nul(A) = {\mathbf{x} : \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0}}.$$

Definition. The **column space** of an $m \times n$ matrix A, written Col(A), is the set of all linear columns of A. In other words, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$, then

$$\operatorname{Col}(A) = \operatorname{span}\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}.$$