Name: Solutions
February 25, 2022

Instructions: Ten points total. Show all work for credit.

1. (5 pts.) Consider the implicitly defined surface given by equation

$$e^x = 5xyz$$

(a) Find a point $P = P\left(1, \frac{e}{10}, c\right)$ on the surface with x-coordinate equal to 1, and y-coordinate equal to $\frac{e}{10}$. (This means find c.) 7=1 y= 台 > e = 5(1) ez =) == 2

Answer: The coordinates of P are $\left(1, \frac{e}{10}, \frac{2}{10}\right)$

$$\operatorname{re}\left(1, \frac{e}{10}, \frac{2}{10}\right)$$

(b) Using the point P found in the last part, find the equation of the tangent plane to the surface at $(1, \frac{e}{10}, c)$.

Since the Sorface is defined implicity, a normal vector is

Thus, of = <fx, fy, fz > = <ex-5yz, -5xz, -5xy) and

$$\nabla f(1, \frac{6}{10}, 2) = (e - 5(\frac{6}{10})(2), -5(10)(\frac{6}{10}) > 0$$

I'll use n= - \f(1, e/0, Z) = <0, 10, \frac{1}{2} > for the normal vector.

Equation of tangent place is:

$$\vec{n} \cdot \vec{x} = \vec{n} \cdot \vec{p}$$
 or $\vec{z} = \vec{z} \cdot \vec{p} = \vec{z} \cdot \vec{p} \cdot \vec{z} = \vec{z} \cdot \vec{z}$

$$loy + \frac{e}{2}z = 2e$$
 or, $loy + ez = 4e$

(c) Find the partial derivatives
$$\frac{\partial x}{\partial y}$$
 and $\frac{\partial z}{\partial y}$ for the surface $e^x = 5xyz$.

Need the Chain Rule for implicitly defined function.

 $e^x = 5xyz$
 $e^x = 5xyz$

Soln 1: Implie:
$$f$$
 diff.

$$0 = 5x \left[y \frac{\partial^2}{\partial y} + (1)^2 \right]$$

$$\frac{\partial^2}{\partial y} = \frac{5x^2}{5x^2}$$

$$\frac{\partial^2}{\partial y} = \frac{5x^2}{5x^2}$$
Answers: $\frac{\partial^2}{\partial y} = \frac{5x^2}{6x^2}$

Z dependent or
$$(x,y)$$

Solve for Z first.

 $Z = \frac{e^{x}}{5x} y^{-1}$ so that

 $\frac{\partial^{2}}{\partial y} = \frac{e^{x}}{5x} (-1)y^{-2} = \frac{-e^{x}}{5xy^{2}}$
 $\frac{\partial^{2}}{\partial y} = \frac{-e^{x}}{5xy^{2}}$
 $\frac{\partial^{2}}{\partial y} = \frac{-e^{x}}{5xy^{2}}$

- 2. (3 pts.) Find the directional derivative of the function $f(x,y) = e^y \sin(x)$ at the point $(\frac{\pi}{3}, 0)$ in the direction of $\mathbf{v} = \langle 8, -6 \rangle$.
- unit vector is in direction of is $(4, \frac{3}{5})$ [use 3-4-5 triple.]
- $\nabla f(x,y) = \langle f_{y}, f_{y} \rangle = \langle e^{y} \cos x, e^{y} \sin (x) \rangle$ $\nabla f(\frac{\pi}{3}, 0) = \langle e^{0} \cos (\frac{\pi}{3}), e^{0} \sin (\frac{\pi}{3}) \rangle = \langle \frac{1}{2}, \frac{\pi}{2} \rangle$
- $D_{n}^{2}f(\overline{3},0) = \nabla f(\overline{3},0) \cdot \vec{n} = \langle \frac{1}{2}, \frac{5}{2} \rangle \cdot \langle \frac{4}{5}, \frac{3}{5} \rangle = \frac{4}{10} \frac{3\sqrt{3}}{10}$ $= \boxed{4-3\sqrt{3}}$

Is f(x,y) increasing / decreasing / stable at $(\frac{\pi}{3}, 0)$ in the direction of \mathbf{v} ? Explain.

3. (2 pts.) Consider the contour plot for the smooth function z = f(x, y) displayed below.

- (a) At the red point (2.6, -0.7) shown, draw a vector pointing in the direction of $\nabla f(2.6, -0.7)$.
- Suppose a negatively charged particle is placed at the black X at (-2,0), and that f(x,y) gives the charge of a plate in coulombs. Sketch the path of the negatively charged particle on the plate.