Лабораторная работа №2

Задача: Визуализация многомерных данных с matplotlib и seaborn

Описание датасета "Predict Online Gaming Behavior Dataset"

Этот набор данных фиксирует комплексные метрики и демографию, связанные с поведением игроков в онлайн-игровых средах. Он включает такие переменные, как демография игроков, детали, характерные для игры, метрики вовлеченности и целевую переменную, отражающую удержание игроков.

Переменная	Описание
PlayerID	Уникальный идентификатор для каждого игрока.
Age	Возраст игрока.
Gender	Пол игрока.
Location	Географическое местоположение игрока.
GameGenre	Жанр игры, в которой участвует игрок.
PlayTimeHours	Среднее количество часов, проведенных за игрой за одну сессию.
InGamePurchases	Признак того, делает ли игрок внутриигровые покупки (0 — Нет, 1 — Да).
GameDifficulty	Уровень сложности игры.
SessionsPerWeek	Количество игровых сессий в неделю.
AvgSessionDurationMinutes	Средняя продолжительность каждой игровой сессии в минутах.
PlayerLevel	Текущий уровень игрока в игре.
AchievementsUnlocked	Количество достижений, разблокированных игроком.
EngagementLevel	Категоризированный уровень вовлеченности, отражающий удержание игроков ('Высокий', 'Средний', 'Низкий').

Целевая переменная — EngagementLevel — указывает на уровень вовлеченности игрока и категоризируется как 'Высокий', 'Средний' или 'Низкий'.

```
In [33]: import pandas as pd
             import matplotlib.pyplot as plt
             import seaborn as sns
             import math
In [34]: df = pd.read csv("../online gaming behavior dataset.csv", index col='PlayerID')
In [35]: df.info()
           <class 'pandas.core.frame.DataFrame'>
           Index: 40034 entries, 9000 to 49033
           Data columns (total 12 columns):
                                   Non-Null Count Dtype
            #
                 Column
            0 Age
                                                     40034 non-null int64
            0 Age 40034 non-null int64
1 Gender 40034 non-null object
2 Location 40034 non-null object
3 GameGenre 40034 non-null object
4 PlayTimeHours 40034 non-null float64
5 InGamePurchases 40034 non-null int64
6 GameDifficulty 40034 non-null object
7 SessionsPerWeek 40034 non-null int64
            8 AvgSessionDurationMinutes 40034 non-null int64
```

Визаулизация данных

memory usage: 4.0+ MB

dtypes: float64(1), int64(6), object(5)

9 PlayerLevel 40034 non-null int64
10 AchievementsUnlocked 40034 non-null int64
11 EngagementLevel 40034 non-null object

```
In [36]: # Ηαστροŭκα στυπя Γραφυκου sns.set(style="whitegrid"); plt.figure(figsize=(12, 6)); 
<Figure size 1200x600 with 0 Axes>
```

Целевая переменная

```
In [37]:
        column_name = 'EngagementLevel'
        plt.figure(figsize=(10, 4))
        plt.subplot(1, 2, 1)
        sns.countplot(y=column name, data=df, palette='Set3', hue=column name, legend=False)
        plt.title(f'Распределение {column_name}')
        ax = plt.gca()
        for p in ax.patches:
           sns.despine(left=True, bottom=True)
        plt.subplot(1, 2, 2)
        df[column_name].value_counts().plot.pie(autopct='%1.1f%%', colors=sns.color_palette('Set3'), startangle=90, exp
        plt.title(f'Процентное распределение {column name}')
        plt.ylabel('')
        plt.tight_layout()
        plt.show()
```


Числовые характеристики

Вывод по числовым характеристикам:

- 1. **Age:** Средний возраст игроков составляет около 32 лет, с относительно большим разбросом (стандартное отклонение ~10 лет). Самому молодому игроку 15 лет, а самому старшему 49 лет. Большинство игроков находятся в возрасте от 23 лет (25-й процентиль) до 41 года (75-й процентиль), что указывает на то, что игра привлекает разнообразную возрастную группу, но имеет небольшой перекос в сторону молодых людей.
- 2. **PlayTimeHours:** Среднее время игры составляет 12 часов, с широким диапазоном от почти 0 часов (минимум) до 24 часов (максимум). Медианное время игры составляет 12 часов, что говорит о том, что распределение времени игры примерно симметрично. 25-й и 75-й процентили (6 и ~18 часов соответственно) указывают на то, что значительная часть базы игроков играет от 6 до 18 часов. Некоторые игроки показывают большое количество игровых часов, что, возможно, отражает высокую вовлеченность или хардкорных геймеров.
- 3. **InGamePurchases:** Данные являются бинарными, большинство игроков не совершают внутриигровых покупок (0), в то время как меньшая часть совершает (1). Это соответствует типичным тенденциям, когда только меньшинство игроков вносит вклад в внутриигровую монетизацию.
- 4. **SessionsPerWeek**: Игроки заходят в среднем ~9,5 раз в неделю, со стандартным отклонением ~5,76 сеансов. 25-й процентиль составляет 4 сеанса, что означает, что менее частые игроки заходят через день, а 75-й процентиль составляет 14 сеансов, что означает, что некоторые игроки заходят дважды в день.
- 5. **AvgSessionDurationMinutes:** Продолжительность сеанса показывает нормальное распределение, сосредоточенное вокруг 90–100 минут на сеанс. Большинство игроков укладываются в 50–150 минут, экстремальные длительности редки.
- 6. **PlayerLevel:** Распределение равномерное, игроки распределены по всем уровням от 1 до 99. Значительных скачков нет, что говорит о том, что прогресс уровней распределен равномерно.
- 7. **AchievementsUnlocked:** Данные достигают пика около 15–30 разблокированных достижений, при этом меньшее количество игроков разблокируют много достижений. Распределение подчеркивает умеренные уровни вовлеченности, при этом меньшее количество игроков полностью завершают списки достижений.

Числовые признаки и целевая переменная

Вывод:

- 1. SessionPerWeek, AvgSessionDurationMinutes из графиков видно, что те кто больше увлечены играми, те больше проводят времени за играми
- 2. AchievementsUnlocked игроки с высоким EngagementLevel имеют больше достижений.

Категориальные признаки

Гендер

```
In [40]: plt.figure(figsize=(8, 5))
    sns.countplot(data=df, x='Gender', hue='EngagementLevel', palette='viridis')
    plt.title('Распределение EngagementLevel по полу')
    plt.show()
```


Мужчины демонстрируют более высокий уровень вовлеченности по сравнению с женщинами.

```
In [41]:
    plt.figure(figsize=(12, 6))
    sns.countplot(data=df, x='Location', hue='EngagementLevel', palette='viridis')
    plt.title('Pacпределение EngagementLevel по локациям')
    plt.xticks(rotation=45)
    plt.show()
```


Игроки из USA и Europe чаще имеют высокий уровень вовлеченности.

Жанр игры

```
In [42]:
    plt.figure(figsize=(12, 6))
    sns.countplot(data=df, x='GameGenre', hue='EngagementLevel', palette='viridis')
    plt.title('Распределение EngagementLevel по жанрам игр')
    plt.xticks(rotation=45)
    plt.show()
```


Графики похожие и никаких зависимостей нет

```
In [43]:
    plt.figure(figsize=(8, 5))
    sns.countplot(data=df, x='GameDifficulty', hue='EngagementLevel', palette='viridis')
    plt.title('Распределение EngagementLevel по сложности игры')
    plt.show()
```


Низкая сложность привлекает больше игроков с высокой вовлеченностью

Вывод:

- 1. Гендер: Мужчины более вовлечены в игры, чем женщины.
- 2. Локация: Игроки из USA и Europe чаще имеют высокий уровень вовлеченности.
- 3. Сложность игры: Низкая сложность привлекает больше игроков с высокой вовлеченностью

Корреляционный анализ

```
In [44]:
    engagement_order = {'Low':1, 'Medium':2, 'High':3}
    df['EngagementEncoded'] = df['EngagementLevel'].map(engagement_order)

plt.figure(figsize=(10, 8))
    corr = df[numeric_cols + ['EngagementEncoded']].corr()
    sns.heatmap(corr, annot=True, cmap='coolwarm')
    plt.title('Тепловая карта корреляций')
    plt.show()
```


Вывод: EngagementEncoded коррелирует с SessionPerWeek И AvgSessionDurationMinutes

Анализ сессий

Вывод:

- 1. Игроки с высоким уровнем вовлеченности образуют отдельный кластер в правом верхнем углу графика, что указывает на их активность и продолжительность игровых сессий.
- 2. Игроки с низким уровнем вовлеченности сгруппированы в левом нижнем углу, что свидетельствует о их минимальной активности.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js