BIOSYSTEMS II: NEUROSCIENCES 2015 Spring Semester

Lecture 33

Kechen Zhang

4/17/2015

Maps in the brain

- Visual retinotopic maps
- Somatosensory maps
- Auditory tonotopic maps
- Computational model: Kohonen self-organizing map

Visual pathway

Visual retinotopic map and geometric distortion

Locations of visual stimulus (b/w lines)

Activated locations in the primary visual cortex (V1) of monkey as revealed by deoxygucose analysis.

Visual Field

Each location is represented by angle a and eccentricity e

Visual Cortex

Conformal Mapping (angle is preserved)

Reported patterns of visual hallucination (drug-induced)

Monkey (macaque) visual cortex

Response of human visual cortex to visual stimuli

Response of human visual cortices to expanding rings

Human visual cortical areas

Three maps in visual cortex:

retinotopy, orientation preference, and ocular dominance

Orientation columns

Ocular dominance columns (B/W: L/R eye)

Three maps in visual cortex:

retinotopy, orientation preference, and ocular dominance

Orientation & Ocular dominance

Zoom-in view:

Pinwheel singularity in orientation map

Orientation pinwheel at single-cell resolution

Clusters of preferred stimulus features in high-level visual cortex

Optimal imaging of cortical activity for various head poses

Map of preferred motion direction in visual cortical area (MT)

Example of visual motion (optic flow)

Each MT neuron has a preferred motion direction

Somatosensory cortical maps (owl monkey)

3b

Somatosensory homunculus

--

Plasticity of cortical maps

Tactile stimulation of the 2nd digit leads to its enlarged representation in somatosensory cortex

Somatosensory cortex: rat

Somatosensory cortex: star-nose mole

Maps in the auditory cortex of bat

Doppler shift

Lower frequency echo

C Approaching object

Higher frequency echo

Counterexamples: Absence of maps

- No map of orientation columns in mouse visual cortex
- No map of preferred directions for head-direction cells
- No map of place fields for place cells

Kohonen's self-organizing map

Neuronal units are on a two-dimensional grid $\mathbf{r} = (i, j)$. The response of neuron at location \mathbf{r} is

$$y_{\mathbf{r}} = \mathbf{w}_{\mathbf{r}}^{\mathrm{T}} \mathbf{x}$$

where input $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is the same for all neurons, whereas the weight vector \mathbf{w}_r varies from neuron to neuron.

Learning rule:

$$\Delta \mathbf{w}_{\mathbf{r}} \propto H(\mathbf{r} - \mathbf{r}^*)(\mathbf{x} - \mathbf{w}_{\mathbf{r}})$$

where the neighbrhood function

$$H(\mathbf{r} - \mathbf{r}^*) = \exp\left(-\frac{(i - i^*)^2 + (j - j^*)^2}{2\sigma^2}\right)$$

describes how activity falls off from the maximum activity location $\mathbf{r}^* = (i^*, j^*)$.

Equivalence between maximum response and weight matching

Suppose both the input vector \mathbf{x} and the weight vector \mathbf{w}_r are normalized, namely, $\|\mathbf{x}\| = 1$ and $\|\mathbf{w}_r\| = 1$. Then the neuron with the highest response $y_r = \mathbf{w}_r^T \mathbf{x}$ is the one whose weight vector is the closest to the input vector, in the sense that $\|\mathbf{w}_r - \mathbf{x}\|$ is the smallest. This equivalence follows from the identity: $\|\mathbf{w}_r - \mathbf{x}\|^2 = (\mathbf{w}_r - \mathbf{x})^T (\mathbf{w}_r - \mathbf{x}) = \|\mathbf{w}_r\|^2 - 2\mathbf{w}_r^T \mathbf{x} + \|\mathbf{x}\|^2 = 2 - 2\mathbf{w}_r^T \mathbf{x}$.

Examples of self-organizing map

Self ordering process of the weight vector, starting from random values. The neurons close to one another tend to represent similar input values.

Left: two-dimensional network, two-dimensional inputs. Right: one-dimensional network, two-dimensional inputs.

Input vector: Animal attributes

		d o v e	h e n	d u c k	g o o s e	o w l	h a w k	e a g l e	f o x	d o g	w o l f	$_{\mathbf{a}}^{\mathrm{c}}$	i g e r	i o n	h o r s e	e b r a	c o w
is	small medium big	1 0 0	1 0 0	1 0 0	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	1 0 0	1 0 0	0 1 0	0 1 0	0 1 0	0 1 0	1 0 0	0 0 1	0 0 1	0 0 1	0 0 1	0 0 1
has	2 legs 4 legs hair hooves mane feathers	1 0 0 0 0 0	1 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0	1 0 0 0 0 0	0 1 1 0 0	0 1 1 0 0	0 1 1 0 1 0	0 1 1 0 0 0	0 1 1 0 0 0	0 1 1 0 1 0	0 1 1 1 1 0	0 1 1 1 1 0	0 1 1 1 0 0
likes to	hunt run fly swim	0 0 1 0	0 0 0 0	0 0 1 1	0 0 1 1	1 0 1 0	$\begin{matrix} 1 \\ 0 \\ 1 \\ 0 \end{matrix}$	1 0 0 0	1 0 0 0	0 1 0 0	1 1 0 0	1 0 0 0	1 1 0 0	1 1 0 0	0 1 0 0	0 1 0 0	0 0 0 0

There are additional input lines for the identities of the animals. Each line is turned on only for one animal.

Learned map

Animals with similar attributes are clustered.

