Elektrotechnika

VIII. Váltakozó áramú hálózatok

8.1. Váltakozó feszültség, áram jellemzői

Váltakozó feszültség, áram

- a feszültség/áram nagysága és iránya változik!
- a jelalak sokféle lehet: szinuszos, négyszög, háromszög, ...
- sok jellemzője van !

- időfüggvény, u(t) vagy i(t) Szinuszos jelnél \rightarrow u(t) = \hat{U} * sin(ω *t + φ)
- amplitúdó, csúcsérték
 Ucs Up Û vagy lcs lp Î

8.1. Váltakozó feszültség, áram jellemzői

- **periódusidő**, T ismétlődési idő (egy szinuszhullám ideje)
- frekvencia, f másodpercenkénti periódusok száma, (rezgésszám) mértékegysége → 1/s = Hz (Hertz) f = 1 / T
- effektív érték, Ueff vagy simán U vagy leff vagy egyszerűen I négyzetes középérték, szinuszos jel esetén Ueff = \hat{U} / $\sqrt{2}$ Ieff = \hat{I} / $\sqrt{2}$
- **körfrekvencia**, ω (szögsebesség) $\omega = 2\pi^*f$ mértékegysége \rightarrow rad/s
- **fázisszög**, φ eltolás a 0 időponthoz képest, mértékegysége → rad (radián)

8.1. Váltakozó feszültség, áram jellemzői

minta feladat

- amplitúdó, Up = 8 V
- periódusidő, T = 16ms (-4ms 12ms)
- frekvencia, f = 1 / 16ms = 0,0625 kHz = 62,5 Hz
- effektív érték, $U = U_p / \sqrt{2} = 8V / 1,41 \approx 5,66 V$
- fázisszög, $\varphi = \pi/2 \text{ rad } (90^\circ)$
- időfüggvény, $u(t) = 8 * \sin(2\pi * t / 0.016s + \pi / 2)$

8.2. Feladatok

8.2. Feladatok

- amplitúdó, Up =
- periódusidő, T =
- frekvencia, f =
- effektív érték, U=
- fázisszög, ϕ =
- időfüggvény, u(t) =

8.3. Egyes alkatrészek egyenletei

Általános esetben

Ellenállás
$$\rightarrow$$
 uR(t) = R * iR(t)

Tekercs
$$\rightarrow$$
 u_L(t) = L * $\frac{\text{diL}(t)}{\text{dt}}$

Kondenzátor
$$\rightarrow$$
 ic(t) = C* $\frac{duc(t)}{dt}$

Szinuszosan váltakozó áram esetén

Szinuszosan váltakozó áram és feszültség esetén egyszerűsödnek az összefüggések

Ellenállás ir(t) =
$$\hat{I} * \sin(\omega * t) \rightarrow ur(t) = R * \hat{I} * \sin(\omega * t) = \hat{U} * \sin(\omega * t)$$

Az áram és feszültség "fázisban van" (ugyanott van a maximumuk és nulla értékük)

$$\hat{U} = R * \hat{I}$$

8.3. Egyes alkatrészek egyenletei

Tekercs
$$iL(t) = \hat{I} * sin(\omega * t) \rightarrow uL(t) = \omega * L * \hat{I} * cos(\omega * t) = \hat{U} * sin(\omega * t + \pi/2)$$

Az áram és feszültség nincs "fázisban" (nem ugyanott van a maximumuk és nulla értékük) →

A feszültség negyedhullámot (90°-ot) siet az áramhoz képest

$$\hat{U} = \omega * L * \hat{I}$$

Kondenzátor
$$u_L(t) = \hat{U} * \sin(\omega * t) \rightarrow i_L(t) = \omega * C * \hat{U} * \cos(\omega * t) = \hat{I} * \sin(\omega * t + \pi/2)$$

Az áram és feszültség nincs "fázisban" (nem ugyanott van a maximumuk és nulla értékük) →

A feszültség negyedhullámot (90°-ot) késik az áramhoz képest

$$\hat{I} = \omega * C * \hat{U}$$

Ellenállás

Az effektív értékek, a csúcsértékek, és a pillanatnyi értékek között is igaz az Ohm törvény

$$R = \frac{UR}{IR} \qquad \text{vagy} \quad R = \frac{\hat{U}R}{\hat{I}R}$$

Kondenzátor

Az effektív, vagy csúcsértékek között igaz az Ohm törvény (egy adott frekvencián)

$$Xc = \frac{Uc}{Ic} \qquad Xc = \frac{1}{2\pi * f * C}$$

Xc → a kondenzátor "ellenállása" (kapacitív reaktancia) → függ a frekvenciától !!

<u>Tekercs</u>

Az effektív, vagy csúcsértékek között igaz az Ohm törvény (egy adott frekvencián)

$$X_L = \frac{U_L}{I_L}$$
 $X_L = 2\pi *f *L$

X∟ → a tekercs "ellenállása" (induktív reaktancia) → függ a frekvenciától !!

Csomóponti törvény, Hurok törvény

Természetesen most is igazak, de a feszültségek, áramok összegzése nem olyan egyszerű.

Az előzőek alapján váltakozó áram esetén az áramok, feszültségek egymáshoz képest elcsúsznak, fázisszögük eltér → időfüggvényként összegzésük nehézkes !!

Nem csak nagyságuk van tehát hanem irányuk, fázisszögük is → vektorok! → vektorosan összegezhetők

minta feladat 1.

Mekkora áram (I) fog folyni az áramkörben és mennyi lesz U_R és U_g értéke, ha $U_L = 6V$ és f = 2kHz?

 U_g és I közötti fázisszögre \rightarrow $tg\phi = U_L / U_R = X_L / R$ A tekercs "ellenállása":

$$X_L = 2\pi^*f^*L = 2\pi^* 2000 \text{ Hz } * 0,239 \text{ H}$$

 $X_L = 3003,36 \Omega \approx 3 \text{ k}\Omega$

Ohm törvénnyel:

$$I = UL / XL = 6 V / 3 kΩ = 2 mA$$
 és $UR = I * R = 2 mA * 4 kO = 8 V$

Hurok törvénnyel:

$$\overline{U}_g = \overline{U}_R + \overline{U}_L$$
 !! vektorosan \rightarrow

UR és I fázisban van és U∟ 90° -ot siet I-hez képest!

$$Ug^2 = UR^2 + UL^2 = 8^2 + 6^2 = 100$$

 $Ug = 10 \text{ V}$

minta feladat 2.

Mekkora áramok fognak folyni az áramkörben (mennyi lesz I, IR és Ic értéke), ha $U_g = 12V$ és f = 2kHz?

A kondenzátor "ellenállása":

$$X_C = 1 / (2\pi^*f^*C) = 1 / (2\pi^* 2000 \text{ Hz } * 20^*10^{-9} \text{ F})$$

 $X_C = 1/0,0002513 = 3979\Omega \approx 4 \text{ k}\Omega$

Ohm törvénnyel:

Ic =Ug / Xc = 12 V / 4 k
$$\Omega$$
 = 3 mA és
IR =Ug / R = 12 V / 3 k Ω = 4 mA

Csomóponti törvénnyel:

Ug és IR fázisban van és Ic 90° -ot siet Ug-hez képest!

$$I^2 = IR^2 + Ic^2 = 4^2 + 3^2 = 25$$

 $I = 5 \text{ mA}$

Ug és I közötti fázisszögre

→ tgφ = Ic / IR = R / Xc

8.5. Feladatok

1. feladat

Mekkora áram (I) fog folyni az áramkörben és mennyi lesz Uc_2 és Ug értéke, ha $Uc_1 = 6V$ és f = 4kHz?

2. feladat

Mennyi lesz U_g , U_{L1} és U_{L2} értéke, ha I=5 mA és f=8kHz?

8.5. Feladatok

3. feladat

Mekkora áram (I) fog folyni az áramkörben és mennyi lesz Uc és U_g értéke, ha $U_R = 6V$ és f = 4kHz?

4. feladat

Mennyi lesz U_g és I_c és I_c értéke, ha I_R = 5 mA és f = 4kHz ?

8.6. Ismétlő feladatok

1. Számítsd ki az áramokat, feszültségeket! (I1, U1, U2, U3, I3, I)

- 2. f = 8kHz, $C = 4nF \rightarrow XC = ?$
- 3. f = 5kHz, $L = 0.5H \rightarrow XL = ?$

8.7. Ismétlő feladatok

1. Számítsd ki az áramokat, feszültségeket! (I1, U1, U2, I2, I)

- 2. f = 4kHz, $L = 0.2H \rightarrow XL = ?$
- 3. f = 500Hz, $C = 300nF \rightarrow XC = ?$
- 4. f = 0.3kHz, $XL = 1 k\Omega \rightarrow L = ?$

<u>Impedancia</u>

Mindenfajta áramkorlátozó hatást impedanciának nevezünk ("általános ellenállás") Speciális fajtái: az ellenállás, induktív reaktancia, kapacitív reaktancia

Jele: Z, mértékegysége: Ω

A feszültséghez és áramhoz hasonlóan vektoros mennyiség → van nagysága és fázisszöge !!

Ellenállás impedanciája

nagysága
$$\rightarrow$$
 ZR = R ZR (R)
fázisszöge \rightarrow ϕ R = 0°

<u>Tekercs impedanciája</u>

nagysága
$$\rightarrow$$
 ZL = XL ZL fázisszöge \rightarrow ϕ L = 90° (XL)

Kondenzátor impedanciája

nagysága
$$\rightarrow$$
 Zc = Xc Zc fázisszöge \rightarrow ϕ c = -90° (Xc)

U, I és Z nagyságának és fázisszögének kapcsolata

$$Z = \frac{U}{I}$$
 és $\phi_Z = \phi_U - \phi_I$

1. minta feladat, soros RL áramkör

Mennyi lesz az eredő impedancia (Z), és mekkora áram (I) fog folyni az áramkörben, ha U_g = 24V és f = 8kHz ?

fázisszögek \rightarrow $\phi_R = 0^\circ$ és $\phi_L = 90^\circ$

A tekercs "ellenállása":

$$X_L = 2\pi^*f^*L = 2\pi^* 8000 \text{ Hz * 0,12 H}$$

 $X_L = 6031,86 \Omega \approx 6 \text{ k}\Omega$

Eredő impedancia számítása → vektorosan!

$$\overline{Z}_e = \overline{Z}_R + \overline{Z}_L$$
 !! vektorosan \rightarrow

$$Ze^2 = R^2 + XL^2 = 8^2 + 6^2 = 100$$

 $Ze = 10 \text{ k}\Omega$

Ohm törvénnyel:

$$I=U_g$$
 / $Z_e=~24$ V / 10 $k\Omega=2,4$ mA és

$$U_R = I * R = 2,4 \text{ mA} * 8 \text{ k}\Omega = 19,2 \text{ V}$$

 $U_L = I * X_L = 2,4 \text{ mA} * 6 \text{ k}\Omega = 14,4 \text{ V}$

Ze fázisszöge,
$$\varphi \rightarrow tg\varphi = XL/R$$

2. minta feladat, soros RC áramkör

Mennyi lesz az eredő impedancia (Z), és mekkora áram (I) fog folyni az áramkörben, ha U_g = 24V és f = 4kHz ?

fázisszögek
$$\rightarrow$$
 $\phi_R = 0^\circ$ és $\phi_C = -90^\circ$

$$Z_e = \sqrt{R^2 + Xc^2}$$

A kondenzátor "ellenállása":

Eredő impedancia számítása → vektorosan!

$$\overline{Z}_e = \overline{Z}_R + \overline{Z}_C$$
 !! vektorosan \rightarrow

$$Ze^2 = R^2 + Xc^2 = 4^2 + 2^2 = 20$$

 $Ze = 4,472 \text{ k}\Omega$

Ohm törvénnyel:

$$I = U_g / Z_e = 24 \text{ V} / 4,472 \text{ k}\Omega = 5,36 \text{ mA}$$
 és

$$U_R = I * R = 5,36 \text{ mA} * 4 \text{ k}\Omega = 21,44 \text{ V}$$

 $U_C = I * X_C = 5,36 \text{ mA} * 2 \text{ k}\Omega = 10,72 \text{ V}$

3. minta feladat, soros RLC áramkör

Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=5V és f=2kHz?

$$Z_e = \sqrt{R^2 + (X_L - X_C)^2}$$

$$X_L = 2\pi^*f^*L = 2\pi^* \ 2000 \ Hz * 0,2 \ H$$
 $X_L = 2513,274 \ \Omega \approx 2,5 \ k\Omega$
 $X_C = 1 \ / \ (2\pi^*f^*C) = 1 \ / \ (2\pi^* \ 2000 \ Hz * 20^*10^{-9} \ F)$
 $X_C = 3978,87 \ \Omega \approx 4 \ k\Omega$

Eredő impedancia számítása → vektorosan!

$$\overline{Z}_e = \overline{Z}_R + \overline{Z}_L + \overline{Z}_C$$
 !! vektorosan \rightarrow

$$Z_e^2 = R^2 + (X_C - X_L)^2 = 3^2 + 1,5^2 = 11,25$$

$$Z_e = 3,35 \text{ k}\Omega$$

Ohm törvénnyel:

$$I = U_g / Z_e = 5 \text{ V} / 3,35 \text{ k}\Omega = 1,5 \text{ mA}$$
és
$$U_R = I * R = 1,5 \text{ mA} * 3 \text{ k}\Omega = 4,5 \text{ V}$$

$$U_L = I * X_L = 1,5 \text{ mA} * 2,5 \text{ k}\Omega = 3,75 \text{ V}$$

$$U_C = I * X_C = 1,5 \text{ mA} * 4 \text{ k}\Omega = 6 \text{ V}$$
 Hurek törvényből

Hurok törvényből
$$\rightarrow$$
 $Ug^2 = UR^2 + (Uc - UL)^2$

8.9. Gyakorló feladatok

1.
$$f = 2kHz$$
, $C = 10nF \rightarrow XC = ?$

2.
$$f = 8000Hz, C = 600pF \rightarrow XC = ?$$

3.
$$f = 2kHz$$
, $L = 100mH \rightarrow XL = ?$

4.
$$f = 600Hz, L = 300mH \rightarrow XL = ?$$

5. Mennyi az eredő impedanciája az alábbi kétpólusnak?

$$R = 3kΩ$$
 $XL = 6kΩ$

8.9. Gyakorló feladatok

1.
$$f = 5kHz$$
, $C = 80nF \rightarrow XC = ?$

2.
$$f = 200$$
Hz, $C = 4\mu$ F \rightarrow XC = ?

3.
$$f = 300Hz$$
, $L = 0.4H \rightarrow XL = ?$

4.
$$f = 4000Hz, L = 200mH \rightarrow XL = ?$$

5. Mennyi az eredő impedanciája az alábbi kétpólusnak?

$$R = 2kΩ$$
 $XL = 3kΩ$

8.10. Feladatok

1. Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=5V és f=800Hz?

2. Mekkora lesz az áramkör eredő impedanciája (Ze), és mekkora áram (I) fog folyni ha Ug=10V és f=2400Hz ?

8.11. Ellenőrző feladatok

- 1. szinuszos jel effektív értéke 3V, mennyi a csúcsértéke?
- 2. Mennyi a periódusidő ha f=20Hz ?

3. f = 100Hz, $X_L = 62.8\Omega$ mennyi a tekercs induktivitása?

8.11. Ellenőrző feladatok

5. Mennyi az eredő impedanciája az alábbi kétpólusnak?

6.
$$f = 10kHz$$
, $C = 2000nF$ $Xc = ?$

7. Mennyi az eredő impedanciája az alábbi kétpólusnak?

$$R = 6k\Omega$$
 $Xc = 8k\Omega$

8.12. Ellenőrző feladatok

1.
$$f = 400Hz$$
, $L = 100mH$ $XL = ?$

3. Mennyi az eredő impedanciája az alábbi kétpólusnak?

$$X_{C1} = 200k\Omega$$
 $X_{C2} = 4M\Omega$

4. T =0,2s mennyi a frekvencia?

8.12. Ellenőrző feladatok

5. szinuszos jel effektív értéke 5V, mennyi a csúcsértéke ?

6. Mennyi az eredő impedanciája az alábbi kétpólusnak?

$$R = 3k\Omega$$
 $XL = 4k\Omega$

7. f = 5kHz, $Xc = 2000\Omega$ C = ?