

3.8. Suggest a way to determine the value of water. Ans:

By using Kohlrausch's law, Λ_m^o for H_2O can be calculated, we can write,

 $\Lambda_{m}^{o} = \Lambda_{m}^{o}$ (HCl) + Λ_{m}^{o} (NaOH) - Λ_{m}^{o} (NaCl) Being strong electrolytes, Λ_{m}^{o} values of HCl, NaOH and NaCl are known. By substituting their values, we can obtain Λ_{m}^{o} for H₂O.

3.9. The molar conductivity of 0.025 mol L⁻¹ methanoic acid is 46.1 S cm² mol⁻¹. Calculate its degree of dissociation and dissociation constant Given $\lambda^{\circ}(H^{+})=349.6$ S cm² mol⁻¹ and $\lambda^{\circ}(HCOO^{-})=54.6$ S cm² mol⁻¹. Ans:

$$Λ_{m}^{o}(HCOOH) = λ_{o}^{o}(H^{+}) + λ_{o}^{o}(HCOO^{-})$$

$$= 349.6 + 54.6$$

$$= 404.2 \text{ S cm}^{2} \text{ mol}^{-1}$$

$$Λ_{m}^{C} = 46.1 \text{ S cm}^{2} \text{ mol}^{-1}$$

$$α = \frac{Λ_{m}^{C}}{Λ_{m}^{o}} = \frac{46.1}{404.2} = 0.114$$

$$HCOOH \rightleftharpoons HCOO^{-} + H^{+}$$
Initial conc. c 0 0
at equi, c (1-α) cα cα
$$cα = \frac{cα.cα}{c(1-α)} = \frac{cα^{2}}{1-α}$$

$$= \frac{0.025 \times (0.114)^{2}}{1-0.114} = 3.67 \times 10^{-4}$$

3.10. If a current of 0.5 ampere flows through a metallic wire for 2 hours, then how many electrons would flow through the wire? Ans:

We know,
$$Q = It$$

= $0.5 \times (2 \times 60 \times 60)$
= 3600 C
 $1\text{F} \Rightarrow 96500 \text{C} \Rightarrow 1 \text{ mole of } e^{-1} \text{ s}$

1F ⇒ 96500C ⇒ 1 mole of
$$e^{-1}$$
 s
⇒ 6.02 × 10²³ e^{-1} s

.. 3600 C is equivalent to the flow of e⁻¹ s

$$= \frac{6.02 \times 10^{23}}{96500} \times 3600$$
$$= 2.246 \times 10^{22} \,\mathrm{e}^{-1} \,\mathrm{s}$$

3.11. Suggest a list of metals that are extracted electrolytically. Ans: Na, Ca, Mg and Al

3.12. Consider the reaction: $Cr_2O_7^{2-}+14H^++6e^-\rightarrow 2Cr_3++7H_2O$ What is the quantity of electricity in coulombs needed to reduce 1 mol of $Cr_2O_7^{2-}$?

Ans:

From the reaction, 1 mol of $Cr_2O_7^{2-}$ require 6F = $6 \times 96500 = 579000 C$

∴ 579000 C of electricity are required for reduction of Cr₂O₇²⁻ to Cr³⁺

3.13. Write the chemistry of recharging the lead storage battery, highlighting all the materials that are involved during recharging. Ans: A lead storage battery consists of anode of lead, cathode of a grid of lead packed with lead dioxide (PbO $_2$) and 38% $\rm H_2SO_4$ solution as electrolyte. When the battery is in use, the reaction taking place are:

Anode:
$$Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^-$$

Cathode: $PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^-$
 $\rightarrow PbSO_4(s) + 2H_2O(l)$

Overall Reaction:
$$Pb(s) + PbO_2(s) + 2 H_2SO_4(aq)$$

 $\rightarrow 2PbSO_4(s) + 2H_2O(l)$

On charging the battery, the reverse reaction takes place, i.e., $PbSO_4$ deposited on electrodes is converted back to Pb and PbO_2 and H_2SO_4 is regenerated.

3.14. Suggest two materials other than hydrogen that can be used as fuels in fuel cells.

Ans: Methane and Methanol.

3.15. Explain how rusting of iron is envisaged as setting up of an electrochemical cell.

Ans: The water present on the surface of iron dissolves acidic oxides of air like ${\rm CO_2}$, ${\rm SO_2}$, etc. to form acids which dissociate to give ${\rm H^+}$ ions :

$$H_2O + CO_2 \rightarrow H_2CO_3 \rightleftharpoons 2H^+ + CO_3^{2-}$$

In the presence of H⁺, iron looses e⁻¹s to form Fe³⁺. Hence, this spot acts as anode:

$$Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$$

The e⁻¹s released move through the metal to reach another spot where H⁺ ions and dissolved oxygen take up these e⁻¹s and reduction occurs. This spot, thus, acts as cathode:

$$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$$

The overall reactionis:

$$2\text{Fe}(s) + \text{O}_2(g) + 4\text{H}^+(aq) \rightarrow 2\text{Fe}^{2+}(aq) + 2\text{H}_2\text{O}(l)$$

Thus, an electrochemical cell is set up on the surface. Ferrous ions are further oxidised by atmospheric oxygen to ferric ions which combine with water to form hydrated ferric oxide, ${\rm Fe_2O_3}$. ${\rm xH_2O}$, which is rust.

