

Fondamentaux Mathématiques

Feuille d'exercices $n^{\circ}4$: Applications

Exercice n°1

Les courbes suivantes sont-elles des graphes d'applications de [0,5] dans \mathbb{R} ?

Exercice n°2

On considère les deux applications $f: \mathbb{R} \longrightarrow \mathbb{R}_+$ et $g: \mathbb{R}_+ \longrightarrow \mathbb{R}$ dont les graphes sont respectivement représentés ci-dessous :

- 1) L'application f est-elle injective? Est-elle surjective? Est-elle bijective?
- 2) Par lecture du graphe, déterminer $f^{-1}(\{1\})$ et f([2,4]).
- 3) L'application g est-elle injective? Est-elle surjective? Est-elle bijective?
- 4) Par lecture du graphe, déterminer g([1/2,3/2]) et $g^{-1}([0,1])$.

Exercice n°3

Soient les applications

Etudier l'injectivité, la surjectivité et la bijectivité de f et de g.

Exercice n°4

On considère les applications suivantes :

Dessiner les graphes de ces applications. Sont-elles injectives, surjectives, bijectives?

Exercice n°5

Les applications suivantes sont-elles injectives, surjectives, bijectives?

1)
$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
 2) $g: \mathbb{Z} \longrightarrow \mathbb{Z}$ $n \longmapsto n+1$

Exercice n°6

On considère un ensemble de personnes $P = \{Annie, Pierre, Léa, Jean, Thomas\}$ ne jouant chacune que d'un instrument de musique et d'un seul de l'ensemble $M = \{violon, piano, accordéon, saxo\}$. On définit l'application f de P vers M par : f(x) = y si « x joue de y ».

- 1) Une telle application peut-elle être injective? Si oui donnez un exemple.
- 2) Une telle application peut-elle être surjective? Si oui donnez un exemple.
- 3) On considère l'application suivante :

- a) Donner l'image par f de la partie $A = \{Annie, Pierre, Léa\}$ de P.
- b) Donner l'image réciproque A_1 de f(A).
- c) Donner l'image de A_1 par f.
- d) Donner l'image réciproque A_2 de $f(A_1)$.
- e) Quelle est l'image de A_2 par f?

Exercice n°7

On considère la relation qui associe à chaque habitant de Rennes le nom de sa rue. Est-ce bien une application? Si oui est-elle injective? surjective? (justifier)

Exercice n°8

On associe à chaque habitant de Rennes son nombre de frères et soeurs dans N. Définit-on ainsi une application de l'ensemble des habitants de Rennes dans N? Si oui est-elle injective? surjective? (justifier)

2

Exercice n°9

Soient A, B deux ensembles non vides. Soit $f \colon A \to B$ une application. Dans chacun des cas, donner un exemple d'ensembles A et B et d'application $f \colon A \to B$ vérifiant simultanément les propriétés énoncées.

- 1) A et B ont chacun deux éléments et f n'est pas surjective.
- 2) A et B ont chacun deux éléments et f n'est pas injective.
- 3) A a trois éléments, B a quatre éléments et f est injective.
- 4) A a trois éléments, B a deux éléments et f est surjective.

Fondamentaux Mathématiques

Applications: pour aller plus loin...

Exercice n°10

Dans chacun des cas suivants, construire si possible une application $f: \mathbb{N} \longrightarrow \mathbb{N}$ vérifiant la propriété donnée.

- 1) $\forall x \in \mathbb{N}$ $\forall y \in \mathbb{N} \quad f(x) = y.$
- **4)** $\exists x \in \mathbb{N} \ \exists y \in \mathbb{N} \ f(x) = y.$
- 2) $\forall x \in \mathbb{N}$ $\exists y \in \mathbb{N}$ f(x) = y. 3) $\exists x \in \mathbb{N}$ $\forall y \in \mathbb{N}$ f(x) = y.
 - 5) $\forall y \in \mathbb{N} \quad \exists x \in \mathbb{N} \quad f(x) = y.$
- **6)** $\exists y \in \mathbb{N} \quad \forall x \in \mathbb{N} \quad f(x) = y.$

Exercice n°11

On considère l'ensemble E des étudiants de L1 Informatique - Électronique de l'Université de Rennes 1 et $F = \{n \in \mathbb{N}, 10 \le n \le 50\}$. Soit $f : E \to F$ l'application qui à un étudiant associe son âge en années entières. Sachant que le nombre d'étudiants inscrits en L1 Informatique-Électronique est 295 et que tous les étudiants sont majeurs, pensez-vous que l'application f peut être injective, surjective?

Exercice n°12

Soit
$$f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$

 $(p,q) \longmapsto 2^p 3^q$

- 1) Donner l'image par f de (1,1) ainsi que celle de (2,1).
- 2) L'entier 2 a-t-il un antécédent par f? Si oui, en déterminer un.
- 3) L'application f est-elle surjective?
- 4) L'application f est-elle injective?

Exercice n°13

Soient $f: E \longrightarrow F$ une application, et A, B deux parties de E.

- 1) Montrer que $f(A \cup B) = f(A) \cup f(B)$
- 2) Montrer que $f(A \cap B) \subset f(A) \cap f(B)$. Montrer, en donnant un exemple, que l'on n'a pas l'égalité en général.
- 3) Montrer que, si f est injective, alors $f(A \cap B) = f(A) \cap f(B)$.
- 4) La formule $\forall (A,B) \in \mathscr{P}(E) \times \mathscr{P}(E) \quad A \subset B \iff f(A) \subset f(B)$ est-elle toujours vraie? On pourra, si besoin, donner un contre-exemple.

Exercice n°14

Soient E un ensemble et $f: \mathcal{P}(E) \to \mathbb{R}$ une application, telle que pour toutes parties disjointes A, B de E on ait $f(A \cup B) = f(A) + f(B)$.

- 1) Montrer que $f(\emptyset) = 0$.
- 2) Montrer que pour toutes parties A, B de E on a $f(A \cup B) = f(A) + f(B) f(A \cap B)$.