2019 - 2020 Dr. Fazıl Küçük Faculty of Medicine, EMU Year 1

### Biostatistics Course

INSTRUCTOR: Assist. Prof. Dr. İlke Akçay

ilke.akcay@emu.edu.tr

### Today's Topics

- Describing Data with numbers
- Describing Data with graphics

- Graphical Methods
- Numerical Methods
- Numerical Measurements (Descriptive Measures / Descriptive Statistics)

- Graphical Methods
  - ▶ Bar Charts / Line Graphs
  - Pie Charts
  - Histogram (bar chart of the frequency distribution)
  - Frequency Polygon (line graph of the frequency distribution)
  - Ogive (line graph of the cumulative frequency distribution)
  - Box and Whisker plots (representation of min, max, quartiles, and outliers)

- Numerical Methods
  - Ordered array
  - Frequency distribution
  - Stem and Leaf displays/tables

- Numerical Measurements (Descriptive Measures / Descriptive Statistics)
  - Measures of Central Tendency / Measures of Location
    - Mean, Median, Mode, Quartiles
  - Measures of Dispersion/Variability
    - Range, Variance, Standard Deviation, Coefficient of Variation, Percentiles and Quartiles

## Graphical Methods Bar Charts

BAR CHART A graph in which the classes are reported on the horizontal axis and the class frequencies on the vertical axis. The class frequencies are proportional to the heights of the bars.

**TABLE 2–2** Relative Frequency Table of Vehicles Sold By Type At Whitner Autoplex Last Month

| Vehicle Type | Number Sold | Relative Frequency |  |  |  |
|--------------|-------------|--------------------|--|--|--|
| Domestic     | 50          | 0.625              |  |  |  |
| Foreign      | 30          | 0.375              |  |  |  |
| Total        | 80          | 1.000              |  |  |  |



CHART 2-1 Vehicle Sold by Type Last Month At Whitner Autoplex

## Graphical Methods Pie Charts

PIE CHART A chart that shows the proportion or percent that each class represents of the total number of frequencies.

| Use of Sales          | Amount<br>(\$ million) | Percent of Share |
|-----------------------|------------------------|------------------|
| Prizes                | 1,276.0                | 59               |
| Payments to Education | 648.1                  | 30               |
| Bonuses/Commissions   | 132.8                  | 6                |
| Operating Expenses    | 97.7                   | 5                |
| Total                 | 2,154.6                | 100              |



CHART 2-2 Pie Chart of Ohio Lottery Expenses in 2004

It is an informative way of showing how a single variable is divided among various classes or categories. It is particularly useful when there are a number of categories.

### Numerical Methods Ordered Array

#### **Ordered Array**

- An ordered array is a listing of the values of a collection (either population or sample) in order of magnitude from the smallest value to the largest value
  - Enables us to quickly determine values of the smallest and the largest measurements, and other facts about the arrayed data
  - If the size of the collection is large, use of a computer tool is suggested

Table 4.1 Hemoglobin Levels of 90 High-Altitude Mine Workers (g/cm<sup>3</sup>)

| 18.5 | 16.8 | 23.2 | 19.4 | 19.5 | 20.6 | 22.0 | 17.8 | 16.2 |
|------|------|------|------|------|------|------|------|------|
| 23.3 | 19.7 | 21.6 | 24.2 | 21.4 | 20.8 | 19.7 | 21.1 | 23.0 |
| 21.7 | 18.4 | 22.7 | 20.9 | 20.5 | 16.1 | 16.9 | 24.8 | 12.2 |
| 17.4 | 17.8 | 19.3 | 17.3 | 18.3 | 17.8 | 17.1 | 18.4 | 19.7 |
| 17.8 | 19.0 | 19.2 | 15.5 | 26.2 | 19.1 | 20.9 | 18.0 | 21.0 |
| 20.2 | 18.3 | 19.2 | 17.2 | 19.8 | 19.5 | 20.0 | 18.4 | 15.9 |
| 19.9 | 16.4 | 18.4 | 17.8 | 23.0 | 19.4 | 20.3 | 18.2 | 13.1 |
| 20.3 | 18.5 | 24.1 | 14.3 | 17.8 | 19.9 | 23.5 | 19.7 | 19.3 |
| 20.6 | 18.3 | 20.8 | 17.6 | 18.1 | 19.7 | 19.1 | 19.5 | 23.5 |
| 18.5 | 20.0 | 22.4 | 18.8 | 16.2 | 15.6 | 15.5 | 18.5 | 19.0 |

Table 4.2 Ordered Array of Hemoglobin Levels of 90 High-Altitude Mine Workers (g/cm<sup>3</sup>)

| 12.2 | 16.4 | 17.8 | 18.4 | 19.0 | 19.5 | 20.0 | 20.9 | 23.0 |
|------|------|------|------|------|------|------|------|------|
| 13.1 | 16.8 | 17.8 | 18.4 | 19.1 | 19.5 | 20.0 | 20.9 | 23.0 |
| 14.3 | 16.9 | 17.8 | 18.4 | 19.1 | 19.7 | 20.2 | 21.0 | 23.2 |
| 15.5 | 17.1 | 17.8 | 18.4 | 19.2 | 19.7 | 20.3 | 21.1 | 23.3 |
| 15.5 | 17.2 | 18.0 | 18.5 | 19.2 | 19.7 | 20.3 | 21.4 | 23.5 |
| 15.6 | 17.3 | 18.1 | 18.5 | 19.3 | 19.7 | 20.5 | 21.6 | 23.5 |
| 15.9 | 17.4 | 18.2 | 18.5 | 19.3 | 19.7 | 20.6 | 21.7 | 24.1 |
| 16.1 | 17.6 | 18.3 | 18.5 | 19.4 | 19.8 | 20.6 | 22.0 | 24.2 |
| 16.2 | 17.8 | 18.3 | 18.8 | 19.4 | 19.9 | 20.8 | 22.4 | 24.8 |
| 16.2 | 17.8 | 18.3 | 19.0 | 19.5 | 19.9 | 20.8 | 22.7 | 26.2 |

### Numerical Methods Frequency Distribution

#### **Frequency Distribution**

- Although a set of observations can be made by means of an ordered array, further useful summarization may be achieved by grouping the data.
- To group a set of observations we select a set of contiguous, nonoverlapping intervals such that each value in the set of observations can be placed in only one of the intervals. These intervals are called class intervals.

#### **Frequency Distribution**

Example: Create a frequency distribution for the given data below:

TABLE 2.2.1 Ordered Array of Ages of Subjects from Table 1.4.1

| 30 | 34 | 35 | 37 | 37 | 38 | 38 | 38 | 38 | 39 | 39 | 40 | 40 | 42 | 42 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 43 | 43 | 43 | 43 | 43 | 43 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 45 | 45 |
| 45 | 46 | 46 | 46 | 46 | 46 | 46 | 47 | 47 | 47 | 47 | 47 | 47 | 48 | 48 |
| 48 | 48 | 48 | 48 | 48 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 50 | 50 | 50 |
| 50 | 50 | 50 | 50 | 50 | 51 | 51 | 51 | 51 | 52 | 52 | 52 | 52 | 52 | 52 |
| 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 |
| 53 | 53 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 55 | 55 |
| 55 | 56 | 56 | 56 | 56 | 56 | 56 | 57 | 57 | 57 | 57 | 57 | 57 | 57 | 58 |
| 58 | 59 | 59 | 59 | 59 | 59 | 59 | 60 | 60 | 60 | 60 | 61 | 61 | 61 | 61 |
| 61 | 61 | 61 | 61 | 61 | 61 | 61 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 63 |
| 63 | 64 | 64 | 64 | 64 | 64 | 64 | 65 | 65 | 66 | 66 | 66 | 66 | 66 | 66 |
| 67 | 68 | 68 | 68 | 69 | 69 | 69 | 70 | 71 | 71 | 71 | 71 | 71 | 71 | 71 |
| 72 | 73 | 75 | 76 | 77 | 78 | 78 | 78 | 82 |    |    |    |    |    |    |

| Class Interval | Frequency |
|----------------|-----------|
| 30-35          | 3         |
| 36-41          | 10        |
| 42-47          | 30        |
| 48-53          | 49        |
| 54-59          | 35        |
| 60-65          | 32        |
| 66-71          | 21        |
| 72-77          | 5         |
| 78-83          | 4         |
| Total          | 189       |

| Class Interval | Frequency |
|----------------|-----------|
| 30-39          | 11        |
| 40-49          | 46        |
| 50-59          | 70        |
| 60-69          | 45        |
| 70-79          | 16        |
| 80-89          | 1         |
| Total          | 189       |

#### **Frequency Distribution**

- Midpoint of class interval:
  - ▶ The sum of the upper and lower limits of the class interval is divided by 2
  - $\blacktriangleright$  In ex. (30+39)/2=34.5 (interval 1)
- ▶ The Cumulative Frequency
  - ▶ It can be computed by adding successive frequencies
- The Cumulative Relative Frequency
  - ▶ It can be computed by adding successive relative frequencies

| Class<br>interval | Midpoint | Frequency<br>Freq (f) | Cumulative<br>Frequency | Relative<br>Frequency<br>R.f | Cumulative<br>Relative<br>Frequency |
|-------------------|----------|-----------------------|-------------------------|------------------------------|-------------------------------------|
| 30 – 39           | 34.5     | 11                    | 11                      | 0.0582                       | 0.0582                              |
| 40 – 49           | 44.5     | 46                    | 57                      | 0.2434                       | 0.3016                              |
| 50 – 59           | 54.5     | 70                    | 127                     | 0.3704                       | 0.6720                              |
| 60 – 69           | 64.5     | 45                    | 172                     | 0.2381                       | 0.9101                              |
| 70 – 79           | 74.5     | 16                    | 188                     | 0.0847                       | 0.9948                              |
| 80 – 89           | 84.5     | 1                     | 189                     | 0.0053                       | 1                                   |
| Total             |          | 189                   |                         | 1                            |                                     |



| Class<br>interval | Midpoint | Frequency<br>Freq (f) | Cumulative<br>Frequency | Relative<br>Frequency<br>R.f | Cumulative<br>Relative<br>Frequency |
|-------------------|----------|-----------------------|-------------------------|------------------------------|-------------------------------------|
| 30 – 39           | 34.5     | 11                    | 11                      | 0.0582                       | 0.0582                              |
| 40 – 49           | 44.5     | 46                    | 57                      | 0.2434                       | 0.3016                              |
| 50 – 59           | 54.5     | 70                    | 127                     | 0.3704                       | 0.6720                              |
| 60 – 69           | 64.5     | 45                    | 172                     | 0.2381                       | 0.9101                              |
| 70 – 79           | 74.5     | 16                    | 188                     | 0.0847                       | 0.9948                              |
| 80 – 89           | 84.5     | 1                     | 189                     | 0.0053                       | 1                                   |
| Total             |          | 189                   |                         | 1                            |                                     |

- From the above frequency table, answer the following questions:
- 1) The number of subjects with age less than 50 years?
  - **46+11=57**
- 2) The number of subjects with age between 40-69 years?
  - **46+70+45=161**
- 3) Percentage of subjects with age between 70-79 years?
  - **8.47%**
- 4) Percentage of subjects with age more than 69 years?
  - **8.47+0.53=9%**

| Class<br>interval | Midpoint | Frequency<br>Freq (f) | Cumulative<br>Frequency | Relative<br>Frequency<br>R.f | Cumulative<br>Relative<br>Frequency |
|-------------------|----------|-----------------------|-------------------------|------------------------------|-------------------------------------|
| 30 – 39           | 34.5     | 11                    | 11                      | 0.0582                       | 0.0582                              |
| 40 – 49           | 44.5     | 46                    | 57                      | 0.2434                       | 0.3016                              |
| 50 – 59           | 54.5     | 70                    | 127                     | 0.3704                       | 0.6720                              |
| 60 – 69           | 64.5     | 45                    | 172                     | 0.2381                       | 0.9101                              |
| 70 – 79           | 74.5     | 16                    | 188                     | 0.0847                       | 0.9948                              |
| 80 – 89           | 84.5     | 1                     | 189                     | 0.0053                       | 1                                   |
| Total             |          | 189                   |                         | 1                            |                                     |

- From the above frequency table, answer the following questions:
- 5) The percentage of subjects with age between 40-49 years?
  - **46/189=0.2434 -> 24.34%**
- 6) The percentage of subjects with age less than 60 years?
  - 5.82+24.34+37.04=67.2%
- 7) Number of intervals (k)?
  - ▶ k=6
- 8) The width of the interval (w)?
  - ▶ w=10

# Graphical Methods The Histogram

- Representing the grouped frequency table using the histogram
  - ▶ To draw the histogram, the <u>true classes limits</u> should be used.
  - ▶ They can be computed by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit for each interval.

| True class limits | Frequency |
|-------------------|-----------|
| 29.5 – <39.5      | 11        |
| 39.5 – < 49.5     | 46        |
| 49.5 – < 59.5     | 70        |
| 59.5 – < 69.5     | 45        |
| 69.5 – < 79.5     | 16        |
| 79.5 – < 89.5     | 1         |
| Total             | 189       |



# Graphical Methods Frequency Polygon



# Graphical Methods Ogive

- An <u>ogive</u> is a graph that represents the cumulative frequencies for the classes in a frequency distribution. It shows how many of values of the data are below certain boundary.
- Steps for constructing an ogive:
- Draw and label the x (horizontal) and the y (vertical) axes.
- Represent the cumulative frequencies on the y axis and the class boundaries on the x axis.
- Plot the cumulative frequency at each upper class boundary with the height being the corresponding cumulative frequency.
- Connect the points with segments. Connect the first point on the left with the x axis at the level of the lowest lower class boundary.
- Note: For the ogive we need the class intervals and the cumulative frequencies

### Graphical Methods Ogive



### Numerical Methods Stem and Leaf Displays

- A stem and leaf plot
  - provides information regarding the range of the dataset
  - shows the location of the highest concentration of measurements
  - reveals the presence or absence of symmetry.
- Preserves information contained in the individual measurements.

 Use the age data of 189 subjects to construct a stem-and-leaf display

| TABLE 2.2.1 | Ordered | Array | of | Ages | of | Subjects | from | Table | 1.4.1 |  |
|-------------|---------|-------|----|------|----|----------|------|-------|-------|--|
|             |         |       |    |      |    |          |      |       |       |  |

|    |    |    |    |    | _  | _  | _  |    |    |    |    |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 30 | 34 | 35 | 37 | 37 | 38 | 38 | 38 | 38 | 39 | 39 | 40 | 40 | 42 | 42 |
| 43 | 43 | 43 | 43 | 43 | 43 | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 45 | 45 |
| 45 | 46 | 46 | 46 | 46 | 46 | 46 | 47 | 47 | 47 | 47 | 47 | 47 | 48 | 48 |
| 48 | 48 | 48 | 48 | 48 | 49 | 49 | 49 | 49 | 49 | 49 | 49 | 50 | 50 | 50 |
| 50 | 50 | 50 | 50 | 50 | 51 | 51 | 51 | 51 | 52 | 52 | 52 | 52 | 52 | 52 |
| 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 | 53 |
| 53 | 53 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 54 | 55 | 55 |
| 55 | 56 | 56 | 56 | 56 | 56 | 56 | 57 | 57 | 57 | 57 | 57 | 57 | 57 | 58 |
| 58 | 59 | 59 | 59 | 59 | 59 | 59 | 60 | 60 | 60 | 60 | 61 | 61 | 61 | 61 |
| 61 | 61 | 61 | 61 | 61 | 61 | 61 | 62 | 62 | 62 | 62 | 62 | 62 | 62 | 63 |
| 63 | 64 | 64 | 64 | 64 | 64 | 64 | 65 | 65 | 66 | 66 | 66 | 66 | 66 | 66 |
| 67 | 68 | 68 | 68 | 69 | 69 | 69 | 70 | 71 | 71 | 71 | 71 | 71 | 71 | 71 |
| 72 | 73 | 75 | 76 | 77 | 78 | 78 | 78 | 82 |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

| Stem | Leaf                                           |
|------|------------------------------------------------|
| 3    | 04577888899                                    |
| 4    | 0022333333444444455566666677777788888889999999 |
| 5    | 00000001111222222333333333333333334444444444   |
| 6    | 0000111111111122222233444444556666667888999    |
| 7    | 0111111123567888                               |
| 8    | 2                                              |

**FIGURE 2.3.6** Stem-and-leaf display of ages of 189 subjects shown in Table 2.2.1 (stem unit = 10, leaf unit = 1).

Stem Unit = 5 Leaf Unit = 1

```
Stem-and-leaf of Age
                     N = 189
Leaf Unit = 1.0
     3 04
11
     3 577888899
28
     4 00223333334444444
57
     4 55566666677777788888889999999
     (46)
86
     5 555666666777777788999999
62
     6 000011111111111222222233444444
32
     6 556666667888999
17
     7 0111111123
     7 567888
```

**FIGURE 2.3.8** Stem-and-leaf display prepared by MINITAB from the data on subjects' ages shown in Table 2.2.1; class interval width = 5.

# Numerical Measurements (Descriptive Measures)

- Descriptive Measure: a single number computed to summarize the data
- ► A Statistic: a descriptive measure computed from the data of a <u>sample</u>
- A Parameter: a descriptive measure computed from the data of a population
- ▶ Types of Descriptive Measures are limited as:
  - Measures of Central tendency
  - Measures of dispersion

# Numerical Measurements Measures of Central Tendency

- ► A measure of central tendency is a measure which indicates where the middle of the data is.
- The three most commonly used measures of central tendency are:

The Mean, the Median, and the Mode.

## Measures of Central Tendency Mean

- Arithmetic Mean: (the most familiar measure of CT)
  - ▶ It is the average of the data.
- Population Mean

- ▶ It is usually unknown, then we use the sample mean to estimate or approximate it.
- Sample Mean

- **Example:** 
  - ▶ Here is a random sample of size 10 of ages, where

$$x_1 = 43$$
,  $x_2 = 66$ ,  $x_3 = 61$ ,  $x_4 = 64$ ,  $x_5 = 65$ ,

$$x_6 = 38, x_7 = 59, x_8 = 57, x_9 = 57, x_{10} = 50$$

$$\bar{x}$$
= (43 + 66 + ... + 57+50) / 10 = 56

#### **Properties of the Mean**

- Uniqueness
  - For a given set of data there is one and only one mean.
- Simplicity
  - ▶ It is easy to understand and to compute.
- Affected by extreme values
  - Since all values enter into the computation.
  - Extreme values have an influence on the mean

#### Example:

- Assume the values are 115, 110, 119, 117, 121 and 126.
  - ▶ The mean = 118.
- ▶ But assume that the values are 75, 75, 80, 80 and 280.
  - ▶ The mean = 118, a value that is not representative of the set of data as a whole.

## Measures of Central Tendency Median

#### ► The Median:

- It is a measure in the center of the data set
- ▶ When ordering the data, it is the observation that divide the set of observations into two equal parts such that half(50%) of the data are before it and the other are after it.

- If n is odd, the median will be the middle of observations.
  - ▶ It will be the (n+1)/2 th ordered observation.
    - ▶ When n = 11, then the median is the 6<sup>th</sup> observation.

- If n is even, there are two middle observations. The median will be the mean of these two middle observations.
  - ▶ It will be the (n+1)/2 th ordered observation.
    - ▶ When n = 12, then the median is the 6.5<sup>th</sup> observation, which is an observation halfway between the 6<sup>th</sup> and 7<sup>th</sup> ordered observation.

- Example
  - Find the median of the ordered data: 38,43,50,57,57,59,61,64,65,66
    - ▶ Since n is even, there is no middle value
    - ▶ Two middle values are 57 and 59
    - ightharpoonup The median = (57+59)/2=58
- Warning: To find the median, data has to be ordered

#### Properties of the Median:

- Uniqueness For a given set of data there is one and only one median.
- Simplicity It is easy to calculate.
- ▶ It is not affected by extreme values as is the mean.

## Measures of Central Tendency Mode

#### ► The Mode:

- ▶ It is the value which occurs most frequently.
- ▶ If all values are different there is <u>no mode</u>.
- ▶ Sometimes, there are more than one mode.
  - ▶ If there are two modes -> bimodal distribution
  - ▶ If there are more than two modes -> multimodal distribution



### Measures of Central Tendency Mode

- Ex1 Consider a lab with 10 employees whose ages are 20, 21, 20, 20, 34, 22, 24, 27, 27, 27.
  - Mode values are 20 and 27.
- Ex2 Sample with values 10, 21, 33, 53, 54
  - has no mode!!!

#### ▶ Properties of the Mode:

- ▶ Sometimes, it is not unique.
- It may be used for describing qualitative data.

### central tendency measures

Mode Depends only on the frequency of the observations

Median Depends only on the relative positions of the observations

Mean — Calculated by using the values of all the observations

#### Skewness

- If the graph (histogram or frequency polygon) of a distribution is asymmetric, the distribution is said to be skewed.
- In symmetric distributions, the mode, median and the arithmetic mean are the same.



**Figure 1.** Sketches showing general position of mean, median, and mode in a population.

### Numerical Measurements Measures of Dispersion

- A measure of dispersion conveys information regarding the amount of variability present in a set of data.
- ► Note:
  - If all the values are the same
    - ► There is no dispersion
  - If all the values are different
    - ▶ There is a dispersion
      - ▶ If the values <u>close</u> to each other
        - ▶ The amount of Dispersion is small.
      - ▶ If the values are <u>widely scattered</u>
        - ▶ The Dispersion is greater.

- Which of the distributions of scores has the larger dispersion?
- The upper distribution has more dispersion because the scores are more spread out

That is, they are less similar to each other







**FIGURE 2.5.1** Two frequency distributions with equal means but different amounts of dispersion.

- Measures of Dispersion are:
  - ▶ The Range
  - ▶ The Variance
  - Standard Deviation
  - ▶ The Coefficient of Variation
  - Percentiles and Quartiles

# Measures of Dispersion The Range

Measures the variation in a frequency distribution. It is defined as the difference between the largest  $(x_L)$  and smallest values  $(x_S)$ .

<u>Range</u> only defines the difference between two end values. It defines the variation of values in the data set.

but

It does not give <u>information</u> about the distribution of the values between the two end values.

<u>Variance</u> is a better measure of dispersion.

because

It is calculated by using all the values in the data set.

## Measures of Dispersion The Variance

Variance is the measure of dispersion relative to the scatter of the values about the mean

Population variance

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$$

Sample variance

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

## What Does the Variance Formula Mean?

- □ First the mean is subtracted from each of the scores
  - ▶ This difference is called a deviate or a deviation score
  - ▶ The deviation tells us how far a given score is from the mean
- Variance is the mean of the squared deviation scores
- The larger the variance is, the more the scores deviate away from the mean
- If the variance is small, then it means the deviation is low

## Measures of Dispersion Standard Deviation

The standard deviation is the square root of variance

Sample Standard Deviation:  $s = \sqrt{s^2}$ 

Population Standard Deviation:  $\sigma = \sqrt{\sigma^2}$ 

- When the deviate scores are squared in variance, their unit of measure is squared as well
  - ► E.g. If people's weights are measured in pounds, then the variance of the weights would be expressed in pounds<sup>2</sup> (or squared pounds)
- Since squared units of measure are often awkward to deal with, the square root of variance is often used instead

### Example

- Let's say you are given a data set for trees in California (in feet):
- **3**,21,98,203,17,9

$$\bar{X} = \frac{351}{6} = 58.5$$

$$S^2 = \frac{\sum (x - x^2)^2}{n - 1} = \frac{(3 - 58.5)^2 + (21 - 58.5)^2 + \dots + (9 - 58.5)^2}{6 - 1} = \frac{31,099.5}{5} = 6,219.9$$

$$S = \sqrt{6129.9} = 78.87$$
 is the standard deviation

## Measures of Dispersion The Coefficient of Variation

- Coefficient of variation (CV) is used to compare the dispersion in two sets of data
  - it expresses the standard deviation as a percentage of the mean

$$C.V = \frac{S}{\overline{X}}(100)$$

lacksquare  $ar{X}$  is the sample mean and s is the sample std dev

#### Example

Suppose two samples of human males yield the following data:

Sample?

|                    | 3di libie i  | Sumplez     |  |
|--------------------|--------------|-------------|--|
| Age 2              | 25-year-olds | 11year-olds |  |
| Mean weight        | 145 pound    | 80 pound    |  |
| Standard deviation | on 10 pound  | 10 pound    |  |
| l .                |              |             |  |

Sample 1

$$V = \frac{10}{145} \times 100 = \%6.9$$
  $V = \frac{10}{80} \times 100 = \%12.5$ 

Thus, the variation is much bigger in the sample of 11-year olds than in the sample of 25 years old.