Short Proof of The Genericity Lemma

Apiros3

First Version : Jun 19, 2025 Last Update : --, 2025

1 Proof Setup

We will assume a basic knowledge about Lambda Calculus and Topology, only refreshing on topics related to Genericity Lemma. We give some definitions to make notation clear.

1.1 Basic Definitions

Definition 1.1.1. We write Lambda Terms to be defined by

$$M, N := x \mid \lambda x.M \mid MN$$

where x is some variable, which we assume to have countably many of. The set of all terms is written Λ .

Definition 1.1.2. A (unary) context is defined as

$$C[X] := X \mid \lambda x. C[X] \mid C[X] M \mid M C[X]$$

where M is a lambda term.

1.2 Head Normal Form

Definition 1.2.1. A closed term is in head normal form (hnf) if it has the shape

$$\lambda x_1 \cdots \lambda x_n . q N_1 \cdots N_k$$

for $k \geq 0$ and g is a variable with $N_i \in \Lambda$ for i = 1, ..., k.

Definition 1.2.2. A closed term M is **solvable** if there is some closed context C[X] and some term H in haf such that

$$C[M] \rightarrow_h H$$

If no such context exists, M is unsolvable.

1.3 The Topology

Definition 1.3.1. Define the subbasis of opens for the topology τ of Λ to be

$$U_{C,H} = \{ M \in \Lambda \mid C[M] \twoheadrightarrow_h H \}$$

Lemma 1.3.2. The map $C[_]: \Lambda \to \Lambda$ by $M \mapsto C[M]$ is continuous.

Proof. Take any open set from the subbasis, say $U_{D,H}$. The preimage of this under $C[_]$ is $U_{C \circ D,H}$.

Lemma 1.3.3. The set of solvable terms is given by

$$\bigcup_{C,H} U_{C,H}$$

In particular, this is an open set.

Lemma 1.3.4. The set of unsolvable terms is a countable intersection of dense open sets.

2 Genericity Lemma

Theorem 2.0.1. Let M be an unsolvable term. Then for any context C, then