HOMEWORK 5 – MATH 441 May 9, 2018

ALEX THIES athies@uoregon.edu

Assignment: 3.B - 6, 16, 21; 3.C - 4, 10, 14; 3.D - TBA;

Section 3.B

Problem 6. Prove that there does not exist a linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that range T = null T.

Proof. Let $T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^5)$, i.e., $T : \mathbb{R}^5 \to \mathbb{R}^5$. By the Fundamental Theoreom for Linear Maps (FTLM) we have $\dim \mathbb{R}^5 = \dim \operatorname{null} T + \dim \operatorname{range} T$. Suppose by way of contradiction that range $T = \operatorname{null} T$, then $\dim \operatorname{null} T = \dim \operatorname{range} T$, so the FTLM states $5 = 2\dim \operatorname{null} T$. Since $\dim \operatorname{null} T \in \mathbb{Z}^+$, the FTLM is asserting that 5 = 2n, i.e., 5 is even \not Hence, there does not exist a linear map $T : \mathbb{R}^5 \to \mathbb{R}^5$ such that range $T = \operatorname{null} T$, as we aimed to show.

Problem 16. Suppose there exists a linear map on V whose null space and range are both finite-dimensional. Prove that V is finite-dimensional.

Proof. Let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ such that dim null T = m and dim range T = n for $m, n \in \mathbb{Z}^+$. Let u_1, \ldots, u_m be a basis of null T and w_1, \ldots, w_n be a basis of range T. Since T is surjective, range $T = \mathbf{W}$, so w_1, \ldots, w_n is also a basis of \mathbf{W} . Moreover, since T is surjective, for each $w \in \mathbf{W}$, there exists $v \in \mathbf{V}$ such that Tv = w, hence we can write our basis of W as Tv_1, \ldots, Tv_n for $v_j \in V$. Then $Tv = a_1w_1 + \cdots + a_nw_n = a_1Tv_1 + \cdots + a_nTv_n$. So, with additivity and homogeneity we can compute the following:

$$Tv = a_1 T v_1 + \dots + a_n T v_n,$$

$$0 = T(a_1 v_1 + \dots + a_n v_n) - T v,$$

$$= T(a_1 v_1 + \dots + a_n v_n - v),$$

$$= T(v - (a_1 v_1 + \dots + a_n v_n)),$$

So, we have that $v - a_1v_1 - \cdots + a_nv_n \in \text{null } T$, thus we can write it as a linear combination of the basis elements u_i . So we have:

$$v - (a_1v_1 + \cdots + a_nv_n) = b_1u_1 + \cdots + b_nu_m,$$

 $v = b_1u_1 + \cdots + b_nu_m + a_1v_1 + \cdots + a_nv_n$

Notice that since null $T \subsetneq \mathbf{V}$, each of the u_i 's are elements of \mathbf{V} . Thus, an arbitrarily chosen element of \mathbf{V} can be expressed as a linear combination of finitely-many basis elements, which implies that \mathbf{V} is finite-dimensional, as we aimed to show.

Problem 21. Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on W.

Proof. Let **V** be a finite-dimensional vector space over \mathbb{F} and let $T \in \mathcal{L}(\mathbf{V}, \mathbf{W})$ for some vector space W; let dim $\mathbf{V} = n$ for $n \in \mathbb{Z}^+$.

- \Rightarrow) Assume T is surjective. Then range $T = \mathbf{W}$, but more importantly, we have that for each $w \in \mathbf{W}$, there exists $v \in \mathbf{V}$ such that Tv = w. Define $S : \mathbf{W} \to \mathbf{V}$ mapped by $w \mapsto v$ where v is such that Tv = w. Since T is surjective, S is well-defined. Then we have TSw = Tv = w, which shows that TS acts as the identity element from \mathbf{W} , as we aimed to show; it remains to prove the converse.
- \Leftarrow) Assume there exists $S \in \mathcal{L}(\mathbf{W}, \mathbf{V})$ such that TS is the identity map on \mathbf{W} , we will show that T is surjective, using the definition of surjectivity Let $w \in \mathbf{W}$, and note that S in this part of the proof is **not** defined as it is previously. Notice that $Sw \in V$, hence for some $v \in \mathbf{V}$ we know Sw = v. By assumption TSw = w, but from the previous line we know that $Sw \in \mathbf{V}$ is the element that T maps to w, and since w is arbitrary, we have that Tv = w for each $w \in \mathbf{W}$, which means that T satisfies the definition of being a surjective mapping, as we aimed show.

SECTION 3.C

Problem 4. Suppose v_1, \ldots, v_m is a basis of V and W is finite-dimensional. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis w_1, \ldots, w_m of W such that all the entries in the first column of $\mathcal{M}(T)$ (with respect to the bases v_1, \ldots, v_m and w_1, \ldots, w_m) are 0 except for possibly a 1 in the first row, first column.

Proof. Let v_1, \ldots, v_m, V, W , and T be as above. I think the idea behind this problem is to show that matrices can be row-reduced, so we need to make a basis w_1, \ldots, w_m where $Tv_1 = w_1$. So, we have two cases: (1) $Tv_1 = 0$; and (2) $Tv_1 \neq 0$. If $Tv_1 = 0$, then any w_1, \ldots, w_m will work fine. If $Tv_1 \neq 0$, choose any w_1, \ldots, w_m so that $Tv_1 = w_1$, as we alluded to above.

Problem 10. Suppose A is an m-by-n matrix and C is an n-by-p matrix. Prove that $(AC)_{i}$.

In other words, show that row j of AC equals (row j of A) times C.

Proof. The notation for this problem was very cumbersome, so I wasn't able to come up with a good, clean solution. \Box

¹I tried to show that range $T = \mathbf{W}$ for awhile, and that was hard; Shida suggested that we just use the definition.

²This is because the previous definition of S utilized the fact that T is surjective.

Problem 14. Prove that matrix multiplication is associative. In other words, suppose A, B, and C are matrices whose sizes are such that (AB)C makes sense. Prove that A(BC) makes sense and that (AB)C = A(BC).

Proof. As a consequence of my previous abstract algebra coursework, I hate proving that something is associative directly from the definition, its tedious and error-prone, so I tried to avoid that here. Recall that multiplication of linear maps is associative, and that linear maps can always be expressed as a matrix, we just need to ensure that the maps we're choosing have the appropriate dimensions. Let $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$, $S \in \mathcal{L}(\mathbb{F}^m, \mathbb{F}^p)$, and $R \in \mathcal{L}(\mathbb{F}^p, \mathbb{F}^q)$. Next, let $\mathcal{M}(T) = A$, $\mathcal{M}(S) = B$, and $\mathcal{M}(R) = C$. Recall again that by Theorem 3.43 $\mathcal{M}(ST) = \mathcal{M}(S)\mathcal{M}(T)$, using this we compute the following:

```
(AB)C = (\mathcal{M}(T)\mathcal{M}(S))\mathcal{M}(R),
= \mathcal{M}(TS)\mathcal{M}(R),
= \mathcal{M}((TS)R),
= \mathcal{M}(TSR),
= \mathcal{M}(T(SR)),
= \mathcal{M}(T)\mathcal{M}(SR),
= \mathcal{M}(T)(\mathcal{M}(S)\mathcal{M}(R)),
= A(BC).
```

Thus, (AB)C = A(BC) as we aimed to show.