Renewal Processes with discrete Lifetime Distribution

Gedeon Alexander Vogt

14.10.2024

Outline

- Discrete Renewal Processes
 - Fundamentals
 - Renewal Equations
- The Conversion from continuous to discrete Renewal Processes
- 3 Limit Theorems
 - Classic results in Renewal Theory
 - Defective Renewal Theorem
 - Renewal Reward Theorem
- Delayed Renewal Processes
 - General Delayed Renewal Processes
 - Stationary Renewal Process
- 6 Lifetime Processes

Outline

- Discrete Renewal Processes
 - Fundamentals
 - Renewal Equations
- 2 The Conversion from continuous to discrete Renewal Processes
- 3 Limit Theorems
 - Classic results in Renewal Theory
 - Defective Renewal Theorem
 - Renewal Reward Theorem
- Delayed Renewal Processes
 - General Delayed Renewal Processes
 - Stationary Renewal Process
- **5** Lifetime Processes

Inter arrival times an their Distribution

2.2 Definition:

The common distribution of the sequence of i.i.d. random variables $(X_i)_{i\in\mathbb{N}}$ is referred to as waiting time distribution of the renewal process. It is depicted by $f=(f_n)_{n\in\mathbb{N}_0}$ with $f_n:=\mathbb{P}(X_1=n)$ for all $n\in\mathbb{N}_0$. The cumulative distribution function is denoted by $F(n):=\mathbb{P}(X_1\leq n)$.

Some important Sequences

(i) renewal process:

$$S_n := \begin{cases} 0, & n = 0 \\ \sum_{i=1}^n X_i, & \text{else} \end{cases}, n \in \mathbb{N}_0$$

Some important Sequences

(i) renewal process:

$$S_n := \begin{cases} 0, & n = 0 \\ \sum_{i=1}^n X_i, & \text{else} \end{cases}, n \in \mathbb{N}_0$$

(ii) renewal counting process:

$$N(n) := \sum_{k=1}^{\infty} \mathbb{1}_{\{S_k \le n\}} = \sum_{k=1}^{\infty} \mathbb{1}_{[0,n]}(S_k) \quad , n \in \mathbb{N}_0$$

Some important Sequences

(i) renewal process:

$$S_n := \begin{cases} 0, & n = 0 \\ \sum_{i=1}^n X_i, & \text{else} \end{cases}, n \in \mathbb{N}_0$$

(ii) renewal counting process:

$$N(n) := \sum_{k=1}^{\infty} \mathbb{1}_{\{S_k \le n\}} = \sum_{k=1}^{\infty} \mathbb{1}_{[0,n]}(S_k) \quad , n \in \mathbb{N}_0$$

(iii) indicator sequence:

$$Z_n := egin{cases} 1, & ext{if } n = S_m ext{ for some } m \geq 0 \ 0, & ext{otherwise} \end{cases} = \sum_{m=0}^\infty \mathbbm{1}_{\{S_m = n\}}$$

Renewal Function

(i)

$$\mathbb{E}N(n) = \sum_{k=1}^{\infty} \mathbb{P}(N(n) \ge k) = \sum_{k=1}^{\infty} \mathbb{P}(S_k \le n) = \sum_{k=1}^{\infty} F^{*k}(n)$$

Renewal Function

(i)

$$\mathbb{E}N(n) = \sum_{k=1}^{\infty} \mathbb{P}(N(n) \ge k) = \sum_{k=1}^{\infty} \mathbb{P}(S_k \le n) = \sum_{k=1}^{\infty} F^{*k}(n)$$

$$\Psi(n) := \mathbb{E}(N(n) + 1) = \sum_{k=0}^{\infty} \mathbb{P}(S_k \le n) = \sum_{k=0}^{\infty} \sum_{l=0}^{n} f_l^{*k}$$

Example

$$\mathbb{E}N(n) = F(n) + \sum_{k=0}^{n} f_k \, \mathbb{E}N(n-k)$$

Definition

2.11 Definition:

Let $(b_n)_{n\in\mathbb{N}_0}$ be a sequence with $\sum_{n=0}^{\infty}|b_n|<\infty$, $(f_n)_{n\in\mathbb{N}_0}$ with $f_0<1$ the common distribution of the i.i.d. non-negative random variables $X_1,...,X_n$ and $(g_n)_{n\in\mathbb{N}_0}$ unknown variables, then we call

(1.1)
$$g_n = b_n + \sum_{k=0}^n f_k g_{n-k}$$

a renewal equation in discrete time.

Unique Solution

2.13 Theorem: (unique solution of renewal equations)

If $b_n \geq 0$ for $n \in \mathbb{N}$ and $\sum_{n=0}^{\infty} b_n \leq \infty$, then the discrete-time renewal equation (1.1) has the unique solution

$$g_n = (u * b)_n$$
 , $n \in \mathbb{N}$.

What is u?

$$u_n := \mathbb{P}(Z_n = 1) = 1 \cdot \mathbb{P}(Z_n = 1) + 0 \cdot \mathbb{P}(Z_n = 0)$$

= $\mathbb{E}(Z_n) = 1 \cdot \sum_{k=0}^{\infty} \mathbb{P}(S_k = n) = \sum_{k=0}^{\infty} f_n^{*k}$

Example I

Question: A pedestrian arriving at time 0 crosses the lane as soon as he sees a time interval x>0 between two consecutive cars. How long must he wait, on average?

Step 1:

Consider a defective renewal process with $\sum_{n=0}^{\infty} f_n = p$, $p \in (0,1)$ and $f_0 = 0$. Define the lifetime of the process by

$$T:=S_N=\sum_{i=1}^N X_i,$$

where $S_{N+1} = S_{N+2} = ... = \infty$.

Question: What is the distribution of N?

Solution:

Step 1:

Consider a defective renewal process with $\sum_{n=0}^{\infty} f_n = p$, $p \in (0,1)$ and $f_0 = 0$. Define the lifetime of the process by

$$T:=S_N=\sum_{i=1}^N X_i,$$

where $S_{N+1} = S_{N+2} = ... = \infty$.

Question: What is the distribution of N?

Solution: $\mathbb{P}(N = n) = p^n(1 - p)$

Step 2:

Determine the distribution of T.

Step 2:

Determine the distribution of T.

Bring $\mathbb{P}(T = n)$ in the form of a renewal equation:

Step 2:

Determine the distribution of T.

Bring $\mathbb{P}(T = n)$ in the form of a renewal equation:

$$\underbrace{\mathbb{P}(T=n)}_{=:g_n} = \underbrace{(1-p)\mathbb{1}_{\{n=0\}}}_{=:b_n} + \sum_{k=1}^n \mathbb{P}(T=n-k)f_k \stackrel{f_0=0}{=} b_n + \sum_{k=0}^n g_{n-k}f_k.$$

Step 2:

Determine the distribution of T.

Bring $\mathbb{P}(T = n)$ in the form of a renewal equation:

$$\underbrace{\mathbb{P}(T=n)}_{=:g_n} = \underbrace{(1-p)\mathbb{1}_{\{n=0\}}}_{=:b_n} + \sum_{k=1}^n \mathbb{P}(T=n-k)f_k \stackrel{f_0=0}{=} b_n + \sum_{k=0}^n g_{n-k}f_k.$$

Apply Theorem (2.13) and obtain the unique solution

$$\mathbb{P}(T=n)=(1-p)u_n.$$

Example IV

Step 3:

- $(f_n)_{n\in\mathbb{N}}$ distribution of X_i (the time between two cars)
- \bullet x > 0 the required time that the pedestrian is able to cross the street

Example IV

Step 3:

- $(f_n)_{n\in\mathbb{N}}$ distribution of X_i (the time between two cars)
- \bullet x > 0 the required time that the pedestrian is able to cross the street

Define new distribution:

$$f_n' := \begin{cases} f_n, & n \le x \\ 0, & n > x \end{cases}$$

Example IV

Step 3:

- $(f_n)_{n\in\mathbb{N}}$ distribution of X_i (the time between two cars)
- \bullet x > 0 the required time that the pedestrian is able to cross the street

Define new distribution:

$$f_n' := \begin{cases} f_n, & n \le x \\ 0, & n > x \end{cases}$$

Solution:

$$\mathbb{E}T = \sum_{n=0}^{\infty} n \mathbb{P}(T = n) = \sum_{n=0}^{\infty} n(1 - p)u_n$$

Outline

- Discrete Renewal Processes
 - Fundamentals
 - Renewal Equations
- 2 The Conversion from continuous to discrete Renewal Processes
- 3 Limit Theorems
 - Classic results in Renewal Theory
 - Defective Renewal Theorem
 - Renewal Reward Theorem
- 4 Delayed Renewal Processes
 - General Delayed Renewal Processes
 - Stationary Renewal Process
- **5** Lifetime Processes

Age Replacement Policy I

The problem: The failure of a cooling unit damages a computer. It is cheaper to replace it beforehand.

Age Replacement Policy I

The problem: The failure of a cooling unit damages a computer. It is cheaper to replace it beforehand.

Question: What is the optimal cycle in which the cooling unit should be replaced?

Age Replacement Policy II

- $(X_k)_{k\in\mathbb{N}}$
- $\bullet \ (f_k)_{k\in\mathbb{N}}, \ \mathbb{P}(X_1=0)=0$

Age Replacement Policy II

- $(X_k)_{k\in\mathbb{N}}$
- $(f_k)_{k\in\mathbb{N}}, \mathbb{P}(X_1=0)=0$
- $Z_i := \min\{X_i, N\}, j \in \mathbb{N} \text{ and } N \in \mathbb{N}$

Age Replacement Policy II

- $(X_k)_{k\in\mathbb{N}}$
- $(f_k)_{k\in\mathbb{N}}$, $\mathbb{P}(X_1=0)=0$
- $Z_i := \min\{X_i, N\}, j \in \mathbb{N} \text{ and } N \in \mathbb{N}$
- we obtain:

$$\mathbb{P}(Z_1 \leq k) = \begin{cases} \sum_{i=0}^k f_i, & N \geq k \\ 1, & N < k \end{cases}.$$

The goal: Determine the optimal N, N^* .

Age Replacement Policy III

Expected cost rate:

$$C(N) := \frac{c_1 \mathbb{P}(X_1 \leq N) + c_2 \mathbb{P}(X_1 > N)}{\mathbb{E}Z_1}$$

Age Replacement Policy III

Expected cost rate:

$$C(N) := \frac{c_1 \mathbb{P}(X_1 \leq N) + c_2 \mathbb{P}(X_1 > N)}{\mathbb{E}Z_1}$$

c₁: costs if cooling unit fails

c2: costs if cooling unit got replaced before failure

Age Replacement Policy IV

•
$$\frac{C(N+1)-C(N)}{(N+1)-N} = C(N+1)-C(N)$$

Age Replacement Policy IV

•
$$\frac{C(N+1)-C(N)}{(N+1)-N} = C(N+1)-C(N)$$

$$\bullet \ \ C(N+1)-C(N) \geq 0 \quad \Leftrightarrow \quad \underbrace{h_{N+1} \sum_{k=1}^{N} \sum_{j=k}^{\infty} f_j - \sum_{j=1}^{N} f_j}_{=:L(N)} \geq \frac{c_2}{c_1-c_2}$$

with
$$h_j := f_j / \sum_{i=j}^{\infty} f_i$$
.

Age Replacement Policy IV

•
$$\frac{C(N+1)-C(N)}{(N+1)-N} = C(N+1)-C(N)$$

•
$$C(N+1)-C(N) \ge 0$$
 \Leftrightarrow $h_{N+1} \sum_{k=1}^{N} \sum_{j=k}^{\infty} f_j - \sum_{j=1}^{N} f_j \ge \frac{c_2}{c_1-c_2}$

with
$$h_j := f_j / \sum_{i=j}^{\infty} f_i$$
.

- In order to verify the existence of a unique N^* it has to be shown that L(N+1)-L(N)>0 and $L_\infty:=\lim_{N\to\infty}L(N)<\infty$
- ullet To show the second assertion we need the boundedness of h_j

Age Replacement Policy V

Figure: Exemplary age replacement policy with negative binomially distributed waiting times with p=0.2 (e.g. q=0.8) and replacement costs of $c_1=10$ and $c_2=1$.

Outline

- Discrete Renewal Processes
 - Fundamentals
 - Renewal Equations
- 2 The Conversion from continuous to discrete Renewal Processes
- 3 Limit Theorems
 - Classic results in Renewal Theory
 - Defective Renewal Theorem
 - Renewal Reward Theorem
- Delayed Renewal Processes
 - General Delayed Renewal Processes
 - Stationary Renewal Process
- 5 Lifetime Processes

Strong Law of large Numbers for Renewal Counting Processes

4.2 Theorem:

For a recurrent renewal process $(S_n)_{n\in\mathbb{N}}$ we have

$$\lim_{n\to\infty}\frac{N(n)}{n}=\frac{1}{\mu} \text{ a.s.}$$

with $\mu := \mathbb{E}X_1$.

Stopping Time

4.4 Definition:

It is t > 0, then

$$\tau(t) = \inf\{n \in \mathbb{N} \mid S_n > t\}, \quad \inf \varnothing := \infty$$

is called first passage time.

Stopping Time

4.4 Definition:

It is t > 0, then

$$\tau(t) = \inf\{n \in \mathbb{N} \mid S_n > t\}, \quad \inf \varnothing := \infty$$

is called first passage time.

4.5 Definition:

A random variable $\tau \in \mathbb{N}$ is called *stopping time* for $(X_n)_{n \in \mathbb{N}}$, if

$$\{\tau=n\}\in \underbrace{\sigma(X_1,...,X_n)}_{\sigma ext{-algebra}}\quad \forall n\in\mathbb{N}.$$

Elementary Renewal Theorem

4.6 Theorem:

For a recurrent renewal process $(S_n)_{n\in\mathbb{N}}$ and τ being a stopping time we have

$$\frac{\mathbb{E} au(t)}{t} \xrightarrow{t o \infty} \frac{1}{\mu}$$

with $1/\infty := 0$.

Elementary Renewal Theorem

4.6 Theorem:

For a recurrent renewal process $(S_n)_{n\in\mathbb{N}}$ and τ being a stopping time we have

$$\frac{\mathbb{E} au(t)}{t} \xrightarrow{t o \infty} \frac{1}{\mu}$$

with $1/\infty := 0$.

4.7 Corollary:

For a recurrent renewal process $(S_n)_{n\in\mathbb{N}}$ we have

$$\lim_{n\to\infty}\frac{\Psi(n)}{n}=\frac{1}{\mu}.$$

Elementary Renewal Theorem: Example

Consider i.i.d. random variables X1, X2, ... that are Bernoulli distributed, i.e. $f_1 := p$ and $f_0 := 1 - p = q$ with $\mathbb{E}X_1 = p$.

Elementary Renewal Theorem: Example

Consider i.i.d. random variables X1, X2, ... that are Bernoulli distributed, i.e. $f_1 := p$ and $f_0 := 1 - p = q$ with $\mathbb{E}X_1 = p$. Equation (2.5) provides

$$\Psi(n) = \sum_{k=0}^{n} u_k \stackrel{\text{eq. } (2.5)}{=} \frac{n+1}{p}.$$

Elementary Renewal Theorem: Example

Consider i.i.d. random variables X1, X2, ... that are Bernoulli distributed, i.e. $f_1 := p$ and $f_0 := 1 - p = q$ with $\mathbb{E}X_1 = p$. Equation (2.5) provides

$$\Psi(n) = \sum_{k=0}^{n} u_k \stackrel{\text{eq. } (2.5)}{=} \frac{n+1}{p}.$$

Therefore, we can conclude

$$\frac{\Psi(n)}{n} = \frac{n+1}{np} = \frac{1+1/n}{p} \xrightarrow{n \to \infty} \frac{1}{p} = \frac{1}{\mu},$$

which is consistent with Corollary (4.7).

Renewal Theorem

4.9 Theorem:

It is $u_n := \mathbb{P}(Z_n = 1)$ and $u_0 := 1$. Then

① For a recurrent aperiodic renewal process $(S_n)_{n\in\mathbb{N}}$ we have

$$\lim_{n\to\infty}u_n=\frac{1}{\mu}$$

② For a periodic recurrent renewal process of period d>1 $(S_n)_{n\in\mathbb{N}}$ we have

$$\lim_{n\to\infty}u_{nd}=\frac{d}{\mu}$$

and $u_k = 0$ for all k not multiple of d.

Renewal Theorem: Example I

Preliminary remarks:

• probability generating function $\tilde{f}(z) := \mathbb{E}[z^X] = \sum_{n=0}^{\infty} f_n z^n$

Renewal Theorem: Example I

Preliminary remarks:

- probability generating function $\tilde{f}(z) := \mathbb{E}[z^X] = \sum_{n=0}^{\infty} f_n z^n$
- $u(z) := \sum_{n=0}^{\infty} u_n z^n = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} f_n^{*k} z^n = \sum_{k=0}^{\infty} \tilde{f}_k^k(z) = \frac{1}{1 \tilde{f}(z)}$

Renewal Theorem: Example II

Consider $(X_n)_{n\in\mathbb{N}}$ with common distribution

$$f_n := \mathbb{P}(X = n) = \begin{cases} p, & \text{if } n = 1\\ q = 1 - p, & \text{if } n = 2 \end{cases}$$

Renewal Theorem: Example II

Consider $(X_n)_{n\in\mathbb{N}}$ with common distribution

$$f_n := \mathbb{P}(X = n) = \begin{cases} p, & \text{if } n = 1 \\ q = 1 - p, & \text{if } n = 2 \end{cases}$$

Goal: determine $\lim_{n\to\infty} u_n$

Renewal Theorem: Example III

Step 1: Probability generating function

$$\tilde{f}(z) = \mathbb{P}(X=1)z^1 + \mathbb{P}(X=2)z^2 = pz + qz^2$$

Renewal Theorem: Example III

Step 1: Probability generating function

$$\tilde{f}(z) = \mathbb{P}(X=1)z^1 + \mathbb{P}(X=2)z^2 = pz + qz^2$$

Step 2: Generating function of *u*

$$u(z) = \frac{1}{1 - \tilde{f}(z)} = \frac{1}{1 + q} \underbrace{\frac{1}{1 - z}}_{=:g_1(z)} + \underbrace{\frac{q}{1 + q}}_{=:g_2(z)} \underbrace{\frac{1}{1 + qz}}_{=:g_2(z)}$$

Renewal Theorem: Example III

Step 1: Probability generating function

$$\tilde{f}(z) = \mathbb{P}(X=1)z^1 + \mathbb{P}(X=2)z^2 = pz + qz^2$$

Step 2: Generating function of *u*

$$u(z) = \frac{1}{1 - \tilde{f}(z)} = \frac{1}{1 + q} \underbrace{\frac{1}{1 - z}}_{=:g_1(z)} + \underbrace{\frac{q}{1 + q}}_{=:g_2(z)} \underbrace{\frac{1}{1 + qz}}_{=:g_2(z)}$$

Step 3: Derivatives of g_1 and g_2

$$g_1^{(n)} = \frac{n!}{(1-z)^{n+1}}$$
 and $g_2^{(n)} = \frac{n!(-q)^n}{(1+qz)^{n+1}}$

Renewal Theorem: Example IV

Step 4: According to According to Johnson et al. (1993, p. 59)

$$u_n = \frac{u^{(n)}(0)}{n!} = \dots = \frac{1}{1+q} + \frac{q}{1+q}(-q)^n$$

Renewal Theorem: Example IV

Step 4: According to According to Johnson et al. (1993, p. 59)

$$u_n = \frac{u^{(n)}(0)}{n!} = \dots = \frac{1}{1+q} + \frac{q}{1+q}(-q)^n$$

Step 5: Determine the limit

$$\lim_{n\to\infty}u_n=\frac{1}{1+q}=\frac{1}{\mu}$$

Renewal Theorem: Example IV

Step 4: According to According to Johnson et al. (1993, p. 59)

$$u_n = \frac{u^{(n)}(0)}{n!} = \dots = \frac{1}{1+q} + \frac{q}{1+q}(-q)^n$$

Step 5: Determine the limit

$$\lim_{n\to\infty}u_n=\frac{1}{1+q}=\frac{1}{\mu}$$

Result is consistent with the renewal theorem!

Key Renewal Theorem

4.14 Theorem:

Consider a recurrent renewal process $(S_n)_{n\in\mathbb{N}}$ and a real sequence $(b_n)_{n\in\mathbb{N}}$.

1 If the process is aperiodic and $\sum_{n=0}^{\infty} |b_n| < \infty$, then

$$\lim_{n\to\infty}\sum_{k=0}^n b_k u_{n-k} = \frac{1}{\mu}\sum_{n=0}^\infty b_n$$

② If the process is periodic of period d>1 and if for a certain positive integer l, $0 \le l < d$, we have $\sum_{n=0}^{\infty} |b_{l+nd}| < \infty$, then

$$\lim_{n\to\infty}\sum_{k=0}^{l+nd}b_ku_{l+nd-k}=\frac{d}{\mu}\sum_{n=0}^{\infty}b_{l+nd},$$

where u_n is defined as before.

Defective Renewal Theorem: Intro

The problem: $\sum_{n=0}^{\infty} f_n < 1$

Defective Renewal Theorem: Intro

The problem: $\sum_{n=0}^{\infty} f_n < 1$

The solution: Scaling the probabilities up by a factor of $\gamma > 1$ such that

$$\sum_{n=0}^{\infty} \gamma^n f_n = 1$$

Defective Renewal Theorem

4.18 Theorem:

Let $(f_n)_{n\in\mathbb{N}}$ be a defective and aperiodic renewal distribution. If there exists $\gamma>1$ such that

$$\sum_{n=0}^{\infty} \gamma^n f_n = 1$$

and for the non negative sequence $(b_n)_{n\in\mathbb{N}}$ it is

$$\sum_{n=0}^{\infty} \gamma^n \mid b_n \mid < \infty,$$

then the asymptotic solution of the renewal equation (2.11) satisfies

$$\lim_{n\to\infty} \gamma^n g_n = \frac{\sum_{k=0}^{\infty} \gamma^k b_k}{\sum_{k=0}^{\infty} k \gamma^k f_k}.$$

Renewal Reward Theorem

4.21 Definition:

Given is a renewal process $(S_n)_{n\in\mathbb{N}_0}$ based on the i.i.d. sequence $(X_i)_{i\in\mathbb{N}}$, $X_i\in\mathbb{N}_0$ with renewal distribution $(f_n)_{n\in\mathbb{N}_0}$ and an i.i.d. sequence of random variables $(Z_i)_{i\in\mathbb{N}}$ with distribution $(g_n)_{n\in\mathbb{N}_0}$ and $(X_i,Z_i)_{i\in\mathbb{N}}$. The process $(\hat{Z}(n))_{n\in\mathbb{N}}$ defined by $\hat{Z}(n):=\sum_{i=1}^{N(n)}Z_i$ is called *renewal reward process*.

Renewal Reward Theorem

4.21 Definition:

Given is a renewal process $(S_n)_{n\in\mathbb{N}_0}$ based on the i.i.d. sequence $(X_i)_{i\in\mathbb{N}}$, $X_i\in\mathbb{N}_0$ with renewal distribution $(f_n)_{n\in\mathbb{N}_0}$ and an i.i.d. sequence of random variables $(Z_i)_{i\in\mathbb{N}}$ with distribution $(g_n)_{n\in\mathbb{N}_0}$ and $(X_i,Z_i)_{i\in\mathbb{N}}$. The process $(\hat{Z}(n))_{n\in\mathbb{N}}$ defined by $\hat{Z}(n):=\sum_{i=1}^{N(n)}Z_i$ is called *renewal reward process*.

4.22 Theorem:

Given is the situation from Definition (4.21) with $\mathbb{E}(X_1) < \infty$ and $\mathbb{E}|Z_1| < \infty$. Then applies:

$$2 \lim_{n\to\infty} \frac{\hat{Z}(n)}{n} = \frac{\mathbb{E}(Z_1)}{\mathbb{E}(X_1)}$$

Outline

- Discrete Renewal Processes
 - Fundamentals
 - Renewal Equations
- 2 The Conversion from continuous to discrete Renewal Processes
- 3 Limit Theorems
 - Classic results in Renewal Theory
 - Defective Renewal Theorem
 - Renewal Reward Theorem
- Delayed Renewal Processes
 - General Delayed Renewal Processes
 - Stationary Renewal Process
- **5** Lifetime Processes

Definition

5.1 Definition:

Let $(X_i)_{i\in\mathbb{N}}$ be stochastically independent with X_1 having the distribution $b=(b_n)_{n\in\mathbb{N}_0}$ and X_i , $i\geq 2$, the distribution $f=(f_n)_{n\in\mathbb{N}_0}$. f and b are discrete probability distributions as defined in previous chapters. While f is called *common distribution*, b is referred to as the *initial distribution* (or delayed distribution). Then, $(S_n^D)_{n\in\mathbb{N}_0}$ defined as

$$S_n^D := \begin{cases} 0, & n = 0\\ \sum_{i=1}^n X_i, & n \in \mathbb{N} \end{cases}$$

is called *delayed renewal process*. The corresponding renewal counting process is denoted as $(N^D(n))_{n\in\mathbb{N}_0}$ with $N^D(n):=\sum_{k=1}^\infty\mathbb{1}_{\{S_k\leq n\}}$.

Renewal Theorem for Delayed Renewal Processes

5.2 Theorem:

Consider a delayed recurrent renewal process $(S_n)_{n\in\mathbb{N}}$ with positive inter arrival times and an initial distribution $b=(b_n)_{n\in\mathbb{N}_0}$.

If the process is aperiodic, then

$$\lim_{n\to\infty} v_n = \frac{1}{\mu} \sum_{n=0}^{\infty} b_n.$$

② If the chain is periodic of period d > 1, then for any positive integer I, 0 < I < d.

$$\lim_{n\to\infty} v_{l+nd} = \frac{d}{\mu} \sum_{n=0}^{\infty} b_{l+nd}.$$

Where $v_n := \sum_{k=0}^{\infty} \mathbb{P}(S_k = n)$.

Properties

This distribution is chosen so that v_n , which we have previously defined as the probability that a renewal will take place at time n, is independent of n.

Properties

This distribution is chosen so that v_n , which we have previously defined as the probability that a renewal will take place at time n, is independent of n.

5.4 Proposition:

Let $(S_n)_{n\in\mathbb{N}}$ be a recurrent delayed renewal process with waiting times $(X_n)_{n\in\mathbb{N}_0}$ and $\mu:=\mathbb{E}X_1<\infty$. Then, $\mathbb{P}(X_1=n):=1/\mu\mathbb{P}(X_1>n)$ is the unique choice for the initial distribution of the delayed renewal chain such that $v_n\equiv$ constant for all $n\in\mathbb{N}_0$. Moreover, this common constant is $1/\mu$. In this case $(S_n)_{n\in\mathbb{N}}$ is a stationary renewal process with the initial distribution being the stationary distribution.

Outline

- Discrete Renewal Processes
 - Fundamentals
 - Renewal Equations
- 2 The Conversion from continuous to discrete Renewal Processes
- 3 Limit Theorems
 - Classic results in Renewal Theory
 - Defective Renewal Theorem
 - Renewal Reward Theorem
- 4 Delayed Renewal Processes
 - General Delayed Renewal Processes
 - Stationary Renewal Process
- 6 Lifetime Processes

Definition

2.19 Definition:

Given is a renewal process $(S_n)_{n\in\mathbb{N}}$:

- We call $U(n) := n S_{N(n)}$ age at time n or backward recurrence time.
- ② We call $V(n) := S_{N(n)+1} n$ the residual lifetime at time n or the forward recurrence time.
- **3** We call $L(n) := X_{N(n)+1} = S_{N(n)+1} S_{N(n)} = U(n) + V(n)$ the total lifetime at time n.

Distribution of Lifetime Processes

Their distribution as a function of u_n :

•
$$\mathbb{P}(U(m) = n) = u_{m-n}\mathbb{P}(X_1 > n)$$

•
$$\mathbb{P}(V(m) = n) = \sum_{j=0}^{m} \mathbb{P}(X_1 = m + n - j)u_j$$

•
$$\mathbb{P}(L(m) = n) = \mathbb{P}(X_1 = n) \sum_{j=m-n+1}^{m} u_j$$

Distribution of Lifetime Processes

Their distribution as a function of u_n :

•
$$\mathbb{P}(U(m)=n)=u_{m-n}\mathbb{P}(X_1>n)$$

•
$$\mathbb{P}(V(m) = n) = \sum_{j=0}^{m} \mathbb{P}(X_1 = m + n - j)u_j$$

•
$$\mathbb{P}(L(m) = n) = \mathbb{P}(X_1 = n) \sum_{j=m-n+1}^{m} u_j$$

6.1 Theorem:

Assume that $0 < \mu < \infty$. Then

$$\bullet \lim_{m\to\infty} \mathbb{P}(U(m)=n) = \frac{1}{\mu} \mathbb{P}(X_1 > n)$$

Thank you for your attention!

References

- Barbu, V., Limnios, N. (2008). Semi-Markov Chains and Hidden Semi-Markov Models toward Applications, Springer, New York.
- Blackwell, D. (1948). A renewal theorem., Duke Mathematical Journal 15(1), 145-150.
- Brémaud, P. (2017). *Discrete Probability Models and Methods*, Springer, Cham.
- Cramer, E., Kamps, U. (2020). *Grundlagen der Wahrscheinlichkeitsrechnung und Statistik* (5th ed), Springer Spektrum, Berlin.
- Erdös, P., Feller, W., Pollard, H. (1949). A property of power series with positive coefficients, Bulletin of the American Mathematical Society 55(2), 201-204.
- Gallager, R.G. (2013). *Stochastic Processes: Theory for Applications*, Cambridge University Press, New York.

References

- Johnson, N.L., Kotz, S., Kemp, A.W. (1993). *Univariate Discrete distributions* (2nd ed), John Wiley & Sons, New Jersey.
- Mitov, K.V., Omey, E. (2014). Renewal Processes, Springer, Cham.
- Nakagawa, T. (2011). Stochastic Processes with Applications to Reliability Theory, Springer, London.
- Petrov, V. (1975). Sums of Independent Random Variables, Springer Berlin, Heidelberg.
- Pinsky, M.A., Karlin, S. (2011). *An Introduction to Stochastic Modeling* (4th ed), Elsevier, Oxford.
- Resnik, S.I. (2002). Adventures in Stochastic Processes (3th ed), Birkhäuser, Boston.