(BM-209) - Basic Electronics

Course Outline:

Theory:

1. Semiconductor Theory

- 1. Introduction.
- 2. Intrinsic and Extrinsic Semiconductors,
- 3. Doping and energy levels.

2. Diodes

- 1. PN junction/ Biased PN junction,
- 2. V-I Characteristics,
- 3. Load Line and dynamic resistance.
- 4. Diode models, Reverse recovery time and temperature effects,

3. Diode Applications

- 1. Half wave and Full wave rectifiers,
- 2. Clippers and Clampers, Logic gates.

4. Bipolar Junction Transistors

- 1. Construction, operation and characteristics,
- 2. Amplifying action and variation in current gain,
- 3. Common Emitter, Common Collector and Common Base Configurations. Power Ratings.

5. BJT Biasing Circuits

- 1. Fixed Bias, Voltage Divider Bias and Emitter feedback Bias Circuits,
- 2. DC load line and operating point,
- 3. Biasing circuit design and stabilization, Transistor as a switch

6. BJT Small Signal Analysis

1. Common Emitter Amplifier, Common Base Amplifier, Common Collector Amplifier, Amplifier Design and Loading effects,

7. Field Effect Transistors

- 1. JFET Construction and Operation,
- 2. Transfer characteristics and parameters,
- 3. FET Biasing Circuits, Fixed Bias,
- 4. Self-Bias and Voltage divider Bias

8. Design of a bias circuit

- 1. FET Small Signal Analysis,
- 2. JFET/Depletion MOSFET small-signal model,
- 3. Common source, common drain and common gate amplifiers,
- 4. Loading effects and design of amplifier circuits.

9. Differential Amplifiers

- 1. Darlington transistor circuit, properties of differential amplifier stage,
- 2. Circuits of differential amplifiers using BJTs and FETs.

10. Oscillators:

- 1. Hartley oscillators,
- 2. Colpitt oscillators,
- 3. RC phase shift oscillators,
- 4. Wein-Bridge oscillators,
- 5. Crystal oscillators based on BJT and FET.

List of Practicals:

- 1. To observe the working of diode with forward and reverse bias.
- 2. Plot the diode characteristic curve.
- 3. Calculate the bulk resistance of the diode and observe its effect in the diode approximations.
- 4. To observe the working of half wave rectifier.

- 5. To observe the working of full wave rectifier
- 6. To observe the working of Bridge wave rectifier.
- 7. To observe the working of Zener Diode
- 8. To analyze the working of Clamper Circuit.
- 9. To analyze the wrking of Clipper Circuit.
- 10. To determine the output voltage for half wave voltage doubler.
- 11. To determine the output voltage for full wave voltage doubler.
- 12. To determine the output voltage for Zener limiting circuit
- 13. Checking and Troubleshooting the NPN and PNP Transistor using Multimeter.
- 14. To use the transistor in switching mode.
- 15. Demonstrate the operation and determine the biasing parameter of Base Bias Circuit.
- 16. Demonstrate the operation and determine the biasing parameter of Voltage Divider Bias Circuit.

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)
- Assignment (8%)
- Midterm (30%)
- Final Term (50%)

Laboratory (100%)

Text Book:

- 1. Electronic Devices and Circuit Theory By H. Boylestad and L. Nashelsky
- 2. Electronic Devices and Circuits By Theodore F. Bogart, Jr.

2