What is claimed is:

1. A compound of formula (I):

$$Z \times N \xrightarrow{H} OH \xrightarrow{R_{15}} Rc$$

$$R_1 \xrightarrow{R_2} R_3$$

5

15

20

25

30

or a pharmaceutically acceptable salt thereof, wherein Z is $[C(R_4)(R_{4'})]_m$ -B; m is 1-3;

w: 10 h

where R_4 and $R_{4'}$ are independently at each occurrence hydrogen, C_1 - C_6 alkyl, $(CH_2)_{0-3}(C_3$ - C_7 cycloalkyl), $-(CH_2)_{0-3}$ OH, fluorine, $-CF_3$, $-OCF_3$, -O-phenyl, C_1 - C_6 alkoxy, C_3 - C_7 cycloalkoxy, aryl, or heteroaryl, or

where R_4 and R_4 , are taken together with the carbon to which they are attached to form a 3-7 membered carbocylic ring wherein 1 to 3 carbons of the ring is optionally substituted with O, $-N(H, C_1-C_6 \text{ alkyl}, \text{ or phenyl})$, or $-S(O)_{0-2}$;

where B is aryl, heteroaryl or heterocyclyl, wherein said groups are optionally substituted with 1 or 2 R_{B} groups,

where R_B at each occurrence is independently selected from halogen, -OH, -OCF₃, -O-phenyl, -CN, -NR₁₀₀R₁₀₁, C_1 -C₆ alkyl, C_2 -C₆ alkenyl, C_2 -C₆ alkynyl, C_1 -C₆ alkoxy, $(CH_2)_{0-3}(C_3$ -C₇ cycloalkyl), wherein, the alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, groups are optionally substituted with 1 or 2 substitutents independently selected from the group consisting of C_1 -C₄ alkyl, C_1 -C₄ alkoxy, halogen, -OH, -CN, or -NR₁₀₀R₁₀₁;

where R_{100} and R_{101} are at each occurrence are independently H, $C_1\text{--}C_6$ alkyl, or phenyl;

X is -(C=0) - or $-(SO_2)$ -;

 R_1 is C_1-C_{10} alkyl optionally substituted with 1, 2, or 3 groups independently selected from halogen, -OH, =O, -SH, -CN, -CF₃, -

10

15

20

OCF₃, $-C_{3-7}$ cycloalkyl, $-C_1-C_4$ alkoxy, amino, monodialkylamino, aryl, heteroaryl, heterocycloalkyl, wherein each aryl group is optionally substituted with 1, 2 or 3 R₅₀ groups; wherein R₅₀ is selected from halogen, OH, SH, CN, $-CO-(C_1-C_4 \text{ alkyl})$, $-NR_7R_8$, $-S(O)_{0-2}-(C_1-C_4 \text{ alkyl})$, $C_1-C_6 \text{ alkyl}$, $C_2-C_6 \text{ alkynyl}$, $C_1-C_6 \text{ alkoxy}$ and $C_3-C_8 \text{ cycloalkyl}$;

wherein the alkyl, alkenyl, alkynyl, alkoxy and cycloalkyl groups are optionally substituted with 1 or 2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, halogen, OH, $-NR_5R_6$, CN, C_1 - C_4 haloalkoxy, NR_7R_8 , and C_1 - C_4 alkoxy;

wherein R_5 and R_6 are independently H or C_1-C_6 alkyl; or

wherein R_5 and R_6 and the nitrogen to which they are attached form a 5 or 6 membered heterocycloalkyl ring; and

wherein R_7 and R_8 are independently selected from the group consisting of H; - C_1 - C_4 alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of -OH, -NH₂, and halogen; - C_3 - C_6 cycloalkyl; - $(C_1$ - C_4 alkyl)- O- $(C_1$ - C_4 alkyl); - C_2 - C_4 alkenyl; and - C_2 - C_4 alkynyl;

wherein each heteroaryl is optionally substituted with 1 or 2 R_{50} groups;

wherein each heterocycloalkyl group is optionally substituted with 1 or 2 groups that are independently R_{50} or =0;

30 R_2 and R_3 are independently selected from

```
-H;
          -F;
          -C_1-C_6 alkyl optionally substituted with a substituent
          selected from the group consisting of -F, -OH, -C\equivN, -
          CF_3, C_1-C_3 alkoxy, and -NR_5R_6;
5
          -(CH_2)_{0-2}-R_{17};
          -(CH_2)_{0-2}-R_{18};
          -C_2-C_6 alkenyl or C_2-C_6 alkynyl, wherein each is optionally
          substituted with an indepdent substituent selected from
          the group consisting of -F, -OH, -C\equivN, -CF_3 and C_1-C_3
10
          alkoxy;
          -(CH_2)_{0-2}-C_3-C_7 cycloalkyl, optionally substituted
                          substituent selected from
                                                               the
          independent
          consisting of -F, -OH, -C\equivN, -CF<sub>3</sub>, C<sub>1</sub>-C<sub>3</sub> alkoxy and -NR<sub>5</sub>R<sub>6</sub>;
15
          \ensuremath{\text{R}}_3 and the carbon to which they are attached form a
     R_2,
     carbocycle of three thru seven carbon atoms, wherein one
     carbon atom is optionally replaced by a group selected from -
     O-, -S-, -SO_2-, or -NR_7-;
                where R_{17} at each occurrence is an aryl
2.0
                selected from phenyl, 1-naphthyl, 2-naphthyl ,
                indanyl, indenyl, dihydronaphthyl and tetralinyl,
                wherein said aryl groups are optionally substituted
                with one or two groups that are independently
                -C_1-C_3 alkyl; -C_1-C_4 alkoxy; CF<sub>3</sub>; or
25
                -C_2-C_6 alkenyl or -C_2-C_6 alkynyl each of which is
                optionally substituted with one substituent selected
                from the group consisting of F, OH, C_1-C_3 alkoxy; or
                -halogen;
30
                -OH;
                -C≡N;
                -C<sub>3</sub>-C<sub>7</sub> cycloalkyl;
                -CO-(C_1-C_4 \text{ alkyl});
                -SO_2-(C_1-C_4 \text{ alkyl});
```

10

15

20

25

where R₁₈ is a heteroaryl group selected from pyridinyl, pyrimidinyl, quinolinyl, indolyl, pryidazinyl, pyrazinyl, isoquinolyl, quinazolinyl, quinoxalinyl, phthalazinyl, imidazolyl, isoxazolyl, oxazolyl, thiazolyl, furanyl, thienyl, pyrrolyl, oxadiazolyl or thiadiazolyl, wherein each of said heteroaryl groups is optionally substituted with one or two groups that are independently

-C₁-C₆ alkyl optionally substituted with one substituent selected from the group consisting of OH, C \equiv N, CF₃, C₁-C₃ alkoxy, and -NR₅R₆;

 R_{15} is selected from the group consisting of hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkyl, each of which is unsubstituted or substituted with 1, 2, 3, or 4 groups independently selected from halogen, C_1 - C_6 alkyl, hydroxy, C_1 - C_6 alkoxy, NH_2 , and $-R_{26}$ - R_{27} ;

wherein R_{26} is selected from the group consisting of a bond, -C(0)-, $-SO_2-$, $-CO_2-$, $-C(0)NR_5-$, and $-NR_5C(0)-$

wherein R_{27} is selected from the group consisting of C_1 - C_6 alkyl, C_1 - C_6 alkoxy, aryl C_1 - C_6 alkyl, heterocycloalkyl, and heteroaryl, wherein each of the above is unsubstituted or substituted with 1, 2, 3, 4, or 5 groups that are independently C_1 - C_4 alkyl, C_1 - C_4 alkoxy, halogen, haloalkyl, hydroxyalkyl, - NR_5R_6 , - $C(0)NR_5R_6$;

 R_{C} is selected from the group consisting of

 $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of $-R_{205}$, $-CO_2-(C_1-C_4 alkyl)$, and aryl, wherein aryl is optionally substituted with 1 or 2 independently selected R_{200} groups;

35 $-(CR_{245}R_{250})_{0-4}$ -aryl;

- 2, or $3 R_{205}$ groups;
- -C₂-C₆ alkynyl optionally substituted with 1, 2, or $3 R_{205}$ groups;

wherein each aryl group attached directly or indirectly to the $-(CR_{245}R_{250})_{0-4}$ group is optionally substituted with

30 1, 2, 3 or 4 R_{200} groups;

> wherein each heteroaryl group attached directly indirectly to the $-(CR_{245}R_{250})_{0-4}$ group is optionally substituted with 1, 2, 3, or 4 R_{200} ;

```
heterocycloalkyl attached
             wherein
                           each
                                                                               directly
             indirectly to the -(CR_{245}R_{250})_{0-4}
                                                                 group
                                                                            is
                                                                                 optionally
             substituted with 1, 2, 3, or 4 R_{210};
             wherein R_{200} at each occurrence is independently selected
       from the group consisting of
 5
              -C_1-C_6 alkyl optionally substituted with 1, 2, or 3 R_{205}
       groups;
             -OH;
             -NO_2;
10
             -halogen;
             -C≡N;
             -(CH_2)_{0-4}-CO-NR_{220}R_{225};
             -(CH_2)_{0-4}-CO-(C_1-C_8 \text{ alkyl});
              -(CH_2)_{0-4}-CO-(C_2-C_8 \text{ alkenyl});
             - (CH_2)_{0-4}-CO-(C_2-C_8 alkynyl);
15
             - (CH_2)_{0-4}-CO-(C_3-C_7 cycloalkyl);
              -(CH_2)_{0-4}-(CO)_{0-1}-aryl;
              -(CH_2)_{0-4}-(CO)_{0-1}-heteroaryl;
              -(CH<sub>2</sub>)<sub>0-4</sub>-(CO)<sub>0-1</sub>-heterocycloalkyl;
             -(CH_2)_{0-4}-CO_2R_{215};
20
              -(CH_2)_{0-4}-SO_2-NR_{220}R_{225};
              -(CH_2)_{0-4}-S(O)_{0-2}-(C_1-C_8 \text{ alkyl});
             -(CH_2)_{0-4}-S(O)_{0-2}-(C_3-C_7 \text{ cycloalkyl});
             -(CH_2)_{0-4}-N(H \text{ or } R_{215})-CO_2R_{215};
              -(CH_2)_{0-4}-N(H \text{ or } R_{215})-SO_2-R_{220};
25
             -(CH_2)_{0-4}-N(H \text{ or } R_{215})-CO-N(R_{215})_2;
             -(CH_2)_{0-4}-N(-H \text{ or } R_{215})-CO-R_{220};
              -(CH<sub>2</sub>)<sub>0-4</sub>-NR<sub>220</sub>R<sub>225</sub>;
              -(CH_2)_{0-4}-O-CO-(C_1-C_6 \text{ alkyl});
30
              -(CH_2)_{0-4}-O-(R_{215});
             -(CH_2)_{0-4}-S-(R_{215});
              -(CH_2)_{0-4}-O-(C_1-C_6) alkyl optionally substituted with 1, 2,
       3, or 5 -F);
             -\text{C}_2\text{-C}_6 alkenyl optionally substituted with 1 or 2 \text{R}_{\text{205}}
35
       groups;
```

 $-C_2-C_6$ alkynyl optionally substituted with 1 or 2 R_{205} groups; and -(CH_2)₀₋₄- C_3 - C_7 cycloalkyl; 5 wherein each aryl group included within R200 is optionally substituted with 1, 2, or 3 groups that are independently $-R_{205}$ $-R_{210}$ or $-C_1-C_6$ alkyl substituted with 1, 2, or 3 groups that 10 are independently R₂₀₅ or R₂₁₀; wherein each heterocycloalkyl group included within R_{200} is optionally substituted with 1, 2, or 3 groups that are independently R210; wherein each heteroaryl group included within R₂₀₀ optionally substituted with 1, 2, or 3 groups that are 15 independently $-R_{205}$, $-R_{210}$, or $-C_1-C_6$ alkyl substituted with 1, 2, or 3 groups that are independently 20 $-R_{205}$ or -R₂₁₀; wherein R_{205} at each occurrence is independently selected from the group consisting of 25 $-C_1-C_6$ alkyl, -C₂-C₆ alkenyl, -C2-C6 alkynyl, -C₁-C₆ haloalkoxy 30 -(CH₂)₀₋₃(C₃-C₇ cycloalkyl)-halogen, -(CH₂)₀₋₆-OH,-O-phenyl, -SH, - (CH₂)₀₋₆-C \equiv N, 35

```
-(CH_2)_{0-6}-C(=O)NR_{235}R_{240}
                                  -CF<sub>3</sub>,
                                  -C_1-C_6 alkoxy, and
                                  -NR_{235}R_{240},
                                  wherein
 5
                                                R<sub>210</sub>
                                                         at
                                                                each
                                                                          occurrence
                                                                                             is
                                  independently
                                                        selected
                                                                       from
                                                                                the
                                                                                        group
                                  consisting of
                                  -C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted with 1,
      2, or 3 R_{205} groups;
                                  -C2-C6 alkenyl optionally substituted with
10
      1, 2, or 3 R_{205} groups;
                                  -C2-C6 alkynyl optionally substituted with
      1, 2, or 3 R_{205} groups;
                                  -halogen;
                                  -C_1-C_6 alkoxy;
15
                                  -C<sub>1</sub>-C<sub>6</sub> haloalkoxy;
                                  -NR_{220}R_{225};
                                  -OH;
                                  -C≡N;
                                  -C<sub>3</sub>-C<sub>7</sub> cycloalkyl optionally substituted
20
      with 1, 2, or 3 R_{205}
                                                       groups;
                                  -CO-(C_1-C_4 \text{ alkyl});
                                  _SO2_NR235R240;
                                  -CO-NR<sub>235</sub>R<sub>240</sub>;
25
                                  -SO_2-(C_1-C_4 \text{ alkyl}); and
                                  =0; wherein
             wherein R_{215} at each occurrence is independently selected
      from the group consisting of
                    -C_1-C_6 alkyl,
30
                    -(CH_2)_{0-2}-(aryl),
                    -C<sub>2</sub>-C<sub>6</sub> alkenyl,
                    -C<sub>2</sub>-C<sub>6</sub> alkynyl,
                    -C<sub>3-</sub>C<sub>7</sub> cycloalkyl,
                    - (CH_2)_{0-2}- (heteroaryl), and
                    -(CH<sub>2</sub>)<sub>0-2</sub>-(heterocycloalkyl);
35
```

R₂₀₅ groups;

-halogen;

35

wherein the aryl group included within R215 optionally substituted with 1, 2, or 3 groups that are independently $-R_{205}$ or 5 -R₂₁₀; wherein the heterocycloalkyl group included within R_{215} is optionally substituted with 1, 2, or 3 R_{210} ; wherein each heteroaryl group included within R215 is optionally substituted with 1, 2, or 3 R₂₁₀; wherein R_{220} and R_{225} at each occurrence are independently 10 selected from the group consisting of -H, $-C_1-C_6$ alkyl, -hydroxy C₁-C₆ alkyl, -amino C₁-C₆ alkyl, 15 -halo C₁-C₆ alkyl, -(CH₂)₀₋₂-(C₃-C₇ cycloalkyl), $-(C_1-C_6 \text{ alkyl})-O-(C_1-C_3 \text{ alkyl})$, -C2-C6 alkenyl, 20 -C₂-C₆ alkynyl, -aryl, -heteroaryl, and -heterocycloalkyl; wherein the aryl, heteroaryl or heterocycloalkyl group included within R_{220} and R_{225} is optionally substituted 25 with 1, 2, or 3 R_{270} groups, wherein R_{270} at each occurrence is independently -R₂₀₅, $-C_1-C_6$ alkyl optionally substituted with 1, 2, or 3 30 R₂₀₅ groups; -C2-C6 alkenyl optionally substituted with 1, 2, or 3 R₂₀₅ groups;

-C2-C6 alkynyl optionally substituted with 1, 2, or 3

```
-C_1-C_6 alkoxy;
                    -C<sub>1</sub>-C<sub>6</sub> haloalkoxy;
                    -NR_{235}R_{240};
                    -OH;
 5
                    -C≡N;
                    -C<sub>3</sub>-C<sub>7</sub> cycloalkyl optionally substituted with 1, 2,
             or 3 R<sub>205</sub> groups;
                    -CO-(C_1-C_4 alkyl);
                     -SO_2-NR_{235}R_{240};
10
                    -CO-NR<sub>235</sub>R<sub>240</sub>;
                    -SO_2-(C_1-C_4 \text{ alkyl}); and
                    =0;
             wherein R_{235} and R_{240} at each occurrence are independently
                     -H, or
15
                     -C<sub>1</sub>-C<sub>6</sub> alkyl;
                     -phenyl
             wherein R_{245} and R_{250} at each occurrence are independently
             selected from the group consisting of
                    -H,
20
                    -(CH<sub>2</sub>)<sub>0-4</sub>CO<sub>2</sub>C<sub>1</sub>-C<sub>4</sub> alkyl
                    -(CH_2)_{0-4}C(=0)C_1-C_4 alkyl
                    -C_1-C_4 alkyl,
                    -C<sub>1</sub>-C<sub>4</sub> hydroxyalkyl,
                    -C_1-C_4 alkoxy,
                    -C_1-C_4 haloalkoxy,
25
                    - (CH_2)_{0-4}-C_3-C_7 cycloalkyl,
                    -C_2-C_6 alkenyl,
                    -C_2-C_6 alkynyl,
                    -(CH_2)_{0-4} aryl,
                    - (CH_2)_{0-4} heteroaryl, and
30
                    -(CH<sub>2</sub>)<sub>0-4</sub> heterocycloalkyl, or
             wherein \ensuremath{R_{245}} and \ensuremath{R_{250}} are taken together with the carbon to
             which they are attached to form a monocycle or bicycle of
             3, 4, 5, 6, 7 or 8 carbon atoms, optionally where 1 or 2
```

carbon atoms is replaced by a heteroatom selected from the group consisting of -0-, -S-, 5 $-SO_2-$, and $-NR_{220}-;$ wherein the aryl, heteroaryl or heterocycloalkyl group included within R_{245} and R_{250} is optionally substituted with 1, 2, or 3 groups that are independenly halogen, C_{1-6} alkyl, CN or OH; 10 wherein R_{255} and R_{260} at each occurrence are independently selected from the group consisting of -H; $-C_1-C_6$ alkyl optionally substituted with 1, 2, or 3 R_{205} 15 groups; $-(CH_2)_{1-2}-S(O)_{0-2}-(C_1-C_6 \text{ alkyl});$ -(CH₂)₀₋₄-C₃-C₇ cycloalkyl optionally substituted with 1, 2, or 3 R₂₀₅ groups; $-(CH_2)_{0-4}-aryl;$ -(CH₂)₀₋₄ -heteroaryl; 20 - (CH₂)₀₋₄ -heterocycloalkyl; wherein each aryl group included within R_{255} and R_{260} is optionally substituted with 1, 2, or 3 groups that are independently 25 $-R_{205}$ $-R_{210}$, or $-C_1-C_6$ alkyl substituted with 1, 2, or 3 groups that are independently $-R_{205}$ or 30 $-R_{210}$; where each heteroaryl group included within R255 and R_{260} is optionally substituted with 1, 2, 3, or

 R_{200} groups, and

15

30

35

where each heterocycloalkyl group included within R_{255} and R_{260} is optionally substituted with 1, 2, 3, or 4 R_{210} groups.

- 5 2. A compound according to claim 1, wherein:
 - Z is $-(CH_2)_{1-3}$ -aryl or $-(CH_2)_{1-3}$ -heteroaryl, wherein each ring is independently optionally substituted with 1 or 2 groups independently selected from halogen, -OH, -OCF3, -O-phenyl, -CN, -NR $_{100}$ R $_{101}$, C $_1$ -C $_6$ alkyl, C $_2$ -C $_6$ alkenyl, C $_2$ -C $_6$ alkynyl, C_1-C_6 alkoxy, $(CH_2)_{0-3}(C_3-C_7$ cycloalkyl), aryl, heteroaryl, or heterocyclyl wherein, the alkyl, alkenyl, alkynyl, alkoxy, cycloalkyl, aryl, heteroaryl, orheterocyclyl groups are optionally substituted with 1 2 substitutents independently selected from the group consisting of C_1-C_4 alkyl, C_1-C_4 alkoxy, $C_1 - C_4$ haloalkyl, C₁-C₄ haloalkoxy, halogen, -OH, -CN, or - $NR_{100}R_{101}$;
- 3. A compound according to claim 1, wherein X is -20 (C=O)-.
 - 4. A compound according to claim 1, wherein:
- R_1 is $-C_1-C_6$ alkyl-aryl, $-C_1-C_6$ alkyl-heteroaryl, or $-C_1-C_6$ alkyl-heterocyclyl, wherein each aryl group at each occurrence is optionally substituted with 1, 2 or 3 R_{50} groups;

wherein R_{50} is independently selected from halogen, OH, SH, CN, -CO-(C_1 - C_4 alkyl), -NR₇R₈, -S(O)₀₋₂-(C_1 - C_4 alkyl), C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, or C_3 - C_8 cycloalkyl;

wherein the alkyl, alkenyl, alkynyl, alkoxy, or cycloalkyl groups are optionally substituted with 1 or 2 substituents independently selected from the group consisting of C_1 - C_4 alkyl, halogen, OH, -NR₅R₆, CN, C_1 - C_4 haloalkoxy, NR₇R₈, and C_1 - C_4 alkoxy;

10

20

30

35

wherein R_5 and R_6 at each occurrence are independently H or $C_1\text{-}C_6$ alkyl; or wherein R_5 and R_6 and the nitrogen to which they are attached, at each occurrence form a 5 or 6 membered heterocycloalkyl ring; and

wherein R_7 and R_8 are independently selected from the group consisting of H; - C_1 - C_4 alkyl optionally substituted with 1, 2, or 3 groups independently selected from the group consisting of -OH, -NH₂, and halogen; -C₃-C₆ cycloalkyl; -(C₁-C₄ alkyl)-O-(C₁-C₄ alkyl); -C₂-C₄ alkenyl; and -C₂-C₄ alkynyl;

- wherein each heteroaryl at each occurrence is optionally substituted with 1 or 2 R_{50} groups; wherein each heterocycloalkyl group at each occurrence is optionally substituted with 1 or 2 groups that are independently R_{50} or =0..
 - 5. A compound according to claim 1, wherein $\ensuremath{R_2}$ and $\ensuremath{R_3}$ are hydrogen.
- 6. A compound according to claim 1, wherein R_{15} is hydrogen.
 - A compound according to claim 1, wherein R_C is selected from the group consisting of: $-(CH_2)_{0-3}-(C_3-C_8)$ cycloalkyl wherein the cycloalkyl is substituted with 1, 2, or 3 groups independently selected from the group consisting of $-R_{205}$, and $-CO_2-(C_1-C_4 \text{ alkyl})$; and a monocyclic or bicyclic ring of 5, 6, 7 8, 9, or 10 2 carbons fused to 1 oraryl, heteroaryl, heterocycloalkyl groups wherein 1, 2 or 3 carbons of the monocyclic or bicyclic ring is optionally replaced with

-NH, $-N(CO)_{0-1}R_{215}$, $-N(CO)_{0-1}R_{220}$, -O, or $-S(=O)_{0-2}$, and wherein the monocyclic or bicyclic ring can be optionally substituted with 1, 2 or 3 groups that are independently $-R_{205}$ $-R_{245}$, R_{250} or =O.

5

10

8. A compound according to claim 1 wherein R_C is

wherein x_1 , x_2 , and x_3 are independently -CHR₂₄₅, SO₂, or NH, and wherein the phenyl ring is optionally substituted with 1 or 2 -R₂₄₅ groups.

- 9. A compound according to claim 8 wherein one of x_1 , x_2 , or x_3 is SO_2 .
- 15 10. A compound according to claim 8 wherein one of x_1 , x_2 , or x_3 is NH.
 - 11. A compound according to claim 8 wherein $x_1,\ x_2,$ and x_3 are each $\text{CH}_2\,.$

20

12. A compound according to claim 1 selected from the group consisting of:

 $N-((1S,2R)-1-(3,5-\text{difluorobenzyl})-3-\big\{\,[(4R)-6-\text{ethyl}-2,2-dioxido-3,4-\text{dihydro}-1H-\text{isothiochromen-4-yl}\big]\,\text{amino}\big\}-2-$

hydroxypropyl) -2-(1H-imidazol-4-yl)acetamide;

 $N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(4R)-6-ethyl-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-2-phenylacetamide;$

 $N-((1S,2R)-1-(3,5-\text{difluorobenzyl})-3-\{[(4R)-6-\text{ethyl}-2,2-dioxido-3,4-dihydro-1}H-isothiochromen-4-yl]amino}-2-hydroxypropyl)-3-phenylpropanamide;$

2-(2-amino-1,3-thiazol-4-yl)-N-((1S,2R)-1-(3,5-

```
difluorobenzyl) -3 - \{ (4R) -6 - ethyl -2, 2 - dioxido -3, 4 - dihydro -1H -
isothiochromen-4-yl]amino}-2-hydroxypropyl)acetamide;
     N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -2-pyridin-4-ylacetamide;
      N-((1S,2R)-1-(3,5-difluorobenzyl)-3-{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -2-pyridin-3-ylacetamide;
       N-((1s,2R)-1-(3,5-difluorobenzy1)-3-\{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -2-pyridin-2-ylacetamide;
       N-((1S, 2R)-1-(3, 5-difluorobenzyl)-3-\{[(4R)-6-ethyl-2, 2-k]\}
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -2-thien-2-ylacetamide;
       N-((1S,2R)-1-(3,5-difluorobenzy1)-3-\{[(4R)-6-ethy1-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -2-(1H-indol-3-yl)acetamide;
       N-((1S,2R)-1-(3,5-difluorobenzy1)-3-\{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -2-hydroxy-2-phenylacetamide;
       N-((1S, 2R)-1-(3, 5-difluorobenzyl)-3-\{[(4R)-6-ethyl-2, 2-k]\}
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -2-(3-methylisoxazol-5-yl)acetamide;
      N-((1S,2R)-1-(3,5-difluorobenzyl)-3-{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -3-thien-2-ylpropanamide;
     N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -4-thien-2-ylbutanamide;
     N-((1S,2R)-1-(3,5-difluorobenzyl)-3-\{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
hydroxypropyl) -4-(3,4-dimethoxyphenyl) butanamide;
       N-((1s,2R)-1-(3,5-difluorobenzy1)-3-\{[(4R)-6-ethyl-2,2-
dioxido-3,4-dihydro-1H-isothiochromen-4-yl]amino}-2-
```

```
hydroxypropyl) -4-(4-methoxyphenyl) butanamide;
    N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-{[(4S)-6-
neopentyl-3,4-dihydro-2H-chromen-4-yl]amino}propyl)-2-
phenylacetamide;
    N-[(1S,2R)-3-\{[(4S)-6-tert-butoxy-3,4-dihydro-2H-chromen-
4-yl]amino}-1-(3,5-difluorobenzyl)-2-hydroxypropyl]-2-
phenylacetamide;
    N-((1S,2R)-1-(3,5-difluorobenzy1)-2-hydroxy-3-{[(4S)-6-
neopentyl-1,2,3,4-tetrahydroquinolin-4-yl]amino}propyl)-2-
phenylacetamide;
    tetrahydroquinolin-4-yl]amino}-1-(3,5-difluorobenzyl)-2-
hydroxypropyl] -2-phenylacetamide;
    N-((1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-{[(1S)-7-
neopentyl-1,2,3,4-tetrahydronaphthalen-1-yl]amino}propyl)-2-
phenylacetamide;
    tetrahydronaphthalen-1-yl]amino}-1-(3,5-difluorobenzyl)-2-
hydroxypropyl] -2-phenylacetamide;
    N-((1S,2R)-1-(3,5-difluorobenzy1)-2-hydroxy-3-{[(4R)-6-
neopenty1-2,2-dioxido-3,4-dihydro-1H-isothiochromen-4-
yl]amino}propyl)-2-phenylacetamide;
    N-[(1S, 2R)-3-\{[(4R)-6-tert-butoxy-2, 2-dioxido-3, 4-
dihydro-1H-isothiochromen-4-yl]amino}-1-(3,5-difluorobenzyl)-
2-hydroxypropyl]-2-phenylacetamide;
    N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{[1-(3-
neopentylphenyl) cyclohexyl] amino } propyl) - 2 - phenylacetamide;
    N-[(1S, 2R)-3-\{[1-(3-tert-butoxyphenyl)cyclohexyl]amino\}-
1-(3,5-difluorobenzyl)-2-hydroxypropyl]-2-phenylacetamide;
    N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{[1-(3-
neopentylphenyl) cyclopropyl] amino } propyl) - 2 - phenylacetamide;
    N-[(1S,2R)-3-\{[1-(3-tert-butoxyphenyl)cyclopropyl]amino\}-
1-(3,5-difluorobenzyl)-2-hydroxypropyl]-2-phenylacetamide;
    N-((1S, 2R)-1-(3, 5-difluorobenzyl)-2-hydroxy-3-{[(4-
neopentyl-1,1'-biphenyl-2-yl)methyl]amino}propyl)-2-
```

Ø١

phenylacetamide;

N-[(1S,2R)-3-{[(4-tert-butoxy-1,1'-biphenyl-2-y1)methyl]amino}-1-(3,5-difluorobenzyl)-2-hydroxypropyl]-2-phenylacetamide;

N-{(1S,2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-[(2-neopentyl-9H-fluoren-9-yl)amino]propyl}-2-phenylacetamide;

N-[(1S,2R)-3-[(2-tert-butoxy-9H-fluoren-9-yl)amino]-1-(3,5-difluorobenzyl)-2-hydroxypropyl]-2-phenylacetamide;

N-((2S,3R)-1-(3,5-difluorophenyl)-4-((R)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-ylamino)-3-hydroxybutan-2-yl)-2-(3,5-dimethoxyphenyl) acetamide;

N-((2S,3R)-1-(3,5-difluorophenyl)-4-((R)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-ylamino)-3-hydroxybutan-2-yl)-2-(1H-imidazol-4-yl)acetamide;

N-((2S,3R)-1-(3,5-difluorophenyl)-4-((R)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-ylamino)-3-hydroxybutan-2-yl)-2-phenylacetamide;

N-((2S,3R)-1-(3,5-difluorophenyl)-4-((R)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-ylamino)-3-hydroxybutan-2-yl)-2-(pyridin-2-yl)acetamide;

N-((2S,3R)-1-(3,5-difluorophenyl)-4-((R)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-ylamino)-3-hydroxybutan-2-yl)-2-(pyridin-3-yl)acetamide; and

N-((2S,3R)-1-(3,5-difluorophenyl)-4-((R)-7-ethyl-1,2,3,4-tetrahydronaphthalen-1-ylamino)-3-hydroxybutan-2-yl)-2-(1H-indol-3-yl)acetamide.

13. A method for making a compound of formula (I)

$$Z \times X \xrightarrow{H} OH R_{15} \\ R_1 R_2 R_3$$

5

or a pharmaceutically acceptable salt or ester thereof, wherein Z, X, R_1 , R_2 , R_3 , R_{15} and Rc are as defined in claim 1.

- 14. A method for the treatment or prevention of Alzheimer's disease, mild cognitive impairment Down's syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-Type, cerebral amyloid angiopathy, other degenerative dementias, dementias of mixed vascular and degenerative origin, dementia associated with Parkinson's disease, dementia associated with progressive supranuclear palsy, dementia associated with cortical basal degeneration, diffuse Lewy body type of Alzheimer's disease comprising administration of a therapeutically effective amount of a compound or salt according to Claim 1, to a patient in need thereof.
 - 15. A method of treatment as in claim 14, wherein the patient is a human.
 - 16. A method of treatment according to claim 14, wherein the disease is dementia.
- 17. A pharmaceutical composition comprising a compound according to claim 1 in combination with a physiologically acceptable carrier or excipient.