1.1 Introduction

1.1.1 Defining the Question

• Create a prediction model that more accurately predicts whether a user will click an Ad.

1.1.2 The Context

- A Kenyan entrepreneur has created an online cryptography course and would want to advertise it on her blog.
- She currently targets audiences originating from various countries.
- In the past, she ran ads to advertise a related course on the same blog and collected data in the process.
- She would now like to employ your services as a Data Science Consultant to create a solution that would allow her to determine whether ads targeted to audiences of certain characteristics i.e. city, male country, ad topic, etc. would click on her ads.

1.1.3 Metrics for Success

• Accuracy Score 85% or above.

1.1.4 Experimental Design Taken

- Installing packages and loading libraries needed
- Loading the data
- Exploratory Data Analysis
- Data Cleaning
- Visualizations
- Modelling: Random Forest
- Predictions and Evaluation of the Model
- Conclusion

1.1.5 Appropriateness of the Data

- Dataset link: link text
- The columns in the dataset include:
 - Daily Time Spent on Site
 - Age
 - Area Income
 - Daily Internet Usage
 - Ad Topic Line
 - City
 - Male
 - Country
 - Timestamp
 - Clicked on Ad

1.2 Installing & Loading Necessary Packages

Installing packages we need for the project analysis.

```
install.packages("iterators")
install.packages("caret") install.packages("caretEnsemble") install.packages("ggplot2") install.packages("e1071")
install.packages ("randomForest")\ install.packages ("ggcorrplot")\ install.packages ("ranger")\ install.packages ("caTools")\ install.packages ("ranger")\ ins
install.packages('rpart.plot')
# Importing Libraries we need for this Project analysis.
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v ggplot2 3.3.6
                                                               v purrr
                                                                                           0.3.4
## v tibble 3.1.7
                                                        v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2
                                                          v forcats 0.5.1
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                                                         masks stats::lag()
library(data.table)
##
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
##
##
                   between, first, last
## The following object is masked from 'package:purrr':
##
##
                   transpose
library(ggplot2)
library(lattice)
library(caret)
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
                   lift
```

```
library(rpart)
library(RColorBrewer)
library("rpart.plot")
```

1.3 Loading the Data

```
# Reading a csv file
adv <-fread("http://bit.ly/IPAdvertisingData")</pre>
# Viewing the top observations
head(adv)
##
      Daily Time Spent on Site Age Area Income Daily Internet Usage
## 1:
                         68.95 35
                                       61833.90
                                                               256.09
## 2:
                         80.23 31
                                       68441.85
                                                               193.77
## 3:
                         69.47 26
                                       59785.94
                                                               236.50
## 4:
                         74.15 29
                                       54806.18
                                                               245.89
## 5:
                         68.37 35
                                       73889.99
                                                               225.58
                         59.99 23
## 6:
                                       59761.56
                                                               226.74
##
                               Ad Topic Line
                                                       City Male
                                                                     Country
## 1:
         Cloned 5thgeneration orchestration
                                                Wrightburgh
                                                                     Tunisia
                                                                0
## 2:
         Monitored national standardization
                                                  West Jodi
                                                                       Nauru
## 3:
                                                   Davidton
                                                                O San Marino
           Organic bottom-line service-desk
## 4: Triple-buffered reciprocal time-frame West Terrifurt
                                                                1
                                                                       Italy
## 5:
              Robust logistical utilization
                                               South Manuel
                                                                     Iceland
                                                                0
## 6:
            Sharable client-driven software
                                                  Jamieberg
                                                                      Norway
##
                Timestamp Clicked on Ad
## 1: 2016-03-27 00:53:11
## 2: 2016-04-04 01:39:02
                                       0
## 3: 2016-03-13 20:35:42
## 4: 2016-01-10 02:31:19
                                       0
## 5: 2016-06-03 03:36:18
                                       0
## 6: 2016-05-19 14:30:17
```

```
# Viewing the bottom observations
tail(adv)
```

```
Daily Time Spent on Site Age Area Income Daily Internet Usage
##
## 1:
                         43.70 28
                                       63126.96
                                                               173.01
## 2:
                         72.97 30
                                       71384.57
                                                               208.58
## 3:
                         51.30 45
                                       67782.17
                                                               134.42
## 4:
                         51.63 51
                                       42415.72
                                                               120.37
## 5:
                         55.55
                                19
                                       41920.79
                                                               187.95
## 6:
                         45.01
                                 26
                                       29875.80
                                                               178.35
##
                              Ad Topic Line
                                                      City Male
## 1:
             Front-line bifurcated ability Nicholasland
## 2:
             Fundamental modular algorithm
                                                Duffystad
                                                              1
## 3:
           Grass-roots cohesive monitoring
                                              New Darlene
```

```
Expanded intangible solution South Jessica
## 5: Proactive bandwidth-monitored policy
                                             West Steven
          Virtual 5thgeneration emulation
                                             Ronniemouth
##
                                       Timestamp Clicked on Ad
                     Country
                     Mayotte 2016-04-04 03:57:48
## 1:
## 2:
                     Lebanon 2016-02-11 21:49:00
                                                              1
## 3: Bosnia and Herzegovina 2016-04-22 02:07:01
                    Mongolia 2016-02-01 17:24:57
                                                              1
## 5:
                   Guatemala 2016-03-24 02:35:54
                                                              0
## 6:
                      Brazil 2016-06-03 21:43:21
                                                              1
# Checking the number of rows and columns
dim(adv)
## [1] 1000
              10
# There are 1000 rows and 10 columns.
# checking the types of attributes (columns)
sapply(adv, class)
## $'Daily Time Spent on Site'
## [1] "numeric"
##
## $Age
## [1] "integer"
##
## $'Area Income'
## [1] "numeric"
## $'Daily Internet Usage'
## [1] "numeric"
##
## $'Ad Topic Line'
## [1] "character"
##
## $City
## [1] "character"
##
## $Male
## [1] "integer"
##
## $Country
## [1] "character"
## $Timestamp
## [1] "POSIXct" "POSIXt"
## $'Clicked on Ad'
## [1] "integer"
```

checking the summary statistics of the dataset such as the mean

summary(adv)

```
Daily Time Spent on Site
                                              Area Income
                                                             Daily Internet Usage
                                  Age
  Min.
           :32.60
                             Min.
                                   :19.00
                                             Min.
                                                    :13996
                                                             Min.
                                                                    :104.8
  1st Qu.:51.36
                                                             1st Qu.:138.8
##
                             1st Qu.:29.00
                                             1st Qu.:47032
## Median :68.22
                             Median :35.00
                                             Median :57012
                                                             Median :183.1
## Mean
           :65.00
                             Mean
                                   :36.01
                                             Mean
                                                    :55000
                                                             Mean
                                                                   :180.0
## 3rd Qu.:78.55
                             3rd Qu.:42.00
                                             3rd Qu.:65471
                                                             3rd Qu.:218.8
## Max.
          :91.43
                             Max.
                                    :61.00
                                             Max.
                                                    :79485
                                                             Max.
                                                                    :270.0
## Ad Topic Line
                                               Male
                                                            Country
                           City
## Length:1000
                       Length: 1000
                                          Min.
                                                 :0.000
                                                          Length: 1000
## Class :character
                       Class :character
                                          1st Qu.:0.000
                                                          Class : character
##
   Mode :character
                       Mode :character
                                          Median :0.000
                                                          Mode : character
##
                                          Mean
                                                 :0.481
##
                                          3rd Qu.:1.000
##
                                          Max.
                                                 :1.000
##
      Timestamp
                                     Clicked on Ad
##
           :2016-01-01 02:52:10.00
                                     Min.
                                            :0.0
   1st Qu.:2016-02-18 02:55:42.00
                                     1st Qu.:0.0
## Median :2016-04-07 17:27:29.50
                                     Median:0.5
           :2016-04-10 10:34:06.64
## Mean
                                     Mean
                                            :0.5
## 3rd Qu.:2016-05-31 03:18:14.00
                                     3rd Qu.:1.0
## Max.
           :2016-07-24 00:22:16.00
                                     Max.
                                           :1.0
```

Summary information of the dataset glimpse(adv)

```
## Rows: 1,000
## Columns: 10
## $ 'Daily Time Spent on Site' <dbl> 68.95, 80.23, 69.47, 74.15, 68.37, 59.99, 8~
## $ Age
                                <int> 35, 31, 26, 29, 35, 23, 33, 48, 30, 20, 49,~
## $ 'Area Income'
                                <dbl> 61833.90, 68441.85, 59785.94, 54806.18, 738~
## $ 'Daily Internet Usage'
                                <dbl> 256.09, 193.77, 236.50, 245.89, 225.58, 226~
## $ 'Ad Topic Line'
                                <chr> "Cloned 5thgeneration orchestration", "Moni~
## $ City
                                <chr> "Wrightburgh", "West Jodi", "Davidton", "We~
## $ Male
                                <int> 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0~
                                <chr> "Tunisia", "Nauru", "San Marino", "Italy", ~
## $ Country
## $ Timestamp
                                <dttm> 2016-03-27 00:53:11, 2016-04-04 01:39:02, ~
## $ 'Clicked on Ad'
                                <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1~
```

The glimpse output shows the datatypes of each column and a few observations.

1.5 Data Cleaning

Missing values

Completeness:

```
# Checking for missing values by columns
colSums(is.na(adv))
## Daily Time Spent on Site
                                                  Age
                                                                   Area Income
##
       Daily Internet Usage
                                     Ad Topic Line
                                                                          City
##
                                                                             0
##
                       Male
                                              Country
                                                                     Timestamp
##
##
              Clicked on Ad
##
# There are no missing values in the dataset from the output.
# Checking the column names
names(adv)
   [1] "Daily Time Spent on Site" "Age"
  [3] "Area Income"
                                   "Daily Internet Usage"
## [5] "Ad Topic Line"
                                   "City"
## [7] "Male"
                                   "Country"
## [9] "Timestamp"
                                   "Clicked on Ad"
# Replacing spaces in the columns names with an underscore
names(adv) <- gsub(" ", "_", names(adv))</pre>
# Confirming the columns names have changed
names(adv)
   [1] "Daily_Time_Spent_on_Site" "Age"
                                   "Daily_Internet_Usage"
##
   [3] "Area_Income"
## [5] "Ad_Topic_Line"
                                   "City"
## [7] "Male"
                                   "Country"
  [9] "Timestamp"
                                   "Clicked_on_Ad"
```

Outliers

```
# Using a boxplot to check for observations far away from other data points.
# Using all three double type columns: specifying each
# labeling the title
```

```
# labeling the x axis
# specifying color options

Daily_Time_Spent_on_Site <- adv$Daily_Time_Spent_on_Site
Age <- adv$Age
Daily_Internet_Usage <- adv$Daily_Internet_Usage

boxplot(Daily_Time_Spent_on_Site,Age, Daily_Internet_Usage,
main = "Multiple boxplots for comparision",
at = c(1,2,3),
names = c("Daily_Time_Spent_on_Site", "Age", "Daily_Internet_Usage"),
las = 2,
col = c("orange", "red", "blue"),
border = "brown",
horizontal = TRUE,
notch = TRUE</pre>
```

Multiple boxplots for comparision


```
# There are no outliers in the three features plotted
```

```
# Boxplot for the Area Income
# labeling the title
# labeling the x axis
# specifying color options
```

```
boxplot(adv$Area_Income,
main = "Area Income Boxplot",
xlab = "Area Income",
col = "orange",
border = "brown",
horizontal = TRUE,
notch = TRUE
)
```

Area Income Boxplot

There are a few outliers on the first quartile of the Area income boxplot.

1.6 Visualizations

Stacked bar chart

```
# Giving a title to the chart
# Labeling the x and y axis
# Setting the color options
# Creating a legend for easier reference
```

```
counts <- table(adv$Clicked_on_Ad, adv$Age)
barplot(counts,
   main="A stacked bar chart showing Clicked on Ad by Age",
   xlab="Age",
   ylab = "Frequency",
   col=c("darkblue","red"),
   legend = rownames(counts))</pre>
```

A stacked bar chart showing Clicked on Ad by Age

- 1 shows that the participant clicked on an Ad.
- The stacked bar chart shows the distribution of the number of people who clicked on an Ad by age.
- The highest age of the participants was 61 and lowest was 19.
- The people who cliked most on Ads were between age 28 to 36.

```
# Stacked bar chart
# Giving a title to the chart
# Labeling the x and y axis
# Setting the color options
# Creating a legend for easier reference

counts <- table(adv$Clicked_on_Ad, adv$Male)
barplot(counts,
    main="A stacked bar chart showing Clicked on Ad by Gender",
    xlab="Gender",
    ylab = "Frequency",</pre>
```

```
col=c("cyan", "green"),
legend = rownames(counts))
```

A stacked bar chart showing Clicked on Ad by Gender

- There are slightly more females than males in the dataset.
- More females clicked on Ad compared to males.

```
# Bar chart of the target variable

counts <- table(adv$Clicked_on_Ad)
barplot(counts,
   main="A bar chart showing Clicked on Ad distribution",
   xlab="Clicked on Ad or Not",
   ylab = "Frequency",
   col=c("magenta", "gold"),
   legend = rownames(counts))</pre>
```

A bar chart showing Clicked on Ad distribution

Clicked on Ad or Not

• The data is balanced since the number of people who clicked on Ad and those who did not are equal.

Warning: Continuous x aesthetic -- did you forget aes(group=...)?

Daily internet usage for people who clicked the ad

- People who click on Ad spend Daily internet amount between 135 and 220.
- There are no outliers.

1.7 Modelling

```
# Converting the target as a factor
adv$Clicked_on_Ad = factor(adv$Clicked_on_Ad, levels = c(0,1))

# checking the variable datatypes
sapply(adv, class)

## $Daily_Time_Spent_on_Site
## [1] "numeric"
##
## $Age
## [1] "integer"
##
## $Area_Income
## [1] "numeric"
##
```

```
## $Daily_Internet_Usage
## [1] "numeric"
##
## $Ad_Topic_Line
## [1] "character"
##
## $City
## [1] "character"
##
## $Male
## [1] "integer"
##
## $Country
## [1] "character"
##
## $Timestamp
## [1] "POSIXct" "POSIXt"
## $Clicked_on_Ad
## [1] "factor"
```

Decision Tree Classifier

layered fresh-thinking neural-net,Multi-layered fresh-thinking process improvement,Multi-layered non-volatile Graphical User Interface,Multi-layered stable encoding,Multi-layered tangible portal,

```
1 1.00 50%
```

[1] 1

- The model accuracy is 95.7%
- $\bullet\,$ This is a good model to make predictions.
- We will evaluate this model or challenge it using another model.

1.8 Challenging the Solution

Random Forest Classifier

- The Random Forest model yielded an accuracy of 96.5%.
- This is a better model compared to Decision tree.

1.9 Conclusion

- $\bullet\,$ Random Forest Classifier is the best model among the the two with an accuracy of 96.5%
- It is also better because it is a bagging method and uses many trees compared to decision tree classifier which uses only one tree.