Domain 2: Data Transformation

2.1 Choose a modelling approach

2.1.1 AWS Model Approaches

AWS AI/ML stack:

AWS AI services: NO fine-tune option

• AWS ML services: fine-tune option

• Customized ML model solutions (using AWS infrastructure and frameworks)

2.1.1 SageMaker Offerings

Studio

1. Roles and Persona

Choice of IDEs

Jupyterlab Code Editor RStudio

Choice of IDEs SageMaker notebook instances

SageMaker notebook instances initiate Jupyter servers on Amazon Elastic Compute Cloud (Amazon EC2) and provide preconfigured kernels with the following packages:

- o Amazon SageMaker Python SDK, AWS SDK for Python (Boto3)
- o AWS Command Line Interface (AWS CLI)
- o Conda
- o Pandas
- o Deep learning framework libraries
- Other libraries for data science and ML

2.1.1 SageMaker Model types

SageMaker notebook instances initiate Jupyter servers on Amazon Elastic Compute Cloud (Amazon EC2) and provide preconfigured

1. Supervised

Algorithm	Classification: Binary	Classification: Multi-class	Regression
Linear Learner	Yes	No	Yes
XGBoost	Yes	Yes	Yes
K-Nearest Neighbors	No	Yes	Yes
Factorization Machines	No	No	Yes

2. Unsupervised

3. Text or speech data

4. Images and video (or time series data)

5. Reinforcement learning (RL)

To train RL models in SageMaker RL, use the following components:

- A deep learning (DL) framework. Currently, SageMaker supports RL in TensorFlow and Apache MXNet.
- An RL toolkit. An RL toolkit manages the interaction between the agent and the environment and provides a wide selection of state of the art RL algorithms. SageMaker supports the Intel Coach and Ray RLlib toolkits. For information about Intel Coach, see https://nervanasystems.github.io/coach/(opens in a new tab). For information about Ray RLlib, see https://ray.readthedocs.io/en/latest/rllib.html(opens in a new tab).
- **An RL environment.** You can use custom environments, open-source environments, or commercial environments. For information, see RL Environments in Amazon SageMaker(opens in a new tab).

2.1.3 SageMake AutoML

SageMaker

- **Data analysis and processing:** SageMaker Autopilot identifies your specific problem type, handles missing values, normalizes your data, selects features, and prepares the data for model training.
- Model selection: SageMaker Autopilot explores a variety of algorithms. SageMaker Autopilot uses a crossvalidation resampling technique to generate metrics that evaluate the predictive quality of the algorithms based on predefined objective metrics.
- **Hyperparameter optimization**: SageMaker Autopilot automates the search for optimal hyperparameter configurations.
- Model training and evaluation: SageMaker Autopilot automates the process of training and evaluating various model candidates.
 - It splits the data into training and validation sets, and then it trains the selected model candidates using the training data.
 - o Then it evaluates their performance on the unseen data of the validation set.
 - Lastly, it ranks the optimized model candidates based on their performance and identifies the best performing model.
- Model deployment: After SageMaker Autopilot has identified the best performing model, it provides the
 option to deploy the model. It accomplishes this by automatically generating the model artifacts and the
 endpoint that expose an API. External applications can send data to the endpoint and receive the
 corresponding predictions or inferences.

2.1.3 SageMake JumpStart

SageMaker JS is a ML hub with foundation models, built-in algorithms, and prebuilt ML solutions that you can deploy with a few clicks.

Features

Foundation Models

With JumpStart foundation models, many models are available such as:

- Jurassic models from AI21
- Stable Diffusion from Stability.ai
- Falcon from HuggingFace
- Llama from Meta
- AlexaTM from Amazon

JumpStart industry-specific solutions

Demand forecasting

Amazon SageMaker JumpStart provides developers and data science teams ready-to-start Al/ML models and pipelines. SageMaker JumpStart is ready to be deployed and can be used as-is. For demand forecasting, SageMaker JumpStart comes with a pre-trained, deep learning-based forecasting model, using Long- and Short-Term Temporal Patterns with Deep Neural Networks (LSTNet).

Credit rating prediction

Amazon SageMaker JumpStart solution uses Graph-Based Credit Scoring to construct a corporate network from SEC filings (long-form text data).

• Fraud detection

Detect fraud in financial transactions by training a graph convolutional network with the deep graph library and a SageMaker XGBoost model.

Computer vision

Amazon SageMaker JumpStart supports over 20 state-of-the-art, fine-tunable object detection models from PyTorch hub and MxNet GluonCV. The models include YOLO-v3, FasterRCNN, and SSD, pre-trained on MS-COCO and PASCAL VOC datasets.

Amazon SageMaker JumpStart also supports image feature vector extraction for over 52 state-of-the-art image classification models including ResNet, MobileNet, EfficientNet from TensorFlow hub. Use these new models to generate image feature vectors for their images. The generated feature vectors are representations of the images in a high-dimensional Euclidean space. They can be used to compare images and identify similarities for image search applications.

• Extract and analyze data from documents

JumpStart provides solutions for you to uncover valuable insights and connections in business-critical documents. Use cases include text classification, document summarization, handwriting recognition, relationship extraction, question and answering, and filling in missing values in tabular records.

Predictive maintenance

The AWS predictive maintenance solution for automotive fleets applies deep learning techniques to common areas that drive vehicle failures, unplanned downtime, and repair costs.

• Churn prediction

After training this model using customer profile information, you can take that same profile information for any arbitrary customer and pass it to the model. You can then have it predict whether that customer is going to churn or not. Amazon SageMaker JumpStart uses a few algorithms to help with this. LightGBM, CatBoost, TabTransformer, and AutoGluon-Tabular used on a churn prediction dataset are a few examples.

• Personalized recommendations

Amazon SageMaker JumpStart can perform cross-device entity linking for online advertising by training a graph convolutional network with a deep graph library.

• Healthcare and life sciences

You could use the model to summarize long documents with LangChain and Python. The Falcon LLM is a large language model, trained by researchers at the Technology Innovation Institute (TII) on over 1 trillion tokens using AWS. Falcon has many different variations, with its two main constituents Falcon 40B and Falcon 7B, comprised of 40 billion and 7 billion parameters, respectively. Falcon has fine-tuned versions trained for specific tasks, such as following instructions. Falcon performs well on a variety of tasks, including text summarization, sentiment analysis, question answering, and conversing.

• Financial pricing

Many businesses dynamically adjust pricing on a regular basis to maximize their returns. Amazon SageMaker JumpStart has solutions for price optimization, dynamic pricing, option pricing, or portfolio optimization use cases. Estimate price elasticity using Double Machine Learning (ML) for causal inference and the Prophet forecasting procedure. Use these estimates to optimize daily prices.

• Causal inference

Researchers can use machine learning models such as Bayesian networks to represent causal dependencies and draw causal conclusions based on data.

Use cases

Chatbots

Create new pieces of original content, Build conversational interfaces, such Search for and synthesize relevant such as short stories, essays, social media posts, and webpage copy.

as chatbots and virtual assistants, to enhance the user experience for your customers. Build assistants that understand user requests, automatically break down tasks, engage in dialogue to collect information, and take actions to fulfill the request.

Search

information to answer questions and provide recommendations from a large corpus of text and image data.

Text summarization

Get concise summaries of long documents such as articles, reports, research papers, technical documentation, and even books to quickly and effectively extract important information.

Image generation

Quickly create realistic and visually appealing images for ad campaigns, websites, presentations, and more from language prompts.

Personalization

Help customers find what they're looking for with more relevant and contextual product recommendations than word matching.

2.2 Train Models

2.2.1 Model Training Concepts

Minimizing loss:

- Loss function needs to be minimum (Global minimum)
- Gradient descent optimization used to reach "global minima" loss
- Hyperparameter tuning uses Gradient descent to reach "global minima" loss
 - o Too much tuning can result in "Overshoot", learning rate too high
 - o Too less tuning can result in "Undershooting", learning rate too small

(Measuring) Loss function:

Root mean square error	Log-likelihood loss		
 The most basic form of a loss function, commonly used in regression tasks such as predicting continuous values is known as Root Mean Square Error (RMSE). A regression task can be used to predict home prices. 	 A variation of a loss function is log-likelihood loss, also known as cross-entropy loss, is used in logistic regression. With log-likelihood loss, instead of the raw probabilities of predictions of each class, the logarithm of probabilities is considered. 		
$\sqrt{\frac{\sum_{i=1}^{n} (Y_{target,i} - Y_{pred,i})^{2}}{n}}$	$-(y\log p + (1-y)\log(1-p))$		

When to use which

Log-likelihood loss is an algorithm used for classification tasks, where the goal is to predict whether an input belongs to one of two or more classes. For example, you might use logistic regression to predict whether an email is spam.

Optimizing - Reducing Loss function:

Optimization technique	Gradient descent	Gradient descent Stochastic gradient descent	
Weights updated	Every <mark>epoch</mark>	Every datapoint	Every <mark>batch</mark>
Speed of each epoch calculation	Slowest	Fast	Slower
Gradient steps	Smooth updates toward the minima	Noisy or erratic updates toward the minima	Less noisy or erratic updates toward the minima
		(Notabet)	

Gradient descent

As mentioned, gradient descent only updates weights after it's gone through all of the data, also known as an epoch. Of the three variations covered here

- gradient descent has the slowest speed to finding the minima as a result, but
- also has the fewest number of steps to reach the minima.

In stochastic gradient descent or SGD, you update your weights for each record you have in your dataset.

Stochastic Gradient Descent (SGD)

For example, if you have 1000 data points in your dataset, SGD will update the parameters 1000 times. With gradient descent, the parameters would be updated only once in every epoch.

- SGD leads to more parameter updates and, therefore, the model will get closer to the minima more quickly.
- One drawback of SGD, however, is that it will oscillate in different directions, unlike gradient descent, hence lot more steps.

Mini-batch gradient descent

Hybrid of gradient descent and SGD, this approach uses a smaller dataset or a batch of records, also called batch size, to update your parameters.

 Mini-batch gradient descent updates more than gradient descent while having less erratic or noisy updates as compared to SGD. The user-defined batch size helps you fit the smaller dataset into memory. Having a smaller dataset helps the algorithms run on almost any average computer that you might be using.

2.2.2 Compute Environment

AWS Instances for ML:

AWS offers solutions for a variety of specific ML tasks, and this permits you to optimize on your particular use case scenarios.

AWS Container Services:

		Keyword
Amazon ECS	ECS simplifies the process of running and managing containerized applications on AWS, offering various deployment options, and seamlessly integrating with other AWS services.	General/custom Container
Amazon EKS	Amazon EKS provides a fully managed Kubernetes control plane and seamless integration with other AWS services	Kubernetes
AWS Fargate		Fully Managed Container
Amazon ECR	ECR makes it easy to store, manage, and deploy container images.	Container Registry

Containers in SageMaker for ML model generation

1. SageMaker managed container images

 You can use built-in training algorithms included in these containers, ML Framework, settings, libraries, and dependencies included in these container images, but provide your own custom training algorithms. This approach is referred to as script mode.

2. Customer-managed container images (BYOC)

- You can build your own container using the Bring Your Own Container (BYOC) approach if you need more control over the algorithm, framework, dependencies, or settings.
- Some industries might require BYOC or BYOM to meet regulatory and auditing requirements.

2.2.3 Train a model

Create training job

- Create IAM role
- Chose algorithm source (built-in, etc.)
- · Choose algorithm
- Configure compute resource
- Set hyperparameters (+ default)
- Specify data type
- Choose Data source (default S3)

Model created

- Store in S3
- Package and distribute
- Register model (in registry)

Train a model

For built-in algorithms, the only inputs you need to provide are the

- training data
- hyperparameters
- compute resources.

Amazon SageMaker training options

When it comes to training environments, you have several to choose from:

- Create a training job using SageMaker console (see the Creating a Training Job Using the Amazon SageMaker Console lesson for an example using this method).
- Use AWS SDKs for the following:
 - The high-level SageMaker Python SDK
 - o The low-level <mark>SageMaker APIs</mark> for the SDK for Python (Boto3) or the <mark>AWS CLI</mark>

Training data sources

- S3
- Amazon EFS
- Amazon FSx for Lustre

Training ingestion modes

	Pipe mode	File mode	Fast File mode
What	SageMaker streams data	SageMaker will download	SageMaker can stream data
	directly from Amazon S3	the training data from S3 to	directly from S3 to the
	to the container, without	the provisioned ML storage	container <mark>with no code</mark>
	downloading the data to	volume. Then it will mount	changes. Users can author their
	the ML storage volume	the directory to the Docker	training script to interact with
		volume for the training	these files as though they were
		container.	stored on disk.
Pros	Improve training	In a distributed training	Fast File mode works best when
	performance by reducing	setup ,the training data is	the <mark>data is read sequentially</mark> .
	the time spent on data	distributed uniformly	
	download	across the cluster.	
Cons		Manually ensure ML	Augmented manifest files are
		storage volume has	not supported. The startup time
		sufficient capacity to	is lower when there are fewer
		accommodate data from	files in the S3 bucket provided.
		Amazon S3.	

When to use which

	Pipe mode	File mode	Fast File mode
large training datasets	Х		Х
training algorithm reads data sequentially		Х	Х

Amazon SageMaker training - Script mode

Amazon SageMaker script mode provides the flexibility to develop custom training and inference code while using industry-leading machine learning frameworks.

Steps to bring your own script using SageMaker script mode

- Use your local laptop or desktop with the SageMaker Python SDK. You can get different
 instance types, such as CPUs and GPUs, but are not required to use the managed notebook
 instances.
- 2. Write your training script.
- 3. Create a SageMaker estimator object, specifying the
 - a) training script
 - b) instance type
 - c) other configurations.
- 4. Call the <u>fit</u> method on the estimator to start the training job, passing in the training and validation data channels.
- 5. SageMaker takes care of the rest. It pulls the image from Amazon Elastic Container Registry (Amazon ECR) and loads it on the managed infrastructure.
- 6. Monitor the training job and retrieve the trained model artifacts once the job is complete.

Example

```
import sagemaker
from sagemaker.pytorch import PyTorch

# Define the PyTorch estimator
estimator = PyTorch(
    entry_point="train.py",
    role=sagemaker.get_execution_role(),
    instance_count=1,
    instance_type="ml.p3.2xlarge",
    framework_version="1.12.0",
    py_version="py38",
)

# Launch the training job
estimator.fit({"train": "s3://my-bucket/train_data"})
```

In this example, the *PyTorch* estimator is configured with the training script using the entry_point: *train.py*, instance type *ml.p3.2xlarge*, and other settings. The *fit* method is called to launch the training job, passing in the location of the training data.

Reducing training time

Amazon SageMaker script mode provides the flexibility to develop custom training and inference code while using industry-leading machine learning frameworks.

a) Early stopping:

Early stopping is a regularization technique that shuts down the training process for a ML model when the model's performance on a validation set stops improving.

How early stopping works in Amazon SageMaker

Amazon SageMaker provides a seamless integration of early stopping into its hyperparameter tuning functionality, so users can use this technique with minimal effort. Here is how early stopping works in SageMaker:

- a) **Evaluating objective metric after each epoch**: During the training process, SageMaker evaluates the specified objective metric (for example, accuracy, loss, F1-score) for each epoch or iteration of the training job.
- b) Comparing to running median of previous training jobs
- c) Stopping current job if performing worse than median:

b) Distributed training

A. Data parallelism is the process of splitting the training set in mini-batches evenly distributed across nodes. Thus, each node only trains the model on a fraction of the total dataset.

Done in SageMaker using SageMaker distributed data parallelism (SMDDP) library

B. Model parallelism is the process of splitting a model up between multiple instances or nodes.

SageMaker model parallelism library v2 (SMP v2)

Guidance on choosing data parallelism compared to model parallelism

- If model can fit on a single GPU's memory but your dataset is large, data parallelism is the recommended approach. It splits the training data across multiple GPUs or instances for faster processing and larger effective batch sizes.
- If model is too large to fit on a single GPU's memory, model parallelism becomes necessary. It splits the model itself across multiple devices, enabling the training of models that would otherwise be intractable on a single GPU.

Building a deployable model package

Step 1: Upload your model artifact to Amazon S3.

Step 2: Write a script that will run in the container to load the model artifact. In this example, the script is named inference.py. This script can include custom code for generating predictions, as well as input and output processing. It can also override the default implementations provided by the pre-built containers.

To install additional libraries at container startup, add a requirements.txt file that specifies the libraries to be installed by using pip.

Step 3: Create a model package that bundles the model artifact and the code. This package should adhere to a specific folder structure and be packaged as a tar archive, named model.tar.gz, with gzip compression.

2.3 Refine Models

2.3.1 Evaluating Model Performance

Bias and Variance

a) What are these

Bias Variance

Common cause of high model bias vs Variance

Bias	Variance		
The model is too <mark>simple</mark>	The model is too <mark>complex</mark>		
Incorrect modeling or feature engineering	Too much irrelevant data in training dataset		
Inherited bias from the training dataset	Model trained for too long on training dataset		

2.3.2 Model Fit (Overfitting and Underfitting)

1. Overfit/Underfit

Overfit

1.Reasons

Training data too small	Too much irrelevant data	Excessive training time	Overly complex architecture
© transport - subscribes - s	© towards = Radipulston		
		Prolonged training on the	A model with <mark>too</mark>
		<mark>same data</mark> can cause	many parameters
		model to <mark>memorize</mark>	<mark>(weights and</mark>
		training examples instead	<mark>biases)</mark> can <mark>start</mark>
		of learning underlying	<mark>memorizing the</mark>
		patterns.	<mark>training data and</mark>
			<mark>noise.</mark>

2. Detecting model overfitting

Use K-fold cross-validation		
You split the input data into k subsets of data,		
also called folds. You train multiple models		
on this dataset. For each model, you change		
which fold is set aside to be the evaluation		
dataset. This process is repeated k times		
Training Job 1 Training Job 2 Training Job 3 Training Job 4		

• Underfit

Reasons

b) Preventing Overfitting and Underfitting

a) Remediating Overfitting

b) Remediating Underfitting

c) Combining models for improved performance

Ensembling: Process of combining the predictions or outputs of multiple machine learning models to create a more accurate and robust final prediction.

The idea behind ensembling is that by combining the strengths of different models, the weaknesses of individual models can be mitigated. This leads to improved overall performance.

The following are commonly used ensembling methods:

	Boosting	Bagging	Stacking
	trains different machine	combines multiple models	combines <mark>both</mark>
	learning models <mark>sequentially</mark>	trained on <mark>different</mark>	
		datasets	
When	Accuracy	Interpretability	
Prevents	Overfitting	 overfitting 	
	 underfitting 		
	Train Name Name	Talis Madel 1 Prediction Market	Table 1 Same Profition
	 a) Adaptive Boosting (AdaBoost) b) Gradient Boosting (GB) c) Extreme Gradient Boosting (XGBoost) 		

Boosting algorithm					
Adaptive Boosting (AdaBoost)	Gradient Boosting (GB)	Extreme Gradient Boosting (XGBoost)			
classification	 classification 	classification			
	 regression 	• regression			
		 large datasets and big data applications. 			
Bagging (bootstrap aggregati	Bagging (bootstrap aggregation)				
Random forests					
Stacking					
??					

2.3.3 Hyperparameter Tuning

Benefits of Hyperparameter tuning

a) Impact of Hyperparameter tuning on model performance

b) Types of hyperparameters for tuning

Gradient Descent algorithm					
	L	earning Rate	Batch	n Size	Epochs
	Determines the step size taken by the algorithm during each iteration. This controls the rate at which the training job updates model parameters.		# of examples iteration	used in each	# of passes through the entire training dataset
	Louring rate Foundation LOW learning rate	Lawring viol Favorities High learning rie	O tot sevents - stad particles - stad particles - stad particles - stad particles - stad particles	O loss amples Productions O loss amples Productions X LASCE burth size	
Careful		ng rate is too high, the	A larger batch s		However, <mark>too many</mark>
		night overshoot the	faster converge		can result in
		<mark>ution</mark> and fail to	require more co	omputational	overfitting.
	converge.		resources.		
Neural ne		n	01 : 1		D
# of l	ayers	# of neurons in each	Choice of		Regularization
		layer more neurons -> more	functions introduce non-linearity into		Techniques helps prevent
•		processing power	the neural netwood Common activation include: Sigmoid further Rectified Ling (ReLU)	nork ation functions noction near Unit Tangent (Tanh)	overfitting . Common regularization techniques L1 /L2 regularization Dropout Early stopping
increasing	the depth	Increasing number of			
of a networ		neurons <mark>risks</mark>			
overfitting.		overfitting			
Decision					
	n Depth of tr		-		
helps manage complexity of the model and prevent overfitting Sets a threshold tha meet before splitting prevents the tree fro many branches. This prevent overfitting		evaluates node splits: Gini impurity: measures purit data and the likelihood that data could be misclassified. Entropy: Measures randomned data. The child node that reduentropy the most is the split the		e splits: y: measures purity of likelihood that data classified. asures randomness of ld node that reduces	

Hyperparameter tuning techniques

	Pros	Cons	When			
Manual	When you have a good understanding of the problem at hand	time-consuming	Domain knowledge, and prior experience with similar problems			
Grid search	Hyperparameter 2 Systematic and exhaustive approach to hyperparameter tuning. It involves defining all possible hyperparameter values and training and evaluating the model for every combination of these values.					
	Reliable technique, especially for smaller-scale problems.	Computationally expensive.	Small scale and accuracy			
Random search	Hyperparameter 2 Hyperparameter 1					
	More efficient than Grid Search	Optimum hyperparameter combination could be missed.				
Bayesian optimization	Performance Hyperparameters Uses the performance of previous hyperparameter selections to predict which of the					
	can handle composite objectives can also converge faster than random search.	 More complex to implement. Works sequentially, so difficult to scale. 	multiple objectives and/or speed.			
Hyperband	Dynamically allocates resources underperforming ones early. • can train multiple models in parallel		• Only be used for iterative algorithms			

Hyperparameter tuning using SageMaker AMT

STEPS

- 1. Define your environment and resources, such as output buckets, training set, and validation set.
- 2. Specify the hyperparameters to tune and the range of values to use for each of the following: alpha, eta, max_depth, min_child_weight, and num_round.
- 3. Identify the objective metric that SageMaker AMT will use to gauge model performance.
- 4. Configure and launch the SageMaker AMT tuning job, including completion criteria to stop tuning after the criteria have been met.
- 5. Identify the best-performing model and the hyperparameters used in its creation.
- 6. Analyze the correlation between the hyperparameters and objective metrics.

2.3.4 Managing Model Size

Model Size Overview

a) Model Size considerations

Bigger and more complex models can achieve higher accuracy on training data. However, there are several tradeoffs involved with large model sizes that must be considered.

Pros

Smaller models

Smaller models have several advantages, including faster training times, reduced memory usage, and lower computational costs. They can be particularly useful in real-time or resource-constrained scenarios where prediction speed and low latency are desired.

Larger models

Larger models might perform better because they are more likely to have captured more relationships in the data.

Cons

Smaller models

Small models might not perform as well because they are less likely to have captured complex patterns in the training data.

Larger models

More relationships often come at the expense of faster deployment times, prediction latency, and greater compute resource requirements.

b) Model size reduction technique: Compression

Pruning

Pruning is a technique that removes the least important parameters or weights from a model.

Quantization

Quantization changes the representation of weights to its most space-efficient representation.

E.g., instead of a 32-bit floating-point representation of weight, quantization has the model use an 8-bit integer representation.

Knowledge distillation

With distillation, a larger teacher model transfers knowledge to a smaller student model. The student model is trained on the same dataset as the teacher. However, the student model is also trained on the teacher model's knowledge of the data.

2.3.5 Refining Pre-trained models

Benefits of Fine tuning

a) Where fine-tuning fits in the training process

Reasons for fine-tuning

- To customize your model to your specific business needs
- To work with domain-specific language, such as industry jargon, technical terms, or other specialized vocabulary
- To have enhanced performance for specific tasks
- To have accurate, relative, and context-aware responses in applications
- To have responses that are more factual, less toxic, and better aligned to specific requirements

b) Fine-tuning approaches

Fine tuning Models with Custom Datasets on AWS

	With a Custom Dataset Using Amazon	V	Vith a Custom Dataset Using Amazon Bedrock
	SageMaker JumpStart		
1.	Navigate to the model detail card of your	1.	Choose a custom model in Amazon Bedrock.
	choice in SageMaker JumpStart.	2.	Create a fine-tuning job.
2.	Edit your model artifact location.	3.	Configure the model details.
3.	Enter your custom dataset location.	4.	Configure the job.
4.	Adjust the hyperparameters of the training	5.	Select your custom dataset.
	job.	6.	Adjust the hyperparameters.
5.	Specify the training instance type.		
6.	Start the fine-tuning job.		

Catatrosphic Forgetting Prevention

Catastrophic forgetting occurs when a model is trained on a new task or data, and it forgets previously learned knowledge.

a) Detecting

b) Preventing

To prevent catastrophic forgetting, consider the following techniques:

- 1. **Elastic weight consolidation** (EWC): regularization technique that predicts which weights are important to performing previously learned tasks. It adds a penalty term to the loss function that protects these weights when the model is fine-tuned or re-trained on new task-specific data. Monitoring the EWC can indicate how much the model is forgetting older knowledge.
- Rehearsal: This approach includes samples from the original training set during the fine-tuning or re-training process.
 During this process, the model rehearses the previous task to help it retain the learned knowledge.
- Model design: You can also design your model with the appropriate amount of complexity to learn and
 retain patterns in the data. You can also use enough features to make sure your model captures diverse
 patterns in the data that differentiate between tasks.
- 4. **Renate**: This is an open source Python library for automatic model re-training of neural networks. Instead of working with a fixed training set, the library provides continual learning algorithms that can incrementally train a neural network as more data becomes available.

2.3.6 Model Versioning

Benefits of SageMaker Model Registry

a) SageMaker Model Registry

b) Benefits

- Catalog models for production
- Manage model versions
- Control the approval status of models within your ML pipeline

Registering and Deploying models with SageMaker Model Registry

a) SageMaker Model Registry

2.4 Analyze Model Performance

2.4.1 Model Evaluation

Model Metrics and Evaluation Techniques

a) Classical Algorithm problems

Accuracy	Precision	Recall	F1 score	AUC Curve
# of matching	Proportion of	proportion of	precision + recall	D
predictions to the	positive that are	correct sets that		
total number of	correct.	are identified as		
instances.		positive.		
TP + TN	TP	TP	$2 \cdot Precision \cdot Recall$	
(TP + TN + FP + FN)	$\overline{TP + FP}$	$\overline{TP + FN}$	Precision + Recall	
	P True Peatitive False Regative (TP) and s false Regative (TR) and s false Peatitive (TR) True Regative (TR)	True Proid for (PP) True Proid for (PP) False Positive (PP) Thue Negative (PP) The Negative (TN)		On True True Committee Committ
	Cost of false	Cost of false		
	positives is high	negatives is high		
		(Better to have		
	alassification	false +ves)		
	classification	(e.g. diagnose		
	Emails as spam	cancer)		
	or not			

New one: Heat Maps

b) Regression Algorithm problems

Metric	Description	When to Use
Mean Squared Error (MSE)	Average of squared differences between predicted and actual values	 When larger errors should be penalized more For comparing models (lower is better) When the scale of errors is important
Root Mean Square Error (RMSE)	Square root of MSE, in the same units as the target variable	 When you want the error in the same units as the target variable For easier interpretation of the error magnitude When comparing models with different scales
R-Squared (R ²)	Proportion of variance in the dependent variable explained by the independent variables	 To understand how well the model fits the data When you want a metric bounded between 0 and 1 For comparing models across different datasets
Adjusted R- Squared	Modified version of R-Squared that adjusts for the number of predictors in the model	 When comparing models with different numbers of predictors To penalize overly complex models In feature selection processes

Model Convergence

Convergence refers to the ability of a model to reach an optimal solution during the training process. Failure to converge can lead to suboptimal performance, overfitting, or even divergence, where the model's performance deteriorates over time.

a) Impact of convergence

b) How SageMaker AMT (Compiler) helps in convergence issues of convergence

This is where SageMaker AMT can help. It can automatically tune models by finding the optimal combination of hyperparameters, such as

- i. learning rate schedules
- ii. initialization techniques
- iii. regularization methods.

Improve CNN

How SageMaker AMT improves issues with local maxima and local minima

When training a deep CNN for image classification tasks can encounter saddle points or local minima. This is because the loss function landscape in high-dimensional spaces can be complex. Having multiple local minima and saddle points can trap the optimization algorithm, leading to suboptimal convergence.

This is where SageMaker Training Compiler can help. It can automatically apply optimization techniques like

- tensor remapping
- operator fusion
- kernel optimization.

Debug Model Convergence with SageMaker Debugger

Automatic error detection

SageMaker Clarify and Metrics Overview

Bias metrics give visibility into model evaluation process

	Class Imbalance: Measures the imbalance in the distribution of	
	classes/labels in your training data.	
Data bias	• Facet Imbalance: Evaluates the imbalance in the distribution of facets or	
metrics	sensitive attributes, such as age, gender, or race across different classes or	
	labels.	
	Facet Correlation: Measures the correlation between facets or sensitive	
	attributes and the target variable.	
	Differential validity: Evaluates the difference in model performance such as	
	accuracy, precision, and recall across different facet groups.	
Model bias	Differential prediction bias: Measures the difference in predicted outcomes	
metrics	or probabilities for different facet groups, given the same input features.	
	Differential feature importance: Analyzes the difference in feature	
	importance across different facet groups, helping to identify potential biases	
	in how the model uses features for different groups.	
	SHAP (SHapley Additive exPlanations): Provides explanations for individual	
	predictions by quantifying the contribution of each feature to the model's	
Model	output.	
explainability	• Feature Attribution: Identifies the most important features contributing to a	
metrics	specific prediction, helping to understand the model's decision-making	
	process.	
	Partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the marginal effect of one or partial Dependence Plots (PDPs): Visualizes the partial Plots (PDPs): Visualizes the Plot	
	more features on the model's predictions, helping to understand the	
Data quality	relationship between features and the target variable.	
Data quality	Missing Data: Identifies the presence and distribution of missing values in	
metrics	your training data.	
	 Duplicate Data: Detects duplicate instances or rows in your training data. Data Drift: Measures the statistical difference between the training data and 	
	the data used for inference or production, helping to identify potential	
	distribution shifts.	
	distribution stilles.	