Lista 2 - Vetores no \mathbb{R}^2 e no \mathbb{R}^3

Professora Marielle Ap. Silva

Exercício 1. Determinar o ponto C tal que $\overrightarrow{AC} = 2 \overrightarrow{AB}$ sendo A = (0, -2) e B = (1, 0).

Exercício 2. Determinar a extremidade do segmento que representa o vetor $\vec{v} = (2, -5)$, sabendo que sua origem é o ponto A = (-1, 3).

Exercício 3. Dados os vetores $\vec{u} = (3, -1)$ e $\vec{v} = (-1, 2)$, determinar o vetor \vec{w} tal que

a)
$$4(\vec{u} - \vec{v}) + \frac{1}{3}\vec{w} = 2\vec{u} - \vec{w}$$

b)
$$3\vec{w} - (2\vec{v} - \vec{u}) = 2(4\vec{w} - 3\vec{u})$$

Exercício 4. Dados os pontos A = (-1,3), B = (2,5) e C = (3,-1), calcular:

a)
$$\overrightarrow{OA} - \overrightarrow{AB}$$

b)
$$\overrightarrow{OC} - \overrightarrow{BC}$$

c)
$$3\overrightarrow{BA} - 4\overrightarrow{CB}$$

Exercício 5. Dados os vetores $\vec{u} = (3, -4)$ e $\vec{v} = \left(-\frac{9}{4}, 3\right)$, verificar se existem números a e b tais que $\vec{u} = a\vec{v}$ e $\vec{v} = b\vec{u}$.

Exercício 6. Dados os vetores $\vec{u} = (2, -4)$, $\vec{v} = (-5, 1)$ e $\vec{w} = (-12, 6)$, determinar k_1 e k_2 tais que $\vec{w} = k_1 \vec{u} + k_2 \vec{v}$.

Exercício 7. Dados os pontos A=(-1,3), B=(1,0) e C=(2,-1), determinar D tal que $\overrightarrow{DC}=\overrightarrow{BA}$.

Exercício 8. Dados os pontos A = (2, -3, 1) e B = (4, 5, -2), determinar o ponto P tal que $\overrightarrow{AP} = \overrightarrow{PB}$.

Exercício 9. Dados os pontos A = (-1, 2, 3) e B = (4, -2, 0), determinar o ponto P tal que $\overrightarrow{AP} = 3 \overrightarrow{AB}$.

Exercício 10. Determinar o vetor \vec{v} sabendo que $(3,7,1) + 2\vec{v} = (6,10,4) - \vec{v}$.

Exercício 11. Encontrar os números a_1 e a_2 tais que $\overrightarrow{w} = a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2}$, sendo $\overrightarrow{v_1} = (1, -2, 1), \overrightarrow{v_2} = (2, 0, -4)$ e $\overrightarrow{w} = (-4, -4, 14)$.

Exercício 12. Determinar $a \in b$ de modo que os vetores $\vec{u} = (4, 1, -3)$ e $\vec{v} = (6, a, b)$ sejam paralelos.

Exercício 13. Verificar se são colineares os pontos:

a)
$$A = (-1, -5, 0), B = (2, 1, 3)$$
 e $C = (-2, -7, -1)$

a)
$$A = (2, 1, -1), B = (3, -1, 0)$$
 e $C = (1, 0, 4)$

Exercício 14. Encontrar a e b de modo que sejam colineares os pontos A = (3, 1, -2), b = (1, 5, 1) e C = (a, b, 7).

Exercício 15. Mostrar que os pontos $A=(4,0,1),\ B=(5,1,3),\ C=(3,2,5)$ e D=(2,1,3) são vértices de um paralelogramo.

1

Exercício 16. Verifique se o vetor \vec{u} é combinação linear (soma de múltiplos escalares) de \vec{v} e \vec{w} :

a)
$$\vec{v} = (9, -12, -6), \vec{w} = (-1, 7, 1), \vec{u} = (-4, -6, 2)$$

b)
$$\vec{v} = (5, 4, -3), \vec{w} = (2, 1, 1), \vec{u} = (-3, -4, 1)$$

Exercício 17. Quais dos seguintes vetores

$$\vec{u} = (6, -4, -2), \quad \vec{v} = (-9, 6, 3), \quad \vec{w} = (15, -10, 5)$$

são paralelos?

Exercício 18. Mostre que se $\alpha \vec{v} = \vec{0}$, então $\alpha = 0$ ou $\vec{v} = \vec{0}$.

Exercício 19. Se $\alpha \vec{u} = \alpha \vec{v}$, então $\vec{u} = \vec{v}$? E se $\alpha \neq 0$?

Exercício 20. Se $\alpha \vec{v} = \beta \vec{v}$, então $\alpha = \beta$? E se $\vec{v} \neq \vec{0}$?

Gabarito:

1.
$$C = (2, 2)$$

$$2. (1,-2)$$

3. a)
$$\vec{w} = \left(-\frac{15}{2}, \frac{15}{2}\right)$$
 b) $\vec{w} = \left(\frac{23}{5}, -\frac{11}{5}\right)$

4. a)
$$(-4,1)$$
 b) $(2,5)$ c) $(-5,-30)$

5.
$$a = -\frac{4}{3}$$
, $b = -\frac{3}{4}$

6.
$$k_1 = -1$$
 e $k_2 = 2$

7.
$$D = (4, -4)$$

8.
$$P = (3, 1, -\frac{1}{2})$$

9.
$$(14, -10, -6)$$

10.
$$\vec{v} = (1, 1, 1)$$

11.
$$a_1 = 2$$
, $a_2 = -3$

12.
$$a = \frac{3}{2}$$
, $b = -\frac{9}{2}$

14.
$$a = -3$$
, $b = 13$.

16. a)
$$\vec{u} = -\frac{2}{3}\vec{v} - 2\vec{w}$$
 b) \vec{u} não é combinação linear de \vec{v} e \vec{w}

17. Somente os vetores \vec{u} e \vec{v} são paralelos.