MDM2 - Case Study: Intelligent Systems in Production. One-Page Proposal

Team	Team 3
Members	Orlando Manrique Olmos, Arthur Noroes Reis, Binil Sajeev, Abdelraheem Zekry
Project Title	RL-Driven Warehouse Item Relocation Optimization
GitHub Repository URL	https://github.com/OrlandoManrique/IntelligentSystemsCaseStudy
Contact Email	orlando.manrique-olmos@stud.th-deg.de, arthur.noroes-reis@stud.th-deg.de
Industrial Application	Logistics and Warehouse Management: Optimizing item slotting and relocation strategies in modern
	warehouses to enhance operational efficiency.
Keywords	Reinforcement Learning, Warehouse Optimization, Item Relocation, Logistics, Slotting, Al
Submission Date	2025-10-16
Gantt Chart	
	WEEK 1 WEEK 2 WEEK 3 WEEK 4 WEEK 5 WEEK 6 WEEK 7 WEEK 8 WEEK 9 WEEK 10 WEEK 11 WEEK 12 WEEK 13 WEEK 14 WEEK 15 WEEK 16
	PHASE (10-02) (10-09) (10-16) (10-23) (10-30) (11-06) (11-10) (11-13) (11-20) (11-27) (12-04) (12-11) (12-18) (01-08) (01-15)
	5
1) Problem Statement	Traditional warehouses struggle to adapt to changing inventory and demand using rule-based
& Measurable	methods. This project applies Reinforcement Learning to optimize item placement, measuring
Outcomes	success via storage utilization, movement costs, number of operations, and overall efficiency and
2) Motivation &	accessibility. The goal is a more dynamic and cost-effective warehouse layout. This project tackles the challenge of balancing storage density with retrieval efficiency in modern
Industrial Relevance	warehouses. Warehouse operators and logistics companies benefit by reducing costs and improving
industrial Relevance	throughput. By using a dynamic, data-driven approach instead of static rules, the system adapts to
	changing business needs, which is crucial in today's fast-paced supply chains.
3) Related Work	Liu et al. (2025) applied Q-learning to minimize relocations in block-stacking systems, showing how
Snapshot	reinforcement learning can optimize item movements in warehouses. Arslan (2025) combined
	Digital Twin technology with AI/ML to dynamically adjust warehouse operations, improving
	efficiency and inventory management. Together, these studies highlight the potential of intelligent
	algorithms and digital modeling for optimizing warehouse layouts and processes.
4) Method & Feasibility	We will model a realistic warehouse and generate a synthetic dataset to mirror real conditions while
	preserving data privacy. The warehouse will be represented as a 2D grid using NumPy and Pandas,
	with SimPy providing a simulation environment. A PyTorch-based Reinforcement Learning agent will
	learn optimal item movements using a reward-driven fitness function, with results fed back into the
	simulation for continuous improvement. Expected outputs include a functional MVP, the synthetic dataset, a visual analysis dashboard, and a documented framework on GitHub.
5) Milestones &	* Phase 1 (Oct 16): Finalize proposal, define MVP scope and requirements, set up the tech stack.
Timeline	* Phase 2 (Nov 6): Develop core code for warehouse representation and simulation environment.
Timemic	* Phase 3 (Nov 27): Begin training the RL agent, implement it and establish a testing framework.
	* Phase 4 (Dec 18): Generate preliminary results, record a demo video and create a dashboard.
	*Phase 5 (Jan 15): Write the report, prepare the final presentation and upload all files on GitHub.
6) Risks & Ethics	Limited access to real-world data is mitigated by generating a synthetic dataset based on actual
	warehouse parameters, ensuring data privacy and proper attribution. The combinatorial complexity
	of item arrangements poses a challenge, but the RL approach efficiently handles it while remaining
	feasible within the project scope.