Data Structures and Algorithms

Lecture 10: AVL Trees II

Department of Computer Science & Technology
United International College

Review of AVL Tree Insertion

- The complete procedure of insertion
 - 1. Insert the new node to a proper position
 - 2. Starting from the new node, search upward for the first unbalanced node
 - Suppose that the height difference of a node's left and right sub-tree is d
 - $-d < =1 \rightarrow$ the node is balanced
 - $-d=0 \rightarrow$ the node is perfectly balanced
 - $-d > = 2 \rightarrow$ the node is unbalanced
 - 3. Perform rotations on the unbalanced node (U)
 - Case 1: U is left heavy, its left child is left heavy
 - Case 2: U is left heavy, its left child is right heavy
 - Case 3: U is right heavy, its right child is left heavy
 - Case 4: U is right heavy, its right child is right heavy

Single Right Rotation to Fix Case 1 (left-left)

K2 is unbalanced

Single Left Rotation to Fix Case 4 (right-right)

K2 is unbalanced

Double Rotation to Fix Case 2&3

- One single rotation to move the deepest subtree to the outer side
- Another single rotation to restore the balance

Case 2 (left-right)

- If the height of sub-tree D is h
 - What is the possible height of A, B and C?

Double Rotation to Fix Case 2

k3 is unbalanced Sin

Single left rotation

Single right rotation

Direct Re-Arrangement

k3 is unbalanced

- Pre-condition: k3-k1-k2 forms a zig-zag shape
- Post-condition: k2 is the parent of k1 and k3

Case 3 (right-left)

k3 is unbalanced

- Case 3 is symmetric to Case 2
- Pre-condition: k1-k3-k2 forms a zig-zag shape
- Post-condition: k2 is the parent of k1 and k3

Example

- Continue our example
 - We've inserted 3, 2, 1, 4, 5, 6, 7, 16
 - We'll insert 15, 14, 13, 12, 11, 10, 8, 9

Insertion Analysis

- Insert the new key as a new leaf: O(log(n))
- Then trace the path from the new leaf towards the root, for each node x encountered: O(log(n))
 - Check height difference: O(1)
 - If satisfies AVL property, proceed to next node: ○(1)
 - If not, perform a rotation: ○(1)
- The insertion stops when
 - A rotation is performed
 - Or, we've checked all nodes in the path
- Time complexity for insertion: O(log(n))

Check Height Difference

- Cost for checking height difference: O(1)
 - Keep "height" information on every tree node
 - The height of the sub-tree rooted at the node
 - height >= 0
 - Update "height" when a the sub-tree is altered
 - Compare the height of its sub-trees when you check the balance of a node

```
typedef struct AVLNode{
   object data;
   int height;
   AVLNode *left, *right;
}AVLNode;
```

Pseudo Code for Insertion

root should be a pointer

INSERT-NODE(root, x)

- 1. If root=Null
- 2. return root=CREATE-NODE(x)
- 3. IF root->key=x
- 4. return Null
- 5. IF root->key>x
- 6. newNode= INSERT-NODE(root->left, x)
- 7. ELSE
- 8. newNode= INSERT-NODE(root->right, x)
- 9. UPDATE-HEIGHT(root)

10. REBALANCE(root)

11. Return newNode

root's height is: (height of its deeper sub-tree) + 1

Rebalance

root should be a pointer to pointer

REBALANCE(root)

- 1. IF BALANCED(root)
- 2. return
- 3. IF CASE1(root) // left left

4. RIGHT-ROTATE(root)

- 5. IF CASE4(root) // right right
- 6. LEFT-ROTATE(root)
- 7. IF CASE2(root) // left right
- 8. LEFT-ROTATE(root->left)
- 9. RIGHT-ROTATE(root)
- 10. IF CASE3(root) // right left
- 11. RIGHT-ROTATE(root->right)
- 12. LEFT-ROTATE(root)

RIGHT-ROTATE(root)

- 1. k2=root, k1=k2->left, Y=k1->right
- 2. root=k1
- 3. k1->right=k2
- 4. $k2 \rightarrow left = Y$
- 5. UPDATE-HEIGHT(k2)
- 6. UPDATE-HEIGHT(k1)

Rotation

Notes on Rotations

- Three pointers are modified in a rotation
 - The root parameter should be a pointer to pointer
- Sub-tree heights should be updated after a rotation
 - Always update the deeper node first!
- Left rotation and right rotation are symmetric

Deletion

- 1. Delete a node x as in an ordinary binary search tree
 - Note that the last (deepest) node in a tree deleted is a leaf or a node with one child

Deletion

- 1. Delete a node x as in an ordinary binary search tree
- 2. Then trace the path from the parent towards the root
- 3. For each node x encountered, check if it is balanced
 - Unbalanced: Perform appropriate rotations
 - Balanced: Proceed to parent(x)
 - Continue to trace the path

UNTIL WE REACH THE ROOT

Delete Example

Delete 2, Node 4 is unbalanced CASE 4: right-right

Single Left Rotation

Delete Example

For deletion, after rotation, we need to CONTINUE tracing upward to see if AVL-tree property is violated at other nodes.

Rotation in Deletion

- The rotation strategies (single or double)
 we learned for insertion can be reused
- Except for one new case: the heavy child is perfectly balanced
 - What kind of delete will cause this case?
 - A single rotation solves the problem

New Case Example

- Delete Node 4, Node 9 is unbalanced
- Node 9 is right heavy, and Node 16 is perfectly balanced
- Can treat it as Case 4 (right-right) or Case 3 (right-left)

Treat it as Case 4 since it's easier

Review of the Delete Procedure

- 1. Delete Node from BST (recursive!)
- 2. Update Heights
- 3. Check Balance
 - 3.1 Violation?
 - 3.1.1 Determine Case
 - 3.1.2 Perform Rotations
- 4. Return Deleted Node

Delete Node 16

Delete Node 18 Node 21's height is recomputed

3.1Node 21 is unbalanced

3.1.1Case 3 Violation: right left

3.1.2

Perform a double rotation Sub-tree height is updated 1

Replace Node 16 with Node 18 Node 18's height is updated

3.1

Node 18 is unbalanced

3.1.1

Case 1 Violation: left left

3.1.2

Perform a single right rotation Sub-tree height is updated

4 Return Node 16.

Complete!

Pseudo Code for Deletion

root should be a pointer

DELETE-NODE(root, x)

- 1. If root=Null
- 2. return Null
- 3. IF root->key>x
- 4. matchNode=DELETE-NODE(root->left, x)
- 5. ELSE IF root->key<x
- 6. matchNode=DELETE-NODE(root->right, x)
- 7. ELSE
- 8. matchNode=DELETE-ROOT(root)
- 9. UPDATE-HEIGHT(root)
- 10. REBALANCE(root)
- 11. Return matchNode

root should be a pointer to pointer

DELETE-ROOT(root)

// remove and return the root

- 1. currNode=root
- 2. IF root->left=Null
- 3. root=root->right
- 4. return currNode
- 5. IF root->right=Null
- 6. root=root->left
- 7. return currNode
- 8. // root has two children
- 9. minNode=DELETE-MIN(root->right)
- 10. minNode->left=root->left
- 11. minNode->right=root->right
- 12. root=minNode
- 13. Return currNode

DeleteRoot

DeleteMin

root should be a pointer to pointer

```
DELETE-MIN(root)
```

- // remove and return the minimum node
 // in the sub-tree lead by root
- 1. IF root->left=Null
- 2. // root is the minimum node
- 3. // and it has no left child
- 4. minNode=root
- 5. root=root->right
- 6. return minNode
- 7. minNode = DELETE-MIN(root->left)
- 8. UPDATE-HEIGHT(root)
- 9. REBALANCE(root)
- 10. return minNode

Task

- Given AVL.h, printTree.cpp and main.cpp, complete AVL.cpp
 - AVL.h: the header file which defines the data and the methods of an AVL tree
 - printTree.cpp: implements the printTree method defined in AVI.h
 - AVL.cpp: implements the remaining methods defined in AVL.h
 - To be completed by you
 - This is the only file that you are going to modify
 - You may add (a lot of) auxiliary functions
 - findNode and destroyTree are the same as in a BST
 - main.cpp: a main function for testing purpose
- Submit AVL.cpp to iSpace.