Announcement

- Locations for lab hours are finalized (check course webpage).
- Lab 1 due this Friday (with the 2-day extension, that will be Sunday night).

Floating Points (Cont)

B&O Readings: 2.4

CSE 361: Introduction to Systems Software

Instructor:

I-Ting Angelina Lee

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- Floating point operations and rounding
- Floating point in C

Floating Point Multiplication

- $-(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Mantissa M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying the Mantissas

Floating Point Addition

- \blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, mantissa M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
 - E could be very different
 - the binary point needs to line up
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
 - need to ensure that the resulting exponent is still in range

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

IEEE Rounding Modes

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Round to nearest Even:

- When more than halfway, round up; when less than halfway, round down.
- When exactly halfway between two possible values, round it so that least significant digit is even
- The default rounding mode.
- Why? So that we don't introduce statistical bias.
- All others are statistically biased

Rounding Binary Numbers

■ When exactly halfway between two possible values

Round so that least significant digit is even

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.00_{2}	(<1/2—down)	2
2 3/16	10.00110_2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11100_{2}	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Mathematical Properties of FP Add

Commutative?

Yes

Associative?

- No
- Overflow and inexactness of rounding
- (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
- 0 is additive identity?

- Yes
- Every element has additive inverse? Almost
 - Yes, except for infinities & NaNs
- Monotonicity

Almost

- $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- \blacksquare 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity

Almost

- $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c?$
 - Except for infinities & NaNs

Recap: What We Learned Thus Far

Due to inexactness of rounding and possibility of overflow, floating point operations are NOT associative. Although they are commutative and generally maintains monotonicity (except when you have +/- infinity / NaN involved).

Watch out:

- When reordering the order of floating point operations, you may not get the same result!
- Compiler never does this!

Today: Floating Point

- Background: Fractional binary numbers
- **■** IEEE floating point standard: Definition
- Rounding, addition, multiplication
- Floating point in C

Float and Double in C

- Designed to represent reals and fractional numbers
- Still fixed width, like the integer data types:

• float: 4 bytes

double: 8 bytes

What Does This Code Print?

```
float f = 0.3;
printf("%.20f\n", f);
printf("%.20f\n", 0.1+0.2);
```

- A) 0.3 for both
- B) Not exactly 0.3, but two printouts show the same values
- C) Not exactly 0.3, and two printouts differ

```
0.3000001192092895508
0.3000000000000004441
```

Answer: C)

By default, real constants have type double, which has better precision (unless suffixed with f or F).

Floating Point in C

C Guarantees Two Levels

- float single precision
- double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int o float
 - Will round according to rounding mode

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

Assume neither d nor f is NaN

Floating Point Puzzles Answers

- A. No, float has 23 frac bits, and x has 32 bits
- B. Yes, double has greater precision and range (52 frac bits)
- C. Yes, since double has a wider range and prec.
- D.No, long has 64 bits and double has only 52 frac bits
- E. No, can lose precision / overflow to infinity
- F. Yes, it simply negates the sign bit
- G.No, result of 2/3 would be int so you get 0, 2/3.0 will be a double
- H.Yes, even if it overflows, it will overflow to -inf
- I. Yes, monotonicity, but also, note that we won't lost anything; unlike int, the negative and positive range representable by float or double are the same
- J. Yes, though it may overflow to +INF, but that's still > 0
- K. No, floating ops are not associative; if f is a really large number and d is really small, f+d will be rounded to about f, and you may get 0 on the left.

Machine-Level Programming I: Basics

B&O Readings: 2.1, 3.1-3.5

CSE 361: Introduction to Systems Software

Instructor:

I-Ting Angelina Lee

Byte-Oriented Memory Organization

Programs refer to data by address

- Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
- An address is like an index into that array
 - and, a *pointer* variable stores an address

■ Note: system provides private address spaces to each "process"

- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - Or, the size of an address
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - These days, most machines have 64-bit word size
 - Potentially, could have 18 PB (petabytes) of addressable memory
 - That's 18.4 X 10¹⁵
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by
 4 (32-bit word) or 8 (64-bit word)

Pointers in C:

```
int x = 100;
int *y = &x; //y store addr of x
*y = *y + 1; //x is now 101
```

82-bit Nords	64-bit Words	Bytes	Addr.
A al al s			0000
Addr =			0001
0000			0002
	Addr =		0003
l <u>.</u>	0000		0004
Addr =			0005
0004			0006
			0007
			0008
Addr =			0009
8000	Addr		0010
	=		0011
l <u>.</u>	0008		0012
Addr =			0013
0012			0014
			0015

Byte Ordering

Question: how are the bytes within a multi-byte word ordered in memory?

- Example: Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Least significant byte has the lowest address Ex: x86, ARM running Android, iOS, and Windows

C) Both are valid

Answer: Both