Anthony Burrow, Ph.D.

anthony.r.burrow@gmail.com

in linkedin.com/in/anthony-burrow

★ anthonyburrow.github.io

SUMMARY

Research scientist with a Ph.D. in Physics and a robust background in applying machine-learning concepts to complex datasets in astrophysics. Extensive work utilizing Python, C/C++, and more to develop software tools which have shown to be significant contributions to the scientific community. Experienced with the entire data science life cycle: identifying problems, data wrangling, and model deployment, evaluation, and maintenance.

EDUCATION

- Ph.D. in Physics (GPA: 3.92) July 2024, *University of Oklahoma* Dissertation on SHAREOK
- IBM Professional Certificate
 - o Machine Learning, Ongoing
 - o Data Science, Aug. 2024 (View)
- B.S. in Astrophysics (GPA: 3.91) May 2017, University of Oklahoma

TECHNICAL SKILLS

Programming: Platforms: Technologies:

Python, C/C++, C#, SQL, Bash, Fortran, IDL, Make/Makefiles, CMake Linux/UNIX, Windows

Git (Version Control), LATEX, RStudio, Microsoft Office, Mathematica, IRAF

Experience with Python Libraries:

NumPy pandas scikit-learn matplotlib SciPy Astropy Tensorflow GPy

Data Science Skills:

Machine Learning Data Wrangling Statistics Data Analysis Data Visualization Model Evaluation Regression Classification Parameter Optimization Cluster Analysis Dimensionality Reduction

RESEARCH EXPERIENCE

Graduate Research Assistant

University of Oklahoma, Advised by Dr. Eddie Baron

July 2019 – Present Norman, OK

- Develop Python software to implement machine-learning techniques to model the behavior of supernovae.
- Perform thorough preprocessing, standardization, and feature engineering of spectroscopic data.
- o Conduct detailed statistical analyses, resulting in two publications in a peer-reviewed journal (ApJ).
- o Collaborate with leading researchers from several other universities and facilities around the world (CSP, POISE).
- Present results to peers and collaborators at meetings and conferences.
- Synthesize models in a supercomputing environment with Slurm scripts using PHOENIX radiative transfer code.

Products:

- SNEx (Python): Spectrum extrapolation into near-infrared wavelengths using principal component analysis.
- $\circ\,$ Spextractor (Python): Fast spectrum-smoothing using Gaussian process regression.
- SNIaDCA (Python): Wrapper for probablistically classifying supernovae with Gaussian mixture models.

Undergraduate Research Assistant

University of Oklahoma, Advised by Dr. John Wisniewski

June 2015 - May 2017Norman, OK

- o Calibrated observed data by removing multiple sources of noise from raw FITS images of stars using IRAF.
- Modeled the observed light profile of stars on images using IRAF to calculate their brightness values.
- Created Python and IDL scripts needed to analyze data and propagate errors derived from observations.
- Conducted multiple remote observations at the Apache Point Observatory to obtain more raw data for analysis.
- $\circ\,$ Presented results at the American Astronomical Society conference.

Additional Projects

- Rad1D: A 1D radiative transfer code written in C++ featuring a Python wrapper for easy implementation into Python for analysis and plotting. This program converges a solution to wavelength-dependent radiative transfer equations, which describes how light behaves as it passes through a medium as a function of optical depth.
- Hydro1D: A 1D hydrodynamical code written primarily in C++ with some Python additions. This program models the fluid dynamics of a massive (10 M_{\odot}) star undergoing a collapse and a shock event, which leads to a core-collapse supernova.

Publications

First-Authored Papers:

- Burrow, Anthony, Baron, E., Burns, Christopher R., et al. (2024). Extrapolation of Type Ia Supernova Spectra into the Near-Infrared Using PCA. ApJ, doi: 10.3847/1538-4357/ad3c45
- Burrow, Anthony, Baron, E., Ashall, C., et al. (2020). Carnegie Supernova Project: Classification of Type Ia Supernovae. ApJ, doi: 10.3847/1538-4357/abafa2

Relevant Co-Authored Papers:

- DerKacy, James M., ..., **Burrow, Anthony**, et al. (2024). *JWST MIRI/Medium Resolution Spectrograph (MRS) Observations and Spectral Models of the Underluminous Type Ia Supernova 2022xkq*. ApJ, doi: 10.3847/1538-4357/ad0b7b
- Shahbandeh, Melissa, ..., **Burrow, Anthony**, et al. (2024). JWST NIRSpec+MIRI Observations of the nearby Type IIP supernova 2022acko. arXiv e-prints , doi: 10.48550/arXiv.2401.14474
- Yarbrough, Zach, ..., Burrow, Anthony, et al. (2023). Direct analysis of the broad-line SN 2019ein: connection with the core-normal SN 2011fe. MNRAS, doi: 10.1093/mnras/stad758
- DerKacy, J. M., ..., **Burrow, Anthony**, et al. (2023). *JWST Low-resolution MIRI Spectral Observations of SN 2021aefx: High-density Burning in a Type Ia Supernova*. ApJ, doi: 10.3847/2041-8213/acb8a8
- Burns, C., ..., **Burrow, Anthony**, et al. (2021). Introducing POISE: Precision Observations of Infant Supernova Explosions. ATel

Technical Presentations

- POISE Collaboration Meeting, August 2023: Extrapolation of Type Ia Spectra into the Near-Infrared Using PCA; a final discussion leading to Burrow et al. (2024).
- POISE Collaboration Meeting, July 2022: Extrapolation of Type Ia Spectra into the Near-Infrared Using PCA; the beginning of the project leading to Burrow et al. (2024).
- CSP Collaboration Workshop, September 2020: Carnegie Supernova Project: Classification of Type Ia Supernovae; a presentation of the publication by Burrow et al. (2020).
- American Astronomical Society Winter Conference, January 2017: Poster presentation highlighting my undergraduate research.
- OU REU Program, Summer 2015: Several presentations describing the results of my undergraduate research during this program.

TEACHING EXPERIENCE

Graduate Teaching Assistant

University of Oklahoma

Aug. 2019 – Dec. 2021 Norman, OK

- Provide lectures and guide group discussions on topics in-class to undergraduate students in Introductory Astronomy and Physics courses.
- Lead students with hands-on operation of telescopes during astronomy labs.
- Grading and evaluation for higher-level undergraduate astronomy courses, such as Galaxies & Cosmology and Stellar Astrophysics.

AWARDS

• Avenir Foundation Graduate Student Fellowship:

Spring 2022, Summer 2022; University of Oklahoma

• Provost's Certificate of Distinction in Teaching:

Fall 2019; University of Oklahoma

• Award for Outstanding Scholarship by a Graduating Senior:

May 2017; University of Oklahoma Homer L. Dodge Department of Physics and Astronomy

• William Schriever Award for Outstanding Scholarship in Physics & Astronomy:

2014-2015; University of Oklahoma

Relevant Coursework

• Machine Learning: (See repository.)

Discusses advanced statistical techniques and machine learning concepts such as:

o Regression Analysis

Cluster Analysis

o Kernel Density Estimation

o Gaussian Processes

- o Probabilistic Classification
- Neural Networks

• Numerical Methods: (See repository.)

Discusses the most common problems that arise in computation and methods to address them, such as root-solving, solving systems of equations, and numerically solving ordinary and partial differential equations. This course also provides an introduction to high-performance computing, describing the architecture of modern supercomputing and giving practice with parallelization of computation using interfaces such as MPI and OpenMP.

• Stellar Atmospheres:

Largely focuses on understanding the physics of light propagating through a medium by solving mathematically complex systems of equations that describe radiative transfer, which are only solvable numerically in application. This is a fundamental approach to understanding and modeling spectra observed from astronomical objects.

• Core & Advanced Physics Courses:

An assortment of courses that allow for the fundamental understanding of physics at the post-graduate level, including Classical Mechanics, Statistical Mechanics, Quantum Mechanics, and Electrodynamics, and classes covering advanced topics in physics, including Quantum Mechanics of Atoms and General Relativity.