

Professor David Harrison

TODAY

- Tradeoffs Pandas, Databricks
- Bias
- Error

2024 Csci443

Due Thursday, January 30.

11 pm.

Focuses on

- setting up accounts,
- using github and Databricks
- Notebooks.

Submission:

- Submit archived Databricks Notebook to Blackboard.
- NOTE: Submission only needs to be the notebook. No README is necessary.

READING!

- Book provides examples in Python and R. We are using Python.
- Read Chapter 1: Exploratory Data Analysis.

Edition of

Practical Statistics for Data Scientists

50+ Essential Concepts Using R and Python

OFFICE HOURS

Due to scheduling conflict, office hours updated

Monday 1:00-2:00 PM

Tuesday 4-5 PM

GITHUB

Lecture slides and examples have been committed to GitHub for lectures 1, 2 and 3.

The project is at

https://github.com/dosirrah/CSCI443_25S_AdvancedDataScience

REVIEW OF TRADEOFFS

	Numpy	Pandas DataFrame	Spark DataFrame
Best for	Numerical computations	Tabular data.	Tabular. Big data.
Scalability	Limited. Single machine, RAM-bound	Nachine, RAM-bound	☑ Distributed processing
Parallelism	Single-threaded but vectorized	Single-threaded but vectorized (via Numpy)	Vectorized and distributed
Lazy	O No	○ No	Optimized execution planning
Memory Usage	Entire data set must fit in RAM	Entire data set must fit in RAM	Optimized – Uses disk, caching, and partitions
Persistence	\(\)	in-memory but can save to disk	Distributed storage (DBFS on top of HDFS, S3, Azure Blob, GCS)

20 X X

HOMEWORK 1 PART 4 TRADEOFFS

	.toPandas()	pyspark.pandas	pyspark.sql
Best for	Local manipulation of small tables. Exploring a subset of data.	Pandas users moving to Spark	Massive-scale, distributed data processing
Scalability	Limited. Single machine, RAM-bound	Moderate- Spark with some overhead.	Good. Distributed processing
Performance	Slow for large datasets.	Mostly good but sometimes slower than native Spark	Good
Lazy	○ No	Mostly No, some optimizations but limited to Pandas semantics	Optimized execution planning
Memory Usage	Entire data set must fit in RAM	Moderate – uses Spark but retains Pandas semantics	Optimized – Uses disk, caching, and partitions
SQL Integration	No.	No.	✓ Full SQL!!!

FROM CHAPTER 1

From Chapter 1, you should know (or learn quick)

- Types of data
 - Numerical, categorical
- Outcomes, records, ...
- Estimates of Location (entire section)
 - Mean, median, percentile, weighted mean, trimmed mean.
- Estimates of Variability (entire section)
 - Variance, standard deviation, mean absolute deviation, median absolute deviation, range, order statistics, interquartile range

FROM CHAPTER 1: EXPLORING DATA DISTRIBUTION

From Chapter 1, you should know (or learn quick)

- Percentile and Boxplots
- Frequency Tables, Histograms
- Density Plots and Estimates
- Mode, Expected value, Bar charts, Pie charts

We will cover all of these in homework 2.

CAUTIONARY TALE: WAKEFIELD 1998

Andrew Wakefield published a paper showing a link between

- The Measles, Mumps, Rubella (MMR) vaccine and
- autism.

Wakefield had undisclosed funding from lawyers representing parents suing multiple vaccine manufacturers.

Brian Deer made allegations of cherrypicking that were eventually published in the British Medical Journal.

- General Medical Council stripped
 Wakefield of his license.
- Lancet retracted the paper in 2010.

Andrew Wakefield

Brian Deer

20XX CSCI 443

CAUTIONARY TALE: WAKEFIELD 1998

Andrew Wakefield

Cherry-picking:

- Ignored children who received the vaccine without developing autism.
- Ignored multiple data sets contradicting his hypothesis.

Small sample size

- 12 children. Not statistically significant
- No control group

Brian Deer

20XX CSCI 443

- Systematic error (Bias)
 - Observer bias
 - Selection bias
 - Measurement bias
 - Confounding factors
- Random error (Noise)
 - Measurement error
 - Heisenberg uncertainty

- Systematic error (Bias)
 - Observer bias: researcher's beliefs influence observations
 - Selection bias
 - Measurement bias
 - Confounding factors
- Random error (Noise)
 - Measurement error
 - Heisenberg uncertainty

- Systematic error (Bias)
 - Observer bias: researcher's beliefs influence observations
 - Selection bias: selection of data points is not random.
 - Measurement bias
 - Confounding factors
- Random error (Noise)
 - Measurement error
 - Heisenberg uncertainty

- Systematic error (Bias)
 - Observer bigs: researcher's beliefs influence observations
 - Selection bias: selection of data points is not random.
 - Measurement bias: tools introduce systematic error.
 - Confounding factors
- Random error (Noise)
 - Measurement error
 - Heisenberg uncertainty

- Systematic error (Bias)
 - Observer bigs: researcher's beliefs influence observations
 - Selection bias: selection of data points is not random.
 - Measurement bias: tools introduce systematic error.
 - Confounding factors: affect both independent and dependent variable
- Random error (Noise)
 - Measurement error
 - Heisenberg uncertainty

OBSERVER BIAS: LAETRILE

- Biochemist Dr. Ernst T. Krebs, Jr often credited for popularizing Laetrile (Amygdalin/B17) in 1950s through 70s as a cancer treatment.
 - Most of the support came from anecdotal evidence.
 - Known for showcasing testimonials
- National Cancer Institute in 1982 published clinical trial in New England Journal of Medicine concluding that data did not support the case for efficacy of Laetrile.
- FDA has refused to approve Laetrile as a cancer treatment.
- Still significant support today for Laetrile.

Ernst T. Krebs, Jr.

OBSERVER BIAS: CLEVER HANS

OBSERVER BIAS: CLEVER HANS

- In early 20th century, math teacher Wilhelm von Osten claimed his horse Clever Hans could do math and spelling.
- Hans would tap his hoof to give his answer.
- In 1907, psychologist Oskar Pfungst performed experiments in which:
 - Clever Hans could not see any observers
- When Hans could not see the questioner, he didn't know the answer.
- Good reason to use blinding!

Clever Hans and Wilhelm von Osten

SELF-SELECTION BIAS: KELLER

In the 1960s, Psychologist Fred Keller developed the "Personalized System of Instruction"

Emphasized:

- Self-paced learning
- Master material before moving forward
- Use of proctors

Fred S. Keller

SELF-SELECTION BIAS: KELLER

Problems in Keller's studies:

- Self-Selection bias:
 - Significantly above average students tended to volunteer.
 - Skewed results in favor of PSI.
- Lack of blinding
 - Both students and instructors knew they were using PSI.
- Instructor enthusiasm
 - Another source of self-selection bias, but on the part of the teachers.
 - More enthusiastic teachers were more likely to implement PSI.
 - More enthusiastic teachers leads to better performance even when NOT using PSI.

2ND CAUTIONARY TALE: KELLER

- Failure to recognize limitations of a study can backfire.
- Keller was derided for some of the limitations in his studies
- Research in PSI diminished over time, but interest remained particularly in math.
 - Kumon
- Resurgence when computers allowed us to overcome some of the limitations:
 - Self-paced learning with active / interactive learning
 - Codeacademy
 - Brilliant
 - Repetition of similar questions until demonstration of mastery
 - Khan Academy
 - Gamification
 - Duolingo

3RD CAUTIONARY TALE: KELLER

- Sometimes self-selection bias is itself important and can be used to identify a cohort for which a strategy is more effective.
- Self-paced courses may work better for those that naturally self-select.
 - Self-motivated
 - · Academically capable within the scope of the material.
- Is the existence of self-selection bias a reason to abandon self-paced courses just because they don't work for some people?

MEASUREMENT BIAS

- Instrument bias:
 - Failure to tare a scale
 - Acceleration error in airplane compasses (ANDS)

MEASUREMENT BIAS

- Social Desirability Bias
 - Also examples of self-reporting bias
 - Answer in way that will be perceived favorably by others.
 - Self-reported dietary intake
 - Self-reported exercise
 - TV consumption avoiding guilty pleasures or reality TV

KEEPING UP WITH THE

20XX CSCI 443

CONFOUNDING FACTORS

A confounding factor, also known as a confounder, is a variable that influences both the dependent variable and independent variable. This can lead to misleading conclusions about the relationship between the variables of interest.

Examples:

- Socioeconomic Status (SES) and health
 - Are people healthier because they have higher SES?
 - Or do people of higher SES tend to have better access healthy food and can afford a gym?
 - Or better access to doctors?
 - [Foster, Polz, et al 2020] shows the issue is complex, but does not refute the clear correlation between unhealthy lifestyles and various conditions, non-communicable diseases, and mortality.

CONFOUNDING FACTORS

- Exercise and weight loss
 - Exercise reduces weight!
- Confounding factor
 - Diet.
- Self-paced courses may work better for those that naturally self-select.
 - Self-motivated
 - · Academically capable within the scope of the material.
- Is the existence of self-selection bias a reason to abandon self-paced courses just because they don't work for some people?

CENTRAL TENDENCY

A measure of central tendency is a "typical value" for a <u>probability</u> <u>distribution</u>.

Covered in Chapter 1
Means, medians,
truncated means

When to not use mean?

Both mean and median are

EXTREME OUTLIERS: BAD FOR MEAN

Particularly important when few samples or noisy data.

A single extreme outlier can throw off the mean making mean no longer a good metric for central tendency.

MULTIPLE MODES: MISLEADING MEAN?

Skew can cause significant difference between the mean and median

SKEW

RANDOM VARIABLE

Random variable assigns numbers to outcomes.

```
T = 0
H = 1
```

For dice:

```
Roll 1 = 1
Roll 2 = 2
```

11.6

Roll 6 = 6

We can then assign probabilities to each value the random variable can take.

DISTRIBUTIONS

Wikipedia says,

In probability theory and statistics, a **probability distribution** is the mathematical function that gives the probabilities of occurrence of different possible **outcomes** for an experiment.^{[1][2]} It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space).^[3]

20XX CSCI 443 37

PROBABILITY MASS FUNCTION

Describes the probability of each discrete outcome.

For discrete random variables, a PMF loloks like a histogram where each bin refers to a single outcome.

Sum of probabilities must be 1.

PROBABILITY MASS FUNCTION

Sum of three dice

PROBABILITY MASS FUNCTION

Sum of six sixsided dice

PROBABILITY DENSITY FUNCTION (PDF)

Is the analog of the PMF for continuous random variables.

Ex: Gaussian

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

CENTRAL LIMIT THEOREM

Sum of independent random variables with

- Finite mean
- Finite variance

Tend toward a Gaussian

Gaussian

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

PROBABILITY DENSITY FUNCTION

For all probability density functions (PDFs):

- Function is non-negative for all x.
- The integral over the entire range is 1.

THANK YOU

David Harrison

Harrison@cs.olemiss.edu