

Figure 1



Steady alkylation activity on SAC-13 catalyst. 80 bar, 368 K, 0.05  $h^{-1}$  OSV, I/O=5, CO<sub>2</sub>= 70 mole %.

Figure 2



Pressure tuning effect on alkylation activity. 368 K, I/O=5, 0.05 h<sup>-1</sup>

Figure 3



Liquid (26 bar) vs. supercritical phase alkylation (95 bar, 70 mole%  $CO_2$ ) on SAC-13. 368 K, 0.05  $h^{-1}$  OSV, I/O=10.

Figure 4



Supported (SAC-13) vs. unsupported Nafion<sup>®</sup> catalysts. 80 bar, 368 K, 0.05 h<sup>-1</sup> OSV, I/O=5, 70 mole%  $\rm CO_2$ .

Figure 5



Effect of reactor configuration. 97 bar, 368 K, 0.05 h<sup>-1</sup> OSV, I/O=10

Figure 6

Isobutane/1-butene alkylation in sc-CO<sub>2</sub> at 368 K over SiO<sub>2</sub>-supported Nafion<sup>®</sup> with periodic regeneration by CO<sub>2</sub> at 155 bar.



Figure 7

TOTAL OF THE POSSESSION OF THE

over SiO<sub>2</sub>-supported Nafion<sup>®</sup> at 78 bar. Butene conversion (■), C<sub>8</sub> selectivity (♦), and C<sub>12+</sub> selectivity (•) 

Isobutane/1-butene alkylation in sc-CO<sub>2</sub> at 368 K

Figure 8

Time

Isobutane/1-butene alkylation in sc-CO₂ at 368 K over SiO₂-supported Nafion<sup>®</sup>.

Butene conversion (■), C<sub>8</sub> selectivity (⋄), and C<sub>12+</sub> selectivity (•)



Figure 9



Figure 10