VE477 HW1

Wu Jiayao 517370910257

September 2019

1 EX.1

1.1

2 EX.2

Algorithm 1: Determine the minimum spanning tree

```
input: the decreased edge (u,v), minimum spanning tree T of graph G output: new minimum spanning tree T'
1 T' ← T;
2 for vertex x in G that is connected with u or v by edges do
3 if edge(x, u) ∈ T and edge(x, v) ∈ T then
4 if w(u, v) < the maximum of w(x, u) and w(x, v) then</li>
5 Delete from T' the one between the two edges edge(x, u), edge(x, v) with the larger weight
6 Add edge(u, v) to T'
```

3 EX.3

3.1

Skipped.

3.2

Algorithm 2: Mult(x,y)

```
input: two numbers to multiply x,y output: result n

1 if x=0 or y=0 then
2 \lfloor return 0
3 return Mult(2x, \lfloor y/2 \rfloor) + x \times (y \mod 2)
```

4 EX.4

The minimum number is 8.

Divide the 25 horses into 5 groups of 5. Each group hold one race. Record the first, second, third fastest, noted as h_{11} , h_{12} , h_{13} for the first, second, third of group 1, for example. Current race number is 5.

Hold a race between h_{11} , h_{21} , h_{31} , h_{41} , h_{51} , record the first, second, third as h_{61} , h_{62} , h_{63} . h_{11} is the fastest. Current race number is 6.

Suppose that h_{63} is h_{n1} . Hold a race between h_{62} and all of the $h_{x2}(x \in [1, 5], x \neq n)$. Record the first, second, third as h_{71}, h_{72}, h_{73} . h_{71} is the second fastest. Current number is 7.

Suppose that h_{72} is h_{i2} , h_{73} is h_{j2} . Hold a race between all of the $h_{x3}(x \in [1,7], x \neq i,j)$. The first in this race is the third fastest. Current number is 8.

5 EX.5

5.1

Fit the knapsack with the largest items first solves the problem.

5.2

Skipped.

5.3

Problem: Use at least as possible coins to give out a combination of \$51. You have coins with value \$40, \$25, \$7, \$2, \$1.

According to greedy algorithm, locally optimal is given by \$40,\$7,\$2,\$2, four coins.

But actually the globally optimal is given by \$25,\$25,\$1, three coins.