§4.4, 4.7, 5.4: Change of Basis

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for V. Remember:

- et $\mathcal{B}=\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ be a pasis ion . The \mathcal{B} -coordinate vector of \mathbf{x} is $[\mathbf{x}]_{\mathcal{B}}=\begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix}$ where $\mathbf{x}=c_1\mathbf{b}_1+\cdots+c_n\mathbf{b}_n$.

$$[T]_{\mathcal{B}} = \begin{bmatrix} | & | & | & | \\ [T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \\ | & | & | \end{bmatrix}.$$

A basis for this plane in \mathbb{R}^3 allows us to draw a coordinate grid on the plane. The coordinate vectors then describe the location of points on this plane relative to this coordinate grid (e.g. 2 steps in v_1 direction, 3 steps in v_2 direction.)

Although we already have the standard coordinate grid on \mathbb{R}^n , some computations are much faster and more accurate in a different basis i.e. using a different coordinate grid (later, p17-19).

standard coordinate grid

Important questions:

i how are x and $[x]_{\mathcal{B}}$ related (p3-6, §4.4 in textbook);

ii how are $[x]_{\mathcal{B}}$ and $[x]_{\mathcal{F}}$ related for two bases \mathcal{B} and \mathcal{F} (p7-10, §4.7);

iii how are the standard matrix of T and the matrix $[T]_{\mathcal{B}}$ related (p11-14, $\S 5.4$).

Changing from any basis to the standard basis of \mathbb{R}^n

EXAMPLE: (see the picture on p3) Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and let

 $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be a basis of \mathbb{R}^2 .

- a. If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, then what is \mathbf{x} ?
- b. If $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, then what is \mathbf{v} ?

Solution: (a) Use the definition of coordinates:

$$[\mathbf{x}]_{\mathcal{B}} = egin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 means that $\mathbf{x} =$ ______ $\mathbf{b}_1 +$ ______ $\mathbf{b}_2 =$

(b) Use the definition of coordinates:

$$[\mathbf{v}]_{\mathcal{B}} = egin{bmatrix} c_1 \ c_2 \end{bmatrix}$$
 means that $\mathbf{v} =$ ______ $\mathbf{b}_1 +$ _____ $\mathbf{b}_2 =$

In general, if $\mathcal{B}=\{\mathbf{b}_1,\dots,\mathbf{b}_n\}$ is a basis for \mathbb{R}^n , and $[\mathbf{x}]_{\mathcal{B}}=\begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix}$, then

$$\mathbf{x} = \underline{\qquad} \mathbf{b}_1 + \underline{\qquad} \mathbf{b}_2 + \cdots + \underline{\qquad} \mathbf{b}_n = \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}}.$$

This is the change-of-coordinates matrix from \mathcal{B} to the standard basis $(\mathcal{P}_{\mathcal{B}} \text{ in textbook})$.

In the opposite direction

Changing from the standard basis to any other basis of \mathbb{R}^n

EXAMPLE: (see the picture on p3) Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and let

 $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be a basis of \mathbb{R}^2 .

a. If $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$, then what are its \mathcal{B} -coordinates $[\mathbf{x}]_{\mathcal{B}}$?

b. If $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$, then what are its \mathcal{B} -coordinates $[\mathbf{v}]_{\mathcal{B}}$?

Solution: (a) Suppose $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. This means that

$$\begin{bmatrix} 1 \\ 6 \end{bmatrix} = \mathbf{x} =$$

So (c_1,c_2) is the solution to the linear system $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 6 \end{bmatrix}$.

Row reduction:

$$\begin{bmatrix} 1 & 0 & | -2 \\ 0 & 1 & | 3 \end{bmatrix}$$

So $[\mathbf{x}]_{\mathcal{B}} =$

(b) The \mathcal{B} -coordinate vector $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ of \mathbf{v} satisfies $\mathbf{v} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

So $[v]_{\mathcal{B}}$ is the solution to

In general, if $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for \mathbb{R}^n , and \mathbf{v} is any vector in \mathbb{R}^n , then $[\mathbf{v}]_{\mathcal{B}}$ is a solution to $\begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_n \\ | & | & | \end{bmatrix} \mathbf{x} = \mathbf{v}$.

Because \mathcal{B} is a basis, the columns of $\mathcal{P}_{\mathcal{B}}$ are linearly independent, so by the Invertible Matrix Theorem, $\mathcal{P}_{\mathcal{B}}$ is invertible, and the unique solution to $\mathcal{P}_{\mathcal{B}}\mathbf{x} = \mathbf{v}$ is

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix}^{-1} \mathbf{v}.$$

In other words, the change-of-coordinates matrix from the standard basis to \mathcal{B} is $\mathcal{P}_{\mathcal{B}}^{-1}$.

Indeed, in the previous example,
$$\mathcal{P}_{\mathcal{B}}^{-1}\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & -1 \\ -0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
.

A very common mistake is to get the direction wrong:

Does multiplication by $\mathcal{P}_{\mathcal{B}}$ change from standard coordinates to \mathcal{B} -coordinates, or from \mathcal{B} -coordinates to standard coordinates?

Don't memorise the formulas. Instead, remember the definition of coordinates:

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
 means $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n = \begin{bmatrix} | & | & | \\ \mathbf{b}_1 & \dots & \mathbf{b}_n \\ | & | & | \end{bmatrix} [\mathbf{x}]_{\mathcal{B}}$

and you won't go wrong.

ii: Changing between two non-standard bases:

Example: As before,
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Another basis: $\mathbf{f}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{f}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\mathcal{F} = \{\mathbf{f}_1, \mathbf{f}_2\}$.

If
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
, then what are its \mathcal{F} -coordinates $[\mathbf{x}]_{\mathcal{F}}$?

Answer 1: \mathcal{B} to standard to \mathcal{F} - works only in \mathbb{R}^n , in general easiest to calculate.

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2\\3 \end{bmatrix}$$
 means $\mathbf{x} = -2\mathbf{b}_1 + 3\mathbf{b}_2 = -2\begin{bmatrix}1\\0 \end{bmatrix} + 3\begin{bmatrix}1\\2 \end{bmatrix} = \begin{bmatrix}1\\6 \end{bmatrix}$.

So if
$$[\mathbf{x}]_{\mathcal{F}} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$
, then $d_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + d_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$.

Row-reducing
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 6 \end{bmatrix}$$
 shows $d_1 = 1, d_2 = 5$ so $[\mathbf{x}]_{\mathcal{F}} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.

In other words, $\mathbf{x} = \mathcal{P}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}}^{-1}\mathbf{x}$, so $[\mathbf{x}]_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}}^{-1}\mathcal{P}_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$.

Answer 2: A different view that works for abstract vector spaces (without reference to a standard basis) - important theoretically, but may be hard to calculate for general examples in \mathbb{R}^n .

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 means $\mathbf{x} = -2\mathbf{b}_1 + 3\mathbf{b}_2$.

So
$$[\mathbf{x}]_{\mathcal{F}} = [-2\mathbf{b}_1 + 3\mathbf{b}_2]_{\mathcal{F}} = -2[\mathbf{b}_1]_{\mathcal{F}} + 3[\mathbf{b}_2]_{\mathcal{F}} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}_{\mathcal{F}} \begin{bmatrix} \mathbf{b}_2 \\ 3 \end{bmatrix}.$$
 because $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{F}}$ is an isomorphism, so every vector space

calculation is accurately reproduced using coordinates.

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathbf{f}_1 - \mathbf{f}_2 \text{ so } [\mathbf{b}_1]_{\mathcal{F}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathbf{f}_1 + \mathbf{f}_2 \text{ so } [\mathbf{b}_2]_{\mathcal{F}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \mathbf{f}_1 + \mathbf{f}_2 \text{ so } [\mathbf{b}_2]_{\mathcal{F}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$\mathbf{b}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
So $[\mathbf{x}]_{\mathcal{F}} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}.$

This step can be hard to are probably "nicely" related. Theorem 15: Change of Basis: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{F} = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ be two bases of a vector space V. Then, for all \mathbf{x} in V,

Notation: write $\mathcal{P}_{\mathcal{F}\leftarrow\mathcal{B}}$ for the matrix $\begin{bmatrix} [\mathbf{b}_1]_{\mathcal{F}} & \dots & [\mathbf{b}_n]_{\mathcal{F}} \\ | & | & | \end{bmatrix}$, the

change-of-coordinates matrix from $\mathcal B$ to $\mathcal F$.

A tip to get the direction correct:

a linear combination of columns of $\mathcal{P}_{\mathcal{F}\leftarrow\mathcal{B}}$, so these columns should be \mathcal{F} -coordinate vectors

Theorem 15: Change of Basis: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{F} = \{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ be two bases of a vector space V. Then, for all \mathbf{x} in V,

Properties of the change-of-coordinates matrix $\mathcal{P}_{\mathcal{F}\leftarrow\mathcal{B}} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{F}} & \dots & [\mathbf{b}_n]_{\mathcal{F}} \\ | & | & | \end{bmatrix}$:

- $\bullet \quad \mathcal{P}_{\mathcal{F} \leftarrow \mathcal{B}} = \mathcal{P}^{-1}.$
- ullet If V is \mathbb{R}^n and \mathcal{E} is the standard basis $\{\mathbf{e}_1,\dots\mathbf{e}_n\}$, then

$$\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}=\mathcal{P}_{\mathcal{B}}=egin{bmatrix} |&&&|&&|\ \mathbf{b}_1&\dots&\mathbf{b}_n\ |&&&&\end{bmatrix}$$
 , because $[\mathbf{b}_i]_{\mathcal{E}}=\mathbf{b}_i$. Also $\mathcal{P}_{\mathcal{B}\leftarrow\mathcal{E}}=\mathcal{P}_{\mathcal{B}}^{-1}$.

• If V is \mathbb{R}^n , then $\mathcal{P}_{\mathcal{F}\leftarrow\mathcal{B}}=\mathcal{P}_{\mathcal{F}}^{-1}\mathcal{P}_{\mathcal{B}}$ (see p8).