Cálculo Lambda Tipado (1/3)

Alejandro Ríos

Departamento de Computación, FCEyN, UBA

"There may, indeed, be other applications of the system other than its use as a logic", Alonzo Church, 1932

¿Qué es el Cálculo Lambda?

- ► Modelo de computación basado en funciones
 - da origen a la programación funcional
- Introducido por Alonzo Church en 1934
- Computacionalmente completo (i.e. Turing completo)
- También considerado como modelo fiable de lenguajes de programación en general
 - ► THE NEXT 700 PROGRAMMING LANGUAGES, Peter Landin, 1966
 - Lema: Usar Cálculo Lambda para probar nuevos conceptos de programación

¿Por qué Cálculo Lambda?

- ► En un lenguaje "industrial-strength" es difícil determinar con precisión/rigurosidad
 - propiedades básicas sobre semántica y sistema de tipos
 - efecto de extender el lenguaje con nuevas construcciones
 - la relación con otros lenguajes o paradigmas
- ► Es conveniente restringir el lenguaje a un subconjunto que sea
 - representativo (del paradigma o área de problemas)
 - conciso
 - reducido en cuanto a primitivas
 - riguroso en su formulación

¿Qué vamos a estudiar sobre Cálculo Lambda?

- La formulación original es sin tipos
- ▶ Dado nuestro interés en lenguajes de programación, vamos a estudiar el Cálculo Lambda Tipado (A. Church, 1941)
- En el marco del Cálculo Lambda Tipado vamos a presentar
 - 1. Tipos, términos, tipado, evaluación (Clase 1/3 y 2/3)
 - 2. Inferencia de tipos (Clase 3/3)
- Comenzaremos con Cálculo Lambda Tipado con expresiones booleanas y luego iremos enriqueciendo el lenguaje con otras construcciones

Expresiones de tipos de λ^b

Las expresiones de tipos (o simplemente tipos) de λ^b son

$$\sigma, \tau ::= Bool \mid \sigma \to \tau$$

Descripción informal:

- ▶ Bool es el tipo de los booleanos,
- $\sigma \to \tau$ es el tipo de las funciones de tipo σ en tipo τ

Términos de λ^b

Sea $\mathcal X$ un conjunto infinito enumerable de variables y $x \in \mathcal X$. Los términos de λ^b están dados por

$$M, N, P, Q$$
 ::= x
| true
| false
| if M then P else Q
| $\lambda x : \sigma.M$
| M N

Términos de λ^b

Descripción informal:

- x es una variable de términos,
- true y false son las constantes de verdad,
- ▶ if M then P else Q es el condicional,
- $ightharpoonup \lambda x : \sigma.M$ es una función cuyo parámetro formal es x y cuyo cuerpo es M
- ► M N es la aplicación de la función denotada por el término M al argumento N.

Ejemplos

- $\triangleright \lambda x : Bool.x$
- \blacktriangleright λx : Bool.if x then false else true
- \blacktriangleright $\lambda f : \sigma \to \tau.\lambda x : \sigma.f x$
- $(\lambda f : Bool \rightarrow Bool.f \ true)(\lambda y : Bool.y)$
- ▶ x y

Variables libres

Una variable puede ocurrir libre o ligada en un término. Decimos que "x" ocurre libre si no se encuentra bajo el alcance de una ocurrencia de " λ x". Caso contrario ocurre ligada.

- \blacktriangleright λx : Bool.if \underbrace{x}_{ligada} then true else false
- \blacktriangleright λx : Bool. λy : Bool.if true then \underbrace{x}_{ligada} else \underbrace{y}_{ligada}
- \blacktriangleright λx : Bool.if \underbrace{x}_{ligada} then true else \underbrace{y}_{libre}
- $(\lambda x : Bool.if \underbrace{x}_{ligada} then true else false) \underbrace{x}_{libre}$

Variables libres: Definición formal

$$FV(x) \stackrel{\mathrm{def}}{=} \{x\}$$

$$FV(true) = FV(false) \stackrel{\mathrm{def}}{=} \emptyset$$

$$FV(if M then P else Q) \stackrel{\mathrm{def}}{=} FV(M) \cup FV(P) \cup FV(Q)$$

$$FV(MN) \stackrel{\mathrm{def}}{=} FV(M) \cup FV(N)$$

$$FV(\lambda x : \sigma.M) \stackrel{\mathrm{def}}{=} FV(M) \setminus \{x\}$$

Sustitución

$$M\{x \leftarrow N\}$$

- "Sustituir todas las ocurrencias libres de x en el término M por el término N"
- Operación importante que se usa para darle semántica a la aplicación de funciones
- ► Es sencilla de definir pero requiere cuidado en el tratamiento de los ligadores de variables (i.e. con " λx ")

Sustitución

```
x\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} N
a\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} a \text{ si } a \in \{true, false\} \cup \mathcal{X} \setminus \{x\}
(if M \text{ then } P \text{ else } Q)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} if M\{x \leftarrow N\}
then P\{x \leftarrow N\}
else Q\{x \leftarrow N\}
(M_1 M_2)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} M_1\{x \leftarrow N\} M_2\{x \leftarrow N\}
(\lambda y : \sigma.M)\{x \leftarrow N\} \stackrel{\mathrm{def}}{=} ?
```

Captura de variables

"Sustituir la variable x por el término z"
$$(\lambda z : \sigma.x)\{x \leftarrow z\} = \lambda z : \sigma.z$$

- ▶ ¡Hemos convertido a la función constante λz : σ .x en la función identidad!
- **El** problema: " λz : σ " capturó la ocurrencia libre de z
- Hipótesis: los nombres de las variables ligadas no son relevantes
 - ▶ la ecuación de arriba debería ser comparable con $(\lambda w : \sigma.x)\{x \leftarrow z\} = \lambda w : \sigma.z$
- ► Conclusión: Para definir $(\lambda y : \sigma.M)\{x \leftarrow N\}$ asumiremos que la variable ligada y se renombró de tal manera que no ocurre libre en N

α -equivalencia

- Dos términos M y N que difieren solamente en el nombre de sus variables ligadas se dicen α-equivalentes
- α-equivalencia es una relación de equivalencia
- ▶ De aquí en más identificaremos términos α -equivalentes.

- $\blacktriangleright \lambda x : Bool.x =_{\alpha} \lambda y : Bool.y$
- $\blacktriangleright \lambda x : Bool.y =_{\alpha} \lambda z : Bool.y$
- $\blacktriangleright \lambda x$: Bool. $y \neq_{\alpha} \lambda x$: Bool.z
- \blacktriangleright λx : $Bool.\lambda x$: $Bool.x \neq_{\alpha} \lambda y$: $Bool.\lambda x$: Bool.y

Sustitución - Revisada

- 1. NB: la condición $x \neq y$, $y \notin FV(N)$ siempre puede cumplirse renombrando apropiadamente
- 2. Técnicamente, la sustitución está definida sobre clases de lpha-equivalencia de términos

Sistema de tipado

- Sistema formal de deducción (o derivación) que utiliza axiomas y reglas de tipado para caracterizar un subconjunto de los términos llamados tipados.
 - Los axiomas de tipado establecen que ciertos juicios de tipado son derivables.
 - Las reglas de tipado establecen que ciertos juicios de tipado son derivables siempre y cuando ciertos otros lo sean.
- Motivar juicios de tipado:
 - ¿Qué tipo le asignaría a true?
 - ▶ ¿Y a if x then false else true?

Sistema de tipado

Un contexto de tipado es un conjunto de pares x_i : σ_i , anotado $\{x_1:\sigma_1,\ldots,x_n:\sigma_n\}$ donde los $\{x_i\}_{i\in 1...n}$ son distintos. Usamos letras Γ,Δ,\ldots para contextos de tipado.

Un juicio de tipado es una expresión de la forma $\Gamma \rhd M$: σ que se lee:

"el término M tiene tipo σ asumiendo el contexto de tipado Γ "

Sistema de tipado

- ▶ El significado de $\Gamma \triangleright M : \sigma$ se establece a través de la introducción de axiomas y reglas de tipado.
- Si Γ ▷ M : σ puede derivarse usando los axiomas y reglas de tipado decimos que es derivable.
- ▶ Decimos que M es tipable si el juicio de tipado $\Gamma \triangleright M$: σ puede derivarse, para algún Γ y σ .
- A continuación presentaremos los axiomas y reglas de tipado de λ^b

Axiomas de tipado de λ^b

$$\frac{x:\sigma\in\Gamma}{\Gamma\rhd x:\sigma}\,\big(\text{T-VAR}\big)$$

$$\frac{}{\Gamma \rhd \textit{true} : \textit{Bool}} \left(\text{T-True} \right) \qquad \frac{}{\Gamma \rhd \textit{false} : \textit{Bool}} \left(\text{T-False} \right)$$

Reglas de tipado de λ^b

$$\frac{\Gamma \rhd M : \textit{Bool} \quad \Gamma \rhd P : \sigma \quad \Gamma \rhd Q : \sigma}{\Gamma \rhd \textit{if} \; M \; \textit{then} \; P \; \textit{else} \; Q : \sigma} \left(\text{T-IF} \right)$$

$$\frac{\Gamma, x: \sigma \rhd M: \tau}{\Gamma \rhd \lambda x: \sigma.M: \sigma \to \tau} \text{(T-Abs)} \qquad \frac{\Gamma \rhd M: \sigma \to \tau \quad \Gamma \rhd N: \sigma}{\Gamma \rhd M N: \tau} \text{(T-App)}$$

Ejemplos de derivaciones de juicios de tipado

Vamos a mostrar que los siguientes juicios de tipado son derivables:

- 1. $\triangleright \lambda x : Bool.\lambda f : Bool \rightarrow Bool.f x : Bool \rightarrow (Bool \rightarrow Bool) \rightarrow Bool$
- 2. $x : Bool, y : Bool \triangleright if x then y else y : Bool$
- 3. $\triangleright \lambda f : \rho \to \tau.\lambda g : \sigma \to \rho.\lambda x : \sigma.f(g x) : (\rho \to \tau) \to (\sigma \to \rho) \to \sigma \to \tau$
- 4. ¿Existen Γ y σ tal que Γ \triangleright $x x : \sigma$?

Resultados básicos

Unicidad de tipos

Si $\Gamma \rhd M : \sigma$ y $\Gamma \rhd M : \tau$ son derivables, entonces $\sigma = \tau$

Weakening+Strengthening

Si $\Gamma \rhd M : \sigma$ es derivable y $\Gamma \cap \Gamma'$ contiene a todas las variables libres de M, entonces $\Gamma' \rhd M : \sigma$

Sustitución

Si $\Gamma, x : \sigma \rhd M : \tau$ y $\Gamma \rhd N : \sigma$ son derivables, entonces $\Gamma \rhd M\{x \leftarrow N\} : \tau$ es derivable

Semántica

- Habiendo definido la sintaxis de λ^b, nos interesa formular cómo se evalúan o ejecutan los términos
- ► Hay varias maneras de definir rigurosamente la semántica de un lenguaje de programación
 - Operacional
 - Denotacional
 - Axiomática
- ightharpoonup Vamos a definir una semántica operacional para λ^b

¿Qué es semántica operacional?

- Consiste en
 - interpretar a los términos como estados de una máquina abstracta y
 - definir una función de transición que indica, dado un estado, cuál es el siguiente estado
- ► Significado de un término *M*: el estado final que alcanza la máquina al comenzar con *M* como estado inicial
- Formas de definir semántica operacional
 - Small-step: la función de transición describe un paso de computación
 - Big-step (o Natural Semantics): la función de transición, en un paso, evalúa el término a su resultado

Semántica operacional

La formulación se hace a través de juicios de evaluación

$$M \rightarrow N$$

que se leen: "el término M reduce, en un paso, al término N"

- ► El significado de un juicio de evaluación se establece a través de:
 - Axiomas de evaluación: establecen que ciertos juicios de evaluación son derivables.
 - Reglas de evaluación establecen que ciertos juicios de evaluación son derivables siempre y cuando ciertos otros lo sean.

Semántica operacional small-step de λ^b

- ightharpoonup Vamos a presentar una semántica operacional small-step para el cálculo λ^b
- Lo haremos por partes
 - Primero abordamos las expresiones booleanas
 - Luego el resto de las expresiones
- Además de introducir la función de transición es necesario introducir también los valores
 - Valores: Los posibles resultados de evaluación de términos bien-tipados (¿por qué?) y cerrados (¿por qué?)

Semántica Operacional - Expr. booleanas

Valores

$$V ::= true \mid false$$

Todo término bien-tipado y cerrado de tipo *Bool* evalúa, en cero o más pasos, a *true* o *false*

Este resultado se demuestra formalmente

Semántica Operacional - Expr. booleanas

Juicio de evaluación en un paso

$$\overline{\mbox{\it if true then M_2 else $M_3 \to M_2$}} \, \big({\rm E\text{-}IfTrue} \big)$$

$$\overline{\mbox{\it if false then M_2 else $M_3 \to M_3$}} \, \big({\rm E\text{-}IfFALSE} \big)$$

$$rac{M_1
ightarrow M_1'}{if~M_1~then~M_2~else~M_3
ightarrow if~M_1'~then~M_2~else~M_3}$$
 (E-IF)

Ejemplos

 $\frac{-}{if \ \textit{false then false else true}} \xrightarrow{\text{if false then false else true}} \text{(E-IFFALSE)}$ $if \ \textit{(if false then false else true) then false else true}} \xrightarrow{\rightarrow}$ $if \ \textit{true then false else true}$

Observar que

▶ No existe M tal que $true \rightarrow M$ (idem con false).

Ejemplos

if true then (if false then false else true) else true

→ if true then true else true

La estrategia de evaluación corresponde con el orden habitual en lenguajes de programación.

- 1. Primero evaluar la guarda del condicional
- 2. Una vez que la guarda sea un valor, seguir con la expresión del then o del else, según corresponda

Propiedades

Lema (Determinismo del juicio de evaluación en un paso) Si $M \to M'$ y $M \to M''$, entonces M' = M''

Propiedades

Una forma normal es un término que no puede evaluarse más (i.e. M tal que no existe N, $M \rightarrow N$)

Recordar que un valor es el resultado al que puede evaluar un término bien-tipado y cerrado

Lema

Todo valor está en forma normal

- No valdrá el recíproco en λ^b (pero sí vale en el cálculo de las expresiones booleanas cerradas):
 - ▶ if x then true else false
 - ▶ X
 - true false

Evaluación en muchos pasos

El juicio de evaluación en muchos pasos \rightarrow es la clausura reflexiva, transitiva de \rightarrow . Es decir, la menor relación tal que

- 1. Si $M \to M'$, entonces $M \to M'$
- 2. $M \rightarrow M$ para todo M
- 3. Si $M \twoheadrightarrow M'$ y $M' \twoheadrightarrow M''$, entonces $M \twoheadrightarrow M''$

 $\begin{array}{ll} \mbox{\it if true then (if false then false else true) else true} \\ \twoheadrightarrow & \mbox{\it true} \end{array}$

Evaluación en muchos pasos - Propiedades

Para el cálculo de expresiones booleanas valen:

Lema (Unicidad de formas normales)

Si $M \twoheadrightarrow U$ y $M \twoheadrightarrow V$ con U, V formas normales, entonces U = V

Lema (Terminación)

Para todo M existe una forma normal N tal que M woheadrightarrow N

Semántica operacional de λ^b

Valores

$$V ::= true \mid false \mid \lambda x : \sigma.M$$

Introduciremos una noción de evalución en λ^b tal que valgan los lemas previos y también el siguiente resultado:

Teorema

Todo término bien-tipado y cerrado de tipo

- ▶ Bool evalúa, en cero o más pasos, a true, false
- $\sigma \to \tau$ evalúa, en cero o más pasos, a $\lambda x : \sigma.M$, para alguna variable x, para algún término M

Semántica operacional de λ^b

Juicio de evaluación en un paso

$$rac{ extit{M}_1
ightarrow extit{M}_1'}{ extit{M}_1 extit{M}_2
ightarrow extit{M}_1' extit{M}_2} ext{(E-App1 / μ)}$$

$$\frac{\textit{M}_2 \rightarrow \textit{M}_2'}{\left(\lambda \textit{x}: \sigma.\textit{M}\right) \textit{M}_2 \rightarrow \left(\lambda \textit{x}: \sigma.\textit{M}\right) \textit{M}_2'} \left(\text{E-App2 } / \ \nu\right)$$

$$\frac{}{(\lambda x:\sigma.M)\overset{\textbf{V}}{} \rightarrow M\{x\leftarrow \overset{\textbf{V}}{}\}} \text{(E-APPABS }/\beta\text{)}$$

Además de (E-IFTRUE), (E-IFFALSE), (E-IF)

Ejemplos

- $(\lambda y : Bool.y)$ true \rightarrow true
- ▶ $(\lambda x : Bool \rightarrow Bool.x \ true)(\lambda y : Bool.y) \rightarrow (\lambda y : Bool.y) \ true$
- $(\lambda z : Bool.z)((\lambda y : Bool.y) true) \rightarrow (\lambda z : Bool.z) true$
- ▶ No existe M' tal que $x \to M'$
 - x está en forma normal pero no es un valor

Estado de error

- Estado (=término) que no es un valor pero en el que la evaluación está trabada
- Representa estado en el cual el sistema de run-time en una implementación real generaría una excepción

Ejemplos

- ▶ if x then M else N
 - ► Obs: no es cerrado
- ► true M
 - Obs: no es tipable

Objetivo de un sistema de tipos

Garantizar la ausencia de estados de error

Decimos que un término termina o que es fuertemente normalizante si no hay cadenas de reducción infinitas a partir de él.

Teorema

- Todo término bien tipado termina (díficil)
- Si un término cerrado está bien tipado, entonces evalúa a un valor (consecuencia de lo anterior y de los reultados de correción que siguen)

Corrección

Corrección = Progreso + Preservación

Progreso

Si *M* es cerrado y bien tipado entonces

- 1. M es un valor
- 2. o bien existe M' tal que $M \rightarrow M'$

La evaluación no puede trabarse para términos cerrados, bien tipados que no son valores

Preservación

Si $\Gamma \triangleright M : \sigma$ y $M \rightarrow N$, entonces $\Gamma \triangleright N : \sigma$

La evaluación preserva tipos

Tipos y términos de λ^{bn}

$$\sigma \ ::= \ Bool \mid \textit{Nat} \mid \sigma \rightarrow \rho$$

$$\textit{M} \ ::= \ \ldots \mid 0 \mid \textit{succ}(\textit{M}) \mid \textit{pred}(\textit{M}) \mid \textit{iszero}(\textit{M})$$

Descripción informal:

- ightharpoonup succ(M): evaluar M hasta arrojar un número e incrementarlo
- ightharpoonup pred(M): evaluar M hasta arrojar un número y decrementarlo
- iszero(M): evaluar M hasta arrojar un número, luego retornar true/false según sea cero o no

Tipado de λ^{bn}

Agregamos a los axiomas y regla de tipado de λ^b los siguientes:

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{nat}} \text{(T-Zero)}$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{succ}(M) : \mathit{Nat}} \text{(T-Succ)} \qquad \frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{pred}(M) : \mathit{Nat}} \text{(T-Pred)}$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{iszero}(M) : \mathit{Bool}} \text{(T-IsZero)}$$

Valores y evaluación en un paso de λ^{bn} (1/2)

Valores

$$V ::= \ldots \mid \underline{n} \text{ donde } \underline{n} \text{ abrevia } succ^n(0).$$

Juicio de evaluación en un paso (1/2)

$$egin{aligned} rac{M_1
ightarrow M_1'}{succ(M_1)
ightarrow succ(M_1')} & ext{(E-Succ)} \ & \ rac{M_1
ightarrow M_1'}{pred(0)
ightarrow 0} & rac{M_1
ightarrow M_1'}{pred(M_1)
ightarrow pred(M_1')} & ext{(E-PredSucc)} \end{aligned}$$

Valores y evaluación en un paso de $\lambda^{bn}(2/2)$

Juicio de evaluación en un paso (2/2)

$$rac{iszero(0)
ightarrow true}{(ext{E-IsZeroZero})}$$
 $rac{iszero(\underline{n+1})
ightarrow false}{M_1
ightarrow M_1'} ext{(E-IsZeroSucc)}$
 $rac{M_1
ightarrow M_1'}{iszero(M_1)
ightarrow iszero(M_1')} ext{(E-IsZero)}$

Además de los juicios de evaluación en un paso de λ^b .

Tipos y términos de λ^{bnu}

$$\sigma ::= Bool \mid Nat \mid Unit \mid \sigma \rightarrow \rho$$

$$M ::= \dots \mid unit$$

Descripción informal:

- Unit es un tipo unitario y el único valor posible de una expresión de ese tipo es unit.
- ► Cumple rol similar a *void* en C o Java

Tipado de λ^{bnu}

Agregamos el axioma de tipado:

NB:

- No hay reglas de evaluación nuevas
- Extendemos el conjunto de valores V con unit

$$V ::= \ldots | unit$$

Utilidad

- Su utilidad principal es en lenguajes con efectos laterales (próxima clase)
- ► En estos lenguajes es útil poder evaluar varias expresiones en secuencia

$$M_1$$
; $M_2 \stackrel{\text{def}}{=} (\lambda x : Unit.M_2) M_1 \quad x \notin FV(M_2)$

- La evaluación de M_1 ; M_2 consiste en primero evaluar M_1 y luego M_2
- Con la definición dada, este comportamiento se logra con las reglas de evaluación definidas previamente

Tipos y términos de $\lambda^{...let}$

$$M ::= \ldots \mid let \ x : \sigma = M \ in \ N$$

Descripción informal:

- ▶ let $x : \sigma = M$ in N: evaluar M a un valor V, ligar x a V y evaluar N
- ► Mejora la legibilidad
- La extensión con let no implica agregar nuevos tipos

Ejemplo

- let $x : Nat = \underline{2}$ in succ(x)
- ▶ pred (let $x : Nat = \underline{2} \text{ in } x$)
- ▶ let x : Nat = $\underline{2}$ in let x : Nat = $\underline{3}$ in x

Tipado de $\lambda^{\dots let}$

$$\frac{\Gamma\rhd M:\sigma_1\quad \Gamma,x:\sigma_1\rhd N:\sigma_2}{\Gamma\rhd \mathit{let}\ x:\sigma_1=M\ \mathit{in}\ N:\sigma_2}\left(\text{T-Let}\right)$$

Semántica operacional de $\lambda^{\dots let}$

$$\frac{\textit{M}_1 \rightarrow \textit{M}_1'}{\textit{let } \textit{x} : \sigma = \textit{M}_1 \textit{ in } \textit{M}_2 \rightarrow \textit{let } \textit{x} : \sigma = \textit{M}_1' \textit{ in } \textit{M}_2} \text{ (E-Let)}$$

$$\frac{}{\textit{let } x : \sigma = \textit{V}_{1} \textit{ in } \textit{M}_{2} \rightarrow \textit{M}_{2} \{ x \leftarrow \textit{V}_{1} \}} \left(\text{E-LetV} \right)$$

Tipos y términos de $\lambda^{\dots r}$

Sea $\mathcal L$ un conjunto de etiquetas

$$\sigma ::= \ldots \mid \{I_i : \sigma_i^{i \in 1..n}\}$$

- ► {nombre : String, edad : Nat}
- ► {persona : {nombre : String, edad : Nat}, cuil : Nat}

 $\{nombre : String, edad : Nat\} \neq \{edad : Nat, nombre : String\}$

Tipos y términos de $\lambda^{\dots r}$

$$M ::= \ldots |\{I_i = M_i | i \in 1...n\}| M.I$$

Descripción informal:

- ▶ El registro $\{I_i = M_i^{i \in 1..n}\}$ evalúa a $\{I_i = V_i^{i \in 1..n}\}$ donde V_i es el valor al que evalúa M_i , $i \in 1..n$
- ▶ M.I: evaluar M hasta que arroje $\{I_i = V_i^{i \in 1..n}\}$, luego proyectar el campo correspondiente

Ejemplos

```
    λx: Nat.λy: Bool.{edad = x, esMujer = y}
    λp: {edad : Nat, esMujer : Bool}.p.edad
    (λp: {edad : Nat, esMujer : Bool}.p.edad)
    {edad = 20, esMujer = false}
```

Tipado de $\lambda^{\dots r}$

$$\frac{\Gamma \rhd M_i : \sigma_i \quad \text{para cada } i \in 1..n}{\Gamma \rhd \{I_i = M_i \stackrel{i \in 1..n}{}\} : \{I_i : \sigma_i \stackrel{i \in 1..n}{}\}} \left(\text{T-Rcd}\right)$$

$$\frac{\Gamma \rhd M : \{l_i : \sigma_i \overset{i \in 1...n}{}\} \quad j \in 1...n}{\Gamma \rhd M.l_j : \sigma_j} \, (\text{T-Proj})$$

Semántica operacional de $\lambda^{\dots r}$

Valores

$$V ::= \ldots |\{I_i = V_i | i \in 1...n\}$$

Semántica operacional de $\lambda^{...r}$

$$\frac{j \in 1..n}{\{I_i = V_i \overset{i \in 1..n}{\}}.I_j \rightarrow V_j} (\text{E-ProjRcd})$$

$$\frac{M\to M'}{M.l\to M'.l} \text{(E-Proj)}$$

$$\frac{M_{j} \to M'_{j}}{\{I_{i} = V_{i}^{i \in 1..j-1}, I_{j} = M_{j}, I_{i} = M_{i}^{i \in j+1..n}\}} \to \{I_{i} = V_{i}^{i \in 1..j-1}, I_{j} = M'_{j}, I_{i} = M_{i}^{i \in j+1..n}\}$$
 (E-RCD)