Mathématiques 2 Contrôle 3bis (1 heure)

Il s'agit d'un travail individuel. Les documents et les calculettes ne sont pas autorisés Justifiez toutes vos réponses, montrez vos calculs!!!

Le barème envisagé est entre parenthèses et est donné à titre indicatif.

EXERCICE 1 (Total 7 points)

Soit
$$\lambda \in \mathbb{R}$$
 un paramètre réel et $M = \begin{bmatrix} 1 & \lambda & 1 & 0 \\ 0 & 1 & 0 & 1 \\ \lambda & 0 & -2 & -4 \end{bmatrix}$. Résoudre le système homogène

 $M\vec{x} = \vec{0}$ selon les valeurs du paramètre λ .

EXERCICE 2 (13 points)

On note
$$(\vec{e}_1, \vec{e}_2, \vec{e}_3)$$
 la base canonique de \mathbb{R}^3 et $\vec{a} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \vec{b} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ deux vecteurs de \mathbb{R}^3 .

- (1) Montrer que les vecteurs \vec{a} et \vec{b} engendrent un plan \mathcal{P} dans \mathbb{R}^3 dont on donnera l'équation. (2 points)
- (2) Déterminer un vecteur non nul \vec{c} perpendiculaire au plan \mathcal{P} (choisir de préférence un vecteur à coefficients entiers). (1 points)
- (3) Soit P la matrice dont les colonnes sont les vecteurs \vec{a} , \vec{b} et \vec{c} . Montrer que P est inversible et déterminer l'inverse de P. (2 points)
- (4) Donner les coordonnées de $\vec{u} = -2\vec{e}_1 + 3\vec{e}_2 2\vec{e}_3$ dans la base $\mathcal{B} = (\vec{a}, \vec{b}, \vec{c})$. (2 points)
- (5) Soit $S: \mathbb{R}^3 \to \mathbb{R}^3$ la symétrie orthogonale par rapport au plan \mathcal{P} . Donner la matrice de S dans la base $\mathcal{B} = (\vec{a}, \vec{b}, \vec{c})$. (3 points)
- (6) Donner la matrice de S dans la base canonique de \mathbb{R}^3 . (3 points)