Mark Ledeboer et al.

Application No.:

10/700,333

AMENDMENTS TO THE CLAIMS

Please replace all prior versions and listings of claims with the amended claims as follows:

1. (Currently amended) A compound of formula I:

I

or a pharmaceutically acceptable sait thereof,

wherein:

 R^1 is Q-Ar¹,

wherein Q is a C₁₋₂ alkylidene chain wherein one methylene unit of Q is optionally replaced by O, NR, NRCO, NRCONR, NRCO₂, CO, CO₂, CONR, OC(O)NR, SO₂, SO₂NR, NRSO₂, NRSO₂NR, C(O)C(O), or C(O)CH₂C(O);

Ar¹ is a 5-7 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar¹ is optionally substituted with q independent occurrences of Z-R²; wherein q is 0-5, Z is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of Z are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R² is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'COR', NR'CON(R')₂,

04/06/2006 14:30 FAX Ø011/044

Applicants:

Mark Ledeboer et al.

Application No.:

10/700,333

NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

each occurrence of R is independently hydrogen or an optionally substituted C₁₋₆ aliphatic group; and each occurrence of R is independently hydrogen or an optionally substituted C₁₋₆ aliphatic group, a 3-8-membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; or R and R', two occurrences of R, or two occurrences of R', are taken together with the atom(s) to which they are bound to form an optionally substituted 3-12 membered saturated, partially unsaturated, or fully unsaturated monocyclic or bicyclic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur;

Z¹ is N or CH:

 Z^7 is $\frac{N \text{ or } C(U)_n R^Y}{}$;

T and U are each independently a bond or a saturated or unsaturated C₁₋₆ alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; m and n are each independently 0 or 1;

 R^{X} and R^{Y} are each independently selected from R or Ar^{I} ;

Z² is N or CR²; Z³ is N or CR³; Z⁴ is N or CR⁴; Z⁵ is N or CR⁵; and Z⁶ is N or CR⁶, wherein each occurrence of R², R³, R⁴, R⁵ or R⁶ is independently R^U or (V)_pR^V, provided that a) no more than three of Z², Z³, Z⁴, Z⁵ or Z⁶ is N, and b) at least one of Z³, Z⁴ or Z⁵ is CR³, CR⁴, or CR⁵, respectively, and at least one of R³, R⁴, or R⁵ is R^U,

each occurrence of R^U is NRCOR⁷, CONR(R⁷), SO₂NR(R⁷), NRSO₂R⁷,

NRCONR(R⁷), NRSO₂NR(R⁷), or CONRNR(R⁷), wherein R⁷ is (CH₂)_t-Y-R⁸, and
t is 0, 1, or 2, Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -

Mark Ledeboer et al.

Application No.:

10/700,333

S(CH₂)₂, or -NR⁹(CH₂)₂, and R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form an optionally substituted 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur;

each occurrence of V is a bond or a saturated or unsaturated C_{1.6} alkylidene chain, wherein up to two methylene units of the chain are optionally and independently replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCO₃, NRCO₃, NRSO₂, NRSO₂, NRSO₂, NRSO₂NR, O, S, or NR;

each occurrence of p is 0 or 1;

each occurrence of RV is R or Ar2; and

Ar² is a 5-7 membered saturated, partially unsaturated, or fully unsaturated monocyclic ring having 0-3 heterostoms independently selected from nitrogen, oxygen, or sulfur, or an 8-12 membered saturated, partially unsaturated, or fully unsaturated bicyclic ring system having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur; wherein Ar² is optionally substituted with r independent occurrences of W-R^W; wherein r is 0-3, W is a bond or is a C₁-C₆ alkylidene chain wherein up to two non-adjacent methylene units of W are optionally replaced by CO, CO₂, COCO, CONR, OCONR, NRNR, NRNRCO, NRCO, NRCO₂, NRCONR, SO, SO₂, NRSO₂, SO₂NR, NRSO₂NR, O, S, or NR; and each occurrence of R^W is independently selected from R', halogen, NO₂, CN, OR', SR', N(R')₂, NR'COR', NR'CON(R')₂, NR'CO₂R', COR', CO₂R', OCOR', CON(R')₂, OCON(R')₂, SOR', SO₂R', SO₂N(R')₂, NR'SO₂R', NR'SO₂N(R')₂, COCOR', or COCH₂COR';

provided that:

a) when Z¹-is N, Z⁷ is CH [[;]] and ring B is phenyl and at least one of R³ or R⁴ is NHCOR⁷, then R¹ is not phenyl only substituted with two or three occurrences of OR'; and

04/06/2006 14:31 FAX Ø1013/044

Applicants:

Mark Ledeboer et al.

Application No.:

10/700,333

b) when \mathbb{Z}^1 is \mathbb{N} , \mathbb{Z}^7 is CH [[;]] and ring B is phenyl and at least one of \mathbb{R}^3 of \mathbb{R}^4 is NHCOR⁷, SO₂R⁷, CONRR⁷, then \mathbb{R}^1 is not phenyl only substituted with one occurrence of -CON(R')₂ in the para position.

2-3. (Canceled)

- 4. (Original) The compound of c aim 1, wherein R¹ is an optionally substituted phenyl, cyclohexyl, cyclopentyl, pyridyl, morpholino, piperazinyl, or piperidinyl group
- 5. (Original) The compound of claim 1, wherein R¹ is an optionally substituted from phenyl, cyclohexyl, or pyridyl group.
- 6. (Original) The compound of claim 1, wherein R¹ is optionally substituted phenyl.
- 7. (Original) The compound of claim 1, wherein q is 0, 1, 2, or 3 and each independent occurrence of \mathbb{ZR}^2 is $\mathbb{C}_{1.4}$ alkyl, $\mathbb{N}(\mathbb{R}')_2$, \mathbb{OR}' , \mathbb{SR}' , $\mathbb{CON}(\mathbb{R}')_2$, $\mathbb{NR}'\mathbb{COR}'$, $\mathbb{NR}'\mathbb{SO}_2\mathbb{R}'$, or $\mathbb{SO}_2\mathbb{N}(\mathbb{R}')_2$.
- 8. (Original) The compound of claim 1, wherein q is 1 and ZR^Z is -NH₂, -OH, C₁.

 4alkoxy, or -S(O)₂NH₂.
- 9. (Original) The compound of claim 1, wherein q is 1, and ZR^Z is in the meta position and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂.
- 10. (Original) The compound of claim 1, wherein (T)_mR^X and (U)_nR^Y are hydrogen, halogen, NO₂, CN, OR, SR or N(R)₂, or C₁₋₄aliphatic optionally substituted with oxo, OR, SR, N(R)₂, halogen, NO₂ or CN.

04/06/2006 14:31 FAX @014/044

Applicants: Mark Ledeboer et al.

Application No.: 10/700,333

11. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each independently hydrogen, Me, OH, OMe or $N(R)_2$.

- 12. (Original) The compound of claim 1, wherein $(T)_m R^X$ and $(U)_n R^Y$ are each hydrogen.
- 13. (Original) The compound of claim 1, wherein ring B is one of rings i-xiv:

Mark Ledeboer et al.

Application No.:

- 14. (Original) The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted aryl or heteroaryl moiety.
- 15. (Original) The compound of claim 1, wherein t is 0, Y is a bond, and R⁸ is an optionally substituted heteroaryl moiety.
- 16. (Original) The compound of claim 1, wherein R⁷ is -CH₂-Y-R⁸, and Y is NR⁹, O or S, and R⁸ is an optionally substituted aryl or heteroaryl moiety.
- 17. (Original) The compound of claim 1, wherein R^7 is $-CH_2-Y-R^8$, and Y is NR^9 , O or S, and R^8 is an optionally substituted aryl moiety.
- 18. (Original) The compound of claim 1, wherein t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur.
- 19. (Original) The compound of claim 1, wherein R⁸ is a 5- or 6-membered aryl or heteroaryl group having one of the formulae:

Mark Ledeboer et al.

Application No.:

10/700,333

20. (Original) The compound of claim 1, wherein R⁸ is a 5- or 6-membered heteroaryl group having one of the formulae:

21. (Original) The compound of claim 1, wherein R⁸ and R⁹, taken together, form a group having one of the formulae:

Mark Ledeboer et al.

Application No.:

10/700,333

S

t

u

v

- 22. (Original) The compound of claim 1, wherein r is 0 or 1.
- 23. (Original) The compound of claim 19, 20, or 21, wherein r is 1, 2, or 3, and each occurrence of halogen, C_{1-4} alkyl, $-(R)_2$, -OR, -SR, $-SO_2N(R)_2$, $-N(R)SO_2R$, -N(R)COR, $-N(R)_2$, $-CH_2OR$, $-CH_2N(R)_2$, or $-CH_2SR$.
- 24. (Original) The compound of claim 19, 20, or 21, wherein t is 0, Y is a bond, and R^8 is an optionally substituted heteroaryl moiety selected from one of groups b through r.
- 25. (Original) The compound of claim 24, wherein R⁸ is an optionally substituted heteroaryl group **b-i**, **k-i**, or **l-i**.
- 26. (Original) The compound of claim 1, wherein t is 1, Y is O, S or NR⁹, and R⁸ is optionally substituted phenyl.
- 27. (Original) The compound of claim 1, wherein t is 0 or 1, Y is NR^9 , and R^8 and R^9 , taken together form an optionally substituted group selected from s, u or v.
- 28. (Currently amended) The compound of claim 1, wherein Z³ or Z⁵ is CR³ or CR⁵, respectively, and R³ or R⁵ is NRC(O)R⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have the formula II-A or III-A:

Mark Ledeboer et al.

Application No.:

10/700,333

$$R^{1}$$
 NH
 $R^{Y}_{n}(U)$ $R^{X}(T)_{m}$ Z^{0} R^{0} Z^{0} R^{0}

II-A

HI-A

29. (Currently amended) The compound of claim 28, wherein for compounds of formula II-A ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and compounds have one of formulas II-A-i, II-A-ii, II-A-iii, II-A-iv, II-A-vii, II-A-viii, II-A-ix, II-A-xi, II-A-xii, or II-A-xiii:

$$R^{1}$$
 NH
 R^{2} R
 R^{3} R^{4} R^{5}

$$R^{1}$$
 NH
 $N A$
 $N B$
 $R^{X}(T)_{m}$
 $N B$
 R^{5}

II-A-i

$$R^1$$
 NH
 R^2
 R^3
 R^4
 R^3
 R^4
 R^4
 R^4

II-A-ii

II-A-iii

П-A-iv

Mark Ledeboer et al.

Application No.:

10/700,333

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & R^{2} \\
R^{Y}_{n}(U) & N & N & R^{3} \\
R^{X}(T)_{m} & N & N & N \\
R^{5} & N & O
\end{array}$$

$$\begin{array}{c|c} R^1 & NH \\ NA & N & R^2 & R \\ R^Y_n(U) & B & N & O \end{array}$$

II-A-v

II-A-vii

$$\begin{array}{c|c} R^1 & NH \\ N & N \\ R^{Y}_{n}(U) & R^{X}(T)_{m} & R^{6} \\ \end{array}$$

$$R^{1}$$
 NH
 $R^{Y}_{n}(U)$
 $R^{X}(T)_{m}$
 R^{6}
 N
 R^{2}
 R^{4}
 N
 R^{4}

II-A-viii

II-A-ix

П-А-х

II-A-xi

$$\begin{array}{c|c} R^1 & NH \\ NA & N \\ R^{Y}_{n}(U) & NA \\ R^{X}(T)_{m} & NA \\ NA & NA$$

$$\begin{array}{c|c}
R^{1} & & & \\
NH & & & \\
NA & & & \\
R^{Y}_{n}(U) & & & & \\
R^{X}(T)_{m} & & & & \\
R^{\theta} & & & & \\
R^{\theta} & & & & \\
\end{array}$$

Mark Ledeboer et al.

Application No.:

10/700,333

II-A-xii

II-A-xiii

30. (Canceled)

31. (Currently amended) The compound of claim 1, wherein Z⁴ is CR⁴, and R⁴ is NRC(O)R⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur, and compounds have formula one—of formulas II-B or III-B:

II-B

HI-B

32. (Currently amended) The compound of claim 31, wherein for compounds of formula H-B, ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas II-B-i, II-B-ii, II-B-iii, II-B-iv, II-B-vi, II-B-viii, II-B-ix, II-B-xii, or II-B-xiv:

Mark Ledeboer et al.

Application No.:

10/700,333

II-B-i

$$R^1$$
 NH R^2 R^3 R^3 R^3 R^4 R^4

II-B-iii

П-В-iv

$$\begin{array}{c|c} R^1 & & \\ NH & & \\ NA & & R^2 \\ R^X(T)_m & & B \\ R^B & & N \\ R & & R^7 \end{array}$$

II-B-vi

II-B-viii

Mark Ledeboer et al.

Application No.:

10/700,333

II-B-ix

П-В-хіі

11-B-xiv

33. (Canceled)

34. (Currently amended) The compound of claim 1, wherein Z³ or Z⁵ is CR³ or CR⁵, respectively, and R³ or R⁵ is C(O)N(R)(R⁷), wherein R⁷ is (CH₂)_t-Y-R⁸, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR⁹, -OCH₂-, -SCH₂, -NR⁹CH₂, O(CH₂)₂-, -S(CH₂)₂, or -NR⁹(CH₂)₂, and wherein R⁸ is Ar², or R⁸ and R⁹, taken together with the nitrogen atom, form a 5-8 membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have formula one of formulas II-C or III-C:

35. (Currently amended) The compound of claim 34, wherein for compounds of formula H-C, ring B is selected from i, ii, iii, iv, v, vii, viii, ix, x, xi, xii, or xiii and

Mark Ledeboer et al.

Application No.:

10/700,333

compounds have one of formulas II-C-i, II-C-ii, II-C-iii, II-C-iv, II-C-vii, II-C-vii, II-C-vii, II-C-xii, II-C-xii, II-C-xii)

$$R^{1}$$
 NH
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}

II-C-iii

II-C-iv

$$R^1$$
 NH R^2 O R^7 $R^X(T)_m$ N R^3 N R^4 N R^5

II-C-v

II-C-vii

Mark Ledeboer et al.

Application No.:

10/700,333

$$\begin{array}{c|c}
R^{1} & NH \\
N & N & R^{2} & O \\
R^{Y}_{n}(U) & R^{X}(T)_{m} & R^{6} & N & R^{4}
\end{array}$$

II-C-viii

II-C-ix

$$R^1$$
 NH
 R^2
 R^3
 R^4
 R^5
 R^5

П-С-х

II-C-xi

П-С-хіі

II-C-xiii

36. (Canceled)

37. (Currently amended) The compound of claim 1, wherein Z^4 is CR^4 , and R^4 is $C(O)N(R)(R^7)$, wherein R^7 is $(CH_2)_{t^-}Y^-I^{t^8}$, wherein t is 0, 1 or 2, wherein Y is a bond or is O, S, NR^9 , $-OCH_{2^-}$, $-SCH_2$, $-NR^9CH_2$, $O(CH_2)_{2^-}$, $-S(CH_2)_2$, or $-NR^9(CH_2)_2$, and wherein R^8 is Ar^2 , or R^8 and R^9 , taken together with the nitrogen atom, form a 5-8

Mark Ledeboer et al.

Application No.:

10/700,333

membered heterocyclyl or heteroaryl ring having 1-3 heteroatoms independently selected from nitrogen, oxygen or sulfur and compounds have <u>formula</u> one of formulas II-D or III-D:

38. (Currently amended) The compound of claim 37, wherein for compounds of formula II-D, ring B is selected from i, ii, iii, iv, vi, viii, ix, xii, or xiv and compounds have one of formulas II-D-i, II-D-ii, II-D-iii, II-D-iv, II-D-vii, II-D-viii, II-D-xii, or II-D-xii:

Mark Ledeboer et al.

Application No.:

10/700,333

II-D-iii

II-D-iv

$$R^{1}$$
 NH
 $N = N$
 $N = N$

II-D-vi

U-D-viii

$$R^1$$
 NH
 R^2
 R^3
 R^3
 R^3
 R^4
 R^4

II-D-ix

II-D-xii

Mark Ledeboer et al.

Application No.:

10/700,333

II-D-xiv

39. (Canceled)

40. (Currently amended) The compound of claim 1, where R¹ is optionally substituted phenyl and ring B is an optionally substituted phenyl group and compounds have the general formula formulas IV or V:

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{R} R^{3}$$

$$R^{S} R^{4}$$

$$IV$$

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{R} R^{3}$$

$$R^{Y}_{n}(U) \xrightarrow{R} R^{3}$$

$$R^{X}(T)_{m} R^{6} \xrightarrow{R^{3}} R^{4}$$

41. (Currently amended) The compound of claim 40, wherein, R³ is NRCOR⁷ and compounds have the general formula fermulae-IV-A-(i) or V-A-(i):

42. (Currently amended) The compound of claim 40, wherein R⁴ is NRCOR⁷ and compounds have the general <u>formulae IV-B-(i)</u>:

Mark Ledeboer et al.

Application No.:

10/700,333

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{m}} R^{B} \xrightarrow{R^{3}} R^{Y}$$

$$R^{Y}_{n}(U) \xrightarrow{R^{X}(T)_{m}} R^{B} \xrightarrow{R^{3}} R^{X}$$

43. (Currently amended) The compound of claim 40, wherein R³ is CONRR⁷ and compounds have the general formula fermulae IV-C-(i) or V-C-(i):

44. (Currently amended) The compound of claim 40, wherein R⁴ is CONRR⁷ and compounds have the general formula formulae IV-D-(i) or VII-D-(i):

Mark Ledeboer et al.

Application No.:

10/700,333

IV-D-(i)

V-D-(i)

45. (Currently amended) The compound of claim 40, wherein R^1 is optionally substituted phenyl, ring A is pyrimidinyl or pyridyl, ring B is phenyl, and R^2 , R^5 , and R^6 are each hydrogen, and compounds have the general formulae VI and VII:

$$q(R^{Z}Z) \xrightarrow{NH} NH$$

$$N \xrightarrow{N} R^{3}$$

$$VI$$

$$VI$$

$$VI$$

$$Q(R^{Z}Z) \xrightarrow{NH} NH$$

$$N \xrightarrow{N} R^{3}$$

$$R^{4}$$

$$VI$$

- 46. (Currently amended) The compound of claim 40 or 45, wherein q is 0 or 1 and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -SO₂NH₂; [[b.]] (b) R³ is NRCOR⁷, wherein R⁷ is (CH₂)₁-Y-R⁸, and t is 0, Y is a bond, and R⁸ is phenyl (a), or is an optionally substituted heteroaryl moiety selected from one of groups b through r, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and
- 47. (Currently amended) The compound of claim 40 or 45, wherein:

 [[a.]] (a) q is 0 or 1 and ZR^Z is -NH₂, -OH, C₁₋₄alkoxy, or -SO₂NH₂;

 [[b.]] (b) R³ is CONRR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0, Y is a bond, and R⁸ is phenyl (a) or is an optionally substituted heteroaryl moiety selected from one of groups b through r, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and [[c.]] (c) R⁴ is hydrogen.

[[c.]] (c) R⁴ is hydrogen.

04/06/2006 14:35 FAX 2000/044

Applicants:

Mark Ledeboer et al.

Application No.:

10/700,333

48. (Currently amended) The compound of claim 40 or 45, wherein:

[[a.]] (a) q is 0 or 1 and ZR¹² is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂; [[b.]] (b) R⁴ is NRCOR⁷, wherein R⁷ is (CH₂)_r-Y-R⁸, and t is 0, Y is a bond, and R⁸ is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups b through z, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and [[c.]] (c) R³ is hydrogen.

49. (Currently amended) The compound of claim 40 or 45, wherein:

[[a.]] (a) q is 0 or 1 and ZR² is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂; [[b.]] (b) R⁴ is CONRR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0, Y is a bond, and R⁸ is phenyl (a) or an optionally substituted heteroaryl moiety selected from one of groups b through z, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(E)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and [[c.]] (c) R³ is hydrogen.

50. (Currently amended) The compound of claim 40 or 45, wherein:

[[a.]] (a) q is 0 or 1 and $\mathbb{Z}\mathbb{R}^2$ is -NH₂, -OH, C_{1.4}alkoxy, or -S(O)₂NH₂; [[b.]] (b) \mathbb{R}^3 is NRCOR⁷, wherein \mathbb{R}^7 is $(CH_2)_{t}$ -Y-R⁸, and t is 0 or 1, Y is NR⁹, and \mathbb{R}^8 and \mathbb{R}^9 , taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents are halogen, C_{1.4}alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and [[c.]] (c) \mathbb{R}^4 is hydrogen.

51. (Currently amended) The compound of claim 40 or 45, wherein:

Mark Ledeboer et al.

Application No.:

10/700,333

[[a.]] (a) q is 0 or 1 and ZR²² is -NH₂, -OH, C₁₋₄ałkoxy, or -S(O)₂NH₂; [[b.]] (b) R³ is CONRR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and [[c.]] (c) R⁴ is hydrogen.

- 52. (Currently amended) The compound of claim 40 or 45, wherein:
 - [[a.]] (a) q is 0 or 1 and ZR² is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂; [[b.]] (b) R⁴ is NRCOR⁷, wherein R⁷ is (CH₂)_t-Y-R⁸, and t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents include halogen, C₁₋₄alkyl, NH₂, OH, SH, SO₂NH₂, C₁₋₄alkoxy, C₁. 4thioalkyl, CH₂OR, CH₂N(E)₂, or CH₂SR; and [[c.]] (c) R³ is hydrogen.
- 53. (Currently amended) The compound of claim 40 or 45, wherein:

[[a.]] (a) q is 0 or 1 and ZR² is -NH₂, -OH, C₁₋₄alkoxy, or -S(O)₂NH₂; [[b.]] (b) R⁴ is CONRR⁷, wherein R⁷ is (CH₂)_T-Y-R⁸, and t is 0 or 1, Y is NR⁹, and R⁸ and R⁹, taken together with the nitrogen atom, form a group selected from s, t, u, or v, and wherein r is 0 or 1, and WR^W substituents are halogen, C₁₋₄alkyl, -(R)₂, -OR, -SR, -SO₂N(R)₂, -N(R)SO₂R, -N(R)COR, -N(R)₂, -CH₂OR, -CH₂N(R)₂, or -CH₂SR; and [[c.]] (c) R³ is hydrogen.

54. (Currently amended) The compound of claim 1, having one of the following structures:

04/06/2006 14:35 FAX @032/044

Applicants:

Mark Ledeboer et al.

Application No.:

10/700,333

IV-A(i)-4

IV-A(i)-5

TV-A(i)-6

IV-A(i)-7

IV-A(i)-8

IV-A(i)-9

IV-A(i)-10

Applicants:

Mark Ledeboer et al.

Application No.:

Mark Ledeboer et al.

Application No.:

10/700,333

IV-B(i)-9

Mark Ledeboer et al.

Application No.:

10/700,333

V-A(i)-4

Mark Ledeboer et al.

Application No.:

Mark Ledeboer et al.

Application No.:

Mark Ledeboer et al.

Application No.:

10/700,333

V-B(i)-11 IV-C(i)-1 **IV-C(i)-2** IV-C(i)-3 IV-C(i)-4 **IV-C(i)-5** IV-C(i)-6 IV-C(i)-7 IV-C(i)-8 IV-C(i)-9 IV-C(i)-10 IV-C(i)-11 IV-C(i)-12

04/06/2006 14:37 FAX @039/044

Applicants:

Mark Ledeboer et al.

Application No.:

Mark Ledeboer et al.

Application No.:

Mark Ledeboer et al.

Application No.:

04/06/2006 14:38 FAX Ø 042/044

Applicants:

schizophrenia,

Mark Ledeboer et al.

Application No.:

10/700,333

55. (Original) A pharmaceutical composition comprising a compound according to

claim 1, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.

anti-inflammatory

56. (Original) The composition of claim 55, further comprising an additional

therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, a

treatment for Alzheimer's Disease, a treatment for Parkinson's Disease, an agent for

treating Multiple Sclerosis (MS), a treatment for asthma, an agent for treating

agent, immunomodulatory an immunosuppressive agent, a neurotrophic factor, an agent for treating cardiovascular

disease, an agent for treating destructive bone disorders, an agent for treating liver

disease, an agent for treating a blood disorder, or an agent for treating an

immunodeficiency disorder.

57. (Original) A method of inhibiting JAK kinase activity in a biological sample

or a patient, comprising the step of contacting said biological sample or patient with:

a) the composition of claim 55; or

b) the compound of claim 1.

58. (Original) A method of treating or lessening the severity of a disease or

disorder selected from an immune response, an autoimmune disease, a

neurodegenerative disorder, or a solid or hematologic malignancy comprising

administering to a patient in need thereof a compound of claim 1 or a composition of

claim 55.

59. (Original) The method of claim 58, wherein the disease is an allergic or type I

hypersensitivity reaction, asthma, transplant rejection, graft versus host disease,

rheumatoid arthritis, amyotrophic lateral sclerosis, multiple sclerosis, Familial

amyotrophic lateral sclerosis (FALS), leukemia, or lymphoma.

-- 34 --