LVMs (Contd), Expectation Maximization (2)

CS771: Introduction to Machine Learning
Piyush Rai

Maximizing ILL

Assuming Z to be discrete, else replace it by an integral

■ The MLE problem was $\Theta_{MLE} = \underset{\Theta}{\operatorname{argmax}} \log p(X|\Theta) = \underset{\Theta}{\operatorname{argmax}} \log \sum_{\mathbf{z}} p(X, \mathbf{z}|\Theta)$

Easier than maximizing ILL

- What EM (and ALT-OPT in a crude way) did is max of CLL: $\Theta_{MLE} = \underset{\Theta}{\operatorname{argmax}} \mathbb{E}[\log p(X, Z|\Theta)]$
- But we did not solve the original problem. Is it okay?
- Assume $p_z = p(\mathbf{Z}|\mathbf{X}, \Theta)$ and $q(\mathbf{Z})$ to be some prob distribution over \mathbf{Z} , then

Function of a distribution q and parameter Θ

$$\log p(X|\Theta) = \mathcal{L}(q,\Theta) + KL(q||p_z)$$
 May verify this identity

- In the above $\mathcal{L}(q,\Theta) = \sum_{Z} q(Z) \log \left\{ \frac{p(X,Z|\Theta)}{q(Z)} \right\}$ and $KL(q||p_Z) = -\sum_{Z} q(Z) \log \left\{ \frac{p(Z|X,\Theta)}{q(Z)} \right\}$
- Since KL is always non-negative $\log p(X|\Theta) \ge \mathcal{L}(q,\Theta)$, so $\mathcal{L}(q,\Theta)$ is a lower-bound on ILL
- Thus if we maximize $\mathcal{L}(q,\Theta)$, it will also improve $\log p(X|\Theta)$

What is EM Doing?

- lacktriangle As we saw, $\mathcal{L}(q,\Theta)$ depends on q and Θ
- Let's maximize $\mathcal{L}(q,\Theta)$ w.r.t. q with Θ fixed at Θ^{old}

The posterior distribution of Z given older parameters Θ^{old} (will need this posterior to get the expectation of CLL)

Since $\log p(X|\Theta) = \mathcal{L}(q,\Theta) + KL(q||p_z)$ is constant when Θ is held fixed at Θ^{old}

$$\hat{q} = \operatorname{argmax}_{q} \mathcal{L}(q, \Theta^{\text{old}}) = \operatorname{argmin}_{q} KL(q||p_z) = p_z = p(\mathbf{Z}|\mathbf{X}, \Theta^{\text{old}})$$

• Now let's maximize $\mathcal{L}(q,\Theta)$ w.r.t. Θ with q fixed at $\hat{q}=p_z=p(\boldsymbol{Z}|\boldsymbol{X},\Theta^{\text{old}})$

$$\Theta^{\text{new}} = \operatorname{argmax}_{\Theta} \mathcal{L}(\hat{q}, \Theta) = \operatorname{argmax}_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log \left\{ \frac{p(X, Z|\Theta)}{p(Z|X, \Theta^{\text{old}})} \right\}$$

=
$$\operatorname{argmax}_{\Theta} \sum_{Z} p(Z|X, \Theta^{\text{old}}) \log p(X, Z|\Theta)$$

= $\operatorname{argmax}_{\Theta} \mathbb{E}_{p(Z|X, \Theta^{\text{old}})} [\log p(X, Z|\Theta)]$

Maximization of expected CLL w.r.t. the posterior distribution of Z given older parameters Θ^{old}

=
$$\operatorname{argmax}_{\Theta} \mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\Theta^{\text{old}})}[\log p(\mathbf{X},\mathbf{Z}|\Theta)]$$

=
$$\operatorname{argmax}_{\Theta} Q(\Theta, \Theta^{\text{old}})$$

The EM Algorithm in its general form..

■ Maximization of $\mathcal{L}(q,\Theta)$ w.r.t. q and Θ gives the EM algorithm (Dempster, Laird, Rubin, 1977)

The EM Algorithm

- Initialize Θ as $\Theta^{(0)}$, set t=1
- ② Step 1: Compute posterior of latent variables given current parameters $\Theta^{(t-1)}$

$$p(\boldsymbol{z}_n^{(t)}|\boldsymbol{x}_n,\boldsymbol{\Theta}^{(t-1)}) = \frac{p(\boldsymbol{z}_n^{(t)}|\boldsymbol{\Theta}^{(t-1)})p(\boldsymbol{x}_n|\boldsymbol{z}_n^{(t)},\boldsymbol{\Theta}^{(t-1)})}{p(\boldsymbol{x}_n|\boldsymbol{\Theta}^{(t-1)})} \propto \operatorname{prior} \times \operatorname{likelihood}$$

 \odot Step 2: Now maximize the expected complete data log-likelihood w.r.t. Θ

$$\Theta^{(t)} = \arg\max_{\Theta} \mathcal{Q}(\Theta, \Theta^{(t-1)}) = \arg\max_{\Theta} \sum_{n=1}^{N} \mathbb{E}_{p(\boldsymbol{z}_{n}^{(t)}|\boldsymbol{x}_{n}, \Theta^{(t-1)})} [\log p(\boldsymbol{x}_{n}, \boldsymbol{z}_{n}^{(t)}|\Theta)]$$

- If not yet converged, set t = t + 1 and go to step 2.
- Note: If we can take the MAP estimate \hat{z}_n of z_n (not full posterior) in Step 1 and maximize the CLL in Step 2 using that, i.e., do $\operatorname{argmax}_{\Theta} \sum_{n=1}^{N} [\log p(x_n, \hat{z}_n^{(t)} | \Theta)]$ this will be ALT-OPT

The Expected CLL

Expected CLL in EM is given by (assume observations are i.i.d.)

$$\mathcal{Q}(\Theta, \Theta^{old}) = \sum_{n=1}^{N} \mathbb{E}_{p(\mathbf{z}_{n}|\mathbf{x}_{n}, \Theta^{old})} [\log p(\mathbf{x}_{n}, \mathbf{z}_{n}|\Theta)]$$

$$= \sum_{n=1}^{N} \mathbb{E}_{p(\mathbf{z}_{n}|\mathbf{x}_{n}, \Theta^{old})} [\log p(\mathbf{x}_{n}|\mathbf{z}_{n}, \Theta) + \log p(\mathbf{z}_{n}|\Theta)]$$
Was indeed the case of GMM: $p(\mathbf{z}_{n}|\Theta)$ was multinoulli, $p(\mathbf{x}_{n}|\mathbf{z}_{n}, \Theta)$ was Gaussian

- If $p(z_n|\Theta)$ and $p(x_n|z_n,\Theta)$ are exp-family distributions, $Q(\Theta,\Theta^{\text{old}})$ has a very simple form
- ullet In resulting expressions, replace terms containing z_n 's by their respective expectations, e.g.,
 - $lacksquare oldsymbol{z}_n$ replaced by $\mathbb{E}_{p(oldsymbol{z}_n|oldsymbol{x}_n,\,\widehat{\Theta})}[oldsymbol{z}_n]$
 - $lacksquare oldsymbol{z}_n oldsymbol{z}_n^{ op}$ replaced by $\mathbb{E}_{p(oldsymbol{z}_n | oldsymbol{x}_n}, \widehat{\Theta})[oldsymbol{z}_n oldsymbol{z}_n^{ op}]$
- However, in some LVMs, these expectations are intractable to compute and need to be approximated (beyond the score of CS771)

EM: An Illustration

Alternating between them until convergence to some local optima

- As we saw, EM maximizes the lower bound $\mathcal{L}(q,\Theta)$ in two steps
- Step 1 finds the optimal q (call it \hat{q}) by setting it the posterior of Z given current Θ
- Step 2 maximizes $\mathcal{L}(\hat{q}, \Theta)$ w.r.t. Θ which gives a new Θ .

Makes $\mathcal{L}(q, \Theta)$ equal to $\log p(X|\Theta)$; thus the curves touch at current Θ

Note that Θ only changes in Step 2

convergence behavior in some cases)

Unlike Newton's method, we don't construct and optimize a quadratic approximation, but a lower bound

Even though original MLE problem $\operatorname{argmax}_{\Theta} \log p(X|\Theta)$ could be solved using gradient methods, EM often works faster and has cleaner updates

CS771: Intro to ML

Recap: ALT-OPT vs EM

- ALT-OPT does the following
 - **1** Initialize $\Theta = \hat{\Theta}$
 - 2 Estimate \mathbf{Z} as $\hat{\mathbf{Z}} = \arg \max_{\mathbf{Z}} \log p(\mathbf{Z}|\mathbf{X}, \hat{\Theta})$
 - **3** Estimate Θ as $\hat{\Theta} = \arg \max_{\Theta} \log p(\mathbf{X}, \hat{\mathbf{Z}}|\Theta)$
 - Go to step 2 if not converged
- EM addresses it using "soft" version of ALT-OPT
 - **1** Initialize $\Theta = \hat{\Theta}$
 - **2** Compute the posterior distribution of **Z**, i.e., $p(\mathbf{Z}|\mathbf{X}, \hat{\Theta})$
 - **3** Estimate Θ by maximizing the expected CLL $\hat{\Theta} = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\hat{\Theta})}[\log p(\mathbf{X},\mathbf{Z}|\Theta)]$
 - Go to step 2 if not converged

This step could potentially throw away a lot of information about the latent variable \boldsymbol{Z}

ALT-OPT can be seen as as approximation of EM – the posterior $p(Z|X,\Theta)$ is replaced by a point mass at its mode

EM: Some Comments

- The E and M steps may not always be possible to perform exactly. Some reasons
 - Posterior of latent variables $p(Z|X,\Theta)$ may not be easy to find and may require approx.
 - Even if $p(Z|X,\Theta)$ is easy, expected CLL, i.e., $\mathbb{E}[\log p(X,Z|\Theta)]$ may still not be tractable

$$\mathbb{E}[\log p(\mathbf{X}, \mathbf{Z}|\Theta)] = \int \log p(\mathbf{X}, \mathbf{Z}|\Theta) p(\mathbf{Z}|\mathbf{X}, \Theta) d\mathbf{Z}$$

Monte-Carlo EM

..and may need to be approximated, e.g., using Monte-Carlo expectation

Gradient methods may still be needed for this step

- Maximization of the expected CLL may not be possible in closed form
- EM works even if the M step is only solved approximately (Generalized EM)
- If M step has multiple parameters whose updates depend on each other, they are updated in an alternating fashion called Expectation Conditional Maximization (ECM) algorithm
- Other advanced probabilistic inference algorithms are based on ideas similar to EM
 - E.g., Variational Bayesian inference a.k.a. Variational Inference (VI)
- EM is also related to non-convex optimization algorithms Majorization-Maximization (MM)

S771: Intro to MI