Questions

 How does a change in mass and/or volume affect density?

 What determines if an object will sink, float or remain suspended in a liquid substance?

 How can density be used to identify a substance?

Vocabulary

Define the following vocabulary words:

- Matter
- Mass
- Volume
- Density

Matter

Matter - A substance that has <u>mass</u> and <u>volume</u>

- Mass = "stuff"
- Volume = "space"

Mass

Mass - The measure of matter in an object.

- *Units*: grams (g)
- Apparatus: Balance

PRESSURE & TEMPERATURE affect volume!

Volume

Volume - How much "space" an object occupies

- <u>Units:</u> Milliliter (mL) or Cubic centimeter (cm³)
- Apparatus: Graduated cylinder, ruler, overflow can

Density - describes the relationship between a material's <u>mass</u> and <u>volume</u>.

Units:

- Mass = grams (g)
- Volume = milliliters (mL) or cubic centimeters (cm³)
- Density = g/mL or g/cm³

Density = "Compactness"

CUBE A is more compact than CUBE B.

Density = "Compactness"

CUBE B is more compact than CUBE A.

Density = "Compactness"

CUBA A and **CUBE B** have the same compactness.

Matter Graphic Organizer Draw in your notebook

Place these terms in the diagram:

- -Density
- -Volume
- -Matter
- -Mass

Water has a density of 1.0 g/mL

Ping Pong Ball:

- Density = 0.0840 g/cm^3 .
- Less than the density of water (1 g/cm³)
- Floats

- Objects with a density <u>greater</u> than 1.0g/mL will <u>sink</u>
- Objects with a density <u>less</u> than 1.0g/mL will <u>float</u>

Water has a density of 1.0 g/mL

Glass Marble:

- Density = 2.5 g/cm^3 .
- Greater than the density of water (1 g/cm³)
- Sinks

- Objects with a density <u>greater</u> than 1.0g/mL will <u>sink</u>
- Objects with a density <u>less</u> than 1.0g/mL will <u>float</u>

Video: Invisible Water

- D_{helium} = is 0.00018 g/ml
 D_{air} = 0.0012 g/ml
 D_{sulfur hexafluoride} = 0.00617g/ml

Liquid Layers

- If you pour together liquids that don't mix and have different densities, they will form liquid layers.
- The liquid with the highest density will be on the bottom.
- The liquid with the lowest density will be on the top.

Liquid Layers

- Draw this in your notebook
 Which layer has the highest density?
- Which layer has the lowest density?
- Imagine that the liquids have the following densities:
 - 10g/cm³. 3g/cm³.
 - ∘ 6g/cm³. 5g/cm³.
- Which number would go with which layer?

Liquid Layers – Try with your neighbor

- Which liquid has the highest density?
- Which liquid has the lowest density?
- Which liquid has the middle density?

Liquid Layers – Try on your own!

- Imagine that the liquids on the right have the following densities:
 - 15g/cm³ 10g/cm³
 - 3g/cm³ 9g/cm³
 - o 7g/cm³ 12g/cm³
- Match the colors to the correct densities.

Calculate: the <u>density</u> of carbon dioxide gas if 5g occupies a volume of 100mL?

Calculate: A block of aluminum occupies a volume of 15.0mL and has a mass of 40.5g. What is its density? Will it sink or float in water?

$$D = \frac{M}{V}$$
 $D = \frac{40.5g}{15.0mL} = \frac{2.7g}{ML}$ SINK in water

Calculate: A 10.0 cm³ sample of copper has a mass of 89.6g. What is the <u>density</u> of copper? Will it sink or float in water?

D = ? **M** = 89.6g **V** =
$$10.0 \text{cm}^3$$

$$D = M$$
 $D = 89.6g$ $10.0cm^3 = 8.96g/cm^3$

SINK in water

Calculate: A sample of iron has the same dimensions of 2cm x 3cm x 2cm. If the mass of this object is 94 g, what is the <u>density</u> of iron? Will it sink or float in water?

D = ?
$$V = L \times W \times H$$

M = 94g $V = 2 \text{ cm} \times 3 \text{ cm} \times 2 \text{ cm}$
V = 12cm³

$$D = M$$
 $D = 94g$ $12cm^3$ $= 7.8g/cm^3$

SINK in water

Calculate: Find the mass of 250mL of benzene. The density of benzene is 10 g/mL.

$$D = 10g/mL$$

$$M = ?$$

$$M = D \bullet V \quad M = (10g/mL) \bullet (250mL) = 2,500g$$

Calculate: What <u>volume</u> of silver metal has a mass of exactly 500g. The density of silver is 10.5 g/cm³.

$$V = M$$
 $V = 500g$ $= 47.6 cm^3$ $= 10.5 cm^3$