

RADVEL: A RADIAL VELOCITY FITTING TOOLKIT http://radvel.readthedocs.io

Caltech

Benjamin J. Fulton^a & Erik A. Pertigura^{a,b} (aCalifornia Institute of Technology, bHubble Fellow)

ABSTRACT

RadVel¹ is a radial velocity (RV) modeling toolkit written in object-oriented Python designed to extract accurate parameters and associated uncertainties in complex multiplanet, multi-instrument RV datasets. It is designed to be highly extensible and easily modified to cater to a wide variety of maximum-likelihood and MCMC modeling applications. The package is well-documented, highly portable, and open source. The affine-invariant MCMC sampling (via emcee²) is parallelized and the Kepler equation solver is written in C for maximum speed on modest computing platforms.

PUBLICATION-READY PLOTS AND TABLES

TABLE 2 MCMC Posteriors

Parameter	Credible Interval	Maximum Likelihood	Units
Modified MCMC Step Parameters			
$\sqrt{e}\cos\omega_b$	$-0.227 {}^{+0.08}_{-0.064}$	-0.241	
$\sqrt{e}\sin\omega_b$	$0.16^{+0.1}_{-0.14}$	0.16	
$\ln K_b$	$1.977 {}^{+0.034}_{-0.037}$	1.98	$\ln \left(\mathrm{m} \ \mathrm{s}^{-1} \right)$
$\sqrt{e}\cos\omega_c$	$-0.26 ^{+0.32}_{-0.24}$	-0.3	
$\sqrt{e}\sin\omega_c$	0.44 ± 0.1	0.47	
$\ln K_c$	$0.44 \begin{array}{c} -0.14 \\ -0.14 \\ 0.79 \begin{array}{c} +0.15 \\ -0.13 \end{array}$	0.81	$\ln \left(\mathrm{m} \ \mathrm{s}^{-1} \right)$
Orbital Parameters			
P_b	$1198.1 \stackrel{+4.3}{_{-3.9}}$	1198.0	days
$T\mathrm{conj_b}$	$2456769 \ ^{+15}_{-14}$	2456770	m JD
e_b	$0.087 \ ^{+0.036}_{-0.035}$	0.085	
ω_b	$2.55 \stackrel{+0.52}{_{-0.4}}$	2.55	$\operatorname{radians}$
K_b	$7.22 \ ^{+0.25}_{-0.26}$	7.25	${ m m~s^{-1}}$
P_c	$75.729 {}^{+0.043}_{-0.038}$	75.72	days
$T\mathrm{conj}_{\mathbf{c}}$	2400219.0 _{-2.8}	2456280.0	m JD
e_c	$0.29 {}^{+0.21}_{-0.13}$	0.31	
ω_c	$2.12 {}^{+0.35}_{-0.69}$	2.13	$\operatorname{radians}$
K_c	$2.2 {}^{+0.34}_{-0.27}$	2.24	$\mathrm{m}\;\mathrm{s}^{-1}$
Other Parameters			
$\gamma_{\mathbf{k}}$	0.18 ± 0.44	0.21	m s-1
$\gamma_{ m j}$	0.16 ± 0.21	0.19	m s-1
$\gamma_{ ext{a}}$	1.1 ± 0.44	1.11	m s-1
$egin{array}{c} \gamma_{\mathbf{a}} \ \dot{\gamma} \ \ddot{\gamma} \end{array}$	$\equiv 0.0$	$\equiv 0.0$	$m s^{-1} day^{-1}$
	$\equiv 0.0$	$\equiv 0.0$	${\rm m}\ {\rm s}^{-1}\ {\rm day}^{-2}$
$\sigma_{ m k}$	$2.68 {}^{+0.41}_{-0.33}$	2.5	${ m m \ s^{-1}} \\ { m -1}$
$\sigma_{ m j}$	2.94 ± 0.15	2.89	${ m m \ s^{-1}} $
$\sigma_{ m a}$	$1.08 \ ^{+0.4}_{-0.43}$	1.0	${ m m~s^{-1}}$
240000 links saved			

REFERENCES

Reference epoch for $\gamma, \dot{\gamma}, \ddot{\gamma}$: 2456778.0

- 1. Fulton, B. and Petigura, E. Radvel: Radial velocity fitting toolkit, , May (2017).
- 2. Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J. emcee: The MCMC Hammer. PASP 125, 306, March (2013).
- 3. Sinukoff, E., Howard, A. W., Petigura, E. A., et al. Mass Constraints of the WASP-47 Planetary System from Radial Velocities. *Astronomical Journal* **153**, 70, February (2017).
- 4. Christiansen, J. L., Vanderburg, A., Burt, J., et al. Three's Company: An additional non-transiting super-Earth in the bright HD 3167 system, and masses for all three planets. *ArXiv e-prints*, June (2017).
- 5. Petigura, E. A., Sinukoff, E., Lopez, E. D., et al. Four Sub-Saturns with Dissimilar Densities: Windows into Planetary Cores and Envelopes. *Astronomical Journal* **153**, 142, April (2017).
- 6. Sinukoff, E., Howard, A. W., Petigura, E. A., et al. K2-66b and K2-106b: Two Extremely Hot Sub-Neptunesize Planets with High Densities. *Astronomical Journal* **153**, 271, June (2017).

FEATURES

- Model multi-instrument, multi-planet RV datasets out of the box
- Robust MCMC convergence criteria
- Scriptable using the well-documented API for industrial-scale RV modeling
- Easy to implement many different types of priors
- Written primarily in object-oriented Python
- Can incorporate decorrelation against nuisance parameters and activity indices
- Ongoing efforts by collaborators to incorporate gaussian process noise model
- Open source (https://github.com/California-Planet-Search/radvel)
- Coded according to the PEP 8 style guide for Python code
- Easily adapted to a wide variety of specialized applications
- Painless installation using PyPI (pip) on any unix-based machine

PUBLICATIONS USING RADVEL

RadVel has already been used in several publications. For example, Sinukoff et al. (2017a)³ used it to model the 4-planet WASP-47 system with RVs collected from 4 different instruments. Christiansen et al. (2017)⁴ used RadVel to model the three planet system orbiting HD 3167 with velocities collected on Keck/HIRES, HARPS-N, and APF. Several other studies have made use of RadVel including Petigura et al. (2017)⁵, and Sinukoff et al. (2017b)⁶.