ITM426, Quiz 1, 2023 Fall

Solution and Grading

• ITM 426 Engineering Mathematics 23F
• Sep 25, 2023
• Duration: 60 minutes
\bullet Weights: 10% or 20% depending on other quiz scores
• 5 Questions
• Name:
• Student ID:
• E-mail:@seoultech.ac.kr
• Write legibly.
• Justification is necessary unless stated otherwise.

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

out proper sanity check and 2) correct your mistake by doing so.

1	10
2	10
3	10
4	15
5	15
Total	60

#1. Complete the following statement for the definition of linear independence.[10pt]

"Consider a set of k vectors $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}$. If (complete here say the vectors $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_k}$ are linearly independent"), then we

Difficulty: Easy

Amount of work: 20 % Suggested answer:

"If any vector cannot be expressed as a linear combination of the other k-1 vectors".

#2. Prove the following statement.[10pt]

• For a 2×2 matrix A, if its row vectors are independent, then its column vectors are independent.

Difficulty: Medium Amount of work: 20 % Suggested answer:

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We have that its row vectors are independent. Now, consider a matrix whose column vectors are (a,b) and (c,d), i.e. $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Since the column vectors are row vectors of matrix A, they are independent and its determinant ad-bc is nonzero. Now, consider the determinant of original matrix A, which is ad-bc, which is nonzero, thus the column vectors of the matrix A are independent.

#3. Let $\mathbf{y} = \begin{bmatrix} 2 & 4 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 6 & 2 \end{bmatrix}$. Compute the vector \mathbf{z} such that $\mathbf{z} = \frac{\mathbf{y} \bullet \mathbf{u}}{\mathbf{u} \bullet \mathbf{u}} \mathbf{u}$, where \bullet is the dot-product operator. [10pt]

Difficulty: Medium Amount of work: 20% Solution: $\mathbf{z} = \begin{bmatrix} 3 & 1 \end{bmatrix}$.

#4. For a $n \times n$ matrix A, the followings are all equivalent. Complete the other three bullet points. [each 5pt]

- $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- •
- •
- •

Difficulty: Medium Amount of work: 20% Solution:

a) Its column vectors are linearly independent. b) The matrix A has non-zero determinant. c) The matrix A is non-singular. d) A is invertible.

#5. Prove that the vectors $\mathbf{v}_1=(0,1,-1)$, $\mathbf{v}_2=(1,0,1)$, and $\mathbf{v}_3=(-1,1,0)$ span a 3-dimensional vector space. [15pt]

Difficulty: Hard

Amount of work: 20%

Solution:

Let $\mathbf{v} = (x, y, z)$ be an arbitrary real-numbered 3-dimensional vector. We claim that \mathbf{v} can be expressed as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 such as $\mathbf{v} = (x, y, z) = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3$, where a, b, c are all numbers

After some work, it can be shown that $(x,y,z)=\frac{x+y-z}{2}(0,1,-1)+\frac{x+y+z}{2}(1,0,1)+\frac{-x+y+z}{2}(-1,1,0)$. And all coefficients are real numbers. This proves the claim. \Box

(blank)

Write your name be	efore detaching this page.	Your Name:	
--------------------	----------------------------	------------	--