EXAMEN DE ESTADÍSTICA (DESCRIPTIVA Y REGRESIÓN)

1º Farmacia Modelo A 14 de octubre de 2019

Duración: 1 hora y 15 minutos.

(4,5 pts.) 1. Se ha medido la tensión arterial sistólica (en mmHg) en dos grupos de 100 personas cada uno de dos poblaciones A y B, obteniendo los siguientes resultados:

Tensión sistólica	Num personas A	Num personas B
(80, 90]	4	6
(90, 100]	10	18
(100, 110]	28	30
(110, 120]	24	26
(120, 130]	16	10
(130, 140]	10	7
(140, 150]	6	2
(150, 160]	2	1

Se pide:

- a) ¿Cuál de las dos distribuciones de la tensión sistólica es menos asimétrica? ¿Cuál es más apuntada? ¿Pueden provenir estas muestras de poblaciones normales?
- b) ¿En cuál de los dos grupos es más representativa la media de la tensión sistólica?
- c) ¿Por encima de qué tensión sistólica se encuentra el 30 % de las personas del grupo de la población A?
- d) ¿Qué tensión sistólica es relativamente más alta, 132 mmHg en el grupo de la población A, o 130 mmHg en el grupo de la población B?
- e) Si a las 100 personas de la población A se les mide la tensión sistólica con otro tensiómetro, y la tensión obtenida (Y) está relacionada con la del primer tensiómetro (X) mediante la ecuación y=0.98x-1.4, ¿en cuál de las dos tensiones X o Y es más representativa la media? Justificar la respuesta.

Usar las siguientes sumas para los cálculos.

Grupo A: $\sum x_i n_i = 11520$ mmHg, $\sum x_i^2 n_i = 1351700$ mmHg², $\sum (x_i - \bar{x})^3 n_i = 155241,6$ mmHg³ y $\sum (x_i - \bar{x})^4 n_i = 16729903,52$ mmHg⁴.

Grupo B: $\sum x_i n_i = 11000 \text{ mmHg}$, $\sum x_i^2 n_i = 1230300 \text{ mmHg}^2$, $\sum (x_i - \bar{x})^3 n_i = 165000 \text{ mmHg}^3 \text{ y}$ $\sum (x_i - \bar{x})^4 n_i = 13632500 \text{ mmHg}^4$.

Solución

- a) Sean x e y las tensiones sistólicas de las poblaciones A y B respectivamente. $g_{1x}=0,4024$ y $g_{1y}=0,5705$, de manera que la distribución del grupo de la población A es más asimétrica ya que el coeficiente de g_1 está más lejos de 0.
- b) $g_{2x} = -0.2346$ y $g_{2y} = 0.3081$, de manera que la distribución del grupo de la población A es más apuntada que la de la población B ya que $g_{2x} > g_{2y}$.
- c) $\bar{x}=115,2$ mmHg, $s_x^2=245,96$ mmHg², $s_x=15,6831$ mmHg and $cv_x=0,1361$. $\bar{y}=110$ mmHg, $s_y^2=203$ mmHg², $s_y=14,2478$ mmHg y $cv_y=0,1295$. La media es más representativa en el grupo de la población A ya que el coeficiente de variación es menor.

- d) $g_{1x} = 0.4024$ y $g_{1y} = 0.5705$, de manera que la distribución de edades de los pacientes menores de 65 es menos simétrica.
- e) Las puntuaciones típicas son $z_x(132) = 1,0712$ y $z_y(130) = 1,4037$, de manera que 132 mmHg es relativamente menor en el grupo de la población A ya que su puntación típica es menor.
- (1 pts.) 2. Se sabe que en una distribución de frecuencias simétrica la media vale 15, el primer cuartil vale 12 y el máximo valor es 25. Se pide:
 - a) Dibujar el diagrama de caja y bigotes.
 - b) ¿Podría considerarse como atípico en esta distribución un valor de 2?

Solución

- a) Diagrama de cajas
- b) Si porque la valla inferior es $v_1 = 3$.
- $(4,5 \ \mathrm{pts.})$ 3. Un laboratorio está ensayando tres analgésicos diferentes y se quiere determinar si existe relación entre los tiempos que tardan en hacer efecto en un paciente. Para ello, realizan una prueba administrando los diferentes analgésicos a un grupo de 20 pacientes evaluando el tiempo que tarda en hacer efecto cada analgésico, denominándolos X, Y y Z a cada uno de los tiempos, obteniéndose los siguientes datos:

$$\begin{array}{l} \sum x_i = 668 \; \text{min}, \; \sum y_i = 855 \; \text{min}, \; \sum z_i = 1466 \; \text{min}, \\ \sum x_i^2 = 25056 \; \text{min}^2, \; \sum y_i^2 = 42161 \; \text{min}^2, \; \sum z_i^2 = 123904 \; \text{min}^2, \\ \sum x_i y_j = 31522 \; \text{min}^2, \; \sum y_j z_j = 54895 \; \text{min}^2. \end{array}$$

Se pide:

- a) ¿Existe relación lineal entre los tiempos X e Y? ¿Y entre los tiempos Y y Z?
- b) Según un modelo lineal, ¿cuánto aumentaría el tiempo X por cada minuto que aumente el tiempo Y?
- c) Si deseamos realizar una predicción del tiempo Y mediante un modelo lineal, ¿Cuál de los dos tiempos X o Z sería el más adecuado? ¿Por qué?
- d) Predecir según el mejor modelo lineal elegido en el apartado anterior el valor del tiempo Y para un valor del tiempo X o Z, según el modelo elegido, de 40 minutos.
- e) Si el coeficiente de correlación lineal entre los tiempos X y Z es r=-0,69, ¿Cuál es el modelo lineal que explica el tiempo X en función del tiempo Z?

Solución