

Pattern Recognition

Text Extraction from Image using pattern recognition

Under the Guidance of: Dr. Mamata Wagh

INTELLIGENT CHARACTER RECOGNITION USING FULLY CONVOLUTIONAL NEURAL NETWORKS

STUDENT NAME: SAJAN KUMAR

REGISTRATION NO: 2101020509

Outlines

- INTRODUCTION
 - (i) Motivation
 - (ii) Model proposes
 - (iii) Application
- LITERATURE REVIEW
- TECHNICAL DETAILS
 - (i) Work analysis
 - (ii) FCN along with CNN, RNN
 - (iii) Results
- SUMMARY
- REFERENCES

Introduction

- A method to find accurate character and symbol.
- Finding and isolating handwritten symbols from a close-up grayscale picture.
- Sequence recognition over handwritten text recognition.

Motivation:

- Latest text extraction technology from images improves efficiency, accessibility, and innovation in real-life applications across industries.
- For ex: clinical decision support, Road Safety etc.

Model proposed:

- character based classification.
- It predicts both arbitrary symbols as well as words from a lexicon.

Application:-

- Vehicle recognition and tracking
- Medical imaging and analysis
- Captcha solving

Literature Review

TITLE	AUTHOR	YEAR	ADAVANTAGE	LIMITATIONS
Distance Transform based Text-line Extraction from Unconstrained Hand- written Document Images	Suman Kumar Bera, Soumyadeep Kundu, Neeraj Kumar, Ram Sarkar	2021	Placing paragraphs in a one-page document has always yielded impressive results in most cases.	In multi-page documents, if there's a seperator between paragraphs, the method might mistake it for a new line.
Accurate, Data- Efficient, Unconstrained Text Recognition with Convolutional Neural Networks	Mohamed Yousef, Khaled F. Hussain, Usama S. Mohammed	2020	It worked very well on both short and long lines of text and also can handle different handwriting styles, sizes, and orientations with robustness.	Existing line recognition methods can't handle paragraphs or multiple lines without line segmentation algorithms.

- Datasets are:
- IAM
- RIMES
- NIST
- Work analysis:
- Traditional feature extraction along with HMM
 - ANN or GMM
 - → Long term dependency
- Advanced feature extraction
- □ LSTM:
 - Naïve approach along with RNN
 - Multidimensional RNNs
- CNN-LSTM network
 - used CTC techniques

- FCN along with CNN, RNN
- The algorithm consists of four consecutive stages which will be described next:

- convolutional layer =C(d, h × w, padh × padw)
 - Where d=filters, h x w =spatial size, padding=padh x padw
- $P(s)=s \times s$, where P(s)= pooling layer of stride, s= stride
- Symbol prediction
- It reduces a 32 × 16N input image to a (2N + 1) × 111 prediction
 - Where N=desired output

(i) Even filter intuition

- \rightarrow even tap filter = pad of Fw/2 1 ,where Fw is the width of the filter.
 - (ii) Filter receptive field
- > It finds which part of the image affects one pixel on the map.

CER and vocabulary matching

step-1: Normalized character error rate

$$CER = \frac{R + D + I}{R + D + I + C}$$

Where R = number of characters replaced, D = number of characters deleted, I = number of characters inserted, and C = number of correct characters

step-2: CER Computation

Ci,j = min(Ci-1,j + 1,Ci,j-1 + 1,Diag)

where:
$$Diag = \begin{cases}
Ci-1,j-1, & \text{if } P_i = L_j \text{ where } p_i = \text{ith character of prediction and } L_j = \text{jth character of label} \\
Ci-1,j-1 + 1, & \text{otherwise}
\end{cases}$$

step-3: CER-based vocabulary matching

W(p) = arg min LeV CER(p, L) + (1/1 + C(L)), where C(L) = frequency of occurrence of a given word

Lexicon based prediction

- Lexicon CNN can predict words from a given lexicon optionally.
- It helps find common words like "the", "her", and others.

- ► IAM Results:
- □ Prediction:

Input	Label	Prediction
5 ye-es	5Ye-es	SYe-es
Presedent's	President's	Preseciten's
Gro pool	Liverpool	livepool
ry	up	eys
0-6	only	outle
2	•	,
the	the	the

- RIMES Results:
- □ Prediction:

Input	Label	Prediction	
funct	permet	puent	
vous	vous	vur	
XEX GRSZ.	XEXGR52	XEXGGRS2	
commandees,	commandées	commandores	
Ces	ces	Cs	
effet,	effet	effett	
Lipartement	département	tiprtement	

Comparison

Comparison

Comparison of results on IAM dataset to previous methods.

Model Our work	WER 8.22	CER 4.70
Voigtlaender et al. [19]	9.3	3.5
Poznanski and Wolf [52]	6.45	3.44
Dutta et al. [17]	4.80	2.52

Comparison of results on RIMES dataset to previous methods.

Model	WER	CER
Voigtlaender et al. [19]	9.6	2.8
Our work	5.68	2.46
Poznanski and Wolf [52]	3.90	1.90
Dutta et al. [17]	1.86	0.65

CER

□ Comparison of results on RIMES and IAM:

- (i) error-rate
- (ii) accuracy
- (iii) performance
- (iv) probabilistic CER

Fine-tuned	Lex. CNN	Prob. CER	IAM	RIMES
Χ	X	X	4.70(8.22)	2.46(5.68)
X		X	5.05(8.62)	2.55(5.98)
X	X		6.50(18.30)	4.15(15.91)
X			7.09(17.77)	4.74(19.91)
			8.86(21.80)	5.03(20.05)

■ 1st IAM ■ 2nd RIMES ■ ■

Summary

- The proposed model introduces a novel character prediction method, diverging from conventional recurrent neural networks.
- This approach suggests an alternative to using RNNs followed by CTC for character cleanup.
- It proposed a novel approach for character correction.
- It helps for recognize speech and symbols using punctuation.
- $_{\circ}$ Without using RNNs , advanced results have been achieved on IAM and RIMES datasets.
- Ex: Amazon Textract is a one of the leading technology in this field.
- So, in Future research should expand is broad and promising, with potential applications across diverse domains, driving innovation in artificial intelligence and computer vision technologies.

References

- [1] Ptucha, R., Petroski Such, F., Pillai, S., Brockler, F., Singh, V., & Hutkowski, P. (2019). Intelligent character recognition using fully convolutional neural networks. Pattern Recognition, 88, 604–613. doi:10.1016/j.patcog.2018.12.017
- [2] Suman Kumar Bera; Soumyadeep Kundu; Neeraj Kumar; Ram Sarkar; (2021). Distance transform based text-line extraction from unconstrained handwritten document images. Expert Systems with Applications, (), –. doi:10.1016/j.eswa.2021.115666
- [3] Yousef, Mohamed; Hussain, Khaled F.; Mohammed, Usama S. (2020). Accurate, Data-Efficient, Unconstrained Text Recognition with Convolutional Neural Networks. Pattern Recognition, (), 107482—. doi:10.1016/j.patcog.2020.107482
- [4] https://en.wikipedia.org/wiki/Long short-term memory
- [5] https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/