Proof 8

nibir@nibirsan.org

Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof

Let ϵ be arbitrary.

If the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then:

$$|a_m - L| < \epsilon$$
 (i)

(by the definition of a limit of a sequence).

Now, for the sequence $\{Ma_n\}_{n=1}^{\infty}$, let $\epsilon' \geq M\epsilon$.

We want to deduce:

$$|Ma_m - ML| < \epsilon'$$

So, multiply both sides of the inequality (i) by M.

$$\begin{aligned} M|a_m - L| &< M\epsilon \\ \Longrightarrow &- M\epsilon &< Ma_m - ML < M\epsilon \\ \Longrightarrow &- \epsilon' \leq Ma_m - ML \leq \epsilon' \end{aligned} \text{ (using algebra)}$$

Which is what we wanted to deduce.

And which, by the definition of the limit, means $Ma_m \to ML$ as $n \to \infty$ for the sequence $\{Ma_n\}_{n=1}^{\infty}$,

Hence, the statement is true. ■