

Language Evaluation Criteria

Prafullata Kiran Auradkar

Computer Science and Engineering

Language Evaluation Criteria

Prafullata Kiran Auradkar

Computer Science and Engineering

Language Evaluation Criteria

- 1. Readability
- 2. Writability
- 3. Reliability
- 4. Cost

Language Evaluation Criteria

T1: **Table 1.1** Language evaluation criteria and the characteristics that affect them.

		CRITERIA	
Characteristic	READABILITY	WRITABILITY	RELIABILITY
Simplicity/orthogonality	•	•	•
Control structures	•	•	•
Data types and structures	•	•	•
Syntax design	•	•	•
Support for abstraction		•	•
Expressivity		•	•
Type checking			•
Exception handling			•
Restricted aliasing			•

Readability - Overall Simplicity

- Number of basic constructs
 - Too many constructs will complicate the usage.
 - Tendency of learning/using a subset.
- Number of basic constructs
 - Too many constructs will complicate the usage.
 - Tendency of learning/using a subset.
- Feature multiplicity to be limited
 - Shortcuts can make it easier to use, but readable?
- Operator overloading
 - Programmer can change/add the meaning of the existing operator. (S1 + S2 → results in what?)
 - Leads to confusion...
- Simplicity in Assembly level languages
 - Program structure is difficult to read

Readability - Orthogonality

P

- Fewer exceptions in the language
- Implies simplicity and regularity in language design
- Language feature independent of the context of its appearance in the program

Simple example:

Data types – int, float Operators - + and /

Valid combinations for +

- Int + Int
- Float + Float
- Int + Float
- Float + Int

Valid combinations for /

- Float / Int
- Float / Float
- Int / Int

Readability - Orthogonality

PES UNIVERSITY ONLINE

- Data types in C are they Orthogonal or Not?
 - Pointers
 - Structured types
 - Structures
 - Arrays

Caution: Too much Orthogonality adds to the language complexity

Ex: AIGOL

Readability – Control Statements

- Well defined control structures While, Do-While, For, Repeat-Until...
- GoTo... ?

Readability – Data types and Data Structures

- Support of data types for better readability
 - Ex: Represent TRUE/FALSE as Boolean type or integer type?
 - Record types or Arrays?

Array

- Student_SRN[60]
- Student_Name[60]
- Student_CGPA[60]

Readability - Syntax Design

PES UNIVERSITY ONLINE

- Identifier forms
- Special words
 - If keywords can be used as variables, it leads to confusion.
 - 'real' and 'End' can be used as variable names in Fortran!!!
 - How do we connect two words?

Readability - Syntax Design

Compound statements

Readability – Syntax Design

- Form and meaning
 - Self-descriptive constructs and meaningful keywords
 - Meaning of 'static' in C depends on the context.
- UNIX shell command. The command *grep* is not obvious.

Language Evaluation Criteria

T1: **Table 1.1** Language evaluation criteria and the characteristics that affect them.

		CRITERIA	
Characteristic	READABILITY	WRITABILITY	RELIABILITY
Simplicity/orthogonality	•	•	•
Control structures	•	•	•
Data types and structures	•	•	•
Syntax design	•	•	•
Support for abstraction		•	•
Expressivity		•	•
Type checking			•
Exception handling			•
Restricted aliasing			•

Writability

- Simplicity and Orthogonality
 - Few constructs, a small number of primitives, a small set of rules for combining them
 - Errors can go undetected when there is a huge set of constructs available.
- Expressivity
 - A set of relatively convenient ways of specifying operations
 - Example: the inclusion of for statement in many modern languages

Writability

- Support for abstraction
 - The ability to define and use complex structures or operations in ways that allow details to be ignored
 - Data abstraction
 - Classes and Objects
 - Building trees.
 - Process abstraction
 - Modular approach through subprograms

Language Evaluation Criteria

T1: **Table 1.1** Language evaluation criteria and the characteristics that affect them.

		CRITERIA	
Characteristic	READABILITY	WRITABILITY	RELIABILITY
Simplicity/orthogonality	•	•	•
Control structures	•	•	•
Data types and structures	•	•	•
Syntax design	•	•	•
Support for abstraction		•	•
Expressivity		•	•
Type checking			•
Exception handling			•
Restricted aliasing			•

Reliability

- Type checking
 - Testing for type errors
 - Run time Vs. compile time
- Exception handling
 - The ability of a program to intercept runtime errors and continue after taking corrective measures.
- Ada, C++, Java, Python support exception handling whereas C does not.

Reliability

- Aliasing
- Readability and writability
 - Programs that are difficult to read are difficult to write (and also to modify).
 - Affects reliability

Cost

PES UNIVERSITY ONLINE

- Training programmers to use a language
- Compiling programs
- Executing programs
- Language implementation system:
 - availability of free compilers
- Reliability: poor reliability leads to high costs
- Maintaining programs

Additional Criteria

- Portability
 - The ease with which programs can be moved from one implementation to another
- Generality
 - The applicability to a wide range of applications
- Well-definedness
 - The completeness and precision of the language's official definition

THANK YOU

Prafullata Kiran Auradkar
Computer Science and Engineering
prafullatak@pes.edu