

Theory of Computation (CS F351)

BITS Pilani Hyderabad Campus Prof.R.Gururaj CS&IS Dept.

Context Free Grammars And Context Free Languages

(Chapter-3)

Concepts

Language Recognizer: A device that accepts valid strings. Finite Automata are type of language Recognizers.

Language Generators: Devices that produce valid strings.

Ex: Regular Expressions.

Now we study certain types of formal language generators.

Language Generators

- ☐ That device begins when a signal to start is given to construct the string.
- ☐ It operation determined by a set of rules.
- Eventually this process halts and produces the completed string.
- ☐ The language defined by the device is set of all strings that it can produce.
- ☐ It is difficult to produce a recognizer for English language.

- ☐ We are interested in generators of artificial languages such as Regular Languages and CFL.
- Regular Expressions can be viewed as Language generators.

a(a*U b*)b

How to generate a string according to the above RE

- ☐ First output an *G*. Then do the following two.
- $oldsymbol{\square}$ Either output a number of $oldsymbol{a}$ s or output number of $oldsymbol{b}$ s.
- \Box Finally output a b

□ The language associated with this language generator is set of all strings that can be produced by the process above.

- Now we study more complex language generators called as Context Free Grammars (CFGs).
- ☐ CFGs are based on more complete understanding of the structure of the strings belonging to the language.

If I be the String in the and M be the Symbol for the Obviously it is either string of a's or stry of b's be express this by adding a rule M-> A

A? are new bymbols that stand for B! Strings of as or b's respectively.

What is a string of a's, it can be e' also.

A > e

A > e

B > 6B

Then the language denoted by RE a(a*vb*)b Can be defined alternatively by the following language generator -

- 1 Start with the string containing the symbol S.
- 2. Find a symbol in the current string that appear to the left of '->' in one of the rules above.
- 2 Replace an occurrence of this symbol with the story that appears to the right of in the same rule.

 Repeat this process suntil no such symbol can

be found.

CFG

- ☐ In CFG symbols that do not appear on the LHS of a production rule are known as terminal symbols.
- In the process of producing a string, by using CFG, we see only terminal symbols in the string. Then we stop further replacements and the result is a valid string according to the language.

CFG Definition

- \square A CFG $G = (V, \Sigma, R, S)$
- V is an alphabet
- ∑ is set of terminal symbols and subset of V
- R set of rules $(V- \Sigma) \times V^*$
- S is the start symbol and is an element of $(V- \Sigma)$

CFG Definition

```
CFG for L = \{a^n b^n : n \ge 0\} // it is not a Regular Language CFG G = (V, \sum, R, S)
```

```
V = \{S, a, b\}

\sum = \{a,b\}

R = \{S \rightarrow aSb; S \rightarrow e\}

S = is the start symbol
```

CFG Definition

- \square A derivation in G of w_n from w_0 may be any string in V^* , and n is the length of the derivation, may be any natural number including zero.
- \square We say that the derivation has n steps.

CFG Definition


```
CFG for L = \{a^n b^n : n \ge 0\}   CFG G = (V, \sum, R, S)

V = \{S, a, b\}   \sum = \{a, b\}

R = \{S \rightarrow aSb; S \rightarrow e\}   S = is the start symbol
```

One possible derivation:

S \rightarrow aSb \rightarrow aaSbb \rightarrow aaaSbbb \rightarrow aaabbb w_0 w_1 w_2 w_3 w_4 Here the length of derivation is 4

CFG and PL

- ☐ Computer programs written in any language must satisfy some rigid criteria in order to be syntactically correct, and therefore amenable for mechanical interpretation.
- ☐ The syntax of most of the languages can be captured by CFG
- ☐ If a programming language is described by CFG, it will be easy for parsing.
- ☐ Parsing is the process of analyzing a program to find the syntax.

CFG and PL

- ☐ The CFG theory will neatly complement the study of automata, which recognize languages.
- ☐ It has a practical value in the specification and analysis of computer languages.
- □ CFGs are based on more complete understanding of the structure of strings belonging to languages.
- ☐ Why it is context free?
- ☐ L(G) is the language generated by G.

CFG and PL

- ☐ A language L is said to be CFG if L=L(G) for some G.
- ☐ All regular Languages are Context Free

RL and CFL

We show how RLs are CFL by direct construction. If a Finite Automaton $M=(K, \Sigma, \delta, s, F)$ $G(M) = (V, \Sigma, R, S)$ $V=(K \cup \Sigma)$ S=s $R=\{q \rightarrow aP: \delta(q, a)=P \} \cup \{q \rightarrow e: q \in F \}$ Construct a CFG for all integers with sign.

Ex: -17; +23; etc.

And show how -17 is derived.

CFG
$$S \rightarrow < sign > < integer >$$
 $< sign > \rightarrow - | +$
 $< integer > \rightarrow < digit > < integer > | < digit >$
 $< digit > \rightarrow 0 | 1 | 2 | | 9$

Ex: how to derive "-17"

S
$$\rightarrow$$
 \rightarrow - \rightarrow - \rightarrow - 1 \rightarrow - 1 \rightarrow - 17

Derivation and corresponding Tree representation

- ☐ The same string may result from several derivations.
- ☐ A parse tree is a picture of derivation of a string from the G.
- ☐ The yield of the parse tree
- ☐ It is possible that the different derivations may result in same parse tree(identical).
- ☐ We have LMD and RMD
- ☐ A CFG is ambiguous if it produces two or more distinct parse trees for a string (2 or more LMDs).

Sentence: The language generated by G (denoted by L(G)) any w that belongs to L (G) is a sentence.

Sentential Form: any intermediate String in the process of derivation.

(ii)
$$S \rightarrow aSb \mid aaSb \mid e$$
 (here, $\Sigma = \{a,b\}$ and the symbol 'e' stands for null)

Give LMD and RMD for 'aaabb Do we have two LMDs'

Precedence of Derivations

If two derivations d_1 and d_2 are identical except for two consecutive steps, during which the same Nonterminals are replaced by same two strings but in opposite order in two derivations d_1 and d_2 , then the derivation in which the Left-most of the two NTs is replaced is said to precede the other.

CFG Simplification, Classification and Normal Forms

Simplification

We try to Eliminate:

- 1. NTs not yielding any terminal string
- 2. NTs not appearing in any sentential form
- 3. Null productions
- 4. Unit productions

Source : Theory of Computer Sc Automata Languages and Computation, 3rd Ed., KLP Mishra and N Chandra Sekhar, PHI

1. Eliminating NTs not yielding any terminal string

Theorem 6.3 If G is a CFG such that $L(G) \neq \emptyset$, we can find an equivalent grammar G' such that each variable in G' derives some terminal string.

Proof Let $G = (V_N, \Sigma, P, S)$. We define $G' = (V'_N, \Sigma, G', S)$ as follows:

(a) Construction of V'_N :

We define $W_i \subseteq V_N$ by recursion:

 $W_1 = \{A \in V_N | \text{there exists a production } A \to w \text{ where } w \in \Sigma^* \}.$ (If $W_1 = \emptyset$, some variable will remain after the application of any production, and so $L(G) = \emptyset$.)

 $W_{i+1} = W_i \cup \{A \in V_N | \text{ there exists some production } A \to \alpha$ with $\alpha \in (\Sigma \cup W_i)^*$

By the definition of W_i , $W_i \subseteq W_{i+1}$ for all i. As V_N has only a finite number of variables, $W_k = W_{k+1}$ for some $k \le |V_N|$. Therefore, $W_k = W_{k+j}$ for $j \ge 1$. We define $V'_N = W_k$.

(b) Construction of P':

$$P' = \{A \to \alpha | A, \alpha \in (V_N' \cup \Sigma)^*\}$$

We can define $G' = (V'_N, \Sigma, P', S)$. S is in V_N . (We are going to prove that every variable in V_N derives some terminal string. So if $S \notin V_N$, $L(G) = \emptyset$. But $L(G) \neq \emptyset$.)

2. Eliminating symbols not appearing in any sentential form

Theorem 6.4 For every CFG $G = (V_N, \Sigma, P, S)$, we can construct an equivalent grammar $G' = (V_N, \Sigma', P', S)$ such that every symbol in $V_N \cup \Sigma'$ appears in some sentential form (i.e. for every X in $V'_N \cup \Sigma'$ there exists α such that $S \stackrel{*}{\Rightarrow} \alpha$ and X is a symbol in the string α).

Proof We construct $G' = (V'_N, \Sigma', P', S)$ as follows:

- (a) Construction of W_i for $i \ge 1$:
 - (i) $W_1 = \{S\}.$
 - (ii) $W_{i+1} = W_i \cup \{X \in V_N \cup \Sigma \mid \text{there exists a production } A \to \alpha \text{ with } A \in W_i \text{ and } \alpha \text{ containing the symbol } X\}.$

We may note that $W_i \subseteq V_N \cup \Sigma$ and $W_i \subseteq W_{i+1}$. As we have only a finite number of elements in $V_N \cup \Sigma$, $W_k = W_{k+1}$ for some k. This means that $W_k = W_{k+j}$ for all $j \ge 0$.

(b) Construction of V'_N , Σ' and P':

We define

$$V'_N = V_N \cap W_k, \qquad \Sigma' = \Sigma \cup W_k$$

 $P' = \{A \to \alpha | A \in W_k\}.$

3. Eliminating null productions

innovate achieve lead

Theorem 6.6 If $G = (V_N, \Sigma, P, S)$ is a context-free grammar, then we can find a context-free grammar G_1 having no null productions such that $L(G_1) = L(G) - \{\Lambda\}$.

Proof We construct $G_1 = (V_N, \Sigma, P', S)$ as follows:

Step 1 Construction of the set of nullable variables:

We find the nullable variables recursively:

- (i) $W_1 = \{A \in V_N | A \to \Lambda \text{ is in } P\}$
- (ii) $W_{i+1} = W_i \cup \{A \in V_N | \text{ there exists a production } A \to \alpha \text{ with } \alpha \in W_i^* \}.$

By definition of W_i , $W_i \subseteq W_{i+1}$ for all i. As V_N is finite, $W_{k+1} = W_k$ for some $k \leq |V_N|$. So, $W_{k+j} = W_k$ for all j. Let $W = W_k$. W is the set of all nullable variables.

Step 2 (i) Construction of P':

Any production whose R.H.S. does not have any nullable variable is included in P'.

(ii) If $A \to X_1 X_2 \dots X_k$ is in P, the productions of the form $A \to \alpha_1 \alpha_2 \dots \alpha_k$ are included in P', where $\alpha_j = X_i$ if $X_i \notin W$. $\alpha_i = X_i$ or Λ if $X_i \in W$ and $\alpha_1 \alpha_2 \dots \alpha_k \neq \Lambda$. Actually, (ii) gives several productions in P'. The productions are obtained either by not erasing any nullable variable on the

R.H.S. of $A \to X_1 X_2 \dots X_k$ or by erasing some or all nullable variables provided some symbol appears on the R.H.S. after erasing.

Let $G_1 = (V_N, \Sigma, P', S)$. G_1 has no null productions.

Before proving that G_1 is the required grammar, we apply the construction to an example.

4. Eliminating unit productions

Definition 6.10 A unit production (or a chain rule) in a context-free grammar G is a production of the form $A \rightarrow B$, where A and B are variables in G.

Theorem 6.7 If G is a context-free grammar, we can find a context-free grammar G_1 which has no null productions or unit productions such that $L(G_1) = L(G)$.

Proof We can apply Corollary 2 of Theorem 6.6 to grammar G to get a grammar $G' = (V_N, \Sigma, P, S)$ without null productions such that L(G') = L(G). Let A be any variable in V_N .

Step 1 Construction of the set of variables derivable from A:

Define $W_i(A)$ recursively as follows:

$$W_0(A) = \{A\}$$

$$W_{i+1}(A) = W_i(A) \cup \{B \in V_N \mid C \to B \text{ is in } P \text{ with } C \in W_i(A)\}$$

By definition of $W_l(A)$, $W_i(A) \subseteq W_{i+1}(A)$. As V_N is finite, $W_{k+1}(A) = W_k(A)$ for some $k \leq |V_N|$. So, $W_{k+j}(A) = W_l(A)$ for all $j \geq 0$. Let $W(A) = W_k(A)$. Then W(A) is the set of all variables derivable from A.

Step 2 Construction of A-productions in G_1 :

The A-productions in G_1 are either (i) the nonunit production in G' or (ii) $A \to \alpha$ whenever $B \to \alpha$ is in G with $B \in W(A)$ and $\alpha \notin V_N$.

(Actually, (ii) covers (i) as $A \in W(A)$). Now, we define $G_1 = (V_N, \Sigma, P_1, S)$, where P_1 is constructed using step 2 for every $A \in V_N$.

Before proving that G_1 is the required grammar, we apply the construction to an example.

Classification of Grammars

According to Noam Chomosky, there are four types of grammars – Type 0, Type 1, Type 2, and Type 3. The following table shows how they differ from each other –

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Type 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Type 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Type 2	Context-free grammar	Context-free language	Pushdown automaton
Type 3	Regular grammar	Regular language	Finite state automaton

Chomsky Normal Form (CNF)

The CNF has restriction on length of LHS and nature of symbols in LHS. A CFG G is said to be in CNF

 $NT \rightarrow (single Terminal) | (NT)(NT))$

- (1) If every production is of the form $A \rightarrow a$ OR
- (2) $A \rightarrow BC$ and
- (3) $S \rightarrow e$ if e is in L(G)

When *e* is in L(G) we assume that S does not appear on the RHS of any production.

Ex:

- (1) $S \rightarrow AB$; $S \rightarrow e$; $A \rightarrow a$; $B \rightarrow b$ is in CNF
- (2) $S \rightarrow ABC$; $S \rightarrow aC$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$ is not in CNF

Some properties of CFL

CFLs are closed under union, concatenation, and Kleene star.

The intersection of a CFL and RL is a CFL.

CFLs are not closed under intersection and Complementation.

Other Properties of CFL

The Context-Free languages are closed under *union*, *concatenation*, and *Kleene* star.

The intersection of a Context-Free language with Regular Language is a Context Free Language.

CFLs are not closed under *intersection* or *complementation*.

There is a polynomial algorithm which, given a CFG, construct an equivalent PDA, and vice versa.

Let $G = (V, \sum, R, S)$ be a Context-free Language. The *fanout* of G, denoted by $\mathcal{O}(G)$, is the largest number of symbols on the right-hand side of any rule in R.

A *path* in a parse-tree is a sequence of distinct nodes, each connected to the previous node by a line segment. The first node is the Root of the tree, and last node is the leaf.

The *length of the path* is the number of line segments in it.

The *height of the parse tree* is the length of the longest path in it.

The yield of any parse tree of G of height h has length at most $\mathcal{O}(G)^h$

Pumping theorem for CFL

Let $G = (V, \sum, R, S)$ be a Context-free Grammar.

Then $w \in L(G)$ of length greater than $\mathcal{O}(G)^{|V-\Sigma|}$ can be written as w=uvxyz in such a way that v and y are non empty and uv^nxy^nz is in L(G) for every $n \ge 0$

Then it is CFL otherwise not.

EX: $a^nb^nc^n$

Is not CFL

Conclusion to CFG/CFL

- 1. CFL
- 2. CFG
- 3. Grammar simplification
- 4. CNF and GNF
- 5. Regular Grammars
- 6. Properties
- 7. Pumping lemma for CFG