ON THE GEOMETRY OF HERMITIAN ONE-POINT CODES

EDOARDO BALLICO AND ALBERTO RAVAGNANI

ABSTRACT. In this paper we study the algebraic-geometry of any one-point code on the Hermitian curve. Moreover, we characterize the minimum-weight codewords of some of their dual codes and describe many their small-weight codewords.

1. Introduction

Let q be a prime power and let \mathbb{P}^2 denote the projective plane over the field \mathbb{F}_{q^2} . Let $X \subseteq \mathbb{P}^2$ be the Hermitian curve (see [9], Example VI.3.6) of affine equation $y^q + y = x^{q+1}$. It is well-known that X is a maximal curve with $q^3 + 1$ \mathbb{F}_{q^2} -rational points (for instance, [8]). Let P_{∞} be the only point at infinity of X, of projective coordinates (0:1:0). Let m>0 be an integer and let C_m be code obtained evaluating the vector space $L(mP_{\infty})$ on $B := X(\mathbb{F}_{q^2}) \setminus \{P_{\infty}\}$. It is well-known that the dual code of C_m , here denoted by C_m^{\perp} , is $C_{m_{\perp}}$, with $m_{\perp} := q^3 + q^2 - q - 2 - m$ ([9], Theorem 2.2.8). The minimum distance of such codes has been completely determined in [10]. Table 1 gives explicit formulas for the minimum distance of any non-trivial code C_m . First of all, in Section 2 we give a geometric interpretation of the minimum distance of certain Goppa codes on arbitrary smooth curves (a geometric interpretation of the minimum distance of Goppa codes is often a key-problem in geometric coding theory). In Section 3 we describe the geometry of the minimum-weight codewords of many C_m^{\perp} codes, extending the results of [7]. In section 4 we are going to develop some geometric tools to study even the small weight codewords of certain C_m^{\perp} codes.

Since the Hermitian curve is a maximal one, for any $P \in X(\mathbb{F}_{q^2})$ we have an isomorphism of sheaves $\mathcal{O}_X(1) \cong \mathcal{L}((q+1)P)$, the latter one being the invertible sheaf associated to the divisor (q+1)P on X. For any m>0 there exists a unique pair of integers (d,a) such that m=d(q+1)-a and $0 \le a \le q$. In particular we get the linear equivalence $mP_\infty \sim d(q+1)P_\infty - aP_\infty$. By setting $E:=aP_\infty$, C_m turns out to be the code obtained evaluating the vector space $H^0(X,\mathcal{O}_X(d)(-E))$ on B, here denoted by C(d,a). Our approach is explicitly based upon this interpretation of C_m .

¹⁹⁹¹ Mathematics Subject Classification. 14G15; 14H99; 14N05.

Key words and phrases. Hermitian code; Goppa code; one-point code; minimum-weight codeword; Hermitian curve.

Partially supported by MIUR and GNSAGA.

Phase	Values of m	Minimum distance
1	$0 < m < q^{2} - q$ $m = \alpha q + \beta$ $0 \le \beta < q$	$q^3 - \alpha(q+1)$, if $m < q$ or $m \ge q$ and $\alpha \le \beta$ $q^3 - \beta - \alpha q$, if $m \ge q$ and $\alpha > \beta$
2	$q^2 - q \le m < q^3 - q^2$	q^3-m
3	$q^{3} - q^{2} \le m < q^{3}$ $m = q^{3} - q^{2} + aq + b$ $0 \le a < b \le q - 1$	q^3-m
4	$q^{3} - q^{2} \le m < q^{3}$ $m = q^{3} - q^{2} + aq + b$ $0 \le b \le a \le q - 1$	$q^3 - m + b$
5	$q^{3} \le m \le q^{3} + q^{2} - q - 2$ $m_{\perp} = \alpha q + \beta$ $0 \le \beta < q$	$\alpha + 2$, if $m_{\perp} < q$ or $m_{\perp} \ge q$ and $\alpha \le \beta$ $\alpha + 1, \text{ if } m_{\perp} \ge q \text{ and } \alpha > \beta$

TABLE 1. Minimum distance of any non-trivial code C_m .

2. Geometric results

We will need the following lemmas about the geometry of the Hermitian curve and certain zero-dimensional subschemes of \mathbb{P}^2 .

Lemma 1. Let X be the Hermitian curve. Every line L of \mathbb{P}^2 either intersects X in q+1 distinct (\mathbb{F}_{q^2} -)rational points, or L is tangent to X at a point P (with contact order q+1). In the latter case L does not intersect X in any other \mathbb{F}_{q^2} -rational point different from P.

Proof. See [5], part (i) of Lemma 7.3.2, at page 247.

Lemma 2. Let $X \subseteq \mathbb{P}^2$ be the Hermitian curve. Fix an integer $e \in \{2, ..., q+1\}$ and $P \in X(\mathbb{F}_{q^2})$. Let $E \subseteq X$ be the divisor eP, seen as a closed degree e subscheme of \mathbb{P}^2 . Let $L_{X,P} \subseteq \mathbb{P}^2$ be the tangent line to X at P. Let $T \subset \mathbb{P}^2$ be any effective divisor (i.e. a plane curve, possibly with multiple components) of degree $e \in P$ and containing $e \in P$. Then $e \in P$ is one of the components of $e \in P$.

Proof. Since $L_{X,P}$ has order of contact $q+1 \ge e$ with X at P, we have $E \subset L_{X,P}$. Since $\deg(E) > \deg(T)$ and $E \subseteq T \cap L_{X,P}$, Bezout theorem implies $L_{X,P} \subseteq T$.

Lemma 3. Fix integers d > 0, $z \ge 2$ and a zero-dimensional scheme $Z \subset \mathbb{P}^2$ such that $\deg(Z) = z$.

(a) If
$$z \le d+1$$
, then $h^1(\mathbb{P}^2, \mathcal{I}_Z(d)) = 0$.

- (b) If $d+2 \le z \le 2d+1$, then $h^1(\mathbb{P}^2, \mathscr{I}_Z(d)) > 0$ if and only if there is a line T_1 such that $\deg(T_1 \cap Z) \ge d+2$.
- (c) If $2d + 2 \le z \le 3d 1$, then $h^1(\mathbb{P}^2, \mathscr{I}_Z(d)) > 0$ if and only if either there is a line T_1 such that $\deg(T_1 \cap Z) \ge d + 2$, or there is a conic T_2 such that $\deg(T_2 \cap Z) \ge 2d + 2$.
- (d) Assume z=3d. Then $h^1(\mathbb{P}^2,\mathscr{I}_Z(d))>0$ if and only if either there is a line T_1 such that $\deg(T_1\cap Z)\geq d+2$, or there is a conic T_2 such that $\deg(T_2\cap Z)\geq 2d+2$, or there is a plane cubic T_3 such that Z is the complete intersection of T_3 and a plane curve of degree d.
- (e) Assume $z \le 4d-5$. Then $h^1(\mathbb{P}^2, \mathscr{I}_Z(d)) > 0$ if and only if either there is a line T_1 such that $\deg(T_1 \cap Z) \ge d+2$, or there is a conic T_2 such that $\deg(T_2 \cap Z) \ge 2d+2$, or there are $W \subseteq Z$ with $\deg(W) = 3d$ and plane cubic T_3 such that W is the complete intersection of T_3 and a plane curve of degree d, or there is a plane cubic C_3 such that $\deg(C_3 \cap Z) \ge 3d+1$.

Proof. See [1], Lemma 2.

The following result provides a cohomological characterization of any codeword of certain geometric Goppa codes on arbitrary curves.

Proposition 4. Let K be a finite field and let $X \subset \mathbb{P}^2_K$ be a smooth plane curve of degree c. Fix an integer d>0, a zero-dimensional scheme $E\subset X$ and a finite subset $B\subset X(K)$ such that $B\cap E_{\operatorname{red}}=\emptyset$. Let C be the code obtained evaluating the vector space $H^0(X,\mathcal{O}_X(d)(-E))$ at the points of B. Assume $\sharp(B)>dc$. The minimum distance of C^\perp is the minimal cardinality, say s, of a subset $S\subseteq B$ of B such that $h^1(\mathbb{P}^2,\mathscr{I}_{S\cup E}(d))>h^1(\mathbb{P}^2,\mathscr{I}_E(d))$. A codeword of C^\perp has weight w if and only if it is supported by an $S\subseteq B$ such that

- (1) $\sharp(S) = w$,
- (2) $h^1(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) > h^1(\mathbb{P}^2, \mathscr{I}_{E}(d)),$
- (3) $h^1(\mathbb{P}^2, \mathcal{I}_{E \cup S}(d)) > h^1(\mathbb{P}^2, \mathcal{I}_{E \cup S'}(d))$ for any $S' \subseteq S$.

Proof. The computation of $h^0(X, \mathcal{O}_X(d))$ is well-known. We impose that B does not intersect the support of E. The case $E = \emptyset$ is a particular case of [3], Proposition 3.1. In the general case notice that C is obtained evaluating a family of homogeneous degree d polynomials (the ones vanishing on the scheme E) at the points of B. Since X is projectively normal, the restriction map

$$\rho_d: H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)) \to H^0(X, \mathcal{O}_X(d))$$

is surjective. As a consequence the restriction map

$$\rho_{d,E}: H^0(\mathbb{P}^2, \mathscr{I}_E(d)) \to H^0(X, \mathscr{O}_X(d)(-E))$$

is surjective. Hence a finite subset $S\subseteq X(K)\setminus E_{\text{red}}$ imposes independent condition to the vector space $H^0(X,\mathcal{O}_X(d)(-E))$ if and only if S imposes independent conditions to $H^0(\mathbb{P}^2,\mathscr{I}_E(d))$. On the other hand, S imposes independent conditions to $H^0(\mathbb{P}^2,\mathscr{I}_E(d))$ if and only if $h^1(\mathbb{P}^2,\mathscr{I}_{E\cup S}(d))=h^1(\mathbb{P}^2,\mathscr{I}_E(d))$

(here we use again that $S \cap E = \emptyset$). To get the existence of a non-zero codeword with support on S (not only with support con- tained in S) we need that the submatrix M_S of the parity-check matrix associated to C has the property that each of its submatrices obtained deleting one row have the same rank (each such row is associated to some $P \in S$ and we require that the codeword has support containing P).

Let us apply Proposition 4 to the particular case of Hermitian one-point codes.

Lemma 5. Let X be the Hermitian curve. Consider a code C(d,a) of Section 1, with d>1 and $0 \le a \le q$. If a>d set d':=d-1, a':=0. If $a\le d$ set d':=d and a':=a. In any case define $E':=a'P_{\infty}$. Let $B:=X(\mathbb{F}_{q^2})\setminus\{P_{\infty}\}$. Then the code obtained evaluating the vector space $H^0(X,\mathcal{O}_X(d)(-E))$ on B (i.e. C(d,a)) and the code obtained evaluating the vector space $H^0(X,\mathcal{O}_X(d')(-E'))$ on B (i.e. C(d',a')) are the same code.

Proof. Since the restriction map $H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d)) \to H^0(X, \mathcal{O}_X(d))$ is surjective, for any $S \subseteq B$ the restriction maps

$$\rho_E: H^0(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) \to H^0(X, \mathscr{O}_X(d)(-E - S))$$

and

$$\rho_{E'}: H^0(\mathbb{P}^2, \mathscr{I}_{E' \cup S}(d)) \to H^0(X, \mathscr{O}_X(d)(-E'-S))$$

are surjective themselves. Every tangent line T_PX to X at a point $P \in X(\mathbb{F}_q)$ has order of contact q+1 with X at P and hence by Bezout's theorem it intersects X only at P. As a consequence $T_{P_\infty}X \cap E$ has degree a. If a>d we get that every degree d homogeneous form vanishing on E vanishes also on the line $T_{P_\infty}X$, i.e. it is divided by the equation of $T_{P_\infty}X$. Since ρ_E and $\rho_{E'}$ are surjective and $B \cap T_{P_\infty}X = \emptyset$, we get that the codes obtained evaluating $H^0(X, \mathcal{O}_X(d)(-E))$ and $H^0(X, \mathcal{O}_X(d')(-E'))$, respectively, are in fact the same code.

3. Geometry of minimum-weight codewords

In this section we give a geometric characterization of the support of a minimum-weight codeword. Moreover, we describe the minimum-weight codewords of certain $C(d,a)^{\perp}$ codes.

Lemma 6. Let X be the Hermitian curve. Choose integers d > 0 and $0 \le a \le d$. Set $E := aP_{\infty}$. Then $h^1(\mathbb{P}^2, \mathscr{I}_E(d)) = 0$.

Proof. Assume $h^1(\mathbb{P}^2, \mathscr{I}_E(d)) > 0$. Since $a \leq d$ then by Lemma 3 there exists a line $L \subseteq \mathbb{P}^2$ such that $\deg(L \cap E) \geq d + 2$. Since in any case $\deg(L \cap E) \leq d$ we immediately get a contradiction.

Corollary 7. Let X be the Hermitian curve. Choose integers d > 1 and $0 \le a \le q$ and consider the Hermitian one-point code C(d,a) of Section 1. Define d', a' and E' as in Lemma 5. Let $\delta(d,a)$ be the minimum distance of $C(d,a)^{\perp}$.

A subset $S \subseteq B = X(\mathbb{F}_{q^2}) \setminus \{P_\infty\}$ of cardinality $\sharp(S) = \delta(d,a)$ is the support of a minimum-weight codeword of $C(d,a)^\perp$ if and only if $h^1(\mathbb{P}^2, \mathscr{I}_{E' \cup S}(d')) > 0$. Let $S \subseteq B$ with $\sharp(S) = \delta(a,b)$ and assume $2 \le \deg(E') + \sharp(S) \le 2d' + 2$. Then S is the support of a minimum-weight codeword of $C(d,a)^\perp$ if and only if one of the following cases occurs.

- (1) There exists a line $L \subseteq \mathbb{P}^2$ such that $\deg(L \cap (E' \cup S)) \ge d' + 2$.
- (2) $deg(E' \cup S) = 2d' + 2$ and $E' \cup S$ is contained in a conic $T \subseteq \mathbb{P}^2$.

Proof. Combine Lemma 6, Proposition 4 and cases (a) and (b) of Lemma 3.

Corollary 8. Let X be the Hermitian curve. Choose integers d>1 and $0 \le a \le q$ and consider the Hermitian one-point code C(d,a) of Section 1. Define d', a' and E' as in Lemma 5. Let $\delta:=\delta(d,a)$ be the minimum distance of $C(d,a)^{\perp}$ and let $S=\{P_1,...,P_{\delta}\}$ be the support of a minimum-weight codeword. Assume $2 \le \deg(E') + \sharp(S) \le \max\{2d'+2,3d,4d'-5\}$. There must exist a subscheme $W \subseteq E' \cup S$ with one of the following properties.

- (1) deg(W) = d' + 2 and W is contained in a line.
- (2) deg(W) = 2d' + 2 and W is contained in a conic.
- (3) deg(W) = 3d' and W is the complete intersection of a cubic curve and a curve of degree d.
- (4) deg(W) = 3d' + 1 and W is contained in a cubic curve.

Proof. Apply the first part of Corollary 7 and Lemma 3.

Theorem 9. Let C(d,a) be a code such that $0 < m = d(q+1) - a \le q^2 - 1$, with d > 1 and $0 \le a \le q$. Denote by $\delta := \delta(d,a)$ the minimum distance of $C(d,a)^{\perp}$. Then $\delta = d+2$ if a = 0, $\delta = d+1$ otherwise. Denote by A_{δ} the number of the minimum-weight codewords of $C(d,a)^{\perp}$ and set $B := X(\mathbb{F}_{q^2}) \setminus \{P_{\infty}\}$.

(1) If a = 0 or a > d then $S = \{P_1, ..., P_{\delta}\} \subseteq B$ is the support of a minimum-weight codeword if and only if $P_1, ..., P_{\delta}$ are collinear. Moreover,

$$A_{\delta} = q^2 \begin{pmatrix} q \\ \delta \end{pmatrix} + (q^4 - q^3) \begin{pmatrix} q+1 \\ \delta \end{pmatrix}.$$

(2) If $0 < a \le d$ then $S = \{P_1, ..., P_\delta\} \subseteq B$ is the support of a minimum-weight codeword if and only if $P_\infty, P_1, ..., P_\delta$ are collinear. Moreover,

$$A_{\delta} = q^2 \begin{pmatrix} q \\ \delta \end{pmatrix}.$$

Remark 10. Notice that the formulas in the statement agree with those of [7].

Proof. The minimum distance $\delta = \delta(d,a)$ can be easily computed by reversing Table 1. Define E, d' and E' as in Lemma 5.

(1) If a=0 then $\delta=d+2$, E'=E=0 and d'=d. Let $S=\{P_1,...,P_\delta\}\subseteq B$ be a set of cardinality δ . Since $\deg(E')+\sharp(S)=d+2$, Corollary 7 says that S is the support of a minimum-weight codeword if and only if $P_1,...,P_\delta$ are collinear.

- (2) If a > d then $\delta = d + 1$, $E = aP_{\infty}$, E' = 0 and d' = d 1. Let $S = \{P_1, ..., P_{\delta}\} \subseteq B$ be a set of cardinality δ . Since $\deg(E') + \sharp(S) = d' + 2$, Corollary 7 says that S is the support of a minimum-weight codeword if and only if $P_1, ..., P_{\delta}$ are collinear.
- (3) If $0 < a \le d$ then $\delta = d+1$, $E = aP_{\infty}$, E' = E and d' = d. Let $S = \{P_1,...,P_{\delta}\} \subseteq B$ be a set of cardinality δ . Since $\deg(E) + \sharp(S) = a + d+1 \le 2d+1$, Corollary 7 says that S is the support of a minimum-weight codeword if and only if $P_{\infty}, P_1, ..., P_{\delta}$ are collinear (here we used Lemma 1).

To get the formulas for the number of minimum-weight codewords, observe that in any linear code two minimum-weight codewords with the same support are (non-zero) multiple one each other (by definition of linear code and minimum distance). Moreover, any non-zero multiple of a minimum-weight codeword is an other minimum-weight codeword with the same support. Hence we deduce our formulas by Lemma 1.

It is easily seen that Theorem 9 describe all the codes C(d,a) such that $d \le q-1$. Indeed, $m=d(q+1)-a \le q^2-1$ for any $0 \le a \le q$ if and only if $d \le q-1$. Now we study in details the case d=q.

Theorem 11. Let d:=q, $0 \le a \le q$ and consider the code C(d,a). Denote by $\delta:=\delta(d,a)$ the minimum distance of $C(d,a)^{\perp}$. Let $S:=\{P_1,...,P_{\delta}\}$ be the support of a minimum weight codeword.

- (1) If a = 0 then $\delta = 2q + 2$ and $P_1, ..., P_{\delta}$ lie on a plane conic.
- (2) If a = 1 then $\delta = 2q + 1$ and $P_{\infty}, P_1, ..., P_{\delta}$ lie on a plane conic.
- (3) If $2 \le a < q$ then $\delta = 2q$ and $P_1,...,P_\delta$ lie either on the union of two distinct lines meeting at P_∞ , or on a smooth conic which is tangent to the Hermitian curve X at P_∞ .
- (4) If a=q then either it occurs one of the two cases of the previous point (3), or $qP_{\infty} + \sum_{i=1}^{\delta} P_i$ is the complete intersection of a plane cubic and a curve of degree q.

Proof. The minimum distance $\delta = \delta(d,a)$ can be easily found by reversing Table 1:

$$\delta(d,a) = \left\{ \begin{array}{ll} 2d + 2 - a & \text{if } a \in \{0,1\}, \\ 2d & \text{if } a \ge 2. \end{array} \right.$$

Since d=q, in the notations of Lemma 5 we have $E'=E=aP_{\infty}$ and d'=d=q. If a=0 then $\delta=2d+2$ and $\deg(E')+\sharp(S)=2d+2$. By Corollary 8 there exists either a subscheme $W\subseteq S$ of degree d+2=q+2 and contained in a line, or a subscheme $W\subseteq S$ of degree 2d+2=2q+2 and contained in a conic. The former case must be excluded because of Lemma 1. In the latter case we have that $P_1,...,P_{2q+2}$ lie on a conic. If a=1 then $\delta=2d+1$ and $\deg(E')+\sharp(S)=2d+2$. By Corollary 8 there exists either a subscheme $W\subseteq P_{\infty}\cup S$ of degree d+2=q+2 and contained in a line, or a subscheme $W\subseteq P_{\infty}\cup S$ of degree 2d+2=2q+2 and contained in a conic. The former case must be excluded because of Lemma 1. In the latter case we have that $P_{\infty}, P_1,..., P_{2q+2}$ lie on

a conic. Let us consider the case $a \ge 2$. We have $\delta = 2d = 2q$ and $\deg(E') +$ $\sharp(S) = a + 2d \le 3d - 1$ (because we assumed a < q = d). Hence Corollary 8 applies: either there exists a subscheme $W \subseteq aP_{\infty} \cup S$ of degree d+2=q+2and contained in a line, or there exists a subscheme $W \subseteq aP_{\infty} \cup S$ of degree 2d + 2 = 2q + 2 and contained in a conic. The former case must be excluded, as in the previous cases. If $W \subseteq aP_{\infty} \cup \{P_1,...,P_{2d}\}$, $\deg(W) = 2d + 2$ and W is contained in a conic T then the multiplicity of P_{∞} in W, say $e_W(P_{\infty})$, must be at least 2. On the other hand, if $e_W(P_\infty) > 2$ then (Lemma 2) the tangent line to X at P_{∞} , $L_{X,P_{\infty}}$, turns out to be a component of T. In this case Lemma 1 implies that $P_1,...,P_{2q}$ lie on the line $T-L_{X,P_\infty}$, which contradicts Lemma 1 again. As a consequence, $e_W(P_\infty) = 2$, and we are done. Indeed, L_{X,P_∞} cannot be a component of T (use Lemma 1 twice) and so T is either the union of two lines meeting at P_{∞} , or a smooth conic which is tangent to X at P_{∞} . If a = q then, by Corollary 8, we must add to the previous analysis the case $W = qP_{\infty} + \sum_{i=1}^{\delta} P_i$, which turns out to be the complete intersection of a cubic curve and a curve of degree d = q.

4. Geometry of small-weight codewords

In this section we are going to develop some geometric tools in order to study the small-weight codewords of certain $C(d,a)^{\perp}$ code.

Remark 12. By Lemma 5, for any C(d,a) code with d>1 and $0 \le a \le q$ there exist integers d'>0 and $0 \le a' \le d'$ such that C(d,a)=C(d',a'). Hence, from now on, we will consider only C(d,a) codes with d>0 and $a \le d$.

Lemma 13. Let d>0 and $0\leq a\leq d$ be integers. Consider the Hermitian one-point code C(d,a). Set $B:=X(\mathbb{F}_{q^2})\setminus\{P_\infty\}$, $E=aP_\infty$. Fix a subset $S\subseteq B$ and an integer e>0. There exists a linear subspace of $C(d,a)^\perp$ with support contained in S if and only if $h^1(\mathbb{P}^2,\mathscr{I}_{E\cup S}(d))\geq e$.

Proof. Set $V := H^0(X, \mathcal{O}_X(d)(-E))$ and $V(-S) := H^0(X, \mathcal{I}_{S \cup E}(d))$. Write $B = S \cup (B \setminus S)$ and identify $K^S = \{S \to K\}$ with $K^S \times K^{B \setminus S}$. The linear projection of K^B onto its factor K^S and the inclusion $V \hookrightarrow K^B$ induce an inclusion $V/V(-S) \hookrightarrow \mathbb{F}_q^{B \setminus S}$. Fix $f \in K^B$ with support on S. By the latter assumption we have $\sum_{P \in B} f(P)g(P) = \sum_{P \in S} f(P)g(P)$ for all $g \in K^B$. The integer $i(V,S) := \sharp(S) - h^0(X, \mathcal{O}_X(d)(-E)) + h^0(X, \mathcal{O}_X(d)(-E-S))$ is the number of independent linear relations among the evaluations of V at the points of S. Hence i(V,B) is the dimension of the linear subspace of C^\perp formed by the words with support on S. Lemma 6 gives that the restriction map $\rho : H^0(\mathbb{P}^2, \mathcal{I}_E(d)) \to H^0(X, \mathcal{O}_X(-E))$ is surjective. Obviously $\operatorname{Ker}(\rho) = H^0(\mathbb{P}^2, \mathcal{I}_X(d))$. Since i(V,S) is the number of conditions that S imposes to $i(V,S) = h^0(\mathbb{P}^2, \mathcal{I}_E(d)) - h^0(\mathbb{P}^2, \mathcal{I}_{E \cup S}(d))$. Since $i(V,S) = h^0(\mathbb{P}^2, \mathcal{I}_E(d)) - h^0(\mathbb{P}^2, \mathcal{I}_{E \cup S}(d))$. Since $i(V,S) = h^0(\mathbb{P}^2, \mathcal{I}_E(d)) - h^0(\mathbb{P}^2, \mathcal{I}_{E \cup S}(d))$. Since $i(V,S) = h^0(\mathbb{P}^2, \mathcal{I}_E(d))$ and $i(V,S) = h^0(\mathbb{P}^2, \mathcal{I}_E(d))$ of Lemma 6 again), we have $i(V,S) = h^1(\mathbb{P}^2, \mathcal{I}_{S \cup E}(d))$.

Lemma 14. Consider a code C(d,a) with d>0 and $0 \le a \le d$. Set $E:=aP_{\infty}$. For any integer h such that $1 \le h \le {d+2 \choose 2} - \deg(E)$ the smallest minimum

distance of a subcode $C_h^{\perp} \subseteq C^{\perp}$ of dimension h is the minimal cardinality of a set $S \subseteq B$ such that $h^1(\mathbb{P}^2, \mathscr{I}_{S \cup E}(d)) \ge h$.

Proof. Apply lemma 13.

Remark 15. Let W be any projective scheme and L a line bundle on it. Fix any subscheme $E \subseteq Z$. Since Z is zero-dimensional we have $h^1(Z, \mathscr{I}_{E,Z} \otimes L) > 0$. Hence the restriction map $H^0(Z, L|Z) \to H^0(E, L|E)$ is surjective. It follows that if $h^1(W, \mathscr{I}_W \otimes L) > 0$ then $h^1(W, \mathscr{I}_Z \otimes L) > 0$.

Remark 16. For any effective divisor $T \subset \mathbb{P}^2$ and any zero-dimensional subscheme $Z \subset \mathbb{P}^2$ let $\mathrm{Res}_T(Z)$ denote the residual scheme of Z with respect to T, i.e. the closed subscheme of \mathbb{P}^2 with $\mathscr{I}_Z : \mathscr{I}_T$ as its ideal sheaf. We have $\deg(Z) = \deg(Z \cap T) + \deg(\mathrm{Res}_T(Z))$. If $Z = Z_1 \sqcup Z_2$ then $\mathrm{Res}_T(Z) = \mathrm{Res}_T(Z_1) \sqcup \mathrm{Res}_T(Z_2)$. If Z is reduced (i.e. if Z is a finite set) then $\mathrm{Res}_T(Z) = Z \setminus Z \cap T$. For each $d \in \mathbb{Z}$ we have an exact sequence

$$(1) 0 \to \mathscr{I}_{\operatorname{Res}_T(Z)}(d-k) \to \mathscr{I}_Z(d) \to \mathscr{I}_{Z\cap T,T}(d) \to 0,$$

where $k := \deg(T)$. It follows that, for each integer $i \ge 0$,

(2)
$$h^{i}(\mathbb{P}^{2}, \mathcal{I}_{Z}(d)) \leq h^{i}(\mathbb{P}^{2}, \mathcal{I}_{\operatorname{Res}_{T}(Z)}(d-k)) + h^{i}(T, \mathcal{I}_{Z \cap T, T}(d)).$$

Lemma 17. Let $T \subset \mathbb{P}^2$ be any divisor of degree $k \leq d+2$ and let $Z \subset T$ be any zero-dimensional scheme. Then $h^1(\mathbb{P}^2, \mathcal{I}_Z(d)) = h^1(T, \mathcal{I}_{Z,T}(d))$.

Proof. Since $Z \subset T$, we have $\operatorname{Res}_T(Z) = \emptyset$. Hence the residual exact sequence (1) becomes the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^2}(d-t) \to \mathcal{I}_Z(d) \to \mathcal{I}_{Z,T}(d) \to 0.$$

Use the fatc that $h^1(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d-k)) = 0$ and deduce (since $d-k \geq -2$) that $h^2(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(d-k)) = 0$.

Lemma 18. Fix a line $L \subset \mathbb{P}^2$ and a set $S \subset L$. If $\sharp(S) - \sharp(L \cap S) + \deg(E) - \deg(E \cap L) \leq d$, then

$$\begin{array}{lcl} h^1(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) & = & h^1(L, \mathscr{I}_{(E \cup S) \cap L, L}(d)) \\ & = & \max\{0, \deg(E \cap L) + \sharp(L \cap S) - d - 1\}. \end{array}$$

Proof. Since $E \cap S = \emptyset$, we have $\deg(E \cup S) = \deg(E) + \deg(S)$, $\deg(\operatorname{Res}_L(E \cup S)) = \deg(\operatorname{Res}_L(E)) + \sharp(S) - \sharp(S \cap L)$ and $\deg(L \cap (E \cup S)) = \deg(E \cap L) + \sharp(S \cap L)$. The latter equality gives $h^1(L, \mathscr{I}_{(E \cup S) \cap L, L}(d)) = \max\{0, \deg(E \cap L) + \sharp(L \cap S) - d - 1\}$, because $L \cong \mathbb{P}^1$. Since $\deg(\operatorname{Res}_L(E \cup S)) \leq d$, we have $h^1(\mathbb{P}^2, \mathscr{I}_{\operatorname{Res}_L(E \cup L)}(d - 1)) = 0$ ([2], Lemma 34, or [4], Remarque (i) at p. 116). Hence equation (2) gives $h^1(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) \leq h^1(L, \mathscr{I}_{(E \cup S) \cap L, L}(d))$. Since $(E \cup S) \cap L \subseteq E \cup S$, Remark 15 and Lemma 17 give $h^1(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) \geq h^1(L, \mathscr{I}_{(E \cup S) \cap L, L}(d))$. □

Lemma 19. Let $S \subset B$ be the support of a codeword of a code $C(d,a)^{\perp}$ with d > 0 and $a \le d$. Set $E := aP_{\infty}$ and assume the existence of a plane curve T such that $h^1(\mathbb{P}^2, \mathscr{I}_{\mathbf{Res}_T(E \cup S)}(d-k)) = 0$, where $k := \deg(T)$. Then $S \subseteq T$.

Proof. Let V(S) (resp. $V(S \cap T)$) be the subcode of $C(d,a)^{\perp}$ formed by the codewords whose support is contained in S (resp. in $S \cap T$). We have to prove that $V(S) = V(S \cap T)$. Obviously $V(S \cap T) \subseteq V(S)$. From (1) we get $h^1(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) = h^1(\mathbb{P}^2, \mathscr{I}_{T \cap (E \cup S)}(d))$. Hence lemma 13 applied to $S \cap T$ and to S gives $V(S) \subseteq V(S \cap T)$.

Notation 20. We will denote by $L_{X,P_{\infty}}$ the tangent line to the Hermitian curve X at P_{∞} . $\mathcal{R}(\infty)$ will be the set of the lines passing through P_{∞} which are not tangent to X in any point. \mathcal{R} will denote the set of the lines which do not contain P_{∞} and which are not tangent to X in any point.

The following result provides a complete description of the small-weight codewords of any code C(d,a) such that $d \le q-1$ and $0 \le a \le d$ (see also Remark 12).

Theorem 21. Consider a code C(d,a) with $0 < d \le q - 1$ and $0 \le a \le d$. Let $S = \{P_1,...,P_w\}$ be the support of a codeword of $C(d,a)^{\perp}$ of weight w.

- (1) Assume the inequalities $d + 2 \le a + w \le 2d + 1$. Then S is one of the sets in the following list.
 - (a) Any subset of w elements of $L \cap B$ for an $L \in \mathcal{R}(\infty)$ ($w \ge d + 1$).
 - (b) Any subset of w elements of $L \cap B$ for an $L \in \mathcal{R}$ ($w \ge d + 2$). Moreover, any such a set appears as the support of a codeword of
 - Moreover, any such a set appears as the support of a codeword of $C(d,a)^{\perp}$ of weight w.
- (2) Assume the inequalities $2d + 2 \le a + w \le 3d 1$. Then either S is one of the sets in cases (a), (b) of the previous list,
 - (c) or there exist two distinct lines $L, M \subseteq \mathbb{P}^2$ such that
 - $\deg(L \cap (E \cup S)) \ge d + 2$,
 - $deg(M \cap (E \cup S)) \ge d + 1$,
 - $\deg((L \cup M) \cap E) + w \ge 2d + 2$,
 - either $w \ge 2d + 3$ (if $L, M \in \mathcal{R}$), or $w \ge 2d + 2$ (if $(L, M) \in \mathcal{R} \times \mathcal{R}(\infty)$) or $(M, L) \in \mathcal{R} \times \mathcal{R}(\infty)$), or $w \ge 2d + 1$ (if $L, M \in \mathcal{R}(\infty)$),
 - (d) or there exists two distinct lines $L, M \subseteq \mathbb{P}^2$ such that
 - $\deg(L \cap (E \cup S)) = \deg(M \cap (E \cup S)) = d + 1$,
 - $\deg((L \cup M) \cap E) + w \ge 2d + 2$,
 - $L \cap M \cap S = \emptyset$,
 - either w=2d (if and only if $a \ge 2$, $L \cap M = P_{\infty}$), or w=2d+1 (if and only if $a \ge 1$, $(L,M) \in \mathcal{R} \times \mathcal{R}(\infty)$ or $(M,L) \in \mathcal{R} \times \mathcal{R}(\infty)$), or w=2d+2 (if and only if $L,M \in \mathcal{R}$),
 - (e) or there exists a smooth conic $T \subseteq \mathbb{P}^2$ such that
 - $\deg(T \cap E) + w \ge 2d + 2$,
 - $w \ge 2d + 2 \min\{2, a\}$.

Proof. Let us divide our proof into several steps.

(1) Let $S \subseteq B$ be the support of a codeword of weight w of $C(d,a)^{\perp}$. Observe that $\sharp(S) = w$. By Proposition 4 we have $h^1(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) > 0$. Assume $d+2 \le a+w \le 2d+1$, i.e. $\deg(E \cup S) \le 2d+1$. By Lemma 3 there exists a line $L \subseteq \mathbb{P}^2$ (defined over \mathbb{F}_{q^2}) such that $\deg(L \cap (E \cup S)) \ge 2d$

- d+2. Since $\deg(\operatorname{Res}_L(E\cup S)) \leq 2d+1-d-2 \leq d$, the case k=1 of lemma 19 implies $S\subset L$. Since $S\neq \emptyset$ and each point of S is defined over \mathbb{F}_{q^2} then also L is defined over \mathbb{F}_{q^2} . Set $W:=L\cap (E\cup S)$ and note that the multiplicity of P_∞ in W, say $e_W(P_\infty)$, must satisfies $e_W(P_\infty) \leq 1$. Indeed, if $e_W(P_\infty) \geq 2$ then Lemma 1 implies $L=L_{X,P_\infty}$, which contradicts $\deg(W) \geq d+2$ (we assumed $a \leq d$). Hence we have $\sharp(L\cap S) \geq d+1$ and the support S consists of W points in $L\cap B$ for a certain $L\in \mathcal{R}(\infty)\sqcup \mathcal{R}$. On the other hand, let $L\in \mathcal{R}(\infty)\sqcup \mathcal{R}$ and let $S\subseteq B\cap L$ with $\sharp(S)=w$. Assume $a+w\leq 2d+1$. Observe that $\sharp(S)-\sharp(L\cap S)+\deg(E)-\deg(E\cap L)\leq w-w+a\leq d$ and hence by Lemma 18 we have $h^1(\mathbb{P}^2,\mathscr{I}_{E\cup S}(d))>h^1(\mathbb{P}^2,\mathscr{I}_{E\cup S'}(d))$ for any $S'\subseteq S$. Apply Proposition 4 and deduce that S appears as the support of a codeword of $C(d,a)^\perp$ of weight w.
- (2) Let $S \subseteq B$ be the support of a codeword of weight w of $C(d,a)^{\perp}$. Observe that $\sharp(S) = w$. By Proposition 4 we have $h^1(\mathbb{P}^2, \mathscr{I}_{E \cup S}(d)) > 0$. Assume $2d + 2 \le a + w \le 3d 1$. By Lemma 3 there exists either a line $L \subseteq \mathbb{P}^2$ (defined over $\overline{\mathbb{F}_{q^2}}$) such that $\deg(L \cap (E \cup S)) \ge d + 2$, or a plane conic T such that $\deg(T \cap (E \cup S)) \ge 2d + 2$.
 - (2.i) Assume the existence of a line $L\subseteq\mathbb{P}^2$ such that $\deg(L\cap(E\cup S))\geq d+2$. If $h^1(\mathbb{P}^2,\mathscr{I}_{\operatorname{Res}_L(E\cup S)}(d-1))=0$ then Lemma 19 implies $S\subseteq L$ and we may repeat the proof of case (A). The support S consists of w points in $L\cap B$ for a certain $L\in\mathscr{R}(\infty)\sqcup\mathscr{R}$. Every such a line gives a codeword of C(d,a) of weight w. Now assume $h^1(\mathbb{P}^2,\mathscr{I}_{\operatorname{Res}_L(E\cup S)}(d-1))>0$. Since $\deg(\operatorname{Res}_L(E\cup S))\leq a+w-(d+2)\leq 2(d-1)+1$, Lemma 3 implies the existence of a line $M\subseteq\mathbb{P}^2$ such that $\deg(M\cap\operatorname{Res}_L(E\cup S))\geq (d-1)+2=d+1$. We easily see that M is defined over \mathbb{F}_{q^2} and not tangent to X in any point (use Lemma 1). Since $\operatorname{Res}_L(S)=S-(S\cap L)$ we get $L\neq M$. Observe that $\deg((L\cup M)\cap(E\cup S))=\deg(L\cap(E\cup S))+\deg(M\cap\operatorname{Res}_L(E\cup S))\geq 2d+3$. Since neither L or M are tangent to X we have $\deg(E\cap(L\cup M))\leq 2$, with equality if and only if $L,M\in\mathscr{R}(\infty)$. In this case we have $w\geq 2d+1$ and it will be (Lemma 1) $d\leq q-1$ or d=q and $\deg(E\cap(L\cup M))\leq 1$. Since $\deg(\operatorname{Res}_{L\cup M}(E\cup S))\leq 3d-1-(2d+3)< d-1$, we have $h^1(\mathbb{P}^2,\mathscr{I}_{\operatorname{Res}_{L\cup M}(E\cup S)}(d-2))=0$ and applying Lemma 19 with k=2 we deduce $S\subseteq L\cup M$.
 - (2.ii) Assume that there is no line $L \subseteq \mathbb{P}^2$ such that $\deg(L \cap (E \cup S)) \ge d+2$. Then there is a plane conic T (not necessairly smooth) such that $\deg(T \cap (E \cup S)) \ge 2d+2$. Since $\deg(\operatorname{Res}_T(E \cup S)) \le 3d-1-(2d+2) \le d-1$ we get $h^1(\mathbb{P}^2, \mathscr{I}_{\operatorname{Res}_T(E \cup S)}(d-2)) = 0$. Lemma 19 implies $S \subseteq T$. Assume that T is reducible, say $T = L \cup M$. Since, by assumption, $\deg(L \cap (E \cup S)) \le d+1$ and $\deg(M \cap (E \cup S)) \le d+1$ we have $L \ne M$. Since $2d+2 = \deg((L \cup M) \cap (E \cup S)) = \deg(L \cap (E \cup S)) + \deg(M \cap (E \cup S)) = d+1$ and $L \cap M \cap S = \emptyset$. Moreover, if P_{∞} appears in $L \cap M$ then $a \ge 2$. Lemma 1 implies that neither L

or M can be tangent to X at any point. Since we assumed a < d then we are done by Lemma 18. Now assume that T is smooth. Since we proved that $S \subseteq T$, Lemma 2 gives $w = \deg(T \cap S) \ge 2d + 2 - \min\{2, a\}$.

The proof is concluded.

REFERENCES

- [1] E. Ballico, A. Ravagnani, On Goppa Codes on the Hermitian Curve. http://arxiv.org/abs/1202.0894.
- [2] A. Bernardi, A. Gimigliano, M. Idà, Computing symmetric rank for symmetric tensors. J. Symbolic. Comput. 46(1), 34–53 (2011).
- [3] A. Couvreur, The dual minimum distance of arbitrary dimensional algebraic-geometric codes. J. Algebra **350**(1), 84–107 (2012).
- [4] Ph. Ellia, Ch. Peskine, Groupes de points de P²: caractère et position uniforme. Algebraic geometry (L'Aquila, 1988), 111–116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
- [5] J. W. P. Hirschfeld, Projective Geometries over Finite Fields. Clarendon Press, Oxford, 1979.
- [6] J. W. P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic Curves over a Finite Field. Princeton University Press, 2008.
- [7] C. Marcolla, M. Pellegrini, M. Sala On the weights of affine-variety codes and some Hermitian codes. WCC 2011 Workshop on coding and cryptography, 273–282 (2011).
- [8] S. A. Stepanov, Codes on Algebraic Curves. Springer, 1999.
- [9] Stichtenoth, Algebraic function fields and codes, Second Edition. Springer-Verlag, 2009.
- [10] K. Yang, P. V. Kumer, On the True Minimum Distance of Hermitian Codes. Coding Theory and Algebraic Geometry (Stichtenoth and Tsfasman editors), Springer-Verlag, 1992.

DEPT. OF MATHEMATICS, UNIVERSITY OF TRENTO, 38123 POVO (TN), ITALY *E-mail address*: ballico@science.unitn.it

UNIVERSITY OF TRENTO, 38123 POVO (TN), ITALY *E-mail address*: alberto.ravagnani88@gmail.com