Wstęp do kwantowej teorii transportu elektronowego

Sylwia Gołąb, Paweł Rzońca

6 listopada 2015

Spis treści

1	\mathbf{Ele}	${f ktrono}$	wa teoria materii	2
	1.1	Począ	tki teorii elektronowej (subiektywnie)	2
	1.2	Teoria	elektronowa Lorenza	3
	1.3	Makro	oskopowa elektrodynamika ośrodków materialnych	4
		1.3.1	Wyprowadzenie makroskopowych praw Maxwella z mikroskopowych odpowiedników	4
2	Ma	krosko	powy opis własności elektronowych ośrodków materialnych	5
	2.1	Makro	oskopowa elektrodynamika ośrodków materialnych	5
		2.1.1	Podsumowanie	5
		2.1.2	Zasada zachowania ładunku	6
	2.2	Zlinea	ryzowane relacje konstytutywne ośrodków materialnych	9
		2.2.1	Ogólna postać równań materiałowych	9
		2.2.2	Równania materiałowe a teoria liniowej odpowiedzi	9
		2.2.3	Uogólnienie na wiele pól zaburzających - zjawiska krzyżowe	10
		2.2.4	Klasyfikacja materiałów ze względu na jądro całkowe równania materiałowego	10
		2.2.5	Równanie materiałowe dla ośrodka homogenicznego- konsekwencje	11
		2.2.6	Punkt widzenia	12
3	Me	tody o	pisu klasycznej dynamiki cząstek	12
	3.1	Mecha	anika newtonowska	12
	3.2	Mecha	anika hamiltonowska	13
		3.2.1	Przestrzeń fazowa μ	13
		3.2.2	Funkcja Hamiltona w przybliżeniu minimalnego sprzężenia eletromagnetycznego .	13
		3.2.3	Kanoniczne równania Hamiltona	14
		3.2.4	Zależność funkcji Hamitona od czasu	14
4	Me	tody S	tatystyczne w układach wielocząstkowych	14
	4.1	•	klasycznego gazu doskonałego	14
		4.1.1	Wstęp	14
		4.1.2	Definicja	
		4.1.3	Stała Schmidta	
		4.1.4	Rozwiązanie równań ruchu metodą Hamiltona	
		4.1.5	Cząsteczkowa przestrzeń fazowa μ	
		4.1.6	Opis gruboziarnisty	
	4.2		ja rozkładu gęstości prawdopodobieństwa	
		4.2.1	Definicja	
		4.2.2	Równanie kinetyczne dla tej funkcji	
		4.2.3	Momenty funkcji rozkładu gęstości prawdopodobieństwa	

4.2.4 Int	erpretacja																																							-	16
-----------	------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

1 Elektronowa teoria materii

1.1 Początki teorii elektronowej (subiektywnie)

Elektrodynami	ka	Teoria kinetyc	zna	Teoria kwantowa							
		1803 r. J. Dalton:	atomy								
1822 r. H. Davy:	$\sigma \sim S/L$										
1826 r. G. Ohm:	$I \sim V$	1827 r. R. Brown:	ruchy								
1845 r. G. Kirchhoff:	$j \sim E_f$										
1861 r. J. Maxwell:	równania	1860 r. J. Maxwell:	rozkład v								
		1865 r. J. Loschmidt:	rozmiar at.								
		1867 r. J. Maxwell:	równanie								
		ciągłości o strukti	urze r. kinet.								
		1872 r. L. Boltzmann:	równanie								
1881 r. Helmholtz:	alaletnan										
Johnstone Stoney:	elektron										
1897 r. J. J. Thompson		1900 r. D. Hilbert		1900 r. M. Planck							
		1905 r. Einstein i	teoria r.								
		Smoluchowski:	Browna								
1908 r. R. Millikan:	wart. e										
1910 r. E. Rutherford:	budowa at.										
		1913 r. Bohr:	model at.								
1916 r. Tolman-Steward:	bezwł. el.										
				1924 r. L. de Broglie							
				1926 r. E. Schrödinger							
				1927 r. Fermi i Dirac:	stat. kw.						

Elektronowa teoria meterii

1845 r. G. Fechner - Model prądu elektronowego

1846 r. W. Weber - Elektrodynamika cząstek

$$F = \frac{q_1 q_2}{r^2} \left\{ 1 + \frac{r}{c^2} \ddot{r}(t) - \frac{1}{2c^2} \left[\dot{r}(t) \right]^2 \right\}$$

1881 r. Helmholtz

1897 r. H. A. Lorentz - teoria elektronowa

1898 r. E. Riecke -

1900 r. Drude - model przewodnictwa

1927 r. Sommerfeld A. - statystyki kwantowe do opisu elektronów

1928 r. Block

Teorie na przestrzeni czasu:

 $1900 \div 1927$ Klasyczna teoria transportu elektronowego

 $1927 \div 1928$ Półklasyczna teoria transportu elektronowego

 $1928 \div 1933$ Współczesna teoria transportu elektronowego

1.2 Teoria elektronowa Lorenza

Założenia:

- 1. Ośrodki materiale mają strukturę dyskretną, tzn. zbudowane są z cząstek naładowanych, które w sumie dają układ neutralny.
- 2. Wszystkie zjawiska w ośrodku materialnym są spowodowane ruchem cząstek naładowanych pod wpływem pól zewnętrznych, przy czym:
 - (a) w dielektrykach cząstki naładowane są związane i mogą wykonywać drgania wokół położeń równowagi lub ulegać nieznacznym wychyeniom pod wpływem przyłożonego \vec{E} ,
 - (b) w przewodnikach prócz cząstek związanych występują także czastki naładowane swobodne, których ruch powoduje powstanie prądu elektrycznego,
 - (c) w ośrodkach magnetycznych istnieją cząstki naładowane posiadające wewnętrzny moment magnetyczny lub niezerowy moment pędu.
- 3. Mikroskopowe pola elektromagnetyczne wytwarzane przez cząstki naładowane tworzące rozpatrywany ośrodek są rozwiązaniami równań Maxwella w próżni:

$$\begin{cases}
\nabla \circ \vec{e}(\vec{r},t) = \rho(\vec{r},t) \\
\nabla \times \vec{b}(\vec{r},t) - \partial_t \vec{e}(\vec{r},t) = \vec{j}(\vec{r},t) \\
\nabla \times \vec{e}(\vec{r},t) + \partial_t \vec{b}(\vec{r},t) = \vec{0} \\
\nabla \circ \vec{b}(\vec{r},t) = 0.
\end{cases} \tag{1}$$

 $\vec{e}(\vec{r},t),\; \vec{b}(\vec{r},t)$ - mikroskopowe pola elektryczne i magnetyczne

$$\rho(\vec{r},t) = \sum_{i} q_{i} \delta(\vec{r} - \vec{r_{i}}(t))$$

$$\vec{j}(\vec{r},t) = \sum_{i} \vec{v_{i}}(t) \delta(\vec{r} - \vec{r_{i}}(t))$$

4. Gęstość siły działająca na $\vec{\rho}(\vec{r},t)$ ma postać

$$\vec{f}(\vec{r},t) = \vec{\rho}(\vec{r},t)[\vec{e}(\vec{r},t) + \vec{v}(t) \times \vec{b}(\vec{r},t)]$$

$$\vec{F}(t) = \int d^3r' f(\vec{r}',t) =$$

przy założeniu jednorodności \vec{b} i \vec{e}

$$= \int d^3r' \{ \rho(\vec{r},t) [\vec{e} + \vec{v}(t) \times \vec{b}] \} = \int d^3r' \{ q \delta(\vec{r} - \vec{r}\ ') [\vec{e} + \vec{v}(t) \times \vec{b}] \} = q [\vec{e} + \vec{v}(t) \times \vec{b}] \int d^3r' \delta(\vec{r} - \vec{r}\ ').$$

Ostatecznie

$$\vec{F} = q(\vec{e} + \vec{v} \times \vec{b}) \tag{2}$$

$$m\ddot{\vec{r}}(t) = q[\vec{e} + \vec{v}(t) \times \vec{b}]. \tag{3}$$

Zmiany przestrzenne $\vec{e}(\vec{r},t)$ i $\vec{b}(\vec{r},t)$ są znaczące na odcinkach rzędu $10^{-10} \text{m} = 1 \text{ Å} = 0, 1 \text{nm}$. Zmiany czasowe są rzędu $10^{-13} \div 10^{-17} \text{s}$.

Klasyczny promień elektronu $r_e = \frac{1}{4\pi\epsilon_0} \frac{e^2}{mc^2} \approx 2,82 \cdot 10^{-6} \text{nm}$, rozmiar protonu $r_p \approx 0,88 \cdot 10^{-6} \text{nm}$ natomiast promień atomu $r_p \approx 0,1 \text{nm}$.

1.3 Makroskopowa elektrodynamika ośrodków materialnych

Hipotezia: Makroskopowe pola \vec{E} i \vec{B} są wartościami średnimi pól mikroskopowych \vec{e} i \vec{b} .

$$\vec{E}(\vec{r},t) = \langle \vec{e}(\vec{r},t) \rangle \tag{4}$$

$$\vec{B}(\vec{r},t) = \left\langle \vec{b}(\vec{r},t) \right\rangle,\tag{5}$$

gdzie średnia jest przestrzenna, czyli

$$\left\langle \vec{f}(\vec{r},t) \right\rangle \equiv \int d^3r' w(\vec{r}') \vec{f}(\vec{r}-\vec{r}',t).$$

 $w(\vec{r}')$ - funkcja wagowa spełniająca warunki:

- 1. jest funkcją rzeczywistą dodatnio określoną,
- 2. jest znormalizowana

$$\int_{\Omega} d^3 r' w(\vec{r}') = 1,$$

3. jest wolnozmienna, tj.

$$\begin{split} w(\vec{r}\ ' + \vec{a}) &= \sum_{n} \frac{1}{n!} \left[\vec{a} \nabla \right]^{n} w(\vec{r})_{\big|_{\vec{r} = \vec{r}'}} \\ w(\vec{r}\ ' + \vec{a}) &= w(\vec{r}\ ') \pm [\vec{a} \nabla] w(\vec{r}\ ') + \frac{1}{2} [\vec{a} \nabla]^{2} w(\vec{r}\ '), \end{split}$$

4. rozciągłość duża w porównaniu z wielkością cząstek.

RYSUNEK

1.3.1 Wyprowadzenie makroskopowych praw Maxwella z mikroskopowych odpowiedników

Zgodnie z równaniami mikroskopowymi 1:

$$\nabla \cdot \vec{E}(\vec{r}, t) = \langle \rho(\vec{r}, t) \rangle \tag{6}$$

$$\nabla \times \vec{B}(\vec{r},t) - \partial_t \vec{E}(\vec{r},t) = \left\langle \vec{j}(\vec{r},t) \right\rangle \tag{7}$$

$$\nabla \times \vec{E}(\vec{r},t) + \partial_t \vec{B}(\vec{r},t) = \vec{0}$$
 (8)

$$\nabla \cdot \vec{B}(\vec{r}, t) = 0 \tag{9}$$

RYSUNEK

Najpierw obliczymy średnią z gęstości ładunków. Gęstość ładunku można rozbić na gęstość ładunków swobodnych oraz gęstość ładunków związanych

$$\rho(\vec{r},t) = \rho_{free}(\vec{r},t) + \rho_{bound}(\vec{r},t)$$

gdzie:

$$\rho_{free}(\vec{r},t) = q_e \sum_{i} \delta(\vec{r} - \vec{r}_i(t))$$

$$\rho_{bound}(\vec{r},t) = \sum_{n} \underbrace{\rho_n(\vec{r},t)}_{n-tego\ jonu} = \sum_{n} \sum_{j} q_{jn} \delta(\vec{r} - \vec{r}_j(t)) = \sum_{n} \sum_{j} g_{jn} \delta(\vec{r} - \vec{r}_n(t) - \vec{r}_{jn}(t)).$$

$$\langle \rho(\vec{r},t) \rangle = \langle \rho_{free}(\vec{r},t) \rangle + \langle \rho_{bound}(\vec{r},t) \rangle =$$

$$= \int d^3r'w(\vec{r}\ ')\rho_{free}(\vec{r}-\vec{r}_j\ '(t)) + \int d^3r'w(\vec{r}\ ')\rho_{bound}(\vec{r}-\vec{r}_j\ '(t)) = \\ = \int d^3r'w(\vec{r}\ ')q_e \sum_i \delta(\vec{r}-\vec{r}_i(t)-\vec{r}\ ') + \int d^3r'w(\vec{r}\ ') \sum_n \sum_j q_{jn}\delta(\vec{r}-\vec{r}_j\ '(t)-\vec{r}\ ') = \\ = q_e \sum_i w(\vec{r}-\vec{r}_i(t)+\sum_n \sum_j q_{in}w(\vec{r}-\vec{r}_n(t)-\vec{r}_{jn}(t)=(*). \text{ Z własności } w \text{ wiemy, } \text{że:}$$

$$w(\vec{r} - \vec{r}_n(t) - \vec{r}_{jn}(t)) \simeq w(\vec{r} - \vec{r}_n(t)) - [\vec{r}_{jn} \cdot \nabla] w(\vec{r} - \vec{r}_n(t)).$$

$$(*) = q_e \sum_{i} w(\vec{r} - \vec{r_i}(t)) + \sum_{n} \sum_{j} q_{in} [w(\vec{r} - \vec{r_n}(t)) - [\vec{r_{jn}} \cdot \nabla] w(\vec{r} - \vec{r_n}(t))]$$

Całkowity ładunek jonu: $q_n = \sum_{j} q_{jn}$.

Moment dipolowy $\vec{d}_n(t) = \sum_{j} d_{jn}(t) = \sum_{j} q_{jn} \vec{r}_{jn}(t)$.

$$\langle \rho(\vec{r},t) \rangle = q_e \sum_i w(\vec{r} - \vec{r}_i(t)) + \sum_n q_n w(\vec{r} - \vec{r}_n(t)) - \nabla \cdot \sum_n w(\vec{r} - \vec{r}_n(t)) \vec{d}_n$$

$$\langle \rho(\vec{r},t) \rangle = \underbrace{\left\langle q_e \sum_i \delta(\vec{r} - \vec{r_i}(t)) \right\rangle + \left\langle \sum_n q_n \delta(\vec{r} - \vec{r_n}(t)) \right\rangle}_{\text{maximum polarization}} - \nabla \cdot \underbrace{\left\langle \sum_n \delta(\vec{r} - \vec{r_n}(t)) \vec{d_n}(t) \right\rangle}_{\text{maximum polarization}}$$

makroskopowa gęstość ładunku

$$\langle \rho(\vec{r},t)\rangle = \rho(\vec{r},t) - \nabla \cdot \vec{P}(\vec{r},t).$$

Wracając do równania 6

$$\nabla \cdot \vec{E}(\vec{r},t) = \langle \rho(\vec{r},t) \rangle = \rho(\vec{r},t) - \nabla \vec{P}(\vec{r},t)$$
$$\nabla \cdot (\vec{E}(\vec{r},t) + \nabla \vec{P}(\vec{r},t)) = \rho(\vec{r},t)$$
$$\vec{E}(\vec{r},t) + \nabla \vec{P}(\vec{r},t) \equiv \vec{D}(\vec{r},t)$$

gdzie $\vec{D}(\vec{r},t)$ - wektor indukcji elektrycznej

$$D_{i}(\vec{r},t) = \sum_{k/1}^{3} \int d^{3}r \int_{-\infty}^{t} dt' \epsilon_{kj}(\vec{r},\vec{r}',t,t') E_{j}(\vec{r}',t')$$
$$D_{i} = \sum_{k/1}^{3} \epsilon_{kj} E_{j}.$$

2 Makroskopowy opis własności elektronowych ośrodków materialnych

2.1 Makroskopowa elektrodynamika ośrodków materialnych

2.1.1 Podsumowanie

Równania Maxwella w postaci makroskopowej (w ośrodkach materialnych) mają postać:

$$\nabla \cdot \vec{D}(\vec{r}, t) = \wp(\vec{r}, t) \tag{10}$$

$$\nabla \times \vec{H}(\vec{r},t) - \partial_t \vec{D}(\vec{r},t) = \vec{J}(\vec{r},t) \tag{11}$$

$$\nabla \times \vec{E}(\vec{r},t) + \partial_t \vec{B}(\vec{r},t) = \vec{0}$$
(12)

$$\nabla \cdot \vec{B}(\vec{r}, t) = 0 \tag{13}$$

gdzie ρ oznacza makroskopową gęstość ładunku, zdefiniowaną poprzednio jako:

$$\rho = \left\langle q_e \sum_{i} \delta(\vec{r} - \vec{r_i}(t)) + \sum_{n} q_n \delta(\vec{r} - \vec{r_n}(t)) \right\rangle$$

wn.1. Makroskopowe pola $\vec{E}(\vec{r},t)$, $\vec{B}(\vec{r},t)$ są wartościami średnimi pól mikroskopowych \vec{e} , \vec{b} . Są to pola pierwotne, natomiast pola \vec{D} , \vec{H} są polami wtórnymi wynikającymi z ustalonej procedury średniowania.

2.1.2 Zasada zachowania ładunku

1. Ogólne wyprowadzenie

Lokalnie (czyli w ośrodku) jest spełniona zasada zachowania ładunku, tzn. zmiana gęstości ładunku w ograniczonym obszarze Ω jest spowodowana przepływem prądu przez powierzchnię zamkniętą $\partial\Omega$ otaczającą ten obszar.

Rys. 1. Rysunek pomocniczy. Spełnione jest:

$$\frac{dQ}{dt} = -\int d\vec{S} \cdot \vec{J}(\vec{r}, t) \tag{14}$$

gdzie:

- \vec{dS} element powierzchni; $|\vec{dS}|$ pole powierzchni
- Q- całkowity ładunek, wyrażający się wzorem:

$$Q(t) = \int d^3r \rho(\vec{r}, t) \tag{15}$$

- \vec{dS} wektor powierzchni, którego długość jest równa polu powierzchni,
- natomiast wyrażenie po prawej stronie to natężenie prądu będące równe strumieniowi przepływającemu przez daną powierzchnię:

$$I(t) = \int d\vec{S} \cdot \vec{J}(\vec{r}, t) \tag{16}$$

uw. Minus w równaniu (14) oznacza, że ładunek może tylko wypływać spod powierzchni. uw2. Wyrażenie pod całką to strumień prądu płynący przez rozważany obszar.

Wstawmy równanie (15) do równania (14):

$$\partial_t \int_{\partial\Omega} d^3r \rho(\vec{r}, t) = -\int_{\partial\Omega} d\vec{S} \cdot \vec{J}(\vec{r}, t) \stackrel{\text{tw.Gaussa}}{=} -\int_{\Omega} d^3r \nabla \cdot \vec{J}(\vec{r}, t)$$
(17)

$$\int d^3r \{\partial_t \rho(\vec{r}, t) + \nabla \cdot \vec{J}(\vec{r}, t)\} = 0$$
(18)

Stad:

$$\partial_t \rho(\vec{r}, t) + \nabla \cdot \vec{J}(\vec{r}, t) = 0 \tag{19}$$

Wzór (19) to prawo zachowania ładunku - ładunek nie może zniknąć, może tylko przepłynąć przez powierzchnię.

2. Wyprowadzenie praw zachowania ładunku z praw Maxwella Zadziałajmy obustronnie ∂_t na 1. równanie Maxwella (10) oraz $\nabla \cdot$ na 2. równanie Maxwella (11):

$$(1) \Rightarrow \partial_t \nabla \cdot \vec{D}(\vec{r}, t) = \partial_t \rho(\vec{r}, t) \Rightarrow \nabla \cdot \partial_t \vec{D}(\vec{r}, t) = \partial_t \rho(\vec{r}, t)$$
(20)

(2)
$$\Rightarrow \underbrace{\nabla \cdot [\nabla \times \vec{H}(\vec{r}, t)]}_{=0 \text{ (bo jest to div z rot)}} - \nabla \cdot \partial_t \vec{D}(\vec{r}, t) = \nabla \cdot \vec{J}(\vec{r}, t)$$
 (21)

Łącząc oba te równania dostajemy:

$$-\partial_t \rho(\vec{r}, t) = \nabla \cdot \vec{J}(\vec{r}, t) \tag{22}$$

Równanie (22) to zasada zachowania ładunku.

3. Równania materiałowe

Z jednej strony równania Maxwella są niezmiennicze względem zmiany ośrodka, z drugiej strony ich rozwiązania- pola $\vec{E}(\vec{r},t)$, $\vec{B}(\vec{r},t)$ - są różne w różnych ośrodkach. Dlatego potrzebujemy dodatkowych równań, które będą określać ośrodek- dlatego postulujemy równania materiałowe:

$$D_{i}(\vec{r},t) = \sum_{j/1}^{3} \int d^{3}r' \int_{-\infty}^{t} dt' \epsilon_{ij}(\vec{r},\vec{r}',t,t') E_{j}$$
(23)

$$H_i(\vec{r},t) = \sum_{j/1}^3 \int d^3r' \int_{-\infty}^t dt' \mu_{ij}^{-1}(\vec{r},\vec{r}',t,t') B_j$$
 (24)

$$J_i(\vec{r},t) = \sum_{j/1}^{3} \int d^3r' \int_{-\infty}^{t} dt' \sigma_{ij}(\vec{r},\vec{r}',t,t') E_j - \text{mikroskopowe prawo Ohma}$$
 (25)

wn.1. Mamy zatem zestaw równań: Równania Maxwella+równania materiałowe

wn.2. W równaniach materiałowych jądrem całkowym są:

- (23): $\epsilon_{ij}(\vec{r}, \vec{r}', t, t')$ to element tensora przenikalności elektrycznej ośrodka
- (24): $\mu_{ij}^{-1}(\vec{r},\vec{r}',t,t')$ to element tensora odwrotności przenikalności magnetycznej
- (25): $\sigma_{ij}(\vec{r},\vec{r}',t,t')$ to element tensora przewodnictwa elektrycznego.
- **uw.1.** Równania materiałowe mają swoje uzasadnienie w termodynamice stanów nierównowagowych, natomiast do elektrodynamiki zostały dodane *ad hoc.* uw.2.
- **uw.2.** Ostatnie (25) równanie to mikroskopowe (lokalne) prawo Ohma, które można również zapisać w popularniejszej wersji:

$$\vec{J}(\vec{r},t) = \sigma(\vec{r},t)E(\vec{r},t) \tag{26}$$

4. Równania Maxwella a prąd stały

Zał. Załóżmy, że **prąd jest stały**, tzn. płynie w sposób ciągły i nie gromadzi się (jest stały w czasie).

Wówczas:

• Równanie Maxwella (11) \Rightarrow powstaje stałe pole \vec{H}

• Równanie Maxwella (12)
$$\Rightarrow \nabla \times \vec{E}(\vec{r}) + \underbrace{\partial_t \vec{B}(\vec{r})}_{=0} = 0$$

Stąd:

$$\nabla \times \vec{E}(\vec{r}) = 0 \tag{27}$$

Ponieważ wiemy, że dywergencja z rotacji daje 0, to \vec{E} musi dać się przedstawić jako:

$$\vec{E} = -\nabla V(\vec{r}) \tag{28}$$

gdzie $V(\vec{r})$ to potencjał.

wn. Jeśli prąd jest stały, to pole elektryczne ma potencjał.

• Prawo zachowania ładunku (19) $\Rightarrow \underbrace{\partial_t \rho(\vec{r},t)}_{=0} + \nabla \cdot \vec{J}(\vec{r},t) = 0$

$$\nabla \cdot \vec{J}(\vec{r}) = 0 \tag{29}$$

• Mikroskopowe prawo Ohma $\Rightarrow \nabla[\sigma(\vec{r})\vec{E}(\vec{r})] = 0$ Łącząc to równanie z równaniem (28), dostajemy:

$$-\nabla \cdot [\sigma(\vec{r})\nabla V(\vec{r})] = 0$$

$$\nabla \cdot [\sigma(\vec{r})\nabla V(\vec{r})] = 0$$
(30)

• Załóżmy teraz, że przewodnictwo jest wszędzie takie samo: $\sigma(\vec{r})=const=\sigma.$ Wówczas z równania (refdoLaplace) wynika:

$$\sigma \nabla^2 V(\vec{r}) = 0 \tag{31}$$

O ile $\sigma \neq 0$ (czyli nie jest to izolator):

$$\nabla^2 V(\vec{r}) = 0 \tag{32}$$

Jest to równania Laplace'a.

wn. Jeśli prąd jest stały, to potencjał układu spełnia równanie Laplace'a.

uw. Bez założenia o prądzie stałym dostalibyśmy równanie Poissona

Dygresja - potencjał a energia potencjalna Energia potencjalna wyraża się wzorem:

$$U(\vec{r}) \equiv \int d^3r' \rho(\vec{r}') V(\vec{r})$$
(33)

Łącząc powyższe równanie z definicją gęstości ładunkowej:

$$U(\vec{r}) = \int d^3r' q \delta(\vec{r} - \vec{r}') V(\vec{r})$$
(34)

Stąd:

$$U(\vec{r}) = qV(\vec{r}) \tag{35}$$

Równanie (35) to związek pomiędzy energią potencjalną a potencjałem.

2.2 Zlinearyzowane relacje konstytutywne ośrodków materialnych

2.2.1 Ogólna postać równań materiałowych

Można zauważyć, że wszystkie równania materiałowe (23),(24),(25) mają postać:

$$\vec{Y}(\vec{r},t) = \int d^3r \int_{-\infty}^t dt' \hat{\chi}(\vec{r}, \vec{r}', t, t') \vec{X}(\vec{r}', t')$$
(36)

lub równoważnie:

$$Y_i(\vec{r},t) = \sum_{j/1}^{3} \int d^3r \int_{-\infty}^{t} dt' \chi_{ij}(\vec{r}, \vec{r}', t, t') X_j(\vec{r}', t')$$
(37)

gdzie:

- \vec{Y} wektor reprezentujący pole wtórne
- \vec{X} wektor reprezentujący pole pierwotne
- $\hat{\chi}$ to tzw. uogólniona podatność (inaczej: funkcja odpowiedzi układu). Jest to tensorowe jądro całkowe, służące do przekształcenia pola pierwotnego we wtórne zatem wnosi ona informację o ośrodku.

uw. Dlaczego całka po czasie biegnie do t a nie do ∞ ?

Ponieważ wówczas χ zbiera informacje do chwili obecnej. Gdyby całka była do ∞ , to złamalibyśmy **zasadę przyczynowości** (wyraża ona, że skutek obserwowany w chwili obecnej zależy tylko do przyczyn z przeszłości).

Można zatem postawić:

$$\chi_{ij}(\vec{r}, \vec{r}', t, t') = 0 \quad \text{dla } t' > t$$
(38)

2.2.2 Równania materiałowe a teoria liniowej odpowiedzi

Fakty:

1. Pola wtórne są liniowymi funkcjonałami pól pierwotnych:

$$\vec{Y}[\alpha_1 \vec{X}_1 + \alpha_2 \vec{X}_2] = \alpha_1 \vec{Y}[\vec{X}_1] + \alpha_2 \vec{Y}[\vec{X}_2]$$
(39)

uw. Jeśli uciąglimy tę sumę, dostaniemy całkę.

2. Równania materiałowe pozostają słuszne, jeśli pola pierwotne można traktować jako słabe zaburzenia. Wówczas można rozwinąć w szereg McLaurina:

$$\vec{Y}[\vec{X}] = \vec{Y}[\vec{0}] + \frac{\delta \vec{Y}}{\delta \vec{X}} \Big|_{\vec{0}} \vec{X} + \frac{1}{2} \frac{\delta^2 \vec{Y}}{\delta \vec{X}^2} \Big|_{\vec{0}} \vec{X}^2 + \dots$$
 (40)

gdzie: $\vec{Y}[\vec{0}] = 0$ (bo nie może istnieć pole wtórne bez pierwotnego), zatem:

$$[\vec{X}] = \vec{Y}[\vec{0}] + \frac{\delta \vec{Y}}{\delta \vec{X}} \Big|_{\vec{0}} \vec{X} + \mathcal{O}(\vec{X}^2)$$

$$\tag{41}$$

Założenie:

Załóżmy, że pola wtórne są proporcjonalne do pól pierwotnych (tzw. linearyzacja równania). Wówczas:

$$\vec{Y}[\vec{X}] \simeq \frac{\delta \vec{Y}}{\delta \vec{X}} \Big|_{\vec{0}} \vec{X} = \hat{\mathcal{L}} \vec{X}$$
 (42)

Ostatecznie więc:

$$\vec{Y}[\vec{X}] = \hat{\mathcal{L}}\vec{X} \tag{43}$$

To przybliżenie nazywamy **teorią liniowej odpowiedzi**, zaś samo równanie (43) - równaniem fenomenologicznym, a współczynniki $\hat{\mathcal{L}}$ - współczynnikami fenomenologicznymi. Współczynniki te dostajemy z doświadczeń i następnie staramy się je wyjaśnić za pomocą teorii.

2.2.3 Uogólnienie na wiele pól zaburzających - zjawiska krzyżowe

Z racji liniowości wektora \vec{Y} , równanie (43) można uogólnić na wiele pól zaburzających (np. możemy jednocześnie rozważać pola $\vec{B}(\vec{r},t)$ i $\vec{E}(\vec{r},t)$):

$$\vec{Y} = \hat{\mathcal{L}}\vec{X}(\vec{r},t) \xrightarrow{\text{uog\'olnienie}} Y_i = \sum_{j/1}^n \mathcal{L}_{ij}X_j$$
 (44)

Np. Niech n=2. Wówczas:

$$\begin{cases} \vec{Y}_1 = \mathcal{L}_{11}\vec{X}_1 + \mathcal{L}_{12}\vec{X}_2 & /\mathcal{L}_{12}^{-1} \\ \vec{Y}_2 = \mathcal{L}_{21}\vec{X}_1 + \mathcal{L}_{22}\vec{X}_2 & /\mathcal{L}_{22}^{-1} \end{cases}$$

wn. Pole wtórne wynika z obu pól pierwotnych. Wyznaczamy \vec{X}_1 :

$$\begin{cases} \mathcal{L}_{12}^{-1} \vec{Y}_1 = \mathcal{L}_{12}^{-1} \mathcal{L}_{11} \vec{X}_1 + \vec{X}_2 \\ \mathcal{L}_{22}^{-1} \vec{Y}_2 = \mathcal{L}_{22}^{-1} \mathcal{L}_{21} \vec{X}_1 + \vec{X}_2 \end{cases}$$

Odejmując stronami, dostajemy:

$$\mathcal{L}_{12}^{-1}\vec{Y}_1 - L_{22}^{-1}\vec{Y}_2 = [\mathcal{L}_{12}^{-1}\mathcal{L}_{11} - \mathcal{L}_{22}^{-1}\mathcal{L}_{21}]\vec{X}_1$$
$$[\mathcal{L}_{12}^{-1}\mathcal{L}_{11} - \mathcal{L}_{22}^{-1}\mathcal{L}_{21}]^{-1}\mathcal{L}_{12}^{-1}\vec{Y}_1 - [\mathcal{L}_{12}^{-1}\mathcal{L}_{11} - \mathcal{L}_{22}^{-1}\mathcal{L}_{21}]^{-1}\mathcal{L}_{22}^{-1}\vec{Y}_2 = \vec{X}_1$$

wn. Pole pierwotne \vec{X}_1 można przedstawić w postaci kombinacji liniowej pól wtórnych, przy czym \vec{X}_1 produkuje \vec{Y}_1 oraz $-\vec{Y}_2$. Zauważmy, że \vec{Y}_2 jest z minusem, bo przeciwdziała ono polu \vec{Y}_1 .

Takie procesy z polami \vec{Y}_1 i \vec{Y}_2 naz. zjawiskami krzyżowymi.

np. W zjawiskach termoelektrycznych polami tymi są \vec{E} i gradient temperatury ∇T : Pole elektryczne przemieszcza elektrony, ale przez opór materiał się grzeje, więc powstaje gradient temperatury.

2.2.4 Klasyfikacja materiałów ze względu na jądro całkowe równania materiałowego

1. Ośrodek materialny jest lokalnie liniowy wtedy i tylko wtedy, gdy $\hat{\chi}$ ma postać:

$$\hat{\chi}(\vec{r}, \vec{r}', t, t') = \hat{\chi}(\vec{r}', t, t')\delta(\vec{r} - \vec{r}') \tag{45}$$

2. Ośrodek materialny jest **przestrzennie jednorodny** wtedy i tylko wtedy, gdy $\hat{\chi}$ ma postać:

$$\hat{X}(\vec{r}, \vec{r}', t, t') = \hat{\chi}(\vec{r} - \vec{r}', t, t') \tag{46}$$

Jeśli równość ta nie zachodzi, to ośrodek jest niejednorodny przestrzennie.

3. Ośrodek materialny jest czasowo jednorodny wtedy i tylko wtedy, gdy $\hat{\chi}$ ma postać:

$$\hat{\chi}(\vec{r}, \vec{r}', t, t') = \hat{\chi}(\vec{r}, \vec{r}', t - t') \tag{47}$$

Np. gdy materiał się grzeje, to w różnych chwilach różne jest pole ∇T Jeśli równość ta nie zachodzi, to ośrodek jest **niejednorodny czasowo**.

4. Ośrodek materialny jest czasowo i przestrzennie jednorodny wtedy i tylko wtedy, gdy $\hat{\chi}$ ma postać:

$$\hat{\chi}(\vec{r}, \vec{r}', t, t') = \hat{\chi}(\vec{r} - \vec{r}', t - t') \tag{48}$$

Tę własność spełnia gaz elektronowy oraz nukleony w jądrze.

5. Ośrodek materialny jest **izotropowy** wtedy i tylko wtedy, gdy elementy macierzowe $\hat{\chi}$ mają postać:

$$\chi_{ij}(\vec{r}, \vec{r}', t, t') = \hat{\chi}(\vec{r} - \vec{r}', t - t')\delta_{ij}$$
(49)

Jeśli równość ta nie zachodzi, to ośrodek jest anizotropowy.

6. Ośrodek materialny jest **homogeniczny** wtedy i tylko wtedy, gdy elementy macierzowe $\hat{\chi}$ mają postać:

$$\chi_{ij}(\vec{r}, \vec{r}', t, t') = \chi \delta(\vec{r} - \vec{r}') \delta(t - t') \delta_{ij}$$
(50)

2.2.5 Równanie materiałowe dla ośrodka homogenicznego- konsekwencje

Wróćmy do równania materiałowego:

$$Y_i(\vec{r},t) = \sum_{j/1}^3 \int d^3r \int_{-\infty}^t dt' \chi_{ij}(\vec{r},\vec{r}',t,t') X_j(\vec{r}',t')$$
 (51)

W ośrodku homogenicznym:

$$Y_{i}(\vec{r},t) = \sum_{j/1}^{3} \int d^{3}r \int_{-\infty}^{0} dt' \chi \delta(\vec{r} - \vec{r}') \delta(t - t') \delta_{ij} X_{j}(\vec{r}',t') (\vec{r},t) \stackrel{\text{tw.filtracyjne}}{=} \chi X_{i}(\vec{r},t)$$
 (52)

Zatem:

Y^{X}	\vec{E}	$ec{B}$
$ec{D}$	$\hat{\epsilon}$	brak
$ec{H}$	brak	$\hat{\mu}^{-1}$
$ec{J}$	$\hat{\sigma}$	brak

wn. 1. Z powyższego wynika mikroskopowe prawo Ohma dla ośrodków homogenicznych:

$$\vec{J}(\vec{r},t) = \sigma \vec{E}(\vec{r},t) \tag{53}$$

Zatem Ohm miał szczęście, że przykładał małe pola (bo w powyższych rachunkach zastosowaliśmy rachunek zaburzeń prawdziwy dla małych pól).

wn. 2. Dla układów homogenicznych skalarna stała χ reprezentuje stałą materiałową, która opisuje w sposób ilościowy rozpatrywaną własność ośrodka.

2.2.6 Punkt widzenia

Ustalmy jeden z dwóch możliwych punktów widzenia: prąd elektryczny jest konsekwencją przyłożonego pola elektrycznego $\vec{E}(\vec{r},t)$. Pole elektryczne to przyczyna, a prąd to skutek.

3 Metody opisu klasycznej dynamiki cząstek

W rozważaniach opuszczamy mechanikę Lagrangowską.

3.1 Mechanika newtonowska

Siła Lorenza

$$\vec{F}_l(\vec{r}, t) = q[\vec{E}(\vec{r}, t) + \vec{v}(t) \times \vec{B}(\vec{r}, t)]. \tag{54}$$

Jeżeli postać siły jest określona, to równanie ruchu możemy zapisać w postaci

$$m\frac{d^2\vec{r}(t)}{dt^2} = \vec{F}_L(\vec{r}, t).$$
 (55)

Zauważmy, że w mechanice Newtonowskiej nie ma ograniczenia na postać siły \vec{F}_L . **Przykład - równanie Langevine'a**

$$m\frac{d^2}{dt^2}\vec{r}(t) = \vec{F}_R - \gamma \vec{v}(t) + \vec{\Gamma}(t),$$

gdzie \vec{F}_R to siła regularna (np. od zewnętrznego pola elektrycznego, γ to współczynnik tarcia, a $\Gamma(t)$ to siła stochastyczna. Rozwiązując równania Newtona otrzymujemy różne $\vec{r}(t)$. Oznaczmy przez $\{\vec{r}(t)\}$ -zbiór rozwiązań równania Newtona \equiv PRZESTRZEŃ KONFIGURACYJNA.

RYSUNEK

 $|\vec{r}(t)\rangle$ - klasyczny stan cząstki w mechanice Newtona niewystarczający ze względu na brak determinizmu.

Stan cząstki opisany w spsób (trik dodający determinizm)

$$|\vec{r}(t), \vec{v}(t)\rangle$$
 - klasyczny stan cząstki

$$\begin{cases} \frac{d}{dt} \vec{r}(t) = \vec{v}(t) \\ m \frac{d}{dt} \vec{v}(t) = \vec{F}(\vec{r}, t) \end{cases} + \text{war. początkowe (jednopunktowe)} \begin{cases} \vec{r}(t_0) = \vec{r}_0 \vec{v}(t_0) = \vec{v}_0 \end{cases}$$

Uwaga

Możemy określić \vec{r} w chwili t, ale \vec{v} okreśamy w otoczeniu t, bo

$$\vec{v}_0 = \vec{v}(t_0) = \frac{d}{dt}\vec{r}\Big|_{t=t_0} = \lim_{\Delta t \to 0} \frac{\vec{r}(t_0 + \Delta t) - \vec{r}(t_0)}{\Delta t},$$

ewentualnie

$$\vec{v}_0 = \vec{v}(t_0) = \frac{d}{dt} \vec{r}_{|_{t=t_0}} = \lim_{\Delta t \to 0} \frac{\vec{r}(t_0) - \vec{r}(t_0 - \Delta t)}{\Delta t}.$$

Wniosek

Trikiem Tym uzyskujemy determinizm, z wyjątkiem infinitezymalnych zmian.

3.2 Mechanika hamiltonowska

W mechanice hamiltonowskiej nie używamy pojęcia siły, ale pojęcia potencjału, co oznacza, że jest ona mniej ogólna.

formalizm kanoniczny

Funkcja Hamiltona: $H(\vec{q}, \vec{p}, t)$. Kosztem straty na ogólności, zyskujemy niezależność zmiennych uogólnionych \vec{q} i \vec{p} .

$$|\vec{q}(t), \vec{p}(t)\rangle$$
 - klasyczny stan układu.

Funkcja Hamiltona przybiera wartość całkowitej energii mechanicznej układu, jeżeli siły sziałające na układ sa potencjalne, a potencjał nie zależy od czasu.

$$H(\vec{q},\vec{p}) = \underbrace{J(\vec{q},\dot{\vec{q}}(\vec{q},\vec{p}))}_{\text{część kinetyczna}} + \underbrace{U(\vec{q})}_{\text{część potencjalna}}.$$

q,p - współrzędne i pędy uogólnione, zgodne z więzami skleronomicznymi, czyli takimi, że nie zależą jawnie od czasu.

3.2.1 Przestrzeń fazowa μ

Definicja

Przestrzenią fazowa μ układu mechanicznego nazywamy parzysto-wymiarową przestrzeń symplektyczną, której elementami są punkty fazowe o współrzędnych (\vec{q}, \vec{p}) , które reprezentują stany klasyczne układu.

$$H(\vec{q}, \vec{p}, t) = J(\vec{q}, \dot{\vec{q}}(\vec{q}, \vec{p})) + U(\vec{q}, \vec{p}, t)$$
$$H: \mu \times \mathbb{R} \to \mathbb{R}, \quad \text{kl. } C^{1}[\mu].$$

Przykład

$$\vec{F}_L(\vec{r},t) = q[\vec{E}(\vec{r},t) + \vec{v}(t) \times \vec{B}(\vec{r},t)]$$

$$\phi(\vec{r},\vec{v},t) = q[\underbrace{V(\vec{r},t)}_{\text{pot. skalarny}} - \vec{v}(t) \cdot \underbrace{\vec{A}(\vec{r},t)}_{\text{pot. wektorowy}}].$$

Poprzez transformatę Legendre'a

$$H(\vec{r}, \vec{p}) = \underbrace{\frac{1}{2m} [\vec{p} + q\vec{A}(\vec{r}, t)]^2}_{\text{część kinetyczna}} + \underbrace{U(\vec{r}, t)}_{\text{część potencjalna}}.$$

3.2.2 Funkcja Hamiltona w przybliżeniu minimalnego sprzężenia eletromagnetycznego

$$H(\vec{r}, \vec{p}) = \frac{1}{2m} [\vec{p} + q\vec{A}(\vec{r}, t)] \cdot [\vec{p} + q\vec{A}(\vec{r}, t)] + U(\vec{r}, t) = \frac{p^2}{2m} + U(\vec{r}, t) + \frac{q}{m} \vec{p} \cdot \vec{A}(\vec{r}, t) + \frac{q^2}{2m} A^2(\vec{r}, t) \approx$$

$$\approx \left| \text{linearyzacja, zakładając, że A jest małe} \right| \approx \underbrace{\frac{p^2}{2m} + U(\vec{r}, t)}_{H_0(\vec{r}, \vec{n}, t)} + \frac{q}{m} \vec{p} \cdot \vec{A}(\vec{r}, t),$$

gdzie $H_0(\vec{r}, \vec{p}, t)$ to niezaburzona funkcja Hamiltona, a pozostały składnik jest zaburzeniem liniowym spowodowanym potencjałem wektorowym \vec{A} .

3.2.3 Kanoniczne równania Hamiltona

$$\begin{cases}
\dot{\vec{q}}(t) = \nabla_{\vec{p}} H(\vec{q}, \vec{p}, t) \\
\dot{\vec{p}}(t) = -\nabla_{\vec{q}} H(\vec{q}, \vec{p}, t)
\end{cases} + \begin{cases}
\vec{q}(t_0) = \vec{q}_0 \\
\vec{p}(t_0) = \vec{p}_0
\end{cases}$$

$$\begin{cases}
\vec{q}(t) = \vec{q}(t_0) + \int_{t_0}^t dt' \nabla_{\vec{p}} H(\vec{q}, \vec{p}, t') \\
\vec{p}(t) = \vec{p}(t_0) + \int_{t_0}^t dt' \nabla_{\vec{q}} H(\vec{q}, \vec{p}, t').
\end{cases}$$
(56)

Rozwiazanie powyższe wyznacza trajektorię fazową w przestrzni fazowej, która to jest zbiorem klasycznych stanów realizowanych przez układ w kolejnych chwilach czasu t.

Inna forma równań Hamiltona

Wprowadzamy wektor fazowy $\vec{w}(\vec{q}, \vec{p})$ oraz hamiltonowskie pole wektorowe $\vec{X}_H(\vec{q}, \vec{p}, t)$. Wtedy

$$\frac{d}{dt}\vec{w}(\vec{q},\vec{p}) = \vec{X}_H(\vec{q},\vec{p},t) \tag{57}$$

$$\frac{d}{dt} \begin{bmatrix} \vec{q}(t) \\ \vec{p}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}}_{q} \begin{bmatrix} \nabla_{\vec{q}} H(\vec{q}, \vec{p}, t) \\ \nabla_{\vec{p}} H(\vec{q}, \vec{p}, t) \end{bmatrix},$$
(58)

gdzie g to anysymetryczny tensor metryczny, który określa geomerię symplektyczną przestreni fazowej.

3.2.4 Zależność funkcji Hamitona od czasu

 $H(\vec{q}, \vec{p}, t)$ może się zmieniać w czasie na dwa sposoby

1.
$$\vec{q} = \vec{q}(t), \ \vec{p} = \vec{p}(t),$$

2. t (jawnie)

$$\begin{split} \frac{d}{dt}H(\vec{q},\vec{p},t) &= \left[\frac{d}{dt}\vec{q}(t)\right] \cdot \nabla_{\vec{q}}H(\vec{q},\vec{p},t) + \left[\frac{d}{dt}\vec{p}(t)\right] \cdot \nabla_{\vec{p}}H(\vec{q},\vec{p},t) + \partial_t H(\vec{q},\vec{p},t) = \\ &= \nabla_{\vec{p}}H(\vec{q},\vec{p},t) \cdot \nabla_{\vec{q}}H(\vec{q},\vec{p},t) - \nabla_{\vec{q}}H(\vec{q},\vec{p},t) \cdot \nabla_{\vec{p}}H(\vec{q},\vec{p},t) + \partial_t H(\vec{q},\vec{p},t). \end{split}$$

Zatem

$$\frac{d}{dt}H(\vec{q}, \vec{p}, t) = \partial_t H(\vec{q}, \vec{p}, t).$$

Stąd wynika, iż funkcja Hamiltona zmieniasię tak w czasie jak zależy od czasu.

4 Metody Statystyczne w układach wielocząstkowych

4.1 Model klasycznego gazu doskonałego

4.1.1 Wstęp

Pamiętamy, że dynamiczę cząstek naładowanych w polu EM można obliczyć poprzez:

- rozwiazanie równania Newtona
- hamiltonowską metodę, gdzie zaletą jest fakt, że położenie i pęd są niezależnymi zmiennymi

Dla N cząstek powinniśmy rozwiązać N równań ruchu. Gdy $N \to \infty$, to problem staje się nieobliczeniowy (nie da się go obliczyć w skończonym czasie).

Rozwiązanie tego problemu: użycie statystyki do obliczeń (fizyka statystyczna). Okazało się, że metody statystyczne poprawnie działają dla dużych układów. Cena za to: utrata jednoznaczności niektórych pojęć. Zysk: problem staje się obliczeniowy; przy okazji ujawniły się niektóre zależności statystyczne.

4.1.2 Definicja

- **Df.** Klasycznym gazem doskonałym naz. układ cząstek punktowch, między którymi nie ma żadnego oddziaływania
- uw. W df. na Wikipedii mamy jeszcze zawarte, że układ ten osiąga równowagę termodynamiczną natychmiast w wyniku zderzeń- to nie jest prawda. W defininicji klasycznego gazu doskonałego zakładamy brak zderzeń, czyli układ jest niestabilny termodynamicznie

4.1.3 Stała Schmidta

Stała Schmidta odpowiada na pytanie ile jest cząstek w $1cm^3$ gazu w warunkach normalnych:

$$STAŁA SCHMIDTA = \frac{L. AVOGADRO}{OBJĘTOŚĆ 1 MOLA GAZU}$$
(59)

czyli:

$$n_0 = \frac{N_A}{V} = \frac{6.02214 \cdot 10^{23} \ 1/mol}{22413.19 \ cm^3/mol} = 2.68678 \cdot 10^{19} cm^{-3} \simeq 3 \cdot 10^{19} \frac{\text{cząstek}}{cm^3}$$
 (60)

4.1.4 Rozwiązanie równań ruchu metodą Hamiltona

• Funkcja Hamiltona:

$$H(\{\vec{r}_i\}, \{\vec{p}_i\}) = \sum_{i/1}^{N} \frac{p_i^2}{2m}$$
(61)

• Równania ruchu dla tej funkcji:

$$\begin{cases} \frac{d}{dt}\vec{r}_{j}(t) = \nabla_{\vec{p}_{j}}H(\{\vec{r}_{i}\},\{\vec{p}_{i}\}) = \sum_{i/1}^{N} \frac{\vec{p}_{j}(t)}{m} \delta_{ij} = \frac{1}{m}\vec{p}_{j}(t) \\ \frac{d}{dt}\vec{p}_{j}(t) = -\nabla_{\vec{r}_{i}}H(\{\vec{r}_{i}\},\{\vec{p}_{i}\}) = 0 \end{cases}$$
(62)

• Warunki brzegowe:

$$\begin{cases} \vec{r}_j(t=0) = \vec{r}_{j0} \\ \vec{p}_j(t=0) = \vec{p}_{j0} \end{cases}$$
 (63)

• Po scałkowaniu równań ruchu dostajemy:

$$\begin{cases} \vec{r}_j(t) = \vec{r}_{j0} + \frac{1}{m} p_{j0} t\\ \vec{p}_j(t) = p_{j0} \end{cases}$$
(64)

Wn. Każda z N cząstek gazu doskonałego ewoluuje niezależnie od pozostałych

Wn. Pęd cząstki w tym gazie jest stały

4.1.5 Cząsteczkowa przestrzeń fazowa μ

Df. Cząsteczkowa przestrzeń fazowa μ to przestrzeń 6-wymiarowa:

$$\dim[\mu]=6$$

w której ruch wyznaczają 2 niezależne zmienne:

$$|\vec{r}_i(t), \vec{p}_i(t)>$$

Zatem dowolny punkt należący do tej przestrzeni to:

$$\vec{a}\epsilon\mu : \vec{a} = (x, y, z, p_x, p_y, p_z) \tag{65}$$

Czyli 1 punkt to jedna cząsteczka.

Np. Aby to narysować, upraszczamy problem do układu 1D+1D:

$$dim[\mu] = 2$$

 \mathbf{Uw} . Cząstki nie mogą być ułożone na 1 linii równoległej do osi pędowej, bo wtedy byłyby w 1 punkcie przestrzennym.

4.1.6 Opis gruboziarnisty

Problem: potrzeba 2N warunków brzegowych. Rozwiązanie: opis grupoziarnisty: Wybierzmy element objętości przestrzeni μ wokół punktu L o objętości $[|\Delta \vec{r_l}|]^3$:

$$dim[\mu] = 2$$

Jeśli punkt:

$$(\vec{r}_L, \vec{p}_L)\epsilon\mu$$

wtedy element objętości:

$$\Delta\omega_L = \Delta\vec{r}_L \Delta\vec{p}_L \tag{66}$$

przy czym wymiar elementu objętości jest rzędu długości, po której średniowaliśmy na poprzednich wykładach:

$$|\Delta \vec{r}_L \sim L \sim 100nm \tag{67}$$

W kostce o takich rozmiarach liczba cząstek wynosi:

$$[|\Delta \vec{r}_L|]^3 [n_0 cm^{-3}] = [10^{-5} cm]^3 [3 \cdot 10^{19} cm^{-3}] = 3 \cdot 10^4 \text{cząstek}$$

Opis ten nazywamy opisem gruboziarnistym, ponieważ każdy element objętości dobieramy sobie dowolnie.

4.2 Funkcja rozkładu gęstości prawdopodobieństwa

4.2.1 Definicja

Wprowadźmy funkcję pomocniczą:

$$f(\vec{r}, \vec{p}, t)$$

Żądamy, by była ona klasy $C^0[\mu]$, czyli by była ciągła w przestrzeni μ . Wyrażenie:

$$f(\vec{r}, \vec{p}, t) \Delta \omega_L \tag{68}$$

opisuje liczbę cząstek w objętości $\Delta\omega_L$, w której położenia i prędkości zmieniają się zgodnie z rozkładem f.

Umówmy się, że:

$$\begin{cases} \sum_{L} f(\vec{r}_{L}, \vec{p}_{L}, t) \Delta \omega_{L} = \int d^{3}r d^{3}p f(\vec{r}, \vec{p}, t) \\ \int d^{3}r d^{3}p f(\vec{r}, \vec{p}, t) = N \implies \text{f jest unormowana do liczby cząstek} \end{cases}$$
(69)

Wówczas $f(\vec{r}, \vec{p}, t)$ jest funkcją rozkładu gęstości prawdopodobieństwa.

4.2.2 Równanie kinetyczne dla tej funkcji

 Wyprowadzenie równania kinetycznego Zauważmy, że:

$$f(\vec{r}, \vec{p}, t + dt) - f(\vec{r}, \vec{p}, t) \stackrel{\text{ciaglość f}, dt \to 0}{\simeq} \partial_t f(\vec{r}, \vec{p}, t) dt$$
 (70)

gdzie

$$\partial_t \equiv \frac{\partial}{\partial t} \tag{71}$$

W czasie dt położenie i pęd zmieniają się jak:

$$d\vec{r}(t) = \dot{\vec{r}}(t)dt \tag{72}$$

$$d\vec{p}(t) = \dot{\vec{p}}(t)dt \stackrel{\text{r.}(64)}{=} 0 \tag{73}$$

Wtedy:

$$f(\vec{r}, \vec{p}, t) - f(\vec{r} + d\vec{r}, \vec{p}, t) \simeq -\dot{\vec{r}}(t) \nabla_{\vec{r}} f(\vec{r}, \vec{p}, t) dt = -\frac{1}{m} \vec{p}(t) \nabla_{\vec{r}} f(\vec{r}, \vec{p}, t) dt$$
(74)

i oczywiście:

$$f(\vec{r}, \vec{p}, t) - f(\vec{r}, \vec{p} + d\vec{p}, t) \simeq -\dot{\vec{p}}(t) \nabla_{\vec{p}} f(\vec{r}, \vec{p}, t) = 0$$
 (75)

Zatem:

$$\frac{df(\vec{r}, \vec{p}, t)}{dt} = \partial_t f(\vec{r}, \vec{p}, t) + \frac{1}{m} \vec{p}(t) \cdot \nabla_{\vec{r}} f(\vec{r}, \vec{p}, t) = 0$$

$$(76)$$

Moja uwaga: To zwykła "reguła łańcuchowa":

$$\frac{df(\vec{r}, \vec{p}, t)}{dt} = \frac{\partial f(\vec{r}, \vec{p}, t)}{\partial \vec{r}} \frac{\partial \vec{r}}{\partial t} + \frac{\partial f(\vec{r}, \vec{p}, t)}{\partial \vec{p}} \frac{\partial \vec{p}}{\partial t} + \frac{\partial f(\vec{r}, \vec{p}, t)}{\partial t} = \dot{r}(t) \nabla_{\vec{r}} f(\vec{r}, \vec{p}, t) + 0 + \partial_t f(\vec{r}, \vec{p}, t) \quad (77)$$

Wiemy, że:

$$mv(\vec{p}(t)) = \vec{p}(t) \quad \Rightarrow \quad \vec{v}(\vec{p}(t)) \equiv \vec{v}(\vec{p}) = \frac{1}{m}\vec{p}(t)$$
 (78)

Wówczas równanie (76) ma postać:

$$\partial_t f(\vec{r}, \vec{p}, t) + \vec{v}(\vec{p}) \cdot \nabla_{\vec{r}} f(\vec{r}, \vec{p}, t) = 0 \tag{79}$$

Powyższe równanie to równanie kinetyczne.

 Rozwiązanie równania kinetycznego Postulujemy rozwiązanie tego równania:

$$f(\vec{r}, \vec{p}, t) = \Phi(\vec{r} - \vec{v}t, \vec{p}) \tag{80}$$

gdzie Φ to dowolna funkcja klasy $C^0[\mu]$. Dowód, że jest to rozwiązanie:

Ozn.

$$\vec{s}(t) = \vec{r}(t) - \vec{v}(t) \tag{81}$$

Wówczas kolejne części równania kinetycznego zyskują postać:

$$\begin{cases}
\Phi(\vec{r} - \vec{v}t, \vec{p}) & \to \quad \tilde{\Phi}(\vec{s}(t), \vec{p}) \\
\partial_t \Phi(\vec{r}(t) - \vec{v}t, \vec{p}) &= \frac{\partial \vec{s}(t)}{\partial t} \nabla_{\vec{s}} \tilde{\Phi}(\vec{s}(t), \vec{p}) \\
\nabla_{\vec{r}} \Phi(\vec{r}(t) - \vec{v}t, \vec{p}) &= \nabla_{\vec{r}} \vec{s}t) \cdot \nabla_{\vec{s}} \tilde{\Phi}(\vec{s}(t), \vec{p}) &= \nabla_{\vec{s}} \tilde{\Phi}(\vec{s}(t), \vec{p})
\end{cases}$$
(82)

Zatem równanie kinetyczne przyjmuje postać:

$$\{-\vec{v}\cdot\nabla_{\vec{s}} + \vec{v}\cdot\nabla_{\vec{s}}\}\tilde{\Phi}(\vec{s}(t), \vec{p}) = 0$$
(83)

Obie strony są równe, więc zaproponowana postać rozwiązania jest słuszna.

4.2.3 Momenty funkcji rozkładu gęstości prawdopodobieństwa

• Zerowy moment

$$\int d^3p f(\vec{r}, \vec{p}, t) = n(\vec{r}, t) \tag{84}$$

to zerowy moment funkcji rozkładu gęstości prawdpodobieństwa. Jest to jednocześnie rozkład brzegowy w przestrzeni położeniowej.

• Pierwszy moment Scałkujmy równanie kinetyczne (79) po pędzie:

$$\partial_t f(\vec{r}, \vec{p}, t) + \vec{v}(\vec{p}) \cdot \nabla_{\vec{r}} f(\vec{r}, \vec{p}, t) = 0 \qquad / \int d^3 \vec{p}$$
$$\partial_t n(\vec{r}, t) + \int d^3 \vec{p} \ \vec{v}(\vec{p}) \cdot \nabla_{\vec{r}} f(\vec{r}, \vec{p}, t) = 0$$

Pamiętamy, że wyszliśmy z hamiltonianu, w którym zmienne \vec{r}, \vec{p} są niezależne (jesteśmy w przestrzeni μ , zatem:

$$\partial_t n(\vec{r}, t) + \nabla_{\vec{r}} \int d^3 \vec{p} \ \vec{v}(\vec{p}) f(\vec{r}, \vec{p}, t) = 0$$

gdzie:

$$\vec{j}(\vec{r},t) = \int d^3\vec{p} \ \vec{v}(\vec{p}) f(\vec{r},\vec{p},t) \tag{85}$$

to pierwszy moemnt funkcji rozkładu gęstości prawdopodobieństwa. Jest on interpretowany jako prąd.

4.2.4 Interpretacja

Równanie kinetyczne jako równanie ciągłości
 Równanie kinetyczne wyrażone przez momenty ma postać:

$$\partial_t n(\vec{r}, t) + \nabla_{\vec{r}} \vec{j}(\vec{r}, t) = 0 \tag{86}$$

W ten sposób nadaliśmy równaniu kinetycznemu strukturę **równania ciągłości** ("nic nie może zginąć").

 Funkcja rozkładu gęstości prawdopodobieństwa wyrażona przez deltę Diraca Z definicji:

$$\vec{j}(\vec{r},t) = \int d^3p \ \vec{v}(\vec{p})f(\vec{r},\vec{p},t) \tag{87}$$

Z drugiej strony, w teorii Lorentza założyliśmy, że prąd cząsteczkowy ma postać:

$$\vec{j}(\vec{r},t) = \sum_{i/1}^{N} \vec{v}_i(t)\delta(\vec{r} - \vec{r}_i(t))$$
(88)

Łącząc oba fakty, dostajemy:

$$f(\vec{r}, \vec{p}, t) = const \cdot \sum_{i/1}^{N} \delta(\vec{r} - \vec{r}_i(t)) \delta(\vec{p})$$
(89)

!! Ale wtedy:

$$\vec{j}(\vec{r},t) = const \int d^3p \ \vec{v}(\vec{p}) \sum_{i/1}^{N} \delta(\vec{r} - \vec{r}_i(t)) \delta(\vec{p})$$

$$(90)$$

$$\vec{j}(\vec{r},t) = const \int d^3p \ \vec{v}(\vec{p})\delta(\vec{p}) \sum_{i/1}^{N} \delta(\vec{r} - \vec{r}_i(t))$$

$$(91)$$

$$\vec{j}(\vec{r},t) = const \ \vec{v}(\vec{p} = \vec{0}) \sum_{i/1}^{N} \delta(\vec{r} - \vec{r}_i(t))$$
 (92)

Ile wynosi const.?

$$f(\vec{r}, \vec{p}, t) = const \cdot \sum_{i/1}^{N} \delta(\vec{r} - \vec{r}_i(t)) \delta(\vec{p}) / \int d^3r d^3p$$

$$N = const \cdot N$$

$$const = 1$$

Zatem:

$$f(\vec{r}, \vec{p}, t) = \sum_{i/1}^{N} \delta(\vec{r} - \vec{r}_i(t)) \delta(\vec{p})$$

$$(93)$$

Ale:

$$\vec{r}_i(t) = \vec{r}_{i0} + \frac{1}{m}\vec{p}_{i0}t = \vec{r}_{i0} + \vec{v}_{i0}t \tag{94}$$

zatem ostatecznie:

$$f(\vec{r}, \vec{p}, t) = \sum_{i/1}^{N} \delta(\vec{r} - [\vec{r}_{i0} + \vec{v}i0t])\delta(\vec{p})$$
(95)

• Interpretacja

Funkcja rozkładu gęstości prawdopodobieństwa przemieszcza się jako delta Diraca wzdłuż trajektorii fazowej w przestrzeni μ będącej rozwiązaniem kanonicznych równań Hamiltona.

Wn. Założyliśmy brak zderzeń i dostaliśmy to:

czyli prąd.