# CS677 Final Project

- All Pair Shortest Path

May.1.2019

By. Yiding Yang

#### 1, APSP Revisited

-What's the problem and why is it important

- Aiming to determinate the shortest distances between every pair of vertices in a directed graph
- The result in the form of matrix called distance matrix

What we can do with the distance matrix:

- Get the shortest path from every pair of vertices
- Base problem for many other problems

- Floyd-Warshall algorithm
  - an iteration algorithm over k(number of vertices)
  - relax the shortest distance for every pair of vertices by insert a new vertice
  - three for loops which runs in O(N^3) time

| <i>k</i> = 0 |   | j  |    |    |    |  |
|--------------|---|----|----|----|----|--|
|              |   | 1  | 2  | 3  | 4  |  |
| i            | 1 | 0  | œ  | -2 | 00 |  |
|              | 2 | 4  | 0  | 3  | 00 |  |
|              | 3 | œ  | ∞  | 0  | 2  |  |
|              | 4 | oo | -1 | oo | 0  |  |

| k = 1 |   |    | j            |    |    |  |  |
|-------|---|----|--------------|----|----|--|--|
|       |   | 1  | 2            | 3  | 4  |  |  |
| i     | 1 | 0  | <sub>∞</sub> | -2 | 00 |  |  |
|       | 2 | 4  | 0            | 2  | 00 |  |  |
|       | 3 | 00 | <sub>∞</sub> | 0  | 2  |  |  |
|       | 4 | 00 | -1           | 00 | 0  |  |  |

| k = 2 |     | j  |    |    |    |  |
|-------|-----|----|----|----|----|--|
| ĸ.    | - 2 | 1  | 2  | 3  | 4  |  |
|       | 1   | 0  | ∞  | -2 | 00 |  |
| i     | 2   | 4  | 0  | 2  | 00 |  |
|       | 3   | 00 | 00 | 0  | 2  |  |
|       | 4   | 3  | -1 | 1  | 0  |  |

| b . | = 3 |    | j  |    |   |  |  |
|-----|-----|----|----|----|---|--|--|
| κ - | - 3 | 1  | 2  | 3  | 4 |  |  |
|     | 1   | 0  | 00 | -2 | 0 |  |  |
|     | 2   | 4  | 0  | 2  | 4 |  |  |
| i   | 3   | 00 | 00 | 0  | 2 |  |  |
|     | 4   | 3  | -1 | 1  | 0 |  |  |

| k - | k = 4 |   | J  | i  |   |
|-----|-------|---|----|----|---|
| Κ.  | - 4   | 1 | 2  | 3  | 4 |
|     | 1     | 0 | -1 | -2 | 0 |
|     | 2     | 4 | 0  | 2  | 4 |
| i   | 3     | 5 | 1  | 0  | 2 |
|     | 4     | 3 | -1 | 1  | 0 |

<sup>\*</sup>picture from wikipedia

#### 3, Why is GPU suitable for APSP

- In place computation
  - potential low memory bandwidth
- Almost 100% computing
- An recursive algorithm which makes the compute for each pair of vertices independent
  - assign each pair of vertices to one thread without communication

## 4, Experiments setup

- Graph generation
  - random graph generated by Erdos-Renyi model
  - average degree is 6.5
    - doesn't influence the running time of algorithm unless we use a sparse version
  - number of vertices from 100 to 20000

#### 5, CPU Performance

- CPU version
  - Floyd-Warshall algorithm
  - exact a linear curve when we set the x and y-axes in log space



- Iteration version which is same as CPU
  - GPU version Floyd-Warshall
- Recursive version which make it more suitable for GPU
  - R-Kleene algorithm

Some improvement versions based on R-keene

version 1: GPU version of Floyd-warshall with global memory

- For each k, call GPU kernel
- each thread calculate one pair of vertices by relaxing the shortest path for all other vertices
- The GPU kernel will be called #vertices times

Using shared memory next?



Problem: Each thread needs to access one row and one col of the whole matrix to get the result which make it hard to use shared memory

319x

#### version 2: Recursive with global memory

Recursive R-Kleene algorithm B is more friendly for GPU R-Kleene(\*): 1, R-Kleene(A) 2, Update B using A min(d(i,k)+d(k,j)...)3, Update C using A 4, Update D using C and B 4, R-Kleene(D) 5, Update B using D 6, Update C using D 7, Update A using B and C \*

# version 2: Recursive with global memory continue

- The performance of the R-Kleene is no better than the Floyd-Warshall algo.
- But now, we can make use of shared memory



#### version 3: Recursive with shared memory

- For a single matrix minplus calculation, it is likes the matrix multiplication.
- We can now load a block of matrix once and calculate it's contribution to the target output block



#### version 4: Recursive with shared memory

- with larger blocksize (32)

- We can even improve the performance by simply making a larger blocksize
- We get a 1.65x speed up by change the blocksize from 16 to 32

Now, the problem is we have slow speed in small graph respect to the large one



#### version 5: Unroll the recursive

- The bottleneck for small graph is in the end of recursive where the overhead kernel launch cann't be ignored
- Unroll in the end of recursive
- When we get a matrix which is smaller than blocksize, we can just calculate the APSP by using floyd-warshall algo.
  - Now, we can load the whole matrix to shared memory



Finally, we get an almost linear curve in log space

- version of gpu-floyd-warshall
  - Used 12 registers, 336 bytes cmem[0]
- version with global memory
  - Used 32 registers, 385 bytes cmem[0], 4 bytes cmem[2]
- version with shared memory
  - Used 27 registers, 2048 bytes smem, 385 bytes cmem[0]
- version with shared memory and recursive unroll -threads per block increace to 32
  - Used 28 registers, 8192 bytes smem, 385 bytes cmem[0]
  - Used 12 registers, 4096 bytes smem, 344 bytes cmem[0]
- all of these versions have a 100% occupancy

## 7, A big picture



16 hours' computing can now be reduced to only 10 seconds