eng141-2023-01

Using rectangular vector components, determine the magnitude of the resultant force and its direction, measured counterclockwise from the positive x- axis. Let $F_1 = 400 \,\mathrm{N}$, $F_2 = 275 \,\mathrm{N}$, and $F_3 = 150 \,\mathrm{N}$. Let the angles be $\alpha = 70^\circ$ and $\beta = 120^\circ$.

The magnitude of the resultant force is $F_R = \underline{\hspace{1cm}} N$ and direction $\theta = \underline{\hspace{1cm}}^{\circ}$

Answer(s) submitted:

- 417.04
- 66.13

(correct)

2. (3 points)

If cable AB is 11 m long, determine the x, y, z coordinates of point A relative to the reference frame shown below, coordinates may be positive or negative, when the vector force F is:

$$F = [600i - 200j - 500k] N$$

The x, y, z coordinates of point A are $x = \underline{\hspace{1cm}} m, y = \underline{\hspace{1cm}} m,$ $z = \underline{\hspace{1cm}} m$

Answer(s) submitted:

- -8.18629
- 2.72876
- 6.82191

(correct)

3. (6 points)

Determine the magnitude and coordinate direction angles (α, β, γ) of the resultant force.

Let the lengths be $L_1 = 0.25m$, $L_2 = 1.1m$, $L_3 = 2.1m$, $L_4 = 3.25m$ and $L_5 = 1.6m$.

Let the Forces be $F_{AC} = 500N$ and $F_{AB} = 300N$.

Let the angle be $\theta = 30^{\circ}$.

The magnitude of the resultant force is: $F = \underline{\hspace{1cm}} N$.

The direction angles are: α $(x-dir) = __{\circ}$, β $(y-dir) = __{\circ}$ and γ $(z-dir) = __{\circ}$

Answer(s) submitted:

- 773.59
- 60.79
- 91.6158526
- 150.72

(correct)

4. (3 points)

Determine the tension developed in each cord required for equilibrium of the 30 kg block.

Let the angles be $\alpha = 45^{\circ}$ and $\beta = 35^{\circ}$.

The tension in each cord is: $F_{DE} = __N$, $F_{CD} = __N$, $F_{CB} = __N$, $F_{CA} = __N$

Answer(s) submitted:

- 512.9211755
- 420.1604295
- 339.5409

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

• 300.11459

(correct)

5. (6 points)

Three rods are sustaining a force F. Determine the force along each rod for equilibrium. The forces may be positive (tenstion) or negative (compression).

Let the lengths be $L_1 = 4.5m$, $L_2 = 4m$, $L_3 = 4.5m$, $L_4 = 6.5m$, $L_5 = 2.5m$, $L_6 = 6m$ and $L_7 = 5m$.

Let the Force be F = 950 N.

The tension in each cable is: $F_{AB} = \underline{\hspace{1cm}} N$, $F_{AC} = \underline{\hspace{1cm}} N$, $F_{AD} = \underline{\hspace{1cm}} N$

Answer(s) submitted:

- 598.2522
- 281.0594
- 684.8463

(correct)