CS/B.Tech/CSE/ODD/SEM-5/CS-501/2017-18

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: CS-501

DESIGN & ANALYSIS OF ALGORITHMS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP - A Multiple Choice Type Questions)

Choose the correct alternatives for the following:

 $10 \times 1 = 10$

- Which of the following property/properties is/are necessary for an algorithm?
 - Definiteness a)
- Effectiveness b)
- Both (a) and (b) d) None of these.
- The total running time of matrix 11) chain multiplication of n matrices is
 - $O(n^4)$ **a**)
- b) $O(n^3)$
- $O(n^2)$
- O(n). d)
- The sub-problems in Divide and Conquer are considered to be
 - distinct
- overlapping
- large size
- small size.

50101

Turn over

CS/B.Tech/CSE/ODD/SEM-5/CS-501/2017-18

1V)	which of the following algorithm design techniques is used in merge sort?								
	a) Dynamic programming								
	b) Backtracking								
	c)	Divide and conqu	ıer		•				
	d) Greedy method.								
v)	Tim		for	recurrence	relation				
* •	T(n) = 2T(n-1) + c is								
	a)	$O(n^2)$	b)	$O(\log n)$	•				
	c)	$O(n \log n)$	d)	$O(2^n)$.					
vi)	Lower bound of time complexity for any comparison								
	bas	based sorting algorithm is							
	a)	O(n)	b)	$O(n \log n)$	•				
	c)	$O(\log n)$	d)	$O(n^2)$.					
vii)	Ω notation provides asymptotic								
	a)	upper bound							
	b)	lower bound							
-	c)	tight bound	•	•	•				
	d) one that switched between (a) and (b).								
viii)	Locally best computation is done in								
•	a) Dynamic programming								
	b) Greedy method								
	c) both (a) and (b)								
	d)	none of these.	· -		·				
ix)	Which of the following algorithm design techniques								
	is used for solving graph colouring problem?								
	a) Divide and conquer								
	b) Backtrackingc) Dynamic programming								
	-								
	d)	Greedy method.	•						

- x) By applying Strassen's algorithm we can multiply two $n \times n$ matrices in
 - a) $O(n^3)$ time
- b) O(n) time
- c) $O(n^n)$ time
- d) $O(n^{\log 7})$ time.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Find the best and worst case time complexity of binary search.
- 3. Write the significance of different asymptotic notations (Big-O, Big-omega, Big-theta) with graphical analysis.
- 4. Prove that $n! = o(n^n)$.
- 5. Discuss Strassen's matrix multiplication procedure and show that the time complexity is reduced from the conventional multiplication.
- 6. Write a comparison between BFS and DFS algorithms.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Compare Dynamic programming and Greedy approach.
 - b) Discuss Bellman-Ford's algorithm for single source shortest path problem.
 - c) Prove that the time complexity of Bellman-Ford's algorithm is $\Theta(VE)$.
- 8. a) Which one is better and why?

5

- i) Max Min calculation using divide & conquer approach
- ii) Max Min calculation using normal approach.
- b) Given the four matrices $P_{10\times20}, Q_{20\times50}, R_{50\times1}, S_{1\times100}$. Find the optimal sequence for the computation of multiplication operation. Write the algorithm also.

5 + 5

[Turn over

CS/B.Tech/CSE/ODD/SEM-5/CS-501/2017-18

9. What do you mean by chromatic number of a graph? Write down Floyd's algorithm to find all paired shortest paths of a graph. What do you mean by greedy method? Consider the following table that consist of some items with weight and cost values:

i	Itoma	To the cost values :						
	Items	I_1	I_2	I_3	I_{A}			
	Weight	5	10	15	22	75		
	Cost	30	40	45	77	25		
_	If the lev	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				90		

If the knapsack capacity W = 60 kg, find optimal solution using greedy criteria and write an algorithm for doing so. 1 + 5 + 2 + 7

10. Differentiate between Prim's and Kruskal's algorithm. Find the minimum cost spanning tree using Prim's algorithm for the graph given below. Write down the complexity of Prim's and Kruskal's algorithm.

3 + 5 + 7

- 11. Write short notes on any three of the following:
 - a) 8-Queens problems
 - b) Hamiltonian cycle
 - c) NP-hard and NP-complete classes
 - d) BFS vs DFS
 - e) Ford-Fulkerson algorithm.