Budget Overruns: First Implementation of QuickPay (2009-2012)

Mar 04, 2022

1 Note

- Sample restricted to projects for which start dates matches the one in API
 - This is done by using first reported "action_date" and "date_signed"
- Below is the definition of base_and_all_options_value from the data dictionary:
 - The change (from this transaction only) to the potential contract value (i.e., the base contract and any exercised or unexercised options).
- This means that every observation in raw data shows incremental change from previous budget. So some of the values can be zero.
- We, therefore, need to calculate the new budget at each point in time (by adding all previous values). We did this in the resampling step, but mentioning here for reference.
- This is different from calculation of delays, where period_of_performance_current_end_date indicated the new deadline of the project.

2 Budget Overrun over Time

2.1 Normalized Overrun

3 Notation

- Project i, Year-Quarter t
- X_i denotes project level controls: initial duration, initial budget, number of offers received
- $\mu_t, \theta_{firm}, \lambda_{task}$: Year-Quarter, Firm, and Product/Service code Fixed effects
- $\bullet\,$ All continuous variables are winsorized at the 5% level

$$Treat_i = \begin{cases} 1, & \text{if project } i \text{ is a small business} \\ 0, & \text{otherwise} \end{cases}$$

$$Post_t = \begin{cases} 1, & \text{if year-quarter } t > \text{ April 27, 2011} \\ 0, & \text{otherwise} \end{cases}$$

4 Baseline Regressions

$$Overrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \epsilon_{it}$$

$$Overrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

Table 1: Quickpay 2009-2011

	$Overrun_{it}$ (in days)				
	(1)	(2)	(3)	(4)	(5)
$Treat_i$	-329.68^{***} (25.53)	-81.18^{***} (25.95)	-75.66^{***} (25.93)	-42.03 (26.51)	-24.14 (26.63)
$Post_t$	143.11*** (23.43)	-299.19^{***} (39.87)			
$Treat_i \times Post_t$	-3.92 (29.71)	21.68 (30.95)	18.52 (30.93)	19.51 (30.48)	19.29 (30.52)
Constant	1,014.64*** (20.39)	820.03*** (32.46)			
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes	Yes	Yes
Project Age Tercile	No	Yes	Yes	Yes	Yes
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes
Task Fixed Effects	No	No	No	Yes	Yes
Industry fixed effects	No	No	No	No	Yes
Observations	$287,\!530$	$263,\!488$	$263,\!488$	$263,\!488$	$263,\!488$
R^2	0.003	0.06	0.07	0.12	0.12
Adjusted R ²	0.003	0.06	0.07	0.11	0.11

Note:

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

5 Percentage Overrun

 $PercentOverrun_{it} = \beta_0 + \beta_1 Treat_i + \beta_2 Post_t + \beta_3 (Treat_i \times Post_t) + e_{it}$

$$PercentOverrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t)$$

$$+ X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

5.1 Percentage Overrun over time

- Sample restricted to projects with modification zero when they first appeared in our sample.
- $PercentOverrun_{it} = 100 \times Overrun_{it}/Budget_{i,t-1}$

5.1.1 Normalized Overrun

Table 2: Effect of QuickPay on project overrun rates

	$PercentOverrun_{it}$				
	(1)	(2)	(3)	(4)	(5)
$Treat_i$	-0.09^{***} (0.01)	-0.05^{***} (0.01)	-0.05^{***} (0.01)	-0.01 (0.01)	-0.001 (0.01)
$Post_t$	-0.01 (0.01)	-0.10^{***} (0.01)			
$Treat_i \times Post_t$	$0.01 \\ (0.01)$	$0.01 \\ (0.01)$	$0.01 \\ (0.01)$	0.0002 (0.01)	0.001 (0.01)
Constant	0.29*** (0.01)	0.43*** (0.01)			
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes	Yes	Yes
Project age	No	Yes	Yes	Yes	Yes
Year-Quarter fixed effects	No	No	Yes	Yes	Yes
Task fixed effects	No	No	No	Yes	Yes
Industry fixed effects	No	No	No	No	Yes
Observations	279,512	$258,\!150$	$258,\!150$	$258,\!150$	$258,\!150$
R^2	0.002	0.03	0.04	0.10	0.11
Adjusted R^2	0.002	0.03	0.04	0.10	0.10

Note:

 $\label{eq:proposition} ^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ Each observation is a project-quarter.

SEs are robust and clustered at the project level.

Relative Overrun 6

Relative overruns over time

- Sample restricted to projects with modification zero when they first appeared in our sample.
- $RelativeOverrun_{it} = 100 \times RelativeOverrun_{it}/IntialBudget_i$

6.1.1 Normalized overrun

Table 3: Effect of QuickPay on project overrun rates

	$Relative Overrun_{it}$					
	(1)	(2)	(3)	(4)	(5)	
$Treat_i$	-0.10^{***}	-0.09^{***}	-0.09^{***}	-0.01^*	-0.01	
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	
$Post_t$	-0.01	-0.10***				
	(0.01)	(0.01)				
$Treat_i \times Post_t$	0.02^{*}	0.02^{*}	0.02^{*}	-0.005	-0.004	
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	
Constant	0.34***	0.54***				
	(0.01)	(0.01)				
Duration, Bids	No	Yes	Yes	Yes	Yes	
$Post_t \times (Duration, Bids)$	No	Yes	Yes	Yes	Yes	
Project age	No	Yes	Yes	Yes	Yes	
Year-Quarter fixed effects	No	No	Yes	Yes	Yes	
Task fixed effects	No	No	No	Yes	Yes	
Industry fixed effects	No	No	No	No	Yes	
Observations	$287,\!530$	$263,\!488$	263,488	263,488	263,488	
R^2	0.002	0.01	0.02	0.10	0.10	
Adjusted R ²	0.002	0.01	0.02	0.09	0.09	

Note:

 $\label{eq:proposition} ^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ Each observation is a project-quarter.

SEs are robust and clustered at the project level.