haoran

Haoran Hu 2019-5-14

```
heart_disease = read_csv("..\\data\\heart.csv")
## Parsed with column specification:
## cols(
##
     age = col_double(),
##
     sex = col_double(),
##
     cp = col_double(),
##
     trestbps = col_double(),
     chol = col_double(),
##
##
     fbs = col_double(),
     restecg = col double(),
##
##
     thalach = col_double(),
##
     exang = col_double(),
##
     oldpeak = col_double(),
##
     slope = col_double(),
##
     ca = col_double(),
##
     thal = col_double(),
##
     target = col_double()
## )
set.seed(1)
trRows = createDataPartition(heart_disease$target, p = .75, list = FALSE)
train = heart_disease[trRows,]
test = heart_disease[-trRows,]
train = train %>%
    mutate(cp=as.factor(cp),
           restecg=as.factor(restecg),
           slope=as.factor(slope),
           thal=as.factor(thal))
train.x <- model.matrix(target~.,train)[,-1]</pre>
train.y <- train$target</pre>
test = test %>%
    mutate(cp=as.factor(cp),
           restecg=as.factor(restecg),
           slope=as.factor(slope),
           thal=as.factor(thal))
test.x <- model.matrix(target~.,test)[,-1]</pre>
test.y <- test$target</pre>
train.hc = train.x %>% as.data.frame() %>%
    mutate(target = as.character(train$target),
           num =as.character(1:228)) %>%
    mutate(name = paste(target,".", num)) %>%
    select(-num, -target) %>%
    column_to_rownames(var = "name") %>% scale()
```

Cluster Dendrogram

Tree

rpart.plot(tree.class\$finalModel)

Bagging

Random Forest

```
rf.grid <- expand.grid(mtry = 1:7,
                       splitrule = "gini",
                       min.node.size = seq(1,100, by = 2))
set.seed(1)
rf.class <- train(train.x, train.y,</pre>
                  method = "ranger",
                  tuneGrid = rf.grid,
                  metric = "ROC",
                  trControl = ctrl,
                  importance = "impurity")
ggplot(rf.class, highlight = TRUE) +
viridis::scale_color_viridis(
discrete = TRUE
) + scale_shape_manual(values = seq(1,7))
## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.
## Scale for 'shape' is already present. Adding another scale for 'shape',
## which will replace the existing scale.
```



```
barplot(sort(ranger::importance(rf.class$finalModel), decreasing = FALSE),
las = 2, horiz = TRUE, cex.names = 0.7,
col = colorRampPalette(colors = c("darkred","white","darkblue"))(18))
```


Boosting

```
boost.grid <- expand.grid(n.trees = seq(25, 1600, by = 25),
                          interaction.depth = 1:6,
                          shrinkage = c(0.019, 0.022, 0.025, 0.028,
                                        0.031, 0.034, 0.037, 0.040),
                          n.minobsinnode = 1)
set.seed(1)
# Adaboost loss function
boost.class = train(train.x, train.y,
                    tuneGrid = boost.grid,
                    trControl = ctrl,
                    method = "gbm",
                    distribution = "adaboost",
                    metric = "ROC",
                    verbose = FALSE)
ggplot(boost.class, highlight = TRUE) +
viridis::scale_color_viridis(
discrete = TRUE
) + scale_shape_manual(values = seq(0,10))
```

Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.

Scale for 'shape' is already present. Adding another scale for 'shape',
which will replace the existing scale.

summary(boost.class\$finalModel, las = 2, cBars = 19, cex.names = 0.6)

```
thatich oldpeak cs that control to the control to t
```

```
##
                 var
                        rel.inf
## thalach
            thalach 13.7570379
## oldpeak
            oldpeak 11.4426242
                  ca 11.2340461
## ca
## thal2
               thal2 11.2018992
## age
                 age 9.3578463
## trestbps trestbps 9.1552339
               chol 7.9679361
## chol
## sex
                 sex 5.8183411
## thal3
               thal3 5.1081799
               exang 4.4596854
## exang
                 cp2 3.8395550
## cp2
## restecg1 restecg1 2.4312568
## slope2
              slope2 1.3663795
## cp1
                 cp1 1.1477351
## cp3
                 ср3 0.7475945
## fbs
                 fbs 0.7196946
## slope1
              slope1 0.2449543
## restecg2 restecg2 0.0000000
resamp = resamples(list(boost = boost.class, rf = rf.class,
                        bagging = bagging.class, tree = tree.class))
summary(resamp)
##
## Call:
## summary.resamples(object = resamp)
```

##

##

Models: boost, rf, bagging, tree

Number of resamples: 10

```
## ROC
##
                        1st Qu.
                                   Median
                                                Mean
                                                       3rd Qu.
                Min.
                                                                    Max. NA's
## boost
           0.8106061 0.8605372 0.9242424 0.9130165 0.9700413 1.0000000
           0.8106061 0.8886019 0.9204545 0.9109504 0.9545455 0.9752066
                                                                             0
  bagging 0.7954545 0.8522727 0.8942837 0.8893939 0.9318182 0.9696970
           0.7537879 0.7926136 0.8162879 0.8341942 0.8747417 0.9583333
                                                                             0
##
## Sens
##
                Min.
                        1st Qu.
                                   Median
                                                Mean
                                                       3rd Qu.
                                                                     Max. NA's
           0.5833333 \ 0.7500000 \ 0.8257576 \ 0.8143939 \ 0.8901515 \ 1.0000000
## boost
           0.7500000 0.8219697 0.8712121 0.8643939 0.9166667 1.0000000
                                                                             0
## bagging 0.6666667 0.7670455 0.8257576 0.8053030 0.8333333 0.9166667
                                                                             0
           0.6666667 0.7500000 0.8674242 0.8401515 0.9166667 1.0000000
                                                                             0
##
## Spec
##
                Min.
                        1st Qu.
                                   Median
                                                Mean
                                                       3rd Qu.
           0.5454545 \ 0.7272727 \ 0.8181818 \ 0.7818182 \ 0.8181818 \ 0.9090909
## boost
           0.5454545 0.7500000 0.8181818 0.7727273 0.8181818 0.9090909
## bagging 0.6363636 0.7500000 0.8181818 0.7909091 0.8181818 0.9090909
                                                                             0
           0.5454545 0.6590909 0.7727273 0.7454545 0.8181818 0.9090909
```

bwplot(resamp, metric = "ROC")

