Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет Систем управления и робототехники

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Робототехника» на тему «Порты ввода-вывода и условия»

Работу выполнили:
Овчинников П.А., R3341
Румянцев А.А., R3341
Алёхова М.С., R3341
Дьячихин Д.Н., R3380
Простак И.К., R3340

Содержание

Цели выполнения работы	3
Код конечной программы	
Описание команд	4
Таблица сохранённых точек	5
Фотографии расположения необходимых элементов робототехническо	ой
ячейки во время работы	6
Четыре фотографии, иллюстрирующие этапы выполнения программы	7
Выводы	10

Цели выполнения работы

Написать программу с бесконечным циклом проверки деталей в ряду из трёх единиц. Манипулятор должен подходить к месту правее предполагаемого расположения детали, по датчику на захватном устройстве определять наличие детали, в случае наличия детали на месте — подняться на 100 мм и опуститься в исходное положение, переместиться в следующее положение. При запуске программы робот должен стоять неподвижно; бесконечный цикл запускается путем нажатия кнопки «Reset» на пользовательской панели под дверью ячейки. Выход из цикла осуществляется путем нажатия кнопки «Stop» на пользовательской панели. В программе использовать только одну исходную точку в таблице сохраненных точек. Остальные положения определять смещениями.

Код конечной программы

Рисунок 1 – Фото программы

```
SERVO ON
JOVRD 100
PX = (-75.0, +0.0, +0.0, +0.0, +0.0, +0.0)
WAIT M IN (3) = 1
DEF ACT 1, M IN(1)=0 GOSUB *SUBSTOP
ACT 1 = 1
WHILE 1
     FOR IX=0 TO 2
         MOV P1+PX*IX
          DLY 0.1
          IF M IN (900) = 1 THEN
               MOV P1+PX*IX, -100
               MOV P1+PX*IX
          ENDIF
     NEXT IX
WEND
END
*SUBSTOP
SERVO OFF
END
```

Описание команд

- SERVO ON включение двигателей.
- JOVRD 100 скорость движения в процентах от максимальной.
- РХ= (+75.0, +2.0, +0.0, +0.0, +0.0, +0.0) вспомогательная переменная координат для создания настраиваемого смещения координат, где в скобках записываются декартовые координаты смещения X, Y, Z, A, B, C соответственно.
- WAIT $M_{IN}(3) = 1$ приостановка выполнения программы и ожидание сигнала «1» на дискретном порте «3».
- WHILE 1 начало бесконечного цикла.
- WEND завершение цикла с предусловием.
- \bullet FOR IX=0 TO 2 начало выполнения цикла, IX переменная итерации цикла.

- NEXT IX окончание цикла.
- MOV P1+PX*IX движение в точку P1+PX*IX из таблицы сохраненных точек.
- MOV P1+PX*IX, -100 движение в точку P1+PX*IX из таблицы сохраненных точек со смещением 100 мм вверх по оси Z.
- DLY 0.1 пауза выполнения программы в секундах.
- IF M_IN (900) = 1 THEN начало условия при наличии «0» на дискретном порте «1».
- \bullet ENDIF завершение условия.
- DEF ACT 1, M_IN(3)=0 GOSUB *SUBSTOP объявление прерывания №1 при условии наличия «0» на дискретном порте «3» с вызовом процедуры *SUBSTOP. Объявляется в начале программы.
- ACT 1 = 1 активация прерывания №1.
- *SUBSTOP объявление процедуры *SUBSTOP. Пишется после основного кода программы.
- SERVO OFF выключение двигателей.
- END завершение программы, обязательно размещается в конце файла.

Таблица сохранённых точек

No	Position	Orientation	Comment	
P1	246.3,-323.7,98.4	177,-4,45,R,A,N		

Рисунок 2 – Сохраненные точки

Таблица 1 – Сохраненные точки

No	Position	Orientation	Comment
P1	246.3, -323.7, 98.4	177, -4, 45, R, A, N	

Фотографии расположения необходимых элементов робототехнической ячейки во время работы

Рисунок 3 — Используемые кнопки («Reset» и «Stop») на пользовательской панели под дверью ячейки

Рисунок 4 – Соответствие кнопок и датчика портам ввода

Рисунок 5 – Расположение необходимых элементов

Четыре фотографии, иллюстрирующие этапы выполнения программы

Рисунок 6 – Запуск программы нажатием кнопки «Reset»

Рисунок 7 – Датчик пропустил ячейку без детали

Рисунок 8 – Датчик обнаружил деталь, манипулятор поднялся на 100 мм

Выводы

В результате выполнения лабораторной работы мы:

- познакомились с портами ввода-вывода и условными операторами;
- написали программу на языке MELFA BASIC, используя циклы, условные операторы, преобразование координат и значения состояния портов.