Professional Pump Selection Analysis

Project Information

Prepared For: Valued Customer

Report Date: June 07, 2025

Generated By: Al Selection System

Executive Summary

Confidence Level: Moderate

The 5 K with the 356.00mm impeller is an excellent match, operating at 59.0% efficiency for the required duty, ensuring optimal energy use and reliability.

Site Requirements

PARAMETER	VALUE	UNITS
Flow Rate	342.0	m³/hr
Total Head	22.9	m
Liquid Type	water	-
Application	general	-
Temperature	20	°C
Specific Gravity	1.00	-

Selected Pump Specification

General Information

Manufacturer:	APE Pumps
Model:	
Series:	K Series - Standard Centrifugal
Pump Code:	5 K
Description:	APE K Series - Standard Centrifugal pump designed for reliable water handling applications
Construction Type:	
Orientation:	
Impeller Size:	
Nominal Speed:	
Quality Rating:	

Performance Analysis

Operating Point Performance

PARAMETER	REQUIRED	ACHIEVED	STATUS
Flow Rate	342.0 m³/hr	342.0 m³/hr	✓ Met
Total Head	22.9 m	22.9 m	✓ Met
Efficiency	-	59.0%	Acceptable
Power Consumption	-	114.2 kW	Optimized
NPSHr	< NPSHa	0.0 m	Not Available

Technical Reasoning & Selection Rationale

Best Efficiency Point (BEP) Analysis

Selection Criteria Matching

Application Suitability

Alternative Options Considered

MODEL	MANUFACTURER	EFFICIENCY	POWER	SCORE	KEY DIFFERENCE
5 K	APE Pumps	59.0%	114.2 kW	83.6/100	Lower overall suitability score
6 K 6 VANE	APE Pumps	74.8%	147.5 kW	62.7/100	Lower overall suitability score

Recommendations & Next Steps

Important Recommendations:

- 1. Proceed with detailed pump sizing and mechanical specifications
- 2. Verify available NPSH at installation site meets pump requirements
- 3. Consider motor sizing based on calculated power requirements
- 4. Review installation requirements and piping system design
- 5. Schedule factory acceptance testing if required

Performance Curves

Operating point for selected impeller (356.00mm) shown in red. (*
Operating point involves extrapolation beyond tested curve range)
Comprehensive performance analysis showing head, efficiency, power, and NPSH characteristics for the 5 K pump at the specified operating conditions.

Advanced Pump Engineering Solutions

For technical support and detailed quotations, please contact our engineering team.

This report was generated by the APE Pumps AI Selection System on June 07, 2025 at 15:55.