Introdução à expansão de caos polinomial

Propagação de incertezas

$$Y = \mathcal{M}(X)$$

Propagação de incertezas

$$(Y) = \mathcal{M}(X)$$

$$+ Var[Y] < \infty$$

Expansão em série

$$Y = \mathcal{M}(X)$$

$$Var[Y] < \infty$$
. Espaço de Hilbert

Expansão em série

$$Y = \mathcal{M}(X) = \sum_{j=0}^{\infty} y_j Z_j$$
 $Var[Y] < \infty$. Espaço de Hilbert

Metamodelagem - Por que fazer isso?

MODELO ORIGINAL

Leva horas para rodar

EXPANSÃO EM CAOS POLINOMIAL

•É capaz de rodar, com precisão considerável, cerca de 1 milhão de análises em segundos.

Expansão em série

$$Y = \sum_{j=0}^{\infty} y_j Z_j$$

Base

Coordenadas ou Coeficientes

 Espaço dotado de conceito geométricos como distância, ângulos e assim por diante;

- Espaço dotado de conceito geométricos como distância, ângulos e assim por diante;
- Normalmente, diz-se que esse tipo de espaço é dotado de produto interno, que é definido como:

$$\langle \pi_k, \pi_l \rangle_w = \int_{D_f} \pi_k(x) \, \pi_l(x) w(x) \, dx$$

- Espaço dotado de conceito geométricos como distância, ângulos e assim por diante;
- Normalmente, diz-se que esse tipo de espaço é dotado de produto interno, que é definido como:

$$\langle \pi_k, \pi_l \rangle_w = \int_{D_f} \pi_k(x) \, \pi_l(x) w(x) dx$$

- Espaço dotado de conceito geométricos como distância, ângulos e assim por diante;
- Normalmente, diz-se que esse tipo de espaço é dotado de produto interno, que é definido como:

$$\langle \pi_k, \pi_l \rangle_w = \int_{D_f} \pi_k(x) \, \pi_l(x) w(x) \, dx$$

 Os elementos deste espaço abstrato são normalmente chamados de vetores, o que nos leva a uma analogia proveitosa!

Base - \mathbb{R}^n

Base - \mathbb{R}^n

Ortogonais entre si:

$$\hat{\imath} \cdot \hat{\jmath} = \hat{\imath} \cdot \hat{k} = \hat{\jmath} \cdot \hat{k} = 0$$

Comprimento unitário;

Base - \mathcal{H}^{n}

Ortogonais entre si:

$$\langle \pi_k, \pi_l \rangle_w = \int_{D_f} \pi_k(x) \, \pi_l(x) w(x) \, dx$$

Base - \mathcal{H}^{n}

Ortogonais entre si:

$$\langle \pi_k, \pi_l \rangle_w = \int_{D_f} \pi_k(x) \, \pi_l(x) w(x) dx$$
PDF

Base - \mathcal{H}^{n}

Ortogonais entre si:

$$\langle \pi_k, \pi_l \rangle_w = \int_{D_f} \pi_k(x) \, \pi_l(x) w(x) dx$$
PDF

Bases já conhecidas!

Base - \mathcal{H}^{n}

Type of variable	Distribution	Orthogonal polynomials	Hilbertian basis $\psi_k(x)$
Uniform	$1_{]-1,1[}(x)/2$	Legendre $P_k(x)$	$P_k(x)/\sqrt{\frac{1}{2k+1}}$
Gaussian	$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$	Hermite $H_{e_k}(x)$	$H_{e_k}(x)/\sqrt{k!}$
Gamma	$x^a e^{-x} 1_{\mathbb{R}^+}(x)$	Laguerre $L_k^a(x)$	$L_k^a(x)/\sqrt{\frac{\Gamma(k+a+1)}{k!}}$
Beta	$1_{]-1,1[}(x) \frac{(1-x)^a(1+x)^b}{B(a) B(b)}$	Jacobi $J_k^{a,b}(x)$	$J_k^{a,b}(x)/\mathfrak{J}_{a,b,k}$
	$\mathfrak{J}^2_{a,b,k} = \frac{2^{a+b+1}}{2k+a+b+1} \frac{\Gamma(k+a+1)\Gamma(k+b+1)}{\Gamma(k+a+b+1)\Gamma(k+1)}$		

Base - \mathcal{H}^n

Type of variable	Distribution	Orthogonal polynomials	Hilbertian basis $\psi_k(x)$
Uniform	$1_{]-1,1[}(x)/2$	Legendre $P_k(x)$	$P_k(x)/\sqrt{\frac{1}{2k+1}}$
Gaussian	$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$	Hermite $H_{e_k}(x)$	$H_{e_k}(x)/\sqrt{k!}$
Gamma	$x^a e^{-x} 1_{\mathbb{R}^+}(x)$	Laguerre $L_k^a(x)$	$L_k^a(x)/\sqrt{\frac{\Gamma(k+a+1)}{k!}}$
Beta	$1_{]-1,1[}(x) \frac{(1-x)^a(1+x)^b}{B(a) B(b)}$	Jacobi $J_k^{a,b}(x)$	$J_k^{a,b}(x)/\mathfrak{J}_{a,b,k}$
		$\mathfrak{J}^2_{a,b,k} = rac{2^{a+b+1}}{2k+a+b+1}$	$\frac{\Gamma(k+a+1)\Gamma(k+b+1)}{\Gamma(k+a+b+1)\Gamma(k+1)}$

Base - \mathcal{H}^{n}

Type of variable	Distribution	Orthogonal polynomials	Hilbertian basis $\psi_k(x)$
Uniform	$1_{]-1,1[}(x)/2$	Legendre $P_k(x)$	$P_k(x)/\sqrt{\frac{1}{2k+1}}$
Gaussian	$\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$	Hermite $H_{e_k}(x)$	$H_{e_k}(x)/\sqrt{k!}$
Gamma	$x^a e^{-x} 1_{\mathbb{R}^+}(x)$	Laguerre $L_k^a(x)$	$L_k^a(x)/\sqrt{\frac{\Gamma(k+a+1)}{k!}}$
Beta	$1_{]-1,1[}(x)\frac{(1-x)^a(1+x)^b}{B(a)B(b)}$	Jacobi $J_k^{a,b}(x)$	$J_k^{a,b}(x)/\mathfrak{J}_{a,b,k}$
l 		$\mathfrak{J}^2_{a,b,k} = rac{2^{a+b+1}}{2k+a+b+1}$	$\frac{\Gamma(k+a+1)\Gamma(k+b+1)}{\Gamma(k+a+b+1)\Gamma(k+1)}$

Coordenadas ou Coeficientes - Rⁿ

$$\vec{v} = 3\vec{i} + 4\vec{j} + 3\vec{k}$$

Coordenadas ou Coeficientes - Rⁿ

$$\vec{v} = 3\vec{i} + 4\vec{j} + 3\vec{k}$$

Produto interno!

$$v_x = \vec{v} \cdot \vec{i}$$
 $v_y = \vec{v} \cdot \vec{j}$
 $v_z = \vec{v} \cdot \vec{k}$

Coordenadas ou Coeficientes - \mathcal{H}^{n}

$$y_{\alpha} = \int_{D_{x}} \mathcal{M}(x) \, \psi_{\alpha}(x) f_{x}(x) \, dx$$

Coeficientes: Métodos de Projeção

$$y_{\alpha} = \int_{D_{x}} \mathcal{M}(x) \, \psi_{\alpha}(x) f_{x}(x) \, dx$$

Solução por integração numérica

- Simulação de Monte Carlo;
- Quadratura Gaussiana;

Truncagem

$$Y = \mathcal{M}(X) = \sum_{\alpha=0}^{\infty} y_{\alpha} \psi_{\alpha} \approx \sum_{\alpha=0}^{N} y_{\alpha} \psi_{\alpha}$$

Truncagem

TRUNCAGEM PADRÃO

O valor máximo de N, nessa situação, é dado por:

$$N = \binom{M+p}{p}$$

TRUNCAGEM HIPERBÓLICA (q-NORM)

Essa situação escolhe todos os índices α que satisfaçam $\|\alpha\|_q \leq p$, onde:

$$\|\alpha\|_q = \left(\sum_{i=1}^M \alpha_i^q\right)^{\frac{1}{q}}$$

Truncagem

TRUNCAGEM PADRÃO

O valor máximo de N, nessa situação, é dado por:

$$N = \binom{M+p}{p}$$

TRUNCAGEM HIPERBÓLICA (q-NORM)

Essa situação escolhe todos os índices α que satisfaçam $\|\alpha\|_q \leq p$, onde:

$$\|\alpha\|_q = \left(\sum_{i=1}^M \alpha_i^q\right)^{\frac{1}{q}}$$

Coeficientes: Métodos de regressão

Mínimos quadrados;

$$Y^{PC} = \sum_{\alpha=0}^{N} y_{\alpha} \psi_{\alpha}$$

Minimização de resíduo;

Validação cruzada;

Propriedade da expansão

$$y_{\alpha} = \int_{\Omega_{x}} \mathcal{M}(x) \, \psi_{\alpha}(x) f_{x}(x) \, dx$$

$$y_{0} = \int_{\Omega_{x}} \mathcal{M}(x) \, f_{x}(x) \, dx$$

Propriedade da expansão

$$Var[Y^{PC}] = E[(Y^{PC} - y_0)^2]$$

$$Var[Y^{PC}] = E\left[\left(\sum_{\alpha=0}^{N} y_{\alpha}\psi_{\alpha} - y_{0}\right)^{2}\right]$$

$$Var[Y^{PC}] = \sum_{\alpha=1}^{N} y_{\alpha}^{2}$$