Tutorial 9: The Assignment 4

Qu Xiaofeng, Teaching Asistant

COMP210 Discrete Structure

November 11, 2011

Table of Contents

- Review of Algorithm & Counting methods
- 2 Problems
 - Problem 1
 - Problem 4
 - Problem 5.1
 - Problem 6
- 3 Problems cont.
 - Problem 10
 - Problem 12.2
 - Problem 14.1

Pseudo Code of Algorithms

- Algorithms are recipes to solve problems
 - Finite, precise
- For, while, if ... then ..., if ... else if ... then ...
- Recursive algorithms
 - A routine that calls itself (with a reduced input)

Algorithmic Complexity

- Measures the # of basic operations
 - A function of input size
- Asymptotic notation (Big-O, Big- Ω , Big- Θ , small-o, small- ω)
 - Definitions
 - Finding the dominating terms
 - Write functions in forms of the asymptotic notations and compare their complexity

Big-O definition

DEF: Let f, g be functions with domain $\mathbf{R}_{\geq 0}$ or \mathbf{N} and codomain \mathbf{R} . If there are constants C and k such

$$\forall x > k, |f(x)| \leq C \cdot |g(x)|$$

then we write:

$$f(x) = O(g(x))$$

• Big- Θ : f(x) = O(g(x)) & g(x) = O(f(x))

Rule of thumbs

- First, for input size n, determine the # of basic operations as f(n)
- Find the dominating term in f(n)
- The following functions are in growing order of complexity

$$\frac{1}{x}$$
, $\ln x$, x , x^e , e^x , x^x

Counting methods

- Multiplication principle
 - Count in stages
- Addition principle
 - Divide the original set into disjoint sets
- Inclusion-exclusion principle
 - Generalization of the addition principle to overlapping sets
- Pigeon hole principle
 - Given N pigeon, k holes, at least one hole contains N/k pigeons
 - Can also solve the inverse problem, how big N needs to be such that for k holes, at least one hole contains N/k pigeons

Problem 1

Write an algorithm that reverses a string $s_1, ..., s_n$. Example: If the sequence is AMY BRUNO ELIE, the reversed sequence is ELIE BRUNO AMY.

Problem 1 cont.

Algorithm 1 Reverse string s

```
Input: String s, where s ends with EOL
 1: i \leftarrow 1, word\_cnt \leftarrow 0 {Parsing}
 2: while s(i) \neq EOL do
       while s(i) = " \ " do
         i \leftarrow i + 1
 4.
 5.
       end while
       if s(i) \neq EOL then
          word\_cnt \leftarrow word\_cnt + 1, char\_cnt \leftarrow 1
 7:
          while s(i) \neq EOL and s(i) = " \Box " do
 8:
            word[word\_cnt][char\_cnt] \leftarrow s(i)
 9:
            char\_cnt \leftarrow char\_cnt + 1, i \leftarrow i + 1
10:
          end while
11:
12:
       end if
13: end while
14: for i \leftarrow word\_cnt to 1 do {Output}
       print word[i]
15:
16: end for
```

Common Growth Functions

Table: Common Growth Functions (Table 4.3.3)

Theta Form	Name
$\Theta(1)$	Constant
$\Theta(\lg\lg n)$	Log log
$\Theta(\lg n)$	Log
$\Theta(n)$	Linear
$\Theta(n \lg n)$	$n \log n$
$\Theta(n_2)$	Quadratic
$\Theta(n_3)$	Cubic
$\Theta(n_k)$	Polynomial
$\Theta(c_n)$	Exponential
$\Theta(n!)$	Factorial

Problem 4.1

Select a theta notation from Table 4.3.3 for $3n^2 + 2n \lg n$.

$$0 \le \lg n \le n$$
 for all $n \ge 1$
 $0 \le 2n \lg n \le 2n^2$ for all $n \ge 1$

Then the dominating term is $3n^2$.

$$f(n) = 3n^{2} + 2n \lg n \ge 3n^{2} = C_{1}n^{2}, \text{ where } C_{1} = 3$$

$$f(n) = O(n^{2})$$

$$f(n) = 3n^{2} + 2n \lg n \le 3n^{2} + 2n^{2} = C_{2}n^{2}, \text{ where } C_{2} = 5$$

$$f(n) = \Omega(n^{2})$$

$$f(n) = \Theta(n^{2}) \quad \square$$

Problem 4.3

Select a theta notation from Table 4.3.3 for $\frac{(n+1)(n+3)}{n+1}$

For all n > -1, the equation could be simplified as bellow,

$$\frac{(n+1)(n+3)}{n+1} = n+3$$

So for all $n \geq 3$,

$$f(n) = \frac{(n+1)(n+3)}{n+1} \ge n = C_1 n = O(n)$$

 $f(n) \le 2n = C_2 n = \Omega(n)$

Then

$$f(n) = \frac{(n+1)(n+3)}{n+1} = \Theta(n) \quad \Box$$

Problem 5.1

Express in theta notation the number of times the statement x = x + 1 is executed.

```
for i = 1 to n
for j = 1 to n
x = x + 1;
```

Problem 5.1 cont.

The basic operation runs 1 times. The for loops of j, runs n times, and the outer for loops of i runs n times. So based on the multiplication principle. Then total number is $1 \times n \times n = n^2$.

$$f(n) = n^2 = \Theta(n^2)$$

Problem 6

show that $\lg(n^k + c) = \Theta(\lg n)$ for every fixed k > 0 and c > 0.

for all
$$n \ge \lg \frac{c}{k}$$
,

$$\lg (n^k + c) \le \lg(2n^k)$$

$$= k \lg n + \lg 2$$

$$\le C_1 \lg n, \text{ where } C_1 = k + 1, \ n \ge 2$$

$$= \Omega(\lg n)$$

$$\lg (n^k + c) \ge \lg(n^k) = k \lg n$$

$$= C_2 \lg n, \text{ where } C_2 = k$$

$$= O(\lg n)$$

$$\lg (n^k + c) = \Theta(\lg n) \quad \square$$

Problem 10

Two dice are rolled, one blue and one red. How many outcomes give the sum of 2 or the sum 12?

Table: Outcomes of dice

Sum	Blue	Red
2	1	1
12	6	6
8	2	6
	3	5
	4	4
	5	3
	6	2

1 outcome gives the sum of 2;

1 outcome gives the sum of 12.

Problem 12.2

For integers from 5 to 200, inclusive. How many do not contain the digit 0?

Single digit	5,6,7,8,9	5
Two digit (xx)	9×9	81
Three digit (1xx)	9×9	81

By Addition principle, the total is 167.

Problem 14.1

How many symmetric and antisymmetric relations are there on an n-element set?

Definition

A relation R on a set X is symmetric if \forall x,y \in X, if (x,y) \in R, then (y,x) \in R.{Definition 3.3.9}

Definition

A relation R on a set X is antisymmetric if \forall x,y \in X, if (x,y) \in R and (y,x) \in R then x=y. {Definition 3.3.12}

Problem 14.1 cont.

Symmetric and antisymmetric means no pairwise relation

e.g. xRy doesn't exist if $x \neq y$

For each element, two ways: self loop or not.

 \Rightarrow n×n by Multiplication principle

So, there are n^2 summetric and antisymmetric relations on an n-element set.