INTRODUCTION

Simulation Function:

```
simulation(prior.dlt, true.dlt, NS=F, trtDlt=0.2, delta=0.05, r1=0.5, r2=0.95, nmax=50, nmin=10, a=1.2, b=1, c=4)
```

Description:

Bayesian decision-theoretic design is an algorithm that was used to decide the maximum tolerated dose (MTD) for patients in a two-agent phase I trial. MTD is the highest dose combination at which not more than a prespecified proportion of patients experience dose-limiting toxicities (DLTs). The simulation function will simulate a two-agent phase I trials and apply this algorithm during the simulation to determine the recommended MTD. The function will keep track of the number of times that a specific dose combination that was recommend as MTD during 10000 times of simulations.

Arguments:

- *prio.dlt*: a 4 x 4 matrix that stores information of prior dose-limiting toxicities (DLTs)
- *true.dlt*: a 4 x 4 matrix that stores the information of real dose-limiting toxicities (DLTs)
- <u>NS</u>: a logical variable denotes what kind of dose escalation approaches we prefer. If NS == TRUE, then apply non-skipping method, otherwise apply dose skipping method.
- *trtDlt*: the target dose-limiting toxicities(DLTs). It takes a default value 0.2.
- <u>delta</u>: trtDlt + delta is an upper bound on the acceptable DLT probabilities. It takes a default value 0.05
- <u>r1</u>: the prespecified probability for stopping rule S3. It takes a default value 0.5.
- *r2*: the prespecified probability for stopping rule S4. It takes a default value 0.95.
- nmax: the trial is stopped when the sample size reaches N_{max} . It takes a default value 50
- \underline{nmin} : early stopping is prohibited before the sample size reaches N_{min} . It takes a default value 10.
- <u>a</u>: a specified positive constant. If the selected dose combinations have a DLT probability that is larger than target DLT, we assigned "a" to their utility function. It takes a default value 1.2.
- \underline{b} : a specified positive constant. If the selected dose combinations have a DLT probability that is smaller than target DLT, we assigned "b" to their utility function. It takes a default value 1.
- <u>c</u>: a specified positive that use to calculate the initial a_{ij} and b_{ij} from prior mean. It takes a default value 4.

Return:

The function will return an R list that includes a 4×4 matrix and a numeric number. The matrix contains the information that denotes the number of times a specific dose combination was recommend as MTD during 10000 simulations. And the numeric number is the average sample size of each simulation.

Examples:

• Apply skipping approach and consider scenario A as both prior and true DLT.

```
simInfo <- simulation(prior.dlt=scenarioA, true.dlt=scenarioA, NS = F)</pre>
```

Apply non-skipping approach and consider scenario A as both prior and true DLT

```
simInfo <- simulation(prior.dlt=scenarioA, true.dlt=scenarioA, NS = T)</pre>
```

Summary Function:

```
summary(true.dlt, simInfo, tableType = 3, trtDlt = 0.2)
```

Description:

Summary function is to interpret the list that is returned by simulation function.

Arguments:

- <u>true.dlt</u>: a 4 x 4 matrix that stores the information of real dose-limiting toxicities (DLTs)
- <u>simInfo:</u> a R list. It is the result returned by simulation function
- <u>tableType</u>: denotes two different two different form of tables. If tableType = 3, then the output will be organized as the form of table 3, otherwise it would be organized as table 4.
- <u>tr</u>tDlt: the target dose-limiting toxicities(DLTs). It takes a default value 0.2.

USER MANUAL

Suppose we are using DLT from scenario A as our true DLT and code for LEF^{NS}, LEF, LEF-, LEF+ and LEF+ will be given as follow respectively. Note that in the follow cases, scenA, preA.* and lfl.*.* represents the true DLT matrix, prior DLT matrix and the result return by simulation function respectively.

• LEFNS

```
lfl.ns.a <- simulation(scenA, scenA, T)
summary(scenA, lfl.ns, 3)</pre>
```

• LEF

```
lfl.s <- simulation(scenA, scenA)
summary(scenA, lfl.s, 3)</pre>
```

• LEF-

```
lfl.ls <- simulation(preA.ls, scenA)
summary(scenA, lfl.ls, 4)</pre>
```

• LEF+

```
lfl.gt <- simulation(preA.gt, scenA)
summary(scenA, lfl.gt, 4)</pre>
```

• LEF*

```
lfl.rd <- simulation(preA.rd, scenA)
summary(scenA, lfl.rd, 4)</pre>
```

In particular, I would like to take the output of LEF^{NS} as an example to explain how to interpret the result of my program. After executing the LEF^{NS} code, you would see a output like this:

```
> lfl.ns.a <- simulation(scenA, true.dlt, T)
> summary(scenA, lfl.ns.a, 3)
          At target 1-10% of target >10% of target None recommended Average sample size
          14 80 6 0 26
```

"At target" 14 means that during the 10000 simulations, 14% of the dose combinations, which were recommended as MTD, have a DLT that is equal to our target DLT(default = 0.2). In this specific case, it means dose combination (2,3) was recommended 1400 times.

"1-10% of target" 80 means during the 10000 simulations, 80% of the dose combinations, which were recommended as MTD, have a DLT that deviated away from the target within 1-10%.

"> 10% of target" 6 means during the 10000 simulations, 6% of the dose combinations, which were recommended as MTD, have a DLT that is larger or less than our target DLT 10%.

"None recommended" 0 means there is no dose combinations are likely to be overly toxic.

"Average Sample Size" means there are average 26 patients involves in each simulations.

SIMUALATION SUMMARY

		Percentage of recommendation				
Scenario	Design	At target	1-10 pts of target	< or > 10 Pts of target	None recommended	Average sample size
	LFL NS	13	81	6	0	26
A	LFL	20	76	4	0	25
	LFL NS	0	84	16	0	39
В	LFL	0	86	14	0	39
	LFL NS	55	43	0	2	21
С	LFL	53	45	0	1	21

Table 3 Operating characteristics of the proposed designs (denoted LFL NS and LFL). LFL NS does not allow dose skipping while LFL allows dose skipping; in both of the designs, the priors are centered at the true DLT probabilities. The percentage of recommendation may not add up to 100 due to rounding errors.

		Percentage of recommendation				None	Average sample size
Scenario	Design	At target	1-5 pts of target	6-10 pts of target	< or > 10 Pts of target	recommended	sample size
	LFL	20	66	10	4	0	25
A	LFL -	9	65	21	4	0	23
	LFL+	5	80	11	5	0	28
	LFL *	21	57	17	5	0	26
	LFL	0	50	36	14	0	39
В	LFL -	0	57	30	13	0	39
	LFL+	0	41	47	12	0	38
	LFL *	0	42	47	11	0	40
	LFL	53	27	18	0	1	21
С	LFL -	38	44	17	0	1	20

LFL+	54	15	28	0	3	22
LFL*	48	30	20	0	2	21

Table 4. Sensitivity analysis. In LFL, the priors are centered at the true DLT probabilities; in LFL- and LFL+, the prior means underestimate and overestimate the true DLT probabilities by 1-5%; in LFL*, both under- and overestimation of 1-5% occur in the prior means. The percentage of recommendation may not add up to 100 due to rounding errors.

APPRECIATION

During this project, **Kimberley Kondratieff** inspired me of a nice way to summary and organizes the output of my program.

Shiou-Shiou Deng helps me clear out some confusion of the Bayesian algorithm.