Fondamenti di automatica

Esercizi di riepilogo sull'analisi modale

1 Polinomio caratteristico e minimo, e funzione di trasferimento

Si consideri il sistema dinamico LTI

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

con x stato, u ingresso e y uscita. Si determinino il polinomio caratteristico $\varphi(s)$, il polinomio minimo m(s), e la funzione di trasferimento

$$G(s) = C(sI - A)^{-1}B + D$$

per il sistema dinamico nei seguenti casi:

1.
$$A = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $D = 1$

2.
$$A = \begin{bmatrix} -2 & -2 \\ 1 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $D = 0$

3.
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, D = 0$$

4.
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \ D = 0$$

2 Modi naturali

Si considerino gli stessi sistemi dinamici considerati nella Sezione 1. Determinare i modi naturali del sistema.

Soluzioni

1 Polinomio caratteristico e minimo, e funzione di trasferimento

1.
$$\varphi(s) = m(s) = (s+1)(s-1), G(s) = \frac{s+3}{s+1}$$

2.
$$\varphi(s) = m(s) = s^2 + 4s + 6$$
, $G(s) = -\frac{4}{s^2 + 4s + 6}$

3.
$$\varphi(s) = s^3$$
, $m(s) = s$, $G(s) = \frac{1}{s}$

4.
$$\varphi(s) = s^3$$
, $m(s) = s^2$, $G(s) = \frac{s+1}{s^2}$

2 Modi naturali

- 1. e^t, e^{-t}
- 2. $e^{-2t}\cos(\sqrt{2}t)$, $e^{-2t}\sin(\sqrt{2}t)$
- 3. 1
- 4. 1, t