Disciplina: USP-EACH 2053 Introdução à Estatística

Documento: Resumo de Estatística

CAPÍTULO 1

Permuta: n!

Combinação: n! / (n-r)!r! (combinação de n elementos tomados r a r)

CAPÍTULO 2

Definições:

Espaço amostral: $S = \{1, 2, ...\}$ Probabilidade do evento E: P(E)

Complemento de E: E^c

Axiomas:

Probabilidade do evento E: $P(E) = \lim_{n \to \infty} (n(E)/n) = k$

$$P(S)=1$$

$$P(U_{n=1}(E_n)) = \sum_{n=1}^{n} P(E_n)$$

CAPÍTULO 3

Probabilidade Condicional:

P(A|B) probabilidade de A tal que B tenha ocorrido

Probabilidade Independente:

$$P(A|B) = P(A) * P(B)$$

Probabilidade Dependente:

Teorema de Bayes

$$P(A|B) = P(AB) / P(B) = P(B|A)P(A) / P(B)$$

CAPÍTULO 4

Esperança:

$$E(X)=X\cdot P(X)=\sum_{i=1}^{n}(x_{i}\cdot p(x_{i}))$$
 ou $E(X)=\int_{-\infty}^{+\infty}x\cdot f(x)dx$

Notações: $E(X) = \mu(x) = \mu_x = \mu$

Propriedades:

- a) E(X)=k; k: constante
- b) E(kX)=kE(X); k: constante
- c) $E(X \pm Y) = E(X) \pm E(Y)$
- d) E(aX+b)=aE(X)+b; a, b: constante
- e) $E(X-\mu_r)=0$

Variância:

$$VAR(X) = E((X - E(X))^{2}) = \sum_{i=1}^{n} (x_{i} - \mu_{x})^{2} p(x_{i}) \text{ ou } VAR(X) = \int_{-\infty}^{+\infty} (x - \mu_{x})^{2} \cdot f(x) dx$$

Simplificação: $VAR(X) = E(X^2) - (E(X))^2$ (lei do estatístico inconsciente)

Notações: $VAR(X) = V(X) = \sigma^2(x) = \sigma_x^2 = \sigma^2$

Propriedades:

- a) VAR(k)=0; k: constante
- b) $VAR(kX) = k^2 VAR(X)$; k: constante
- c) $VAR(X \pm Y) = VAR(X) + VAR(Y) \pm 2COV(X, Y)$
- d) $VAR(X \pm Y) = E((X \pm Y)^2) (E(X \pm Y))^2$

Covariância:

$$COV(X, Y) = E[(X - E(X))(Y - (E(Y)))]$$

Desvio padrão:

$$\sigma = \sqrt{VAR(X)}$$

Probabilidade Conjunta:

$$P(X=x_i, Y=y_i)=P(x_i, y_i)$$

$$\sum_{i=1}^{m} \sum_{j=i}^{n} P(x_i, y_j) = 1$$

Distribuição marginal:

$$P(X=x_i) = \sum_{j=i}^{n} P(X=x_i, Y=y_j)$$
 Distribuição condicional:

$$P(x_i|y_j) = \frac{P(x_i:y_j)}{P(y_i)}; j: fixo e i = \{1,2,...m\}$$

Variáveis Aleatórias Independentes:

$$P(x_i: y_j) = P(x_i) \cdot P(y_j)$$

$$E(X \pm Y) = E(X) \pm E(Y)$$

$$COV(X, Y) = E(XY) - E(X)E(Y)$$

Coeficiente de Correlação:

$$\rho = \frac{COV(X, Y)}{\sigma_x \sigma_v}$$

Função Distribuição:

$$F(X) = P(X \le x) = \sum_{x_i \le x} p(x_i)$$

Propriedades:

- a) $0 \le F(X) \le 1$
- b) $F(-\infty)=0$
- c) $F(+\infty)=1$

Distribuição de Bernoulli:

Fazendo n tentativas em um experimento dicotômico onde p é a probabilidade de sucesso.

$$P(X=n)=p^{n}(1-p)^{(1-n)}$$

 $E(X)=p$
 $VAR(X)=p(1-p)$

Distribuição de Geométrica:

Fazendo n tentativas até um primeiro sucesso em um experimento dicotômico onde p é a probabilidade de sucesso. Este é um caso particular do Bernoulli.

$$P(X=n) = p(1-p)^{(x-1)}$$

$$E(X) = 1/p$$

$$VAR(X) = \frac{(1-p)}{p^2}$$

Distribuição de Pascal:

Fazendo n tentativas até que ocorra r sucessos em um experimento dicotômico onde p é a probabilidade de sucesso. Este é um caso geral para a sistribuição geométrica.

$$q=1-p$$

$$P(X=n)=(\frac{n-1}{r-1}) p^{r} q^{(n-r)}$$

$$E(X)=r/p$$

$$VAR(X)=\frac{rq}{p^{2}}$$

Distribuição de Hipergeométrica:

Retirando n elementos de uma população N, dos quais r elementos tenha uma determinada característica.

Amostras sem reposição
$$\binom{N}{n}$$
 , sucessos $\binom{r}{k}$, fracassos $\binom{N-r}{n-k}$ $0 \le k \le n$ e $k \le r$

$$P(X=n) = \frac{\binom{r}{k} \binom{N-r}{n-k}}{\binom{N}{n}}$$

$$E(X) = np$$

$$VAR(X) = np(1-p)\frac{N-n}{N-1}$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Distribuição de Binomial:

Fazendo n tentativas em experimentos i.i.d. dicotômicos (com 2 resultados) onde p é a probabilidade de sucesso e x é a quantidade de sucessos.

Notação:
$$X: B(n, p)$$

 $n=$ número de eventos
 $p=$ probabilidade
 $x=$ quantidade de sucessos
 $P(X=x)=\binom{n}{x}p^x(1-p)^{(n-x)}$
 $E(X)=np$
 $VAR(X)=np(1-p)$
 $\binom{n}{x}=\frac{n!}{x!(n-x)!}$

Distribuição de Polinomial:

Considere um experimento aleatório com k eventos $\{A_1, A_2, A_k\}$ sendo $P(A_i) = p_i$ e

 $\sum_{i=1}^k p_i = 1$. Seja X_i o número de ocorrências de A_i em n tentativas. Este é o caso genérico para a Binomial.

Notação:

$$X: P(n, p_1, p_2, ...)$$

n número de tentativas independentes

 p_i probabilidade de cada evento A_i

$$P(X_{1}=x_{1,}X_{2}=x_{2,...}) = \frac{n!}{n_{1}! n_{2}! ...} p_{1}^{n_{1}} p_{2}^{n_{2}} ...$$

$$E(X_{i}) = n_{i} p_{i}$$

$$VAR(X_{i}) = n_{i} p_{i} q_{i}$$

Distribuição de Poisson:

Quando a probabilidade de sucesso em um intervalo é proporcional ao intervalo. Notação:

$$X: P(\lambda)$$

 λ relação de ocorrência com o intervalo np

$$P(X=k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}$$
$$E(X) = \lambda$$

$$VAR(X) = \lambda$$

Aproximação Binomial pela Poisson quando n>30 ($n \rightarrow \infty$; $p \rightarrow 0$) onde $\lambda = np$

$$P(X=k) = \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k} \approx \frac{e^{-np} \cdot (np)^{k}}{k!}$$

Variáveis Contínuas:

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \cdot f(x) dx$$

$$VAR(X) = E(X^{2}) - E^{2}(X)$$

$$F(x) = P(X \le x) = \int_{-\infty}^{+\infty} f(x) dx$$

$$f(x) = \frac{x}{dx} F(x)$$

Distribuição Uniforme:

Quando a probabilidade de ocorrência f(x) é constante k no intervalo a, b.

$$f.d.p. \ f(x) = \begin{cases} k \ se \ a \le x \le b \\ 0 \ se \ x < a \ ou \ x > b \end{cases}$$

$$F(X) = 1 = \int_{a}^{b} k dx = kb - ka = k(b - a) = 1 \quad \text{portanto} \quad k = \frac{1}{b - a} \quad \text{e} \quad f(x) = \frac{1}{b - a} \quad \text{e}$$

$$F(x) = \begin{cases} 0 \ se \ x < a \\ \frac{x - a}{b - a} \ se \ a \le x \le b \\ 1 \ se \ b < x \end{cases}$$

$$E(X) = \int_{a}^{b} \frac{x}{b-a} dx = \frac{b+a}{2}$$

$$E(X^{2}) = \int_{a}^{b} \frac{x^{2}}{b-a} dx = \frac{b^{2}+ab+a^{2}}{3}$$

$$VAR(X) = E(X^{2}) - E^{2}(X) = \frac{(b-a)^{2}}{12}$$

Distribuição Exponencial:

Quando a probabilidade de ocorrência f(x) é dada pela equação:

$$f.d.p. \ f(x) = \begin{cases} \lambda e^{-\lambda x} sex > 0 \\ 0 sex < 0 \end{cases}$$

$$F(X) = \int_{0}^{\infty} \lambda e^{-\lambda x} dx = 1$$

$$F(x) = 1 = \int_{0}^{x} \lambda e^{-\lambda s} ds = 1 - e^{-\lambda x}$$

$$E(X) = \frac{1}{\lambda}$$

$$VAR(X) = \frac{1}{\lambda^{2}}$$

Distribuição Normal:

Quando a probabilidade de ocorrência f(x) é dada pela equação:

Notação:
$$X: N(\mu, \sigma^2)$$

 μ =média
 σ =desvio padrão
 $E(X)=\mu$
 $VAR(X)=\sigma^2$

Variável normal reduzida: $Z = \frac{X - \mu}{\sigma}$

$$E(Z) = \frac{1}{\mu} VAR(X) = 0$$
$$VAR(Z) = \frac{1}{\sigma^2} VAR(X) = 1$$

Aproximação da Binomial pela Normal:

Quando
$$B(n,p)$$
 para n>20 então $\mu = np$ e $\sigma = \sqrt{npq}$ e $Z = \frac{X - np}{\sqrt{npq}} \equiv N(0,1)$

Distribuição de funções de variáveis aleatórias normais:

$$X: N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$$

$$E(X) = \sum_{i=1}^{n} \mu_{i}$$

$$VAR(X) = VAR\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} VAR(X_{i}) + 2\sum_{i \neq j}^{n} COV(X_{i}, X_{j}) = \sum_{i=1}^{n} \sigma_{i}^{2}$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \text{ então } \bar{X} = N\left(\mu, \frac{\sigma^{2}}{n}\right)$$