Predicting Air Pollution Levels in Five Major Indian Cities

A. J. Smoliakov D. Yntykbay D. G. Griffon

Data Science Study Programme Faculty of Mathematics and Informatics

2024-12-16

Project Overview

- Background
 - Air pollution among most pressing global health threats
 - Particularly severe in India
 - Driven by rapid urbanization and economic growth
- Study Objectives
 - Analyze pollution and weather data from five major Indian cities
 - Develop predictive models for main air pollutants
 - Uncover key meteorological and temporal predictors

Literature Review

- Numerous studies on air pollution, including in India
- Research gap
 - No studies examining these five specific cities together
 - Unique combination of air quality and weather datasets
 - Most studies focus on time series models
- Our approach
 - Focus on interpretable linear regression
 - Emphasis on feature engineering
 - Independent models for each city and pollutant

Data Sources

- Air Quality Data in India (2015-2020)
 - Hourly data
 - 27 major Indian cities
 - Seven pollutants: PM_{2.5}, PM₁₀, NO₂, SO₂, CO, O₃, NH₃
- Historical Weather Data (2006-2019)
 - Hourly data
 - 8 major Indian cities
 - >20 meteorological variables
- Combined Dataset
 - Intersection of the two datasets
 - Time period: January 2015 to December 2019
 - 5 cities
 - Bengaluru, Delhi, Hyderabad, Jaipur, Mumbai

Raw Outcome Variable Distribution

Right-skewed distributions

- High frequency of low values with a long tail on the right
- Pattern consistent across all pollutants and cities

After Log Transformation

Applied log(1 + x) transformation to all outcome variables

Resulted in more normal-like distributions

Feature Engineering

- Temporal Features
 - Hour of the day
 - Cosine/Sine features to capture cyclic (12 and 24-hour) patterns
 - Day of the week (categorical)
 - Month of the year (categorical)
- Weather-Related Features
 - Wind components (X and Y axes)
 - 24-hour cumulative precipitation and wind speed
- All continuous features were scaled

Preliminary Analysis

Preliminary Analysis

- Weather correlations
 - Humidity: negative with most pollutants
 - Wind speed: negative with most pollutants, aids pollutant dispersion
 - Temperature: positive with O_3
 - UV index: positive with O₃
- Significantly higher pollution in autumn and winter
- Pollution correlations
 - Most pollutants positively correlated with each other
 - O₃ shows distinct pattern from other pollutants

Model Development

- Independent linear regression models for each
 - City
 - Response variable
- Data splitting
 - Training: 2015-2018
 - Testing: 2019
- Removed features with VIF > 4
 - minTempC
 - maxTempC
 - DewPointC

Model Performance (Mean per City/Pollutant)

Response	r	R^2	RMSE
PM2.5	0.728	0.538	0.437
PM10	0.694	0.492	0.435
O3	0.660	0.443	0.576
NOx	0.430	0.214	0.604
NH3	0.338	0.161	0.420
CO	0.311	0.132	0.307
SO2	0.273	0.102	0.388

City	r	R^2	RMSE
Delhi	0.615	0.403	0.412
Hyderabad	0.598	0.390	0.390
Bengaluru	0.427	0.246	0.481
Jaipur	0.411	0.198	0.472
Mumbai*	0.061	0.007	0.649

^{*} Mumbai had substantial missing data, only 2/7 pollutants were modeled

Conclusions

- Models show moderate predictive power
 - \bullet R² between 0.006 and 0.672, mean = 0.292
 - Varies significantly across pollutants and cities
- Key predictors
 - Month of the year
 - Humidity (negative link)
 - Temperature (positive link)
 - cos(hour of day)
 - Precipitation over 24 hours
- Temporal patterns are strong predictors
- Meteorological variables show consistent influence

Room for Improvement

- Explore more sophisticated approaches
 - Non-linear models
 - Time series models (e.g. LSTM)
- Additional predictors
 - Satellite data
 - Traffic information
 - Industrial activity metrics
 - Special events data
- Extend to more cities and longer time periods

Thank you for your attention