Тема 15 Моделирование как метод познания. Классификация и формы представления моделей

Основные понятия

Любой аналог (образ) какого-либо объекта, процесса или явления, используемый в качестве заменителя (представителя) оригинала, называется **моделью** (от лат. **modulus** — образец).

Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные, свойства. Так, модель самолета должна иметь геометрическое подобие оригиналу, модель атома — правильно отражать физические взаимодействия, архитектурный макет города — ландшафт и т.д. Признак или величина, которые характеризуют какоелибо свойство объекта и могут принимать различные значения, называются параметрами модели.

Модель воспроизводит в специально оговоренном виде строение и свойства исследуемого объекта. Исследуемый объект, по отношению к которому изготавливается модель, называется оригиналом, образцом, прототипом.

Модель — это некий новый объект, который отражает существенные особенности изучаемого объекта, явления или процесса.

Общие свойства моделей.

- 1) адекватность это степень соответствия модели тому реальному явлению (объекту, процессу), для описания которого она строится,
- 2) конечность модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны,
- 3) упрощенность модель отображает только существенные стороны объекта,
- 4) полнота учтены все необходимые свойства,
- 5) приблизительность действительность отображается моделью грубо или приблизительно,
- 6) **информативность** модель должна содержать достаточную информацию о системе в рамках гипотез, принятых при построении модели,
- 7) потенциальность предсказуемость модели и её свойств.

Исследование объектов, процессов или явлений путем построения и изучения их моделей для определения или уточнения характеристик оригинала называется моделированием.

Моделирование — это метод познания, состоящий в создании и исследовании моделей. Теория замещения объектов-оригиналов объектом-моделью называется теорией моделирования.

Основными этапами моделирования являются:

- 1) постановка задачи;
- 2) разработка модели, анализ и исследование задачи;
- 3) компьютерный (натурный, физический) эксперимент;
- 4) анализ результатов моделирования.

На этапе разработки модели осуществляется построение информационной модели, то есть формирование представления об элементах, составляющих исходный объект.

Если результаты моделирования подтверждаются и могут служить основой для прогнозирования поведения исследуемых объектов, то говорят, что модель адекватна объекту. Степень адекватности зависит от цели и критериев моделирования.

Классификация моделей

По цели использования

По цели использования модели классифицируются:

- **научный** эксперимент, в котором осуществляется исследование модели с применением различных средств получения данных об объекте, возможности влияния на ход процесса, с целью получения новых данных об объекте или явлении;
- **комплексные испытания** и производственный эксперимент, использующие натурное испытание физического объекта для получения высокой достоверности о его характеристиках;
- оптимизационные, связанные с нахождением оптимальных показателей системы (например, нахождение минимальных затрат или определение максимальной прибыли).

По области применения

Модели				
Учебные	Опытные	Научно - технические	Игровые	Имитационные
Тренажеры,	Модели корабля,		Деловые, военные,	Новое лекарство испытывают на
наглядные пособия,	машины (для исследования будущих	прибор, имитирующий разряд	экономические, спортивные игры,	мышах, чтобы выявить побочные явления, уточнить дозировки
обучающие	характеристик)	молнии		
программы				

Учебные: наглядные пособия, обучающие программы, различные тренажеры.

Опытные модели — это уменьшенные или увеличенные копии проектируемого объекта. Их называют также натурными и используют для исследования объекта и прогнозирования его будущих характеристик: модель корабля испытывается в бассейне для определения устойчивости судна при качке.

Научно-технические модели создают для исследования процессов и явлений: ускоритель электронов, прибор, имитирующий разряд молнии, стенд для проверки телевизора.

Игровые: военные, экономические, спортивные, деловые игры.

Имитационные модели не просто отражают реальность с той или иной степенью точности, а имитируют ее. Эксперимент либо многократно повторяется, чтобы изучить и оценить последствия каких-либо действий на реальную обстановку, либо проводится одновременно со многими другими похожими объектами, но поставленными в разные условия. Подобный метод выбора правильного решения называется методом проб и ошибок.

Кроме того, по области применения модели можно разделить на:

- универсальные, предназначенные для использования многими системами,
- специализированные, созданные для исследования конкретной системы.

Учет фактора времени

По отношению ко времени модели разделяют на:

- **статические**, описывающие систему в определенный момент времени. Например, обследование учащихся в стоматологической поликлинике дает картину состояния их ротовой полости на данный момент времени: число молочных и постоянных зубов, пломб, дефектов и т. п.
- динамические, рассматривающие поведение системы во времени. В примере с поликлиникой карточку школьника, отражающую изменения, происходящие с его зубами за многие годы, можно считать динамической моделью.

В свою очередь, динамические модели подразделяют на дискретные, в которых все события происходят по интервалам времени, и непрерывные, где все события происходят непрерывно во времени.

По наличию воздействий на систему

По наличию воздействий на систему модели делятся на:

- детерминированные (в системах отсутствуют случайные воздействия),
- стохастические (в системах присутствуют вероятностные воздействия).

Эти же модели некоторые авторы классифицируют по способу оценки параметров системы:

- в детерминированных системах параметры модели оцениваются **одним показателем** для конкретных значений их исходных данных;
- в стохастических системах наличие вероятностных характеристик исходных данных позволяет оценивать параметры системы **несколькими показателями**.

Материальные модели иначе можно назвать предметными, физическими. Они воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение.

Примеры:

- 1) Детские игрушки. По ним ребенок получает первое впечатление об окружающем мире. Двухлетний ребенок играет с плюшевым медвежонком. Когда, спустя годы, ребенок увидит в зоопарке настоящего медведя, он без труда узнает его.
- 2) Школьные пособия, физические и химические опыты. В них моделируются процессы, например реакция между водородом и кислородом. Такой опыт сопровождается оглушительным хлопком. Модель подтверждает о последствиях возникновения «гремучей смеси» из безобидных и широко распространенных в природе веществ.
- 3) Карты при изучении истории или географии, схемы солнечной системы и звездного неба на уроках астрономии и многое другое.

Материальные модели реализуют материальный (потрогать, понюхать, увидеть, услышать) подход к изучению объекта, явления или процесса.

Информационные модели — совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.

Информационные модели нельзя потрогать или увидеть воочию, они не имеют материального воплощения, потому что они строятся только на информации. В основе этого метода моделирования лежит информационный подход к изучению окружающей действительности.

Информация, характеризующая объект или процесс, может иметь разный объем и форму представления, выражаться различными средствами. Это многообразие настолько безгранично, насколько велики возможности каждого человека и его фантазии. К информационным моделям можно отнести знаковые и вербальные (описательные).

Знаковая модель — информационная модель, выраженная специальными знаками, т. е. средствами любого формального языка.

Знаковые модели окружают нас повсюду. Это рисунки, тексты, графики и схемы.

По способу реализации знаковые модели можно разделить на:

- компьютерные,
- некомпьютерные.

Компьютерная модель – модель, реализованная средствами программной среды.

Вербальная (от лат «verbalis» – устный) модель – информационная модель в мысленной или разговорной форме.

Это модели, полученные в результате раздумий, умозаключений. Они могут так и остаться мысленными или быть выражены словесно. Примером такой модели может стать наше поведение при переходе улицы. Человек анализирует ситуацию на дороге (что показывает светофор, с какой скоростью и на каком расстоянии движутся автомобили и т. п.) и вырабатывает свою модель поведения. Если ситуация смоделирована удачно, то переход будет безопасным, если нет, то может произойти авария. К таким моделям можно отнести идею, возникшую в голове изобретателя, музыкальную тему, промелькнувшую в голове композитора, рифму, прозвучавшую пока в голове поэта.

Знаковые и вербальные модели, как правило, взаимосвязаны. Мысленный образ, родившийся в мозгу человека, может быть облечен в знаковую форму. И, наоборот, знаковая модель – помогает сформировать в сознании верный мысленный образ.

Согласно легенде, яблоко, упавшее на голову Ньютону, вызвало в его сознании мысль о земном притяжении. И только в последствии эта мысль оформилась в закон, т. е. обрела знаковую форму.

Примером вербальной (описательной) модели является «Гелиоцентрическая модель мира», принадлежащая Н. Копернику, которая была сформулирована им в семи утверждениях.

Человек прочитал текст, объясняющий некоторые физические явления, и у него сформировался мысленный образ. В дальнейшем такой образ поможет распознать реальное явление.

По форме представления можно выделить следующие виды информационных моделей:

- геометрические модели графические формы и объемные конструкции;
- словесные модели устные и письменные описания с использованием иллюстраций;
- математические модели математические формулы, отображающие связь различных параметров объекта или процесса;
- структурные модели схемы, графики, таблицы и т. п.;
- логические модели модели, в которых представлены различные варианты выбора действий на основе умозаключений и анализа условий;
- специальные модели ноты, химические формулы и т. п.;
- компьютерные и некомпьютерные модели.

По отрасли знаний

Это классификация по отрасли <u>деятельности человека:</u> математические, биологические, химические, социальные, экономические, исторические и т.д.

Материальным (физическим, предметным, натурным) принято называть моделирование, при котором реальному объекту противопоставляется его увеличенная или уменьшенная копия, допускающая исследование (как правило, в лабораторных условиях) с помощью последующего перенесения свойств изучаемых процессов и явлений с модели на объект на основе теории подобия.

Примеры: в астрономии - планетарий, в архитектуре - макеты зданий, в самолетостроении - модели летательных аппаратов и т.п.

Идеальное моделирование - основано не на материальной аналогии объекта и модели, а на аналогии идеальной, мыслимой. Идея мысленного эксперимента впервые была выдвинута Г. Галилеем. Галилей применил идею мысленного эксперимента к воображаемому телу, которое свободно от всех внешних воздействий. Такой мысленный эксперимент позволил Г. Галилею прийти к идее инерциального движения тела.

Знаковое моделирование — это моделирование, использующее в качестве моделей знаковые преобразования какого-либо вида: схемы, графики, чертежи, формулы, наборы символов.

Математическое моделирование - это моделирование, при котором исследование объекта осуществляется посредством модели, сформулированной на языке математики. Например, описание и исследование законов механики Ньютона средствами математических формул.