Asset Management for Machine Learning

Georg Hildebrand

The Big Picture:

ML

Knowledge Workers Productivity x 50 ??

Peter Drucker source

Increase of Performance

Acceleration through automatisation

The area of knowledge workers

... the story of a model that was sent as email attachment ...

... the story of features that were not available anymore ...

Pick a complexity for your ML product:

^{*}D. Sculley *et al.*, "Hidden technical debt in machine learning systems," in *Advances in Neural Information Processing Systems*, 2015, pp. 2503–2511.

System of ML silos

How to reach

50 x productivity

7

... make models and features human and machine readable!

Store context

- How was the input data chosen?
- Who trained the model? Is there a project paper?
- How to run the model?
- Store log output of model training
- Framework used to build the model.
- Chain model and feature preprocessing!

Version and test

- Snapshot input data /features
- Version the model (eg. into S3 or a backend database)
- Link the container artifact.
- Provide input and output tests
- Store performance metrics
- ...

Put it into practice

There is no one stop shop solution :-/

Manage ML Deployment pipeline:

Example: SeldonIO, serving and integrating ML

Purpose: End to end deployment for serving ML and more, very advanced.

https://github.com/SeldonIO/

Trys use the modularised way!

May require data to move around.

Predictive Pipelines

Manage Models + Data and serve low latency:

Example: Vespa, storing model together with the data

Purpose: eg. Low latency serving of ML

https://github.com/vespa-engine/vespa

Manage Project, Code, Data and more:

Purpose: Git for data scientists - manage your code and data together

dvc add file.tsv Example DVC (Data Version Control): https://github.com/iterative/dvc dvc run -o file.tsv CMD dvc repro dvc push Input and output are tracked --> DAG !!! Data files Cloud Workspace local cache S3 or GCP \$ dvc run python code/xml to tsv.py dvc fetch data/Posts.xml data/Posts.tsv python dvc checkout dvc pull dvc fsck

^{* &}lt;u>source</u>, why luigi and airflow might not be enough...

Model tracking, snapshotting and reproducibility:

Purpose: Git for data scientists - turn any repository into a trackable task record with reusable

environments and metrics logging.

Example Datmo:

https://github.com/datmo/datmo

OS, but tight to paid service!!!

```
Normal Script
                                                                        With Datmo
# train.py
                                                         # train.pv
                                                         from sklearn import datasets
from sklearn import datasets
from sklearn import linear_model as lm
                                                         from sklearn import linear_model as lm
from sklearn import model_selection as ms
                                                         from sklearn import model_selection as ms
from sklearn import externals as ex
                                                         from sklearn import externals as ex
                                                         import datmo # extra line
                                                         config = {
                                                             "solver": "newton-ca"
                                                         } # extra line
iris_dataset = datasets.load_iris()
                                                         iris_dataset = datasets.load_iris()
X = iris dataset.data
                                                         X = iris dataset.data
y = iris_dataset.target
                                                         y = iris_dataset.target
data = ms.train test split(X, v)
                                                         data = ms.train test split(X, v)
X_train, X_test, y_train, y_test = data
                                                         X_train, X_test, y_train, y_test = data
model = lm.LogisticRegression(solver="newton-cg")
                                                         model = lm.LogisticRegression(**config)
model.fit(X_train, y_train)
                                                         model.fit(X train, v train)
ex.joblib.dump(model, 'model.pkl')
                                                         ex.joblib.dump(model, "model.pkl")
train_acc = model.score(X_train, y_train)
                                                         train_acc = model.score(X_train, y_train)
test_acc = model.score(X_test, y_test)
                                                         test_acc = model.score(X_test, y_test)
print(train acc)
                                                         stats = {
                                                             "train_accuracy": train_acc,
print(test_acc)
                                                             "test accuracy": test acc
                                                         } # extra line
                                                         datmo.snapshot.create(
                                                             message="my first snapshot",
                                                            filepaths=["model.pkl"],
                                                             config=config,
                                                             stats=stats
                                                         ) # extra line
```

Reproducible Model Pipelines + serving: Purpose: Consistent, Immutable, Reproducible Model Runtimes

Example PipelineAI: https://github.com/PipelineAI/pipeline

Models are stored in docker containers!!!

PipelineAI:

https://github.com/PipelineAl/pipeline

Open Source solutions for model / workflow management

Open Source Project	K8s 1st class support	# Active Maintainers	# Commits	1st Commit	Comp
Seldon.IO	Yes + Kubeflow	3	1131	2017-Feb	<u>#6</u>
H2o driverless-ai	Yes + Kubeflow	14	22967	2014-Mar	<u>#12</u>
<u>PipelineAl</u>	Yes. No Kubeflow	1	4846	2015-Jul	#273
Polyaxon	Yes. No Kubeflow	1	2732	2017-May	<u>#88</u>
<u>Vespa-engine</u>	No, but possilbe	14	18290	2016-Jun	<u>#5854</u>
IBM/FfDL	Yes. No Kubeflow	4	bulk-init	hidden	<u>#77</u>
RiseML	Yes. No Kubeflow	3	95	2017-Oct	<u>#9</u>
databricks/mlflow	No. No Kubeflow	5	bulk-init	hidden	<u>#58</u>
datmo	No, possible	4	bulk-init	2018-04	<u>#213</u>

Data / Feature Management

Open Source Project	Note	# Active Maintainers	# Commits	1st Commit	Comp
Data Version Control (DVC)	project and data management	2	1364	2017-Mar	#readme
<u>pachyderm</u>	Data Pipeline, management	6	11652	2014-09	tbd
quiltdata/quilt	Data and package management	8	1177	2017-01	tbd

Questions?

Georg Hildebrand, zalando SE

https://github.com/georghildebrand

https://www.linkedin.com/in/georghildebrand/

Example Components

ML Journey

There is even more hidden depth:

- Models erode boundaries of modularisation: context and preprocessing dependencies
- Data Dependencies Cost More than Code Dependencies (unstable data dependencies, data quality monitoring etc.)
- Complex hardware requirements (GPUs on kubernetes??)
- Feedback Loops (model influences its feature data)
- ML-System Anti-Patterns (glue code, pipeline jungles ...)

^{*} Own experience

^{**} D. Sculley et al., "Hidden technical debt in machine learning systems," in Advances in Neural Information Processing Systems, 2015, pp. 2503–2511.

^{***} D. Sculley et al., "Machine Learning: The High-Interest Credit Card of Technical Debt," p. 9.