1 Circuit Model

Figure 1: Lumped element circuit

- R_{ext} : External resistance, dominated by lock-in amplifier
- C_p : Parasitic capacitance at the metal-TMDC contact
- L_p : Parasitic inductance \rightarrow
- $R_{j_{1/2}}$: Junction resistance of the metal-TMDC contact
- $C_{j_{1/2}}$: Junction capacitance of the metal-TMDC contact
- R_{tmdc} : intrinsic channel resistance of the TMDC monolayer/hetereostructure
- I_1 : Pulsed rectangular current source representing photocurrent
- Measurement nodes are out and ground

Figure 2: Sample with contact areas and channel length

2 Parameter Ranges

Channel length for all electrodes $\approx 1 \mu m$

 R_{ext} : open circuit $\approx 10M\Omega$, short circuit $\approx 1k\Omega$

 C_p :

• Wang et.al. assume contact layer thickness of $\approx 50nm$ and therefore $10^{-17}F/\mu m$. The most influential parameter, so large range \Rightarrow range: 10^{-18} - 10^{-5} F

 L_p : range: 10^{-8} - 10^{-5} H

 $R_{j_{1/2}}$:

• $\text{MoS}_2\text{-Au}$: $10^3\text{-}10^4\Omega\mu m$ as in Wang et.al, $10^5\Omega\mu m$ as in Jo et.al., $10^2\text{-}10^6\Omega\mu m$ in Allain et.al., also see Kappera et.al. \Rightarrow range: $10^3\text{-}10^6\Omega$

$C_{j_{1/2}}$:

• MoS₂-Au: Wang et.al. assume contact layer thickness of $\approx 50nm$ and therefore $10^{-17}F/\mu m$ \Rightarrow range: 10^{-18} - 10^{-12} F

R_{tmdc} :

• MoS₂: $\approx 150k\Omega\mu m$ as in Wang et.al. \Rightarrow range: 10^3 - $10^6\Omega$

f_{pulse} :

• chopper timescale: assuming constant laser signal, only using chopper frequency for the current source: range: 10¹-10⁴Hz

• laser timescale: looking at probable high frequency effects within one chopper period, assuming laser frequency for current source: $f_{laser} = 80 \cdot 10^6 \text{Hz}$

3 Simulation Results

Varied parameters: $C_p, C_j, R_j, R_{tmdc}, L_p$:

- Chopper frequency timescale, $f_{ch} \approx 10^1$ - 10^4 Hz: fine frequency sweep at one simulation per order of magnitude of the respective parameter
- Laser pulse frequency timescale, $f_{ch} \approx 10^7 \text{Hz}$: fine parameter sweep at fixed frequency

Each for the open circuit $(R_{ext} \approx 10 \cdot 10^6)$ and short circuit $(R_{ext} \approx 1 \cdot 10^3)$.

Summary On the chopper timescale, for $C_p > 10^{-7}$, the parasitic capacitance strongly dominates all other parameters and causes a drop in frequency response at $f_{ch} > 10^6$, which is independent of other parameters. Looking at the laser timescale, $C_p > 10^{-15}$ strongly dampens the signal, approaching zero for $C_p > 10^{-10}$. The open circuit is about three orders of magnitude more sensitive to this effect than the short circuit.

Figure 3: open circuit, chopper timescale: C_p variation from 10^{-18} to 10^{-5} F, a potentially problematic low pass filter shows for $C_j > 10^{-8}$

Figure 4: open circuit, chopper timescale: R_j variation from 10^3 to $10^6\Omega$

Figure 5: open circuit, chopper timescale: C_j variation at $C_p = 10^{-18}$

Figure 6: open circuit, chopper timescale: C_j variation at $C_p = 10^{-5}$

Figure 7: open circuit, chopper timescale: L_p variation at $C_p = 10^{-18}$

Figure 8: open circuit, chopper timescale: L_p variation at $C_p = 10^{-5}$

Figure 9: open circuit, laser timescale: ${\cal C}_j$ sweep

Figure 10: open circuit, laser timescale: L_p sweep

Figure 11: open circuit, laser timescale: ${\cal R}_j$ sweep

Figure 12: open circuit, laser timescale: R_{tmdc} sweep

Figure 13: open circuit, laser timescale: C_p sweep

Figure 14: short circuit, chopper timescale: C_j variation at $C_p = 10^{-18}$

Figure 15: short circuit, chopper timescale: C_j variation at $C_p = 10^{-5}$

Figure 16: short circuit, chopper timescale: L_p variation at $C_p = 10^{-18}$

Figure 17: short circuit, chopper timescale: L_p variation at $C_p = 10^{-5}$

Figure 18: short circuit, chopper timescale: R_j variation at $C_p = 10^{-18}$

Figure 19: short circuit, chopper timescale: R_j variation at $C_p = 10^{-5}$

Figure 20: short circuit, chopper timescale: C_p variation

Figure 21: short circuit, laser timescale: C_p sweep

Figure 22: short circuit, laser timescale: L_p sweep

Figure 23: short circuit, laser timescale: ${\cal R}_j$ sweep

Figure 24: short circuit, laser timescale: R_{tmdc} sweep

Figure 25: short circuit, laser timescale: ${\cal C}_j$ sweep