Intelligent Vehicle Damage Assessment & Cost Estimator for Insurance Companies

Team ID: PNT2022TMID16533
Team Leader: Solai Srivarshini R
Team Member 1: Sri Ranjini N
Team Member 2: Sruthi V
Team Member 3: Vidhyasri R

LITERATURE SURVEY

S.No	Author/	Title	Methodology	Advantages	Disadvantages
	Publication				
	Year				
1.	Phyu Mar	Car Damage	CNN models on	Transfer learning	CNN cannot
	Kyu,	Assessment	ImageNet dataset	and regularization	accurately
	Kuntpong	Based on	to perform	can work better	calculate the
	Woraratpanya,	VGG Models.	different tasks of	than those of fine	level of damage
	2021		localization and	tuning. Pretrained	part. Sometimes
			detection. YOLO	models assess its	overfitting
			object detection	location and	occurs.
			model to train and	security which	
			detect damage	help insurance	
			region as their	companies to	
			important pipeline	solve claim	
			to improve their	leakage problems.	
			performance of		
			damage detection.		

	1	T	I ~	I — a - ·	l
2.	Najmeddine	A Very Deep	Combination of	Transfer learning	A traditional
	Dhieb, Hakim	Transfer	deep learning,	significantly	CNN model can
	Ghazzai,	Learning	instance	reduce the	be very time
	Hichem	Model for	segmentation, and	training times	consuming to
	Besbes Yehia	Vehicle	transfer learning	when it uses the	perform image
	Massoud, 2019	Damage	techniques for	weight of	classification
		Detection and	features extraction	pretrained VGG	tasks and
		Localization.	and damage	models. It has	identify the
			identification.	progress on how	correct weights
				to classify	for the network
				problems when	by multiple
				the small dataset	forward and
				was not enough to	backward
				train a CNN	iterations.
				model.	
3.	U. Waqas, N.	Damage	Deep learning	It is a hybrid	The main
	Akram, S.	Assessment	techniques, Moire	approach which	drawback was
	Kim, D. Lee	of a vehicle	effect Detection,	provide only	that Images in
	and J. Jeon, t,	and Insurance	Mobile Net model	authentic images	bad lighting,
	2012	Reclaim.	is proposed with	to algorithm for	awkward
	2012	Reclaim.	transfer learning		
			for classification.	damage classification as	angles, and vehicle models
			Tor Classification.		
				input. moiré effect	in a small
				detection and	dataset to
				metadata analysis	achieve
				are performed to	automation is
				detect fraudulent	difficult but
				images	still the range is
I					
					broad.

4.	Li Ying & Dorai Chitra, 2012	Applying image analysis to auto insurance Triage	Image analysis and pattern recognition are applied to automatically identify and characterize automobile damage.	Because of the advancement of image analysis and pattern recognition technologies, the auto insurance industry could significantly benefit.	The drawback is that the automobile damaged can be analyzed only having white background otherwise it will be not able to give the desired results.
5.	Srimal Jayewardene', 2013	Image based automatic vehicle damage detection	This approach requires 3D computer aided design (CAD) modes of the considered vehicle to identify how it would look if it were undamaged.	Automatically detecting the damage of the vehicle using photographs clicked at the accident site is extremely functional as it can greatly decrease the rate of processing insurance claims, and it will also provide greater conveniences for customers who are making the best use of this functionality.	Vehicles have very reflective metallic bodies the photographs taken in such an uncontrolled environment can be expected to have a certain amount of inter object reflection. Application of standard computer vision techniques is a very challenging task

6.	Phyu Mar	Car damage	CNN model is	Pre-trained VGG	Transfer
	Kyu,Kuntpong	detection and	trained on	model not only	learning and
	Woraratpanya	classification	ImageNet dataset.	detect damaged	regularization
	,2020		After fine tuning	part of a car but	can work better
			the dataset, transfer	also assess its	than those of
			learning with L2	location and	fine tuning.
			regularization is	severity.	
			applied		
7.	M.Wassel,	A Secure AI-	Blockchain, data	Proposed	The major
	2019	driven	analysis, machine	classifiers ensure	drawback of the
		Architecture	learning, AI for	not only the best	proposed model
		for	damage	accuracy in	is that it only
		Automated	identification.	detecting	identifies the
		Insurance		fraudulent claims	physical visible
		Systems:		but also can	damage and not
		FraudDetecti		classify different	of the internal
		on and Risk		types of fraud for	or the interior
		Measurement		insurance unlike	damage.
				the existing	
				solutions.	