A számításelmélet alapjai I. – mintazh, 1. anyagrész (megoldási útmutató)

1. feladat megoldása

- a.) $L_1 L_2 = \{a^n b^n \mid n \ge 0 \text{ és } n \equiv 0 \text{ vagy } 1 \text{ mod } 3\}, L_1 L_2 = \{a^n b^n a^m b^k \mid k, n, m \ge 0 \text{ és } k \equiv 2 \text{ mod } 3\} \text{ és } \Pr(L_1) = \{a^n b^k \mid n \ge k \ge 0\}.$
- b.) A G grammatika minden szabálya megfelel a 0-típusú grammatika követelményeinek, ezért G grammatika 0-típusú (mondatszerkezetű). Indoklás:
 - $S \to CCbA$ megfelel a 0-, 1- és 2-típusú grammatika követelményeinek, a 3-típusúnak viszont nem.
 - $-AB \rightarrow ASb$ megfelel a 0- és 1-típusú grammatika követelményeinek.
 - $-SBA \rightarrow SbacA$ megfelel a 0- és 1-típusú grammatika követelményeinek.
 - $-B \rightarrow abc$ mind a négy típusú grammatika követelményeinek megfelel.
 - $-C \rightarrow \varepsilon$ megfelel a 0-, 2- és 3-típusú grammatika követelményeinek.
- c.) $(b+c+a^*b)^*a^*$

2. feladat megoldása

- a.) Az L*-ot generáló $G'=(N',T,P',S_0)$ grammatika a következő: $N'=\{S,A,B,S_0\},$ $T=\{a,b\}$ és $P'=\{S\to aB,A\to b,A\to abB,A\to bB,B\to bA,B\to \varepsilon\}\cup\{A\to bS,B\to S\}\cup\{S_0\to \varepsilon,S_0\to S\}.$
- b.) A jobb-lineáris grammatika: $G = (\{S,A\}, \{a,b,c\}, \{S \rightarrow aA, A \rightarrow bcA, A \rightarrow acbb\}, S)$.

3. feladat megoldása

Legyen $G=(\{S,X\},\{a,b,c\},P,S)$, ahol $P=\{S\to aSc,S\to X,X\to bXc,X\to\varepsilon\}$. Az első levezetési lépés során az $S\to aSc$ vagy az $S\to X$ szabályt alkalmaztuk. Ha az $S\to aSc$ szabályt alkalmaztuk, akkor alkalmazzuk valahányszor, 0-t is beleértve az $S\to aSc$ szabályt. Ekkor az a^nSc^n mondatformát kapjuk. Majd az $S\to X$ szabályt alkalmazva az a^nXc^n mondatformához jutunk. Ezután alkalmazzuk az $X\to bXc$ szabályt valahányszor, 0-t is beleértve. Ekkor az $a^nb^mXc^{m+n}$ mondatformát kapjuk. Majd az $X\to\varepsilon$ szabályt alkalmazva befejezzük a levezetést, s megkapjuk $a^nb^nc^{m+n}$ -et, ahol $n,m\geq 0$. Hasonló a bizonyítás, ha $S\to X$ szabályt alkalmazzuk az első lépésben. Más levezetés nem lehetséges, így L bármely szava (és csak az) levezethető.

4. feladat megoldása

- Az első lépés a hosszredukció. Az új szabályhalmaz $P' = \{S \to aB, S \to A, A \to bZ_1, Z_1 \to \varepsilon, A \to bZ_2, Z_2 \to cZ_3, Z_3 \to aB, B \to A, B \to aZ_4, Z_4 \to bZ_5, Z_5 \to \varepsilon\}.$
- Ezután elimináljuk a láncszabályokat, $S \to A$ -t és $B \to A$ -t.
- Az új szabályhalmaz $P_1' = \{S \to aB, S \to bZ_1, B \to bZ_1, A \to bZ_1, Z_1 \to \varepsilon, S \to bZ_2, B \to bZ_2, A \to bZ_2, Z_2 \to cZ_3, Z_3 \to aB, B \to aZ_4, Z_4 \to bZ_5, Z_5 \to \varepsilon\}$ lesz.

5. feladat megoldása

a.) Az $A = (Q, T, \delta, q_{00}, F)$ véges determinisztikus automata, ahol $Q = \{q_{00}, q_{10}, q_{01}, q_{11}, q\},$ $T = \{a, b\}, F = \{q_{01}, q_{11}\}$ és legyen $\delta(q_{00}, a) = q_{10}, \delta(q_{00}, b) = q_{01}, \delta(q_{10}, a) = q, \delta(q_{10}, b) = q_{11}, \delta(q_{01}, a) = q_{11}, \delta(q_{01}, b) = q_{00}, \delta(q_{11}, a) = q, \delta(q_{11}, b) = q_{10}, \delta(q, a) = q, \delta(q, b) = q.$

Az A automata átmeneti állapotainak táblája:

		a	b
\rightarrow	q_{00}	q_{10}	q_{01}
	q_{10}	q	q_{11}
\leftarrow	q_{01}	q_{11}	q_{00}
\leftarrow	q_{11}	q	q_{10}
	q	q	q

b.) Az A automata konstrukciója: $Q=N,\,Q_0=\{S\},\,F=\{C\}$. Továbbá δ -t úgy definiáljuk, hogy $\delta(S,a)=\{B\},\,\delta(B,c)=\{S\},\,\delta(B,b)=\{A\},\,\delta(A,a)=\{A\},\,\delta(A,a)=\{C\}.$

6. feladat megoldása

Az A' véges determinisztikus automata:

- Q' elemei: \emptyset , $\{q_0\}$, $\{q_1\}$, $\{q_2\}$, $\{q_3\}$, $\{q_0,q_1\}$, $\{q_0,q_2\}$, $\{q_0,q_3\}$, $\{q_1,q_2\}$, $\{q_1,q_3\}$, $\{q_2,q_3\}$, $\{q_0,q_1,q_2\}$, $\{q_0,q_1,q_3\}$, $\{q_0,q_2,q_3\}$, $\{q_1,q_2,q_3\}$, $\{q_0,q_1,q_2,q_3\}$
- $q'_0 = \{q_0\}$ és
- $F' = \{\{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_2, q_3\}, \{q_0, q_1, q_2\}, \{q_0, q_2, q_3\}, \{q_1, q_2, q_3\}, \{q_0, q_1, q_2, q_3\}\}.$
- Az új állapotátmenet táblázat:

		a	b
\rightarrow	$\{q_0\}$	$\{q_2\}$	$\{q_0,q_3\}$
	$\{q_1\}$	$\{q_1,q_3\}$	$\{q_2\}$
\leftarrow	$\{q_2\}$	$\{q_0,q_3\}$	$\{q_1\}$
	$\{q_3\}$		$\{q_1,q_2\}$
	$\{q_0,q_1\}$	$\{q_1,q_2,q_3\}$	$\{q_0,q_2,q_3\}$
\leftarrow	$\{q_0,q_2\}$	$\{q_0,q_2,q_3\}$	$\{q_0,q_1,q_3\}$
	$\{q_0,q_3\}$	$\{q_2\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_1,q_2\}$	$\{q_0,q_1,q_3\}$	$\{q_1,q_2\}$
	$\{q_1,q_3\}$	$\{q_1,q_3\}$	$\{q_1,q_2\}$
\leftarrow	$\{q_2,q_3\}$	$\{q_0,q_3\}$	$\{q_1,q_2\}$
\leftarrow	$\{q_0,q_1,q_2\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$
	$\{q_0,q_1,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_0,q_2,q_3\}$	$\{q_0,q_2,q_3\}$	$\{q_0, q_1, q_2, q_3\}$
\leftarrow	$\{q_1,q_2,q_3\}$	$\{q_0,q_1,q_3\}$	$\{q_1,q_2\}$
\leftarrow	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$	$\{q_0, q_1, q_2, q_3\}$