НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

ЗАДАНИЕ

и МЕТОДИЧЕСКИЕ УКАЗАНИЯ к курсовой работе по дисциплине

МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ часть 2

ВВЕДЕНИЕ

Целью курсовой работы является приобретение навыков разработки микропроцессорных систем (МПС) и оформления документации на примере проектирования системы управления некоторым объектом (рис. 1). МПС принимает информацию $\{X\}$ об объекте управления (OU) от аналоговых и цифровых датчиков (D), вырабатывает управляющие воздействия $\{Y\}$ в соответствии с заданным алгоритмом управления и подает их на исполнительные механизмы (RU). В МПС предусматривается сигнал прерывания $\{INT\}$ для обработки асинхронных событий (например: от клавиатуры матричного типа при нажатии клавиши).

Рис. 1. Объект, управляемый МПС

Структурная схема МПС (рис. 2) состоит из микропроцессорного модуля (MPM), оперативного и постоянного запоминающих устройств (RAM и ROM), интерфейсных устройств ввода-вывода (IOU: входные аналоговый Xa, дискретные Xd сигналы и выходные сигналы Y), контроллера прерываний (IC) и пульта управления (CPAN: клавиатура, индикация), соединенных с помощью общей шины.

Рис. 2. Структурная схема МПС

В курсовой работе разрабатываются:

- структурная, функциональная и принципиальная схемы МПС (электрические схемы МПС учитывают вопросы сопряжения компонентов схемы);
- алгоритм и программы на ассемблере, обеспечивающие выполнение пунктов задания и реализующие необходимые временные диаграммы.

Также в работе осуществляется оценка параметров МПС.

В качестве основы для построения МПС выбран микроконтроллер семейства *MSC*51 (однокристальные микроЭВМ) – **AT89S53** (для всех вариантов).

Вариант задания (в десятичной системе счисления) соответствует порядковому номеру студента в группе по БАРСу и обозначен M, номер группы обозначен – G (7 или 8, или 12).

¹ Функциональная схема делит аппаратный состав по функциональным признакам, т.е. включает в себя МК (содержащий АЛУ, ОЗУ, ПЗУ, схему управления), *IOU* (содержащий АЦП, генераторы сигналов/стробов), *CPAN* (содержащий клавиатуру, индикаторы, светодиоды) и кольцевой буфер (двухпортовая *SRAM*).

1. МПС для управления объектом

В МПС реализуется обобщенный алгоритм, представленный на рис. 3.

Рис. 3. Схема алгоритма управления объектом

Блоком 1 выполняется начальная установка системы (инициализация при включении устройства): программирование используемых интегральных микросхем, засылка в выходные устройства начальных значений управляющих воздействий и т.п.

Блоком 2 реализуется взаимодействие с пользователем:

- опрос клавиатуры матричного типа 4x4 (десятичные цифры 0-9, кнопка ввода, кнопка сброса, сервисные клавиши A, B, C, D): ввод двух последовательно введенных цифр десятичного числа (асинхронный ввод целого числа от 0 до 99) цифровой сигнал Xd;
- выдача на семисегментный индикатор (2 позиции) цифр нажимаемых на клавиатуре (вывод Xd), начальное состояние индикатора: выключен;
- при нажатии кнопки «ввода» фиксировать число, введенное с клавиатуры преобразование сигнала Xd в десятичную величину Q (начальное значение Q=2*G+M) и выдать строб низкого уровня Y1 длительностью: $T_1=M$ мс, индикатор: сегменты цифр выключены;
- при нажатии на клавишу «сброс» выполнить очистку ввода данных с клавиатуры, индикатор: сегменты цифр выключены;
- при обнаружении ошибки при вводе данных или расчетах выдавать на индикатор символ ошибки «Е» с последующей цифрой кодом ошибки, составить таблицу расшифровки, индикация кода до нажатия сервисной клавиши «сброс» (другие клавиши блокированы).

Блоком 3 обеспечивается ввод и обработка сигналов с максимально возможным приоритетом и наибольшей частотой опроса (задача реального времени):

- ввод однополярного аналогового сигнала Ха5 (полоса 100 Гц) с АЦП– цифровой сигнал Х5;
- если X5 < |3Q+G-2M|, то красный светодиод на *CPAN* выключить, иначе включить;
- вычисление значения управляющего воздействия: Y2=M+X5 без округления и сохранения этой величины во внешнем ОЗУ статического типа кольцевой буфер на $32 \cdot (M \mod 10 + G)$ записей.

Блок 4 реализует сервисные функции (при их работе ввод данных пользователя блокировать, а работоспособность блока 3 сохранить):

- при нажатии на сервисную клавишу «A» выдача через *UART* последних 4*G записей кольцевого буфера с индикацией прогресса на индикаторе (обратный отсчет), по окончанию передачи данных: сегменты цифр индикатора выключены;
- при нажатии сервисных клавиш «В» и «С» включить и выключить соответственно генератор периодического сигнала Y3 с периодом T_3 =(22+2*M) мс и шириной импульса t_u =G мс, активное состояние индицировать зеленым светодиодом (в выключенном состоянии считать Y3=0), погрешность установки временных интервалов: не более 1%;
- сервисная кнопка «D» не используется (резерв не исключать ее работоспособность).

2. Общие требования к реализации блоков схемы системы

Требования по распределению линий портов ввода-вывода:

- РО, Р2, Р3.6, Р3.7 внешнее ОЗУ, устройства;
- P3.5 выход генератора (сигнал *Y*3);
- P3.4 выход, строб *Y*1;
- Р3.3 и Р3.0 управление светодиодами;
- P3.2 вход *INT*0 (асинхронный ввод данных);
- P3.1 выход *UART* (выдача данных без подтверждения передачи);
- P1.4-P1.7 *SPI* для подключения АЦП;
- Р1.0-Р1.3 можно использовать по Вашему усмотрению.

Схемотехнические требования:

- выполнять согласование электрических параметров (привести расчет);
- выполнять согласование временных параметров (временные диаграммы);
- стремиться использовать минимум внешних компонентов.

Основные требования к реализации кода:

- выполнить разбивку задачи проекта на функции, описать каждую (назначение, входные/выходные параметры), выделить: ввод с клавиатуры, управление генератором, формирование строба, вывод через *UART*, ввод данных с АЦП;
- комментировать строки кода по смыслу их действий, а не «перевода» мнемоники на русский язык;
- стремиться использовать минимум команд;
- предусмотреть хранение указателей ("голова", "хвост") на кольцевой буфер в начале адресного пространства внешнего двухпортового ОЗУ (полагаем, что другое устройство может только читать данные из этого буфера одновременно с Вашим МК);
- задействовать максимум аппаратных возможностей МК.

Требования к оформлению работы:

- титульный лист;
- поля: сверху и снизу -2, слева -2.5, справа -1 см;
- шрифт: 12*pt*, *Times New Roman*, одинарный интервал;
- при начертании схем устройства выполнять требования ЕСКД;
- рисовать (печатать) электрическую принципиальную схему на листе формата A3 (горизонтальное расположение «альбомная» ориентация);
- в приложение к работе включить выдержки из технической документации на компоненты;
- при выполнении расчетов приводить формулы, а затем числовые значения, а также указывать размерности физических величин;
- привести таблицу кодов ошибок системы;
- указать список использованных источников.

В работе применять следующие марки элементов:

Семисегментный индикатор: **DA04-11**.

Сдвиговый регистр: **74hc595**

Регистр-защелка 8-разрядный: **КР580ИР82**, **sn74act573** или сдвоенный на 4 бита: **74ac11873**

Регистр 4 бита (сдвоенный) с несколькими разрешающими стробами: cd54hc173

Двухпортовая SRAM 8-разр.: IDT7005 или аналогичная

АШП с SPI интерфейсом по варианту M

	T T		. =			
M mod 6	0	1	2	3	4	5
АЦП	mcp33121	max176	mcp3201	mcp3001	ad7091	ad7910

Матричная клавиатура 4х4 с дребезгом контактов не более 5 мс любого типа.

Прочие компоненты – на свое усмотрение с предоставлением документации.

2.1. Разработка аппаратных средств МПС

Разработка аппаратных средств МПС включает:

- 1) Разработку структурной и функциональной схем МПС;
- 2) Разработку микропроцессорного модуля (MPM), в состав которого должны входить: микроконтроллер, кварцевый резонатор, узел сброса МПС в начальное состояние (как при включении питания), шинные формирователи или буферные регистры для обеспечения электрического сопряжения компонентов МПС и т.п.;
- 3) Составление карты распределения адресного пространства памяти МПС под *ROM* и *RAM*, внешние и интерфейсные устройства;
- 4) Разработку интерфейсных устройств ввода-вывода (IOU), которые включают АЦП, генератор строба Y1 и генератор периодического сигнала Y3;
- 5) Разработку пульта управления (*CPAN*), который включает семисегментные индикаторы (на 2 позиции), светодиоды и матричную клавиатуру;
- 6) Разработку двухпортового буфера статического типа, обеспечивающего независимый доступ внешнего устройства к данным, сохраняемым *MPM* (формирование сигнала *Y*2);
- 7) При разработке узлов системы особое внимание следует уделить расчету электрического сопряжения элементов МПС (*MPM*, *IOU* и *CPAN*);
- 8) Построение временных диаграмм (обмен между МК и АЦП, МК и кольцевым буфером). Должны быть указаны сигналы: как на выводах МК так и на выводах микросхем памяти и АЦП;
- 9) Построение принципиальной электрической схемы МПС в целом. На принципиальной электрической схеме предусмотреть использование разъёмов для подключения источников питания, набора входных сигналов $\{X\}$ и выходных сигналов $\{Y\}$, в т.ч. к шине для доступа к кольцевому буферу, а для повышения помехоустойчивости МПС следует предусмотреть емкостные фильтры по цепям питания.
- 10) Составление перечня используемых компонентов электрической схемы.

В пояснительной записке к курсовой работе указать технические характеристики, параметры, временные диаграммы отечественных и зарубежных ИС (не следует полностью приводить всю документацию, используйте ту часть документации, которая нужна и используется в работе). Внести в список используемой литературы ссылки на "интернет" или любой другой источник, откуда взято описание ИС, включенное в работу.

2.2. Разработка программного обеспечения

В проекте необходимо разработать следующие алгоритмы и программные модули на языке Ассемблера:

- 1) Инициализации МПС, т.е. установки режимов работы программируемых интерфейсных ИС:
- 2) Логической обработки сигнала Xd и формирования управляющего сигнала Y1 аппаратными средствами МК;
- 3) Ввода напряжения Xa5 для формирования сигналов Y2, Yd;
- 4) Формирования сигнала УЗ;
- 5) Вызов подпрограмм обработки прерываний.
- 6) Подпрограмма опроса клавиатуры и определения кода нажатой клавиши, а также его преобразование в величину Q.
- 7) Подпрограмма вывода числа на индикатор.

При разработке программного обеспечения рекомендуется применять соответствующие средства отладки.

Листинг программы (файл с расширением .txt) выслать на почту ОСЭП вашего руководителя проекта с темой: «МПС2-Ваша фамилия-Группа» (пример: МПС2-Михалин-А00 на почту MikhalinSN@mpei.ru). Печатать листинг не надо!

3. Определение параметров МПС

- 1) Выполнить оценку мощности потребления устройства, указать требования к системе питания устройства;
- 2) Указать нагрузочную способность выходных сигналов Y_i ;
- 3) Определить частоту дискретизации АЦП, принять меры по стабилизации этой величины (при необходимости): нестабильность не хуже 10-20%;
- 4) Определить время реакции системы на нажатие клавиши (определить худший случай);
- 5) Определить временные рамки (минимальное и максимальное время) доступа к внешнему ОЗУ другим МК (с целью использования данных кольцевого буфера), описать механизм доступа.

4. Оформление работы и ее оценка

Оформление работы выполняется в виде двух документов - по аппаратной части (титульный лист - Приложение А) и по программной части (шаблон - Приложение Б) отдельно в соответствии с принятыми нормативными документами.

КМ-1 оценивает факт получения задания, его ясности, полноты и готовности к выполнению (рассматриваем как заключение контракта на работу).

КМ-2 оценивает аппаратную часть работы "по сути" при обязательном наличии пояснительной записки, т.е. оценивается корректность, читаемость схемы и содержание пояснительной записки (качество оформления в оценку не входит, недостатки оформления можно устранить к КМ-4).

КМ-3 оценивает программную часть работы "по сути" при обязательном наличии корректного оформления (качество оформления в оценку не входит, недостатки можно устранить к КМ-4). Обратите внимание: программная часть должна соответствовать принятой в КМ-2 аппаратной части.

КМ-4 оценивает оформление двух частей работы как среднее арифметическое (при положительных оценках "по сути" за каждую часть).

Итоговая оценка определяется по "технологии БАРС" (КМ2-4 имеют одинаковый вес).

Сдача работы по сроку КМ БАРС должна осуществляться накануне недели с КМ! Это необходимо для проверки работы и выставления оценки за текущее КМ в срок. Сдача работы после срока, включая текущую неделю КМ, означает потерю баллов в оценке (т.к. работа проверяется 1 неделю).

Защита работы происходит после получения положительных оценок за КМы, при выставлении итоговой оценки во внимание принимается факт своевременного/ несвоевременного выполнения этапов работы.

ЛИТЕРАТУРА

- 1. Официальная документация на микроконтроллер AT89S53 http://www.atmel.com
- 2. Гладштейн М.А. Микроконтроллеры смешанного сигнала C8051Fxxx SiliconLaboratories и их применение. Руководство пользователя. М.: Издательский дом «Додэка XXI», 2008. 336 с.: с илл. (Серия «Мировая электроника») ISBN 978-5-94120-162-4
- 3. Однокристальные микроЭВМ. М.: Микап, 1994. 490 с.
- 4. Сташин В.В., Урусов А.В., Мологонцева О.Ф. Проектирование цифровых устройств на однокристальных микроконтроллерах. М.: Энергоатомиздат, 1990. 224 с.
- 5. Иванов А.В., Кленов С.И. Построение микропроцессорных систем на базе однокристальных микроЭВМ. М.: Изд-во МЭИ, 1992. 52 с.
- 6. Петровский И.И. и др. Логические ИС КР1533, КР1554. Справочник. В двух частях. М.: Бином, 1993. Часть 1 254 с., часть 2 497 с.
- 7. Интегральные микросхемы: Микросхемы для аналого-цифрового преобразования и средств мультимедиа. Выпуск 1. М.: ДОДЭКА, 1996. 384 с.
- 8. Полупроводниковые приборы. Диоды высокочастотные, импульсные, оптоэлектронные приборы: А.Б. Гитцевич, А.А. Зайцев, В.В.Мокряков и др.; Под ред. А.В.Голомедова. М.: КУБК-а, 1997. 592 с.
- 9. Аксенов А.И., Нефедов А.В. Электрические схемы бытовой радиоаппаратуры. Конденсаторы, резисторы.: Справочник. М.: Радио и связь, 1995. 272 с.

Приложение А. Шаблон титульного листа работы

Федеральное государственное бюджетное образовательное учреждение высшего образования «Национальный исследовательский университет «МЭИ»

КУРСОВАЯ РАБОТА

по курсу "Микропроцессорные системы ч.2"

Проектирование микропроцессорной системы на базе МК і8051

Аппаратная часть

Группа: Вариант:
Проверил: Дата:

Выполнил:

Москва, 2022