1. Wie viele Relationen auf einer endlichen Menge A mit n Elementen gibt es?

Lösung:

(a)

- 2. Gib für $A = \{x, y, z\}$ Relationen an mit folgenden Eigenschaften:
 - (a) Reflexiv, aber nicht symmetrisch
 - (b) Weder symmetrisch noch antisymmetrisch
 - (c) Antisymmetrisch, aber nicht asymmetrisch
 - (d) Total, aber nicht transitiv
 - (e) Symmetrisch und total

Lösung:

(a)

3. Hier sind alle Relationen auf der Menge $A = \{x, y\}$:

Welche dieser Relationen sind reflexiv, welche symmetrisch, welche asymmetrisch, welche antisymmetrisch, welche transitiv und welche total?

Lösung:

(a)

4. Zeige, dass wenn $xRy \Rightarrow \neg yRx$ erfüllt ist, dann auch $(xRy \land yRx) \Rightarrow x = y$. Verwende dazu die Regel zur Auflösen der Implikation $(A \Rightarrow B)$ ist äquivalent zu $\neg A \lor B$ und die de morgansche Regel.

Lösung:

(a)

5. Es sei R eine beliebige Relation auf einer Menge A. Die Relation R^S auf A sei definiert als

$$R^S := \{(x, y) \in A \times A : xRy \vee yRx\}$$

- Was bedeutet das für das Bild mit Pfeilen?
- \bullet Zeige, dass \mathbb{R}^S eine symmetrische Relation ist.
- Zeige, dass R^S die kleinste symmetrische Relation auf A ist, die R enthält. Für jede symmetrische Relation R' auf A mit $R\subseteq R'$ gilt $R^S\subseteq R'$
- Beweise oder widerlege: Wenn R transitiv ist, ist auch R' transitiv.

Lösung:

(a)

6. Gibt es Relationen, die sowohl reflexiv, aus auch asymmetrisch sind? (Vorsicht: genau hinsehen!)

Lösung:

(a)