Ajinkya Gadqil Bol200445
Answer 1:
RI is transmission rate between Sending host and Switch
R2 is transmission rate between switch and receiving host
L is the length of packet

Transmission delay (drans) = Packet length

Ink bandwillth

Total and to end delay =
$$\frac{L}{R1}$$
 + $\frac{L}{R2}$

Answer 2:

Transmission delay (dwars) = where L: Packet length (bits)

R: link bandwidth (bps)

```
It is given that the length of packet is
1000 byte. I byte is equal to & bit
Merefore 1000 byte = 8 x 1000 bits
                      = 8000 bits
Link bandwidth = 2 Mbps = 2,000,000 bps
Hence.
Transmission delay (dwans) = 1
                    _ 8000
                    2,000,000
                   = 4ms
 Propogation delay (drop) = d
where d: length of physical link
s: propogation speed
 Here length of physical link is 2500 km
```

which 5 2500 x 1000 = 2500000 m

.. Propogation delay $(dprop) = \frac{d}{5}$ $= \frac{2500000}{2.5 \times 10^8}$

Total time = duans + drop

= 4+10 rotal time = 14ms

The delay depend on packet kength as
you need packet length to get kansmission

you need packet length to get kansmidelay. The delay also depend on transmission rate.

Answer 3: a. Propogation delay (dprop) = d where d is length of physical link and 5 is propagation speed : dprop= 20,000 x1000 2.5 x 108 - 0.085 R= 2Mbps= 2000000 bps .. Bandwidth delay product = R* dprop = 2000000 x 0.08 Bandwidth delay product = 160,000 bits b. Bandwidth delay product is max number of data on a network link at a given time Here the bandwidth delay product for the link 15 160,000 bits hence maximum number of

bits in link at given time is 160,000 bits

c)	The bandwidth delay product is the maximum amount of data that can be on a link at a given time.
(Answer 4:
	The ip address 198.1.17/24 indicate that 24 bit is assigned to Subnet part and 8 bits for the host
	Subnet 1 requires to support 60 interfaces to represent 60 interfaces we would need 64 bits ie 26
	Subnet 2 requires to support 90 interfaces ie we would need $2^7 = 128$ bits
	Subnet 3 needs to support 12 interfaces ie we would need 2 = 16 bits
	Each of the interface would recycle I network address and I broadcast address
	OL -10-11-2

Subnet1:	198.1.17.0/26
subnef 2:	198.1.17.128/25
Subnet 3:	198.1.17.65/28
N 20 1 5 5	

4.	Destination address	Link Interface
	HI	interface 1

tre c	15 YOU C	an See	that	the routin
table	coecific	c that	if the	the routing distinction interface
1 4	Specific	- 11141 - 14. H	11 112	4 /
oddreso	s ic of	H1 11	ien Use	inter

No we cannot write forwarding table in this scenario as forwarding table can be written depending on destination addresses.