Formula lui Taylor

Definition 1 Fie $D \subseteq \mathbb{R}$, $x_0 \in \mathbb{R}$ si $f : D \to \mathbb{R}$ derivabila de n ori in x_0 . Functia polinomiala $T_n f : \mathbb{R} \to \mathbb{R}$

$$T_n f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0)$$

se numeste **Polinomul lui Brooke-Taylor de grad n**, atasat functiei f si punctului x_0 . Functia $r_n f: D \to \mathbb{R}$

$$r_n f(x) = f(x) - T_n f(x), \forall x \in D$$

se numeste **restul Taylor de grad n** atasat functiti f in punctul x_0 .

$$f = T_n f + r_n f$$

se numeste formula lui Taylor de ordin n.

Theorem 2 (teorema lui Taylor-Young) Fie $I \subseteq \mathbb{R}$ un interval, $x_0 \in i$ si $f: I \to \mathbb{R}$. Daca f e de n ori derivabila in x_0 atunci exista o factic $\alpha_n f: I \to \mathbb{R}$ astfel incat:

- 1. $(\alpha_n f)(x_0) = 0$;
- 2. $\alpha_n f$ e continua in x_0 ;
- $3. \ \forall x \in X$

$$f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + (x - x_0)^n (\alpha_n f)(x).$$

Theorem 3 (teorema lui Taylor) Fie $I \subseteq \mathbb{R}$ un interval, $x_0 \in i$ si $f: I \to \mathbb{R}$. Daca f e de n+1 ori derivabila in x_0 . Atunci

 $\forall p \in \mathbb{N}, p \geq 1 \text{ si } x \in I \setminus \{x_0\} \exists c \text{ intre } x \text{ si } x_0 \text{ astfel incat}$

$$(r_n f)(x) = \frac{(x - x_0)^p (x - c)^{n-p+1}}{n! n} f^{n+1}(c).$$

Remark 4 Deoarece c e cuprins intre x si x_0 , putem defini

$$\theta := \frac{c - x_0}{x - x_0}, \ deci \ \theta \in]0,1[\ si \ c = x_0 + \theta(x - x_0).$$

Restul se poate exprima, printre altele, si intr-una din urmatoarele forme:

$$(r_n f)(x) = \frac{(x - x_0)^{n+1} (1 - \theta)^{n-p+1}}{n! p} f^{(n+1)}(x_0 + \theta(x - x_0))$$
 Schlömilch-Roche;

$$(r_n f)(x) = \frac{(x - x_0)^{n+1} (1 - \theta)^n}{n!} f^{(n+1)}(x_0 + \theta(x - x_0))$$
 Cauchy;

$$(r_n f)(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(x_0 + \theta(x - x_0))$$
 Lagrange.

Remark 5 Formula lui Taylor de ordin n corespunzatoare lui f in punctul $x_0 = 0$, cu restul lui Lagrange se numeste **formula lui Maclaurin**:

$$f(0) = f(0) + \frac{x}{1!}f'(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \frac{x^{n+1}}{(n+1)!}f^{(n+1)}(\theta x) \ cu \ \theta \in]0,1[.$$

Exemple

• $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x$, iar $f^{(k)}(x) = e^x$ cu k intreg

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} \dots + \frac{x^n}{n!} + \frac{x^{n+1}}{(n+1)!} e^{\theta x}$$

• $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$, $\operatorname{iar} f^{(k)}(x) = \sin(x + \frac{k\pi}{2})$ cu k intreg $\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \cos(\theta x), \text{ cu } \theta \in]0, 1[.$

• $f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x,$ $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^{n-1} \frac{x^{2n-2}}{(2n-2)!} + (-1)^n \frac{x^{2n}}{(2n)!} \cos(\theta x), \text{ cu } \theta \in]0, 1[.$

•
$$f:]-1, \infty[\to \mathbb{R}, f(x) = \ln(1+x), \text{ iar } f^{(k)}(x) = (-1)^k \frac{(k-1)!}{(1+x)^k} \text{ cu } k \text{ intreg}$$

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)} \frac{1}{(1+\theta x)^{n+1}}, \text{ cu } \theta \in]0, 1[.$$

Caracterizari ale punctelor de optim cu ajutorul derivatelor de ordin superior

Theorem 6 Fie $I \subseteq \mathbb{R}$ un interval, $x_0 \in I$, si $f: I \to \mathbb{R}$ o functie de $n \ge 2$ ori derivabila in x_0 astfel incat:

(i)
$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$$
,

(ii)
$$f^{(n)}(x_0) \neq 0$$
.

Atunci:

1. x_0 e un punct de **minim local** al lui f relativ la I daca

$$n \ e \ par \ si \ f^{(n)}(x_0) > 0;$$

2. x_0 e un punct de **maxim local** al lui f relativ la I daca

$$n \ e \ par \ si \ f^{(n)}(x_0) < 0;$$

3. x_0 e un punct de **optim local** al lui f relativ la I daca si numai daca

$$n e par$$
.