1. При взаимодействии оксида углерода (II) с водяным паром в присутствии катализатора при высокой температуре по достижении равновесия образовалась смесь, содержащая 35% водорода по объему. Первоначальный объем паров воды в 1.2 раза превосходил объем оксида углерода. Рассчитайте состав исходной и конечной смеси в объемных и массовых процентах.

№ 1

В исходной смеси на 1 л CO приходится 1,2 л газообразной воды. Объемный состав смеси: ϕ (CO) = 100*1:2.2 = 45,45%; ϕ (H₂O) = 100*1.2/2.2 = 54,55%. М(исх. смеси) = 0.4545*28 + 0.5455*18 = 12.73 + 9.82 = 22.55 г/моль. Тогда w(CO) = 100*12.73/22.55 = 56,45%, w(H₂O) = 100*9.82/22.55 = 43.55%. Обратим внимание на конечную смесь. Уравнение реакции: CO + H₂O = CO₂ + H₂

Компонент	CO	H_2O	CO_2	H_2
Было	a	1,2a	•	-
Прореагировало	a-0.77a	1.2a-0.77a	0.35*2.2a	0.35*2.2a=0.77a
Стало	0.23a	0.43a	0.77a	0.77a

Объемный состав см.еси: $\phi(CO)=100*0.23a:2,2a=10.45\%; \ \phi(H_2O)=100*0.43a/2.2a=19.55\%; \ \phi(CO_2)=100*0.77a/2.2a=35,00\%; \ \phi(H_2)=100*0.77a/2.2a=35.00\%.$ М(кон. смеси) = 0.1045*28+0.1955*18+0.35*44+0.35*2=2.926+3.519+15.4+0.7=22.545 г/моль. Тогда w(CO) = $100*2.926/22.545=12.98\%; \ w(H_2O)=100*3.519/22.545=15.61\%; \ w(CO_2)=100*15.4/22.545=68.31\%; \ w(H_2)=100*0.7/22.545=3.10\%.$

Рекомендации к оцениванию:

 1. Определение состава исходной смеси (объемные %)
 2 балла

 2. Определение состава конечной смеси (объемные %)
 4 балла

 3. Определение состава исходной смеси (массовые %)
 2 балла

 4. Определение состава конечной смеси (массовые %)
 2 балла

ИТОГО: 10 баллов