Course Syllabus

1. Course Number 5602201

2. Course Credit 3 Credits

3. Course Title Data Structures (+Big Data and Database

Programming)

4. Faculty / Department Chulalongkorn School of Integrated

Innovation, Chulalongkorn University

5. Semester First Semester

6. Academic Year 2024

7. Instructor / Academic Staff Marko Niinimaki

8. Condition None

9. Status Required

10. Curriculum Bachelor of Arts and Science in

Integrated Innovation (International

Program)

11. Degree Undergraduate, 2nd Year

12. Hours / Week 3 Hours

13. Course Description

Processing data with Python, Data Structures, SQL, Interfacing SQL databases with Python, Big Data, Text and multimedia databases, noSQL, noSQL with Python.

14. Course Outline

15. 14.1 Learning Objectives / Behavioral Objectives

By the end of this course, students should be able to do the following:

- Understand the role of data structures in databases.
- Retrieve and display data using Python (text, csv, JSON, database using SQL).
- Understand the relational model and use of the SQL guery language.
- Implement database interfaces with Python.

- Understand the most important Big Data concept.
- Use noSQL databases.

14.2 Learning Contents

Class Day and Time: Mondays, 1pm - 3:45 pm except where otherwise indicated below.

Session	Date	Content	Instructor
1	5 Aug	Course overview, Python review.	
2	TBA	[Aug 12 is a national holiday]	
		Accessing data with Python	
3	19 Aug	Different flavours of databases	
4	26 Aug	The relational model	
5	02 Sep	SQL queries	
6	09 Sep	Building a database, the Python database interface.	
7	16 Sep	Summary	
Midterm week: 23-27 Sep			
8	30 Sep	Hash coding, lists and blockchains	
9	7 Oct	Big Data concepts	
10	ТВА	JSON in data storage and programming.	

11	21 Oct	MongoDB as an example of a noSQL	
		database	
12	28 Oct	MongoDB and	
		Python	
13	04 Nov	Cloud databases	
14	11 Nov	Working with Data	
15	18 Nov	Summary	

Final exams: 25 Nov - 09 Dec

16.	110	Method
וח	143	MATHOR

Lecture and discussion	70 %
Lab/Project Work	30 %

14.4 Media

PowerPoint media
Electronics and website media

14.5 Assignment through Network System

14.5.1 Assigning and Submitting Method: Online (mycourseville)

14.5.2 Learning Management System: Online (mycourseville)

14.6 Evaluation

Weekly Assignments (20%), Mid-Term Examination (35%), Final Examination (35%), Attendance (10%).

Attendance is compulsory and attendance information is collected at the beginning of each class. For absences, a valid, documented reason is required.

14.7 Class Rules and Etiquette

Students must not arrive later than 15 minutes after the class started. Students who fail to arrive in time will not receive attendance points for the lecture.

14.8 Rules and Regulations for AI Usage

When you use AI in information gathering, ensure information usage is from credible and reliable sources.

Al tools can be used for grammar checking, proofreading and editing drafts, but review suggestions critically and make your own final edits.

For outline structures for papers and projects, ensure the final works reflect your thought, Al should be used just for the starting point.

In using AI for assignment completion, only submit the work that represents your own understanding and effort. If you submit assignment answers generated by an AI, the instructor will grade them using an AI.

Al tools can not be used in the exam, unless explicitly allowed by the instructor, it should be your own work.

Avoid copying AI generated content directly into your assignment without proper attribution.

Examples of Attribution:

If AI is used for editing: "This document was proofread with the assistance of [AI Tool Name]."

If AI is used for idea generation: "Initial ideas for this project were generated with the help of [AI Tool Name]."

If AI is used to assist in assignments: "The following prompt was used with [AI tool name]."

15. Reading List

Material provided during the course by the course management system.

16. Teacher Evaluation

- 16.1 Evaluation through CUCAS system
- 16.2 Changes made in accordance with previous teaching evaluation

Instructor	Contact Number	Email
Marko Niinimaki	0 925 700 131	marko.n@chula.ac.th