

Aula 04 - Teoremas Booleanos e Simplificação Algébrica

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1

Na Aula Anterior ...

- Conceitos básicos da Álgebra Booleana;
- Variáveis e Funções Booleanas;
- Operações E, OU e NÃO;
- Tabelas Verdade;
- Operações compostas:
 - NÃO-E;
 - NAO-OU;
 - OU-Exclusivo;
 - NÃO-OU-Exclusivo;

- Exemplos de Funções Lógicas;
- Circuitos Lógicos Gerados a partir de Expressões Booleanas;
- Expressões Booleanas Geradas por Circuitos Lógicos;
- Interligação entre Expressões,
 Circuitos e Tabelas Verdade

Nesta Aula

- Propriedades Básicas;
- Identidades Auxiliares;
- Teoremas Booleanos;
- Universalidade das Portas NAND e NOR;
- Simplificação de funções via manipulação algébrica;

- Formas canônicas de funções lógicas:
 - Soma de Produtos
 - Produto de Somas
- Obtenção de formas canônicas via manipulação algébrica;
- Obtenção de formas canônicas via tabela da verdade.

Propriedades Básicas (Identidades)

•
$$X + 0 = X$$

$$\bullet \quad X \cdot 0 = 0$$

$$\bullet$$
 X + X = X

$$\bullet$$
 $X \cdot X = X$

•
$$X + \bar{X} = 1$$

•
$$X \cdot \bar{X} = 0$$

•
$$\bar{X} = X (X \text{ barra dupla} = X)$$

Como podemos provar tais identidades?

Provando Identidades via Tabela da Verdade

X	0	X+0
0	0	0
1	0	1
$\overline{}$		

_	Ex:	\/	• 1		\/
	F V.	Х		=	Х
	$L\Lambda$			_	/\

Propriedades

Comutativa

- \bullet X+Y = Y+X
- $\bullet \quad X \cdot Y = Y \cdot X$

Associativa

- $\bullet \quad X + (Y + Z) = (X + Y) + Z$
- $X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$

- Distributiva
- $\bullet \quad X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$
- $\bullet \quad X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$
- $(X+Y) \cdot (Z+W) = X \cdot Z + X \cdot W + Y \cdot Z + Y \cdot W$
- $\bullet \quad (X \cdot Y) + (Z \cdot W) = (X + Z) \cdot (X + W) \cdot (Y + Z) \cdot (Y + W)$

Teoremas de DeMorgan

Teorema 1: O complemento do produto é igual à soma dos complementos

- $\overline{A \cdot B} = \overline{A} + \overline{B}$
- Prova: (via tabela verdade)

Α	В	A·B	A+B
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Teoremas de DeMorgan

Teorema 2: O complemento da soma é igual ao produto dos complementos

- \bullet A+B = A·B
- Prova: (via tabela verdade)

Α	В	A+B	A·B
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Identidades Auxiliares

- $\bullet \quad \mathsf{A} + \mathsf{A} \cdot \mathsf{B} = \mathsf{A}$
 - Prova:
 - a) $A\cdot 1 = A$
 - b) $A \cdot (1+B) = A+A \cdot B$ (distributiva)
 - c) 1+B=1
 - d) $A\cdot 1 = A \cdot A \cdot A + A \cdot B = A$

- $A+A\cdot B = A+B$
- $\bullet \quad (A+B)\cdot (A+C) = A + B\cdot C$
- $\bar{A}+(A\cdot B)=\bar{A}+B$

Universalidade NAND

 Significa que usando apenas portas NAND (A·B) é possível obter qualquer outra porta

Universalidade NOR

 Significa que usando apenas portas NOR (A+B) é possível obter qualquer outra porta

Simplificação Algébrica

- Porque é necessário simplificar equações Booleanas?
 - Funções Booleanas são traduzidas para circuitos digitais. Quando mais simples, menos portas lógicas serão necessárias;
 - O circuito fica mais simples de implementar fisicamente;
 - Há menor geração de calor, e menor consumo de energia.

Simplificação Algébrica

- Existem duas formas de se simplificar uma função Booleana:
 - Manipulação Algébrica
 - Simplificação via Mapas de Veitch-Karnaugh
- Em simplificação algébrica, a função é manipulada via as identidades e propriedades Booleanas com o intuito de se buscar uma versão reduzida da função

Propriedades/Teoremas

Propriedades	Propriedades	Propriedades
X + 0 = X	(barra ²) $\bar{X} = X$	$X \cdot (Y+Z) = (X \cdot Y)+(X \cdot Z)$
X · 1 = X	$X \cdot Y = (\overline{X} + \overline{Y})$	$X+(Y \cdot Z) = (X+Y) \cdot (X+Z)$
X + 1 = 1	$X+Y=(\overline{X}\cdot\overline{Y})$	$(X+Y) \cdot (Z+W) = X \cdot Z + X \cdot W + Y \cdot Z + Y \cdot W$
$X \cdot 0 = 0$	$A \oplus B = \bar{A} \cdot B + A \cdot \bar{B}$	$(X \cdot Y)+(Z \cdot W) = (X+Z) \cdot (X+W) \cdot (Y+Z) \cdot (Y+W)$
X + X = X	X+Y = Y+X	$A+A\cdot B=A$
$X \cdot X = X$	$X \cdot Y = Y \cdot X$	$(A+B)\cdot(A+C) = A + B\cdot C$
$X + \bar{X} = 1$	X+(Y+Z) = (X+Y)+Z	$\bar{A}+(A\cdot B)=\bar{A}+B$
$X \cdot \bar{X} = 0$	$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$	

Passo	Equação	Propriedade
0	A+Ā·B	(1·X=X)
1	(1·A)+(Ā·B)	Distributiva
2	(1+Ā) ·(1+B) ·(Ā+A) ·(A+B)	(1 + X = 1)
3	1·1·(Ā+A) ·(A+B)	$(1 \cdot X = X)$
4	(Ā+A) ·(A+ B)	$(X + \bar{X} = 1)$
5	1·(A+B)	$(1 \cdot X = X)$
6	A+B	
	∴ A+Ā·B = A + B	

Passo	Equação	Propriedade
0	$(A \cdot B \cdot C) + (A \cdot \overline{C}) + (A \cdot \overline{B})$	evidência A
1	A· ((B·C)+Ĉ+Ē)	(x duas barras) X=X
2	A· ((B·C)+(¯+B̄)	DeMorgan
3	$A \cdot ((B \cdot C) + (\overline{C} \cdot \overline{B}))$	(x duas barras) X=X
4	$A \cdot ((B \cdot C) + (\overline{C \cdot B}))$	BC=X / X+X=1
5	A· 1	X· 1=X
6	A	
	$\therefore (A \cdot B \cdot C) + (A \cdot \bar{C}) + (A \cdot \bar{B}) = A$	

Passo	Equação	Propriedade
0	$((A+B)\cdot C)+(D\cdot (B+C))$	DeMorgan
1	$((\overline{A+B})+\overline{C})+(\overline{D}+(\overline{B+C}))$	DeMorgan
2	$(\bar{A}\cdot\bar{B})+\bar{C}+\bar{D}+(\bar{B}\cdot\bar{C})$	evidência Č
3	$(\bar{A}\cdot\bar{B})+(\bar{C}\cdot(1+\bar{B}))+\bar{D}$	(1+X=1)
4	(Ā·Ē)+C+ D	
	$\therefore ((A+B)\cdot C)+(D\cdot (B+C))=(\bar{A}\cdot \bar{B})+\bar{C}+\;\bar{D}$	

Conversão de circuitos em expressões algébricas

• Exemplo: converter o circuito lógico a seguir para expressão algébrica:

Conversão de circuitos em expressões algébricas

• Exemplo: converter o circuito lógico a seguir para expressão algébrica:

Simplificar a expressão do slide anterior:

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} \cdot \overline{C})$$

Simplificar a expressão do slide anterior:

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot (\overline{A} \cdot \overline{C})$$

O circuito lógico simplificado é dado por.

Expressar algebricamente uma função de acordo com a tabela verdade e simplificar

A	В	C	f(A, B, C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Expressar algebricamente uma função de acordo com a tabela verdade e simplificar

$$A \cdot (\overline{B} + C)$$
 expressão mínima

A	В	C	f(A, B, C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Mostrar que a simplificação da expressão a seguir é:

$$\bar{A}\bar{B}C+\bar{A}\bar{B}\bar{C}+\bar{A}BC+\bar{A}B\bar{C}+ABC=\bar{A}+BC$$

Mintermos e Maxtermos

- Funções lógicas podem ser padronizadas utilizando duas formas padrão:
 - SdP Soma de Produtos (∏M) expressão é uma soma
 (OU) de produtos (E) de variáveis;
 - PdS Produto de Somas (ΣM) expressão é um produto (E) de somas (OU) de variáveis;
- Regra: Todos os termos devem possuir todas as variáveis da equação!

Mintermos e Maxtermos

 Cada mintermo ou maxtermo se associa a uma possibilidade de entrada de uma função lógica

A	В	mintermo	maxtermo
0	0	Ā·Ē	Ā+Ā
0	1	Ā∙B	Ā+B
1	0	A∙Ē	A+Ē
1	1	A∙B	A+B

SdP e PdS

- Ex: SdP

 - $\circ \quad \mathsf{F}(\mathsf{A},\mathsf{B},\mathsf{C}) = \bar{\mathsf{A}}\cdot\bar{\mathsf{B}}\cdot\bar{\mathsf{C}} + \bar{\mathsf{A}}\cdot\mathsf{B}\cdot\bar{\mathsf{C}} + \mathsf{A}\cdot\bar{\mathsf{B}}\cdot\bar{\mathsf{C}}$
- Ex:PdS
 - $\circ \quad \mathsf{F}(\mathsf{A},\mathsf{B},\mathsf{C}) = (\bar{\mathsf{A}} + \bar{\mathsf{B}} + \mathsf{C}) \cdot (\mathsf{A} + \bar{\mathsf{B}} + \bar{\mathsf{C}}) \cdot (\bar{\mathsf{A}} + \mathsf{B} + \bar{\mathsf{C}})$
 - $\circ \quad \mathsf{F}(\mathsf{A},\mathsf{B}) = (\bar{\mathsf{A}} + \mathsf{B}) \cdot (\mathsf{A} + \bar{\mathsf{B}}) \cdot (\bar{\mathsf{A}} + \bar{\mathsf{B}})$
- Funções que não estão nas formas canônicas
 - $\circ F(A,B,C) = A \cdot B + \bar{A} \cdot C + B \cdot \bar{C}$
 - $\circ F(A,B) = A \cdot (A+\overline{B})$

Usando Identidades para Obtenção das Formas Canônicas

Exemplo, dada a função abaixo, encontre sua forma canônica de mintermos:
 F(A,B) = A+(Ā·B)

Passo	Equação	Propriedade
0	A+(Ā·B)	X·1=X
1	(1·A) +(Ā·B)	X+X=1
2	((B+B̄) ⋅A) +(Ā⋅B)	distributiva
3	$(A \cdot B) + (A \cdot \overline{B}) + (\overline{A} \cdot B)$	
	$\therefore A+(\bar{A}\cdot B)=(A\cdot B)+(A\cdot \bar{B})+(\bar{A}\cdot B)$	
	$\prod M_F = (A \cdot B) + (A \cdot \bar{B}) + (\bar{A} \cdot B)$	

Usando Identidades para Obtenção das Formas Canônicas

Mesmo exemplo, dada a função abaixo, encontre sua forma canônica de maxtermos: F(A,B) = A+(Ā·B)

Passo	Equação	Propriedade
0	A+(Ā·B)	X·1=X
1	(1·A) +(Ā·B)	distributiva
2	(1+Ā)·(1+B)·(A+Ā)·(A+B)	(1+X=1)
3	1·1·(A+Ā)·(A+B)	(X+X=1)
4	1·1·1·(A+B)	(1·1=1) / 1·X=X
5	A+B	
	∴ A+(Ā·B) = A+B	
	$\Sigma M_F = A + B$	

Usando Identidades para Obtenção das Formas Canônicas

- Usar manipulação Algébrica para encontrar as formas canônicas de uma função Booleana qualquer pode ser problemático em alguns casos:
- Considere por exemplo a função a seguir:

$$F(A,B) = \bar{A} + (B \cdot C)$$

 Felizmente, há uma forma mais simples para obtenção de funções em sua forma canônica

Utilizando TV para Obtenção de Formas Canônicas

- A partir da tabela verdade de uma função é muito simples encontrar a sua forma canônica;
- Vejamos um exemplo. Considere a seguinte função:

$$F(A,B) = A + (\bar{A} \cdot B)$$

• O primeiro passo, refere-se a construir sua tabela verdade

Método da Tabela

- A partir da tabela é possível identificar os mintermos e maxtermos:
 - Mintermos correspondem a linhas com "1";
 - Maxtermos correspondem a linhas com "0".

Método da Tabela

- Para representar a função com base em seus mintermos (∏M_F) selecionamos as linhas nas quais o resultado é igual a "1".
- Em seguida, verificamos suas variáveis de entrada (na linha). Se a variável for igual a 0, marcamos ela com "¯", caso contrário, usamos a variável diretamente.

Α	В	Ā·B	A+(Ā·B)	_
0	1	1	1	→ ĀB
1	0	0	1	$AB \rightarrow AB \rightarrow M_F = \overline{A}B + A\overline{B} + AB$
1	1	0	1	⇒ AB → '' ⁺

Método da Tabela

- Para representar a função com base em seus maxtermos (ΣM_F) selecionamos as linhas nas quais o resultado é igual a "0".
- Em seguida, verificamos suas variáveis de entrada (na linha). Se a variável for igual a 1, marcamos ela com " -", caso contrário, usamos a variável diretamente.

Α	В	Ā·B	A+(Ā · B)	
0	0	0	0	$A+B \Rightarrow \Sigma M_c = A+B$

Aula 04 - Teoremas Booleanos e Simplificação Algébrica

Circuitos Digitais - CRT 0384Prof. Rennan Dantas
Ciência da Computação

2020.1