Superopers on Supercurves

Anton M. Zeitlin

Columbia University, Department of Mathematics

567th WE-Heraeus Seminar "Integrable Lattice Models and Quantum Field Theories"

University of Wuppertal, Germany,

June 28 - July 2, 2014

Superopers on Supercurves

Anton Zeitlin

Outline

Reminder: Opers and

Super Riemann surfaces

superopers for higher rank

Superopers with regular singularities

sp(2|1)

Super Riemann surfaces

uperopers for higher ank

uperopers with

n(2|1)

Reminder: Opers and Gaudin models

Supercurves and osp(2|1) superopers

Superopers for higher rank

Superopers with regular singularities

Relation to Gaudin Models: osp(2|1)

G-oper on a smooth curve, formal disc or punctured formal disc.

Triple: $(\mathcal{F}, \nabla, \mathcal{F}_B)$

 \mathcal{F} - G-bundle, ∇ - connection on \mathcal{F} , \mathcal{F}_B is a reduction to B (Borel supgroup)

Locally (for $\mathfrak{g} = \mathfrak{sl}(n)$) Op_G are equivalence classes of:

with respect to N. Equivalent description:

$$L = \partial_z^n + u_1(z)\partial_z^{n-2} + \dots + u_{n-1}(z)$$

$$L : \Omega^{-(n-1)/2} \longrightarrow \Omega^{(n+1)/2}$$

Local description: Adler, Gelfand-Dickey, Drinfeld-Sokolov Coordinate-indepedent: Beilinson-Drinfeld

$$V_{\{\lambda_i\}} = V_{\lambda_1} \otimes \cdots \otimes V_{\lambda_N}$$

Gaudin hamiltonians:

$$egin{aligned} H_i &= \sum_{j
eq i} \sum_{a=1}^d rac{T_a^{(i)} T^{a(j)}}{z_i - z_j} \quad i = 1, \ldots, N \ V_{\{\lambda_i\}} &= \oplus_{\mu} V_{\mu} \otimes \mathit{Hom}_{\mathfrak{g}}(V_{\mu}, V_{\{\lambda_i\}}) \ \mathit{Hom}_{\mathfrak{g}}(V_{\mu}, V_{\{\lambda_i\}}) &= \left(V_{\{\lambda_i\}} \otimes V_{\lambda_{\infty}}
ight)^G \end{aligned}$$

where $\lambda_{\infty} = -\omega_0(\mu)$. Diagonalization via Bethe ansatz (sl₂)

$$|0> = v_{\lambda_1} \otimes \cdots \otimes v_{\lambda_N}, \quad f(w) = \sum_{i=1}^N \frac{f^{(i)}}{w - z_i}$$

$$|w_1, \dots, w_m> = f(w_1)f(w_2)\dots f(w_m)|0> \quad \text{(Bethe vectors)}$$

$$\sum_{i=1}^N \frac{\lambda_i}{w_j - z_i} - \sum_{s \neq j} \frac{2}{w_j - w_s} = 0, \quad j = 1, \dots, m$$

$$\sum_{i=1}^N \lambda_i - m = \mu \quad \text{(Bethe equations)}$$

Outline

Reminder: Opers and Gaudin Models

> Super Riemann surfaces

Superopers for higher rank

Superopers with regular singularities

p(2|1)

 $V_{(\lambda,\lambda_{\lambda-1})}^{G} = (V_{(\lambda,\lambda_{\lambda-1})} \otimes V_{\lambda_{\infty}})^{G}$

to the set of LG -opers on \mathbb{P}^1 with regular singularities at (z_1,\ldots,z_N,∞) that have residues $\lambda_1, \ldots, \lambda_N, \lambda_\infty$ and trivial monodromy representation.

E. Frenkel, Opers on the projective line, Flag Manifolds and Bethe Ansatz, Mosc. Math. J. 4 (2004) 655-705.

B. Feigin, E. Frenkel, N. Reshetikhin, Gaudin Model, Bethe Ansatz and critical level, Comm. Math. Phys. 166 (1994) 27-62.

 Σ is complex supermanifold od dimension (1|1)

$$z_{\alpha} = F_{\alpha\beta}(z_{\beta}, \theta_{\beta})$$

 $\theta_{\alpha} = \Psi_{\alpha\beta}(z_{\beta}, \theta_{\beta})$

Super Riemann surface:

 \mathcal{D} is subbundle of dimension (0|1)

$$0 \longrightarrow \mathcal{D} \longrightarrow T\Sigma \longrightarrow \mathcal{D}^2 \longrightarrow 0$$

For any nonzero section $D \in \Gamma(\mathfrak{D})$ $D^2 \neq 0 \pmod{D}$ Superconformal coordinates:

$$D = f(z, \theta)D_{\theta}, \quad D_{\theta} = \partial_{\theta} + \theta \partial_{z}$$

 $D_{\theta} = (D_{\theta}\theta')D_{\theta'}$ is superconformal transformation.

Example:
$$SC^*: z' = -\frac{1}{z}, \quad \theta' = \frac{\theta}{z}$$

$$SPL_2: z \longrightarrow \frac{az+b}{cz+d} + \theta \frac{\gamma z + \delta}{(cz+d)^2}$$

$$\theta \longrightarrow \frac{\gamma z + \delta}{cz+d} + \theta \frac{1+1/2\delta\gamma}{cz+d}$$

(s)Projective structure on Σ :

Covering of Σ by $\{U_{\alpha}\}$, such that transition functions are given by SPL_2 (PGL_2)

(s)Projective structures \longleftrightarrow (s)Projective connections Superprojective connection:

$$\begin{split} L: \mathcal{D}^{-1} &\longrightarrow \mathcal{D}^2, \quad L = D_{\theta}^3 - \omega(z, \theta) \\ \omega &= \omega' (D_{\theta} \theta')^3 + \{\theta'; \ z, \theta\} \\ (cf. \ L &= \partial_z^2 - u(z)) \end{split}$$

Flat superholomorphic connections:

$$\begin{aligned} d_{A}(fs) &= df \otimes s + (-1)^{|f|} f d_{A} s \\ d_{A}^{2} &= 0 \\ d_{A} &= \partial + (\eta A_{z} + d\theta A_{\theta}) = \eta D_{\theta}^{A^{2}} + d\theta D_{\theta}^{A} \\ \eta &= dz - \theta d\theta \\ \nabla : \mathcal{D} \longrightarrow End(V) \quad D_{\theta}^{A} = D_{\theta} + A_{\theta} \\ A_{\theta} \longrightarrow g A_{\theta} g^{-1} - D_{\theta} g g^{-1} \end{aligned}$$

Outline

Reminder: Opers and Gaudin Models

Super Riemann surfaces

Superopers for higher rank

Superopers with regular singularities

Super Riemann surfaces

Useful exercise: superprojective structure \longrightarrow flat connection SPL_2 - bundle \mathcal{F} over $\Sigma \longrightarrow SC_{\mathfrak{T}}^* = \mathcal{F} \times_{SPL_2} SC^*$

 SC_{\pm}^* has global section with nonvanishing derivative.

 $SC^* = G/B$.

One can show that in B-trivialization the connection ∇ is (local coordinates)

$$\Delta = D_{\theta} + \left(egin{array}{ccc} lpha & b & eta \ -a & 0 & b \ 0 & a & -lpha \end{array}
ight) \qquad a
eq 0$$

modulo B -gauge transformations In other words we have a triple $(\mathfrak{F},\mathfrak{F}_{\mathcal{B}},\nabla)$ Superprojective connections \longleftrightarrow

$$D_{ heta} + \left(egin{array}{ccc} 0 & 0 & \omega(z, heta) \ -1 & 0 & 0 \ 0 & 1 & 0 \end{array}
ight)$$

There are bijections between:

- i) Superprojective structures on Σ
- ii) Superprojective connections on Σ
- iii) SPL2 opers

Superopers on Supercurves

Anton Zeitlin

Outline

Reminder: Opers and Gaudin Models

Super Riemann surfaces

Superopers for higher rank

Superopers with regular singularities

sp(2|1)

Super Riemann aurfaces

Superopers for higher rank

superopers with regular singularitie

(2|1)

Superalgebras with pure odd family of simple roots: s((n+1)n) - csn(2n+1)2n) - csn(2n+2n) - csn(2n+2n)

 $sl(n+1|n), \ osp(2n\pm 1|2n), \ osp(2n|2n), \ osp(2n+2|2n), \ n\geqslant 0, \ D(2,1;\alpha) \quad \alpha\neq 0, \pm 1$

$$\chi_{-1} = \Sigma_i f_i, \qquad \check{\rho} = \sum_i \check{\omega}_i$$
$$[\check{\rho}, \chi_{\pm 1}] = \pm \chi_{\pm 1} \qquad [\chi_{\pm 1}, \chi_{\mp 1}] = \check{\rho}$$

generate osp(2|1) triple.

O is an open B-orbit $\subset [\mathfrak{n},\mathfrak{n}]^{\perp}/\mathfrak{b} \subset \mathfrak{g}/\mathfrak{b}$ s.t. vectors are stabilized by N and their negative simple root components w.r.t. H = B/N are non-zero.

Suppose we have G-bundle $\mathcal F$ with connection ∇ and a reduction $\mathcal F_B$, Consider any ∇' on $\mathcal F$ preserving $\mathcal F_B$. $\nabla - \nabla'$ gives a section of $(\mathfrak g/\mathfrak b)_{\mathcal F_B} \otimes \Omega$, which we denote as $\nabla/\mathcal F_B$

rank

Superopers for higher

 $(\mathcal{F}, \mathcal{F}_B, \nabla)$

 \mathcal{F} - principle G-bundle, \mathcal{F}_B - B-reduction, ∇ - connection, such that ∇/\mathfrak{F}_B takes values in $\mathbf{O}_{\mathfrak{F}_B}\subset (\mathfrak{g}/\mathfrak{b})_{\mathfrak{F}_B}$ Locally

 $D_{ heta} + \sum_{i=1}^{\ell} a_i(z, heta) f_i + \mu(z, heta)$

modulo B(R) $(a_i \neq 0)$

 $\check{\rho}$ gives a principal gradation $\mathfrak{b} = \bigoplus_{i \geq 0} \mathfrak{b}_i$.

$$D_{ heta} + \chi_{-1} + \sum_{i=1}^{\ell} g_i(z, \theta) \tilde{\chi}_i$$

 $\tilde{\chi}_i$ are ad_{χ_1} invariants.

Superopers for higher rank

$$\check{\rho}(D_{\xi}\alpha)$$

$$D_{\xi} + D_{\xi}\alpha \cdot \chi_{-1} + D_{\xi}\alpha \cdot \mu \longrightarrow$$

$$D_{\xi} + D_{\xi}\alpha \cdot \chi_{-1} + D_{\xi}\alpha \cdot \mu \longrightarrow$$

$$D_{\xi} + \chi_{-1} + D_{\xi}\alpha \cdot Ad_{\check{\rho}(D_{\xi}\alpha)} \cdot \mu - \frac{\partial_{\omega}\alpha}{D_{\xi}\alpha}\check{\rho}$$

$$(z,\theta) = (f(w,\xi), \alpha(w,\xi))$$

Transformation for g_1, \ldots, g_n :

$$\exp\Big(\kappa\chi_1-\frac{1}{2}(D\kappa)[\chi_1,\chi_1]\Big)\check{\rho}(D_\xi\alpha),\quad \kappa=\frac{\partial_w\alpha}{D_\xi\alpha}$$

$$s\mathrm{Op}_{\mathcal{G}}(\Sigma)\cong s\mathit{Proj}(\Sigma) imes \oplus_{j=1,j
eq 2}^{\ell} \Gamma(\Sigma,\mathbb{D}^{-d_{j}-1})$$

and

$$\mathfrak{F}_H = \mathfrak{F}_B \times_B H = \mathfrak{F}_{B \setminus N} \cong \mathfrak{D}^{-\check{\rho}}$$

where
$$\mathfrak{D}^{-\check{\rho}} \times_H \mathbb{C}_{\lambda} = \mathfrak{D}^{-\langle \check{\rho}, \lambda \rangle}$$
.

Superopers \longrightarrow Opers: $\nabla \longrightarrow \overline{\nabla^2}$

surfaces

rank

Superopers with regular singularities

sp(2|1)

Beilinson-Drinfeld operator on a disc D_x :

$$abla = D_{ heta} + \sum_{i=1}^{\ell} z^{} f_i + \mu(z, heta)$$

 $a_j \neq 0$ modulo $N(O_x)$. Denote $sOp_G(SD_x)_{\check{\lambda}}$ Corresponding oper with regular singularity:

$$\left(\frac{\check{p}}{2} + \check{\lambda}\right)(z)\overline{\nabla^2}\left(-\frac{\check{p}}{2} - \check{\lambda}\right)(z) = \\ \partial_z + \frac{1}{z}\left(\chi^2_{-1} - \check{\lambda} - \frac{\check{p}}{2}\right) + v(z)$$

Residue: $(-\check{\lambda} - \frac{\check{\rho}}{2})/W$

Super Riemann Surfaces

superopers for nigne rank

Superopers with regular singularities

sp(2|1)

 $(\mathcal{F}, \nabla, \mathcal{F}_B, \mathcal{F}_B')$ is Miura superoper if $(\mathcal{F}, \nabla, \mathcal{F}_B)$ is a superoper and \mathcal{F}_B' is preserved by ∇ .

The set of all reductions

$$(G/B)_{\mathcal{F}_x} = \mathcal{F}_x \times G/B = \mathcal{F'}_{B,x} \times G/B$$

If $\tau \in sOp_G(\Sigma)$ (τ has regular singularity and trivial monodromy), then for any $x \in \Sigma$

$$sMOp_G^{ au}(\Sigma)\cong (G/B)_{{\mathbb F'}_{B,x}}$$

 ${}^0G = \cup_{\omega} S_{\omega} = \cup_{\omega} {}^0B\omega_0\omega {}^0B$ — Bruhat decomposition for the underlying semisimple Lie group 0G .

$$\mathfrak{F}'_{B,x} \in \mathcal{S}_{\omega_0}$$

If $\mathcal{F}_{B,x} \in \mathcal{S}_{\omega}$ then $\mathcal{F}'_{B,x}$ is in "relative position ω " at x, if $\omega=1$ then they are in "generic" position.

Every (super)oper on the punctured (super)disc is generic.

Super Riemann surfaces

Superopers for higher rank

Superopers with regular singularities

osp(2|1)

$$\nabla = D_{\theta} + u \longrightarrow D_{\xi} + D_{\xi}\alpha \cdot u - \check{\rho} \frac{D_{\xi}\alpha}{\partial_{\xi}\alpha}$$

Isomorphism of algebraic supervarieties:

$$sMOp_{gen}(U)\cong Conn_U^H
abla
abl$$

For a given $\tau \in sMOp_G(SD_x)_{\check{\lambda}}$ H-connection is

$$D_{ heta} + rac{ heta}{z} \check{\mu} + f(z, heta)$$
 $\check{\mu} = rac{\check{
ho}}{2} - \omega(\check{\lambda} + rac{\check{
ho}}{2})$

and $\overline{D_{\theta}f(z,\theta)}$ is regular in z.

Super Riemann surfaces

Superopers for higher rank

Superopers with regular singularities

sp(2|1)

$$sMOp_G(SC^*)_{\{Z_i\},(\infty,0);(\check{\lambda}_i),\check{\lambda}_{\infty}}$$
 $Z_i = (z_i,\theta_i)$

$$D_{\theta} - \sum_{i=1}^{n} \frac{\left(y_{i}(\check{\lambda}_{i} + \frac{\check{\rho}}{2}) - \frac{\check{\rho}}{2}\right)(\theta - \theta_{i})}{z - z_{i} + \theta\theta_{i}} - \sum_{j=1}^{m} \frac{\left(y'_{j}(\frac{\check{\rho}}{2}) - \frac{\check{\rho}}{2}\right)(\theta - \xi_{j})}{z - \omega_{j} + \theta\xi_{j}} + f(z, \theta)$$

$$\overline{f(z, \theta)} = \overline{D_{\theta}f(z, \theta)} = 0$$

Changing coordinates $(u, \eta) = (-\frac{1}{z}, \frac{\theta}{z})$ and looking at η/u coefficient:

$$\sum_{i=1}^{N} \left(y_i (\check{\lambda}_i + \frac{\check{p}}{2}) - \frac{\check{p}}{2} \right) + \sum_{i=1}^{m} \left(y_i' (\frac{\check{p}}{2}) - \frac{\check{p}}{2} \right) = y_{\infty} \omega_0 \left(-\omega_0 (\check{\lambda}_{\infty}) + \frac{\check{p}}{2} \right) - \frac{\check{p}}{2}$$

osp(2|1)

For a given superoper $\tau: \Phi_{\tau}: SC^* \longrightarrow G/B, \Phi_{\tau}: (\infty, 0) \longrightarrow B$ au is nondegenerate if

- i) $\Phi_{\tau}(Z_i)$ is in generic position with B
- ii) The relative position for all other points is either reflection w.r.t. simple root or generic
- iii) no "extra terms" for H-connections osp(2|1) case:

$$\nabla = D + \sum_{i=1}^{N} \frac{\lambda_i(\theta - \theta_i)}{z - z_i + \theta \theta_i} - \sum_{j=1}^{m} \frac{\theta - \xi_j}{z - w_j + \theta \xi_j}$$

$$\lambda_{\infty} = \sum_{i=1}^{N} \lambda_{i} - m, \qquad \lambda_{i} \in \mathbb{Z}_{\geqslant 0}$$

$$\sum_{i=1}^{N} \frac{\lambda_{i}}{w_{k} - z_{i} + \xi_{k}\theta_{i}} - \sum_{j=1}^{m} \frac{1}{w_{k} - w_{j} + \xi_{k}\xi_{j}} = 0$$

$$\sum_{i=1}^{N} \frac{\lambda_{i}\theta_{i}}{w_{k} - z_{i} + \xi_{k}\theta_{i}} + \sum_{i=1}^{m} \frac{\xi_{j}}{w_{k} - w_{j} + \xi_{k}\xi_{j}} = 0 \qquad k = 1, \dots, m$$

The body of the first family of equations gives Bethe anzatz equations for osp(2|1) Gaudin model. 4D > 4A > 4B > 4B > B 990

Superopers on Supercurves

Anton Zeitlin

Outline

Reminder: Opers and Gaudin Models

Super Riemann surfaces

Superopers for higher

Superopers with regular singularities

osp(2|1)

Thank you!