MA291: Introduction to Higher Mathematics

Baker University — Spring 2024

Each of the following refers to the corresponding section(s) from *Mathematical Proofs: a Transition to Advanced Mathematics* (Fourth Edition) by G. Chartrand, A.D. Polimeni, and P. Zhang.

Exam 1: Sets, Relations, and Functions

date	day	$\operatorname{section}(s)$	$\mathrm{topic}(\mathrm{s})$
		§1.1: Describing a Set	o set membership
1/29	M	§1.2: Subsets	∘ set notation
			o subset containment
		§1.3: Set Operations	o union
1/31	W		o intersection
			\circ complement
		§1.4: Indexed Collections of Sets §1.5: Partitions of Sets	o union
2/2	F		\circ intersection
			o disjoint sets

date	day	$\operatorname{section}(s)$	$\mathrm{topic}(\mathrm{s})$
		§1.6: Cartesian Products of Sets	o cardinality
2/5	M	§9.1: Relations	o reflexivity
2/3	101	§9.1: Relations §9.2: Properties of Relations	o (anti)symmetry
			o transitivity
	W	§9.3: Equivalence Relations §9.4: Properties of Equivalence Classes	o equivalence classes
2/7			o modulo operation
			o canonical partitions
			\circ remainder modulo n
2/9	\mathbf{F}	$\S 9.5$: Congruence Modulo n	\circ reduction modulo n
			o modular arithmetic

date	day	$\operatorname{section}(s)$	topic(s)
			o relations
2/12	M	§10.1: The Definition of a Function	o domain
			\circ range
		§10.2: One-to-One and Onto Functions	o injectivity
2/14	W	§10.3: Bijective Functions	o surjectivity
			o bijectivity
		\$10.4. Composition of Eurotians	o function composition
2/16	F	§10.4: Composition of Functions §10.5: Inverse Functions	o function inversion
,			o examples of function inverses

date	day	section(s)	$\mathrm{topic}(\mathrm{s})$
2/19	M	Exam 1 Review	
2/21	W	Exam 1 Review	Exam 1 Practice Test
			• Chapter 0: Communicating Mathematics
			o Chapter 1: Sets
2/23	F	Exam 1	• Chapter 9: Equivalence Relations
			Omit $\S 9.6$: The Integers Modulo n .
			• Chapter 10: Functions

Exam 2: Logic and Truth Tables

date	day	$\operatorname{section}(s)$	$\mathrm{topic}(\mathrm{s})$
			o variable
2/26	M	§2.1: Statements	o domain
			o truth value
		§2.2: Negations	∘ not, ¬
2/28	W	§2.3: Disjunctions and Conjunctions	\circ or, \wedge
			\circ and, \vee
			o "if-then" statements
9 /1	F	F \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\circ implies, \Longrightarrow
3/1			• "only if" statements
			\circ converse, \longleftarrow

date	day	$\operatorname{section}(s)$	topic(s)
3/4	M	§2.6: Biconditionals	o "if and only if"
3/4	IVI	§2.0. Diconditionals	\circ biconditional, \iff
		§2.7: Tautologies and Contradictions	o truth tables
3/6	W	§2.8: Logical Equivalence	o truth tables o equivalence, ≡
		§2.9: Fund'l Prop'ties of Logical Equivalence	∘ equivalence, ≡
			\circ for all, \forall
3/8	F	§2.10: Quantified Statements	∘ exists, ∃
			o uniqueness,!

date	day	section(s)	$\mathrm{topic}(\mathrm{s})$
3/11	M	Exam 2 Review	
3/13	W	Exam 2 Review	Exam 2 Practice Test
3/15	F	Exam 2	o Chapter 2: Logic Omit §2.11: Characterizations.

Exam 3: Basic Proof Techniques

date	day	section(s)	$\mathrm{topic}(\mathrm{s})$
		§3.1: Trivial and Vacuous Proofs §3.2: Direct Proofs	o trivial truth
3/25	M		o vacuous truth
3/20	IVI		o truth tables
			o examples
	W		o contrapositive
3/27		§3.3: Proof by Contrapositive	• truth tables
			o examples

date	day	$\operatorname{section}(s)$	$\mathrm{topic}(\mathrm{s})$
4/1	М	M §3.4: Proof by Cases	o parity
4/1	101		o proof strategies
	W §5.1: Counterexamples §5.2: Proof by Contradiction	o contradiction	
4/3			• truth tables
			\circ examples
	F §5.4: Existence Proofs §5.5: Disproving Existence Statements	St. 4. Evistor of Durasta	o truth tables
4/5			o proof strategies
			o examples

date	day	section(s)	$\mathrm{topic}(\mathrm{s})$	
4/8	M	Exam 3 Review		
4/10	W	Exam 3 Review	Exam 3 Practice Test	
	• Chapter 3: Direct Proof and Proof by Contrapos		• Chapter 3: Direct Proof and Proof by Contrapositive	
4/12	F Exam 3 Omit §3.5: Proof Evaluations.		Omit §3.5: Proof Evaluations.	
			• Chapter 5: Existence and Proof by Contradiction	

Exam 4: Proofs in the Wild

date	day	$\operatorname{section}(\mathbf{s})$	topic(s)
4/15	M	§6.1: Principle of Mathematical Induction §6.2: General Principle of Mathematical Induction §6.3: Strong Principle of Mathematical Induction	well-orderingbase caseinductive stepexamples
4/17	W	$Scholars\ Symposium$	
4/19	F	§4.1: Proofs Involving Divisibility of Integers §12.1: Divisibility Properties of Integers	o divisibilityo parityo proof strategieso examples

date	day	$\operatorname{section}(s)$	topic(s)
			o set containment
4/22	M	§4.4: Proofs Involving Sets	o set equality
4/22	101	§4.5: Fund'l Prop'ties of Set Operations	o DeMorgan's Laws
			\circ examples
			o tasks
4/24	W	§13.1: Multiplication / Addition Principles	o pairwise disjoint
			\circ examples
4/26	F	\$12.2. The Diggerhole Principle	o ceiling function
4/20		§13.3: The Pigeonhole Principle	\circ examples

date	day	$\operatorname{section}(\mathbf{s})$	$\mathrm{topic}(\mathrm{s})$
4/29	M	§13.4: Permutations and Combinations	ordered listso unordered listso examples
5/1	W	Exam 4 Review	
5/3	F	Exam 4 Review Exam 4 Practice Test	

date	day	section(s)	$\mathrm{topic}(\mathrm{s})$
5/6	M	Exam 4	 §6.1: Principle of Mathematical Induction §6.2: General Principle of Mathematical Induction §6.3: Strong Principle of Mathematical Induction §4.1: Proofs Involving Divisibility of Integers §12.1: Divisibility Properties of Integers §4.4: Proofs Involving Sets §4.5: Fundamental Properties of Set Operations §13.1: The Multiplication and Addition Principles §13.3: The Pigeonhole Principle §13.4: Permutations and Combinations
5/8	W	Final Exam Review	
5/10	F	Final Exam Review	Final Exam Practice Test

Our $final\ exam$ will be held Thursday, May 16 from 8:30 AM to 11:30 AM in Case TBD.