PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore della resistenza R_5 in modo che la corrente $I_3 = 70$ mA;
- 2) il punto di lavoro dei transistor M_1 , M_2 , M_3 , M_4
- 3) il guadagno di tensione ai piccoli segnali ac $A_v = v_{out}/v_{sig}$ (considerare $\lambda_{p3} = 0.01 \text{ V}^{-1}$);
- 4) la potenza totale dissipata dal circuito;
- 5) le resistenze di ingresso e uscita ai piccoli segnali ac R_{in} e R_{out} .

Dati:

 V_{DD} =12 V R_I =120 k Ω , R_2 =180 k Ω , R_3 =0.5 k Ω , R_4 =0.5 k Ω , R_L =1.0 k Ω , R_i =1.0 k Ω ,

 M_1 : k_{p1} =5 mA/V², V_{TP1} =-1 V M_2 : k_{n2} =5 mA/V², V_{TN2} =1 V M_3 : k_{p1} =40 mA/V², V_{TP3} =-1 V M_4 : k_{p4} =10 mA/V², V_{TP4} =-1 V

Per analisi DC: $\lambda_p = \lambda_n = 0 \text{ V}^{-1}$;

$$V_{c,S_1}^2 + V_{c,S_1} \left(-\frac{2}{R_{c,KP_1}} - 2V_{rP_1} \right) + V_{rP_1}^2 - \frac{2(V_{00} - V_{c,1})}{R_{c,KP_1}} = 0$$

$$R_{c,KP_1}$$

$$Q = 1$$

$$D = 1/2 \left[V \right]$$

$$C = -6.68 \left[V^2 \right]$$

$$Q = -6.68 \left[V^2 \right]$$

$$Q = -5 - \sqrt{\Delta} = -3,25 V \quad (4r) \quad VSO \quad (c.1) = 1$$

$$V_{c,S_1} = V_{c,S_1} \left(V_{c,S_1} - V_{rP_1} \right)^2 = 12,7 \text{ mA}$$

$$V_{S_1} = V_{00} - R_{c,T_{01}} = 5,65 \text{ mA}$$

$$V_{D_1} = -V_{00} + R_{2}T_{0_1} = -5,65 \text{ mA}$$

$$V_{D_2} = V_{00} - R_{c,T_{01}} = -5,65 \text{ mA}$$

$$V_{D_3} = V_{01} - V_{3} = -11,3 V < V_{c,S_1} - V_{rP_1} = -2,25 V$$

$$Q_{c,S_2} = R_{3}T_{0_1} = 6,35 V$$

$$T_{D_2} = \frac{K_{D_2}}{2} \left(V_{c,S_2} - V_{rP_2} \right)^2 = 71,5 \text{ mA}$$

$$V_{D_3} = V_{D_3} + V_{D_$$

$$\begin{array}{c} = & \begin{array}{c} & V_{00} + V_{05} c_{4} = 521, 7 & 52 \\ \hline & T_{DU} \\ \hline & T_{L} = T_{3} - T_{b2} = -1, 5 & 7004 \\ \hline & V_{b2} = R_{L} T_{C} = -1, 5 & 7004 \\ \hline & V_{b2} = -1, 5 & -1, 5 & 7004 \\ \hline & V_{b2} = -1, 5 & -1, 5 & 7004 \\ \hline & V_{b2} = -1, 5 & -1, 5 & 7004 \\ \hline & V_{b2} = -1, 5 & -1, 5 & 7004 \\ \hline & V_{b2} = -1, 8 + 7004 \\ \hline & V_{b2}$$

PROBLEMA P2

Sia dato il circuito in figura che usa un amplificatore operazionale ideale. **Dati:** $R_1 = 2 \text{ k}\Omega$, $R_2 = 200 \text{ k}\Omega$, $R_3 = 180 \text{ k}\Omega$, $R_4 = 20 \text{ k}\Omega$. Le capacità valgono: $C_1 = 5\mu\text{F}$, $C_2 = 0.5\text{pF}$, $C_4 = 0.5\text{nF}$.

- 1) ricavare l'espressione della funzione di trasferimento $W(s) = v_o(s)/v_{in}(s)$;
- 2) tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di W(s), (per la fase non usare l'approssimazione a gradino).
- 3) Calcolare $v_0(t)$ sapendo che $v_s = 2V + 1V*\sin(\omega_0 t)$ con $\omega_0 = 100$ rad/s.
- 4) Determinare il nuovo valore di C_2 che permetta di eliminare dalla W(s) un polo e uno zero.

$$\frac{2}{1} = R_1 + \frac{1}{5C_1} = \frac{1 + SR_1C_1}{5C_1}$$

$$\frac{2}{2} = R_2 || \frac{1}{5C_2} = \frac{R_2 \cdot \frac{1}{5C_2}}{R_2 + \frac{1}{5C_2}} = \frac{R_2}{1 + SC_2R_2}$$

$$\frac{2}{1 + SC_2R_2} = \frac{R_2}{R_2 + \frac{1}{5C_2}}$$

$$\frac{2}{1 + SC_4R_4} = \frac{R_3}{SC_4} = \frac{(1 + SC_4R_4)}{SC_4}$$

$$\frac{2}{3} = R_3 || \frac{1 + SC_4R_4}{SC_4} = \frac{R_3}{R_3} + \frac{1 + SC_4R_4}{SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3} = \frac{R_3}{1 + SC_4R_4}$$

$$\frac{2}{3}$$

$$No_{2} = No_{1} \cdot \left(-\frac{2}{R_{3}} \right) = No_{2} \cdot \left[-\frac{1}{1 + SC_{4}R_{4}} \right]$$

$$W(s) = \frac{No_{2}}{Nc_{2}} - \frac{SC_{4}R_{2} \cdot (1 + SC_{4}R_{4})}{(1 + SC_{4}R_{4})}$$

$$W(s) = \frac{No_{2}}{Nc_{2}} - \frac{1}{(1 + SC_{4}R_{4})} \left[\frac{1}{1 + SC_{4}R_{4}} \right]$$

$$Wa_{0} = \frac{1}{C_{4}R_{4}} = 124/2C \qquad Wa_{1} = \frac{1}{C_{4}R_{4}} = 10^{2} 224/9C$$

$$Wa_{1} = \frac{1}{C_{4}R_{4}} = 15^{2} 224/9C \qquad Wa_{2} = \frac{1}{C_{4}(R_{3}+R_{4})} = 10^{4} 224/9C$$

$$Wa_{2} = \frac{1}{C_{4}R_{4}} = 10^{2} 224/9C \qquad Wa_{2} = \frac{1}{C_{4}(R_{3}+R_{4})} = 10^{4} 224/9C$$

$$Wa_{1} = \frac{1}{C_{4}R_{4}} =$$

(NOCTRE W(0) =0

NO(E) = 2V. W(0) + | W(1)wo) | · 1V · Sim (Wot +
$$[Wot + W(1)wo]$$
)

= 100V Sim (Wot + $[Wot + W(1)wo]$)

(O meglio No(E) = 70,2V Sim (Wot + $[Wot + W(1)wo]$)

4) PER ANNUM RE 7ERO/ POW USANDO (2

W(5) = $[Vot - SC_1(2 - (1 + SC_1R_4))]$

DEVO FAR Si CHE CyRi = 2R2

=) (2mew = Cy Rq = 0,05mF = 50 pF

PROBLEMA Q1

L'amplificatore in figura è realizzato con un amplificatore operazionale ideale e un diodo Zener ideale.

- 1) Determinare i valori della tensione di ingresso per la quale il diodo è ON, OFF e in Breakdown.
- 2) Determinare v_0 quando $v_s = -5$ V.
- 3) (facoltativo) tracciare la transcaratteristica del circuito.

Dati:
$$R = 1 k\Omega$$
, $V_{ON} = 0$, $V_Z = 5V$

$$V_A = V_S$$

$$R + R = 2$$

$$V_{ON} = 0$$

D4=0N Nbq >0 => -
$$\frac{\sqrt{5}}{2}$$
 >0 => $\frac{\sqrt{5}}{2}$ <0

D4= BREAK Nb4 <- $\frac{\sqrt{4}}{2}$ => - $\frac{\sqrt{5}}{2}$ <- $\frac{\sqrt{4}}{2}$ => $\frac{\sqrt{5}}{2}$ > $\frac{\sqrt$

PROBLEMA Q2

L'amplificatore in figura è realizzato usando un amplificatore operazionale reale con $V_{OS} = 5 \text{mV}$ e alimentato con tensione +/- V_{CC} calcolare la tensione di uscita e la tensione del morsetto negativo \mathcal{V}_n con:

- 1) $v_s = 0 \text{ V}$,
- 2) $v_s = 4V$.

Dati: $R_1 = 1 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$, $R_4 = 3 \text{ k}\Omega$, $V_{CC} = 10 \text{V}$.

