Data

Data Mining: Seminar 2

Dr. Thomas Price

Data and Data Types Lesson

What is Data Mining?

Data → Learning Algorithm → Knowledge

The Data Mining Pipeline

What is Data?

Collection of data objects and their attributes:

- Attribute: A property or characteristic of an object
- Object: A collection of attributes (also known as rows)

_				
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Attributes

What is Data?

ATTRIBUTES:

- Variables
- Fields
- Characteristics
- Features

Attributes

What is Data?

OBJECTS:

- Rows
- Records
- Data Points
- Cases
- Samples
- Entities
- Instances

)
		Tid	Refund	Marital Status	Taxable Income	Cheat
		1	Yes	Single	125K	No
		2	No	Married	100K	No
Objects		3	No	Single	70K	No
		4	Yes	Married	120K	No
		5	No	Divorced	95K	Yes
	١	6	No	Married	60K	No
O		7	Yes	Divorced	220K	No
		8	No	Single	85K	Yes
		9	No	Married	75K	No
		10	No	Single	90K	Yes

Attributes

Attribute Values

Numbers or symbols assigned to an attribute.

Tid	Refund		
	_		
1	Yes		
2	No		
3	No		
4	Yes		
5	No		
6	No		
7	Yes		
8	No		
9	No		
10	No		

Attributes vs. Attribute Values

The same attribute can be mapped to different attribute values.

 Example: Height can be measured in feet or meters Different attributes can be mapped to the same set of values.

- Example: Attribute values for ID and age are integers
- But properties of attribute values can be different

Properties of Attribute Values

The **type** of an attribute depends on the **properties** it possesses:

- Distinctiveness {=, ≠}: Can values be distinguished?
- Order {<, >}: Can values be meaningfully ordered?
- Addition {+, -}: Are differences between values meaningful?
- Multiplication {*, /}: Are ratios between values meaningful?

Types of Attributes

There are four different types of attributes (NOIR)

- Nominal
- Ordinal
- Interval
- Ratio

Nominal Attributes

- The values are just different names
- Provide only enough information to distinguish objects

Examples

- Zip Codes
- Employee ID Numbers
- Favorite Colors

Distinctiveness {=, ≠}

```
Order {<, >}
Addition {+, -}
Multiplication {*, /}
```


Ordinal Attributes

The values provide enough information to **order** objects

Examples

- Mineral Hardness
- {good, better, best}
- Grades
- Floor Number
- Rankings
- Height: {tall, medium, short}

Distinctiveness {=, ≠} Order {<, >}

- X Addition {+, -}
- ★ Multiplication {*, /}

Interval Attributes

Differences between values are meaningful (a unit of measurement exists)

Examples

- Calendar Dates
- Temperature in Celsius or Fahrenheit

Distinctiveness {=, #}
Order {<, >}
Addition {+, -}

X Multiplication {*, /}

Ratio Attributes

- Differences and ratios are meaningful
- Meaningful 0-value indicating "none"
 You can have 0 height? 0 age?

Examples

- Counts
- Age
- Length
- Monetary QuantitiesAl Academy

Distinctiveness {=, \neq}
Order {<, >}
Addition {+, -}
Multiplication {*, /}

Properties of Data Types Summary

	Nominal	Ordinal	Interval	Ratio
Distinctness	X	X	X	X
Order		X	X	X
Addition			X	X
Multiplication				X

Discrete and Continuous Attributes

Discrete

- Finite or countably infinite set of values
- Often represented as integer variables

Continuous

- Real numbers as attribute values
- Real values can only be measured and represented with finite number of digits
- Typically represented as floating-point variables

Discrete and Continuous Attributes

Discrete

- Zip Codes
- Counts
- Set of words in a collection of documents
- Binary attributes are a special case of discrete attributes

Continuous

- Temperature
- Height
- Weight

Learning Objectives: Data and Data Types

You now should be able to:

- Read tabular data (attributes and data objects)
- Distinguish between the primary types of data
 - Nominal, Ordinal, Interval, and Ratio
 - Discrete and Continuous

Data and Data Types Exercises

Break the following attributes into 4 categories; 2 in each (3 minutes)

- A. Student ID
- B. Grades (A, A-, B+, B etc.)
- C. Age
- D. Favorite Color
- E. Calendar Dates (08-25-2015;08-06-1999)

- F. Educational experience from 1-4, e.g.
 - 1. Elementary school graduate
 - 2. High-School graduate
 - 3. Some college
 - 4. College graduate
- G. Temperature in Fahrenheit
- H. Mass

What is the type of each attribute?

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

What is the type of each attribute?

Come up with a new Ordinal attribute and a new Interval attribute to add to the data.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8 .	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

What is the type of each attribute?

- A. Employee ID numbers
- B. {good, better, best}
- C. Calendar Dates
- D. Temperature in Celsius or Fahrenheit
- E. Temperature in Kelvin
- F. Zip codes
- G. Street numbers

Nominal Ordinal Interval Ratio

Discrete or Continuous?

- 1. ZIP codes
- 2. Height
- 3. Employee ID
- 4. Counts
- 5. The set of words in a collection of documents
- 6. Temperature in Celsius or Fahrenheit
- 7. Weight

