Heuristic methods for the single-machine scheduling problem with periodical resource constraints

Mateus Filipe Moreira Silva - 21.1.4156 Guilherme Salim Monteiro de Castro Paes - 21.1.4109

ÍNDICE

05 VARIÁVEIS

06 FUNÇÃO

07 RESTRIÇÕES

01 Artigo

Dados do Artigo

Prata, B.A., de Abreu, L.R. & Lima, J.Y.F. Heuristic methods for the single-machine scheduling problem with periodical resource constraints. TOP 29, 524–546 (2021). https://doi.org/10.1007/s11750-020-00574-x

Problema Abordado

Versão do problema de Programação de Máquinas

Uma única maquina para processar as tarefas

Minimização de Makespan

Fazer todas as tarefas o mais rápido possível.

Respeitando as restrições

Dados

Cada Tarefa tem uma quantidade de recurso necessário para ser processada.

Cada Período tem uma quantidade de recurso disponível e um tempo máximo.

Exemplo - Entradas

TAREFA	RECURSO NECESSÁRIO	TEMPO DE PROCESSAMENTO
1	3	2
2	3	1
3	4	5
4	1	4
5	1	3

Duração de cada período \rightarrow 5 Unidades Número Máximo de recurso por período \rightarrow 4 Unidades

Exemplo - Solução

Sequência = $\{1,5,2,4,3\}$

Índices

l

Índices para os períodos $\{1, 2, ..., t\}$

 \int_{\cdot}

Índices para as tarefas $\{1, 2, ..., n\}$

NUMERO DE PERÍODOS

Upper Bound

Limite superior para número de períodos necessários Não é calculado pelo modelo, já é um dado calculado anteriormente.

- NF_T
 Número de períodos levando em consideração apenas os tempos de processamento
- NF_R
 Número de períodos considerando apenas o consumo de recursos

$$UB = max\{NF_T, NF_R\}$$

Parâmetros

p_j

Tempo de processamento da tarefa

rj

Quantidade de Recurso necessário para a tarefa j.

T

Duração máxima do período

R

Máximo de recurso para cada período

M

Número Inteiro suficientemente Grande

Variáveis de decisão

x_{ij}

1 Se a tarefa j é processado no período i

O Caso Contrário

y_i

1 Se o período i é usado na solução

O Caso Contrário

W_i

1 Se esse é o período com maior tempo ocioso

O Caso Contrário

Z

Computa tempo ocioso no último período

Função Objetivo

Minimizar Makespan

$$\sum_{i=1}^{l} x_{ij} = 1, \quad \forall j$$

Garante que um trabalho seja processado apenas no período i

$$\sum_{j=1}^{n} p_j x_{ij} \le T, \quad \forall i$$

Impõe a restrição de tempo de cada período

Para todo período a soma das tarefas vezes sua respectiva duração deve ser menor ou igual à duração máxima do período.

$$\sum_{j=1}^{n} r_j x_{ij} \le R, \quad \forall i$$

Determina que as tarefas produzidos em um determinado período de produção não exceda o recurso disponível do período.

Determina que os trabalhos sejam produzidos apenas nos períodos selecionados.

$$\sum_{i=1}^{l} w_i = 1$$

Afirma que apenas um determinado período fornece a folga máxima

Afirma que, se um período não for utilizado, ele não fornece a folga máxima

Restrição 7 Apenas um período vai ser diferente de $z \leq M$ $z \le M(1 - w_i)$ Período com maior tempo ocioso

Período com maior tempo ocioso
Existe apenas 1
O resto não está na solução ou não é o Período com maior tempo ocioso

Pós-Processamento Necessário

Sequência das tarefas na saída original do modelo

Sequência de tarefas após ordenar os períodos do menor tempo ocioso para o maior

27

Domínio das Variáveis

 $z \geq 0$.

$$y_i \ge 0 \quad \forall i$$

O Fato da restrição 5 garantir que a soma dos W_i seja 1 e W_i ser binário.

Ocasiona no relaxamento do domínio de y_i

$$x_{ij} \in \{0, 1\}, \quad \forall i, j \mid w_i \in \{0, 1\} \quad \forall i$$

