

Department of Electrical, Computer, & Biomedical Engineering

Faculty of Engineering & Architectural Science

Course Title:	Signals and Systems II
Course Number:	ELE632
Semester/Year (e.g.F2016)	W2022

Instructor:	Dimitri Androutsos

Assignment/Lab Number:	3
Assignment/Lab Title:	Discrete-Time Fourier Series

Submission Date:	Sunday, March 13 th , 2022
Due Date:	Sunday, March 13 th , 2022

Student LAST Name	Student FIRST Name	Student Number	Section	Signature*
Fahmy	Ahmad	500913092	9	4.5

^{*}By signing above, you attest that you have contributed to this submission and confirm that all work you have contributed to this submission is your own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a "0" on the work, an "F" in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic Conduct, which can be found online at:

https://www.ryerson.ca/senate/policies/pol60.pdf

Appendix

A)	Discrete Time Fourier Series (DTFS)
	Part 1 - Fundamental Period & Fundamental Frequency
	Part 2 – DTFS
	Part 3 - P1 and P2 with Lab3 Manual Figure 15
B)	Inverse DTFS and Time Shifting
	Part 1 - Inverse DTFS8
	Part 2 – Time Shifting9
C)	System Response
	Part 1 - Plot of H[r] for Lab3 Figure 3 with Respect to Ω_0
	Part 2 - Plot of System Response for Lab3 Figure 3 with input X1[n]11
	Part 3 - Plot of System Response for Lab3 Figure 3 with input X2[n]12
	Part 4 – Result 1 and 2 Comparison

A) Discrete Time Fourier Series (DTFS)

Part 1 - Fundamental Period & Fundamental Frequency

```
clc clear n = 0:20; x = 4*\cos(2.4*pi*n) + 2*\sin(3.2*pi*n); mN1 = (2.4*pi)/(2*pi); mN2 = (3.2*pi)/(2*pi); \%m/N1 = 6/5 \%m/N2 = 8/5 N0 = 5; Om0 = 2*pi/N0;
```

Part 2 - DTFS

```
n = 0:N0-1;
x = 4*\cos(2.4*pi*n)+2*\sin(3.2*pi*n);
for(r = 0:N0-1)
  Dr(r+1)=(sum(x.*exp(-1i.*r.*n.*Om0)))/N0;
end
figure;
stem(n, x);
title('Plot of x(n) DTFS')
xlabel('n')
ylabel(\hbox{\rm '}x[n]\hbox{\rm '})
figure;
stem(abs(Dr));
title('Magnitude\ of\ x(n)\ DTFS')
xlabel('r')
ylabel('|Dr|')
figure;
stem(angle(Dr));
title('Phase\ of\ x(n)\ DTFS')
xlabel('r')
ylabel('\!\!<\!\!Dr')
```


Part 3 - P1 and P2 with Lab3 Manual Figure 1

```
clc
clear
N0 = 6;
Om0 = 2*pi/N0;
n = 0:N0-1;
y = [3\ 2\ 1\ 0\ 1\ 2];
for(r = 0:N0-1)
  Dr(r+1)=(sum(y.*exp(-1i.*r.*n.*Om0)))/N0;
figure;
stem(n, y);
title('Plot of y(n) DTFS')
xlabel(\hbox{\rm '}\hbox{\rm n'})
ylabel('y[n]')
figure;
stem(abs(Dr));
title('Magnitude of y(n) DTFS')
```

```
xlabel('r')
ylabel('|Dr|')
grid on

figure;
stem(angle(Dr));
title('Phase of y(n) DTFS')
xlabel('r')
ylabel('<Dr')
grid on
```


B) Inverse DTFS and Time Shifting Property

Part 1 - Inverse DTFS

```
clc
clear
N0 = 32;
Om0 = 2*pi/N0;
n = 0:N0-1;

xr = [ones(1,5) zeros(1,23) ones(1,4)];
x = ifft(xr).*N0;

figure;
stem(n, x);
title('Plot of x(n) IDTFS')
xlabel('n')
ylabel('x[n]')
```


Part 2 - Time Shifting

```
clc
clear
N0 = 32;
Om0 = 2*pi/N0;
n = 0:N0-1;

xr = [ones(1,5) zeros(1,23) ones(1,4)];
X = xr.*exp(-1i.*5.*n.*Om0);
X = ifft(X)*N0;

figure;
stem(n, X);
title('Plot of Shifted X(r) IDTFS')
xlabel('n')
ylabel('X[r]')
```


The result in part 2 differs from x[n] in part 1 by being shifted 5 units to the right due to the multiplication by $e^{-j5\Omega_0 r}$ in the frequency domain.

C) System Response

Part 1 - Plot of H[r] for Lab3 Figure 3 with Respect to Ω_0

```
cle
clear
N0 = 32;
Om0 = 2*pi/N0;
r = 0:N0-1;

Hr = [ones(1,5) zeros(1, 23) ones(1,4)];

figure;
stem(Om0.*r, Hr);
title('H[r] for Lab3 Figure 3 with Respect to Omega')
xlabel('r')
ylabel('H[r]')
```


Part 2 - Plot of System Response for Lab3 Figure 3 with input $x_1[n]$

```
cle
clear
N0 = 32;
Om0 = 2*pi/N0;
r = 0:N0-1;

Hr = [ones(1,5) zeros(1, 23) ones(1,4)];
x = 4*cos(pi*r/8);
X = ffi(x);

Y = X.*Hr;
y = iffi(Y);

figure;
stem(r, y);
title('Plot of y[n]')
xlabel('n')
ylabel('y[n]')
```


Part 3 - Plot of System Response for Lab3 Figure 3 with input $x_2[n]$

```
cle
clear
N0 = 32;
Om0 = 2*pi/N0;
r = 0:N0-1;

Hr = [ones(1,5) zeros(1, 23) ones(1,4)];
x = 4*cos(pi*r/2);
X = fft(x);

Y = X.*Hr;
y = ifft(Y);

figure;
stem(r, y);
title('Plot of y[n]')
xlabel('n')
ylabel('y[n]')
```


Part 4 – Result 1 and 2 Comparison

The results in Part 1 and 2 are different because $x_1[n]$ had a period of 16 units, whereas the period for $x_2[n]$ had a period of 4 units. The Fourier transform of $x_1[n]$ and $x_2[n]$ creates delta functions at 2 and 30, as well as 8 and 24, respectively. This means $x_1[n]$ falls within the range of H[r] but $x_2[n]$ does not resulting in the system responses above.