Chapter 08

Regression

Dr. Steffen Herbold herbold@cs.uni-goettingen.de

- Overview
- Linear Regression Models
- Comparison of Regression Models
- Summary

Example of Regression

The General Problem

The Formal Problem

- Object space
 - $O = \{object_1, object_2, \dots\}$
 - Often infinite
- Representations of the objects in a (real valued) feature space

Dependent

variable y

•
$$\mathcal{F} = {\phi(o), o \in O} = {(x_1, ..., x_m) \in \mathbb{R}^m} = X$$

- "Independent" variables
- Dependent variable

•
$$f^*(o) = y \in \mathbb{R}$$

- A regression function
 - $f: \mathbb{R}^m \to \mathbb{R}$
- Regression
 - Finding an approximation for f

Relationship between dependent and independent variable

Independent variable x

How do you evaluate $f^*(o) \approx f(\phi(o))$

- Goal: Approximation of the dependent variable
 - $f^*(o) \approx h(\phi(o))$

- Structure is the same as training data
- Apply approximated regression function

$\phi(o)$					$f^*(o)$	$f(\phi(o))$
Top Speed	Engine Size	Horse Power	Weigth	Year	value	prediction
250	1.4	130	1254	2003	7.8	7.5
280	1.8	185	1430	2010	6.3	6.9

Visual Comparison

Residuals

Differences between predictions and actual values

•
$$e_x = y - f(x)$$

Visual Comparison of a Bad Fit

Measures for Regression Quality

- Mean Absolute Error (MAE)
 - $MAE = \frac{1}{|X|} \sum_{x \in X} |e_x|$
- Mean Squared Error (MSE)
 - $MSE = \frac{1}{|X|} \sum_{x \in X} (e_x)^2$
- R squared (R²)
 - Fraction of the variance that is explained by the regression

•
$$R^2 = 1 - \frac{\sum_{x \in X} (y - f(x))^2}{\sum_{x \in X} (y - mean(y))^2}$$

- Adjusted R squared (\bar{R}^2)
 - Takes number of features into account

•
$$\bar{R}^2 = 1 - (1 - R^2) \frac{|X| - 1}{|X| - m - 1}$$

- Overview
- Linear Regression Models
- Comparison of Regression Models
- Summary

Linear Regression

- Regression as a linear function
 - $\bullet \ y = b_0 + b_1 x_1 + \cdots b_m x_m$
 - b₀ is the interception with the axis
 - b_1, \dots, b_m are the linear coefficients

- Calculated with Ordinary Least Squares
 - Optimizes MSE!

 $\bullet \min ||b_0 + Xb - y||_2^2$

Square of euclidean distance

$$\bullet \ X = \begin{pmatrix} x_{1,1} & \cdots & x_{1,m} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,m} \end{pmatrix}$$

•
$$b = (b_1, \dots, b_m)$$

•
$$y = (y_1, \dots, y_n)$$

n is the number of instances in the training data

Ridge Regression

- Still a linear function
- OLS allows multiple solutions for n > m
- Ridge regression penalizes solutions with large coefficients
- Calculated with Tikhonov regularization
 - $\min ||b_0 + Xb y||_2^2 + ||\Gamma b||_2^2$
 - We use $\Gamma = \alpha I$

Regularization Term

Identity matrix

- Use α to regulate regularization strength
 - $\min ||b_0 + Xb y||_2^2 + \alpha ||b||_2^2$

Lasso Regression

- Still a linear function
- Penalizing large coefficient does not remove redundencies
 - Extreme example: identical features that predict perfectly

•
$$y = x_1 = x_2$$
,

Ridge

•
$$b_1 = b_2 = 0.5$$

One coefficient zero would be better

•
$$b_1 = 1, b_2 = 0$$

Lasso: Ridge with Manhatten norm

•
$$\min ||b_0 + Xb - y||_2^2 + \alpha ||b||_1$$

- Increases the likelihood of coefficients being exactly zero
 - Selects relevant features

Elastic Net Regression

- Still a linear function
- Lasso tends to select one of multiple correlated features at random
 - Potential loss of information
- Elastic Net combines Ridge and Lasso
 - Keeps only relevant correlated features and minimizes coefficients
- Use ratio ρ between alphas for assigning more weight to Ridge/Lasso

•
$$\min ||b_0 + Xb - y||_2^2 + \rho \cdot \alpha ||b||_1 + \frac{(1-\rho)}{2} \alpha ||b||_2^2$$

- Overview
- Linear Regression Models
- Comparison of Regression Models
- Summary

Comparison of Regression Models

Non-linear Regression

Many relationships are not linear

- Polynomial Regression
- Support Vector Regression
- Neural Networks

- Overview
- Linear Regression Models
- Comparison of Regression Models
- Summary

Summary

- Regression finds relationships between independent and dependent variables
- Linear regression as simple model often effective
- Regularization can improve solutions
 - · Lasso, Ridge, Elastic, ...
- Many non-linear approaches
 - Require care with the application
 - Overfitting can be very easy