MATHF-203 – Algèbre I

R. Petit

Année académique 2016 - 2017

Table des matières

1	Les groupes		
	1.1	Définitions	1
	1.2	Groupes de transformation	2
	1.3	Sous-groupes	2
	1.4	Isomorphismes	3
	1.5	Classes latérales et théorème de Lagrange	4

1 Les groupes

1.1 Définitions

Définition 1.1. Un *groupe* (G, *) est un ensemble non-vide G muni d'une loi de composition $*: G \times G \to G$ tels que :

- * est associative;
- G possède un élément neutre noté $e \in G$;
- chaque élément g de G possède un inverse noté g^{-1} .

Définition 1.2. Un ensemble non-vide M muni d'une loi de composition $*: M \times M \to M$ associative telle que M admet un neutre par * est appelé un *monoïde*.

Définition 1.3. Un monoïde (M, *) est dit *abélien* (ou *commutatif*) lorsque * est commutative.

Remarque. Un groupe est un monoïde admettant un inverse pour chaque élément. Dès lors, les résultats et définitions sur les monoïdes s'appliquent également aux groupes.

Proposition 1.4. *Dans un groupe* (G,*), *les équations :*

$$x * a = b, \tag{1}$$

et:

$$a * y = b \tag{2}$$

П

admettent une unique solution, i.e.:

$$(x,y) = (b * a^{-1}, a^{-1} * b) \in G^2.$$

<u>Démonstration</u>. G est un groupe, du coup a et b admettent un inverse. L'existence de la solution est donc triviale.

Soit x, solution de (1). On a alors :

$$x = x * e = x * a * a^{-1} = b * a^{-1}$$
.

Similairement pour y, solution de (2), on a :

$$y = e * y = a^{-1} * a * y = a^{-1} * b.$$

Proposition 1.5. *Le neutre d'un groupe est unique, et l'inverse de tout élément l'est également.*

De plus:

$$\forall \mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d} \in \mathtt{G} : \left\{ \begin{array}{c} \mathtt{c} * \mathtt{a} = \mathtt{d} * \mathtt{a} \Rightarrow \mathtt{c} = \mathtt{d}, \\ \mathtt{a} * \mathtt{c} = \mathtt{a} * \mathtt{d} \Rightarrow \mathtt{c} = \mathtt{d}. \end{array} \right.$$

Démonstration. EXERCICE.

Proposition 1.6. Si G est un ensemble non-vide muni d'une loi de composition * associative telle que (1) et (2) admettent une unique solution, alors (G,*) est un groupe.

<u>Démonstration</u>. Pour chaque élément $a \in G$, prenons e_a^L tel que $e_a^L * a = a$ et e_a^R tel que $a * e_a^R = a$. Ces deux équations admettent une unique solution par hypothèse. On trouve alors :

$$e_{\alpha}^{L} * \alpha = \alpha = \alpha * e_{\alpha}^{R}$$

d'où l'on déduit:

$$a * e_a^L * a = a * a = a * e_a^R * a$$
,

et donc $e_a^L = e_a^R$ en multipliant à gauche et à droite par a^{-1} . On en déduit l'unicité d'un neutre pour a et notons-le e_a . Montrons que ce neutre l'est pour tous les éléments de G. Prenons $(a,b) \in G^2$ et leur neutre respectif e_a et e_b . On peut écrire :

$$a*e_b*b=a*b=a*e_a*b,$$

d'où l'on déduit $e_a = e_b$ en multipliant à gauche par a^{-1} et à droite par b^{-1} .

Définition 1.7. Si $|G| < \infty$, on peut définir la *table de multiplication* de (G,*) par un tableau de dimensions $|G| \times |G|$ reprenant tous les résultats de g * h pour $g, h \in G$.

1.2 Groupes de transformation

Définition 1.8. Soit S un ensemble non-vide. Soit G l'ensemble des bijections de S dans S. On définit la loi de composition :

$$\circ: G \times G \to G: (\psi, \phi) \mapsto (\psi \circ \phi),$$

tels que $\forall s \in S : (\psi \circ \varphi)(s) = \psi(\varphi(s)).$

Proposition 1.9. (G, \circ) *est un groupe (de permutation sur S).*

<u>Démonstration</u>. Le neutre est donné par Id ∈ G où $\forall s \in S : Id(s) = s$. La loi \circ est trivialement associative, et l'inverse d'une fonction est bien définie sur les bijections.

Exemple 1.1. L'ensemble $SO(3,\mathbb{R})$ des rotations axiales passant par $\mathfrak O$ forme un groupe de transformations. *Remarque.* Un groupe de transformation est composé de fonctions bijectives. L'ensemble G est donc un ensemble fonctionnel.

1.3 Sous-groupes

Définition 1.10. Soit (G,*) un groupe, et soit $S \subset G$. Si (S,*) est un groupe, alors on dit que (S,*) est un *sous-groupe* de (G,*).

Proposition 1.11. *Soit* (G, *) *un groupe.* $S \subseteq G$ *est un sous-groupe de* G *si et seulement si :*

$$\forall a, b \in S : a * b^{-1} \in S$$
.

Démonstration. □ Trivial car S est un groupe.

[⇐] S est non-vide, donc $e \in S$ car si $a \in S$, alors par hypothèse $e = a * a^{-1} \in S$. De même, soit $a \in S$. On sait que $a^{-1} = e * a^{-1} \in S$. Et S est stable par * car si $a, b \in S$, on sait que $b^{-1} \in S$, et donc $a * (b^{-1})^{-1} \in S$.

Proposition 1.12. Si $\{S_{\alpha} \ t.q. \ \alpha \in I\}$ est une famille de sous-groupes de (G,*), alors $S := \bigcap_{\alpha \in I} S_{\alpha}$ est un sous-groupe de (G,*) également.

<u>Démonstration</u>. On sait que $e \in S$ car $e \in S_{\alpha}$ pour tout $\alpha \in I$. Donc $S \neq \emptyset$. Prenons $a, b \in S$. On sait que $a, b \in S_{\alpha}$ pour tout $\alpha \in I$. Donc b^{-1} et $a * b^{-1}$ sont dans S_{α} pour tout $\alpha \in I$ également. Donc $a * b^{-1} \in S$. \square

Définition 1.13. Soit (G,*) un groupe et soit $P \subseteq G$. On appelle le *sous-groupe de* G *engendré par* P le plus petit sous-groupe de G contenant P. On le note $\langle P \rangle$

Définition 1.14. Soit (G, *) un groupe et soit $g \in G$. On appelle *ordre de* g le plus petit $n \in \mathbb{N}^*$ tel que $g^n = e$. On le note ord(e).

L'ordre de (G, *) est|G|.

Définition 1.15. Un groupe (G, *) est dit *cyclique* lorsqu'il existe $g \in G$ tel que $G = \langle g \rangle := \langle \{g\} \rangle$.

1.4 Isomorphismes

Définition 1.16. Un *isomorphisme* entre deux groupes (G,*) et (H,*) est une bijection $\varphi:G\to H$ telle que :

$$\forall g_1, g_2 \in G : \varphi(g_1 * g_2) = \varphi(g_1) \star \varphi(g_2).$$

Remarque. La relation « être isomorphe » dans l'ensemble des groupes est une relation d'équivalence.

De plus, sis G et H sont deux groupes finis, $\phi: G \to H$ est un isomorphisme si et seulement si ϕ est bijective, et la table de multiplication de H par $\phi(G)$ est l'image de la table de multiplication de G par G.

```
Proposition 1.17. Soit \phi: (G, *) \to (H, \star) un isomorphisme de groupes. Alors : 
— \phi(e_G) = e_H; 
— \forall g \in G: \phi(g)^1 = \phi(g^{-1}).
```

<u>Démonstration</u>. On sait que $\phi(e_G) = \phi(e_G * e_G) = \phi(e_G) \star \phi(e_G)$. Dès lors, il est évident que $\phi(e_G)$ est le neutre de H.

Soit $g \in G$. On sait également que $e_H = \phi(e_G) = \phi(g * g^{-1}) = \phi(g) \star \phi(g^{-1})$. On a donc bien, en multipliant par $\phi(g)^{-1}$ à gauche que $\phi(g)^{-1} = \phi(g^{-1})$.

Théorème 1.18. Tout groupe est isomorphe à un groupe de transformation.

<u>Démonstration</u>. Soit (G, *) un groupe, et soit g ∈ G. On définit $φ : G → \{ℓ_g \text{ t.q. } g ∈ G\}$, où $ℓ_g : G → G : h ↦ g * h$.

Pour $g \in G$, montrons que ℓ_g est bijective :

- il est évident que $\forall g, h, h' \in G : g * h = g * h' \iff h = h'$ par les règles de simplification;
- $\forall h \in G : \ell_q(g^{-1} * h) = g * g^{-1} * h = h.$

On a donc que ℓ_g est bien bijective pour tout $g \in G$.

Montrons maintenant que $\phi: g \mapsto \ell_g$ est un isomorphisme de groupes :

- φ est surjective par définition.
- soient $g, h \in G$. $\ell_g = \ell_h$ si et seulement si pour tout $\gamma \in G$, on a $g * \gamma = h * \gamma$, et donc si et seulement si on a g = h. ϕ est donc injective.
- Soient $g, h, \gamma \in G$. $\phi(g * h)(\gamma) = g * h * \gamma = g * \ell_h(\gamma) = (\ell_g \circ \ell_h)(\gamma)$.

Théorème 1.19. Tout groupe cyclique est déterminé, à isomorphisme près, par l'ordre d'un élément g qui l'engendre.

Plus précisément, si (G,*) est un groupe engendré par un élément g d'ordre ord(g) fini, alors $G \cong (\mathbb{Z}_{ord(g)},+)$; et si g est d'ordre infini, alors $(G,*) \cong (\mathbb{Z},+)$.

<u>Démonstration</u>. S'il existe $g \in G$ tel que $G = \langle g \rangle$ et ord $(g) \leq +\infty$, alors $G = \{e, g, \dots, g^{\operatorname{ord}(g)-1}\}$.

Soit $\phi: \mathbb{Z}_{ord(g)} \to G: k \mapsto g^k$. ϕ est trivialement bijective, et on observe:

$$\phi(k+1) = g^{k+1} = g^k * g^1 = \phi(k) * \phi(1).$$

Supposons maintenant qu'il existe $g \in G$ tel que ord $(g) = +\infty$ et $\langle g \rangle = G$. On pose :

$$\forall p \in \mathbb{N}^* : g^{-p} \coloneqq g^{-1} * g^{1-p}.$$

Puisque ord $(g) = +\infty$, si $g^x = g^y$ pour $x, y \in \mathbb{Z}$, alors x = y. En reprenant le même φ étendu à \mathbb{Z} , on a bien, à nouveau, un isomorphisme de groupes.

Corollaire 1.20. Tout groupe cyclique est commutatif.

Démonstration. Étant isomorphe à \mathbb{Z}_n pour un certain $n \in \mathbb{N}$ ou à \mathbb{Z} , par passage à l'isomorphisme, la propriété d'additivité est conservée. □

Proposition 1.21. Si (G,*) est un groupe cyclique, tout sous-groupe S de G est cyclique.

<u>Démonstration</u>. Prenons $a \in G$ tel que $G = \langle a \rangle$. Posons $N \coloneqq \{n \in \mathbb{Z} \text{ t.q. } a^n \in S\}$. Dans le cas fini, prenons \underline{n} , le plus petit entier positif de N. Supposons par l'absurde que $a^t \in S$ ne soit pas une puissance entière de $\underline{a^n}$. Par Euclide, on a:

$$\exists (q,r) \in \mathbb{Z} \times \mathbb{N} \text{ t.q. } t = q\underline{n} + r,$$

et donc:

$$a^{t} = a^{q\underline{n}} * a^{r}$$

avec $0 \le r \le \underline{n}$. On sait que $a^t \in S$, et $a^{q\underline{n}} \in S$ (donc $a^{-q\underline{n}} \in S$). Dès lors, $a^r \in S$. Or \underline{n} est le plus petit entier positif tel que $a^{\underline{n}} \in S$. Il y a donc contradiction, et a^t est une puissance entière de $a^{\underline{n}}$. Dès lors, $S = \langle a^{\underline{n}} \rangle$. \square

1.5 Classes latérales et théorème de Lagrange