"Try to be a rainbow in someone's cloud."

— Maya Angelou

Bayesian Statistics

CLASS 3

Goals for today

Understand how to do general linear regression and Logistic regression in a Bayesian framework

Ames Housing data

```
train_reg <- train %>%
dplyr::select(Sale_Price, Lot_Area, Age, Total_Bsmt_SF, Garage_Area,
Gr_Liv_Area, Central_Air)
```

You can create this data and export (use seed from summer).

Data into format

```
y_train = train_reg['Sale_Price']
x6_train = pd.get_dummies(x_train['Central_Air'],
drop_first=True ,dtype=int)
x6_train = pd.to_numeric(x6_train['Y'], errors='coerce)
x1_train=x_train['Lot_Area']
x2_train=x_train['Age']
x3_train=x_train['Total_Bsmt_SF']
x4_train=x_train['Garage_Area']
x5_train=x_train['Gr_Liv_Area
x7_train=x_train['Age']**2
```

Create model

```
with pm.Model() as model1:
# Priors for coefficients
    beta1 = pm.Normal("beta1", mu=0, sigma=10000)
                                                            y obs = pm.Normal("y obs", mu=mu, sigma=sigma,
    beta2 = pm.Normal("beta2", mu=0, sigma=10000
                                                       observed=y train
    beta3 = pm.Normal("beta3", mu=0, sigma=10000)
                                                            trace = pm.sample(2000, tune=1000,
    beta4 = pm.Normal("beta4", mu=0, sigma=10000)
                                                       random seed=10976, return inferencedata=True)
    beta5 = pm.Normal("beta5", mu=0, sigma=10000
                                                            trace.extend(pm.sample posterior predictive(trace))
    beta6 = pm.Normal("beta6", mu=0, sigma=10000)
    beta7 = pm.Normal("beta7", mu=0, sigma=10000)
    intercept = pm.Normal("intercept", mu=0, sigma=100000)
# Standard deviation of residuals
    sigma = pm.HalfNormal("sigma", sigma=10000)
                                                       ppc=trace.posterior predictive['y obs']
    mu = intercept + beta1*x1 train + beta2*x2 train +
                                                       az.summary(trace)
beta3*x3 train + beta4*x4 train + beta5*x5 train +
beta6*x6_train+beta7*x7_train
```

Comparison to frequentist

	mean	sd	hdi_3%	hdi_97%	n
beta1	0.544	0.114	0.334	0.766	
beta2	-1669.620	98.790	-1857.909	-1489.848	
beta3	38.562	2,484	33.869	43.176	
beta4	58.352	5.667	47.523	68.782	
beta5	63.218	2.306	58.876	67.557	
beta6	9419.832	3778.773	2189.750	16352.377	
beta7	9.843	0.985	7.949	11.625	
intercept	41474.250	5551.936	30850.490	51764.329	
sigma	41273.826	634.582	40125.058	42497.164	

model2<-lm(Sale_Price~.,data=train_reg)summary summary(model2)

Coefficients:

	Estimate	Std. Error
(Intercept)	40396.2879	5649.3208
Lot_Area	0.5450	0.1142
Age	-1671.8214	100.1042
Total_Bsmt_SF	38.5593	2.5508
Garage_Area	58.0207	5.6101
Gr_Liv_Area	63.1880	2.2646
Central_AirY	10758.8634	3922.9604
I(Age^2)	9.8950	0.9961

Residual standard error: 41420 on 2043 degrees of

freedom

Traceplots

Checking assumptions (still have work to do)

Logistic regression

We will use the Bambi package to perform Logistic regression:

```
titanic_model = bmb.Model("Survived ~ sex + Age + Fare + sex_fare", data=titanic_train,family="bernoulli")

titanic_fitted = titanic_model.fit( draws=2000, target_accept=0.85, random_seed=56892, idata_kwargs={"log_likelihood": True})
```

Comparison: Bayesian to Frequentist

	mea	n sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
Interc	ept 0.68	6 0.263	0.205	1.189	0.004	0.003	5237.0	5871.0	1.0
:	sex -1.96	6 0.249	-2.421	-1.495	0.004	0.003	3659.0	5122.0	1.0
A	lge -0.01	2 0.006	-0.024	0.001	0.000	0.000	5189.0	4929.0	1.0
F	are 0.02	3 0.006	0.012	0.034	0.000	0.000	3010.0	4187.0	1.0
sex_f	are -0.01	3 0.006	-0.026	-0.002	0.000	0.000	2906.0	3963.0	1.0

```
Estimate S
(Intercept) 0.642704
sex -1.904051
Age -0.011958
Fare 0.024752
sex_fare -0.015736
```

MCMC plots

Self study:

Example from online

Hierarchical Model

A total of 30 rats were followed across time

The response variable being measured was their weight

Weight was recorded on day 8, 15, 22, 29 and 36 (i.e. 5 measurements taken on each rat)

This can be viewed as 'panel' data or 'cluster' data

We will create a growth curve for each rat (assume a linear growth curve)

Exmaple of growth curves

$$Y_{i,j} \sim Normal(\alpha_i + \beta_i(x_j - \bar{x}), \sigma_Y)$$

$$\alpha_i \sim Normal(\mu_\alpha, \sigma_\alpha)$$

$$\beta_i \sim Normal(\mu_\beta, \sigma_\beta)$$

$$Y_{i,j} \sim Normal(\alpha_i + \beta_i(x_j - \bar{x}), \sigma_Y)$$

$$\alpha_i \sim Normal(\mu_{\alpha}, \sigma_{\alpha})$$

$$\beta_i \sim Normal(\mu_{\beta}, \sigma_{\beta})$$

```
Y_{i,j} \sim Normal(\alpha_i + \beta_i(x_j - \bar{x}), \sigma_Y)
\alpha_i \sim Normal(\mu_{\alpha}, \sigma_{\alpha})
\beta_i \sim Normal(\mu_{\beta}, \sigma_{\beta})
```

$$Y_{i,j} \sim Normal(\alpha_i + \beta_i(x_j - \bar{x}), \sigma_Y)$$

$$\alpha_i \sim Normal(\mu_{\alpha}, \sigma_{\alpha})$$

$$\beta_i \sim Normal(\mu_{\beta}, \sigma_{\beta})$$

Need prior distributions

Priors

```
\mu_{\alpha} \sim Normal(0,100)

\mu_{\beta} \sim Normal(0,100)

\sigma_{Y}^{2} \sim Inv - Gamma(0.001,0.001)

\sigma_{\alpha}^{2} \sim Inv - Gamma(0.001,0.001)

\sigma_{\beta}^{2} \sim Inv - Gamma(0.001,0.001)
```

```
data {
                                                      sigma alpha = sqrt(sigmasq alpha);
 int<lower=0> N; // Number of rats
                                                      sigma beta = sqrt(sigmasq beta);
 int<lower=0> Npts; // Number of data points
 int<lower=0> rat[Npts]; // Lookup index for rat
                                                     model {
 real x[Npts];
                                                      mu alpha \sim normal(0, 100);
 real y[Npts];
                                                      mu_beta ~ normal(0, 100);
 real xbar;
                                                      sigmasq y \sim inv gamma(0.001, 0.001);
                                                      sigmasq alpha \sim inv gamma(0.001, 0.001);
parameters {
                                                      sigmasq beta \sim inv gamma(0.001, 0.001);
 real alpha[N];
                                                      alpha ~ normal(mu_alpha, sigma_alpha);
 real beta[N];
                                                      beta ~ normal(mu beta, sigma beta);
 real mu alpha;
                                                      for (n in 1:Npts){
 real mu beta;
                                                       int irat;
 real <lower=0> sigmasq y;
                                                       irat = rat[n];
 real <lower=0> sigmasq alpha;
                                                       y[n] ~ normal(alpha[irat] + beta[irat] * (x[n] - xbar), sigma y);
 real <lower=0> sigmasq beta;
transformed parameters {
                                                     generated quantities {
 real<lower=0> sigma y;
                                                      real alpha0;
 real<lower=0> sigma alpha;
                                                      alpha0 = mu alpha - xbar * mu beta;
 real<lower=0> sigma beta;
 sigma y = sqrt(sigmasq y);
```

print(rats.stan,pars = c("mu_alpha","mu_beta","sigma_y","sigma_alpha","sigma_beta","alpha0"))

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff
mu_alpha	242.48	0.04	2.88	236.78	240.62	242.47	244.35	248.18	4910
mu_beta	6.18	0.00	0.11	5.97	6.11	6.18	6.26	6.40	4394
sigma_y	6.11	0.01	0.47	5.28	5.80	6.09	6.41	7.10	2190
sigma_alpha	14.96	0.03	2.24	11.38	13.38	14.70	16.25	20.12	4194
sigma_beta	0.53	0.00	0.10	0.37	0.47	0.52	0.59	0.75	2670
alpha0	106.44	0.06	3.74	98.99	103.97	106.50	108.99	113.67	4461

conjugacy

Some individuals prefer to have models with conjugacy:

- Defining a prior that when combined with the data will produce a posterior distribution in the same family
 - For example:
 - If your data is binomial, defining a beta prior will result in a posterior that is also a beta distribution (however, parameters are "updated")
 - If your data is Poisson, defining a Gamma distribution on the mean will produce a posterior distribution that is also Gamma

Point estimates

Most common "point estimates" of the parameters are the mean of the posterior distribution or the median of the posterior distribution

- The mean is the estimate under a "squared error loss"
- The median is the estimate under an "absolute error loss"
- There are other loss functions that will result in different point estimates, but these two are by far the most common

Wrap-up

Bayesian statistics can be used to perform the same analysis as you can do as a frequentist

With vague priors, you will expect to see similar results from Bayes to frequentist

Advantages of Bayesian

- Easier to compute probability intervals
- Easier to find quantities such as probabilities or transformations, such as CV
- Easier to handle complex models (need make sure everything is specified correctly and ensure convergence of the MCMC...so samples can be used)

Thank you!