MAE 290B. Homework 1

Winter 2018

Due Jan. 24, in class

Note: You are expected to provide legible and clear solutions for the homework. Otherwise points will be deducted. Computer programs must be **written on your own** and submitted through TritonEd. Plots and sketches must be labeled and the axis well defined. Staple the document and number the pages. Torn-out pages are not allowed.

- **1.** A function f(x) is known at points x_i , i = 1, 2, ..., n.
 - a) Obtain a second-order accurate central approximation to f''(x) at x_i using the Taylor-series method. Give the truncation error (including coefficient).
 - b) Due to the finite-precision of the computers the evaluation of f at the grid node k has a roundoff error, i.e. $f_k = y_k + e_k$ where e_k is the roundoff error and y_k is the exact value. It is known that $|e_k| < \epsilon$ and $|f^{(4)}(x)| < M$. Denote the error in computing f''(x) with the second-order accurate central formula by $E(\Delta x, f)$, and recall that $E(\Delta x, f)$ is the summation of the roundoff and truncation error. Find the optimal step size (Δx) based on ϵ and M, to minimize the total error $E(\Delta x, f)$.
 - c) Use points x_i , x_{i+1} , and x_{i+2} to obtain the best approximation to f'(x) at x_i . Give the truncation error (including coefficient).
- **2.** The following IVP is to be numerically integrated to obtain y at t = 500 s:

$$y' = \left(-\frac{1}{\tau} + i\omega\right)y \quad ; \quad y(0) = 1. \tag{1}$$

Use the θ method for solving y' = f(y) as follows:

$$y_{n+1} = y_n + h[\theta f_{n+1} + (1 - \theta) f_n], \qquad (2)$$

where $\theta \in [0,1]$ is a fixed parameter.

- a) Using the model problem $y'=\lambda y$ perform a stability analysis for $\theta=\{0,\frac{1}{2},1\}$. How does the choice of θ affect the stability? Sketch the stability regions for the three cases. Recall that we are assuming that $\lambda_R\leq 0$ i.e the exact solution is bounded.
- b) Write a computer program that implements the θ method. Use it to obtain the solution for the initial times $0 \le t \le 50$ and the later times $450 \le t \le 500$ with a user-prescribed θ , ω and h. Let $\omega = 0.25 \text{ s}^{-1}$, $\tau = 400 \text{ s}$ and consider two cases: $\theta = 1/4$ and $\theta = 3/4$. Vary the time step h = 0.01, 0.1, 1 s and discuss the influence on the solution. Compare the two methods to the exact solution in terms of accuracy, stability and convergence.
- c) Assume the characteristic decay time $\tau \to \infty$ so that Eq. (1) simplifies to

$$y' = i\omega y$$
 ; $y(0) = 1$.

Analytically obtain the amplitude and phase error of the method with $\theta=3/4$ and time step h. Simplify the error expressions assuming that $\omega h << 1$.

3. A third-order Runge-Kutta scheme (RK3) is used to integrate the model linear problem:

$$y' = \lambda y \quad ; \quad y(0) = 1 \ .$$
 (3)

- a) Obtain the stability restriction on the time step h for $\lambda \in \mathbb{C}$. Show the solution as a stability diagram. What is the restriction on h when $\lambda \in \mathbb{R}$?
- **b)** Write a program that integrates Eq.(3) using a RK3 scheme (T. Bewley *Numerical Renaissance* Eq.(10.37) or Eq.(10.39)). Vary the time step $h=0.01,0.1,1~\mathrm{s}$ and compare the results with the solutions of problem 2b.