Implementation of Decision Tree Classifiers ID3 versus C4.5

Depuydt Antoine Dansy Efila Mudura Mircea

May, 2017

Introduction

- ▶ Data mining: compress, understand and predict
 - Clustering
 - Classification
 - Regression
 - **...**
- ► Techniques to find links
 - ► Linear Regression
 - Decision Trees
 - Neural Networks
 - **...**

Classification

- Classical example: play tennis today?
 - ► Features:
 - ► Outlook: sunny, overcast, rainy
 - ► Temperature: hot, cool, cold
 - ▶ Wind: high, weak
 - ► Humidity: high, normal
 - Class labels:
 - Yes
 - No

Decision Tree

- Visual model, easily understandable
- ► Model: tree with decision and leaf nodes

Premise

- Given a training data-set
- Recursively split on a node:
- ▶ If node is pure return leaf (class value)
- ► Else compute entropy & info gain:
 - Shannon's entropy: $E(S) = \sum_{i} -p_{i}log_{2}(p_{i})$
 - ▶ Subtree gain: Gain(T, X) = E(T) E(T, X)

ID3 versus C4.5

► Goal: implement ID3 and C4.5 algorithms

▶ Objectives: compare ID3 and C4.5 output

► Compare ID3 and C4.5

 Create an application that classifies any data using both algorithms

ID3

- ▶ Initial implementation of decision trees
- ► Top down approach
- ▶ Split current node based on information gain:

Improvements?

► Entropy & information gain not sufficient metrics

Missing data has to be handled

 Numerical values could provide order or dimension to a problem set

Tree can be simplified

Missing data

K-fold cross validation

Demonstration