High-Performance Data Science with Python

—— (2) DataFrame Game ——

Qiyang Hu

UCLA IDRE/OARC Workshop May 12th, 2021

Recap from the last lecture

- We discussed "Velocity" in big data analytics.
 - Most optimizations were done by the compiler(JIT, AOT).
 - Today we will address "Volume" and "Variety".
 - Dataframe may have implementation of JIT to speed up.
- We focus on high-level reviews
 - End-user oriented
- A side note about the R question:
 - o R is the interpretive language.
 - Core of R is written by C, Fortran and R
 - R is strongly and dynamically typed.
 - R has its own JIT packages
 - jit, compiler, ...

Key issues in dealing with array-type data

Data types

- Fixed-width vs. variable-width: numericals, strings
- Nullable/masked: can/cannot be None
- Heterogeneous: different types in an array
- Nested records with named (dict) or unnamed (tuple) fields

Data structures

- Structured: numpy, pandas, ...
- Unstructured:
 - Tree structures: datrie, treelib, awkward arrays, ...
 - Graph structures: networkx, stellar graph, ...

Data storage

- Memory & Disk format: row-based vs columnar
- Sparseness: dense vs sparse
- Chunking and partitioning: for parallel processing

Data manipulation

- Virtualness: lazy load/evaluation
- Subclassing arrays with high-level specialized methods

In most cases, numpy serves as a building block:

- Using numpy tricks to manipulate
- Use numpy's extension module to dispatch its own func
- Overrides numpy's ufuncs

Outline

- Vanilla arrays and dataframes
 - NumPy
 - Pandas
- Parallel processing with multi-cores
 - Pandallel
 - Modin
 - Swifter
- Out-of-core approaches
 - Dask Arrays and Dataframes
 - Vaex

- First choice for numerical arrays
 - Overall 5 to 100 times faster than Python list.
- Internals of numpy vs. Python list
 - Python list: scattered across the system memory
 - Numpy data: stored in a continuous block memory
 - Array computation part re-written in C
 - Performance gain due to CPU caching
 - Vectorized instructions of modern CPUs
 - Can be linked to BLAS, MKL, etc.
- Performance tips
 - Use view, avoid copy (watch out for implicit-copy!)
 - Take advantage of vectorization
 - numpy.vectorize()
 - use broadcasting if possible

Under the hood

- It groups the columns into blocks of values of the same type.
- It represents numeric values as NumPy ndarrays and stores them in a continuous block of memory.
- The object type represents values using Python string objects

Optimize the numeric data

- o int64 and float64 are default and expensive
- Subtypes can save RAM and a bit faster

Optimize the object data

- Strings are expensive and slow
- Categoricals: 10x to save RAM & speedup

		DataFrame										
	date	number_of_game	day_of_week	v_name	v_league	v_game_number	h_name	h_league	length_outs			
0	01871054	0	Thu	CL1	na	1	FW1	na	54.0			
1	18710505	0	Fri	BS1	na	1	WS3	na	54.0			
2	18710506	0	Sat	CL1	na	2	RC1	na	54.0			

IntBlock						0b	jе	ct	В	lo	Flo	FloatBlock				
	0	1	2	3	4	5		0	1	2	3	4			0	
0	01871054	0	1	1	0	2	0	Thu	CL1	na	FW1	na		0	54.0	
1	18710505	0	1	1	20	18	1	Fri	BS1	na	WS3	na		1	54.0	
2	18710506	0	2	1	12	4	2	Sat	CL1	na	RC1	na		2	54.0	

Try "dtype_diet" package to get help.

Optimize your pandas dataframe with its advice.

Drop to Numpy whenever you can.

Take advantage of vectorization in loops.

Pandaral·lel

- Numpy and Pandas: using single core
 - Workaround is possible, but very complicated
- Pandarallel: using multiple cores
 - Instantiates a Pyarrow Plasma shared memory
 - Creates one sub processes for each CPU to work on a sub part of the DataFrame
 - Combine all the results in the parent process
- A drop-in replacement:

```
from pandarallel import pandarallel
pandarallel.initialize()
df/series.apply -> df/series.parallel_apply
df/series.map -> df/series.parallel_map
df/series.applymap -> df/series.parallel_applymap
```


Watch out for the overhead!

- Multiprocess dataframe
 - Project from UCB's RISELab
 - Have identical APIs to Pandas
- Internals of Modin
 - 2-dimensional partitioning
 - Re-implementing Pandas APIs
 - 4-layer architectures
- Installation & Usage

pip install modin[dask/ray/all]
import os
os.environ["MODIN_ENGINE"]="dask"

import pandas as pd

Swifter

- A booster to Pandas and/or Modins
 - A project developed by Jason Carpenter
- Basic idea:
 - Try vectorization first
 - If not succeeded, automatically decides whether it is faster to perform dask parallel processing or use a simple pandas apply.
- Installation and usage

```
pip install swifter
import modin.pandas as pd
import swifter

df=pd.DataFrame(data)
df.swifter.apply(func, axis=1)
```


Dataframe's apply method speed test on Hoffman2

When Data > RAM

Numpy Arrays

- Using smaller subtypes
- Compressing sparse arrays
- Chunking the data for on-demand reads
 - Using np.mmap()
 - Using Zarr or HDF5 format

Pandas Dataframes

- Using Categorical dtypes and smaller subtypes
- Loading columns selectively: pd.read_csv(file, usecols=[...])
- Sampling rows: pd.read_csv(file, skiprows=samplingFunc)
- Reading in chunks: for df in pd.read_csv(file, chunksize=1000):
- Using SQLite as data storage for Pandas: 50x faster lookups

DASK Data Collections

- A full a parallel processing library suite
 - Working in parallel with ndarray and pd.DataFrame objects
 - Distributed computing with task schedulers to execute on clusters
 - Real-time feedback and diagnostics
- Three parallel data collections:
 - Dask Arrays: arranging ndarrays into chunks within a grid.
 - Dask DataFrames: partitioning pd.DataFrame along an index.
 - Dask Bags: for unstructured or semi-structured data
- Dasks APIs to emulate Pandas:
 - Setting up a static graph of operations first
 - Running the computation on that graph

```
import dask.dataframe as dd
df = dd.read_csv(file)
df.groupby(df.user_id).value.mean().compute()
```


- A promising open-source DataFrame library in Python
 - APIs closely resemble that of Pandas.
 - Easy to work with very large (>100G+) datasets efficiently
- Interesting features
 - Memory mapping
 - New string type (RAM efficient)
 - Support file formats of Apache Arrow, Apache Parquet, HDF5
 - Access from local disks and cloud storage
 - Dataframes are out-of-core
 - Lazy evaluations: compute only when needed (e.g. preview)
 - Lazy loading: data streaming only when needed to avoid memory copy
 - Parallelized and fast/efficient algorithms:
 - groupby, join, selection
 - JIT compilation: Numba, Pythran, CUDA
 - vaex.ml Package for out-of-core scikit-learn

When to use which?

		Multiple CPUs	Out-Of-Core	Pandas APIs	Keep-In-Mind Notes
1	Pandas	X	X	/	Always be the one if we can.Lots of performance tricks!
2	Modin	/	×	/	 Good for dataframes with many columns Experimental out-of-core dataframes Experimental distributed XG-Boost
3	Dask	✓	/	/	 Ultimate solution if distributed situations: Data storage & computation. Steep learning curve after a quick start
4	Vaex	/	/	×	 Good for dataframes with many rows HDF5 files work best so far. Some APIs are different from Pandas

What we didn't talk about yet:

Key Takeaways

- Use Pandas if it is possible
 - Drop to numpy if you can.
 - Try "dtype_diet" to save RAM for you.
- When to consider Modin:
 - Your machine have many CPUs and a lot of RAM
 - Your work depends on most Pandas operations.
 - Your data needs "groupby" on many columns.
- When to consider Vaex:
 - Your data has about 10M to 1B rows, <100 columns (according to Ian Ozsvald)
 - Your data is in HDF5 format on a single place (local or cloud).
 - You only need a small set of Pandas functions.
- When to consider Dask:
 - Your dataset needs to be distributed stored and operated over a cluster.