Problem #1 (3.34 textbook)

(a) Each link can point either left or right, so this system is mathematically the same an spins system.

The multiplicity.

S= lug = NlnN-N-Np lu Np +Np-Ne luMe +NE =

= N luN - Ne luNe - (N-Ne) hu (N-Ne)

- (b) Each right-pointing link increases L by l and each left parented link decreases L by l, so the net dust his $L = L(N_R N_L) = L(2N_R N)$, or $N_R = \frac{1}{2}(\frac{L}{L} + N)$
- (c) Thermodynamic identity for ideal gas. $dU = TdS PdV \qquad U = Q V_S$

U=Q-Wg xook done by system.

F'- force by rubber.

F

du = Tds-dws = du = Tds-FdL = Tds+FdL

(d) The internal energy of the rubber does not depend on the conformation state of the rubber => $dN=0. \implies F=-T\left(\frac{2}{2L}\right)_{LL}$

$$F = -\frac{ET}{2e} \left[-\ln N_e - \frac{N_e}{N_e} + \ln (N - N_e) + \frac{N - N_e}{N - N_e} \right] = -\frac{ET}{e.2} \ln \left(\frac{N - N_e}{N_e} \right)$$

Using
$$Ne = \frac{1}{2} \left(\frac{L}{e} + N \right)$$

$$F = -\frac{kT}{2e} \ln \left(\frac{2}{4 / Ne + 1} - 1 \right) = -\frac{kT}{2e} \ln \left(\frac{1 - 1 / Ne}{1 + 1 / Ne} \right) = \frac{kT}{e} \ln \left(\frac{1 + 4 / Ne}{1 - 4 / Ne} \right)$$

(e) When LUNG the argument of the logarithm is approximately

$$F \approx \frac{kT}{2e} \cdot \frac{2e}{Ne} = \frac{kTL}{Ne^2} \frac{kT}{Ne^2} - "spring constant"$$

(t) The Lention is proportional to T so for a given force upon increasing temperature the rubbon should contract.

Homework # 7

PR #2. (5.40 textbook)

Na AlSiz $O_8 \rightarrow Na$ AlSiz $O_6 + SiO_2$

1) $\Delta G = \Delta G_{+}$ (products) - ΔG_{+} (rangents) =
2859.1 kg - 856.6 kg + 3711.5 kg = 2.8 kg

Because ΔG_{+} is positive albite is more stable than

gadeite + quartz under room temperature and atmo
spheric pressure. However the jadeite-quartz

combination takes up considerably len volume than

albite. So it should become stable at high premure.

3) The premure needed to conversion at room temperature. can

be found as. ΔG_{-} VdP-SdT = VdP.

P = AG = 2.8kg

to make computation 1+18 convinent to make a conversion $1 \text{ cm}^2 = 10^{-6} \text{ m}^2 = 10^{-6} \frac{7}{Pa} = 10^{-6} \cdot \frac{10^8 \text{ J}}{10^8 Pa} = 10^{-1} \cdot \frac{\cancel{\cancel{L}} \cancel{\cancel{L}}}{\cancel{\cancel{L}} \cancel{\cancel{L}} \cancel{$

1605=10 Pa

P= 2.8k3 10. KJ/Ebar - 6.04 KJ/EBar - 2.269 KJ/Ebar = 1.65 k Bar.

3) The slope of the phase boundary can be found from the Clausius-Clapey tou relation.

 $\frac{dP}{dT} = \frac{\Delta S}{\Delta V} = \frac{207.4 \text{ } 1/E - 133.5 \text{ } 1/E - 41.8 \text{ } 1/E}{1.7 \text{ } 1/ber} = 18.9 \text{ } bar/E$

The phase boundary is therefore given by the equation. $I(that) = 1.65 + 18.9 \cdot 10^{-3} (T-293)$

. fall

.

Homework #7 Problem #3.

definitions: P_{00} - initial pressure of water vapor. $P_{00}(P)$ - pressure of water vapor after the pumping in an inest gar. Particle P_{00} - + pressure of inest gar that was pumped in P_{00} - + P_{00} - + + P_{00} - + P

(a) Change of the chemical potential of ideal gas an venet of inchan of its partial premise $\mu = \mu_0 + kT \ln \left(\frac{P_0(P)}{P_0 r} \right)$ $\mu_0 - initial \mu$ of vapor

Change in the prof liquid.

d6 = VdP-SdT = VdP at T=const.

 $\mu = \frac{G}{N}$ $h = \int \frac{V}{N} dP$, = $\int V_{L} dP$ $V_{L} - \frac{Volume}{maleurle}$ in water

Liquid is not compressible to = const.

Mi = po+ VI. (B-Poo)

 $ho^{l} = ho^{U}$ $kT \ln \left(\frac{P_{\sigma}(P)}{P_{\sigma \sigma}} \right) = V_{L}(P - P_{\sigma O})$

 $P_{\sigma}(P) = P_{or} \cdot exp \left[\frac{(P - P_{oo}) \cdot \sigma_L}{kT} \right]$

For Po= 1 atm Po >> Pov = 0.03 atm.

 $\frac{P_{\sigma}(P)}{P_{\sigma}(0)} = 1.00073$ - very small correction.