Тема 3. Методы построения оценок.

1. Метод моментов.

Пусть $\zeta_n = (\xi_1,...,\xi_n)$ — выборка из распределения $F_{\xi}(x\mid\theta)$, где $\theta=(\theta_1,\theta_2,...,\theta_k)$ — неизвестный векторный параметр, принимающий значения из множества допустимых значений параметра Θ , и требуется построить оценку некоторой величины $\tau(\theta) = \tau(\theta_1,\theta_2,...,\theta_k)$, зависящей от параметра θ .

Для решения поставленной задачи методом моментов, прежде всего, необходимо выразить оцениваемую величину $\tau(\theta)$ через моменты распределения $F_{\xi}(x\mid\theta)$, то есть построить такую функцию $G(v_1,v_2,...,v_m)$ что:

$$\tau(\theta_1, \theta_2, ..., \theta_k) = G(v_1, v_2, ..., v_m),$$

где $v_1, v_2, ..., v_m$ — любые моменты распределения $F_{\xi}(x \mid \theta)$ (например, начальные и центральные и не обязательно по порядку). Если в функции $G(v_1, v_2, ..., v_m)$ моменты $v_1, v_2, ..., v_m$ заменить их оценками $\hat{v_1}(\zeta_n), \hat{v_2}(\zeta_n), ..., \hat{v_m}(\zeta_n)$ (например, выборочными моментами), то в результате замены будет получена статистика $T(\zeta_n)$:

$$T(\zeta_n) = G(\hat{v}_1(\zeta_n), \hat{v}_2(\zeta_n)..., \hat{v}_m(\zeta_n)),$$
(3.1)

которая может использоваться для оценки величины $\tau(\theta)$.

Определение 3.1.

Оценками, полученными по методу моментов (моментными оценками), называются статистики вида $T(\hat{v_1},...,\hat{v_k})$, где $\hat{v_i}(\zeta_n)$ ($i=\overline{1,k}$) — оценки моментов распределения $F_{\xi}(x\mid\theta)$.

Один из способов построения функции $G(v_1,...,v_m)$ заключается в том, чтобы выразить компоненты параметра $\theta_1,\ \theta_2,\ ...,\ \theta_k$ через моменты $v_1,\ v_2,\ ...,\ v_m$. Поскольку функция распределения $F_\xi(x\mid\theta)$ зависит от параметра $\theta=(\theta_1,\theta_2,...,\ \theta_k)$, то выражения для моментов $v_1,\ v_2,\ ...,\ v_m$ в общем случае содержат компоненты $\theta_1,\ \theta_2,\ ...,\ \theta_k$ параметра, так что каждый момент v_i представляет собой функцию $f_i(\theta_1,\theta_2,...,\ \theta_k)$:

$$\begin{cases} v_1 = f_1(\theta_1, \theta_2, ..., \theta_k) \\ v_2 = f_2(\theta_1, \theta_2, ..., \theta_k) \\ & \cdots \\ v_m = f_m(\theta_1, \theta_2, ..., \theta_k) \end{cases}$$

Если представленная система разрешима относительно неизвестных компонент θ_1 , θ_2 , ..., θ_k , тогда имеется возможность выразить компоненты θ_1 , θ_2 , ..., θ_k через моменты ν_1 , ν_2 , ..., ν_m :

$$\begin{cases} \theta_{1} = g_{1}(v_{1}, v_{2}, ..., v_{m}) \\ \theta_{2} = g_{2}(v_{1}, v_{2}, ..., v_{m}) \\ ... \\ \theta_{k} = g_{k}(v_{1}, v_{2}, ..., v_{m}) \end{cases}$$

$$(3.2)$$

В силу (3.2) функция $G(v_1,...,v_m)$ может быть получена непосредственно из величины $\tau(\theta_1,...,\theta_k)$:

$$G(v_1, v_2, ..., \ v_m) = \tau(\theta_1, \theta_2, ..., \ \theta_k) = \tau(g_1(v_1, v_2, ..., \ v_m), ..., \ g_k(v_1, v_2, ..., \ v_m)) \; .$$

Дополнительно из (3.2) непосредственно получаются моментные оценки $\hat{\theta_i}(\zeta_n)$ и самих компонент θ_i параметра θ :

$$\hat{\theta}_{i}(\zeta_{n}) = g_{i}(\hat{v}_{1}(\zeta_{n}),...,\hat{v}_{m}(\zeta_{n})). \tag{3.3}$$

Моментные оценки $\hat{\theta}_1(\zeta_n)$, ..., $\hat{\theta}_k(\zeta_n)$ (3.3) компонент θ_i параметра θ , как и моментная оценка $T(\zeta_n)$ (3.1) величины $\tau(\theta)$, в общем случае не обладают свойством несмещенности (тем не менее, в некоторых частных случаях моментные оценки оказываются несмещенными).

Состоятельность каждой оценки $\hat{\theta}_i(\zeta_n)$ (3.3) зависит от свойств функции g_i и используемых оценок $\hat{v}_j(\zeta_n)$ ($j=\overline{1,m}$). Если функция g_i непрерывна в точке ($v_1,v_2,...,v_m$) и все оценки $\hat{v}_j(\zeta_n)$ являются состоятельными оценками моментов v_j , тогда оценка $\hat{\theta}_i(\zeta_n)$ является состоятельной оценкой θ_i . Действительно, в силу свойства сходимости по вероятности, непрерывная функция $\hat{\theta}_i(\zeta_n) = g_i(\hat{v}_1,\hat{v}_2,...,\hat{v}_k)$ от состоятельных оценок $\hat{v}_j(\zeta_n)$, имеющих пределом по вероятности v_j , сходится по вероятности к величине $g_i(v_1,v_2,...,v_k) = \theta_i$, таким образом:

$$\hat{\theta}_i(\zeta_n) = g_i(\hat{v_1}(\zeta_n), \hat{v_2}(\zeta_n), ..., \hat{v_k}(\zeta_n)) \xrightarrow{P} g_i(v_1, v_2, ..., v_k) = \theta_i,$$
 при $n \to \infty$.

что означает состоятельность оценки $\hat{\theta}_i(\zeta_n)$.

Аналогично, если функция $G(v_1,v_2,...,v_m)$ является непрерывной в точке $(v_1,v_2,...,v_m)$ и все оценки $\hat{v}_j(\zeta_n)$ являются состоятельными оценками моментов v_j , тогда оценка $T(\zeta_n)$ также является состоятельной оценкой величины $\tau(\theta)$:

$$T(\zeta_n) = G(\hat{v_1}(\zeta_n), \hat{v_2}(\zeta_n), \dots, \hat{v_k}(\zeta_n)) \xrightarrow{P} G(v_1, v_2, \dots, v_k) = \tau(\theta),$$

$$\Pi D W n \to \infty$$

Если в качестве моментов v_j используются первые j начальных моментов m_j функции распределения $F_{\xi}(x \mid \theta)$, функции g_1 , ..., g_k непрерывно дифференцируемы и функция распределения $F_{\xi}(x \mid \theta)$ имеет 2k моментов, то моментные оценки $\hat{\theta}_i(\zeta_n)$ имеют асимптотически нормальное распределение:

$$\hat{\theta}_{i}(\zeta_{n}) \sim N \left(\theta_{i}, \frac{1}{n} \sum_{p=1}^{k} \sum_{q=1}^{k} (m_{p+q} - m_{p} m_{q}) \frac{\partial g_{p}}{\partial m_{p}} (m) \cdot \frac{\partial g_{q}}{\partial m_{q}} (m) \right),$$

где $m = (m_1, ..., m_k)$ — вектор начальных моментов.

Моментные оценки в большом количестве случаев не являются оптимальными, тем не менее, применение метода моментов построения оценок во многих случаях не вызывает затруднений и сами выражения для моментных оценок (3.1), как правило, оказываются простыми для вычисления.

2. Метод максимального правдоподобия.

Пусть исходная серия наблюдений представлена совокупностью случайных величин (ξ_1 ,..., ξ_n), которая имеет функцию плотности вероятности (либо функцию вероятности в дискретном случае) $p_{\xi}(x_1,...,x_n\,|\,\theta)$, зависящую от параметра $\theta=(\theta_1,...,\theta_k)$, принимающего значения из множества допустимых значений параметра Θ .

Образуем так называемую функцию правдоподобия $L(\xi_1,...,\xi_n\mid\theta)$ путем подстановки величин ξ_i вместо величин x_i в функцию $p_{\xi}(x_1,...,x_n\mid\theta)$:

$$L(\xi_1,...,\xi_n \mid \theta) = p_{\xi}(\xi_1,...,\xi_n \mid \theta).$$

Предположим, в результате проведения эксперимента получена реализация серии наблюдений $(\xi_1,...,\xi_n)$ — числовой вектор $(x_1^*,...,x_n^*)$. Если подставить вектор значений $(x_1^*,...,x_n^*)$ в функцию правдоподобия $L(\xi_1,...,\xi_n|\theta)$, то в результате получится функция $L(x_1^*,...,x_n^*|\theta)$, зависящая только от вектора параметров $\theta=(\theta_1,...,\theta_k)$. При одних значениях параметра θ значение функции правдоподобия $L(x_1^*,...,x_n^*|\theta)$ оказывается мало, при других значениях — велико. Поскольку значение функция правдоподобия $L(x_1^*,...,x_n^*|\theta)$ в некотором смысле отражает вероятность получения заданного вектора $L(x_1^*,...,x_n^*|\theta)$, то вполне естественно было бы подобрать такое значение параметра $\theta=(\theta_1,...,\theta_k)$, при котором вероятность получения наблюдаемого значения $(x_1^*,...,x_n^*)$ оказалась бы наибольшей.

Определение 3.2.

Оценкой, полученной по методу максимального правдоподобия (МП-оценкой), называется статистика $\theta^* = (\theta_1^*,...,\theta_k^*)$, доставляющая наибольшее значение функции правдоподобия $L(\xi_1,...,\xi_n\mid\theta)$ при каждой реализации величин $(\xi_1,...,\xi_n)$:

$$L(\xi_1,..., \xi_n \mid \theta^*) = \sup_{\theta = (\theta_1,...,\theta_k)} L(\xi_1,..., \xi_n \mid \theta).$$

Определение 3.2 следует понимать в следующем смысле: при каждом фиксированном элементарном событии $\omega \in \Omega$, случайные величины ξ_1 , ..., ξ_n принимают определенные числовые значения $x_i = \xi_i(\omega)$, а совокупность наблюдений $(\xi_1,...,\xi_n)$ при фиксированном ω принимает значение числового вектора $(x_1,...,x_n)$. Для заданного вектора $(x_1,...,x_n)$ согласно определению 3.2 вычисляется значение МП-оценки $\theta^* = \theta^*(x_1,...,x_n)$:

$$L(x_1,..., x_n | \theta^*) = \sup_{\theta = (\theta_1,...,\theta_k)} L(x_1,..., x_n | \theta).$$

Тем самым для каждого $\omega \in \Omega$ задан способ вычисления МП-оценки $\theta^*(x_1,...,x_n) = \theta^*(\xi_1(\omega),...,\xi_n(\omega))$, который и определяет функцию $\theta^* = \theta^*(\xi_1,...,\xi_n)$. Таким образом, МП-оценка как функция наблюдений является статистикой.

Если при каждой реализации совокупности $(\xi_1,...,\xi_n)$ наибольшее значение функции правдоподобия достигается во внутренней точке множества допустимых значений параметра Θ и функция правдоподобия $L(\xi_1,...,\xi_n\mid\theta)$ дифференцируема по параметру θ , то из необходимого условия экстремума следует равенство частных производных функции правдоподобия $L(\xi_1,...,\xi_n\mid\theta)$ нулю в точке МП-оценки θ^* :

$$\frac{\partial}{\partial \theta_i} L(\xi_1, ..., \xi_n \mid \theta_1, ..., \theta_k) \bigg|_{\theta_i = 0, i = 1, k} = 0, i = \overline{1, k}.$$

Решение приведенной системы не всегда оказывается удобным, поэтому при выполнении определенных условий задачу нахождения наибольшего значения функции правдоподобия $L(x_1,...,x_n\mid\theta)$ заменяют задачей нахождения наибольшего значения логарифма функции правдоподобия $\ln L(x_1,...,x_n\mid\theta)$, поскольку логарифм функция монотонно возрастающая (и, следовательно, наибольшему значению логарифма функции правдоподобия будет соответствовать наибольшее значение аргумента, то есть функции правдоподобия):

$$\left. \frac{\partial}{\partial \theta_i} \ln L(\xi_1, ..., \xi_n \mid \theta_1, ..., \theta_k) \right|_{\theta = \theta^*} = 0, \ i = \overline{1, k}.$$

В случае одномерного параметра θ представленное уравнение имеет название уравнения правдоподобия.

Определение 3.3.

Статистика $T(\xi_1,...,\xi_n)$ называется асимптотически нормальной с параметрами m и σ^2 :

$$T(\xi_1,...,\xi_n) \sim N(m,\sigma^2)$$
 при $n \to \infty$,

если при каждом x:

$$\lim_{n\to\infty} F_{T_n}(x) = \Phi\left(\frac{x-m}{\sigma}\right),\,$$

где $F_{T_n}(x)$ — функция распределения $T(\xi_1,...,\xi_n)$, $\Phi(x)$ — функция Лапласа (функция распределения нормальной случайной величины с математическим ожиданием 0 и дисперсией 1).

Замечание

Можно доказать, что при некоторых условиях МП-оценка $\theta^*(\xi_1,...,\xi_n)$ является:

- 1) состоятельной;
- 2) асимптотически нормальной.

Метод максимального правдоподобия может вызывать серьезные трудности в связи с необходимостью отыскания наибольшего значения функции правдоподобия, в частности решения уравнения правдоподобия, тем не менее, МП-оценки как правило являются оценками близкими к оптимальным оценкам.

3. Метод порядковых статистик.

Пусть $\zeta_n = (\xi_1,...,\ \xi_n)$ — выборка из распределения $F_{\xi}(x\,|\,\theta)$, где $\theta = (\theta_1,\theta_2,...,\ \theta_k)$ — неизвестный векторный параметр, принимающий значения из множества допустимых значений Θ , и требуется построить оценку величины $\tau(\theta) = \tau(\theta_1,\theta_2,...,\ \theta_k)$.

Метод порядковых статистик аналогичен методу моментов с той разницей что вместо моментов используются квантили $x_{p_1}, x_{p_2}, ..., x_{p_m}$ и их оценки $\tilde{x}_{p_1}(\zeta_n), \tilde{x}_{p_2}(\zeta_n), ..., \tilde{x}_{p_m}(\zeta_n)$. Для построения оценки величины $\tau(\theta)$ по методу порядковых статистик достаточно выразить величину $\tau(\theta)$ через квантили $x_{p_1}, x_{p_2}, ..., x_{p_m}$ функции распределения $F_{\varepsilon}(x \mid \theta)$, то есть построить такую функцию $H(x_{p_1}, x_{p_2}, ..., x_{p_m})$ что:

$$\tau(\theta_1, \theta_2, ..., \theta_k) = H(x_{p_1}, x_{p_2}, ..., x_{p_m}).$$
 (3.4)

Если квантили $x_{p_1}, x_{p_2}, ..., x_{p_m}$ заменить их оценками $\tilde{x}_{p_1}(\zeta_n), \tilde{x}_{p_2}(\zeta_n), ..., \tilde{x}_{p_m}(\zeta_n)$, то будет получена статистика $T(\zeta_n)$:

$$T(\zeta_n) = H(\tilde{x}_{p_1}(\zeta_n), \tilde{x}_{p_2}(\zeta_n), ..., \tilde{x}_{p_m}(\zeta_n)).$$
 (3.5)

которая может быть использована в качестве оценки величины $\tau(\theta)$.

Один из способов построения функции $H(x_{p_1}, x_{p_2}, ..., x_{p_m})$, как и в методе моментов, заключается в том, чтобы при вычислении квантилей $x_{p_1}, x_{p_2}, ..., x_{p_m}$ выразить их через компоненты $\theta_1, \theta_2, ..., \theta_k$ параметра:

$$\begin{cases} x_{p_1} = f_1(\theta_1, \theta_2, ..., \theta_k) \\ x_{p_2} = f_2(\theta_1, \theta_2, ..., \theta_k) \\ & ... \\ x_{p_m} = f_m(\theta_1, \theta_2, ..., \theta_k) \end{cases}$$

и, разрешив систему относительно неизвестных компонент $\theta_1,\ \theta_2,\ ...,\ \theta_k$, получить выражения для компонент $\theta_1,\ \theta_2,\ ...,\ \theta_k$ через квантили $x_{p_1},\ x_{p_2},\ ...,\ x_{p_m}$:

$$\begin{cases} \theta_{1} = h_{1}(x_{p_{1}}, x_{p_{2}}, ..., x_{p_{m}}) \\ \theta_{2} = h_{2}(x_{p_{1}}, x_{p_{2}}, ..., x_{p_{m}}) \\ ... \\ \theta_{k} = h_{k}(x_{p_{1}}, x_{p_{2}}, ..., x_{p_{m}}) \end{cases}$$

которые затем использовать при построении функции $H(x_{p_1}, x_{p_2}, ..., x_{p_m})$ непосредственно из величины $\tau(\theta_1, ..., \theta_k)$:

$$H\left(x_{p_{1}},x_{p_{2}},...,\ x_{p_{m}}\right)=\tau(\theta_{1},\theta_{2},...,\ \theta_{k})=\tau(h_{1}(\widetilde{x}_{p_{1}},\widetilde{x}_{p_{2}},...,\ \widetilde{x}_{p_{m}}),...,\ h_{k}(\widetilde{x}_{p_{1}},\widetilde{x}_{p_{2}},...,\ \widetilde{x}_{p_{m}}))\;.$$

Теперь для построения оценки $T(\zeta_n)$ (3.4) остается лишь найти оценки $\widetilde{x}_{p_i}(\zeta_n)$ ($i=\overline{1,m}$) квантилей x_{p_i} . Оценки $\widetilde{x}_{p_i}(\zeta_n)$ могут быть получены различными способами, в частности с помощью порядковых статистик $\xi_{(k)}(k=\overline{1,n})$ — величин вариационного ряда. Для построения оценок квантилей, прежде всего, рассмотрим определение квантили.

Определение 3.4.

Пусть $F_{\xi}(x)$ — функция распределения, *квантиль уровня р* (*p -квантиль*) функции распределения $F_{\xi}(x)$ есть число x_p такое, что:

$$F_{\xi}(x_p) = p .$$

Для построения оценок квантилей необходимо некоторым образом заменить в определении квантили 3.4 неизвестную функцию распределения $F_{\xi}(x|\theta)$ известной эмпирической функцией распределения $F_n^*(x;\xi_1,...,\xi_n)$. Реализации эмпирической функции распределения являются кусочно-постоянными функциями, а приведенное выше определение квантили, как нетрудно заметить, не является подходящим для функций, имеющих разрывы. Действительно, если функция распределения $F_{\xi}(x)$ имеет разрывы, то вообще говоря, при некоторых p может не существовать такого числа x_p , при котором $F_{\xi}(x_n) = p$, поэтому определение 3.4 необходимо модифицировать.

Определением квантили, подходящим для более широкого класса функций, в том числе и кусочно-постоянных, может являться, например, следующее определение: квантилью уровня p (при p>0) можно считать такое значение x_p , которое является точной нижней гранью множества всех значений x, при которых функция распределения $F_{\varepsilon}(x)$ больше p,

$$x_{p} = \inf \left\{ x : p < F_{\xi}(x) \right\},$$
$$p > 0.$$

Введенное определения квантили для непрерывных функций распределений $F_{\xi}(x)$ совпадает с определением 3.4, но также подходит и для функций распределения $F_{\xi}(x)$, имеющих разрывы. Теперь, замена в этом определении функции распределения $F_{\xi}(x)$ известной эмпирической функцией распределения $F_n^*(x;\xi_1,...,\xi_n)$ приводит к оценке \tilde{x}_p квантили x_p некоторого уровня p>0:

$$\tilde{x}_{p}(\xi_{1},...,\xi_{n}) = \inf \{x : p < F_{n}^{*}(x;\xi_{1},...,\xi_{n})\}.$$

Исходя из графиков реализаций эмпирической функции распределения $F_n^*(x;\xi_1,...,\xi_n)$ нетрудно заметить, что для значений p: 0 < p , $\frac{k}{n} \le p < \frac{k+1}{n}$, $\left(k = \overline{0,n-1}\right)$ оценка $\widetilde{x}_p(\zeta_n)$

совпадает с k+1-ой порядковой статистикой $\xi_{(k+1)}$, причем если значение p таково, что $\frac{k}{n} \leq p < \frac{k+1}{n}$, тогда $k = \lfloor np \rfloor$, где $\lfloor \cdot \rfloor$ означает целую часть числа.

Таким образом, оценкой $\tilde{x}_p(\zeta_n)$ квантили x_p некоторого уровня p>0 является порядковая статистика $\xi_{([np]+1)}$ и статистика $T(\xi_1,...,\xi_n)$ (3.4), оценивающая величину $\tau(\theta)$, имеет вид:

$$T(\xi_1,..., \xi_n) = H(\xi_{([np_+]+1)},..., \xi_{([np_+]+1)})$$

Определение 3.5.

Оценками, полученными по методу порядковых статистик, называются оценки вида $T(\xi_{(i_*)},...,\xi_{(i_m)})$, где $\xi_{(i_*)}$ ($k=\overline{1,m}$) — порядковые статистики.

Свойства оценок, полученных по методу порядковых статистик, зависят от свойств самих порядковых статистик $\xi_{(1)}$, которые в свою очередь зависят от функции распределения $F_{\varepsilon}(x \mid \theta)$ исходной выборки $(\xi_1,...,\ \xi_n)$.

Утверждение 3.6.

Пусть $(\xi_1,...,\xi_n)$ — выборка из распределения $F_{\xi}(x\mid\theta)$, тогда функция распределения k -ой порядковой статистики $F_{(k)}(x\mid\theta)$:

$$F_{(k)}(x \mid \theta) = \sum_{m=k}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} = \begin{cases} 1 - (1 - F_{\xi}(x \mid \theta))^{n} &, k = 1 \\ \sum_{m=k}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} &, 1 < k < n \end{cases}$$

$$F_{(k)}(x \mid \theta) = \sum_{m=k}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} &, k = 1 \end{cases}$$

$$F_{(k)}(x \mid \theta) = \sum_{m=k}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} &, k = n \end{cases}$$

Доказательство:

Выберем произвольным образом и зафиксируем значение x, определим на основе выборки ($\xi_1,...,\ \xi_n$) вектор бинарных случайных величин ($\varepsilon_1,...,\ \varepsilon_n$):

$$\varepsilon_i(\omega) = \begin{cases} 1 & , \xi_i(\omega) < x \\ 0 & , \xi_i(\omega) \ge x \end{cases}.$$

Случайные величины ε_i независимы в совокупности (поскольку случайные величины ξ_i независимы в совокупности) и имеют одинаковое распределение P_ε (поскольку случайные величины ξ_i имеют одинаковую функцию распределения) :

$$\begin{split} P_\varepsilon(1) &= P\{\omega : \varepsilon_i(\omega) = 1\} = P\{\omega : \xi_i(\omega) < x\} = F_\xi(x\mid\theta) \;, \\ P_\varepsilon(0) &= P\{\omega : \varepsilon_i(\omega) = 0\} = P\{\omega : \xi_i(\omega) \geq x\} = 1 - F_\xi(x\mid\theta) \;. \end{split}$$

Пусть $\xi_{\scriptscriptstyle (k)}$ — k -ая порядковая статистика, по определению функция распределения $F_{\scriptscriptstyle (k)}(x)$:

$$F_{(k)}(x) = P\{\omega : \xi_{(k)}(\omega) < x\}$$
.

Порядковая статистика $\xi_{(k)}$ меньше величины x тогда и только тогда, когда среди величин выборки $(\xi_1,...,\xi_n)$ m $(k \le m \le n)$ величин меньше x и n-m величин не меньше x, то есть тогда и только тогда, когда в векторе бинарных случайных величин $(\varepsilon_1,...,\varepsilon_n)$ m величин равны 1 и n-m величин равны 0, что эквивалентно тому, что случайная величина $\sum_{i=1}^n \varepsilon_i$ больше или равна k:

$$F_{(k)}(x) = P\{\omega : \xi_{(k)}(\omega) < x\} = P\left\{\omega : \sum_{i=1}^{n} \varepsilon_{i}(\omega) \ge k\right\}$$
(3.6)

Событие $\left\{\omega:\sum_{i=1}^n \varepsilon_i(\omega) \geq k\right\}$ можно представить как объединение непересекающихся событий $\left\{\omega:\sum_{i=1}^n \varepsilon_i(\omega) = m\right\}$ при $m = \overline{k,n}$:

$$\left\{\omega: \sum_{i=1}^n \varepsilon_i(\omega) \ge k\right\} = \bigcup_{m=k}^n \left\{\omega: \sum_{i=1}^n \varepsilon_i(\omega) = m\right\},\,$$

тогда

$$P\left\{\omega: \sum_{i=1}^{n} \varepsilon_{i}(\omega) \geq k\right\} = P\left\{\bigcup_{m=k}^{n} \left\{\omega: \sum_{i=1}^{n} \varepsilon_{i}(\omega) = m\right\}\right\} = \sum_{m=k}^{n} P\left\{\omega: \sum_{i=1}^{n} \varepsilon_{i}(\omega) = m\right\}, \quad (3.7)$$

где последнее равенство получено с учетом того, что события $\left\{\omega:\sum_{i=1}^n \varepsilon_i(\omega)=m\right\}$ не пересекаются при различных m. Поскольку все случайные величины ε_i независимы и имеют одинаковое бинарное распределение, то случайная величина $\sum_{i=1}^n \varepsilon_i$ имеет распределение Бернулли с параметрами n и $F_\varepsilon(x\mid\theta)$, то есть:

$$P\left\{\omega: \sum_{i=1}^{n} \varepsilon_{i}(\omega) = m\right\} = C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m}$$
(3.8)

Таким образом, из (3.6)-(3.8) окончательно получим:

$$F_{(k)}(x) = \sum_{m=k}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} .$$
 (3.9)

Заметим, что полученное равенство справедливо для любого x, поскольку величина x была выбрана произвольным образом.

При k = 1 из (3.9) получим:

$$\begin{split} F_{(1)}(x) &= \sum_{m=1}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} = \sum_{m=1}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} + \\ &+ C_{n}^{0} (1 - F_{\xi}(x \mid \theta))^{n} - C_{n}^{0} (1 - F_{\xi}(x \mid \theta))^{n} = \sum_{m=0}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} - C_{n}^{0} (1 - F_{\xi}(x \mid \theta))^{n} = \\ &= (F_{\xi}(x \mid \theta) + (1 - F_{\xi}(x \mid \theta)))^{n} - (1 - F_{\xi}(x \mid \theta))^{n} = 1 - (1 - F_{\xi}(x \mid \theta))^{n}. \end{split}$$

При k = n из (3.9) получим:

$$F_{(n)}(x) = \sum_{m=n}^{n} C_{n}^{m} F_{\xi}^{m}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-m} = F_{\xi}^{n}(x \mid \theta).$$

Утверждение доказано.

Утверждение 3.7.

Пусть выполнены условия утверждения 3.6 и функция распределения $F_{\xi}(x \mid \theta)$ дифференцируема по x при всех x и θ , тогда плотность вероятности k -ой порядковой статистики $f_{(k)}(x)$:

$$f_{(k)}(x \mid \theta) = kC_n^k F_{\xi}^{k-1}(x \mid \theta) (1 - F_{\xi}(x \mid \theta))^{n-k} f_{\xi}(x \mid \theta),$$

где $f_{\xi}\left(x\mid\theta\right)=\dfrac{d}{dx}F_{\xi}\left(x\mid\theta\right)$ — плотность вероятности.

Доказательство:

Действительно, для того, чтобы получить выражение для плотности вероятности $f_{(k)}(x\mid\theta)$ достаточно продифференцировать функцию распределения $F_{(k)}(x\mid\theta)$ по x:

При k = 1 получим:

$$f_{(k)}(x \mid \theta) = \frac{d}{dx} \left(1 - (1 - F_{\xi}(x \mid \theta))^{n} \right) = n(1 - F_{\xi}(x \mid \theta))^{n-1} f_{\xi}(x \mid \theta).$$

 Π ри k=n получим:

$$f_{(k)}(x \mid \theta) = \frac{d}{dx} \Big(F_{\xi}^{n}(x \mid \theta) \Big) = n F_{\xi}^{n-1}(x \mid \theta) f_{\xi}(x \mid \theta) .$$

При 1 < k < n получим (для краткости опускаем аргумент функций):

$$\begin{split} f_{(k)}(x \mid \theta) &= \frac{d}{dx} \left(\sum_{n=k}^{n} C_{n}^{m} F_{\xi}^{m} (1 - F_{\xi})^{n-m} \right) = \frac{d}{dx} \left(\sum_{n=k}^{n-1} C_{n}^{m} F_{\xi}^{m} (1 - F_{\xi})^{n-m} + C_{n}^{n} F_{\xi}^{n} \right) = \\ &= \sum_{n=k}^{n-1} \left(C_{n}^{m} m F_{\xi}^{m-1} f_{\xi} (1 - F_{\xi})^{n-m} + C_{n}^{m} F_{\xi}^{m} (n - m)(1 - F_{\xi})^{n-m-1} (-f_{\xi}) \right) + C_{n}^{n} n F_{\xi}^{n-1} f_{\xi} = \\ &= \sum_{n=k}^{n-1} C_{n}^{m} m F_{\xi}^{m-1} (1 - F_{\xi})^{n-m} f_{\xi} - \sum_{n=k}^{n-1} C_{n}^{m} (n - m) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} + C_{n}^{n} n F_{\xi}^{n-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k+1}^{n-1} C_{n}^{m} m F_{\xi}^{m-1} (1 - F_{\xi})^{n-m} f_{\xi} - \\ &- \sum_{m=k}^{n-2} C_{n}^{m} (n - m) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} - C_{n}^{n-1} (n - (n - 1)) F_{\xi}^{n-1} (1 - F_{\xi})^{n-(n-1)-1} f_{\xi} + C_{n}^{n} n F_{\xi}^{n-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k}^{n-2} C_{n}^{m+1} (m + 1) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} - C_{n}^{n-1} (n - m) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} + C_{n}^{n-1} F_{\xi}^{n-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k}^{n-2} \left(C_{n}^{m+1} (m + 1) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} - C_{n}^{m} (n - m) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k}^{n-2} \left(C_{n}^{m+1} (m + 1) - C_{n}^{m} (n - m) \right) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k}^{n-2} \left(\frac{n!}{(m+1)!} (m - (m+1))!} (m+1) - \frac{n!}{m!(n-m)!} (n-m) \right) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k}^{n-2} \left(\frac{n!}{(m+1)!} (n - (m+1))!} - \frac{n!}{m!(n-m-1)!} \right) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k}^{n-2} \left(\frac{n!}{(m+1)!} (n - (m+1))!} - \frac{n!}{m!(n-m-1)!} \right) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} = \\ &= C_{n}^{k} k F_{\xi}^{k-1} (1 - F_{\xi})^{n-k} f_{\xi} + \sum_{m=k}^{n-2} \left(\frac{n!}{(m+1)!} (n - (m+1))!} - \frac{n!}{m!(n-m-1)!} \right) F_{\xi}^{m} (1 - F_{\xi})^{n-m-1} f_{\xi} = \\ &= C_{n}^{k} K F_{\xi}$$

Утверждение доказано.

Теорема 3.8. (Крамер)

Пусть $(\xi_1,...,\xi_n)$ — выборка из распределения $F_\xi(x)$, x_p — p -квантиль распределения $F_\xi(x)$ и в некоторой окрестности точки x_p плотность вероятности $f_\xi(x) = F'_\xi(x)$ непрерывно дифференцируема и положительна, $f_\xi(x) > 0$, тогда порядковая статистика $\xi_{([np]+1)}$ имеет асимптотически нормальное распределение:

$$\xi_{([np]+1)} \sim N\left(x_p, \frac{p(1-p)}{nf_{\xi}^2(x_p)}\right),$$
 при $n \to \infty$.

Следствие

При выполнении условий теоремы 3.8 статистика $\xi_{([np]+1)}$ является состоятельной оценкой p -квантиля x_p , поскольку математическое ожидание $M\left[\xi_{([np]+1)}\right] \to x_p$ и дисперсия $D[\xi_{([np]+1)}] \to 0$ при $n \to \infty$.

Из теоремы Крамера следует, что при некоторых условиях статистики $\tilde{x}_{p_i}(\zeta_n) = \xi_{([np_i]+1)}$ являются состоятельными оценками квантилей x_{p_i} , то есть имеет место сходимость по вероятности:

$$\widetilde{x}_{p_i}(\zeta_n) \xrightarrow{P} x_{p_i},$$
 при $n \to \infty$.

Если функция $H(x_{p_1}, x_{p_2}, ..., x_{p_m})$ из (3.4), связывающая оцениваемую величину $\tau(\theta)$ с квантилями x_{p_i} , непрерывна в точке $(x_{p_1}, x_{p_2}, ..., x_{p_m})$, тогда по свойству сходимости по вероятности статистика $H(\widetilde{x}_{p_1}(\zeta_n), x_{p_2}(\zeta_n), ..., x_{p_m}(\zeta_n))$ (3.5) сходится по вероятности к величине $H(x_{p_1}, x_{p_2}, ..., x_{p_m})$:

$$\begin{split} T(\zeta_n) &= H\left(\widetilde{x}_{p_1}(\zeta_n), x_{p_2}(\zeta_n), ..., \ x_{p_m}(\zeta_n)\right) \stackrel{P}{\longrightarrow} H\left(x_{p_1}, x_{p_2}, ..., \ x_{p_m}\right) = \tau(\theta)\,, \end{split}$$
 При $n \to \infty$,

и статистика $T(\zeta_n)$ по определению является состоятельной оценкой $\tau(\theta)$.

Оценки, полученные методом порядковых статистик, как правило, имеют дисперсию больше, чем дисперсии оценок, полученные другими методами. Тем не менее, оценки, методом порядковых статистик, ΜΟΓΥΤ обладать дополнительными полученные положительными свойствами, например, устойчивостью К «засорению» («засорение» выборки означает наличие в выборке ошибочных значений, полученных, например, в результате неверного измерения). К тому же метод порядковых статистик является достаточно общим, то есть применим в тех случаях, когда получение оценок другими методами оказывается затруднительным или вовсе невозможным.