Exercices: Comportement asymptotique des chaines de Markov en temps discret

Exercice 1

Montrer que la récurrence est une propriété de classe, c'est-à-dire si $i \leftrightarrow j$ et i récurrent alors *j* récurrent

Exercice 2

On donne la matrice de transition d'une chaine de Markov à valeurs dans {0,1,2}

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 1/2 \end{pmatrix}$$

Montrer que l'état 1 est récurrent positif

Exercice 3

Soit un état i dans E, tel que i est transitoire. Montrer que conditionnellement à

 $X_0 = i$, la variable aléatoire $N_i = \sum_{k=1}^n I_{\{X_k = i\}}$ est intégrable.

Exercice 4

Soit une chaine de Markov sur les états {0,1,2,3,4,5} dont les probabilités de transition sont données par la matrice

$$P = \begin{pmatrix} 0 & 1/3 & 1/3 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 & 0 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1/2 & 0 & 1/2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Trouver $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n-1} P^n$

Exercice 5

On considère la chaine de Markov définie sur \mathbb{N} par la matrice de transition P vérifiant : $p_{0k} =$ $p_k>0$ pour $k\in\mathbb{N}$, $p_{kk-1}=1$ pour $k\in\mathbb{N}^*$, $p_{ij}=0$ sinon.

- 1- Faire le graphe de cette chaine et donner les classes et périodes.
- 2- Montrer que si $\frac{1}{(k+1)(k+2)}$ pour $k \in \mathbb{N}$, la chaine est récurrente nulle.
- 3- On suppose que $p_k=\frac{1}{2^{k+1}}$ pour $k\in\mathbb{N}$. Déterminer f_{00}^n pour $n\in\mathbb{N}^*$ et montrer que $\mu_0=$
- 4- Trouver les distributions stationnaires (on trouvera en particulier μ_0).

Exercice 6

Une sauterelle se déplace sur les sites 0,1 et 2 disposés sur un cercle en allant à chaque saut au site adjacent dans le sens des aiguilles d'une montre avec probabilité p et au site adjacent dans le sens contraire avec probabilité 1- p . Soit p_{ij}^n la probabilité de passer du site i au site j en n sauts.

- 1- Déterminer les valeurs de p pour les quelles p_{ij}^n converge pour tout i,j et trouver les valeurs
- 2- $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n-1} p_{ij}^k$

Exercice 7

Une chaine de Markov sur les états 0,1,2,3 et 4 a comme matrice de transition

$$P = \begin{pmatrix} 0 & 0 & 1/2 & 1/4 & 1/4 \\ 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1/4 & 3/4 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

1- Déterminer, si elles existent, les limites des probabilité de transition en n pas suivantes : $\lim_{n\to\infty} p_{00}^{(n)} \quad \text{et } \lim_{n\to\infty} p_{01}^{(n)}$

Exercice 8

On considère une chaine de Markov à espace d'états 0,1,2,3,4 et de matrice de transition

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 & 0 \\ 0 & 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

- 1- La chaine est-elle ergodique?
- 2- Montrer que l'état 2 est récurrent positif
- 3- Trouver $\lim_{n\to\infty} p_{02}^{dn}$ et $\lim_{n\to\infty} p_{23}^{dn}$

Exercice 9

Une chaine de Markov à temps discret sur les états 0,1,2,3,4 possède les probabilités de transition en un pas données par la matrice

$$P = \begin{pmatrix} 0 & 1/3 & 1/3 & 1/3 & 0 \\ 1/2 & 0 & 1/4 & 0 & 1/4 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 2/3 \\ 0 & 0 & 0 & 2/3 & 1/3 \end{pmatrix}$$

Déterminer:

- 1- Les classes d'états et leur type {transiente, récurrente positive ou nulle, périodique ou apériodique.
- 2- La limite lorsque n tend vers l'infini de la probabilité de transition de 0 à 4 en n pas , $p_{04}^{(n)}$, si la limite existe .

Exercice 10

Une particule se déplace sur $E = \{1,2,3,4,5\}$ en effectuant à chaque instant soit un pas à droite avec la probabilité 1/2. Soit un pas à gauche avec la probabilité 1/2.

- 1- Déterminer la matrice de transition P
- 2- Ecrire la matrice *P* sous la forme canonique et calculer la matrice fondamentale.
- 4- Trouver $\lim_{n\to\infty} P^n$
- 3- Calculer la probabilité pour que la chaine partant de l'état 2 soit absorbée à l'état 1

Exercice 11

Soit X_n une chaine de Markov irréductible de matrice de transition P et de probabilité invariante π . On définit la chaine retournée Y_n par $Y_n = X_{N-n}, \ n = 0, 1... N \geq 1$.

- 1- Montrer que pour tout $(i,j) \in E^2$, on a $P(Y_1 = j | Y_0 = i) = \frac{\pi_j}{\pi_i} p_{ji}$
- 2- On pose $p_{ij}^*=rac{\pi_j}{\pi_i}p_{ji}$. Montrer que P^* est une matrice stochastique de Y_n et que π sa distribution stationnaire .
- 3- Montrer que π est réversible si et seulement si $P^* = P$.

Exercice 12

On désigne par $(X_n)_{n\in\mathbb{N}}$ une chaine de Markov en temps discret à valeurs dans $E=\{0,1,2,3,4\}$, dont la matrice de transition est donnée par :

$$P = \begin{pmatrix} 0 & 1/4 & 1/4 & 1/4 & 1/4 \\ p & 0 & (1-p)/2 & 0 & (1-p)/2 \\ p & (1-p)/2 & 0 & (1-p)/2 & 0 \\ p & 0 & (1-p)/2 & 0 & (1-p)/2 \\ p & (1-p)/2 & 0 & (1-p)/2 & 0 \end{pmatrix}$$

Avec $0 , on pose <math>T = inf\{n \ge 1, X_n = 0\}$

- 1- Montrer que la chaine est ergodique
- 2- La chaine est-elle réversible ?
- $\begin{array}{lll} \text{3-} & \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n 1_{\{X_k = 1\}} \text{ et } & \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n 1_{\{X_k \neq 1\}} \\ \text{4-} & \text{Supposons que la loi de } T \text{ est } P_0(T=k) = p(1-p)^{k-2}, k \geq 2. \text{ Trouver } E_0(T). \end{array}$

Soit $(X_n)_{n\in\mathbb{N}}$ une chaine de Markov homogène d'ordre 2. Exercice 13

- 1- Montrer que pour tout $n \in \mathbb{N}$, $i_0, i_1, \dots, i_n \in E$ $P(X_0=i_0,X_1=i_1,\dots,X_n=i_n)=P(X_0=i_0)p_{i_0i_1}p_{i_0i_1i_2}\dots p_{i_{n-2}i_{n-1}i_n}$
- 2- On suppose que la chaine est ergodique de matrice de transition P. Donner un estimateur de la probabilité de transition $p_{i_0i_1i_2}$.