Practice Problems: Separable Equations

Lesson 12 Exercises

August 23, 2025

Part A: Recognition and Classification (6 problems)

1. Determine which equations are separable:

(a)
$$\frac{dy}{dx} = x + y$$

(b)
$$\frac{dy}{dx} = xy + x$$

(c)
$$\frac{dy}{dx} = \frac{x^2}{y^2}$$

(d)
$$\frac{dy}{dx} = \sin(x+y)$$

(e)
$$\frac{dy}{dx} = e^x \cdot e^y$$

(f)
$$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$$

- 2. Rewrite in separable form if possible: $(x^2 + 1)y dx + (y^2 1)x dy = 0$
- 3. For the autonomous equation $\frac{dy}{dx} = y^3 y$, identify all equilibrium points.
- 4. True or False: Every autonomous equation is separable. Explain.
- 5. Can $\frac{dy}{dx} = \sqrt{xy}$ be made separable? If so, how?
- 6. Explain why $\frac{dy}{dx} = x + y$ is NOT separable.

Part B: Basic Separable Equations (6 problems)

1

7. Solve:
$$\frac{dy}{dx} = 2xy$$

8. Solve:
$$\frac{dy}{dx} = \frac{y}{x}$$
 for $x > 0$

9. Find the general solution:
$$\frac{dy}{dx} = y^2$$

10. Solve:
$$\frac{dy}{dx} = (1+x)(1+y)$$

11. Solve with initial condition:
$$\frac{dy}{dx} = \frac{x}{y}$$
, $y(0) = 2$

12. Find all solutions:
$$\frac{dy}{dx} = y \cos(x)$$

Part C: Singular Solutions and Lost Solutions (6 problems)

- 13. Find ALL solutions to: $\frac{dy}{dx} = 2\sqrt{y}$
- 14. Solve completely: $\frac{dy}{dx} = y^2 1$
- 15. Find general and singular solutions: $\frac{dy}{dx} = x(y^2 4y + 4)$
- 16. Solve: $y' = y^2(1-y)^2$ and identify all constant solutions
- 17. For $\frac{dy}{dx} = \frac{2xy}{1-x^2}$, find all solutions including any lost in separation
- 18. Determine all solutions: $(y-1)y' = x(y-1)^2$

Part D: Implicit Solutions and Special Cases (5 problems)

- 19. Solve (leave implicit if necessary): $\frac{dy}{dx} = \frac{1-y}{1+x}$
- 20. Find the solution curves: $x dy + y dx = xy^2 dx$
- 21. Solve: $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$ using substitution v = y/x
- 22. Show that $x^2 + xy + y^2 = C$ solves a certain separable equation. Find the equation.
- 23. Solve using appropriate substitution: $\frac{dy}{dx} = (x+y)^2$

Part E: Advanced Techniques (5 problems)

- 24. Solve the logistic equation: $\frac{dy}{dt} = y(1 y/100)$ with y(0) = 10
- 25. Find the solution: $\frac{dy}{dx} = \frac{y^2 1}{x^2 1}$ passing through (2, 2)
- 26. Solve: $\frac{dy}{dx} = e^{x+y} + e^{x-y}$
- 27. For what values of n is $\frac{dy}{dx} = x^n y^{2-n}$ separable? Solve for those values.
- 28. Find the orthogonal trajectories of the family $y = Cx^2$

Part F: Exam-Style Problems (7 problems)

- 29. [**Prof. Ditkowski Special**] Consider $\frac{dy}{dx} = \frac{2y^2 y}{x}$
 - (a) Find the general solution
 - (b) Find all singular solutions
 - (c) Solve the IVP with y(1) = 1/2
 - (d) Sketch several solution curves
 - (e) For what initial conditions does the solution blow up in finite time?
- 30. [Comprehensive] The population P(t) of bacteria satisfies $\frac{dP}{dt} = P(2 P/1000)$
 - (a) Find all equilibrium populations
 - (b) Solve for P(t) if P(0) = 500
 - (c) Find $\lim_{t\to\infty} P(t)$
 - (d) When does the population reach 1500?
- 31. [Implicit Challenge] Solve $\frac{dy}{dx} = \frac{3x^2 + 2xy}{x^2 + 2y^2}$ and verify your solution
- 32. [Lost Solutions Focus] For $\frac{dy}{dx} = \frac{y^2(y-3)}{x}$:
 - (a) Separate and find the general solution
 - (b) Identify ALL constant solutions
 - (c) Which constant solutions are singular?
 - (d) Verify each constant solution
- 33. [**Domain Analysis**] Consider $\frac{dy}{dx} = \frac{1}{y \ln(y)}$ for y > 1
 - (a) Solve the equation
 - (b) If y(0) = e, find the particular solution
 - (c) Determine the domain of existence
 - (d) What happens as $x \to \pm \infty$?
- 34. [Uniqueness Failure] For $\frac{dy}{dx} = 3y^{2/3}$:
 - (a) Show that y = 0 is a solution
 - (b) Find the general solution for $y \neq 0$
 - (c) Show that the IVP with y(0) = 0 has infinitely many solutions
 - (d) Sketch several solutions through the origin
- 35. [Prof. Ditkowski Comprehensive] Chemical reaction kinetics gives $\frac{dy}{dt} = k(a y)(b y)$ where a = 2, b = 1, k = 1

- (a) Use partial fractions to separate variables
- (b) Find the general solution
- (c) If y(0) = 0, find y(t)
- (d) What is $\lim_{t\to\infty} y(t)$?
- (e) Interpret physically: what does y represent?

Answer Key with Essential Hints

- 1. Separable: (b) factor as x(y+1), (c), (e)
 - **3.** Equilibria: $y = 0, \pm 1$
 - 7. $y = Ce^{x^2}$
 - 9. $y = -\frac{1}{x+C}$; blows up at x = -C11. y = Cx; also y = 0 (singular)

 - **13.** $y = 2x^2 + C$; also y = 0 (lost solution)
 - **14.** General: $\arctan(y) = x^2/2 + C$; Singular: $y = \pm 1$
 - **15.** $y = (x-2)^2$; also y = 2 (singular)
 - **19.** (1+x)(1-y) = C
 - **24.** Logistic solution: $y = \frac{100}{1+9e^{-t}}$

 - **27.** Separable for all n; Solution form depends on n **30.** General: $y = \frac{Cx^2}{1+Cx}$; Singular: y = 0, y = 1 **31.** Equilibria at P = 0, 2000; Solution approaches 2000

 - **35.** Solution: $\ln(\ln(y)) = x + C$
 - **37.** Use (a-y)(b-y) = (y-1)(y-2); $y \to 1$ as $t \to \infty$