

Chapter 4

"The new n-grams" — Convolutional Neural Networks

Content of this Chapter

- 1. Modelling Text Flow Sequences of Words and Characters
- 2. Convolutional Neural Networks (in Computer Vision)
 - 1. Components of CNNs
 - 2. Backpropagation in CNNs
- 3. Convolutional Neural Networks in NLP?

4.1 Modelling the Text Flow – Sequences of Words and Characters

- Text is more than just words!
- Models for larger "chunks" needed

Modelling Documents – Bag of Words

- Works rather well...
- ...but loses a lot of information!

Modelling Documents – Sequence of Words

- We need to consider word order!
- \rightarrow A document d is an ordered sequence of words

•
$$d = (d_1, d_2, ..., d_n)$$

Now we need to find a good representation for words

Modelling Documents – Sequence of Words

- $d = (d_1, d_2, ..., d_n)$
- We need to find a good representation for words
 - → Done. Use word embeddings!
- Using a word embedding E of size 300, a document of length l is now an 1×300 matrix d

Modelling Documents – Sequence of Words

Bees
$$0.21 \ 0.43 \ 0.35 \dots$$
 $d =$ like $= 0.56 \ 0.75 \ 0.42 \dots$
honey $0.38 \ 0.67 \ 0.89 \dots$

- What to do with this? Goal: Some kind of classification, e.g. c(d) = "positive" for sentiment classification
- How to achieve this?
 Some ideas on the following slides

Classifying Documents – SVM

Bees
$$0.21 \ 0.43 \ 0.35 \dots$$
 d = like = 0.56 0.75 0.42 ... 0.38 0.67 0.89 ...

- Support Vector Machine = Classic text classifier
- Usually used with bag-of-words representations
- How to:
 - SVMs take as input a vector → Concatenate all embeddings
 - Loses information about "local contexts" from the matrix

```
0.21 0.43 0.35 ...

0.56 0.75 0.42 ...

0.38 0.67 0.89 ...

0.21 0.43 0.35 ... 0.56 0.75 0.42 ... 0.38 0.67 0.89 ...
```

Tends not to work well in this setting

Classifying Documents – Fully Connected Network

$$d = \begin{cases} \text{Bees} \\ \text{like} \\ \text{honey} \end{cases} = \begin{cases} 0.21 \ 0.43 \ 0.35 \ \dots \ 0.56 \ 0.75 \ 0.42 \ \dots \ 0.38 \ 0.67 \ 0.89 \ \dots \end{cases}$$

- Let's use neural networks!
- We know fully connected networks...
- ... which still take as input a vector
- → Same problem as SVMs
- → Additionally: Pretty large input (see next slide for an example)!

Classifying Documents – Fully Connected Network

- Document length: l = 300 words
- Embedding size: s = 300
- Size of the first hidden layer: h = 5000
- → Shape of first weight matrix:

$$300 \cdot 300 \times 5000 \Rightarrow 450,000,000$$
Input size First hidden layer size

- → Float32: 32 bit per number
- \rightarrow 450,000,000 · 32 bit = 1.8 GB for the weights
- \rightarrow And 450,000,000 weights to optimise in a single layer!

Classifying Documents – Fully Connected Network

- Document length: l = 300 words
- Embedding size: s = 300
- Size of the first hidden layer: h = 5000
- Batch size: 1024
- → Shape of input data:

$$1024 \times 300 : 300 = 92,160,000$$

Batch size Input size

- → Float32: 32 bit per number
- \rightarrow 92,160,000 · 32 bit = 0.4 GB for the input
- → 1.8 GB + 0.4 GB = 2.2 GB only for the first layer! This is a lot!

Classifying Documents – Smarter Ideas

- Using SVMs or fully connected networks does not work well!
- → Use some other network architecture

Convolutional Neural Networks

 Focus on the local neighbourhood (similar to n-grams)

Today!

Recurrent Neural Networks

 Model the sentence as a temporal sequence of words

Next chapter!

Transformers

 Model words of a text as relationships between them

Later in the semester

4.2 Convolutional Neural Networks (in Computer Vision)

- What is the idea behind CNNs?
- Why are they used in computer vision?
- How to do backpropagation on a CNN?

Convolutional Neural Networks

- ... are a type of "partially connected" feedforward networks (details later)
- ... originate from computer vision
- ... are often used for image classification
- ... outperform classical image recognition by a large margin
- ... model features over "areas" of growing size in images:
 - Early layers model local neighbourhoods (detect edges, ...)
 - Later layers combine the features to detect larger objects

CNNs in Computer Vision

- Typical structure of a CNN:
 - Some convolutional layers
 - 2. Pooling layer ← Coming soon
 - 3. Repeat 1 and 2 as many times as your GPU allows
 - 4. Fully connected layers
 - 5. Softmax

- Intuition:
 - Early layers extract very local features (edges, ...)
 - Later layers combine these to detect larger objects

A Bit of CNN History

 The following slides on the historical development of CNNs have been copied from the Stanford course CS231n by Fei-Fei Li

A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

<u>Cat image</u> by CNX OpenStax is licensed under CC BY 4.0; changes made

pathways by Lane McIntosh, copyright CS231n 2017

Hierarchical organization

Simple cells: Response to light orientation

Complex cells:
Response to light
orientation and movement

Hypercomplex cells: response to movement with an end point

No response

Response (end point)

A bit of history:

Neocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

A bit of history: Gradient-based learning applied to document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

"AlexNet"

Fast-forward to today: ConvNets are everywhere

Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

- To understand CNNs, take a look at their basic building blocks:
 Convolutions
- Convolution = classic tool in image processing (even without machine learning!)
- Intuition: Slide a function over an image, create a modified image
- Can model operations like edge detection, blurring, ...

- In image processing:
 - A convolution M * C "applies" a kernel matrix C to a (usually) larger matrix M by sliding C over M, constructing a new matrix M'
 - C is rotated by 180°
 - Values of M' constructed by summing up neighbouring values, weighted by C:

Convolution vs. Cross Correlation

- Convolution (A * B): Rotate B by 180° and slide it over A
- Cross Correlation (A \otimes B): Slide matrix B over A
- Similar, sometimes the same. When?

→ If
$$B = rot_{180^{\circ}}\{B\}$$

Convolution vs. Cross Correlation

Convolution advantage: associative operation

$$(A * B) * C = A * (B * C)$$

→ Not important for CNNs: We always have non-linear activation function between convolutions

- → We use Cross Correlations (but call them Convolutions)
 - more intuitive
 - simpler to work with

$$M'_{a,b} = \sum_{i,j \in \{-1,0,1\}} M_{a-i,b-j} \cdot C_{i,j}$$

Convolutions (Cross Correlation)

$$M'_{a,b} = \sum_{i,j \in \{-1,0,1\}} M_{a+i,b+j} \cdot C_{i,j}$$

Note: Problems on the edges of the matrix:

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

→ What to do here?

Skip the edges

- Smaller output (M' < M)
- Can quickly become a problem after multiple convolutions

Padding

- Add "something" around M
- $\rightarrow M'$ is of the same size as MSee next slide

Convolutions — Padding

- Add "something" around M to keep the same size for M'
- What to add?
- → Common Choice: Zeros
- → No influence on resulting value (summing up zeros)

					0	0	0	0	0	0	0
35	40	41	45	50	0	35	40	41	45	50	0
40	40	42	46	52	0	40	40	42	46	52	0
42	46	50	55	55	0	42	46	50	55	55	0
48	52	56	58	60	0	48	52	56	58	60	0
56	60	65	70	75	0	56	60	65	70	75	0
					0	0	0	0	0	0	0

Effect of Convolutions

Look at our convolution from before again:

- Can you guess its effect on the image?
- → Applying C on M results in an image that is shifted one pixel towards the bottom!

Effect of Convolutions

Some more convolutions:

Convolutional Layers

Convolutional Layers in Neural Networks

- Main layer type in CNNs
- CNN learns one (or many) convolutions from the data
- Necessary parameters:
 - Number of filters = How many different filters (convolutions) to learn in the layer
 - Filter size = size of the convolution matrix
 - Stride = How many pixels to move right before applying the convolution again
 - Padding (no padding, zero padding, ...)
 - Dilation = Spacing between the filter points
- Example: 1 filter of size 3×3 with a stride of 2 (no padding)

35	40	41	45	50
40	40	42	46	52
42	46	50	55	55
48	52	56	58	60
56	60	65	70	75

0	1	0
1	-4	1
0	1	0

Pooling Layers

Pooling Layers in Neural Networks

- Second component of CNNs: Pooling Layers
- Reduce the size of the input image in a predefined manner
- No learned weights! Purely static operation
- Common types:
 - Max Pooling
 - Extract the maximum of n×m (pool size) entries in the input
 - Move k (**stride**) entries ahead in the input
 - Average Pooling
 - Similar, but extract average instead of max

Pooling Layers

- Why use pooling layers?
- → Reduce the number of parameters in following layers
- → Not all filters activated on all pixels
 - → Only use pixels in a close neighbourhood that provide the strongest signal
- → What is in the picture, not where!

Properties of CNNs

- Some notable properties of CNNs:
 - Location Invariance:
 Same filters applied at all positions of the image → Location of an edge/feature does not matter
 - Compositionality:
 Pooling layers shrink input → Convolutions of the same size in later stages of the network cover larger areas, they compose the information from earlier layers

CNNs vs. Fully Connected Networks

- Why use CNNs at all?
- → Parameter sharing (as with RNNs)
- → Massively fewer parameters than fully connected networks!
 - Example:
 - 300×300 pixel input, map to hidden layer of same size
 - Fully connected: $(300 \cdot 300) \cdot (300 \cdot 300) = 8,100,000,000$ parameters!
 - Convolutional with 100 filters of size 3×3 : $100\cdot3\cdot3=900$ parameters \odot
- → Less RAM needed, less prone to overfitting
- → Convolutions heavily used in image processing
 - > Even faster on GPUs than normal matrix multiplications!

Demo Time

- Andrej Karpathy: Implementation of CNNs in JavaScript
- Online-Demo with feature visualisation
- Training a CNN on the MNIST dataset (handwritten digits)

https://cs.stanford.edu/%7Ekarpathy/convnetjs/demo/mnist.html

Backpropagation in CNNs

Backpropagation in CNNs

- Weights in CNNs need to be tuned during training
- \rightarrow How to do that?
- Strategy:
 Reduce the problem to one that you already know!

<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃
x ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃
<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃

- We know Backpropagation for Fully Connected Networks
- A CNN is basically a "partially connected" network (see following slides)

From FCNs to CNNs

Fully Connected Network

Convolutional Network

CNNs as Partially Connected Networks

$$\begin{split} h_{11} &= w_{11}x_{11} + w_{12} \ x_{12} + w_{21}x_{21} + w_{22}x_{22} \\ h_{12} &= w_{11}x_{12} + w_{12} \ x_{13} + w_{21}x_{22} + w_{22}x_{23} \\ h_{21} &= w_{11}x_{21} + w_{12} \ x_{22} + w_{21}x_{31} + w_{22}x_{32} \\ h_{22} &= w_{11}x_{22} + w_{12} \ x_{23} + w_{21}x_{32} + w_{22}x_{33} \end{split}$$

Backpropagation — Update steps

Notation:

To save space, define $\delta_v \coloneqq \frac{\partial L}{\partial v}$ for the following slides (placeholder v will be replaced by x or some other variable)

- Remember:
 - For each layer, we need to compute two things with Backpropagation:
 - 1. The gradient that flows to the previous layer (Propagation)
 - 2. The update for the parameters in this layer (Weight Update)

Remember the Network Structure:

$$\begin{split} h_{11} &= w_{11}x_{11} + w_{12} \ x_{12} + w_{21}x_{21} + w_{22}x_{22} \\ h_{12} &= w_{11}x_{12} + w_{12} \ x_{13} + w_{21}x_{22} + w_{22}x_{23} \\ h_{21} &= w_{11}x_{21} + w_{12} \ x_{22} + w_{21}x_{31} + w_{22}x_{32} \\ h_{22} &= w_{11}x_{22} + w_{12} \ x_{23} + w_{21}x_{32} + w_{22}x_{33} \end{split}$$

Update Step 1: Error Propagation in Partially Conn. Net

- We can do backpropagation just like in a fully connected network!
- But this is element-wise, and thus slow
- → How to do it in a smarter (i.e., faster) way?
- → Let's find some matrix operation that does the trick!

Update Step 1: Error Propagation as Convolution

- Now that we know the intuition behind this, let's derive the general rule mathematically!
- Given a CNN, we want to know how the gradient flows through a convolutional layer
- In the example on the right, we already know how to get $\frac{\partial L}{\partial a}$ using backpropagation
- \rightarrow Derive a formula for $\frac{\partial L}{\partial x}$

- The input to a CNN is usually a matrix x
- Thus:
 - Get a gradient for each entry in x
 - Each value $x_{a,b}$ influences its "neighbours" in the output matrix h.
 - For a kernel of size 3×3 , $x_{a,b}$ will have influence on

$$h_{a-1,b-1}, h_{a-1,b}, h_{a-1,b+1}, h_{a,b-1}, h_{a,b}, h_{a,b+1}, h_{a+1,b-1}, h_{a+1,b+1}$$

• Next slide: derivation of a formula for $\frac{\partial}{\partial x}$

w.r.t its input.

 $h_{a+m,b+n}$ are all outputs

depending on $x_{a,b}$.

Simplify the red expression:

$$\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} = \frac{\partial}{\partial x_{a,b}} \sum_{m'=-H'_{w}}^{H'_{w}} \sum_{n'=-W'_{w}}^{W'_{w}} w_{m'+H'_{w}+1,n'+W'_{w}+1} \cdot x_{a+m+m',b+n+n'}$$

$$h_{a+m,b+n}$$

0.5 height of the filter matrix,
$$H_W' = \begin{bmatrix} \frac{height}{2} \end{bmatrix}$$
 0.5 width of the filter matrix Derivative from the next layer ("Nachdifferenzieren") Derivative

Derivative of the convolution's output w.r.t its input. $h_{a+m,b+n}$ are all outputs

 $h_{a+m,b+n}$ are all output depending on $x_{a,b}$.

Simplify the red expression:

$$\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} = \frac{\partial}{\partial x_{a,b}} \sum_{m'=-H'_{w}}^{H'_{w}} \sum_{n'=-W'_{w}}^{W'_{w}} w_{m'+H'_{w}+1,n'+W'_{w}+1} \cdot x_{a+m+m',b+n+n'}$$

$$h_{a+m,b+n} \qquad \text{All other } v$$

 $= w_{-m+H'_W+1,-n+W'_W+1}$

All other $w_{...}$ are not multiplied with $x_{a,b}$ and thus disappear!

0.5 height of the filter matrix,
$$H_W' = \left\lfloor \frac{height}{2} \right\rfloor$$
 0.5 width of the filter matrix Derivative from the next layer ("Nachdifferenzieren") Derivative of the convolution's of $\frac{\partial L}{\partial x_{a,b}} = \sum_{m=-H_W'} \sum_{n=-W_W'} \frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} \frac{\partial h_{a+m,b+n}}{\partial x_{a,b}}$ w.r.t its input. $h_{a+m,b+n}$ are a depending on $\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}}$

Derivative of the convolution's output $h_{a+m,b+n}$ are all outputs depending on $x_{a,b}$.

Simplify the red expression:

$$\frac{\partial h_{a+m,b+n}}{\partial x_{a,b}} = \frac{\partial}{\partial x_{a,b}} \sum_{m'=-H'_{W}}^{H'_{W}} \sum_{n'=-W'_{W}}^{W'_{W}} w_{m'+H'_{W}+1,n'+W'_{W}+1} \cdot x_{a+m+m',b+n+n'}$$

$$na+m,b+n$$

$$= w_{-m+H'_w+1,-n+W'_w+1}$$

All other $w_{...}$ are not multiplied with $x_{a,b}$ and thus disappear!

This is the "rotated"
$$\frac{\partial L}{\partial x_{a,b}} = \sum_{m=-H'_{w}}^{H'_{w}} \sum_{n=-W'_{w}}^{W'_{w}} \delta_{a+m,b+n} w_{-m+H'_{w}+1,-n} + w'_{w}+1$$
 convolution from before!
$$= \delta_{a-H'_{w}:a+H'_{w},b-W'_{w}:b+W'_{w}} * rot_{180^{\circ}}\{w\}$$

Backpropagation — Update steps

Notation:

To save space, define $\delta_v \coloneqq \frac{\partial L}{\partial v}$ for the following slides

- Remember:
 - For each layer, we need to compute two things with Backpropagation:
 - 1. The gradient that flows to the previous layer (Propagation)
 - 2. The update for the parameters in this layer (Weight Update)

Update Step 2: Weights

- Up next: Updating the weights
- → Same procedure as for the error propagation:
 - Derive the update as an element-wise operation
 - Generalise to a matrix operation

Update Step 2: Weight Update in Partially Conn. Net

$$h_{11} = w_{11}x_{11} + w_{12} x_{12} + w_{21}x_{21} + w_{22}x_{22}$$

$$h_{12} = w_{11}x_{12} + w_{12} x_{13} + w_{21}x_{22} + w_{22}x_{23}$$

$$h_{21} = w_{11}x_{21} + w_{12} x_{22} + w_{21}x_{31} + w_{22}x_{32}$$

$$h_{22} = w_{11}x_{22} + w_{12} x_{23} + w_{21}x_{32} + w_{22}x_{33}$$

$$\begin{split} \delta_{w_{11}} &= x_{11} \delta_{h_{11}} + x_{12} \delta_{h_{12}} + x_{21} \delta_{h_{21}} + x_{22} \delta_{h_{22}} \\ \delta_{w_{12}} &= x_{12} \delta_{h_{11}} + x_{13} \delta_{h_{12}} + x_{22} \delta_{h_{21}} + x_{23} \delta_{h_{22}} \\ \delta_{w_{21}} &= x_{21} \delta_{h_{11}} + x_{22} \delta_{h_{12}} + x_{31} \delta_{h_{21}} + x_{32} \delta_{h_{22}} \\ \delta_{w_{22}} &= x_{22} \delta_{h_{11}} + x_{23} \delta_{h_{12}} + x_{32} \delta_{h_{21}} + x_{33} \delta_{h_{22}} \end{split}$$

Update Step 2: Weight Update as Convolution

$\delta_{h_{11}}$	$\delta_{h_{12}}$
$\delta_{h_{21}}$	$\delta_{h_{22}}$

$$\begin{split} \delta_{w_{11}} &= x_{11}\delta_{h_{11}} + x_{12}\delta_{h_{12}} + x_{21}\delta_{h_{21}} + x_{22}\delta_{h_{22}} \\ \delta_{w_{12}} &= x_{12}\delta_{h_{11}} + x_{13}\delta_{h_{12}} + x_{22}\delta_{h_{21}} + x_{23}\delta_{h_{22}} \\ \delta_{w_{21}} &= x_{21}\delta_{h_{11}} + x_{22}\delta_{h_{12}} + x_{31}\delta_{h_{21}} + x_{32}\delta_{h_{22}} \\ \delta_{w_{22}} &= x_{22}\delta_{h_{11}} + x_{23}\delta_{h_{12}} + x_{32}\delta_{h_{21}} + x_{33}\delta_{h_{22}} \end{split}$$

Update Step 2: Weight Update as Convolution

Pooling Layer

- Pooling layers do not have any weights, no calculation needed
- Error is passed on to previous layer:
 - For max pooling, the largest input receives the gradient δ backpropagated from the next layer, all other inputs have gradient 0
 - For average pooling with pooling size $n{ imes}m$, all inputs receive gradient $rac{\delta}{m\cdot n}$

4.3 Convolutional Neural Networks in NLP

- Are CNNs useful in NLP?
- If yes, how are they used?

CNNs in NLP

- So far: Only described use in Computer Vision...
- ... but this is an NLP lecture!
- More recently, CNNs became popular in NLP, too:
 - Kalchbrenner et al., 2014: A Convolutional Neural Network for Modelling Sentences
 - Kim, 2014: Convolutional Neural Networks for Sentence Classification
 - Nguyen and Grishman, 2015: Relation Extraction: Perspective from Convolutional Neural Networks

— ...

CNNs for Sentence Classification

- Kim, 2014 (EMNLP)
- Very simple CNN model...
- ... with very good results!
- Beats previous state-of-the-art in several tasks
 - Sentiment Analysis
 - Subjectivity Detection*
 - Question Answering

^{*} didn't beat state-of-the-art, but came very close

CNNs for Sentence Classification

Input representation: Concatenated word embeddings

- Convolutions over full embeddings!
- \rightarrow Filter size $n \times m$ (n = variable, m = length of the embeddings)

CNNs for Sentence Classification

Network architecture:

- No stacked convolutional layers!
- One layer of convolutions
 - Different filter sizes:
 n ∈ {3,4,5}

- Stride 1 → Do not skip any words/n-grams
- Concatenate the output of all filters along the depth axis
- "Max-over-time-pooling":
 Max Pooling over the full filter output → Select the highest output for each filter
- Fully connected layer
- Dropout
- Softmax

CNN for Sentence Classification — Word Embeddings

- Word embeddings used to encode the input
- Evaluates multiple variants:
 - Randomly initialise embeddings, train with model (cnn-rand)
 - Initialise word embeddings with Word2Vec, keep fixed (cnn-static)
 - Initialise word embeddings with Word2Vec, train with model (cnn-nonstatic)

Finding:

Using pre-trained embeddings and further optimising them for the task at hand works best!

CNN for Sentence Classification — Word Embeddings

- Trick: Multi-channel word embeddings (cnn-multichannel)
 - Represent input as 3-dimensional matrix
 - 3rd dimension: different, independent word embedding vectors
 - Convolutions computed slightly differently (see papers for details), general ideas still apply
 - During training:
 - keep one dimension fixed
 - train the other
 - Effect:
 Keep information from original embeddings,
 but also include "extra" for the task/dataset

	w	112	w	122		w	142
W_1	11	W_1			w_1		242
W_2	211	W_2	221		l		342
W ₃	311	W_3	321		W ₃		
•••		•••					n42
w_{η}	ı11	W_{γ}	ı21		w_{η}	141	

CNN for Sentence Classification — Regularisation

- Multiple regularisation methods used:
 - Dropout
 - Apply Dropout after the fully connected layer
 - L2-maxnorm constraint
 - Set a hard limit s on I2-norm for weights w of the fully connected layer
 - If, after the update step, $||w||_2 > s$, rescale w to $||w||_2 = s$
 - Prevents single weights from getting too large

- Evaluation conducted on multiple standard datasets for different tasks
- We take a closer look at the following:
 - Question Classification: TREC (Li and Roth, 2002)
 - Sentiment Analysis: Stanford Sentiment Treebank (SST; Socher et al., 2013)

- Question Classification: TREC (Li and Roth, 2002)
 - Given a question, classify it into one of 6 types (questions about abbreviations, entites, descriptions, humans, locations or numerical values)

Training set: 5952 questions

Test set: 500 questions

Question	Label
What films featured the character Popeye Doyle?	Entity
How many Community Chest cards are there in Monopoly?	Numerical value
Where do the adventures of `` The Swiss Family Robinson '' take place?	Location
How can I register my website in Yahoo for free ?	Description

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	1—1	1-1	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	-	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_	_	1-0	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	-	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4		82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)	77.3	_	_	_	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)	_	_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	1-1	_	_	_	95.0	_	_

Table 2: Results of our CNN models against other methods. **RAE**: Recursive Autoencoders with pre-trained word vectors from Wikipedia (Socher et al., 2011). **MV-RNN**: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012). **RNTN**: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). **DCNN**: Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). **Paragraph-Vec**: Logistic regression on top of paragraph vectors (Le and Mikolov, 2014). **CCAE**: Combinatorial Category Autoencoders with combinatorial category grammar operators (Hermann and Blunsom, 2013). **Sent-Parser**: Sentiment analysis-specific parser (Dong et al., 2014). **NBSVM, MNB**: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012). **G-Dropout, F-Dropout**: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). **Tree-CRF**: Dependency tree with Conditional Random Fields (Nakagawa et al., 2010). **CRF-PR**: Conditional Random Fields with Posterior Regularization (Yang and Cardie, 2014). **SVM**_S: SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded rules as features from Silva et al. (2011).

- Sentiment Analysis: Stanford Sentiment Treebank (Socher et al., 2013)
 - Dataset of movie reviews annotated for polarity
 - Specialty: Provides annotations for all subtrees of the parse trees!
 - → Very large number of samples
 - Introduced along with a new type of network:

Recursive Neural Tensor Networks (RNTN)

 Network with a structure to model compositionality over parse trees

- Sentiment Analysis: Stanford Sentiment Treebank (Socher et al., 2013)
 - Variant SST-1:
 - Given a sentence from a movie review, classify it into one of 5 classes (very positive, positive, neutral, negative, very negative)
 - Training set: 11855 sentences or phrases
 (phrases are also used in training to have more training data)
 - Test set: 2210 sentences
 (phrases are **not** used for testing to get a more accurate estimate of the performance)

- Sentiment Analysis: Stanford Sentiment Treebank (Socher et al., 2013)
 - Variant SST-2:
 - Given a sentence from a movie review, classify it into one of 2 classes (positive, negative)
 - Dropped neutral samples, merged positive and negative classes
 - Training set: 9613 sentences or phrases
 - Test set: 1821 sentences

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA
CNN-rand		45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7	89.6
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0	89.4
RAE (Socher et al., 2011)	77.7	43.2	82.4	_	_	_	86.4
MV-RNN (Socher et al., 2012)	79.0	44.4	82.9	-	_	_	_
RNTN (Socher et al., 2013)	_	45.7	85.4	_	_	_	_
DCNN (Kalchbrenner et al., 2014)	_	48.5	86.8	_	93.0	_	_
Paragraph-Vec (Le and Mikolov, 2014)	_	48.7	87.8	_	_	_	_
CCAE (Hermann and Blunsom, 2013)	77.8	_	_	_	_	_	87.2
Sent-Parser (Dong et al., 2014)	79.5	_	_		_	_	86.3
NBSVM (Wang and Manning, 2012)	79.4	_	_	93.2	_	81.8	86.3
MNB (Wang and Manning, 2012)	79.0	_	_	93.6	_	80.0	86.3
G-Dropout (Wang and Manning, 2013)	79.0	_	_	93.4	_	82.1	86.1
F-Dropout (Wang and Manning, 2013)	79.1	_	_	93.6	_	81.9	86.3
Tree-CRF (Nakagawa et al., 2010)		_	_	-	_	81.4	86.1
CRF-PR (Yang and Cardie, 2014)		_	_	_	_	82.7	_
SVM_S (Silva et al., 2011)	_		_	_	95.0	_	_

Table 2: Results of our CNN models against other methods. **RAE**: Recursive Autoencoders with pre-trained word vectors from Wikipedia (Socher et al., 2011). **MV-RNN**: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012). **RNTN**: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). **DCNN**: Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). **Paragraph-Vec**: Logistic regression on top of paragraph vectors (Le and Mikolov, 2014). **CCAE**: Combinatorial Category Autoencoders with combinatorial category grammar operators (Hermann and Blunsom, 2013). **Sent-Parser**: Sentiment analysis-specific parser (Dong et al., 2014). **NBSVM, MNB**: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012). **G-Dropout, F-Dropout**: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). **Tree-CRF**: Dependency tree with Conditional Random Fields (Nakagawa et al., 2010). **CRF-PR**: Conditional Random Fields with Posterior Regularization (Yang and Cardie, 2014). **SVM**_S: SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded rules as features from Silva et al. (2011).

- General findings:
 - Model performs very well!
 - Using pre-trained word embeddings is better than randomly initialising
 - No clear tendency for using cnn-static, cnn-nonstatic or cnn-multichannel

CNNs for Sentence Classification — Parameter Study

- Kim performed some hyper-parameter search
- Follow-up paper by Zhang and Wallace (2015):
 - Very extensive parameter studies!
 - Further improve results on some datasets
 - Main findings:
 - Pay attention to statistical variation! Training the same model on the same data can lead to results differing up to 1.5 percentage points!
 - Different word embeddings (Word2Vec/GloVe) perform differently for different tasks
 - Filter sizes have large influence on the results
 - Max-over-time-pooling outperforms other strategies, no need to tune
 - Regularisation has little effect on this model

CNNs for Sentence Classification — Parameter Advise

- Empirical advise from Zhang and Wallace (2015):
 - Use a single filter size at first. Tune by line search, then explore the neighbourhood (e.g., if size 7 works well, add filters of size 6 and 8)
 - A number of filters per size in the range of 100-600 usually works well
 - Try Dropout rates in the range 0 0.5. In case of strong overfitting, use higher rates
 - Try different activation functions. Tanh and ReLU usually work best
 - Use max-over-time-pooling
 - Again: Pay attention to statistical variance!

Our research with TextCNN: Emote-Controlled

- Unsupervised Sentiment Analysis on Twitch.tv comments
- Use emotes as sentiment indicators
- Lexicon-based approach creates weak labels for TextCNN

Other goodies:

- We computed emote embeddings and were able to calculate intensifications
- We were able to show that the Diablo Immortal announcement was not well-received by the audience

Our research with TextCNN: Emote-Controlled

Intensification of emotes

& LUL relates to	OMEGALUL as X to Y	
X	Y	Explanation
	$ lap{8}$ Feels $ m Amazing Man$	Approval/satisfaction intensifies to amazement
₽ FeelsBadMan	R PepeHands	Sadness is intensified by crying
≅ EZ	POGGERS	Extraordinary moves and moments in the (game) stream
<i>[™]</i> cmonBruh		An emote that is mostly used if the streamer's commentary can be interpreted as racist intensifies to an emote that is used in situations of clear racism.
WutFace	🐞 (puke)	Puking often follows disgust
	ᢒ 4House	Intensifications in the emote text representations
ᢒ 4House	4Mansion	1

Konstantin Kobs, Albin Zehe, Armin Bernstetter, Julian Chibane, Jan Pfister, Julian Tritscher, and Andreas Hotho. 2020. Emote-Controlled: Obtaining Implicit Viewer Feedback Through Emote-Based Sentiment Analysis on Comments of Popular Twitch.tv Channels. Trans. Soc. Comput. 3, 2, Article 7 (April 2020), 34 pages. DOI:https://doi.org/10.1145/3365523

Our research with TextCNN: Where to Submit?

- Use title, abstract, and keywords of a scientific publication to guess the conference or journal
- Make the output interpretable by highlighting which words were important for the classification (gradients w.r.t. to input)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. . . .

→ NAACL

Web demo: https://wheretosubmit.ml