CS215: Discrete Math (H)

2023 Fall Semester Written Assignment # 5

Due: Dec. 20, 2023, please submit at the beginning of class

- Q.1 Let S be the set of all strings of English letters. Determine whether these relations are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.
 - (1) $R_1 = \{(a, b) | a \text{ and } b \text{ have no letters in common}\}$
 - (2) $R_2 = \{(a,b)|a \text{ and } b \text{ are not the same length}\}$
 - (3) $R_3 = \{(a,b)|a \text{ is longer than } b\}$

Solution:

- (1) Irreflexive, symmetric
- (2) Irreflexive, symmetric
- (3) Irreflexive, antisymmetric, transitive

Q.2 Define a relation R on \mathbb{R} , the set of real numbers, as follows: For all x and y in \mathbb{R} , $(x,y) \in R$ if and only if x-y is rational. Answer the followings, and explain your answers.

- (1) Is R reflexive?
- (2) Is R symmetric?
- (3) Is R antisymmetric?
- (4) Is R transitive?

Solution:

- (1) Yes. Note that for all x we have x x = 0, which is rational.
- (2) Yes. Suppose that $(x, y) \in R$. Then $x y = \frac{m}{n}$ for two integers m and n. Hence $y x = \frac{-m}{n}$, which is again rational.

- (3) No. Let $x = \sqrt{2}$ and $y = \sqrt{2} + 2$. Then we have $(x,y) \in R$ and $(y,x) \in R$, but $x \neq y$.
- (4) Yes. Let $(x,y) \in R$ and $(y,z) \in R$. Then by definition both x-y and y-z are rational. Consequently, their sum (x-y)+(y-z)=x-z is also rational. By definition, we have $(x,z) \in R$.

Q.3 How many relations are there on a set with n elements that are

- (a) symmetric?
- (b) antisymmetric?
- (c) irreflexive?
- (d) both reflexive and symmetric?
- (e) neither reflexive nor irreflexive?
- (f) both reflexive and antisymmetric?
- (g) symmetric, antisymmetric and transitive?

Solution:

- (a) $2^{n(n+1)/2}$
- (b) $2^n 3^{n(n-1)/2}$
- (c) $2^{n(n-1)}$
- (d) $2^{n(n-1)/2}$
- (e) $2^{n^2} 2 \cdot 2^{n(n-1)}$
- (f) $3^{n(n-1)/2}$
- (g) 2^n

Q.4 Suppose that the relation R is irreflexive. Is the relation R^2 necessarily irreflexive?

Solution: R^2 might not be irreflexive. For example, $R = \{(1,2), (2,1)\}.$

Q.5 Suppose that R_1 and R_2 are both reflexive relations on a set A.

- (1) Show that $R_1 \oplus R_2$ is irreflexive.
- (2) Is $R_1 \cap R_2$ also reflexive? Explain your answer.
- (3) Is $R_1 \cup R_2$ also reflexive? Explain your answer.

Solution:

- (1) Since $(a, a) \in R_1$ and $(a, a) \in R_2$ for all $a \in A$, it follows that $(a, a) \notin R_1 \oplus R_2$ for all $a \in A$. Thus, $R_1 \oplus R_2$ is irreflexive.
- (2) Yes. Since $(a, a) \in R_1$ and $(a, a) \in R_2$ for all $a \in A$, it follows that $(a, a) \notin R_1 \cap R_2$
- (3) Yes. Since $(a, a) \in R_1$ and $(a, a) \in R_2$ for all $a \in A$, it follows that $(a, a) \notin R_1 \cup R_2$

Q.6 Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc.

- (a) Show that R is an equivalence relation.
- (b) What is the equivalence class of (1,2) with respect to the equivalence relation R?
- (c) Give an interpretation of the equivalence classes for the equivalence relation R.

Solution:

- (a) For reflexivity, $((a,b),(a,b)) \in R$ because $a \cdot b = b \cdot a$. If $((a,b),(c,d)) \in R$ then ad = bc, which also means that cb = da, so $((c,d),(a,b)) \in R$; this tells us that R is symmetric. Finally, if $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$ then ad = bc and cf = de. Multiplying these equations gives acdf = bcde, and since all these numbers are nonzero, we have af = be, so $((a,b),(e,f)) \in R$; this tells us that R is transitive.
- (b) The equivalence classes of (1,2) is the set of all pairs (a,b) such that the fraction a/b equals 1/2.
- (c) The equivalence classes are the positive rational numbers.

Q.7 For the relation R on the set $X = \{(a, b, c) : a, b, c \in \mathbb{R}\}$ with $(a_1, b_1, c_1)R(a_2, b_2, c_2)$ if and only if $(a_1, b_1, c_1) = k(a_2, b_2, c_2)$ for some $k \in \mathbb{R} \setminus \{0\}$.

- (1) Prove that this is an equivalence relation.
- (2) Write at least three elements of the equivalence classes [(1,1,1)] and [(1,0,3)].
- (3) Do all the equivalence classes in this relation have the same cardinality?

Solution:

(1) Reflexive: Consider $(a, b, c) \in X$. Note that (a, b, c) = 1(a, b, c). Thus, the relation R is reflexive.

Symmetric: Consider $(a_1, b_1, c_1), (a_2, b_2, c_2) \in X$ such that $(a_1, b_1, c_1)R(a_2, b_2, c_2)$. By definition of the relation

$$(a_1, b_1, c_1) = k(a_2, b_2, c_2)$$

 $\frac{1}{k}(a_1, b_1, c_1) = (a_2, b_2, c_2).$

Since $1/k \in \mathbb{R}$, $(a_2, b_2, c_2)R(a_1, b_1, c_1)$. Thus, the relation is symmetric.

Transitive: Consider $(a_1, b_1, c_1), (a_2, b_2, c_2), (a_3, b_3, c_3) \in X$ such that $(a_1, b_1, c_1)R(a_2, b_2, c_2)$ and $(a_2, b_2, c_2)R(a_3, b_3, c_3)$. By definition of the relation, we have

$$(a_1, b_1, c_1) = j(a_2, b_2, c_2)$$

$$(a_2, b_2, c_2) = k(a_3, b_3, c_3)$$

$$(a_1, b_1, c_1) = kj(a_3, b_3, c_3)$$

Since $jk \in \mathbb{R}$, we have $(a_1, b_1, c_1)R(a_3, b_3, c_3)$ and the relation is transitive. To sum up, the relation is an equivalence relation.

(2) We have

$$[(1,1,1)] = \{(1,1,1), (-1,-1,-1), (2,2,2), \ldots\}.$$
$$[(1,0,3)] = \{(1,0,3), (-1,0,-3), (2,0,6), \ldots\}.$$

(3) No. Note that $[(0,0,0)] = \{(0,0,0)\}$. All the others are infinite.

Q.8 Let A be a set, let R and S be relations on the set A. Let T be another relation on the set A defined by $(x,y) \in T$ if and only if $(x,y) \in R$ and $(x,y) \in S$. Prove or disprove: If R and S are both equivalence relations, then T is also an equivalence relation.

Solution:

We need to show that T is reflexive, symmetric, and transitive.

Reflexive: For any x, we have $(x, x) \in R$ and $(x, x) \in S$, then $(x, x) \in T$. **Symmetric**: Suppose that $(x, y) \in T$. This means $(x, y) \in R$ and $(x, y) \in S$. Since R and S are both symmetric, we have $(y, x) \in R$ and

 $(y,x) \in S$. Then $(y,x) \in T$.

Transitive: Suppose that $(x,y) \in T$ and $(y,z) \in T$. Then $(x,y) \in R$ and $(y,x) \in R$ imply that $(x,z) \in R$. Similarly, we have $(x,z) \in S$. This will imply that $(x,z) \in T$.

Q.9 Which of these are posets?

- (a) $({\bf R}, =)$
- (b) $(\mathbf{R}, <)$

- (c) (\mathbf{R}, \leq)
- (d) (\mathbf{R}, \neq)

Solution:

- (a) Yes. (It is the smallest partial order: reflexivity ensures that very partial order contains at least all pairs (a, b).)
- (b) No. It is not reflexive.
- (c) Yes.
- (d) No. The relations is not reflexive, not antisymmetric, not transitive.

Q.10 Given functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, f is **dominated** by g if $f(x) \leq g(x)$ for all $x \in \mathbb{R}$. Write $f \leq g$ if f is dominated by g.

- (a) Prove that \leq is a partial ordering.
- (b) Prove or disprove: \leq is a total ordering.

Solution:

(a) Reflexive For all $x \in \mathbb{R}$, $f(x) \leq f(x)$, so $f \leq f$.

Antisymmetric Let $f \leq g$ and $g \leq f$. Then for all $x \in \mathbb{R}$, $f(x) \leq g(x) \leq f(x)$ and thus f(x) = g(x). Since this holds for all x, we have f = g.

Transitive Let $f \leq g \leq h$. Then for all $x \in \mathbb{R}$, $f(x) \leq g(x) \leq h(x)$, giving $f(x) \leq h(x)$. So, $f \leq h$.

(b) It is not a total ordering. Let f(x) = x and g(x) = -x. Then $f(1) = 1 \le -1 = g(1)$ and $g(-1) = 1 \le -1 = f(-1)$. So it is not the case that for all $x, f(x) \le g(x)$, and it is not the case that for all $x, g(x) \le f(x)$. That is, these two functions are incomparable.

Q.11 For two positive integers, we write $m \leq n$ if the sum of the (distinct) prime factors of the first is less than or equal to the product of the (distinct) prime factors of the second. For instance $75 \leq 14$, because $3 + 5 \leq 2 \cdot 7$.

- (a) Is this relation reflexive? Explain.
- (b) Is this relation antisymmetric? Explain.
- (c) Is this relation transitive? Explain.

Solution:

- (a) Yes, because the product of positive integers greater than or equal to 2 is less than their sum.
- (b) No, because $33 \leq 26$ and $26 \leq 33$, but $26 \neq 33$.
- (c) No, because $33 \leq 35$ and $35 \leq 13$, but we do not have $33 \leq 13$.

Q.12 The relation R on the set $X = \{(a, b, c) : a, b, c \in \mathbb{N}\}$ with $(a_1, b_1, c_1)R(a_2, b_2, c_2)$ if and only if $2^{a_1}3^{b_1}5^{c_1} \leq 2^{a_2}3^{b_2}5^{c_2}$.

- (1) Prove that R is a partial ordering.
- (2) Write two comparable and two incomparable elements if they exist.
- (3) Find the least upper bound and the greatest lower bound of the two elements (5,0,1) and (1,1,2).
- (4) List a minimal and a maximal element if they exist.

Solution:

(1) Reflexive: Consider $(a, b, c) \in X$. Note that $2^a 3^b 5^c \le 2^a 3^b 5^c$ by definition of \le (equals). Thus, the relation is reflexive.

Antisymmetric: Consider $(a_1, b_1, c_1), (a_2, b_2, c_2) \in X$ such that $(a_1, b_1, c_1)R(a_2, b_2, c_2)$ and $(a_2, b_2, c_2)R(a_1, b_1, c_1)$. By definition of the relation, we have

$$\begin{array}{rclcrcl} 2^{a_1}3^{b_1}5^{c_1} & \leq & 2^{a_2}3^{b_2}5^{c_2}, \\ 2^{a_2}3^{b_2}5^{c_2} & \leq & 2^{a_1}3^{b_1}5^{c_1}, \\ 2^{a_1}3^{b_1}5^{c_1} & = & 2^{a_2}3^{b_2}5^{c_2}, \\ a_1 & = & a_2, \\ b_1 & = & b_2, \\ c_1 & = & c_2. \end{array}$$

Transitive: Consider $(a_1, b_1, c_1), (a_2, b_2, c_2), (a_3, b_3, c_3) \in X$ such that $(a_1, b_1, c_1)R(a_2, b_2, c_2)$ and $(a_2, b_2, c_2)R(a_3, b_3, c_3)$. By definition of the relation, we have

$$\begin{array}{rclcrcl} 2^{a_1}3^{b_1}5^{c_1} & \leq & 2^{a_2}3^{b_2}5^{c_2}, \\ 2^{a_2}3^{b_2}5^{c_2} & \leq & 2^{a_3}3^{b_3}5^{c_3}, \\ 2^{a_1}3^{b_1}5^{c_1} & \leq & 2^{a_3}3^{b_3}5^{c_3}. \end{array}$$

The latter is by transitivity of \leq . Thus, the relation is transitive.

- (2) (1,2,3) and (4,5,6) are comparable. No pairs are incomparable. Every pair of integers has a lesser integer.
- (3) Since $2^5 3^0 5^1 = 160$ and $2^1 3^1 5^2 = 150$. Thus, the least upper bound is (5,0,1) and the greatest lower bound is (1,1,2).
- (4) The minimal element is (0,0,0) because $2^03^05^0 = 1$ which is the smallest nonzero, nonnegative integer. There is no maximal element, because there is always a bigger integer.

Q.13 Define the relation \leq on $\mathbb{Z} \times \mathbb{Z}$ according to

$$(a,b) \leq (c,d) \Leftrightarrow (a,b) = (c,d) \text{ or } a^2 + b^2 < c^2 + d^2.$$

Show that $(\mathbb{Z} \times \mathbb{Z}, \preceq)$ is a poset; Construct the Hasse diagram for the subposet (B, \preceq) , where $B = \{0, 1, 2\} \times \{0, 1, 2\}$.

Solution: We now prove that \leq on the set $\mathbb{Z} \times \mathbb{Z}$ is a partial ordering. Obviously, $(a, b) \leq (a, b)$, and we have \leq is reflexive; Suppose that $(a, b) \leq$

(c,d) and $(c,d) \leq (a,b)$, then the only possibility is that (a,b) = (c,d). Then \leq is antisymmetric; Suppose that $(a,b) \leq (c,d)$ and $(c,d) \leq (e,f)$, then we have four possible cases: (a,b) = (c,d) and $c^2 + d^2 < e^2 + f^2$; (a,b) = (c,d) and (c,d) = (e,f); $a^2 + b^2 < c^2 + d^2$ and (c,d) = (e,f); $a^2 + b^2 < c^2 + d^2$ and $c^2 + d^2 < e^2 + f^2$. For each of the four cases above, we have $(a,b) \leq (e,f)$ and thereby the relation \leq is transitive.

Figure 1: Q.13

Q.14 Answer these questions for the partial order represented by this Hasse diagram.

- (a) Find the maximal elements.
- (b) Find the minimal elements.
- (c) Is there a greatest element?
- (d) Is there a least element?
- (e) Find all upper bounds of $\{a, b, c\}$.
- (f) Find the least upper bound of $\{a, b, c\}$, if it exists.
- (g) Find all lower bounds of $\{f, g, h\}$.

Figure 2: Q.14

(h) Find the greatest lower bound of $\{f, g, h\}$, if it exists.

Solution:

- (a) The maximal elements are the ones with no other elements above them, namely l and m.
- (b) The minimal elements are the ones with no other elements below them, namely a,b and c.
- (c) There is no greatest element, since neither l nor m is greater than the other.
- (d) There is no least elements, since neither a nor b is less than the other.
- (e) We need to find elements from which we can find downward paths to all of a, b, and c. It is clear that k, l and m are the elements fitting this description.
- (f) Since k is less than both l and m, it is the least upper bound of a, b and c.
- (g) No element is less than both f and h, so there are no lower bounds.
- (h) Since there is no lower bound, there cannot be greatest lower bound.