TEMA 2: Estabilidad, Controlabilidad y Observabilidad

MODELOS COMPUTACIONALES Y SIMULACIÓN DE SISTEMAS Curso 2025-2026 - Semanas 4 y 5

- 1. Definición de estabilidad en sistemas dinámicos
- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - c. Criterio de Routh-Hurwitz
 - d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento
- 4. Control
 - Controlabilidad
 - b. Observabilidad
 - c. Obtener señal de control u(t)

1. Definición de estabilidad en sistemas dinámicos

- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - Criterio de Routh-Hurwitz
 - d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento
- 4. Control
 - a. Controlabilidad
 - b. Observabilidad
 - c. Obtener señal de control u(t)

Dado un sistema dinámico:

$$\frac{d\mathbf{x}(t)}{dt} = f(\mathbf{x}(t)), \quad \mathbf{x}(t) \in \mathbb{R}^n, \quad \mathbf{x}(t=0) = x_0$$

Un punto de equilibrio se define como:

$$f(x_e, u_e) = 0$$
 \longrightarrow $\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta t \cdot f(\mathbf{x}_k)$

1. Estabilidad: Puntos de equilibrio

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

1. Estabilidad: Equilibrio estable

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

1. Estabilidad: Equilibrio inestable

1. Estabilidad: Tipos de estabilidad

- Estabilidad de Lyapunov: el sistema es estable si para cada $\epsilon > 0$ existe un $\delta > 0$ tal que si $||x(0) x_e|| < \delta$, entonces $||x(t) x_e|| < \epsilon$ para todo t > 0.
- Estabilidad asintótica: además de ser estable, se cumple que:

$$\lim_{t \to \infty} x(t) = x_e$$

• Estabilidad exponencial: existe M > 0 y $\alpha > 0$ tal que:

$$||x(t) - x_e|| \le Me^{-\alpha t} ||x(0) - x_e||$$

• Inestabilidad: si existen condiciones iniciales arbitrariamente cercanas a x_e cuyas trayectorias divergen, el sistema es inestable.

Ejemplo ilustrativo:

1. Definición de estabilidad en sistemas dinámicos

2. Métodos para analizar estabilidad

- a. Linealización alrededor de un punto
- b. Análisis de las raíces del sistema
- c. Criterio de Routh-Hurwitz
- d. Método de Lyapunov

3. Análisis del comportamiento

- a. Análisis Monótono u oscilatorio
- b. Análisis de amortiguamiento

4. Control

- a. Controlabilidad
- b. Observabilidad
- c. Obtener señal de control u(t)

2.a. Linealización alrededor de un punto

2.a. Linealización alrededor de un punto

Dado un sistema dinámico no lineal

$$\dot{x} = f(x, u, t), \quad y = g(x, u, t)$$

• Se definen variables de pequeña señal alrededor de $f(x_0, u_0) = 0$

$$\delta x := x - x_0, \qquad \delta u := u - u_0, \qquad \delta y := y - g(x_0, u_0, t)$$

2.a. Linealización alrededor de un punto

UNIVERSITAT D'ALACANT
UNIVERSIDAD DE ALICANTE
Escola Politècnica Superior
Escuela Politécnica Superior

Series de Taylor de primer orden

$$\dot{\delta x} = A \, \delta x + B \, \delta u + \frac{\mathcal{O}(\|(\delta x, \delta u)\|^2)}{\delta y}$$
$$\delta y = C \, \delta x + D \, \delta u + \frac{\mathcal{O}(\|(\delta x, \delta u)\|^2)}{\delta u}$$

Se obtienen las jacobianas alrededor del punto

$$A = \frac{\partial f}{\partial x}\Big|_{(x_0, u_0, t)}, \qquad B = \frac{\partial f}{\partial u}\Big|_{(x_0, u_0, t)}, \qquad C = \frac{\partial g}{\partial x}\Big|_{(x_0, u_0, t)}, \qquad D = \frac{\partial g}{\partial u}\Big|_{(x_0, u_0, t)}$$

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

2.a. Linealización alrededor de un punto

- Criterio de estabilidad local
 - Se obtienen los autovalores λ de la matriz A:
 - Si la parte real es negativa: ESTABLE
 - Si alguna parte real es positiva: INESTABLE
 - Si la parte real es 0: MARGINAL

Dado el modelo logístico para el control de población

$$\dot{N} = r N \left(1 - \frac{N}{K} \right)$$

• Se pueden definir las variables de pequeña señal

$$\delta \dot{N} = A \, \delta N + B \, \delta u$$

En este caso las matrices son 1x1

$$C = 1,$$
 $D = 0.$ $A = f'(N^*) = r\left(1 - \frac{2N^*}{K}\right)$

$$\lambda = A = f'(N^*).$$

- En $N_1^* = 0$: $\lambda = f'(0) = r > 0 \Rightarrow$ autovalor positivo \Rightarrow **INESTABLE**
- En $N_2^* = K$: $\lambda = f'(K) = -r < 0 \Rightarrow \text{autovalor negativo} \Rightarrow \textbf{ESTABLE}$

 Dado el modelo logístico para el control de población con variable de control

$$\dot{N} = rN\left(1 - \frac{N}{K}\right) - u(t)$$

Se pueden definir las variables de pequeña señal, en este caso B = 1

$$\delta \dot{N} = A \, \delta N + B \, \delta u$$

• Los puntos de equilibrio dependen de $m{u}$ \Longrightarrow $N_{1,2}^* = rac{K}{2} \left(1 \pm \sqrt{1 - rac{4u^*}{rK}}
ight)$

Cosecha pequeña
$$(u^* \stackrel{N_2^*}{<} rK/4)$$
 Cosecha crítica $u^* = rK/4$

Cosecha excesiva
$$(u^* > rK/4)$$

- 1. Definición de estabilidad en sistemas dinámicos
- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - c. Criterio de Routh-Hurwitz
 - d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento
- 4. Control
 - a. Controlabilidad
 - b. Observabilidad
 - c. Obtener señal de control u(t)

2.b. Análisis de las raíces del sistema

Dada la ecuación diferencial característica de un sistema:

$$\ddot{y} + 3\dot{y} + 2y = 0$$

- Aplicando Transformada de Laplace, se obtiene una ecuación algebraica:
 - A eso de le llama polinomio característico

$$P(s) = s^2 + 3s + 2$$

• Si partimos de la **dinámica interna** del sistema:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

• Aplicando Transformada de Laplace, el polinomio seria:

$$P(s) = \det(sI - A)$$

 La variable s en el dominio de Laplace es una variable compleja (parte real e imaginaria)

$$s = \sigma + j\omega$$

- Las raíces (autovalores) nos dicen si las soluciones:
 - **decaen** (parte real negativa \rightarrow estable),
 - crecen (parte real positiva \rightarrow inestable),
 - oscilan sin decaer (parte real cero \rightarrow marginal).

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

2.b. Análisis de las raíces del sistema

1. Definición de estabilidad en sistemas dinámicos

2. Métodos para analizar estabilidad

- a. Linealización alrededor de un punto
- b. Análisis de las raíces del sistema
- c. Criterio de Routh-Hurwitz
- d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento
- 4. Control
 - a. Controlabilidad
 - b. Observabilidad
 - c. Obtener señal de control u(t)

2.c. Criterio de Routh-Hurwitz

- Método para analizar la estabilidad de un sistema lineal
- Encontrar las raíces para polinomios n ≥ 3 es complicado

$$P(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$$

 Construcción de la tabla de Routh Se organizan los coeficientes del polinomio característico en filas sucesivas:

s^n	a_0	a_2	a_4
s^{n-1}	a_1	a_3	a_5
s^{n-2}	(b_1)	b_2	b_3
•		•	•

$$b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1}$$

2.c. Criterio de Routh-Hurwitz (Ejemplo)

• Ejemplo masa-resorte:

$$P(s) = s^2 + \frac{b}{m}s + \frac{k}{m}$$

s^2	1	$\frac{k}{m}$
s^1	$\frac{b}{m}$	0
s^0	$\frac{k}{m}$	

$$1 > 0, \quad \frac{b}{m} > 0, \quad \frac{k}{m} > 0$$

ESTABLE

Escuela Politécnica Superior

2.c. Criterio de Routh-Hurwitz (Ejemplo)

• Ejemplo horno:

$$T(s) = \frac{Kk_p}{(s+1)(s+2)(s+3) + Kk_p}$$

2.c. Criterio de Routh-Hurwitz (Ejemplo)

• Ejemplo horno:

$$P(s) = s^3 + 6s^2 + 11s + (6 + Kk_p).$$

s^3	1	11
s^2	6	$6 + Kk_p$
s^1	$\frac{6 \cdot 11 - 1(6 + Kk_p)}{6}$	0
s^0	$6 + Kk_p$	

2.c. Criterio de Routh-Hurwitz (Ejemplo)

Ejemplo horno:

• 1 > 0 (siempre cierto).

ESTABLE si: $0 < Kk_p < 60$

- 6 > 0 (siempre cierto).
- $\frac{66 (6 + Kk_p)}{6} > 0 \implies Kk_p < 60.$
- $6 + Kk_p > 0 \implies Kk_p > -6$ (siempre cierto si $Kk_p > 0$)

1. Definición de estabilidad en sistemas dinámicos

2. Métodos para analizar estabilidad

- a. Linealización alrededor de un punto
- b. Análisis de las raíces del sistema
- c. Criterio de Routh-Hurwitz
- d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento
- 4. Control
 - a. Controlabilidad
 - b. Observabilidad
 - c. Obtener señal de control u(t)

Definición Sea el sistema no lineal autónomo:

$$\dot{x} = f(x), \quad x \in \mathbb{R}^n.$$

Un equilibrio se encuentra en x=0 (sin pérdida de generalidad, mediante un cambio de coordenadas). Una función $V: \mathbb{R}^n \to \mathbb{R}$ es candidata de Lyapunov si cumple:

- 1. V(x) > 0 para todo $x \neq 0$ y V(0) = 0 (positiva definida).
- 2. Su derivada temporal a lo largo de trayectorias del sistema satisface:

$$\dot{V}(x) = \nabla V(x) \cdot f(x) \le 0.$$

Conclusiones

- Si $\dot{V}(x) \leq 0$, el equilibrio es **estable en el sentido de Lyapunov**.
- Si además $\dot{V}(x) < 0$ estrictamente, el equilibrio es asintóticamente estable.
- Si V(x) puede ser positiva en alguna región, no se garantiza la estabilidad.

Interpretación física Este método suele interpretarse como el análisis de la energía de un sistema:

- V(x) representa la energía total (cinética + potencial).
- Si la energía nunca aumenta y tiende a disiparse, el sistema debe converger al equilibrio.

- 1. Definición de estabilidad en sistemas dinámicos
- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - c. Criterio de Routh-Hurwitz
 - d. Método de Lyapunov

3. Análisis del comportamiento

- a. Análisis Monótono u oscilatorio
- b. Análisis de amortiguamiento
- 4. Control
 - a. Controlabilidad
 - b. Observabilidad
 - c. Obtener señal de control u(t)

3.a. Análisis Monótono u oscilatorio

a) Usando autovalores de la linealización Dado un sistema no lineal, linealizado alrededor de un equilibrio:

$$\delta \dot{x} = A \delta x$$

los autovalores de la matriz A determinan el comportamiento local:

- \bullet Autovalores reales \Rightarrow respuesta monótona (crecimiento o decaimiento exponencial).
- Autovalores complejos conjugados \Rightarrow respuesta oscilatoria (con frecuencia de oscilación dada por la parte imaginaria).

b) Usando las raíces del polinomio característico Dada una ecuación diferencial lineal de coeficientes constantes:

$$a_n \frac{d^n y}{dt^n} + \dots + a_1 \frac{dy}{dt} + a_0 y = 0,$$

su polinomio característico es:

$$P(s) = a_n s^n + \dots + a_1 s + a_0.$$

Las raíces de P(s) coinciden con los autovalores de A, y la interpretación es la misma:

- Raíces reales \Rightarrow comportamiento monótono.
- Raíces complejas \Rightarrow comportamiento oscilatorio.

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

3.a. Análisis Monótono u oscilatorio

3.a. Análisis Monótono u oscilatorio

Ejemplo comparativo: masa-resorte con y sin rozamiento

• Sin rozamiento:

$$m\ddot{x} + kx = 0, \quad P(s) = ms^2 + k.$$

Raíces: $s = \pm j\sqrt{\frac{k}{m}}$. Son puramente imaginarias \Rightarrow oscilaciones persistentes (movimiento armónico simple). El sistema es **marginalmente estable y oscilatorio**.

• Con rozamiento:

$$m\ddot{x} + b\dot{x} + kx = 0$$
, $P(s) = ms^2 + bs + k$.

Según el valor de b, las raíces pueden ser reales o complejas:

- $-b^2 > 4mk$: raíces reales negativas \Rightarrow decaimiento monótono.
- $-b^2 < 4mk$: raíces complejas conjugadas con parte real negativa \Rightarrow oscilaciones amortiguadas.

- 1. Definición de estabilidad en sistemas dinámicos
- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - c. Criterio de Routh-Hurwitz
 - d. Método de Lyapunov

3. Análisis del comportamiento

- a. Análisis Monótono u oscilatorio
- b. Análisis de amortiguamiento
- 4. Control
 - a. Controlabilidad
 - b. Observabilidad
 - c. Obtener señal de control u(t)

El polinomio característico se escribe como:

$$P(s) = s^2 + 2\zeta\omega_n s + \omega_n^2.$$

Masa-resorte

$$P(s) = s^2 + \frac{b}{m}s + \frac{k}{m}$$

En sistemas de segundo orden, se define la frecuencia natural y el coeficiente de amortiguamiento:

$$\omega_n = \sqrt{\frac{k}{m}}, \qquad \zeta = \frac{b}{2\sqrt{mk}}.$$

3.b. Análisis de amortiguamiento

Según el valor de ζ , se distinguen cuatro casos:

- No amortiguado ($\zeta = 0$): raíces $s = \pm j\omega_n$. Oscilaciones persistentes (sin pérdida de energía).
- Subamortiguado (0 < ζ < 1): raíces $s = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2}$. Oscilaciones amortiguadas (frecuencia menor que ω_n).
- Amortiguamiento crítico ($\zeta = 1$): raíz doble $s = -\omega_n$. Decaimiento monótono más rápido posible sin oscilaciones.
- Sobreamortiguado ($\zeta > 1$): raíces reales y distintas, ambas negativas. Decaimiento monótono pero más lento que en el caso crítico.

UNIVERSITAT D'ALACANT UNIVERSIDAD DE ALICANTE Escola Politècnica Superior Escuela Politécnica Superior

3.b. Análisis de amortiguamiento

- 1. Definición de estabilidad en sistemas dinámicos
- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - c. Criterio de Routh-Hurwitz
 - d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento

4. Control

- a. Controlabilidad
- b. Observabilidad
- c. Obtener señal de control u(t)

Definición general Un sistema dinámico es **controlable** si, partiendo de cualquier estado inicial x(0), es posible encontrar una señal de control u(t) que lo lleve a cualquier estado final x_f en un tiempo finito.

Para un sistema lineal en espacio de estados:

$$\dot{x}(t) = Ax(t) + Bu(t), \qquad x \in \mathbb{R}^n,$$

la matriz de controlabilidad se define como:

$$\mathcal{C} = [B \ AB \ A^2B \ \dots \ A^{n-1}B],$$

donde A es la matriz de dinámica $(n \times n)$ y B la matriz de entrada $(n \times m)$.

Criterio de Kalman El sistema es completamente controlable si y sólo si la matriz C tiene $rango\ completo$, es decir:

$$rango(\mathcal{C}) = n$$
.

Interpretación El rango de una matriz indica el número de direcciones linealmente independientes que abarcan sus columnas.

- Si rango(\mathcal{C}) = n, las columnas de \mathcal{C} abarcan todo el espacio de estados \mathbb{R}^n . Esto significa que las entradas, aplicadas en el tiempo, pueden mover al sistema en cualquier dirección del espacio de estados.
- Si rango(\mathcal{C}) < n, existen direcciones del espacio de estados inaccesibles: no se puede forzar al sistema a moverse hacia ellas mediante las entradas. El sistema es entonces no controlable.

- 1. Definición de estabilidad en sistemas dinámicos
- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - c. Criterio de Routh-Hurwitz
 - d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento

4. Control

- a. Controlabilidad
- b. Observabilidad
- c. Obtener señal de control u(t)

Definición general

Un sistema es **observable** si, partiendo de la salida y(t) (junto con la entrada u(t) conocida), es posible determinar el estado inicial x(0) en un tiempo finito. En otras palabras, no hay "información oculta": las mediciones contienen toda la información necesaria para reconstruir el vector de estados.

Consideremos un sistema lineal invariante en el tiempo (LTI):

$$\dot{x} = Ax + Bu, \qquad y = Cx,$$

donde $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$.

El **criterio de Kalman** establece que el sistema es observable si y sólo si la *matriz* de observabilidad:

$$\mathcal{O} = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

tiene rango completo, es decir:

$$rango(\mathcal{O}) = n.$$

4.b. Observabilidad

Interpretación

- \bullet Las filas de ${\mathcal O}$ representan cómo las salidas y sus derivadas dependen de los estados internos.
- Si el rango es n, significa que la información contenida en las salidas y sus derivadas abarca todo el espacio de estados. Por tanto, es posible reconstruir x(t) a partir de y(t).
- Si el rango es menor que n, existen componentes del estado que no afectan a la salida, por lo que son invisibles al observador. El sistema entonces es no observable.

- 1. Definición de estabilidad en sistemas dinámicos
- 2. Métodos para analizar estabilidad
 - a. Linealización alrededor de un punto
 - b. Análisis de las raíces del sistema
 - c. Criterio de Routh-Hurwitz
 - d. Método de Lyapunov
- 3. Análisis del comportamiento
 - a. Análisis Monótono u oscilatorio
 - b. Análisis de amortiguamiento

4. Control

- a. Controlabilidad
- b. Observabilidad
- c. Obtener señal de control u(t)

4.c. Obtener señal de control u(t)

Definición general

En secciones anteriores vimos cómo analizar estabilidad y controlabilidad. El siguiente paso en diseño de control consiste en determinar qué señal de entrada u(t) aplicar para llevar el sistema desde un estado inicial x(0) hasta un estado deseado x_d .

4.c. Obtener señal de control u(t)

Dado un sistema lineal:

$$\dot{x}(t) = Ax(t) + Bu(t),$$

con estado deseado x_d , existen distintas estrategias de control:

• Realimentación de estado:

$$u(t) = -K(x(t) - x_d),$$

donde K es una matriz de ganancias elegida de modo que A-BK tenga autovalores en la región deseada (por ejemplo, con parte real negativa). Este método estabiliza el error $e(t) = x(t) - x_d$.

4.c. Obtener señal de control u(t)

• Control estacionario: si se quiere que x_d sea un equilibrio, se puede resolver

$$0 = Ax_d + Bu_d,$$

para encontrar la entrada constante u_d que mantiene al sistema en x_d .

• Óptimo (LQR, MPC, etc.): en problemas más complejos, se plantea un costo y se obtiene u(t) optimizando una función objetivo.

4.c. Obtener señal de control u(t): Ejemplo

El modelo cinemático del robot diferencial es:

$$\dot{x} = v\cos\theta, \qquad \dot{y} = v\sin\theta, \qquad \dot{\theta} = \omega,$$

donde $u(t) = (v, \omega)$ son las entradas.

Estado deseado Queremos llevar al robot desde (x, y, θ) hasta un estado deseado (x_d, y_d, θ_d) .

4.c. Obtener señal de control u(t): Ejemplo

Control de estabilización al punto Una ley de control común es:

$$\rho = \sqrt{(x_d - x)^2 + (y_d - y)^2}, \quad \alpha = \arctan 2(y_d - y, x_d - x) - \theta, \quad \beta = -\theta - \alpha + \theta_d.$$

El control se diseña como:

$$v = k_{\rho}\rho, \qquad \omega = k_{\alpha}\alpha + k_{\beta}\beta,$$

con ganancias $k_{\rho}, k_{\alpha}, k_{\beta} > 0$ elegidas adecuadamente.

Interpretación - v avanza proporcionalmente a la distancia ρ al objetivo. - ω corrige la orientación del robot hacia el punto deseado y asegura que finalice con orientación θ_d . - Con este control, el robot es capaz de alcanzar cualquier configuración deseada (x_d, y_d, θ_d) desde cualquier posición inicial.

En el siguiente tema ...

- Paradigmas de simulación
 - Nos centraremos en simulación de sistemas discretos.

TEMA 2: Estabilidad, Controlabilidad y Observabilidad

MODELOS COMPUTACIONALES Y SIMULACIÓN DE SISTEMAS Curso 2025-2026 - Semanas 4 y 5

