Homework #1: Due: Sept. 24, 2019

- 1. $|1\rangle$, $|2\rangle$, $|3\rangle$ form a set of complete non-orthogonal basis of a Hilbert space, with the following overlaps(inner products), $\langle 1|1\rangle = \langle 2|2\rangle = \langle 3|3\rangle = 1$, $\langle 1|2\rangle = \langle 2|3\rangle = \langle 3|1\rangle = 1/3$.
 - (a)(2pts). Show that $|1\rangle$, $|2\rangle$, $|3\rangle$ are linearly independent.
- (b)(5pts). Use the "Gram-Schmidt orthogonalization" procedure to find a set of complete orthonormal basis, $|\tilde{1}\rangle$, $|\tilde{2}\rangle$, $|\tilde{3}\rangle$, as follows:
- find $|\tilde{1}\rangle = c_{1,1}|1\rangle$ is normalized; then
- find $|\tilde{2}\rangle = c_{2,2}|2\rangle + c_{2,1}|\tilde{1}\rangle$ is normalized, and orthogonal to $|\tilde{1}\rangle$; then
- find $|\tilde{3}\rangle = c_{3,3}|3\rangle + c_{3,1}|\tilde{1}\rangle + c_{3,2}|\tilde{2}\rangle$ is normalized, and orthogonal to both $|\tilde{1}\rangle$ and $|\tilde{2}\rangle$.

Solve these coefficients $c_{j,i}$. And finally represent the original basis $|1\rangle, |2\rangle, |3\rangle$ as linear combinations of the new basis $|\tilde{1}\rangle, |\tilde{2}\rangle, |\tilde{3}\rangle$.

- (c)(3pts). Find the reciprocal basis, $|1'\rangle$, $|2'\rangle$, $|3'\rangle$, in terms of $|1\rangle$, $|2\rangle$, $|3\rangle$, such that the inner products $(|i'\rangle, |j\rangle) = \delta_{i,j}$. Show that $|1\rangle\langle 1'| + |2\rangle\langle 2'| + |3\rangle\langle 3'|$ is the identity operator.
- (d)(5pts). A linear operator \hat{A} is defined by its action on this basis as follows: $\hat{A}|1\rangle = (-|1\rangle + |2\rangle + |3\rangle), \ \hat{A}|2\rangle = (-|2\rangle + |3\rangle + |1\rangle), \ \hat{A}|3\rangle = (-|3\rangle + |1\rangle + |2\rangle).$ Is \hat{A} a hermitian operator? Is \hat{A} a unitary operator? Solve the eigenvalues and normalized eigenvectors (in terms of $|1\rangle, |2\rangle, |3\rangle$) of \hat{A} .
- 2. (5pts) If $[\hat{A}, \hat{B}] = 0$, namely \hat{A} and \hat{B} commute, then $\exp(\hat{A} + \hat{B}) = \exp(\hat{A}) \cdot \exp(\hat{B})$. Prove this by brute-force expansion: $\exp(\hat{A}) \equiv \sum_{n=0}^{\infty} \frac{1}{n!} (\hat{A})^n$.
- 3. (5pts) Prove the Baker-Hausdorff formula, $e^{\hat{A}}\hat{B}e^{-\hat{A}} = \hat{B} + [\hat{A}, \hat{B}] + [\hat{A}, [\hat{A}, \hat{B}]]/2! + \dots$, by brute-force: expand both sides into sums of monomials $(\hat{A})^m \hat{B} (\hat{A})^n$, compare coefficients.
- 4. If the commutator $[\hat{A}, \hat{B}] \equiv \hat{A}\hat{B} \hat{B}\hat{A}$ is a *c*-number (that commutes with everything), prove the following (these formulas may be useful later in this course).
- (a)(2pts). $\exp(\hat{A}) \cdot \exp(\hat{B}) = \exp(\hat{B}) \cdot \exp(\hat{A}) \cdot \exp([\hat{A}, \hat{B}])$. [Hint: try to use the Baker-Hausdorff formula]
- (b)(3pts). $\exp(\hat{A}) \cdot \exp(\hat{B}) = \exp(\hat{A} + \hat{B}) \cdot \exp(\frac{1}{2}[\hat{A}, \hat{B}])$. [Hint: check the heuristic proof of the Baker-Hausdorff formula, try to derive a differential equation.] [Side remark: this is

a special case of Baker-Campbell-Hausdorff formula, $e^{\hat{A}}e^{\hat{B}} = \exp(\hat{A} + \hat{B} + \frac{1}{2}[\hat{A}, \hat{B}] + \dots)$.

5.(5pts). Given the commutation relations $[\hat{A}, \hat{B}] = i\hat{C}$, $[\hat{B}, \hat{C}] = i\hat{A}$, and $[\hat{C}, \hat{A}] = i\hat{B}$. Compute $\exp(i\theta\hat{A}) \cdot (a\hat{A} + b\hat{B} + c\hat{C}) \cdot \exp(-i\theta\hat{A})$ where θ, a, b, c are c-numbers (result should be a finite-degree polynomial of \hat{A} , \hat{B} , \hat{C}). Hereafter $i \equiv \sqrt{-1}$ denotes the imaginary unit. [Hint: use the Baker-Hausdorff formula, try to write down several terms in the expansion, and find some pattern.]

6. Define the Pauli matrices,
$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 0 & -i \\ 1 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \text{ It is easy to check that } \{\sigma_1, \sigma_2\} = \{\sigma_2, \sigma_3\} = \{\sigma_3, \sigma_1\} = 0, \text{ and } (\sigma_i)^2 = \mathbb{1}_{2 \times 2}, \text{ and } [\sigma_1, \sigma_2] = 2i\sigma_3, \ [\sigma_2, \sigma_3] = 2i\sigma_1, \ [\sigma_3, \sigma_1] = 2i\sigma_2.$

(a)(5pts). Consider a 2×2 matrix $M = a_0\sigma_0 + a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3$, where $a_{0,1,2,3}$ are complex numbers. If M is a hermitian matrix, what is the condition on $a_{0,1,2,3}$? Show that $M \cdot M = c_0 \mathbb{1}_{2\times 2} + c_1 M$ and solve the numbers c_0 and c_1 in terms of $a_{0,1,2,3}$. Then solve the eigenvalues of M in terms of $a_{0,1,2,3}$. [Hint: you don't really need to diagonalize a 2×2 matrix. This result will be useful later. This result will be useful later in this course.]

(b)(5pts). Compute $\exp[i(a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3)]$, where $a_{1,2,3}$ are real numbers. The result should be a linear combination of Pauli matrices. [Hint: compute the first few terms in the Taylor expansion and try to find some pattern. This result will be useful later in this course.]

7. \mathcal{H}_1 and \hat{H}_2 are both 2-dimensional Hilbert spaces. \mathcal{H}_1 has complete orthonormal basis $|e_1\rangle$ and $|e_2\rangle$, \mathcal{H}_2 has complete orthonormal basis $|e'_1\rangle$ and $|e'_2\rangle$.

(a)(4pts). Define operators $\hat{\sigma} = |e_1\rangle\langle e_2| + |e_2\rangle\langle e_1|$ in \mathcal{H}_1 , and $\hat{\sigma'} = |e'_1\rangle\langle e'_2| + |e'_2\rangle\langle e'_1|$ in \mathcal{H}_2 . Write down all the eigenvalues and normalized eigenstates of $\hat{\sigma} \otimes \hat{\sigma'}$ in $\mathcal{H}_1 \otimes \mathcal{H}_2$.

(b)(1pt). Define a state $|\varphi\rangle = \frac{1}{\sqrt{2}}(|e_1\rangle \otimes |e_2'\rangle + |e_2\rangle \otimes |e_1'\rangle)$. Show that this state CANNOT be written as a single tensor product, $|\psi\rangle \otimes |\psi'\rangle$, where $|\psi\rangle$ is a state in \mathcal{H}_1 , and $|\psi'\rangle$ is a state in \mathcal{H}_2 . [Hint: assume this is $|\psi\rangle \otimes |\psi'\rangle$, try to solve $|\psi\rangle$ and $|\psi'\rangle$ in terms of basis]