Crystal Systems and Crystallographic Point Groups

Paul D. Boyle
Department of Chemistry
University of Western Ontario

Point Symmetry & Crystallography

- Symmetry is fundamental in crystallography
- Determines what properties a material can have:

Piezoelectricity

Non-linear optical properties

etc.

 Determines how we refine crystal structures and what conclusions we can draw from our structure determinations

Centrosymmetric or non-centrosymmetric

Polar or non-polar group, enantiomeric group

Absolute structure and absolute configuration

Hermann-Mauguin Symmetry Notation

- Spectroscopists use Schoenflies notation to describe symmetry (e.g. C_{2v} , D_{4h})
- Crystallographers use Hermann-Mauguin notation (International notation)
- Was introduced by Carl Hermann in 1928, modified by Charles-Victor Mauguin in 1931
- Adopted for the 1935 edition of the International Tables for Crystallography
- Hermann-Mauguin notation is preferred for crystallography
 - Easier to add translational symmetry elements
 - Directions of symmetry axes are specified

Notes on Hermann-Mauguin Notation

- Interpretation of Hermann-Mauguin symbols depends on the crystal system
- "n/m" notation means mirror plane perpendicular to n-fold axis
- Hermann-Mauguin symbols have both "long" and "short" forms
- Not all symmetry elements present are symbolized, some are left implicit

Crystallographic Point Symmetries

- Point symmetries are symmetries which all pass through a given point and this point does not change with the application of a symmetry operation
- The symmetry elements which constitute the crystallographic point groups are:
 - Proper rotation axes (n)
 - Mirror planes (m)
 - Inversion centre $(\overline{1}, \text{ or no explicit symbol})$
 - Rotary inversion axes (\overline{n})
- Only n-fold axes where n = 1, 2, 3, 4, 6 are allowed for space filling 3 dimensional objects
- 32 unique crystallographic point groups are obtained from combining the various allowed rotation axes, mirror planes, and inversions
- 11 of the 32 crystallographic point groups are *centrosymmetric*

Lattices and Symmetry

- Lattices are a regular array of points
- We use basis vectors to describe the lattice
- The choice of basis vectors is not unique
- We choose the set of basis vectors which reflects the symmetry present in the lattice
- Transforming from one set of basis vectors does not change the lattice only our description of it

3-fold Rotation in Different Coordinate Systems

- The coordinate system makes a difference how symmetry operations are expressed
- Using cartesian systems are more complicated in crystallography
- Involves calculation of transcendental functions

Cartesian Coordinate System

$$\begin{vmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

Trigonal Coordinate System

$$egin{pmatrix} 0 & \overline{1} & 0 \ 1 & \overline{1} & 0 \ 0 & 0 & 1 \ \end{pmatrix}$$

Crystal Systems
There are 7 crystal systems and they are named:
Triclinic, Monoclinic, Orthorhombic,
Tetragonal, Trigonal, Hexagonal, and Cubic.

What differentiates one crystal system from another?

The order of its principal or characteristic symmetry

Crystal Systems & Their Symmetries

Crystal System	Lattice & point symmetries	Metric Constraints NOTE: "≠" means "not constrained to be equal to" rather than "not equal to"
Triclinic	1 , 1	$a \neq b \neq c$; $\alpha \neq \beta \neq \gamma$
Monoclinic	2/m , 2, m	$a \neq b \neq c$; $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$
Orthorhombic	mmm , mm2, 222	$a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	4/mmm , 42m, 4mm, 422, 4/m, 4,	$a = b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$
Trigonal rhombohedral setting hexagonal setting	3m , 3m, 32, 3 , 3	a = b = c; $\alpha = \beta = \gamma \neq 90^{\circ}$ a = b \neq c; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
Hexagonal	6/mmm , 6m2, 6mm, 622, 6/m, 6	a = b \neq c; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
Cubic	m 3 m , 43m, 432, m3, 23	a = b = c; α = β = γ = 90°

Categories of Crystallographic Point Groups

- Centrosymmetric (11 of the 32 point groups)
- Non-centrosymmetric (non-exclusive categories)

Enantiomorphic: Point groups which contain only proper rotation axes

- → Enantiopure compounds can only crystallize in crystals which have these point symmetries
- → SHELXL hint: Flack parameter should be refined, absolute configuration determination is possible

Polar: Point groups which have a "polar" sense to them

- → Polar groups are non-centrosymmetric, but may have symmetry elements of the second kind
- Samples which crystallize in these point group may be racemic
- → SHELXL hint: Flack parameter should be refined, absolute structure determination is possible but absolute configuration cannot be determined if point group contains symmetry elements of the second kind

Laue Groups and Holohedries

- Laue groups: the 11 centrosymmetric groups
 - Symmetry of the diffraction pattern as determined from the observed intensities
 - Matches the space group without any translations and adding a centre of symmetry
 - A crystal system can have more than one Laue group
- **Holohedry:** When the point group of a crystal is identical to the point group of its lattice
 - There are 7 holohedral point groups which correspond to the 7 crystal systems
 - Holohedries are always centrosymmetric
- All holohedries are Laue groups, but not all Laue groups are holohedries

Proper Rotation Axes

- Rotation about an axis by 360°/n.
- Symmetry operation of the first kind
- Doesn't change handedness of object

Mirror plane

- Creates a reflected object
- Symmetry element of the second kind
- Changes handedness of object

Inversion Centre

- Transforms x, y, z into \overline{x} , \overline{y} , \overline{z}
- Symmetry element of the second kind
- Changes handedness of object

Rotary Inversion Axis

- Rotation of 360°/n followed by inversion
- Symmetry element of the second kind
- Changes handedness of object
- 1 is equivalent to an inversion centre
- $\overline{2}$ is equivalent to a mirror plane

Characterizing Point Symmetry Rotation Matrices

- Rotation matrices can be characterized using some elementary matrix operations
 - Determinant
 - Trace
- Calculation of rotation angle
- Eigenvalues and Eigenvectors are used to give the orientation of the rotation axis

Determinant and Trace of a Matrix

Determinant

- Characterizes some property of a matrix
- For crystallographic symmetry rotation matrices the values the determinant are +1 or -1
- +1 means the symmetry operation maintains the handedness of the object (symmetry operation of the first kind)
- -1 means the symmetry operation changes the handedness of the object (symmetry operation of the second kind)

Trace

- The sum of the diagonal values of a matrix
- The order of the rotation axis (n) can be derived from the trace

Using Determinant and Trace to Characterize Symmetry Matrices

Symmetry Element	Determinant	Trace
1	1	3
2	1	-1
3	1	0
4	1	1
6	1	2
1	-1	-3
2	-1	1
3	-1	0
$\overline{4}$	-1	-1
<u>6</u>	-1	-2

 The combination of the determinant and the trace determines the order of the rotation and whether it is a proper or improper rotation

Calculation of Rotation Angle from Determinant and Trace

$$\phi = \cos^{-1} \left(0.5 \left(\frac{t}{d} - 1.0 \right) \right)$$

Eigenvalues and Eigenvectors of Crystallographic Symmetry Rotation Matrices

- One of the eigenvectors gives the orientation of the rotation axis
- A 3x3 matrix can have 3 eigenvalues and 3 eigenvectors (can be real or complex quantities). How to choose the correct eigenvalue/eigenvector pair?
- Criteria:
 - Choose the real eigenvalue which has the same sign as the determinant
 - Choose the eigenvector which corresponds to the chosen eigenvalue

Worked Example of Determining Orientation of Rotation Axis

Trigonal Coordinate System

```
egin{pmatrix} 0 & \overline{1} & 0 \ 1 & \overline{1} & 0 \ 0 & 0 & 1 \end{pmatrix}
```

```
julia> three fold axis
3×3 Matrix{Int64}:
  -1 0
julia> det(three_fold_axis)
julia> tr(three fold axis)
julia> eigvals(three_fold_axis)
3-element Vector{ComplexF64}:
 -0.4999999999999999 + 0.8660254037844386im
               1.0 + 0.0im
julia> eigvecs(three_fold_axis)
3×3 Matrix{ComplexF64}:
-0.707107-0.0im
                    -0.707107+0.0im
                                        0.0+0.0im
 -0.353553-0.612372im -0.353553+0.612372im
                                        0.0+0.0im
      0.0-0.0im
                         0.0+0.0im
                                        1.0+0.0im
julia>
```

Understanding Hermann-Mauguin Notation for Point Groups

See next slide for your Hermann-Mauguin Secret Decoder Ring!

Crystal System	1 st Position	2 nd Position	3 rd Position	Point Groups
Triclinic	Only one position, denoting all directions in crystal			1 , 1
Monoclinic	Only 1 symbol: 2 or $\overline{2}$ to Y (b is principal axis)			2/m , 2, m
Orthorhombic	2 and/or $\overline{2} \parallel$ to X	2 and/or $\overline{2}$ ∥ to Y	2 and/or $\overline{2}$ ∥ to Z	mmm , mm2, 222
Tetragonal	4 and/or $\overline{4} \parallel$ to Z	2 and/or $\overline{2}$ ∥ to X and Y	2 and/or $\overline{2} \parallel$ to [110]	4/mmm , $\overline{4}$ 2m, 4mm, 422, 4/m, $\overline{4}$, 4
Trigonal	3 and/or $\overline{3} \parallel$ to Z	2 and/or $\overline{2}$ ∥ to X, Y, U		3m , 3m, 32, $\overline{3}$, 3
Hexagonal	6 and/or 6 ∥ to Z	2 and/or $\overline{2}$ ∥ to X, Y, U	2 and/or $\overline{2}$ along [1 $\overline{1}$ 0]	6/mmm , $\overline{6}$ m $\overline{2}$, 6mm, 622, 6/m, $\overline{6}$, 6
Cubic	2 and/or $\overline{2}$ ∥ to X, Y, Z	$2 \operatorname{and/ar} \overline{2} \parallel t_0$		m3, 23
	4 and/or 4 ∥ to X, Y, Z	3 and/or 3	2 and/or $\overline{2}$ along face diagonals	m3 m, 43m, 432

Choosing the Correct Crystal System

- Do not assume the metric relations indicate the correct point group and crystal system!!!
- Correctly identify the Laue group symmetry of the diffraction pattern (equivalent intensities, R_{sym})
- The Laue symmetry indicates the crystal system of your sample
- Correct Laue group assignment narrows space group choices

Space Groups

- Space groups vs Point groups
 - Point groups describe symmetry of isolated objects
 - Space groups describe symmetry of infinitely repeating space filling objects
- Space groups include point symmetry elements