Série d'exercices sur les variables aléatoires

Exo1 : Calculer l'espérance mathématiqueµ, la variance et l'écart-type de la loi suivante :

x_i	1	3	4	5
$f(x_i)$	0.4	0.1	0.2	0.3

Solution:

$$\mu = \sum x_i f(x_i) = \mathbf{1}(0.4) + \mathbf{3}(0.1) + \mathbf{4}(0.2) + \mathbf{5}(0.3) = \mathbf{3}$$

$$\sum_{i} x_i^2 f(x_i) = 1(0.4) + 9(0.1) + 16(0.2) + 25(0.3) = 12$$

$$\sigma^2 = \sum x_i^2 f(x_i) - \mu^2 = 12 - 9 = 3$$
 et $\sigma = \sqrt{3} = 1.7$

Exo2 : On jette un dé bien équilibré. Soit X la variable représentant le double du nombre obtenu, et Y une variable prenant les valeurs 1 ou 3 suivant que l'on obtient soit un nombre impair, soit un nombre pair. Calculer la distribution, l'espérance, la variance et l'écart-type de : (i) X, (ii) Y, (iii) X+Y et (iv) XY.

Solution:

(i) $X(\Omega) = \{2, 4, 6, 8, 10, 12\}$

x_i	2	4	6	8	10	12
f(x)	1	1	1	1	1	1
$J(x_i)$	6	6	6	<u></u>	<u></u>	<u>-</u> 6

$$E(X) = \sum x_i f(x_i) = 2.\frac{1}{6} + 4.\frac{1}{6} + 6.\frac{1}{6} + 8.\frac{1}{6} + 10.\frac{1}{6} + 12.\frac{1}{6} = 7$$

$$E(X^{2}) = \sum x_{i}^{2} f(x_{i}) = 4.\frac{1}{6} + 16.\frac{1}{6} + 36.\frac{1}{6} + 64.\frac{1}{6} + 100.\frac{1}{6} + 144.\frac{1}{6} = 60.7$$

$$Var(X) = \sigma^2 = \sum x_i^2 f(x_i) - E(X)^2 = 60.7 - 7^2 = 11.7$$
 d'où $\sigma = \sqrt{11.7} = 3.4$

(ii) $Y(\Omega) = (\Omega) = \{1, 3\}$

x_i	1	3
$f(x_i)$	$\frac{1}{2}$	$\frac{1}{2}$

$$E(Y) = \sum y_i f(y_i) = 1.\frac{1}{2} + 3.\frac{1}{2} = 2$$

$$E(Y^2) = \sum y_i^2 f(y_i) = 1.\frac{1}{2} + 9.\frac{1}{2} = 5$$

$$Var(Y) = \sigma^2 = \sum y_i^2 f(y) - E(Y)^2 = 5 - 2^2 = 1$$
 d'où $\sigma = 1$

(iii) on a (X+Y)(w)=X(w)+Y(w)

$$(X+Y)(\Omega) = \{3,7,11,15\}$$

x_i	3	7	11	15
h(m)	1	2	2	1
$h(x_i)$	6	6	6	6

$$E(X+Y)=3.\frac{1}{6}+7.\frac{2}{6}+11.\frac{2}{6}+15.\frac{1}{6}=9$$

$$E((X+Y)^2) = 9.\frac{1}{6} + 49.\frac{2}{6} + 121.\frac{2}{6} + 225.\frac{1}{6} = 95.7$$

$$Var(X+Y)=95.7-81=14.7$$
 d'où $\sigma = \sqrt{14.7} = 3.8$

remarquons que E(X)+E(Y)=7+2=9=E(X+Y) mais que $V(X)+V(Y)=11.7+1=12.7 \neq V(X+Y)$

(iv) (XY)(w) = X(w)Y(w)

$$(XY)(\Omega) = \{2, 6, 10, 12, 24, 36\}$$

x_i	2	6	10	12	24	36
$\mathbf{b}(\mathbf{x})$	1	1	1	1	1	1
$\kappa(x_i)$	6	6	6	6	6	6

$$E(XY) = 2.\frac{1}{6} + 6.\frac{1}{6} + 10.\frac{1}{6} + 12.\frac{1}{6} + 24.\frac{1}{6} + 36.\frac{1}{6} = 15$$

$$E((XY)^2)=4.\frac{1}{6}+36.\frac{1}{6}+100.\frac{1}{6}+144.\frac{1}{6}+576.\frac{1}{6}+1296.\frac{1}{6}=359.3$$

$$V(XY)=359.3-15^2=134.3$$
 et $\sigma = \sqrt{134.4}=11.6$

Exo3 : On jette trois fois une pièce de monnaie mal équilibrée de telle sorte que P(F)= 3/4 et P(P)= 1/4. Soit X la variable aléatoire représentant la plus grande succession de faces que l'on obtient. Calculer la distribution de probabilité, la moyenne, la variance et l'écart-type de X.

Solution: $\Omega = \{PPP, FFF, FFP, PFF, PPF, PFP, FPP\}$

$$P(FFF) = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64}$$

$$P(PFF) = \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{64}$$

$$P(FFF) = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{27}{64} \qquad P(PFF) = \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{64} \qquad P(FFP) = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{9}{64} \qquad P(PFP) = \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{64}$$

$$P(FPF) = \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{9}{64} \qquad P(PFP) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{64} \qquad P(PPP) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{64}$$

$$P(PFP) = \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{3}{64}$$

$$P(FPF) = \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{9}{64}$$

$$P(PPF) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{64}$$

$$P(FPP) = \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{3}{64}$$

$$P(PPP) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{64}$$

X: la plus longue suite de Faces; $X(\Omega) = \{0, 1, 2, 3\}$ car

$$X(FFF)=3$$
 $X(PFF)=2$ $X(FFP)=2$ $X(PFP)=1$ $X(FPF)=2$

$$\mathbf{X}(\mathbf{PPF})=\mathbf{1}$$

$$X(FPP)=1$$

X(PPP)=0

x_i	0	1	2	3
f(x)	1	18	18	27
$f(x_i)$	64	64	64	64

E(X)=2.1 E(X²)=5.2 donc V(X)=5.2 –
$$(2.1)^2$$
=0.8 et par suite $\sigma = \sqrt{0.8} = 0.9$

Exo4 : On lance une pièce de monnaie bien équilibrée jusqu'à ce que l'on obtienne soit face soit cinq piles. Calculer l'espérance mathématique E du nombre de jets nécessairs de la pièce.

Solution: On n'a besoin que d'un seul jet si l'on obtient face la première fois, ce qui est l'évènement F. On a besoin de deux jets si le premier coup donne pile et le second face, ce qui correspond à l'évènement PF. Il faut trois jets si les deux premiers donnent pile et le troisième face, ce qui correspond à l'évènement PPF. Il faut quatre jets su c'est l'évènement PPPF qui se réalise et cinq jets si c'est doit PPPPF, soit PPPPP qui est réalisé. Par suite :

$$f(1) = P(F) = 1/2 \; ; \; f(2) = P(PF) = 1/4 \; ; \; f(3) = P(PPF) = 1/8 \; ; \; f(4) = P(PPPF) = 1/16 \; \; et \\ f(5) = P(PPPF) + P(PPPPP) = 1/32 + 1/32 + 1/16. \; Par \; conséquent \; E = 1.1/2 + 2.1/4 + 3.1/8 + 4.1/16 + 5.1/16 = 1.9$$

Exo5 : On jette une paire de dés parfaits. Soit X la variable aléatoire représentant le minimum des deux nombres que l'on obtient. Calculer la loi de probabilité, la moyenne, la variance et l'écart-type de X.

Solution:

x_i	1	2	3	4	5	6
f(x)	11	9	7	5	3	1
$f(x_i)$	36	36	36	36	36	36

 $E(X)=2.5 Var(X)=2.1 et \sigma = 1.4$

Exo6 : On lance quatre fois une pièce de monnaie bien équilibrée. Soit X le nombre de faces obtenues. Calculer la loi de probabilité, la moyenne, la variance et l'écart-type de X.

Solution:

x_i	0	1	2	3	4
$f(x_i)$	1	4	6	4	1
100	16	16	16	16	16

 $E(X)=2 Var(X)=1 et \sigma = 1$

Exo7: Une boite contient 8 articles dont 2 sont défectueux. On choisit 3 articles de la boite. Calculer l'espérance mathématique du nombre d'articles défectueux que l'on a tirés.

Solution: E=3/4

Exo9 : X et Y sont des variables aléatoires ayant des distributions jointes :

X	-3	2	4	somme
Y				
1	0.1	0.2	0.2	0.5
3	0.3	0.1	0.1	0.5
somme	0.4	0.3	0.3	

(i) Calculer les lois de probabilité de X et de Y. (ii) Calculer la covariance de X et Y : Cov(X,Y). (iii) X et Y sont-elles des variables aléatoires indépendantes ?

Solution:

(i) Les lois de probabilités de X et de Y sont données par les distributions marginales :

x_i	1	3	
$f(x_i)$	0.5	0.5	loi de probabilité X

y_i	-3	2	4	
$g(y_i)$	0.4	0.3	0.3	loi

loi de probabilité Y

(ii)
$$E(X)=2$$
, $E(Y)=0.6$ et $E(XY)=\sum_{i=1}^{n}\sum_{j=1}^{m}h(x_{i}, y_{j})=0$
 $Cov(X,Y)=E(XY)-E(X).E(Y)=0-2\times0.6=-1.2$

(iii) X et Y ne sont pas indépendantes, puisque $P(X=1, Y=-3) \neq P(X=1).P(Y=-3)$

Exo10 : Soient X et Y des variables aléatoires indépendantes ayant les lois de prob :

γ.	1	2	3	y_i	5	10	15
$f(x_i)$	0.6	0.4	g((y_i)	0.2	0.5	0.3

Calculer la loi de probabilité produit h de X et Y.

Solution:

Puisque X et Y sont indépendantes, la loi de probabilité produit h peut s'obtenir à partir des listributions marginales f et g. On construit d'abord comme ci-dessous à gauche le tableau de la oi de probabilité produit, à l'aide seulement des distributions marginales. Puis afin d'obtenir les autres eléments, on fait le produit des éléments marginaux, c.à.d. qu'on pose $h(x_i, y_j) = f(x_i)g(y_j)$ comme dessous à droite

X	5	10	15	Somme
1				0,6
2				0,4
Somme	0,2	0,5	0,3	÷

XY	5	10	15	Somme
1	0,12	0,30	0,18	0,6
2	0,08	0,20	0,12	0,4
Somme	0,2	0,5	0,3	

Exo11 : Soit X une variable aléatoire continue ayant la distribution : $\begin{cases} \frac{1}{6}x + k & \text{si } 0 \le x \le 3 \\ 0 & \text{ailleurs} \end{cases}$

(i) Calculer k; (ii) Calculer $P(1 \le X \le 2)$.

Solution:

X étant une VA sa distribution doit vérifier les conditions : $f(x) \ge 0$ et $\int_{-\infty}^{+\infty} f(x) dx = 1$

(ii)
$$P(1 \le X \le 2) = \int_1^2 f(x) dx = \int_1^2 \left(\frac{1}{6}x + \frac{1}{12}\right) dx = \frac{1}{3}$$

Exo13 : Soit X une variable aléatoire continue ayant la distribution : $\begin{cases} & \frac{1}{8} & \text{si } 0 \leq x \leq 8 \\ 0 & \text{ailleurs} \end{cases}$

(i) Calculer $P(2 \le X \le 5)$; $P(3 \le X \le 7)$ et $P(X \ge 6)$; (ii) Déterminer et représenter graphiquement la fonction de répartition F de X.

Solution:

(i)
$$P(2 \le X \le 5) = \frac{3}{8}$$
; $P(3 \le X \le 7) = \frac{1}{2}$ et $P(X \ge 6) = 1 - P(X < 6) = \frac{1}{4}$

(ii)
$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{8}x & \text{si } 0 \le x \le 8 \\ 1 & \text{si } x > 8 \end{cases}$$

Représentation graphique de F

Exo14 : Soit X une variable aléatoire continue ayant la distribution : $\begin{cases} k & si \ a \le x \le b \\ 0 & ailleurs \end{cases}$

(i)Calculer k ; (ii) Calculer la moyenne μ de X ; (iii) Déterminer la fonction de répartition F de X.

Solution:

X étant une VA sa distribution doit vérifier les conditions : $f(x) \ge 0$ et $\int_{-\infty}^{+\infty} f(x) dx = 1$

(i)
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{a}^{b} k dx = [kx]_{a}^{b} = kb - ka = k(b-a) = 1 \ d'où \ k = \frac{1}{b-a}$$

(ii)
$$\mu = \int_{-\infty}^{+\infty} x f(x) dx = \int_{a}^{b} \frac{1}{b-a} x dx = \left[\frac{1}{2(b-a)} x^2 \right]_{a}^{b} = \frac{1}{2(b-a)} (b^2 - a^2) = \frac{a+b}{2}$$

(iii) Rappelons que la fonction de répartition F est définie par $F(k) = P(X \le k)$. Par conséquent F(k) donne l'aire en dessous de la courbe de f à gauche de x = k. Puisque X est distribuée uniformément sur l'intervalle $I = \{a \le x \le b\}$, il est intuitif que la courbe de F, comme le montre la figure de droite, vaut F = 0 avant le point a, F = 1 après le point b, et que F est linéaire entre a et b. On vérifie cela mathématiquement par le calcul

Représentation graphique de F

(a) pour
$$x < a$$
,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$$

(b) pour
$$a \le x \le b$$
,

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{a}^{x} \frac{1}{b-a} dt = \left[\frac{t}{b-a}\right]_{a}^{x} = \frac{x-a}{b-a}$$

(c) pour
$$x > b$$
, $F(x) = P(X \le x) \ge P(X \le b) = F(b)$ 1 et aussi $1 \ge P(X \le x) = F(x)$; d'où $F(x) = 1$.