1 第二章

1 第二章

1.1 §6 各种类型的直和分解

1.1.1 §6.1 预备引理

引理 **6.1** 设 $p_1,...,p_k,q \in F[t]\setminus\{0\}$

- (i) 如果 $\forall i \in \{1,...,k\}, gcd(p_I,q) = 1, \text{ } \ \ \, \iint gcd(p_1,...,p_k,q) = 1$
- (ii) 如果 $p_1,...,p_k$ 两两互素, 且 $p_I|q,i=1...k$, 则 $(p_1,\cdots,p_k)|q$.

引理 6.2 设 $p_1,...,p_k \in F[t]\setminus\{0\}$ 两两互素,则 $lcm(p_1,...,p_k)=p_1...p_k$

引理 6.3 设 $A \in \mathcal{L}(V)$, $f \in F[t]$ 零化 A, 设 f = pq, 其中 $p, q \in F[t] \setminus F$ 且 gcd(p, q) = 1, 令 $K_p = ker(p(A))$ 和 $K_q = ker(q(A))$, 则

- (i) K_p 和 K_q 是 \mathcal{A} -子空间且 $V = K_p \bigoplus K_q$
- (ii) $p(A)|_{K_q}$ 和 $q(A)|_{K_p}$ 上都是双射
- (iii) 设 $f = \mu_A$ 且 p, q 都首一, 则 p 和 q 分别是 $A|_{K_q}$ 和 $A|_{K_q}$ 的极小多项式.

1.1.2 §6.2 广义特征子空间分解

定义 设 $A \in \mathcal{L}(V)$, μ_A 在 F[t] 中的不可约因式分解为 $\mu_A = p_1^{m_1}...p_s^{m_s}$, 其中 $p_1,...,p_s \in F[t] \setminus F$, 首一, 不可约, 两两互素, $m_1,...,m_s \in \mathbb{Z}^+$, 则 $ker(p_i^{m_i}(A))$ 称为 A 关于因子 p_i 的广义子空间, 记为 $V(p_i)$.

注 $V(p_I)$ 是 A-子空间

注 书中定义的根子空间是广义子空间的特殊情形, 我们将在之后说明.

定理 6.1 利用上述定义中的记号, 我们有 $V = V(p_1) \oplus ... \oplus V(p_s)$ 且

- (i) $p_I^{m_I} \mathcal{A}|_{V(p_i)}$ 的极小多项式
- (ii) $p_I(A)$ 在 $V(p_1) \oplus ... \oplus V(p_{i-1}) \oplus V(p_{i+1}) \oplus ... \oplus V(p_s)$ 上是可逆的.

推论 6.1 设 $A \in \mathcal{L}(V)$, 则 A 可对角化 $\Leftrightarrow \mu_A(t) = (t - \alpha_1)...(t - \alpha_m)$, 其中 $\alpha_1, ..., \alpha_m \in F$, 两两不同.

1 第二章

推论 6.2 设 $A \in M_n(F)$, 则 A 可对角化 $\Leftrightarrow \mu_A = (t - \alpha_1)...(t - \alpha_s)$, 其中 $\alpha_1, ..., \alpha_s \in F$, 两 两不同.

1.1.3 §6.3 循环子空间的分解

命题 5.3 基本性质:

- (i) $F[A] \cdot \vec{v}$ 是 A-子空间,
- (ii) 如果 $d = dim F[A] \cdot \vec{v}$, 则 \vec{v} , $\mathcal{A}(\vec{v})$, ..., $\mathcal{A}^{d-1}(\vec{v})$ 是 F[A] 的基
- (iii) 如果 \vec{v} , $\mathcal{A}(\vec{v})$, ..., $\mathcal{A}^{d-1}(\vec{v})$ 线性无关, 但 \vec{v} , $\mathcal{A}(\vec{v})$, ..., $\mathcal{A}^{d-1}(\vec{v})$, $\mathcal{A}^d(\vec{v})$ 线性相关, 则 $d = dimF[\mathcal{A}] \cdot \vec{v}$
- (iv) $F[A] \cdot \vec{v} = \{p(A)(\vec{v}) | p \in F[t]\}$

定理 6.2 设 $A \in \mathcal{L}(V)$, 则 $\exists \vec{v_1}, ..., \vec{v_k} \in V$ 使得 $V = F[A] \cdot \vec{v_1} \oplus ... \oplus F[A] \cdot \vec{v_k}$.

推论 6.3(Cayley-Hamilton 定理的加强版) 设 $A \in \mathcal{L}(V)$,

- (i) $\mu_{\mathcal{A}}|\mathcal{X}_{\mathcal{A}}$
- (ii) 设 p 是 \mathcal{X}_A 的一个不可约因子, 则 $p|\mu_A$

推论 6.4 设 $F = \mathbb{C}, A \in \mathcal{L}(V)$, 则

- (i) \mathcal{X}_A 的根与 μ_A 的根相同 (不计重数)
- (ii) \mathcal{A} 可对角化 $\Leftrightarrow gcd(\mu_{\mathcal{A}}, \mu_{\mathcal{A}}') = 1$

1.1.4 §6.4 根子空间分解

定义 设 $F = \mathbb{C}, A \in \mathcal{L}(V), \lambda \in spec_{\mathbb{C}}(A), A$ 关于 λ 的根子空间是 $\{\vec{v} \in V | \exists k \in \mathbb{N}, (A - \lambda \mathcal{E})^k(\vec{v}) = \vec{0}\}$, 记为 $V(\lambda)$

引理 6.4 利用上述定义中的记号,则 $(t-\lambda)|\mu_A$ 且 $V(t-\lambda)=V(\lambda)$.

1.1.5 §6.5 循环子空间的进一步的性质

命题 6.1 设 $A \in \mathcal{L}(V)$, 则 $V \in A$ -循环的 $\Leftrightarrow deg(\mu_A) = dim V$.

1 第二章

命题 6.2 设 $A \in \mathcal{L}(V)$ 且 V 是 A-循环的, 设 $\mu_A = t^n + \alpha_{n-1}t^{n-1} + ... + \alpha_0, \vec{v}$ 是 V 关于 A 的循环向量, 则 A 在基底 \vec{v} , $A(\vec{v})$, ..., $A^{n-1}(\vec{v})$ 下的矩阵是

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & -\alpha_0 \\ 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \cdots & 0 & -\alpha_2 \\ & & \cdots & & \\ 0 & 0 & \cdots & 1 & -\alpha_{n-1} \end{bmatrix}_{n \times n}$$

1.1.6 §6.3(实为 6.5) A-不可分子空间

定义 设 $A \in \mathcal{L}(V)$, $U \subset V$ 是 A-子空间, 如果 U 不能写成两个维数为正的 A-子空间的直和,则称 U 是 A-不可分的 (indecomposable), 否则称为 A-可分的

定理 6.3 设 $A \in \mathcal{L}(V)$, 则 V 是有限个 A-不可分子空间的直和.

命题 6.3 设 $A \in \mathcal{L}(V)$, 则 V 是 A-不可分的 \Leftrightarrow

- (i) μ_A 是 F 上某个不可约多项式的幂次
- (ii) V 是 A-循环的.

定理 6.4 设 $A \in \mathcal{L}(V)$, 则 $V = V_1 \oplus \cdots \oplus V_l$, 其中 V_i 既是 A-不可分的, 也是 A-循环的, 特别地 $A|_{V_i}$ 的极小多项式是 F[t] 中某个不可约多项式的幂次

命题 6.4(复 Jordan 块的存在性) 设 $A \in \mathcal{L}(V), F = \mathbb{C}$, 如果 $V \in A$ -不可分的, 则存在 V的一组基, 使得 A 在该基下的矩阵为

$$J_n(\lambda) = \begin{bmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{bmatrix}_{n \times n}$$

 $\lambda \in \mathbb{C}$, 称为关于 λ 的 n 阶 Jordan 块