Backpropagation

Glenn Bruns CSUMB

Much material in this deck from Géron, Hands-on Machine Learning with Scikit-Learn and TensorFlow

Learning outcomes

After this lecture you should be able to:

Manually perform backpropagation on a simple network

Training neural nets

- The parameters of a neural net are its weights.
- In training, training data is fed to the net, and the weights are adjusted.
- Question: how does this work?

A simple example

5.5 4.5 $y = (x+1)^2$ -3.5 -0.5 -0.5 -0.5

Suppose input x = 0.5, and we want to adjust x to make output y smaller.

Look at the slope of the function at x = 0.5

The slope of the function at x is positive, so make x a little smaller

Details on adjusting x

$$y = (x+1)^2$$

1. What is the slope at x = 0.5?

$$\frac{dy}{dx} = 2(x+1)$$

 $\frac{dy}{dx} = 2(x+1)$ this is a <u>function</u>; the slope depends on x

The slope at x = 0.5 is 2(0.5 + 1) = 3

2. How exactly to adjust x?

$$x_1 = x_0 - \eta \, \frac{dy}{dx}(x_0)$$

if $x_0 = 0.5$, and $\eta = 0.01$, then x_1 is ?

Recall: partial derivatives

The graph of f(x,y) is a surface.

Fixing y = b gives a curve (shown in green

The partial derivative $\frac{\delta f}{\delta x}(a,b)$ is the slope of the tangent line to this curve at the point where x=a.

source: https://mathinsight.org/partial_derivative_limit_definition

An example with two nodes

Approach 1: combine f and g to get $z = (x + x^3)^2$ and then do the same thing as the last example.

Approach 2: get
$$\frac{dz}{dx}$$
 by using the chain rule: $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Example: Let the input x be 1 (so y is 2 and z is 4). How to adjust x to make z smaller?

Work out that $\frac{dz}{dy}$ is 2y, and $\frac{dy}{dx}$ is $1 + 3x^2$. Then the chain rule says that the slope of the f,g combined, at x=1, is:

$$\frac{dz}{dy}$$
 (2) * $\frac{dy}{dx}$ (1) = 4 * 4 = 16. For new x, use $x - \eta \frac{dz}{dx}(x)$

An example with a multi-input node

Now we have to think about how x_1 affects z and how x_2 affects z

An example with multi-input node

$$z = y^2$$

$$y = x_1 + 2 x_2$$

What is
$$\frac{\partial z}{\partial x_1}$$
? What is $\frac{\partial z}{\partial x_2}$?

Use the multi-variable chain rule: $\frac{\partial z}{\partial x_1} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x_1}$ (similarly for x_2)

Example: Let $x_1 = 1$ and $x_2 = 3$ (so y = 7). How to adjust x_1 to lower z?

- 1. $\frac{\partial z}{\partial y}$ is 2y, and $\frac{dy}{dx_1}$ is 1
- 2. Using the chain rule: $\frac{\partial z}{\partial x_1}$ at (1,3) is $\frac{dz}{dy}$ (7) * $\frac{dy}{dx_1}$ (1,3) = 14 * 1 = 14
- 3. For new value of x_1 , use $x_1 \eta \frac{dz}{dx_1}$ (1,3)

Exercise: calculate new x_2

Use the multi-variable chain rule:
$$\frac{\partial z}{\partial x_2} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x_2}$$
 (similarly for x_2)

Let
$$x_1 = 1$$
 and $x_2 = 3$ (so $y = 7$)

- 1. $\frac{\partial z}{\partial y}$ is 2y, and $\frac{\delta y}{\delta x_2}$ is 2
- 2. Calculate new value of x_2 , use $x_2 \eta \frac{\delta z}{\delta x_2}$ (1,3) (let η be 0.01)

A weighted sum node

Node Σ outputs the weighted sum of its inputs. The coefficient values are $w_1 = 0.5$ and $w_2 = 2.0$.

How to modify the coefficients of Σ to make z smaller? (Now treat x_1 and x_2 as constants.)

Use the multi-variable chain rule: $\frac{\partial z}{\partial w_1} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial w_1}$ (similarly for w_2)

Example: Let $x_1 = 1$ and $x_2 = 3$ (so y = 0.5 + 6 = 6.5).

- 1. $\frac{\partial z}{\partial y}$ is 2y, and $\frac{\delta y}{\delta w_1}$ is x_1 (note: $\frac{\delta y}{\delta w_1}$ does not depend on w_1 !)
- 2. By chain rule: $\frac{\partial z}{\partial w_1}$ at w_1, w_2 is $\frac{dz}{dy}$ (6.5) $*\frac{dy}{dw_1}$ (0.5,2.0) = 13 * 1 = 13
- 3. For new value of w_1 , use $w_1 \eta \frac{\delta z}{\delta w_1}(0.5, 2.0)$

A weighted sum node

$$y = w_1 x_1 + w_2 x_2$$

A plot of the combined functions.

 x_1 and x_2 are treated as constants $(x_1 = 1 \text{ and } x_2 = 3).$

A logistic activation function node

$$z = g(y) = \frac{1}{1 + e^{-y}}$$

$$y = w_1 x_1 + w_2 x_2$$

Node f outputs the weighted sum of its inputs. The coefficients of f are $w_1 = 0.5$ and $w_2 = 2.0$.

Use the multi-variable chain rule: $\frac{\partial z}{\partial w_1} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial w_1}$ (similarly for w_2)

Example: Let $x_1 = 1$ and $x_2 = 3$ (so y = 0.5 + 6 = 6.5).

- 1. $\frac{\partial z}{\partial y}$ is g(y)(1-g(y)), and $\frac{dy}{dw_1}$ is x_1
- 2. By chain rule: $\frac{\partial z}{\partial x_1}$ at w_1, w_2 is $\frac{dz}{dy}(6.5) * \frac{dy}{dw_1}(0.5, 2.0) = 0.0015 * 1 = 0.0015$
- 3. For new value of w_1 , use $w_1 \eta \frac{dz}{dw_1}$ (0.5,2.0)

A more realistic example

Here there are 8 weights, 2 for each of the nodes in the hidden layers. We want to minimize the error z.

Backpropagation takes some x_1, x_2 as input, and outputs $(\frac{\partial z}{\partial w_1}, \frac{\partial z}{\partial w_2}, \frac{\partial z}{\partial w_3}, \frac{\partial z}{\partial w_4}, \frac{\partial z}{\partial w_4}, \frac{\partial z}{\partial w_6}, \frac{\partial z}{\partial w_7}, \frac{\partial z}{\partial w_8})$

Notes from Goodfellow et al

- Multilayer perceptrons (MLPs) are also called deep feedforward networks
- back-propagation is <u>not</u> gradient descent it refers only to the method for computing the gradient
- back-propagation is a very general technique:
 - is not limited to the gradient of a cost function with respect to its parameters
 - not limited to neural networks

source: Deep Learning, by Goodfellow, Bengio, and Courville

Summary

- During training of a neural net you repeatedly tweak node weights to reduce the value of a cost function.
- □ With backprop you compute the partial derivatives needed in the optimization process.
- The examples in these slides show the core ideas, but modern neural nets use much more advanced algorithms.

Bonus content

www.emergentmind.com/neural-network