FIT5186 Lecture 4 Example

Learning the weights for the XOR problem:

Initialise weights:
$$\mathbf{W} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $\mathbf{V} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ $f(net) = \frac{1}{1 + e^{-net}}$ $(\lambda = 1, c = 1)$

BACKPROPAGATION LEARNING RULE:

STEP 1: Input vector (0,0,-1) desired output $d_1 = 0$ STEP 1: Input vector (1,0,-1) desired output $d_1 = 1$

STEP 2: $net_1^h = 0$ $net_2^h = 0$ STEP 2: $net_1^h = 0$ $net_2^h = 0$

STEP 3: $y_1 = 0.5$ $y_2 = 0.5$ STEP 3: $y_1 = 0.5$ $y_2 = 0.5$

STEP 4: $net_1^0 = 0$ STEP 4: $net_1^0 = -0.1875$ STEP 5: $o_1 = 0.5$ STEP 5: $o_1 = 0.4533$

STEP 6: $r_1^o = o_1(d_1 - o_1)(1 - o_1) = -0.125$ STEP 6: $r_1^o = o_1(d_1 - o_1)(1 - o_1) = 0.1355$

STEP 7: $r_1^h = 0$ $r_2^h = 0$ STEP 7: $r_1^h = -0.002117$ $r_2^h = -0.002117$

STEP 8: $\mathbf{V}^T = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + -0.125 \begin{pmatrix} 0.5 \\ 0.5 \\ -1 \end{pmatrix} = \begin{pmatrix} -0.0625 \\ -0.0625 \\ 0.125 \end{pmatrix}$ STEP 8: $\mathbf{V}^T = \begin{pmatrix} 0.00525 \\ 0.00525 \\ -0.0105 \end{pmatrix}$

STEP 9: $\mathbf{W_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ $\mathbf{W_2} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ STEP 9: $\mathbf{W_1} = \begin{pmatrix} -0.002117 \\ 0 \\ 0.002117 \end{pmatrix}$ $\mathbf{W_2} = \begin{pmatrix} -0.002117 \\ 0 \\ 0.002117 \end{pmatrix}$

STEP 10: error $E \leftarrow E + \sum_{k=1}^{K} (r_k^{\circ})^2 = 0.0156$ STEP 10: error $E \leftarrow E + \sum_{k=1}^{K} (r_k^{\circ})^2 = 0.034$

STEP 1: Input vector
$$(0,1,-1)$$
 desired output $d_1 = 1$
STEP 2: $net_1^h = -0.002117$ $net_2^h = -0.002117$
STEP 3: $y_1 = 0.4995$ $y_2 = 0.4995$
STEP 4: $net_1^0 = 0.0157$
STEP 5: $o_1 = 0.5039$
STEP 6: $r_1^o = o_1(d_1 - o_1)(1 - o_1) = 0.1240$
STEP 7: $r_1^h = 0.00016$ $r_2^h = 0.00016$
STEP 8: $\mathbf{V}^T = \begin{pmatrix} 0.067188 \\ 0.067188 \\ -0.1345 \end{pmatrix}$
STEP 9: $\mathbf{W}_1 = \begin{pmatrix} -0.002117 \\ 0.00016 \\ 0.001957 \end{pmatrix}$ $\mathbf{W}_2 = \begin{pmatrix} -0.002117 \\ 0.00016 \\ 0.001957 \end{pmatrix}$
STEP 10: error $E \leftarrow E + \sum_{k=1}^K (r_k^o)^2 = 0.049$

STEP 1: Input vector (1,1,-1) desired output
$$d_1 = 0$$

STEP 2: $net_1^h = -0.003914$ $net_2^h = -0.003914$
STEP 3: $y_1 = 0.4990$ $y_2 = 0.4990$
STEP 4: $net_1^0 = 0.20155$
STEP 5: $o_1 = 0.5502$
STEP 6: $r_1^o = o_1(d_1 - o_1)(1 - o_1) = -0.1362$
STEP 7: $r_1^h = -0.00229$ $r_2^h = -0.00229$
STEP 8: $\mathbf{V}^T = \begin{pmatrix} -0.00078 \\ -0.00078 \\ 0.0017 \end{pmatrix}$
STEP 9: $\mathbf{W}_1 = \begin{pmatrix} -0.0044 \\ -0.00213 \\ 0.00427 \end{pmatrix}$ $\mathbf{W}_2 = \begin{pmatrix} -0.0044 \\ -0.00213 \\ 0.00427 \end{pmatrix}$
STEP 10: error $E \leftarrow E + \sum_{k=1}^K (r_k^o)^2 = 0.0676$

At end of 1st epoch,

if E < 0.00001 (or some other suitably small tolerance) then STOP training, otherwise reset E=0 and repeat for another epoch.

Since E = 0.0676 (> tolerance level), continue repeating epochs until error is below tolerance level.

.

