

fast pairings

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P,Q) to get overlap in orders!

Faster isogeny subroutines

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both P and Q have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p+1.

speedup: -75%

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p+1, e.g. full torsion points

A: take random, P,Q, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

A: take random, P, Q, then find $\zeta = e(P, Q)$. Verify order $\zeta \ge 4\sqrt{p}$.

speedup: +2% compared to Doliskani

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free