- 1. Let f be the function whose graph is given.
 - (a) Estimate the value of f(2).
 - (b) Estimate the values of x such that f(x) = 3.
 - (c) State the domain of f.
 - (d) State the range of f.
 - (e) On what interval is f increasing?
 - (f) Is f one-to-one? Explain.
 - (g) Is f even, odd, or neither even nor odd? Explain.

- **2.** The graphs of f and g are given.
 - (a) State the values of f(-4) and g(3).
 - (b) For what values of x is f(x) = g(x)?
 - (c) Estimate the solution of the equation f(x) = -1.
 - (d) On what interval is f decreasing?
 - (e) State the domain and range of f.
 - (f) State the domain and range of g.

FIGURE FOR PROBLEM I

- 1. The graph of a function f is given at the left.
 - (a) State the value of f(-1).
 - (b) Estimate the value of f(2).
 - (c) For what values of x is f(x) = 2?
 - (d) Estimate the values of x such that f(x) = 0.
 - (e) State the domain and range of f.
- 2. If $f(x) = x^3$, evaluate the difference quotient $\frac{f(2+h) f(2)}{h}$ and simplify your answer.
- 3. Find the domain of the function.

(a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$

(b)
$$g(x) = \frac{\sqrt[3]{x}}{x^2 + 1}$$

(a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$
 (b) $g(x) = \frac{\sqrt[3]{x}}{x^2+1}$ (c) $h(x) = \sqrt{4-x} + \sqrt{x^2-1}$

4. How are graphs of the functions obtained from the graph of f?

(a)
$$y = -f(x)$$

(b)
$$y = 2f(x) - 1$$

(c)
$$y = f(x - 3) + 2$$

5. Without using a calculator, make a rough sketch of the graph.

(a)
$$y = x^3$$

(b)
$$y = (x + 1)^{-1}$$

(b)
$$y = (x + 1)^3$$
 (c) $y = (x - 2)^3 + 3$
(e) $y = \sqrt{x}$ (f) $y = 2\sqrt{x}$

(a)
$$y = x$$

(b) $y = (x + 1)$
(c) $y = \sqrt{x}$
(d) $y = 4 - x^2$
(e) $y = \sqrt{x}$
(g) $y = -2^x$
(h) $y = 1 + x^{-1}$

(e)
$$v = \sqrt{x}$$

(f)
$$v = 2\sqrt{x}$$

(g)
$$y = -2^x$$

(h)
$$v = 1 + x^-$$

6. Let
$$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 0\\ 2x + 1 & \text{if } x > 0 \end{cases}$$

- (a) Evaluate f(-2) and f(1). (b) Sketch the graph of f.
- 7. If $f(x) = x^2 + 2x 1$ and g(x) = 2x 3, find each of the following functions.
 - (a) $f \circ q$
- (c) *q* ∘ *q* ∘ *q*

Use the given graphs of f and g to evaluate each expression, or explain why it is undefined.

- (a) f(g(2))
- (c) $(f \circ g)(0)$

- (d) $(g \circ f)(6)$
- (e) $(g \circ g)(-2)$
- (f) $(f \circ f)(4)$

Use the table to evaluate each expression. (b) g(f(1))

- (a) f(g(1))
- (c) f(f(1))

- (d) g(g(1)) (e) $(g \circ f)(3)$
- (f) $(f \circ g)(6)$

х	1	2	3	4	5	6
f(x)	3	1	4	2	2	5
g(x)	6	3	2	1	2	3

In Problems 29-36, sketch the graph by hand, using a graphing utility as an aid, and find the domain, range, and any points of discontinuity.

29.
$$f(x) = \begin{cases} x+1 & \text{if } -1 \le x < 0 \\ -x+1 & \text{if } 0 \le x \le 1 \end{cases}$$

30.
$$f(x) = \begin{cases} x & \text{if } -2 \le x < 1 \\ -x + 2 & \text{if } 1 \le x \le 2 \end{cases}$$

31.
$$f(x) = \begin{cases} -2 & \text{if } -3 \le x < -1 \\ 4 & \text{if } -1 < x \le 2 \end{cases}$$

32.
$$f(x) = \begin{cases} 1 & \text{if } -2 \le x < 2 \\ -3 & \text{if } 2 < x \le 5 \end{cases}$$

33.
$$f(x) = \begin{cases} x+2 & \text{if } x < -1 \\ x-2 & \text{if } x \ge -1 \end{cases}$$

34.
$$f(x) = \begin{cases} -1 - x & \text{if } x \le 2\\ 5 - x & \text{if } x > 2 \end{cases}$$

35.
$$g(x) = \begin{cases} x^2 + 1 & \text{if } x < 0 \\ -x^2 - 1 & \text{if } x > 0 \end{cases}$$