HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

PLANNING OPTIMIZATION

Introduction

ONE LOVE. ONE FUTURE.

- Maximize or minimize some function relative to some set (range of choices)
- The function represents the quality of the choice, indicating which is the "best"
- Example
 - A shipper need to find the shortest route to deliver packages to customers 1, 2, ..., N

0	3	1	6
3	0	2	4
1	2	0	5
6	4	5	0

0	3	4	2	5	6	8	7
3	0	3	6	7	2	1	6
4	3	0	4	7	1	1	9
2	6	4	0	2	8	3	4
5	7	7	2	0	6	5	1
6	8	1	8	6	0	9	3
8	1	1	3	5	9	0	2
7	6	9	4	1	3	2	0

- $x \in \mathbb{R}^n$: vector of decision variables $x_{j,i}$ for j = 1, 2, ..., n
- $f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $g_i: R^n \to R$ is the constraint function defining restriction on x, i = 1, 2, ..., m

minimize f(x) over $x = (x_1, x_2, ..., x_n) \in X \subset \mathbb{R}^n$ satisfying a property P:

$$g_i(x) \le b_i$$
, $i = 1, 2, ..., s$
 $g_i(x) = d_i$, $i = s + 1, 2, ..., m$

Example

min
$$f(x) = 3x_1 - 5x_2 + 10x_3$$

 $x_1 + x_2 + x_3 \le 10$
 $2x_1 + 4x_2 - 5x_3 = 9$ (Linear Program)
 $x_1, x_2 \in R^+, x_3 \in Z$

min
$$f(x) = 4x_1^2 + 3x_2^2 - 7x_1 x_3$$

 $x_1 + x_2^3 + 4x_3 \le 10$
 $2 x_1^2 + 4x_2 - 5x_3 = 7$ (Nonlinear Program)
 $x_1, x_2 \in R^+, x_3 \in Z$

- General optimization problems
 - Very difficult to solve
- Some special cases
 - Linear programming
 - Least square problem
 - Some shortest path problems on networks
 - Etc.

Classification

- Linear Programming (LP): f and g_i are linear
- Nonlinear Programming (NLP): some function f, g, are nonlinear
- Continuous optimization: f and g_i are continuous on an open set containing X, X is closed and convex
- Integer Programming (IP): $X \subseteq \{0,1\}^n$ or $X \subseteq Z^n$
- Constrained optimization: m > 0, $X \subset \mathbb{R}^n$
- Unconstrained optimization: $m = 0, X = R^n$

- Applications
 - Production Planning
 - Routing in transportation
 - Scheduling
 - Assignment
 - Packing
 - Time Tabling
 - Network designs
 - Machine learning
 - •

Production Planning

SKU	Chart	Demand
***		10000
		25000
		32000
		42500

Construction Planning

Task	Duration	Predecessors
1	30	6
2	20	1,4,8
3	15	6
4	25	5,6
5	20	1,6
6	45	
7	40	2,8
8	30	3,4

 Routing in transportation & logistics

Ħ n Routing in transportation & logistics Ħ Ħ Ħ n Ħ Ħ Ħ f Ħ Ħ n Ħ Ħ Ħ Ħ Ħ Ħ

• Routing in transportation & logistics

 How to make a route plan for delivering goods to customers from a central depot?

• Routing in transportation & logistics

 How to make a route plan for delivering goods to customers from a central depot?

- Routing in transportation & logistics
 - How to make a route plan for picking up items in a very large warehouse?

- Assignment
 - How to assign tasks to workers in an optimal way?

4		6		8
2	6		7	
	5			6
		1	4	
			6	3

- Packing
 - How to arrange items in a container in an optimal ways?

- Time Tabling
 - How to arrange courses into time slots?

Monday	Tuesday	Wednesday	Thursday	Friday
Data structure & Algorithms, TC-305	Python Programmin g, D9-302	Statistics, B1-203	Technical writing, B1- 202	Networkings , B1-404
Fundamenta I of optimization, B1-402 Machine learning, D6-302		Java advanced, B1-204	Image	
	J	Software engineering, D5-102	Operating systems, D9-101	processing, D6-303

- Machine learning
 - Prediction

X	Y
43	45
44	46
45	45
46	48
47	47
48	51
49	49
50	?

- Machine learning
 - Computer Vision

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!