

ANNUAL NATIONAL ASSESSMENT 2014 GRADE 9 MATHEMATICS

MEMORANDUM

This memorandum consists of 9 pages.

Important Information:

- This is a marking guideline. In instances where learners have used different but mathematically sound strategies to solve the problems they (learners) should be credited.
- Unless stated otherwise, learners who give a correct answer only, should be awarded full marks.
- Underline errors committed by learners and apply Consistent Accuracy (CA) marking.
- Do not penalise learners if units of measurement are omitted.

KEY				
M	Method mark			
CA	Consistent Accuracy mark			
Α	Accuracy mark			

QUESTION 1

1	1.1	D	1.2	С	1.3	В	1.4	Α	1.5	D	Give 1 mark for each correct answer.		
1.	1.6	С	1.7	С	1.8	D	1.9	В	1.10	D	Give i iliaik ioi each conect answer.	[10]	

2.1	$2,07 \times 10^{-7} \checkmark A$	Answer: 1 mark	(1)
2.2.1	$ \sqrt[3]{73 - (-3)^2} = \sqrt[3]{73 - 9} = \sqrt[3]{64} $	Calculation: 1 mark Answer: 1 mark (Answer only: 1 mark) (If the answer is a decimal number, no mark)	(2)
2.2.2	$\sqrt{100} < \sqrt{110} < \sqrt{121} \checkmark \mathbf{M}$ $10 < \sqrt{110} < 11 \checkmark \mathbf{A}$	$\sqrt{100}$ and $\sqrt{121}$: 1 mark Answer: 1 mark (Answer only: 1 mark)	(2)
2.2.3	$\frac{3\times 5^9}{5^7} = 3 \times 5^2 \checkmark \mathbf{M}$ $= 75 \checkmark \mathbf{CA}$	Applying exponential law: 1 mark Answer: 1 mark	(2)
2.3	$1,03 \times 10^{-2} + 3,8 \times 10^{-3}$ = 0,0103 + 0,0038 \checkmark M = 0,0141 \checkmark CA	(Answer only: 1 mark) Simplification: 1 mark Answer: 1 mark (Answer only: 1 mark) or	
	$= 10^{-2}(1,03 + 0,38) \checkmark \mathbf{M}$ $= 10^{-2}(1,41)$ $= 0,0141 \checkmark \mathbf{CA}$ or $= 10^{-3}(10,3 + 3,8) \checkmark \mathbf{M}$ $= 10^{-3}(14,1)$ $= 0,0141 \checkmark \mathbf{CA}$	Taking out common factor: 1 mark Answer: 1 mark (Answer only: 1 mark)	(2)
			[9]

$=5x+10 \checkmark CA$	1 mark	
or	or	
$ = (x + 2)(2(x + 2) - (2x - 1)) \checkmark M $ $ = (x + 2)(2x + 4 - 2x + 1) \checkmark M $ $ = (x + 2)(5) \text{ or } 5x + 10 \checkmark CA $ Taking out common factor (x) $ 2(x + 2) - (2x - 1) $ Simplification: Answer:	1 mark 1 mark 1 mark	(4)
3.2 $\frac{15x^{2}y^{3} + 9x^{2}y^{3}}{8x^{2}y^{3}} = \frac{24x^{2}y^{3}}{8x^{2}y^{3}} \checkmark \mathbf{M}$ $= 3 \checkmark \mathbf{CA}$ or $\frac{15x^{2}y^{3} + 9x^{2}y^{3}}{8x^{2}y^{3}} + \frac{9x^{2}y^{3}}{8x^{2}y^{3}}$ Simplification: $= \frac{15}{8} + \frac{9}{8} \checkmark \mathbf{M}$ $= \frac{24}{8}$ $= 3 \checkmark \mathbf{CA}$	1 mark	(2)
3.3 $\frac{x^2 - 4x}{x^2 - 2x - 8} = \frac{x(x - 4)}{(x - 4)(x + 2)} \checkmark M$ $= \frac{x}{x + 2} \checkmark CA$ $(x - 4)(x + 2)$ $= \frac{x}{x + 2}$	1 mark 1 mark	(3)
3.4 $\frac{x^2}{2} + \frac{2x^2}{3} - \frac{7x^2}{6}$ $= \frac{3x^2 + 4x^2 - 7x^2}{6}$ $= \frac{0}{6}$ $= 0 \checkmark CA$ $3x^2 + 4x^2 - 7x^2$ Common denominator 6: Answer: (If the expression is treated equation, no mark i.e. ×	1 mark 1 mark 1 as an	
or	or	
$\frac{x^2}{2} + \frac{2x^2}{3} - \frac{7x^2}{6}$ $= \frac{3x^2}{6} + \frac{4x^2}{6} - \frac{7x^2}{6} \checkmark \checkmark M$ Common denominator: 2 Answer: $= \frac{0}{6}$ $= 0 \checkmark CA$ (If the expression is treated equation, no mark i.e ×	1 mark d as an	(3)
$3.5 \qquad \frac{6x^2}{7xy} \times \frac{3y^3}{2x}$ $= \frac{9y^2}{7} \checkmark \checkmark A$ $9y^2$	1 mark	
$ = \frac{1}{7} \checkmark \checkmark A $ 7:	1 mark	
or	or	
	1 mark 1 mark	(2)
]	[14]

4.1	$3x^{2}y - 9xy^{2} + 12x^{3}y^{3}$ $= 3xy(x - 3y + 4x^{2}y^{2}) \checkmark \checkmark A$	$3xy: 1 \text{ mark}$ $x - 3y + 4x^2y^2: 1 \text{ mark}$	(2)
4.2	$2(x+y) - t(x+y)$ $= (x+y)(2-t) \checkmark \checkmark \mathbf{A}$	(x + y): 1 mark $(2 - t)$: 1 mark	(2)
4.3	$4x^{2} - y^{2}$ = $(2x - y)(2x + y) \checkmark \land A \text{ or } (2x + y)(2x - y) \checkmark \checkmark A$	(2x - y): 1 mark $(2x + y): 1 mark$	(2)
4.4	$x^2 - 11x + 18$ = $(x - 9)(x - 2))\checkmark\checkmark$ A or $(x - 2)(x - 9)\checkmark\checkmark$ A	(x-9): 1 mark $(x-2)$: 1 mark	(2)
			[8]

5.1	$(x-2)^{2} + 3x - 2 = (x+3)^{2}$ $x^{2} - 4x + 4 + 3x - 2 = x^{2} + 6x + 9 \checkmark \checkmark \mathbf{M}$ $x^{2} - x + 2 = x^{2} + 6x + 9$ $-7x = 7 \checkmark$ $x = -1 \checkmark \mathbf{CA}$	$x^2 - 4x + 4$: 1 mark $x^2 + 6x + 9$: 1 mark Simplification: 1 mark Answer: 1 mark	(4)
5.2	$x^{2} - 5x - 6 = 0$ (x - 6)(x + 1) = 0 M or $(x + 1)(x - 6) = 0$ M x - 6 = 0 or $x + 1 = 0$ $(x + 1) = 0$ or $(x - 6) = 0x = 6$ or $x = -1$ CA $x = -1$ or $x = 6$ CA	Factors: 1 mark	
	x = 6 or x = -1 or x = 6 or	Both answers: 1 mark	(2)
5.3	$\frac{x+2}{3} - \frac{x-3}{4} = 0$ × by 12: $4(x+2) - 3(x-3) = 0 \checkmark \mathbf{M}$ $4x + 8 - 3x + 9 = 0 \checkmark \mathbf{M}$ $x = -17 \checkmark \mathbf{CA}$	Multiplying by LCD: 1 mark Simplification: 1 mark Answer: 1 mark	(3)
			[9]

6.1	Position in the sequence (n)	1	2	3	4	5	
	Term (T_n)	1	8	27	<u>64</u> √A	<u>125</u> √	4
							(2)
6.2	$T_n = n^3 \checkmark \mathbf{A}$				Ans	wer: 1 mark	(1)
6.3	$T_n = 512$ $n^3 = 512 \checkmark M$ $n^3 = 8^3 \text{ or } n = \sqrt[3]{512}$ $\therefore n = 8 \checkmark A$				Ans (If $T_n \neq n^3$	ion : 1 mark wer: 1 mark 1 mark for n from 6.2)	(2)
							[5]

QUESTION 7

7.1.	$Gradient = \frac{\mathit{change}\mathit{in}\mathit{y}\mathit{value}}{\mathit{change}\mathit{in}\mathit{x}\mathit{value}} \checkmark \mathbf{M}$	Formula: 1 mark	
	$= \frac{5-0}{0-1} \checkmark \mathbf{M}$ $= \frac{5}{-1}$ $= -5 \checkmark \mathbf{A}$	Substitution : 1 mark Answer: 1 mark Answer only: 3 marks	(3)
7. 2	$y = -5x + 5 \checkmark CA$	—5: 1 mark +5: 1 mark	(2)
7.3	Gradient = −5 (parallel lines have equal gradients) ✓ CA	Answer: 1 mark	(1)
			[6]

$= (240 - 36) kg \checkmark \mathbf{A}$ $= 204 kg \checkmark \mathbf{A}$ $= 204 kg \checkmark \mathbf{A}$ $= (240 - 36) kg \checkmark \mathbf{A}$ $= (240 - 36) kg \checkmark \mathbf{A}$ $= (240 - 36) kg \checkmark \mathbf{A}$	36: 1 mark Answer: 1 mark or \[\frac{17}{20} : 1 \text{ mark} \]	
ecreased mass = 85% of 240 kg = $\left(\frac{17}{20} \times 240\right) kg \checkmark \mathbf{A}$	or	-
ecreased mass = 85% of 240 kg = $\left(\frac{17}{20} \times 240\right) kg \checkmark \mathbf{A}$		-
$= \left(\frac{17}{20} \times 240\right) kg \checkmark \mathbf{A}$	17: 1 mark	
	$\frac{17}{20}$: 1 mark	
		1
$= 204 \ kg \checkmark A$	Answer: 1 mark	(2)
Number of litres= $\frac{420 \text{ km}}{12 \text{ km}/l} \checkmark \text{CA}$	420 km/1: 1 mark	
= 35 √ A	Answer: 1 mark	(2)
umber of boys: number of girls : total number	_	
	$\frac{5}{11}$: 1 mark	
umber of boys = $\frac{3}{11} \checkmark \mathbf{A} \times 44 \checkmark \mathbf{M}$ = $20 \checkmark \mathbf{A}$	× 44: 1 mark Answer: 1 mark	(3)
u	simber of boys: number of girls: total number $5:6:11$ simber of boys $=\frac{5}{11}\checkmark \mathbf{A} \times 44\checkmark \mathbf{M}$	Answer: 1 mark Timber of boys: number of girls: total number $5:6:11$ Timber of boys = $\frac{5}{11}$ \(\text{A} \times 44 \times M \) Timber of boys = $\frac{5}{11}$ \(\text{A} \times 44 \times M \)

8.4	Neither direct nor indirect proportion. ✓ A	Neither direct nor indirect proportion: 1 mark	
	Reason: Area \neq a constant x length and Area x length \neq a constant. \checkmark	Reason: 1 mark	
	g	Note:	
		Direct proportion	
		with explanation (as the side of the square increases the area	
		increases): 1 mark	
		(If answer is indirect proportion,	(2)
	Day 4	no mark)	(2)
8.5	$SI = \frac{P.n.r}{100} \checkmark M$	Formula: 1 mark	
	Process No.	Substitution S1: 1 mark	
	$R840 = \frac{R4\ 000(n)(3)}{100} \checkmark \checkmark \checkmark M$		
	$84\ 000 = 12\ 000n\ \checkmark M$	Substitution P: 1 mark	
	84 000	Substitution r: 1 mark	
	$n = \frac{84000}{12000}$		
	$n = 7 \checkmark A$	Calculation: 1 mark	
	Number of years= 7	Answer: 1 mark	
	or	or	
	A = P + SI	R 4840 : 1 mark	
	$A = R 4840 \checkmark \mathbf{A}$		
	$A = P(1+ni) \checkmark \mathbf{M}$		
	$R4\ 840 = R4\ 000(1 + n\left(\frac{3}{100}\right)) \checkmark \checkmark M$	Formula: 1 mark	
	R4840 = R4000(1 + n(0,003))	Substitution P: 1 mark	
	$R4\ 840 = R4\ 000 + R120n \checkmark \mathbf{M}$ 120n = 840	Substitution r : 1 mark	
	$n = 7 \checkmark \mathbf{CA}$	Calculation: 1 mark	
	Number of years= 7	Answer: 1 mark	(6)
8.6	$A = P(1+i)^n \checkmark M$	Formula: 1 mark	
	$= R600(1+0.06)^2 \checkmark \checkmark M$		
	$= R600(1,06)^2$	Substitution P : 1 mark	
	$= R674,16\checkmark \mathbf{A}$	Substitution $i = 0.06$: 1 mark	
		Answer: 1 mark	(4)
			[19]

9.1.1	$\widehat{D} + \widehat{F} = 90^{\circ} \text{ or their sum is } 90^{\circ} \checkmark A$	Answer: 1 mark	(1)
9.1.2	180° √ A	Answer: 1 mark	(1)
9.1.3	360° ✓A	Answer: 1 mark	(1)
9.1.4	parallel ✓ A	Answer: 1 mark	(1)
9.1.5	equal √ A	Answer: 1 mark	(1)

9.2				
	Statement	Reason		
	$\hat{B}_1 = \hat{C}_1 = 65^{\circ}$	corr. ∠s and AB TC ✓ A	Correct statement : ½ mark Reason: ½ mark	
	$\hat{\mathcal{C}}_2 = \hat{A} = 43^{\circ}$	alt. ∠s and AB TC ✓ A	Correct statement : ½ mark Reason: ½ mark Correct statement : ½ mark	
	$\hat{B}_2 = 180^{\circ} - 65^{\circ}$ $= 115^{\circ}$	∠s on a str. line or adj. suppl. ∠s ✓ A	Reason: ½ mark	(3)
9.3				
	Statement	Reason		
	$\hat{B} = \hat{C} = x$	∠s opp. equal sides of ∆ ✓ A	Correct statement : ½ mark Reason: ½ mark	
	$\hat{A} + \hat{B} + \hat{C} = 180^{\circ}$	sum of $\angle s$ of $\Delta = 180^{\circ}$	Correct statement : ½ mark	
	$\hat{A} + 2x = 180^{\circ}$ $\hat{A} = 180^{\circ} - 2x$	✓A	Reason: ½ mark	
	11 100 200		Substitution: ½ mark	
			Answer: ½ mark	(3)
				[11]

10.1				
10.1	Statement	Reason		
	$\Delta DEF \equiv \Delta PQR \checkmark \mathbf{A}$	s∠ <i>s</i> √ A	Correct statement : 1 mark Reason: 1 mark	(2)
10.2				
10.2	Statement	Reason		
	In ΔMNT and ΔMNP			
	$MT = MP \checkmark \mathbf{A}$	equal radii √ A	Correct statement : 1 mark Reason: 1 mark	
	$MN = MN \checkmark A$	common	Correct statement : 1 mark	
	$\widehat{N}_1 = \widehat{N}_2 = 90^{\circ} \checkmark \mathbf{A}$	given or MN ⊥ PT ✓ A	Correct statement : 1 mark Reason: 1 mark	
	$\therefore \Delta MNT \equiv \Delta MNP \checkmark \mathbf{A}$	90° hyp. s ✓ A	Correct statement : 1 mark Reason: 1 mark	
	$\therefore PN = NT$	corr. sides of congruent Δs or Δs are congruent \checkmark A	Reason: 1 mark	(8)

Statement	Reason	
In ΔMPN and ΔMTN		
$\hat{P} = \hat{T} \checkmark \mathbf{A}$	∠s opp. equal radii ✓ A	Correct statement : 1 mar Reason: 1 mar
$\widehat{N}_1 = \widehat{N}_2 = 90^{\circ} \checkmark \mathbf{A}$	given or MN ⊥ PT ✓ A	Correct statement : 1 mar
$MN = MN \checkmark A$	common	Reason: 1 mar
		Correct statement : 1 mar
$\therefore \Delta MPN \equiv \Delta MTN \checkmark \mathbf{A}$	∠ ∠ s √ A	Correct statement : 1 mar
$\therefore PN = NT$	corr. sides of congruent Δs or	Reason: 1 mar
	Δs are congruent ✓ A	Reason: 1 mar

10.3.1				
10.5.1	Statement	Reason		
	BF = CE	given ✓ A	Correct statement : ½ mark Reason: ½ mark	
	$BF + FC = CE + FC \checkmark A$		Adding FC on both sides : 1 mark	(2)
	$\therefore BC = EF$			
10.3.2				
	Statement	Reason		
	In $\triangle ABC$ and $\triangle DEF$			
	AC = DF	given ✓ A	Correct statement : ½ mark Reason: ½ mark	
	AB = DE	given ✓ A	Correct statement : ½ mark Reason: ½ mark	
	BC = EF	proved ✓ A	Correct statement : ½ mark Reason: ½ mark Correct statement : 1 mark	
	$\therefore \Delta ABC \equiv \Delta DEF \checkmark \mathbf{A}$	sss ✓ A	Reason: 1 mark	(5)
10.3.3				
	Statement	Reason		
		corr. $\angle s$ of congruent Δs or $\triangle ABC \equiv \triangle DEF \checkmark \mathbf{A}$	Correct reason:1 mark	(1)

10.3.4				
	Statement	Reason		
	<i>AB</i> ∥ <i>ED</i> ✓ A	corr. ∠s are equal ✓ A	Correct statement : 1 mark	
	Accept		Reason: 1 mark	
	$AB = ED \checkmark \mathbf{A}$	given ✓ A		(2)
10.4.1				
	Statement	Reason		
	In $\triangle ABD$ and $\triangle ACE$			
	$\hat{A} = \hat{A} \checkmark \mathbf{A}$	common √ A	Correct statement : 1 mark Reason: 1 mark	
	$\hat{B} = \hat{C} \checkmark \mathbf{A}$	given √ A	Correct statement : 1 mark	
	$\widehat{D}_1=\widehat{E}_1$	sum of . $\angle s$ of $\Delta = 180$	Reason: 1 mark	
	Δ <i>ABD</i> Δ <i>ACE</i> ✓ A	∠∠∠ √ A	Correct statement : 1 mark Reason: 1 mark	(6)
10.4.2	Statement	Reason		
	$\frac{AB}{AC} = \frac{BD}{CE} = \frac{AD}{AE} \checkmark \mathbf{A}$	proportional sides of similar Δs ✓ A	Correct statement : 1 mark	
	$\frac{BD}{21} = \frac{9}{7} \checkmark M$		Reason: 1 mark Substituting $CE = 21$, AD = 9, $AE = 7$: 1 mark	
	$BD = \frac{9(21)}{7} \ cm \checkmark \mathbf{M}$		Making BD subject of	
	BD = 27 cm ✓ A		formula: 1 mark Answer: 1 mark	(5)
		<u> </u>		[31]
				1

11.1	In $\triangle ABT$: $AB^2 = AT^2 + BT^2 \checkmark \mathbf{M}$ $(5)^2 = AT^2 + (3)^2$	Pythagoras	Formula/substitution: 1 mark	
	$25 = AT^{2} + 9$ $AT^{2} = 16 cm^{2} \checkmark \mathbf{A}$ $AT = 4 cm \checkmark \mathbf{A}$		Calculations: 1 mark Answer: 1 mark	
	or		or	
	In Δ <i>ABT</i> :		Formula/substitution: 1 mark	
	$AT^{2} = AB^{2} - BT^{2} \checkmark \mathbf{M}$ $= (25 - 9) cm^{2}$ $= 16 cm^{2} \checkmark \mathbf{A}$ $AT = 4 cm \checkmark \mathbf{A}$	Pythagoras	Calculations: 1 mark Answer: 1 mark	(3)

11.2.1	Perimeter of ADCT= $(4 + 12 + 5 + 9) cm$		CA from 11.1	
	= 30 cm √CA		Answer: 1 mark	(1)
11.2.2	Area of ADCT $= \frac{(AD+TC)\times AT}{2} \checkmark \mathbf{M}$ $= \frac{(12+9)\times 4}{2} cm^{2} \checkmark \mathbf{M}$ $= 42 cm^{2} \checkmark \mathbf{CA}$	Area of ADCT $= \frac{1}{2} \text{ (sum of parallel sides)} \times \text{ height}$ $\checkmark \mathbf{M}$ $= \frac{(12+9)\times 4}{2} cm^2 \checkmark \mathbf{M}$ $= 42 cm^2 \checkmark \mathbf{CA}$	CA from 11.2.1 Formula: 1 mark Substitution: 1 mark Answer: 1 mark	
		= 42 cm		(3)
11.3	$2\pi r = 52 \text{ cm} \checkmark \mathbf{M}$ $\pi r = 26 \text{ cm}$ $r = 8,276 \dots \text{cm or } r = \frac{26}{\pi} \text{ c}$ Area = $\pi r^2 \checkmark \mathbf{M}$ = 215,1774 cm^2 $\approx 215,18 \text{ cm}^2 \checkmark \mathbf{CA}$	m ✓ A	Formula/substitution: 1 mark Answer: 1 mark Formula/substitution: 1 mark Rounded off answer: 1 mark If r is rounded off maximum: 3 marks Accept 215,29 or 215,09	(4)
11.4	k = 2 √A			(1)
				[12]

12.1	$x = \left(\sqrt{8} + \sqrt{2}\right)^2$		
	$=(\sqrt{8})^2 + 2\sqrt{8}\sqrt{2} + (\sqrt{2})^2 \checkmark M$	Squaring a binomial: 1 mark	
	= 8 + 8 + 2 ✓ M	Squaring a binomial. I mark	
	= 18 √CA	Simplifying: 1 mark	
	- 10 · G /(Answer: 1 mark	
		(Answer only: 1 mark)	
	or	or	
	$x = \left(\sqrt{8} + \sqrt{2}\right)^2$		
	$x = \left(2\sqrt{2} + \sqrt{2}\right)^2 \checkmark \mathbf{M}$	Simplifying: 1 mark	
	$x = \left(3\sqrt{2}\right)^2 \checkmark M$	Simplifying: 1 mark	
	$x = 18 \checkmark CA$	Answer: 1 mark	
	x = 10 * GA	(Answer only: 1 mark)	
			(3)
12.2	$\sqrt{\frac{1}{\sqrt{x}}} = 3$ $\frac{1}{\sqrt{x}} = 9 \checkmark M$ $\frac{1}{x} = 81 \checkmark M$	Cauaring both sides, 1 mark	
	$\sqrt{\sqrt{x}}$	Squaring both sides: 1 mark	
	$\frac{1}{\sqrt{x}} = 9 \checkmark M$	$\frac{1}{x} = 81:1 \text{ mark}$	
	$\frac{1}{2} = 81 \checkmark M$	Answer: 1 mark	
	$x = \frac{1}{24} \checkmark CA$	(Answer only: 1 mark)	
	$x = \frac{1}{81}$		
	or	or	
	1 _ 2	Squaring both sides: 1 mark	
	$\sqrt{\frac{1}{\sqrt{x}}} = 3$ $\frac{1}{\sqrt{x}} = 9 \checkmark M$	$x^{-\frac{1}{4}} = 3$: 1 mark	
	$\frac{1}{\sqrt{2}} = 9 \checkmark M$	$x = \frac{1}{81}$: 1 mark	
	$x^{\frac{\sqrt{x}}{4}} = 3 \checkmark \mathbf{M}$	81. Tillark	
		(Answer only: 1 mark)	
	$x = 3^{-4}$	(Aliswei Ully, I Illark)	(3)
	$x = \frac{1}{81} \checkmark CA$		
			[6]
		Tata	I. 110

Total: 140