Medical Inventory Optimization

Name: Bhavitha Katari

Contents

- Business Objective
- Business Constraints
- Project Architecture
- Data Collection
- Exploratory Data Analysis
- Data Visualization

Business Problem

Business Problem: Bounce rate is increasing significantly leading to patient dissatisfaction

Business Objective: minimize bounce rate

Business Constraint: Minimize inventory cost

Success Criteria:

Business Success Criteria: Reduce bounce rate by at least 30%

• Economic Success Criteria: Increase revenue by at least 20 lacs INR by reducing bounce rate

Project Overview and Scope

- Medical Inventory experience increased bounce rate. This project aim is to minimize the bounce rate and Maximize the Inventory cost.
- This Project reduce bounce rate by at least 30% and Increase revenue by at least 20 lacs INR by reducing bounce rate
- Project scope:
 - Perform EDA and Descriptive Analytics to identify the necessary reasons for increased bounce rate
 - Share the results with stake holders

Data Dictionary

- Data Dictionary contains :
 - Numerical variable:
 - Quantity: quantity of purchase
 - Return Quantity: Quantity of Return products
 - Final_Cost: Total Cost of items
 - Final_sales: Total sales of each items
 - Charactergorical variables:
 - Typeofsales: contains 2 values Sales and Return
 - Patient_id: contains patient id information
 - Specialisation: contains specialisation information
 - Dept: contain Department information
 - Dateofbill: contains bill purchase date
 - DrugName: contains name of the Drugs
 - SubCat: contains subcategory which Drugs comes under
 - Subcat1: contains another subcategory which Drugs comes under
 - Formulation: contains formulation information

Exploratory Data Analysis [EDA]

Statistical Insights		
	Quantity	Final_Sales
count	14218.000000	14218.000000
Mean	2.231748	234.038300
Std	5.132043	671.261572
Min	0	0
25%	1.000000	47.815000
50%	1.000000	86.424000
75%	2.000000	181.000000
Max	150.000000	39490.000000

Business Insights

- From Sub category Injections, tablets and IV fuilds, electrolytes, TPN has highest number of returns
- Department 1 has highest average returns and specialization41 has highest average sales
- Department 1 contains highest average sales in department compared to other two departments
- Form1 has more return quantity , form3 has lowest return quantities
- In sales we can see dec month has highest sales compared to other months

Data Preprocessing

- Data Contains total of 14218 rows in 14 columns
- Column Formulation, DrugName, SubCat, SubCat1 contains null values.
- Formulation column contains total of 653 null values.
- DrugName column contains total of 1668 null values
- SubCat column contains total of 1668 null values
- SubCat1 column contains total of 1692 null values
- Replacing null values with NA. So the sum will remain same
- We can see some inconsistency in date format, so I replace the date format uniformly and change the m/d/y format to d/m/y
- I also add new column month to dataframe by extracting month from date so we can do some analysis on month column

Data Visualization

