Active Linear Regression for \mathcal{C}_p Norms and Beyond

Taisuke Yasuda CMU

based on work with

Cameron Musco UMass Amherst

Christopher Musco NYU

David P. Woodruff
CMU

Active Learning

- Oftentimes, *largest bottleneck* in machine learning applications is the *collection of labels*
- Active learning aims to minimize the number of label entries read
- Most basic question in active learning: active linear regression

Image from Ai, Tao, et al. "Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases." Radiology (2020).

Active ℓ_p Linear Regression

Problem Setting

$$\mathcal{E}_p \text{ norm: } ||y||_p = \left(\sum_{i=1}^n |y_i|^p\right)^{1/p}$$

- Given:
 - Design matrix $A \in \mathbb{R}^{n \times d}$ with n examples and d features
 - Query access to label vector $b \in \mathbb{R}^n$
- Output:
 - Coefficient vector $\hat{x} \in \mathbb{R}^d$ such that $||A\hat{x} b||_p^p \le (1 + \varepsilon) \min_{x \in \mathbb{R}^d} ||Ax b||_p^p$

Active ℓ_p Linear Regression

Prior Work

	Query Complexity	Work
p = 2	$\Theta\left(\frac{d}{\varepsilon}\right)$	[Chen, Price 2019]
p = 1	$\tilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$	[Chen, Derezinski 2021] [Parulekar, Parulekar, Price 2021]
1 < p < 2	$\tilde{O}\left(\frac{d^2}{arepsilon^2}\right)$	[Chen, Derezinski 2021]
1 < p < 2	$\tilde{\Theta}\left(\frac{d}{\varepsilon}\right)$	[Musco, Musco, Woodruff, Y 2022]
p > 2	$\tilde{O}\left(\frac{d^{p/2}}{\varepsilon^p}\right), \Omega\left(d^{p/2} + \frac{1}{\varepsilon^{p-1}}\right)$	[Musco, Musco, Woodruff, Y 2022]
0 < p < 1	$\tilde{\Theta}\left(\frac{d}{\varepsilon^2}\right)$	[Musco, Musco, Woodruff, Y 2022]

Beyond \mathcal{C}_p Norms

Our Results

$$\mathscr{E}_p \text{ loss: } \frac{d}{\varepsilon}$$

Huber loss:
$$\frac{d^{4-2\sqrt{2}}}{\text{poly}(\varepsilon)} < \frac{d^{1.172}}{\text{poly}(\varepsilon)}$$

Tukey loss:
$$\frac{d^2}{\text{poly}(\varepsilon)}$$

Applications of Our Techniques

- Sparsification for *M*-estimators, Orlicz norms
- Sparsification for the Huber loss, γ functions
- Kronecker product regression
- Robust subspace approximation

•

Proof Sketch, 1

Plan for the Proof

- Part 1: $\tilde{O}\left(\frac{d}{\varepsilon^2}\right)$ bound for 1
 - Sensitivity sampling + partitions by sensitivity
- Part 2: $\tilde{O}\left(\frac{d}{\varepsilon}\right)$ bound for 1
 - Strong convexity + iteration

High-Level Algorithmic Approach

- Step 1: Select important training examples
- Step 2: Read the labels corresponding to important training examples
- Step 3: Solve the smaller problem

Sensitivity Sampling

How to select important training examples

- *SA* should approximate *A*: $||SAx||_p^p = (1 \pm \varepsilon)||Ax||_p^p$ for all $x \in \mathbb{R}^d$
- Sampling each row proportionally to its sensitivity can get this!

$$\sigma_i(A) := \sup_{x} \frac{\left| \langle a_i, x \rangle \right|^p}{\|Ax\|_p^p}$$

Sensitivity Score: Largest fraction of ℓ_p norm captured by the ith coordinate

• Key fact:
$$\sum_{i=1}^{n} \sigma_i(A) \le d$$
 Not too many rows can be too important

Problem: b is not a column of $A \rightarrow$ sensitivities of A do not capture large entries of b!

Partitions by Sensitivity

Labels that are too large are not important!

Part 1 Summary

- Sensitivity sampling: selecting important rows of *A*
 - Problem: this preserves ℓ_p norm objective for Ax, but not for Ax b!
- Partitions by sensitivity: ignoring large entries
 - If b_i is much larger than σ_i , then it cannot affect near-optimal solutions
 - ullet For the purpose of analysis, we can zero out such b_i
 - Sensitivity sampling argument goes through!
- Optimized chaining argument $\rightarrow \tilde{O}(d/\varepsilon^2)$ bound

Can we do better?

Ideas for Optimizing the Argument

- First obtain a $\sqrt{\varepsilon}$ -approx. soln. in $\tilde{O}(d/\varepsilon)$ queries
- The ℓ_p loss is *strongly convex* for $p \in (1,2)$
 - If x is nearly optimal, then x is close to x^*
- If x and x^* are close, then we can prove an improved bound on the sensitivity sampling approximation
- Iterate!

Ideas for Optimizing the Argument

Accuracy Boosting

Lemma. If a $(1 + \varepsilon)$ approximation can be obtained by making d/ε^{β} queries, then a $(1 + \varepsilon)$ approximation can be obtained by making $d/\varepsilon^{\frac{2\beta}{1+\beta}}$ queries.

Recurrence:
$$\beta_1 = 2$$
 (by Part 1)
$$\beta_{i+1} = \frac{2\beta_i}{1 + \beta_i}$$

$$\beta_i = 1 + \frac{1}{2^i - 1}$$

 $\beta_i \to 1$, so we get an algorithm with $\tilde{O}(d/\varepsilon)$ queries!

Conclusion

- We study *active* ℓ_p *linear regression*, in which the number of queries to the target vector is minimized
- ullet We give an algorithm based on *sensitivity sampling and partitions by sensitivity* which achieves optimal dependence on d
- For $1 , we achieve optimal dependence on <math>\varepsilon$ by a *strong convexity and iteration argument*

