FUNDAMENTAL HOMOMORPHISM

重345层空间

(基础同态定理)

fundermental. 2, promonop

ZHANG YANMEI

ymzhang@bupt.edu.cn

COLLEGE OF COMPUTER SCIENCE & TECHNOLOGY

BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS

THEOREM NATURAL HOMOMORPHISM(自然同态)。

- Let
 - R be a congruence relation on a groupoid (G, *),
 - $(G/R, \otimes)$ be the corresponding quotient groupoid.
- Then the function $f_R: G \rightarrow G/R$ defined by

$$f_R(a) = [a]$$

is an onto homomorphism, called the *natural* homomorphism.

THEOREM - PROOF

- If $[a] \in G/R$, then
 - $f_R(a) = [a],$
 - so f_R is an onto function.
- if a and b are elements of G, then
 - $f_R(a*b) = [a*b] = [a] \otimes [b] = f_R(a) \otimes f_R(b)$
- so f_R is a homomorphism.

G is natual homomorphic to G/R

FUNDAMENTAL HOMOMORPHISM THEOREM

- Let
 - $f: G \to G'$ be a homomorphism of the groupoid (G, *) onto the groupoid (G', *').
 - R be the relation on G defined by
 - a R b if and only if f(a) = f(b), for a and b in S.
- Then
 - R is a congruence relation.
 - (G', *') and the quotient semigroup $(G/R, \otimes)$ are isomorphic.

G is onto homomorphic to G', R: aRb iff f(a)=f(b), then $G' \cong G/R$.

PROOF(1)

- R is an equivalence relation
 - $\blacksquare a \ R \ a \ \text{for every } a \in G, \ \text{since } f(a) = f(a).$
 - if a R b, then f(a) = f(b), so b R a.
 - if a R b and b R c,
 - f(a) = f(b) and f(b) = f(c),
 - so f(a) = f(c) and a R c.
 - Hence *R* is an equivalence relation.

PROOF(2)

- R is a congruence relation.
 - Suppose that $a R a_1$ and $b R b_1$.
 - $f(a) = f(a_1)$ and $f(b) = f(b_1)$.
 - $f(a*b) = f(a)*'f(b) = f(a_1)*'f(b_1) = f(a_1*b_1)$, since f is a homomorphism,
 - Hence $(a*b) R (a_1*b_1)$.

PROOF(3)

- Define a relation $f = \{([a], f(a)) \mid [a] \in G/R\}$ from G/R to G', then
 - \overline{f} is a function.
 - Suppose that [a] = [a'].
 - a R a', so f(a) = f(a'), which implies that \overline{f} is a function.
 - write \overline{f} : $G/R \to G'$, where $\overline{f}([a]) = f(a)$ for $[a] \in G/R$.

$$\bullet \overline{f} ([a] \otimes [b])$$

$$\blacksquare = \overline{f} ([a*b])$$

$$= f(a*b)$$

$$= f(a) *' f(b)$$

$$= \overline{f}([a]) *' \overline{f}([b]).$$

• Q.E.D.

1

PROOF(5)

- f is one to one.
 - Suppose that $\overline{f}([a]) = \overline{f}([a'])$.
 - f(a) = f(a'), so a R a', which implies that [a] = [a'].
 - Hence \overline{f} is one to one.
- \overline{f} is onto.
 - Suppose that $b \in T$.
 - f(a) = b for some element a in S, since f is onto,
 - $\overline{f}([a]) = f(a) = b$, so \overline{f} is onto.

- Theorem 4(b) can be described by the diagram above
 - f_R is the natural homomorphism.
- It follows from the definitions of f_R and \overline{f} that

$$\bullet f \otimes f_{\mathbf{R}} = f$$

since

$$\bullet (\overline{f} \otimes f_R)(a) = \overline{f}(f_R(a)) = \overline{f}([a]) = f(a).$$

DEFINITION (NORMAL SUBGROUP)

- Let
 - H be a subgroup of a group G
 - $a \in G$
- The *left and right coset*(左陪集,右陪集) of *H* in *G* determined by *a* is the set
 - $\bullet aH = \{ah \mid h \in H\}$
 - $Ha = \{ha \mid h \in H\}$
- A subgroup H of G is normal (正规子群) if
 - aH = Ha, for all a in G

WARNING

- If Ha = aH, it does not follow that, for $h \in H$ and $a \in G$, ha = ah.
- But ha = ah', where h' is some element in H.

Note

- If *H* is a subgroup of *G*, we shall need in some applications to compute all the left cosets of *H* in *G*.
 - First, suppose that $a \in H$. Then $aH \subseteq H$, since H is a subgroup of G;
 - Moreover, if $h \in H$, then h = ah', where $h' = a^{-1}h \in H$, so that $H \subseteq aH$.
 - Thus, if $a \in H$, then aH = H.

*	f_1	f_2	f_3	g_1	g_2	g_3
$\overline{f_1}$	f_1	f_2	f_3	g_1	$egin{array}{c} g_2 \ g_1 \ g_3 \ f_2 \ f_3 \ \end{array}$	g_3
f_2	f_2	f_3	f_1	g_3	g_1	g_2
f_3	f_3	f_1	f_2	g_2	g_3	g_1
g_1	g_1	g_2	g_3	f_1	f_2	f_3
g_2	g_2	g_3	g_1	f_3	f_1	f_2
$\boldsymbol{\varrho}_{2}$	$\boldsymbol{\varrho}_{2}$	$\boldsymbol{\varrho}_{\star}$	$\boldsymbol{\varrho}_{\boldsymbol{\gamma}}$	f_{\circ}	f_{2}	f_{1}

- Let
 - G be the symmetric group S_3 .
 - The subset $H = \{f_1, g_2\}$ is a subgroup of G.
- Compute all the distinct left cosets of *H* in *G*.

Solution: $H = \{f_1, g_2\}$

- Solution
 - If $a \in H$, then aH = H. Thus

•
$$f_1 H = g_2 H = H$$
.

$$f_2H = \{f_2, g_1\}$$

$$f_3H = \{f_3, g_3\}$$

$$g_1H = \{g_1, f_2\} = f_2H$$

$$g_3H = \{g_3, f_3\} = f_3H$$

- The distinct left cosets of *H* in *G* are
 - H, f_2H , and f_3H .

*	f_1	f_2	f_3	g_1	g_2	g_3
$\overline{f_1}$	f_1	f_2	$egin{array}{c} f_3 \ f_1 \ f_2 \ g_3 \ g_1 \ g_2 \ \end{array}$	g_1	g_2	g_3
f_2	f_2	f_3	f_1	g_3	g_1	g_2
f_3	f_3	f_1	f_2	g_2	g_3	g_1
g_1	g_1	g_2	g_3	f_1	f_2	f_3
g_2	g_2	g_3	g_1	f_3	f_1	f_2
<u>g</u> ₃	g_3	g_1	g_2	f_2	f_3	f_1

THEOREM

■ If K is a finite subgroup of a group G, then every left coset of K in G has exactly as many elements as K.

PROOF(1)

- Let K is a subgroup of group G.
 - aK be a left coset of K in G, where $a \in G$.
 - $f: K \to aK$ be defined by f(k)=ak, for $k \in K$.
- f is one-to-one
- f is onto
- Therefore, f is bijection, K and aK have the same number of elements.

PROOF(2): F IS ONE-TO-ONE

- Let K is a subgroup of group G.
 - aK be a left coset of K in G, where $a \in G$.
 - $f: K \to aK$ be defined by f(k)=ak, for $k \in K$.
- f is one-to-one
 - Assume $f(k_1)=f(k_2)$, for $k_1,k_2 \in K$.
 - $ak_1=ak_2$
 - $k_1 = k_2$, by left cancelation.
 - f is one-to-one

PROOF(3): F IS ONTO

- Let K is a subgroup of group G.
 - aK be a left coset of K in G, where $a \in G$.
 - $f: K \to aK$ be defined by f(k)=ak, for $k \in K$.
 - f is onto
 - Let b be an arbitrary element in aK,
 - b=ak for some $k \in K$.
 - f(k)=ak=b
 - f is onto.
 - Therefore, f is bijection, K and aK have the same number of elements.

LAGRANGE'S GROUP THEOREM

- The order of a subgroup divides the order of the group.
- Tips:
 - The distinct left cosets of subgroup H in group S_3 are
 - $H = \{f_1, g_2\}, f_2H = \{f_2, g_1\}, \text{ and } f_3H = \{f_3, g_3\}.$

4

THEOREM (EQUIVALENCE CLASS VS COSET)

Let

- \blacksquare R be a congruence relation on a group G
- H = [e], the equivalence class containing the identity.

Then

- \blacksquare *H* is a normal subgroup of *G*
- [a] = aH = Ha, for each $a \in G$

PROOF (1)

- Let a and b be any elements in G.
- Then $b \in [a]$
 - iff [b] = [a], for R is an equivalence relation.
 - *iff* $[e] = [a]^{-1}[a] = [a]^{-1}[b] = [a^{-1}b]$, for G/R is a group.
 - *iff* $H = [e] = [a^{-1}b]$.
 - iff $a^{-1}b \in H$ or $b \in aH$.
- So [a] = aH for every $a \in G$.

PROOF (2)

- Similarly, $b \in [a]$
 - *iff* $H = [e] = [a][a]^{-1} = [b][a]^{-1} = [ba^{-1}].$
 - iff $ba^{-1} \in H$ or $b \in Ha$.
- Thus [a] = aH = Ha, and H is normal.

PROOF (3)

- \blacksquare How to show H is a subgroup of G?
 - $e \in H$
 - $Proved H = [e] = [a^{-1}b], iff b \in [a].$
 - $any x \in [e], x^{-1}e \in H, so x^{-1} \in H.$
 - $any \ x, y \in [e], because \ x^{-1} \in H, so (x^{-1})^{-1}y \in H,$ $thus \ xy \in H.$
 - Hence, binary operation is closed in H.

NOTICE:(EQUIVALENCE CLASS VS COSET)

- The quotient group G/R consists of all the left cosets of N = [e].
- The operation in G/R is given by
 - $(aN)(bN) = [a] \otimes [b] = [ab] = abN$
- and the function $f_R: G \rightarrow G/R$, defined by
 - $f_R(a) = aN$
- is a homomorphism from G onto G/R. For this reason, we will often write G/R as G/N.

Theorem 4

- Let
 - \blacksquare N be a normal subgroup of a group G
 - R be the following relation on G
 - $a R b \text{ if and only if } a^{-1}b \in N.$
- Then
 - (a) R is a congruence relation on G.
 - (b) N is the equivalence class [e] relative to R, where e is the identity of G.

PROOF (1)

- R is an equivalence relation
 - Let $a \in G$.
 - a R a, since $a^{-1}a = e \in N$,
 - R is reflexive.
 - Suppose that a R b
 - $a^{-1}b ∈ N.$
 - $(a^{-1}b)^{-1} = b^{-1}a \in \mathbb{N},$
 - \bullet b R a.
 - R is symmetric.

- R is an equivalence relation
 - Suppose that a R b and b R c.
 - $a^{-1}b \in N$ and $b^{-1}c \in N$.
 - $(a^{-1}b)(b^{-1}c) = a^{-1}c \in N$,
 - *a R c*.
 - R is transitive.

PROOF (3)

- R is a congruence relation on G.
 - Suppose that *a R b* and *c R d*.
 - Then $a^{-1}b \in N$ and $c^{-1}d \in N$
 - Since N is normal, Nd = dN
 - since $a^{-1}b \in N$, then $a^{-1}bd = dn$ for some $n \in N$.
 - $(ac)^{-1}bd = (c^{-1}a^{-1})(bd) = c^{-1}(a^{-1}b)d = (c^{-1}d) n \in N$
 - so *ac R bd*.
 - Hence *R* is a congruence relation on *G*.

PROOF (4)

- Suppose that $x \in N$.
 - for N is subgroup, $x^{-1} \in N$, so $x^{-1}e \in N$,
 - Thus $xRe, x \in [e]$,
 - $N\subseteq [e].$
- Conversely, if $x \in [e]$,
 - $\mathbf{x} R e$
 - $x^{-1}e = x^{-1} \in N$
 - for N is subgroup, $x \in N$
 - \bullet $[e] \subseteq N$
- Hence N = [e].

COROLLARY 2

- Let
 - f be a homomorphism from a group (G, *) onto a group (G', *')
 - the kernel(核) of f, ker(f), be defined by
 - $ker(f) = \{a \in G | f(a) = e'\}.$
- Then
 - ker(f) is a normal subgroup of G.
 - The quotient group G/ker(f) is isomorphic to G'.

Group G is onto homomorphic to G', exist ker(f).

EXAMPLE 6

- Consider the homomorphism f from Z onto Z_n defined by f(m) = [r], where r is the remainder when m is divided by n. Find ker(f).
- Solution
 - An integer m in Z belongs to ker(f)
 - if and only if f(m) = [0]
 - if and only if m is a multiple of n
 - Hence ker(f) = nZ.

- Following are equivalent.
 - a onto homomorphism from G to G/R or G',
 - a congruence relation R on group G(f(a)=f(b)),
 - a normal subgroup N of G (aN=Na),
 - a congruence relation R on G([e]=N, [a]=aN),
 - the kernel of a homomorphism from G to G'

The Kerner of a nonnonnonphism from
$$G$$
 to G

The Kerner of a nonnonnonphism from G to G

The Kerner of a nonnonphism from G to G

The Kerner of a nonnonphism from G to G

The Kerner of a nonnonphism from G to G

The Kerner of a nonnonnonphism from G to G

The Kerner of a nonnonphism from G to G

The Kerner of a nonnonphism from G to G

The Kerner of a nonnonphism from G to G

The Kerner of a nonnonphism from G

The Kerner of G

PORTAINSAME HOMEWORK

- **4**,18, 30 @353-354
- Ex1: Let *G* be a group, and let *N* and *H* be subgroups of *G* such that *N* is normal in *G*. Prove that
- (1)*HN* is a subgroup of G.
- \bullet (2) *N* is normal subgroup of *HN*.

KEY IDEAS FOR REVIEW

- Binary operation
 - Commutative, Associative
- Semigroup, Monoid, Group
 - Subsemigroup, Submonoid, Subgroup
- Isomorphism, Homomorphism
 - Congruence relation R on semigroup (S, *)
 - Quotient semigroup S/R,
- Order of group, *S_n*, Z_n, 置换群
- Left and right coset, Normal subgroup