PROOF OF THE QUADRATIC EQUATION

JUSTIN HOOD

ABSTRACT. In the paper that follows, an analytical proof of the so called "quadratic formula" shall be derived. Implementing the method of completing the square [1], and some clever algebraic manipulation, we will derive the classic formula used to compute roots of quadratic equations.

1. Quadratic Theorem

A quadratic equation in mathematics is a polynomial equation wherein the highest order power of the unknown variable is 2. Thus, we note that in general, a quadratic equation takes the form, $ax^2 + bx + c = 0$, with $a \neq 0$. With this definition in mind, we consider the following theorem.

Theorem 1.1 (Quadratic Theorem).

Let an equation of the form,

$$Ax^2 + Bx + C = 0$$

exist, with $A, B, C \in \mathbb{C}$, $A \neq 0$. Then, the solutions of this equation shall take the form,

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

2. Proof

Proof. Let A, B, C exist, such that $A, B, C \in \mathbb{C}$, and $A \neq 0$. Then, we consider equation (1), and perform some basic algebraic manipulation.

$$Ax^{2} + Bx + C = 0$$

 $x^{2} + \frac{B}{A}x + \frac{C}{A} = 0$ Divide by A
 $x^{2} + \frac{B}{A}x = -\frac{C}{A}$ Subtract the constant

Next, we shall "Complete the Square" [1], by introducing a new constant to both sides, and manipulating the LHS of the equation into the square of a binomial,

$$x^2 + \frac{B}{A}x + \left(\frac{B}{2A}\right)^2 = -\frac{C}{A} + \left(\frac{B}{2A}\right)^2 \quad \text{Add the new constant}$$

$$\left(x + \frac{B}{2A}\right)^2 = \left(\frac{B}{2A}\right)^2 - \frac{C}{A} \quad \text{Factor into the binomial form}$$

Finally, we may begin to solve for x,

$$\left(x + \frac{B}{2A}\right)^2 = \frac{B^2 - 4AC}{4A^2}$$
 Simplify RHS
$$x + \frac{B}{2A} = \pm \sqrt{\frac{B^2 - 4AC}{4A^2}}$$
 Take the square root
$$x = -\frac{B}{2A} \pm \frac{\sqrt{B^2 - 4AC}}{2A}$$
 Simplify
$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$$

Thus, we have arrived at our desired result, and shown that the solutions of a quadratic equation adhere to the "Quadratic Formula". \Box

References

 $E\text{-}mail\ address:\ \textit{hoodj5402@uwstout.edu}$