	Туре	L#	Hits	Search Text	DBs	Time Stamp
1	BRS	L1	602809	(adjust\$3 or adapt\$3 adj1 band\$pass or band-pass or bandpass filter) same	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:35
2	BRS	L2	602809	(adjust\$3 or adapt\$3 adj1 chracteristic adj2 band\$pass or band-pass or bandpass filter) same (modulat\$4 adj1 type or speed or rate)	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:35
3	BRS	L3	602809	(adjust\$3 or adapt\$3 adj1 characteristic adj2 band\$pass or band-pass or bandpass filter) same (modulat\$4 adj1 type or speed or rate)	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:37
4	BRS	L4	7127298	(identif\$3 or detect\$3 or determin\$3 same pulse cod\$2 modulat\$3 or "PCM")	US- PGPUB; USPAT; EPO; JPO; DERWE NT	2007/09/11 13:37
5	BRS	L5	344882	3 and L4	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:39

	Comments	Error Definition	Erro rs
1			
2			
3			
4			
5		·	

	Туре	L#	Hits	Search Text	DBs	Time Stamp
6	BRS	L6	5240	5 and codec	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:40
7	BRS	L7	4842	6 and (match\$3 filter characteristic\$2)	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE	2007/09/11 13:41
8	BRS	L8	3303	6 and (match\$3 adj1 filter characteristic\$2)	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:51
9	BRS	L9	14	6 and (match\$3 adj1 filter adj1 characteristic\$2)	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:41
10	BRS	L10	3303	6 and (match\$3 adj filter characteristic\$2)	US- PGPUB; USPAT; FPRS; EPO; JPO; DERWE NT	2007/09/11 13:52

	Document ID	Issue Date	Page s	Title	Current OR	Current XRef
8	US 6748174 B2	20040608	31	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
9	US 6631018 B1	20031007	31	WDM optical network with passive pass- through at each node	398/59	398/79
10	US 6563615 B2	20030513	31	Technique for detecting noise on a data channel	398/1	375/225; 375/227; 398/79
11	US 6556321 B1	20030429	31	WDM optical network and switching node with pilot tone communications	398/79	
12	US 6529300 B1	20030304	29	WDM optical network with passive pass- through at each node	398/59	
13	US 6493117 B1	20021210	32	WDM optical network with passive pass- through at each node	398/49	398/59; 398/83
14	US 6252910 B1	20010626	1/3	Bandwidth efficient QAM on a TDM-FDM system for wireless communications	375/261	375/298
15	US 5953636 A	19990914	10	Single-chip DBS receiver	455/3.02	348/731; 725/68; 725/70
16	US 5910960 A	19990608	70	Signal processing apparatus and method	714/784	348/E5.10 6; 348/E5.10 8

	Inventor
8	Milton; David et al.
9	Milton; David et al.
10	Milton; David et al.
11	Milton; David et al.
12	Milton; David et al.
13	Milton; David et al.
14	West; Randall J. et al.
15	Keate; Christopher et al.
16	Claydon; Anthony Peter J. et al.

	Document ID	Issue Date	Page s	Title	Current OR	Current XRef
1	US 20010031015 A1	20011018		Bandwidth efficient QAM on a TDM-FDM system for wireless communications	375/260	
2	US 6892032 B2	20050510	30	WDM optical network with passive pass- through at each node	398/79	398/3; 398/50; 398/59; 398/68; 398/83; 398/84; 398/85
3	US 6856652 B2	20050215	24	Bandwidth efficient QAM on a TDM-FDM system for wireless communications	375/260	
4	US 6795652 B2	20040921	31	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
5	US 6775479 B2	20040810	30	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
6	US 6757498 B2	20040629	31	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
7	US 6751418 B2	20040615	31	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85

	Inventor
1	West, Randall J. et al.
2	Milton; David et al.
3	West; Randall J. et al.
4	Milton; David et al.
5	Milton; David et al.
6	Milton; David et al.
7	Milton; David et al.

	Document ID	Issue Date	Page s	Title	Current OR	Current XRef
8	US 6748174 B2	20040608		WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
9	US 6631018 B1	20031007	31	WDM optical network with passive pass- through at each node	398/59	398/79
10	US 6563615 B2	20030513	31	Technique for detecting noise on a data channel	398/1	375/225; 375/227; 398/79
11	US 6556321 B1	20030429	31	WDM optical network and switching node with pilot tone communications	398/79	
12	US 6529300 B1	20030304	29	WDM optical network with passive pass- through at each node	398/59	
13	US 6493117 B1	20021210	32	WDM optical network with passive pass- through at each node	398/49	398/59; 398/83
14	US 6252910 B1	20010626	1/3	Bandwidth efficient QAM on a TDM-FDM system for wireless communications	375/261	375/298

	Inventor
8	Milton; David et al.
9	Milton; David et al.
10	Milton; David et al.
11	Milton; David et al.
12	Milton; David et al.
13	Milton; David et al.
14	West; Randall J. et al.

	Document ID	Issue Date	Page s	Title	Current OR	Current XRef
1	US 20010031015 A1	20011018	133	Bandwidth efficient QAM on a TDM-FDM system for wireless communications	375/260	
2	US 6892032 B2	20050510	30	WDM optical network with passive pass- through at each node	398/79	398/3; 398/50; 398/59; 398/68; 398/83; 398/84; 398/85
3	US 6856652 B2	20050215	24	Bandwidth efficient QAM on a TDM-FDM system for wireless communications	375/260	
4	US 6795652 B2	20040921	31	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
5	US 6775479 B2	20040810	30	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
6	US 6757498 B2	20040629	31	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85
7	US 6751418 B2	20040615	31	WDM optical network with passive pass- through at each node	398/79	398/50; 398/59; 398/68; 398/83; 398/84; 398/85

	Inventor
1	West, Randall J. et al.
2	Milton; David et al.
3	West; Randall J. et al.
4	Milton; David et al.
5	Milton; David et al.
6	Milton; David et al.
7	Milton; David et al.

	Comments	Error Definition	Erro rs
6			
7			-
8		,	
9			
10			and a state of the