

Name:....

INTERNATIONAL GRAIMMAR

SCHOOL

MATHEMATICS

YEAR 12

TRIAL EXAMINATION

JULY, 2000

3 UNIT

(Plus 5 minutes reading time) Time allowed — 2 hours

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work
- Board-approved calculators may be used.
- Start each question on a new page. Number each question clearly.
- Label each page with your name.
- A table of Standard Integrals is attached.

Marks

- Q1. (a) Let A(-5,12) and B(4,9) be two points in the number plane. Find the coordinates of P which divides the interval AB externally in the ratio 5:2.
- 9 Find the size of the acute angle between the lines y = 2x + 3 and y = 4x + 1. (Answer to the nearest minute).
- <u>0</u> Express $f(x) = x^3 + 3x^2 - 10x - 24$ as a product of three linear factors.

(d) Evaluate
$$\int_{0}^{3} \frac{dx}{\sqrt{9-x^2}}$$

œ Two points A and B are placed on a circle and AC is a diameter. AE perpendicular to the tangent at B. S.

- Draw the diagram on your paper.
- Ξ Prove AB bisects ∠ CAE.

- Q2. Start a new booklet
- Solve for $x: x \ge \frac{4}{x}$
- 9 For $y = -3\sin^{-1}\frac{x}{2}$
- State the domain and range. Sketch the curve.
- <u>o</u> Using the substitution $u = 9 \cdot x^2$, evaluate $\int_0^1 x\sqrt{9 \cdot x^2} dx$
- <u>a</u> The area bounded by the curve $y = \sin x$ between x = 0 and x = 0rotated about the x-axis. Find the volume of the solid of revolution. 끊.

- Q3. Start a new booklet
- (a) Express $3\cos x + 4\sin x$ in the form $A\cos (x-\alpha)$ where A>0. Hence, or otherwise, solve $3\cos x + 4\sin x = -3$ for $0 \le x \le 360^\circ$.
- (b) In a co-educational class there are 4 girls and 7 boys. Their classroom has 5 rows of 5 desks neatly arranged. Each student occupies a desk with a chair. Find the number of seating arrangements possible if.
- students can sit anywhere,

 \odot

all the girls want to occupy the first row.

 \equiv

(iii) Two particular girls and three particular boys fill the back row seated alternately.

4

The dia $y = e^{x-1}$ intersection intersection.

The diagram shows the graphs of $y = e^{x-2}$ and y = x with points of intersection at A and B.

How many roots has the equation $e^{x-2} - x = 0$?

 \odot

(ii) Taking x = 3.3 as the first approximation, use one application
of Newton's Method to find a better approximation to the
x-coordinate of B.

Marks

Q4. Start a new booklet

- (a) Find x and y if $\frac{4^x}{16} = 8^{x+y}$ and $2^{2x+y} = 128$.
- (b) If $x = 2 \cos t$ and $y = 2t + 2\sin t$,
- find dx and dy

 Ξ

Hence or otherwise, find $\frac{dy}{dx}$ in terms of $\frac{1}{2}$.

Ξ

- (c) A particle is oscillating in simple harmonic motion such that its displacement x metres from the origin is given by the equation $\frac{d^2x}{dt^2} = -9x$ where t is time in seconds.
- (i) Show that $x = a \cos(3t+\alpha)$ is a solution of motion for this particle (a and α are constants).
- (ii) When t=0, v=3 m/s and x=5 m. Show that the amplitude of the oscillation is $\sqrt{26}$ metres.
- (iii) What is the maximum speed of the particle?

'n

Find

- Ξ \mathfrak{S} αβγ
 - $\alpha + \beta + \gamma$
- (iii) $\alpha^2 + \beta^2 + \gamma^2$
- 9 For the function $y = x^2 - 2x + 1$, find the largest possible domain such that this function has an inverse. Find the equation of this inverse and state its range.
- $\hat{\mathbf{c}}$ For the parabola $x^2 = 12y$, find
- Ξ the equation of the tangent at the point $P(6p, 3p^2)$ on the parabola
- Ξ the coordinates of the point T where the tangent meets the x axis.
- Ξ Show that N, the midpoint of PT, has coordinates $(\frac{9P}{2}, \frac{3P^2}{2})$
- (iv) Find the equation of the locus of N.
- Start a new booklet
- a Find $\lim_{x\to0} \frac{\sin 3x}{5x}$
- 9 The daily growth of a colony of insects is 10% of the excess of the
- population over 1.2 x 106. ie $\frac{dN}{dt} = 0.1 \text{ (N 1.2 x 106)}.$

Initially, the population is 2.7×106 ,

- $\mathbf{E} \mathbf{S}$ Determine the population after $3\frac{1}{2}$ days.
- If a scientist checks the population each day, which is the first day on which she should notice that the original population has tripled?

Q6. (continued).....

A ball is thrown with a velocity of $30\sqrt{3}$ m/s at an angle of 60° to the horizontal.

Marks

- Assuming negligible air resistance and letting $g = 10 \text{ ms}^{-2}$, derive the equations of motion.
- \equiv Find the time of flight and the range
- \mathbf{E} If the ball had been thrown with velocity $30\sqrt{3}$ m/s at an angle of 30° to a hill which is itself inclined at 30° to the horizontal (see diagram), determine the time of flight.

Q7. Start a new booklet

(a) Prove by mathematical induction that for all values of n

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!} = \frac{(n+1)! - 1}{(n+1)!}$$

where n is a positive integer.

- 9 Ξ Show that $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ has no stationary points.
- Ξ Prove that the lines $y = \pm 1$ are asymptotes
- Ξ Sketch the curve.
- 3 If k is a positive constant, find the area in the first quadrant enclosed by the above curve and the three lines y = 1, x = 0 and x = k.
- 3 Prove that for all values of k, this area is always less than loge 2.