Algebra II (Doble grado Informática-Matemáticas)

24 de marzo de 2020

1. Tema 4: Grupos cocientes. Teoremas de isomorfía.

Continuamos en esta clase con el Tema 4 del programa. Definiremos en esta clase el concepto de producto directo de una familia finita de grupos y estudiaremos sus propiedades.

Previamente, recordemos que en la clase anterior (del 23 de marzo) terminamos con el grupo de automorfismos de un grupo G y realizamos el Ejercicio 18 de la Relación 3 por el que obteníamos una descripción completa de $Aut(C_n)$, el grupo de automorfismos del grupo cíclico finito de orden n. Concretamente obteníamos que

$$Aut(C_n) = \{f_r/1 \le r \le n-1, \text{ y m. c. d.}(r,n) = 1\},\$$

siendo

$$f_r: C_n \to C_n$$
, dado por $f_r(x) = x^r$.

En particular $|Aut(C_n)| = \varphi(n)$.

Veamos un ejemplo

Ejercicio. (Ejercicio 19. Relación 3).

- 1. Describir explícitamente el grupo de automorfismos $Aut(C_8) = \langle x/x^8 = 1 \rangle$.
- 2. Demostrar que $Aut(C_8)$ es isomorfo al grupo de Klein.

Resolución. 1.- Según la descripción anterior tenemos que

$$Aut(C_8) = \{f_1 = id, f_3, f_5, f_7\},\$$

siendo

$$f_r: C_8 \to C_8$$
 dado por $f_r(x) = x^r \ r = 1, 3, 5, 7.$

2.- Puesto que $Aut(C_8)$ es un grupo con 4 elementos entonces es isomorfo al cíclico de orden 4 ó al grupo de Klein (véase Ejercicio 23 de la relación 2). Para ver que es isomorfo al grupo de Klein, basta ver que todos los elementos de $Aut(C_8)$ distintos de id, tienen orden 2 . En efecto (recordemos que la operación de $Aut(C_8)$ es la composición)

$$(f_3)^2(x)f = f_3(f_3(x)) = f_3(x^3) = (f_3(x))^3 = (x^3)^3 = x^9 = x \implies f_3 = id$$

De igual forma se demuestra que $(f_5)^2 = id = (f_7)^2$, y se tiene lo pedido.

Cuando consideramos grupos diferentes a los cíclicos, el cálculo de su grupo de automorfismos no es tan inmediato y depende de cada caso particular

Veamos un ejemplo:

Ejercicio. (Ejercicio 20. Relación 3) Demostrar que el grupo $Aut(\mathbb{Z}_2 \times \mathbb{Z}_2)$ es isomorfo a S_3 .

Resolución. Puesto que $\mathbb{Z}_2 \times \mathbb{Z}_2$ es isomorfo al grupo de Klein. Veamos que el grupo de automorfismos del grupo de Klein es isomorfo a S_3 .

Recordemos (vease Ejercicio 20 de la relación 2 resuelto en la clase del 16 de marzo) que el grupo de Klein es dado por

$$K = \{1, a_1, a_2, a_3\}$$

y su tabla es

	1	a_1	a_2	a_3
1	1	a_1	a_2	a_3
a_1	a_1	1	a_3	a_2
a_2	a_2	a_3	1	a_1
a_3	a_3	a_2	a_1	1

Esto es

$$a_1^2 = a_2^2 = a_3^2 = 1$$
, y para $i \neq j$ es $a_i a_j = a_k$ con $k \neq i, j$.

Sea $\alpha \in S_3$, definimos $f_\alpha : K \to K$ por

$$f_{\alpha}(1) = 1,$$

 $f_{\alpha}(a_i) = a_{\alpha(i)}, i = 1, 2, 3.$

Es fácil ver (hacedlo!!) que f_{α} es un homomorfismo de grupos y entonces un automorfismo pues claramente es biyectiva. Tenemos pues una aplicación

$$f: S_3 \to Aut(K), \ \alpha \mapsto f_{\alpha}$$

Veamos que es un homomorfismo: Sean $\alpha, \beta \in S_3$ entonces

$$f_{\alpha\beta}(1) = 1 = (f_{\alpha}f_{\beta})(1)$$

$$f_{\alpha\beta}(a_i) = a_{(\alpha\beta)(i)} = a_{\alpha(\beta(i))} = f_{\alpha}(a_{\beta(i)}) = (f_{\alpha}f_{\beta})(a_i), i = 1, 2, 3$$

Así pues $f(\alpha\beta) = f(\alpha)f(\beta)$ y f es un homomorfismo. Sea $\alpha \in S_3$ tal que $f(\alpha) = f_\alpha = id_K$, entonces $f_\alpha(a_i) = a_{\alpha(i)} = a_i$, con lo que $\alpha(i) = i$, para todo i = 1, 2, 3 y $\alpha = id$. Concluimos entonces con que $Ker(f) = \{id\}$ y por tanto f es un monomorfismo.

Finalmente, sea $t:K\to K$ un automorfismo de K. Definimos $\alpha\in S_3$ por la regla

$$\alpha(i) = k \iff t(a_i) = a_k,$$

para todo $i \in \{1, 2, 3\}$. Puesto que t es un automorfismo (y entonces biyectiva) α es en efecto una permutación de S_3 . Por definición es claro que $f(\alpha) = t$ con lo que f es también un epimorfismo.

Como f es monomorfismo y epimorfismo entonces es un isomorfismo, como queríamos demostrar.

Pasemos ya a estudiar el producto directo de grupos:

Definición 1.1. Sean G_1, G_2, \ldots, G_n una familia de n grupos, $n \geq 2$. Definimos su **producto directo** como el grupo cuyos elementos son los del producto cartesiano

$$G_1 \times G_2 \times \cdots \times G_n = \{(x_1, x_2, \dots, x_n) / x_i \in G_i, i = 1, 2, \dots, n\},\$$

con producto definido por

$$(x_1, x_2, \dots, x_n)(y_1, y_2, \dots, y_n) := (x_1y_1, x_2y_2, \dots, x_ny_n).$$

Es fácil ver que con esta operación $G_1 \times G_2 \times \cdots \times G_n$ es un grupo, con elementoe unidad dado por la n-tupla $(1,1,\ldots,1)$ y donde, para cada $(x_1,x_2,\ldots,x_n) \in G_1 \times G_2 \times \cdots \times G_n$, su inverso es dado por $(x_1,x_2,\ldots,x_n)^{-1} = (x_1^{-1},x_2^{-1},\ldots,x_n^{-1})$. Usaremos también la notación $\prod_{i=1}^n G_1$ para denotar al producto directo. Para cada $k=1,2,\ldots,n$ se tienen homomorfismos

$$p_k: \prod_{i=1}^n G_i \to G_k, \ definidos \ por \ p_k(x_1, x_2, \dots, x_n) := x_k,$$

que claramente son epimorfismos y que llamaremos las **proyecciones canónicas.**

Así mismo, para cada k = 1, 2, ..., n se tienen homomorfismos

$$j_k: G_k \to \prod_{i=1}^n G_i$$
 definidos por $j_k(x_k) := (1, \dots, x_k, \dots, 1)$

que claramente son monomorfismos y que llameremos las inyecciones canónicas.

Notemos que

- $G_k \cong Img(j_k)$ para todo $k = 1, 2, \dots, n$.
- $Img(j_k) \subseteq \prod_{i=1}^n G_i$ para cada k = 1, 2, ...n. Por tanto cada G_k es isomorfo a un subgrupo normal del producto directo.

En efecto, para cada $(y_1,y_2,\ldots,y_n)\in\prod_{i=1}^nG_i$ y $(1,\ldots,x_k,\ldots,1)=j_k(x_k)\in Img(j_k),$ se tiene

$$(y_1, y_2, \dots, y_n)(1, \dots, x_k, \dots, 1)(y_1, y_2, \dots, y_n)^{-1}$$

$$= (1, \dots, y_k x_k y_k^{-1}, \dots, 1)$$

$$= j_k (y_k x_k y_k^{-1}) \in Img(j_k).$$

■ Si H_i es un subgrupo de G_i , para cada i = 1, 2, ..., n, entonces $\prod_{i=1}^n H_i \le \prod_{i=1}^n G_i$.

Sin embargo no es en general cierto que todos los subgrupos de $\prod_{i=1}^{n} G_i$ sean producto directo de subgrupos, como vemos en el siguiente ejemplo:

Ejercicio (Ejercicio 26. Relación 3) Demostrar que no todo subgrupo de un producto directo $H \times K$ es de la forma $H_1 \times K_1$, con H_1 subgrupo de H y K_1 subgrupo de K.

Resolución. Tomemos $H=K=\mu_2$, el grupo de las raíces cuadradas de la unidad. Entonces $L=\{(1,1),(-1,-1)\}$ es un subgrupo de $H\times K=\mu_2\times\mu_2$ y no es de la forma $H_1\times K_1$ para $H_1,K_1\leq\mu_2$:

Para el caso de grupos finitos tenemos

Proposición 1.2. Sean G_1, G_2, \ldots, G_n grupos finitos, $n \geq 2$. Entonces

- (1) $|G_1 \times G_2 \times \cdots \times G_n| = |G_1||G_2| \dots |G_n|$.
- (2) Para cada $(x_1, x_2, \ldots, x_n) \in \prod_{i=1}^n G_i$ se tiene que

$$ord(x_1, x_2, \dots, x_n) = \text{m. c. m.}(ord(x_1), ord(x_2), \dots, ord(x_n)).$$

Supongamos ahora que m. c. d. $(|G_i|, |G_j|) = 1$, para todo $i \neq j$, entonces

- (3) Si G_i es un grupo cíclico, para todo i = 1, 2, ..., n, entonces $\prod_{i=1}^n G_i$ es también un grupo cíclico.
- (4) Supongamos dado un subgrupo $L \leq \prod_{i=1}^n G_i$, entonces existen subgrupos $H_i \leq G_i, i = 1, 2, ..., n$ tal que $L = \prod_{i=1}^n H_i$.

Demostración. (1) Es claro.

(2) Sea $t_i = ord(x_i)$, i = 1, 2, ..., n, y sea $t = \text{m. c. m.}(t_1, t_2, ..., t_n)$. Puesto que t es un múltiplo de cada t_i será

$$(x_1, x_2, \dots, x_n)^t = (x_1^t, x_2^t, \dots, x_n^t) = (1, 1, \dots, 1).$$

Sea $m \geq 1$ tal que $(x_1, x_2, \ldots, x_n)^m = (x_1^m, x_2^m, \ldots, x_n^m) = (1, 1, \ldots, 1)$, entonces $x_i^m = 1$ para todo $i = 1, 2, \ldots, n$, y como $ord(x_i) = t_i$, será $t_i | m$ para todo $i = 1, 2, \ldots, n$ y por tanto t | m (por ser t el mínimo común múltiplo). Consecuentemente $t = ord(x_1, x_2, \ldots, x_n)$.

Para los dos siguientes apartados, suponemos ahora que m. c. d. $(|G_i|, |G_j|) = 1$, para todo $i \neq j$

(3) Sea $G_i = \langle a_i \rangle, \ i = 1, 2, \dots, n$, tendremos entonces que $ord(a_i) = |G_i|$ y por tanto m.c.d. $(ord(a_i), ord(a_j)) = 1$, para todo $i \neq j$. Consideramos el elemento $a = (a_1, a_2, \dots, a_n) \in \prod_{i=1}^n G_i$, por el apartado anterior será

$$ord(a) = \text{m. c. m.}(ord(a_1), ord(a_2), \dots, ord(a_n))$$

$$= ord(a_1)ord(a_2) \dots ord(a_n)$$

$$= |G_i||G_2| \dots |G_n|$$

$$= |\prod_{i=1}^n G_i|,$$

consecuentemente $\langle a \rangle = \prod_{i=1}^n G_i$ y entonces es cíclico.

(3) Hacemos inducción en n.

El primer caso es n=2: Supongamos que $|G_1|=r$ y $|G_2|=s$. Como m. c. d.(r,s)=1, por el teorema de Bezout, existirán $a,b\in\mathbb{Z}$ tal que 1=ar+bs.

Sea $L \leq G_1 \times G_2$ y consideremos las proyecciones canónicas

 $p_1: G_1 \times G_2 \to G_1, \ p_1(x_1, x_2) = x_1$

 $p_2: G_1 \times G_2 \to G_2, \ p_2(x_1, x_2) = x_2$

Sean $H_1 := (p_1)_*(L) \le G_1$ y $H_2 := (p_2)_*(L) \le G_2$. Veamos que $L = H_1 \times H_2$: En efecto, ses $x = (x_1, x_2) \in L$ entonces $x_i = p_i(x) \in (p_i)_*(L) = H_i$, para i = 1, 2 y por tanto $x = (x_1, x_2) \in H_1 \times H_2$. Esto es, $L \le H_1 \times H_2$.

Para la otra inclusión, en primer lugar observamos que si $x_1 \in H_1$ entonces $x_1 = p_1(x_1, y_2)$, para algún $(x_1, y_2) \in L$, entonces, como el orden de cualquier elemento de un grupo es un divisor del orden del grupo al que pertenece y $|G_1| = r, |G_2| = s$, tendremos

$$(x_1, y_2)^{bs} = ((x_1)^{bs}, (y_2)^{bs}) = ((x_1)^{1-ar}, 1) = (x_1, 1),$$

con lo que el elemento $(x_1,1) \in L$. De forma análoga se demuestra que si $x_2 \in H_2$ entonces $(1,x_2) \in L$

Sea pues, $(x_1, x_2) \in H_1 \times H_2$, entonces $x_1 \in H_1 \Rightarrow (x_1, 1) \in L$ y $x_2 \in H_2 \Rightarrow (1, x_2) \in L$ con lo que $(x_1, x_2) = (x_1, 1)(1, x_2) \in L$. Esto es $H_1 \times H_2 \leq L$ y de la doble inclusión deducimos la igualdad es decir, $L = H_1 \times H_2$. Por tanto la afirmación es cierta para el caso n = 2.

Supuesto cierto para n véamoslo para n + 1:

Sea $L \leq \prod_{i=1}^{n+1} \bar{G}_i$, como $G_1 \times \cdots \times G_n \times G_{n+1} = (G_1 \times \cdots \times G_n) \times G_{n+1}$ y m. c. d. $(|G_1 \times \cdots \times G_n|, |G_{n+1}|) = 1$ entonces, por el caso 2 anteriormente visto, existirá $K \leq \prod_{i=1}^n G_i$ y $H_{n+1} \leq G_{n+1}$ tal que $L = K \times G_{n+1}$. Para $K \leq \prod_{i=1}^n G_i$, por hipótesis de inducción, , existirán $H_i \in G_i$, $i = 1, 2, \ldots, n$ tal que $K = H_1 \times H_2 \times \cdots \times H_n$. Entonces

$$L = K \times H_{n+1} = H_1 \times H_2 \times \cdots \times H_n \times H_{n+1},$$

lo que acaba la demostración.

Como corolario de la proposición anterior, deducimos un hecho bien concido por vosotros:

Corolario 1.3. Sean $n, m \ge 1$, entonces

$$C_n \times C_m \cong C_{nm} \iff \text{m. c. d.}(n, m) = 1.$$

Demostraci'on. Es consecuencia directa del apartado (3) de la proposici\'on anterior.