1 Overview

- taxanomy
- MR path planning
 - Discrete
 - continous
- Concurrent assignment and path planning

2 Taxanomy

- Domain : continous and Discrete
 - continous planning time parameterised trajecteroies
 - planning on graphs or grids
- Goal assignment
 - Labeled each robot has pre determined goal
 - Inlabeled no pre determined path but goal must be reached
- problem representation
 - **coupled** joint state of all robots in the system
 - **Decoupled** each robot is represented individually
- planning
 - Reactive dynamic obstacle avoidance
 - **Deliberative** optimilaty
- Computation
 - Centralised
 - Decentralised

3 Multi agent path planning

- Multi agent path planning is also called as multi agent path planning
- discretized robot
- $\bullet\,$ point robots holonomic and no motion constrains

3.1 The problem

- $\bullet\,$ no of agents at start location with predefined goal in known environment
- Task find a collsion free path
 - generally this is an Labeled problem
 - application logistics, automated warehouse
- allowed motion north, south, east, west

3.1.1 Performance metrics

- Makespan time of last robots arrival
- Flowtime sum of arrival time, over all robots

4 Coupled vs decoupled

Potential deadlock

Completeness achieved.

Figuur 1:

- coupled planning gives completeness
- Decoupled path planning is not complete in general(prone to Deadlock)

5 Coupled path planning

- Complexity over decoupled
- but more power solution
- ullet coupled formulation:
 - Robot i has configuration space ¹ of C_i
 - Then joint state is given by product:

$$X = C_1 * C_2 * C_3 * C_4 \dots$$

- dimensionality grows linearly
- A* requires time that is exponential to space
- \bullet for N robots in M cells in grid world

¹a complete specification of the position of every point in the system

Figuur 2:

- ullet we have M^N states to consider
- Facts
 - $-\,$ NP hard 2 to solve optimally for make span and flow time minimisation
 - impossible to minimize both objective

²Non polynomial computational time cane be reduced