Fundamentos de los Sistemas Operativos (FSO)

Departamento de Informática de Sistemas y Computadoras (DISCA) *Universitat Politècnica de València*

Consolidación Ejercicio 3

f S O

Ejercicio 3.1

Una partición de disco tiene un tamaño de 8 Gbytes y se formatea con un sistema de archivos MINIX. El sistema de archivos se ha configurado con los siguientes parámetros:

- 1 bloque = 2 KByte
- 1 zona = 1 bloque
- Tamaño de i-nodo = 64 bytes con punteros de 32 bits (7 directos, 1 indirecto y 1 doble indirecto)
- 32 byte por cada entrada de directorio
- 16384 i-nodos

La estructura del sistema de ficheros es:

Bloque de	Cuparblagua	Mapa de bits de	Mapa de bits de	inadas	Ároa do datas
boot	Superbloque	i-nodos	zonas	i-nodos	Area de datos

- a) Definir los tamaños de los diferentes componentes del sistema de archivos.
- b) El directorio raíz contiene:
 - 12 subdirectorios (10 directorios vacíos y 2 con 1 archivo regular de 9KB)
 - 5 archivos regulares (tamaño <1 KB)
 - 10 archivos regulares (4 KB <tamaño <6 KB)
 - 2 archivos regulares (tamaño = 20K)
 - 1 archivo regulares (tamaño = 100 K)

Cuántos i-nodos se utilizan y cuántos bloques están ocupados.

- Tamaño de la partición de disco = 8 Gbytes
- 1 bloque = 2 KByte
- 1 zona = 1 bloque
- Tamaño de i-nodo = 64 bytes con punteros de 32 bits (7 directos, 1 indirecto y 1 doble indirecto)
- 32 byte por cada entrada de directorio
- 16384 i-nodos

1			•

Bloque de boot	Superbloque	Mapa de bits de i-nodos	Mapa de bits de zonas	i-nodos	Área de datos
-------------------	-------------	----------------------------	-----------------------	---------	---------------

Mapa de bits de i-nodos

Número de i-nodos = 16384 entonces se necesitan 16384 bits en el mapa. Bits en un bloque

1 bloque es suficiente para el mapa de i-nodos.

- Tamaño de la partición de disco = 8 Gbytes
- 1 bloque = 2 KByte
- 1 zona = 1 bloque
- Tamaño de i-nodo = 64 bytes con punteros de 32 bits (7 directos, 1 indirecto y 1 doble indirecto)
- 32 byte por cada entrada de directorio
- 16384 i-nodos

1	1	1			
Bloque de boot	Superbloque	Mapa de bits de i-nodos	Mapa de bits de zonas	i-nodos	Área de datos

Espacio para los i-nodos

Número de i-nodos = 16384 de 64bytes cada uno Espacio necesario para los i-nodos = 16384 * 64 bytes Tamaño de bloque = 2Kbytes = 2048 Bloques para i-nodos = ceil(16384 * 64 / 2048) = 512

- Tamaño de la partición de disco = 8 Gbytes
- 1 bloque = 2 KByte
- 1 zona = 1 bloque
- Tamaño de i-nodo = 64 bytes con punteros de 32 bits (7 directos, 1 indirecto y 1 doble indirecto)
- 32 byte por cada entrada de directorio
- 16384 i-nodos

1	1	1		512	
Bloque de boot	Superbloque	Mapa de bits de i-nodos	Mapa de bits de zonas	i-nodos	Área de datos

Mapa de bits de zonas

Tamaño de la partición de disco = 8 Gbytes Número de bloques en la partición = ceil(8Gbyte/2Kbyte) = $2^3 2^{10} 2^{10} 2^{10} / 2^{11} = 2^{22}$ En el mapa de zonas necesitamos un bit por cada bloque en la partición (2^{22} / 8 bytes)

Bloques en el mapa de zonas = $ceil(2^{22} / 8 / 2^{11}) = 2^8 = 256$ bloques

- Tamaño de la partición de disco = 8 Gbytes
- 1 bloque = 2 KByte
- 1 zona = 1 bloque
- Tamaño de i-nodo = 64 bytes con punteros de 32 bits (7 directos, 1 indirecto y 1 doble indirecto)
- 32 byte por cada entrada de directorio
- 16384 i-nodos

1	1	1	256	512	
Bloque de boot	Superbloque	Mapa de bits de i-nodos	Mapa de bits de zonas	i-nodos	Área de datos

Área de datos

Número de bloques en la partición = ceil(8Gbyte/2Kbyte) = $2^3 2^{10} 2^{10} 2^{10} / 2^{11} = 2^{22}$

Bloques en el area de datos = 2^{22} – (1 + 1 + 1 + 256 + 512) = 4.193.533 bloques

Т		1	256	512	4.193.533
Bloque de boot	Superbloque	Mapa de bits de i-nodos	Mapa de bits de zonas	i-nodos	Área de datos

- 1 bloque = 2 KByte
- 1 zona = 1 bloque
- Tamaño de i-nodo = 64 bytes con punteros de 32 bits (7 directos, 1 indirecto y 1 doble indirecto)
- 32 byte por cada entrada de directorio

b) El directorio raíz contiene:

- 12 subdirectorios (10 directorios vacíos y 2 con 1 archivo regular de 9KB)
- 5 archivos regulares (tamaño <1 KB)
- 10 archivos regulares (4 KB <tamaño <6 KB)
- 2 archivos regulares (tamaño = 20K)
- 1 archivo regulares (tamaño = 100 K)

Cuántos i-nodos se utilizan y cuántos bloques están ocupados.

	i-node	Entradas de directorio	Areas por unidad	Bloque puntero indirecto	total areas
root	1	1+1+12+5+10+2+1=32 (32*32 bytes = 1K)	ceil(1K/2K) = 1		1
10 directorios vacíos	10	1+1 = 2	1		10
5 arch regulares (< 1K)	5		1		5
10 arch regulares [4,6]	10		ceiling(6K $/2K$) = 3		30
2 arch regulares [20K]	2		ceiling(20K /2K) =10	1	22
1 arch regulares (100K)	1		ceiling(100K/2K) = 50	1	51
2 directorios no vacíos	2	1+1+1 = 3	1		2
1 arch regulares	2		ceiling $(9K/2K) = 5$		10
	28				131