

1	GAATTCCAGGCTGCTAGGAAGTGAAAAGTGAACCTGGACCCAGCTCAGCGGCAGCAGCAG	60
61	CGGCAGCAGGCAGCAGCCTCTATCCTCTCCAGCCACATGGGCCCCGGATGGCGCTT MetGlyProArgMetAlaLeu	120
121	CCCCGCGTGCCTGCTCCTGTTGCACCTGTTGCTGCTAGGATGCCGTTCCCATCCA ProArgValLeuLeuLeuLeuPheLeuHisLeuLeuLeuLeuGlyCysArgSerHisPro eProAlaCysSerCysSerCysThrCysCysCysEndAspAlaValProIleHi erProArgAlaProAlaProValLeuAlaProValAlaAlaArgMetProPheProSerT	180
181	CTGGGTGGCGCTGGCCTCAGAACTGCCAGGGATAACAGGTGAGCCCTGATGAAC TG LeuGlyGlyAlaGlyLeuAlaSerGluLeuProGlyIleGlnValSerProAspGluLeu sTrpValAlaLeuAlaTrpProGlnAsnCysGlnGlyTyrArgEndAlaLeuMetAsnCy hrGlyTrpArgTrpProGlyLeuArgThrAlaArgAspThrGlyGluProEndEndThrA	240
241	CTTAGACTTGGTTGGCTGGAGGGCGCGGACAGCAGCAACTAACGGTCCCCACCTACTG LeuArgLeuGlyTrpLeuGlyGlyArgGlyGlnGlnLeuThrGlyProHisLeuLeu sLeuAspLeuValGlyTrpGluGlyAlaAspSerSerAsnEndArgValProThrTyrCy laEndThrTrpLeuAlaGlyArgAlaArgThrAlaAlaThrAsnGlySerProProThrV	300
301	TTCCAAGAGGGCTCTAACCTCCTTGGAACTAGTGATAAGGGGTTTAGAAGGCAGCCAG PheGlnGluGlySerAsnLeuLeuTrpGluLeuValIleArgGlyLeuGluGlySerGln sSerLysArgAlaLeuThrSerPheGlyAsnEndEndGlyValEndLysAlaAlaAr alProArgGlyLeuEndProProLeuGlyThrSerAspLysGlyPheArgArgGlnProG	360
361	GCTGGGGGTGAGGACCCGCTCCAAGGCAGTTGGTCGCTTCAGCACCATCAAGAGTGAT AlaGlyGlyGluAspProLeuProArgGlnLeuValArgPheSerThrIleLysSerAsp gLeuGlyValArgThrArgSerGlnGlySerTrpPheAlaSerAlaProSerArgValMe lyTrpGlyEndGlyProAlaProLysAlaValGlySerLeuGlnHisHisGlnGluEndT	420
421	GGGTCCAGGTGCGAGTTCTGAGGCTGGGCTCCCCCACCCATCCCAGGAGCTGCTGGAC GlySerArgCysGluPheLeuArgLeuGlyLeuProHisProSerGlnGluLeuLeuAsp tGlyProGlyAlaSerSerEndGlySerProThrHisProArgSerCysTrpTh rpValGlnValArgValProGluAlaArgAlaProProIleProGlyAlaAlaGlyP	480
481	CGCCTGCGAGACAGGGCTCCGAGCTGCAGGCGACGGGACGGACCTGGAGGCCCTCCGGC ArgLeuArgAspArgValSerGluLeuGlnAlaThrGlyArgThrTrpSerProSerGly rAlaCysGluThrGlySerProSerCysArgArgAspGlyProGlyAlaProProAl roProAlaArgGlnGlyLeuArgAlaAlaGlyAspGlyThrAspLeuGluProLeuArgG	540
541	AGGACCGTGGCCTCACAGAACGCTGGAGGCGAGGGAAGCAGCCCCCACGGGGTTCTG ArgThrValAlaSerGlnLysProGlyArgArgGlyLysGlnProProArgGlyPheLeu aGlyProTrpProHisArgSerLeuGlyGlyGluGlySerSerProHisGlyGlySerTr lnAspArgGlyLeuThrGluAlaTrpGluAlaArgGluAlaAlaProThrGlyValLeuG	600

FIGURE 1

601 GGCCCCGCAGTAGCATCTTCCAAGTCCTCCGGGAATACGCAGCCCCAAGACGATGCGTG 660
 GlyProAlaValAlaSerSerLysSerSer
 pAlaProGlnEndHisLeuProSerProPro
 lyProArgSerSerIlePheGlnValLeuArgGlyIleArgSerProLysThrMetArgA
 661 ACTCTGGCTGCTTGGCGGAGGCTGGACCGGATCGGCTCCCTCAGCGGCCTGGCTGCA 720
spSerGlyCysPheGlyArgArgLeuAspArgIleGlySerLeuSerGlyLeuGlyCysA
 721 ATGGTGAGCACCCACCCATTCCCACTGCACGCCCGGTAGCATCACTCTGGTTGA 780
snV
 781 TGTCTCTGGACCAAACCTCGAGAAAAGGACACCTGGATATCACTCTTCTTGTGCCAG 840 -
 841 TCCTCAAGGCCAAGGAGCGCCTCCTGGAAAAATTAAATTGGACAGCATTCACTAGCAT 900
 901 GACTATGAGTCCCCACCCACCTCTGCCACCCCTGCCTCTCACCCAGGGCAGA 960
 961 ATTACTTTAGGATGTAATTCTGTCAATTGCCTGGCTGCCGCTCTGGAGCAAAAGAGA 1020
 1021 ACTAAACCTTTCCCCCTGGTTCCCTCAACTGTCTGTGGCTGCAAAGGCAGAGGGCAG 1080
 1081 GATCACCAAGGGTGTGACAAGTCCCAGCTTACAAGGAGGAAACTCAGGTCCAGAGAGATG 1140
 1141 GATTATCCAAAGCCCCAACATCCAGTTCTGCTGAAGAAGGCGGGTGGCAGGGTGGCA 1200
 1201 CGTGGTGGGGGAAGCCCAGGTCCCTGCCCTCTCACCTTAATGTCATCCTCACCCCTCT 1260
 1261 CTCTCCCCCCCACAGTGCTCAGGAGGTACTGAGAAGTCCCTGGCTGACAACCTCTGTGTCC 1320
allLeuArgArgTyr***
 1321 GCTTCTCCAACGCCCTCCCTGCTCCCTCAAAGCAACTCCTGTTTTATTTATGTAT 1380
 1381 TTATTTATTTATTTATTTGGTGGTTGTATATAAGACGGTTCTTATTTGTGAGCACATT 1440
 1441 TTCCATGGTGAATAAGTCAACATTAGAGCTCTGTCTTGTGAAAAAAAAAAAGGA 1500
 1501 ATTC 1504

FIGURE 1 (Cont)

Fig. 2: BNP Screening Oligos

5'-TCCAGCTGCTCGGGGGCAGGATGGACAGGATTGGAGCCCAGAGCGGACTGGGCTGTAAAC-3'	human ANP
SerSerCysPheGlyGlyArgMetAspArgIleGlyAlaGlnSerGlyLeuGlyCysAsn-3'	human ANP
(2) (21)	
SerGlyCysPheGlyArgArgLeuAspArgIleGlySerLeuSerGlyLeuGlyCysAsn	pig BNP
5'-ACNGNTGCTTGGGNCGNCNCTNGACCGNATNGNTCNTCNGNCTNGNTGCAAC-3'	Pig BNP
TG T A A A T TA AG T AG T T T	
3'-AGGCCGACGAAGCCCGCGTCCGACCTGTCTAACCTAGGGACTCGCCTGACCCGACATTG-5'	3351 (minimal)
3'-TCGCCGACGAAGCCGTCTCTGAGCTGTCTAGCCGTCGGAGTCGGGGAGCCGACGTTG-5'	3352 (G/T pref)
3'-AGTCGACGAAGCCCCCGTCTAACCTGTCTAACCTCGGGTCTCGCCTGACCCGACATTG-5'	3376 (ANP)

FIGURE 2

Fig. 2: hn BNP cDNA (10-13-88)

1	GAATTCCAGGCTGCTAGGAAGTGAACCTGGACCCAGCTAGCGGCAGCAGCAGCGGAGCAG	70
71	CAGCAGCCTCTATCCTCTCCTCCAGCCACATGGGCCCGGATGGCGCTTCCCCGCTGCTCTGCTCT MetGlyProArgMetAlaLeuProArgValLeuLeuLeuLe	140
141	GTTCTTGACCTGTTGCTGCTAGGATGCCGTTCCCCTACCAACTGGGTGGCGCTGGCCTGGCCTCAGAACTG uPheLeuHisLeuLeuLeuGlyCysArgSerHisProLeuGlyGlyAlaGlyLeuAlaSerGluLeu -1 +1 . 10 .	210
211	CCAGGGATAACAGGTGAGCCCTGATGAACCTGCTTAGACTGGTTGGCTGGGAGGGCGCGACAGCAGCAAC ProGlyIleGln	280
281	TAACGGGTCCCCACCTACTGTTCCAAGAGGGCTTAACCTCCTTGGGAACTAGTGATAAGGGGTTAGAA	350
351	GGCAGCCAGGCTGGGGGTGAGGACCCCCCTCCAAAGGCAGTTGGTTCGCTTCAGCACCATCAAGAGTGAT	420
421	GGGTCCAGGTGCGAGTTCTGAGGCTCGGGCTCCCCACCCATCCCAGGAGCTGCTGGACCGCCTGCGAG GluLeuLeuAspArgLeuArgA 20.	490
491	ACAGGGTCTCCGAGCTGCAGGGAGCGGGACGGACCTGGAGCCCCCTCCGGCAGGACCGTGGCCTCACAGA spArgValSerGluLeuGlnAlaGluArgThrAspLeuGluProLeuArgGlnAspArgGlyLeuThrGln 30. . 40.	560
561	AGCCTGGGAGGGAGGGAAAGCAGCCCCCACGGGGTTCTGGGCCCCCGAGTAGCATCTTCCAAGTCCTC uAlaTrpGluAlaArgGluAlaAlaProThrGlyValLeuGlyProArgSerSerIlePheGlnValLeu 50. . 60. . 70.	630
631	CGGGGAATAACGCAGCCCCAACGACGATGCGTGA CTGGCTGCTTTGGGCGGGAGCTGGACCGGATCGGCT ArgGlyIleArgSerProLysThrMetArgAspSerGlyCysPheGlyArgArgLeuAspArgIleGlyS . +1 . 80. +2 . 90.	700
701	CCCTCAGCGGCCCTGGGCTGCAATGGTGAGCACCCACCCATTCCCACGTGACGCCGGTTAGCATCAC erLeuSerGlyLeuGlyCysAsnV 100	770
771	TTCTGGTTTGTCTCTGGGACCAA ACTCCGAGAAAAGGACACCTGGATATCACTTTCTTGTGCT 841 CAGTCCTCAAGGCCAAGGAGGCCCTCCTGAAAAAAATTAAATTGGACAGCATTCACTAGCATGACTATG 911 AGTCCCCACCCACCTCTGCCACCCCTGCCCTCTCACCAAGGGGGAGAATTACTTTAGGATGAA 981 ATTCTGTCATTGCCCTGGCTGCCCTCCTGGAGCAAAAGAGAACTAAACCTCTCCCCCTGGTTCCCC 1051 TCAACTGTCTGGCTGCAAGGCAGAGGGCAGGATCACCAAGGGTGA TACAAGTCCCAGCTTACAAGGA 1121 GGAAACTCAGGTCCAGAGAGATGGATTATCCCAAAGCCCCAACATCCAGTTCTGCTGAAGAAGGCGG 1191 GGCAGGGTGGCACGTGGGGGAAGCCCAGGTCTGCCTCTCACCTAATGT CATCCTCACCC 1261 TCTCTCTCCCCCCCACAGTGCTCAGGAGGTACTGAGAAGTCTGGCTGACAACCTCTGTGTCGCTTCTC alLeuArgArgTyr*** 1331 CAACGCCCTCCCCCTGCTCCCTCAAACCAACTCCTGTTTATTATGATT TATTATTATTATTATTATT 1401 TGGTGGTTGTATATAAGACGGTTCTTATTGTGAGCACATT TTTCCATGGTGAATAAGTCAACATTA 1471 GAGCTCTGTTGAAAAAAAGGAATT 1507	840
		910
		980
		1050
		1120
		1190
		1260
		1330
		1400
		1470

Figure 3

Mature Pig BNP cDNA (10-13-88)

1	GAATTCCAGGCTGCTAGGAAGTGAACCTGGACCCAGCTCAGCGGCAGCAGCAGCGGAGCAGG	70
71	CAGCAGCCTCTATCCTCTCCAGCCACATGGGCCCGGATGGCGCTTCCCGCGTGCTCCTGCTCCT <i>MetGlyProArgMetAlaLeuProArgValLeuLeuLeule</i>	140
141	GTTCTTGCACCTGTTGCTGCTAGGATGCCCTCCCCTCCACTGGGTGGCGCTGGCCTGGCCTCAGAACITG <i>uPheLeuHisLeuLeuLeuGlyCysArgSerHisProLeuGlyGlyAlaGlyLeuAlaSerGluLeu</i> ↓1	210
211	CCAGGGATAACAGGAGCTGGACCCCTGGAGACAGGGTCTCCAGCTGCAGGCCGAGCCGACGGACC ProGlyIleGlnGluLeuLeuAspArgLeuArgAspArgValSerGluLeuGlnAlaGluArgThrAspL	280
281	TGGAGCCCCCTCCGGCAGGACCGTGGCCTCACAGAACGCTGGGAGGGCAGGGAAAGCAGCCCCCACGGGGGT euGluProLeuArgGlnAspArgGlyLeuThrGluAlaTrpGluAlaArgGluAlaAlaProThrGlyVa	350
351	TCTTGGGCCCGCAGTAGCATCTTCCAAGTCCTCCGGGAATACCCAGCCCCAAGACGATGCGTGACTCT ↑1LeuGlyProArgSerSerIlePheGlnValLeuArgGlyIleArgSerProLysThrMetArgAspSer ↓2	420
421	GGCTGCTTTGGGCGGAGGCTGGACCGGATCGGCTCCCTCAGCGGCTGGCTGCAATGTGCTCAGGAGGT GlyCysPheGlyArgArgLeuAspArgIleGlySerLeuSerGlyLeuGlyCysAsnValLeuArgArgT	490
491	ACTGAGAAGTCCTGGCTGACAACCTCTGTGTCGCCCTCTCAACGCCCTCCCTGCTCCCTCAAAGC yr***	560
561	AACTCCTGTTTATTTATGTATTTATTTATTTATTTGGTGGTTGTATAAGACGGTTCTTATT	630
631	GTGAGCACATTTTCCATGGTAAATAAGTCAACATTAGAGCTGTCTTTGAAAAA AAAAAAAAAAAAAAA	700
701	GGAATTC 707	

Figure 4

Dog BNP Gene 12-12-88

1	CGATCAGGGATGTTGGGCAGGAAACGGAGGGAGGGAGGGAGGCCGAGGACTGTTGGTG	70
71	TCCCCCTCCTGCCCTTGGGCCAGGCCACTTCTATAAGGCCTGCTCTCCAGCCTCACCCCGCG	140
141	GGTATGGTGCAGGCCGGAGGGCGCATTCCTGCCCTGAGCTCAGGCCGAATGCCGATAAAAT	210
211	CAGAGATAACCCCAGGCCGGATAAGGGATAAAAAGCCCCGTTGCCGCCGATCCAGGAGAGCACCCG	280
281	CGCCCCAAGGGTGTACACTCGACCCCGTCGCAGCGCAGCAGCTCAGCAGGCCGACGTCTTTCCCCAC	350
351	TTCTCTCCAGCGACATGGAGCCCTGCGCAGCGCTGCCCGGCCCTCCTGCTCCTGTTGACCT MetGluProCysAlaAlaLeuProArgAlaLeuLeuLeuLeuPheLeuHisLe	420
421	GTCGCCACTCGGAGGCCGCCACCCGCTGGCGGCCCGAGCCCCGCCCTCGGAAGCCCTCGGAAGCCTCA uSerProLeuGlyGlyArgProHisProLeuGlyGlyArgSerProAlaSerGluAlaSerGluAlaSer	490
491	GAAGCCTCGGGTTGTGGCCCGTGCAGGTGAGCGCTCAGCCTGCCCTGAAGGCCGCCGGTGGCAGCAG	560
561	GTCACGGGGCTTAGCCACTGTCCAAGTCTCAGTCTCCCTGGATTAGTATAAGGAAATCAGAAA	630
631	GTGACGAGATTGGTGCAGGACTCCATACCCAGGCCGCCCTTCACTTGGTGCAAGGGTGGTCCGC	700
701	CCCGCCGTGGTTCTGAGGCTCAGGCCGTCCATTGCAGGAGCTGCTGGCCGTCTGAAGGACGCAGTT GluLeuLeuGlyArgLeuLysAspAlaValS	770
771	CAGAGCTGCAGGCAGACCAGTGGCCCTCGAACCCCTGCACCGAGCCACAGCCCCGAGAAGCCCCGGA erGluLeuGlnAlaGluGlnLeuAlaLeuGluProLeuHisArgSerHisProAlaGluAlaProG	840
841	GGCCGGAGGAACGCCCGTGGGTCTTGCACCCATGACAGTGTCTCCAGGCCCTGAGAAAGACTACGC uAlaGlyGlyThrProArgGlyValLeuAlaProHisAspSerValLeuGlnAlaLeuArgArgLeuArg	910
911	AGCCCCAAGATGATGCACAAGTCAGGTGTTGGCCGGAGGCTGGACCGGATCGCTCCCTCAGTGGCC SerProLysMetMetHisLysSerGlyCysPheGlyArgArgLeuAspArgIleGlySerLeuSerGlyL	980
981	TGGGCTGCAATGGTAAGCCCTCCCTGCCGCTTGGCTCCCCCTCCCAAGCCCCCTGGTTCGACCCCT euGlyCysAsnV	1050
1051	GGAAACCCCTCTGGTTGTTGTCGGGGATCACACTGAGGAAAGGACATCTGGACATCGCTCCTT	1120
1121	CTTGGCTGACAGTCTAACGGCCAAGGAGTACGTTCTGGAAATACTACGTGTGGACATCGTTGTCCAGGG	1190
1191	TCCCTACCCACCTCTAGCCCCCTCTGCCCTCGCACCCAAAGGGCAGAATCATCTTAGGATGGAATCA	1260
1261	GTCGTTGCTGGAAAGCATCTCTGGAGCAGAAAGACTCTAACATCGTCCTCGTAGCTCTCTGTCT	1330
1331	GTCTGTAGCCACGAAGGCAGAGTCAGGGCACCAGGGCAGTGATGATTCCAGTTAACAGAGGAGGA	1400
1401	CTGAGGTCTAGAGAGATGGATTATTCAAAGCCTCAAACATCCAGATCGCTGAGGGTGGGTTGGTGGC	1470
1471	AGGGATGGCTCTGGCTTGGAGCTCGATCCTGCCCTAGTCTCCACCTGACGCCATCATCCCCCTC	1540
1541	TCTCTCTCCCACAGTGTGAGAAAGTATTAAGGAGGAAGTCCCAGTCCCCACATCTGCATTGGATTCT	1610

Figure 5

alLeuArgLysTyr***

1611 TCAGCAGCCCCCTGAGCCCCCTTGGAAAGCAGATCTTATTATTCGTATTTATTTATTTATTTCGATTG 1680
1681 TTTTATATAAGATGATCCTGACGCCGAGCACGGATTTCCACGGTGAATAAAGTCAACCTTAGAGCTT 1750
1751 CTTTGAAACCGATTTGTCCCTGTGCATTAAGAACACATCATTTAAAAAAA 1804

Fig 5 (cont)

Figure 6

Human BNP Gene 12-12-88

1	CCCACGGTGTCCCAGGGAGGCCAGGAGGCACCCCGCAGGCTGAGGGCAGGTGGGAAGC	AAACCCGGACG	70
71	CATCGCAGCAGCAGCAGCAGCAGCAGAAGCAGCAGCAGCAGCAGCAGCAGCTCCCTCA	GAGACATGGATC MetAspP	140
141	CCCAGACAGCACCTCCGGCGCTCTGCTCTGCTCTTCTTCATCTGGCTTCCTGGAGGT	CGTTCTroGlnThrAlaProSerArgAlaLeuLeuLeuLeuLeuPheLeuHisLeuAlaPheLeuGlyGlyArgSe	210
211	CCACCCGCTGGGCAGCCCCGGTTCAGCCTCGGACTTGGAAACGTCCGGTTACAGGTGAGAGCGGAGGGC	rHisProLeuGlySerProGlySerAlaSerAspLeuGluThrSerGlyLeuGln	280
281	AGCTCAGGGGATTGGACAGCAGCAATGAAAGGGCTCTCACCTGCTGCTCCAAAGAGGCC	CTCATCTTCC	350
351	TTTGGAAATTAGTGATAAAAGGAATCAGAAAATGGAGAGACTGGGTGCCCTGACCCTGTACCCAAGGCAGTC		420
421	GGTTCACTGGGTGCCATGAAGGGCTGGTGAGCCAGGGTGGGTCCCTGAGGCTTGGACGCC	CCCCATTCA	490
491	TTGCAGGAGCAGCGAACCATTCAGGGCAAACGTGGAGCTGCAGGTGGAGCAGACATCCCTGGAGC	GluGlnArgAsnHisLeuGlnGlyLysLeuSerGluLeuGlnValGluGlnThrSerLeuGluP	560
561	CCCTCCAGGAGAGCCCCGTCACAGGTGTCAGGAAAGTCCGGGAGGTAGCCACCGAGGGCATCCGTGG	troLeuGlnGluSerProArgProThrGlyValTrpLysSerArgGluValAlaThrGluGlyIleArgGl	630
631	GCACCGCAAAATGGCTCTACACCCCTGGGGCACCAAGAACGCCCCAAGATGGTGCAAGGGTCTGGCTGC	yHisArgLysMetValLeuTyrThrLeuArgAlaProArgSerProLysMetValGlnGlySerGlyCys	700
701	TTTGGGAGGAAGATGGACCGGATCAGCTCCCTCAGTGGCTGCAAGGTAAGCACCCCTGCCAC	PheGlyArgLysMetAspArgIleSerSerSerGlyLeuGlyCysLysV	770
771	CCCGGCCGCTTCCCCCATTCCAGTGTGACACTGTTAGAGTCACTTGGGTTTGTCTCTGGAA		840
841	CCACACTTTGAGAAAAGGTACCTGGACATCGCTCTTGTAAACAGCCTCAGGGCAAGGGTG		910
911	CCTTGTGAATTAGTAAATGTGGCTTATTCATTACCATGCCACAATACCTCTCCCCACCTCTAC		980
981	TTCTTATCAAAGGGCAGAACATCCCTTTGGGGCTGTTATCATTGGCAGCCCCCAGTGGTGCA	GAA	1050
1051	AGAGAACCAAAACATTCCCTGGTTCTAAACTGTCTATAGTCTAAAGGCAGAGAGCAGGATCAC		1120
1121	CAGAGCAATGATAATCCCCATTACAGATGAGGAAACTGAGGCTCAGAGAGTTGCATTAAGCTCAAAC		1190
1191	GTCTGATGACTAACAGGTGGTGGCAGACAGATGAGGTAAAGCTCAGCCCTGCCATCTCCACC		1260
1261	CTAACCATCATCACCCCTCTCTTCCCTGACAGTGCTGAGGCGGCTTAAAGAGGAAGTCCTGGCTGCAG	alLeuArgArgHis***	1330
1331	ACACCTGCTCTGATTCCACAAGGGCTTTTCTCAACCTGTGGCCCTCATCTTCTTTGAAATTAG		1400
1401	TGATAAAGGAATCAGAAAATGGAGAGACTGGGTGCCCTGACCCTGTACCCAAGGCAGTCGGTTCACTTGG		1470
1471	GTGCCATGAAGGGCTGGTGAGCCAGGGTTGGTCCCTGAGGCTTTA	1519	

Figure 7

Pig PreproBNP
Dog PreproBNP
Human PreproBNP

Figure 8