ТПР::практика

11 лютого 2019 р.

Задача (класна). Побудувати функцію вибору, яка породжена бінарним відношенням

$$R = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Розв'язок. Скористаємося визначенням:

$$\forall X \subseteq \Omega: \quad C^R(X) = \{x \in X : \forall y \in X : y\bar{R}x\}.$$

При знаходженні $C^R(X)$ будемо дивитися на відповідну під-матрицю R і шукати ті x_i у стовпцях яких усі нулі, тобто не існує елементу що більший за них:

X			$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1,x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	$\{x_1\}$	Ø	$\{x_3\}$	$\{x_1\}$	$\{x_3\}$	Ø	Ø

Задача 1. Побудувати функцію вибору, яка породжена бінарним відношенням

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Розв'язок. Скористаємося визначенням:

$$\forall X \subseteq \Omega: \quad C^R(X) = \{x \in X : \forall y \in X : y\bar{R}x\}.$$

При знаходженні $C^R(X)$ будемо дивитися на відповідну під-матрицю R і шукати ті x_i у стовпцях яких усі нулі, тобто не існує елементу що більший за них:

X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	Ø	$\{x_2\}$	$\{x_3\}$	$\{x_2\}$	$\{x_3\}$	$\{x_3\}$	$\{x_3\}$

Задача (класна). Побудувати бінарне відношення, яке породжує задану функцію вибору, якщо таке існує:

X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	x_1, x_3	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	$\{x_1\}$	Ø	$\{x_3\}$	$\{x_1\}$	$\{x_3\}$	Ø	$\{x_2\}$

Розв'язок. Існування бінарного відношення що породжує задану функцію вибору рівносильне нормальності відповідної функції вибору, яка, очевидно, не виконується.

Зокрема, $x_2 \in C(\{x_1, x_2, x_3\})$, але $x_2 \notin C(\{x_2\})$, суперечить нормальності.

Задача 2. Побудувати бінарне відношення, яке породжує задану функцію вибору, якщо таке існує:

	X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1,x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
ĺ	$C^R(X)$	Ø	Ø	$\{x_3\}$	$\{x_2\}$	$\{x_3\}$	$\{x_3\}$	$\{x_3\}$

Розв'язок. Існування бінарного відношення що породжує задану функцію вибору рівносильне нормальності відповідної функції вибору, яка, очевидно, не виконується.

Зокрема, $x_2 \in C(\{x_1, x_2\})$, але $x_2 \notin C(\{x_2\})$, суперечить нормальності.

Задача 3. Побудувати ЛФФВ для заданої функції вибору:

X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
$C^R(X)$	Ø	$\{x_2\}$	$\{x_3\}$	$\{x_2\}$	Ø	$\{x_3\}$	$\{x_3\}$

Розв'язок. Побудуємо $\beta(X)$ і $\beta(C(X))$ для всіх $X \subseteq \Omega$:

X	C(X)	$\beta(X)$	$\beta(C(X))$
$\{x_1\}$	Ø	(1,0,0)	(0,0,0)
$\{x_2\}$	$\{x_2\}$	(0,1,0)	(0, 1, 0)
$\{x_3\}$	$\{x_3\}$	(0,0,1)	(0, 0, 1)
$\{x_1, x_2\}$	$\{x_2\}$	(1, 1, 0)	(0, 1, 0)
$\{x_1, x_3\}$	Ø	(1, 0, 1)	(0, 0, 0)
$\{x_2, x_3\}$	$\{x_3\}$	(0, 1, 1)	(0, 0, 1)
$\{x_1, x_2, x_3\}$	$\{x_3\}$	(1, 1, 1)	(0, 0, 1)

Побудуємо f_i , де i=1,2,3. Для цього виписуємо всі можливі значення $\vec{\beta}(X)$ де $\beta_i(X)=1$ і беремо $f_i(\vec{\beta})=\beta_i(C(X))$:

β_1	β_2	β_3	f_1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

β_1	β_2	β_3	f_2
0	1	0	1
0	1	1	0
1	1	0	1
1	1	1	0

β_1	β_2	β_3	f_3
0	0	1	1
0	1	1	1
1	0	1	0
1	1	1	1

Записуємо ДДНФ (а також стислу форму) для f_i :

$$\begin{split} f_1(\beta_2,\beta_3) &\equiv 0 \\ f_2(\beta_1,\beta_3) &= \bar{\beta}_1 \cdot \bar{\beta}_3 \vee \beta_1 \cdot \bar{\beta}_3 = \bar{\beta}_3 \\ f_3(\beta_1,\beta_2) &= \bar{\beta}_1 \cdot \bar{\beta}_2 \vee \bar{\beta}_1 \cdot \beta_2 \vee \beta_1 \cdot \beta_2 = \beta_1 \to \beta_2 \end{split}$$

ТПР::практика

Задача 4. Побудувати функцію вибору за заданою ЛФФВ:

$$f_1(\beta_2, \beta_3) = \bar{\beta}_2 \vee \beta_3, \quad f_2(\beta_1, \beta_3) = \beta_1 \cdot \bar{\beta}_3, \quad f_3(\beta_1, \beta_2) \equiv 1.$$

Розв'язок. Перш за все відновимо табличку істинності для f_i . Для цього виписуємо всі можливі значення $\vec{\beta}(X)$ де $\beta_i(X)=1$ і дописуємо туди значення $f_i(\vec{\beta})$:

β_1	β_2	β_3	f_1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

β_1	β_2	β_3	f_2
0	1	0	0
0	1	1	0
1	1	0	1
1	1	1	0

β_1	β_2	β_3	f_3
0	0	1	1
0	1	1	1
1	0	1	1
1	1	1	1

Відновлюємо відомі значення $\beta(C(X))$ за значеннями f_i :

X	C(X)	$\beta(X)$	$\beta(C(X))$
$\{x_1\}$	$\{x_1, ?\}$	(1,0,0)	(1,?,?)
$\{x_2\}$	{?}	(0, 1, 0)	(?, 0, ?)
$\{x_3\}$	$\{x_3, ?\}$	(0, 0, 1)	(?,?,1)
$\{x_1, x_2\}$	$\{x_2, ?\}$	(1, 1, 0)	(0, 1, ?)
$\{x_1, x_3\}$	$\{x_1, x_3, ?\}$	(1, 0, 1)	(1, ?, 1)
$\{x_2, x_3\}$	$\{x_3, ?\}$	(0, 1, 1)	(?, 0, 1)
$\{x_1, x_2, x_3\}$	$\{x_1, x_3, ?\}$	(1, 1, 1)	(1, 0, 1)

Зрозуміло, що решта (позначені зараз як?) значень $\beta(C(X))$ – нулі, адже відповідні елементи x_i просто не належать відповідним підмножинам X_j , тому маємо наступну функцію вибору:

	X	$\{x_1\}$	$\{x_2\}$	$\{x_3\}$	$\{x_1, x_2\}$	$\{x_1,x_3\}$	$\{x_2, x_3\}$	$\{x_1, x_2, x_3\}$
C	$C^R(X)$	$\{x_1\}$	Ø	$\{x_3\}$	$\{x_2\}$	$\{x_1, x_3\}$	$\{x_3\}$	$\{x_1, x_3\}$