

第六章 样本及抽样分布

主要内容

- 6.1 随机样本
- 6.3 抽样分布

6.1 随机样本

总体——所研究对象的某个(或某些)数量指标的全体

这个(这些)数量指标是一个一维随机变量(或多维随机变量),记为X(或(X, Y, ...)),X 的分布函数和数字特征称为总体的分布函数和数字特征.

个体 ——总体的每一个数量指标

有限总体 ——个体数目有限的总体

无限总体 ——个体数目无限的总体

样本 —— 从总体中抽取的部分个体. 用 (X_1, X_2, \dots, X_n) 表示, n 为样本容量.

样本观测值 ——对样本进行一次具体的观察,得到一组实数 (x_1, x_2, \dots, x_n) ,称其为总体 X 的一个容量为n 的样本观测值,或称样本的一个实现.

简单随机样本

若总体 X 的样本 (X_1, X_2, \dots, X_n) 满足:

- (1) X_1, X_2, \dots, X_n 与 X 有相同的分布;
- (2) X_1, X_2, \dots, X_n 相互独立.

则称 (X_1, X_2, \dots, X_n) 为简单随机样本.

一般,对**有限总体,放回抽样**所得到的样本为简单随机样本,但使用不方便,常用**不放回抽样**代替,而代替的条件是:

6.3 抽样分布

统计量

设 (X_1, X_2, \dots, X_n) 是来自总体X 的一个样本, $g(X_1, X_2, \dots, X_n)$ 是关于 X_1, X_2, \dots, X_n 的函数,且不 含有未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 为统计量.

若 (x_1, x_2, \dots, x_n) 是一个样本值,称 $g(x_1, x_2, \dots, x_n)$ 为统计量 $g(X_1, X_2, \dots, X_n)$ 的观察值.

例 $X \sim N(\mu, \sigma^2)$, μ, σ^2 是未知参数,

 (X_1, X_2, \dots, X_n) 是一个样本,则

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

是统计量, 其中 $X_i \sim N(\mu, \sigma^2)$

但 $\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2$ 不是统计量.

常用统计量

设 (X_1, X_2, \dots, X_n) 是来自总体 X 的容量为 n 的样本,

称统计量

(1)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 为样本均值

(2)
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 为样本方差

$$S = \sqrt{\frac{1}{n-1}} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
 为样本标准差

(3)
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$
 为样本的 k 阶**原点矩**

例如
$$A_1 = \overline{X}$$

(4)
$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k$$
 为样本的 k 阶中心矩

例 从一批机器零件毛坯中随机地抽取10件,测得其重量为(单位:公斤):210,243,185,240,215,228,196,235,200,199,求这组样本的均值、方差、二阶原点矩.

解
$$\Leftrightarrow$$
 $(x_1, x_2, \dots, x_{10})$
= $(210, 243, 185, 240, 215, 228, 196, 235, 200, 199)$
则 $\overline{x} = \frac{1}{10}(210 + 243 + 185 + 240 + 215 + 228 + 196 + 235 + 200 + 199)$
= 217.19

$$s^{2} = \frac{1}{9} \sum_{i=1}^{10} (x_{i} - \overline{x})^{2} = 433.43$$

$$\alpha_2 = \frac{1}{10} \sum_{i=1}^{10} x_i^2 = 47522.5$$

抽样分布

确定统计量的分布是数理统计的基本问题之一.

正态总体是最常见的总体,本节介绍的几个抽样分布均是针对正态总体而言.

统计中的常用分布——正态分布

若
$$X_1, X_2, \dots, X_n \sim N(\mu_i, \sigma_i^2)$$

$$\mathbb{M} \sum_{i=1}^n a_i X_i \sim N \left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2 \right)$$

特别地,

若
$$X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$$

则
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

X_i相互独立

标准正态分布的 α 分位点

若 $P(X ≥ z_{\alpha}) = \alpha$,则称**Z**_α为标准正态分布的上 α 分位点.

若 $P(|X| \ge z_{\alpha/2}) = \alpha$,则称**Z**_{\alpha/2}为标准正态分布的**双 侧** α 分位点.

标准正态分布的 α 分位点图形

(一) χ²分布

定义 设 X_1, X_2, \dots, X_n 相互独立, 且都服从标准 正态分布N(0,1), 则称统计量

$$\chi^2 = \sum_{i=1}^n X_i^2$$
 服从自由度为 n 的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$.

n=1 时, 其密度函数为

$$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} x^{-\frac{1}{2}} e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

n=2时,其密度函数为

$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

一般自由度为n的 $\chi^2(n)$ 的密度函数为

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} e^{-\frac{x}{2}} x^{\frac{n}{2}-1}, & x > 0\\ 0, & x \le 0 \end{cases}$$

其中,

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

 $\Delta E_x > 0$ 时收敛,称为 Γ 函数,具有性质

$$\Gamma(x+1) = x\Gamma(x), \quad \Gamma(1) = 1, \quad \Gamma(1/2) = \sqrt{\pi}$$
$$\Gamma(n+1) = n! \quad (n \in N)$$

χ^2 分布的性质

1°
$$E(\chi^2(n)) = n, D(\chi^2(n)) = 2n$$

2° 若
$$X_1 = \chi^2(n_1), X_2 = \chi^2(n_2), X_1, X_2$$
相互独立, 则 $X_1 + X_2 \sim \chi^2(n_1 + n_2)$

$$3^{\circ}$$
 $n \to \infty$ 时, $\chi^2(n) \to$ 正态分布

 $4^{\circ} \chi^2(n)$ 分布的上 α 分位点 $\chi^2_{\alpha}(n)$ 有表可查.

例

$$\chi_{0.05}^2(10) = 18.307$$

$$P(\chi^2(10) > 18.307) = 0.05$$

附表 5 χ² 分布表

$$P\left\{\chi^{2}(n) > \chi_{\alpha}^{2}(n)\right\} = \alpha$$

n^{α}	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799

(二) *t* 分布 (Student 分布)

定义 设 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X, Y 相互独立,

$$t = \frac{X}{\sqrt{\frac{Y}{n}}}$$

则称随机变量 t 服从自由度为 n 的 t 分布. 记为: $t \sim t(n)$, 其密度函数为

$$h(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad -\infty < t < \infty$$

t 分布的图形(顶峰最高的是标准正态分布)

t 分布的性质

1° h(t)是偶函数,

$$n \to \infty, h(t) \to \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

 2° t(n) 分布的上 α 分位点 $t_{\alpha}(n)$ 与双测 α 分位点 $t_{\alpha/2}(n)$ 均有表可查.

$$P(t > t_{\alpha}(n)) = \alpha$$

$$-t_{\alpha}(n) = t_{1-\alpha}(n)$$

$$0.37$$

$$0.25$$

$$0.2$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.15$$

$$0.17$$

$$0.05$$

$$P(t(10) > 1.8125) = 0.05 \Rightarrow t_{0.05}(10) = 1.8125$$

 $P(t(10) < -1.8125) = 0.05$
 $P(t(10) > -1.8125) = 0.95$ $\Rightarrow t_{0.95}(10) = -1.8125$

附表 4 t 分布表

 $P\{t(n)>t_{\alpha}(n)\}=\alpha$

						idn	
n	0.20	0.15	0.10	0.05	0.025	0.01	0.005
1 2 3 4 5	1.376 1.061 0.978 0.941 0.920	1.963 1.386 1.250 1.190 1.156	3.0777 1.8856 1.6377 1.5332 1.4759	6.3138 2.9200 2.3534 2.1318 2.0150	12.7062 4.3027 3.1824 2.7764 2.5706	31.8207 6.9646 4.5407 3.7469 3.3649	63.6574 9.9248 5.8409 4.6041 4.0322
6 7 8 9	0.906 0.896 0.889 0.883 0.879	1.134 1.119 1.108 1.100 1.093	1.4398 1.4149 1.3968 1.3830 1.3722	1.9432 1.8946 1.8595 1.8331 1.8125	2.4469 2.3646 2.3060 2.2622 2.2281 2.2010	3.1427 2.9980 2.8965 2.8214 2.7638 2.7181	3.7074 3.4995 3.3554 3.2498 3.1693 3.1058
11 12 13 14 15	0.876 0.873 0.870 0.868 0.866 0.865	1.088 1.083 1.079 1.076 1.074	1.3634 1.3562 1.3502 1.3450 1.3406 1.3368 1.3334	1.7959 1.7823 1.7709 1.7613 1.7531 1.7459 1.7396	2.1788 2.1604 2.1448 2.1315 2.1199 2.1098 2.1009	2.6810 2.6503 2.6245 2.6025 2.5835 2.5669 2.5524	3.0545 3.0123 2.9768 2.9467 2.9208 2.8982 2.8784 2.8609

$$P(t > t_{\alpha/2}) = \frac{\alpha}{2}$$

$$\Rightarrow P(|t| > t_{\alpha/2}) = \alpha$$

$$P(t(10) > 2.2281) = 0.025$$

$$\Rightarrow \begin{cases} P(|t(10)| > 2.2281) = 0.05 \\ t_{0.025}(10) = 2.2281 \end{cases}$$

(三) F 分布

定义 设 $U \sim \chi^2(n_1)$, $V \sim \chi^2(n_2)$, 且U, V相互独立,

$$\Leftrightarrow F = \frac{U/n_1}{V/n_2}$$

则称 F 服从自由度为 (n_1, n_2) F 分布,记为 $F \sim F(n_1, n_2)$,其密度函数为

$$\psi(y) = \begin{pmatrix} \Gamma\left(\frac{n_1 + n_2}{2}\right) \\ \Gamma\left(\frac{n_1}{2}\right) \Gamma\left(\frac{n_2}{2}\right) \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1 + n_2}{2}} y > 0 \\ 0, \qquad y \le 0 \end{pmatrix}$$

F分布的性质

- 1° 若 $F \sim F(n_1, n_2)$,则 $1/F \sim F(n_2, n_1)$
- 2° $F(n_1, n_2)$ 的上 α 分位点 $F_{\alpha}(n_1, n_2)$ 有表可查: $P(F > F_{\alpha}(n_1, n_2)) = \alpha$

例如
$$F_{0.05}(4,5) = 5.19$$

那么
$$F_{0.95}(5,4) = ?$$

事实上,
$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}$$

故
$$F_{0.95}(5,4) = \frac{1}{F_{0.05}(4,5)} = \frac{1}{5.19}$$

				1183	1 20	17.95	7797	71.12	1000		1 400	71 21
n_2 n_1	\$133	2	3	4	5	6	7	8	9	10	12	15
1	161	200	216	225	230	234	237	239	241 2	242	244	246
2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4
3	10.1	9.55	9.28	9.12	9.01	8.94			8.81	8.79		8.7
4	7.71	6.94	6.59	6.39	6.26				6.00	5.96	1.0215	5.8
5	6.61	5.79	5.41	5. 19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.6
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21		4.10	4.06		3.9
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	A 2 PR. CO.	3.5
8	5.32	4.46	4.07	3.84	3.69	3.58			3.39	3.35		3. 2
9	5.12	4.26	3.86	3.63	3.48				3.18	3. 14		3.0
10	4.96	4.10	3.71	3.48	3.33	3. 22	3.14	3.07	3.02	2.98	2.91	2.8
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85		
12	4.75		3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75		
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67		
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65			
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	1 2.48	3 2.
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	9 2.42	2 2.
17	4.45	3.59	3.20	2.96				2.55	2.49	2.4	5 2.38	8 2.
18	4.41	3.55	3.16	2.93					2.46	2.4	1 2.3	4 2.
19	4.38	3.52	3.13	2.90					2.42	2.3	8 2.3	1 2
20	4.35	3.49	3. 10	2.87	2.71						5 2.2	28 2
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	9 2.42	2.3	7 2.3	32 2.2	25 2
22	4.30	3.44	3.05	2.82		The same of the same of			2.3	4 2.3	30 2.2	23 2

例 证明
$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

if
$$P(F \ge F_{1-\alpha}(n_1, n_2)) = P\left(\frac{1}{F} \le \frac{1}{F_{1-\alpha}(n_1, n_2)}\right)$$

$$=1-P\left(\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right) = 1-\alpha$$

故
$$P\left(\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right) = \alpha$$
,由于 $\frac{1}{F} \sim F(n_2, n_1)$

因而
$$\frac{1}{F_{1-\alpha}(n_1,n_2)} = F_{\alpha}(n_2,n_1)$$
,即 $F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}$

(四) 正态总体的样本均值与样本方差的分布

(I) 一个正态总体

设总体 $X \sim N(\mu, \sigma^2)$, 样本为 X_1, \dots, X_n , 则

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2}$$
与 \overline{X} 相互独立

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \div \frac{S}{\sigma} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

(II) 两个正态总体

设 X_1, X_2, \dots, X_{n_1} 与 Y_1, Y_2, \dots, Y_{n_2} 分别是来自正态总体 $X \sim N(\mu_1, \sigma_1^2)$ 与 $Y \sim N(\mu_2, \sigma_2^2)$ 的相互独立的简单随机样本.

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i \qquad \overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j$$

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2 \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{j=1}^{n_2} (Y_j - \overline{Y})^2$$

$$\text{III} \quad \frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1 - 1) \qquad \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$$

$$S_1^2 / \sigma_1^2 \sim F(n_1 - 1, n_2 - 1)$$

$$S_2^2 / \sigma_2^2$$

若
$$\sigma_1 = \sigma_2$$
 则 $\frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$

设 X_1, X_2, \dots, X_{n_1} 与 Y_1, Y_2, \dots, Y_{n_2} 分别是来自正态总体 $X \sim N(\mu_1, \sigma^2)$ 与 $Y \sim N(\mu_2, \sigma^2)$ 的相互独立的简单随机样本.

$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i \sim N(\mu_1, \frac{\sigma^2}{n_1}) \quad \overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j \sim N(\mu_2, \frac{\sigma^2}{n_2})$$

$$\overline{X} - \overline{Y} \sim N(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2})$$

$$\overline{(X - \overline{Y}) - (\mu_1 - \mu_2)} \sim N(0, 1)$$

$$\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}$$

$$\frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1) \quad \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1)$$

$$\frac{(n_1-1)S_1^2}{\sigma^2} + \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_1+n_2-2)$$

又
$$\overline{X} - \overline{Y}$$
与 $\frac{(n_1 - 1)S_1^2}{\sigma^2} + \frac{(n_2 - 1)S_2^2}{\sigma^2}$ 相互独立

$$\frac{|\mathcal{J}|}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}} \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1 - \mu_2}{n_1}}} \frac{(n_1 - 1)S_1^2}{(n_2 - 1)S_2^2}$$

$$\sqrt{\frac{\frac{(n_1-1)S_1^2}{\sigma^2} + \frac{(n_2-1)S_2^2}{\sigma^2}}{n_1 + n_2 - 2}}$$

$$= \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2)$$

例 设 $X \sim N(72,100)$,为使样本均值大于70的概率不小于90%,则样本容量至少取多少?

解 设样本容量为n,则 $\overline{X} \sim N(72, \frac{100}{n})$ 故 $P(\overline{X} > 70) = 1 - P(\overline{X} \le 70)$

$$=1-\Phi\left(\frac{70-72}{\frac{10}{\sqrt{n}}}\right)=\Phi(0.2\sqrt{n})$$

令 $\Phi(0.2\sqrt{n}) \ge 0.9$ 得 $0.2\sqrt{n} \ge 1.29$

即 $n \ge 41.6025$,所以取 n = 42

例 从正态总体 $X \sim N(\mu, \sigma^2)$ 中,抽取了 n = 20的样本 $(X_1, X_2, \dots, X_{20})$

(1)
$$\Re P \left(0.37\sigma^2 \le \frac{1}{20} \sum_{i=1}^{20} \left(X_i - \overline{X} \right)^2 \le 1.76\sigma^2 \right)$$

(2)
$$\Re P\left(0.37\sigma^2 \le \frac{1}{20} \sum_{i=1}^{20} (X_i - \mu)^2 \le 1.76\sigma^2\right)$$

$$\mathbf{f}(1) \quad \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$\exists \frac{19S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \sim \chi^2(19)$$

故
$$P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20} (X_i - \overline{X})^2 \le 1.76\sigma^2\right)$$

$$= P\left(7.4 \le \frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \le 35.2\right)$$

$$= P\left(\frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \ge 7.4\right) - P\left(\frac{1}{\sigma^2} \sum_{i=1}^{20} (X_i - \overline{X})^2 \ge 35.2\right)$$

$$_{\pm}$$
 = $0.99 - 0.01 = 0.98$

-	1 2	2	
P	{X	$(n) > \chi_{\alpha}^{2}(n) =$	$= \alpha$
	1	a (10)	-

									25 200 1 1 1 1 1 1	
n^{α}	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21 22	8.033 8.643	8.897 9.542 10.195	10.283 10.982 11.688	11.591 12.338 13.090	13.240 14.042 14.848	29.615 30.813 32.007	32.670 33.924 35.172	35.478 36.781 38.075	38.930 40.289 41.637	

(2)
$$\Rightarrow P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20}(X_i - \mu)^2 \le 1.76\sigma^2\right)$$

$$\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(20)$$

$$\Rightarrow P\left(0.37\sigma^2 \le \frac{1}{20}\sum_{i=1}^{20}(X_i - \mu)^2 \le 1.76\sigma^2\right)$$

$$= P\left(7.4 \le \sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 \le 35.2\right)$$

$$= P\left(\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 \ge 7.4\right) - P\left(\sum_{i=1}^{20} \left(\frac{X_i - \mu}{\sigma}\right)^2 \ge 35.2\right)$$

$$= 0.995 - 0.025 = 0.97$$

例 设随机变量 X 与 Y 相互独立, $X \sim N(0, 16)$, $Y \sim N(0, 9)$, $X_1, X_2, ..., X_9$ 与 $Y_1, Y_2, ..., Y_{16}$ 分别是取自 X 与 Y 的简单随机样本, 求统计量

$$Z = \frac{X_1 + X_2 + \dots + X_9}{\sqrt{Y_1^2 + Y_2^2 + \dots + Y_{16}^2}}$$

所服从的分布.

解
$$X_1 + X_2 + \dots + X_9 \sim N(0, 9 \times 16)$$
则 $\frac{1}{3 \times 4} (X_1 + X_2 + \dots + X_9) \sim N(0, 1)$

$$\frac{1}{3}Y_{i} \sim N(0,1) , i = 1, 2, \dots, 16$$

则
$$\sum_{i=1}^{16} \left(\frac{1}{3}Y_{i}\right)^{2} \sim \chi^{2}(16)$$

从 而
$$\frac{X_{1} + X_{2} + \dots + X_{9}}{\sqrt{Y_{1}^{2} + Y_{2}^{2} + \dots + Y_{16}^{2}}}$$

$$= \frac{1}{3 \times 4} \frac{(X_{1} + X_{2} + \dots + X_{9})}{\sqrt{\sum_{i=1}^{16} \left(\frac{1}{3}Y_{i}\right)^{2}}} \sim t(16)$$

THE END