

# Chapitre 0: Rappels Calculatoires

# 1 L'ordre dans l'ensemble $\mathbb{R}$ des nombres réels

#### Définition 1

Étant donnés  $x, y \in \mathbb{R}$ , on dit que :

- x est inférieur ou égal à y, ou y est supérieur ou égal à x, et on note  $x \le y$  ou  $y \ge x$  si y x est un réel positif ou nul.
- x est inférieur strictement à y, ouy est supérieur strictement à x, et on note x < y ou y > x, si y x est un réel strictement positif.

Exercice 1 Comparer  $\frac{3}{4}$  et  $\frac{10}{13}$ .

# Propriétés 1

Les relations d'ordre  $\leq$  et  $\geq$  sur  $\mathbb R$  vérifient les propriétés suivantes :

• Transitivité

Pour tous  $x, y \in \mathbb{R}$ , si  $x \leq y$  et  $y \leq z$ , alors  $x \leq z$ .

• Compatibilité avec l'addition :

Pour tous  $x, y, z \in \mathbb{R}$ , si  $x \leq y$ , alors  $x + z \leq y + z$ .

• Compatibilité avec la multiplication :

Pour tous  $x, y \in \mathbb{R}$  et  $z \ge 0$ , si  $x \le y$ , alors  $xz \le yz$ .

Pour tous  $x, y \in \mathbb{R}$  et  $z \leq 0$ , si  $x \leq y$ , alors  $xz \geq yz$ .

Remarque 1 Les relations d'ordre sont également compatibles avec la soustraction et la division par un nombre strictement positif.

**Exercice 2** Résoudre sur  $\mathbb{R}$  l'inéquation  $7x - 1 \leq 3x - 7$ .

**Exercice 3** Soient  $x_1, x_2, y_1$  et  $y_2 \in \mathbb{R}$ .

- 1. Montrer que si  $x_1 \le y_1$  et  $x_2 \le y_2$ , alors  $x_1 + x_2 \le y_1 + y_2$ .
- 2. Montrer que si  $0 \le x_1 \le y_1$  et  $0 \le x_2 \le y_2$  alors  $0 \le x_1x_2 \le y_1y_2$ .

**Notation.** Si  $a \in \mathbb{R} - \{0\}$  et  $n \in \mathbb{N}$ , on pose  $a^0 = 1$  et pour tout n > 0  $a^n = \underbrace{a \times \cdots \times a}_{n \text{ facteurs}}$ . et  $a^{-n} = \frac{1}{a^n}$ .

On a alors pour tous  $x, y \in \mathbb{R}$  et tous  $m, n \in \mathbb{Z}$ :

#### Propriétés 2

- $\bullet \quad (xy)^n = x^n y^n$
- $\bullet \quad x^{n+m} = x^n x^m$



**Remarque 2** Pour tout  $x \in \mathbb{R}, x^2 \geq 0$ .

**Application.** Montrer que pour tous réels  $a, b, a^2 + b^2 \ge 2ab$ .

**Exercice 4** Soient a, b > 0. Comparer  $1 - \frac{a}{b}$  et  $\frac{b}{a} - 1$ .

**Notation.** Pour tout  $a \ge 0$ , il existe un unique  $b_a \ge 0$  tel que  $b_a^2 = a$ . On note  $\sqrt{a} := b_a$  ou  $a^{\frac{1}{2}} = b_a$ . Plus généralement, pour tout  $n \in \mathbb{N} - \{0\}$  et tout  $a \ge 0$ , il existe un unique  $b_a \ge 0$  tel que  $b_a^n = a$  et on note  $\sqrt[n]{a} = b_a$  ou  $a^{\frac{1}{n}} = b_a$ .

**Remarque 3** Les résultats dans Propriétés 2 restent vraies pour  $x, y \ge 0$  et pour des puissances  $r, s \in \mathbb{Q} - \{0\}$ .

Méthode 1 Comparer deux réels positifs revient tout simplement à comparer leurs carrées.

**Exercice 5** Comparer  $\sqrt{5} + \sqrt{13}$  et  $\sqrt{34}$ .

# Définition 2

Si a, b sont deux réels tels que  $a \le b$ , on appelle le segment [a, b] l'ensemble des réels compris entre a et b.

Exemples 1  $Si \ a \in \mathbb{R}, \{a\} = [a, a].$ 

#### Définition 3

Un sous-ensemble I de  $\mathbb{R}$  est dit un intervalle de  $\mathbb{R}$  si pour tous x, y de I tels que  $x \leq y$  on a  $[x, y] \subseteq I$ .

# Propriétés 3

Les intervalles de  $\mathbb R$  sont exactement les sous-ensembles suivants :

$$[a,b] = \{x \in \mathbb{R}, a \le x \le b\}, \text{ pour } a \le b$$

$$]a,b[= \{x \in \mathbb{R}, a < x < b\}, \text{ pour } a \le b$$

$$[a,b[= \{x \in \mathbb{R}, a \le x < b\}, \text{ pour } a \le b$$

$$]a,b] = \{x \in \mathbb{R}, a < x \le b\}, \text{ pour } a \le b$$

$$[a,+\infty[= \{x \in \mathbb{R}, a \le x\}, \text{ pour } a \in \mathbb{R}$$

$$]a,+\infty[= \{x \in \mathbb{R}, a < x\}, \text{ pour } a \in \mathbb{R}$$

$$]-\infty,b] = \{x \in \mathbb{R}, x \le b\}, \text{ pour } b \in \mathbb{R}$$

$$]-\infty,b[= \{x \in \mathbb{R}, x < b\}, \text{ pour } b \in \mathbb{R}$$

**Exercice 6** Soient  $x, y \in [1, 2]$ . Encadrer  $\frac{x - y}{x + y}$ .

#### Définition 4

On appelle valeur absolue d'un réel x, et qu'on note |x|, la valeur

$$|x| = \begin{cases} x & si \quad x \ge 0 \\ -x & si \quad x \le 0 \end{cases}$$



**Remarque 4** Pour tout  $x \in \mathbb{R}$ :

- $|x| \geq 0$ .
- $|x| \ge x$  et  $|x| \ge -x$ .

Exemples 2 |-1| = 1 et |3.4| = 3.4.

Remarque 5 D'abord, on a  $|x| \ge 0$ , et si  $x, y \in \mathbb{R}$ , on définit

$$\max(x,y) = \begin{cases} x & si \quad x \ge y \\ \\ y & si \quad x \le y \end{cases}$$

alors  $|x| = \max(x, -x)$ .

**Question** Que désigne graphiquement la valeur |x-y| sur la droite réelle ?

**Exercice 7** Résoudre sur  $\mathbb{R}$  l'équation |4-x|=x.

**Exercice 8** Résoudre graphiquement l'inéquation  $|x-1| \le 2$ .

# Propriétés 4

Si  $x, a \in \mathbb{R}$ , alors

$$|x| \le a \iff -a \le x \le a$$

Exercice 9 Refaire l'exercice 8 avec calcul.

# 2 Résolution des équations sur $\mathbb{R}$

# **2.1** Équations de la forme ax + b = 0

Considérons sur  $\mathbb R$  l'équation suivante :

$$ax + b = 0 (1)$$

où  $a, b \in \mathbb{R}$ . On note par S l'ensemble de solutions réels de (1). On distingue les cas suivantes :

- 1er cas : Si a = 0.
  - Si b = 0, alors  $S = \mathbb{R}$ .
  - Si  $b \neq 0$ , alors  $S = \emptyset$ .
- 2ème cas : Si  $a \neq 0$ .

Alors, 
$$S = \left\{ \frac{-b}{a} \right\}$$
.

# 2.2 Équations du deuxième degré

On s'intéresse maintenant aux équations du deuxième degré, i.e. les équations de la forme

$$ax^2 + bx + c = 0 (2)$$

où  $a, b, c \in \mathbb{R}$  et  $a \neq 0$ .

On commence par calculer la valeur  $\Delta = b^2 - 4ac$ , qu'on appelle le discriminant du trinôme  $aX^2 + bX + c$ . Trois cas se présentent :



# • 1er cas: Si $\Delta > 0$ :

Alors l'équation (2) admet deux solutions réelles :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et  $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ 

On a alors 
$$x_1 + x_2 = \frac{-b}{a}$$
 et  $x_1 x_2 = \frac{c}{a}$  et

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

Donc on a le tableau de signes suivant (en supposant par exemple que  $x_1 \leq x_2$ ):

| x               | $-\infty$ |              | $x_1$ |               | $x_2$ |              | $+\infty$ |
|-----------------|-----------|--------------|-------|---------------|-------|--------------|-----------|
| $ax^2 + bx + c$ |           | signe de $a$ | 0     | signe de $-a$ | 0     | signe de $a$ |           |

# • 2ème cas: Si $\Delta = 0$ :

L'équation en question alors admet une seule solution sur  $\mathbb{R}$ , à savoir  $x_0 = \frac{-b}{2a}$  et

$$ax^2 + bx + c = a(x - x_0)^2$$

On a le tableau de signes suivant :

| x               | $-\infty$ |              | $x_0$ |              | $+\infty$ |
|-----------------|-----------|--------------|-------|--------------|-----------|
| $ax^2 + bx + c$ |           | signe de $a$ | 0     | signe de $a$ |           |

# • 3ème cas : $\Delta < 0$ : L'équation alors n'admet pas de solutions sur $\mathbb{R}$ et le signe de $ax^2 + bx + c$ sur $\mathbb{R}$ est le signe de a.

**Méthode 2** Le signe d'un trinôme peut être déterminé en étudiant ses racines, en calculant son discriminant.

**Exercice 10** Déterminer le signe de  $x^2 + x - 2$ , pour tout  $x \in \mathbb{R}$ .

**Exercice 11** Soient  $x, y \in \mathbb{R}$ . On note b = x + y et c = xy. Donner une équation sur  $\mathbb{R}$  du deuxième degré dont les solutions réelles sont x et y.



# 3 Cercle Trignomoétrique



La fonction qui à chaque  $\theta \in \mathbb{R}$  fait associer l'abscisse (resp. la coordonée) du point M, est appellée **cosinus** et notée cos (resp. appellée **sinus** et notée sin) .

On appelle fonction **tangente** et on note tan la fonction définie sur  $\mathbb{R} - \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$  par

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

| θ              | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ |
|----------------|---|----------------------|----------------------|----------------------|-----------------|
| $\sin(\theta)$ | 0 | $\frac{1}{2}$        | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1               |
| $\cos(\theta)$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$        | 0               |

# Proposition 1: L

fonction cos (resp. sin) est strictement décroissante (resp. strictement croissante) sur l'intervalle  $\left[0,\frac{\pi}{2}\right]$ .



# Proposition 2

Soient  $x, y \in \mathbb{R}$ . Alors,

• 
$$cos(x) = cos(y) \iff x = y + 2k\pi \text{ ou } x = -y + 2k\pi, \text{ avec } k \in \mathbb{Z}.$$

• 
$$\sin(x) = \sin(y) \iff x = y + 2k\pi \text{ ou } x = \pi - y + 2k\pi, \text{ avec } k \in \mathbb{Z}.$$

• Si 
$$x, y \notin \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$$
, alors

$$tan(x) = tan(y) \iff x = y + k\pi, \text{ avec } k \in \mathbb{Z}$$

**Remarque 6** Si  $x, y \in \mathbb{R}$ , pour exprimer le fait que  $x = y + 2k\pi$  avec  $k \in \mathbb{Z}$ , on note  $x \equiv y[2\pi]$ .

# Corollaire 1

Si  $x \in \mathbb{R}$ , alors :

1. La fonctions cos:

• 
$$\cos(x) = -1 \iff x \equiv \pi[2\pi].$$

• 
$$\cos(x) = 0 \iff x \equiv \frac{\pi}{2}[2\pi].$$

• 
$$\cos(x) = 1 \iff x \equiv 0[2\pi].$$

2. La fonction sin:

• 
$$\sin(x) = -1 \iff x \equiv -\frac{\pi}{2}[2\pi].$$

• 
$$\sin(x) = 0 \iff x \equiv \pi[2\pi].$$

• 
$$\sin(x) = 1 \iff x \equiv \frac{\pi}{2}[2\pi].$$

Exercice 12 Résoudre sur  $\mathbb{R}$  les deux équations suivantes:

$$\cos(x) = \frac{\sqrt{3}}{2}$$

$$\sin(3x - 1) = -\frac{1}{2}$$

# Propriétés 5

Soit  $x \in \mathbb{R}$ , alors

| y         | -x         | $\pi - x$  | $\pi + x$  | $\frac{\pi}{2} - x$ | $\frac{\pi}{2} + x$ |
|-----------|------------|------------|------------|---------------------|---------------------|
| $\cos(y)$ | $\cos(x)$  | $-\cos(x)$ | $-\cos(x)$ | $\sin(x)$           | $-\sin(x)$          |
| $\sin(y)$ | $-\sin(x)$ | $\sin(x)$  | $-\sin(x)$ | $\cos(x)$           | $\cos(x)$           |



# Proposition 3

Pour tout  $x \in \mathbb{R}$ ,  $\cos^2(x) + \sin^2(x) = 1$ .

# Propriétés 6

Soient  $x, y \in \mathbb{R}$ , alors :

- cos(x + y) = cos(x)cos(y) sin(x)sin(y).
- $\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(y)$ .
- Si  $x, y, x + y \notin \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$ , alors  $\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 \tan(x)\tan(y)}$
- $\cos(x y) = \cos(x)\cos(y) + \sin(x)\sin(y)$ .
- $\sin(x y) = \sin(x)\cos(y) \sin(y)\cos(y)$ .
- Si  $x, y, x + y \notin \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$ , alors  $\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 \tan(x)\tan(y)}$

# Corollaire 2

Si  $x \in \mathbb{R}$ , alors

$$\cos(2x) = \cos^2(x) - \sin^2(x)$$
$$= 2\cos^2(x) - 1$$
$$= 1 - 2\sin^2(x)$$

et  $\sin(2x) = 2\sin(x)\cos(x)$ .

# Corollaire 3

Soient  $x, y \in \mathbb{R}$ , alors

- $\cos(x)\cos(y) = \frac{1}{2}(\cos(x+y) + \cos(x-y)).$
- $\sin(x)\sin(y) = \frac{1}{2}(\cos(x-y) \cos(x+y)).$
- $\sin(x)\cos(y) = \frac{1}{2}(\sin(x+y) + \sin(x-y)).$

Exercice 13 1. Rappeler la valeur de  $\cos\left(\frac{\pi}{4}\right)$ .

- 2. Calculer alors  $\cos\left(\frac{\pi}{8}\right)$ .
- 3. En déduire la valeur de  $\sin\left(\frac{\pi}{8}\right)$ .

7



# 4 Calcul de limites

# 4.1 Propriétés

# Propriétés 7

Soient  $a \in \mathbb{R} \cup \{-\infty, +\infty\}$ ,  $l, l' \in \mathbb{R}$  et f, g deux fonctions; on a les tableaux suivants :

#### • la somme :

| $\lim_{x \to a} f(x)$        | l    | l         | l         | $+\infty$ | $-\infty$ | $+\infty$ |
|------------------------------|------|-----------|-----------|-----------|-----------|-----------|
| $\lim_{x \to a} g(x)$        | l'   | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | $-\infty$ |
| $\lim_{x \to a} f(x) + g(x)$ | l+l' | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ |           |

#### • le produit :

| $\lim_{x \to a} f(x)$     | l   | l > 0     | l > 0     | l < 0     | l < 0     | $+\infty$ | $+\infty$ | $-\infty$ |
|---------------------------|-----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| $\lim_{x \to a} g(x)$     | l'  | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | $+\infty$ | $-\infty$ | $-\infty$ |
| $\lim_{x \to a} f(x)g(x)$ | ll' | $+\infty$ | $-\infty$ | $-\infty$ | $+\infty$ | $+\infty$ | $-\infty$ | $+\infty$ |

Remarque 7 Les mêms régles de calculs de limites s'appliquent sur la soustraction et la division, en utilisant le fait que

$$\frac{1}{\pm \infty} = 0^{\pm} \ et \ \frac{1}{0^{\pm}} = \pm \infty$$

**Exercice 14** Calculer la limite en 1 et en  $+\infty$  de  $f: x \longrightarrow \frac{x^2+1}{1-x}$ .

#### Théorème 1

Soient a,b et  $l \in \mathbb{R} \cup \{-\infty, +\infty\}$ . Si  $\lim_{x \to a} f(x) = b$  et  $\lim_{x \to b} g(x) = l$ , alors  $\lim_{x \to a} (g \circ f)(x) = l$ 

Exercice 15 Caluler  $\lim_{x\to 0^+} \sqrt{1-x}$ .

# Théorème 2: La limite par encadrement (ou des gendarmes)

Soient f,g,h des fonctions définies sur I un intervalle ouvert à valeurs réelles et  $a\in I$  tels que :

$$\forall x \in I, g(x) \le f(x) \le h(x)$$

Si  $\underset{x\rightarrow a}{\lim}g(x)=h(x)=l\in\mathbb{R},$  alors  $\underset{x\rightarrow a}{\lim}f(x)=l$ 



Remarque 8 Avec les mêmes données du théorème précédent

• 
$$Si \lim_{x \to a} h(x) = -\infty$$
,  $alors \lim_{x \to a} f(x) = -\infty$ .

• 
$$Si \ Si \ \lim_{x \to a} g(x) = +\infty, \ alors \ \lim_{x \to a} f(x) = +\infty.$$

Exercice 16 Calculer  $\lim_{x \to +\infty} \frac{\sin(x)}{x}$ .

# 4.2 Limites usuelles

# Propriétés 8

1. Fonctions circulaires:

$$\bullet \lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

$$\bullet \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}.$$

$$\bullet \lim_{x \to 0} \frac{\tan(x)}{x} = 1.$$

2. Fonctions ln et exp:

$$\bullet \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

$$\bullet \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

3. Croissances Comparées : Si  $a \in ]0, +\infty[$ , alors

$$\bullet \lim_{x \to 0^+} x^a \ln(x) = 0.$$

• 
$$\lim_{x \to +\infty} \frac{\ln(x)}{x^a} = 0.$$

$$\bullet \lim_{x \to 0} \frac{x^a}{e^x} = 0.$$



# 5 Calcul de dérivées et primitives

| f(x)                                         | Ensemble de définition                                                         | Intervalle(s) de dérivabilité                                                  | f'(x)                                 |
|----------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|
| Cte                                          | $\mathbb{R}$                                                                   | $\mathbb{R}$                                                                   | 0                                     |
| ax + b                                       | $\mathbb{R}$                                                                   | R                                                                              | a                                     |
| $x^2$                                        | $\mathbb{R}$                                                                   | R                                                                              | 2x                                    |
| $x^3$                                        | $\mathbb{R}$                                                                   | $\mathbb{R}$                                                                   | $3x^2$                                |
| $x^n, n \in \mathbb{N}^*$                    | $\mathbb{R}$                                                                   | $\mathbb{R}$                                                                   | $nx^{n-1}$                            |
| $\frac{1}{x}$                                | R*                                                                             | $\mathbb{R}^{*-}$ et $\mathbb{R}^{*+}$                                         | $-\frac{1}{x^2}$                      |
| $\frac{1}{x^n} = x^{-n}, n \in \mathbb{N}^*$ | R*                                                                             | $\mathbb{R}^{*-}et\mathbb{R}^{*+}$                                             | $-nx^{-n-1} = -\frac{n}{x^{n+1}}$     |
| $\sqrt{x}$                                   | $\mathbb{R}^+$                                                                 | R*+                                                                            | $\frac{1}{2\sqrt{x}}$                 |
| $\frac{ax+b}{cx+d}$                          | $\mathbb{R}-\{-c/d\}$                                                          | $\mathbb{R}-\{-c/d\}$                                                          | $\frac{ad - bc}{(cx+d)^2}$            |
| $\sin(x)$                                    | $\mathbb{R}$                                                                   | $\mathbb{R}$                                                                   | $\cos(x)$                             |
| $\cos(x)$                                    | $\mathbb{R}$                                                                   | $\mathbb{R}$                                                                   | $-\sin(x)$                            |
| $\tan(x)$                                    | $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$ | $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$ | $1 + \tan^2(x) = \frac{1}{\cos^2(x)}$ |
| $\ln(x)$                                     | ℝ*+                                                                            | R*+                                                                            | $\frac{1}{x}$                         |
| $e^x$                                        | $\mathbb R$                                                                    | $\mathbb R$                                                                    | $e^x$                                 |



# Théorème 3

Soient f, g deux fonctions réelles définies et dérivables sur un intervalle I de  $\mathbb{R}$  et  $\lambda \in \mathbb{R}$ . Alors

- la fonction  $f + g : x \mapsto f(x) + g(x)$  est dérivable sur I et pour tout  $x \in I$ , on a (f + g)'(x) = f'(x) + g'(x).
- la fonction  $\lambda.f: x \longmapsto \lambda f(x)$  est dérivable sur I et pour tout  $x \in I$ , on a  $(\lambda.f)'(x) = \lambda f'(x)$ .
- la fonction  $(fg): x \mapsto f(x)g(x)$  est dérivable sur I et pour tout  $x \in I$ , (fg)'(x) = f'(x)g(x) + f(x)g'(x).
- Si de plus g ne s'annule pas sur I, alors la fonction  $\frac{f}{g}: x \longmapsto \frac{f(x)}{g(x)}$  est dérivable sur I et pour tout  $x \in I$ ,  $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$ .

  En particulier,  $\left(\frac{1}{g}\right)'(x) = -\frac{g'(x)}{(g(x))^2}$ .

Exercice 17 Calculer la dérivée de la fonction  $x \longmapsto \frac{2x-1}{5x^2+3}$ 

# Théorème 4

Si f est une fonction réelle définie et dérivable sur un intervalle I et à valeurs dans un intervalle J, et g est une fonction réelle définie et dérivable sur J, alors la fonction composée  $(g \circ f) : x \longmapsto g(f(x))$  est dérivable sur I et pour tout  $x \in I$ , on a

$$(g \circ f)'(x) = f'(x).g'(f(x))$$

**Exercice 18** Déterminer les dérivées des fonctions composées,  $f^2$ ,  $\sqrt{f}$ ,  $\exp(f)$  et  $\ln(f)$ .

# Définition 5

Soient f et F deux fonctios réelles définies sur un intervalle I.

On dit que F est une primitive de f sur I si F est dérivable sur I telle que F'(x) = f(x), pour tout  $x \in I$ .

# Théorème 5

Si f est une fonction réelle définie et continue sur un intervalle I, alors f admet des primitives sur I. De plus, si F et G sont deux primitives de f sur I, alors il existe  $c \in \mathbb{R}$ , tel que pour tout  $x \in I$ 

$$G(x) = F(x) + c$$

Commentaire 1 Pour déterminer toutes les primitives d'une fonction continue, il suffit d'en donner une.

Exercice 19 Donner des primitives des fonctions suivantes :

- $\bullet \ x \longmapsto 1$
- $\bullet \ x \longmapsto x$
- $x \longmapsto \frac{1}{x^2} sur \ ]0, +\infty[.$

LM6E 1TSI3 11



# Définition 6: Intégrale d'une fonction

Soit  $f:[a,b] \longrightarrow \mathbb{R}$  une fonction continue et soit F une primitive **quelconque** de f sur [a,b]. Alors la valeur F(b) - F(a) est **indépendante** du choix d'une primitive de f, i.e. si G est une autre primitive de f, alors G(b) - G(a) = F(b) - F(a). On note alors

$$\int_{a}^{b} f(x)dx := F(b) - F(a)$$

et c'est appelée l'intégrale de f sur l'intervalle [a,b].

Notation 1 On note aussi  $[F(x)]_{x=a}^{x=b} := F(b) - F(a)$ , ou tout simplement par  $[F(x)]_a^b$ .

Exercice 20 Calculer l'intégrale des f dans chacune des cas suivantes :

- 1.  $f(x) = 1 \ sur [0, 1]$ .
- 2.  $f(x) = 2x \ sur [-1, 1]$ .
- 3.  $f(x) = \cos(x) \operatorname{sur}\left[0, \frac{\pi}{2}\right]$ .

# Théorème 6

Soit  $f: I \longrightarrow \mathbb{R}$  une fonction continue. Alors, pour tout  $a \in I$ , la fonction  $x \longmapsto \int_a^x f(t)dt$  est une primitive de f sur I.

# Proposition 4: Intégration par parties

Soient  $f, g : [a, b] \longrightarrow \mathbb{R}$  deux fonctions dérivables et de dérivées continues sur [a, b]. Alors

$$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

Commentaire 2 On peut utiliser le résultat suivant pour chercher aussi des primitives des fonctions. Prenons la fonction ln comme exemple.



# 6 Sommes et produits

#### Définition 7

• Si  $n \in \mathbb{N}$  et  $a_1, \ldots, a_n$  sont des nombres réels, on note

$$\sum_{k=0}^{n} a_k = a_0 + \dots + a_n$$

• Plus généralement si  $p \leq n$  sont deux nombres naturels alors, on note

$$\sum_{k=p}^{n} a_k = a_p + \dots + a_n$$

Exemples 3  $\sum_{k=1}^{n} a = na$ , pour tout  $n \in \mathbb{N}^*$  et tout  $a \in \mathbb{R}$ .

Exercice 21 Calculer

$$\sum_{k=0}^{5} k(k+1)$$

#### Propriétés 9

 $\bullet\,$  Si  $a_p,\ldots,a_{n+p+1}$  sont des réels, où p et n sont des entiers naturels, alors

$$\sum_{k=n}^{n+p} a_{k+1} - a_k = a_{n+p+1} - a_p$$

$$\bullet \sum_{k=p}^{n} a_k = \sum_{k=p}^{n} a_{n-k+p}$$

Exercice 22 Montrer que  $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ .

# Définition 8

• Si  $n \in \mathbb{N}$  et  $a_1, \ldots, a_n$  sont des nombres réels, on note

$$\prod_{k=0}^{n} a_k = a_0 + \dots + a_n$$

• Plus généralement si  $p \leq n$  sont deux nombres naturels alors, on note

$$\prod_{k=n}^{n} a_k = a_p + \dots + a_n$$

Exemples 4  $\prod_{k=1}^{n} a = a^{n}$ , pour tout  $n \in \mathbb{N}^{*}$  et tout  $a \in \mathbb{R}$ .



# Proposition 5

Soit q un réel et  $p \leq n$  deux entiers naturels. On a :

$$\sum_{k=p}^{n} q^{k} = \begin{cases} n-p+1 & \text{si } q=1\\ \frac{1-q^{n-p+1}}{1-q} & \text{sinon} \end{cases}$$

Exercice 23 Calculer  $\sum_{k=1}^{n} 2^k$ , pour  $n \ge 1$ .

# Définition 9

On définit pour tout  $n \in \mathbb{N}$  sa factorielle, qu'on note par n! par

$$n! = \begin{cases} 1 & si \quad n = 0 \\ n \times (n-1) \times \dots \times 2 \times 1 & si \quad n \ge 1 \end{cases}$$

Exercice 24 Calculer 7!.

Exercice 25 Calculer  $\frac{5!}{(3!)(2!)}$ .

# Propriétés 10

Si  $a, b \in \mathbb{R}$  et  $n \in \mathbb{N}^*$ , alors

$$a^{n} - b^{n} = \sum_{k=0}^{n-1} a^{n-1-k} b^{k}$$

**Exercice 26** Factoriser  $a^3 - b^3$  et  $a^5 - b^5$ .