Lecture 17 Duality

Admin corner

- The experiment continues! Slides or no slides?
- Today's slides posted online

Midterms:

- Regrade request deadline has been extended to Tuesday evening.
 Get them in asap!
- Midterm 2 is in 2 weeks on Nov 7th.
 - We will host review sessions! More details released next week.

Homeworks:

- Homework 9 will be released tonight
- Homework 10 will be released next Monday.

1. Bipartite perfect matching

2. Linear programming duality

Bipartite Perfect Matching

Input: Bipartite (undirected) graph G = (L, R, E) with |L| = |R| = n

Output: A perfect matching from L to R

Example:

L = UC Berkeley courses

R = UC Berkeley classrooms

E = each course is connected to the classrooms it can be taught in

Q: Can we assign every course to a room?

Bipartite Perfect Matching

Input: Bipartite (undirected) graph G = (L, R, E) with |L| = |R| = n

Output: A perfect matching from L to R

Thm: G has a perfect matching \Leftrightarrow Max-flow(G') = n

Pf:

Case 1: (⇒)

- 1. Let M be a perfect matching in G.
- 2. Put 1 unit of flow on every edge in M and every $s \rightarrow v$ edge and every $v \rightarrow t$ edge.
- 3. Then this is a flow of size n.

Thm: G has a perfect matching \Leftrightarrow Max-flow(G') = n

Pf:

Case 2: (←)

Recall from last lecture:

If the capacities are integral, then the Max-Flow is integral.

1. Let f be an **integral** flow of size n in G'.

(all flow values 0 or 1)

- 2. Each $u \in L$ has 1 unit of flow on 1 outgoing edge
- 3. Each $v \in R$ has 1 unit of flow on 1 incoming edge
- 4. These edges form a matching of size n.

a "**reduction** from perfect matching to maximum flow"

L Graph **G'**

1. Bipartite perfect matching

2. Linear programming duality

Last class: Max-Flow = Min-Cut

Could always prove that a flow was **optimal** by showing a cut of the same value

This is a general property of LPs known as **duality**

The book calls duality a **magic trick**

max
$$5x_1 + 4x_2$$

s.t. $2x_1 + x_2 \le 100$ also $x_1 \ge 0$
 $x_1 \le 30$ $x_2 \ge 0$
 $x_2 \le 60$

Solution: $x_1 = 20$, $x_2 = 60$, value = 340

max
$$5x_1 + 4x_2$$

s.t. $2x_1 + x_2 \le 100$ also $x_1 \ge 0$
 $(x_1 \le 30) \cdot 5$ $x_2 \ge 0$
 $+ (x_2 \le 60) \cdot 4$
 $5x_1 + 4x_2 \le 5 \cdot 30 + 4 \cdot 60$

Solution:
$$x_1 = 20$$
, $x_2 = 60$, value = 340

Solution:
$$x_1 = 20$$
, $x_2 = 60$, value = 340

max
$$5x_1 + 4x_2$$

s.t. $(2x_1 + x_2 \le 100) \cdot 5/2$ also $x_1 \ge 0$
 $(x_1 \le 30) \cdot 0$ $x_2 \ge 0$
 $+ (x_2 \le 60) \cdot 3/2$
 $5x_1 + 4x_2 \le \frac{5}{2} \cdot 100 + \frac{3}{2} \cdot 60$

Solution:
$$x_1 = 20$$
, $x_2 = 60$, value = 340

Primal LP:
$$5x_1 + 4x_2$$

s.t. $(2x_1 + x_2 \le 100) \cdot y_1$ also $x_1 \ge 0$
 $(x_1 \le 30) \cdot y_2$ $x_2 \ge 0$
 $+ (x_2 \le 60) \cdot y_3$

$$(2y_1 + y_2) \cdot x_1 + (y_1 + y_3) \cdot x_2 \le 100 \cdot y_1 + 30 \cdot y_2 + 60 \cdot y_3$$

min
$$100 \cdot y_1 + 30 \cdot y_2 + 60 \cdot y_3$$

s.t. $y_1, y_2, y_3 \ge 0$
 $5 \le 2y_1 + y_2$
 $4 \le y_1 + y_3$

By construction:
$$5x_1 + 4x_2 \le 100 \cdot y_1 + 30 \cdot y_2 + 60 \cdot y_3$$

Primal LP Opt ≤ **Dual LP Opt**

Primal LP

Dual LP

$$\max \left[c^T \right] \cdot \left[x \right]$$

min
$$\begin{bmatrix} b^T \end{bmatrix} \cdot \begin{bmatrix} y \end{bmatrix}$$

s.t.
$$\left[\begin{array}{c} A \end{array} \right] \cdot \left[x \right] \leq \left[b \right]$$

s.t.
$$\left[A^T \right] \cdot \left[y \right] \ge \left[c \right]$$

and
$$\left[x\right] \geq 0$$

and
$$\left[y \right] \geq 0$$

Thm: (**Weak duality**) all feasible solutions x to primal LP

all feasible solutions \leq all feasible solutions x to primal LP y to dual LP

Pf:
$$\begin{bmatrix} c^T \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \le \begin{bmatrix} y^T \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \le \begin{bmatrix} y^T \end{bmatrix} \begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} b^T \end{bmatrix} \begin{bmatrix} y \end{bmatrix}$$

Cor: Primal LP OPT ≤ Dual LP OPT

Thm: (Strong duality)

If the **Primal LP Opt** is bounded, then **Primal LP Opt** = **Dual LP Opt**

 \therefore duality gap = 0

LP duality history

George Dantzig

Co-inventor of LPs, inventor of simplex, Berkeley grad student and faculty Was taking a statistics class

Professor wrote two of the most famous unsolved problems in statistics on the board

But Dantzig arrived late, mistook them for homework Turned in solutions a few days later,

said they "seemed to be a little harder than usual"

LP duality history

George Dantzig

Co-inventor of LPs, inventor of sin plex, Berkeley grad sturent and faculty "Let me tell you about my newest invention: linear programming"

"Oh that!"

(Lectures Dantzig about linear programming for 1.5 hours, invents linear program duality)

"It's equivalent to zero-sum games, which I have also recently invented"

John von Neumann

All-time great mathematician

1. Bipartite perfect matching

2. Linear programming duality

1. Bipartite perfect matching

2. Linear programming duality

