

Dickey-Fuller Aumentado - ADF

Teste bicaudal:

"drift": Sem drift (intercepto) e sem tendência.

tau1-> H₀: há raiz unitária; série não é estacionária

"Drift": Com drift (intercepto) e sem tendência.

tau2 -> H_0 : há raiz unitária; série não é estacionária phi1 -> H_0 : série não é estacionária e não possui drift.

"Trend": Com drift (intercepto) e com tendência. SãoJUdas

-7,24

2.75

7,24

tau3 -> H_0 : há raiz unitária; série não é estacionária. phi2 -> H_0 : série não é estacionária e não possui drift e não possui tendência. phi3 -> H_0 : série não é estacionária e não possui tendência. # Augmented Dickey-Fuller Test Unit Root Test # Região de Rejeição Região de Rejeição Não Rejeito H₀ Test regression trend **NÃO É ESTACIONÁRIA** call: $lm(formula = z.diff \sim z.lag.1 + 1 + tt + z.diff.lag)$ -2,12 phi2 -3,60 3,60 Residuals: Min 10 Median -1.5029 -0.8663 -0.0643 0.4765 2.5857 Região de **NÃO É ESTACIONÁRIA** coefficients: Rejeição Região de Estimate Std. Error t value Pr(>|t|) **NÃO POSSUI DRIFT** Rejeição (Intercept) 1.32512 0.79632 1.664 0.1243 Não Rejeito H₀ **NÃO POSSUI TENDÊNCIA** z.lag.1 -0.82873 0.38961 -2.127 0.0569 . 0.09784 0.04494 0.459 0.6549 z.diff.lag -0.30943 0.24691 -1.253 0.2361 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 phi3^{2,19} -5.68 5,68 Residual standard error: 1.318 on 11 degrees of freedom Multiple R-squared: 0.7223, Adjusted R-squared: 0.6466 F-statistic: 9.538 on 3 and 11 DF, p-value: 0.002147 Região de Rejeição Região de Value of test-statistic is: -2.1271 2.1918 2.7568 Rejeição **NÃO É ESTACIONÁRIA** Não Rejeito H₀ Critical values for test statistics: **NÃO POSSUI TENDÊNCIA** 1pct 5pct 10pct tau3 -4.38 -3.60 -3.24

phi2 8.21 5.68 4.67

phi3 10.61 7.24 5.91

Philips-Perron

O teste de Philipps-Perron realiza correções no teste de ADF para que seja consistente independentemente das ordens p e q do modelo.

O teste trona desnecessária a especificação de um modelo com ordem suficientemente autorregressivo para expurgar a correlação serial.

 H_0 : há raiz unitária; série não é estacionária

KPSS

Um dos problemas do teste de raiz unitária ADF é seu baixo poder ante a presença dos componentes de médias móveis.

Isso significa que o teste ADF não consegue rejeitar a hipótese nula para diversas séries econômicas que utilizam de médias móveis.

Dessa forma, Kwiatkowski, Phillips, Schmidt e Shin desenvolveram um teste para ser implementado complementarmente corrigindo essa distorção.

H₀: série é estacionária

sāojudas)

```
install.packages("forecast")
install.packages(urca)
install.packages("tseries")
install.packages(readxl)
install.packages("pwt8")
library(forecast)
library(tseries)
library("urca")
library(readxl)
library(pwt8)
```



```
data("pwt8.0")
View(pwt8.0)
br <- subset(pwt8.0, country=="Brazil",</pre>
              select = c("rgdpna","emp","xr"))
colnames(br) <- c("PIB","Emprego","Câmbio")</pre>
PIB <- br$PIB[45:62]
EMPREGO <- br$Emprego[45:62]</pre>
CAMBIO <- br$Câmbio[45:62]
Anos <- seq(from=1994, to=2011, by=1)
```

```
plot(PIB, type = "l")
pib <- ts(PIB, start = 1994, frequency = 1)
plot(cambio, main="Produto Interno Bruto",
        ylab="Milhoes de reais",
        xlab="Ano")

acf(pib)
pacf(pib)
reglinPIB <- lm(PIB ~ Anos)
reglinPIB
summary(reglinPIB)
plot(pib)
abline(reglinPIB, col="Blue")</pre>
```


Produto Interno Bruto

Series pib

TesteADF_PIB_trend <- ur.df (pib, "trend", lags = 1)

7,24

4,73

Augmented Dickey-Fuller Test Unit Root Test # Test regression trend call: $lm(formula = z.diff \sim z.lag.1 + 1 + tt + z.diff.lag)$ Residuals: 1Q Median Min -58714 -12757 3226 22072 32907 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.824e+04 1.603e+05 0.238 0.816 z.lag.1 -3.099e-02 1.711e-01 -0.181 0.859 6.662e+03 6.536e+03 1.019 0.328 tt z.diff.lag -4.531e-01 2.869e-01 -1.580 0.140 Residual standard error: 28710 on 12 degrees of freedom Multiple R-squared: 0.4465, Adjusted R-squared: 0.3081 F-statistic: 3.226 on 3 and 12 DF, p-value: 0.06102 Value of test-statistic is: -0.1812 8.4963 4.7357 Critical values for test statistics:

1pct 5pct 10pct

tau3 -4.38 -3.60 -3.24 phi2 8.21 5.68 4.67 phi3 10.61 7.24 5.91 tau3 -> H_0 : há raiz unitária; série não é estacionária. phi2 -> H_0 : série não é estacionária e não possui drift e não possui tendência. phi3 -> H_0 : série não é estacionária e não possui tendência. tau3 Série não é estacionária. Região de Rejeição Região de Rejeição Não Rejeito H₀ -0,1812**phi2** 3,6 -3,6 É estacionária, possui drift e possui tendência Região de Rejeição Região de Rejeição Não Rejeito H₀ -5,68 5,68 8,49 phi3 É estacionária e possui tendência. Região de Rejeição Região de Rejeição Não Rejeito H₀

-7,24

TesteADF_PIB_drift <- ur.df(pib, "drif", lags = 1)</pre>

```
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression drift
call:
lm(formula = z.diff \sim z.lag.1 + 1 + z.diff.lag)
Residuals:
          1Q Median
  Min
-64360 -12494
              6997 14714 37034
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.147e+05 5.658e+04 -2.027
                                        0.0637 .
           1.366e-01 4.713e-02
                               2.899
                                        0.0124 *
z.lag.1
z.diff.lag -5.594e-01 2.676e-01 -2.090
                                       0.0568 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 28750 on 13 degrees of freedom
Multiple R-squared: 0.3986, Adjusted R-squared: 0.306
F-statistic: 4.307 on 2 and 13 DF, p-value: 0.03671
Value of test-statistic is: 2.8995 12.1882
Critical values for test statistics:
     1pct 5pct 10pct
tau2 -3.75 -3.00 -2.63
phi1 7.88 5.18 4.12
```


tau2 -> H_0 : há raiz unitária; série não é estacionária phi1 -> H_0 : série não é estacionária e não possui drift

TesteADF_PIB_none <- ur.df(pib, "none", lags = 1)


```
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression none
call:
lm(formula = z.diff \sim z.lag.1 - 1 + z.diff.lag)
Residuals:
  Min
         10 Median
                            Max
-49445 -22629 -1100 13372 49484
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
z.lag.1
          0.04310
                   0.01058 4.072 0.00114 **
z.diff.lag -0.31270
                   0.26353 -1.187 0.25515
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
Residual standard error: 31790 on 14 degrees of freedom
Multiple R-squared: 0.6918, Adjusted R-squared: 0.6477
F-statistic: 15.71 on 2 and 14 DF, p-value: 0.0002643
Value of test-statistic is: 4.0723
Critical values for test statistics:
     1pct 5pct 10pct
```

tau1 -2.66 -1.95 -1.6

tau1 -> H₀: há raiz unitária; série não é estacionária

Série é estacionária

H₀: há raiz unitária; série não é estacionária

Phillips-Perron Unit Root Test

data: pib Dickey-Fuller Z(alpha) = -0.72766, Truncation lag parameter = 2, p-value = 0.9859 alternative hypothesis: stationary Série não é estacionária Região de Rejeição Região de Rejeição Não Rejeito H₀ **p-value > 0.05** p-value< 0.05 **p-value** < 0.05

kpss.test(pib)

H₀: série é estacionária

KPSS Test for Level Stationarity

data: pib
KPSS Level = 1.7145, Truncation lag parameter = 0, p-value = 0.01

residuosPIB <- reglinPIB\$residuals
reglinPIBres <- lm(residuosPIB ~ Anos)
plot(residuosPIB,type="l")
abline(reglinPIBres, col="Blue")</pre>

Series residuosPIB


```
#Teste ADF
TesteADF_residuosPIB_trend <- ur.df(residuosPIB, "trend", lags = 1)</pre>
summary(TesteADF_residuosPIB_trend)
TesteADF_residuosPIB_drift <- ur.df(residuosPIB, "drift", lags = 1)</pre>
summary(TesteADF_residuosPIB_drift)
TesteADF_residuosPIB_none <- ur.df(residuosPIB, "none", lags = 1)
summary(TesteADF_residuosPIB_none)
#Teste Phillips-Perron
pp.test(residuosPIB)
#Teste KPSS
kpss.test(residuosPIB)
```



```
pdPIB <- diff(PIB)
diferenca1PIB <- (data.frame(PIB[2:18],pdPIB))
DIFERENCAPIB <- ts(diferenca1PIB, start = 1994, frequency = 1)
plot(DIFERENCAPIB, plot.type="single", col=c("Black","Green"))
plot(pdePIB, type="l")</pre>
```



```
#Teste ADF
TesteADF_pdPIB_trend <- ur.df(pdPIB, "trend", lags = 1)
summary(TesteADF_pdPIB_trend)
TesteADF_pdPIB_drift <- ur.df(pdPIB, "drift", lags = 1)
summary(TesteADF_pdPIB_drift)
TesteADF_pdPIB_none <- ur.df(pdPIB, "none", lags = 1)</pre>
summary(TesteADF_pdPIB_none)
#Teste Phillips-Perron
pp.test(pdPIB)
#Teste KPSS
kpss.test(pdPIB)
```

```
arima113 \leftarrow arima(pib, c(1,1,3))
#ARMA
arima110 \leftarrow arima(pib, c(1,1,0))
arima111 \leftarrow arima(pib, c(1,1,1))
arima112 \leftarrow arima(pib, c(1,1,2))
arima210 \leftarrow arima(pib, c(2,1,0))
arima211 \leftarrow arima(pib, c(2,1,1))
arima212 \leftarrow arima(pib, c(2,1,2))
arima213 \leftarrow arima(pib, c(2,1,3))
#MA
arima011 \leftarrow arima(pib, c(0,1,1))
arima012 \leftarrow arima(pib, c(0,1,2))
arima013 \leftarrow arima(pib, c(0,1,3))
#AR
arima020 \leftarrow arima(pib, c(0,1,0))
#Escolher o melhor modelo com base no menor AIC/BIC
estimacoes <- list(arima113, arima110, arima111,
                     arima112, arima210, arima211,
                     arima212, arima213, arima011, arima011, arima012,
                     arima013, arima010)
AIC <- sapply(estimacoes, AIC)
AIC <- as.data.frame(AIC)
BIC <- sapply(estimacoes, BIC)
BIC <- as.data.frame(BIC)
Modelo <-c("arima113", "arima110", "arima111",
                  "arima112", "arima210", "arima211",
                  "arima212", "arima213", "arima011", "arima011", "arima012",
                  "arima013", "arima010")
Resultados <- data.frame(Modelo.AIC.BIC)
View(Resultados)
```


*	Modelo [‡]	AIC ‡	BIC ‡
1	arima113	67.51313	71.37607
2	arima110	62.19765	63.74283
3	arima111	63.93166	66.24943
4	arima112	65.84527	68.93563
5	arima210	63.99329	66.31106
6	arima211	65.80967	68.90003
7	arima212	67.79937	71.66232
8	arima213	67.66381	72.29934
9	arima011	64.87238	66.41755
10	arima011	64.87238	66.41755
11	arima012	65.07276	67.39053
12	arima013	66.39055	69.48091


```
melhor_modelo <- |
previsto <- predict(melhor_modelo,6)
View(previsto$pred)
previsto1 <- forecast(melhor_modelo,6)
previsto1</pre>
```

> previsto1

_	Point	Forecast	Lo 80	ні 80	Lo 95	ні 95
2012		1778711	1722915	1834506	1693379	1864042
2013		1793469	1689956	1896981	1635160	1951778
2014		1801772	1654434	1949110	1576438	2027106
2015		1806444	1619669	1993219	1520796	2092092
2016		1809072	1586865	2031280	1469235	2148910
2017		1810551	1556317	2064785	1421734	2199368

Data

Previsao do PIB - Melhor Modelo

