SplitStep

May 27, 2022

Con el objetivo de simplificar el análisis de la implementación del método de Split Step Fourier, elegimos longitudes características de los procesos de atenuación, dispersión, y automodulación de fase sean idénticos: $L_{Eff}=L_D=L_{NL}$

Esto se consigue eligiendo valores de P_0 , T_0 en función de la relación de α , β_2 , y γ .

$$P_0 = \frac{1}{\gamma L_{eff}} \hspace{1cm} T_0 = \sqrt{|\beta_2| L_{eff}} \label{eq:p0}$$

Longitud característica de atenuación = 0.9954054173515269 km Longitud característica de dispersión = 0.9954054173515269 km Longitud característica de no-lineal. = 0.9954054173515269 km

Elegimos propagar hasta $z=18\,L_{eff}$. En función de las longitudes características y el ensanchamiento del pulso y de su espectro, elegimos bases de tiempo y de frecuencia que soporten el máximo ancho de pulso y su espectro en todo el rango de z y definimos un pulso gaussiano de potencia P_0 y ancho T_0 en ese dominio.

T0 = 7.331378299120234 ps

B0 = 51.94921874999898 GHz

0.0.1 Implementación de Split Step Fourier

Implementamos los operadores correspondientes a cada proceso que sucede en la fibra en un incremento h sobre el eje z

- Efectos Lineales
 - Atenuación:

$$\hat{A}(z+h,w) = \hat{A}(z,w) \exp\left[-\frac{\alpha h}{2}\right]$$

- Dispersión:

$$\hat{A}(z+h,w) = \hat{A}(z,w) \exp \left[i \frac{\beta_2}{2} w^2 h \right]$$

- Efectos No Lineales
 - Automodulación de Fase:

$$A(z+h,t) = A(z,t) \exp \left[i\gamma |A(z,t)|^2 h\right]$$

A_att (generic function with 1 method)

A_gvd (generic function with 1 method)

A_spm (generic function with 1 method)

Implementamos el algoritmo Split Step Fourier, que opera sobre la expresión discretizada de un pulso A[i,j] y de su espectro $\hat{A}[i,j]$ con un operador no-lineal N y un operador lineal D

- Aplica el operador lineal sobre $\hat{A}[i-1,:],$ obteniendo $\hat{A}_D=D(\hat{A}[i-1,:])$
- Antitransforma en Fourier el resultado, obteniendo $A_D = \mathcal{F}^{-1}\{\hat{A}_D\}$
- Aplica el operador no lineal sobre A_D , obteniendo $A_N = N(A_D)$
- Transforma en Fourier el resultado, obteniendo $\hat{A}_N = \mathcal{F}\{A_N\}$
- Registra la evolución del pulso $A[i,:] = A_N$ y de su espectro $\hat{A}[i,:] = \hat{A}_N$

Expresado en código:

```
function split_step(N_op, D_op)
  for i in 2:N
        AfD = D_op(Af[i-1,:])
        AtD = normalize(f, AfD, t, uifft(AfD))
        AtN = N_op(AtD)

        Af[i,:] = normalize(t, AtN, f, ufft(AtN))
        At[i,:] = AtN
        end
end
split step (generic function with 1 method)
```

0.0.2 Evaluación del Método con Atenuación

Primero evaluamos con únicamente atenuación, vemos que la pérdida exponencial de potencia corresponda al resultado analítico

split_step(identity, A_att)

0.0.3 Evaluación del Método con Dispersión

Evaluamos únicamente dispersión, vemos que el ensanchamiento del pulso corresponda al resultado analítico

split_step(identity, A_gvd)

0.0.4 Evaluación del Método con Automodulación de Fase

Evaluamos únicamente automodulación de fase, vemos que el número de máximos espectrales corresponda a la aproximación teórica.

split_step(A_gvd, identity)

0.0.5 Combinación de Efectos sin Atenuación

Primero evaluamos el efecto combinado de dispersión y automodulación de fase, sin dispersión incrementando el rango de z

split_step(A_spm, A_gvd)

Info: Saved animation to
 fn = /tmp/jl_3Q218v.gif
@ Plots /home/inox/.julia/packages/Plots/1KWPG/src/animation.jl:114

Plots.AnimatedGif("/tmp/jl_3Q218v.gif")

Se puede incluso incrementar muchísimo el rango de z para ver que este comportamiento efectivamente se mantiene estable a lo largo de la fibra

0.0.6 Combinación de Efectos con Atenuación

Y finalmente, todo junto, esperamos que el efecto del SPM disminuya con z a lo largo de la línea por la atenuación, entonces elegimos distintas longitudes características tal que $L_{NL} < L_{eff} < L_{D}$ De esta forma se espera que la automodulación de fase domine en $z < L_{eff}$, y que la dispersión domine en $z > L_{eff}$

Longitud característica de atenuación = 0.9954054173515269 km Longitud característica de dispersión = 1.9908108347030533 km Longitud característica de no-lineal. = 0.12442567716894086 km

0.003892103293652109 km

split_step(A_spm, A_gvd A_att)

Info: Saved animation to
 fn = /tmp/jl_22QlNU.gif

@ Plots /home/inox/.julia/packages/Plots/1KWPG/src/animation.jl:114

Plots.AnimatedGif("/tmp/jl_22QlNU.gif")

En $z < L_{eff}$, domina SPM:

En $z\simeq L_{eff},$ en este punto se equilibran el efecto de la SPM y la dispersión:

En $z>{\cal L}_{eff},$ de ahora en más, domina la dispersión:

