Manifold Learning and Sparse Representation: Assignment 3

ZHANG Yuan, 1601111332

Exercise 46.

The results are listed in Table 1. (The code in Matlab is attached.)

Euclidean distance	0.734042
11 distance	0.668856
Angular distance	0.773333
Cosine distance	0.645510

Thus, Cosine distance offers the best dissimilarity metrics in terms of classification.

Exercise 48.

Prove $\frac{1}{2}\sum_{i,j}W_{ij}\|\mathbf{f_i}-\mathbf{f_j}\|^2=tr(\mathbf{FL}_W\mathbf{F}^T)$, where $\mathbf{F}=(\mathbf{f_1},...,\mathbf{f_n})$.

Proof.

$$\frac{1}{2} \sum_{i,j} W_{ij} \| \mathbf{f_i} - \mathbf{f_j} \|^2 = \frac{1}{2} \sum_{i,j} W_{ij} (\mathbf{f_i} - \mathbf{f_j})^T (\mathbf{f_i} - \mathbf{f_j})$$

$$= \frac{1}{2} \sum_{i,j} W_{ij} (\mathbf{f_i}^T \mathbf{f_i} + \mathbf{f_j}^T \mathbf{f_j} - \mathbf{f_i}^T \mathbf{f_j} - \mathbf{f_j}^T \mathbf{f_i})$$

$$= \sum_{i} (\sum_{j} W_{ij}) \mathbf{f_i}^T \mathbf{f_i} - \sum_{i,j} W_{ij} \mathbf{f_j}^T \mathbf{f_i}$$

$$= \sum_{i} d_i \mathbf{f_i}^T \mathbf{f_i} - \sum_{i,j} W_{ij} \mathbf{f_j}^T \mathbf{f_i}$$

$$= tr(\sum_{i} d_i \mathbf{f_i}^T \mathbf{f_i}) - tr(\sum_{i,j} W_{ij} \mathbf{f_j}^T \mathbf{f_i})$$

$$= tr(\sum_{i} \mathbf{f_i} d_i \mathbf{f_i}^T) - tr(\sum_{i,j} \mathbf{f_i} W_{ij} \mathbf{f_j}^T)$$

$$= tr(\mathbf{F} \mathbf{D}_W \mathbf{F}^T) - tr(\mathbf{F} \mathbf{W} \mathbf{F}^T)$$

$$= tr(\mathbf{F} \mathbf{L}_W \mathbf{F}^T)$$

$$= tr(\mathbf{F} \mathbf{L}_W \mathbf{F}^T)$$

Derive the Laplacian matrix of $\frac{1}{2}\sum_{i,j}W_{ij}(f_i-f_j)^2$ under the constrain $\sum_iW_{ii}f_i^2=1$.

Let $\mathbf{g} \triangleq \mathbf{D}_{W}^{\frac{1}{2}}\mathbf{f}$ so that the constrain $\sum_{i} W_{ii} f_{i}^{2} = 1$ deduces to $\|\mathbf{g}\| = 1$. Then, we have

$$\begin{split} \frac{1}{2} \sum_{i,j} W_{ij} (f_i - f_j)^2 &= \sum_i W_{ii} f_i^2 - \sum_{i,j} W_{ij} f_i f_j \\ &= 1 - \mathbf{f}^T \mathbf{W} \mathbf{f} = \mathbf{g}^T \mathbf{g} - \mathbf{g}^T \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}} \mathbf{g} \\ &= \mathbf{g}^T (\mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}) \mathbf{g}^T \\ &\triangleq \mathbf{g}^T \tilde{\mathbf{L}}_W \mathbf{g}^T \end{split}$$

where the Laplaceian matrix $\tilde{\mathbf{L}}_W = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$.