Connecter Arduino à Internet

Utilisation de la carte MKR1000

Différents types de connectivité

- Ethernet
- WiFi
- GSM/Satellite
- Sigfox / LoRa
- Bluetooth / BLE

Internet

- Infrastructure physique
- Infrastructure logique : TCP/IP : Suite de protocoles permettant l'interconnection des machines en réseau
- Internet des objets :
 - Les objets du monde physique peuvent avoir leur existence propre sur le réseau (une adresse, la faculté d'envoyer et/ou recevoir des données)
 - agrégation des données collectées par des objets via des plateformes Cloud
- Cloud Computing permet l'exploitation de la puissance de calcul de machines distantes via le réseau

Internet et l'IOT

- Les plateformes Cloud
 - Aggrégateurs de données
 - Communication bi-directionnelle avec les devices
- Cas d'utilisation : adafruit.io

Internet et l'IOT

- Le protocole HTTP
 - Les API REST (exemple : <u>openweathermap.org</u>)
 - Le format JSON
- Le protocole MQTT
 - Le Pattern Publish/Subscribe

Internet et l'IOT

Le Pattern Publish/Subscribe

Connecter le MKR1000 au WiFi

- Installer La librairie WiFi101 via le gestionnaire de bibliothèques de l'IDE Arduino ou via son fichier .zip
- Vérifier que le firmware de la carte est bien la dernière version :
 - Fichier > Exemples > WiFi101 > CheckWiFi101FirmwareVersion

Connecter le MKR1000 au WiFi

WiFi101 firmware check.

WiFi101 shield: DETECTED

Firmware version installed: 19.4.4

Latest firmware version available: 19.5.4

Check result: NOT PASSED

- The firmware version on the shield do not match the version required by the library, you may experience issues or failures.

Connecter le MKR1000 au WiFi

- Au besoin, mettre à jour le firmware du mkr1000
 - Charger le sketch FirmwareUpdater (Fichier > Exemples > WiFi101 > FirmwareUpdater)
 - 2. Utiliser l'outil WiFi101 Firmware Updater (Outils > WiFi101 Firmware Updater)

Installer les librairies

- ArduinoHttpClient
- PubSubClient

Dweet

- https://dweet.io service de messagerie pour l'internet des objets
 - Dweet => message
 - Thing => identifiant de l'objet connecté

Dweet

- Fonctionne en HTTP
 - Publier une info => effectuer une requête vers une url https://dweet.io/dweet/for/my-thing-name?hello=world
 - Récupérer une information (JSON)
 - derniers messages https://dweet.io/get/dweets/for/my-thing-name
 - dernier message https://dweet.io/get/latest/dweet/for/my-thing-name

- Connecter un potentiomètre à la carte MKR1000
- Dupliquer le code dans

Exemples > ArduinoHttpClient > DweetPost

- Dans le code d'exemple :
 - ajouter SSID et mot de passe du Wifi dans le fichier arduino_secrets.h
 - ATTENTION: dans la fonction setup(), la ligne while(!Serial);

Attend que le moniteur série soit ouvert

 ligne 60 : définir un nom unique pour la variable dweetName

Exemple 2 : Publier des données sur un broker MQTT

- Connecter un potentiomètre à la carte MKR1000
 - Utiliser la librairie PubSubClient (voir exemple mqtt_pub_sub)
 - Utiliser l'adresse IP de mon broker en local (mosquitto + Node Red)
 - xxx.xxx.xxx.xxx sur le port 1883

Exemple 2 : Publier des données sur un broker MQTT

Node Red: "Flow-based programming for the Internet of Things"

Exemple 2 : Publier des données sur un broker MQTT

