DAIZE DONG

🕠 Personal Page | 🗲 Google Scholar | 💆 dzdong2019@gmail.com

RESEARCH INTEREST

My research spans across domains such as ML, NLP, and CV, and I have a strong passion for uncovering the intrinsic properties of neural networks with theoretical guarantees. My primary research interests include, but are not limited to:

- 1. Representation Learning: Enhancing abstract data representations to improve the model ability and prevent degradation.
- 2. Model Architecture: Discovering general structures to enhance model efficiency or achieve mathematical completeness.
- 3. AI for Biology / Psychology: Leveraging AI to advance the scientific progress of human beings.

EDUCATION

University of Electronic Science and Technology of China

Bachelor of Computer Science & Mathematics and Applied Mathematics

Sep. 2019 – Jul. 2023 GPA: 3.91/4.00

WORKING EXPERIENCE

Zhipu AI, Junior Researcher

Mixture of Experts, Large Language Models

Sep. 2024 – Present

RESEARCH EXPERIENCE

OpenGVLab, Shanghai Artificial Intelligence Laboratory

Jul. 2023 – Aug. 2024

Research Assistant

Mixture of Experts, Large Language Models

Instructor: Dr. Xiaoye Qu. Supervisor: Prof. Yu Cheng

- Explored the pipeline for efficiently constructing large language models with Mixture of Experts (MoE) structure.
- Further conducted research on enhancing the representation and structure of other conditional & dynamic networks.

Center for Artificial Intelligence Research and Innovation, Westlake University

Apr. 2023 - Aug. 2024

Research Assistant (Remote)

Graph Transformers, Molecule & Protein Generation, AI for Biology

Collaborator: Zhangyang Gao. Supervisor: Prof. Stan Z. Li

- Explored frontier graph networks, as well as their applications for molecule and protein representation & generation.
- Conducted research on a self-supervised pretraining framework for modelling graph data using pure transformer.

Data Intelligence Group, University of Electronic Science and Technology of China

Jul. 2022 - Mar. 2023

Research Intern

Domain Adaptation, Transfer Learning, Computer Vision

Instructor: Prof. Wen Li

- Explored the theories and algorithms under unsupervised & self-supervised paradigms in transfer learning.
- Conducted research on enhancing the latent representation for domain adaptation through contrastive learning.

NLP Group, JD Explore Academy

Feb. 2022 - Oct. 2022

Independent Researcher (Remote)

Model Compression, Natural Language Understanding

Collaborator: Shwai He. Instructor: Dr. Liang Ding. Supervisor: Prof. Dacheng Tao

- Explored parameter-efficient strategies for downstream fine-tuning, as well as model compression methods.
- Conducted research on enhancing parameter efficiency for dynamic networks and adapters.

PROJECTS

LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training. [Paper] [Code]

Jul. 2023 - Dec. 2023

The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024).

- Worked as the core member for designing methods to convert large language models into Mixture of Experts (MoE).
- Explored and designed multiple methods to initialize MoE using parameters from pretrained dense models.
- Proposed a simply yet effective output-scaling strategy to recover model performance at initialization.

1. A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer. [Paper]

Zhangyang Gao*, **Daize Dong***, Cheng Tan, Jun Xia, Bozhen Hu, Stan Z. Li. *The 41st International Conference on Machine Learning (ICML 2024).*

2. iDAT: inverse Distillation Adapter-Tuning. [Paper]

Jiacheng Ruan, Jingsheng Gao, Mingye Xie, **Daize Dong**, Suncheng Xiang, Ting Liu, Yuzhuo Fu. 2024 IEEE International Conference on Multimedia and Expo (ICME 2024). **(Oral)**

3. PAD-Net: An Efficient Framework for Dynamic Networks. [Paper]

Shwai He, Liang Ding, **Daize Dong**, Boan Liu, Fuqiang Yu, Dacheng Tao.

Proceedings of The 61st Annual Meeting of the Association for Computational Linguistics (ACL 2023).

4. SparseAdapter: An Easy Approach for Improving the Parameter-Efficiency of Adapters. [Paper]

Shwai He, Liang Ding, **Daize Dong**, Miao Zhang, Dacheng Tao.

Findings of The 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022).

5. SD-Conv: Towards the Parameter-Efficiency of Dynamic Convolution. [Paper]

Shwai He, Chenbo Jiang, Daize Dong, Liang Ding.

IEEE/CVF Winter Conference on Applications of Computer Vision, 2023 (WACV 2023).

PREPRINTS

1. DLO: Dynamic Layer Operation for Efficient Vertical Scaling of LLMs. [Paper]

Zhen Tan*, **Daize Dong***, Xinyu Zhao, Jie Peng, Yu Cheng, Tianlong Chen. *Under Review by The 38th Annual AAAI Conference on Artificial Intelligence (AAAI 2024).*

2. ExFusion: Efficient Transformer Training via Multi-Experts Fusion.

Jiacheng Ruan, **Daize Dong**, Xiaoye Qu, Tong Zhu, Ting Liu, Yuzhuo Fu, Yu Cheng. *Under Review by The 38th Annual AAAI Conference on Artificial Intelligence (AAAI 2024).*

3. Demystifying the Compression of Mixture-of-Experts Through a Unified Framework. [Paper] [Code]

Shwai He*, **Daize Dong***, Liang Ding, Ang Li.

Under Review by the Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024).

4. Dynamic Data Mixing Maximizes Instruction Tuning for Mixture-of-Experts. [Paper] [Code]

Tong Zhu, Daize Dong, Xiaoye Qu, Jiacheng Ruan, Wenliang Chen, Yu Cheng.

Under Review by The 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024).

5. Blending and Aggregating the Target for Blended-Target Domain Adaptation.

Tong Chu, Daize Dong, Jinhong Deng, Lixin Duan, Wen Li.

Under Review by IEEE Transactions on Image Processing (IEEE-TIP).

TECHNICAL SKILLS

Natural Languages: Mandarian (Native), English (TOEFL 100).

Programming Languages: Python, C/C++, Java, Matlab, etc.

Deep Learning Tools: PyTorch, HuggingFace Transformers, Torch-Lightning, DeepSpeed, etc.

Relevant Courses

Deep Learning: Machine Learning, Artificial Intelligence, Deep Learning for Computer Vision, Deep Learning for Natural Language Processing, Knowledge Representation and Reasoning, Data Mining and Big Data Analysis.

Optimization Algorithm: Optimization Theory and Methods, Introduction to Algorithms.

Mathematics: Differential Calculus, Linear Algebra, Probability Theory, Stochastic Process, Discrete Mathematics, Graph Theory, Multivariate Statistical Analysis, Causal Inference.

Computer Science: Computer Organization and Architecture, Compiler Principles, Computer Operating Systems, Database Principles and Applications, Information Retrieval, Software Engineering.

Equal Contribution