BLOCKCHAINS

ARCHITECTURE, DESIGN AND USE CASES

SANDIP CHAKRABORTY
COMPUTER SCIENCE AND ENGINEERING,
IIT KHARAGPUR

PRAVEEN JAYACHANDRAN
IBM RESEARCH,
INDIA

Image courtesy: http://beetfusion.com/

BASIC CRYPTO PRIMITIVES - II

What We have Looked Into

- Cryptographically Secured Hash Function
 - Collision Free
 - Information Hiding
 - Puzzle Friendly

- Hash Pointers and Data Structures
 - Hashchain
 - Hash Tree Merkle Tree

Digital Signature

- A digital code, which can be included with an electronically transmitted document to verify
 - The content of the document is authenticated
 - The identity of the sender
 - Prevent non-repudiation sender will not be able to deny about the origin of the document

Purpose of Digital Signature

 Only the signing authority can sign a document, but everyone can verify the signature

- Signature is associated with the particular document
 - Signature of one document cannot be transferred to another document

Public Key Cryptography

- Also known as asymmetrical cryptography or asymmetric key cryptography
- Key: A parameter that determines the functional output of a cryptography algorithm
 - Encryption: The key is used to convert a plain-text to a cypher-text; M' = E(M, k)
 - Decryption: The key is used to convert the cypher-text to the original plain text; M = E(M', k)

Public Key Cryptography

- Properties of a cryptographic key (you need to prevent it from being guessed)
 - Generate the key truly randomly so that the attacker can not guess it
 - The key should be of sufficient length increasing the length makes the key difficult to guess
 - The key should contain sufficient entropy, all the bits in the key should be equally random

Public Key Cryptography

- Two keys are used
 - Private key: Only Alice has her private key
 - Public key: "Public" to everyone everyone knows Alice's public key

M'

Encrypt the message with **Bob's public key** $M' = E(M, K_{nuh}^B)$

message with his private key

$$M = E(M', K_{pri}^B)$$

Public Key Encryption - RSA

Named over (Ron) Rivest – (Adi) Shamir – (Leonard) Adleman – inventors
of the public key cryptosystem

- The encryption key is public and decryption key is kept secret (private key)
 - Anyone can encrypt the data
 - Only the intended receiver can decrypt the data

RSA Algorithm

- Four phases
 - Key generation
 - Key distribution
 - Encryption
 - Decryption

Image source:

https://commons.wikimedia.org/

Public and Private Keys in RSA

• It is feasible to find three very large positive integers e, d and n; such that modular exponentiation for integers m ($0 \le m < n$):

$$(m^e)^d \equiv m \pmod{n}$$

- Even if you know e, n and m; it is extremely difficult to find d
- Note that

$$(m^e)^d \equiv m \pmod{n} = (m^d)^e \equiv m \pmod{n}$$

• (e, n) is used as the public key and (d, n) is used as the private key. m is the message that needs to be encrypted.

RSA Key Generation and Distribution

- Chose two distinct prime integer numbers p and q
 - p and q should be chosen at random to ensure tight security
- Compute n = pq; n is used as the modulus, the length of n is called the key length
- Compute $\phi(n) = (p-1)(q-1)$ Euler totient function
- Choose an integer e such that $1 < e < \phi(n)$ and $\gcd(e,\phi(n)) = 1$; e and $\phi(n)$ are co-prime
- Determine $d=e^{-1}(mod \ \phi(n))$: d is the modular multiplicative inverse of $e(mod \ \phi(n))$ [Note $d.e=1(mod \ \phi(n))$]

RSA Encryption and Decryption

• Let m be the integer representation of a message M.

• Encryption with public key (e, n) $c \equiv m^e \pmod{n}$

• Decryption with private key (d, n) $m \equiv c^d \pmod{n} \equiv (m^e)^d \pmod{n}$

Digital Signature using Public Key Cryptography

- Sign the message using the Private key
 - Only Alice can know her private key
- Verify the signature using the Public key
 - Everyone has Alice's public key and they can verify the signature

Reduce the Signature Size

Use the message digest to sign, instead of the original message

Digital Signature in Blockchain

- Used to validate the origin of a transaction
 - Prevent non-repudiation
 - Alice can not deny her own transactions
 - No one else can claim Alice's transaction as his/her own transaction

- Bitcoin uses Elliptic Curve Digital Signature Algorithm (ECDSA)
 - Based on elliptic curve cryptography
 - Supports good randomness in key generation

A Cryptocurrency using Hashchain and Digital Signatures

- Alice generates 10 coins
- Sign the transaction A:10 using Alice's private key and put that in the blockchain

A Cryptocurrency using Hashchain and Digital Signatures

- Alice transfers 5 coins to Bob
- Sign the transaction A-B:5 using Alice's private key and put that in the blockchain

A Cryptocurrency using Hashchain and Digital Signatures

- Maintain the economy
 - Generate new coins with time
 - Delete old coins with time

- A central authority like bank can create and destroy coins based on economic policies
- Crucial Question: How can we distribute coin management (creation and destroy)

