

Chapter 4

Block Ciphers and the Data Encryption Standard

Stream Cipher

Encrypts a digital data stream one bit or one byte at a time

Examples:

- Autokeyed Vigenère cipher
- Vernam cipher

In the ideal case, a onetime pad version of the Vernam cipher would be used, in which the keystream is as long as the plaintext bit stream

If the cryptographic keystream is random, then this cipher is unbreakable by any means other than acquiring the keystream

- Keystream must be provided to both users in advance via some independent and secure channel
- This introduces insurmountable logistical problems if the intended data traffic is very large

For practical reasons the bit-stream generator must be implemented as an algorithmic procedure so that the cryptographic bit stream can be produced by both users

It must be computationally impractical to predict future portions of the bit stream based on previous portions of the bit stream

The two users need only share the generating key and each can produce the keystream

Block Cipher

 $A \oplus B = C$ $C \oplus A = B$ (a) Stream Cipher Using Algorithmic Bit Stream Generator b bits b bits **Plaintext** Ciphertext Key Key Encryption Decryption (K)(K)algorithm algorithm Ciphertext **Plaintext** b bits b bits

(b) Block Cipher

Figure 4.1 Stream Cipher and Block Cipher

Figure 4.2 General n-bit-n-bit Block Substitution (shown with n = 4)

Figure 4.2 General *n*-bit-*n*-bit Block Substitution (shown with n = 4)

- Question:
 - What is the key in this diagram?
- Answer:
 - The mapping between the input and output bits

Table 4.1 Encryption and Decryption Tables for Substitution Cipher of Figure 4.2

	Plaintext	Ciphertext
(0000	1110
	0001	0100
	0010	1101
	0011	0001
n	0100	0010
2	0101	1111
	0110	1011
2" =	0111	1000
# Kuj	1000	0011
# kun	1001	1010
11/29	1010	0110
	1011	1100
	1100	0101
	1101	1001
	1110	0000
	1111	0111

Ciphertext	Plaintext	
0000	1110	
0001	0011	
0010	0100	
0011	1000	
0100	0001	
0101	1100	
0110	1010	
0111	1111	
1000	0111	
1001	1101	
1010	1001	
1011	0110	
1100	1011	
1101	0010	
1110	0000	
1111	0101	

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

P:
$$k: C: 0!!0 \oplus !0!! = |10|$$

$$16.4 = |k|$$

$$2'.n = |k|$$

Ideal Block Cipher

- The scheme on the previous slides is described as an ideal block cipher
 - Because it allows the maximum number of possible encryptions
- For a block cipher with n-bit block
 - A single key will require 2ⁿ mappings to be stored
 - 2ⁿ! possible keys are possible
- The size of the key $(n.2^n)$ can be very large for large values of n and this makes the ideal block cipher impractical for real world use

Product Cipher

- For this reason, most modern block ciphers are product ciphers
- The product cipher combines a sequence of simple transformations to complete an encryption
- Each transformation is weak but the repeated application of simple transformations in the sequence leads to strong encryption

Diffusion and Confusion

- Terms introduced by Claude Shannon to capture the two basic building blocks for any cryptographic system
 - Shannon's concern was to thwart cryptanalysis based on statistical analysis

Diffusion

- The statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext
- This is achieved by having each plaintext digit affect the value of many ciphertext digits

Confusion

- Seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible
- Even if the attacker can get some handle on the statistics of the ciphertext, the
 way in which the key was used to produce that ciphertext is so complex as to
 make it difficult to deduce the key

Diffusion and Confusion

 From a cryptanalysis point of view, we can define diffusion and confusion as follows:

Diffusion

 Prevent the prediction of the key by analyzing the relationship between the plaintext and the cipher text

Confusion

- Prevent the prediction of the key by analyzing the relationship between the ciphertext and the key
- A good product cipher should therefore contain transformations that enhance both confusion and diffusion

Feistel Cipher

 Feistel proposed the use of a cipher that alternates substitutions and permutations

Substitutions

 Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements

Permutation

- No elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed
- Is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions
- Is the structure used by many significant symmetric block ciphers currently in use

Feistel Cipher

 In a Feistel Cipher substitutions provide confusion and permutations provide diffusion

Substitutions • Confusion

Permutation • Diffusion

Figure 4.3 Feistel Encryption and Decryption (16 rounds)

Feistel cipher:

$$LE_{i} = RE_{i-1}$$

$$RE_{i} = F(RE_{i-1}, K_{i}) \oplus LE_{i-1}$$

$$RE_{i-1} = LE_{i}$$

$$LE_{i-1} = F(RE_{i-1}, K_{i}) \oplus RE_{i}$$

Feistel Cipher Design Features

Block size

 Larger block sizes mean greater security but reduced encryption/decryption speed for a given algorithm

Key size

 Larger key size means greater security but may decrease encryption/decryption speeds

Number of rounds

 The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds offer increasing security

Subkey generation algorithm

 Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis

Round function F

 Greater complexity generally means greater resistance to cryptanalysis

Fast software encryption/decryption

 In many cases, encrypting is embedded in applications or utility functions in such a way as to preclude a hardware implementation; accordingly, the speed of execution of the algorithm becomes a concern

Ease of analysis

 If the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength

Feistel Example

Figure 4.4 Feistel Example

Data Encryption Standard (DES)

- Issued in 1977 by the National Bureau of Standards (now NIST) as Federal Information Processing Standard 46
- Was the most widely used encryption scheme until the introduction of the Advanced Encryption Standard (AES) in 2001
- Algorithm itself is referred to as the Data Encryption Algorithm (DEA)
 - Data are encrypted in 64-bit blocks using a 56-bit key
 - The algorithm transforms 64-bit input in a series of steps into a 64-bit output
 - The same steps, with the same key, are used to reverse the encryption

Figure 4.5 General Depiction of DES Encryption Algorithm

Table

4.2

DES

Example

(Table can be found on page 106 in the textbook)

Round	Ki	Li	Ri
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	cl1bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP-1		da02ce3a	89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

Round		δ	Round		δ
	02468aceeca86420	1	9	c11bfc09887fbc6c	32
	12468aceeca86420			99f911532eed7d94	
1	3cf03c0fbad22845	1	10	887fbc6c600f7e8b	34
	3cf03c0fbad32845			2eed7d94d0f23094	
2	bad2284599e9b723	5	11	600f7e8bf596506e	37
	bad3284539a9b7a3			d0f23094455da9c4	
3	99e9b7230bae3b9e	18	12	f596506e738538b8	31
	39a9b7a3171cb8b3			455da9c47f6e3cf3	
4	0bae3b9e42415649	34	13	738538b8c6a62c4e	29
	171cb8b3ccaca55e			7f6e3cf34bc1a8d9	
5	4241564918b3fa41	37	14	c6a62c4e56b0bd75	33
	ccaca55ed16c3653			4bc1a8d91e07d409	
6	18b3fa419616fe23	33	15	56b0bd7575e8fd8f	31
	d16c3653cf402c68			1e07d4091ce2e6dc	
7	9616fe2367117cf2	32	16	75e8fd8f25896490	32
	cf402c682b2cefbc			1ce2e6dc365e5f59	
8	67117cf2c11bfc09	33	IP-1	da02ce3a89ecac3b	32
	2b2cefbc99f91153			057cde97d7683f2a	

Table 4.3 Avalanche Effect in DES: Change in Plaintext

Round		δ
	02468aceeca86420	0
	02468aceeca86420	
1	3cf03c0fbad22845	3
	3cf03c0f9ad628c5	
2	bad2284599e9b723	11
	9ad628c59939136b	
3	99e9b7230bae3b9e	2.5
	9939136b768067b7	
4	0bae3b9e42415649	29
	768067b75a8807c5	
5	4241564918b3fa41	26
	5a8807c5488dbe94	
6	18b3fa419616fe23	26
	488dbe94aba7fe53	
7	9616fe2367117cf2	27
	aba7fe53177d21e4	
8	67117cf2c11bfc09	32
	177d21e4548f1de4	

Round		δ
9	c11bfc09887fbc6c	34
	548f1de471f64dfd	
10	887fbc6c600f7e8b	36
	71f64dfd4279876c	
11	600f7e8bf596506e	32
	4279876c399fdc0d	
12	f596506e738538b8	28
	399fdc0d6d208dbb	
13	738538b8c6a62c4e	33
	6d208dbbb9bdeeaa	
14	c6a62c4e56b0bd75	30
	b9bdeeaad2c3a56f	
15	56b0bd7575e8fd8f	33
	d2c3a56f2765c1fb	
16	75e8fd8f25896490	30
	2765c1fb01263dc4	
IP-1	da02ce3a89ecac3b	30
	ee92b50606b62b0b	

Table 4.4 Avalanche Effect in DES: Change in Key

Table 4.5

Average Time Required for Exhaustive Key Search

Key Size (Bits)	Cipher	# of Alternative Keys	Time (10 ⁹ decryptions/sec)	Time (10 ¹³ decryptions/sec)
56	DES	$2^{56} \approx$ 7.2 * 10^{16}	2 ⁵⁵ ns ≈ 1.125 years	1 hour
128	AES	2 ¹²⁸ ≈ 3.4 * 10 ³⁸	2 ¹²⁷ ns ≈ 5.3 * 10 ²¹ years	5.3 * 10 ¹⁷ years
168	Triple DES	2 ¹⁶⁸ ≈ 3.7 * 10 ⁵⁰	2 ¹⁶⁷ ns ≈ 5.8 * 10 ³³ years	5.8 * 10 ²⁹ years
192	AES	2 ¹⁹² ≈ 6.3 * 10 ⁵⁷	2 ¹⁹¹ ≈ 9.8 * 10 ⁴⁰ years	9.8 * 10 ³⁶ years
256	AES	2 ²⁵⁶ ≈ 1.2 * 10 ⁷⁷	2 ²⁵⁵ ns ≈ 1.8 * 10 ⁶⁰ years	1.8 * 10 ⁵⁶ years
26 Characters (Permutation)	Monoalphabetic	26! = 4 * 10 ²⁶	2 * 10 ²⁶ ns ≈ 6.3 * 10 ⁹ years	6.3 * 10 ⁶ years

Strength of DES

Timing attacks

- One in which information about the key or the plaintext is obtained by observing how long it takes a given implementation to perform decryptions on various ciphertexts
- Exploits the fact that an encryption or decryption algorithm often takes slightly different amounts of time on different inputs
- So far it appears unlikely that this technique will ever be successful against DES or more powerful symmetric ciphers such as triple DES and AES

Block Cipher Design Principles: Number of Rounds

The greater the number of rounds, the more difficult it is to perform cryptanalysis

In general, the criterion should be that the number of rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-force key search attack

If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force key search

Block Cipher Design Principles: Design of Function F

- The heart of a Feistel block cipher is the function F
- The more nonlinear F, the more difficult any type of cryptanalysis will be
- The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function

The algorithm should have good avalanche properties

Strict avalanche criterion (SAC)

> States that any output bit j of an S-box should change with probability 1/2 when any single input bit i is inverted for all i, j

Bit independence criterion (BIC)

States that output bits j and k should change independently when any single input bit i is inverted for all i, j , and k

Block Cipher Design Principles: Key Schedule Algorithm

- With any Feistel block cipher, the key is used to generate one subkey for each round
- In general, we would like to select subkeys to maximize the difficulty of deducing individual subkeys and the difficulty of working back to the main key
- It is suggested that, at a minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion

Summary

- Understand the distinction between stream ciphers and block ciphers
- Present an overview of the Feistel cipher and explain how decryption is the inverse of encryption
- Present an overview of Data Encryption Standard (DES)

- Explain the concept of the avalanche effect
- Discuss the cryptographic strength of DES
- Summarize the principal block cipher design principles