电光学院本科生 2019—2020 学年第 2 学期《大学物理学(一)》课程期末考试试卷(A卷)

专业:		年级:		学号:	姓名:		成绩:			
题与	클		三	四	五.	六	七	八	九	+
得分	'									
得 分 —、填空题 (本题共 10 分,每空 1 分)										
1. 完成下列关于电磁现象及电磁规律的描述:										
	电场可大致分为静电场和感生电场(即涡旋电场),静电场是由									
	流量)为;而感生电场沿闭合环路的线积分(即环流量)可表示为;									
	真空中的静电场对任意闭合曲面的面积分(即电通量)可表示为,感生电场对任意							对任意		
	闭合曲面的面	积分(即申	且通量)为		o					
2.	常见的电流除	了"传导电	流"和"码	兹化电流"	外,还有	"位移电流	"; 前两种	电流由电荷	的宏观或	微观定向运动
	形成,而位移	电流由	j	产生,二者	首具有本质.	上的不同,	但之所以二	二者都被称	作电流,是	是因为他们
	又具有共同的	性质,这-	一共同性质:	是		o .				
3.	电场与物质之	间具有相互	作用,在情	争电场中放	(入一块导位	本,经过很	短的时间,	导体内的	电场就会变	ど为
	在静电场中放入一块电介质,在场源不变的情况下,电介质所处空间的电场强度与原来相比将									
	("保持不变"	'、"变强"、	"变弱".	二者冼苴-	-).					

草稿区

得 分

二、 $(10 \, \text{分})$ 质量为 m 的小球在重力场中铅直下落,假设下落过程中物体受到的空气阻力的大小与速率 v 成正比,即空气阻力大小为 Av (A 为常数),并且开始下落时物体的初始速率为 0。求下落过程速率随时间变化的关系。

三、(10分) 已知波沿 x 轴正方向传播,角频率为 ω ,振幅为 A,t=0 时刻波形如图。求: (1) O 点振动的初相位 (4分); (2) P 点振动的初相位 (4分); (3) 波的表达式 (2分)。

四、(10 分) 倾角为 θ 的固定斜面上放一质量为m的物体,用轻质细绳跨过滑轮把物体与轻质弹簧连接,弹簧的另一端与地面固定,如图所示。弹簧的劲度系数为k,滑轮可视为半径为R,质量为M的匀质圆盘。设绳与滑轮间不打滑,物体与斜面间及滑轮转轴处摩擦和空气阻力不计。取物体静止时,在斜面上所处的位置为坐标原点(如图中O点所示)。若此物体沿着斜面往复振动(滑轮的转动惯量为 $J=\frac{1}{2}MR^2$),请证明:质量为m的物体的振动为简谐振动。

五、(10分)一长为L,质量为m的均匀细棒,一段悬挂在o点,可绕水平轴无摩擦地转动。在同一悬挂点,有一长为l的轻绳悬挂一小球,质量为m,如图所示。小球在悬点正下方与静止的细棒发生弹性碰撞。问当绳的长度l为多少时,小球与棒碰撞后,小球刚好静止?略去空气阻力。

六、(10分)半径为 R 电荷体密度为ρ的均匀带电球内有一半径为 r 的球形空腔,求球形空腔内的电场分布,并简单说明空腔内电场分布是否与位置有关。

七、(10分) 一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R的四分之一圆弧,其余为直线.导线中通有电流I,求图中O点处的磁感强度。

八、**(10分)** 一平板电容器充满两层厚度各为 d_1 和 d_2 的电介质,它们的相对电容率分别为 ε_{r1} 和 ε_{r2} ,极板的面积为 S。求:(1)电容器的电容(4分);(2)当极板上的自由电荷面密度为 σ_0 时,两介质分界面上的极化电荷的面密度(4分)、两层介质中的电位移(2分)。

- 九、(10分) 如图在真空中有两条无限长平行直导线,载流大小均为 I、方向相反。在两直导线中间,放置 Π 形导轨 (导轨固定),该导轨由导线和电阻 R 连接而成。 Π 形导轨两条边到相邻直导线的距离都为 r,导轨与两直导线在同一平面内。另一长为 L 的金属杆 ab 可以在导轨上滑动,并与导轨保持良好接触。如 ab 滑动的速度为 v,求:
 - (1) ab 上的感应电动势; (4分)
 - (2) ab 中的感应电流; (2分)
 - (3) ab 所受的磁场力。(4分)

- 十、(10 分)螺绕环的横截面为矩形,内半径为 R_1 ,半径为 R_2 ,高为 A,磁导率为 μ ,总匝数为 N,通有电流 I。 求:(1)螺绕环管内的磁场强度 H 分布和磁感应强度 B 的分布;(4 分)
 - (2) 螺绕环内磁场的能量; (4分)
 - (3) 螺绕环的自感 L。(2分)

