Final Assessment Test (FAT) - APRIL/MAY 2023

Programme	B.Tech	Semester	Winter Semester 2022-23
Course Title	COMPLEX VARIABLES AND LINEAR ALGEBRA	Course Code	BMAT201L
Faculty Name	Prof. Kalyan Banerjee	Slot	A1+TA1+TAA1
		Class Nbr	CH2022235001032
Time	3 Hours	Max. Marks	100

PART-A (10 X 10 Marks) Answer <u>any 10</u> questions

01. Find the analytic function
$$f(z)=u+iv$$
, if $u+v=\frac{x}{(x^2+y^2)}$ and $f(1)=0$. [10] [8+2=10]

02. (a) Find the image of the region of the half-plane
$$x > c$$
 when $c > 0$ under the transformation $w = 1/z$.

(b) Is the given mapping $f(z) = z^2 - 2z - 3$ conformal everywhere? Discuss in detail. [5+5=10]

03. Find a bilinear transformation
$$f(z)$$
 which maps $f(\infty) = 1$, $f(i) = i$ and $f(-i) = -i$. Find the image of unit disc $\{z \in C : |z| < 1\}$ under $f(z)$. [5+5=10]

04. Find Taylor's series and Laurant's series expansion which represents the function
$$f(z) = \frac{z^2 - 1}{z^2 + 5z + 6}$$
 in the following regions. [10]

(a)
$$2 < |z| < 3$$
,

(b)
$$0 < |z| < 2$$
,

(c)
$$0 < |z+3| < 1$$
,

(d)
$$1 < |z+1| < 2$$
.

$$[2.5+2.5+2.5+2.5=10]$$

05. Evaluate
$$\int_{0}^{2\pi} \frac{2\cos^{2}\theta}{5+3\sin\theta} \ d\theta$$
. [10]

06. Find a homogeneous system whose solution set
$$W$$
 is spanned by $\{u_1 = (1, -2, 0, 3), u_2 = (1, -1, -1, 4), u_3 = (1, 0, -2, 5)\}.$

Find the basis of row space, column space and null space of
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 2 \\ 2 & 5 & 6 & 4 \\ 2 & 6 & 8 & 5 \end{bmatrix}$$
 [10]

$$[4+4+2=10]$$

08. In the vector space M consisting of all 2×2 matrices define $T: M \to M$ by (here * denotes matrix multiplication

$$T(A) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} * A * \begin{pmatrix} 2 & 0 \\ 1 & 5 \end{pmatrix}$$

For this linear transformation find the matrix with respect to the standard basis of M.

If A is a diagonal matrix, is T(A) also diagonal? Justify your answer.

- 19. Let α be the standard basis for R^2 and $\beta = \left\{ \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 5 \\ 7 \end{pmatrix} \right\}$ a non-standard basis.

 If $T \begin{pmatrix} r \\ y \end{pmatrix} = \begin{pmatrix} 2x+y \\ y-r \end{pmatrix}$ find the matrices $|T|_{\alpha}$ and $|T|_{\beta}$.

 [5:5-10]
- 10. (a) Verify whether the families of curves $u=c_1$ and $v=c_2$ ent orthogonally, when $w=c_1^2$. [16] (b) Define an inner product on R^2 by $\langle u,v\rangle=u'Av$, where A is the matrix $A=\begin{pmatrix} b_1&3\\3&2\end{pmatrix}$. Find the matrix of this inner product for the basis $\left\{\begin{pmatrix} 2\\1\end{pmatrix},\begin{pmatrix} 3\\0\end{pmatrix}\right\}$, [5+5-10]
- 11. Find an orthogonal basis by Gram-Schmidt procedure obtained from the basis $u_1=(1,2,1), u_2=(-1,3,7), u_3=(14,-4,18).$
- 12. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ Also, compute $A^{2023} + A^{2024} + A^{2025}$.

111