Report for discrete maths lab work

For more detailed documentation, check the code's documentation

For the lab work, we used python, which is counterproductive.

The functions are as such:

- symmetric_closure makes a symmetric closure of matrix representation of a relation
- symmetric_check check if the matrix representation is symmetric
- reflexive_closure makes a reflexive closure of matrix representation of a relation
- reflexive_check check if the matrix representation if reflexive
- transitive_closure makes a transitive closure of matrix representation of a relation
- transitive_check check if a relation is transitive
- equivalence_class creates a davision of a set by the equivalence relation (if makes it equivalent)

The next functions are rather self-explanatory

- read_file
- write_matrix
- write_set

Here's the breakdown of all the complexities:

- symmetric_closure O(n²)
- symmetric_check O(n²)
- reflexive_closure O(n)
- reflexive_check O(n)
- transitive_closure O(n³)
- transitive_check O(n³)
- equivalence_class O(n²)
- read_file O(n²)
- write_matrix O(n²)
- write_set O(n²)

Notes

There is a check of matrixe's squareness in all the closures

• Also, the transitive check is O(n³) because the function makes a transitive closure of a matrix