Coherent Probabilistic Aggregate Queries on Long-horizon Forecasts

Probabilistic Forecasting

Probabilistic Forecasting in Time-Series

- Red curve denotes the mean forecasts
- Shaded region around mean denotes two standard deviations confidence interval

Long-Range Forecasting

- Short-Term Forecasting -- typical forecast horizon is of few tens of values or less
- Long-Range Forecasting Forecast horizon of few hundreds or thousands of values

- Long-range forecasting is more challenging
 - Computational limitations
 - Modelling dependencies over long range in both history and forecast-horizon.

Aggregates of Forecasts

- Analysts are often interested in aggregated values of a window in a forecast horizon.
- For example,
 - Consider a demand forecasting task
 - Data contains daily sales
 - An analyst might want to look at monthly or quarterly forecasts for making a decision or creating a policy
- Depending on domain, other aggregations could be relevant, such as
 - Trend
 - Difference of sum
- Essentially, user/analyst could be interested in any aggregate depending on the domain and the specific business objective at the moment

Base-level Forecasts and Aggregate Forecasts

- We forecast a distribution at base level
- We can express aggregate also as a distribution obtained by aggregating base-level distributions.

Non-autoregressive (NAR) Models for Long-Range Forecasting

- Auto-regressive models suffer from drift caused by cascading errors.
- Computing aggregate distributions using auto-regressive models require repeated sampling steps – Computationally Expensive
- NAR models offer an efficient way to calculate all values in the forecast-horizon
- NAR models have been shown to work well in practice.
- NAR models face a limitation when forecasting for a long-range:
 - Difficult to capture top-level patterns when time-series contains noise

Our Idea

NAR Model to efficiently compute long-range probabilistic forecasts

Aggregate forecasts to guide potentially noisy base-level forecasts to more accurate forecasts

Establish coherency between base-level forecasts and aggregate forecasts

Setup

denotes vector of input features

 $\mathbf{x}_t \in \mathbb{R}^d$

Series values at time *t*

Aggregate Functions

Average aggregate with window size (K) = 4

j-th value in i-th aggregated series,
$$z^i_j = \mathbf{a}^i \cdot \mathbf{y}_{w_i,j} = \sum_{r=1}^{K_i} a^i_r \cdot y_{r+(j-1)K_i}$$

 $\mathbf{a}^i \in \mathbb{R}^{K_i}$ denote vector of aggregation weights

Aggregate Functions

Average:
$$z^i_j = \sum_{r=1}^{K_i} \frac{1}{K_i} y_{(j-1)K_i + r}$$

Trend:
$$z_j^i = \sum_{r=1}^{K_i} \left(\frac{r}{K_i} - \frac{K_i + 1}{2K_i} \right) \cdot y_{(j-1)K_i + r}$$

Our Forecasting Model Architecture

Convolution applied on a small window to extract representations that can be fed to the Transformer

 $(\hat{\mu}_6,\hat{\sigma}_6)$

Predicts both mean and variance

 $(\hat{\mu}_5,\hat{\sigma}_5)$

Forecast Method

• For each aggregate (including original series), we train a separate forecast model.

Forecast distribution over *j-th* variable in *i-th* aggregated series:

$$\hat{P}(z_j^i|H_T,\mathbf{x}_j) \sim \mathcal{N}(\hat{\mu}(z_j^i),\hat{\sigma}(z_j^i))$$

• Since all aggregates are trained independently, the forecast distributions across aggregates are incoherent.

Coherent Forecasts

• In order to get the coherent forecasts, we infer a new consensus distribution Q(.,.) over base-level forecasts.

$$Q \sim \mathcal{N}(oldsymbol{\mu}, \Sigma)$$
 where $oldsymbol{\mu} = [\mu_{T+1}, \dots, \mu_{T+R}]^T$

: Covariance Matrix of the joint distribution

• With this tractable form, we can compute the marginal distribution for aggregate variable z_i^i

$$Q_j^i = \mathcal{N}(\boldsymbol{\mu}_{w_i,j}^T \cdot \mathbf{a}^i, \mathbf{a}^{i^T} \cdot \Sigma_{w_i,j} \cdot \mathbf{a}^i)$$

Coherent Forecasts

• To establish coherence between marginals computed from Q(...) and forecast distributions $\hat{P}(...)$, we minimize the KL-distance as follows:

$$\min_{\boldsymbol{\mu}, \Sigma} \sum_{i \in \mathcal{A}} \sum_{j=T_i}^{T_i + R_i} \alpha_i D_{\mathrm{KL}} \left(\left. Q_j^i(z_j^i | \boldsymbol{\mu}, \Sigma) \right| \right| \hat{P}(z_j^i | \bullet) \right)$$

Values of $m{\mu}$ and \sum that minimize above objective are used as the final forecasts.

Solving the KL-distance Objective

$$\min_{\boldsymbol{\mu}, \Sigma} \sum_{i \in \mathcal{A}} \sum_{j=T_i}^{T_i + R_i} \alpha_i D_{\text{KL}} \left(\left. Q_j^i(z_j^i | \boldsymbol{\mu}, \Sigma) \right| \right| \hat{P}(z_j^i | \bullet) \right) \\
= D_{\text{KL}} \left(\left. \mathcal{N} \left(\boldsymbol{\mu}_{w_{i,j}}^T \mathbf{a}^i, \mathbf{a}^i T_{\Sigma_{w_{i,j}}} \mathbf{a}^i \right) \right| \left| \left. \mathcal{N} \left(\hat{\mu}(z_j^i), \hat{\sigma}(z_j^i) \right) \right) \right) \\
= \left(\left. \mathcal{N} \left(\boldsymbol{\mu}_{w_{i,j}}^T \mathbf{a}^i, \mathbf{a}^i T_{\Sigma_{w_{i,j}}} \mathbf{a}^i \right) \right| \left| \left. \mathcal{N} \left(\hat{\mu}(z_j^i), \hat{\sigma}(z_j^i) \right) \right) \right| \right) \\
= \left(\left. \mathcal{N} \left(\boldsymbol{\mu}_{w_{i,j}}^T \mathbf{a}^i, \mathbf{a}^i T_{\Sigma_{w_{i,j}}} \mathbf{a}^i \right) \right| \left| \left. \mathcal{N} \left(\hat{\mu}(z_j^i), \hat{\sigma}(z_j^i) \right) \right| \right) \right| \right)$$

Since both distributions are Gaussian, the KL-distance can be computed in closed form.

$$= \frac{\left(\boldsymbol{\mu}_{w_{i,j}}^{T} \mathbf{a}^{i} - \hat{\mu}(z_{j}^{i})\right)^{2} + \left(\mathbf{a}^{iT} \Sigma_{w_{i,j}} \mathbf{a}^{i}\right)}{2\hat{\sigma}(z_{j}^{i})^{2}} - \log \frac{\mathbf{a}^{iT} \Sigma_{w_{i,j}} \mathbf{a}^{i}}{\hat{\sigma}(z_{j}^{i})^{2}}$$

Rearranging the terms

$$= \frac{\left(\boldsymbol{\mu}_{w_{i,j}}^T \mathbf{a}^i - \hat{\mu}(z_j^i)\right)^2}{2\hat{\sigma}(z_j^i)^2} + \frac{\left(\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i\right)}{2\hat{\sigma}(z_j^i)^2} - \log \frac{\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i}{\hat{\sigma}(z_j^i)^2}$$

*KL Distance between two Gaussians
$$D_{\mathrm{KL}}\left(\left.\mathcal{N}(\mu_{q},\sigma_{q}^{2})\right|\big|\,\mathcal{N}(\mu_{p},\sigma_{p}^{2})\right) = \frac{(\mu_{q}-\mu_{p})^{2}+\sigma_{q}^{2}}{2\sigma_{p}^{2}} - \log\frac{\sigma_{q}}{\sigma_{p}} - \frac{1}{2}$$

Solving the KL-distance Objective

$$\min_{\boldsymbol{\mu}, \Sigma} \sum_{i \in \mathcal{A}} \sum_{j=T_i}^{T_i + R_i} \alpha_i \frac{\left(\boldsymbol{\mu}_{w_{i,j}}^T \mathbf{a}^i - \hat{\mu}(z_j^i)\right)^2}{2\hat{\sigma}(z_j^i)^2} + \frac{\left(\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i\right)}{2\hat{\sigma}(z_j^i)^2} - \log \frac{\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i}{\hat{\sigma}(z_j^i)^2}$$

After expansion, optimization over mean and covariance form two independent optimization problems:

$$\min_{\boldsymbol{\mu}} \sum_{i \in \mathcal{A}} \sum_{j=T_i}^{T_i + R_i} \frac{1}{\hat{\sigma}(z_j^i)^2} (\boldsymbol{\mu}_{w_{i,j}}^T \mathbf{a}^i - \hat{\mu}(z_j^i))^2 \qquad \min_{\Sigma} \sum_{i \in \mathcal{A}} \sum_{j=T_i}^{T_i + R_i} \frac{\mathbf{a}^{iT} \sum_{w_{i,j}} \mathbf{a}^i}{2\hat{\sigma}(z_j^i)^2} - \log(\mathbf{a}^{iT} \sum_{w_{i,j}} \mathbf{a}^i)$$

$$\min_{\Sigma} \sum_{i \in \mathcal{A}} \sum_{j=T_i}^{T_i + R_i} \frac{\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i}{2\hat{\sigma}(z_j^i)^2} - \log(\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i)$$

Can be solved in closed form

Solving the KL-distance Objective (Solve for Covariance)

$$\min_{\Sigma} \sum_{i \in \mathcal{A}} \sum_{j=T_i}^{T_i + R_i} \frac{\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i}{2\hat{\sigma}(z_j^i)^2} - \log(\mathbf{a}^{i^T} \Sigma_{w_{i,j}} \mathbf{a}^i)$$

- Cannot be solved in closed form
- Number of parameters for Σ is R^2 .
- In order to efficiently solve for Σ , we use low-rank approximation of Σ as follows:

$$\hat{oldsymbol{\Sigma}} = egin{pmatrix} \sigma^2_{T+1} & \dots & 0 \\ & \ddots & \\ 0 & \dots & \sigma^2_{T+R} \end{pmatrix} + egin{pmatrix} v_{T+1} \\ \vdots \\ v_{T+R} \end{pmatrix} egin{pmatrix} v_{T+1} \\ \vdots \\ v_{T+R} \end{pmatrix}^T \quad ext{where} \quad oldsymbol{v_{T+r}} \in \mathbb{R}^{oldsymbol{k}}$$

- Number of parameters using low-rank approximation is O(R).
- Σ can be stored purely in the form of diagonal matrix and V vectors.

Training

• Large time-series is split into chunks of size (T+R)

A Chunk is denoted as follows:

Training Objective

$$\max_{\theta^i} \sum_{(\mathbf{x}_j^i, \mathbf{z}_j^i)} \sum_{t=T_i+1}^{T_i+R_i} \log \mathcal{N}(z_t; (\mu_t, \sigma_t) = F(H_T, \mathbf{x}, t | \theta^i))$$

 $heta^i$: Parameters of *i-th* aggregate model

Datasets

Dataset	# Series	Avg. T	R	train-len. /series	test-len. /series
ETT	1	384	192	55776	13824
ETTH	1	168	168	14040	3360
Electricity	1	336	168	36624	9072
Solar	137	336	168	7009	168

- ETTH, Electricity, and Solar are hourly datasets
- Whereas, ETT contains series collected over 15-minutes interval

Methods Compared

- Informer [1]: A transformer-based architecture that independently predicts values in the forecast horizon
- Trans-NAR: Our proposed architecture without KL-distance based inference
- Trans-AR: Auto-regressive version of our proposed architecture
- **KLST**: Trans-NAR + Our proposed inference method.

Anecdotes

Evaluation Metrics

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Continuous Ranked Probability Score

$$\Lambda_{\alpha}(q, y_t) = (\alpha - \mathcal{I}_{[y_t < q]})(y_t - q)$$

$$CRPS(F_t^{-1}, y) = \int_0^1 2\Lambda_{\alpha}(F^{-1}(\alpha), y_t) d\alpha$$

Comparison with Baselines

Dataset	Model	K					
Agg	Middel	1	4	8	12	24	
ETT	Informer	7.01	7.00	7.00	7.00	6.98	
Sum	Trans-AR	3.03	3.29	3.38	3.38	3.43	
	Trans-NAR	1.25	1.36	1.39	1.39	1.38	
	SHARQ	1.25	1.87	1.78	1.80	1.82	
	KLST	1.17	1.14	1.17	1.19	1.22	
ETT	Trans-NAR	1.25	0.13	0.07	0.06	0.05	
Slope	KLST	1.17	0.30	0.12	0.06	0.04	
ETT	Trans-NAR	1.25	0.14	0.16	0.20	0.29	
Diff	KLST	1.17	0.33	0.26	0.25	0.26	
Solar	Informer	41.02	36.31	34.85	17.55	13.14	
Sum	Trans-AR	21.13	18.91	18.40	16.37	16.17	
	Trans-NAR	13.85	13.25	12.95	12.78	12.43	
	SHARQ	13.85	13.36	13.22	14.21	11.60	
	KLST	12.95	12.73	12.54	12.43	12.21	
Solar	Trans-NAR	13.85	4.86	3.02	4.10	0.39	
Slope	KLST	12.95	4.49	2.82	3.98	0.37	
Solar	Trans-NAR	13.85	5.03	5.98	12.59	5.62	
Diff	KLST	12.95	4.63	5.53	12.23	5.35	
Slope Solar	SHARQ KLST Trans-NAR KLST Trans-NAR	13.85 12.95 13.85 12.95 13.85	13.36 12.73 4.86 4.49 5.03	13.22 12.54 3.02 2.82 5.98	14.21 12.43 4.10 3.98 12.59	11.60 12.22 0.39 0.3' 5.62	

Dataset	Model	K					
Agg	Model	1	4	8	12	24	
ETTH	Informer	4.80	4.77	4.73	4.67	4.57	
Sum	Trans-AR	1.96	2.01	1.98	2.01	1.96	
	Trans-NAR	1.79	1.92	1.93	1.92	1.89	
	SHARQ	1.79	1.91	1.73	1.75	1.78	
	KLST	1.64	1.61	1.65	1.67	1.69	
ETTH	Trans-NAR	1.79	0.26	0.20	0.14	0.07	
Slope	KLST	1.64	0.37	0.18	0.11	0.06	
ETTH	Trans-NAR	1.79	0.27	0.39	0.46	0.50	
Diff	KLST	1.64	0.40	0.37	0.39	0.41	
Elec	Informer	172.3	159.7	155.8	118.1	109.6	
Sum	Trans-AR	140.2	137.8	134.0	109.6	104.7	
	Trans-NAR	54.1	53.5	52.3	50.8	48.4	
	SHARQ	54.1	49.8	47.0	50.5	46.3	
	KLST	50.2	50.6	49.6	48.4	46.2	
Elec	Trans-NAR	54.1	8.96	6.25	5.65	2.23	
Slope	KLST	50.2	8.26	5.76	5.18	2.14	
Elec	Trans-NAR	54.1	9.50	13.23	18.37	16.13	
Diff	KLST	50.2	8.80	12.22	16.84	15.44	

References

• Zhou, Haoyi, et al. "Informer: Beyond efficient transformer for long sequence time-series forecasting." *Proceedings of AAAI*. 2021. [1]