

SEQUENCE LISTING

<110> Van Andel Research Institute
Hay, Rick V., et al

<120> Monoclonal Antibody Imaging and Therapy of Tumors that Express
Met and Bind Hepatocyte Growth Factor

<130> VAN67 P323

<160> 5

<170> PatentIn version 3.4

<210> 1

<211> 1390

<212> PRT

<213> Homo sapiens

<220>
<223> Met

<400> 1

Met Lys Ala Pro Ala Val Leu Ala Pro Gly Ile Leu Val Leu Leu Phe
1 5 10 15

Thr Leu Val Gln Arg Ser Asn Gly Glu Cys Lys Glu Ala Leu Ala Lys
20 25 30

Ser Glu Met Asn Val Asn Met Lys Tyr Gln Leu Pro Asn Phe Thr Ala
35 40 45

Glu Thr Pro Ile Gln Asn Val Ile Leu His Glu His His Ile Phe Leu
50 55 60

Gly Ala Thr Asn Tyr Ile Tyr Val Leu Asn Glu Glu Asp Leu Gln Lys
65 70 75 80

Val Ala Glu Tyr Lys Thr Gly Pro Val Leu Glu His Pro Asp Cys Phe
85 90 95

Pro Cys Gln Asp Cys Ser Ser Lys Ala Asn Leu Ser Gly Gly Val Trp
100 105 110

Lys Asp Asn Ile Asn Met Ala Leu Val Val Asp Thr Tyr Tyr Asp Asp
115 120 125

Gln Leu Ile Ser Cys Gly Ser Val Asn Arg Gly Thr Cys Gln Arg His

130

135

140

Val Phe Pro His Asn His Thr Ala Asp Ile Gln Ser Glu Val His Cys
145 150 155 160

Ile Phe Ser Pro Gln Ile Glu Glu Pro Ser Gln Cys Pro Asp Cys Val
165 170 175

Val Ser Ala Leu Gly Ala Lys Val Leu Ser Ser Val Lys Asp Arg Phe
180 185 190

Ile Asn Phe Phe Val Gly Asn Thr Ile Asn Ser Ser Tyr Phe Pro Asp
195 200 205

His Pro Leu His Ser Ile Ser Val Arg Arg Leu Lys Glu Thr Lys Asp
210 215 220

Gly Phe Met Phe Leu Thr Asp Gln Ser Tyr Ile Asp Val Leu Pro Glu
225 230 235 240

Phe Arg Asp Ser Tyr Pro Ile Lys Tyr Val His Ala Phe Glu Ser Asn
245 250 255

Asn Phe Ile Tyr Phe Leu Thr Val Gln Arg Glu Thr Leu Asp Ala Gln
260 265 270

Thr Phe His Thr Arg Ile Ile Arg Phe Cys Ser Ile Asn Ser Gly Leu
275 280 285

His Ser Tyr Met Glu Met Pro Leu Glu Cys Ile Leu Thr Glu Lys Arg
290 295 300

Lys Lys Arg Ser Thr Lys Lys Glu Val Phe Asn Ile Leu Gln Ala Ala
305 310 315 320

Tyr Val Ser Lys Pro Gly Ala Gln Leu Ala Arg Gln Ile Gly Ala Ser
325 330 335

Leu Asn Asp Asp Ile Leu Phe Gly Val Phe Ala Gln Ser Lys Pro Asp
340 345 350

Ser Ala Glu Pro Met Asp Arg Ser Ala Met Cys Ala Phe Pro Ile Lys
355 360 365

Tyr Val Asn Asp Phe Phe Asn Lys Ile Val Asn Lys Asn Asn Val Arg
 370 375 380

 Cys Leu Gln His Phe Tyr Gly Pro Asn His Glu His Cys Phe Asn Arg
 385 390 395 400

 Thr Leu Leu Arg Asn Ser Ser Gly Cys Glu Ala Arg Arg Asp Glu Tyr
 405 410 415

 Arg Thr Glu Phe Thr Thr Ala Leu Gln Arg Val Asp Leu Phe Met Gly
 420 425 430

 Gln Phe Ser Glu Val Leu Leu Thr Ser Ile Ser Thr Phe Ile Lys Gly
 435 440 445

 Asp Leu Thr Ile Ala Asn Leu Gly Thr Ser Glu Gly Arg Phe Met Gln
 450 455 460

 Val Val Val Ser Arg Ser Gly Pro Ser Thr Pro His Val Asn Phe Leu
 465 470 475 480

 Leu Asp Ser His Pro Val Ser Pro Glu Val Ile Val Glu His Thr Leu
 485 490 495

 Asn Gln Asn Gly Tyr Thr Leu Val Ile Thr Gly Lys Lys Ile Thr Lys
 500 505 510

 Ile Pro Leu Asn Gly Leu Gly Cys Arg His Phe Gln Ser Cys Ser Gln
 515 520 525

 Cys Leu Ser Ala Pro Pro Phe Val Gln Cys Gly Trp Cys His Asp Lys
 530 535 540

 Cys Val Arg Ser Glu Glu Cys Leu Ser Gly Thr Trp Thr Gln Gln Ile
 545 550 555 560

 Cys Leu Pro Ala Ile Tyr Lys Val Phe Pro Asn Ser Ala Pro Leu Glu
 565 570 575

 Gly Gly Thr Arg Leu Thr Ile Cys Gly Trp Asp Phe Gly Phe Arg Arg
 580 585 590

Asn Asn Lys Phe Asp Leu Lys Lys Thr Arg Val Leu Leu Gly Asn Glu
595 600 605

Ser Cys Thr Leu Thr Leu Ser Glu Ser Thr Met Asn Thr Leu Lys Cys
610 615 620

Thr Val Gly Pro Ala Met Asn Lys His Phe Asn Met Ser Ile Ile Ile
625 630 635 640

Ser Asn Gly His Gly Thr Thr Gln Tyr Ser Thr Phe Ser Tyr Val Asp
645 650 655

Pro Val Ile Thr Ser Ile Ser Pro Lys Tyr Gly Pro Met Ala Gly Gly
660 665 670

Thr Leu Leu Thr Leu Thr Gly Asn Tyr Leu Asn Ser Gly Asn Ser Arg
675 680 685

His Ile Ser Ile Gly Gly Lys Thr Cys Thr Leu Lys Ser Val Ser Asn
690 695 700

Ser Ile Leu Glu Cys Tyr Thr Pro Ala Gln Thr Ile Ser Thr Glu Phe
705 710 715 720

Ala Val Lys Leu Lys Ile Asp Leu Ala Asn Arg Glu Thr Ser Ile Phe
725 730 735

Ser Tyr Arg Glu Asp Pro Ile Val Tyr Glu Ile His Pro Thr Lys Ser
740 745 750

Phe Ile Ser Gly Gly Ser Thr Ile Thr Gly Val Gly Lys Asn Leu Asn
755 760 765

Ser Val Ser Val Pro Arg Met Val Ile Asn Val His Glu Ala Gly Arg
770 775 780

Asn Phe Thr Val Ala Cys Gln His Arg Ser Asn Ser Glu Ile Ile Cys
785 790 795 800

Cys Thr Thr Pro Ser Leu Gln Gln Leu Asn Leu Gln Leu Pro Leu Lys
805 810 815

Thr Lys Ala Phe Phe Met Leu Asp Gly Ile Leu Ser Lys Tyr Phe Asp
820 825 830

Leu Ile Tyr Val His Asn Pro Val Phe Lys Pro Phe Glu Lys Pro Val
835 840 845

Met Ile Ser Met Gly Asn Glu Asn Val Leu Glu Ile Lys Gly Asn Asp
850 855 860

Ile Asp Pro Glu Ala Val Lys Gly Glu Val Leu Lys Val Gly Asn Lys
865 870 875 880

Ser Cys Glu Asn Ile His Leu His Ser Glu Ala Val Leu Cys Thr Val
885 890 895

Pro Asn Asp Leu Leu Lys Leu Asn Ser Glu Leu Asn Ile Glu Trp Lys
900 905 910

Gln Ala Ile Ser Ser Thr Val Leu Gly Lys Val Ile Val Gln Pro Asp
915 920 925

Gln Asn Phe Thr Gly Leu Ile Ala Gly Val Val Ser Ile Ser Thr Ala
930 935 940

Leu Leu Leu Leu Gly Phe Phe Leu Trp Leu Lys Lys Arg Lys Gln
945 950 955 960

Ile Lys Asp Leu Gly Ser Glu Leu Val Arg Tyr Asp Ala Arg Val His
965 970 975

Thr Pro His Leu Asp Arg Leu Val Ser Ala Arg Ser Val Ser Pro Thr
980 985 990

Thr Glu Met Val Ser Asn Glu Ser Val Asp Tyr Arg Ala Thr Phe Pro
995 1000 1005

Glu Asp Gln Phe Pro Asn Ser Ser Gln Asn Gly Ser Cys Arg Gln
1010 1015 1020

Val Gln Tyr Pro Leu Thr Asp Met Ser Pro Ile Leu Thr Ser Gly
1025 1030 1035

Asp Ser Asp Ile Ser Ser Pro Leu Leu Gln Asn Thr Val His Ile

1040 1045 1050

Asp Leu Ser Ala Leu Asn Pro Glu Leu Val Gln Ala Val Gln His
1055 1060 1065

Val Val Ile Gly Pro Ser Ser Leu Ile Val His Phe Asn Glu Val
1070 1075 1080

Ile Gly Arg Gly His Phe Gly Cys Val Tyr His Gly Thr Leu Leu
1085 1090 1095

Asp Asn Asp Gly Lys Lys Ile His Cys Ala Val Lys Ser Leu Asn
1100 1105 1110

Arg Ile Thr Asp Ile Gly Glu Val Ser Gln Phe Leu Thr Glu Gly
1115 1120 1125

Ile Ile Met Lys Asp Phe Ser His Pro Asn Val Leu Ser Leu Leu
1130 1135 1140

Gly Ile Cys Leu Arg Ser Glu Gly Ser Pro Leu Val Val Leu Pro
1145 1150 1155

Tyr Met Lys His Gly Asp Leu Arg Asn Phe Ile Arg Asn Glu Thr
1160 1165 1170

His Asn Pro Thr Val Lys Asp Leu Ile Gly Phe Gly Leu Gln Val
1175 1180 1185

Ala Lys Gly Met Lys Tyr Leu Ala Ser Lys Lys Phe Val His Arg
1190 1195 1200

Asp Leu Ala Ala Arg Asn Cys Met Leu Asp Glu Lys Phe Thr Val
1205 1210 1215

Lys Val Ala Asp Phe Gly Leu Ala Arg Asp Met Tyr Asp Lys Glu
1220 1225 1230

Tyr Tyr Ser Val His Asn Lys Thr Gly Ala Lys Leu Pro Val Lys
1235 1240 1245

Trp Met Ala Leu Glu Ser Leu Gln Thr Gln Lys Phe Thr Thr Lys
1250 1255 1260

Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Leu Met Thr
1265 1270 1275

Arg Gly Ala Pro Pro Tyr Pro Asp Val Asn Thr Phe Asp Ile Thr
1280 1285 1290

Val Tyr Leu Leu Gln Gly Arg Arg Leu Leu Gln Pro Glu Tyr Cys
1295 1300 1305

Pro Asp Pro Leu Tyr Glu Val Met Leu Lys Cys Trp His Pro Lys
1310 1315 1320

Ala Glu Met Arg Pro Ser Phe Ser Glu Leu Val Ser Arg Ile Ser
1325 1330 1335

Ala Ile Phe Ser Thr Phe Ile Gly Glu His Tyr Val His Val Asn
1340 1345 1350

Ala Thr Tyr Val Asn Val Lys Cys Val Ala Pro Tyr Pro Ser Leu
1355 1360 1365

Leu Ser Ser Glu Asp Asn Ala Asp Asp Glu Val Asp Thr Arg Pro
1370 1375 1380

Ala Ser Phe Trp Glu Thr Ser
1385 1390

<210> 2
<211> 728
<212> PRT
<213> Homo sapiens

<220>
<223> HGF

<400> 2

Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu
1 5 10 15

Leu His Leu Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln
20 25 30

Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr

35

40

45

Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val
50 55 60

Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu
65 70 75 80

Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys
85 90 95

Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe
100 105 110

Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys
115 120 125

Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys
130 135 140

Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His
145 150 155 160

Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr
165 170 175

Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser
180 185 190

Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser Glu
195 200 205

Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp
210 215 220

His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln Thr Pro
225 230 235 240

His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp
245 250 255

Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr
260 265 270

Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr Cys
275 280 285

Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr Thr Glu
290 295 300

Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr Ile
305 310 315 320

Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro His Glu
325 330 335

His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn
340 345 350

Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr
355 360 365

Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp
370 375 380

Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met
385 390 395 400

Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp
405 410 415

Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro Asp Ala
420 425 430

Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Ala His
435 440 445

Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys
450 455 460

Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val Asn Leu
465 470 475 480

Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gln Leu Arg Val Val
485 490 495

Asn Gly Ile Pro Thr Arg Thr Asn Ile Gly Trp Met Val Ser Leu Arg
500 505 510

Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp
515 520 525

Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr
530 535 540

Glu Ala Trp Leu Gly Ile His Asp Val His Gly Arg Gly Asp Glu Lys
545 550 555 560

Cys Lys Gln Val Leu Asn Val Ser Gln Leu Val Tyr Gly Pro Glu Gly
565 570 575

Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp
580 585 590

Phe Val Ser Thr Ile Asp Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu
595 600 605

Lys Thr Ser Cys Ser Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn
610 615 620

Tyr Asp Gly Leu Leu Arg Val Ala His Leu Tyr Ile Met Gly Asn Glu
625 630 635 640

Lys Cys Ser Gln His His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu
645 650 655

Ile Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp
660 665 670

Tyr Gly Gly Pro Leu Val Cys Glu Gln His Lys Met Arg Met Val Leu
675 680 685

Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly
690 695 700

Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile
705 710 715 720

Leu Thr Tyr Lys Val Pro Gln Ser
725

<210> 3
<211> 543

<212> PRT
<213> Homo sapiens

<220>
<223> Extracellular Domain of Met

<400> 3

Glu Cys Lys Glu Ala Leu Ala Lys Ser Glu Met Asn Val Asn Met Lys
1 5 10 15

Tyr Gln Leu Pro Asn Phe Thr Ala Glu Thr Pro Ile Gln Asn Val Ile
20 25 30

Leu His Glu His His Ile Phe Leu Gly Ala Thr Asn Tyr Ile Tyr Val
35 40 45

Leu Asn Glu Glu Asp Leu Gln Lys Val Ala Glu Tyr Lys Thr Gly Pro
50 55 60

Val Leu Glu His Pro Asp Cys Phe Pro Cys Gln Asp Cys Ser Ser Lys
65 70 75 80

Ala Asn Leu Ser Gly Gly Val Trp Lys Asp Asn Ile Asn Met Ala Leu
85 90 95

Val Val Asp Thr Tyr Tyr Asp Asp Gln Leu Ile Ser Cys Gly Ser Val
100 105 110

Asn Arg Gly Thr Cys Gln Arg His Val Phe Pro His Asn His Thr Ala
115 120 125

Asp Ile Gln Ser Glu Val His Cys Ile Phe Ser Pro Gln Ile Glu Glu
130 135 140

Pro Ser Gln Cys Pro Asp Cys Val Val Ser Ala Leu Gly Ala Lys Val
145 150 155 160

Leu Ser Ser Val Lys Asp Arg Phe Ile Asn Phe Phe Val Gly Asn Thr

165

170

175

Ile Asn Ser Ser Tyr Phe Pro Asp His Pro Leu His Ser Ile Ser Val
180 185 190

Arg Arg Leu Lys Glu Thr Lys Asp Gly Phe Met Phe Leu Thr Asp Gln
195 200 205

Ser Tyr Ile Asp Val Leu Pro Glu Phe Arg Asp Ser Tyr Pro Ile Lys
210 215 220

Tyr Val His Ala Phe Glu Ser Asn Asn Phe Ile Tyr Phe Leu Thr Val
225 230 235 240

Gln Arg Glu Thr Leu Asp Ala Gln Thr Phe His Thr Arg Ile Ile Arg
245 250 255

Phe Cys Ser Ile Asn Ser Gly Leu His Ser Tyr Met Glu Met Pro Leu
260 265 270

Glu Cys Ile Leu Thr Glu Lys Arg Lys Lys Arg Ser Thr Lys Lys Glu
275 280 285

Val Phe Asn Ile Leu Gln Ala Ala Tyr Val Ser Lys Pro Gly Ala Gln
290 295 300

Leu Ala Arg Gln Ile Gly Ala Ser Leu Asn Asp Asp Ile Leu Phe Gly
305 310 315 320

Val Phe Ala Gln Ser Lys Pro Asp Ser Ala Glu Pro Met Asp Arg Ser
325 330 335

Ala Met Cys Ala Phe Pro Ile Lys Tyr Val Asn Asp Phe Phe Asn Lys
340 345 350

Ile Val Asn Lys Asn Asn Val Arg Cys Leu Gln His Phe Tyr Gly Pro
355 360 365

Asn His Glu His Cys Phe Asn Arg Thr Leu Leu Arg Asn Ser Ser Gly
370 375 380

Cys Glu Ala Arg Arg Asp Glu Tyr Arg Thr Glu Phe Thr Thr Ala Leu
385 390 395 400

Gln Arg Val Asp Leu Phe Met Gly Gln Phe Ser Glu Val Leu Leu Thr
405 410 415

Ser Ile Ser Thr Phe Ile Lys Gly Asp Leu Thr Ile Ala Asn Leu Gly
420 425 430

Thr Ser Glu Gly Arg Phe Met Gln Val Val Val Ser Arg Ser Gly Pro
435 440 445

Ser Thr Pro His Val Asn Phe Leu Leu Asp Ser His Pro Val Ser Pro
450 455 460

Glu Val Ile Val Glu His Thr Leu Asn Gln Asn Gly Tyr Thr Leu Val
465 470 475 480

Ile Thr Gly Lys Lys Ile Thr Lys Ile Pro Leu Asn Gly Leu Gly Cys
485 490 495

Arg His Phe Gln Ser Cys Ser Gln Cys Leu Ser Ala Pro Pro Phe Val
500 505 510

Gln Cys Gly Trp Cys His Asp Lys Cys Val Arg Ser Glu Glu Cys Leu
515 520 525

Ser Gly Thr Trp Thr Gln Gln Ile Cys Leu Pro Ala Ile Tyr Lys
530 535 540

<210> 4
<211> 4626
<212> DNA
<213> Homo sapiens

<220>
<223> Met cDNA
<400> 4

gaattccgccc ctcggccgccc gcggcgcccc gagcgctttg tgagcagatg cggagccgag 60
tggaggcgcc gagccagatg cggggcgaca gctgacttgc tgagaggagg cggggaggcg 120
cgagcgccgc gtgtggtcct tgcggcgctg acttctccac tggttcctgg gcaccgaaag 180
ataaacctct cataatgaag gcccccgctg tgcttgcacc tggcatcctc gtgctcctgt 240
ttaccttggt gcagaggagc aatggggagt gtaaagaggc actagcaaag tccgagatga 300

atgtgaatat gaagtatcag cttcccaact tcaccgcgga aacacccatc cagaatgtca	360
ttctacatga gcatcacatt ttccttggtg ccactaacta catttatgtt tttaaatgagg	420
aagaccttca gaagggttgt gagtacaaga ctgggcgtgt gctggaacac ccagattgtt	480
tcccattgtca ggactgcagc agcaaagcca atttatcagg aggtgtttgg aaagataaca	540
tcaacatggc tctagttgtc gacacctact atgatgatca actcattagc tgtggcagcg	600
tcaacagagg gacctgccag cgacatgtct ttccccacaa tcatactgct gacatacagt	660
cggaggttca ctgcatattc tccccacaga tagaagagcc cagccagtgt cctgactgtg	720
tggtagcgc cctgggagcc aaagtcctt catctgtaaa ggaccgggtc atcaacttct	780
ttgttaggcaa taccataaat tcttcttatt tcccagatca tccattgcat tcgatatcag	840
tgagaaggct aaaggaaacg aaagatggtt ttatgtttt gacggaccag tcctacattg	900
atgttttacc ttagttcaga gattcttacc ccattaagta tgtccatgcc tttgaaagca	960
acaattttat ttacttctt acggtccaaa gggaaaactct agatgctcag acttttcaca	1020
caagaataat caggttctgt tccataaaact ctggattgca ttcctacatg gaaatgcctc	1080
tggagtgat tctcacagaa aagagaaaaa agagatccac aaagaaggaa gtgtttaata	1140
tacttcaggc tgcgtatgtc agcaagcctg gggcccagct tgctagacaa ataggagcca	1200
gcctgaatga tgacattctt ttcggggtgt tcgcacaaag caagccagat tctgccgaac	1260
caatggatcg atctgccatg tgtgcattcc ctatcaaata tgtcaacgac ttcttcaaca	1320
agatcgtcaa caaaaacaat gtgagatgtc tccagcattt ttacggaccc aatcatgagc	1380
actgcttaa taggacactt ctgagaaatt catcaggctg tgaagcgcgc cgtgatgaat	1440
atcgaacaga gtttaccaca gctttgcagc gcgttgactt attcatgggt caattcagcg	1500
aagtcctctt aacatctata tccaccttca ttaaaggaga cctcaccata gctaatttg	1560
ggacatcaga gggtcgccttc atgcaggttg tggttctcg atcaggacca tcaacccttc	1620
atgtgaattt tctcctggac tcccattccag tgtctccaga agtGattgtg gagcatacat	1680
taaaccaaaa tggctacaca ctggttatca ctggaaagaa gatcacgaag atcccattga	1740
atggcttggg ctgcagacat ttccagtcct gcagtcaatg cctctctgcc ccacccttg	1800
ttcagtggtgg ctggtgccac gacaaatgtg tgcgatcgga ggaatgcctg agcgggacat	1860
ggactcaaca gatctgtctg cctgcaatct acaagggttt cccaaatagt gcacccttg	1920
aaggagggac aaggctgacc atatgtggct gggactttgg atttcggagg aataataaat	1980

ttgatttaaa gaaaactaga gttctccttg gaaatgagag ctgcacccctg actttaagtg 2040
agagcacat gaatacattt gaaatgcacag ttggtcctgc catgaataag catttcaata 2100
tgtccataat tatttcaaattt ggccacggga caacacaata cagtacattc tcctatgtgg 2160
atcctgtaat aacaagtattt tcgcccggaaat acggtcctat ggctggtgcc actttactta 2220
ctttaactgg aaatttaccta aacagtggga attctagaca catttcaattt ggtggaaaaaa 2280
catgtacttt aaaaagtgtg tcaaaccatgta ttcttgaatg ttataccccca gcccaaacc 2340
tttcaactga gtttgcgttt aaatttggaaa ttgacttagc caaccgagag acaaggcatct 2400
tcagttaccg tgaagatccc attgtctatg aaatttcatcc aacccaaatct tttatttagta 2460
cttggtgaa agaacctctc aacattgtca gttttctatt ttgctttgcc agtggtgaaa 2520
gcacaataac aggtgttggg aaaaacotga attcagttt tagtcccgaga atggtcataa 2580
atgtgcataa agcaggaagg aactttacag tggcatgtca acatcgctct aattcagaga 2640
taatctgtt taccactcct tccctgcaac agctgaatct gcaactcccc ctgaaaacc 2700
aaggcctttt catgttagat gggatcctt ccaaataactt tgatctcatt tatgtacata 2760
atcctgtgtt taagcctttt gaaaagccag tgatgtctc aatgggcaat gaaaatgtac 2820
tggaaattaa gggaaatgtat attgaccctg aagcagttaa aggtgaagtg ttaaaagttg 2880
gaaataagag ctgtgagaat atacacttac attctgaagc cgtttatgc acggccccca 2940
atgacccgt gaaattgaac agcgagctaa atatagagtg gaagcaagca atttcttcaa 3000
ccgtccctgg aaaagtaata gttcaaccag atcagaattt cacaggattt attgctgg 3060
ttgtctcaat atcaacagca ctgttattac tacttgggtt tttcctgtgg ctgaaaaga 3120
gaaagcaaattaa taaaatctg ggcagtgaat tagttcgcta cgatgcaaga gtacacactc 3180
ctcatttgga taggcttgta agtgcggaa gtgtaaagccc aactacagaa atggttcaa 3240
atgaatctgt agactaccga gctactttc cagaagatca gtttcctaattt tcatacaga 3300
acggttcatg ccgacaagtg cagttccctc tgacagacat gtcccccatc ctaacttagt 3360
gggactctga tatatccagt ccattactgc aaaatactgt ccacattgac ctcagtgc 3420
taaatccaga gctggtccag gcagtgcagc atgttagtgc tggcccaagt agcctgattt 3480
tgcatttcaa tgaagtcata ggaagagggc attttgggtt tgtatatcat gggactttgt 3540
tggacaatga tggcaagaaa attcactgtg ctgtgaaatc cttgaacaga atcactgaca 3600
taggagaagt ttcccaattt ctgaccgagg gaatcatcat gaaagatttt agtcatcc 3660
atgtccctctc gctccctggga atctgcctgc gaagtgaagg gtctccgctg gtggcctac 3720

catacatgaa acatggagat ctgcgaaatt tcattcgaaa tgagactcat aatccaactg 3780
taaaagatct tattggcttt ggtcttcaag tagccaaagc gatgaaatat cttgcaagca 3840
aaaagttgt ccacagagac ttggctgcaa gaaactgtat gctggatgaa aaattcacag 3900
tcaagggttgc tgatttttgtt cttgccagag acatgtatga taaagaatac tatagtgtac 3960
acaacaaaac aggtgcaaag ctgccagtga agtggatggc tttggaaagt ctgcaaactc 4020
aaaagttac caccaagtca gatgtgttgtt ccttggcgt cgtcctctgg gagctgatga 4080
caagaggagc cccaccttat cctgacgtaa acacctttga tataactgtt tacttggc 4140
aagggagaag actcctacaa cccgaataact gcccagaccc cttatatgaa gtaatgctaa 4200
aatgctggca ccctaaagcc gaaatgogcc catccttttc tgaactggtg tcccgatata 4260
cagcgatctt ctctactttc attggggagc actatgtcca tgtgaacgct acttatgtga 4320
acgtaaaatg tgtcgctccg tatccttctc tggtgtcatc agaagataac gctgatgatg 4380
aggtggacac acgaccagcc tccttctgg agacatcata gtgcttagtac tatgtcaaag 4440
caacagtcca cactttgtcc aatggtttt tcactgcctg acctttaaaa ggccatcgat 4500
attcttgct cttgccata ggacttgat tgttatttaa attactggat tctaaggaat 4560
ttcttatctg acagagcatc agaaccagag gcttggtccc acaggccagg gaccaatgcg 4620
ctgcag 4626

<210> 5
<211> 5898
<212> DNA
<213> Homo sapiens

<220>
<223> HGF cDNA

<400> 5

cacacaacaa acttagctca tcgcaataaa aagcagctca gagccgactg gcttttag 60
gcactgactc cgaacaggat tcttcaccc aggcatctcc tccagagggta ccgcgcagcc 120
cgtccagcag caccatgtgg gtgaccaaac tcctgccagc cctgctgctg cagcatgtcc 180
tcctgcatct cctcctgctc cccatcgcca tcccctatgc agagggacat aaaaaaagaa 240
gaaatacaat tcacgaattc aaaaaatcag caaagactac cctaataaaa atagatccag 300
cactgaagat aaaaacccaaa aaagtgaata ctgcagacca atgtgctaat agatgtacta 360

ggaataatgg acttccattc acttgcaagg ccttggttt tgataaagcg agaaaacaat 420
gcctctggtt ccccttcaat agcatgtcaa gtggagtgaa gaaagaattt ggccatgaat 480
ttgacotcta tgaaaacaaa gactacatta gaaactgcat catcgtaaa ggacgcagct 540
acaaggaaac agtatctatc actaagagtg gcatcaaatg tcagccctgg agttccatga 600
taccacacga acacagctt ttgccttcga gctatcgggg taaagaccta cagaaaaact 660
actgtcgaaa tcctcgaggg gaagaagggg gacctgggt tttcacaagc aatccagagg 720
tacgctacga agtctgtgac attcctcagt gttcagaagt tgaatgcatg acctgcaatg 780
gggagagtt tcgaggtctc atggatcata cagaatcagg caagatttg cagcgctggg 840
atcatcagac accacacccgg cacaaattct tgcctgaaag atatccgac aagggtttt 900
atgataatta ttgccgcaat cccgatggcc agccgaggcc atggtgctat actcttgacc 960
ctcacacccg ctgggagttac tgtgcaatta aaacatgcgc tgacaatact gtaaatgata 1020
ctgatgttcc tatggaaaca actgaatgca tccaaggta aggagaaggc tacaggggca 1080
ctgccaatac catttggaaat ggaattccat gtcagcggtt ggattcttag tatttcaca 1140
agcatgacat gactcctgaa aatttcaagt gcaaggacct acgagaaaaat tactgccaa 1200
atccagatgg gtctgaatca ccctgggttt ttaccactga tccaaacatc cgagttggaa 1260
actgctccca aattccaaac tgtgatatgt caaatggaca agattgttat cgtggaaatg 1320
gcaaaaatta tatgggcaac ttatccaaa caagatctgg actaacgtgt tcaatgtgga 1380
acaagaacat ggaagactta caccgtcata tcttctggga accagatgca agtaagctga 1440
atgagaatta ctgcccataat ccagatgatg atgotcatgg accctgggtc tacacggaa 1500
atccactcat tcottggat tattgcccta tttctcggtt tgaaggatgat accacaccta 1560
caatagtcaa ttttagaccat cctgtaatat cttgcgc当地 aacgaaacaa ctgcgagtt 1620
taaatggat tccaacacga acaaattgttag gatggatgat tagttgaga tacagaaata 1680
aacatatactg cggaggatca ttgataaagg aaagttgggt tcttactgca cgacagtgtt 1740
tcccttctcg agacttgaaa gattatgagg cttggcttgg aattcatgat gtccatggaa 1800
gaggagagga gaaacgc当地 caggttctca atgttccca gctggatataat ggccctgaag 1860
gatcagatct ggttttaatg aagcttgcca gacctgctgt cctggatgat tttgttaata 1920
caattgattt acctaattat ggtatgc当地 ttcctgaaaa gaccagttgc agtgtttatg 1980
gctggggctca cactggattt atcaactatg atggtctatt acgagttggca catctctata 2040
taatggaaa tgagaaatgc agccagcatc accgaggaa ggtgactctg aatgagtctg 2100

aaatatgtgc tggggctgag aagattggat caggaccatg tgagggggat tatggtggcc 2160
cacttgttg tgagcaacat aaaatgagaa tggttcttgg tgtcattgtt cccggccgtg 2220
gatgcgccat tccaaatcgt cctggtattt ttgtccgagt agcatattat gcaaaatgga 2280
tacacaaaat tatttaaca tataaggtac cacagtcata gctgaagtaa gtgtgtctga 2340
agcacccacc aatacaactg tctttacat gaagatttca gagaatgtgg aattaaaaat 2400
accacttaca acaatcctaa gacaactact ggagagtcat gtttgttaaa attctcatta 2460
atgttatgg gtgtttctg ttgtttgtt tgtcagtgtt attttgtcaa tggtaagtg 2520
aattaaggtt catgcaagtg tagtaacata tctcctgaag atacttgaat ggattaaaaa 2580
aacacacagg tataattgct ggataaagat tttgtggggaa aaaaatcaat taatctct 2640
aagctgctt ctgaggttgg tttcttaata atgagtaaac cataaattaa atgttatttt 2700
aacctcacca aaacaattta taccttgcgt ccttaaatttgc taccctatataa taaatttat 2760
tacatttcat atgctatatg ttatagttca ttcatttctc ttcaccatgt atcctgcaat 2820
actggtacac gaacacactt tttacaaaac cacataccca tgtacacatg cctaggtaca 2880
catgtacatg cactacagt taaattatga tgtacttaat gtaacctcta aatatttttag 2940
aagtatgtac ctatagttt acctcaaaaaa aatagaaaatc tctaaagacc agtagaaata 3000
ttaaaaaatg atgcaaaatc aaaatgagtg gctaattctc catacgtaat ctgcagatga 3060
tcttctctgg ttgacatttt acgtgtggcc atcaccggggtt gttaaataac acctaattct 3120
ggtgtttaca tgtattcaat atccttagttt gtttcatgtt gtttctaatt cttaaaggaa 3180
agagggtaat aattctattt gtgttaatttgc tttcctccaa acttaaggcc acttattttac 3240
acaagatattt tgtatgtcta ctttcctaaa gcatttctc agtgctcaga tcagtgtcta 3300
attgaagaag attaaaaactg ctttggtcat taaaaacgta tttaaatagg ttaattctaa 3360

gacttgctgc tgtgattgac ttcttagctca ctgcctttaa atttaaaaa attaagagg 3420
aaaatttca tgtctccaaa gtttataaa tacccttcat caagtcattgc attaaagtat 3480
atattagaga aaaaaaaaaa ctttcctcaa cctggaaagat tttagcctaa taaagtttt 3540
ttgaagtaaa agaaaacttg taaagggaaa gaaactagtt tgtctaaact ctgtattcat 3600
ttttttttttt ttgaagttac agtggaaatct gttgaatcag atattttatc aagatatctt 3660
tattttttct tatttcattt ttacaaagat cactcccaat gccatgtt atagacattt 3720
aaatttcgtg ttctgtatga cagccaaatg atcatattta tcattgttattt tgtcatgttt 3780

agctaaaaat catgtattgt tgagaaaatag aataacaaaa agtaatagga taggcttga	3840
atttttgcaa aaaatcttcc tgtacaaaac atctttaaaa ataattttt gagtgggttg	3900
aatcttagtat tcccatttct ctgatTTAGT tttctttagt gatTTTATC aaggctaagt	3960
ccccaaatga ttccctaaca gctctttaga ataccgtta atctggacta aaatggttt	4020
aagtttatgg agagtttagt ccacagaact aactggactt ctggcggcaa gtccagaaaat	4080
gcttatacaa atttttttt cataataaga tatgtgctgg tatcaaggaa cttaaagtgg	4140
aagcaaaaag acatccaagt agttgctagt ctccatcatc ttatctgatt gtattctct	4200
tttccttata taatacacca ttttcataag aacacctaga aatttcaaga gtatattgcc	4260
aaaatataaa gtatatttcc tagtttcttc tggctgaacc agtgaardttt tattgttgca	4320
tattaatgat attttaaaaa ctttataaa aattgtcata ctTTTAAATA ctcacatttt	4380
aaaaataactt ctTTTATGAC tCTTCCTCTA aatttcctgg aaatacagat aaagattagc	4440
tagatacaag atgcagctaa gtatTTAGAC attttgagcc cagtattttt cattttatta	4500
aaggctaaaaaacaataccac caataaatca tcaaacaaac tgtacaaaat aattctgtct	4560
ttgggaggct cTTTTGTGA tagagggaca tgggtggaat tgacaatgaa agttagatga	4620
acaaggTCCG tggatTTTA ggttagtagaa cagggtagag tcATGTCATT atttgcgggc	4680
ggaagataact atttaccacg tggatTTTGCA tgaatcaatt attaaacatt ttAAAAATC	4740
caattatCCA ctTTTATTTG tggatTTGAC aaaaggatct ttAAAGTCAG aggtttcaat	4800
gtgatTTTG gctTGGCTGT ttGAATAATG gttatgtact gttataattt tagacatttt	4860
ctcatgtcta ccaggaattt aagtgtaaaa ctaaaatatt ttTCATAATG CCTCTGCCGT	4920
gcggaaaggaa tgataatcct ttgtataact tctttatTTT tattgtaaaa tggtaatga	4980
cttttaccta tatgtgtgg gcaggTCCtC agtaaaatct attgagtcaa ttTCTAGTAT	5040
taataggcTT ttgcttgcta tctaagtgtt tcaaaattatg ggaagtgtga gacactggaa	5100
ggcaagaaaaa ttaacaataa tggcatgtga tagcaaaattt gtatttcaCT tattctgtg	5160
aatatttctt gttggatCCA atggTACTGT acaaagtgaa tggatAGCC acaacattct	5220
cttggAAAAGA acactgtcaa gaagtggaa attgtgtca ggcatttCGT tggatTTTTT	5280
aaactttta aaaaagaaaat actggTTTG caagatagag atcatgaggt aaataatttt	5340
aataagctct tataactaaaaa agccttaaat cgatttactg agattcaaaaa catacttata	5400
taatcaatta tatcccataat atqtaqqcaactcattaa aaaataaaat taattttqgt	5460

aaaagtacat agtgttgtt tttaaaatac ataatttaa aataaatcgc ttgtcatgat	5520
aaagtccaaa aagaagttat ctttcaatat tcaactaagt ttggagctaa gaatttacta	5580
atacaaaaaa aagttaaaat gtttgacc atatatatct tgacagtgt aactttaagt	5640
aggctcattt ccatttgcac agaaagttc tgtctttagg aaactgaaaa tgaataactg	5700
tggatgttat gactgttgtt cttctatgt aataggaaat taataagctg cctattgagt	5760
ggtatacgctg tatgcttacc caaaaaaggg aacactgtgg ttatgacttg tattataaac	5820
tttctgttgt taataaaagtt gttatTTTA taaccatgat tatatattat tattaataaa	5880
atattttatc gaaatgct	5898