CS2100

TUTORIAL #9

SEQUENTIAL CIRCUITS

(PREPARED BY: AARON TAN)

Question on analyzing sequential circuit:

- 1. Build state table
 - e) Express inputs to FF and circuit output in terms of current state and circuit inputs (if any)
 - b) For each row, use current state and circuit inputs (if any) to derive FF inputs
 - c) For each row, use current state, FF inputs and characteristic table to obtain next state
 - d) For each row, use current state (and circuit inputs) to derive circuit output
- 2. Use state table to derive state diagram
- 3. Answer questions regarding the circuit

Q1.

	sent ate	Output	Flip-flop	inputs	Ne sta	
Α	В	p = A⊕B′	<i>TA</i> = <i>A</i> ⋅ <i>B</i> ′	DB = A'+B	A^+	B ⁺
0	0	1	0	1	0	1
0	1	0	0	1	0	1
1	0	0	1	0	0	0
1	1	1	0	1	1	1

- (b) Assuming that the circuit is initially at state 0, what is the final state and the outputs generated after 3 clock cycles?

 State 1; output: 100.
 - (c) A state is a sink if once the circuit enters this state, it never moves out of that state. How many sinks are there?

 2 sinks: states 1 and 3.
 - (d) Which is likely an unused state in this circuit?

Likely to be state 3.

Question on designing sequential circuit:

- 1. Derive state table (if not provided) from description of the circuit behavior
- Use circuit state table and FF excitation table to derive inputs to FFs
- 3. Express inputs to FFs as a function of current state and circuit inputs (if any)
- Express output of circuit (if any) as a function of current state and circuit inputs (if any)
- 5. Build the circuit

Q2.

	sent ate	Input	put Next state Flip-flop A		lop A	Flip-f	lop B	
Α	В	X	$A^{\scriptscriptstyle +}$	B ⁺	JA	KA	JB	KB
0	0	0	0	1	0	d	1	d
0	0	1	1	0	1	d	0	d
0	1	0	1	0	1	d	d	1
0	1	1	0	0	0	d	d	1
1	0	0	0	0	d	1	0	d
1	0	1	0	1	d	1	1	d
1	1	0	d	d	d	d	d	d
1	1	1	d	d	d	d	d	d

Q	$oldsymbol{Q}^{\dagger}$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Excitation table for JK Flip-flop

Q2.

	sent ate	Input	Next	Next state Flip-flop A Flip-		Flip-f	lop B	
Α	В	X	A^{+}	B ⁺	JA	KA	JB	KB
0	0	0	0	1	0	d	1	d
0	0	1	1	0	1	d	0	d
0	1	0	1	0	1	d	d	1
0	1	1	0	0	0	d	d	1
1	0	0	0	0	d	1	0	d
1	0	1	0	1	d	1	1	d
1	1	0	d	d	d	d	d	d
1	1	1	d	d	d	d	d	d

Q2.

	sent ate	Input	Next	state	Flip-f	lop A	Flip-f	lop <i>B</i>
Α	В	X	A^+	B ⁺	JA	KA	JB	KB
0	0	0	0	1	0	d(1)	1	d(1)
0	0	1	1	0	1	d(1)	0	d(1)
0	1	0	1	0	1	d(1)	d(1)	1
0	1	1	0	0	0	d(1)	d(0)	1
1	0	0	0	0	d(0)	1	0	d(1)
1	0	1	0	1	d(1)	1	1	d(1)
1	1	0	d(0)	d(0)	d(1)	d(1)	d(0)	d(1)
1	1	1	d(0)	d(0)	d(0)	d(1)	d(1)	d(1)

A circuit is self-correcting if after entering into any unused state, the circuit is able to transit to a valid state after a finite number of transition.

Is this circuit self-correcting?

Yes

$$JA = B \cdot x' + B' \cdot x = B \oplus x$$

$$KA = 1$$

$$JB = A' \cdot x' + A \cdot x = A \odot x$$

$$KB = 1$$

Q3.

Q	Q^{\dagger}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Excitation table for JK Flip-flop

$$DA = A \cdot B' + A \cdot C' + A' \cdot B \cdot C \cdot D$$

$$TB = C$$

$$TC = A' + B' + C'$$

$$JD = B \cdot C$$
$$KD = A \cdot B \cdot C$$

	Curren	t state		N	lext st	tate		F	lip-flo _l	o inpu	ts
Α	В	С	D	DA=A+	B ⁺	C+	D^+	TB	TC	JD	KD
0	0	0	0	Χ	X	X	X	Χ	Χ	Χ	Χ
0	0	0	1	0	0	1	1	0	1	X	0
0	0	1	0	0	1	0	0	1	1	0	X
0	0	1	1	0	1	0	1	1	1	X	0
0	1	0	0	0	1	1	0	0	1	0	Χ
0	1	0	1	0	1	1	1	0	1	X	0
0	1	1	0	0	0	0	1	1	1	1	Χ
0	1	1	1	1	0	0	1	1	1	Χ	0
1	0	0	0	X	X	X	X	Χ	Χ	Χ	Χ
1	0	0	1	1	0	1	1	0	1	Χ	0
1	0	1	0	X	Χ	X	Χ	Χ	Χ	Χ	Χ
1	0	1	1	1	1	0	1	1	1	X	0
1	1	0	0	X	X	X	Χ	Χ	Χ	Χ	Χ
1	1	0	1	1	1	1	1	0	1	Χ	0
1	1	1	0	X	X	X	X	Χ	Χ	Χ	Χ
1	1	1	1	0	0	1	0	1	0	X	1

 $DA = A \cdot B' + A \cdot C' + A' \cdot B \cdot C \cdot D$ Q3. 0 0 $JD = B \cdot C$

Q3.

Is the circuit self-correcting?

$$DA = A \cdot B' + A \cdot C' + A' \cdot B \cdot C \cdot D$$
 $TB = C$
 $TC = A' + B' + C'$
 $JD = B \cdot C$
 $KD = A \cdot B \cdot C$

	Curren	t state		N	ext st	ate		FI	ip-flop	input	:s
Α	В	С	D	DA=A+	B ⁺	C+	D^+	TB	TC	JD	KD
0	0	0	0	X(0)	X0	X1	X0	X 0	X1	X0	X0
0	0	0	1	0	0	1	1	0	1	X	0
0	0	1	0	0	1	0	0	1	1	0	X
0	0	1	1	0	1	0	1	1	1	X	0
0	1	0	0	0	1	1	0	0	1	0	X
0	1	0	1	0	1	1	1	0	1	X	0
0	1	1	0	0	0	0	1	1	1	1	X
0	1	1	1	1	0	0	1	1	1	Χ	0
1	0	0	0	X(1)	X0	X1	XO	X 0	X1	X0	X0
1	0	0	1	1	0	1	1	0	1	Χ	0
1	0	1	0	X(1)	X1	Х0	XO	X1	X1	X0	X0
1	0	1	1	1	1	0	1	1	1	X	0
1	1	0	0	X(1)	X1	X1	X0	X 0	X1	Х0	X0
1	1	0	1	1	1	1	1	0	1	Χ	0
1	1	1	0	X(0)	X0	X1	X1	X1	X0	X1	X1
1	1	1	1	0	0	1	0	1	0	X	1

Q4(a).

Q4(a).

$$DA = A + y + B \cdot x$$

$$DB = B \cdot x' + B' \cdot x + A \cdot y + A \cdot x$$
or
$$DB = B \cdot x' + B' \cdot x + A \cdot y + A \cdot B$$

Pres	sent	Inp	uts	Ne	xt
A	В	X	у	A ⁺	B ⁺
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	1	X	X
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	1	0
0	1	1	1	Χ	X
1	0	0	0	1	0
1	0	0	1	1	1
1	0	1	0	1	1
1	0	1	1	X	X
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	1	1
1	1	1	1	Χ	Χ

END OF FILE

Fill in the table for the circuit shown on the right.

	Preser	nt state	2	Flip-flop inputs					Next state			
Α	В	С	Ε	DA	DB	DC	DE	A ⁺	B ⁺	C ⁺	E ⁺	
0	1	1	0									

Fill in the table for the circuit shown on the right.

	Preser	nt state			Flip-flop	Next state					
Α	В	С	Ε	DA	DB	DC	DE	A^+	B^{+}	C ⁺	E ⁺
0	1	1	0	1	0	1	1	1	0	1	1

Fill in the table for the state diagram shown on the right.

Prese	nt state	Input	Ne	ext State	T Flip Flop inputs		
Α	В	Υ	A^{+}	B ⁺	TA	ТВ	
0	0	1	1	0			
0	1	0	0	0			
1	0	1	0	0			

Fill in the table for the state diagram shown on the right.

Present state		Input	Next State		T Flip Flop inputs	
Α	В	Υ	\mathcal{A}^{+}	B ⁺	TA	ТВ
0	0	1	1	0	1	0
0	1	0	0	0	0	1
1	0	1	0	0	1	0

Give the simplified SOP expression for TA using the table.

Present state		Input	Next State		T Flip Flop inputs	
А	В	Υ	A^+	B ⁺	TA	TB
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	0
0	1	1	1	0	1	1
1	0	0	1	0	0	0
1	0	1	0	0	1	0
1	1	0	d	d	d	d
1	1	1	d	d	d	d

TA = BY + AY

Describe (in one sentence) what the states in a circuit that implements the state diagram on the right keep track of. Assume that initial state is 00

Describe (in one sentence) what the states in a circuit that implements the state diagram on the right keep track of. Assume that initial state is 00

The states keep track of the number of times modulo 3 that the input is set to 1.

