

Dr. S. M. Moosavi

Data Sets

inear Geometr

Mathematics for Data Science

Dr. S. M. Moosavi

smohsenmoosavi2009@gmail.com

September 16, 2024

Dr. S. M

Data Sets

The following slides are arranged (with some modifications) based on the book "Math for Data Science" by "Omar Hijab".

You can follow me on <u>Linkedin</u>. Also, for course materials such as slides and the related python codes, see this <u>Github</u> repository.

Outline

Math for Data

Dr. S. M

Data Sets

near Geometr

- Data Sets
- 2 Linear Geometry

Outline

Math for Data

Dr. S. M Moosavi

Data Sets

introduction Averages and Ve

Spaces

Two Dimensions

Complex Numbers

Mean and Covarian

Mean and Covariar

Data Sets

Linear Geometry

Dr. S. M

Data Sets
Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

What is a dataset

Definition 1.1

Geometrically, a dataset is a sample of N points x_1, x_2, \dots, x_N in d-dimensional space \mathbb{R}^d . Algebraically, a dataset is an $N \times d$ matrix.

Practically speaking, the following are all representations of datasets:

matrix = CSV file = spreadsheet = SQL table = array = dataframe

Definition 1.2

Each point $x=(t_1,t_2,\cdots,t_d)$ in the dataset is a sample or an example, and the components t_1,t_2,\cdots,t_d of a sample point x are its features or attributes. As such, d-dimensional space \mathbb{R}^d is feature space.

Definition 1.3

Sometimes one of the features is separated out as the label. In this case, the dataset is a labelled dataset.

Math for Data

Dr. S. M.

Moosavi

Data Sets Introduction

Averages and Vector Spaces Two Dimensions Complex Numbers Mean and Covarianc

ris dataset

The *Iris dataset* contains 150 examples of four features of Iris flowers, and there are three classes of Irises, *Setosa*, *Versicolor* and *Virginica*, with 50 samples from each class.

Math for Data

Dr. S. M.

Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

MNIST dataset

The MNIST dataset consists of 60,000 images of hand-written digits. There are 10 classes of images, corresponding to each digit $0,1,\cdots,9$. We seek to compress the images while preserving as much as possible of the images' characteristics.

Each image is a grayscale 28×28 pixel image. Since $28^2=784$, each image is a point in d=784 dimensions. Here there are N=60000 samples and d=784 features.

0	0	0	Ó	0	Ô	0	0	0	٥	0	0	0	0	٥	0
1	l	1	١	1	/	/	1	/	1	1	1	1	1	/	1
2	$\boldsymbol{\varsigma}$	٦	ス	8	ð	2	7	2	γ	2	2	2	ړ	2	ス
3	۹)	3	3	ფ	3	3	3	გ	ŋ	3	Ŋ	3	3	3	უ
4	4	٤	γ	4	ታ	4	ሃ	#	4	4	4	9	4	4	4
5	5	5	5	5	\$	5	5	5	5	5	5	5	5	5	5
6	G	6	6	و	B	9	9	ø	Ø	6	6	ق	6	6	b
7	7	9	7	7	7	7	7	~	7	7	١	14	7	7	7
8	B	8	8	8	8	8	8	80	8	8	Ø	8	8	8	8
9	9	9	9	9	q	B	9	٩	Ð	9	9	9	9	9	9

Dr. S. M.

Data Sets
Introduction
Averages and Vi
Spaces
Two Dimensions

Complex Numbers Mean and Covaria

inear Geometr

Exercises

Exercise 1.1

Use sklearn to download Iris dataset.

Exercise 1.2

- From keras read the MNIST dataset.
- Let (train_X, train_y), (test_X, test_y) = mnist.load_data()
- Let pixels = train_X[1].
- Do for loops over i and j in range(28) and use scatter to plot points at location (i,j) with size given by pixels[i,j], then show the following image.

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces

Two Dimensions
Complex Numbers
Mean and Covarianc
Linear Geometry

ntroduction

Suppose we have a population of things (people, tables, numbers, vectors, images, etc.) and we have a sample of size N from this population:

$$1 = [x_1, x_2, \dots, x_N]$$

The total population is the population or the sample space.

Example 1.1

The sample space consists of all real numbers and we take ${\cal N}=5$ samples from

$$1 = [3.95, 3.20, 3.10, 5.55, 6.93]$$

Example 1.2

The sample space consists of all integers and we take ${\cal N}=5$ samples from

$$1 = [35, -32, -8, 45, -8]$$

Dr. S. M Moosavi

Oata Sets
Introduction
Averages and Vector
Spaces
Two Dimensions

Two Dimensions
Complex Numbers
Mean and Covarian

Introduction

Example 1.3

The sample space consists of all Python strings and we take ${\cal N}=5$ samples from

```
1 = ['a2e?','#%T','7y5,','kkk>><</',,'[[)*+']
```

Example 1.4

The sample space consists of all HTML colors and we take ${\cal N}=5$ samples from

Dr. S. M Moosavi

Data Sets Introduction Averages and Vector Spaces

Two Dimensions Complex Numbers Mean and Covarian

Linear Geomet

Mean

Let 1 be a list as above. The goal is to compute the sample average or mean of the list, which is

$$mean = average = \frac{x_1 + x_2 + \dots + x_N}{N}.$$

In the Example (1.1), the average is

$$\frac{3.95 + 3.20 + 3.10 + 5.55 + 6.93}{5} = 4.546.$$

Example 1.5

```
import numpy as np

dataset = np.array([3.95, 3.20, 3.10, 5.55, 6.93])
print(np.mean(dataset))

output: 4.546
```

In the Example (1.2), the average is $\frac{32}{5}$. In the Example (1.3), while we can add strings, we can't divide them by 5, so the average is undefined. Similarly for colors: the average is undefined.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vector
Spaces

Two Dimensions Complex Numbers Mean and Covariance

/ector space

A sample space or population V is called a $vector\ space$ if, roughly speaking, one can compute means or averages in V. In this case, we call the members of the population "vectors".

Definition 1.4 (Vector space)

Let V be a set. V is a vector space (over $\mathbb R$) if for every $u,v,w\in V$ and $r,s\in \mathbb R$:

- 1 vectors can be added (and the sum v + w is back in V);
- 2 vector addition is commutative v + w = w + v
- 3 vector addition is associative u + (v + w) = (u + v) + w;
- 4 there is a zero vector $\mathbf{0}$ ($\mathbf{0} + v = v$);
- **5** vectors v have negatives (or opposites) -v (v + (-v) = 0);
- 5 vectors can be multiplied by real numbers (and the product v is back in V);
- 7 multiplication is distributive over addition (r+s)v = rv + sv and r(u+v) = ru + rv;
- 8 1v = v and 0v = 0;
- r(sv) = (rs)v.

Math for Data

Dr. S. M.

Moosavi

Introduction

Averages and Vector

Spaces

Two Dimensions

Complex Numbers
Mean and Covarian

Centered dataset

Definition 1.5 (Centered Versus Non-Centered)

If x_1, x_2, \cdots, x_N is a dataset of points with mean m and

$$v_1 = x_1 - m, v_2 = x_2 - m, \dots, v_N = x_N - m,$$

then v_1, v_2, \cdots, v_N is a centered dataset of vectors where its mean is zero.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

ome note

- When we work with vector spaces, numbers are referred to as scalars.
- When we multiply a vector v by a scalar r to get the scaled vector rv, we call it scalar multiplication.
- ullet The set of all real numbers ${\mathbb R}$ is a vector space.
- \bullet The set of all integers $\mathbb Z$ is not a vector space.
- The set of all rational numbers $\mathbb Q$ is a vector space over $\mathbb Q$ but not over $\mathbb R$.
- The set of all Python strings is not a vector space.
- Usually, we can't take sample means from a population, we instead take the sample mean of a statistic associated to the population. A statistic is an assignment of a number f(item) to each item in the population. For example, the human population on Earth is not a vector space (they can't be added), but their heights is a vector space (heights can be added). For the Python strings, a statistic might be the length of the strings. For the HTML colors, a statistic is the HTML code of the color.

Moosavi

Averages and Vector

In general, a statistic need not be a number. A statistic can be anything that "behaves like a number". For example, f(item) can be a vector or a matrix. More generally, a statistic's values may be anything that lives in a vector space V.

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Ve
Spaces
Two Dimensions

Cartesian plane

The cartesian plane \mathbb{R}^2 , also called the 2-dimensional real space is a vector space.

For $\mathbf{v}_1=(x_1,y_1), \mathbf{v}_2=(x_2,y_2)\in\mathbb{R}^2$ and $t\in\mathbb{R}$ define

- $\mathbf{v}_1 + \mathbf{v}_2 = (x_1 + x_2, y_1 + y_2)$ (Addition).
- $\mathbf{0} = (0,0)$ (Zero).
- $t\mathbf{v}_1 = (tx_1, ty_1)$ (Scaling).
- $-\mathbf{v}_1 = (-1)\mathbf{v}_1$ (Negative).
- $\mathbf{v}_1 \mathbf{v}_2 = \mathbf{v}_1 + (-\mathbf{v}_2) = (x_1 x_2, y_1 y_2)$ (Subtraction).

Operations

Math for Data

Dr. S. M Moosavi

Data Sets Introduction

Averages and Vec Spaces

Two Dimensions
Complex Numbers

. .

2d example

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vectors

Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

Example 1.6

```
import numpy as np
   v1 = (1.2)
4 v2 = (3,4)
   print(v1 + v2 == (1+3,2+4)) # returns False
6
   v1 = [1,2]
8
   v2 = [3.4]
9
   print(v1 + v2 == [1+3,2+4]) # returns False
10
11
   v1 = np.array([1,2])
12
   v2 = np.array([3,4])
13
   print(v1 + v2 == np.array([1+3,2+4]))
14
   # returns [ True True]
15
   print(3*v1 == np.array([3,6]))
16
   # returns [ True True]
17
   print(-v1 == np.array([-1,-2]))
18
   # returns [ True True]
19
   print(v1 - v2 == np.array([1-3,2-4]))
20
   # returns [ True True]
```


Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vec

Two Dimensions
Complex Numbers

Linear Geomet

2d example

For the two-dimensional dataset

$$\mathbf{x}_1 = (1, 2), \mathbf{x}_2 = (3, 4), \mathbf{x}_3 = (-2, 11), \mathbf{x}_4 = (0, 66),$$

or, equivalently,

$$\mathbf{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ -2 & 11 \\ 0 & 66 \end{pmatrix},$$

the average is

$$\frac{(1,2) + (3,4) + (-2,11) + (0,66)}{4} = (0.5,20.75).$$

Example 1.7

```
1  import numpy as np
2  
3  dataset = np.array([[1,2], [3,4], [-2,11], [0,66]])
4  print(np.mean(dataset, axis=0))
5  # returns [ 0.5 , 20.75]
```


Data Sets
Introduction

Two Dimensions

Mean and Covariance

Linear Geome

2d example

Example 1.8

Generate a 2 dimensional dataset of random points and their mean

```
import numpy as np
   from numpy.random import random as rd
   import matplotlib.pyplot as plt
   N = 20
   dataset = np.array([[rd(), rd()] for _ in range(N)])
6
   mean = np.mean(dataset,axis=0)
   plt.grid()
8
   X, Y = dataset[:,0], dataset[:,1]
   plt.scatter(X,Y)
10
   plt.scatter(*mean)
11
   plt.annotate('$m$', xy=mean+0.01)
12
   plt.show()
                                1.0
                                0.8
```

0.6

0.0

0.2

0.4

0.6

0.8

1.0

Dr. S. M. Moosavi

Introduction
Averages and Vect
Spaces
Two Dimensions

Complex Numbers
Mean and Covarian
Linear Geometry

Magnitude

Definition 1.6 (Distance Formula)

If $\mathbf{v}_1=(x_1,y_1)$ and $\mathbf{v}_2=(x_2,y_2)$, then the distance between \mathbf{v}_1 and \mathbf{v}_2 is

$$|\mathbf{v}_1 - \mathbf{v}_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

The distance of ${\bf v}=(x,y)$ to the origin ${\bf 0}=(0,0)$ is its magnitude or norm or length

$$r = |\mathbf{v}| = |\mathbf{v} - \mathbf{0}| = \sqrt{x^2 + y^2}.$$

Example 1.9

For $\mathbf{v}_1 = (1, 2)$ and $\mathbf{v}_2 = (3, 4)$

$$|\mathbf{v}_1| = \sqrt{1^2 + 2^2} = \sqrt{5} \simeq 2.236,$$

$$|\mathbf{v}_1 - \mathbf{v}_2| = \sqrt{(1-3)^2 + (2-4)^2} = \sqrt{4+4} = \sqrt{8} \approx 2.828.$$

```
1  import numpy as np
2  
3  v1 = np.array([1,2])
4  v2 = np.array([3,4])
5  print(np.linalg.norm(v1)) #returns 2.23606797749979
6  print(np.linalg.norm(v1-v2)) #returns 2.
```


Dr. S. M.

Data Sets
Introduction
Averages and Vec
Spaces
Two Dimensions
Complex Number
Mean and Covaria

Polar representation

In terms of r and θ , the polar representation of (x,y) is

$$x = r\cos\theta, \quad y = r\sin\theta.$$

The *unit circle* consists of the vectors which are distance 1 from the origin $\mathbf{0}$. When \mathbf{v} is on the unit circle, the magnitude of \mathbf{v} is 1, and we say \mathbf{v} is a *unit vector*. In this case, the line formed by the scalings of \mathbf{v} intersects the unit circle at $\pm \mathbf{v}$.

When **v** is a unit vector, then r = 1 and $\mathbf{v} = (x, y) = (\cos \theta, \sin \theta)$.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and V
Spaces

Two Dimensions
Complex Numbers
Mean and Covarian

Linear Geome

Polar representation

By the distance formula, a vector $\mathbf{v} = (x, y)$ is a unit vector when

$$x^2 + y^2 = 1.$$

More generally, any circle with $\mathit{center}\ (a,b)$ and radius r consists of vectors $\mathbf{v}=(x,y)$ satisfying

$$(x-a)^2 + (y-b)^2 = r^2.$$

Let R be a point on the unit circle, and let t>0. The scaled point tR is on the circle with center (0,0) and radius t. Moreover, if Q is any point, Q+tR is on the circle with center Q and radius t. It is easy to check that $|t\mathbf{v}|=|t||\mathbf{v}|$ for any real number t and vector \mathbf{v} .

From this, if a vector \mathbf{v} is unit and r > 0, then $r\mathbf{v}$ has magnitude r. If \mathbf{v} is any vector not equal to the zero vector, then $r = |\mathbf{v}|$ is positive, and

$$\left| \frac{1}{r} \mathbf{v} \right| = \frac{1}{r} |\mathbf{v}| = \frac{1}{r} r = 1$$

so \mathbf{v}/r is a unit vector.

Math for Data Dr. S. M.

Dr. S. M. Moosavi

ntroduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

nner product

Definition 1.7

Let $\mathbf{v}_1=(x_1,y_1), \mathbf{v}_2=(x_2,y_2)\in\mathbb{R}^2$. The inner product or the dot product of \mathbf{v}_1 and \mathbf{v}_2 is given algebraically as

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = x_1 x_2 + y_1 y_2.$$

From the geometric view, we have:

Theorem 1.1 (Dot Product Identity)

$$x_1x_2 + y_1y_2 = \mathbf{v}_1 \cdot \mathbf{v}_2 = |\mathbf{v}_1||\mathbf{v}_2|\cos\theta,$$

where θ is the angle between \mathbf{v}_1 and \mathbf{v}_1 .

Exercise 1.3

Prove the "Dot Product Identity", Theorem (1.1). Hint: Use Pythagoras' theorem for general triangles.

Math for Data

Dr. S. M.

Moosayi

Data Sets
Introduction
Averages and Vec

Two Dimensions

Complex Numbers

Linear Geometr

The angle between two vectors

In Python, the dot product is given by numpy.dot and as a consequence of the dot product identity, we have the code for the angle between two vectors:

$$\theta_{\mathbf{v}_1,\mathbf{v}_2} = \arccos\left(\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1||\mathbf{v}_2|}\right).$$

Example 1.10

Find the angle between the vectors $\mathbf{v}_1 = (1, 2)$ and $\mathbf{v}_2 = (3, 4)$.

```
import numpy as np

def angle(u,v):
    a = np.dot(u,v)
    b = np.dot(u,u)
    c = np.dot(v,v)
    theta = np.arccos(a / np.sqrt(b*c))
    return np.degrees(theta)

v1 = np.array([1,2])
v2 = np.array([3,4])
print(angle(v1,v2)) #returns 10.304846468766044 in degree
```


Moosavi

Recall that $-1 \le \cos \theta \le 1$. Using the dot product identity, we obtain the important inequality:

Theorem 1.2 (Cauchy-Schwarz Inequality)

If u and v are any two vectors, then

$$-|u||v| \le u \cdot v \le |u||v|.$$

Exercise 1.4

Prove the "Cauchy-Schwarz Inequality".

Dr. S. M Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

2d linear equations system

Consider the homogeneous system

$$\begin{cases}
ax + by = 0 \\
cx + dy = 0
\end{cases}$$
(1.1)

and let A be the 2×2 matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \tag{1.2}$$

(x,y)=(-b,a) is a solution of the first equation in (1.1). If we want this to be a solution of the second equation as well, we must have cx+dy=ad-bc=0.

Definition 1.8 (Determinant)

The determinant of A is

$$\det(A) = \det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc.$$

Math for Data Moosavi

Theorem 1.3 (Homogeneous System)

When det(A) = 0, the homogeneous system (1.1) has a nonzero solution, and all solutions are scalar multiples of (x, y) = (-b, a). When $det(A) \neq 0$, the only solution is (x, y) = (0, 0).

For the inhomogeneous case

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$
 (1.3)

we have

Theorem 1.4 (Inhomogeneous System)

When $det(A) \neq 0$, the inhomogeneous system (1.3) has the unique solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\det(A)} \begin{pmatrix} de - bf \\ af - ce \end{pmatrix}.$$

When det(A) = 0, (1.3) has a solution iff ce = af and de = bf.

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vec

Two Dimensions Complex Numbers

Linear Geometr

2d linear equations system

When $a^2 + b^2 \neq 0$, a solution is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} ae \\ be \end{pmatrix}.$$

When $c^2 + d^2 \neq 0$, a solution is

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{c^2 + d^2} \begin{pmatrix} cf \\ df \end{pmatrix}.$$

Any other solution differs from these solutions by a scalar multiple of the homogeneous solution (x, y) = (-b, a).

Exercise 1.5

Prove the Theorems (1.3) and (1.4).

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vec
Spaces

Complex Numbers

Mean and Covariance

inear Geometry

Complex numbers

Roughly speaking, the set of all *complex numbers* is the set of all points in \mathbb{R}^2 with different multiplication rule.

Definition 1.9 (Complex numbers)

The complex numbers, \mathbb{C} , is the set

$$\mathbb{C} = \{(x, y) \in \mathbb{R}^2\}$$

with operations

- Addition: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$.
- Scalar Multiplication: t(x, y) = (tx, ty)
- Multiplication: $(x_1, y_1)(x_2, y_2) = (x_1x_2 y_1y_2, x_1y_2 + x_2y_1)$.

Then, in \mathbb{C} , we have

- zero: 0 = (0, 0).
- opposite or additive inverse: -(x,y) = (-x,-y).
- one: 1 = (1, 0).

Dr. S. M.

Introduction Averages and Vecto Spaces Two Dimensions

Complex Numbers

Mean and Covariance

inear Geomet

zampie

Example 1.11

- \bullet (1,2) + (3,4) = (4,6).
- \bullet (0,0) + (1,2) = (1,2).
- 3(1,2) = (3,6).
- (1,0)(1,2) = (1-0,2+0) = (1,2).
- \bullet (1,2)(3,4) = (3-8,4+6) = (-5,10).
- \bullet (x,0) + (y,0) = (x+y,0).
- \bullet (x,0)(y,0) = (xy,0).

Note. By the last two examples, we see that complex numbers with 0 as their second component act like real numbers in addition and multiplication. So, from now on, we set x = (x, 0).

Example 1.12

- \bullet 0 = (0,0).
- 1 = (1, 0).
- \bullet -1 = (-1,0).

Moosavi

Complex Numbers

Definition 1.10 (Imaginary number)

$$i = (0, 1).$$

Note. Python uses the symbol j for imaginary number.

Theorem 1.5

For each $z=(x,y)\in\mathbb{C}$, we can write

$$z = x + iy.$$

We call x as the real part of z, and y the imaginary part of z.

$$x = Re(z), \quad y = Im(z).$$

Proof.
$$x + iy = (x, 0) + (0, 1)(y, 0) = (x, 0) + (0 - 0, 0 + y) = (x, y).$$

Theorem 1.6

$$i^2 = -1$$
.

Proof.
$$i^2 = (0,1)(0,1) = (0-1,0+0) = (-1,0) = -1.$$

Example

Math for Data

Dr. S. M Moosavi

Data Sets Introduction Averages and Vec Spaces

Spaces
Two Dimensions
Complex Numbers

Example 1.13

In complex numbers:

- $\bullet \ \sqrt{-1} = i.$
- $\sqrt{-4} = 2i$.

•
$$(1,2)(3,4) = (1+2i)(3+4i)$$

= $3+4i+6i+8i^2$
= $3+10i-8$
= $-5+10i$
= $(-5,10)$.

•
$$(1,2)^3 = (1+2i)^3$$

= $(1)^3 + 3(1)^2(2i) + 3(1)(2i)^2 + (2i)^3$
= $1 + 6i + 12i^2 + 8i^3$
= $1 + 6i - 12 - 8i$
= $-11 - 2i$
= $-(11,2)$.

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vec

Complex Numbers
Mean and Covarian

Mean and Covaria

Conjugate

Definition 1.11 (Conjugate)

For $z=(x,y)\in\mathbb{C}$, the conjugate is

$$\bar{z} = (x, -y) = x - iy \in \mathbb{C}.$$

Some properties.

- $z + \bar{z} = 2Re(z)$, $z \bar{z} = 2iIm(z)$.
- $z\bar{z} = Re(z)^2 + Im(z)^2,$

$$\Rightarrow |z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{z\overline{z}}$$
$$\Rightarrow |z|^2 = z\overline{z}.$$

Example 1.14

For $z = (4, -3) \in \mathbb{C}$:

- $\bar{z} = (4,3) = 4 + 3i$
- $z + \bar{z} = 2 \times 4 = 8$, $z \bar{z} = 2i \times (-3) = -6i$.
- $z\bar{z} = (4)^2 + (-3)^2 = 16 + 9 = 25 \Rightarrow |z| = \sqrt{25} = 5.$
- $z^2 = (4-3i)^2 = 7-24i.$
- $|z|^2 = 25$.

Inverse

Math for Data

Dr. S. M. Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions

Complex Numbers
Mean and Covariance

inear Geometr

Theorem 1.7

For a non-zero $z \in \mathbb{C}$, the inverse of z is

$$z^{-1} = \frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{|z|^2}.$$

Proof. Firstly, if z=(x,y) then $\frac{1}{z}\in\mathbb{C}$, because,

$$\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right) \in \mathbb{C}.$$

Secondly,

$$zz^{-1} = (x+iy)\left(\frac{x-iy}{x^2+y^2}\right) = \frac{x^2+y^2}{x^2+y^2} = 1.$$

Corollary 1.1 (Division)

For $z_1 \in \mathbb{C}$ and $0 \neq z_2 \in \mathbb{C}$

$$\frac{z_1}{z_2} = z_1 z_2^{-1}.$$

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vect
Spaces
Two Dimensions
Complex Numbers

Linear Geometry

efinitions |

Definition 1.12 (Mean-squared distance)

Let x_1, x_2, \ldots, x_N be a dataset, say D, in \mathbb{R}^d , and let $\mathbf{x} \in \mathbb{R}^d$. The mean-squared distance of \mathbf{x} to D is

$$MSD(\mathbf{x}) = \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k - \mathbf{x}|^2.$$

Definition 1.13 (Mean)

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ be a dataset in \mathbb{R}^d . The mean or sample mean is

$$\mathbf{m} = \bar{\mathbf{x}}_N = \frac{1}{N} \sum_{k=1}^N \mathbf{x}_k = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_N}{N}.$$

Theorem 1.8 (Point of Best-fit)

The mean is the point of best-fit: The mean minimizes the mean-squared distance to the dataset.

Exercise 1.6

Prove the Theorem (1.8).

Point of Best-fit

Math for Data

Dr. S. M. Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

```
Example 1.15
```

```
import matplotlib.pyplot as plt
    import numpy as np
    np.random.seed(1)
   N = 20
6 rnd = np.random.random
    dataset = np.array([ [rnd(), rnd()] for _ in range(N) ])
    # Mean
    m = np.mean(dataset, axis=0)
10
    #Random point
11
    p = np.array([rnd(), rnd()])
12
13
    plt.grid()
14
    X, Y = dataset[:,0], dataset[:,1]
15
    plt.scatter(X,Y)
16
    for v in dataset:
      plt.plot([m[0],v[0]],[m[1],v[1]],c='green')
plt.plot([p[0],v[0]],[p[1],v[1]],c='red')
17
18
    plt.show()
19
20
21
    # Comparison of MSD of the mean and a random point
22
    MSD_m = np.sum(np.abs(dataset-m)**2)/N
23
    MSD_p = np.sum(np.abs(dataset-p)**2)/N
24
    print (MSD_m, MSD_p) # 0.160478187272121 0.5984208474157081
```


Point of Best-fi

Math for Data

Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions

Mean and Covariance

1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.1: MSD for the mean (green) versus MSD for a random point (red).

Dr. S. M Moosavi

Data Sets
Introduction
Averages and V
Spaces
Two Dimension

Complex Number

Linear Geometi

ensor product

For simplicity, let $\mathbf{u} = (a, b)$ and $\mathbf{v} = (c, d, e)$ be two vectors.

Definition 1.14 (Tensor product)

The tensor product of ${\bf u}$ and ${\bf text}$ is the matrix

$$\mathbf{u} \otimes \mathbf{v} = \begin{pmatrix} ac & ad & ae \\ bc & bd & be \end{pmatrix} = \begin{pmatrix} c\mathbf{u} & d\mathbf{u} & e\mathbf{u} \end{pmatrix} = \begin{pmatrix} a\mathbf{v} \\ b\mathbf{v} \end{pmatrix}$$

Definition 1.15 (Trace of a matrix)

The trace of a squared matrix A is the sum of the diagonal entries.

Note. For any vectors \mathbf{u}, \mathbf{v} and \mathbf{w} :

$$\bullet \ \mathbf{v} \otimes \mathbf{u} = (\mathbf{u} \otimes \mathbf{v})^t.$$

In square case:

•
$$trace(\mathbf{u} \otimes \mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$$
.

•
$$trace(\mathbf{u} \otimes \mathbf{u}) = |\mathbf{u}|^2$$
.

$$\bullet \ (\mathbf{u} \otimes \mathbf{v})\mathbf{w} = (\mathbf{v} \cdot \mathbf{w})\mathbf{u}.$$

Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers

Linear Geometr

Covariance

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ be a dataset in \mathbb{R}^d with \mathbf{m} as its mean.

Definition 1.16 (1d Covariance)

When d = 1, the covariance q is a scalar

$$q = \frac{1}{N} \sum_{k=1}^{N} (x_k - m)^2 = MSD(m).$$

In the scalar case, the covariance is called the variance of the scalar dataset.

In general, the covariance is a symmetric $d \times d$ matrix Q. We can center the dataset as

$$v_1 = x_1 - m, v_2 = x_2 - m, ..., v_N = x_N - m.$$

Then the *covariance matrix* is the $d \times d$ matrix Q as

$$Q = \frac{\mathbf{v}_1 \otimes \mathbf{v}_1 + \mathbf{v}_2 \otimes \mathbf{v}_2 + \ldots + \mathbf{v}_N \otimes \mathbf{v}_N}{N}.$$
 (1.4)

Example

Math for Data

Dr. S. M. Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers

Complex Numbers

Mean and Covariar

Example 1.16

Suppose ${\cal N}=5$ and

$$\mathbf{x}_1 = (1, 2), \quad \mathbf{x}_2 = (3, 4), \quad \mathbf{x}_3 = (5, 6), \quad \mathbf{x}_4 = (7, 8), \quad \mathbf{x}_5 = (9, 10).$$

Then m = (5,6) and

$$\mathbf{v}_1 = \mathbf{x}_1 - \mathbf{m} = (-4, -4), \quad \mathbf{v}_2 = \mathbf{x}_2 - \mathbf{m} = (-2, -2),$$

 $\mathbf{v}_3 = \mathbf{x}_3 - \mathbf{m} = (0, 0), \quad \mathbf{v}_4 = \mathbf{x}_4 - \mathbf{m} = (2, 2), \quad \mathbf{v}_5 = \mathbf{x}_5 - \mathbf{m} = (4, 4).$

Since

$$(\pm 4, \pm 4) \otimes (\pm 4, \pm 4) = \begin{pmatrix} 16 & 16 \\ 16 & 16 \end{pmatrix},$$
$$(\pm 2, \pm 2) \otimes (\pm 2, \pm 2) = \begin{pmatrix} 4 & 4 \\ 4 & 4 \end{pmatrix},$$
$$(0,0) \otimes (0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

then

$$Q = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix}$$
.

Dr. S. M. Moosavi

Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

xample

```
import numpy as np
   def tensor(u.v):
     return np.array([ [ a*b for b in v] for a in u ])
5
   np.random.seed(1)
   N = 20
   rnd = np.random.random
   dataset = np.array([[rnd(), rnd()] for _ in range(N)])
10
   # mean
11
   m = np.mean(dataset,axis=0)
12
   # center dataset
13
   vectors = dataset - m
14
   # covariance
15
   Q = np.mean([ tensor(v,v) for v in vectors ],axis=0)
16
   print(Q)
```


Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vect

Two Dimensions
Complex Numbers

Mean and Covaria

Linear Geomet

Standardized

Note. The covariance matrix as written in (1.4) is the *biased* covariance matrix. If the denominator is instead N-1, the matrix is the *unbiased covariance matrix*.

For datasets with large N, it doesn't matter, since N and N-1 are almost equal.

In numpy, the Python covariance constructor is

```
import numpy as np

np.random.seed(1)

N = 20

rnd = np.random.random

dataset = np.array([[rnd(), rnd()] for _ in range(N)])

# covariance

Q = np.cov(dataset, bias=True, rowvar=False)

print(Q)
```


Dr. S. M. Moosavi

Data Sets
Introduction
Averages and Vector
Spaces
Two Dimensions
Complex Numbers

Mean and Covarian

Total variance

Definition 1.17 (Total variance)

From $trace(\mathbf{u} \otimes \mathbf{u}) = |\mathbf{u}|^2$, if Q is the covariance matrix then

$$trace(Q) = \frac{1}{N} \sum_{k=1}^{N} |\mathbf{x}_k - \mathbf{m}|^2.$$
 (1.5)

We call (1.5) the total variance of the dataset. Thus the total variance equals $MSD(\mathbf{m})$.

```
import numpy as np

np.random.seed(1)

np.random.seed(1)

n = 20

rnd = np.random.random

dataset = np.array([[rnd(), rnd()] for _ in range(N)])

covariance

np.cov(dataset.T,bias=True)

print(Q.trace()) # returns 0.16047818727212101
```


Math for Data

Dr. S. M.

Moosavi

Data Sets
Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers
Mean and Covariance

Projections

We would like to project a 2d dataset onto a line. Let ${\bf u}$ be a unit vector (a vector of length one, $|{\bf u}|=1$), and let ${\bf v}_1,{\bf v}_2,\ldots,{\bf v}_N$ be a 2d dataset, assumed for simplicity to be centered. We wish to project this dataset onto the line through ${\bf u}$. This will result in a 1d dataset.

When a vector ${\bf v}$ is projected onto the line through ${\bf u}$, the length of the projected vector reads

$$|proj_{\mathbf{u}}\mathbf{v}| = |\mathbf{v}|\cos\theta,$$

where θ is the angle between the vectors \mathbf{v} and \mathbf{u} . Since $|\mathbf{u}|=1$, this length equals the dot product $\mathbf{v} \cdot \mathbf{u}$. Hence the projected vector is

$$proj_{\mathbf{u}}\mathbf{v} = (\mathbf{v} \cdot \mathbf{u})\mathbf{u}.$$

Dr. S. M. Moosavi

Data Sets Introduction

Averages and Vector Spaces
Two Dimensions
Complex Numbers

Mean and Covariance inear Geometry

rojections

Hence,

Definition 1.18 (Reduced dataset)

The projected dataset of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$ onto the line through \mathbf{u} is the dataset

$$(\mathbf{v}_1 \cdot \mathbf{u})\mathbf{u}, (\mathbf{v}_2 \cdot \mathbf{u})\mathbf{u}, \dots (\mathbf{v}_N \cdot \mathbf{u})\mathbf{u}.$$

The projected datasetc is in \mathbb{R}^2 . The reduced dataset is

$$(\mathbf{v}_1 \cdot \mathbf{u}), (\mathbf{v}_2 \cdot \mathbf{u}), \dots (\mathbf{v}_N \cdot \mathbf{u}),$$

which is in \mathbb{R} .

Exercise 1.7

Show that when a 2d dataset is centered then the mean of the reduced dataset is 0.

Exercise 1.8

Prove that if Q is the covariance matrix of a 2d dataset, then the variance of the projected dataset onto the line through the vector \mathbf{u} equals the quadratic function $\mathbf{u} \cdot Q\mathbf{u}$:

$$q = \frac{1}{N} \sum_{k=1}^{N} \mathbf{u} \cdot (\mathbf{v}_k \otimes \mathbf{v}_k) \mathbf{u} = \mathbf{u} \cdot Q \mathbf{u}.$$

Moosavi

Hence,

Definition 1.19 (Covariance ellipse)

The contour of all points x satisfying $x \cdot Qx = 1$ is the covariance ellipsoid. In two dimensions d=2, this is the covariance ellipse. The contour of all points x satisfying $\mathbf{x} \cdot Q^{-1}\mathbf{x} = 1$ is the inverse covariance ellipsoid. In two dimensions d=2, this is the inverse covariance ellipse.

In two dimensions d=2, a covariance matrix has the form

$$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

If we write $\mathbf{u} = (x, y)$ for a vector in the plane, the covariance ellipse is

$$\mathbf{u} \cdot Q\mathbf{u} = (x, y) \cdot \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = ax^2 + 2bxy + cy^2 = 1.$$

The covariance ellipse and inverse covariance ellipses described above are centered at the origin (0,0). When a dataset has mean m and covariance Q, the ellipses are drawn centered at m.

In particular, when a=c and b=0, then Q=aI is a multiple of the identity, the inverse covariance ellipse is the circle of radius \sqrt{a} , and the covariance ellipse is the circle of radius $\frac{1}{\sqrt{a}}$.

Mean and Covariance

Example 1.20

Plot the contour ellipses for

$$Q_1 = \begin{pmatrix} 9 & 0 \\ 0 & 4 \end{pmatrix}, \quad Q_2 = \begin{pmatrix} 9 & 2 \\ 2 & 4 \end{pmatrix}.$$

Mean and Covariance

```
import matplotlib.pyplot as plt
   import numpy as np
3
4
   def ellipse(a, b, c, levels, color):
5
     L. delta = 4...1
6
     x = np.arange(-L,L,delta)
     y = np.arange(-L,L,delta)
8
     X,Y = np.meshgrid(x, y)
9
     plt.contour(X, Y, a*X**2 + 2*b*X*Y + c*Y**2, levels,
                                  colors=color)
10
11
   # Q1 Covariance entities
12
   a, b, c = 9, 0, 4
13
14
   # Inverse Covariance entities
15
   det = a*c - b**2
16
   A, B, C = c/det, -b/det, a/det
17
18
   plt.grid()
19
   ellipse(a, b, c, [20], 'blue')
20
   ellipse(A, B, C, [1], 'red')
21
   plt.show()
```


Mean and Covariance

25

```
22
23
   # Q2 Covariance entities
24
   a, b, c = 9, 2, 4
```

26 # Inverse Covariance entities

27 det = a*c - b**228

A, B, C = c/det, -b/det, a/det

29

30 plt.grid() 31 ellipse(a, b, c, [1], 'blue')

32

ellipse(A, B, C, [1], 'red')

33 plt.show()

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vectors

Complex Numbers

Mean and Covariance

Dr. S. N

Here, we describe how to standardize datasets in \mathbb{R}^2 . Standardizing the dataset means to center the dataset and to place the x and y features on the same scale.

Consider the dataset

$$\mathbf{x}_1=(x_1,y_1), \mathbf{x}_2=(x_2,y_2),\ldots,\mathbf{x}_N=(x_N,y_N)$$
 with mean $\mathbf{m}=(m_x,m_y).$ Then the covariance matrix is

$$Q = \begin{pmatrix} a & b \\ b & c \end{pmatrix},$$

where

$$a = \frac{1}{N} \sum_{k=1}^{N} (x_k - m_x)^2, \quad b = \frac{1}{N} \sum_{k=1}^{N} (x_k - m_x)(y_k - m_y),$$
$$c = \frac{1}{N} \sum_{k=1}^{N} (y_k - m_y)^2.$$

Dr. S. M Moosavi

Data Sets
Introduction
Averages and Vecto
Spaces
Two Dimensions
Complex Numbers
Mean and Covarian

Linear Geometr

Standardization

If a and c differ, the different scales of x's and y's distorts the relation between them, and b may not accurately reflect the correlation. To correct for this, we center and re-scale

$$x_1, x_2, \dots, x_N \to x_1' = \frac{x_1 - m_x}{\sqrt{a}}, x_2' = \frac{x_2 - m_x}{\sqrt{a}}, \dots, x_N' = \frac{x_N - m_x}{\sqrt{a}}$$

and

$$y_1, y_2, \dots, y_N \to y_1' = \frac{y_1 - m_y}{\sqrt{c}}, y_2' = \frac{y_2 - m_y}{\sqrt{c}}, \dots, y_N' = \frac{y_N - m_y}{\sqrt{c}}$$

This results in a new dataset

$$\mathbf{v}_1 = (x_1', y_1'), \mathbf{v}_2 = (x_2', y_2'), \dots, \mathbf{v}_N = (x_N', y_N')$$
 that is centered:

$$\frac{\mathbf{v}_1 + \mathbf{v}_2 + \ldots + \mathbf{v}_N}{N} = 0,$$

with each feature standardized to have unit variance,

$$\frac{1}{N} \sum_{k=1}^{N} x'_k = 1, \quad \frac{1}{N} \sum_{k=1}^{N} y'_k = 1.$$

This is the standardized dataset.

Dr. S. M. Moosavi () Math for Data

Moosavi

The covariance matrix of the standardized dataset has the form

$$Q' = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix},$$

where

$$\rho = \frac{1}{N} \sum_{k=1}^{N} x_k' y_k' = \frac{b}{\sqrt{ac}} = \frac{\sum_{k=1}^{N} (x_k - m_x)(y_k - m_y)}{\sqrt{\left(\sum_{k=1}^{N} (x_k - m_x)^2\right) \left(\sum_{k=1}^{N} (y_k - m_y)^2\right)}}$$

is the Pearson correlation coefficient of the dataset. The matrix Q' is the correlation matrix, or the standardized covariance matrix.

$$Q = \begin{pmatrix} 9 & 2 \\ 2 & 4 \end{pmatrix} \quad \Rightarrow \quad \rho = \frac{b}{\sqrt{ac}} = \frac{1}{3} \quad \Rightarrow \quad Q' = \begin{pmatrix} 1 & 1/3 \\ 1/3 & 1 \end{pmatrix}.$$

Math for Data

Dr. S. M.

Moosavi

Introduction Averages and Vector Spaces Two Dimensions Complex Numbers Mean and Covarian

Standardization

From the Cauchy-Schwarz inequality, the correlation coefficient ρ is always between -1 and 1. When $\rho=\pm 1$, the dataset samples are perfectly correlated and lie on a line passing through the mean. When $\rho=1$, the line has slope 1, and when $\rho=-1$, the line has slope -1. When $\rho=0$, the dataset samples are completely uncorrelated and are considered two independent one-dimensional datasets (In standardized case).

In Python numpy, the correlation matrix is returned by

```
import numpy as np
np.corrcoef(dataset.T)
```

Here again, we input the transpose of the dataset if our default is vectors as rows

Notice the 1/N cancels in the definition of ρ . Because of this, corrcoef is the same whether we deal with biased or unbiased covariance matrices.

Outline

Math for Data

Dr. S. M

Data Sets

Linear Geometry

Products
Matrix Inverse
Span and Linea
Independence

Data Sets

Math for Data

Dr. S. M Moosavi

Data S

Linear Geomet

Matrices

Matrix Inve

Definition 2.1

A matrix is a listing arranged in a rectangle of rows and columns. Specifically, an $N \times d$ matrix A has N rows and d columns,

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1d} \\ a_{21} & a_{22} & \dots & a_{2d} \\ \vdots & \vdots & \dots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{Nd} \end{pmatrix}$$

The transpose of A is

$$A^{t} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{N1} \\ a_{12} & a_{22} & \dots & a_{N2} \\ \vdots & \vdots & \dots & \vdots \\ a_{1d} & a_{2d} & \dots & a_{Nd} \end{pmatrix}$$

Math for Data

Dr. S. M. Moosavi

Data Se

near Geom

Matrices

Matrix Inverse
Span and Linea
Independence

Example 2.1

Apple 2.1
$$A = \begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix} \Rightarrow A^t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix}.$$

```
1
2
3
     import numpy as np
     A = np.array([[1,6,11],[2,7,12],[3,8,13],[4,9,14],[5,10,15]))
4
     print(A)
5
     print (A. shape)
6
     print (len(A))
7
     print (A[1])
8
     print (A[1,2])
9
     print (A[1:3])
10
11
     # transpose
12
     A_t = np.transpose(A)
13
     print (A-t)
14
     print (A-t.shape)
15
     print (len (A_t))
16
     print (A_t[1])
17
     print (A_t[1,2])
18
     print (A_t[1:3])
```


Moosavi

Definition 2.2

A d-dimensional vector \mathbf{v} may be written as a $1 \times d$ matrix

$$\mathbf{v} = \begin{pmatrix} t_1 & t_2 & \cdots & t_d \end{pmatrix}.$$

In this case, we call v a row vector.

Definition 2.3

An N-dimensional vector v may be written as an $N \times 1$ matrix

$$\mathbf{v} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix}.$$

In this case, we call v a column vector.

Math for Data

Dr. S. M.

Data S

Data Sets

Matrices

Matrix Inverse Span and Linea Independence Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$ with the same dimension may be stacked as columns (np.column_stack in Python) of a matrix,

$$A = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_d \end{pmatrix}.$$

Similarly, vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$ with the same dimension may be stacked as rows (np.row_stack in Python) of a matrix,

$$A = \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_N \end{pmatrix}.$$

Math for Data

Dr. S. M Moosavi

Data Sets

Linear G

Matrix Inverse Span and Linea Independence

Example 2.2

The row stack of $\mathbf{v}_1=(1,6,11)$, $\mathbf{v}_2=(2,7,12)$, $\mathbf{v}_3=(3,8,13)$, $\mathbf{v}_4=(4,9,14)$ and $\mathbf{v}_5=(5,10,15)$ reads:

$$A = \begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix},$$

and the column stack of them is:

$$A^t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix}.$$

```
1 import numpy as np
2 3 v1 = [1,6,11] v2 = [2,7,12] 5 v3 = [3,8,13] 6 v4 = [4,9,14] 7 v5 = [5,10,15] 8 A = np.row.stack((v1,v2,v3,v4,v5)) print(A)
10 A.t = np.column.stack((v1,v2,v3,v4,v5)) 1 print(A.t)
```


Math for Data

Dr. S. M Moosavi

Data Sets

Data SetS

Matrices

Matrix Inverse Span and Linea Independence

Definition 2.4

A matrix is square if the number of rows equals the number of columns.

Definition 2.5

A matrix is diagonal if the off-diagonal entities are zero.

Example 2.3

The matrix

$$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix},$$

is square and diagonal.

The following matrices are not square but they are diagonal:

$$\begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix}, \quad \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}.$$

Dr. S. M. Moosavi

Data S

Linear Geome Matrices

Matrix Inverse Span and Linear Independence

atasets

Definition 2.6

A dataset is a collection of points $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ in \mathbb{R}^d . After centering the mean to the origin, the dataset becomes a collection of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$. Usually the vectors are presented as the rows of an $N \times d$ matrix A.

Corresponding to this, datasets are often provided as a CSV file. The matrix A is the dataset matrix. In excel, this is called a spreadsheet. In SQL, this is called a table. In numpy, it's an array. In pandas, it's a dataframe. So, effectively,

matrix = dataset = CSV file = spreadsheet = table = array = dataframe

Dataset:

Math for Data

Dr. S. M. Moosavi

Data S

Matrices
Products
Matrix Inverse
Span and Linear

Example 2.4

For the Iris dataset:

```
import numpy as np
   import pandas as pd
   from sklearn import datasets
4
5
6
7
8
9
   iris = datasets.load_iris()
   # The dataset
   dataset = iris["data"]
10
   # To center the dataset
11
   m = np.mean(dataset,axis=0)
12
   vectors = dataset - m
13
14
   # To make a data frame
15
   centered_df = pd.DataFrame(data=vectors)
```


Dr. S. M Moosavi

Data Sets

Matrices
Products
Matrix Inverse
Span and Lines

Addition & scalar multiplication

Matrices consisting of numbers are added and multiplied by scalars as follows. With t as an scalar and the matrices

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1d} \\ a_{21} & a_{22} & \dots & a_{2d} \\ \vdots & \vdots & \dots & \vdots \\ a_{N1} & a_{N2} & \dots & a_{Nd} \end{pmatrix} \quad \text{and} \quad A' = \begin{pmatrix} a'_{11} & a'_{12} & \dots & a'_{1d} \\ a'_{21} & a'_{22} & \dots & a'_{2d} \\ \vdots & \vdots & \dots & \vdots \\ a'_{N1} & a'_{N2} & \dots & a'_{Nd} \end{pmatrix}$$

we have

$$A + A' = \begin{pmatrix} a_{11} + a'_{11} & a_{12} + a'_{12} & \dots & a_{1d} + a'_{1d} \\ a_{21} + a'_{21} & a_{22} + a'_{22} & \dots & a_{2d} + a'_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ a_{N1} + a'_{N1} & a_{N2} + a'_{N2} & \dots & a_{Nd} + a'_{Nd} \end{pmatrix},$$

and

$$tA = \begin{pmatrix} ta_{11} & ta_{12} & \dots & ta_{1d} \\ ta_{21} & ta_{22} & \dots & ta_{2d} \\ \vdots & \vdots & \dots & \vdots \\ ta_{N1} & ta_{N2} & \dots & ta_{Nd} \end{pmatrix}.$$

Matrices may be added only if they have the same shape.

Moosavi

Example 2.5

```
import numpy as np
    A = np.zeros((4,3))
    print(A)
   B = np.eye(3)
   print(B)
7
8
    C = np.eye(4,3)
   print(C)
    D = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
10
    print(D)
11
    E = np.diag([1,2,3,4])
12
    print(E)
13
14
    print(A+C)
15
    print(C+D)
16
    print(4*D)
17
    print(-D)
18
    print(-2*D)
```


Math for Data

Dr. S. M

Data Sets

Matrices
Products
Matrix Inverse
Span and Linear

Let t be a scalar, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors, and let A, B be matrices. We already know how to compute $t\mathbf{u}$, $t\mathbf{v}$, and tA, tB. In this section, we compute the *dot product* $\mathbf{u} \cdot \mathbf{v}$, the *matrix-vector product* $A\mathbf{v}$, and the *matrix-matrix product* AB.

Dr. S. M. Moosavi

Data Sets

Matrices
Products
Matrix Inverse
Span and Line

produc

In the first chapter, we defined the dot product in two dimensions. We now generalize it to any dimension d. Suppose \mathbf{u}, \mathbf{v} are vectors in \mathbb{R}^d . Then their dot product $\mathbf{u} \cdot \mathbf{v}$ is the scalar obtained by multiplying corresponding features and then summing the products. This only works if the dimensions of \mathbf{u} and \mathbf{v} agree.

In other words, if $\mathbf{u}=(u_1,u_2,\ldots,u_d)$ and $\mathbf{v}=(v_1,v_2,\ldots,v_d)$, then

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_d v_d.$$

It's best to think of this as "row-times-column" multiplication,

$$\mathbf{u} \cdot \mathbf{v} = \begin{pmatrix} u_1 & u_2 & \cdots & u_d \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{pmatrix} = u_1 v_1 + u_2 v_2 + \ldots + u_d v_d.$$

Products

Example 2.6

In Python, calculate the dot product of $\mathbf{u}=(1,2,3)$ and $\mathbf{v} = (4, 5, 6).$

```
1
    import numpy as np
2
    u = np.array([1,2,3])
4
5
6
7
8
9
    v = np.array([4, 5, 6])
    u_dot_v = np.dot(u,v)
    print(u_dot_v)
    u_dot_v_ = u[0]*v[0] + u[1]*v[1] + u[2]*v[2]
10
    print(u_dot_v_)
11
12
    print(u_dot_v == u_dot_v_)
```


Dr. S. M Moosavi

Data Se

Linear Geometr Matrices

Products

Matrix Inverse

Span and Linear
Independence

Dot product

As we mentioned in 2 dimensions, we have the following generalizations in d dimension:

Definition 2.7

The length or norm or magnitude of a vector ${\bf v}$ is the square root of the dot product ${\bf v}\cdot{\bf v},$

$$|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

Theorem 2.1 (Dot Product)

The dot product $\mathbf{u} \cdot \mathbf{v}$ satisfies

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$$

where θ is the angle between \mathbf{u} and \mathbf{v} .

Corollary 2.1

To calculate the angle θ between \mathbf{u} and \mathbf{v} we have:

$$\cos\theta = \frac{\mathbf{u}\cdot\mathbf{v}}{\sqrt{|\mathbf{u}||\mathbf{v}|}} = \frac{\mathbf{u}\cdot\mathbf{v}}{\sqrt{(\mathbf{u}\cdot\mathbf{u})(\mathbf{v}\cdot\mathbf{v})}}.$$

Dr. S. M. Moosavi

Data S

Linear Geometr

Products Matrix Inver Span and Li

ot produc

Corollary 2.2 (Cauchy-Schwarz Inequality)

The dot product of two vectors is absolutely less or equal to the product of their lengths,

$$|\mathbf{u}\cdot\mathbf{v}| \leq |\mathbf{u}||\mathbf{v}| \quad \text{or} \quad |\mathbf{u}\cdot\mathbf{v}| \leq (\mathbf{u}\cdot\mathbf{u})(\mathbf{v}\cdot\mathbf{v}).$$

Definition 2.8

Vectors \mathbf{u} and \mathbf{v} are said to be perpendicular or orthogonal if $|\mathbf{u} \cdot \mathbf{v}| = 0$. A collection of vectors is orthogonal if any pair of vectors in the collection are orthogonal.

Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$ are said to be orthonormal if they are both unit vectors and orthogonal.

Exercise 2.1

The zero vector is orthogonal to every vector. The converse is true as well: if a vector is orthogonal to every vector then it is the zero vector.

Data S

Linear Geome

Products
Matrix Inversion
Span and Line

Natrix-vector produc

Definition 2.9

Suppose \mathbf{v} is a vector and A is a matrix. If the rows of A have the same dimension as that of \mathbf{v} , we can take the dot product of each row of A with \mathbf{v} , obtaining the matrix-vector product $A\mathbf{v}$: $A\mathbf{v}$ is the vector whose features are the dot products of the rows of A with \mathbf{v} .

Note:

- In Python we use again np.dot(A,v) for matrix-vector product.
- If u and v are vectors, we can think of u as a row vector, or a
 matrix consisting of a single row. With this interpretation, the
 matrix-vector product uv equals the dot product u · v.
- If ${\bf u}$ and ${\bf v}$ are vectors, we can think of ${\bf u}$ as a column vector, or a matrix consisting of a single column. With this interpretation, ${\bf u}^t$ is a single row, and the matrix-vector product ${\bf u}^t {\bf v}$ equals the dot product ${\bf u} \cdot {\bf v}$.
- $(A\mathbf{v})^t = \mathbf{v}^t A^t.$
- $(A\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (A^t \mathbf{v}).$

Matrix-vector produc

Math for Data

Dr. S. M.

Data Sets

Data Sets

Linear Geo Matrices Products Matrix Inve

Example 2.7

Calculate $A\mathbf{v}$, when

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = (1, 2, 3, 4).$$

Answer:

$$A\mathbf{v} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
$$= \begin{pmatrix} (1 \times 1) + (2 \times 2) + (3 \times 3) + (4 \times 4) \\ (5 \times 1) + (6 \times 2) + (7 \times 3) + (8 \times 4) \\ (9 \times 1) + (10 \times 2) + (11 \times 3) + (12 \times 4) \end{pmatrix} = \begin{pmatrix} 30 \\ 70 \\ 110 \end{pmatrix}$$

import numpy as np

Dr. S. M Moosavi

Data S

Linear Geome Matrices Products Matrix Inverse Span and Linea

Matrix-matrix produc

Definition 2.10

Let A and B be two matrices. If the row dimension of A equals the column dimension of B, the matrix-matrix product AB is defined. When this condition holds, the entries in the matrix AB are the dot products of the rows of A with the columns of B.

Note:

- In Python we use again np.dot(A,B) for matrix-vector product.
- $(AB)^t = B^t A^t.$

Moosavi

Products

Example 2.8

Calculate AB, when

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 13 & 14 \\ 15 & 16 \\ 17 & 18 \\ 19 & 20 \end{pmatrix}.$$

Answer:

$$AB = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \begin{pmatrix} 13 & 14 \\ 15 & 16 \\ 17 & 18 \\ 19 & 20 \end{pmatrix}$$

$$= \begin{pmatrix} (1\times13) + (2\times15) + (3\times17) + (4\times19) & (1\times14) + (2\times16) + (3\times18) + (4\times20) \\ (5\times13) + (6\times15) + (7\times17) + (8\times19) & (5\times14) + (6\times16) + (7\times18) + (8\times20) \\ (9\times13) + (10\times15) + (11\times17) + (12\times19) & (9\times14) + (10\times16) + (11\times18) + (12\times20) \end{pmatrix}$$

$$= \begin{pmatrix} 170 & 180 \\ 426 & 452 \\ 682 & 724 \end{pmatrix}$$

import numpy as no

Moosavi

Products

Assume the rows of a matrix A are $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$. Since matrix-matrix multiplication is $row \times column$, we have

$$AA^{t} = \begin{pmatrix} \mathbf{v}_{1} \cdot \mathbf{v}_{1} & \mathbf{v}_{1} \cdot \mathbf{v}_{2} & \cdots & \mathbf{v}_{1} \cdot \mathbf{v}_{N} \\ \mathbf{v}_{2} \cdot \mathbf{v}_{1} & \mathbf{v}_{2} \cdot \mathbf{v}_{2} & \cdots & \mathbf{v}_{2} \cdot \mathbf{v}_{N} \\ \vdots & \vdots & & \vdots \\ \mathbf{v}_{N} \cdot \mathbf{v}_{1} & \mathbf{v}_{N} \cdot \mathbf{v}_{2} & \cdots & \mathbf{v}_{N} \cdot \mathbf{v}_{N} \end{pmatrix}.$$

Corollary 2.3

Let U be a matrix.

- U has orthonormal rows iff $UU^t = I$.
- U has orthonormal columns iff $U^tU=I$.

Tensor product

Math for Data

Dr. S. M. Moosavi

Data Se

Linear Geomet Matrices Products Matrix Inverse Span and Linear

Definition 2.11

If \mathbf{u} and \mathbf{v} are vectors, the tensor product $\mathbf{u} \otimes \mathbf{v}$ is the matrix-matrix product $\mathbf{u}^t \mathbf{v}$, with \mathbf{u} and \mathbf{v} row vectors. If \mathbf{u} is N-dimensional and \mathbf{v} is d-dimensional, then $\mathbf{u} \otimes \mathbf{v}$ is an $N \times d$ matrix.

Example 2.9

if $\mathbf{u}=(a,b,c)$ and $\mathbf{v}=(\alpha,\beta)$, then

$$\mathbf{u} \otimes \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} \alpha & \beta \end{pmatrix} = \begin{pmatrix} a\alpha & a\beta \\ b\alpha & b\beta \\ c\alpha & c\beta \end{pmatrix}.$$

Using the tensor product, we have

Theorem 2.2 (Tensor Identity)

Let A be a matrix with rows $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$. Then

$$A^t A = \mathbf{v}_1 \otimes \mathbf{v}_1 + \mathbf{v}_2 \otimes \mathbf{v}_2 + \dots + \mathbf{v}_N \otimes \mathbf{v}_N.$$

Exercise 2.2

Prove the tensor identity.

Some definitions

Math for Data

Dr. S. M Moosavi

Data S

Linear Geometr Matrices

Products

Matrix Inverse

Span and Linea
Independence

Definition 2.12

A matrix Q is symmetric if $Q = Q^t$.

For any matrix A, $Q = AA^t$ and $Q = A^tA$ are symmetric.

A symmetric matrix Q satisfying $\mathbf{v} \cdot Q\mathbf{v} \geq 0$ for every vector \mathbf{v} is nonnegative.

A symmetric matrix Q satisfying $\mathbf{v} \cdot Q\mathbf{v} > 0$ for every nonzero vector \mathbf{v} is positive.

Definition 2.13

The trace of a square matrix is the sum of its diagonal elements.

Even though in general $AB \neq BA$, it is always true that

Exercise 2.3

trace(AB) = trace(BA).

Exercise 2.4

$$\mathbf{u} \cdot Q\mathbf{v} = trace(Q(\mathbf{v} \otimes \mathbf{u})).$$

Dr. S. M Moosavi

Data Sata

Linear Geom Matrices Products Matrix Inverse

lorm squared

Definition 2.14

If $A = (a_{ij})$ is any matrix, then the norm squared of A is

$$||A||^2 = \sum_{i,j} a_{ij}^2.$$

Theorem 2.3 (Norm Squared of Matrix)

Let A be a matrix with rows $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$. Then

$$||A||^2 = |\mathbf{v}_1|^2 + |\mathbf{v}_2|^2 + \ldots + |\mathbf{v}_N|^2,$$

and

$$||A||^2 = trace(A^tA).$$

Exercise 2.5

Prove Theorem (2.3).

Dr. S. M Moosavi

Data Se

Linear Geomet Matrices Products Matrix Inverse Span and Linear If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ is a dataset of points in \mathbb{R}^d with mean \mathbf{m} , and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$ is the corresponding centered dataset, then we saw that the covariance matrix Q is the average of tensor products

$$Q = \frac{\mathbf{v}_1 \otimes \mathbf{v}_1 + \mathbf{v}_2 \otimes \mathbf{v}_2 + \dots + \mathbf{v}_N \otimes \mathbf{v}_N}{N}.$$

Let A be the matrix with rows $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N$. By Theorem (2.2), the last equation is the same as

$$Q = \frac{1}{N} A^t A.$$

Iris

Math for Data

Dr. S. M. Moosavi

D-4- C-4-

Matrices
Products

Products

Matrix Inverse

Span and Line

Example 2.10

Calculate the mean, covariance and total variance of the Iris dataset.

```
import numpy as no
2
    from sklearn import datasets
     iris = datasets.load_iris()
5
6
    # The dataset
     dataset = iris["data"]
8
9
    # Mean
10
    m = np.mean(dataset.axis=0)
11
12
    # Centered dataset
13
     vectors = dataset - m
14
15
    # Covariance
16
    N = len(vectors)
17
         Biased
18
    Q = np.dot(vectors.T, vectors)/N
    Q = np.cov(dataset,rowvar=False,ddof=0) # ddof = delta degrees of freedom
19
20
    Q = np.cov(dataset.T,ddof=0)
21
22
         Unbiased
23
    Q = np.dot(vectors.T, vectors)/(N-1)
24
    Q = np.cov(dataset,rowvar=False)
25
    Q = np.cov(dataset.T)
26
27
    # Total Variance
28
    TV = np.trace(Q)
```


Dr. S. M Moosavi

Data Se

Linear Geome Matrices Products Matrix Inverse Span and Linea Independence

Standardized dataset

Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ is a dataset of points in \mathbb{R}^d . Each sample point \mathbf{x} has d features (t_1, t_2, \dots, t_d) . We compute the variance of each feature separately.

Let $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_d$ be the standard basis in \mathbb{R}^d , and, for each $j=1,2,\ldots,d$, project the dataset onto \mathbf{e}_j , obtaining the scalar dataset $\mathbf{x}_1 \cdot \mathbf{e}_j, \mathbf{x}_2 \cdot \mathbf{e}_j, \ldots, \mathbf{x}_N \cdot \mathbf{e}_j$, consisting of the j-th feature of the samples. If q_{jj} is the variance of this scalar dataset, then $q_{11}, q_{22}, \ldots, q_{dd}$ are the diagonal entries of the covariance matrix. To standardize the dataset, we center it, and rescale the features to have variance one, as follows. Let $\mathbf{m}=(m_1,m_2,\ldots,m_d)$ be the dataset mean. For each sample point $\mathbf{x}=(t_1,t_2,\ldots,t_d)$, the standardized vector is

$$\mathbf{v} = \left(\frac{t_1 - m_1}{\sqrt{q_{11}}}, \frac{t_2 - m_2}{\sqrt{q_{22}}}, \dots, \frac{t_d - m_d}{\sqrt{q_{dd}}}\right).$$

Then the standardized dataset is v_1, v_2, \dots, v_N .

Dr. S. M Moosavi

Data S

inear Geome

Matrices
Products

Matrix Inver Span and Li Independent

Standardized datase

Definition 2.15

If $Q=(q_{ij})$ is the covariance matrix, then the correlation matrix is the $d\times d$ matrix $Q'=(q'_{ij})$ with entries

$$q'_{ij} = \frac{q_{ij}}{\sqrt{q_{ii}q_{jj}}}, \quad i, j = 1, 2, \dots, d.$$

Theorem 2.4 (Standardized Covariance Equals Correlation)

The covariance matrix of the standardized dataset equals the correlation matrix of the original dataset.

Exercise 2.6

Prove Theorem (2.4).

lris

Math for Data

Dr. S. M. Moosavi

Data Se

inear Geometr

Products
Matrix Inverse

Example 2.11

For the Iris dataset check Theorem (2.4).

```
import numpy as np
   from sklearn import datasets
   from sklearn.preprocessing import StandardScaler
4
5
6
7
8
9
   iris = datasets.load iris()
   # The dataset
   dataset = iris["data"]
10
   # standardize dataset
11
   vectors = StandardScaler().fit_transform(dataset)
12
   Qcorr = np.corrcoef(dataset.T)
13
   Qcov = np.cov(vectors.T,bias=True)
14
   np.allclose(Qcov,Qcorr)
```


Dr. S. M Moosavi

D . C .

Linear Ge

Matrix Inverse Span and Linear Independence

Definition

Definition 2.16

Given a square matrix A, the inverse matrix is the matrix B satisfying

$$AB = I = BA$$
.

When A has an inverse, we say A is invertible. If a matrix is $d \times d$, then the inverse is also $d \times d$. We write $B = A^{-1}$ for the inverse matrix of A.

Here I is the identity matrix. Not every square matrix has an inverse. For example, the zero matrix does not have an inverse.

Example 2.12

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

Since we can't divide by zero, a 2×2 matrix is invertible only if $ad-bc\neq 0.$

Moosavi

Matrix Inverse

Exercise 2.7

Prove that $(AB)^{-1} = B^{-1}A^{-1}$.

Exercise 2.8

Prove that for a linear system $A\mathbf{x} = \mathbf{b}$, if A is invertible then $\mathbf{x} = A^{-1}\mathbf{b}$.

Example 2.13

Solve the following linear system

$$\begin{cases} x + 2y + 3z = 1 \\ -3x + 6y = 2 \\ 10x - 5y + 23z = 3 \end{cases}$$

```
import numpy as no
    A = np.array([[1,2,3],[-3,6,0], [10,-5,23]])
    b = np.array([1,2,3])
    # Determinant of A
    np.linalg.det(A)
    # Inverse of A
    np. linalg.inv(A)
    # Solution of Ax=b
10
    x = np.dot(np.linalg.inv(A),b)
```


Definition

Math for Data

Dr. S. M. Moosavi

Data Sate

Linear Coome

Matrices Products

Matrix Inve

Span and L Independen

Definition 2.17 (Linear combination)

A linear combination of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$ is

$$t_1\mathbf{v}_1+t_2\mathbf{v}_2+\ldots+t_d\mathbf{v}_d,$$

where t_1, t_2, \ldots, t_d are scalars.

Example 2.14

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three vectors. Then

$$3\mathbf{u} \frac{1}{6}\mathbf{v} + 9\mathbf{w}$$
, $5\mathbf{u} + 0\mathbf{v} - \mathbf{w}$, $0\mathbf{u} + 0\mathbf{v} + 0\mathbf{w}$,

are linear combinations of u, v, w.

Example 2.15

Let A be a matrix with columns $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$, and let $\mathbf{x} = (t_1, t_2, \dots, t_d)$. Then $A\mathbf{x}$ is a linear combination of the columns of A as:

$$A\mathbf{x} = t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \ldots + t_d\mathbf{v}_d.$$

Dr. S. M Moosavi

Data S

Linear Geometri Matrices Products

Definition

Definition 2.18 (Span)

The span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$ is the set S of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$, and we write

$$S = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d).$$

Exercise 2.9

Let A be the matrix with columns $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$. Then $S = span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d)$ is the set S of all vectors of the form Ax.

Exercise 2.10

If each vector \mathbf{v}_k of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d$ is a linear combination of vectors $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_N$, then

$$span(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d) \subseteq span(\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_N).$$

Dr. S. M. Moosavi

Data S

Matrices
Products
Matrix Inverse
Span and Linear

Definition

Definition 2.19

Let A be a matrix. The column space of A is the span of its columns.

Example 2.16

```
import sympy as sp
     import scipy as sc
    import numpy as no
5
    A = sp.Matrix([[1, 6, 11], [2, 7, 12], [3, 8, 13], [4, 9, 14], [5, 10, 15]])
6
7
    # column vectors
8
     u = sp. Matrix([1,2,3,4,5])
     v = sp. Matrix([6,7,8,9,10])
9
    w = sp. Matrix ([11, 12, 13, 14, 15])
10
    A = sp. Matrix. hstack(u, v, w)
12
13
    # returns minimal spanning set for column space of A
    A. columnspace()
14
15
    # returns minimal spanning orthonormal set for column space of A
     A = np. array([[1, 6, 11], [2, 7, 12], [3, 8, 13], [4, 9, 14], [5, 10, 15]])
16
17
     sc.linalg.orth(A)
```

A. columnspace() returns a minimal set of vectors spanning the column space of A. The *column rank* of A is the number of vectors returned: for A in the above example, the column rank is 2. sc.linalg.orth() returns a minimal orthonormal set of vectors spanning the column space of A.

Dr. S. M Moosavi

D . C .

Linear Geor

Products

Matrix Inve

Span and Line Independence

Votes

Exercise 2.11

As in example 2.16, show that if

$$\mathbf{v}_1 = (1, 2, 3, 4, 5), \quad \mathbf{v}_2 = (6, 7, 8, 9, 10), \quad \mathbf{v}_3 = (11, 12, 13, 14, 15)$$

then $span(\mathbf{v}_1, \mathbf{v}_2) = span(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.

Exercise 2.12

Show that: the column space of a matrix A consists of all vectors of the form $A\mathbf{x}$. A vector \mathbf{b} is in the column space of A when $A\mathbf{x} = \mathbf{b}$ has a solution.

The augmented matrix $\bar{A}=(A,\mathbf{b})$ is obtained by adding \mathbf{b} as an extra column next to the columns of A

Exercise 2.13

Let \bar{A} be the matrix A augmented by a vector \mathbf{b} . Then \mathbf{b} is in the column space of A iff

$$column \ rank(A) = column \ rank(\bar{A}).$$