# AAE 440: Spacecraft Attitude Dynamics PS8\*

Dr. Howell

School of Aeronautical and Astronautical
Purdue University

Tomoki Koike Friday April 3, 2020 **Problem 1:** In PS7, the rigid body U was examined in a torque-free environment; this body has the same inertia characteristics as the body from PS5.

$$\overline{\overline{I}}^{v}U^{\cdot} = 400\hat{u}_{1}\hat{u}_{1} + 100\hat{u}_{2}\hat{u}_{2} + 400\hat{u}_{3}\hat{u}_{3} \text{ kg-met}^{2}$$

Let  $\hat{n}_i$  be fixed in the inertial frame N and  $\hat{u}_i$  define body-fixed unit vectors parallel to central principal axes of inertia. At the <u>initial time</u> (t=0),  $|{}^N \overline{\omega}{}^U| = 4$  rad/s and  ${}^N \overline{\omega}{}^U$  is directed 60° relative to the axis of symmetry in the  $\hat{u}_2 - \hat{u}_3$  plane.



(a) You have already computed the inertia ellipsoid for this body. Now add the following vectors and quantities to the plot:

$${}^{N}\overline{H}^{U_{U^{*}}}$$
 ${}^{N}\overline{\varpi}^{U}$ 
invariable plane  $\pi$ 
nutation angle

What plane contains the body axis of symmetry, the angular velocity and the angular momentum vectors?

Using the same MATLAB code from PS7 problem 2 part (a); we have the inertia ellipsoid, from that we can compute the energy ellipsoid.  $\| \stackrel{N}{\omega} u \| = 4 \text{ rod/s} \quad \text{and} \quad \stackrel{N}{\omega} u = \cos 60^{\circ} \hat{u}_{3} + \sin 60^{\circ} \hat{u}_{3}$   $\Rightarrow \stackrel{N}{\omega} u = \| \stackrel{N}{\omega} u \| \stackrel{N}{\omega} u = (2 \hat{u}_{2} + 2\sqrt{3} \hat{u}_{3}) \text{ rod/s}$   $= \frac{1}{2} (2 \hat{u}_{2} + 2\sqrt{3} \hat{u}_{3}) \cdot (400 \hat{u}_{1} \hat{u}_{1} + 100 \hat{u}_{2} \hat{u}_{2} + 400 \hat{u}_{3} \hat{u}_{3}) \cdot (2 \hat{u}_{2} + 2\sqrt{3} \hat{u}_{3})$   $= \frac{1}{2} (400 + 4800) = 2600 \frac{49 - m^{2}}{5^{2}}$ then  $= \frac{1}{2} I_{1} \frac{u_{1}^{2}}{u_{1}^{2}} + \frac{1}{2} I_{2} \frac{u_{2}^{2}}{u_{2}^{2}} + \frac{1}{2} I_{3} \frac{u_{3}^{2}}{u_{3}^{2}}$   $= \frac{u_{1}^{2}}{2 \text{ Trot } I_{1}^{-1}} + \frac{u_{2}^{2}}{2 \text{ Trot } I_{3}^{-1}} + \frac{u_{3}^{2}}{2 \text{ Trot } I_{3}^{-1}}$ 

d1 = (2 Trot I-1)0.5 d2 = (2 Trot J-1)0.5 d3 = d1

thus, the energy ellipse on û2-û3 frame becomes

semi-diameters become

= 3.6056





(b) Given a figure similar to the one on the next page, sketch the orientation of the unit vectors  $\hat{c}_2$  and  $\hat{c}_3$  with respect to  $\hat{n}_2$  and  $\hat{n}_3$  at an arbitrary time. (Recall that  $\hat{c}_j = \hat{n}_j$  at the initial time.) Define  $\gamma$  as the angle the angle between  $\hat{n}_2$  and  $\hat{u}_2$ . Where is  $\gamma$  in the sketch?

Determine the following quantities at t = 0.25 sec; 3.5 sec: precession, nutation, spin angles  $\gamma$  -- angle between  $\hat{n}_2$  and  $\hat{u}_2$ 



| the 1 | angular momentum                                                                                                                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | N-β/β* = "//*. N-β<br>H = I                                                                                                                                       |
|       | = $(400 \hat{u}_1\hat{u}_1 + (00 \hat{u}_2\hat{u}_2 + 400 \hat{u}_3\hat{u}_3) \cdot (2\hat{u}_2 + 2\sqrt{3}\hat{u}_3)$                                            |
|       | $= (0.2000 \hat{U}_2 + 1.3856 \hat{U}_3) \times (0^3)$                                                                                                            |
|       |                                                                                                                                                                   |
| then  | precession rate $p = \frac{\  \overline{H}^{B/B}^{*} \ }{I} = \frac{/400 \frac{400}{5}}{5} = 3.5 \text{ rad}$ $= \frac{100 \frac{400}{5}}{1} = 3.5 \text{ rad}$   |
|       | p = 11 H B/B 1 1 /400 5 3 5 racks                                                                                                                                 |
|       | T 400 F9-1-2                                                                                                                                                      |
|       |                                                                                                                                                                   |
|       | $S = \frac{I - J}{I} \omega_2 = \frac{400 - 100}{400} \times 2 \text{ rod}_{S} = 1.5 \text{ rod}_{S}$                                                             |
|       | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                           |
|       | and nutation angle                                                                                                                                                |
|       | and nutation angle $ \varphi = \arccos\left(\frac{\frac{N-\beta NB^{*}}{H} \cdot \hat{u}_{2}}{\ N-\beta NB^{*}\ }\right) = \arccos\left(\frac{200}{1400}\right) $ |
|       |                                                                                                                                                                   |
|       | P = 81,7868°                                                                                                                                                      |
|       |                                                                                                                                                                   |
| from  | px we know that                                                                                                                                                   |
|       | $N-c = \hat{h} \sin \frac{Pt}{2} \implies \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$                                                                            |
|       | $\nu_{\mathcal{E}_{u}^{c}} = \cos \frac{bx}{2} \implies \Sigma_{\mathcal{Y}}$                                                                                     |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{1} = 2(E_{1}E_{2} - E_{3}E_{4}) = 0.7199$ $C_{1} = 2(E_{1}E_{1} + E_{2}E_{4}) = 0.1096$ $C_{1} = 2(E_{1}E_{2} + E_{3}E_{4}) = 0.7199$ $C_{2} = 2(E_{1}E_{2} + E_{3}E_{4}) = 0.7199$ $C_{3} = 2(E_{1}E_{2} + E_{3}E_{4}) = -0.0703$ $C_{3} = 2(E_{2}E_{3} - E_{1}E_{4}) = -0.0703$ $C_{3} = 2(E_{3}E_{3} - E_{1}E_{4}) = -0.0708$ $C_{3} = 2(E_{3}E_{3} + E_{3}E_{4}) = -0.0708$ $C_{3} = 1 - 2E_{1}^{2} - 2E_{2}^{2} = 0.9927$ $= 0.9999$ $C_{3} = 1 - 2E_{1}^{2} - 2E_{2}^{2} = 0.9927$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9999$ $= 0.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | then using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $C_{13} = 2(E_{13}E_{1} + E_{25}E_{4}) = 0.1096$ $C_{21} = 2(E_{1}E_{2} + E_{3}E_{4}) = -0.7547$ $C_{23} =  -2E_{3}^{2} - 2E_{1}^{2}  = 0.6763$ $C_{23} = 2(E_{12}E_{3} - E_{1}E_{4}) = -0.0703$ $C_{31} = 2(E_{25}E_{1} - E_{25}E_{4}) = -0.1096$ $C_{22} = 2(E_{25}E_{3} + E_{15}E_{4}) = -0.0706$ $C_{33} =  -2E_{1}^{2} - 2E_{2}^{2}  = 0.4927$ $Same   y, \qquad [0.9504 - 0.3079 - 0.094]$ $C_{23} =  -2E_{1}^{2} - 2E_{2}^{2}  = 0.4927$ $N_{C}^{C} _{x=3.5} = [0.0494 - 0.0070]$ $0.0494 - 0.0070$ $0.9990$ $0.09990$ $0.09990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$ $0.9990$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_{11} = 2(E_{1}E_{2} + E_{3}E_{4}) = -0.7547$ $C_{23} =  -2E_{3}^{2} - 2E_{1}^{2}  = 0.6483$ $C_{33} = 2(E_{2}E_{3} - E_{1}E_{4}) = -0.0503$ $C_{31} = 2(E_{3}E_{1} - E_{2}E_{4}) = -0.1096$ $C_{32} = 2(E_{3}E_{1} - E_{2}E_{4}) = -0.0708$ $C_{33} =  -2E_{1}^{2} - 2E_{2}^{2}  = 0.9927$ $= 0.4504 - 0.3079 - 0.070$ $= 0.4514 - 0.0070$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4944 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$ $= 0.4947 - 0.0070 - 0.9990$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C_{12} = 2(E_1E_2 - E_3E_4) = 0.7597$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $C_{11} = 2(E_{1}E_{2} + E_{3}E_{4}) = -0.7547$ $C_{22} =  -2E_{3}^{2} - 2E_{1}^{2}  = 0.6483$ $C_{23} = 2(E_{2}E_{3} - E_{1}E_{4}) = -0.0503$ $C_{31} = 2(E_{3}E_{1} - E_{2}E_{4}) = -0.1096$ $C_{32} = 2(E_{3}E_{1} - E_{2}E_{4}) = -0.0708$ $C_{33} = 2(E_{3}E_{1} - E_{2}E_{4}) = -0.0708$ $C_{33} =  -2E_{1}^{2} - 2E_{2}^{2}  = 0.4927$ $Same   y, \qquad [0.9504 - 0.3079 - 0.044]$ $N_{C}C                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C13 = 2(E3E1 + E3E4) = 0.(096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_{33} = 1 - 2E_{1}^{2} - 2E_{2}^{2} = 0.9927$ $Same   y,$ $N_{C}^{C}  _{t=3.5} = \begin{bmatrix} 0.9504 & -0.3079 & -0.0070 \\ 0.3079 & 0.9514 & -0.0070 \end{bmatrix}$ $Next, \text{ from the relation}$ $\hat{C}_{2} \cdot \hat{h}_{2} = cos y  (Q \cdot t = t_{3})$ $f = arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $from  {}^{N}C^{C}_{s}  above$ $Q \cdot t = 0.25  \hat{C}_{2}  _{t=0.25} = -0.7597 \hat{h}_{1} + 0.6483 \hat{h}_{2} - 0.0503 \hat{h}_{3}$ $Q \cdot t = 3.5  \hat{C}_{2}  _{t=3.5} = 0.3079 \hat{h}_{1} + 0.9514 \hat{h}_{2} - 0.0070 \hat{h}_{3}$ $- \text{then } Q \cdot t = 0.25$ $f = arccos \left( 0.6483 \right)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C_{33} = 1 - 2E_{1}^{2} - 2E_{2}^{2} = 0.9927$ $Same   y,$ $N_{C}^{C}  _{t=3.5} = \begin{bmatrix} 0.9504 & -0.3079 & -0.0070 \\ 0.3079 & 0.9514 & -0.0070 \end{bmatrix}$ $Next, \text{ from the relation}$ $\hat{C}_{2} \cdot \hat{h}_{2} = cos y  (Q \cdot t = t_{3})$ $f = arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $from  {}^{N}C^{C}_{s}  above$ $Q \cdot t = 0.25  \hat{C}_{2}  _{t=0.25} = -0.7597 \hat{h}_{1} + 0.6483 \hat{h}_{2} - 0.0503 \hat{h}_{3}$ $Q \cdot t = 3.5  \hat{C}_{2}  _{t=3.5} = 0.3079 \hat{h}_{1} + 0.9514 \hat{h}_{2} - 0.0070 \hat{h}_{3}$ $- \text{then } Q \cdot t = 0.25$ $f = arccos \left( 0.6483 \right)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{23} = 2(\mathcal{E}_{2}\mathcal{E}_{3} - \mathcal{E}_{1}\mathcal{E}_{4}) = -0.0503$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C_{33} = 1 - 2E_{1}^{2} - 2E_{2}^{2} = 0.9927$ $Same   y,$ $N_{C}^{C}  _{t=3.5} = \begin{bmatrix} 0.9504 & -0.3079 & -0.0070 \\ 0.3079 & 0.9514 & -0.0070 \end{bmatrix}$ $Next, \text{ from the relation}$ $\hat{C}_{2} \cdot \hat{h}_{2} = cos y  (Q \cdot t = t_{3})$ $f = arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $from  {}^{N}C^{C}_{s}  above$ $Q \cdot t = 0.25  \hat{C}_{2}  _{t=0.25} = -0.7597 \hat{h}_{1} + 0.6483 \hat{h}_{2} - 0.0503 \hat{h}_{3}$ $Q \cdot t = 3.5  \hat{C}_{2}  _{t=3.5} = 0.3079 \hat{h}_{1} + 0.9514 \hat{h}_{2} - 0.0070 \hat{h}_{3}$ $- \text{then } Q \cdot t = 0.25$ $f = arccos \left( 0.6483 \right)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{31} = 2(\mathcal{E}_{3}\mathcal{E}_{1} - \mathcal{E}_{2}\mathcal{E}_{4}) = -0.1096$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $C_{33} = 1 - 2E_{1}^{2} - 2E_{2}^{2} = 0.9927$ $Same   y,$ $N_{C}^{C}  _{t=3.5} = \begin{bmatrix} 0.9504 & -0.3079 & -0.0070 \\ 0.3079 & 0.9514 & -0.0070 \end{bmatrix}$ $Next, \text{ from the relation}$ $\hat{C}_{2} \cdot \hat{h}_{2} = cos y  (Q \cdot t = t_{3})$ $f = arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $from  {}^{N}C^{C}_{s}  above$ $Q \cdot t = 0.25  \hat{C}_{2}  _{t=0.25} = -0.7597 \hat{h}_{1} + 0.6483 \hat{h}_{2} - 0.0503 \hat{h}_{3}$ $Q \cdot t = 3.5  \hat{C}_{2}  _{t=3.5} = 0.3079 \hat{h}_{1} + 0.9514 \hat{h}_{2} - 0.0070 \hat{h}_{3}$ $- \text{then } Q \cdot t = 0.25$ $f = arccos \left( 0.6483 \right)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C32 = 2(E2E3 + E, E4) = -0.0508 [-0.1096 -0.0508 0.992]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Samely, $C = \frac{1}{12} = \frac{1}{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Next, from the relation $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \gamma  (0 \ t = t_{3})$ $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \gamma  (0 \ t = t_{3})$ $\hat{C}_{3} \cdot \hat{h}_{2} = \arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $- from  {}^{N}C^{C}_{s}  above$ $0 \ t = 0.25  \hat{C}_{2} _{t=0.25} = -0.7597  \hat{h}_{1} + 0.6483  \hat{h}_{2} - 0.0503  \hat{h}_{3}$ $0 \ t = 3.5  \hat{C}_{2} _{t=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{1} - 0.0070  \hat{h}_{3}$ $- \text{then } 0 \ t = 0.25$ $\hat{f} = \text{arccos} \left( 0.6483 \right)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Next, from the relation $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \gamma  (0 \ t = t_{3})$ $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \gamma  (0 \ t = t_{3})$ $\hat{C}_{3} \cdot \hat{h}_{2} = \arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $- from  {}^{N}C^{C}_{5}  above$ $0 \ t = 0.25  \hat{C}_{2} _{t=0.25} = -0.7597  \hat{h}_{1} + 0.6483  \hat{h}_{2} - 0.0503  \hat{h}_{3}$ $0 \ t = 3.5  \hat{C}_{2} _{t=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{1} - 0.0070  \hat{h}_{3}$ $+ heh  0 \ t = 0.25$ $\hat{f} = arccos \left( 0.6483 \right)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | samely, 0.9504 -0.3079 -0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Next, from the relation $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \gamma  (0 \ t = t_{3})$ $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \gamma  (0 \ t = t_{3})$ $\hat{C}_{3} \cdot \hat{h}_{2} = \arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $- from  {}^{N}C^{C}_{5}  above$ $0 \ t = 0.25  \hat{C}_{2} _{t=0.25} = -0.7597  \hat{h}_{1} + 0.6483  \hat{h}_{2} - 0.0503  \hat{h}_{3}$ $0 \ t = 3.5  \hat{C}_{2} _{t=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{1} - 0.0070  \hat{h}_{3}$ $+ heh  0 \ t = 0.25$ $\hat{f} = arccos \left( 0.6483 \right)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N C   0-3029 0.9514 -0.0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Next, from the relation $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \beta  (0 \ t = t_{j})$ $\hat{T} = \arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $= \arccos \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $= \cot \left( \hat{C}_{1} \cdot \hat{h}_{2} \right)$ $= \cot \left( \hat{C}_{2} \cdot$ | 0.0444 -0.0070 0.9990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\hat{C}_{2} \cdot \hat{h}_{2} = \cos \beta  (0 \ t = t_{3})$ $f = \arccos (\hat{C}_{1} \cdot \hat{h}_{2})$ $from  {}^{N}C^{C}_{s}  above$ $C t = 0.25  \hat{C}_{2} _{t=0.25} = -0.7597  \hat{h}_{1} + 0.6483  \hat{h}_{2} - 0.0503  \hat{h}_{3}$ $C t = 3.5  \hat{C}_{2} _{t=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $hen  Ct = 0.25$ $f = \arccos (0.6483)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $f = \arccos(\hat{c}_1 \cdot \hat{h}_2)$ $from  {}^{N}C^{C}_{5}  above$ $Q = -0.25  \hat{c}_{2} _{x=0.25} = -0.7597  \hat{h}_{1} + 0.6483  \hat{h}_{2} - 0.0503  \hat{h}_{3}$ $Q = -0.25  \hat{c}_{2} _{x=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Next, From the relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $f = \arccos(\hat{c}_1 \cdot \hat{h}_2)$ $from  {}^{N}C^{C}_{5}  above$ $Q = -0.25  \hat{c}_{2} _{x=0.25} = -0.7597  \hat{h}_{1} + 0.6483  \hat{h}_{2} - 0.0503  \hat{h}_{3}$ $Q = -0.25  \hat{c}_{2} _{x=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= -0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\hat{c}_2 \cdot \hat{h}_2 = \cos \gamma  (0  t = t_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -from ${}^{N}C^{2}s$ above $C = 0.25$ $\hat{C}_{2} _{x=0.25} = -0.7597 \hat{N}_{1} + 0.6483 \hat{N}_{2} - 0.0503 \hat{N}_{3}$ $C = 3.5$ $\hat{C}_{2} _{x=3.5} = 0.3079 \hat{N}_{1} + 0.95 4 \hat{N}_{2} - 0.0070 \hat{N}_{3}$ Hen $Ct=0.25$ $V = 0.25$ $V = 0.25$ $V = 0.3079 \hat{N}_{1} + 0.95 4 \hat{N}_{2} - 0.0070 \hat{N}_{3}$ $V = 0.3079 \hat{N}_{1} + 0.95 4 \hat{N}_{2} - 0.0070 \hat{N}_{3}$ $V = 0.3079 \hat{N}_{1} + 0.95 4 \hat{N}_{2} - 0.0070 \hat{N}_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\lambda = \Delta r \cos(\hat{c} \cdot \hat{h})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q $t = 0.25$ $\hat{C}_{2} _{t=0.25} = -0.7597 \hat{N}_{1} + 0.6483 \hat{N}_{2} - 0.0503 \hat{N}_{3}$ Q $t = 3.5$ $\hat{C}_{2} _{t=3.5} = 0.3079 \hat{N}_{1} + 0.4514 \hat{N}_{2} - 0.0070 \hat{N}_{3}$ Then Qt=0.25 $f = arccos(0.6483)$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C t = 3.5 \qquad \hat{C}_{2} _{t=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $+ \text{then } C t = 0.25$ $= 49.5847^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | from NC25 above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $C t = 3.5 \qquad \hat{C}_{2} _{t=3.5} = 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$ $= 0.3079  \hat{h}_{1} + 0.9514  \hat{h}_{2} - 0.0070  \hat{h}_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Q_{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2$ |
| then Ot=0.25    = arccos (0.6483)  = 49.5847°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 = arccos (0.6483)<br>= 49.5847°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_{2 _{\frac{1}{2}315}} = 0.30(9)(1) + 0.00(1) \cdot 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 = arccos (0.6483) = 49.5847°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | then Ot=0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a T= 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 = arccos (0.6483)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A T= 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 ARLES (A ARLU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A T= 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 = 0,000 (0,43 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | g = arccos (0.9514)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| = 17.9392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

$$0 \quad t = 0.25 \text{ sec}$$

$$precession \text{ angle } \triangleq \tau = pt = 50.1338^{\circ}$$

$$nutation \text{ angle } \triangleq \varphi = 81.7868^{\circ}$$

$$spin \text{ angle } \triangleq 7 = st = 21.4859^{\circ}$$

$$t = 49.5847^{\circ}$$

$$t = 3.5 \text{ sec}$$

$$precession \text{ angle } \triangleq \tau = pt = 341.8733^{\circ}$$

$$nutation \text{ angle } \triangleq \varphi = 81.7868^{\circ}$$

$$spin \text{ angle } \triangleq 7 = st = 300.8028^{\circ}$$

$$t = 17.9392^{\circ}$$

(c) What are the Euler parameters  ${}^{N}\overline{\varepsilon}^{U}$ ,  ${}^{N}\varepsilon_{4}^{U}$  that correspond to these orientations at the specified times? Write the Euler vector in terms of unit vectors  $\hat{c}$  as well as bodyfixed unit vectors  $\hat{u}$ .

using the formula, and divide 
$$N + 0.5$$
 rotation into 2 rotations  $N + 0.00 \pm 0.00$ 

where
$$\begin{cases}
N-c = \hat{h} \sin \frac{pt}{2} & \text{where} \\
N_{\mathcal{E}_{4}}^{c} = \cos \frac{pt}{2} & \hat{h} = \cos \varphi \, \hat{c}_{1} - \sin \varphi \, \hat{c}_{3} \\
C_{\mathcal{E}}^{c} = \hat{C}_{2} \sin \frac{st}{2} & \\
C_{\mathcal{E}_{4}}^{c} = \cos \frac{st}{2}
\end{cases}$$

$$C_{\frac{1}{2}}^{-1} = \hat{C}_{1} \sin \frac{5x}{2}$$

$$C_{\frac{1}{2}}^{-1} = \hat{C}_{1} \sin \frac{5x}{2}$$

$$N_{\overline{\xi}}V = \hat{h}\sin\frac{p_{\overline{\zeta}}}{2}\cos\frac{s_{\overline{\zeta}}}{2} + \hat{C}_{2}\sin\frac{s_{\overline{\zeta}}}{2}\cos\frac{p_{\overline{\zeta}}}{2} + \hat{C}_{2}\sin\frac{s_{\overline{\zeta}}}{2} \times \hat{h}\sin\frac{p_{\overline{\zeta}}}{2}$$

$$N_{\xi}V = \cos\frac{p_{\overline{\zeta}}}{2}\cos\frac{s_{\overline{\zeta}}}{2} - \hat{h}\sin\frac{p_{\overline{\zeta}}}{2}\cdot\hat{C}_{2}\sin\frac{s_{\overline{\zeta}}}{2}$$

$$\sum_{\Sigma} |x_{\pm 0,25}| = -0.0782 \hat{c}_1 + 0.2283 \hat{c}_2 - 0.4120 \hat{c}_3$$

$$N_{\Sigma} |_{x=3:5} = 0.0770 \hat{c}_1 + 0.5073 \hat{c}_2 - 0.1356 \hat{c}_3$$

|                 | ${}^{C}C^{V} = \begin{bmatrix} Cos(sx) & 0 & -sin(sx) \\ 0 & / & 0 \\ sin(sx) & 0 & cos(sx) \end{bmatrix}$                                                                                                |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| then            | N-U = $N = C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$                                                                                                                                                         |
| /               | $\frac{0.25}{2} \int_{3=0.25} = -0.2236  \hat{\Omega}_1 + 0.2283  \hat{\Omega}_2 - 0.3547  \hat{\Omega}_3$                                                                                                |
| 0.+.            | $\begin{aligned} & \langle \mathcal{E}_{4}  _{\dot{x}=0.15} = 0.8787 \\ &  _{\dot{x}=0.15} = 0.8787 \\ &  _{\dot{x}=3.5} = 0.1559  \hat{u}_{1} + 0.5073  \hat{u}_{2} - 0.0033  \hat{u}_{3} \end{aligned}$ |
|                 | 2 (3 - 3.5)<br>2 4   t = 3.5 = -0.8475                                                                                                                                                                    |
| (d) What is the | the maximum value of $\gamma$ ? $ = (80^{\circ})  \mathcal{F} = \mathcal{F}_{\text{Max}} $                                                                                                                |

- (e) Use the ellipsoid in (a) to help define the <u>space and body cones</u> in this problem. What are the cone angles?
  - Sketch the space and body cones. How are they related to the motion described in part (b)? Is this body undergoing direct or retrograde precession? How do you know? What does that mean for this motion?





### Discussion

We can observe that  $\hat{C}_2$ ,  $H^{B/B*}$ , \$  $U^B$  all reside on the precession plane, and the body motion occurs as if the body cone rolls on the space cohe. The cone depicted in (b) is the surface where the space cone and body cone touch each other.

The two cones rotate in the same direction, which implies that this is a direct precession. For a rod-like body, in which it rotates in the axis with maximum rotational energy, due to energy dissipation the body tends to end up spinning around the inertial long axis. This means that with direct precession the motion of the body is unstable.

**Problem 2:** Again, recall Problem Set 5. The axisymmetric rigid body U (spacecraft) moves in an inertial reference frame N. But the environment is now <u>torque-free</u>. Let  $\hat{n}_i$  and  $\hat{u}_i$  be unit vectors fixed in N and U, respectively. Assume that the body is axisymmetric such that the inertia dyadic is

$$\overline{\overline{I}}^{U'}_{U'} = 400\hat{u}_1\hat{u}_1 + 100\hat{u}_2\hat{u}_2 + 400\hat{u}_3\hat{u}_3 \text{ kg-met}^2$$

Return to your script for PS5. Now, it is <u>torque-free</u>. Assume that  $\hat{u}_k = \hat{n}_k$  at t = 0 and modify the initial conditions  $\omega_1(0) = +1.0 \text{ rad/s}$ ,  $\omega_2(0) = +2.0 \text{ rad/s}$ ,  $\omega_3(0) = +1.0 \text{ rad/s}$ , and T = 0 N-met. Again, plot all three angular velocity measure numbers on the same plot. [It may be most straightforward to use a 2-1-2 sequence. But be specific and clear about the sequence you are choosing to employ.] In what vector basis are these angular velocity components? Should they be constant? Why or why not? Are they oscillatory? Are they periodic?

## Angular velocity plot for Body-two 2-1-2 sequence



# Piscussion The angular velocities are in $\hat{U}$ —basis We is zero because the rate of change is zero. Where $\hat{U}$ are oscillatory and periodic because in the differential equal $\hat{U}_1$ is a function of $\hat{U}_1$ and $\hat{U}_2$ is a function of $\hat{U}_2$ .

(a) Numerically integrate and plot the angle time histories from PS 5 for the angles that are defined as  $\alpha$ ,  $\gamma$  in PS5 in Prob 1(d). (Update your quadrant checks if necessary!) Are they now oscillatory? Periodic? Initially,  $\gamma = 0^{\circ}$ . How does it change over time? Does it return to zero? Do you know why?





(b) Why do these 'precession, nutation' angles (α, γ) behave differently than the 'precession, nutation' angles (pt, φ) that have been recently discussed for torque-free motion? How are they related? Given the simulation results for α, γ, can you determine pt, φ? If so, give examples.

Are the Euler parameters different from the torque-free  $\varepsilon_i$  discussed in class? Why?



The Fuler parameters are also defined in different vector basis, hence the signs are different for the values and can be transformed with the appropriate DCU; however, the magnitudes of their values are equivalent be cause the Fuler parameters are independent properties of vector bases.

The relation between  $(q, \delta)$  \$  $(pt, \varphi)$  and example

from the simulated values of  $\varphi$  ne

cannot deduce the values of  $\varphi$ t.

However,  $\varphi = \frac{\max(\partial)}{2}$ 

(c) Again plot  $C_{32}$  as a function of  $C_{12}$ ; be sure that you scale the plot so both axes cover  $C_{ij}$  values -1 to +1. This plot results in a view down the  $\hat{n}_2$  axis. Is the positive  $\hat{n}_2$  direction into or out of the page? Is the curve now periodic? Be sure to mark the direction of motion! On the plot, mark the time t = 0.25 sec. At this time, sketch the precession angle. If you measure the angle, does it match the value for  $\alpha$  that you computed in the simulation? Sketch the value d (the distance d from the origin to the projection of the tip of  $\hat{u}_2$  on the plane) and compute the angle  $\alpha$ . Does it match the value for  $\alpha$  that you computed

the plane) and compute the angle  $\gamma$ . Does it match the value for  $\gamma$  that you computed in the simulation? You should also be able to add  $\hat{u}_1'$  and  $\hat{u}_3'$  to the  $C_{12}-C_{32}$  plot at t=0.25 sec. How are these unit vectors related to the  $\alpha$ ,  $\gamma$  angles? What does that mean for this motion?



for precession, a Piscussion -> ĥ2 is directed into the page. The curve seems to be purely periodic and moving clockwise  $\rightarrow$  The actual measured angle = -42.7° The computed angle = -44.6391° They are almost the same. -> The precession can be deduced as the angles between  $\hat{n}_3$ ,  $\hat{u}_2$  \$  $\hat{n}_1$ ,  $\hat{u}_1$  from the plot. For each cycle the angles become equal which mean that the motion is eyelic and stable. (instruction highlighted in red) nutation, 8 from the plot (by eyeballing) can be calculated as  $d = \sqrt{(0.23)^2 + (0.26)^2} = 0.34713$ @ t=0.255 since C22 = 0.9382 > 0 (\* C22 is obtained from MATLAB simulation) nutation calculated from the plot becomes the tex = arcsin (d) = arcsin (0.34713) Dex = 20,3120

| and   | the hut | xtion an | gle fro  | m the s   | imulation | l is    |          |           |
|-------|---------|----------|----------|-----------|-----------|---------|----------|-----------|
|       | x       | = avc    | 05 (C12  | )         |           |         |          |           |
|       | ٠,٠     |          | os (0.93 |           |           |         |          |           |
|       |         |          |          | _         |           |         |          |           |
|       | 8       | = 20.    | 24380    |           |           |         |          |           |
|       |         |          |          | -         |           |         |          |           |
| Piscu | ssion   |          |          |           |           |         |          |           |
|       | The     | Yex (n   | utation  | calculate | ed by co  | mputing | d from   | · plot)   |
|       | and     | 8 (n     | utatioh  | angle     | comput    | ed from | n the si | mulation) |
|       | are     | very ,   | -luse -  | to ead    | n other   | and i   | are occu | rute.     |
|       |         | 0        |          |           |           |         |          |           |

**Problem 3:** Again, the axisymmetric rigid body U (spacecraft) can move in an inertial reference frame N but we are now going to place the vehicle in a circular orbit. Let  $\hat{n}_i$  and  $\hat{u}_i$  be unit vectors fixed in N and U, respectively. Assume again

$$\overline{I}^{U'} = 400\hat{u}_1\hat{u}_1 + 100\hat{u}_2\hat{u}_2 + 400\hat{u}_3\hat{u}_3 \text{ kg-met}^2$$

The mass of the vehicle is 200 kg. Assume that the spacecraft moves in a circular Earth orbit at a constant rate  $\Omega$  with respect to N. Define an orbit-fixed frame A such that  $\hat{a}_3$  is directed radially outward from the Earth toward U\*,  $\hat{a}_1$  is 90° from  $\hat{a}_3$  and in the direction of motion. Then,  $\hat{a}_2$  is parallel to orbital angular momentum and  ${}^N \overline{\omega}{}^A = \Omega \, \hat{a}_2$ .



Consistent with the class discussion, an intermediate frame C is introduced such that  $\hat{c}_2 = \hat{u}_2$  at all times. Define the measure numbers such that

$$\left| {^C}\overline{\omega}^U \right| = q$$
 and  ${^N}\overline{\omega}^U = \omega_i \hat{c}_i$ 

- (a) Derive the kinematic and dynamic differential equations that govern the attitude over time. Include the gravity torque and consider the kinematic variables.
  - Use directions cosines as the kinematic variables. Derive the form of the complete set of differential equations.

| The frames are                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| â: orbit frome                                                                                                                                                                           |
| ĥ: inertial frame                                                                                                                                                                        |
| Ĉi: intermediate frame                                                                                                                                                                   |
| û: body fixed frame                                                                                                                                                                      |
| We are given that $\  {}^{c}\overline{\omega}{}^{v} \  = q$ , $  {}^{v}\overline{\omega}{}^{v} = \omega_{i}\hat{c}_{i}$ , $  {}^{v}\overline{\omega}{}^{A} = \Omega \hat{a}_{i}$         |
| $\overline{\Xi}^{1/1/8} = I \hat{c}_1 \hat{c}_1 + J \hat{c}_2 \hat{c}_2 + I \hat{c}_3 \hat{c}_3$                                                                                         |
| Dynamic Differential Equations                                                                                                                                                           |
| $- = \overline{\mathcal{M}}^{U*} = \frac{d^{N}\overline{H}^{U/U*}}{d \pm}$                                                                                                               |
| Since, $N\bar{\omega}^{0} = \omega_{1}\hat{c}_{1} + \omega_{2}\hat{c}_{2} + \omega_{3}\hat{c}_{3} = N\bar{\omega}^{0} + c\bar{\omega}^{0} = N\bar{\omega}^{0} + q\hat{c}_{2}$            |
| then,                                                                                                                                                                                    |
| MHWV* = 豆WV*・NTO                                                                                                                                                                         |
| $= I\omega_1\hat{c}_1 + J\omega_2\hat{c}_2 + I\omega_3\hat{c}_3$                                                                                                                         |
| 1 + BKE - d "H "" + N - C × N - W" (" " " = " - C - ")                                                                                                                                   |
| $\bar{\mathcal{M}}^{0*} = \underline{\mathbf{I}}\dot{\omega}_{1}\hat{c}_{1} + \underline{\mathbf{J}}\dot{\omega}_{2}\hat{c}_{2} + \underline{\mathbf{I}}\dot{\omega}_{3}\hat{c}_{3}$     |
| + $\left[\omega_1\hat{c}_1 + (\omega_2 - q_2)\hat{c}_2 + \omega_3\hat{c}_3\right] \times \left(\text{I}\omega_1\hat{c}_1 + \text{J}\omega_2\hat{c}_2 + \text{I}\omega_3\hat{c}_3\right)$ |
| $\overline{\mu}^{U*} = I\dot{\omega}_1 \hat{c}_1 + J\dot{\omega}_2 \hat{c}_2 + I\dot{\omega}_3 \hat{c}_3$                                                                                |
| + Juy w2 c3 - Iu463 c2                                                                                                                                                                   |
| - I ω, (ω, - q) Ĉ, + I (ω, -q)ω, Ĉ,                                                                                                                                                      |
| + I ω <sub>1</sub> ω <sub>3</sub> Ĉ <sub>1</sub> - Jω <sub>2</sub> ω <sub>3</sub> Ĉ <sub>1</sub>                                                                                         |
| $\overline{\mathcal{M}}^{0*} = \left[ \mathbf{I} (\dot{\omega}_1 - 9\omega_3) + (\mathbf{I} - \mathbf{J})\omega_2\omega_3 \right] \hat{c}_i$                                             |
| + T\(\bar{\psi}_2\)                                                                                                                                                                      |

|                             |                                                                                        | + [ I( $\dot{\omega}_3$            | 3+qω()-(I-                  | -J)ω <sub>ι</sub> ω, ]ĉ, |
|-----------------------------|----------------------------------------------------------------------------------------|------------------------------------|-----------------------------|--------------------------|
|                             |                                                                                        |                                    |                             | 0                        |
| -> \bullet U* = \frac{3}{1} | <u>μ</u> â₃ × Ξυνυ*. â                                                                 | $a_3 = 3 \Omega^2 \hat{a}_3$       | x = 1/0* â3                 |                          |
| transform                   | <b>圭**</b> : ĉ                                                                         | i - âi u                           | using DCM                   |                          |
|                             | ${}^{A}C^{C}   \hat{c}_{i} \hat{c}_{z}$                                                |                                    |                             |                          |
|                             | $\hat{a}_1$ $\times$ $\times$ $\hat{a}_2$ $\times$ $\times$ $\hat{a}_3$ $C_{3i}$ $C_3$ | ×                                  |                             |                          |
|                             | $\hat{a}_{1}$ $\hat{a}_{3}$ $\hat{c}_{3}$ $\hat{c}_{3}$                                | , C <sub>33</sub>                  |                             |                          |
|                             | 3.0° [ (I3-I2)                                                                         |                                    | I, I, V., C.                | î.                       |
| 700                         | ,12 ( (13-11                                                                           | + (1,-1,                           | $C_{31} C_{32} \hat{C}_{3}$ |                          |
| <b>瓜咪=</b>                  | 30° [(I-J)0                                                                            | C32 C33 Ĉ1 -(I                     | :-J)C31C31Ĉ                 | 2                        |
| since (                     | ) = ②                                                                                  |                                    |                             |                          |
| Ĝ:                          | I(ὑ,- 2ω₃)-                                                                            | + (I-J)ω,ω3                        | $s = 3\Omega^2 (I-J)$       | ) C31C33                 |
| Ĉ <sub>z</sub> :            |                                                                                        | Jώ <sub>2</sub>                    | = 0                         |                          |
| Ĉ <sub>3</sub> :            | Ι(ώ,+ θω,)-                                                                            | (I-T)ω <sub>ι</sub> ω <sub>2</sub> | = -3.02 (1                  | -T) C31 C31              |

This becomes
$$\dot{\omega}_1 = q_1 \omega_3 + \frac{\text{I-J}}{\text{I}} \left( 3\Omega^2 C_{31} C_{33} - \omega_2 \omega_3 \right)$$

$$\dot{\omega}_2 = 0$$

$$\dot{\omega}_3 = -q_1 \omega_1 - \frac{\text{I-J}}{\text{I}} \left( 3\Omega^2 C_{31} C_{32} - \omega_1 \omega_2 \right)$$

| "ω" -<br>= ω;ĉ; -                                              | Aως<br>~ωA<br>- QĈ, - | - 10 åz |                        |          |    |
|----------------------------------------------------------------|-----------------------|---------|------------------------|----------|----|
| $= \frac{\omega_{\omega}c}{\omega_{\delta}\hat{c}_{\delta}} -$ | ~ω^<br>- qĈ, -        | - 12â2  |                        |          |    |
| = ω;ĉ; -                                                       | - QÊ, -               | - nãz   |                        |          |    |
|                                                                |                       |         |                        |          |    |
|                                                                |                       |         |                        |          |    |
|                                                                |                       |         |                        |          |    |
| $\hat{c}_1$ $\hat{c}_3$                                        |                       |         |                        |          |    |
| 0, 03                                                          |                       |         |                        |          |    |
| ××                                                             |                       |         |                        |          |    |
| C22 C23                                                        | -                     | â. = C2 | Ĉ,+ C2                 | Ĉ. + C23 | Ĉ, |
|                                                                |                       |         |                        |          | Ĺ  |
|                                                                | C22 C23               |         | C22 C23 -> \hat{Q}2 C2 |          |    |

then
$$= \omega_{1}\hat{c}_{1} + \omega_{2}\hat{c}_{2} + \omega_{3}\hat{c}_{3} - q\hat{c}_{1}$$

$$= c_{21}\Omega \hat{c}_{1} - c_{22}\Omega \hat{c}_{2} - c_{23}\Omega \hat{c}_{2}$$

$$= (\omega_{1} - c_{21}\Omega) \hat{c}_{1}$$

$$+ (\omega_{2} - q - c_{22}\Omega) \hat{c}_{2}$$

$$+ (\omega_{3} - c_{23}\Omega) \hat{c}_{3}$$

$$+ (\omega_{3} - c_{23}\Omega) \hat{c}_{3}$$

$$+ (\omega_{1} - q - c_{22}\Omega) \hat{c}_{3}$$

$$+ (\omega_{1} - q - c_{22}\Omega) \hat{c}_{3}$$

$$+ (\omega_{1} - q - c_{22}\Omega) \hat{c}_{3}$$

$$- (\omega_{1} - c_{21}\Omega) \hat{c}_{3}$$

$$- (\omega_{1} - c_{21$$

| ċ11 = | C12 (W3 -C2 | 3 A) -CB(0   | W2-8-C2                          | (۵.        |    |
|-------|-------------|--------------|----------------------------------|------------|----|
| Ċ12 = | -C11(W3-C   | 23 P) + C13( | $\omega_l$ - $\omega_l$ $\Omega$ | <b>-</b> ) |    |
| Č13 = | C11(W2-9    | -C22 22) -1  | C12 (W1-0                        | (عمايد)    |    |
| C21 = | C22 W3 -    | C23 (W2-     | - <sub>4</sub> )                 |            |    |
| C22 = | -C21 W3     | + C23 W      | 1                                |            |    |
| C23 = | CH(W)       | -2)-C        | 22 ω,                            |            |    |
| Ć31 = | C32 (W3     | C23 s2)-     | C33 (W2-                         | 9-C22-2    | .) |
| C31 = | -c31(W3-    | C13 C2)+(    | 233 (WI-                         | (라고)       |    |
| C33 = | C31 (W1-    | l-C22)-      | -C12(W1-                         | (2) C2     |    |
|       |             |              |                                  |            |    |

(ii) Use Euler parameters as the kinematic variables and derive the complete set of differential equations.

| 5 | Tubstitute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $C_{31} = 2(\mathcal{E}_{3}\mathcal{E}_{1} - \mathcal{E}_{2}\mathcal{E}_{4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $\mathcal{L}_{32} = 2(\mathcal{E}_{2}\mathcal{E}_{3} + \mathcal{E}_{1}\mathcal{E}_{4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | $C_{33} = \left(-2\varepsilon_{1}^{2} - 2\varepsilon_{2}^{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i | nto the Dynamic Differential Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C | $\dot{\mathcal{D}}_1 = \mathcal{Q}_1 \omega_3 + \frac{\mathbf{I} - \mathbf{J}}{\mathbf{I}} \left( 3\Omega^2 C_{32} C_{33} - \omega_2 \omega_3 \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | = $Q\omega_3 + \frac{I-J}{I} \left\{ 3\Omega^2 \left[ 2(\epsilon_1\epsilon_3 + \epsilon_1\epsilon_4) \right] (1-2\epsilon_1^2 + 2\epsilon_2^2) - \omega_2\omega_3 \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | $= 9 \omega_3 + \frac{I-J}{I} \left[ 6 \Omega^2 (\xi_1 \xi_3 + \xi_1 \xi_4) (1-2\xi_1^2 + 2\xi_2^2) - \omega_1 \omega_3 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ( | $\dot{\omega}_2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | $\dot{\omega}_{3} = -9 \omega_{1} - \frac{I-J}{I} (3\Omega^{2}C_{31}C_{32} - \omega_{1}\omega_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | = - 9 \omega_1 - \frac{I-J}{I} \left[ 12 \omega_1^2 \left( \varepsilon_3 \varepsilon_1 - \varepsilon_1 \omega_1 - \varepsilon_1 \varepsilon_4 \varepsilon_1 \varepsilon_4 \varepsilon_1 \varepsilon_4 \varepsilon_1 \varepsilon_4 |
| ſ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | $\dot{\omega}_{1} = 9 \omega_{3} + \frac{I-J}{I} \left[ 6\Omega^{2} (\xi_{2}\xi_{3} + \xi_{1}\xi_{4})(1-2\xi_{1}^{2} + 2\xi_{2}^{2}) - \omega_{2}\omega_{3} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | $\dot{\omega}_{2} = 0$ $\dot{\omega}_{3} = -\varrho_{\omega_{1}} - \frac{I-J}{I} \left[  2\Omega^{2}(\xi_{3}\xi_{1} - \xi_{1}\xi_{4})(\xi_{1}\xi_{3} + \xi_{1}\xi_{4}) - \omega_{1}\omega_{1} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Kinematic Differential Equations                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                              |
| then , from $\sqrt{\omega}^A + \sqrt{\omega}^C = \sqrt{\omega}^C = \omega_i \hat{C}_i$ $A_{\overline{\omega}^C} = (\sqrt{\omega}^C - \sqrt{\omega}^A)$                                                                                                                                                                                       |
| $= \left[\omega_{1} - 2 \Omega(\epsilon_{1}\epsilon_{2} + \epsilon_{3}\epsilon_{4})\right] \hat{c}_{1}$ $+ \left[\omega_{2} - q - \Omega(1 - 2\epsilon_{3}^{2} - 2\epsilon_{1}^{2})\right] \hat{c}_{2}$                                                                                                                                      |
| + $\left[\omega_3-2\Omega(\epsilon_1\epsilon_3-\epsilon_1\epsilon_4)\right]\hat{c}_3$ plug this into                                                                                                                                                                                                                                         |
| $A_{\mathcal{E}^{c}} = \frac{1}{2} A_{\omega}^{c} \mathbf{E}^{T}$ where $\begin{bmatrix} \varepsilon_{4} & -\varepsilon_{3} & \varepsilon_{1} & \varepsilon_{2} \\ & & & \end{bmatrix}$                                                                                                                                                      |
| where $\begin{bmatrix} \mathcal{E}_{4} & -\mathcal{E}_{3} & \mathcal{E}_{2} & \mathcal{E}_{1} \\ \mathcal{E}_{3} & \mathcal{E}_{4} & -\mathcal{E}_{1} & \mathcal{E}_{2} \\ -\mathcal{E}_{2} & \mathcal{E}_{1} & \mathcal{E}_{4} & \mathcal{E}_{3} \\ -\mathcal{E}_{1} & -\mathcal{E}_{2} & -\mathcal{E}_{3} & \mathcal{E}_{4} \end{bmatrix}$ |
| $\rightarrow 2 \stackrel{A}{\dot{\epsilon}}{}^{C} = 2 \left[ \stackrel{.}{\dot{\epsilon}}_{1} \stackrel{.}{\dot{\epsilon}}_{2} \stackrel{.}{\dot{\epsilon}}_{3} \stackrel{.}{\dot{\epsilon}}_{4} \right]$                                                                                                                                    |
| → Nwc ET                                                                                                                                                                                                                                                                                                                                     |

$$\begin{array}{c} \omega_{1} - 2\Omega\left(\xi_{1}\xi_{2} + \xi_{3}\xi_{4}\right) \\ \omega_{2} - q - \Omega\left(\left[-2\xi_{3}^{2} - 2\xi_{1}^{2}\right)\right] \\ \omega_{3} - 2\Omega\left(\xi_{3}\xi_{3} - \xi_{1}\xi_{4}\right) \\ \omega_{3} - 2\Omega\left(\xi_{3}\xi_{3} - \xi_{1}\xi_{4}\right) \\ \end{array} \begin{bmatrix} \xi_{4} & -\xi_{3} & \xi_{1} & \xi_{2} \\ \xi_{3} & \xi_{4} & -\xi_{1} & \xi_{2} \\ -\xi_{1} & -\xi_{1} & \xi_{2} \\ -\xi_{1} & -\xi_{1} & -\xi_{3} & \xi_{4} \end{bmatrix}$$

$$\begin{array}{c} col \# l \\ \omega_{1}\xi_{4} - 2\Omega\left(\xi_{1}\xi_{2} + \xi_{2}\xi_{4}\right)\xi_{4} - \omega_{2}\xi_{3} + \Omega\left(\left[-2\xi_{3}^{2} - 2\xi_{1}^{4}\right) + \int_{0}^{4}\xi_{3} + \omega_{3}\xi_{3} - 2\Omega\left(\xi_{2}\xi_{3} - \xi_{1}\xi_{4}\right)\xi_{2} \\ -\Omega\left(2\xi_{1}\xi_{4} + 2\xi_{3}\xi_{4}^{2} - 2\xi_{1}\xi_{2}\xi_{4} + 2\xi_{2}^{2}\xi_{3} - \xi_{3} + 2\xi_{3}^{2} + 2\xi_{3}^{2}\xi_{3}\right) \\ = \omega_{1}\xi_{4} - \omega_{2}\xi_{3} + U_{2}\xi_{3} + \omega_{3}\xi_{2} - \Omega\left[2\xi_{3}(\xi_{1}^{2} + \xi_{3}^{2} + \xi_{3}^{2} + 2\xi_{3}^{2} + 2\xi_{3}^{2}\xi_{3}\right) \\ = \omega_{1}\xi_{4} - \omega_{2}\xi_{3} + U_{2}\xi_{3} + \omega_{3}\xi_{2} - \Omega\left[2\xi_{3}(\xi_{1}^{2} + \xi_{3}^{2} + \xi_{3}^{2} + \xi_{4}^{2}) - \xi_{3}\right] \\ = \omega_{1}\xi_{4} - \omega_{2}\xi_{3} + U_{2}\xi_{3} + \omega_{3}\xi_{2} - \Omega\left[2\xi_{3}(\xi_{1}^{2} + \xi_{3}^{2} + \xi_{3}^{2} + \xi_{4}^{2}) - \xi_{3}\right] \\ = \omega_{1}\xi_{4} - \omega_{2}\xi_{3} + U_{2}\xi_{3} + \omega_{3}\xi_{4} - \Omega\left([-2\xi_{3}^{2} - 2\xi_{1}^{2} + \xi_{3}^{2} + \xi_{4}^{2} + \xi_{4}^{2}\right) - \xi_{3}\right] \\ = \omega_{1}\xi_{2} - 2\Omega\left(\xi_{1}\xi_{3} + \xi_{3}\xi_{4}\right)\xi_{3} + \omega_{2}\xi_{4} - \Omega\left([-2\xi_{3}^{2} - 2\xi_{1}^{2} + \xi_{3}^{2} + \xi_{4}^{2} + \xi_{4}^{2} + \xi_{4}^{2} + \xi_{4}^{2}\right) \\ - 2\xi_{1}^{2}\xi_{4} - 2\xi_{1}\xi_{3} + 2\Omega\left(\xi_{2}\xi_{3} + \xi_{3} + 2\xi_{3}^{2} + 2\xi_{3}^{2} + \xi_{4} + \xi_{4}^{2} - 2\xi_{1}^{2}\xi_{4}\right) \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{3}\xi_{4} - \Omega\left(2\xi_{2}\xi_{3}\xi_{3} + 2\xi_{3}^{2} + 2\xi_{3}^{2}\xi_{4} + \xi_{4}^{2} - 2\xi_{1}^{2}\xi_{4}\right) \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{3}\xi_{4}) \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{3}\xi_{4}) \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{2}\xi_{4} \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{3}\xi_{4}) \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{3}\xi_{4} \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{3}\xi_{4}) \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{2}\xi_{4} \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3} + (\omega_{2} - q_{2} - \omega_{2}\xi_{4}) \\ = -\omega_{3}\xi_{1} + \omega_{1}\xi_{3}$$

$$\begin{array}{l} \omega(\frac{1}{3}) \\ -\omega_{1}E_{1} + 2\omega_{2}(2_{1}E_{1} + E_{3}E_{4})E_{2} + \omega_{2}E_{1} - \omega_{1}E_{3}^{2} - 2E_{1}^{2})E_{1} - gE_{1} \\ +\omega_{3}E_{4} - 2\Omega(2_{2}E_{3} - E_{1}E_{4})E_{4} \\ = -\omega_{1}E_{2} + \omega_{2}E_{1} - gE_{1} + \omega_{3}E_{4} + \Omega(2E_{1}E_{2}^{2} + 2E_{2}E_{3}E_{4} - E_{1} + 2E_{1}E_{3}^{2} + 2E_{1}^{2} \\ -2E_{2}E_{3}E_{4} + 2E_{1}E_{4}^{2}) \\ = -\omega_{1}E_{2} + \omega_{2}E_{1} - gE_{1} + \omega_{3}E_{4} + \Omega\left[2E_{1}(E_{2}^{2} + E_{3}^{2} + E_{3}^{2} + E_{3}^{2} - E_{4}^{2}) - E_{1}\right] \\ = (\omega_{2} - Q_{1} + \Omega)E_{1} - \omega_{1}E_{2} + \omega_{3}E_{4} \\ -\omega_{1}E_{1} + 2\Omega(E_{1}E_{2} + E_{3}E_{4})E_{1} - \omega_{2}E_{2} + \Omega(1 - 2E_{3}^{2} - 2E_{1}^{2})E_{3} + gE_{2} \\ -\omega_{3}E_{3} + 2\Omega(E_{1}E_{3} - E_{1}E_{4})E_{3} \\ = -\omega_{1}E_{1} - \omega_{2}E_{3} + gE_{2} - 2E_{1}^{2}E_{2} + 2E_{2}E_{3}^{2} - 2E_{1}^{2}E_{2} + 2E_{2}E_{3}^{2}E_{4} + E_{3} \\ -2E_{1}E_{3} - 2E_{1}^{2}E_{2} + 2E_{2}E_{3}^{2} - 2E_{1}^{2}E_{2} + 2E_{2}E_{3}^{2}E_{4} + E_{3} \\ = -\omega_{1}E_{1} - (\omega_{2} - Q_{1} - \Omega_{1})E_{2} - \omega_{3}E_{3} \\ \end{array}$$

$$Thus,$$

$$2\dot{E}_{1} = \omega_{3}E_{2} - (\omega_{2} - Q_{1} + \Omega_{2})E_{3} + \omega_{1}E_{4} \\ 2\dot{E}_{2} = -\omega_{3}E_{1} + \omega_{1}E_{3} + (\omega_{2} - Q_{1} - \Omega_{1})E_{4} \\ 2\dot{E}_{3} = (\omega_{3} - Q_{1} + \Omega_{1})E_{1} - \omega_{1}E_{3} + \omega_{2}E_{3} \\ 2\dot{E}_{4} = -\omega_{1}E_{1} - (\omega_{2} - Q_{1} - \Omega_{1})E_{2} - \omega_{2}E_{3} \\ 2\dot{E}_{4} = -\omega_{1}E_{1} - (\omega_{2} - Q_{1} - \Omega_{1})E_{2} - \omega_{2}E_{3}$$

(iii) What sets of unit vectors do the kinematic variables relate? How do you know?

What angular velocity components appear in the equations of motion? In what vector basis are they expressed?



(iv) Assume Euler parameters as the kinematic variables, check the differential equations in Notes R. Since the orbit normal in class is  $\hat{a}_3$  and the orbit normal in this problem  $\hat{a}_2$ , should your equations be exactly the same as those in the notes?

$$\begin{split} 2\dot{\varepsilon}_1 &= \varepsilon_2 \left(\omega_3 - s + \Omega\right) - \varepsilon_3 \omega_2 + \varepsilon_4 \omega_1 \\ 2\dot{\varepsilon}_2 &= \varepsilon_3 \omega_1 + \varepsilon_4 \omega_2 - \varepsilon_1 \left(\omega_3 - s + \Omega\right) \\ 2\dot{\varepsilon}_3 &= \varepsilon_4 \left(\omega_3 - s - \Omega\right) + \varepsilon_1 \omega_2 - \varepsilon_2 \omega_1 \\ 2\dot{\varepsilon}_4 &= -\varepsilon_1 \omega_1 - \varepsilon_2 \omega_2 - \varepsilon_3 \left(\omega_3 - s - \Omega\right) \\ \dot{\omega}_1 &= -s \omega_2 + \left(1 - \frac{J}{I}\right) \left[\omega_2 \omega_3 - 12\Omega^2 \left(\varepsilon_1 \varepsilon_2 - \varepsilon_3 \varepsilon_4\right) \left(\varepsilon_3 \varepsilon_1 + \varepsilon_2 \varepsilon_4\right)\right] \\ \dot{\omega}_2 &= s \omega_1 - \left(1 - \frac{J}{I}\right) \left[\omega_1 \omega_3 - 6\Omega^2 \left(\varepsilon_3 \varepsilon_1 + \varepsilon_2 \varepsilon_4\right) \left(1 - 2\varepsilon_2^2 - 2\varepsilon_3^2\right)\right] \\ \dot{\omega}_3 &= 0 \end{split}$$

| Discussion          |                                           |
|---------------------|-------------------------------------------|
| -> the equations ar | e similar but not exactly the same due to |
|                     | ne vector bases are defined or oriented   |
| differently.        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \     |
| 11 11               |                                           |

(b) Continue with Euler parameters as the kinematic variables. In the differential equations, change the independent variable from time (t) to number of revolutions ( $\nu$ ). This change generalizes the results and makes it easier to interpret any numerical data. Nondimensionalize the differential equations such that the independent variable is  $\nu$  and the dependent variables are  $\varepsilon_i$  and  $w_i$ , where  $w_i$  are the nondimensional angular velocities, i.e.,  $w_i = \omega_i / \Omega$ . Do you need to nondimensionalize  $\varepsilon_i$ ? Why not?

Nondimensionalize the Dynamic Differential Equations
$$\dot{\omega}_{1} = Q \, \omega_{3} + \frac{I-J}{I} \left[ 6 \, \Omega^{2} \left( \mathcal{E}_{2} \mathcal{E}_{3} + \mathcal{E}_{1} \mathcal{E}_{1} \right) \left( \left[ -2 \, \mathcal{E}_{1}^{2} + 2 \, \mathcal{E}_{2}^{2} \right) - \omega_{1} \, \omega_{3} \right] \cdots \left( 1 \right) \right] \\ \dot{\omega}_{2} = 0 \\ \dot{\omega}_{3} = -Q \, \omega_{1} - \frac{I-J}{I} \left[ \left[ 12 \, \Omega^{2} \left( \mathcal{E}_{3} \, \mathcal{E}_{1} - \mathcal{E}_{2} \, \mathcal{E}_{4} \right) \left( \mathcal{E}_{1} \, \mathcal{E}_{3} + \mathcal{E}_{1} \, \mathcal{E}_{4} \right) - \omega_{1} \, \omega_{2} \right] \cdots \left( 3 \right) \right] \\ \dot{\omega}_{3} = -Q \, \omega_{1} - \frac{I-J}{I} \left[ \left[ 12 \, \Omega^{2} \left( \mathcal{E}_{3} \, \mathcal{E}_{1} - \mathcal{E}_{2} \, \mathcal{E}_{4} \right) \left( \mathcal{E}_{1} \, \mathcal{E}_{3} + \mathcal{E}_{1} \, \mathcal{E}_{4} \right) - \omega_{1} \, \omega_{2} \right] \cdots \left( 3 \right) \right] \\ \dot{\omega}_{3} = -Q \, \omega_{1} - \frac{I-J}{I} \left[ \left[ 12 \, \Omega^{2} \left( \mathcal{E}_{3} \, \mathcal{E}_{1} - \mathcal{E}_{2} \, \mathcal{E}_{4} \right) \left( \mathcal{E}_{1} \, \mathcal{E}_{3} + \mathcal{E}_{1} \, \mathcal{E}_{4} \right) - \omega_{1} \, \omega_{2} \right] \cdots \left( 3 \right) \right] \\ \dot{\omega}_{3} = -Q \, \omega_{1} - \frac{I-J}{I} \left[ \left[ 12 \, \Omega^{2} \left( \mathcal{E}_{3} \, \mathcal{E}_{1} - \mathcal{E}_{2} \, \mathcal{E}_{2} \right) \left( 1 - 2 \, \mathcal{E}_{1}^{2} - 2 \, \mathcal{E}_{3}^{2} \right) - \omega_{1} \, \omega_{3} \right] \left( \frac{2\pi}{\Omega} \right) \right]$$

Then

$$\frac{2\pi \, \dot{\omega}_{1}}{\Omega^{2}} = \omega_{3} \left( \frac{2\pi}{\Omega} \right) \cdot \mathcal{Q} \left( \frac{2\pi}{\Omega} \right) + \frac{1-J}{I} \left[ 6 \, \Omega^{2} \left( \mathcal{E}_{3} \, \mathcal{E}_{3} + \mathcal{E}_{1} \, \mathcal{E}_{4} \right) \left( 1 - 2 \, \mathcal{E}_{1}^{2} - 2 \, \mathcal{E}_{3}^{2} \right) - \omega_{2} \, \omega_{3} \right] \left( \frac{2\pi}{\Omega} \right)^{2}$$

Since  $0 = \omega_{20} - \Omega = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$   $0 = 0 = 0$ 

$$\dot{W}_{1} = 2\pi \nu W_{5} \cdot \mathcal{Y} - \mathcal{X} \left[ \delta(\varepsilon_{1}\varepsilon_{2} + \varepsilon_{1}\varepsilon_{4})((-2\varepsilon_{1}^{2} - 2\varepsilon_{2}^{2}) - W_{2}W_{3} \right] (2\pi)$$

$$\dot{W}_{1} = 2\pi \nu \left\{ W_{3} \cdot \mathcal{Y} - \mathcal{X} \left[ \delta(\varepsilon_{1}\varepsilon_{3} + \varepsilon_{1}\varepsilon_{4})((-2\varepsilon_{1}^{2} - 2\varepsilon_{2}^{2}) - W_{2}W_{3} \right] \right\}$$

$$\dot{W}_{3} = 2\pi \nu \left\{ -W_{1} \cdot \mathcal{Y} + \mathcal{X} \left[ 2(\varepsilon_{3}\varepsilon_{1} - \varepsilon_{2}\varepsilon_{4})(\varepsilon_{2}\varepsilon_{3} + \varepsilon_{1}\varepsilon_{4}) - W_{1}W_{2} \right] \right\}$$

$$+ \text{thus}, \text{ all } 3 \text{ nondimensional ised equation } s \text{ become}$$

$$\dot{W}_{1} = 2\pi \nu \left\{ W_{3} \cdot \mathcal{Y} - \mathcal{X} \left[ \delta(\varepsilon_{1}\varepsilon_{3} + \varepsilon_{1}\varepsilon_{4})((-2\varepsilon_{1}^{2} - 2\varepsilon_{2}^{2}) - W_{2}W_{3} \right] \right\}$$

$$\dot{W}_{2} = 0$$

$$\dot{W}_{3} = 2\pi \nu \left\{ -W_{1} \cdot \mathcal{Y} + \mathcal{X} \left[ 12(\varepsilon_{3}\varepsilon_{1} - \varepsilon_{2}\varepsilon_{4})(\varepsilon_{2}\varepsilon_{3} + \varepsilon_{1}\varepsilon_{4}) - W_{1}W_{3} \right] \right\}$$

$$\text{nondimensionalize the finematic } \frac{1}{2} \left\{ e^{-\varepsilon_{1}\varepsilon_{1}} + \varepsilon_{1}\varepsilon_{1} - W_{1}W_{3} \right\} \right\}$$

$$2\dot{\varepsilon}_{1} = (W_{3}\varepsilon_{2} - (W_{2} - \mathcal{Y} + \Omega_{2})\varepsilon_{3} + (W_{1}\varepsilon_{4} - \Omega_{2})\varepsilon_{4} + \cdots \left\{ \frac{1}{2}\varepsilon_{3} + \varepsilon_{1}\varepsilon_{4} - W_{1}\varepsilon_{3} + \varepsilon_{1}\varepsilon_{4} \right\}$$

$$2\dot{\varepsilon}_{2} = -\omega_{3}\varepsilon_{1} + (W_{1}\varepsilon_{3} + (W_{2} - \mathcal{Y} - \Omega_{2})\varepsilon_{4} + \cdots \left\{ \frac{1}{2}\varepsilon_{3} + \varepsilon_{1}\varepsilon_{4} - \varepsilon_{1}\varepsilon_{4} \right\} \right\}$$

$$2\dot{\varepsilon}_{3} = (\omega_{2} - \mathcal{Y} + \Omega_{2})\varepsilon_{1} - \omega_{1}\varepsilon_{2} + \omega_{2}\varepsilon_{2} + \cdots \left\{ \frac{1}{2}\varepsilon_{4} + \varepsilon_{4}\varepsilon_{4} \right\} \right]$$

$$2\dot{\varepsilon}_{1} = (W_{2}\varepsilon_{1} - (W_{2} - \mathcal{Y} - \Omega_{2}) + \Omega_{2}\varepsilon_{3} + \omega_{1}\varepsilon_{4} \right\} \left[ \frac{2\pi}{\Omega} \right]$$

$$2\dot{\varepsilon}_{1} = \left\{ \omega_{3}\varepsilon_{2} - \left[ \omega_{2} - (\omega_{2} - \Omega_{2}) + \Omega_{2}\varepsilon_{3} + \omega_{1}\varepsilon_{4} \right] \right\} \left[ \frac{2\pi}{\Omega} \right]$$

$$2\dot{\varepsilon}_{1} = \left\{ \omega_{3}\varepsilon_{2} - \left[ \omega_{2} - (\omega_{2} - \Omega_{2}) + \Omega_{2}\varepsilon_{3} \right] + \omega_{1}\varepsilon_{4} \right\} \left[ \frac{2\pi}{\Omega} \right] \right\}$$

$$2\dot{\varepsilon}_{1} = \left\{ \omega_{3}\varepsilon_{2} - \left[ \omega_{2} - (\omega_{2} - \Omega_{2}) + \Omega_{2}\varepsilon_{3} \right\} \left[ \frac{2\pi}{\Omega} \right] \left[ \frac{2\pi}{\Omega} \right] \right\} \left[ \frac{2\pi}{\Omega} \right]$$

$$2\dot{\varepsilon}_{1} = \left\{ \omega_{3}\varepsilon_{2} - \left[ \omega_{2} - (\omega_{2} - \Omega_{2}) + \Omega_{2}\varepsilon_{3} \right] \left[ \frac{2\pi}{\Omega} \right] \left[ \frac{2\pi}{\Omega} \right] \left[ \frac{2\pi}{\Omega} \right] \right]$$

$$2\dot{\varepsilon}_{1} = \left\{ \omega_{3}\varepsilon_{2} - \left[ \omega_{2} - (\omega_{2} - \Omega_{2}) + \Omega_{2}\varepsilon_{3} \right] \left[ \frac{2\pi}{\Omega} \right]$$

5~7 similar to 4

- (5): \(\delta\_{\pm} = \left[ -W\_3\xi\_1 + W\_1\xi\_3 + (W\_2 y 1)\xi\_4 \right] \(TV\)
- 6:  $\dot{\Sigma}_3 = [(w_2 y + 1)\Sigma_1 w_1 \Sigma_2 + w_3 \Sigma_4] \pi$
- (7): \$= [-w, \si, -(w, -y-1)\si\_2 w\_3 \si\_3] Tu

Hence,

$$\dot{\Sigma}_{1} = \begin{bmatrix} W_{3} \Sigma_{2} - (W_{2} - y + 1) \Sigma_{3} + W_{1} \Sigma_{4} \end{bmatrix} T U$$

$$\dot{\Sigma}_{2} = \begin{bmatrix} -W_{3} \Sigma_{1} + W_{1} \Sigma_{3} + (W_{2} - y - 1) \Sigma_{4} \end{bmatrix} T U$$

$$\dot{\Sigma}_{3} = \begin{bmatrix} (W_{2} - y + 1) \Sigma_{1} - W_{1} \Sigma_{2} + W_{3} \Sigma_{4} \end{bmatrix} T U$$

$$\dot{\Sigma}_{4} = \begin{bmatrix} -W_{1} \Sigma_{1} - (W_{2} - y - 1) \Sigma_{2} - W_{3} \Sigma_{3} \end{bmatrix} T U$$

### **Appendix**

#### AAE440 HW8 PROBLEM 1 MATLAB

```
clear all; close all; clc;
fdir = 'C:\Users\Tomo\Desktop\studies\2020-Spring\AAE440\MATLAB\outputs\HW8';
set(groot, 'defaulttextinterpreter',"latex");
set(groot, 'defaultAxesTickLabelInterpreter', "latex");
set(groot, 'defaultLegendInterpreter', "latex");
% Arrow drawing function
drawArrow = @(x,y,varargin) quiver(x(1),y(1),x(2)-x(1),y(2)-y(1),0,
varargin(:) );
(a)
% Given properties
I body = [400 \ 0 \ 0; \ 0 \ 100 \ 0; \ 0 \ 0 \ 400]; \ \% \ [kg-m2]
I = I_{body}(1,1); J = I_{body}(2,2);
w_NU_mag = 4; % magnitude of angular velocity [rad/s]
w NU hat = [0 cosd(60) sind(60)]; % angle of w NU relative to u 2 [deg]
w_NU = w_NU_mag*w_NU_hat;
% Kinetic rotational energy
Trot = 0.5*w_NU*I_body*w_NU.'
% Semi-diameters of energy ellipsoid
d1 = sqrt(2*Trot*I^{-1})
d2 = sqrt(2*Trot*J^{-1})
d3 = d1
% Plotting the inertial ellipsoid
theta = 0:0.01:2*pi;
u_str = ["$\hat{u}_1$","$\hat{u}_2$","$\hat{u}_3$"];
% u2-u3
fig1 = figure("Renderer", "painters");
    plot(d2*cos(theta), d3*sin(theta), 'b')
    title('$\hat{u}_2$-$\hat{u}_3$ Energy Ellipse, Koike')
    xlabel('$\omega 2$ (rad/s)')
    ylabel('$\omega_3$ (rad/s)')
    hold on
    drawArrow([0 9], [0 0], 'k', 'linewidth',1);
text(9,1,u_str(2),"Interpreter","Latex");
    drawArrow([0 0], [0 8], 'k', 'linewidth', 1); text(-
0.8,7,u_str(3),"Interpreter","Latex");
    % Angular velocity
    drawArrow([0 w NU(2)], [0 w NU(3)], 'color', '#FD07EA');
    text(1.3,1.5,'${}^N\bar{\omega}^U$','Interpreter','Latex');
    % Invariable plane PI
    [a, b] = line_tangent2ellipse(w_NU(2),w_NU(3),d2,d3);
```

```
x = -8:0.1:8;
    y = a*x + b;
    plot(x,y,'-r'); text(6.7,3.2,'$\pi$','Interpreter',"latex");
    % H_body
    drawArrow([0 1.0],[0 1.0*(-1/a)],'color','#FF6800','linewidth',1.2)
    text(1.1,7,'${}^N\bar{H}^{B/B*}$')
    hold off
    xlim([-9 9]); ylim([-8 8]);
    grid on; grid minor; box on; axis equal;
saveas(fig1, fullfile(fdir, 'P1-a-u2_u3_EN-ellipse.png'));
(b)
% Angular momentum
H_NU = I_body*w_NU.';
H_NU_mag = norm(H_NU);
% Computing p, s, and phi
p = H_NU_mag/I;
s = (I - J)/I*w_NU(2);
phi = acos(H_NU(2)/H_NU_mag)
phi_deg = rad2deg(phi)
% Computing the precession, nutation, and spin angles
% @ t = 0.25
t = 0.25;
sigma = p*t
sigma_deg = rad2deg(sigma)
eta = s*t
eta_deg = rad2deg(eta)
% @ t = 3.5
t = 3.5;
sigma = mod(p*t,2*pi)
sigma_deg = rad2deg(sigma)
eta = mod(s*t, 2*pi)
eta deg = rad2deg(eta)
h_hat_U = H_NU/H_NU_mag;
h_hat_C = [0 cos(phi) -sin(phi)];
% gamma
syms t1
e_NC = h_hat_C*sin(p*t1/2);
e4_NC = cos(p*t1/2);
% DCM
% @ t = 0.25
e_NC_025 = double(subs(e_NC,t1,0.25));
e4_NC_025 = double(subs(e4_NC,t1,0.25));
C_NC_025 = DCM_from_EulerPara([e_NC_025 e4_NC_025])
% @ t= 3.5
```

```
e NC 35 = double(subs(e NC,t1,3.5));
e4_NC_35 = double(subs(e4_NC,t1,3.5));
C_NC_35 = DCM_from_EulerPara([e_NC_35 e4_NC_35])
gamma_025 = acosd(C_NC_025(2,2))
gamma_35 = acosd(C_NC_35(2,2))
(c)
% Euler parameters
c2_hat = [0 1 0];
syms t
e NC = h hat C*sin(p*t/2);
e4_NC = cos(p*t/2);
e_CU = c2_hat*sin(s*t/2);
e4_CU = cos(s*t/2);
e_NU = e_NC*e4_CU + e_CU*e4_NC + cross(e_CU,e_NC);
e4 NU = e4 NC*e4 CU - dot(e NC,e CU);
% C-frame
% @ t = 0.25
e NU 025 C = double(subs(e NU,t,0.25))
e4_NU_025 = double(subs(e4_NU,t,0.25))
% @ t = 3.5
e_NU_35_C = double(subs(e_NU,t,3.5))
e4_NU_35 = double(subs(e4_NU,t,3.5))
% U-frame
syms t2
C_CU = [\cos(s*t2) \ 0 \ -\sin(s*t2);
                0 1
        sin(s*t2) 0 cos(s*t2)];
% @ t = 0.25
e_NU_025_U = double(e_NU_025_C*subs(C_CU,t2,0.25))
C_NU_025_1 = double(C_NC_025*subs(C_CU,t2,0.25))
C_NU_025_2C = DCM_from_EulerPara([e_NU_025_C e4_NU_025])
C NU 025 2U = DCM from EulerPara([e NU 025 U e4 NU 025])
% @ t = 3.5
e NU 35 U = double(e NU 35 C*subs(C CU,t2,3.5))
gamma_max = 2*phi_deg;
(e)
alpha = 2*(phi_deg - 60)
ADDITIONAL (FOR PROBLEM 2)
tspan = 0:0.005:15;
fig2 = figure("Renderer", "painters")
    plot(tspan,rad2deg(mod(p*tspan,2*pi)),'r')
    title("Precession, pt Over Time, Koike")
    ylabel('Precession, pt [deg]')
    xlabel('Time [s]')
    grid on; grid minor; box on;
```

```
saveas(fig2,fullfile(fdir,"pt precession.png"))
fig3 = figure("Renderer", "painters")
   plot(tspan,rad2deg(phi).*ones(size(tspan)),'b')
   title("Nutation, $\phi$ Over Time, Koike")
   ylabel('Nutation, $\phi$ [deg]')
   xlabel('Time [s]')
   grid on; grid minor; box on;
saveas(fig3,fullfile(fdir,"phi_nutation.png"))
FUNCTION
function [slope, y intercept] = line tangent2ellipse(x1,y1,a,b)
    slope = -x1/y1*b^2/a^2;
   y_intercept = y1 - x1*slope;
end
AAE440 HW8 PROBLEM 2 MATLAB
clear all; close all; clc;
fdir = 'C:\Users\Tomo\Desktop\studies\2020-Spring\AAE440\MATLAB\outputs\HW8';
set(groot, 'defaulttextinterpreter', "latex");
set(groot, 'defaultAxesTickLabelInterpreter',"latex");
set(groot, 'defaultLegendInterpreter', "latex");
% Defining System Properties
Τ
       = 0;
                                       % Torque [N m]
       = [400 0
I cm
            0 100
                    0;
            0
              0 4001;
                                      % Inertia Dyadic [kg m2]
Ι
       = 400;
J
       = 100;
% Given Initial Conditions
w0 = [1 \ 2 \ 1];
                                      % Initial AngVel [rad s-1]
                                      % Initial Euler Parameters
       = [0 0 0 1];
e0
C0
       = [1 0 0 0 1 0 0 0 1];
                                     % Initial DCM
% Numerically integrating dynamic and kinematic EOMs
tspan = [0 14]; % Integration time
y0 = [w0 e0 0 C0]; % Initial conditions
opt = odeset('RelTol', 1e-13, 'AbsTol', 1e-13); % Integration Tolerance
[t1, res1] = ode45(@(t,y) EOM(t,y,I,J,T), tspan, y0, opt);
% Plotting three angular velocity measure numbers over time
fig1 = figure("Renderer", "painters");
   plot(t1, res1(:,1:3))
   ylabel('Angular velocity [rad/s]')
   xlabel('time [s]')
   title({'Angular Velocity Measure Numbers, Koike'})
   axis([tspan -2 2.5])
   legend('$\omega_1$', '$\omega_2$', '$\omega_3$', 'Location', "best")
   grid on; grid minor; box on;
```

```
saveas(fig1, fullfile(fdir, 'angVel_measure_nums.png'));
(a)
% Plotting precession and nutation angles
tspan_a = 0:0.001:15;
[t_a, res_a] = ode45(@(t,y) EOM(t,y,I,J,T), tspan_a, y0, opt);
% Assigning computed C12, C22, and C32 to a variable
C_a = res_a(:,9:end);
[alpha_a, gamma_a] = ang_calc_body212(C_a);
fig2 = figure(2);
    plot(t a, alpha a, 'r')
    xlabel('time [s]')
    ylabel('precession $\alpha$, [deg]')
    title('Precession Over Time, Koike')
    grid on; grid minor; box on;
saveas(fig2, fullfile(fdir, 'alpha.png'));
fig3 = figure(3);
    plot(t_a, gamma_a, 'b')
    xlabel('time [s]')
    ylabel('nutation $\gamma$, [deg]')
    title('Nutation Over Time, Koike')
    grid on; grid minor; box on
saveas(fig3, fullfile(fdir, 'gamma.png'));
% Integration with smaller time step
tspan c = 0:0.05:15;
[t_c, res_c] = ode45(@(t,y) EOM(t,y,I,J,T), tspan_c, y0, opt);
% C_{new} = res_c(:,9:17);
% Assigning computed C12, C22, and C32 to a variable
C11s_c = res_c(:,9);
C12s_c = res_c(:,10);
C13s_c = res_c(:,11);
C21s_c = res_c(:,12);
C22s c = res c(:,13);
C23s_c = res_c(:,14);
C31s_c = res_c(:,15);
C32s_c = res_c(:,16);
C33s_c = res_c(:,17);
% Finding the index when t=0.2 and t=1.5 and corresponding C12 C22 C32
index t0p25 = find(t c==0.25);
C11_t025 = C11s_c(index_t0p25);
C12_{t025} = C12s_{c(index_{t0p25})};
C13_t025 = C13s_c(index_t0p25);
C21_t025 = C21s_c(index_t0p25);
C22_t025 = C22s_c(index_t0p25);
C23_t025 = C23s_c(index_t0p25);
```

```
C31 t025 = C31s c(index t0p25);
C32 t025 = C32s c(index t0p25);
C33_t025 = C33s_c(index_t0p25);
C_{025} = [C11_{t025} C12_{t025} C13_{t025};
         C21 t025 C22 t025 C23 t025;
         C31_t025 C32_t025 C33_t025]
% Computing gamma
gamma = acosd(C22_t025)
% Plotting at t = 0.2 and 1.5
fig4 = figure(4);
    plot(C12s_c, C32s_c,'-m','MarkerSize',15)
    title('$C_{32}$ vs $C_{12}$, Koike')
    xlabel('$C {12}$')
    ylabel('$C_{32}$')
    hold on
    plot(C12_t025, C32_t025, '.', 'MarkerSize', 26)
    plot(0,0,'.k','MarkerSize',20)
    plot([0 0],[0 1],'--k')
    plot([0 1],[0 0],'-k')
    d = linspace(0, -0.5, 100);
    plot(d,d.*(C32_t025/C12_t025),'-b')
    hold off
legend('Path', 't=0.25', 'origin', '\$\hat{n}_3\$', '\$\hat{n}_1\$', "location", 'southwest
    grid on; grid minor; axis equal; box on;
    xlim([-1 1]); ylim([-1 1]);
saveas(fig4, fullfile(fdir, 'C12 vs C32.png'));
FUNCTION
function [alphas, gammas] = ang calc body212(DCM)
       This function calculates the precession, nutation, and spin angle
       from the provided DCM
    %}
    % DCM is 1 by 9 matrix with each column being C_ij
    C12s = DCM(:,2);
    C21s = DCM(:,4);
    C22s = DCM(:,5);
    C23s = DCM(:,6);
    C32s = DCM(:,8);
    % Preallocating alpha and gamma arrays
    alphas = zeros([length(C12s),1]);
    gammas = zeros([length(C12s),1]);
    % For loop to construct alpha and gamma arrays interatively
    for i = 1:length(alphas)
```

```
% calculating gamma
        gammas(i) = acos(C22s(i));
        % calculating and verfying alpha
        alpha1 = round([acos(C32s(i)/sin(gammas(i))), ...
                        -acos(C32s(i)/sin(gammas(i))), ...
                        -acos(C32s(i)/sin(gammas(i)))+2*pi],4);
        alpha2 = round([asin(C12s(i)/sin(gammas(i))), ...
                        pi-asin(C12s(i)/sin(gammas(i))), ...
                        pi-asin(C12s(i)/sin(gammas(i)))],4);
        if i == 1
            alphas(i) = deg2rad(-44.9829164957209);
        else
            alphas(i) = intersect(alpha1, alpha2);
        end
        gammas(i) = rad2deg(gammas(i));
        alphas(i) = rad2deg(alphas(i));
    end
end
```

```
function dwdt = EOM(t,y,I,J,T)
   %{
      inputs: 1) t: time lapse
               2) y: angular velocities, euler parameters, initial
                     euler constraint constant, DCM
               3) I: moment of inertia about the non-rotating axis
               4) J: moment of inertia about the rotating axis
               5) T: torque
      outputs: 1) dwdt: differential y
   %}
    dwdt = zeros(17,1);
   % Dynamics EOMs
    dwdt(1) = T/I - (I-J)/I*y(3)*y(2);
   dwdt(2) = 0;
    dwdt(3) = (I-J)/I*y(1)*y(2);
    % Kinematic EOM of angular velocities and Euler parameters
    dedt1 = 0.5*(y(1)*y(7)-y(2)*y(6)+y(3)*y(5));
    dedt2 = 0.5*(y(1)*y(6)+y(2)*y(7)-y(3)*y(4));
    dedt3 = 0.5*(-y(1)*y(5)+y(2)*y(4)+y(3)*y(7));
    dedt4 = -0.5*(y(1)*y(4)+y(2)*y(5)+y(3)*y(6));
   dwdt(4) = dedt1;
   dwdt(5) = dedt2;
    dwdt(6) = dedt3;
    dwdt(7) = dedt4;
   dwdt(8) = y(4)^2 + y(5)^2 + y(6)^2 + y(7)^2 - 1; % Euler Constraint
   e = [y(4) y(5) y(6) y(7)];
```

```
C = DCM_from_EulerPara(e); % DCM

% Kinematic EOM of angular velocities and direction cosines
dwdt(9) = C(1,2)*y(3)-C(1,3)*y(2);
dwdt(10) = C(1,3)*y(1)-C(1,1)*y(3);
dwdt(11) = C(1,1)*y(2)-C(1,2)*y(1);
dwdt(12) = C(2,2)*y(3)-C(2,3)*y(2);
dwdt(13) = C(2,3)*y(1)-C(2,1)*y(3);
dwdt(14) = C(2,1)*y(2)-C(2,2)*y(1);
dwdt(15) = C(3,2)*y(3)-C(3,3)*y(2);
dwdt(16) = C(3,3)*y(1)-C(3,1)*y(3);
dwdt(17) = C(3,1)*y(2)-C(3,2)*y(1);
end
```

```
function C_mat = DCM_from_EulerPara(epsilons)
   % Euler Parameters
    epsilon1 = epsilons(1);
    epsilon2 = epsilons(2);
    epsilon3 = epsilons(3);
    epsilon4 = epsilons(4);
   % Calculating DCM from Euler Parameters
   C11 = 1 - 2*epsilon2^2 - 2*epsilon3^2;
   C12 = 2*(epsilon1*epsilon2 - epsilon3*epsilon4);
   C13 = 2*(epsilon3*epsilon1 + epsilon2*epsilon4);
   C21 = 2*(epsilon1*epsilon2 + epsilon3*epsilon4);
   C22 = 1 - 2*epsilon3^2 - 2*epsilon1^2;
   C23 = 2*(epsilon2*epsilon3 - epsilon1*epsilon4);
   C31 = 2*(epsilon3*epsilon1 - epsilon2*epsilon4);
   C32 = 2*(epsilon2*epsilon3 + epsilon1*epsilon4);
   C33 = 1 - 2*epsilon1^2 - 2*epsilon2^2;
    C_{mat} = [C11 C12 C13; C21 C22 C23; C31 C32 C33];
end
```