COMS30017 Computational Neuroscience

Week 1 / Video 4 / Neuronal computation and communication

Dr. Cian O'Donnell cian.odonnell@bristol.ac.uk

Intended learning outcomes

- Gain a basic understanding of the input-output function of a neuron.
- Understand the difference between a post-synaptic potential and an action potential.
- Distinguish between feedforward and recurrent neural networks.

Information flow in single neurons

- Input from other neurons arrives at the synapses.
- Each synapse triggers a small post-synaptic potential (PSP) in a dendrite, roughly 1mV in amplitude and 10ms duration.
- The somatic voltage sums all these PSPs (both excitatory and inhibitory).
- If the soma's voltage reaches a threshold (around 20 mV above rest), the neuron emits an action potential or "spike". The spike itself is around 100mV in amplitude and 1-2 ms in duration.
- Copies of this spike travel down the axon to target neurons.
- Each spike is stereotypical, information is encoded only in their timing and frequency.

Backyard brains video of cockroach nerve spikes

Where is the computation?

 Roughly speaking, the fundamental computation that neurons do is weighted sum of their inputs, followed by a threshold:

- However please remember that this model although common is a gross simplification of reality! The input-output function is also affected by:
 - other nonlinearities (at the synapses and dendrites)
 - dynamics (the recent past affects the current output)
 - noise (unavoidable randomness and stochasticity).

Networks of neurons

- The real computational power of the brain comes from hooking together lots of neurons.
- There are two common architectures for neural networks models:
 - Feedforward (no loops, neurons can be organised in sequential layers).
 - Recurrent (contains feedback loops).
- Feedforward networks are much easy to study and understand but are rarely accurate models for a brain circuit. Often used as a starting point for modelling.
- Recurrent networks are computationally more powerful, but harder to reason about and control. The real brain is very recurrent.

Recurrent network

Test yourself questions

- Which is bigger, the post-synaptic potential or the action potential?
- What is the key nonlinearity in the neuron's input-output function?

Summary

- Information flow within a single neuron is (mainly) unidirectional:
 from synapse → dendrite → soma → axon.
- A single neuron take input signals from many other neurons, does a weighted sum, thresholds, and sends this one output signal to all its target neurons.
- Neural networks come in two basic flavours: feedforward and recurrent.