CORRECTION DU CONCOURS DIRECT D'ENTREE À L'ESATIC

SESSION 2016

EPREUVE DE MATHEMATIQUES

QUESTION À CHOIX DIRECTS

Consignes: Choisir l'assertion qui est vraie.

Question-1: Si (a_n) est une suite tel que : $a_1 + a_2 + ... + a_n = 2n^2 - 3n$ alors (U_n) est une suite arithmétique. A Vrai \blacksquare . B Faux \square

<u>Justification</u>: $a_1 + a_2 + ... + a_n = 2n^2 - 3n = \frac{n}{2}(4n - 6)$ en utilisant $a_n = a_p + (n - p)r \Rightarrow a_n = a_1 + (n - 1)r$ on trouve que r=4 et $a_1 = -1$.

Question-2: 0 < k < 1 et (U_n) la suite définie par : $U_0 = 1$ et $(U_{n+1} = (1 + k^n)U_n)$

- \square **A**: $U_n = (1+k)(1+k^2)(1+3^n)...(1+k^{n-1})$
- \square **B**: $U_n = (1+k)(1+2^n)(1+3^n)...(1+k^n)$
- \square **C**: $U_n = 1 + k + k^2 + k^3 + ... + k^n$

<u>Justification</u>: car on ne retrouve pas $U_0 = 1$ avec aucune de ces formules.

Question-3: (V_n) la suite définie par $(V_0)=2$ et $V_n=2V_n-n$; et pour tout entier naturel n on a $V_n=2^n+n+1$ **A** Vrai \square . **B** Faux \blacksquare

<u>Justification</u>: par récurence on a $V_0 = 2^0 + 0 + 1 = 2$ supposons que $V_k = 2^k + k + 1$ est vrai par la suite on trouve que $V_{k+1} = k + 1$.

Question-4: (W_n) la suite telle que $W_0 = W_0 = 1$ et pour tout entier naturel n $W_{n+2} = 5W_{n+1} - 6W_n$ on n'a donc $W_n = 2^{n+1} - 3^n$ A Vrai \square . B Faux

Justification : par récurence la formule n'est pas vérifiée

Question-5 : soit z le nombre complexe de module $\sqrt{2}$ et d'argument $\frac{\pi}{3}$ on n'a alors :

- $\Box \mathbf{A} : z^{14} = -128\sqrt{3} 128i$
- $\Box \mathbf{B} : z^{14} = 64 64i$

$$- \blacksquare \mathbf{C} : z^{14} = -64 + 64i\sqrt{3}$$

$$- \Box \mathbf{D} : z^{14} = -128 + 128i\sqrt{3}$$

Justification: car
$$z = \sqrt{2}e^{\frac{\pi}{3}i}$$
 donc $z^{14} = 128(-\frac{1}{2} + i\frac{\sqrt{3}}{2}) = -64 + 64i\sqrt{3}$

Question-6: On répète quatre fois de manière indépendante une expérience aléatoire dont la probabilité de succès est 0,35 Alors la probabilité d'obtenir au moins un succès est :

- $\square \mathbf{A}$: environ 0,015
- **B**: environ 0,821
- $\square \mathbf{C}$: environ 0,985
- $\square \mathbf{D}$: environ 0,025

Justification : car la probabilité d'avoir zero succès est $p = C_4^0 * 0.35^0 * (1 - 0.35)^4 = 0.1785$ donc la valeur récherchée est 1-0,1785=0,821

Question-7: (U_n) ; (V_n) ; (W_n) sont trois suites définies par : pour tout n entier naturel $U_0=2$ et $U_{n+1}=f(U_n)$ ensuite $V_n=\frac{U_{n-1}}{U_n}$ et $W_n=\ln(V_n)$ avec $f(x) = \frac{x^2}{2x-1}$ et $x > \frac{1}{2}$

- $\square \mathbf{A} : (V_n)$ est une suite géométrique
- $\square \mathbf{B} : (V_n)$ est une suite arithmétique
- $\blacksquare \mathbf{C} : (V_n)$ n'est ni arithmétique ni géométrique

Justification: car la suite ne respecte pas les lois d'un suite géométrique ni d'une suite arithmétique

Question-8: $f(x) = \frac{x^2}{2x-1}$ et $x > \frac{1}{2}(U_n); (V_n); (W_n)$ sont trois suites définies par : pour tout n entier naturel $U_0 = 2$ et $U_{n+1} = f(U_n)$ ensuite $V_n = \frac{U_{n-1}}{U_n}$ et $W_n = \ln(V_n)$

- $\square \mathbf{A} : U_n = [1 (\frac{1}{2})^{2^n}]^{-1}$
- $\Box \mathbf{B} : lim U_n = 2$
- $\Box \mathbf{C} : U_n = [1 (-\frac{1}{2})^{2^n}]$

Justification:

Question-9 : soit f la fonction définie par $f(x) = \frac{3sin^3x - 6sinx + 5}{sin^2x + 1}$ alors ça dérivée est :

$$- \Box \mathbf{A} : f'(x) = \frac{4sin^2xcosx}{(sin^2x+1)^2}$$

$$- \square \mathbf{B} : f'(x) = \frac{9sin^2xcosx - 6cosx}{2}$$

$$- \square \mathbf{B} : f'(x) = \frac{9\sin^2 x \cos x - 6\cos x}{2\sin x \cos x}$$

$$- \square \mathbf{C} : f'(x) = \frac{(3\sin^4 x + 15\sin^2 x + 10\sin x - 6)\cos x}{(\sin^2 x + 1)^2}$$

- ■ D: Aucune réponse précédente n'est juste

<u>Justification</u>: car la dérivée recherché est plutôt $f'(x) = \frac{(3sin^4x + 15sin^2x - 10sinx - 6)cosx}{(sin^2x + 1)^2}$

Question-10: La valeur moyenne de la fonction exponentielle sur [0;1] est :

 $- \Box \mathbf{A}$: La valeur moyenne de la fonction exponentielle sur [0;1] est e

 $- \Box \mathbf{B} : \int_{-1}^{1} (x^2 + x^3) \sin^3 x dx = 0$

 $- \blacksquare \mathbf{C} : \int_0^{\pi} e^{\cos x} dx = \int_{-\pi}^0 e^{\cos x} dx$

- \blacksquare D: $\int_0^{\pi} e^{\cos x} dx = \int_{-2\pi}^{-\pi} e^{\cos x} dx$

Justification: car la fonction $e^{\cos x}$ est une fonction pair

Question-11 : soit I = $\int_{-1}^{1} |e^x - 1| dx$ la valeur de I est :

 $- \Box \mathbf{A} : \mathbf{I} = |-|\frac{1}{e} - 1| - |\mathbf{e} - 1|$

- \Box **B**: $I = e + \frac{1}{e}$

 $- \Box \mathbf{C} : \mathbf{I} = 2(e-1)$

 $- \blacksquare \mathbf{D} : \mathbf{I} = e + \frac{1}{e} - 2$

<u>Justification</u>: car ici $I = [e^x - x]_0^1 + [x - e^{-x}]_{-1}^0 = e + \frac{1}{e} - 2$

Question-12: pour tout n entier naturel $I_n = \int_{ln(n)}^{ln(n+1)} \frac{e^t}{e^t+1} dt$:

 $- \blacksquare \mathbf{A} : I_n = ln(\frac{n+1}{n})$

- ■ B: I_n est décroissant

– \square **C**: pour tout entier naturel n, $I_1 + I_2 + ... + I_n = ln(n+2)$

<u>Justification</u>: car $I_n = [ln|e^t + 1]_{ln(n)}^{ln(n+1)}$ on a donc $I_n = ln(n+1) - ln(n) = ln(\frac{n+1}{n})$ qui a une dérivée négative donc décroissante

Question-13 : Soit f(x)=kx+1, la valeur de k telle f soit une fonction de densité est :

 $- \blacksquare A : k = -\frac{1}{2}$

 $- \Box \mathbf{B} : k = \frac{1}{2}$

 $- \Box \mathbf{C} : k = 0$

<u>Justification</u>: car pour $k = -\frac{1}{2}$ on a $\int_0^2 (-\frac{1}{4} + 1) dx = 1$

Question-14: Soit f(x)=2x-1, avec f une fonction qui est définie sur \mathbb{R} alors la fonction f peut être une fonction densité de probabilité sur :

 $- \blacksquare A : [1; \frac{1+\sqrt{5}}{2}]$

 $- \Box \mathbf{B} : [1; 2]$

$$- \blacksquare \mathbf{C} : [0; \frac{1+\sqrt{5}}{2}]$$

<u>Justification</u>: car la fonction doit être continue, positive sur [a;b] et $\int_a^b f(x)dx = 1$ $\int_1^{\frac{1+\sqrt{5}}{2}} (2x-1)dx = 1$ et $\int_0^{\frac{1+\sqrt{5}}{2}} (2x-1)dx = 1$

 $\bf Question-15$: Une maladie touche 5% de la population d'un pays. On prélève au hasard un échantillon de 100 personnes . L'intervalle de fluctuation asymptotique de la proportion de personnes atteintes est :

- $\Box \mathbf{A} : [0, 04; 0, 06]$
- $\blacksquare \mathbf{B} : [0,01;0,09]$
- $\square \mathbf{C}$: Aucune de ces réponse

<u>Justification</u>: en appliquant la formule suivante $[p-1, 96\frac{\sqrt{p(1-p)}}{\sqrt{n}}; p+1, 96\frac{\sqrt{p(1-p)}}{\sqrt{n}}]$ avec p=0,05 et n=100

Question-16 : L'espace est muni d'un repère (O,I,J,K) les points A(1;2;1);B(0;2;2); C(0;0;5) sont alignés : **A** Vrai \square . **B** Faux \blacksquare

Justification : Car \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaire

Question-17 : L'espace est muni d'un repère (O,I,J,K) les points A(1;2;1);B(0;2;2); C(0;0;5) sont coplanaires : **A** Vrai \blacksquare . **B** Faux \square

Justification: Car il existe un couple α et β tel que $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$ avec $\alpha = \frac{11}{4}$ et $\beta = -\frac{1}{2}$

Question-18 : On donne ci-dessous les représentations paramètres de deux droites.

$$(d_1) \begin{cases} x = 1+t \\ y = 2-t \\ z = 3+2t \end{cases}$$

$$(d_2) \begin{cases} x = 3t \\ y = 1 + 2t \text{ avec } t \in \mathbb{R} \\ z = 2 - t \end{cases}$$

 (d_1) et (d_2) sont coplanaires

 ${f A}$ Vrai \square . ${f B}$ Faux \blacksquare

<u>Justification</u>: Car leur vecteur directeur n'est pas colinéaire et les droites (d_1) et (d_2) n'ont pas de points d'intersection

Question-19 : ABC est un triangle équilatéral de côté a (a>0). L'ensembe des points M du plan vérifiant : $MA^2 + MB^2 + MC^2 = \frac{5a^2}{4}$ est :

- □ B :	Une droite
- □ C :	le cerce inscrit dans ABC
- □ D :	un ensembe contenant un seul point
- ■ E :	Vide
Justification: Car $MG^2 = -\frac{11a^2}{12} < 0$	
$\begin{array}{c} \mathbf{Question} \\ f(z) = 1 \end{array}$	n-20 : On donne $f(z) = \frac{z+1-2i}{z-1+i}$ soit C l'ensembe des points M d'affixe z tels que :
- □ A :	(C) est le cercle trigonométrique
- ■ B:	(C) est une droite passant par le point de coordonnées $(0;\frac{1}{2})$
	(C) est un cercle de diamètre $[AB]$ avec $A(-1;2)$ et $B(1;-1)$
	(C) est une droite de coefficient directeur $-\frac{3}{2}$
- □ E :	(C) est un segment de droite
Justificatio	<u>n</u> : On suppose que z = x+iy et on remplace dans l'équation on trouve $y=\frac{2}{3}x+\frac{1}{2}$
z-1 =2 z+3 - □ A: - ■ B: - □ C: - □ D:	n-21 : Soient les points A(1;0); B(-3;0) l'ensembe des points M d'affixe z vérifiant est : Un cercle de diamètre [AB] Un cercle centré sur la droite [AB] de diamètre déférent de [AB] L'hyperbole de foyers A et B et d'excentricité 2 La droite (AB) La médiatrice (AB)
	n : Car l'équation donne $3x^2 + 26x + 35 + 3y^2 = 0$ après modification on trouve
$\forall n \in \text{entier r}$	n-22 : Soit la suite numérique (U_n) définie par : naturel non nul; $U_{2n} = n + 1$ et $U_{2n+1} = 1 - \frac{1}{n}$ (U_n) est croissante
	(U_n) converge vers 1
- ■ C:	(U_n) est minoré
- □ D :	(U_n) admet une limite (finie ou infinie)
- □ E :	(U_n) est borné

– \square **A** : Le cercle contenant le point A

<u>Justification</u>: C'est evident que la suite ne croit pas car $U_2 = 2$ et $U_3 = 0$ ensuite (U_n) diverge est bien minoré par 0 et admet pas de limite et n'est pas borné puisqu'un de ces termes va à l'infinie

Question-23 : Soit un nombre réel $\theta \in [0; \frac{\pi}{2}]$ on considère les points A, B et M d'affixe respective 1; 2 et $z=1+e^{2i\theta}$:

- $\blacksquare A$: M appartient au cercle de centre A et de rayon 1
- $\square \mathbf{B}$: M appartient à la droite d'équation x = 1
- $\square \mathbf{C} : \mathrm{OM} = 2$
- ■ D: L'abscisse de M est toujours positive

<u>Justification</u>: L'équation du cercle est $(x+1)^2+y^2=1$ avec $Z=1+e^{2i\theta}=1+cos(2\theta)+isin(2\theta)$ $\overline{(1+cos(2\theta)-1)^2+(sin(2\theta))^2}=cos^2(2\theta)+sin^2(2\theta)=1$ ensuite $\forall \theta \in [0;\frac{\pi}{2}]$ $1+cos(2\theta)$ est toujours positif

Question-24: Une fonction g est définie sur l'intervalle $]-\infty;0]$ par $g(x)=\frac{\sqrt{x^2-2x}}{x-3}$ soit (Γ) sa courbe représentative dans un répère du plan.

- $\blacksquare A : (\Gamma)$ admet une asymptotique d'équation : y=-1
- $\square \mathbf{B} : (\Gamma)$ n'admet pas d'asymptotique
- $\square \mathbf{C} : (\Gamma) \text{ admet une : asymptotique y=x}$
- $\Box \mathbf{D} : (\Gamma)$ admet une asymptotique d'équation : y=1

Justification: Car quand on calcul la limite de g(x)-x en $-\infty$ on trouve -1

Question-25: Soit la fonction f définie sur \mathbb{R} $f(x) = \int_0^x e^{-t^2} dt$ la fonction f'' dérivée seconde de la fonction f sur \mathbb{R} , est définie par :.

- $-\Box \mathbf{A} : f''(x) = \int_0^x -2te^{-t^2}dt$
- $\Box \mathbf{B} : f''(x) = \int_0^1 -2xe^{-x^2} dx$
- \blacksquare C: $f''(x) = -2xe^{-x^2}$
- \Box **D** : $f''(x) = e^{-x^2}$

Justification: il suffit de dérivée deux fois la fonction

Mail: elitech32@gmail.com La photocopie tue l'oeuvre intellectuelle