Lecture Summary: Inner Products and Norms on a Vector Space

Source: Lec47.pdf

Key Points

- Definition of Inner Product:
 - An inner product on a vector space V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ that satisfies:
 - 1. **Positivity:** $\langle v, v \rangle > 0$ for all $v \neq 0$, and $\langle v, v \rangle = 0$ if v = 0.
 - 2. Linearity in the first argument:

$$\langle v_1 + v_2, v_3 \rangle = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle, \quad \langle cv_1, v_2 \rangle = c \langle v_1, v_2 \rangle,$$

where $c \in \mathbb{R}$.

3. Symmetry:

$$\langle v_1, v_2 \rangle = \langle v_2, v_1 \rangle.$$

- A vector space equipped with an inner product is called an **inner product space**.
- Examples of Inner Products:
 - The **dot product** in \mathbb{R}^n :

$$\langle u, v \rangle = u \cdot v = \sum_{i=1}^{n} u_i v_i.$$

– Non-standard inner product in \mathbb{R}^2 :

$$\langle u, v \rangle = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2,$$

where $u = (x_1, x_2)$ and $v = (y_1, y_2)$. This inner product is verified using matrix representation:

$$\langle u, v \rangle = u^T \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} v.$$

- Definition of Norm:
 - A norm on a vector space V is a function $\|\cdot\|:V\to\mathbb{R}$ satisfying:
 - 1. **Positivity:** $||v|| \ge 0$ for all v, and ||v|| = 0 if and only if v = 0.
 - 2. Homogeneity: ||cv|| = |c|||v|| for all scalars c.
 - 3. Triangle inequality: $||v+w|| \le ||v|| + ||w||$ for all $v, w \in V$.
 - The **Euclidean norm** (length) in \mathbb{R}^n :

$$||v|| = \sqrt{\sum_{i=1}^n v_i^2}.$$

 $-L^1$ norm in \mathbb{R}^n :

$$||v||_1 = \sum_{i=1}^n |v_i|.$$

- Relation Between Inner Product and Norm:
 - If V is an inner product space, a norm can be defined as:

$$||v|| = \sqrt{\langle v, v \rangle}.$$

- This norm satisfies all norm axioms:
 - * **Positivity:** ||v|| = 0 if and only if v = 0.
 - * Homogeneity: ||cv|| = |c|||v|| due to properties of the inner product.
 - * Triangle inequality: $||v+w||^2 \le (||v|| + ||w||)^2$ follows from expanding and bounding $\langle v+w,v+w\rangle$.

Simplified Explanation

Inner Product: A generalization of the dot product:

$$\langle u, v \rangle = u \cdot v.$$

For \mathbb{R}^2 , another example:

$$\langle u, v \rangle = x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2x_2 y_2.$$

Norm: The length of a vector can be defined as:

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Other norms, like L^1 , measure length differently:

$$||v||_1 = \sum |v_i|.$$

Connection: An inner product induces a norm that satisfies all the standard properties of length.

Conclusion

In this lecture, we:

- Defined inner products and norms on vector spaces.
- Demonstrated examples of inner products and norms in \mathbb{R}^n .
- Highlighted the relationship between inner products and norms, showing how an inner product induces a norm.

Inner products and norms extend the concepts of length and angles to general vector spaces, forming the foundation of functional analysis and advanced geometry.