Arda YAKAKAYI - 19253519

FORMAL LANGUAGES & AUTOMATA

Page 60 and 63;

2.1.2. Describe informally the languages accepted by the deterministic finite automata shown in the next page.

ANSWER:

- (a) a(ba)*. Strings with the prefix "a" followed by "ba" or "empty".
- **(b)** a*b. Strings that can be with prefix "a" or "empty" and contain "b" as "a" substring.
- (c) (a(ab)*b)*. Empty or strings that can contain sequentially infinite "ab".
- (d) (ab U ba)* . Strings containing ab or ba but not more than 1 consecutive same expression.
- (e) (aUb)*(aabUbba)(aUb)* All strings containing aab and bba as substrings.
- **2.1.3.** Construct deterministic finite automata accepting each of the following languages.
 - (a) $\{w \in \{a,b\}^* : \text{each } a \text{ in } w \text{ is immediately preceded by a } b\}$.
 - (b) $\{w \in \{a, b\}^* : w \text{ has } abab \text{ as a substring}\}.$
 - (c) $\{w \in \{a, b\}^* : w \text{ has neither } aa \text{ nor } bb \text{ as a substring}\}.$
 - (d) $\{w \in \{a,b\}^* : w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s}\}.$
 - (e) $\{w \in \{a, b\}^* : w \text{ has both } ab \text{ and } ba \text{ as substrings}\}.$

ANSWER:

(a)

$$K = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$s = q_0$$

q	a	$\delta(q,a)$
q_0	a	q_2
q_0 q_0	b	q_1
\mathbf{q}_1	a	\mathbf{q}_0
\mathbf{q}_1	b	q_1
$\begin{array}{c} q_1 \\ q_2 \\ q_2 \end{array}$	a	\mathbf{q}_2
q_2	b	\mathbf{q}_2

$$F = \{q_0, q_1\}$$

(b)

$$K = \{q_0, q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{a, b\}$$

$$s = q_0$$

$$F=q_4\\$$

q	a	$\delta(q,a)$
\mathbf{q}_0	a	q_1
\mathbf{q}_0	b	\mathbf{q}_0
\mathbf{q}_1	a	q_1
\mathbf{q}_1	b	\mathbf{q}_2
q_2	a	q_3
\mathbf{q}_2	b	\mathbf{q}_0
q ₃	a	q_1
\mathbf{q}_3	b	q_4
q ₄	a	q_4
q_4	b	q_4

(c)

$$K = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$s = q_0$$

$$F = \{q_0, q_1, q_2\}$$

q	a	$\delta(q,a)$
\mathbf{q}_0	a	q_1
q_0	b	q_2
q_1	a	\mathbf{q}_3
q_1	b	q_2
\mathbf{q}_2	a	q_1
$\frac{q_2}{q_2}$	b	\mathbf{q}_3
q_3	a	\mathbf{q}_3
\mathbf{q}_3	b	\mathbf{q}_3

q	a	$\delta(q,a)$
q_0	a	q_1
q_0	b	q_2

(d)

 $K = \{q_0, q_1, q_2, q_3\}$

 $\Sigma = \{a, b\}$

 $s = q_0$

 $F = q_1$

q_1	a	q_0
\mathbf{q}_1	b	\mathbf{q}_3
q_2	a	q_3
\mathbf{q}_2	b	\mathbf{q}_0
\mathbf{q}_3	a	q_2
\mathbf{q}_3	b	q_1

(e)

$$K = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

 $\Sigma = \{a, b\}$

 $s = q_0$

q	a	$\delta(q,a)$
q_0	a	q_1
\mathbf{q}_0	b	q_2
q_1	a	q_1
q_1	b	q_3
q_2	a	q_4
q_2	b	q_2
\mathbf{q}_3	a	q 5
\mathbf{q}_3	b	q_3
q_4	a	q_4
q ₄	b	q 5
\mathbf{q}_5	a	q_5
q_5	b	q ₅

EXTRA:

Create a DFA that meets the rule "in $\{0,1\}$ alphabet, for L(M) w | is 5 multiple of |w|." by using JFLAP.

Add a short description that explains why each condition is included and why you accept each determining whether not. (in Turkish)

ANSWER:

Regular expression : $[(0 \cup 1)(0 \cup$

İstenilen katara eklenen elemanın ne olduğu önemli olmadığı için elimizdeki alfabeden herhangi bir eleman eklenmesi gerekmektedir. 5'e kadar olan sayıları (0 da dahil) ayrı bir durumda tutmalıyız, 5 durumda yapmaya çalışırsak boş katar inputu alındığında veya 4 elemanlı bir katarda true output verir. Bu yüzden katarımızda 5'in katı kadar elemanımızın olduğunu temsil eden q5 durumu final state olur.