

# Função de custo para aprendizado robusto a injustiça

Ygor Canalli

Orientador: Geraldo Zimbrão da Silva

01 de setembro de 2021

PESC/COPPE/UFRJ

#### Table of contents

- 1. Função correção de injustiça
- 2. Estado da arte

3. Metodologia

4. Resultados

# Função correção de injustiça

### Correção de função de custo

É possível criar robustez a ruído alterando a função de custo<sup>1,2</sup>.

- Estima-se uma matriz de transição *T* capaz de descrever o ruído (NAR) de acordo com a classe
- · A correção forward de uma função de custo  $\ell()$  é definida como

$$\ell^{\to}(P(\widetilde{Y}|X)) = \ell(T^{T}P(\widetilde{Y}|X))$$

A correção backward por sua vez é definida como

$$\ell^{\leftarrow}(P(\widetilde{Y}|X)) = T^{-1}\ell(P(\widetilde{Y}|X))$$

<sup>&</sup>lt;sup>1</sup>Giorgio Patrini et al. Loss Factorization, Weakly Supervised Learning and Label Noise Robustness. Tech. rep. 2016. URL:

http://proceedings.mlr.press/v48/patrini16.pdf.

<sup>&</sup>lt;sup>2</sup>Giorgio Patrini et al. "Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach". In: July 2017, pp. 2233–2241. DOI: 10.1109/CVPR.2017.240.

# Função correção de injustiça

#### Sejam

- · X a matriz de atributos
- $\cdot$   $\widetilde{Y}$  a matriz de classes previstas em formato one hot encoding
- · S um atributo sensível em X
- $s_i \in S$  o conjunto dos grupos delimitados em S de tamanho |S|
- X<sub>Si</sub> um vetor binário indicando se cada instância em X pertence ao grupo s<sub>i</sub>
- $T_i$  a matriz de transição correspondente ao grupo  $s_i \in S$
- $\cdot$   $\ell$  uma função de custo

A função  $\ell_S()$  de correção de injustiça sobre o atributo S é dada por

$$\ell_{S}(P(\widetilde{Y}|X)) = \sum_{i=1}^{|S|} \ell(T_{i}^{T} P(\widetilde{Y}|X)) X_{S_{i}}$$

Estado da arte

#### Estado da arte

- · Otimização multiobjetivo focando no tradeoff<sup>3</sup>
- · Algoritmo personalizado de treinamento
- · 3 Parâmetros de pesos para os objetivos

$$r = AUC - \alpha \cdot ADS - \beta \cdot AEOD - \gamma \cdot AOD$$

- Avaliação de quatro datasets, um deles inédito\* no contexto de fairness
  - · Adult income (gênero)
  - · German credit (gênero e idade)
  - Hospital readmissions\* (gênero)
  - Hospital expenditures (raça)

<sup>&</sup>lt;sup>3</sup>Andrija Petrović et al. "Fair classification via Monte Carlo policy gradient method". In: Engineering Applications of Artificial Intelligence 104 (2021), p. 104398. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2021.104398. URL: https://www.sciencedirect.com/science/article/pii/S0952197621002463.

#### Estado da arte - Income Dataset



Fig. 4. Classification performance and fairness of the compared models as measured by AUC, and AOD, ASD or AEOD on the Adult income dataset.

#### Estado da arte - German Dataset (sex)



Fig. 7. Classification performance and fairness of the compared models as measured by AUC, and AOD, ASD or AEOD on the German sex dataset.

# Estado da arte - German Dataset (age)



Fig. 6. Classification performance and fairness of the compared models as measured by AUC, and AOD, ASD or AEOD on the German age dataset.

# Metodologia

#### **Datasets**

- · Experimentos nos datasets census income
  - · Classificação binária
  - · Gênero como atributo sensível
    - · Protegido: Feminino
    - · Privilegiado: Masculino
- · Experimentos nos datasets german credit
  - · Classificação binária
  - · Gênero como atributo sensível
    - · Protegido: Feminino
    - · Privilegiado: Masculino
  - · Idade como atributo sensível
    - · Protegido: <=25 anos
    - · Privilegiado: >25 anos

#### Metodologia

- · Uma matriz de transição para cada grupo
- · Testar diferentes combinações de matrizes de transição
- Medir AUC
  - · vantagem sobre acurácia em classes desbalanceadas
- · Medir métricas de injustiça
  - · absolute statistical parity difference (ASD)
  - · absolute equal opportunity difference (AEOD)
  - · average odds difference (AOD)

#### Parâmetros de na matriz de transição

- Para cada matriz de transição basta definir os valores da diagonal secundária, de forma que cada linha some 1.
- A taxa r é o fator de incerteza da previsão positiva, com efeito prático de rebaixar a classificação
- A taxa p é o fator de incerteza da previsão negativa, com efeito prático de promover a classificação

$$T = \left[ \begin{array}{cc} 1 - r & r \\ p & 1 - p \end{array} \right]$$

#### Busca por parâmetros

- Tomamos uma matriz de transição  $T_{priv}$  para a grupo privilegiado e  $T_{prot}$  para o protegido
- Buscamos combinações r<sub>priv</sub>, p<sub>priv</sub>, r<sub>prot</sub> e p<sub>prot</sub> com algoritmos de busca
- · Minimizar a métrica de injustiça
- Eliminação de soluções com desempenho abaixo de limiar estabelecido

$$T_{priv} = \begin{bmatrix} 1 - r_{priv} & r_{priv} \\ p_{priv} & 1 - p_{priv} \end{bmatrix}, \quad T_{prot} = \begin{bmatrix} 1 - r_{prot} & r_{prot} \\ p_{prot} & 1 - p_{prot} \end{bmatrix}$$

# Busca por parâmetros com algoritmo genético

- Genes:  $[r_{priv}, p_{priv}, r_{prot}, p_{prot}]$
- Espaço de busca: 0.0, 0.01, 0.02, ..., 0.98, 0.99, 1.0
- · Aptidão: métrica de injustiça no conjunto de teste
  - Arquitetura

$$\begin{split} & \mathsf{Input} \to \mathsf{Dropout}(0.2) \\ & \to \mathsf{Dense}(32) \to \mathsf{ReLU} \\ & \to \mathsf{Dense}(64) \to \mathsf{ReLU} \\ & \to \mathsf{Dense}(32) \to \mathsf{ReLU} \\ & \to \mathsf{Dense}(2) \to \mathsf{Softmax} \to \mathsf{Output} \end{split}$$

- · Divisão: Treino/Validação/Teste
- · 10 épocas
- · Se AUC < limiar: aptidão é 0
- Se AUC >= limiar: aptidão é 1/metrica

# Busca por parâmetros com algoritmo genético

- · População por geração: 8
- · Selecionados por geração: 4
- · Técnica de seleção: steady state
- · Primeira geração: aleatória
- · Taxa de mutação: 10%
- · Elitismo: 2 melhores soluções
- · Gerações: 50

# Resultados

#### Resultados - Income Dataset

| $r_{priv}$ | $p_{priv}$ | r <sub>prot</sub> | $p_{prot}$ | AOD     | std     | AUC     | std     |
|------------|------------|-------------------|------------|---------|---------|---------|---------|
| 0.66       | 0.08       | 0.07              | 0.15       | 0.00068 | 0       | 0.85514 | 0       |
| 0.64       | 0          | 0                 | 0          | 0.00637 | 0.00339 | 0.8002  | 0.01124 |
| 0.59       | 0          | 0                 | 0.17       | 0.0074  | 0.00569 | 0.81947 | 0.0059  |
| 0.56       | 0.23       | 0.07              | 0.69       | 0.00761 | 0.00472 | 0.86854 | 0.00325 |
| 0.64       | 0.3        | 0.07              | 0.69       | 0.00764 | 0.00287 | 0.84599 | 0.00781 |
| 0.59       | 0          | 0                 | 0.29       | 0.00981 | 0.00689 | 0.8154  | 0.00633 |
| 0.59       | 0          | 0                 | 0.1        | 0.01057 | 0.0055  | 0.82392 | 0.00519 |
| 0.59       | 0.08       | 0.13              | 0.55       | 0.01162 | 0.00428 | 0.88348 | 0.00334 |
| 0.29       | 0.33       | 0                 | 0.89       | 0.01246 | 0.00778 | 0.85321 | 0.00246 |
| 0.59       | 0          | 0                 | 0.05       | 0.01281 | 0.00409 | 0.81965 | 0.00568 |

Table 1: Melhores resultados de AOD no Income Dataset

#### Estado da arte - Income Dataset



Figure 1: Estado da arte do AOD no Income Dataset

#### Resultados - German Dataset (sex)

| r <sub>priv</sub> | $p_{priv}$ | r <sub>prot</sub> | $p_{prot}$ | AOD     | std     | AUC     | std     |
|-------------------|------------|-------------------|------------|---------|---------|---------|---------|
| 0.18              | 0.24       | 0.13              | 0.28       | 0.01471 | 0.00368 | 0.73212 | 0.00454 |
| 0.29              | 0.39       | 0.14              | 0.28       | 0.019   | 0.01777 | 0.71992 | 0.0012  |
| 0.29              | 0.24       | 0.13              | 0.18       | 0.02037 | 0.02138 | 0.73478 | 0.01464 |
| 0.41              | 0.3        | 0.14              | 0.28       | 0.02512 | 0.00797 | 0.74253 | 0.00299 |
| 0.07              | 0.24       | 0.67              | 0.49       | 0.02819 | 0.02696 | 0.70617 | 0.01351 |
| 0.48              | 0.3        | 0.41              | 0.49       | 0.03094 | 0.01952 | 0.72411 | 0.01419 |
| 0.24              | 0.24       | 0.13              | 0.28       | 0.03248 | 0.00674 | 0.74468 | 0.00371 |
| 0.07              | 0.24       | 0.42              | 0.49       | 0.03248 | 0.03658 | 0.72339 | 0.01724 |
| 0.29              | 0.3        | 0.14              | 0.28       | 0.03309 | 0.0049  | 0.7259  | 0.00144 |
| 0.47              | 0.39       | 0.25              | 0.28       | 0.03411 | 0.02618 | 0.72216 | 0.00889 |

Table 2: Melhores resultados de AOD no German Dataset (sex)

#### Estado da arte - German Dataset (sex)



Figure 2: Estado da arte do AOD no German Dataset (sex)

## Resultados - German Dataset (age)

| r <sub>priv</sub> | $p_{priv}$ | r <sub>prot</sub> | $p_{prot}$ | AOD     | std     | AUC     | std     |
|-------------------|------------|-------------------|------------|---------|---------|---------|---------|
| 0.45              | 0.42       | 0.06              | 0.35       | 0.0214  | 0.01399 | 0.71143 | 0.01173 |
| 0.46              | 0.06       | 0.25              | 0.18       | 0.02419 | 0.02047 | 0.73643 | 0.00072 |
| 0.45              | 0.42       | 0.62              | 0.35       | 0.02481 | 0.02481 | 0.70043 | 0.01399 |
| 0.32              | 0.3        | 0.13              | 0.18       | 0.02492 | 0.01498 | 0.72865 | 0.00751 |
| 0.15              | 0.23       | 0.2               | 0.19       | 0.02605 | 0.01923 | 0.74133 | 0.00993 |
| 0.36              | 0.37       | 0.13              | 0.3        | 0.0273  | 0.02012 | 0.72626 | 0.00966 |
| 0.22              | 0.21       | 0.17              | 0.18       | 0.02776 | 0.00912 | 0.7314  | 0.0061  |
| 0.32              | 0.33       | 0.13              | 0.18       | 0.02931 | 0.02528 | 0.7277  | 0.01151 |
| 0.36              | 0.06       | 0.13              | 0.15       | 0.0304  | 0.01985 | 0.74384 | 0.00813 |
| 0.17              | 0.23       | 0.06              | 0.19       | 0.0304  | 0.00124 | 0.73116 | 0.01913 |

Table 3: Melhores resultados de AOD no German Dataset (age)

## Estado da arte - German Dataset (age)



Figure 3: Estado da arte do AOD no German Dataset (age)