# COMP9418: Advanced Topics in Statistical Machine Learning

# Learning Bayesian Networks Structure with Maximum Likelihood

Instructor: Gustavo Batista

**University of New South Wales** 

#### Introduction

- So far, we have assumed we know the structure of a Bayesian network
  - We were mostly concerned with estimating its parameters
  - The main approach for this estimation has been the search for ML estimates
  - That is, the ones that maximize the probability of observing a given dataset
- Now, we assume the network structure is unknown
  - We want to learn the structure from a given dataset
- We adopt the same approach for parameter estimation
  - That is, we search for network structures that maximize the probability of observing a given dataset
  - We start with this approach and show it leads to a general class of scoring functions for network structures
- We focus on learning structures from complete data
  - Dealing with incomplete data is similar but much more demanding computationally

#### Introduction

#### Consider the Bayesian network on the right

 Remind that in the previous lecture, we defined the loglikelihood of a structure G as

$$LL(G; \mathcal{D}) \stackrel{\text{def}}{=} \log L(\theta^{ml}; \mathcal{D})$$

• For the dataset  $\mathcal{D}$ , we can compute  $LL(G; \mathcal{D})$  as

$$LL(G; \mathcal{D}) = \log \prod_{i=1}^{5} P_{\theta^{ml}}(\boldsymbol{d}_i) = \sum_{i=1}^{5} \log P_{\theta^{ml}}(\boldsymbol{d}_i)$$

| $\mathcal{D}$ | A | В | С         | D         | $P_{\theta^{ml}}(\boldsymbol{d})$                              | i)                     | $\log P_{\theta^{ml}}(\boldsymbol{d}_i)$ |
|---------------|---|---|-----------|-----------|----------------------------------------------------------------|------------------------|------------------------------------------|
| 1             | a | b | $\bar{c}$ | d         | $^{3}/_{4} \times ^{3}/_{4} \times ^{4}/_{5} \times ^{1}/_{4}$ | .1125                  | -3.15                                    |
| 2             | a | b | $\bar{c}$ | $\bar{d}$ | $^{3}/_{4} \times ^{3}/_{4} \times ^{4}/_{5} \times ^{3}/_{4}$ | .3375                  | -1.57                                    |
|               |   |   |           |           | $^{1}/_{4} \times ^{1}/_{4} \times ^{4}/_{5} \times 1$         | .05                    | -4.32                                    |
|               |   |   |           |           | $1 \times 1 \times \frac{1}{5} \times \frac{3}{4}$             | .15                    | -2.74                                    |
| 5             | a | b | $\bar{c}$ | $\bar{d}$ | $3/_4 \times 3/_4 \times 4/_5 \times 3/_4$                     | .3375                  | -1.57                                    |
|               |   |   |           |           |                                                                | $LL(G; \mathcal{D}) =$ | -13.35                                   |

| A         | В              | $	heta_{b a}^{ml}$ | A            |
|-----------|----------------|--------------------|--------------|
| a         | b              | 3/4                |              |
| a         | $\overline{b}$ | 1/4                | (R)          |
| $\bar{a}$ | b              | 1                  |              |
| $\bar{a}$ | $\overline{b}$ | 0                  | <u>\psi_</u> |
|           |                |                    |              |

| A         | С         | $\theta_{c a}^{ml}$ |
|-----------|-----------|---------------------|
| a         | С         | 1/4                 |
| а         | $\bar{C}$ | 3/4                 |
| $\bar{a}$ | С         | 1                   |
| $\bar{a}$ | $\bar{C}$ | 0                   |

|               |           | •              |                |         |  |
|---------------|-----------|----------------|----------------|---------|--|
| $\mathcal{D}$ | A         | В              | С              | D       |  |
| 1             | a         | b              | $\overline{c}$ | d       |  |
| 2             | a         | b              | $\bar{c}$      | $ar{d}$ |  |
| 3             | a         | $\overline{b}$ | С              | d       |  |
| 4             | $\bar{a}$ | b              | С              | $ar{d}$ |  |
| 5             | a         | b              | $\bar{c}$      | $ar{d}$ |  |

| A         | $\theta_a^{ml}$ |
|-----------|-----------------|
| a         | 4/5             |
| $\bar{a}$ | 1/5             |

| B              | D       | $	heta_{b d}^{ml}$ |
|----------------|---------|--------------------|
| b              | d       | 1/4                |
| b              | $ar{d}$ | 3/4                |
| $\overline{b}$ | d       | 1                  |
| $\overline{b}$ | $ar{d}$ | 0                  |
|                |         | 3                  |

#### Introduction

- Now, consider this alternate network structure  $G^*$  and ML estimates
  - Let us compute the log-likelihood of this network for the same dataset

| $\mathcal{D}$ | A         | В              | С         | D         | $P_{\theta^{ml}}(d)$                                           | $(v_i)$                  | $\log P_{\theta^{ml}}(\boldsymbol{d}_i)$ |
|---------------|-----------|----------------|-----------|-----------|----------------------------------------------------------------|--------------------------|------------------------------------------|
| 1             | a         | b              | $\bar{c}$ | d         | $^{3}/_{4} \times ^{3}/_{4} \times ^{4}/_{5} \times ^{1}/_{2}$ | .225                     | -2.15                                    |
| 2             | a         | b              | $\bar{c}$ | $\bar{d}$ | $^{3}/_{4} \times ^{3}/_{4} \times ^{4}/_{5} \times ^{1}/_{2}$ | .225                     | -2.15                                    |
| 3             | a         | $\overline{b}$ | С         | d         | $^{1}/_{4} \times ^{1}/_{4} \times ^{4}/_{5} \times ^{1}/_{2}$ | .025                     | -5.32                                    |
| 4             | $\bar{a}$ | b              | С         | $\bar{d}$ | $1\times1\times\frac{1}{5}\times1$                             | .2                       | -2.32                                    |
| 5             | a         | b              | $\bar{c}$ | $\bar{d}$ | $3/_4 \times 3/_4 \times 4/_5 \times 1/_2$                     | .225                     | -2.15                                    |
|               |           |                |           |           |                                                                | $LL(G^*; \mathcal{D}) =$ | -14.09                                   |

- As  $LL(G^*; \mathcal{D}) < LL(G; \mathcal{D})$ , we prefer G to  $G^*$ 
  - Our goal is to search for a maximum likelihood structure

| A         | В              | $\theta_{b a}^{ml}$ | A         |
|-----------|----------------|---------------------|-----------|
| а         | b              | 3/4                 |           |
| а         | $\overline{b}$ | 3/4<br>1/4          | K X X     |
| ā         | b              | 1                   | (B)(C)(D) |
| $\bar{a}$ | $\overline{b}$ | 0                   |           |

| A         | С              | $\theta_{c a}^{ml}$ |
|-----------|----------------|---------------------|
| a         | С              | 1/4                 |
| a         | $\bar{C}$      | 3/4                 |
| $\bar{a}$ | С              | 1                   |
| ā         | $\overline{C}$ | 0                   |

| $\mathcal{D}$ | A         | В              | $\overline{C}$ | D         |
|---------------|-----------|----------------|----------------|-----------|
| 1             | a         | b              | $\overline{c}$ | d         |
| 2             | a         | b              | $\bar{c}$      | $ar{d}$   |
| 3             | a         | $\overline{b}$ | С              | d         |
| 4             | $\bar{a}$ | b              | С              | $\bar{d}$ |
| 5             | a         | b              | $\bar{c}$      | $\bar{d}$ |

$$\begin{array}{c|c}
A & \theta_a^{ml} \\
\hline
a & 4/5 \\
\hline
\bar{a} & 1/5
\end{array}$$

| A         | D         | $\theta_{d a}^{ml}$ |
|-----------|-----------|---------------------|
| a         | d         | 1/2                 |
| a         | $\bar{d}$ | 1/2                 |
| $\bar{a}$ | d         | 0                   |
| $\bar{a}$ | $ar{d}$   | 1                   |
|           |           | 4                   |

- We start exploring an algorithm based on a scoring measure for tree structures
  - Therefore each node will have at most one parent
  - The scoring function is expressed in terms of mutual information
- Mutual information between variables X and U
  - It is a measure of dependence between these variables in a distribution
  - Our scoring measure is based on mutual information in the empirical distribution
- Given a tree structure G with edges  $U \to X$ 
  - The scoring function is given by
  - The score is the addition of MI between every variable and its single parent in the tree structure

$$MI_{\mathcal{D}}(X, U) \stackrel{\text{def}}{=} \sum_{x, u} P_{\mathcal{D}}(x, u) \log \frac{P_{\mathcal{D}}(x, u)}{P_{\mathcal{D}}(x) P_{\mathcal{D}}(u)}$$

$$tScore(G; \mathcal{D}) \stackrel{\text{def}}{=} \sum_{U \to X} MI_{\mathcal{D}}(X, U)$$

- We can show that trees having a maximal likelihood are those trees that maximize tScore
  - That is, if G is a tree structure, and  $\mathcal{D}$  is a complete dataset, then
  - Therefore, we can find a maximum likelihood tree using an algorithm for computing maximum spanning trees
    - This is known as the Chow-Liu algorithm
    - We will discuss this algorithm shortly
    - But before that, lets us understand the relationship between tScore and maximum log-likelihood

 $argmax_G \ tScore(G; \mathcal{D}) = argmax_G \ LL(G; \mathcal{D})$ 

# tScore and Maximum Log-likelihood

- Let us remind the definitions of
  - Entropy
  - Conditional entropy, and
  - Mutual information
- Also, remember from the previous lecture that the log-likelihood decomposes into components
  - Each component is a conditional entropy
- Expanding MI and substituting the definitions of entropy and conditional entropy leads to
  - $MI_{\mathcal{D}}(X, \mathbf{U}) = H_{\mathcal{D}}(X) H_{\mathcal{D}}(X|\mathbf{U})$

$$H_{\mathcal{D}}(X) \stackrel{\text{def}}{=} -\sum_{x} P_{\mathcal{D}}(x) \log P_{\mathcal{D}}(x)$$

$$H_{\mathcal{D}}(X|\boldsymbol{U}) \stackrel{\text{def}}{=} -\sum_{x,\boldsymbol{u}} P_{\mathcal{D}}(x,\boldsymbol{u}) \log P_{\mathcal{D}}(x|\boldsymbol{u})$$

$$MI_{\mathcal{D}}(X, \boldsymbol{U}) \stackrel{\text{def}}{=} \sum_{x, \boldsymbol{u}} P_{\mathcal{D}}(x, \boldsymbol{u}) \log \frac{P_{\mathcal{D}}(x, \boldsymbol{u})}{P_{\mathcal{D}}(x) P_{\mathcal{D}}(\boldsymbol{u})}$$

$$LL(G; \mathcal{D}) = -N \sum_{XU} H_{\mathcal{D}}(X|U)$$

#### tScore and Log ML

Therefore,

$$LL(G; \mathcal{D}) = -N \sum_{XU} H_{\mathcal{D}}(X|U)$$

$$= -N \sum_{XU} (H_{\mathcal{D}}(X) - MI_{\mathcal{D}}(X, U))$$

$$= -N \sum_{XU} H_{\mathcal{D}}(X) + N \sum_{XU} M I_{\mathcal{D}}(X, U)$$

■ Note that neither N nor the term  $-N \sum_{XU} H_{\mathcal{D}}(X)$  depend on the tree structure G. Hence,

$$argmax_G \ LL(G;\mathcal{D}) = argmax_G \sum_{XU} MI_{\mathcal{D}}(X,U) = argmax_G \ tScore(G;\mathcal{D})$$

$$H_{\mathcal{D}}(X) \stackrel{\text{def}}{=} -\sum_{x} P_{\mathcal{D}}(x) \log P_{\mathcal{D}}(x)$$

$$H_{\mathcal{D}}(X|\boldsymbol{U}) \stackrel{\text{def}}{=} -\sum_{x,\boldsymbol{u}} P_{\mathcal{D}}(x,\boldsymbol{u}) \log P_{\mathcal{D}}(x|\boldsymbol{u})$$

$$MI_{\mathcal{D}}(X, \mathbf{U}) \stackrel{\text{def}}{=} \sum_{x, \mathbf{u}} P_{\mathcal{D}}(x, \mathbf{u}) \log \frac{P_{\mathcal{D}}(x, \mathbf{u})}{P_{\mathcal{D}}(x) P_{\mathcal{D}}(\mathbf{u})}$$

$$LL(G; \mathcal{D}) = -N \sum_{XU} H_{\mathcal{D}}(X|U)$$

$$MI_{\mathcal{D}}(X, \mathbf{U}) = H_{\mathcal{D}}(X) - H_{\mathcal{D}}(X|\mathbf{U})$$

- Let us return to the algorithm for learning ML tree structures using tScore
  - We illustrate this algorithm for variables A, B, C and D and the dataset on the right
- The first step is constructing a complete, undirected graph over all variables
  - The cost of each edge is the mutual information between the two nodes connected by the edge
  - Let us detail the computation for edge A B

| $\mathcal{D}$ | A         | В              | $\mathcal{C}$  | D         |
|---------------|-----------|----------------|----------------|-----------|
| 1             | a         | b              | $\overline{C}$ | d         |
| 2             | a         | b              | $\bar{c}$      | $ar{d}$   |
| 3             | a         | $\overline{b}$ | С              | d         |
| 4             | $\bar{a}$ | b              | С              | $ar{d}$   |
| 5             | a         | b              | Ē              | $\bar{d}$ |



$$\begin{split} MI_{\mathcal{D}}(X,U) &\stackrel{\text{def}}{=} \sum_{x,u} P_{\mathcal{D}}(x,u) \log \frac{P_{\mathcal{D}}(x,u)}{P_{\mathcal{D}}(x)P_{\mathcal{D}}(u)} \\ &= P_{\mathcal{D}}(a,b) \log \frac{P_{\mathcal{D}}(a,b)}{P_{\mathcal{D}}(a)P_{\mathcal{D}}(b)} + P_{\mathcal{D}}(a,\bar{b}) \log \frac{P_{\mathcal{D}}(a,\bar{b})}{P_{\mathcal{D}}(a)P_{\mathcal{D}}(\bar{b})} \\ &= P_{\mathcal{D}}(\bar{a},b) \log \frac{P_{\mathcal{D}}(\bar{a},b)}{P_{\mathcal{D}}(\bar{a})P_{\mathcal{D}}(b)} + P_{\mathcal{D}}(\bar{a},\bar{b}) \log \frac{P_{\mathcal{D}}(\bar{a},\bar{b})}{P_{\mathcal{D}}(\bar{a})P_{\mathcal{D}}(\bar{b})} \end{split}$$

| A           | В              | P(A,B)                      | P(A)                        | P(B)                        | R(A,B) | $\log R(A,B)$             | $P \log R(A, B)$ |
|-------------|----------------|-----------------------------|-----------------------------|-----------------------------|--------|---------------------------|------------------|
| a           | b              | $^{3}/_{5}$                 | <sup>4</sup> / <sub>5</sub> | <sup>4</sup> / <sub>5</sub> | .94    | 09                        | 054              |
| a           | $\overline{b}$ | $^{1}/_{5}$                 | $^{4}/_{5}$                 | $^{1}/_{5}$                 | 1.25   | .32                       | .064             |
| $ \bar{a} $ | b              | $^{1}/_{5}$                 | $^{1}/_{5}$                 | $^{4}/_{5}$                 | 1.25   | .32                       | .064             |
| $\bar{a}$   | $\overline{b}$ | <sup>0</sup> / <sub>5</sub> | $\frac{1}{5}$               | $\frac{1}{5}$               | 0      | -∞                        | 0                |
|             |                |                             |                             |                             |        | $MI_{\mathcal{D}}(A,B) =$ | .074             |

| $\mathcal{D}$ | A           | В              | С              | D         |
|---------------|-------------|----------------|----------------|-----------|
| 1             | a           | b              | $\overline{C}$ | d         |
| 2             | a           | b              | $\bar{c}$      | $ar{d}$   |
| 3             | a           | $\overline{b}$ | С              | d         |
| 4             | $ \bar{a} $ | b              | С              | $\bar{d}$ |
| 5             | a           | b              | $\bar{c}$      | $\bar{d}$ |



- The first step is constructing a complete, undirected graph over all variables
  - The cost of each edge is the mutual information between the two nodes connected by the edge
  - We compute the spanning tree with maximal cost
    - The cost of the tree is just the sum of costs associated with its edges
    - The algorithm for maximum spanning tree is a trivial adaptation of algorithms for minimum spanning tree such as Prim and Kruskal
- This method generates an undirected spanning tree
  - It coincides with several directed trees
  - We can choose any of these trees by selecting a node as root and directing edges away from the root
- The resulting trees are guaranteed to have a maximal likelihood among all tree structures

| $\mathcal{D}$ | A         | В              | С              | D         |
|---------------|-----------|----------------|----------------|-----------|
| 1             | a         | b              | $\overline{C}$ | d         |
| 2             | a         | b              | $\bar{c}$      | $ar{d}$   |
| 3             | a         | $\overline{b}$ | С              | d         |
| 4             | $\bar{a}$ | b              | С              | $ar{d}$   |
| 5             | a         | b              | $\bar{c}$      | $\bar{d}$ |



# Learning Tree Structures: Prim



#### Learning Tree Structures: Prim



Log-likelihood: -12.1

- Given a tree, we can compute the log-likelihood by
  - Computing the probability of each case in the dataset, as we did in slide 7
  - Or use the following equation that shows the log-likelihood corresponds to a sum of terms, one for each family in the network

$$LL(G; \mathcal{D}) = -N \sum_{XU} H_{\mathcal{D}}(X|U)$$

For this network, we have

$$LL(G; \mathcal{D})$$
=  $-N(H_{\mathcal{D}}(A|C) + H_{\mathcal{D}}(B) + H_{\mathcal{D}}(C|B) + H_{\mathcal{D}}(D|B))$   
=  $-5(.400 + .722 + .649 + .649)$   
=  $-12.1$ 

- Notice the terms correspond to families of the tree structure
  - AC, B, CB, and DB

| $\mathcal{D}$ | A         | В              | $\mathcal{C}$  | D         |
|---------------|-----------|----------------|----------------|-----------|
| 1             | a         | b              | $\overline{c}$ | d         |
| 2             | a         | b              | $\bar{c}$      | $ar{d}$   |
| 3             | a         | $\overline{b}$ | С              | d         |
| 4             | $\bar{a}$ | b              | С              | $ar{d}$   |
| 5             | a         | b              | $\bar{c}$      | $\bar{d}$ |



#### Learning Tree Structures: Example

 Tree learned from ICU-Alarm network data

Not every edge in tree is in the original network

Inferred edges are undirected



#### Learning DAG Structures

- Suppose now our goal is to find a maximum likelihood structure
  - Without restricting to tree structures
- For example, consider the tree structure obtained in the previous slide plus the edge  $D \to A$ 
  - The log-likelihood of this DAG is

$$LL(G; \mathcal{D})$$
=  $-N(H_{\mathcal{D}}(A|C,D) + H_{\mathcal{D}}(B) + H_{\mathcal{D}}(C|B) + H_{\mathcal{D}}(D|B))$   
=  $-5(0 + .722 + .649 + .649)$   
=  $-10.1$ 

Which is larger than the log-likelihood of the tree



#### Learning DAG Structures

- Notice the only difference between the two likelihoods is the entropy for variable A
  - This is the only variable with different families in the two structures
  - The family of A is AC in the tree and ACD in the DAG

$$H_{\mathcal{D}}(A|C,D) < H_{\mathcal{D}}(A|C)$$

Hence

$$-H_{\mathcal{D}}(A|C,D) > -H_{\mathcal{D}}(A|C)$$

- Which is why the DAG has larger log-likelihood than the tree
- However, this result is not completely accidental
  - We can show that if  $U \subseteq U^*$ , then  $H_{\mathcal{D}}(X|U) \ge H_{\mathcal{D}}(X|U^*)$
- Adding more parents to a variable never increases the entropy term
  - Therefore, never decreases the log-likelihood of the resulting structure



# Learning DAG Structures and Overfitting

- Therefore, if a DAG  $G^*$  is the result of adding edges to a DAG G, then  $LL(G^*; \mathcal{D}) \geq LL(G; \mathcal{D})$
- If we simply search for a network structure with maximal likelihood
  - We end up choosing a complete network structure
  - That is, a DAG to which no more edges can be added without introducing cycles
- Complete DAGs are undesirable for several reasons
  - They make no assertions of conditional independence
  - Their topology does not reveal any properties of the distribution they induce
  - A complete DAG over n variables has treewidth of n-1
  - Complete DAGs suffer of the problem of overfitting: the use of a model that has too many parameters compared to the available data



## Overfitting

- In summary, the problem of overfitting occurs when
  - We focus on learning a model that fits the data well
  - Without constraining enough the number of free model parameters
- The result is that we end up adopting models that are more complex than necessary
  - Such models tend to have poor generalization performance
  - That is, they perform poorly on cases that are not part of the dataset
- There is no agreed upon solution for overfitting
  - However, the available solutions are based on the principle of Occam's Razor
  - Which states we should prefer simpler models, other things being equal



- To realize Occam's razor principle, we need
  - A measure of model complexity
  - A method for balancing model complexity and data fit
- A common choice for model complexity is the number of independent parameters in the model
  - This gives us the following measure of complexity
- Let G be a DAG over variables  $X_1, \dots, X_n$  with corresponding parents  $U_1, \dots, U_n$  and let  $Y^\#$  denote the number of instantiations for variables Y
  - The dimension of G is defined as
  - Therefore, the dimension of a DAG is equal to the number of independent parameters in its CPTs

$$||G|| \stackrel{\text{def}}{=} \sum_{i}^{N} ||X_{i} \mathbf{U}_{i}||$$

$$||X_{i} \mathbf{U}_{i}|| \stackrel{\text{def}}{=} (X_{i}^{\#} - 1) \mathbf{U}_{i}^{\#}$$

- For example, the dimension of this DAG considering all binary variables is
  - ||B|| = 1, ||CB|| = 2, ||DB|| = 2, ||AC|| = 2. Total = 7



$$||G|| \stackrel{\text{def}}{=} \sum_{i}^{N} ||X_{i} \mathbf{U}_{i}||$$
$$||X_{i} \mathbf{U}_{i}|| \stackrel{\text{def}}{=} (X_{i}^{\#} - 1) \mathbf{U}_{i}^{\#}$$

- For example, the dimension of this DAG considering all binary variables is
  - $\|B\| = 1, \|CB\| = 2, \|DB\| = 2, \|AC\| = 2.$  Total = 7
  - ||B|| = 1, ||CB|| = 2, ||DB|| = 2, ||ACD|| = 4. Total = 9



$$||G|| \stackrel{\text{def}}{=} \sum_{i}^{N} ||X_{i} \boldsymbol{U}_{i}||$$
$$||X_{i} \boldsymbol{U}_{i}|| \stackrel{\text{def}}{=} (X_{i}^{\#} - 1) \boldsymbol{U}_{i}^{\#}$$

- For example, the dimension of this DAG considering all binary variables is
  - ||B|| = 1, ||CB|| = 2, ||DB|| = 2, ||AC|| = 2. Total = 7
  - ||B|| = 1, ||CB|| = 2, ||DB|| = 2, ||ACD|| = 4. Total = 9
  - ||B|| = 1, ||CBD|| = 4, ||DB|| = 2, ||ABCD|| = 8. Total = 15



$$||G|| \stackrel{\text{def}}{=} \sum_{i}^{N} ||X_{i} \boldsymbol{U}_{i}||$$
$$||X_{i} \boldsymbol{U}_{i}|| \stackrel{\text{def}}{=} (X_{i}^{\#} - 1) \boldsymbol{U}_{i}^{\#}$$

- For example, the dimension of this DAG considering all binary variables is
  - ||B|| = 1, ||CB|| = 2, ||DB|| = 2, ||AC|| = 2. Total = 7
  - ||B|| = 1, ||CB|| = 2, ||DB|| = 2, ||ACD|| = 4. Total = 9
  - ||B|| = 1, ||CBD|| = 4, ||DB|| = 2, ||ABCD|| = 8. Total = 15
- Using this notion of model complexity, we can define the following class of scoring measures

$$Score(G; \mathcal{D}) \stackrel{\text{def}}{=} LL(G; \mathcal{D}) - \psi(N) \cdot ||G||$$

- The first component is the log-likelihood of the graph *G*
- The second one  $\psi(N) \cdot ||G||$  is a penalty term that favours simple models
- The penalty term has a weight,  $\psi(N) \geq 0$ , that is a function of the dataset size N



$$||G|| \stackrel{\text{def}}{=} \sum_{i}^{N} ||X_{i} \mathbf{U}_{i}||$$
$$||X_{i} \mathbf{U}_{i}|| \stackrel{\text{def}}{=} (X_{i}^{\#} - 1) \mathbf{U}_{i}^{\#}$$

## Scoring Measures

- When the penalty weight  $\psi(N)$  is a constant independent of N
  - We obtain a score in which the model's complexity is a secondary issue
  - The log-likelihood function  $LL(G; \mathcal{D})$  grows linearly in the dataset size N
  - Therefore the log-likelihood will quickly dominate the penalty term
  - The model complexity will be used to distinguish between models that have relatively equal loglikelihood terms
  - This scoring measure is known as *Akaike information criterion* (AIC)
- A more common choice is  $\psi(N) = \frac{\log_2 N}{2}$ , which leads to a more influential term
  - $\blacksquare$  However, this term grows logarithmically in N, while the log-likelihood term grows linearly
  - The influence of model complexity decreases as N grows, allowing the log-likelihood eventually dominate
  - This penalty weight gives rise to the *minimum description length* (MDL) score

# Minimum Description Length (MDL)

Minimum Description Length (MDL) score

$$MDL(G; \mathcal{D}) \stackrel{\text{def}}{=} LL(G; \mathcal{D}) - \left(\frac{\log_2 N}{2}\right) \|G\|$$

For example, the network on the top has the following MDL score

$$= -12.1 - \left(\frac{\log_2 5}{2}\right) 7$$

$$= -12.1 - 8.1$$

$$= -20.2$$

For example, the network on the bottom has the following MDL score

$$= -10.1 - \left(\frac{\log_2 5}{2}\right) 9$$
$$= -10.1 - 10.4$$
$$= -20.5$$





# Minimum Description Length (MDL)

Minimum Description Length (MDL) score

$$MDL(G; \mathcal{D}) \stackrel{\text{def}}{=} LL(G; \mathcal{D}) - \left(\frac{\log_2 N}{2}\right) \|G\|$$

- For example, the network on the top has the following MDL score = -20.2
- For example, the network on the bottom has the following MDL score = -20.5
- Therefore, MDL score prefers the top network even though it has smaller log-likelihood
- The MDL score is also known as Bayesian information criterion (BIC)
  - It is sometimes expressed as the negative of the score above
  - The goal becomes to minimize the score instead of maximizing it



#### Searching for Network Structure

- Searching for a network structure can be quite expensive
  - Due to the very large number of structures we need to consider
  - Greedy algorithms tend to be more practical when learning structures
  - Systematic search algorithms can be practical under some conditions
- Both classes of algorithms rely for their efficiency on a property of scoring functions
  - Most score functions are decomposable or modular
  - They allow to decompose the score into an aggregate of local scores
  - One for each network family

#### Searching for Network Structure

For instance, the class of scores

$$Score(G; \mathcal{D}) \stackrel{\text{def}}{=} LL(G; \mathcal{D}) - \psi(N) \cdot ||G||$$

can be decomposed as

$$Score(G; \mathcal{D}) = \sum_{XU} Score(X, U; G)$$

where

$$Score(X, \mathbf{U}; \mathcal{D}) \stackrel{\text{def}}{=} -N \cdot H_{\mathcal{D}}(X|\mathbf{U}) - \psi(N) \cdot ||X\mathbf{U}||$$

- Note how the score is a sum of local scores, each for some family XU
- The contribution of each family is split into two parts
  - One resulting from a decomposition of the log-likelihood component of the score
  - The other resulting from a decomposition of the penalty component
  - This decomposition enables several efficient implementations of heuristic and optimal search algorithms

#### **Local Search**

- We can search for network structure by starting with some initial structure
  - Then modify it locally to increase its score
  - The initial structure can be chosen randomly, based on some prior knowledge, or can be a tree structure as discussed previously
- The local modifications to the structure are constrained to
  - Adding an edge
  - Removing an edge
  - Reversing an edge while ensuring the structure remains a DAG
- These local changes to the network structure also change the score
  - Possibly increasing or decreasing it
  - However, the goal is to commit to the change that increases the score the most
  - If none of the local changes can increase the score, the algorithm terminates and returns the current structure



#### Local Search

- Some observations about this local search algorithm
  - It is not guaranteed to return an optimal network structure
  - The only guarantee provided by the algorithm is that the returned structure is locally optimal
  - That is, no local change can improve its score
- This suboptimal behaviour can be improved by techniques such as random restarts
  - We repeat the local search multiple times, each time starting with a different network
  - Return the network with the best score across all repetitions



#### Local Search

- Another observation relates to score updating
  - Consider the networks G (centre) and  $G^*$  (after removing edge  $A \rightarrow B$ )
  - Since this change affects only the family of node *B*, we have

$$Score(G^*; \mathcal{D}) = Score(G; \mathcal{D}) - Score(B, A; \mathcal{D}) + Score(B; \mathcal{D})$$

- That is, we discount the contribution of B's old family and add the contribution of B's new family
- More generally, adding or removing one edge changes only one family, while reversing an edge changes only two families
  - The score can always be updated locally as a result of the local network change



#### Constraining the Search Space

- A technique for reducing the search space size is to assume a total ordering on variables
  - Search only among network structures that are consistent with the chosen order
  - For instance, we use variable order  $X_1, \dots, X_n$
  - The search process tries to find for each variable  $X_i$  a set of parents  $U_i \subseteq X_1, ..., X_{i-1}$
- This technique also allows us to decompose the search into n independent problems
  - Each concerned with finding a set of parents for some network variable
  - That is, the search problem reduces to considering each variable  $X_i$  independently
  - And then finding a set of parents  $U_i \subseteq X_1, ..., X_{i-1}$  that maximize  $Score(X_i, U_i; \mathcal{D})$
- We discuss greedy and optimal methods for maximizing these local scores



#### **Greedy Search**

- A well-known heuristic algorithm for optimizing a family score is known as K3
  - It starts with an empty set of parents
  - Successively add variables to the set one at a time
  - Until such additions no longer increase the score
- For example, we want to find a set of parents for  $X_5$  from  $X_1$ , ...  $X_4$ 
  - We start with  $U_5 = \emptyset$ , and try to find  $X_i$  that maximizes  $Score(X_5, X_i; \mathcal{D}) \geq Score(X_5; \mathcal{D})$
  - Suppose  $X_3$  is such a variable, then  $U_5 = \{X_3\}$  and we search for another variable  $X_i$  that maximizes

$$Score(X_5, X_3, X_i; \mathcal{D}) \ge Score(X_5, X_3; \mathcal{D})$$

- Suppose  $X_2$  happens to be such a variable, then  $U_5 = \{X_2, X_3\}$
- If no other variable can improve the score, then K3 terminates with  $U_5=\{X_2,X_3\}$  as the parent set for  $X_5$



#### **Greedy Search**

- K3 is not guaranteed to identify the optimal set of parents
  - That is, the one that maximizes  $Score(X_i, U_i; \mathcal{D})$
- Therefore, it is common to use the output of this algorithm as a starting point for other algorithms
  - Such as the local search algorithm discussed previously
  - Or the optimal search algorithm we discuss next



#### **Optimal Search**

- We discuss an optimal search algorithm for network structures
  - Based on branch-and-bound depth-first search
  - Like K3, it assumes a total order of variables  $X_1, \dots, X_n$
  - The search is restricted among structures consistent with this order
  - This allow us to decompose the search into n independent search problems
- For instance, consider the search for parents of  $X_5$ 
  - The first level of the tree represents an empty set of parents  $U_5 = \{\}$
  - Each additional level corresponds by adding a single variable to each parent set while avoiding duplicate sets



■ The search tree has  $2^{i-1}$  nodes, corresponding to the number of subsets we can choose from  $X_1, ..., X_{i-1}$ 

## **Optimal Search: Pruning**

#### We can search this tree using depth-first search

- Maintaining the score s of the best parent visited so far
- When visiting node  $U_i$ , we evaluate  $Score(X_i, U_i; \mathcal{D})$  and check if it is better than s
- Depth-first guarantees every parent set is visited, leading us to identify the optimal parent set
- However, such optimality comes at the expense of exponential complexity

#### The complexity can be improved on average

- If we use an upper bound on  $Score(X_i, U_i^*; \mathcal{D})$ , where  $U_i \subseteq U_i^*$
- If the upper bound at node  $U_i$  is not better than the best score s, then we prune  $U_i$  and all nodes bellow it
- The extend of pruning depends on the quality of the upper bound used



## **Optimal Search: Pruning**

- For the MDL score, we can use the following upper bound
  - Let  $U_i$  be the parent set and let  $U_i^+$  be the largest parent set appearing bellow  $U_i$  in the search tree. If  $U_i^*$  is a parent set in the tree rooted at  $U_i$ , then

$$MDL(X_i, \boldsymbol{U}_i^*; \mathcal{D}) \leq -N \cdot H_{\mathcal{D}}(X_i | \boldsymbol{U}_i^+) - \psi(N) \cdot ||X_i \boldsymbol{U}_i||$$

- This bound needs to be computed at each node  $\boldsymbol{U}_i$ 
  - For example, at search node  $U_5 = \{X_2\}$ , we get  $U_5^+ = \{X_2, X_3, X_4\}$
  - Moreover,  $U_5^*$  ranges over parent sets  $\{X_2\}$ ,  $\{X_2, X_3\}$ ,  $\{X_2, X_4\}$  and  $\{X_2, X_3, X_4\}$



#### Optimal Search: Variable Order

- Consider this search tree with different variable orders
  - Now variable  $X_4$  appears more frequently on the first branch
  - Suppose variable  $X_4$  tends to reduce the entropy of  $X_5$  more than does  $X_1$
  - Then we expect this search tree to visit parent sets with higher scores first
  - This may lead to more aggressive pruning
- Therefore, we prefer a tree that is expanded according to variable order  $X_{k_1}, \dots, X_{k_{i-1}}$ , where

$$H(X_i|X_{k_1}) \le \dots \le H(X_i|X_{k_{i-1}})$$



#### Structure Learning and Incomplete Data

- We have restricted our discussion on the search for network structures to complete datasets
  - The main reason is computational
  - The likelihood of a network structure does not admit a closed form when the dataset is incomplete
  - Also, it does not decompose into components
- Hence, algorithms for learning structures with incomplete data involve two searches
  - An outer search in the space of network structures
  - An inner search in the space of network parameters

#### Conclusion

- In this lecture, we studied approaches to learn the network structure from data
  - We focused on approaches that search for a maximum likelihood structure
- The first approach was restricted to tree structures
  - Therefore, each nodes had at most one parent
  - Our approach could find an optimal structure using maximum spanning trees
- The second approach extended structures to DAGs
  - Adding edges never decreases the log-likelihood of the structure
  - Therefore, unrestricted search to minimize conditional entropy leads to complex structures and overfitting
  - We reviewed a class of scoring functions that ally data fitness and model complexity
- When searching for a DAG, we studied two main strategies
  - Local search based on hill climbing
  - Constrained search methods that assume a variable order to reduce the search space
- Task
  - Read chapter 17