Status of EVOLVE Design

R.F.Mattas
E.Mogahed
S. Majumdar
D.K. Sze

Presented at APEX Meeting, Feb. 16-19, 1999, UCLA

Topics Covered

- Power Conversion Efficiency
- Heat Exchangers
- Tritium System
- Thermo-mechanical Analysis
- Helium Embrittlement

Effect of He Concentration on Time to Rupture

Fig. 5. Time to rupture, t_R , versus He concentration, c_{Ha} , for creep tests performed after high-temperature α -implantation. When the average radius of grain boundary cavities observed in TEM, t_R , reaches the critical value $r_c \approx 15$ nm, t_R drops drastically [1].

H.Trinkaus, et.al., J. Nucl. Mater., 215-215, p 303-309, 1994

EVOLVE

Effect of He Concentration on Creep Ductility and Fracture

Fig. 6. Collection of normalized creep ductilities for several different austensitic stainless steels versus helium content. Curves represent predicted upper and lower bounds based on grain size and other factors. Data for 316 are for an initial stress of 191 MPa and temperature of 625 °C. Conditions for other alloys vary. After ref. [20].

Fig. 7. Fraction of fracture surface of 316 stainless steel that anhibits intergranular failure in croop tests at 625°C versus belium content. After ref. [21]

L.K.Manaur, et.al., J. Nucl. Mater, 155-157, p130-147, 1988

EVOLVE

Effect of Strain Rate and He on Creep Ductility

Fig. 15. Strain to failure of alloy 1.4970 irradiated in the BR-2 reactor. Strain rate is varied over a very wide range, with tensile tests results plotted at the higher strain rates and creep-rupture results plotted at the lower strain rates. The latter results include both post-irradiation and in-reactor tests. After ref. [57].

L.K.Mansur, et.al., J. Nucl. Mater, 155-157, p130-147, 1988

Conclusions

- The EVOLVE design achieves high power conversion efficiency, ~57%
- Heat exchanger sizes and pumping power are modest.
- An acceptable tritium recovery system has been identified. Tritium containment needs to be addressed in more detail.
- High T creep does not appear to be a problem. Finite element analysis is planned.
- Helium embrittlement effects should be addressed in more detail for all high T concepts.

Power Conversion Efficiency

To, K	Turbine inlet temperature	1273
Ts, K	Compressor inlet temperature	308
To/Ts		4.13
r	Compression ratio	2.0
nx	Recuperator efficiency	0.96
nc	Compressor efficiency	0.92
nt	Turbine efficiency	0.92
Beta	Turbine pressure ratio	1.02
Gamma	Gas heat capacity ratio (Cp/Cv)	1.66
Cycle efficiency		

EVOLVE Lithium-Helium Heat Exchanger

Parameters of the Lithium-Helium Heat Exchanger

	Low Temp. HX	High Temp. HX			
1- Heat Exchanger System Parameters					
Heat Capacity (MW)	1000	2000			
Number of Heat Exchangers	32	32			
Li Inlet Temp.(°C)	850	1200			
Li Exit Temp.(°C)	750	900			
Li δT (°C)	100	300			
Li Mass flow Rate (kg/s)	2380	95			
He Inlet Temp.(°C)	700	800			
He Exit Temp.(°C)	800	1000			
He δT (°C)	100	200			
He Mass flow Rate (kg/s)	1923	1923			
He Pressure (har)	120	120			

EVOLVE Lithium-Helium Heat Exchanger

University of Wisconsin-Madison

	Low Temp. HX	High Temp. HX			
2- Single Heat Exchangers Parameters					
Tube inside Diameter. (mm)	12.5	12.5			
Length of Each Tube (m)	1.5	1.0			
Number of Tubes	1912=(44X44)	1912=(44X44)			
Li Mass flow Rate (kg/s)	75	2.97			
Li Minimum flow Area (m ²)	0.825=(1.5X1.1)/2	0.55=(1.0X1.1)/2			
Li Max. Velocity (m/s)	0.2	225			
He flow Area (m ²)	0.235	0.235			
He Velocity (m/s)	138	138			
He Fraction Pressure drop (bar)	0.93	0.62			
He Pumping Power (MW)	1.2	0.8			

To enhance condensation in the high temperature heat exchanger, fins and flow deflector could be used.

NOTE:

Tritium System

Tritium recovery method	Cold trap
Tritium production rate	
First breeding zone, g/fph	333
Second breeding zone, g/fph	167
Coolant flow rate	
First breeding zone, Kg/hr	95
Second breeding zone, Kg/hr	2380
 Allowable tritium concentration, appm 	1
• Li flow rate to the tritium recovery system	
First breeding zone, Kg/hr	30
Second breeding zone, Kg/hr	15
Maximun tritium partial pressure, Pa	0.0014

Conclusion: Tritium flow rate to the tritium recovery system is modest. Tritium partial pressure starts to be a concern.

Time-dependent Primary Stress Allowable (S_{mt})

 $S_{\rm mt} = {\rm Min}(S_{\rm m}, S_{\rm t})$

where

 $S_t(t,T) = Min \begin{cases} 100\% \text{ stress to } \min(\frac{\epsilon_c}{5},1\%) \text{ creep strain} \\ 80\% \text{ stress to onset of tertiary creep} \\ 67\% \text{ stress to cause creep rupture} \end{cases}$

and ϵ_{c} is the minimum creep ductility

Creep Rupture Effect

- Creep rupture does not limit allowable surface heat flux unless coolant pressure is very high
- ●Creep rupture effect may become more pronounced in the presence of He embrittlement

EVOLVE ×

S_m and S_{rt} for Tungsten

- Need creep strain and ductility data
- Need data for onset of tertiary creep

Rectangular Channel Design

T (coolant)=1200°C

p (coolant) =0.04 MPa

T_{max} for W=1400°C

EVOLVE

Allowable Surface Heat Flux

Allowable surface heat flux depends strongly on coolant/first wall heat transfer coefficient h (w/mm²/°C)

EVOLVE

What Is He Embrittlement?

- High T (>0.45 T_m) loss of ductility due to He bubble formation and growth at grain boundaries
- Failure is intergranular.
- Uniform and total ductilities along with reduction in area are all reduced.
- Tensile strength is generally unaffected.

He Embrittlement Considerations

Embrittlement Microstructure He Implantation Strain Rate Temperature Content Slight Cold-worked Low T + High Low Low fine ppts. Rad dam. Severe Annealed T Trick Low High High few ppts. @ high T (creep)

Effect of Temperature on He Embrittlement

Fig. 3. Helium embrittlement (represented by the elongation of helium-doped specimen divided by that of the helium-free specimen) of alloys as a function of temperature.

H.Matsul, et. al., J. Nucl. Mater, 191-194, 919-923, 1992

