

WHAT IS CLAIMED IS:

1. A peptide comprising a radiometal-binding moiety, wherein said binding moiety comprises the structure:

wherein R¹, R², and R³ independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkaryl, and a protecting group that can be removed under the conditions of peptide synthesis, provided that at least one of R¹, R², or R³ is H,

R⁴, R⁵, R⁶, R⁷, R⁸, R⁹ and R¹⁰ independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, aryl, and substituted aryl, or R⁴ and R⁶ together optionally form a direct bond, and R⁸ and R⁹ together or R⁷ and R⁹ together may form a cycloalkyl or substituted cycloalkyl ring, and

wherein NR¹⁰ is located at the N-terminus of said peptide, or is located on an amino acid side chain of said peptide.

2. A peptide according to claim 1, wherein R¹ is H.

3. A peptide according to claim 1, wherein R³ is H.

4. A peptide according to claim 1, wherein R⁴ is H.

5. A peptide according to claim 1, wherein R⁴ and R⁶ together form a direct bond.

6. A peptide according to claim 5, wherein R⁵ is H.
7. A peptide according to claim 1, wherein NR¹⁰ is located at the N-terminus of said peptide.
8. A peptide according to claim 1, wherein NR¹⁰ is located on an amino acid side chain of said peptide.
9. A peptide according to claim 2, wherein R² is lower alkyl or substituted or unsubstituted phenyl.
10. A peptide according to claim 9, wherein R² is H.
11. A peptide according to claim 10, wherein R³ is H.
12. A peptide according to claim 11, wherein R⁴ and R⁶ together form a direct bond.
13. A peptide according to claim 12, wherein R⁵ is H.
14. A peptide according to claim 13, wherein R⁷, R⁸, and R⁹ each are H.
15. A peptide according to claim 14, wherein R² is phenyl.
16. A peptide according to claim 14, wherein R² is methyl.
17. A peptide according to claim 1, wherein R⁸ and R⁹ are methyl.
18. A peptide according to claim 1, further comprising a bound metal atom.

19. A peptide according to claim 18, wherein said metal atom is selected from the group consisting of ^{99m}Tc , ^{186}Re , and ^{188}Re .

20. A method of preparing a metal-chelating composition, comprising contacting a solution of a peptide comprising a radiometal-binding moiety with stannous ions, wherein said binding moiety comprises the structure:

wherein R^1 , R^2 , and R^3 independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkaryl, and a protecting group that can be removed under the conditions of peptide synthesis, provided that at least one of R^1 , R^2 , or R^3 is H,

R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, aryl, and substituted aryl, or R^4 and R^6 together optionally form a direct bond, and R^8 and R^9 together or R^7 and R^9 together may form a cycloalkyl or substituted cycloalkyl ring, and

wherein NR^{10} is located at the N-terminus of said peptide, or is located on an amino acid side chain of said peptide,

and then contacting said solution with a radionuclide and recovering the radiolabeled peptide.

21. The method of claim 20, wherein said radionuclide is selected from ^{188}Re - or ^{186}Re -perrhenate and ^{99}Tc -pertechnetate.

22. A method of imaging a tumor, an infectious lesion, a myocardial infarction, a clot, atherosclerotic plaque, or a normal organ or tissue, comprising administering to a human patient a radiolabeled peptide, together with a pharmaceutically acceptable carrier, and, after a sufficient time for said radiolabeled peptide to localize and for non-target background to clear, the site or sites of accretion of said radiolabeled peptide are detected by an external imaging camera,

wherein said radiolabeled peptide is prepared by contacting a solution of a peptide with stannous ions, wherein said peptide comprises a radiometal-binding moiety comprising the structure:

wherein R^1 , R^2 , and R^3 independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, alkaryl, and a protecting group that can be removed under the conditions of peptide synthesis, provided that at least one of R^1 , R^2 , or R^3 is H,

R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} independently are selected from the group consisting of H, lower alkyl, substituted lower alkyl, aryl, and substituted aryl, or R^4 and R^6 together optionally form a direct bond, and R^8 and R^9 together or R^7 and R^9 together may form a cycloalkyl or substituted cycloalkyl ring, and

wherein NR¹⁰ is located at the N-terminus of said peptide, or is located on an amino acid side chain of said peptide,

and then contacting said solution with a radionuclide and recovering the radiolabeled peptide.

23. A peptide according to claim 1, wherein said peptide is selected from the group consisting of:

(Chel) γ AbuNleDHF_dRWK-NH₂,
(Chel) γ AbuHSDAVFTDNYTRLRKQMAVKKYLNSILN-NH₂,
KPRRPYTDNYTRLRK (Chel) QMAVKKYLNSILN-NH₂,
(Chel) γ AbuVFTDNYTRLRKQMAVKKYLNSILN-NH₂,
(Chel) γ AbuYTRLRKQMAVKKYLNSILN-NH₂,
HSDAVFTDNYTRLRK (Chel) QMAVKKYLNSILN-NH₂,
<GHWSYK (Chel) LRPG-NH₂, <GHYSLK (Chel) WKPG-NH₂,
AcNal_dCpa_dW_dSRK_d (Chel) LRPA_d-NH₂,
(Chel) γ AbuSYSN1eDHF_dRWK-NH₂, (Chel) γ AbuNleDHF_dRWK-NH₂,
(Chel) NleDHF_dRWK-NH₂,
Ac-HSDAVFTENYTKLRK (Chel) QNleAAKKYLNDLKKGGT-NH₂,
(Chel) γ AbuHSDAVFTDNYTRLRKQMAVKKYLNSILN-NH₂,
(Chel) γ AbuVFTDNYTRLRKQMAVKKYLNSILN-NH₂,
(Chel) γ AbuNleDHF_dRWK-NH₂, <GHWSYK (Chel) LRPG-NH₂,
<GHYSLK (Chel) WKPG-NH₂, AcNal_dCpa_dW_dSRK_d (Chel) LRPA_d-NH₂,
<GHYSLK (Chel) WKPG-NH₂, <GHYSLK (Chel) WKPG-NH₂,
Nal_dCpa_dW_dSRK_d (Chel) WKPG-NH₂, <GHWSYK_d (Chel) LRPG-NH₂,
AcNal_dCpa_dW_dSRK_d (Chel) LRPA_d-NH₂,
AcNal_dCpa_dW_dSRK_d (Chel) LRPA_d-NH₂,
AcNal_dCpa_dW_dSRK_d (Chel) LRPA_d-NH₂, <GHWSYK (Chel) LRPG-NH₂,
AcK (Chel) F_dCFW_dKTCT-OH, AcK (Chel) DF_dCFW_dKTCT-OH,
AcK (Chel) F_dCFW_dKTCT-ol, AcK (Chel) DF_dCFW_dKTCT-ol,
(Chel) DF_dCFW_dKTCT-OH, K (Chel) DF_dCFW_dKTCT-ol,
K (Chel) KKF_dCFW_dKTCT-ol, K (Chel) KDF_dCFW_dKTCT-OH,
K (Chel) DSF_dCFW_dKTCT-OH, K (Chel) DF_dCFW_dKTCT-OH,
K (Chel) DF_dCFW_dKTCD-NH₂, K (Chel) DF_dCFW_dKTCT-NH₂,
K (Chel) KDF_dCFW_dKTCT-NHNH₂, AcK (Chel) F_dCFW_dKTCT-NHNH₂,
K (Chel) F_dCFW_dKTCT-ol, and F_dCFW_dKTCTK (Chel) -NH₂,
wherein (Chel) is said radiometal-binding moiety.

add A1