Unsupervised Learning for Time-series: Extracting Patterns in Brain Recordings

Thomas Moreau - Parietal - Inria

Who am I?

Parcours

2014-2017: PhD – ENS Cachan (N. Vayatis & L. Oudre)

Applied Maths

Distributed optimization Unsupervised learning Representation learning

Healthcare Data

Gait analysis
Oculomotor recordings

2018-2019: Post-doc – Inria (Parietal)

Convolutional dictionary learning for MEG

⇒ **Local structure** analysis for signals

2019-∞: CR – Inria (Parietal)

Unsupervised learning for brain signals

 \Rightarrow Finding structure in brain recordings!

Unsupervised Learning for Electrophysiology Convolutional Dictionary Model

References

- Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018). Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals. In Advances in Neural Information Processing Systems (NeurIPS), pages 3296–3306, Montreal, Canada
- Moreau, T., Oudre, L., and Vayatis, N. (2018). DICOD: Distributed Convolutional Sparse Coding. In *International Conference on Machine Learning (ICML)*, pages 3626–3634, Stockohlm, Sweden. PMLR (80)

[Dupré la Tour, Tallot, Grabot, Doyère, van Wassenhove, Grenier, Gramfort (2017) PLOS Computational biology]

[Dupré la Tour, Tallot, Grabot, Doyère, van Wassenhove, Grenier, Gramfort (2017) PLOS Computational biology]

Neural signals exhibit diverse and complex morphologies

Waveform shape is related to disease e.g. Parkinson [Jackson et al. (20 [Jackson et al. (2019)]

1 s [S. Cole, B. Voytek (2017) Trends in Cognitive Sciences]

Dupré la Tour, Tallot, Grabot, Doyère, van Wassenhove, Grenier, Gramfort (2017) PLOS Computational biology

Linear filtering

After Linear filters, everything looks like a sinusoïd.

 \Rightarrow Lose the asymmetry and the shape information.

Fourier Fallacy

"Even though it may be possible to analyze the complex forms of brain waves into a **number of different sine-wave** frequencies, this may lead only to what might be termed a "**Fourier fallacy**", if one assumes **ad hoc** that all of the necessary frequencies actually occur as periodic phenomena in **cell groups** within the brain."

[Jasper (1948)]

Fourier Fallacy

"Even though it may be possible to analyze the complex forms of brain waves into a **number of different sine-wave** frequencies, this may lead only to what might be termed a "**Fourier fallacy**", if one assumes **ad hoc** that all of the necessary frequencies actually occur as periodic phenomena in **cell groups** within the brain."

[Jasper (1948)]

Fourier Fallacy

"Even though it may be possible to analyze the complex forms of brain waves into a **number of different sine-wave** frequencies, this may lead only to what might be termed a "**Fourier fallacy**", if one assumes **ad hoc** that all of the necessary frequencies actually occur as periodic phenomena in **cell groups** within the brain."

[Jasper (1948)]

Can't we learn the waveforms?

k=1

► Recording here with 8 sensors

- Recording here with 8 sensors
- ► EM activity in the brain

- Recording here with 8 sensors
- EM activity in the brain
- ➤ The electric field is spread linearly and instantaneously over all sensors (Maxwell equations)

- Recording here with 8 sensors
- EM activity in the brain
- ➤ The electric field is spread linearly and instantaneously over all sensors (Maxwell equations)

Learned atoms – Artifacts

Learned atoms – Evoked response

Learned atoms - Evoked response

Learned atoms - Evoked response

Learned atoms – Complex waveforms

5

10 15 20 25

Frequencies (Hz)

B. Spatial pattern

D. Dipole fit

alphaCSC: Convolution sparse coding for timeseries

build passing Scodecov 82%

This is a library to perform shift-invariant sparse dictionary learning, also known as convolutional sparse coding (CSC), on time-series data. It includes a number of different models:

- 1. univariate CSC
- 2. multivariate CSC
- 3. multivariate CSC with a rank-1 constraint [1]
- 4. univariate CSC with an alpha-stable distribution [2]

A mathematical descriptions of these models is available in the documentation.

Installation

To install this package, the easiest way is using pip. It will install this package and its dependencies. The setup. py depends on numpy and cython for the installation so it is advised to install them beforehand. To install this package, please run one of the two commands:

(Latest stable version)

```
pip install numpy cython
pip install alphacsc
```

alphaCSC: Convolution sparse coding for timeseries

This is a library to perform shift-invariant sparse dictionary learning, also known as time-series data. It includes a number of different models:

- 1. univariate CSC
- 2. multivariate CSC
- 3. multivariate CSC with a rank-1 constraint [1]
- 4. univariate CSC with an alpha-stable distribution [2]

A mathematical descriptions of these models is available in the documentation.

Python code online: https://alphacsc.github.io

pip install alphacsc

Installation

To install this package, the easiest way is using pip. It will install this package and its dependencies. The setup.py
depends on numpy and cython for the installation so it is advised to install them beforehand. To install this package, please run one of the two commands:

(Latest stable version)

pip install numpy cython
pip install alphacsc

alphaCSC: Convolution sparse coding for timeseries

This is a library to perform shift-invariant sparse dictionary learning, also known as time-series data. It includes a number of different models:

- 1. univariate CSC
- 2. multivariate CSC
- 3. multivariate CSC with a rank-1 constraint [1]
- 4. univariate CSC with an alpha-stable distribution [2]

A mathematical descriptions of these models is available in the documentation.

Python code online: https://alphacsc.github.io

pip install alphacsc

Installation

To install this package, the easiest way is using pip. It will install this package and depends on numpy and cython for the installation so it is advised to install then please run one of the two commands:

Examples reproduce figures from this talk!

(Latest stable version)

pip install numpy cython pip install alphacsc

Recurring Patterns extraction

Convolutional Dictionary Learning

- ► Flexible pattern extraction technique,
- Computationally tractable for more and more problems,
- Some application are already beginning to emerge.

Challenges

- Theoretical challenges remains (convergence, recoverability),
- The evaluation (and thus the parameter choices) is still not clear,
- Can give some insight for deep learning models?

Going further: capturing temporal

How to highlight temporal dependency?

Model inter-atom interactions:

Pénalité ℓ_1

 \Rightarrow independent activations

Independent activations

Going further: capturing temporal

How to highlight temporal dependency?

Model inter-atom interactions:

Pénalité ℓ_1

 \Rightarrow independent activations

Group penalty (e.g. $\ell_{1,2}$)

⇒ simultaneous activations

Simultaneous activations

Going further: capturing temporal

How to highlight temporal dependency?

Model inter-atom interactions:

Pénalité ℓ_1

 \Rightarrow independent activations

Group penalty (e.g. $\ell_{1,2}$)

⇒ simultaneous activations

Point process ponctuels (*e.g.* Hawkes)

 \Rightarrow temporal interactions

Temporal interactions

Deep Learning for Inverse problem

Inverse Problem: $\operatorname{argmin}_{Z} \|X - FZ\|_{2}^{2} + \mathcal{R}(Z)$

► Fast iterative solvers to compute Z

[Massias et al. (2017)]

▶ Use of deep learning to inverse this system

[Moreau et al. (2017); Ablin et al. (2019)]

Thanks!

Code available online:

O alphacsc : alphacsc.github.io

Slides are on my web page:

tommoral.github.io

© @tomamoral