

Lecture 15: Goodness of Fit Test for

10. The Chi-Squared Test - A Few

<u>Course</u> > <u>Unit 4 Hypothesis testing</u> > <u>Discrete Distributions</u>

> Thoughts

10. The Chi-Squared Test - A Few Thoughts The Correct Number of Degrees of Freedom Matters in the Chi-Squared Test

The Chi-Squared Test for Two Modalities

1/1 point (graded)

Note: This problem is presented in the following video, but we encourage you to try it out (or think about it) before watching the video.

Consider the χ^2 test statistic for K=2:

$$T_n = n \sum_{j=1}^2 rac{(\hat{p}_j - p_j^0)^2}{p_j^0}.$$

We can use this statistic in a chi-squared test with 1 degree of freedom to determine, with an asymptotic level α , whether the observed iid samples follow the distribution $\operatorname{Ber}(p_2^0)$ under the null hypothesis H_0 , with the sample space being the two values $a_1=0$ and $a_2=1$. The chisquared test with asymptotic level α is

$$\mathbf{1}\left\{ T_{n}>q_{lpha}
ight\} ,$$

where q_{α} is the $(1-\alpha)$ -quantile of the chi-squared distribution with 1 degree of freedom.

Is the following statement true or false? "This test is identical (asymptotically) to Wald's test of the Bernoulli statistical model with parameter p_i null hypothesis $H_0: p=p_2^0$ and alternative hypothesis $H_1: p\neq p_2^0$, where p_2^0 , as defined above, is the probability of $a_2=1$ under the null hypothesis."

True

False

Solution:

The answer is true. Wald's test in the above statement is:

$$\mathbf{1}\left\{nrac{\left(\hat{p}_{2}-p_{2}^{0}
ight)^{2}}{p_{2}^{0}\left(1-p_{2}^{0}
ight)}>q_{lpha}
ight\},$$

where q_{α} is the $(1-\alpha)$ -quantile of the chi-squared distribution with 1 degree of freedom. The chi-squared test statistic can be re-written as:

$$egin{aligned} T_n &=& n \sum_{j=1}^2 rac{(\hat{p}_j - p_j^0)^2}{p_j^0} \ &=& n rac{(\hat{p}_1 - p_1^0)^2}{p_1^0} + n rac{(\hat{p}_2 - p_2^0)^2}{p_2^0} \ &=& n rac{((1 - \hat{p}_2) - (1 - p_2^0))^2}{1 - p_2^0} + n rac{(\hat{p}_2 - p_2^0)^2}{p_2^0} \ &=& n rac{(\hat{p}_2 - p_2^0)^2 (p_2^0 + 1 - p_2^0)}{p_2^0 \left(1 - p_2^0
ight)} \ &=& n rac{(\hat{p}_2 - p_2^0)^2}{p_2^0 \left(1 - p_2^0
ight)}, \end{aligned}$$

which is the same as the test statistic for Wald's test.

Submit

You have used 1 of 1 attempt

• Answers are displayed within the problem

Chi-Squared Test for Two Modalities

Video

Download video file

Transcripts Download SubRip (.srt) file Download Text (.txt) file

Discussion

Topic: Unit 4 Hypothesis testing:Lecture 15: Goodness of Fit Test for Discrete Distributions / 10. The Chi-Squared Test - A Few Thoughts

Hide Discussion

	Add a Pos
Show all posts ▼	by recent activity ▼
There are no posts in this topic yet.	
×	

© All Rights Reserved