Conditions need to be fulfilled for LL(1) Grammar

If the grammar is \in - free:

For every pair of productions $A \rightarrow \alpha \mid \beta$

FIRST(α) \cap FIRST(β) = φ (i.e., FIRST(α) and FIRST(β) should be disjoint sets for every pair of productions $A \rightarrow \alpha \mid \beta$)

When the grammar is not ∈-free:

For every pair of productions $A \rightarrow \alpha \mid \beta$, the following 2 conditions must hold

- (i) $FIRST(\alpha) \cap FIRST(\beta) = \varphi$, and
- (ii) if FIRST(β) contains \in , and FIRST(α) does not contain \in , then FIRST(α) \cap FOLLOW(A) = ϕ

Example:

Consider the following grammar, and test whether the grammar is LL(1) or not.

$$S \rightarrow 1AB/E$$
, $A \rightarrow 1AC/OC$, $B \rightarrow 0S$, $C \rightarrow 1$

Since the given grammar is not \in free.

For a pair of productions $S \rightarrow 1AB \mid \in$:

$$FIRST(1AB) \cap FIRST(\epsilon) = \{1\} \cap \{\epsilon\} = \emptyset$$
 and

$$FIRST(1AB) \cap FOLLOW(S) = \{1\} \cap \{\$\} = \emptyset$$

Similarly, for a pair of productions $A \rightarrow 1AC/0C$:

$$FIRST(1AC) \cap FIRST(0C) = \{1\} \cap \{0\} = \emptyset$$

Hence the grammar is LL(1).

Pradeep Bedi Page 1