Confidence-Weighted Sparse Online Learning

Yue Wu

November 19, 2013

1 Introduction

The main idea of Confidence-Weighted algorithms is to assume a Guassian distribution of the linear classifier $\omega \sim N(\mu, \Sigma)$. Each update tries to stay close to the previous distribution and ensure the probability of the current precision for x_i is larger than η .

$$Pr[y_i(\boldsymbol{\mu} \cdot \boldsymbol{x}_i) \ge 0] \ge \eta \quad or \quad y_i(\boldsymbol{\mu} \cdot \boldsymbol{x}_i) \ge \phi \sqrt{\boldsymbol{x}_i^T \Sigma \boldsymbol{x}_i}$$
 (1)

2 Problem Formulation

In Sparse online learning, we set the weight vector equal to the average $\omega = \mu$. Each iteration step is a minimization problem as follows:

$$\mu_t = \arg\min_{\mu} f(\mu) + \tilde{\lambda}r(\mu) \tag{2}$$

where $f(\mu)$ is often the loss function. In this paper, we follow the setting of AROW and use the squared hinge loss:

$$f(\boldsymbol{\mu}) = \max(0, 1 - y_t(\boldsymbol{\mu_t} \cdot \boldsymbol{x}_t))^2$$
(3)

To the regularization term, previous learning algorithms treat all the coordinates the same by adding an regularization term $\lambda |\omega|$. We extend the confidence to apply different regularization intensities to different coordinates. A high variance value corresponds a low confidence. Accordingly, we apply a strong shrinkage to less confident coordinates and weak shrinkage to confident ones.

2.1 Smooth Regularization

Smooth regularization is the L1 norm. We call it smooth sparse regularization, as it shrink the weight values by some amount once a iteration.

$$r(\boldsymbol{\mu}) = |\Sigma \boldsymbol{\mu}| \tag{4}$$

2.2 Aggressive Regularization

Aggressive regularization is a strict condition on the number of non-zero coordinates, as Equ 5 shows. This setting is useful in problems like feature selection.

$$r(\boldsymbol{\mu}) = \begin{cases} 0, & |\Sigma \boldsymbol{\mu}|_0 \le B\\ \infty, & |\Sigma \boldsymbol{\mu}|_0 > B \end{cases}$$
 (5)

3 Solution

Common approaches such as subgradient methods to Equ. 1 will rarely lead to non-differential points of $f(\omega)$ or $r(\omega)$. While these non-differential points are the true minima in cases like L1 regularization. Instead, we adopt a forward-backward splitting approach to alleviate the problems of non-differentiability.

In the first step, we adopt AROW on $f(\mu)$ to obtain one step iteration. The iteration is as Equ 6 shows.

$$\mu_{t-\frac{1}{2}} = \mu_{t-1} + \alpha_t \Sigma_{t-1} y_t \boldsymbol{x}_t \qquad \Sigma_t = \Sigma_{t-1} - \beta_t \Sigma_{t-1} \boldsymbol{x}_t \boldsymbol{x}_t^T \Sigma_{t-1}$$

$$\beta_t = \frac{1}{\boldsymbol{x}_t^T \Sigma_{t-1} \boldsymbol{x}_t + r} \qquad \alpha_t = \max(0, 1 - y_t \boldsymbol{x}_t^T \boldsymbol{\mu}_{t-1}) \beta_t$$
(6)

We re-write the above iteration to be second order sub-gradient update as Equ. 7.

$$\mu_{t-\frac{1}{2}} = \mu_{t-1} - \frac{\beta_t}{2} \Sigma_{t-1} g_t^f$$

$$g_t^f = \partial f(\mu)$$
(7)

In the above update equation, $\frac{\beta_t}{2}$ is the common learning rate. Σ_{t-1} is the matrix to apply different learning rates to different coordinates.

The second step is a projection step with the smooth regularization penalty.

$$\tilde{\lambda} = \frac{\beta_t}{2} \lambda$$

$$\boldsymbol{\mu}_t = \arg\min_{\mu} \frac{1}{2} \|\boldsymbol{\mu} - \boldsymbol{\mu}_{t-\frac{1}{2}}\|^2 + \frac{\beta_t}{2} \lambda |\boldsymbol{\Sigma}_{t-1}\boldsymbol{\mu}|$$
(8)

The final updating rule goes to:

$$\mu_{t,j} = sign(\mu_{t-1,j} - \frac{\beta_t}{2} \Sigma_{t-1,jj} g_{t-1,j}^f) [|\mu_{t-1,j} - \frac{\beta_t}{2} \Sigma_{t-1,jj} g_{t-1,j}^f| - \frac{\beta_t}{2} \lambda \Sigma_{jj}]$$
(9)

4 Experimental results

- 4.1 test error rate vs sparsity
- 4.2 convergence rate vs sparsity
- 4.3 training time comparison
- 5 Reference