

Classe: 4^{ème} MATHS

Série physique N°14

OEF

Prof: Haffar Samí

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(S) 30 min

I°) On réalise le circuit électrique de la figure 1 constitué par :

- * un dipôle résistor de résistance $R_o = 50\Omega$.
- * d'une bobine d'inductance L et de résistance r.
- *d'un condensateur de capacité C.
- *Un voltmètre branché l aux bornes du condensateur.

Ce circuit est alimenté par un **G** . **B** . **F** délivrant une tension électrique alternative sinusoïdale :

$u(t)=U_mSin (2\pi Nt+\phi_u)$.

L'amplitude U_m est constante et la fréquence ${\bf N}$ est réglable. Lorsqu'on ferme l'interrupteur K un courant

électrique i(t)=Im Sin(2 π Nt + ϕ_i) circule à travers ce circuit.

Un oscilloscope bi courbe connecté avec le circuit comme l'indique la figure permet de visualiser simultanément deux tensions.

- 1°) Pour une fréquence $N = N_1$; le voltmètre indique $U_{C1} = 6\sqrt{2}V$ et sur l'écran de l'oscilloscope on obtient les deux courbes suivantes :
 - a- Montrer que la courbe C2 correspond à uR(t)
- **b-** Déterminer le déphasage $\Delta \phi$ = ϕ_u ϕ_i . Préciser en le justifiant si ce circuit est inductif, capacitif ou résistif.
- c- Déterminer la valeur de la fréquence N_1 et écrire les expressions de u (t) et i(t) et déduire la valeur de l'impédance Z .
 - 2°) L'équation différentielle en i(t) s'écrit :

$$R_0i + ri + L\frac{di}{dt} + \frac{1}{C} \int idt = u(t).$$

On donne sur la feuille annexe une partie de la représentation de Fresnel relative aux tensions maximales

tel que les vecteurs \overrightarrow{OA} et \overrightarrow{AB} représentent respectivement les vecteurs de Fresnel associés à

- $u_{Ro}(t)$: tension aux bornes du dipôle résistor et u': tension aux bornes de l'ensemble {bobine condensateur}
- **a-** Déterminer la valeur de la capacité C du condensateur.
- **b-** Compléter cette construction en faisant apparaître les vecteurs associés aux fonctions ${\bf ri}$; ${\bf u}_c(t)$;
- $L\frac{di}{dt}$ et u(t) à l'échelle
- c- En exploitant la construction de Fresnel, déterminer r et L.
- II°) Pour une fréquence N_0 , la puissance moyenne consommée prend une valeur maximale P_0

- **1°) a-** Préciser, en le justifiant l'état d'oscillation du circuit. **b-** Calculer N₀, I_{max} puis P₀.
- 2°) Donner les expressions de i (t) et u_c (t).
- **3°) a-** Exprimer le coefficient de surtension Q en fonction de R_{o} , r , L et C calculer sa valeur .
- b- En déduire l'indication du voltmètre branché aux bornes du condensateur.

Exercice 2

(S) 20 min

On considère un circuit comportant, en série, une bobine d'inductance L variable et de résistance $r=12\Omega$, un condensateur de capacité C, un conducteur ohmique de résistance $R=20\Omega$ et un ampèremètre A.

L'ensemble est alimenté par un générateur basse fréquence (GBF) délivrant une tension sinusoïdale d'amplitude U_m maintenue constante : $u(t)=U_m.sin(2\pi Nt)$.

Pour une valeur de la capacité C, on visualise simultanément, à l'aide d'un oscilloscope bicourbe, les tensions $u_R(t)$ (aux bornes du conducteur ohmique) sur la voie (X) et la tension $u_1(t)$ aux bornes de l'ensemble (résistor, condensateur) sur la voie (Y),

On obtient alors les oscillogrammes de la figure 7

- 1) Faire le schéma convenable du montage et y indiquer les connexions nécessaires à l'oscilloscope.
 - 2) a- En exploitant les oscillogrammes, déterminer:
 - * la fréquence N des oscillations, les valeurs des amplitudes U_{Rm} et U_{1m} respectivement de $u_R(t)$ et $u_1(t)$
 - * Le déphasage $\Delta \varphi = \varphi_{u1} \varphi_{uR}$.
- 3) L'équation différentielle régissant l'évolution de l'intensité instantanée i(t) du courant électrique dans le circuit est donnée par : $ri(t) + L \frac{di(t)}{dt} + Ri(t) + \frac{1}{C} \int i(t)dt = u(t)$.

Sur la figure si dessous, on a représenté le vecteur de Fresnel associés à $\mathbf{u}_1(\mathbf{t})$ à l'échelle $\mathbf{1cm} \longrightarrow \mathbf{1V}$.

- a- Compléter la construction de Fresnel dans l'ordre suivant : Ri(t); $\frac{1}{C}\int i(t)dt$; ri(t) et $L\frac{di(t)}{dt}$. Indiquer pour chacun des vecteurs la légende correspondante.
 - b- Déterminer, graphiquement : les valeurs de L, C et U_m.
 - c- Déterminer la nature (capacitif ou inductif) du circuit.
- 4) On fait modifier la valeur de l'inductance de la bobine tout en conservant la fréquence N fixe. Pour une valeur L', l'ampèremètre indique une valeur $l=143,8\sqrt{2}$ mA,
 - **a-** Déterminer le déphasage $\Delta \phi' = \phi_i \phi_u$. Conclure.
 - b- Comparer sans faire de calculs la valeur de l'inductance L' à celle de L
 - c- Calculer la valeur de l'inductance L' de la bobine.

Sensibilité horizontale : $\frac{5}{3}$ ms.div⁻¹

Sensibilité verticale :2,5 V.div⁻¹pour les deux voix

