Voice-Controlled Motor-Driven Pottery Wheel

Critical Design Report
Sebastian Ngo, Christa O'Reilly, Austin Volpe

Client: Dr. Joanna Thomas Manager: Dr. Stephen Hill

Introduction

• Client: Dr. Joanna Thomas

 Problem: Lack of accessibility of standard foot-pedal operated motor-driven pottery wheel

Task: Modify pottery wheel to be voice-controlled

PDR Summary

Goal: Remove potentiometer and wire motor to microprocessor

Given several specifications by client

- Analyzed multiple options:
 - o Microprocessor Arduino Nano 33 BLE Sense
 - Housing 3D Printed PLA

Initial Expected Cost: \$214 per unit

Specifications

- Voice controlled
- 10 distinct speeds
- Respond to a set of commands
- Programmable name
- Respond to a voice of 50dB within 3 feet
- LED indicator light

Criteria

- Specifications given to us; however we added some more
- Safe to use
- Time of construction
- Cost to build
- Reliability
- Coding ease

Roles and Responsibility

- Sebastian Ngo
 - Computer Engineer
 - Coding and software
- Christa O'Reilly
 - Biomedical Engineer
 - Hardware and team management
- Austin Volpe
 - Mechanical Engineer
 - Physical modifications and housing design

- Used a Google Dataset that provided an abundant amount of voice samples from random people (1500 for each voice command)
- Curate/Mix samples of background samples to simulate users saying a command in a noisy environment

 Original Design: Implementing a trigger word to allow the microcontroller to listen for commands and have the pottery wheel change up to 10 different speeds.

 Revision: Microcontroller does not have a trigger word, and the wheel can only go up to 4 speeds.

 Imported the neural network model into the arduino IDE and coded the interaction between the microcontroller and pottery wheel

 Used analogWrite() to specify rotation speed

PWM only works on pins 3,5,6,9,10,
 therefore we used pin 6 as our output

Pottery Wheel was staggering in between

analogWrite(0-255)

Solution: Increase the frequency of the pins

 Removed analogWrite() and used a library called mbed.os which allows us to control the frequency of the designated pin

Increased pin 6 from 500Hz to 25kHz.

```
#include "mbed.h"
  #define PWM_PIN_COUNT 1
  mbed::PwmOut pwmPin[PWM_PIN_COUNT]
     ( digitalPinToPinName( 6 ) )
  };
pwmPin[0].period( 0.00004 ); // 25kHz
  pwmPin[0].write( 0.4 );
```

Final Revision: getting rid of the voltage divider

Revision: Using built-in LED

Design Revision - Electrical Housing

- Original box dimensions (left): 100mm x 70mm x 35mm
- New box dimensions (right): 84.5mm x 54.5mm x 20.75mm
- Translucent LDPE top
- One side open with lattice structure

Final Design

Final Design

https://drive.google.com/file/d/1vBZUzALuUZbJJ7moRylLQpB6ywibruYV/view?usp=sharing

https://drive.google.com/file/d/1kOR277iv4HxQKSw67mto6k9YN1AAgqDK/view?usp=sharing

It Worked!

- Smooth transitions
- No stopping or stuttering during the spinning
- o RPM=73.7(volts)-72.7

Speed Command	Duty Cycle Value	Voltage	Rotation per Minutes	LED Color
Zero	0	0 Volts	0	Black/Off
One	0.4	1.30 Volts	23.11	Red
Two	0.6	1.96 Volts	71.75	Green
Three	0.8	2.62 Volts	120.4	Blue
Four	1.0	3.30 Volts	170.5	Yellow

$$F1 - score = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

Confusion matrix (validation set)

	_NOISE	_UNKNOWN	FOUR	ONE	THREE	TWO	ZERO
_NOISE	99.2%	0.4%	0%	0%	0%	0.4%	0%
_UNKNOWN	8.6%	47.5%	9.5%	4.5%	8.6%	20.4%	0.9%
FOUR	4.2%	3.8%	84.9%	1.1%	0%	6.0%	0%
ONE	3.2%	8.2%	7.7%	79.5%	0%	1,4%	0%
THREE	1.6%	0.8%	0.8%	0%	88.4%	8.0%	0.4%
TWO	4.3%	2.2%	6.1%	0%	1.7%	85.2%	0.4%
ZERO	2.3%	7.8%	1.2%	0%	2.3%	24.4%	62.0%
F1 SCORE	0.89	0.55	0.82	0.86	0.88	0.68	0.76

	_NOISE	_UNKNOWN	FOUR	ONE	THREE	TWO	ZERO	UNCERTAIN
_NOISE	96.1%	0%	0%	0%	0%	0%	0%	3.9%
_UNKNOWN	5.5%	27.3%	7.6%	4%	2.9%	1.8%	0.4%	50.5%
FOUR	0.7%	1.0%	69.0%	0.3%	0%	2.4%	0%	26.6%
ONE	3.0%	0.6%	2.1%	75.4%	0%	0%	0%	18.9%
THREE	2.0%	0%	0.3%	0%	70.7%	6.4%	0%	20.5%
TWO	2.1%	0.3%	1.0%	0%	0.7%	70.5%	0%	25.3%
ZERO	1.8%	1.1%	0%	0%	0.4%	13.4%	54.0%	29.3%
F1 SCORE	0.91	0.42	0.77	0.84	0.81	0.73	0.70	

Cost Breakdown

• Total Cost: 299 dollars.

	Item	Total Cost	Individual Cost
	Arduino Nano 33	\$22.50	N/A
	Arduino Nano 33 (post inflation)	\$38.85	N/A
	9.1K Ohm Resistor (15 pack)	\$9.77	\$0.65
	4.7K Ohm Resistors (10 pack)	\$5.76	\$0.58
	10K Ohm Resistors (100 pack)	\$5.00	\$0.05
	OPA4196	\$5.00	N/A
	LCD Screen	\$12.00	N/A
	External Microphone	\$9.00	N/A
	Pottery Wheel	\$163.99	N/A
	Bolts (need two packs)	\$3.02	\$1.51
,	Washers	\$1.00	N/A
	Nuts (need two packs)	\$1.88	\$0.94
	PLA	\$22.99	N/A

Cost Breakdown

• Project Cost: \$231 dollars

Item	Total Cost	Individual Cost
Arduino Nano 33	\$38.50	N/A
Pottery Wheel	\$163.99	N/A
Bolts (need two packs)	\$3.02	\$1.51
Washers	\$1.00	N/A
Nuts (need two packs)	\$1.88	\$0.94
PLA	\$22.99	N/A

Recommendations

- Different pottery wheel
 - More voltage and power
- Better Microcontroller
 - More neural network training
- Increase budget

Project Summary

- Modified a motor-driven pottery wheel to be voice-controlled
 - o Responds to "Zero," "One," "Two," "Three," "Four"
- Used an Arduino Nano and made housing from 3D printed PLA/LDPE
- Unit Cost: \$231
- Final product works well, but we have a few recommendations before proceeding

Questions

Contact Information

Sebastian Ngo: <u>SebastianSy.Vuchi.Ngo@live.mercer.edu</u>

Christa O'Reilly: christa.oreilly@live.mercer.edu
Austin Volpe: austin.m.volpe@live.mercer.edu