Experiment 4

Aim:

Study of input and output characteristics of CE BJT (Common Emitter Bipolar Junction Transistor) amplifier using LTSpice.

Tools and Apparatus:

LTSpice, Transistor, Resistors, Voltage Source

Theory and Design:

Simulation Results:

1. Input Characteristics

2. Output Characteristics

Conclusion:

1. Input Characteristics:

- a. For V_{CE1} (Green)
 - i. V_{BE1} = 800 mV -> I_{B1} = 157.87 μA
 - ii. $V_{BE2} = 900 \text{ mV} -> I_{B2} = 244.98 \mu A$
 - iii. Change in V_{BE} = 100 mV, Change in I_B = 87.11 μA
 - iv. $\frac{\Delta I_B}{\Delta V_{BE}} = 0.87$
- b. For $I_B = 210 \mu A$
 - i. $V_{CE1} -> V_{BE1} = 859.84 \text{ mV (Green)}$
 - ii. $V_{CE2} -> V_{BE2} = 929.04 \text{ mV (Blue)}$
 - iii. $V_{CE3} \rightarrow V_{BE3} = 949.23 \text{ mV (Red)}$

2. Output Characteristics:

- a. For $V_{CE} = 7V$
 - i. $I_{B5} \rightarrow I_C = 42.07 \text{ mA (Brown)}$
 - ii. $I_{B4} -> I_C = 28.37 \text{ mA (Purple)}$
 - iii. $I_{B3} -> I_C = 14.47 \text{ mA (Yellow)}$

Inferences:

- 1. Transistors transfer resistance.
- 2. Transistors can be used as amplifiers ($I_C >> I_B$).
- **3.** Select npn transistor
- **4.** Keep first source in DC Sweep as V_{BE} for input characteristics and as V_{CE} for output characteristics.
- **5.** While plotting graph, click on the respective transistor terminal and not the wire.
- 6. Connect all wires properly.