QXD0116 - Álgebra Linear

Transformações Lineares III

André Ribeiro Braga

Universidade Federal do Ceará

Campus Quixadá

Unicidade

Teorema

Sejam \mathbb{U} e \mathbb{V} espaços vetoriais reais. Sejam $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_3\}$ e $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_3\}$ bases de \mathbb{U} e \mathbb{V} , respectivamente. Então existe uma única transformação linear $T:\mathbb{U}\to\mathbb{V}$ tal que

$$T(\mathbf{u}_1) = \mathbf{v}_1$$

$$T(\mathbf{u}_2) = \mathbf{v}_2$$

:

$$T(\mathbf{u}_n) = \mathbf{v}_n$$

Unicidade

Exemplo

Seja $\mathcal{T}:\mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear onde

$$T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right)=\left[\begin{array}{c}2\\1\\2\end{array}\right]$$
 e $T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=\left[\begin{array}{c}1\\1\\2\end{array}\right]$. Determine $T(\mathbf{u})$.

Solução

Pode-se observar que $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ é uma base de \mathbb{R}^2 . Assim,

para qualquer vetor $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$:

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \alpha \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \beta \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \begin{cases} \alpha = u_1 \\ \alpha + \beta = u_2 \end{cases} \Rightarrow \begin{cases} \alpha = u_1 \\ \beta = u_2 - u_1 \end{cases}$$

Unicidade

Exemplo

Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear onde

$$T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right)=\left[\begin{array}{c}2\\1\\2\end{array}\right]$$
 e $T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=\left[\begin{array}{c}1\\1\\2\end{array}\right]$. Determine $T(\mathbf{u})$.

Solução

Assim

$$\left[\begin{array}{c} u_1 \\ u_2 \end{array}\right] = u_1 \cdot \left[\begin{array}{c} 1 \\ 1 \end{array}\right] + (u_2 - u_1) \cdot \left[\begin{array}{c} 0 \\ 1 \end{array}\right]$$

Pelo teorema, existe uma única transformação linear tal que $T(\mathbf{u}_i) = \mathbf{v}_i$

Unicidade

Exemplo

Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear onde

$$T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right)=\left[\begin{array}{c}2\\1\\2\end{array}\right]$$
 e $T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=\left[\begin{array}{c}1\\1\\2\end{array}\right]$. Determine $T(\mathbf{u})$.

Solução

Dessa forma

$$T\left(\left[egin{array}{c} u_1 \ u_2 \end{array}
ight]
ight) = T\left(u_1\cdot\left[egin{array}{c} 1 \ 1 \end{array}
ight] + (u_2-u_1)\cdot\left[egin{array}{c} 0 \ 1 \end{array}
ight]
ight) \ = u_1\cdot T\left(\left[egin{array}{c} 1 \ 1 \end{array}
ight]
ight) + (u_2-u_1)\cdot T\left(\left[egin{array}{c} 0 \ 1 \end{array}
ight]
ight)$$

Unicidade

Exemplo

Seja $\mathcal{T}:\mathbb{R}^2 \to \mathbb{R}^3$ uma transformação linear onde

$$T\left(\left[\begin{array}{c}1\\1\end{array}\right]\right)=\left[\begin{array}{c}2\\1\\2\end{array}\right]$$
 e $T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=\left[\begin{array}{c}1\\1\\2\end{array}\right]$. Determine $T(\mathbf{u})$.

Solução

Dessa forma

a forma
$$T\left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}\right) = u_1 \cdot \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} + (u_2 - u_1) \cdot \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2u_1 \\ 1u_1 \\ 2u_1 \end{bmatrix} + \begin{bmatrix} u_2 - u_1 \\ u_2 - u_1 \\ 2u_2 - 2u_1 \end{bmatrix} = \begin{bmatrix} u_1 + u_2 \\ u_2 \\ 2u_2 \end{bmatrix}$$

Definição

Seja $T: \mathbb{U} \to \mathbb{V}$, a imagem de T é o conjunto de vetores $\mathbf{v} \in \mathbb{V}$ tais que existe um vetor $\mathbf{u} \in \mathbb{U}$ que satisfaz $T(\mathbf{u}) = \mathbf{v}$:

$$Im(T) = \{ \mathbf{v} \in \mathbb{V} | T(\mathbf{u}) = \mathbf{v} , \ \forall \ \mathbf{u} \in \mathbb{U} \}.$$

Im(T) é um subconjunto de \mathbb{V} .

Imagem

Exemplo

Considere
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 definida por

$$T\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right) = \begin{bmatrix} u_1 + 2u_2 \\ u_2 + 2u_3 \\ u_1 + 3u_2 + 2u_3 \end{bmatrix}. \text{ Determine } Im(T).$$

Sabendo que
$$\mathit{Im}(T) = \{ \mathbf{v} \in \mathbb{R}^3 | T(\mathbf{u}) = \mathbf{v} \; , \; \forall \mathbf{u} \in \mathbb{R}^3 \}$$

$$\begin{bmatrix} u_1 + 2u_2 \\ u_2 + 2u_2 \\ u_1 + 3u_2 + 2u_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \Rightarrow \begin{cases} u_1 + 2u_2 = v_1 \\ u_2 + 2u_3 = v_2 \\ u_1 + 3u_2 + 2u_3 = v_3 \end{cases}$$

Imagem

Exemplo

Considere $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T\left(\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}\right) = \begin{bmatrix} u_1 + 2u_2 \\ u_2 + 2u_3 \\ u_1 + 3u_2 + 2u_3 \end{bmatrix}. \text{ Determine } Im(T).$$

Portanto
$$Im(T) = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3 \middle| -v_1-v_2+v_3=0 \right\}.$$

Imagem

Teorema

Se $T: \mathbb{U} \to \mathbb{V}$ é uma transformação linear, então $\mathit{Im}(T)$ é um subespaço vetorial de \mathbb{V} . Isto porque

- (a) $\theta \in Im(T)$
- (b) $\forall \mathbf{v}_1, \mathbf{v}_2 \in Im(T) \Rightarrow \mathbf{v}_1 + \mathbf{v}_2 \in Im(T)$
- (c) $\forall \alpha \in \mathbb{R} \text{ e } \forall \mathbf{v} \in \mathit{Im}(T) \Rightarrow \alpha \cdot \mathbf{v} \in \mathit{Im}(T)$
 - Se $Im(T) = \mathbb{V}$, a função é sobrejetora.

Definição

Seja $T: \mathbb{U} \to \mathbb{V}$, o núcleo (ou *kernel*) de T é o conjunto dos vetores $\mathbf{u} \in \mathbb{U}$ que são levados ao elemento nulo através da transformação.

$$N(T) = ker(T) = \{\mathbf{u} \in \mathbb{U} | T(\mathbf{u}) = \theta \in \mathbb{V}\}$$

Se $ker(T) = \{\theta\}$, a função é injetora.

Núcleo

Exemplo

Determine ker(T) pra $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T\left(\left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right]\right) = \left[\begin{array}{c} u_1 + 2u_2 + u_3 \\ u_1 + 5u_2 + 4u_3 \\ -u_1 + u_2 + 2u_3 \end{array}\right].$$

$$\begin{bmatrix} u_1 + 2u_2 + u_3 \\ u_1 + 5u_2 + 4u_3 \\ -u_1 + u_2 + 2u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} u_1 + 2u_2 + u_3 = 0 \\ u_1 + 5u_2 + 4u_3 = 0 \\ -u_1 + u_2 + 2u_3 = 0 \end{cases}$$

Núcleo

Exemplo

Determine ker(T) pra $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T\left(\left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right]\right) = \left[\begin{array}{c} u_1 + 2u_2 + u_3 \\ u_1 + 5u_2 + 4u_3 \\ -u_1 + u_2 + 2u_3 \end{array}\right].$$

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 5 & 4 & 0 \\ -1 & 1 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 3 & 3 & 0 \end{bmatrix} \Rightarrow \begin{cases} u_1 + 2u_2 + u_3 = 0 \\ 3u_2 + 3u_3 = 0 \\ 3u_2 + 3u_3 = 0 \end{cases}$$

Núcleo

Exemplo

Determine ker(T) pra $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$T\left(\left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \end{array}\right]\right) = \left[\begin{array}{c} u_1 + 2u_2 + u_3 \\ u_1 + 5u_2 + 4u_3 \\ -u_1 + u_2 + 2u_3 \end{array}\right].$$

$$ker(T) = \left\{ \left[egin{array}{c} u_1 \\ u_2 \\ u_3 \end{array} \right] \in \mathbb{R}^3 \middle| u_1 = u_3 \;,\; u_2 = -u_3 \;,\; orall u_3 \in \mathbb{R}
ight\}$$

