AN EMPIRICAL EQUILIBRIUM SEARCH MODEL OF THE LABOR MARKET Van den Berg and Ridder (1998)

Pegah Rahmani

Under supervision of Dr. Joshaghani Dr. Davoodalhossein

Sharif Graduate School of Management and Economics

December 29, 2019

Overview

- Background
- 2 Equilibrium Search Model
- 3 The Likelihood Function
- 4 Heterogeneity
- Data

Literature review

- "Economics of information and job search" by McCall (1970)
- Equilibrium search models:
 - Albrecht and Axell (1984)
 - Burdett and Mortensen (1998)
- Empirical analyses:
 - Eckstein and Wolpin (1990)
 - Van den Berg and Ridder (1998)

Equilibrium Search Models

- The reservation wage property
- Labor market search model as the outcome of optimal choices by both workers and employers
- The wage offer distribution is endogenous
- A dispersed wage offer distribution as a result of a dispersed distribution of reservation wage
- Differences:
 - In AA model job-to-job transitions or layoffs are not allowed
 - AA model require the unemployed to be heterogeneous in order to obtain a dispersed wage offer distribution

Possibility of on the job search in BM model

- Optimal search strategy of unemployed job seekers
- The reservation wage for an employed job seeker
- Wage offer distribution is dispersed even if all workers and firms are identical
- Explicit solution for the equilibrium wage offer and earning distributions

Heterogeneity

• EW(1990)

- Single labor market
- Unobserved differences in the value of leisure between workers
- Unobserved differences in productivity between firms
- No observed differences
- Allows for within market heterogeneity

VR(1998)

- A large number of segments in labor market
- All workers and firms are identical in each segment
- Observed differences in age, educational level, occupational level of the workers and jobs
- Unobserved differences in the productivity of the jobs or other characteristics of the segments
- Allows for between-market heterogeneity

Estimation, Data, Results

- Maximum likelihood method
- Panel data of unemployed and employed individuals in The Netherlands in the eighties
- On average, the arrival rate of job offers is only slightly larger when employed
- A small number of observed personal characteristics is sufficient to capture the heterogeneity in arrival and separation rates, but insufficient to capture heterogeneity in the productivity of firms
- Contrary to EW(1990) they find that a relatively small fraction of wage variation is explained by measurement error and that about a fifth is pure wage variation as generated by the presence of search frictions

Model

- There are continua of workers and firms with measures m and 1, respectively
- λ_0 and λ_1 are job offers arrival rates for unemployed and employed workers
- A job offer is an i.i.d. drawing from a wage offer distribution with c.d.f. F(w)
- ullet δ is matches break up rate
- Utility flow of being unemployed is b
- Firms have a linear production function with the marginal revenue product of p
- The mandatory minimum wage is \underline{w}_L

Model

$$r = b + (\lambda_0 - \lambda_1) \int_r^{\infty} \frac{\overline{F}(w)}{\delta + \lambda_1 \overline{F}(w)} dw$$
 with $\overline{F} = 1 - F$.

$$G(w) = \frac{F(w)}{\delta + \lambda_1 \overline{F}(w)} \cdot \frac{\lambda_0 u}{(m-u)}.$$

Outflow:

$$\lambda_1 \overline{F}(w) G(w) (m-u)$$

$$\delta G(w) \cdot (m-u)$$

Inflow:

$$\lambda_0(F(w) - F(r))u$$

Model

$$\frac{u}{m} = \frac{\delta}{\delta + \lambda_0}.$$

The measure of individuals earning a wage w equals g(w)(m - u)dw, and the measure of firms offering a wage w equals f(w)dw.

$$l(w; r, F) = \frac{g(w)dw}{f(w)dw}(m - u) = \frac{m\lambda_0 \delta(\delta + \lambda_1)}{(\delta + \lambda_0)(\delta + \lambda_1 \overline{F}(w))^2} \quad \text{on } [\underline{w}, \overline{w}].$$

Model (Production)

$$F(w) = \frac{\delta + \lambda_1}{\lambda_1} \cdot \left(1 - \sqrt{\frac{p - w}{p - \underline{w}}} \right) \quad \text{on} \quad [\underline{w}, \overline{w}]$$

$$f(w) = \frac{\delta + \lambda_1}{2\lambda_1\sqrt{p-w}} \cdot \frac{1}{\sqrt{p-w}} \quad \text{on } [\underline{w}, \overline{w}].$$

$$r = \frac{(\delta + \lambda_1)^2 \cdot b + (\lambda_0 - \lambda_1) \lambda_1 \cdot p + \delta_0(\lambda_0 - \lambda_1) \cdot \underline{w}_L}{(\delta + \lambda_0)(\delta + \lambda_1)} \quad \text{if} \quad r < \underline{w}_L,$$

$$r = \frac{(\delta + \lambda_1)^2 \cdot b + (\lambda_0 - \lambda_1) \lambda_1 \cdot p}{(\delta + \lambda_1)^2 + (\lambda_0 - \lambda_1) \lambda_1} \quad \text{if} \quad r \ge \underline{w}_L,$$

$$\overline{w} = \left(\frac{\delta}{\delta + \lambda_1}\right)^2 \cdot \underline{w} + \left(1 - \left(\frac{\delta}{\delta + \lambda_1}\right)^2\right) \cdot p.$$

Model (Productivity)

$$g(w) = \frac{\delta\sqrt{p - \underline{w}}}{2\lambda_1} \cdot \frac{1}{(p - w)^{3/2}} \quad \text{on } [\underline{w}, \overline{w}].$$

Given an arbitrary transformation of w, $y=\frac{\rho-w}{\rho-\underline{w}}$, the excess wage equation is $w-\underline{w}=(1-y)(\rho-\underline{w})$. $(\eta=\frac{\delta}{\delta+\lambda_1})$ $\frac{\lambda_1}{\delta}$: expected number of wage offers during a spell of employment

$$f_y(y) = \frac{1}{2(1-\eta)} y^{-1/2}, \qquad \eta^2 \le y \le 1,$$

$$g_y(y) = \frac{\eta}{2(1-\eta)} y^{-3/2}, \qquad \eta^2 \le y \le 1,$$

- The probability of being unemployed at a randomly chosen date : $\frac{\delta}{\delta + \lambda_0}$
- The elapsed unemployment duration t_{0b} and the residual unemployment duration t_{0f} are i.i.d. and have an exponential distribution with parameter λ_0
- d_{0b} denote a dummy that is one if it is only known that the elapsed duration exceeds a certain value, i.e. is right-censored, and zero otherwise
- d_{0f} is for residual duration

$$\mathscr{L}_0 = \frac{\delta}{\delta + \lambda_0} \cdot \lambda_0^{1 - d_{0b} + 1 - d_{0f}} \cdot \exp(-\lambda_0 (t_{0b} + t_{0f})).$$

- The job duration t_1 has an exponential distribution with parameter $\delta + \lambda_1 \bar{F}(w)$
- Exit into unemployment occurs with probability $\frac{\delta}{\delta + \lambda_1 \bar{F}(w)}$ and exit into another job with probability $\frac{\lambda_1 \bar{F}(w)}{\delta + \lambda_1 \bar{F}(w)}$
- Measurement errors in the wage data is represented by ϵ . The observed wage \tilde{w} equals the true wage w times an error term ϵ
- $d_1=1$ if \tilde{w} is missing and zero otherwise
- ullet If $d_{0f}=1$ or $d_1=1$, then we do not follow the individual any further
- $d_2 = 1$ if t_1 is right-censored and zero otherwise
- $d_3 = 1$ if the destination following exit out of the job is unknown and zero otherwise
- $oldsymbol{0}$ $d_4=1$ if the destination is another job and zero if the destination is unemployment

$$\mathcal{L}_{1} = f(w) \cdot \exp(-(\delta + \lambda_{1} \overline{F}(w)) \cdot t_{1}) \cdot (\delta + \lambda_{1} \overline{F}(w))^{d_{3}(1 - d_{2})}$$
$$\cdot (\lambda_{1} \overline{F}(w))^{d_{4}(1 - d_{2})(1 - d_{3})} \cdot \delta^{(1 - d_{4})(1 - d_{3})(1 - d_{2})}$$

The total individual likelihood contribution for a respondent who is unemployed at the date of the first interview equals

$$\mathcal{L}_0 \cdot \mathcal{L}_1^{(1-d_{0f})(1-d_1)}.$$

- The probability of being employed at a randomly chosen date equals $\frac{\lambda_0}{\delta + \lambda_0}$
- $d_5 = 1$ if \tilde{w} is unobserved, and zero otherwise
- The elapsed job duration t_{1b} and the residual job duration t_{1f} are i.i.d. and have an exponential distribution with parameter $\delta + \lambda_1 \bar{F}(w1)$
- d_{6b} denote a dummy that is one if it is only known that the elapsed duration exceeds a certain value, i.e. is right-censored, and zero otherwise. d_{6f} is for residual duration
- $d_7=1$ if the destination following exit out of the job is unknown and zero otherwise
- ullet $d_8=1$ if the destination is another job and zero if it is unemployment
- $d_0 = 1$ if t_0 , unemployment duration, is right-censored, and zero otherwise
- Dummy variables d_{10} , d_{11} , d_{12} , and d_{13} indicate whether w_2 is unobserved, whether t_2 is right-censored, whether the destination state is unobserved, and whether the destination state is another job, respectively.

16/22

$$\begin{split} \mathscr{Z} &= \frac{\lambda_0}{\delta + \lambda_0} \cdot g(w_1) \cdot (\delta + \lambda_1 \overline{F}(w_1))^{1 - d_{6b}} \cdot \exp(-(\delta + \lambda_1 \overline{F}(w_1)) \cdot (t_{1b} + t_{1f})) \\ &\cdot (\delta + \lambda_1 \overline{F}(w_1))^{d_7(1 - d_{6f})} \cdot \left[\delta \cdot \lambda_0^{(1 - d_9)} \cdot \exp(-\lambda_0 t_0)\right]^{(1 - d_8)(1 - d_7)(1 - d_{6f})} \\ &\cdot \left[\lambda_1 \overline{F}(w_1) \cdot \left[\frac{f(w_2)}{\overline{F}(w_1)} \cdot (\delta + \lambda_1 \overline{F}(w_2))^{d_{12}(1 - d_{11})} \right. \right. \\ &\cdot \exp(-(\delta + \lambda_1 \overline{F}(w_2)) \cdot t_2) \cdot \delta^{(1 - d_{13})(1 - d_{12})(1 - d_{11})} \\ &\cdot (\lambda_1 \overline{F}(w_2))^{d_{13}(1 - d_{12})(1 - d_{11})} \right]^{(1 - d_{10})} \right]^{d_8(1 - d_7)(1 - d_{6f})} \end{split}$$

Heterogeneity

- Separate labor markets as different segments of the labor market, for different types of individuals and firms
- The deep structural parameters in the model (p, λ_0 , λ_1 , and δ) do not vary over the different labor markets significantly
- x is the vector of age, education, and occupation dummies (and a constant). We assume that p, λ_0 , λ_1 , and δ are log-linear functions of x

$$p = \exp(\beta_1' x),$$
 $\lambda_0 = \exp(\beta_2' x),$
 $\lambda_1 = \exp(\beta_3' x),$ $\delta = \exp(\beta_4' x).$

In order to capture unobserved heterogeneity, p is represented by $p = v \cdot exp(\beta_1'x)$ that v has a discrete distribution with a finite number of unknown points of support.

Data

- Labor Force Survey(LFS) data of Iran's labor market
- Household Budget Survey(HBS) data of Iran's population

Data

Data

Unemployed	Peri	ı	
t1	1	2	Total
0	59,675 10,780	27,845 2,140	87,520 12,920
Total	70,455	29 , 985	100,440

Unemployed _t1	Unemploy O	red_t2 1	Total
0 1	25,587 2,140	2,258 0	27,845 2,140
Total	27,727	2,258	29,985

Thank you for your attention.
Any questions?