7 Отделимость выпуклых множеств

Опр. Пусть M и N — подмножества вещественного линейного пространства L. Говорят, что определенный на L нетривиальный линейный функционал f разделяет множества M и N, если

$$\sup_{x \in M} f(x) \leqslant \inf_{y \in N} f(x), \tag{7.1}$$

то есть если существует постоянная c такая, что

$$f(x) \leqslant c \leqslant f(y) \quad \forall \ x \in M, \quad \forall \ y \in N.$$
 (7.2)

Линейный функционал f строго разделяет множества M и N, если

$$\sup_{x \in M} f(x) < \inf_{y \in N} f(x).$$

Предложение 7.1. Линейный функционал f разделяет множества M и N тогда и только тогда, когда:

- 1) он разделяет множества M-N и $\{0\}$;
- 2) для произвольного $x_0 \in L$ он разделяет множества $M x_0$ и $N x_0$.

Доказательство. 1) Пусть выполнено (7.1). Тогда

$$f(x-y) = f(x) - f(y) \leqslant 0 = f(0) \quad \forall x \in M, \quad \forall y \in N, \tag{7.3}$$

то есть f разделяет M-N и $\{0\}$.

Если же выполнено (7.3), то

$$f(x) \leqslant f(y) \quad \forall \ x \in M, \quad \forall \ y \in N$$

и поэтому выполнено (7.1).

2) Второе утверждение очевидно, так как

$$f(x - x_0) \leqslant f(y - y_0) \Leftrightarrow f(x) - f(x_0) \leqslant f(y) - f(y_0) \Leftrightarrow f(x) \leqslant f(y).$$

Предложение доказано.

В каком смысле нетривиальный линейный функционал разделяет множества M и N?

Пусть f - нетривиальный линейный функционал. Тогда существует элемент $x_0 \in L$ такой, что $f(x_0) = 1$ и для любого $x \in L$ справедливо разложение

$$x = \alpha x_0 + y, \quad y \in \text{Ker } f,$$

•где $\alpha = f(x)$.

Поэтому

$${x \in L \mid f(x) = c} = cx_0 + \text{Ker } f.$$

Если

$$f(x) \leqslant c \leqslant f(y) \quad \forall \ x \in M, \quad \forall \ y \in N,$$

TO

$$M \subset L_c^- = \{x \in L \mid f(x) \le c\}, \quad N \subset L_c^+ = \{x \in L \mid f(x) \le c\}.$$

Множества L_c^- и L_c^+ играют роль полупространств, а гиперплоскость $\{x\in L\mid f(x)=c\}$ — роль их "границы".

Пусть $x_0 \in L_c^-$ и $y_0 \in L_c^+$ и $f(x_0) > c$, $f(y_0) < c$. Положим

$$g(t) = f(tx_0 + (1-t)y_0) = f(x_0)t + f(y_0)(1-t), \quad t \in [0,1].$$

Заметим, что $g(0) = f(y_0) < c, g(1) = f(x_0) > c$ и существует единственное $t \in [0,1]$ такое, что

$$tx_0 + (1 - t)y_0 \in \{x \in L \mid f(x) = c\}.$$

Теорема 7.1. (Теорема об отделимости выпуклых множеств)

 Π усть M и N – непересекающиеся выпуклые множества в вещественном линейном пространстве L, причем ядро множества M не пусто. Тогда существует нетривиальный линейный функционал f, разделяющий множества M и N.

Доказательство. Выберем произвольные точки $x_0 \in \overset{\circ}{M}, y_0 \in N$ и положим

$$z_0 = y_0 - x_0, \quad K = M - N + z_0.$$

Заметим, что множество K выпукло, а ядро $\overset{\circ}{K}$ множества K не пусто и содержит точку $0=x_0-\overset{\circ}{y_0}+z_0.$

Действительно, $x_0 \in M$ означает, что для любого $z \in L$ существует $\varepsilon(z) > 0$ такое, что $x_0 + tz \in M$ для всех $t \in (-\varepsilon(z), \varepsilon(z))$. Значит,

$$0 + tz = x_0 + tz - y_0 + z_0 \in M - N + z_0$$
 для всех $t \in (-\varepsilon(z), \varepsilon(z))$.

Заметим также, что $z_0 \notin K$. Действительно,

$$z_0 \in K = M - N + z_0 \Leftrightarrow 0 \in M - N$$

то есть существуют $x \in M$ и $y \in N$ такие, что x - y = 0, то есть $M \cap N \neq \emptyset$.

Пусть p_K — функционал Минковского множества K. Определим на $L_0 = \mathrm{span}\{z_0\}$ линейный функционал f такой, что:

$$f(x) = \alpha p_K(z_0)$$
 для $x = \alpha z_0 \in L_0$.

Ясно, что

$$f(x) \leqslant p_K(x) \quad \forall x \in L_0.$$

В силу теоремы Хана-Банаха функционал f можно продолжить на все пространство L так, чтобы

$$f(x) \leqslant p_K(x), \quad \forall x \in L.$$

Заметим, что $f(x) \leqslant p_K(x) \leqslant 1$ для всех $x \in K$.

В то же время $f(z_0) = p_K(z_0) \ge 1$, так как $z_0 \notin K$.

Следовательно функционал f разделяет множества K и $\{z_0\}$. Поэтому f разделяет множества M-N и $\{0\}$. Значит, он разделяет множества M и N.

Теорема доказана.

Домашнее задание к 8 апреля Задачи 4.7 и 4.10.