CHEM 2011 Introduction to Thermodynamics

Test 2

March 27, 2022 1:30 PM-3:00 PM (90 minutes)

FIRST NAME:	
Last Name:	
Student Number:	

TEST INSTRUCTIONS

- The test is out of 50.
- The test is 11 pages long and contains 4 questions.
- You may write in pen or pencil.
- Only allowable aid is a non-programmable calculator.
- If you need extra space, you can write at the back of a page, but you must clearly indicate it, otherwise it won't be marked.
- Constants, equation sheet and periodic table are provided.

GOOD LUCK!

Question:	1	2	3	4	Total
Points:	12	13	12	13	50
Score:					

- 1. (12 points) Answer the following questions.
 - (a) (3 points) What is the bond dissociation enthalpy for Xe-F, knowing that the enthalpy of formation of XeF_{4(g)} is -252.0 kJ/mol and that the bond dissociation energy of F_{2(g)} is 158.0 kJ/mol.
 - (b) (4 points) Using the enthalpy of combustion values provided in the table below. Calculate the enthalpy of formation of 32 g of $C_3H_{8(g)}$ (M.W. of $C_3H_8 = 44.096$ g/mol). Note that the combustion product for the substances listed in the table are $H_2O_{(1)}$ and $CO_{2(g)}$ when applicable. *Hint:* Ensure to balance the reactions before proceeding.

Unbalanced Reactions	Enthalpy of Combustion
$C_3H_{8(g)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(l)}$	$-2219.9 \mathrm{\ kJ/mol}$
$C_{\text{(graphite)}} + O_{2(g)} \rightarrow CO_{2(g)}$	-393.5 kJ/mol
$H_{2(g)} + \mathcal{O}_{2(g)} \to H_2\mathcal{O}_{(l)}$	-285.8 kJ/mol

(c) (5 points) Magnesium chloride is soluble in water according to the reaction

$$\mathrm{MgCl}_{2(s)} \to \mathrm{Mg}^{2+}_{(\mathrm{aq})} + 2\,\mathrm{Cl}^{-}_{(\mathrm{aq})}$$

and the heat of the solution is $-160.0~\rm kJ/mol$. Assuming that no heat is transferred to the surroundings, calculate the final temperature when 17.2 g of MgCl₂ are dissolved in 300.0 g of water (at 298 K). Molar mass of MgCl₂ is 95.21 g/mol and the specific heat capacity of water is $4.184~\rm J/K$ g.

2. (13 points) During photosynthesis, glucose is formed from carbon dioxide and water.

$$6 CO_{2(g)} + 6 H_2O_{(l)} \rightarrow C_6H_{12}C_{6(s)} + 6 O_{2(g)}$$

At 298 K, for one mole of the reaction,

$$\Delta_r S^{\circ} = -262.4 \text{ J/mol K}$$
 $\Delta_r H^{\circ} = 2803 \text{ kJ/mol}$

- (a) (3 points) Calculate the entropy change in the surroundings, ΔS_{surr}° and the universe, ΔS_{tot}° at 298 K.
- (b) (5 points) Calculate $\Delta_r S^{\circ}$ and $\Delta_r H^{\circ}$ at 400 K for the reaction shown above. *Hint:* To account for the temperature dependence of entropy, you need to use the values of $C_{P,m}$ provided in the table below.
- (c) (2 points) Calculate the entropy change in the surroundings, ΔS_{surr}° , and the universe, ΔS_{tot}° at 400 K for the reaction shown above.
- (d) (3 points) Based on your results in (a) and (c), comment on the following points. Explain your answer.
 - (i) Is the reaction spontaneous at 298 K?
 - (ii) Is the reaction spontaneous at 400 K?
 - (iii) Has the increase in temperature from 298 K to 400 K lead to the reaction being more spontaneous (less non-spontaneous) or less spontaneous (more non-spontaneous)

Substance	$C_{P,m}$ (J/mol K)
$CO_{2(g)}$	37.1
$\mathrm{H_{2}O_{(l)}}$	75.3
$C_6H_{12}O_{6(s)}$	219.2
$O_{2(g)}$	29.4

3. (12 points) The diagram below illustrates a reversible Carnot cycle (NOTE: it's only a schematic), where the engine operates between 200°C and 700°C. The initial value at point A, V_A is 3.0 L, and the volume at point B, V_B is 10.0 L. The working substance of 1.5 mol of an ideal diatomic gas.

- (a) (1 point) Calculate the thermodynamic efficiency of the cycle.
- (b) (2 points) Calculate q_{AB} , the heat associated with the process $A \to B$.
- (c) (1.5 points) What is the total work for the whole cycle?
- (d) (1.5 points) Determine ΔS_{sys} , ΔS_{surr} and ΔS_{uni} for the process $D \to A$.
- (e) (2 points) For the process D to A, two factors contribute to the change in entropy—the volume change as well as temperature change. Explain, on a molecular scale, the sign of the entropy change in the process $D \to A$ that is only attributed to the volume change $(V_D \text{ to } V_A)$.
- (f) (2 points) Determine V_D . Hint: Use the adiabatic step.
- (g) (2 points) Calculate the change in entropy ΔS , in this step $D \to A$ that is only attributed due to the volume change V_D to V_A is the result in agreement with your explanation in part (e)?

- 4. (13 points) Answer the following questions.
 - (a) (2 points) CO is behaving like an ideal gas. Calculate ΔG for the isothermal compression of 2.0 mol of CO at 300 K as the gas is compressed from an initial pressure of 1.0 bar to the final pressure of 5.0 bar.
 - (b) (3 points) On a GP graph below, illustrate how the Gibbs Free Energy would change for CO during the process described in (a) of the question. Explain your answer with a key partial derivative expression.

(c) (4 points) In an experiment CO reacts with oxygen producing carbon dioxide:

$$\mathrm{CO}_{(\mathrm{g})} + rac{1}{2}\,\mathrm{O}_{2(g)}
ightleftharpoons \mathrm{CO}_{2(g)}$$

Calculate $\Delta_r G^{\circ}$ and K at 298 K and 1 bar. At equilibrium, would the reaction mixture contain mostly reactants, products, or both? Explain your answer.

Substance	$\Delta_f G^{\circ} \text{ (kJ/mol)}$
$CO_{(g)}$	-137.2
$\mathrm{CO}_{2(g)}$	-394.4

(d) (4 points) If the $\Delta_r H^{\circ}$ for the reaction in (c) is -283 kJ/mol, calculate $\Delta_r G^{\circ}$ at 550 K assuming that $\Delta_r H^{\circ}$ is constant in the temperature interval of interest. Is your calculated result consistent with prediction using Le Châtelier's Principle – would you have expected the equilibrium to shift more towards reactants or products upon the increase of temperature to 550 K compared to 298 K in part (c). Explain your answer.