

ASPAC and its validation on TUDa-GLR-OpenStage

Ziwei Wang ziweigegeya@163.com

China Aerodynamics Research and Development Center

CARDC

Outline

1 CFD setup

- 2 Computational results
- 3 An introduction to ASPAC

CFD setup

CFD solver

ASPAC(Aerodynamic Simulation Platform for Axial Compressor)

- Developed by CARDC
- cell-centered finite volume method
- multi-block structured grid
- MPI parallel
- scheme: LU-SGS, Roe
- turbulence: SA model(nu_t/nu=35 at inlet)
- ideal gas model
- operating condition: N100(design speed)

CFD setup

Grid and B.C.

Grid

official medium grid

B.C.

- inlet: from InletBC.input file
- outlet: radial equilibrium backpressure
- R/S interface: mixing plane, unconservative variables and nu_tilda are averaged based on absolute value of mass flow

Overall performance

The speedline is generated through gradually increasing the back pressure RANS simulation based on ASPAC can only reach point B.

The mass flow condition is applied at outlet trying to simulate flow at point A, but the result is unphysical

Overall performance

total pressure ratio

Mass flow condition at outlet: 13.4Kg/s

The global parameters are oscillating

The averaged total pressure ratio is about 1.4, which is much lower than the experiment(1.56)

Spanwise distribution: PE at ME21

Gamma is different above 70% span

Spanwise distribution: PE & NS at ME30

2D flow field: inlet

Pt idstribution of inletbc.input

2D flow field: PE & NS, ME30

Total	pressure	ratio
-------	----------	-------

Ptr_15_30	EXP	ASPAC	Difference
PE	1.491	1.476	-1.0%
NS	1.557	1.552	-0.3%

The distribution simulated by ASPAC is similar to that of EXP

The difference of Ptr between EXP and ASPAC is less than 1% as a whole

An introduction to ASPAC: Grid generation module

Grid generation software Automatic generation of multi-block structured grid for turbomachinery

An introduction to ASPAC: different CFD models

axial mach number

harmonic balance method: multi-stage and multi base frequencies phase lag method: multi-stage and multi base frequencies

An introduction to ASPAC:Large scale simulation

instantaneous static pressure

instantaneous entropy distribution at 50% span

Double bypass duct compressor:4stage LPC(9500rpm) +9 stage HPC(-19780rpm) design point

800 million grid cells, 10240 ARM V64 CPU cores

2 weeks

Thanks for Your Attention!