A GENERAL FEATURE-INFORMED CROSSOVER FOR TWO-STAGE FEATURE SELECTION IN SYMBOLIC REGRESSION

HENGZHE ZHANG, QI CHEN, BING XUE, WOLFGANG BANZHAF, MENGJIE ZHANG

MAY 30, 2025

OUTLINE

- 1 Introduction
- 2 Proposed Method
- 3 Experimental Settings
- 4 Experimental Results
- 5 Conclusions

INTRODUCTION

Symbolic Regression with Genetic Programming

- **Symbolic regression** generates mathematical expressions f(X) that map input data X to target output Y
- **Genetic Programming (GP)** naturally suited for this task:
 - Gradient-free, population-based optimization
 - Creates and optimizes variable-length symbolic expressions
 - ► Inherent ability to perform feature selection
- **Challenge**: As dimensionality increases, GP effectiveness decreases due to rapid growth of search space

TWO-STAGE FEATURE SELECTION FRAMEWORK

Current Approach:

- 1. **Stage 1**: Run GP on all features
- 2. Feature Selection: Analyze top individuals
 - ► Frequency analysis
 - Permutation importance ¹
 - ► Shapley values ^{2, 3}
- Stage 2: Reinitialize population with selected features

Problem: Reinitialization disrupts effective building blocks accumulated during evolution!

¹Chen, Qi, Mengjie Zhang, and Bing Xue, 2017", 'Feature selection to improve generalization of genetic programming for high-dimensional symbolic regression", IEEE Transactions on Evolutionary Computation

²Wang, Chunyu et al., 2023", 'Shapley Value Based Feature Selection to Improve Generalization of Genetic Programming for High-Dimensional Symbolic Regression'", Australasian Conference on Data Science and Machine Learning

³Rimas, Mohamad, Qi Chen, and Mengjie Zhang, 2024", 'Feature Selection for GPSR Based on Maximal Information Coefficient and Shapley Values'", 2024 IEEE Congress on Evolutionary Computation (CEC)

PERFORMANCE DROP DUE TO REINITIALIZATION

- Significant performance drop occurs at reinitialization point
- Accumulated building blocks are completely discarded
- Several generations needed to recover performance

OUR CONTRIBUTIONS

1. Feature-Informed Crossover (FIC) Operator:

- Eliminates need for population reinitialization
- Preserves evolved building blocks after feature selection
- ► Gradually eliminates irrelevant features during evolution

2. Subtree Importance Measurement:

- Quantifies importance based on selected features
- Guides crossover to prioritize useful subtrees

3. General Applicability:

- Works with three different feature selection mechanisms
- ► Validated across 98 datasets
- Demonstrates broad effectiveness

PROPOSED METHOD

ALGORITHM FRAMEWORK OVERVIEW

6

Key Innovation: No population reinitialization between stages!

- Feature selection occurs at midpoint of evolution
- Population continues with feature-informed operators
- Building blocks preserved throughout process

SUBTREE IMPORTANCE MEASUREMENT

Importance calculation:

$$\mathbf{W}_{\psi} = \frac{\omega_{\mathbf{W}}}{\sigma_{\mathbf{W}}}$$

where:

- lacksquare σ_{w} : total terminal nodes in subtree ψ
- lacktriangle ω_{w} : weight of selected terminals in ψ
- Node weight = 1 if selected feature or constant, o otherwise

Normalization prevents size bias in importance

FEATURE-INFORMED CROSSOVER (FIC)

Crossover Process:

1. Probability Conversion:

- Convert subtree weights to probabilities
- Add 1 to each weight for smoothing
- ► Normalize to sum to 1

2. Subtree Selection:

- Donor: Select based on importance probability
- Acceptor: Select uniformly at random

3. Replacement:

- Replace acceptor with donor subtree
- Preserve high-importance building blocks

EXPERIMENTAL SETTINGS

EXPERIMENTAL CONFIGURATION

Feature Selection Methods:

- Frequency-based: Count feature usage
- Permutation-based: Measure removal impact

$$I(X_j) = \mathbb{E}[R_{\text{orig}}^2 - R_{\text{perm}(X_j)}^2]$$

■ **Shapley-based**: Marginal contributions

Datasets:

- 98 datasets from Penn ML Benchmark
- Fewer than 2000 instances each
- 80:20 train/test split
- Features standardized

GP Parameters:

- Population: 100
- Generations: 50 + 50 (two stages)
- Max depth: 10
- Crossover/Mutation: 0.9/0.1
- Selection: Lexicase
- Functions: +, -, *, AQ, etc.

Evaluation:

- \blacksquare R^2 score metric
- 30 runs (6 groups × 5-fold CV)
- Wilcoxon signed-rank test
- Significance level: 0.05

EXPERIMENTAL RESULTS

TRAINING PERFORMANCE COMPARISON

- FIC significantly outperforms baseline on 73/98 datasets (permutation)
- No performance drop at stage transition
- Smooth evolution preserves building blocks
- Similar improvements with Shapley (72/98) and Frequency (75/98) methods

10

TEST PERFORMANCE RESULTS

- **Generalization improvement**: 42/98 datasets (permutation)
- Consistent across methods: Shapley (39/98), Frequency (41/98)
- Avoids performance cliff at stage transition

STATISTICAL ANALYSIS: TEST PERFORMANCE

Table: Statistical comparison of test R^2 scores

	Permutation	Shapley+FIC	Shapley	Frequency+FIC	Frequency
Permutation+FIC	42(+)/56(∼)/o(-)	o(+)/98(~)/o(-)	38(+)/60(~)/o(-)	o(+)/98(~)/o(-)	43(+)/54(~)/1(-)
Shapley+FIC	—	—	39(+)/59(~)/o(-)	o(+)/98(~)/o(-)	41(+)/57(~)/0(-)
Frequency+FIC	—	—	—	—	41(+)/56(~)/1(-)

- Consistent improvements across all three feature selection methods
- Robust performance: Very few cases where FIC performs worse
- General applicability demonstrated

FEATURE USAGE AND EFFICIENCY

Number of Features Used

Training Time

- Feature reduction: No significant difference vs. reinitialization
- Interpretability maintained: Comparable feature counts
- **Computational efficiency**: Minimal training time increase
- Cost reduction: Fewer features needed for deployment

FEATURE EVOLUTION TRAJECTORIES

- Building block preservation: Avoids drastic feature reduction
- **Gradual refinement**: Natural evolution toward optimal feature set

14

CONCLUSIONS

KEY FINDINGS AND CONTRIBUTIONS

- **Problem Addressed**: Reinitialization in two-stage feature selection disrupts building blocks
- **Solution Proposed**: Feature-Informed Crossover (FIC) operator
 - Preserves evolved building blocks
 - Gradually eliminates irrelevant features
 - Avoids performance drops during stage transitions
- **Experimental Validation**:
 - Significant improvements across 98 datasets
 - Consistent results with three feature selection methods
 - Maintained interpretability with comparable feature counts
 - ► Minimal computational overhead
- **Broad Applicability**: Works with frequency, permutation, and Shapley-based selection

FUTURE DIRECTIONS

- Multi-stage Extension:
 - ► Iterative feature selection with FIC
- Advanced Importance Measures:
 - ► Real-time feature importance calculation

THANK YOU!

QUESTIONS & DISCUSSION

HENGZHE ZHANG, QI CHEN, BING XUE, WOLFGANG BANZHAF, MENGJIE ZHANG

hengzhe.zhang@ecs.vuw.ac.nz