Рис. 2. В N имеется всего 2^4 подмножеств: $C_4^0=1$ 0-подмножество (пустое)

 $C_4^1 = 4$ подмножества,

 $C_4^2 = 6$ подмножеств,

 $C_4^3 = 3$ подмножеств,

 $C_4^4 = 1$ подмножество (все множество N).

Обозначим число k-подмножеств в множестве из n элементов через C_n^k *).

Числа C_n^k (их называют биномиальными коэффициетами) обладают целым рядом любопытных свойств. О многие из них было рассказано в статье Д.Б. Фукса и М.Б. Фукса «Арифметика биномиальных коэффициентов» («Квант», №6, 1970). В этой статье было доказано, что

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k, (1)$$

и с помощью метода математической индукции получена формула для C_n^k :

$$C_n^k = \frac{n!}{k!(n-k)!} **).$$
 (2)

Оба утверждения были выведены из равенства $C_n^k = \sum_{i=0}^n C_n^i x^i$, но их можно доказать и комбинаторными рассуждениями.

Чтобы доказать, например, равенство (1), зафиксируем один элемент a из N и разобьем все k-подмножества в N на два класса: содержащие a

и не содержащие a. Проверьте что число подмножеств первого класса равно C_{n-1}^{k-1} , а число подмножеств второго класса равно C_{n-1}^k . Так как каждое k-подмножество принадлежит либо первому, либо второму классу, общее число всех k-подмножеств равно C_n^k , то равенство (1) доказано.

Чтобы вывести формулу (2), выясним сначал, как получаются kподмножества из (k-1)-подмножеств. Ясно, что для этого надо к (k-1)подмножествам присоединить не входящие в них элементы. Так как все множество N содержит n элементов, то в данное (k-1)-подмножество не входит n - (k - 1) элементов. Значит, из каждого (k-1)-подмножества можно получить n-k+1 различных k-подмножеств. Но одно и то же kподмножество может быть получено из различных (k-1)-подмножеств мы не знаем, какой из k элементов оказался присоединенным в последнюю очередь. Иными словами, любое k-подмножество может быть получено k различными способами из (k-1)подмножеств. Поэтому общее число k-подмножеств в k раз меньше, чем $(n-k+1) C_n^{k-1}$. Итак,

$$C_n^k = \frac{n-k+1}{k} C_n^{k-1} \ .$$

Пользуясь этой формулой и методом

^{*)} Это число называют числом сочетаний из n элементов по k (C - первая буква французского слова combinaison — сочетание).

^{**)} Через n! обозначают произведение всех натуральных чисел от 1 до n. Например: $6! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 = 720$.

Рис. 3. Существует $4^2 = 16$ 2-слов, составленных из элементов множества N.

математической индукции, легко доказать и формулу (2).

3. к-слова. Снова возьмем в руки мешок с элементами множества N, но на этот раз будем вытаскивать элементы не сразу, а по очереди. Сначала вынем один элемент, обозначим его a_1 , запишем и положим обратно в мешок. Потом вытащим второй элемент (может случиться, что нам снова попадется тот же самый элемент a_1), запишем его и т.д. После kвыборов у нас получится запись вида (a_1,\ldots,a_k) , где a_1,\ldots,a_k какието элеметы из множества N. Такую запись мы назовем словом длины kили k-словом (иначе ее называют кортежем), составленным из элементов множества N.

Два k-слова считаются совпадающими, если у них одинаковые первые элементы, одинаковые вторые элементы, одинаковые k-е элементы.

С k-словами мы часто встречаемся на практике. Например, десятичные записи чисел — это «слова», составленные из 10 цифр, обычные слова — это «слова», составленные из русских слов. Решим следующую задачу.

Дано множества N, состоящее из n элементов. Сколько k-слов можно составить из элементво этого множества?

Рис. 4. Существует A_4^2-12 2-слов без повторений, составленных из элементов множеств N.

Поскольку первый элемент можно выбрать n способами, второй тоже n способами, \ldots , k-ый тоже n способами, то k-слово можно выбрать n^k способами.

Окончательно: из n элементов можно составить n^k слов длины k.

Многие комбинаторные задачи решаются по этому правилу. Найдем, например, сколькими способами можно разделить k различных предметов между n людьми. Для этого расположим элементы в каком-то порядке и над каждым предметом укажем, кому он предназначается. Например, запись

1	1	3	2	2	1	2	3	3	1
1	2	3	4	5	6	7	8	9	10

показывает, что первому участнику раздела достанутся 1-й, 2-й, 6-й, 10-й предметы, второму — 4-й, 5-й, 7-й, а третьему — 3-й, 8-й, 9-й предметы.

Мы видим, что каждый способ раздела задается k-словом (где k - число предметов) из n элементов (номеров участников раздела) Значит, число способов раздела равно n^k .