1. Definujte jevové pole a uveďte nějaký příklad jevového pole. Vyberte nějaký jev z vámi uvedeného příkladu a slovně jej interpretujte.

Mějme neprázdnou množinu Ω a neprázdný systém podmnožin A, pro který platí:

- a) $\Omega \in A$
- b) $A \in A \rightarrow \overline{A} \in A$ //patří tam i opačný jev
- c) $\bigcup_{n=1}^{\infty} A_n \in A$ //aditivita sloučení všech jevů

pak A nazýváme jevovou algebrou nad Ω , dvojici (Ω ,A) nazýváme **jevové pole**.

Česky: jevové pole je množina náhodných jevů (systém podmnožin základního systému Ω) s těmito vlastnostmi: pro každý náhodný jev A, patří do jevového pole i jev opačný a patří tam i sloučení všech jevů.

Př:

Prostor elementárních jevů: Ω = "hlava", "orel" Elementární jevy: ω_1 = "hlava", ω_2 = "orel" Jevová algebra: A={prázdná množina, ω_1 , ω_2 , Ω } A = prázdná množina = nepadne "hlava" ani "orel" B= ω_1 = padne "hlava" $C = \omega_2$ = padne "orel" $D = \Omega$ = padne "hlava" nebo "orel"

2. Nechť (Ω, A) je jevové pole. Uveďte axiomatickou definici pravděpodobnosti P na (Ω, A) . Uveďte alespoň čtyři vlastnosti pravděpodobnosti P.

Nechť (Ω, A) je jevové pole a P je množinová funkce definovaná nad A s vlastnostmi:

- a) $P(\Omega) = 1$ tj. P je normovaná
- b) Pro \forall A \in A je $P(A) \ge 0$ tj. P je **nezáporná**
- c) Je-li $\{A_n\}_{n=1}^{\infty}$ posloupnost náhodných jevů, které jsou po dvou neslučitelné pak $(U_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty}P(A_n)$ tj. P je **aditivní**.

Funkci P nazýváme pravděpodobnostním prostorem a trojici (Ω, P, A) pravděpodobnostním prostorem.

Česky: Pravděpodobnost P(A) náhodného jevu A je reálná funkce definovaná na jevovém poli Ω s vlastnostmi... viz nahoře.

Vlastnosti pravděpodobnosti:

```
\begin{split} &P(\emptyset)=0\\ &P(A\cup B)=P(A)+P(B),\,když\,průnik\,je\,prázdný,\,jinak:\\ &P(A\cup B)=P(A)+P(B)-P(A\cap B)\\ &P(A-B)=P(A)-P(B)\\ &0\leq P(A)\leq 1\\ &P(\overline{A})=1-P(A)\\ &\dots \end{split}
```

3. Napište definici klasické pravděpodobnosti (klasický pravděpodobnostní prostor). Uveďte nějaký příklad klasického pravděpodobnostního prostoru a popište pravděpodobnosti vybraných jevů. Ω je konečná množina elementárních jevů.

A je systém všech podmnožin množiny Ω .

Pravděpodobnost libovolného jevu A = { ω_1 , ω_2 , ω_3 ...} $\in A$ je rovna P(A) = $\sum_{j=1}^k P(\omega_{i_j})$, a přitom platí $\sum_{i=1}^n P(\omega_i)$ = 1.

Jestliže platí $P(\omega_i) = \frac{1}{2}$ mluvíme o klasickém pravděpodobnostním pokusu, ve kterém platí $P(A) = \frac{|A|}{|\Omega|}$, kde |A| značí počet elementárních jevů v A.

Česky: Jestliže základní prostor Ω je konečný nebo spočetný (tj. elementární jevy lze uspořádat do posloupnosti) tak pak pro pravděpodobností prostor Ω tvořený n stejně pravděpodobnými elementárními jevy $\{\omega\}$ je P(A) = m/n, kde m je počet elementárních jevů $\{\omega\}$, z nichž sestává náhodný jev A.

Př:

Prostor elementárních jevů: Ω = {"hlava", "orel"} konečná, velikost = 2

Elementární jevy: ω_1 = "hlava", ω_2 = "orel"

Jevová algebra: A={prázdná množina, $\omega_1, \omega_2, \Omega$ }

Model spravedlivé mince:

A = prázdná množina = nepadne "hlava" ani "orel"
$$P(\frac{|\emptyset|}{|\Omega|}) = 0/2 = 0$$

$$B = \omega_1 = padne "hlava" P(B) = 1/2$$

$$C = \omega_2 = padne "orel" P(C) = 1/2$$

$$D = \Omega$$
 = padne "hlava" nebo "orel" $P(D) = P(|\Omega| / |\Omega|) = 2/2 = 1$

4. Napište definici distribuční funkce náhodné veličiny X na pravděpodobnostním prostoru (Ω, A, P). Uveďte alespoň pět vlastností distribuční funkce.

Nechť X je náhodná veličina definovaná na pravděpodobnostním prostoru (Ω, A, P) . Pak funkci $F(x) = P(X \le x)$, kde x náleží R, nazýváme distribuční funkcí náhodné veličiny X.

Vlastnosti:

F je neklesající. F je zprava spojitá.

$$\lim_{x \to \infty} F(x) = 1$$

$$\lim_{x \to -\infty} F(x) = 0$$

 $0 \le F(x) \le 1$ pro x náležící R

F má nejvýše spočetně mnoho bodů nespojitosti.

$$P(x_1 < X < x_2) = F(x_2) - F(x_1)$$
 pro $x_{1,2}$ náležící R a $x_1 < x_2$

5. Definujte a nakreslete distribuční funkci náhodné veličiny s alternativním rozdělením A(θ). Napište střední hodnotu a rozptyl této náhodné veličiny.

Uvažujeme náhodný pokus, který může skončit s pravděpodobností $\theta \in (0,1)$ "úspěchem" a s pravděpodobností $1-\theta$ "neúspěchem".

$$E(X) = \theta$$

$$D(X) = \theta (1 - \theta)$$

6. Definujte binomické rozdělení pravděpodobnosti Bi(n, θ). Napište střední hodnotu a rozptyl této náhodné veličiny. Uveďte příklad tohoto rozdělení.

Binomické rozdělení je posloupnost n nezávislých alternativních pokusů typu úspěch/neúspěch s pravděpodobností úspěchu $\theta \in (0,1)$ pro každý pokus. X je náhodná veličina udávající počet úspěchů v n pokusech.

$$E(X) = n \theta$$

$$D(X) = n \theta (1 - \theta)$$

Příklad může být hod *n*-krát hod kostkou, kde chceme hodit 6.

7. Definujte Poissonovo rozdělení pravděpodobnosti P o(λ). Napište střední hodnotu a rozptyl této náhodné veličiny. Uveďte příklad náhodné veličiny, která má Poissonovo rozdělení.

Jestliže M = {1,2,3...} a pravděpodobnostní funkce je tvaru

$$p(x) = \begin{cases} e^{-\lambda} \frac{\lambda^x}{x!} & x = 0, 1, 2, \dots, \quad \lambda > 0 \\ 0 & \textit{jinak} \end{cases}$$

Pak značíme toto rozložení jako Poissonovo.

Rozdělení popisuje výskyt řídkých jevů za určitou jednotku času, prostoru… Parametr λ je očekávaný počet výskytů za jednotku.

$$E(X) = \lambda$$

$$D(X) = \lambda$$

Příklad: počet hovorů na telefonní lince za časovou jednotku, počet havárií za jednotku času.

8. Definujte geometrické rozdělení pravděpodobnosti Ge(θ). Uveďte příklad tohoto rozdělení.

Uvažujeme nekonečnou posloupnost nezávislých alternativních pokusů typu úspěch/neúspěch s pravděpodobností úspěchu $\theta \in (0,1)$ pro každý pokus. Náhodná veličina X udává počet úspěchů před prvním neúspěchem.

Pravděpodobní funkce je ve tvaru

$$p(x) = \begin{cases} (1-\theta)^x \theta & x = 0, 1, 2, \dots, & \theta \in (0, 1) \\ 0 & \textit{jinak} \end{cases}$$

Příklad: Házejme opět kostkou, ale nyní přestaneme házet v okamžiku, kdy padne 6. Jaká je pravděpodobnost toho, že 6 padne nejpozději ve třetím hodu?

9. Definujte rovnoměrné (spojité) rozdělení pravděpodobnosti Ro(a, b). Nakreslete také distribuční funkci tohoto rozdělení.

Rovnoměrné rozdělení na intervalu (a,b), kde – nek < a < b < nek., má ve všech bodech daného intervalu konstantní hustotu pravděpodobnosti, kterou lze vyjádřit vztahem

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{pro } x \in (a,b) \\ 0 & \text{pro } x \notin (a,b) \end{cases}$$

Mimo tento daný interval je tedy hustota pravděpodobnosti nulová.

10. Definujte normální (Gaussovo) rozdělení pravděpodobnosti $N(\mu, \sigma^2)$. Napište střední hodnotu a rozptyl náhodné veličiny s tímto rozdělením.

Normální rozdělení pravděpodobnosti s parametry μ a σ^2 , pro –nek < μ < nek a σ^2 > 0 , je pro –nek < x < nek definováno hustotou pravděpodobnosti ve tvaru Gaussovy funkce:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$E(X) = \mu$$

$$D(X) = \sigma^2$$

11. Definujte exponenciální rozdělení pravděpodobnosti Ex(λ). Jaký experiment modelujeme tímto rozdělením? Stačí uvést příklad.

Nechť jev A se vyskytuje v náhodných okamžicích a předpokládáme, že výskyty tohoto jevu v nepřekrývajících intervalech jsou nezávislé.

X ... náhodná veličina udávající čas, kdy poprvé nastane sledovaný jev A.

Hustota má tento tvar:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & ; x > 0, \\ 0 & ; x \le 0. \end{cases}$$

Příklad: Radioaktivní rozpad.

12. Definujte střední hodnotu diskrétní náhodné veličiny X a napište některé její základní vlastnosti (alespoň 4).

Nechť X je náhodná veličina definovaná na (Ω, A, P) a nechť existuje integrál $\int_{\Omega} X(\omega) dP(\omega)$ nazýváme střední hodnotou náhodné veličiny.

Výpočet u diskrétní: Nechť X \sim (M,p) je veličina diskrétního typu: EX = $\sum_{x \in M} x p(x)$

Vlastnosti:

EX existuje <=> E|X| existuje.

Jestliže $P(X = a) = 1 \Rightarrow EX = a$

Existují-li EX_1 , $EX_2 => E(a_1X_1 + a_2X_2) = a_1EX_1 + a_2EX_2$

Existují-li EX_1 , EX_2 a platí $X_1 \le X_2 => EX_1 \le EX_2$

Nechť $P(X \ge 0) = 1 \implies EX \ge 0$

13. Definujte rozptyl náhodné veličiny X. Definujte také směrodatnou odchylku náhodné veli-činy X. Napište některé základní vlastnosti rozptylu (alespoň 4).

Druhý centrální moment nazýváme rozptyl a značíme DX.

$$DX = E(X - EX)^{2}.$$

Číslo $\sigma x = \sqrt{DX}$ nazýváme směrodatnou odchylkou.

Vlastnosti rozptylu:

$$DX >= 0$$

$$DX = EX^2 - (EX)^2$$

Jestliže
$$P(X = a) = 1 \Rightarrow DX = 0$$

Nechť X_1 , X_2 jsou nezávislé náhodné veličiny, pak $D(X_1 + X_2) = DX_1 + DX_2$ $D(a_1 + a_2X) = a_2^2 DX$

14. Formulujte Lindebergovu - Lévyho centrální limitní větu.

Nechť $\{Xn\}_{n=1}^{\infty}$ je posloupnost nezávislých veličin se stejným rozdělením se střední hodnotou μ a nenulovým rozptylem σ^2 . Potom náhodní veličiny

$$U_{\overline{X}_n} = \frac{(\overline{X}_n - \mu)\sqrt{n}}{\sigma}$$

Mají asymptoticky standardizované rozdělení N(0,1).

15. Formulujte integrální Moivre – Laplaceovu větu, tj. centrální limitní větu pro binomické rozdělení.

Nechť náhodná veličina Y_n udává počet úspěchů v posloupnosti délky n nezávislých alternativních pokusů s pravděpodobností úspěchu q. Pak náhodné veličiny

$$\frac{Y_n - n\theta}{\sqrt{n\theta(1-\theta)}} \overset{A}{\sim} N(0,1).$$

16. Definujte nestranný a asymptoticky nestranný odhad parametrické funkce $\gamma(\theta)$. Formulujte postačující podmínku pro to, aby odhad parametrické funkce $\gamma(\theta)$ byl konzistentní.

Nechť $\gamma(\theta)$ je daná parametrická funkce. Řekneme, že statistika T_n je odhadem **nestranným** pokud $\forall \theta \in \Theta$ platí $E_{\theta}T_n = \gamma(\theta)$.

Česky: Odhad je nestranný, pokud se jeho střední hodnota rovná hledanému parametru

Asymptoticky nestranným pokud $\lim_{n\to\infty} E_{\theta} T_n = \gamma(\theta)$

Česky: Slabší formou nestrannosti je asymptotická nestrannost, odhad je asymptoticky nestranný, pokud: $\lim_{n\to\infty} E\hat{\theta} = \theta$

Postačující podmínka konzistence:

Nechť statistika T_n je nestranný nebo asymptoticky nestranný odhad parametrické funkce $\gamma(\theta)$ a platí: $\lim_{n\to\infty}D_{\theta}T_n=0$.

Pak je statistika T_n konzistentním odhadem parametrické funkce $y(\theta)$.

17. Definujte $100(1-\alpha)\%$ interval spolehlivosti pro parametrickou funkci $\gamma(\theta)$. Nechť $X=(X1,\ldots,Xn)$ T je náhodný výběr z rozdělení $N(\mu,\sigma 2)$, kde μ a σ 2 jsou neznámé parametry. Uveďte $100(1-\alpha)\%$ interval spolehlivosti pro střední hodnotu μ .

Interval $\langle D, H \rangle$ nazveme 100(1 – α)% intervalem spolehlivosti pro parametrickou funkci $\gamma(\theta)$ jestliže $P_{\theta}(D(X_1, ..., X_n)) \leq \gamma(\theta) \leq H(X_1, ..., X_n) = 1 - \alpha$

Česky: Interval spolehlivosti parametrické funkce $\gamma(\theta)$ je takový interval, jehož hranice jsou statistiky, a který s přesností (1 – α)% pokryje skutečnou hodnotu parametrické funkce $\gamma(\theta)$.

100(1 – α)% interval spolehlivosti pro střední hodnotu μ:

$$\langle \overline{X} - t_{1-\alpha/2}(n\!-\!1) \tfrac{S}{\sqrt{n}}, \overline{X} + t_{1-\alpha/2}(n\!-\!1) \tfrac{S}{\sqrt{n}} \rangle$$

18. Definujte obecný lineární regresní model. Formulujte předpoklady tohoto modelu.

Předpokládejme, že mezi nějakými náhodnými veličinami y, x_1 , ..., x_k platí lineární vztah $y = \beta_1 x_1 + ... + \beta_k x_k$, ve kterém jsou β_1 , β_k neznámé parametry. Informace o neznámých parametrech budeme získávat pomocí experimentu a to tak, že opakovaně budeme měřit hodnoty veličiny y při vybraných hodnotách $x_1,...x_k$.

Při měření vznikají chyby, což lze definovat takto:

y = $β_1x_1 + ... + β_kx_k + ε$, kde ε je náhodná chyba měření.

Předpoklady o chybách ε:

- a) jsou nesystematické což lze vyjádřit EY = Xβ
- b) homogenní v rozptylu $D\varepsilon_i = \sigma^2 > 0$
- c) jednotlivé náhodné chyby jsou nekorelované $C(\varepsilon_i, \varepsilon_i) = 0$

19. Definujte lineární regresní model pro obecnou regresní přímku. Napište matici plánu a soustavu normálních rovnic, které se řeší při odhadech neznámých parametrů.

Předpokládejme Y_i (i = 1, ..., n) mají normální rozdělení $Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, kde x_i jsou dané konstanty, které nejsou všechny stejné.

20. Definujte základní model a minimální submodel, které se používají při analýze rozptylu. Formulujte hypotézu, která se zde testuje.

Základní model:

Náhodné veličiny Y_{ii} se řídí modelem M:

$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

Pro i = 1, ..., α a j = 1, ..., n_j , přičemž ϵ_{ij} jsou stochasticky nezávislé náhodné veličiny s rozložením N(0, σ^2), μ je společná část střední hodnoty proměnné veličiny, α_i je efekt faktoru A na úrovni i.

Submodel:

Náhodné veličiny Y_{ij} se řídí modelem M_0 :

$$Y_{ij} = \mu + \epsilon_{ij}$$

Pro i = 1, ..., α a j = 1, ..., n_i , přičemž ε_{ij} jsou stochasticky nezávislé náhodné veličiny s rozložením N(0, σ^2).

Na hladině významnosti α testujeme nulovou hypotézu které tvrdí, že všechny střední hodnoty jsou stejné oproti alternativní hypotéze, která tvrdí že alespoň jedna dvojice středních hodnot se liší.