Prova scritta 18 Gennaio 2024 – Quiz, versione 1

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Allora

1.
$$\{1, 3, 7\} \subset A$$
; (E)

$$4. \emptyset \in A;$$

$$2. \ 4 \subset A;$$

5.
$$\{2, 6, 8\} \in A$$
.

$$3. (5,9) \in A;$$

Domanda 2. Consideriamo gli insiemi \mathbb{N} e \mathbb{Z} dei numeri naturali ed interi rispettivamente. Allora

1.
$$(2,3) \notin \mathbb{N} \times \mathbb{N} \times \mathbb{Z}$$
; (E)

4.
$$(-1, -2) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$$
;

2.
$$(2,1,-1) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}$$
;

4.
$$(-1, -2) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$$
;
5. $(-3, 4, 0) \notin \mathbb{Z} \times \mathbb{N} \times \mathbb{Z}$.

3.
$$\{1,4,3\} \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$$
;

Domanda 3. Sia
$$f: \mathbb{Z} \to \mathbb{Z}$$
 definita come $f(n) = \begin{cases} -3n & \text{se } n \text{ è dispari,} \\ 2n+5 & \text{se } n \text{ è pari.} \end{cases}$

Allora:

1. f è suriettiva;

4. $f(\mathbb{N}) \subset \mathbb{N}$;

2. $f^{-1}(7) = \emptyset$ (**E**);

5. $f^{-1}(100) \neq \emptyset$.

3. f è invertibile;

Domanda 4. Quanti sono i possibili modi di tinteggiare 5 oggetti se si hanno a disposizione vernici di 4 colori diversi?

1.
$$5!/4 = 30;$$

4.
$$\binom{5+3}{2} = 56$$

2.
$$5^4 = 625$$
;

4.
$$\binom{5+3}{3} = 56;$$

5. $5! - 4! = 96.$

3.
$$4^5 = 1024$$
; (E)

Domanda 5. Di una certa permutazione $\pi \in S_{10}, \pi \neq id$, sappiamo che $\pi^3 = \pi^{-2}$. Allora 1. π è un ciclo di lunghezza 5; 4. π è una permutazione dispari; 5. π è una permutazione pari. (E) 2. $\pi(k) \neq k$ per ogni k; 3. π ha tipo (3, 2); Domanda 6. Quale delle seguenti è la scrittura di 101 in base 2? 1. 1101011 4. 1100101 ;(**E**) 5. 1010011. 2. 1001101; 3. 1000111;

Domanda 7. Quale delle seguenti classi **non** genera $(\mathbb{Z}_{70}, +)$?

 $1. \overline{11};$ $4. \overline{13};$ 5. $\overline{27}$. 2. $\overline{21}$; **(E)** $3. \ \overline{51}$;

Domanda 8. Quale delle seguenti coppie in (\mathbb{Z}_{54},\cdot) è costituita da coppie di elementi uno inverso dell'altro?

1. $(\overline{13}, \overline{25}); (\mathbf{E})$ 4. $(\overline{11}, \overline{18});$ 5. $(\overline{7}, \overline{29})$. 2. $(\overline{5}, \overline{41})$; 3. $(\overline{17}, \overline{43})$;

Domanda 9. Quale delle seguenti congruenze ha esattamente 3 soluzioni mod30?

4. $3X \equiv 26 \mod 30$; 1. $7X \equiv 20 \mod 30$; 2. $12X \equiv 18 \mod 30$; 5. $4X \equiv 14 \mod 30$ 3. $9X \equiv 21 \mod 30$; **(E)**

Domanda 10. Sia G un gruppo con elemento neutro e e sia $g \in G$ tale che $g^{36} = e$. Quale dei seguenti **non** può essere $|\langle g \rangle|$?

1. 6; 4. 20; **(E)** 5. 1. 2. 36;

3. 12;

Prova scritta 18 Gennaio 2024 – Quiz, versione 2

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $B = \{a, b, c, d, e, f, g, h\}$. Allora

1. $\{c, f, h\} \in B$;

 $4. \emptyset \in B;$

2. $d \in B$; (E)

5. $q \subset B$.

3. $(b, e) \in B$;

Domanda 2. Consideriamo gli insiemi \mathbb{N} e \mathbb{Z} dei numeri naturali ed interi rispettivamente. Allora

- 1. $(-2,5) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}$;
- 4. $(-1, -1, 1) \notin \mathbb{Z} \times \mathbb{N} \times \mathbb{Z}$; **(E)** 5. $(-2, 2, -3) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}$.
- 2. $\{1,2,3\} \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$;
- 3. $(0,0,0) \notin \mathbb{N} \times \mathbb{Z} \times \mathbb{N}$;

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ definita come $f(n) = \begin{cases} 4-n & \text{se } n \text{ è dispari,} \\ 4n & \text{se } n \text{ è pari.} \end{cases}$

Allora:

1. f è iniettiva; (E)

4. $f(\mathbb{N}) \subset \mathbb{N}$;

2. f è suriettiva;

5. f(n+3) = 1 - n se *n* è dispari.

3. $f^{-1}(-11) = \emptyset$;

Domanda 4. Quanti elenchi di 4 nominativi si possono fare avendo a disposizione 7 persone?

1. $7^4 = 2401$;

4. 7! - 3! = 5034;

5. 7!/3! = 840. (E)

2. 4! = 24;3. $\binom{7}{4} = 35;$

Domanda 5. Di una certa permutazione $\pi \in S_9$, $\pi \neq \text{id}$, sappiamo che $\pi^4 = \pi^{-1}$. Allora

1. π ha tipo (3,2);
2. $\pi(k) \neq k$ per ogni k;
3. π è un ciclo di lunghezza 5; **(E)**

Domanda 6. Quale delle seguenti è la scrittura di 71 in base 2?

Domanda 7. Quale delle seguenti classi **non** genera $(\mathbb{Z}_{65}, +)$?

1. $\overline{35}$; **(E)**2. $\overline{21}$;
3. $\overline{38}$;
4. $\overline{16}$;
5. $\overline{34}$.

Domanda 8. Quale delle seguenti coppie in (\mathbb{Z}_{56}, \cdot) è costituita da coppie di elementi uno inverso dell'altro?

1. $(\overline{15}, \overline{17})$; 4. $(\overline{9}, \overline{25})$; **(E)** 2. $(\overline{19}, \overline{31})$; 5. $(\overline{22}, \overline{29})$. 3. $(\overline{3}, \overline{23})$;

Domanda 9. Quale delle seguenti congruenze ha esattamente 3 soluzioni mod24?

1. $21X \equiv 7 \mod 24$; 4. $20X \equiv 16 \mod 24$; 2. $15X \equiv 21 \mod 24$; (E) 5. $5X \equiv 11 \mod 24$ 3. $16X \equiv 14 \mod 24$;

Domanda 10. Sia G un gruppo con elemento neutro e e sia $g \in G$ tale che $g^{30} = e$. Quale dei seguenti **non** può essere $|\langle g \rangle|$?

1. 1; 2. 6; 3. 15; 4. 5; 5. 9. **(E)**

Prova scritta 18 Gennaio 2024 – Quiz, versione 3

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $C = \{\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta, \theta\}$. Allora

1. $\{\gamma\} \in C$;

4. $(\beta, \theta) \subset C$;

2. $\{\alpha, \zeta\} \in C$;

5. $\delta \subset C$.

3. $\emptyset \subset C$; **(E)**

Domanda 2. Consideriamo gli insiemi \mathbb{N} e \mathbb{Z} dei numeri naturali ed interi rispettivamente. Allora

- 1. $\{-1, 2, 7\} \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}$; 2. $(1, -1, 0) \in \mathbb{N} \times \mathbb{Z} \times \mathbb{N}$; **(E)**4. $(1, 1, -1) \notin \mathbb{Z} \times \mathbb{N} \times \mathbb{Z}$; 5. $(-2, -1) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}$.
- 3. $(2,-1,-3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{Z}$;

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ definita come $f(n) = \begin{cases} 2n-1 & \text{se } n \text{ è dispari,} \\ 4n+2 & \text{se } n \text{ è pari.} \end{cases}$

Allora:

1. f è suriettiva;

4. $f^{-1}(22) = \emptyset;$

2. f è invertibile;

- 5. $f(\mathbb{N}) \subset \mathbb{N}$. (E)
- 3. f(2n) = 8n + 4 per ogni $n \in \mathbb{Z}$;

Domanda 4. Quanti sono gli anagrammi della parola SCACCO?

1. 6!/3 = 240;

4. (6-3)!=3!=6;

2. 6!/3! = 120; (E)

5. 6! - 3! = 714.

3. $\binom{6}{3} = 20;$

Domanda 5. Di una certa permutazione $\pi \in S_7$, $\pi \neq \mathrm{id}$, sappiamo che $\pi^2 = \pi^{-2}$. Allora

- 1. π^2 è una permutazione pari; (E) 4. $\pi = \pi^{-1}$;
- 2. π ha periodo 4; 5. π è un ciclo.
- 3. $\pi(k) \neq k$ per ogni k;

Domanda 6. Quale delle seguenti è la scrittura di 83 in base 2?

1. 1101011

4. 1100111;

2. 1001101;

5. 1010011. **(E)**

3. 1000111;

Domanda 7. Quale delle seguenti classi **non** genera $(\mathbb{Z}_{54}, +)$?

1. $\overline{25}$;

4. $\overline{35}$;

 $2. \ \overline{49};$

5. $\overline{33}$ (E)

 $3. \ \overline{23} ;$

Domanda 8. Quale delle seguenti coppie in (\mathbb{Z}_{45}, \cdot) è costituita da coppie di elementi uno inverso dell'altro?

1. $(\overline{18}, \overline{41});$

4. $(\overline{11}, \overline{13});$

 $2. (\overline{4}, \overline{12});$

5. $(\overline{19}, \overline{31})$.

3. $(8, \overline{17})$; **(E)**

Domanda 9. Quale delle seguenti congruenze ha esattamente 4 soluzioni $mod \, 32$?

1. $9X \equiv 11 \mod 32$;

- 4. $20X \equiv 12 \mod 32$; (E)
- 2. $10X \equiv 14 \mod 32$;
- 5. $24X \equiv 16 \mod 32$
- 3. $12X \equiv 10 \mod 32$;

Domanda 10. Sia G un gruppo con elemento neutro e e sia $g \in G$ tale che $g^{28} = e$. Quale dei seguenti **non** può essere $|\langle g \rangle|$?

1. 8 ;(**E**)

4. 2;

2. 7;

5. 14.

3. 1;

Prova scritta 18 Gennaio 2024 – Quiz, versione 4

NOME:	COGNOME:

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Allora

1.
$$\emptyset \in D$$
;

4.
$$\{5\} \subset D$$
; **(E)** 5. $1 \notin D$.

2.
$$(2,4) \subset D$$
;

5.
$$1 \notin D$$
.

3.
$$\{7, 8, 9\} \in D$$
;

Domanda 2. Consideriamo gli insiemi \mathbb{N} e \mathbb{Z} dei numeri naturali ed interi rispettivamente. Allora

1.
$$\{-2,1,2\} \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$$
; 4. $(2,-3,-1) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{Z}$; 5. $(2,1,-1) \notin \mathbb{Z} \times \mathbb{N} \times \mathbb{N}$.**(E)**

$$4 (2 -3 -1) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{Z}$$

$$2. (1.-1) \in \mathbb{N} \times \mathbb{Z} \times \mathbb{Z}$$
:

5.
$$(2,1,-1) \notin \mathbb{Z} \times \mathbb{N} \times \mathbb{N}$$
 .(E)

3.
$$(-1, -1, 4) \notin \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}$$
;

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ definita come $f(n) = \begin{cases} 2-n & \text{se } n \text{ è dispari,} \\ 3n+1 & \text{se } n \text{ è pari.} \end{cases}$

Allora:

1.
$$f(\mathbb{N}) \subset \mathbb{N}$$
;

4.
$$f^{-1}(4) = \emptyset$$
; (E)

2.
$$f$$
 è iniettiva;

5.
$$f(2n) = 6n + 2$$
 per ogni $n \in \mathbb{Z}$.

3.
$$f$$
 è suriettiva;

Domanda 4. Quanti sono i cicli di lunghezza 3 in S_8 ?

1.
$$\binom{8}{3} = 56;$$

$$4.\frac{1}{2}\frac{8!}{5!} = 112$$
; (E)

1.
$$\binom{8}{3} = 56;$$

2. $8^3 = 512;$
3. $3^8 = 6561;$

$$4.\frac{1}{3}\frac{8!}{5!} = 112;$$
 (**E**) $5.\frac{1}{3}\frac{8!}{3!} = 2240.$

$$3. \ 3^8 = 6561$$

Domanda 5. Di una certa permutazione $\pi \in S_{11}, \pi \neq id$, sappiamo che $\pi^6 = \pi^{-1}$. Allora

1. $\pi(k) \neq k$ per ogni k;

4. π è una permutazione dispari;

2. π è un ciclo di lunghezza 7; (E) 5. π ha periodo 5.

3. π non è un ciclo;

Domanda 6. Quale delle seguenti è la scrittura di 107 in base 2?

1. 1101011; **(E)**

4. 1100111;

2. 1001101;

5. 1010011.

3. 1000111;

Domanda 7. Quale delle seguenti classi **non** genera $(\mathbb{Z}_{56}, +)$?

 $1. \overline{31};$

 $4. \ \overline{33};$

 $2. \ \overline{27};$

5. $\overline{25}$.

3. $\overline{21}$; **(E)**

Domanda 8. Quale delle seguenti coppie in (\mathbb{Z}_{70},\cdot) è costituita da coppie di elementi uno inverso dell'altro?

1. $(\overline{3}, \overline{41});$

4. $(\overline{17}, \overline{33});$ **(E)**

2. $(\overline{11}, \overline{25});$

5. $(\overline{19}, \overline{27})$.

3. $(\overline{23}, \overline{57})$;

Domanda 9. Quale delle seguenti congruenze ha esattamente 2 soluzioni mod28?

1. $12X \equiv 20 \mod 28$;

4. $11X \equiv 3 \mod 28$;

2. $21X \equiv 7 \mod 28$;

5. $10X \equiv 18 \mod 28$. (E)

3. $6X \equiv 9 \mod 28$;

Domanda 10. Sia G un gruppo con elemento neutro e e sia $g \in G$ tale che $g^{24} = e$. Quale dei seguenti **non** può essere $|\langle g \rangle|$?

1. 4;

4. 6;

2. 10; **(E)**

5. 12.

3. 24;

Prova scritta 18 Gennaio 2024 – Quiz, versione 5

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $E = \{s, t, u, v, w, x, y, z\}$. Allora

1.
$$y \notin E$$
;

4.
$$\{t, v, x\} \in E$$
;
5. $w \in E$. **(E)**

2.
$$(s,u) \subset E$$
;

5.
$$w \in E$$
. (E)

3.
$$z \subset E$$
;

Domanda 2. Consideriamo gli insiemi \mathbb{N} e \mathbb{Z} dei numeri naturali ed interi rispettivamente. Allora

1.
$$(2,3,-3) \notin \mathbb{N} \times \mathbb{Z} \times \mathbb{Z}$$
;

4.
$$(-1, -1, 3) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}$$
;

2.
$$(4,2) \in \mathbb{N} \times \mathbb{N} \times \mathbb{Z}$$
;

$$\mathbb{Z}$$
; 4. $(-1,-1,3) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}$
5. $\{3,1,2\} \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}$.

3.
$$(1,0,-1) \notin \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}$$
; **(E)**

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ definita come $f(n) = \begin{cases} 3n+2 & \text{se } n \text{ è dispari,} \\ 2n-4 & \text{se } n \text{ è pari.} \end{cases}$

Allora:

1. f è suriettiva;

4. f è invertibile;

2. $f^{-1}(m) = \emptyset$ se m è dispari;

5. $f(\mathbb{N}) \subset \mathbb{N}$.

3. f(2n) = 4n - 4 per ogni $n \in \mathbb{Z}$;

Domanda 4. Quanti sono i modi per selezionare 4 oggetti su 9?

1.
$$\binom{9}{4} = 126$$
; (E)

$$4. 9!/4! = 14820;$$

1.
$$\binom{9}{4} = 126$$
; **(E)**
2. $(9-4)! = 5! = 120$;

5.
$$4^9 = 262144$$
.

$$3. 9^4 = 6561;$$

Domanda 5. Di una certa permutazione $\pi \in S_{15}, \pi \neq \text{id},$ sappiamo che $\pi^4 = \pi^{-3}$. Allora

1. π ha tipo (4,3);

4. π ha periodo 7; (E)

2. π è un ciclo;

- 5. π è una permutazione dispari.
- 3. $\pi(k) \neq k$ per ogni k;

Domanda 6. Quale delle seguenti è la scrittura di 77 in base 2?

1. 1101011

4. 1100111;

2. 1001101; **(E)**

5. 1010011.

3. 1000111;

Domanda 7. Quale delle seguenti classi **non** genera $(\mathbb{Z}_{45}, +)$?

1. $\overline{22}$;

4. $\overline{33}$; **(E)**

 $2. \ \overline{32};$

 $5. \overline{28}$.

 $3. \ \overline{38} ;$

Domanda 8. Quale delle seguenti coppie in (\mathbb{Z}_{65}, \cdot) è costituita da coppie di elementi uno inverso dell'altro?

1. $(\overline{7}, \overline{28});$ **(E)**

4. $(\overline{25}, \overline{33});$

2. $(\overline{11}, \overline{8});$

5. $(\overline{19}, \overline{32})$.

3. $(\overline{23}, \overline{41});$

Domanda 9. Quale delle seguenti congruenze ha esattamente 4 soluzioni mod 36?

- 1. $20X \equiv 8 \mod 36$; (E)
- 4. $14X \equiv 22 \mod 36$;
- 2. $25X \equiv 15 \mod 36$;
- $5. 15X \equiv 21 \bmod 36$
- 3. $27X \equiv 15 \mod 36$;

Domanda 10. Sia G un gruppo con elemento neutro e e sia $g \in G$ tale che $g^{32} = e$. Quale dei seguenti **non** può essere $|\langle g \rangle|$?

1. 2;

4. 8;

2. 32;

5. 1.

3. 12; **(E)**

18 Gennaio 2024

COGNOME	NOME	• • • • • • • • • • • • • • • • • • • •	
MATRICOLA			

VERSIONE A

Rispondere a ciascuna domanda, motivando adeguatamente le risposte.

Problema 1: In S_{10} , si consideri la permutazione

$$\sigma = (1\ 3\ 5\ 7\ 9)(1\ 2\ 3\ 4)$$

- a) (Punti 4) Scrivere σ come prodotto di cicli disgiunti, determinarne il tipo, il periodo e la parità.
- b) (Punti 4) Determinare una permutazione π in S_{10} tale che

$$\sigma^{5272} \circ \pi = (1\ 2).$$

Scrivere π come prodotto di cicli disgiunti.

c) (Punti 3) Si consideri l'insieme

$$G = \{ \tau \in S_{10} \mid \tau \sigma = \sigma \tau \}.$$

Dimostrare che G è un sottogruppo di S_{10} e determinare tre elementi distinti appartenenti a G.

SOLUZIONE:

- a) $\sigma = (1\ 2\ 5\ 7\ 9)(3\ 4)$, ha tipo (5,2), periodo 10, è una permutazione dispari.
- b) Poiché $per(\sigma)=10$ e 5272 $\equiv 2 \mod 10$, si ha $\sigma^{5272}=\sigma^2=(1\ 5\ 9\ 2\ 7)$. Quindi $\pi=(1\ 5\ 9\ 2\ 7)^{-1}(1\ 2)=(7\ 2\ 9\ 5\ 1)(1\ 2)=(1\ 9\ 5)(7\ 2)$.
- c) G è un sottogruppo per il criterio dei sottogruppi: infatti $\sigma \in G$, quindi $G \neq \emptyset$; inoltre se $\tau_1, \tau_2 \in G$ si ha $\tau_2 \sigma = \sigma \tau_2$ e quindi moltiplicando a destra e a sinistra per τ_2^{-1} vediamo che $\tau_2^{-1} \in G$; da cui $\tau_1 \tau_2^{-1} \sigma = \tau_1 \sigma \tau_2^{-1} = \sigma \tau_1 \tau_2^{-1}$; quindi $\tau_1 \tau_2^{-1} \in G$. Tre elementi distinti di G sono, per esempio, $(1), \sigma, \sigma^2$.

18 Gennaio 2024

COGNOME	.NOME
MATRICOLA	

VERSIONE A

Rispondere a ciascuna domanda, motivando adeguatamente le risposte.

Problema 2: Siano

$$N = 1147, \qquad M = 5$$

- a) (Punti 4) Calcolare il massimo comune divisore di N e 1000 e esprimerlo mediante l'identità di Bézout.
- b) (Punti 4) Calcolare i rappresentanti canonici delle seguenti classi di resto

$$[N-1]_M$$
, $[1000]_N^{-1}$, $[M^{10}-7]_M$

c) (Punti 3) Si dia per noto che M è il periodo di $[1000]_N$ in \mathbb{Z}_N^{\times} . E' vero che $1000^{N-1} \equiv 1 \pmod{N}$? Dedurne (senza fattorizzare N) che N non è primo.

SOLUZIONE:

a) Si ha (N, 1000) = 1; l'identità di Bézout è

$$483 \cdot N - 554 \cdot 1000 = 1.$$

- b) I rappresentanti canonici sono rispettivamente 1, 593, 3.
- c) Dal punto b) vediamo che M non divide N-1. Quindi $1000^{N-1} \not\equiv 1 \mod N$. Per il Piccolo Teorema di Fermat, N non può essere primo.

Prova scritta 5 Febbraio 2024 – Quiz, versione 1

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $A = \{a, b, c, d, e\}$. Allora:

- 1. $d \notin A$
- 2. $\{b, e\} \subset A$; **(E)**

- 4. $\{a, b, d\} \in A$;
- 5. $(a,c) \subset A$.

3. $h \in A$;

Domanda 2. Siano $S = \{a, e, i, o, u\}$ e $T = \{0, 1, 8, 9\}$. Allora

1. $(o,7) \in S \times T$

- 4. $(8, u) \in S \times T$;
- 2. $(\{a\}, \{9\}) \subset S \times T$;
- 5. $\{(e, 8)\} \subset S \times T$. **(E)**

3. $\{i,1\} \subset S \times T$;

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione $f(n) = \begin{cases} n^2 + 1 & \text{se } n < 0, \\ n^2 + 2 & \text{se } n \ge 0. \end{cases}$. Allora

1. f è iniettiva

4. f è suriettiva;

2. $f \circ f(-2) = 26$;

5. $f(2n) = 4n^2 + 2$ per ogni n.

3. $f^{-1}(12) = \emptyset$; (E)

Domanda 4. In una trattoria il menu comprende 6 primi, 4 secondi e 3 dolci. Quante sono teoricamente le ordinazioni possibili per un pranzo completo?

1. $6 \cdot 4 \cdot 3$; **(E)**

4. (6+4+3)!;

2.6+4+3;

5. 6!4!3!.

3.6! + 4! + 3!;

Domanda 5. Una permutazione π ha ti	po $(2, 3, 5)$. Allora π^3
 è un ciclo di lunghezza 5; ha tipo (2, 3, 5); ha tipo (3, 5); 	4. ha tipo (2, 5); (E)5. è un ciclo di lunghezza 3;
Domanda 6. La scrittura in base 2 di 7	8 è
1. 1010100; 2. 1011010; 3. 1001110; (E)	4. 1101000;5. 1100010.
Domanda 7. Solo in una delle seguenti $(\mathbb{Z}_{105}, +)$. Quale?	coppie entrambi i numeri generanc
1. (15, 32); 2. (16, 77) 3. (33, 52);	4. (26, 64); (E) 5. (25, 49).
Domanda 8. Il numero delle classi inven	rtibili in (\mathbb{Z}_{90},\cdot) è
1. 20; 2. 24; (E) 3. 32;	4. 285. 30.
Domanda 9. La congruenza $20X \equiv 12$ n	mod 44 ha esattamente
 4 soluzioni modulo 44; (E) 2 soluzioni modulo 44; nessuna soluzione; 	4. 4 soluzioni modulo 11;5. 1 soluzione modulo 22;
Domanda 10. Sia G un gruppo con 39 periodo di g non può essere	9 elementi e sia $g \in G$. Allora il
1. 3; 2. 13; 3. 9; (E)	4. 1; 5. 39.

Prova scritta 5 Febbraio 2024 – Quiz, versione 2

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $A = \{t, u, v, w, x, y, z\}$. Allora:

1. $(u,y) \subset A$

 $4. \ \{w, x, z\} \in A;$ $5. \ \emptyset \in A.$

 $2. \ w \subset A;$

3. $s \notin A$; **(E)**

Domanda 2. Siano $S = \{g, h, i, j, k\}$ e $T = \{1, 3, 5, 7\}$. Allora

1. $(j,k) \in S \times T$

- 4. $\{h,3\} \subset S \times T$;
- 2. $(g, 5) \notin T \times S$; **(E)**
- 5. $(i,1) \in T \times S$.

3. $(\emptyset, 7) \in S \times T$;

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione $f(n) = \begin{cases} n^2 & \text{se } n < 0, \\ n^2 - 4 & \text{se } n \ge 0. \end{cases}$. Allora

1. $f \circ f(1) = 5$

4. $f(n^2) = n^4 - 4$ per ogni n; (E)

2. f è suriettiva;

5. $f(\mathbb{N}) \subset \mathbb{N}$.

3. $f^{-1}(12) = \emptyset$;

Domanda 4. Quanti sono gli anagrammi della parola SOCCORSO?

1. 8!/7!

4. $8!/2 \cdot 2 \cdot 3$;

2. 8!;

5 . 8!/2!2!3!; (E)

3.8! - 2!2!3!;

Domanda 5. Una permutazione π ha	tipo $(3,3,4)$. Allora π^4
 ha tipo (3,3); (E) ha tipo (2,2); è l'identità; 	4. ha tipo (3, 3, 4);5. è un ciclo di lunghezza 4;
Domanda 6. La scrittura in base 2 di	90 è
1. 1010100; 2. 1011010; (E) 3. 1001110;	4. 1101000;5. 1100010.
Domanda 7. Solo in una delle seguent $(\mathbb{Z}_{105}, +)$. Quale?	ti coppie entrambi i numeri generanc
1. (15, 32); 2. (16, 77) 3. (2, 58) (E) ;	4. (26, 72); 5. (25, 49).
Domanda 8. Il numero delle classi inv	vertibili in (\mathbb{Z}_{84},\cdot) è
1. 24 (E) ; 2. 18; 3. 32;	4. 28 5. 30.
Domanda 9. La congruenza $18X \equiv 7$	mod 54 ha esattamente
 1. 1 soluzioni modulo 54; 2. nessuna soluzione; (E) 3. 2 soluzioni modulo 27; 	4. 1 soluzioni modulo 3;5. 9 soluzione modulo 6;
Domanda 10. Sia G un gruppo con periodo di g non può essere	27 elementi e sia $g \in G$. Allora il
1. 3; 2. 1; 3. 9;	4. 27; 5. 6. (E)

Prova scritta 5 Febbraio 2024 – Quiz, versione 3

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $A = \{1, 2, 3, 4, 5\}$. Allora:

1. $(1,2) \subset A$

4. $3 \in A$; **(E)**

2. $6 \in A$;

 $5. 5 \subset A.$

3. $\{2,4\} \in A$;

Domanda 2. Siano $S = \{w, x, y, z\}$ e $T = \{2, 4, 6, 8\}$. Allora

- 1. $\{w\} \times \{8\} \in S \times T$
- 4. $\{y,4\} \in S \times T$;

2. $(4,6) \in S \times T$;

- 5. $(z, \emptyset) \in S \times T$.
- 3. $(x,7) \notin S \times T$; (E)

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione $f(n) = \begin{cases} n^2 + 1 & \text{se } n < 0, \\ n^2 - 3 & \text{se } n \geq 0. \end{cases}$. Allora

1. f è iniettiva; (E)

4. f è suriettiva;

2. $f \circ f(-1) = 5$;

5. $f(2n) = 4n^2 - 3$ per ogni n.

3. $f^{-1}(10) = \emptyset$;

Domanda 4. Il capo di una ditta con 12 dipendenti ne sceglie 4 per un certo lavoro. Quante sono le scelte possibili?

1. 12!/8!

4. 12! - 8!; $5\binom{15}{3}$.

2. $\binom{12}{4}$; **(E)**

 $3. \ 12!/4!;$

Domanda 5. Una permutazione π ha tipo $(2,2,6)$. Allora π^2					
 è un ciclo di lunghezza 6; ha tipo (2,2,6); è un ciclo di lunghezza 2; 	4. ha tipo (2,2);5. ha tipo (3,3); (E)				
Domanda 6. La scrittura in base 2 di 84	· è				
1. 1010100; (E) 2. 1011010; 3. 1001110;	4. 1101000; 5. 1100010.				
Domanda 7. Solo in una delle seguenti c $(\mathbb{Z}_{105}, +)$. Quale?	coppie entrambi i numeri generano				
1. (15, 32); 2. (16, 77) 3. (33, 83);	4. (24, 64); 5. (11, 52) (E) .				
Domanda 8. Il numero delle classi invert	tibili in (\mathbb{Z}_{72},\cdot) è				
1. 20; 2. 18; 3. 28;	4. 24; (E) 5. 30.				
Domanda 9. La congruenza $12X \equiv 21 \text{ m}$	nod 63 ha esattamente				
 1. 1 soluzione modulo 63; 2. 1 soluzione modulo 7; 3. nessuna soluzione; 	4. 1 soluzione modulo 21; (E)5. 1 soluzione modulo 9;				
Domanda 10. Sia G un gruppo con 44 periodo di g non può essere	elementi e sia $g \in G$. Allora il				
1. 4; 2. 8; (E) 3. 2;	4. 1; 5. 11.				

Prova scritta 5 Febbraio 2024 – Quiz, versione 4

NOME: COG

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $A = \{6, 7, 8, 9\}$. Allora:

1. $\emptyset \in A$

4. $(7,8) \subset A$;

 $2. (6,8) \in A;$

5. $\{7\} \notin A$. (E)

 $3. 9 \subset A;$

Domanda 2. Siano $S = \{p, q, r, s, t\}$ e $T = \{5, 6, 7, 8\}$. Allora

- 1. $(7, p) \notin S \times T$; **(E)**
- 4. $(5,6) \in S \times T$;

2. $\{q, 8\} \in S \times T;$

5. $(p, r, 6) \in S \times T$.

3. $(t,5) \in T \times S$;

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione $f(n) = \begin{cases} n^2 - 1 & \text{se } n < 0, \\ n^2 + 4 & \text{se } n \ge 0. \end{cases}$. Allora

1. f è iniettiva

4. $f \circ f(-2) = 8$

2. $f(\mathbb{N}) \subset \mathbb{N}$; (E)

5. $f(2n) = 4n^2 + 4$ per ogni n.

3. f è suriettiva;

Domanda 4. Quanti sono i PIN costituiti da 4 cifre diverse se non sono ammesse ripetizioni?

 $1. \ 10!/4!$

4. 10!/6!; **(E)**

2. $\binom{10}{6}$; 3. 4!;

5. 10! - 6!

Domanda 5. Una permutazione π ha tipo $(3,3,4)$. Allora π^3					
 è l'identità; ha tipo (3, 3, 4); è un ciclo di lunghezza 4; (E) 	4. ha tipo (3,3);5. è un ciclo di lunghezza 3;				
Domanda 6. La scrittura in base 2 di 98	è				
1. 1010100; 2. 1011010; 3. 1001110;	4. 1101000; 5. 1100010. (E)				
Domanda 7. Solo in una delle seguenti c $(\mathbb{Z}_{105}, +)$. Quale?	coppie entrambi i numeri generano				
1. (8,76); (E) 2. (16,77); 3. (33,52);	4. (26, 66); 5. (25, 49).				
Domanda 8. Il numero delle classi invert	tibili in (\mathbb{Z}_{70},\cdot) è				
1. 20; 2. 18; 3. 32;	4. 28 5. 24. (E)				
Domanda 9. La congruenza $15X \equiv 35 \text{ m}$	nod 55 ha esattamente				
 nessuna soluzione; 1 soluzione modulo 55; 5 soluztioni modulo 55; (E) 	4. 5 soluzioni modulo 11;5. 1 soluzione modulo 5;				
Domanda 10. Sia G un gruppo con 52 periodo di g non può essere	elementi e sia $g \in G$. Allora il				
1. 1; 2. 13; 3. 4;	4. 8; (E) 5. 26.				

Prova scritta 5 Febbraio 2024 – Quiz, versione 5

NOME: **COGNOME:**

MATRICOLA:

Riportare le risposte ritenute corrette nella tabella seguente

1	2	3	4	5	6	7	8	9	10

Domanda 1. Sia $A = \{l, m, n, o, p, q\}$. Allora:

1. $\{p, q\} \subset A$; **(E)**

 $4. r \in A;$

2. $\{m\} \in A$;

5. $(l, o) \in A$.

3. $(n,p) \subset A$;

Domanda 2. Siano $S = \{a, b, c, d\}$ e $T = \{0, 1, 2\}$. Allora

1. $(a,d) \in S \times T$

4. $(b, 2) \in S \times T$; **(E)**

2. $(d, 1, 2) \in S \times T$;

5. $(c, 0) \in T \times S$.

3. $\{b,1\} \subset S \times T$;

Domanda 3. Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione $f(n) = \begin{cases} n^2 - 4 & \text{se } n < 0, \\ n^2 - 3 & \text{se } n \geq 0. \end{cases}$. Allora

1. f è iniettiva

4. $f(\mathbb{N}) \subset \mathbb{N}$;

2. $f^{-1}(21) = \emptyset;$

5. $f \circ f(1) = 0$. (E)

3. f è suriettiva;

Domanda 4. Quanti sono i modi possibili di assegnare un numero intero da 0 a 4 inclusi a 6 oggetti, se le ripetizioni sono ammesse?

1. 6! - 5!

4. $\binom{6}{5}$; 5. $6 \cdot 5$.

 2.6^5 ;

3. 5^6 ; (E)

Domanda 5. Una permutazione π ha tip	o $(3,4,5)$. Allora π^4
 è un ciclo di lunghezza 4; ha tipo (3,5); (E) è l'identità; 	4. ha tipo (3,4,5);5. è un ciclo di lunghezza 5;
Domanda 6. La scrittura in base 2 di 10	4 è
1. 1010100; 2. 1011010; 3. 1001110;	4. 1101000; (E) 5. 1100010.
Domanda 7. Solo in una delle seguenti o $(\mathbb{Z}_{105}, +)$. Quale?	coppie entrambi i numeri generano
1. (15, 32); 2. (16, 46); (E) 3. (33, 52);	4. (27, 64); 5. (25, 49).
Domanda 8. Il numero delle classi invert	cibili in (\mathbb{Z}_{80},\cdot) è
1. 20; 2. 24; 3. 32; (E)	4. 285. 30.
Domanda 9. La congruenza $24X \equiv 28 \text{ m}$	nod 58 ha esattamente
 4 soluzioni modulo 58; 1 soluzioni modulo 58; nessuna soluzione; 	4. 2 soluzioni modulo 29;5. 2 soluzioni modulo 58; (E)
Domanda 10. Sia G un gruppo con 40 periodo di g non può essere	elementi e sia $g \in G$. Allora il
1. 12; (E) 2. 8; 3. 10;	4. 1; 5. 20.

5 Febbraio 2024

COGNOME .	NOME	 	
MATRICOLA			

PROBLEMA 1

Versione A

Rispondere a ciascuna domanda, motivando adeguatamente le risposte. Lasciare indicati (senza calcolarli esplicitamente) i coefficienti binomiali e le potenze.

Sia X l'insieme dei numeri da 0 a 9 (compresi), e

$$A = \{0, 1, 3, 5, 6, 8\}$$

- a) (Punti 4) Contare le stringhe di 10 cifre in X aventi 4 come prima cifra e non contenenti cifre in A.
- b) (Punti 4) Contare le stringhe di 10 cifre in X tali che la prima cifra è in A e l'ultima cifra è congrua modulo 5 alla somma delle prime cinque cifre.
- c) (Punti 3) Contare le stringhe di 10 cifre in X contenenti esattamente 4 cifre in A.

SOLUZIONE:

- a) Sono in biezione con le stringhe di 9 cifre nell'insieme $X \setminus A = \{2, 4, 7, 9\}$, quindi il loro numero è 4^9 .
- b) Ci sono $6 \cdot 10^8$ stringhe di 9 cifre tali che la prima cifra è in A. Per ognuna di queste, detta x la somma delle prime cinque cifre, ci sono due possibilità per la decima cifra: il rappresentante di $[x]_5$ appartenente all'insieme $\{0, 1, 2, 3, 4\}$ e quello appartenente all'insieme $\{5, 6, 7, 8, 9\}$. Quindi il numero richiesto è $2 \cdot 6 \cdot 10^8$.
- c) Ci sono $\binom{10}{4}$ scelte per i posti in cui situare elementi di A. Nei rimanenti sei posti occorre collocare elementi in $X \setminus A = \{2, 4, 7, 9\}$. Quindi il numero totale è

$$\binom{10}{4} \cdot 6^4 \cdot 4^6 = 1114767360$$

5 Febbraio 2024

COGNOME	NOME	
MATRICOLA	A	

PROBLEMA 2

Versione A

Rispondere a ciascuna domanda, motivando adeguatamente le risposte.

a) (Punti 4) Dire se la congruenza

$$34x \equiv 6 \mod 38$$

ammette soluzioni e in questo caso risolverla

- b) (Punti 4) dire se $\overline{7}$ sta in \mathbb{Z}_{32}^{\times} ; in caso affermativo determinarne il periodo.
- c) (Punti 3) Sia N=7919 e si dia per noto che N è primo. Calcolare

$$2^{15839} + N^{11} \mod 3N$$

SOLUZIONE:

- a) La congruenza ammette soluzione in quanto (34,38)=2 divide 6. Sono soluzioni tutti e soli gli $x\equiv 8\mod 19$.
- b) $\overline{7} \in \mathbb{Z}_{32}^{\times}$, in quanto (7,32) = 1. Il periodo di $\overline{7}$ in \mathbb{Z}_{32}^{\times} è 4.
- c) Si ha (2,3N)=1 e $\varphi(3N)=2\cdot 7918=15836$. Ne segue, per il teorema di Eulero

$$2^{15839} = 2^{15836} \cdot 2^3 \equiv 2^3 \equiv 8 \mod 3N. \tag{1}$$

Passiamo ora a studiare il secondo addendo. Poiché (N,3)=1 e $\varphi(3)=2$, si ha per il teorema di Eulero

$$N^{11} = (N^2)^5 \cdot N \equiv N \mod 3.$$

e inoltre ovviamente $N^{11} \equiv N \mod N$ (sono entrambi $\equiv 0 \mod N$). Quindi

$$N^{11} \equiv N \mod 3N. \tag{2}$$

Da (1) e (2) vediamo che la soluzione è 8 + N = 7927 modulo 3N.