Number System Number Representation

Topics to be Discussed

How are numeric data items actually stored in computer memory?

- How much space (memory locations) is allocated for each type of data?
 - int, float, char, etc.
- How are characters and strings stored in memory?

Number System :: The Basics

- We are accustomed to using the so-called decimal number system.
 - Ten digits :: 0,1,2,3,4,5,6,7,8,9
 - Every digit position has a weight which is a power of 10.
 - Base or radix is 10.
- Example:

$$234 = 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$$
$$250.67 = 2 \times 10^{2} + 5 \times 10^{1} + 0 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$$

Binary Number System

- Two digits:
 - 0 and 1.
 - Every digit position has a weight which is a power of 2.
 - Base or radix is 2.
- Example:

$$110 = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

Counting with Binary Numbers

Values with more than two states require multiple bits

A collection of two bits has four possible states:

00,01,10,11

a collection of eight possible states:

000,001,010,011,100,101,110, 111

A collection of n bits has 2n possible states

0

1

10

11

100

101

110

111

1000

Multiplication and Division with base

Multiplication with 10 (decimal system)

Multiplication with 10 (=2) (binary system)

$$1101 \times 10 = 11010$$

Division by 10 (decimal system)

Division by 10 (=2) (binary system)

Left Shift and add zero at right end

Right shift and drop right most digit or shift after decimal point

Adding two bits

Binary addition: Another example

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
 - Some power of 2.
- A binary number:

$$B = b_{n-1} b_{n-2} \dots b_1 b_0 \cdot b_{-1} b_{-2} \dots b_{-m}$$

Corresponding value in decimal:

$$D = \sum_{i = -m}^{n-1} b_i 2^i$$

Examples

1.
$$101011 \rightarrow 1x2^5 + 0x2^4 + 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0$$

= 43
 $(101011)_2 = (43)_{10}$

2. .0101
$$\rightarrow$$
 0x2⁻¹ + 1x2⁻² + 0x2⁻³ + 1x2⁻⁴
= .3125
(.0101)₂ = (.3125)₁₀

3.
$$101.11$$
 \rightarrow $1x2^{2} + 0x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2}$
 5.75
 $(101.11)_{2} = (5.75)_{10}$

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders in reverse order.
- For the fractional part,
 - Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
 - Arrange the integer parts in the order they are obtained.

Example 1 :: 239

```
      2
      239

      2
      119

      2
      59

      2
      29

      2
      14

      2
      7

      2
      3

      2
      1

      2
      1

      2
      1

      2
      1

      2
      1

      2
      1

      2
      1
```

$$(239)_{10} = (11101111)_2$$

Example 2 :: 64

$$(64)_{10} = (1000000)_2$$

Example 3 :: .634

```
.634 \times 2 = 1.268
.268 \times 2 = 0.536
.536 \times 2 = 1.072
.072 \times 2 = 0.144
.144 \times 2 = 0.288
:
:
```

Example 4 :: 37.0625

```
(37)_{10} = (100101)_2

(.0625)_{10} = (.0001)_2

(37.0625)_{10} = (100101.0001)_2
```

Hexadecimal Number System

A compact way of representing binary numbers.

• 16 different symbols (radix = 16).

```
0 \rightarrow 0000
                    8 \rightarrow 1000
1 \rightarrow 0001
                    9 \rightarrow 1001
2 \rightarrow 0010
                    A \rightarrow 1010
3 \rightarrow 0011
                     B \rightarrow 1011
4 → 0100
                     C \rightarrow 1100
                    D \rightarrow 1101
5 → 0101
6 → 0110
                     E \rightarrow 1110
7 → 0111
                    F \rightarrow 1111
```

Binary-to-Hexadecimal Conversion

- For the integer part,
 - Scan the binary number from right to left.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *leading* zeros if necessary.
- For the fractional part,
 - Scan the binary number from *left to right*.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add trailing zeros if necessary.

Example

```
1. (1011 \ 0100 \ 0011)_2 = (B43)_{16}
```

$$2. \quad (\underline{10} \ \underline{1010} \ \underline{0001})_2 \quad = \quad (2A1)_{16}$$

$$3. \quad (.\underline{1000} \ \underline{010})_2 \qquad = (.84)_{16}$$

4.
$$(101 \cdot 0101 \cdot 111)_2 = (5.5E)_{16}$$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent.
- Examples:

```
(3A5)_{16} = (0011 \ 1010 \ 0101)_{2}

(12.3D)_{16} = (0001 \ 0010 \ .0011 \ 1101)_{2}

(1.8)_{16} = (0001 \ .1000)_{2}
```

Some Important (number) data Types

- Unsigned integers: 0,1,2,3,4.....
- Signed integers: -3, -2, -1, 0, 1, 2, 3
- Floating point numbers:
- PI=3.14154 X 10⁰

Unsigned Binary Numbers

An n-bit binary number

$$B = b_{n-1}b_{n-2}....b_2b_1b_0$$

- 2ⁿ distinct combinations are possible, 0 to 2ⁿ-1.
- For example, for n = 3, there are 8 distinct combinations.
 - 000, 001, 010, 011, 100, 101, 110, 111
- Range of numbers that can be represented

n=8
$$\rightarrow$$
 0 to 2⁸-1 (255)
n=16 \rightarrow 0 to 2¹⁶-1 (65535)
n=32 \rightarrow 0 to 2³²-1 (4294967295)

Word size

- Every real computer has base word size:
 - 16 bit, 32 bit, and 64 bit
- Memory fetches are word by word
 - Even if you want 8 bit (a byte)

Word Size

Unsigned Integer	Binary Representation [minimum bits]	Binary Representation [8-bit word size]	Binary Representation [16-bit word size]
3	11	00000011	000000000000011
10	1010	00001010	000000000001010
15	1111	00001111	000000000001111
255	11111111	11111111	0000000011111111
256	100000000	Not Possible	0000000100000000
65536	??	??	??

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
- With n bits we have 2ⁿ distinct values.
 - Assign about half to positive integers (1 through 2ⁿ -1)
 - and another half 2ⁿ -1 through -1
 - Question:: How to represent sign?
- Three possible approaches:
 - Sign-magnitude representation
 - One's complement representation
 - Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
 - The most significant bit (MSB) indicates sign
 - $0 \rightarrow positive$
 - $1 \rightarrow \text{negative}$
 - The remaining n-1 bits represent magnitude.

Representation and ZERO

Range of numbers that can be represented:

```
Maximum :: +(2^{n-1}-1)
Minimum :: -(2^{n-1}-1)
```

• A problem:

Two different representations of zero.

```
+0 \rightarrow 0 000....0
-0 \rightarrow 1 000....0
```

Examples

Signed Integer	Binary Representation [minimum bits]	Binary Representation [8-bit word size]	Binary Representati [16-bit word size]
-5	1 101	10000101	1000000000000101
+5	0 101	00000101	0000000000000101
+127	01111111	01111111	0000000001111111
-127	11111111	11111111	1000000001111111
+0	00	00000000	00000000000000000
-0	10	10000000	10000000000000000

Sign Magnitude Representation

- Easy to understand and encode
- One problem: two representation of 0 (-0 and +0)
- Addition of K + (-K) does not give 0

```
• -5 + 5 = (1000 \ 0101)_2 + (0000 \ 0101)_2
```

- = $(1000\ 1010)_2$
- $= (10)_{10}$

One's Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in signmagnitude form.
 - Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
 - Complement every bit of the number $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow positive$
 - 1 → negative

Example :: n=4

0000 > -	+0	1000	\rightarrow	-7
0001 →	+1	1001	\rightarrow	-6
0010 >	+2	1010	\rightarrow	-5
0011 -> -	+3	1011	\rightarrow	-4
0100 → -	+4	1100	\rightarrow	-3
0101 → -	+5	1101	\rightarrow	-2
0110 → -	+6	1110	\rightarrow	-1
0111 -> -	+7	1111	\rightarrow	-0

To find the representation of -4, first note that

$$+4 = 0100$$

-4 = 1's complement of 0100 = 1011

One's Complement Representation

Range of numbers that can be represented:

```
Maximum :: +(2^{n-1}-1)
Minimum :: -(2^{n-1}-1)
```

• A problem:

Two different representations of zero.

```
+0 → 0 000....0
-0 → 1 111....1
```

- Advantage of 1's complement representation
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.

Examples

Signed Integer	Binary Representation [minimum bits]	Binary Representation [8-bit word size]	Binary Representation [16-bit word size]
-5	1010	11111010	111111111111010
+5	0 101	00000101	000000000000101
+127	01111111	01111111	0000000001111111
-127	10000000	10000000	1111111110000000
+0	00	00000000	000000000000000
-0	11	11111111	111111111111111

Two's Complement Representation

- Basic idea:
 - Positive numbers are represented exactly as in signmagnitude form.
 - Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
 - Complement every bit of the number (1→0 and 0→1), and then *add one* to the resulting number.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow positive$
 - $1 \rightarrow \text{negative}$

Example :: n=4

0000 →	+0	1000	\rightarrow	-8
0001 >	+1	1001	\rightarrow	-7
0010 >	+2	1010	\rightarrow	-6
0011 →	+3	1011	\rightarrow	-5
0100 >	+4	1100	\rightarrow	-4
0101 >	+5	1101	\rightarrow	-3
0110 >	+6	1110	\rightarrow	-2
0111 >	+7	1111	\rightarrow	-1

To find the representation of, say, -4, first note that

$$+4 = 0100$$

-4 = 2's complement of 0100 = 1011+1 = 1100

Storage and number system in Programming

• In C

- short int
 - 16 bits \rightarrow + (2¹⁵-1) to -2¹⁵
- int
 - 32 bits \rightarrow + (2³¹-1) to -2³¹
- long int
 - 64 bits \rightarrow + (2⁶³-1) to -2⁶³

Storage and number system in Programming

Range of numbers that can be represented:

```
Maximum :: +(2^{n-1}-1)
Minimum :: -2^{n-1}
```

- Advantage:
 - Unique representation of zero.
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

Subtraction Using Addition :: 1's Complement

- How to compute A − B?
 - Compute the 1's complement of B (say, B₁).
 - Compute $R = A + B_1$
 - If the carry obtained after addition is '1'
 - Add the carry back to R (called *end-around carry*).
 - That is, R = R + 1.
 - The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

Example 1 :: 6-2

$$A = 6 (0110)$$

 $B = 2 (0010)$
 $6 - 2 = A - B$

1's complement of 2 = 1101

Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

Example 2 :: 3-5

1's complement of 5 = 1010

3 :: 0011 A
-5 :: 1010
1101 R

Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents –2.

Subtraction Using Addition :: 2's Complement

- How to compute A − B?
 - Compute the 2's complement of B (say, B₂).
 - Compute $R = A + B_2$
 - Ignore carry if it is there.
 - The result is in 2's complement form.

Example 1 :: 6 – 2

2's complement of 2 = 1101 + 1 = 1110

Example 2 :: 3 – 5

2's complement of 5 = 1010 + 1 = 1011

3 :: 0011

-5 :: 1011 1110

-2

Δ

 $\mathsf{B_2}$

R

Example 3 :: -3 - 5

```
2's complement of 3 = 1100 + 1 = 1101
2's complement of 5 = 1010 + 1 = 1011
```

```
-3 :: 1101
-5 :: 1011
1 1000
Ignore carry -8
```

Floating-point Numbers

- The representations discussed so far applies only to integers.
 - Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
 - In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
 - This lacks flexibility.
 - Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

 A floating-point number F is represented by a doublet <M,E>:

```
F = M x B<sup>E</sup>
B → exponent base (usually 2)
M → mantissa
E → exponent
```

- M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,

```
In decimal,
0.235 x 10<sup>6</sup>
In binary,
0.101011 x 2<sup>0110</sup>
```

Example :: 32-bit representation

M represents a 2's complement fraction

$$1 > M > -1$$

• E represents the exponent (in 2's complement form)

Points to note:

- The number of *significant digits* depends on the number of bits in M.
 - 6 significant digits for 24-bit mantissa.
- The range of the number depends on the number of bits in E.
 - 10^{38} to 10^{-38} for 8-bit exponent.

Floating point number: IEEE Standard 754

Storage Layout

	Sign	Exponent	Fraction / Mantissa
Single Precision	1 [31]	8 [30–23]	23 [22–00]
Double Precision	1 [63]	11 [62–52]	52 [51–00]

IEEE Standard 754

- 1. The sign bit is 0 for positive, 1 for negative.
- 2. The exponent base is two.
- 3. The exponent field contains 127 plus the true exponent for single-precision, or 1023 plus the true exponent for double precision.
- 4. The first bit of the mantissa is typically assumed to be 1.*f*, where *f* is the field of fraction bits.

Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated value (by toggling the sign bit), the ranges above are symmetric around zero.

IEEE Standard 754

Ranges of Floating-Point Numbers

Since every floating-point number has a corresponding, negated value (by toggling the sign bit), the ranges above are symmetric around zero.

	Denormalized	Normalized	Approximate Decimal
Single Precision	$\pm 2^{-149}$ to $(1-2^{-23})\times 2^{-126}$	$\pm 2^{-126}$ to $(2-2^{-23})\times 2^{127}$	$\pm \approx 10^{-44.85}$ to $\approx 10^{38.53}$
Double Precision	$\pm 2^{-1074}$ to $(1-2^{-52})\times 2^{-1022}$	$\pm 2^{-1022}$ to $(2-2^{-52})\times 2^{1023}$	$\pm \approx 10^{-323.3}$ to $\approx 10^{308.3}$

IEEE Standard 754

There are five distinct numerical ranges that single-precision floating-point numbers are **not** able to represent:

- 1. Negative numbers less than $-(2-2^{-23}) \times 2^{127}$ (negative overflow)
- 2. Negative numbers greater than -2^{-149} (negative underflow)
- 3. Zero
- 4. Positive numbers less than 2^{-149} (positive underflow)
- 5. Positive numbers greater than $(2-2^{-23}) \times 2^{127}$ (positive overflow)

Special Values

Zero

-0 and +0 are distinct values

Denormalized

- If the exponent is all 0s, but the fraction is non-zero, then the value is a *denormalized* number, which now has an assumed leading 0 before the binary point.
- Thus, this represents a number $(-1)^s \times 0.f \times 2^{-126}$, where s is the sign bit and f is the fraction.
- For double precision, denormalized numbers are of the form $(-1)^s \times 0.f \times 2^{-1022}$.
- From this you can interpret zero as a special type of denormalized number.

Special Values

Infinity

The values $+\infty$ and $-\infty$ are denoted with an exponent of all 1s and a fraction of all 0s. The sign bit distinguishes between negative infinity and positive infinity. Being able to denote infinity as a specific value is useful because it allows operations to continue past overflow situations. *Operations with infinite values are well defined in IEEE floating point.*

Not A Number

The value NaN (*Not a Number*) is used to represent a value that does not represent a real number. NaN's are represented by a bit pattern with an exponent of all 1s and a non-zero fraction.

Representation of Characters

- Many applications have to deal with non-numerical data.
 - Characters and strings.
 - There must be a standard mechanism to represent alphanumeric and other characters in memory.

• Three standards in use:

- Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Used in older IBM machines.
- American Standard Code for Information Interchange (ASCII)
 - Most widely used today.
- UNICODE
 - Used to represent all international characters.
 - Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
 - A total of 2⁷ or 128 different characters.
 - A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
 - Digits are ordered consecutively in their proper numerical sequence (0 to 9).
 - Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

```
'A' :: 41 (H)
                65 (D)
'B' :: 42 (H) 66 (D)
. . . . . . . . . . .
'Z' :: 5A (H) 90 (D)
'a' :: 61 (H) 97 (D)
'b' :: 62 (H) 98 (D)
..........
'z' :: 7A (H) 122 (D)
```

```
'0' :: 30 (H) 48 (D)
'1' :: 31 (H)
              49 (D)
..........
'9' :: 39 (H) 57 (D)
"(" :: 28 (H) 40 (D)
'+' :: 2B (H) 43 (D)
'?' :: 3F (H) 63 (D)
'\n' :: OA (H) 10 (D)
'\0' :: 00 (H) 00 (D)
```

Character Strings

- Two ways of representing a sequence of characters in memory.
 - The first location contains the number of characters in the string, followed by the actual characters.

• The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
 - The '\0' character is used as the string delimiter.
- Example:

"Hello"

- A null string "" occupies one byte in memory.
 - Only the '\0' character.

Given 2 positive numbers n and r, n > = r, write a C function to compute the number of combinations(${}^{n}C_{r}$) and the number of permutations(${}^{n}P_{r}$).

Permutations formula is P(n,r)=n!/(n-r)!Combinations formula is C(n,r)=n!/(r!(n-r)!)

```
Scope of variable:
What is the output of the following code snippet?
#include <stdio.h>
int main(){
      int i = 10;
      for(int i = 5; i < 15; i++)
             printf("i is %d\n", i);
       return 0;
```

Scope of variable: What is the output of the following code snippet?

```
#include <stdio.h>
int a = 20;
int sum(int a, int b) {
         printf ("value of a in sum() = %d\n", a);
         printf ("value of b in sum() = %d\n", b);
         return a + b;
int main ()
         int a = 10; int b = 20; int c = 0;
         printf ("value of a in main() = %d\n", a);
         c = sum(a, b);
         printf ("value of c in main() = %d\n", c);
         return 0.
```

Write a C program which display the entered number in words.

Example:

Input:

Enter a number: 7

Output:

Seven

Write a C program to delete duplicate elements in an array without using another auxiliary array.

Example:

Input:

585569821133

Output:

5869213

Write a C program to print PASCAL's triangle.

```
3
```

Given 2 numbers **a** and **b**, write a C program to compute the Greatest Common Divisor(GCD) of the 2 numbers.

The GCD of 2 numbers is the largest positive integer that divides the numbers without a remainder.

Example: GCD(2,8)=2; GCD(3,7)=1

Given 2 arrays of integers **A** and **B** of size **n** each, write a C program to calculate the dot product of the 2 arrays.

If
$$\mathbf{A} = [a_0, a_1, a_2,, a_{n-1}]$$
 and $\mathbf{B} = [b_0, b_1, b_2,, b_{n-1}],$ the dot product of \mathbf{A} and \mathbf{B} is given by
$$A.B = [a_0^*b_0 + a_1^*b_1 + a_2^*b_2 + + a_{n-1}^*b_{n-1}]$$

Given a non negative integer *n*, write a C function to output the decimal integer(base 10) in its binary representation (base 2).

Example: Binary representation of

```
3 is 11
```

8 is 1000

15 is 1111

Given two array of sorted numbers A and B, both are of arbitrary sizes, write a C function named *merge_arrays* that merges both the arrays in sorted order and returns the sorted array C.