Esercizi di Strutture Discrete

Alberto Carraro

10/04/2006

Relazioni ed applicazioni

Esercizio 1 Sia A un insieme ed S, T due relazioni su A. Definiamo

$$S \cap T = \{(x,y) \in A \times A \mid (x,y) \in S \ e \ (x,y) \in T\}$$

$$S \cup T = \{(x,y) \in A \times A \mid (x,y) \in S \ o \ (x,y) \in T\}$$

$$S^{-1} = \{(x,y) \in A \times A \mid (y,x) \in S\}$$

Dimostrare che

a)
$$(S \cap T)^{-1} = S^{-1} \cap T^{-1}$$

b)
$$(S \cup T)^{-1} = S^{-1} \cup T^{-1}$$

Soluzione

a)

$$(S \cap T)^{-1} = \{(x, y) \in A \times A \mid (y, x) \in (S \cap T)\}\$$

$$= \{(x, y) \in A \times A \mid (y, x) \in S \text{ e } (y, x) \in T\}\$$

$$= \{(x, y) \in A \times A \mid (y, x) \in S\} \cap \{(x, y) \in A \times A \mid (y, x) \in T\}\$$

$$= S^{-1} \cap T^{-1}$$

b)

$$\begin{split} (S \cup T)^{-1} &= \{(x,y) \in A \times A \mid (y,x) \in (S \cup T)\} \\ &= \{(x,y) \in A \times A \mid (y,x) \in S \text{ o } (y,x) \in T\} \\ &= \{(x,y) \in A \times A \mid (y,x) \in S\} \cup \{(x,y) \in A \times A \mid (y,x) \in T\} \\ &= S^{-1} \cup T^{-1} \end{split}$$

Esercizio 2 Sia $f: X \times X \to X$ tale che

$$f(x,y) = f(y,x)$$
 (commutatività)
$$f(x,f(y,z)) = f(f(x,y),z) \text{ (associatività)}$$

$$f(x,x) = x \text{ (idempotenza)}$$

Sia o una relazione così definita: $x \circ y$ sse x = f(x, y). Dimostrare che

- a) ϱ è una relazione di equivalenza
- b) per ogni $x, y \in X$: $f(x, y)\varrho x$ e $f(x, y)\varrho y$
- c) se $z\varrho x$ e $z\varrho y$ allora $z\varrho f(x,y)$

Soluzione

a) Riflessività di ϱ

$$x = f(x, x)$$
 (idempotenza di f)

Transitività di ϱ Assumiamo

1.
$$x = f(x, y)$$

2.
$$y = f(y, z)$$

$$x = f(x, y)$$
 (ipotesi 1)
 $= f(x, f(y, z))$ (ipotesi 2)
 $= f(f(x, y), z))$ (associatività di f)
 $= f(x, z)$ (ipotesi 1)

Antisimmetria di ϱ Assumiamo

1.
$$x = f(x, y)$$

2.
$$y = f(y, x)$$

$$x = f(x, y)$$
 (ipotesi 1)
 $= f(x, f(y, x))$ (ipotesi 2)
 $= f(f(x, y), x))$ (associatività di f)
 $= f(f(y, x), x)$ (commutatività di f)
 $= f(y, x)$ (ipotesi 2)
 $= y$

b) f(x,y) = f(f(x,y),x)?

$$f(f(x,y),x) = f(x,f(y,x)) \qquad \text{(associatività di } f)$$

$$= f(x,f(x,y)) \qquad \text{(commutatività di } f)$$

$$= f(f(x,x),y)) \qquad \text{(associatività di } f)$$

$$= f(x,y) \qquad \text{(idempotenza di } f)$$

$$f(x,y) = f(f(x,y),y)?$$

$$f(f(x,y),y) = f(x,f(y,y)) \qquad \text{(associatività di } f)$$

$$= f(x,y) \qquad \text{(idempotenza di } f)$$

c) Assumiamo

1.
$$z = f(z, x)$$

2. $z = f(z, y)$

$$z = f(z, y)$$
 (ipotesi 2)
= $f(f(z, x), y)$ (ipotesi 1)
= $f(z, f(x, y))$ (associatività di f)

Esercizio 3 Sia $f: S \to T$ suriettiva. Dimostrare che $\forall V, W \subseteq T$ si ha: $f^{\leftarrow}(V) \subseteq f^{\leftarrow}(W)$ sse $V \subseteq W$

Soluzione

(⇒) Assumiamo $f^{\leftarrow}(V) \subseteq f^{\leftarrow}(W)$. Sia $v \in V$.

$$\begin{array}{ll} \exists s \in S. (v = f(s)) & \text{(suriettivit\`a di } f) \\ s \in f^{\leftarrow}(V) & \text{(def di } f^{\leftarrow}) \\ s \in f^{\leftarrow}(W) & \text{(} f^{\leftarrow}(V) \subseteq f^{\leftarrow}(W)) \\ f(s) \in W & \text{(def di } f^{\leftarrow}) \\ v \in W & \end{array}$$

(⇐) Assumiamo $V \subseteq W$. Sia $s \in f^{\leftarrow}(V)$.

$$\exists v \in V. (s = f^{\leftarrow}(v)) \qquad (\text{def di } f^{\leftarrow}(V))$$

$$v \in W \qquad (V \subseteq W)$$

$$s \in f^{\leftarrow}(W)$$

Esercizio 4 Sia $f: S \to T$. Dimostrare che se $f \ \grave{e} \ iniettiva \ allora \ \forall \ V, W \subseteq S \ si \ ha: \ f(V \cap W) = f(V) \cap f(W)$

Soluzione

(\subseteq) Sia $y \in f(V \cap W)$.

$$\exists x \in (V \cap W).(f(x) = y) \qquad (\text{def di } f(V \cap W))$$

$$y = f(x) \in f(V) \qquad (x \in V)$$

$$y = f(x) \in f(W) \qquad (x \in W)$$

$$y \in f(V) \cap f(W)$$

(\supseteq) Sia $y \in f(V) \cap f(W)$.

$$\exists x \in V. (y = f(x)) \qquad \qquad (\text{def di } f(V)) \\ \exists z \in W. (y = f(z)) \qquad \qquad (\text{def di } f(W)) \\ y = f(x) = f(z) \text{ implica } x = z \qquad (\text{iniettività di } f) \\ x \in (V \cap W) \\ y = f(x) \in f(V \cap W)$$

Esercizio 5 Sia $f: A \to A$. Consideriamo la funzione $f: \mathcal{P}(A) \to \mathcal{P}(A)$ così definita: $f^*(X) = \{f(x) \mid x \in X\}$. Si dimostri che

- a) f è iniettiva sse f^* è iniettiva
- b) f è suriettiva sse f^* è suriettiva
- c) $\forall f, g \text{ funzioni da } A \text{ in } A : (f \circ g)^* = f^* \circ g^*$

Soluzione

a) (\Rightarrow) Assumiamo f iniettiva. Dimostriamo $f^*(X) = f^*(Y) \Rightarrow X = Y$. Sia $x \in X$.

$$f(x) \in f^*(X)$$
 ()
 $f(x) \in f^*(Y)$ (per l'ipotesi)
 $x \in Y$ (def di $f^*(Y)$)

Sia $y \in Y$.

$$f(y) \in f^*(Y)$$
 ()
 $f(y) \in f^*(X)$ (per l'ipotesi)
 $y \in X$ (def di $f^*(X)$)

(\Leftarrow) Assumiamo f^* iniettiva. Dimostriamo $f(x) = f(y) \Rightarrow x = y$. Siano $x, y \in A$.

$$\begin{array}{ll} f^*(x) = f(x) & \text{(def di } f^*) \\ f^*(y) = f(y) & \text{(def di } f^*) \\ f^*(x) = f^*(y) \Rightarrow x = y & \text{(iniettività di } f^*) \\ x = y & \end{array}$$

b) (\Rightarrow) Assumiamo f suriettiva. Dimostriamo $\forall Y \in \mathcal{P}(A). \exists X \in \mathcal{P}(A). (f^*(X) = Y).$ Sia $Y \in \mathcal{P}(A)$.

$$\forall y \in Y. \exists x \in A. (f(x) = y)$$
 (f iniettiva)
$$X = \bigcup_{y \in Y} \{x \in A \mid f(x) = y\} = [f^*(Y)]^{-1}$$

$$f^*(X) = Y$$

(\Leftarrow) Assumiamo f^* suriettiva. Dimostriamo $\forall y \in A. \exists x \in A. (f(x) = y).$ Sia $y \in A$.

$$\begin{array}{ll} y \in \mathcal{P}(A) \\ \exists X \subseteq A. (\{y\} = f^*(X)) & (f^* \text{ suriettiva}) \\ f^*(X) = \{y\} \neq \emptyset \\ \exists x \in A. (f(x) = y). \end{array}$$

c)
$$(f^* \circ g^*)(X) = f^*(g^*(X)) \\ = \{f(y) \mid y \in g^*(X)\}) \\ = \{f(y) \mid y = g(X), x \in X\}) \\ = \{f(g(x)) \mid x \in X\} \\ = (f \circ g)^*(X)$$