Mat 354

Homework 15

Kenny Roffo

Due December 2, 2015

- 1. **EXC3** Y_1 and Y_2 are jointly distributed with density $0 \le y_1 \le y_2 \le 1$
- $f(y_1, y_2) = 4y_2^2$
- i. Determine $P(\max\{Y_1,Y_2\}<1/2)$ This probability is found by integrating the density as y_1 goes from 0 to y_2 and y_2 goes from 0 to 1/2:

$$P(\max\{Y_1, Y_2\} < 1/2) = \int_0^{1/2} \int_0^{y_2} 4y_2^2 dy_1 dy_2$$
$$= \int_0^{1/2} 4y_2^3 dy_2$$
$$= [y_2^4]_0^{1/2}$$
$$= \frac{1}{16}$$

- ii. Determine $P(Y_1 + Y_2 < 1/2)$
- iii. Determine $P(Y_1Y_2 < 1/2)$
- iv. Determine $P(Y_1/Y_2 < 1/2)$
- v. Determine $P(Y_1 Y_2 < 1/2)$
- vi. Determine $P(\min\{Y_1, Y_2\} < 1/2)$
- vii. Determine the marginal distribution for Y_1
- viii. Determine $P(Y_1 < 1/2)$

ix. Determine the marginal distribution for \mathcal{Y}_2