

Multiprocessamento Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- O que é multiprocessamento?
 - É uma organização que utiliza múltiplas unidades de processamento para a execução do software
 - Este paradigma emergiu da exaustão da capacidade de paralelismo em nível de instrução

- O que é multiprocessamento?
 - É uma organização que utiliza múltiplas unidades de processamento para a execução do software
 - Este paradigma emergiu da exaustão da capacidade de paralelismo em nível de instrução

- Categorização de fluxos de instruções e de dados
 - Single Instruction Single Data (SISD)
 - Single Instruction Multiple Data (SIMD)
 - Multiple Instruction Single Data (MISD)
 - Multiple Instruction Multiple Data (MIMD)

	Única	Múltiplas
	instrução	instruções
Único dado	SISD	MISD
Múltiplos dados	SIMD	MIMD

- Single Instruction Single Data (SISD)
 - Uma única instrução é buscada na memória e executava no processador por vez
 - Somente um dado da memória pode ser acessado para escrita ou leitura em cada operação realizada

- Single Instruction Multiple Data (SIMD)
 - A instrução em execução no processador é capaz manipular múltiplos dados simultaneamente
 - Este tipo de organização permite a execução sequencial da instrução com acesso e processamento paralelo dos dados
 - Extensões multimídia dos processadores

- Multiple Instruction Single Data (MISD)
 - Uma sequência de instruções são executadas por múltiplos processadores executando sobre um mesmo conjunto de dados (redundância)
 - Apesar de ser uma organização possível, é utilizada apenas em sistemas especializados tolerantes a falhas

- Multiple Instruction Multiple Data (MIMD)
 - Os múltiplos processadores executam diferentes sequências de instruções operando sobre conjuntos distintos de dados centralizados ou distribuídos
 - É o multiprocessamento de propósito geral

- Como é feita a comunicação entre os processadores em uma organização multiprocessada?
 - Memória compartilhada
 - Cada processador acessa as instruções e os dados armazenados em uma mesma memória com tempo de acesso uniforme (UMA) e a troca de informações entre eles é feita por variáveis compartilhadas

- Como é feita a comunicação entre os processadores em uma organização multiprocessada?
 - Memória compartilhada
 - Cada processador acessa as instruções e os dados armazenados em uma mesma memória com tempo de acesso uniforme (UMA) e a troca de informações entre eles é feita por variáveis compartilhadas

Multiprocessamento simétrico (SMP)

- Como é feita a comunicação entre os processadores em uma organização multiprocessada?
 - Memória distribuída
 - Os processadores possuem seu próprio espaço de endereçamento para acesso não uniforme a memória (NUMA) e realizando a comunicação entre si de forma explícita através da troca de mensagens

- Como é feita a comunicação entre os processadores em uma organização multiprocessada?
 - Memória distribuída
 - Os processadores possuem seu próprio espaço de endereçamento para acesso não uniforme a memória (NUMA) e realizando a comunicação entre si de forma explícita através da troca de mensagens

Multiprocessamento assimétrico (AMP)

- Multiprocessamento simétrico (SMP)
 - Problema
 - Limitações cada vez maiores do paradigma ILP
 - Crescente demanda por desempenho dos sistemas

- Multiprocessamento simétrico (SMP)
 - Problema
 - Limitações cada vez maiores do paradigma ILP
 - Crescente demanda por desempenho dos sistemas
 - Contexto
 - Existe uma grande quantidade de software desenvolvido para executar em plataformas uniprocessadas
 - É muito complexa a modificação de todo o software existente para suportar múltiplos processadores

- Multiprocessamento simétrico (SMP)
 - O conceito de multiprocessamento simétrico é uma resposta para o problema de demanda por desempenho e compatibilidade com o software desenvolvido para execução uniprocessada

- Multiprocessamento simétrico (SMP)
 - O conceito de multiprocessamento simétrico é uma resposta para o problema de demanda por desempenho e compatibilidade com o software desenvolvido para execução uniprocessada

- Multiprocessamento simétrico (SMP)
 - Cada processo do sistema possui seu próprio espaço de endereçamento na memória virtual e o sistema operacional faz o escalonamento dos processos entre os núcleos de processamento disponíveis

- Multiprocessamento simétrico (SMP)
 - Cada processo do sistema possui seu próprio espaço de endereçamento na memória virtual e o sistema operacional faz o escalonamento dos processos entre os núcleos de processamento disponíveis

- Multiprocessamento simétrico (SMP)
 - Características chave
 - Existem pelo menos dois processadores com instruções compatíveis e com recursos de hardware similares

- Multiprocessamento simétrico (SMP)
 - Características chave
 - Existem pelo menos dois processadores com instruções compatíveis e com recursos de hardware similares
 - Estes processadores compartilham o mesmo espaço de endereçamento físico da memória principal e para os recursos de E/S, utilizando um barramento

- Multiprocessamento simétrico (SMP)
 - Características chave
 - Existem pelo menos dois processadores com instruções compatíveis e com recursos de hardware similares
 - Estes processadores compartilham o mesmo espaço de endereçamento físico da memória principal e para os recursos de E/S, utilizando um barramento
 - Todos os processadores possuem a mesma função ou papel na plataforma (simétricos)

- Multiprocessamento simétrico (SMP)
 - Vantagens potenciais
 - Aumento do desempenho com execução paralela do software através dos processos do sistema

- Multiprocessamento simétrico (SMP)
 - Vantagens potenciais
 - Aumento do desempenho com execução paralela do software através dos processos do sistema
 - Disponibilidade do sistema é melhorada em caso de falha de um dos núcleos de processamento

- Multiprocessamento simétrico (SMP)
 - Vantagens potenciais
 - Aumento do desempenho com execução paralela do software através dos processos do sistema
 - Disponibilidade do sistema é melhorada em caso de falha de um dos núcleos de processamento
 - Escalabilidade com crescimento incremental, permitindo diferentes quantidades de processadores

- Multiprocessamento simétrico (SMP)
 - Como cada processador é um mestre do barramento, são necessárias técnicas de arbitração para tratar as requisições concorrentes, o que pode causar retenção no tráfego de informações
 - Para reduzir o tráfego é utilizada uma hierarquia de cache com múltiplos níveis com escrita atrasada

- Multiprocessamento simétrico (SMP)
 - Hierarquia de cache
 - Cada nível da hierarquia representa uma cópia do conteúdo armazenado na memória principal

- Multiprocessamento simétrico (SMP)
 - Hierarquia de cache
 - Cada nível da hierarquia representa uma cópia do conteúdo armazenado na memória principal
 - Para a execução concorrente do software pelos processadores, é necessário que variáveis compartilhadas em memória sejam utilizadas

- Multiprocessamento simétrico (SMP)
 - Hierarquia de cache
 - Cada nível da hierarquia representa uma cópia do conteúdo armazenado na memória principal
 - Para a execução concorrente do software pelos processadores, é necessário que variáveis compartilhadas em memória sejam utilizadas
 - Como cada processador possui sua própria cópia da memória em seus níveis de cache, é possível que os mesmos endereços de memória estejam mapeados em blocos com diferentes valores (inconsistência)

- Multiprocessamento simétrico (SMP)
 - ► Hierarquia de cache

- Multiprocessamento simétrico (SMP)
 - ▶ Hierarquia de cache

Inconsistência de dados

- Coerência de cache
 - São técnicas aplicadas em tempo de execução para tratar condições de inconsistência dos dados
 - Estes mecanismos são baseados em protocolos para transmissão de metadados das caches
 - Distribuído com protocolo snoopy
 - Centralizado com utilização de diretório

- ▶ Coerência de cache
 - Campos de metadados

Campo	Descrição	
	Outras caches podem possuir cópias deste mesmo	
С	conjunto de dados, mas os dados são idênticos aos	
	armazenados na memória	
	Os dados contidos nesta cache não estão presentes	
E	em nenhuma outra cache e não possuem	
	modificações com relação a memória	
	Este campo é utilizado para marcar se uma	
1	determinada linha da cache foi invalidada ou possui	
	dados que não válidos	
М	Quando é feita uma modificação na cache com	
	política de escrita atrasada, este campo sinaliza que	
	o dado difere do armazenado na memória	

- ► Coerência de cache
 - Campos de metadados

- Coerência de cache
 - Campos de metadados

Falta de leitura compartilhada (FLC)

- Coerência de cache
 - Campos de metadados

Acerto de leitura (AL)

- Coerência de cache
 - Campos de metadados

Acerto de escrita (AE)

- Coerência de cache
 - Campos de metadados

Falta de leitura exclusiva (FLE)

- Coerência de cache
 - Campos de metadados

Acerto de leitura (AL)

- Coerência de cache
 - Campos de metadados

Acerto de escrita (AE)

- ► Coerência de cache
 - Campos de metadados

Falta de escrita (FE)

- Coerência de cache
 - Campos de metadados

Acerto de leitura (AL) ou de escrita (AE)

- Coerência de cache
 - Protocolo snoopy
 - Cada cache é responsável por armazenar os metadados das linhas de dados através de uma organização distribuída por mensagens

- Coerência de cache
 - Protocolo snoopy
 - Cada cache é responsável por armazenar os metadados das linhas de dados através de uma organização distribuída por mensagens

Modificação de bloco compartilhado

- Coerência de cache
 - Protocolo snoopy
 - Cada cache é responsável por armazenar os metadados das linhas de dados através de uma organização distribuída por mensagens

Modificação de bloco exclusivo

- Coerência de cache
 - Protocolo snoopy
 - Cada cache é responsável por armazenar os metadados das linhas de dados através de uma organização distribuída por mensagens

Compartilhamento de bloco modificado

- Coerência de cache
 - Protocolo snoopy
 - Cada cache é responsável por armazenar os metadados das linhas de dados através de uma organização distribuída por mensagens

Leitura exclusiva de bloco

- Coerência de cache
 - Protocolo snoopy
 - Organização distribuída x Robustez contra falhas

- Coerência de cache
 - Protocolo snoopy
 - Organização distribuída x Robustez contra falhas
 - Todas as operações são sincronizadas com envio de mensagens para todos os componentes

- Coerência de cache
 - Protocolo snoopy
 - Organização distribuída x Robustez contra falhas
 - Todas as operações são sincronizadas com envio de mensagens para todos os componentes
 - Não é escalável, uma vez que quanto mais processadores, maior é a quantidade de mensagens de controle que precisam ser transmitidas

- Coerência de cache
 - Protocolo de diretório
 - Uma estrutura chamada diretório coleta e armazena as informações de acesso a memória, mantendo os metadados sobre as linhas de dados das caches

- Coerência de cache
 - Protocolo de diretório
 - Uma estrutura chamada diretório coleta e armazena as informações de acesso a memória, mantendo os metadados sobre as linhas de dados das caches

- Coerência de cache
 - Protocolo de diretório
 - Uma estrutura chamada diretório coleta e armazena as informações de acesso a memória, mantendo os metadados sobre as linhas de dados das caches

- Coerência de cache
 - Protocolo de diretório
 - Uma estrutura chamada diretório coleta e armazena as informações de acesso a memória, mantendo os metadados sobre as linhas de dados das caches

- Coerência de cache
 - Protocolo de diretório
 - Uma estrutura chamada diretório coleta e armazena as informações de acesso a memória, mantendo os metadados sobre as linhas de dados das caches

- Coerência de cache
 - Protocolo de diretório
 - Organização centralizada x Falha do dispositivo

- Coerência de cache
 - Protocolo de diretório
 - Organização centralizada x Falha do dispositivo
 - Não demanda envio de mensagens para todos os componentes do barramento para sincronização

- Coerência de cache
 - Protocolo de diretório
 - Organização centralizada x Falha do dispositivo
 - Não demanda envio de mensagens para todos os componentes do barramento para sincronização
 - Por este motivo é escalável, sendo adequado para plataformas com grande número de processadores

- Multiprocessamento assimétrico (AMP)
 - Esta classe de multiprocessamento oferece uma alternativa de alto desempenho e escalabilidade em comparação a abordagem simétrica

- Multiprocessamento assimétrico (AMP)
 - Esta classe de multiprocessamento oferece uma alternativa de alto desempenho e escalabilidade em comparação a abordagem simétrica
 - Os clusters são um dos exemplos mais representativos deste paradigma, onde um grupo de computadores interconectados por interfaces de entrada e saída cooperam como se fossem um único sistema

- Multiprocessamento assimétrico (AMP)
 - Esta classe de multiprocessamento oferece uma alternativa de alto desempenho e escalabilidade em comparação a abordagem simétrica
 - Os clusters são um dos exemplos mais representativos deste paradigma, onde um grupo de computadores interconectados por interfaces de entrada e saída cooperam como se fossem um único sistema

- Multiprocessamento assimétrico (AMP)
 - Os processadores do sistema possuem papéis distintos e com organizações de memória geralmente isoladas

- Multiprocessamento assimétrico (AMP)
 - Arquitetura híbrida de processadores com mesmo repertório de instruções, mas com diferentes níveis de desempenho e de consumo de potência

