光電子強度分布計算ソフト SPADExp 7. SPADExp_GUI ディレクトリ

田中 宏明 (東京大学 物性研究所/理学系研究科物理学専攻) 2022 年 8 月 5 日

概要

本パッケージの SPADExp_GUI ディレクトリに含まれるツールを説明する。光電子強度分布計算を Python 上で行うプログラム SPADExp_GUI.py と、出力ファイルのビューワー SPADExp_Viewer.py である。

なお、C++ 版の方が高速に計算を行えるため、2 次元波数空間の場合、大規模系の場合は C++ 版で計算することを推奨する。また、C++ 版では実行可能な、修正された平面波による行列要素計算、表面に対する重み付け計算は実行できない。

1 SPADExp_GUI

postproc.oで出力された HDF5 ファイルを読み込み、光電子強度分布を計算する。実行の前に、Config.py において PAO_and_AO に本パッケージに含まれる PAO_and_AO_after_opt.hdf5 のパスを設定する。また、elements_file に VESTA[1] に含まれる elements.ini のパスを設定する。

図 1 が実際の実行例である。左下には単位格子が表示され、Boundaries を変更すると原子配列を表示する繰り返し数を変えることができる。pen_pol の色で示した直線は、偏向を決定する角度 (Θ, Φ) を表している。pen_kx・pen_ky の色で示した直線は、指定した波数空間の方向ベクトルを表す。

中央がバンド分散または光電子強度分布である。強度のカラーマップにするため、各バンドを dE で定まる幅のガウス分布にしている。2D (dimension が 1) の場合、緑十字のカーソルが表示される。カーソルの交点の位置における LCAO 係数または軌道形状が右側に表示される。左右キーで波数点の移動、上下キーでバンドインデックスの移動ができる。3D (dimension が 2) の場合、左右が kx の移動、上下が ky の移動、Page Up/Page Dn が等エネルギー面の移動、home/end がバンドインデックスの移動である。

2 SPADExp_Viewer

SPADExp.o または SPADExp_GUI.py から出力された HDF5 ファイルを読み込み、光電子強度分布を表示する。図 2 が実行例である。3D の場合のカーソル操作は SPADExp_GUI.py と同様である。重み付けした強度分布計算の場合、Enable weighting にチェックを入れて単位格子を描画すると、原子の表示が重みに応じた透明度になる。

参考文献

[1] https://jp-minerals.org/vesta/jp/

図1 SPADExp_GUI.py の実行例。

図 2 SPADExp_Viewer.py の実行例。