

CV180ZB/CV1800B/CV1801B Preliminary Datasheet

Version: 0.3.0.0

Release date: 2022-11-07

© 2022 北京晶视智能科技有限公司 本文件所含信息归<u>北京晶视智能科技有限公司</u>所有。 未经授权,严禁全部或部分复制或披露该等信息。

修订记录

Revision	Date	Description
0. 1. 0. 0	2022/06/29	Preliminary release
0. 2. 0. 0	2022/09/04	移除随机数发生器
0. 3. 0. 0	2022/11/07	Part number update
		, ()'

法律声明

本数据手册包含北京晶视智能科技有限公司(下称"晶视智能")的保密信息。未经授权,禁止使用或披露本数据手册中包含的信息。如您未经授权披露全部或部分保密信息,导致晶视智能遭受任何损失或损害,您应对因之产生的损失/损害承担责任。本文件内信息如有更改,恕不另行通知。晶视智能不对使用或依赖本文件所含信息承担任何责任。

本数据手册和本文件所含的所有信息均按"原样"提供,无任何明示、暗示、法定或其他形式的保证。晶视智能特别声明未做任何适销性、非侵权性和特定用途适用性的默示保证,亦对本数据手册所使用、包含或提供的任何第三方的软件不提供任何保证;用户同意仅向该第三方寻求与此相关的任何保证索赔。此外,晶视智能亦不对任何其根据用户规格或符合特定标准或公开讨论而制作的可交付成果承担责任。

Specifications are subject to change without notice

录 日

Н	4		
修	订证	· · · · · · · · · · · · · · · · · · ·	2
法	律声	, 新明	3
1	产品	品概述	8
	1.1	概述 (CV180ZB/CV1800B/CV1801B)	8
	1.2	应用场景	
		1.2.1 CV180ZB/CV1800B/CV1801B 智能 IP 摄像机解决方案	8
	1.3	架构	
		1.3.1 概述	9
		1.3.2 处理器内核	9
		1.3.3 TPU	
		1.3.4 视频编码 (CV180ZB/CV1800B/CV1801B)	10
		1.3.5 视频接口	_
		1.3.6 ISP 与图像处理	
		1.3.7 CV 硬件加速引擎	
		1.3.8 音频编解码	
		1.3.9 网络接口	12
		1.3.10 安全系统模块	
		1.3.11 智能安全运行环境	
		1.3.12 外围接口 (CV180ZB/CV1800B/CV1801B)	
		1.3.13 外部存储器接口	
		1.3.14 SDK	
		1.3.15 芯片物理规格	
	1.4	启动和升级模式	
		1.4.1 概述	
		1.4.2 启动模式和对应的信号锁存值对应关系	
		1.4.3 镜像烧写模式	
		1.4.4 安全启动	
	1.5	地址空间映像	16
2	硬件	牛特性	20
	2.1	封装与管脚分布	20
		2.1.1 封装 CV180ZB/CV1800B/CV1801B	20
		2.1.2 管脚分布 CV180ZB/CV1800B/CV1801B	21
	2.2	管脚信息描述	21
	2.3	焊接工艺建议	22
	2.4	潮敏参数	23
		2.4.1 晶视智能产品防潮包装	23
	2.5	电性能参数	26

	2.5.1	功耗参数	26
	2.5.2	温度和热阻参数(CV180ZB/CV1800B/CV1801B)	26
	2.5.3	破坏性电压	27
	2.5.4	上下电顺序 (CV180ZB/CV1800B/CV1801B)	
	2.5.5	电源 DC/AC 电气参数	29
	2.5.6	1.8V IO 电气参数	31
	2.5.7	180D33 IO (VDDIO=1.8V) 电气参数	31
	2.5.8	180D33 IO (VDDI0=3.0V) 电气参数	32
	2.5.9	Audio GPIO 电气参数	34
	2.5.10	ETH GPIO 电气参数	34
	2.5.11	MIPI Rx 电气参数	34
	2.5.12	Sub-LVDS 电气参数	36
	2.5.13	HiSPi 电气参数	36
	2.5.14	SDIO 电气参数	
	2.5.15	VI BT. 656 电气参数 (CV180ZB/CV1800B/CV1801B)	37
	2.5.16	AUDIO CODEC 电气参数	37
2.6	接口时户		38
	2.6.1	SPI NOR 接口时序	38
	2.6.2	SPI NAND 接口时序	39
	2.6.3	VI 接口时序	41
	2.6.4	AIAO (I2S/PCM) 接口时序	
	2.6.5	I2C 接口时序	
	2.6.6	SPI 接口时序	45
	2.6.7	MIPI Rx 接口时序	45
	2.6.8	Sub-LVDS 接口时序	
	2.6.9	HiSPi 接口时序	47
	2.6.10	SDIO/MMC 接口时序	

Specifications are subject to change without notice

图 目 录

图表 1-1 智能 IP 摄像机解决方案	8
图表 1-2 CV180ZB/CV1800B/CV1801B 架构图	9
图表 2-1 CV180ZB/CV1800B/CV1801B 封装外观尺寸,上视图	20
图表 2-2. CV180ZB/CV1800B/CV1801B 封装外观尺寸,底视图	20
图表 2-3 CV180ZB/CV1800B/CV1801B 管脚分布图	21
图表 2-4 无铅回流焊工艺曲线	22
图表 2-5 真空干燥包装信息	23
图表 2-6 干燥包,湿度卡,芯片及 tray 盘	24
图表 2-7 SPI NOR 接口时序图	38
图表 2-8 SPI NAND 输入方向时序图	39
图表 2-9 SPI NAND 输出方向时序图	
图表 2-10 VI 接口时序图	41
图表 2-11 I2S & PCM 接口接收时序图	42
图表 2-12 I2S & PCM 接口发送时序图	42
图表 2-13 I2C 接口时序图	43
图表 2-14 SPI 接口时序图	45
图表 2-15. MIPI Rx 在 0.08Gbps < 资料速度 < 1.5Gbps 时的时钟数据时序	图46
图表 2-16. Sub-LVDS 时钟数据时序图	47
图表 2-17. HiSPi 时钟数据时序图	48
图表 2-18 SDIO/MMC 单沿(SDR) 的数据输入输出时序图	49
图表 2-19 SDIO/MMC 双沿 DDR50 模式的数据输入输出方向时序图	50
图表 2-20 SDIO/MMC HS200 与 SDR104 模式的数据命令输出方向时序图	51

表目录

**	
表格 2-1 无铅回流焊工盖参数	22
表格 2-2 湿度分级及其开封保存时间 (floor life)	24
表格 2-3 烘烤温度及时间表	25
表格 2-4 CV180ZB/CV1800B/CV1801B 热阻参数	26
表格 2-5 温度相关参数	
表格 2-6 破坏性电压参数 (CV180ZB/CV1800B/CV1801B)	
表格 2-7 CV180ZB/CV1800B/CV1801B 电源电气参数 (建议的运作条件)	
表格 2-8 1.8V IO 电气参数	
表格 2-9 180D33 IO (VDDIO=1.8V) 电气参数	
表格 2-10 180D33 IO (VDDIO=3.0V) 电气参数	
表格 2-11 Audio GPIO 电气参数	
表格 2-12 ETH GPIO 电气参数	
表格 2-13. MIPI D-PHY High Speed (MISH) 差分 DC 电气参数	
表格 2-14. MIPI D-PHY High Speed (MIHS) 差分 AC 电气参数	
表格 2-15 MIPI D-PHY Low Power (MILP) 差分 DC 电气参数	
表格 2-16 MIPI D-PHY Low Power (MILP) 差分 AC 电气参数	
表格 2-17 Sub-LVDS (SL) 差分 DC 电气参数	
表格 2-18 Sub-LVDS (SL) 差分 AC 电气参数	
表格 2-19 Hi SPi 差分 DC 电气参数	
表格 2-20 Hi SPi 差分 AC 电气参数表格 2-21 Audio CODEC 总体指标表	
表格 2-22 Audio DAC 电气参数表格 2-23 Audio ADC 电气参数	
表格 2-24 SPI_NOR 接口时序参数表	
表格 2-25 SPI NAND 输入方向时序	
表格 2-26 SPI NAND 输出方向时序	
表格 2-27 VI 接口时序参数表	
表格 2-28 I2S/PCM 接口时序参数表	
表格 2-29 I2C 接口时序参数表	
表格 2-30 SPI 接口时序参数表	
表格 2-31 MIPI Rx 在 0.08Gbps < 资料速度 < 1.5Gbps 时的时序参数表	
表格 2-32. Sub-LVDS 时序参数表	
表格 2-33. HiSPi 时序参数表	
表格 2-34 SDIO/MMC 单沿 DS(default speed)模式时序参数表	49
表格 2-35 SDIO/MMC 单沿 HS (High speed) 模式 时序参数表	
表格 2-36 SDIO/MMC 双沿 DDR50 模式时序参数表	
表格 2-37 SDIO/MMC HS200 与 SDR104 模式输出参数表	
表格 2-38 SDIO/MMC HS200 与 SDR104 模式输入时序参数表	52

1 产品概述

1.1 概述 (CV180ZB/CV1800B/CV1801B)

CV180ZB/CV1800B/CV1801B 是面向民用消费监控 IP 摄像机、居家智能等多项产品领域而推出的高性能、低功耗芯片,集成了 H. 264/H. 265 视频压缩编码器和 ISP; 支持数字寬动态、3D 降噪、除雾、镜头畸变校正等多种图像增强和矫正算法,为客户提供专业级的视频图像质量。

芯片集成自研的智能参考方案(人形检测,区域检测,移动检测)、内置 DDR 及完整的周边及外设,能提供集成度高的简洁方案,方便支撑客户产品开发及量产。

除此之外,还提供了安全启动,安全更新,安全加密等,为用户从开发、量产、产品 应用,提供一系列安全解决方案

芯片内集成一个 8 位的 MCU 子系统,可替代一般外挂的 MCU 以达到省 BOM cost 及功耗的目的.

1.2 应用场景

1.2.1 CV180ZB/CV1800B/CV1801B 智能 IP 摄像机解决方案.

应用于智能 IP 摄像机解决方案的典型应用场景如 图表 1-1 所示.

图表 1-1 智能 IP 摄像机解决方案

1.3 架构

1.3.1 概述

图表 1-2 CV180ZB/CV1800B/CV1801B 架构图

1.3.2 处理器内核

主处理器 RISCV C906 @ 1.0Ghz .

- o 32KB I-cache, 64KB D-Cache
- o 集成矢量(Vector)及浮点运算单元(FPU).

协处理器 RISCV C906 @ 700Mhz

o 集成浮点运算单元 (FPU).

1.3.3 TPU

内建 CVITEK TPU, 集成智能参考方案 (人形检测,区域检测,移动检测)

1.3.4 视频编码 (CV180ZB/CV1800B/CV1801B)

H. 264 Baseline/Main/High profile

H. 265 Main profile

H. 264/H. 265 均支援 I 帧及 P 帧

MJPEG/JPEG baseline

H. 264/H. 265 编码最大分辨率 : 2880x1620 (5M) (CV1801B)

H. 264/H. 265 编码最大分辨率 : 2688x1520 (4M) (CV1800B)

H. 264/H. 265 编码最大分辨率 : 2304x1296 (3M) (CV180ZB)

H. 264/H. 265 编码性能

2880x1620@20fps+720x576@20fps (CV1801B)

2688x1520@25fps+720x576@25fps (CV1800B)

2304x1296@25fps+720x576@30fps (CV180ZB)

JPEG 最大编解码性能

2880x1620@20fps (CV1801B)

2688x1520@25fps (CV1800B)

2304x1296@30fps (CV180ZB)

支持 CBR/VBR/FIXQP 等多种码率控制模式.

支持 感兴趣区域(ROI)编码

1.3.5 视频接口

输入

支持同时一路视频输入(mipi 4L)

支持 MIPI 串行接口.

支持 8/10/12 bit RGB Bayer 视频输入.

支持 BT. 656

支持 SONY, OnSemi, OmniVision 等高清 CMOS sensor

提供可编程频率输出供 sensor 作为参考时钟.

支持最大寬度为 2304, 最大分辨率 2304x1296 (CV180ZB)

支持最大寬度为 2688, 最大分辨率 2688x1520 (CV1800B) 支持最大寬度为 2880, 最大分辨率 2880x1620 (CV1801B)

1.3.6 ISP 与图像处理

图像视频 90 度、180 度、270 度旋转 图像视频 Mirror、Flip 功能 视频 2 层 OSD 叠加 视频 1/32~32x 缩放功能 3A (AE/AWB/AF) 算法 固定模式噪声消除、坏点校正 镜头阴影校正、镜头畸变校正、紫边校正 方向自适应 demosaic Gamma 校正、(区域/全局)动态对比度增强、颜色管理和增强 区域自适应去雾 Bayer 降噪、3D 降噪、细节增强及锐化增强 Local Tone mapping Sensor 自带宽动态和 2 帧宽动态 两轴数字图像防抖 镜头畸变校正 提供 PC 端 ISP tuning tools

1.3.7 CV 硬件加速引擎

软硬体混合模式支持部分 OpenCV 库.

1.3.8 音频编解码

集成 Audio CODEC, 支持 16 bit 音源/语音 输入和输出. 集成单声道麦克风输入. 集成单声道输出. (需要外挂功放才能推动喇叭)内部集成另一路的麦克风直连输出声道, 方便实现 AEC. 软件音频编解码协议 (G. 711, G. 726, ADPCM)软件支持音频 3A (AEC, ANR, AGC) 功能.

1.3.9 网络接口

以太网模块提供1个 Ethernet MAC, 实现网路数据的接收与发送. Ethernet MAC 搭配内建10/100Mbps Fast Ethernet Transceiver 可工作在10/100Mbps 全双工或半双工模式.

1.3.10 安全系统模块

硬件实现 AES/DES/SM4 多种加解密算法 硬件实现 HASH(SHA1/SHA256) 哈希算法 内部集成 2Kbit eFuse 逻辑空间

1.3.11 智能安全运行环境

支持安全启动,提供安全硬件、软件保护功能 支持资料加密安全:数据加密程序,运算核心加密 支持软、固件验签流程:碉认软件可信性及完整性,包括 开机及载入验签程 序

支持安全储存及传输:保护外部数据储存及交换 支持安全更新

1.3.12 外围接口 (CV180ZB/CV1800B/CV1801B)

集成 POR, Power sequence

3 个单端 ADC (1 in mcu domain)

4 个 I2C

3 个 SPI

- 5 组 UART
- 4 组(13 通道) PWM
- 2个 SDIO 接口.
- 一个支持 3V 连接 SD 3.0 Card(支持最大容量 SDXC 2TB, 支持速度为 UHS-I)
- 一个支持 3.0V 连接其他 SDIO 3.0 设备. (支持速度为 UHS-I)

51 GPIO 接口 (9 in mcu domain)

集成 keyscan 及 Wiegand

集成 MAC PHY 支持 10/100Mbps 全双工或半双工模式.

一个 USB Host / device 接口

1.3.13 外部存储器接口

内建 DRAM

CV180ZB/CV1800B DDR2 16bitx1, 最高速率达 1333Mbps, 容量 512Mbit (64MB)

CV1801B DDR3 16bitx1, 最高速率达 1866Mbps, 容量 1Gbit (128MB)

SPI NOR flash 接口 (1.8V / 3.0V)

支持 1, 2, 4 线模式.

最大支持 256MByte.

SPI Nand flash 接口 (1.8V / 3.0V)

支持 1KB/2KB/4KB page (对应的最大容量 16GB/32GB/64GB)

使用器件本身内建的 ECC 模块.

1.3.14 SDK

Linux-5.10-based SDK

1.3.15 芯片物理规格

功耗

1080P + Video encode + AI : $^{\sim}$ 500mW

其余场景: TBD

工作电压

内核电压为 0.9V IO 电压为 1.8V 及 3.0V DDR 电压如下表. CV180ZB/CV1800B = 1.8V CV1801B = 1.35V

封装

使用 QFN 封装, 封装尺寸为 7mmx7mmx0.9mm. 管脚间距为 0.35mm. 管脚总数为 68 个

1.4 启动和升级模式

1.4.1 概述

芯片由内置 ROM (BOOTROM) 启动. 芯片在复位时会通过侦测两个管脚 (SPINOR_MOSI, SPINOR_WP_X) 上是否有弱上拉或弱下拉以确认目前选用使用的存储器件类型.

安全启动的芯片,则会在开机及芯片升级时都会验签以确保执行或升级的软件是安全的.

1.4.2 启动模式和对应的信号锁存值对应关系

支持由 SPI Nor Flash 启动 (SPINOR_WP_X pull down, SPINOR_MOSI pull up)

支持由 SPI Nand Flash 启动(SPINOR_WP_X pull down, SPINOR_MOSI pull down)

1.4.3 镜像烧写模式.

支持通过 SD 卡烧写镜像.

支持通过 USB device mode 烧写镜像.

若 flash 中己有镜像,软件支援由网路升级软件

1.4.4 安全启动

支持安全启动及升级 AES 硬件加解密. SHA/Secure Efuse 安全硬件.

1.5 地址空间映像

起始地址 [31:0]	结束地址 [31:0]	空间功能	空间大小 (Byte)
0x01000000	0x018FFFFF	保留	
0x01900000	0x01900FFF	ap_mailbox	4K
0x01901000	0x01901FFF	ap_system_ctrl	4K
0x01902000	0x019EFFFF	保留	
0x01A00000	0x01FFFFFF	保留	
0x02000000	0x02FFFFFF	保留	64K
0x03000000	0x03000FFF	TOP_MISC 控制寄存器	4K
0x03001000	0x03001FFF	PINMUX 控制寄存器	4K
0x03002000	0x03002FFF	CLKGEN/PLL 控制寄存器	4K
0x03003000	0x03003FFF	RSTGEN 控制寄存器	4K
0x03004000	0x03005FFF	保留	
0x03006000	0x03006FFF	保留	4K
0x03007000	0x03008FFF	保留	
0x03009000	0x03009FFF	保留	4K
0x0300A000	0x0300AFFF	保留	4K
0x0300B000	0x0300FFFF	保留	
0x03010000	0x03010FFF	WATCH DOGO 控制寄存器	4K
0x03011000	0x03011FFF	WATCH DOG1 控制寄存器	4K
0x03012000	0x03012FFF	WATCH DOG2 控制寄存器	4K
0x03020000	0x03020FFF	GPI00 控制寄存器	4K
0x03021000	0x03021FFF	GPI01 控制寄存器	4K
0x03022000	0x03022FFF	GPI02 控制寄存器	4K
0x03023000	0x03023FFF	GPI03 控制寄存器	4K
0x03024000	0x0302FFFF	保留	
0x03030000	0x03030FFF	WGNO 控制寄存器	4K
0x03031000	0x03031FFF	WGN1 控制寄存器	4K
0x03032000	0x03032FFF	WGN2 控制寄存器	4K
0x03033000	0x0303FFFF	保留	
0x03040000	0x0304FFFF	KEYSCAN 控制寄存器	64K
0x03050000	0x0305FFFF	EFUSE 控制寄存器	64K
0x03060000	0x03060FFF	PWMO 控制寄存器	4K
0x03061000	0x03061FFF	PWM1 控制寄存器	4K
0x03062000	0x03062FFF	PWM2 控制寄存器	4K
0x03063000	0x03063FFF	PWM3 控制寄存器	4K
0x03064000	0x0309FFFF	保留	
0x030A0000	0x030AFFFF	TIMER 控制寄存器	64K
0x030C0000	0x030CFFFF	保留	

0x030D0000	0x030D0FFF	保留	4K
0x030D1000	0x030D1FFF	保留	4K
0x030D2000	0x030D2FFF	保留	4K
0x030D3000	0x030DFFFF	保留	
0x030E0000	0x030EFFFF	TEMPSEN 控制寄存器	64K
0x030F0000	0x030FFFFF	SARADC 控制寄存器	64K
0x04000000	0x0400FFFF	I2CO 控制寄存器	64K
0x04010000	0x0401FFFF	I2C1 控制寄存器	64K
0x04020000	0x0402FFFF	I2C2 控制寄存器	64K
0x04030000	0x0403FFFF	I2C3 控制寄存器	64K
0x04040000	0x0404FFFF	I2C4 控制寄存器	64K
0x04050000	0x0405FFFF	保留	
0x04060000	0x0406FFFF	SPI_NAND 控制寄存器	64K
0x04070000	0x0407FFFF	ETHO 控制寄存器	W
0x04080000	0x040FFFFF	保留	
0x04100000	0x04107FFF	I2SO 控制寄存器	64K
0x04108000	0x0410FFFF	I2S Global 控制寄存器	64K
0x04110000	0x0411FFFF	I2S1 控制寄存器	64K
0x04120000	0x0412FFFF	I2S2 控制寄存器	64K
0x04130000	0x0413FFFF	I2S3 控制寄存器	64K
0x04140000	0x0414FFFF	UARTO 控制寄存器	64K
0x04150000	0x0415FFFF	UART1 控制寄存器	64K
0x04160000	0x0416FFFF	UART2 控制寄存器	64K
0x04170000	0x0417FFFF	UART3 控制寄存器	64K
0x04180000	0x0418FFFF	SPIO 控制寄存器	64K
0x04190000	0x0419FFFF	SPI1 控制寄存器	64K
0x041A0000	0x041AFFFF	SPI2 控制寄存器	64K
0x041B0000	0x041BFFFF	SPI3 控制寄存器	64K
0x041C0000	0x041CFFFF	UART4 控制寄存器	64K
0x041D0000	0x041DFFFF	AUDSRC 控制寄存器	64K
0x041E0000	0x042FFFFF	保留	
0x04300000	0x0430FFFF	保留	
0x04310000	0x0431FFFF	SDO 控制寄存器	64K
0x04320000	0x0432FFFF	SD1 控制寄存器	
0x04330000	0x0433FFFF	DMA 控制寄存器	64K
0x04340000	0x0434FFFF	USB 控制寄存器	64K
0x04350000	0x043FFFFF	保留	
0x04400000	0x0440FFFF	ROM 内存空间	64K
0x04410000	0x04FFFFFF	保留	
0x05000000	0x05000FFF	保留	4KB
0x05020000	0x05020FFF	RTCSYS_Timer 控制寄存器	4KB

0x05021000	0x05021FFF	RTCSYS_GPIO 控制寄存器	4KB
0x05022000	0x05022FFF	RTCSYS_UART 控制寄存器	4KB
0x05023000	0x05023FFF	RTCSYS_INTR 控制寄存器	4KB
0x05024000	0x05024FFF	RTCSYS_MBOX 控制寄存器	4KB
0x05025000	0x05025FFF	RTCSYS_CTRL 控制寄存器	4KB
0x05026000	0x05026FFF	RTCSYS_CORE	4KB
0x05027000	0x05027FFF	RTCSYS_IO 控制寄存器	4KB
0x05028000	0x05028FFF	RTCSYS_OSC 控制寄存器	4KB
0x05029000	0x05029FFF	保留	4KB
0x0502A000	0x0502AFFF	RTCSYS_32kless 控制寄存器	4KB
0x0502B000	0x0502BFFF	RTCSYS_I2C 控制寄存器	4KB
0x0502C000	0x0502CFFF	RTCSYS_SAR 控制寄存器	4KB
0x0502D000	0x0502DFFF	RTCSYS_WDT 控制寄存器	4KB
0x0502E000	0x0502EFFF	RTCSYS_IRRX 控制寄存器	4KB
0x05200000	0x053FFFFF	RTCSYS_SRAM	8KB
0x05400000	0x057FFFFF	RTCSYS_SPINOR	4MB
0x08000000	0x08001FFF	保留	8K
0x08004000	0x08005FFF	DDR Controler 控制寄存器	8K
0x08006000	0x08007FFF	保留	8K
0x08008000	0x08009FFF	DDR AXI Monitor 控制寄存器	8K
0x0800A000	0x0800BFFF	DDR Global 控制寄存器	8K
0x08010000	0x08011FFF	保留	8K
0x08012000	0x08013FFF	保留	8K
0x08014000	0x09FFFFFF	保留	
0x0A000000	0x0A07FFFF	ISP 控制寄存器	512K
0x0A080000	0x0A0803FF	sc_top 控制寄存器	1K
0x0A080400	0x0A080BFF	保留	2K
0x0A080C00	0x0A080CFF	osd enc 控制寄存器	256B
0x0A080D00	0x0A080FFF	保留	768B
0x0A081000	0x0A081FFF	保留	4K
0x0A082000	0x0A082FFF	img_v 控制寄存器	4K
0x0A083000	0x0A083FFF	img_d 控制寄存器	4K
0x0A084000	0x0A084FFF	sc_d 控制寄存器	4K
0x0A085000	0x0A085FFF	sc_v1 控制寄存器	4K
0x0A086000	0x0A086FFF	sc_v2 控制寄存器	4K
0x0A087000	0x0A087FFF	保留	4K
0x0A088000	0x0A088FFF	保留	4K
0x0A089000	0x0A089FFF	保留	4K
0x0A08A000	0x0A08AFFF	保留	4K
0x0A08B000	0x0A08BFFF	cmdq 控制寄存器	4K
0x0A08C000	0x0A08CFFF	保留	4K

Specifications are subject to change without notice

0x0A08D000	0x0A08DFFF	保留	4K
0x0A08E000	0x0A09FFFF	保留	72K
0x0A0A0000	0x0A0AFFFF	保留	64K
0x0A0A0000	0x0A0BFFFF	保留	64K
0x0A0C0000	0x0A0C1FFF	1dc 控制寄存器	8K
0x0A0C2000	0x0A0C3FFF	VIO/MIPI_RXO 控制寄存器	8K
0x0A0C4000	0x0A0C5FFF	保留	8K
0x0A0C6000	0x0A0C7FFF	保留	8K
0x0A0C8000	0x0A0C9FFF	VIPSYS 控制寄存器	8K
0x0A0CA000	0x0A0CFFFF	保留	24K
0x0A0D0000	0x0A0D0FFF	CSI_PHY 控制寄存器	4K
0x0A0D1000	0x0A0D1FFF	保留	4K
0x0A0D2000	0x0AFFFFFF	保留	
0x0B000000	0x0B00FFFF	JPEG codec 控制寄存器	64K
0x0B010000	0x0B01FFFF	H. 264 codec 控制寄存器	64K
0x0B020000	0x0B02FFFF	H. 265 codec 控制寄存器	64K
0x0B030000	0x0BFFFFFF	保留	
0x0C000000	0x0FFFFFFF	保留	
0x10000000	0x1FFFFFFF	SPI_NOR 内存空间	256M
0x20000000	0x7FFFFFFF	保留	
0x80000000	0xFFFFFFFF	DDR 内存空间	2G

*对保留地址空间进行读写操作,将可能产生无法预期之结果

2 硬件特性

2.1 封装与管脚分布

2.1.1 封装 CV180ZB/CV1800B/CV1801B

CV180ZB/CV1800B/CV1801B 使用 QFN 封装, 封装尺寸为 7mmx7mmx0.9mm. 管脚间距为 0.35mm. 管脚总数为 68 个.详细封装尺寸请参考下图.

		SYMBOL	MIN	NOM	MAX			
TOTAL THICKNESS		A	0.8	0.9				
STAND OFF		A1	0	0.035	0.05			
MOLD THICKNESS		A2		0.7				
L/F THICKNESS		A3		0.152 REF				
LEAD WIDTH		b	0.13	0.18	0.23			
BODY SIZE	X	D		7 BS	С			
BODY SIZE	Υ	E	7 BSC					
LEAD PITCH		е		0.35 BSC				
	X	J	5.6	5.7	5.8			
EP SIZE	Υ	К	5.6	5.7	5.8			
LEAD LENGTH		L	0.35	0.45				
PACKAGE EDGE TOLE	RANCE	aaa	0.1					
MOLD FLATNESS		bbb	0.1					
COPLANARITY		ccc	0.08					
LEAD OFFSET	ddd		0.1					
EXPOSED PAD OFFSE	eee		0.1					

图表 2-1 CV180ZB/CV1800B/CV1801B 封装外观尺寸,上视图

		SYMBOL	MIN	NOM	MAX			
TOTAL THICKNESS		A	0.8	0.9				
STAND OFF		A1	0	0.05				
MOLD THICKNESS		A2		0.7				
L/F THICKNESS		A3		0.152 REF				
LEAD WIDTH		b	0.13	0.18	0.23			
BODY SIZE	X	D		7 BS	С			
BOUT SIZE	Y	E		7 BS	С			
LEAD PITCH		е		0.35 BSC				
EP SIZE	Х	J	5.6	5.7	5.8			
EP SIZE	Y	K	5.6	5.7	5.8			
LEAD LENGTH		L	0.35	0.45				
PACKAGE EDGE TOLE	RANCE	aaa	0.1					
MOLD FLATNESS		bbb	0.1					
COPLANARITY		ccc		0.08				
LEAD OFFSET	LEAD OFFSET			0.1				
EXPOSED PAD OFFSE	T	eee		0.1				

图表 2-2. CV180ZB/CV1800B/CV1801B 封装外观尺寸,底视图

2.1.2 管脚分布 CV180ZB/CV1800B/CV1801B

		PAD_AUD_AVREF	PAD_AUD_AINL_MIC	VSS18A_AUD	PAD_MIPIRX0P	PAD_MIPIRXON	PAD_MIPIRX1P	PAD_MIPIRX1N	PAD_MIPIRX2P	PAD_MIPIRX2N	PAD_MIPIRX3P	PAD_MIPIRX3N	PAD_MIPIRX4P	PAD_MIPIRX4N	VDDC	USB_DM	USB_DP	VDD18A_USB_PLL_ETH_CSI		
				_							_									
		68	67	66	65	64	63	62	61	60	59	58	57	56	55	54	53	52		
																				0,
PAD_AUD_AOUTR	1																		51	VDD33A_ETH_USB_SD1
VDD18A_AUD	2																1		50	PAD_ETH_RXMEPHY_TXP
SD0_CLK	3																		49	PAD_ETH_RXPEPHY_TXN
SD0_CMD	4																		48	PAD_ETH_TXMEPHY_RXP
SD0_D0	5																		47	PAD_ETH_TXPEPHY_RXN
VDDC	6																		46	VDDC
SD0_D1	7																		45	USB_VBUS_DET
SD0_D2	8																		44	ADC1
SD0_D3	9																		43	SD1_CLK
VDDIO_SD0_SPI	10																		42	SD1_CMD
SDO_CD	11																		41	SD1_D0
SD0_PWR_EN	12																		40	SD1_D1
VDDC	13																		39	SD1_D2
SPK_EN	14																		38	SD1_D3
UARTO_TX	15																		37	VDDC
UARTO_RX	16								- \										36	SD1_GPIO1
SPINOR_HOLD_X	17							10											35	SD1_GPIO0
\circ \circ \circ \circ				_																
		18	19	20	21	22	23	24	25	26	27	28	29	30 –	31	32	33	34		
		SPINOR_SCK	SPINOR_MOSI	SPINOR_WP_X	SPINOR_MISO	SPINOR_CS_X	IICO_SCL	IICO_SDA	AUX0	VDDQ	VDDQ	VDDQ	VDDIO_RTC	PWR_VBAT_DET	PWR_SEQ2	PTEST	XTAL_XIN	XTAL_XOUT		

图表 2-3 CV180ZB/CV1800B/CV1801B 管脚分布图.

2.2 管脚信息描述

请参照 CV180xB_QFN68_PINOUT_CN. x1sx

CVITEK

2.3 焊接工艺建议

无铅回流焊工艺曲线请参照 图表 2-4 请参考 Pure Sn

Recommended Reflow Profile for Lead-free Solder Paste

图表 2-4 无铅回流焊工艺曲线

无铅回流焊工艺参数请参照 表格 2-1

● 以下参数仅为推荐值供参考,客户端需根据实际生产情况做相对映调整.

升温速率 峰值温度 区域 时间 降温速率 预热区 (40~150℃) $60^{\circ}120 sc$ 1²°C/sec 均温区(150~200℃) 60[~]90sec < 1°C/sec Sn/Ag/Cu 237²247°C 回流区 $40^{\circ}60$ sec 2~3°C/sec (>熔点 20~30℃) Sn/Cu 247~257°C Pure Sn 252~262°C 冷却区 1~4°C/sec (Tmax ~ Tamb)

表格 2-1 无铅回流焊工盖参数

因环境保护因素,目前暂不提供有铅回流焊的参数.

2.4 潮敏参数

2.4.1 晶视智能产品防潮包装

本章节制定了芯片(潮敏产品)的存储及焊接时使用原则. 相关术语

- Floor life (开封保存时间):指的是环境 < 30oC/60% RH 的环境下,拆开防潮 包装到 reflow 之间允许停留的最长时间.
- Shelf life (密封保存时间): 防潮包装密封之后的正常存储时间.

2.4.1.1 包装信息

防潮真空包内含有(1) 芯片及 tray 盘. (2) 干燥包 (3) 湿度卡(HIC)

包裝標籤 PACKING LABEL

真空袋 DRYPACK BAG (AL-BAG)

图表 2-5 真空干燥包装信息.

TRAY 10 + 1 STACK 打帶方式:三短一長 STRAP METHOD:3S1L

乾燥包 DESICCANT 濕度卡 HUMIDITY INDICATOR CARD

图表 2-6 干燥包, 湿度卡, 芯片及 tray 盘

2.4.1.2 潮敏产品进料检验

SMT 前打开真空防潮袋后, 检视湿度卡. 湿度卡有非常多种不同样式. 但若显示已经受潮. 则必须经过烘烤后才能 SMT 使用. 烘烤的相关时间温度参数请见表格 2-3

开封后若重新包装. 在〈30℃/60% RH 的环境下没有暴露超过 2 小时,则可以只更换干燥包后进行真空干燥包装. 若超过 2 小时. 建议重新烘烤后更换干燥包后才重新密封包装.

2.4.1.3 存放及使用. (参考 JEDEC J-STD-033)

密封保存时间. (Shelf life)

密封的真空防潮包, 存放在 40° C/90% RH 的环境下, 能够保存至少 12 个月.

开封保存时间. (Floor life)

SMT 前, 开封后湿度计说明没有受潮的组件. 在 30° C/60% RH 的环境, 可以不烘烤直接使用的时间如表格 2-2 里的 Level 3(本芯片的 Floorlife 分级是 Level 3)

表格 2-2 湿度分级及其开封保存时间(floor life)

N/I	-1 <u>: (:</u> 4:)	level and floor life
VIAISIIIre	ciaccilication i	ievei and Hoor ille

Level	Floor Life (out of bag) at factory ambient ≤
	30 °C/60% RH or as stated
1	Unlimited at ≤ 30 °C/85%RH
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	Mandatory bake before use. After bake, must be
	reflowed within the time limit specified on the label

2.4.1.4 重新烘烤

开封后发现己受潮, SMT 前, 或是要重新装回真空包装. 都应先经过烘烤. 烘烤温度及时间参考表格 2-3.

烘烤后,经过防潮密封,shelf life 可重新计算. 烘烤后,若未防潮密封,则保存时间参考(floor life)

表格 2-3 烘烤温度及时间表

	Package	-	Bake @ 125 °C	Bake @
	Thickness	Level		40 °C ≤ 5% RH
	≤ 1.4 mm	2a	4 h.	5 days
		3	7 h.	11 days
		4	9 h .	13 days
		5	10 h.	14 days
		5a	14 h.	19 days
	≤ 2.0 mm	2a	18 h.	21 days
		3	24 h.	33 days
C()	- ()	4	31 h.	43 days
		5	37 h.	52 days
		5a	48 h.	68 days
	≤ 4.0 mm	2a	48 h.	67 days
.10		3	48 h.	67 days
		4	48 h.	68 days
		5	48 h.	68 days
		5a	48 h.	68 days
·			·	

2.5 电性能参数

2.5.1 功耗参数

典型场景: 1080P + Video Encode + AI ~500mW

其他场景 : TBD

2.5.2 温度和热阻参数(CV180ZB/CV1800B/CV1801B)

芯片的热阻 ThetaJA, JB, JC 值. 按 JEDEC 2s2p PCB 所做的枋真结果表格 2-4

Theta PCB Package Theta JA (C/W) Psi Jt Theta JB (C/\overline{W}) Size (mm) (C/W)Conditio JC 0 m/s1 m/s2 m/s(C/W)n **JEDEC** 7x724. 9 19.5 18.3 0.2 9.60 6.61 2s2p PCB

表格 2-4 CV180ZB/CV1800B/CV1801B 热阻参数

芯片的温度相关参数如表格 2-5

表格 2-5 温度相关参数

	最小值	最大值	Note
工作环境温度 Tamb	-30°C	70°C	1
芯片结温 Tjunc 建议值	-30°C	85°C [~] 105°C	2
破坏性结温	-40°C	+125°C	3, 4

- 1. 工作环境温度最大值,在不违反结温的前题下,需视该场景之功耗与散热条件而定.
- 2. 芯片结温建议的范围主要考虑温度过高时,可能因散热条件不好.而引发 thermal run-away 造成温度失控进入破坏性结温范围而损坏芯片.另外.长时间工作在高温也会稍微加速芯片老化.减低使用年限.
- 3. 使用的 DRAM 保证的结温只有 -40℃ $^{\sim}115$ ℃. 超过范围 dram 内的内容无法保证完整性.
- 4. 芯片工作在破坏性结温时,可能导致芯片发生不可逆的物理损坏.

2.5.3 破坏性电压

破坏性电压参数如表格 2-6. 工作在破坏性电压之上时,可能造成不可逆的物理损坏.

表格 2-6 破坏性电压参数 (CV180ZB/CV1800B/CV1801B)

Parameter		Max	Unit
VDDC	Core power	1.05V	V
VDD18A_AUD	Analog power for Audio ADC/DAC	1.98	V
VDD18A_USB_PLL_ETH_CSI	Analog power for USB, PLL, ETH, efuse , MIPI	1.98	V
VDD33A_ETH_USB_SD1	Analog power for Ethernet PHY, USB PHY,	3. 465	V
	IO power for SD1 domain		
VDDIO_SDO_SPI	IO power for SPI & SDO domain	3. 465	V
VDDIO_RTC	IO power for RTC domain (backup power)	1. 98	V
VDDQ	IO & DRAM Power for DDR2/DDR3L/DDR3	1. 98	V

2.5.4 上下电顺序 (CV180ZB/CV1800B/CV1801B)

原则上芯片可以分成下列几群.同一群电源域同时上电/下电.不同群.则按下列几种状况分开上下电时间.

Core power domain

VDDC

1.8V IO domain

VDD18A AUD (analog)

VDD18A USB PLL ETH CSI (analog)

180D33 IO domain (视电压决定他是属于 1.8V domain / 3V domain)

VDDIO SDO SPI (若 SDO 要接 SD Card, 这只能是 3V)

3V domain

VDD33A ETH USB SD1

DDR IO & DRAM domain

VDDQ

原则上, 0.9V 和 1.8V 可以同时上电, 或是 0.9V 先. 1.8V 后, 但 3V 必须在 1.8V 己经建立的前题下才能上电. (违反顺序可能造成不可逆的损坏). 而下电则是 上电的反序.

可能造成风险的上下电行为有:

- 1. 上电时, VDD3 若 > 2V 时, VDD18 仍未达到 1.8V-10%. 可能造 3V 电路损坏.
- 2. 下电时, VDD3 < 2V 前, VDD18 己低于 1.8V-10%.
- 3. 上电时, VDD18 > 0.7V 时, 而 VDD09 仍在 0.5V 以下, 可能造成 efuse 误动作.
- 4. 下电时, VDD09< 0.5V 时, VDD18 仍 > 0.7V , 也可能造成 efuse 误动作.

芯片有提供两支管脚 PWR_SEQ1, PWR_SEQ2 的管脚 (VDDIO_RTC domain) 协控制电源的开关. 预设 SEQ1 是 0.9V & 1.8V. SEQ2 控制 3V. 有些插电系统可能 0.9V 1.8V 都是用 RC 决定开关. 唯独希望到芯片的 3V 仍需要 SEQ2 控制. 以免烧毁.

开机时 SEQ1 -> SEQ2 关机时 SEQ2 -> SEQ1

而 PWR_VBAT_DET 则用作主电源的状态侦测. 若电压偏低,则软件会先收到中断 (例如停止写 flash 以防档案系统损毁). 电压再往下,RTC 模块就会主动启动下电程序. PWR VBAT DET 也需要是 logic high 才能开机.

2.5.5 电源 DC/AC 电气参数

表格 2-7 CV180ZB/CV1800B/CV1801B 电源电气参数 (建议的运作条件)

Parameter		Min	Тур	Max	Unit
VDDC	Core power	0.81	0.9	0. 99	V
VDD18A_AUD	Analog power for Audio ADC/DAC	1.62	1.8	1.98	V
VDD18A_USB_PLL_ETH_CSI	Analog power for Ethernet PHY, USB PHY,	1.62	1.8	1. 98	V
	PLL, Efuse, MIPI				
VDD33A_ETH_USB_SD1	Analog power for Ethernet PHY, USB PHY, IO	2. 97	3.3	3. 465	V
	power for SD1 domain				
					V
VDDIO_SDO_SPI	IO power for SDO & SPI domain	1.71	1.8	1.89	V
		2.85	3.0/3.3	3. 15/3. 465	
VDDIO_RTC	IO power for RTC domain IO & LDO	1.3V	1.8	+10%	V
VDDQ	IO & DRAM Power for DDR3L	1. 283	1.35	1. 417	V

Parameter		Min	Тур	Max	Unit
	IO & DRAM Power for DDR3	1. 425	1.50	1. 575	
	IO & DRAM Power for DDR2	1.710	1.80	1.890	
Tjunc	Junction Temperature (Max reduce from 125C	-40	25	115	°C
	due to DRAM)			(note)	

Note. 使用的 DRAM 保证的结温只有 -40° C $^{\sim}$ 115°C. 超过范围 dram 内的内容无法保证 完整性.

2.5.6 1.8V IO 电气参数

适用 domain (VDD18A_USB_PLL_ETH_CSI, VDDIO_RTC)

表格 2-8 1.8V IO 电气参数

Parameter		Min	Тур	Max	Unit
V_{1L}	Input Low voltage	-0.3		0.35xVDDI0	V
VIH	Input High voltage	0.65*VDDI0		1.98	V
V _T (no	Threshold voltage when ST[1:0] = 00	0. 75	0.91	1.09	V
pu11)	(no schmit trigger)	0.74	0.90	1.08	
V_{T_PU}		0. 76	0.92	1. 10	1
V_{T_PD}					
V _{T+}	Threshold voltage when ST[1:0] = 01	0.82	0.97	1. 13	V
$V_{\tau-}$		0.72	0.85	1.02	
V _{T+_PU}		0.81	0.96	1. 12	
V_{T-_PU}		0.71	0.84	1.01	
$V_{\text{T+_PD}}$		0.82	0.98	1.14	
V_{T-_PD}		0. 73	0.86	1.03	
V _{T+}	Threshold voltage when ST[1:0] = 1X	0. 87	1.04	1. 19	V
V_{T-}		0. 69	0.80	0. 95	
V _{T+_PU}		0.86	1.03	1. 18	
V_{T-_PU}		0. 68	0.79	0. 94	
$V_{\text{T+_PD}}$		0.88	1.05	1.20	
V_{T-_PD}		0. 69	0.81	0.96	
I ₁	Input leakage (V _I = 1.8V or OV)			+/-10u	A
Ioz	Tri-state output leakage current (V ₀ =1.8V			+/-10u	A
	or OV)				
R _{PU}	Pull up resistor	55k	79k	121k	Ω
R _{PD}	Pull down resistor	51k	87k	169k	Ω
V _{oL}	Output low voltage			0.45	V
V _{OH}	Output high voltage	1. 35			V
I _{oL}	Low level output current @ V _{OL} (max)				
	DS[1:0] = 00	7. 6	12.8	18.0	mA
	DS[1:0] = 01	15. 2	25. 3	35. 5	mA
	DS[1:0] = 10	22.6	37. 4	52. 2	mA
	DS[1:0] = 11	29. 7	49	67. 9	mA
I _{OH}	High level output current @ V _{OH} (max)				
	DS[1:0] = 00	4.8	10.8	18.9	mA
	DS[1:0] = 01	9. 5	21.5	37. 4	mA
	DS[1:0] = 10	14. 3	32. 1	55. 9	mA
	DS[1:0] = 11	18. 9	42.4	73. 9	mA

2.5.7 180D33 IO (VDDI0=1.8V) 电气参数

适用 domain (VDDIO_SDO_SPI, VDDIO_SD1)

表格 2-9 180D33 IO (VDDIO=1.8V) 电气参数

Specifications are subject to change without notice

Parameter		Min	Тур	Max	Unit
V _{IL}	Input Low voltage	-0.3		0. 58	V
V _{IH}	Input High voltage	1. 27		2.00	V
V _T (no	Threshold voltage when ST = 0	0.91	0. 97	1.03	V
pull)	(no schmit trigger)	0.90	0.96	1.02	
V _{1_PU}		0. 91	0. 97	1.06	
V_{T_PD}					
V _{r+} (no	Threshold voltage when ST = 1	1.03	1.07	1.12	V
pull)		0. 75	0.83	0.91	
V_{T-} (no		1.02	1.06	1. 11	
pu11)		0.74	0.82	0.90	
V _{T+_PU}		1.03	1.08	1.13	
V _{TPU}		0. 75	0.83	0. 92	A
V _{T+_PD})
V_{T-_PD}					
I_1	Input leakage (V _I = 1.8V or OV)		. \	+/-10u	A
I_{oz}	Tri-state output leakage current (V ₀ =1.8V			+/-10u	A
	or OV)				
R _{PU}	Pull up resistor	33k	60k	92k	Ω
R _{PD}	Pull down resistor	34k	61k	158k	Ω
V _{oL}	Output low voltage			0.45	V
V _{OH}	Output high voltage	1. 40			V
IoL	Low level output current @ V _{OL} (max)				
	DS[2:0] = 000	4.9	7.8	11.1	mA
	DS[2:0] = 001	7. 4	11.7	16. 4	mA
	DS[2:0] = 010	9.8	15.5	21.7	mA
	DS[2:0] = 011	12. 2	19.2	26. 7	mA
	DS[2:0] = 100	14. 6	23.0	31.9	mA
	DS[2:0] = 101	17. 0	26.6	36.8	mA
	DS[2:0] = 110	19. 4	30. 2	41.6	mA
	DS[2:0] = 111	21. 7	33. 7	46. 2	mA
$\mathbf{I}_{\mathtt{OH}}$	High level output current @ V_{OH} (max)				
	DS[2:0] = 000	3.6	6.2	9.5	mA
	DS[2:0] = 001	5. 4	9.3	14. 3	mA
	DS[2:0] = 010	7. 2	12. 4	19. 1	mA
	DS[2:0] = 011	9. 0	15. 4	23.8	mA
	DS[2:0] = 100	10.8	18. 5	28. 5	mA
	DS[2:0] = 101	12.6	21.6	33. 1	mA
	DS[2:0] = 110	14. 4	24. 6	37.8	mA
	DS[2:0] = 111	16. 2	27. 7	42.5	mA

2.5.8 180D33 I0 (VDDIO=3.0V) 电气参数

适用 domain (VDDIO_SDO_SPI, VDDIO_SD1)

表格 2-10 180D33 IO (VDDIO=3.0V) 电气参数

Specifications are subject to change without notice

Parameter		Min	Тур	Max	Unit
V _{IL}	Input Low voltage	-0.3		0.25*VDDI0	V
VIH	Input High voltage	0.625*VDDI0		3. 3	V
V _T (no	Threshold voltage when ST = 0	0.82	0. 95	1.11	V
pull)	(no schmit trigger)	0.81	0. 93	1.09	
V_{T_PU}		0.83	0.96	1.13	
V_{T_PD}					
V ₁₊ (no	Threshold voltage when ST = 1	1.00	1. 10	1.23	V
pull)		0.75	0.90	1.08	
V _{T-} (no		1.00	1.09	1.21	
pu11)		0. 73	0.88	1.05	
V _{T+_PU}		1.01	1. 11	1. 25	
V_{T-_PU}		0. 75	0.91	1.09	\
V _{T+_PD}					
V_{T-_PD}					
I_1	Input leakage (V _I = 3.0V or 0V)		. \	+/-10u	A
Ioz	Tri-state output leakage current (V ₀ =3.0V			+/-10u	A
	or OV)				
R _{PU}	Pull up resistor	33k	60k	93k	Ω
R _{PD}	Pull down resistor	34k	62k	285k	Ω
V _{OL}	Output low voltage			0.125*VDDI0	V
V _{OH}	Output high voltage	0.75*VDDI0			V
Ior	Low level output current @ V _{OL} (max)				
	DS[2:0] = 000	3. 1	5. 5	8.6	mA
	DS[2:0] = 001	4. 7	8. 2	12.7	mA
	DS[2:0] = 010	6. 2	10.8	16.9	mA
	DS[2:0] = 011	7. 7	13. 4	20.8	mA
	DS[2:0] = 100	9. 3	16.1	24. 9	mA
	DS[2:0] = 101	10.8	18.7	28.8	mA
	DS[2:0] = 110	12. 3	21.2	32.6	mA
	DS[2:0] = 111	13. 8	23.7	36. 3	mA
I _{OH}	High level output current @ V _{OH} (max)				
	DS[2:0] = 000	5. 0	7. 5	10.5	mA
	DS[2:0] = 001	7. 5	11.2	15. 7	mA
	DS[2:0] = 010	10.1	14. 9	21.0	mA
	DS[2:0] = 011	12.6	18.6	26. 2	mA
	DS[2:0] = 100	15. 1	22. 3	31.4	mA
	DS[2:0] = 101	17.6	26.0	36. 5	mA
	DS[2:0] = 110	20. 1	29.8	41.8	mA
	DS[2:0] = 111	22. 6	33. 4	46. 9	mA

Audio GPIO 电气参数

2.5.9

表格 2-11 Audio GPIO 电气参数

Parameter		Min	Тур	Max	Unit
V_{1L}	Input Low voltage	-0.3		0.55	V
V _{IH}	Input High voltage	1.2		1.98	V
V _{T+}	Threshold voltage with schmitt trigger	0.8	0. 95	1.1	V
V _{T-}		0.65	0.82	0.99	
I_1	Input leakage (V _I = 1.8V or OV)			+/-4u	A
I_{oz}	Tri-state output leakage current (V ₀ =1.8V or			+/-4u	A
	OV)				\
V _{oL}	Output low voltage			0.4	V
V _{OH}	Output high voltage	1.4			V
I _{oL}	Low level output current @ VoL (max)	4.9	9.9	18. 4	mA
I _{OH}	High level output current @ V _{OH} (max)	11.3	17. 1	26. 1	mA

2.5.10 ETH GPIO 电气参数

表格 2-12 ETH GPIO 电气参数

Parameter		Min	Тур	Max	Unit
V_{1L}	Input Low voltage	-0.3		0.3*VDD18A	V
VIH	Input High voltage	0.7*VDD18A		1.98	V
V _{T+}	Threshold voltage with schmitt trigger	0.84	0.99	1.14	V
V _T -		0.66	0.83	1.01	
I_1	Input leakage (V _I = 1.8V or OV)			+/-1.3u	A
I _{oz}	Tri-state output leakage current (V ₀ =1.8V or			+/-1.3u	A
	OV)				
V _{oL}	Output low voltage			0.4	V
V _{OH}	Output high voltage	VDD18A-0.4			V
I _{oL}	Low level output current @ Vol (max) DS=0	8.8	15. 7	27. 3	mA
	Low level output current @ VoL (max) DS=1	10.2	17.8	30. 5	
Ion	High level output current @ V _{OH} (max) DS=0	4. 0	5. 3	7.4	mA
	High level output current @ V _{OH} (max) DS=1	4. 7	6. 2	8. 5	

2.5.11 MIPI Rx 电气参数

MIPI D-PHY High Speed (MIHS) 电气参数如表格 2-13, 表格 2-14 所示。 MIPI D-PHY Low Power (MILP) 电气参数如表格 2-15, 表格 2-16 所示。

表格 2-13. MIPI D-PHY High Speed (MISH) 差分 DC 电气参数

参數	符號	資料速度	最小值	典型值	最大值	單位
Common Mode		≤1.5Gbps				
Voltage Range (VP+VM)/2	VCM(MIHS)	>1.5Gbps	70	200	330	mV
, , , , ,						
Internal Termination	ZID(MIHS)	≤1.5Gbps	80	100	125	ohm
Resister Value	(>1.5Gbps				
Single-ended		≤1.5Gbps				
threshold for HS	VTERM-EN(MIHS)	1			450	mV
termination enable		>1.5Gbps				

表格 2-14. MIPI D-PHY High Speed (MIHS) 差分 AC 电气参数

參數	符號	資料速度	最小值	典型值	最大值	單位
Differential Input		≤1.5Gbps	-70		70	
Threshold Voltage (VP — VM)	VIDTH(MIHS)	>1.5Gbps	-40		40	mV
Single-ended Input		≤1.5Gbps			460	
Voltage VP,VM	VIS(MIHS)	>1.5Gbps	-40			mV
Common-mode	ΔVCMRX	≤1.5Gbps			100	
interface beyond 450MHz		>1.5Gbps				mV
Common-mode		≤1.5Gbps	-50		50	
interface 50MHz-450MHz	ΔVCMRX(LF)	>1.5Gbps	-25		25	mV
Single-ended	CTEDIA EN	≤1.5Gbps			450	
threshold for HS termination enable	VTERM-EN	>1.5Gbps			450	mV
Common-mode termination	ССМ	≤1.5Gbps			60	pF
		>1.5Gbps				Pi

表格 2-15 MIPI D-PHY Low Power (MILP) 差分 DC 电气参数

參數	符號	最小值	典型值	最大值	單位
Logic 1 input voltage	VIHLP	740			mV
Logic 0 input voltage	VILLP			550	mV
Input hysteresis	VHYST	25			mV

表格 2-16 MIPI D-PHY Low Power (MILP) 差分 AC 电气参数

參數	符號	最小值	典型值	最大值	單位
Input pulse rejection	eSPIKE			300	V∙ps
Minimum pulse width response	TMIN-RX	20			ns
Peak interference amplitude	VINT			200	mV
Interference frequency	fINT	450			MHz

2.5.12 Sub-LVDS 电气参数

电气参数如表格 2-17, 表格 2-18 所示。

表格 2-17 Sub-LVDS (SL) 差分 DC 电气参数

參數	符號	最小值	典型值	最大值	單位
Common Mode Voltage Range (VP+VM)/2	VCM(SL)	600	900	1200	mV
Internal Termination Resister Value	ZID(SL)	80	100	120	mV

表格 2-18 Sub-LVDS (SL) 差分 AC 电气参数

參數	符號	最小值	典型值	最大值	單位
Differential Input Threshold Voltage (VP – VM)	VIDTH(SL)	-70		70	mV
Single-ended Input Voltage VP,VM	VIS(SL)	400		1400	mV

2.5.13 HiSPi 电气参数

HiSPi 分为 SLVS (HSSL)和 HiVCM(HSHI),各自的电气参数如表格 2-19,表格 2-20 所示。

表格 2-19 HiSPi 差分 DC 电气参数

参數	符號	最小值	典型值	最大值	單位
Common Mode Voltage Range	VCM(HSSL)	50	200	350	mV
(VP+VM)/2	VCM(HSHI)	660	900	1170	IIIV
Internal Termination Resister Value	ZID(HSSL)	80	100	125	mV
internal Termination Resister Value	ZID(HSHI)	80	100	125	mv

表格 2-20 HiSPi 差分 AC 电气参数

41	參數	符號	最小值	典型值	最大值	單位
	Differential Input Threshold Voltage	VIDTH(HSSL)	-70		70	mV
	(VP — VM)	VIDTH(HSHI)	-100		100	mv
	Single-ended Input Voltage	VIS(HSSL)	-40		490	mV
	VP,VM	VIS(HSHI)	550		1350	mv

2.5.14 SDIO 电气参数

SDO / SD1 请参阅 2.5.7 及 2.5.8

2.5.15 VI BT. 656 电气参数 (CV180ZB/CV1800B/CV1801B)

视 IO 所在 domain 请参阅 2.5.7 及 2.5.8

2.5.16 AUDIO CODEC 电气参数

表格 2-21 Audio CODEC 总体指标表

参数	最小值	典型值	最大值	单位	说明
模拟电路电源	1.62	1.8	1.98	V	
AVDD	(C)				
VREF		1.4/1.8		V	
		*VDD			

表格 2-22 Audio DAC 电气参数

参数	最小值	典型值	最大值	单位	说明
满幅输出幅度		1. 55		Vpp	最大输出信号摆幅

表格 2-23 Audio ADC 电气参数

参数	最小值	典型值	最大值	单位	说明
最大输入幅度		1.75		Vpp	最大输入信号摆幅

2.6 接口时序

2.6.1 SPI NOR 接口时序

图表 2-7 SPI NOR 接口时序图

*IO input timing / IO output timng 意指在 1xI/0,2xI/0,4xI/0 下 各个用来传输 SPI_NOR CMD/DATA 的 IO timing , 这包含 SPINOR_SDI、SPINOR_SDO、SPINOR_HOLD_X、SPINOR_WP_X

表格 2-24 SPI_NOR 接口时序参数表

符号	描述	最小	一般	最大	单位
T_{css}	CS 负缘距第一时钟缘时间	13.4	_	_	ns
T_{c1k}	时钟周期	13.4	_	_	ns
T_{su}	输入信号建立时间要求	3.5	_	_	ns
T_{hd}	输入信号保持时间要求	0	_	_	ns
Tov	输出信号有效延时	_	_	2.6	ns
Tox	输出信号保持时间	-1.5	_	_	ns

CVITEK

2.6.2 SPI NAND 接口时序

图表 2-8 SPI NAND 输入方向时序图

表格 2-25 SPI NAND 输入方向时序

	,				_
叁数	符号	最小值	典型值	最大值	单位
时钟周期	Tck	10.66		170. 56	ns
输入信号建立时间要求	Td_su	2.00			ns
输入信号保持时间要求	Td_hd	1.20			ns

图表 2-9 SPI NAND 输出方向时序图

表格 2-26 SPI NAND 输出方向时序

叁数	符号	最小值	典型值	最大值	单位
时钟周期	Tck	10.66		170. 56	ns

Specifications are subject to change without notice

叁数	符号	最小值	典型值	最大值	单位
时钟高电平周期	Tck_h	5 . 33		85. 28	ns
时钟低电平周期	Tck_1	5 . 33		85. 28	ns
输出 CS 建立时间	Tcs_su	10.66			ns
输出 CS 保持时间	Tcs_hd	10.66			ns
输出信号延时	Tq_vld	-1.00		2.00	ns

2.6.3 VI 接口时序

VI 接口时序如图表 2-10 所示。

图表 2-10 VI 接口时序图

其中 VI 接口时序参数如表格 2-27 所示。

表格 2-27 VI 接口时序参数表

	Symbol	Min	Тур	Max	Unit
VICLK clock	T	6. 73	0		ns
cycle					
VIDATA setup	Tsu	1.9			ns
time	_ X \ \ \ \				
VIDATA hold	Thd	0.8			ns
time		5			

2.6.4 AIAO (I2S/PCM) 接口时序

外接 Audio Codec, I2S 模式和 PCM 模式接口接收时序如图表 2-11 所示。

图表 2-11 I2S & PCM 接口接收时序图

I2S 模式和 PCM 模式接口发送时序如图表 2-12 所示。

图表 2-12 I2S & PCM 接口发送时序图

接口时序参数如表格 2-28 所示。

表格 2-28 I2S/PCM 接口时序参数表

符号	参数	最小值	典型值	最大值	单位
T _{BL}	BCLK 低位准脉冲宽度(主模式和从模式)	40	-	-	ns
Ten	BCLK 高位准脉冲宽度(主模式和从模式)	40	-	-	ns
TLS	LRCK 相对于 BCLK 上升沿的建立时间(从模式)	10	-	-	ns
Tlh	LRCK 相对于 BCLK 上升沿的保持时间(从模式)	10	-	-	ns
Tss	SDI 相对于 BCLK 上升沿的建立时间(主模式和从模式)	10	-	-	ns
T _{SH}	SDI 相对于 BCLK 上升沿的保持时间(主模式和从模式)	10	-	-	ns
T _{TS}	BCLK 下降沿相对于 LRCK 的时钟偏斜 (主模式)	0	-	10	ns
Tson	SDO 相对于 BCLK 下降沿的信号延时时间(主模式和从模式)	0	-	10	ns

2.6.5 I2C 接口时序.

图表 2-13 I2C 接口时序图

表格 2-29 I2C 接口时序参数表

Specifications are subject to change without notice

DADAMETER	CVMDO:	STAND	ARD-MODE	FAST-N	MODE	
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNI
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated	t _{HD;STA}	4.0	-	0.6	-	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	_	μs
HIGH period of the SCL clock	t _{HIGH}	4.0	_	0.6	-	μs
Set-up time for a repeated START condition	t _{SU;STA}	4.7	-	0.6	-	μs
Data hold time: for CBUS compatible masters (see NOTE, Section 10.1.3) for I ² C-bus devices	t _{HD;DAT}	5.0 0 ⁽²⁾	- 3.45 ⁽³⁾	_ 0 ⁽²⁾	0.9(3)	μs μs
Data set-up time	t _{SU;DAT}	250	_	100 ⁽⁴⁾),	ns
Rise time of both SDA and SCL signals	t _r	-	1000	20 + 0.1C _b ⁽⁵⁾	300	ns
Fall time of both SDA and SCL signals	t _f	-	300	20 + 0.1C _b ⁽⁵⁾	300	ns
Set-up time for STOP condition	t _{SU;STO}	4.0	-	0.6	-	μs
Bus free time between a STOP and START condition	t _{BUF}	4.7		1.3	-	μs
Capacitive load for each bus line	C _b	-	400	-	400	pF
Noise margin at the LOW level for each connected device (including hysteresis)	V _{nL}	0.1V _{DD}	-	0.1V _{DD}	-	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{nH}	0.2V _{DD}	_	0.2V _{DD}	-	V

2.6.6 SPI 接口时序

图表 2-14 SPI 接口时序图 表格 2-30 SPI 接口时序参数表.

符号	描述	最小值	典型值	最大值	单位
Fclk	SCK 频率		_	46.8	MHz
T_{css}	CS 负缘距第一时钟缘时间	21.4	_	_	ns
T_{c1k}	时钟周期	21.4	_	_	ns
T_{su}	输入信号建立时间要求	9.5	_	_	ns
T_{hd}	输入信号保持时间要求	0	_	_	ns
Tov	输出信号有效延时	_	_	3	ns
Tox	输出信号保持时间	-3	_	_	ns

2.6.7 MIPI Rx 接口时序

MIPI Rx 的速度区间为 0. 08Gbps≤资料速度≤1. 5Gbps

A. 0. 08Gbps≤资料速度≤1. 5Gbps

时序图如图表 2-15 表示, 时序参数如表格 2-31 所示

图表 2-15. MIPI Rx 在 0.08Gbps≤资料速度≤1.5Gbps 时的时钟数据时序图

表格 2-31 MIPI Rx 在 0.08Gbps≤资料速度≤1.5Gbps 时的时序参数表

参数	符號	資料速度區間	最小值	典型值	最大值	單位
		0.08G≤Data Rate≤1G	0.08		1	Chns
資料速度	Data Rate	1G <data rate≤1.5g<="" td=""><td>1</td><td></td><td>1.5</td><td>Gbps</td></data>	1		1.5	Gbps
		0.08G≤Data Rate≤1G	2		25	
差分時鐘週期	Tclk	1G <data rate≤1.5g<="" td=""><td>1.33</td><td></td><td>2</td><td>ns</td></data>	1.33		2	ns
		0.08G≤Data Rate≤1G	-0.15		0.15	UIHS *
發射端資料到時鐘歪斜時間	T _{SKEW}	1G <data rate≤1.5g<="" td=""><td>-0.2</td><td></td><td>0.2</td><td>UIHS</td></data>	-0.2		0.2	UIHS
6/0		0.08G≤Data Rate≤1G	0.15			
接收端差分時鐘建立時間	T _{SETUP}	1G <data rate≤1.5g<="" td=""><td>0.2</td><td></td><td></td><td>UIHS</td></data>	0.2			UIHS
Ţ.		0.08G≤Data Rate≤1G	0.15			
接收端差分時鐘保持時間	T _{HOLD}	1G <data rate≤1.5g<="" td=""><td>0.2</td><td></td><td></td><td>UIHS</td></data>	0.2			UIHS
* UIHS= 1/資料速度 = 差分時鐘週期/2						

2.6.8 Sub-LVDS 接口时序

Sub-LVDS 时钟数据时序图如图表 2-16 表示, 时序参数如表格 2-32 所示

图表 2-16. Sub-LVDS 时钟数据时序图

表格 2-32. Sub-LVDS 时序参数表

参數	> 符號	最小值	典型值	最大值	單位
資料速度	Data Rate			1.5	Gbps
位元標準時間	UI	666.6			ns
差分時鐘週期	Tclk	1333.3			ns
接收端差分時鐘建立時間	T _{SETUP}	0.15			UI
接收端差分時鐘保持時間	T _{HOLD}	0.15			UI
Differential Input Threshold Voltage (VP – VM)	VIDTH(SL)	-70		70	mV
* UI= 1/資料速度 = 差分時鐘週期/2					

2.6.9 HiSPi 接口时序

HiSPi 时钟数据时序图如图表 2-17 表示, 时序参数如表格 2-33 所示

表格 2-33. HiSPi 时序参数表

參數	> 符號	最小值	典型值	最大值	單位
資料速度	Data Rate			1.5	Gbps
位元標準時間	UI	666.6			ns
差分時鐘週期	Tclk	1333.3			ns
接收端差分時鐘建立時間	T _{SETUP}	0.15			UI
接收端差分時鐘保持時間	T _{HOLD}	0.15			UI
Differential Input Threshold Voltage	VIDTH(HSSL)	-70		70	mV
(VP-VM)	VIDTH(HSHI)	-100		100	IIIV
* UI= 1/資料速度 = 差分時鐘週期/2					

2.6.10 SDIO/MMC 接口时序

单沿的数据输入输出方向时序如图表 2-18 所示。

表格 2-34 SDIO/MMC 单沿 DS(default speed)模式时序参数表

参数	符号	最小值	典型值	最大值	単位	备注			
Clock CLK									
Clock frequency	fPP	0	_	26	MHz	fpp=1/tpp			
Data transfer		.15				CL≤30pF			
Mode	. (
Clock frequenyc	fOD	0	_	400	KHz	CL≤30pF			
Idenfification									
Mode									
Clock high time	tWH	10	_	_	ns	CL≤30pF			
Clock low time	tWL	10	_	_	ns	CL≤30pF			
Clock rise time	tTLH	_	_	10	ns	CL≤30pF			
Clock fall time	tTHL	_	_	10	ns	CL≤30pF			
Inputs CMD, DAT (referenc	ed to CI	.K)						
Input set-up time	tISU	6	_	_	ns	CL≤30pF			
Input hold time	tIH	8.3	_	_	ns	CL≤30pF			
Outputs CMD, DAT (referenced to CLK)									
Output set-up	t0SU	5	_	_	ns	CL≤30pF			
time									
Output hold time	tOH	5	_	_	ns	CL≤30pF			

表格 2-35 SDIO/MMC 单沿 HS (High speed) 模式 时序参数表

参数	符号	最小值	典型值	最大值	单位	备注			
Clock CLK									
Clock frequency	fpp	0	_	52	MHz	fpp=1/tpp			
Data transfer						CL≤30pF			
Mode									
Clock high time	tWH	6.5	_	_	ns	CL≤30pF			
Clock low time	tWL	6.5	_	_	ns	CL≤30pF			
Clock rise time	tTLH	_	_	3	ns	CL≤30pF			
Clock fall time	tTHL	_	_	3	ns	CL≤30pF			
Inputs CMD, DAT (referenc	ced to CI	LK)						
Input set-up time	tISU	6	_	_	ns	CL≤30pF			
Input hold time	tIH	2.5	_	-	ns	CL≤30pF			
Outputs CMD, DAT (referenced to CLK)									
Output set-up	t0SU	6	-	π	ns	CL≤30pF			
time									
Output hold time	tOH	3	-	_	ns	CL≤30pF			

双沿的数据输入输出方向时序如图表 2-19 所示。

图表 2-19 SDIO/MMC 双沿 DDR50 模式的数据输入输出方向时序图

表格 2-36 SDIO/MMC 双沿 DDR50 模式时序参数表

CL≤20pF

Output hold time

参数	符号	最小值	典型值	最大值	単位	备注		
Clock CLK	Clock CLK							
Clock frequency	fP	0	_	52	MHz	fpp=1/tpp		
Data transfer Mode						CL≤30pF		
Inputs DAT (reference	ed to CLK))						
Input delay time	tIDLYddr	1.5	_	7	ns	CL≤20pF		
during data								
transfer								
Outputs DAT (referenced to CLK)								
Output set-up time	t0SU	3	-	_	ns	CL≤20pF		

2.5 - ns

HS200 与 SDR104 的数据输入输出方向时序如图表 2-20。

tOH

图表 2-20 SDIO/MMC HS200 与 SDR104 模式的数据命令输出方向时序图

表格 2-37 SDIO/MMC HS200 与 SDR104 模式输出参数表

参数	符号	最小 值	典型值	最大值	单位	备注
Output set-up time	tOSU	1.4	_	_	ns	C _{device} ≤6pF

参数	符号	最小 值	典型值	最大值	单位	备注
Output hold time	tOH	0.8	_	_	ns	

表格 2-38 SDIO/MMC HS200 与 SDR104 模式输入时序参数表

参数	符号	最小值	典型值	最大值	単位	备注
Phase difference between device TX CMD/DAT and RX CLK	tPH	0	-	2	UI	Unit Interval (UI) is one bit nominal time. For 200Mhz, UI=5ns
Input valid data window	tVW	0.575	-	-	UI	TVW=2.88ns at 200MHz