Großer Beleg

Anwendungsorientiertes Programm zur Auslegung von Kurvenkoppelgetrieben

Lutz Wirsig

lutz.wirsig@mailbox.tu-dresden.de

Aufgabenstellung

- Aufgabenstellung
- Lösungsansätze

- Aufgabenstellung
- Lösungsansätze
- Realisierung

- Aufgabenstellung
- Lösungsansätze
- Realisierung
- Vorführung des Programms

- Aufgabenstellung
- Lösungsansätze
- Realisierung
- Vorführung des Programms
- Ausblick

Auswahl der Programmiersprache

- Auswahl der Programmiersprache
- Einarbeitung in die Programmiersprache

- Auswahl der Programmiersprache
- Einarbeitung in die Programmiersprache
- Realisierung des Programms zur Berechnung der Kurvenscheibenkontur bei Kurvenkoppelgetrieben
 - grafische Benutzeroberfläche
 - spätere Erweiterbarkeit
 - Ergebnisausgabe im ASCII-Format

- Auswahl der Programmiersprache
- Einarbeitung in die Programmiersprache
- Realisierung des Programms zur Berechnung der Kurvenscheibenkontur bei Kurvenkoppelgetrieben
 - grafische Benutzeroberfläche
 - spätere Erweiterbarkeit
 - Ergebnisausgabe im ASCII-Format
- persönliches Ziel
 - Portierbarkeit auf verschiedene Betriebssyteme

- Auswahl der Programmiersprache
- Einarbeitung in die Programmiersprache
- Realisierung des Programms zur Berechnung der Kurvenscheibenkontur bei Kurvenkoppelgetrieben
 - grafische Benutzeroberfläche
 - spätere Erweiterbarkeit
 - Ergebnisausgabe im ASCII-Format
- persönliches Ziel
 - Portierbarkeit auf verschiedene Betriebssyteme
- Dokumentation

Lösungsansätze (1)

Auswahl der Programmiersprache (1)

- **●** C/C++
 - Vorteile
 - in Industrie am weitesten verbreitet
 - sehr schnell
 - damit kann fast alles programmiert werden
 - Grundsprache plattformunabhängig
 - Mehrfachvererbung

Lösungsansätze (1)

Auswahl der Programmiersprache (1)

- **●** C/C++
 - Vorteile
 - in Industrie am weitesten verbreitet
 - sehr schnell
 - damit kann fast alles programmiert werden
 - Grundsprache plattformunabhängig
 - Mehrfachvererbung
 - Nachteile
 - GUI-sprache nur beschränkt plattformunabhängig
 - hoher Lernaufwand (Monate)

Lösungsansätze (2)

Auswahl der Programmiersprache (2)

- Delphi
 - Vorteile
 - geringer Lernaufwand (Tage)

Lösungsansätze (2)

Auswahl der Programmiersprache (2)

- Delphi
 - Vorteile
 - geringer Lernaufwand (Tage)
 - Nachteile
 - beschränkt plattformunabhängig
 - nur Einfachvererbung

Lösungsansätze (3)

Auswahl der Programmiersprache (3)

- Java
 - Vorteile
 - plattformunabhängig
 - robust

Lösungsansätze (3)

Auswahl der Programmiersprache (3)

- Java
 - Vorteile
 - plattformunabhängig
 - robust
 - Nachteile
 - langsam
 - hoher Lernaufwand (Monate)
 - nur Einfachvererbung

Lösungsansätze (4)

Auswahl der Programmiersprache (4)

- Visual Basic
 - Vorteile
 - einfach für die Oberflächenprogrammierung

Lösungsansätze (4)

Auswahl der Programmiersprache (4)

- Visual Basic
 - Vorteile
 - einfach für die Oberflächenprogrammierung
 - Nachteile
 - nicht plattformunabhängig

Lösungsansätze (4)

Auswahl der Programmiersprache (4)

- Visual Basic
 - Vorteile
 - einfach für die Oberflächenprogrammierung
 - Nachteile
 - nicht plattformunabhängig

Lösungsansätze (5)

Vorgehensweise

- Verwendung von Struktogrammen
- Aufbau des Programms auf der Grundlage vorhandener Lösungen im MathCad-Dateiformat
- sukzessive Erweiterung in Nachfolgeversionen
- Umsetzung grafischer Anforderungen

Verfahren nach Flocke

Kinematische Abmessungen

Kinematische Abmessungen

Kinematische Abmessungen

Kinematische Abmessungen

Bewegungsplan

Programmstart

nach Ausführen der "opticurv.exe" Datei erscheint folgendes Fenster

Neues Projekt erstellen

Datei|Neu anklicken und es erscheint ein Save as Dialogfenster

— iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	×
Look in: 🔄 /home/lutz/Gr_Beleg/c++/opticurv/widget/version47/ 🔻 🛅 📸 🔡	
<u> </u>	
Querhub.ocv	
Schnittkurvenscheibe.ocv	
Vorschub.ocv	
	-1
File <u>n</u> ame: Save	┚╹
File type: ▼.ocv	
	_//

Vorhandenes Projekt öffnen

• analog erscheint bei **Datei**|Öffnen ein **Open** Dialogfenster

— ::::::::::::::::::::::::::::::::::::	:::::::::::::×
Look in: /home/lutz/Gr_Beleg/c++/opticurv/widget/version47/	
Querhub.ocv Schnittkurvenscheibe.ocv	
Setzhub.ocv	
☐ Vorschub.ocv	
File <u>n</u> ame:	Open
File type: *.ocv	Cancel

Parametereingabe

wurde ein Projekt erstellt bzw. geöffnet erscheint das

Eingabeparameter Fenster

Ergebnisausgabe

nach Ausführen der Berechnung erscheinen die Ergebnisse im Hauptfensterund in ASCII-Dateien

— 🕝 ;;;;;;; opticurv version 1.0.3 - TU Dresden ;;;;;;; □ 🖂 🗙								
<u>D</u> atei <u>H</u> ilfe								
opticurv version 1.0.3 - TU Dresden Don Feb 27 2003 - 10:17:53 /home/lutz/Gr_Beleg/Verteidigung/Schnittkurvenscheibe.ocv								
phi	s(phi)	psi(phi)	psi(phi)	psi'(phi)	psi''			
[Grad]	[mm]	[Grad]	[rad]	[rad]	[rad]			
0	0	0	0	0	0			
5	0	0	0	0	0			

Vorführung des Programms

hier: opticurv starten

Ausblick

- Erweiterung des Programms um weitere
 - Getriebestrukturen
 - Bewegungsgesetzen
 - Bewegungsverläufe
- grafische Ergebnisausgabe
- Online-Hilfe

