Financial Mathematics - Problem Sheet 3

Dom Hutchinson

March 29, 2021

Answer 1. a)

$$\mathcal{P}_{0} = \{\Omega\}
\mathcal{P}_{1} = \{\{\omega_{1}, \omega_{2}, \omega_{3}\}, \{\omega_{4}, \omega_{5}\}, \{\omega_{6}, \omega_{7}, \omega_{8}\}\}
\mathcal{P}_{2} = \{\{\omega_{1}\}, \{\omega_{2}\}, \{\omega_{3}\}, \{\omega_{4}\}, \{\omega_{5}\}, \{\omega_{6}\}, \{\omega_{7}\}, \{\omega_{8}\}\}$$

Answer 1. b)

$$\mathcal{F}_{0} = \{\emptyset, \Omega\}
\mathcal{F}_{1} = \{\emptyset, \Omega, \{\omega_{1}, \omega_{2}, \omega_{3}\}, \{\omega_{4}, \omega_{5}, \omega_{6}, \omega_{7}, \omega_{8}\}, \{\omega_{4}, \omega_{5}\}, \{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{6}, \omega_{7}, \omega_{8}\}, \{\omega_{6}, \omega_{7}, \omega_{8}\}, \{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\}\}
\mathcal{F}_{2} = 2^{\Omega}$$

Answer 2. a)

The value process $V_t(\omega)$ for this model is as follows

and the discounted value process $V_t^*(\omega) = V_t(\omega)/B_t$ for this model is

$$\begin{array}{c|ccccc} \omega \setminus t & 0 & 1 \\ \hline \omega_1 & H_0 + 15H_1 + 30H_2 & H_0 + 18H_1 + 36H_2 \\ \omega_2 & H_0 + 15H_1 + 30H_2 & H_0 + 18H_1 + 24H_2 \\ \omega_3 & H_0 + 15H_1 + 30H_2 & H_0 + 12H_1 + 24H_2 \\ \omega_4 & H_0 + 15H_1 + 30H_2 & H_0 + 6H_1 + 6H_2 \\ \hline \end{array}$$

The gains process $G(\omega)$ for this model is as follows

$$\begin{array}{c|cc} \omega & G(\omega) \\ \hline \omega_1 & (1/9)H_0 + 5H_1 + 10H_2 \\ \omega_2 & (1/9)H_0 + 5H_1 - (10/3)H_2 \\ \omega_3 & (1/9)H_0 - (5/3)H_1 - (10/3)H_2 \\ \omega_4 & (1/9)H_0 - (25/3)H_1 - (70/3)H_2 \end{array}$$

and the discounted gains process $G^*(\omega) = \sum_{i=1}^2 H_1 \Delta S_i^*(\omega)$ for this model is as follows

$$\begin{array}{c|c} \omega & G^*(\omega) \\ \hline \omega_1 & 3H_1 + 6H_2 \\ \omega_2 & 3H_1 - 6H_2 \\ \omega_3 & -3H_1 - 6H_2 \\ \omega_4 & -9H_1 - 24H_2 \\ \hline \end{array}$$

Answer 2. b)

Consider $X \in \mathbb{R}^4$ st $X = G^*$. Then

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} 3H_1 + 6H_2 \\ 3H_1 - 6H_2 \\ -3H_1 - 6H_2 \\ -9H_1 - 24H_2 \end{pmatrix}$$

Thus

$$\mathbb{W} = \operatorname{span} \left\{ \begin{pmatrix} 3 \\ 3 \\ -3 \\ -9 \end{pmatrix}, \begin{pmatrix} 6 \\ -6 \\ -6 \\ -24 \end{pmatrix} \right\} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \\ -3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \\ -4 \end{pmatrix} \right\}$$

Consider the set $\mathbb{A} := \{X \in \mathbb{R}^4 : x \geq 0 \ \forall \ x \in X\}$ and the elements of $\mathbb{W} \cap \mathbb{A}$. This elements form the set of possible gains which would produce a risk-free profit (i.e. an arbitrage opportunity).

$$\mathbb{W} \cap \mathbb{A} = \left\{ X \in \mathbb{R}^4 : X_1 = x_3 = 0; X_2, X_4 > 0 \right\}$$
$$X \in (\mathbb{W} \cap \mathbb{A}) \implies X = \begin{pmatrix} 0 & \lambda & 0 & \mu \end{pmatrix} \text{ with } \lambda, \mu > 0$$

How consider the Xs where $X = G^*$ and $X \in (\mathbb{W} \cap \mathbb{A})$.

$$X_{1} = 3H_{1} + 6H_{2} = 0$$

$$H_{1} = -2H_{2}$$

$$X_{2} = 3H_{1} - 6H_{2} = \lambda$$

$$-12H_{2} = \lambda$$

$$H_{2} = -\frac{1}{12}\lambda$$

$$H_{1} = \frac{1}{6}\lambda$$

$$X_{4} = -9H_{1} - 24H_{2} = \mu$$

$$-6H_{2} = \mu$$

$$H_{2} = -\frac{1}{6}\mu$$

$$H_{1} = \frac{1}{3}\mu$$

$$H_{1} = \frac{1}{3}\mu$$

$$\mu = \frac{1}{2}\lambda$$

Thus the trading strategies which exploit arbitrage opportunities in this model as those in the set

$$\left\{H\in\mathbb{R}^3: H=\begin{pmatrix}0 & \frac{1}{6}\lambda & -\frac{1}{12}\lambda\end{pmatrix}: \lambda>0\right\}$$

Answer 2. c)

The "No-Arbitrage Theorem" states that risk-neutral probability measures only exists for a model <u>iff</u> no arbitrage opportunities exist. In this model arbitrage opportunities do exist, thus no risk-neutral probability measures can.

Consider matrix A which summarises this model

$$A = \begin{pmatrix} B_1(\omega_1) & S_1(1)(\omega_1) & S_2(1)(\omega_1) \\ B_1(\omega_2) & S_1(1)(\omega_2) & S_2(1)(\omega_2) \\ B_1(\omega_3) & S_1(1)(\omega_3) & S_2(1)(\omega_3) \\ B_1(\omega_4) & S_1(1)(\omega_4) & S_2(1)(\omega_4) \end{pmatrix} = = \begin{pmatrix} 10/9 & 20 & 40 \\ 10/9 & 20 & 80/3 \\ 10/9 & 40/3 & 80/3 \\ 10/9 & 20/3 & 20/3 \end{pmatrix}$$

Matrix A only has three linearly-independent columns, thus AH can only span \mathbb{R}^3 for any trading strategy H. As AH cannot span \mathbb{R}^4 , the market is not complete.

Answer 3. a)

 \mathcal{F}_1 is a σ -algebra.

 \mathcal{F}_2 is <u>not</u> a σ -algebra as (among other reasons) $\{\omega_1\}, \{\omega_2\} \in \mathcal{F}_2$ but $\{\omega_1, \omega_2\} \notin \mathcal{F}_2$.

Answer 3. b)

Consider the σ -algebra $\mathcal{G} := \{\emptyset, \Omega\}$ and the function $X(\omega_i) = i$. X is <u>not</u> measurable wrt \mathcal{G} as $\{\omega_1\}, \{\omega_2\}, \{\omega_3\}, \{\omega_4\} \notin \mathcal{G}$.

Answer 3. c)

The powerset of Ω contains all possible subsets of Ω and thus all functions $\omega \to X(\omega)$ are measurable wrt to it.

$$\mathcal{H}=2^{\Omega}$$