Лабораторная работа №4 Преобразование БШ в ЛИЦ

Готфрид Матвей, ИА-231 27 марта 2025 г.

1 Введение

В данной работе выполнено моделирование процесса формирования белого шума и его преобразования с использованием фильтров нижних частот (ФНЧ) и полосовых фильтров (ПФ). Исследованы автокорреляционная функция (АКФ) и спектральная плотность мощности (СПМ) сигналов на выходе фильтров.

2 Методика

- Генерация белого шума.
- Проектирование эллиптического ФНЧ с частотой среза 3 кГц.
- Проектирование эллиптического ПФ с полосой пропускания 3-6 кГц.
- Фильтрация белого шума.
- Расчет и усреднение АКФ и СПМ по 1000 реализациям.
- Определение интервала корреляции для ФНЧ.
- Проектирование узкополосного процесса
- Расчет и усреднение АКФ УП

3 Результаты

3.1 Графики сигналов

На рисунке 1 представлены исходный белый шум и сигналы после ФНЧ и ПФ.

3.2 АКФ и СПМ белого шума

На рисунке 2 представлены автокорреляционная функция и спектральная плотность мощности белого шума.

3.3 Усредненные АКФ и СПМ

На рисунке 3 представлены усредненные АК Φ сигналов после Φ НЧ и Π Φ . На рисунке 7 представлены усредненные СПМ сигналов после Φ НЧ и Π Φ .

Рис. 1: Исходный белый шум и сигналы после ФНЧ и ПФ

3.4 Интервал корреляции

Интервал корреляции для сигнала после ФНЧ составил $\tau = X$ с (значение получено в MATLAB).

4 Выводы

В ходе работы выполнено моделирование белого шума и его фильтрация с использованием $\Phi H \Psi$ и $\Pi \Phi$. Получены $AK\Phi$ и $C\Pi M$ для сигналов на выходе фильтров. Определен интервал корреляции для $\Phi H \Psi$.

Рис. 2: АКФ и СПМ белого шума

Рис. 3: Усредненные АКФ после ФНЧ и ПФ

Рис. 4: Узкополосный шум

Рис. 5: АКФ узкополосного процесса

Рис. 6: Огибающая кривая распределения УП

Рис. 7: Усредненные СПМ после ФНЧ и П Φ