

Módulo 3: Explorar os conceitos básicos de dados não relacionais no Azure

Conceitos básicos do Armazenamento do Azure

Agenda

Conceitos básicos do Azure Cosmos DB

Armazenamento de Blobs do Azure

Armazenamento para dados como BLOBs (objetos binários grandes)

- Blobs de bloco
 - Objetos binários grandes, discretos que mudam com pouca frequência
 - Os blobs podem ter até 4,7 TB, compostos por blocos de até 100 MB
 - Um blob pode conter até 50 mil blocos
- Blobs de páginas
 - Usado como armazenamento em disco virtual para VMs
 - Os blobs podem ter até 8 TB, compostos por páginas de tamanho fixo de 512 bytes
- Blobs de acréscimo
 - Blobs de blocos usados para otimizar operações de acréscimo
 - Tamanho máximo de pouco mais de 195 GB cada bloco pode ter até 4 MB

Camadas de armazenamento por blob

- Frequente Maior custo, menor latência
- Esporádico Menor custo, latência alta
- Arquivo Menor custo, maior latência

Os blobs podem ser organizados em diretórios virtuais, mas cada caminho é considerado um blob em um namespace simples – não há suporte para operações de nível de pasta

Azure Data Lake Storage Gen 2

Sistema de arquivos distribuído criado no Armazenamento de Blobs

- Combina o Azure Data Lake Store Gen 1 com o Armazenamento de Blobs do Azure para armazenamento e análise de arquivos em grande escala
- Habilita o controle e o gerenciamento de acesso no nível do arquivo e do diretório
- Compatível com sistemas analíticos comuns em grande escala

Habilitado em uma conta de Armazenamento do Azure por meio da opção de *Namespace Hierárquico*

- Definido durante a criação da conta
- Upgrade de uma conta de armazenamento existente
 - Processo de atualização unidirecional

O sistema de arquivos inclui diretórios e arquivos e é compatível com sistemas de análise de dados em grande escala, como Hadoop, Databricks e Azure Synapse Analytics

Arquivos do Azure

Compartilhamentos de arquivos na nuvem que podem ser acessados de qualquer lugar com uma conexão com a Internet

- Suporte para protocolos comuns de compartilhamento de arquivos:
 - Protocolo SMB
 - Sistema de Arquivos de Rede (NFS) requer a camada Premium
- Os dados são replicados para redundância e criptografados em repouso

Armazenamento de Tabelas do Azure

Armazenamento de *chave-valor* para dados do aplicativo

- As tabelas consistem em colunas de chave e valor
 - Chaves de partição e linha
 - Colunas de propriedade personalizadas para valores de dados
 - Uma coluna de carimbo de data/horaéadicionada automaticamente para registrar alterações de dados
- As linhas são agrupadas em partições para aprimorar o desempenho
- As colunas de propriedades recebem um tipo de dados e podem conter qualquer valor desse tipo
- As linhas não precisam incluir as mesmas colunas de propriedades

Laboratório: Explorar o Armazenamento do Azure

Neste laboratório, você provisionará e usará o Armazenamento do Microsoft Azure

- 1. Inicie a máquina virtual para este laboratório ou vá para a página do exercício em https://aka.ms/dp900-storage-lab
- 2. Siga as instruções para concluir o exercício no Microsoft Learn
 Use a assinatura do Azure fornecida para este laboratório

Lição 1: Verificação de conhecimentos

O que é o Azure Cosmos DB?

Um sistema de gerenciamento de banco de dados *NoSQL* com vários modelos e escala global

- Suporte para várias APIs de armazenamento
- Acesso em tempo real com desempenho rápido de leitura e gravação
- Habilitar gravações de várias regiões para replicar dados globalmente, permitindo que usuários em regiões especificadas trabalhem com uma réplica local

APIs do Azure Cosmos DB

API do Core (SQL)

- API nativa para o Cosmos DB
- Consultas SQL baseadas em documentos JSON

SELECT *
FROM customers c
WHERE c.id = "joe@litware.com"

```
{
    "id": "joe@litware.com",
    "name": "Joe Jones",
    "address": {
        "street": "1 Main St.",
        "city": "Seattle"
    }
}
```

API do MongoDB

Compatibilidade com MongoDB

 um banco de dados popular de código aberto baseado em documento

db.products.find({ id: 123})

```
{
"id": 123,
"name": "Hammer",
"price": 2.99}
}
```

API de Tabela

- API de armazenamento de chave-valor
- Compatível com o Armazenamento de Tabelas do Azure, mas com melhor desempenho e escalabilidade

PartitionKey	RowKey	Nome
1	123	Joe Jones
1	124	Samir Nadoy

API do Cassandra

Compatibilidade com o Apache Cassandra

um banco de dados popular de código aberto de família de colunas

SELECT * FROM store,employee WHERE dept="Hardware"

id	name	dept	manager
1	Suzana Silva	Hardware	
2	João Neves	Hardware	Suzana Silva

API do Gremlin

Usado para trabalhar com dados de *grafo*

 Nós de entidade (vértices) são conectados por meio de relações (bordas)

Laboratório: Explorar o Azure Cosmos DB

Neste laboratório, você provisionará e usará o Azure Cosmos DB

- 1. Inicie a máquina virtual para este laboratório ou vá para a página do exercício em https://aka.ms/dp900-cosmos-lab
- 2. Siga as instruções para concluir o exercício no Microsoft Learn
 Use a assinatura do Azure fornecida para este laboratório

Lição 2: Verificação de conhecimentos

