Lukion matematiikkakilpailu 2006

Loppukilpailutehtävinen ratkaisuhahmotelmia

- 1. Koska (x+1)(y+1)=x+y+xy+1, tehtävän yhtälö on yhtäpitävä yhtälön (x+1)(y+1)=2007 kanssa. Nyt $2007=9\cdot 223=3\cdot 669$. Selvästi 223 ei ole jaollinen kolmella eikä viidellä. Kokeilemalla huomaa, että 223 ei ole jaollinen 7:llä, 11:llä eikä 13:lla. Koska $15^2=225>223$, suurempia mahdollisia tekijöitä ei tarvitse tutkia; 223 on alkuluku. Koska on oltava $x+1\geq 2$ ja $y+1\geq 2$, on oltava joko x+1=9 ja y+1=223 eli x=8, y=222 tai x+1=223 ja y+1=222 eli x=222 ja y=8 tai x+1=3 ja y+1=669 eli x=2 ja y=668 tai x+1=669 ja y+1=3 eli x=668 ja y=2. Selvästi kaikki saadut lukuparit ovat alkuperäisen yhtälön ratkaisuja.
- **2.** Lasketaan epäyhtälön vasemman ja oikean puolen erotus: $3(1+a^2+a^4)-(1+a+a^2)^2=3+3a^2+3a^4-1-a^2-a^4-2a-2a^2-2a^3=2a^4-2a^3-2a+2=(a^4-2a^3+a^2)+(a^4-2a^2+1)+(a^2-2a+1)=a^2(a-1)^2+(a^2-1)^2+(a-1)^2\geq 0$. Epäyhtälö on siis tosi kaikilla a (ja yhtäsuuruus pätee vain, kun a=1).
- **3.** $p=5a+b,\ a\geq 0,\ 0\leq b\leq 5$. Jos $b=0,\ p=5$. $4\cdot 5^2+1=101$. $6\cdot 5^2+1=151$. Nopeasti kokeilemalla huomataan, että 101 ja 151 ovat alkulukuja. Jos $p\neq 5,\ 1\leq b\leq 4$. $p^2=5c+b^2$. $1^2=1,\ 2^2=5-1,\ 3^2=10-1,\ 4^2=15+1$. Jos b=1 tai $b=4,\ 4p^2+1=5d$ ja $4p^2+1\neq 5$. $4p^2+1$ ei ole alkuluku. Jos b=2 tai $b=3,\ 6p^2+1=5f$ ja $6p^1+1\neq 5$. Siis $6p^2+1$ ei ole alkuluku. Ainoa mahdollisuus on, että p=5.
- 4. Oletetaan, että kolmion ABC keskijanat ovat AD, BE ja CF ja että $BE\bot CF$. Keskijanojen leikkauspiste on G. Koska BCG on suorakulmainen kolmio, BC on sen ympäri piirretyn ympyrän halkaisija ja D saman ympyrän keskipiste. Siis DG = BD = DC ja BC = 2DG. Piirretään E:n kautta CF:n suuntainen suora, joka leikkaa suoran BC pisteessä H. Koska FE on kolmion sivujen keskipisteitä yhdistävänä janana BC:n suuntainen, CHEF on suunnikas ja CH = FE

- $=\frac{1}{2}BC=DG.\ CH$ on kolmasosaBH:sta ja DGon kolmasosa AD:stä. Siis BH=AD. Kolmio BHEon suorakulmainen, koska $EH\|CF$ ja $CF\bot BE.$
- 5. Oletetaan, että pelaajat ovat A ja B ja että A kirjoittaa ensimmäisen numeron. Merkitään S(R):llä ruutua, joka on symmetrinen ruudun R kanssa kuvion keskipisteen suhteen. Pelaaja B voittaa aina, jos B käyttä seuraavaa strategiaa: kun A on kirjoittanut ruutuun R luvun R kirjoittaa ruutuun S(R) luvun R. Tämä ruutu on vapaa. R jos R:n ensimmäinen luku on ruudussa R, niin R(R) on varmasti vapaa. Jokaista R:n siirtoa edeltäneet siirrot ovat aina varanneet jonkin parin R, R(R), joten R:n viimeinen siirto on tehty sellaiseen ruutuun R1, jolle R2, on vapaa. Koska neliössä on parillinen määrä rivejä, R3, in

vaaka- ja pystyrivin ruudut ovat R_k :n vaaka- ja pystyrivin ruutujen kanssa symmetrisiä. Myös se 4-pikkuneliö, johon $S(R_k)$ kuuluu, koostuu R_k :n pikkuneliön kanssa symmetrisistä neliöistä. Ennen A:n viimeistä siirtoa R_k :n ja $S(R_k)$:n vaaka- ja pystyriveillä sekä pikkuneliöissä on samat luvut. Jos A voi kirjoittaa R_k :hon luvun n_k , voi B siis myös kirjoittaa $S(R_k)$:hon luvun n_k . Näin ollen ainoa tapa, jolla peli voi päättyä, on että A ei voi kirjoittaa mihinkään vapaaseen ruutuun tai vapaita ruutuja ei ole. Tilanne, jossa B ei voisi jatkaa peliä A:n siirron jälkeen ei voi esiintyä.