

Álgebra lineal – Ejercicios no evaluables

- 1. Obténganse las normas 1, 2 e ∞ de los siguientes vectores:
 - a) $v_1 = (1, 0, 2)$.
 - b) $v_2 = (-6, 5)$.
 - c) $v_3 = (\sqrt{2}, -1, 0, 1)$.
- 2. Calcúlese $u \cdot v$ en cada caso y determínese si u y v son perpendiculares.
 - a) u = (0, -1, 2), v = (1, 0, 0).
 - b) u = (-3, 1, 4), v = (1, 4, -2).
 - c) $u = (\sqrt{2}, 1, 0), v = (-\sqrt{2}, 2, -3).$
- 3. Compruebe que $u \cdot (v + w) = u \cdot v + u \cdot w$ siendo $u, v, w \in \mathbb{R}^n$.
- 4. Sean $u, v, w \in \mathbb{R}^n$. Demuestra que si u es perpendicular a w y v es perpendicular a w, entonces u + v también es perpendicular a w.
- 5. Sean u=(1,1,0), v=(0,1,1) y $w=(\alpha,2,\alpha)$ vectores de \mathbb{R}^3 . Encuentra para qué valores de α el conjunto $\{u,v,w\}$ es lineamente independiente.
- 6. Compruebe las siguientes afirmaciones:
 - a) Los vectores $v_1 = (1,1)$ y $v_2 = (-1,1)$ son linealmente independientes
 - b) Todo vector $v \in \mathbb{R}^2$ es combinación lineal de v_1 y v_2 .
- 7. Realícense las siguientes operaciones matriciales:

a)
$$\begin{pmatrix} -2 & 1 & 0 \\ 4 & 0 & 2 \\ 0 & 0 & 1 \\ 4 & -3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 & 0 & 8 \\ -3 & 0 & -5 & 4 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -2 & 1 & 0 \\ 1 & 0 & 3 \\ 0 & -1 & 1 \end{pmatrix}^2 - 2 \begin{pmatrix} 1 & 0 & 3 \\ -3 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\det \begin{pmatrix} 1 & 0 & -2 \\ 4 & 3 & 0 \\ 0 & -3 & 8 \end{pmatrix}$$

Máster Universitario en Inteligencia Artificial

- 8. Sean $A,B\in\mathbb{R}^{n\times n}$ matrices cuadradas tales que $\det(A)=2$ y $\det(B)=-3$. Obtén razonadamente el valor de $\det(12A^2B)$.
- 9. Sea

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

- a) Comprueba que $\det A = \det A'$. Siendo $A' = A^{\top}$ la matriz traspuesta de A.
- b) Deduce entonces que A es regular si y sólo si A' es regular.
- 10. Demuestra, usando las identidades trigonométricas convenientes, los enunciados (a) y (b) siguientes, siendo $f_{\theta}(x,y) = (x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta)$:
 - a) $||f_{\theta}(v)||_2 = ||v||_2, \forall v \in \mathbb{R}^2, \forall \theta \in \mathbb{R}.$
 - b) $f_{\alpha} \circ f_{\beta} = f_{\alpha+\beta}, \forall \alpha, \beta \in \mathbb{R}.$
 - c) Comprueba que la aplicación $f_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ es lineal.
 - d) Halla la representación matricial de $f_{\pi/4}$, i.e., la matriz $M \in \mathbb{R}^{2\times 2}$ tal que $f_{\pi/4}(v) = Mv$ para todo $v \in \mathbb{R}^2$.
- 11. Sea $T:\mathbb{R}^2 \to \mathbb{R}^2$ la aplicación lineal dada por T(1,0)=(1,1) y T(0,1)=(-1,1), calcule:
 - a) T(x,y) para todo $(x,y) \in \mathbb{R}^2$.
 - b) La representación matricial de T i.e., la matriz $M \in \mathbb{R}^{2 \times 2}$ tal que T(v) = Mv.
- 12. Diagonaliza, de ser posible, las matrices siguientes:

a)
$$A = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} -3 & 2 & 2 \\ -2 & 1 & 2 \\ -1 & 0 & 2 \end{pmatrix}$$