JEE Mains 2019 Chapter wise Question Bank

Chemical Bonding - Questions

Q1

According to molecular orbital theory, which of the following is true with respect to Li2+ and Li2-?

- (1) Li₂⁺ is unstable and Li₂⁻ is stable
- (2) Li2+ is stable and Li2- is unstable
- (3) Both are stable
- (4) Both are unstable

9 Jan Morning

Q2

In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic?

- (1) $NO \rightarrow NO^{+}$ (2) $N_{2} \rightarrow N_{2}^{+}$ (3) $O_{2} \rightarrow O_{2}^{-+}$ (4) $O_{2} \rightarrow O_{2}^{-2-}$

9 Jan Evening

Q3

Two pi and half sigma bonds are present in:

(1) O_2^+

(2) N_2

(3) O_2

 $(4) N_2^+$

10 Jan Morning

Q4

Among the following molecules/ions,

Which one is diamagnetic and has the shortest bond length?

- (1) O_2 (2) N_2^{2-} (3) O_2^{2-} (4) C_2^{2-}

8 April Evening

Q5

Among the following, the molecule expected to be stabilized by anion formation is:

C2, O2, NO, F2

- (1) C₂ (2) F₂ (3) NO
- (4) O₂

9 April Morning

Q6

Among the following species, the diamagnetic molecule is:

- (1) NO
- (2) CO
- (3) B₂
- (4) O₂

9 April Evening

Q7

During the change of O_2 to O_2^- , the incoming electron goes to the orbital:

- (1) π2p_v
- (2) $\sigma^* 2p_z$ (3) $\pi^* 2p_x$ (4) $\pi 2p_x$

10 April Morning

Q8

The correct statement among the following is:

- (SiH₂)₂N is planar and less basic than (CH₂)₂N.
- (SiH₂), N is pyramidal and more basic than (CH₂), N.
- (3) (SiH₂)₃N is pyramidal and less basic than (CH,),N.
- (4) (SiH₂)₂N is planar and more basic than (CH₂)₂N.

12 April Morning

JEE Mains 2019 Chapter wise Question Bank

Chemical Bonding - Solutions

Q1

(3) Electronic configuratios of Li2+ and Li2-:

$$\text{Li}_{2}^{+}$$
: $\sigma 1s^{2}\sigma * 1s^{2}\sigma 2s^{1}$

$$\text{Li}_{2}^{-}$$
: $\sigma 1s^{2}\sigma^{*}1s^{2}\sigma 2s^{2}\sigma^{*}2s^{1}$

Now.

Bond order of
$$\text{Li}_2^+ = \frac{1}{2}(3-2) = \frac{1}{2}$$

Bond order of
$$\text{Li}_2^- = \frac{1}{2}(4-3) = \frac{1}{2}$$

Here, both Li₂⁺ and Li₂⁻ have positive bond order, thus both are stable.

9 Jan Morning

Q2

 In case of NO (paramagnetic) → NO⁺ (diamagnetic) the bond order has increased from 2.5 to 3.

For other cases:

 N_2 (Diamagnetic) \rightarrow N_2^+ (Paramagnetic)

 O_2 (Paramagnetic) \rightarrow O_2^+ (Paramagnetic)

 O_2 (Paramagnetic) \rightarrow O_2^{2-} (Diamagnetic)

B.O = 2 B.O = 1

9 Jan Evening

Q3

(4)
$$N_2^+ = 13e^-$$

= $\sigma ls^2 \sigma^* ls^2 \sigma 2s^2 \sigma^* 2s^2 \pi 2p_x^2$
= $\pi 2p_y^2 \sigma 2p_z^1$

B.O. =
$$\frac{\frac{\text{Bonding electrons}}{\text{electrons}} - \frac{\text{Antibonding electrons}}{2}$$

B.O. =
$$\frac{9-4}{2}$$
 = 2.5 = 2π bond + 0.5 σ bond

10 Jan Morning

Q4

(4) Bond length $\propto \frac{1}{\text{Bond order}}$

and diamagnetic species has no unpaired electron in their molecular orbitals.

	No. of unpaired	Bond	Magnetic
	electrons	order	character
C_2^{2-}	0	3	diamagnetic
N_2^{2-}	2	2	paramagnetic
O_2^{2-} O_2	0	1	diamagnetic
O_2	1	2	paramagnetic
		C_2^{2-} has le	ast bond length and

:. C₂²⁻ has least bond length and is diamagnetic.

8 April Evening

Q5

(1) Configuration of C,

=
$$\sigma ls^2 \sigma * ls^2 \sigma 2s^2 \sigma * 2s^2 \pi 2p_x^2 = \pi 2p_y^2$$

Configuration of C_2^-
= $\sigma ls^2 \sigma * ls^2 \sigma 2s^2 \sigma * 2s^2 \pi 2p_x^2 = \pi 2p_y^2 \sigma 2p_z^1$

Bond order

$$= \frac{\text{No.of bonding e}^- - \text{No.of antibonding e}^-}{2}$$

 C_2 has s-p mixing and the HOMO is $\pi 2p_x = \pi 2p_y$ and LUMO is $\sigma 2p_z$. So, the extra electron will occupy bonding molecular orbital and this will lead to an increase in bond order.

C₂ has more bond order than C₂.

9 April Morning

Q6

Chemical Bonding

JEE Mains 2019 Chapter wise Question Bank

(2) The molecules with no unpaired electrons are diamagnetic.

Molecule No. of unpaired electrons NO 1 Zero O_2 2 2 B_2 2

Since CO has no unpaired electron. Hence CO is diamagnetic.

9 April Evening

Q7

(3) Electronic configuration of O2 is

$$\begin{split} &\sigma \, 1s^2 \, \sigma^* 1s^2 \, \sigma \, 2s^2 \sigma^* 2s^2 \sigma \, 2p_z^2 \, \pi \, 2p_x^2 \\ &= \pi 2p_y^2 \, \, \pi^* 2p_x^1 = \pi^* 2p_y^1 \end{split}$$

When an electron is added in O_2 to form O_2^- , the incoming electron goes to π^*2p_x or π^*2p_y orbital.

10 April Morning

Q8

Due to backbonding of lone pair electrons of nitrogen into vacant *d*-orbitals of Si, trisilylamine (SiH₃)₃N is planar. In trimethylamine (CH₃)₃N, there is no backbonding and hence it is more basic.

12 April Morning