STEAMCITY - APPRENTISSAGES CONNECTÉES

RENDRE POSSIBLE L'UTILISATION DE CAPTEURS EN CLASSE PAR UNE APPROCHE MODULIARE

Une approche interdisciplinaire et économique pour explorer les technologies d'investigation par la donnée

Au sein de SteamCity, nous vous proposons d'aborder l'apprentissage connecté par le biais de **4 stations thématiques de capteurs complémentaires**. Chaque station constitue un **module technologique de démarrage**: le set de capteurs que nous considérons comme **incontournables (mais non exhaustif)** pour engager les classes dans l'investigation scientifique de manière interdisciplinaire.

Ces capteurs ont été **sélectionnés stratégiquement** pour couvrir un maximum de nos protocoles pédagogiques (disponibles dans nos ressources) tout en restant **financièrement accessibles** aux établissements scolaires. Cette sélection optimise le rapport qualité-prix en permettant la réalisation de multiples expérimentations avec un investissement matériel raisonnable. Pour renforcer cette accessibilité, nous intégrons également **l'utilisation d'outils mobiles (smartphones, tablettes)** comme capteurs alternatifs, évitant ainsi l'achat de capteurs spécialisés coûteux tout en conservant une qualité de mesure adaptée aux objectifs pédagogiques. Chaque module peut être **activé seul ou en combinaison avec d'autres**, permettant une adaptation fine aux contraintes pédagogiques et budgétaires.

L'approche privilégie la **compréhension des phénomènes** : les capteurs sélectionnés offrent une **précision suffisante pour l'apprentissage scientifique**, avec des **protocoles de calibrage simples** que les élèves peuvent réaliser eux-mêmes, transformant ainsi les questions de fiabilité des mesures en opportunités d'apprentissage supplémentaires.

Chaque module est centré sur une **problématique sociétale représentative de l'engagement de SteamCity** (environnement, mobilité, énergie, intelligence artificielle) et propose un ensemble cohérent de capteurs spécialisés, d'activités pratiques et d'objectifs pédagogiques spécifiques que vous pouvez retrouver dans nos protocoles. Cette approche permet aux enseignants de démarrer l'exploration technologique avec leurs élèves, en disposant des outils essentiels pour comprendre et agir sur les enjeux de notre époque.

Détail des éléments par station

- Carte programmable : 1 carte par kit qui comprend elle-même un set de capteurs de démarrage
- Capteurs additionnels : 2-3 capteurs spécialisés par station pour aller plus loin sur l'exploration des phénomènes complexes
- **Équipements élèves** : Smartphone/PC déjà disponibles (caméra, micro, apps)
- Accessoires : Câbles, breadboard, résistances, LEDs

STRUCTURE TARIFIARE POUR UNE CLASSE DE 30 ÉLÈVES (10 KITS)

Station	Configuration	Éléments techniques	Prix/kit	Prix classe	Avantages
Environnement et Bien-être	Micro:bit	8 éléments (DHT11, LDR, Soil sensor + Micro:bit 4 capteurs)	40€	400€	Simplicité, programmation blocs
	STM32 IoT Node	9 éléments (Soil sensor + STM32 avec 8 capteurs intégrés)	65€	650€	Capteurs professionnels, précision
	Steami	9 éléments + écran (Soil sensor + Steami 8 capteurs + LCD + Jacdac)	50€	500€	Écran intégré, connecteurs Grove
Mobilité & Transport	Arduino Uno (obligatoire)	5 éléments (HCSR04, Accelerometer + Arduino Uno)	35€	350€	Seule carte 5V compatible HCSR04
Énergie et confort thermique	Micro:bit	8 éléments (LDR, DHT11, Photodiode + Micro:bit 4 capteurs)	30€	300€	Interface simple
	STM32 IoT Node	9 éléments (Photodiode + STM32 avec 8 capteurs intégrés)	55€	550€	Capteurs redondants pour comparaison
	Steami	9 éléments + écran (Photodiode + Steami 8 capteurs + LCD)	40€	400€	Affichage direct des données
	+ Caméra thermique	+1 élément partagé		+250€	Analyse thermique professionnelle
Intelligence Artificielle	Arduino Uno	6 éléments (Grove Color, APDS-9960 + Arduino Uno)	45€	450€	Bibliothèques IA matures
	Raspberry Pico	6 éléments (Grove Color, APDS-9960 + Raspberry Pico)	40€	400€	Plus de mémoire pour IA complexe

Recommandations par budget

Budget/élève	Configuration recommandée	Stations incluses	Avantages
< 40€	Micro:bit + Arduino	Environnement + Mobilité	Démarrage économique
40-60€	Steami + Arduino	4 stations sans thermique	Équilibre optimal
> 60€	STM32 + Arduino + thermique	4 stations complètes	Configuration professionnelle

MUTUALISATION ET OPTIMISATION DES RESSOURCES

L'approche modulaire favorise naturellement la **mutualisation des équipements entre les différentes stations**, maximisant ainsi l'efficacité de l'investissement pédagogique. Cette optimisation s'articule autour de trois axes principaux : la réutilisation technique, le partage matériel et la capitalisation documentaire.

Sur le plan technique, plusieurs capteurs fondamentaux se retrouvent dans différentes stations (DHT11 pour température/humidité, LDR pour luminosité, caméra smartphone pour vision), permettant aux enseignants de créer des passerelles pédagogiques entre les thématiques. Cette transversalité technique renforce la compréhension globale des phénomènes physiques tout en réduisant les coûts d'acquisition.

Le **partage matériel** optimise l'utilisation des cartes programmables selon les besoins ponctuels : une même carte Arduino peut servir successivement aux stations Mobilité et IA, tandis qu'un Micro:bit peut être utilisé alternativement pour Environnement et Énergie. Cette flexibilité permet aux établissements d'adapter leur équipement à leur organisation pédagogique spécifique.

La **capitalisation documentaire** assure la pérennité et l'évolutivité du projet : les protocoles développés, les retours d'expérience et les adaptations locales constituent une base de ressources réutilisables et enrichissables, créant un écosystème pédagogique durable au sein de l'établissement.

Analyse des capteurs communs

Capteurs mutualisables	Stations concernées	Prix unitaire	Économie
DHT11	Environment + Énergie	8€	8€/kit
LDR	Environment + Énergie	3€	3€/kit
Micro:bit	Environment + Énergie	22,5€	22,5€/kit
Light sensor smartphone	Environment + Énergie + Mobilité + IA	0€	0€ (déjà gratuit)
Arduino Uno	Mobilité + IA	23,9€	23,9€/kit
Camera smartphone	Mobilité + IA	0€	0€ (déjà gratuit)

Analyse des capteurs communs

Combinaison de stations	Coût avec mutualisation	Économie	Économie %
Environnement + Énergie	450€ - 650€ (45€ - 65€/kit)	250€ - 550€	36% - 46%
Mobilité + IA	650€ - 700€ (65€ - 70€/kit)	50€ - 150€	7% - 19%
Environnement + Énergie + Mobilité	750€ - 1000€ (75€ - 100€/kit)	300€ - 550€	29% - 35%
Mobilité + IA + Énergie	900€ - 1200€ (90€ - 120€/kit)	150€ - 250€	14% - 17%
4 stations complètes	1100€ - 1400€ (110€ - 140€/kit)	350€ - 700€	24% - 33%
4 stations + caméra	1450€ - 1750€ (145€ - 175€/kit)	350€ - 700€	19% - 29%