- 36. Seja G um grupo. Para cada $a \in G$, considere a aplicação $\theta_a : G \to G$ definida por $\theta_a(x) = axa^{-1}$. Mostre que:
 - (a) Para cada $a \in G$ a aplicação θ_a é um automorfismo de G. Para cada $a \in G$, o automorfismo θ_a designa-se por automorfismo interno de G;
 - (b) Para cada $\alpha \in \operatorname{Aut}(G)$ e cada $a \in G$, $\alpha \theta_a \alpha^{-1} = \theta_{\alpha(a)}$;
 - (c) $\{\theta_a : a \in G\}$ é um subgrupo normal do grupo $\operatorname{Aut}(G)$. Este subgrupo representa-se por $\operatorname{Inn}(G)$;
 - (d) A correspondência ϕ definida por $a \mapsto \theta_a$, com $a \in G$, é um morfismo de G em $\operatorname{Aut}(G)$;
 - (e) Nuc $\phi = Z(G)$.

Resolução

(a) Consideremos um elemento qualquer $a \in G$ e θ_a a aplicação definida conforme o enunciado. Observemos primeiro que θ_a é um morfismo. De facto, para quaisquer $x, y \in G$, temos

$$\theta_a(xy) = a(xy)a^{-1} = (ax)(a^{-1}a)(ya^{-1}) = (axa^{-1})(aya^{-1}) = \theta_a(x)\theta_a(y).$$

Vejamos de seguida que θ_a é sobrejetiva. Seja y um elemento qualquer de G. Procuramos $x \in G$ tal que $\theta_a(x) = y$, i.e., tal que $axa^{-1} = y$. Por G ser grupo, sabemos que esta equação tem, exatamente, uma solução. Calculemo-la:

$$\begin{aligned} axa^{-1} &= y &\Leftrightarrow a^{-1}(axa^{-1})a = a^{-1}ya \\ &\Leftrightarrow (a^{-1}a)x(a^{-1})a = a^{-1}ya \\ &\Leftrightarrow 1_Gx1_G = a^{-1}ya \\ &\Leftrightarrow x = a^{-1}ya. \end{aligned}$$

Assim, o elemento $x \in G$ tal que $\theta_a(x) = y$ é $x = a^{-1}ya$. Finalmente, mostremos que θ_a é injetiva. Sejam $x, y \in G$ tais que $\theta_a(x) = \theta_a(y)$. Então $axa^{-1} = aya^{-1}$ e

$$axa^{-1} = aya^{-1} \Leftrightarrow a^{-1}(axa^{-1})a = a^{-1}(aya^{-1})a$$

 $\Leftrightarrow (a^{-1}a)x(a^{-1}a) = (a^{-1}a)y(a^{-1}a)$
 $\Leftrightarrow 1_Gx1_G = 1_Gy1_G \Leftrightarrow x = y.$

Portanto, θ_a é um automorfismo.

(b) Sejam $\alpha \in \operatorname{Aut}(G)$ e $a \in G$. Claramente $\theta_{\alpha(a)}$ e $\alpha \theta_a \alpha^{-1}$ são morfismos de G em G. Para qualquer $b \in G$, temos

$$\begin{array}{ll} (\alpha \theta_a \alpha^{-1})(b) &= \alpha [\theta_a [\alpha^{-1}(b)]] = \alpha [a \, \alpha^{-1} \, (b) a^{-1}] \\ &= \alpha (a) \, \alpha (\alpha^{-1}(b)) \, \alpha (a^{-1}) \\ &= \alpha (a) b (\alpha (a))^{-1} = \theta_{\alpha (a)} (b). \end{array}$$

Assim, $\alpha \theta_a \alpha^{-1} = \theta_{\alpha(a)}$.

(c) Seja $A = \{\theta_a : a \in G\}$. Pela alínea (a), A está contido no grupo $\operatorname{Aut}(G)$. Além disso, $\theta_{1_G} \in A$ e, portanto, $A \neq \emptyset$. Sejam θ_a, θ_b elementos arbitrários de A. Vejamos que $\theta_a\theta_b$ é ainda um elemento de A. Como $a, b \in G$ e G é grupo, $ab \in G$ e, portanto, o candidato natural de A a ser a aplicação $\theta_a\theta_b$ é θ_{ab} . Verifiquemos que, de facto, $\theta_a\theta_b = \theta_{ab}$. Ambas as aplicações têm o mesmo domínio e o mesmo conjunto de chegada, pelo que resta ver que cada elemento de G tem a mesma imagem por ambas as aplicações. Seja $x \in G$. Temos:

$$(\theta_a \theta_b)(x) = \theta_a(\theta_b(x)) = \theta_a(bxb^{-1}) = a(bxb^{-1})a^{-1}$$

= $(ab)x(b^{-1}a^{-1}) = (ab)x(ab)^{-1} = \theta_{ab}(x).$

Portanto, $\theta_a\theta_b=\theta_{ab}\in A$. Seja $\theta_a\in A$. Começamos por observar que, como $a\in G$ e G é grupo, $a^{-1}\in G$, pelo que $\theta_{a^{-1}}\in A$. Mostremos que $(\theta_a)^{-1}=\theta_{a^{-1}}$. Dado $x\in G$, tem-se

$$(\theta_a \theta_{a^{-1}})(x) = \theta_a (\theta_{a^{-1}}(x)) = \theta_a (a^{-1}xa)$$

$$= a(a^{-1}xa)a^{-1}$$

$$= (aa^{-1})x(aa^{-1})$$

$$= x$$

e, analogamente, $(\theta_a\theta_{a^{-1}})(x)=x$. Portanto, $\theta_a\theta_{a^{-1}}=\theta_{a^{-1}}\theta_a=\mathrm{id}_G$, pelo que $\theta_{a^{-1}}=(\theta_a)^{-1}$. Por uma das caracterizações de subgrupo, concluimos que $A<\mathrm{Aut}(G)$.

Finalmente, seja $\alpha \in \operatorname{Aut}(G)$. Por (b), $\alpha \theta_a \alpha^{-1} = \theta_{\alpha(a)}$ e, portanto $\alpha A \alpha^{-1} \subseteq A$. Logo, $A \triangleleft \operatorname{Aut}(G)$.

(d) Por (a), para cada $a \in G$, $\theta_a \in \operatorname{Aut}(G)$. Além disso, é claro que, dados $a, b \in G$,

$$a = b \Rightarrow \theta_a = \theta_b$$
,

uma vez que, para qualquer $x \in G$, se tem

$$\theta_a(x) = axa^{-1} = bxb^{-1} = \theta_b(x).$$

Assim, ϕ é uma aplicação de G em $\operatorname{Aut}(G)$. Mostremos, de seguida, que ϕ respeita as operações dos grupos G e $\operatorname{Aut}(G)$. Sejam g_1,g_2 elementos quaisquer de G. Temos, por (c), que

$$\phi(g_1g_2) = \theta_{q_1q_2} = \theta_{q_1}\theta_{q_2} = \phi(g_1)\phi(g_2).$$

Portanto, ϕ é um morfismo.

(e) Por definição de núcleo de um morfismo, sabemos que

Nuc
$$\phi = \{g \in G : \phi(g) = \text{id } G\}$$
.

Assim,

$$\begin{aligned} \text{Nuc} \ \phi &= \left\{g \in G : \theta_g = 1_{\text{Aut}\,(G)}\right\} \\ &= \left\{g \in G : \theta_g(x) = \text{id}_{\ G}(x), \ para \ todo \ x \in G\right\} \\ &= \left\{g \in G : gxg^{-1} = x, \ para \ todo \ x \in G\right\} \\ &= \left\{g \in G : gx = xg, \ para \ todo \ x \in G\right\} \\ &= Z(G). \end{aligned}$$

resolução de exercícios

exercício 41. Seja G um grupo não abeliano de ordem 8.

- (a) Mostre que G tem um subgrupo H tal que |H| = 4.
- (b) Prove que $H \triangleleft G$.
- (a) Se |G|=8, sabemos que $o(x) \mid 8$, para todo $x \in G$. Assim, $\forall x \in G \setminus \{1_G\}, \ o(x)=2 \ \text{ou} \ o(x)=4 \ \text{ou} \ o(x)=8$.

Suponhamos que, para todo $x \in G \setminus \{1_G\}$, o(x) = 2. Então, G é abeliano (recordar ex. 20), o que é uma contradição.

Logo, temos que existe $x_0 \in G \setminus \{1_G\}$ tal que $o(x_0) = 4$ ou $o(x_0) = 8$.

Se $o(x_0) = 8$, como |G| = 8, temos que G é cíclico e, por isso, abeliano, o que também é uma contradição.

Estamos então em condições de concluir que $o(x_0)=4$ e, por isso, $< x_0 >$ é um subgrupo de G com ordem 4.

(b) Se |H| = 4 e |G| = 8, pelo Teorema de Lagrange, concluímos que [G:H] = 2. Assim, estamos em condições de concluir que $H \triangleleft G$ (recordar exemplo 26 das teóricas - slide 56).

exercício 42. Determine os subgrupos cíclicos de um grupo cíclico de ordem 10.

Seja $G=\langle a \rangle=\{1_G,a,a^2,a^3,a^4,a^5,a^6,a^7,a^8,a^9\}$. Podemos responder a este exercício determinando o subgrupo gerado por cada um dos elementos de G. Como sabemos que o(a)=10 e $o(a^k)=\frac{10}{\mathrm{m.d.c.}(k,10)}$, concluímos que:

- $<1_G>=\{1_G\}$
- \bullet < a >= G
- $o(a^2) = 5$ e, por isso, $\langle a^2 \rangle = \{1_G, a^2, (a^2)^2, (a^2)^3, (a^2)^4\} = \{1_G, a^2, a^4, a^6, a^8\}$
- $o(a^3) = 10$ e, por isso, $< a^3 >= G$
- $o(a^4) = 5$ e, por isso, $a^4 >= \{1_G, a^4, (a^4)^2, (a^4)^3, (a^4)^4\} = \{1_G, a^4, a^8, a^2, a^6\}$
- $o(a^5) = 2$ e, por isso, $\langle a^5 \rangle = \{1_G, a^5\}$
- $o(a^6) = 5$ e, por isso, $a^6 >= \{1_G, a^6, (a^6)^2, (a^6)^3, (a^6)^4\} = \{1_G, a^6, a^2, a^8, a^4\}$
- $o(a^7) = 10$ e, por isso, $\langle a^7 \rangle = G$
- $o(a^8) = 5$ e, por isso, $a^8 >= \{1_G, a^8, (a^8)^2, (a^8)^3, (a^8)^4\} = \{1_G, a^8, a^6, a^4, a^2\}$
- $o(a^9) = 10$ e, por isso, $< a^9 >= G$

Assim, os subgrupos cíclicos de G (de facto, são todos os subgrupos de G) são:

- {1_G}
- $\{1_G, a^5\}$
- $\{1_G, a^2, a^4, a^6, a^8\}$
- G

Alternativa: Sabemos que para cada divisor k de 10, $< a^{\frac{\pi}{k}} >$ é um subgrupo de G com ordem igual a k. Como os divisores de 10 são 1, 2, 5 e 10, temos que < a >= G, $< a^5 >= \{1_G, a^5\}$, $< a^2 >= \{1_G, a^2, a^4, a^6, a^8\}$ e < a >= G são subgrupos de G.

Como $o(a^4) = \frac{10}{\text{m.d.c.}(4,10)} = 5$ e $a^4 \in <a^2>$, podemos concluir que $<a^4>=<a^2>$. De igual modo, concluímos que $<a^6>=<a^8>=<a^2>$.

Finalmente, se m.d.c.(r, 10) = 1 (ou seja, se $r \in \{3, 7, 9\}$, temos que o(r) = 10 e, por isso, $\langle a^r \rangle = G$.

exercício 43. Seja $G=\langle a\rangle$ um grupo cíclico de ordem ímpar tal que $a^{47}=a^{17},\ a^{10}\neq 1_G$ e $a^6\neq 1_G$. Determine, justificando:

- (a) a ordem de G;
- (b) o número de subgrupos de G;
- (c) todos os geradores distintos de *G*;
- (d) o número de automorfismos de G.
- (a) De $a^{47}=a^{17}$ temos que $a^{30}=1_G$, pelo que $o(a)\mid 30$, ou seja, $o(a)\in\{1,2,3,5,6,10,15,30\}.$

Como |G| é ímpar e |G| = o(a), temos que $o(a) \in \{1, 3, 5, 15\}$.

- se $o(a)=1, a=1_G$ e, neste caso, $a^{10}=1_G$ (contradição)
- se o(a) = 3, $a^3 = 1_G$ e, neste caso, $a^6 = 1_G$ (contradição)
- se o(a) = 5, $a^5 = 1_G$ e, neste caso, $a^{10} = 1_G$ (contradição)

Logo, o(a) = 15 e, portanto, |G| = 15.

(b) Um subgrupo cíclico G de ordem finita n tem um e um só subgrupo de ordem k, para cada k divisor de n. Assim, como 15 tem 4 divisores (1,3, 5 e 15), concluímos que G tem 4 subgrupos.

Observação. Não é pedido, mas os 4 subgrupos são $\{1_G\}$, $< a^5 >$, $< a^3 >$ e < a >, de ordens 1, 3, 5 e 15, respetivamente.

(c) Sabemos que G=< a> e que o(a)=15. Então, $G=< a^r>$ se e só se $o(a^r)=15$. Como $o(a^r)=\frac{15}{\mathrm{m.d.c.}(r,15)}$, concluímos que $G=< a^r>$ se e só se $\mathrm{m.d.c.}(r,15)=1$. Logo, os geradores de G são: a, a^2 , a^4 , a^7 , a^8 , a^{11} , a^{13} e a^{14} .

Observação. O número de geradores distintos de um grupo cíclico de ordem n é igual à imagem de n pela função phi de Euler, que nos dá o número de números naturais menores do que n e primos com n (recordar que se $n=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$ é a fatorização em primos de n, então $\varphi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})\cdots (1-\frac{1}{p_k})$).

Neste caso, como $15 = 3 \times 5$, $\varphi(15) = 15 \times \frac{2}{3} \times \frac{4}{5} = 2 \times 4 = 8$.

(d) Sabemos que, se G e H são grupos cíclicos, para $f:G\to H$ ser um isomorfismo, a imagem de um gerador de G tem de ser um gerador de H.

Assim, para $f:G\to G$ ser um automorfismo (isomorfismo onde domínio e conjunto de chegada são iguais), a imagem de um gerador de G tem de ser um gerador de G. Como temos B geradores distintos, vamos ter B automorfismos distintos, definidos por:

$$f_1(a) = a,$$
 $f_2(a) = a^2,$ $f_3(a) = a^4,$ $f_4(a) = a^7$
 $f_1(a) = a^8,$ $f_2(a) = a^{11},$ $f_3(a) = a^{13},$ $f_4(a) = a^{14}$

Observação. Porque é que é suficiente definir a imagem do gerador? Porque estamos a trabalhar com morfismos e a imagem da potência é a potência da imagem. Por exemplo, de $f_3(a) = a^4$, concluímos que