

a)

Syntax

W	Windows auf dem Computer
M	MacOS auf dem Computer
L	Linux auf dem Computer
G	Grafiktreiber installiert
D	Druckertreiber installiert
K	Konsole
A	Systemabsturz
H	Hausaufgaben gemacht
S	Computerspiele spielen

$$\tau = \{W, M, L, G, D, K, A, H, S\}$$

Semantik

 $\forall x \in \tau, sei \ \Im : x \to \{0,1\} \ sodass \ \Im(x) = 1, wenn \ x \ zutrifft.$

b)

```
\Psi_1 := (W \land \neg M \land \neg L) \lor (\neg W \land M \land \neg L) \lor (\neg W \land \neg M \land L)
\Psi_2 := (\neg G \land S) \to A
\Psi_3 := H \to (D \land K)
\Psi_4 := (L \land G \land \neg D) \lor (L \land \neg G \land D) \lor \neg L
\Psi_5 := (W \land \neg K) \lor \neg W
\Psi_6 := (H \land S) \lor (\neg H \land \neg S)
\Psi_7 := \neg H \to A
\Psi_8 := \neg A
 \|\Psi_1\|^{\mathfrak{I}} \coloneqq \max(\min(\|W\|^{\mathfrak{I}}, \neg \|M\|^{\mathfrak{I}}, \neg \|L\|^{\mathfrak{I}}), \min(\neg \|W\|^{\mathfrak{I}}, \|M\|^{\mathfrak{I}}, \neg \|L\|^{\mathfrak{I}}), \min(\neg \|W\|^{\mathfrak{I}}, \neg \|M\|^{\mathfrak{I}}, \neg \|L\|^{\mathfrak{I}})) 
[\![\Psi_2]\!]^{\mathfrak{I}} := \max(\neg \min([\![\neg G]\!]^{\mathfrak{I}}, [\![S]\!]^{\mathfrak{I}}), [\![A]\!]^{\mathfrak{I}})
[\![\Psi_3]\!]^{\mathfrak{I}} := \max([\![A]\!]^{\mathfrak{I}}, \neg \min([\![D]\!]^{\mathfrak{I}}, [\![K]\!]^{\mathfrak{I}}))
\llbracket \Psi_4 \rrbracket^{\mathfrak{I}} \coloneqq \max(\min(\llbracket L \rrbracket^{\mathfrak{I}}, \llbracket G \rrbracket^{\mathfrak{I}}, \llbracket \neg D \rrbracket^{\mathfrak{I}}), \min(\llbracket L \rrbracket^{\mathfrak{I}}, \llbracket \neg G \rrbracket^{\mathfrak{I}}, \llbracket D \rrbracket^{\mathfrak{I}}), \llbracket \neg L \rrbracket^{\mathfrak{I}})
\llbracket \Psi_5 \rrbracket^{\mathfrak{I}} := \max(\min(\llbracket W \rrbracket^{\mathfrak{I}}, \llbracket \neg K \rrbracket^{\mathfrak{I}}), \llbracket \neg W \rrbracket^{\mathfrak{I}})
[\![\Psi_6]\!]^{\mathfrak{I}} := \max(\min([\![H]\!]^{\mathfrak{I}}, [\![S]\!]^{\mathfrak{I}}), \min([\![\neg H]\!]^{\mathfrak{I}}, [\![\neg S]\!]^{\mathfrak{I}}))
[\![\Psi_7]\!]^{\mathfrak{I}} := \max([\![H]\!]^{\mathfrak{I}}, [\![A]\!]^{\mathfrak{I}})
\llbracket \Psi_8 \rrbracket^{\mathfrak{I}} \coloneqq \llbracket \neg A \rrbracket^{\mathfrak{I}}
```

$\mathbf{c})$

- 1. Aus $\llbracket \Psi_8 \rrbracket^{\mathfrak{I}}$ folgt, dass $\llbracket A \rrbracket^{\mathfrak{I}} = 0$ gilt.
- 2. $[\![A]\!]^{\Im} = 0$ Eingesetzt in $[\![\Psi_2]\!]^{\Im}$ und $[\![\Psi_7]\!]^{\Im}$
 - (a) $\llbracket \Psi_2 \rrbracket^{\mathfrak{I}} := \neg \min \llbracket \neg G \rrbracket^{\mathfrak{I}}, \llbracket S \rrbracket^{\mathfrak{I}}$
 - (b) $\llbracket \Psi_7 \rrbracket^{\mathfrak{I}} \coloneqq \llbracket H \rrbracket^{\mathfrak{I}}$

Give an appropriate positive constant c such that $f(n) \leq c \cdot g(n)$ for all n > 1.

1.
$$f(n) = n^2 + n + 1$$
, $g(n) = 2n^3$

2.
$$f(n) = n\sqrt{n} + n^2$$
, $g(n) = n^2$

3.
$$f(n) = n^2 - n + 1$$
, $g(n) = n^2/2$

Lösung

We solve each solution algebraically to determine a possible constant c.

Part One

$$n^{2} + n + 1 =$$

$$\leq n^{2} + n^{2} + n^{2}$$

$$= 3n^{2}$$

$$\leq c \cdot 2n^{3}$$

Thus a valid c could be when c = 2.

Part Two

$$n^{2} + n\sqrt{n} =$$

$$= n^{2} + n^{3/2}$$

$$\leq n^{2} + n^{4/2}$$

$$= n^{2} + n^{2}$$

$$= 2n^{2}$$

$$\leq c \cdot n^{2}$$

Thus a valid c is c = 2.

Part Three

$$n^{2} - n + 1 =$$

$$\leq n^{2}$$

$$\leq c \cdot n^{2}/2$$

Thus a valid c is c = 2.

Let $\Sigma = \{0, 1\}$. Construct a DFA A that recognizes the language that consists of all binary numbers that can be divided by 5.

Let the state q_k indicate the remainder of k divided by 5. For example, the remainder of 2 would correlate to state q_2 because 7 mod 5 = 2.

Figure 1: DFA, A, this is really beautiful, ya know?

Justification

Take a given binary number, x. Since there are only two inputs to our state machine, x can either become x0 or x1. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multiplying by two and adding one.

Using this knowledge, we can construct a transition table that tell us where to go:

	$x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x_0	0	2	4	1	3
x1	1	3	0	2	4

Therefore on state q_0 or $(x \mod 5 = 0)$, a transition line should go to state q_0 for the input 0 and a line should go to state q_1 for input 1. Continuing this gives us the Figure 1.

Aufgabe 5

Write part of Quick-Sort(list, start, end)

```
1: function QUICK-SORT(list, start, end)
```

- 2: **if** $start \ge end$ **then**
- 3: return
- 4: end if
- 5: $mid \leftarrow PARTITION(list, start, end)$
- 6: QUICK-SORT(list, start, mid 1)
- 7: QUICK-SORT(list, mid + 1, end)
- 8: end function

Algorithm 1: Start of QuickSort

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0$, $\forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Lösung

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta_1}$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Lösung

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$E[\hat{\beta}_1] = E\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right]$$

$$= \frac{\sum x_i E[Y_i]}{\sum x_i^2}$$

$$= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2}$$

$$= \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\begin{aligned} \operatorname{Var}[\hat{\beta_1}] &= \operatorname{Var}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \sigma^2 \\ &= \frac{\sigma^2}{\sum x_i^2} \end{aligned}$$

Aufgabe 7

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

Proof. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \ge n_0, \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \le a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \le c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \ldots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$\leq c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Aufgabe 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Aufgabe 6

Evaluate the integrals $\int_0^1 (1-x^2) \mathrm{d}x$ and $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$.