Analysis on used car dataset Apache Spark

Problem Background:

A large investment firm that is contemplating to invest in a used car business and task is to provide data driven advice to the stakeholders, that will enable them to make a sound investment decision.

Abstract

The classified ads for cars dataset extracted from Kaggle includes information on a variety of used automobile sales from across Germany and the Czech Republic since 2015. It includes large amount of data on various brands, models, mileage counts of those cars, duration of the advertisement posts and pricing. Along with that, data also features statistics on fuel type as well as transmission type. In addition, it also provides insight in number of doors and numbers of seat for each advertisement posted. This project aims to clean this data for better analysis and provide data-driven recommendation for potential investment in used car business.

Objectives

The aim of this analysis is to provide useful insights on the market situation for used car business in Germany and Czech Republic. It aims to examine any potential relationships in the following:

- Overall counts for Car Maker/Model
- Maker/Model Vs Mileage
- Maker/Model vs Price
- Maker/Model vs Date Posted vs Last seen

Data

The data was scraped from several websites in Czech Republic and Germany over a period of more than a year.

There are roughly 3,5 Million rows and the following columns:

- maker normalized all lowercase
- model normalized all lowercase
- mileage in KM
- manufacture_year
- engine_displacement in ccm
- engine_power in kW
- body_type almost never present, but I scraped only personal cars, no motorcycles or utility vehicles
- color_slug also almost never present

- stk_year year of the last emission control
- transmission automatic or manual
- door_count
- seat_count
- fuel_type gasoline, diesel, cng, lpg, electric
- date_created when the ad was scraped
- datelastseen when the ad was last seen. Our policy was to remove all ads older than 60 days
- price_eur list price converted to EUR

Preliminary Analysis Result

1. Count total no. of cars for selected manufacture_year.

Figure:1 Total no. of cars available for selected manufacture_year

2. Count total cars for selected seat_count.

seat_count	count			
5	450478			
4	76640			
7	31326			
2	17471			
3	7339			
9	3215			
6	2189			
8	1141			

Table:1 total car by seat_count

3. Count total cars for fuel_type columns.

Figure:2 Total car by Fuel Type

4. Count total no. of entries for each transmission type.

Figure 3: Total car by Transmission type

The above charts and tables show the most popular results for fuel type, transmission type and seat count.

- More car for Manufacture year 2011 to 2015.
- More cars use diesel than gasoline.
- Most vehicles sold have manual transmission.
- Cars with 5-seats are most common.

Analysis Result

1. Calculate total entries by each maker.

Figure 4: Total count for Top 10 maker

Following Top 10 maker were considered for further analysis.

- volkswagen
- audi
- opel
- ford
- skoda
- citroen
- fiat
- renault
- bmw
- peugeot

2. Find out top model for top 5 makers extracted from above query.

Figure 5: Top 5 model for selected manufacturer

30K

Average Price & Average Mileage for Top 10 Manufactures 68K 66K 64K 62K ford 60K renault 58K 56K citroen volkswagen

3. Checking the relationship between price and mileage feature.

opel

15K

fiat

10K

52K

50K

Figure 6: Average price and Average mileage by top 10 maker

Generally dividing average car price into 3 range: high, mid and low, it can be seen that Audi and BMW are the highest selling car in high range Category. Ford, Opel, Skoda, Renault, citroen, Peugeot and fiat have similar no of units, which falls under low range category. Volkswagen has highest no of units in all categories, which falls under mid-range category.

20K

avg price

25K

• Ford and AUDI are selected for further consideration because they have number advantage over there counterparts.

4. What is the popular model for selected maker that is AUDI and FORD that sells quickly?

- Maker Audi
- Model
 - **A**1
 - A3
 - A4
 - A5
 - Q5
- Manufacture_year 2011 to 2015
- Sold with in 2 weeks of posting.

Figure 7: Top 5 model for manufacturer AUDI with sells count for year 2011 to 201

- Maker Ford
- Model
 - c-max
 - fiesta
 - focus
 - kuga
 - mondue
- Manufacture_year 2011 to 2015
- Sold with in 2 weeks of posting.

Figure 8: Top 5 model for manufacturer FORD with sells count for year 2011 to 2015

Above analysis can be performed for all remaining makers to find the sell count for car mode

Engine displacement range 500-1500 1500-2500 2500-3500 3500-4500 4500-5500 5500-6500 6500-7500

5. What is the most common engine displacement value found in modern car?

Figure 6: tree map showing maximum car available is between 1500-2500 engine displacement range

Dividing engine displacement value into various class range and counting total car available in each class shows that, maximum cars have engine_displacement value between 1500-2500. Most modern cars run on 2000 cc engine displacement.[1]

Therefore, investing on cars with engine_displacement range between 1500-2500 would be advisable.

Recommendations

According to the overall analysis of the dataset, the recommendation is to move ahead with the used car business investment because of the following outcome from the analysis.

- The analysis indicates that certain car makers have very high count of cars in terms of adds posted, implying that investing on these car makers would be beneficial.
- Considering the fact that counts for low, mid, and high price range are not widely disproportionate, focusing on each category equally would attract customer throughout all price range.
- Based on the analysis, people tend to buy car having fuel_type diesel, transmission_type manual and seat_count between 2 to 5. Considering car model with these factors will be beneficial to the business.
- Considering factors such as warranty, extended warranty and individual maintenance, customers tend to buy cars no older than 10 years.

• Mileage count should be less as much as possible (i.e. <160000). This will attract more customer who tend to invest on used car with profitable price.

Conclusion:

Based on the analyses, it can be concluded that investing on car business for selected dominant car makers would be beneficial for a business. Furthermore, price, mileage and engine_displacement, sell_count, fuel_type, seat_count, transmission_type features play an important role while selecting any car model to be considered for used car business.

Appendix

This section focuses on necessary steps taken to perform Data Cleaning, Data Analysis and Recommendation for the investors.

Data Collection

The used car dataset was downloaded from https://www.kaggle.com/mirosval/personal-cars-classifieds.

Data Loading

Steps to load data into HDFS:

- 1. Downloading dataset from the following link: https://www.kaggle.com/mirosval/personal-cars-classifieds using.
- 2. Copy downloaded dataset to /BigData folder in HDFS

```
[cloudera@quickstart ~]$ hadoop fs -ls /BigData/
Found 3 items
-rw-r--r-- 1 cloudera supergroup 125979649 2021-03-02 11:56 /BigData/all_anonymized_2015_11_2017_03.csv
drwxr-xr-x - cloudera supergroup 0 2021-02-20 16:00 /BigData/happiness
-rw-r--r-- 1 cloudera supergroup 38740 2021-02-18 22:05 /BigData/happiness.csv
[cloudera@quickstart ~]$ ■
```

3. Connect to csv file loaded in /BigData folder in HDFS.

```
scala> import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SQLContext
scala> val sqlContext = new SQLContext(sc)
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@523eae6
scala> :paste
// Entering paste mode (ctrl-D to finish)
val cars = sqlContext.read.format("com.databricks.spark.csv")
.option("header", "true")
.option("inferSchema", "true")
.load("hdfs://10.0.2.15:8020/BigData/all_anonymized_2015_11_2017_03.csv")
// Exiting paste mode, now interpreting.
```

Before performing data cleaning, some explorations were applied on data set. This gave some idea about features of dataset, total records, schema etc.

Display records of cars Data Frame.
 >>cars.show()

+				+	+	+		+	+
+ maker model mileage manufa	acture vearlengine	disnlacementlengi	ne nowerlhody	typelcolor	- clunict	k vearltran	emissionldoor	countleast	count fuel type date created date last :
rice eur	icture_year [eligilie_	u1spcacement engi	ie_power [body	_type cotor	_stuy st	K_year Craii	31112321011 4001	_count seat	_countrider_type date_treated date_tast_s
				+	+	+		+	+
+ ford galaxy 151000	2011	2000	103	1	1	Nonel	man	5	7 diesel 2015-11-14 18:10: 2016-01-27 20:40
10584.75	2011	2000	103	1	1	None	iliaii	31	7 016561 2015-11-14 10.10 2010-01-27 20.40
koda octavia 143476	2012	2000	81			None	man	5	5 diesel 2015-11-14 18:10: 2016-01-27 20:40
8882.31									
bmw 97676 12065.06	2010	1995	85			None	man	5	5 diesel 2015-11-14 18:10: 2016-01-27 20:40
koda fabia 111970	2004	1200	47	1	1	None	man	5	5 gasoline 2015-11-14 18:10: 2016-01-27 20:40
2960.77	2001	2200	,	'	'			-1	0, 3000100010000000000000000000000000000
koda fabia 128886	2004	1200	47			None	man	5	5 gasoline 2015-11-14 18:10: 2016-01-27 20:40
2738.71	2002	1200	401			Nanal		El	El appolica 2015 11 14 10 10
koda fabia 140932 1628.42	2003	1200	40	- 1	ı	None	man	5	5 gasoline 2015-11-14 18:10: 2016-01-27 20:40
koda fabia 167220	2001	1400	74	1	1	None	man	5	5 gasoline 2015-11-14 18:10: 2016-01-27 20:40
2072.54	,			,	'	'	,	,	
bmw 148500	2009	2000	130			None	auto	5	5 diesel 2015-11-14 18:10: 2016-01-27 20:40
10547.74 koda octavia 105389	2003	1900	81	1	1	None	man	5	5 diesel 2015-11-14 18:10: 2016-01-27 20:40
4293.12	2003	1500	01	1	ı	None	iliaii į	21	5 dieset 2015-11-14 10.10 2010-01-27 20.40
301381	2002	1900	88			None	man	5	5 diesel 2015-11-14 18:10: 2016-01-27 20:40
1332.35							,		
+				+	+			+	+
y showing top 10 rows									

2. Display columns names.

>>cars.column

```
scala> cars.columns
res2: Array[String] = Array(maker, model, mileage, manufacture_year, engine_disp
lacement, engine_power, body_type, color_slug, stk_year, transmission, door_coun
t, seat_count, fuel_type, date_created, date_last_seen, price_eur)
```

3. Display schema of cars DataFrame.

>>cars.schema

```
scala> cars.schema
res3: org.apache.spark.sql.types.StructType = StructType(StructField(maker,StringTy
pe,true), StructField(model,StringType,true), StructField(mileage,IntegerType,true)
, StructField(manufacture_year,IntegerType,true), StructField(engine_displacement,I
ntegerType,true), StructField(engine_power,IntegerType,true), StructField(body_type
,StringType,true), StructField(color_slug,StringType,true), StructField(stk_year,St
ringType,true), StructField(transmission,StringType,true), StructField(fuel_type,Str
ingType,true), StructField(seat_count,StringType,true), StructField(date_last_see
n,StringType,true), StructField(price_eur,DoubleType,true))
```

4. Display total records in DataFrame.

>>cars.count()

```
scala> cars.count()
res0: Long = 3552912
```

There are total 3551912 rows and 16 columns in dataset.

Data Cleaning

The original dataset has 16 columns with approximate 3.5 million of record. According to the owner, The data was scraped from several websites in Czech Republic and Germany and some of the sources were completely unstructured, so as a result the data is dirty, there are missing values and some values are very obviously wrong (e.g. phone numbers scraped as mileage etc.).

To understand the data following steps were taken:

- 1. Identify total no. of null/missing record for the columns.
- 2. Perform aggregate functions such as count, min, max for specific fields to understand the trend of data for that columns.

3. Review fields that have unrealistic values.

Following queries were performed for data cleaning:

1. Count of NULL/NOTNULL values in makers column.

```
>>val cars_maker_notnull = cars.filter(!($"maker"==="""))
    cars_maker_notnull.count()

>> val cars_maker_null = cars.filter(($"maker"==="""))
    cars_maker_null.count()
```

```
scala> val cars_maker_notnull = cars.filter(!($"maker"===""))
cars_maker_notnull: org.apache.spark.sql.DataFrame = [maker: s
r_slug: string, stk_year: string, transmission: string, door_c
scala> cars_maker_notnull.count()
res0: Long = 3033997

scala> val cars_maker_null = cars.filter(($"maker"===""))
cars_maker_null: org.apache.spark.sql.DataFrame = [maker: strilug: string, stk_year: string, transmission: string, door_coun
scala> cars_maker_null.count()
res1: Long = 518915
```

2. Check whether null in maker is also null in model?

```
>> val cars_model = cars.filter(($"maker"===""") && ($"model"===""")) cars_model.count()
```

```
scala> val cars_model =cars.filter(($"maker"==="") && ($"model"===""))
cars_model: org.apache.spark.sql.DataFrame = [maker: string, model: string, m
string, stk_year: string, transmission: string, door_count: string, seat_coun
scala> cars_model.count()
res2: Long = 518915
```

3. Find Min and max value for mileage column.

```
>>val mileage min max = cars.select(min(col("mileage")),max(col("mileage"))).show()
```

```
scala> val mileage_min_max = cars.select(min(col("mileage")), max(col("mileage"))).show()
+------+
|min(mileage)|max(mileage)|
+------+
| 0| 9999999|
+-----+
```

4. Perform group By on Manufacture year and find total car for each year.

```
>> val car_by_year = cars.groupBy(col("manufacture_year")).agg(count(col("manufacture_year")).alias("total_car")).orderBy(col("total_car").decs)
```

```
scala> val car by year = cars.groupBy(col("manufacture year")).agg(count(col("manufacture year")).alias("total car")).orderBy(col("total car").desc)
car_by year: org.apache.spark.sql.DataFrame = [manufacture year: int, total car: bigint]
scala> car_by_year.show()
|manufacture year|total car|
            2015
                    441383
            2012
                    246152
            2011
                    219843
            2014
                    201342
            2013
                    165305
            2007 İ
                    158319
            2010
                    157244
            2008
                    155255
            2006
                    154670
            2009 İ
                    145305
            2005 İ
                    143435
            2004
                    128594
            2016
                    123695
            2003
                    116947
            2002
                    105510
            2001
                     98724
            2000
                     91530
            1999
                     75095
            1998
                     55658
            1997
                     37943
only showing top 20 rows
```

5. Review Sticker_year column.

```
>> val cars_by_stkyear =
cars.groupBy(col("stk_year")).count().orderBy(col("stk_year").cast("int")).show()
```

```
scala> val cars by stkyear =
     | cars.groupBy(col("stk_year")).count().orderBy(col("stk_year").cast("int")).show()
|stk_year| count|
        |1708156|
     None | 1308651 |
     2015
              869
     2016 | 124781 |
     2017 | 180675 |
     2018 | 183761 |
     2019
            44209
     2020
               859
     2021
                79 j
     2023
                 1|
     2040 l
                 1 l
     2041
                 3 |
     2048
                 11
     2050
                 4
                 1|
     2060
     2070
                10
     2071
                 2 |
     2075 İ
                 21
     2080
                 1|
     2090 İ
                 1|
only showing top 20 rows
```

6. Review door_count column

```
>> val cars_by_doorcount = cars.groupBy(col("door_count")).count().orderBy(col("count").desc).show()
```

```
scala> val cars by doorcount =
    | cars.groupBy(col("door_count")).count().orderBy(col("count").desc).show()
|door_count| count|
          4|1130741|
          5 | 894084
            i 614373 i
       None | 475693 |
          2 307824
          3 | 120593 |
          Θ|
                8010
          6|
                1253
                 273
           7 j
                  43
          55 İ
                   91
          9 |
                   4
          8
                   3
         58
          54 j
                   1
          22
                   1|
          77 j
                   1 |
          45 İ
                    1|
          49 j
                    1 İ
          17 I
                    1|
```

7. Review Seat_count column.

```
>> val cars_by_seatcount = cars.groupBy(col("seat_count")).count().orderBy(col("count").desc).show()
```

```
scala> val cars by seatcount =
     | cars.groupBy(col("seat_count")).count().orderBy(col("count").desc).show()
|seat_count| count|
          5 | 1767868 |
           i 749489i
       None | 537610 |
          4 244797
7 100744
              72685
          2 |
          3 | 33607 |
          6 | 14174 |
              12575
11695
          9 [
          Θ|
          8
               6754
          1
                567
          17|
                  39 I
          10
                  35
          12|
                  31|
         15
                  19
                  19
         14
          18
                  16
          19
                  14
         21|
                  13|
only showing top 20 rows
```

8. Review date created and date last seen column.

```
>> val cars_cols = cars.select(col("date_created"),col("date_last_seen")).show()
```

```
scala> val cars cols = cars.select(col("date created"), col("date last seen")).show()
      date created| date last seen|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
|2015-11-14 18:10:...|2016-01-27 20:40:...|
+----+
only showing top 20 rows
```

9. Calculate min and max value of price column.

```
>> val price_min_max = cars.select(min(col("price eur")),max(col("price eur"))).show()
```

10. Identify NULL/missing value in color_slug column.

```
>>val = color_clug_null = cars.filter(($"color_clug"==="""))
color_slug_null.count()
```

```
scala> val color_slug_null = cars.filter(($"color_slug"===""))
color_slug_null: org.apache.spark.sql.DataFrame = [maker: string,
lug: string, stk_year: string, transmission: string, door_count:
scala> color_slug_null.count()
res9: Long = 3343411
```

11. Review columns engine_displacement, transmission, power, fuel_type

```
>>val cars_cols = cars.select(col("engine_displacement"),col("engine_power"),col("transmission"),col("fuel_t ype")).show()
```

```
scala> val cars cols = cars.select(col("engine displacement"), col("engine power"),col("transmission"),col("fuel type")).show()
+-----
|engine displacement|engine power|transmission|fuel type|
  -----
                        103|
81|
             2000
                                         diesel
             2000
                                   man
                                        diesel
                         85|
             1995
                                   man
                                        diesel
                         47
             1200
                                   man| gasoline|
                         47
             1200
                                   man| gasoline|
             1200
                         401
                                   man| gasoline|
                         74
                                   man| gasoline|
             1400|
                        130
             2000|
                                  auto| diesel|
                         81|
                                       diesel|
             1900
                                  man
             1900
                         88
                                   man| diesel|
             1400|
                         55|
                                   man| gasoline|
                                   man| diesel|
             1900
                         55|
                                   man| gasoline|
             1360
                         44
                                   man| gasoline|
             1300|
                         39
                                   man| gasoline|
             1000|
                        121
                                  auto| gasoline|
             2500
                         88
                                        diesel
             1900
                                  man
             1700|
                         74|
                                        diesel
             1900|
                                         diesel
                                   man
             1200
                                   man| gasoline|
only showing top 20 rows
```

12. Identify Null/missing values in body_type columns.

```
>> val body_type_null = cars.filter(($"body_type"==="""))
Body_type_null.count()
```

Observations from the above analysis:

- 1. There are total 518519 missing value in makers column.
- 2. When a maker field is blank, the model field is also automatically blank.
- The mileage column may contain unrealistic data. According to the Kaggle description, extreme values are likely phone numbers. Some fields also have numbers that are too low (i.e. under 10 km).
- 4. The manufacture year column includes data from unlikely time periods.
- 5. The body type column has 1122914 missing entries which is 31.6% of total record.
- 6. The color_clug has 3343411 missing entries which is 94.1% of total record.
- 7. The sticker_year column has some unrealistic values. (i.e year 2023)
- 8. The door_count and seat_count also has some unrealistic values.
- 9. The date fields included a timestamp that is down to the millisecond.
- 10. There are inaccuracies in some car prices for instance, multiple vehicles including luxury cars were priced at under 1€ while sedans were valued at over 2€ trillion.

Data Preparation

After performing data cleaning and observing the result the following decision were made for each column for further analysis.

- 1. maker: all the maker records excluding null values.
- 2. model: all the model records excluding null values.
- 3. mileage: records with value between 5000 and 160000
 - dataset contains lots of values that were not feasible i.e maximum mileage value was 9999999.0. in addition, customers generally would not prefer cars that has been driven more than certain amount.
- 4. manufacture_year: considering manufacture_year between 2008 and 2017
 - Considering factors such as warranty, extended warranty and individual maintenance, customers tend to buy cars no older than 10 years. In reference to that, cars manufactured later than year 2008 are considered for analysis.
- 5. engine_displacement: all the records engine_displacement.
- 6. engine_power: all the records of engine_power.
- 7. transmission: all the records of transmission
- 8. seat_count: all the records of seat_count
 - Although, seat_count has some unrealistic data but, combining them with maker, model, manufacture_year and other column can lead to appropriate analysis.
- 9. fuel type: all the records of fuel type

- 10. price_eur: price in euro between 5000 and 100000.
 - Dataset contains large no. of records having car price in millions which is not appropriate. One would seldom invest such large amount in used cars.
- 11. body_type, color_slug and stk_year is not considered for further analysis because of lack of data.
- 12. All records of date created and date last seen.
- 13. Considering door_count and seat_count, seat_count gives better idea about the type of car. Therefore, door_count is not considered for further analysis.

Data Dictionary

Attributes	Datatype
maker	STRING
model	STRING
mileage	FLOAT
manufacture_year	INTEGER
engine_displacement	FLOAT
engine_power	STRING
Transmission	STRING
seat_count	INTEGER
fuel_type	STRING
date_created	DATE
date_last_seen	DATE
price_eur	FLOAT

The new DataFrame was created based on the values mentioned above.

1. Remove NULL values from maker column.

```
>>val cars clean = cars.filter(!(\$"maker"==="""))
```

```
scala> val cars_clean = cars.filter(!($"maker"===""))
cars_clean: org.apache.spark.sql.DataFrame = [maker: string,
string, stk_year: string, transmission: string, door_count:
scala> cars_clean.count()
res0: Long = 3033997
```

2. Remove NULL values from model column.

```
>>val cars clean1 = cars clean.filter(!($"model"==="""))
```

```
scala> val cars_clean1 = cars_clean.filter(!($"model"===""))
cars_clean1: org.apache.spark.sql.DataFrame = [maker: string, mode
  string, stk_year: string, transmission: string, door_count: strin
scala> cars_clean1.count()
res1: Long = 2419551
```

3. Final DataFrame with all the above-mentioned conditions.

```
>> val cars_clean2 = cars_clean1.select(col("maker"), col ("model"), col("mileage").cast("int"),col("manufacture_year").cast("int"), col("engine_displacement").cast("int"),col("engine_power").cast("int"), col("transmission"),col("seat_count").cast("int"), col("fuel_type"), col("date_created").cast("date"),col("date_last_seen").cast("date"), col("price_eur").cast("int")).filter(col("mileage").between (5000, 160000) && col("manufacture_year").between (2008, 2017) && col("price_eur").between(5000, 100000))
```

```
scala> :paste
// Entering paste mode (ctrl-D to finish)

val cars_clean2 = cars_clean1.select(col("maker"), col ("model"), col("mileage").cast("int"),
 col("manufacture_year").cast("int"),col("engine_displacement").cast("int"),col("engine_power").cast("int"),
 col("transmission"),col("seat_count").cast("int"), col("fuel_type"), col("date_created").cast("date"),
 col("date_last_seen").cast("date"),col("price_eur").cast("int")).filter(col("mileage").between (5000, 160000) &&
 col("manufacture_year").between (2008, 2017) && col("price_eur").between(5000, 100000))
```

• Display records of cars_clean2 DataFrame

>>cars clean2.show()

scala> ca	ars_clean2	.show()									
+			+	+	+			·	++	+	+
maker	model	mileage	manutacture_year	engine_displacement	engine_power	transmission	seat_count	Tuel_type	date_created	date_last_seen	price_eur
+					+				++	+	+
ford	, , , ,	151000	2011	2000	103	man		diesel		,	10584
skoda			2012	2000	81	man	5	diesel			8882
suzuki	swift	113175	2013	1600	100	man	4	gasoline	2015-11-14	2016-01-27	7401
kia	soul	40184	2010	1600	93	man	5	gasoline	2015-11-14	2016-01-27	6883
ford	focus	159427	2012	1600	85	man	5	diesel	2015-11-14	2016-01-27	8771
skoda	octavia	38513	2009	1600	75	man	5	gasoline	2015-11-14	2016-01-27	7957
citroen	c5	143130	2011	1600	82	man	5	diesel	2015-11-14	2016-01-27	7512
ford	c-max	99713	2008	1600	74	man	5	gasoline	2015-11-14	2016-01-27	6476
j skoda	octavia	101761	2009	1900	77	man	5	diesel	2015-11-14	2016-01-27	9363
j skoda	octavia	55569	2011	1600	77	man	5	diesel	2015-11-14	2016-01-27	9548
j ford	focus	134000	2008	1600	80	man	5	diesel	2015-11-14	2016-01-27	5107
i skoda	octavia	132140	2010	1896	77 İ	man	5	diesel	i 2015-11-14i	2016-01-27	7031 j
j skoda	octavia	70295	2009	1900	74	man	5	diesel	i 2015-11-14	2016-01-27	6994
i bmw	x6	107763	2008	3000 i	225	auto	4	gasoline	i 2015-11-14	2016-01-27	22205
i skoda	yeti	148100	2010	2000 İ	103	man	5	diesel	i 2015-11-14	2016-01-27	12213
hyundai		29934	2010	1200	57	man	5	gasoline			5773
i skoda	fabia	7993	2015	1200	81	man	5	gasoline	!		11102
skoda	roomster	56145	2008	1200	51	man	_	gasoline			5551
	qashqai	44450	2010	2000	110	man		diesel			13693
hyundai			2014	2000	100	auto		diesel	!		17764
+	·			+					+	+	
only show	ving top 2	0 rows	,	,							
only silo	Ting cop 2										

• Further analysis was conducted on 746648 rows x 12 columns.

Data Analysis

- The following queries were performed for further analyzing the data.
 - 1. Count total no. of cars for selected manufacture_year.

The above result shows maximum entries for year 2011 to 2015.

2. Count total cars for selected seat count.

```
>> val cars_by_seatcount = cars_clean2.groupBy(col("seat_count")).count().orderBy(col("count").desc) .filter(col("seat_count").between(2,9)).show
```

3. Count total cars for fuel_type columns.

```
>> val cars_by_fueltype = cars_clean2.groupBy(col("fuel_type")).count().orderBy(col("fuel_type")).show()
```

4. Count total no. of entries for each transmission type.

```
>> val cars_by_transmissiontype = cars_clean2.groupBy(col("transmission")).count().orderBy(col("transmission")).show()
```

To narrow down the analysis process, following queries were performed to understand the popular trends.

1. Calculate total entries by each maker.

```
>> val cars_by_maker = cars_clean2.groupBy(col("maker")).count().orderBy(col("count").desc).show()
```

result from above query was saved in hdfs CSV format.

maker	Count
volkswagen	106640
audi	91229
opel	74489
ford	66089
skoda	43838
citroen	42664
fiat	35823
renault	27440
bmw	26770
peugeot	26686
nissan	21091
toyota	20963
seat	20916
mini	18763
volvo	15926
hyundai	15884
smart	14986
kia	9463
mazda	9123
porsche	8026
suzuki	6501

honda	6058
chevrolet	5972
mercedes-benz	5852
lancia	5735
mitsubishi	4864
jeep	4684
jaguar	2560
subaru	1940
lexus	1537
dodge	1347
maserati	750
chrysler	696
isuzu	348
infinity	263
rover	261
tesla	127
hummer	111
bentley	107
lotus	47
alfa-romeo	44
lamborghini	34
aston-martin	1

2. Find out top model for top 10 makers extracted from above query.

```
>> val cars_year =
cars_top10maker.groupBy(col("maker"),col("model"),col("manufacture_year")).count()
.orderBy(col("count").desc).show()

>>cars_top10maker.count()
541668
```

result from above query was saved in hdfs CSV format.

3. Checking the relationship between price and mileage feature.

```
>> val cars_avg = cars_top10maker.groupBy(col("maker")).agg(avg("price_eur"),avg("mileage")).show()
```

4. Review the typical number of days that the ads were posted for a particular maker/model with a manufacture year between 2008 and 2017.

```
>> val cars_days = cars_top10maker.groupBy(col("maker"), col("model"), col("manufacture_year")).agg(min(datediff(col("date_last_seen"),col("date_created"))).alias("min_datediff"),max(datediff(col("date_last_seen"),col("date_created"))).alias("max_datediff")).filter(col("manufacture_year").between(2008,2017)).orderBy(col("maker"),col("model"), col("manufacture_year")).show()
```

```
val cars days = cars top10maker.groupBy(col("maker"), col("model"),
col("manufacture_year")).agg(min(datediff(col("date_last_seen"),col("date created"))).alias("min datediff").
\max(\mathrm{datediff}(\mathrm{col}(\mathrm{"date\ last\ seen"}),\mathrm{col}(\mathrm{"date\ created"}))).\mathrm{alias}(\mathrm{"max\ datediff"})).\mathrm{filter}(\mathrm{col}(\mathrm{"manu}\overline{\mathrm{facture\ year"}})
.between(2008, 2017)).orderBy(col("maker"),col("model"),col("manufacture year")).show()
// Exiting paste mode, now interpreting.
|maker|model|manufacture_year|min_datediff|max_datediff|
 audi| 100|
                    2008
                                          121
  audi| 100|
                           2010
  audi| 100|
                                           101
                                                        137
                           2011
                                                         175
  audil
         100
                                            31
  audi| 100|
                           2012
                                           111
                                                        142
  audil 100|
                                           91
                                                        174
                           2013|
  audi|
                                            71
         100
                           2014
                                                        143
  audi
                                            22
                                                         176
         100
                           2015 l
                                            3|
  audil
         2001
                           20081
                                                        175
  audi
                           2009
                                            2
  audi
                           2010
                                            2
                                                        175
         2001
  audi|
         200
                           2011
                                            3|
                                                         141
  audil
         200
                           2012
                                                        142
                                            31
  audi
         200
                           2013
                                            10
                                                        135
  audi|
                                            10
         2001
                           2014
                                                        173
  audi|
         200
                           2015
                                            1|
                                                         167
  audi l
         2001
                           2016
                                           118
                                                         143
  audi|
          80
                           2008
                                            16
                                                         164
  audi
          80
                           2009
                                            2
                                                         170
  audi|
          80|
                           2010
                                            3|
                                                         163
only showing top 20 rows
```

All the results were saved in CSV and further used to generate visualization using excel and PowerBI.

Reference:

[1] https://www.carpart.com.au/blog/educational/what-is-engine-displacement-and-why-does-it-matter#:~":text=Engine%20displacement%20is%20expressed%20in,one%2Dhalf%20litre%20or%20500cc."