APPUNTI DI ALGEBRA

MANUEL DEODATO

Indice

1	Teoria dei gruppi			3
	1.1	Il gruj	3	
	1.2	Azioni di gruppo		4
		1.2.1	Azione di coniugio	6
		1.2.2	Formula delle classi	7
	1.3	3 I p-gruppi		8
	1.4	Teore	9	
	1.5	6 Commutatore e gruppo derivato		11
	1.6	Gruppi diedrali		13
		1.6.1	Sottogruppi di D_n	14
		1.6.2	Centro, quozienti e automorfismi di D_n	17
	1.7	Permutazioni		18
	1.8	Gruppi di Sylow e prodotti diretti		23
	1.9	Esercizi e complementi		26
		1.9.1	Complementi di teoria	26
		1.9.2	Esercizi	26

1 Teoria dei gruppi

1.1 Il gruppo degli automorfismi

Lemma 1.0.1. Siano H, G due gruppi ciclici; un omomorfismo $\varphi : G \to H$ è univocamente determinato da come agisce su un generatore di G.

Dimostrazione. Sia $g_0 \in G$ tale che $\langle g_0 \rangle = G$ e sia $\varphi(g_0) = \overline{h} \in H$. Per $g \in G$ generico, per cui $g_0^k = g$ per qualche intero k, si ha:

$$\varphi(g) = \varphi(g_0^k) = \varphi(g_0)^k = \overline{h}^k$$

Cioè tutti gli elementi di Im φ sono esprimibili come potenze di \overline{h} .

Osservazione 1.1. Non ogni scelta di $\overline{h} \in H$ è ammissibile, ma bisogna rispettare l'ordine di g_0 . Se $g_0^n = e_G$, allora $e_H = \varphi(g_0^n) = \varphi(g_0)^n = \overline{h}^n$. Questa condizione, impone che ord $(\overline{h}) \mid \operatorname{ord}(g_0)$.

Definizione 1.1 (Gruppo degli automorfismi). Sia G un gruppo; si definisce il gruppo dei suoi automorfismi come

$$\operatorname{Aut}(G) = \{ f : G \to G \mid f \text{ è un isomorfismo di gruppi} \}$$

Esempio 1.1. Si calcola $Aut(\mathbb{Z})$.

Svolgimento. Il gruppo $(\mathbb{Z}, +)$ è ciclico, quindi un omomorfismo è determinato in base a come agisce su un generatore. Prendendo, per esempio 1, si definisce $q_a : \mathbb{Z} \to \mathbb{Z}$ tale che $q_a(1) = a$; perché $\langle q_a(1) \rangle = \mathbb{Z}^1$, è necessario che a sia un generatore di \mathbb{Z} , perciò sono ammessi $a = \pm 1$. In questo caso, $\operatorname{Aut}(\mathbb{Z}) = \{ \pm \operatorname{Id}_{\mathbb{Z}} \} \cong (\mathbb{Z}/2\mathbb{Z}, +)$.

Teorema 1.1. Aut $(\mathbb{Z}/m\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z})^*$.

Dimostrazione. ($\mathbb{Z}/m\mathbb{Z},+$) è ciclico, quindi si stabilisce l'azione di $f:\mathbb{Z}/m\mathbb{Z}\to\mathbb{Z}/m\mathbb{Z}$ su un generatore. Preso, allora, $\overline{k}\in\mathbb{Z}/m\mathbb{Z}$ tale che $\gcd(k,m)=1$ e scelto $f(\overline{k})=\overline{a}$, si ha che $\langle f(\overline{k})\rangle=\langle \overline{a}\rangle=\mathbb{Z}/m\mathbb{Z}\iff\gcd(a,m)=1\iff\overline{a}\in(\mathbb{Z}/m\mathbb{Z})^*$.

Definizione 1.2 (Automorfismo interno). Sia G un gruppo; si definisce $\phi_g: G \to G$, $\forall g \in G$, come $\phi_g(x) = gxg^{-1}$ ed è detto automorfismo interno. L'insieme di questi automorfismi, al variare di $g \in G$, forma il gruppo

$$\operatorname{Int}(G) = \{ \phi_q : G \to G \mid g \in G \in \phi_q \text{ automorfismo interno} \}$$

Proposizione 1.1. Sia G un gruppo; allora $\operatorname{Int}(G) \triangleleft \operatorname{Aut}(G)$ e $\operatorname{Int}(G) \cong G/Z(G)$.

 $^{^{1}}$ Richiesto dal fatto che q_a sia suriettivo.

Dimostrazione. Int(G) è un sottogruppo di Aut(G) perché $\mathrm{Id}(x) = exe^{-1} = x \Rightarrow \mathrm{Id} \in \mathrm{Int}(G)$. Inoltre, $\phi_g \circ \phi_h(x) = ghxh^{-1}g^{-1} = \phi_{gh}(x) \in \mathrm{Int}(G)$ e $\phi_{g^{-1}} \circ \phi_g(x) = x \Rightarrow \phi_g^{-1} = \phi_{g^{-1}} \in \mathrm{Int}(G)$.

È un sottogruppo normale perché $\forall f \in \text{Aut}(G)$, si ha

$$f \circ \phi_g \circ f^{-1}(x) = f(gf^{-1}(x)g^{-1}) = f(g)xf(g)^{-1} \in \text{Int}(G)$$

Per finire, si definisce $\Phi: G \to \operatorname{Int}(G)$. Questo è un omomorfismo perché $\Phi(gh) = \phi_{gh} = \phi_g \circ \phi_h = \Phi(g)\Phi(h)$. È, inoltre, suriettivo perché ogni automorfismo interno è associato ad un elemento di G, cioè $\forall \phi_g \in \operatorname{Int}(G), \ \exists g \in G : \Phi(g) = \phi_g$. Allora, la tesi deriva dal I teorema di omomorfismo, visto che $\operatorname{Ker} \Phi = Z(G)$.

Osservazione 1.2. $H \triangleleft G \iff \phi_g(H) = H, \ \forall \phi_g \in \operatorname{Int}(G).$

Dimostrazione. Per ogni elemento di $\operatorname{Int}(G)$, si ha $\phi_g(H) = H \iff gHg^{-1} = H \iff H \lhd G$.

Definizione 1.3 (Sottogruppo caratteristico). Sia G un gruppo e H < G. Si dice che H è caratteristico se è invariante per automorfismo, cioè $\forall f \in \text{Aut}(G), \ f(H) = H$.

Corollario 1.1.1. Sia G un gruppo; per la proposizione 1.1 e l'osservazione 1.2 se H è caratteristico, allora $H \triangleleft G$.

Il viceversa è falso, cioè normale \neq caratteristico; infatti, in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, il sottogruppo $\langle (1,0) \rangle$ è normale, ma non caratteristico perché l'automorfismo che scambia le coordinate è tale per cui $\langle (1,0) \rangle \mapsto \langle (0,1) \rangle \neq \langle (1,0) \rangle$.

1.2 Azioni di gruppo

Definizione 1.4 (Azione). Sia G un gruppo; un'azione di G su un insieme X è un omomorfismo

$$\gamma: \begin{array}{ccc} G & \longrightarrow & S(X) = \{f: X \to X \mid f \text{ biettiva}\} \\ g & \longmapsto & \psi_g: \psi_g(x) = g \cdot x \end{array}$$

Più concretamente, si definisce azione la mappa $\gamma: G \times X \to X$ tale che

(a). $e \cdot x = x$, per $e \in G$ e $x \in X$;

(b).
$$h \cdot (g \cdot x) = (hg) \cdot x$$
, per $g, h \in G$ e $x \in X$.

Si verifica che una mappa $\gamma: G \times X \to X$, con G gruppo e X insieme generico, che soddisfi le proprietà (a) e (b), è tale che $\gamma(g)(x) = \psi_q(x)$ (cioè a g fissato) è biettiva.

Dimostrazione. Per l'iniettività, si ha $\psi_g(x) = \psi_g(y) \iff g \cdot x = g \cdot y \iff x = y$, visto che si può applicare l'azione inversa $\gamma(g^{-1})$ ad entrambi i lati. Per la suriettività,

invece, si nota che $\forall x \in X$, si trova anche una $y \in X : y = g^{-1} \cdot x$ dovuta all'azione di $\gamma(g^{-1})$, per cui $\psi_g(y) = g \cdot \left(g^{-1} \cdot x\right) = (gg^{-1}) \cdot x = x$.

Esempio 1.2. Sia $G=\{z\in\mathbb{C}^*\mid |z|=1\}\cong S^1$ la circonferenza unitaria e $X=\mathbb{R}^2$. Un'azione di G su X è una rotazione definita da $\gamma(z)=R(\arg z)$. Questa è un omomorfismo perché $\gamma(zw)=R(\arg zw)=R(\arg z+\arg w)=R(\arg z)R(\arg w)=\gamma(z)\gamma(w)$.

Un'azione γ di G su X definisce, proprio su X, una relazione di equivalenza definita da

$$x \sim_{\gamma} y \iff x = \psi_q(y) = g \cdot y, \text{ con } x, y \in X$$
 (1.2.1)

La relazione di equivalenza è ben definita perché le ψ_g sono mappe biettive.

Definizione 1.5 (Orbita). Sia $\gamma: G \to S(X)$ un'azione di G gruppo su X. Dato $x \in X$, la sua classe di equivalenza rispetto alla relazione \sim_{γ} è detta orbita ed è indicata con $Orb(x) = \{g \cdot x \mid g \in G\}$.

Ricordando che una relazione di equivalenza fornisce una partizione dell'insieme su cui è definita, si ha:

$$X = \bigsqcup_{x \in R} \operatorname{Orb}(x) \tag{1.2.2}$$

con R insieme dei rappresentati di tutte le orbite. Se, poi, X ha cardinalità finita, allora:

$$|X| = \sum_{x \in R} |\operatorname{Orb}(x)| \tag{1.2.3}$$

Definizione 1.6 (Stabilizzatore). Sia $\gamma: G \to S(X)$ un'azione di G su X; allora per ogni $x \in X$, si definisce l'insieme

$$Stab(x) = \{ g \in G \mid g \cdot x = x \} < G$$

Lemma 1.1.1. Sia G un gruppo che agisce su un insieme X e sia $x \in X$ un suo elemento. Dati anche $g \cdot x, h \cdot x \in \text{Orb}(x)$ tali che $g \cdot x = h \cdot x$, allora g e h appartengono alla stessa classe di $G/\operatorname{Stab}(x)$.

Dimostrazione. Se $g \cdot x$, $h \cdot x \in Orb(x)$ sono uguali, allora $x = h^{-1}g \cdot x$, cioè $h^{-1}g \in G$ lascia invariato x, quindi è in Stab(x). Da questo segue che $h Stab(x) = hh^{-1}g Stab(x) = g Stab(x)$.

Teorema 1.2 (Teorema di orbita-stabilizzatore). Esiste una mappa biettiva Γ : $\operatorname{Orb}(x) \to G/\operatorname{Stab}(x)$ tale che $\Gamma(g \cdot x) = g\operatorname{Stab}(x)$.

Dimostrazione. Γ è iniettiva come diretta conseguenza del lemma 1.1.1 ed è suriettiva perché $\forall g \operatorname{Stab}(x) \in G/\operatorname{Stab}(x), \exists g \cdot x \in \operatorname{Orb}(x)$ tale che $\Gamma(g \cdot x) = g \operatorname{Stab}(x)$. Segue che $|\operatorname{Orb}(x)| = |G|/|\operatorname{Stab}(x)|$.

Osservazione 1.3. Si osserva che, per il teorema di orbita-stabilizzatore, la cardinalità di un'orbita indica il numero di classi laterali dello stabilizzatore nel gruppo che compie l'azione, cioè il teorema di orbita-stabilizzatore si può riscrivere come $|\operatorname{Orb}(x)| = |G|$ Stab|G| Stab|G|

1.2.1 Azione di coniugio

Un caso notevole di azione è il coniugio: per X=G, si definisce $\gamma:G\to \operatorname{Int}(G)\subset S(G)$. Le orbite indotte da questa azione sono dette *classi di coniugio* e si indicano con $\operatorname{cl}(x)$, mentre lo stabilizzatore è detto *centralizzatore* e si indica con:

$$Z(x) = \left\{ g \in G \mid g \cdot x = gxg^{-1} = x \right\}$$
 (1.2.4)

Come conseguenza del teorema di orbita-stabilizzatore (1.2), si ha:

$$|G| = |\operatorname{cl}(x)||Z(x)|, \ \forall x \in G \tag{1.2.5}$$

Proposizione 1.2. Sia G un gruppo e γ l'azione di coniugio su di esso; allora

$$\bigcap_{x \in G} Z(x) = Z(G)$$

Dimostrazione. Si ha $g \in Z(x), \ \forall x \iff gxg^{-1} = x, \ \forall x \in G \iff g \in Z(G).$

Osservazione 1.4 (Centro di un sottogruppo). Sia G un gruppo e H < G; allora il centro di H è definito come

$$\bigcap_{x\in H} Z(x) = Z(H)$$

Si considera, ora, l'azione di coniugio di un gruppo G su $X = \{H \subseteq G \mid H < G\}$ e $\gamma(g) = \psi_g$ tale che $\psi_g(H) = gHg^{-1}$. Questa è un'azione ed è ben definita.

Dimostrazione. Per dimostrare che è un'azione, si deve mostrare che la mappa $g \xrightarrow{\gamma} \psi_g$ è un omomorfismo e che $\psi_g : X \to X$ sia biettiva.

Si nota che $g \stackrel{\gamma}{\mapsto} \psi_g$ è un omomorfismo perché $\psi_{g_1g_2}(H) = g_1g_2Hg_2^{-1}g_1^{-1} = \psi_{g_1} \circ \psi_{g_2}(H)$, cioè $g_1g_2 \mapsto \psi_{g_1}\psi_{g_2}$. Inoltre, $\psi_g: X \to X$ è biettiva perché $\exists \psi_g^{-1} = \psi_{g^{-1}}: \psi_{g^{-1}} \circ \psi_g(H) = H$.

Per mostrare che è ben definita, si fa vedere che effettivamente $\forall g, \psi_g$ mappa un sottogruppo di G in un altro sottogruppo, cioè che $gHg^{-1} < G$. Intanto, $e \in gHg^{-1}$

perché
$$H < G \Rightarrow e \in H \Rightarrow geg^{-1} = e$$
; poi, $(ghg^{-1})(gh'g^{-1}) = ghh'g^{-1} \in gHg^{-1}$ e $h^{-1} \in H \Rightarrow \exists (ghg^{-1})^{-1} = gh^{-1}g^{-1} \in gHg^{-1}$ elemento inverso.

Lo stabilizzatore di questa azione è detto normalizzatore, in quanto è definito come tutti elementi di G rispetto a cui H è normale:

$$N_G(H) = \text{Stab}(H) = \{ g \in G \mid gHg^{-1} = H \}$$
 (1.2.6)

Infine, l'orbita è l'insieme (classe di equivalenza) di tutti i coniugati di un sottogruppo di G:

$$Orb(H) = \{gHg^{-1} \mid g \in G\}$$
 (1.2.7)

Per il teorema di orbita-stabilizzatore (1.2), si ha:

$$|G| = |N_G(H)||\operatorname{Orb}(H)| \tag{1.2.8}$$

da cui si ricava anche che $H \triangleleft G \iff N_G(H) = G \iff \mathrm{Orb}(H) = \{H\}.$

1.2.2 Formula delle classi

Si ricorda che le orbite definite da un'azione di un gruppo G su un insieme X formano una partizione di X stesso, in quanto sono delle classi di equivalenza. Se $|X| < \infty$, si ha:

$$|X| = \sum_{x \in R} |\operatorname{Orb}(x)| = \sum_{x \in R} \frac{|G|}{|\operatorname{Stab}(x)|} = \sum_{x \in R'} 1 + \sum_{x \in R \setminus R'} \frac{|G|}{|\operatorname{Stab}(x)|}$$
(1.2.9)

con R insieme dei rappresentanti delle orbite e R' insieme dei rappresentati delle orbite tali che $Orb(x) = \{x\}$, cioè degli elementi invarianti sotto l'azione di G.

Teorema 1.3 (Formula delle classi). Sia $\gamma: G \to S(G)$ l'azione di coniugio di un gruppo G su un insieme X; allora:

$$|G| = Z(G) + \sum_{x \in R \backslash Z(G)} \frac{|G|}{|Z(x)|}$$

Dimostrazione. Segue per quanto appena detto e dall'osservazione che

$$R' = \{x \in R \mid \operatorname{Orb}(x) = x\} = \{x \in R \mid gxg^{-1} = x\} = Z(G)$$

Visto che ogni orbita del genere contiene un solo elemento, i rappresentanti delle orbite sono esattamente tutti gli elementi di Z(G), cioè un elemento $x \in Z(G)$ non può essere contenuto in nessun'altra orbita, se non nel singoletto $\{x\}$. Perciò, la relazione in eq. 1.2.9, avendo X = G, conferma la tesi.

1.3 I p-gruppi

Definizione 1.7 (p-gruppo). Sia $p \in \mathbb{Z}$ un numero primo; allora si dice che G è p-gruppo se $|G| = p^n$, per qualche $n \in \mathbb{N}$.

Proposizione 1.3. Il centro di un *p*-gruppo è non-banale.

Dimostrazione. Per la formula delle classi, si ha:

$$p^{n} = |Z(G)| + \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|}$$

Se $|Z(G)| = p^n$, la tesi è verificata, altrimenti $\exists x \in R \setminus Z(G)$, quindi tale che $Z(x) \subsetneq G$; allora, per qualche intero k > 0, si ha $|G|/|Z(x)| = p^k$, da cui

$$|Z(G)| = p^n - \sum_{x \in R \setminus Z(G)} p^k \implies p \mid |Z(G)|$$

Visto che $e \in Z(G)$, deve risultare $|Z(G)| \ge 1$, da cui $|Z(G)| = p^s$, per qualche intero s > 1.

Lemma 1.3.1. Vale G/Z(G) ciclico \iff G è abeliano.

Dimostrazione. Sia G/Z(G) ciclico e sia $x_0Z(G)$ il suo generatore. Date due classi laterali distinte $xZ(G), yZ(G) \in G/Z(G)$ e visto che $x_0Z(G)$ genera, si avrà $x_0^mZ(G) = xZ(G)$ e $x_0^nZ(G) = yZ(G)$, ossia, per $z, w \in Z(G), x = x_0^mz, y = x_0^nw$. Allora:

$$xy = x_0^m z x_0^n w = x_0^m x_0^n z w = x_0^n w x_0^m z = yx$$

Essendo questo valido per $x, y \in G$ generiche, si è dimostrata l'implicazione verso destra. Per l'implicazione inversa, sia G abeliano; allora Z(G) = G e $G/Z(G) = \{e\}$, che è ovviamente ciclico.

Proposizione 1.4. Un gruppo di ordine p^2 è abeliano.

Dimostrazione. Sia G un p-gruppo tale che $|G|=p^2$. Per mostrare che è abeliano, si fa vedere che Z(G)=G, ossia $|Z(G)|=p^2$. Per la proposizione 1.3, si può avere solamente |Z(G)|=p, oppure $|Z(G)|=p^2$. Se, per assurdo, fosse |Z(G)|=p, allora |G|/|Z(G)|=p, quindi G/Z(G) avrebbe ordine primo e, quindi, sarebbe ciclico; per il lemma precedente (1.3.1), però, questo è assurdo perché risulterebbe anche abeliano al contempo, ma senza avere |Z(G)|=|G|. Quindi deve essere $|Z(G)|=p^2=|G|\Rightarrow Z(G)=G$, da cui G è abeliano.

1.4 Teoremi di Cauchy e Cayley

Lemma 1.3.2 (Teorema di Cauchy abeliano). Sia p un primo e G un gruppo abeliano finito; se $p \mid |G|$, allora $\exists x \in G : \operatorname{ord}(x) = p$.

Dimostrazione. Sia |G| = pn; si procede per induzione su n. Il passo base è ovvio: se |G| = p, allora è ciclico e, quindi, contiene un elemento di ordine p.

Per il passo induttivo, si suppone che la tesi sia vera per ogni m < n e si dimostra per n.

Sia, allora |G| = pn; sia, poi $y \in G$, $y \neq e$ tale che $\langle y \rangle = H < G$: per Lagrange, |G| = |G/H||H|. Allora, se $p \mid |G| \Rightarrow p \mid |H|$, oppure $p \mid |G/H|$.

- Se $p \mid |H|$, allora può essere |G| = |H|, caso in cui $G = \langle y \rangle$ sarebbe ciclico e, quindi, avrebbe un elemento di ordine p^1 , oppure può essere |H| = pm < pn, caso in cui l'elemento di ordine p è presente per ipotesi induttiva.
- Se p | |G/H|, invece, allora |G/H| = pm' < pn perché H contiene almeno due elementi, cioè y ed e; per ipotesi induttiva, allora, esiste zH ∈ G/H il cui ordine è p. Considerando la proiezione π_H : G → G/H tale che x → xH e ricordando che è un omomorfismo, si ha che, per questo motivo, ord(zH) | ord(z) ⇒ ord(z) = pk; se k = n, allora G è ciclico e zⁿ ha ordine p, altrimenti, se k < n, si ha la tesi per induzione.

Teorema 1.4 (Teorema di Cauchy). Sia p un numero primo e G un gruppo finito; se $p \mid |G|$, allora esiste $x \in G$: ord(x) = p.

Dimostrazione. Sia |G|=pn, con p primo e $n\in\mathbb{N}$; si procede per induzione su n. Se $n=1, |G|=p\Rightarrow G$ è ciclico, quindi $\exists x\in G: \langle x\rangle=G$ e $\mathrm{ord}(x)=p$.

Per il passo induttivo, si assume che la tesi sia valida per ogni m < n e si dimostra per n.

Si nota che se $\exists H < G$ tale che $p \mid |H|$, allora $|H| = pm, \ m < n \Rightarrow \exists x \in H$ tale che ord(x) = p per ipotesi induttiva. Si assume, dunque, che non esista alcun sottogruppo di G il cui ordine sia divisibile per p. Per la formula delle classi

$$pn - \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|} = |Z(G)|$$

Ora, visto che $Z(x) < G \Rightarrow p$ non divide |Z(x)|, quindi si ha la certezza che, essendo $p \mid |G| = |Z(x)||G|/|Z(x)|$, p divide |G|/|Z(x)|. Allora $p \mid |Z(G)|$, per cui Z(G) = G;

¹In questo caso, l'elemento di ordine p sarebbe proprio $y^{p^{n-1}} \in G$; infatti, $(y^{p^{n-1}})^p = y^{p^n} = e$, visto che $|G| = p^n$.

infatti, se così non fosse, sarebbe un sottogruppo proprio di G e p non lo potrebbe dividere, il che è assurdo.

Da questo, segue che G è abeliano, quindi la tesi segue dal teorema di Cauchy per gruppi abeliani (lemma 1.3.2).

Proposizione 1.5. Siano H, K < G; allora $HK < G \iff HK = KH \text{ e } |HK| = |H||K|/|H \cap K|$.

Dimostrazione. Per la prima parte, è sufficiente osservare che per $hk \in HK$, l'elemento neutro $(hk)^{-1} = k^{-1}h^{-1}$ sta in HK se e solo se HK = KH, e, allo stesso modo, il prodotto è chiuso cioè $hkh'k' = hh''k''k' \in HK$ solamente se HK = KH così da poter trovare un elemento di HK che sia uguale a $kh' \in KH$ che compare in tale prodotto.

La seconda parte, invece, si verifica considerando l'applicazione $\gamma: H \times K \to HK$ tale che $\gamma((h,k)) = hk$, che è evidentemente suriettiva; inoltre, se $s \in H \cap K$, allora $(hs,s^{-1}k) \in H \times K \Rightarrow \gamma((hs,s^{-1}k)) = hk$, il che vuol dire che $\forall hk \in HK$, si trovano $|H \cap K|$ coppie in $H \times K$ che hanno immagine hk, da cui la tesi.

Classificazione dei gruppi di ordine 6

Sia G un gruppo di ordine 6; per Cauchy, allora, esistono $x, y \in G$ tali che ord(x) = 2 e ord(y) = 3. Se G è abeliano, poi, si ha ord $(xy) = 6^a$, quindi $G = \langle xy \rangle \cong \mathbb{Z}/6\mathbb{Z}$. Se, invece, G non è abeliano, si considera il sottogruppo $\langle x, y \rangle$ e si considera anche l'insieme $\langle x \rangle \langle y \rangle$ che, in generale, non è un sottogruppo.

Applicando la proposizione precedente (1.5), si ha che $|\langle x,y\rangle|=(3\cdot 2)/1=6^b$, da cui $G=\langle x\rangle\langle y\rangle$, con $\langle x\rangle=\{e,x\}$ e $\langle y\rangle=\{e,y,y^2\}$, quindi $G=\{e,x,y,xy,y^2,xy^2\}$.

Per finire, si mostra che $G \cong S_3$. Per farlo, si definisce $\phi: G \to S_3 = \{e, \tau, \rho, \tau \rho, \tau^2, \rho \tau^2\}$ tale che $\phi(x) = \rho$ e $\phi(y) = \tau$, con $\tau = (1, 2, 3)$ e $\rho = (1, 2)$. Questa mappa è suriettiva per costruzione, quindi è biettiva per questioni di cardinalità; inoltre, è un omomorfismo, da cui segue la tesi.

Teorema 1.5 (Teorema di Cayley). Sia G un gruppo; allora G è isomorfo a un sottogruppo di S(G). In particolare, se |G| = n, allora G è isomorfo a un sottogruppo di S_n .

Dimostrazione. Si definisce l'azione

$$\phi: \begin{array}{ccc} G & \longrightarrow & S(G) \\ g & \longmapsto & \gamma_g \end{array}, \ \ \text{tale che } \gamma_g(x) = g \cdot x$$

Questa è ben definita perché $\gamma: G \to G$ è biettiva, infatti $\gamma_g(x) = \gamma_g(y) \iff g \cdot x = g \cdot y \iff x = y \in \forall y \in G, \ \exists \gamma_g(g^{-1} \cdot y) = y$, il che mostra che è rispettivamente

^aSi dimostra per calcolo diretto; per esempio: $(xy)^3 = xyxyxy = xxxyyy = x$.

 $[^]b$ L'intersezione è solo l'unità perché i due elementi hanno ordini diversi, quindi generano gruppi disgiunti.

iniettiva e suriettiva. Inoltre, ϕ è un omomorfismo (ovvio) ed è anche iniettiva perché Ker $\phi = \{g \in G \mid \phi_g = \phi_e\} = \{g \in G \mid g \cdot x = x\} = \{e\}$. Da questo, segue che S(G) contiene una copia isomorfa a G.

1.5 Commutatore e gruppo derivato

Definizione 1.8. Sia G un gruppo e $S \subset G$ un suo sottoinsieme; allora $\langle S \rangle$ è il più piccolo sottogruppo di G contenente anche S.

Proposizione 1.6. Dato G un gruppo e $S \subset G$ un suo sottoinsieme, vale la relazione

$$\langle S \rangle = \{ s_1 s_2 \dots s_k \mid k \in \mathbb{N}, \ s_i \in S \cup S^{-1} \} = X$$

$$con S^{-1} = \{ s^{-1} \mid s \in S \}.$$

Dimostrazione. Per definizione

$$\langle S \rangle = \bigcap_{\substack{H < G \\ S \subset H}} H$$

Questa scrittura è ben definita perché l'intersezione di gruppi è ancora un gruppo e, in questo modo, si ha il gruppo più piccolo contenente S; se così non fosse, ne esisterebbe uno più piccolo ancora, che, però, farebbe parte dell'intersezione e sarebbe assurdo.

Ora, per quanto detto sopra, S è contenuto in tutti i gruppi la cui intersezione genera $\langle S \rangle$, quindi anche S^{-1} deve essere contenuto in tali sottogruppi di G. Segue che $S, S^{-1} \subset H \Rightarrow X \subset H, \ \forall H < G \in S \subset H, \ \text{quindi} \ X \subset \bigcap H = \langle S \rangle.$

Allo stesso tempo, X è evidentemente un sottogruppo di G e contiene S per costruzione, quindi $X \supset \langle S \rangle$, da cui la tesi.

Definizione 1.9 (Commutatore). Sia G un gruppo; dati $g, h \in G$, il loro *commutatore* è definito come

$$[g,h] = ghg^{-1}h^{-1}$$

Definizione 1.10 (Gruppo derivato). Dato un gruppo G, si definisce gruppo dei commutatori, o derivato di G, il gruppo

$$G' = \langle [g, h] \mid g, h \in G \rangle = [G : G]$$

Ora si caratterizza il gruppo derivato. Intanto, si ricorda che $\langle S \rangle$ è abeliano $\iff \forall s_1, s_2 \in S, \ s_1s_2 = s_2s_1, \ \langle S \rangle$ è normale $\iff \forall g \in G, \forall s \in S, \ gsg^{-1} \in \langle S \rangle$ e, infine, $\langle S \rangle$ è caratteristico $\iff \forall f \in \operatorname{Aut}(G), \ \forall s \in S$ si ha $f(s) \in S$. Applicando queste alla definizione di commutatore, si ottiene la seguente.

Proposizione 1.7 (Proprietà del derivato). Sia G un gruppo e G' il suo derivato; allora:

- (a). $G' = \{e\} \iff G \text{ è abeliano};$
- (b). $G' \triangleleft G$;
- (c). G' è caratteristico in G;
- (d). dato $H \triangleleft G$, se G/H è abeliano, allora $G' \subset H$.

Dimostrazione. La (a) è immediata perché $G' = \{e\} \iff \forall g_1, g_2 \in G, [g_1, g_2] = e$, cioè g_1 e g_2 commutano, da cui G abeliano.

Per la (b), $\forall x \in G, \ \forall g, h \in G$, si ha

$$\begin{split} x[g,h]x^{-1} &= xghg^{-1}h^{-1}x^{-1} = xgx^{-1}xhx^{-1}xg^{-1}x^{-1}xh^{-1}x^{-1} \\ &= [xgx^{-1},xhx^{-1}] \in G' \end{split}$$

Per la (c), si nota che $\forall f \in \text{Aut}(G), \ \forall g, h \in G$, si ha:

$$f([g,h]) = f(ghg^{-1}h^{-1}) = f(g)f(h)f(g)^{-1}f(h)^{-1} = [f(g), f(h)] \in G'$$

Infine, per la (d), se $H \triangleleft G$ e G/H è abeliano, si ha $\forall x, y \in G$

$$xHyH = yHxH \Rightarrow xyH = yxH \implies x^{-1}y^{-1}xy \in H \Rightarrow [x,y] \in H$$

da cui
$$H \supset G'$$
.

Corollario 1.5.1. Sia G un gruppo e G' il suo derivato; allora G/G' è sempre abeliano ed è chiamato *abelianizzazione* di G, nel senso che è il più grande quoziente abeliano di G.

Dimostrazione. Si mostra che G/G' è sempre abeliano. Siano, quindi $gG', hG' \in G/G'$ due classi laterali; allora si osserva che

$$(gG')(hG') = ghG' = hg[g^{-1}, h^{-1}]G' = hgG'$$

visto che $g^{-1}h^{-1}gh=[g^{-1},h^{-1}]\in G'$. Allora, dalla proprietà (d) della precedente proposizione (1.7), si ha $G'\subset H=G'$, cioè in questo caso si ha l'inclusione nell'insieme più piccolo, ovvero proprio G'. Questo vuol dire che G/G' è il quoziente con più elementi che sia abeliano perché ottenuto tramite quoziente con G', che è l'insieme più piccolo che soddisfa la proprietà 1 .

 $^{^1\}mathrm{Per}$ controposizione, se $G'\not\subset H\implies G/H$ non abeliano.

1.6 Gruppi diedrali

Definizione 1.11 (Gruppo diedrale). Per $n \in \mathbb{N}$, si considera un n-agono regolare nel piano; l'insieme di tutte le isometrie del piano che mandano l'n-agono in se stesso è indicato con D_n ed è noto col nome di gruppo diedrale.

Proposizione 1.8. Per $n \in \mathbb{N}$, il gruppo diedrale D_n ha cardinalità $|D_n| = 2n$.

Dimostrazione. Un'isometria è univocamente determinata dall'immagine di un vertice e di un lato adiacente al vertice stesso; allora, l'immagine può essere pari a n possibili vertici, con due, conseguenti, possibilità per il lato, da cui 2n possibili isometrie.

Proposizione 1.9. Sia ρ una rotazione che sottende un lato¹ e σ una simmetria (riflessione) dell'*n*-agono regolare; allora $\rho^n = e$, $\sigma^2 = e$ e $\sigma \rho \sigma = \rho^{-1}$.

Dimostrazione. Visto che ρ manda un lato dell'n-agono regolare nella posizione del successivo, impiegherà n iterazioni a far tornare il lato di partenza nella posizione originale; similmente, se σ è una riflessione, sarà sufficiente riapplicarla per far tornare l'n-agono nella posizione originale.

Per l'ultima, si nota che, componendo una rotazione e una riflessione, si ottiene una riflessione; applicando la seconda proprietà, si ottiene $\sigma \rho \sigma \rho = e \Rightarrow \sigma \rho \sigma = \rho^{-1}$.

Osservazione 1.5. Le isometrie del piano che agiscono su un n-agono, quindi gli elementi di D_n , si possono mettere in relazione con $GL_2(\mathbb{R})$, cioè possono essere rappresentate tramite matrici:

$$\rho \stackrel{\gamma}{\longmapsto} \begin{pmatrix} \cos(2\pi/n) & \sin(2\pi/n) \\ -\sin(2\pi/n) & \cos(2\pi/n) \end{pmatrix} = M_{\rho} \qquad \sigma \stackrel{\gamma}{\longmapsto} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = M_{\sigma} \qquad (1.6.1)$$

Si nota, inoltre, che indicando con \mathbb{D}_n il gruppo generato da queste matrici, allora la mappa $\gamma:\langle \rho,\sigma\rangle\to\mathbb{D}_n$ e notare che questo è un omomorfismo di gruppi; infatti, la composizione di isometrie che fissano un punto, sono ancora isometrie che fissano lo stesso punto (in questo caso, l'n-agono). Questo per dire che la mappa $\rho^i\sigma^j\mapsto M^i_\rho M^j_\sigma$ è ben definita.

Si può, inoltre, verificare che $M_{\rho}^{n}=\mathrm{Id},\ M_{\sigma}^{2}=\mathrm{Id}$ e $M_{\sigma}M_{\rho}M_{\sigma}=M_{\rho}^{-1}$, per cui si conclude che γ è un omomorfismo.

Essendo γ un omomorfismo, si vede anche che ρ e σ , come elementi di D_n , non sono legati da alcuna relazione perché, altrimenti, lo sarebbero anche le loro matrici associate, cosa che sarebbe assurda.

Proposizione 1.10. Tutti gli elementi di D_n si scrivono come $\sigma \rho^i$, oppure ρ^i , con $i \in \{0, \ldots, n-1\}$.

¹Cioè che manda un lato nel successivo.

Dimostrazione. Sia $g \in D_n$; allora g sarà una generica composizione di riflessioni e rotazioni del tipo $g = \rho^{a_1} \sigma^{b_1} \dots \rho^{a_k} \sigma^{b_k}$, dove $a_i \in \mathbb{Z}$ e $b_j \in \{0,1\}$. Usando le relazioni $\sigma^2 = \rho^n = e$, si riscalano gli esponenti per scrivere $g = \rho^{c_1} \sigma \dots \rho^{c_m} \sigma$, dove si sono anche, eventualmente, uniti esponenti di rotazioni consecutive (quindi $m \leq k$).

Usando $\sigma^2 = e$ e assumendo $c_1 \neq 0$, si può scrivere

$$g = \rho^{c_1} \sigma \dots \rho^{c_m} \sigma = \sigma \sigma \rho^{c_1} \sigma \sigma \sigma \rho^{c_2} \dots \sigma \rho^{c_m} \sigma = \sigma \rho^{-c_1} \rho^{-c_2} \dots \rho^{-c_m} = \sigma \rho^{-d}$$

dove si è fatto uso della relazione $\sigma \rho \sigma = \rho^{-1}$ e con $d \equiv -\sum_{i=1}^{m} c_i \pmod{n}$.

Se, invece,
$$c_1 = 0$$
 (cioè la parola inizia con σ), allora $g = \rho^{-c_2} \dots \rho^{-c_m} = \rho^{d'}$, con $d' \equiv -\sum_{i=2}^m c_i \pmod{n}$.

Grazie alla precedente proposizione, è possibile definire $\rho^{[i]} = \rho^i$, con $[i] \in \mathbb{Z}/n\mathbb{Z}$, visto che $\rho^n = e$.

Inoltre, se $\rho, \sigma \in D_n$, allora $\langle \rho, \sigma \rangle < D_n$; però, per quanto detto finora, si ha $|\langle \rho, \sigma \rangle| = 2n$ perché $\rho^n = e = \sigma^2$, quindi, per ragioni di cardinalità, segue che $D_n = \langle \rho, \sigma \rangle$.

1.6.1 Sottogruppi di D_n

Numero di elementi di ordine k. Sia ρ una rotazione in D_n ; si considera $\langle \rho \rangle \cong C_n < D_n^{-1}$.

Essendo C_n ciclico, vi sono $\phi(k)$ elementi di ordine k, se $k \mid n$. Oltre alle n rotazioni ρ^i , in D_n sono presenti anche le n riflessioni $\sigma \rho^i$; osservando che $\sigma \rho^i \sigma \rho^i = \rho^{-i} \rho^i = e$, si conclude che se n è pari, vi sono n+1 elementi di ordine 2 (cioè le n riflessioni e $\rho^{n/2}$), mentre se n è dispari, vi sono n elementi di ordine 2. Ricapitolando:

$$\# \{\text{elementi di ordine } k\} = \begin{cases} n+1 &, \text{ se } k=2 \text{ e } n \text{ pari} \\ n &, \text{ se } k=2 \text{ e } n \text{ dispari} \\ \phi(k) &, \text{ se } k \mid n \\ 0 &, \text{ altrimenti} \end{cases}$$
(1.6.2)

visto che le n riflessioni sono tutte di ordine 2 e l'esistenza di $\rho^{n/2}$ dipende dalla pairtà di n.

I sottogruppi. Nel punto precedente, si è notato che C_n è uno dei sottogruppi. Inoltre, i sottogruppi di C_n sono noti: ne esiste uno per ogni divisore dell'ordine del gruppo, cioè n in questo caso, per cui se $H < D_n$ e $H < C_n$, allora H è l'unico sottogruppo di ordine |H|. Se, invece $H < D_n$ e $H \nleq C_n$, allora H contiene almeno una riflessione τ .

Proposizione 1.11. Si ha $(H \cap C_n) \coprod (\tau H \cap C_n)$ ed esiste una mappa biettiva tra $(H \cap C_n)$ e $(\tau H \cap C_n)$.

 $^{^{1}}$ Qui, con C_{n} si indica un generico gruppo ciclico di ordine n.

Dimostrazione. Si considera

$$D_n \xrightarrow{\gamma} \operatorname{GL}_2(\mathbb{R}) \xrightarrow{\det} \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$$

dove γ è l'omomorfismo definito che a ρ e σ associa le relative matrici, mentre le matrici di $\operatorname{GL}_2(\mathbb{R})$ sono mappate a $\{\pm 1\}$ tramite il determinante: $\det M_{\rho} = 1$ e $\det M_{\sigma} = -1$. La mappa $\phi = \gamma \circ \det$ è un omomorfismo suriettivo proprio per come è definita γ (cioè è un omomorfismo) e per il teorema di Binet per cui $\det(M_{\rho}^i M_{\sigma}^j) = \det(M_{\rho})^i \det(M_{\sigma})^j = 1^i (-1)^j = 1 \iff j = 0$.

Considerando, quindi, $\varphi: D_n \to \mathbb{Z}/2\mathbb{Z}$, la sua restrizione φ_H con $H < D_n$ e $H \not< C_n$ è suriettiva e il suo kernel è $H \cap C_n$; per il I teorema di omomorfismo, allora $H/(H \cap C_n) \cong \mathbb{Z}/2\mathbb{Z}$. Per il teorema di Lagrange, poi, si ha $|H|/|H \cap C_n| = |\mathbb{Z}/2\mathbb{Z}|$, per cui $|H| = 2|H \cap C_n|$.

Si nota che $\tau H \cap C_n \not\subset H \cap C_n$ perché se $h \in H$, allora $\det(M_\tau M_h) = \det M_\tau \det M_h = -1$, per cui i due insiemi sono disgiunti; inoltre, $\tau h_1 = \tau h_2 \Rightarrow h_1 = h_2$, per cui $|\tau H \cap C_n| = |H \cap C_n|$. Considerando, allora

$$\psi: \begin{array}{ccc} H \cap C_n & \longrightarrow & \tau H \cap C_n \\ h & \longmapsto & \tau h \end{array}$$

questa è biettiva. Ora, $H \cap C_n = \langle \rho^m \rangle = \{e, \rho^m, \rho^{2m}, \dots, \rho^{n-m}\}$, con $m \mid n$; se $\tau = \sigma \rho^i$, allora

$$\tau H \cap C_n = \{\sigma \rho^i, \sigma \rho^{i+m}, \dots, \sigma \rho^{i+n-m}\}$$

quindi, l'unione dei due restituisce tutto H.

Segue che H è composto da m rotazioni e m simmetrie; in particolare $H = \langle \rho^m, \tau \rangle \cong D_m$, quindi, se $m \mid n$, si hanno dei sottogruppi della forma $\mathbb{Z}/m\mathbb{Z}$ e D_m .

Sottogruppi normali. Per lo studio dei sottogruppi normali, si considerano le due seguenti proposizioni.

Proposizione 1.12. Sia G un gruppo e sia H < G; se H ha indice 2 in G, allora $H \lhd G$.

Dimostrazione. Sia, quindi, $G/H = \{H, \tau H\}$, per qualche $\tau \in G$; dato $g \in G$, allora, si ha $g = h_1$, oppure $g = \tau h_2$, con $h_1, h_2 \in H$. Sia, ora, $hg \in Hg$ per $g \in G \setminus H$; allora $g = \tau h_3$, oppure $hg = \tau h_4 = \tau h_3 h_3^{-1} h_4 = g h_5$, per cui $Hg \subset gH$. Inoltre, |Hg| = |gH|, quindi deve essere Hg = gH e, quindi, $H \triangleleft G$.

Proposizione 1.13. Siano $H \triangleleft G$ e K < H, con K caratteristico in H; allora $K \triangleleft G$.

Dimostrazione. Si considera, per $g \in G$, $\phi_g : G \to G$ con $\phi_g(x) = gxg^{-1}$; per definizione, si ha $\phi_g(H) = H$, quindi $\phi_g|_H$ è un automorfismo, quindi $\phi_g|_H(K) = K$, $\forall g \in G \Rightarrow gKg^{-1} = K$, pertanto $K \triangleleft G$.

L'indice di C_n in D_n è 2, quindi $C_n \triangleleft D_n$ per la prima proposizione. Visto che per G ciclico di ordine n, esiste un unico H, con $|H| = m \mid n$, allora ogni sottogruppo di un gruppo ciclico è caratteristico e, quindi, nel caso di D_n , ogni sottogruppo di $\langle \rho \rangle \cong C_n$ è caratteristico. Per la seconda proposizione, questo significa che ogni sottogruppo di C_n è normale; se n è pari, allora $\langle \rho^2 \rangle < C_n$ ha n/2 elementi.

Considerando $H < D_n$ e $H \not\subset C_n$, con $H \cap C_n = \langle \rho^2 \rangle$, si ha

$$H = \langle \rho^2 \rangle \sqcup \tau \langle \rho^2 \rangle$$

quindi $[D_n:H]=2$, per cui $H \triangleleft D_n$.

Di sottogruppi di questa forma, se ne trovano due: $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$, ma non si sa se siano tutti i sottogruppi normali, quindi si cerca di caratterizzarli meglio. Si sa che $H \triangleleft G \iff gHg^{-1} = H, \ \forall g \in G$, quindi per ogni elemento di un sottogruppo normale, devono figurare anche tutti i suoi coniugati. Per la proposizione 1.10, per capire come sono fatti i coniugati di D_n , è sufficiente studiare quali siano quelli di ρ^i e $\sigma \rho^i$. Si nota che:

$$\rho^{i}\rho^{i}\rho^{-i} = \rho^{i} \qquad \sigma\rho^{i}\rho^{i}\rho^{-i}\sigma = \sigma\rho^{i}\sigma = \rho^{-i}$$

quindi l'insieme dei coniugati di ρ^i è $\{\rho^i, \rho^{-i}\}$; in particolare, se $i \in \{0, n/2\}$, tale insieme diventa $\{e\}$, oppure $\{\rho^{n/2}\}$ rispettivamente. Poi, si nota che:

$$\rho^i \sigma \rho^j \rho^{-i} = \sigma \rho^{-i} \rho^j \rho^{-i} = \sigma \rho^{j-2i} \qquad \sigma \rho^i \sigma \rho^j \rho^{-i} \sigma = \rho^{-i} \rho^j \rho^{-i} \sigma = \sigma \rho^{2i-j}$$

quindi se n è pari, allora $\sigma \rho^s \sim \sigma \rho^t \iff \equiv t \pmod{2}$, quindi le riflessioni di spezzano in due classi di coniugio; se n è dispari, invece, le riflessioni sono tutte coniugate.

Ricapitolando:

- se n è dispari e se un sottogruppo contiene una riflessione, allora le contiene tutte e tutte le riflessioni generano D_n , infatti σ è dato e $\rho = \sigma \sigma \rho$, quindi $H \triangleleft D_n \Rightarrow$ $H = D_n$, mentre se non contiene alcuna riflessione, allora è un sottogruppo di C_n ;
- se n è pari, oltre ai sottogruppi di C_n , si considerano gli $H \triangleleft D_n$ che sono tali che $\sigma \rho^i \in H$, per cui $\sigma \rho^{i+2} \in H$ e $\rho^2 \in H$, pertanto, se $H \neq D_n$, devono essere della forma $\langle \rho^2, \sigma \rangle$, o $\langle \rho^2, \sigma \rho \rangle$.

Sottogruppi caratteristici. Usando quanto visto per i sottogruppi normali, si conclude che i possibili sottogruppi caratteristici sono i sottogruppi di C_n e $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$. Mentre si sa già che i sottogruppi di C_n sono caratteristici, si osserva che, per gli altri due, la mappa $\tau: D_n \to D_n$ tale che $\tau(\rho) = \rho$ e $\tau(\sigma) = \sigma \rho$]'e un automorfismo che scambia $\langle \rho^2, \sigma \rangle$ con $\langle \rho^2, \sigma \rho \rangle$ e viceversa, quindi non sono caratteristici.

1.6.2 Centro, quozienti e automorfismi di D_n

Il centro. Si cercano tutti gli elementi $\tau \in D_n$ tale che $\forall \rho \in D_n$, $\rho \tau \rho^{-1} = \tau$. Dal precedente studio dei coniugi nei sottogruppi normali, si conclude che $Z(D_n) = \{e, \rho^{n/2}\} \cong \mathbb{Z}/2\mathbb{Z}$ se n è pari.

Quozienti. Si sa che i quozienti sono in corrispondenza biunivoca con i sottogruppi normali, il che vuol dire che esiste un quoziente per ciascun $H \triangleleft G$. A meno di un automorfismo, i quozienti si ottengono come segue. Per quanto visto precedentemente, i sottogruppi normali sono i sottogruppi di C_n e, se n è pari, anche quelli della forma $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$. Sia, $\langle \rho^m \rangle < C_n$, con $m \mid n$, per cui $|D_n/\langle \rho^m \rangle| = 2n/m$.

Proposizione 1.14. Si ha $D_n/\langle \rho^m \rangle \cong D_{n/m}$.

Dimostrazione. Si considera

$$\begin{array}{cccc}
D_n & \longrightarrow & D_{n/m} \\
\gamma : & \sigma & \longmapsto & \tau \\
\rho & \longmapsto & \epsilon
\end{array}$$

dove $D_n = \langle \sigma, \rho \mid \rho^n = \sigma^2 = e, \sigma \rho \sigma = \rho^{-1} \rangle$ e $D_{n/m} = \langle \tau, \epsilon \mid \epsilon^{n/m} = \tau^2 = e, \tau \epsilon \tau \epsilon^{-1} \rangle$. Si nota che questo è suriettivo e il suo nucleo è $\langle \rho^m \rangle$, quindi si ha la tesi per il I teorema di omomorfismo.

Nel caso di n pari, poi, vi sono gli altri due sottogruppi citati sopra, che hanno indice 2 e, quindi, i cui quozienti sono isomorfi a $\mathbb{Z}/2\mathbb{Z}$.

Gli automorfismi. Si studia $\operatorname{Aut}(D_n)$. Per farlo, si cerca di calcolarne la cardinalità. Per definire un automorfismo in D_n , lo si definisce sui generatori, che si sanno essere ρ e σ . L'immagine di questi generatori deve essere un altro generatore: ad esempio, l'immagine di ρ , che ha ordine n, deve avere come immagine un elemento di ordine n; questi sono della forma ρ^i , con $\gcd(i,n)=1$, quindi ci sono $\phi(n)$ possibili scelte. Poi, σ ha ordine 2 e deve avere, come immagine, un altro elemento di ordine 2 che, insieme al ρ^i scelto prima, generi D_n ; ci sono n riflessioni della forma $\sigma \rho^j$, quindi un totale di n scelte possibili. Si nota che se n è pari, anche $\rho^{n/2}$ ha ordine 2, ma la coppia ρ^i , $\rho^{n/2}$ non genera D_n .

Sia, allora

$$\begin{array}{cccc}
D_n & \longrightarrow & D_n \\
\gamma : & \rho^h & \longmapsto & \rho^{ih} \\
\sigma \rho^k & \longmapsto & \sigma \rho^j \rho^{ik}
\end{array}$$

con gcd(i, n) = 1 e j qualsiasi; γ è ben definita e

$$\gamma\left((\rho^s)(\sigma\rho^t)\right) = \gamma(\sigma\rho^{t-s}) = \sigma\rho^j\rho^{i(t-s)} = \sigma\rho^{-is}\rho^j\rho^{it} = \rho^{is}\sigma\rho^j\rho^{it} = \gamma(\rho^s)\gamma(\sigma\rho^t)$$

per cui è un omomorfismo. Inoltre, è biettiva per costruzione, quindi si ha $|\operatorname{Aut}(D_n)| = n\phi(n)$; da un punto di vista insiemistico, esiste una biezione tra $\operatorname{Aut}(D_n)$ e $\mathbb{Z}/n\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})^*$.

Esercizio 1.1. Studiare D_4 (risultati a pagina 19) e D_6 .

1.7 Permutazioni

Definizione 1.12 (Permutazione). Sia X un insieme; una mappa $f: X \to X$ è detta permutazione se è biettiva. Le permutazioni formano un gruppo rispetto alla composizione tra funzioni ed è indicato con

$$S(X) = \{ f : X \to X \mid f \text{ è biettiva} \}$$

Se $X = \{1, ..., n\}$, allora il gruppo delle permutazioni si indica con S_n e $|S_n| = n!$.

Una permutazione di S_n può essere rappresentata tramite cicli, i quali sono disgiunti e, quindi, commutano fra loro.

Ogni k-ciclo (ciclo di lunghezza k) ha k scritture diverse, tutte equivalenti fra loro, dovute alla possibilità di scegliere uno fra i k elementi del ciclo come primo elemento; dopo questa scelta, tutti gli altri sono univocamente determinati.

Proposizione 1.15. I cicli di una permutazione di S_n sono orbite degli elementi di $X = \{1, ..., n\}$ formate dall'azione indotta da tale permutazione.

Dimostrazione. Sia $\sigma \in S_n$ e sia $\langle \sigma \rangle$ il sottogruppo ciclico generato da σ . Si considera l'azione di $\langle \sigma \rangle$ su X secondo la legge $\sigma^k \cdot x = \sigma^k(x)$; l'orbita di ciascun elemento di X è della forma

$$Orb(x) = \left\{ \sigma^k(x) \mid k \in \mathbb{Z} \right\}$$

Si nota che $|X| < \infty \Rightarrow |\operatorname{Orb}(x)| < \infty$, $\forall x$. Sia, poi, $m \ge 1$ il più piccolo intero tale che $\sigma^m(x) = x^1$; allora gli elementi

$$x, \ \sigma(x), \ \sigma^2(x), \ldots, \ \sigma^{m-1}(x)$$

sono tutti distinti (per definizione di m) e formano $\mathrm{Orb}(x)$. Facendo agire σ su $\mathrm{Orb}(x) \subset X$, si nota che

$$x \mapsto \sigma(x), \ \sigma(x) \mapsto \sigma^2(x), \dots, \ \sigma^{m-1}(x) \mapsto \sigma^m(x) = x$$

¹Questo esiste per forza, altrimenti si avrebbero orbite di infiniti elementi a partire da un insieme finito.

L'azione di σ ristretta a Orb(x), allora, si può vedere come la permutazione

$$\begin{pmatrix} x & \sigma(x) & \sigma^2(x) & \cdots & \sigma^{m-1}(x) \end{pmatrix}$$

che è un m-ciclo. Se O_1, \ldots, O_r sono le orbite non banali (cioè di lunghezza > 1), σ agisce su ciascuna O_i come un m_i -ciclo, chiamato c_i per ogni orbita, con $|O_i| = m_i$, mentre su quelle banali agisce come l'identità. Visto che le orbite partizionano X, ciascun ciclo c_i è disgiunto dagli altri e la loro composizione restituisce proprio σ , visto che per definizione sono la restrizione di σ a partizioni di X.

Corollario 1.5.2. Il gruppo S_n è generato dai cicli.

Dimostrazione. Il teorema precedente mostra come ciascuna permutazione $\sigma \in S_n$ si possa scrivere come composizione di un numero finito di cicli disgiunti, pertanto combinando l'insieme di tutti i possibili cicli, si ottiene S_n .

Numero di k-cicli di S_n . Si cerca quanti k-cicli, con $k \leq n$, sono contenuti in S_n . Visto che un ciclo è una sequenza di k numeri, il problema si riduce a trovare quanti k numeri possono essere estratti da un insieme di n numeri, che si sa essere dato da $\binom{n}{k}$. Queste, però, non sono tutte perché i k numeri si possono scambiare in k! modi diversi; allo stesso tempo, è possibile costruire k k-cicli equivalenti, quindi il numero totale ammonta a $\binom{n}{k} \frac{k!}{k} = \binom{n}{k} (k-1)!$.

Numero di permutazioni di S_{12} sono composizione di 2 3-cicli e 3 2-cicli disgiunti. Dal punto precedente, si sa che in S_{12} si trovano $\binom{12}{3}\frac{3!}{3}$; fissato il primo 3-ciclo, restano 12-3 elementi liberi per gli altri cicli¹, quindi, per il secondo 3-ciclo, si hanno $\binom{9}{3}\frac{3!}{3}$ scelte possibili. Continuando così per tutti i cicli rimanenti, si ottengono

$$\binom{12}{3} \frac{3!}{3} \binom{9}{3} \frac{3!}{3} \binom{6}{3} \frac{2!}{2} \binom{4}{3} \frac{2!}{2} \binom{2}{3} \frac{2!}{2}$$

possibili permutazioni, dove si è modificata la formula per scegliere due 3-cicli e tre 2-cicli. Però se ne sono contati troppi: prendendo d'esempio i due 3-cicli, essendo disgiunti, questi possono commutare senza alterare la permutazione, però col conto precedente si sono considerati distinti. Per risolvere, si deve dividere per tutti i possibili modi di commutare i 3-cicli, cioè 2! in questo caso. Lo stesso si deve fare per i tre 2-cicli, i cui modi di permutarle sono 3!. Complessivamente, si hanno un totale di

$$\binom{12}{3} \frac{3!}{3} \binom{9}{3} \frac{3!}{3} \binom{6}{3} \frac{2!}{2} \binom{4}{3} \frac{2!}{2} \binom{2}{3} \frac{2!}{2} \frac{1}{3!2!}$$

possibili permutazioni.

¹I tre scelti vanno rimossi affinché gli altri cicli siano disgiunti.

Ordine di una permutazione di S_n . Un k-ciclo ha ordine k; infatti per $\sigma = (a_1 \cdots a_k)$, si ha

$$\sigma^s(a_i) = a_j \quad \text{con } j \equiv s + i \pmod{k} \text{ e } j < k$$

quindi $\sigma^s(a_i) = a_{i+s} = a_i \iff s+i \equiv i \pmod{k} \iff s \equiv 0 \pmod{k}$.

Se la permutazione è formata da ℓ cicli disgiunti σ_i , invece, il suo ordine è

$$\operatorname{ord}(\sigma) = \operatorname{mcm}(\operatorname{ord}(\sigma_1), \dots, \operatorname{ord}(\sigma_\ell))$$

perché è il più piccolo numero tale che ogni ciclo torni al punto di partenza. Si nota, infatti, che se m è tale che $\sigma^m=e$, allora

$$e = \sigma^m = \sigma_1^m \cdots \sigma_\ell^m \implies \sigma_i^m = e, \ \forall i = 1, \dots, \ell$$

quindi $\operatorname{ord}(\sigma_i) \mid m, \ \forall i \ e, \ \operatorname{quindi}, \ m = \operatorname{mcm}(\operatorname{ord}(\sigma_1), \dots, \operatorname{ord}(\sigma_\ell)).$

Definizione 1.13 (Trasposizione). Sia $\tau \in S_n$; se τ è della forma (a_i, a_j) , cioè è un 2-ciclo, allora si dice trasposizione.

Proposizione 1.16. Tutte le permutazioni di S_n si scrivono come composizione di trasposizioni.

Dimostrazione. Per il corollario 1.5.2, è sufficiente mostrare che vale per un k-ciclo generico. A questo proposito, si osserva che:

$$(1,\ldots,k) = (1,k)(1,k-1)\cdots(1,2)$$

.

Osservazione 1.6. La decomposizione in trasposizioni non è unica: per esempio:

$$(12) = (12)(34)(34) = (12)(34)(35)(67)(34)(35)(67)$$

Proposizione 1.17. L'applicazione

$$S_n \longrightarrow \{\pm 1\} = \mathbb{Z}^*$$

$$\operatorname{sgn}: \qquad \qquad \sigma \longmapsto \operatorname{sgn} \sigma = \prod_{1 \leq i < j \leq n} \frac{\sigma(i) - \sigma(j)}{i - j}$$

è un omomorfismo di gruppi. Inoltre, se σ è una trasposizione, si ha sgn $\sigma = -1$.

Dimostrazione. È un omomorfismo perché:

$$\operatorname{sgn}(\sigma\tau) = \prod_{1 \leq i < j \leq n} \frac{\sigma\tau(i) - \sigma\tau(j)}{i - j} = \prod_{1 \leq i < j \leq n} \frac{\sigma\tau(i) - \sigma\tau(j)}{\tau(i) - \tau(j)} \prod_{1 \leq i < j \leq n} \frac{\tau(i) - \tau(j)}{i - j} = \operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)$$

dove si è moltiplicato sopra e sotto per $\tau(i) - \tau(j)$ e si sono separate le produttorie¹. Sia $\sigma = (a, b)$ una trasposizione; allora

$$\operatorname{sgn} \sigma = \prod_{1 \le i < j \le n} \frac{t(i) - t(j)}{i - j}$$

Se $\{i, j\} \cap \{a, b\} = \emptyset$, allora

$$\frac{\sigma(i) - \sigma(j)}{i - j} = \frac{i - j}{i - j} = 1$$

mentre se $\{i, j\} \cap \{a, b\} = \{i, a\}$, si trova

$$\begin{cases} \frac{\sigma(i) - \sigma(a)}{i - a} = \frac{i - b}{i - a} &, \text{ se } i < a \\ \\ \frac{\sigma(a) - \sigma(i)}{a - i} = \frac{b - i}{a - i} = \frac{i - b}{i - a} &, \text{ se } a < i \end{cases}$$

Lo stesso vale per l'intersezione $\{i, j\} \cap \{a, b\} = \{i, b\}$:

$$\frac{\sigma(i) - \sigma(b)}{i - b} = \frac{\sigma(b) - \sigma(i)}{b - i} = \frac{i - a}{i - b}$$

I fattori delle due intersezioni non vuote si semplificano a 1, quindi rimane unicamente il caso in cui $\{i,j\} \cap \{a,b\} = \{a,b\}$; assumendo senza perdita di generalità che a < b, si trova:

$$\frac{\sigma(a) - \sigma(b)}{a - b} = \frac{b - a}{a - b} = -1$$

pertanto, nella produttoria, si ha un unico fattore pari a -1, il che implica che sgn $\sigma = -1$.

Corollario 1.5.3. La mappa $\operatorname{sgn} \sigma$ restituisce la parità di trasposizioni presenti in σ , quando decomposta in prodotto di trasposizioni.

Nucleo del segno. Si nota che

$$Ker(sgn) = \{ \sigma \in S_n \mid sgn \sigma = 1 \} = A_n \tag{1.7.1}$$

ed è noto come gruppo alterno. Alcune sue caratteristiche sono:

- (a). $A_n \triangleleft S_n$;
- (b). $S_n/A_n \cong \{\pm 1\}.$

 $^{^1}$ La prima produttoria restituisce il sgn σ perché al massimo applicare prima τ altera l'ordine dell'insieme, quindi non è garantito che $\tau(i)<\tau(j)$ se i< j; questo, però, non importa perché se $\tau(i)>\tau(j),$ allora l'espressione si può riscrivere come $\frac{\sigma\tau(j)-\sigma\tau(i)}{\tau(j)-\tau(i)}.$ Prendendo $a=\tau(i)$ e $b=\tau(j),$ si potrebbe anche riscrivere la produttoria come $\prod_{1\leq a< b\leq n}\frac{\sigma(a)-\sigma(b)}{a-b}.$

Visto che $S_n/A_n\cong\{\pm 1\}$, per il teorema di Lagrange, si ha:

$$2 = |S_n/A_n| = \frac{S_n}{A_n} \implies |A_n| = \frac{|S_n|}{|S_n/A_n|} = \frac{n!}{2}$$

Teorema 1.6. Due permutazioni di S_n sono coniugate se e solo se hanno lo stesso tipo di decomposizione in cicli disgiunti.

Dimostrazione. Si divide la dimostrazione nelle due implicazioni.

• (\Rightarrow) Siano $\sigma, \tau \in S_n$; si considerano $\sigma = (a_1, \dots, a_k)$ e $\tau \sigma \tau^{-1}$. Si nota che, se $\tau(a_i) = b_i \Rightarrow \tau \sigma \tau^{-1}(b_i) = \tau \sigma(a_i) = \tau(a_{i+1}) = b_{i+1}$; inoltre, se $x \neq b_i$ per ogni i:

$$\tau^{-1}(x) \neq a_i \implies \tau \sigma \tau^{-1}(x) = \tau \sigma \left(\tau^{-1}(x)\right) = \tau \tau^{-1}(x) = x$$

pertanto il coniugato di un k-ciclo è ancora un k-ciclo. Se la permutazione è composizione di cicli disgiunti, invece, si può scrivere

$$\sigma = \sigma_1 \dots \sigma_k \implies \tau \sigma \tau^{-1} = \tau \sigma_1 \tau^{-1} \dots \tau \sigma_k \tau^{-1}$$

quindi ci si può ricondurre al caso precedente.

• (\Leftarrow) Siano $\sigma = (a_1, \ldots, a_k)$ e $\rho = (b_1, \ldots, b_k)$ due k-cicli; si può prendere, allora, τ tale che $\tau(a_i) = b_i$, da cui $\tau \sigma \tau^{-1} = \rho$. Nel caso di più cicli disgiunti, si mappa ciclo con ciclo:

$$\sigma = (x_{11} \dots x_{1k_1}) \dots (x_{r1} \dots x_{rk_r})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\rho = (y_{11} \dots y_{1k_1}) \dots (y_{r1} \dots y_{rk_r})$$

con $\tau(x_{ij}) = y_{ij}$, quindi vale $\tau \sigma \tau^{-1} = \rho$.

Quanto al centralizzatore di $\sigma \in S_n$, si sa dal teorema orbita-stabilizzatore che

$$|Z(\sigma)||\operatorname{cl}(\sigma)| = n! \tag{1.7.2}$$

Per il teorema precedente, si sa calcolare $|cl(\sigma)|$, quindi è possibile ottenere $|Z(\sigma)|$.

Esempio 1.3. Sia $\sigma = (1234)(56) \in S_{10}$; il numero possibile di permutazioni coniugate sono tutte quelle che si scrivono come un 4-ciclo e un 2-ciclo in S_{10} , numero ottenuto come

$$|\operatorname{cl}(\sigma)| = {10 \choose 4} \frac{4!}{4} {6 \choose 2} = \frac{10!}{192} \implies |Z(\sigma)| = 192 = 4!8$$

Sia

$$H = \text{Sym}(7, 8, 9, 10) = \{ h \in S_{10} \mid h(i) = i, \ \forall i \notin \{7, 8, 9, 10\} \} \cong S_4$$

22

e sia $K = \langle (1234), (56) \rangle$; allora $H, K < Z(\sigma), H \cap K = \{e\}$ e $HK = Z(\sigma)$, per cui

$$Z(\sigma) \cong H \times K \cong S_4 \times (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$

Dimostrazione. Si ha $H < Z(\sigma)$ perché ogni permutazione di H modifica solo l'insieme $\{7, 8, 9, 10\}$, quindi commuta con σ . Inoltre, $H \cong S_4 \Rightarrow |H| = 4!$.

Si ha $K < Z(\sigma)$ perché ogni elemento di K è della forma $(1234)^j(56)^k$, quindi commuta sempre con σ . Visto che (1234) ha ordine 4 e (56) ha ordine 2 e i due cicli sono disgiunti, si ha $|K| = 4 \cdot 2 = 8$. Si nota, in particolare, che $\langle (1234) \rangle \cong C_4 \cong \mathbb{Z}/4\mathbb{Z}$, cioè è isomorfo a un gruppo ciclico di ordine 4; analogamente $\langle (56) \rangle \cong C_2 \cong \mathbb{Z}/2\mathbb{Z}$.

Evidentemente la loro intersezione è banale perché le permutazioni di H agiscono esclusivamente su $\{7, 8, 9, 10\}$, mentre quelle di K su $\{1, 2, 3, 4, 5, 6\}$, quindi deve essere $H \cap K = \{e\}$.

Visto che $H, K < Z(\sigma)$ e |HK| = |H||K| = 192 (essendo $|H \cap K| = 1$), si ha $HK = Z(\sigma)$. Sempre perché $H \cap K$ è banale, si ha $HK \cong H \times K$, da cui

$$Z(\sigma) \cong H \times K \cong S_4 \times (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$

1.8 Gruppi di Sylow e prodotti diretti

Definizione 1.14 (Gruppo di Sylow). Sia G un gruppo finito con $|G| = p^m n$, con p primo e gcd(p, n) = 1; se H < G e $|H| = p^m$, allora H è detto p-Sylow di G.

Esempio 1.4. Si considera il gruppo diedrale D_7 ; si ha $|D_7| = 14 = 7 \cdot 2$, con $|\langle \rho \rangle| = 7$; allora $\langle \rho \rangle$ è un 7-Sylow di D_7 ed è unico. Tuttavia, i p-Sylow non sono unici; per esempio, i $\langle \rho^i \sigma \rangle \subset D_7$ sono sette 2-Sylow.

Lemma 1.6.1. Siano $H, K \triangleleft G$, con $H \cap K = \{e\}$; allora hk = kh, $\forall h \in H$, $\forall k \in K$.

Dimostrazione. Si ha $hkh^{-1}k^{-1} = (hkh^{-1})k^{-1}$; visto che K è normale, allora $hkh^{-1} \in K$, quindi $hkh^{-1}k^{-1} \in K$. Allo stesso tempo, $hkh^{-1}k^{-1} = h(kh^{-1}k^{-1})$ e, siccome anche H è normale, si ha $kh^{-1}k^{-1} \Rightarrow hkh^{-1}k^{-1} \in H$. Allora, visto che $hkh^{-1}k^{-1} \in H \cap K$ e visto che $H \cap K = \{e\}$ per assunzione, si ha $hkh^{-1}k^{-1} = e \Rightarrow hk = kh$.

Teorema 1.7. Sia G un gruppo e siano $H, K \triangleleft G$; se HK = G e $H \cap K = \{e\}$, allora $G \cong H \times K$.

Dimostrazione. Sia $\phi: H \times K \to G$ tale che $\phi((h,k)) = hk$; allora ϕ è un omomorfismo per il lemma precedente (1.6.1), è iniettiva per la seconda ipotesi ed è suriettiva per la prima.

Corollario 1.7.1. In un prodotto diretto, i fattori commutano fra loro.

Osservazione 1.7. Sia $G = H \times K$; per il teorema precedente (1.7), $Z(H \times K) \cong Z(H) \times Z(K)$, visto che $Z(H) \times \{e_K\}$ e $\{e_h\} \times Z_K$ sono sottogruppi normali di $Z(H \times K)$. Conseguentemente, ricordando la proposizione 1.1, si trova:

$$\operatorname{Int}(H \times K) \cong (H \times K)/Z(H \times K) \cong H/Z(H) \times K/Z(K) \cong \operatorname{Int}(H) \times \operatorname{Int}(K)$$

dove il penultimo isomorfismo è ottenuto definendo

$$\gamma: \begin{array}{ccc} H \times K & \longrightarrow & H/Z(H) \times K/Z(K) \\ (h,k) & \longmapsto & (h+Z(H),k+Z(K)) \end{array}$$

e dal I teorema di omomorfismo.

Teorema 1.8. Sia

$$\phi: \begin{array}{ccc} \operatorname{Aut}(H) \times \operatorname{Aut}(K) & \longrightarrow & \operatorname{Aut}(H \times K) \\ (f,g) & \longmapsto & \gamma = (f,g) \end{array}$$

Allora ϕ è un omomorfismo iniettivo, mentre è suriettivo se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

Dimostrazione. Intanto, γ è ben definita perché $\forall (f,g) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, si ha $f(h) \in H$, $\forall h \in H$ e $g(k) \in K$, $\forall k \in K$, quindi $\gamma((h,k)) = (f(h),g(k)) \in H \times K$.

Poi, ϕ è ben definita perché γ è un automorfismo; infatti è un omomorfismo:

$$\gamma((h,k)(h',k')) = (f(hh'), g(kk')) = (f(h)f(h'), g(k)g(k')) = \gamma((h,k))\gamma(h',k')$$

È anche iniettiva perché

$$\operatorname{Ker} \gamma = \{(h, k) \in H \times K \mid \gamma((h, k)) = (e_H, e_K)\} = \{(h, k) \in \operatorname{Ker} f \times \operatorname{Ker} g\}$$
$$= \{(e_H, e_K)\}$$

ed è suriettiva perché $\forall (h,k) \in H \times K$, $\exists ! (h_0,k_0) \in H \times K : ((f(h_0),g(k_0)) = (h,k)$, dove si è usato, in tutte le dimostrazioni, che sia f che g sono automorfismi. Segue che γ è effettivamente un automorfismo di $H \times K$.

Ora si verifica che ϕ è un omomorfismo ed è sempre iniettivo; la prima vale perché

$$\phi((f,g)(\varphi,\psi)) = \phi(f \circ \varphi, g \circ \psi) = (f \circ \varphi, g \circ \psi) = (f,g) \circ (\varphi,\psi) = \phi((f,g)) \circ \phi((\varphi,\psi))$$

mentre è iniettivo perché $\phi((f,g)) = \mathrm{Id}_{H \times K} \iff f = \mathrm{Id}_H e g = \mathrm{Id}_K.$

Ora si dimostra che ϕ è suriettivo se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

• (\Leftarrow) Si assume che $H \times \{e_K\}$ e $\{e_H\} \times K$ siano caratteristici in $H \times K$ e si mostra che ϕ è suriettivo. Per farlo, si considerano, $\forall \gamma \in \text{Aut}(H \times K)$, le mappe $f: H \to H$

e $g:K\to K$ tali che

$$f(h) = \pi_H \gamma(h, e_K)$$
 $g(k) = \pi_K \gamma(e_H, k)$

e si dimostra che $f \in Aut(H)$, $g \in Aut(K)$ e $\gamma = \phi(f,g)$. Si nota che, sia f che g sono composizioni di due omomorfismi, quindi sono, a loro volta, omomorfismi; inoltre

$$\operatorname{Ker} f = \{ h \in H \mid \pi_H \gamma(h, e_K) = e_H \} = \{ h \in H \mid \pi_H(h', e_K) = e_H \}$$
$$= \{ h \in H \mid e_H = h' = \gamma(h) \} = \{ e_H \}$$

Lo stesso vale per g, quindi entrambe le mappe sono omomorfismi iniettivi. Usando il fato che γ è suriettiva, si ha che $\forall h' \in H$, $\exists h \in H : \gamma(h, e_K) = (h', e_K)$, quindi $f(h) = \pi_H \gamma(h, e_K) = \pi_H(h', e_K) = h'$ e lo stesso si può ripetere per g quindi f e g sono automorfismi. Per concludere, si nota che

$$\phi(f,g)((h,k)) = (\pi_H \gamma((h,e_K)), \pi_K \gamma((e_H,k))) = (h',k') = \gamma(h,k)$$

• (\Rightarrow) Sia ϕ anche suriettivo, quindi è un isomorfismo; si mostra che $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

Se ϕ è suriettivo, significa che ogni automorfismo di $\operatorname{Aut}(H \times K)$ è della forma $(f,g): f \in \operatorname{Aut}(H), \ g \in \operatorname{Aut}(K), \ \text{ma allora, per} \ \psi \in \operatorname{Aut}(H \times K), \ \text{si ha:}$

$$\psi(H \times \{e_K\}) = f(H) \times \{e_K\} = H \times \{e_K\}$$

perché f è un automorfismo di H e $\{e_K\} \xrightarrow{g} \{e_K\}$ perché g è un automorfismo di K.

Proposizione 1.18. Sia $G = H \times K$, con |H| = n e |K| = m; se gcd(n, m) = 1, allora H e K sono caratteristici in G.

Dimostrazione. Sia $f \in \text{Aut}(H \times K)$, con $f(h, e_K) = (h', k')$; visto che $\text{ord}((h, e_K)) = \text{ord}(h) \mid n$, deve essere $\text{ord}((h', k')) = \text{mcm}(\text{ord}(h'), \text{ord}(k')) \mid n$, visto che f è automorfismo e, in particolare $\text{ord}(k') \mid n$. Per ipotesi, deve essere $\text{ord}(k') \mid m$, ma, visto che gcd(n, m) = 1, deve essere $k' = e_K$, da cui $f(H \times \{e_K\}) \subset H \times \{e_K\}$. Lo stesso procedimento si può applicare a $f(e_H, k)$.

1.9 Esercizi e complementi

1.9.1 Complementi di teoria

1.9.2 Esercizi

Esercizio 1.2. Studiare $\operatorname{Aut}(\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$.

Svolgimento. Si nota che $\mathbb{Z}/20\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$, quindi:

$$\operatorname{Aut}(\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/5\mathbb{Z})$$
$$\cong \operatorname{Aut}(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/4\mathbb{Z}$$

dove si è usato che $(\mathbb{Z}/5\mathbb{Z})^*$ è ciclico di ordine 4, quindi isomorfo a $\mathbb{Z}/4\mathbb{Z}$. Rimane da studiare $\operatorname{Aut}(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$.

Il gruppo $G_2 = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ha, come generatori, $\langle (a,0), (0,b) \rangle$, con ord((a,0)) = 4 e ord((0,b)) = 2; per studiare gli automorfismi di G_2 , è necessario e sufficiente stabilire come si comportano su questi elementi, cioè imporre che vengano mandati in altri elementi di ordine 4 e 2 rispettivamente.

Concretamente, siano (1,0) e (0,1) i generatori di ordine 4 e 2 rispettivamente; il primo, allora, può essere mandato in un elemento di $\{(1,0),(3,0),(1,1),(3,1)\}$, mentre il secondo in un elemento di $\{(0,1),(2,0),(2,1)\}$.

Ora, considerando $u \in \{(1,0), (3,0), (1,1), (3,1)\}$, $\langle u \rangle$ è un gruppo ciclico di ordine 4, pertanto contiene un elemento di ordine 2, che è proprio u^2 ; evidentemente, il gruppo $\langle u, u^2 \rangle \neq G_2$ perché ha ordine 4, quindi, fissato u, si deve rimuovere dalla lista degli elementi di ordine 2 quello corrispondente a u^2 .

A questo punto, le possibili scelte sono 4 dall'insieme degli elementi di ordine 4 e 2 da quelli di ordine 2, per un totale di 8 automorfismi.

Si è dimostrato che $|\operatorname{Aut}(G_2)|=8$; ora si mostra che $\operatorname{Aut}(G_2)\cong D_4$. Per farlo, si cercano due elementi $\alpha,\Gamma\in\operatorname{Aut}(G_2)$ tali che $\operatorname{ord}(\Gamma)=4$, $\operatorname{ord}(\alpha)=2$ e $\alpha\Gamma\alpha=\Gamma^{-1}$. Si prendono $\alpha((1,0))=(1,0),\ \alpha(0,1)=(2,1)$ e $\Gamma((0,1))=(2,1)$ e $\Gamma((1,0))=(1,1)$; si osserva che:

$$\alpha((x,y)) = \alpha(x(1,0) + y(0,1)) = x(1,0) + y(2,1) = (2y + x, y)$$

$$\Gamma((x,y)) = \Gamma(x(1,0) + y(0,1)) = x(1,1) + y(2,1) = (2y + x, x + y)$$

Da terminare