

APPRENTISSAGE MACHINE & DEEP LEARNING

Classification supervisée L'exemple des SVMs

A. Boulch, A. Chan Hon Tong, S. Herbin, B. Le Saux

Interprétation des données

Caractéristiques bien pensées Apprentissage Expertise

Classification supervisée

Apprentissage supervisé

- Sur / Sous apprentissage
- Classification
- Régularisation
- SVM

Interprétation des données

Prendre une décision basée sur l'expérience

6 Formation DL 2017

Apprentissage

- Déterminer une fonction de décision
- Les données de test et de train sont différentes
 - Train : les données qu'on maîtrise
 - Test : les nouvelles données sur lesquelles on applique l'algorithme
 - ⇒ On veut une fonction de décision la plus générique possible

Apprentissage Train & Test

Données disponibles (hors ligne)

Données à traiter (en ligne)

Ensemble d'apprentissage (observé)

Ensemble de test (non observé)

Que veut-on apprendre?

- Apprentissage non supervisé
 - Construire une fonction de décision à partir des caractéristiques uniquement
 - Clustering (K-means, Mean-shift ...)
- Apprentissage supervisé
 - Construire une fonction décision à partir de données pour lesquelles la décision souhaitée est connue.

Classification supervisée

Apprentissage supervisé

Sur / Sous apprentissage

- Classification
- Régularisation
- SVM

- Exemple 2D à deux classes
- Non linéairement séparable

Sur apprentissage (overfitting)

Apprentissage par coeur Très bon sur les données d'entraînement, mauvais sur le test.

Sous apprentissage

Peu discriminant

- Type de fonction de décision non adaptées
- Problème 'trop' compliqué, mauvais espace de caractéristique

Mauvais en train et en test

Bon apprentissage

Peu discriminant

- Type de fonction de décision non adaptées
- Problème 'trop' compliqué, mauvais espace de caractéristique

Mauvais en train et en test

Problème :

- Comment savoir dans quel cas on se trouve ?
 - L'ensemble de test ne peut pas être utilisé (il est a priori inconnu)
 - On ne peut pas forcément visualiser la fonction de décision
- ⇒ Utiliser un ensemble de validation

Validation

17 Formation DL 2017

Validation croisée

18 Formation DL 2017

Classification supervisée

- Apprentissage supervisé
- Sur / Sous apprentissage

Classification

- Régularisation
- SVM

Classification

Régression

$$x \in \mathbb{R}^d \to y \in \mathbb{R}^k$$

Classification

- Binaire
$$x_i \in \mathbb{R}^d \rightarrow y_i \in A = \{-1, 1\}$$

- Multilabel
$$x_i \in \mathbb{R}^d \rightarrow y_i \in A = \{0, 1, ..., N\}$$

- Détection
$$x_i \in \mathbb{R}^d \rightarrow y_i \in A = \{0, 1, ..., N\} \times \mathbb{R}^d$$

- Rejet
$$x_i \in \mathbb{R}^d \rightarrow y_i \in A = \{0, 1, ..., N, other\} \times \mathbb{R}^d$$

Erreur de généralisation

Erreur de généralisation (ou de test, ou idéale…)

$$E_{test}(w) = E_{X,Y}[\{D(x,w) \neq y\}]$$

Inaccessible

Erreur empirique

Risque ou erreur empirique

$$E_{train}(w, L) = \frac{1}{N} \sum_{i=1}^{N} \{ D(x_i, w) \neq y_i \}$$

Erreur de généralisation (ou de test, ou idéale…)

$$E_{test}(w) = E_{X,Y}[\{D(x,w) \neq y\}]$$

Critère à optimiser (fonction objectif):

$$Loss(w, L) = \frac{1}{N} \sum_{i=1}^{N} l(D(x_i, w), y_i)$$

Fonction objectif

Risque ou erreur empirique

$$E_{train}(w, L) = \frac{1}{N} \sum_{i=1}^{N} \{ D(x_i, w) \neq y_i \}$$

Erreur de généralisation (ou de test, ou idéale…)

$$E_{test}(w) = E_{X,Y}[\{D(x,w) \neq y\}]$$

Critère à optimiser (fonction objectif):

Loss
$$(w, L) = \frac{1}{N} \sum_{i=1}^{N} l(D(x_i, w), y_i)$$

Les fonctions de coût

- Quelques fonctions de coût classique
 - Squared loss (I2)

$$l(D(x_i, w), y_i) = (D(x_i, w) - y_i)^2$$

- L1 loss

$$l(D(x_i, w), y_i) = |D(x_i, w) - y_i|$$

- 0/1 loss (2 classes -1 et 1)

$$l(D(x_i, w), y_i) = 1(D(x_i, w), y_i \leq 0)$$

- Hinge loss (2 classes -1 et 1)

$$l(D(x_i, w), y_i) = max(0, 1 - D(x_i, w)y_i)$$

Exponential loss (2 classes -1 et 1)

Autres fonctions de coût classiques

$$l(y,y')=1[yy'\leq 0]$$

$$l(y, y') = \max(0,1-yy')$$

$$l(y, y') = \exp(-yy')$$

$$l(y, y') = (y - y')^2$$

Classification supervisée

- Apprentissage supervisé
- Sur / Sous apprentissage
- Classification
- Régularisation
- SVM

Un exemple « paradigmatique »: la régression polynomiale

- La courbe verte est la véritable fonction à estimer (non polynomiale)
- Les données sont uniformément échantillonnées en x mais bruitées en y.
- L'erreur de régression est mesurée par la distance au carré entre les points vrais et le polynôme estimé.

Quelles sont les meilleures régressions?

Une approche simple pour contrôler la complexité

Si on pénalise les grandes valeurs des coefficients du polynôme, on obtient une fonction moins « zigzagante »

Minimiser l'erreur

Risque ou erreur empirique

$$\mathsf{E}_{\mathrm{train}}(\mathbf{w},\mathsf{L}) = \frac{1}{N} \sum_{i=1}^{N} \{ D(\mathbf{x}_i,\mathbf{w}) \neq y_i \}$$

Erreur de généralisation (ou de test, ou idéale…)

$$\mathsf{E}_{\mathsf{test}}(\mathbf{w}) = E_{\mathbf{X},Y}[D(\mathbf{x},\mathbf{w}) \neq y]$$

Critère à optimiser (fonction objectif):

Regularisation: E_{RMS} vs. $ln(\lambda)$

$$\mathsf{E}_{\mathrm{RMS}}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} \{ D(\mathbf{x}_i, \mathbf{w}) - t_i \}^2$$

Classification supervisée

- Apprentissage supervisé
- Sur / Sous apprentissage
- Classification
- Régularisation

•SVM

- Principe
- Classifieur linéaire
- Noyaux
- Multiclasse

Principe

• 2 classes

36 Formation DL 2017

Principe

 Hypothèse : données linéairement séparables

Classification supervisée

- Apprentissage supervisé
- Sur / Sous apprentissage
- Classification
- Régularisation

•SVM

- Principe
- Classifieur linéaire
- Noyaux
- Multiclasse

Classifieur linéaire

• Équation de l'hyperplan séparateur

$$b + \mathbf{w} \cdot \mathbf{x} = 0$$

• Équation du classifieur linéaire (y=1 ou -1)

$$D(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(b + \mathbf{w}.\mathbf{x})$$

Erreur

$$\mathsf{E}_{test}(\mathbf{w},\mathsf{L}) = \frac{1}{N} \sum_{i=1}^{N} \left\{ y_i. \mathrm{sign}(b + \mathbf{w}.\mathbf{x}_i) < 0 \right\}$$

Classifieur linéaire

Quel plan choisir?

Classifieur Large Marge

Choisir l'hyperplan qui maximise la distance aux points les plus proches

Support Vector Machine

On cherche l'hyperplan qui maximise la <u>marge</u>.

$$\mathbf{x}_i$$
 positif $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i$$
 négatif $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

Pour les vecteurs de $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ support,

Distance entre point et $|\mathbf{x}_i \cdot \mathbf{w} + b|$ hyperplan: $||\mathbf{w}||$

Pour les « support vectors »:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \quad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

Principe (Large Margin)

 Maximiser la marge = distance des vecteurs supports à l'hyperplan séparateur

$$\max \frac{1}{\|\mathbf{w}\|^2}$$

Sous contraintes

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$

• Les vecteurs supports :

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

Le 1 est conventionnel. N'importe quelle constante >0 est valable.

Formulation du SVM

• $\min_{w,b} \|w\|^2$

Tel que

- $y_i(w \cdot x_i + b) \ge 1 \ \forall i$
- Si les données sont séparables :
 - Problème d'optimisation quadratique avec contraintes linéaires
 - Grand nombre de manières de l'optimiser

Classification Soft Margin

$$\min_{w,b} \|w\|^2$$
 Tel que: $y_i(w \cdot x_i + b) \ge 1 \ \forall i$

Comment traiter le cas non linéairement séparable?

Idée

• Tolérer certaines violations de contraintes

Slack Variables

$$\min_{w,b} \|w\|^2$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 \ \forall i$$

$$\min_{w,b} \|w\|^2 + C \sum_i \varsigma_i$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$
$$\varsigma_i \ge 0$$

Permet de relacher la contrainte de séparabilité pour chaque exemple.

slack variables (une par exemple)

Slack Variables

$$\min_{w,b} \|w\|^2 + C \sum_{i} \varsigma_i$$

Tel que:

$$y_i(w \cdot x_i + b) + \varsigma_i \ge 1 \quad \forall i$$
$$\varsigma_i \ge 0$$

Relâchement de la contrainte

Slack Variables

Compromis entre marge et pénalisation de la contrainte

Valeur du relâchement de la contrainte

tq

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$

$$\varsigma_i \ge 0$$

Contrainte autorisée à être relâchée

Soft Margin SVM

$$\min_{w,b} \|w\|^2 + C \sum_{i} S_i$$

Tel que

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$
$$\varsigma_i \ge 0$$

On garde un problème quadratique!

Soft Margin SVM

$$\min_{w,b} \|w\|^2 + C \sum_i \varsigma_i$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 - \varsigma_i \quad \forall i$$

$$\varsigma_i \ge 0$$

$$\varsigma_i = \max(0,1-y_i(w\cdot x_i+b))$$

$$\min_{w,b} \|w\|^2 + C \sum_i \max(0,1-y_i(w \cdot x_i + b))$$

Regularisation

Hinge Loss

Problème d'optimisation non contraint Autres méthodes d'optimisation (descente de gradient)

Code (Python)


```
>>> # data
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> # create and train the classifier
>>> from sklearn.svm import SVC
>>> clf = SVC(C=1.0)
>>> clf.fit(X, y)
>>> # predict
>>> print(clf.predict([[-0.8, -1]]))
 [1]
```

53 Formation DL 2017

Classification supervisée

- Apprentissage supervisé
- Sur / Sous apprentissage
- Classification
- Régularisation

•SVM

- Principe
- Classifieur linéaire
- Noyaux
- Multiclasse

Données non linéairement séparables

• Transformation non linéaire $\phi(x)$ pour séparer linéairement les données d'origine

 $\phi(x)$ = Transformation polynomiale

SVM: forme duale

Problème d'optimisation sous contrainte

Pour simplifier l'expression des calculs

Primal

$$\underset{\mathbf{w}}{\operatorname{argmin}}_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2} + C \sum_{i} \xi_{i}$$
 Multiplicateurs de Lagrange $s.t. \ \forall i, y_i(\mathbf{w}. \mathbf{x}_i + b) \geq 1 - \xi_{i}$ α_i $\beta_i \geq 0$ β_i

Dual (Lagrangien)

$$L(\boldsymbol{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$= \frac{\|\boldsymbol{w}\|^2}{2} + \sum_{i} (C\xi_i - \alpha_i(y_i(\boldsymbol{w}, \boldsymbol{x}_i + b) - 1 + \xi_i) - \beta_i \xi_i)$$

$$s. t. \ \forall i, \alpha_i \geq 0, \beta_i \geq 0$$

Sparsité du SVM

 Seuls certains α sont non nuls = autre manière de définir les vecteurs de support.

Optimalité =
$$\alpha_i(y_i w^T x_i - 1 + \xi_i) = 0$$

Direction de l'hyperplan séparateur $\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$

Formulation duale

Lagrangien

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\text{tq} \ \forall i, \text{ otc} \leq \alpha_{i} \leq C$$
Produit scalaire uniquement

« Kernel Trick »

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$

$$\mathsf{tq} \ \forall i, 0 \leq \alpha_{i} \leq C \qquad \mathsf{Noyau}$$

Le noyau *K* est un produit scalaire dans l'espace transformé:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Il est uniquement nécessaire de connaître la similarité entre données pour introduire la non linéarité dans le problème (avec des conditions...)

Noyaux

- Permet d'introduire des mesures de similarités propres au domaine étudié et sans avoir à gérer la complexité de la transformation
- Permet de séparer modélisation = noyau de la classification et SVM (optimisation)
- Définit la fonction de classification à partir de noyaux « centrés » sur les vecteurs de support

$$D(\mathbf{x}, \mathbf{w}) = b + \sum_{i} \alpha_{i} y_{i} \mathbf{K}(\mathbf{x}_{i}, \mathbf{x})$$

Noyaux

Polynômes de degrés supérieurs à d

$$K(x,y) = (x,y+1)^{\underline{d}}$$

Noyau gaussien

Paramètres à définir = degré de liberté supplémentaire

$$K(x, y) = \exp\left(-\frac{(x - y)^T(x - y)}{2\sigma^2}\right)$$

Intersection d'histogrammes

$$K(\mathbf{x}, \mathbf{y}) = \sum_{i} \min(x^{i}, y^{i})$$

Noyaux - Intérêt

- Noyaux = partie « métier »
 - Connaissance du sens à donner à la similarité
 - Choix expert des espaces de représentation et des caractéristiques informatives
- Classification/Optimisation = partie « ML »
 - Utilisation d'optimiseurs génériques
 - Certaine optimalité à représentation du problème donnée
- Utilisation des SVM à noyaux.
 - Représentations multi dimensionnelles (mais pas trop...)
 - Données de volume raisonnable
 - mais passage à l'échelle plus délicat (on se restreint alors en général aux noyaux linéaires)
- « Deep Learning » montrera que ce peut être sous-optimal...

Classification supervisée

- Apprentissage supervisé
- Sur / Sous apprentissage
- Classification
- Régularisation

•SVM

- Principe
- Classifieur linéaire
- Noyaux
- Multiclasse

Multiclasse

- Comment passer d'une classification binaire à multiple?
- Plusieurs techniques:
 - One vs All
 - One vs One (ou All vs All)
- OVO:
 - on apprend autant de classifieurs que de paires de classes
 - Classification = choix de la classe ayant le plus de votes
- OVA:
 - on apprend un classifieur par classe
 - Classification = choix de la classe ayant le meilleur score

Multiclasse - One vs One

apple vs orange

orange

apple

banana

banana

+1

-1

orange vs banana

+1

-1

-1

apple vs banana

+1

+1

-1

-1

_

Multiclasse - One vs One

apple vs orange

+1

+1

-1

apple vs banana

+1

+1

-1

-1

Vote

orange vs banana

+1

-1

-1

Quelle classe?

Multiclasse – One vs One

apple vs orange

+1

+1

-1

orange vs banana

+1

apple vs banana

+1

+1

-1

apple

-1

-1

69 Formation DL 2017

SVM - conclusion

- Une formulation optimale <u>quadratique</u> du problème de classification binaire:
 - Primal: optimisation d'un critère empirique + régularisation
 - Dual: permet d'introduire sparsité et « kernel trick »
 - → plusieurs manières d'optimiser
- Les solutions s'expriment comme des combinaisons linéaires éparses de noyaux:

$$D(\mathbf{x}, \mathbf{w}) = b + \sum_{i} \alpha_{i} y_{i} \mathbf{K}(\mathbf{x}_{i}, \mathbf{x})$$

où α_i >0 seulement pour les vecteurs de support, 0 sinon.

- En pratique, ce qu'il faut régler:
 - Le coefficient de régularisation: C
 - Le type de noyau et ses caractéristiques
 - · Les paramètres de l'optimiseur

Conclusion

- Apprentissage supervisé
 - Problème connu
 - En pratique de nombreuses librairies
- SVM
 - Démarche générique et solide théoriquement
 - Bonne performances (jeu de données de taille modeste, faibles dimensions)
- Il existe de nombreuses méthodes de classification :
 - Arbres de décision, boosting, réseaux de neurones...

Codes

LibSVM + LibLinear (nombreuses interfaces)

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Scikit-Learn (Python)

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Matlab