

SPM@TESTES

Teste de Matemática 11.º ano

2023

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

A prova é formada por itens de escolha múltipla e de resposta restrita. Os critérios de classificação dos itens de resposta restrita estão organizados por etapas, atribuindo-se, a cada uma delas, uma pontuação.

Caso os alunos adotem um processo não previsto nos critérios específicos, cabe ao professor corretor adaptar a distribuição da cotação atribuída.

Deve ser atribuída a classificação de zero pontos nas seguintes situações:

- Caso um aluno apresente apenas o resultado final de um item, ou de uma etapa, quando é pedida a apresentação de cálculos ou justificações;
- Caso o aluno utilize de forma inequívoca a calculadora, uma vez que tal não é solicitado nesta prova.

Nas seguintes situações deve descontar-se um ponto às cotações estabelecidas para a etapa respetiva:

- Ocorrência de um erro de cálculo;
- Apresentação de uma resposta com o formato que não esteja de acordo com o que foi solicitado;
- Apresentação de expressões com erros do ponto de vista formal.

Caso ocorram erros que revelem desconhecimento de conceitos, de regras ou de propriedades ou o aluno apresente uma resolução incompleta de uma etapa, deve descontar-se até metade da cotação dessa etapa.

CRITÉRIOS ESPECÍFICOS DE CLASSIFICAÇÃO

Questão	1.1	1.2	2.	3.1	3.2	4.	5.1	5.2	6.	7.	8.	9.1	9.2	9.3	10.	Gru	оо А	Grup	Grupo B	
Questias								0.1								11.1	11.2	11.1	11.2	
Cotação	16	12	8	12	16	8	16	12	8	16	8	16	12	8	8	12	12	12	12	

	tem	Descrição	Cotação
1.			28
	1.1.		16
		Processo 1	
		ullet Indicar as coordenadas do ponto A , em função de $lpha$	
		ullet Indicar as coordenadas do ponto B , em função de $lpha$	
		$ullet$ Escrever \overline{BC} , em função de $lpha$ 3 pontos	
		ullet Obter a altura do triângulo [ABC], em função de $lpha$ 3 pontos	
		Obter a expressão pretendida 6 pontos	
		Processo 2	
		ullet Indicar as coordenadas do ponto A , em função de $lpha$	
		ullet Indicar as coordenadas do ponto B , em função de $lpha$	
		$ullet$ Escrever \overline{BC} , em função de $lpha$ 3 pontos	
		ullet Obter a área do triângulo $[OBC]$, em função de $lpha$ 3 pontos	
		ullet Obter a área do triângulo $[AOC]$, em função de $lpha$ 3 pontos	
		Obter a expressão pretendida	
	1.2.		12
		Processo 1	
		• Determinar a inclinação da reta $AC\left(\frac{5\pi}{6}\right)$	
		• Justificar que o triângulo [AOC] é isósceles 3 pontos	
		• Concluir que $\alpha = \frac{2\pi}{3}$ 3 pontos	
		• Determinar as coordenadas do ponto $A(-2, 2\sqrt{3})$	
		Processo 2	
		• Determinar a equação da reta $AC\left(y=-\frac{\sqrt{3}}{3}x+\frac{4\sqrt{3}}{3}\right)$ 4 pontos	
		ullet Determinar a interseção da reta AC com a circunferência 3 pontos	
		• Obter a abcissa do ponto $A(x_A = -2)$	
		• Determinar as coordenadas do ponto $A(-2, 2\sqrt{3})$	
2.		Versão 1 – (B); Versão 2 – (C)	8
3.			28
	3.1.	a Deferir a page de função poriódica de paríoda —	12
		• Referir a noção de função periódica de período π	
		• Determinar $f(x + \pi)$	

l l	• Concluir que $f(x + \pi) = f(x), \forall x \in \mathbb{R}$					
	• Concluir que f é uma função periódica de período π					
2.2	Concluir que j e uma runção periodica de periodo il	16				
3.2.	• Resolver a equação $f(x) = \sin^2 x$	10				
	• Escrever $\sin x \cos x - \sin^2 x = 0$					
	• Escrever $\sin x (\cos x - \sin x) = 0$					
	• Escrever $\sin x = 0 \lor \cos x - \sin x = 0$ 1 ponto					
	• Escrever $\sin x = 0 \vee \cos x = \sin x$					
	• Obter $x=k\pi \lor x=rac{\pi}{4}+k\pi$, $k\in\mathbb{Z}$ (ou equivalente) . 8 pontos					
	$ullet$ Concluir que os valores de $x\in [-\pi$, $\pi[$ que satisfazem a equação são					
	$-\pi, -\frac{3\pi}{4}, 0 e^{\frac{\pi}{4}}$					
•	Versão 1 – (A); Versão 2 – (C)					
•						
5.1		16				
	Designemos por s a reta que passa no ponto A e é perpendicular ao					
	plano $lpha$.					
	• Escrever $s: (x, y, z) = (2, -1, 8) + k(2, -1, 1), k \in \mathbb{R}$ 4 pontos					
	 Escrever as coordenadas de um ponto genérico da reta s, 					
	em função de k					
	ullet Obter uma equação na variável k , substituindo x , y e z na					
	equação do plano $lpha$ pelas coordenadas de um ponto genérico					
	da reta s e obter o valor de k (-2) 5 pontos					
	 Obter as coordenadas do ponto de interseção da reta s com 					
	o plano $lpha\left((-2,1,6)\right)$					
	• Determinar o raio da superfície esférica $(2\sqrt{6})$					
5.2		12				
	Seja $\vec{r}(3m, m, m-6)$ um vetor diretor da reta $r \in \vec{n}(2, -1, 1)$ um vetor					
	normal ao plano $lpha$.					
	• Concluir que como a reta r está contida no plano α então $\vec{r} \perp \vec{n} \Leftrightarrow \vec{r} \cdot \vec{n}$					
	·					
	$\vec{n}=0$ e qualquer ponto da reta r pertence ao plano $lpha$ 2 pontos					
	$ullet$ Determinar $ec{r}\cdotec{n}=0$ e obter $m=1$ 5 pontos					
	• Substituir o ponto $(n, -1, -4m)$ no plano α e obter $n=25$ pontos					
	Versão 1 – (B); Versão 2 – (D)					
•						
		:				
	A classificação é atribuída de acordo com as seguintes etapas:	:				
	 A classificação é atribuída de acordo com as seguintes etapas: Exprimir a₂ e a₃ em função da razão r da progressão 	:				
	• Exprimir a_2 e a_3 em função da razão r da progressão	:				
		:				

	ı		1	
		Escrever o sistema de equações que traduz o problema		
		$\begin{cases} r = 1 + s \\ 3r^2 = 3 + 7s \end{cases}$ ou equivalente		
		Resolver o sistema 6 pontos		
		• Responder razão da progressão geométrica = $\frac{4}{3}$		
		e razão da progressão aritmética = $\frac{1}{3}$ 2 pontos		
		e razao da progressão aritificação — 3		
8.		Versão 1 – (D); Versão 2 (A)		8
<u> </u>		VC1340 1 (D); VC1340 2 (A)		
9.				36
	9.1		16	
		• Escrever e resolver a equação $f(x) = 0$		
		• Indicar as coordenadas do ponto $B\left(\frac{4}{3},0\right)$		
		• Escrever e resolver a equação $f(x) = g(x)$ 6 pontos		
		• Indicar as coordenadas do ponto $A(4,4)$		
		• Calcular a área do triângulo $[OBA]$ $\left(\frac{8}{3}\right)$ 3 pontos		
	9.2	calculat a area as triangulo [6511] (3)	12	
	9.2	Definir o domínio da função <i>h</i> por uma condição	12	
		• Resolver a condição $-f(x) \ge 0$ no domínio de h		
		• Escrever o domínio na forma de intervalo $\left(\begin{bmatrix} \frac{4}{3}, 2 \end{bmatrix}\right)$		
	9.3	\L5 L7	8	
	9.3	Versão 1 – (C); Versão 2 – (D)	0	
10.		Versão 1 – (B); Versão 2 – (C)		8
		GRUPO A		
11.				24
	11.1	• Escrever $\lim (a_n \times c_n) = \lim \frac{4n^3 - 2n^2}{\sqrt{4n^2 - 1}}$	12	
		Reconhecer a existência de uma indeterminação 2 pontos		
		Levantar a indeterminação por um dos dois processos possíveis		
		o Processo 1		
		• Escrever $\lim \frac{4n^3 - 2n^2}{\sqrt{4n^2 - 1}} = \lim \frac{\sqrt{(4n^3 - 2n^2)^2}}{\sqrt{4n^2 - 1}}$		
		• Escrever $\lim \frac{\sqrt{(4n^3 - 2n^2)^2}}{\sqrt{4n^2 - 1}} = \lim \sqrt{\frac{16n^6 - 16n^5 + 4n^4}{4n^2 - 1}} \dots 2$ pontos		
		• Escrever $\lim \sqrt{\frac{16n^6 - 16n^5 + 4n^4}{4n^2 - 1}} = \sqrt{\lim \frac{16n^6}{4n^2}}$ 2 pontos		
		• Escrever $\sqrt{\lim \frac{16n^6}{4n^2}} = \sqrt{\lim (4n^4)} = \sqrt{+\infty} = +\infty$ 1 ponto		
	Ī		1	
		o Processo 2		
		• Escrever $\lim \frac{4n^3 - 2n^2}{\sqrt{4n^2 - 1}} = \lim \frac{n^2(4n - 2)}{\sqrt{n^2(4 - \frac{1}{n^2})}}$		

		• Escrever $\lim \frac{n^2(4n-2)}{\sqrt{n^2(4-\frac{1}{n^2})}} = \lim \frac{n^2(4n-2)}{n\sqrt{4-\frac{1}{n^2}}}$ 2 pontos	
		• Escrever $\lim \frac{n^2(4n-2)}{n\sqrt{4-\frac{1}{n^2}}} = \lim \frac{n(4n-2)}{\sqrt{4-\frac{1}{n^2}}}$ 1 ponto	
		• Escrever $\lim \frac{n(4n-2)}{\sqrt{4-\frac{1}{n^2}}} = \frac{+\infty}{2}$ 2 pontos	
		• Obter o valor $\lim_{n \to \infty} (a_n \times c_n) = +\infty$	
	11.2	• Escrever $\lim(a_n) = \lim(4n^3) = +\infty$ 2 pontos	12
		• Escrever $\lim(b_n) = \lim (2n) \times \lim(-2n^2)$	
		• Concluir que $\lim(b_n) = -\infty$	
		• Indicar o valor lógico da afirmação $\lim a_n \neq \lim b_n$ 1 ponto	
		• Indicar que $\lim \frac{a_n}{b_n} = \lim \frac{4n^3}{-4n^3}$	
		• Concluir que $\lim \frac{a_n}{b_n} = -1$	
		• Concluir que $\lim \frac{b_n}{a_n} = -1$	
		 Indicar o valor lógico da afirmação: 	
		$\lim a_n eq \lim b_n$ mas $\lim \frac{a_n}{b_n} = \lim \frac{b_n}{a_n}$ (verdadeiro) 1 ponto	
		GRUPO B	
11.			
	11.1	• Escrever $\lim_{x \to 2} \left(\frac{x}{f(x)} - \frac{1}{h(x)} \right) = \lim_{x \to 2} \left(\frac{x}{2x^2 - 8} - \frac{1}{x^2 - 4} \right) \dots 1$ ponto	12
		• Reconhecer a existência de uma indeterminação	
		• Escrever $\lim_{x \to 2} \left(\frac{x}{2x^2 - 8} - \frac{1}{x^2 - 4} \right) = \lim_{x \to 2} \left(\frac{x - 2}{2x^2 - 8} \right)$	
		• Escrever $\lim_{x \to 2} \frac{x-2}{2x^2-8} = \lim_{x \to 2} \frac{x-2}{2(x-2)(x+2)}$	
		• Escrever $\lim_{x \to 2} \frac{x-2}{2(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{2(x+2)} = \frac{1}{8}$	
	11.2	Processo 1	12
		• Escrever $\lim_{x \to -\infty} \frac{h(x)}{g(x)} = \lim_{x \to -\infty} \frac{x^2 - 4}{\sqrt{4x^2 - 1}}$ e reconhecer a existência de uma	
		indeterminação 1 ponto	
		• Escrever $r(r-\frac{4}{r})$	
		$\lim_{x \to -\infty} \frac{x^2 - 4}{\sqrt{4x^2 - 1}} = \lim_{x \to -\infty} \frac{x(x - \frac{1}{x})}{\sqrt{x^2(4 - \frac{1}{x^2})}} = \lim_{x \to -\infty} \frac{x(x - \frac{1}{x})}{-x\sqrt{4x^2 - \frac{1}{x^2}}} \dots 3 \text{ pontos}$	
1		$\sqrt{x^2}$	
		• Escrever	
		• Escrever $\lim_{x \to -\infty} \frac{x(x - \frac{4}{x})}{-x\sqrt{4 - \frac{1}{x^2}}} = \lim_{x \to -\infty} \frac{x - \frac{4}{x}}{-\sqrt{4 - \frac{1}{x^2}}} = \frac{-\infty}{-2} = +\infty \dots 2 \text{ pontos}$	
		• Escrever	

Escrever

$$\lim_{x \to +\infty} \frac{x(x - \frac{4}{x})}{x\sqrt{(4 - \frac{1}{x^2})}} = \lim_{x \to +\infty} \frac{(x - \frac{4}{x})}{\sqrt{(4 - \frac{1}{x^2})}} = \frac{+\infty}{2} = +\infty \dots 2 \text{ pontos}$$

Processo 2

- Escrever

$$\lim_{x \to -\infty} \frac{x^{2}-4}{\sqrt{4x^{2}-1}} = \lim_{x \to -\infty} \frac{\sqrt{(x^{2}-4)^{2}}}{\sqrt{4x^{2}-1}} = \lim_{x \to -\infty} \sqrt{\frac{(x^{2}-4)^{2}}{4x^{2}-1}} \dots 3 \text{ pontos}$$

Escrever

$$\lim_{x \to -\infty} \sqrt{\frac{(x^2 - 4)^2}{4x^2 - 1}} = \lim_{x \to -\infty} \sqrt{\frac{x^4 - 8x^2 + 16}{4x^2 - 1}} = \sqrt{\lim_{x \to -\infty} \frac{x^4 - 8x^2 + 16}{4x^2 - 1}} \dots 2 \text{ pontos}$$

Escrever

$$\sqrt{\lim_{x \to -\infty} \frac{x^4 - 8x^2 + 16}{4x^2 - 1}} = \sqrt{\lim_{x \to -\infty} \frac{x^4}{4x^2}} = \sqrt{\lim_{x \to -\infty} \frac{x^2}{4}} = +\infty \dots 2 \text{ pontos}$$

- Escrever e concluir

$$\lim_{x \to +\infty} \frac{x^2 - 4}{\sqrt{4x^2 - 1}} = \lim_{x \to +\infty} \frac{\sqrt{(x^2 - 4)^2}}{\sqrt{4x^2 - 1}} = \lim_{x \to -\infty} \frac{\sqrt{(x^2 - 4)^2}}{\sqrt{4x^2 - 1}} = +\infty ..2 \text{ pontos}$$

• Indicar o valor lógico da afirmação (falso) 1 ponto

Nota: Se o aluno começar por calcular o limite quando x tende para $+\infty$, adapta-se a distribuição da cotação.