Část A (max. zisk 20 bodů) Odpovězte jen tabulkou s číslem otázky a písmenem označujícím Vaši odpověď. Každá otázka má pouze jednu správnou odpověď. Za správnou odpověď je +5 bodů, za nevyplněnou odpověď 0 bodů a za nesprávně vyplněnou odpověď -2 body. Pokud je celkový součet bodů v části A záporný, je tento součet přehodnocen na 0 bodů.

- 1. Nechť má matice \mathbf{A} 5 řádků a 4 sloupce, defekt $def(\mathbf{A}) = 2$. Pak nutně platí:
 - (a) Sloupce matice A tvoří lineárně nezávislý seznam vektorů.
 - (b) Úpravy matice A Gaussovou eliminační metodou mohou defekt zvýšit.
 - (c) $\dim(\operatorname{im}(\mathbf{A})) \geq 2$.
 - (d) Každá nehomogenní soustava (pro libovolné \mathbf{b}) $\mathbf{A}\mathbf{x} = \mathbf{b}$ má nekonečně mnoho řešení.
- 2. Budiž **B** matice typu 3×3 , nechť soustavy $\mathbf{B}\mathbf{x} = \mathbf{e}_1$, $\mathbf{B}\mathbf{x} = \mathbf{e}_2$ a $\mathbf{B}\mathbf{x} = \mathbf{e}_3$ mají každá právě jedno řešení (popořadě \mathbf{a}_1 , \mathbf{a}_2 a \mathbf{a}_3). Pak *musí být nutně pravda*:
 - (a) Seznam vektorů $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ je lineárně závislý.
 - (b) $\det(2 \cdot \mathbf{B}) = 0$.
 - (c) $\det(\mathbf{B}^3) > 0$.
 - (d) K matici B existuje matice inversní.
- 3. Ať **A** je regulární čtvercová matice typu $m \times m$, ať **B** je matice s n lineárně nezávislými sloupci typu a m řádky, kde $m \neq n$. Vyberte nutně pravdivé tvrzení.
 - (a) Součin $\mathbf{B} \cdot \mathbf{A}$ není definován.
 - (b) Součin $\mathbf{A} \cdot \mathbf{B}$ nemá lineárně nezávislé sloupce.
 - (c) $\det(\mathbf{A} \cdot \mathbf{B}) \neq 0$.
 - (d) B je epimorfismus (surjektivní lineární zobrazení).
- 4. Uvažujme lineární prostor $\mathbb C$ nad tělesem $\mathbb C$. Vyberte nepravdivé tvrzení.
 - (a) Seznam vektorů (1, i) z \mathbb{C} je lineárně nezávislý.
 - (b) $\dim(\mathbb{C}) < 3$.
 - (c) V zadaném lineárním prostoru existuje právě jeden nulový vektor.
 - (d) Seznam vektorů (1+i, 1-i) z \mathbb{C} je lineárně závislý.

Část B (max. zisk 20 bodů) V odpovědi je třeba uvést definice uvedených pojmů a dále podrobnou a smysluplnou argumentaci, která objasňuje pravdivost uvedeného tvrzení. Za správně formulované definice je 10 bodů, za správně vedený důkaz je dalších 10 bodů.

Definujte pojmy: vlastní hodnota lineárního zobrazení, vlastní vektor lineárního zobrazení.

Dokažte, že pokud má reálná matice \mathbf{A} typu 2×2 vlastní vektory \mathbf{v}_1 a \mathbf{v}_2 příslušné různým nenulovým vlastním hodnotám a_1 a a_2 , pak je $(\mathbf{v}_1, \mathbf{v}_2)$ lineárně nezávislý seznam vektorů v \mathbb{R}^2 nad \mathbb{R} .

Část C (max. zisk 20 bodů) Kromě zřetelně označeného výsledku (tj., odpovědi celou větou) je nutné odevzdat všechny mezivýpočty a stručné zdůvodnění postupu. Postup musí být zapsán přehledně a srozumitelně. Za chybný postup není možné dostat body, ačkoli nějaké výpočty jsou odevzdány. Za numerickou chybu, ale jinak správný postup, se strhává 1 nebo 2 body. Za část výpočtu je udělen odpovídající poměrný počet bodů z dvaceti.

V tomto příkladu pracujeme s lineárním prostorem \mathbb{R}^2 nad \mathbb{R} se standardním skalárním součinem. Mějme vektory \mathbf{v} a \mathbf{w} , které mají vzhledem k uspořádané bázi $B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$) souřadnice $\mathbf{coord}_B(\mathbf{v}) = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$) a $\mathbf{coord}_B(\mathbf{w}) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$). Ať \mathbf{A} je matice typu 2×2 se sloupci $(\mathbf{a}_1, \mathbf{a}_2)$, kde \mathbf{a}_1 je kolmá projekce vektoru \mathbf{v} na

 $\operatorname{\mathbf{coord}}_B(\mathbf{w}) = \begin{pmatrix} 1 \end{pmatrix}$). At \mathbf{A} je matice typu 2×2 se sloupci $(\mathbf{a}_1, \mathbf{a}_2)$, kde \mathbf{a}_1 je kolma projekce vektoru \mathbf{v} na přímku zadanou rovnicí y = x, a \mathbf{a}_2 je kolmá projekce vektoru \mathbf{w} na přímku zadanou rovnicí y = x. Jaký je determinant matice \mathbf{A} ? (Nápověda: nejdříve si nakreslete obrázek situace.)