Air Quality Index & Water Pollution In Major Cities of Pakistan (2020)

Install Required Libraries:

!pip install pandas matplotlib seaborn plotly

 \rightarrow

Show hidden output

Import Required Libraries:

#Libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from scipy import stats

Load the Dataset:

Load the dataset
df = pd.read_csv('water-air-quality-big-cities-of-pakistan-2020.csv', encoding='latin-1')

Clean the Data:

df.columns = df.columns.str.strip().str.replace('"', '')
print(df.head())

\rightarrow		Count	ry	Regi	on	City	Postal code	population	\
	0	"Pakista	n" "Khybei	r Pakhtunkhw	a"	Abbottabad	22010	148587	
	1	"Pakista	n"	"Punja	b"	Attock	43600	91 475	
	2	"Pakista	n"	_	" "	Bahawalpur	63071	681696	
	3	"Pakista	n"	"Punja	b"	Chakwal	04882	105 977	
	4	"Pakista	n"		" "	Dadu	76150	146179	
		Latitude	Longitude	AirQuality	Wa	terPollution			
	0	34.1500	73.2167	62.5		80.357143			
	1	33.7667	72.3598	75.0		50.000000			
	2	29.3956	71.6722	75.0		60.000000			
	3	32.9300	72.8500	50.0		50.000000			
	4	26.7319	67.7750	50.0		50.000000			

df.tail()

→		Country	Region	City	Postal code	population	Latitude	Longitude	AirQual:
	27	"Pakistan"	"Punjab"	Sheikhupura	39060	411834	31.7083	74.00000	5
	28	"Pakistan"	"Punjab"	Sialkot	5132	3893672	32.5000	74.53330	3
	29	"Pakistan"	"Gilgit- Baltistan"	Skardu	16100	214,848	35.0000	75.63372	10
	30	"Pakistan"	"Sindh"	Sukkur	65080	476776	27.6995	68.86730	5
df.inf	fo()			Nankana					-

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 32 entries, 0 to 31
 Data columns (total 9 columns):
 # Column Non-Null Count Dtype

0	Country	32 non-null	object
1	Region	32 non-null	object
2	City	32 non-null	object
3	Postal code	32 non-null	object
4	population	32 non-null	object
5	Latitude	32 non-null	float64
6	Longitude	32 non-null	float64
7	AirQuality	32 non-null	float64
8	WaterPollution	32 non-null	float64

dtypes: float64(4), object(5)
memory usage: 2.4+ KB

df.describe()

		Latitude	Longitude	AirQuality	WaterPollution
CC	ount	32.000000	32.000000	32.000000	32.000000
m	ean	31.487891	72.196551	51.414259	68.112060
\$	std	2.847269	2.296013	23.656493	20.924851
n	nin	24.860000	67.007000	0.000100	25.000000
2	25%	30.552400	71.492775	32.263514	50.000000
5	60 %	31.895950	73.052400	50.000000	67.187500
7	′5%	33.715850	73.717625	75.000000	83.289659
n	nax	35.920800	75.633720	100.000000	100.000000

df.shape

→ (32, 9)

df.isnull().sum()

	•
Country	0
Region	0
City	0
Postal code	0
population	0
Latitude	0
Longitude	0
AirQuality	0
WaterPollution	0

dtype: int64

Visualize the Data:

You can create various visualizations. Here's an example of a line plot to visualize AQI over time:

Visualize Air Quality Index (AQI):

Create a bar plot to visualize the AQI for each city:

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(12, 6))
sns.barplot(data=df, x='City', y='AirQuality', palette='viridis')
plt.title('Air Quality Index (AQI) of Major Cities in Pakistan (2020)')
plt.xticks(rotation=45)
plt.xlabel('City')
plt.ylabel('Air Quality Index (AQI)')
plt.show()
```

<ipython-input-5-23c566443f61>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v sns.barplot(data=df, x='City', y='AirQuality', palette='viridis')

Visualize Water Pollution:

Create a similar bar plot for water pollution:

```
plt.figure(figsize=(12, 6))
sns.barplot(data=df, x='City', y='WaterPollution', palette='coolwarm')
plt.title('Water Pollution Levels of Major Cities in Pakistan (2020)')
plt.xticks(rotation=45)
plt.xlabel('City')
plt.ylabel('Water Pollution Level')
plt.show()
```

<ipython-input-6-54b8a81baf47>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v sns.barplot(data=df, x='City', y='WaterPollution', palette='coolwarm')

Visualizing Air Quality Index (AQI):

```
import matplotlib.pyplot as plt
import seaborn as sns
# Convert 'AirQuality' to numeric, if necessary
df['AirQuality'] = pd.to_numeric(df['AirQuality'], errors='coerce')
# Sort values by Air Quality
df_sorted_aqi = df.sort_values(by='AirQuality')
plt.figure(figsize=(12, 8))
```

```
sns.barplot(data=df_sorted_aqi, x='AirQuality', y='City', palette='viridis')
plt.title('Air Quality Index (AQI) of Major Cities in Pakistan (2020)', fontsize=16)
plt.xlabel('Air Quality Index (AQI)', fontsize=14)
plt.ylabel('City', fontsize=14)
plt.grid(axis='x')
plt.show()
```

<ipython-input-7-a707b4c385e0>:11: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v sns.barplot(data=df_sorted_aqi, x='AirQuality', y='City', palette='viridis')

Visualizing Water Pollution:

```
# Convert 'WaterPollution' to numeric, if necessary
df['WaterPollution'] = pd.to_numeric(df['WaterPollution'], errors='coerce')

# Sort values by Water Pollution
df_sorted_wp = df.sort_values(by='WaterPollution')

plt.figure(figsize=(12, 8))
sns.barplot(data=df_sorted_wp, x='WaterPollution', y='City', palette='coolwarm')
plt.title('Water Pollution Levels of Major Cities in Pakistan (2020)', fontsize=16)
plt.xlabel('Water Pollution Level', fontsize=14)
plt.ylabel('City', fontsize=14)
plt.grid(axis='x')
plt.show()
```

<ipython-input-8-cec9154d34f7>:8: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v sns.barplot(data=df_sorted_wp, x='WaterPollution', y='City', palette='coolwarm Water Pollution Levels of Major Cities in Pakistan (2020)

Combined Visualization:

Create a combined scatter plot to compare AQI and Water Pollution levels for each city.

```
plt.figure(figsize=(12, 8))
sns.scatterplot(data=df, \ x='AirQuality', \ y='WaterPollution', \ hue='City', \ palette='Set2', \ s='AirQuality', \ y='WaterPollution', \ hue='City', \ palette='Set2', \ hue='City', \ hue='
plt.title('Comparison of AQI and Water Pollution Levels in Major Cities of Pakistan (2020)'
plt.xlabel('Air Quality Index (AQI)', fontsize=14)
plt.ylabel('Water Pollution Level', fontsize=14)
plt.axhline(0, color='gray', linestyle='--')
plt.axvline(0, color='gray', linestyle='--')
 plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.grid()
plt.show()
```


Histogram of Air Quality Index (AQI):

This will help you understand the distribution of AQI values across cities.

```
plt.figure(figsize=(10, 6))
sns.histplot(df['AirQuality'], bins=10, kde=True, color='skyblue')
plt.title('Distribution of Air Quality Index (AQI)', fontsize=16)
plt.xlabel('Air Quality Index (AQI)', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.grid(axis='y')
plt.show()
```


Distribution of Air Quality Index (AQI)

Histogram of Water Pollution Levels:

Similar to the AQI histogram, this will show the distribution of water pollution levels.

```
plt.figure(figsize=(10, 6))
sns.histplot(df['WaterPollution'], bins=10, kde=True, color='salmon')
plt.title('Distribution of Water Pollution Levels', fontsize=16)
plt.xlabel('Water Pollution Level', fontsize=14)
plt.ylabel('Frequency', fontsize=14)
plt.grid(axis='y')
plt.show()
```


Distribution of Water Pollution Levels

Box Plot for AQI and Water Pollution:

Box plots can provide insights into the spread and potential outliers in the data.

```
plt.figure(figsize=(12, 6))
sns.boxplot(data=df[['AirQuality', 'WaterPollution']])
plt.title('Box Plot of AQI and Water Pollution Levels', fontsize=16)
plt.ylabel('Values', fontsize=14)
```

```
plt.xticks([0, 1], ['Air Quality Index (AQI)', 'Water Pollution Level'])
plt.grid(axis='y')
plt.show()
```


Correlation Heatmap:

A heatmap will help visualize the correlation between AQI and water pollution.

```
plt.figure(figsize=(8, 6))
correlation_matrix = df[['AirQuality', 'WaterPollution']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title('Correlation Heatmap', fontsize=16)
plt.show()
```


City-wise Summary Statistics:

Generate summary statistics to get a clearer picture of the data.

summary_stats = df[['AirQuality', 'WaterPollution']].describe()
print(summary_stats)

→ ▼		AirQuality	WaterPollution
	count	32.000000	32.000000
	mean	51.414256	68.112060
	std	23.656500	20.924851
	min	0.000000	25.000000
	25%	32.263514	50.000000
	50%	50.000000	67.187500
	75%	75.000000	83.289659
	max	100.000000	100.000000

Scatter Plot with Trend Line:

Add a regression line to the scatter plot to visualize the relationship between AQI and water pollution.

```
plt.figure(figsize=(12, 8))
sns.regplot(data=df, x='AirQuality', y='WaterPollution', scatter_kws={'s':100}, line_kws={'
plt.title('AQI vs Water Pollution Levels with Regression Line', fontsize=16)
plt.xlabel('Air Quality Index (AQI)', fontsize=14)
plt.ylabel('Water Pollution Level', fontsize=14)
plt.grid()
plt.show()
```


Pair Plot:

This allows you to visualize relationships between multiple variables in the dataset simultaneously.

```
sns.pairplot(df[['AirQuality', 'WaterPollution']], diag_kind='kde', palette='Set2')
plt.suptitle('Pair Plot of AQI and Water Pollution', y=1.02, fontsize=16)
plt.show()
```

/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:1513: UserWarning: I
 func(x=vector, **plot_kwargs)
/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:1513: UserWarning: I
 func(x=vector, **plot_kwargs)
/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:1615: UserWarning: I
 func(x=x, y=y, **kwargs)
/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:1615: UserWarning: I
 func(x=x, y=y, **kwargs)

Categorical Analysis:

If you have categorical data (like region), you can analyze AQI and water pollution by region.

```
plt.figure(figsize=(12, 6))
sns.boxplot(data=df, x='Region', y='AirQuality', palette='Set3')
plt.title('AQI by Region', fontsize=16)
plt.xticks(rotation=45)
plt.ylabel('Air Quality Index (AQI)', fontsize=14)
plt.grid(axis='y')
plt.show()
```

<ipython-input-17-62863a7d982f>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v sns.boxplot(data=df, x='Region', y='AirQuality', palette='Set3')


```
plt.figure(figsize=(12, 6))
sns.boxplot(data=df, x='Region', y='WaterPollution', palette='Set3')
plt.title('Water Pollution by Region', fontsize=16)
plt.xticks(rotation=45)
plt.ylabel('Water Pollution Level', fontsize=14)
plt.grid(axis='y')
plt.show()
```

<ipython-input-18-18470e63c7b4>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v sns.boxplot(data=df, x='Region', y='WaterPollution', palette='Set3')

Violin Plot:

A violin plot combines a box plot with a KDE plot to show the distribution of the data.

```
plt.figure(figsize=(12, 6))
sns.violinplot(data=df, x='Region', y='AirQuality', palette='muted')
plt.title('Violin Plot of AQI by Region', fontsize=16)
plt.xticks(rotation=45)
plt.ylabel('Air Quality Index (AQI)', fontsize=14)
```

```
plt.grid(axis='y')
plt.show()
```

 \rightarrow

<ipython-input-19-480d2d3d80c2>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v sns.violinplot(data=df, x='Region', y='AirQuality', palette='muted')

Outlier Detection:

Identify and visualize outliers in AQI and water pollution levels using z-scores.

from scipy import stats

```
df['AQI_z'] = stats.zscore(df['AirQuality'])
df['WP_z'] = stats.zscore(df['WaterPollution'])

outliers_aqi = df[(df['AQI_z'] > 3) | (df['AQI_z'] < -3)]
outliers_wp = df[(df['WP_z'] > 3) | (df['WP_z'] < -3)]

plt.figure(figsize=(12, 6))
sns.scatterplot(data=outliers_aqi, x='City', y='AirQuality', color='red', label='Outliers (.sns.scatterplot(data=df, x='City', y='AirQuality', color='blue', label='Normal', alpha=0.5)
plt.title('Outliers in Air Quality Index (AQI)', fontsize=16)
plt.xticks(rotation=45)
plt.ylabel('Air Quality Index (AQI)', fontsize=14)
plt.legend()
plt.grid()
plt.show()</pre>
```


Correlation Coefficients:

Calculate and display the correlation coefficients.

```
correlation_aqi_wp = df[['AirQuality', 'WaterPollution']].corr().iloc[0, 1]
print(f'Correlation between AQI and Water Pollution: {correlation_aqi_wp:.2f}')

→ Correlation between AQI and Water Pollution: -0.19
```

Group Summary Statistics:

Summarize AQI and water pollution by region.

```
region_summary = df.groupby('Region')[['AirQuality', 'WaterPollution']].mean()
print(region_summary)
```

$\overline{\Rightarrow}$		AirQuality	WaterPollution
	Region		
	11 11	49.583333	69.930184
	"Gilgit-Baltistan"	87.500000	87.500000
	"Islamabad Capital "	67.418033	51.327434
	"Khyber Pakhtunkhwa"	55.518018	56.386409
	"Punjab"	50.989082	66.553321
	"Sindh"	23.989899	77.703901

Sunburst Chart

a sunburst chart, we can use the plotly library, which provides a straightforward way to create interactive visualizations, including sunburst charts. Sunburst charts are useful for visualizing hierarchical data, and in this case, we can visualize the AQI and water pollution data by region and city.

```
import pandas as pd
import plotly.express as px
# Load the dataset
df = pd.read_csv('water-air-quality-big-cities-of-pakistan-2020.csv', encoding='latin-1')
# Clean the column names
df.columns = df.columns.str.strip().str.replace('"', '')
# Ensure 'AirQuality' is numeric and replace zeros/negatives with small positive values
df['AirQuality'] = pd.to numeric(df['AirQuality'], errors='coerce')
df['AirQuality'] = df['AirQuality'].replace(0, 0.0001) # Replace zeros with a tiny value
df.loc[df['AirQuality'] < 0, 'AirQuality'] = 0.0001 # Replace negative values too</pre>
# Create a sunburst chart for Air Quality Index (AQI)
fig_aqi = px.sunburst(
   df,
    path=['Region', 'City'], # Hierarchical path
   values='AirQuality', # Values to be represented
    title='Sunburst Chart of Air Quality Index (AQI) by Region and City',
    color='AirQuality', # Color by AQI values
   color continuous scale='viridis'
)
```


0

Sunburst Chart of Air Quality Index

 $\overline{\mathbf{T}}$

Sunburst Chart of Water Pollution