

Ecommerce: Customer Churn Prediction

<u>Developing Churn Prediction Model and provide Business Recommendations on Campaign</u>

Capstone Project Report

Submitted to

Submitted by

G.R. Krishnaraj

Under the Guidance of

Ms. Keya Choudhury Ganguli

Batch -PGP-DSBA (May 2021)

Year of completion (June 2022)

Table of contents:

1.Introduction

- 1.1: Objective of the study
- 1.2: In-scope
- 1.3 Out of scope
- 1.4: Tools and techniques Used
- 1.5: Analytical Approach
- 1.6: The outliner check before EDA for numerical datatypes:
- 1.7: Table1: List of variables

2.Data cleaning and transformation

- 2.1: In Excel
- 2.2: In-Python
- 2.3: Checking Multicollinearity & VIF

3.Exploarotry Data analysis

- 3.1: Data Summary
- 3.2 :Univariate anlysis using Pyton
- 3.3: Bivariate anlysis using Pyton
- 3.4: Multivariate anlysis using Pyton
- 3.5 Clustering: After removal of categorical variables
- 3.6 Scaling is done by standard scaler

4.Model selection

- 4.1 Evaluation parameters
- 4.2 Input into the model
- 4.3: Train date Metrics
- 4.4: Test data metrics
- 4.5: Ensemble models
- 4.6: ANN & Decision Tree: After Outliner treatment Ann & Decision Tree: After Outliner treatment
- 4.7: Conclusion & Recommendations

1.Introdution

1.1 Objective of the study:

An E-com company is facing a challenge in the sector due to presence of rival companies offering high attractive subscription plans to is customer base. Due to this to this company is facing a serious challenge regarding customer retentions

Hence, the company wants to develop model through which they can do churn prediction of the accounts and provide segmented offers to the potential churners.

1.2 In-scope

The company to stay afloat needs to assess its options, create strategies through which its able to retain its customer ad also to over time attract more customers and into the platform and so to maintain positive year on year growth

1.3 Out of scope

The major focus on maximum customer retention onto the platform which in turn will lead to more sales which in turn leads to higher profits for the company

Secondly once the retention is achieved, having developed a big happy customer base it's a matter of tome that these happy customers are via word of mouth going to bring new customer on to the Platform

Working on every aspect and removing the obstacles which are leading to customer churns is going help the company reap profits in every way

1.4 Tools and techniques Used

- Used python version:3.10
- Used Microsoft excel for our data gathering and data cleaning
- Tableau for visualization
- Used the following visualization form python for better visualization and building models NumPy, pandas, matplotlib, pyplot, seaborn etc.

1.5 Analytical Approach

- 1. Data extraction form data sources
- 2. Data cleaning and data preparation
- 3. Study of each variable by exploring the data
- 4. Study the variables for its relevance for the study
- 5. Identifying Y variable
- 6. Performing univariate analysis for all variables
- 7. Performing Bi-variant and Multi variate analysis for the variables required
- 8. Division of data into train and test
- 9. Model development

- 10. Model validation and model validation on test data
- 11. Invention strategies and recommendation

1.6: The outliner check before EDA for numerical datatypes:

1.7: Table1: List of variables:

Variable. Description account unique identifier AccountID Churn account churn flag (Target) Tenure Tenure of account City Tier Tier of primary customer's city CC_Contacted_L1 How many times all the customers of the account has contacted customer care in last 12months 2m Payment Preferred Payment mode of the customers in the account Gender Gender of the primary customer of the account Satisfaction score given by customers of the account on service provided by Service_Score company Account_user_cou Number of customers tagged with this account account_segment Account segmentation on the basis of spend Satisfaction score given by customers of the account on customer care service CC_Agent_Score provided by company Marital_Status Marital status of the primary customer of the account rev per month Monthly average revenue generated by account in last 12 months Complain_I12m Any complaints has been raised by account in last 12 months. revenue growth percentage of the account (last 12 months vs last 24 to 13 rev_growth_yoy month) How many times customers have used coupons to do the payment in last 12 coupon_used_l12 months Day_Since_CC_co Number of days since no customers in the account has contacted the customer nnect care cashback_l12m Monthly average cashback generated by account in last 12 months Login_device Preferred login device of the customers in the account

2 Data cleaning and transformation:

2.1: In Excel:

The data has categorical and numerical type columns,

It has 11260 Rows and 18 columns

On further inspection we observed the presence of NAN values, blank spaces special characters within columns, which must be treated

2.2 In-Python

Iteration of feature engineering:

1. The outliner treatment was checked, and the missing value treatment is done

```
        cashback
        0.041829

        Day_Since_CC_connect
        0.031705

        Complain_ly
        0.031705

        Login_device
        0.019627

        Marital_Status
        0.018828

        CC_Agent_Score
        0.018392

        Account_user_count
        0.009947

        City_Tier
        0.009947

        Payment
        0.009580

        Gender
        0.009591

        Tenure
        0.009059

        CC_Contacted_LY
        0.009059

        CC_Contacted_LY
        0.0098703

        account_segment
        0.009809

        coupon_used_for_payment
        0.009009

        Churn
        0.009009

        dtype: float64
        missing vale mv>2% < 10 % impute by mode</td>
```

2.We first treated each column with outliner treatment using quantile method

For the transformation we follow the below rule:

For categorical data:

if mv<2% --- mode

if mv>2%--- logical /mode

if mv>10 %---some new category

if mv>40%--- don't impute

For numerical data:

if mv<2% --- median

if mv>2%--- logical /median

if mv>10 %---regression

if mv>40%--- don't impute

3. The special characters and n nan values are replaced for the below columns

 $Tenure, \verb|CC_Contacted_LY|, \verb|rev_per_month|, \verb|rev_growth_yoy|, \verb|cashback|, \verb|Account_user_count||$

For the categorical values the nan is replaced by mode

For the numeri values the nan are replaced by median

	count	unique	top	freq	mean	std	min	25%	50%	75%	max
Churn	11260.0	NaN	NaN	NaN	0.168384	0.374223	0.0	0.0	0.0	0.0	1.0
Tenure	11158	38	1	1351	NaN	NaN	NaN	NaN	NaN	NaN	NaN
City_Tier	11148.0	NaN	NaN	NaN	1.653929	0.915015	1.0	1.0	1.0	3.0	3.0
CC_Contacted_LY	11158.0	NaN	NaN	NaN	17.867091	8.853269	4.0	11.0	16.0	23.0	132.0
Payment	11151	5	Debit Card	4587	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Gender	11152	4	Male	6328	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Service_Score	11162.0	NaN	NaN	NaN	2.902526	0.725584	0.0	2.0	3.0	3.0	5.0
Account_user_count	11148	7	4	4569	NaN	NaN	NaN	NaN	NaN	NaN	NaN
account_segment	11163	7	Super	4062	NaN	NaN	NaN	NaN	NaN	NaN	NaN
CC_Agent_Score	11144.0	NaN	NaN	NaN	3.066493	1.379772	1.0	2.0	3.0	4.0	5.0
Marital_Status	11048	3	Married	5860	NaN	NaN	NaN	NaN	NaN	NaN	NaN
rev_per_month	11158	59	3	1746	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Complain_ly	10903.0	NaN	NaN	NaN	0.285334	0.451594	0.0	0.0	0.0	1.0	1.0
rev_growth_yoy	11260	20	14	1524	NaN	NaN	NaN	NaN	NaN	NaN	NaN
coupon_used_for_payment	11260	20	1	4373	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Day_Since_CC_connect	10903	24	3	1816	NaN	NaN	NaN	NaN	NaN	NaN	NaN
cashback	10789	321	152	208	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Login_device	11039	3	Mobile	7482	NaN	NaN	NaN	NaN	NaN	NaN	NaN

2.3. Checking Multicollinearity & VIF

```
X_train = X_train.drop(["Login_device","Service_Score","Account_user_count","cashback","rev_growth_yoy"], axis=1)
X_test = X_test.drop(["Login_device","Service_Score","Account_user_count","cashback","rev_growth_yoy"], axis=1)
```

The VIF is checked and columns with score above 5% are removed

5.once the outliner and extreme values removed, we did the scaling process

6. The label encoding for the categorical variables are done

Gender,Account_segment,Account_user_count,Login_device,City_Tier,Service_Scor
e,CC_Agent_Score,Marital_Status,Payment,Complain_ly,Login_device
Cashback

3. Exploarotry Data analysis:

3.1 Data Summary:

The Exploratory Data analysis OF each variable is done to get the mean median min max and quartiles

3.2 Univariate anlysis using Pyton

The Histogram and boxplot are plotted to check the distribution of data

Tenure

The Tenue of account holders in the rage 0 to 35 and presence of extreme values also present in the data

Here we can see the minimum is 0, the first quantile is 2 months. The median is 8 months, the q3 is 16 months and the highest is 99 months

CC_Contacted_LY:

count	11260.000000
mean	17.705240
std	8.974194
min	0.000000
25%	11.000000
50%	16.000000
75%	23.000000
max	132.000000
Name:	CC Contacted LV. dtyne: float64

Here we can see the minimum is 0, the first quantile is 11 times. The median is 16 times, the q3 is 23 times and the highest is 132 times.

account_segment:

The maximum account user count is for super and regular + which are > 4000 counts.

rev_per_month:

Here we can see the minimum is 0, the first quantile is 3. The median is 5, the q3 is 7 and the highest is 140

This gives us an insight that the spending capacity is highly diverse among the customer base.

coupon_used_for_payment:

Here we can see the minimum is 0, the first quantile is 1 The median is 1, the q3 is 2 and the highest is 16

Most customers have used 2 coupons. this seems to be an area of improvement; we would like this to be more balanced.

Day_Since_CC_connect:

Here we can see the minimum is 0, the first quantile is 2, The median is 3, the q3 is 7 and the highest is 40+

We would like lesser people contacting the customer care

Cashback

count	11260.000000
mean	194.350178
std	175.107143
min	0.000000
25%	148.000000
50%	163.000000
75%	197.000000
max	1997.000000
Name:	cashback, dtype: float64

customers having higher shopping frequency, who tend to earn more and more cashbacks on the platform

Coupons used for payment

Most no of customers used coupons of 1 & 2.

Bar plots

Gender:

There is higher the male customers compare to female customers.

Cash back on Gender:

The female customers make more than half of the total customer base

Payment bar plot

The debit card payment is high, next I credit card payment and the least is UPI

We can collaborate with banks and provide offers to customers on reward points and cashbacks

City_Tier: Bar plot

The most customer ate from tier 1 cities

The service score high for 2 ,3 and moderate for 4, and none for 5

account segment

we can see super and regular + having highest customer base

3.3 Bivariate anlysis using Pyton

The customers are churning out have low tenure on the platform, the retention strategy is increasing the tenure f customer base

The customer cluster with low tenure must be identified and provided offers with their browsing history and order history

City, Payment's bar charts:

Highest is the tier 1 city with debit card payment, Least is tier 2 city with cash on delivery, and tier 1 & 2 with e wallet payment is null

Churns across subscription plans:

The debit card and debit card payment are high for our customer base, the churns for this payment method are also high

we can strategies such that the payment methods have good ROI Value, so they keep renewing the subscriptions

Churn across service score:

For all vales of service score we can see the churns, we can create a program where in customer care can highlight all all the area that the customer unhappy about

and we can prioritize and solve the problem in sequential manner

Churn across Marital Status:

The chur is high for single customers, we need to understand their expectations and fulfill them

We need to focus on those group and next is married customers where the churn seems to be high,

Strategy can be devised to specially focus among these groups.

3.4 Multivariate anlysis using Pyton

Login device across city Tier with hue as Churn:

The login device is dependent on the population density of the city, for the mobile platform the preference is higher compared to computer

Payment method across city among with churn values:

For tier 2 city the payment is high on UPI method payment. the churn is highest for this type of payment methos Also, it has to be duly noted and insights section we have suggested strategies which are built on these insights

Correlation among Tenure and cash back

The customers in the range 0 to 30 have taken higher cash backs: Strong positive correlation

Correlation among day since connect and cash back

The customers in the range 0 to 20 contacted have taken higher cash backs: Strong positive correlation

Correlation among revenue growth and revenue per month of customers:

It's a high positive correlation

Outliner treatment for continuous variables:

Before outline treatment:

Outliners present in cashbacks and in revenue per month at the maximum

After outline treatment:

Correlation among continuous variables:

We can see higher correlation among cash backs and tenure, higher the cashbacks the customer

tenure time increases.

Service score and coupon used- the service level of company increases as more offers and coupon provided to the c ustomers

3.5 Clustering: After removal of categorical variables:

WSS plots is made with 3 Clusters

3.6 Scaling is done by standard scaler

	Tenure	CC_Contacted_LY	Account_user_count	rev_per_month	rev_growth_yoy	coupon_used_for_payment	Day_Since_CC_connect	cashback	rev_growth_y
0	4.0	6.0	3.0	9.0	11.0	1.0	5.0	160.0	
1	0.0	8.0	4.0	7.0	15.0	0.0	0.0	121.0	
2	0.0	30.0	4.0	6.0	14.0	0.0	3.0	152.0	
3	0.0	15.0	4.0	8.0	23.0	0.0	3.0	134.0	
4	0.0	12.0	3.0	3.0	11.0	1.0	3.0	130.0	
<									>

	Tenure	CC_Contacted_LY	Account_user_count	rev_per_month	rev_growth_yoy	coupon_used_for_payment	Day_Since_CC_connect	cashback	rev_growth
0	-0.675327	-1.337224	-0.769057	1.290208	-1.379506	-0.430905	0.129952	-0.381191	-1.37
1	-1.119827	-1.108052	0.312917	0.660907	-0.316332	-1.337988	-1.301249	-1.274835	-0.31
2	-1.119827	1.412834	0.312917	0.346256	-0.582125	-1.337988	-0.442528	-0.564502	-0.58
3	-1.119827	-0.305952	0.312917	0.975558	1.810015	-1.337988	-0.442528	-0.976953	1.80
4	-1.119827	-0.649709	-0.769057	-0.597697	-1.379506	-0.430905	-0.442528	-1.068609	-1.37
									`

]:								
unt	rev_per_month	rev_growth_yoy	coupon_used_for_payment	Day_Since_CC_connect	cashback	rev_growth_yoy	coupon_used_for_payment	Kmeans_clusters
3.0	9.0	11.0	1.0	5.0	160.0	11	1	1
4.0	7.0	15.0	0.0	0.0	121.0	15	0	1
4.0	6.0	14.0	0.0	3.0	152.0	14	0	1
4.0	8.0	23.0	0.0	3.0	134.0	23	0	2
3.0	3.0	11.0	1.0	3.0	130.0	11	1	1
<								>

K means (1-3) cluster is added at the last columns

4. Model selection:

The objective of the model development is to predict the churn rate accounts for the given data set

As the target variable is churn, which is a categorical data, we can decide to create a classification model to predict

the churn rates, we will be implementing all the possible classification algorithm to identify the best fit model, belo w is list of possible algorithms which we may apply

- 1.Logistic regression:
- 2.CART
- 3.Random Forest
- 4. Linear Discriminant Analysis
- 5. K Nearest Neighbors
- 6. Gaussian Naive Bayes
- 7. Gradient Boosting
- 8)MLP Classifier (Artificial Neural Network)

Ensemble Model:

- Bagging model
- Random forest:

4.1 Evaluation parameters

- Accuracy: The measurement used to determine which model is best at identifying relationships and patterns between variables in a dataset
- AUC: It's a statistical measure that we can use to evaluate the model predictions using a probabilistic framework.
- PRECISON: the quality of a positive prediction made by the model; Precision refers to the number of true positives divided by the total number of positive predictions
- RECALL: Recall is dependent on positive samples and independent of negative samples
- F1 SCORE: The F1 score conveys the balance between the precision and the recall.

4.2 Input into the model:

Prepared our predictor set to create input for our classification models

Removed following columns that are less significant /Gives duplicate info

Login device, service score, account user count, cash back rev growth yoy

Converted categorical data into factors

Converted categorical predictors into continuous predictors

Dummy Encoding: since target encoding lead to over fitting, we decide to perform dummy encoding on the rest of columns to convert them

Performed correlation lot to check multi collinearity

Split the data into train and test using 70:30 ratio

Performed scaling on predictors to reduce the variation

4.3: Train date Metrics:

executed in 197ms, finished 20:53:42 2022-05-15

	CART train	RF Train	Log Train	LDA Train	KNN Train	NB Train	ANN train	Gr.Boost Train
Accuracy	0.92	0.92	0.87	0.86	0.92	0.86	0.98	0.91
AUC	0.96	0.96	0.85	0.82	0.97	0.81	1.00	0.95
Recall	0.75	0.69	0.35	0.27	0.60	0.28	0.95	0.62
Precision	0.78	0.83	0.76	0.74	0.87	0.72	0.94	0.81
F1 Score	0.78	0.75	0.48	0.40	0.71	0.41	0.94	0.70

4.4: Test data metrics:

executed in 7 tills, illustred 20.03.40 2022-00-10

	CART test	RF test	Log Test	LDA test	KNN test	NB test	ANN test	Gr.Boost test
Accuracy	0.90	0.90	0.87	0.87	0.90	0.86	0.95	0.90
AUC	0.94	0.94	0.85	0.82	0.93	0.81	0.97	0.94
Recall	0.70	0.63	0.36	0.98	0.52	0.29	0.82	0.58
Precision	0.70	0.79	0.77	0.87	0.80	0.67	0.87	0.77
F1 Score	0.70	0.70	0.49	0.92	0.63	0.41	0.85	0.66

4.5: Ensemble models

1)Bagging model

2)Random Forest

Random forest: Test data

0.9662522202 [[2777 32] [82 487]	1			
[02 40/]	precision	recall	f1-score	support
6	0.97	0.99	0.98	2809
1	0.94	0.86	0.90	569
accuracy	,		0.97	3378
macro avg	0.95	0.92	0.94	3378
veighted av	0.97	0.97	0.97	3378

Bagging model: Test data

0.968324452 [[2767 42] [65 504]				
	precision	recall	f1-score	support	
	0.98	0.99	0.98	2809	
:	1 0.92	0.89	0.90	569	
accurac	/		0.97	3378	
macro av	g 0.95	0.94	0.94	3378	
weighted av	0.97	0.97	0.97	3378	

4.6: ANN & Decision Tree: After Outliner treatment Ann & Decision Tree: After Outliner treatment

F1 SCORE RF: 98

ANN & Decision Tree: After Outliner treatment

	Test set score	train test score	test auc	train auc	
Models	accu	accu	score	score	
Decion tree	0.897	0.921	0.937	0.958	
Decion tree-Outliner treated/Scaled	0.897	0.921	0.935	0.958	
Neural Networks(ANN)	0.949	0.981	0.973	0.997	
Neural Networks(ANN)-Outliner					
treated/Scaled	0.953	0.986	0.975	0.998	

After outliner treatment We can see a significant raise in the accuracy and in auc score for test and train

Out of the 8 models we have designed, recommend the Machine learning model Artificial neural network (ANN)

The model has responded well to our data and performed well with a score of F1 Score=.98(test), AUC-.97(test)

The ANN model is adaptive and with high accuracy, and it keeps on learning, in our case we can't be dependent on a static Situation because to be accurate all the time as the customer behavior keeps on changing

4.7: Conclusion & Recommendations

Columns	Silver	Gold	Platinum
	Cluster 2	Cluster 1	Cluster 3
revenue growth percentage	13.98	15	20
Coupon used for payment	0.96	2.96	1.4
Monthly average revenue	4.5	5	5.12
Tenure of account	8.6	14.6	10
CC Contacted LY 12 months	17	17	18

Recommendation cluster 1: Silver (New onboards)

The revenue growth of this base must be increased by proving more offers and benefits,

They must be moved to next level of cluster gold

They are new customers with high probability of Churn and with low tenure for them attractive offers must be provided

coupons usage must be increased with coupons floating delas with other

companies in the market

Recommendation cluster 2: Gold (Customers to be moved to platinum base)

- The revenue growth of this base must be increased by proving more offers and benefits
- They must be moved to next level of cluster platinum
- They have high tenure period, it must be sustained

Recommendation cluster 3: platinum (premiums customers to be protected from competitions)

- They have high revenue growth, which should be further increased
- They are using other type of payment hence coupon usage by them should be increased
- They have been in system for moderate period, which should be maintained and increased by promo offers and other benefit
- Their customer care complains must be addressed immediately and problems must be solved immediately

2)From accessing tenure, we could see a lot of new customers are not the platform

- This Is a good opportunity for the company to increase the customers
- The focus rear is retaining them with in the platform by understanding what the customer feels is valuable
- 3) the people contacting customer care is high
 - This is important insight; we need to start accessing areas where complaint arising and investigate it and closing it & permanently help in more customer retention

Thank you