			lmag	eNet	:: sof	tmax	, n _{avg}	,=10					lm	ageN	let: A	APS, r	n _{avg} =	10					lm	ageN	let: R	RAPS,	n _{avg} =	=10		
0.1	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	3	3	3	3	3	3	3	3	3	3
γ) 0.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	3	3	3	3	3	3	3	3	3	3
ing (0.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	3	3	3	3	3	3	3	3	3	3
ıster 0.4	5.2	5.2	5.2	5.2	5.2	5.3	5.3	5.3	5.3	5.2	2.6	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.6	3	3	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3
or clu 0.5	5.2	5.2	5.2	5.2	5.2	5.2	5.3	5.3	5.3	5.5	2.7	2.7	2.7	2.7	2.7	2.7	2.8	2.8	2.8	3	3	3	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.4
on fc 0.6	5.1	5.1	5.1	5.1	5.1	5.2	5.2	5.2	5.3	5.5	2.7	2.7	2.7	2.8	2.8	2.8	2.8	2.9	3	3.2	3.3	1 3.1	3.1	3.1	3.2	3.2	3.2	3.3	3.3	3.6
Fraction for clustering (γ) 8 0.7 0.6 0.5 0.4 0.3 0	5.1	5	5	5	5.1	5.1	5.1	5.2	5.2	5.6	2.8	2.8	2.8	2.8	2.8	2.9	2.9	3	3.2	3.6	3.3	1 3.1	3.1	3.1	3.1	3.2	3.2	3.3	3.4	3.8
Fr 0.8	4.9	4.8	4.8	4.8	4.9	4.9	4.9	5	5.1	5.7	2.8	2.7	2.8	2.9	2.9	3	3	3.2	3.3	3.9	3.3	1 3.1	3.1	3.1	3.1	3.2	3.3	3.4	3.5	4.2
6.0	4.9	4.8	4.8	4.9	4.8	5	5	5.1	5.3	6.4	2.8	2.9	3	3	3.1	3.2	3.3	3.6	3.8	5	3.3	1 3.2	3.2	3.2	3.3	3.5	3.6	3.8	4	5.2
			ImageNet: softmax, n_{avg} =50 ImageNet: APS, n_{avg} =50 ImageNet: RAPS, n_{avg} =50													=50														
0.1	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	5.2	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	3	3	3	3	3	3	3	3	3	3
γ) 0.2	4.7	4.5	4.4	4.4	4.4	4.3	4.3	4.3	4.3	4.3	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.6	2.9	9 2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.8	2.9
ing (0.3	4.3	4	3.9	3.8	3.8	3.8	3.7	3.7	3.7	3.6	2.5	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.9	9 2.9	2.8	2.8	2.8	2.7	2.7	2.7	2.7	2.7
ister 0.4	4.2	3.8	3.7	3.6	3.5	3.5	3.5	3.4	3.4	3.4	2.5	2.4	2.4	2.4	2.3	2.3	2.3	2.3	2.4	2.4	2.9	9 2.8	2.7	2.7	2.7	2.7	2.6	2.6	2.6	2.7 2.7 2.6 2.7
r clu 0.5	4.1	3.7	3.5	3.4	3.4	3.3	3.3	3.3	3.2	3.2	2.5	2.4	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.4	2.8	3 2.7	2.7	2.6	2.6	2.6	2.6	2.6	2.6	2.6
on fo 0.6	4.1	3.6	3.4	3.3	3.3	3.2	3.2	3.2	3.1	3.2	2.4	2.3	2.3	2.3	2.3	2.3	2.2	2.3	2.3	2.4	2.8	3 2.7	2.6	2.6	2.6	2.5	2.5	2.5	2.5	2.6
Fraction for clustering (γ) 8 0.7 0.6 0.5 0.4 0.3 0	4	3.6	3.3	3.3	3.2	3.2	3.1	3.1	3.1	3.1	2.4	2.3	2.3	2.2	2.2	2.2	2.2	2.3	2.3	2.5	2.	7 2.6	2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.7
Fr 0.8	4	3.5	3.3	3.2	3.2	3.1	3.1	3	3	3.2	2.4	2.3	2.2	2.2	2.2	2.2	2.2	2.2	2.3	2.6	2.	7 2.6	2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.8
6.0	4	3.5	3.3	3.2	3.2	3.1	3.1	3.1	3.1	3.6	2.4	2.3	2.2	2.2	2.2	2.2	2.3	2.3	2.4	3	2.	7 2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.7	3.2
	2	3	4	5 # o	6 f clus	8 sters	10 (M)	15	20	50	2	3	4	5 # c	6 of clu	8 sters	10 (M)	15	20	50	2	3	4	5 # (6 of clu	8 Isters	10 (M)	15	20	50