비지도 학습 소개

1.환경준비

(1) 라이브러리 로딩

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler

import warnings
warnings.filterwarnings("ignore", category=UserWarning)
```

(2) Data Loading

```
In [28]: path = 'https://raw.githubusercontent.com/DA4BAM/dataset/master/customer_segmentation.csv'
    data = pd.read_csv(path)
    data.head()
```

Out[28]:		CustID	Gender	Age	Income	Score
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

2.데이터 전처리

(1) 데이터 분할

```
In [29]: # 군집화는 아래 변수들만 사용합니다.
x = data.loc[:, ['Age', 'Income', 'Score']]
```

(2) 스케일링

```
In [30]: scaler = MinMaxScaler()
x_s = scaler.fit_transform(x)
```

3.클러스터링

(1) k-means 모델 만들기

- k값을 늘려가면서(2~20) 모델을 만들고, inertia 값 혹은 실루엣 점수를 저장합니다.
- 그래프를 통해서 최적의 k값을 결정합니다.
 - 단, k값은 3~6개 사이에서 결정하세요.
- 선정된 k값으로 모델을 생성합니다.

```
In [39]: # k의 갯수에 따라 각 점과의 거리를 계산하여 적정한 k를 찾아 봅시다.
kvalues = range(2, 21)
inertias = []

for k in kvalues:
    model = KMeans(n_clusters=k, n_init = 'auto')
    model.fit(x_s)
    inertias.append(model.inertia_)
```

```
In [40]: plt.plot(kvalues, inertias, marker='o')
   plt.grid()
   plt.show()
```



```
In [44]: kvalues = range(2, 21)
    sil_score = []
```

```
for k in kvalues:
# 모델 생성
model = KMeans(n_clusters=k, n_init='auto')
# 학습하고 예측
pred = model.fit_predict(x_s)
# 실루엣 점수 계산
sil_score.append(silhouette_score(x_s, pred))
```

```
In [45]: plt.plot(kvalues, sil_score, marker='o')
   plt.grid()
   plt.show()
```


(2) 데이터 군집 결과 정리

- 데이터를 군집화 하여 기존 데이터와 합치기
 - pd.concat([data, pred], axis = 1)

```
In [50]: # 예측
pred = model.predict(x_s)

# 예측 결과를 데이터프레임으로 만들고
pred = pd.DataFrame(pred, columns = ['pred'])

# 원본 데이터와 합치기
result = pd.concat([data, pred], axis = 1)

# 예측 결과는 카테고리 타입으로 변경
result['pred'] = pd.Categorical(result['pred'], categories=[0, 1, 2, 3, 4])
result.head()
```

Out[50]:		CustID	Gender	Age	Income	Score	pred
	0	1	Male	19	15	39	NaN
	1	2	Male	21	15	81	NaN
	2	3	Female	20	16	6	0
	3	4	Female	23	16	77	NaN
	4	5	Female	31	17	40	NaN

4.후속 분석

• 군집별 특징을 분석해 봅시다.

In [51]:	resu	lt					
Out[51]:		CustID	Gender	Age	Income	Score	pred
	0	1	Male	19	15	39	NaN
	1	2	Male	21	15	81	NaN
	2	3	Female	20	16	6	0
	3	4	Female	23	16	77	NaN
	4	5	Female	31	17	40	NaN
	•••						
	195	196	Female	35	120	79	NaN
	196	197	Female	45	126	28	NaN
	197	198	Male	32	126	74	NaN
	198	199	Male	32	137	18	NaN
	199	200	Male	30	137	83	NaN

200 rows × 6 columns

(1) 군집별 변수 비교

• 활용 가능한 차트 : sns.barplot, sns.kdeplot, sns.boxplot, mosaic

1) Age

```
In [52]: var = 'Age'

plt.figure(figsize = (12,5))

plt.subplot(1,3,1)
sns.barplot(x = 'pred', y = var, data = result)
```

```
plt.grid()

plt.subplot(1,3,2)
sns.kdeplot(x = var, data = result, hue = 'pred', common_norm = False)
plt.grid()

plt.subplot(1,3,3)
sns.boxplot(x = var, y = 'pred', data = result)
plt.grid()

plt.tight_layout()
plt.show()
```


2) Income

```
In [53]: var = 'Income'

plt.figure(figsize = (12,5))

plt.subplot(1,3,1)
    sns.barplot(x = 'pred', y = var, data = result)
    plt.grid()

plt.subplot(1,3,2)
    sns.kdeplot(x = var, data = result, hue = 'pred', common_norm = False)
    plt.grid()

plt.subplot(1,3,3)
    sns.boxplot(x = var, y = 'pred', data = result)
    plt.grid()

plt.tight_layout()
    plt.show()
```


3) Score

```
In [54]: var = 'Score'
            plt.figure(figsize = (12,5))
            plt.subplot(1,3,1)
            sns.barplot(x = 'pred', y = var, data = result)
            plt.grid()
            plt.subplot(1,3,2)
            sns.kdeplot(x = var, data = result, hue = 'pred', common_norm = False)
            plt.grid()
            plt.subplot(1,3,3)
            sns.boxplot(x = var, y = 'pred', data = result)
            plt.grid()
            plt.tight_layout()
            plt.show()
                                                0.08
                                                                              - 2
                                                                              <del>-</del> 3
             40
                                                0.06
                                              Density
0.04
            Score
30
                                                                                    pred
2
             20
                                                0.02
                                                0.00
                                                                                                 20
```

4) Gender

• 모자익 플롯을 사용해 봅시다.

```
In [55]: from statsmodels.graphics.mosaicplot import mosaic
In [56]: mosaic(result, ['pred', 'Gender'])
plt.show()
```


(2) 한꺼번에 비교하기

• sns.pairplot을 이용하여 한꺼번에 비교해 봅시다.

```
In [57]: # 'Age', 'Income', 'Score', 'pred'만 추출
cols = ['Age', 'Income', 'Score', 'pred']
temp = result.loc[:, cols]

In [58]: sns.pairplot(temp, hue = 'pred')
plt.show()
```


(3) 각 군집별 특징을 정리해 봅시다.

- 각 군집의 특징(다른 군집과 차별화 되는 요소)을 정리합시다.
- 각 군집의 특징으로 볼 때, 어떤 고객군이라고 볼 수 있을까요?
- 각 고객군에 대한 적절한 마케팅 방법은?
- 더 필요한 정보는?

In	[]:	
In	[]:	
In	[]:	