Chapter 5

Curs 5

5.1 Independență

Noțiunea de independență este un concept fundamental în teoria probabilităților, care intuitiv afirmă că între cantitățile considerate nu există "legături" (dependențe) . Noțiunea de independență se poate referi la evenimente, la variabile aleatoare sau mai genral la σ -algebre, după cum urmează.

Considerăm un spațiu de probabilitate (Ω, \mathcal{F}, P) fixat.

Definiția 5.1.1 Spunem că evenimentele $A, B \in \mathcal{F}$ sunt independente dacă $P(A \cap B) = P(A) P(B)$, și dependente în caz contrar.

Spunem că variabilele aleatoare X, Y sunt independente dacă $P(X \in C, Y \in D) = P(X \in C) P(Y \in D)$, oricare ar fi mulțimile boreliene $C, D \in \mathcal{B}$. În caz contrar spunem că X și Y sunt dependente.

Spunem că σ -algebrele $\mathcal{G}_1, \mathcal{G}_2 \subset \mathcal{F}$ sunt independente dacă oricare două evenimente $A \in \mathcal{G}_1$ și $B \in \mathcal{G}_2$ sunt independente. În caz contrar spunem că \mathcal{G}_1 și \mathcal{G}_2 sunt dependente.

Observația 5.1.2 Se poate arăta că evenimentele A, B sunt independente dacă și numai dacă variabilele aleatoare 1_A și 1_B sunt independente, și deci prima definiție este un caz particular a celei de-a doua definiții.

De asemenea, se poate arăta că variabilele aleatoare X și Y sunt independente dacă și numai dacă σ -algebrele generate de acestea, $\sigma(X)$ și $\sigma(Y)$ sunt independente, și deci a doua definiție este un caz particular a celei de a treia definiții de mai sus.

Extindem definiția anterioară la cazul unui număr finit de evenimente, variabile aleatoare sau σ -algebre astfel:

Definiția 5.1.3 Spunem că σ -algebrele $\mathcal{G}_1, \ldots, \mathcal{G}_n \subset \mathcal{F}$ sunt independente dacă oricare ar fi evenimentele $A_i \in \mathcal{G}_i$, $i = 1, \ldots, n$, are loc

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = \prod_{i=1}^{n} P\left(A_{i}\right).$$

Spunem că variabilele aleatoare X_1, \dots, X_n sunt independente dacă

$$P(X_1 \in B_1, ..., X_n \in B_n) = \prod_{i=1}^n P(X_i \in B_i),$$

oricare ar fi mulțimile Boreliene $B_i \in \mathcal{B}, i = 1, ..., n$.

Spunem că evenimentele $A_1, \ldots, A_n \in \mathcal{F}$ sunt independente dacă oricare ar fi mulțimea de indici $I \subset \{1, \ldots, n\}$ avem

$$P\left(\cap_{i\in I}A_i\right) = \prod_{i\in I}P\left(A_i\right)$$

Să observăm că pentru independența evenimentelor A_1, \ldots, A_n nu este suficient să verificăm relația anterioară numai pentru $I = \{1, \ldots, n\}$; ea trebuie verificată pentru toate submuțimile $I \subset \{1, \ldots, n\}$. Pentru a vedea aceasta, așa cum am observat, independența evenimentelor A_1, \ldots, A_n revine la independența variabilelor aleatoare $1_{A_1}, \ldots, 1_{A_n}$. Alegând in definiția de mai sus a independenței acestor variabile aleatoare $B_i = \{1\}$ pentru $i \in I$ și $B_i = \mathbb{R}$ pentru $i \notin I$, obținem

$$P(1_{A_1} \in B_1, ..., X_n \in B_n) = \prod_{i=1}^n P(1_{A_i} \in B_i),$$

de unde observând că pentru $i \in I$ avem $\{1_{A_i} \in B_i\} = \{1_{A_i} = 1\} = A_i$ și pentru $i \notin I$ avem $\{1_{A_i} \in B_i\} = \{1_{A_i} \in \mathbb{R}\} = \Omega$, se obține relația din definiția variabilelor evenimentelor A_1, \ldots, A_n de mai sus.

De asemenea, pentru ca evnimentele A_1, \ldots, A_n sa fie independente, nu este suficient ca $P(A_i \cap A_j) = P(A_i) P(A_j)$ oricare ar fi $i \neq j$ (astfel de evenimente se numesc independente două câte două), așa după cum rezultă din următorul exemplu:

Exemplul 5.1.4 Fie X_1, X_2, X_3 variabile aleatoare independente cu $P(X_i = 0) = P(X_i = 1) = 1/2$, și să considerăm evenimentele $A_1 = \{X_2 = X_3\}$, $A_2 = \{X_1 = X_3\}$ și $A_3 = \{X_1 = X_2\}$.

Evenimentele A_1, A_2, A_3 sunt independente două câte două deoarece

$$P(A_{i} \cap A_{j}) = P(X_{1} = X_{2} = X_{3})$$

$$= P(X_{1} = X_{2} = X_{3} = 1) + P(X_{1} = X_{2} = X_{3} = 0)$$

$$= P(X_{1} = 1) P(X_{2} = 1) P(X_{3} = 1) + P(X_{1} = 0) P(X_{2} = 0) P(X_{3} = 0)$$

$$= \frac{1}{4}$$

 $\dot{s}i$

$$P(A_{i}) = P(X_{2} = X_{3})$$

$$= P(X_{2} = X_{3} = 1) + P(X_{2} = X_{3} = 0)$$

$$= P(X_{2} = 1) P(X_{3} = 1) + P(X_{2} = 0) P(X_{3} = 0)$$

$$= \frac{1}{2},$$

și deci $P(A_i \cap A_j) = P(A_i) P(A_j)$ oricare ar fi $i \neq j$. Evenimentele A_1, A_2, A_3 nu sunt independente, deoarece

$$P(A_1 \cap A_2 \cap A_3) = P(X_1 = X_2 = X_3) = \frac{1}{4} \neq \frac{1}{8} = P(A_1) P(A_2) P(A_3).$$

Se poate arăta că petru a verifica independența variabilelor aleatoare X_1,\ldots,X_n este suficient să verificăm relația

$$P(X_1 \in B_1, ..., X_n \in B_n) = \prod_{i=1}^{n} P(X_i \in B_i)$$

pentru orice $B_1, \ldots, B_n \in \mathcal{S}$, unde \mathcal{S} este o familie de mulțimi ce generează familia mulțimilor Boreliene, adică $\sigma(\mathcal{S}) = \mathcal{B}$.

În particular, alegând $S = \{(-\infty, a] : a \in \mathbb{R}\}$, obţinem următoarea:

Propoziția 5.1.5 Variabilele aleatoare X_1, \ldots, X_n sunt independente dacă și numai dacă

$$P(X_1 \le a_1, ..., X_n \le a_n) = P(X_1 \le a_1) \cdot ... \cdot P(X_n \le a_n),$$

oricare ar fi $a_1, \ldots, a_n \in \mathbb{R}$.

Demonstrație. Implicația directă rezultă din definiția independenței variabilelor aleatoare pentru $B_i = (-\infty, a_i]$, iar implicația reciprocă din observația anterioară.

Definiția 5.1.6 Date fiind variabilele aleatoare X_1, \ldots, X_n , funcția $F = F_{X_1, \ldots, X_n}$: $\mathbb{R} \to \mathbb{R}$ definită prin

$$F(a_1, \ldots, a_n) = P(X_1 < a_1, \ldots, X_n < a_n)$$

se numește funcția de distribuție a variabilelor aleatoare X_1, \ldots, X_n . O funcție $f: \mathbb{R}^n \to \mathbb{R}$ cu proprietatea că

$$F(a_1,\ldots,a_n) = \int_{-\infty}^{a_n} \cdots \int_{-\infty}^{a_1} f(x_1,\ldots,x_n) dx_1 \ldots dx_n,$$

oricare ar fi a_1, \ldots, a_n , se numește densitatea variabilelor aleatoare X_1, \ldots, X_n .

Din propoziția anterioară obținem următoarea:

Teorema 5.1.7 Variabilele aleatoare X_1, \ldots, X_n sunt independente dacă şi numai dacă funcția de distribuție corespunzătoare se poate scrie

$$F(a_1,\ldots,a_n) = F_{X_1}(a_1) \cdot \ldots \cdot F_{X_n}(a_n),$$

oricare ar fi $a_1, \ldots, a_n \in \mathbb{R}$.

Dacă în plus variabilele aleatoare X_1, \ldots, X_n au densitățile f_{X_1}, \ldots, f_{X_n} continue, atunci X_1, \ldots, X_n sunt independente dacă şi numai dacă

$$f_{X_1,\ldots,X_n}(a_1,\ldots,a_n) = f_{X_1}(a_1)\cdot\ldots\cdot f_{X_n}(a_n),$$

oricare ar fi $a_1, \ldots, a_n \in \mathbb{R}$.

Demonstrație. Prima parte a enunțului rezultă din propoziția anterioară. Partea a doua rezultă din prima parte prin derivare în raport cu $\frac{\partial^n}{\partial a_1...\partial a_n}$, observând că dacă f_1, \ldots, f_n sunt continue, atunci F_{X_i} sunt derivabile și are loc

$$\frac{\partial}{\partial a_i} F_{X_i} \left(a_i \right) = f_{X_i} \left(a_i \right),$$

şi similar pentru $F_{X_1,...,X_n}$.

Importanța independenței rezultă din următoarea:

Teorema 5.1.8 Dacă X_1, \ldots, X_n sunt variabile aleatoare independente şi φ : $\mathbb{R}^n \to \mathbb{R}$ este o funcție măsurabilă pentru care $\varphi \geq 0$ sau $\varphi(X_1, \ldots, X_n)$ este o variabilă aleatoare integrabilă, atunci

$$M\left(\varphi\left(X_{1},\ldots,X_{n}\right)\right)=\int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}\varphi\left(x_{1},\ldots,x_{n}\right)dF_{X_{1}}\left(x_{1}\right)\ldots dF_{X_{n}}\left(x_{n}\right).$$

În particular, dacă variabilele aleatoare X_1, \ldots, X_n au densitățile f_{X_1}, \ldots, f_{X_n} , atunci are loc

$$M\left(\varphi\left(X_{1},\ldots,X_{n}\right)\right)=\int_{-\infty}^{+\infty}\cdots\int_{-\infty}^{+\infty}\varphi\left(x_{1},\ldots,x_{n}\right)f_{X_{1}}\left(x_{1}\right)\cdot\ldots\cdot f_{X_{n}}\left(x_{n}\right)dx_{1}\ldots dx_{n}.$$

Demonstrație. Rezultă din teorema Fubini folosind teorema anterioară. \blacksquare Considerând $\varphi(x_1,\ldots,x_n)=\varphi_1(x_1)\cdot\ldots\varphi_n(x_n)$, se obține următoarea consecință importantă:

Consecința 5.1.9 Dacă variabilele aleatoare $X_1, ... X_n$ sunt independente, și funcțiile $\varphi_i : \mathbb{R} \to \mathbb{R}$ sunt măsurabile, astfel încât $\varphi_i \geq 0$ sau $\varphi_i(X_i)$ sunt variabile aleatoare integrabile, atunci

$$M(\varphi_1(X_1)\cdot\ldots\cdot\varphi_n(X_n))=M(\varphi_1(X_1))\cdot\ldots\cdot M(\varphi_n(X_n)).$$

În particular, dacă $X_1, \ldots X_n$ sunt independente şi $X_i \geq 0$ sau X_i sunt integrabile, atunci

$$M(X_1 \cdot \ldots \cdot X_n) = M(X_1) \cdot \ldots \cdot M(X_n)$$

Observația 5.1.10 Din consecința anterioară rezultă că dacă X și Y sunt variabile aleatoare independente, ne-negative sau integrabile, atunci M(XY) = M(X)M(Y). Reciproca nu este în general adevărată, așa după cum rezultă din Exercițiul 5.1.6.

Două variabile aleatoare X și Y pentru care $M\left(XY\right)=M\left(X\right)M\left(Y\right)$ se numesc necorelate.

EXERCIŢII

Exercițiul 5.1.1 Să se arate că evenimentele $A, B \in \mathcal{F}$ sunt independente dacă şi numai dacă variabilele aleatoare 1_A şi 1_B sunt independente.

Exercițiul 5.1.2 Să se arate că variabilele aleatoare X şi Y sunt independente dacă şi numai dacă σ -algebrele generate de acestea, $\sigma(X)$ şi $\sigma(Y)$ sunt independente.

Exercițiul 5.1.3 Fie X_1, X_2 variabile aleatoare cu $P(X_i = 0) = P(X_i = 1) = 1/2$. Să se arate că X_1, X_2, X_1X_2 sunt independente două cât două, dar nu sunt independente.

Exercițiul 5.1.4 Găsiți un exemplu de trei evenimente A_1, A_2, A_3 astfel încât A_1 și A_2 sunt independente, A_1 și A_3 sunt independente, dar A_1 și $A_2 \cup A_3$ nu sunt independente.

Exercițiul 5.1.5 Să se arate că dacă X este o variabilă aleatoare integrabilă si X si Y sunt variabile aleatoare independente, atunci

$$M\left(X1_{\{Y\in B\}}\right) = M\left(X\right)P\left(Y\in B\right),\,$$

pentru orice mulțime Boreliană $B \in \mathcal{B}$.

Exercițiul 5.1.6 Considerăm spațiul de probabilitate (Ω, \mathcal{F}, P) unde $\Omega = (0, 1)$, $\mathcal{F} = \mathcal{B} \cap (0, 1)$ familia mulțimilor Boreliene pe (0, 1) și $P = \lambda$ măsura Lebesgue pe (0, 1). Să se arate că variabilele aleatoare

$$X_n(\omega) = \sin(2n\pi\omega), \qquad n = 1, 2, \dots$$

sunt necorelate (adică verifică $M(X_iX_j) = M(X_i)M(X_j)$, $i \neq j$) dar nu sunt independente.