K_0 for nonunital rings. Half- and split-exactness

(EXERCISES FOR LECTURES 10–11)

- **2.1.** Let R and S be rings, and let $0: R \to S$ be the zero map. Show that the induced map $0_*: K_0(R) \to K_0(S)$ is zero.
- **2.2.** Extend the isomorphisms $K_0(R \times S) \cong K_0(R) \times K_0(S)$ and $K_0(R) \cong K_0(R^{\text{op}})$ (see Exercises 1.6 and 1.7) to nonunital rings.
- **2.3** (matrix stability of K_0). (a) Given a ring R, define a (nonunital!) ring homomorphism $i_n: R \to M_n(R)$ by $i_n(a) = a \oplus 0_{n-1}$. Show that the induced map $(i_n)_*: K_0(R) \to K_0(M_n(R))$ is an isomorphism.
- (b) Prove a similar result for the embedding $i_{\infty} : R \to M_{\infty}(R), a \mapsto a \oplus 0$.
- (c) Deduce that, if R is a field or if $R = \mathbb{Z}$ (or, more generally, if R is a principal ideal domain), then $K_0(M_{\infty}(R)) \cong \mathbb{Z}$.
- **2.4** (a naive definition of K_0 for nonunital rings). Given a nonunital ring R, define $K_{00}(R)$ to be the Grothendieck group of the semigroup $\mathbb{V}(R)$ defined exactly as in the unital case (thus $\mathbb{V}(R)$ consists of equivalence classes of idempotents in $M_{\infty}(R)$ with operation $[e] + [f] = [e \oplus f]$ for idempotents $e, f \in M_{\infty}(R)$). Give an example showing that K_{00} is not half-exact.

(*Hint*: you may use the fact that $K^0(S^2) \cong \mathbb{Z}^2$.)

- **2.5.** Let $p: R \to S$ be a unital ring homomorphism. Suppose that p is a retraction in the category of all (not necessarily unital) rings, i.e., that the ring extension $\operatorname{Ker} p \hookrightarrow R \to S$ splits. Is p necessarily a retraction in the category of unital rings?
- **2.6.** Let X be a compact topological space, Y be a closed subset of X, and $U = X \setminus Y$.
- (a) Show that the ideal $I_Y = \{ f \in C(X) : f|_Y = 0 \}$ is isometrically *-isomorphic to $C_0(U)$.
- (b) Prove that the extension $C_0(U) \hookrightarrow C(X) \to C(Y)$ splits in the category of (not necessarily unital) \mathbb{C} -algebras iff Y is a retract of X.
- **2.7.** Does the extension $C_0((0,1)) \hookrightarrow C_0([0,1)) \to \mathbb{C}$ split in the category of rings? (Here the first arrow extends $f \in C_0((0,1))$ to [0,1) by f(0) = 0, and the second arrow is the evaluation at 0.)
- **2.8** (an algebraic version of the index map). Let $I \xrightarrow{i} R \xrightarrow{p} S$ be a ring extension. Assume also that R, S, p are unital. Define a map ind: $GL_{\infty}(S) \to K_0(I)$ as follows. Given $a \in GL_n(S)$, find (by Whitehead's lemma) $u \in GL_{2n}(R)$ such that $p(u) = a \oplus a^{-1}$. Since p(u) commutes with 1_n in $M_{2n}(S)$, it follows that $u1_nu^{-1} 1_n \in M_{2n}(I)$ and that $u1_nu^{-1} \in M_{2n}(I_+)$. We let $ind(a) = [u1_nu^{-1}] [1_n] \in K_0(I)$ (where the brackets [..] denote classes in $K_0(I_+)$).
- (a) Show that ind: $GL_{\infty}(S) \to K_0(I)$ is a well-defined group homomorphism.
- (b) Show that the exact sequence $K_0(I) \to K_0(R) \to K_0(S)$ (see the lecture) fits into an exact sequence

$$\operatorname{GL}_{\infty}(R) \xrightarrow{p} \operatorname{GL}_{\infty}(S) \xrightarrow{\operatorname{ind}} K_0(I) \to K_0(R) \to K_0(S).$$

- (c) Show that, if S is a field and $n \ge 3$, then the commutant of $GL_n(S)$ is $SL_n(S)$.
- (d) Assuming that S is a field, show that the exact sequence from (b) induces an exact sequence

$$R^{\times} \xrightarrow{p} S^{\times} \xrightarrow{\text{ind}} K_0(I) \to K_0(R) \to K_0(S).$$

(e) Using (d), calculate $K_0(p\mathbb{Z})$ where $p \in \mathbb{Z}$ is a prime. Is the map $K_0(p\mathbb{Z}) \to K_0(\mathbb{Z})$ injective?

- **2.9** (an algebraic prototype of Fredholm operators). Let V be a k-vector space of countable dimension. A linear operator $T: V \to V$ is Fredholm if $\operatorname{Ker} T$ and $\operatorname{Coker} T$ are finite-dimensional. The Fredholm index of T is $\operatorname{ind}(T) = \dim \operatorname{Ker} T \dim \operatorname{Coker} T$.
- (a) Show that T is Fredholm iff there exists a linear operator S on V such that the operators 1 ST and 1 TS are of finite rank.
- (b) Show that, if T is Fredholm, then S in (a) can be chosen in such a way that 1 ST and 1 TS are idempotents with Im(1 ST) = Ker T and $Im(1 TS) \cong Coker T$.
- (c) Let $E = \operatorname{End}_k(V)$, and let $F \subset E$ be the ideal consisting of finite-rank operators (thus $F \cong M_{\infty}(k)$). Show that $T \in E$ is Fredholm iff p(T) is invertible in E/F (where $p \colon E \to E/F$ is the quotient map).
- (d) Given $a = p(T) \in (E/F)^{\times}$, show that the Fredholm index $\operatorname{ind}(T)$ defined in this exercise agrees with the K-theoretic index $\operatorname{ind}(a) \in K_0(F)$ defined in Exercise 2.8 modulo the identification $K_0(F) \cong \mathbb{Z}$ (see Exercise 2.3 (c)).
- **2.10** (an algebraic version of the Calkin extension). Let E and F be as in Exercise 2.9. Is the quotient map $E \to E/F$ a retraction (a) in the category of unital rings? (b) in the category of rings?
- **2.11** (an algebraic version of the Toeplitz extension). Let V be a k-vector space with a countable basis $\{e_0, e_1, \ldots\}$. Define linear operators u, v on V by $v(e_i) = e_{i+1}$ $(i \ge 0)$, $u(e_i) = e_{i-1}$ $(i \ge 1)$, $u(e_1) = 0$. Let T denote the subalgebra of $\operatorname{End}_k(V)$ generated by u and v (the Toeplitz-Jacobson algebra).
- (a) Show that the ideal of T generated by all commutators [a, b] $(a, b \in T)$ is precisely the algebra F of all finite-rank operators on V.
- (b) Show that the quotient T/F is isomorphic to the Laurent polynomial algebra $k[t^{\pm 1}]$.
- (c) Is $T \to T/F$ a retraction in the category of unital rings?
- (d)* Is $T \to T/F$ a retraction in the category of rings?