20 07102024-161143

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\text{\tiny H}}=2.0~\Gamma\Gamma$ ц и $f_{\text{\tiny B}}=3.5~\Gamma\Gamma$ ц, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 1.3 дБ 2) 1.0 дБ 3) 0.7 дБ 4) 0.3 дБ

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11}=0.61\text{-}0.51\mathrm{i}$.

Найти модуль (в дБ) коэффициента передачи s_{21} .

Варианты ОТВЕТА:

- 1) -4.3 дБ
- 2) -1.4 дБ
- 3) -0.4 дБ
- 4) -8.7 дБ

Даны значения s-параметров на некоторой частоте:

Freq	s ₁₁		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.486	-129.9	19.485	99.7	0.029	50.5	0.431	-62.4

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

Варианты ОТВЕТА:

- 1) аттенюатор с затуханием 1.5 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 1.7 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 3.0 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 1.8 дБ, подключённый к плечу 1.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.557	164.3	5.587	74.3	0.050	58.2	0.270	-42.2
1.6	0.579	144.0	3.515	58.3	0.074	56.2	0.253	-50.0
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.8	0.661	113.0	1.958	30.1	0.119	45.7	0.226	-78.0
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.6	0.768	82.9	1.110	-3.3	0.173	29.1	0.237	-135.2

Выбрать Γ -образный четырёхполюсник (см. рисунок 2), который может обеспечить согласование со стороны плеча 2 на частоте 3.4 $\Gamma\Gamma$ ц.

Рисунок 2 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Рисунок 4 – Различные реализации Г-образной цепи согласования

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -3.9\,$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $8.4~{\rm дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

Варианты ОТВЕТА:

- 1) 3.4 мBт
- 2) 1.0 mB_T
- 3) 4.1 мВт
- 4) 2.8 mBT