Ring Signature

A ring singture allows users to sign oin behalf on a group without revealing the signer's identity.

Def. Ring signature consists of (KeyGen, Sign, Verify):

- $(vk_1, sk_1), \ldots, (vk_n, sk_n) \leftarrow \mathsf{KeyGen}(1^{\lambda}, n);$
 - Input: a security parameter λ and a number of ring users n
 - \circ Output: a verification key vk_i and a signing key sk_i for each ring users
- $\sigma \leftarrow \mathsf{Sign}(m, vk_1, \dots, vk_n, sk_i)$ for some $1 \leq i \leq n$;
 - \circ Input: a message m, all verification keys vk_1,\ldots,vk_n and a signing key sk_i for some user
 - \circ Output: a signature σ of m
- $b \leftarrow \mathsf{Verify}(m, \sigma, vk_1, \dots, vk_n)$;
 - o Input: a message m, a signature σ and all verification keys vk_1,\dots,vk_n
 - Output: a bit b=1 if σ is a valid signature of m signed by sk_i for $1\leq i\leq n$

Before describing [RST01] ring signature scheme, I will introduce a combining function which is a main technique of the scheme.

Combining Function

Let E_k be a symmetric encryption with a secret key k.

Let
$$C_{k,v}(y_1,\ldots,y_r)=E_k(y_r\oplus E_k(y_{n-1}\oplus\cdots\oplus E_k(y_1+v))\cdots))$$

Then.

- ullet $C_{k,v}$ is a one-to-one mapping from y_s to z for $1 \leq s \leq r$ and fixed $y_i, i \neq s$.
- ullet For $1\leq s\leq r$ and $y_i,i
 eq s$, it is possible to efficiently find y_s such that $C_{k,v}(y_1,\ldots,y_s,\ldots,y_r)=z$
- Given k,z and v, it is hard to solve $C_{k,v}(g_1(x_1),\ldots,g_r(x_r))=z$ for x_1,\ldots,x_r if g_i 's are one-way function.
 - Define $g_i(x) = x^{e_i} \mod n_i$ which is actually an encryption of RSA.
 - One can easily obtain m if he/she has d_i such that $e_i d_i \equiv 1 \mod n_i$.
 - However, it is hard to obtain m without such d_i .

[RST01] @ Asiacrypt'01

- KeyGen $(1^{\lambda}, r)$;
 - Each member executes RSA. KeyGen(1^{λ})
 - Output $vk_i = \{n_i, e_i\}$ and $sk_i = \{p_i, q_i, d_i\}$ for all i
- Sign $(m, vk_1, \ldots, vk_r, sk_s)$ for a signer s;
 - \circ Compute k := H(m) where H is a cryptographic hash function

```
\circ Choose v \leftarrow \{0,1\}^b and x_i \leftarrow \{0,1\}^b for 1 \leq i \leq r, i \neq s
```

- \circ Compute $y_i := g(x_i) = x_i^{e_i} mod n_i$
- \circ Solve the equation $C_{k,v}(y_1,\ldots,y_s,\ldots,y_r)=v$ for y_s
- \circ Compute $x_s:=g_s^{-1}(y_s)=y_s^{d_s} mod n_i$
- \circ Output $\sigma:=(v,x_1,\ldots,x_r)$
- Verify $(m, \sigma, vk_1, \ldots, vk_r)$;
 - \circ Compute $y_i := g_i(x_i)$ for all i
 - \circ Compute k := H(m)
 - \circ Compute $\sigma' := C_{k,v}(y_1,\ldots,y_r)$
 - If $\sigma = \sigma'$, output 1.
 - Otherwise, output 0.

Remark

- In Monero (XMR), they use a *linkable* ring signatures
 - anyone can efficiently verify that the signature were generated by *the same* signer without learning who the signer is.

Group Signature

A group signature allows a member of a group to <u>anonymously sign a message</u> on behalf of the group.

There is a group manager who is in charge of adding group members and has ability to reveal the original signer.

Def. Group signature consists of (KeyGen, Sign, Verify, Open):

- $(vk, msk, sk_1, \ldots, sk_n) \leftarrow \mathsf{KeyGen}(1^{\lambda}, n);$
 - Input: a security parameter λ and a number of group users n
 - \circ Output: a verification key vk, a master secret key msk, a signing key sk_i for each group users
- $\sigma \leftarrow \mathsf{Sign}(m, sk_i)$ for some $1 \leq i \leq n$;
 - Input: a message m and a signing key sk_i
 - \circ Output: a signature σ of m
- $b \leftarrow \mathsf{Verify}(m, \sigma, vk)$;
 - \circ Input: a message m, a signature σ and a verification key vk
 - o Output: a bit b=1 if σ is a valid signature of m signed by sk_i for $1\leq i\leq n$
- $i \leftarrow \mathsf{Open}(m, \sigma, msk)$;
 - \circ Input: a message m, a signature σ and a master secret key msk
 - \circ Output: a user i or \perp

A construction of a group signature will be given after dealing with zero-knowledge proof.

Other Signatures

- Threshold Signature
- **Multisignature** is a scheme a certain number of signers signs a given message.
 - much shorter than than the set of individual signatures
- **Proxy Signature** allows a delegator to give partial signing rights to other parties called proxy signer.