SME0820 Modelos de Regressão e Aprendizado Supervisionado I: Lista 1

Thomas Peron.

Data de publicação: 28/08/2023. Data da provinha: 15/09/2023. Data de entrega exercício 🖵: 15/09/2023

Resolva os exercícios computacionais () da maneira que quiser: com o software ou linguagem de sua preferência (R, Python, C, Fortran, etc.), manualmente, ou ambos.

1. Demonstre as seguintes relações:

(a)
$$\frac{\sum_{i} X_{i} Y_{i} - \left[\left(\sum_{i} X_{i} \right) \left(\sum_{i} Y_{i} \right) \right] / n}{\sum_{i} X_{i}^{2} - \left(\sum_{i} X_{i} \right)^{2} / n} = \frac{\sum_{i} \left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right)}{\sum_{i} \left(X_{i} - \overline{X} \right)^{2}};$$

(b)
$$S_{XY} = \sum_{i} (X_i - \overline{X})(Y_i - \overline{Y}) = \sum_{i} X_i Y_i - n \overline{XY} = \sum_{i} (X_i - \overline{X}) Y_i = \sum_{i} X_i (Y_i - \overline{Y});$$

(c)
$$S_{XX} = \sum_{i} (X_i - \overline{X})^2 = \sum_{i} X_i^2 - n\overline{X}^2 = \sum_{i} (X_i - \overline{X})X_i.$$

2. Considere o modelo de regressão linear simples

$$Y = \beta_0 + \beta_1 X + \varepsilon, \tag{1}$$

onde $\mathbb{E}[\varepsilon] = 0$ e $\text{Var}[\varepsilon] = \sigma^2$. Utilizando os resultados dos parâmetros ótimos β_0 e β_1 , mostre que

$$\mathbb{E}\left[\left(Y - (\beta_0 + \beta_1 X)\right)^2\right] = \sigma^2. \tag{2}$$

3. Para o modelo de regressão linear

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \quad i = 1, ..., n, \tag{3}$$

onde ϵ_i é uma variável aleatória satisfazendo $\mathbb{E}(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$ e $cov(\epsilon_i, \epsilon_j) = 0 \ \forall i, j$, calcule as seguintes quantidades relacionadas aos estimadores $\hat{\beta}_1$ e $\hat{\beta}_0$ obtidos pelo métodos dos mínimos quadrados:

- (a) $\mathbb{E}[\hat{\beta}_0]$ e $\text{Var}[\hat{\beta}_0]$.
- (b) $\mathbb{E}[\hat{\beta}_1]$ e $\text{Var}[\hat{\beta}_1]$.
- (c) $\mathbb{E}[\hat{Y}]$ e $\text{Var}[\hat{Y}]$, onde $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x = \hat{m}(x)$ é o modelo ajustado. Em particular, para o cálculo desta variância, mostre que

$$\operatorname{Var}\left[\frac{1}{n}\sum_{i}\left(1+(x-\overline{X})\frac{(X_{i}-\overline{X})}{S_{XX}}\right)\varepsilon_{i}\right] = \frac{\sigma^{2}}{n}\left[1+\frac{(x-\overline{X})^{2}}{S_{XX}}\right]$$

4. Ainda para o modelo (3), mostre que

- (a) $\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (Y_i \hat{Y}_i) = 0$,
- (b) $\sum_{i} X_{i} e_{i} = 0$,
- (c) $\sum_{i} \hat{Y}_{i} e_{i} = 0$,

sendo que $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$, onde $\hat{\beta}_0$ e $\hat{\beta}_1$ são os parâmetros estimados pelo método dos mínimos quadrados.

5. \square (*Verificando flutuações nos parâmetros*) Repita o experimento que vimos em sala¹. Suponha que a relação verdadeira entre as variáveis é dada por

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
, with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$, (4)

com $\beta_0 = 3$, $\beta_1 = 5$, e $\sigma^2 = 4$, por exemplo (você pode testar outros valores também). Agora

^{1&}quot;You don't understand your model until you can simulate from it." (Gelman, Hill, e Vehtari em Regression and Other Stories)

- (a) realize N_{exp} experimentos (e.g., $N_{\text{exp}} = 50, 100, ...$), e, para cada experimento, construa uma tabela $\{(X_i, Y_i)\}_{i=1}^N \text{ com } N \text{ pontos amostrados de Eq. (4)}$. Ajuste o modelo usando os estimadores $\hat{\beta}_{0,1}$ obtidos pelo métodos de mínimos quadrados. Calcule a média empírica e desvios padrão de $\hat{\beta}_{0,1}$ e os compare com os valores verdadeiros ($\beta_0 = 3$, $\beta_1 = 5$). Visualize as flutuações no modelo ajustado como vimos em sala.
- (b) (*Dependência com o tamanho da amostra*) Como em (a), estime os coeficientes $\beta_{0,1}$ usando mínimos quadrados, mas agora, em cada experimento, varie o tamanho da amostra, N. Visualize os parâmetros estimados $\hat{\beta}_{0,1}$ como função de N. Discuta os resultados. *Dica:* Para obter resultados mais robustos, faça várias realizações para um tamanho fixo da amostra.
- (c) Para um tamanho fixo de amostra, crie uma visualização para os dados $\{(X_i, Y_i)\}_{i=1}^N$, o modelo ajustado $\hat{m}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$ e seu erro padrão $SE[\hat{m}(x)]$.
- (d) Também para um tamanho fixo de amostra, realize vários experimentos aumentando o intervalo de amostragem de X. Visualize $Var[\hat{\beta}_0]$ e $Var[\hat{\beta}_1]$ em função de S_{XX} , e compare as curvas com os valores teóricos obtidos no exercício 3.