Julia 使用 PyPlot库 画图

❖ 引入PyPlot

• using PyPlot //加载内容较多,耗时较长

简单图 展示

❖ 点图,线图,虚线图

```
>>>plot([1,2,3],"bo--",label="line_1"); #蓝色圆点虚线bo--
>>>legend() #显示lable
show() #非交互式环境,显示图片命令
```


>>> plot([1,2,3]) #默认是直线图:"b-"

>>> plot([1,2,3,4,5,6],"ko")

❖ 条形图

>>> bar([1,2,3],[2,4,3])

❖ 横向条形图

>>> barh(["one","htisd","nato","kaici","puto"],[1,4,5,2,8])

❖ 子图:一行两列

>>> subplot(121);plot([1,2,3]);subplot(122);plot([3,5,2,4])

❖ 极坐标图

>>>polar([1,2,3,4,5,6,7,8,9,8])

>>>polar(rand(UInt32,7),"bo--");title("7 point polar graph")

❖ 矩阵图

>>> matshow([[1,2],[3,4]]);title(L"this is $frac\{1\}\{3\}$ ") #添加标题

❖ 饼图

>>> pie([20,30,50],labels=["julia","python3","C++"])

>>> pie([20,30,50],labels=["julia","python3","C++"],explode=[0.1,0.1,0.1])

❖ stack_plot

>>>stackplot([i for i=1:30],rand(UInt,30),rand(UInt,30),labels=["cpu1","cpu2"]);legend()

❖ 2x2 的子图

```
>>> data=randn(100)
>>>fig, axs = plt.subplots(2, 2, figsize=(5, 5));
axs[1,1].hist(data);
axs[1, 2].scatter(data, data);
axs[2, 1].plot(data, data);
axs[2,2].hist2d(data, data)
# suptitle("主标题")
```


❖ 条形码???

>>> eventplot(rand(5,10))

>>> eventplot(rand(3,5))

❖ 直方图

>>>hist(rand(100))

❖ 二维直方图

>>>hist2D([1,2,3,4],[1,3,2,1])

❖ stem 茎图

>>>stem(rand(10))

❖ spy() #展示稀疏模式

☆ step()

❖ 二维散点图和三围散点图

>>> scatter([i for i=1:100],randn(100));xlabel("x-show");ylabel("Y-show")

>>>scatter3D(rand(100),rand(100),rand(100))

❖ 保存图片命令

• savefig("filename.svg")

3D图形

❖ 三维平面

>>>surf(rand(3,4))

❖ 折线

>>> mesh(rand(5),rand(5),rand(5,5))

>>> plot3D(rand(10),rand(10),rand(10))

>>> contour3D(rand(10), rand(10), rand(10,10))

>>>asd=[i for i=1:100];plot_surface(asd,asd,asd*asd')

>>> plot_wireframe([i for i=1:100],[i for i=1:100],rand(100,100))

❖ 存疑?

- plotfile():有意思
- psd()?
- streamplot() 空气流动图
- table() #图表
- triplot()

图片操作

- asd=imread("filename")
- imshow(asd)
- imsave()

❖ 鼠标在图片上停留

其他

- grid(true) 显示网格
- text() 添加文字
- close() 关闭显示的图像
- draw() 重新画
- 开关交互式环境: ion() /\ ioff()
- subplot_tool() #调节子图的位置和间距

使用对象(.)调用

- plt.plot([1, 2, 3, 4]);plt.axis([0, 6, 0, 20]);plt.show()
 - 横坐标0->6
 - 纵坐标0->20

julia>t=[1,2,3,4,5,6,7,8,9];plt.plot(t, t, "r-", t, t.^2, "bs-", t, t.^3, "g^-")一个plot中画三条线

❖ 在图中放置文本

- text(5,125,L"this line = x^3")在x=5,y=125 处放置文本
- ❖ 改变风格:

❖ 箭头 解释

例子

❖ draw() 刷新当前图片

```
asda=[]
for i=1:100
    push!(asda,i)
    polar(asda)
    draw() # 要打开交互式环境 ion()
    sleep(1)
end
```


