Deep Generative Models

Lecture 13

Roman Isachenko

Autumn, 2022

Deterministic variational posterior

$$q(c_{ij} = k^* | \mathbf{x}, \phi) =$$

$$\begin{cases} 1, & \text{for } k^* = \arg\min_k \|[\mathbf{z}_e]_{ij} - \mathbf{e}_k\|; \\ 0, & \text{otherwise.} \end{cases}$$

ELBO

$$\mathcal{L}(\phi, \theta) = \mathbb{E}_{q(c|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{e}_c, \theta) - \log K = \log p(\mathbf{x}|\mathbf{z}_q, \theta) - \log K.$$

Straight-through gradient estimation

$$\frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \boldsymbol{\phi}} = \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_q}{\partial \boldsymbol{\phi}} \approx \frac{\partial \log p(\mathbf{x}|\mathbf{z}_q, \boldsymbol{\theta})}{\partial \mathbf{z}_q} \cdot \frac{\partial \mathbf{z}_e}{\partial \boldsymbol{\phi}}$$

Gumbel-max trick

Let $g_k \sim \mathsf{Gumbel}(0,1)$ for $k=1,\ldots,K$. Then

$$c = \argmax_k [\log \pi_k + g_k]$$

has a categorical distribution $c \sim \mathsf{Categorical}(\pi)$.

Gumbel-softmax relaxation

Concrete distribution = **con**tinuous + dis**crete**

$$\hat{c}_k = \frac{\exp\left(\frac{\log q(k|\mathbf{x},\phi) + g_k}{\tau}\right)}{\sum_{j=1}^K \exp\left(\frac{\log q(j|\mathbf{x},\phi) + g_j}{\tau}\right)}, \quad k = 1, \dots, K.$$

Reparametrization trick

$$\nabla_{\phi} \mathbb{E}_{q(c|\mathbf{x},\phi)} \log p(\mathbf{x}|\mathbf{e}_c,\theta) = \mathbb{E}_{\mathsf{Gumbel}(0,1)} \nabla_{\phi} \log p(\mathbf{x}|\mathbf{z},\theta),$$

where $\mathbf{z} = \sum_{k=1}^{K} \hat{c}_k \mathbf{e}_k$ (all operations are differentiable now).

Maddison C. J., Mnih A., Teh Y. W. The Concrete distribution: A continuous relaxation of discrete random variables, 2016

Jang E., Gu S., Poole B. Categorical reparameterization with Gumbel-Softmax, 2016

Consider Ordinary Differential Equation

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), t, \boldsymbol{\theta}); \text{ with initial condition } \mathbf{z}(t_0) = \mathbf{z}_0.$$

$$\mathbf{z}(t_1) = \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \boldsymbol{\theta}) dt + \mathbf{z}_0 = \mathsf{ODESolve}(\mathbf{z}(t_0), f, t_0, t_1, \boldsymbol{\theta}).$$

Euler update step

$$\frac{\mathbf{z}(t+\Delta t)-\mathbf{z}(t)}{\Delta t}=f(\mathbf{z}(t),t,\theta) \ \Rightarrow \ \mathbf{z}(t+\Delta t)=\mathbf{z}(t)+\Delta t\cdot f(\mathbf{z}(t),t,\theta)$$

Residual block

$$\mathbf{z}_{t+1} = \mathbf{z}_t + f(\mathbf{z}_t, \boldsymbol{\theta})$$

It is equavalent to Euler update step for solving ODE with $\Delta t = 1$! In the limit of adding more layers and taking smaller steps we get:

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), t, \boldsymbol{\theta}); \quad \mathbf{z}(t_0) = \mathbf{x}; \quad \mathbf{z}(t_1) = \mathbf{y}.$$

$$\mathbf{a_z}(t) = \frac{\partial L(\mathbf{y})}{\partial \mathbf{z}(t)}; \quad \mathbf{a_{\theta}}(t) = \frac{\partial L(\mathbf{y})}{\partial \theta(t)}$$
 - adjoint functions.

Theorem (Pontryagin)

$$\frac{d\mathbf{a}_{\mathbf{z}}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{T} \cdot \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \mathbf{z}}; \quad \frac{d\mathbf{a}_{\theta}(t)}{dt} = -\mathbf{a}_{\mathbf{z}}(t)^{T} \cdot \frac{\partial f(\mathbf{z}(t), t, \theta)}{\partial \theta}.$$

Forward pass

$$\mathbf{z}(t_1) = \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \boldsymbol{\theta}) dt + \mathbf{z}_0 \quad \Rightarrow \quad \mathsf{ODE} \; \mathsf{Solver}$$

Backward pass

$$\begin{split} \frac{\partial L}{\partial \boldsymbol{\theta}(t_0)} &= \mathbf{a}_{\boldsymbol{\theta}}(t_0) = -\int_{t_1}^{t_0} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f(\mathbf{z}(t),t,\boldsymbol{\theta})}{\partial \boldsymbol{\theta}(t)} dt + 0 \\ \frac{\partial L}{\partial \mathbf{z}(t_0)} &= \mathbf{a}_{\mathbf{z}}(t_0) = -\int_{t_1}^{t_0} \mathbf{a}_{\mathbf{z}}(t)^T \frac{\partial f(\mathbf{z}(t),t,\boldsymbol{\theta})}{\partial \mathbf{z}(t)} dt + \frac{\partial L}{\partial \mathbf{z}(t_1)} \\ \mathbf{z}(t_0) &= -\int_{t_1}^{t_0} f(\mathbf{z}(t),t,\boldsymbol{\theta}) dt + \mathbf{z}_1. \end{split} \right\} \Rightarrow \mathsf{ODE} \; \mathsf{Solver}$$

Chen R. T. Q. et al. Neural Ordinary Differential Equations, 2018

Outline

1. Continuous-in-time normalizing flows

2. Langevin dynamic and SDE basics

3. Score matching

Outline

1. Continuous-in-time normalizing flows

Langevin dynamic and SDE basics

3. Score matching

Discrete-in-time NF

$$\mathbf{z}_{t+1} = f(\mathbf{z}_t, \boldsymbol{\theta}); \quad \log p(\mathbf{z}_{t+1}) = \log p(\mathbf{z}_t) - \log \left| \det \frac{\partial f(\mathbf{z}_t, \boldsymbol{\theta})}{\partial \mathbf{z}_t} \right|.$$

Continuous-in-time dynamics

$$\frac{d\mathbf{z}(t)}{dt} = f(\mathbf{z}(t), t, \boldsymbol{\theta}).$$

Theorem (Picard)

If f is uniformly Lipschitz continuous in \mathbf{z} and continuous in t, then the ODE has a **unique** solution.

Note: Unlike discrete-in-time flows, f does not need to be bijective (uniqueness guarantees bijectivity).

Forward and inverse transforms

$$\mathbf{z} = \mathbf{z}(t_1) = \mathbf{z}(t_0) + \int_{t_0}^{t_1} f(\mathbf{z}(t), t, \boldsymbol{\theta}) dt$$
 $\mathbf{z} = \mathbf{z}(t_0) = \mathbf{z}(t_1) + \int_{t_1}^{t_0} f(\mathbf{z}(t), t, \boldsymbol{\theta}) dt$

Theorem (Kolmogorov-Fokker-Planck: special case)

If f is uniformly Lipschitz continuous in \mathbf{z} and continuous in t, then

$$\frac{d\log p(\mathbf{z}(t),t)}{dt} = -\mathrm{tr}\left(\frac{\partial f(\mathbf{z}(t),t,\boldsymbol{\theta})}{\partial \mathbf{z}(t)}\right).$$

Density evaluation

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{z}) - \int_{t_0}^{t_1} \operatorname{tr}\left(\frac{\partial f(\mathbf{z}(t), t, \boldsymbol{\theta})}{\partial \mathbf{z}(t)}\right) dt.$$

Here $p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}(t_1), t_1)$, $p(\mathbf{z}) = p(\mathbf{z}(t_0), t_0)$. **Adjoint** method is used for getting the derivatives.

Forward transform + log-density

$$\begin{bmatrix} \mathbf{x} \\ \log p(\mathbf{x}|\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ \log p(\mathbf{z}) \end{bmatrix} + \int_{t_0}^{t_1} \begin{bmatrix} f(\mathbf{z}(t), t, \boldsymbol{\theta}) \\ -\text{tr}\left(\frac{\partial f(\mathbf{z}(t), t, \boldsymbol{\theta})}{\partial \mathbf{z}(t)}\right) \end{bmatrix} dt.$$

- ▶ Discrete-in-time normalizing flows need invertible f. It costs $O(m^3)$ to get determinant of the Jacobian.
- Continuous-in-time flows require only smoothness of f. It costs $O(m^2)$ to get the trace of the Jacobian.

- ▶ $\operatorname{tr}\left(\frac{\partial f(\mathbf{z}(t),\theta)}{\partial \mathbf{z}(t)}\right)$ costs $O(m^2)$ (m evaluations of f), since we have to compute a derivative for each diagonal element.
- ▶ Jacobian vector products $\mathbf{v}^T \frac{\partial f}{\partial \mathbf{z}}$ can be computed for approximately the same cost as evaluating f.

It is possible to reduce cost from $O(m^2)$ to O(m)!

Hutchinson's trace estimator

If $\epsilon \in \mathbb{R}^m$ is a random variable with $\mathbb{E}[\epsilon] = 0$ and $\mathsf{Cov}(\epsilon) = I$, then $\mathsf{tr}(\mathbf{A}) = \mathsf{tr}(\mathbf{A}\mathbb{E}[\epsilon]) = \mathbb{E}[\epsilon] = 0$ and $\mathsf{Tr}(\mathbf{A}) = \mathsf{tr}(\mathbf{A}) = \mathsf{tr}$

$$\operatorname{tr}(\mathbf{A}) = \operatorname{tr}\left(\mathbf{A}\mathbb{E}_{p(\epsilon)}\left[\epsilon\epsilon^{T}\right]\right) = \mathbb{E}_{p(\epsilon)}\left[\operatorname{tr}\left(\mathbf{A}\epsilon\epsilon^{T}\right)\right] = \mathbb{E}_{p(\epsilon)}\left[\epsilon^{T}\mathbf{A}\epsilon\right]$$

FFJORD density estimation

$$\begin{split} \log p(\mathbf{z}(t_1)) &= \log p(\mathbf{z}(t_0)) - \int_{t_0}^{t_1} \operatorname{tr} \left(\frac{\partial f(\mathbf{z}(t), t, \boldsymbol{\theta})}{\partial \mathbf{z}(t)} \right) dt = \\ &= \log p(\mathbf{z}(t_0)) - \mathbb{E}_{p(\epsilon)} \int_{t_0}^{t_1} \left[\epsilon^T \frac{\partial f}{\partial \mathbf{z}} \epsilon \right] dt. \end{split}$$

Grathwohl W. et al. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. 2018

Outline

1. Continuous-in-time normalizing flows

2. Langevin dynamic and SDE basics

3. Score matching

Langevin dynamic

Imagine that we have some generative model $p(\mathbf{x}|\theta)$.

Statement

Let \mathbf{x}_0 be a random vector. Then under mild regularity conditions for small enough η samples from the following dynamics

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \eta \frac{1}{2} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, 1).$$

will comes from $p(\mathbf{x}|\boldsymbol{\theta})$.

What do we get if $\epsilon = \mathbf{0}$?

Energy-based model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \frac{\hat{p}(\mathbf{x}|\boldsymbol{\theta})}{Z_{\boldsymbol{\theta}}}, \quad \text{where } Z_{\boldsymbol{\theta}} = \int \hat{p}(\mathbf{x}|\boldsymbol{\theta}) d\mathbf{x}$$

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) = \nabla_{\mathbf{x}} \log \hat{p}(\mathbf{x}|\boldsymbol{\theta}) - \nabla_{\mathbf{x}} \log Z_{\boldsymbol{\theta}} = \nabla_{\mathbf{x}} \log \hat{p}(\mathbf{x}|\boldsymbol{\theta})$$

Gradient of normalized density equals to gradient of unnormalized density.

Stochastic differential equation (SDE)

Let define stochastic process $\mathbf{x}(t)$ with initial condition $\mathbf{x}(0) \sim p_0(\mathbf{x})$:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}$$

- **f**(\mathbf{x} , t) is the **drift** function of \mathbf{x} (t).
- ightharpoonup g(t) is the **diffusion** coefficient of $\mathbf{x}(t)$.
- ▶ If g(t) = 0 we get standard ODE.
- $\mathbf{w}(t)$ is the standard Wiener process (Brownian motion)

$$\mathbf{w}(t) - \mathbf{w}(s) \sim \mathcal{N}(0, t-s), \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \text{ where } \epsilon \sim \mathcal{N}(0, 1).$$

How to get distribution $p(\mathbf{x}, t)$ for $\mathbf{x}(t)$?

Theorem (Kolmogorov-Fokker-Planck)

Evolution of the distribution $p(\mathbf{x}, t)$ is given by the following ODE:

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \operatorname{tr}\left(-\frac{\partial}{\partial \mathbf{x}}\left[\mathbf{f}(\mathbf{x},t)p(\mathbf{x},t)\right] + \frac{1}{2}g^2(t)\frac{\partial^2 p(\mathbf{x},t)}{\partial \mathbf{x}^2}\right)$$

Stochastic differential equation (SDE)

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + g(t)d\mathbf{w}, \quad d\mathbf{w} = \epsilon \cdot \sqrt{dt}, \quad \epsilon \sim \mathcal{N}(0, 1).$$

Langevin SDE (special case)

$$d\mathbf{x} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t) dt + 1 d\mathbf{w}$$

Langevin discrete dynamic

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \eta \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \eta \approx dt.$$

Let apply KFP theorem.

$$\begin{split} \frac{\partial p(\mathbf{x}, t)}{\partial t} &= \operatorname{tr} \left(-\frac{\partial}{\partial \mathbf{x}} \left[p(\mathbf{x}, t) \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} \log p(\mathbf{x}, t) \right] + \frac{1}{2} \frac{\partial^2 p(\mathbf{x}, t)}{\partial \mathbf{x}^2} \right) = \\ &= \operatorname{tr} \left(-\frac{\partial}{\partial \mathbf{x}} \left[\frac{1}{2} \frac{\partial}{\partial \mathbf{x}} p(\mathbf{x}, t) \right] + \frac{1}{2} \frac{\partial^2 p(\mathbf{x}, t)}{\partial \mathbf{x}^2} \right) = 0 \end{split}$$

The density $p(\mathbf{x}, t) = \text{const.}$

Stochastic differential equation (SDE)

Statement

Let \mathbf{x}_0 be a random vector. Then samples from the following dynamics

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \eta \frac{1}{2} \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \boldsymbol{\theta}) + \sqrt{\eta} \cdot \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, 1).$$

will come from $p(\mathbf{x}|\boldsymbol{\theta})$ under mild regularity conditions for small enough η and large enough t.

The density $p(\mathbf{x}|\theta)$ is a **stationary** distribution for this SDE.

Song Y. Generative Modeling by Estimating Gradients of the Data Distribution, blog post, 2021

Outline

1. Continuous-in-time normalizing flows

Langevin dynamic and SDE basics

3. Score matching

Generative models zoo

Score matching

We could sample from the model using Langevin dynamics if we have $\nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta})$.

Fisher divergence

$$D_{F}(\pi, p) = \frac{1}{2} \mathbb{E}_{\pi} \left\| \nabla_{\mathbf{x}} \log p(\mathbf{x}|\boldsymbol{\theta}) - \nabla_{\mathbf{x}} \log \pi(\mathbf{x}) \right\|_{2}^{2} \to \min_{\boldsymbol{\theta}}$$

Let introduce score function $s(x, \theta) = \nabla_x \log \rho(x|\theta)$.

Problem: we do not know $\nabla_{\mathbf{x}} \log \pi(\mathbf{x})$.

Song Y. Generative Modeling by Estimating Gradients of the Data Distribution, blog post, 2021

Score matching

Theorem (implicit score matching)

Under some regularity conditions, it holds

$$\frac{1}{2}\mathbb{E}_{\pi}\big\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta}) - \nabla_{\mathbf{x}}\log\pi(\mathbf{x})\big\|_{2}^{2} = \mathbb{E}_{\pi}\Big[\frac{1}{2}\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\|_{2}^{2} + \mathrm{tr}\big(\nabla_{\mathbf{x}}\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\big)\Big] + \mathrm{const}$$

Proof (only for 1D)

$$\mathbb{E}_{\pi} \| s(x) - \nabla_{x} \log \pi(x) \|_{2}^{2} = \mathbb{E}_{\pi} \left[s(x)^{2} + (\nabla_{x} \log \pi(x))^{2} - 2[s(x)\nabla_{x} \log \pi(x)] \right]$$

$$\mathbb{E}_{\pi} [s(x)\nabla_{x} \log \pi(x)] = \int \pi(x)\nabla_{x} \log p(x)\nabla_{x} \log \pi(x) dx$$

$$= \int \nabla_{x} \log p(x)\nabla_{x}\pi(x) dx = \pi(x)\nabla_{x} \log p(x) \Big|_{-\infty}^{+\infty}$$

$$- \int \nabla_{x}^{2} \log p(x)\pi(x) dx = -\mathbb{E}_{\pi}\nabla_{x}^{2} \log p(x) = -\mathbb{E}_{\pi}\nabla_{x}s(x)$$

$$\frac{1}{2}\mathbb{E}_{\pi} \| s(x) - \nabla_{x} \log \pi(x) \|_{2}^{2} = \mathbb{E}_{\pi} \left[\frac{1}{2}s(x)^{2} + \nabla_{x}s(x) \right] + \text{const.}$$

Score matching

Theorem (implicit score matching)

$$\frac{1}{2}\mathbb{E}_{\pi}\big\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta}) - \nabla_{\mathbf{x}}\log\pi(\mathbf{x})\big\|_{2}^{2} = \mathbb{E}_{\pi}\Big[\frac{1}{2}\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\|_{2}^{2} + \mathrm{tr}\big(\nabla_{\mathbf{x}}\mathbf{s}(\mathbf{x},\boldsymbol{\theta})\big)\Big] + \mathrm{const}$$

Here $\nabla_{\mathbf{x}}\mathbf{s}(\mathbf{x}, \boldsymbol{\theta}) = \nabla_{\mathbf{x}}^2 \log p(\mathbf{x}|\boldsymbol{\theta})$ is a Hessian matrix.

- 1. The left hand side is intractable due to unknown $\pi(\mathbf{x})$ denoising score matching.
- The right hand side is complex due to Hessian matrix sliced score matching.

Sliced score matching (Hutchinson's trace estimation)

$$\mathsf{tr}ig(
abla_{\mathsf{x}} \mathsf{s}(\mathsf{x}, oldsymbol{ heta}) ig) = \mathbb{E}_{p(oldsymbol{\epsilon})} \left[oldsymbol{\epsilon}^{\mathsf{T}}
abla_{\mathsf{x}} \mathsf{s}(\mathsf{x}, oldsymbol{ heta}) oldsymbol{\epsilon}
ight]$$

Song Y. Sliced Score Matching: A Scalable Approach to Density and Score Estimation, 2019

Song Y. Generative Modeling by Estimating Gradients of the Data Distribution, blog post, 2021

Denoising score matching

Let perturb original data by normal noise $p(\mathbf{x}|\mathbf{x}',\sigma) = \mathcal{N}(\mathbf{x}|\mathbf{x}',\sigma^2\mathbf{I})$

$$\pi(\mathbf{x}|\sigma) = \int \pi(\mathbf{x}') p(\mathbf{x}|\mathbf{x}',\sigma) d\mathbf{x}'.$$

Then the solution of

$$\frac{1}{2}\mathbb{E}_{\pi(\mathbf{x}|\sigma)}\big\|\mathbf{s}(\mathbf{x},\boldsymbol{\theta},\sigma) - \nabla_{\mathbf{x}}\log\pi(\mathbf{x}|\sigma)\big\|_2^2 \to \min_{\boldsymbol{\theta}}$$

satisfies $\mathbf{s}(\mathbf{x}, \boldsymbol{\theta}, \sigma) \approx \mathbf{s}(\mathbf{x}, \boldsymbol{\theta}, 0) = \mathbf{s}(\mathbf{x}, \boldsymbol{\theta})$ if σ is small enough.

Theorem

$$\mathbb{E}_{\pi(\mathbf{x}|\sigma)} \|\mathbf{s}(\mathbf{x}, \boldsymbol{\theta}, \sigma) - \nabla_{\mathbf{x}} \log \pi(\mathbf{x}|\sigma)\|_{2}^{2} =$$

$$= \mathbb{E}_{\pi(\mathbf{x}')} \mathbb{E}_{p(\mathbf{x}|\mathbf{x}',\sigma)} \|\mathbf{s}(\mathbf{x}, \boldsymbol{\theta}, \sigma) - \nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{x}',\sigma)\|_{2}^{2} + \text{const}(\boldsymbol{\theta})$$

- Here $\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{x}', \sigma) = -\frac{\mathbf{x} \mathbf{x}'}{\sigma^2}$.
 - ► The RHS does not need to compute $\nabla_{\mathbf{x}} \log \pi(\mathbf{x}|\sigma)$ and even more $\nabla_{\mathbf{x}} \log \pi(\mathbf{x})$.
 - **s**($\mathbf{x}, \boldsymbol{\theta}, \sigma$) tries to **denoise** a corrupted sample.
 - ▶ Score function $\mathbf{s}(\mathbf{x}, \boldsymbol{\theta}, \sigma)$ parametrized by σ . How to make it?

Summary

- Kolmogorov-Fokker-Planck theorem allows to construct continuous-in-time normalizing flow with less functional restrictions.
- FFJORD model makes such kind of flows scalable.
- Langevin dynamics allows to sample from the model using the score function (due to the existence of stationary distribution for SDE).
- Score matching proposes to minimize Fisher divergence to get score function.
- Sliced score matching and denoising score matching are two techniques to get scalable algorithm for fitting Fisher divergence.