Computational Nano Science

Project:

Carbides:

Geometry, DOS and Band Structure

1. Preoptimization

- set up a unit cell for your system (use a = 3 Å and c = 6 Å as start lattice constants)
- for all following calculations use PBE (GGA = PE),
 PREC = Accurate, and EDIFF = 1E-05
- Find out whether your material is spin-polarized in the ground state:
 - Perform a full geometry optimization (atom positions + cell) with and without spin polarization adopting
 - a reasonable cutoff energy (!)
 - (10 x 10 x 5) **k**-mesh (Gamma)
 - Methfessel-Paxton smearing of order 1, σ = 0.2
 - · Compare total energies
 - What is the magnetization in case of the spin polarized calculation?
 - Decide whether you need spin polarization for your material!
 Use this setting in all remaining calculations!

computational nano science

2. k-point convergence

- Perform single point calculations at the in 1. obtained lattice constant(s) using the standard cutoff energy for Γ-including (N x N x N/2) k-meshes where N = 5, 10, 15, 20, 25 with
 - · LT-C method
 - Methfessel-Paxton smearing of order 1 with σ = 1.0 **and** 0.2
- Tabulate and plot E(σ→0) vs. N for the tested smearings (all in one graph)
- Compare the convergence behavior of the three k-point integration schemes!

computational nano science

4

3. Geometry Relaxation

- Perform a geometry relaxation (EDIFFG = -0.01) using
 - · a reasonable cutoff energy
 - reasonable ISIF
 - Methfessel-Paxton smearing of order 1, σ = 0.2
 - a converged k-mesh (criterion: 1 meV per atom)
- Compare the optimized lattice constant(s) with the experimental values! Give the deviation in percent!
- In case of spin polarization: What is the magnetization per unit cell?

computational nano science

5

4. DOS and Band Structure

- Calculate the DOS for the optimized geometry of 3.
 - keep k-mesh from geometry optimization for DOS
 - use LT-C smearing for DOS
 - set NEDOS = 1000 in INCAR
 - you may reduce the energy cutoff to the standard value
- Calculate the band structure for the optimized geometry
 - use 20 k-points per line for the band structure
 - keep density from the DOS calculation fixed! (ICHARG = 11)
 - Band structure path (\rightarrow use xcrysden to determine coordinates):

 $\Gamma\text{-M-K-}\Gamma\text{-A-L-H-A}\mid\text{L-M}\mid\text{K-H}$

- Plot DOS and band structure for the valence states! (reasonable viewport!!)
- Is the system metallic or non-metallic? Size of the band gap?

computational nano science

,

k-path: Nomenclature

HEX path: Γ -M-K- Γ -A-L-H-A|L-M|K-H

computational nano science

7

Some final Tips...

- · do not run more than two calculations at one time!
- · Protocol:
 - submit via StudON in pdf format!
 - Deadline: 2 June 2024
 - Name, student-ID and calculated system on the front page! (but separate title page not needed)
 - short method section(s)
 - indicate all relevant information that someone else could reproduce your calculations based upon your report!
 - total energies: report 5 decimals
 - all points printed in *italic* on the preceding slides have to be addressed in the protocol!

computational nano science

8

Selecting k-paths: xcrysden

- xcrysden offers a graphical interface to determine the coordinates of special points in the BZ
- use v2xsf to convert the CONTCAR (or POSCAR) file to xsf-format (will be automatically gzipped):
 v2xsf <file>

