Procédures de qualification Télématicienne CFC Télématicien CFC

Connaissances professionnelles écrites

Pos. 5.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 45 minutes

Auxiliaires : Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation : - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

1,0

Barème: Nombres de points maximum: 37,0

35,5	-	37,0	Points = Note	6,0
31,5	-	35,0	Points = Note	5,5
28,0	-	31,0	Points = Note	5,0
24,5	-	27,5	Points = Note	4,5
20,5	-	24,0	Points = Note	4,0
17,0	-	20,0	Points = Note	3,5
13,0	-	16,5	Points = Note	3,0
9,5	-	12,5	Points = Note	2,5
6,0	-	9,0	Points = Note	2,0
2,0	-	5,5	Points = Note	1,5

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme

exercice avant le 1er septembre 2015.

Créé par : Groupe de travail EFA de l'USIE pour la profession de

0.0 - 1.5 Points = Note

télématicienne CFC / télématicien CFC

Editeur : CSFO, département procédures de qualification, Berne

Exer	cices	Nombre maximal	de points obtenus
1.	 6.3.1 B3 a) Donnez l'équation de la résistance équivalente de charge (vue par la source de tension depuis les bornes a et b) 		
	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$		
	$\frac{R_{EQ} = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}}}{\frac{1}{R_2} + \frac{1}{R_3}} \text{ ou } \frac{R_{EQ} = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3}}{\frac{1}{R_2} + \frac{1}{R_3}}$	(1)	
	b) Calculez la valeur de la résistance R_1 , si : $U_0 = 40 \text{ V}$ I = 2 A $R_2 = 10 \Omega$ $R_3 = 22 \Omega$ $R_i = 2 \Omega$		
	$R_{TOT} = \frac{U_0}{I} = \frac{40 \text{ V}}{2 \text{ A}} = 20 \Omega$	(1)	
	$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3} = \frac{10 \Omega \cdot 22 \Omega}{10 \Omega + 22 \Omega} = 6,875 \Omega$	(1)	
	$R_1 = R_{TOT} - R_{23} - R_i = 20 \Omega - 6,875 \Omega - 2 \Omega = 11,125 \Omega$	(1)	

Exer	cices	Nombre maximal	de points obtenus
	6.2.1 B2		22.000
2.	Un téléphone analogique a une résistance ohmique de 350 Ω et se trouve à une	5	
	distance de 5 km du central public. L'appareil est alimenté avec une ligne de		
	cuivre de 0,6 mm de diamètre. Lorsqu'une communication est établie, un courant		
	de 25 mA circule.		
	1 = 25 mA		
	1 = 25 MA a		
	_		
	UCENTRAL		
	ь Т		
	<u> </u>		
	Utilisez $\rho_{CU} = 0.0178 \ \Omega \text{mm}^2/\text{m}$		
	Still 602 pc0 = 6,617 6 22/11/7/11		
	Calculez, pendant qu'une communication est établie :		
	Calculez, peridant qu'une communication est établie :		
	a) la tension aux bornes de l'appareil (entre les bornes a et b).		
	a) la teriolori aux porties de l'appareil (etitle les porties à et b).		
	II B 1 050 0 05 4 0 75 V	(1)	
	$\mathbf{U}_{APPAREIL} = \mathbf{R}_{APPAREIL} \cdot \mathbf{I} = 350 \Omega \cdot 25 mA = 8,75 V$	(1)	
	b) la tension à la sortie du central public (U _{CENTRAL}).		
	b) la terision à la sortie du central public (OCENTRAL).		
	(· · · · · · · · · · · · · · · · · · ·		
	$A = \left(\frac{d}{2}\right)^{2} \cdot \pi = \frac{d^{2}}{4} \cdot \pi = \frac{(0.6 \text{ mm})^{2}}{4} \cdot \pi = 0.282 \text{ mm}^{2}$	(1)	
	A = (2)		
	Omm²		
	$\sim 1.0,0178 \frac{2211111}{1.000} \cdot 5000 \mathrm{m} \cdot 2$		
	$R_{\text{upper}} = \frac{\rho \cdot I}{m} = \frac{m}{m} = 631.21\Omega$	(1)	
	$R_{\text{LIGNE}} = \frac{\rho \cdot I}{A} = \frac{0,0178 \frac{\Omega mm^2}{m} \cdot 5000 m \cdot 2}{0,282 mm^2} = 631,21 \Omega$		
	P -P +P -631 210 + 350 0 - 081 210	(1)	
	$R_{TOT} = R_{LIGNE} + R_{APPAREIL} = 631,21\Omega + 350\Omega = 981,21\Omega$	()	
	$\mathbf{U}_{CENTRAL} = \mathbf{R}_{TOT} \cdot \mathbf{I} = 981,21 \Omega \cdot 25 mA = 24,5 V$	(1)	
		(.,	

Exer	cices		Nombre maximal	de points obtenus
3.	6.3.5 Soit	B1 e signal suivant présenté sur l'écran de l'oscilloscope :	3	
		μs / Div. 50 mA / Div.		
	a)	Déterminez la valeur de crête î.		
		$\hat{i} = 4 \cdot 50 \text{ mA} = \underline{\underline{200 \text{ mA}}}$	(1)	
	b)	Déterminez la valeur efficace I.		
		$I = \frac{1}{\sqrt{2}} \cdot \hat{I} = \frac{1}{\sqrt{2}} \cdot 200 \text{mA} = \underbrace{\frac{141,42 \text{mA}}{141,42 \text{mA}}}_{}$	(1)	
	c)	Déterminez la période T.		
		$T = 4 \cdot 10 \mu\text{s} = \frac{40 \mu\text{s}}{}$	(1)	

Exer	cices	Nombre maximal	de points obtenus
4.	6.3.3 B3 Déterminez la tension sur la résistance $R_{\text{L}},$ lorsque le curseur du potentiomètre de 10 $k\Omega$ se trouve aux trois positions ci-dessous.	4	
	$V_z = 6$ R_1 R_2 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_4 R_4 R_5 R_6 R_7 R_6 R_7 R_8 R_1 R_1 R_2 R_3 R_4 R_6 R_7 R_8 R_9 R_9 R_9 R_9 R_9		
	a) Curseur en position a)		
	$U_{RL} = 36 \text{ V} - 6 \text{ V} = 30 \text{ V}$	(1)	
	b) Curseur en position b)		
	$\mathbf{U}_{RL} = 0 \mathbf{V}$	(1)	
	c) Curseur en position $R_1 = R_2$		
	$R_{TOT} = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_L}} = 5 k\Omega + \frac{1}{\frac{1}{5 k\Omega} + \frac{1}{10 k\Omega}} = 8,33 k\Omega$		
	$R_{2L} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_L}} = \frac{1}{\frac{1}{5 \text{ k}\Omega} + \frac{1}{10 \text{ k}\Omega}} = 3,33 \text{ k}\Omega$	(1)	
	$U_{RL} = (36 \text{ V} - 6 \text{ V}) \cdot \frac{R_{2L}}{R_{TOT}} = (36 \text{ V} - 6 \text{ V}) \cdot \frac{3,33 \text{ k}\Omega}{8,33 \text{ k}\Omega} = \underline{12 \text{ V}}$	(1)	

Exercices	Nombre maximal	de points obtenus
 6.3.2 B2 a) Entourez le diagramme représentant la variation de la puissar fonction de la tension U dans une résistance ohmique pure. 		
P en W 25 U en V 2 U en V	(1)	
b) Calculez pour le diagramme choisi la valeur de la résistance R $P = \frac{U^2}{R} \Rightarrow R = \frac{U^2}{P}$ $R = \frac{U^2}{P} = \frac{(2 \text{ V})^2}{25 \text{ W}} = \frac{0,16 \Omega}{1000}$	₹. (1)	

Exer	cices		Nombre maximal	de points obtenus
	6.4.3	B1		0.0000
6.	a)	Effectuez l'opération logique AND sur les deux nombres binaires suivants :	4	
		$X_1 = 1100110$ $X_2 = 1111000$		
		Le raisonnement doit être démontré.	(2)	
		1 1 0 0 0 0		
	b)	Transformez le nombre binaire X_2 en sa valeur hexadécimale. Le raisonnement doit être démontré. $X_2 = 1111000$ $X_2 = 0111 1000$ $X_{2(16)} = 7 8$ $X_{2(16)} = \frac{78}{8}$ Indication pour l'expert : la réponse $0x78$ est également acceptée.	(2)	

cices			Nombre maximal	de points obtenus
6.3.2	B2			
Dans	s le schéma ci-dessous, on me	esure les courants suivants :	3	
$I_1 = 5$	5A			
$I_2 = 2$	2A			
$I_4 = 4$	łA			
$I_6 = -$	2A			
	1 1	1		
	I ₁	l ₅		
	. •			
		L		
		l ₆		
	14	•		
a)	Quelle est la valeur de I ₅ ?			
	$I_3 = I_1 + I_2 - I_4 = 5 A + 2 A - 4A =$	=3 A	(1)	
			(4)	
	$I_3 = I_6 - I_5 \Rightarrow 3 A = -2 A - I_5 \Rightarrow$	$I_5 = -5 A$	(1)	
b)	Dans quelle direction circule A droite	l ₅ ?	(1)	
	•	une flèche dessinée dans le circuit comme représentation de la direction est également acceptée.		
Ì				
			ĺ	İ

Exer	cices	Nombre maximal	de points obtenus
	6.3.2 B2		
8.	Soit le circuit RC ci-dessous :	3	
	Ue \sim C = 10 μ F		
	a) Calculez la fréquence de coupure.		
	$f_{c} = \frac{1}{2\pi RC} = \frac{1}{2\pi \cdot 333 \Omega \cdot 10 \mu F} = \frac{47,79 Hz}{}$	(1)	
	 b) Votre collègue a rajouté en série une inductivité d'une valeur L = 0,8 mH. Dites-lui si ce circuit devient inductif ou reste capacitif pour une fréquence de 1 kHz. Le raisonnement doit être démontré. 		
	$X_L = \omega \cdot L = 2\pi f \cdot L = 2\pi \cdot 1 \text{ kHz} \cdot 0.8 \text{ mH} = 5.03 \Omega$	(1)	
	$X_{C} = \frac{1}{\omega \cdot C} = \frac{1}{2\pi f \cdot C} = \frac{1}{2\pi \cdot 1 \text{ kHz} \cdot 10 \ \mu F} = 15,92 \ \Omega$	(1)	
	A 1 kHz, ce circuit reste <u>capacitif</u> .		

Exe	cices	Nombre maximal	de points obtenus
9.	6.4.2 B3 Soit le schéma logique suivant :	2	
	X ₁		
	Les entrées X₁ et X₂ sont pilotées de la manière suivante :		
	X_1 X_2 X_2 X_3 X_4 X_4 X_4 X_5 X_6 X_6 X_6 X_7 X_8 X_8 X_8 X_9		
	Marquez la séquence correcte pour la sortie Y.		
	Y Aucune séquence ci-dessus n'est correcte		

Exer	cices	Nombre maximal	de points obtenus
10.	6.3.6 B1/2 Deux antennes directionnelles se font face comme sur le plan ci-dessous.	3	
	50 km (((((((((((((((((((((((((((((((((((
	 a) Sur une ligne souterraine en cuivre, le temps de propagation du signal mesuré est de 240 μs. Calculez le NVP du cuivre. 		
	Vitesse de la lumière : 300'000km/s = 300'000'000m/s $t = \frac{l}{NVP \cdot c} \Rightarrow NVP = \frac{l}{t \cdot c}$ $NVP_{cu} = \frac{l}{t_{cu} \cdot c} = \frac{50 \text{ km}}{240 \mu\text{s} \cdot 300000} = \frac{0,69}{s}$	(2)	
	b) Quel serait le temps de propagation du même signal entre les antennes ? $t_{AIR} = \frac{I}{NVP_{AIR} \cdot c} \Rightarrow \frac{50 km}{1 \cdot 300000 \frac{km}{s}} = \frac{166 \mu s}{1}$	(1)	

kercices	Nombre maximal	de points obtenus
 6.3.1 B3 Un lecteur CD a une impédance de sortie de 4 Ω et doit être utilisé comme musique en attente sur une ligne analogique d'un PBX. 	1	
En admettant une impédance du port PBX de $600~\Omega$, complétez le schéma d'interconnexion avec les résistances nécessaires entre les bornes a) et b).		
Vous disposez de plusieurs résistances de 560 Ω et 18 Ω .		
Le raisonnement doit être démontré.		
a b 560 Ω 18 Ω 18 Ω		
600 Ω CD Player Ri = 4 Ω		
$R_{\text{SUPPLEMENTAIRE}} = 560\Omega + 18\Omega + 18\Omega = \underbrace{\frac{596\Omega}{}}_{\text{EMBO}}$		

Exercices		Nombre maximal	de points obtenus
3.2.4 B3 a) Trouve	ez le circuit qui se cache derrière ce quadripole.	3	
Entrée U en \			
	A B C $1 \text{ k}\Omega$ 7 V $1 \text{ k}\Omega$ 7 V	(1)	
Note : $I_{Pos} = \frac{1}{I_{Pos}}$	ez, pour le circuit choisi, le courant maximal (positif et négatif) sant la résistance. la sortie du quadripole n'est pas chargée. $\frac{J}{R} = \frac{10 \text{ V} - 0.6 \text{ V}}{1000 \Omega} = \frac{9.4 \text{ mA}}{1000 \Omega}$ $\frac{J}{R} = \frac{10 \text{ V} - 7 \text{ V}}{1000 \Omega} = \frac{3 \text{ mA}}{1000 \Omega}$	(1) (1)	
	tion pour l'expert : attention au report de fautes.		
	Total	37	