	Esercizio 1. Sia $\phi: G \to G'$ un omomorfismo di gruppi. 1.1. Abbiamo visto che Im $\phi \equiv \phi(G)$ è un sottogruppo. Veriferen ele $g: G$ de representational la constanta di const			
	Verificare che se G è commutativo allora anche $\operatorname{Im} \phi$ è commutativo. 1.2. Verificare che se $H \leq G$ allora $\phi(H) \leq G'$. Vi ricordo che $H \leq G$ è il simbolo che utilizziamo per enunciare che H è un sottogruppo di G . 1.3. Verificare che			
	$\phi^{-1}(1_{G'}) = \{g \in G \mid \phi(g) = 1_{G'}\}$ è un sottogruppo. Esso è chiamato il nucleo di ϕ ed è denotato con il simbolo			
1.1) Siano a, be G si	Na che $a \cdot b : b \cdot a : \phi(a) \cdot \phi(b) = \phi(a \cdot b) = \phi(b) \cdot \phi(a)$			
	LeH. Quindi φ(2)εφ(H) e φ(b)εφ(H).			
	$\phi(b^{-1}) = \phi(a \cdot b^{-1})_{\text{HA}} a \cdot b' \in H \Rightarrow \phi(a \cdot b') \in H \Rightarrow \phi(H) \leq G'$			
	quindi $\phi(z) = \frac{1}{2} \wedge \phi(b) = 1_c$, come si comporta $\phi(z \cdot b)$?			
$\phi(a \cdot b) = \phi(a) \cdot \phi(b)$	$(a) = \phi(a) \cdot \phi(b) = 1_e \cdot 1_e^{-1} = 1_e \cdot 1_e^{-1} = 1_e$			
	Esercizio 2. Determinare l'ordine di un qualsiasi $h \in (\mathbb{Z}, +)$. Determinare l'ordine di $[1] \in \mathbb{Z}_n$ Abbiamo visto che se $H \leq \mathbb{Z}_n$ allora $H = H_d$ con $n = kd$ per qualche k e			
	$H_d = \{[d], [2d], \dots, [(k-1)d], [0]\}$ Determinare l'ordine di $[d]$. Determinare l'ordine di $[3] \in \mathbb{Z}_{15}$.			
19 1	(Ovviamente siamo in notazione additiva.)			
	(Z,+) e' infinito dato che Z non e' un gruppo finito.			
Lordine di $1 \in \mathbb{Z}_n$	e' $\sigma(1) = n$. Dato the $\mathbb{Z}_n = \{1^1, 1^2, 1^3, 1^{n-1}, 1^n = [0]\}$			
L'ordine di de K				
In Z ₁₅ ho che:	4 5 - 3			
3-[3] 3-[6] 3-[9	$\int_{0}^{2\pi} \left[2 \right] + 3^{\frac{1}{2}} \left[5 ^{2} + O \right] > \sigma(3) = 5$			
Esercizio 3. Sia $\phi: G \to G'$ un omomorfismo di gruppi. ϕ è detto un isomorfismo se è iniettivo e suriettivo. Verificare che se ϕ è un isomorfismo, allora $o(q) = o(\phi(q)) \ \forall q \in G$.				
1 1 -7-5				
ho che 5(9)=0	$= \begin{array}{c} \Rightarrow 9 + 9 + \cdots = 1_{G}, e \text{ che } \sigma(\phi(g)) = K \Rightarrow \phi(g) = 1_{G}, \\ K = 1_{G} \times K \\ M = 1_{$			
So che: \$ 161= Φ($(9)^{K} = \phi(9^{K})$ $= \triangleright K = d \Rightarrow \sigma(9) = \sigma(\phi(9)).$ $(9)^{K} = \phi(9^{K})$			
$(1_{6'} = \phi($	$(1_6): \phi(9)$			
{1,2,3} in sé stesso. Utilizziamo la i	4.4 Determinare l'ordine di ogni elemento di S_3 . anotazione 4.5 Quali sono i possibili ordini dei sottogruppi di S_3 ? 4.6 Verificare che S_2 ha quattro sottogruppi ciclici: 3 di ordine 2 ed uno di ordine			
	$ \begin{array}{c} 2 & 3 \\ 7(2) & 7(3) \end{array} \right) \qquad -3. \\ 4.7 \text{ Verificare che} \\ S_3 \text{ è dato dalla composizione di bigezioni.} \qquad H = \{1, \left(\begin{array}{cc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right)\} $			
4.2 Scrivere la tabella moltiplicativa	, di S_3 1 — è uno di tali sottogruppi e che $aH \neq Ha$ per a uguale a $a:=\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}$			
11) 5 5 (1 2 3) (1 2 3	$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} $			
4.1) J ₃ : { (1 2 3) (3 2	1) (132), (213), (312), (231)			
	sono 1 (per l'id.), 2 per le traspos. e 3			
per i 3-cicli.	$\{x \in S_3 \mid \sigma(x) = 2 \} = \{ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \}$			
{xes, a(x) = 3} = {($\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$			

4.2 $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ 4.5) considero i divisori non BANALI di 1531=6, che sono 2.3, so per il teo di struttura dei gruppi ciclici che esisteno tanti sottogruppi quanti sono i divisori oli h, e hanno oroline $\frac{6}{2}$ = 3 e $\frac{6}{3}$ = 2. 4.6) I sottogruppi ciclici sono. $H' = \left\{ 1, \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right) \right\} \quad H'' = \left\{ 1, \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right) \right\} \quad H''' = \left\{ 2, \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right) \right\}$ ORDINE 2 $K = \left\{ 1, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$ 4.7) $H = \left\{ 1, \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right) \right\} e'$ un sottogruppo: $\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 \end{array} \right) \cdot 1 = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right) \cdot 1 = \left(\begin{array}{cccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right) \cdot \left(\begin{array}{ccccc} 1 & 2 & 3 \\ 2 & 3 & 2 \end{array} \right) = \left(\begin{array}{cccccc} 1 & 2 & 3 \\ 3 & 2 & 2 \end{array} \right) \in H$ Esercizio 5. Verificare che l'intersezione di 2 sottogruppi di un gruppo G è un sottogruppo. Estendere il risultato a l'intersezione di una famiglia arbitraria di Sia G un gruppo, ed H, H' due sottogruppi di G. Considero HNH' Siano a, beHnH'=> 2e HA 2eH'/ beHAbeH'=> 2.b'eHA 2.b'eH'=> 2.b'eHnH'. Sia K:= H1NH2...NHn l'intersezione di n sottogruppi di G. Se 2 e K=D Vie {1...n} 2 e Hi e se b∈K=> Vie {1,...n} beHi=> Vie {1,2...n} 2,b∈Hi, ma Hi e' un sotto gruppo, quindi Vie {1, ... n} 2.6 EH; => 2.6 EH, NH2... NHn = K=> K e' un sottogruppo. ercizio 6. Consideriamo il gruppo commutativo $(\mathbb{Z},+)$ e siano H e K due suoi He' derinito come {x·a|x & Z}, quinoli Vx & H, a|x. K= {x·b|x & Z} = b Vx & K, b|x H contiene tutti i multipli di 2 e K tutti i multipli oli b. quindi se H contiene gli x per cui xla e K contiene gli x per cui allora HNK contiene gli elementi divisi da a e b. HNK contiene tutti i

multipli comuni di	ге b. Sa	ppiamo che il piu'	piccolo elemento di	
HAK e' mon (2,6)	Tutti i numeri	multipli di 2 e b	, sono i multipli di	
		b) x e Z } = mcm(a,b) Z.		
micini (cip), qui note		gruppo e sia $g \in G$ un elemento di ordine finito. Sia		
	$n = o(g)$. Verificare che g^m	$=1_G$ se e solo se n divide m . cione è immediato. Nell'altra usare la divisione e la		
	Verificare che se G è finito e $o(g)$ divide n (utilizzare Lagr	e $ G =n$ allora ogni suo elemento g ha ordine finito errange).		
Nutra A San India		$ G =n$ allora $\forall g\in G$ si ha $g^n=1_G$.	m h-k	
		per qualche KEZ, quinoli		
9". 9" K VOLTE . 9" =	16 · 16 ··· k volte · 1	g=16. Dall'altro verso,	se $9''' = 1_6 = 0$	
9 . 9 . 9 m VOLTE . 9 =	(9-9 volte 9) ·	m-n voire 9 = 9" . (9.9	10-16) · m-2h volte 9 =	
		D. m. nk VOLTE 9 = 1 6 (=> 1		
←> m = n·(K+1) ←>				
	FARO POI			
I IVNII 2 C J LI I	Esercizio 8. Sappiamo	che $(\mathcal{U}(\mathbb{Z}_8),\cdot)$ ha una struttura di gruppo di zione di Eulero si ha $\phi(8) = \phi(2^3) = 2^3 - 2^2 = 4$		
	Scrivere la tabella moltiple morfo a \mathbb{Z}_4 .	licativa di questo gruppo. Vero o Falso: $(\mathcal{U}(\mathbb{Z}_8)$	**	
Definisco esplicitamenta	Suggerimento: l'esercizio $\mathcal{U}(\mathbb{Z}_8) = \{[1],[3]\}$			
1 3 5 7 MON	e' isomorfo	2 Z4, in quanto (2		
3 3 1 7 5 grupp	po, e non ha	Un inverso per ogn	i elemento. In W(Zs)	
	elemento ha i	ordine 1, in Z4, [3] ha ordine 3,	
	ossono esseve	Isomorfi.		
	Esercizio 9. Din			
• $(\mathbb{Z},+)$ non è isomorfo a $(\mathbb{Q}\setminus\{0\},\cdot)$. Suggerimento: l'esercizio 3 può nuovamente essere utile • S_3 non è isomorfo a \mathbb{Z}_6				
basta trovare uno	stesso element		ersi nei due gruppi.	
• in (Z,+), σ(-1)=∞	in (Q) {03.0)	, v(-1) = 2.		
	to, ossia 1 cl	he e di ordine 6, i	n S3 bult; gli element;	
			y y y y y c i c ment l	
hanno ordine 1,2	• 3, mai 6.			
	è compatibile con · se	im gruppo e ρ una relazione di equivalenza. Diremo che ρ		
		npatibile con·allora l'insieme delle classi di equivalenza ttura di gruppo data da:		
		$[g] \star [h] := [g \cdot h]$. ta operazione è ben definita e che $(G/\rho, \star)$ è un gruppo.		
dimostro che * noi	n dipende dalla	scelta dei rappresenta	unti:	
ho che 2pb	cpd		I NESS ST	
[2]*[0]=[6]*[0]	=D [2·c]=[b·	d]=> (2·c)p(b·d) (=)	205 A CP O POTES!	
			<u> </u>	