

Data Mining with Weka

Ensemble learning

Committee structure: build different "experts," let them vote

- Often improves predictive performance
- Produces output that is hard to analyze
 - but: there are approaches that aim to produce a single comprehensible structure
- Methods
 - Bagging
 - Randomization
 - Boosting
 - Stacking

Bagging

- Several training sets of the same size
 - produce them by sampling ... with replacement
- Build model for each one
 - use same machine learning scheme
- Combine predictions by voting (or, for regression, averaging)
- Very suitable for "unstable" learning schemes
 - small change in training data can make big change in model
 - example: decision trees ... but not Naïve Bayes or instance-based learning
- Weka: meta>Bagging
- E.g. with glass.arff
 - J48 66.8%
 - Bagging (default parameters) 72.4%

Randomization: random forests

- Randomize the algorithm, not the training data
 - how you randomize depends on the algorithm
- Random forests
 - attribute selection for J48 decision tree: don't pick the best,
 pick randomly from the k best options
 - generally improves decision trees
- Weka: trees>RandomForests
 - options: number of trees (default 10); maximum depth of trees;
 number of attributes
- E.g. with glass.arff
 - J48 66.8%
 - RandomForests (default parameters) 75.2%

Boosting

- Iterative: new models are influenced by performance of previously built ones
 - extra weight for instances that are misclassified ("hard" ones)
 - encourage new model to become an "expert" for instances misclassified by earlier models
 - Intuitive justification: committee members should complement each other's expertise
- Uses voting (or, for regression, averaging)
 - but weights models according to their performance
- Often dramatically improves performance
- Weka: meta>AdaBoostM1
- E.g. with glass.arff
 - J48 66.8%
 - AdaBoostM1 (using J48) 74.3%

Stacking

- Combine predictions of base learners using a meta learner (not voting)
 - base learners: level-0 models
 - meta learner: level-1 model
 - predictions of base learners are input to meta learner
- Base learners are usually different schemes
- Can't use predictions on training data to generate data for level-1 model!
 - Instead use cross-validation-like scheme
- Weka: meta>Stacking
 - and StackingC, more efficient version
 - allow multiple level-0 models (by specifying a metaclassifier)
- Quite hard to make stacking work well, but with glass.arff I got
 - J48 66.8%
 - StackingC: default metaclassifier + base classifiers IBk, PART, J48 72.5%

- Combining multiple models into "ensembles"
 - analogy with committees of humans
- Diversity helps, especially with "unstable" learners
 - when small changes in the training data can produce large changes in the learned model
- Create diversity by
 - Bagging: resampling the training set
 - Random forests: alternative branches in decision trees
 - Boosting: focus on where the existing model makes errors
 - Stacking: combine results using another learner (instead of voting) meta>Stacking
- meta>AdaBoostM1

trees>RandomForests

meta>Bagging