

```
E;3:
                   3. Probar que si SAT \leq_p \overline{\text{SAT}} entonces PH = NP.
  XE SAT sii f(x) E SAT (conf conprable en tiampo poly)
Si puelo reducir un problemo NP-completo o uno coNP, entonces puedo reducir cuolquier problemo de NP o coNP. (NP & coNP)

A su vez, como othero só q' SAT & coNP puedo decir q' su complemento (SAT)

debe estar en NP (per def. de coNP), esto implico q' tengo un problemo coNP-completo
en NP, o seo q' puedo reducir cuolquier TI & coNP Sumo NP. (coNP & NP).
Con esta llego à qui NP=CONP, o sea E, = TIP, à partir de ació es la misma demo que el purto arrerior.
E.4:
            4. Probar que el problema FORMULA MAS CHICA de la guía anterior está en \Pi_2^p.
FORMULA_MAS_CHECA: 1(0,K): Ø es una Fórmula Cooleana proposicional y no existe
I dea: Macer cadera de implicaciones 9 25 to llegar a la definición de TT2.
Pecilo (Ø, K) Ø es una Formus bookeana proposicional, y no existe una romana d' tal que Ø=0' y 10'1 (K. Sii
                                                       (X Siempre esto no lo pago pro no reve
77 9'. Ø = Ø' Y 10'1 K S:1
-70' 40 (VE & GOV FO') , 10'16K
Yp'3v. - ((V + Ø (+ > V + Ø') y | Ø' | < K | = ::
YO'3V. 10'1)K 6 7 ((VEØ -DVEØ'), (VEØ' -DVEØ)) 51
YØ']V. 10') K Ó - (VEØ = VEØ') Ó - (VEØ' = DVEØ) 5:
YØ']V , IØ') X ó ¬ (V X Ø Ó V F Ø') Ó ¬ (V X Ø Ó V F Ø) Sii
40'3v. 10'13x ó (v + 0 , v + 0') ó (v + 0' y v + 0)
                  Se prede haver con una mag. det party
Entonces qued 9:
                                                  con M det. y poly, la cual es la definición de Th.
        ¥ Ø'∃v. M(⟨Ø,K⟩, Ø', v⟩)
```


Després, XEL S :: XE L, ULz : X& S S X E S $X \in \mathcal{L} \subseteq \mathbb{N} \quad \forall u_2 \exists u_1 \quad M(X,u_1) = 1 \quad \delta \quad M'(X,u_2) = 0$ Otra forma de justificar of esta en TTE (más Fácil) Bu, tuz. M (x,u,)=1 y M'(x,u)=0 es equivolento o tuztui. M(x,u,)=1 y M'(x,uz)=0

yo o o organis entre moquinos del orto u su ordan vale q'seo distinto pop lo sociale
uno interpretoció de intersecció y sindos son voltos. L=d, ndr con d, ENP y Lz ECONP XE d sii 6 tiene un cito de tanaño 15 y no tiene uno de tanaño mayor con INDSET_EQUAL = L. CoINDSET EQUAL = L. $M(\langle G, K \rangle, C)$: $M \in \det poly y \in \{0,1\}$ p(|x|) con $C = C_1 f \circ de$ nodes de Algoritmo: Cheques q' C ses un cito insependiente de G. Lo Que cado no està conectado con nigún otro del cito. LIE CONP: $M'(\langle G,K\rangle,C): Mes \cot poly y C \in 10,14 p(1x1) con C=Cjto de nodos continuo jen$ Algoritmo: (de Lzg' & NP, Lz = toy un gto independiente de tomaño moyor ok) Cheques q' el c sed un cito inorprediense de G de +maño nayor dK. Muy conpliado, algo así no va a ser evaluado en el exáner por regustario