Contar secuencias de múltiplos de longitud k

El problema

Dados dos números enteros, A y B, se dice que A es *múltiplo* de B cuando existe un tercer entero C tal que $A = B \times C$. Por ejemplo, 10 es múltiplo de 5 y 40 es múltiplo de 20. Por su parte, una *secuencia de múltiplos* es una sucesión de números enteros en las que todos los números, a excepción del primero, son múltiplos del anterior. Un ejemplo de este tipo de sucesiones sería 5 10 20 40 80 160.

Debe desarrollarse sistemáticamente, aplicando el método explicado en clase, un algoritmo iterativo eficiente que, dado un vector de enteros, que *no* contiene ceros, y un número natural k > 0, determine cuántas secuencias de múltiplos de longitud k tiene el vector.

Programa de prueba

Para realizar el control se proporciona un archivo iter. cpp que contiene un programa que lee desde la entrada estándar casos de prueba, los ejecuta, e imprime por la salida estándar el resultado. Cada caso de prueba consiste en dos líneas, la primera con el número de elementos del vector y el número k y la segunda con los elementos del vector en sí. Para cada caso de prueba el programa imprime el número de secuencias de múltiplos de longitud k que contiene el vector. La entrada finaliza con una línea con -1. A continuación se muestra un ejemplo de entrada/salida:

Entrada								Salida
8	4							4
9	5	10	20	40	80	160	320	2
4	2							4
2	4	6	12					
4	1							
2	4	6	12					
-1								

- En el primer caso, el tamaño del vector es **8** y *k*=4. Las 4 secuencias de múltiplos de longitud 4 contadas son: (i) 5 10 20 40; (ii) 10 20 40 80; (iii) 20 40 80 160; y (iv) 40 80 160 320.
- En el segundo caso, el tamaño del vector es **4** y *k*=2. Las 2 secuencias de múltiplos de longitud 2 contadas son: (i) 2 4; y (ii) 6 12
- En el tercer caso, el tamaño del vector es $\mathbf{4}$ y k=1. El resultado es $\mathbf{4}$, porque cualquier entero v es, a su vez, una secuencia de múltiplos de longitud $\mathbf{1}$.

Trabajo a desarrollar

Tu trabajo consiste en:

- Especificar el algoritmo, rellenando los huecos correspondientes, entre comentarios, que rodean la declaración de num sec multiplos
- Diseñar sistemáticamente un algoritmo eficiente que resuelva el problema, siguiendo los pasos indicados en la plantilla "DISEÑO DEL ALGORITMO".
- Codificar el algoritmo como cuerpo de la función num sec multiplos
- Entregar iter.cpp a través del juez en línea de la asignatura.

Importante:

- Sólo puntuarán aquellas entregas que superen los casos del juez (el resto de entregas puntuarán 0).
- Debes poner tu nombre y apellidos en el comentario habilitado para ello en la plantilla (aquellas entregas no identificadas con nombre y apellidos puntuarán 0)
- No modificar el código proporcionado. Únicamente deben responderse a los distintos apartados, en el interior de los comentarios, e implementar la función num_sec_multiplos (sí pueden incluirse funciones auxiliares, si se considera necesario).