

Department of Computer Science

Last Name :		
First Name :		
Leginr.:		

Systems Programming and Computer Architecture

Thursday 30th January 2020, 8:30

Rules

- This exam paper consists of 31 pages in addition to this title page. Please read through the exam paper to ensure that you have all the pages, and if not, please raise your hand.
- You have 180 minutes for the exam.
- The exam consists of 15 questions.
- The maximum number of points that can be achieved is 160.
- Please write your name and Legi-ID number on all sheets of paper. Please write in a blue or black pen. Do not use pencil.
- Please write your answers on the exam sheet. If you need more paper, please raise your hand so that we can provide you with additional paper. Write your name and Legi-ID number on those extra sheets of paper.
- You are allowed no electronic or written aids, except for a German-English dictionary and the x86 reference sheet that should be on your desk. If this sheet is missing, please raise your hand.

For examiners' use only:

Question:	1	2	3	4	5	6	7	8
Max pts:	6	7	11	10	20	9	11	7
Points:								

Question:	9	10	11	12	13	14	15
Max pts:	8	8	16	6	13	20	8
Points:							

Total:	

\ 1	
Namo:	I odinri
Name:	Leainr:

[6 points]

Consider the following C function:

```
int decide(int k, int t)
    int x = 1;
    do {
        switch(k) {
        case 1:
           x *= 3;
            break;
        case 6:
            k = -5;
            break;
        case 2:
            x *= 5;
        case 3:
            x *= 7;
            break;
        case 4:
            x += 2;
        case 5:
           x /= 2;
        default:
           x <<= 1;
            continue;
        }
    } while (x < t);
    return x;
```

For each of the following sets of arguments to decide, say what the return value of the function will be.

```
When k = 3, t = 15: (1 point)
```

```
When k = 2, t = 35: (1 point)
```

Name:	Leginr:

[continued]

When k = 0, t = 10: (1 point)

When k = 5, t = 10: (1 point)

When k = 4, t = 5: (1 point)

When k = 6, t = 10: (1 point)

N1	Lasta.
Name:	Leginr:

[7 points]	

Consider the following C function, where ARG is a decimal integer constant defined elsewhere:

```
#include <stdint.h>
int32_t multiply( int32_t a )
{
    return a * ARG;
}
```

The following disassemblies are of versions of the multiply function, compiled with different values for ARG and different optimization settings in the compiler.

Recall that the first (in this case, only) argument to a function is passed in the rdi register, and the result returned in the rax register.

For each one, say what the value of ARG was.

(1 point)

```
0000000000000000 <multiply>:
```

```
0: 55
                      push
                            %rbp
1: 48 89 e5
                            %rsp,%rbp
                      mov
4: 89 7d fc
                            %edi,-0x4(%rbp)
                      mov
7: 8b 45 fc
                    mov
                            -0x4(%rbp),%eax
a: c1 e0 04
                      {	t shl}
                            $0x4, %eax
d: 5d
                            %rbp
                      pop
e: c3
                      retq
```

Answer:

(1 point)

Answer:

	Legir	nr:
		(1 point)
:		
push	%rbp	
mov	%rsp,%rbp	
mov	%edi,-0x4(%rbp)	
mov	-0x4(%rbp),%edx	
mov	%edx,%eax	
add	%eax,%eax	
add	%edx,%eax	
shl	\$0x2,%eax	
add	%edx,%eax	
pop	%rbp	
retq		
		(1 point)
:		
mov	%edi,%eax	
_		
retq		
	: push mov mov mov add add shl add pop retq : mov neg shl	: push %rbp mov %rsp,%rbp mov %edi,-0x4(%rbp) mov -0x4(%rbp),%edx mov %edx,%eax add %eax,%eax add %edx,%eax shl \$0x2,%eax add %edx,%eax pop %rbp retq : mov %edi,%eax neg %eax shl \$0x4,%eax

Answer:

Name:		Leginr:	
[continued]			4
			(1 point)
0000000000000000000 <multiply< th=""><th></th><th>0/ 3</th><th></th></multiply<>		0/ 3	
0: 55 1: 48 89 e5	push mov	%rbp %rsp,%rbp	
4: 89 7d fc	mov	%15p,%15p %edi,-0x4(%rbp)	
7: b8 00 00 00 00	mov	\$0x0,%eax	
c: 5d	pop	%rbp	
d: c3	retq	-	
Answer:			
			(1 point)
000000000000000000000000000000000000000			(1 point)
00000000000000000 <multiply 04="" 0:="" 8d="" bf<="" td=""><td>>: lea</td><td>(%rdi,%rdi,4),%eax</td><td></td></multiply>	>: lea	(%rdi,%rdi,4),%eax	
3: 8d 04 c7	lea	(%rdi,%rdi,4),%eax (%rdi,%rax,8),%eax	
6: c3	retq	(102 02 9 102 02 9 9 9 100 02	
Answer:			
			(1 point)
0000000000000000 <multiply< td=""><td></td><td></td><td></td></multiply<>			
0: 55	push	%rbp	
1: 48 89 e5 4: 89 7d fc	mov	%rsp,%rbp	
7: 8b 45 fc	mov	%edi,-0x4(%rbp) -0x4(%rbp),%eax	
a: 6b c0 eb	imul	\$0xffffffeb,%eax,%eax	
d: 5d	pop	%rbp	
e: c3	retq		

N1	Lasta.
Name:	Leginr:

[11 points]

Consider the following list of C syntax fragments:

```
1. int *x;
2. int x[10];
 3. (int *)x;
 4. int *x[10];
5. int **x[10];
 6. int (*x [10])[10];
7. int *x[10][10];
8. int x[10][5];
9. int x[5][10];
10. int (*x)[](int *);
11. int *x(int []);
12. int (*x[])(int *);
13. int *x(int *);
14. int *x[](int *);
15. (int (*)(int *, int))x;
16. int *x(int *, int);
17. (int (*)(int[], int))x;
18. int *x(int *, int)[];
19. (int *(*)(int *, int))x;
20. int (*x)(int *, int);
21. int *x[](int *, int);
```

For each of the descriptions on the following page, give the number of the C syntax fragment that corresponds precisely to it.

Name:	Leginr:	_
[continued]		
Descriptions:		
"declare x as function (pointer to int, int) returning array	of pointer to int": (1 point	t)
"declare x as array 5 of array 10 of int":	(1 point	t)
"declare x as array 10 of array 5 of int":	(1 point	t)
"declare x as array 10 of array 10 of pointer to int":	(1 point	t)
"declare x as array 10 of int":	(1 point	t)
"declare x as array 10 of pointer to array 10 of int":	(1 point	t)

Name:	Leginr:
[continued]	
"declare x as function (pointer to int, int) returning	pointer to int": (1 point
"cast x into pointer to function (pointer to int, int) re	eturning pointer to int": (1 point
"declare x as pointer to int":	(1 poin
"declare x as array 10 of pointer to pointer to int":	(1 point
"declare x as function (pointer to int) returning poin	nter to int": (1 point

Name:	Leginr:
Tantoi	=0g

[10]	ooints]	

Consider the following main C function:

```
#include <stdio.h>
#include <stdint.h>
struct s1 {
   char f1;
   uint32_t f2;
};
union u1 {
   uint32_t f1;
             f2;
   char
   union u1 *f3;
};
int main(int argc, char *argv[])
{
    char *p1 = (char *)(0x8000);
   printf("p1 = %p\n", p1);
   return 0;
}
```

When compiled and run, this program produces the following output:

```
p1 = 0x8000
```

For each of the following code fragments, say what the output will be when the printf statement in the body of the main function is replaced with the fragment.

- If a definite value is printed, say what it is.
- If an unpredictable value is printed, write UNPREDICTABLE
- If the program crashes, write CRASH
- If the program fails to compile, write COMPILE-TIME ERROR

```
(1 point)
```

```
printf("p1 + 1 = %p\n", p1 + 1);
```

(1 point)

```
uint32_t *p2 = ((uint32_t *)p1) + 4;
printf("p2 = %p\n", p2);
```

(1 point)

```
uint32_t *p3 = ((uint32_t *)p1) + 4;
printf("p3++ = %p\n", p3++);
```

```
[continued]
```

```
(1 point)
uint16_t *p4 = ((uint16_t *)p1) - 4;
printf("p4 = %p\n", p4);
```

Nama.	l animu.
Name:	Leginr:
rano.	Logini.

[20 points]	

Consider a simple I/O device which only receives variable-sized packets (at most 1024 bytes in size) from a network and transfers them to memory using a DMA-based descriptor ring set up by the device driver as part of the operating system. The descriptors are laid out as a contiguous array in memory, and so each descriptor has an index and an address in memory where it is stored. Descriptors in the ring have three fields:

owned: true if and only if the descriptor and its associated buffer are owned by the hardware device.

buffer address: the address in memory of the buffer corresponding to this descriptor,

size: either how large the buffer is (for empty buffers), or how much data was transferred into the buffer (for buffers containing a received packet).

Recall that both devices and device drivers can be in states where they are "Running" (there is processing they can perform right now, and are aware of this) or "Stopped" (they have stopped processing until notified that they can continue.

The OS initializes the descriptor queue and driver as follows:

Descriptors:

Descriptor number	Descriptor address	Buffer address	Size in bytes	Owned by device?
0	0x100000	0x20000	1024	True
1	0x100010	0x21000	1024	True
2	0x100020	0x22000	1024	True
3	0x100030	0x23000	1024	True

Device:

Next	0
State	Stopped
Overrun	False

Driver:

Next	0
State	Stopped

	300 bytes size. The d			by another of size 200 ne. Show the resulting
state of the system in	The following tables.			(8 points)
Descriptors:				
Descriptor number	Descriptor address	Buffer address	Size in bytes	Owned by device?
0	0x100000			
1	0x100010			
2	0x100020			
3	0x100030			
Device: Driver:				
Next		Next		
State		State	•	
Overrun				

[Question continues on the next page]

Leginr: _____

[continued]				
them in the order in		ved before return	ing the buffer to	aiting, and processing the device. Fill in the packet.
				(6 points)
Descriptors:		T	I	
Descriptor number	Descriptor address	Buffer address	Size in bytes	Owned by device?
0	0x100000			
1	0x100010			
2	0x100020			
3	0x100030			
Device:		Drive	r:	
Next		Next		
State		State		
Overrun			l	

[Question continues on the next page]

Leginr: _____

	n process another pack following fields to refle			
Descriptors:				(6 points)
Descriptor number	Descriptor address	Buffer address	Size in bytes	Owned by device?
0	0x100000			
1	0x100010			
2	0x100020			
3	0x100030			
Device:		Drive	r:	
Next		Next		
State		State		
Overrun				

Name: _____

Leginr: _____

Name:	Leginr:
Tantoi	=0g

[9 points]	

Consider the following $main\ C$ function:

```
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
    char s1[20] = "hello, world";
    char *s2 = "hi, environment";

    // ...
    return 0;
}
```

For each of the following code fragments, say what new output is produced when we **add each new fragment successively** into the main function body just before the return statement.

Name: ______ Leginr: _____

```
[continued]
```

```
s2 += 5;
printf("s2 = '%s'\n", s2);
```

(1 point)

```
printf("strlen(s2) = %lu\n", strlen(s2));
```

(1 point)

```
printf("s1[strlen(s1)] = %d\n", s1[strlen(s1)]);  (1 point)
```

```
*(s1 + 3) = '\0';
printf("s1 = '%s'\n", s1);
(1 point)
```

Name:	Leginr:
Question 7	[11 points]
The alloca() function has the following declaration:	
<pre>#include <alloca.h></alloca.h></pre>	
<pre>void *alloca(size_t size);</pre>	
The function allocates size bytes of memory in the stack fra to the start of this allocated space.	me of the caller, and returns a pointer
Does the space allocated by alloca() need to be freed expli	icitly? Explain why.
	(2 points)
Why can alloca() <i>not</i> be implemented entirely as a function	n? (6 points)
What happens to the space allocated by alloca() if longing function? Explain why.	ap() is used to jump out of the calling (3 points)

N1	Lasta.
Name:	Leginr:

[7	points]	

What is the output of the following C program?

```
#include <stdio.h>
#define SWITCH_1 1
#define SWITCH_2 0
#if SWITCH_1
#define NAME "Federer"
#else
#define NAME "Wawrinka"
#endif
#ifdef SWITCH_2
#define VORNAME "Roger"
#undef NAME
#else
#define VORNAME "Stan"
#endif
#ifndef NAME
#define NAME "Wattenhofer"
#endif
int main(int argc, char *argv[])
   printf("%s %s\n", VORNAME, NAME );
}
```

(2 points)

Name:	Leginr:
	g

[continued]

Give the definition of a C preprocessor macro PRINT which prints an arbitrary C expression together with its value at run time.

More precisely, the PRINT takes two arguments. The first is a format specifier as used by the format strings in standard C library printf() function. The second is an arbitrary C expression which should evaluate at compile time to a value compatible with the format specifier. Thus, for example, the fragment:

```
char s[10] = "hello, world";
int x = 255;
PRINT(c,s[2]);
PRINT(x,x);
```

- will compile to code which, when executed, will result in the output:

```
s[2] = 1
x = ff
```

You may find it helpful to use the C preprocessor #str syntax, which translates str into itself but quoted ("str").

(5 points)

Namai	Logipu
Name:	Leginr:
11411101	

Question 9

[8 points]	

Suppose the file buffer.h contains **only** the following declaration:

```
struct buffer {
   void *data;
   size_t length;
   char flags[4];
};
```

On a 64-bit x86 Linux computer, what is sizeof(struct buffer)?

(2 points)

Now suppose that two other header files, llist.h and hashtable.h, both use the declaration of struct buffer and so include the line #include "buffer.h". All is well until the programmer tries to compile the following file .c file:

```
#include "buffer.h"
#include "llist.h"
#include "hashtable.h"

int main(int argc, char *argv[])
{
    return 0;
}
```

How does the compilation fail, and why?

(2 points)

Show a change to **only** the file buffer.h which will fix this problem.

(4 points)

Name:	Leginr:
Name.	Leann.

[8 points]	

For each listed identifier in the following C object file, say whether it is a **strong linker symbol**, a **weak linker symbol**, a **macro**, a symbol **local** to the compilation unit, or **none** of these.

	(8 points)
count:	
element:	
head:	
otherstring:	
pull:	
push:	
string:	
tail:	

Name: _							_		Leç	ginr:		
Ques	tion	11								[10	6 point	s]
			g point file fraction								E standar	d format. 5
			of this r itissa, o				ne mos	t signifi	cant bit	on the lef	t. Mark e	ach bit as S
												(2 points)
+ +	 	 	+ +	 	 	 	 					
The	bias fo	r this fo	ormat is	7. Exp	olain wh	y.						(2 points)
How	is the	real nur	mber 1/	2 repre	esented	in bina	ıry in th	nis syste	em? Sh	now your v	vorking.	(4 points)

Name:	Leginr:
[continued]	
What real number is represented by the binar working	ry value 1111000000 in this system? Show your
·	(4 points)
What number in this system is represented by the	
Give your answer as a decimal number, and sho	оw your working. (4 points)
	(· p · · · · ·)

Name:	Leginr:
Question 12	[6 points]
Suppose we have a 64-bit processor with the fo	llowing memory system characteristics:
• 32-kilobyte, 8-way set-associative cache w	ith 128 bytes per line/block
• 64-entry, 8-way set-associative TLB with a	page size of 8192 bytes
Give the following values (in hexadecimal notation in this system.	on) corresponding to a virtual address of 0x12345678
	(6 points)
Cache Index:	
Cache Offset:	
TLB Index:	
TLB Tag:	
Virtual Page Number (VPN):	
Virtual Page Offset (VPO):	

Name:	I a advanta
Mamo.	Leginr:
Name:	LCGIIII.

[13 points]	

Suppose you are running the following function on a machine with a single 64-bit x86 core, with a 1-kilobyte, direct-mapped cache with 32 bytes per line/block.

```
#define ROWS 256
float sum_vector( float f[] )
{
  float acc = 0.0;

  for( int r=0; r < ROWS; r++) {
     acc += f[r];
  }
  return acc;
}</pre>
```

Assume a cold (empty) cache to start, and ignore misses due to instruction fetches or any other non-array accesses.

How many cache misses will this function incur when it is called with f = 0x10000? Show your working.

(2 points)

How many of these misses were compulsory?

(1 point)

How many of these misses were conflict misses?

(1 point)

Name:	Leginr:
[continued]	
We now run the following function on the same made	hine as before:
<pre>#define ROWS 256 void copy_vector(float s[], float d[])</pre>	
<pre>{ for(int r=0; r < ROWS; r++) { d[r] = s[r]; }</pre>	
}	
Again assuming a cold cache, how many cache mis $s = 0x10000$ and $d = 0x20000$?	ses will this function incur when it is called with
	(2 points)
How many of these misses were compulsory?	
	(3 points)
How many of these misses were conflict misses?	
	(2 points)
Again assuming a cold cache, how many cache mis	ses will this function incur when it is called with
s = 0x10000 and d = 0x20080?	and the same same and the same
	(2 points)

Name:	Leainr:

[20 points]	

Suppose we have a cache-coherent computer with 3 processors, each of which has its own **write-back** data cache. The cache coherence protocol is MSI, and the machine provides **sequential consistency**.

Assume we start with empty caches, and main memory initialized to zero. At each time step, one of the cores executes an operation on the **same location in memory**, and no other interaction with the memory system occurs.

In the following table, fill in the blank entries for the cache line state, its contents as a result of the operation (or write None it is unknown or undefined), and the contents of the location in main memory.

(6 points)

	Opera	tions	Caches					Memory	
time	core	operation	core 0 core 1 state value s			core 2			
0	-	-	I	None	I	None	I	None	0
1	0	store 42			I	None	I	None	
2	1	load			S	42	I	None	
3	2	store 52					М	52	
4	1	store 52							

Name:	Leginr:
	9

[continued]

Now consider the same machine before, but using a MESI protocol instead of MSI.

In the following table, fill in the blank entries as before, but note that you also need to fill in some of the "operations" fields as well.

(6 points)

	Opera	tions	Caches					Memory	
time	core	operation	core 0		core 1		core 2		
0	-	-	I	None	I	None	I	None	0
1	2	load			I	None			
2	0	store 42			I	None			
3			S	42	S	42			
4	0	invalidate	I	None					

Name:	Leginr:
	9

[continued]

Finally, now suppose the machine uses a MESIF protocol instead of MESI or MSI. In the following table, fill in the blank entries as in the previous part of the question.

(6 points)

	Opera	tions	Caches					Memory	
time	core	operation	c state	ore 0 value	c state	ore 1 value	c state	ore 2 value	
0	-	-	I	None	ı	None	ı	None	0
1	1	load	I	None			I	None	
2	0	store 42					I	None	
3	1	load					I	None	
4	2	store 52							
5	2	invalidate					I	None	

How would your answers change, if at all, if the machine implemented weak consistency instead of sequential consistency?

(2 points)

Name:	Leginr:

[8 points]	

Consider the following, rather bad, C code:

```
#include <string.h>
/* copy string x to buf */
void foo(char *x)
{
    int buf[1];
    strcpy((char *)buf, x);
}

void callfoo()
{
    foo("abcdefghaaaabbbbccccdddd");
}
```

Here is the machine code this code assembles to on a 64-bit x86 Linux machine (with stack protection disabled):

```
000000000000064a <foo>:
64a: 55
                         pushq %rbp
64b: 48 89 e5
                       movq %rsp,%rbp
64e: 48 83 ec 20
                       subq $0x20,%rsp
652: 48 89 7d e8
                       movq %rdi,-0x18(%rbp)
656: 48 8b 55 e8
                       movq -0x18(%rbp),%rdx
65a: 48 8d 45 fc
                       leaq -0x4(%rbp),%rax
65e: 48 89 d6
661: 48 89 c7
                       movq %rdx,%rsi
                               %rax,%rdi
                        movq
664: e8 b7 fe ff ff
                         callq 520 <strcpy@plt>
669: 90
                         nop
66a: c9
                         leaveq
66b: c3
                         retq
000000000000066c <callfoo>:
66c: 55
                         pushq %rbp
66d: 48 89 e5
                         movq
                               %rsp,%rbp
670: 48 8d 3d ad 00 00 00 leaq
                               0xad(%rip),%rdi  # 724 <_IO_stdin_used+0x4>
677: e8 ce ff ff ff callq 64a <foo>
67c: 90
                        nop
67d: 5d
                               %rbp
                        popq
67e: c3
                         retq
```

Recall that:

- strcpy(char *dst, char *src) copies the string at address src (including the terminating null character) to address dst, and does not check the size of the destination buffer.
- 64-bit Linux/x86 machines are Little Endian.
- The ASCII character code for 'a' is 0x61.
- The leaveq instruction copies rbp to rsp, and then pops rbp off the stack.

Now consider what happens when callfoo calls foo with the string given in the code.

ame:	Leginr:
List the contents of the following memory loc answer should be an unsigned 4-byte integer	ations immediately after strcpy returns to foo. Each expressed as 8 hex digits.
	(2 points)
*buf	
*(buf+1)	(2 points)
*(Du1+1)	
	tion at the end of function foo executes, what is the
value of the base pointer register rbp?	(O nainta)
	(2 points)
Immediately after the retg (return) instruction	n at the end of function foo executes, what is the value
of the program counter register rip?	
	(2 points)