Наблюдения эффекта Сюняева – Зельдовича в скоплении Abell 2319 на радиотелескопе РАТАН-600.

В.А. Столяров, 1,2 М.Г. Мингалиев, 1 П.Г. Цыбулёв 1

¹Специальная астрофизическая обсерватория, Нижний Архыз, 369167, Россия 2 Кавендишевская Лаборатория, Кембриджский Университет, Кембридж. СВЗ 0НЕ. Великобритания

В статье приводятся результаты наблюдений эффекта Сюняева — Зельдовича в кластере Abell 2319, которые проводились в САО РАН на радиотелескопе РАТАН-600 на частоте 30 ГГц в период с ноября 2011 по март 2012-го года.

1. ВВЕДЕНИЕ

2. МОДЕЛИРОВАНИЕ

При моделировании вклада Abell 2319 на частоте наблюдения $30\Gamma\Gamma$ ц были получены оценки амплитуды эффекта в его центре порядка $T_{cmb}=0.8-1.5mK$, что с точностью до одного процента соотвествует его антенной температуре. Учитывая коэффициент перевода I/T_{cmb} на частоте $30\Gamma\Gamma$ ц из K в единицы интенсивности MJy/Sr порядка 27, получим интенсивность в центре кластера $I\approx 0.02-0.04MJy/Sr$. Зная размер центральной части диаграммы порядка $0'.1\times0'.5$ можно оценить поток в mJy, что будет составлять порядка 0.085-0.170~mJy.

Необходимо учитывать, что эффект Сюняева—Зельдовича на частотах меньше 220ГГц проявляется в уменьшении фоновой температуры, и профиль кластера будет иметь отрицательную амплитуду.

3. НАБЛЮДЕНИЯ

Для наблюдения кластера Abell 2319 было заказано 100 суток наблюдений на РАТАН-600, длина записей составляла порядка 10 минут времени. Наблюдения проводились с ноября 2011 по март 2012 г. на комплексе радиометров МАРС-3, установленном на 2-м облучателе РАТАН-600. Центральная частота составляла $\nu_c = 30\Gamma\Gamma$ ц, с полосой $\Delta\nu/\nu = 0.1$. Комплекс МАРС-3 состоит из 16-ти независимых радиометров, каждый из которых оснащён двумя рупорами, работающими в горизонтальной поляризации, и расположенными под углом 90 градусов друг к другу. Такая конфигурация позволяет наблюдать один из двух параметров Стокса (Q или

U) на каждом из 16-ти радиометров, что, впрочем, не являлось целью данных наблюдений. Поскольку сигнал регистрировался отдельно с каждого из 32-х рупоров, программным образом можно было реализовать различные режимы обработки, в том числе и в интенсивности – что и было сделано.

15-я пара рупоров была исключена из обработки всвязи с неисправностью данного радиометра. После предварительной редукции было оставлено 1140 записей (38 дней) с хорошей атмосферой, и 330 записей (11 дней) с умеренным атмосферным вкладом.

В качестве опорного источника использовался 3C84, имеющий близкое к Abell 2319 склонение.

4. ОБРАБОТКА ДАННЫХ

Первичная обработка данных включала в себя визуальный контроль записей и удаление испорченных сканов, а так же отягощённых сильным атмосферным вкладом, после чего для дальнейшей обработки было выбрано 1140 записей. Записи с умеренной атмосферой на этом этапе не использовались, поскольку их включение приводило к увеличению шума в осреднённой записи.

Обработка проводилась в трёх режимах - осреднение в полной мощности (total power), осреднение с программным вычитанием сканов через половину линейки рупоров (beam switching) и осреднение с вычитанием сканов с двух рупоров одного радиометра (polarized mode).

4.1. Осреднение в полной мощности

Простейший режим осреднения – это осреднение всех записей со сдвигом, соответствующим временной задержке между первым и *i*-м рупором. Осреднение можно производить как с вычитанием какого-либо фона (полинома или скользящего среднего с некоторым временным окном порядка нескольких десятков секунд для подавления атмосферных флуктуаций), так и без него. Осреднённая запись будет определяться выражением

$$S_{tp}(t) = \frac{1}{N_{tot}} \sum_{i=1}^{N} S_i(t + (i-1) \times \Delta t), \tag{1}$$

где $S_{tp}(t)$ - осреднённая запись, $N{=}32$ - общее число рупоров в линейке, N_{tot} - количество используемых рупоров, $S_i(t)$ - скан, полученный с i-го рупора, $\Delta t{=}1.323$ сек - запаздывание

Рис. 1. Обработка опорного источника 3C84 в режиме осреднения в полной мощности со сдвигом. Для подавления атмосферы вычитался фон – скользящее среднее с окном 30 сек. Красная кривая – результирующая запись без компрессии, зелёная кривая - компрессия в 20 раз (шаг порядка 1 сек), синим отмечено положение источника по информации из заголовка F-файла.

между соседними рупорами. Если все радиометры исправны, то $N=N_{tot}$, а если какой-то радиометр неисправен, то соответсвующие сканы нужно исключить.

В этом режиме атмосфера частично подавляется путём вычитания фона, но в обработанной записи остаётся 1/f-компонента шума радиометров, также как и белая компонента.

На Рис 1 приведён пример обработанных записей опорного источника 3С84.

4.2. Осреднение разностных сканов с шагом в половину динейки

Если источник достаточно компактен, то для подавления атмосферных флуктуаций можно конструировать разностные записи между i-м и i+N/2-м рупорами, которые затем нужно осреднять с соответствующим сдвигом. В этом случае результат будет описываться следующим выражением:

$$S_{bs}(t) = \frac{1}{N_{tot}} \sum_{i=1}^{N/2} (S_i(t + (i-1) \times \Delta t) - S_{i+N/2}(t + (i-1) \times \Delta t)), \tag{2}$$

где используются те же обозначения, что и в Ур 1. Здесь так же можно предварительно проводить и вычитать фон для более сильного подавления атмосферы.

Рис. 2. Обработка опорного источника 3C84 в режиме осреднения разностных сканов со сдвигом. Для подавления атмосферы вычитался фон – скользящее среднее с окном 30 сек. Красная кривая – результирующая запись без компрессии, зелёная кривая - компрессия в 20 раз (шаг порядка 1 сек), синим отмечено положение источника по информации из заголовка F-файла.

В этом режиме атмосфера подавляется не только с помощью вычитания фона, но и путём вычитания i+N/2-й записи из i-й. Однако, в обработанной записи вместе с белой компонентой остаётся 1/f-компонента шума радиометров, а так же подавляются временные масштабы больше $\Delta t \times N/2$ сек. Источник в этом случае идентифицируется в виде двух гауссиан половинной амплитуды с разной полярностью, разнесённых друг от друга на $\Delta t \times N/2$ сек.

На Рис 2 приведён пример обработанных записей опорного источника 3С84 в этом режиме.

4.3. Осреднение разностных сканов двух соседних рупоров (поляризационный режим)

Этот режим используется для наблюдения Q или U параметров Стокса, но если источник очень компактный, то можно попытаться его использовать для наблюдения интенсивности на масштабах меньше чем $\Delta t = 1.323$ сек. Результат описывается выражением

$$S_{pol}(t) = \frac{1}{N_{tot}} \sum_{i=1}^{N/2} (S_{2i-1}(t + (2i-2) \times \Delta t) - S_{2i}(t + (2i-2) \times \Delta t))$$
 (3)

где используются те же обозначения, что и в Ур 1 и Ур 2.

Рис. 3. Обработка опорного источника 3C84 в режиме осреднения разностных сканов двух соседних рупоров. Красная кривая – результирующая запись без компрессии, зелёная кривая - компрессия в 10 раз (шаг порядка 0.5 сек), синим отмечено положение источника по информации из заголовка F-файла.

Здесь мы получаем существенное увеличение чувствительности за счёт подавления атмосферных флуктуаций и 1/f компоненты шума радиометра, но за счёт удаления всех временных масштабов больше Δt сек.

На Рис 3 приведён пример обработанных записей опорного источника 3C84 в данном режиме.

5. РЕЗУЛЬТАТЫ ОБРАБОТКИ НАБЛЮДЕНИЙ ABELL 2319

Наблюдения скопления Abell 2319 были обработаны каждым из вышеперечисленных методов без вычитания фона, и с вычитанием фона в 30 сек. Достигнутые значения r.m.s в обработанных записях для несжатых и для сжатых записей сведены в Таблицу 1.

Осреднённые записи для всех режимов обработки приведены на Рис 4, 5 и 6.

В Таблице 2 приведены значения r.m.s. полученные при осреднении записей с отдельных рупоров.

Рис. 4. Обработка кластера Abell 2319 в режиме осреднения в полной мощности со сдвигом. Красная кривая – результат без вычитания фона и компрессии, зелёная кривая – для подавления атмосферы вычитался фон – скользящее среднее с окном 30 сек. Розовая кривая - компрессия в 20 раз (шаг порядка 1 сек), синим отмечено положение источника по информации из заголовка F-файла.

Рис. 5. Обработка кластера Abell 2319 в режиме осреднения разностных сканов со сдвигом. Красная кривая – результат без вычитания фона и компрессии, зелёная кривая – для подавления атмосферы вычитался фон – скользящее среднее с окном 30 сек. Розовая кривая - компрессия в 20 раз (шаг порядка 1 сек), синим отмечено положение источника по информации из заголовка F-файла.

Таблица 1. Достигнутые значения r.m.s. в mK в обработанных записях. Здесь TP - осреднение в полной мощности, без вычитания и с вычитанием 30-ти секундного скользящего среднего, BS - осреднение разностных записей со сдвигом, Pol - поляризационный режим.

Режим обработки,	Без компрессии	Компрессия в 20 раз
TP	5.04	4.96
TP, 30s	0.98	0.48
BS	1.43	1.14
BS, 30s	0.97	0.46
Pol	0.69	0.18
Pol, 30s	0.69	0.16

Таблица 2. Достигнутые значения r.m.s. в mK в обработанных записях с шагом 0.054837 сек для отдельных рупоров в режиме полной мощности с вычитанием 30-ти секундного скользящего среднего. Также приведены значения r.m.s для сжатых записей 1:20, с шагом 1.09674 сек.

Рупор	M01a	M01e	M02a	M02e	M03a	M03e	M04a	M04e	M05a	M05e	M06a	M06e	M07a	M07e	M08a	M08e
1:1	5.24	5.18	5.06	5.07	4.92	4.97	5.36	5.34	5.37	5.29	4.71	4.71	5.55	5.55	5.12	5.05
1:20	2.36	2.39	2.32	2.32	1.97	2.11	2.24	2.25	2.64	2.65	2.19	2.18	2.54	2.54	2.29	2.31
Рупор	M09a	M09e	M10a	M10e	M11a	M11e	M12a	M12e	M13a	M13e	M14a	M14e	M15a	M15e	M16a	M16e
1:1	5.30	5.35	5.65	5.59	6.17	6.12	5.89	5.78	5.21	5.14	5.47	5.48	_	_	4.83	4.86
1:20	2.54	2.49	2.69	2.66	2.79	2.84	2.79	2.69	2.25	2.30	2.56	2.66	_	_	2.19	2.20

6. ВЫВОДЫ

После осреднения записей объект обнаружить не удалось в режимах total power и beam switching. Возможно, что структуры амплитудой порядка 0.2-0.5 mK, видимые в обработанной записи в поляризационном режиме (close beam switching) на месте, где должен быть кластер, имеют к нему отношение.

Для улучшения отношения S/N можно использовать

- Весовое осреднение записей с весом $1/\sigma^2$.
- Более точное вычитание атмосферы в режиме beam stwitching с оптимизацией коэффициента $k, S_{bs} = S_i k \times S_{i+N/2}$.

Рис. 6. Обработка кластера Abell 2319 в режиме осреднения разностных сканов двух соседних рупоров. Красная кривая – результирующая запись без компрессии, синяя кривая - компрессия в 10 раз (шаг порядка 0.5 сек), зеленым отмечено положение источника по информации из заголовка F-файла.

- Добавление записей с умеренной атмосферой в случае успеха вышеупомянутой оптимизации.
- Использование режима наблюдения "рупор в небо" для подавления 1/f компоненты шума радиометров.

БЛАГОДАРНОСТИ

Работа поддержана грантом Российского фонда фундаментальных исследований 09-02-12169-офи м и контрактами Роснауки 02.518.11.7167 и 16.518.11.7062.