Revisiting Distance Based Ranking in Decomposition Based Evolutionary Algorithms

Kalyan Shankar Bhattacharjee*, Hemant Kumar Singh*, Tapabrata Ray* and Sanaz Mostaghim[†]
*School of Engineering and Information Technology, The University of New South Wales, Australia.

Email: k.bhattacharjee@student.adfa.edu.au,{h.singh,t.ray}@adfa.edu.au

†Institute for Intelligent Cooperating Systems (IKS), Otto von Guericke University of Magdeburg. Email: sanaz.mostaghim@ovgu.de

1) Regular Problems: Next we demonstrate the performance of DBEA-DR on 13 unconstrained benchmark problems from DTLZ [1] and WFG [2]: DTLZ1-DTLZ4 and WFG1-WFG9. The performances delivered by the proposed approach is compared in terms of HV in Table I and IGD in Table II with several recent and popular algorithms. The performances delivered by the other algorithms are obtained from [3].

Based on mean HV statistics listed in Table I, DBEA-DR performs at par with the best performing algorithm in 3 objective and 5 objective instances of DTLZ1, DTLZ2, DTLZ4, WFG2 and WFG4-WFG9 problems i.e. 12 out of 13 problems. Therefore, it is very difficult to judge the performance of an algorithm based on HV alone. Hence, IGD values are also presented below for these problems.

For IGD computation of these problems, reference sets have been obtained from the authors of [3] and results of the listed algorithms are also from the same source [3]. Based on the mean IGD statistics, DBEA-DR performs best in 3 and 5 objective instances of DTLZ1-DTLZ4, WFG5 and WFG7 i.e. 6 out of 13 problems, and only 5 objective instances of WFG4, WFG6, WFG8 and WFG9 problems. However, the proposed approach delivers at par performance with the best performing algorithm in terms of mean IGD values in the context of other instances of other problems.

2) Minus Problems: Next we demonstrate the performance of DBEA-DR on 13 unconstrained Minus-problems introduced in [3]: DTLZ1⁻¹-DTLZ4⁻¹ and WFG1⁻¹-WFG9⁻¹. These problems are well suited to demonstrate the efficiency of using both \mathbf{W}^I and \mathbf{W}^N . The detailed description of the problems and the difficulties in solving them can be found in [3].

Based on mean HV statistics listed in Table III, DBEA-DR performs best in 3 and 5 objective instances of DTLZ2⁻¹-DTLZ4⁻¹, WFG2⁻¹, WFG4⁻¹, WFG5⁻¹ and WFG9⁻¹ and 3 objective instances of DTLZ1⁻¹, WFG1⁻¹, WFG6⁻¹, WFG7⁻¹ and WFG8⁻¹. Also the proposed approach delivers at par performance with the best performing algorithm in the context of other objective instances of other problems. It is important to note that, performance of different algorithms based on HV varies significantly based on different reference points as seen in [3]. Therefore, it is very difficult to judge the performance of an algorithm based on HV alone. Hence, IGD values are also presented below for these problems.

For IGD computation of these problems, reference sets have been obtained from the authors of [3] and results of the listed algorithms are also from the same source [3]. Based on the mean IGD statistics listed in Table IV, DBEA-DR performs best in 3 and 5 objective instances of DTLZ2⁻¹-DTLZ4⁻¹ and WFG9⁻¹, and 3 objective instances of DTLZ1⁻¹, WFG1⁻¹, WFG4⁻¹-WFG8⁻¹ problems. However, the proposed approach delivers at par performance with the best performing algorithm in terms of mean IGD values in the context of other instances of other problems.

REFERENCES

- [1] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, "Scalable test problems for evolutionary multiobjective optimization," in *Proceedings of the International Conference on Evolutionary Multiobjective Optimization*, 2005, pp. 105–145.
- [2] S. Huband, L. Barone, L. While, and P. Hingston, "A scalable multiobjective test problem toolkit," in *Proceedings of the International Con*ference on Evolutionary Multi-criterion Optimization. Springer, 2005, pp. 280–295.
- [3] H. Ishibuchi, S. Yu, M. Hiroyuki, and N. Yusuke, "Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes," *IEEE Transactions on Evolutionary Computation*, 2016

Problem	M	DBEA-DR	NSGA-III	θ-DEA	MOEA/DD	MOEA/D-PBI	MOEA/D-Tch	MOEA/D-WS	MOEA/D-IPBI	NSGA-II
	3	1.11657	1.11508	1.11767	1.11913	1.11711	1.06842	0.39572	0.48149	1.07411
DTLZ1	5	1.56068	1.57677	1.57767	1.57794	1.57768	1.51186	0.50052	0.02284	0.00000
	8	NaN	2.13770	2.13788	2.13730	2.13620	2.05463	0.96246	1.44289	0.00000
	10	NaN	2.59280	2.59272	2.59260	2.59220	2.51973	1.07913	1.90272	0.00000
DTLZ2	3	0.74018	0.74336	0.74390	0.74445	0.74418	0.70168	0.33187	0.33100	0.69708
	5	1.29193	1.30317	1.30679	1.30778	1.30728	1.14598	0.61944	0.27191	0.67442
	8	NaN	1.96916	1.97785	1.97862	1.97817	1.35469	0.68315	0.54410	0.00004
	10	NaN	2.50878	2.51416	2.51509	2.51500	1.69045	0.83883	0.64925	0.00000
DTLZ3	3	0.74358	0.73300	0.73642	0.73944	0.73654	0.69553	0.33026	0.31397	0.69959
	5	1.26280	1.29894	1.30376	1.30638	1.30398	1.14475	0.60143	0.00750	0.00000
DILLS	8	NaN	1.95007	1.96849	1.97162	1.74240	1.33166	0.66684	0.29765	0.00000
	10	NaN	2.50727	2.51279	2.51445	2.50933	1.69956	0.80348	0.52362	0.00000
	3	0.74138	0.73221	0.71077	0.74484	0.48232	0.45889	0.17191	0.23377	0.70481
DOL 74	5	1.28523	1.30839	1.30878	1.30876	1.20680	1.00426	0.42941	0.33457	1.00881
DTLZ4	8	NaN	1.98025	1.98078	1.98083	1.86439	1.35100	0.71296	0.53303	0.00000
	10	NaN	2.51524	2.51539	2.51532	2.43536	1.56890	0.95488	0.64498	0.00000
	3	0.50294	0.65088	0.70151	0.69393	0.67291	0.92204	0.73804	0.81622	0.75944
TVEC4	5	0.68580	0.85608	1.14844	1.23809	1.34797	1.51824	1.36724	1.36241	1.03120
WFG1	8	NaN	1.36206	1.88297	1.91925	1.73875	2.05117	1.85604	1.75472	1.51083
	10	NaN	2.22078	2.38349	2.37705	1.78435	2.46470	2.27031	2.18237	2.38032
	3	1.22597	1.22359	1.22945	1.22193	1.11888	1.12990	1.12266	1.16687	1.20760
WFG2	5	1.57110	1.59770	1.59708	1.55672	1.52205	1.58417	1.42821	1.42081	1.58790
	8	NaN	2.13629	2.12442	2.04619	2.01678	2.13569	2.11651	2.11529	2.13214
	10	NaN	2.58890	2.57778	2,48332	2.45715	2.58891	2.57478	2.57367	2.58882
	3	0.98265	0.81929	0.81556	0.77295	0.75364	0.80041	0.48971	0.74146	0.82967
	5	1.38769	1.01000	1.02782	0.95386	0.89357	0.88322	0.71619	0.93099	1.06314
WFG3	8	NaN	1.21146	1.11348	1.15306	0.74674	1.27479	0.92248	1.41331	1.41857
	10	NaN	1.55771	1.55919	1.37737	0.55186	1.69917	1.13233	1.72878	1.76576
	3	0.70356	0.72867	0.72949	0.72031	0.68710	0.66650	0.34131	0.63483	0.67605
******	5	1.19012	1.28496	1.28736	1.26067	1.15695	1.01300	0.71180	1.04810	1.07969
WFG4	8	NaN	1.96402	1.96426	1.83751	1.19841	1.33398	0.95883	1.45141	1.40330
	10	NaN	2.50322	2.50376	2.22383	1.43393	1.49165	1.20197	1.74551	1.70402
	3	0.67828	0.68658	0.68706	0.67698	0.65668	0.61681	0.27764	0.58174	0.65059
TYPO #	5	1.17570	1.22187	1.22209	1.18965	1.11627	0.93276	0.58164	0.96542	1.06695
WFG5	8	NaN	1.84995	1.85027	1.71196	1.27483	1.18970	0.96591	1.33675	1.39529
	10	NaN	2.34640	2.34644	2.07711	1.53615	1.35553	1.18471	1.57386	1.61976
	3	0.66788	0.68696	0.68698	0.67923	0.65655	0.62307	0.28542	0.58469	0.64111
WEG.	5	1.13737	1.21978	1.22284	1.19424	1.04043	0.93460	0.55026	0.97587	1.01175
WFG6	8	NaN	1.84625	1.84330	1.69055	0.71742	1.17924	0.63171	1.21597	1.27938
	10	NaN	2.32660	2.32759	2.01837	0.82027	1.44519	0.77606	1.48368	1.59677
	3	0.72079	0.72894	0.73099	0.72126	0.61145	0.66659	0.33309	0.62859	0.68591
WEGE	5	1.23202	1.29190	1.29548	1.25983	1.07723	1.01449	0.63899	1.04794	0.97811
WFG7	8	NaN	1.97138	1.97353	1.82024	0.83439	1.30773	0.71170	1.45307	1.22911
	10	NaN	2.50754	2.50858	2.25713	0.95972	1.59993	0.97177	1.73385	1.59601
	3	0.63543	0.66560	0.66687	0.65741	0.62986	0.61394	0.24450	0.26792	0.61230
WEGG	5	1.07350	1.18225	1.18354	1.15376	0.95660	0.60364	0.46673	0.82273	0.96648
WFG8	8	NaN	1.75970	1.76647	1.70621	0.30471	1.20786	0.67808	1.24044	1.28486
	10	NaN	2.28203	2.28502	2.10729	0.27470	1.60952	0.82704	1.57781	1.69433
	3	0.66696	0.67519	0.67978	0.67146	0.57864	0.62177	0.25170	0.51403	0.62199
TTTTCC.	5	1.15289	1.21058	1.22122	1.15493	1.02426	0.78608	0.53143	0.94420	0.92841
WFG9	8	NaN	1.80911	1.83678	1.60407	0.97800	1.23897	0.72454	1.18318	1.07824
	10	NaN	2.34332	2.36516	1.92977	1.15138	1.59168	0.86178	1.49927	1.42611
	1.0	1 1441 1	2.0.002			1.10100	1.07100	0.00170	1/2/	

 $\begin{tabular}{l} TABLE\ II\\ MEAN\ IGD\ STATISTICS\ FOR\ DTLZ\ AND\ WFG\ PROBLEMS \end{tabular}$

Problem	M	DBEA-DR	NSGA-III	θ-DEA	MOEA/DD	MOEA/D-PBI	MOEA/D-Tch	MOEA/D-WS	MOEA/D-IPBI	NSGA-II
	3	0.04085	0.04362	0.04170	0.04138	0.04175	0.06082	0.50173	0.42397	0.06481
DTLZ1	5	0.10797	0.11308	0.11125	0.11110	0.11128	0.22189	0.73685	6.52117	19.87954
	8	NaN	0.17984	0.17513	0.17541	0.17601	0.23603	0.72480	0.52039	75.18619
	10	NaN	0.19094	0.18527	0.18552	0.18611	0.23786	0.78417	0.49928	77.22337
DTLZ2	3	0.05410	0.05799	0.05804	0.05801	0.05800	0.07318	0.54279	0.54641	0.07182
	5	0.16794	0.19403	0.19363	0.19368	0.19368	0.32648	0.69062	0.93890	0.31393
	8	NaN	0.40062	0.39802	0.39575	0.39572	0.46026	0.94291	0.99204	1.90946
	10	NaN	0.46752	0.46462	0.46145	0.46120	0.53319	1.00370	1.05344	2.15108
DTLZ3	3	0.05351	0.06261	0.05908	0.05824	0.05848	0.07349	0.54419	0.54800	0.07194
	5	0.18360	0.19601	0.19496	0.19384	0.19400	0.32551	0.70566	40.98681	116.19480
	8	NaN	0.41225	0.40224	0.39694	0.46660	0.47438	0.94647	1.23378	348.09573
	10	NaN	0.46843	0.46545	0.46165	0.46321	0.53973	1.01331	1.12693	308.79409
	3	0.05408	0.07550	0.10791	0.05800	0.45495	0.47158	0.83789	0.71489	0.07012
	5	0.17325	0.19378	0.19373	0.19372	0.33507	0.45264	0.82880	0.89434	0.22875
DTLZ4	8	NaN	0.39672	0.39597	0.39534	0.53322	0.64479	0.95178	1.00074	2.11783
	10	NaN	0.46302	0.46191	0.46074	0.56608	0.61814	0.99026	1.05641	2.33543
	3	0.37862	0.21258	0.18074	0.18377	0.20233	0.07600	0.20087	0.15597	0.16604
	5	0.38576	0.29117	0.20606	0.17134	0.19663	0.08683	0.18288	0.18297	0.26815
WFG1	8	NaN	0.16839	0.07692	0.06678	0.08509	0.08045	0.10808	0.12427	0.33417
	10	NaN	0.08868	0.09112	0.07619	0.14610	0.10095	0.10556	0.11972	0.23599
	3	0.31750	0.04072	0.03577	0.04866	0.08872	0.08739	0.17910	0.12579	0.05805
WFG2	5	0.07906	0.05691	0.05685	0.08325	0.10423	0.15136	0.21243	0.20765	0.12767
	8	NaN	0.07015	0.08495	0.09183	0.09860	0.11937	0.13764	0.13030	0.19386
	10	NaN	0.05969	0.08920	0.09114	0.09578	0.11840	0.13169	0.12416	0.19704
WFG3	3	0.11423	0.15399	0.28832	0.05425	0.03745	0.04070	0.20844	0.19232	0.05006
	5	0.11423	0.09697	0.12176	0.12018	0.08618	0.15235	0.34998	0.28723	0.10195
	8	NaN	0.23351	0.56029	0.14305	0.22451	0.33536	0.56095	0.43524	0.15998
	10	NaN	0.16754	0.41979	0.15640	0.31725	0.39634	0.57148	0.55067	0.16206
	3	0.05942	0.05818	0.05823	0.07217	0.07700	0.09484	0.52334	0.25250	0.07274
	5	0.16924	0.19213	0.19223	0.26733	0.30864	0.41147	0.63375	0.42761	0.18244
WFG4	8	NaN	0.39954	0.39905	0.51790	0.72445	0.51843	0.85709	0.59237	0.37909
	10	NaN	0.46687	0.46624	0.66822	0.84257	0.58032	0.92412	0.70445	0.45848
	3	0.06080	0.06216	0.06212	0.07543	0.07569	0.10004	0.52875	0.24320	0.07718
	5	0.16315	0.18937	0.18935	0.25529	0.29036	0.40381	0.65914	0.41589	0.18139
WFG5	8	NaN	0.39141	0.39123	0.51273	0.67067	0.51038	0.81440	0.48871	0.36793
	10	NaN	0.45671	0.45638	0.65521	0.80237	0.56802	0.88882	0.55651	0.45670
	3	0.06614	0.06237	0.06236	0.07542	0.08158	0.09964	0.53091	0.24512	0.08111
	5	0.17112	0.18939	0.18942	0.26168	0.32816	0.40693	0.67423	0.41625	0.19635
WFG6	8	NaN	0.39279	0.39211	0.52623	0.84861	0.52593	0.92164	0.70887	0.40164
	10	NaN	0.45856	0.45750	0.66364	0.95099	0.57914	0.97505	0.81882	0.46819
	3	0.05736	0.05858	0.05843	0.07272	0.10435	0.09461	0.53919	0.25365	0.07482
	5	0.16835	0.19302	0.19308	0.26131	0.34346	0.40967	0.67685	0.42667	0.22350
WFG7	8	NaN	0.39970	0.39841	0.50986	0.81487	0.52613	0.92975	0.61293	0.43800
	10	NaN	0.46668	0.46543	0.63276	0.94246	0.59069	0.97643	0.65444	0.49155
	3	0.07706	0.46668	0.06826	0.03270	0.08798	0.10758	0.53692	0.50862	0.09200
	5	0.18385	0.19572	0.19568	0.27004	0.31288	0.51613	0.70712	0.51826	0.03200
WFG8	8	NaN	0.41691	0.17306	0.49936	0.80811	0.54876	0.92428	0.79070	0.43170
	10	NaN	0.50584	0.49280	0.64259	0.92544	0.62707	1.00382	0.86101	0.48245
	3	0.06389	0.06403	0.06323	0.07385	0.10025	0.09920	0.50142	0.26204	0.48243
	5	0.16523	0.00403	0.18634	0.07383	0.10023	0.09920	0.66154	0.20204	0.08311
WFG9	8	NaN	0.18613	0.18034	0.51814	0.29013	0.53759	0.85700	0.67375	0.21080
	10	NaN	0.39088	0.39339	0.66553	0.71033	0.60033	0.83700	0.73585	0.43883
	10	inain	0.40273	0.40209	0.00555	0.65556	0.00033	0.92832	0.73363	0.30334

TABLE III $\label{eq:meanhomo} \mbox{Mean HV statistics for DTLZ$^{-1}$ and WFG^{-1}$ problems}$

Problem	M	DBEA-DR	NSGA-III	θ-DEA	MOEA/DD	MOEA/D-PBI	MOEA/D-Tch	MOEA/D-WS	MOEA/D-IPBI	NSGA-II
	3	0.29207	0.27258	0.25057	0.24887	0.26146	0.27141	0.03935	0.17744	0.26905
DTLZ1 ⁻¹	5	0.01678	0.01265	0.00898	0.00972	0.01739	0.01208	0.00083	0.00671	0.01520
	8	NaN	5.227E-05	4.499E-05	0.881E-05	0.598E-05	3.215E-05	0.139E-05	2.855E-05	3.568E-05
	10	NaN	1.185E-06	0.451E-06	0.100E-06	0.079E-06	0.620E-06	0.025E-06	0.567E-06	0.765E-06
DTLZ2 ⁻¹	3	0.71081	0.68986	0.69303	0.68912	0.69439	0.68780	0.70652	0.70650	0.68187
	5	0.20760	0.13957	0.13496	0.08794	0.15984	0.15556	0.14930	0.14910	0.17147
	8	NaN	4.454E-03	3.406E-03	2.690E-03	5.978E-03	0.459E-03	1.560E-03	1.560E-03	4.585E-03
	10	NaN	6.308E-04	5.541E-04	1.836E-04	5.199E-04	0.052E-04	0.640E-04	0.639E-04	3.797E-04
DTLZ3 ⁻¹	3	0.70917	0.69251	0.69468	0.68990	0.69609	0.68667	0.70650	0.70650	0.68267
	5	0.20422	0.12951	0.13273	0.08190	0.15902	0.15199	0.14891	0.14886	0.16472
	8	NaN	0.00414	0.00401	0.00255	0.00596	0.00050	0.00156	0.00156	0.00390
	10	NaN	0.00054	0.00059	0.00018	0.00052	0.00001	0.00006	0.00006	0.00033
	3	0.71168	0.69397	0.69546	0.68942	0.59319	0.68049	0.70650	0.64625	0.68358
nor o1	5	0.19195	0.12326	0.11428	0.07242	0.12296	0.14878	0.14881	0.13995	0.16970
DTLZ4 ⁻¹	8	NaN	4.582E-03	3.921E-03	2.198E-03	2.020E-03	0.485E-03	1.563E-03	1.340E-03	3.886E-03
	10	NaN	6.065E-04	6.409E-04	2.569E-04	2.333E-04	0.043E-04	0.642E-04	0.649E-04	3.006E-04
	3	0.10958	0.10955	0.08936	0.08475	0.03944	0.07838	0.04427	0.06037	0.12500
[_]	5	0.00243	0.00221	0.00155	0.00094	0.00033	0.00174	0.00089	0.00113	0.00296
WFG1 ⁻¹	8	NaN	1.835E-06	1.401E-06	1.028E-06	0.126E-06	3.015E-06	1.767E-06	1.798E-06	3.640E-06
	10	NaN	1.891E-08	1.524E-08	0.962E-08	0.149E-08	4.755E-08	2.414E-08	2.533E-08	4.974E-08
WFG2 ⁻¹	3	0.38567	0.38373	0.38347	0.38123	0.37769	0.37505	0.20617	0.31447	0.36889
	5	0.01160	0.01067	0.00805	0.00611	0.00500	0.01143	0.00398	0.00443	0.01055
	8	NaN	0.784E-05	0.638E-05	0.383E-05	0.368E-05	1.585E-05	0.690E-05	0.730E-05	1.290E-05
	10	NaN	0.795E-07	0.569E-07	0.441E-07	0.378E-07	2.304E-07	0.885E-07	0.977E-07	1.787E-07
	3	0.24752	0.26507	0.24959	0.23184	0.25481	0.25408	0.03245	0.11691	0.26451
WFG3 ⁻¹	5	0.01170	0.01279	0.00912	0.00388	0.00459	0.01082	0.00053	0.00286	0.01312
	8	NaN	3.666E-05	1.415E-05	0.262E-05	0.417E-05	1.598E-05	0.083E-05	0.300E-05	2.035E-05
	10	NaN	6.673E-07	2.511E-07	0.250E-07	0.483E-07	2.704E-07	0.106E-07	0.499E-07	4.847E-07
	3	0.70957	0.66343	0.68880	0.66140	0.68582	0.66881	0.68655	0.69140	0.66561
	5	0.15227	0.12711	0.14416	0.10758	0.13711	0.08523	0.10288	0.11997	0.14780
WFG4 ⁻¹	8	NaN	5.007E-03	5.123E-03	0.255E-03	0.602E-03	0.548E-03	2.351E-03	1.914E-03	2.758E-03
	10	NaN	5.475E-04	2.537E-04	0.039E-04	0.239E-04	0.171E-04	1.539E-04	1.151E-04	1.951E-04
	3	0.70099	0.66841	0.68748	0.67405	0.68567	0.67011	0.68645	0.69118	0.67184
	5	0.14506	0.12789	0.12399	0.12320	0.13919	0.08783	0.10558	0.12259	0.16091
WFG5 ⁻¹	8	NaN	0.00421	0.00436	0.00062	0.00080	0.00050	0.00237	0.00195	0.00250
	10	NaN	0.00046	0.00025	0.00002	0.00003	0.00001	0.00016	0.00011	0.00015
	3	0.70518	0.68331	0.69235	0.67553	0.68534	0.66845	0.68665	0.69144	0.68281
****** c-1	5	0.13073	0.13628	0.12549	0.12332	0.13846	0.08150	0.10292	0.11987	0.16948
WFG6 ⁻¹	8	NaN	0.00450	0.00382	0.00075	0.00076	0.00043	0.00236	0.00194	0.00248
	10	NaN	0.00053	0.00022	0.00002	0.00003	0.00001	0.00016	0.00011	0.00020
	3	0.70742	0.65101	0.68135	0.65126	0.67742	0.65881	0.68664	0.69143	0.65047
1	5	0.13430	0.11727	0.11857	0.11268	0.13727	0.08508	0.10297	0.11996	0.14742
WFG7 ⁻¹	8	NaN	0.00441	0.00382	0.00049	0.00054	0.00050	0.00237	0.00192	0.00340
	10	NaN	0.00047	0.00023	0.00002	0.00002	0.00001	0.00015	0.00011	0.00032
	3	0.71138	0.68958	0.69311	0.67910	0.68517	0.66818	0.68660	0.69143	0.68535
1	5	0.16025	0.13845	0.12755	0.12962	0.13872	0.08272	0.10293	0.11978	0.17643
WFG8 ⁻¹	8	NaN	0.00460	0.00405	0.00129	0.00090	0.00038	0.00237	0.00195	0.00381
	10	NaN	0.00055	0.00023	0.00005	0.00003	0.00001	0.00016	0.00012	0.00034
	3	0.70013	0.67193	0.68446	0.64574	0.66636	0.65325	0.68255	0.68630	0.66060
	5	0.16604	0.13747	0.12627	0.11905	0.13411	0.09712	0.10808	0.12487	0.15893
WFG9 ⁻¹	8	NaN	0.00478	0.00431	0.00088	0.00073	0.00075	0.00222	0.00181	0.00380
	10	NaN	0.000478	0.00026	0.00003	0.00073	0.00073	0.00222	0.00101	0.00040
	10	114111	0.000+0	3.00020	3.00003	0.00005	0.00003	0.00017	0.00010	J.000+0

TABLE IV $\label{eq:mean_igd} \mbox{Mean IGD statistics for } \mbox{DTLZ$^{-1}$ and } \mbox{WFG$^{-1}$ problems}$

Problem	M	DBEA-DR	NSGA-III	θ-DEA	MOEA/DD	MOEA/D-PBI	MOEA/D-Tch	MOEA/D-WS	MOEA/D-IPBI	NSGA-II
	3	0.04204	0.06023	0.08080	0.07764	0.07235	0.06726	0.46615	0.15033	0.05772
DTLZ1 ⁻¹	5	0.14258	0.15781	0.21539	0.18317	0.13134	0.17583	0.58701	0.24709	0.12841
	8	NaN	0.19939	0.22664	0.28573	0.42514	0.27490	0.67675	0.28280	0.21727
	10	NaN	0.19114	0.25461	0.28540	0.42793	0.30308	0.68698	0.30610	0.22753
DTLZ2 ⁻¹	3	0.05529	0.06849	0.07061	0.07231	0.06733	0.08081	0.05795	0.05797	0.07106
	5	0.17814	0.20140	0.22591	0.26158	0.20294	0.19062	0.19319	0.19338	0.17835
	-8	NaN	0.39590	0.44648	0.44169	0.38813	0.46403	0.39536	0.39528	0.34390
	10	NaN	0.41607	0.45647	0.50964	0.44616	0.55239	0.46082	0.46084	0.38069
DTLZ3 ⁻¹	3	0.05507	0.06945	0.06923	0.07147	0.06640	0.08231	0.05799	0.05799	0.07117
	5	0.17233	0.20451	0.22735	0.26960	0.20317	0.19464	0.19361	0.19366	0.18317
	8	NaN	0.39347	0.43321	0.44242	0.38697	0.46253	0.39517	0.39519	0.34945
	10	NaN	0.41589	0.45076	0.50678	0.44444	0.55227	0.46063	0.46065	0.38427
	3	0.05532	0.06933	0.06795	0.07172	0.14957	0.08734	0.05800	0.10622	0.07001
	5	0.16489	0.21479	0.24070	0.27921	0.27387	0.19831	0.19371	0.21271	0.17809
DTLZ4 ⁻¹	8	NaN	0.36310	0.42714	0.45958	0.52122	0.46517	0.39528	0.43285	0.35118
	10	NaN	0.39219	0.43337	0.48691	0.52423	0.55814	0.46055	0.46365	0.39096
	3	0.02730	0.05290	0.10325	0.11665	0.29294	0.15693	0.37597	0.29304	0.04386
	5	0.08794	0.11311	0.19147	0.32509	0.55926	0.17943	0.35539	0.31550	0.06629
WFG1 ⁻¹	8	NaN	0.26898	0.34785	0.39702	0.99344	0.16412	0.32690	0.31295	0.10819
	10	NaN	0.29323	0.38999	0.43426	0.96296	0.14229	0.33064	0.31388	0.09226
WFG2 ⁻¹	3	0.05323	0.04190	0.04306	0.05567	0.05739	0.04694	0.33038	0.22170	0.06632
	5	0.12385	0.07881	0.14449	0.18688	0.24328	0.07440	0.37314	0.32020	0.09517
	8	NaN	0.20953	0.35963	0.33890	0.45393	0.11549	0.42160	0.38028	0.15819
	10	NaN	0.25544	0.43200	0.36370	0.50669	0.12588	0.46156	0.40894	0.15103
	3	0.11100	0.06083	0.08114	0.08829	0.08214	0.08449	0.49054	0.24954	0.05986
1	5	0.21589	0.16490	0.21009	0.26876	0.34333	0.19835	0.62850	0.37408	0.13927
WFG3 ⁻¹	8	NaN	0.25089	0.31689	0.44622	0.47588	0.34387	0.72693	0.51896	0.25419
	10	NaN	0.25988	0.29982	0.46272	0.49450	0.36499	0.75953	0.50412	0.25219
	3	0.05509	0.07067	0.06850	0.08952	0.08597	0.09036	0.07125	0.06708	0.07162
	5	0.22407	0.20365	0.21184	0.27358	0.25924	0.27079	0.25575	0.22894	0.18955
WFG4 ⁻¹	8	NaN	0.38615	0.41425	0.63248	0.60677	0.48890	0.42937	0.41881	0.37240
	10	NaN	0.43182	0.49779	0.72355	0.66994	0.55916	0.47924	0.47420	0.41505
	3	0.05434	0.07096	0.06901	0.08740	0.08494	0.08793	0.07083	0.06681	0.07152
************	5	0.21098	0.20813	0.23067	0.24814	0.25227	0.26722	0.25228	0.22598	0.18380
WFG5 ⁻¹	8	NaN	0.39476	0.42790	0.52843	0.58467	0.48796	0.42769	0.41669	0.37803
	10	NaN	0.44100	0.49854	0.61452	0.65891	0.55862	0.47784	0.47400	0.42550
	3	0.05555	0.07064	0.06940	0.08761	0.08656	0.09107	0.07121	0.06708	0.07144
*************	5	0.22326	0.20879	0.23472	0.23969	0.25092	0.27386	0.25563	0.22895	0.18108
WFG6 ⁻¹	8	NaN	0.39207	0.44079	0.51870	0.58752	0.49671	0.42929	0.41820	0.38577
	10	NaN	0.43261	0.50390	0.61078	0.66057	0.56964	0.47855	0.47419	0.42065
	3	0.05528	0.07491	0.06984	0.09135	0.08764	0.08919	0.07122	0.06709	0.07665
************	5	0.24217	0.21990	0.24024	0.26035	0.25841	0.26725	0.25555	0.22880	0.19349
WFG7 ⁻¹	8	NaN	0.39812	0.44856	0.57769	0.61427	0.48629	0.42953	0.41873	0.36740
	10	NaN	0.43765	0.50225	0.65658	0.68282	0.55764	0.48052	0.47575	0.39785
	3	0.05541	0.07182	0.07039	0.08438	0.08642	0.09138	0.07125	0.06708	0.07267
xxmco-1	5	0.19352	0.21132	0.23438	0.22655	0.24985	0.27496	0.25585	0.22920	0.18775
WFG8 ⁻¹	8	NaN	0.39399	0.44081	0.49022	0.57774	0.49801	0.42906	0.41764	0.37975
	10	NaN	0.43266	0.50071	0.57353	0.65643	0.57134	0.47790	0.47233	0.40987
	3	0.05449	0.06858	0.06769	0.08732	0.08791	0.08518	0.07062	0.06719	0.07407
WFG9 ⁻¹	5	0.18347	0.20468	0.23095	0.23795	0.25551	0.25081	0.24740	0.22190	0.19209
	8	NaN	0.39243	0.43482	0.51895	0.59280	0.46407	0.42810	0.41925	0.37479
	10	NaN	0.44781	0.49704	0.60650	0.66438	0.52325	0.47860	0.47591	0.40130