Strömungslehre I

Dr.-Ing. Peter Wulf - Raum F219a http://www.mp.haw-hamburg.de/pers/Wulf/

7. Einführung Durchflußmesstechnik

- Volumetrische Messung
- Wirkdruckverfahren
 - Normblende
 - Normdüse
 - Venturidüse

Fakultät Technik und Informatik Department Maschinenbau und Produktion

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Stand: 2009-06-30

Grundlagen

 \Rightarrow **Volumenstrom**: $\dot{V} = \overline{U}A = \int U_n dA$ (Einheit: m³/s oder m³/h)

Normalenkomponente — der Geschwindigkeit

- \Rightarrow Mittlere Geschwindigkeit im Querschnitt A: $\overline{U} = \frac{1}{A} \int U_n dA$
- \Rightarrow Massenstrom: $\dot{m} = dm/dt = \int_{A} \rho U_{n} dA$ (Einheit: kg/s)
- \Rightarrow Massenstrom zu Volumenstrom (ρ =const): $\dot{m} = \rho \int_A U_n dA = \rho \dot{V}$
- **⇒** Unmittelbare Messverfahren
 - ⇒ Gesamter Volumenstrom wird fortlaufend in Teilvolumen zerlegt
 - ⇒ Teilvolumen werden in Meßkammern gemessen und gezählt
 - ⇒ Für die Messung tropfbarer Fluide gut geeignet
- ⇒ Mittelbare Messverfahren
 - ⇒ Indirekte Ermittlung des Volumenstroms anhand einer anderen Größe, wie z.B. der Drehzahl

Wichtige Volumenstrommessverfahren

- ⇒ Volumetrische Messung der <u>Verdrängung</u>, z.B. im Ovalradzähler, Turbinendurchflussmesser, Woltmann-Flügel
- ⇒ Messung der <u>Druckdifferenz</u> an einem Drosselgerät, z.B. einer Blende oder Düse (Wirkdruckverfahren) (in diesem Kap.)
- ⇒ Ausnutzung des <u>Staudrucks</u> mit einer Stauscheibe oder einem Schwebekörper; auch lokale Geschwindigkeitsmessung mit dem Pitot- oder Prandtlrohr
 (s. Kap. 4)

- ⇒ <u>Frequenzmessung</u> abgehender Wirbel hinter einem Störkörper (Wirbelfrequenzdurchflussmesser)

Quelle: Profos, Pfeifer: Handbuch der industriellen Meßtechnik, 1994

Übersicht volumetrische Verfahren (Zähler!)

Meßverfahren	Zählertyp	Bauart	Ausführung	Meßgut
Unmittelbare Volumenmessun- gen mit Meß- kammern	Volumenzähler mit festen Meß- kammerwänden (Auslaufzähler)	feststehende Meßgefäße kippendes Meßgefäß rotierendes Meßgefäß	Meßgefäße mit automatischer Umschaltung Kippzähler Trommelzähler	Flüssig- keit
	Volumenzähler mit beweglichen Meßkammer- wänden (Verdrän- gungszähler)	Hubkolben Drehkolben Sperrflüssigkeit deformierbare Trennwand	Einkolbenzähler Mehrkolbenzähler Ringkolbenzähler Ovalradzähler Taumelscheibenz. Drehkolbengasz. trockene Gaszähler nasse Gaszähler	Gase
Mittelbare Volumenmessung ohne Meß- kammern	Volumenzähler mit Meßflügeln (Turbinenzähler)	tangent. Beauf- schlagung axiale Beauf- schlagung	Flügelradzähler Woltmann-Zähler Turbinenzähler Schraubenradgas- zähler	Flüssig- keit Flüssig- keit und Gase

Beispiel Trommelzähler

⇒ Volumenzähler mit festen Messkammerwänden

- Messung stark verschmutzter Flüssigkeiten möglich
- Geringe Druckverluste
- Geringer bis mäßiger Volumendurchsatz
- Diskontinuierliche F\u00f6rderung

⇒ Funktionsweise

- ⇒ Mehrkammertrommel (Lagerung bei **a**)
- ⇒ Einströmen bei e
- ⇒ Füllung der Kammer **b**
- ⇒ Verschiebung des Schwerpunkts und Drehung wenn h (Teil von b) gefüllt wird
- ⇒ Füllung von Kammer **c** wenn Trennkante **g** aus der Flüssigkeit auftaucht
- ⇒ Bei weiterer Drehung Entleerung von Kammer **b** durch Kanal **h**
- ⇒ Entlüftung durch Rohre **k**

Beispiel Ringkolbenzähler

- ⇒ Volumenzähler mit beweglichen Messkammerwänden
 - Hohe Genauigkeit auch bei kleinen Durchsätzen
 - Arbeitet in beide Strömungsrichtungen
 - Störungsempfindlich bezüglich Verschmutzungen (ggf. Filter)
 - Volumenverluste durch Spalte

der industriellen Meßtechnik, 1994

Pfeifer: Handbuch

Quelle: Profos,

- ⇒ Unterteilung des Ringkanals in
 Volumen V₁ und V₂ durch Ringkolben
- ⇒ Strömung im Ringkanal von E (Eingang) zu A (Ausgang)
- ⇒ Ringkolben wird durch Strömung bewegt (Umdrehungen ~ Volumendurchsatz)

Beispiel Ovalradzähler

- ⇒ Volumenzähler mit beweglichen Messkammerwänden
 - Schnellläufer mit hohen Durchsätzen
 - Wenig Pulsation bei Einsatz von Ausgleichsgetrieben
 - Druckverluste durch Reibung
 - Volumenverluste durch Toleranzen in der Verzahnung und durch Spalte
- ⇒ Funktionsweise
 - ⇒ Zwei Ovalräder
 - ⇒ die über eine Verzahnung ineinander greifen
 - ⇒ die an dem Gehäusemantel abrollen
 - ⇒ Antrieb aus Druckdifferenzen an beiden (2, 4,) oder einem Ovalrad (1, 5: unteres Rad, 3: oberes Rad)

Beispiel Woltmann-Zähler

- ⇒ Volumenzähler mit Messflügeln (Turbinenzähler)
 - Hohe Durchsätze möglich
 - Lagerentlastung bei senkrechter Bauweise durch hydrostatischen Auftrieb
 - Benötigt drallfreie Zuströmung: Längere gerade Rohrstrecke oder Gleichrichter notwendig
 - Fehleranfällig bei kleinen Durchsätzen

⇒ Funktionsweise

- ⇒ Durchströmter Konzentrischer Ringkanal
- ⇒ Strömung treibt das Laufrad an
- ⇒ Axiale (a) und senkrechte (b) Bauweise

Übersicht Wirkdruckverfahren

⇒ Prinzip

- ⇒ Messung des Druckverlusts bzw. des Wirkdrucks ∆p über eine Drossel bzw. Querschnittsverengung $A_0 \rightarrow A_1$
- \Rightarrow Ansatz für den Druckverlust $\Delta p = \zeta \frac{\rho}{2} U_1^2$ bzw. $U_1 = \frac{1}{\sqrt{\zeta}} \sqrt{2 \frac{\Delta p}{\rho}}$
- \Rightarrow Volumenstrom $\dot{V} = U_1 A_1 = \frac{A_1}{\sqrt{\zeta}} \sqrt{2 \frac{\Delta p}{\rho}}$
- ⇒ Bsp.: Strömungsfeld und Druckverlust an einer Blende
- ⇒ Berücksichtigung weiterer Einflussfaktoren und Umrechnung auf An

$$\dot{V} = \alpha \varepsilon m A_0 \sqrt{2 \frac{\Delta p}{\rho}}$$

 α = Durchflußzahl

 $\dot{V} = \alpha \varepsilon m A_0 \sqrt{2 \frac{\Delta p}{\rho}}$ | m = Flächenverhältnis A₁/A₀ ε = Beiwert für kompressible Strömungen (ε=1 bei ρ=const, ε<1 wenn kompressibel)

Druck

Wirkdruck-Entnahme

bleibender Druck-verlust

Allgemeine Herleitung

- \Rightarrow Flächenverhältnis (Öffnungsverhältnis) $m = A_1 / A_0 < 1$
- \Rightarrow Massenerhaltung $\dot{m} = \rho A_0 U_0 = \rho A_1 U_1 = const$

$$U_0 = U_1 \frac{A_1}{A_0} = mU_1$$

⇒ Bernoulli-Gleichung (ohne Höhendifferenz)

$$\frac{1}{2}\rho U_0^2 + p_0 = \frac{1}{2}\rho U_1^2 + p_1 = const$$

$$p_0 - p_1 = \frac{\rho}{2} \left(U_1^2 - U_0^2 \right) \qquad p_0 - p_1 = \frac{\rho}{2} U_1^2 \left(1 - m^2 \right)$$

$$U_1 = \sqrt{\frac{2}{\rho} \frac{1}{1 - m^2}} (p_0 - p_1)$$

- \Rightarrow Volumenstrom $\dot{V} = A_1 U_1 = A_1 \sqrt{\frac{2}{\rho} \frac{1}{1 m^2}} (p_0 p_1) = \frac{mA_0}{\sqrt{1 m^2}} \sqrt{2 \frac{p_0 p_1}{\rho}}$
- \Rightarrow Korrektur um empirischen Beiwert für Reibung, Strahleinschnürung und Art der Druckentnahme $\dot{V} = \alpha m A_0 \sqrt{2 \frac{p_0 p_1}{\rho}}$
- \Rightarrow **Durchflusszahl** $\alpha = \alpha(m, Re), Re = \rho DU/\eta$
- ⇒ Erfassung von Kompressibilitätseffekten mit ε

$$\dot{V} = \alpha \varepsilon m A_0 \sqrt{2 \frac{p_0 - p_1}{\rho}}$$

Bauformen

⇒ Drei Bauformen nach ISO 5167 bzw. DIN 1952

Vorteile Blende:

- ⇒ geringe Herstellungskosten
- ⇒ einfache Geometrie

Nachteile Blende

- ⇒ Empfindlich gegenüber
 Schmutz an der
 Einlaufkante
- ⇒ Hoher Druckverlust

Vorteile Düsen:

- ⇒ Gerundete Einlaufkante (Schmutzempfindlichkeit gering)
- ⇒ Geometrie kann maßstabsgerecht angepasst werden
- ⇒ Geringere Druckverluste

Nachteile Düsen:

- ⇒ Große Baulängen (Venturidüse)
- ⇒ Teure Herstellung

Durchflusszahlen einer Normblende

Beispiel

⇒ Für eine Volumenstrommessung von ÖI (ρ=900kg/m³, η=0,002Pas) wurde eine Normblende mit m=0,4 ausgewählt und einem kreisförmigen Rohrquerschnitt mit Durchmesser D=40mm verbaut. Als Wirkdruck wurde Δp=0.08bar gemessen.

Wie groß ist der Volumenstrom?

⇒ Beispiel wird an der Tafel vorgerechnet