Technische Universität Berlin

Fakultät II – Institut für Mathematik Kaibel, Luger, Penn-Karras, Pfetsch

 $\begin{array}{c} {\rm SS}\ 2006 \\ 09.10.2006 \end{array}$

Oktober – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vo	Vorname:					
MatrNr.: Studiengang:							
Die Lösungen sind in Rei r geschriebene Klausuren kör					zugebe	n. Mit	Bleistift
Dieser Teil der Klausur umf Rechenaufwand mit den Ke wenn nichts anderes gesagt	enntniss	en aus	der Vor	elesung	lösbar s	sein. Ge	_
Die Bearbeitungszeit beträg	gt 60 N	/linute	n.				
Die Gesamtklausur ist mit beiden Teile der Klausur m					,		
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 8 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} x \cdot \arctan \frac{1}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

Existieren die partiellen Ableitungen $\frac{\partial f}{\partial x}(0,0)$ und $\frac{\partial f}{\partial y}(0,0)$? Berechnen Sie diese wenn möglich.

Ist f im Punkt (0,0) stetig? (Begründung!)

2. Aufgabe 6 Punkte

Parametrisieren Sie die Fläche
$$S=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=(1-z)^2,\ 0\leq z\leq\frac{1}{2}\}$$

3. Aufgabe 6 Punkte

Gegeben sei das Vektorfeld $\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x, y, z) = (-xy^2, y + x \sin z, zy^2)^T$. Ermitteln Sie den Fluß von \vec{v} durch die gesamte Oberfläche ∂K des Körpers $K = \{(x, y, z) \in \mathbb{R}^3 \mid 1 \le x \le 3, 1 \le y \le 4, 2 \le z \le 4\}.$

4. Aufgabe 7 Punkte

Gegeben sei die Funktion $\,f\colon\mathbb{R}^2\to\mathbb{R}\,$ mit $\,f(x,y)=\frac{1}{1+x^2+y^2}$.

- a) Nimmt f auf $M=\{(x,y)\in\mathbb{R}^2\mid |x|+|y|\leq 1\}$ einen kleinsten bzw. einen größten Funktionswert an?
- b) Nimmt f auf \mathbb{R}^2 einen kleinsten bzw. einen größten Funktionswert an?

5. Aufgabe 6 Punkte

Gegeben sei $f: \mathbb{R}^3 \to \mathbb{R}$ mit f(x, y, z) = xy - yz und eine Kurve \vec{c} , die auf der Kugeloberfläche $K=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=2\}$ vom Punkt (0,1,1) zum Punkt (1,1,0) verläuft.

Ermitteln Sie den Wert des Kurvenintegrals $\int_{-\infty}^{\infty} \operatorname{grad} f \, ds$

6. Aufgabe 7 Punkte Berechnen Sie $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{1+y^3} \, dy dx$ indem Sie die Integrationsreihenfolge

vertauschen und dementsprechend die Grenzen ändern.