Statistik och Dataanalys I Föreläsning 11 - Osäkerhet och Sannolikhet

Oscar Oelrich

Statistiska institutionen Stockholms universitet

Översikt

- Motivation
- Försök, Utfall och Händelser
- Sannolikheter
- Sannolikhetsberäkningar
- **■** Kombinatorik

Sannolikheter för dataanalys

- Sannolikhetslära är intressant i sig:
 - Sannolikheten för en kärnkraftsolycka
 - Sannolikheten att två personer har identiska DNA.
 - Sannolikheten att träffa den rätta på dejtingapp. 🕫
- Sannolikhetslära viktigt för dataanalys:
 - Statistiska modeller är sannolikhetsmodeller.
 Bra modell av verkligheten: data sannolika enligt modellen.
 - Kan kvantifiera osäkerheten i en prediktion.
 - Kan fatta optimala beslut i en osäker värld.

Sannolikheter för regression

- Hittills på kursen:
 - **skatta regressionslinjen**: $\hat{y} = b_0 + b_1 x$
 - **prediktion** för ny observation: $\hat{y}_i = b_0 + b_1 x_i$
- Med sannolikhetslära kan vi göra mycket mer:
 - om $b_1 \neq 0$, finns det verkligen korrelation mellan x och y? Stickprov vs Population.
 - **osäkerhetsintervall för** b_1 som troligen täcker sanna värdet.
 - **osäkerhetsintervall för prediktionen** \hat{y}_i .

Försök, utfall och utfallsrum

- Vi utför ett försök (eng. trial): singlar ett mynt.
- Observerar ett utfall (eng. outcome): Krona.
- Utfallsrummet är alla möjliga utfall som kan inträffa.
- Singla slant $S = \{Krona, Klave\}.$
- Kasta en tärning:

Kasta två tärningar, summera antal prickar.

	D					
	2	3	4	5	6	7
D.	3	4	5	6	7	8
	4	5	6	7	8	9
	5	6	7	8	9	10
	6	7	8	9	10	11
	7	8	9	10	11	12

Händelse - exakt sju prickar med två tärningar

- En händelse är en mängd av utfall.
- Händelsen A = få exakt 7 prickar med två tärningar.

$$A = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$$

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

Händelse - samma antal prickar på båda tärningarna

 \blacksquare Händelsen $A = \{få samma antal prickar på båda tärningarna<math>\}$

$$A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

Tre sannolikhetsbegrepp

- Vad är sannolikheten att få en 6:a med en tärning?
 - Utfallsrum: $S = \{1, 2, 3, 4, 5, 6\}.$
 - Händelse: $A = \{6\}$.
 - Sannolikhet: P(A). Måste uppfylla: $0 \le P(A) \le 1$.
- Lika sannolika utfall (logisk sannolikhet).
 En tärnings fysiska egenskaper → alla sidor är lika sannolika.

$$P(A) = \frac{\text{antal utfall i } A}{\text{totalt antal möjliga utfall}} = 1/6 \approx 0.1667$$

Empirisk sannolikhet: andelen 6:or om jag kastar tärningen ett "oändligt" antal gånger.

$$P(A) = \frac{\text{antal gånger som A inträffar}}{\text{totalt antal försök}}$$

3 Subjektiva sannolikheter. Min tidigare erfarenhet av tärningskast och min uppfattning om en tärnings symmetri säger mig att min sannolikhet att få en 6:a är $1/6 \approx 0.1667$.

Stora talens lag - få 6:a med tärning

Stora talens lag - slantsingling

Venndiagram

Venndiagram

Händelse - Venndiagram

- Praktiskt att visualisera händelser i ett Venndiagram.
- Utfallsrummet (allt som kan inträffa) visas med rektangel.
- Händelser ritas som cirklar, ellipser eller rektanglar.

Venndiagram - summa sju prickar och samma

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

Venndiagram - summa tio prickar och samma

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9 (10	11
7	8	9	10	11	12

2	3	4	5	6	7
3	4	5	6	7	8
4	5	6	7	8	9
5	6	7	8	9	10
6	7	8	9	10	11
7	8	9	10	11	12

Disjunkta händelser

Disjunkta händelser inga gemensamma element

Överlappande händelser med gemensamma element

Komplementshändelsen

- Komplementet till A inträffar när A inte inträffar.
- \blacksquare Vi skriver \mathbf{A}^c där c står för engelskans Complement.

Tärningar

- **A** = {udda antal prickar på tärning} = {1,3,5}.
- **A**^c = {jämnt antal prickar på tärning} = {2,4,6}.

Inflation

- $\mathbf{A} = \{ \text{inflationen n\"asta m\"anad} \leq 2 \}.$
- $\mathbf{A}^c = \{ \text{inflationen n\"asta m\'anad} > 2 \}.$

Mjukvarubuggar

- $\mathbf{A} = \{ \text{ingen bugg i programvaran} \}.$
- $\blacksquare \ \mathbf{A}^c = \{ \mathsf{minst} \ \mathsf{en} \ \mathsf{bugg} \} = \{ 1 \ \mathsf{bugg}, \ 2 \ \mathsf{buggar}, \ \ldots \}$

Snitthändelsen

- Snitthändelsen är händelsen där både A och B inträffar.
- Vi skriver A och B eller $A \cap B$.

Snitt = Intersection

- Två tärningar:
 - $\mathbf{A} = \{\text{samma prickar på båda tärningar}\}$
 - $\mathbf{B} = \{\text{totalt 10 prickar}\}\$
 - $\mathbf{A} \cap \mathbf{B} = \{5: a \text{ på båda tärningar}\}$
- Lågkonjunktur
 - $\mathbf{A} = \{\mathsf{BNP-tillv} \mathsf{axt} \mathsf{kvartal} \ 1 < 0\}$
 - $\mathbf{B} = \{\mathsf{BNP-tillväxt kvartal } 2 < 0\}$
 - $\mathbf{A} \cap \mathbf{B} = \{ \text{Negativ BNP-tillväxt två kvartal i rad} \}$
- Disjunkta händelsers snitt är den tomma mängden Ø

$$\mathbf{A}$$
 och \mathbf{B} disjunkta \iff $\mathbf{A} \cap \mathbf{B} = \emptyset$

Unionhändelsen

- Unionhändelsen är händelsen där A och/eller B inträffar.
- Minst en av händelserna inträffar.

- Universitetstudier \(\bar{\omega} \)
 - niversitetstudier 👱
 - $\mathbf{A} = \{ \mathsf{Kommer in på kurs på betyg} \}$
 - $\mathbf{B} = \{\mathsf{Kommer in på kurs på högskoleprov}\}$
 - $\mathbf{A} \cup \mathbf{B} = \{ \text{Kommer in på kurs} \}$

Formell sannolikhet

Sannolikheten P(A) för händelse A på utfallsrummet S

$$0 \le P(A) \le 1$$

- P(S) = 1
- 3 $P(A^c) = 1 P(A)$
- 4 $P(A \cup B) = P(A) + P(B)$ om A och B är **disjunkta**
- **5** $P(A \cap B) = P(A) \cdot P(B)$ om A och B är **oberoende**
- 1 En sannolikhet är ett tal mellan 0 och 1.
- 2 Sannolikheten för en säker händelse är 1.
- 3 Sannolikheten att en händelse inte inträffar är 1 minus sannolikheten för händelsen.
- 4 Sannolikheten att åtminstone en av två händelser som inte kan inträffa samtidigt är summan av händelsernas sannolikheter.
- 5 Sannolikheten att två oberoende händelser båda inträffar är

Komplementsregeln

- A och A^c är disjunkta. Kan inte inträffa samtidigt.
- Någon av A eller A^c måste inträffa.

$$P(A) + P(A^c) = 1$$

Komplementsregeln

$$P(A^c) = 1 - P(A)$$

- $\mathbf{A} = \{\text{ingen bugg i koden}\}.$
- $\mathbf{A}^c = \{$ atminstone en bugg i koden $\} = \{1 \text{ bugg, 2 buggar, ...} \}$
- $P(\{\text{åtminstone en bugg i koden}\}) = 1 P(\{\text{ingen bugg i koden}\}).$

Den allmänna additionsregeln

■ Additionsregeln: Om A och B är disjunkta:

$$P(A \cup B) = P(A) + P(B)$$

Allmänna additionsregeln (även överlappande händelser)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

■ Måste dra bort snittet $A \cap B$ för det räknas två ggr.

Röst på socialdemokraterna 🔻 additionsregeln

- $ightharpoonup \mathbf{R} = \mathsf{person}$ röstar ightharpoonup i riksdagsvalet. $P(\mathbf{R}) = 0.2$
- lacksquare $\mathbf{K}=$ person röstar lacksquare i kommunalvalet. $P(\mathbf{K})=0.3$
- Personen röstar på \P in båda valen: $P(\mathbf{R} \cap \mathbf{K}) = 0.1$
- Röstar 🌹 i åtminstone ett av valen? Additionsregeln:

$$P(\mathbf{R} \cup \mathbf{K}) = 0.2 + 0.3 - 0.1 = 0.4$$

Röstar inte på 🌹 i något av valen?

$$P(\mathbf{R}^c \cap \mathbf{K}^c) = P((\mathbf{R} \cup \mathbf{K})^c) = 1 - P(\mathbf{R} \cup \mathbf{K}) = 1 - 0.4 = 0.6$$

Multiplikationssregeln för oberoende händelser

- Händelserna *A* och *B* är **oberoende** om vetskapen att *B* har inträffat **inte** påverkar sannolikheten för *A*. Och vice versa.
- Test: kommer sannolikheten för *A* förändras om man får veta att *B* har inträffat? Om inte, så är *A* och *B* oberoende.

Multiplikationsregeln. För oberoende händelser A och B

$$P(A \cap B) = P(A) \cdot P(B)$$

Hur beräknar man sannolikheten för snittet $A \cap B$ för händelser som **inte** är oberoende? Stay tuned, kommer i F12.

Multiplikationsregeln för oberoende händelser

■ Vad är sannolikheten att få 2 st krona i rad vid slantsingling?

$$0.5 \cdot 0.5 = 0.5^2 = 0.25$$

■ Vad är sannolikheten att få 5 st krona i rad vid slantsingling?

$$0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5 = 0.5^5 = 0.03125$$

■ 1% risk att streaming laggar under en kväll. Oberoende kvällar.

$$P(\text{ingen lagg hela veckan}) = (1 - 0.01)^7 = 0.99^7 \approx 0.932.$$

Sannolikheten att dra två klöver ur en blandad kortlek?

$$P(1:\text{a kortet kl\"over}) = \frac{13}{52} = \frac{1}{4}$$

$$P(2:a \text{ kortet klöver } \mathbf{givet} \ 1:a \text{ kortet klöver}) = \frac{12}{51}$$

$$P(2:a \text{ kortet klöver givet } 1:a \text{ kortet inte klöver}) = \frac{13}{51}$$

 $A = \{ på 1:a \}$ och $B = \{ på 2:a \}$ är **inte** oberoende.

Röst på socialdemokraterna W multiplikationsregeln

- $ightharpoonup \mathbf{R} = \mathsf{person}$ röstar ightharpoonup i riksdagsvalet. $P(\mathbf{R}) = 0.2$
- lacksquare $\mathbf{K}=$ person röstar lacksquare i kommunalvalet. $P(\mathbf{K})=0.3$
- Personen röstar på \P in båda valen: $P(\mathbf{R} \cap \mathbf{K}) = 0.1$
- Är händelserna R och K oberoende? Vi måste undersöka om

$$P(\mathbf{R} \cap \mathbf{K}) = P(\mathbf{R}) \cdot P(\mathbf{K})$$

Händelserna är inte oberoende:

$$P(\mathbf{R}) \cdot P(\mathbf{K}) = 0.2 \cdot 0.3 \neq 0.1 = P(\mathbf{R} \cap \mathbf{K})$$

- Att hen röstat på i kommunalvalet ger information om vad hen röstat på i riksdagsvalet.
- Betingad sannolikhet för R givet K är sann: 0.333 (se F13).
- $P(\mathbf{R})$ ökar från 0.2 till 0.333 när vi vet att \mathbf{K} är sann.

Kombinatorik

- Dataset 1: med ordning: Krona, Klave, Klave, Krona, Krona.
- Dataset 2: utan ordning: 3 st Krona och 2 st Klave.
- Är det lika sannolikt att observera Dataset 1 som Dataset 2?
- **Kombinatorik**: räknar antal sätt/kombinationer.
- Fakultetet (eng. factorial). Utläses som n-fakultet.

$$n! = n(n-1)(n-2)\cdots 2\cdot 1$$

Hur många sätt att välja k element bland n element?					
	med återläggning	utan återläggning			
med ordning	n ^k	$_{n}P_{k}=\frac{n!}{(n-k)!}$			
utan ordning	ej på kurs	$_{n}C_{k}=\frac{n!}{(n-k)!k!}$			

Med återläggning, med hänsyn till ordning

Utan återläggning, med hänsyn till ordning

Utan återläggning, utan hänsyn till ordning

Credits

Dessa slides skapades för kursen statistik och dataanalys 1 av Mattias Villani HT 2023, och har modifierats av Oscar Oelrich för statistik och dataanalys 1 VT 2024.