NASA TECHNICAL NOTE

CASE FILE COPY

COMPUTER CODE FOR
THE ANALYSIS OF MULTILAYERED
FIBER COMPOSITES - USERS MANUAL

by Christos C. Chamis Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MARCH 1971

1.	Report No. NASA TN D-7013	2. Government Access	ion No.	3. Recipient's Catalog	No.
4.	4. Title and Subtitle COMPUTER CODE FOR THE ANALYSIS OF MULTIL FIBER COMPOSITES - USERS MANUAL		LTILAYERED	5. Report Date March 1971	
				6. Performing Organiz	ation Code
7.	Author(s)	, <u>44, 11, 11, 11, 11, 11, 11, 11, 11, 11, </u>		8. Performing Organiza	ation Report No.
	Christos C. Chamis		<u>L</u>	E-5611	
9.	Performing Organization Name and Address			10. Work Unit No. 129-03	
	Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio 44135		-	11. Contract or Grant	No.
					-
L			-	13. Type of Report an	d Period Covered
12.	2. Sponsoring Agency Name and Address			Technical No	te
	National Aeronautics and Space	Administration		14. Sponsoring Agency	Code
	Washington, D. C. 20546				
15.	Supplementary Notes				
_					·
16.	A FORTRAN IV computer code	for the migromo	chanies macromoe	hanias and lam	inoto onolygia
	A FORTRAN IV computer code for the micromechanics, macromechanics, and laminate analysis of multilayered fiber composite structural components is described. The code can be used eithe individually or as a subroutine within a complex structural analysis/synthesis program. The in-				
	puts to the code are constituent materials properties, composite geometry, and loading conditions				
	The outputs are various properties for ply and composite; composite structural response, in-				
	cluding bending-stretching coupling; and composite stress analysis, including comparisons with				
	failure criteria for combined stress. The code was used successfully in the analysis and struc-				
	tural synthesis of flat panels, in the buckling analysis of flat panels, in multilayered composite				
	material failure studies, and lamination residual stresses analysis.				
	material latitude studies, and lamination residual stresses analysis.				
ŀ					-
					-
 					:
17.	Key Words (Suggested by Author(s))	nr 1107-	18. Distribution Statement		
	Computer code; FORTRAN IV; composites; Boron, glass, gra	phite, beryllium	Unclassified - u	nlimited	
fiber composites; Metallic, nonmetallic;					
	Micromechanics; Macromechar analysis; Ply properties; Compe				
	Constitutive equations	-			
19.	Security Classif, (of this report)	20. Security Classif. (d	·	21. No. of Pages	22, Price*
ı	Unclassified	I Uncla	assified	119	l \$3.00

CONTENTS

	Page
SUMMARY	. 1
INTRODUCTION	. 2
SYMBOLS	. 3
USERS MANUAL	. 6
Obtain the Code	. 6
Make It Operational	. 6
Supply the Input Data	. 7
Detailed Description of Input Data	. 7
Input Ply Properties	11
Output	1,1
PROGRAM DESCRIPTION	16
MAIN PROGRAM	17
SUBROUTINE DESCRIPTION	18
Subroutine INVA(N, A, C)	18
Subroutine GLLSC(A)	19
Subroutine GACD3(C)	20
Subroutine BLOCK DATA	25
Subroutine GPCFD2(RESF, DISP, PROPC)	25
Subroutine GPH(CF, CM, R, Q, CP)	29
Subroutine GECL(KV, KF)	29
Subroutine GSMF(SL11, SL22, SL12, SL23, KV, KF, J)	35
Subroutine COMPSA(M)	39
IMMEDIATE EXTENSIONS	43
APPENDIXES	
A - LIST OF CODE IDENTIFIERS	44
B - COMPILED LISTING	48
C - SAMPLE CASES	74
REFERENCES	94
TABLES	
T CIMMMADY OF DETAILS FOR DREDARING INDITEDATA CARDS	96

	Page
II MULTILAYERED FIBER COMPOSITE ANALYSIS INPUT DATA	
SAMPLE	98
III INPUT DATA FOR BORON/ALUMINUM COMPOSITE	101
IV INPUT DATA FOR BORON/EPOXY COMPOSITE	102
V INPUT DATA FOR E-GLASS/EPOXY COMPOSITE	103
VI INPUT DATA FOR S-GLASS/EPOXY COMPOSITE	104
VII INPUT DATA FOR THORNEL-25/EPOXY COMPOSITE	105
VIII INPUT DATA FOR THORNEL-40/EPOXY COMPOSITE	106
IX INPUT DATA FOR THORNEL-50/EPOXY COMPOSITE	107
X INPUT DATA FOR MODMOR-1/EPOXY COMPOSITE	108
XI INPUT DATA FOR MODMOR-II/EPOXY COMPOSITE	109
XII INPUT DATA FOR BERYLLIUM/EPOXY COMPOSITE	110
XIII INPUT-OUTPUT FORMAT IDENTIFICATION FOR INPUT DATA	111
FIGURES	
1 Typical multilayered fiber composite and some basic definitions	112
2 Code physical arrangement	113
3 Physical arrangement of input data cards	114
4 Composite systems for which input data are supplied	115
5 Ply orientation geometry	115
6 - Code MAIN PROGRAM flow chart	116

COMPUTER CODE FOR THE ANALYSIS OF MULTILAYERED

FIBER COMPOSITES - USERS MANUAL*

by Christos C. Chamis

Lewis Research Center

SUMMARY

A computer code to carry out the multilevel linear analysis required to efficiently design structural components made from multilayered fiber composites is described. The inputs to the code are constituent materials properties, some factors reflecting the fabrication process, and composite geometry. The code performs the micromechanics, macromechanics, and laminate analysis of fiber composites. The code outputs are the various ply and composite properties, composite structural response (accounting for bending-stretching coupling etc.), and the composite stress analysis results, including the results of the combined-stress strength criteria. The code is in FORTRAN IV compiler language and can be used efficiently as a package in complex-structural analyses, finite-element methods, buckling and vibration studies, and structural syntheses. The input-output format is described extensively. Required input data to the code for various fiber-matrix composites are given. The FORTRAN compiled listing and sample trial cases are included to aid the designer or analyst in using this code. The code consists of two parts. In the first part, the mechanics to use the code are described; in the second part the equations programmed are described. The code has been used successfully in the analysis of various fiber matrix multilayered composites. It was also used (and proved to be efficient) in the structural synthesis of multilayered thornel/epoxy composite plates, in buckling studies of simply supported multilayered fiber-composite plates, and in the computation of lamination residual stresses in angle ply composites. Selection of correlation coefficients for new composite systems is described. Possible extensions for temperature-dependent properties, material nonlinearities and failure load envelopes are indicated.

^{*}A part of the work described herein was supported by the Advanced Research Projects Agency, Department of Defense, through contract AF 33(615)-3110 administered by the Air Force Materials Laboratory while the author was a member of the Engineering Design Center, Case Western Reserve University, Cleveland, Ohio.

INTRODUCTION

The importance and need of a multilevel analysis in designing structural components with multilayered fiber composites are documented in reference 1. A multilevel analysis which was found to be efficient in predicting the structural response of multilayered fiber-composites (with the constituent materials properties, the fabrication process, and the composite geometry known) is also documented in reference 1.

The multilevel analysis presented in reference 1 consists of (1) micromechanics theories for the thermoelastic properties and the stress-level limit of the single ply as functions of constituent materials properties and the particular fabrication process, (2) the combined-stress strength criterion of the single ply, and (3) multilayered composite structural response and analysis (macromechanics or laminate analyses) where the interply layer effects are taken into account. The computer code, to carry out this multilevel analysis and supplemented as noted by the additional references, is described herein.

The computer code has been programmed in FORTRAN IV and has been extensively used in the UNIVAC 1107, 1108, and IBM 7094. Since this report is to serve as a user's manual, the code is divided into two parts. In the first part, the mechanics of using the code are described with respect to program format, input-output, sample input data sheets, and tables of input data for several fiber composites. In the second part, the program is described. Sample case runs of Thornel-50/epoxy composites with unidirectional and angle plies are included with the compiled listing in appendix B. Sample cases for bending, stretching, coupling, and lamination residual stresses are also included.

The format of the program is described in the section MAIN PROGRAM and follows the FORTRAN IV program format for the 7094. The subroutines required to carry out the various levels of analysis are described individually in their respective sections. In these subroutines, the equations programmed are given, the various alternatives for establishing certain properties (such as strain magnification factors, longitudinal compressive stress limit, and combined-stress strength criterion) are discussed, and the subroutine input-outputs and the global storage locations (common to all parts of the program) are identified. The input-output format is described in detail separately in the sections Input Ply Properties and Output. These descriptions are quite extensive so that designers and analysts with little or no programming experience as well as experienced programmers can easily use the code.

In appendix A the FORTRAN symbols are defined. The definitions include such information as in which part of the program each global variable is generated. The input data in tables IV to XIII (currently acceptable for the analysis of several fiber composites) provide for immediate use of the code. The inclusion of the compiled FORTRAN lsting (appendix B) with the sample trial cases (appendix C) should further amplify the

detail descriptions. Filament and fiber are used interchangeably in the description and in the discussion. Ply, unidirectional laminate, and unidirectional composite are also used interchangeably.

It is noted that the global storage of the composite and ply properties is very important when this multilevel analysis is to be used as a subroutine package to generate structural behavior properties for structural analysis purposes.

This code has been used successfully in predicting the ply thermoelastic constants (refs. 1 to 3) in laminate analysis (boron, graphite, carbon, and glass-filament-epoxy composites; refs. 1, and 3 to 5) buckling analysis (ref. 6) and structural synthesis (ref. 1). It has also been used to calculate the lamination residual stresses in angle-ply composites (ref. 7).

Mr. Tom Delivuk, then with the same center, converted the original ALGOL CODE to the initial FORTRAN IV CODE which resulted into the CODE described herein.

SYMBOLS

Acx	composite axial stiffness
A_{cx}^{R}	reduced axial stiffness
BIDE	Boolean-true if interply effects are included
c_{ex}	composite coupling stiffness
C _{e1}	string with force variables
$\mathtt{C_{e2}}$	string with displacement variables
CSANB	Boolean-true if membrane and axial symmetry exists
D _{cx}	composite flexural rigidities
$D_{\mathbf{c}\mathbf{x}}^{\mathbf{R}}$	reduced bending rigidities
$\mathbf{D}_{\mathbf{v}}$	displacement vector
${\sf d_f}$	filament equivalent diameter
$\mathbf{E_f}, \mathbf{E_{cf}}$	filament elastic constants
$^{\mathrm{E}}$ $^{\mathrm{l}}$, $^{\mathrm{E}}$ e $^{\mathrm{l}}$	ply elastic constants
$\mathbf{E_{m}}$, $\mathbf{E_{cm}}$	matrix elastic constants
E _{f11} , etc.	fiber normal modulus
E ₂₁₁ , etc.	ply normal modulus

 $\mathbf{E}_{m11,\,etc.}$ matrix normal modulus

G_{f12, etc.} fiber shear modulus

G_{l12}, etc. ply shear modulus

G_{m12, etc.} matrix shear modulus

H_i interply distortion energy coefficient

 $\mathbf{H}_{\mathbf{kc}}$ array of constituents heat conductivities

h_c composite heat capacity

i, j index, generally ply or interply

 ${
m K_{c11,\,c22,\,c33}}$ composite three-dimensional heat conductivities

 $K_{cxy,\,cyy,\,cxy}$ composite two-dimensional heat conductivities

 K_{f11} fiber heat conductivity

K_{7.1.1} ply heat conductivity

K_{m11} matrix heat conductivity

k_f apparent filament volume ratio

k_m apparent matrix volume ratio

 $\mathbf{k}_{\mathbf{V}}$ apparent void volume ratio

 $\overline{k}_{\!f}$ actual fiber volume ratio

 \overline{k}_{m} actual matrix volume ratios

k_{fl} ply apparent fiber volume ratio

 k_{vl} ply apparent void volume ratio

L_{sc} array of limiting conditions

 ${\rm M}_{
m cx}$ applied moment

 ^{M}c $_{\Delta Tx}$ thermal moments

m load condition index

 \overline{N}_{CX} applied membrane loads

 $N_{c \ \Delta T x}$ thermal force

 $N_{f f}$ number of fibers per end

N₁ number of plies

N_{lc} number of load conditions

 ${\rm N_{pc}} \hspace{1.5cm} {\rm string} \hspace{0.1cm} {\rm PROPC} \hspace{0.1cm} {\rm length} \\$

 N_{pl} string PROP length

 $\mathbf{P_c}$ composite properties array

P₁ ply properties array

P_{cp} string PROPC

 P_{lp} string PROP main program

 $Q_{f,i,p,r,s}$ indices to print out string PROP

R transformation matrix

RINDV Boolean-TRUE true if displacements are known

S_{l11T}etc. ply limit stresses

t, ply thickness

TLINP FALSE if ply thickness is calculated internally

w_{cb} composite local curvature changes

x, y, z structural reference axes

 $\alpha_{_{\mathbf{C}}}$ composite coefficient of thermal expansion

 $a_{\mathbf{f}}$ fiber thermal coefficient of expansion

 α_1 ply thermal coefficients of expansion

 α_{m} matrix thermal coefficient of expansion

 $\beta_{\rm e}, \beta_{\rm c}$ correlation factors for ply thermoelastic properties

 $\beta_{
m h}$ correlation factors for ply heat conductivities

 $\beta_{\mathbf{S}}$ correlation factors for ply strength

 $\beta_{\rm v}$ matrix strain magnification due to ply strain in the presence of voids

 δ_{χ} interply layer thickness

 $\epsilon_{ extbf{csx}}$ reference plane membrane strains

 ϵ_{1} ply strains

 θ_{cs} angle between composite material and structural axes

 θ_{li}, θ_{lc} angle between ply material and composite axes

 $v_{
m f12, etc.}$ fiber Poisson's ratio

 $\nu_{l12,\,{
m etc.}}$ ply Poisson's ratio

v_{m12}, etc. matrix Poisson's ratio

 π constant

 $ho_{
m f,\,m}$ filament and matrix weight density σ_l ply stresses $arphi_{
m i}$ matrix strain magnification due to ply strain 1,2,3 material reference axes

USERS MANUAL

The mechanics required to use this code for the analysis of multilayered fiber composites are described in this part of the manual. Here, it is assumed that the user is interested in using the code as a tool only and that he has available to him a FORTRAN IV manual. The theory on which the code is based is described in the second part of the report.

The physical representation of the code is illustrated in figure 1. The geometry of the constituents, the ply, and the composite are defined in this figure. The required input properties, correlation coefficients, and computed properties are summarized in figure 1 in symbolic form.

The physical arrangement of the code is illustrated in figure 2. The numbers given in each block of cards are for subsequent discussion and do not appear on the code. Four steps are required to use the code in the user's computer facility:

- (1) Obtain the code.
- (2) Make it operational in the user's computer facility.
- (3) Supply the input data.
- (4) Interpret the code output results.

Obtain the Code

The code could be obtained in cards. If this is not convenient or possible, then the cards can be punched from the compiled listing (see appendix B).

Make It Operational

Making the program operational requires the availability of a FORTRAN compiler in the user's computer facility, certain control cards at the beginning of the code, and the card that preceds each subroutine. Consult your computer group about these items. The control cards present in the code are only for the Lewis IBM 7044/7094 direct couple

system. Once the deck of cards has been assembled as is shown in figure 2 (except Input Data) with the proper control cards, the user is ready to compile the code in his facility. The compilation will indicate whether any additional modifications are needed. Most modifications will be minor and will usually deal with certain logical statements peculiar to each compiler. Consult your computer group for these modifications.

Supply the Input Data

The physical arrangement of the input data cards is illustrated in figure 3. The numbers in the group of cards are for identification purposes in this description and do not appear on the cards. Details in preparing the input data cards are summarized in table I. A detailed description of these cards is given subsequently. A sample for preparing input data sheets is illustrated in table II for the Thornel-50/epoxy composite system.

Listings of input data for several composite systems appear in tables III to XII. These systems are shown graphically in figure 4. The input data for these systems can be punched from the listings, and the cards that need alterations for the specific problem can be modified accordingly.

Input data for additional composite systems may be easily prepared. This is done by selecting a related system from those in tables III to XII and modifying those entries that need modification. Table I and the section Detail Description of Input Data explain where and how each entry is read in.

After the input data have been properly assembled (as is shown in fig. 3), it is placed in its physical position (fig. 2), and the code is ready to be run for results.

Detailed Description of Input Data

The card group numbers referred to here are given in figure 3 and table I. The sequential order of the entries in each card group is given in table I.

- (1) Composite system card. The composite system title is punched on this card. The title can be 55 characters long including blanks.
- (2) Data control card. The number of plies N_{ℓ} , number of ply properties $N_{p\ell}$, number of composite properties N_{pc} , the number of fibers per end N_{f} , and the number of load conditions N_{pc} are entered in this card. The number of ply properties and the number of composite properties are always the same: they are $N_{p\ell} = 71$ and $N_{pc} = 54$. The others have to be entered according to the composite system and the load conditions.
- (3) Constituent materials elastic properties. The constituent elastic properties are entered in this group of cards. The fiber properties are entered first and then the ma-

rix. Enter only extension moduli, Poisson's ratios, and zero values for shear moduli when the constituent material is isotropic. For example, in a glass/epoxy system, $E_{f33} = E_{f22} = E_{f11} \quad \text{and} \quad \nu_{f23} = \nu_{f13} = \nu_{f12}. \quad \text{The shear moduli} \quad G_{f23} = G_{f13} = G_{f12} \quad \text{are computed internally}.$

(4) Correlation coefficients for ply elastic constants, expansion coefficients, and strain magnification factors. - The correlation coefficients that make theory agree with experiment are entered in this group of cards. The first entry in this group is β_m . It is selected so that predicted extensional moduli and Poisson's ratios correlate with measured values. The procedure for selecting β_m is iterative. First the code is run with β_m equal to some initial value. Experience has proven that $\beta_m = 4$ is usually a good approximation for the initial value. For many systems this is also the terminal value. Next, obtain values for β_m greater and smaller than four, and select the proper value for β_m by interpolation. The aforementioned description for selecting β_m applies to the selection of all correlation coefficients in this code.

The second entry in this card group is β_m^i , which is the correlation coefficient for the ply shear moduli G_{212} and G_{213} . The third entry is β_m^{ii} which is the correlation coefficient for G_{213} . The fourth entry is $\overline{\beta}_m$ which is the correlation coefficient for the ply thermal coefficients of expansion. The next three entries, β_{ϵ} , β_{ϵ}^i , and β_{ϵ}^{ii} , are correlation coefficients for strain magnification factors $\phi_{\mu 22}$, $\phi_{\mu 12}$, and $\phi_{\mu 23}$, respectively. These coefficients are entered as zeros. Experience with several composite systems has shown that the correlation coefficients β_{ϵ} are not needed. However, they are provided for possible future use.

The coefficient β_t is the ratio of the thickness-to-width of the rectangle formed by an in-situ end or tow of fibers. Another way to visualize this is that β_t is the ratio of ply-thickness per end or tow-ply width. The value for β_t is obtained from electron photomicrographs or indirectly as described in reference 5. Entries 9 and 10 are entered as zeros; these fields are empty and are available for future use. Entries 11 to 14 are for the coefficients γ_m ; these coefficients are alternates to β_m and are to be used if the β_m coefficients do not provide the desired correlation. Note that when a β_m coefficient is used, the corresponding γ_m coefficient is entered as zero and vice versa.

Entries 15 to 17 are for the coefficients γ_{ϵ} , which are alternates to coefficients β_{ϵ} . Note that when a β_{ϵ} coefficient is used the corresponding γ_{ϵ} coefficient is zero and vice versa. The γ_{ϵ} coefficients are entered with values of one. Entries 18 to 20 are entered as zeros. These are empty fields and are available for future use.

Experience with the code thus far has shown that all the correlation coefficients except β_t are approximately the same for several composite systems. (See tables III to XII.)

(5) Fiber thermal coefficients of expansion. - The coefficients $\alpha_{\rm f11}$, $\alpha_{\rm f22}$, and $\alpha_{\rm f33}$ are entered on this card. If the fiber is isotropic, then $\alpha_{\rm f33}$ = $\alpha_{\rm f22}$ = $\alpha_{\rm f11}$.

- $\frac{\text{(6) Matrix thermal coefficients of expansion.}}{\alpha_{\text{m33}}} \text{ are entered in this card. When the matrix is isotropic, } \alpha_{\text{m33}} = \alpha_{\text{m22}} = \alpha_{\text{m11}}.$
- (7) Constituent heat conductivities and heat capacities. The first four entries in this group are for the fiber heat conductivities K_{f11} , K_{f22} , K_{f33} , and heat capacity h_{cf} . The next four are for the corresponding matrix properties. The next three are zero entries, and the last one is the heat conductivity K_v for air. (See card group 7 of table I.)
- (8) Correlation coefficients for heat conductivities. The four entries in this card are for the correlation coefficients β_{hv} , β_{h1} , β_{h2} , and β_{h3} , respectively. These coefficients are as follows: β_{kv} is for matrix with voids, β_{k1} for K_{l11} , β_{k2} for K_{l22} , and β_{k3} for K_{l33} . They are selected as was described in β_{m} in card group (4).
 - (9) Constant π . The value for π is entered in this card.
- (10) Boolean for thickness. The letter T is entered in this card if the ply thickness is supplied. The letter F is entered if the ply thickness is computed internally.
- (11) Boolean for membrane and bending symmetry. The letter T is entered in this card if the composite has both membrane and bending symmetry; otherwise the letter F is entered.
- (12) Boolean for interply layer contribution. The letter T is entered in the card if the interply layer contributions on the composite are desired; otherwise, the letter F is entered.
- (13) Boolean for input displacements. The letter T is entered in this card if the displacements are inputs; otherwise, the letter F is entered.
- (14) Composite angle, constituent densities, and fiber equivalent diameter. The composite angle (angle between composite material 1-axis and structural x-axis (fig. 5) is the first entry in this card. The fiber and matrix densities are the second and third entries. The fourth entry is the fiber equivalent diameter.
- (15) Ply void volume ratio. The void volume ratio of the plies is entered in this group of cards; the first entry is for the first ply, and the last entry is for the last ply. The bottom or the inner ply in the composite is selected as the first ply for convenience. The number of entries is equal to the number of plies in the composite. (See tables I and II.)
- (16) Ply fiber volume ratio. The ply fiber volume ratio is entered in this group of cards. The first entry is for the first ply, which is the bottom or inner ply in the composite. The last entry is for the last ply. The number of entries equals the number of plies. (See tables I and II.)
- (17) Ply orientation angle. The ply angle (measured from the composite material 1-axis to the ply material 1-axis (fig. 5)) is entered in these cards. The first entry is for the first ply which is the bottom or inner ply in the composite. The last entry is for the last ply. The number of entries equals the number of plies. (See tables I and II.)

- (18) Ply thickness. The ply thicknesses are entered in this group of cards. Two options are available. When the Boolean TLINP is F, the ply thicknesses are computed internally. In this case, the values entered do not correspond to the actual ply thicknesses. When the Boolean TLINP is T, the ply thicknesses are supplied through the input. In this case the values entered correspond to the ply actual thicknesses. The first value entered is the thickness for the bottom or inner ply of the composite. The last value entered is for the last ply and the number of values entered equals the number of plies in the composite. (See tables I and II.)
- (19) Ply temperature difference. The ply temperature difference ΔT_{li} (the difference between cure or processing temperature and ith ply temperature) is entered in this group of cards. The first entry is for the first ply (which is the bottom or inner ply), and the last entry is for the last ply. The number of entries equals the number of plies. (See tables I and II.) There are three special cases associated with the temperature difference in addition to the general case just described:
 - (a) The residual stress case at room temperature where ΔT_{li} equals the difference between cure or process temperature and room temperature.
 - (b) The zero temperature effects case where $\Delta T_{7i} = 0$.
 - (c) The no residual stress case where ΔT_{li} equals the difference between ith ply temperature and room temperature.
- (20) Correlation coefficients for strength. The coefficients that correlate predicted and measured values for strength are entered in this group of cards (see table I). These coefficients are selected in the same manner as was described for $\beta_{\rm m}$ in card group (4). The first two entries are the coefficients β_{fT} and β_{mT} , which are for the ply longitudinal-tensile strength. The third entry is β_{22T} , which is for ply transversetensile strength. The fourth entry β_{128} is for the ply intralaminar shear strength. The fifth entry β_{23S} is for the ply transverse shear strength. The sixth entry β_{del} is for interply delamination limit strain. Entries seven and eight are the coefficients K'12TT and K_{l12TC}^{\dagger} , which are for ply combined-stress strength in the tension-tension and tension-compression quadrants, respectively. Entries 9 and 10 β_{fC} and β_{mC} are for the ply longitudinal compressive strength. Entry 11 $\,eta_{
 m 22C}$ is for the ply transverse compressive stress. Entries 12 and 13 a₁ and a₂ are coefficients for an alternate method to compute the ply longitudinal compressive strength (see section Subroutine GLLSC(J)). Entry 15 is entered as unity. This field is allocated for possible future use. Entries 15 and 16 K_{l12CT}^{\prime} and K_{l12CC}^{\prime} are for ply combined-stress strength in the compressiontension and compression-compression quadrants, respectively. (See tables I and II.)
- (21) Constituent strength properties. The constituent strength properties are entered in these two cards. The six entries are, sequentially, in-situ fiber bundle strength S_{fT} , in-situ matrix compressive strengths S_{mC} , in-situ allowable matrix transverse tensile strain ϵ_{mpC} , in-situ allowable matrix transverse compressive strain ϵ_{mpC} ,

in-situ allowable matrix shear strain ϵ_{mpS} , in-situ allowable matrix torsional strain ϵ_{mpTor} . (See also tables I and II.)

- (22) Membrane loads. The membrane (in-plane) loads are entered in these cards. The first entry is the value for \overline{N}_{CXX} for the first load condition. The second entry is the value for \overline{N}_{CXX} for the second load condition, and so on until N_{lc} values for \overline{N}_{CXX} have been entered. Continue with N_{lc} values for \overline{N}_{CYY} and after that with N_{lc} values for \overline{N}_{CXY} . A total of $3N_{lc}$ values are entered sequentially. Note that no empty fields are allowed because they will be interpreted as zero values for the load conditions by the code. Note also that zero values for \overline{N}_{CXY} , \overline{N}_{CYY} , and \overline{N}_{CXY} have to be entered even if the displacements are read in. This is the case when RINDV equals T (TRUE). (See tables I and II.)
- (23) Moments. The local bending moments are entered in these cards. The description is analogous to that for the forces (card group (22)).

Note that zero values are to be entered for the displacements even when the loads are inputs. This is the case when the Boolean (RINDV) equals T (TRUE).

Input Ply Properties

There could be cases when the user would prefer to supply some of his own ply properties instead of using the code to compute them. The user has to provide his own formats for these cases. They are analogous to those for reading in the ply temperature difference ΔT_{li} (card group (19)). The physical location for these statements is described in the section MAIN PROGRAM and by a comment (after DO loop 155) in the compiled listing (see appendix B).

Output

The program output consists of printing out (1) the input data, (2) the composite three-dimension strain-stress and stress-strain relations about the structural axes, (3) the composite properties generated in array PC, (4) the composite constitutive equations about the structural axes, (5) the reduced bending and axial stiffness,

- (6) displacement-force relations, (7) the current load or displacement condition, and
- (8) the ply properties generated in array PL.

The printout of the input data is preceded by its code name. The first and second lines of printout (see table XIII for corresponding FORMATS) are

THORNEL-50/EPOXY

NL, NPL, NPC, NFPE, NLC

8 71 54 1420 1

The output of the composite three-dimensional strain-stress temperature relations and composite stress-strain relations about the structural axes are printed under the headings

3-D COMPOSITE STRAIN STRESS RELATIONS - STRUCTURAL AXES

The matrices $[\mathbf{E}_c]_{\mathbf{S}}^{-1}$ and $\{\alpha_c\}_{\mathbf{S}}$ in the equation

$$\{\epsilon_{\mathbf{c}}\}_{\mathbf{s}} = [\mathbf{E}_{\mathbf{c}}]_{\mathbf{s}}^{-1} \{\sigma_{\mathbf{c}}\} - \Delta T \{\alpha_{\mathbf{c}}\}_{\mathbf{s}}$$

are printed out in FORMATS 454 and 457 of subroutine GACD3.

3-D STRESS STRAIN RELATIONS - STRUCTURAL AXES

The matrix $\left[\mathbf{E}_{\mathbf{c}}\right]_{\!\mathbf{s}}$ in

$$\{\sigma_{\mathbf{c}}\}_{\mathbf{S}} = [\mathbf{E}_{\mathbf{c}}]_{\mathbf{S}} \{\epsilon_{\mathbf{c}}\}_{\mathbf{S}}$$

is printed out FORMATS 456 and 458 in GACD3. The subscript s in the preceding equations indicates that the relations are written about the structural axes. It is noted that these properties are only local to subroutine GACD3. They can be made global if needed.

The output of the composite properties, generated in array PC are printed under the heading

COMPOSITE PROPERTIES - VALID ONLY FOR CONSTANT TEMPERATURE THROUGH THICKNESS

LINES 1 TO 31 3-D COMPOSITE PROPERTIES ABOUT MATERIAL AXES

LINES 33 TO 54 2-D COMPOSITE PROPERTIES ABOUT STRUCTURAL AXES

Fifty-four entries are printed under this heading as follows:

PC(1)	$^{ ho}{}_{ m c}$	weight density
PC(2)	$^{ m t}_{ m c}$	thickness
PC(3) to PC(11)	$[E_c]$	three-dimensional stress-strain relations about material axes
PC(12) to PC(14)	$\{\alpha_{_{\mathbf{C}}}\}$	three-dimensional coefficients of expansion about material axes
PC(15) to PC(18)	$\{K_c\}$, H_c	three-dimensional heat conductivities and heat capacity along material axes
PC(19) to PC(30)	$^{ m E}{_{ m c11}},^{ m G}{_{ m c12}},^{ u}{_{ m c12}}$	three-dimensional constants about material axes
PC(31)	$\overline{\mathbf{z}}$	distance to reference plane from bottom of composite
PC(32)		blank
PC(33) to PC(38)	$[E_c]^{-1}$	two-dimensional stress-strain relations about structural axes
PC(39) to PC(47)	$^{\mathrm{E}}$ $_{\mathrm{c}11}$, $^{\mathrm{G}}$ $_{\mathrm{c}12}$, $^{\mathrm{v}}$ $_{\mathrm{c}12}$	two-dimensional elastic constants along structural axes
PC(48) to PC(54)	$\{\alpha_{\mathbf{c}}\}, \ \mathbf{K}_{\mathbf{c}}, \mathbf{H}_{\mathbf{c}}$	two-dimensional coefficients of thermal expansion, heat conductivities, and heat capacity along structural axes

Array PC, its corresponding string, and headings are controlled by the following formats in subroutine GOCFD2: Headings FORMATS 225, 226, and 227; and string and array PC FORMAT 320.

The output for the composite constitutive equations are printed under the heading

FORCES FORCE DISPLACEMENT RELATIONS DISPL THERMAL FORCES

$$\begin{cases}
[N_{cx}] \\
[M_{cx}]
\end{cases} =
\begin{bmatrix}
[A_{cx}] & [C_{cx}] \\
[C_{cx}] & [D_{cx}]
\end{bmatrix}
\begin{cases}
\{\epsilon_{csx}\} \\
[w_{cb}\} \end{cases} -
\begin{cases}
\{N_{c \Delta Tx}\} \\
[M_{c \Delta Tx}\} \end{cases}$$

The elements of matrices A_{cx} , C_{cx} , $N_{c\Delta Tx}$, and $M_{c\Delta Tx}$ are printed out. The FORMATS are 220 and 330 in GPCFD2 and STRING RESF in BLOCK DATA.

The output for the reduced bending rigidities is printed under the heading

REDUCED BENDING RIGIDITIES

The elements of D_{cx}^{R} are printed out in one line. The corresponding FORMATS are 355 and 360 in GPCFD2.

The output for the reduced axial stiffness A_{cx}^{R} is printed out under the heading

REDUCED STIFFNESS MATRIX

The corresponding FORMATS are 364 and 360 in GPCFD2.

The inverse of the constitutive equations is printed out under the heading

DISP DISPLACEMENT FORCE RELATIONS FORCES

$$\begin{cases} \{\epsilon_{\text{cax}}\} \\ \{w_{\text{cb}}\} \end{cases} = \begin{bmatrix} [A_{\text{cx}}] & [C_{\text{cx}}] \\ [C_{\text{cx}}] & [D_{\text{cx}}] \end{bmatrix}^{-1} \qquad \begin{cases} \{N_{\text{cx}}\} \\ \{M_{\text{cx}}\} \end{pmatrix}$$

The elements of this inverse are printed out. The FORMATS are 682 and 683 in COMSA and STRING DISP in BLOCK DATA.

The output for the current load condition is printed next to the headings

FOR THIS CASE NBS(X, Y, XY-M) IS

and

FOR THIS CASE MBS (X, Y, XY-M) IS

The current values of \overline{N}_{cx} , \overline{N}_{cy} , \overline{N}_{cxy} , \overline{M}_{cx} , \overline{M}_{cy} , and \overline{M}_{cxy} are printed out under these headings. The FORMATS are 161 and 162 in the main program.

The output for the current displacement conditions is printed under the heading

FOR THIS CASE THE DISPLACEMENTS DISV (ECSXX, ECSYY, ECSXY, WCBXX, WCBYY, WCBXY) ARE

The FORMAT is 163 in MAIN PROGRAM.

The output of the ply properties generated in array PL are printed out under the heading

LAYER PROPERTIES, ROWS-PROPERTY, COLUMNS-LAYER

according to FORMAT 20 in MAIN PROGRAM.

Seventy-one entries are printed out under this heading as follows:

PL(1, I)	k _v	ply void content
PL(2,I)	k _f	ply apparent fiber content
PL(3,I)	$\overline{\overline{k}}_{\mathbf{f}}$	ply actual fiber content
PL(4,I)	k _m	ply apparent matrix content
PL(5,I)	\overline{k}_{m}	ply actual matrix content
PL(6, I)	ρ_{l}	ply weight density
PL(7, I)	\mathfrak{t}_{l}	ply layer thickness
PL(8,I)	δ_{l}	ply and interply layer thickness
PL(9, I)	н _і	interply layer distortion energy coefficient
PL(10,I)	\overline{z}	distance from bottom of composite to ply centroid
PL(11,I)	$^{\mathbf{z}}$ cg	distance from reference plane to ply centroid
PL(12,I)	$^{ heta}\mathrm{cs}$	angle from structural axes to composite material axes (same for all plies), fig. 2
PL(13,I)	θ_{l}	angle from ply material axes to composite material axes (fig. 2)

PL(14, I)	$^{ heta}$ ls	angle from ply material axes to composite structural axes (fig. 2)
PL(15, I) to PL(23, I)	$[\mathbf{E}_{l}]^{-1}$	ply stress-strain relations
PL(24,I) to PL(26,I)	$\{\alpha_{oldsymbol{l}}\}$	ply thermal coefficients of expansion
PL(27,I) to PL(29,I)	$\{K_{oldsymbol{l}}\}$	ply heat conductivities
PL(30,I)	$^{ m H}{ m c}_{\it l}$	ply heat capacity
PL(31,I) to PL(32,I)	$^{\mathrm{E}}$ $_{l11}$, $^{ u}$ $_{l12}$, $^{\mathrm{G}}$ $_{l12}$	ply elastic constants
PL(43,I) to PL(48,I)	$^{ ho}{}_{\mu 22}, ^{ ho}{}_{\mu 12}, ^{ ho}{}_{\mu 13}$	ply strain magnification factors
PL(49,I)	$ ho_{\mu ext{de} l}$	interply delamination factor
PL(50,I)	ΔT	ply temperature
PL(51,I) to PL(60,I)	S _{l11T} , etc.	ply limiting stresses
PL(61,I)	$K_{l12lphaeta}$	coefficient in combined-stress - strength criterion
PL(62, I)		combined-stress - strength criterion
PL(63,I)	and and last task and task task task task task task task task	interply delamination criterion
PL(64,I) to PL(69,I)	$\{\epsilon_{oldsymbol{l}}\},\ \{\sigma_{oldsymbol{l}}\}$	ply applied strains and stresses
PL(70, I)	$\Delta ho_{f j}$	adjacent ply relative rotation
PL(70, I)		Hoffman's failure criterion

The FORMAT for this output is 25 and STRING PROP in MAIN PROGRAM.

PROGRAM DESCRIPTION

The main program (or control program) and theoretical equations programmed in the code are described in this portion of the report. The main control program is described first, followed by descriptions of the various subroutines in their physical sequential order (fig. 2). It is assumed that the user of this portion of the code has a working knowledge of computer programming and that he is familiar with the terminology, such as, micromechanics, macromechanics, and laminate analysis of multilayered fiber composites.

The assumptions and details leading to the derivation of the equations programmed in the code are not included here. However, they are described in the references cited. It is suggested that the interested user have these references available to him.

The information provided in this portion of the code together with the compiled listing should be sufficient to enable the user to modify, implement, and extend the code according to his needs.

MAIN PROGRAM

The main program contains the global variables, the various subroutines, the input data and format, the various program control statements, and the output. These are discussed subsequently. The flow chart of the main program is shown in figure 6.

The global variables are given in the following list (for substitution and definition, see appendix A):

TLINP, CSANB, BIDE, RINDV Boolean

 N_I , N_{pI} , N_{pc} , N_f , N_{Ic} , M, Q_i , Q_s , Q_p , Q_r , Q_f Integers

 θ_{cs} , ρ_{f} , ρ_{m} , $d_{f}(E, \nu, G)_{f, m}$, π Real

 $\begin{array}{c} \mathbf{K_{vl}}, \, \mathbf{K_{fl}}, \, \theta_{lc}, \, \mathbf{t_{l}}, \, (1\!\!\times\!\!50), \, \mathbf{P_{l}}(71\!\!\times\!\!50), \, \mathbf{P_{c}}(1\!\!\times\!\!54), \, \mathbf{E_{cl}}, \, \mathbf{E_{cf}}, \, \mathbf{E_{cm}}, \\ \mathbf{A_{cx}}, \, \mathbf{C_{cx}}, \, \mathbf{D_{cx}}, \, \mathbf{D_{cx}}, \, \mathbf{A_{cx}^{R}} \, \, (3\!\!\times\!\!3), \, \alpha_{\mathbf{f}}, \, \alpha_{\mathbf{m}}, \, \alpha_{\mathbf{l}}, \, \mathbf{N_{c}}\Delta\mathbf{Tx}, \\ \mathbf{M_{c}}_{\Delta\mathbf{Tx}}, \, \boldsymbol{\epsilon_{csx}}, \, \boldsymbol{\epsilon_{cbx}}(1\!\!\times\!\!3), \, \boldsymbol{\beta_{s}}(2\!\!\times\!\!8), \, \boldsymbol{\beta_{e}}(2\!\!\times\!\!10), \, \boldsymbol{\beta_{h}}(1\!\!\times\!\!4), \\ \mathbf{L_{sc}}(1\!\!\times\!\!6), \, \mathbf{H_{kc}}(3\!\!\times\!\!4), \, \overline{\mathbf{M}}, \, \overline{\mathbf{N}}(3\!\!\times\!\!\mathbf{N_{lc}}), \, \mathbf{D_{v}}(10\!\!\times\!\!6) \end{array}$ Real arrays

(maximum dimensions)

 C_s (55 · spaces per field, composite system title) Read in. String arrays

> P_l (eight spaces per field, N_{pl} fields) Ce1 (six spaces per field, six fields) C₂ (six spaces per field, six fields) P_{cp} (six spaces per field, N_{pc} fields)

N₁, N_{n1}, N_{nc}, N_f Current dimensions

 K_{v1} , K_{f1} , θ_{1c} , $t_1(1\times N_1)$; $P_1(71, N_1)$; $P_c(N_{pc}\times 1)$ Real arrays

(current dimensions)

The subroutines are as follows:

INVA inverse of an array

GLLSC generates ply stress-limit conditions

generates composite three-dimensional elastic and thermal properties GACD3

and the two-dimensional thermal properties

DISP (string) and RESF (string) BLOCK DATA

generates composite two-dimensional elastic constants and constitutive GPCFD2

equations

generates heat conductivities of the ply **GPHK**

GECL generates some ply basic properties and the ply thermoelastic con-

stants

GSMF generates ply strain magnification factors

generates the ply strain and stress states due to applied loads and COM PSA

check for ply failure and interply delamination

These subroutines are described in detail in the next section. The strings of code identifier DATA are

Read in according to format 4 in MAIN PROGRAM C_{s}

P_{lp} PROP internally defined; PLHD, PLF, PLL output

RESF internally defined; FDRHD, FDRF, FDRL output C_{e1}

DISP internally defined; FDRF, MDRL output C_{e2}

 P_{cp} PROPC internally defined; PCHD, PCF, PCL output.

The strings and arrays P_{lp} are printed out in the main program, and C_{e1} , C_{e2} , and P_{cp} are printed out in subroutine GPCFD2. All other input-outputs are operated by standard FORTRAN formats.

composite system title, N_l, N_{pl}, N_{pc}, N_f, (E, ν , G)_{f, m}, β _e, α _f, α _m; H_{kc}, β _h; π ; TLINP; CSANB; BIDE; RINDV; θ _{cs}, ρ _f, ρ _m, d_f; k_{vl}, Input

 $\mathbf{k_{fl},~\theta_{lc},~t_{l},~\Delta T_{l};~\beta_{s};~L_{sc};~\overline{N}_{ex};~\overline{M}_{ex};~D_{v}}$

See portion of flow chart after CONTROL PROGRAM block in fig-Control program

ure 6.

SUBROUTINE DESCRIPTION

Subroutine INVA(N, A, C)

This procedure computes the inverse of a square matrix A by Gauss elimination and stores it in C. The check

 $|\mathbf{A}| \neq 0$

is made and, if satisfied, the program continues; otherwise, the message 'SINGULAR MATRIX' is displayed. The subroutine inputs are N, A order and array, respectively. The output is

$$A^{-1} \rightarrow C$$

Subroutine GLLSC (A)

This subroutine generates the simple limit stress of the single-ply. The limit stresses for the ith ply are generated from the following equations:

$$\mathbf{S}_{l11T} = \mathbf{S}_{fT} \left[\beta_{fT} \overline{\mathbf{k}}_{f} + \beta_{mT} \overline{\mathbf{k}}_{m} \left(\frac{\mathbf{E}_{m11}}{\mathbf{E}_{f11}} \right) \right]$$

$$\begin{split} \mathbf{S}_{l11C} &= \min \left\{ \mathbf{S}_{mc} \left(\beta_{m} \mathbf{C}^{\overline{\mathbf{k}}}_{m} + \beta_{fC} \overline{\mathbf{k}}_{f} \, \frac{\mathbf{E}_{f11}}{\mathbf{E}_{m11}} \right), \\ & \left[\frac{\mathbf{E}_{m12}}{\left[(1 - \mathbf{k}_{f}) + \mathbf{k}_{f} \left(\frac{\mathbf{E}_{m12}}{\mathbf{E}_{f12}} \right) \right]} \right] \\ & \times \left[\frac{1 - 2 \left(\frac{\mathbf{k}_{v}}{1 - \mathbf{k}_{f}} \right) + \left(\frac{\mathbf{k}_{v}}{1 - \mathbf{k}_{f}} \right)^{2}}{1 + \left(\frac{\mathbf{k}_{v}}{1 - \mathbf{k}_{f}} \right)} \right] \right\} \end{split}$$

The second part of the preceding equation was proposed in reference 8.

$$S_{l11CD} = a_1S_{l12S} + a_2$$

$$S_{l22T} = \beta_{22T} \left(\frac{\epsilon_{mpT}}{\beta_{v} \varphi_{\mu 22}} \right) E_{l22}$$

$$\begin{split} \mathbf{S}_{l22\mathbf{C}} &= \beta_{22\mathbf{C}} \left(\frac{\epsilon_{\mathrm{mpC}}}{\beta_{\mathbf{v}} \varphi_{\mu} 22} \right) \mathbf{E}_{l22} \\ \mathbf{S}_{l13\mathbf{S}} &= \mathbf{S}_{l12\mathbf{S}} = \beta_{12\mathbf{S}} \left(\frac{\epsilon_{\mathrm{mpS}}}{\beta_{\mathbf{v}} \varphi_{\mu} 12} \right) \mathbf{G}_{l12} \\ \mathbf{S}_{l23\mathbf{S}} &= \beta_{23\mathbf{S}} \left(\frac{\epsilon_{\mathrm{mpS}}}{\beta_{\mathbf{v}} \varphi_{\mu} 23} \right) \mathbf{G}_{l23} \end{split}$$

The transverse shear limiting conditions for the jth interply layer are not generated here. However, provisions for them are made in PL(58,I) and PL(59,I) (where I denotes the column (ply) index). The limiting stresses S_{211T} - S_{223S} and $\varphi_{\mu del}$ are stored in PL(51,I) to PL(57,I) and in PL(60,I), respectively. The required input to the procedure is global and is stored in the following arrays:

$$\begin{aligned} & \text{LSC} = [\text{S}_{\text{ft}}, \text{S}_{\text{mC}}, \epsilon_{\text{mpT}}, \epsilon_{\text{mpC}}, \epsilon_{\text{mpS}}, \epsilon_{\text{mptor}}] \\ \\ & \text{BET} = \begin{bmatrix} \beta_{\text{fT}}, \beta_{\text{mT}}, \beta_{22\text{T}}, \beta_{12\text{S}}, \beta_{23\text{S}}, \beta_{\text{de1}}, K'_{l12\text{TT}} K'_{l12\text{TC}} \\ \\ \beta_{\text{fC}}, \beta_{\text{mC}}, \beta_{22\text{C}}, a_{1}, a_{2}, \beta_{\text{S}}, K'_{l12\text{CT}} K'_{l12\text{CC}} \end{bmatrix} \end{aligned}$$

The fiber and matrix moduli are input data. The ply moduli E_{l22} , G_{l12} , G_{l23} and the products of $\beta_{\rm V}\varphi_{\mu}$ are stored in PL(32,I), PL(36,I), PL(34,I), and PL(43,I) to PL(48,I), respectively. The ply moduli and the strain magnification factors are generated in subroutines GECL and GSMF.

Subroutine GACD3(C)

This subroutine generates the three-dimensional thermoelastic properties of the composite about its structural (x,y,z) and material (1,2,3) axes. The angle θ is measured from x of the structural axes system. (See fig. 5.) In figure 5 replace xx etc. by 11 etc., and measure θ from the material axes for properties about the material axes. These composite properties are generated from the following equations:

$$[\mathbf{E}_{\mathbf{c}}] = \frac{1}{t_{\mathbf{c}}} \left[\sum_{i=1}^{N_{\underline{\ell}}} (\mathbf{z}_{\underline{\ell}i+1} - \mathbf{z}_{\underline{\ell}i}) [\mathbf{R}_{\underline{\ell}i}]^{T} [\mathbf{E}_{\underline{\ell}i}] [\mathbf{R}_{\underline{\ell}i}] + \sum_{j=1}^{N_{\underline{\ell}}-1} \mathbf{H}_{j} [\mathbf{S}_{j}] \right]$$

$$\{\alpha_{\mathbf{c}}\} = \frac{1}{t_{\mathbf{c}}} [\mathbf{E}_{\mathbf{c}}] \sum_{\mathbf{i}=1}^{N_{\ell}} (\mathbf{z}_{\ell \mathbf{i}+1} - \mathbf{z}_{\ell \mathbf{i}}) [\mathbf{R}_{\ell \mathbf{i}}]^{\mathsf{T}} [\mathbf{E}_{\ell \mathbf{i}}] \{\alpha_{\ell \mathbf{i}}\}$$

The arrays $\{\alpha_{\mathbf{c}}\}$ and $\{\alpha_{\mathbf{h}}\}$ in the preceding equations are given by

$$\{\alpha_{\mathbf{c}}\} = [\alpha_{\mathbf{c}\mathbf{x}\mathbf{x}}\alpha_{\mathbf{c}\mathbf{y}\mathbf{y}}\alpha_{\mathbf{c}\mathbf{z}\mathbf{z}}\alpha_{\mathbf{c}\mathbf{y}\mathbf{z}}\alpha_{\mathbf{c}\mathbf{z}\mathbf{x}}\alpha_{\mathbf{c}\mathbf{x}\mathbf{y}}]^{\mathrm{T}}$$

and

$$\{\alpha_{l\mathbf{i}}\} = \left\lfloor \alpha_{l11} \alpha_{l22} \alpha_{l33} \ 0 \ 0 \ 0 \right\rfloor^{\mathrm{T}}$$

For all practical purposes the two-dimensional thermal coefficients of expansion about the composite structural axes are the same as $\alpha_{\rm cxx}$, $\alpha_{\rm cyy}$, and $\alpha_{\rm cxy}$ in the array $\{\alpha_{\rm c}\}$ for the three-dimensional case.

The matrices $[E_c]$, $[E_{li}]$, $[R_{li}]$, and $[S_i]$ are given by

$$\begin{bmatrix} \frac{1}{E_{c11}} & -\frac{\nu_{c21}}{E_{c22}} & -\frac{\nu_{c31}}{E_{c33}} & 0 & 0 & 0 \\ -\frac{\nu_{c12}}{E_{c11}} & \frac{1}{E_{c22}} & -\frac{\nu_{c32}}{E_{c33}} & 0 & 0 & 0 \\ -\frac{\nu_{c13}}{E_{c11}} & -\frac{\nu_{c23}}{E_{c22}} & \frac{1}{E_{c33}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{E_{c23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{E_{c31}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{E_{c31}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{E_{c31}} \end{bmatrix}$$

Note that for the case of an anisotropic material, the elements (1,6) (2,6) (3,6) (4,5), and their symmetric parts will not be zero.

$$[\mathbf{E}_{l1}]^{-1} = \begin{bmatrix} \frac{1}{\mathbf{E}_{l11}} & -\frac{\nu_{l21}}{\mathbf{E}_{l22}} & -\frac{\nu_{l31}}{\mathbf{E}_{l23}} & 0 & 0 & 0 \\ -\frac{\nu_{l12}}{\mathbf{E}_{l11}} & \frac{1}{\mathbf{E}_{l22}} & -\frac{\nu_{l32}}{\mathbf{E}_{l33}} & 0 & 0 & 0 \\ -\frac{\nu_{l13}}{\mathbf{E}_{l11}} & -\frac{\nu_{l23}}{\mathbf{E}_{l22}} & \frac{1}{\mathbf{E}_{l33}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\mathbf{E}_{l23}} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\mathbf{E}_{l23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\mathbf{E}_{l31}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\mathbf{E}_{l31}} & 0 \\ \sin^2 \theta & \cos^2 \theta & 0 & 0 & 0 & -\frac{1}{2} \sin 2\theta \\ \sin^2 \theta & \cos^2 \theta & 0 & 0 & 0 & -\frac{1}{2} \sin 2\theta \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos \theta & \sin \theta & 0 \\ 0 & 0 & 0 & -\sin \theta & \cos \theta & 0 \\ -\sin 2\theta & \sin 2\theta & 0 & 0 & 0 & \cos 2\theta \end{bmatrix}$$

where $\theta = \theta_{li}$ for properties about the composite material and $\theta = \theta_{li} + \theta_{cs}$ for properties about the composite structural axes (see fig. 5).

where i>1 and denotes the ply index. The angles θ_i and θ_{i-1} (fig. 5) are given by

$$\theta_{i} = \theta_{li} + \theta_{cs}$$

$$\theta_{i-1} = \theta_{i-1} + \theta_{cs}$$

The composite heat capacity is the same for both the three- and the two-dimensional cases. It is given by

$$h_{c} = \frac{1}{t_{c}} \sum_{i=1}^{N_{l}} h_{li} t_{li}$$

and t_c is given by

$$t_{c} = \sum_{i=1}^{N_{l}} t_{li}$$

The composite three-dimensional heat conductivities along the composite material axes, assuming an orthotropic composite, are given by

$$K_{c11} = \frac{1}{t_c} \sum_{i=1}^{N_l} t_{li} \left(K_{l11} \cos^2 \theta_l + K_{l22} \sin^2 \theta_l \right)_i$$

$$K_{c22} = \frac{1}{t_c} \sum_{i=1}^{N_{l}} t_{li} \left(K_{l11} \sin^2 \theta_{l} + K_{l22} \cos^2 \theta_{l} \right)_{i}$$

$$\frac{1}{K_{c33}} = \frac{1}{t_c} \sum_{i=1}^{N_l} \left(\frac{t_l}{K_{l33}}\right)_i$$

The angle θ_1 is measured from the material axes (fig. 5).

The composite two-dimensional heat conductivities along the composite structural axes are given by (see ref. 9 for the transformation equations)

$$K_{\text{CXX}} = \frac{1}{t_{\text{C}}} \sum_{i=1}^{N_{\ell}} t_{\ell i} K_{\ell 11} \cos^2 \theta + K_{\ell 22} \sin^2 \theta$$

$$K_{\text{cyy}} = \frac{1}{t_c} \sum_{i=1}^{N_l} t_{li} \left(K_{l11} \sin^2 \theta + K_{l22} \cos^2 \theta \right)_i$$

$$K_{\text{cyx}} = K_{\text{cxy}} = \frac{1}{t_c} \sum_{i=1}^{N_{l}} t_{li} \left(K_{l22} - K_{l11} \right)_i \sin 2\theta_i$$

$$K_{czz} = K_{c33}$$

The angle θ in the last set of equations is measured from the composite structural axes and is equal to $\theta_{cs} + \theta_l$. The inputs to the subroutine are N_l , z_{li+1} , z_{li} , θ_{cs} , θ_{li} , $[E_i]$, H_j , $\{\alpha_{li}\}$, h_{li} , and $\{K_{li}\}$ which are all global. The variable N_l is input data. The remaining quantities are either generated or are transferred from information stored in PL(11,I), PL(13,I), PL(15-23,I), PL(8,I), PL(24,I) to PL(26,I) PL(30,I), and PL(27,I) PL(29,I). The outputs are t_c and the arrays are $[E_c]^{-1}$, $\{\alpha_c\}$, $[E_c]$, h_c , and $\{K_c\}$. The composite thickness t_c is stored in PC(2). The arrays $[E_c]^{-1}$, $\{\alpha_c\}$, and $[E_c]$ for both composite material and structural axes are printed out under the headings:

3-D COMPOSITE STRAIN STRESS TEMPERATURE RELATIONS - STRUCTURAL AXES

3-D COMPOSITE STRESS STRAIN RELATIONS - STRUCTURAL AXES

The composite material axes properties $[E_c]$ and $\{\alpha_c\}$ are stored in PC(3) to PC(14) as global variables. The corresponding moduli are stored in PC(19) to PC(30). The three-dimensional heat conductivities and heat capacity along the material axes are stored in PC(15) to PC(18). The two-dimensional thermal coefficients of expansion along the structural axes are stored in PC(48) to PC(50). The two-dimensional heat conductivities and heat capacity along the structural axes are stored in PC(51) to PC(54). Note that the heat capacity is a scalar quantity and is independent of the reference axes. Therefore, PC(54) equals PC(18).

Subroutine BLOCK DATA

In this block, the strings C_{e1} and C_{e2} which are printed out with the composite constitutive equations are defined. The string C_{e1} contains the resultant force notation N_{cx} , N_{cy} , N_{cxy} , M_{cx} , M_{cy} , and M_{cxy} . The string C_{e2} contains the notation for the corresponding displacements.

Subroutine GPCFD2 (RESF, DISP, PROPC)

This subroutine generates the required section properties and the force-deformation-temperature relations for a two-dimensional multilayered composite. It also generates the plane-stress elastic constants for the composite. The force-deformation-temperature relations generated in this procedure are defined in the following equation:

$$\begin{cases} \left\{ \begin{bmatrix} \mathbf{N}_{\mathrm{cx}} \end{bmatrix} \\ \left\{ \begin{bmatrix} \mathbf{M}_{\mathrm{cx}} \end{bmatrix} \right\} \end{cases} = \begin{bmatrix} \begin{bmatrix} \mathbf{A}_{\mathrm{cx}} \end{bmatrix} & \begin{bmatrix} \mathbf{C}_{\mathrm{cx}} \end{bmatrix} \\ \begin{bmatrix} \mathbf{C}_{\mathrm{cx}} \end{bmatrix} \end{bmatrix} \begin{cases} \boldsymbol{\epsilon}_{\mathrm{csx}} \\ \boldsymbol{w}_{\mathrm{cbx}} \end{cases} - \begin{cases} \left\{ \begin{bmatrix} \mathbf{N}_{\mathrm{c}} \Delta \mathbf{T} \mathbf{x} \end{bmatrix} \\ \mathbf{M}_{\mathrm{c}} \Delta \mathbf{T} \mathbf{x} \end{bmatrix} \end{cases}$$

The generic equations for the elements in the arrays [A $_{cx}$], [C $_{cx}$], [D $_{cx}$], {N $_{c}\Delta Tx$ }, and {M $_{c}\Delta Tx$ } are

$$[\mathbf{A}_{cx}] = \sum_{i=1}^{N_{\mathcal{I}}} \Delta \mathbf{T}_{\mathcal{I}i} (\mathbf{z}_{\mathcal{I}i+1} - \mathbf{z}_{\mathcal{I}i}) [\mathbf{R}_{\mathcal{I}i}]^{T} [\mathbf{E}_{\mathcal{I}i}]^{-1} [\mathbf{R}_{\mathcal{I}i}] + \sum_{j=1}^{N_{\mathcal{I}}-1} \mathbf{H}_{j} [\mathbf{S}_{j}]$$

$$[\mathbf{C}_{\mathbf{c}\mathbf{x}}] = \sum_{i=1}^{N_{\boldsymbol{l}}} \Delta \mathbf{T}_{\boldsymbol{l}i} (\mathbf{z}_{\boldsymbol{l}i+1}^2 - \mathbf{z}_{\boldsymbol{l}i}^2) [\mathbf{R}_{\boldsymbol{l}i}]^T [\mathbf{E}_{\boldsymbol{l}i}]^{-1} [\mathbf{R}_{\boldsymbol{l}i}] + \sum_{j=1}^{N_{\boldsymbol{l}}-1} \mathbf{z}_{\mathbf{rp}j} \mathbf{H}_j [\mathbf{S}_j]$$

$$[\mathbf{D}_{cx}] = \sum_{i=1}^{N_{\tilde{l}}} \Delta \mathbf{T}_{\tilde{l}i} (\mathbf{z}_{li+1}^3 - \mathbf{z}_{li}^3) [\mathbf{R}_{li}]^T [\mathbf{E}_{li}]^{-1} [\mathbf{R}_{li}] + \sum_{j=1}^{N_{\tilde{l}}-1} \mathbf{z}_{rpj}^2 \mathbf{H}_j [\mathbf{S}_j]$$

$$\{N_{c \Delta Tx}\} = \sum_{i=1}^{N_{l}} \Delta T_{li} (z_{li+1} - z_{li}) [R_{li}] [E_{li}]^{-1} \{\alpha_{li}\}$$

$$\{\mathbf{M_{c \Delta Tx}}\} = \sum_{i=1}^{N_{l}} \Delta \mathbf{T_{li}} (\mathbf{z_{li+1}^2 - z_{li}^2}) [\mathbf{R_{li}}]^T [\mathbf{E_{li}}]^{-1} \{\alpha_{li}\}$$

The arrays $\{\alpha_{li}\}$, $[R_{li}]$, $[E_{li}]$, and $[S_{j}]$ are

$$\{\alpha_{l}\} = \begin{bmatrix} \alpha_{11} & \alpha_{22} & 0 \end{bmatrix}_{i}^{T}$$

$$[\mathbf{R}_{l}] = \begin{bmatrix} \cos^2\theta & \sin^2\theta & \frac{1}{2}\sin 2\theta \\ \\ \sin^2\theta & \cos^2\theta & -\frac{1}{2}\sin 2\theta \\ \\ -\sin 2\theta & \sin 2\theta & \cos 2\theta \end{bmatrix}_{\mathbf{i}}$$

$$[E_{li}] = \begin{bmatrix} \frac{1}{E_{l11}} & -\frac{\nu_{l21}}{E_{l22}} & 0\\ -\frac{\nu_{l12}}{E_{l11}} & \frac{1}{E_{l22}} & 0\\ 0 & 0 & \frac{1}{G_{l12}} \end{bmatrix}_{i}$$

$$S_{j22} = S_{j11} = \frac{1}{4} (\sin 2\theta_i - \sin 2\theta_{i-1})^2$$

 $S_{j21} = S_{j12} = -S_{j11}$

$$S_{j32} = S_{j23} = \frac{1}{4} (\sin 2\theta_i - \sin 2\theta_{i-1})(\cos 2\theta_i - \cos 2\theta_{i-1})$$

$$S_{j31} = S_{j13} = -S_{j23}$$

$$S_{j33} = \frac{1}{4} (\cos 2\theta_i - \cos 2\theta_{i-1})^2$$

Here θ_i equals the $\theta_{cs} + \theta_l$ in figure 5. The reduced bending rigidities (ref. 6) are generated in this procedure according to the equation

$$D_{cx}^{R} = \left[D_{cx} - C_{cx} A_{cx}^{-1} C_{cx} \right]$$

The reduced axial stiffnesses are generated in the procedure according to the equation

$$\mathbf{A}_{cx}^{R} = \left[\mathbf{A}_{cx} - \mathbf{C}_{cx} \mathbf{D}_{cx}^{-1} \mathbf{C}_{cx} \right]$$

The two-dimensional composite elastic constants are generated from the following equation (assuming $\Delta T_{li} = \Delta T$ for $i = 1(1)N_l$):

$$[\mathbf{E}_{cx}]^{-1} = \frac{1}{t_c} \left\langle \sum_{i=1}^{N_{\ell}} (\mathbf{z}_{\ell i+1} - \mathbf{z}_{\ell i}) [\mathbf{R}_{\ell i}]^T [\mathbf{E}_{\ell i}]^{-1} [\mathbf{R}_{\ell i}] + \sum_{j=1}^{N_{\ell}-1} \mathbf{H}_j [\mathbf{S}_j] \right\rangle$$

where

$$t_{c} = \sum_{i=1}^{N_{l}} t_{li}$$

The inputs to this subroutine are t_{li} , ΔT_{li} , θ_i (relative to composite structural axes), H_j , and the ply elastic constants. These quantities are global and are located, respectively, in PL(7,I), (50,I), (14,I), (9,I), and (31,I) to (42,I). The arrays $[R_{li}]^T [E_{li}]^{-1}$, $[R_{li}]$, and $[S_i]$ and the dimensions z_{li} are generated within subroutine.

The outputs are the force-deformation-temperature relations, which are stored in the global arrays ACX = A_{cx} , RAC = A_{cx}^R , CPC = C_{cx} , FLX = D_{cx} , RDC = D_{cx}^R , NSDT = $N_{c \Delta Tx}$, and MSDT = $M_{c \Delta Tx}$. These are printed out under the heading

FORCES FORCE DISPLACEMENT RELATIONS DISPL THERMAL FORCES

The reduced bending rigidities are printed out under the heading

REDUCED BENDING RIGIDITIES

The reduced axial stiffnesses are printed out under the heading

REDUCED STIFFNESS MATRIX

The inverse of the constitutive equations

$$\begin{bmatrix} \begin{bmatrix} A_{cx} \end{bmatrix} & \begin{bmatrix} C_{cx} \end{bmatrix} \\ ---- & D_{cx} \end{bmatrix}^{-1}$$

are printed out under the heading

DISP DISPLACEMENT FORCE RELATIONS FORCES

The distances \overline{z}_{c} , \overline{z}_{li} , z_{li} are stored, respectively, in PC(31), PL(10,I), and PL(11,I). The two-dimensional composite stress-strain relations is stored in PC(33) to PC(38) and the two-dimensional composite moduli and Poisson's ratio are stored in PC(39) to PC(47). The two-dimensional thermal properties are stored in PC(48) to PC(54) as is described in the section Subroutine GACD3.

This subroutine is used to calculate the ply conductivities K_{l22} and K_{l33} . The specific equation programmed in this subroutine is

$$K_{l\alpha\alpha} = \overline{K}_{m\alpha\alpha} \left[1 - \beta_{k\alpha} \sqrt{\overline{k}_{f}} + \frac{1}{\frac{1}{\beta_{k\alpha}\sqrt{\overline{k}_{f}}} - \left(1 - \frac{\overline{K}_{m\alpha\alpha}}{K_{f\alpha\alpha}}\right)} \right]$$

where α takes the values 2 and 3. The subroutine is called from subroutine GECL. The subroutine input variables CF, CM, R, and Q and the output variable CP are defined in the call statement in GECL. They denote, respectively, fiber conductivity $K_{f\alpha\alpha}$, matrix conductivity $\overline{K}_{m\alpha\alpha}$ (modified for void effects), actual fiber volume ratio \overline{k}_f , correlation factor $\beta_{k\alpha}$, and the computed conductivity $K_{l\alpha\alpha}$ which is the subroutine output.

Subroutine GECL (KV, KF)

The thermoelastic properties of the single ply are generated in this procedure. In addition the actual fiber and matrix volume content, the ply thickness, density, and the interfiber spacing are generated. The equations programmed to generate basic ply properties are

$$\overline{k}_{f} = (1.0 - k_{v})k_{f}$$

$$\overline{k}_{m} = (1.0 - k_{v})(1 - k_{f})$$

$$\rho_{l} = \rho_{f}\overline{k}_{f} + \rho_{m}\overline{k}_{m}$$

$$t_{l} = \begin{cases} (\pi N_{f}/4\beta_{t} \overline{k}_{f})^{1/2} & d_{f} \text{ if Boolean TLINP} = F(FALSE) \\ \text{Read in value if Boolean TLINP} = T(TRUE) \end{cases}$$

$$\delta_{l} = \left[\left(\frac{\pi}{4\overline{k}_{f}} \right)^{1/2} - 1 \right] d_{f}$$

where k_v and k_f are read in globally. The equations programmed to generate the extensional moduli and the thermal coefficients of expansion are

$$[\mathbf{E}_{1}] = [\mathbf{C}_{1}]^{T} [\mathbf{E}_{1}] [\mathbf{C}_{1}] \overline{\mathbf{k}}_{1} + [\mathbf{C}_{m}]^{T} [\mathbf{E}_{m}] [\mathbf{C}_{m}] \overline{\mathbf{k}}_{m}$$

and

$$\{\alpha_{\ell}\} = \left[\mathbf{C}_{\mathbf{f}\ell}\right]^{\mathbf{T}} \{\alpha_{\mathbf{f}}\} \overline{\mathbf{k}}_{\mathbf{f}} + \left[\mathbf{C}_{\mathbf{m}}\right]^{\mathbf{T}} \{\alpha_{\mathbf{m}}\} \overline{\mathbf{k}}_{\mathbf{m}}$$

The arrays in the last two equations are given by

$$[E_{l,f,m}] = \begin{bmatrix} \frac{1}{E_{l11}} & -\frac{\nu_{l21}}{E_{l22}} & -\frac{\nu_{l31}}{E_{l33}} \\ -\frac{\nu_{l12}}{E_{l11}} & \frac{1}{E_{l22}} & -\frac{\nu_{l32}}{E_{l33}} \\ -\frac{\nu_{l13}}{E_{l11}} & -\frac{\nu_{l23}}{E_{l22}} & \frac{1}{E_{l33}} \end{bmatrix}_{l,f,m}$$

and

$$\{\alpha_{l,f,m}\} = [\alpha_{1}, \alpha_{2}, \alpha_{3}]_{l,f,m}$$

The arrays $[E_l]$, $[E_f]$, and $[E_m]$ are generated locally in the arrays ECL, ECF, and ECM, respectively. The arrays $[C_{fl}]$ and $[C_{ml}]$ and the constants in them are given by

$$[C_{fl}] = \begin{bmatrix} \frac{1}{AE_{m11}\overline{k}_m} & \frac{1}{A} \left(\frac{\nu_{f21}}{C_fE_{f22}} - \frac{\nu_{m21}}{C_mE_{m22}} \right) & \frac{1}{A} \left(\frac{\nu_{f31}}{C_fE_{f33}} - \frac{\nu_{m31}}{C_mE_{m33}} \right) \\ 0 & \frac{1}{C_f} & 0 \\ 0 & 0 & \frac{1}{C_f} \end{bmatrix}$$

and

$$[C_{ml}] = \begin{bmatrix} \frac{1}{BE_{f11}\overline{k}_f} & \frac{1}{B} \left(\frac{\nu_{m21}}{C_m E_{m22}} - \frac{\nu_{f21}}{C_f E_{f22}} \right) & \frac{1}{B} \left(\frac{\nu_{m31}}{C_m E_{m33}} - \frac{\nu_{f31}}{C_f E_{f33}} \right) \end{bmatrix}$$

$$0$$

$$0$$

$$0$$

$$\frac{1}{C_m}$$

$$0$$

$$\frac{1}{C_m}$$

where

$$A = \left(\frac{1}{E_{f11}} + \frac{k_m}{E_{m11}} \overline{k}_f\right)$$

$$B = \left(\frac{1}{E_{m11}} + \frac{\overline{k}}{E_{f11}} \overline{k}_m\right)$$

$$C_f = \left(\frac{\overline{k}_f}{\overline{k}_f}\right) \beta_f$$

$$C_m = \left(\frac{\overline{k}_m}{k_m}\right) \beta_m = (1 - k_v) \beta_m$$

$$\beta_f = 1.0$$

$$\beta_{\rm m} = \begin{cases} \frac{1.0}{k_{\rm m}} \\ 1/\text{VCF}(1, 1) & \text{if VCF}(1, 1) \neq 0 \end{cases}$$

$$\text{VCF}(2, 1) & \text{if VCF}(1, 1) = 0$$

The variables VCF(1, 1) and VCF(2, 1) are empirical (adjustment) factors and are read in. Here and subsequently, the elements in the array VCF constitute experiment-theory correlation (semiempirical) factors and are selected so that the predicted and experimental results for a particular fiber-matrix system from a particular fabrication process are in good agreement. The variable $\beta_{\rm f}$ could be selected to be different from unity if additional adjustment is needed.

The elements in the arrays $[\widetilde{c}_{fl}]$ and $[\widetilde{c}_{ml}]$ are generated by substituting

$$\widetilde{\beta}_{\mathbf{f}} = 1.0$$

$$\widetilde{\beta}_{m} = \begin{cases} \frac{1 \cdot 0}{k_{m}} & \text{if } VCF(1,4) \\ VCF(2,4) & \text{if } VCF(2,4) = 0 \end{cases}$$

The equations programmed to generate the shear moduli are

$$G_{l12} = \frac{G_{m12}}{\frac{G_{m12}}{C_f^{2}G_{f12}} \bar{k}_f + \frac{\bar{k}_m}{C_m^{2}}}$$

$$G_{l13} = \frac{G_{m13}}{\frac{G_{m13}}{C_f'^2 G_{f13}} \overline{k}_f + \frac{\overline{k}_m}{C_m'^2}}$$

and

$$G_{23} = \frac{G_{m23}}{\frac{G_{m23}}{C_{m}^{"2}G_{f23}} \overline{k}_{f} + \frac{\overline{k}_{m}}{C_{m}^{"2}}}$$

where

$$\mathbf{C_f'} = \left(\frac{\overline{k}_f}{k_f}\right) \beta_f'$$

$$C_{m}' = \left(\frac{\overline{k}_{m}}{k_{m}}\right) \beta_{m}'$$

$$C_{\mathbf{f}}^{\prime\prime} = \left(\frac{\overline{k}_{\mathbf{f}}}{k_{\mathbf{f}}}\right) \beta_{\mathbf{f}}^{\prime\prime}$$

and

$$C_{m}^{"} = \left(\frac{\overline{k}_{m}}{k_{m}}\right) \beta_{m}^{"}$$

The variables $\beta_f^{i},\ \beta_m^{i},\ \beta_f^{ii},\$ and $\beta_m^{ii},\$ respectively, are

$$\beta_{\mathbf{f}}^{*}=1.0$$

$$\beta_{\mathbf{m}}^{\prime} = \begin{cases} \left(\frac{1.0}{k_{\mathbf{m}}}\right)^{1/V\mathrm{CF}(1,2)} & \text{if } V\mathrm{CF}(1,2) \neq 0 \\ \\ V\mathrm{CF}(2,2) & \text{if } V\mathrm{CF}(2,2) = 0 \end{cases}$$

$$\beta_{\rm f}^{ii}=1.0$$

$$\beta_{\mathbf{m}}^{"} = \begin{cases} \left(\frac{1.0}{k_{\mathbf{m}}}\right)^{1/\text{VCF}(1,3)} & \text{if VCF}(1,3) \neq 0 \\ \\ \text{VCF}(2,3) & \text{if VCF}(2,3) = 0 \end{cases}$$

The equations programmed for the ply heat capacity and the ply heat conductivities are

$$H_{cli} = \frac{1}{\rho_{li}} \left(H_{cf} \rho_{f} \overline{k}_{f} + H_{cm} \rho_{m} \overline{k}_{m} \right)$$

$$\overline{K}_{m\alpha\alpha} = K_{m\alpha\alpha} \left[\frac{2\beta_{kv} K_{m\alpha\alpha} + K_v - 2k_v (K_{m\alpha\alpha} - K_v)}{2K_{m\alpha\alpha} + K_v - k_v (K_{m\alpha\alpha} - K_v)} \right]$$

and

$$K_{l11} = \beta_{k1}\overline{k}_fK_{f11} + k_m\overline{K}_{m11}$$

The subscript α takes the values (1, 2, and 3). The remaining variables are read in globally in the arrays

BTA =
$$(\beta_{kv}, \beta_{k1}, \beta_{k2}, \beta_{k3})$$

and

$$\text{CHK} = \begin{bmatrix} K_{\text{f}11} & K_{\text{f}22} & K_{\text{f}33} & H_{\text{cf}} \\ K_{\text{m}11} & K_{\text{m}22} & K_{\text{m}33} & H_{\text{cm}} \\ 0 & 0 & 0 & K_{\text{v}} \end{bmatrix}$$

The small subroutine GPHK(CF, CM, R, Q, CP) preceding subroutine GECL is used for programming convenience to compute the variables K_{722} and K_{733} .

Inputs to subroutine GECL are the fiber and matrix material properties and the correlation factors. These properties are read in globally and are (E, ν , G, ρ , H_c, K, α)_{f, m}, N_f, d_f, VCF, BTA, TLINP, and (k_V, k_f)_i (where i = 1(1)N_l and N_l is the number of layers). For the corresponding code identifiers, see appendix A.

The outputs of subroutine GECL are the basic ply properties $(\overline{k}_f, \overline{k}_m, \rho_l, t_l)$ (if TLINP = FALSE), and δ_l which are stored in PL(3,I) and in PL(5,I) to PL(8,I); the ply stress-strain relations, which are stored in PL(15,I) to PL(23,I); the ply thermal coefficients of expansion, heat conductivities, and heat capacity, which are stored in PL(24,I) to PL(30,I), and the ply moduli and Poisson's ratios, which are stored in PL(31,I) to PL(42,I).

The strain magnification factors from which the ply unidirectional limiting stresses are constructed are generated in this subroutine. These factors are $\varphi_{\mu 22}$, $\varphi_{\mu 12}$, and $\varphi_{\mu 23}$ for constructing S_{l22} , S_{l12} , and S_{l23} , respectively.

Three methods are employed to compute $\varphi_{\mu22}$: Kies's two-dimensional, Daniel's indirect, and Kies's one-dimensional method. Filament and matrix orthotropicity and the effects of voids are included in all of these methods as is described in reference 1. Kies's two-dimensional method is selected to construct S_{l22} in the current program. However, either of the other methods and even new ones (as they become available) could be chosen if, at some future date, they are found to be more appropriate. In addition, optional degrees of freedom for adjusting these factors can be read in globally. The options are given with the appropriate equation. The input and output subroutine information is discussed at the end of this section.

The equations programmed in this subroutine are

$$\beta_{v} = \frac{1.0}{\left[1 - \left(\frac{4k_{v}}{\pi k_{m}}\right)^{1/2}\right]}$$

$$\overline{k}_{f} = (1 - k_{v})k_{f}$$

$$\overline{k}_{m} = (1 - k_{v})(1 - k_{f})$$

$$C_{f\varphi} = \frac{\overline{k}_{f}}{k_{f}}$$

and

$$C_{m\varphi} = \frac{\overline{k}_m}{(1 - k_f)}$$

Strain magnification factor $\varphi_{\mu 22}$. - The three methods used to compute the strain magnification factor $\varphi_{\mu 22}$ are given in the following:

(1) Kies's two-dimensional method:

$$p = \begin{cases} \overline{k}_{f}^{(1.0/\beta_{\epsilon})} & \text{if } \beta_{\epsilon} \neq 0 \\ \left(\frac{4\overline{k}_{f}}{\pi}\right)^{1/2} \gamma_{\epsilon} & \text{if } \beta_{\epsilon} = 0 \end{cases}$$

$$\overline{A} = \frac{(1 - \nu_{f12}\nu_{f21})C_{m\varphi}E_{m22}}{(1 - \nu_{m12}\nu_{m21})C_{f\varphi}E_{f22}}$$

$$\overline{B} = \nu_{m12}\overline{A}$$

$$\frac{\epsilon_{\text{m22}}}{\epsilon_{l22}} = \left[\frac{1}{1+p(A-1)}\right] \left\{\frac{1}{E_{l22}} \left[1-\nu_{l21}p(\nu_{\text{f12}}-\overline{B})\right] \sigma_{l22} + \frac{1}{E_{l11}} \left[p(\nu_{\text{f12}}-\overline{B})-\nu_{l12}\right] \sigma_{l11}\right\}$$

$$\begin{split} \epsilon_{l22} &= \frac{{}^{\sigma}_{l22}}{{}^{E}_{l22}} - \frac{{}^{\nu}_{l12}{}^{\sigma}_{l11}}{{}^{E}_{l11}} \\ \\ \varphi_{\mu22} &= \begin{cases} \frac{\epsilon_{m22}}{\epsilon_{l22}} & \text{if } \frac{\epsilon_{m22}}{\epsilon_{l22}} > 1.0 \\ \\ 1.0 & \text{if } \frac{\epsilon_{m22}}{\epsilon_{l22}} \le 1.0 \end{cases} \end{split}$$

$$\varphi_{\mu 22}\beta_{v} \rightarrow PL(45,J)$$

(2) Daniel's indirect method:

$$\begin{split} \varphi_{\mu 22} &= k_{\sigma} \left(1 - \nu_{m23}^{2} \right) \frac{E_{l22}}{E_{m22}} \\ k_{\sigma} &= 0.83 \left[\left(\frac{\pi}{\overline{k}_{f}} \right) - 2 \right]^{2} - 1.35 \left[\left(\frac{\pi}{\overline{k}_{f}} \right)^{1/2} - 2 \right] + 1.78 \\ 0.35 &\leq \overline{k}_{f} \leq 0.75 \end{split}$$

$$\varphi_{\mu 22} \beta_{v} + PL(44, J)$$

(3) Kies's one-dimensional method:

$$\varphi_{\mu 22} = \frac{1}{1 - p \left(1 - \frac{C_{m\varphi}E_{m22}}{C_{f\varphi}E_{f22}}\right)}$$
$$\varphi_{\mu 22}\beta_{v} \rightarrow PL(43, J)$$

Note that PL(46, J) is blank for any other method that might be of interest.

Strain magnification factor $\varphi_{\mu 12}$. -

$$p = \begin{cases}
\frac{1.0/\beta'_{\epsilon}}{k_{f}} & \text{if } \beta'_{\epsilon} \neq 0 \\
\left(\frac{4\overline{k_{f}}}{\pi}\right)^{1/2} \gamma'_{\epsilon} & \text{if } \beta'_{\epsilon} = 0
\end{cases}$$

$$\varphi_{\mu 12} = \frac{1}{1 - p\left(1 - \frac{C_{m}\varphi^{G}_{m12}}{C_{f}\varphi^{G}_{f12}}\right)}$$

$$\varphi_{\mu 12}\beta_{v} + PL(47, J)$$

Strain magnification factor $\, \varphi_{\mu 23} . \,$ -

$$p = \begin{cases} \frac{1/\beta''_{\epsilon}}{\overline{k}_{f}} & \text{if } \beta''_{\epsilon} \neq 0 \\ \left(\frac{4\overline{k}_{f}}{\pi}\right)^{1/2} \gamma''_{\epsilon} & \text{if } \beta''_{\epsilon} = 0 \end{cases}$$

$$\varphi_{\mu 23} = \frac{1}{2(1-p) + (2p-1)\frac{C_{m\varphi}G_{m23}}{C_{f\varphi}G_{f23}}}$$

$$\varphi_{\mu 23}\beta_{v} + PL(48, J)$$

Inputs to subroutine GSMF are the ply applied stresses (σ_{l11} , σ_{l22} , σ_{l12} , and σ_{l23}), the void and apparent fiber content, the ply index, and ply, fiber and matrix elastic constants. The stresses σ_{l11} , σ_{l22} , and σ_{l12} are transferred from PL(67,J) to PL(69,J), respectively. (J denotes ply index in this case.) The stresses σ_{l23} is assigned the value of unity. The void and fiber contents are transferred from PL(1,J) and PL(2,J). The ply elastic properties are transferred from PL(31,J), PL(32,J), PL(37,J), and PL(38,J). The fiber and matrix properties are read in globally. The coefficients β_{ϵ} are in VCF as follows:

$$\beta_{\epsilon} - \text{VCF} = \begin{bmatrix} \beta_{\text{m}}, \ \beta_{\text{m}}^{i}, \ \beta_{\text{m}}^{i}, \ \beta_{\text{m}}^{i}, \ \beta_{\epsilon}, \ \beta_{\epsilon}^{i}, \ \beta_{\epsilon}^{i}, \ \beta_{\epsilon}^{i}, \ \beta_{t}, \ 0.0, \ 0.0 \end{bmatrix}$$
$$\gamma_{\text{m}}, \ \gamma_{\text{m}}^{i}, \ \gamma_{\text{m}}^{i}, \ \gamma_{\epsilon}, \ \gamma_{\epsilon}^{i}, \ \gamma_{\epsilon}^{i}, \ \gamma_{\epsilon}^{i}, \ 0.0, 0.0, \ 0.0 \end{bmatrix}$$

The outputs of subroutine GSMF are the magnification factors stored in PL(43-48,J) as previously described. It is important to note that the magnification factor $\varphi_{\mu 22}$ depends on the applied stress level; therefore, GSMF is called from the stress analysis subroutine COMPSA.

Subroutine COMPSA(M)

In this subroutine the stress and strain state of each ply are computed given the edge membrane forces, the ply temperature and the changes in curvature. In addition, two-ply combined-stress strength criteria and the interply delamination criterion are generated. The equations programmed for the ith strain and stress states are

$$\begin{split} \{\epsilon_{li}\} &= [R_{li}][A_{cx}]^{-1} < \{\overline{N}_{cx}\} + \{N_{c\Delta Tx}\} + [C_{cx}]\{w_{cbx}\} > -z[R_{li}]\{w_{cbx}\} \\ \{\sigma_{li}\} &= [E_{li}]^{-1} [R_{li}][A_{cx}]^{-1} \left\langle \{\overline{N}_{cx}\} + \{N_{c\Delta Tx}\} + [C_{cx}]\{w_{cbx}\} \right\rangle \\ &- [E_{li}]^{-1} \left\langle \Delta T_{li}\{\alpha_{li}\} + z[R_{li}]\{w_{cbx}\} \right\rangle \end{split}$$

The reference plane strains $\epsilon_{\mathbf{csx}}$ and the changes curvatures are computed from

$$\begin{cases} \left\{ \left\{ c_{csx} \right\} \right\} = \begin{bmatrix} \left[A_{cx} \right] & \left[C_{cx} \right] \\ ---- & \left[---- \right] \\ \left[C_{cx} \right] & \left[D_{cx} \right] \end{bmatrix}^{-1} \\ \left\{ \begin{bmatrix} \left\{ N_{cx} \right\} \\ ---- \\ \left\{ M_{cx} \right\} \end{bmatrix} + \begin{bmatrix} \left\{ N_{c \Delta Tx} \right\} \\ ---- \\ \left\{ M_{c \Delta Tx} \right\} \end{bmatrix} \right\}$$

when one or both of the membrane force and the moments are given.

The strains are generated locally in EPSL and SIGL, respectively, and are stored in PL(64,I) to PL(69,I). The matrices $[R_{li}]$ and $[E_{li}]$ are generated locally from information transferred from PL(14,I) and PL(31,I) to PL(42,I). The distance z_{li} and the ply temperature ΔT_{li} are transferred from PL(11,I) and PL(50,I), respectively. The remaining matrices are

$$A_{cx} - ACX$$
 $C_{cx} - CPC$
 $N_{c \Delta Tx} - NSDT$
 $\overline{N}_{cx} - NSB_{m}$
 $\overline{M}_{cx} - MSB_{m}$

w_{cbx} - WXX_m (local curvature from bending analysis)

where m denotes the load condition.

It is important to note that the stress analysis in the coded form also handles the case where both the reference plane membrane strains and the local curvatures are given. In this case the ply strains are given by

$$\{\epsilon_{\mathbf{cxi}}\} = \{\epsilon_{\mathbf{csx}}\} - \mathbf{z} \{\mathbf{w}_{\mathbf{cbx}}\}$$

where $\{\epsilon_{\text{cxi}}\}$ are the ith ply strains along the structural axis, $\{\epsilon_{\text{csx}}\}$ are the reference plane membrane strains, z is the distance from the reference plane to the centroid of the ith ply, and $\{w_{\text{cbx}}\}$ are the local curvatures. They are read in the array D_{vm} where m denotes the load condition.

The corresponding ith ply stresses are given by

$$\{\sigma_{\mathbf{i}}\} = [\mathbf{E}_{l\mathbf{i}}]^{-1} \left\langle [\mathbf{R}_{l\mathbf{i}}] \{\epsilon_{\mathbf{c}\mathbf{x}\mathbf{i}}\} - \Delta \mathbf{T}_{l\mathbf{i}} \{\alpha_{l\mathbf{i}}\} \right\rangle$$

where $\{\sigma_{li}\}$ are the ith ply stresses along the material axes, $[E_{li}]$ are the ith ply elastic constants about the material axes, $[R_{li}]$ is the transformation matrix of the ith ply, $\{\epsilon_{cxi}\}$ are the ith ply strains along the structural axes as given by a previous equation, ΔT_{li} is the temperature of the ith ply, and $\{\alpha_{li}\}$ are the thermal coefficients of expansion of the ith ply along the material axes.

The displacement force relations are printed out under the title

Displacement Displacement force relations Forces

Two similar sets are printed out. In the first set the displacement and force vectors are in symbolic form. In the second set the displacement and force vectors have their numerical values. See outputs of trial cases (appendix C).

The failure criterion may be determined by either of the following methods.

(1) Modified distortion energy

$$F = 1 - \left[\left(\frac{\sigma_{l11\alpha}}{s_{l11\alpha}} \right)^2 + \left(\frac{\sigma_{l22\beta}}{s_{l22\beta}} \right)^2 - \kappa_{l12\beta} \frac{\sigma_{l11\alpha}}{|s_{l11\alpha}|} \frac{\sigma_{l22}}{|s_{l22}|} + \left(\frac{\sigma_{l12S}}{s_{l12S}} \right)^2 \right]_i - PL(62, I)$$

The parameters α and β are specified as follows:

$$\alpha = \begin{cases} T & \sigma_{l11} \ge 0 \\ C & \sigma_{l11} < 0 \end{cases}$$

$$\beta = \begin{cases} T & \sigma_{l22} \ge 0 \\ C & \sigma_{l22} < 0 \end{cases}$$

$$\mathbf{S}_{l11\alpha} = \begin{cases} \mathbf{S}_{l11\mathrm{T}} & \alpha = \mathbf{T} \\ \min(\mathbf{S}_{l11\mathrm{C}}, \ \mathbf{S}_{l11\mathrm{CD}}) & \alpha = \mathbf{C} \end{cases}$$

$$\mathbf{S}_{l22\alpha} = \begin{cases} \mathbf{S}_{l22\mathbf{T}} & \beta = \mathbf{T} \\ \mathbf{S}_{l22\mathbf{C}} & \beta = \mathbf{C} \end{cases}$$

$$\mathbf{K}_{l12\alpha\beta} = \mathbf{K}_{l12\alpha\beta}^{\prime} \frac{(1+4\nu_{l12}-\nu_{l13})\mathbf{E}_{l22}+(1-\nu_{l23})\mathbf{E}_{l11}}{\left[\mathbf{E}_{l11}\mathbf{E}_{l22}(2+\nu_{l12}+\nu_{l13})(2+\nu_{l21}+\nu_{l23})\right]^{1/2}}$$

$$\mathbf{K'_{l12}\alpha\beta} = \begin{cases} \mathbf{BET(1,7)} & \alpha, \ \beta = \mathbf{T} \\ \mathbf{BET(2,7)} & \alpha = \mathbf{C}, \ \beta = \mathbf{T} \\ \mathbf{BET(1,8)} & \alpha = \mathbf{T}, \ \beta = \mathbf{C} \\ \mathbf{BET(2,8)} & \alpha, \ \beta = \mathbf{C} \end{cases}$$

The multiplyer of $K'_{l12\alpha\beta}$ was generated in subroutine GLLSC and is stored in PL(61,I). The constants $K'_{12\alpha\beta}$ constitute theory-experiment correlation factors.

(2) Hoffman's criterion (ref. 9):

$$S_{l11C} - Min(S_{l11C}, S_{l11CD})$$

$$\mathbf{F} = \mathbf{1} - \left[\frac{\sigma_{l11}^2 - \sigma_{l11}\sigma_{l22}}{\mathbf{S}_{l11C}\mathbf{S}_{l11T}} + \frac{\sigma_{l22}^2}{\mathbf{S}_{l22C}\mathbf{S}_{l22T}} + \frac{\mathbf{S}_{l11C} - \mathbf{S}_{l11T}}{\mathbf{S}_{l11C}\mathbf{S}_{l11T}} \sigma_{l11} \right]$$

$$+\frac{s_{l22C} - s_{l22T}}{s_{l22C}s_{l22T}} \sigma_{l22} + \frac{\sigma_{l12}^2}{s_{l12S}^2} \right]_{i} \rightarrow PL(71, I)$$

F > 0 no failure

F = 0 incipient failure

F < 0 failure

The interply delamination criterion for the jth interply layer at the mth load condition is governed by

$$\left[1 - \left(\frac{|\Delta \varphi|}{\Delta \varphi_{\text{del}}}\right)_{j}\right] - \text{PL}(63, I) \quad \text{when } i > 1$$

$$\begin{split} \Delta \varphi_{\mathbf{j}} &= \frac{1}{2} \left(\epsilon_{\mathbf{c} \mathbf{y} \mathbf{y}} - \epsilon_{\mathbf{c} \mathbf{x} \mathbf{x}} \right) (\sin 2\theta_{\mathbf{i}} - \sin 2\theta_{\mathbf{i} - \mathbf{1}}) + \frac{1}{2} \epsilon_{\mathbf{c} \mathbf{x} \mathbf{y}} (\cos 2\theta_{\mathbf{i}} - \cos 2\theta_{\mathbf{i} - \mathbf{1}}) \\ &\{ \epsilon_{\mathbf{c} \mathbf{x}} \} = [\mathbf{A}_{\mathbf{c} \mathbf{x}}]^{-1} \left\langle \{ \overline{\mathbf{N}}_{\mathbf{c} \mathbf{x}} \} + \{ \mathbf{N}_{\mathbf{c} \Delta \mathbf{T} \mathbf{x}} \} + [\mathbf{C}_{\mathbf{c} \mathbf{x}}] \{ \mathbf{w}_{\mathbf{c} \mathbf{b} \mathbf{x}} \} \right\rangle \end{split}$$

or as given by the displacement force equation described previously.

The inputs to the subroutine are the ply angle measured from the structural axes (θ_i from PL(14,I)), the distance from the reference plane to centroid of the ply (z_{li} from PL(11,I)), the ply temperature (ΔT_{li} from PL(50,I)), the interply delamination limit ($\Delta \varphi_{delj}$ from PL(60,I)), and the ply thermoelastic properties stored in PL(24 to 26,-I) and PL(31 to 42,I). The ply extensional and coupling rigidities $A_{cx} = ACX$ and $C_{cx} = CPC$; the local curvatures $w_{cbx} = WXX$; the adjustment constants $K'_{l12TT} = BET(1,7)$, $K'_{l12CT} = BET(2,7)$, $K'_{l12TC} = BET(1,8)$, and $K'_{l12CC} = BET(2,8)$; and the load conditions $\overline{N}_{cx} = NBS(m)$.

The subroutine outputs are the modified distortion energy PL(62, I), Hoffman's cri-

terion PL(71,I), the interply delamination criterion PL(63,I), and the adjacent ply relative rotation ($\Delta \varphi_i$ from PL(70,I)).

IMMEDIATE EXTENSIONS

The code can be modified and supplemented to handle nonlinear material response, temperature dependent properties, and load envelopes for various angle ply composites. The details of these modifications will become apparent once the user has some experience in using this code.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 7, 1970,
129-03.

APPENDIX A

LIST OF CODE IDENTIFIERS

Engineering symbol	FORTRAN symbol code	Comment
A _{cx}	ACX	composite axial stiffness; generated in sub- routine GPCFD2
A_{cx}^{R}	RAC	reduced axial stiffness; computed in sub- routine GPCFD2
BIDE	Boolean	TRUE if interply effects are included; input
Ccx	CPC	composite coupling stiffness; generated in subroutine GPCFD2
C _{e1}	RESF	string with force variables in BLOCK DATA
$\mathtt{C_{e2}}$	DISP	string with displacement variables in BLOCK DATA
CSANB	Boolean	TRUE if membrane and bending symmetry exists; input
$\mathtt{C_s}$	String	composite title; MAIN PROGRAM format 4
D _{ex}	FLC	composite flexural rigidities; generated in subroutine GPCFD2
D_{cx}^{R}	RDC	reduced bending rigidities; computed in subroutine GPCFD2
D _v	DISV, DISVI	displacement vectors; DISVI is either read in MAIN PROGRAM, or is generated in subroutine COMPSA
$ extbf{d}_{ extbf{f}}$	DIAF	filament equivalent diameter; input
$\mathbf{E_f}, \mathbf{E_{cf}}$	ECF	filament elastic constants; generated in subroutine GECL
$\mathbf{E}_{l},\mathbf{E}_{cl}$	ECL	ply elastic constants; generated in sub- routine GECL
E _m , E _{cm}	ECM	matrix elastic constants; generated in sub- routine GECL

Engineering symbol	FORTRAN symbol code	Comment
$\mathrm{E}_{\mathrm{f}11,l11,\mathrm{m}11}$	EF11, EL11, EM11	filament, ply, and matrix normal moduli; filament and matrix moduli input
$G_{\mathrm{f12,l12,m11}}$	EF12, EL12, EM12	filament, ply, and matrix shear moduli; filament and matrix shear moduli input
Нj	PL(9,I)	interply distortion energy coefficient; generated in MAIN PROGRAM
$^{ m H}_{ m kc}$	СНК	array of constituents heat conductivities; input
h _c	ннс	composite heat capacity stored in PC(18) and PC(54)
i, j	I, J	index, generally ply or interply
K _{c11} , c22, c33	HK11, 22, 33	composite three-dimensional heat conductivities along the material axes in PC(15 to 17)
K _{cxy} , cyy, cxy	HK11, 22, 33	composite two-dimensional heat conductivities in PC(51 to 53)
K _{f11} , <i>l</i> 11, m11	СНК	${ m see}~{ m H_{kc}}$
K _{f,v}	KF, V	apparent fiber and void volume ratios; input
$\overline{k}_{f,m}$	KFB,MB	actual fiber and matrix volume ratios
$k_{fl,vl}$	KFL, VL	ply apparent fiber and void volume ratios; input
$\mathbf{L_{sc}}$	LSC	array of limiting conditions; input
$^{ m M}{_{ m c}\Delta Tx}$	MSDT	thermal moments; generated in GPCFD2
M _{cx}	MSB	applied moment; input
m	M	load condition index
\overline{N}_{CX}	NBS	applied membrane loads; input
$N_{c \Delta T x}$	NSDT	thermal force; generated in GPCFD2

Engineering symbol	FORTRAN symbol code	Comment
$N_{\mathbf{f}}$	NFPE	number of filaments per end; input
N_{l}	NL	number of plies; input
N_{lc}	NLC	number of load conditions; input
N_{pc}	NPC	string PROPC length; input
$^{\mathrm{N}}$ p l	NPL	string PROP length; input
P_c	PC	composite properties array; generated in GACD3 and GPCFD2
P_{l}	PL	ply properties array; portions generated in all parts of the program
P _{cp}	PROPC	string PROPC; composite properties identifiers in GDCFD2
P _{lp}	PROP	string PROP; ply properties identifiers in MAIN PROGRAM
$Q_{f,i,p,r,s}$	QF, I, P, R, S	indices to print out string PROP
R	R	transformation matrix; GACD3, GPCFD2, COMPSA
RINDV	Boolean	T(TRUE) if displacements are read in; input
S _{l11T} etc.	PL(51 to 59,I)	ply limit stresses; generated in GLLSC
^t ¿	TL	ply thickness; input if TLINP = TRUE, generated in GECL if TLINP = FALSE
TLINP	Boolean	F(FALSE) if ply thickness calculated internally; input
w _{cb}	w _{xx}	composite local curvatures relative to the structural axes
α _c	CTE	composite coefficient of thermal expansion; three-dimensional in PC(12 to 14), two- dimensional in PC(48 to 50)

Engineering symbol	FORTRAN symbol code	Comment
$\alpha_{\mathrm{f,l,m}}$	VAF, AL, AM	filament, ply, and matrix thermal coeffi- cients of expansion; input and VAL gen- erated in GECL
$\beta_{\mathbf{e}}, \gamma_{\mathbf{e}}$	VCF	correlation factors for ply thermoelastic properties and strain magnification factors; input
$oldsymbol{eta}_{\mathbf{h}}$	BTA	correlation factors for ply heat conductivities; input
$eta_{f s}$	BET	correlation factors for ply strength; input
$^{\delta}_{l}$	PL(8, I)	interply layer thickness; generated in MAIN PROGRAM
$\epsilon_{ m csx}$	UX	reference plane membrane strains; solved in terms of \overline{N}_{CX} or input
ϵ_{l}	EPS, PL(64 to 66, I)	ply strains; generated in COMPSA
$^{ heta}\mathrm{cs}$	THCS	angle between composite material and structural axes; input
$^{ heta}$ l $\mathbf{i}^{, heta}$ l \mathbf{c}	THLC	angle between ply material and composite axes; input
$^{ u}$ f12, l 12, m12	NUF12, L12, M12	filament, ply, and matrix Poisson's ratio; input
π	PIE	constant; input
$ ho_{\mathrm{f,m,l}}$	RHOF, M, L	filament and matrix weight density; input and generated in GECL
σ_{l}	SIGL, PL(67 to 69, I)	ply stresses; generated in COMPSA

APPENDIX B

COMPILED LISTING

```
C
      MULTILAYERED FILAMENTARY COMPOSITE ANALYSIS IS
C
      A COMPUTER CODE FOR THE LINEAR ANALYSIS OF MULTILAYERED FIBER
C
      COMPOSITES. THE ANALYSIS UTILIZES MICROMECHANICS, MACROMECHANICS,
C
      AND LAMINATE THEORY. THE ANALYSIS IS RESTRICTED TO MEMBRANE, PLATE
C
      AND THIN WALLED SHELL TYPE STRUCTURES. THE INPUTS ARE CONSTITUENT
C
      MATERIAL PROPERTIES, CORRELATION COEFFICIENTS AND COMPOSITE GEOMET
C
      RY. THE LOAD CONDITIONS ARE EITHER FORCES OR DISPLACEMENTS AND
C
      TEMPERATURE AT THE DESIRED SECTION. THE OUTPUTS ARE STRESS/STRAIN
C
      /TEMPERATURE RELATIONS AND THEIR INVERSE, OTHER THERMAL
C
      PROPERTIES, STRENGTH PROPERTIES, STRESS ANALYSIS RESULTS AND
C
      THE MARGIN OF SAFETY.
C
      MFCA - MAIN PROGRAM
      LOGICAL TLINP, CSANB, BIDE, RINDV
      INTEGER
                   QI,QS,QP,QR,QF
      REAL NUF12, NUF23, NUF13, NUF21, NUF32, NUF31,
            NUL12, NUL23, NUL13, NUL21, NUL32, NUL31,
     2
            NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
     2
            LSC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT, KVLJ, KFLJ
     2
      COMMON/MAGE/J
      COMMON
     2 EM22, EM 11, EM23, EM12, NUM21, NUM12, NUM23,
        EF22, EF 11, EF23, EF12, NUF21, NUF12, NUF23,
        EM33, NUM13, RHOM, ECM(3,3), EM13, VAM(3), AXC(3,3), FLC(3,3),
        EF33, NUF13, RHOF, ECF (3,3), EF13, VAF (3),
        BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
                CHK(3,4),BTA(4),TLINP,DIAF,NFPE,PIE,
                MBS(3,10), RAC(3,3), DISV1(10,6),
     2
       CSANB, NPL, NL, NSDT(3), VCF(2,10), NUM32, BIDE, MSDT(3), RINDV
      DIMENSION KVL(50), KFL(50), THLC(50), TL(50), MLR(3,10), PROP(71)
     FORMAT (55H
                                                                              )
    3 CONTINUE
      READ(5,4)
      WR ITE (6, 15)
      WR ITE (6,4)
      WRITE (6,30)
      FORMAT(515)
      READ(5,5) NL, NPL, NPC, NFPE, NLC
  10
      FORMAT(515)
       FURMAT(20H NL, NPL, NPC, NFPE, NLC)
  11
      WR I TE (6, 11)
      WRITE(6,10) NL, NPL, NPC, NFPE, NLC
       READ(5,35) EF11,EF22,EF33,NUF12,NUF23,NUF13,EF12,EF23,EF13,
                   EM11, EM22, EM33, NUM12, NUM23, NUM13, EM12, EM23, EM13
      WR ITE (6,70)
      WRITE(6,37) EF11, EF22, EF33, NUF12, NUF23, NUF13, EF12, EF23, EF13,
                   EM11, EM22, EM33, NUM12, NUM23, NUM13, EM12, EM23, EM13
      DATA(PROP(I) , I = 1,71)/6HKV
                                          ,6HKF
                                                    •6HKFB
                                                              ,6HKM
        6HKMB
                 , 6HRHOL
                           ,6HTL
                           6HDELTA ,6HILDC
                                              ,6HZB
                                                        ,6HZGC
                                                                  , 6HT HCS
                                               ,6HSC13
                                                         ,6HSC22
     2
        6HTHLC
                 , 6HTHLS
                           ,6HSC11
                                     ,6HSC12
        6HSC 23
                 , 6H SC 33
                           ,6HSC44
                                     ,6HSC55
                                               ,6HS C66
                                                         ,6HCTEll ,
                                     ,6HH K22
        6HC TE22 , 6HC TE 33 , 6HHK1 1
                                               .6HHK33
                                                         .6HHCL
                                     ,6HGL23
                                               ,6HGL13
                                                         .6HGL12
        6HEL 11
                 ,6HEL22
                           ,6HEL33
```

```
6HNUL12,6HNUL21,6HNUL13,6HNUL31,6HNUL23,6HNUL32,
      6HSMFK22,6HSMFD22,6HSMFS22,6HSMFC22,6HSMFS12,6HSMFS23,
   2
       6HILMFC ,6HTEMPD ,6HLSC11T,6HLSC11C,6HLSC11D,6HLSC22T,
     6HLSC22C,6HLSC12,6HLSC23,6HLSCC13,6HLSCDF,
     6HKL12AB, 6HMDEIE ,6HRELROT,6HEPS11 ,6HEPS22 ,6HEPS12 ,6HSIG11 ,
      6HSIG22 ,6HSIG12 ,6HDELFI ,6HHFC
15 FORMAT(IH1)
20 FORMAT(//47H LAYER PROPERTIES, ROWS-PROPERTY, COLUMNS-LAYER)
25
   FORMAT(13,3X,A6,2X,8E14.4)
30
   FORMAT(//)
   FORMAT(5E15.8)
35
37
   FORMAT(10E13.5)
41
   FORMAT(4H VCF)
    WR ITE (6,41)
    READ(5,35) ((VCF(I,J),J = 1,10),I = 1,2)
    WRITE(6,37) ((VCF(I,J),J = 1,10),I = 1,2)
40 FORMAT(4H VAF)
    WRITE (6,40)
    READ(5,35) (VAF(I),I = 1,3)
    WRITE(6,37) (VAF(I),I = 1,3)
45 FORMAT (4H VAM)
    WR ITE (6,45)
    READ(5,35) (VAM(I),I = 1,3)
    WRITE(6,37) (VAM(I),I = 1,3)
50 FORMAT(59H THERMAL CONDUCTIVITIES AND HEAT CAPACITIES OF CONSTITUE
   2NTS1
55
   FORMAT (4H CHK)
    WRITE (6,55)
    READ(5,35) ((CHK(I,J),J = 1,4),I = 1,3)
    WRITE(6,37) ((CHK(I,J),J = 1,4),I = 1,3)
60 FORMAT(4H BTA)
    WR ITE (6,60)
    READ(5,35) (BTA(I), I = 1,4)
    WRITE(6,37) (BTA(I),I = 1,4)
65 FORMAT(4H PIE)
    WRITE (6,65)
    READ(5,35) PIE
    WRITE(6,37) PIE
   FORMAT(/96H EF11,EF22,EF33,NUF12,NUF23,NUF13,EF12,EF23,EF13,EM11,E
   2M22, EM33, NUM12, NUM23 NUM13, EM12, EM23, EM13)
   FORMAT(/6H TLINP)
    WRITE (6,8C)
75
   FORMAT(L6)
    READ(5,75) TLINP
    WRITE(6,75) TLINP
25
   FORMAT(/6H CSANB)
    WR ITE (6,85)
    READ(5,75) CSANB
    WRITE(6,75) CSANB
   FORMAT(/5H BIDE)
87
    WRITE(6,87)
    READ(5,75) BIDE
    WRITE(6,75) BIDE
88 FORMAT(/6H RINDV)
    WR ITE (6,88)
    READ(5,75) RINDV
    WRITE (6,75) RINDV
90 FORMAT(/20H THCS,RHOF,RHOM,DIAF)
    WR ITE (6,90)
```

```
READ(5,35) THCS, RHOF, RHOM, DIAF
    WRITE (6,37) THCS, RHOF, RHOM, DIAF
95 FORMAT(4H KVL)
    WRITE(6, 95)
     READ(5,35) (KVL(I),I = 1,NL)
    WRITE(6,37) (KVL(I),I = 1,NL)
100 FORMAT(4H KFL)
    WRITE (6,100)
     READ(5,35) (KFL(I),I = 1,NL)
    WRITE(6,37) (KFL(1),I = 1,NL)
105 FORMAT(5H THLC)
    WR ITE (6,105)
     READ(5.35) (THLC(I).I = 1.NL)
    WRITE(6.37) (THLC(I), I = 1.NL)
110 FORMAT(3H TL)
   WRITE(6,110)
     READ(5,35) (TL(I), I = 1, NL)
    WRITE(6,37) (TL(I),I = 1,NL)
111 FORMAT(6H PTEMP)
    WRITE (6,111)
    READ(5,35) (PL(50,I), I=1,NL)
    WRITE (6,37) (PL(50,I), I=1,NL)
115 FORMAT(/4H BET)
    WRITE(6,115)
     READ(5,35) ((BET(I,J),J = 1,8),I = 1,2)
    WRITE(6,37) ((BET(I,J),J = 1,8),I = 1,2)
120 FORMAT(/4H LSC)
    WRITE(6,120)
     READ(5,35) (LSC(I),I = 1,6)
    WRITE(6,37) (LSC(I),I = 1,6)
130 FORMAT(/4H NBS)
    WRITE (6, 130).
      READ(5, 35) ((NBS(I, J), J = 1, NLC), I = 1, 3)
     WRITE(6, 37) ((NBS(I, J), J = 1, NLC), I = 1,3)
131 FORMAT(/4H MBS)
    WRITE(6,131)
     READ(5,35) ((MBS(I,J),J = 1,NLC),I = 1,3)
    WRITE(6,37) ((MBS(I,J),J = 1,NLC),I = 1,3)
132 FORMAT(/6H DISVI)
    WRITE(6, 132)
    READ(5,35) ((DISV1(I,J), J=1,6), I=1,NLC)
    WRITE(6,37) ((DISV1(I,J), J= 1,6), I= 1,NLC)
140 CONTINUE
142 DO 145 J = 1.NL
    PL(1,J) = KVL(J)
    PL(2,J) = KFL(J)
    PL(7,J) = TL(J)
    PL(12,J) = THCS

PL(13,J) = THLC(J)
    PL(14,J) = THCS+THLC(J)
    PL(13,J) = PL(13,J)*PIE/180.0
    PL(14,J) = PL(14,J)*PIE/180.0
    KVLJ = KVL(J)
    KFLJ = KFL(J)
145 CALL GECL (KVLJ, KFLJ)
    DO 155 J = 2.NL
    PL(9,J) = 0.0
    INE = J-1
    IF (.NOT. BIDE) GO TO 155
```

```
PL(9, J) = PL(8, J) + PL(8, INE)
      PL(9,J) = PL(9,J)*PL(9,J)
      PL(9,J) = (2.0*PL(8,J)*PL(8,INE))/PL(9,J)
      PL(9,J) = 0.0186 * (1.0-PL(9,J)) * EM12
  155 PL(49,J) = 0.0093/(PL(8,J) + PL(8,INE))
      READ IN DESIRED PLY PROPERTIES HERE. SEE FORMAT 111 AND THE
C
      FOLLOWING THREE CARDS FOR SAMPLE INPUT.
      CALL GACD 3(3.0)
      CALL GPCFD2
      DO 195 M = 1.NLC
      CALL CCMSA(M)
  161 FORMAT(//33H FOR THIS CASE NBS(X,Y,XY-M) IS
                                                     , 3F10.0)
  162 FORMAT(//33H FOR THIS CASE MBS(X,Y,XY-M) IS
                                                      . 3F10.01
  163 FORMAT(//79H FOR THIS CASE THE DISPLACEMENTS DISV(ECSXX,ECSYY,ECSX
     2Y, WCBXX, WCBYY, WCBXY) ARE ,/1H , 6E15.5)
      WR ITE (6, 15)
      IF ( RINDV) GO TO 165
      WRITE(6,161)
                    (NBS(I,M), I = 1,3)
      WRITE(6,162)
                     (MBS(I,M), I = 1,3)
      GO TO 166
  165 CONTINUE
      WRITE(6.163) (DISVI(M.J), J = 1.6)
  166 CONTINUE
      WRITE(6,20)
      WR ITE (6,30)
      QF = 0
      QI = 0
      QR = 0
      QP = 0
      QP = NL/8
      QR = MOD(NL,8)
      IF (QP .LT. 1) GO TO 185
      DO 175 QS = 1,QP
       QI = (QS-1)*8+1
       QF = QS*8
       DO 17( I = 1.NPL
  170 WRITE(6,25) I, PROP(I), (PL(I,J), J = QI,QF)
  175 WR ITE (6, 15)
       IF(QR .LE. 0) GO TO 185
       QI = NL-QR+1
       QF = NL
       DO 180 I = 1.NPL
  180 WRITE(6,25) I, PROP(I), (PL(I,J), J = QI,QF)
  185 IF (( QP .NE. 0) .OR. (QR .LE. 0)) GO TO 195
        QI = 1
       QF = QR
       DO 190 I = 1.NPL
  190 WRITE(\epsilon, 25) I, PROP(I), (PL(I,J), J = QI,QF)
  195 CONTINUE
      WR ITE (6, 15)
      GO TO 3
       END
```

```
SUBROUTINE INVA(N,A,C)
C
      CALCULATES INVA IN C
      DIMENSION A(N,N),C(N,N),B(6,6),D(6,6)
      LOGICAL TLINP, CSANB, BIDE, RINDV
      REAL NLF12, NUF23, NUF13, NUF21, NUF32, NUF31,
           NLL12, NUL23, NUL13, NUL21, NUL32, NUL31,
     2
           NLM12, NUM23, NUM13, NUM21, NUM32, NUM31,
     2
            LSC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT
      COMMON
     2 EM22, EM 11, EM23, EM12, NUM21, NUM12, NUM23,
        EF22, EF11, EF23, EF12, NUF21, NUF12, NUF23,
        EM33, NUM13, RHOM, ECM(3,3), EM13, VAM(3), AXC(3,3), FLC(3,3),
        EF33, NUF13, RHOF, ECF (3,3), EF13, VAF(3),
        BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
                CHK(3,4), BTA(4), TLINP, DIAF, NFPE, PIE,
                MBS(3,10), RAC(3,3), DISV1(10,6),
        CSANB, NPL, NL, NSDT(3), VCF(2,10), NUM32, BIDE, MSDT(3), RINDV
      DO 365 I = 1.N
      DO 365 J = 1.N
      B(I,J) = A(I,J)
      C(I,J) = 0.0
      IF (I .NE .J) GO TO 365
      C(I_*J) = 1.0
  365 CONTINUE
      N1 = N-1
      00 395 I = 1.N1
      DO 380 K = I,N
      IF ( B(K, I) .EQ. 0.0) GO TO 380
      S1 = B(K, I)
       DO 370 J = I,N
  370 B(K,J) = B(K,J)/S1
      DO 375 J = 1, N
  275 C(K,J) = C(K,J)/S1
  380 CONTINUE
      IP1 = I+1
      DO 395 K = IP1.N
      IF (B(K,I) .EQ. 0.0) GO TO 395
      DO 385 J = 1.N
  385 B(K,J) = B(K,J)-B(I,J)
      DO 390 J = 1.N
  390 C(K,J) = C(K,J)-C(I,J)
  395 CONTINUE
     I LOOP***
      SI = B(N,N)
      IF (S1 .EQ. 0.0) GO TO 405
      B(N,N) = B(N,N)/S1
      DO \ 40C \ J = 1,N
  400 C(N,J) = C(N,J)/S1
  405 IF (S1 .NE. 0.0) GO TO 415
  41C FORMAT(16H SINGULAR MATRIX)
      WRITE(6,410)
      GO TO 430
  415 DO 420 II = 2, N
      I=N+2-II
      IM1 = I-1
      DO 420 KK = 1, IM1
```

```
K=I-KK
DO 421 J = 1,N
421 C(K,J) = C(K,J)-C(I,J)*B(K,I)
420 B(K,I) = 0.0

C END UPPER TRIANGLE REDUCTION

DO 425 I = 1,N
DO 425 J = 1,N
D(I,J) = 0.0
DO 425 K = 1,N
425 D(I,J) = D(I,J)+A(I,K)*C(K,J)
430 CONTINUE
RETURN
END
```

```
SUBROUTINE GLLSC(J)
      GENERATES LIMIT STRESS CONDITIONS FOR SINGLE LAYER
C
      LOGICAL TLINP, CSANB, BIDE, RINDV
      REAL NUF12, NUF23, NUF13, NUF21, NUF32, NUF31,
           NUL12, NUL23, NUL13, NUL21, NUL32, NUL31,
           NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
     2
           LSC. MLR. NBS, MBS, KVL, KFL, NSDT, MSDT
     2
      COMMON
     2 EM22,EM11,EM23,EM12,NUM21,NUM12,NUM23,
       EF22, EF11, EF23, EF12, NUF21, NUF12, NUF23.
        EF33, NUF13, RHOF, ECF (3,3), EF13, VAF(3),
        EM33, NUM13, RHOM, ECM (3,3), EM13, VAM(3), AXC(3,3), FLC(3,3),
     2
        BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
     2
               CHK(3,4), BTA(4), TLINP, DIAF, NFPE, PIE,
                MBS(3,10), RAC(3,3), DISV1(10,6),
     2 CSANB, NPL, NL, NSOT(3), VCF(2,10), NUM32, BIDE, MSDT(3), RINDV
      PL(51,J) = LSC(1)*(BET(1,1)*PL(3,J)+(BET(1,2)*PL(5,J)*EM11/EF11))
      PL(52, J) = LSC(2)*(BET(2,2)*PL(5,J)+(BET(2,1)*PL(3,J)*EF11/EM11))
      PL(54,J) = BET(1,3)*(LSC(3)/PL(45,J))*PL(32,J)
      PL(55,J) = BET(2,3)*(LSC(4)/PL(45,J))*PL(32,J)
      PL(56,J) = BET(1,4)*(LSC(5)/PL(47,J))*PL(36,J)
      PL(53,J) = BET(2,4)*PL(56,J) + BET(2,5)
      PL(57,J) = BET(1,5)*(LSC(5)/PL(48,J))*PL(34,J)
          FOYE'S LONGITUDINAL COMPRESSIVE STRENGTH METHOD
C
      S1 = PL(2,J)*(-1.0 + EM12/EF12) + 1.0
      S1 = EM12/S1
      S3 = PL(1,J)/(1.0 - PL(2,J))
      S2 = 1.0 + S3
      S3 = 1.0 - 2.0 \times S3 + S3 \times S3
      S4 = S1*S3/S2/3.0
          END FOYE'S METHOD
C
      I = S2
      PL(I,J) = AMINI(PL(I,J),S4)
      IF (J .LE. 1) GO TO 445
      PL(60,J) = BET(1,6)*(LSC(6)/PL(49,J))
      JM1 = J-1
      S1 = PL(10,JM1)+(0.5*PL(7,JM1))
      S2 = 0.25*(PL(8,J)-PL(8,JM1))+PC(31)
      ZJ = S1+S2
      IF (ZJ .GE. 0.0) GO TO 435
      S4 = PC(31)
  435 IF (ZJ .LT. 0.0) GO TO 440
      S4 = PC(2)-PC(31)
  440 S3 = (S4*S4)-(ZJ*ZJ)
  445 S1 = (1.0+(4.0*PL(37,J))-PL(39,J))*PL(32,J)
      S2 = (1.0-PL(41,J))*PL(31,J)
      S3 = 2.0+PL(37,J)+PL(37,J)
      S3 = S2*(2.0+PL(38,J)+PL(41,J))
      S3 = S3*PL(31,J)*PL(32,J)
       S3 = SQRT(S3)
       S4 = (S1+S2)/S3
   450 PL(61,J) = S4
       RETURN
       END
```

\$IBFTC GACD32 DEBUG.DECK

C

```
SUBROLTINE GACD3(C)
     GENERATES 3-D AXIAL AND THERMAL CONSTANTS
   DIMENSION EL(6,6),R(6,6),RT(6,6),S(6,6),D1(6,6),D2(6,6),
   2 EC(6,6), ECI(6,6), CTL(6), CTC(6), CTD(6)
   LOGICAL TLINP, CSANB, BIDE, RINDV, BWECL
   REAL NUF12, NUF23, NUF13, NUF21, NUF32, NUF31,
   2
         NUL12, NUL23, NUL13, NUL21, NUL32, NUL31,
         NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
   2
   2
         LSC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT
   COMMON
   2 EM22.EM11.EM23.EM12.NUM21.NUM12.NUM23.
      EF22, EF 11, EF23, EF12, NUF21, NUF12, NUF23,
   2 EM33,NUM13,RHOM,ECM(3,3),EM13,VAM(3),AXC(3,3),FLC(3,3),
     EF33, NUF13, RHOF, ECF(3,3), EF13, VAF(3),
     BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
   2
             CHK(3,4),BTA(4),TLINP,DIAF,NFPE,PIE,
             MBS(3,10),RAC(3,3),DISV1(10,6),
   2 CSANB, NPL, NL, NSDT(3), VCF(2,10), NUM32, BIDE, MSDT(3), RINDV
454 FORMAT(//27x,69H 3-D COMPOSITE STRAIN STRESS TEMPERATURE RELATION
   2S - STRUCTURAL AXES//)
456 FORMAT(//33X, 56H 3-D COMPOSITE STRESS STRAIN RELATIONS - STRUCTURA
   2L AXES//)
457 FORMAT(/11X, 6E14, 4,5X, 1E14, 4)
458 FORMAT(/21X,6E14.4)
459 FORMAT(1H1)
    BWEC1 = . TRUE.
461 DO 455 I = 1,6
     CTL(I)=0.0
     CTC(1)=0.0
     CTD( I )=0.0
    DO 455 J = 1.6
455 EC(I,J) = 0.0
     SRC = 0.0
     ST = 0.0
    DO 462 I = 15,18
462 PC(I) = 0.0
    IF (.NOT. BWEC1) GO TO 464
    DO 463 I = 51.54
463 PC(I) = 0.0
464 CONTINUE
     D0 500 J = 1.NL
     ST = ST+PL(7,J)
     SRC = SRC+(PL(6,J)*PL(7,J))
     EL(1,1) = PL(15,J)
     EL(1,2) = PL(16,J)
     EL(1,3) = PL(17,J)
     EL(2,2) = PL(18,J)
     EL(2, 3) = PL(19, J)
     EL(3, 3) = PL(20, J)
     EL(4,4) = PL(21,J)
     EL(5,5) = PL(22,J)
     EL(6,6) = PL(23,J)
     CTL(1) = PL(24,J)
     CTL(2) = PL(25,J)
     CTL(2) = PL(26,J)
     TH = PL(13,J)
```

```
IF (BWEC1) TH = PL(14,J)
     R(2,2) = COS(TH)*COS(TH)
     R(1,1) = R(2,2)
     R(2,1) = SIN(TH)*SIN(TH)
     R(1,2) = R(2,1)
     R(3,3) = 1.0
    R(4.4) = CDS(TH)
    R(5,4) = -SIN(TH)
    R(5.5) = COS(TH)
    R(4.5) = SIN(TH)
     R(1,6) = 0.5 * SIN(2.0*TH)
     R(2,6) = -R(1,6)
     R(6,2) = SIN(2.0*TH)
     R(6, 6) = COS(2.0*TH)
     R(6,1) = -R(6,2)
      IF (J.LE. 1) GO TO 465
     TH1 = PL(13,J)
     JM1 = J-1
    TH2 = PL(13,JM1)
    S1 = (SIN(2.0*TH1)-SIN(2.0*TH2))
    S2 = (COS(2.0*TH1)-COS(2.0*TH2))
     S(2,2) = S1*S1
     S(1.1) = S1*S1
     S(2,1) = -S1*S1
     S(1, 2) = -S1 * S1
     S(6,1) = -S1*S2
     S(1,6) = -S1*S2
     S(6,2) = S1 * S2
     S(2,6) = S1*S2
     S(6,6) = S2*S2
     DO 460 K = 1.6
     DO 460 L = 1.6
460 S(K,L) = 0.25*S(K,L)
465 D0 470 K = 1.6
     DO 470 L = K.6
470 \text{ EL(L,K)} = \text{EL(K,L)}
     DO 475 K = 1.6
     DO 475 L = 1.6
475 RT(K,L) = R(L,K)
     DG 48C K = 1.6
     D0.480 L = 1.6
     D1(K,L) = 0.0
    DO 480 M = 1.6
480 D1(K,L) = D1(K,L)+(RT(K,M)*EL(M,L))
    DO 485 K = 1.6
    00 \ 485 \ L = 1,6
    D2(K,L) = 0.0
    DO 485 M = 1,6
485 D2(K,L) = D2(K,L)+(D1(K,M)*R(M,L))
    S1 = PL(7,J)
    S2 = PL(9,J)
    DO 490 K = 1.6
    DO 490 L = 1.6
490 EC(K,L) = EC(K,L) + (S1*D2(K,L))+(S2*S(K,L))
    PC(15) = PC(15) +
                       PL(7,J)*(PL(27,J)*R(1,1)+PL(28,J)*R(2,1))
                        PL(7,J)*(PL(27,J)*R(2,1)+ PL(28,J)*R(1,1))
    PC(16) = PC(16) +
    PC(17) = PC(17) +
                       PL(7,J)/PL(29,J)
    PC(18) = PC(18) + PL(7,J)*PL(30,J)
```

```
PC(53) = PC(53) + PL(7,J)*(PL(28,J) - PL(27,J))*R(6,2)/2.0
      DO 500 K = 1.6
      S3 = 0.0
      D0 495 L = 1.6
  495 S3 = S2+(S1*D1(K,L)*CTL(L))
  50C CTD(K) = CTD(K) + S3
      END J LOOP
      DO 501 K = 1,6
      00 501 L = 1.6
  501 EC(K,L) = (1.0/ST)*EC(K,L)
      SRC = SRC/ST
      CALL INVA (6, EC, ECI)
      D0.510 K = 1.6
      S3 = 0.0
      D0.505 L = 1,6
  505 	ext{ S3} = 	ext{S3+(ECI(K,L)*CTD(L))}
  51C CTC(K) = CTC(K)+(1.0/ST)*S3
      IF (.NOT. BWEC1) GO TO 506
      PC(48) = CTC(1)
      PC(49) = CTC(2)
      PC(50) = CTC(6)
      PC(51) = PC(15)/ST
      PC(52) = PC(16)/ST
      PC(53) = PC(53)/ST
      PC(54) = PC(18)/ST
  506 CONTINUE
      IF (.NOT. BWEC1) GO TO 511
      WRITE (6,459)
      WR ITE (6,454)
      WRITE(6,457) ((ECI(I,J),J = 1,6),CTC(I),I = 1,6)
      WRITE (6,456)
      WRITE(6,458) ((EC(I,J),J = 1,6),I = 1,6)
      WRITE(6,459)
      BWEC1 = .FALSE.
      GO TO 461
C
      TRANSFER COMPOSITE PROPERTIES IN PC
  511 PC(1) = SRC
      PC(2) = ST
      PC(3) = EC(1,1)
      PC(4) = EC(1,2)
      PC(5) = EC(1,3)
      PC(6) = EC(2,2)
      PC(7) = EC(2,3)
      PC(8) = EC(3,3)
      PC(9) = EC(4,4)
      PC(10) = EC(5.5)
      PC(11) = EC(6,6)
      PC(12) = CTC(1)
      PC(13) = CTC(2)
      PC(14) = CTC(3)
      DO 515 M = 15,18
  515 PC(M) = PC(M)/ST
      PC(17) = 1.0/PC(17)
      PC(19) = 1.0/ECI(1,1)
      PC(20) = 1.0/ECI(2.2)
      PC(21) = 1.0/ECI(3,3)
      PC(22) = 1.0/ECI(4.4)
      PC(23) = 1.0/ECI(5,5)
      PC(24) = 1.0/ECI(6.6)
```

```
PC(25) = -ECI(2,1)/ECI(1,1)

PC(26) = -ECI(1,2)/ECI(2,2)

PC(27) = -ECI(3,1)/ECI(1,1)

PC(28) = -ECI(1,3)/ECI(3,3)

PC(29) = -ECI(3,2)/ECI(2,2)

PC(30) = -ECI(2,3)/ECI(3,3)

RETURN

END
```

\$IBFTC BLOCK1 DECK, LIST

BLOCK CATA

COMMON/GPCOM/RESF(6),DISP(6)

DATA(DISP(I),I = 1,6)/6HUX ,6HVY ,6HVXX

2 6HWYY ,6HWXY /

DATA(RESF(I),I = 1,6)/6HNX ,6HNY ,6HNXY ,6HMX

2 6HMY ,6HMXY /
END

```
SUBROUTINE GPCFD2
    GENERALES THE REQUIRED SECTION PROPERTIES FOR LINEAR BENDING
    THEORY OF MULTILAYERED FILAMENTARY COMPOSITE
    REAL MINT
    DIMENSION EL (3,3),R(3,3),RT(3,3),S(3,3),EC(3,3),CC(3,3),
      FC(3,3),D1(3,3),D2(3,3),D3(3,3),D4(3),MT(3),NT(3),
      CTL(3), PROPC(54), RDC(3,3)
    LOGICAL TLINP . C SANB . BIDE . RIND V
    REAL NUF12.NUF23.NUF13.NUF21.NUF32.NUF31.
          NUL12, NUL23, NUL13, NUL21, NUL32, NUL31,
          NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
          LSC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT
   2
    COMMON
   2
      EM22.EM11.EM23.EM12.NUM21.NUM12.NUM23.
      EF22, EF11, EF23, EF12, NUF21, NUF12, NUF23,
   2
      EM33, NUM13, RHOM, ECM(3,3), EM13, VAM(3), AXC(3,3), FLC(3,3),
      EF33, NUF13, RHOF, ECF (3,3), EF13, VAF (3),
      BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
              CHK(3,4),BTA(4),TLINP,DIAF,NFPE,PIE,
   2
              MBS(3,10), RAC(3,3), DISV1(10,6),
   2
      CSANB, NPL, NL, NSD T(3), VCF (2, 10), NUM32, BI DE, MS DT (3), RINDV
    COMMON/GPCOM/RESF(6), DISP(6)
                                      .6HTC
    DATA(PROPC(I), I = 1,54)/6HRHOC
                                                ,6HCC11
                                                         ,6HCC12
              • 6HCC 22
                        ,6HCC23 ,6HCC33
                                          ,6HCC44
                                                    ,6HCC55 ,6HCC66
      6HCC 13
   2
   2
      6HCTE11 ,6HCTE22 ,6HCTE33 , 6HHK11
                                            ,6HHK22
               , 6HHHC
                                           ,6HEC33
   2
      6HHK 33
                        ,6HEC11
                                  ,6HEC22
   2
      6HEC 23
               , 6HEC 31
                        ,6HEC12
                                  ,6HNUC12 ,6HNUC21 ,6HNUC13 ,
      6HNUC31,6HNUC23,6HNUC32,6HZCGC
                                            ,6HB2DEC ,6HCC11
                                                               •6HEC22
                                 •6HCC23
                                            ,6HCC33
                                                     ,6HEC11
   2
               ,6HCC13
      6HCC 12
                        ,6HCC22
              ,6HNUC12 ,6HNUC21 ,6HCSN13 ,6HCSN31 ,6HCSN23 ,
      6HEC 12
                                                               ,6HHK12
     6HCSN32,6HCTE11,6HCTE22,6HCTE12,6HHK11
                                                     ,6HHK22
      6HHHC
205 FORMAT(A6,4X,3E14.4,1X,3E14.4,A6,1E14.4)
210 FORMAT(/)
215 FORMAT(//)
216 FORMAT(1H1)
220 FORMAT(//7H FORCES, 34X, 29H FORCE DISPLACEMENT RELATIONS,
      29X, 6H DISPL, 7X, 15H THERMAL FORCES)
225 FORMAT(//77H COMPOSITE PROPERTIES - VALID ONLY FOR CONSTANT TEMPER
   2ATURE THROUGH THICKNESS)
226 FORMAT(60H LINES 1 TO 31 3-D COMPOSITE PROPERTIES ABOUT MATERIAL
   2AXES1
227 FORMAT(63H LINES 33 TO 54 2-D COMPOSITE PROPERTIES ABOUT STRUCTUR
   2AL AXES)
    CZ = 0.0
    DO 230 J = 1.NL
    CG IS TAKEN AT THE GEOMETRIC CENTER
    CZ = C2+PL(7,J)
230 PL(10,J) = CZ-(0.5*PL(7,J))
    PC(31) = CZ/2.0
    ZBC = PC(31)
    DO 235 I = 1.NL
235 PL(11,I) = PL(10,I) - ZBC
    END CALCULATIONS FOR CG
    D0 240 K = 1.3
    MT(K) = 0.0
240 \text{ NT(K)} = 0.0
    DO 245 K = 1.3
    00\ 245\ L = 1.3
```

```
EC(K,L) = 0.0
    FC(K,L) = 0.0
    CC(K,L) = 0.0
     S(K,L) = 0.0
     R(K_{\bullet}L) = 0.0
245 \text{ FL(K,L)} = 0.0
    BEGIN J LOOP***
    DO 290 J = 1,NL
    EL(1,1) = 1.0/PL(31,J)
    EL(2,2) = 1.0/PL(32,J)
    EL(3,3) = 1.0/PL(36,J)
    EL(1,2) = -PL(38,J)/PL(32,J)
    EL(2,1) = -PL(37,J)/PL(31,J)
    CALL INVA (3,EL,EL)
    TH = PL(14,J)
    R(1,1) = COS(TH)*COS(TH)
    R(2,2) = COS(TH)*COS(TH)
    R(1,2) = SIN(TH) * SIN(TH)
    R(2,1) = SIN(TH)*SIN(TH)
    R(1,3) = 0.5*SIN(2.0*TH)
    R(3,2) = SIN(2.0 *TH)
    R(3,3) = COS(2.0 *TH)
    R(2,3) = -R(1,3)
    R(3,1) = -R(3,2)
    D0 250 K = 1.3
    DD 250 L = 1.3
250 RT(K,L) = R(L,K)
    IF(J .LE. 1) GO TO 255
    SI = SIN(2.0*TH)
    JM1 = J-1
    S2 = SIN(2.0*PL(13.JM1.))
    S3 = CCS(2.0*TH)
    S4 = CCS(2.0*PL(13,JM1))
    S(2,2) = (S1-S2)*(S1-S2)
    S(1,1) = (S1-S2)*(S1-S2)
    S(2,1) = -S(1,1)
    S(1,2) = S(2,1)
    S(3,3) = (S3-S4)*(S3-S4)
    S(3,1) = -(S1-S2)*(S3-S4)
    S(1,3) = -(S1-S2)*(S3-S4)
    S(3,2) = (S1-S2)*(S3-S4)
    S(2,3) = S(3,2)
255 \text{ S4} = 0.5 \text{*PL}(7, J)
    S1 = PL(10,J)-PC(31)+S4
    S2 = PL(10,J)-PC(31)-S4
    S5 = C.5*(S1*S1-S2*S2)
    IF (J .LE. 1) GO TO 265
DO 260 K = 1.3
    00 \ 260 \ L = 1.3
26C S(K,L) = 0.25*PL(9,J)*S(K,L)
    56 = 0.25*(PL(8,J)-PL(8,JM1))
    S6 = S6+S4+PL(10,JM1)-PC(31)
265 IF (J .GT. 1) GO TO 270
     S6 = C.0
270 \ D0 \ 275 \ K = 1.3
    DO 275 L = 1.3
     D1(K,L) = 0.0
     DD 275 M = 1.3
```

```
275 D1(K,L) =
                            D1(K,L)+(RT(K,M)*EL(M,L))
      00 280 K = 1.3
      00 280 L = 1.3
      02(K_{\bullet}L) = 0.0
      DO 280 M = 1.3
  280 D2(K,L) = D2(K,L)+(D1(K,M)*R(M,L))
      DO 285 K = 1.3
      00.285 L = 1.3
      S7 = 0.0
      S7 = (S1-S2)*D2(K,L)+S(K,L)
      EC(K,L) = EC(K,L) + S7
      57 = 0.0
      S7 = S5*D2(K,L) + S6*S(K,L)
      CC(K,L) = CC(K,L) + S7
      S7 = 0.0
      S7 = (1.3/3.0)*((S1*S1*S1)-(S2*S2*S2))*D2(K,L)+((S6*S6)*S(K,L))
  285 FC(K,L) = FC(K,L) + S7
      CTL(1) = PL(24,J)
      CTL(2) = PL(25,J)
      CTL(3) = 0.0
      00 290 K = 1.3
      04(K) = 0.0
      DO 291 L = 1.3
  291 D4(K) = D4(K)+(D1(K,L)*CTL(L))
      NT(K) = NT(K) + (PL(50, J) *D4(K) *PL(7, J))
  290 MT(K) = MT(K)+(S5*PL(50,J)*D4(K))
C
      END J LOOP***
      00 295 K = 1.3
      DO 295 L = 1.3
  295 D1(K,L) = EC(K,L)/CZ
      CALL INVA(3,D1,D2)
      PC(33) = D1(1,1)
      PC(34) = D1(1,2)
      PC(35) = D1(1,3)
      PC(36) = D1(2,2)
      PC(37) = D1(2,3)
      PC(38) = D1(3,3)
      PC(39) = 1.0/D2(1.1)
      PC(40) = 1.0/02(2.2)
      PC(41) = 1.0/D2(3.3)
      PC(42) = -D2(2,1)/D2(1,1)
      PC(43) = -02(1,2)/02(2,2)
      PC(44) = -D2(3,1)/D2(1,1)
      PC(45) = -D2(1,3)/D2(3,3)
      PC(46) = -02(3,2)/02(2,2)
      PC(47) = -02(2,3)/02(3,3)
      D0 305 I = 1.3
      00 \ 300 \ J = 1.3
      AXC(I,J) = EC(I,J)
      CPC(I,J) = CC(I,J)
  300 \text{ FLC}(I,J) = \text{FC}(I,J)
      NSDT(I) = NT(I)
  305 \text{ MSDT(I)} = \text{MT(I)}
      WRITE(6,225)
      WR ITE (6, 226)
      WRITE (6,227)
      DO 310 I = 1.54
  310 WRITE(6,320) I, PROPC(I), PC(I)
```

```
320 FORMAT(13,3X,A6,E14.4)
    WR ITE (6, 216)
    WRITE(6,220)
    WRITE (6,210)
330 FORMAT(2X,A6,4X,3E14.4,1X,3E14.4,3X,A6,4X,E14.4)
    DO 335 I = 1.3
    WRITE(6,210)
335 WRITE((6,330)) RESF((1),((EC(1,J),J=1,3)),((CC(1,J),J=1,3))
   2 DISP(I), NT(I)
    WR ITE (6,210)
    DO 340 I = 4.6
    IM3 = I-3
    WRITE(6,210)
340 WRITE(\epsilon, 330) RESF(I),(CC(J,IM3),J = 1,3),(FC(IM3,J),J = 1,3),
   2 DISP(I), MT(IM3)
    CALL INVA (3,EC,EC)
    DO 345 I = 1.3
    DO 345 J = 1.3
    FC(I,J) = 0.0
    DO 345 K = 1.3
    DO 345 L = 1.3
345 FC(I,J) = FC(I,J)+CC(I,K)*EC(K,L)*CC(L,J)
    00 350 I = 1.3
    DO 35C J = 1,3
350 RDC(I,J) = FLC(I,J) - FC(I,J)
    WR ITE (6, 215)
355 FORMATI27H REDUCED BENDING REGIDITIES)
    WR ITE (6, 355)
    WRITE (6,210)
360 FORMAT(9813.5)
    WRITE(6,360)
                  ((RDC(I,J), J = 1,3), I = 1,3)
    WRITE (6,215)
    D0 361 I = 1.3
    D0^{\circ} 361 J = 1.3
361 FC(I,J) = FLC(I,J)
    CALL INVA (3,FC,FC)
    DO 362 I = 1.3
    00 \ 362 \ J = 1.3
    D3(I,J) = 0.0
    DD 362 K = 1.3
    DO 362 L = 1.3
362 \ D3(I,J) = D3(I,J) + CC(I,K)*FC(K,L)*CC(L,J)
    DO 363 I = 1.3
       363 J = 1,3
363 \text{ RAC}(I,J) = \text{AXC}(I,J) - \text{D3}(I,J)
    WRITE (6,215)
364 FORMAT(25H REDUCED STIFFNESS MATRIX)
    WR ITE (6, 364)
    WR ITE (6, 360)
                   ((RAC(I,J),J = 1,3),I = 1,3)
    WRITE(6,215)
    RETURN
    END
```

```
SUBROUTINE GPHK(CF, CM, R, Q, CP)
      REAL R
      LOGICAL TLINP, CSANB, BIDE, RINDV
      REAL NUF12, NUF23, NUF13, NUF21, NUF32, NUF31,
           NUL12, NUL23, NUL13, NUL21, NUL32, NUL31,
           NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
           LSC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT
     2
      COMMON
     2 EM22,EM11,EM23,EM12,NUM21,NUM12,NUM23,
       EF22,EF11,EF23,EF12,NUF21,NUF12,NUF23,
        EM33, NUM13, RHOM, ECM(3,3), EM13, VAM(3), AXC(3,3), FLC(3,3),
        EF33, NUF13, RHOF, ECF (3,3), EF13, VAF (3),
        BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
                CHK(3,4),BTA(4),TLINP,DIAF,NFPE,PIE,
                MBS(3,10), RAC(3,3), DISV1(10,6),
     2 CSANB, NPL, NL, NSDT(3), VCF(2,10), NUM32, BIDE, MSDT(3), RINDV
      GENERATES PLY HEAT CONDUCTIVITIES
C
      S1 = (1.0-CM/CF)
      S2 = Q*SQRT(R)
      S1 = (1.0/S2)-S1
      IF($1 .GT.0.0) GO TO 525
  520 FORMAT (23H BETA TOO LARGE IN GPHK)
      WRITE (6,520)
  525 IF (S1 .LE. 0.0) GO TO 530
      CP = 1.0-S2+(1.0/S1)
  530 CP = CP*CM
      RETURN
      END
```

```
SUBRULTINE GECL (KV, KF)
C
      GENERATES ECL FROM CONSTITUENT PROPERTIES
      REAL KV, KF, KFB, KMB, IMI, IM2, INVECL, KM
      DIMENSION CFL (3,3), VAL(3)
                                    ,CML(3,3),CMLT(3,3),IM1(3,3),IM2(3,3),
     2 ECL(3,3),CFLT(3,3),INVECL(3,3)
      LOGICAL TLINP, CSANB, BIDE, RIND V
      REAL NUF12, NUF23, NUF13, NUF21, NUF32, NUF31,
            NIL12, NUL23, NUL13, NUL21, NUL32, NUL31,
           NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
            LSC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT
      COMMUNIMAGE/J
      COMMEN
     2 EM22, EM11, EM23, EM12, NUM21, NUM12, NUM23,
     2 EF22, EF11, EF23, EF12, NUF21, NUF12, NUF23,
       -EM32,NUM13,RHOM,ECM(3,3),EM13,VAM(3),AXC(3,3),FLC(3,3),
        EF33, NUF 13, RHOF, ECF (3,3), EF13, VAF (3).
        BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
                CHK(3,4), BTA(4), TLINP. DIAF, NEPE, PIE,
                MBS(3,10), RAC(3,3), DISVI(10,6),
       CSANB, NPL, NL, NSDT(3), VCF(2,10), NUM32, BIDE, MSDT(3), PINBV
      IF (EF11 .NE. EF22) GO TO 535
      NUF21 = NUF12
      EF12 = EF11/(2.0*(1.0+NUF12))
  535 IF (EF11 .EQ.EF22) GU TO 540
      NUF 21 = NUF12* (EF22/EF11)
  540 IF (EF11 .NE. EF33) GU TO 545
      NUF31 = NUF13
      EF13 = EF11/(2.0*(1.0+NUF13))
  545 IF (EF11 .EQ. EF33) GU TO 550
      NUF31 = NUF13*(EF33/EF11)
  550 IF (EF22 .NE. EF33) GO TO 555
      NUE32 = NLE23
      EF23 = EF22/(2.0*(1.0+NUF23))
  555 IF (EF22 .EQ. EF33) GO TO 560
      NUF32 = NUF23*(EF33/FF22)
  560 IF (EM 11 .NE. EM22) GD TO 565
      NUM21 = NUM12
      EM12 = EM11/(2.0*(1.0+NUM12))
  565 IF (EM11 .EQ. EM2Z) GO TO 570
      NUM 21 = NUM 12* (EM 22 / EM 11)
  570 IF(EM11 .NE. EM33) GO TO 575
      NUM3I = NUM13
      EM13 = EM11/(2.0*(1.0+NUM13))
  575 IF (EMIL .EQ. EM33) GO TO 580
      NUM 31 = NUM 13* (EM33 / EM11)
  580 IF (EM22 .NE. EM33) GO TO 585
      NUM32 = NUM23
      EM23 = EM22/(2.0*(1.0*NUM23))
  585 IF (EM22 .EQ. EM33) GO TO 590
      NUM 32 = NUM 23* (EM 33/EM 22)
  590 KFB = (1.0-KV)*KF
      KMB = (1.0-KF)*(1.0-KV)
      CF = KFB/KF
      KM = 1.0-KF
      PL(3,J) = KFB
      PL(4.J) = 1.0-KF
      PL(5,J) = KMB
      PL(6,J) = RHOM*KMB+RHOF*KFB
      IF (.NOT. TLINP) PL(7,J)=SQRT(PIE*(FLOAT(NEPE))/(4.0*KFB))*DIAF
      IF (.NOT. TLINP) PL(7,J) = PL(7,J)/SQRT(VCF(1,8))
      S1 = PIE/4.0/KFB
```

```
S1 = SQRT(S1)-1.0
    PL(8,J) = S1*DIAF
    IF (VCF(1,1) .EQ. 0.0) GO TO 595
    CM = (1.0/KMB)**(1.0/VCF(1.1))
595 IF (VCF(1,1) .NE. 0.3) GO TO 600
    CM = VCF(2,1)
6CC CM = (1.0-KV)*CM
    A = ((1.)/EF11) + (1.0/EM11) * (KFB/KMB))
    B = ((1.0/EM11) + (1.0/EF11) * (KM8/KF8))
    ECF(1,1) = 1.0/EF11
    ECM(1,1) = 1.0/EM11
    ECF(1,2) = -NUF21/EF22
    ECM(1,2) = -NLM21/FM22
    ECF(1,3) = -NLF31/EF33
    ECM(1, 3) = -NUM31/EM33
    ECF(2,2) = 1.0/EF22
    ECM(2.2) = 1.0/EM22
    ECF(2,1) = -NLF12/EF11
    ECM(2,1) = -NUM12/EM11
    ECF(2,3) = -NUF32/EF33
    ECM(2,3) = -NUM32/EM33
    ECF(3,3) = 1.0/EF33
    ECM(3,3) = 1.0/EM33
    ECF(3,1) = -NUF13/EF11
    ECM(3,1) = -NUM13/EM11
    ECF(3,2) = -NUF23/EF22
    ECM(3,2) = -NUM23/EM22
    00.665 I = 1.3
    DO 605 L = 1.3
    CML(1,L) = 0.0
605 \text{ CFL(I,L)} = 0.0
    CFL(1,1) = 1.0/(A*KMB*EMI1)
    CFL(2,2) = 1.0/CF
    CFL(3,3) = 1.0/CF
    CFL(1,2) = (1.0/A)*((NUF21/(CF*EF22))-(NUM21/(CM*EM22)))
    CFL(1,3) = (1.C/A)*((NUF31/(CF*EF33))-(NUM31/(CM*EM33)))
    CML(1,1) = 1.0/(8*KF6*FF11)
    CML(2,2) = 1.0/CM
    CML(3.3) = 1.0/CM
   CML(1,2) = (1.078)*((NUM21/(CM*EM22))-(NUF21/(CF*EF22)))
   CML(1,3) = (1.0/B)*((NUM31/(CM*EM33))-(NUF31/(CF*EF33)))
    D0 610 I = 1.3
    00.616 L = 1.3
    CFLT(I,L) = CFL(L,I)
61C CMLT(I_0L) = CML(L_0I)
    00 620 I = 1.3
    00 620 L = 1,3
    IM2(1,L) = 0.0
    IMI(I,L) = 0.0
   DO 620 K = 1.3
    IMI(I,L) = IMI(I,L) + (CFLT(I,K) * ECF(K,L))
62(IM2(I,L) = IM2(I,L)+(CMLT(I,K)*ECM(K,L))
    DO 635 I = 1.3
    D0 = 635 L = 1.3
    S2 = 0.0
    S1 = 3.0
    00 630 K = 1.3
    S1 = SI+(IM1(I,K)*CFL(K,L))
```

```
630 S2 = S2 + (IM2(I,K) * CML(K,L))
 635 \text{ ECL(I,L)} = \text{SI*KFB+S2*KMB}
     EL11 = 1.0/ECL(1,1)
     EL22 = 1.0/ECL(2,2)
     EL33 = 1.0/ECL(3.3)
     NUL 12 = -ECL(2.1)/ECL(1.1)
     NUL 21 = -ECL(1,2)/ECL(2,2)
     NUL 13 = -ECL(3,1)/ECL(1,1)
     NUL31 = -ECL(1,3)/ECL(3,3)
     NUL23 = -ECL(3,2)/ECL(2,2)
     NUL 32 = -ECL(2.3)/ECL(3.3)
     IF (VCF(1.2) .EQ. 0.0) GO TO 640
     CM = (1.0/KM) **(1.0/VCF(1.2))
640 IF (VCF(1,2) .NE. 0.0) GO TO 645
     CM = VCF(2,2)
 645 CM = (1.0-KV)*CM
     S1 = (EM12/(CF*CF*EF12))*KFB
     S2 = KMB/(CM*CM)
     EL12 = EM12/(S1+S2)
     S1 = (EM13/(CF*CF*EF13))*KFB
     S2 = KMB/(CM*CM)
     EL13 = EM13/(S1+S2)
     IF (VCF(1,3) .EQ. 0.0) GO TO 650
     CM = (1.6/KM) **(1.0/VCF(1.3))
 650 IH(VCF(1,3) .NE. 0.0) GO TO 655
     CM = VCF(2,3)
 655 \text{ CM} = (1.C-KV)*CM
     S1 = (EM23/(CF*CF*EF23))*KFB
     S2 = KM3/(CM*CM)
     EL23 = EM23/(S1+S2)
     IF (VCF(1,4) .EQ. 0.0) GO TO 656
     CM = (1.0)/KM )**(1.0)/VCF(1.4))
 656 IF(VCF(1,4) .NE. 0.0) 30 TO 657
     CM = VCF(2,4)
 657 CM = (1.)-KV)*CM
     00 658 I = 1.3
     00.658 L = 1.3
     CFL(I,L) = 0.0
 658 \text{ CML}(I,L) = 0.0
     CFL(1,1) = 1.0/(A*KMB*EM11)
     CFL(2,2) = 1.0/CF
     CFL(3,3) = 1.0/CF
```

```
CFL(1,2) = (1.C/A)*((NUF21/(CF*EF22))-(NUM21/(CM*EM22)))
    CFL(1,3) = (1.0/A)*((NUF31/(CF*EF33))-(NUM31/(CM*EM33)))
    CML(1,1) = 1.0/(B*KFB*EF11)
    CML(2,2) = 1.0/CM
    CML(3.3) = 1.0/CM
    CML(1,2) = (1.0/B)*((NUM21/(CM*EM22))-(NUF21/(CF*EF22)))
    CML(1,3) = (1.0/B)*((NUM31/(CM*EM33))-(NUF31/(CF*EF33)))
    DO 660 I = 1.3
    DO 660 L = 1.3
    CFLT(I,L) = CFL(L,I)
660 \text{ CMLT(I,L)} = \text{CML(L,I)}
    00 661 I = 1.3
    VAL(I) = 0.0
    S1 = 0.0
    S2 = C.0
    DO 661 L = 1.3
    S1 = SI+(CFLT(I,L)*VAF(L))
    S2 = S2+(CMLT(I,L)*VAM(L))
661 VAL(I) = S1*KFB+S2*KMB
    CALL INVA (3.ECL.INVECL)
    PL(15,J) = INVECL(1.1)
    PL(16,J) = INVECL(1,2)
    PL(17,J) = INVECL(1,3)
    PL(18,J) = INVECL(2,2)
    PL(19,J) = INVECL(2,3)
    PL(20,J) = INVECL(3,3)
    PL(21,J) = EL23
    PL(22,J) = EL13
    PL(22,J) = EL23
    PL(23,J) = EL12
    PL(24.J) = VAL(1)
    PL(25,J) = VAL(2)
    PL(26,J) = VAL(2)
    PL(31,J) = EL11
    PL(32,J) = EL22
    PL(33,J) = EL33
    PL(34,J) = EL23
    PL(35,J) = EL12
    PL(36.J) = EL12
    PL(37,J) = NUL12
    PL(39,J) = NUL13
    PL(38,J) = NUL21
    PL(40,J) = NUL21
    PL(41,J) = NUL23
    PL(42,J) = NUL23
    PL(30,J) = (CHK(1,4)*RHOF*KFB+CHK(2,4)*RHOM *KMB)/PL(6,J)
    D0 665 L = 1.3
    S1 = 2.0* BTA(1)*CHK(2,L)+CHK(3,4)
    S2 = KV*(CHK(2,L)-CHK(3,4))
665 \text{ CHK}(3,L) = \text{CHK}(2,L)*(S1-2.0*S2)/(-S2+S1/BTA(1))
    PL(27,J) = BTA(2)*KFB*CHK(1,1)+(1.0-KF)*CHK(3,1)
    DO 670 L = 2,3
    L26 = 26+L
    CHK1L = CHK(1,L)
    CHK3L = CHK(3,L)
    LP1 = L+1
    BTAL = BTA(LP1)
    CALL GPHK(CHK1L,CHK3L,KFB,BTAL,PLL26J)
670 \text{ PL}(L26,J) = \text{PLL26J}
    RETURN
    END
```

```
SUBROUTINE GSMF(SL11, SL22, SL12, SL23, KV, KF, J)
C
      GENERATES TRANSVERSE AND TWO SHEAR MAGNIFICATION FACTORS
      REAL KV.KF.KFB.KMB.MF22.MF12.MF23
      DIMENSION VMF(10)
      LOGICAL TLINP . CSANB . BIDE . RIND V
      REAL NUF12, NUF23, NUF13, NUF21, NUF32, NUF31,
            NUL12, NUL23, NUL13, NUL21, NUL32, NUL31,
            NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
            LSC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT
      COMMON
        EM22, EM11, EM23, EM12, NUM21, NUM12, NUM23,
        EF22, EF11, EF23, EF12, NUF21, NUF12, NUF23,
        EF33.NUF13.RHOF.ECF(3.3), EF13.VAF(3),
        EM33, NUM13, RHOM, ECM(3,3), EM13, VAM(3), AXC(3,3), FLC(3,3),
        BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
                CHK (3,4), BTA (4), TLINP, DIAF, NFPE, PIE,
                MBS(3,10), RAC(3,3), DISVI(10,6),
     2 CSANB, NPL, NL, NSDT(3), VCF(2,10), NUM32, BIDE, MSDT(3), RINDV
      EL11 = PL(31,J)
      EL22 = PL(32.J)
      NUL12 = PL(37.J)
      NUL21 = PL(38,J)
      VC = 4.0*KV/(PIE*(1.0-KF))
      VC = 1.0/(1.0 - SQRT(VC))
      KFB = (1.0-KV)*KF
      KMB = (1.0-KF)*(1.0-KV)
      CF = KFB/KF
      CM = KMB/(1.0-KF)
C.
      KIES EQUATION
      IF(VCF(1,5) .EQ. 0.0) GO TO 675
      P = SQRT(4.0/PIE)*(KFB**(VCF(1.5)))
  675 IF(VCF(1,5) .NE. 0.0) GO TO 680
      P = SQRT(4.0*KFB/PIE)*VCF(2,5)
  680 A = CM*EM22*(1.0-NUF12*NUF21)/(CF*EF22*(1.0-NUM12*NUM21))
      B = NUM12*CM*EM22*(1.0-NUF12*NUF21)/(CF*EF22*(1.0-NUM12*NUM21))
      S1 = (1.0-(NUL21*P*(NUF12-B)))*(1.0/EL22)*SL22
      S2 = (1.0/EL11)*(P*(NUF12-B)-NUL12)*SL11
      S3 = (1.0/(1.0+P*(A-1.0)))*(S1+S2)
      S4 = (SL22/EL22) - (NUL12*SL11/EL11)
      IF (ABS(S4) - C.5)
                            681, 681, 682
  681 \text{ MF22} = 1.0
      GO TO 683
  682 \text{ MF}22 = S3/S4
       IF (MF22 .LT. 1.0) GO TO 684
      GO TO 683
  684 MF22 = 1.0
  683 VMF(1) = MF22*VC
C
      DANNIELS EQUATION
      S1 = SQRT(PIE/KFB)
      S1 = (S1-2.0)
      S1 = 0.83 * S1 * S1 - 1.35 * S1 + 1.78
      MF22 = S1*(1.0-NUM23*NUM32)*(EL22/EM22)
      MF22 = MF22*VC
      VMF(2) = MF22
      KIES 1-D MAGNIFICATION FACTOR
C
      P = SQRT(4.0*KFB/PIE)*VCF(2.5)
      S1 = CM*EM22/(CF*EF22)
      S1 = 1.0-P*(1.0-S1)
      MF22 = 1.0/S1
```

```
FF22 = MF22*VC
    VMF(5) = MF22
    IF (VCF(1,6) .EQ. 0.0) GO TO 695
    P = KFB**(1.0/VCF(1.6))
695 IF (VCF(1,6) .NE. 0.0) GO TO 700
   P = SQRT(4.0*KFB/PIE)*VCF(2.6)
700 \text{ S1} = (CM*EM12/(CF*EF12))
    S3 = 1.0 - (P*(1.0-S1))
    MF12 = 1.0/S3
    IF (VCF(1,7) .EQ. 0.0) GO TO 701
    P = KFB**(1.0/VCF(1.7))
701 IF(VCF(1,7) .NE. 0.0) GQ TO 702
    P = SQRT(4.0*KFB/PIE)*VCF(2.7)
702 S1 = CM*EM23/(CF*EF23)
    S3 = 2.0*(1.0-P)+((2.0*P-1.0)*S1)
    MF23 = 1.0/S3
    VMF(6) = MF12*VC
    VMF(7) = MF23*VC
    PL(43,J) = VMF(5)
    PL(44,J) = VMF(2)
    PL(45,J) = VMF(1)
    PL(46.J) = VMF(3)
    PL(47,J) = VMF(6)
    PL(48,J) = VMF(7)
    RETURN
    END
```

```
SUBROLTINE COMSA(M)
C
      COMPUTES STRAIN AND STRESSES IN THE LAYERS GIVEN THE PRESCRIBED
        EDGE FORCES, LAYER TEMP. AND CURVATURES
      REAL KL12,NS,LV,MS
      DIMENSION
                           AIN(3,3),NS(3),RL(3,3),AL(3),EL(3,3),
     2CE(6,6),CEIN(6,6),LV(6),DISV(6),MS(3),
     2 TS1(3), TS2(3), SIGL(3), EPSL(3)
      LUGICAL TLINP, CSANB, BIDE, RINDV
  679 FORMAT(1H1)
  680 FORMAT(/)
  681 FORMAT(//)
  682 FORMAT(//6H DISP., 34X, 29H DISPLACEMENT FORCE RELATIONS, 43X,
        7H FORCESI
  683 FORMAT(2X,A6,4X,3E14,4,1X,3E14,4,15X,A6)
  684 FORMAT(
                 E12.4,8X,3E14.4,1X,3E14.4,3X,E14.4)
      REAL NUF12, NUF23, NUF13, NUF21, NUF32, NUF31,
     2
            NUL12, NUL23, NUL13, NUL21, NUL32, NUL31,
     2
            NUM12, NUM23, NUM13, NUM21, NUM32, NUM31,
     2
            L SC, MLR, NBS, MBS, KVL, KFL, NSDT, MSDT
      COMMON
     2 EM22.EM11.EM23.EM12.NUM21.NUM12.NUM23.
     2 EF22.EF11.EF23.EF12.NUF21.NUF12.NUF23.
        EM32.NUM13.RHOM.ECM(3,3),EM13.VAM(3),AXC(3,3),FLC(3,3),
        EF33, NUF13, RHOF, ECF (3,3), EF13, VAF (3),
        BET(2,8),NBS(3,10),PL(71,50),WXX(3),LSC(6),PC(54),CPC(3,3),
                CHK (3,4), BTA (4), TLINP, DIAF, NFPE, PIE,
                MBS(3,10), RAC(3,3), DISV1(10,6),
     2 CSANB, NPL, NL, NSDT(3), VCF(2,10), NUM32, BTDE, MSDT(3), RINDV
      COMMON/GPCOM/RESF(6),DISP(6)
      CALL INVA (3, AXC, AIN)
      00.685 I = 1.3
      MS(I) = MBS(I \cdot M)
  685 \text{ NS(I)} = \text{NBS(I,M)}
      CC=0.0
      00 678 I = 1.3
  678 \text{ CC} = AMAXI(CC,ABS(MS(I)))
      D0.688I = 1.3
      09 638 J = 1.3
      CE(I,J) = AXC(I,J)
      JP3 = J + 3
      IP3 = I + 3
      CE(I,JP3) = CPC(I,J)
      CE(IP3,J) = CPC(I,J)
 688 \text{ CE}(IP3.JP3) = FLC(I.J)
      CALL INVA (6, CE, CEIN)
      IF (.NCT. RINDV) GO TO 677
      00 675 J = 1.6
 \epsilon 75 \text{ DISV}(J) = \text{DISV}(M,J)
      GO TO 695
 677 CUNTINUE
      00.689 I = 1.3
      LV(I) = NS(I) + NSDT(I)
      IP3 = I + 3
 689 \text{ LV(IP3)} = MS(I) + MSDT(I)
      DD 691 I = 1.6
      DISV(I) = 0.0
      00 691 K = 1.6
 691 DISV(I) = DISV(I) + CEIN(I,K) *LV(K)
```

```
695 CONTINUE
       00.692 I = 1.3
       IP3 = I + 3
  692 \text{ WXX}(I) = DISV(IP3)
       WRITE (6,679)
       WRITE (6,682)
       WRITE (6,680)
       00 686 I = 1,3
       WRITE(6,680)
  686 WRITE(6,683)
                     DISP(I), (CEIN(I, J), J = 1,6), RESF(I)
       WRITE (6,680)
       DO 687 I = 4,6
       WR ITE (6,680)
  687 \text{ WRITE}(6,683) \text{ DISP}(I), (CEIN(I,J), J = 1,6), RESF(I)
       IF (RINDV) GO TO 696
       DD 690 I = 1.6
       DISV(I) = 0.0
       DO 690 J = 1.6
  69C DISV(I) = DISV(I) + CEIN(I,J)*LV(J)
       GO TO 698
  696 CONTINUE
      CALL INVA (6, CEIN, CEIN)
      00 697 I = 1.6
      LV(I) = 0.0
      D0 697 J = 1,6
  697 \text{ LV(I)} = \text{LV(I)} + \text{CEIN(I,J)*DISV(J)}
      CALL INVA (6, CEIN, CEIN)
  698 CONTINUE
      WRITE(6,681)
      WRITE (6,682)
      WRITE(6,680)
      DO 693 I = 1.3
      WRITE (6,680)
  693 WRITE(6,684) DISV(I), (CEIN(I, J), J = 1,6), LV(I)
      WRITE (6,680)
      DO 694 I = 4,6
      WRITE (6,680)
  694 WRITE (6,684) DISV(I), (CEIN(I,J),J = 1,6),LV(I)
C
      BEGIN I - LOOP
      DO 790 I = 1.NL
      TH = PL(14,I)
      RL(2,2) = COS(TH)*COS(TH)
      RL(1,1) = COS(TH)*COS(TH)
      RL(1,2) = SIN(TH)*SIN(TH)
      RL(2,1) = SIN(TH)*SIN(TH)
      S1 = SIN(2.0*TH)
      RL(2,3) = -0.5*S1
      RL(1.3) = 0.5*S1
      RL(3,1) = -S1
      RL(3,2) = S1
      RL(3,3) = COS(2.0*TH)
      AL(1) = PL(24,1)
      AL(2) = PL(25.1)
      AL(3) = 0.0
      D0 715 J = 1.3
      00 715 K = 1,3
  715 EL(J,K) = 0.0
      EL(1,1) = 1.0/PL(31,1)
      EL(2,2) = 1.0/PL(32,I)
```

```
EL(3,3) = 1.0/PL(36.I)
    EL(1,2) = -PL(38,I)/PL(32,I)
    EL(2,1) = -PL(37,I)/PL(31,I)
    CALL INVA (3.EL.EL)
    IF (RINDV) GO TO 699
    IF (CC .NE. 0.0) GO TO 699
    DO 725 J = 1.3
    S1 = 0.0
    D0 720 K = 1,3
720 \text{ S1} = \text{S1+CPC}(J,K)*WXX(K)
725 \text{ TS1(J)} = \text{NS(J)} + \text{S1} + \text{NSDT(J)}
    DO 735 J = 1.3
    S1 = 0.0
    DO 730 K = 1,3
730 \text{ S1} = \text{S1+AIN}(J_*K)*TS1(K)
735 \text{ TS2(J)} = \text{S1-PL(11,I)*WXX(J)}
    DO 745 J = 1.3
    S1 = 0.0
    DO 740 K = 1.3
74C SI = SI+RL(J,K)*TS2(K)
745 \text{ EPSL}(J) = S1
    DO 748 J = 1.3
748 \text{ TS1(J)} = \text{EPSL(J)-(AL(J)*PL(50,I))}
    DO 755 J = 1.3
    SI = 0.0
    DO 750 K = 1.3
750 \text{ S1} = \text{S1+EL}(J.K)*TS1(K)
755 \text{ SIGL(J)} = S1
    GO TO 700
695 CONTINUE
    DO 701 J = 1.3
    TS1(J) = 0.0
701 \text{ TS1(J)} = \text{TS1(J)} + \text{DISV(J)} + \text{PL(11,I)*DISV(J+3)}
    DO 703 J = 1,3
    EPSL(J) = 0.0
    DO 703 K = 1.3
703 EPSL(J) = EPSL(J) + RL(J,K)*TSL(K)
    D0 705 J = 1.3
    SIGL(J) = 0.0
    TS2(J) = EPSL(J) - PL(50,I)*AL(J)
    DO 705 K = 1.3
705 SIGL(J) = SIGL(J) + EL(J,K)*TS2(K)
700 CONTINUE
    CONSTRUCT LAYER, COMBINED STRESS LIMIT STRENGTH CRITERION
    SIGL1 = SIGL(1)
    SIGL2 = SIGL(2)
    SIGL3 = SIGL(3)
    PLII = PL(I,I)
    PL2I = PL(2,I)
    IF (ABS(SIGL1) .EQ. 0.0) SIGL1 = .0001
    CALL GSMF(SIGL1, SIGL2, SIGL3, 1.0, PL1I, PL2I, I)
    CALL GLLSC(I)
    IF ((SIGL(1)*SIGL(2)) .LT. 0.0) GO TO 765
    IF (SIGL(1) .LT. 0.0) GO TO 760
    KL12 = BET(1,7)
    S1 = PL(51,I)
    S2 = PL(54,I)
    IF(SIGL(2) .LE. 0.0) GO TO 757
    S2 = PL(54,I)
```

C.

```
757 GO TO 780
760 IF (SIGL(1) .GE. 0.0) GO TO 765
    KL12 = BET(2,8)
    S2 = PL(55,I)
    S1 = AMIN1(PL(52,I),PL(53,I))
    GO TO 780
765 IF ((SIGL(1)*SIGL(2)) .GE. 0.0) GO TO 780
    IF (SIGL(1) .LT. 0.0) GO TO 775
    KL12 = BET(1.8)
    S1 = PL(51.I)
    S2 = PL(55.1)
    IF (SIGL(2) .GE. 0.0) GO TO 770
    S2 = PL(55,I)
77C GO TO 780
775 IF (SIGL(1) .GE. 0.0) GO TO 780
    KL12 = BET(2,7)
    S2 = PL(54.1)
    S1 = AMIN1(PL(52,I),PL(53,I))
    GO TO 780
78C KL12 = KL12*PL(61,1)
    S1 = SIGL(1)/S1
    S2 = SIGL(2)/S2
    S3 = SIGL(3)/PL(56,I)
    S4 = (S1*S1) - (KL12*S1*S2) + (S2*S2) + (S3*S3)
    PL(62, I) = 1.0-54
    S1 = AMIN1(PL(52,I),PL(53,I))
    S2 = PL(51,I)*S1
    S3 = PL(54,I)*PL(55,I)
    S2 = (SIGL(1)*SIGL(1)-SIGL(1)*SIGL(2)+(S1-PL(51+I))*SIGL(1))/S2
    S3 = (SIGL(2)*SIGL(2)+(PL(55,I)-PL(54,I))*SIGL(2))/S3
    PL(71, I) = 1.0 - (S2 + S3 + (SIGL(3) * SIGL(3) / PL(56, I) / PL(56, I)))
    IF (I .LE. 1) GO TO 785
    IM1 = I-1
    S1 = SIN(2.0*TH) - SIN(2.0*PL(14,IM1))
    S3 = COS(2.0*TH)-COS(2.0*PL(14,IM1))
    S3 = TS2(2) - TS2(1)
    S4 = 0.5*(S1*S3+S2*TS2(3))
    PL(70, I) = S4
   PL(63, I) = (PL(60, I) - ABS(S4))/PL(60, I)
785 \text{ PL}(64,I) = \text{EPSL}(1)
   PL(65, I) = EPSL(2)
    PL(66, I) = EPSL(3)
    PL(67,1) = SIGL(1)
    PL(68,1) = SIGL(2)
    PL(69,I) = SIGL(3)
    IF (.NOT. CSANB ) GO TO 790
    IF (I .NE. 2) GO TO 795
790 CONTINUE
    END I-LOOP
    GO TO 805
795 DO 800 I = 62.NPL
    DO 80C J = 3,NL,2
    PL(I,J) = PL(I,1)
    JP1 = J+1
    IF (JP1 .GT. NL) GO TO 800
    PL(I, JP1) = PL(I, 2)
80C CONTINUE
805 CONTINUE
    RETURN
    END
```

C

APPENDIX C

SAMPLE CASES

Unidirectional Composite

```
THORNEL-50/EPOXY
NL .NPL . NPC . NFPE . NLC
8 71 54 1420
 EF11, EF22, EF33, NUF12, NUF13, EF12, EF23, EF13, EM11, EM22, EM33, NUM12, NUM23 NUM13, EM12, EM23, EM13
0.50000E 08 0.10000E 07 0.10000E 07 0.20000E 03 0.25000E 03 0.20000E 00 0.13000E 07 0.70000E 06 0.13000E 07 0.57000E 06
0.57000E 06 0.57000E 06 0.36000E 00 0.36000E 00 0.36000E 00 0.36000E 00 0.
   -0.55000E-06 0.56000E-05 0.56000E-05
   0.42800E-04 0.42800E-04 0.42800E-04
   HK 0.58000E 03 0.58000E 02 0.58000E 02 0.17000E 00 0.12500E 01 0.12500E 01 0.12500E C1 0.25000E 00 0. 0.22500E 00
                                                                                                                                                                                                                                                                               0.
   0.10000E 01 0.10000E 01 0.10500E 01 0.10500E 01
   0.31416E 01
TL INP
 CSANB
 BIDE
 R INDV
THCS.RHOF.RHCM.DIAF
O.
KVL
                                0.59000E-01 0.44300E-01 0.26000E-03
                                                              0.
                                                                                           0.
                                                                                                                                                       0.
                                                                                                                                                                                     0.
    0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00
 THIC
                                                                                           0.
                                                                                                                         0.
                                                                                                                                                       0.
TL 0.80500E-02 0.80500E-02 0.80000E-02 0.80000E-02 0.80500E-02 0.80500E-02 0.80500E-02
PTEMP
-0.30000E 03 -0.30000E 03
  C.83000E 00 0.10000E 01 0.26000E 00 0.27000E 00 0.17000E 00 0.16500E 02 0.10000E 01 0.10000E 01 0.46500E-01 0.10000E 01 0.50000E 01 0.10000E 01 0.46500E-01 0.10000E 01 0.46500E-01 0.46500E-01 0.4650
LSC 0.23000E 06 0.21000E 05 0.20000E-01 0.50000E-01 0.45000E-01 0.45000E-01
NBS
0.50000E 04 0.
MBS
0.50000E 02 0.
DISVI
                                                              3-D COMPOSITE STRAIN STRESS TEMPERATURE RELATIONS - STRUCTURAL AXES
                                                                                                                                                                                                                                          -0.6138E-07
                                                                                             -0.9941E-08
                                0.3955E-07 -0.9941E-08
                              -0.9941E-08
                                                                0.1042E-05
                                                                                              -0.4266E-06
                                                                                                                              -0.
                                                                                                                                                              -0.
                                                                                                                                                                                              -0.
                                                                                                                                                                                                                                           0.2334E-04
                                                                                                0.1042E-05
                                                                                                                                                                                                n.
                                                                                                                                                                                                                                           0.2334F-04
                              -0.9941E-08 -0.4266E-06
                                                                                                                                0.
                                                                                                                                                                0.
                                                                                                                               0.2937E-05 0.
                                                                                                0.
                                                                                                                                                                                                0.
                                                                0-
                                                                                                                                                                0.2937E-05
                                0.
                                                                0.
                                                                                                0.
                                                                                                                                                                                                0.1578E-05
                                                                                                                                                                                                                                           0.
                                0.
                                                                0.
                                                                                                0.
                                                                                                                                0.
                                                                                                                                                                0.
```

3-D COMPOSITE STRESS STRAIN RELATIONS - STRUCTURAL AXES

-0.	0.	-0.	-0 ·	-0.	0.6339E 06
-0.	-0.	-0.	-0.	0.3405E 06	-0.
-0.	-0.	-0.	0.3405E 06	-0.	-0.
0.4118E 06	0.4787E 06	0.1160E 07	-0.	-0.	-0.*
0.4118E 06	0.1160E 07	0.4787E 06	-0.	-0.	0.
0.2549E/08	0.4118E 06	0.4118E 06	-0.	-0.	-0•

```
COMPOSITE PROPERTIES — VALID ONLY FOR CONSTANT TEMPERATURE THROUGH THICKNESS LINES 1 TO 13 —3 COMPOSITE PROPERTIES ABOUT MATERIAL AXES

1 RHDC 0.5165E-01

2 TC 0.6400E-01

3 CC11 0.2549E 08

4 CC12 0.4118E 06

5 CC13 0.4118E 06

6 CC22 0.1160E 07

7 CC23 0.478TE 06

8 CC33 0.1160E 07

9 CC44 0.3405E 06

10 CC55 0.3405E 06

11 CC66 0.6339E 06

12 CTE11 -0.6138E-07

13 CTE22 0.2334E-04

14 CTE33 0.2334E-04

15 HK1 0.2906E 03

16 HC2 0.3715E 01

17 HK33 0.3715E 01

18 HHC 0.2043E 00

19 EC11 0.2528E 08

20 EC22 0.3405E 06

21 EC33 0.3405E 06

22 EC3 0.3405E 06

23 EC31 0.3405E 06

24 EC12 0.6339E 06

25 NUC12 0.6339E 06

26 CC22 0.554E 00

31 CC66 0.339E 06

32 EC31 0.3405E 06

33 CC76 0.3405E 06

34 CC76 0.3405E 06

35 NUC13 0.2514E 00

36 NUC21 0.2514E 00

37 NUC32 0.4094E 00

38 DCC1 0.2514E 00

39 EC12 0.2535E 08

40 CC22 0.399F 06

41 CC12 0.6339E 06

42 NUC12 0.9541E-02

43 NUC21 0.9541E-02

44 CCN13 0.2535E 08

45 CCN3 0.090F 06

46 CC22 0.959F 06

47 CCN3 0.090F 06

48 CCC2 0.959F 06

49 CCC2 0.959F 06

40 CC22 0.959F 06

41 EC12 0.959F 06

42 NUC12 0.9541E-02

44 CCN13 0.059F 06

45 NUC21 0.9541E-02

46 CCN2 0.059F 06

47 CCN3 0.000F 06

48 CCC2 0.059F 06

49 CCC2 0.059F 06

40 CCC2 0.059F 06

41 EC12 0.059F 06

42 NUC12 0.959F 06

43 NUC21 0.9541E-02

44 CCN13 0.059F 06

45 CCN3 0.000F 06

46 CCC2 0.059F 06

47 CCN3 0.000F 06

48 CCT2 0.059F 06

49 CCC2 0.059F 06

40 CCC2 0.059F 06

40 CCC2 0.059F 06

41 EC12 0.059F 06

42 NUC12 0.059F 06

43 CCC2 0.059F 06

44 CCN13 0.000F 07

45 NUC13 0.059F 06

46 CCC2 0.059F 06

47 CCN3 0.000F 07

48 CCC2 0.059F 06

49 CCC2 0.059F 06

40 CCC2 0.059F 06

40
```

FORCES			FORCE DISPLACE	MENT RELATIONS			DI SPL	THERMAL FORCES
NX	0.1622E 07	0.1548E 05	-0.	0 • 2441 F-03	0.1907E-05	-0.	UX	-0.7849E 02
NY	0.1548E 05	0.6157E 05	0.	0.2384E-05	0.5722E-05	0.	vx	-0.4308E 03
NXY	- o • ₁	0.	0.4057E 05	-0.•	0.	0.5722E-05	VXPUY	-0.
м×	0.2441E-03	0.2384E-05	-0.	0.5537E 03	0.5283E 01	-0.	MX X:	-0.1490E-07
MY	0.1907E-05	0.57226-05	.0.	0.5283E 01	0.2102E 02	0.	WY Y	-0.5953E-37
MXY	-0.	0.	0.5722E-05	-0 .	0.	0.1385F 02	WXY	-0.

REDUCED BENDING REGIDITIES

0.55369E 03 0.52825E 01 -0. 0.52825E 01 0.21016E 02 0. -0. 0. 0.13847E 02

DISP.			DISPLACE	MENT FO	RCE RELA	TIONS					FORCES	
ÚΧ	U. 61 80E - 06	-0.1553E	-06 0.		-0.272	3E-12	0.546	6E-13	-0.		NX	
٧x	-0.1553E-06	0.1628E	-04 -0.		0.406	4E-13	-0.442	9E-11	0.		NY	
VXPUY	-0.	0.	0.246	5E-04	0.		-0.		-0.101	9E-10	NXY	
₩XX	-0.2723E-12	0.5466E	-13 -0.		0.181	0 E-02	-0.455	1E-03	0.		МX	
WYY	U.4064E-13	-0.4429E	-11 0.		-0.455	1E-03	0.477	0E-01	-0.		MY	
WXY	0.	0.	-0.101	9E-10	0.		0.		0.7222	2F-01	MXY	
DISP.			DISPLACE	MENT FO	RCE RELA	r ions					FORCES	
0.31C8E-02	0.61	180E-06	-0.1553E-06	0.		~0.27	23 E- 12	0.546	6E-13	-0.	0.49228 0	4
-0.7778E-C2	-0:19	553E-06	0.1628E-04	-0.		0 • 40	64E-13	-0.442	9E-11	0.	-0.4308E 0	3
0.	-0.		0.	0.246	65E-04	0.		-0.		-0.1019E-10	÷0•	
0.9052E-C1	-0.2	723E-12	0.5466E-13	-0.		0.18	10E-02	-0.455	1E~03	0.	0.5000E 0	2
~0.2275E-01	0.40	064E-13	-0.4429E-11	0.		-0.45	51E-03	0.477	CE-01	-0.	-0.5960E-0	7
-0.	0.		0.	-0.10	19E-10	0.		0.		0.7222E-01	-0.	
FOR THIS CASE	E NBS(X.Y.XY-M)	IS	5000.	э.	0.							
FOR THIS CASE	MBS(X,Y,XY~M)	15	50.	٥.	0.							
LAVER PROPERT	ries, anws-pani	PERTY - CON	IIMNS-I AYER									

ì	ΚV	0.	0.	0.	0 •	0.	0.	9.	0.
2	KF	0.5000E 00	0.5000E 00	0.5000E 00	0.5030E 00	0.5000E 00	0.500 DE 00	9.5000E 00	0.5000F 00
3	KFB	0.5000E 00	0.5000E 00	0.5000E 00	0.500 DE 00	0.5000E 00	0.5000E 00	0.50005 00	0.5000E 00
4	ĶМ	J. 5000E 00	0.5000E 00	3.5000€ 00	0.5000E 00				
5	кмв	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.50005 00	0.5000E 00	0.5000E 00
6	RHOL	0.51658-01	0.5165E-01	0.5165E-01	0.51658-01	0.5165E-01	0.5165E-01	0.51658-01	0.51658-31
7	TL.	0.80036-02	0. 3000E -02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8070E-02
8	DEL TA	0.65866-04	0.6586E-04	0.6585E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.65868-04	0.6586E-04
9	ILOC	-0.00C0E-19	0.	0.	0.	0.	0.	0.	Ģ.
10	ZB	U. 4000E-02	0.1200E-01	0.20008-01	0.2800E-01	0.3600E-01	0.4400E-01	0.5200E-01	0.6000F-01
11	ZGC	-0.2800t-01	-0.2000E-01	-0.12006-01	-0.4000E-02	0.4000E-02	0.12005-01	0.20008-01	0.2803E-31
12	THC S	0.	0.	0.	0.	0.	0.	0.).
13	THLC	o.	0.	0.	0.	0.	0.	0.	0.
14	THLS	0.	0.	0.	0.	0.	0.	0.	0.
15	SC 11	U. 2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08
16	SC 12	0.4118E 06	0.4118E 06	0.4113E J6	0.4118E 96	0.4119E 06	0.41185 06	0.4118E 36	0.4118E 06
17	SC 13	0.4118E 96	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 05	J.4118E 06
18	SC 22	0.1160E 0/	0.1160E 07	0.11605 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160F 07	0.1160E 37
19	SC 23	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.47875 06	0.4797E 06	0.4787F 36
20	SC 33	0.116JE 07	0.1160E 07	0.1163E 97	0.1160E 07	0.1160E C7	0.1160E 07	0.1160E 07	0.1160E 07
21	SC 44	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 05	0.3405E 36
22	SC 55	0.3405E 06	0.3405E 06	0.34055 06	0.3405E 06				
23	SC 66	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.5339E 06
24	CTEIL	-0.6138E-07	-0.5138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.61385-07	-0.51385-07	-0.513RE-07
25	CTE2Z	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-14
26	CTE33	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.23346-04	0.2334E-04	0.2334E-74
27	HK 1 1	U. 2906E 03	0.2906E 03	0.2905E 03	0.29368 03	0.2905E 03	0.2906E 03	0.29065 03	0.2906E 03
28	FK 22	0.3715E 01	0.37158 01	0.37156 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	3.3715E 01
29	HK 33	0.3715E 01	0.3715E 01	0.3715E 01	0.3715F 01	0.3715E 01	0.37155 01	0.3715E 01	0.3715E 01
30	HCL	J. 2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	9.2043E 00
31	EL 11	0.2528E 08	0.2528F 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08
32	EL 22	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597F 06
33	EL 33	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 96	0.9597E 06	0.9597E 05	0.9597E 36
34	GL 23	0.3405E 06	0.3405E 06	0.3405 E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405F 05	0.3405E 06
35	GL 13	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.5339E 06
36	GL 12	0.6339E 06	0.63398 06	0.6337E 76	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 05
37	NUL 1 2	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00
38	NUL 2 1	0.95416-02	0.9541E-02	0.9541E-02	0.954 IE-02	0.9541E-02	0.95416-02	0.9541E-02	0.9541E-72
39	NUL 13	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	7.2514E 00
40	NUL 31	U.9541E-02	0.9541E-02	0.9541E-02	0.954 LE-02	0.9541E-02	0.9541E-02	0.9541E-02	0.95418-02

```
0.4094E 00
0.4094E 00
0.1522E 91
0.1918E 01
0.1537E 01
            NUL 23
NUL 32
SM FK 22
SM FD 22
                                         0.4094E 00
0.4094E 00
0.1522E 01
0.1914E 01
                                                                           0.4094E 00
0.4094E 00
0.1522E 01
0.1918E 01
                                                                                                                                                0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                                                                  0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                                                                                                     0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                                                                                                                                       0.4094E 00
0.4094E 00
0.1522E 01
0.1918E 01
                                                                                                                                                                                                                                                                                         0.4094E 00
0.4094E 00
0.1522E 01
0.1918E 01
442344567890123456789012345678
                                                                                                                                                0-19186 01
                                                                                                                                                                                   0-1918F 01
                                                                                                                                                                                                                     0.19186 01
            SMFS22
SMFC22
SMFS12
                                        0.1537E 01
-0.0000E-19
                                                                          0.1537E 01
-0.0000E-19
                                                                                                                                                                                  0.1537E 01
-0.0000E-19
                                                                                                                                                                                                                                                       0.1537E 01
0.0000E-19
                                                                                                                                                                                                                                                                                         0.1537F 31
-0.3330E-19
0.3324E 01
                                                                                                             -0.3003E-19
                                                                                                                                               -0.0000E-19
                                                                                                              0.3024E 01
                                                                                                                                                                                                                                                        0.3024E 01
                                         0.3024E 01
                                                                            0.3024E 01
                                                                                                                                                0.3024E 01
                                                                                                                                                                                  0.3024E 01
                                                                                                                                                                                                                     0.3024E 01
                                                                                                                                                                                                                                                        0.1396E 01
0.7060E 02
0.3000E 03
0.9676E 05
            SMFS 23
ILMFC
                                        0.1396E 01
-0.0000E-19
                                                                        0.1396E 01
0.7060E 02
-0.3000E 03
                                                                                                            0.1396E 01
0.7063E 02
-0.3303E 03
0.9676E 05
                                                                                                                                               0.1396E 01
0.7060E 32
-0.3030E 03
                                                                                                                                                                                 0.1396E
0.7060E
-0.3000E
                                                                                                                                                                                                                   0.1396E
0.7060E
-0.3000E
                                                                                                                                                                                                                                                    0.1396E
0.7060E
-0.30005
                                                                                                                                                                                                                                                                                        0.1396F
0.7369F
-0.3203€
                                       -0.3000E 03
0.9676E 05
0.5333E 05
0.6578E 05
             TEMPO
                                                                                                                                                                                                                                                                                         -0.3203€ 33
0.9675E 35
            LSC117
LSC11C
LSC11D
                                                                           0.9676E 05
0.5333E 05
0.6578E 05
                                                                                                                                                0.96765 05
                                                                                                                                                                                   0.9676E 05
                                                                                                                                                                                                                     0.96765 05
                                                                                                                                                                                  0.9676E 05
0.5333E 05
0.6578E 05
0.3248E 04
0.1561E 05
0.2547E 04
0.1866E 04
                                                                                                                                                                                                                                                    0.9676E 05
0.5333E 05
0.5248E 05
0.1561E 05
0.2547E 04
0.1866E 04
~0.000E=19
                                                                                                                                                                                                                     0.9676E 05
0.6578E 05
0.3248E 04
0.1561E 05
                                                                                                                                                                                                                                                                                         0.5333F 05
0.6578E 05
0.3248E 04
                                                                                                             0.5333E 05
0.6578E 05
                                                                                                                                                0.5333E 05
0.6578E 05
            LSC22T
LSC22C
LSC12
                                         0.3248E 04
0.1561E 05
0.2547E 04
                                                                            0.3248E 04
0.1561E 05
0.2547E 04
                                                                                                             0.3248E 04
0.1561E 05
0.2547E 04
0.1865E 04
                                                                                                                                                0.3248E 04
0.1561E 05
0.2547E 04
                                                                                                                                                                                                                                                                                         0.1561E 05
0.2547F 04
0.1866E 04
                                                                                                                                                                                                                     0.2547E 04
0.1866E 04
            LSC23
                                        0.1866E 04
-0.0000E-19
                                                                            0.1866E 04
                                                                                                                                                0.1866E 04
            LSCC 23
LSCC 13
LSCOF
                                                                         -0.0000E-19
                                                                                                             -0.0000E-19
                                                                                                                                               -0.0000E-19
                                                                                                                                                                                 -0.0000F-19
                                                                                                                                                                                                                   -0.0000E-19
                                                                                                                                                                                                                                                                                         -0.000F-19
                                       -0.0000E-19

-0.0000E-19

-0.0000E-19

0.1371E 01

0.9789E 00

-0.0000E-19

0.5736E-03

-0.7141E-02
                                                                                                           -0.3335E-19

-0.3035E-19

0.1052E-01

0.1371E 01

0.7254E 00

0.1005E 01

0.2022E-02
                                                                                                                                              -0.0000E-19
-0.0000E-19
0.1052E-01
0.1371E 01
0.4913E 00
0.1000E 01
0.2746E-02
-0.7687E-02
                                                                         -0.0000E-19
-0.0000E-19
0.1052E-01
0.1371E 01
                                                                                                                                                                                -0.0000E-19
0.1052E-01
0.1371E 01
0.1855E 00
                                                                                                                                                                                                                                                                                        -0.33332E-19
-0.3332E-01
0.1371E 31
                                                                                                                                                                                                                  -0.0000F-19
                                                                                                                                                                                                                                                     -0.0000E-19
                                                                                                                                                                                                                  -0.0000E-19
0.1052E-01
0.1371E 01
-0.1918E 00
0.1000E 01
0.4194E-02
-0.8051E-02
                                                                                                                                                                                                                                                    0.1052E-01
0.1371E 01
-0.6408E 00
            KL 12AB
            MDEIE
RELROT
EP S11
EP S22
EP S12
SIG11
                                                                         0.1371E 01
0.8879E 00
0.1000E 01
0.1298E-02
-0.7323E-02
                                                                                                                                                                                0.1855E 00
0.1000E 01
0.3470E-02
-0.7869E-02
                                                                                                                                                                                                                                                     0.1000E 01
0.4919E-02
-0.8233E-02
                                                                                                                                                                                                                                                                                        0.1200E 31
0.5643E-02
-0.8415E-32
                                                                                                            -0.7505E-02
                                                                                                                                               0.
0.6901E 05
                                                                                                                                                                                -0.
0.8732E 05
0.5188E-03
                                                                                                                                                                                                                                                     -0.
0.1239E 06
0.5188E-03
                                                                            0.
0.3239E 05
                                                                                                              0.
0.5070E 05
                                                                                                                                                                                                                  -0.
0.1056E 06
                                          0.14C7E 05
                                                                                                                                                                                                                                                                                         0.1423E 06
0.4425E-03
                                         0.4826E-03
                                                                                                             0.4692E-03
                                                                                                                                                0.4654E-03
                                                                                                                                                                                                                    0.4578E-03
            SIG22
                                                                            0.4845E-03
                                                                                                                                                                                                                     0.
                                                                                                                                                                                                                                                       0.
            SIGIZ
                                                                            0.
                                                                                                                                                                                                                                                                                         0.
                                       -0.0000E-19
                                                                            0.1069E 01
                                                                                                              0.9285E 00
                                                                                                                                                0.6579E 00
                                                                                                                                                                                  0.2572E 00
                                                                                                                                                                                                                  -0.2734E 00
                                                                                                                                                                                                                                                    -0.9339E 00
                                                                                                                                                                                                                                                                                       -0.1724E 31
                                         0.1080E 01
             HEC
```

Angle Ply Composite

```
THORNEL-5C/EPOXY
NL, NPL, NPC, NEPE, NLC
8 71 54 1420
EF11, EF22, EF33, NUF12, NUF23, NUF13, EF12, EF33, EF13, EM11, EM22, EM33, NUM12, NUM23 NUM13, EM12, EM23, EM13
0.50000E 03 0.10000E 07 0.10000E 07 0.20000E 00 0.25000E 00 0.20000E 00 0.13000E 07 0.70000E 06 0.13000E 07 0.57000E 08 0.13000E 07 0.
   0.40000E 01 0.20000E 01 0.40000E 01 0.20000E 01 0. 0. 0. 0. 0.23560E 01 0. 0. 0. 0. 0.10000E 01 0.10000E 01 0.10000E 01 0.
VAF
-0.55000E-06 0.56000E-05 0.56000E-05
   0.42800E-04 0.42800E-04 0.42800E-04
0.58000E 03 0.58000E 02 0.53000E 02 0.17000E 00 0.12500E 01 0.12500E 01 0.12500E 01 0.25000E 00 0.
0. 0.22500E 00 0.
0.87A
                                                                                                                                                                                                                                                                                                           э.
   0.10000E 01 0.10000E 01 0.10500E 01 0.10500E 01
  0.31416E 01
TL INP
CSANB
BIDE
RINDV
THCS, RHOF, RHCM, DIAF
                                   J.5900CE-01 0.44300E-01 0.26000E-03
KVL
0.
                                                                   0. 0.
                                                                                                                                   0.
                                                                                                                                                                                                                                         0.
   0.50000E 00 0.50000E
  0.30000E 02 -J.30000E 02 0.30000E 02 -0.30000E 02 -0.30000E 02 0.30000E 02 -0.30000E 02 0.30000E 02
TL
0.80500E-02 0.80500E-02 0.80009E-02 0.80009E-02 0.80000E-02 0.80500E-02 0.80500E-02 0.80000E-02
PTEMP
-0.300006 03 -0.30000E 03
  C.83000E CO 0.10000E 01 0.26000E 00 0.27000E 00 0.17000E 00 0.16500E 02 0.10000E 01 0.46500E-01 0.10000E 01 0.5000E 00 0.13300E 02 0.31300E 05 0.10000E 01 0.10000E 01 0.10000E 01 0.46500E-01 0.10000E 01
LSC
C.23000E 06 0.21000E 05 0.20000E-01 0.50000E-01 0.45000E-01 0.45000E-01
  0.50000E 04 0.
MBS
0.50000E 02 0.
                                                                   0.
DISV1
                                                                                                     θ.
                                                                                                                                                                       0.
```

3-D COMPOSITE STRAIN STRESS TEMPERATURE RELATIONS - STRUCTURAL AXES

0.1430E-06	-0.2449E-06	0.4471E-07	0.	0.	0.	-0.3131E-05
-0.2449E-06	0.7909E-06	-0.2246E-06	-0.	-0.	-0°.	0.1199E-04
0.4471E-07	-0.2246E-06	0.9353E-06	0.	0.	0.	0.2933E-04
0.	0.	0.	0.2937E-05	0.	0.	-0.
0.	0.	0.	0.	0.2937E-05	0.	-0.
0.	0.	0.	0.	0.	0.2000E-06	-0.

3-D COMPOSITE STRESS STRAIN RELATIONS - STRUCTURAL AXES

0.	0.	-0.	-0.	-0.	0.5001E 07
-0.	-0.	-0.	-0.	0.3405E 06	~0.
-0.	-0.	-0.	0.3405E 06	-0.	-0.
0.4285E 06	0.4620E 06	0.1160E 07	-0.	-0.	-0.
0.4779E 07	0.2875E 07	0.4620E 06	-0.	-0.	0.
0.1504E 08	0.4779E 07	0.4285E 06	-0.	-0.	0.

COMPOSITE PROPERTIES - VALID ONLY FOR CONSTANT TEMPERATURE THROUGH THICKNESS LINES 1 TO 21 3-D COMPOSITE PROPERTIES ABOUT MATERIAL AXES LINES 33 TU 54 2-D COMPOSITE PROPERTIES ABOUT STRUCTURAL AXES 0.5165E-01

```
0.5165E-01

0.640CE-01

0.1504E 08

0.4779E 07

0.4285E 06

0.2875E 07

0.4620E 06

0.1160E 07

0.3405E 06

0.3405E 06
                        TC
CC11
CC12
CC13
CC22
CC23
CC33
CC44
CC55
   10
                                                                0.3405E 06
0.5001E 07
0.3131E-05
0.1199E-04
0.2189E 03
0.7544E 02
0.3715E 01
0.2043E 07
0.1069E 07
0.1069E 07
0.3405E 06
0.3405E 06
0.3405E 06
0.3096E 07
0.1712E 01
0.3096E 00
0.3126E 00
                        CC66
CTE11
CTE22
CTE33
 12
13
14
15
16
                        HK 11
HK 22
HK 33
HHC
EC 11
EC 22
EC 33
EC 23
EC 31
 17
18
19
20
21
22
23
22222333333333444444444555555
                         EC 12
                        NUC 1.2
                        NUC 21
NUC 13
                                                                -0.3128E 00
-0.4780E-01
0.2839E 00
0.2401E 00
0.3200E-01
                        NUC 31
NUC 23
                        NUC 3 2
ZCGC
                                                                     0.3200E-01
0.1488E 08
0.4608E 07
0.2691E 07
0.5001E 07
0.1264E 07
0.5001E 07
                       B2DEC
CC 11
CC 12
CC 13
                        CC 22
CC 23
CC 33
EC 11
                        EC 22
EC 12
                        NUC 12
                       NUC 21
CSN 13
CSN 31
CSN 23
CSN 32
                                                                       0.3096E 00
                                                                - C.
- O.
                                                                      0.
                                                                -0.3131E-05
0.1199E-04
                        CTELL
                       CTE22
CTE12
HK11
HK22
HK12
HK12
                                                                      0.2189E 03
0.7544E 02
                                                                      0.2043E 00
```

FORCES			FORCE DISPLACE	MENT RELATIONS			DI SPL	THERMAL FORCES
NX	0.9525E 06	0.2949E 06	0.	0.1221E-03	0.4578E-04	0.1068E-03	UX	-0.1656E 03
NY	0.2949E 06	0.1722E 06	0.	0 • 4578 E-04	0.2289E-04	0.3815E-04	·VX	-0.3427E 03
NXY	0.	0.	0.3200E 06	0.1068E-03	0.3815E-04	0.3052E-04	VXPUY	0.
MX	0.1221E-03	0-4578E-04	0.10686-03	0.3251E 03	0.1007E 03	0.6390E 02	wxx	-0.2235E-07
MY	0.4578E-04	0.2289E-04	0.3815E-04	0.1007E 03	0.5879E 02	0.2260E 02	WYY	-0.2980E-07
MXY	0.1068E-03	0.3815E-04	0.3052E-04	0.6390E 02	0.2260E 02	0.1092E 03	WXY	0.2980E-07

REDUCED BENDING REGIDITIES

0.32513E 03 0.10067E 03 0.63900E 02 0.10067E 03 0.58793E 02 0.22595E 02 0.63900E 02 0.22595E 02 0.10924E 03

RECUCED STIFFNESS MATRIX
0.95252E 06 0.29494E 06 -0.49233E-10 0.29494E 06 0.17225E 06 -0.19281E-10 -0.49233E-10 -0.19281E-10 0.32003E 06

DISP.		(DISPLACEMENT FO	ORCE RELATIONS			FORCES
ux	0.2235E-05	-0.3827E-05	0.1132E-21	-0 • 3456 E-12	0.6409E-12	-0.7792E-12	NX
vx	-0.3827E-05	0.1236E-04	0.1559E-21	0.6225E-12	-0.2756E-11	-0.3680E-12	NY
VXPUY	0.1132E-21	0.1559E-21	0.3125E-05	-0.8006E-12	-0.5443E-12	-0.2920E-12	NXY
MXX	-0.3456E-12	0.6225E-12	-0.8006E-12	0.6830E-02	-0.1104E-01	-0.1712E-02	мх
WYY	0.6409E-12	-0.2756E-11	-0.5443E-12	-0.1104E-01	0.3631E-01	-0.1055E-02	MY
WXY:	-0.7792E-12	-0.3680E-12	-0.2920E-12	-0.1712E-02	-0.1055E-02	0.1037E-01	MXY

DISP.	DISPLACEMENT FORCE RELATIONS								
0.1211E-01	0.2235E-05	-0.3827E-05	0.11326-21	-0.3456E-12	0.6409E-12	-0.7792E-12	0.4833E 04		
-0.2273E-01	-0.3827E-05	0.1236E-04	0.1559E-21	0.6225E-12	-0.2756E-11	-0.3680E-12	-0.3427E 03		
-0.4003E-10	0.1132E-21	0.1559E-21	0.3125E-05	-0.8006E-12	-0.5443E-12	-0.2920E-12	0.		
0.3415E 00	-0.3456E-12	0.6225E-12	-0.8006E-12	0.6833E-02	-0.1104E-01	-0.1712E-02	0.5000E 02		
-0.5518E 00	0.6409E-12	-0.2756E-11	-0.5443E-12	-0.1104E-01	0.3631E-01	-0.1055E-02	-0.2980E-07		
-0.8561E-01	-0.7792E-12	-0.3680E-12	-0.2920E-12	-0.1712E-02	-0.1055E-C2	0.1037E-01	0.2980E-07		

0.

FOR THIS CASE NBS(X,Y,XY-M) IS 5000.

50.

0.

LAYER PROPERTIES. ROWS-PROPERTY, COLUMNS-LAYER

FOR THIS CASE MBS(X,Y,XY-M) IS

1	KV:	0.	0.	0.	0.	0.	0.	0.	0
2	KF	0.5000E 00	0.500Œ 00	0.5000E 00	0.5000E 00				
3	KFB	0.5000E 00	0.5000E 00	0.5000E 00	0.500.0E 00	0.50Q0E 00	0.5000E 00	0.5000E 00	0.5000E 00
.4	KM	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00				
5	KMB.	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00				
6	RHOL	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.51656-01
7	TL	0.8000E-02	0.8000E-02	0.8003E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8300E-02
8	DEL TA	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04
9	IL DC	-0.0000E-19	0.	0.	0.	0.	0.	0.	0.
10	ZB.	0.4000E-02	0.1200E-01	0.2000E-01	0.2800E-01	0.3600E-01	0.4400E-01	0.5200E-01	0.5000E-01
11	ZGC	-0.2800E-01	-0.2000E-01	-0.1200E-01	-0.4000E-02	0.4000E-02	0.12008-01	0.2000E-01	0.2800E-01
12	THC S	0.	0.	0.	0.	.0 •	0.	0.	0.
13	THLC	0.5236E 00	-0.5236E 00	0.5236E 00	-0.5236E 00	-0.5236E 00	0.5236E 00	-0.5236E 00	0.5236E 00
14	THL S	0.5236E 00	-0.5236E 00	0.5236E 00	-0.5236E 00	-0.5236E 00	0.5236E 00	-0.5236E 00	0.5236E 33
15	SC 11	0.2549E 08	0.2549E 08	D.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08
16	SC 12	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06				
17	SC 13	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06				
18	SC 22	0.1160E 07	0.1160E 07	0.1160E 07	0.1160F 07				
19	SC 23	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06				

```
0.1160E 07
0.3405E 06
0.3405E 06
0.6339E 06
                                                                                                                                                                                                  0.1160E 07
0.3405E 06
0.3405E 06
0.6339E 06
                                     0.3405E 06
0.3405E 06
0.6339E 06
                                                                                                    0.3405E 06
0.3405E 06
0.6339E 06
                                                                                                                                                                   0.3405E 06
0.3405E 06
0.6339E 06
                                                                                                                                                                                                                                 0.3405E 06
0.3405E 06
0.6339E 06
-0.6138E-37
                                                                                                                                                                                                                                                                0.3405E 06
0.3405E 06
0.6339E 06
-0.6138E-07
           SC 44
SC 55
SC 66
                                                                     0.3405E 06
0.3405E 06
0.6339E 06
           CTE11
                                    -0.6138E-07
                                                                   -0.6138F-07
                                                                                                   -0.6138E-07
                                                                                                                                   -0.6138E-07
                                                                                                                                                                  -0.6138E-07
                                                                                                                                                                                                 -0.6138E-07
                                                                                                    0.2334E-04
0.2334E-04
0.2906E 03
                                                                                                                                                                   0.2334E-04
0.2334E-04
0.2906E 03
                                     0.2334E-04
0.2334E-04
                                                                                                                                   0.2334E-04
                                                                                                                                                                                                   0.2334F-04
                                                                                                                                                                                                                                  0-23345-04
           HK 11
                                     0.2906E
                                                       03
                                                                     0.2906E 03
                                                                                                                                    0.2906E 03
                                                                                                                                                                                                   0.2906E 03
                                                                                                                                                                                                                                  0.2906E
                                                                                                                                                                                                                                                                  0.2906E 03
                                                                                                   0.2906E 03
0.3715E 01
0.3715E 01
0.2043E 00
0.2528E 08
0.9597E 06
                                                                                                                                   0.3715E 01
0.3715E 01
0.2043E 00
                                                                                                                                                                   0.3715E 01
0.3715E 01
0.2043E 00
                                                                                                                                                                                                  0.3715E 01
0.3715E 01
0.2043E 00
                                                                                                                                                                                                                                  0.3715E 01
0.3715E 01
0.2043E 00
                                                                                                                                                                                                                                                                  0.3715E 01
0.3715E 01
0.2043E 00
           HK 22
HK 33
                                     0.3715E 01
0.3715E 01
                                                                     0.3715E 01
0.3715E 01
30
           HCI
                                     0-2043F 00
                                                                     0.2043E 00
                                     0.2528E
0.9597E
                                                                                                                                   0.2528E 08
0.9597E 06
0.9597E 06
0.3405E 06
                                                                                                                                                                   0.2528E 08
0.9597E 06
0.9597E 06
                                                                                                                                                                                                   0.2528E 08
0.9597E 06
0.9597E 06
0.3405E 06
                                                                                                                                                                                                                                  0.2528E 08
0.9597E 06
0.9597E 06
0.3405E 05
                                                                                                                                                                                                                                                                 0.2528E U0
0.9597E 06
0.9597E 06
0.3405E 06
0.6339E 06
                                                                                                                                                                                                                                                                  0.2528F 08
           EL 33
                                     0.9597E
                                                                     0.9597E 06
           GL 23
GL 13
                                      0.3405E
                                                                     0.3405E 06
                                                                                                    0.3405E 06
                                                                                                                                                                   0.34056
                                                                                                                                                                                                                                                                 0.3405E 06
0.6339E 06
0.6339E 06
0.2514E 00
0.9541E-02
0.2514E 00
0.9541E-02
                                                                                                                                   0.6339E 06
0.6339E 06
0.2514E 00
                                                                                                                                                                                                   0.6339E 06
0.6339E 06
0.6339E 00
                                     0.6339E 06
0.6339E 06
                                                                                                    0.6339E 06
                                                                                                                                                                   0.6339E 06
0.6339E 06
                                                                                                                                                                                                                                  0.6339E 06
0.6339E 06
0.2514E 00
0.9541E-02
0.2514E 00
0.9541E-02
                                                                     0.6339E 06
           GL 12
                                     0.2514E 00
0.9541E-02
0.2514E 00
0.9541E-02
                                                                     0.2514E 00
0.9541E-02
0.2514E 00
0.9541E-02
                                                                                                    0.2514E 00
0.9541E-02
0.2514E 00
0.9541E-02
           NUL 12
                                                                                                                                                                   0-2514F 00
                                                                                                                                   0.9541E-02
0.2514E 00
0.9541E-02
                                                                                                                                                                   0.2514E 00
0.9541E-02
0.2514E 00
0.9541E-02
                                                                                                                                                                                                   0.9541E-02
0.2514E 00
0.9541E-02
           NUL 13
39
           MIII 31
          NUL 23
NUL 32
NUL 32
SMFK 22
                                     0.4094E 00
0.4094E 00
0.1522E 01
                                                                     0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                    0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                   0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                                                   0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                                                                                   0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                                                                                                                  0.4094E 00
0.4094E 00
0.1522E 01
                                                                                                                                                                                                                                                                 0.9541E-02
0.4094E 00
0.4094E 00
0.1522E 01
0.1918E 01
0.1395E 01
           SM FD 22
SM F S 22
SM F C 22
                                    0.1918E 01
0.1344E 01
-0.0000E-19
                                                                                                  0.1918E 01
0.1408E 01
-0.0000E-19
                                                                                                                                  0.1918E 01
0.1400E 01
-0.0000E-19
                                                                                                                                                                  0.1918E 01
0.1399E 01
-0.0000E-19
                                                                                                                                                                                                                                  0.1918E 01
0.1399E 01
-0.0000E-19
                                                                                                                                                                                                                                                                0.1918E 01
0.1395E 01
-0.0000E-19
                                                                                                                                                                                                   0.1918E 01
0.1397E 01
                                                                     0.1918E 01
                                                                   0.1342E 01
-0.0000E-19
                                                                                                                                                                                                 -0.0000E-19
                                                                                                    0.3024E 01
0.1396E 01
0.7063E 02
                                                                                                                                   0.3024E 01
0.1396E 01
0.7060E 02
                                                                                                                                                                   0.3024E 01
0.1396E 01
0.7060E 02
                                                                                                                                                                                                  0.3024E 01
0.1396E 01
0.7060E 02
                                                                                                                                                                                                                                  0.3024E
0.1396E
0.7060E
                                                                                                                                                                                                                                                                 0.3024E
0.1396E
0.7360F
           SMFS12
SMFS23
                                     0.3024E 01
0.1396E 01
                                                                     0.3024E 01
0.1396E 01
           ILMFC
                                    -0.00C0E-19
                                                                     0.7060E 02
                                                                                                                                                                                                                                                    02
                                                                  0.7060E 02
-0.3000E 03
0.9676E 05
0.5333E 05
0.6578E 05
0.3718E 04
0.1788E 05
                                                                                                  0.7363E 02
-0.3000E 03
0.9676E 05
0.5333E 05
0.6578E 05
0.3544E 04
0.1704E 05
50
51
52
                                   -0.3000E 03
0.9676E 05
0.5333E 05
                                                                                                                                  -0.3000E 03
0.9676E 05
0.5333E 05
0.6578E 05
                                                                                                                                                                  -0.3000E 03
0.9676E 05
0.5333E 05
                                                                                                                                                                                                -0.3000E 03
0.9676E 05
0.5333E 05
0.6578E 05
                                                                                                                                                                                                                                -0.3000E 03
0.9676E 05
0.5333E 05
0.6578E 05
                                                                                                                                                                                                                                                                -0.3303E
0.9676E
0.5333E
0.5578E
           TEMPO
           LSC11C
           LSC11D
LSC22T
                                     0.6578E
0.3714E
0.1786E
53
                                                       05
                                                                                                                                                                   0.6578E 05
                                                      04
05
                                                                                                                                   0.3564E 04
0.1713E 05
                                                                                                                                                                   0.3566E 04
0.1714E 05
                                                                                                                                                                                                   0.3572E 04
0.1717E 05
                                                                                                                                                                                                                                  0.3568E 04
0.1715E 05
                                                                                                                                                                                                                                                                  0.3576E
0.1719E
54
55
          LSC 2 2C
          LSC12
LSC23
LSCC23
                                     0.2547E 04
0.1866E 04
                                                                   0.2547E 04
0.1866E 04
-0.0000E-19
                                                                                                    0.25475 04
                                                                                                                                   0.2547E 04
                                                                                                                                                                   0.2547E 04
                                                                                                                                                                                                   0-2547F 04
                                                                                                                                                                                                                                  0.2547F 04
                                                                                                                                                                                                                                                                  0.2547E 04
                                                                                                   0.1865E 04
                                                                                                                                  0.1866E 04
-0.0000E-19
                                                                                                                                                                                                 0.1866E 04
-0.0000E-19
                                                                                                                                                                                                                                 0.1866E 04
                                                                                                                                                                                                                                                                 0.1866E 04
-0.000E-19
58
                                    -0.0000E-19
                                                                                                                                                                  -0.0000E-19
          LSCC 13
                                   -0.0000E-19
                                                                  -0.0000E-19
0.1052E-01
0.1371E 01
                                                                                                  -0.0000E-19
0.1052E-01
0.1371E 01
                                                                                                                                  -0.0000E-19
                                                                                                                                                                  -0-0000F-19
                                                                                                                                                                                                -0.0000E-19
                                                                                                                                                                                                                                 -0.0000E-19
                                                                                                                                                                                                                                                                -0-0000F-19
                                   -0.0000E-19
0.1371E 01
                                                                                                                                   0.1052E-01
0.1371E 01
                                                                                                                                                                   0.1052E-01
0.1371E 01
                                                                                                                                                                                                  0.1052E-01
0.1371E 01
                                                                                                                                                                                                                                  0.1052E-01
0.1371E 01
                                                                                                                                                                                                                                                                 0.1052E-01
0.1371E 01
           KL 12AB
                                                                   -0.1400E 02
0.9605E 00
0.2974E-03
                                                                                                                                  -0.4584E 02
-0.2131E 00
0.2781E-02
                                                                                                                                                                  -0.6868E 02
-0.9518E 00
0.4023E-02
-0.1548E-01
           MOFIE
                                   -0-2387E 01
                                                                                                   -0.2529E 02
0.2757E 00
                                                                                                                                                                                                -0.1003E 03
                                                                                                                                                                                                                                 -0-1282F 03
                                                                                                                                                                                                                                                                 -0-1774F 03
                                                                                                                                                                                                                                -0.1282E 03
-0.9446E 01
0.6506E-02
-0.2133E-01
0.4479E-01
0.1619E 06
           RELROT
EPS11
EPS22
                                                                                                                                                                                                0.4375E-02
-0.1752E-01
                                                                                                   0.2429E-02
-0.1052E-01
                                                                                                                                                                                                                                                                0.5672E-02
-0.2218E-01
                                   0.1132E-02
-0.5860E-02
                                                                   +0.6708F-02
                                                                                                                                  -0 -1256F-01
                                                                                                                                                                                                                                                               -0.5303E-01
0.1398E 06
-0.1323E 05
           EPS12
SIG11
                                                                     0.1556E-01
0.7346E 04
                                                                                                   -0.2038E-01
0.6117E 05
                                                                                                                                   0.2725E-01
0.6917E 05
                                                                                                                                                                   0.3310E-01
0.1001E 06
                                                                                                                                                                                                -0.3997E-01
0.1084E 06
66
67
                                     0.2787E 05
           SIG22
                                     0.1368E 04
                                                                     0.3495F 03
                                                                                                   -0.2804E 04
                                                                                                                                  -0.4677E 04
                                                                                                                                                                  -0.7190F 04
                                                                                                                                                                                                -0.9062E 04
                                                                                                                                                                                                                                 -0.1222E 05
                                   -0.4637E 04
                                                                    0.9862E 04
-0.4159E-03
                                                                                                  -0.1292E 05
                                                                                                                                   0.1727E 05
0.1276E-01
                                                                                                                                                                   0.2098E 05
0.2053E-01
                                                                                                                                                                                                -0.2534E 05
-0.4394E-01
                                                                                                                                                                                                                                  0.2839E 05
0.1099E 00
                                                                                                                                                                                                                                                                -0.3362E
           SIG12
           DELF I
           +FC
                                   -0.2542F 01
                                                                  -0.1402E 02
                                                                                                   -0.2445E 02
                                                                                                                                  -0.4472E 02
                                                                                                                                                                  -0.6733E 02
                                                                                                                                                                                                -0.9883F 02
                                                                                                                                                                                                                                -0.1271E 03
                                                                                                                                                                                                                                                                -0.1761F 33
```

Angle Ply Pseudoisotropic Composite

```
THORNEL-50/EPOXY
NL +NPL + NPC + NFPE + NLC
8 71 54 1420
EF11,EF22,EF23,NUF12,NUF23,NUF13,EF12,EF23,EF13,EM11,EM22,EM33,NUM12,NUM23 NUM13,EM12,EM23,EM13
0.50000E 08 0.10000E 07 0.10000E 07 0.20000E 00 0.25000E 00 0.20000E 00 0.13000E 07 0.70000E 06 0.13000E 07 0.57000E 06
0.57000E 06 0.57000E 06 0.36000E 00 0.36000E 00 0.36000E 00 0.6000E 00
    0.23560E 01
    0.55000E-06 0.56000E-05 0.56000E-05
    0.42800E-04 0.42800E-04 0.42800E-04
                                                                                                            0.58000E 02 0.17000E 00 0.12500E 01 0.12500E 01 0.2500E 00 0.
     0.58000E 03 0.58000E 02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ٥.
                                                       0.22500E 00
    0.10000E 01 0.10000E 01 0.10500E 01 0.10500E 01
    0.31416E 01
 TL INP
 CSANB
 BIDE
 RINDV
 THCS.RHOF.RHEM.DIAF
                                                         0.5900CE-01 0.44300E-01 0.26000E-03
```

```
THLC
                       0.45000E 02 -0.45000E 02 0.90000E 02 0.90000E 02 -0.45000E 02 0.45000E 02 0.
  0.80500E-02 0.80500E-02 0.80000E-02 0.80000E-02 0.80000E-02 0.80500E-02 0.80500E-02 0.80500E-02
 7197
-0.30000E 03 -0.30000E 03
  0.83000E 00 0.10000E 01 0.26000E 00 0.27000E 00 0.17000E 03 0.16500E 02 0.10000E 01 0.10000F 01 0.46500E-01 0.10000E 01 0.50000E 00 0.13300E 02 0.31900E 05 0.10000E 01 0.10000E 01 0.10000E 01
 LSC 0.23000E 06 0.21000E 05 0.20000E-01 0.50000E-01 0.45000E-01 0.45000E-01
NBS
0.50000E 04 0.
                                           0.
 MBS
0.50000E 02 0.
                                           0.
 DISV1
                                                                0.
                                           3-0 COMPOSITE STRAIN STRESS TEMPERATURE RELATIONS - STRUCTURAL AXES
                       0.1078E-06
                                           -0.3319E-07
                                                                  -0.2866E-07
                                                                                                               0.
                                                                                                                                   ~0.1893F-12
                                                                                                                                                                   0.9901E-06
                     -0.3319E-07
                                             0.1078E-06
                                                                                                              -0.
                                                                                                                                     0.6595E-12
                                                                                                                                                                   0.9901E-06
                                                                  -0.2866E-07
                                                                                        -0.
                                                                                                                                   -0.1954E-12
                                                                                                                                                                   0.3219E-04
                      -0.2866E-07
                     -0.
                                             0.
                                                                  -0.
                                                                                         0.2937E-05
                                                                                                               n.
                                                                                                               0.2937E-05
                     -0.
                                             0.
                                                                  -0.
                                                                                         0.
                     -0.1893E-12
                                             0.6595E-12
                                                                 -0.1954E-12
                                                                                                               0.
                                                                                                                                     0.2821E-06
                                                                                                                                                                   0.1097E-10
                                                     3-D CCMPOSITE STRESS STRAIN RELATIONS - STRUCTURAL AXES
                                       0.1041E 08
                                                             0.3323E 07
                                                                                   0.4452E 06
                                                                                                                                                   -0.4730F 00
                                       0.3323E 07
                                                            0.1041E 08
                                                                                  0.4452F 06
                                                                                                                             -0.
                                                                                                                                                   -0.2181F 02
                                                                                                       -0.
                                                             0.4452E 06
                                                                                   0.1160E 07
                                                                                                                             -0.
                                                                                                                                                    0.6121E-01
                                       0.4452E 06
                                                                                                       -0.
                                                                                                        0.3405E 06
                                                                                                                             -0.
                                                                                                                              0.3405E 06
                                     -0-
                                                           -0.
                                                                                  -0.
                                                                                                       -0.
                                                                                                                                                   -0.
                                                                                                                             -0.
                                                                                                                                                    0.35458 07
                                     -0.4730E 00
                                                           -0.2181E 02
COMPOSITE PROPERTIES - VALID ONLY FOR CONSTANT TEMPERATURE THROUGH THICKNESS LINES 1 TO 21 3-D COMPOSITE PROPERTIES ABOUT MATERIAL AXES LINES 33 TO 54 2-D COMPOSITE PROPERTIES ABOUT STRUCTURAL AXES 1 RMC 0.5165E-01 2 TC 0.6400E-01 3 CC11 0.1041E 08 4 CC12 0.3323E 07 5 CC13 0.4452E 06 6 6 CC2 0.1041E 08 7 CC23 0.4452E 06 8 CC33 0.1160E 07 9 CC44 0.3405E 06 10 CC55 0.3405E 06 11 CC66 0.3545E 07 12 CTE11 0.9901E-06 13 CTE22 0.9901E-06 14 CTE33 0.3219E-04 15 HK11 0.1472E 03 16 HK22 0.1472E 03 17 HK33 0.3715E 01 18 HHC 0.2043E 00 19 EC11 0.9273E 07 20 EC22 0.9273E 07 22 EC23 C.3405E 06 23 EC31 C.3405E 06 24 EC12 0.3678E 00 26 NUC12 0.3078E 00 26 NUC12 0.3078E 00 27 NUC13 0.2658E 00
123456789011231456789012222456789012
```

0.3078E 00 0.3078E 00 0.2658E 00 0.3241E-01 0.2658E 00 0.3241E-01

0.1024E 08

NUC 21 NUC 13 NUC 31 NUC 23 NUC 32 ZC GC BADEC

34	CC 12	0.3153E 07
35	CC 13	- C.4807E 00
36	CC 22	0.1024E 08
37	CC 23	-0.2182E 02
38	CC 33	0.3545E 07
39	EC 11	0.9272E 07
40	EC 2.2	C.9272E 07
41	EC 12	0.3545E C7
42	NUC 12	C.3078E 00
43	NUC 21	0.3078E 00
44	CSN13	0.1759E-C5
45	CSN 31	0.6725E-06
46	CSN23	-0.6113E-05
47	CSN32	-0.2337E-05
48	CTE11	C.99C1E-06
49	CTE22	C.9901E-06
50	CTE12	0.10976-10
51	HK 11	0.1472E 03
52	HK 22	0.1472E 03
53	HK 12	0.2794E-03
54	HHC	0.2043E 00

FORCES		DISPL	THERMAL FORCES					
ΝX	0.65558 06	0.2018E 06	-0.3076E-01	0.36626-03	0.1955E-04	0.2289E-04	UX	-0.2546E 03
NY	0.2018E 06	0.6555E 06	-0.1396E 01	0.2861E-04	-0.1087E-03	0.2289F-04	νx	-0.2546E 03
NXY	-0.3076E-01	-0.1396E 01	0.2269E 06	0.2289E-04	0.2289E-04	0.3052E-04	VXPUY	-0.3226E-03
MX	0.3662E-03	0.2861E-04	0.22898-04	0.3855E 03	0.5695E 02	0.2497E 02	MXX	0.1490E-07
MY	0.1955E-04	-0.1087E-03	0.2289E-04	0.5695E 02	0.8587E 02	0.2497E 02	WYY	-0.74516-07
MXY	0.2289E-04	U. 2289E-04	0.3052E-04	0.2497E 02	0.2497E 02	0.6552E 02	WXY	0.1118E-07

RECUCED BENDING REGIDITIES

0.38550E 03 0.56952E 02 0.24969E 02 0.56952E 02 0.85868E 02 0.24969E 02 0.24969E 02 0.24969E 02 0.65517E 02

REDUCED STIFFNESS MATRIX
0.65554E 06 0.20179E 06 -0.30762E-01 0.20179E 05 0.65554E 06 -0.13965E 01 -0.30762E-01 -0.13965E 01 0.22688E 06

DISP.		DISPLACE	MENT FORCE RELA	T IONS			FORCES
UX	0.1685E-05 -0.	5187E-06 -0.296	4E-11 -0.156	7E-11 -0.6338	E-13 0.2138	E-12	NX
VX	-0.5187E-06 0.	1685E-05 0.103	0E-10 0.735	2E-13 0.2620	E-11 -0.1434	E-11	NY
VXPUY	-0.2964E-11 0.	.1030E-10 0.440	8E-05 -0.542	3E-13 -0.6162	2E-12 -0.1798	E-11	NXY
WXX	-0.1553E-11 0.	.1092E-12 -0.542	3E-13 0 • 288	6E-02 -0.1793	E-02 -0.4165	E-03	MX
MAA	-0.27196-12 0.	.2659E-11 -0.616	2E-12 -0.179	3E-02 0.1421	E-01 -0.4733	E-02	HY
WXY	0.2880E-12 -0.	.1463E-11 -0.179	8E-11 -0.416	5E-03 -0.4733	8E-02 0.1723	E-01	MXY
DISP.		DISPLACE	MENT FORCE RELA	TIONS			FORCES
0.8129E-02	0.1685F-	-05 -0.5187E-06	-0.2964E-11	-0.1567E-11	-0.6338E-13	0.2138E-12	0.4745E 04
-0.2891E-02	- 0. 51 87E-	-06 0.1685E-05	0.1030E-10	0.7352E-13	0.2620E-11	-0.1434E-11	-0.2546E 03
-0.1811E-07	-0.2964E-	-11 0.1030E-10	0.4408E-05	-0.5423E-13	-0.6162E-12	-0.1798E-11	-0.3226E-03
0.1443E 00	-0.1553E-	-11 0.10925-12	-0.5423E-13	0.2886E-02	-0.1793E-02	-0.4165E-03	0.5000E 02
-0.8965E-01	-0.2719E-	-12 0.2659E-11	-0.6162E-12	-0.1793E-02	0.142 IE-01	-0.4733E-02	-0.7451E-07
-0.2C83E-C1	0.2880E-	-12 -0.1463E-11	-0.1798E-11	-0.4165E-03	-0.4733E-02	0.1723E-01	0.11186-07

FOR THIS CASE MBS(X,Y,XY-M) IS 50. 0.

1	KV-	0.	0.	0.	0.	0.	0.	0.	0.
2	KF	0.5000E 00	0.5000E 00	0.5000E 00	0.500 OF 00	0.5000F 00	0.5000E 00	0.5000E 33	0.5000E 00
				0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00		0.5300E 30
3.	KFB	0.5COOE 00	0.5000E 00					0.50005 00	
4	KM	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00
5	KMB.	0.5000E 00	0.5000E 00	0.5000E 00	0.500 OE 0.0	0.5000E 00	0.5000E 00	0.5000E 00.	0.50008 00
6	RHOL	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01
7	TL	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8303E-02
8	DEL TA	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04
9	IL DC	-0.0000E-19	0.	0.	0.	0.	0.	0.	0.
10	ZB	0.40C0E-02	0.1200E-01	0.2000E-01	0.2830E-01	0.3600E-01	0.4400E-01	0.5200E-01	0.5000E-31
11	ZGC	-0.2800E-01	-0.2000E-01	-0.12005-01	-0.4000E-02	0.4000E-02	0.12002-01	0.20005-01	0.2870E-01
	THC S		0.	0.	0.	0.	0.	0.	0.
12		0.							••
1.3	THLC	0.	0.7854E 00	-0.7854E 00	0.1571E 01	0.1571E 01	-0.7854E 00	0.7854E 00	o.
14	THL S	0.	0.7854E 00	-0.7854E 00	0.1571E 01	0.1571E C1	-0.7854E 00	0.7854E 00	0.
15	SC 11	0.2549E 08	U.2549E,08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.25498 08
16	SC 12	0.4118E 06	0.4118E 36	0.4118E 06	0.4118E 06	0.4118E 06	0.41186 06	0.4118E 06	0.4118E 06
				0.4118E 06	0.4118E 36	0.4118E 06	0.4118E 06	0.4118E 05	0.41185 06
17	SC 13	0.4118E 06	0.4118E 06						
18	SC 2.2	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	01160E 0.7
19	SC 2.3	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	7.4787E 06	0.47878 06
20.	SC 33	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.11605 07
21	SC 44	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 05	0.3405E 36
22	SC 5.5	0.34C5E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.34058 06	0.3405E 06
23	SC 66	0.6334E 06	0.6339E 06	0.6339E U6	0.6339E 06	0.63398 06	0.6339E 06	0.6339E 06	0.6339E 06
24	CTELL	-0.6138E-07	-0.6138E-07	-3.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.5138E-07
25	CTE22	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-34
	CTE33	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04
26									
2.7	HK 1.1	0.2906E 03	0.2906E 03	0.2905E 03	0.2906E 03	0.2906E 03	0.2906E 03	0.2906E 03	0.2906F 03
28	HK 2.2	0.3715E OL	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.37158 01
29	HK 3.3	0.3715E 01	0.3715E 01	0.3715F 01	0.3715E 01	0.3715E 01	0.3715E 01	0.37158 01	0.37156 01
30	HCL	U. 2043F 00	0.2043E 00	0.2043E 00	0.2943E 00	0.2043E 00	0.20436 00	0.2043E 00	0.2043E 00
31	EL 11	0.2523E 08	0.2528F 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528F 38
								0.9597E 06	0.9597E 06
32	£L 22	0.9597E 06	0.9597£ 06	0.9597E 06	0.9597E 06	0.9597E 06	0.95978 06		
3.3	EL 33	0.9597E 96	0.9597F 06	0.9597E 06	0.9597E 26	0.9597E 06	0.9597E 06	0.95978 06	0.95978 06
34	GL 23	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 05	0.34058 06
35	GL 13	0.6339E 06	0.63390 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.63395 06	0.6339E 06
36	GL 12	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06
10.00									
37	NUL 12	0.25145 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.25146 33
38	NUL 21	0.9541E-02	0.95416-02	0.9541E-02	0.954 1E-02	0.9541E-02	0.9541E-02	0.9541E-02	0.95415-02
39	NUL 13	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00
40	NUL 31	0.9541E-02	0.95418-02	0.9541E-02	0.9541E-02	0.9541E-02	0.9541E-02	0.9541E-02	0.9541E-02
	NUL 23	0.4094E 00	0.4094E 00	0.4094E 00	3.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 22
41								0.4094E 00	
42	NUL 32	U. 4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00		0.4394E 33
43	SMFK 22	0.1522E OL	0.1522E 01	0.1522E 01	0.1522E 01	0.1522E 01	0.15225 01	0.1522E OL	0.1522E 31
44	SM FD 22	0.19188 01	0.1918E 01	0.1918E 01	0.1918E 01	0.1918E 01	0.1918E 01	0.1918E 01	0.1918E 01
45	SMF S 22	0.1358E 01	0.1371E 01	0.1372E 01	0.1388E 01	0.1389E 01	0.1368E 01	0.1370E 01	0.1377E 31
46	SM FC 22	-0.0000E-19	-0.0000E-19	-0.3303E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19
4.7	SMFS 12	0.3024E 01	0.3024E 01	0.3024E 01	0.3024F 01	0.3024E 01	0.3024E 01	0.30248 01	0.3024E 01
4.8	SM F S 23	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01
49	ILMFC	-0.0000E-19	0.7060E 02	0.7060E 92	0.7060E 02	0.7060E 02	0.7060E 02	0.7060E 02	0.7060E 02
50	TEMPO	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.30008 03	-0.3000E 03
51	LSCIIT	0.9676E 05	0.9676E 05	0.9575E 05	0.9676F 05	0.9676E 05	0.9676E 05	0.9676E 05	0.9676E 35
5.2	LSC11C	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.53336 05	0.5333E 05
					0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05
53.	LSC11D	J.6578E 05	0.6578E 05	0.6578E 05					
54	LSCZZT	9.3674E 04	0.3640E 04	0.3638E 04	0.3596E 04	0.3593E 04	0.36475 04	0.3543E 04	0.4532E 04
55	LSC22C	0.1767E 05	0.1750E 05	0.1749E 05	0.1729E 05	0.1727E 05	0.1753E 05	0.1752E 05	0.2227E 05
56	LSC12	0 . 2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04
57	LSC23	J. 1866E 04	0.1866E 04	0.1855E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1856E 04
					-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19
58	LSCC 23	-0.0000E-19	-0.0000E-19	-0.0000E-19					
59	LSCC 13	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19
60	LSCDF	-J.0000E-19	0.1052E-01	0.1052E-01	0.1052E-01	0.10526-01	0.10526-01	0.10528-01	0.10526-01
61	KL 12AB	0.1371E 01	0.1371E 01	0.1371E 01	0.1371E 01	0.1371E 01	0.1371E 01	0.1371E 01	0.1371E 01
62	MDETE	-0.1262E 01	-0.5995E 01	-0.8342E 01	-0.2019E 02	-0.2522E 02	-0.1613E 02	-0.2031E 02	-0.5998E 01
63	RELROT	-3.0000E-19	0.70828 00	0.3240E 00	0.1925E 00	0.9916E 00	0.9633E 00	0.5456E 00	0.93645 00
64	EP S 1 1	0.4088E-02	0.2281E-02	0.2166E-0.2	-0.2532E-02	-0.3249E-02	0.3072E-02	0.2957E-02	0.1217E-01
65.	EPS22	- J. 3804E-03	0.1864E-02	0.2416E-02	0.755 1E-02	0.8706E-02	0.28225-02	0.3374E-02	-0.5401E-02
66	EP S 1 2	0.5831E-03	-0.6340E-02	0.8212E-02	-0.8321E-04	0.8341E-04	0.13835-01	-0.1570E-01	-0.5832E-03
67	SIGII	0.9948E 05	0.5894E 05	0.5658E 05	-0.6236E 05	-0.7930E 05	0.81195 05	0.76868 05	0.3105E 06
68	S1G22	0.7354E 04	0.9076E 04	0.9579E 04	0.1338E 05	0.1432E 05	0.1019E 05	0.1069E 05	0.4478E 04
69	SIG12	0.3696E 03	-0.4019E 04	0.5235E 04	-0.5275E 02	0.5287E 02	0.87645 04	-0.9951E 04	-0.3696E 03
70	DELFI	-0.0000E-19	0.3069E-05	-0.7139E-02	0 .849 2E-0 2	0.8784E-04	-0.3862E-03	0.47786-02	0.6586E-03
7.1	HFC	-0.2378E 01	-0.4831E 01	-0.6743E 01	-0.6270E 01	-0.7568E 01	-0.1511E 02	-0.1872E 02	-0.1578E 32

```
THORNEL-50/EPOXY
NL.NPL.NPC, NFPE, NLC
8 71 54 1420
 EF11.EF22.EF33, NUF12.NUF23, NUF13.EF12.EF23.EF13.EN11.EM22.EM33, NUM12.NUM23 NUM13.EM12.EM23.FM13
0.50000E 08 0.10000E 07 0.10000E 07 0.20000E 00 0.25000E 00 0.20000E 00 0.13000E 07 0.70000E 06 0.13000E 07 0.57000E 06
0.57000E 06 0.57000E 06 0.36000E 00 0.36000E 00 0.36000E 00 0.
   0.23560E 01 0.
                                                                                                                                                                                                                                                         5.
-0.55000E-06 0.56000E-05 0.56000E-05
   0.42800E-04 0.42800E-04 0.42800E-04
0.58000E 03 0.58000E 02 0.58000E 02 0.17000E 00 0.12500E 01 0.12500E 01 0.25000E 00 0.
                                                                                                                                                                                                                                                        о.
0.10000E 01 0.10000E 01 0.10500E 01 0.10500E 01 PIE
  0.31416E 01
TL INP
CSANB
BIDE
R INDV
 THCS, RHOF, RHCM, DIAF
                             0.59000E-01 0.44300E-01 0.26000E-03
KŸĹ
                                                       0. 0.
   0.50000E 00 0.50000E
THLC
0. 0.90000E 02 0. 0.90000E 02 0.30000E 03 -0.30000E 03 -0.3000E 03 -0.30000E 03 -0.3000E 03 -0.3000E
  0.83000E 00 0.10000E 01 0.26000E 00 0.27000E 01 0.17000E 00 0.16500E 02 0.10000E 01 0.10000E 01 0.46500E-01 0.10000E 01 0.50000E 01 0.10000E 01 0.10000E 01 0.10000E 01
LSC 0.23000E 06 0.21000E 05 0.20000E-01 0.50000E-01 0.45000E-01 0.45000E-01
NBS
0.50000E 04 0.
                                                         0.
MBS
0.50000E 02 0.
                                                        0.
DISV1
                             0.
                                                        0.
                                                                                    0.
                                                                                                               0.
                                                                                                                                          0.
                                                         3-D COMPOSITE STRAIN STRESS TEMPERATURE RELATIONS - STRUCTURAL AXES
                             0.7604E-07 -0.1392E-08 -0.2866E-37
                                                                                                                                                   0.
                                                                                                                                                                                0.2400E-13
                                                                                                                                                                                                                        0.9901E-06
                            -0.1392E-08
                                                       0.7604E-07
                                                                                                                                                                                0.5238E-11
                                                                                                                                                                                                                        0.9901E-06
                                                                                      -0.2866E-07
                                                                                                                   -0-
                                                                                                                                                 -0.
                            -0.2866E-07
                                                      -0.2866E-07
                                                                                       0.8844E-06
                                                                                                                     o.
                                                                                                                                                  0.
                                                                                                                                                                              -0.2187E-11
                                                                                                                                                                                                                         0.3219E-04
                             0.
                                                           0.
                                                                                      -0.
                                                                                                                                                                                0.
                                                                                                                     0.2937E-05
                                                                                                                                                  ò.
                                                                                                                                                                                                                         ٥.
                             0.
                                                          0.
                                                                                      -0.
                                                                                                                     ٥.
                                                                                                                                                  0.2937E-05
                                                                                                                                                                           0.
                             0.2400E-13 0.5238E-11 -0.2187E-11 0.
                                                                                                                                                  0.
                                                                                                                                                                                0.1578E-05
                                                                                                                                                                                                                        0.1228E-09
                                                                     3-D COMPOSITE STRESS STRAIN RELATIONS - STRUCTURAL AXES
                                                  0.1333E 08
                                                                               0.4118E 06
                                                                                                            0.4452E 06 -0.
                                                                                                                                                                      -0.
                                                                                                                                                                                                   -0.9527E 00
                                                  0-4118E 06
                                                                               0.1333E 08
                                                                                                            0.4452E 06
                                                                                                                                        -0.
                                                                                                                                                                     ÷0.
                                                                                                                                                                                                   -0.4363E 02
                                                  0.4452E 06
                                                                               0.4452E 06
                                                                                                            0.1160E 07 -0.
                                                                                                                                                                     -0.
                                                                                                                                                                                                    0.1225E 00
                                                -0.
                                                                             -0.
                                                                                                           -0.
                                                                                                                                         0.3405E 06 -0.
                                                                             -0.
                                                                                                           -0 -
                                                                                                                                       ~0.-
                                                                                                                                                                  0.3405E 06 -0.
                                                -0.
```

-0.

0.6339E 06

-0.9527E 00 -0.4363E 02 0.1225E 00 -0.

FORCES		FORCE DISPLACEMENT RELATIONS						THERMAL FORCES
NX	0.8419E 06	0.1548E 05	-0.6421E-01	0.3662E-03	0.2384E-05	0.1091E-10	ux	-0.2545E 03
NY	0.1548E 05	0.8419E 06	-0.2795E 01	0.1907E-05	0.4387E-04	0.3492E-09	٧x	-0.2546E 03
NXY	-0.6421E-01	-0.2795E 01	0.4057E 05	0.10916-10	0 • 4657E-09	0.5722E-05	VXPUY	-0.6455E-03
M,X,	C.3662E-03	0.1907E-05	0.1391E-10	0.3872E 03	0.5283E 01	-0.1370E-04	WXX.	-0.7451E-08
MY	0.2384E-05	0.4387E-04	0.4657E-09	0.5283E 01	0.1875E 03	-0.5963E-03	WY Y	-0.7451E-07
MXY	0.1091E-10	0.3492E-09	0.5722E-05	-0 - 1 370 E-04	-0.5963E-03	0.1385E 02	WXY	0.8527E-13

REDUCED BENDING REGIDITIES

0.38723E 03 0.52825E 01 -0.13698E-04 0.52825E 01 0.18748E 03 -0.59633E-03 -0.13698E-04 -0.59633E-03 0.13847E 02

RECUCED STIFFNESS MATRIX 0.84185E 06 0.15476E 09

0.84185E 06 0.15476E 05 -0.64211E-01 0.15476E 05 0.84185E 06 -0.27953E 01 -0.64211E-01 -0.27953E 01 0.40558E 05

DISP.	DISPLACEMENT FORCE RELATIONS								
ux:	0.1188E-05	-0.2184E-07	0.3756E-12	-0.1124E-11	0.2167E-13	-0.7195E-18	NX		
VX	-0.2184E-07	0-1188E-05	0.8184E-10	0 • 1860 E-13	-0.2783E-12	-0.7574E-16	ŃĀ		
VXPUY	0.3756E-12	0.8184E-10	0.2465E-04	-0.2750E-18	-0.1128E-15	-0.1019E-10	NXY.		

MX	-0.5792E-09	-0.7279E-04	0.2583E-02	-0.5847E-18	0.1714E-13	-0.1124E-11	MXX
MY	0.2297E-06	0.5336E-02	-0 •7 279 E-04	-0.9746E-16	-0.2783E-12	0.2469E-13	WYY
MXY	0.72226-01	0.2297E-06	-0.5792E-09	-0.1019E-10	-0.8573E-16	-0.4057E-18	WXY

DISP.		DISPLACEMENT FÖRCE RELATIONS									
0.5644E-02	0.1188E-05	-0.2184E-07	0.3756E-12	-0.1124E-11	0.21676-13	-0.7195E-18	9.4745E 04				
-0.4062E-03	-0.2184E-07	0.1188E-05	0.8184E-10	0.1860E-13	-0.2783E-12	-0.7574E-16	-0.2546E 03				
-0.3497E-07	0.3756E-12	0.8184E-10	0.2465E-04	-0.2750E-18	-0.1128E-15	-0.1019E-10	-0.6456E-03				
0.1292E 00	-0.1124E-11	0.1714E-13	-0.5847E-18	0.2583E-02	-0.7279E-04	-0.5792E-09	0.5000E 12				
-0.3640E-02	0.2469E-13	-0.2783E-12	-0.9746E-16	-0.7279E-04	0.5336E-02	0.2297E-06	-0.7451E-07				
-0.2896E-07	-0.4057E-18	-0.8573E-16	-0.1019E-10	-0.5792E-09	0.2297E-06	0.7222E-01	0.8527E-13				

FOR THIS CASE MBS(X,Y,XY-M) IS 5000. 0. 0. FOR THIS CASE MBS(X,Y,XY-M) IS 50. 0. 0.

1	KV	0.	0.	0.	0.	0.	0.	0.	0.
2	KF	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00
3	KF8	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.50008 00
4	KM	0.500JE 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.50008 00	0.5000E 00	0.5000F 00
5	KMB	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00
6	RHOL	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01
7	TL	0.8000E-02	0.8000E-02	0.8000E-02	0.8030E-02	0.8000E-02	0.80005-02	0.8000E-02	0.8000E-02
8	DEL TA	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.5586E-04
9	ILDC	-0.0000E-19	0.	0.	0.	0.	0.	0.	0.
10	ZB	0.4000E-02	0.1200E-01	0.2000E-01	0.2800E-01	0.3600E-01	0.44CNE-01	0.5200E-01	0.60C0E-01
11	ZGC	-0.2800E-01	-0.2000E-01	-0.1200E-01	-0.4000E-02	0.40006-02	0.1200E-01	0.20008-01	0.2970E-01
12	THCS	0.	0.	0.	0.	0.	0.	9.	0.
13	THLC	0.	0.1571E 01	0.	0.1571E 01	0.1571E 01	0.	0.1571E 01	0.
14	THL S	0.	0.1571E 01	0.	0.1571E 01	0.1571E 01	0.	0.1571E 01	0.
15	SC 11	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08
16	SC 12	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06
17	SC 13	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.41186 06	0.4118E 06	0.4118E 05	0.4118E 06
18	SC 22	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 27
19	SC 23	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.47875 06	0.4787E 06
20	SC 33	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07
21	SC 44	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 05	0.3405E 06
22	SC 55	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.34058 06	0.3405E 06
23	SC 66	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E C6	0.6339E 06	0.6339E 06	0.5339E 06
24	CTEll	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.5138E-07
25	CTE22	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-34
26	CTE33	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.23345-04	0.23345-04	0.2334E-04
27	HK 11	0.29C6E 03	0.2906E 03	0.2905E 03	0.2936E 03	0.2906E 03	0.2906E 03	0.2906E 03	0.29058 03
28	HK 22	0.3715E 01	0.3715E 01	0.3715F 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01
29	HK 33	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.37155 01	0.3715E 01
30	HCL	0.2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	0.20435 00	0.2043E 00	0.2043E 00
31	EL11	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 38	0.2528F 08
32	EL 22	0.95976 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06
33	EL 33	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 05	0.9597E 06
34	GL 23	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06
35	GL 13	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.5339E 06
36	GL 12	0.63396 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 26
37	NUL 12	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00
38	NUL 21	0.95416-02	0.9541E-02	0.9541E-02	0.954 LE-02	0.954lE-02	0.9541E-02	0.9541E-02	0.9541E-32
39	NUL 13	0.25148 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00	0.2514E 00
40	NUL 31	0.95416-02	0.95416-02	0.9541E-02	0.954 IE-02	0.9541E-02	0.9541E-02	0. 9541E-02	0.9541E-12
41	NUL 23	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00
42	NUL 32	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4D94E 00
43	SMFK 22	0.1522E 01	0.1522E 01	0.1522E 01	0.1522E 01	0.1522E 01	0.1522E 01	0.1522E 01	0.1522E 01
44	SM FD 22	0.19136 01	0.1918E 01	0.1918E 01	0.1918E 01	0.1918E 01	0.1918E 01	0.19186 01	0.1918E 01
45	SM F S 22	0.1369E OL	0.1382E 01	0.1357E 01	0.1382E 01	0.1382E 01	0.1337E 01	0.1382E 01	0.1324E 31
46	SM FC 22	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.000 CE-19	-0.0000E-19	-0.0000E-19
47	SMFS 12	0.30245 01	0.3024E 01	0.3024E 01	0.3024E 01	0.3024E 01	0.3024E 01	0.3024E 01	0.3324E 31
48	SMFS23	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396F 01
49	ILMFC	-0.000E-19	0.7060E 02	0.706)E 02	0.7060E 02	0.7060E 02	0.7060E 02	0.7060E 02	0.7060E 02
50	TEMPO	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03	-0.3000E 03
51	LSC11T	0.9676E 05	0.9676E 05	0.9675E 05	0.9676E 05	0.9676E 05	0.9676E 05	0.9676E 05	0.9676E 05
52	LSC 1 1C	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.53335 05
53	LSC11D	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0.5578E 35
54	LSC22T	0.3644E 04	0.3610E 04	0.3679E 04	0.3610E 04	0.3611E 04	0.3731E 04	0.3610E 04	0.3768F 04
55	LSC 22C	0.1752E 05	0.1736E 05	0.1769E 05	0.1736E 05	0.1736E 05	0.1794E 05	0.1736E 05	0.1812E 05
56	LSC12	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04
57	LSC23	0.1866E 04	0.1866E 04	0.1865E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1866E 04
58	LSCC 23	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.000E-19	-0.0000E-19
59	LSCC 13	-0.0000E-19	-0.0000E-19	-0.0003E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.000E-19
60	LSCDF	-0.0000E-19	0.1052E-01	0.1052E-01	0 • 105 2E-01	0.1052E-01	0.1052E-01	0.10526-01	0.10526-01

```
0.1371E 01
-0.1208E 01
0.1003E 01
0.4094E-02
-0.3626E-03
                         0.1371E 01
-0.1514E 01
-0.0000E-19
0.2027E-02
                                                           0.1371E 01
-0.6581E 01
0.1000E 01
-0.3334E-03
                                                                                                                                                                                                                                     0.1371E 01
KL 12AB
MDE IE
                                                                                                                                                                                                   0.1371E 01
                                                                                                                                                             -0.1185E 02
0.1000E 01
-0.4208E-03
                                                                                                                                                                                                -0.1650E 01
0.1000E 01
0.7194E-02
                                                                                                                              -0.1002E 02
0.1000E 01
-0.3917E-03
                                                                                                                                                                                                                                 -0.1638E 02
0.1000E 01
-0.4790E-03
                                                                                                                                                                                                                                                                   -0.2525E 31
0.1303E 31
0.9261E-32
MDE IE
RELROT
EP S1 1
EP S2 2
EP S1 2
SIG11
                                                           0.3061E-02
0.5927E-07
-0.7299E 04
                                                                                                                                                                0.6161E-02
0.8333E-07
-0.8199E 04
                                                                                                                                                                                                                                                                    -0.5082E-03
-0.3578E-07
0.2379E 06
                          -0.3043E-03
                                                                                                                                0.5128F-02
                                                                                                                                                                                                -0-4499F-03
                                                                                                                                                                                                                                     0-8228F-02
                                                                                             -0.3626E-03
-0.3462E-07
0.1057E 06
0.7372E 04
-0.2195E-01
-0.1009E-07
                                                                                                                                                                                                -0.4499E-03
-0.3532E-07
0.1851E 06
0.8038E 04
-0.2239E-01
-0.8689E-07
                          -0.3416E-07
0.5131E 05
                                                                                                                               0.7531E-07
-0.8789E 04
                                                                                                                                                                                                                                  0.9936E-07
-0.1102E 05
SIG22
SIG12
DELFI
                                                           0.9595E 04
0.3757E-01
-0.3564E-07
                                                                                                                               0.1157E 05
0.4774E-01
-0.4186E-07
                                                                                                                                                                                                                                  0.1453E 05
0.6298E-01
-0.5031E-07
                                                                                                                                                                                                                                                                   0.8482E 04
-0.2268E-31
-0.1535F-36
                                                                                                                                                                 0.1256E 05
0.5282E-01
                            0.6929E 04
                          -0.2165E-01
-0.0000E-19
                                                                                                                                                                  0.4249E-08
                          -0.1267E 01
                                                           -0.2659E 01
                                                                                             -0.2548E 01
                                                                                                                               -0.3783E 01
                                                                                                                                                               -0.4372E 01
                                                                                                                                                                                                -0.6462E 01
                                                                                                                                                                                                                                  -0.5704E 01
```

Bidirectional Composite Residual Stresses Only

```
THORNEL-50/EPOXY
NL.NPL.NPC.NFPE.NLC
8 71 54 1420
EF11.EF22.EF33.NUF12.NUF23.NUF13.EF12.EF23.EF13.EN11.EM22.EM33.NUM12.NUM23 NUM13.EM12.EM23.EM13

0.50000E 08  0.10000E 07  0.10000E 07  0.20000E 03  0.25000E 00  0.20000E 00  0.13000E 07  0.70000E 06  0.13000E 07  0.57000E 06  0.57000E 06  0.36000E 00  0.36000E 00  0.36000E 00  0.06000E 00 
VCF
0.40000E 01 0.20000E 01 0.40000E 01 0.20000E 01 0. 0. 0. 0. 0.
0. 0. 0.10000E 01 0.10000E 01 0.10000E 01
                                                                                                                                                                                                                                           0.23560E 01 0.
-0.55000E-06 0.56000E-05 0.56000E-05
   0.42800E-04 0.42800E-04 0.42800E-04
   0.58000E 03 0.58000E 02 0.58000E 02 0.17000E 00 0.12500E 01 0.12500E 01 0.12500E 01 0.25000E 00 0.
                                                                                                                                                                                                                                                                                                              0.
0.10000E 01 0.10000E 01 0.10500E 01 0.10500E 01
  0.31416E 01
TL INP
CSANB
BIDE
RINDV
THCS,RHQF,RHCM,DIAF
0. 0.59000E-01 0.44300E-01 0.26000E-03
O.
                                                                    0.
                                                                                                     0.
                                                                                                                                       0.
                                                                                                                                                                         0.
KFL 0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00 0.50000E 00
                                   0.90000E 02 0.
                                                                                                     0.90000E 02 0.90000E 02 0.
   -0.30000E 03 -0.30000E
  0.83000E 00 0.10000E 01 0.26000E 00 0.27000E 00 0.17000E 00 0.16500E 02 0.10000E 01 0.10000E 01 0.46500E-01 0.10000E 01 0.50000E 00 0.13300E 02 0.31900E 05 0.10000E 01 0.10000E 01 0.10000E 01
   0.23000E 06 0.21000E 05 0.20000E-01 0.50000E-01 0.45000E-01 0.45000E-01
NBS
MBS
                                   0.
DISV1
                                   0.
                                                                     0.
                                                                                                     0.
                                                                                                                                       0.
```

3-D COMPOSITE STRAIN STRESS TEMPERATURE RELATIONS - STRUCTURAL AXES

0.7604E-07	-0.1392E-08	-0.2866E-07	0.	0.	0.2409E-13	0.99018-06
-0.1392E-08	0.76U4E-07	-0.2866E-07	-0.	-0.	0.5238F-11	0.9901E-06
-0.2866E-07	-0.2866E-07	0.8844E-06	0.	0.	-0.2187E-11	0.32196-04
0.	0.	-0.	0.2937E-05	0.	0.	0.
0.	0.	-0.	0.	0.2937E-05	0.	0.
0.2400E~13	0.5238E-11	-0.2187E-11	0 .	0.	0.1578E-05	0.1228F-09

3-D COMPOSITE STRESS STRAIN RELATIONS - STRUCTURAL AXES

0.1333E 08	0.4118E 06	0.4452E 06	-0.	-0.	-0.9527E 00
0.4118E 06	0.1333E 08	0.4452E 06	-0.	-0.	-0.4363E 02
0.4452E 06	0.4452E 06	0.1160E 07	-0.	-0.	0.1225F 00
-0.	-0.	-0.	0.3405E 06	-0.	-0.
-0.	-0.	-0.	-0.	0.3405E 06	-0.
-0.9527E 00	-0.4363E 02	0.1225E 00	-0.	- O •	0.6339E 06

```
COMPOSITE PROPERTIES - VALID ONLY FOR CONSTANT TEMPERATURE THROUGH THICKNESS LINES 1 TO 21 3-0 COMPOSITE PROPERTIES ABOUT MATERIAL AXES LINES 33 TO 54 2-D COMPOSITE PROPERTIES ABOUT STRUCTURAL AXES 1 RHOC 0.5165E-01 2 TC 0.6400E-01 3 CC11 0.1333E 08 4 CC12 0.411BE 06 5 CC13 0.4452E 06 6 CC22 0.1333E 08 7 CC23 0.4452E 06 6 CC22 0.1333E 08 7 CC23 0.4452E 06 6 CC33 0.116CE 07 9 CC44 0.3405E 06 10 CC55 0.3405E 06
                            CC 12
CC 13
CC 22
CC 23
CC 33
CC 44
CC 55
CC 66
CT E11
CT E22
                                                                                  0.3405E 06

0.3405E 06

0.3405E 06

0.9901E-06

0.9901E-06

0.3219E-04

0.1472E 03

0.1472E 03

0.3715E 01

0.2043E C0

0.1315E 08

0.1131E 07

0.3405E 06

0.3405E 06

0.43405E 06

0.4339E 06

0.4339E 06

0.1831E-01

0.1831E-01

0.3769E 00
   10
 11111111222222222233333333334444444444551
                             CTE33
HK11
HK22
HK33
                              HHC
EC11
                             EC 22
EC 33
EC 23
                             EC 31
EC 12
                             NUC 21
                                                                                   0.1831E-01
0.3769E 00
0.3241E-01
0.3769E 00
0.3241E-01
0.3200E-01
                             NUC 31
                             NUC 23
NUC 32
                             ZC GC
B2DEC
                                                                            C.3200E-01

O.1315E 08

C.2418E 06

-0.1003F 01

0.1315E 08

-C.4368E 02

0.6339E 06

0.1315E 08

0.1315E 08

0.6339E 06
                             CC 11
                             CC 13
CC 22
CC 23
CC 33
                             EC 11
EC 22
                                                                            0.1315E 08

0.6339E 06

0.1838E-01

0.1838E-01

-0.3161E-06

-0.1524E-07

-0.6887E-04

-0.330E-05
                             EC12
NUC12
NUC21
                           CSN13
CSN31
CSN23
CSN32
                                                                                  0.9901E-06
0.9901E-06
0.1228E-09
0.1472E 03
0.1472E 03
0.5594E-03
                             CTE11
CTE22
                             CTE12
                             HK 11
                             HK 22
HK 12
```

HHC

0.2043E 00

FORCES			FORCE DISPLACE	MENT RELATIONS			DISPL	THERMAL FORCES
NX	0.8419E 06	0.1548E 05	-0.6421E-01	0.3662E-03	0 • 2384E-05	0.1091E-10	UX	-0.2546E 03
NY	0.1548E 05	0.8419E 06	-0.2795E 01	0.1907E-05	0.4387E-04	0.3492E-09	VX	-0.2546E 03
NXY	-0.6421E-01	-0.2795E 01	0.4057E 05	0.1091E-10	0.46576-09	0.5722E-05	VXPUY	-0.6456E-03
MX.	0.3662E-03	0.1907E-05	0.1091E-10	0.3872E 03	0.5283E 01	-0.1370E-04	MXX	-0.7451E-08
W.A.	0.2384E-05	0.4387E-04	0.4657E-09	0.52836 01	0.1875E 03	-0.5963E-03	WYY	-0.7451F-07
MXY	0.1091E-10	0.3492E-09	0.5722E-05	-0 • 1 370 E - 04	-0.5963E-03	0.1385E 02	WXY	0.8527E-13

RECUCED BENDING REGIDITIES

0.38723E C3 0.52825E 01 -0.13698E-04 0.52825E 01 0.18748F 03 -0.59633E-03 -0.13698E-C4 -0.59633E-03 0.13847E 02

RECUCED STIFFNESS MATRIX
0.84185E 06 0.15476E 05 -0.64211E-01 0.15476E 05 0.84185E 06 -0.27953E 01 -0.64211E-01 -0.27953E 01 0.40568E 05

DISP.			DISPLACEMENT	FORCE RELATIONS	;			FORCES
ux	0.11886-05	-0.2184E-07	0.37566-12	-0.11246-1	0.2167E-13	-0.71956	-18	NX
VX;	-0.2184E-07	0.1188E-05	0.8184E-10	0 - 1860 E-1	-0.2783E-12	-0.75746	-16	NY
VXPUY	0.3756E-12	0.8184E-10	0.2465E-04	-0.2750E-1	-0.1128E-15	-0.10198	-10	NXY
wxx	-0.1124E-11	0.1714E-13	-0.5847E-18	0.25836-0	-0.7279E-04	-0.5792E	-0.9	мх
MAA.	0.2469E-13	-0.2783E-12	-0.9746E-16	-0.7279E-0	0.5336E-02	0.22978	-06	MY
WXY	-0.4057E-18	-0. 8573E-16	-0.1019E-10	-0.5792E-0	0.2297E-06	0.72228	-01	MXY
DISP.		ŀ	DISPLACEMENT	FORCE RELATIONS				FORCES
-0.2970E-03	0.11	188E-05 -0.2	184E-07 0.3	3756E-12 -0	1124E-11 0.	2167E-13	-0.7195E-18	-0.2546E 23
-0.2970E-03	-0.21	1848-07 0.1	188E-05 0.	8184E-10 0	. 1860 E- 13 -0 . :	2783E-12	-0.7574F-16	-0.2546E 03

-0.2970E-03	0.1188E-05	-0.2184E-07	0.3756E-12	-0.1124E-11	0.2167E-13	-0.7195E-18	-0.2546E 13
-0.2970E-03	-0.2184E-07	0.1188E-05	0.8184E-10	0.1860 E-13	-0.2783E-12	-0.7574F-16	-0.2546E 03
-0-3685E-07	0.3756E-12	0.81848-10	0.2465E-04	-0.2750E-18	-0.1128E-15	-0.1019E-10	-0.6456E-03
0.2680E-09	-0.1124E-11	0.1714E-13	-0.5847E-18	0.2583E-02	-0.7279E-04	-0.5792E-09	-0.7451E-08
-0.3324E-09	0.2469E-13	-0.2783E-12	-0.9746E-16	-0 • 7 2 79 E- 04	0.5336F-02	0.2297E-06	-0.7451E-07
0 • 1756 E-13	-0.4057E-18	-0.8573E-16	-0.1019E-10	-0.5792E-09	0.22976-06	0.7222E-01	0.8527E-13

FOR THIS CASE NBS(X,Y,XY-M) IS 0. 0.

FOR THIS CASE MBS(X,Y,XY-M) IS 0. 0. 0.

1	KV.	0	0.	0.	.0 .	0.	0.	0.	0.
2	ΚF	0.5000E 00	0.5000E 00	0.5000E 00	0.5030E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00
3	KFB	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00
4	KM	0.5000E 00	0.5000E 00	0.5000E 00	0.500 OE 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00
5	KMB	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00
6	RHOL	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01	0.5165E-01
7	TL	0.8000E-02	0.8000E-02	0.8003E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02
8	DEL TA	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04
9	IL DC	-0.0000E-19	0.	0.	0. •	0.	0.	0.	0.
10	ZB.	9 - 40 00E - 02	0.1200E-01	0.2000E=01	0.2830E-01	0.3600E-01	0.4400E-01	0.5200E-01	0.5000E-01
11	ZGC	-0.2800E-01	-0.2000E=01	-0.1200E-01	-0.4000E-02	0.4000E-02	0.12008-01	0.2000E-01	0.2800E-01
12	THCS	0.	0.	0.	0.	0.	0.	0.	0.
13	THLC	0.	0.1571E 01	0.	0.1571E 01	0.1571E 01	0.	0.1571E 01	0.
14	THLS	0.•	0.1571E 01	0.	0.1571E 01	0.1571E 01	0.	0.1571E 01	0.
15	SC 11	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08
16	SC 12	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06
17	SC 13	0.4118E 06	0.4118E 06	0.4118E 96	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06
18	SC 22	0.1160E 07	0.1160E 07	0.1163E 97	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 37
19	SC 2 3	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787E 06	0.4787F 36
20	SC 33	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 27
21	SC 44	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 05	0.3405E 06

```
0.3405E 06
0.6339E 06
-0.6138E-07
                                                                                                               0.3405E 06
0.6339E 06
-0.6138E-07
                                                                                          0.3405E 06
0.6339E 06
                                               0.3405E 06
                                                                    0.3405E 06
                                                                                                                                     0.3405E 06
                                                                                                                                                           0.3405E 05
                                                                                                                                                                                0.3435E 06
       SC 55
       SC66
CTE11
                                              0.6339E 06
                                                                    0.6339E 06
-0.6138E-07
                                                                                                                                     0.6339E 06
0.6138E-07
                                                                                                                                                          0.6339E 06
-0.6138E-07
                                                                                                                                                                                0.5339E 36
-0.5138E-37
                                                                                         -0.6138E-07
24
25
       CTF22
                          0.23345-04
                                               0.23345-04
                                                                    0-2334F-04
                                                                                          0 - 2334F-04
                                                                                                               0.2334F-04
                                                                                                                                     0.23345-04
                                                                                                                                                           0.23345-04
                                                                                                                                                                                0.2334F-14
26
                          0.2334E-04
                                                                                                                                                           0.2334E-04
0.2906E-03
                         0.2906E 03
0.3715E 01
0.3715E 01
       HK 11
                                               0.2906F 03
                                                                    0.2905E 03
                                                                                          0.2936E
                                                                                                                0.2906E 03
                                                                                                                                     0.2906E 03
                                                                                                                                                                                0.2906E 23
28
29
       HK 22
                                               0.3715E 01
0.3715E 01
                                                                    0.3715E 01
0.3715E 01
                                                                                          0.3715E 01
0.3715E 01
                                                                                                                0.3715E 01
0.3715E C1
                                                                                                                                     0.3715E 01
0.3715E 01
                                                                                                                                                           0.3715E
0.3715E
                                                                                                                                                                                0.3715E
0.3715E
       HK 33
                                                                                                                                                                                0.3715E 01
0.2043E 00
0.2528E 08
0.9597E 06
0.9597E 06
0.3405E 06
30
31
32
       HCL
EL 11
                         0.2043E 00
0.2528E 08
                                               0.2043E 00
0.2528E 08
                                                                    0.2043E 00
0.2528E 08
                                                                                          0.2043E 00
0.2528E 08
                                                                                                                0-2043E 00
                                                                                                                                     0.2043F 00
                                                                                                                                                           0-2043F
       FL 22
                          0.9597E 06
                                               0.9597F 06
                                                                    0.9597E 06
                                                                                          0.95978 06
                                                                                                                0.9597F 06
                                                                                                                                     0.9597E 06
                                                                                                                                                           0-9597F
                                                                                                                                                                       06
                                                                                                               0.9597E 06
0.3405E 06
                                                                                                                                                           0.9597E 06
0.3405E 05
                          0.9597E
                                                0.9597F 06
                                                                     0.9597E 06
                                                                                          0.9597E
                                                                                                                                      0.9597E
       GL 23
                          0.3405E 06
                                               0.3405E 06
                                                                    0.3405E 06
                                                                                          0.3405E 06
                                                                                                                                     0.3405E 06
                                                                                          0.6339E 06
0.6339E 06
0.2514E 00
0.9541E-02
                                                                                                                                                                                0.5339E 06
0.5339E 06
0.2514E 00
35
                         0.6339E
0.6339E
                                               0.6339E 06
                                                                    0.6339E 06
                                                                                                                0.6339E 06
                                                                                                                                     0.6339E 06
                                                                                                                                                           0-63395 06
                                                                                                                                                           0.6339E
36
37
38
       GL 12
                                      06
       NUL 12
NUL 21
                                                                    0.2514E 00
0.9541E-02
                                                                                                                                     0-25145 00
                          0.2514E 00
                                               0-2514F 00
                                                                                                                0.2514E 00
                                                                                                                                                           0. 25145 00
                                                                                                               0.9541E-02
0.2514E 00
                                                                                                                                     0.9541E-02
0.2514E 00
                                                                                                                                                           0.9541E-02
0.2514E 00
39
40
41
42
43
       NUL 13
                          0-2514E 00
                                               0.2514F 00
                                                                    0.2514E 00
                                                                                          0.2514E 00
                                                                                                                                                                                0.2514E 00
                                                                                                                                                                                0.2514E 00
0.9541E-02
0.4094E 00
0.4094F 00
0.1522E 01
0.1918E 01
0.1383E 01
                         0.2514E 00
0.9541E-02
0.4094E 00
0.4094E 00
0.1522E 01
                                                                    0.4094E 00
0.4094E 00
                                                                                         0.9541E-02
0.4094E 00
0.4094E 00
0.1522E 01
                                               0.9541E-02
0.4094E 00
                                                                                                                0.9541E-02
0.4094E CO
                                                                                                                                                           0.9541E-02
0.4094E 00
                                                                                                                                     0.9541E-02
                                                                                                                                     0.4094E
       NUL 23
                                               0.4094E 00
0.1522E 01
0.1918E 01
       NUL 32
SMFK 22
                                                                                                                0.4094E 00
0.1522E 01
                                                                                                                                     0.4094E 00
0.1522E 01
                                                                                                                                                          0.4094E 00
0.1522E 01
44
                                                                                                                0-1918F 01
                                                                                                                                     0-1918F 01
                                                                                                                                                           0-1918F 01
       SM FD 22
                          0-1918F 01
                                                                    0×1918E 01
                                                                                          0.1918E 01
        SMFS 22
                          0.1383E 01
                                               0.1383E
                                                                    0.1383E 01
46
47
48
49
50
       SM FC 22
                        -0.0000E-19
                                              -0.0000E-19
                                                                    -0.0000E-19
                                                                                         -0.0000E-19
                                                                                                              -0.0000E-19
                                                                                                                                    -0.0000E-19
                                                                                                                                                         -0.0000E-19
                                                                                                                                                                               -0.0000E-19
                                              0.3024E 01
0.1396E 01
                                                                                                                                     0.3024E 01
0.1396E 01
                                                                                                                                                          0.3024E 01
0.1396E 01
                                                                                                                                                                                0.3324E
0.1395E
                         0.3024E 01
                                                                    0.3024E 01
                                                                                          0.3024E 01
                                                                                                               0.3024E 01
       SMES 23
                                                                                                                0-1396F 01
                         0-1396F 01
                                                                    0.1395F 01
                                                                                          0-1396F 01
                                                                                        0.1398E 01
0.7060E 02
-0.3000E 03
0.9676E 05
0.5333E 05
                                                                                                               0.7060E 02
-0.3000E 03
0.9676E 05
0.5333E 05
                                                                                                                                                                                0.7360E
-0.3300E
0.9676E
        ILMFC
TEMPD
                        -0.0000E-19
                                              0.7060E 02
-0.3000E 03
                                                                    0.7060E 02
-0.3000E 03
                                                                                                                                     0.7060E
                                                                                                                                                 0.2
                                                                                                                                                           0.7060E 02
                                                                                                                                                                                             )2
)3
                                                                                                                                     0.30COE
                                                                                                                                                          0.30005
       LSCI IT
                                               0.9676E 05
0.5333E 05
                         0.9676E 05
                                                                    0-96766 05
                                                                                                                                     0.9676E 05
                                                                                                                                                           0.96765 05
                                                                                                                                                                                            05
                         0.5333E 05
0.6578E 05
                                                                    0.5333E 05
0.6578E 05
                                                                                          0.5333E 05
0.6578E 05
                                                                                                                                                          0.5333E 05
0.6578E 05
                                                                                                                                                                                0.5333E 05
0.6578E 05
                                                                                                                                      0.53338 05
                                                                                                                                     0.6578E 05
53
       LSC110
                                               0.6578E 05
                                                                                                                0.6578E 05
54
55
                         0.3609E 04
                                               0.3609E 04
                                                                    0.3639E 04
0.1735E 05
                                                                                          0.3639E 04
0.1735E 05
                                                                                                               0.3609E 04
0.1735E 05
                                                                                                                                     0.3609E 04
0.1735E 05
                                                                                                                                                                                0.3509E
0.1735E
       LSC22T
                                                                                                                                                           0.3609E 04
                                                                                                                                                                                            34
       LSC 22C
                                               0.2547E 04
0.1866E 04
                                                                    0.2547E 04
0.1856E 04
                                                                                          0.2547E 04
                                                                                                                                                                                0.2547E
0.1866E
       LSC12
                          0.2547E 04
                                                                                                               0-2547F 04
                                                                                                                                     0-2547F 04
                                                                                                                                                           0.2547F 04
                                                                                                                                                                                            14
                                                                                                                0.1866E 04
                                                                                                                                     0.1866E 04
                          0.1866E 04
       LSC23
       LSCC 23
LSCC 13
                                                                                                                                                         -0-0000F-19
                        ~0.0000E-19
                                             - 0.0000E-19
                                                                    -0-2202E-19
                                                                                         -0.0000F-19
                                                                                                              -0-0000E-19
                                                                                                                                    -0.0000F-19
                                                                                                                                                                               -0.0000E-19
                                                                                         -0.0000E-19
0.1052E-01
                                                                                                              -0.0000E-19
                                                                                                                                                         -0.1000E-19
                        -0.0000E-19
                                             -0.0000E-19
                                                                                                                                    -0.0000E-19
                                                                                                                                                                               -0.0000E-19
60
61
       LSCOF
                        -0.0000E-19
                                               0.1052E-01
                                                                    0.1052E-01
                                                                                                                                     0.1052E-01
                                                                                                                                                                                0.1052E-01
                        0.1371E 01
-0.2422E 01
                                             0.1371E 01
-0.2422E 01
                                                                    0.1371E 01
-0.2422E 01
                                                                                         0.1371E 01
-0.2422E 01
                                                                                                              0.1371E 01
-0.2422E 01
                                                                                                                                    0.1371E 01
-0.2422E 01
                                                                                                                                                         0.1371E 01
-0.2422E 01
                                                                                                                                                                                0.1371E 01
-0.2422E 01
       KL 12AB
       MDETE
62
       RELROT
EPS11
                        -0.3000E-19
-0.2970E-03
                                             0.1000E 01
-0.2970E-03
                                                                                         0.1000E 01
-0.2970E-03
                                                                    0.1000F 01
                                                                                                               0-1000E 01
                                                                                                                                     0-1000F 01
                                                                                                                                                          0.1000E 01
                                                                                                                                                                                0.13006 01
                                                                                                                                   -0.2970E-03
                                                                    -0.2970E-03
       EP $2.2
                                                                                                              -0.2970F-03
                                                                                                                                                         -0.2970F-03
                                                                                                                                                                               -0.2970E-03
65
66
                        -0.2970E-03
                                             -0.2970F-03
                                                                    -0.2970E-03
                                                                                         -0.2970E-03
                                                                                                                                                         0.3685E-07
-0.6374E 04
0.6374E 04
                                                                                        0.3685E-07
-0.6374E 04
                                                                                                              0.3685E-07
-0.6374E 04
                                                                                                                                                                               -0.3685E-07
-0.5374E 04
                                               0.3685E-07
                                                                    -0.3685E-07
                                                                                                                                    -0.3685E-07
                                                                                                                                    -0.6374E 04
67
       51611
                        -0.6374E 04
                                             -0.6374E 04
                                                                    -0.6374E 04
                                                                                                                                                                               0.5374E 04
-0.2336E-01
                                              0.6374E 04
0.2336E-01
                                                                                         0.6374E 04
0.2336E-01
                          0.6374E 04
                                                                    0.6374E 04
                                                                                                               0.6374F 04
69
70
                         -0.2336E-01
                                                                    -0.2336E-01
                                                                                                               0.2336E-01
                                                                                                                                    -0.2336E-01
                                                                                                                                                         0.2336E-01
-0.1278E-08
       SIG12
       DELFI
                        -0.0000E-19
                                             -0-1278E-08
                                                                   -0.1278F-08
                                                                                         -0 -1278F-08
                                                                                                              -0-1279F-08
                                                                                                                                   -0-1278F-08
                                                                                                                                                                               -0.1278F-08
                        -0.1117E 01
                                                                    -0.1117E 01
                                                                                         -0.1117E 01
                                                                                                              -0.11175 01
                                                                                                                                   -0.11175 01
                                                                                                                                                         -0.1117E 01
       FFC
                                             -0.1117E 01
```

Bidirectional Composite with Bending-Stretching Coupling: Residual Stresses Only

```
THORNEL-50/EPOXY
NL,NPL,NPC,NFPE,NLC
8 71 54 1420
EF11.EF22.EF33.NUF12.NUF23.NUF13.EF12.EF23.EF13.EM11.EM22.EM33.NUM12.NUM23.NUM13.EM12.EM23.EM13.0.50000E 08 0.10000E 07 0.10000E 07 0.20000E 00 0.25000E 00 0.20000E 00 0.13000E 07 0.700.57000E 06 0.57000E 06 0.36000E 00 0.36000E 00 0.36000E 00 0.0000E 0
                                                                                                                                                                                                                                                                                                                                                                                                                                         0.70000E 06 0.13000E 07 0.57000E 06
                                                                                                                                                                                                                                                   0. 0.23560E 01
0.10000E 01 0.10000E 01 0.10000E 01 0.
     0.40000E 01 0.20000E 01 0.40000E 01 0.20000E 01
  -0.55000E-06 0.56000E-05 0.56000E-05
      0.42800E-04 0.42800E-04 0.42800E-04
CHK
    0.58000E 03 0.58000E 02 0.58000E 02 0.17000E 00 0.12500E 01 0.12500E 01 0.12500E 01 0.25000E 00 0.
0. 0.22500E 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0.
     0.10000F 01 0.10000F 01 0.10500F 01 0.10500F 01
    0.31416E 01
TL INP
 CS AN B
BICE
R INDV
```

```
THCS.RHOF.RHOM.DIAF
 O.
KVL
                        0.59000E-01 0.44300E-01 0.26000E-03
  O.
KFL
                                            0.
                                                                0-
                                                                                   0.
                                                                                                        0.
                                                                                                                            0.
                                                                                                                                                0.
 0.50000E 00 THLC
   0.
                       0-
                                                                0.
                                                                                   0.90000E 02 0.90000E 02 0.90000E 02 C.90000E 02
 TL 0.80500E-02 0.80500E-02 0.80000E-02 0.80000E-02 0.80500E-02 0.80500E-02 0.80500E-02 0.80500E-02 0.80500E-02
  -0.30000E 03 -0.30000E 03
   0.83000E 00 0.10000E 01 0.26000E 00 0.27000E 03 0.17000E 03 0.16500E 02 0.10000E 01 0.10000E 01 0.46500E-01 0.10000E 01
0.50000E 00 0.13300E 02 0.31900E 05 0.10000E 01 0.10000E 01 0.10000E 01
 LSC 0.23000E 06 0.21000E 05 0.20000E-01 0.50000E-01 0.45000E-01 0.45000E-01
 NBS
0.
                                           0.
 MBS
0.
                                           0.
 DISVI
                       ٥.
                                                                                                       ٥.
                                           3-D. COMPOSITE STRAIN STRESS TEMPERATURE RELATIONS - STRUCTURAL AXES
                      0.7604E-07
                                          -0.1392E-08
                                                                -0.2866E-37
                                                                                       0 -
                                                                                                             0.
                                                                                                                                   0.2400E-13
                                                                                                                                                                 0.9901E-06
                     -0-1392E-08
                                             0-7604E-07
                                                                -0.2866E-07
                                                                                      -0.
                                                                                                            -0.
                                                                                                                                   0.5238E-11
                                                                                                                                                                0.9901E-06
                                                                                                                                 -0.2187E-11
                                                                                                                                                                 0.3219E-04
                                           -0.2866E-07
                                             ٥.
                                                                -0.
                                                                                       0.2937E-05
                                                                                                             0.
                                                                                                                                                                0.
                                                                -0.
                                                                                       0.
                                                                                                             0.2937E-05
                                                                                                                                   0.
                                                                                                                                                                0.
                      0.
                                            0.
                      0.2400E-13
                                                                -0.2187E-11
                                                                                                                                   0.1578E-05
                                                                                                                                                                0.1228E-09
                                             0.5238E-11
                                                    3-D COMPOSITE STRESS STRAIN RELATIONS - STRUCTURAL AXES
                                      0.1333E 08
                                                           0.4118E 36
                                                                                 0.4452E 06
                                                                                                                           -0.
                                                                                                                                                 -0.9527E 00
                                                                                                                           -0.
                                                                                                                                                 -0.4363E 02
                                      0.4118E 06
                                                           0.1333E 08
                                                                                 0.4452E 06
                                                                                                      -0.
                                                                                 0.1160E 07
                                                                                                                                                  0.1225E 00
                                      0.4452E 06
                                                           0.4452E 06
                                                                                                                           -0.
                                                                                                      -0.
                                                           -0.
                                                                                                       0.3405E 06
                                                                                                                           -0.
                                                                                                                                                 -0.
                                                                                                                            0.3405E 06
                                                                                                                                               -0-
                                    ~0.
                                                          -0.
                                                                                -0.
                                                                                                      -0-
                                                                                                                                                  0.6339E 06
                                    -0.9527E 00 -0.4363E 02
                                                                                 0.1225E 00
                                                                                                      -0.
                                                                                                                           -0.
COMPOSITE PROPERTIES - VALID ONLY FOR CONSTANT TEMPERATURE THROUGH THICKNESS LINES 1 TO 31 3-D COMPOSITE PROPERTIES ABOUT MATERIAL AXES LINES 33 TO 54 2-D COMPOSITE PROPERTIES ABOUT STRUCTURAL AXES 1 RHOC 0.5165E-01 2 TC 0.66400E-01 3 CC11 0.1333E 08 4 CC12 0.4118E 06 5 CC13 0.4452E 06 6 CC22 0.4138E 08 7 CC23 0.4452E 06 6 CC22 0.1333E 08 7 CC23 0.4452E 06 8 CC33 0.1160E 07 9 CC44 0.3405E 06
123456789011231456789011232222456789012
        CC 44
CC 55
CC 66
CTE11
CTE22
CTE33
                        0.3405E 06
0.3405E 06
0.6339E 06
                       0.6339E 06
0.9901E-06
0.3901E-06
0.3219E-04
0.1472E 03
0.1472E 03
0.2043E 00
0.1315E 08
0.1315E 08
0.1315E 08
0.1315E 08
0.1315E 08
0.1315E 08
0.1315E 00
0.3405E 06
0.6339E 06
0.6339E 06
0.6339E 00
0.831E-01
0.13769E 00
                                                                                                                                                                                 , C
        HK 11
HK 22
                                                                                                                                                                                    15
        HK 33
HHC
EC 11
EC 22
EC 33
EC 23
EC 31
        EC 12
NUC 12
NUC 21
        NUC13
NUC31
NUC23
        NUC 32
ZCGC
B2DEC
                        0.3241E-01
0.3200E-01
0.
```

33	CC 11	0.1315E 08
34	CC 12	0.2418E 06
35	CC 13	-0.1003E 01
36	CC 22	C.1315E 08
37	CC-23	-0.4368E 02
38	CC 33	C.6339E 06
39	EC 11	C.1315E 09
40	EC 22	0.1315E 08
41	EC 12	C.6339E 06
42	NUC 1 2	C.1838E-01
43	NUC 21	0.1838E-01
44	CSN13	-0.3161E-06
45	CSN 31	-0.1524E-07
46	CSN23	-0.6887E-04
47	CSN32	-0.3320E-05
48	CTELL	C.9901E-06
49	CTE22	0.99C1E-06
50	CTE12	0.1228E-09
51	HK 11	0.1472E 03
52	FK 22	0.1472E 03
53	HK 12	C.5594E-03
54	FHC	0.2043E 00

FURCES			FORCE DISPLACE	MENT RELATIONS			DISPL	THERMAL FORCES
NX	0.8419E 06	0.1548E 05	-0.6421E-01	-0.1248E 05	0.3338E-05	-0.1027E-02	UX	-0.2545E 03
NY	0.15486 05	0.8419E 06	-0.2795E 01	-0.9537E-06	0.1248E 05	-0.4472E-01	٧x	-0.2546E 03
NXY	-0,6421E-01	-0.2795E 01	0.4057E 05	-0.1027E-02	-0.4472E-01	0.5722E-05	VXPUY	-0.6456E-03
м×	-0.1248E 05	-0.9537E-06	-0.1027E-02	0.2874E 03	0.5283E 01	-0.2192F-04	wxx	-0.2818E 01
MY	0.33386-05	0.1248E 05	-0.4472E-01	0.5283E 01	0.2874E C3	-0.9541E-03	WYY	0.2818E 01
MXY	- C • 1027E - 02	-0.4472E-01	0.5722E-05	-0.2192E-04	-0.9541E-C3	0.1385E 02	WXY	-0.10336-04

REDUCED BENDING REGIDITIES

0.10215E 03 0.18778E 01 -0.24961E-04 0.18778E 01 0.10215E 03 -0.29092E-03 -0.24961E-04 -0.29092E-03 0.13847E 02

RECUCED STIFFNESS MATRIX 0.29926E 06 0.55014E 04 -0.73129E-01 0.55014E 04 0.29926E 06 -0.85231E 00 -0.73129E-01 -C.85231E 00 0.40568E 05

01SP •		t	DISPLACEMENT	FORCE RELATIONS			FORCES
υx	0.33436-05	-0.6145E-07	0.47356-11	0.1452E-03	-0.1137E-12	0.2794F-09	NX
vx	-0.61458-07	0.3343E-05	0.7012E-10	-0.5592E-13	-0.1452E-03	0.7851E-09	NY
VXPÚY	0.4735E-11	0.7012E-10	0.2465E-04	0.2794E-09	0.7851E-09	-0.9905E-11	NXY
WXX	0.1452E-03	-0.5684E-13	0.2794E-39	Ö-9793E-02	-0.1800E-03	0.1387E-07	мx
WYY	C.6770E-13	-0.1452E-03	0.7851E-09	-0.1800E-03	0.9793E-02	0.2054E-06	MY
WXY	C.2794E-09	0.7851E-09	-0.9905E-11	0.1387E-07	0.2054E-06	0.7222E-01	MXY

DISP.		DISPLACE	MENT FORCE RELA	T IÒNS			FORCES
-0.1245E-02	0.33438-05	-0.6145E-07	0.4735E-11	0.1452E-03	-0.1137E-12	0.2794F-09	-0.25468 03
-0.1245E-C2	-0.6145E-07	0.3343E-05	0.7012E-10	-0.5592E-13	-0.1452E-03	0.7851E-09	-0.2546E 03
-0.3355E-07	0.4735E-11	0.7012E-10	0.2465E-04	0.2794E-09	0.7851E-09	-0.9905E-11	-0.6456E-03
-0.6509E+01	0.1452E-03	-0.5684E-13	0.2794E-09	0.9793E-02	-0.1800E-03	0.1387E-07	-0.2818E 01
0.65C9E-C1	0.6770E-13	-0.1452E-03	0.7851E-09	-0.1800E-03	0.9793E-02	0.2054E-06	0.2818E 01
-0.4771E-C6	0.2794E-09	0.7851E-09	-0.9905E-11	0.1387E-07	0.2054E-06	0.7222E-01	-0.1033E-04

```
        FOR THIS CASE NBS(X,Y,XY-M) IS
        0.
        0.
        0.

        FOR THIS CASE MBS(X,Y,XY-M) IS
        0.
        0.
        0.
```

1	KV.	0.	0.	0.	0.	0.	0.	0.	0.
2	KF	0.5000E 00	0.5000E 00	0.5000E 00	0.500.0E 00	0.5000E 00	0.500 CE 0.0	0.5000E 00	0.5000E 00
	KFB	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.5000E 00	0.50000 00	0.5000E 00
3									
4.	KM.	0.5000E 00	0.5000E 00	0.5000E 00	0.500 OE 00	0.5000E 00	0.500CE 00	0.5000E 00	0.5000E 00
5	KMB	0.5000E 00	0.5000F 00	0.5000E 00	0.5000E 00	0.50COE 00	0.500 CE 00	0.50008 00	0.50000 00
6	RHOL	0.5165E-01	0.5165E~01	0.5165E-01	0.5165F-01	0.5165E-01	0.51658-01	0.5165E-01	0.5165E-01
7	TL	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8000E-02	0.8303E-32
8	DEL TA	0.6586E-04	0.6586E-04	0.6585E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.6586E-04	0.5586E-04
9	ILDC	-0.0000E-19	0.	0.	0.	0.	0.	0.	0.
		0.4000E-02	0.1200E-01	0.2000E-01	0.2800E-01	0.3600E-01	0.4400E-01	0.5200E-01	0.6000F-01
10	ZB								
11	Z GC	-0.2800E-01	-0.2000E-01	-0.1200E-01	-0.4000E-02	0.4000E-02	0.1200E-01	0.20005-01	0.2800E-01
1.2	THCS	٥.	0.	0.•	0.	0.	٥.	0.	0.
13	THLC	0.	0.	0.	0.	0.1571E 01	0.1571E 01	0.1571F 01	0.1571E 01
14	THLS	0.	0.	0.	0.	0.1571E 01	0.15718 01	0.15715 01	0.15718 01
15	SC 11	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08	0.2549E 08
16	SC 12	0.4113E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4118E 06	0.4119E 26
	SC 13	0.4118E 06	0.4118E 06	0.41186 06	0.4118E 06	0.4118E 06	0.41185 06	0.4118E 06	0.4118E 06
17									
1.8	SC 2 2	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1167E 27
19	SC 23	0.4787E 06	0.4787E 06	0.4787E 06	0.4787F 06	0.4787E 06	0.47878 06	0.4787E 06	0.4787F 06
20	SC 3.3	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160E 07	0.1160F 27
21	SC 44	0.3405E 06	0.3405E 06	0.3495E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.34055 06	0.3405E 26
22	SC 55	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.3405E C6	0.3405E 06	0.3405E 06	0.3405E 96
23	SC 66	0.6339E 06	0.6339E 06	0.6339E 06	0.6339F 06	0.6339E 06	0.63395 06	0.6339E 06	0.5339E 26
24	CTELL	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.6138E-07	-0.61386-07	-0.5138E-07
			0.2334E-04	0.2334E-04	0.0136E-01	0.2334E-04	0.2334E-04	0.23348-94	0.2334F-04
25	CTEZZ	U. 2334E-04							
26	CTE33	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04	0.2334E-04
27	HK 11	0.2906E 03	0.2906E 03	0.2905E 03	0.2906E 03	0.2906E 03	0.2906E 03	Q. 2906E 03	0.2906F 03
28	HK 22	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 31
29	HK 33	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715E 01	0.3715F 01
30	HCL	0.2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	0.2043E 00	0.20438 00	0.2043E 00	0.2043E 00
31	EL 11	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.2528E 08	0.25288 08	0.25288 08	0.2528E 08
32	EL 22	0.9597E 06	0. 9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 36
							0.9597E 06	0.9597E 06	0.9597F 36
33	EL 33	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06	0.9597E 06			
3.4	GL 2.3	0.3405E 06	0.3405E 06	0.3405E 06	0.3435E 06	0.3405E 06	0.3405E 06	0.3405E 06	0.34055 06
35	GL 13	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06	0.63398 06	0.63398 06	0.6339E 06	0.6339E 16
36	GL 12	0.6339E 06	0.6339E 06	0.6339E 06	0.63398 06	0.6339E 06	0.6339E 06	0.6339E 06	0.6339E 06
37	NUL 12	0.2514E 00	0.2514E 00	3.2514E 00	0.2514E 00	0.2514E 00	0.2514E 0.0	0.2514E 00	0.25146 10
38	NUL 21	0.9541E-02	0.9541E-02	0.9541E-02	0.954 1E-02	0.9541E-02	0.9541E-02	0.9541E-02	0.9541E-02
39	NUL 13	0.2514E 00	0.2514E 00	0.2514E 00	0.2514F 00	0.2514E 00	0.2514E 00	0.25148 00	0.2514E 20
40	NUL 31	0.9541E-02	0.9541E-02	0.9541E-02	0.9541F-02	0.95416-02	0.9541E-02	0.9541E-02	0.9541E-02
		0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 20	0.4094E 00	0.4394E 00
41	NUL 23								
42	NUL 3.2	0.4094E 00	0.4094E 00	9.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094E 00	0.4094F 00
43	SMFK 22	0.1522E 01	0.1522E 01	0.15226 01	0.1522E 01	0.1522E 01	0.1522E 01	0.15225 01	2.1522E 21
44	SM FD 22	0.1918E 01	0.1918E 01	0.19180 01	0.1918E 01	0.1918E 01	0.1918E 01	0.19188 01	0.19186 01
45	SM F S 22	0.1386E 01	0.1384E 01	0.1382E 91	0.1379E 01	0.1379E 01	0.1382E 01	0.1384E 01	0.1386F 01
46	SMFC 22	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-9.00005-19	-0.0000E-19
47	SMFS 12	0.3024E 01	0.3024E 01	0.3024E 01	0.3024E 01	0.30245 01	0.3024E 01	0.3024E 01	0.3024E 01
48	SMFS23	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01	0.1396E 01
49	ILMFC	-0.0000E-19	0.7060E 02	0.7062F 02	0.7060E 02	0.7060E 02	0.7060E 02	0.7060E 02	0.7060F 32
	TEMPO	-0.3000E 03	-0.3000E 03	-0.3000 t 02	-0.3000E 03	-0.3000E 03	-0.30005 03	-0.3000E 03	-0.3000F 03
50 51	LSCIIT	0.9676E 05	0.9676E 05	0.9675E 05	0.9676E 05	0.9676E 05	0.9676E 05	0.9676E 05	0.9676E 05
52	LSC11C	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05	0.5333E 05
53	LSC 1 1D	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0.6578E 05	0-6578E 05	0.6578E 05
54	LSC22T	J.3601E 04	0.3607E 04	0.3612E 04	0.3619E 04	0.3619E 04	0.36126 04	0.36075 04	0.3601E 04
55	L SC 2 2C	0.1731E 05	0.1734E 05	0.1737E 05	0.1740E 05	0.1740E 05	0.1737E 05	0.1734E 05	0.1731E 05
56	LSC12	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.2547E 04	0.25475 04	C.2547E 04
57	LSC23	0.1866E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1866E 04	0.1865E 34
58	LSCC 23	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000F-19
	LSCC 13	-0.0000E-19	-0.0000E-19	-0.3000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19	-0.0000E-19
59									
60	LSCDF	-0.0000E-19	0.1052E-01	0.1052E-01	0.1052E-01	0.1052E-01	0.10526-01	0.1052E-01	0.1052E-01
61	KL 12AB	0.1371E 01	0.1371E U1	0.1371E 01	0.1371E 01	0.1371F 01	0.1371E 01	0.1371E 01	0.1371E 01
62	MDETE	-0.7038E 01	-0.5461E 01	-0.4100E 01	-0.3201E 01	-0.3201E 01	-0.4100E 01	-0.5461E 01	-0.7038E 01
63	RELROT	-0.0000E-19	0.1000E 01	0.1000E 01	0.1000E 01	0.1000E 01	0.1000E 01	0.1000E 01	0.1000E 01
64	EPS11	-0.1172E-02	-0.6510E-03	-0.1302E-03	0.3905E-03	0.3905E-03	-0.1302E-03	-0.6510E-03	-0.1172E-02
65	EP \$ 2 2	0.2473E-02	0.1953E-02	0.1432E-02	0.9112E-03	0.91126-03	0.14325-02	0-1953E-02	0.2473E-92
66	EPS12	-0.53518-07	-0.4969E-07	-0.4587E-07	-0.4206E-07	0.4206E-07	0.4587E-07	0.4969E-07	0.5351E-07
67	SIG11	-0.2787E 05	-0.1480E 05	-0.1729E 04	0.1134E 05	0.1134E 05	-0.1729E 04	-0.1480E 05	-3.2787E 35
68	SIG22	0.8827E 04	0.8452E 04	0.8077E 04	0.773 2E 04	0.7702E 04	0.8077E 04	0.8452E 04	0.8827E 04
69	SIG12	-0.3392E-01	-0.3150E-01	-0.2908 E-01	-0.2666E-01	0.2666E-01	0.2908E-01	0.3150E-01	0.3392E-01
70	DELF I	-0.0000E-19	-0.4752E-08	-0,4090E-09	0.1839E-08	0.3581E-C8	-0.3070E-09	-0.2927E-08	-0.5798E-08
71	HEC	-0.2624E 01	-0.2190E 01	-0.1829E 01	-0-1540E 01	-0.1540E C1	-0.1829E 01	-0.2190E 01	-0.2524E 01

REFERENCES

- 1. Chamis, Christos C.: Design Oriented Analysis and Synthesis of Multilayered Filamentary Structural Panels. Ph.D. Thesis, Case Western Reserve Univ., 1967.
- 2. Chamis, C. C.: Thermoelastic Properties of Unidirectional Filamentary Composites by a Semiempirical Micromechanics Theory. Science of Advanced Materials and Process Engineering Proceedings. Vol. 14. Western Periodicals Co., 1968, paper I-4-5.
- 3. Chamis, Christos C.: Characterization and Design Mechanics for Fiber-Reinforced Metals. NASA TN D-5784, 1970.
- 4. Chamis, Christos C.: Failure Criteria for Filamentary Composites. NASA TN D-5367, 1969.
- 5. Chamis, Christos C.: Buckling of Anisotropic Composite Plates. J. Structural Div., ASCE, vol. 95, no. ST10, Oct. 1969, pp. 2119-2139.
- 6. Chamis, Christos C.: Design and Analysis of Fiber Composite Structural Components. Aerospace Structural Materials. NASA SP-227, 1970, pp. 217-228.
- 7. Foye, R. L.: Compression Strength of Unidirectional Composites. Paper 66-143, AIAA, Jan. 1966.
- 8. Ozisik, M. N.: Boundary Value Problems of Heat Conduction. International Textbook Co., 1968.
- 9. Hoffman, Oscar: The Brittle Strength of Orthotropic Materials. J. Composite Materials, vol. 1, no. 2, Apr. 1967, pp. 200-206.
- 10. Chamis, C. C.: Important Factors in Fiber Composite Design. Proceedings of the 24th Annual Conference Society of the Plastics Industry, 1969, pp. 18-E-1 to 18-E-13.

TABLE I. - SUMMARY OF DETAILS FOR PREPARING INPUT DATA CARDS. (See also tables II to IV.)

Comments and engineering units				G in psi is Poisson's ratio	Ratios evaluated by trail and success	in. /in. / ^o F	in./in./ ^o F	- Btu (hr)(tt²)(°F/in.)	$H_{c} - \frac{Btu}{(1b)(^{O}F)}$	Ratios evaluated by trial and success	Ratio	T (true) if ply thickness is input; otherwise F(false)	T (true) if symmetry exists; otherwise F (false)	T (true) if contributions are desired; otherwise F (false)
	Number	4	သ	35 7 7	35. St.	35 in	35 in	35 K	<u> </u>	35 R R	35 R	75 T	75 T	7.5 T. g
Format	Type 1	25H	5(15)	5(E15. 8)	5(E15. 8)	5(E15.8)	5(E15. 8)	5(E15.8)		5(E15.8)	5(E15. 8)	T.6		
Card field	columns	1 - 55	1 - 25	1 - 75	1 - 75	1 - 45	1 - 45	1 - 75		1 - 60	1 - 15	1 - 6	1 - 6	1 6
,	sequential order	Alphabatic characters	N _l , N _{Pl} , N _{PC} , N _f , N _C	Eft1, Ef22, Ef33, Vf12, V23, Vf12, V23, Vf13, Gf12, Gf23, Gf13, Em11, Em22, Em33, Vm12, Vm23, Gm13, Gm12, Gm23, Gm13	$ \begin{array}{l} \beta_{m}, \beta_{m}, \beta_{m}^{\prime\prime}, \beta_{m}^{\prime\prime}, \beta_{m}^{\prime\prime}, \beta_{e}^{\prime\prime}, \\ \beta_{e}^{\prime\prime}, \beta_{m}^{\prime\prime}, \beta_{e}^{\prime\prime}, 0.0, 0.0; \\ \gamma_{m}^{\prime\prime}, \gamma_{m}^{\prime\prime}, \gamma_{m}^{\prime\prime}, \gamma_{m}^{\prime\prime}, \gamma_{e}^{\prime\prime}, \\ \gamma_{e}^{\prime\prime}, \gamma_{e}^{\prime\prime}, 0.0, 0.0, 0.0, \end{array} $	$^{lpha}_{\mathrm{f11}},~^{lpha}_{\mathrm{f22}},~^{lpha}_{\mathrm{f33}}$	α _{m11} , α _{m22} , α _{m33}	K ₁₁₁ , K _{f22} , K _{f33} , h _{cf} , K _{m11} , K _{m22} , K _{m33} , h _{cm} , 0.0, 0.0, 0.0, K _p		β _{kν} , β _{k1} , β _{k2} , β _{k3}	π-(numerical value)			
Number of entries		2 to 3 words	2	18	20	m	m	12		4	Ħ	Ti	rel .	,1
Code symbol			NL, NPL, NPC, NFPE, NLC	BF11, etc., NUF12, etc., BF12, etc., EM11, etc., NUM12, etc., EM12, etc.	VCF(2×10)	VAF(3)	VAM(3)	CHK(3×4)		BTA(4)	PIE	TLIND	CSANB	BIDE
Identification		Composite system card	Data control card	Constituent materials elasti properties	Correlation coefficients for elastic constants, expansion coefficients, and strain magnification factors	Fiber thermal expansion coefficient	Matrix thermal expansion coefficient	Constituent materials heat conductivities	Heat capacity	Correlation coefficients for heat conductivities	Constant #	Boolean for thickness	Boolean for membrane and bending symmetry	Boolean for interply layer energy contribution
Card	group	H	2	m m	4	ro	9	-	•••	∞	6	01	=	173

13	Boolean for input displacements	RINDV	1		1 - 6	T.6	75	T (true) if displacements are inputs; otherwise F (false)
14	Composite angle, constituents densities, and fiber diameter	THES, RHOF, RHOM, DIAF	4	$^{ heta_{cs},\; ho_{f},\; ho_{m},\;d_{f}}$	1 - 60	5(E15.8)	35	$\theta_{\rm cs}$ in degrees (measured from composite structural axes). ρ in lb/in. 3 , df in in.
15	Ply void volume ratio	$KVL(N_L)$	2 _N	$k_{\nu l}^{i} i = 1(1)N_{l}$	1 - 75	5(E15.8)	32	Ratio
16	Ply fiber volume ratio	$KFL(N_l)$	² N	$k_{f_{\ell}^{j}} i = 1(1)N_{\ell}$	1 - 75	5(E15.8)	35	Ratio
17	Ply orientation angle	THLC(N ₂)	N,	θ_l i i = 1(1) N_l	1 - 75	5(E15.8)	35	Degrees measured from composite material axes
18	Ply thickness	$\operatorname{TL}(\operatorname{N}_{\widetilde{I}})$	² N	t_j $i = 1(1)N_j$	1 - 75	5(E15.8)	35	$t_{\rm J}$ -inches (values should be read here for both TLINP = T or F
19	Ply temperature difference	PL(50, J)	² N	$\Delta T_{\vec{k}i}$ $i = 1(1)N_{\vec{k}}$	1 - 75	5(E15.8)	35	ΔT_{2} IN ^{0}F
20	Correlation coefficients for strength	BET(2, 8)	20	β _T , β _M T, β ₂₂ T, β ₁₂ S, β ₂ 3S, β ₆ E, K ₁ ZTT, K ₁ ZTT, K ₁ ZTC, β _T C, γ _T CC, K _T ZCT, K _T ZCC	1 - 75	5(E15.8)	35	Ratios (determined by trial and success)
21	Constituents strength properties	SLC	9	S _{fT} , S _{mC} , c _{mPT} , c _{mPC} , 1-75 c _{mPS} , c _{mPTOR}	1 - 75	5(E15.8)	35	S - psi; ∈ - in. /in.
22	Membrane loads	NBS	2l NE	$\frac{\overline{N}}{\overline{N}} \frac{\cos xj}{\cos yj} j = 1(1)N_1C',$ $\overline{\overline{N}} \frac{\cos yj}{\overline{N}} j = 1(1)N_2C',$ $\overline{\overline{N}} \frac{\cos yj}{\overline{N}} j = 1(1)N_2C$	1 - 75	5(E15.8)	32	1ь/1л.
23	Moments	MBS	37 _{NS}	$\frac{\overline{M}}{\overline{M}} \underbrace{\exp_j}_{Gyyj} j = 1(1)N_L C'$ $\overline{M} \underbrace{\exp_j}_{Gyyj} j = 1(1)N_L C'$ $\overline{M} \underbrace{\exp_j}_{Gxyj} j = 1(1)N_L C$	1 - 75	5(E15.8)	35	(Ib-in.)/in.
24	Displacements	DISVI	6 per N_{LC}	^e csxx' ^e csyy' ^e csxy' Wcbxx' ^w cbyy' ^w cbxy	1 - 75	5(E15.8)	35	U in in.; W in radians

Spo fig 3

TABLE II. - MULTILAYERED FIBER COMPOSITE ANALYSIS INPUT DATA SAMPLE

THORNEL-50/EPOXY

8 71 54	1420 1			
.50000E+08	.10000E+07	.10000E+07	.200 OOE +00	. 25 000E+00
. 20000E+00	.13000E+ 07	.70000E+06	.13000E+07	.57000E+06
.57000E+06	.57000E+06	.36000E+00	.36000E+00	.36000E+00
.00000E+00	.00000E+06	.00000E+00		
.40000E+01	.20000E+01	.40000E+01	. 20000 E+ 01	.00000E+00
.00000E+00	.00000E+00	.10000E+01	.00000E+00	.00000E+00
.00000E+00	.00000E+00	.00000E+00	.00000E+00	.10000E+00
.10000E+01	.10000E+01	.00000E+00	.0000E+00	.00000E+00
55000E-06	.56000E-05	.56000E-05		
. 4 280 OE - 04	. 42800E-04	.42800E-04		
.58000E+03	. 58000E+02	.58000E+02	.17000E+00	.12500E+01
.12500E+01	.12500E+01	.25000E+00	.00000E+00	.00000E+00
.00000E+00	.22500E+00			
.10000E+01	.10000E+01	.10500E+01	.10500E+01	
.31416E+01				

TABLE II. - Continued. MULTILAYERED FIBER COMPOSITE ANALYSIS INPUT DATA SAMPLE

F					
F					
F					
F					
	.00000E+00	.05900E+00	.04430E+00	.00026E+00	
	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
	.00000E+00	.0000E+00	.00000E+00		
	.50000E+00	.50000E+00	.50000E+00	.50000E+00	.50000E+00
	.5000 OE+00	.50000E+00	.50000E+00		
	.00000E+00	. 45000E+02	45000E+02	.90000E+02	.90000E+02
	45000E+02	.45000E+02	.00000E+00		
	.00805E+00	.00805E+00	.00805E+00	.00805E+00	.00805E+00
	.00805E+00	.00805E+00	.00805E+00		
	3000 OE+03	30000E+03	30000E+03	30000E+03	30000E+03
	30000E+03	30000E+03	30000E+03		

TABLE II. - Concluded. MULTILAYERED FIBER COMPOSITE ANALYSIS INPUT DATA SAMPLE

.83000E+00	.10000E+00	.26000E+00	.27000E+00	.17000E+00
.16500E+02	.10000E+01	.10000E+01	.04650E+00	.10000E+01
5 0 000E+00	.13300E+02	.31900E+05	.10000E+01	.10000E+01
.10000E+01				
.23000E+06	.215 00E+05	.02000E+00	.05000E+00	.04500E+00
.04500E+00				
.50000E+04	.00000E+00	.0000 OE +00		
.10000E+03	.00000E+00	.00000E+00		
000007.00	0.00007100	.00000E+00	0.000.00	.0000E+00
.00000E+00	.00000E+00	. 000 00 E+00	.00000E+00	.00000E+00
.00000E+00				

TABLE III. - INPUT DATA FOR BORON/ALUMINUM COMPOSITE

BORON/ALUMINUM				
8 71 54	1 1			
.60000E.08	.60000E.08	•60000E•08	.200UUE.00	•20000E •00
.20000E.00	.00000E.00	.00000E.00	.000U0E.00	•10000E•08
•10000E•08	•10000E•08	•33000E•00	•33000E•00	.33000E.00
.00000E.00	.00000E.00	.00000E.00		
.40000E.01	•20000E•01	•40000E•01	.20000E.01	.00000E.00
.00000E.00	.00000E.00	•10000E•01	•00000E•00	.00000E.00
.00000E.00	.00000E.00	.00000E.00	.00000E.00	•10000E•01
•10000E•01	•10000E•01	.00000E.00	.00000E.00	.00000E.00
•28000E-05	•28000E-05	•28000E-05		
•12900E-04	•12900E-04	•12900E-04		
.22300E.02	•22300E•02	•22300E•02	.31000E.00	•10040E•04
.10040E.04	•10040E•04	•23000E•00	.00000E.00	.00000E.00
.00000E.00	•22500E•00			
.10000E.01	•10000E•01	•10000E•01	.10000E.01	
•31416E•01				
F				
F				
F				
F				
.00000E.00	•08500E•00	•09800E•00	.00400E.00	_
0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00	0.0000E.00
0.00000E.00	0.00000E.00	0.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00
0.5000UE.00	0.50000E.00	0.50000E.00		
.00000E.00	•45000E•02	-•45000E•02	.90000E.02	•90000E•02
45000E.02	•45000E•02	•00000E•00		
.00500E.00	•00500E•00	•00500E•00	.00500E.00	.00500E.00
.00500E.00	•00500E•00	•00500E•00		
-0.90000E.03	-0.90000E.03	-0.90000E.03	-0.90000E.03	-0.90000E.03
-0.90000E.03	-0.90000E.03	-0.90000E.03		
•56000E•00	•10000E•01	•31300E•00	•46200E•00	•30000E•00
•29200E•01	•10000E•01	•10000E•01	•10000E•01	•10000E•01
•34300E•00	•83300E•01	•52000E •05	.10000E.01	•10000E•01
.10000E.01				
•46000E•06	•52000E•05	•00520E•00	•00520E•00	•00905E•00
.00905E.00				
•50000E•04	•00000E•00	•00000E•00		
•10000E•03	.00000E.00	•00000E•00		
0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00
0.00000E.00				

TABLE IV. - INPUT DATA FOR BORON/EPOXY COMPOSITE

BORON/EPOXY				
8 71 54	1 1			
.60000E.08	•60000E•08	•60000E•08	.20000E.00	•20000E•00
.20000E.00	.00000E.00	.00000E.00	.00000E.00	.56000E.06
.56000E.06	•56000E •06	•35000E•00	.35000E.00	.35000E.00
.00000E.00	.00000E.00	.00000E.00		
.40000E.01	.20000E.01	•40000E•01	.20000E.01	.00000E.00
.00000E.00	.00000E.00	•10000E•01	.00000E.00	.00000E.00
.00000E.00	.00000E.00	.00000E.00	.00000E.00	.10000E.01
•10000E•01	•10000E•01	.00000E.00	.000U0E.00	.00000E.00
•28000E-05	•28000E-05	•28000E-05		
•32000E-04	•32000E-04	•32000E-04		
•22300E•02	•22300E•02	•22300E•02	•31000E•00	•17000E•01
•17000E•01	•17000E•01	.25000E.00	.00000E.00	.00000E.00
.00000E.00	•22500E•00			
.10000E.01	•10000E•01	•10000E•01	.10000E.01	
.31416E.01				
F				
F				
F				
F				
.00000E.00	•08500E•00	•04400E•00	.00400E.00	
.0000E.00	.00000E.00	.00000E.00	.00000E.00	•00000E•00
0.00000E.00	0.00000E.00	0.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00
0.50000E.00	0.50000E.00	0.50000E.00		
.00000E.00	•45000E•02	-•45000E•02	.90000E.02	•90000E•02
45000E.02	•45000E•02	.00000E.00		
.00500E.00	.00500E.00	•00500E•00	.00500E.00	•00500E•00
.00500E.00	.00500E.00	.00500E.00		
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03		
.84000E.00	•10000E•01	•90000E•00	•15000E •01	•10500E•01
•16500E•02	•10000E•01	•10000E•01	.12000E.00	•10000E•01
•12200E•01	•13300E•02	•31900E•05	.10000E.01	•10000E•01
.10000E.01				
.46000E.06	•25000E•05	.02700E.00	.07000E.00	.05300E.00
.05300E.00				
.50000E.04	.00000E.00	•00000E•00		
.10000E.03	.00000E.00	•00000E•00	- 0-000=	
0.00000E.00	0.00000E.00	0.00000E.00	0.0000E.00	0.00000E.00
0.00000E.00				

TABLE V. - INPUT DATA FOR E-GLASS/EPOXY COMPOSITE

E-GLASS/EPOXY				
8 71 54	204 1			
.10600E.08	•10600E•08	.10600E.08	.22000E.00	•22000E•00
.22000E.00	.00000E.00	.00000E.00	.00000E.00	•50000E•06
.50000E.06	•50000E•06	•35000E•00	.35000E.00	•35000E•00
.00000E.00	•00000E•00	.00000E.00		***************************************
.40000E.01	.20000E.01	.40000E.01	.20000E.01	.00000E.00
.00000E.00	.00000E.00	•10000E•01	.00000E.00	.00000E.00
.00000E.00	.00000E.00	.00000E.00	.00000E.00	.10000E.01
.10000E.01	.10000E.01	.00000E.00	.00000E.00	.00000E.00
.28000E-05	-28000E-05	-28000E-05		
•32000E-04	•32000E-04	-32000E-04		
.75000E.01	•75000E•01	•75000E•01	.17000E.00	.15000E.01
•15000E•01	•15000E•01	•25000E•00	.00000E.00	.00000E.00
.00000E.00	•22500E•00			
•10000E•01	•10000E•01	•90000E•00	.90000E.00	
•31416E•01				
F				
F				
F				
F				
.00000E.00	.09000E.00	.04000E.00	•36000E-03	
.00000E.00	.00000E.00	.00000E.00	.00000E.00	•00000E•00
0.00000E.00	0.00000E.00	0.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00
0.50000E.00	0.50000E.00	0.50000E.00		
45000E.02	•45000E•02	•00000E•00		
45000E.02	• 45000E • 02	•00000E•00		
.00800E.00	.00800E.00	.00800E.00	.00800E.00	.00800E+00
.00800E.00	•00800E•00	•00800E•00		
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03	-	
.82000E.00	•10000E•01	•55000E•00	.86000E.00	•82000E•00
.16500E.02	•10000E•01	•10000E•01	.33000E.00	•10000E•01
.11000E.01	•13300E•02	•31900E•05	.10000E.01	.10000E.01
.10000E.01				
•36000E•06	•25000E•05	•02000E•00	.05000E.00	•03500E•00
.03500E.00				
.50000E.04	.00000E.00	.00000E.00		
.10000E.03	.00000E.00	.00000E.00	A	
0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00
0.00000E.00				

TABLE VI. - INPUT DATA FOR S-GLASS/EPOXY COMPOSITE

S-GLASS/EPOXY				
8 71 54	204 1			
•12400E.08	•12400E•08	•12400E•08	.22000E.00	•22000E•00
.22000E.00	.00000E.00	.00000E.00	.00000E.00	.50000E.06
•50000E•06	•50000E•06	•35000E•00	•35000E.00	.35000E.00
.00000E.00	.00000E.00	.00000E.00		
•40000E•01	•20000E•01	•40000E•01	.20000E.01	.00000E.00
.00000E.00	.00000E.00	•10000E•01	.00000E.00	.00000E.00
.00000E.00	.00000E.00	.00000E.00	.00000E.00	•10000E•01
.10000E.01	•10000E•01	.00000E.00	.00000E.00	.00000E.00
-28000E-05	•28000E-05	•28000E-05		
•32000E-04	•32000E-04	•32000E-04		
.75000E.01	.75000E.01	•75000E•01	.17000E.00	•17000E•01
•17000E•01	•17000E•01	•25000E•00	.00000E.00	•00000E•00
.00000E.00	•22500E•00			
•10000E•01	•10000E•01	•90000E•00	•90000E • 00	
•31416E•01				
F F F				
F				
F				
•				
.00000E.00	.09000E.00	•04000E•00	•36000E-03	
.00000E.00	.00000E.00	•00000E•00	.00000E.00	•00000E•00
0.00000E.00	0.00000E.00	0.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00
0.50000E.00	0.50000E.00	0.50000E.00		
.00000E.00	.45000E.02	-•45000E•02	.90000E.02	•90000E•02
45000E.02	•45000E•02	•00000E•00		
.01290E.00	•01290E•00	•01290E•00	•01290E•00	•01290E•00
•01290E•00	•01290E•00	•01290E•00		
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03		
.10000E.01	.10000E.01	•66000E•00	.13000E.01	•11000E•01
•16500E•02	•10000E•01	•10000E•01	.55000E.00	•10000E•01
•17000E•01	•13300E•02	•31900E•05	.10000E.01	•10000E•01
.10000E.01				
.36000E.06	•25000E•05	•02000E•00	.050U0E.00	•03500E•00
.03500E.00				
.50000E.04	.00000E.00	•00000E•00		
•10000E•03	.00000E.00	•00000E•00		
0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00
0.00000E.00				

TABLE VII. - INPUT DATA FOR THORNEL-25/EPOXY COMPOSITE

```
THORNEL-25/EPOXY
   8
       71
            54 1440
   .25000E.08
                    .20000E.07
                                    .20000E.07
                                                    .20000E.00
                                                                    .25000E.00
                    .20000E.07
                                    .80000E.06
    .20000E.00
                                                    .20000E.07
                                                                    .54000E.06
    .54600E.06
                    .54600E.06
                                    .36000E.00
                                                    .36000E.00
                                                                    .36000E.00
    .00000E.00
                    .00000E.00
                                    .00000E.00
   .40000E.01
                    .20000E.01
                                    .40000E.01
                                                    .20000E.01
                                                                    .10000E.01
   .00000E.00
                    .00000E.00
                                   .10000E.01
                                                    .00000E.00
                                                                    .00000E.00
    .00000E.00
                    .00000E.00
                                                    .00000E.00
                                                                    .10000E.01
                                    .00000E.00
    .10000E.01
                    -10000E-01
                                    .U0000E.00
                                                    .U0UUUE.00
                                                                    .00000E.00
   -.55000E-06
                    .56000E-05
                                    .56000E-05
    .42800E-04
                    .42800E-04
                                    .42000E-04
                                                    .17000E.00
   .58000E.03
                    .58000E.02
                                    .58000E.02
                                                                    .12500E.01
    .12500E.01
                    •12500E•01
                                    .25000E.00
                                                    .00000E.00
                                                                    .00000E.00
   .00000E.00
                    .22500E.00
    .10000E.01
                    .10000E.01
                                    .10500E.01
                                                    .10500E.01
    .31415E.01
F
F
F
   .00000E.00
                    .05200E.00
                                    .04430E.00
                                                    .00029E.00
   .00000E.00
                    .00000E.00
                                    .00000E.00
                                                    .00000E.00
   0.00000E.00
                  0.00000E.00
                                   0.00000E.00
                                                  0.50000E.00
   0.50000E.00
                  0.50000E.00
                                   0.50000E.00
                                                                  0.50000E.00
                  0.50000E.00
  0.50000E.00
                                   0.50000E.00
                                                    .900U0E.02
   .U0U0UE.U0
                    .45000E.02
                                   -.45000E.02
                                                                    .90000E.02
   -.45000E.02
                    .45000E.02
                                    .00000E.00
   .01300E.00
                    .01300E.00
                                   .01300E.00
                                                    .01300E.02
                                                                    .01300E.02
   .01300E.00
                    .01300E.00
                                   .01300E.00
 -0.30000E.03
                 -0.30000E.03
                                 -0.30000E.03
                                                 -0.300U0E.03
                                                                 -0.30000E.03
 -0.30000E.03
                 -0.30000E.03
                                 -0.30000E.03
   .10000E.01
                    .10000E.01
                                   .50000E-01
                                                    .480UUE.00
                                                                    .38000E.00
                    •10000E • 01
                                    •10000E•01
                                                    .12000E.00
                                                                    .10000E.01
   .16500E.02
   .49000E.00
                    •13300E•02
                                   .31900E.05
                                                    .10000E.01
                                                                    .10000E.01
    .10000E.01
   .18000E.U6
                    .21000E.05
                                   .02000E.00
                                                    .05000E.00
                                                                    .04500E.00
   .04500E.00
   .50000E.04
                    .00000E.00
                                   .00000E.00
   .10000E.03
                    .00000E.00
                                   .00000E.00
  0.00000E.00
                  0.00000E.00
                                   0.00000E.00
                                                  9.00000E.00
                                                                  0.00000E.00
  0.00000E.00
```

TABLE VIII. - INPUT DATA FOR THORNEL-40/EPOXY COMPOSITE

THORNEL-40/EPOX				
	1440 1	1100 AP 10 H	0.004.05	
.40000E.08	•11000E•07	•11000E•07	.200UUE.00	•25000E•00
.20000E.00	•15000E•07	.80000E.06	.15000E.07	•50000E•06
.50000E.06	•50000E•06	•35000E•00	.35000E.00	•35000E•00
.00000E.00	.00000E.00	.00000E.00		
.40000E.01	.20000E.01	•40000E•01	.20000E.01	.00000E.00
.00000E.00	.00000E.00	•10000E•01	.00000E.00	.00000E.00
.00000E.00	.00000E.00	.00000E.00	.00000E.00	•10000E•01
.10000E.01	•10000E•01	.00000E.00	.00000E.00	.00000E.00
55000E-06	•56000E-05	•56000E-05		
•42800E-04	.42800E-04	•42800E-04		
.58000E.03	•58000E•02	•58000E•02	•17000E•00	•12500E•01
•12500E•01	•12500E•01	•25000E•00	.00000E.00	.00000E.00
.00000E.00	•22500E•00			
.10000E.01	.10000E.01	•10500E•01	.10500E.01	
•31416E•01				
F				
F F				
F				
F				
.00000E.00	.05600E.00	•04430E•00	•00027E•00	
.0000UE.00	.00000E.00	•00000E•00	.U00U0E.00	.00000E.00
0.00000E.00	0.00000E.00	0.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.500U0E.00	0.50000E.00
0.50000E.00	0.50000E.00	0.50000E.00		
.00000E.00	•45000E • 02	45000E.02	.90000E.02	.90000E.02
45000E-02	•45000E•02	•00000E•00		
.00900E.00	.00900E.00	.00900E.00	.009U0E.00	.00900E.00
.00900E.00	.00900E.00	•00900E•00		
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03		
.84000E.00	•10000E•01	.08500E.00	.46000E.00	.27000E.00
.16500E.02	.10000E.01	.10000E.01	.080UUE.00	.10000E.01
.50000E.00	•13300E•02	•31900E•05	.10000E.01	.10000E.01
.10000E.01				
.25000E.06	•21000E•05	.02000E.00	.05000E.00	•04500E•00
.04500E.00	12111111			***************************************
.50000E.04	.00000E.00	.00000E.00		
.10000E.03	.00000E.00	•00000E•00		
0.00000E.00	0.00000E.00	0.00000E.00	0.0000000.00	0.00000E.00
0.00000E.00	300000200	21100001400	200000000	3.00-00-00
0.0000000000				

TABLE IX. - INPUT DATA FOR THORNEL-50/EPOXY COMPOSITE

THORNEL-50/EPO	ΧY			
8 71 54	1420 1			
•50000E•08	•10000E•07	•10000E•07	.20000E.00	•25000E•00
.20000E.00	•13000E•07	•70000E•06	•13000E•07	•57000E•06
•57000E • 06	•57000E•06	•36000E•00	•36000E•00	•36000E•00
.00000E.00	.00000E.00	.00000E.00		
.40000E.01	•20000E•01	•40000E•01	.20000E.01	•00000E•00
.00000E.00	.000.00E.00	•23560E•01	.00000E.00	•00000E•00
.00000E.00	.00000E.00	.00000E.00	.00000E.00	•10000E•01
•10000E•01	•10000E•01	.00000E.00	.00000E.00	.00000E.00
55000E-06	•56000E-05	•56000E-05		
•42800E-04	•42800E-04	•42800E-04		
•58000E•03	•58000E•02	•58000E•02	•17000E•00	•12500E•01
•12500E•01	•12500E•01	•25000E•00	.00000E.00	.00000E.00
.00000E.00	•22500E•00			
.10000E.01	•10000E•01	•10500E•01	.10500E.01	
•31416E•01				
F				
F F				
F				
F				
.00000E.00	•05900E•00	.04430E.00	.00026E.00	
.00000E.00	.00000E.00	.00000E.00	.00000E.00	.00000E.00
0.00000E.00	0.00000E.00	0.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00
0.50000E.00	0.50000E.00	0.50000E.00		
.00000E.00	•45000E•02	45000E.02	•90000E•02	.90000E.02
45000E.02	•45000E•02	.00000E.00		
.00805E.00	•00805E •00	.00800E.00	.008U0E.00	.00800E.00
.00805E.00	.00805E.00	.00800E.00		
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03		
.83000E.00	•10000E•01	•26000E•00	.27000E.00	•17000E•00
•16500E•02	•10000E•01	•10000E•01	.04650E.00	•10000E•01
.50000E.00	•13300E•02	•31900E•05	.10000E.01	•10000E•01
.10000E.01				
.23000E.06	•21000E•05	.02000E.00	.05000E.00	•04500E•00
.04500E.00				
.50000E.04	.00000E.00	.00000E.00		
•10000E•03	.00000E.00	.00000E.00		
0.00000E.00	0.00000E.00	0.00000E.00	0.000U0E.00	0.00000E.00
0.00000E.00				

TABLE X. - INPUT DATA FOR MODMOR-I/EPOXY COMPOSITE

MODMOR-I/EPOXY				
8 71 541	0000 1			
.60000E.U8	.09000E.07	.09000E.07	.2000UE.00	•25000E•00
.20000E.00	•11000E•07	•70000E •06	•11000E •07	•50000E•06
•50000E •06	•50000E•06	•35000E•00	.3500UE.00	•35000E•00
.00000E.00	•00000E•00	.00000E.00		
.40000E.01	•20000E•01	•40000E•01	.200UUE.01	.00000E.00
.00000E.00	.00000E.00	•10000E•01	.00000E.00	.00000E.00
.00000E.U0	.00000E.00	•00000E•00	.000U0E.00	•10000E•01
•10000E•01	•10000E•01	•00000E•00	.00000E.00	.00000E.00
55000E-06	•56000E-05	•56000E-05		
•42800E-04	•42800E-04	•42800E-04		
•58000E•03	•58000E•02	•58000E•02	•17000E.00	•12500E•01
.12500E.01	•12500E•01	•25000E•00	.000U0E.00	.00000E.00
.00000E.00	•22500E•00			
.10000E.01	•10000E•01	•10500E•01	.10500E.01	
•31416E•01				
F F F				
F				
F				
•				
.00000E.00	.07200E.00	.04430E.00	.00030E.00	
.00000E.00	.00000E.00	.00000E.00	.00000E.00	•00000F•00
0.00000E.00	0.00000E.00	0.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00
0.50000E.00	0.50000E.00	0.50000E.00		
.00000E.00	•45000E•02	-•45000E•02	•90000E•02	•90000E • 02
45000E.02	•45000E•02	.00000E.00		
.01190E.00	.01190E.00	•01190E•00	.01190E.00	•01190E•00
.01190E.00	.01190E.00	•01190E•00		
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03		
.10000E.01	.10000E.01	•50000E•00	.91000E.00	•50000E•00
•16500E•02	•10000E•01	•10000E•01	.09200E.00	•10000E•01
.65000E.00	•13300E•02	•31900E•05	•10000E•01	•10000E•01
•10000E•01				
.25000E.U6	•21000E•05	.02000E.00	.050UUE.00	•04500E•00
.04500E.00				
.5000UE.04	•00000E•00	•00000E•00		
.1000UE.03	.00000E.00	.00000E.00		
0.0000E.00	0.00000E.00	0.00000E.00	0.0000000	0.00000E.00
0.00000E.00				

TABLE XI. - INPUT DATA FOR MODMOR-II/EPOXY COMPOSITE

MODMOR-II/EPOXY 8 71 5410	0000 1			
•38000E•08	•11000E•07	•11000E•07	.200U0E.00	•25000E•00
.20000E.00	•15000E•07	.80000E.06	•15000E•07	•5000E•06
.50000E.06	•50000E•06	•35000E•00	.350U0E.00	•35000E•00
.00000E.00	•00000E•00	•00000E•00	*330005.00	*330000000
.40000E.01	.20000E.01	.40000E.00	.20000E.01	.00000E.00
.00000E.01	.00000E.00	•10000E•01	.00000E.00	.00000E.00
.00000E.00	.00000E.00	•0000E•01	.00000E.00	
.10000E.00	•10000E•00	•00000E•00		•10000E•01
			*00000E *00	• 00000E • 00
55000E-06	•56000E-05	•56000E-05		
•42800E-04	•42800E-04	•42800E-04	170005 00	
.58000E.03	•58000E•02	•58000E•02	.17000E.00	•12500E•01
•12500E•01	•12500E•01	•25000E•00	.000UUE.00	.00000E.00
.00000E.00	•22500E•00			
.10000E.01	•10000E•01	•10500E•01	•10500E•01	
•31416E•01				
.00000E.00	•06300E•00	•04430E•00	.00030E.00	
F				
F				
F F				
F				
.00000E.00	.00000E.00	•00000E•00	.00000E.00	.00000E.00
.00000E.00	.00000E.00	.00000E.00		
0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00	0.50000E.00
0.50000E.U0	0.50000E.00	0.50000E.00		
.00000E.00	•45000E•02	-•45000E•02	.900UUE.02	•90000E •02
45000E.02	•45000E•02	.00000E.00		
.01190E.00	.01190E.00	.01190E.00	.01190E.00	.01190E.00
.01190E.00	•01190E•00	.01190E.00	- · - · - · - · - · ·	
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.300U0E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03		
.84000E.00	•10000E•01	•70000E•00	•137U0E•01	.80000E.00
.16500E.02	•10000E•01	•10000E•01	.160U0E.00	•10000E•01
.70000E.00	•13300E•02	•31900E•05	.10000E.01	•10000E•01
.10000E.01	01300000	1313002103	0100000	***********
•35000E•U6	•21000E•05	•02000E•00	.05000E.00	•04500E•00
.04500E.00	0210002003	1020002100	1050102100	404200C400
•50000E•04	•00000E•00	.00000E.00		
.10000E.04	•00000E•00	•00000E•00		
	0.00000E.00	0.0000E.00	0.00000E.00	0 000005 00
0.00000E.00	0.0000000000000000000000000000000000000	0.0000005.000	0.000005.00	0.00000E.00
0.00000E.00				

TABLE XII. - INPUT DATA FOR BERYLLIUM/EPOXY COMPOSITE

BERYLLIUM/EPOXY				
8 71 54	1 1			
•44000E•08	•44000E•08	•44000E•08	.10000E.00	•10000E•00
.10000E.00	.00000E.00	•00000E•00	.000UUE.00	•52000E•06
.52000E.06	•52000E•06	•35000E•00	•35000E • 00	•35000E•00
.00000E.00	.00000E.00	•0000E•00	10000000	4330002400
.40000E.01	•20000E•01	•40000E•01	.200UUE.01	.00000E.00
.0000UE.00	.00000E.00	•10000E•01	.00000E.00	.00000E.00
.00000E.00	.00000E.00	.00000E.00	.00000E.00	•10000E•01
.10000E.01	•10000E•01	.00000E.00	.00000E.00	.00000E.00
.64000E-05	•64000E-05	•64000E-05	1000002400	•000002500
•32000E-04	•32000E-04	•32000E-04		
•10440E•04	•10440E•04	•10440E•04	.4500UE.00	.17000E.01
.17000E.U1	•17000E•01	•25000E•00	.00000E.00	•0000E•00
.00000E.00	•22500E•00	***************************************	***************************************	***************************************
.10000E.01	•10000E•01	•10000E•01	•10000E•01	
•31416E•01	1100002101	*100005	•1000002•01	
F				
F				
F F				
F				
.00000E.00	.05700E.00	.04400E.00	.905U0E.00	
.00000E.00	.00000E.00	.00000E.00	.00000E.00	.00000E.00
0.00000E.00	0.00000E.00	0.00000E.00		100000-100
0.50000E.00	0.50000E.00	0.50000E.00	0.500U0E.00	0.50000E.00
0.50000E.00	0.50000E.00	0.50000E.00		0120000-100
.00000E.00	.45000E.02	45000E.02	.900U0E.02	.90000E.02
45000E.02	•45000E•02	•00000E•00		1700002102
.0050UE.00	.00500E.00	.00500E.00	.00500E.00	•00500E•00
.00500E.00	.00500E.00	.00500E.00		
-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03	-0.30000E.03
-0.30000E.03	-0.30000E.03	-0.30000E.03		01300002103
.10000E.01	•10000E•01	•53000E•00	.14000E.01	•10500E•01
.16500E.02	.10000E.01	•10000E•01	.05200E.00	.10000E.01
.90000E.00	•13300E•02	•31900E•05	.10000E.01	•10000E•01
.10000E.01				1200002102
•13300E •06	•25000E•05	•02700E•00	.07000E.00	.05300E.00
.05300E.00				***************************************
.50000E.04	.00000E.00	.00000E.00		
•10000E •03	.00000E.00	.00000E.00		
0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00	0.00000E.00
0.00000E.00		20-00-00		

TABLE XIII. - INPUT-OUT PUT FORMAT IDENTIFICATION FOR INPUT DATA

Card first entry	Format statement number (see compiled listing)			Comments
	Output heading	Read	Write	
THORNEL 50/EPOXY		4	4	Composite system
NL	11	5	10	Integers
EF11	70	35	37	Fiber and matrix elastic constants
EM11				are read in one statement
VCF	41	35	37	Correlation coefficients for thermoelastic
VAF	40	35	37	Fiber thermal coefficients of expansion
VAM	45	35	37	Matrix thermal coefficients of expansion
СНК	55	35	37	Constituent heat conductivities and capacities
BTA	60	35	37	Correlation coefficients for conductivities
PIE	65	35	37	Constant n
TLINP	80	75	75	Boolean for thickness
CSANB	85	75	75	Boolean for bending symmetry
BIDE	87	75	75	Boolean for interply layer effects
RINDV	88	75	75	Boolean for load conditions
THCS	90	35	37	Load angle, densities, equivalent fiber diameter
KVL	95	35	37	Ply void content
KFL	100	35	37	Ply fiber content
THCL	105	35	37	Ply orientation angle
TL	110	35	37	Ply thickness
PTEMP	111	35	37	Ply temperature
BET	115	35	37	Adjustment factors for limit conditions
LSC	120	35	37	Limit conditions - stress, strain
NBS	130	35	37	Load conditions - membrane forces
MBS	131	35	37	Load conditions - bending moments
DISV1	132	35	37	Displacements

Figure 1. - Typical multilayered fiber composite and some basic definitions.

Figure 2. - Code physical arrangement.

Figure 3. - Physical arrangement of input data cards.

Fiber direction

Figure 5. - Ply orientation geometry. Composite structural axes, x_y,z_i composite material axes, 1,2,3; ply material axes (coincides with fiber direction, $1_i,2_i,3_i$).

Figure 6. - Code MAIN PROGRAM flow chart.

National Aeronautics and Space Administration Washington, D. C. 20546

OFFICIAL BUSINESS

FIRST CLASS MAIL

POSTMASTER: If

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546