Math 1AA3/1ZB3: Test 1 Review

February 12, 2019

- 1. Compute the following integrals, or show that they diverge.
 - (a) $\int_2^\infty \frac{1}{x(\ln x)^2} dx$
 - (b) $\int_0^1 \frac{\cos x}{x^2 + x} dx$
- 2. Either find the limits of the following sequences, or show that they diverge:
 - (a) $a_n = \cos\left(\frac{n\pi}{2}\right) \cdot \sin\left(\frac{n\pi}{2}\right)$
 - (b) $a_{n+1} = \frac{3}{1+a_n}$
- 3. According to an appropriate error estimate, how many terms are needed to approximate $\sum_{n=1}^{\infty} \frac{1}{2n^3}$ to within an error of 0.0001
- 4. Find the sum of the series: $\sum_{n=0}^{\infty} \frac{1+2^{n+1}}{3^{n-1}}$
- 5. Find the radius and interval of convergence of the power series: $\sum_{n=0}^{\infty} \frac{(3x-2)^n}{4^{n+1}}$
- 6. Suppose that the series $\sum_{n=1}^{\infty} a_n$ is convergent and $a_n > 0$ for all n. Which of the following statements **must** be true?
 - (a) $\sum_{n=1}^{\infty} a_n^2$ is convergent.
 - (b) $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent.
 - (c) $\sum_{n=1}^{\infty} \sqrt{a_n}$ is convergent.
- 7. Determine whether the following series converge or diverge. If an alternating series is convergent, determine whether it is absolutely convergent or conditionally convergent.
 - (a) $\sum_{n=2}^{\infty} \frac{n + \cos n}{\sqrt{2n^3 + 3n}}$
 - (b) $\sum_{n=1}^{\infty} \frac{(-2)^n \ln n}{(n+1)!}$
 - (c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$
 - (d) $\sum_{n=0}^{\infty} \frac{2^n}{3^n + 4^n}$
 - (e) $\sum_{n=1}^{\infty} (n \sin(3/n))^{2n}$
 - (f) $\sum_{n=1}^{\infty} \frac{n! \cdot 2^{n+1}}{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n-1)}$
 - (g) $\sum_{n=1}^{\infty} (-1)^n \frac{(1+\ln n)}{1+n}$