CSC236 Tutorial Exercises, Mar 9/10

(Sample Solution)

1. Consider the following algorithm:

```
func(n):
# Pre: n is a natural number
i = 0
while i < n:
    i = i + 1
    x = x + i
return x
```

(a) State preconditions and postconditions for this algorithm.

Postconditions: $x = \sum_{i=0}^{n} i$

(b) Use induction to prove the loop invariants $i \leq n$ and $x = \sum_{j=0}^{i} j$ for the while loop.

Let
$$k \geq 0$$
. Assume $H(k)$: $i_k \leq n$ and $x_k = \sum_{j=0}^{i_k} j$

Want to show that $i_{k+1} \leq n$ and $x_{k+1} = \sum_{j=0}^{i_{k+1}} j$

Case: There is no k+1th iteration. Then $i_{k+1}=i_k$ and $x_{k+1}=x_k$, so the loop invariant holds.

Case: There is a k + 1th iteration of the loop.

Then, i_k was such that the loop test passed, ie. $i_k < n$. Thus, $i_{k+1} = i_k + 1 \le n$.

$$x_{k+1} = x_k + i_{k+1} \text{ (since } i = i+1 \text{ is first)}$$

= $\sum_{j=0}^{i_k} j + i_{k+1} \text{ (by } H(k))$
= $\sum_{j=0}^{i_{k+1}} j$

So, the loop invariant holds in all cases.

Base case: Let k=0. $i_0=0\leq n$ because $n\in\mathbb{N}$. $x_0=0=\sum_{j=0}^0 j=\sum_{j=0}^{i_0} j$.

$$x_0 = 0 = \sum_{j=0}^{0} j = \sum_{j=0}^{i_0} j$$

So the loop invariant holds in all cases.

(c) Prove that the loop terminates.

Let
$$E_k = n - i_k$$
.

Need to show that (1) $E_k \in \mathbb{N}$, $\forall k$ and (2) $E_{k+1} < E_k$, if there is a k+1th iteration.

(1): $i_k, n \in \mathbb{N}$, and $i_k \leq n \ \forall k$ by part (b). Thus, $E_k \in \mathbb{N}$, and $E_k \geq 0$, $\forall k$.

(2): If there is a k+1th iteration, then $E_{k+1}=n-i_{k+1}=n-(i_k+1)=n-i_k-1< n-i_k=E_k$. Thus, the loop terminates.

2. Prove that the following function is correct (by showing partial correctness and termination), according to its pre- and postconditions.

```
def f(A):
# Pre: A is a list of integers
# Post: Returns true if and only if there is an even number of positive
# numbers in A
even = True
i = 0
while i < A.length:
    if A[i] > 0:
        even = not even
    i = i + 1
return even
```

Partial Correctness: Consider the loop invariant $i \leq A$.length and even is True iff there are an even number of positive numbers in A[0..i-1].

Proof of loop invariant: Let $k \geq 0$.

Assume H(k): $i_k \leq A$ length and $even_k$ is True iff there are an even number of positive numbers in $A[0..i_k-1]$.

Show $H(k) \to C(k)$: $i_{k+1} \le A$.length and $even_{k+1}$ is True iff there are an even number of positive numbers in $A[0...i_{k+1}-1]$.

Case: There is no k + 1th iteration. Then $i_{k+1} = i_k$ and the loop invariant holds.

Case: There is a k + 1th iteration. Then the loop condition passed, so $i_k < A$.length and $i_{k+1} = i_k + 1 \le A$.length.

If $A[i_{k+1}]$ is non-positive, then $even_{k+1} = even_k$, and by H(k) represents the number of positive numbers in $A[0...i_k]$, which is the same as the number of positive numbers in $A[0...i_{k+1}]$. If $A[i_{k+1}]$ is positive, then $even_k$ is negated. There is one more positive number in $A[0...i_{k+1}]$ than there was in $A[0...i_k]$. By H(k), $even_k$ was True if there were an even number of positive numbers in $A[0...i_{k+1}]$, and $even_{k+1}$ is False. A symmetric argument can be made if $even_k$ was False.

Base Case: Let k = 0. $i_0 = 0 \le A$.length. $even_0$ is True, because there are 0 positive numbers in an empty subarray.

Thus, in all cases, the loop invariant holds.

The loop terminates when $i \geq A$.length. By the proof of the loop invariant, $i \leq A$.length. So, the loop terminates when i = A.length. Thus, by the loop invariant, even represents the number of positive numbers in all of A.

Termination: Let $E_k = \text{A.length} - i$. By loop invariant, $i \leq \text{A.length}$. So $E_k \geq 0 \to E_k \in \mathbb{N}, \ \forall k$.

If there is a k+1th iteration, then $E_{k+1}=A.length-i_{k+1}=A.length-(i_k+1)< A.length-i_k=E_k$.

Thus, the loop terminates.