α) Η εξίσωση της έλλειψης είναι της μορφής $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$ με $\alpha = 5$ και $\beta = 4$.

Επομένως έχει εστίες της μορφής $E(\gamma,0)$ και $E'(-\gamma,0)$, με $\gamma>0$, όπου $\beta=\sqrt{\alpha^2-\gamma^2}$ ή $\beta^2=\alpha^2-\gamma^2$ ή $\gamma^2=\alpha^2-\beta^2$.

Αντικαθιστώντας $\alpha=5$ και $\beta=4$ έχουμε $\gamma^2=5^2-4^2$ ή $\gamma^2=25-16$ ή $\gamma^2=9$ ή $\gamma=3$, εφόσον $\gamma>0$.

Άρα οι εστίες της έλλειψης είναι οι E(3,0) και E'(-3,0).

Η απόσταση των εστιών είναι $2\gamma = 2 \cdot 3 = 6$.

β) Ο μικρός άξονας της έλλειψης έχει μήκος $2\beta = 2 \cdot 4 = 8$.

Ο μεγάλος άξονας της έλλειψης έχει μήκος $2\alpha = 2 \cdot 5 = 10$.

γ) Από τη θεωρία η εφαπτομένη (ε) της έλλειψης της μορφής $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$ στο σημείο της (x_1, y_1) είναι $\frac{x \cdot x_1}{\alpha^2} + \frac{y \cdot y_2}{\beta^2} = 1$.

Αντικαθιστώντας όπου x_1 και y_1 τις συντεταγμένες του σημείου B της έλλειψης και όπου $\alpha=5$ και $\beta=4$ έχουμε:

$$\frac{0x}{25} + \frac{4y}{16} = 1$$
 ή $y = 4$, που είναι η εξίσωση της (ε).

