Chordal Sparse Matrices and Semidefinite Programming

Theo Diamandis tdiamand@mit.edu

Semidefinite Programs (SDPs) have PSD constraints

Primal Problem: variable $Z \in \mathbb{S}^n$

maximize
$$\mathbf{Tr}(GZ)$$

s.t. $\mathbf{Tr}(F_iZ) + c_i = 0, \quad i = 1, \dots m$
 $Z \succeq 0,$

Dual problem: variable $x \in \mathbb{R}^m$

minimize
$$c^T x$$

s.t. $-\sum_i x_i F_i - G \succeq 0$

SDPs are a powerful modeling tool

- Signal Proc & Control
 - Phase Retrieval (e.g. imaging)
 - Polynomial controller design
- Stats/ML
 - Outlier Detection (e.g. ellipsoidal peeling)
 - Experiment Design
 - Factor Analysis
 - Low-rank matrix completion & decomp.
 - Neural network robustness verification

- Circuit Design
- Portfolio Optimization
- Combinatorial Optimization
- Mechanical structure optimization
- Operations Research
 - Facility Location
 - Scheduling
- Robust optimization
- Geometric data processing & CV

SDPs are plagued by scaling issues

Per iteration cost is (approx) cubic in the side dimension

But we can exploit sparsity

Goal: get rid of the "dense" $n \times n$ PSD constraint \rightarrow reduce # variables by 98%

Need: a check that a sparse matrix can be "completed" to be a PSD matrix

Chordal Decomposition: check $Z \geq 0$ via sub matrices

$$\begin{array}{c}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 5
\end{array}$$

$$O(5^3) = C \cdot 125$$

$$O(2 \cdot 3^3) = C \cdot 54$$

Detour: Chordal Graph Theory

Sparsity patterns = undirected graphs

Sparsity patterns = undirected graphs

Definition: A graph is *chordal* if all cycles of length > 3 have a chord

- Any graph can be made chordal by adding edges
- Many "hard" graph problems are "easy" on chordal graphs

Definition: A clique is a set of vertices that induces a maximal complete subgraph

Examples (Code Demo)

Example sparsity patterns:

- Banded
- Arrow
- Random

Think about which are Chordal

Check if Z is PSD by looking at sub matrices [Grone et al. 1984]

Theorem: A sparse matrix Z with a chordal sparsity pattern can be PSD completed if and only if

$$Z_{C_p} \geq 0, \qquad p = 1, ..., P$$

where Z_{C_p} is the sub matrix of Z indexed by the clique C_p .

Applied to SDPs, reduces PSD constraint size

Matrices F_i , G have a chordal aggregate sparsity pattern

maximize
$$\mathbf{Tr}(GZ)$$

s.t. $\mathbf{Tr}(F_iZ) + c_i = 0, \quad i = 1, \dots m$
 $Z \succeq 0,$ $Z_{C_p} \succeq 0,$

Iteration cost is now
$$O\left(\sum_{p=1}^{P} |C_p|^3\right)$$
 vs $O(n^3)$

See COSMO.jl & Chordal.jl

Use similar approach for the dual problem [Agler et al. 1988]

Theorem: A sparse matrix S with a chordal sparsity pattern is PSD if and only if there exist matrices $S_p \geq 0$ such that

$$S = \sum_{p=1}^{P} T_p S_p T_p^T$$

where T_p is a selector matrix:

$$[T_p]_{ij} = \begin{cases} 1 & C_p(i) = j, \\ 0 & \text{otherwise} \end{cases}$$

Use a similar approach for the dual problem

Matrices F_i , G have a chordal aggregate sparsity pattern

minimize
$$c^T x$$

s.t. $-\sum_i x_i F_i - G \ge 0$
 $=\sum_{p=1}^P T_p S_p T_p^T$
 $S_p \succeq 0$

Algorithmic Details

These constructions lead to two new cones:

Sparse PSD-completable cone (primal problem):

$$\Pi_E(S_+^n) = \{X \mid \exists Y \in S_+^n \text{ s.t. } X = \Pi_E(Y)\}$$

Sparse PSD cone (dual problem):

$$S_+^n \cap S_E^n = \{X \mid X \ge 0 \text{ and } (i,j) \in E \implies X_{ij} = 0\}$$

We want to compute projections and gradients/Hessians of barriers

Reformulating → faster FO & IP algorithms

- For first order algorithms (e.g., ADMM), we project onto the PSD cone
 - Chordal decomposition ightarrow break up large PSD projection into P small ones

$$X^{k+1} = \underset{X}{\operatorname{argmin}} \left(f(X) + (\rho/2) || X - Z^k + U^k ||_F^2 \right)$$

$$Z^{k+1} = \prod_{S_+^n} \left(X^{k+1} + U^k \right)$$

$$U^{k+1} = U^k + X^{k+1} - Z^{k+1}.$$

Reformulating → faster FO & IP algorithms

- For first order algorithms (e.g., ADMM), we project onto the PSD cone
 - Chordal decomposition \rightarrow break up large PSD projection into P small ones

- For interior point algorithms, must compute gradient and/or Hessian of barrier
 - Chordal decomposition → efficiently compute these [ADV13, VA15]

Chordal Decomposition Steps

Input Sparsity Pattern

Chordal Extension

Find (& merge) cliques

Form SDP

Reordering matters!

[Michael Garstka et al. 2020]

Solve SDP

[primal] Reconstruct Z

We can reconstruct the full Z if needed Our optimization variable Z is only partially specified

Two main approaches:

- 1. Maximum determinant completion [VA15]
 - Idea: Solve $ZL = L^{-T}D^{-1}$, where factorization is known from decomp
- 2. Minimum rank completion [Sun15]
 - Idea: factor each clique block & apply necessary orthogonal rotations

$$r = \max_{p} \operatorname{rank}(Z_{C_p})$$

Numerical Example

Example: Maximum Variance Unfolding

Preserve local distances + maximize (global) variance

Data: $x_i \in \mathbb{R}^{d_x}$ with pairwise distances $D_{ij} = \|x_i - x_j\|^2$

Goal: find embedding $y_i \in \mathbb{R}^{d_y}$ that preserves *local* distances

Method: solve an SDP with variable $Y = \tilde{Y}^T \tilde{Y}$, where

$$ilde{Y} = egin{bmatrix} | & & | \\ y_1 & \dots & y_n \\ | & & | \end{bmatrix} \in \mathbb{R}^{d_y \times n}$$

maximize
$$\mathbf{Tr} Y$$
s.t. $Y_{ii} + Y_{jj} - 2Y_{ij} = D_{ij} \quad \forall (i, j) \in \mathcal{E}_k$

$$\sum y_i = 0 \qquad Y \succeq 0.$$
 Preserve kNN distances

MVU Sparsity Pattern

N = 250, k = 6

Figure 3: Aggregate sparsity pattern for MVU with n = 250 and k = 6, which has 6487 nonzeros (left) and its chordal extension, which has 7382 nonzeros (right).

Chordal decomposition dramatically speeds up SDPs

Up to 175x faster on maximum variance unfolding!

Chordal decomposition dramatically speeds up SDPs

Up to 175x faster on maximum variance unfolding!

Wrap up

Chordal.jl has several functions for sparse matrices Survey: [Vandenberghe and Andersen 2015]

- Chordal decomposition of SDPs (with JuMP.jl) [Fukuda et al. 2001]
- Elimination trees, clique trees
- Clique graphs & merging [Garstka et al. 2020]
- Maximum determinant & minimum rank PSD completion [Sun 2015]
- Chordality tests [Tarjan and Yannakakis 1984]
- Euclidean distance matrix completion
- Several examples

Project Ideas

- Use Maximum Variance Unfolding to embed and then classify MNIST
 - Q: Does error propagate up the clique tree? Can we see this in accuracy?
- Investigate scaling of decomposed vs. standard sparse SDPs
 - Big issue in SDP solvers (especially first order ones)
- Implement a pure Julia sparse super nodal Cholesky
- Use these techniques for discrete optimization problems (see Ch 7 in [VA15])
- Integrate with Jump.jl (maybe not for this class, but great open source contribution!)

References

- Martin Andersen et al. "Logarithmic barriers for sparse matrix cones." In: Optimization Methods and Software 28.3 (2013), pp. 396-423
- Mituhiro Fukuda et al. "Exploiting sparsity in semidefinite programming via matrix completion I: General framework." In: SIAM Journal on Optimization 11.3 (2001), pp. 647–674.
- Michael Garstka, Mark Cannon, and Paul Goulart. "A clique graph based merging strategy for decomposable SDPs." In: IFAC-PapersOnLine 53.2 (2020), pp. 7355–7361.
- Yifan Sun. "Decomposition methods for semidefinite optimization." PhD thesis. UCLA, 2015.
- Robert E Tarjan and Mihalis Yannakakis. "Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs." In: SIAM Journal on computing 13.3 (1984), pp. 566–579.
- Lieven Vandenberghe and Martin S Andersen. "Chordal graphs and semidefinite optimization." In: Foundations and Trends in Optimization 1.4 (2015), pp. 241–433.

Appendix

Chordal decomposition *dramatically* speeds up SDPs (Primal form SDP)

Up to 200x faster on maximum variance unfolding!

Definition 4.1 (Running intersection property).

For each pair of cliques C_i , $C_j \in \mathcal{B}$, the intersection $C_i \cap C_j$ is contained in all the cliques on the path in the clique tree connecting C_i and C_j .

This property is also referred to as the *clique-intersection property* in [NFF⁺03] and the *induced* subtree property in [VA⁺15]. For a given chordal graph, a clique tree can be computed using the algorithm described in [PS90]. The clique tree for an example sparsity pattern is shown in Figure 1(c).

In a *post-ordered* clique tree the descendants of a node are given consecutive numbers, and a suitable post-ordering can be found via depth-first search. For a clique C_{ℓ} we refer to the first clique encountered on the path to the root as its *parent clique* C_{par} . Conversely C_{ℓ} is called the *child* of C_{par} . If two cliques have the same parent clique we refer to them as *siblings*.