d_1, d_2, d_3 positive integer. $\Omega \subset \mathbb{R}^{d_1}$, $m(\Omega) < \infty$ y $f : \Omega \times \mathbb{R}^{d_2} \to \mathbb{R}^{d_3}$. For Orlicz Spaces we will use the Orlicz norm.

Nemitski operator

$$fu(x) = f(x, u(x))$$

maps \mathbb{R}^{d_2} -valued functions defined on $\Omega \subset \mathbb{R}^{d_1}$ into \mathbb{R}^{d_3} -valued functions defined on $\Omega \subset \mathbb{R}^{d_1}$. Measurability seems follows the same lines that [2, p. 349].??? Let $\Phi_1 : \mathbb{R}^{d_2} \to \mathbb{R}$ and $\Phi_2 : \mathbb{R}^{d_3} \to \mathbb{R}$ be anisotropic N-functions.

Theorem 0.1. Deber #1 Theorem similar to [1, Lemma 17.2]

Proof. Let $u \in \Pi(E^{\Phi}(\mathbb{R}^{d_2}), r)$ be. Adapting the [3, Prop. 3, p. 92-93] to \mathbb{R}^d -valued functions (see also [] By [4, Th. 5.5] for Luxemburg norm and N-functions defined on infinite dimensional Banach space) (???) we obtain $\|u_0\|_{L^{\Phi}(\Omega,\mathbb{R}^{d_2})} < r$ where $u_0 = u - \chi_A u$ for certain set $A \subset \Omega$ where $\|u\|_{L^{\infty}(A,\mathbb{R}^{d_2})} < \infty$, in particular $\chi_A u \in E^{\Phi}(\Omega,\mathbb{R}^{d_2})$. From [4, Th. 5.4] we obtain that $\chi_A u$ has an absolutely continuous norm. Therefore we can finf u_1,\ldots,u_n with $u_iu_j\equiv 0$, for $i\neq j, \|u_i\|_{L^{\Phi}(\Omega,\mathbb{R}^{d_2})} < r, \ i=1,\ldots,n$ and $\chi_A u = u_1 + \cdots + u_n$. The result follows from the identity (see [2, p. 353])

$$f(u_0 + \cdots + u_n) = fu_0 + \cdots fu_n - (n-1)f0.$$

Deber #2 completar otros enunciados

Deber #3 Acotacion y continuidad Deber #4 Nemitsky asociado a $f = \Phi'$.

Lemma 0.2 (Lemma 9.1 KR). Suppose that $d \ge 1$ and $||u||_{L^{\Phi}(\Omega,\mathbb{R}^d)} \le 1$. Then $v(x) = \nabla \Phi(u(x))$ belong to $\tilde{L}^{\Psi}(\Omega,\mathbb{R}^d)$ and $\rho_{\Psi}(v) \le 1$.

References

- [1] M. A. Krasnosel'skii and Ja. B. Rutickii. *Convex functions and Orlicz spaces*. P. Noordhoff Ltd., Groningen, 1961.
- [2] M.A. Krasnosel'skii, P.P. Zabreyko, E.I. Pustylnik, and P.E. Sobolevski. *Integral operators in spaces of summable functions*. Mechanics: Analysis. Springer Netherlands, 2011.
- [3] M. M. Rao and Z. D. Ren. *Theory of Orlicz spaces*, volume 146. Marcel Dekker, Inc., New York, 1991.
- [4] Gudrun Schappacher. A notion of orlicz spaces for vector valued functions. *Applications of Mathematics*, 50(4):355–386, 2005.