Why are (L)LMs powerful?

Size

Attention mechanism

Layers

••• Etc.

Transfer Learning

What:

Store 'language knowledge' and 'task knowledge' in the parameters of a model.

Why:

Learn new tasks faster & better.

Classical Algorithms (e.g. Regression, SVM)

No prior 'language knowledge'

No knowledge of semantic similarities between words like "attack", "war" and "tree".

No prior 'task knowledge'

No knowledge of tasks like "Classify this text into 'activist' or 'conservative' rhetoric".

Word Embeddings (e.g. Word2Vec)

Provide 'language knowledge':

Represents "attack", "war" in similar static vectors

Attack ≈	0.1	0.8	•••	-0.5	0.1
War ≈	0.2	0.8	•••	-0.4	0.3
Tree ≈	0.7	-0.4	•••	0.1	-0.7

Transformers (e.g. BERT-base)

Prior 'language knowledge':

- Represents "attack", "war" in similar vectors
- Represents "capital" differently in context of "city" or "investment" or "crime"

Word vector of "capital" now closer to "geography" than "finance" or "crime"

Last layer: Contextualised representation of input

Word vector of "capital" with similar distance to "geography" / "finance" / "crime"

Transformers (e.g. BERT-base)

Prior 'language knowledge':

- Represents "attack", "war" in similar vectors
- Represents "capital" differently in context of "city" or "investment" or "crime"

Learned through simple, self-supervised task:

Masked Language Modelling

How BERT acquires language knowledge

ORIGINAL TEXT

"Capital punishment, also known as the death penalty and formerly called judicial homicide, is ..."

MASKED TEXT

"Capital [MASK], also known as the death [MASK] and formerly called [MASK] homicide, is ..."

The algorithm learns to predict the correct word behind the [MASK] token.

This creates general 'language knowledge'

BERT-base

After millions of training iterations:

Many parameters (vectors), which are very good at predicting hidden words.

Disadvantages of BERT-base

'Task knowledge' from MLM is not useful:

- BERT-base only knows how to predict hidden words (MLM task)
- We are actually interested in other tasks like classification, summarization etc.
- BERT-base needs to learn new, useful tasks from scratch

Reusing more 'prior knowledge'

Universal tasks

- Natural Language Inference (BERT-NLI)
- Next-word-prediction (GPT)

Natural Language Inference (NLI)

→ NLI is the task of determining whether a given statement (hypothesis) can logically be inferred from another statement (context-sentence).

Natural Language Inference (NLI)

Universal Task & Label Verbalisation

Example task:

Identifying texts that indicate that the economy is performing well / badly

Task reformulated for NLI:

NLI-input NLI-Output

{context-sentence from news} [SEP] {hypothesis-sentence verbalising label} Most "True" label

"The Rubel plummeted amidst a surge of investors withdrawing from Russia [SEP] The economy is performing badly"	<u>0,61 True</u> 0,13 False 0,26 Neutral
"The Rubel plummeted amidst a surge of investors withdrawing from Russia [SEP] The economy is performing well"	<u>0,19 True</u> 0,38 False 0,43 Neutral

Universal Task & Label Verbalisation

NLI-input	NLI-Output
-----------	------------

{context-sentence from news} [SEP] {hypothesis-sentence verbalising label}	Most "True" label
"The politicians were bribed by lobbyists. [SEP] It is about corruption."	<u>0,61</u>
"The politicians were bribed by lobbyists. [SEP] It is about peace."	0,01
"The politicians were bribed by lobbyists. [SEP] It is about free market."	0,06
"The politicians were bribed by lobbyists. [SEP] It is about equality."	0,04
•••	•••

NLI: Data-Rich Task

NLI is a data rich task

- Many NLI datasets with over 1 million annotated sentence pairs from different domains exist.
- Examples: SNLI (570k examples, Bowman et al. 2015), MultiNLI (433k, Williams et al. 2018), ANLI (162k, Nie et al. 2020)
- → Helps address the issue of data scarcity

Average performance across eight tasks vs. training data size

Laurer et. al 2023

Limitations of NLI

- Usefulness decreases with training data size. If there is enough data to learn the new task (> 1000 texts), BERT-base is better.
- BERT-NLI can only do classification tasks.
- No summarization, translation, information extraction ...

A more universal task

Next-token-prediction

- Main pre-training task of GPT models
- Is a self-supervised task (no manual annotations)

Next-token-prediction task

Original text:

"Capital punishment, also known as the death penalty and formerly called judicial homicide, is ..."

Universal task

Sentiment classification

[long text]	Is	this	text	positive	or	GPT	
negative	?						

[long text]	Is	this	text	positive	or
negative	?	positive			

Universal task

Information extraction

[long text]	Extract	all	countries	from	the	GPT	
text	:						

[long text]	Extract	all	countries	from	the	GPT	
text	:	Germany					

[long text]	Extract	all	countries	from	the	GPT	
text	:	Germany	,				

• • •

Universal task

Summarisation

[long text]	А	summary	of	the	preceding
text	:				

[long text]	А	summary	of	the	preceding
text	:	The			

[long text]	А	summary	of	the	preceding
text	:	The	main		

Reflect and Q&A

Q1: What is the difference between word embeddings and BERT?

Q2: What are universal tasks and why are they useful?

Q3: In your own words, try to define transfer learning.

Write your responses on a piece of paper / notebook. Ask any questions about the slides in the chat.