Arquitectura de Computadores 2009/10

Aula Prática 6 - Subrotinas

- Implemente o programa e subrotinas seguintes, calculando o factorial de n iterativamente (com um ciclo):
 - a. Recorrendo a uma subrotina em que **n** é passado como parâmetro no registo **eax** e o factorial é retornado também em **eax**.

Utilizando esta subrotina desenvolvida faça um programa que calcula o valor da expressão: x = n! - (n-1)!

Em que x e n são variáveis globais com sinal.

b. Recorrendo a uma subrotina em que n é passado como parâmetro na pilha e o factorial é retornado também em eax.

Teste a nova subrotina com o programa desenvolvido na alínea anterior

Pseudo-código C para o calculo do factorial:

```
fact = 1;
for (i=1; i <= n; i++)
    fact = fact * i;</pre>
```

Nota: A partir deste ponto os parâmetros são sempre passados por pilha e o resultado no registo eax.

2. Desenvolva uma função em assembler que calcula a potência de um valor (x^y). Essa função (potencia) tem como parâmetros a base (x) e o expoente (y), ambos valores inteiros.

Teste a função com um programa que calcula 5³

3. O número de combinações de um conjunto de m elementos num subconjunto de n, é dado pela fórmula:

$$C(m,n) = \frac{m!}{n!*(m-n)!}$$

a. Implemente uma subrotina (comb) que calcula C(m,n), recorrendo a chamadas à subrotina factorial implementada anteriormente.

Nota: se não possuir registos livres suficientes para conter todos os valores que precisa, pode utilizar a pilha para guardar o conteúdo de registos.

Arquitectura de Computadores 2009/10

Aula Prática 6 - Subrotinas

- b. Utilize a sua subrotina (comb) para calcular o número de combinações possíveis do Euromilhões (C(50,5)*C(9,2)).
- c. O seu programa irá apresentar valores incorrectos, isto porque 50! é um valor demasiado grande para caber numa variável de 32 bits (ou mesmo de 64). Resolva o problema recorrendo à seguinte igualdade:

$$\frac{i!}{i!} = i * (i-1) * (i-2) * ... * (j+2) * (j+1) , sendo i > j$$

Exemplo:

$$\frac{50!}{(50-5)!*5!} = \frac{50!}{45!*5!} = \frac{50!}{45!} * \frac{1}{5!} = \frac{50*49*48*47*46}{5*4*3*2*1}$$

Altere a subrotina (comb), com base na igualdade anterior, de modo a esta ter a capacidade de calcular o valor correcto do número de combinações necessário para calculo do Euromilhões. Teste a subrotina e verifique se o resultado está correcto.

d. Implemente um novo programa, desta vez para calcular o número de combinações possíveis no Totoloto (C(48,6)). Neste caso vai haver um valor intermédio que não cabe em 32 bits (mas cabe em 64 bits), pelo que pode ter que alterar ligeiramente a sua função em assembler.

Nota: lembre-se que, mul e div usam o registo edx como uma extensão para produtos e divisões de 64 bits.

e. Modifique a subrotina de forma a calcular o número de combinações com o menor número de multiplicações. (i.e. utilizar o factorial para o menor dos valores, n ou m-n).