libshirani - Jonathan Taylor

Exercises ISLR – Ch.2

Marcelo Previato Simoes Nº 2367070 18/08/2025

Exercises: 4, 7

Exercise 4a) Classification Problem

Prediction on Fraud Detection in Banking Transaction

Y = fraud classification {0 = legitimate, 1 = fraudulent}

X = multiple transaction information including:

- a) Transation features: *Time, Amount, Amount Deviation, Velocity, Device, Device Deviation...*
- b) Customer features: Region, Region Mismatch, Age, Income, Regularity of transactions...
- c) Recipient features: Region, New x Usual Recipient...

Exercise 4b) Regression Problem

Inference on the Impact of Remote Work in Wealth

Y = wealth \$ (in general, ln(wealth))

X = multiple information including:

- a) Variable of Interest: Remote Work $(0 = No, 1 = Yes) \rightarrow$ inference about impact (causal inference)
- b) Demographics Controls: Region, State, Urban x Rural, Age, Age^2, Race, Gender...
- c) Experience Controls: Years of Education, Degree, Course Category, Work Tenure, Public x Private Sector, Industry...

Exercise 4c) Cluster Analysis

Prediction on Customer Segmentation in Grocery Purchase

Y = Customer Category (e.g. Healthy Bulk, Healthy Light, Conventional Bulk, Conventional Light)

X = multiple customer information:

- a) Product Selections: share of healthy food, share of processed food, diversity of SKUs, changes...
- b) Quantity Related: average basket size, average basket value, proportion of large transactions, weight of purchase, % of large size itens, % of combo itens

Exercise 7) Classification KNN

Obs.	X1	X2	Х3	Υ	D
1	0	3	0	Red	$\sqrt{9}$
2	2	0	0	Red	$\sqrt{4}$
3	0	1	3	Red	$\sqrt{10}$
4	0	1	2	Green	$\sqrt{5}$
5	-1	0	1	Green	$\sqrt{2}$
6	1	1	1	Red	$\sqrt{3}$

$$K = 1 \rightarrow \text{obs } 5$$

P(Green) = 1 \rightarrow Green

$$\rightarrow$$
 K = 3 \rightarrow obs 5,6,2
P(Red) = 2/3 \rightarrow Red

Non-linear → smaller K, since it is more flexible and able to capture the non linearity

Exercise 10a) Boston Suburbs Info

> head(Boston)														
	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	med∨
1 0.	00632	18	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2 0.	02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
3 0.	02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
4 0.	03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5 0.	06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
6 0.	02985	0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
> di	m(Bos	ton)	<u> </u>											
[1]	506	14	7											

Greater Boston Residence Information

N = 506 observations

X = 14 variables (normally Medv is the dependent variable)

Exercise 10b) Covariates

Χ	Explanation					
crim	per capita crime rate per town					
zn	proportion of residential land zoned for lots over 25,000 sq.ft.					
ind	proportion of non-retail business acres per town (industrial)					
chas	Charles river bound					
nox	nitrogen oxides concentration (pollution)					
rm	average number of rooms per dwelling					
age	proportion of owner-occupied units built prior to 1940 (antique)					
dis	weighted mean of distances to five Boston employment centres.					
rad	index of accessibility to radial highways					
tax	full-value property-tax rate					
ptratio	pupil-teacher ratio by town.					
black	Index based on proportion of blacks by town					
lstat	lower status of the population					
medv	median value of owner-occupied homes					

Exercise 10c) Scatterplots

Cov(rm, medv) +

The higher the number of rooms, the higher value of the residence

Cov(lstart, medv) -

The higher the share of low status people, the lower the value of the residence

Exercise 10d) Correlations

- → Positive: indus, rad, nox
 → areas near industries
 and roads tend to have
 higher crime rate
- Negative: dis, black, medv
 → areas with less
 expensive residences,
 distant and with black
 residences tend to have
 lower crime rate

Exercise 10e) High values

Exercise 10f,g) Descriptive

Suburbs Bounding the Charles Rive

ptratio
Min. :12.60
1st Qu.:17.40
Median :19.05
Mean :18.46
3rd Qu.:20.20
Max. :22.00

Median: 19.05

Exercise 10h) Lowest medv suburb

Exercise 10i) Larger residences


```
Suburbs with >7 rooms: 64
Suburbs with >8 rooms: 13
                                   indus
                                               chas
                                                                                      dis
                            zn
                                                           nox
All suburbs 3.6135236 11.36364 11.136779 0.06916996 0.5546951 6.284634 68.57490
                               7.078462 0.15384615 0.5392385 8.348538 71.53846 3.430192
>8 rooms
                 rad
                          tax ptratio
                                          black
                                                    lstat
All suburbs 9.549407 408.2372 18.45553 356.6740 12.65306 22.53281
            7.461538 325.0769 16.36154 385.2108
>8 rooms
                                                 4.31000 44.20000
```

Suburbs witn >8 rooms are twice as expensive as the entire database