

Amendments to the Specification:

Please amend the paragraph beginning at page 6, line 17, as follows:

In the case described here, for the first solid electrolyte layer 2, an LaGa-based perovskite compound, especially one having a composition formula of $\{(La_{2-x-y}Ln_xA_y)(Ga_{1-z}B_z)(O_{3-0.5(x+y+z)})\}$, exhibiting high oxygen ion conductivity at a low temperature, should preferably be used. Here, preferably, Ln is one or more kind of elements selected from lanthanide elements Yb, Gd, Sm, Nd and Y ; A is an one or more kinds of element selected from Sr, Ba, Ca, and so on; and B is an element of one or two kinds, selected from Mg, Zn, and so on. In addition, x should preferably be set in a range of 0.05 to 0.15 ; y in a range of 0.05 to 0.15 ; and z in a range of 0.05 or more to 0.25 or less.

Please amend the table beginning at page 22, line 22 as follows:

Table 1

No.	Layer-built solid electrolyte (2nd SE/ 1st SE/ 3rd SE)	Ion conductivity [σ]	Ion transport number [Toi]
Example 1-a	YSZ / La _{0.75} Nd _{0.15} Sr _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d}	0.017 S/cm	94 %
Example 1-b	YSZ / La _{0.8} Sm _{0.1} Ba _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d}	0.017 S/cm	94 %
Example 2-a	SDC / La _{0.75} Nd _{0.15} Sr _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d}	0.018 S/cm	94 %
Example 2-b	SDC / La _{0.8} Sm _{0.1} Ba _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d}	0.018 S/cm	94 %
Example 3-a	La _{0.75} Nd _{0.15} Sr _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d} / YSZ	0.017 S/cm	96 %
Example 3-b	La _{0.8} Sm _{0.1} Ba _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d} / YSZ	0.017 S/cm	96 %
Example 4-a	YSZ / La _{0.75} Nd _{0.15} Sr _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d} / YSZ	0.016 S/cm	99 %
Example 4-b	YSZ / La _{0.8} Sm _{0.1} Ba _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d} / YSZ	0.016 S/cm	99 %
Example 5-a	SDC / La _{0.75} Nd _{0.15} Sr _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d} / YSZ	0.017 S/cm	99 %
Example 5-b	SDC / La _{0.8} Sm _{0.1} Ba _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d} / YSZ	0.017 S/cm	99 %
Comparative Example a	La _{0.75} Nd _{0.15} Sr _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d}	0.018 S/cm	91 %
Comparative Example b	La _{0.8} Sm _{0.1} Ba _{0.1} Ga _{0.8} Mg _{0.2} O _{3-d}	0.018 S/cm	91 %