## Lecture Notes for Machine Learning in Python

Professor Eric Larson
Visualization and Dimensionality Reduction

## Class Logistics and Agenda

- Finish Visualization Demo
- Dimensionality Reduction
  - PCA and LDA
  - Kernel Methods

## **Demo**

#### Visualization

Matplotlib

Seaborn

**Plotly** 

03.Data Visualization.ipynb
Other Tutorials:

https://t.co/zNzD8Q8w5E

http://stanford.edu/~mwaskom/software/seaborn/index.html

http://pandas.pydata.org/pandas-docs/stable/visualization.html

http://matplotlib.org/examples/index.html

http://nbviewer.ipython.org/github/mwaskom/seaborn/blob/master/examples/plotting\_distributions.ipynb

## Dimensionality Reduction: PCA and LDA



## **Curse of Dimensionality**

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful



#### Purpose:

- Avoid curse of dimensionality
- Select subsets of independent features
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized

May help to eliminate irrelevant features or reduce noise.

#### Techniques

- Principle Component Analysis
- Discriminant Analysis
- Others: supervised and non-linear techniques

Diques
I invented PCA...
and social Darwinism

1857-1936

Karl Pearson

 Goal is to find a projection that captures the largest amount of variation in data



- Find the eigenvectors of the covariance matrix
- keep the "k" largest eigenvectors



| E1   | E2    |
|------|-------|
| 0.85 | 0.85  |
| 0.52 | -0.52 |

|   | A1 | A2   |  |  |
|---|----|------|--|--|
| 1 | 66 | 33.6 |  |  |
| 2 | 54 | 26.6 |  |  |
| 3 | 69 | 23.3 |  |  |
| 4 | 73 | 28.1 |  |  |
| 5 | 61 | 43.1 |  |  |
| 6 | 62 | 25.6 |  |  |

#### covariance

| 37.1 | -6.7 |
|------|------|
| -6.7 | 43.9 |

|   | A1    | A2    |  |
|---|-------|-------|--|
| 1 | 1.83  | 3.55  |  |
| 2 | -10.1 | -3.45 |  |
| 3 | 4.83  | -6.75 |  |
| 4 | 8.83  | -1.95 |  |
| 5 | -3.17 | 13.05 |  |
| 6 | -2.17 | -4.45 |  |

zero mean

attribute<sub>2</sub>



This projection is called a "Transform" known as the **Karhunen-Loève Transform** 

## **Explained Variance**

- Each principle component explains a certain amount of variation in the data.
- This explained variation is embedded in the eigenvalues for each eigenvector



Genetic profiles distilled to 2 components



- Need more help with the PCA algorithm (and python)?
  - check out Sebastian Raschka's notebooks:

http://nbviewer.ipython.org/github/rasbt/pattern\_classification/blob/master/dimensionality\_reduction/projection/principal\_component\_analysis.ipynb

# Or check out PCA for dummies:

https://georgemdallas.wordpress.com/ 2013/10/30/principal-componentanalysis-4-dummies-eigenvectorseigenvalues-and-dimension-reduction/



#### 04.Dimension Reduction and Images.ipynb



http://scikit-learn.org/stable/auto\_examples/decomposition/plot\_pca\_vs\_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

#### For Next Lecture

- Next Lecture:
  - Kernel Methods
  - Dimension Reduction Demo
  - Crash-course Image Feature Extraction

## Lecture Notes for Machine Learning in Python



Professor Eric Larson

Dimensionality and Images

## Class Logistics and Agenda

#### Logistics:

Next lab due at the end of next week

#### Agenda

- Randomized
- Kernel Methods
- Common Feature Extraction Methods for Images

#### Last time it was so linear...



| E1   | E2    |
|------|-------|
| 0.85 | 0.85  |
| 0.52 | -0.52 |

| 37.1 | -6.7 |
|------|------|
| -6.7 | 43.9 |

|   | A1 | A2           |  |  |
|---|----|--------------|--|--|
| 1 | 66 | 33.6         |  |  |
| 2 | 54 | 26.6         |  |  |
| 3 | 69 | 23.3<br>28.1 |  |  |
| 4 | 73 |              |  |  |
| 5 | 61 | 43.1         |  |  |
| 6 | 62 | 25.6         |  |  |

|   | A7    | A2    |  |
|---|-------|-------|--|
| 1 | 1.83  | 3.55  |  |
| 2 | -10.1 | -3.45 |  |
| 3 | 4.83  | -6.75 |  |
| 4 | 8.83  | -1.95 |  |
| 5 | -3.17 | 13.05 |  |
| 6 | -2.17 | -4.45 |  |

zero mean







#### 04.Dimension Reduction and Images.ipynb



http://scikit-learn.org/stable/auto\_examples/decomposition/plot\_pca\_vs\_lda.html#example-decomposition-plot-pca-vs-lda-py

http://nbviewer.ipython.org/github/ogrisel/notebooks/blob/master/Labeled%20Faces%20in%20the%20Wild%20recognition.ipynb

#### Self Test ML2b.1

Principal Components Analysis works well for categorical data by design.

- A. True
- B. False
- C. It doesn't but people do it anyway

## Dimensionality Reduction: Randomized PCA

- Problem: PCA on all that data can take a while to compute
  - What if the number of instances is gigantic?
  - What if the number of dimensions is gigantic?
- What if we partially construct the covariance matrix with a lower rank matrix?
  - By randomly sampling from the dataset and projecting, we can get something representative of covariance matrix, but with lower rank
  - Gives a matrix with typically good enough precision of actual eigenvectors

$$\|\boldsymbol{A} - \boldsymbol{Q}\boldsymbol{Q}^*\boldsymbol{A}\| \le \left[1 + 11\sqrt{k+p} \cdot \sqrt{\min\{m,n\}}\right] \sigma_{k+1}$$

source: Halko, et al., (2009) Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. <a href="https://arxiv.org/pdf/0909.4061.pdf">https://arxiv.org/pdf/0909.4061.pdf</a>

## Non-linear Dimensionality Reduction



## Dimensionality Reduction: non-linear



- Sometimes a linear transform is not enough
- A powerful non-linear transform has seen a resurgence in past decade: kernel PCA

- Estimate Covariance in higher dimensional space
- Get eigen vectors from nonlinear dot product
- Projecting onto these can be understood as principle components from a higher dimensional space



**kernel**: defines what the dot product is in higher dimensional space

φ(*A1*)·φ(*A1*) φ(*A2*)·φ(*A1*) φ(*A2*)·φ(*A1*) φ(*A2*)·φ(*A2*)

some kernels have corresponding transformations with **infinite dimensions**!!

| attribute <sub>2</sub> |
|------------------------|
|------------------------|

 Key insight: don't need to know the actual principle components, just the projections

| <b>Never need</b> eigen vectors |
|---------------------------------|
| of full covariance matrix       |

|   | A1 | A2   |  |
|---|----|------|--|
| 1 | 66 | 33.6 |  |
| 2 | 54 | 26.6 |  |
| 3 | 69 | 23.3 |  |
| 4 | 73 | 28.1 |  |
| 5 | 61 | 43.1 |  |
| 6 | 62 | 25.6 |  |

**kernel**: defines what the dot product is in higher dimensional space

 $\Phi(A1)\cdot\Phi(A1)$   $\Phi(A2)\cdot\Phi(A1)$   $\Phi(A2)\cdot\Phi(A2)$ 

some kernels have corresponding transformations with **infinite** 

dimensions!!

attribute<sub>2</sub>

|   | $\mathbf{x} = [x_1$                    | $x_2$ ]     | $\mathbf{x} \in I\!\!R^d$ |                                    |
|---|----------------------------------------|-------------|---------------------------|------------------------------------|
|   |                                        | $\psi \phi$ |                           |                                    |
|   | $x_2$ $x_1x_2$ $x_1^2$                 | $x_1x_2^3$  | $\dots ]^T$               | $\mathbf{x} \in I\!\!R^k (k >> d)$ |
|   |                                        |             |                           |                                    |
|   | $\kappa(\mathbf{x_i}, \mathbf{x_j}) =$ | exp( -      | - γ   x <sub>i</sub> -    | $-\mathbf{x_j}\ _2^2$              |
| • |                                        | \           |                           | /                                  |

kernel: radial basis function (rbf)

attribute<sub>1</sub>

A2

33.6

26.6

23.3

28.1

43.1

25.6



## Image Processing and Representation



## What is image processing

- the art and science of manipulating pixels
  - combining images (blending or compositing)
  - enhancing edges and lines
  - adjusting contrast, color
  - warping, transformation
  - filtering
  - features extraction

## Images as data

- an image can be represented in many ways
- most common format is a matrix of pixels



used for capture and display



## **Image Representation**

need a compact representation

#### grayscale

0.3\*R+0.59\*G+0.11\*B, "luminance"

gray

| 1 | 4 | 2 | 5 | 6 | 9 |
|---|---|---|---|---|---|
| 1 | 4 | 2 | 5 | 5 | 9 |
| 1 | 4 | 2 | 8 | 8 | 7 |
| 3 | 4 | 3 | 9 | 9 | 8 |
| 1 | 0 | 2 | 7 | 7 | 9 |
| 1 | 4 | 3 | 9 | 8 | 6 |
| 2 | 4 | 2 | 8 | 7 | 9 |

Numpy Matrix image[rows, cols]

|   | 1 ( |   |   |   |   |   |   |
|---|-----|---|---|---|---|---|---|
|   | G[  | 1 | 4 | 2 | 5 | 6 | 9 |
| B | 1   | 4 | 2 | 5 | 6 | 9 | 9 |
| 1 | 4   | 2 | 5 | 6 | 9 | 9 | 7 |
| 1 | 4   | 2 | 5 | 5 | 9 | 7 | 8 |
| 1 | 4   | 2 | 8 | 8 | 7 | 8 | 9 |
| 3 | 4   | 3 | 9 | 9 | 8 | 9 | 6 |
| 1 | 0   | 2 | 7 | 7 | 9 | 6 | 9 |
| 1 | 4   | 3 | 9 | 8 | 6 | 9 | Г |
| 2 | 4   | 2 | 8 | 7 | 9 |   | _ |

Numpy Matrix image[rows, cols, channels]

## Image Representation, Features

**Problem**: need to represent image as table data

| 1 | 4 | 2 | 5 | 6 | 9 |
|---|---|---|---|---|---|
| 1 | 4 | 2 | 5 | 5 | 9 |
| 1 | 4 | 2 | 8 | 8 | 7 |
| 3 | 4 | 3 | 9 | 9 | 8 |
| 1 | 0 | 2 | 7 | 7 | 9 |
| 1 | 4 | 3 | 9 | 8 | 6 |
| 2 | 4 | 2 | 8 | 7 | 9 |

## Image Representation, Features

**Problem**: need to represent image as table data

**Solution**: row concatenation



. . .

Row N 9 4 6 8 8 7 4 1 3 9 2 1 1 5 2 1 5 9 1

#### Self test: 3a-1

- When vectorizing images into table data, each feature column corresponds to:
  - a. the value (color) of pixel
  - b. the spatial location of a pixel in the image
  - c. the size of the image
  - d. the spatial location and color channel of a pixel in an image

## Demo

**Dimension Reduction** with Images Images Representation Randomized PCA Kernel PCA

04. Dimension Reduction and Images. ipynb

## Features of Images



## **Image Representation**

need a compact representation

#### hsv

- what we perceive as color (ish)
  - •hue: the color value
  - saturation: the richness of the color relative to brightness
  - value: the gray level intensity





# **Common operations**



images: Jianbo Shi, Upenn

# Common operations: DAISY





take normalized histogram at point u,v

$$\widetilde{\mathbf{h}}_{\Sigma}(u,v) = \left[\mathbf{G}_{1}^{\Sigma}(u,v), \ldots, \mathbf{G}_{H}^{\Sigma}(u,v)
ight]^{ op}$$

$$\mathcal{D}(u_0, v_0) =$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(u_0, v_0),$$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0,v_0,R_1)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0,v_0,R_1)),$$

$$\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0,v_0,R_2)),\cdots,\widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0,v_0,R_2)),$$

**Tola et al.** "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions



take normalized histogram at point u,v

$$\mathcal{D}(u_0, v_0) = \widetilde{\mathbf{h}}_{\Sigma_1}^{\mathsf{T}}(u_0, v_0), \qquad \widetilde{\mathbf{h}}_{\Sigma_1}^{\mathsf{T}}($$

$$\widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_1(u_0, v_0, R_1)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_1}^{\top}(\mathbf{l}_T(u_0, v_0, R_1)), \\ \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_1(u_0, v_0, R_2)), \cdots, \widetilde{\mathbf{h}}_{\Sigma_2}^{\top}(\mathbf{l}_T(u_0, v_0, R_2)),$$

**Tola et al.** "Daisy: An efficient dense descriptor applied to widebaseline stereo." Pattern Analysis and Machine Intelligence, IEEE Transactions

## **Common operations: DAISY**





### Params:

step, radius, num rings, num histograms per ring, orientations per histogram

## **Common operations: DAISY**



# num Bag of Features Image Representation



#### Params:

step, radius, num rings, num histograms per ring, orientations per histogram

### Common operations: Gabor filter Banks (if time)

common used for texture classification



### Demo

# More Image Processing

Gradients

DAISY

Gabor Filter Banks

### **Other Tutorials:**

http://scikit-image.org/docs/dev/auto\_examples/

### For Next Lecture

- Work on your text datasets!
- Next Time: In-Class Assignment One!!!
- Next Week: Project Questions Lecture

## Supplemental Slides

- Peruse these at your own leisure!
- These slides might assist you as additional visual aides
- Slides courtesy of Tan, Steinbach, Kumar
  - Introduction to Data Mining

## **Dimensionality Reduction: LDA**

- PCA tell us variance explained by the data in different directions, but it ignores class labels
- Is there a way to find "components" that will help with discriminate between the classes?

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{ differences between classes}}{\sum \text{ variance within classes}}$$

- called Fisher's discriminant
- ...but we need to solve this using using Lagrange multipliers and gradient-based optimization
- which we haven't covered yet

I invented Lagrange multipliers... and ...nothing impresses me...

### Dimensionality Reduction: LDA versus QDA



Feature 1

### Dimensionality Reduction: LDA versus QDA

$$\underset{comp.}{\text{arg max}} \frac{\sum \text{differences between classes}}{\sum \text{variance within classes}}$$

- "differences between classes" is calculated by trying to separate the mean value of each feature in each class
- Linear discriminant analysis:
  - assume the covariance in each class is the same
- Quadrature discriminant analysis:
  - estimate the covariance for each class



### Self Test ML2b.2

LDA only allows as many components as there are unique classes in a dataset.

- A. True
- B. False