题目名称	因数	灯泡	完美匹配
题目类型	传统型	传统型	传统型
目录	divisors	bulb	matching
可执行文件名	divisors	bulb	matching
输入文件名	divisors.in	bulb.in	matching.in
输出文件名	divisors.out	bulb.out	matching.out
每个测试点时限	1.0 秒	2.0 秒	2.0 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	20	20	25
每个测试点分值	5	5	4

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3. C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 4. 评测在NOI Linux下进行,评测时的栈大小与该题的空间限制相等。

因数 (divisors)

【题目描述】

记 d(n) 为 n 的因数个数。比如说 d(12)=6 ,因为 12 有 6 个因数 1,2,3,4,6,12 。我们称一个正数 x 是好的,当且仅当至多存在一个正数 y ,满足 y < x 和 d(y) > d(x) 。

请你求出第k小的好的数,保证答案不超过 10^{18} 。

【输入格式】

从文件 divisors.in 中读入数据。

读入第一行,包含一个正整数k,意义如上所述。

【输出格式】

输出到文件 divisors.out 中。

输出一个整数,表示答案。

【样例1输入】

10

【样例1输出】

14

【样例1解释】

好的数依次为1, 2, 3, 4, 5, 6, 8, 10, 12, 14…

【样例2输入】

39

【样例2输出】

288

【样例3输入】

666

【样例3输出】

【子任务】

设测试点对应正确的答案为 K。

测试点编号	K
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	$\leq 10^4$
13, 14, 15, 16	$\leq 10^8$
17, 18	$\leq 10^{12}$
19	$\leq 10^{16}$
20	$\leq 10^{18}$

灯泡 (bulb)

【题目描述】

有 n 个房间和 n 盏灯,你需要在每个房间里放入一盏灯。每盏灯都有一定功率,每间房间都需要不少于一定功率的 灯泡才可以完全照亮。

你可以去附近的商店换新灯泡,商店里所有正整数功率的灯泡都有售。但由于背包空间有限,你至多只能换 k 个灯泡。

你需要找到一个合理的方案使得每个房间都被完全照亮,并在这个前提下使得总功率尽可能小。

【输入格式】

从文件 bulb.in 中读入数据。

第一行两个整数n,k。

第二行n个整数 p_i ,表示你现有的灯泡的功率。

第三行n个整数 w_i ,表示照亮每间房间所需要的最小功率。

【输出格式】

输出到文件 bulb.out 中。

如果无法照亮每间房间,输出 -1。

否则输出最小的总功率。

【样例1输入】

6 2 12 1 7 5 2 10 1 4 11 4 7 5

【样例1输出】

33

【样例1解释】

把 2 和 10 换成 4 和 4。配对方案为 1-1, 4-4, 4-4, 5-5, 7-7, 11-12。

【样例2输入】

11 5 1 2 7 8 10 11 16 18 20 21 22 3 4 5 6 9 12 13 14 15 17 19

【样例2输出】

125

【子任务】

对于 **20%** 的数据, $n \le 10$ 。

对于 **40%** 的数据, $n \leq 20$ 。

对于 **70%** 的数据, $n \leq 1000$ 。

对于 100% 的数据, $1 \leq k \leq n \leq 500000$, $1 \leq w_i, p_i \leq 10^9$ 。

完美匹配 (matching)

【题目描述】

给定n个点,m条边的无向图G = (V, E),求出它的完美匹配数量对 $(10^6 + 3)$ 取模的值。

一个完美匹配可以用一个 排列 $\phi: V \to V$ 来表示,满足 $(v,\phi(v)) \in E$ 和 $\phi(\phi(v)) = v$ 。

【输入格式】

从文件 matching.in 中读入数据。

输入第一行,包含两个整数 n, m ,表示图 G 的点数和边数。

接下来m行,第i+1行包含两个正整数 u_i,v_i ,描述第i条无向边。 u_i,v_i 为该边两个端点的标号。

保证图中没有自环或重边。

【输出格式】

输出到文件 matching.out 中。

输出一个整数,表示图 G 的完美匹配数量对 10^6+3 取模的值。

【样例1输入】

- 4 4
- 1 3
- 1 4
- 2 3

【样例1输出】

2

【样例1解释】

排列 (3,4,1,2) 和 (4,3,2,1) 满足条件。

【样例2】

见 matching/matching2.in 与 matching/matching2.ans 。

【样例3】

见 [matching/matching3.in] 与 [matching/matching3.ans] 。

【子任务】

测试点编号	n	测试点编号	n
1, 2, 3, 4	≤ 5	13	≤ 18
5	≤ 6	14	≤ 20
6	≤ 8	15, 16	≤ 22
7,8	≤ 10	17,18	≤ 24
9, 10	≤ 12	19, 20	≤ 2 6
11	≤ 14	21, 22	≤ 2 8
12	≤ 16	23, 24, 25	≤ 30