Introducción al enfoque resonante METFI

El modelo METFI (Modelo Electromagnético Toroidal de Forzamiento Interno) propone que el entorno geofísico terrestre actúa como un sistema resonante donde campos electromagnéticos naturales y artificiales interactúan con componentes atmosféricos y biológicos. Esta sección explora cómo dichas resonancias pueden generar acoplamientos no lineales entre atmósfera y biosfera, afectando dinámicas ecológicas, fisiológicas y meteorológicas.

Hipótesis de trabajo

- Las condiciones resonantes inducidas por la estructura toroidal METFI modulan variables bioatmosféricas de forma local y sistemática.
- Organismos vivos (plantas, animales, microbiota) funcionan como antenas biológicas que responden a frecuencias electromagnéticas específicas.
- Se producen fenómenos meteorológicos (lluvias localizadas, nieblas estructuradas, formación de nubes lenticulares) como expresión macroscópica de estas resonancias biofísicas.

Objetivos del proyecto

- Detectar correlaciones entre estructuras atmosféricas anómalas y alteraciones biológicas locales.
- Medir biorespuestas (electrofisiológicas, bioquímicas y comportamentales) bajo exposición a condiciones resonantes.
- Modelizar interacciones atmósfera-biosfera en sistemas cerrados simulando frecuencias del modelo METFI.

Diseño experimental interdisciplinar

a) Meteorología aplicada

- Uso de radar Doppler y LIDAR para identificar formaciones nubosas atípicas.
- Captura de imágenes satelitales para seguimiento de nieblas electromagnéticas y microprecipitaciones inducidas.
- Estudio de parámetros eléctricos atmosféricos: carga, conductividad, gradientes verticales.

b) Biología de campo

- Evaluación de ritmos circadianos y bioeléctricos en plantas expuestas a microclimas resonantes.
- Seguimiento de cambios en comportamiento animal (orientación, migración, sueño).
- Análisis de crecimiento, fotosíntesis y expresión génica en ecosistemas expuestos.

c) Biofísica experimental

- Simulación en cámaras de Faraday con moduladores de frecuencia controlada.
- Medición de potenciales de membrana y resonancias intracelulares en tejidos vegetales y animales.
- Pruebas de interferencia en procesos de señalización celular bajo oscilaciones específicas (1–100 Hz).

Indicadores y variables de seguimiento

Categoría	Indicadores clave
Bioeléctrica	Potencial de acción, impedancia, campos endógenos
Atmosférica	Gradiente térmico, ionización, estructuras nubosas
Fisiológica vegetal	Clorofila, tasa fotosintética, conductancia estomática
Comportamental animal	Rutas de desplazamiento, vocalización, sincronización grupal

Resultados esperados

- Evidencia empírica de acoplamientos funcionales entre señales atmosféricas y respuestas biosféricas.
- Mapas de zonas de alta interacción bio-atmosférica asociadas a nodos toroidales METFI.
- Desarrollo de prototipos de "sensores biológicos vivientes" capaces de detectar resonancias ambientales.

Aplicaciones tecnológicas y ecológicas

- Modelos predictivos de estrés biológico ante tormentas electromagnéticas.
- Sistemas de alerta temprana para eventos atmosféricos de origen resonante.
- Restauración ecológica basada en frecuencias resonantes de apoyo a ecosistemas degradados.

Líneas futuras de investigación

- Estudio de sincronización neurovegetativa humana con señales ambientales moduladas.
- Aplicación del modelo a agricultura de precisión bioresonante.
- Desarrollo de sistemas biohíbridos de seguimiento ambiental.