MySQL Architecture

สถาปัตยกรรมของ MySQL

เป็นฐานข้อมูลเชิงสัมพันธ์ที่มีสถาปัตยกรรมแบบเลเยอร์จะปนะกอบด้วยส่วนทรัพยากร server ที่อยู่ตรงกลาง เครื่องมือจัดเก็บข้อมูลที่อยู่ด้านล่างและปลาย client หรือการดำเนินการ query จะสิ้นสุดที่ด้านบนเป็นระบบ ฐานข้อมูลสถาปัตยกรรม 3 ชั้น

สถาปัตยกรรมของฐานข้อมูลจะอธิบายความสัมพันธ์และการโต้ตอบระหว่าง client & server และ storage ส่วนของผู้ให้บริการ (server) ทำหน้าที่ บริหารจัดการระบบฐานข้อมูลคือตัว MySQL Server และเป็นที่จัดเก็บ ข้อมูลทั้งหมดข้อมูลที่เก็บไว้นี้จะมีทั้งข้อมูลที่จำเป็นสำหรับการทำงานกับระบบฐานข้อมูงและข้อมูลที่เกิดจากผู้ให้ ส่วนของผู้ให้บริการ (server) คือ ผู้ให้โดยโปรแกรมสำหรับให้งานในส่วนนี้ได้แก่ MySQL Client, Access, Web Development Platform ต่างๆ เช่น Java, Perl, PHP, ASP

Client Layer

เลเยอร์บนสุดใน diagram ด้านบน client จะส่งคำขอหรือคำสั่งไปยัง server ด้วยความช่วยเหลือของ client layer โดย client ส่งคำ ขอผ่านพร้อมรับคำสั่งหรือผ่านหน้าจอ GUI โดยใช้คำสั่งและนิพจน์ MySQL ที่ถูกต้อง หากนิพจน์และคำสั่งถูกต้องจะส่งไปยังปลยทาง server ผลลัพธ์ที่ได้จะแสดงบนหน้าจอสำหรับทุกการส่งคำสั่งที่ถูกต้องบนหน้าจอทุกครั้งที่ส่งคำสั่งผิดจะมีข้อความแสดงข้อผิดพลาด ส่งกลับมาที่หน้าจอ เมื่อผู้ใช้ส่งคำขอไปยัง server ปลายทางและ server ยอมรับคำขอการเชื่อมต่อจะถูกสร้างขึ้นทันทีเพื่อให้ผู้ใช้ ดำเนินการตามคำขอเพิ่มเติมได้ซึ่งอาจเรียกว่าการจัดการเชื่อมต่อและเป็นฟังก์ชันที่แสดงผลโดยฝั่ง client ของสถาปัตยกรรม บริการที่สำคัญของขึ้น client ได้แก่

- 1. Connection Handling การจัดการการเชื่อมต่อ : เมื่อ client ส่งคำขอไปยัง server และ server จะยอมรับคำขอและเชื่อมต่อ client เมื่อ client เชื่อมต่อกับ server ในเวลานั้น client จะได้รับเธรดของตัวเองสำหรับการเชื่อมต่อด้วยความช่วยเหลือของเธรดนี้ แบบสอบถามทั้งหมดจากฝั่ง client จะถูกดำเนินการ
- 2. Authentication การรับรองความถูกต้อง: การรับรองความถูกต้องจะดำเนินการในฝั่ง server เมื่อ client เชื่อมต่อกับ server MySQL การรับรองความถูกต้องทำได้โดยใช้ชื่อผู้ใช้และรหัสผ่าน
- 3. Security ความปลอดภัย : หลังจากตรวจสอบความถูกต้องเมื่อ client เชื่อมต่อ server MySQL สำเร็จ server จะตรวจสอบว่า client ใดมีสิทธิ์ออกคำสั่งกับ server MySQL

Server Layer

ชั้นที่ 2 ของสถาปัตยกรรม MySQL ที่รับผิดชอบการทำงานด้วยตรรกะของระบบฐานข้อมูลเป็นสมองของสถาปัตยกรรม MySQL ได้รับ
ทุกคำขอที่ส่งโดยฝั่ง client และยังส่งคืนข้อเสนอแนะ เมื่อประมวลผลทุกคำสำหรับทุกคำขอที่ส่ง
โดยฝั่ง client มีการสร้างการเชื่อมต่อ การเชื่อมต่อนี้เรียกว่า เธรด
โดยฝั่ง server ส่วนท้ายของสถาปัตยกรรม server ช่วยในการจัดการทุกเธรดที่สร้างขึ้นและสิ่งนี้เรียกว่าการจัดการเธรด
การจัดการเธรดเป็นฟังก์ชันที่ดำเนินการโดยที่ฝั่ง server ของสถาปัตยกรรม
ส่วนประกอบข่อยต่างๆ ของ server MySQL ดังนี้

- 1. Thread Handling: เมื่อ client ส่งคำขอไปยัง server และ server ยอมรับคำขอและเชื่อมต่อ client แล้วหาก client เชื่อมต่อกับ server ในเวลานั้น client จะได้รับเธรดของตัวเองสำหรับการเชื่อมต่อ เธรดนี้มีให้โดยการจัดการเธรดของ server layer นอกจากนี้ query ของฝั่ง client ซึ่งดำเนินการโดยเธรดยังได้รับการจัดการโดยโมดูลการจัดการเธรด
- 2. Parser เป็นส่วนประกอบ software ประเภทหนึ่งที่สร้างโครงสร้างโมดูล (parse tree) ของ input ที่กำหนดก่อนแยกวิเคราะห์ คำศัพท์จะเสร็จสิ้น กล่าวคือ input ถูกแบ่งออกเป็นจำนวน tokens หลังจากข้อมูลพร้อมใช้งานในตัวแยกวิเคราะห์องค์ประกอบที่เล็ก กว่าแล้วดำเนินวิเคราะห์ไวยากรณ์ การวิเคราะห์ความหมายหลังจากแยกวิเคราะห์ parse tree จะถูกสร้างขึ้นเป็น output

Server Layer

- 3. Optimizer ทันทีที่การแยกวิเคราะห์เสร็จสิ้นจะมีการใช้เทคนิคการเพิ่มประสิทธิภาพประเภทต่างๆ ที่ Optimizer block เทคนิค เหล่านี้อาจรวมถึงการเขียน query ใหม่ลำดับการสแกนตารางและการเลือกดัชนีที่เหมาะสมเพื่อใช้เป็นต้น
- 4. Query Cache เก็บชุดผลลัพธ์ทั้งหมดสำหรับคำสั่ง query ที่ป้อนก่อนแยกวิเคราะห์ server MySQL จะปรึกษาแคชแบบสอบถาม เมื่อ client เขียนแบบสอบถาม ถ้าแบบสอบถามที่เขียนดดย client เหมือนกันในแคชนั้น server จะข้ามการแยกวิเคราะห์การปรับ ให้เหมาะสมและแม้กระทั่งการดำเนินการ server จะแสดงผลลัพธ์จากแคช
- 5. Buffer and Cache จะเก็บข้อความค้นหาหรือปัญหาที่ผู้ใช้ถามก่อนหน้านี้ เมื่อผู้ใช้เขียนแบบสอบถามห่อนอื่นจะไปที่ query cache จากนั้น query cache จะตรวจสอบว่ามีแบบสอบถามหรือปัญหาเดียวกันอยู่ในแคช หากมีแบบสอบถามเดียวกันก็จะให้ผลลัพธ์ โดยไม่รบกวน parser, optimizer
- 6. Table Metadata Cache แคชชข้อมูล Meta เป็นพื้นที่สำรองของหน่วยความจำที่ใช้สำหรับติดตามข้อมูลบนฐานข้อมูล ดัชนีหรือ วัตถุ ยิ่งฐานข้อมูลดัชนีหรือ object ที่เปิดอยู่มีจำนวนมากขึ้นขนาดแคชข้อมูล Meta ก็จะยิ่งมากขึ้นเท่านั้น
- 7. Key Cache รายการดัชนีที่ระบุวัตถุในแคชโดยเฉพาะตามต่าเริ่มต้น server ชอบจะแคชเนื้อหาตามเส้นทางทรัพยากรทั้งหมดและ สตริงข้อความค้นหา

Storage Layer

ฐานข้อมูล MySQL มีกลไกการจัดเก็บข้อมูลประเภมต่างๆ ที่มีอยู่ซึ่งเป็นผลมาจากความต้องการที่แตกต่างกันของฐานข้อมูล เครื่องมือจัดเก็บข้อมูลใช้เพื่อเก็บทุกตารางที่ผู้ใช้สร้างขึ้นในระบบฐานข้อมูล ได้แก่ InnoDB, MYiSAM, NDB, Memory เป็นต้น จุดสิ้นสุดการจัดเก็บอำนวยความสะดวกในการจัดเก็บและดึงข้อมูล MySQL ทั้งนี้ engine การจัดเก็บข้อมูลมี API ทั่ช่วยในการ ดำเนินการค้นหาจากจุดสิ่งสุดของ client ของสถาปัตยกรรมเพียงแค่ส่งแถวไปมา

คอมพิวเตอร์ ทำหน้าที่เป็น client, server อาจอยู่บบนเครื่องเดียวกันหรือแยกเครื่องก็ได้ทั้งนี้ขึ้นอยู่กับลักษณะการทำงานหรือการ กำหนดของผู้บริหารระบบตามปกติถ้าเป็นการทำงานในลักษณะ web-based มีการใช้ฐานข้อมูลจนาดไม่ใหญ่รักตัว MySQL server, client มักจะอยู่บนเครื่องเดียวกันโดยเครื่องคอมพิวเตอร์ดังกล่าวจะต้องมีทรัพยากรเพื่อการทำงาน (เช่น เนื้อที่ฮาร์ดดิสก์ม,R RAM เป็นตัน) มากพอสมควรแต่สำหรับการทำงานจริง (real-world application) ก็มักจะแยก client, server ออกเป็นคนละเครื่องกัน เพราะสามารถรองรับงานได้ดีกว่าและมากกว่าดังนั้นผู้บริหารระบบหรือผู้กำหนดนโบายสำหรับการทำงานเครือข่ายจะต้องคำนึกถึงเรื่อง ที่เกี่ยวข้องเหล่านี้ให้ดีเพื่อที่จะทำให้ระบบมีการทำงานรองรับการให้ยริการแก่ผู้ใช้อย่างมีประสิทธิภาพและข้อมูลมีความปลอดภัยมาก ที่สด

คุณสมบัติของ MySQL

- 1. ประกอบด้วย data security layer ซึ่งจะปกป้องข้อมูลจากผู้ละเมิดนอกจากนี้ รหัสผ่านจะถูกเข้ารหัสใน MySQL
- 2. ทำตามสถาปัตยกรรม client server ที่ client ร้องขอคำสั่งนำนะ server จะสร้างผลลัพธ์ทันทีที่คำสั่งตรงกัน
- 3. ใช้มัลติเธรดซึ่งทำให้ปรับขนาดได้สามารถจัดการข้อมูลจำนวนเท่าใดก็ได้ขีดจำกัดขนาดไฟล์เริ่มต้นที่ 4GB แต่เราสามารถเพิ่มได้ ตามความต้องการของเรา
- 4. มีความยืดหยุ้นสูงเนื่องจากรองรับระบบฝั่งตัวจำนวนมาก
- 5. รองรับการทำงานบรระบบปฏิบัติการต่าง
- 6. อนุญาตให้ทำธุรกรรมย้อนกลับ คอมมิตและกู้คืนแคช
- 7. ถ้ามีปัญหารั่วไหลของหน่วยความจำต่ำซึ่งจะช่วยเพิ่มประสิทธิภาพหน่วยความจำ
- 8. Ver. 8.0 ให้การสนับสนุนรหัสผ่านคู่หนึ่งคือรหัสผ่านปัจจุบันและรหัสผ่านรองด้วยความช่วยเหลือของสิ่งนี้เราสามารถสร้าง รหัสผ่านใหม่ได่
- 9. มีคุณสมบัติแบ่งพาร์ติชันซึ่งปรับปรุงประสิทธิภาพของฐานข้อมลขนาดใหญ่