Računarske mreže 1

2. deo: Data Link Layer

Predavač:

Prof. dr Slavko Gajin, slavko.gajin@rcub.bg.ac.rs

Asistenti:

Stefan Tubić, stefan.tubic@etf.bg.ac.rs Marko Mićović, micko@etf.bg.ac.rs Kristijan Žiza, ziza@etf.bg.ac.rs

http://elearning.rcub.bg.ac.rs

Data-link layer (2. sloj – L2)

- Sloj za pristup fizičkom medijumu (L1)
- Horizontalna komunikacija sa L2 slojem da drugom uređaju
 - Prenos okvira između uređaja preko fizičkog medijuma
- Funkcije (u opštem slučaju)
 - Framing formiranje okvira, definisan format zaglavlja
 - Kontrola pristup fizičkom medijum Media Access Control (MAC)
 - Detekcija grešaka, korekcija grešaka (opciono)
 - Pouzdanost (opciono) potvrda prijema
- Implementacija
 - Na nivou mrežne kartice (NIC Network Interface Card)
 - Hardverska implementacija (brzo procesiranje, bez interapta CPU)
 - Čvrsto vezano za fizički medijum
 - fizička implementacija i topologija

Detekcija greške

- Algoritmi detekcije greški:
 - Prilikom slanje dodaju se kontrolni bitovi
 - Prilikom prijema računaju se kontrolni bitovi i porede sa primljenim kontrolnim bitovima
- Vrste:
 - Bitska parnost
 - Dodaje se jedan bit da se omogući da je ukupan broj jedinica u okviru uvek paran (ili neparan)
 - Dvodimenzionalna bitska parnost
 - Okvir se deli na manje celine fiksne veličine, koji se posmatraju kao matrice određene dimenzije
 - Po svim redovima i kolonama bitska parnost
 - Zna se pozicija greške moguća korekcija!
 - Cyclic Redundancy Check (CRC)
 - Matematička operacija primenjena na proizvoljan niz bitova
 - G Generator, fiksna vrednost

$$R = ostatak[\frac{D \cdot 2^r}{G}]$$

Internet Checksum (RFC 1071)

Topologija fizičkog medija

- Direktna veza (point-to-point)
 - Samo za direktno povezane učesnike
- Prstenasta topologija (ring)
 - Paketi kruže u jednom ili oba smera
 - Više učesnika adresiranje
 - Ravnopravni pristup medijumu
- Bas topologija (bus)
 - Ravnopravno deljeni medijum
 - Više učesnika adresiranje
 - "Borba" za pristup medijumu kolizija
- Zvezdasta topologija
 - Centralni uređaj za međusobnu komunikaciju
- Bežična mreža (Wireless)
 - Logička topologija:
 - Zvezdasta jedan uređaj kontroliše komunikaciju
 - Bas ravnopravno deljeni medijum

Kontrola pristup medijumu

- Kontrola pristup medijumu Media Access Control (MAC)
- Deljeni medijum sa više učesnika
 - Svi učesnici "vide" sve pakete *broadcast*
 - Različiti učesnici mogu istovremeno da šalju svoje pakete
 - Moguća kolizija usled interferencije signala paketi su uništeni!
- Protokoli pristupa deljenom medijumu od strane više učesnika Media Access Control (MAC)
 - Definiše način distribuiranog dogovaranja oko pristupa i deljenja medijuma
- Kako na idealan način M učesnika treba da dele medijum kapaciteta od B bps?
 - Kada jedan učesnik šalje pakete koristi svih B bps propusnog opsega
 - Kada M učesnika šalju pakete koriste B/M bps propusnog opsega
 - Da bude decentralizovano
 - Nema centralnog čvora koji kontroliše redosled slanja
 - Nema sinhronizacije, svako može da šalje kada želi
 - Da bude jednostavno

Deljenje medijuma

- Podela medijuma (Channel Partitioning)
 - Podela medijuma (kanala) na manje delove
 - Vremenski, frekvencijski, kodovano
 - Svaki učesnik ekskluzivno dobija svoj deo kanala
 - Efikasno za velika opterećenja
- Pristup sa dodelom dozvole (Taking Turns)
 - Svaki učenik čeka da mu se po određenom algoritmu dodeli dozvola za slanje
- Slučajan pristup (Random Access)
 - Svako može da šalje kada ima pakete za slanje slučajan pristup
 - Svako može da koristi ceo propusni opseg
 - Moguća kolizija treba je razrešiti
 - Efikasno za mala opterećenja

Podela kanala - TDMA

- Vremenska podela TDMA (Time Division Multiple Access)
 - Svaki učesnik dobija svoj fiksni vremenski okvir (slot) za slanje
 - Unapred utvrđen redosled slanja
 - Ako nema paketa za slanje, slot i ceo kanal ostaje neiskorišćen

Podela kanala - FDMA

- Frekvencijska podela TDMA (Frequency Division Multiple Access)
 - Svaki učesnik dobija svoju fiksnu frekvenciju za slanje
 - Učesnici pakete mogu da šalju istovremeno
 - Nedodeljene frekvencije ostaju neiskorišćene

Pristup sa dodelom dozvole

- Pristup sa dodelom dozvole Taking Turns
- Prozivanje (Polling)
 - Jedan glavni (Master), ostali su sporedni (Slave)
 - Master proziva Slave učesnike i dodeljuje im dozvolu za slanje
- Kruženje žetona (Token Passing)
 - Po prstenu kruži kontrolni paket, tzv. token
 - Svi učesnici prihvataju token i prosleđuju dalje
 - Preko tokena se učesnici koordiniraju kojim redosledom će da se šalju paketi
 - Najpoznatija implementacija IBM TakenRing
- Prednosti:
 - Efikasno za različita opterećenja
- Nedostatak:
 - Složena implementacija, ograničene brzine, samo prstenaste topologije (fizičke i logičke)

10

Slučajan pristup (Random Access)

Karakteristike

- Svako može da šalje kada ima pakete za slanje slučajan pristup
- Svako može da koristi ceo propusni opseg
- Moguća kolizija treba je razrešiti
- Efikasno za mala opterećenja
- Osnovni problem kolizija
 - Dva ili više okvira istovremeno na medijumu interferencija

• Potrebno je:

- Izbeći koliziju (ili bar smanjiti verovatnoću nastanka)
- Detektovati koliziju
- Oporavite se od kolizije

Primeri:

- Slotted ALOHA
- Pure ALOHA
- CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

- Svi paketi su iste veličine
- Vreme se deli na podjednake intervale, tzv. slotove
- Učesnici moraju da budu sinhronizovani (zna se kada je početak i kraj slota)
- Paketi mogu da se šalju samo u vremenskim slotovima
- Ako više učesnika šalje u jednom slotu, dolazi do kolizije
- Ako nema kolizije može da se šalje sledeći paket u sledećem slotu
- Ako je nastala kolizija
 - Svi detektuju koliziju
 - Učesnik u koliziji ponovo šalje isti paket u nekom narednom slotu sa određenom verovatnoćom (p)
 - Ne mora da bude prvi naredni slot
 - Nastoji se da se kolizija izbegne, ali se ne garantuje

Slotted ALOHA

Primer:

Prednosti:

- Jedan učesnik može da koristi ceo propusni opseg
- Decentralizovano
- Jednostavno

Nedostaci:

- Trošenje slotova u slučaju kolizije
- Mogućnost da se jave neiskorišćeni slotovi nakon kolizije
- Učesnici moraju da budu sinhronizovani u vremenu (da prepoznaju slotove)

13

Pure ALOHA

- Nema slotova, svako može da šalje okvira kada želi
- Nema sinhronizacije
- Povećana verovatnoća kolizije
- Primer:
 - Okvir broj 2
 - Kolizija na početku slanja okvira broj 2 sa okvirom broj 1
 - Kolizija pri kraju slanja okvira broj 2 sa okvirom broj 3
 - Sva tri okvira su u koliziji neupotrebljivi

Efikasnost

- Mnogo učesnika sa mnogo paketa za slanje, posmatrano u dužem vremenskom trajanju
- Slotted ALOHA
 - N učesnika šalju pakete sa verovatnoćom p
 - Verovatnoća da jedan učesnik pošalje bez kolizije: p(1-p)^{N-1}
 - Verovatnoća da bilo koji učesnik pošalje bez kolizije: Np(1-p)^{N-1}
 - Naći p* za max(Np(1-p)^{N-1}) za N →∞
 - Maksimalna efikasnost: 1/e = 37%
 - 37% uspešnog slanja
 - 37% slobodnih slotova
 - 26% kolizije
- Pure ALOHA
 - Maksimalna efikasnost: 1/2e = 18.5%

ALOHAnet

- 1969 Norm Abramson, Univerzitet na Havajima
- Potreba: povezati zgrade univerziteta po ostrvima
- Originalna ideja
 - Jedan centralni učesnik, ostali su periferni
 - Sva komunikacija preko centralno učesnika
 - Od centralnog ka perifernim (Downstream):
 - Jedna frekvencija za komunikaciju od centralnog ka perifernim učesnicima
 - Samo centralni šalje, nema kolizije
 - Od periferne ka centralnom (*Upstream*):
 - Druga frekvencija za komunikaciju u smeru od perifernih učesnika ka centralnom
 - Svako može da šalje pakete, deljeni medijum, moguća kolizije
- Prva bežična mreža povezana na ARPAnet (1970)

CSMA - Carrier Sense Multiple Access

- ALOHAnet Pure ALOHA
- Generalni princip pod nazivom CSMA (Carrier Sense Multiple Access) Višestruki pristup deljenom medijumu
 - Jednostavna pravila:
 - Svi uređaji "slušaju" aktivnost na medijumu
 - Ako je medijum zauzet čeka se sa slanjem paketa
 - Ako je medijum slobodan paket se šalje
 - Mogućnost nastanka kolizije
 - U bliskim vremenskim trenucima zbog ograničene brzine propagacije signala
- Detekcija kolizije
 - CSMA/CD (Carrier Sense Multiple Access/Collision Detection) -Višestruki pristup deljenom medijumu sa detekcijom kolizije
 - Jednostavno na žičanom medijumu
 - Tokom slanja uređaj istovremeno i prima signale i poredi da li su istovetni
 - Komplikovano na bežičnom medijumu
 - Jačina signal pri slanju je daleko veća od jačine prijama signala sa drugih uređaja

Ethernet

- Bob Metcalfe, PhD na Harvardu, radi na MIT na ARPAnet
- 1970 se zapošljava se u XEROX Palo Alto Research Center
- Početkom 70tih posećuje Abramsona na Havajima
- Inspirisan sa ALOHAnet, poznavajući ARPAnet, primenjuje CSMA principe na bakarnom koaksijalnom kablu zajedno sa kolegom David Boggs
- Ethernet
 - 2.94 Mbps
 - 256 računara
 - Rastojanja do jedne milje

Dalji razvoj Ethernet tehnologije

- 1980 Ethernet je objavljen kao otvoren standard
 - Konzorcijum Digital Equipment Company, Intel, and Xerox (DIX verzija Etherneta)
 - 10Mbps preko "debelog" koaksijalnog kabla (thick-Ethernet)
- 1985 IEEE komitet za standarde za LAN i MAN mreže je objavio standard za Ethernet 802.3
 - IEEE 802.3 standard opisuje prvi i donju polovinu drugog sloja OSI modela
 - Razlika u odnosu na DIX Ethernet su vrlo male
 - Sve mrežne kartice danas rade i sa DIX Ethernet i sa 802.3 okvirima
- 1995 IEEE je objavio standard za 100-Mbps Ethernet
- 1998 IEEE je objavio standard 1 Gbps Ethernet
 - Svi ovi standardi su kompatibilni sa originalnim Ethernet standardom
 - Ethernet okvir može da se pošalje sa starog koaksijalnog segmenta i da nepromenjen prođe kroz različite Ethernet segmente (100Mbps, 1Gbps,...)
- Bob Matcalfe
 - 1979. napušta Xerox i osniva sopstvenu kompaniju 3COM
 - Proizvodi Ethernet kartice, kasnije i mrežnu opremu (svičeve i rutere)
 - 2009 HP kupuje 3COM za \$2.7B

Literatura

 Wendell Odom " CCNA - Cisco official exam certification guide" Cisco Press

- James Kurose, Keith Ross
 "Computer Network A Top-Down Approach"
- James Kurose, Keith Ross "Umrežavanje računara: Od vrha ka dnu" prevod 7. izdanja CET

