HW3

Ry Wiese wiese176@umn.edu

October 11, 2019

Problem 1 1

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 3 & 1 & 2 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 240 \\ 150 \\ 180 \end{pmatrix}, c = \begin{pmatrix} 500 \\ 250 \\ 600 \\ 0 \\ 0 \end{pmatrix}$$

Step 1:

Basis: $B = \{4, 5, 6\}$

BFS:
$$\mathbf{x}_B = A_B^{-1} \mathbf{b} = \begin{pmatrix} 240 \\ 150 \\ 180 \end{pmatrix}$$

Objective value: $\mathbf{c}^T \mathbf{x} = 0$

Reduced costs:
$$\mathbf{\bar{c}}_N = \mathbf{c}_N - (A_B^{-1} A_N)^T \mathbf{c}_B = \begin{pmatrix} -500 \\ -250 \\ -600 \end{pmatrix}$$

Variable to enter:
$$x_1$$
, since $\mathbf{\bar{c}}_{N_1} = -500$ is the first negative value in $\mathbf{\bar{c}}_N$
Variable to exit: x_5 , since $\mathbf{d}_B = \begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$, $\theta_B = \begin{pmatrix} 120 \\ 50 \\ 180 \end{pmatrix}$ with $\theta_{B_5} = 50$

We change to basis $\{1,4,6\}$ since $\bar{\mathbf{c}}$ is not semipositive.

Step 2:

Basis:
$$B = \{1, 4, 6\}$$

BFS:
$$\mathbf{x}_B = A_B^{-1} \mathbf{b} = \begin{pmatrix} 50 \\ 140 \\ 130 \end{pmatrix}$$

Objective value: $\mathbf{c}^T \mathbf{x} = -25,000$

Reduced costs:
$$\mathbf{\bar{c}}_N = \mathbf{c}_N - (A_B^{-1} A_N)^T \mathbf{c}_B = \begin{pmatrix} -83 \\ -267 \\ -167 \end{pmatrix}$$

Variable to enter: x_2 , since $\bar{\mathbf{c}}_{N_2} = -83$ is the first negative value in $\bar{\mathbf{c}}_N$

Variable to exit:
$$x_6$$
, since $\mathbf{d}_B = \begin{pmatrix} -.3 \\ -.3 \\ -1.7 \end{pmatrix}$, $\theta_B = \begin{pmatrix} 150 \\ 420 \\ 78 \end{pmatrix}$ with $\theta_{B_6} = 78$

We change to basis $\{1, 2, 4\}$ since $\bar{\mathbf{c}}$ is not semipositive

Step 3:

Basis:
$$B = \{1, 2, 4\}$$

BFS:
$$\mathbf{x}_B = A_B^{-1}\mathbf{b} = \begin{pmatrix} 24\\78\\114 \end{pmatrix}$$

Objective value: $\mathbf{c}^T \mathbf{x} = -31,500$

Reduced costs:
$$\mathbf{\bar{c}}_N = \mathbf{c}_N - (A_B^{-1} A_N)^T \mathbf{c}_B = \begin{pmatrix} -100 \\ -150 \\ -50 \end{pmatrix}$$

Variable to enter:
$$x_3$$
, since $\mathbf{\bar{c}}_{N_3} = -100$ is the first negative value in $\mathbf{\bar{c}}_N$
Variable to exit: x_2 , since $\mathbf{d}_B = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$, $\theta_B = \begin{pmatrix} -100 \\ -20 \\ -100 \end{pmatrix}$ with $\theta_{B_2} = 39$

We change to basis $\{1, 3, 4\}$ since $\bar{\mathbf{c}}$ is not semipositive.

Step 4:

Basis:
$$B = \{1, 3, 4\}$$

BFS:
$$\mathbf{x}_B = A_B^{-1}\mathbf{b} = \begin{pmatrix} 24\\39\\153 \end{pmatrix}$$

Objective value: $\mathbf{c}^T \mathbf{x} = -35,400$

Reduced costs:
$$\mathbf{\bar{c}}_N = \mathbf{c}_N - (A_B^{-1} A_N)^T \mathbf{c}_B = \begin{pmatrix} 50\\140\\80 \end{pmatrix}$$

The current basis, $B = \{1, 3, 4\}$ is optimal because $\bar{\mathbf{c}} \geq \mathbf{0}$.

Thus the optimal solution is $x_1 = 24, x_2 = 0$, and $x_3 = 39$ for an optimal value of 35,400 (since the original problem was maximization).

2 Problem 2

Step 1:

Basis:
$$B = \{5, 6\}$$

BFS:
$$\mathbf{x}_B = A_B^{-1} \mathbf{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Objective value: $\mathbf{c}^T \mathbf{x} = 0$

Reduced costs:
$$\bar{\mathbf{c}}_N = \mathbf{c}_N - (A_B^{-1} A_N)^T \mathbf{c}_B = \begin{pmatrix} -2 \\ -3 \\ 1 \\ 12 \end{pmatrix}$$

Variable to enter: x_1 , since $\bar{\mathbf{c}}_{N_1} = -2$ is the first negative value in $\bar{\mathbf{c}}_N$ Variable to exit: x_6 , since $\mathbf{d}_B = \begin{pmatrix} 2 \\ -.3 \end{pmatrix}$, $\theta_B = \begin{pmatrix} - \\ 0 \end{pmatrix}$ with $\theta_{B_6} = 0$ We change to basis $\{1,5\}$ since $\bar{\mathbf{c}}$ is not semiposi

Step 2:

Basis:
$$B = \{1, 5\}$$

BFS:
$$\mathbf{x}_B = A_B^{-1} \mathbf{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Objective value: $\mathbf{c}^T \mathbf{x} = 0$

Reduced costs:
$$\mathbf{\bar{c}}_N = \mathbf{c}_N - (A_B^{-1} A_N)^T \mathbf{c}_B = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 6 \end{pmatrix}$$

Variable to enter: x_3 , since $\bar{\mathbf{c}}_{N_3} = -1$ is the first negative value in $\bar{\mathbf{c}}_N$ $\mathbf{d}_B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \geq \mathbf{0}$, therefore the problem is unbounded.

3 Problem 3

Let $B \subseteq \{1,...,n+m\}$ be the basis returned by Φ . Suppose B can be partitioned into $\{P,Q\}$ where $P\subseteq\{1,..,n\}$ (indices of non-artificial variables) and $Q\subseteq\{n+1\}$ 1, ..., n+m (indices of artificial variables). Let $A'=(A|I_m)$ be the matrix used

in
$$\Phi$$
. Since the optimal value $\sum_{j=1}^{m} x_{n+j} = 0$ and $\mathbf{x} = 0$, $\begin{pmatrix} x_n + 1 \\ \dots \\ x_n + m \end{pmatrix} = \mathbf{0}$.

in
$$\Phi$$
. Since the optimal value $\sum_{j=1}^{m} x_{n+j} = 0$ and $\mathbf{x} = 0$, $\begin{pmatrix} x_n + 1 \\ \dots \\ x_n + m \end{pmatrix} = \mathbf{0}$. Then, if \mathbf{x} is a BFS of Φ , $A'\mathbf{x} = A \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} + I_m \begin{pmatrix} x_n + 1 \\ \dots \\ x_n + m \end{pmatrix} = A \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$.

Thus the basis vectors defined in Q do not contribute anything to the BFS, as they have scalar coefficients of 0. This means we can replace the indices in Q with any indices in B that do not create a linear dependence.

Problem 4 4

My algorithm is contained in the Simplex function, which uses Simplex_Helper as a helper function. You should be able to use Simplex without needing to touch Simplex_Helper at all. I have also created a function Test(m, n) which randomly generates A, \mathbf{b} , and \mathbf{c} , prints the output of the actual solution using cvx, and then prints my solution using my algorithm.