

VBF Higgs to Invisible Trigger Efficiencies

P. Dunne A. Magnan for H→inv. group

Outline

- Presenting triger efficiency curves in data from VBF Higgs to invisible for approval
- ▶ Possible improvements to L1 part of trigger for next year will also be shown
- Not for approval today, but study ready if wanted by the collaboration

VBF Higgs to invisible trigger efficiency: Plot for Approval

- Trigger: HLT_DiPFJet40_DEta3p5_MJJ600 _PFMETNoMu140 (black) HLT_PFMET170 (red)
- ▶ Denominator selection: SingleMuon events with dijet pt> 80, METnoMU > 300, $M_{jj} > 600$, $\Delta \eta_{jj} > 3.6$
- ► MET only trigger clearly inefficient for single muon events:
- This would lead to loss of events which we use for control regions
- Our trigger uses METnoMU and has much better efficiency

VBF Higgs to invisible trigger efficiency: For approval

▶ Caption: Efficiency of VBF Higgs to invisible trigger and MET only trigger in single muon data as a function of MET ignoring muons (METnoMU). The denominator of the efficiency is the number of events passing a single muon trigger which have two jets with $p_T > 80$ GeV, $M_{jj} > 600$ GeV and $\Delta \eta_{jj} > 3.6$ GeV.

VBF Higgs to invisible trigger: Plot and caption for approval

- We also measured the efficiency for the other variables in the trigger
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with leading jet pt> 80, $METnoMU > 300, \ M_{jj} > 600, \ \Delta\eta_{jj} > 3.6$
- ▶ Caption: Efficiency of VBF Higgs to invisible trigger in single muon data as a function of sub-leading jet p_T . The denominator of the efficiency is the number of events passing a single muon trigger which have a leading jet with $p_t > 80$ GeV, METnoMU > 300 GeV, $M_{jj} > 600$ GeV and $\Delta\eta_{ij} > 3.6$ GeV.

VBF Higgs to invisible trigger: Plot and caption for approval

- We also measured the efficiency for the other variables in the trigger
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with two or more jets pt> 80, METnoMU > 300, $\Delta \eta_{jj} > 3.6$
- ▶ Caption: Efficiency of VBF Higgs to invisible trigger in single muon data as a function of dijet mass (M_{jj}) . The denominator of the efficiency is the number of events passing a single muon trigger which have two jets with $p_T > 80$ GeV, METnoMU > 300 GeV and $\Delta \eta_{jj} > 3.6$ GeV.

VBF Higgs to invisible trigger: Plot and caption for approval

- We also measured the efficiency for the other variables in the trigger
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- Denominator selection: SingleMuon events with two or more jets pt> 80, *METnoMU* > 300, M_{jj} > 600
- ▶ Caption: Efficiency of VBF Higgs to invisible trigger in single muon data as a function of dijet $\Delta\eta$. The denominator of the efficiency is the number of events passing a single muon trigger which have two jets with $p_T > 80$ GeV, METnoMU > 300 GeV and $M_{jj} > 600$ GeV.

VBF Higgs to invisible trigger conclusions

- Efficiency of our trigger is significantly better than the MET only trigger for METnoMU
- ▶ The METnoMU and jet p_T turn ons become fully efficient at 300 and 80 GeV respectively
- We can use the region in the turn on by reweighting MC events to account for inefficiency
- ightharpoonup Our trigger turn ons in $\Delta \eta_{jj}$ and M_{jj} look good

Impact of turn on on signal

- Not for approval today but ready if wanted by the collaboration
- ► Check efficiencies in signal MC of HLT (red), L1 (black) and L1+HLT (blue)
- ▶ Denominator selection: dijet p_T > 50 GeV, M $_{jj} >$ 800 GeV, $\Delta\eta_{jj} >$ 3.6, METnoMU> 200 GeV
- ▶ L1 inefficiency for jets in the HF can clearly be seen
- Adding additional L1 MET sum with HF would resolve this
- ► HLT turn on looks very nice

Impact of turn on on signal

- Not for approval today but ready if wanted by the collaboration
- ► Same again for METnoMU and jet 2 p_T
- ► Inefficiency again coming from L1
- ► HLT turn on looks good

Summary

- ► We have a good understanding of our trigger turn ons
- Things generally are behaving as they should
- lacktriangle We see some inefficiencies due to L1 MET η restriction
- Reweighting of MC will allow us to still use these regions for the analysis
- Adding an additional L1 MET sum with HF would resolve this
- We ask for approval of the plots marked "for approval" to be shown at the December jamboree

Backup

Binned trigger efficiencies for first analysis

- ightharpoonup Measure L1+HLT MetNoMu efficiency of signal trigger in bins of jet p_T and M_{jj}
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with dijet $\Delta \eta_{jj} >$ 3.6 plus binned cuts
- ▶ Bins: Jet p_T : 70-80, 80+, M_{jj} : 800-1000, 1000+

Jet p_T : 70-80, M_{ij} : 1000+

Binned trigger efficiencies for first analysis

- Measure L1+HLT MetNoMu efficiency of signal trigger in bins of jet p_T and M_{jj}
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with dijet $\Delta \eta_{jj} >$ 3.6 plus binned cuts
- ▶ Bins: Jet p_T : 70-80, 80+, M_{jj} : 800-1000, 1000+

Turn on in jet only trigger

- ► Have pass/fail information for HLT_PFHT750_4JetPt50
- ▶ Denominator selection: SingleMuon events with HT>1200 GeV
- 1200 is the 90% efficiency point
- ► Curve looks good, over 90% efficient by 60 GeV

Implications for our trigger

- ► As 4JetPt50 trigger behaves well examine differences from our trigger:
- 4JetPt50 has no L1ETM requirement:
- Study L1ETM turn on
- Shown in next few slides
- 4JetPt50 has no calo jet pt prefilter:
- According to these slides wrong JEC was used in HLT during Run2015
- We only have trigger jet information in events that pass the trigger
- Study HLT Calo vs offline PF jet response
- Shown later

L1ETM60 Efficiency: Inclusive

- ► Measure L1 ETM turn on
- ► Trigger: L1ETM60
- ▶ Denominator selection: SingleMuon events passing HLT_IsoMu20
- ▶ 95% efficient by 200 GeV

L1ETM60 Efficiency: VBF phase space

- Measure L1 ETM turn on when there is a VBF-like dijet
- ► Trigger: L1ETM60
- ▶ Denominator selection: SingleMuon events passing HLT_IsoMu20 and dijet $p_T > 80$, $M_{jj} > 600$, $\Delta \eta_{jj} > 3.6$
- ► Good turn on to 150 GeV then shelf

L1ETM60 Efficiency: VBF phase space

- \blacktriangleright L1 MET only sums up to $|\eta|$ =3, shelf seen on previous slide could be due to jets in the HF
- lacktriangle Add requirement that both jets have $|\eta| < 3$ to the denominator
- Good turn on recovered so shelf is due to events with jets in the HF

Signal trigger turn on: MET

- ► Measure HLT efficiency (left) and L1+HLT efficiency (right)
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with dijet $p_T > 80$, $M_{jj} > 600$, $\Delta \eta_{jj} > 3.6$ plus for left plot only L1ETM60
- Jet pt cut very high due to slow jet pt turn on
- ► HLT only efficiency slightly better

Signal trigger turn on: jet pt

- ► Measure HLT efficiency (left) and L1+HLT efficiency (right)
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with dijet pt> 80, METnoMU > 300, $M_{jj} > 600$, $\Delta \eta_{jj} > 3.6$ plus for left plot only and L1ETM60
- MET cut very high due to slow MET turn on
- ► HLT only efficiency slightly better

$\Delta \eta_{jj}$ data turn on

- ► Measure HLT efficiency (left) and L1+HLT efficiency (right)
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with dijet $p_T > 80$, $M_{jj} > 600$, $\Delta \eta_{jj} > 3.6$ plus for left plot only L1ETM60
- ▶ Possible decrease at end of L1+HLT efficiency due to HF jets

M_{ii} data turn on

- Measure HLT efficiency (left) and L1+HLT efficiency (right)
- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ▶ Denominator selection: SingleMuon events with dijet $p_T > 80$, $M_{jj} > 600$, $\Delta \eta_{jj} > 3.6$ plus for left plot only L1ETM60

Impact of L1MET inefficiencies on signal

- Check effect of L1 inefficiency as a function of jet eta
- ► MC sample: VBF_HToInvisible_M125_13TeV_powheg_pythia8
- ▶ Denominator selection: dijet p_T > 50 GeV, M_{jj} > 800 GeV, $\Delta\eta_{jj} > 3.6$, METnoMU> 200 GeV
- ▶ L1 inefficiency for jets in the HF can be clearly seen

Calo jet prefilter

- Even after factoring out L1 effect jet pt is less efficient than in run 1
- ► According to these slides wrong JEC was used in HLT during Run2015
- We have a calo prefilter at 30 GeV
- Calo JEC are large so wrong JEC could cause the remaining jet pt issues
- ▶ Plot offline jet pt (x axis) against trigger calo jet pt (y axis)
- Large differences seen between calo jet pt and offline pt

Calo jet prefilter

- ► Further check, compare HLT efficiency in data (with wrong JEC) to that in MC (with correct JEC)
- MC sample: WJetsToLNu-mg and all the HT-binned samples
- ▶ Denominator selection: dijet $p_T > 50$ GeV, $M_{jj} > 800$ GeV, $Delta\eta_{jj} > 3.6$, METnoMU> 200 GeV
- ▶ MC efficiency quite a bit better: more evidence wrong JEC could be to blame

Summary of Studies

- ▶ L1ETM60 is inefficient in the VBF phase space due to it ignoring the HF
- We lose signal from this L1 inefficiency
- Variable correlation makes denominator cuts high, looks worse for softer events
- Even after factoring out L1 effect still less efficient than in run 1, especially jet pt
- ► Incorrect JEC was used in HLT during Run2015
- Calo jet JEC are large so this could cause problems
- Calo jets with 30 GeV p_T frequently have offline p_T above pf trigger threshold
- HLT efficiency is better in MC than data
- Suggests wrong JEC could be to blame
- Reemulating trigger on raw data so we can check if events failing trigger fail calo filter or pf filter
- Signal trigger still provides much better efficiency for control regions than MET only trigger
- ► Efficiency next year expected to be much improved by better JEC and possible L1MET including HF