

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

درس مبانی یادگیری ماشین

تكليف تئورى اول

مهلت تحویل: ۲۰ آبان ۱۴۰۲

تکلیف تغوری اول

سؤال ۱ (۲ نمره)

صحیح یا غلط بودن گزارههای زیر را مشخص کرده و دلیل آن را کامل شرح دهید.

الف) استفاده از روشهای منتظم سازی به فرار از بهینههای محلی در طول آموزش منجر میشود. (۱ نمره)

- و \mathbf{t} بردار مقادیر پیشبینی شده در یک مدل رگرسیون خطی \mathbf{t} و \mathbf{t} بردار مقادیر هدف باشند، آنگاه کمینه خطای جمع مربعات، در واقع متناظر با بردار \mathbf{y} ای در فضای ویژگیها است که نزدیکترین به \mathbf{t} باشد. در این حالت \mathbf{y} تصویر \mathbf{t} در فضای ویژگیها است. (۱ نمره)
 - همولاً مشکل زیربرازش 7 و واریانس کم وجود دارد. (۱ نمره) و را نمره) و را نمره) و را نمره)
- در تقسیم دادهها زیر مجموعه های ارزیابی آ، آموزش و آزمایش دادههای زیر مجموعه های ارزیابی و آزمایش میتوانند از توزیعهای مختلفی باشند. (۱ نمره)
- هـ) برای تقسیم کردن دیتاست موجود به زیر مجموعه های ارزیابی ، آموزش و آزمایش نمونه برداری تصادفی از دیتاست به اندازه لازم برای هر زیر مجموعه همواره کفایت می کند. (۱ نمره)
- در یک مسئله رگرسیون خطی برای دادههایی که در آنها مقادیر پیشبینی شده و واقعی با یکدیگر برابر میشوند استفاده از تابع هزینه MAE بهتر از MSE است. (۱ نمره)
- در روش اعتبارسنجی متقابل K برابر † پس از مشخص شدن پیچیدگی مدل نتایج مدل با بهترین دقت برای گزارش نهایی استفاده می شود. (۱ نمره)

سؤال ۲ (<u>۵/</u>۰ نمره)

در شکل سمت چپ یک نمونهی بیشبرازش، در شکل وسط یک نمونهی مدل مناسب و در شکل راست یک نمونهی زیربرازش رسم کنید.

¹Linear Regression

²Underfitting

³Validation

⁴K-Fold Cross Validation

نکلیف تئوری اول

سوال ۳ (۱/۵ نمره)

در صورتی که برای مسئلهی رگرسیون خطی، رابطهی مدل به صورت

$$y(x, w) = w^T x, \quad w \in \mathbf{R}^{10} \tag{1}$$

باشد و تابع هزینه برای مسئلهی رگرسیون خطی به صورت

$$\tilde{E} = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \frac{\lambda}{2} ||w||^2$$
(7)

در نظر گرفته شده باشد. مشخص کنید که مقادیر وزنهای هرستون متعلق به کدام مقادیر 0، ۱۸ و ∞ برای 1 است. دلیل خود را کامل توضیح دهید.

	a	b	С
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

سؤال ۴ (۱/۵ نمره)

فرض کنید نمونههای $x_1, x_2, ..., x_n$ از یک توزیع یکنواخت با بازه $[0, \theta]$ نمونهبرداری شده اند و 0 > 0 باشد. بیشینه درستنمایی پارامتر θ را بیابید.

سؤال ۵ (۲ نمره)

توزیع برنولی یک توزیع گسسته است که احتمال موفقیت آزمایش برابر p و احتمال عدم موفقیت برابر p در زیر نشان داده شده است.

$$p(x) = p^x (1 - p)^{1 - x} \tag{(7)}$$

با فرض توزیع پیشین به صورت زیر، تخمین p را با MAP به دست آورید.

$$f(p|\alpha,\beta) = \frac{1}{B(\alpha,\beta)} p^{\alpha - 1(1-p)^{\beta - 1}} \tag{f}$$

$$B(x,y) = \int_0^\infty t^{x-1} (1+t)^{-x-y} dt$$
 (Δ)

تكليف تئوري اول

سؤال ع (۲ نمره)

فرض کنید x یک متغیر تصادفی گسسته با احتمال زیر باشد

x	•	١	٢	٣
p(x)	$\frac{\theta}{2}$	$\frac{\theta}{4}$	$\frac{3(1-\theta)}{4}$	$\frac{(1-\theta)}{2}$

اگر مشاهدات حاصل از نمونهبرداری از این متغیر به صورت (0,3,1,2,1,0,2,1,3,2) باشد، تخمین حداکثر درستنمایی θ را به دست آورید.

سؤال ۷ <mark>(۲</mark> نمره)

برای هریک از مجموعه وزنهای ستون جدول زیر، تعیین کنید کدام ستون متعلق به تابع هزینه ی Ridge و Lasso میباشد. دلیل آن را به همراه رسم نمودار در ۲ بعد شرح دهید. برتری هریک بر دیگر را توضیح دهید.

	Column A	Column B
w_1	0.38	0.50
w_2	0.23	0.20
w_3	-0.02	0.00
w_4	0.15	0.09
w_5	0.21	0.00
w_6	0.03	0.00
w_7	0.04	0.00
w_8	0.12	0.05

تکلیف تئوری اول

سؤال ۸ (<mark>۳/۵</mark> نمره)

برای مسئلهی رگرسیون خطی، دادههای زیر موجود هستند. در صورتی که مقادیر وزنها به صورت زیر باشد، به سوالهای زیر جواب دهید.

$$w_0 + w_1 X + w_2 Y = Z, \quad w_0 = -59.5, \quad w_1 = -0.15, \quad w_2 = 0.6$$
 (9)
$$LearningRate = 0.1$$

X	Y	Z
41	138	37.99
42	153	47.34
37	151	44.38
46	133	28.17

الفMSE و خطای MAE و خطای MAE را در این مرحله محاسبه کنید. ($lpha / \cdot$ نمره)

به روش
$$SGD$$
 وزنها را با MSE تا ۴ مرحله بهروزرسانی کنید. (۱/۵ نمره) $lacksquare$

ج) وزنها را با
$$MSE$$
 به روش GD یک مرحله بهروزرسانی کنید. (۱ نمره)

د) خطای MSE و وزنهای حاصل شده برای هریک از روشها مقایسه کنید. ($lpha / \cdot$ نمره)

تکلیف تئوری اول

نكات تكميلي

- ۱. لزومی به تایپ کردن سوالات تئوری نیست؛ ولی در صورتیکه پاسخ آنها به صورت تایپشده تحویل داده شود، ۵ درصد نمره اضافه به شما تعلق میگیرد. در صورتیکه پاسخهای شما تایپشده نیست، باید پاسخها خوانا و باکیفیت در قالب فایل pdf ارسال شوند.
- LastName که X شماره تکلیف ارسالی باید به صورت زیر باشد: X السکناری تکلیف ارسالی باید به صورت زیر باشد: X شماره دانشجویی شما و StudentID نام خانوادگی شما و X
- ۳. انجام این تکلیف به صورت تک نفره است. در صورت مشاهده تقلب، نمرات هم مبدا کپی و هم مقصد آن صفر لحاظ میشود.
 - ۴. برای تکالیف تئوری امکان ارسال با تاخیر وجود ندارد.
- ۵. در صورت وجود هر گونه ابهام و یا سوال میتوانید سوالات خود را در گروه تلگرام بپرسید. هم چنین میتوانید برای رفع ابهامات با دستیاران آموزشی از طریق تلگرام در تماس باشید.

آيديها:

@AlirezaT

@Yasinhmv