Lecture 10

Examples of Bode diagrams

Outline

- Recap of Bode diagrams
- Bode via Matlab
- Examples of Bode diagrams
- Conclusions

Bode via Matlab

To get the magnitude in decibels, use

For this transfer function:

$$G(s) = \frac{25}{s^2 + 4s + 25}$$

use

num=[0 0 25] den=[1 4 25] bode(num,den) title('Bode Diagram of G(s)=25/(s^2+4s+25)')

Bode diagram of a positive constant

$$G(j\omega) = 2, \ \forall \omega \in (-\infty, +\infty)$$

$$20 \log |G(j\omega)| = 20 \log 2 = 6.0206$$

$$\angle G(j\omega) = 0$$

Bode diagram of a negative constant

$$G(j\omega) = -2, \ \forall \omega \in (-\infty, +\infty)$$

$$20 \log |G(j\omega)| = 20 \log 2 = 6.0206$$

 $\angle G(j\omega) = 180^{\circ}$

Bode diagram of a differentiator

$$|G(j\omega)| = |\omega|$$

$$\angle G(j\omega) = 90^{\circ}$$

Bode diagram of an integrator

$$|G(j\omega)| = \frac{1}{|\omega|}$$

 $\angle G(j\omega) = -90^{\circ}$

Bode diagram of a "real zero" term

$$\angle G(j\omega) = \tan^{-1} \frac{\Im G(j\omega)}{\Re G(j\omega)} = \tan^{-1} \omega$$

Asymptotic behaviour

 For small frequencies the system behaves like positive constant gain

$$\omega << 1 \implies |G(j\omega)| = \sqrt{1 + \omega^2} \approx 1$$

$$\omega << 1 \implies \angle G(j\omega) = \tan^{-1}\omega \approx \tan^{-1}0 = 0$$

For large frequencies the system behaves like a differentiator:

$$\omega >> 1 \implies |G(j\omega)| = \sqrt{1 + \omega^2} \approx |\omega|$$

$$\omega >> 1 \implies \angle G(j\omega) = \tan^{-1}\omega \approx \tan^{-1}\infty = 90^{\circ}$$

A useful relationship

For reciprocal factors, Bode diagrams just need to "change sign":

$$20 \log \left| \frac{1}{G(j\omega)} \right| = -20 \log |G(j\omega)|$$

$$\angle \frac{1}{G(j\omega)} = -\angle G(j\omega)$$

Bode diagram of a "real pole" term

■ For instance, we have for $G(s) = \frac{1}{s+1}$

$$20\log\left|\frac{1}{j\omega+1}\right| = -20\log|j\omega+1| = -20\log\sqrt{\omega^2+1}$$

$$\angle\frac{1}{j\omega+1} = -\angle(j\omega+1) = -\tan^{-1}\omega$$

For exercise find the time response of the system as we did in previous examples.

A second order system

Summary of common cases

System	Parameter	Step response	Bode (gain)	Bode(phase)
$\frac{K}{ au s+1}$	K	K	K	$-\frac{\pi}{2}$
	τ	Ţ		- 1 2
$\frac{\omega_n^2}{s^2 + 2\psi\omega_n s + \omega^2}$	ψ	MA	**	ψ
	ω_n	ψn		ωη,
$\frac{as+1}{(s+1)^2}$	a			$\frac{1}{2}$
$\frac{-as+1}{(s+1)^2}$	a	a		$\frac{3\pi}{2}$

Taken from Goodwin, Graebe and Salgado, Control system design.

$$\frac{1}{s} = \lim_{k \to \infty} \frac{k}{ks+1}$$

$$\frac{1}{s} = \lim_{k \to \infty} \frac{k}{ks+1}$$

$$\frac{60}{40}$$

$$\frac{1}{40}$$

$$\frac{20 \log_{10} 50 = 34 \cdot dB}{20}$$

$$\frac{1}{s}$$

$$\frac{1}{s} = \lim_{k \to \infty} \frac{k}{ks+1}$$

$$\frac{1}{s} = \lim_{k \to \infty} \frac{k}{ks+1}$$