PS10 - ECON 5253

Hannah Bermudez

April 2025

1 Model Summaries

penalty	$. \\ estimate$	alg	$cost_complexity$	$tree_depth$	\min_n	$hidden_units$	neighbors	$\cos t$	rbf_sigma
0.00	0.85	logit							
	0.87	tree	0.00	15.00	10.00				
1.00	0.83	nnet				1.00			
	0.84	$_{\mathrm{knn}}$					30.00		
	0.86	svm						1.00	0.50

- How does each algorithm's out-of-sample performance compare with each of the other algorithms?
 - Based on the out-of-sample performance of the five algorithms, the algorithm that appears
 to perform the best is the decision tree, followed by the svm model, the logit model, the
 knn model, and the neural network model.