Kurs:Mathematik für Anwender/Teil I/10/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 \sum

Punkte 3313337862 2 2 4 5 4 4 4 64

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Der *Durchschnitt* von Mengen $m{L}$ und $m{M}$.
- 2. Der *Real* und der *Imaginärteil* einer komplexen Zahl z.
- 3. Eine beschränkte Teilmenge von reellen Zahlen.
- 4. Der Tangens.
- 5. Das *Unterintegral* einer nach unten beschränkten Funktion

$$f:[a,b]\longrightarrow \mathbb{R}.$$

6. Der Kern einer linearen Abbildung

$$\varphi : V \longrightarrow W$$

zwischen zwei $oldsymbol{K}$ -Vektorräumen $oldsymbol{V}$ und $oldsymbol{W}$.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über die Anzahl von Nullstellen eines Polynoms über einem Körper $m{K}$.
- 2. Die Ableitung der reellen Exponentialfunktion.
- 3. Der Satz über Zeilenrang und Spaltenrang.

Aufgabe * (1 Punkt)

Die Weihnachtsferien begannen am 22.12.2015 (erster Ferientag) und endeten am 6.1.2016 (letzter Ferientag). Wie lange dauerten die Ferien?

Aufgabe (3 Punkte)

Illustriere die dritte binomische Formel durch eine geeignete geometrische Figur.

Aufgabe * (3 Punkte)

Beweise durch Induktion, dass die Summe von aufeinanderfolgenden ungeraden Zahlen (beginnend bei ${\bf 1}$) stets eine Quadratzahl ist.

Aufgabe * (3 Punkte)

Es sei K ein angeordneter Körper. Zeige, ausgehend von den Axiomen für einen angeordneten Körper, dass 1>0 gilt.

Aufgabe * (7 Punkte)

Wir betrachten die Abbildung

$$\Psi: \mathbb{N}^4 \longrightarrow \mathbb{N}^4$$
,

die einem Vierertupel (a,b,c,d) das Vierertupel

$$(|b-a|,|c-b|,|d-c|,|a-d|)$$

zuordnet. Zeige, dass sich bei jedem Starttupel (a, b, c, d) nach endlich vielen Iterationen dieser Abbildung stets das Nulltupel ergibt.

Aufgabe * (8 (2+1+2+1+2) Punkte)

Es sei $a \in \mathbb{R}$. Zu einem Startwert $x_0 \in \mathbb{R}$ sei eine reelle Folge rekursiv durch

$$x_{n+1} = \frac{x_n + a}{2}$$

definiert. Zeige die folgenden Aussagen.

- (a) Bei $x_0>a$ ist $x_n>a$ für alle $n\in\mathbb{N}$ und die Folge ist streng fallend.
- (b) Bei $x_0 = a$ ist die Folge konstant.
- (c) Bei $x_0 < a$ ist $x_n < a$ für alle $n \in \mathbb{N}$ und die Folge ist streng wachsend.
- (d) Die Folge konvergiert.
- (e) Der Grenzwert ist a.

Aufgabe * (6 Punkte)

Es sei K ein Körper und es seien n verschiedene Elemente $a_1,\ldots,a_n\in K$ und n Elemente $b_1,\ldots,b_n\in K$ gegeben. Zeige, dass es ein eindeutiges Polynom $P\in K[X]$ vom Grad $\leq n-1$ gibt derart, dass $P(a_i)=b_i$ für alle i ist.

Aufgabe * (2 Punkte)

Fridolin sagt:

"Irgendwas kann am Zwischenwertsatz nicht stimmen. Für die stetige Funktion

$$f{:}\, \mathbb{R} \longrightarrow \mathbb{R}, \, x \longmapsto rac{1}{x},$$

gilt f(-1)=-1 und f(1)=1. Nach dem Zwischenwertsatz müsste es also eine Nullstelle zwischen -1 und 1 geben, also eine Zahl $x\in [-1,1]$ mit f(x)=0. Es ist doch aber stets $\frac{1}{x}
eq 0$."

Wo liegt der Fehler in dieser Argumentation?

Aufgabe * (2 Punkte)

Es sei

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

eine stetig differenzierbare Funktion, die mit der Diagonalen zwei Schnittpunkte $P \neq Q$ besitze. Zeige, dass der Graph der Ableitung f' einen Schnittpunkt mit der durch y=1 definierten Geraden besitzt.

Aufgabe * (2 Punkte)

Beweise den Satz über die Ableitung der Exponentialfunktionen zu einer Basis a>0.

Aufgabe (4 Punkte)

Es seien

$$f_1, f_2: \mathbb{R} \longrightarrow \mathbb{R}$$

periodische Funktionen mit den Periodenlängen L_1 bzw. L_2 . Der Quotient L_1/L_2 sei eine rationale Zahl. Zeige, dass auch f_1+f_2 eine periodische Funktion ist.

Aufgabe * (5 Punkte)

Berechne durch geeignete Substitutionen eine Stammfunktion zu

$$\sqrt{3x^2+5x-4}.$$

Aufgabe * (4 Punkte)

Bestimme den Kern der durch die Matrix

$$M = \left(egin{array}{cccc} 2 & 3 & 0 & -1 \ 4 & 2 & 2 & 5 \end{array}
ight)$$

gegebenen linearen Abbildung

$$\varphi : \mathbb{R}^4 \longrightarrow \mathbb{R}^2.$$

Aufgabe * (4 (2+2) Punkte)

- 1. Bestimme die invertierbaren 2×2 -Matrizen über dem Körper mit zwei Elementen.
- 2. Welche davon sind zu sich selbst invers?

Aufgabe * (4 (1+1+2) Punkte)

Es sei

$$M = egin{pmatrix} 3 & -1 & 5 \ 0 & -4 & 2 \ 0 & 1 & -3 \end{pmatrix}.$$

- 1. Bestimme das charakteristische Polynom zu M.
- 2. Bestimme die Eigenwerte mit Vielfachheiten von ${\pmb M}$ über ${\Bbb R}.$
- 3. Bestimme die Eigenräume von ${\pmb M}$ über ${\Bbb R}$.

Anhang

Eine Stammfunktion von $\sqrt{u^2-1}$ ist

$$rac{1}{2} \Big(\sqrt{u^2-1} \cdot u - ext{ arcosh } u \, \Big).$$