YOUR CLASSIFIER IS SECRETLY AN ENERGY BASED MODEL AND YOU SHOULD TREAT IT LIKE ONE

Bondarenko Nataliia, AMI171

Преимущества и недостатки генеративных моделей

- Одно решение для разных задач
- Можно использовать неразмеченные данные
- На самом деле процесс сосредоточен на улучшении данных или правдоподобия
- Фокус не на других задачах, к которым можно применять ганы
- Архитектуры расходятся с дискриминативными моделями
- Генеративные модели хуже дискриминативных в дискриминативных задачах

Энергетические модели

Плотность:
$$p_{\theta}(\mathbf{x}) = \frac{\exp(-E_{\theta}(\mathbf{x}))}{Z(\theta)}$$

Данные: $\mathbf{x} \in \mathbb{R}^D$

Функция энергии: $E_{ heta}(\mathbf{x}): \mathbb{R}^D o \mathbb{R}$

Нормализующая константа: $Z(\theta) = \int_{\mathbf{x}} \exp(-E_{\theta}(\mathbf{x}))$

- Для большинства $E_{\theta}(\mathbf{x})$ сложно оценить $Z(\theta)$, отсюда максимизировать правдоподобие сложно
- Используем другие методы обучения

Оценка производной максимального правдоподобия

Для одного элемента:

$$\frac{\partial \log p_{\theta}(\mathbf{x})}{\partial \theta} = \mathbb{E}_{p_{\theta}(\mathbf{x}')} \left[\frac{\partial E_{\theta}(\mathbf{x}')}{\partial \theta} \right] - \frac{\partial E_{\theta}(\mathbf{x})}{\partial \theta}$$

• Используем марковские цепи монте-карло (МСМС), чтобы семплировать из $p_{ heta}(\mathbf{x})$

Последние результаты (SGLD): $p_0(\mathbf{x})$, α меняется полиномиально

$$\mathbf{x}_0 \sim p_0(\mathbf{x}), \qquad \mathbf{x}_{i+1} = \mathbf{x}_i - \frac{\alpha}{2} \frac{\partial E_{\theta}(\mathbf{x}_i)}{\partial \mathbf{x}_i} + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \alpha)$$

Оценка производной максимального правдоподобия

Для одного элемента:

$$\frac{\partial \log p_{\theta}(\mathbf{x})}{\partial \theta} = \mathbb{E}_{p_{\theta}(\mathbf{x}')} \left[\frac{\partial E_{\theta}(\mathbf{x}')}{\partial \theta} \right] - \frac{\partial E_{\theta}(\mathbf{x})}{\partial \theta}$$

• Используем марковские цепи монте-карло (МСМС), чтобы семплировать из $p_{ heta}(\mathbf{x})$

Последние результаты (SGLD): $p_0(\mathbf{x})$, α меняется полиномиально

$$\mathbf{x}_0 \sim p_0(\mathbf{x}), \qquad \mathbf{x}_{i+1} = \mathbf{x}_i - \frac{\alpha}{2} \frac{\partial E_{\theta}(\mathbf{x}_i)}{\partial \mathbf{x}_i} + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \alpha)$$

Что скрывает классификатор

Логиты: $f_{ heta}:\mathbb{R}^D
ightarrow \mathbb{R}^K$

Используются в софтмаксе: $p_{\theta}(y \mid \mathbf{x}) = \frac{\exp(f_{\theta}(\mathbf{x})[y])}{\sum_{y'} \exp(f_{\theta}(\mathbf{x})[y'])}$

Переинтерпретируем их, чтобы получить совместную плотность:

^{3десь:}
$$E_{ heta}(\mathbf{x},y) = -f_{ heta}(\mathbf{x})[y]$$
 $Z(heta)$ — неизвестная нормализующая константа

$$p_{\theta}(\mathbf{x}, y) = \frac{\exp(f_{\theta}(\mathbf{x})[y])}{Z(\theta)}$$

JEM

$$p_{\theta}(\mathbf{x}) = \sum_{y} p_{\theta}(\mathbf{x}, y) = \frac{\sum_{y} \exp(f_{\theta}(\mathbf{x})[y])}{Z(\theta)}$$

• Сдвиг логитов на константу влияет на $\log p_{ heta}(\mathbf{x})$

Получим условную вероятность: $p_{\theta}(y|\mathbf{x}) = \frac{p_{\theta}(\mathbf{x},y)}{p_{\theta}(\mathbf{x})}$ Заметим:

$$E_{\theta}(\mathbf{x}) = -\text{LogSumExp}_{y}(f_{\theta}(\mathbf{x})[y]) = -\log \sum_{y} \exp(f_{\theta}(\mathbf{x})[y])$$

JEM

$$p_{\theta}(\mathbf{x}) = \sum_{y} p_{\theta}(\mathbf{x}, y) = \frac{\sum_{y} \exp(f_{\theta}(\mathbf{x})[y])}{Z(\theta)}$$

• Сдвиг логитов на константу влияет на $\log p_{ heta}(\mathbf{x})$

Получим условную вероятность: $p_{ heta}(y)$

$$p_{\theta}(y|\mathbf{x}) = \frac{p_{\theta}(\mathbf{x}, y)}{p_{\theta}(\mathbf{x})}$$

Заметим:

$$E_{\theta}(\mathbf{x}) = -\mathsf{LogSumExp}_y(f_{\theta}(\mathbf{x})[y]) = -\log \sum\nolimits_y \exp(f_{\theta}(\mathbf{x})[y])$$

Оптимизация

Факторизация:

$$p_{\theta}(y \mid \mathbf{x}) = \frac{\exp(f_{\theta}(\mathbf{x})[y])}{\sum_{y'} \exp(f_{\theta}(\mathbf{x})[y'])}$$
$$p_{\theta}(\mathbf{x}) = \sum_{y} p_{\theta}(\mathbf{x}, y) = \frac{\sum_{y} \exp(f_{\theta}(\mathbf{x})[y])}{Z(\theta)}$$

$$\log p_{\theta}(\mathbf{x}, y) = \log p_{\theta}(\mathbf{x}) + \log p_{\theta}(y|\mathbf{x})$$

Оптимизация

- Оптимизируем $p(y|\mathbf{x})$ с помощью кросс-энтропии
- Оптимизируем $\log p(\mathbf{x})$ с помощью

$$\frac{\partial \log p_{\theta}(\mathbf{x})}{\partial \theta} = \mathbb{E}_{p_{\theta}(\mathbf{x}')} \left[\frac{\partial E_{\theta}(\mathbf{x}')}{\partial \theta} \right] - \frac{\partial E_{\theta}(\mathbf{x})}{\partial \theta}$$

Используем SGLD (Stochastic gradient Langevin dynamics).

Градиенты берем по
$$\operatorname{LogSumExp}_y(f_{ heta}(x)[y])$$

Algorithm 1 JEM training: Given network f_{θ} , SGLD step-size α , SGLD noise σ , replay buffer B, SGLD steps η , reinitialization frequency ρ

```
1: while not converged do
2: Sample \mathbf{x} and y from dataset
3: L_{\text{clf}}(\theta) = \text{xent}(f_{\theta}(\mathbf{x}), y)
4: Sample \widehat{\mathbf{x}}_0 \sim B with probability 1 - \rho, else \widehat{\mathbf{x}}_0 \sim \mathcal{U}(-1, 1) \triangleright Initialize SGLD
5: for t \in [1, 2, \dots, \eta] do \triangleright SGLD
6: \widehat{\mathbf{x}}_t = \widehat{\mathbf{x}}_{t-1} + \alpha \cdot \frac{\partial \text{LogSumExp}_{y'}(f_{\theta}(\widehat{\mathbf{x}}_{t-1})[y'])}{\partial \widehat{\mathbf{x}}_{t-1}} + \sigma \cdot \mathcal{N}(0, I)
7: end for
```

8:
$$L_{\text{gen}}(\theta) = \text{LogSumExp}_{y'}(f(\mathbf{x})[y']) - \text{LogSumExp}_{y'}(f(\widehat{\mathbf{x}}_t)[y'])$$
 \triangleright Surrogate for Eq 2

9:
$$L(\theta) = L_{\rm clf}(\theta) + L_{\rm gen}(\theta)$$

10: Obtain gradients
$$\frac{\partial L(\theta)}{\partial \theta}$$
 for training

11: Add
$$\hat{\mathbf{x}}_t$$
 to B

12: end while

Результаты

	Accuracy
SVHN	96.7%
CIFAR100	72.2%

CIFAR10:

Class	Model	Accuracy% ↑	IS↑	FID↓
	Residual Flow	70.3	3.6	46.4
Hybrid	Glow	67.6	3.92	48.9
	IGEBM	49.1	8.3	37.9
	JEM $p(\mathbf{x} y)$ factored	30.1	6.36	61.8
	JEM (Ours)	92.9	8.76	38.4
Disc.	Wide-Resnet	95.8	N/A	N/A
Gen.	SNGAN	N/A	8.59	25.5
	NCSN	N/A	8.91	25.32

Калибровка

Откалиброванный классификатор полезнее точного

JEM точен и откалиброван

CIFAR100: точность – 72% (y ResNet-110 74,8%)

Out of distribution detection

$$s_{\theta}(\mathbf{x}) \in \mathbb{R}$$

Выше для объектов из распределения Ниже для объектов из других распределений

Out of distribution detection

- Подогнать плотность под данные. Низкая плотность = OOD
- $s_{\theta}(\mathbf{x}) = \max_{y} p_{\theta}(y|\mathbf{x})$
- $s_{ heta}(\mathbf{x}) = -\left|\left|rac{\partial \log p_{ heta}(\mathbf{x})}{\partial \mathbf{x}}
 ight|
 ight|_{2}$ • Учитываем не только точку, но и окружение:

Ожидаем, что если точка – случайный пик, то плотность вокруг нее быстро будет снижаться, поэтому смотрим на норму градиента

a.(v)	Model	SVHN	CIFAR10	CIFAR100	CelebA
$s_{ heta}(\mathbf{x})$	Middel	21111	Interp	CITAK100	CelebA
$\log p(\mathbf{x})$	Unconditional Glow	.05	.51	.55	.57
	Class-Conditional Glow	.07	.45	.51	.53
	IGEBM	.63	.70	.50	.70
	JEM (Ours)	.67	.65	.67	.75
$\max_y p(y \mathbf{x})$	Wide-ResNet	.93	.77	.85	.62
	Class-Conditional Glow	.64	.61	.65	.54
	IGEBM	.43	.69	.54	.69
	JEM (Ours)	.89	.75	.87	.79
$\left \left rac{\partial \log p(\mathbf{x})}{\partial \mathbf{x}} ight ight $	Unconditional Glow	.95	.27	.46	.29
	Class-Conditional Glow	.47	.01	.52	.59
	IGEBM	.84	.65	.55	.66
	JEM (Ours)	.83	.78	.82	.79

Adversarial attacks

Пробовали атаки:

- white-box PGD-атаку (с доступом к градиентам)
- gradient-free black-box атаку (без доступа к градиентам)
- the boundary attack
- the brute-force pointwise attack

Относительно норм L_{∞} и L_{2}

JEM лучше базовой модели во всех случаях

Еще одна проблема

Некоторые модели могут уверенно классифицировать бессмысленные данные

Максимизируем $p(y = \text{``car''}|\mathbf{x})$, начиная со случайного шума

Сложности

- Нет нормализованных вероятностей сложно проверить, что вообще идет обучение. Картинки можно нарисовать, но это не общая стратегия
- Оценки градиента нестабильны и будут расходиться без грамотной настройки гиперпараметров

Есть, куда расти!

Вопросы

- Что и как оптимизируют авторы статьи?
- Какие есть проблемы у JEM?
- Как получить совместную плотность $p_{\theta}(\mathbf{x},y)$ и $p_{\theta}(\mathbf{x})$