

CSE 202 Algorithms II

Week 10

Baris ARSLAN

Department of Computer Engineering

Spring 2024

Dijkstra's SPA

Figure 4.8 Dijkstra's shortest-path algorithm.

```
procedure dijkstra(G, l, s)
Input: Graph G = (V, E), directed or undirected;
            positive edge lengths \{l_e: e \in E\}; vertex s \in V
          For all vertices u reachable from s, dist(u) is set
Output:
            to the distance from s to u.
for all u \in V:
   \mathtt{dist}(u) = \infty
   prev(u) = nil
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty:
   u = \mathtt{deletemin}(H)
   for all edges (u,v) \in E:
       if dist(v) > dist(u) + l(u, v):
           \mathtt{dist}(v) = \mathtt{dist}(u) + l(u, v)
           prev(v) = u
           decreasekey(H, v)
```

Negative Edges

Figure 4.12 Dijkstra's algorithm will not work if there are negative edges.

 Dijkstra's algorithm can be thought of simply as a sequence of update's.

```
\underline{\mathtt{procedure update}}((u,v) \in E)
\mathtt{dist}(v) = \min\{\mathtt{dist}(v),\mathtt{dist}(u) + l(u,v)\}
```

 Any sequence of updates from source to destination (part of the shortest path) can have at most |V|-1 edges.

- But, we don't know all shortest paths beforehand
- → Bellman-Ford Algorithm:
 Simply update all edges |V|-I times (O(|V||E|))

```
Figure 4.13 The Bellman-Ford algorithm for single-source shortest paths in general graphs.
procedure shortest-paths (G, l, s)
Input: Directed graph G = (V, E);
           edge lengths \{l_e:e\in E\} with no negative cycles;
           vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
repeat |V|-1 times:
```

for all $e \in E$:

update(e)

There are 8 Nodes, Bellman-Ford needs 7 iterations

Initialization

Node	0
\mathbf{S}	0
Α	∞
\mathbf{B}	∞
\mathbf{C}	∞
D	∞
${f E}$	∞
${f F}$	∞
\mathbf{G}	∞

Node	0	1
S	0,	0
A	∞	1 0
В	∞	∞
C	∞	∞
D	∞	∞
E	∞	∞
F	∞	$\int \infty$
G	∞	8

Node	0	1	2
\mathbf{S}	0	0	0
Α	∞	10	10
В	∞	∞	∞
\mathbf{C}	∞	∞	$\setminus \infty$
D	∞	∞	%
${f E}$	∞	∞	12
\mathbf{F}	∞	∞	79
G	∞	8/	8

				Itera
Node	0	1	2	3
S	0	0	0	0
A	∞	10	10	$\sqrt{5}$
В	∞	∞	∞	10
C	∞	∞	∞	∞
D	∞	∞	∞	∞
E	∞	∞	12/	718
F	∞	∞	91/	9
G	∞	8	8	8

	Iteration							
Node	0	1	2	3	4			
S	0	0	0	0	0			
A	∞	10	10	5,	5			
В	∞	∞	∞	10	76			
C	∞	∞	∞	∞	11			
D	∞	∞	∞	∞	\∞			
\mathbf{E}	∞	∞	12	8	₹ 7			
\mathbf{F}	∞	∞	9	9	9			
G	∞	8	8	8	8			

	Iteration							
Node	0	1	2	3	4	5		
S	0	0	0	0	0	0		
A	∞	10	10	5	5	5		
В	∞	∞	∞	10	6	5		
C	∞	∞	∞	∞	11	<u>\$</u> 7		
D	∞	∞	∞	∞	∞	≥ 14		
\mathbf{E}	∞	∞	12	8	7	7		
F G	∞	∞	9	9	9	9		
G	∞	8	8	8	8	8		

	Iteration									
Node	0	1	2	3	4	5	6			
S	0	0	0	0	0	0	0			
A	∞	10	10	5	5	5	5			
В	∞	∞	∞	10	6	5	5			
C	∞	∞	∞	∞	11	7	3 6			
D	∞	∞	∞	∞	∞	14	1 10			
\mathbf{E}	∞	∞	12	8	7	7	7			
F	∞	∞	9	9	9	9	9			
G	∞	8	8	8	8	8	8			

	Iteration									
Node	0	1	2	3	4	5	6	7		
S	0	0	0	0	0	0	0	0		
A	∞	10	10	5	5	5	5	5		
В	∞	∞	∞	10	6	5	5	5		
C	∞	∞	∞	∞	11	7	6	6		
D	∞	∞	∞	∞	∞	14	10	1 9		
\mathbf{E}	∞	∞	12	8	7	7	7	7		
\mathbf{F}	∞	∞	9	9	9	9	9	9		
G	∞	8	8	8	8	8	8	8		

Done!

	Iteration									
Node	0	1	2	3	4	5	6	7		
S	0	0	0	0	0	0	0	0		
A	∞	10	10	5	5	5	5	5		
В	∞	∞	∞	10	6	5	5	5		
C	∞	∞	∞	∞	11	7	6	6		
D	∞	∞	∞	∞	∞	14	10	9		
\mathbf{E}	∞	∞	12	8	7	7	7	7		
F	∞	∞	9	9	9	9	9	9		
G	∞	8	8	8	8	8	8	8		

Negative Cycles

 If there is a negative cycle (a loop with negative length) in graph, shortest path problem is ill-defined

What is the length of shortest path from A to E?

Negative Cycles

- Easy to detect negative cycle in Bellman-Ford algorithm.
 - With negative cycles, each update round will indefinitely continue to make changes to the distance values
 - Do one more iteration after |V|-I iterations and check if there is any change

Shortest Paths in DAGs

- If the graph is DAG (no cycle), shortest paths can be found in linear time
- Topologically sort the DAG and perform the updates in the sorted order

Figure 4.15 A single-source shortest-path algorithm for directed acyclic graphs.

```
Input: Dag G = (V, E); edge lengths \{l_e : e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set to the distance from s to u.

for all u \in V: dist(u) = \infty prev(u) = \min
dist(s) = 0
Linearize G
for each u \in V, in linearized order: for all edges (u, v) \in E: update (u, v)
```

procedure dag-shortest-paths (G, l, s)