PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-108981

(43) Date of publication of application: 28.04.1997

(51)Int.Cl.

B23Q 5/26

F16D 63/00

F16D 71/00

(21) Application number : 07-2732113

(71)Applicant: HONDA MOTOR CO LTD

(22) Date of filing:

20.10.1995

(72)Inventor: **MORITA HIROSHI**

ASAKURA TOSHIKAZU

(54) LOCKING MEMBER, AND SPANWORK TYPE ACTUATOR USING IT

(57) Abstract:

PROBLEM TO BE SOLVED: To reasonably increase fastening force to a guiding member, by interposing plural balls between inner and outer rings, and forming the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring into a tapered surface, wherein oneend sides in axis directions become large diameters respectively.

SOLUTION: Reaction force receiving members 41 and 51 are made to abut on one end in the axis direction of an inner ring 100, also pistons 40 and 50 are made to abut on the other end in the axis direction of an outer ring 101, and moreover the outer peripheral surface of the inner ring 100 and the inner peripheral suface of the outer ring 101 are formed into a tapered surface, where one-end sides in an axis directions become large diameters respectively. When the inner and outer rings 100 and 101 are nippedly pressed in the axis direction

between the reaction force receiving members 41 and 51 by pressing force of the pistons 40 and 50, a ball 102 is pushed in an inner part in a diameter direction by the wedge action of the tapered surface, to reduce the diameter of the inner ring 100 to fasten a guiding member (b).

(12) 公開特許公報(A)

(11)特許出職公開番号

特開平9-108981

(43)公開日 平成9年(1997)4月28日

(51) Int.Cl.4

識別記号

庁内整理番号

FΙ

技術表示箇所

B 2 3 Q 5/26 F 1 6 D 63/00

63/00 71/00 B 2 3 Q 5/26 F 1 6 D 63/00 71/00 D

審査請求 未請求 請求項の数3 OL (全 7 頁)

(21)出願番号

(22)出顧日

()

特膜平7至273213

平成7年(1995)10月20日

(71)出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 森田 紘史

埼玉県狭山市新狭山1丁目10番地1 ホン

ダエンジニアリング株式会社内

(72)発明者 浅倉 敏和

埼玉県狭山市新狭山1丁目10番地1 ホン

ダエンジニアリング株式会社内

(74)代理人 弁理士 北村 欣一 (外2名)

(54) 【発明の名称】 ロック部材及びこのロック部材を用いた尺取虫型アクチュエータ

(57) 【要約】

(修正有)

English abstract follows attachedly.

【課題】 ピストン40,50と反力受け部材41,51との間に介設され、ピストンの押圧力により反力受け部材との間で軸方向に挟圧されたときにガイド部材bを締付けるロック部材42,52において、座屈を生ずることなく大きな力でガイド部材bを締付けられる。

【解決手段】 ピストン40,50と反力受け部材41,51の一方と他方とを夫々インナリング100の軸方向一端とアウタリング101の軸方向他端とに当接させると共に、インナリング100の外周面とアウタリング101の内周面とを夫々軸方向一端側が大径になる。ピストン40,50の押圧力を受けたとき、テーパ面による楔作用でボール102を介してインナリング100が縮径され、ガイド部材りが締付けられてロック状態になる。両リング100,101に対するボール102の接点間の結線とガイド部材りに直交する面との成す傾斜角 θ をロック部材の用途に応じて変更する。

・) こう うきゃ トロロン つりじ クリセ・・

【特許請求の範囲】

【請求項1】 円柱状のガイド部材に外挿されるピスト ンと、ピストンに対向する反力受け部材との間に介設さ れ、ピストンの押圧力により反力受け部材との間で軸方 向に挟圧されたときにガイド部材を締付けるロック部材 であって、

1

ガイド部材に外挿される縮径自在なインナリングと、イ ンナリングを隙間を存して囲繞するアウタリングと、イ ンナリングとアウタリングとの間に介挿する複数のボー ルとを備え、

ピストンと反力受け部材の一方と他方とを夫々インナリ ングの軸方向一端とアウタリングの軸方向他端とに当接 させると共に、

インナリングの外周面とアウタリングの内周面とを夫々 軸方向一端側が大径になるテーパ面に形成する、 ことを特徴とするロック部材。

【請求項2】 インナリングの外周面のテーパ角をアウ タリングの内周面のテーパ角より大きくすると共に、ポ ールを軸方向一端側に付勢して保持するボールリテーナ を設けることを特徴とする請求項1に記載のロック部 材。

【請求項3】 円柱状のガイド部材に対し相対移動する 尺取虫型アクチュエータであって、

ガイド部材に対し摺動自在なケーシングに組込んだ、ブ レーキユニットと、往動用と復動用の1対の歩進ユニッ トとを備え、

ブレーキュニットは、ガイド部材に外挿したブレーキ用 ピストンと、ブレーキ用ピストンに対向する、ケーシン グに固定のブレーキ用反力受け部材と、ブレーキ用ピス トンとプレーキ用反力受け部材との間に介設され、プレ 30 ーキ用ピストンの押圧力によりプレーキ用反力受け部材 側との間で軸方向に挟圧されたときにガイド部材を締付 けるブレーキ用ロック部材と、ブレーキ用ピストンをブ レーキ用反力受け部材側に付勢する付勢手段と、ブレー キ用ピストンをブレーキ用反力受け部材とは逆側に押圧 する圧力室とを備え、

各歩進ユニットは、往動用歩進ユニットについては往動 方向を正方向、復動方向を逆方向、復動用歩進ユニット については復動方向を正方向、往動方向を逆方向とし て、ガイド部材に外挿した歩進用ピストンと、歩進用ピ 40 ストンに向けて正方向に付勢される歩進用反力受け部材 と、歩進用ピストンと歩進用反力受け部材との間に介設 され、歩進用ピストンの押圧力により歩進用反力受け部 材との間で軸方向に挟圧されたときにガイド部材を締付 ける歩進用ロック部材と、歩進用ピストンを逆方向に押 圧する圧力室とを備え、

往動歩進時に往動用歩進ユニットの圧力室とブレーキュ ニットの圧力室とに流体圧を入力し、復動歩進時に復動 用歩進ユニットの圧力室とプレーキユニットの圧力室と に流体圧を入力する流体供給手段を設けるものにおい

て、

プレーキ用ロック部材と歩進用ロック部材とを夫々請求 項1又は2に記載のロック部材で構成すると共に、 インナリングの外周面に対するポールの接点とアウタリ ングの内周面に対するボールの接点とを結ぶ結線のガイ ド部材に直交する面に対する傾斜角を、ブレーキ用ロッ ク部材では比較的大きく設定し、歩進用ロック部材では

2

ことを特徴とする尺取虫型アクチュエータ。

10 【発明の詳細な説明】

比較的小さく設定する、

[0001]

【発明の属する技術分野】本発明は、円柱状のガイド部 材に対するロック及びアンロックを行うロック部材並び にこのロック部材を利用した尺取虫型アクチュエータに 関する。

[0002]

20

【従来の技術】従来、実開昭63-35826号公報に 見られるように、円柱状のガイド部材に外挿したピスト ンと、ピストンに対向する反力受け部材との間に、ガイ ド部材に外挿した状態で皿ばね状のロック部材を介設 し、ピストンからの反力受け部材側への押圧力を受けた とき、ロック部材が軸方向に弾性的に圧縮変形し、ロッ ク部材の内径が縮径されて、ガイド部材を締付けるロッ ク状態になるようにしたものは知られている。

【0003】また、本願出願人は、先に、円柱状のガイ ド部材に対し相対移動する尺取虫型アクチュエータとし て、特願平7-195009号、同195010号、同 195011号により、ガイド部材に対し摺動自在なケ ーシングにプレーキユニットと往動用と復動用の1対の 歩進ユニットとを組込み、ブレーキユニットによりケー シングをガイド部材に対しロックし、このロックを解除 すると共に一方の歩進ユニットを作動させてケーシング をガイド部材に対し1ピッチ往動又は復動させ、この作 動を繰返してケーシングを往動方向又は復動方向に1ピ ッチ宛歩進させるようにしたものを提案した。

【0004】このもので、ブレーキユニットは、ガイド 部材に外挿したプレーキ用ピストンと、プレーキ用ピス トンに対向する、ケーシングに固定のブレーキ用反力受 け部材と、ブレーキ用ピストンとブレーキ用反力受け部 材との間に介設され、ブレーキ用ピストンの押圧力によ りプレーキ用反力受け部材側との間で軸方向に挟圧され たときにガイド部材を締付けるプレーキ用ロック部材 と、プレーキ用ピストンをブレーキ用反力受け部材側に 付勢する付勢手段と、ブレーキ用ピストンをブレーキ用 反力受け部材とは逆側に押圧する圧力室とを備え、ま た、各歩進ユニットは、往動用歩進ユニットについては 往動方向を正方向、復動方向を逆方向、復動用歩進ユニ ットについては復動方向を正方向、往動方向を逆方向と して、ガイド部材に外挿した歩進用ピストンと、歩進用 50 ピストンに向けて正方向に付勢される歩進用反力受け部

材と、歩進用ピストンと歩進用反力受け部材との間に介設され、歩進用ピストンの押圧力により歩進用反力受け部材との間で軸方向に挟圧されたときにガイド部材を締付ける歩進用ロック部材と、歩進用ピストンを逆方向に押圧する圧力室とを備えており、これらブレーキ用と歩進用のロック部材は共に上記と同様の皿ばね状部材で構成されている。

[0005]

()

()

【発明が解決しようとする課題】上記の如き皿ばね状の ロック部材は、ピストンからの押圧力を受けて軸方向に 弾性的に圧縮変形することでガイド部材の締付力を発生 するものであり、ロック部材の軸方向の圧縮に対するば ね定数が大きいと、圧縮圧力が増加して、ピストンの押 圧力をガイド部材の締付力に効率良く変換できなくな る。そのため、ロック部材たる皿ばね状部材に放射状の スリットを形成して、圧縮に対するばね定数を減少させ ているが、皿ばね状部材は薄肉鋼板を皿状にプレス成形 して成るものであるため、これにスリットを形成する と、ガイド部材に対する締付反力で皿ばね状部材の座屈 を生じ易くなり、ガイド部材を強く締付けることができ 20 なくなる。本発明は、以上の点に鑑み、座屈を生ずるこ となく大きな力でガイド部材を締付けられるようにした ロック部材を提供し、更には、このロック部材を用いて 上記先の提案の尺取虫型アクチュエータを改良すること をその課題としている。

[0006]

【課題を解決するための手段】上記課題を解決すべく、本発明は、円柱状のガイド部材に外挿されるピストンと、ピストンに対向する反力受け部材との間に介設され、ピストンの押圧力により反力受け部材との間で軸方 30 向に挟圧されたときにガイド部材を締付けるロック部材であって、ガイド部材に外挿される縮径自在なインナリングと、インナリングを隙間を存して囲繞するアウタリングと、インナリングを隙間を存して囲繞するアウタリングと、インナリングとアウタリングとの間に介挿する複数のボールとを備え、ピストンと反力受け部材の一方と他方とを夫々インナリングの軸方向一端とアウタリングの軸方向他端とに当接させると共に、インナリングの外周面とアウタリングの内周面とを夫々軸方向一端側が大径になるテーパ面に形成する、ことを特徴とする。

【0007】これによれば、ピストンからの押圧力が作 40 用したとき、アウタリングがインナリングに対し軸方向一端側に相対移動し、両リングのテーパ面による楔作用でボールが径方向内方に押され、インナリングが縮径されてガイド部材が締付けられ、ロック部材がロック状態になる。そして、このものでは、皿ばね状のロック部材のように軸方向の圧縮反力が発生しないため、ピストンからの押圧力がガイド部材の締付力に効率良く変換され、また、座屈も生じないため、強い力でガイド部材を締付けることができる。

【0008】尚、インナリングの外周面のテーパ角をア 50

ウタリングの内周面のテーパ角より大きくすると共に、ボールを軸方向一端側に付勢して保持するボールリテーナを設けておけば、インナとアウタの両リングに対するボールの遊びが除去され、ピストンからの押圧力が入力されたとき瞬時にインナリングが縮径され、ロック動作の応答性が向上される。

【0009】ところで、上記先の提案の尺取虫型アクチュエータにおいて、ブレーキ用ロック部材と歩進用ロック部材とを夫々インナリングとアウタリングとボールとから成る本発明のロック部材で構成することが考えられる。この場合、インナリングの外周面に対するボールの接点とアウタリングの内周面に対するボールの接点とを結ぶ結線のガイド部材に直交する面に対する傾斜角を、ブレーキ用ロック部材では比較的大きく設定し、歩進用ロック部材では比較的小さく設定すれば、歩進力を大きくして、且つ、安定したブレーキ力を得られるようになり、尺取虫型アクチュエータの信頼性が向上する。【0010】

【発明の実施の形態】図1は自動車製造ライン等で使用する治具上のワーク受けの配置部を示しており、治具本体 a 上に円柱状のガイド部材 b 横設し、ガイド部材 b に沿って左右動する尺取虫型アクチュエータA に被駆動物たるワーク受け c を取付け、ワークの機種に応じてワーク受け c の位置を変更し得るようにした。

【0011】アクチュエータAは、ガイド部材 b に摺動自在に係合するケーシング1を備えており、ケーシング1の外面にバルブブロック2を取付け、該バルブブロック2にこれに接続した配管部材3を介して圧力流体、例えば、圧縮エアを供給し、エア圧でアクチュエータAを作動させるようにした。

【0012】アクチュエータAの詳細は、図2に示す通りであり、ガイド部材bに摺動自在に外挿される筒状のケーシング1の中央部に左右1対のブレーキユニット4,4が組込まれると共に、ケーシング1の左端部に右動用の歩進ユニット5,が組込まれ、更に、ケーシング1の右端部に左動用の歩進ユニット5,が組込まれている。

【0013】各プレーキユニット4は、ガイド部材 b に 外挿したプレーキ用ピストン40と、該ピストン40に 対向する、ケーシング1に固定のプレーキ用反力受け部材41と、プレーキ用ピストン40とプレーキ用反力受け部材41との間に介設したプレーキ用ロック部材42とを備えており、プレーキ用ピストン40の押圧力によりプレーキ用反力受け部材41との間で軸方向に挟圧されたとき、プレーキ用ロック部材42がガイド部材 b を締付け、ガイド部材 b に対しケーシング1がロックされるようにした。

【0014】ブレーキユニット4は、更に、ブレーキ用 ピストン40をブレーキ用ロック部材42のロック方 向、即ち、ブレーキ用反力受け部材41側に付勢する付

勢手段43と、プレーキ用ピストン40をロック部材4 2のアンロック方向に押圧する圧力室44とを備えてお り、常時は付勢手段43の付勢力によりブレーキ用ロッ ク部材42をロック状態に維持し、圧力室44への給排 気ポート44aからのエア圧の入力でプレーキ用ロック 部材42をアンロック状態に切換えるようにした。

【0015】尚、付勢手段43はコイルスプリングで構 - 二二 成されているが、エアスプリング等で構成することも可 能である。また、プレーキ用ピストン40に対しプレー キ用反力受け部材41をケーシング1の長手方向内方に 配置し、ブレーキ用ロック部材42のロック方向をケー シング1の長手方向内方に設定することも可能である が、本実施例では、ブレーキ用ピストン40に対しブレ ーキ用反力受け部材41をケーシング1の長手方向外方 に配置して、ロック方向をケーシング1の長手方向外方 に設定し、両プレーキユニット4、4のブレーキ用ピス トン40,40を両者間に配置した共通の付勢手段43 でロック方向に付勢し得るようにした。

> 【0016】右動用歩進ユニット5,は、ガイド部材 b に外挿した歩進用ピストン50と、該ピストン50に向 20 けて右方に付勢される歩進用反力受け部材51と、歩進 用ピストン50と歩進用反力受け部材51との間に介設 した歩進用ロック部材52と、歩進用ピストン50を左 方に押圧する圧力室53とを備えており、圧力室53に 給排気ポート53aを介してエア圧を入力したとき、歩 進用ピストン50からの左方への押圧力により歩進用ロ ック部材52が歩進用ピストン50と歩進用反力受け部 材51との間で軸方向に挟圧されてガイド部材bを締付 けるロック状態になり、ガイド部材りに対する歩進用ピ ストン50の左動が阻止されるようにした。

【0017】歩進用反力受け部材51は、その尾端部に 形成したピストン部51 aにおいてエアスプリングから 成る付勢手段54により右方に付勢されている。そし て、歩進用ピストン50が右方のストローク端位置に到 達したところで歩進用反力受け部材51の右方への移動 がケーシング1に固定のストッパ部55によって規制さ れるようにしており、そのため、常時は歩進用ロック部 材52は軸方向に挟圧されずアンロック状態に維持され る。尚、歩進用反力受け部材51の付勢手段54は、コ イルスプリング等のエアスプリング以外のもので構成し 40 ても良い。

【0018】左動用歩進ユニット51は、右動用歩進ユ ニット5,と方向性が反対になっているだけで構造自体 は同一であり、右動用歩進ユニット5,と同一の部材に 上記と同一の符号を付してその説明を省略する。

【0019】ケーシング1に取付けた上記バルブブロッ ク2には、1対のプレーキユニット4,4の圧力室4 4, 44への給排気を制御する1対のブレーキ用パルブ 20,20と、右動用歩進ユニット5,の圧力室53へ の給排気を制御する右動用バルブ21と、左動用歩進ユ 50

ニット5:の圧力室53への給排気を制御する左動用バ ルブ22とが設けられている。これら各パルプ20、2 1. 22は電磁弁で構成されており、図外のコントロー ラからの信号で切換制御される。また、各パルプ20、 21, 22の給気ポート20a, 21a, 22aと排気 ポート20b、21b、22bは、夫々パルププロック 2内の給気用と排気用のマニホルド通路23、24を介 して共通の配管部材3と消音器25に接続される。尚、 ケーシング1に各パルプ20、21、22を個別に取付 ける場合でも、ケーシング1にマニホルドを取付けて、 共通の配管部材3から各パルブ20、21、22にエア を供給することができる。

【0020】次に、上記アクチュエータAの作用を説明 する。アクチュエータAを右動させる際は、先ず右動用 歩進ユニット5,の圧力室53にエア圧を入力し、上記 の如く該歩進ユニット5,の歩進用ロック部材52をロ() ック状態に切換えて、該歩進ユニット 5, の歩進用ピス トン50の左動を阻止し、次いで、両ブレーキユニット 4, 4の圧力室44, 44にエア圧を入力し、両ブレー キユニット4、4のプレーキ用ロック部材42、42を アンロック状態に切換える。これによれば、右動用歩進 ユニット5,の圧力室53内のエア圧による反力でケー シングIが図3(a)に示す如く歩進用ピストン50の ストローク分だけ右方に歩進する。尚、図示例では、歩 進用反力受け部材51のストロークによって歩進用ピス トン50のストロークが規制されるが、歩進用ロック部 材52へのストッパ部55の当接で歩進用ピストン50 のストロークが規制されるようにしても良い。

【0021】上記の如くケーシング1が歩進すると、両 ブレーキユニット4、4の圧力室44、44を大気開放 して、図3(b)に示す如く、両ブレーキユニット4. 4のブレーキ用ロック部材42,42をロック状態に切 換え、次いで、右動用歩進ユニット5,の圧力室53を 大気開放する。これによれば、歩進用ロック部材52が アンロック状態に切換わり、歩進用反力受け部材51の 付勢力により歩進用ロック部材52を介して歩進用ピス トン50がケーシング1及びガイド部材 b に対し相対移 動しつつ右方のストローク端位置に押し戻され、図2に 示す状態に復帰する。

【0022】そして、以上の作動を繰返すことによりケ ーシング1は右動用歩進ユニット5,の歩進用ピストン 50のストロークで1ピッチ宛右方に歩進する。右動用 歩進ユニット 5, に代えて左動用歩進ユニット 5, の圧力 室53に給排気すれば、上記と同様の作用で、ケーシン グ1は左動用歩進ユニット5,の歩進用ピストン50の ストロークで1ピッチ宛左方に歩進する。

【0023】以上で尺取虫型アクチュエータAの全体的 な構成及び作用についての説明を終り、以下、プレーキ 用と歩進用のロック部材42,52の構成を詳述する。 これらロック部材42,52は、図4及び図5に明示す

30

8

る如く、ガイド部材りに外挿される縮径自在なインナリング100と、インナリング100を隙間を存して囲繞するアウタリング101と、インナリング100とアウタリング101との間に介挿した複数のボール102とを備えている。

【0024】インナリング100は、周方向に分断され た複数のセグメント100aで構成されており、これら セグメント100aが分解しないように、セグメント1 00aをアウタリング101に対し1対のストッパプレ ート103、104によって径方向及び軸方向に少許遊 10 動し得るよう支持させている。そして、インナリング1 00の軸方向一端に反力受け部材41,51を当接させ ると共に、アウタリング101の軸方向他端にピストン 40,50を当接させ、更に、インナリング100の外 周面とアウタリング101の内周面とを夫々軸方向一端 側が大径になるテーパ面に形成し、ピストン40、50 の押圧力により反力受け部材41、51との間でインナ リング100とアウタリング101とが軸方向に挟圧さ れたとき、テーパ面の楔作用でポール102が径方向内 方に押されてインナリング100が縮径し、ガイド部材 20 bが締付けられるようにした。尚、ピストン40,50 をインナリング100の軸方向一端に当接させ、反力受 け部材41,51をアウタリング101の軸方向他端に 当接させるようにしても良い。

【0025】また、本実施形態では、インナリング10 0の外周のテーパ面のテーパ角αをアウタリング101 の内周のテーパ面のテーパ角βよりも大きく設定すると 共に、ボール102をこれらテーパ面の大径部側、即 ち、軸方向一端側に付勢して保持するボールリテーナ1 05を設けた。これによれば、ピストン40,50の押 30 圧を解除したアンロック状態においても、ボール102 がインナリング100の外周面とアウタリング101の 内周面とに接して、両リング100, 101に対するポ ール102の遊びが除去され、ピストン40,50から の押圧力が入力されたときポール102を介してインナ リング100が瞬時に締付けられ、ロック動作の応答性 が向上する。尚、ボールリテーナ105はゴム等の弾性 材で形成されるもので、ボール102を軸方向一端側に 付勢するリップ部105aと、ボール102の配置ピッ チ間に挿入されるスペーサ部105bとを備えている。 【0026】ここで、インナリング100の外周面に対 するボール102の接点とアウタリング101の内周面 に対するポール102の接点とを結ぶ結線はガイド部材 bに直交する面に対し傾斜しており、この傾斜角を θ と すると、ガイド部材bに対する締付カPは、ピストン4 0,50の押圧力をFとして、

$P = F / \tan \theta$

()

:)

で表わされる。従って、押圧力Fに対する締付力Pの増力比は傾斜角 θ に応じて図Gに示す如く変化する。傾斜角 θ が小さいと、増力比が大きくなり、押圧力Fが小さ 50

なうちから充分な締付力 P が発生してロック状態になる。一方、傾斜角 θ が大きいと、増力比は小さくなるが、押圧力 F のばらつきによる締付力 P の変化が少なくなり、ブレーキカの安定化を図れる。

【0027】ところで、ロック部材 42.52がロック 状態になるまでは、押圧力 F を反力受け部材 41.51 で受ける必要がある。また、歩進時にはケーシング 1 が 歩進用反力受け部材 51 の付勢手段 54 によって歩進方向とは逆方向に押圧されるため、歩進力が歩進用反力受け部材 51 の付勢力分だけ減殺される。この場合、歩進用ロック部材 52 を上記傾斜角 θ が図 5(a) に示す如く比較的小さくなるように形成しておけば、押圧力 F の小さな領域でロック状態になるため、歩進用反力受け部材 51 の付勢力は小さくて済み、その分歩進力を大きくすることができる。

【0028】一方、ブレーキ用ロック部材42は、ワーク受けcを所定位置に保持する上で、ブレーキ用ピストン40の付勢力がばらついても安定したブレーキ力が得られるようにすることが必要である。そのため、ブレーキ用ロック部材42は、その傾斜角 θ が図5(b)に示す如く比較的大きくなるように形成することが望ましい。

[0029]

【発明の効果】以上の説明から明らかなように、本発明ロック部材によれば、ガイド部材に対する締付力を無理なく増加できるため、ロックが確実になり、また、本発明アクチュエータによれば、歩進力を大きくして、且つ、安定したブレーキ力を得られるようになり、アクチュエータの信頼性を向上できる。

【図面の簡単な説明】

【図1】 本発明アクチュエータの使用例を示す図

【図2】 本発明アクチュエータの一例の截断側面図

【図3】 (a)(b)第1実施形態の作用を示す図

【図4】 プレーキ用や歩進用のロック部材の横断面図

【図5】 (a) 歩進用ロック部材の縦断面図、(b) ブレーキ用ロック部材の縦断面図

【図6】 インナとアウタの両リングに対するボールの接点間の結線の傾斜角による増力比の変化を示すグラフ 【符号の説明】

) A 尺取虫型アクチュエータ

b ガイド部材

1 ケーシング

2 パルププロッ

ク(流体供給手段)

4 プレーキユニット

40 ブレーキ用ピ

ストン

41 プレーキ用反力受け部材

42 ブレーキ用

ロック部材

43 付勢手段

44 圧力室

5₁, 5₂ 歩進ユニット ピストン 50 歩進用

51 歩進用反力受け部材

52 歩進用ロッ

-9

100 43 41

*101 アウタリング

102 ポール

()

100 インナリン

105 ポールリテーナ

グ

ク部材

5 3 圧力室

【図1】

【図2】

21b 21a 22b 22a 222 22a 222 22a 222 22a 222 22a 222 22a 22

【図3】

(a)

(b)

【図5】

(b)

1)

()