Datenstrukturen & Algorithmen

Peppo Brambilla Universität Bern Frühling 2018

Übersicht

Hashing

- Einführung
- Kollisionsauflösung durch Verkettung
- Hashfunktionen
- Offene Adressierung

Einführung

- Datenstruktur zur effizienten Implementation der Wörterbuchoperationen
 - Insert, Search, Delete
 - Elemente enthalten Schlüssel und Satellitendaten
- Einfachste Lösung: Feld
 - Schlüssel werden als Indizes verwendet
 - Direkter Zugriff: Gegeben Schlüssel k, gesuchtes Element steht an Position k im Feld
 - Brauchen gleich viele Elemente im Feld wie mögliche Schlüssel!

Direkter Zugriff

- Ziel: Dynamische Menge mit Wörterbuchoperationen
- Annahme: Schlüssel aus Universum $U = \{0, ..., m-1\}$
 - m nicht zu gross
 - Keine doppelten Schlüssel
- Adresstabelle mit direktem Zugriff ist Feld T[0, ..., m-1]
 - Falls Element mit Schlüssel k existiert, dann enthält T[k] Zeiger auf Element
 - Sonst T[k] = NIL

Direkter Zugriff

DIRECT-ADDRESS-SEARCH(T, k)

1 return T[k]

DIRECT-ADDRESS-INSERT(T, x)

$$1 \quad T[x.key] = x$$

DIRECT-ADDRESS-DELETE(T, x)

$$1 T[x.key] = NIL$$

- Nützlich wenn Anzahl möglicher Schlüssel viel grösser als Anzahl gespeicherter Elemente
 - Direkter Zugriff vergeudet Speicher
- Grösse der Hashtabelle ist normalerweise
 - proportional zur Anzahl gespeicherter Elemente
 - nicht Anzahl möglicher Schlüssel

- Hauptidee
 - Gegeben Schlüssel k, berechne Index h(k) in Hashtabelle in Abhängigkeit von k
- Themen
 - Hashfunktionen: Aus Schlüssel Index in Hashtabelle berechnen: $k \to h(k)$
 - Kollisionen: zwei Schlüssel ergeben selben Index: $h(k_1) = h(k_2)$

Hashfunktion h

- Nützlich, wenn Anzahl |K| gespeicherter Schlüssel viel kleiner als Anzahl |U| möglicher Schlüssel ist
- Benutze Feld der Grösse $m = \Theta(|K|)$
 - Speicherbedarf $\Theta(|K|)$ statt $\Theta(|U|)$
- Idee: Hashfunktion h
 - Schlüssel k wird an Index h(k) gespeichert $h: U \rightarrow \{0,1,...,m-1\}$
- Zeitkomplexität von Suchen
 - Average case O(1), leider nicht worst-case

Kollisionen

- Zwei oder mehr Schlüssel ergeben denselben Hashwert
 - Nicht auszuschliessen da Schlüsseluniversum viel grösser als Hashtabelle, d.h. |U| > m
- Zwei Methoden zur Behandlung von Kollisionen
 - Verkettung
 - Offene Adressierung

Übersicht

Hashing

- Einführung
- Kollisionsauflösung durch Verkettung
- Hashfunktionen
- Offene Adressierung

Verkettung

- Hashtabelle speichert Zeiger auf Listen
- Listen enthalten Elemente mit gleichem Hashwert

Einfache Verkettung auch möglich

Einfügen

CHAINED-HASH-INSERT(T, x)

- 1 insert x at the head of list T[h(x.key)]
- Worst-case Laufzeit O(1)
 - Unter Annahme, dass Schlüssel nicht schon existiert in Hashtabelle
 - Sonst muss zusätzlich mittels Suchen geprüft werden, ob der Schlüssel schon in der Liste vorkommt

Löschen

Chained-Hash-Delete(T, x)

- 1 delete x from the list T[h(x.key)]
- Keine Suche nötig wenn Zeiger auf Element x gegeben ist
- Worst-case Laufzeit mit doppelt verketteten Listen ist O(1)
- Einfach verkettete Listen erfordern Traversierung wie beim Suchen
 - Brauchen Vorgänger von x um dessen next
 Zeiger anzupassen

Suchen

Analyse

- Gegeben Schlüssel, was ist der Aufwand um Element mit dem Schlüssel zu finden, oder zu entscheiden, dass Schlüssel nicht existiert?
- Abhängig von Belegungsfaktor $\alpha = n/m$
 - Anzahl Elemente in Hashtabelle n
 - Grösse der Hashtabelle *m*
 - Durchschnittliche Anzahl Elemente pro Liste $\alpha < 1, \alpha = 1, \text{oder } \alpha > 1$

Analyse: Worst case

- Alle *n* Schlüssel belegen den gleichen Slot
- Eine Liste der Länge n
- Worst-case Suche dauert $\Theta(n)$

Analyse: Average case

- Annahme: einfaches gleichmässiges Hashing
 - Jedes Element wird mit gleicher Wahrscheinlichkeit auf jeden der m Slots gehasht
- Notation
 - Länge der Liste T[j] ist n_j
 - Anzahl Element in Tabelle $n=n_0+n_1+\cdots+n_{m-1}$
 - Durchschnitt von n_i ist $E[n_i] = n/m = \alpha$
- Annahme: Hashfunktion h berechnet in konstanter Zeit

Analyse: Average case

- Zwei Fälle
 - Erfolgreiche Suche: Hash Tabelle enthält gesuchten Schlüssel
 - Erfolglose Suche: Hash Tabelle enthält gesuchten Schlüssel nicht
- Theorem Erfolglose Suche ist im Mittel $\Theta(1 + \alpha)$

Erfolglose Suche: Beweisidee

- Einfaches gleichmässiges Hashing: jeder Schlüssel k der noch nicht in der Tabelle ist, wird mit gleicher Wahrscheinlichkeit auf jeden der m Plätze abgebildet
- Erfolgloses Suchen: müssen ganze Liste T[h(k)] durchsuchen
 - Erwartete Länge ist $E[n_{h(k)}] = \alpha$
 - Erwartete Anzahl besuchter Elemente ist α
 - Aufwand inkl. Berechnung der Hash-funktion ist $\Theta(1+\alpha)$

Erfolgreiche Suche

- Achtung
 - Erfolglose Suche: alle Listen werden mit gleicher Wahrscheinlichkeit durchsucht
- Anders bei erfolgreicher Suche
 - Wahrscheinlichkeit, dass gewisse Liste durchsucht wird ist proportional zur Anzahl Elemente in dieser Liste
- Theorem Erfolgreiche Suche ist im Mittel $\Theta(1 + \alpha)$

- Annahme: jedes der n Elemente in der Hashtabelle ist mit gleicher Wahrscheinlichkeit das gesuchte Element x
- Anzahl durchsuchter Elemente ist eines mehr als Anzahl Elemente vor x in der Liste, die x enthält
 - Elemente, die nach x eingefügt wurden (einfügen am Kopf der Liste)
- Brauchen Durchschnitt für Anzahl Elemente die nach x in die Liste von x eingefügt wurden

Notation

- x_i ist *i*-tes Element, das in Tabelle eingefügt wurde
- Schlüssel $k_i = x_i . key$
- Indikator-Zufallsvariable für Kollision $X_{ij} = I\{h(k_i) = h(k_j)\}$
- Wahrscheinlichkeit für Kollision bei einfachem gleichmässigen Hashing $\Pr\{h(k_i) = h(k_i)\} = 1/m \Rightarrow E[X_{ij}] = 1/m$

Schlüssel, die vor Schlüssel k_i in Liste eingefügt wurden:

$$\sum_{j=i+1}^{n} X_{ij}$$

$$\implies$$
 # Schritte um Schlüssel k_i zu finden: $1 + \sum_{j=i+1}^{n} X_{ij}$

Durchschnitt über alle
$$n$$
 eingefügte Schlüssel: $\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} X_{ij} \right)$

Erwartungswert davon:
$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right]$$

$$E\left[\frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}X_{ij}\right)\right] = \frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}E[X_{ij}]\right) = \frac{1}{n}\sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n}\frac{1}{m}\right) = \frac{1}{n}\sum_{i=1}^{n}1+\frac{1}{nm}\sum_{i=1}^{n}\sum_{j=i+1}^{n}1 = \frac{1}{nm}\sum_{i=1}^{n}(n-i) = 1+\frac{1}{nm}\left(\sum_{i=1}^{n}n-\sum_{i=1}^{n}i\right) = \frac{1}{nm}\left(n^{2}-\frac{n\cdot(n+1)}{2}\right) = 1+\frac{n-1}{2m} = \frac{1}{nm}\left(n^{2}-\frac{n\cdot(n+1)}{2}\right) = \frac{1}{nm}\left(n^{2}-\frac{n}{2m}\right) = \frac{1}{nm$$

Übersicht

Hashing

- Einführung
- Kollisionsauflösung durch Verkettung
- Hashfunktionen
- Offene Adressierung

Hashfunktionen

- Idealfall: Hashfunktion führt zu einfachem gleichmässigem Hashing
 - Jedes Element wird mit gleicher Wahrscheinlichkeit auf irgendeinen Platz der Tabelle abgebildet
 - Unabhängig von anderen Schlüsseln
- In der Praxis nicht möglich
 - Verteilung der Schlüssel unbekannt
 - Schlüssel nicht unabhängig
- Heuristische Methoden
 - Hashwert soll nicht von Mustern beeinflusst werden, die möglicherweise in Daten existieren
 - "to hash" = "zerhacken"

Divisionsmethode

$$h(k) = k \mod m$$

- Beispiel: $m = 12, k = 100 \Rightarrow h(k) = 4$
- Vorteil: schnell berechnen, eine Division
- Nachteil: gewisse Werte von m sind ungünstig
 - Zweierpotenzen: wenn $m = 2^p$ dann entspricht h(k) den niederwertigste p bits von k
- Gute Wahl: Primzahl nicht zu nahe bei Zweierpotenz

Multiplikationsmethode

$$h(k) = \lfloor m(k \ A \ \text{mod} \ 1) \rfloor$$

- Rezept
 - Wähle Konstante A: 0 < A < 1
 - 1. Multipliziere Schlüssel k mit A
 - 2. Extrahiere Nachkommastellen mittels "mod 1"
 - 3. Multipliziere mit m
 - 4. Runde ab
 - Nachteil: langsamer als Divisionsmethode
- Vorteil: Wert von m nicht kritisch

Effiziente Implementation

- Datenwort habe w bits (typisch $w \in \{32, 64\}$)
- Schlüssel k brauchen w bits
- Wähle
 - Grösse der Hashtabelle Zweierpotenz $m=2^p$
 - Integer s, $0 < s < 2^w$, und $A = \frac{s}{2^w}$

Beispiel

- Parameter p = 3 (m = 8), w = 5, s = 13
- Schlüssel k = 21

Übersicht

Hashing

- Einführung
- Kollisionsauflösung durch Verkettung
- Hashfunktionen
- Offene Adressierung

Offene Adressierung

- Alternative zu Verkettung für Kollisionsbehandlung
- Idee: speichere alle Schlüssel in Hashtabelle selbst
 - Jeder Platz enthält einen Schlüssel oder NIL
- Hashtabelle kann voll werden
 - Belegungsfaktor immer $\alpha \leq 1$
- Kollisionsbehandlung: berechne Sequenz von Plätzen, die sondiert werden

Hashfunktion

$$h: U \times \{0,1,...,m-1\} \rightarrow \{0,1,...,m-1\}$$
Sondierung Platz

- Sequenz der sondierten Plätze muss Permutation von (0,1,...,m-1) sein
 - Anders formuliert: Sondierungssequenz $\langle h(k,0), h(k,1), ..., h(k,m-1) \rangle$ muss Permutation von (0,1,...,m-1) sein
 - Jeder Platz muss genau einmal sondiert werden

Suchen

- Suchen Schlüssel k
- Algorithmus

Initialisiere Sondierung i = 0

- 1. Berechne h(k, i)
- 2. Falls h(k, i) Schlüssel k enthält: erfolgreiche Suche
- 3. Falls h(k, i) NIL enthält: erfolglose Suche
- 4. Falls h(k, i) anderen Schlüssel enthält: inkrementiere i ($i \leftarrow i + 1$)
- 5. Falls i = m: erfolglose Suche, sonst: \rightarrow 1.

Suchen & Einfügen

```
HASH-SEARCH(T, k)
                                   HASH-INSERT(T, k)
  i = 0
                                     i = 0
   repeat
                                      repeat
       j = h(k, i)
                                          j = h(k, i)
                                           if T[j] == NIL
        if T[j] == k
                                                T[j] = k
             return j
                                   5
                                                return j
     i = i + 1
                                   6
   until T[j] == NIL \text{ or } i == m
                                           else i = i + 1
   return NIL
                                   8
                                      until i == m
                                   9
                                      error "hash table overflow"
```

Löschen

- Einfach NIL an den gelöschten Platz schreiben funktioniert nicht!
- Warum?

Löschen

Lösung

- Verwende zusätzlichen Wert deleted anstatt NIL um anzuzeigen, dass Element aus Platz gelöscht wurde
- Suchen behandelt deleted wie wenn ein Schlüssel gespeichert würde, der nicht mit gesuchtem Schlüssel übereinstimmt
- Einfügen behandelt deleted wie freien Platz
- Nachteil
 - Aufwand für Suchen hängt nicht mehr vom Belegungsfaktor ab

Sondierungssequenzen

- Was sind die Eigenschaften einer idealen Methode, um Sondierungssequenzen zu erzeugen?
- Praktische Verfahren, um Sondierungssequenzen zu erzeugen

Sondierungssequenzen

- Idealfall: gleichmässiges Hashing Jeder Schlüssel hat mit gleicher Wahrscheinlichkeit irgendeine der m! Permutation von (0,1,...,m-1) als Sondierungssequenz
 - Verallgemeinerung von einfachem gleichmässigem Hashing
- Gleichmässiges Hashing in der Praxis nicht möglich
 - Garantiere zumindest dass Sondierungssequenz eine Permutation von (0,1,...,m-1) ist
 - Keine der folgenden Techniken erzeugt alle m! Permutationen

Lineares Sondieren

- Hilfshashfunktion h'
 - z.B. Multiplikationsmethode
- Lineares Sondieren hat Hashfunktion

$$h(k,i) = (h'(k) + i) \bmod m$$

- Sondierung i
- Erzeugt Sondierungssequenz

$$T[h'(k)], T[h'(k) + 1], ..., T[m - 1], T[0], ..., T[h'(k) - 1]$$

• Nur *m* verschiedene Sequenzen!

Lineares Sondieren

Nachteil: Primäres Clustering

- Lange Folgen besetzter Plätze
 - Leerer Platz folgend auf i besetzte Plätze wird mit Wahrscheinlichkeit (i+1)/m als nächstes belegt
 - Lange Folgen besetzter Plätze werden noch länger
 - Suchen wird aufwändiger

Quadratisches Sondieren

Hashfunktion

$$h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$$

- Hilfskonstanten $c_1, c_2 \neq 0$
- Besser als lineares Sondieren
 - Kein primäres Clustering
- Nur *m* Sondierungssequenzen
 - Alle Schlüssel k mit gleicher ersten Sondierung h(k,0) führen zu gleicher Sequenz
 - Sekundäres Clustering

Doppeltes Hashing

- Zwei Hilfshashfunktionen h_1 , h_2
- Hashfunktion

$$h(k,i) = (h_1(k) + i h_2(k)) \bmod m$$

- Bedingung: $h_2(k)$ ist teilerfremd zu m damit Sondierungssequenz eine Permutation von (0,1,...,m-1) erzeugt
 - Keine gemeinsamen Faktoren ausser 1
- Mögliche Lösungen
 - m ist Zweierpotenz und h_2 ist immer ungerade
 - m ist prim und $1 < h_2(k) < m$

Doppeltes Hashing

- Vorteil gegenüber linearem und quadratischem Sondieren
 - Erzeugt m^2 statt m verschiedene Sondierungssequenzen
 - Jede Kombination von $h_1(k)$ und $h_2(k)$ ergibt andere Sequenz
- Verhalten in der Praxis nahe am Idealfall des gleichmässigen Hashing

Analyse von offenem Hashing

Annahmen

- Analyse in Bezug auf Belegungsfaktor α
- Tabelle nie komplett voll, d.h. $0 \le \alpha < 1$
- Idealfall: gleichmässiges Hashing
- Kein Entfernen von Schlüsseln
- Suche nach jedem Schlüssel in Tabelle gleich wahrscheinlich

Analyse von erfolgloser Suche

• Theorem: erwartete Anzahl Sondierungen bei erfolgloser Suche ist höchstens $^1/_{1-\alpha}$

```
Zufallsvariable X = \text{Anzahl Sondierungen bei erfolgloser Suche}
```

Gesucht: erwartete Anzahl Sondierungen E[X]

Ereignis A_i : es gibt eine i-te Probe auf einen besetzten Platz

```
X \geq i bedeutet: es werden Sondierungen 1, 2, ..., i-1 auf besetzte Plätze gemacht. \Pr\{X \geq i\} = \Pr\{A_1 \cap A_2 \cap \cdots \cap A_{i-1}\} = \Pr\{A_1\} \cdot \Pr\{A_2 | A_1\} \cdot \Pr\{A_3 | A_1 \cap A_2\} \dots \Pr\{A_{i-1} | A_1 \cap A_2 \cap \cdots \cap A_{i-2}\}
```

Beh:
$$\Pr\{A_j | A_1 \cap \dots \cap A_{j-1}\} = \frac{n-j+1}{m-j+1}$$

- j=1: n gespeicherte Schlüssel, m Plätze, W'keit besetzten Platz zu sondieren: $\frac{n}{m}$
- Sonst: i 1 Sondierungen auf besetzte Plätze bereits erfolgt gleichmässiges Hashing → nächster sondierter Platz wurde bisher noch nicht sondiert. Anzahl verbl. Plätze: m - (j - 1) = m - j + 1davon belegt: n - (j - 1) = n - j + 1→ W'keit dass j-te Probe auf belegten Platz fällt: $\frac{n-j+1}{m-j+1}$

$$- \rightarrow \Pr\{X \ge 1\} = \underbrace{\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdots \frac{n-1+2}{m-1+2}}_{i-1 \text{ Faktoren}}$$

- Weil
$$n < m$$
: $\frac{n-j}{m-j} \le \frac{n}{m}$
 $\Rightarrow \Pr\{X \ge i\} \le \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1}$

• Erwartungswert:

$$E[X] = \sum_{i=0}^{\infty} i \cdot \Pr\{X = i\} | \text{Gleichung } (C.25)$$

$$= \sum_{i=1}^{\infty} \Pr\{X \ge i\}$$

$$\leq \sum_{i=1}^{\infty} \alpha^{i-1}$$

$$= \sum_{i=0}^{\infty} \alpha^{i} | \text{geom. Reihe}$$

$$= \frac{1}{1-\alpha}$$

Analyse von Einfügen

- Einfügen erfordert den gleichen Ablauf wie erfolglose Suche
- Folgerung: Einfügen mit offener Adressierung bei Belegungsfaktor α unter Annahme von gleichmässigem Hashing erfordert im Mittel $^1/_{1-\alpha}$ Sondierungen

Analyse von erfolgreicher Suche

- Theorem: Erwartete Anzahl Sondierungen in erfolgreicher Suche ist höchstens $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$
 - Erfolgreiche Suche nach k erzeugt dieselbe Sondierungssequenz wie beim Einfügen von k
 - Wenn k als (i+1)-ter Schlüssel eingefügt wird, dann hatte α beim Einfügen den Wert $\frac{i}{m}$
 - Die erwartete Anzahl Sondierungen ist deshalb

$$\frac{1}{1-\alpha} = \frac{1}{1-\frac{i}{m}} = \frac{m}{m-i}$$

Alle Schlüssel → Durchschnitt

$$\frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}$$

$$= \frac{1}{\alpha} \cdot \sum_{k=m-n+1}^{m} \frac{1}{k} \qquad | \text{Ungl. } (A.12)$$

$$\leq \frac{1}{\alpha} \cdot \int_{m-n}^{m} \frac{1}{x} dx$$

$$= 1/\alpha \cdot (\ln m - \ln(m-n))$$

$$= 1/\alpha \cdot \ln(m/(m-n))$$

$$= \frac{1}{\alpha} \cdot \ln \frac{1}{1-n/m}$$

$$= \frac{1}{\alpha} \cdot \ln \frac{1}{1-\alpha}$$

Zusammenfassung

- Wörterbuchoperationen Insert, Search, Delete
- Hashtabelle T[0,1,...,m-1]
 - Anzahl Elemente ≪ Anzahl möglicher Schlüssel
 - Hashfunktion $h: U \rightarrow \{0, ..., m-1\}$
 - Kollision: $h(k_1) = h(k_2)$
 - → Verkettung oder offene Adressierung

Zusammenfasung

- Verkettung
 - T[h(k)] enthält verkettete Liste von Schlüsseln
 - Belegungsfaktor $\alpha > 1$ möglich
 - Einfügen: O(1)
 - Löschen: O(1), unter gew. Voraussetzungen
 - Suchen:
 - Worst-case: $\Theta(n)$
 - Average-case: $\Theta(1 + \alpha)$

Zusammenfassung

- Offene Adressierung
 - T[h(k)] enthält Schlüssel
 - Belegungsfaktor $\alpha \leq 1$
 - Suche freie Plätze durch Sondierung h(k, i)
 - Idealfall: gleichmässiges Hashing Erwartete Anzahl Sondierungen:
 - Einfügen und erfolglose Suche: $\leq \frac{1}{1-\alpha}$
 - Erfolgreiche Suche: $\leq \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$

Zusammenfassung

- Sondierungsmethoden
 - lineares Sondieren: $h(k,i) = (h'(k) + i) \mod m$
 - quadratisches Sondieren: $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m$
 - doppeltes Hashing: $h(k,i) = (h_1(k) + ih_2(k)) \mod m$ wobei $h_2(k)$ teilerfremd zu m

Hashfunktionen

- Divisionsmethode: $h(k) = k \mod m$ schnell, gewisse Werte von m ungünstig
- Multiplikationsmethode: $h(k) = \lfloor m(k \ A \ \text{mod} \ 1) \rfloor$ Wert von m nicht kritisch, langsamer als Divisionsmethode

Nächstes Mal

• Kapitel 12: Binäre Suchbäume