SUPPORTING INFORMATION

An Enzyme with High Catalytic Proficiency Utilizes

Distal Site Substrate Binding Energy to Stabilize the

Closed State but at the Expense of Substrate Inhibition

Angus J. Robertson,^{a,#} F. Aaron Cruz-Navarrete,^{a,#} Henry P. Wood,^a Nikita Vekaria,^b Andrea M. Hounslow,^a Claudine Bisson,^a Matthew J. Cliff,^b Nicola J. Baxter,^{a,b} and Jonathan P. Waltho^{a,b,*}

^a School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom

^b Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom

* Corresponding author: Prof. Jonathan P. Waltho. Email: j.waltho@sheffield.ac.uk

This PDF file includes:

Figures S1 to S9
Table S1
Legends for Movies S1 to S3

Other supplementary materials for this manuscript include the following:

Movies S1 to S3

[#] These authors contributed equally

Figure S1. Solution behavior of substrate-free βPGM. (A–B) Pairwise overlays of ¹H¹⁵N-TROSY NMR spectra for (A) substrate-free βPGM_{WT} (black) and substrate-free βPGM_{R49K} (blue), and (B) substrate-free βPGM_{WT} (black) and substrate-free βPGM_{R49A} (red), acquired in standard NMR buffer. Backbone amide peaks for βPGM_{R49K} and βPGM_{R49A} that shift their positions relative to βPGM_{WT} are labeled. There is high degree of correspondence between βPGM_{WT} and βPGM_{R49K}, indicating that the R49K substitution does not have a significant impact on the protein fold (residues V47 and N77 are within 5 Å of K49). In marked contrast, small but widespread differences in peak positions between βPGM_{WT} and βPGM_{R49A} show that the R49A substitution has a moderate effect on the solution properties of the helical cap domain (T16-V87). cis-trans isomerization of the K145-P146 peptide bond which is observed in βPGM_{WT} ²⁸ is also present for βPGM_{R49K} and βPGM_{R49A}, and results in the population of two conformers in slow exchange (~70% cis-P146 and ~30% trans-P146). Additionally, ca. six peaks are present in βPGM_{R49A} that are absent in βPGM_{WT} due to backbone conformational exchange on the millisecond timescale.²⁸ This observation indicates that residue A49 in βPGM_{R49A} abolishes the intermediate exchange dynamic that residue R49 propagates in βPGM_{WT}. (C–D) Weighted chemical shift changes for substrate-free βPGM_{R49K} and substrate-free βPGM_{R49K} with respect to substrate-free βPGM_{WT} are calculated for the backbone amide group of each residue as $\Delta \delta = [(\delta_{\text{HN-X}} - \delta_{\text{HN-Y}})^2 + (0.13 \times (\delta_{\text{N-X}} - \delta_{\text{N-Y}}))^2]^{1/2}$, where X and Y are the two species being compared. (C) Crystal structure of βPGM_{R49K} (PDB 6HDH, chain A) showing residues of the cap domain with 0.00 ppm $< \Delta \delta \le 0.11$ ppm colored in shades of blue for the βPGM_{WT} and βPGM_{R49K} pairwise comparison. Mg_{cat}²⁺ (green sphere) and residue K49 (green sticks) are highlighted. (D) Crystal structure of βPGM_{R49A} (PDB 6HDI, chain A) showing residues of the cap domain with 0.00 ppm $< \Delta \delta \le 0.16$ ppm colored in shades of red for the βPGM_{WT} and βPGM_{R49A} pairwise comparison. Mg_{cat}²⁺ (green sphere) and residue A49 (green sticks) are highlighted.

Figure S2. The closure angle (°) describing cap domain movement through rotation at the interdomain hinge between pairs of βPGM crystal structures determined using DynDom.⁶⁸ Comparisons where no dynamic domains were found by the algorithm are denoted with a rotation angle of 0.0° with an upper bound of 0.2°. Crystal structures of substrate-free βPGM and βPGM complexes, together with their corresponding PDB identification codes are listed as follows: substrate-free βPGM_{WT} (PDB 1ZOL)³¹ substrate-free βPGM_{WT} (PDB 2WHE),³⁵ substrate-free βPGM_{R49K} (PDB 6HDH), substrate-free βPGM_{R49A} (PDB 6HDI), βPGM_{WT}:P₁ complex (PDB 6H93), substrate-free βPGM_{D170N} (PDB 6HDF), βPGM_{WT}:BeF₃:G6P complex (PDB 2WF9),³⁶ βPGM_{D10N}:βG16BP complex (PDB 5OK1),³⁸ βPGM_{D10N}:βG16BP complex (PDB 5OK0),³⁸ βPGM_{WT}:BeF₃:βG1P complex (PDB 2WF8),³⁶ βPGM_{R49A}:MgF₃:G6P complex (PDB 6HDM), βPGM_{R49A}:AlF₄:G6P complex (PDB 6HDK), βPGM_{WT}:MgF₃:G6P complex (PDB 2WF5),³⁵ βPGM_{WT}:AlF₄:G6P complex (PDB 2WF6), βPGM_{R49K}:AlF₄:G6P complex (PDB 6HDJ), βPGM_{D170N}:βG1P complex (PDB 6HDG), and βPGM_{R49K}:MgF₃:G6P complex (PDB 6HDL). PDB identification codes containing suffixes _A and _B denote chain A and chain B, respectively for monomers of the asymmetric unit. Crystal structures have been categorized as open with three clusters of interdomain closure angle, near attack complexes (NAC) or transition state analogue (TSA) complexes and are indicated by bars.

Figure S3. Non-H atom RMSD values (Å) for cap domain and core domain alignments between pairs of βPGM crystal structures determined using PyMOL (The PyMOL Molecular Graphics System, version 1.8/2.2 Schrödinger, LLC). The upper right pseudo-triangular matrix indicates pairwise RMSD values for cap domain (T16–V87) alignments, while the lower left pseudo-triangular matrix indicates pairwise RMSD values for core domain (M1-D15, S88-K221) alignments. A greater level of perturbation is observed for residues of the cap domain in pairwise comparisons involving structures with different closure angles. Crystal structures of substrate-free BPGM and βPGM complexes, together with their corresponding PDB identification codes are listed as follows: substrate-free βPGM_{WT} (PDB 1ZOL),³¹ substrate-free βPGM_{WT} (PDB 2WHE),³⁵ substrate-free βPGM_{R49K} (PDB 6HDH), substrate-free βPGM_{R49A} (PDB 6HDI), βPGM_{WT}:P_i complex (PDB 6H93), substrate-free βPGM_{D170N} (PDB 6HDF), βPGM_{WT}:BeF₃:G6P complex (PDB 2WF9),³⁶ βPGM_{D10N}:βG16BP complex (PDB 5OK1),³⁸ βPGM_{D10N}:βG16BP complex (PDB 5OK0),³⁸ βPGM_{WT}:BeF₃:βG1P complex (PDB 2WF8),³⁶ βPGM_{R49A}:MgF₃:G6P complex (PDB 6HDM), βPGM_{R49A}:AlF₄:G6P complex (PDB 6HDK), βPGM_{WT}:MgF₃:G6P complex (PDB 2WF5),³⁵ βPGM_{WT}:AlF₄:G6P complex (PDB 2WF6), βPGM_{R49K}:AlF₄:G6P complex (PDB 6HDJ), βPGM_{D170N}:βG1P complex (PDB 6HDG), and βPGM_{R49K}:MgF₃:G6P complex (PDB 6HDL). PDB identification codes containing suffixes A and B denote chain A and chain B, respectively for monomers of the asymmetric unit. Crystal structures have been categorized as open with three clusters of interdomain closure angle, near attack complexes (NAC) or transition state analogue (TSA) complexes and are indicated by bars.

Figure S4. Difference density and active site details of the βPGM:AlF₄:G6P and βPGM:MgF₃:G6P TSA complexes. The active sites of (A) βPGM_{R49K}:AlF₄:G6P complex (PDB 6HDJ), (B) βPGM_{R49A}:AlF₄:G6P complex (PDB 6HDK), (C) βPGM_{R49K}:MgF₃:G6P complex (PDB 6HDL), and (D) βPGM_{R49A}:MgF₃:G6P complex (PDB 6HDM). Selected residues (sticks), together with the square-planar AlF₄⁻ moiety (dark gray and light blue sticks), the trigonal-planar MgF₃⁻ moiety (green and light blue sticks), βG6P (purple carbon atoms), structural waters (red spheres), and Mg_{cat}²⁺ (green sphere) are illustrated. Yellow dashes indicate hydrogen bonds and black dashes show metal ion coordination. Difference density (Fo – Fc, green mesh) is contoured at 3σ and was generated following ligand omission from the final structures. The side chain of residue N118, which coordinates one of the phosphodianion oxygen atoms of G6P equivalently in the TSA complexes, has been omitted for clarity.

Figure S5. Determination of the apparent K_d (G6P) values for the β PGM_{R49K}:AlF₄:G6P and β PGM_{R49A}:AlF₄:G6P TSA complexes, monitored using one-dimensional ¹H NMR spectroscopy. (A) A solution of 360–400 mM G6P was titrated serially into 0.5 mM βPGM_{R49K} (blue circles) or 0.5 mM βPGM_{R49A} (red circles) prepared in standard NMR buffer supplemented with 15 mM NaF and 3 mM AlCl₃. The changing intensity of the well-resolved indole resonance of residue W24 (acting as a reporter for G6P binding and adoption of the closed TSA complex in slow exchange) was fitted to determine the apparent K_d (G6P) value for the β PGM_{R49K}:AlF₄:G6P TSA complex (apparent K_d (G6P) = 3.0 ± 0.4 mM) and the β PGM_{R49A}:AlF₄:G6P TSA complex (apparent K_d (G6P) = 18 ± 1 mM). Vertical error bars indicate estimated errors in the measurement of peak intensities. (B) The active site details of the βPGM_{WT}:AlF₄:G6P TSA complex (PDB 2WF6) showing the proximity of residue W24 to G6P. Selected residues (sticks), together with the square-planar AlF₄⁻ moiety (dark gray and light blue sticks), β G6P (purple carbon atoms), structural waters (red spheres), and Mgcat²⁺ (green sphere) are illustrated. Yellow dashes indicate hydrogen bonds and black dashes show metal ion coordination. In substrate-free βPGM_{WT} , $W24_{indole}$: $\delta_{HN} = 10.24$ ppm, $\delta_{N} = 127.63$ ppm and in the β PGM_{WT}:AlF₄:G6P TSA complex, W24_{indole}: δ _{HN} = 10.49 ppm, δ _N = 127.75 ppm. In substrate-free βPGM_{R49K} , W24_{indole}: $\delta_{HN} = 10.20$ ppm, $\delta_{N} = 127.89$ ppm and in the βPGM_{R49K} :AlF₄:G6P TSA complex, W24_{indole}: $\delta_{HN} = 10.55$ ppm, $\delta_{N} = 128.10$ ppm. In substrate-free βPGM_{R49A} , $W24_{indole}$: $\delta_{HN} = 10.13$ ppm, $\delta_{N} = 127.56$ ppm and in the β PGM_{R49A}:AlF₄:G6P TSA complex, W24_{indole}: δ _{HN} = 10.46 ppm, δ _N = 127.84 ppm.

Figure S6. Chemical shift perturbations arising from R49 side chain substitution in the βPGM:AlF₄:G6P and βPGM:MgF₃:G6P TSA complexes. (A–D) Weighted chemical shift changes of the backbone amide group are calculated for each residue as: $\Delta \delta = [(\delta_{HN-X} - \delta_{HN-Y})^2 + (0.13 \times (\delta_{N-X} - \delta_{N-Y}))^2]^{1/2}$, where X and Y are the two species being compared. (A) Crystal structure of the βPGM_{R49K}:AlF₄:G6P TSA complex (PDB 6HDJ) showing residues with 0.0 ppm < $\Delta \delta \le 0.3$ ppm between the βPGM_{R49K}:AlF₄:G6P and βPGM_{WT}:AlF₄:G6P TSA complexes colored in shades of blue. (B) Crystal structure of the βPGM_{R49A}:AlF₄:G6P TSA complex (PDB 6HDK) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:AlF₄:G6P and βPGM_{WT}:AlF₄:G6P TSA complexes colored in shades of red. (C) Crystal structure of the βPGM_{R49K}:MgF₃:G6P TSA complex (PDB 6HDL) showing residues with 0.0 ppm < $\Delta \delta \le 0.4$ ppm between the βPGM_{R49K}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.4$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing residues with 0.0 ppm < $\Delta \delta \le 0.5$ ppm between the βPGM_{R49A}:MgF₃:G6P TSA complex (PDB 6HDM) showing

Figure S7. βPGM catalytic cycle operating in the 31 P NMR time-course experiments and in the coupled assay. Recombinant substrate-free βPGM exists in the nonphosphorylated form, since the half-life of βPGM^P is ~30 s. 34 Addition of excess acetyl phosphate (AcP, green) phosphorylates βPGM generating βPGM^P, but this process is not particularly efficient. 28 βPGM^P now catalyzes the isomerization of βG1P to G6P via a βG16BP reaction intermediate (anticlockwise reaction scheme, black). The two intermediate complexes are labeled βPGM:P6G1P and βPGM:P1G6P to explicitly denote the orientation of βG16BP bound in the active site. Moreover, binding of βG1P to substrate-free βPGM generates an inhibited βPGM:βG1P complex (orange), with a fully closed, near-transition state conformation. At early reaction times, the predominance of, and competition between, the AcP-mediated generation of βPGM^P and formation of the inhibited βPGM:βG1P complex results in a lag phase, which is only alleviated when the concentration of βG16BP produced by βPGM is sufficiently elevated to outcompete these processes.

Figure S8. Reaction kinetics for the conversion of β G1P to G6P catalyzed by β PGM_{WT}, β PGM_{R49K}, and β PGM_{R49A}. The rate of G6P production was measured indirectly using a glucose 6-phosphate dehydrogenase coupled assay, in which G6P is oxidized and concomitant NAD+ reduction is monitored by the increase in absorbance at 340 nm. (A–C) Kinetic profiles showing the time-dependent conversion of 330 μM βG1P to G6P in the presence of 20 mM AcP (10 mM AcP for βPGM_{WT}) in standard kinetic buffer for (A) 5 nM βPGM_{WT}, (B) 60 nM βPGM_{R49K}, and (C) 60 nM βPGM_{R49A}. (D–F) Michaelis-Menten plots showing the dependence of the steady-state reaction velocity (v) on βG1P concentration (5, 15, 35, 50, 70, 100, 160, 230, 330 μM) for (D) 5 nM βPGM_{WT} (n=3), (E) 60 nM βPGM_{R49K} (n=3), and (F) 60 nM βPGM_{R49A} (n=3). Data in each plot were fitted to the standard Michaelis-Menten equation to derive apparent k_{cat} and apparent K_m (β G1P) values and the line of best fit is shown (solid lines). For βPGM_{WT}, the βG1P concentration range used provided reliable fitted parameters (apparent $k_{\text{cat}} = 24.5 \pm 0.7 \text{ s}^{-1}$ and apparent $K_{\rm m}$ (β G1P) = 92 ± 6 μ M).³⁸ However for β PGM_{R49K}, a weak β G1P affinity resulted in fitted parameters with large associated errors (apparent $k_{\rm cat} = 35 \pm 5 \, {\rm s}^{-1}$ and apparent $K_{\rm m}$ ($\beta {\rm G1P}$) = $600 \pm 100 \, {\rm \mu M}$). For $\beta {\rm PGM}_{\rm R49A}$, a linear dependence of steady-state reaction velocity on βG1P concentration precluded the derivation of fitted parameters over the accessible βG1P concentration range. Therefore, the initial data points of each Michaelis-Menten plot were fitted to a linear equation to derive the apparent $k_{\text{cat}}/K_{\text{m}}$ ratio for $\beta \text{PGM}_{\text{WT}}$ (apparent $k_{\text{cat}}/K_{\text{m}} = 0.29$ $s^{-1} \cdot \mu M^{-1}$ for $[\beta G1P] = 5-15 \mu M$, βPGM_{R49K} (apparent $k_{cat}/K_m = 0.05 \text{ s}^{-1} \cdot \mu M^{-1}$ for $[\beta G1P] = 5-100 \mu M$) and βPGM_{R49A} (apparent $k_{cat}/K_m = 0.02 \text{ s}^{-1} \cdot \mu \text{M}^{-1}$ for $[\beta G1P] = 5-330 \mu \text{M}$) and the line of best fit is shown (dashed lines). For βPGM_{R49A}, the fitted lines derived using the standard Michaelis-Menten equation and a linear equation are overlapped.

Figure S9. Difference density and active site details of the inhibited βPGM_{D170N}:βG1P complex, the βPGM_{WT}:αGal1P complex, and the βPGM_{WT}:P_i complex. The active sites of (A) inhibited βPGM_{D170N}:βG1P complex (PDB 6HDG), (B) βPGM_{WT}:αGal1P complex (PDB 1Z4O, chain A), 52 (C) βPGM_{WT}:P_i complex (PDB 6H93, chain A), and (D) βPGM_{WT}:P_i complex (PDB 6H93, chain B). Selected residues (sticks), together with βG1P (gold carbon atoms), αGal1P (teal carbon atoms), P_i occupying the distal site, structural waters (red spheres), and Mg_{cat}²⁺ (green sphere) are illustrated. Yellow dashes indicate hydrogen bonds and black dashes show metal ion coordination. Difference density (Fo – Fc, green mesh) is contoured at 3σ and was generated following ligand omission from the final structures. The 6-hydroxyl group of βG1P in the proximal site of the inhibited βPGM_{D170N}:βG1P complex has two arrangements resolved for the C5–C6 bond. The side chain of residue N118, which coordinates one of the phosphodianion oxygen atoms of both βG1P and αGal1P, has been omitted for clarity. For the βPGM_{WT}:P_i complex, two monomers are present in the asymmetric unit and analysis of the domain arrangements shows that chain B is slightly more closed.

Table S1. X-ray data collection, data processing and refinement statistics.

Complex	βPGM _{D170N}	βPGM _{D170N} :βG1P	βPGMwt:Pi	β PGM _{R49K}	β PGM _{R49A}
PDB code	PDB 6HDF	PDB 6HDG	PDB 6H93	PDB 6HDH	PDB 6HDI
Wavelength (Å)	0.92819	0.92819	0.97950	0.97624	0.97625
Beamline, Facility	i04-1, DLS	i04-1, DLS	i04, DLS	i03, DLS	i03, DLS
Space group	P2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁	P2 ₁	P2 ₁
Cell dimensions:					
a, b, c (Å)	38.77, 119.31, 53.17	37.56, 55.08, 105.84	38.35, 117.14, 53.19	38.13, 117.14, 53.01	38.20, 116.90, 53.17
α, β, γ (°)	90.0, 94.8, 90.0	90.0, 90.0, 90.0	90.0, 99.1, 90.0	90.0, 97.4, 90.0	90.0, 98.1, 90.0
Resolution (Å) a	52.98-1.40 (1.42-1.40)	48.86-1.15 (1.17-1.15)	32.05-1.77 (1.80-1.77)	31.36-1.62 (1.65-1.62)	52.64-2.03 (2.07-2.03
Rmerge a,b	0.091 (1.243)	0.126 (1.986)	0.085 (1.426)	0.052 (0.770)	0.131 (0.829)
Rpim a,c	0.051 (1.243)	0.037 (0.634)	0.035 (0.583)	0.032 (0.770)	0.077 (0.488)
CC-half ^a	0.997 (0.462)	0.999 (0.562)	0.999 (0.467)	0.998 (0.491)	0.992 (0.525)
a	8.2 (1.0)	10.8 (1.2)	12.5 (1.2)	12.7 (1.5)	7.5 (1.7)
Completeness (%) a	95.4 (95.1)	100.0 (100.0)	100.0 (100.0)	96.1 (92.7)	99.6 (99.2)
Multiplicity ^a	3.8 (4.0)	12.6 (10.6)	6.8 (6.9)	3.7 (3.4)	3.7 (3.8)
Total reflections	342050	991156	308459	210878	111221
Unique reflections	90031	78880	45050	56242	29676
Molecular replacement model	PDB 2WHE	PDB 2WF5	PDB 2WHE	PDB 2WHE	PDB 2WHE
Refinement statistics					
Complex	βPGM _{D170N}	βPGM _{D170N} :βG1P	βPGM _{WT} :P _i	βPGM _{R49K}	βPGM_{R49A}
PDB code	PDB 6HDF	PDB 6HDG	PDB 6H93	PDB 6HDH	PDB 6HDI
R (%) d / Rfree (%) e	17.2 / 22.3	14.9 / 17.8	17.9 / 23.3	18.2 / 21.8	20.5 / 27.3
Number of atoms:	17.27.22.0	11.57 17.0	17157 2010	10.2 / 21.0	20.0 / 27.0
Protein f	1737, 1701	1772	1697, 1689	1686, 1678	1692, 1693
Ligands g	0	48	10	0	0
Metal ions h	2	1	2	2	2
Water	291	241	282	210	243
Protein residues f	219, 219	219	219, 219	218, 218	220, 221
RMS deviations:	,		,	,	,
Bonds (Å)	0.01	0.01	0.12	0.01	0.01
Angles (°)	1.50	1.51	1.49	1.50	1.51
Average B factors(A ²):					
Main chain f	18.7, 18.1	12.5	26.7, 29.9	27.4	26.4, 28.3
Side chains f	23.5, 23.0	15.8	32.0, 35.1	33.4	31.5, 33.1
Ligands g	23.3, 23.0	13.6	63.9	55.7	31.3, 33.1
Metal ions h	20.4	13.5	30.5	27.7	22.2
	20.4				23.3
Water	26.5	24.2	36.9	36.6	35.3
Ramachandran analysis:					
Favored / allowed (%)	98.2	97.8	98.4	98.6	97.7
Disallowed (%)	0.0	0.0	0.0	0.0	0.0

^a Values for the higher resolution shell are in parentheses.

$$^{b}R_{merge} = \frac{\sum_{hkl}\sum_{i}|I_{i}-I_{m}|}{\sum_{hkl}\sum_{i}I_{i}}$$

$$^{c}R_{pim} = \frac{\sum_{hkl}\sqrt{\frac{1}{n-1}}\sum_{i=1}^{n}|I_{i}-I_{m}|}{\sum_{hkl}\sum_{i}I_{i}}$$

where I_i and I_m are the observed intensity and mean intensity of related reflections, respectively.

$$^{d}R = \frac{\sum_{hkl} ||F_{obs}| - k|F_{calc}||}{\sum_{hkl} |F_{obs}|}$$

where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes, respectively.

Table S1 (continued). X-ray data collection, data processing and refinement statistics.

Data collection and data processing statistics							
Complex	βPGM _{WT} :AlF ₄ :G6P	βPGM _{R49K} :AlF ₄ :G6P	βPGM _{R49A} :AlF ₄ :G6P	βPGM _{R49K} :MgF ₃ :G6P	βPGM _{R49A} :MgF ₃ :G6P		
PDB code	PDB 2WF6	PDB 6HDJ	PDB 6HDK	PDB 6HDL	PDB 6HDM		
Wavelength (Å)	0.933	0.97625	0.97625	0.97629	0.97625		
Beamline, Facility	ID14-2, ESRF	i03, DLS	i03, DLS	i03, DLS	i03, DLS		
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁		
Cell dimensions:							
a, b, c (Å)	37.80, 54.50, 105.00	104.21, 37.22, 54.22	37.23, 54.29, 104.24	37.55, 54.30, 104.20	37.30, 54.34, 104.62		
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0		
Resolution (Å) a	20.00-1.40 (1.44-1.40)	48.10-1.16 (1.18-1.16)	54.29-1.24 (1.26-1.24)	37.55-1.16 (1.16-1.18)	54.34-1.30 (1.32-1.30)		
Rmerge a,b	0.1 (0.37)	0.084 (1.082)	0.099 (1.019)	0.068 (1.345)	0.052 (0.263)		
Rpim a-c	=	0.033 (0.460)	0.040 (0.480)	0.027 (0.591)	0.022 (0.138)		
CC-half a	=	0.999 (0.554)	0.999 (0.530)	0.999 (0.515)	0.999 (0.944)		
$<$ I/ σ (I)> a	7.3 (2.2)	11.2 (1.5)	10.1 (1.4)	14.2 (1.3)	21.1 (6.2)		
Completeness (%) a	98.5 (99.4)	95.4 (88.5)	100.0 (97.9)	98.5 (92.3)	99.7 (95.3)		
Multiplicity ^a	-	7.3 (6.2)	7.0 (5.3)	7.1 (5.9)	6.8 (4.5)		
Total reflections	-	515051	424367	518578	361965		
Unique reflections	43021	70516	60728	73452	53048		
Molecular replacement model	PDB 2WF5	PDB 2WF6	PDB 2WF6	PDB 2WF5	PDB 2WF5		
Data Refinement							
Complex	βPGM _{WT} :AlF ₄ :G6P	βPGM _{R49K} :AlF ₄ :G6P	βPGM _{R49A} :AIF ₄ :G6P	βPGM _{R49K} :MgF ₃ :G6P	βPGM _{R49A} :MgF ₃ :G6P		
Complex PDB code	βPGM _{WT} :AlF ₄ :G6P PDB 2WF6	βPGM _{R49K} :AlF ₄ :G6P PDB 6HDJ	βPGM _{R49A} :AlF ₄ :G6P PDB 6HDK	βPGM _{R49K} :MgF ₃ :G6P PDB 6HDL	βPGM _{R49A} :MgF ₃ :G6P PDB 6HDM		
	1	-	1				
PDB code	PDB 2WF6	PDB 6HDJ	PDB 6HDK	PDB 6HDL	PDB 6HDM		
PDB code R (%) d / Rfree (%) e	PDB 2WF6 16.1 / 19.1	PDB 6HDJ 14.3 / 16.6	PDB 6HDK 13.6 / 16.7	PDB 6HDL 13.2 / 16.4	PDB 6HDM 12.6 / 14.8		
PDB code R (%) ^d / Rfree (%) ^e Protein ^f	PDB 2WF6 16.1 / 19.1 1680	PDB 6HDJ 14.3 / 16.6 1739	PDB 6HDK 13.6 / 16.7 1706	PDB 6HDL 13.2 / 16.4 1774	PDB 6HDM 12.6 / 14.8 1802		
PDB code R (%) ^d /Rfree (%) ^e Protein ^f Ligands ^g	PDB 2WF6 16.1 / 19.1 1680 21	PDB 6HDJ 14.3 / 16.6 1739 21	PDB 6HDK 13.6 / 16.7 1706 21	PDB 6HDL 13.2 / 16.4 1774 20	PDB 6HDM 12.6 / 14.8 1802 20		
PDB code R (%) d / Rfree (%) c Protein f Ligands s Metal ions h	PDB 2WF6 16.1 / 19.1 1680 21 2	PDB 6HDJ 14.3 / 16.6 1739 21	PDB 6HDK 13.6 / 16.7 1706 21 3	PDB 6HDL 13.2 / 16.4 1774 20 2	PDB 6HDM 12.6 / 14.8 1802 20 2		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water	PDB 2WF6 16.1 / 19.1 1680 21 2 253	PDB 6HDJ 14.3 / 16.6 1739 21 1 179	PDB 6HDK 13.6 / 16.7 1706 21 3 212	PDB 6HDL 13.2 / 16.4 1774 20 2 278	PDB 6HDM 12.6 / 14.8 1802 20 2 213		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f	PDB 2WF6 16.1 / 19.1 1680 21 2 253	PDB 6HDJ 14.3 / 16.6 1739 21 1 179	PDB 6HDK 13.6 / 16.7 1706 21 3 212	PDB 6HDL 13.2 / 16.4 1774 20 2 278	PDB 6HDM 12.6 / 14.8 1802 20 2 213		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations:	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219		
PDB code R (%) d/Rfree (%) e Protein f Ligands g Metal ions h Water Protein residues f RMS deviations: Bonds (Å)	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (e)	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (°) Average B factors(A²)	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218 0.01 1.40	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01 1.50	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01 1.50	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219 0.01 1.50	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219 0.01 1.47		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (°) Average B factors(A²) Main chain f	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218 0.01 1.40	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01 1.50	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01 1.50	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219 0.01 1.50	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219 0.01 1.47		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (°) Average B factors(A²) Main chain f Side chains f	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218 0.01 1.40	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01 1.50 14.1 17.6	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01 1.50 13.7 17.7	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219 0.01 1.50 14.0 16.9	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219 0.01 1.47		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (°) Average B factors(A²) Main chain f Side chains f Ligands e Metal ions h Water	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218 0.01 1.40 13.5 15.2 11.0	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01 1.50 14.1 17.6 9.1, 8.8	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01 1.50 13.7 17.7 9.0, 9.5	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219 0.01 1.50 14.0 16.9 11.6, 10.9	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219 0.01 1.47 13.3 16.5 10.0, 9.1		
PDB code R (%) d/Rfree (%) e Protein f Ligands s Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (°) Average B factors(A²) Main chain f Side chains f Ligands s Metal ions h Water Ramachandran analysis	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218 0.01 1.40 13.5 15.2 11.0 12.4	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01 1.50 14.1 17.6 9.1, 8.8 8.6	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01 1.50 13.7 17.7 9.0, 9.5 23.1, 8.9	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219 0.01 1.50 14.0 16.9 11.6, 10.9 15.6, 9.3	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219 0.01 1.47 13.3 16.5 10.0, 9.1 14.4, 8.4		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (°) Average B factors(A²) Main chain f Side chains f Ligands e Metal ions h Water	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218 0.01 1.40 13.5 15.2 11.0 12.4	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01 1.50 14.1 17.6 9.1, 8.8 8.6	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01 1.50 13.7 17.7 9.0, 9.5 23.1, 8.9	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219 0.01 1.50 14.0 16.9 11.6, 10.9 15.6, 9.3	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219 0.01 1.47 13.3 16.5 10.0, 9.1 14.4, 8.4		
PDB code R (%) d/Rfree (%) e Protein f Ligands e Metal ions h Water Protein residues f RMS deviations: Bonds (Å) Angles (°) Average B factors(A²) Main chain f Side chains f Ligands e Metal ions h Water Ramachandran analysis	PDB 2WF6 16.1 / 19.1 1680 21 2 253 218 0.01 1.40 13.5 15.2 11.0 12.4 23.4	PDB 6HDJ 14.3 / 16.6 1739 21 1 179 219 0.01 1.50 14.1 17.6 9.1, 8.8 8.6 26.1	PDB 6HDK 13.6 / 16.7 1706 21 3 212 219 0.01 1.50 13.7 17.7 9.0, 9.5 23.1, 8.9 28.4	PDB 6HDL 13.2 / 16.4 1774 20 2 278 219 0.01 1.50 14.0 16.9 11.6, 10.9 15.6, 9.3 27.5	PDB 6HDM 12.6 / 14.8 1802 20 2 213 219 0.01 1.47 13.3 16.5 10.0, 9.1 14.4, 8.4 24.1		

 $^{^{}e}\,R_{free} = \frac{\Sigma_{hkl \subset T} ||F_{obs}| - k|F_{calc}||}{\Sigma_{hkl \subset T} |F_{obs}|}$

where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes, respectively and T is the test set of data omitted from refinement (5% in this case).

^f For structures where there are two monomers in the asymmetric unit, the values for chain A and chain B are given, respectively.

^g Only relevant ligands are presented, other ligands (e.g. ethylene glycol and acetate, etc) have been omitted.

 $[^]h$ Generally, Mg^{2+} ions were only observed in the crystals, however in some cases Na^+ ions were also noted. Where this was the case, B-factors are listed for Na^+ ions and Mg^{2+} ions, respectively.

Movie S1 (separate files). Animations comparing the active sites of the βPGM:AlF₄:G6P and βPGM:MgF₃:G6P TSA complexes. (A) Comparison between the βPGM_{R49K}:AlF₄:G6P complex and the βPGM_{WT}:AlF₄:G6P complex. (B) Comparison between the βPGM_{R49A}:AlF₄:G6P complex and the βPGM_{WT}:AlF₄:G6P complex. (C) Comparison between the βPGM_{R49K}:MgF₃:G6P complex and the βPGM_{WT}:MgF₃:G6P complex. (D) Comparison between the βPGM_{R49A}:MgF₃:G6P complex and the βPGM_{WT}:MgF₃:G6P complex.

Movie S2 (separate files). Animation illustrating part of the β PGM catalytic cycle. The animation begins with the β G1P substrate bound in the open active site of β PGM^P. Domain closure and engagement of residue D10 in the active site, allows phosphoryl transfer to occur from the aspartylphosphate group of residue D8 to β G1P, generating the β G16BP reaction intermediate and β PGM. Subsequent domain opening occurs and the steps of catalysis are reversed. (A) View showing the full β PGM enzyme. (B) View focusing on the distal site of β PGM.

Movie S3 (separate files). Animation illustrating the inhibition by hexose 1-phosphates facilitating the closure of nonphosphorylated β PGM. The animation begins with α Gal1P bound in the open active site of β PGM. Domain closure and engagement of residue D10 in the active site, allows the ground state β PGM: α Gal1P inhibited complex to adopt a fully closed, near-transition state conformation. Subsequent domain opening occurs with α Gal1P remaining in the active site. (A) View showing the full β PGM enzyme. (B) View focusing on the distal site of β PGM.