Homework 12

Jeremy Benedek

April 17, 2016

Exercise (3.79). Classify each of the following homomorphisms as a monomorphism, an epimorphism, an isomorphism, or none of these special types of homomorphisms.

- 1. $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_{24}$ defined by $\phi([a]_{12}) = [2a]_{24}$
- 2. $\phi: \mathbb{Z} \to \mathbb{Z}_9$ defined by $\phi(a) = [3a]_9$
- 3. $\phi: \mathbb{Z}_6 \to \mathbb{Z}_3$ defined by $\phi([a]_6) = [a]_3$
- 4. $\phi: \mathbb{Z}_n \to \mathbb{Z}_n$ defined by $\phi([a]_n) = [-a]_n$

Solution. 1. Monomorphism as the function is 1-1, so the domain maps to the image.

- 2. Homomorphism as the function is neither 1-1 or onto.
- 3. Epimorphism as the function if onto but not 1-1.
- 4. Isomorphic as the function is 1-1 and onto.

Theorem (3.83). For every natural number n, the two groups (C_n, \oplus_n) and (\mathbb{Z}_n, \oplus) are isomorphic

П

Proof. Write your proof here.

Theorem (3.84). Let $\phi: G \to H$ be an isomorphism. Then $\phi^{-1}: H \to G$ is an isomorphism.

Proof. Since ϕ is isomorphic, and therefore onto, for every $h \in H$ there exists some $g \in G$ such tat $\phi^{-1}(h) = g$. Assume

Let
$$h_1, h_2 \in H$$
 and $g_1, g_2 \in G$. ϕ is injective since $\phi^{-1}(h_1) = \Box$

Theorem (3.86). Let G be a group with an element g. Define $\phi_g: G \to G$ by $\phi_g(h) = ghg^{-1}$. Then $\phi_g: G \to G$ is an isomorphism called conjugation by g.

Proof. Write your proof here. \Box

Theorem (3.87). Let $\phi: G \to H$ be a homomorphism. The ϕ is a monomorphism if and only if $Ker(\phi) = \{e_G\}$. In particular, ϕ is an isomorphism if and only if $Im(\phi) = H$ and $Ker(\phi) = \{e_G\}$.

Proof. Write your proof here.

Theorem (3.89). Let k and n be natural numbers. The map $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$ defined by $\phi([a]_n) = [ka]_n$ is a homomorphism.

Proof. ϕ respects the product as: $\phi([a]_n) + \phi([b]_n) = [ka]_n + [kb]_n = [ka+kb]_n = [k(a+b)]_n$ and $phi([a]_n) + \phi([b]_n) = \phi([a+b]_n) = [k(a+b)]_n$ ϕ is well defined as: Assume $[a]_n = [b]_n$ and $a = b + jn, j \in \mathbb{Z}$ $[ka]_n = [kb]_n$ k(b+jn)

 $n = [kb + kjn]_n = [kb]_n \phi$ is a homomorphism.

Exercise (3.90). Make and prove a conjecture that gives necessary and sufficient conditions on the natural numbers k and n to conclude that $\phi: \mathbb{Z}_n \to \mathbb{Z}_n$ defined by $\phi([a]_n) = [ka]_n$ is an isomorphism. Use this insight to show that there are several different isomorphisms $\phi: \mathbb{Z}_{12} \to \mathbb{Z}_{12}$

Solution. My conjecture is there must no common factors between k and n. Using this insight, there are many isomorphisms since you set n=12, so k could equal 5,7,11.

Exercise (3.91). 1. Use conjugation to find two different isomorphisms from D_4 to D_4 .

2. Why does conjugation not give any interesting isomorphisms from \mathbb{Z}_n to itself?

Solution. 1. If $g = R_0$ and $g^{-1} = R_0$ that would be an isomorphism. Also, if $g = R_{180}$ and $g^{-1} = R_{180}$ that would also be an isomorphism.

2. There are no interesting isomorphisms since the commutative property present, and by rearranging terms, you find $g*g^{-1}*h$ and $g*g^{-1}$ is the identity element, so there are no interesting isomorphisms since you h*e=h