	1						
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
·	$\sigma_1^{#1} + \alpha \beta$	$\sigma_1^{\#_2^2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^-}^{\#1} +^\alpha$	$t_{1}^{#2} + \alpha$

Lagrangian density Unitarity conditions $r_2 < 0 \&\& t_1 < 0$

Odd

 $\tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi} + \frac{2}{3} \, r_2 \, \partial^\beta \omega^{\theta\alpha}_{\ \ \kappa} \, \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa}$ $_{\alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} +$ $_{\kappa}^{\lambda}\partial^{\kappa}f_{\lambda\alpha}+$ $t_1 \partial^{\alpha} f^{\lambda}$ $_{\kappa}^{+} + 4 r_{3} \partial_{\theta} \omega_{\lambda}^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$ $\frac{2}{3} r_2 \partial_{\theta} \omega_{\alpha\beta}^{\ \ \ \ \ } \partial_{\kappa} \omega^{\theta\alpha\beta} +$ $\frac{1}{2}t_1\partial_{\kappa}f_{\theta}^{\lambda}\partial^{\kappa}f_{\lambda}^{\theta} + \frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta} - \frac{1}{3}t_1$ $\frac{2}{3}r_2\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial^{\beta}\omega^{\alpha\lambda}_{\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}$ $4 r_3 \partial^{\beta} \omega_{\lambda}^{\lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{} - 4 r_3 \partial_{\alpha} \omega_{\lambda}^{ \alpha} \partial^{\lambda} \omega_{\beta}^{ \kappa}$

C#*	f_{1}^{*2}	0	0	0	<u>i kt1</u> 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2 k^2 t_1}{3}$
!	$f_{1^-}^{\#_1} \alpha$	0	0	0	0	0	0	0
¢	$\omega_{1^{}}^{*2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$-\frac{1}{3}i\sqrt{2}kt_1$
,	$\omega_{1^{^{-}}\alpha}^{^{\#_{1}}}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$
- #	$f_1^{"+}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
C #	$\omega_1^{"\dot{+}}\alpha \beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
	$\omega_1^{"\dot+}\alphaeta$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	•	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

	#	1	1	3	3	3	3	2	19
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#1}{}^{\alpha} == \sigma_{1}^{\#2}{}^{\alpha}$	$\iota_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2^+}^{\#1}\alpha\beta - 2 \bar{l} k \sigma_{2^+}^{\#1}\alpha\beta == 0$	Total #:

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

_	$\sigma_{0}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$	
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0	
$ au_{0^{+}}^{\#1} + au_{0^{+}}^{\#2} +$	0	0	0	0	
$\tau_{0}^{\#2}$ †	0	0	0	0	
σ#1 +	0	0	0	1	

$\omega_{2}^{\#1}_{+}$ $f_{2}^{\#1}_{+}$ $\omega_{2}^{\#1}_{-}$ $aeta_{X}$	0	0	$\frac{t_1}{2}$
$f_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	<u>£1</u> 2	$\frac{i k t_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} +^{\alpha\beta}$	$f_{2+}^{#1} + \alpha \beta$	$\omega_{2}^{*1} +^{lphaeta\chi}$

$\sigma_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	$\frac{2}{t_1}$	
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0	
	$+^{\alpha\beta}$	$+^{\alpha \beta}$	$\alpha eta \chi$	

 $\tau_{2}^{\#1}$

 $\sigma_{2}^{\#1}$

0

0

0

0

0

0

 $6k^2r_3$

 $f_{0}^{\#1}$

0

0

0

0

 $f_{0}^{#1} + f_{0}^{#2} + G_{0}^{#1} + G_{$

0

0

0

0 0	2	
	Massive particl	e
?	Pole residue:	-
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	<u>t</u>
?	Spin:	(

Parity:

(No massless particles)