1 Preparation of Hydrogen

1.
$$Na/Ca + coldH_2O \longrightarrow NaOH + H_2$$

2. Se/Fe/Mn/Co/Ni/Cr
$$\xrightarrow{\text{Steam}}$$
 H₂

3.
$$CH_4 + H_2O \xrightarrow{Ni} H_2$$

4.
$$Zn/Sn/Pb/Si/Al \xrightarrow{NaOH} H_2$$

5. C + H₂O
$$\xrightarrow{\text{Bosch Process}}$$
 H₂

6. Fe
$$\frac{\text{Lone's Process}}{\text{H}_2\text{O}}$$
 \rightarrow H₂

7. Zn/Mg/Fe
$$\xrightarrow{\text{Acid}}$$
 H₂

8. NaH/LiH/CaH₂/NaBH₄
$$\xrightarrow{\text{H}_2\text{O}}$$
 H₂

9. Mg/Zn/Al
$$\xrightarrow{\text{Boil}}$$
 H₂

2 Properties of H_2O and D_2O

Properties	$\mathrm{H_{2}O}$	D_2O
Melting Point	273.2 K	276.8 K
Boiling Point	373.2 K	$374.4~\mathrm{K}$
Maximum Density (in gcm^{-3})	1.000	1.1073
Heat of Vaporization (in KJmol ⁻¹)	40.66	41.61
Surface Tension	72	67.8
Dielectric Constant	78.39	78.06
Refractive Index	1.3333	1.3284
Viscosity (at 273 K)	10.87	14.2

$3 H_2O_2$

3.1 Preparation of H_2O_2

1. Na₂O₂ +
$$\xrightarrow{\text{H}_2SO_4(\text{dil} \cdot)}$$
 H₂O₂

2. BaO₂
$$\xrightarrow{\text{H}_2\text{SO}_4\text{orH}_3\text{PO}_4}$$
 H_2O_2

4. BaO₂
$$\xrightarrow{\text{CO} + \text{H}_2\text{O}}$$
 H_2O_2

5.
$$H_2S_2O_8 \xrightarrow{H_2O} H_2O_2$$

Structure of H₂O₂: Open Book Structure

Properties of H₂O₂ 3.3

1. As Reducing Agent:

(a)
$$H_2O_2 \xrightarrow{K_2Cr_2O_7/H^+} Cr^{3+}$$

(b)
$$H_2O_2 \xrightarrow{K_2MnO_4/H^+} Mn^{2+}$$

(b)
$$H_2O_2 \xrightarrow{K_2MnO_4/H^+} Mn^{2+}$$

(c) $H_2O_2 \xrightarrow{MnO_2/H^+} Mn^{2+}$

(d)
$$H_2O_2 \xrightarrow{Ag_2O} Ag$$

- 2. As Bleaching Agent: $\mathrm{H_2O_2} \longrightarrow \mathrm{H_2O} + [\mathrm{O}]$
- 3. As Oxidizing Agent:

(a)
$$H_2O_2 \xrightarrow{K_2Cr_2O_7/H^+} CrO_5$$

(b)
$$H_2O_2 \xrightarrow{H_2S} H_2O + S$$

(c)
$$H_2O_2 \xrightarrow{Fe^{2+}} Fe^{3+}$$

(d)
$$H_2O_2 \xrightarrow{\Gamma} I_2$$

(e)
$$H_2O_2 \xrightarrow{NO_2^-} NO_3^-$$

(f)
$$H_2O_2 \xrightarrow{SO_3^{2-}} SO_4^{2-}$$

Physical Properties of Alkali Metals

- 1. Atomic radii: Li< Na< K < Rb < Cs
- 2. Ionic radii:

(a) Gas:
$$Li^+ < Na^+ < K^+ < Rb^+ < Cs^+$$

(b) In a
queous state:
$$\rm Li^+_{(aq)} \! > \! Na^+_{(aq)} \! > \! K^+_{(aq)} \! > \! Rb^+_{(aq)} \! > \! Cs^+_{(aq)}$$

3. Melting Point:
$$Li > Na > K > Rb > Cs$$

4. Boiling Point: Li
$$>$$
 Na $>$ K $>$ Rb $>$ Cs

- 5. Density: * Li < Na < K < Rb < Cs
- 6. Specific Heat Capacity: Li > Na > K > Rb > Cs
- 7. Reducing Nature: Li > Cs > Rb \approx K > Na
- 8. Flame Colour in Bunsen Burner:
 - (a) Li: Crimson Red
 - (b) Na: Golden Yellow
 - (c) K: Pale Violet
 - (d) Rb: Red Violet
 - (e) Cs: Bluish

5 NaOH

5.1 Preparation

5.2 Properties

- 1. NaOH $\stackrel{\text{B}}{\longrightarrow}$ Na₂BO₃
- 2. NaOH $\stackrel{\text{Si}}{\longrightarrow}$ Na₂SiO₃
- 3. NaOH $\stackrel{\operatorname{Sn}}{\longrightarrow}$ Na₂SnO₃
- 4. NaOH $\xrightarrow{\text{Al}_2\text{O}_3}$ NaAlO₂
- 5. NaOH $\xrightarrow{\text{PbO}_2}$ Na₂PbO₃
- 6. NaOH $\xrightarrow{\text{ZnO}}$ Na₂ZnO₂
- 7. NaOH $\xrightarrow{\text{CO} + \Delta}$ HCOONa
- 8. NaOH $\stackrel{S}{\longrightarrow}$ Na₂S + H₂O + Na₂SO₃
- 9. NaOH $\stackrel{\mathrm{NO}_2}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-}$ NaNO $_2$ + NaNO $_3$
- 10. NaOH $\xrightarrow{P_4}$ NaH₂PO₃ + PH₃
- 11. NaOH $\stackrel{SO_2}{\longrightarrow}$ Na₂SO₃
- 12. NaOH $\stackrel{\text{CO}_2}{\longrightarrow}$ Na₂CO₃
- 13. NaOH $\xrightarrow{\text{coldX}_2}$ $X^- + XO^-$
- 14. NaOH $\xrightarrow{X_2 + \Delta}$ $X^- + XO_3^-$

$6 \text{ NaCO}_3 \cdot 10 \text{ H}_2\text{O}$

6.1 Preparation

1. Ammonical NaCl + CaCO₃ $\xrightarrow{\text{Solvay's Process}}$ NaCO₃ · 10 H₂O

6.2 Properties

1. NaCO₃· 10 H₂O
$$\xrightarrow{SO_2}$$
 Na₂SO₃

2. NaCO₃· 10 H₂O
$$\xrightarrow{\text{CaCl}_2}$$
 Na₂CO₃

3.
$$NaCO_3 \cdot 10 H_2O \xrightarrow{AgNO_3} AgCO_2$$

4. NaCO₃·10 H₂O
$$\xrightarrow{\text{CuSO}_4}$$
 CuCO₃

5.
$$NaCO_3 \cdot 10 H_2O \xrightarrow{ZnSO_4} ZnCO_3 \cdot Zn(OH)_2$$

6. NaCO₃·10 H₂O
$$\xrightarrow{\text{SiO}_2}$$
 Na₂SiO₃ + CO₂

7.
$$NaCO_3 \cdot 10 H_2O \xrightarrow{CO_2 + H_2O(Excess)} NaHCO_3$$

6.3 NaHCO₃

1.
$$NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$$

2. NaHCO₃
$$\xrightarrow{\text{ZnSO}_4}$$
 ZnCO₃

7 NaCN

7.1 Preparation

1.
$$NaNH_2 \xrightarrow{Coke + \Delta} NaCN$$

2. NaOH
$$\xrightarrow{\text{HCN}}$$
 NaCN

3.
$$CaCN_2 \xrightarrow{Na_2CO_3 + Coke} NaCN$$

7.2 Properties

1. NaCN
$$\xrightarrow{\text{Au + Air}} \text{Na}_2[\text{Au}(\text{CN}_4)]$$

2. NaCN
$$\xrightarrow{\text{FeSO}_4}$$
 Na₄[Fe(CN)₆]

3. NaCN
$$\stackrel{\text{CuSO}_4}{----}$$
 Na₃[Cu(CN)₄]

4. NaCN
$$\xrightarrow{\text{CdSO}_4}$$
 Na₂[Cd(CN)₄]

5. NaCN
$$\xrightarrow{\text{AgNO}_3}$$
 Na[Ag(CN)₂]

KI8

8.1 Preparation

- 1. KOH → KI
- 2. KOH 12 KI

8.2 Properties

1. KI
$$\xrightarrow{\mathrm{KMnO_4}}$$
 K₂SO₄ + MnSO₄ + I₂ + H₂O

2. KI
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 K₂SO₄ + I₂ + SO₂

3. KI
$$\xrightarrow{\text{CuSO}_4}$$
 Cu₂I₂ + I₂

4. KI
$$\xrightarrow{\text{Pb}(\text{CH}_3\text{COO})_2}$$
 $\xrightarrow{\text{PbI}_2}$ \downarrow Yellow

5. KI
$$\xrightarrow{\text{AgNO}_3}$$
 AgI \downarrow Yellow

6. KI
$$\xrightarrow{\text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{SO}_4}$$
 K $_2\text{SO}_4 + \text{Cr}_2(\text{SO}_4)_3 + \text{I}_2 + \text{H}_2\text{O}$

7. KI
$$\xrightarrow{\text{HgCl}_2}$$
 HgI₂ $\xrightarrow{\text{HI}}$ KHgI₄ $\xrightarrow{\text{NH}_3\text{orNH}_4^+}$ O NH₂I \downarrow Hg Mile's base

8. KI
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 $\xrightarrow{\text{K}_2\text{SO}_4}$ $\xrightarrow{\text{Al}_2(\text{SO}_4)_3}$ $\xrightarrow{\text{K}_2\text{SO}_4}$ $\xrightarrow{\text{Al}_2(\text{SO}_4)_3}$ \times 24 H₂O Note: General Formula of Alum: $\text{M}_2^+\text{SO}_4 \cdot \text{M}_2^{3+}(\text{SO}_4)_3 \cdot 24 \text{ H}_2\text{O}$

Physical Properties of Alkali Earth Metals 9

- 1. Atomic radii: Be < Mg < Ca < Sr < Ba
- 2. Melting Point: Be > Ca > Sr > Ba > Mg
- 3. Density: Ba > Sr > Be > Mg > Ca

- 4. Heat of Hydration (in $KJmol^{-1}$): Li > Na > K > Rb > Cs
- 5. Reducing Nature: Ba > Sr > Ca > Mg > Be
- 6. Flame Colour in Bunsen Burner:
 - (a) Be: None
 - (b) Mg: None
 - (c) Ca: Brick Red
 - (d) Sr: Crimson
 - (e) Ba: Apple Green
 - (f) Ra: Crimson

10 Preparation and properties of magnesium compounds

$$2. \ \mathrm{MgCl}_2 \cdot 6 \, \mathrm{H}_{20} \xrightarrow{\mathrm{DryHCl}} \ \mathrm{MgCl}_2 \xrightarrow{\mathrm{Electrolysis}} \ \mathrm{Mg} \xrightarrow{\mathrm{Air}} \ \mathrm{Mg}_3 \mathrm{N}_2 + \mathrm{MgO}_3 \mathrm{N}_2 + \mathrm{MgO}_3 \mathrm{N}_2 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}_3 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}_3 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}_3 \mathrm{N}_3 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}_3 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}_3 \mathrm{N}_3 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}_3 \mathrm{N}_3 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}_3 \mathrm{N}_3 \mathrm{N}_3 + \mathrm{MgO}_3 \mathrm{N}_3 \mathrm{N}$$

$$3. \ \mathrm{MgCl_2} \cdot 6 \, \mathrm{H_{20}} \xrightarrow{\mathrm{NaHCO_3}} \ \mathrm{MgCO_3} \xrightarrow{\Delta} \ \mathrm{Mg)} + \mathrm{CO_2} \xrightarrow{\mathrm{HI}} \ \mathrm{MgI_2} \cdot 5 \, \mathrm{H_2O}$$

$$4.~\mathrm{MgCO_3} \xrightarrow{\mathrm{H_2SO_4}} \mathrm{MgSO_4 \cdot 7\,H_2O} \xrightarrow{\mathrm{Coke}} \mathrm{MgO} + \mathrm{SO_2} + \mathrm{CO_2}$$

5.
$$MgCO_3 \xrightarrow{HNO_3} Mg(NO_3)_2 \cdot 6 H_2O$$

11 Preparation and properties of Calcium compounds

1. CaO
$$\xrightarrow{\text{P2O5}}$$
 Ca₃(PO₄)₂

2. CaO
$$\xrightarrow{\text{SiO2}}$$
 CaSiO₃

3. CaO
$$\xrightarrow{\text{H}_2\text{O}}$$
 Ca(OH)₂ $\xrightarrow{\text{NH}_4^+}$ NH₃

4.
$$Ca(OH)_2 \longrightarrow CaCl_2 + Ca(ClO)_2$$
 or $Ca(OCl)Cl$

5. CaO
Coke +
$$\Delta$$

CaC
CaC
Nitrolim or Carbon Cynamide

6.
$$CaC_2 \xrightarrow{H_2O} H_2C_2$$

7. CaOH
$$\xrightarrow{\text{dil} \cdot \text{H}_2\text{SO}_4}$$
 CaSO₄ · 2 H₂O $\xrightarrow{\text{120}^\circ\text{C}}$ CaSO₄ · $\frac{1}{2}$ H₂O $\xrightarrow{\text{200}^\circ\text{C}}$ CaSO₄ · 2 H₂O $\xrightarrow{\text{BaryataH}_2\text{O}}$ BaSO₄ \downarrow White $***$