Methods of solving eigenvalue problems

Anna Lina P. Sjur and Jan-Adrian H. Kallmyr

September 26, 2018

Abstract

1 Introduction

A great variety of problems in the physical sciences can be represented as eigenvalue problems, which generally takes the form:

$$O\mathbf{v} = \lambda \mathbf{v},\tag{1}$$

where O is an operator, λ is an eigenvalue, and \mathbf{v} is an eigenvector. Such problems can easily be solved in terms of linear algebra, and is therefore of great use in simplifying complicated problems, as well as providing a framework for creating efficient algorithms. In particular, we will look at the motion of a fixed buckling beam, and show that this is numerically identical to the motion of quantum dots. Specifically, we will solve the following eigenvalue problem

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}x^2} + f(x)\right)u(x) = \lambda u(x). \tag{2}$$

Starting with the methods section, we will present the buckling beam problem, as well as the quantum dot problem, scaling and generalising them to the form of eq. 1. Using different numerical methods, we will use unit testing to make sure that each algorithm is implemented correctly. Moving on to the results section, we will present the efficiency and error of each algorithm in terms of CPU-time and relative error respectively. Then finally, in the discussion

section, we will compare the different methods, and look at more possiblities for problems that can be solved using the same general algorithms.

2 Methods

We will FLAGG

2.1 The buckling beam

Considering first the buckling beam problem, we have

$$\gamma \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = -Fu(x), \quad x \in [0, L]$$
 (3)

where γ is a property constant, u(x) the vertical displacement, and F the force applied at (L, 0) towards the origin. We can scale this equation by defining a parameter $\rho = \frac{x}{L}$. Inserting, we get

$$-\frac{\mathrm{d}^2}{\mathrm{d}\rho^2}u(\rho) = \lambda u(\rho), \quad \rho \in [0, 1]$$
 (4)

where $\lambda = \frac{FL^2}{\gamma}$. Now we see that this equation is on the form of eq. 2. However, enforcing Dirichlet boundary conditions u(0) = u(1) = 0 and using a 2nd order central approximation for n integration steps we obtain

$$-\frac{v_{i+1} - 2v_i + v_{i-1}}{h^2} + \mathcal{O}(h^2) = \lambda_i v_i, \quad (5)$$

where $h = \frac{\rho_n - rho_0}{n}$. Disregarding the boundaries (which are set to 0) we obtain the eigenvalue equation

$$A\mathbf{v} = \lambda \mathbf{v}.\tag{6}$$

Here

$$A = \begin{bmatrix} d & a & 0 & \dots & 0 \\ a & d & a & 0 & \dots & 0 \\ 0 & a & d & a & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \ddots & a & d & a \\ 0 & \dots & \dots & 0 & a & d \end{bmatrix}, \qquad \begin{pmatrix} -\frac{\hbar^2}{2m\alpha^2} \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} - \frac{m^2\omega^2\alpha^4}{\hbar^2}\rho^2\right) u(\rho) = \epsilon\lambda u(\rho), \\ -\frac{\hbar^2}{2m\alpha^2} \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} - \frac{m^2\omega^2\alpha^4}{\hbar^2}\rho^2\right) u(\rho) = \epsilon\lambda u(\rho), \\ \text{where we can define a natural energy scale } \epsilon = \frac{\hbar^2}{2m\alpha^2}, \text{ and a natural length scale } \alpha = \sqrt{\frac{\hbar}{m\omega}}, \\ \text{yielding the dimensionless equation}$$

is an tridiagonal matrix where $d = \frac{2}{h^2}$ and $a = -\frac{1}{h^2}$, λ is an eigenvalue, and $\mathbf{v} \in (0,n)$ is an eigenvector. The analytical eigenvalues are given by

$$\lambda_j = d + 2a\cos\left(\frac{j\pi}{n+1}\right),\tag{8}$$

 $j = 1, 2, \dots n - 1.$

Single electron in an harmonic 2.2oscillator potential

We want to model an electron in a three dimensional harmonic oscillator potential

$$V(r) = \frac{1}{2}m\omega^2 r^2, \quad r = \sqrt{x^2 + y^2 + z^2}$$
 (9)

 $r \in (0, \infty)$ FLAGG, m is the mass, and ω is the frequency. The quantum state can then be represented as the wavefunction

$$|\Psi\rangle \simeq \Psi(r,\phi,\theta) = R(r)Y_l^m(\phi,\theta),$$
 (10)

where R(r) is the radial part, and $Y_l^m(\theta,\phi)$ are the spherical harmonics. What we need to solve then is the radial equation

$$\left(\frac{-\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}r^2} + V(r) + \frac{l(l+1)}{r^2}\right)u(r) = Eu(r).$$

(See the appendix for more details on the wavefunction and the radial eq.) Here l is the orbital momentum, u(r) = rR(r), and E are the eigenvalues of $\Psi(r,\theta,\phi)$. We will assume our electron has no orbital momentum (l = 0), and scale eq. 11 by substituting $\rho = \frac{r}{\alpha}$ and $\lambda = \frac{E}{\epsilon}$, inserting V(r), and get

$$-\frac{\hbar^2}{2m\alpha^2} \left(\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} - \frac{m^2\omega^2\alpha^4}{\hbar^2} \rho^2 \right) u(\rho) = \epsilon \lambda u(\rho), \tag{12}$$

where we can define a natural energy scale $\epsilon = \frac{\hbar^2}{2m\alpha^2}$, and a natural length scale $\alpha = \sqrt{\frac{\hbar}{m\omega}}$, yielding the dimensionless equation

$$\left(-\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \rho^2\right) u(\rho) = \lambda u(\rho). \tag{13}$$

Discretising as in eq. 5, the equation becomes

$$-\frac{v_{i+1} - 2v_i + v_{i-1}}{h^2} + V_i v_i = \lambda v_i, \qquad (14)$$

where $V_i = \rho_i^2 = (\rho_0 + ih)^2$. Enforcing the Dirichlet boundary conditions, we see that 14 can be written on matrix form as

$$A\mathbf{v} = \lambda \mathbf{v}.\tag{15}$$

$$A = \begin{bmatrix} d_1^e & a & 0 & \dots & \dots & 0 \\ a & d_2^e & a & 0 & \dots & 0 \\ 0 & a & d_3^e & a & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \ddots & a & d_{n-1}^e & a \\ 0 & \dots & \dots & 0 & a & d_n^e \end{bmatrix}, (16)$$

where $d_i^e = \frac{2}{h^2} + V_i$ and a is as before. The analytical eigenvalues are here given by:

2.3Two electrons in an harmonic oscillator potential

We will now consider the problem of two electrons in the aforementioned potential. As the electrons are interacting, we will have to modify the radial equation by adding the Coloumb interaction term

$$V(r_1, r_2) = \frac{\beta e^2}{|\mathbf{r}_1 - \mathbf{r}_2|},$$
 (17)

where $\beta e^2 = 1.44 eV nm$, e is the electron charge, and \mathbf{r}_1 and \mathbf{r}_2 are the positions of electron 1 and 2 respectively. To get the modified radial equation on the form of eq. 2, we use the relative distance $\mathbf{r} \equiv \mathbf{r}_1 - \mathbf{r}_2$, center of mass $\mathbf{R} \equiv \frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2)$ reference system. We will further only consider the radial solution of the relative distance, and not the center of mass. Using the same scaling parameters α , ϵ , as before (see appendix for the full procedure), we obtain the equation:

$$\left(-\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \omega_r^2 \rho^2 + \frac{1}{\rho}\right) \psi(r) = \lambda \psi(r). \tag{18}$$

Here $\rho = \frac{r}{\alpha}$, $\omega_r^2 = \frac{1}{4} \frac{m^2 \omega^2}{\hbar^2} \alpha^4$, and $\psi(r)$ is the relative distance part of the radial solution. Discretising as usual, and enforcing the Dirichlet conditions, we get our equation on matrix form

$$A\mathbf{v} = \lambda \mathbf{v},$$

where the diagonal elements are now given by $d_i^{2e} = \frac{2}{h^2} + \omega_r^2 \rho^2 + \frac{1}{\rho}$.

2.4 Algorithm: Jacobi's method

The strategy of Jacobi's method is to preform a series of similarity transformations on the matrix A in order to diagonalize the matrix. We say that matrix B is similar to A if

$$B = S^{-1}AS.$$

and that the transformation from A to B is a similarity transformation. If S is a real orthogonal matrix we have that

$$S^{-1} = S^T$$
 and $B = S^T A S$.

Since A is a real symmetric matrix there exists a real orthogonal matrix P such that

$$D = P^T A P$$

is a diagonal matrix. Furthermore, the entries along the diagonal of D is the eigenvalues of A. Since the matrix product of two orthogonal matrices is another orthogonal matrix, we can preform a series of similarity transformations until we get a diagonal matrix. That is

$$S_k^T S_{k-1}^T \cdots S_1^T A S_1 \cdots S_{k-1} S_k = D$$

where S_i , i = 1, ..., k are orthogonal matrices.

2.5 Programming technicalities

All our programs are written in C++, using python3.6 to produce figures and tables. We use armadillo with LAPACK to define matrices and vectors, as well as comparing LAPACK's eigenvalue solver with the Jacobi algorithm. All our code can be found in a github repository "FYS3150" by janadr¹.

3 Results

4 Discussion

References

¹https://github.com/janadr/FYS3150/tree/master/prosjekt2

n	${ m t_g/t_s}$	$\mathbf{t_{LU}}/\mathbf{t_s}$
10	2.08	3.70
10^{2}	1.89	$1.00 \cdot 10^{2}$
10^{3}	1.48	$1.05\cdot 10^4$
10^{4}	1.43	$1.18 \cdot 10^{6}$
10^{5}	1.39	_
10^{6}	1.41	-
10^{7}	1.39	_

Table 1: Ratio between CPU time for the general algorithm $(\mathbf{t_g})$, the special algorithm $(\mathbf{t_g})$ and the LU decomposition algorithm $(\mathbf{t_{LU}})$ for different matrix sizes (\mathbf{n}) . The LU decomposition crashed for \mathbf{n} greater than 10^4 .

 \mathbf{A}

$$example matrix = \begin{bmatrix} b_1 & c_1 & 0 & \dots & \dots & 0 \\ a_1 & b_2 & c_2 & 0 & \dots & 0 \\ 0 & a_2 & b_3 & c_3 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \ddots & a_{n-2} & b_{n-1} & c_{n-1} \\ 0 & \dots & \dots & 0 & a_{n-1} & b_n \end{bmatrix},$$

Figure 1: The numeric solution using different solving algorithms. The graphs for n=100 and n=1000 are so similar that they are not distinguishable.

Derivation of the radial equation

Considering the case of a particle in a three dimensional harmonic oscillator potential, we have the Hamiltonian

$$H = -\frac{\hbar^2}{2m} \nabla^2 + V(r), \quad r = \sqrt{x^2 + y^2 + z^2}$$
(A.1)

which in spherical coordinates is given by

$$H = -\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + V(r) + \frac{L^2}{2mr^2}, \tag{A.2}$$

where

$$L^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right], \tag{A.3}$$

is the squared angular momentum operator. Since L^2 does not act on r, we have that H and L^2 commute, and neglecting spin, a quantum state can then be represented as a wavefunction

$$|\Psi\rangle \simeq \Psi(r,\phi,\theta) = R(r)Y_l^m(\phi,\theta),$$
 (A.4)

where R(r) is the radial solution, and $Y_l^m(\theta, \phi)$ are the eigenfunctions of L^2 (spherical harmonics). The Schrödinger equation is then

$$HR(r)Y_l^m(\phi,\theta) = ER(r)Y_l^m(\phi,\theta). \tag{A.5}$$

Here E are the eigenvalues of $\Psi(r, \theta, \phi)$. Letting L^2 act on $Y_m^l(\theta, \phi)$ we obtain its eigenvalues $\hbar^2 l(l+1)$. Substituting $R(r) = \frac{u(r)}{r}$, we see that

$$\frac{1}{r^2}\frac{\partial}{\partial r}\bigg(r^2\frac{\partial}{\partial r}\bigg)\frac{u(r)}{r} = \frac{1}{r^2}\frac{\partial}{\partial r}\bigg[r^2\bigg(\frac{\partial u}{\partial r}\frac{1}{r} - \frac{u(r)}{r^2}\bigg)\bigg] = \frac{1}{r^2}\bigg(\frac{\partial u}{\partial r} + r\frac{\partial^2 u}{\partial r^2} - \frac{\partial u}{\partial r}\bigg) = \frac{1}{r}\frac{\partial^2 u}{\partial r^2}.$$

Multiplying by r on both sides, the problem then reduces to the radial equation

$$-\frac{\hbar^2}{2m} \left(\frac{d^2}{dr^2} - V(r) - \frac{l(l+1)}{r^2} \right) u(r) = Eu(r).$$
 (A.6)