TOPIC 3. INTRODUCTION TO LINEAR REGRESSION

Linear Correlation

 Pearson's correlation coefficient: shows linear correlation between two continuous variables

Covariance (sample):

$$\hat{cov}(x, y) = \frac{\sum_{i=1}^{n} (x_i - \bar{X})(y_i - \bar{Y})}{n-1}$$

 x_i and y_i are observations of two continuous variables, \overline{X} and \overline{Y} are sample means of the two continuous variables, and n is the sample size.

Interpretation of Covariance

cov(X, Y) > 0: X and Y are positively correlated

cov(X, Y) < 0: X and Y are inversely correlated

cov(X, Y) = 0: X and Y are uncorrelated (independent when the joint distribution of X and Y is Normal)

Correlation Coefficient (Population)

Pearson's correlation coefficient (population) can be defined as:

$$r = \frac{cov(X, Y)}{\sqrt{var(X)} \cdot \sqrt{var(Y)}}$$

Interpretation of Correlation Coefficient

- Measures the relative strength of *linear* relationship between two variables
- Unit-less
- Ranges between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any linear relationship

Visualizing Correlation Coefficients

Linear Correlation - Part I

Linear Correlation - Part II

Linear Correlation - Part III

Calculation of Sample Correlation Coefficient

$$\hat{r} = \frac{\text{cov } ariance(x, y)}{\sqrt{\text{var } x} \sqrt{\text{var } y}} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} \sqrt{\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2}{n-1}}$$

Continue...

Distribution of Correlation Coefficient

If X and Y are uncorrelated variables and follow a bivariate normal distribution, a function of their sample correlation coefficient follows a t-distribution with n-2 degrees of freedom.

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

Simple Linear Regression

- Explore a linear model for estimating mean of *Y* or predicting *Y* using inputs *X*.
- In regression, one variable is considered independent (=predictor) variable (X) and the other the dependent (=response) variable Y.

Visualization of Simple Linear Regression

- Remember this:
- y=mx+b?

Slope and Intercept

- In an equation of a line, y = mx+b, m is the slope and b is the intercept.
- A slope of 3 means that any 1 unit change in x will result in a 3 units change in y.
- An intercept of 2 means that if x is equal to 0 then y is equal to 2.

Prediction by Linear Regression Model

- We target on obtaining the optimal value of m and b so that if we have any x, we can most accurately estimate y
- After estimating m and b, we will predict y which is unknown based on the obtained value of x using the following relation.
- \blacksquare $E(Y_i|x_i) = b + mx_i$

Model for Simple Linear Regression

Assumptions in Linear Regression

- Linear Regression Model assumes
 - The relationship between x and Y is linear
 - Y is distributed normally at each value of x
 - The variance of Y at every value of x is the same
 - The observations are independent

The standard error of Y given x is the variability around the regression line at any given value of x. It is assumed to be equal at all values of x.

Regression Model Interpretation

 A^2

 SS_{total}

Total squared distance of observations from naive (overall) mean of y

Total variability

Distance from regression line to naïve mean of y

Variability due to x (regression)

SS_{residual} Variance around the regression line Additional variability not explained by x

Estimating Slope and Intercept – Least Square Estimation

Least Squares Estimation

What are we trying to estimate? *m*, the slope, and b, the intercept

What's the constraint? We are trying to minimize the squared distance (hence the "least squares") between the observations themselves and the predicted values, or <u>also called the "residuals"</u>, or <u>left-over unexplained variability</u>

Difference_i =
$$y_i$$
 – $(mx + b)$ => Difference_i² = $(y_i$ – $(mx + b))2$

Find the *m* and b that gives the minimum sum of the squared differences. How do you minimize a function? Take the derivative; set it equal to zero; and solve. Typical max/min problem from calculus....

$$\frac{\partial}{\partial m} \sum_{i=1}^{n} (y_i - (mx_i + b))^2 = 2\sum_{i=1}^{n} (y_i - mx_i - b)(-x_i)$$
$$2(\sum_{i=1}^{n} (-y_i x_i + mx_i^2 + bx_i)) = 0$$

Results

Slope:
$$\widehat{m} = \frac{sample\ Cov(x,y)}{sample\ Var(x)} = \frac{SS_{xy}}{SS_x}$$

Intercept:
$$\hat{b} = \bar{y} - \hat{m}\bar{x}$$

Regression lines always go through the point (\bar{x}, \bar{y})

Relationship with Correlation

$$\hat{r} = \frac{SS_{xy}}{\sqrt{SS_x SS_y}} \qquad \hat{m} = \frac{SS_{xy}}{SS_x}$$

$$\hat{r} = \hat{m} \frac{SD_x}{SD_y} \text{ or } = \hat{m} \frac{\sqrt{SS_x}}{\sqrt{SS_y}}$$

Where SD is sample standard deviation, i.e. $SD_x = \sqrt{\frac{SS_x}{n-1}}$, $SD_y = \sqrt{\frac{SS_y}{n-1}}$

Significance testing

Slope

Distribution of slope $\sim t_{n-2}(m, \text{ s.e.}(\widehat{m}))$, s.e. means standard error

 H_0 : m = 0 (no linear relationship)

 $H_1: m \neq 0$ (linear relationship exists)

$$T_{n-2} = \frac{\widehat{m} - 0}{s.e.(\widehat{m})}$$

Standard Error of Slope

s. e.
$$(\widehat{m}) = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}{n-2}}$$

where
$$SS_x = \sum_{i=1}^n (x_i - \bar{x})^2$$
 and $\hat{y}_i = \hat{b} + \hat{m}x_i$

Residual Analysis: Check Assumptions

$$e_i = y_i - \hat{y}_i$$

- The residual for observation i, e_i , is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Examine for constant variance for all levels of X (Homoscedasticity)
 - Evaluate normal distribution assumption
 - Evaluate independence assumption
- Graphical Analysis of Residuals

Residual Analysis for Linearity

Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Residual Analysis for Homoscedasticity

Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Residual Analysis for Independence

Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Multiple Linear Regression

- Confounders in estimating target y
- Multiple predictors x
- **Example:** $y = m_1x_1 + m_2w + m_3z + b$

Each regression coefficient is the amount of change in the outcome variable that would be expected per one-unit change of the predictor, if all other variables in the model were held constant.

An initial taste, more will be taught in advanced courses.