1

CHAPTER - 13 Properties of Triangles

EE24BTECH11061 - Rohith Sai

I. C. MCQs with One Correct Answer

- 1) In a triangle *ABC*, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$. Let *D* divide *BC* internally in the ratio 1 : 3 then $\frac{\sin \angle BAD}{\sin \angle CAD}$ is equal to
 - a) $\frac{1}{\sqrt{6}}$
 - b) $\frac{1}{3}$
 - c) $\frac{1}{\sqrt{3}}$
 - d) $\sqrt{\frac{2}{3}}$

(1995S)

- 2) In a triangle ABC, $2ac \sin \frac{1}{2}(A B + C) =$
 - a) $a^2 + b^2 c^2$
 - b) $c^2 + a^2 b^2$
 - c) $b^2 c^2 a^2$
 - d) $c^2 a^2 b^2$

(2000S)

- 3) In a triangle *ABC*, let $\angle C = \frac{\pi}{2}$. If *r* is the inradius and *R* is the circumradius of the triangle, then 2(r + R) is equal to
 - a) a + b
 - b) b+c
 - c) c + a
 - d) a+b+c

(2000S)

- 4) A pole stands vertically inside a triangular park $\triangle ABC$. If the angle of elevation of the top of the pole from each corner of the park is same, then in $\triangle ABC$ the foot of the pole is at the
 - a) centroid
 - b) circumcentre
 - c) incentre
 - d) orthocentre

(2000S)

5) A man from the top of a 100 metres high tower sees a car moving towards the tower at an angle of depression of 30°. After some time, the angle of depression becomes 60°. The distance (in metres) travelled by the car during this time is

- a) $100\sqrt{3}$
- b) $\frac{200\sqrt{3}}{3}$
- c) $\frac{100\sqrt{3}}{3}$
- d) $200\sqrt{3}$

(2001S)

- 6) Which of the following pieces of data does NOT uniquely determine an acute-angled triangle $\triangle ABC$ (R being the radius of the circumcircle)?
 - a) $a, \sin A, \sin B$
 - b) *a*, *b*, *c*
 - c) $a, \sin B, R$
 - d) $a, \sin A, R$

(2002S)

- 7) If the angles of a triangle are in the ratio 4: 1:1, then the ratio of the longest side to the perimeter is
 - a) $\sqrt{3}: 2 + \sqrt{3}$
 - b) 1:6
 - c) $1:2+\sqrt{3}$
 - d) 2:3

(2003S)

- 8) The sides of a triangle are in the ratio 1 : $\sqrt{3}$: 2, then the angles of the triangle are in the ratio
 - a) 1:3:5
 - b) 2:3:4
 - c) 3:2:1
 - d) 1:2:3

(2004S)

- 9) In an equilateral triangle, 3 coins of radii 1 unit each are kept so they touch each other and also the sides of the triangle. Area of the triangle is
 - a) $4 + 2\sqrt{3}$
 - b) $6 + 4\sqrt{3}$
 - c) $12 + \frac{7\sqrt{3}}{4}$
 - d) $3 + \frac{7\sqrt{3}}{4}$

(2005S)

10) In a triangle ABC, a, b, c are the lengths of its

sides and A, B, C are the angles of triangle ABC. The correct relation is given by

- a) $(b-c)\sin\left(\frac{B-C}{2}\right) = a\cos\left(\frac{A}{2}\right)$ b) $(b-c)\cos\frac{A}{2} = a\sin\left(\frac{B-C}{2}\right)$ c) $(b+c)\sin\left(\frac{B+C}{2}\right) = a\cos\left(\frac{A}{2}\right)$ d) $(b-c)\cos\frac{A}{2} = a\sin\left(\frac{B+C}{2}\right)$

(2005S)

- 11) One angle of an isosceles \triangle is 120° and radius of its incircle = $\sqrt{3}$. Then the area of the triangle in sq. units is
 - a) $7 + 12\sqrt{3}$
 - b) $12 7\sqrt{3}$
 - c) $12 + 7\sqrt{3}$
 - d) 4π

(2006 - 3M, -1)

- 12) Let ABCD be a quadrilateral with area 18, with side AB parallel to the side CD and 2AB = CD. Let AD be perpendicular to AB and CD. If a circle is drawn inside the quadrilateral ABCD touching all the sides, then the radius is
 - a) 3
 - b) 2
 - c) $\frac{3}{2}$
 - d) 1

(2007 - 3 Marks)

- 13) If the angles A, B and C of a triangle are in an arithmetic progression and if a, bandc denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A$ is
 - a) $\frac{1}{2}$
 - b) $\frac{\sqrt[2]{3}}{2}$ c) 1

 - d) $\sqrt{3}$

(2010)

14) Let PQR be a triangle of area Δ with a = $2, b = \frac{7}{2}$ and $c = \frac{5}{2}$, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2\sin P - \sin 2P}{2\sin P + \sin 2P}$ equals

(2012)

- 15) In a triangle the sum of two sides is x and the product of the same sides is y. If $x^2 - c^2 = y$, where c is the third side od the triangle, then the ratio of the inradius to the circum-radius of the triangle is

(JEE Adv. 2014)