Ch 2.2: Assessing Model Accuracy

Lecture 3 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Fri, Sep 1, 2023

Announcements

Last time:

Ch 2.1, Vocab day!

Announcements:

- Get on slack!
 - +1 point on the first homework if you post a gif in the thread
- First homework due TODAY. Covers:
 - ▶ Weds 8/31 lecture
 - ► Fri 9/2 Lecture
- Office hours
 - ► Tuesdays, Rachel (EGR 1508A) 3:30pm 5pm
 - Wednesdays, Dr Munch (EGR 1511) 11am noon
 Figuring out new time
 - ► Thursdays, Dr Munch (EGR 1511) 11am noon
 - Fridays, Rachel (EGR 1508A) 11:30am 1pm

Covered in this lecture

- Mean Squared Error (regression)
- Train vs Test
- Bias Variance Trade off

Quick review of notation

Section 1

Mean Squared Error

Which is better?

A linear model $\hat{f}_L(X) = \hat{\beta}_0 + \hat{\beta}_1 X$ gives a reasonable fit here

A quadratic model $\hat{f}_Q(X) = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 X^2$ fits slightly better.

No free lunch

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

Group Work

Given the following data, you decide to use the model

$$\hat{f}(X_1,X_2)=1-3X_1+2X_2.$$

What is the MSE?

X_1	X_2	Υ
0	7	14
1	-3	-6
5	2	-10
-1	1	7

Training MSE

Train vs test

Training set:

The observations $\{(x_1, y_1), \dots, (x_n, y_n)\}$ used to get the estimate \hat{f}

Test set:

The observations $\{(x'_1, y'_1), \cdots, (x'_{n'}, y'_{n'})\}$ used to compute the average squared prediction error

$$\frac{1}{n'}\sum_{i}(y_i'-\hat{f}(x_i'))^2$$

Why not just get the best model for the training data?

A more linear example

A more non-linear example

A simple solution: Train/test split

More on this in Ch 5

Section 2

Bias-Variance Trade-Off

Bias-variance

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

Variance

Variance: the amount by which \hat{f} would change if we estimated it using a different training data set.

Bias

Bias: the error that is introduced by approximating a (complicated) real-life problem by a much simpler model.

Group work

Label the line corresponding to each of the following:

- MSE
- Bias
- Variance of $\hat{f}(x_0)$
- ullet Variance of arepsilon

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

Another example

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

Yet another example

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

$$E(y_0 - \hat{f}(x_0))^2 = \operatorname{Var}(\hat{f}(x_0)) + \left[\operatorname{Bias}(\hat{f}(x_0))\right]^2 + \operatorname{Var}(\varepsilon)$$

Group work: coding

See jupyter notebook

Next time

- Today
 - Homework due midnight on D2L
- Monday:
 - No class
- Friday:
 - ▶ 3.1 Linear Regression

Lec#	Date			Reading
1	Mon	Aug 28	Intro / First day stuff / Python Review Pt 1	1
2	Wed	Aug 30	What is statistical learning?	2.1
	Fri	Sep 1	Assessing Model Accuracy	2.2.1, 2.2.2
3	Mon	Sep 4	No class - Labor day	
4	Wed	Sep 6	Linear Regression	3.1
5	Fri	Sep 8	More Linear Regression	3.1/3.2
6	Mon	Sep 11	Even more linear regression	3.2.2
7	Wed	Sep 13	Probably more linear regression	3.3
8	Fri	Sep 15	Intro to classification, Logisitic Regression	2.2.3, 4.1, 4.2, 4.3