Diberikan lingkaran L_1 dengan jari-jari r. Di dalam L_1 dibuat bujur sangkar B_1 , dengan keempat titik sudutnya terletak pada busur L_1 . Dalam B_1 dibuat pula lingkaran L_2 yang menyinggung keempat sisi bujur sangkar tersebut. Dalam L_2 dibuat pula bujur sangkar B_2 dengan keempat titik sudutnya terletak pada busur L_2 . Demikian seterusnya sehingga diperoleh lingkaran-lingkaran L_1 , L_2 , L_3 , ... dan bujur sangkar B_1 , B_2 , B_3 , ... Jumlah luas seluruh lingkaran dan seluruh bujur sangkar adalah

Deret geometri $1+^3\log{(x-5)}+^3\log^2(x-5)+$... konvergen jika

Jika P
$$_n$$
= $^{10}{\log 2}$ + $^{10}{\log ^2}$ 2 + ... + $^{10}{\log ^n}$ 2 dan $\lim_{n o \infty} P_n = P$, maka 5^P =

Diketahui a+1, a-2, dan a+3 membentuk barisan geometri. Agar ketiga suku membentuk barisan aritmetika, maka suku ketiga harus ditambah dengan

Diketahui x_1 dan x_2 adalah akar-akar positif persamaan kuadrat x^2 + ax + b = 0. Jika 12, x_1 , x_2 adalah tiga suku pertama barisan aritmatika dan x_1 , x_2 , 4 adalah tiga suku pertama berisan geometri maka diskriminan persamaan kuadrat tersebut adalah

Jumlah 4 bilangan dengan selisih yang sama adalah 20. Tentukan apakah kedua pernyataan berikut cukup untuk menentukan bilangan terkecil dari kumpulan bilangan tersebut.

- (i) Keempat bilangan tersebut adalah bilangan bulat.
- (ii) Bilangan terbesar dari himpunan tersebut adalah 30.

 $x_{\mathrm{1}}\,\mathrm{dan}\;x_{\mathrm{2}}$ adalah akar-akar persamaan kuadrat

 x^2 - (2k+4)x+(3k+4)=0. Kedua akar itu bilangan bulat dan k konstan. Jika x_1 , k, dan x_2 merupakan tiga suku pertama deret geometri, maka suku ke-n deret tersebut adalah