Ortogonalitate. Transformări ortogonale. Polinoame ortogonale.

Colaboratori: Andrei STAN, Mihaela-Andreea Vasile, Florin Pop

February 17, 2025

Cuprins

1	Obi	iective laborator	1
2	Noț	țiuni teoretice	1
	2.1	Norme	1
		2.1.1 Norme vectoriale	1
		2.1.2 Norme matriceale	1
	2.2	Produs scalar. Proiecții	3
		2.2.1 Proiecții	3
	2.3	Vectori ortogonali. Matrice unitară/ortogonală	4
	2.4	Transformări ortogonale. Descompunerea QR	6
		2.4.1 Reflexii. Transformarea Householder	6
3	Pro	obleme	7

1 Objective laborator

În urma parcurgerii acestui laborator, studentul va fi capabil să:

- definească noțiunile de vectori ortogonali și matrice ortogonală;
- aplice metode de transformare ortogonală: Householder și Givens;
- implementeze procesul Gram-Schmidt;
- folosească polinoame ortogonale.

2 Noțiuni teoretice

2.1 Norme

Considerând un spațiu vectorial V peste un corp \mathbb{K} , o normă pe V este o funcție $||\cdot||:V\to\mathbb{R}$ care satisface următoarele proprietăți pentru orice $x,y\in V$ și $\alpha\in\mathbb{K}$:

- $||x|| \ge 0$ și $||x|| = 0 \Leftrightarrow x = 0$ (pozitiv definită);
- $||\alpha x|| = |\alpha| \cdot ||x||$;
- $||x+y|| \le ||x|| + ||y||$ (inegalitatea triunghiului).

2.1.1 Norme vectoriale

- Valoarea absolută. Este o normă pe $\mathbb R$ sau $\mathbb C$. Numerele complexe formează un spațiu unidimensional peste $\mathbb C$ și unul bi-dimensional peste $\mathbb R$.
- Distanța Manhatten. $||\mathbf{x}||_1 \coloneqq \sum_i |x_i|$.
- Norma euclidiană. Pe \mathbb{R}^n , norma euclidiană este definită ca $||\mathbf{x}||_2 := \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$. Luând în considerare numerele complexe, acestea se identifică cu \mathbb{R}^2 .
- Norma infinit. $||\mathbf{x}||_{\infty} \coloneqq \max_i |x_i|$.
- Norma p. $||\mathbf{x}||_p := (\sum_i |x_i|^p)^{1/p}$. Normele de mai sus sunt particularizări ale normei p pentru diferite valori ale lui p.

2.1.2 Norme matriceale

Multe norme matriceale mai au proprietatea de a fi submultiplicative:

$$||AB|| \le ||A|| \cdot ||B||$$

• Norma p matriceală. Ea este indusă de norma p a vectorilor.

$$||A||_p := \max_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \max_{||x||=1} ||Ax||_p.$$

 $-\mathbf{p}=\mathbf{1}$. $||A||_1 := \max_j \sum_i |a_{ij}|$. Este suma maximă a valorilor absolute de pe coloane.

- **p = 2.** Norma/Raza spectrală. $||A||_2 := \sqrt{\lambda_{max}(A^*A)}$. Este rădăcina patrată a celei mai mari valori proprii a matricei A^*A . Este egala cu cea mai mare valoare singulară a matricei A. **Demonstrație.** Fie $B = A^*A$. Atunci B este simetrică și din teorema spectrală avem o bază ortonormată de vectori proprii v_i și valori proprii λ_i . Fie $v = \sum_i \alpha_i v_i$ și ||v|| = 1. Atunci:

$$||Av||_2^2 = \langle Av, Av \rangle = \langle v, A^*Av \rangle = \langle \sum_i \alpha_i v_i, \sum_i \alpha_i \lambda_i v_i \rangle = \sum_i \lambda_i \alpha_i^2$$

Având constrângerea ||v|| = 1, $\sum_i \alpha_i^2 = 1 \implies ||A||_2 = \lambda_{max}(A)$.

- $-\mathbf{p} = \infty$. $||A||_{\infty} := \max_{i} \sum_{j} |a_{ij}|$. Este suma maximă a valorilor absolute de pe rânduri.
- Norma Frobenius. $||A||_F \coloneqq \sqrt{\sum_{i,j} |a_{ij}|^2} = \sqrt{trace(A^*A)}$.

Teorema Gelfand. Pentru orice normă matriceală avem:

$$\lim_{k \to \infty} ||A^k||^{1/k} = \rho(A)$$

Mai mult, $\rho(A) \leq ||A||$ pentru orice normă matriceală.

Demonstrație. Fie λ valoarea proprie cea mai mare a lui A și v un vector propriu asociat. Atunci:

$$||A|| \ge \frac{||Av||}{||v||} (\forall v) = \frac{||\lambda v||}{||v||} = |\lambda| \Rightarrow \rho(A) \le ||A||$$

Ce ne indică normele matriceale induse de vectori? Ele ne dau o măsură a cât de mult se dilată un vector atunci când este aplicată o anumită transformare liniară. În 1 avem o reprezentare a vectorilor unitari.

Figura 1: Vectori unitate

Ce se întâmplă dacă aplicăm transformarea $A1 = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$?

Figura 2: Transformarea A1

2.2 Produs scalar. Proiecții.

Produsul scalar al unui spațiu vectorial V peste F este o funcție $\langle\cdot,\cdot\rangle:V\times V\to F$ care satisface următoarele proprietăți pentru orice $x,y,z\in V$ și $\alpha\in F$:

- $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (conjugare simetrică);
- $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ (liniaritate);
- $\langle x, x \rangle \ge 0$ și $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ (pozitivitate).

Din aceastea rezultă și altele:

- $\langle x, \alpha y + \beta z \rangle = \overline{\alpha} \langle x, y \rangle + \overline{\beta} \langle x, z \rangle;$
- $\langle x + y, x + y \rangle = \langle x, x \rangle + 2\Re(\langle x, y \rangle) + \langle y, y \rangle;$

Orice produs scalar induce o normă pe spațiul vectorial V prin $||x|| = \sqrt{\langle x, x \rangle}$.

Într-un spațiu euclidian, produsul scalar este definit ca $\langle x,y\rangle=x^Ty$.

2.2.1 Proiecții

Teoremă. $\langle x,y\rangle=u^Tv=||u||||v||\cos(\theta)$, unde θ este unghiul dintre cei doi vectori.

Demonstrație. Fie $\mathbf{r} = \mathbf{u} - \mathbf{v}$. Atunci, din teorema cosinusului avem:

$$||\mathbf{r}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

$$||\mathbf{u} - \mathbf{v}||^2 - ||\mathbf{u}||^2 - ||\mathbf{v}||^2 = -2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

$$-2\sum_{i} u_i v_i = -2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

$$\sum_{i} u_i v_i = ||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

Astfel, putem scrie produsul scalar ca $\langle x, y \rangle = u^T v = ||u||||v|| \cos(\theta)$.

Fie doi vectori \mathbf{x} și \mathbf{y} , iar proiecția lui \mathbf{x} pe \mathbf{y} este $\mathbf{x}_{\mathbf{y}}$. Pentru a îl găsi pe $\mathbf{x}_{\mathbf{y}}$, ne gândim astfel:

- În primul rând, ne trebuie norma lui $\mathbf{x}_{\mathbf{y}}$: $||\mathbf{x}|| \cos(\theta)$.
- Având norma, trebuie să avem și o direcție. Proiecția fiind pe \mathbf{y} , o putem găsi prin normalizare: $\frac{\mathbf{y}}{||\mathbf{y}||}$.

Avem și o interpretare geometrică a produsului scalar: produsul dintre norma proiecției pe un vector și norma vectorului pe care se proiectează.

Definim operatorul de proiecție astfel: $proj_y x = \frac{||x|| \cos(\theta)}{||y||} y = \frac{\langle x, y \rangle}{\langle y, y \rangle} y$.

$$proj_y x = \frac{||x||\cos(\theta)}{||y||} y = \frac{||y||||x||\cos(\theta)}{||y||^2} y = \frac{\langle x, y \rangle}{\langle y, y \rangle} y$$

2.3 Vectori ortogonali. Matrice unitară/ortogonală.

Doi vectori $x, y \in \mathbb{R}^n$ sunt ortogonali dacă produsul lor scalar este zero, adică $x^T y = 0$. Cu alte cuvinte, direcțiile lor sunt perpendiculare. În plus, dacă $||x||_2 = ||y||_2 = 1$, atunci cei doi vectori sunt ortonormați.

O bază a unui spațiu vectorial se numește ortogonală, respectiv ortonormată, dacă vectorii acesteia sunt ortogonali, respectiv ortonormați.

O matrice $A \in \mathbb{C}^{n \times n}$ se numește unitară dacă $A^*A = AA^H = I_n$, unde A^* este conjugata transpusă a lui A. Dacă A este reală, atunci matricea se numește ortogonală și putem scrie $A^TA = AA^T = I_n$. Ele sunt foarte utilizate în diverse aplicații, precum descompunerea QR sau descompunerea valorilor singulare.

O matrice $A \in \mathbb{C}^{n \times n}$ sau $\mathbb{R}^{n \times n}$ unitară/ortogonală are următoarele proprietăți:

- coloanele (rândurile) sale formează o bază ortonormată a spațiului vectorial \mathbb{C}^n sau \mathbb{R}^n ;
- norma vectorilor coloană (rând) este 1;
- $A^{-1} = A^*$ sau $A^{-1} = A^*$;

- este normală, adică $A^*A = AA^*$;
- este diagonalizabilă;
- valorile proprii se află pe cercul unitate;
- vectorii proprii sunt ortogonali;
- $det(A) = \pm 1$;
- conservă norma vectorilor: ||Ax|| = ||x||;
- $||A||_2 = 1$;
- conservă produsul scalar: $(Ax)^*(Ay) = x^*A^*Ay = x^*y;$

Astfel, matricile ortogonale se pot interpreta geometric ca fiind rotații, reflecții, permutări, identități sau combinații ale acestora.

Ce se întâmplă dacă aplicăm o matrice ortogonală asupra vectorilor unitari?

Fie
$$A2 = \begin{bmatrix} \cos(\frac{\pi}{7}) & -\sin(\frac{\pi}{7}) \\ \sin(\frac{\pi}{7}) & \cos(\frac{\pi}{7}) \end{bmatrix}$$
.

Figura 3: Transformarea A2

Toți vectorii au fost rotiți cu un unghi de $\frac{\pi}{7}$. Nu s-a modificat nimic alteeva! Norma vectorilor a rămas la fel și deci graficele coincid. În următoarea figură, aplicăm A3 = 2 * A2, matrice care nu mai este ortogonală.

Figura 4: Transformarea A2

2.4 Transformări ortogonale. Descompunerea QR.

Definiție. Fie $T: V \to V$ o transformare liniară.

$$T$$
 - ortogonală $\equiv \langle T(x), T(y) \rangle = \langle x, y \rangle$

Utilitatea transformărilor ortogonale în cazul sistemelor liniare constă în faptul că putem aplica o serie de astfel transformări pentru a introduce 0-uri în matricea sistemului. La final, aflarea soluției va consta în rezolvarea unui sistem triunghiular. Matricea va avea forma A=QR, unde Q este o matrice ortogonală și R este o matrice superior triunghiulară.

$$Ax = b \Leftrightarrow QRx = b \Leftrightarrow Rx = Q^*b$$

Cu aceste transformări, ne dorim să aducem vectori de la forma $\begin{bmatrix} x \\ y \end{bmatrix}$ la forma $\begin{bmatrix} x' \\ 0 \end{bmatrix}$.

2.4.1 Reflexii. Transformarea Householder.

Căutăm o transformare P astfel încât Pv = ||v||e, unde e este un vector din baza canonică.

Pentru reflexie, ne alegem un vector d care ne va da $direcția de reflexie, <math>||d||_2 = 1$

$$v' = proj_d(-v) = \frac{\langle v, d \rangle}{\langle d, d \rangle} d$$
$$v' = -v^* dd = -dd^* v \implies$$

$$Pv = v - 2v' = v - 2dd^*v$$
$$P = I - 2dd^*$$

Iar în cazul în care d nu are norma 1, ajungem la forma generală a reflectorului Householder, prin normalizare:

$$P = I - 2\frac{dd^T}{d^Td}$$

Cum găsim d pentru a introduce 0-uri?

Ne dorim să găsim o matrice P astfel încât $Pv = \pm ||v||e_1$. Mai mult, $v + d = \pm Pv$. Astfel, considerăm $d = v \pm ||v||e_1$.

Exemplu. Fie matricea $A = \begin{bmatrix} 1 & 3 \\ 10^{-8} & 4 \end{bmatrix}$. Ne dorim să o aducem la o formă superior triunghiulară, deci am avea nevoie de un 0 în colțul din stânga jos. Alegem $d = \begin{bmatrix} 1 \\ 10^{-8} \end{bmatrix} - ||\begin{bmatrix} 1 \\ 10^{-8} \end{bmatrix}||e_1 \approx \begin{bmatrix} 0 \\ 10^{-8} \end{bmatrix}$. Astfel,

$$P = I - 2\frac{dd^{T}}{d^{T}d} = \begin{bmatrix} 4/5 & 3/5\\ 3/5 & -4/5 \end{bmatrix}$$

3 Probleme