IT312 - Vidéo

Boris Mansencal 16/12/2024 boris.mansencal@labri.fr

Flot optique - Optical flow

De nombreuses application en vision par ordinateur:

- Détection de mouvement
- Suivi d'objets
- Compression vidéo
- Navigation autonome
- Reconnaissance de gestes/d'actions
- Imagerie médicale
- ...

Objectif

Comparer des méthodes de calcul de flot optique dense.

Comparer (au moins) deux méthodes:

- une méthode "classique", sans deep learning
- une méthode récente, avec deep learning

Données - test set

- MPI Sintel http://sintel.is.tue.mpg.de/
 - MPI-Sintel Optical Flow Dataset and Evaluation
 - avec vérité terrain (fichiers .flo)
- Grasping in the Wild https://www.labri.fr/projet/AIV/graspinginthewild.php

- sans vérité terrain

Données - test set

- MPI sintel : sélection
 - https://dept-info.labri.fr/~mansenca/ENSEIRB2024_2025/MPI-Sintel_selection.zip (597Mo)
 - code I/O et représentation couleur en C & Matlab

- GITW : sélection
 - https://dept-info.labri.fr/~mansenca/ENSEIRB2024_2025/GITW_selection.zip (89Mo)

Métriques

- Sur MPI Sintel:
 - average End Point Error
 - average Angular Error

- Sur GITW:
 - **Mean Square Error** (entre image originale et image compensée)

Méthodes

- Méthodes classiques
 - (Horn&Schunk), Lukas-Kanade, Farneback, PCAFlow, SimpleFlow, ...
 - disponibles dans OpenCV

- Méthodes récentes
 - http://sintel.is.tue.mpg.de/results
 - choisissez en (au moins) une!

A rendre

Mini rapport avec présentation du travail fait et des résultats obtenus

- description codes installés et/ou écrits
- courbes aEPE, aAE, MSE pour les méthodes choisies
 - (au moins une méthode classique et un méthode récente)
- images exemples
 - avec même visualisation du flot optique que SINTEL!

Archive zip avec code écrit

à boris.mansencal@labri.fr

OpenCV

Sur Ubuntu 24.04 : OpenCV 2.4.6

sudo apt install libopency-dev python3-opency libopency-contrib406t64

functions utiles : remap()

EPE

$$egin{align} EPE &= \|V^* - V\|_2 \ &= \sqrt{(u^* - u)^2 + (v^* - v)^2} \ aEPE &= rac{\sum_{x=0}^{W_I - 1} \; \sum_{y=0}^{H_I - 1} EPE_{x,y}}{W_I * H_I} \end{gathered}$$

AE

$$AE_{x,y} = \cos^{-1}(rac{\epsilon + u^* * v + v^* * v}{\sqrt{\epsilon + u^{*2} + v^{*2}} * \sqrt{\epsilon + u^2 + v^2}})$$
 $aAE = rac{\sum_{x=0}^{W_I-1} \sum_{y=0}^{H_I-1} AE_{x,y}}{\sqrt{W_I * H_I}}$

MSE

$$egin{aligned} MSE &= rac{\sum_{x=0}^{W_I-1} \; \sum_{y=0}^{H_I-1} (I(x,y,t+1) - I(x+u,y+v,t))^2}{W_I*H_I} \ &= rac{\sum_{p\in\Omega} (I(p) - I_C(p))^2}{N_\Omega} \end{aligned}$$

FlowNet 2.0

"FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks" Ilg et al,

CVPR 2017

https://openaccess.thecvf.com/content_cvpr_2017/papers/llg_FlowNet_2.0_Evolution_CVPR_2017_paper.pdf

- disponible dans OpenCV 2.4.4 contrib

- RAFT

"RAFT: Recurrent All-Pairs Field Transforms for Optical Flow" Teed & Deng

ECCV 2020

https://github.com/princeton-vl/RAFT (pytorch)

VideoFlow

"VideoFlow: Exploiting Temporal Cues for Multi-frame Optical Flow Estimation" Shi et al, ICCV 2023

https://openaccess.thecvf.com/content/ICCV2023/papers/Shi_VideoFlow_Exp_loiting_Temporal_Cues_for_Multi-frame_Optical_Flow_Estimation_ICCV_2023_paper.pdf

https://github.com/XiaoyuShi97/VideoFlow (pytorch)

MemFlow

"MemFlow: Optical Flow Estimation and Prediction with Memory", Dong & Fu

CVPR 2024

https://dgiaole.github.io/MemFlow/

https://github.com/DQiaole/MemFlow (pytorch)

- SAMFlow

"SAMFlow: Eliminating Any Fragmentation in Optical Flow with Segment Anything Model", Zhu et al

https://arxiv.org/abs/2307.16586

https://github.com/zslzx/SAMFLow (pytorch)

FlowFormer++

"FlowFormer++: Masked Cost Volume Autoencoding for Pretraining Optical Flow Estimation", Shi et al

CVPR 2023

https://github.com/XiaoyuShi97/FlowFormerPlusPlus

- FlowDiffuser

"FlowDiffuser: Advancing Optical Flow Estimation with Diffusion Models", Luo et al

CVPR 2024

https://github.com/LA30/FlowDiffuser

StreamFlow

"StreamFlow: Streamlined Multi-Frame Optical Flow Estimation for Video Sequences", Sun et al

CVPR 2024

https://github.com/littlespray/StreamFlow

- SplatFlow

"SplatFlow: Learning Multi-frame Optical Flow via Splatting", Wang et al

IJCV 2024

https://github.com/wwsource/SplatFlow

. . .