Masauso Lungu 209533

Lab 3: Introduction to Vivado

Links:

My github repository

Learning objectives

The purpose of this laboratory exercise is to learn to use Vivado to create a simple HDL design targeting Nexys A7 Artix-7 FPGA Trainer Board.

Preparation task

Connections of LEDs and slide switches to FPGA pins on Nexys A7 board.(Note: switch 8 and 9 connect to high voltage of 1.8 and the rest connect to 3.3 V)

LEDs	FPGA pins for LEDs	SLIDE SWITCHES	FPGA pins for Slide Switches
LD0	H17	SW0	J15
LD1	K15	SW1	L16
LD2	J13	SW2	M13
LD3	N14	SW3	R16
LD4	R18	SW4	R17
LD5	V17	SW5	T18
LD6	U17	SW6	U18
LD7	U16	SW7	R13
LD8	V16	SW8	Т8
LD9	T15	SW9	U8
LD10	U14	SW10	R16
LD11	T16	SW11	T13
LD12	V15	SW12	H6
LD13	V14	SW13	U12
LD14	V12	SW14	U11
LD15	V11	SW15	V10

Assignment

Two-bit wide 4-to-1 multiplexer

architecture mux_2bit_4to1.vhd

stimulus process of tb_mux_2bit_4to1.vhd

```
p_stimulus : process
    begin
        -- Report a note at the begining of stimulus process
        report "Stimulus process started" severity note;
        -- First test values
        s_d <= "11"; s_c <= "10"; s_b <= "01"; s_a <= "00";
        s_sel <= "00"; wait for 100 ns;</pre>
        -- Expected output
        assert (s_f = s_a)
        -- If false, then report an error
        report "Test failed for input combination: 00" severity error;
        -- 2nd test values
        s_sel <= "01"; wait for 100 ns;
        -- Expected output
        assert (s_f = s_b)
        -- If false, then report an error
        report "Test failed for input combination: 01" severity error;
        -- 3rd test values
        s_sel <= "10"; wait for 100 ns;
        -- Expected output
        assert (s_f = s_c)
        -- If false, then report an error
        report "Test failed for input combination: 10" severity error;
        -- 4th test values
        s_sel <= "11"; wait for 100 ns;
        -- Expected output
        assert (s_f = s_d)
        -- If false, then report an error
```

```
report "Test failed for input combination: 11" severity error;

-- Report a note at the end of stimulus process
    report "Stimulus process finished" severity note;
    wait;
    end process p_stimulus;

end architecture testbench;
```

Simulations

Vivado tutorial

Step 1: Launching vivado:

Launch vivado, select create project, then click Next on the following wizard.

Step 2: Project name:

Add project name and specify the project location, then click Next

Step 2: Project type:

Select project type (RTL), then click Next

Step 4: Adding source file:

Specify the language for the target and simulator (VHDL), then click create file and add *name* (idealy same name as the module to be created) and click ok, then click *Next*.

Step 5: Adding board/xilinx part:

Choose a board (nexys-a7-50t), click Next, then Finish

Step 6: Define module:

Add module name and click ok (mux 2bit 4to1)

Step 7: Adding source code:

On project manager, under sources on design sources double click the module name, then add the design code to the script file and save it Use *project manager>sources>design sources> mux_2bit_4to1*

Step 8: Adding simulation file:

Use: file>add sources> add/create simulation source, then click create file and name it tb_mux_2bit_4to1

Step 9: Adding source code for testbench:

Use: project manager>sources>simulation sources>sim_1>tb_mux_2bit_4to1, doucle clik tb_mux_2bit_4to1 and add testbench code to the script file and save it.

Step 10: Simulation:

On flow navigator, Use: *Simulation>run simulation>run behavioral simulation*, if there are no errors, a simulation will compile and a new windows with time waveform will open.

Step 11: Adding constraints for implentation on hardware:

Use *file> add sources> add/create constraints*, then click create file, name it (ideally name of the board *nexys-a7-50t*) and click finish.

Use *project manager>sources>constaints>nexys-07-50t*, open the constaints file and add port definitions for inputs and outputs (eg LEDs and Switches).

Step 12: Implementation on hardware:

On flow navigator, Use *Program and debug>generate bitstream* to generate bistream file. After verification, Use *program and debug> hardware manager>open target* and implement the generated bitstream on the target hardware