Otto Multi-Objective Recommender System

Timothy Chan 27 Apr 2023

Agenda

- Problem statement
- Evaluation metrics
- Dataset
- User behaviour (EDA and Intuition)
- Approach (models, features, results, key findings)
- Other applications
- Possible improvements
- Conclusion
- Acknowledgement

Wonach suchst du?

Inspiration

. Damen-Mode . Herren-Mode

Baby & Kind . Sport .

Drogerie

Multimedia . Haushalt . Küche . Heimtextilien . Möbel . Baumarkt . Marken . %Sale%

10€ für App-Neukund*innen nur bis Mo., 24.04.

20% auf Braun und Oral-B in der App nur noch 14h 43m 59s

20% auf adidas nur noch 14h 43m 59s

0€ Versand at Samsung

Empfehlungen für dich

Without recommender

1,855,603 items

Search / Scroll

What you want

With recommender

20 items

What you want

- Enhance buyer experience
- Increase user engagement and spending

Problem Statement

Based on users' past clicks, carts and orders, I will predict the next

20 clicks, 20 carts, 20 orders

to recommend items for users on the Otto ecommerce platform.

What are clicks, carts, orders?

Evaluation metrics

Recall@20 =
$$(0.10 \cdot R_{clicks}) + (0.30 \cdot R_{carts}) + (0.60 \cdot R_{orders})$$

where

R = TP / P for all 20 predicted items per user

Dataset

- Info given: User ID, Item ID, Timestamp, Type (clicks, carts, orders)
 - Uses implicit data → real and consistent; less sparse
- 5 weeks: Train (1 Aug 22 to 28 Aug 22) and Test (29 Aug 22 to 4 Sep 22)
- Test users are different from train users → cold start problem
- 1 GB size → memory error problem

User behaviour

Top 20 items by clicks

High level EDA due to size of data: analysed top 20 by weeks

Findings:

- Recency huge factor in recurring top products
- Preceding week has more recurring top

If look at shorter time periods e.g. (minutes / hours / days) and across all products, it should have similar trend

Top 20 items by carts

Similarly, more recurring top 20 items in preceding week than before that

Top 20 items by orders

Similarly, more recurring top 20 items in preceding week than before that

Intuition and quick validation:

Intuition	Validation (Findings)	Action
Recent carts have bigger impact on next orders	Validated to be true	Heavy weight on carts
Open carts have impact on next orders	Validated to be true, but later discovered to overlap with recent carts	None
Repeated orders have impact on next orders	Validated to be true, but small impact	None

APPROACH

Handling large dataset

User based collaborative filtering

Cold start problem: how similar to other users?

Item based collaborative filtering

Used covisitation matrix,

a form of item-item collaborative filtering

- No need for similarity features
- From one item, can find many similar items
- Captures users' preference over time

Covisitation matrix

n such interactions

Advantages:

- Easy to understand and implement
- Less computational resources comparatively

Matrix factorization (not used here)

Advantages:

- Can handle large datasets by reducing dimensionality of data
- Can capture latent features of users and items, thus improving recommendation score.

Approach 1: Rule-based ranker Approach 2: Two-stage re-ranker 2 million items 30 items ("candidates") per user Weigh and rank: (each for train and test) Recency Type Frequency Add features to train / infer Consider: Boosting re-ranker (LGBM / XGB) covisitation pairs 20 items per user 20 items per user

Differentiated Covisitation Matrix

#	Using	Weigh by	Used for
1	Clicks, carts, orders	Frequency, Type	Carts, Orders
2	Carts, orders	Frequency; Limit to recent 7 days	Carts, Orders
3	Clicks, carts, orders	Frequency, Recency	Clicks

Reranker features to train / infer

User features

Item features

User-item features

Model Results

Model	Classifier	Brief Description	Recall@20
1 (baseline)	Rule-based	Most recent items for each user	0.46682
2	Rule-based	Weighted + 3x Covisitation matrix	0.57648
3	LGBM Ranker	Reranked Orders from 30 ranked candidates	0.55088
4	XGB Ranker	Reranked Orders from 30 ranked candidates	0.45848

Feature importance (LGBM Ranker)

Deployment (LGBM Ranker)

On streamlit:

https://chanhaosheng-project-submissions-capstonedeployapp-x0mcmu.streamlit.app/

Key findings

Recency

Type (carts)

Covisitation pairs

Possible improvements

- Better pipeline including validation for experimentation
- Explore word2vec / matrix factorization techniques to create more candidates
- Explore ensembling. Produce multiple models before aggregating.

Other applications

- New user vouchers to encourage activity: reduce cold start problem
- Identify bundled deals / recommend complementary items

- ✓ This item: MR.SIGA Microfiber Cleaning Cloth, Pack of 12, Size: 12.6" x 12.6" \$12.99 (\$1.08/Count)
- ✓ MR.SIGA Ultra Fine Microfiber Cloths for Glass, Pack of 12, 35 x 40cm 13.7" x 15.7" \$19.99 (\$1.67/Count)
- ✓ MR.SIGA Ultra Fine Microfiber Cloths for Glass, Pack of 6, 35 x 40 cm 13.7" x 15.7" \$13.99 (\$2.33/Count)

Conclusion

- Respectable recall score of 0.58
- Handling a large dataset requires additional considerations
- Simple information alone can produce so much insight
- Rule based approaches might be more practical than boosting rankers, while also providing reasonable scores
- Boosting rerankers should theoretically improve the scores further, but unfortunately did not do so for this project

Acknowledgement

- Sharings on Kaggle discussion board, especially Chris Deotte and Radek Osmulski
- Instructors Ryan and Ming Jie for their guidance these past 3 months
- Coursemates for their encouragement

All the best and keep in touch!