Probability and Statistics for Economics Cheat Sheet

Author: Sai Zhang (email me or check my Github page)

Random experiments

The outcome in a random experiment is **unpredictable**:

- outcome is too complicates or poorly understood
- outcome is designed to be unpredictable
- coincidences, or independent chains of events

Two examples

Random card shuffle experiment: take top card from a deck and insert randomly, to complete the shuffle of *n* cards, we need

$$T = n + \frac{n}{2} + \dots + \frac{n}{n-1} + 1 = n \log n$$

shuffles.

Random number generator:

$$x_{n+1} = \frac{ax_n + b}{c} - \left[\frac{ax_n + b}{c} \right]$$

the remainder after dividing by c, hence $x_{n+1} \in [0, c-1]$, let $u_{n+1} = \frac{x_{n+1}}{c}$, x_0, a, b, c all be integers. For very large a and good choice of b, c, the sequence u_1, u_2, \cdots is like a sequence of numbers randomly picked from [0,1]

Probabilities

Probability is a number in [0,1] that measures the likelihood of an outcome or a set of outcomes.

Ways of assigning probabilities:

- **symmetry**: assume all outcomes are equally likely
- experimental method: relative frequency in repeated random experiment
- subjective method: assign probabilities using knowledge of random experiment
- market method

Elements of probability space

- **outcome space** Ω and outcomes $\omega \in \Omega$
- event $E, E \subset \Omega$
- probability function/measure P:
 A → [0,1]: a function from a collection A of subsets of Ω to the interval [0,1].

Classes of events

Events E_1, E_2, \cdots are just sets. They also follow the algebras of sets.

Some set algebras

$$\begin{split} A \cup (B \cap C) &= (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) &= (A \cap B) \cup (A \cap C) \\ A \cup A^C &= U, A \setminus B = A \cap B^C \\ (\bigcup_{i=1}^{\infty} A_i)^C &= \bigcap_{i=1}^{\infty} A_i^C \\ (\bigcap_{i=1}^{\infty} A_i)^C &= \bigcup_{i=1}^{\infty} A_i^C \\ A \cup B &= U, A \cap B = \varnothing \Leftrightarrow B = A^C \\ (A^C)^C &= A \\ A \subseteq B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B \Leftrightarrow A \setminus B = \varnothing \Leftrightarrow B^C \subseteq A^C \end{split}$$

Two special relations:

- **disjoint**: $E_1 \cap E_2 = \emptyset$
- **partition**: $\bigcup_{i=1}^{\infty} E_i = \Omega$, $\{E_i\}$ are pairwise disjoint

σ -field and Borel σ -field

Definition of σ **-field**

 \mathcal{A} (a collection of subsets of Ω) is a σ -field if:

- $1 \varnothing \in \mathcal{A}$
- $2 E \in \mathcal{A} \Rightarrow E^C \in \mathcal{A}$
- 3 $E_1, E_2, \dots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$

It is easy to see that: $\Omega \in \mathcal{A}$ (by 1), $\bigcap E_i^C \in \mathcal{A}$, $\bigcup E_i^C \in \mathcal{A}$, $\bigcap E_i \in \mathcal{A}$ as well

Two important σ -field:

- Trivial σ -field: $\mathcal{A} = \{\emptyset, \Omega\}$
- Largest σ -field: **powerset** of Ω , $\mathcal{P}(\Omega)$

Generating classes

When the powerset has too many events to be assigned probabilities to each event, we start from a set of events \mathcal{E} that we want to assign probabilities to. This \mathcal{E} is a generating class.

σ –field generated by \mathcal{E}

The **smallest** σ -field that contains \mathcal{E} is

$$\sigma(\mathcal{E}) = \{ E \subseteq \Omega \mid E \in \mathcal{A}, \forall \mathcal{A} \supseteq \mathcal{E} \}$$

where A can be any σ -field (including the powerset).

Another way to write this definition is: for all the σ -fields that contain \mathcal{E} , $\{A_i \mid \mathcal{E} \subseteq A_i\}$, we have:

$$\sigma(\mathcal{E}) = \bigcap \mathcal{A}_i$$

This definition is based on the fact: **any intersection of** σ **-fields is a** σ **-field**, here is a proof:

Proof: \cap **of two** σ **-fields is a** σ **-field**

We can check the three definitions of σ -field: for $\mathcal{F}_1, \mathcal{F}_2$ $1 \varnothing \in \mathcal{F}_1, \varnothing \in \mathcal{F}_2 \Rightarrow \varnothing \in \mathcal{F}_1 \cap \mathcal{F}_2$ $2 E \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow E^C \in \mathcal{F}_1, E^C \in \mathcal{F}_2 \Rightarrow E^C \in \mathcal{F}_1 \cap \mathcal{F}_2$ $3 E_1, \dots \in \mathcal{F}_1 \cap \mathcal{F}_2 \Rightarrow E_1, \dots \in \mathcal{F}_1, E_1, \dots \in \mathcal{F}_2 \Rightarrow \bigcup E_i \in \mathcal{F}_1, \bigcup E_i \in \mathcal{F}_2 \Rightarrow \bigcup E_i \in \mathcal{F}_1 \cap \mathcal{F}_2$

Borel σ -field

Borel σ -field \mathcal{B} is a σ -field on \mathbb{R} , its generating class is the set of all **open subsets** of \mathbb{R} . But \mathcal{B} 's generating class is not unique, a particularly important one is $\mathcal{E} = \{(-\infty, x] \mid x \in \mathbb{R}\}$. Here is a proof of this generating class can actually generate \mathcal{B} .

Proof: $\sigma(\mathcal{E}) = \mathcal{B}$

The proof is done in 2 steps:

- prove $\sigma(\mathcal{E}) \subseteq \mathcal{B}$: $\mathcal{E} = (-\infty, x] = \bigcap_{n=1}^{\infty} \left(-\infty, x + \frac{1}{n}\right) \in \mathcal{B}$. And by the definition of σ -field generated by \mathcal{E} , we know that $\sigma(\mathcal{E}) = \bigcap \mathcal{A}_i \subseteq \mathcal{E}$, hence $\sigma(\mathcal{E}) \subseteq \mathcal{B}$
- prove $\mathcal{B} \subseteq \sigma(\mathcal{E})$: each open set \mathcal{B} in \mathbb{R} can be written as $\mathcal{B} = \bigcup_{i=1}^{\infty} (a_i, b_i)$. For each (a,b), we can rewrite it as $(a,b) = (-\infty,b) \cap (-\infty,a]^C$, where $(-\infty,b) = \bigcup_{n=1}^{\infty} (\infty,b-\frac{1}{n}]$. By the definition of σ -field, $\bigcup_{n=1}^{\infty} (\infty,b-\frac{1}{n}] \cap (-\infty,a]^C \in \sigma(\mathcal{E})$, hence $\mathcal{B} \in \sigma(\mathcal{E})$.

This is actually a special case of **generating class arguments**, which is used to show that all sets in a σ -field \mathcal{A} have a certain property. It follows:

- for subsets of Ω that have the property, define the collection of them
- show that $A \subseteq \sigma(\mathcal{E})$
- show that for $A_0 = \{A_{\text{property}} \in A\}$ with $\mathcal{E} \subseteq A_0$, A_0 is a sigma field (Since $\sigma(\mathcal{E})$ is the smallest σ -field that contains \mathcal{E} , $\sigma(\mathcal{E}) \subseteq A_0$)
- $A \subseteq \sigma(\mathcal{E}) \subseteq A_0 \subseteq A \Rightarrow A = A_0$

Often it is difficult to show that A_0 is a σ -field, hence we introduce λ -systems.

 λ -systems A_0 is a λ -system if

1 $\Omega \in \mathcal{A}_0$ Iy outcomes, 2 If $D_1, D_2 \in \mathcal{A}_0$ and $D_2 \subseteq D_1$, then $\frac{1}{I}, P(E) = \frac{\#E}{I}$.

 $D_1 \setminus D_2 = D_1 \cap D_2^C \in \mathcal{A}_0$

3 If D_n is an increasing sequence of sets in A_0 , then $\bigcup_{i=1}^{\infty} D_i \in A_0$

Two theorems link λ -systems and σ -fields:

Theorems of λ -systems/ σ -fields

- **Theorem 1**: If \mathcal{E} is closed under finite intersections, and if \mathcal{A}_0 is a λ -system with $\mathcal{E} \subseteq \mathcal{A}_0$, then $\sigma(\mathcal{E}) \subseteq \mathcal{A}_0$.
- Theorem 2: a λ-system A₀ is a σ-field ⇔ A₀ is closed in finite intersections.

Choice of σ -field

The choice of σ -field is usually determined by the nature of the outcome space:

- discrete (countable) outcome space: powerset of Ω shall be chosen.
- continuous outcome space (real line): **Borel** σ -**field** shall be chosen.

Probability measure

Definition of probability measure

A probability measure is a function $P: A \Rightarrow \mathbb{R}$ with a σ -field A:

- 1 $\forall E \in \mathcal{A}, P(E) \geq 0$
- $P(\Omega) = 1$
- 3 If E_1, E_2, \cdots are pairwise disjoint (and countable), $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$

The usual way to specify probabilities using a probability model is to first assign probabilities to some simple collection of events \mathcal{E} , these assignments can be extended to $\sigma(\mathcal{E})$, this extension can usually be shown to be unique, giving a probability measure on $\sigma(\mathcal{E})$.

Discrete Ω : Dice roll

For the problem of rolling a single dice, the probability measure can be defined as

- σ -field A: powerset of Ω
- probability measure: $P(E) = \frac{\#E}{6}$

This construction can be extended to all discrete outcome spaces: starting by assigning probabilities p_i to single outcomes and define $P(E) = \sum_{i \in E} p_i$.

Here is a special case of discrete Ω : random experiments with equally likely outcomes, i.e., $\Omega = \{\omega_i\}_{i=1}^{I}, P(\omega_i) =$

4 cases of equally likely Ω

Consider the problem of selecting k elements from n distinct elements, the number of selections N_s has 4 cases:

- Ordered without replacement: N_s =

- Ordered without replacement: $N_s = \frac{n!}{(n-k)!}$
- Ordered with replacement: $N_s = n^k$
- Unordered without replacement: $N_s = \frac{n!}{k!(n-k)!} = \binom{n}{k}$
- Unordered with replacement: $S_n = \binom{n+k-1}{k}$

Continuous Ω : Borel σ -field \mathcal{B}

For the probability measure on $\ensuremath{\mathcal{B}}$ can be defined as

- probabilities on $\mathcal{E} = \{(-\infty, x] \mid x \in \mathbb{R}\}$

 $\mathcal{E} = \{(-\infty, x] \mid x \in \mathbb{R}\}$ is closed under finite intersection, hence, we need to show $\forall B \in \mathcal{B}$, P(B) = P'(B), that is, \mathcal{E} has a unique probability measure.

Consider $\mathcal{B}_0 = \{B \in \mathcal{B} \mid P(B) = P'(B)\}$, which is a λ -system. For an increasing sequence B_n of events in \mathcal{B}_0 , $P(B) = P(B_1 \cup (B_2 \setminus B_1) \cup \cdots \cup (B_n \setminus B_{n-1}) = P(B_1) + (P(B_2) - P(B_1)) + \cdots + (P(B_n) - P(B_{n-1})) = \lim P(B_n)$ then $P(B) = \lim P(B_n) = \lim P'(B_n) = P'(B)$. Now $\mathcal{E} \subseteq \mathcal{B}_0$ is closed under finite intersections, then by Thm.1 of λ -system, $\sigma(\mathcal{E}) \subseteq \mathcal{B}_0 \subseteq \mathcal{B}$, then $\mathcal{B} = \sigma(\mathcal{E})$, hence $\forall B \in \mathcal{B}$, P(B) = P'(B).

Properties of probability measures

- $P(E^C) = 1 P(E), P(\emptyset) = 0, P(E) \le 1$
- $-P(E_2 \setminus E_1) = P(E_2 \cap E_1^C) = P(E_2) P(E_2 \cap E_2^C)$
- $P(E_1 \cup E_2) = P(E_1 \cup (E_2 \setminus E_1)) = P(E_1) + P(E_2) P(E_1 \cap E_2)$
- $\begin{array}{cccc} & E_1 \subseteq E_2 \Rightarrow E_2 = E_1 \cup (E_2 \setminus E_1) \Rightarrow \\ P(E_1) \le P(E_2) \end{array}$
- $P(E_1 \cup E_2) \le P(E_1) + P(E_2)$
- Bonferroni inequality: $P(E_2 \cap E_1) \ge P(E_1) + P(E_2) 1$
- Law of total probability: for a partition of Ω , $\{E_i\}$, $P(A) = \sum_{i=1}^{\infty} P(A \cap E_i)$
- Boole's inequality: $P(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} P(E_i)$

The proof of all these results relies on the step to transform the object set to a **union of pairwise disjointed** sets.

For all subsets of \mathbb{R} , it is impossible to assign probabilities to them. The proof takes advantage of a series of uncountable,

disjointed subsets centered at irrational numbers.

Random variable

Definition of random varibles

For a probability space (Ω, A, P) , a random variable *X* is a function $X : \Omega \to \mathbb{R}$ s.t. $\forall B \in$ Borel σ -field \mathcal{B} , $E = \{\omega \mid X(\omega) \in B\} \in \mathcal{A}$.

Another way of stating it is: X takes a value in $B \Leftrightarrow w \in E$ i.e., event E happens. Thus, $Pr(X \in B) = Pr(E)$

2 things to keep in mind

- $E = X^{-1}(B)$ (X^{-1} does **NOT** necessarily
- X is Borel measurable

Properties of X^{-1}

 $-X^{-1}(B^C) = (X^{-1}(B))^C$

 $-X^{-1}\left(\bigcup_{i=1}^{\infty}B_{i}\right)=\bigcup_{i=1}^{\infty}X^{-1}(B_{i})$

Borel Measurability

Borel measurability of a random variable X (function) is established separately by the countability of outcome space Ω .

Countable Ω

For a countable Ω , $X : \Omega \to \mathbb{R}$ is Borel measurable if σ -field on Ω , \mathcal{A} , is the **powerset**

Uncountable Ω

surable.

Let $\mathcal{E} \subseteq \mathcal{B}$ be a generating class of Borel σ -field \mathcal{B} , for an uncountable Ω and its σ -field A, X is Borel measurable if $\forall E \in$ $\mathcal{E}, X^{-1}(E) \in \mathcal{A}$.

We use a generating class argument to pro-

Step 1: Define $C = \{B \in \mathcal{B} \mid X^{-1}(B) \in \mathcal{A}\}$, since $\forall E \in \mathcal{E}, X^{-1}(E) \in \mathcal{A}$, we know $\mathcal{E} \subseteq \mathcal{C}$.

Step 2: Check C is a σ -field: $i \mathcal{O} \in \mathcal{C}$

ii $B \in \mathcal{C} \Rightarrow X^{-1}(B) \in \mathcal{A} \Rightarrow X^{-1}(B^C) =$ $X^{-1}(B)^C \in \mathcal{A} \Rightarrow B^C \in \mathcal{C}$

iii $B_1, B_2, \dots \in \mathcal{C} \Rightarrow X^{-1}(B_1), \dots \in \mathcal{A} \Rightarrow$ $X^{-1}(\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} X^{-1}(B_i) \in \mathcal{A}$

Step 3: Since \mathcal{B} is the smallest σ -field containing \mathcal{E} (definition of generating class), \mathcal{C} is a σ -field containing \mathcal{E} , $\mathcal{B} \subseteq \mathcal{C}$; by the definition of C, $C \subseteq B$. Hence C = B, meaning that $\forall B \in \mathcal{B}, X^{-1}(B) \in \mathcal{A}$, and X is Borel mea-

Borel measurability has some important applications:

Continuous $X : \mathbb{R} \to \mathbb{R}$

For the probability space $(\mathbb{R}, \mathcal{B}, P)$ and a **continuous** $X : \mathbb{R} \to \mathbb{R}$ is Borel measurable.

X_{sup} and X_{inf} of X_n

For a sequence of random variables, $\{X_n\}_{n=1}^{\infty}$, $\hat{X}_{\sup} = \sup_n X_n$ and $X_{\inf} =$ $\inf_{n} X_n$ are also Borel measurable. A brief proof: Take (x, ∞) as a generating class for \mathcal{B} , X_n being random variables \Rightarrow $\{w \mid X_n(w) > x\} \in \mathcal{A} \Rightarrow \bigcup_n \{w \mid X_n(w) > x\} = 0$ $\{w \mid X_{\sup}(w) > x\} \in \mathcal{A}$. Taking $(-\infty, x]$ as the generating class can proof for X_{inf} .

Again, for a sequence of random variables, $\{X_n\}_{n=1}^{\infty}$, if $\lim_{n\to\infty} X_n = X$ exists, X is a random variable.

A brief proof: we know

 $\liminf_{n\to\infty} X_n(\omega) = \sup_n \inf_{m\geq n} X_m(\omega)$

 $\limsup_{n\to\infty} X_n(\omega) = \inf_n \sup_{m\geq n} X_m(\omega)$

then it is easy to see $\liminf_{n\to\infty} X_n \le$ $X = \lim_{n \to \infty} X_n \le \limsup_{n \to \infty} X_n$. If $\lim_{n\to\infty} X_n = X$ exists, the three limits are all equal and all Borel measurable.

Algebras of random variables

If X, Y are random variables, Z = X + Y is Borel measurable. A brief proof: take the generating class $\mathcal{E} = \{(x, \infty)\}\$, then for $A = \{\omega \mid Z(\omega) > z\}$, we have $X(\omega) + Y(\omega) > z \Leftrightarrow X(\omega) > z - Y(\omega)$. Here is the trick: We can always find a ra tional number r s.t. $X(\omega) > r > z - Y(\omega)$, and $A = \bigcup_r (\{\omega \mid X(\omega) > r\} \cap \{\omega \mid Y(\omega) > z - r\})$ Since rational numbers are **countable**, X and Y are both Borel measurable, A is in Ahence Z is Borel measurable.

For the collection of all Borel measurable functions $\mathcal{M} = \{X : \Omega \Rightarrow \mathbb{R}\}\ (\mathcal{M}^+ \text{ for }$ non-negative functions), We focus on a special class:

Simple functions

$$X(\omega) = \sum_{i}^{n} \alpha_{i} I_{A_{i}}(\omega)$$

- I_A is the indicator function of event A
- $A_i \in \mathcal{A}, i = 1, \dots, n$ are a partition of Ω - α_i are constants

Why are they important: each nonnegative borel measurable function can be approximated by an increasing **sequence** of simple functions!

Theorem of simple functions

For $\forall X \in \mathcal{M}^+$,

$$X_n(\omega) = 2^{-n} \sum_{i=1}^{4^n} I_{X \ge \frac{i}{2^n}}(\omega)$$

satisfies $0 \le X_1(\omega) \le \cdots \le X_n(\omega)$ and $X_n(\omega) \to X(w), \forall \omega \in \Omega.$

Proof of $I_A(\omega)$ **approximation**

Step 1: increasing

Let $\sum_{i=1}^{4^n} I_{X \ge \frac{i}{2^n}}(\omega) = C$ then it is easy to show that $\sum_{i=1}^{4^{n+1}} I_{X \ge \frac{i}{2^{n+1}}}(\omega) \ge 2C$,

hence $X_n = \frac{C}{2^n}, X_{n+1} \ge \frac{2C}{2^{n+1}} = X_n$

Step 2: approximation There are two scenarios: (a) $X(\omega) = \infty$. It will give $X_n(\omega) =$

 $2^{-n} \sum_{i=1}^{4^n} I_{X \ge \frac{i}{2n}}(\omega) = 2^n$, hence $\lim_{n\to\infty} X_n(\omega) = \infty = X$

(b) $X(\omega) < \infty$. For sufficiently large n, we can find a $k \in \{0, 1, \dots, 4^n - 1\}$ such that $k2^{-n} \le X < (k+1)2^{-n}$ and $X_n = k2^{-n}$. Hence $|X - X_n| \le 2^{-n} \to 0 \Rightarrow X_n \to X$

Expectation and integration

Start from the simple case: $X(\omega) = \sum_{i=1}^{n} \alpha_i I_{A_i}(\omega) \Rightarrow E(X) =$ $\sum_{i=1}^{n} \alpha_i P(A_i) \Rightarrow E(X) = \int_{\Omega} X(\omega) dP(\omega) =$ $\int X dP$.

For general random variables, we take advantage of the increasing sequences of simple function X_n that asymptotically approaches X.

Def. of E(X): non-negative X

For simple functions X_s ,

$$E(X) = \int X dP = \sup_{X_s} \{ E(X_s) \mid X \ge X_s \}$$

Properties of E(X)

- $\forall A \in \mathcal{A}, E(I_A) = P(A)$
- $E(\mathbf{0} = 0)$, where **0** is the null function that assigns 0 to all $\omega \in \Omega$
- **linearity**: $\forall \alpha, \beta \geq 0$ and nonnegative Borel measurable functions X, Y

$$E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$$

- If $\forall \omega \in \Omega, X(\omega) \leq Y(\omega), E(Y) = E(X) +$ $E(Y-X) \ge E(X)$

For **arbitrary** random variable *X*, we (NOT $\int_{\mathbb{R}} f dm$).

can write $X(\omega) = X_{+}(\omega) - X_{-}(\omega)$ with $X_{+}(\omega) = \max\{X(\omega), 0\} \text{ and } X_{-}(\omega) =$ $-\min\{X(\omega), 0\}$. Now X_+ and X_- are both **non-negative**, and:

Def. of E(X): arbitrary X

For random variable $X = X_{\perp} - X_{\perp}$,

$$E(X) = E(X_+) - E(X_-) = \int_{\Omega} X_+ dP - \int_{\Omega} X_- dP$$

For E(X) to be well-defined, we need E(|X|) $)<\infty$, i.e., X is **integrable**.

By introducing Jensen's inequality: $\forall \lambda \in$ (0,1), and a convex f:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

we have the following properties for a convex function *f* :

E(f(x)) for a convex

For a convex $f : \mathbb{R} \to \mathbb{R}$, we have:

is **Borel measurable**: let E = $\{x \mid f(x) \in (-\infty, t]\}$, since f is convex, $\forall x_1, x_2 \in E, f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)x_2$ $(1-\lambda)f(x_2) \le t$. Hence, E is an interval on \mathbb{R} , f is Borel measurable.

- $\forall x, x_0, f(x) \ge f(x_0) + \alpha(x - x_0)$ where α is a constant (may depend on x_0).

And, derive **two features of** E(f(x)): - $E(f(X)_{-}) < \infty$ if $E(|X|) < \infty$: we know

- $f(x) \ge f(x_0) + \alpha(x x_0) \ge -|f(x_0)| |\alpha|(|x|+|x_0|)$, hence $E(|X|) < \infty \Rightarrow$ $E(f(X)_{-}) < E(|X|) < \infty$
- Take $x_0 = E(X)$ get E(f(X)) > f(E(X)) + $\alpha(E(X) - E(X)) \Rightarrow E(f(X)) \ge f(E(X))$

Lebesgue integrals

In $E(X) = \int X dP$, P assigns probability 1 to Ω . Lebesgue measure assigns probability 0 to \emptyset .

Lebesgue measure ($\Omega = \mathbb{R}$) is defined as m([a,b]) = b - a and Lebesgue measure of a point is 0. Hence m((a,b)) = b - a. Open intervals (a, b) are a generating class, mcan be uniquely extended to all sets in the Borel σ -field \mathcal{B} .

Lebesgue integral is then $\int_{-\infty}^{\infty} f(x) dx$

Lebesgue and Riemann integral

The relation between Lebesgue integral and Riemann integral:

- Same notation: $\int_{\infty}^{\infty} f(x) dx$
- If f is integrable $(\int_{-\infty}^{\infty} |f(x)| dx < \infty)$, and Riemann integral exists, the two
- If $\int_{-\infty}^{\infty} f(x)_{+} dx = \int_{-\infty}^{\infty} f(x)_{-} dx = \infty$, Lebesgue integral is NOT defined, but Riemann integral $\lim_{t\to\infty} \int_{-t}^{t} f(x) dx$

The last group of properties of expectations regards convergence:

Convergence properties of E(X)

Three properties are especially important: (1) Monotone convergence: if X_n is an increasing sequence of non-negative random variables, i.e. $0 \le X_1 \le X_2 \le$ $\cdots \leq X_n$, then

 $\lim_{n \to \infty} X_n = X \Rightarrow \lim_{n \to \infty} E(X_n) = E(X)$

- (2) **Fatou's Lemma**: for $X_1, \dots, X_n \ge 0$, $E(\liminf_{n\to\infty} X_n) \leq \liminf_{n\to\infty} E(X_n)$
- (3) **Dominated convergence**: if X_1, \dots, X_n are integrable $(E(|X_i|) < \infty)$, and there is a non-negative, integrable random variable Y s.t. $|X_i(\omega)| \le Y(\omega), \forall \omega \in$ Ω , $\forall i = 1, \dots, n$, then

$$\lim_{n\to\infty} X_n = X \Rightarrow \lim_{n\to\infty} E(X_n) = E(X)$$

(1) is used to prove (2), (2) is used to prove (3):

Proof of \rightarrow **properties of** E(X)

Monotone convergence: Fatou's Lemma: Dominated convergence:

Sets of measure 0

For integrals/expectations, the zero probability events $\{E \in \mathcal{A} \mid P(E) = 0\}$ can be neglected. This gives:

Expectation equality E(X) = E(Y)

If random variables *X* and *Y* satisfy that for event $E = \{\omega \mid X(\omega) \neq Y(\omega)\},\$ P(E) = 0, then E(X) = E(Y).

This is very easy to prove:

Proof of E(X) = E(Y)

We have

$$E(X) = E(X \cdot I_{X=Y}) + E(X \cdot I_{X\neq Y})$$

$$E(Y) = E(Y \cdot I_{Y=X}) + E(Y \cdot I_{Y\neq X})$$

 $E(X \cdot I_{X \neq Y} = E(Y \cdot I_{Y \neq X} = 0$, because it is an integral over E and P(E) = 0.

Distribution of random variables

For a random variable $X : \Omega \to \mathbb{R}$, we can replace (Ω, \mathcal{A}, P) by $(\mathbb{R}, \mathcal{B}, P_X)$, get:

Distribution of X

The **distribution** of *X* is the measure $P_X : \mathcal{B} \to \mathbb{R}$, defined by

$$P_X(B) = P(X^{-1}(B)) = \Pr(X \in B)$$

The **joint distribution** of a vector of random variables $X = (X_1, \dots, X_N)^T$ is defined as

$$P_X(C) = P(X^{-1}(C)) = \Pr(X \in C)$$

where $C \in \mathcal{B}^N$, \mathcal{B}^N is the Borel σ -field in \mathbb{R}^N , generated by the sets $B_1 \times \cdots \times B_N = \{(x_1, \cdots, x_N) \mid x_i \in B_i, B_i \in \mathcal{B}\}$

Distribution function

For the probability space of random variable $X: (\mathbb{R}, \mathcal{B}, P_X)$, P_X is determined by assigning probabilities to \mathcal{B} 's generating class $\mathcal{E} - \{(-\infty, x] \mid x \in \mathbb{R}\}$, hence

Distribution function $F_X(x)$

The **distribution function** F_X of X is defined as

$$F_X(x) = P_X\left((-\infty, x]\right)$$

This is just the CDF. $F_X : \mathbb{R} \to [0,1]$ and uniquely determines P_X . We can also write it as $F_X(x) = E(I_{X < x})$.

Properties of F_X

 F_X has the following properties:

(a) Non-decreasing:

$$x \ge y \Rightarrow F_X(x) \ge F_X(y)$$

Proof: $x \ge y \Rightarrow (-\infty, y] \subseteq (-\infty, x] \Rightarrow F_X(y) = P_X((-\infty, y]) \le F_X(x) = P_X((\infty, x])$

(b) Continuous from the right:

$$\lim_{y \to x+} F_X(y) = F_X(x)$$

Proof: $F_X(x+1/n) = E(I_{X \le x+1/n}).$ $I_{X \le x+1/n} \le 1$, $\lim_{n \to \infty} I_{X \le x+1/n} = I_{x \le x}$, by dominance convergence, $\lim_{n \to \infty} F_X(x+1/n) = F_X(x).$ Same logic gives $\Pr(X < x) = \lim_{y \to x-} F_X(y) = F_X(x-).$

(c) If $\Pr(X = \infty) = \Pr(X = -\infty) = 0$ then, $\lim_{x \to -\infty} F_X(x) = 0$, $\lim_{x \to \infty} F_X(x) = 1$.

Proof: use $\lim_{n\to\infty} I_{X<-n} = 0$.

The properties give some facts about the continuity of F_X and probability of points:

- *F_X* is always right continuous, but **not always continuous**.
- Since $I_{X=x} = \lim_{n \to \infty} I_{x-1/n < X \le x}$, we have $\Pr(X = x) = \lim_{n \to \infty} (F_X(x) F_X(x 1/n)) = F_X(x) F_X(x-)$.
- If Pr(X = x) > 0, F_X is **discontinuous** in x, the jump at x is Pr(X = x).

Function of random variable

With a Borel measurable function $f: \mathbb{R} \to \mathbb{R}$, $Y = f \circ X : \Omega \to \mathbb{R}$ is a random variable, i.e., Borel measurable.

distribution of $Y = f \circ X$

 $Y: \mathbb{R} \to \mathbb{R}$ is defined on $(\mathbb{R}, \mathcal{B}, P_X)$, hence:

$$\begin{split} \Pr(Y \in B) &= P_X(\{x | f(x) \in B\}) \\ &= P(\{\omega | f(X(\omega)) \in B\}) \end{split}$$

and Y is a simple function on \mathbb{R} and Ω :

$$Y = \sum_{i=1}^{n} \alpha_{i} I_{B_{i}}(x) = \sum_{i=1}^{n} \alpha_{i} I_{X^{-1}(B_{i})}(\omega)$$

where $\{B_i\}$ is partition of \mathbb{R} , $\{X^{-1}(B_i)\}$ is hence a partition of Ω .

expectation of $Y = f \circ X$

The expectation of $Y = f \circ X$ is

$$E(Y) = \int_{\mathbb{R}} f(x) dP_X(x) = \sum_{i=1}^n \alpha_i P_X(B_i)$$
$$= \sum_{i=1}^n \alpha_i P(X^{-1}(B_i))$$
$$= \int_{\Omega} f(X(\omega)) dP(\omega) = E(f(X))$$

It is in general true that: integral of f on $(\mathbb{R}, \mathcal{B}, P_X)$ is equal to integral of f(X) on (Ω, \mathcal{A}, P) .

Since $F_X(x)$ and $P_X(x)$ both determine the distribution of X, $\int_{\mathbb{R}} f(x) dP_X = \int_{\mathbb{R}} f(x) dF_X$.

Absolute continuity of P

The goal: to calculate probability by summation $P = \sum_i I_A(x_i) f(x_i)$ or integration $P = \int I_A(x) f(x) dx$.

We start by finding a measure μ for P, μ and P are both defined on (Ω, \mathcal{A}) , and μ is easier to compute.

Requirement of μ

- 1 $\forall E \in \mathcal{A}, \mu(E) \geq 0$
- 2 $\mu(\emptyset) = 0$ (instead of $P(\Omega) = 1$)
- 3 If E_1, E_2, \cdots are pairwise disjoint (and countable), $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$
- * μ is σ -finite: $\exists \{A_i\}^{\infty}$, a countable partition of Ω , with $\mu(A_i) < \infty$.

 Probability measure P is always σ -finite since $P(\Omega) = 1$

The most important condition of this *transfer* of measure is **absolutely continuous**:

P is absolutely continuous

For P, μ defined on A, P is **absolutely continuous** w.r.t. μ if

$$\mu(A) = 0 \Rightarrow P(A) = 0$$

 μ is the dominating measure, $P \ll \mu$

Now, we want to show $P \ll \mu \Rightarrow \int I_A dP = \int I_A f(\omega) d\mu$, where f is the density of P w.r.t. μ . We need the following theorem:

Theorem: measure change P to μ

For probability measure P and measure μ defined both on (Ω,\mathcal{A}) , $\exists N$ with $\mu(N)=0$ and a **non-negative Borel measurable** $f:\Omega\to\mathbb{R}$, s.t. for **non-negative Borel measurable** $g:\Omega\to\mathbb{R}$, we have:

$$\int_{\Omega} g(\omega) dP(\omega) = \int_{\Omega} \frac{g(\omega) I_{N}(\omega) dP(\omega)}{=0 \text{ if } P \ll \mu} + \int_{\omega} g(\omega) f(\omega) d\mu(\omega)$$

And for any other \tilde{N} and \tilde{f} also satisfy this, they must be the *same* w.r.t. P and μ :

$$P(N \setminus \tilde{N}) = P(\tilde{N} \setminus N) = 0$$

$$\mu(N \setminus \tilde{N}) = \mu(\tilde{N} \setminus N) = 0$$

$$P(\{x \mid f(x) \neq \tilde{f}(x)\}) = 0$$

$$\mu(\{x \mid f(x) \neq \tilde{f}(x)\}) = 0$$

The idea is to split up the integral into two regions: N and N^C . Absolute continuity gives the integral on N is 0, the theorem gives that the integral on N^C w.r.t. P can be changed into an integral w.r.t. μ with the density f.

Two important target measures are **counting measure** and **Lebesgue measure**. They are both defined on Borel σ -field \mathcal{B} , hence the outcome space must be \mathbb{R} .

Two dominating measures: m and ν

For a probability P_X on the space $(\mathbb{R}, \mathcal{B}, P_X)$, two most common dominating measures are:

- Lebesgue measure m for continuous X: for P_X that assigns probability 0 to countable sets of **points** in \mathbb{R} .
- counting measure ν for discrete X: for P_X that assigns probability 0 to sets in \mathcal{B} that do NOT contain any of the outcomes of the countable image of X.

If the image of X is the integers \mathcal{I} , the for P_X assigning probability 0 to sets in \mathcal{R} that do NOT containing integers, $\nu(B) = \#B \cap \mathcal{I}$ can be used.

- Mixed measure $m + \nu$ for mixed discrete-continuous X: image of X is the union of an interval and a countable set, $P_X(B) = 0$ when B is neither an interval nor the target countable set (integers, etc.).

With dominating measures defined, we have the integrals as

For $P_X = \int I_B(x) dP(x)$

For the three cases, we have:

(a)
$$P_X \ll m$$
:

$$P_X(B) = \int_{\mathbb{R}} I_B(x) f_X(x) dx$$

(b)
$$P_X \ll \nu$$
:

$$P_X(B) = \int_{\mathbb{R}} I_B(x) f_X(x) d\nu(x)$$

$$= \sum_{B \cap \mathcal{I}} f_X(i) = \sum_{B \cap \mathcal{I}} P_X(\{i\})$$

$$= \sum_{B \cap \mathcal{I}} \Pr(X = i)$$

(c) $P_X \ll m + \nu$:

$$P_X(B) = \int_{\mathbb{R}} I_B(x) f_X(x) d(m+\nu)$$
$$= \int_{\mathbb{R}} I_B(x) f_X(x) dx$$
$$+ \int_{\mathbb{R}} I_B(x) f_X(x) d\nu$$

Where
$$f_X(x) = \Pr(X = x)$$

For the density function $f_X(x): \mathbb{R} \to \mathbb{R}$ defined on $(\mathbb{R}, \mathcal{B})$, it is actually a **Borel** measurable random variable.

Properties of $f_X(x)$

density function $f_X(x)$ has the following properties:

- non-negative: $\forall x \in \mathbb{R}, f_X(x) \ge 0$
- integrate to 1 If X is continuous:

$$1 = P_X ((-\infty, \infty)) = \int_{\mathbb{R}} f_X(x) dx$$

If *X* is discrete:

$$1 = P_X ((-\infty, \infty)) = \int_{\mathbb{R}} f_X(x) d\nu$$
$$= \sum_{i=-\infty}^{\infty} f_X(i) = 1$$

How can we find $f_X(x) = \Pr(X) = x$?