# $12a_{0385} (K12a_{0385})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle u^{80} + u^{79} + \dots + 2u^4 + 1 \rangle$$

\* 1 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 80 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle u^{80} + u^{79} + \dots + 2u^4 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{3} \\ u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} - 3u^{10} + 5u^{8} - 4u^{6} + 2u^{4} - u^{2} + 1 \\ -u^{14} + 4u^{12} - 7u^{10} + 6u^{8} - 2u^{6} - u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{20} - 5u^{18} + 13u^{16} - 20u^{14} + 20u^{12} - 13u^{10} + 7u^{8} - 4u^{6} + 3u^{4} - u^{2} + 1 \\ -u^{22} + 6u^{20} + \dots + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{28} - 7u^{26} + \dots - u^{2} + 1 \\ -u^{30} + 8u^{28} + \dots - 4u^{6} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{57} + 14u^{55} + \dots + 2u^{3} - u \\ u^{59} - 15u^{57} + \dots + u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{36} - 9u^{34} + \dots - u^{2} + 1 \\ u^{36} - 8u^{34} + \dots - 4u^{8} + u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $4u^{78} 76u^{76} + \cdots 4u + 2$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing          |
|-----------------------|-----------------------------------------|
| $c_1,c_5$             | $u^{80} + 29u^{79} + \dots - 8u^2 + 1$  |
| $c_2, c_6$            | $u^{80} - u^{79} + \dots - 4u^3 + 1$    |
| $c_3$                 | $u^{80} + u^{79} + \dots + 256u + 97$   |
| $c_4, c_{10}$         | $u^{80} - u^{79} + \dots + 2u^4 + 1$    |
| $c_7, c_8, c_{12}$    | $u^{80} + 5u^{79} + \dots + 24u + 1$    |
| <i>c</i> <sub>9</sub> | $u^{80} + 39u^{79} + \dots + 4u^2 + 1$  |
| $c_{11}$              | $u^{80} - 3u^{79} + \dots + 800u + 851$ |

### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing               |
|-----------------------|--------------------------------------------------|
| $c_1, c_5$            | $y^{80} + 45y^{79} + \dots - 16y + 1$            |
| $c_2, c_6$            | $y^{80} + 29y^{79} + \dots - 8y^2 + 1$           |
| <i>c</i> <sub>3</sub> | $y^{80} + 9y^{79} + \dots + 10512y + 9409$       |
| $c_4, c_{10}$         | $y^{80} - 39y^{79} + \dots + 4y^2 + 1$           |
| $c_7, c_8, c_{12}$    | $y^{80} + 81y^{79} + \dots + 8y + 1$             |
| <i>c</i> <sub>9</sub> | $y^{80} + 5y^{79} + \dots + 8y + 1$              |
| $c_{11}$              | $y^{80} + 29y^{79} + \dots + 19021504y + 724201$ |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.974248 + 0.243707I  | -0.341105 - 0.923106I                 | 0                   |
| u = 0.974248 - 0.243707I  | -0.341105 + 0.923106I                 | 0                   |
| u = -0.798815 + 0.582962I | -2.45122 - 4.26356I                   | 0                   |
| u = -0.798815 - 0.582962I | -2.45122 + 4.26356I                   | 0                   |
| u = -0.760408 + 0.601524I | -6.49087 + 2.34742I                   | -2.84735 - 3.42112I |
| u = -0.760408 - 0.601524I | -6.49087 - 2.34742I                   | -2.84735 + 3.42112I |
| u = 0.784181 + 0.559828I  | -1.03117 - 1.02296I                   | 3.10972 + 3.14213I  |
| u = 0.784181 - 0.559828I  | -1.03117 + 1.02296I                   | 3.10972 - 3.14213I  |
| u = -0.728858 + 0.618278I | -2.22839 + 8.96435I                   | 2.00000 - 8.27939I  |
| u = -0.728858 - 0.618278I | -2.22839 - 8.96435I                   | 2.00000 + 8.27939I  |
| u = -1.029920 + 0.233477I | -1.08076 - 4.22509I                   | 0                   |
| u = -1.029920 - 0.233477I | -1.08076 + 4.22509I                   | 0                   |
| u = 0.723078 + 0.602518I  | -0.81811 - 3.55737I                   | 3.81185 + 3.70716I  |
| u = 0.723078 - 0.602518I  | -0.81811 + 3.55737I                   | 3.81185 - 3.70716I  |
| u = 1.021260 + 0.405865I  | -1.70172 - 1.76133I                   | 0                   |
| u = 1.021260 - 0.405865I  | -1.70172 + 1.76133I                   | 0                   |
| u = -1.075770 + 0.327642I | -5.25765 + 0.50983I                   | 0                   |
| u = -1.075770 - 0.327642I | -5.25765 - 0.50983I                   | 0                   |
| u = 0.996305 + 0.530127I  | 2.55643 + 0.13963I                    | 0                   |
| u = 0.996305 - 0.530127I  | 2.55643 - 0.13963I                    | 0                   |
| u = -1.014540 + 0.534615I | 2.77964 + 5.23374I                    | 0                   |
| u = -1.014540 - 0.534615I | 2.77964 - 5.23374I                    | 0                   |
| u = -1.094730 + 0.408125I | -2.84165 + 5.68344I                   | 0                   |
| u = -1.094730 - 0.408125I | -2.84165 - 5.68344I                   | 0                   |
| u = -0.276879 + 0.781910I | -4.43959 - 10.77180I                  | 0.62357 + 6.97709I  |
| u = -0.276879 - 0.781910I | -4.43959 + 10.77180I                  | 0.62357 - 6.97709I  |
| u = 0.275922 + 0.773655I  | -2.95631 + 5.26247I                   | 2.70471 - 2.47758I  |
| u = 0.275922 - 0.773655I  | -2.95631 - 5.26247I                   | 2.70471 + 2.47758I  |
| u = -0.258532 + 0.778086I | -8.88148 - 3.93678I                   | -3.71532 + 2.43295I |
| u = -0.258532 - 0.778086I | -8.88148 + 3.93678I                   | -3.71532 - 2.43295I |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.549018 + 0.608925I  | 3.86584 - 4.65764I                    | 7.60494 + 6.72667I  |
| u = 0.549018 - 0.608925I  | 3.86584 + 4.65764I                    | 7.60494 - 6.72667I  |
| u = -1.071790 + 0.510904I | -0.83622 + 4.86099I                   | 0                   |
| u = -1.071790 - 0.510904I | -0.83622 - 4.86099I                   | 0                   |
| u = 1.094840 + 0.465113I  | -2.46387 - 1.65619I                   | 0                   |
| u = 1.094840 - 0.465113I  | -2.46387 + 1.65619I                   | 0                   |
| u = -0.238763 + 0.767511I | -4.99864 + 2.98355I                   | -0.37409 - 2.63773I |
| u = -0.238763 - 0.767511I | -4.99864 - 2.98355I                   | -0.37409 + 2.63773I |
| u = -0.519171 + 0.612965I | 4.23043 - 0.69017I                    | 8.91098 - 0.24136I  |
| u = -0.519171 - 0.612965I | 4.23043 + 0.69017I                    | 8.91098 + 0.24136I  |
| u = -1.164900 + 0.276437I | -7.38303 - 2.10122I                   | 0                   |
| u = -1.164900 - 0.276437I | -7.38303 + 2.10122I                   | 0                   |
| u = 0.249372 + 0.759552I  | -3.37040 + 2.27685I                   | 2.08581 - 2.28652I  |
| u = 0.249372 - 0.759552I  | -3.37040 - 2.27685I                   | 2.08581 + 2.28652I  |
| u = -1.164180 + 0.297688I | -7.64026 + 0.98754I                   | 0                   |
| u = -1.164180 - 0.297688I | -7.64026 - 0.98754I                   | 0                   |
| u = 1.170650 + 0.272859I  | -8.91819 + 7.58864I                   | 0                   |
| u = 1.170650 - 0.272859I  | -8.91819 - 7.58864I                   | 0                   |
| u = 1.173220 + 0.286979I  | -13.27670 + 0.66412I                  | 0                   |
| u = 1.173220 - 0.286979I  | -13.27670 - 0.66412I                  | 0                   |
| u = 1.171100 + 0.302065I  | -9.27591 - 6.32389I                   | 0                   |
| u = 1.171100 - 0.302065I  | -9.27591 + 6.32389I                   | 0                   |
| u = 0.367617 + 0.693910I  | 3.06846 + 6.42905I                    | 5.74931 - 6.97675I  |
| u = 0.367617 - 0.693910I  | 3.06846 - 6.42905I                    | 5.74931 + 6.97675I  |
| u = -1.085380 + 0.549352I | 1.61197 + 5.79661I                    | 0                   |
| u = -1.085380 - 0.549352I | 1.61197 - 5.79661I                    | 0                   |
| u = -0.383920 + 0.675789I | 3.65049 - 1.05201I                    | 7.59735 + 1.19575I  |
| u = -0.383920 - 0.675789I | 3.65049 + 1.05201I                    | 7.59735 - 1.19575I  |
| u = 1.107480 + 0.519195I  | -3.96203 - 6.81758I                   | 0                   |
| u = 1.107480 - 0.519195I  | -3.96203 + 6.81758I                   | 0                   |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 1.094630 + 0.552876I  | 0.95490 - 11.22700I                   | 0                   |
| u = 1.094630 - 0.552876I  | 0.95490 + 11.22700I                   | 0                   |
| u = 0.616209 + 0.411830I  | -0.52415 - 1.55757I                   | -0.03671 + 5.81499I |
| u = 0.616209 - 0.411830I  | -0.52415 + 1.55757I                   | -0.03671 - 5.81499I |
| u = 1.147140 + 0.540994I  | -5.98702 - 7.15179I                   | 0                   |
| u = 1.147140 - 0.540994I  | -5.98702 + 7.15179I                   | 0                   |
| u = -1.152090 + 0.538667I | -7.66641 + 1.89692I                   | 0                   |
| u = -1.152090 - 0.538667I | -7.66641 - 1.89692I                   | 0                   |
| u = 1.146000 + 0.553071I  | -5.50832 - 10.23230I                  | 0                   |
| u = 1.146000 - 0.553071I  | -5.50832 + 10.23230I                  | 0                   |
| u = -1.151650 + 0.548129I | -11.5016 + 8.8913I                    | 0                   |
| u = -1.151650 - 0.548129I | -11.5016 - 8.8913I                    | 0                   |
| u = -1.148500 + 0.555482I | -7.0021 + 15.7722I                    | 0                   |
| u = -1.148500 - 0.555482I | -7.0021 - 15.7722I                    | 0                   |
| u = 0.275856 + 0.642568I  | -1.60956 + 2.29309I                   | -2.09430 - 4.60338I |
| u = 0.275856 - 0.642568I  | -1.60956 - 2.29309I                   | -2.09430 + 4.60338I |
| u = -0.387189 + 0.554390I | 1.139690 - 0.526971I                  | 8.40078 + 1.81328I  |
| u = -0.387189 - 0.554390I | 1.139690 + 0.526971I                  | 8.40078 - 1.81328I  |
| u = 0.067865 + 0.548015I  | 0.15131 - 2.22893I                    | 0.09814 + 3.20079I  |
| u = 0.067865 - 0.548015I  | 0.15131 + 2.22893I                    | 0.09814 - 3.20079I  |

II. u-Polynomials

| Crossings          | u-Polynomials at each crossing          |
|--------------------|-----------------------------------------|
| $c_1,c_5$          | $u^{80} + 29u^{79} + \dots - 8u^2 + 1$  |
| $c_2, c_6$         | $u^{80} - u^{79} + \dots - 4u^3 + 1$    |
| $c_3$              | $u^{80} + u^{79} + \dots + 256u + 97$   |
| $c_4, c_{10}$      | $u^{80} - u^{79} + \dots + 2u^4 + 1$    |
| $c_7, c_8, c_{12}$ | $u^{80} + 5u^{79} + \dots + 24u + 1$    |
| <i>c</i> 9         | $u^{80} + 39u^{79} + \dots + 4u^2 + 1$  |
| $c_{11}$           | $u^{80} - 3u^{79} + \dots + 800u + 851$ |

### III. Riley Polynomials

| Crossings          | Riley Polynomials at each crossing               |
|--------------------|--------------------------------------------------|
| $c_1, c_5$         | $y^{80} + 45y^{79} + \dots - 16y + 1$            |
| $c_{2}, c_{6}$     | $y^{80} + 29y^{79} + \dots - 8y^2 + 1$           |
| $c_3$              | $y^{80} + 9y^{79} + \dots + 10512y + 9409$       |
| $c_4,c_{10}$       | $y^{80} - 39y^{79} + \dots + 4y^2 + 1$           |
| $c_7, c_8, c_{12}$ | $y^{80} + 81y^{79} + \dots + 8y + 1$             |
| <i>C</i> 9         | $y^{80} + 5y^{79} + \dots + 8y + 1$              |
| $c_{11}$           | $y^{80} + 29y^{79} + \dots + 19021504y + 724201$ |