Ex 16.1

Tangents and Normals Ex 16.1 Q1(i)

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---($$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} \qquad ---(B)$$

Now,

y =
$$\sqrt{x^3}$$

$$\frac{dy}{dx} = \frac{3x^2}{2\sqrt{x^3}}$$

Slope of tangent at $x = 4$ is
$$\left(\frac{dy}{dx}\right)_{x=4} = \frac{3.16}{2\sqrt{64}} = \frac{48}{16} = 3$$

$$\left(\frac{dy}{dx}\right)_{x=4} = \frac{3.16}{2\sqrt{64}} = \frac{48}{16} = 3$$

Slope of normal at x = 4 is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} = \frac{-1}{3}$$

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(A)$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)}$$
 --- (B)

$$y = \sqrt{x}$$

$$y = \sqrt{x}$$

$$\therefore \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$$

Slope oftangent at x = 9.

$$\therefore \qquad \left(\frac{dy}{dx}\right)_{x=9} = \frac{1}{2\sqrt{9}} = \frac{1}{6}$$

Also, the slope of normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} = -6$$

Tangents and Normals Ex 16.1 Q1(iii)

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(A)$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} \qquad ---(B)$$

$$v = x^3 - x$$

$$y = x^3 - x$$

$$\therefore \frac{dy}{dx} = 3x^2 - 1$$

Slope of tangent at x = 2 is

$$\left(\frac{dy}{dx}\right)_{x=2} = 3.2^2 - 1 = 11$$

Slope of normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} = \frac{-1}{11}$$

Tangents and Normals Ex 16.1 Q1(iv)

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(A$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} \qquad ---(B)$$

$$y = 2x^2 + 3\sin x$$

$$y = 2x^{2} + 3\sin x$$

$$\therefore \frac{dy}{dx} = 4x + 3\cos x$$

So, slope of tangent of
$$x = 0$$
 is
$$\left(\frac{dy}{dx}\right)_{x=0} = 4.0 + 3\cos 0^{\circ} = 3$$

And slope of normanl is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} = \frac{-1}{3}$$

Tangents and Normals Ex 16.1 Q1(v)

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(x)$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} \qquad ---(B)$$

$$x = a(\theta - \sin \theta), y = a(1 + \cos \theta)$$

Now,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-a\sin\theta}{a\left(1-\cos\theta\right)}$$

$$\therefore \qquad \text{Slope of tangent of } \theta = -\frac{\pi}{2}$$

$$\left(\frac{dy}{dx}\right)_{\theta = -\frac{\pi}{2}} = \frac{-a\sin\left(-\frac{\pi}{2}\right)}{a\left(1 - \cos\left(-\frac{\pi}{2}\right)\right)}$$
$$= \frac{a}{a(1 - 0)} = 1$$

Also, the slope of normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} = -1$$

Tangents and Normals Ex 16.1 Q1(vi)

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(x)$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)}$$
 --- (B

$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$

$$\frac{dx}{d\theta} = 3a\cos^2\theta \times (-\sin\theta) = -3a\sin\theta \times \cos^2\theta$$

and
$$\frac{dy}{dx} = 3a\sin^2\theta \times \cos\theta$$

Now,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3a\sin^2\theta \times \cos\theta}{-3a\sin\theta \times \cos^2\theta}$$

 $\therefore \qquad \text{Slope of tangent at } \theta = \frac{\pi}{4} \text{ is}$

$$\left(\frac{dy}{dx}\right)_{\theta = \frac{x}{4}} = 1$$

Also, the slope of normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} = -1$$

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(A)$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)}$$
 --- (B)

$$x = a(\theta - \sin \theta), y = a(1 - \cos \theta)$$

$$\therefore \qquad \frac{dx}{d\theta} = a\left(1 - \cos\theta\right), \quad \frac{dy}{d\theta} = a\left(0 + \sin\theta\right) = a\sin\theta$$

Now,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\sin\theta}{a(1-\cos\theta)}$$

Now, the slope of tangent at $\theta = \frac{\pi}{2}$ is

$$\left(\frac{dy}{dx}\right)_{\theta = \frac{\pi}{2}} = \frac{a\sin\frac{\pi}{2}}{a\left(1 - \cos\frac{\pi}{2}\right)} = \frac{a}{a} = 1$$

And, the slope of normal is

$$\frac{-1}{\frac{dy}{dx}} = -1$$

Tangents and Normals Ex 16.1 Q1(viii)

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(A$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)}$$
 --- (B

$$y = (\sin 2x + \cot x + 2)^2$$

$$y = (\sin 2x + \cot x + 2)^{2}$$

$$\therefore \frac{dy}{dx} = 2 (\sin 2x + \cot x + 2) (2 \cos 2x - \cos ec^{2}x)$$

$$\therefore \qquad \text{Slope of tangent of } x = \frac{\pi}{2} \text{ is}$$

$$\left(\frac{dy}{dx}\right)_{x=\frac{\pi}{2}} = 2\left(\sin \pi + \cos \frac{\pi}{2} + 2\right)\left(2\cos \pi - \csc^2 \frac{\pi}{2}\right)$$
$$= 2\left(0 + 0 + 2\right)\left(-2 - 1\right)$$
$$= -12$$

Slope of normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{1}{12}$$

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---(A)$$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)} \qquad ---(B)$$

$$x^2 + 3y + y^2 = 5$$

Differentiating with respect to \boldsymbol{x} , we get

$$2x + 3\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx}(3+2y) = -2x$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2x}{3+2y}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2x}{3+2y}$$

So, the slope of tangent at (1,1) is

$$\frac{dy}{dx} = \frac{-2.1}{3 + 2.1} = \frac{-2}{5}$$

The slope of normal is

$$\frac{-1}{\frac{dy}{dy}} = \frac{5}{2}$$

Tangents and Normals Ex 16.1 Q1(x)

We know that the slope of the tangent to the curve y = f(x) is

$$\frac{dy}{dx} = f'(x) \qquad ---($$

And the slope of the normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{-1}{f'(x)}$$
 --- (B)

$$xy = 6$$

Differentiating with respect to x, we get

$$y + x \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-y}{x}$$

Slope of tangent at (1,6) is

$$\frac{dy}{dx} = -6$$
 and

Slope of normal is

$$\frac{-1}{\frac{dy}{dx}} = \frac{1}{6}$$

Differentiating with respect to x, we get

$$y + x \frac{dy}{dx} + \bar{a} + b \frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} \big(x + b \big) = - \big(a + y \big)$$

$$\Rightarrow \frac{dy}{dx} = \frac{-(a+y)}{x+b}$$

$$\therefore \qquad \text{Slope of tangent} = \left(\frac{dy}{dx}\right)_{x=1, y=1} = \frac{-\left(a+1\right)}{b+1} = 2 \qquad \qquad \left[\text{given}\right]$$

$$\Rightarrow$$
 $-(a+1)=2b+2$

Also, (1,1) lies on the curve, so x = 1, y = 1 satisfies the equation xy + ax + by = 2

$$\Rightarrow$$
 1+a+b=2

$$\Rightarrow$$
 $a+b=1$

---(iii)

Solving (i) and (ii), we get a = 5, b = -4

Tangents and Normals Ex 16.1 Q3

We have,

$$y = x^3 + ax + b$$
 ---(i)
 $x - y + 5 = 0$ ---(ii)

Now,

Point
$$(1,-6)$$
 lies on (i) , so,

$$-6 = 1 + a + b$$

Also,

Slope of tangent to (i) is

$$\frac{dy}{dx} = 3x^2 + a$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(1,-6)} = 3 + \epsilon$$

And slope of tangent to (ii) is

$$\frac{dy}{dy} = 1$$

According to the question slope of (i) and (ii) are parallel

$$\therefore \qquad 3+a=1$$

From (iii)

$$b = -5$$

We have,

$$y = x^3 - 3x$$
 ---(i)
Slope of (i) is
$$\frac{dy}{dx} = 3x^2 - 3$$
 ---(ii)

Also,

The slope of the chord obtained by joining the points (1,-2) and (2,2) is

According to the question slope of tangent to (i) and the chord are parallel

$$3x^{2} - 3 = 4$$

$$3x^{2} = 7$$

$$x = \pm \sqrt{\frac{7}{3}}$$

From (i)

$$y = \pm \sqrt{\frac{7}{3}} \mp 3\sqrt{\frac{7}{3}}$$
$$= \mp \frac{2}{3}\sqrt{\frac{7}{3}}$$

Thus, the required point is

$$\pm\sqrt{\frac{7}{3}}, \mp \frac{2}{3}\sqrt{\frac{7}{3}}$$

Tangents and Normals Ex 16.1 Q5

The given equations are

$$y = x^3 - 2x^2 - 2x$$
 ---(i)
 $y = 2x - 3$ ---(ii)

Slope to the tangents of (i) and (ii) are

$$\frac{dy}{dx} = 3x^2 - 4x - 2 \qquad ---(iii)$$
and
$$\frac{dy}{dx} = 2 \qquad ---(iv)$$

According to the question slope to (i) and (ii) are parallel, so

$$3x^{2} - 4x - 2 = 2$$

$$\Rightarrow 3x^{2} - 4x - 4 = 0$$

$$\Rightarrow 3x^{2} - 6x + 2x - 4 = 0$$

$$\Rightarrow 3x(x - 2) + 2(x - 2) = 0$$

$$\Rightarrow (3x + 2)(x - 2) = 0$$

$$\Rightarrow x = \frac{-2}{3} \text{ or } 2$$

From (i)
$$y = \frac{4}{27} \text{ or } -4$$

Thus, the points are

$$\left(\frac{-2}{3}, \frac{4}{27}\right)$$
 and $\left(2, -4\right)$

$$y^2 = 2x^3$$

---(i)

Differentiating (i) with respect to \boldsymbol{x} , we get

$$2y \frac{dy}{dx} = 6x^{2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{3x^{2}}{y} \qquad ---(ii)$$

According to the question

$$\frac{3x^2}{y} = 3$$

$$\Rightarrow x^2 = y \qquad ---(iii)$$

$$\left(x^2\right)^2 = 2x^3$$

$$\Rightarrow$$
 $x^4 - 2x^3 = 1$

$$\Rightarrow x^4 - 2x^3 = 0$$

$$\Rightarrow x^3(x - 2) = 0$$

$$\Rightarrow x = 0 \text{ or } 2$$

If x = 0, then

$$\frac{dy}{dx} = \frac{3x^2}{y} \Rightarrow \frac{dy}{dx} = 0$$

Which is not possible.

$$x = 2$$
.

Putting x = 2 in the equation of the curve $y^2 = 2x^3$, we get y = 4.

Hence the required point is (2,4)

Tangents and Normals Ex 16.1 Q7

We know that the slope to any curve is $\frac{dy}{dx} = \tan\theta$ where θ is the angle with possitive direction of x-axis.

Now,

The given curve is
$$xy + 4 = 0$$

Differentiating with respect to \boldsymbol{x} , we get

$$y + x \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-y}{x} \qquad ---(ii)$$

Also,

$$\frac{dy}{dx}$$
 = tan 45° = 1 ---(iii)

$$\frac{-y}{x} = 1$$

$$\Rightarrow \qquad x = -y \qquad \qquad ---(iv)$$

From (i) and (iv), we get

$$-y^2 + 4 = 0$$

$$\Rightarrow$$
 $y = \pm 2$

Thus, the points are

$$(2,-2)$$
 and $(-2,2)$

The given equation of the curve is

$$y = x^2$$

---(i)

.. Slope of tangent to (i) is

$$\frac{dy}{dx} = 2x$$

---(ii)

According to the question

$$\frac{dy}{dx} = x$$

[Slope = x-coordinate]

From (ii) and (iii)

$$2x = x$$

$$\Rightarrow x = 0 & y = 0$$

Thus, the required point is (0,0)

Tangents and Normals Ex 16.1 Q9

The given equation of the curve is

$$x^2 + y^2 - 2x - 4y + 1 = 0$$

---(i)

Differentiating with respect is \boldsymbol{x} , we get

ereinfulling with respect is
$$x$$
,
$$2x + 2y \frac{dy}{dx} - 2 - 4 \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} (2y - 4) = 2 - 2x$$

$$\frac{dy}{dx} = \frac{2(1 - x)}{2(y - 2)}$$

$$\Rightarrow \frac{dy}{dx}(2y-4) = 2-2x$$

$$\Rightarrow \frac{dy}{dx} = \frac{2(1-x)}{2(y-2)}$$

---(ii)

According to the question the tangent is parallel to x-axis, so θ = 0°

$$\therefore$$
 Slope = $tan\theta$ = $tan0^\circ$ = 0

From (ii) and (iii), we get

$$\frac{1-x}{x} = \frac{1-x}{x}$$

$$\Rightarrow$$
 $x = 1$

$$y = 0, 4$$

Thus, the points are (1,0) and (1,4)

Tangents and Normals Ex 16.1 Q10

The given equation of curve is

$$y = x^{2}$$

$$\therefore \text{ Slope} = \frac{dy}{dx} = 2x$$

As per question

From (ii) and (iii), we have

$$y=\frac{1}{4}$$

Thus, the required point is

$$\left(\frac{1}{2}, \frac{1}{4}\right)$$

The given equation of the curve is

$$y = 3x^2 - 9x + 8$$

Slope =
$$\frac{dy}{dx}$$
 = 6x - 9 --- (ii)

As per question

The tangent is equally inclined to the axes

$$\therefore \qquad \theta = \frac{\pi}{4} \text{ or } \frac{-\pi}{4}$$

∴ Slope =
$$tan\theta$$

$$= \tan \frac{\pi}{4} \text{ or } \tan \left(\frac{-\pi}{4}\right)$$

$$= 1 \text{ or } -1$$
---(iii)

From (ii) and (iii), we have,

$$6x - 9 = 1$$

$$6x - 9 = -1$$

$$6x - 9 = 1 \qquad \text{or} \qquad 6x - 9 = -1$$

$$\Rightarrow \qquad x = \frac{5}{3} \qquad \text{or} \qquad x = \frac{4}{3}$$

$$x = \frac{4}{3}$$

$$y = \frac{4}{5}$$

So, from (i)
$$y = \frac{4}{3} \qquad \text{or} \qquad y = \frac{4}{3}$$

Thus, the points are

$$\left(\frac{5}{3}, \frac{4}{3}\right)$$
 or $\left(\frac{4}{3}, \frac{4}{3}\right)$

Tangents and Normals Ex 16.1 Q12

The given equation are

$$y = 2x^2 - x + 1$$

--- (i)

$$y = 3x + 4$$

Slope to (i) is

$$\frac{dy}{dx} = 4x - 1$$

Slope to (ii) is

$$\frac{dy}{dx} = 0$$

According to the question

$$4x - 1 = 3$$

$$\Rightarrow \qquad x = 1$$

Thus from (i)

$$V = 2$$

Hence, the point is (1,2).

The given equation of curve is

$$y = 3x^2 + 4$$

---(i)

Slope =
$$m_1 = \frac{dy}{dx} = 6x$$

---(ii)

Now,

The given slope $m_2 = \frac{-1}{6}$

We have,

tangent to (i) is perpendicular to the tangent whose slope is $\frac{-1}{6}$

$$\therefore m_1 \times m_2 = -1$$

$$\Rightarrow \qquad 6x \times \frac{-1}{6} = -1$$

$$\stackrel{\sim}{\Rightarrow}$$
 $x = 1$

From (i)

$$V = 7$$

Thus, the required point is (1,7).

Tangents and Normals Ex 16.1 Q14

The given equation of curve and the line is

$$x^2 + y^2 = 13$$
$$2x + 3y = 7$$

Slope =
$$m_1$$
 for (i)

$$m_1 = \frac{dy}{dx} = \frac{-x}{y}$$

Slope =
$$m_2$$
 for (ii)

$$m_2 = \frac{dy}{dx} = \frac{-2}{3}$$

According to the question

$$m_1 = m_1$$

$$\Rightarrow \frac{-x}{v} = \frac{-2}{3}$$

$$\Rightarrow x = \frac{2}{3}$$

From (i)

$$\frac{4}{9}y^2 + y^2 = 13$$

$$\Rightarrow \frac{13y^2}{9} = 13$$

$$\Rightarrow$$
 $y = \pm 3$

$$\therefore \qquad x = \pm 2$$

Thus, the points are (2,3) and (-2,-3).

The given equation of the curve is

$$2a^2y = x^3 - 3ax^2$$

Differentiating with respect to \boldsymbol{x} , we get

$$2a^2\frac{dy}{dx} = 3x^2 - 6ax$$

: Slope
$$m_1 = \frac{dy}{dx} = \frac{1}{2a^2} [3x^2 - 6ax]$$
 ---(ii

Also,

Slope
$$m_2 = \frac{dy}{dx} = \tan\theta$$

= $\tan 0^\circ = 0$

[\cdot Slope is parallel to x-axis]

---(i)

$$m_1 = m_2$$

$$\Rightarrow \frac{1}{2a^2} [3x^2 - 6ax] = 0$$

$$\Rightarrow 3x [x - 2a] = 0$$

$$\Rightarrow x = 0 \text{ or } 2a$$

$$\therefore From (i)$$

$$y = 0 \text{ or } -2a$$

Thus, the required points are (0,0) or (2a,-2a).

Tangents and Normals Ex 16.1 Q16

The given equations of curve and the line are

$$y = x^2 - 4x + 5$$
 ---(i)
 $2y + x = 7$ ---(ii)

Slope of the tangent to (i) is

$$m_1 = \frac{dy}{dx} = 2x - 4 \qquad ---(ii)$$

Slope of the line (ii) is

$$m_2 = \frac{dy}{dx} = \frac{-1}{2}$$
 --- (iv

We have given that slope of (i) and (ii) are perpendicular to each other.

$$m_1 \times m_2 = -1$$

$$\Rightarrow (2x - 4) \left(\frac{-1}{2}\right) = -1$$

$$\Rightarrow -2x + 4 = -2$$

$$\Rightarrow x = 3$$

From (i)
$$y = 2$$

Thus, the required point is (3,2).

Differentiating $\frac{x^2}{4} + \frac{y^2}{25} = 1$ with respect to x, we get $\frac{x}{2} + \frac{2y}{25} \cdot \frac{dy}{dx} = 0$ or $\frac{dy}{dx} = \frac{-25}{4} \cdot \frac{x}{y}$

(i) Now, the tangent is parallel to the x – axis if the slope of the tangent is zero.

$$\therefore \frac{-25}{4}, \frac{x}{y} = 0$$

This is possible if x = 0.

Then
$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$
 for $x = 0$ gives $y^2 = 25$

$$y = \pm .$$

Thus, the points at which the tangents are parallel to the x - axis are (0,5) and (0,-5).

(ii) Now, the tangent is parallel to the y-axis if the slope of the normal is zero.

$$\frac{4y}{25x} = 0$$

This is possible if y = 0.

Then
$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$
 for $y = 0$ gives $x^2 = 4$

$$\therefore$$
 $x = \pm 2$

Thus, the points at which the tangents are parallel to the y - axis are (2,0) and (-2,0).

Tangents and Normals Ex 16.1 Q18

The equation of the given curve is $x^2 + y^2 - 2x - 3 = 0$.

On differentiating with respect to x, we have:

$$2x + 2y \frac{dy}{dx} - 2 = 0$$
$$\Rightarrow y \frac{dy}{dx} = 1 - x$$

$$\Rightarrow \frac{dy}{dx} = \frac{1-x}{y}$$

Now, the tangents are parallel to the x-axis if the slope of the tangent is 0.

$$\therefore \frac{1-x}{y} = 0 \Rightarrow 1-x = 0 \Rightarrow x = 1$$

But,
$$x^2 + y^2 - 2x - 3 = 0$$
 for $x = 1$.

$$\Rightarrow$$
 $y^2 = 4 \Rightarrow y = \pm 2$

Hence, the points at which the tangents are parallel to the x-axis are (1, 2) and (1, -2)

(b) Now, the tangents are parallel to the x-axis if the slope of the tangents is 0 $\,$

$$\frac{y}{1-x} = 0$$

 $y = 0$
But,
 $x^2 + y^2 - 2x - 3 = 0$ for $y = 0$

$$x^2 + y^2 - 2x - 3 = 0$$
 for $y = 0$
 $x^2 - 2x - 3 = 0$
 $x = -1.3$

Hence, the points at which the tangents are parallel to the y-axis are, (-1,0), (3,0)

The equation of the given curve is $\frac{x^2}{9} + \frac{y^2}{16} = 1$.

On differentiating both sides with respect to x, we have:

$$\frac{2x}{9} + \frac{2y}{16} \cdot \frac{dy}{dx} = 0$$
$$\Rightarrow \frac{dy}{dx} = \frac{-16x}{9y}$$

(i) The tangent is parallel to the x-axis if the slope of the tangent is i.e., $0 = \frac{-16x}{9y} = 0$, which is possible if x = 0.

Then,
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 for $x = 0$

$$\Rightarrow y^2 = 16 \Rightarrow y = \pm 4$$

Hence, the points at which the tangents are parallel to the x-axis are

$$(0, 4)$$
 and $(0, -4)$.

(ii) The tangent is parallel to the y-axis if the slope of the normal is 0, which gives $\frac{-1}{\left(\frac{-16x}{9y}\right)} = \frac{9y}{16x} = 0 \Rightarrow y = 0$.

Then,
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 for $y = 0$.

$$\Rightarrow x = \pm 3$$

Hence, the points at which the tangents are parallel to the y-axis are

Tangents and Normals Ex 16.1 Q20

The equation of the given curve is $y = 7x^3 + 11$.

$$\therefore \frac{dy}{dx} = 21x^2$$

The slope of the tangent to a curve at (x_0, y_0) is $\frac{dy}{dx}\bigg|_{(x_0, y_0)}$

Therefore, the slope of the tangent at the point where x = 2 is given by,

$$\left[\frac{dy}{dx}\right]_{x=-2} = 21(2)^2 = 84$$

It is observed that the slopes of the tangents at the points where x = 2 and x = -2 are equal.

Hence, the two tangents are parallel.

The given equation of curve is

$$v = x^3$$

----(i)

Slope of the tangent to (i) is

$$m_1 = \frac{dy}{dx} = 3x^2$$

Also,

given that slope of the tangent is parallel to x-coordinate of the point.

$$m_2 = \frac{dy}{dx} = x$$

From (ii) and (iii)

$$m_1 = m_2$$

$$\Rightarrow x(3x-1)=0$$

: From (i)

$$y = 0$$
 or $\frac{1}{2}$

Thus, the required point is (0,0) or $\left(\frac{1}{3}, \frac{1}{27}\right)$.

Ex 16.2

Tangents and Normals Ex 16.2 Q1

The given equation of the curve is

$$\sqrt{x} + \sqrt{y} = a \qquad ----(i$$

Differentiating with respect to
$$x$$
, we get
$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \times \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}$$

$$m = \left(\frac{dy}{dx}\right)_{\left(\frac{a^2}{4}, \frac{a^2}{4}\right)} = -\frac{\frac{a}{2}}{\frac{a}{2}} = -1$$

Thus,

the equation of tangent is

$$y - y_1 = m(x - x_1)$$

$$\Rightarrow \qquad y - \frac{\sigma^2}{4} = \left(-1\right) \left(x - \frac{\sigma^2}{4}\right)$$

$$\Rightarrow \qquad x + y = \frac{a^2}{4} + \frac{a^2}{4}$$

$$\Rightarrow x + y = \frac{a^2}{2}$$

The equation of the curve is

$$y = 2x^3 - x^2 + 3$$

---(i)

Slope =
$$m = \frac{dy}{dx} = 6x^2 - 2x$$

$$m = \left(\frac{dy}{dx}\right)_{(1,4)} = 4$$

Now,

The equation of normal is (i) is

$$y - y_1 = \frac{-1}{m} \left(x - x_1 \right)$$

$$\Rightarrow (y-4) = \frac{-1}{4}(x-1)$$

$$\Rightarrow x+4y=16+1$$

$$\Rightarrow x+4y=17$$

$$\Rightarrow$$
 $x + 4y = 16 + 1$

$$\Rightarrow$$
 $x + 4y = 17$

Tangents and Normals Ex 16.2 Q3(i)

(i) The equation of the curve is $y = x^4 - 6x^3 + 13x^2 - 10x + 5$.

On differentiating with respect to x, we get:

$$\frac{dy}{dx} = 4x^3 - 18x^2 + 26x - 10$$

$$\left. \frac{dy}{dx} \right|_{(0, 5)} = -10$$

Thus, the slope of the tangent at (0, 5) is -10. The equation of the tangent is given as:

$$y-5=-10(x-0)$$

$$\Rightarrow y - 5 = -10x$$

$$\Rightarrow 10x + y = 5$$

The slope of the normal at (0, 5) is

Therefore, the equation of the normal at (0, 5) is given as:

$$y-5=\frac{1}{10}(x-0)$$

$$\Rightarrow 10y - 50 = x$$

$$\Rightarrow x-10y+50=0$$

(ii) The equation of the curve is $y = x^4 - 6x^3 + 13x^2 - 10x + 5$.

On differentiating with respect to x, we get:

$$\frac{dy}{dx} = 4x^3 - 18x^2 + 26x - 10$$

$$\frac{dy}{dx}\bigg]_{(1, 3)} = 4 - 18 + 26 - 10 = 2$$

Thus, the slope of the tangent at (1, 3) is 2. The equation of the tangent is given as:

$$y-3=2(x-1)$$

$$\Rightarrow y-3=2x-2$$

$$\Rightarrow y = 2x + 1$$

The slope of the normal at (1, 3) is $\frac{-1}{\text{Slope of the tangent at (1, 3)}} = \frac{-1}{2}$.

Therefore, the equation of the normal at (1, 3) is given as:

$$y-3=-\frac{1}{2}(x-1)$$

$$\Rightarrow 2y - 6 = -x + 1$$

$$\Rightarrow x + 2y - 7 = 0$$

Tangents and Normals Ex 16.2 Q3(iii)

The equation of the curve is $y = x^2$.

On differentiating with respect to x, we get:

$$\frac{dy}{dx} = 2x$$

$$\left[\frac{dy}{dx}\right]_{(0, \ 0)} = 0$$

Thus, the slope of the tangent at (0, 0) is 0 and the equation of the tangent is given as:

$$y-0=0 (x-0)$$

$$\Rightarrow y = 0$$

The slope of the normal at (0, 0) is $\frac{-1}{\text{Slope of the tangent at } (0, 0)} = -\frac{1}{0}$, which is not defined

Therefore, the equation of the normal at $(x_0, y_0) = (0, 0)$ is given by

$$x = x_0 = 0.$$

$$y - y_1 = m(x - x_1)$$

Tangent

$$y - y_1 = \frac{-1}{m} (x - x_1)$$

(B) Norm al

Where m is the slope

We have,
$$y = 2x^2 - 3x - 1$$

$$P = (1, -2)$$

Slope
$$m = \frac{dy}{dx} = 4x - 3$$

$$m = \left(\frac{dy}{dx}\right)_{p} = 1$$

.. equation of tangent from (A)

$$(y + 2) = 1(x - 1)$$

$$\Rightarrow x - y = 3$$

And equation of normal from (B)

$$(y + 2) = -1(x - 1)$$

$$\Rightarrow x + y + 1 = 0$$

Tangents and Normals Ex 16.2 Q3(v)

We know that the equation of tangent and the normal to any curve is given by

$$y - y_1 = m(x - x_1)$$

(A) Tangent

$$y - y_1 = \frac{-1}{m} \left(x - x_1 \right)$$

(B) Norm al

Where m is the slope

We have,

$$y^2 = \frac{x^3}{4 - x}$$
 $P - (2, -2)$

Differentiating with respect to
$$x$$
, we get
$$2y \frac{dy}{dx} = \frac{3x^2 (4-x) + x^3}{(4-x)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{3x^2(4-x)+x^3}{2y(4-x)^2}$$

: Slope
$$m = \left(\frac{dy}{dx}\right)_p = \frac{3 \times 4(4-2) + 8}{-2 \times 2(4-2)^2}$$
$$= \frac{32}{-16} = -2$$

From (A)

Equation of tangent is

$$(y + 2) = -2(x - 2)$$

$$\Rightarrow$$
 2x + y = 2

From (B)

Equation of Normal is

$$\left(y+2\right) = \frac{1}{2}\left(x-2\right)$$

$$\Rightarrow x - 2y = 6$$

$$y - y_1 = m(x - x_1)$$

Tangent

$$y - y_1 = \frac{-1}{m} \left(x - x_1 \right)$$

(B) Norm al

Where m is the slope

We have,

$$y = x^2 + 4x + 1$$
 and $P = (x = 3)$

Slope =
$$\frac{dy}{dx}$$
 = 2x + 4

$$m = \left(\frac{dy}{dx}\right)_p = 10$$

From (A)

Equation of tangent is

$$(y - 22) = 10(x - 3)$$

$$\Rightarrow$$
 10x - y = 8

From (B)

Equation of normal is

$$(y - 22) = \frac{-1}{10}(x - 3)$$
$$x + 10y = 223$$

$$\Rightarrow x + 10y = 223$$

$$y - y_1 = m(x - x_1)$$

Tangent

$$y - y_1 = \frac{-1}{m} (x - x_1)$$

(B) Norm al

Where m is the slope

We have,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 and $P = (a\cos\theta, b\sin\theta)$

Differentiating with respect to x, we get

$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{xb^2}{ya^2}$$

Slope
$$m = \left(\frac{dy}{dx}\right)_p = \frac{-a\cos\theta b^2}{b\sin\theta a^2}$$
$$= \frac{-b}{a}\cot\theta$$

From (A)

Equation of tangent is,

$$(y - b \sin \theta) = \frac{-b}{a} \cot \theta (x - a \cos \theta)$$

$$\Rightarrow \qquad \frac{b}{\theta} x \cot \theta + y = b \sin \theta + b \cot \theta \times \cos \theta$$

$$\Rightarrow \frac{x}{a}\cot\theta + \frac{y}{b} = \frac{\sin^2\theta + \cos^2\theta}{\sin\theta}$$
$$\Rightarrow \frac{x}{a}\cot\theta + \frac{y}{b} = \frac{1}{\sin\theta}$$

$$\Rightarrow \frac{x}{a}\cot\theta + \frac{y}{b} = \frac{1}{\sin\theta}$$

$$\Rightarrow \frac{x}{\theta}\cos\theta + \frac{y}{b}\sin\theta = 1$$

From (B)

Equation of normal is

$$(y - b \sin \theta) = \frac{a}{b} \frac{\sin \theta}{\cos \theta} (x - a \cos \theta)$$

$$\Rightarrow \frac{a}{b}x \tan\theta - y = \frac{a^2}{b}\sin\theta - b\sin\theta$$

$$\Rightarrow \frac{\partial}{\partial x} \tan \theta - y = \frac{\partial^2 - b^2}{\partial x} \sin \theta$$

$$\Rightarrow \qquad \frac{a}{b}x\sec\theta - y\cos\theta = \frac{a^2 - b^2}{b}$$

$$\Rightarrow$$
 ax $\sec \theta - by \cos \theta = a^2 - b^2$

Tangents and Normals Ex 16.2 Q3(viii)

$$y - y_1 = m(x - x_1)$$

Tangent

$$y - y_1 = \frac{-1}{m} \left(x - x_1 \right)$$

(B) Norm al

Where m is the slope

We have,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad P = (a \sec \theta, b \tan \theta)$$

Differentiating with respect to x, we get

$$\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{xb^2}{ya^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{xb^2}{va^2}$$

Slope
$$m = \left(\frac{dy}{dx}\right)_p = \frac{a \sec \theta b^2}{b \tan \theta a^2}$$
$$= \frac{b}{a \sin \theta}$$

From (A)

Equation of tangent is,

$$\Rightarrow \frac{b}{a} \frac{x}{\sin \theta} - y = \frac{b \sec \theta}{\sin \theta} - b \tan \theta$$

$$\Rightarrow \frac{bx}{a\sin\theta} - y = \frac{b\sec\theta}{\sin\theta} \left(1 - \sin^2\theta \right)$$

$$\Rightarrow \frac{x}{a} - \frac{y}{b} \sin \theta = \cos \theta$$

$$\Rightarrow \frac{x}{a}\sec\theta - \frac{y}{b}\tan\theta = 1$$

From (B)

Equation of normal is

$$y - b \tan \theta = \frac{-a \sin \theta}{b} (x - a \sec \theta)$$

$$\Rightarrow \quad \text{ax } \sin\theta + by = b^2 \tan\theta + a^2 \tan\theta$$

$$\Rightarrow \quad \text{ax } \cos\theta + by \cot\theta = a^2 + b^2$$

$$y - y_1 = m(x - x_1)$$

Tangent

$$y - y_1 = \frac{-1}{m} (x - x_1)$$

(B) Norm al

Where m is the slope

We have,

$$y^2 = 4ax$$
 $P\left(\frac{a}{m^2}, \frac{2a}{m}\right)$

Differentiating with respect to x, we get

$$2y\frac{dy}{dx} = 4a$$

$$\Rightarrow \frac{dy}{dx} = \frac{2a}{y}$$

$$\therefore \qquad \text{Slope } m = \left(\frac{dy}{dx}\right)_{p} = m$$

From (A)

Equation of tangent is

$$\left(y - \frac{2a}{m}\right) = m\left(x - \frac{a}{m^2}\right)$$

$$\Rightarrow$$
 $m^2x - my = 2a - a$

$$\Rightarrow m^2x - my = a$$

From (B)

Equation of normal is

$$\left(y - \frac{2a}{m}\right) = \frac{-1}{m}\left(x - \frac{a}{m^2}\right)$$

$$\Rightarrow (my - 2a) = \frac{-m^2x + a}{m^2}$$

$$\Rightarrow m^2x + m^3y = 2am^2 + a$$

$$\Rightarrow m^2x + m^3y = 2am^2 + a$$

$$\Rightarrow m^2x + m^3y - 2am^2 - a = 0$$

$$y - y_1 = m(x - x_1)$$

Tangent

$$y - y_1 = \frac{-1}{m} \left(x - x_1 \right)$$

(B) Norm al

Where m is the slope

We have,

$$c^{2}\left(x^{2}+y^{2}\right)=x^{2}y^{2} \qquad \qquad P=\left(\frac{c}{\cos\theta},\frac{c}{\sin\theta}\right)$$

$$P = \left(\frac{C}{\cos \theta}, \frac{C}{\sin \theta}\right)$$

Differentiating with respect to x, we get

$$c^{2}\left(2x + 2y\frac{dy}{dx}\right) = 2xy^{2} + 2x^{2}y\frac{dy}{dx}$$

$$\Rightarrow \qquad \frac{dy}{dx} \left(2yc^2 - 2x^2y \right) = 2xy^2 - 2xc^2$$

$$\therefore \frac{dy}{dx} = \frac{x\left(y^2 - c^2\right)}{y\left(c^2 - x^2\right)}$$

Slope
$$m = \left(\frac{dy}{dx}\right)_{\rho} = \frac{\frac{c}{\cos\theta} \left(\frac{c^2}{\sin^2\theta} - c^2\right)}{\frac{c}{\sin\theta} \left(c^2 - \frac{c^2}{\cos^2\theta}\right)}$$
$$= \frac{c^2 \tan\theta \left(1 - \sin^2\theta\right)}{c^2 \tan^2\theta \left(\cos^2\theta - 1\right)}$$
$$= \frac{1}{-\tan\theta} \times \frac{\cos^2\theta}{\sin^2\theta}$$
$$= \frac{-\cos^3\theta}{\sin^3\theta}$$

From (A)

Equation of tangent is

$$\left(y - \frac{c}{\sin \theta}\right) = \frac{-\cos^3 \theta}{\sin^3 \theta} \left(x - \frac{c}{\cos \theta}\right)$$

$$\Rightarrow x \cos^3 \theta + y \sin^3 \theta = c \sin^2 \theta + c \cos^2 \theta$$

$$\Rightarrow x \cos^3 \theta + y \sin^3 \theta = c$$

From (B)

Equation of normal is

$$\left(y - \frac{c}{\sin\theta}\right) = \frac{\sin^3\theta}{\cos^3\theta} \left(x - \frac{c}{\cos\theta}\right)$$

$$\Rightarrow x \sin^3\theta - y \cos^3\theta = \frac{c \sin^3\theta}{\cos\theta} - \frac{c \cos^3\theta}{\sin\theta}$$

$$\Rightarrow x \sin^3\theta - y \cos^3\theta = \frac{c\left(\sin^4\theta - \cos^4\theta\right)}{\cos\theta \times \sin\theta}$$

$$= \frac{c\left(\sin^2\theta - \cos^2\theta\right)\left(\sin^2\theta + \cos^2\theta\right)}{\frac{1}{2}\sin 2\theta}$$

$$= \frac{-2c \cos 2\theta}{\sin 2\theta} = -2c \cot 2\theta$$

$$\therefore x \sin^3 \theta - y \cos^3 \theta + 2c \cot 2\theta = 0$$

$$y-y_1=m\big(x-x_1\big)$$

Tangent

$$y - y_1 = \frac{-1}{m} (x - x_1)$$

(B) Norm al

Where m is the slope

We have,

$$xy = c^2 P = \left(ct, \frac{c}{t}\right)$$

Differentiating with respect to \boldsymbol{x} , we get

$$y + x \frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} = -\frac{y}{x}$$

$$\therefore \qquad \text{Slope } m = \left(\frac{dy}{dx}\right)_{\rho} = \frac{\frac{-C}{t}}{ct} = \frac{-1}{t^2}$$

From (A)

Equation of tangent is

$$\left(y - \frac{c}{t}\right) = \frac{-1}{t^2} \left(x - ct\right)$$

$$\Rightarrow x + t^2 y = tc + ct$$

$$\Rightarrow x + t^2y = 2cx$$

From (B)

Equation of normal is

$$\left(y - \frac{c}{t}\right) = t^2 \left(x - ct\right)$$

$$\Rightarrow xt^3 - ty = ct^3 \times t - c$$

$$\Rightarrow xt^3 - ty = ct^4 - c$$

$$\Rightarrow xt^3 - ty = ct^4 - c$$

$$y - y_1 = m(x - x_1)$$

Tangent

$$y - y_1 = \frac{-1}{m} (x - x_1)$$

(B) Norm al

Where m is the slope

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$P = \{X_1, Y_1\}$$

Differentiating with resect to x, we get

$$\frac{2x}{a^2} + \frac{2y}{b^2} \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{xb^2}{ya^2}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{xb^2}{va^2}$$

$$\therefore \qquad \text{Slope } m = \left(\frac{dy}{dx}\right)_{\rho} = -\frac{x_1 b^2}{y_1 a^2}$$

From (A)

Equation of tangent is

$$(y - y_1) = -\frac{x_1 b^2}{y_1 a^2} (x - x_1)$$

$$\Rightarrow xx_1b^2 + yy_1a^2 = x_1^2b^2 + y_1^2a^2$$

Divide by a^2b^2 both side

$$\Rightarrow \frac{xx_1}{a^2} + \frac{yy_1}{b^2} = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2}$$
$$= 1$$

$$\left[\because (x_1, y_1) \text{ lies on (i)} \right]$$

$$\therefore \frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$

From (B)

Equation of normal is

$$(y - y_1) = \frac{y_1 a^2}{x_1 b^2} (x - x_1)$$

$$xy_1a^2 - yx_1b^2 = x_1y_1a^2 - y_1x_1b^2$$

Dividing by x_1y_1 both side

$$\frac{xa^2}{x_1} - \frac{yb^2}{y_1} = a^2 - b^2$$

Tangents and Normals Ex 16.2 Q3(xiii)

Differentiating $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with respect to x, we have:

$$\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{2y}{h^2} \frac{dy}{dy} = \frac{2x}{a^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{b^2x}{a^2y}$$

Therefore, the slope of the tangent at (x_0, y_0) is $\frac{dy}{dx}\Big|_{(x_0, y_0)} = \frac{b^2 x_0}{a^2 y_0}$

Then, the equation of the tangent at (x_0, y_0) is given by,

$$y - y_0 = \frac{b^2 x_0}{a^2 y_0} (x - x_0)$$

$$\Rightarrow a^2 y y_0 - a^2 y_0^2 = b^2 x x_0 - b^2 x_0^2$$

$$\Rightarrow b^2 x x_0 - a^2 y y_0 - b^2 x_0^2 + a^2 y_0^2 = 0$$

Differentiating $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2$ with respect to x, we get

$$\frac{2}{3}x^{\frac{-1}{3}} + \frac{2}{3}y^{\frac{-1}{3}}\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$$

Therefore, the slope of the tangent at (1,1) is $\frac{dy}{dx}\Big|_{(1,1)} = -1$

So, the equation of the tangent at (1, 1) is

$$y-1=-1\left(\times -1\right)$$

Also, the slope of the normal at (1,1) is given by $\frac{-1}{\text{slope of tangent at (1,1)}} = 1$

 \therefore the equation of the normal at (1, 1) is

$$y-1=1(x-1)$$

Tangents and Normals Ex 16.2 Q3(xv)

We know that the equation of tangent and the normal to any curve is given by

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = \frac{-1}{m} \left(x - x_1 \right)$$

Where m is the slope

We have,

$$x^2 = 4y$$

$$P = (2, 1)$$

$$\therefore 2x = \frac{4dy}{dx}$$

$$\Rightarrow \frac{dy}{dy} = \frac{x}{2}$$

$$\therefore \qquad \text{Slope } m = \left(\frac{dy}{dx}\right)_p = 1$$

From (A)

Equation of tangent is

$$y - 1 = 1(x - 2)$$

$$\Rightarrow x - y = 1$$

From (B)

Equation of normal is

$$(y-1)=-1(x-2)$$

$$\Rightarrow x + y = 3$$

The equation of the given curve is $y^2 = 4x$

Differentiating with respect to x, we have:

$$2y\frac{dy}{dx} = 4$$

$$\Rightarrow \frac{dy}{dx} = \frac{4}{2y} = \frac{2}{y}$$

$$\therefore \frac{dy}{dx} \Big|_{(1,2)} = \frac{2}{2} = 1$$

Now, the slope at point (1, 2) is
$$\frac{-1}{\frac{dy}{dx}}\Big|_{(1,2)} = \frac{-1}{1} = -1$$
.

: Equation of the tangent at (1, 2) is y - 2 = -1(x - 1).

$$\Rightarrow y-2=-x+1$$

$$\Rightarrow x + y - 3 = 0$$

Equation of the normal is ,

$$y-2=-(-1)(x-1)$$

 $y-2=x-1$
 $x-y+1=0$

Tangents and Normals Ex 16.2 Q3(xix)

Let $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be the equation of the curve.

Rewriting the above equation as,

$$\frac{y^2}{b^2} = \frac{x^2}{a^2} - 1$$
$$\Rightarrow y^2 = \frac{b^2}{a^2} x^2 - b^2$$

$$\Rightarrow \frac{dy}{dx} = \frac{b^2}{a^2} \frac{2x}{y}$$
$$\Rightarrow \frac{dy}{dx} = \frac{b^2}{a^2} \frac{x}{y}$$

Differentiating the above function w.r.t. x, we get,

$$\Rightarrow \left[\frac{dy}{dx}\right]_{\sqrt{2}a,b} = \frac{b^2}{a^2} \frac{\sqrt{2}a}{b} = \frac{\sqrt{2}b}{a}$$

Slope of the tangent m = $\frac{\sqrt{2}b}{a}$

Equation of the tangent is

$$(y-y_1)=m(x-x_1)$$

$$\Rightarrow (y - b) = \frac{\sqrt{2}b}{a} (x - \sqrt{2}a)$$

$$\Rightarrow a(y-b) = \sqrt{2}b(x-\sqrt{2}a)$$

$$\Rightarrow \sqrt{2}bx - ay + ab - 2ab = 0$$

$$\Rightarrow \sqrt{2}bx - ay - ab = 0$$

Slope of the normal is
$$-\frac{1}{\sqrt{2b}} = -\frac{a}{b\sqrt{2}}$$

Equation of the normal is

$$(y-y_1)=m(x-x_1)$$

$$\Rightarrow (y - b) = \frac{-a}{\sqrt{2}b} (x - \sqrt{2}a)$$

$$\Rightarrow \sqrt{2}b(y-b) = -a(x-\sqrt{2}a)$$

$$\Rightarrow ax + \sqrt{2}by - \sqrt{2}b^2 - \sqrt{2}a^2 = 0$$

$$\Rightarrow ax + \sqrt{2}by - \sqrt{2}(a^2 + b^2) = 0$$

The given equations are,
$$x = \theta + \sin \theta$$
, $y = 1 + \cos \theta$ $\frac{dx}{d\theta} = 1 + \cos \theta$, $\frac{dy}{d\theta} = -\sin \theta$

$$\therefore \frac{dx}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-\sin\theta}{1 + \cos\theta}$$

Slope,

$$m = \left(\frac{dy}{dx}\right)_{\theta = \frac{\pi}{4}} = \frac{-\frac{1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}$$
$$= -1 + \frac{1}{\sqrt{2}}$$

Thus, equation of tangent is,

$$y - y_1 = m(x - x_1)$$

$$y - \left(1 + \frac{1}{\sqrt{2}}\right) = \left(-1 + \frac{1}{\sqrt{2}}\right) \left(x - \left(\frac{\pi}{4} + \frac{1}{\sqrt{2}}\right)\right)$$

$$y - 1 - \frac{1}{\sqrt{2}} = \left(-1 + \frac{1}{\sqrt{2}}\right) \left(x - \frac{\pi}{4} - \frac{1}{\sqrt{2}}\right)$$

Tangents and Normals Ex 16.2 Q5(i)

We know that the equation of tangent and normal to any curve at the point (x_1,y_1) is

$$y-y_1=m(x-x_1)$$
 ---(A) Tangent
$$y-y_1=\frac{-1}{m}(x-x_1)$$
 ---(B) Normal

Where m is slope.

$$x = \theta + \sin \theta, \quad y = 1 + \cos \theta, \quad \theta = \frac{\pi}{2}$$

$$\therefore \qquad P = \left[\left(\frac{\pi}{2} + 1 \right), 1 \right]$$
and
$$\frac{dx}{d\theta} = 1 + \cos \theta, \frac{dy}{d\theta} = -\sin \theta$$

$$\therefore \qquad \text{Slope } m = \left(\frac{dy}{dx} \right)_{P} = \left(\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} \right) = \frac{-1}{+1} = -1$$

Equation of tangent from (A)

$$(y-1) = -1\left(x - \left(\frac{\pi}{2} + 1\right)\right)$$

$$\Rightarrow x + y = \frac{\pi}{2} + 1 + 1$$

$$\Rightarrow 2(x + y) = \pi + 4$$

From (B)

Equation of normal is

$$(y-1) = 1\left(x - \left(\frac{\pi}{2} + 1\right)\right)$$

$$\Rightarrow 2(x-y) = \pi$$

We know that the equation of tangent and normal to any curve at the point (x_1, y_1) is

$$y-y_1=m(x-x_1)$$
 ---(A) Tangent
 $y-y_1=\frac{-1}{m}(x-x_1)$ ---(B) Normal

Where m is slope.

$$x = \frac{2at^2}{1+t^2}, \quad y = \frac{2at^3}{1+t^2}, \quad t = \frac{1}{2}$$

$$P = \left(x = \frac{a}{2 + \frac{1}{2}} = \frac{2a}{5}, y = \frac{a}{4 + 1} = \frac{a}{5} \right)$$

$$\frac{dx}{dt} = \frac{4a + (1 + t^2) - 2at^2(2t)}{(1 + t^2)^2}$$
$$= \frac{4at}{(1 + t^2)^2}$$

$$\begin{split} \frac{dy}{dt} &= \frac{6at^2 \left(1 + t^2 \right) - \left(2at^3 \right) (2t)}{\left(1 + t^2 \right)^2} \\ &= \frac{6at^2 - 2at^4}{\left(1 + t^2 \right)^2} \end{split}$$

$$\therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{6at^2 + 2at^4}{4at}$$

$$Slope m = \left(\frac{dy}{dx}\right)_p = \frac{\frac{3a}{2} + \frac{a}{8}}{2a} = \frac{13}{16}$$

From (A)
Equation of tangent is,

$$\left(y - \frac{a}{5}\right) = \frac{13}{16}\left(x - \frac{2a}{5}\right)$$

$$16y - \frac{16a}{5} = 13x - \frac{26a}{5}$$

$$13x - 16y - 2a = 0$$

Equation of normal is,

$$\left(y - \frac{a}{5}\right) = -\frac{16}{13}\left(x - \frac{2a}{5}\right)$$

$$13y - \frac{13a}{5} = -16x + \frac{32a}{5}$$

$$ix + 13y - 9a = 0$$

We know that the equation of tangent and normal to any curve at the point (x_1,y_1) is

$$y-y_1=m(x-x_1)$$
 ---(A) Tangent
$$y-y_1=\frac{-1}{m}(x-x_1)$$
 ---(B) Normal

Where m is slope.

$$x = at^2$$
, $y = 2at$, $t = 1$
 \therefore $P = (a, 2a)$
and
$$\frac{dx}{dt} = 2at$$
, $\frac{dy}{dt} = 2a$

$$\therefore \qquad \text{Slope } m = \left(\frac{dy}{dx}\right)_p = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2a} = 1$$

From (A)

Equation of tangent is

$$(y - 2a) = 1(x - a)$$

$$\Rightarrow x - y + a = 0$$

From (B)

Equation of normaol is

$$(y - 2a) = -1(x - a)$$

$$\Rightarrow x + y = 3a$$

Tangents and Normals Ex 16.2 Q5(iv)

We know that the equation of tangent and normal to any curve at the point (x_1,y_1) is

$$y-y_1=m(x-x_1)$$
 ---(A) Tangent
$$y-y_1=\frac{-1}{m}(x-x_1)$$
 ---(B) Normal

Where m is slope.

$$x = a \sec t$$
, $y = b \tan t$, $t = t$

$$\therefore \frac{dx}{dt} = a \sec t \times \tan t$$
and
$$\frac{dy}{dt} = b \sec^2 t$$

Slope
$$m = \frac{dy}{dx} = \frac{b \sec^2 t}{a \sec t \times \tan t}$$
$$= \frac{b}{a} \cos ect$$

From (A)

Equatin of tangent

$$(y - b \tan t) = \frac{b}{a} \cos ect (x - a \sec t)$$

$$\Rightarrow bx \cos ect - ay = ab \cos ect \times \sec t - ab \tan t$$

$$= \frac{ab \left[1 - \sin^2 t\right]}{\sin t \times \cos t}$$

$$= \frac{ab \cos t}{\sin t}$$

 \Rightarrow bx sect - ay tant = ab

From (B)

Equation of normal is

$$(y - b \tan t) = \frac{-a \sin t}{b} (x - a \sec t)$$

$$\Rightarrow ax \sin t + by = a^2 \tan t + b^2 \tan t$$

$$\Rightarrow$$
 $ax \cos t + by \cot t = a^2 + b^2$

We know that the equation of tangent and normal to any curve at the point (x_1, y_1) is

$$y - y_1 = m(x - x_1)$$
 ---(A) Tangent
 $y - y_1 = \frac{-1}{m}(x - x_1)$ ---(B) Normal

Where m is slope.

$$x = a(\theta + \sin \theta), y = a(1 - \cos \theta)$$
$$\frac{dx}{d\theta} = a(1 + \cos \theta), \frac{dy}{d\theta} = a\sin \theta$$

Slope
$$m = \frac{dy}{dx} = \frac{\sin \theta}{1 + \cos \theta} = \frac{\frac{2 \sin \theta}{2} \times \frac{\cos \theta}{2}}{\frac{2 \cos^2 \theta}{2}}$$
$$= \frac{\tan \theta}{2}$$

Now,

From (A)

Equation of tangent

$$y - a(1 - \cos\theta) = \frac{\tan\theta}{2} \left(x - a(\theta + \sin\theta) \right)$$

$$\Rightarrow \frac{x \tan\theta}{2} - y = a(\theta + \sin\theta) \frac{\tan\theta}{2} - a(1 - \cos\theta)$$

From (B)

Equation of normal is

$$y - a(1 - \cos\theta) = \frac{-\cot\theta}{2}(x - a(\theta + \sin\theta))$$

$$\Rightarrow \qquad \left(y - 2a\right) \frac{\tan \theta}{2} + x - a\theta = 0$$

Tangents and Normals Ex 16.2 Q5(vi)

$$\begin{split} & \times = 3\cos\theta - \cos^3\theta, \ y = 3\sin\theta - \sin^3\theta \\ & \Rightarrow \frac{dx}{d\theta} = -3\sin\theta + 3\cos^2\theta\sin\theta \ \text{and} \ \frac{dy}{d\theta} = 3\cos\theta - 3\sin^2\theta\cos\theta \\ & \Rightarrow \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{3\cos\theta - 3\sin^2\theta\cos\theta}{-3\sin\theta + 3\cos^2\theta\sin\theta} = \frac{\cos\theta \left(1 - \sin^2\theta\right)}{-\sin\theta \left(1 - \cos^2\theta\right)} = \frac{\cos^3\theta}{-\sin^3\theta} = -\tan^3\theta \end{split}$$

So equation of the tangent at θ is

$$y - 3\sin\theta + \sin^3\theta = -\tan^3\theta(x - 3\cos\theta + \cos^3\theta)$$

$$\Rightarrow 4(y\cos^3\theta - x\sin^3\theta) = 3\sin 4\theta$$

So equation of normal at θ is

$$y - 3\sin\theta + \sin^3\theta = \frac{1}{\tan^3\theta} (x - 3\cos\theta + \cos^3\theta)$$

$$\Rightarrow$$
 y cos³ θ - x cos³ θ = 3sin⁴ θ - sin⁶ θ - 3cos⁴ θ + cos⁶ θ

$$\Rightarrow$$
 y sin³ θ - \times cos³ θ = 3sin⁴ θ - sin⁶ θ - 3cos⁴ θ + cos⁶ θ

$$x^2 + 2y^2 - 4x - 6y + 8 = 0$$

---(i) at x = 2

Differentiating with respect to x, we get

$$2x + 4y \frac{dy}{dx} - 4 - 6 \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} [4y - 6] = 4 - 2x$$

$$\therefore \frac{dy}{dx} = \frac{2 - x}{2y - 3}$$

Now,

From (i) at
$$x = 2$$

 $4 + 2y^2 - 8 - 6y + 8 = 0$
 $\Rightarrow 2y^2 - 6y + 4 = 0$
 $\Rightarrow y^2 - 3y + 2 = 0$
 $\Rightarrow (y - 2)(y - 1) = 0$
 $\Rightarrow y = 2.1$

Thus,

Slope
$$m_1 = \left(\frac{dy}{dx}\right)_{(2,2)} = 0$$

 $m_2 = \left(\frac{dy}{dx}\right)_{(2,1)} = 0$

Thus, the equation of normal is

$$(y - y_1) = \frac{-1}{0}(x - 2)$$

Tangents and Normals Ex 16.2 Q7

The equation of the given curve is $ay^2 = x^3$.

On differentiating with respect to x, we have:

$$2ay \frac{dy}{dx} = 3x^2$$
$$\Rightarrow \frac{dy}{dx} = \frac{3x^2}{2ay}$$

The slope of a tangent to the curve at (x_0, y_0) is $\frac{dy}{dx}\Big|_{(x_0, y_0)}$.

 \Rightarrow The slope of the tangent to the given curve at (am^2, am^3) is

$$\frac{dy}{dx}\Big|_{(am^2, am^3)} = \frac{3(am^2)^2}{2a(am^3)} = \frac{3a^2m^4}{2a^2m^3} = \frac{3m}{2}.$$

: Slope of normal at (am2, am3)

$$= \frac{-1}{\text{slope of the tangent at } \left(am^2, am^3\right)} = \frac{-2}{3m}$$

Hence, the equation of the normal at (am2, am3) is given by,

$$y - am^3 = \frac{-2}{3m} \left(x - am^2 \right)$$

$$\Rightarrow 3my - 3am^4 = -2x + 2am^2$$

$$\Rightarrow 2x + 3my - am^2(2 + 3m^2) = 0$$

The given equations are

$$y^2 = ax^3 + b$$
 ---(i)
 $y = 4x - 5$ ---(ii) $P = (2,3)$

Differentiating (i) with respect to x, we get

$$2y \frac{dy}{dx} = 3ax^{2}$$

$$\therefore \frac{dy}{dx} = \frac{3ax^{2}}{2y}$$

$$\therefore m_{1} = \left(\frac{dy}{dx}\right)_{p} = \frac{12a}{6} = 2a$$

$$m_{2} = \text{slope of (ii)} = 4$$

According to the question

$$m_1 = m_2 \Rightarrow 2a = 4 \Rightarrow a = 2$$

From (i)

$$y^{2} = 2 \times 2^{3} + b$$

$$\Rightarrow 9 = 16 + b$$

$$\Rightarrow b = -7$$

Thus,

$$a = 2, b = -7$$

Tangents and Normals Ex 16.2 Q9

The given equatioins are,

$$y = x^{2} + 4x - 16$$
 --- (i)
 $3x - y + 1 = 0$ --- (ii)
Slope m_{1} of (i)
 $m_{1} = \frac{dy}{dx} = 2x + 4$

As per question

Slope m_2 of (ii) $m_2 = 3$

$$m_1 = m_2$$

$$\Rightarrow 2x + 4 = 3$$

$$\Rightarrow x = \frac{-1}{3}$$

From (i)
$$y = \frac{1}{4} - 2 - 16 = -\frac{71}{4}$$

$$\therefore \qquad P = \left(\frac{-1}{2}, \frac{-71}{4}\right)$$

Thus, the equation of tangent

$$\left(y + \frac{71}{4}\right) = 3\left(x + \frac{1}{2}\right)$$

$$\Rightarrow 3x - y = \frac{71}{4} - \frac{3}{2}$$

$$\Rightarrow 3x - y = \frac{65}{4}$$

$$\Rightarrow 12x - 4y - 65 = 0$$

The given equation is

$$y = x^3 + 2x + 6$$
 ---(i)
 $x + 14y + 4 = 0$ ---(ii)

Slope
$$m_1$$
 of (i)

$$m_1 = \frac{dy}{dx} = 3x^2 + 2$$

Slope m_2 of (ii)

$$m_2 = \frac{-1}{14}$$

.. Slope of normal to (i) is

$$\frac{-1}{m_1} = \frac{-1}{3x^2 + 2}$$

According to the question

$$\frac{-1}{3x^2+2} = \frac{-1}{14}$$

$$\Rightarrow 3x^22 = 14$$

$$\Rightarrow$$
 $x^2 = 4$

$$\Rightarrow x = \pm 2$$

so,
$$P = (2,18)$$
 and $Q = (-2,-6)$

Thus, the equation of normal is

$$(y-18) = \frac{-1}{14}(x-2)$$
 \Rightarrow $x + 14y + 86 = 0$

or
$$(y+6) = \frac{-1}{14}(x+2)$$
 \Rightarrow $x+14y-254=0$

Tangents and Normals Ex 16.2 Q11

The given equations are,

$$y = 4x^3 - 3x + 5$$
 --- (i)
 $9y + x + 3 = 0$ --- (i)

Slope
$$m_1$$
 of (i)

$$m_1 = \frac{dy}{dx} = 12x^2 - 3$$

Slope
$$m_2$$
 of (ii)

$$m_2 = \frac{-1}{q}$$

According to the question

$$m_1 \times m_2 = -1$$

$$\Rightarrow \left(12x^2 - 3\right)\left(-\frac{1}{9}\right) = -1$$

$$\Rightarrow$$
 $4x^2 - 1 = 3$

$$\Rightarrow x^2 = 1$$

$$\Rightarrow \qquad x = \pm 1$$

$$y = 4-3+5$$
 or $-4+3+5$
= 6 or 4
 $\therefore P = (1,6) \text{ or } Q = (-,1,4)$

Thus, the equation of tangent is

$$(y-6) = 9(x-1)$$
 \Rightarrow $9x-y-3=0$

$$(y-4) = 9(x+1)$$
 \Rightarrow $9x-y+13 = 0$

The given equations are,

$$y = x \log_e x$$
 --- (i)
 $2x - 2y + 3 = 0$ --- (ii)

Slope
$$m_1$$
 of (i)
$$m_1 = \frac{dy}{dx} = \log_e x + 1$$

slope
$$m_2$$
 of (ii) $m_2 = 1$

Tangents and Normals Ex 16.2 Q13

The equation of the given curve is $y = x^2 - 2x + 7$.

On differentiating with respect to x, we get:

$$\frac{dy}{dx} = 2x - 2$$

(a) The equation of the line is 2x - y + 9 = 0.

$$2x - y + 9 = 0 \Rightarrow y = 2x + 9$$

This is of the form y = mx + c.

::Slope of the line = 2

If a tangent is parallel to the line 2x - y + 9 = 0, then the slope of the tangent is equal to the slope of the line.

Therefore, we have:

$$2 = 2x - 2$$

$$\Rightarrow 2x = 4$$

$$\Rightarrow x = 2$$

Now, x = 2

$$\Rightarrow$$
 $y = 4 - 4 + 7 = 7$

Thus, the equation of the tangent passing through (2, 7) is given by,

$$y-7=2(x-2)$$

$$\Rightarrow y-2x-3=0$$

Hence, the equation of the tangent line to the given curve (which is parallel to line 2x - y + 9 = 0) is y - 2x - 3 = 0.

(b) The equation of the line is 5y - 15x = 13.

$$5y - 15x = 13 \Rightarrow y = 3x + \frac{13}{5}$$

This is of the form y = mx + c.

::Slope of the line = 3

If a tangent is perpendicular to the line 5y - 15x = 13, then the slope of the tangent is $\frac{-1}{\text{slope of the line}} = \frac{-1}{3}$.

$$\Rightarrow 2x-2=\frac{-1}{3}$$

$$\Rightarrow 2x = \frac{-1}{3} + 2$$

$$\Rightarrow 2x = \frac{5}{3}$$

$$\Rightarrow x = \frac{5}{6}$$

Now,
$$x = \frac{5}{6}$$

$$\Rightarrow y = \frac{25}{36} - \frac{10}{6} + 7 = \frac{25 - 60 + 252}{36} = \frac{217}{36}$$

Thus, the equation of the tangent passing through $\left(\frac{5}{6}, \frac{217}{36}\right)$ is given by,

$$y - \frac{217}{36} = -\frac{1}{3} \left(x - \frac{5}{6} \right)$$

$$\Rightarrow \frac{36y-217}{36} = \frac{-1}{18} (6x-5)$$

$$\Rightarrow 36y - 217 = -2(6x - 5)$$

$$\Rightarrow$$
 36 y - 217 = -12x + 10

$$\Rightarrow$$
 36 y + 12x - 227 = 0

Hence, the equation of the tangent line to the given curve (which is perpendicular to line 5y - 15x = 13) is 36y + 12x - 227 = 0.

The equation of the given curve is $y = \frac{1}{x-3}$, $x \neq 3$.

The slope of the tangent to the given curve at any point (x, y) is given by,

$$\frac{dy}{dx} = \frac{-1}{\left(x-3\right)^2}$$

If the slope of the tangent is 2, then we have:

$$\frac{-1}{(x-3)^2} = 2$$

$$\Rightarrow 2(x-3)^2 = -1$$

$$\Rightarrow (x-3)^2 = \frac{-1}{2}$$

This is not possible since the L.H.S. is positive while the R.H.S. is negative.

Hence, there is no tangent to the given curve having slope 2.

Tangents and Normals Ex 16.2 Q15

The slope of the tangent to the given curve at any point (x, y) is given by,

$$\frac{dy}{dx} = \frac{-(2x-2)}{(x^2 - 2x + 3)^2} = \frac{-2(x-1)}{(x^2 - 2x + 3)^2}$$

If the slope of the tangent is 0, then we have:

$$\frac{-2(x-1)}{(x^2-2x+3)^2} = 0$$

$$\Rightarrow -2(x-1)=0$$

$$\Rightarrow x = 1$$

When
$$x = 1$$
, $y = \frac{1}{1 - 2 + 3} = \frac{1}{2}$.

:. The equation of the tangent through $\left(1, \frac{1}{2}\right)$ is given by,

$$y - \frac{1}{2} = 0(x-1)$$

$$\Rightarrow y - \frac{1}{2} = 0$$

$$\Rightarrow y = \frac{1}{2}$$

Hence, the equation of the required line is $y = \frac{1}{2}$.

The equation of the given curve is $v = \sqrt{3x-2}$.

The slope of the tangent to the given curve at any point (x, y) is given by,

$$\frac{dy}{dx} = \frac{3}{2\sqrt{3x-2}}$$

The equation of the given line is 4x - 2y + 5 = 0.

$$4x - 2y + 5 = 0 \Rightarrow y = 2x + \frac{5}{2}$$
 (which is of the form $y = mx + c$)

::Slope of the line = 2

Now, the tangent to the given curve is parallel to the line 4x - 2y - 5 = 0 if the slope of the tangent is equal to the slope of the line.

$$\frac{3}{2\sqrt{3x-2}} = 2$$

$$\Rightarrow \sqrt{3x-2} = \frac{3}{4}$$

$$\Rightarrow 3x-2 = \frac{9}{16}$$

$$\Rightarrow 3x = \frac{9}{16} + 2 = \frac{41}{16}$$

$$\Rightarrow x = \frac{41}{48}$$

When
$$x = \frac{41}{48}$$
, $y = \sqrt{3\left(\frac{41}{48}\right) - 2} = \sqrt{\frac{41}{16} - 2} = \sqrt{\frac{41 - 32}{16}} = \sqrt{\frac{9}{16}} = \frac{3}{4}$

: Equation of the tangent passing through the point $\left(\frac{41}{48}, \frac{3}{4}\right)$ is given by,

$$y - \frac{3}{4} = 2\left(x - \frac{41}{48}\right)$$

$$\Rightarrow \frac{4y - 3}{4} = 2\left(\frac{48x - 41}{48}\right)$$

$$\Rightarrow 4y - 3 = \frac{48x - 41}{6}$$

$$\Rightarrow 24y - 18 = 48x - 41$$

$$\Rightarrow 48x - 24y = 23$$

Hence, the equation of the required tangent is 48x - 24y = 23

The given equations are,

$$x^{2} + 3y - 3 = 0$$
 --- (i)
 $y = 4x - 5$ --- (ii)

Slope
$$m_1$$
 of (i)
$$m_1 = \frac{dy}{dx} = -\frac{2x}{3}$$

Slope
$$m_2$$
 of (ii)
 $m_2 = 4$

According to the question

$$m_1 = m_2$$

$$\Rightarrow -\frac{2x}{3} = 4$$

$$\Rightarrow x = -6$$

From (i)

$$36 + 3y - 3 = 0$$

 $\Rightarrow 3y = -33$
 $\therefore y = -11$

So,

Thus, the equation of tangent is

P = (-6, -11)

$$(y+11) = 4(x+6)$$

$$\Rightarrow 4x - y + 13 = 0$$

Tangents and Normals Ex 16.2 Q18

The equations are

$$\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2 \qquad ---(i)$$

$$\frac{x}{a} + \frac{y}{b} = 2 \qquad ---(i)$$

$$P = (a, b)$$

We need to prove (ii) is the tangent to (i) Differentiating (i) with respect to x, we get

$$n\left(\frac{x}{a}\right)^{n} \times \frac{1}{a} + n\left(\frac{y}{b}\right)^{n-1} \times \frac{1}{b} \times \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{x^{n-1}}{a^{n}} + \frac{y^{n-1}}{b^{n}} \times \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\left(\frac{x}{y}\right)^{n-1} \times \left(\frac{b}{a}\right)^{n}$$

$$\therefore \text{ Slope } m = \left(\frac{dy}{dx}\right)_{p} = -\left(\frac{a}{b}\right)^{n-1} \times \left(\frac{b}{a}\right)^{n}$$

$$= -\frac{b}{a}$$

Thus, the equation of tangent is
$$(y - b) = -\frac{b}{a}(x - a)$$

$$\Rightarrow bx + ay = ab + ab$$

$$\Rightarrow bx + ay = 2ab$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} = 2$$

We have,

$$x=\sin 3t, \qquad y=\cos 2t, \qquad t=\frac{\pi}{4}$$

$$\therefore \qquad P=\left(x=\frac{1}{\sqrt{2}},y=0\right)$$
 Now,

$$\frac{dx}{dt} = 3\cos 3t, \ \frac{dy}{dt} = -2\sin 2t$$

$$\therefore \text{ Slope } m = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-2\sin 2t}{3\cos 3t}$$

$$= \frac{-2}{-3 \times \frac{1}{\sqrt{2}}}$$

$$= \frac{+2\sqrt{2}}{3}$$

Thus, equation of tangent is

$$(y - 0) = \frac{+2\sqrt{2}}{3} \left(x - \frac{1}{\sqrt{2}} \right)$$
$$2\sqrt{2}x - 3y = 2$$

Ex 16.3

Tangents and Normals Ex 16.3 Q1(i)

We know that angle of intersection of two curves is given by

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \qquad --- \left(A \right)$$

Where m_1 and m_2 are slopes of curves.

The given equations are

$$y^2 = x$$
 ---(i)
 $x^2 = y$ ---(ii)

$$m_1 = \frac{dy}{dx} = \frac{1}{2y}$$
$$m_2 = \frac{dy}{dx} = 2x$$

Solving (i) and (ii)
$$x^4 - x = 0 \Rightarrow x(x^3 - 1) = 0$$
 and $y = 0, 1$

$$m_1 = \frac{1}{2}, \quad \text{and} \quad m_2 = 0 \text{ or } 2$$

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \frac{3}{4}$$

$$\theta = \tan^{-1} \left(\frac{3}{4} \right)$$
and
$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \cot$$

$$\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \qquad --- \left(A \right)$$

Where m_1 and m_2 are slopes of curves.

$$y = x^2$$
 ---(i)
 $x^2 + y^2 = 20$ ---(ii)

$$y + y^2 = 20$$

$$\Rightarrow$$
 $y^2 + y - 20 = 0$

$$\Rightarrow y^2 + y - 20 = 0$$

$$\Rightarrow (y + 5)(y - 4) = 0$$

$$\Rightarrow y = -5, 4$$

$$\Rightarrow$$
 $y = -5, 4$

$$\therefore \qquad x = \sqrt{-5}, \pm 2$$

:. Points are
$$P = (2, 4), Q = (-2, 4)$$

Now,

Slope
$$m_1$$
 for (i)

$$m_1 = 2x = 4$$

Slope m_2 for (ii)

$$m_2 = \frac{dy}{dx} = \frac{-x}{y} = \frac{-1}{2}$$

Now,

$$\tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \left| \frac{-\frac{1}{2} - 4}{1 - \frac{1}{2} \times 4} \right|$$
$$= \frac{9}{2}$$

$$\theta = \tan^{-1}\frac{9}{2}$$

$$\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \qquad --- \left(A \right)$$

Where $m_{\rm 1}$ and $m_{\rm 2}$ are slopes of curves.

$$2y^2 = x^3$$
 ---(i)
 $y^2 = 32x$ ---(ii)

$$x^3 = 64x$$

$$\Rightarrow x(x^2 - 64) = 0$$

$$\Rightarrow \qquad x(x+8)(x-8)=0$$

$$\Rightarrow x = 0, -8, 8$$

$$y = 0, -, 16$$

$$P = (0,0), Q = (8,16)$$

Now,

$$m_1 = \frac{dy}{dx} = \frac{3x^2}{4y} = 0 \text{ or } 3$$

$$m_2 = \frac{dy}{dx} = \frac{32}{2y} = \infty \text{ or } 1$$

From (A)

$$\tan \theta = \left| \frac{\omega - 0}{10} \right| = \omega \Rightarrow \theta = \frac{\pi}{2}$$

and
$$\tan \theta = \left| \frac{3-1}{13} = \frac{2}{4} = \frac{1}{2} \right|$$

$$\theta = \tan^{-1}\left(\frac{1}{2}\right)$$

Thus,

$$\theta = \frac{\pi}{2}$$
 and $\tan^{-1}\left(\frac{1}{2}\right)$

We have,

$$x^2 + y^2 - 4x - 1 = 0$$
 ---(i)

and
$$x^2 + y^2 - 2y - 9 = 0$$
 ---(ii)

Equation (i) can be written as

$$(x-2)^2 + y^2 - 5 = 0$$
 ---(iii)

Subtracting (ii) from (i), we get

$$-4x + 2y + 8 = 0$$

$$\Rightarrow$$
 $y = 2x - 4$

Substituting in (iii), we get

$$(x-2)^2 + (2x-4)^2 - 5 = 0$$

$$\Rightarrow$$
 $(x-2)^2 + 4(x-2)^2 - 5 = 0$

$$\Rightarrow (x-2)^2 = 1$$

$$\Rightarrow \qquad x-2=1, \ x-2=-1$$

$$\Rightarrow$$
 $x = 3 \text{ or } x = 1$

$$y = 2(3) - 4 = 2 \text{ or } y = -2$$

 \therefore The points of intersection of the two curves are (3,2) and (-1,-2)

Differentiation (i) and (ii), w.r.t \times we get

$$2x + 2y \frac{dy}{dx} - 4 = 0$$
 ----(iv)

and
$$2x + 2y \frac{dy}{dx} - 2 \frac{dy}{dx} = 0$$
 --- (v)

.. At (3,2), from equation (iv) we have,

$$\left(\frac{dy}{dx}\right)_{C_1} = \frac{4-2\left(3\right)}{2\left(2\right)} = \frac{-1}{2}$$

$$\left(\frac{dy}{dx}\right)_{C_2} = \frac{-2(3)}{(2 \times 2 - 3)} = \frac{-6}{2} = -3$$

 \therefore If arphi is the angle between the curves

Then,

$$\tan\varphi = \frac{\left(\frac{dy}{dx}\right)_{C_1} - \left(\frac{dy}{dx}\right)_{C_2}}{1 + \left(\frac{dy}{dx}\right)_{C_1} \left(\frac{dy}{dx}\right)_{C_2}}$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad ---(i)$$

$$x^2 + y^2 = ab \qquad ---(ii)$$
From (ii), we get
$$y^2 = ab - x^2$$

$$From (i), we get
$$\frac{x^2}{a^2} + \frac{ab - x^2}{b^2} = 1$$

$$b^2x^2 + a^3b - a^2x^2 = a^2b^2$$

$$\Rightarrow (b^2 - a^2)x^2 = a^2b^2 - a^3b$$

$$\Rightarrow x^2 = \frac{a^2b^2 - a^3b}{b^2 - a^2}$$

$$= \frac{a^2b(b - a)}{(b - a)(b + a)}$$

$$= \frac{a^2b}{b + a}$$

$$x = \pm \sqrt{\frac{a^2b}{a + b}}$$

$$y^2 = ab - x^2 = ab - \frac{a^2b}{a + b}$$

$$\frac{a^2b + ab^2 - a^2b}{a + b} = \frac{ab^2}{a + b}$$
Differentiating (i) and (ii) w.r.t.x we get
$$\frac{2x}{a^2} + \frac{2y}{b^2} \times \left(\frac{dy}{dx}\right)_{C_1} = 0$$
and
$$2x + 2y \left(\frac{dy}{dx}\right)_{C_2} = 0$$

$$\frac{dy}{dx} = \frac{-x}{a^2} \times \frac{b^2}{y} = \frac{-b^2x}{a^2y}$$

$$\frac{dy}{dx} = \frac{-x}{a^2} \times \frac{ab^2}{a^2} = \frac{-b^2\sqrt{a}}{a^2\sqrt{b}}$$
At
$$\frac{dy}{dx} = \frac{-b^2\sqrt{a}}{a^2} = -\frac{b^2\sqrt{a}}{a^2\sqrt{b}}$$

$$\frac{dy}{dx} = -\frac{b^2\sqrt{a}}{a^2\sqrt{b}} = -\frac{b^2\sqrt{a}}{a^2\sqrt{b}}$$

$$\frac{dy}{dx} = -\frac{b^2\sqrt{a}}{a^2\sqrt{b}} = -\frac{b^2\sqrt{a}}{a^2\sqrt{b}}$$$$

$$\tan\theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \qquad --- (A)$$

Where m_1 and m_2 are slopes of curves.

$$x^{2} + 4y^{2} = 8$$
 ---(i)
 $x^{2} - 2y^{2} = 2$ ---(ii)

$$6y^2 = 6 \Rightarrow y = \pm 1$$

 $x^2 = 2 + 2 \Rightarrow x = \pm 2$

$$\therefore \qquad x^2 = 2 + 2 \Rightarrow \quad x = \pm 2$$

.. Point of intersection are

$$P = (2,1)$$
 and $(-2,-1)$

Now,

Slope m_1 for (i)

$$8y\frac{dy}{dx} = -2x \Rightarrow \frac{dy}{dx} = -\frac{x}{4y}$$

$$m_i = \frac{1}{2}$$

Slope m_2 for (ii)

$$4y \frac{dy}{dx} = 2x \Rightarrow \frac{dy}{dx} = \frac{x}{2y}$$

$$m_2 = 1$$

$$\therefore$$
 $m_2 = 1$

From (A)

$$\tan \theta = \left| \frac{1 - \frac{1}{2}}{1 + 1 \times \frac{1}{2}} \right| = \frac{1}{3}$$

$$\theta = \tan^{-1}\left(\frac{1}{3}\right)$$

$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| \qquad --- (A)$$

Where $m_{\rm 1}$ and $m_{\rm 2}$ are slopes of curves.

$$x^2 = 27y$$
 ---(i)
 $y^2 = 8x$ ---(ii)

$$\frac{y^4}{64} = 27y$$
$$y(y^3 - 27 \times 64) = 0$$

$$\Rightarrow y(y^3 - 27 \times 64) = 0$$

$$\Rightarrow$$
 $y = 0 \text{ or } 12$

$$x = 0 \text{ or } 18$$

:. Points or intersection is (0,0) and (18,12)

Now,

$$m_1 = \frac{2x}{27} = \frac{12}{9} = \frac{4}{3}$$

$$m_2 = \frac{8}{2y} = \frac{8}{24} = \frac{1}{3}$$

$$\tan \theta = \left| \frac{\frac{4}{3} - \frac{1}{3}}{1 + \frac{4}{3} \times \frac{1}{3}} \right| = \frac{9}{13}$$

$$\therefore \qquad \theta = \tan^{-1} \left(\frac{9}{13} \right)$$

Tangents and Normals Ex 16.3 Q1(viii)

$$\tan\theta = \left|\frac{m_1 - m_2}{1 + m_1 m_2}\right| \qquad \qquad --- \left(\mathbb{A}\right)$$

Where $m_{\rm 1}$ and $m_{\rm 2}$ are slopes of curves.

$$x^{2} + y^{2} = 2x$$
 ---(i)
 $y^{2} = x$ ---(ii)

$$x^2 + x = 2x$$

$$\Rightarrow \qquad x^2 - x = 0$$
$$\Rightarrow \qquad x(x - 1) = 0$$

$$\Rightarrow x = 0.1$$

$$y = 0 \text{ or } 1$$

: The points of intersection is P = (0,0), Q = (1,1)

$$2y \frac{dy}{dx} = 2 - 2x$$

$$2y \frac{dy}{dx} = 2 - 2x$$

$$\therefore \frac{dy}{dx} = \frac{2 - 2x}{2y} = \frac{1 - x}{y}$$

$$\therefore m_1 = 0$$

$$\therefore$$
 $m_1 = 0$

$$m_2 = \frac{1}{2y} = \frac{1}{2}$$

$$\tan \theta = \left| \frac{\frac{1}{2} - 0}{1 + \frac{1}{2} \times 0} \right| = \frac{1}{2}$$

$$\theta = \tan^{-1}\left(\frac{1}{2}\right)$$

$$y = 4 - x^2 \dots (i)$$

 $y = x^2 \dots (ii)$

Substituting eq (ii) in (i) we get,

$$x^2 = 4 - x^2$$

$$\Rightarrow x^2 = 2$$

$$\Rightarrow x = \pm \sqrt{2}$$

From(i) when $x = \sqrt{2}$, we get y = 2 and when $x = -\sqrt{2}$, we get y = 2. Thus the two curves intersect at $(\sqrt{2}, 2)$ and $(-\sqrt{2}, 2)$.

Differnentiating (i) wrt \times , we get

$$\frac{dy}{dx} = 0 - 2x = -2x$$

Differnentiating (ii) wrt \times , we get

$$\frac{dy}{dx} = 2x$$

Angle of intersection at $(\sqrt{2}, 2)$

$$m_1 = \left(\frac{dy}{dx}\right)_{[\sqrt{2}, 2]} = -2\sqrt{2}$$

Angle of intersection at $(-\sqrt{2}, 2)$

$$m_2 = \left(\frac{dy}{dx}\right)_{[-\sqrt{2}, 2]} = 2\sqrt{2}$$

Let θ be the angle of intersection of the two curves.

$$\tan\theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \left| \frac{2\sqrt{2} + 2\sqrt{2}}{1 + \left(2\sqrt{2}\right)\left(-2\sqrt{2}\right)} \right| = \left| \frac{4\sqrt{2}}{-7} \right| = \frac{4\sqrt{2}}{7}$$

$$\Rightarrow \theta = \tan^{-1}\left(\frac{4\sqrt{2}}{7}\right)$$

We know that two curves intersects orthogonally if

$$m_1 \times m_2 = -1$$

---(A)

Where $m_{\rm 1}$ and $m_{\rm 2}$ are the slopes of two curves

$$y = x^3$$
 ---(i)
6 $y = 7 - x^2$ ---(ii)

Slope of (i)

$$\frac{dy}{dx} = 3x^2 = m_1$$

Slope of (ii)

$$\frac{dy}{dx} = -\frac{2}{6}x = m_2$$

Point of intersection of (i) and (ii) is

$$6x^3 = 7 - x^2$$

$$\Rightarrow 6x^3 + x^2 - 7 = 0$$

$$\Rightarrow x = 1$$

$$\therefore y = 1$$

$$\therefore P = (1,1)$$

$$m_1 = 3 \text{ and } m_2 = -\frac{1}{3}$$

Now,

$$m_1 \times m_2 = 3 \times -\frac{1}{3} = -1$$

:. (i) and (ii) cuts orthogonally.

We know that two curves intersects orthogonally if

$$m_1 \times m_2 = -1$$

Where $m_{\rm 1}$ and $m_{\rm 2}$ are the slopes of two curves

$$x^{3} - 3xy^{2} = -2$$
$$3x^{2}y - y^{3} = 2$$

$$x^2y - y^3 = 2$$

Point of intersection of (i) and (ii)

$$(i) + (ii)$$

$$\Rightarrow x^3 - 3xy^2 + 3x^2y - y^3 = 0$$

$$\Rightarrow (x-y)^3 = 0$$

$$\Rightarrow x = v$$

$$x^3 - 3x^2 = -2$$

$$\Rightarrow$$
 $-2x^3 = -2$

$$\Rightarrow x = 1$$

P = (1,1) is the point of intersection

Slope of (i)

$$3x^2 - 3y^2 - 6xy \frac{dy}{dx} = 0$$

$$m_1 = \frac{dy}{dx} = \frac{3\left(x^2 - y^2\right)}{6xy}$$

Slope of (ii)

$$6xy + 3x^2 \frac{dy}{dx} - 3y^2 \frac{dy}{dx} = 0$$

$$6xy + 3x^2 \frac{dy}{dx} - 3y^2 \frac{dy}{dx} = 0$$

$$\Rightarrow m_2 = \frac{dy}{dx} = \frac{-6xy}{3(x^2 - y^2)}$$

$$m_1 \times m_2 = \frac{\left(x^2 - y^2\right)}{2xy} \times \frac{-2xy}{\left(x^2 - y^2\right)} = -1$$

We know that two curves intersects orthogonally if

$$m_1 \times m_2 = -1$$

Where $m_{\rm 1}$ and $m_{\rm 2}$ are the slopes of two curves

$$x^2 + 4y^2 = 8$$

$$x^2 - 2y^2 = 4$$

Point of intersection of (i) and (ii) is (i) - (ii), we get

$$\Rightarrow \qquad y = \sqrt{\frac{2}{3}}$$

$$\therefore \qquad x^2 = 4 + \frac{8}{6}$$

$$x^2 = \frac{32}{6}$$

$$\Rightarrow x = \frac{4}{\sqrt{3}}$$

Now,

Slope of (i)

$$2x + 8y \frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} = -\frac{x}{4y}$$

$$\Rightarrow m_1 = -\frac{1}{4} \times \frac{4}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$$

$$\left[\because \frac{x}{y} = \frac{4}{\sqrt{2}}\right]$$

Slope of (ii)

$$2x - 4y \frac{dy}{dx} = 0$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{x}{2y}$$

$$\Rightarrow m_2 = \frac{1}{2} \times \frac{4}{\sqrt{2}} = \sqrt{2}$$

$$m_1 \times m_2 = -\frac{1}{\sqrt{2}} \times \sqrt{2} = -1$$

(i) and (ii) cuts orthogonally.

Tangents and Normals Ex 16.3 Q3(i)

We have,

$$x^2 = 4$$

$$4v + x^2 = 8$$

---(ii) P = (2,1)

Slope of (i)

$$2x = 4\frac{dy}{dx}$$

$$m_1 = \left(\frac{dy}{dx}\right)_p = \left(\frac{x}{2}\right)_p = 1$$

Slope of (ii)

$$4\frac{dy}{dx} + 2x = 0$$

$$m_2 = \left(\frac{dy}{dx}\right)_p = \left(-\frac{x}{2}\right)_p = -1$$

$$\therefore m_1 \times m_2 = 1 \times -1 = -1$$

Hence the result.

$$x^2 = y$$
 ---(i)
 $x^3 + 6y = 7$ ---(ii) $P = (1,1)$

$$2x = \frac{dy}{dx}$$

$$m_1 = \left(\frac{dy}{dx}\right)_p = 2$$

$$3x^2 + 6\frac{dy}{dx} = 0$$

$$\therefore m_2 = \left(\frac{dy}{dx}\right)_p = \left(-\frac{x^2}{2}\right)_p = \frac{-1}{2}$$

$$m_1 \times m_2 = 2 \times \frac{-1}{2} = -1$$

Tangents and Normals Ex 16.3 Q3(iii)

We have,

$$y^{2} = 8x$$
 ---(i)
 $2x^{2} + y^{2} = 10$ ---(ii) $P(1, 2\sqrt{2})$

$$2y\frac{dy}{dx} = 8$$

$$\therefore m_1 = \left(\frac{dy}{dx}\right)_\rho = \left(\frac{4}{y}\right)_\rho = \sqrt{2}$$

Slope of (ii)

$$4x + 2y \frac{dy}{dx} = 0$$

$$m_2 = \left(\frac{dy}{dx}\right)_\rho = \left(-\frac{2x}{y}\right)_\rho = \frac{-1}{\sqrt{2}}$$

$$\therefore m_1 \times m_2 = \sqrt{2} \times \frac{-1}{\sqrt{2}} = -1$$

We have,
$$4x = y^2$$

$$4x = y^2$$
 --- (i)
 $4xy = k$ --- (ii)

Slope of (i)

$$4 = 2y \frac{dy}{dx}$$

$$m_1 = \frac{dy}{dx} = \frac{2}{y}$$

Slope of (ii)
$$y + x \frac{dy}{dx} = 0$$

$$\Rightarrow m_2 = \frac{dy}{dx} = \frac{-y}{x}$$

Solving (i) and (ii)
$$\frac{k}{y} = y^{2}$$

$$\Rightarrow y^{3} = k$$

$$k = \frac{k^{\frac{2}{3}}}{4}$$

$$(i) \text{ and (ii) cuts orthogonolly}$$

$$m_1 \times m_2 = -1$$

$$\frac{2}{y} \times \frac{-y}{x} = -1$$

$$\frac{2}{x} = 1$$

$$x = 2$$

$$\frac{\frac{2}{x}}{4} = 2$$

$$k^{\frac{2}{3}} = 8$$

$$k^2 = 512$$

$$\Rightarrow \frac{2}{\sqrt{2}} =$$

$$\Rightarrow$$
 $x = 2$

$$\Rightarrow \qquad \frac{k^{\frac{2}{3}}}{4} = 2$$

$$\Rightarrow k^{\frac{2}{3}} = 8$$

$$k^2 = 512$$

We have,

$$2x = y^2 \qquad ---(i)$$
$$2xy = k \qquad ---(ii)$$

Slope of (i)

$$2 = 2y \frac{dy}{dx}$$

$$\Rightarrow m_1 = \frac{dy}{dx} = \frac{1}{y}$$

Slope of (ii)

$$y + x \left(\frac{dy}{dx}\right) = 0$$

$$\therefore m_2 = \frac{dy}{dx} = \frac{-y}{x}$$

Now,

Solving (i) and (ii)

$$\frac{k}{v} = y^2$$

$$\Rightarrow$$
 $y^3 = k$

$$\therefore \qquad x = \frac{y^2}{2} = \frac{k^{\frac{2}{3}}}{2}$$

: (i) and (ii) cuts orthogonolly

$$\therefore m_1 \times m_2 = -1$$

$$\frac{1}{y} \times \frac{-y}{x} = -1$$

$$\Rightarrow \frac{1}{\sqrt{}} =$$

$$\Rightarrow$$
 $x = 1$

$$\Rightarrow \frac{k^{\frac{2}{3}}}{2} =$$

$$\Rightarrow \qquad \psi^{\frac{2}{3}} = 2$$

Closing both side, we get

$$k^2 = 8$$

$$xy = 4$$

$$\Rightarrow x = \frac{4}{v} \dots (i)$$

$$x^2 + y^2 = 8.....(ii)$$

Substituting eq (i) in (ii) we get,

$$x^2 + y^2 = 8$$

$$\Rightarrow \left(\frac{4}{y}\right)^2 + y^2 = 8$$

$$\Rightarrow 16 + v^4 = 8v^2$$

$$\Rightarrow 16 + y^4 = 8y^2$$
$$\Rightarrow y^4 - 8y^2 + 16 = 0$$

$$\Rightarrow (y^2 - 4)^2 = 0$$

$$\Rightarrow$$
 y² = 4

From(i) when y = 2, we get x = 2 and when y = -2, we get x = -2Thus the two curves intersect at (2, 2) and (-2, 2).

Differnentiating (i) wrt x, we get

$$y + x \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x}$$

Differnentiating (i) wrt \times , we get

$$y + x \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x}$$

Differnentiating (ii) wrt \times , we get

$$2x + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{y}$$

$$\left(\frac{dy}{dx}\right)_{C_1} = -1$$

$$\left(\frac{dy}{dx}\right)_{C_2} = -1$$

Clearly
$$\left(\frac{dy}{dx}\right)_{C_1} = \left(\frac{dy}{dx}\right)_{C_2}$$
 at (2, 2)

So given two curves touch each other at (2, 2).

Simillarly, it can be seen that two curves touch each other at (-2, -2).

$$y^2 = 4 \times(i)$$

 $x^2 + y^2 - 6 \times + 1 = 0......(ii)$

Differnentiating (i) wrt \times , we get

$$2y\frac{dy}{dx} = 4$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{y}$$

Differnentiating (ii) wrt \times , we get

$$2x + 2y\frac{dy}{dx} - 6 + 0 = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{3-x}{y}$$

At
$$(1, 2)$$

$$\left(\frac{dy}{dx}\right)_{c_i} = \frac{2}{2} = 1$$

$$\left(\frac{dy}{dx}\right)_{c_{2}} = \frac{3-1}{2} = \frac{2}{2} = 1$$

Clearly
$$\left(\frac{dy}{dx}\right)_{c_i} = \left(\frac{dy}{dx}\right)_{c_z} at (1, 2)$$

So given two curves touch each other at (1, 2).

Tangents and Normals Ex 16.3 Q8

We have,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$xy = c^2$$

Slope of (i)

$$\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$$

$$\therefore m_1 = \frac{dy}{dx} = \frac{x}{y} \times \frac{b^2}{a^2}$$

Slope of (ii)

$$y + x \frac{dy}{dx} = 0$$

$$\therefore m_2 = \frac{dy}{dx} = \frac{-y}{x}$$

$$m_1 \times m_2 = -1$$

$$m_2 = \frac{dy}{dx} = \frac{-y}{x}$$

$$m_1 \times m_2 = -1$$

$$m_1 \times m_2 = -1$$

$$m_1 \times m_2 = -1$$

$$m_2 \times \frac{x}{y} \times \frac{-y}{x} \times \frac{a^2}{b^2} = -1$$

$$a^2 = b^2$$

$$\Rightarrow$$
 $a^2 - b^2$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad ---(i)$$

$$\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1 \qquad ---(ii)$$

$$\frac{2x}{a^2} + \frac{2y}{b^2} \times \frac{dy}{dx} = 0$$

$$dy \qquad x \ b^2$$

$$m_1 = \frac{dy}{dx} = -\frac{x}{y} \frac{b^2}{a^2}$$

Slope of (ii)
$$\frac{2x}{A^2} - \frac{2y}{B^2} \times \frac{dy}{dx} = 0$$

$$m_2 = \frac{dy}{dx} = \frac{x}{y} \times \frac{B^2}{A^2}$$

$$\vdots \quad (i) \text{ and (ii) cuts orthogonally}$$

$$m_2 = \frac{dy}{dx} = \frac{x}{y} \times \frac{B^2}{A^2}$$

$$\therefore m_1 \times m_2 = -1$$

$$m_1 \times m_2 = -1$$

$$\frac{-x}{y} \frac{b^2}{a^2} \times \frac{x}{y} \times \frac{B^2}{A^2} = -1$$

$$\Rightarrow \frac{x^2}{y^2} \times \frac{b^2 B^2}{a^2 A^2} = 1$$

$$\Rightarrow \frac{x^2}{y^2} = \frac{a^2 A^2}{b^2 B^2}$$

$$\Rightarrow \frac{x^2}{y^2} \times \frac{b^2 B^2}{a^2 A^2} = 1$$

$$\Rightarrow \frac{x^2}{y^2} = \frac{a^2 A^2}{b^2 B^2} \qquad ---(iii)$$

Now,

(i) - (ii) gives

$$x^{2} \left[\frac{1}{a^{2}} - \frac{1}{A^{2}} \right] + y^{2} \left[\frac{1}{b^{2}} + \frac{1}{B^{2}} \right] = 0$$

$$\Rightarrow \frac{x^{2}}{y^{2}} = \frac{B^{2} + b^{2}}{b^{2}B^{2}} \times \frac{a^{2}A^{2}}{a^{2} - A^{2}}$$

$$\frac{\left(B^2 + b^2\right)}{b^2 B^2} \times \frac{a^2 A^2}{\left(a^2 - A^2\right)} = \frac{a^2 A^2}{b^2 B^2}$$

$$\Rightarrow B^2 + b^2 = a^2 - A^2$$

$$\Rightarrow B^2 + b^2 = a^2 - A^2$$

$$\Rightarrow a^2 - b^2 = A^2 + B^2$$

We have

$$\frac{x^2}{a^2 + \lambda_1} + \frac{y^2}{b^2 + \lambda_1} = 1 \qquad ---(i)$$

$$\frac{x^2}{a^2 + \lambda_2} + \frac{y^2}{b^2 + \lambda_2} = 1 \qquad ---(ii)$$

$$\frac{2x}{a^2 + \lambda_1} + \frac{2y}{b^2 + \lambda_1} \times \frac{dy}{dx} = 0$$

$$\Rightarrow m_1 = \frac{dy}{dx} = \frac{-x}{y} \times \frac{b^2 + \lambda_1}{a^2 + \lambda_1}$$

$$\frac{2x}{a^2 + \lambda_2} + \frac{2y}{b^2 + \lambda_2} \times \frac{dy}{dx} = 0$$

$$\Rightarrow m_2 = \frac{dy}{dx} = \frac{-x}{y} \times \frac{b^2 + \lambda_2}{a^2 + \lambda_2}$$

Now,

Subtracting (ii) from (i), we get

$$x^{2} \left[\frac{1}{a^{2} + \lambda_{1}} - \frac{1}{a^{2} + \lambda_{2}} \right] + y^{2} \left[\frac{1}{b^{2} + \lambda_{1}} - \frac{1}{b^{2} + \lambda_{2}} \right] = 0$$

$$\Rightarrow \frac{x^{2}}{y^{2}} = \frac{\lambda_{2} - \lambda_{1}}{\left(b^{2} + \lambda_{1}\right) \left(b^{2} + \lambda_{2}\right)} \times \frac{1}{\left(a^{2} + \lambda_{1}\right) \left(a^{2} + \lambda_{2}\right)}$$

Now,

$$\begin{split} m_{1} \times m_{2} &= \frac{\chi^{2}}{y^{2}} \times \frac{\left(b^{2} + \lambda_{1}\right)\left(b^{2} + \lambda_{2}\right)}{\left(a^{2} + \lambda_{1}\right)\left(a^{2} + \lambda_{2}\right)} \\ &= \frac{\left(\lambda_{2} - \lambda_{1}\right)}{\left(b^{2} + \lambda_{1}\right)\left(b^{2} + \lambda_{2}\right)} \times - \frac{\left(a^{2} + \lambda_{1}\right)\left(a^{2} + \lambda_{2}\right)}{\lambda_{2} - \lambda_{1}} \times \frac{\left(b^{2} + \lambda_{1}\right)\left(b^{2} + \lambda_{2}\right)}{\left(a^{2} + \lambda_{1}\right)\left(a^{2} + \lambda_{2}\right)} \\ &= -1 \end{split}$$

: (i) and (ii) cuts orthogonolly

Tangents and Normals Ex 16.3 Q10

Suppose the straight line $x\cos\alpha + y\sin\alpha = p$ touches the curve at $Q(x_i, y_i)$.

But equation of tangent to $\frac{x^2}{a^2} + \frac{y}{b^2} = 1$ at $Q(x_1, y_1)$ is

$$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$$

Thus equation $\frac{XX_1}{a^2} + \frac{yy_1}{b^2} = 1$ and $x\cos\alpha + y\sin\alpha = p$ represent the same line.

$$\begin{split} & \therefore \frac{x_1/a^2}{\cos\alpha} + \frac{y_1/b^2}{\sin\alpha} = \frac{1}{p} \\ & \Rightarrow x_1 = \frac{a^2\cos\alpha}{p}, \ y_1 = \frac{b^2\sin\alpha}{p}.....(i) \end{split}$$

The point Q(x₁, y₁) lies on the curve $\frac{x^2}{a^2} + \frac{y}{b^2} = 1$

$$\therefore \frac{a^4 \cos^2 \alpha}{p^2 a^2} + \frac{b^4 \sin^2 \alpha}{p^2 b^2} = 1$$
$$\Rightarrow a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p^2$$