

Algoritmos y Estructuras de Datos

Cursada 2015

Prof. Alejandra Schiavoni Prof. Catalina Mostaccio

Facultad de Informática – UNLP

Árboles Binarios

Agenda

- Definición
- Descripción y terminología
- Representaciones
- > Recorridos
- > Aplicación: Árboles de expresión

Árbol Binario: Definición

- Un árbol binario es una colección de nodos, tal que:
 - puede estar vacía
 - puede estar formada por un nodo distinguido R, llamado $\it{raíz}$, y dos sub-árboles \it{T}_1 y \it{T}_2 , donde la raíz de cada subárbol \it{T}_i está conectado a \it{R} por medio de una arista

- Cada nodo puede tener a lo sumo dos nodos hijos.
- Cuando un nodo no tiene ningún hijo se denomina *hoja*.
- Los nodos que tienen el mismo nodo padre se denominan *hermanos*.

- Conceptos a usar:
 - *Camino*: desde n_1 hasta n_k , es una secuencia de nodos n_1 , n_2, \ldots, n_k tal que n_i es el padre de n_{i+1} , para $1 \le i < k$.
 - La longitud del camino es el número de aristas, es decir k-1.
 - Existe un camino de longitud cero desde cada nodo a sí mismo.
 - Existe un único camino desde la raíz a cada nodo.
 - *Profundidad*: de n_i es la longitud del único camino desde la raíz hasta n_i.
 - La raíz tiene profundidad cero.

- Grado de n_i es el número de hijos del nodo n_i.
- Altura de n_i es la longitud del camino más largo desde n_i hasta una hoja.
 - Las hojas tienen altura cero.
 - La altura de un árbol es la altura del nodo raíz.
- Ancestro/Descendiente: si existe un camino desde n_1 a n_2 , se dice que n_1 es ancestro de n_2 y n_2 es descendiente de n_1 .

• Árbol binario lleno: Dado un árbol binario T de altura h, diremos que T es lleno si cada nodo interno tiene grado 2 y todas las hojas están en el mismo nivel (h).

Es decir, recursivamente, T es *lleno* si :

- 1.- T es un nodo simple (árbol binario lleno de altura 0), o
- 2.- T es de altura h y sus sub-árboles son llenos de altura h-1.

- Árbol binario completo: Dado un árbol binario T de altura h, diremos que T es completo si es lleno de altura h-1 y el nivel h se completa de izquierda a derecha.
- Cantidad de nodos en un árbol binario <u>lleno</u>:

Sea T un árbol binario lleno de altura h, la cantidad de nodos N es $2^{h+1}-1$

Nivel
$$0 \rightarrow 1 \text{ nodo}$$
 (20)

Nivel 1
$$\rightarrow$$
 2 nodos (2¹)

Nivel 2
$$\rightarrow$$
 4 nodos (2²)

Nivel
$$3 \rightarrow 8 \text{ nodos } (2^3)$$

$$N = 2^0 + 2^1 + 2^2 + 2^3 + \dots$$

La suma de los términos de una serie geométrica de razón 2 es :

Cantidad de nodos en un árbol binario completo:

Sea T un árbol binario completo de altura h, la cantidad de nodos N varía entre (2^h) y $(2^{h+1}-1)$ ya que :

- •Si el árbol es lleno, $N = 2^{h+1}-1$
- •Si no, el árbol es lleno en la altura *h-1* y tiene por lo menos un nodo en el nivel *h*:

$$N = 2^{h-1+1}-1+1=2^h$$

Nota: La altura h de los árboles binarios llenos y completos es de O(log N)

Representación Hijo Izquierdo - Hijo Derecho

- ✓ Cada nodo tiene:
 - Información propia del nodo
 - Referencia a su hijo izquierdo
 - Referencia a su hijo derecho
- ✓ Puede implementarse a través de:
 - Arreglos
 - Punteros

Representación

Hijo Izquierdo - Hijo Derecho

Recorridos

Preorden

Se procesa primero la raíz y luego sus hijos, izquierdo y derecho.

Inorden

Se procesa el hijo izquierdo, luego la raíz y último el hijo derecho

Postorden

Se procesan primero los hijos, izquierdo y derecho, y luego la raíz

Por niveles

Se procesan los nodos teniendo en cuenta sus niveles, primero la raíz, luego los hijos, los hijos de éstos, etc.

Recorrido: Preorden

```
public void preorden() {
    imprimir (dato);
    si (tiene hijo_izquierdo)
         hijoIzquierdo.preorden();
    si (tiene hijo_derecho)
         hijoDerecho.preorden();
```


Recorrido: Por niveles

```
public void porNiveles() {
     encolar(raíz);
      mientras (cola no se vacíe) {
        desencolar(v);
        imprimir (dato de v);
        si (tiene hijo_izquierdo)
                 encolar(hijo_izquierdo);
        si (tiene hijo_derecho)
                 encolar(hijo_derecho);
```


Es un árbol binario asociado a una expresión aritmética

- Nodos internos representan operadores
- Nodos externos (hojas) representan operandos

Aplicaciones:

- En compiladores para analizar, optimizar y traducir programas
- Evaluar expresiones algebraicas o lógicas
 - No se necesita el uso de paréntesis
- > Traducir expresiones a notación sufija, prefija e infija

Inorden: (((a + b) * (c - d)) / (e + f))

Preorden: /*+ab-cd+ef

Postorden: ab+cd-*ef+/

Construcción de un árbol de expresión

A partir de una:

Arboles binarios de expresión

Expresión algebraica:

$$a*((b*d)+c)+(e+(f*g))$$

Expresión **prefija**
$$\longrightarrow$$
 +* a +* b d c + e * f g
Expresión **postfija** \longrightarrow a b d * c + * e f g * + +
Expresión **infija** \longrightarrow ((a *((b * d) + c)) + (e + (f * g)))

1) Construcción de un árbol de expresión a partir de una expresión *postfija*

Algoritmo:

```
tomo un carácter de la expresión

<u>mientras</u> ( existe carácter ) <u>hacer</u>

<u>si</u> es un operando → creo un nodo y lo apilo.

<u>si</u> es un operador (lo tomo como la raíz de los dos

<u>u</u>ltimos nodos creados)

→ - creo un nodo R,

- desapilo y lo agrego como hijo derecho de R

- desapilo y lo agrego como hijo izquierdo de R

- apilo R.

tomo otro carácter

<u>fin</u>
```


2) Construcción de un árbol de expresión a partir de una expresión *prefija*

```
Algoritmo:

ArbolExpresión (A: ArbolBin, exp: string)

si exp nulo → nada.
si es un operador → - creo un nodo raíz R
- ArbolExpresión (subArblzq de R, exp
(sin 1° carácter))
- ArbolExpresión (subArbDer de R, exp
(sin 1° carácter))
si es un operando → creo un nodo (hoja)
```


3) Construcción de un árbol de expresión a partir de una expresión *infija*

- -Convertir una **exp. infija** en árbol de expresión : se debe convertir la exp. infija en postfija (i) y a partir de ésta, construir el árbol de expresión (ii).
- (i) Estrategia del Algoritmo para convertir exp. infija en postfija :
 - a) si es un operando → se coloca en la salida.
 - b) si es un operador -> se maneja una pila según la prioridad de este operador en relación al tope de la pila

operador con > prioridad que el tope -> se apila operador con <= prioridad que el tope -> se desapila elemento colocándolo en la salida.

Se vuelve a comparar el operador con el tope de la pila

- c) si es un "(", ")"→ "(" se apila ")" se desapila todo hasta el "(", incluído éste
- d) cuando se llega al final de la expresión, se desapilan todos los elementos llevándolos a la salida, hasta que la pila quede vacía.

Operadores ordenados de mayor a menor según su prioridad:

```
(potencia)
(multiplicación y división)
(suma y resta)
```

Los " (" siempre se apilan como si tuvieran la mayor prioridad y se desapilan <u>sólo</u> cuando aparece un ")".

Ejercitación

Árbol binario de expresión

Ejercicio 1.

- ✓ Convierta la expresión ((a + b) + c * (d + e) + f) * (g + h) en expresión prefija

Ejercicio 2.

- ✓ Dada la siguiente expresión prefija : * + I + J K C * A B , dibuje su correspondiente árbol binario de expresión
- ✓ Convierta la expresión ((a + b) + c * (d + e) + f) * (g + h) en expresión postfija