Dockerコンテナを用いたLayer2演習に対応可能なIPネットワーク構築演習支援システムの開発

◎ 菅家悠希+, 井口信和+‡ +近畿大学 理工学部 情報学科 +近畿大学 情報学研究所

目次

- ■研究概要
 - □背景
 - ■既存システムの課題
 - ■目的・アプローチ
- ■研究内容
- ■実験
- ■まとめ

研究背景

■ ネットワークの需要増加[1]

年月	2018年5月	2019年5月	2020年5月	2020年11月
帯域(Tbps)	10.2	12.0	19.0	19.8

■ IT技術者の不足[2]

年	2020年	2025年	2030年
不足数(万人)	30	36	45

ネットワーク人材の養成が急務

[1] 総務省:令和3年度情報通信白書,

https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r03/html/nb000000.html

(参照:2022-01-03)

[2] 経済産業省: I T人材需給に関する調査(概要),

<https://www.meti.go.jp/policy/it_policy/jinzai/gaiyou.pdf>(参照:2022-01-03)

研究背景

- ネットワーク技術者の養成
 - □IPネットワーク構築演習
 - ルータやスイッチなどの実機を操作して演習実施
 - □CNA (Cisco Networking Academy) [3]
 - ネットワーク構築演習
 - ネットワークトラブルシューティング演習
- 課題
 - □ルータやスイッチが高価
 - ■物理的スペースの確保
 - □コロナ過の中対面での実施が不可欠

既存システム(NPL: NetPowerLab) [4]

- IPネットワーク構築演習支援システム
 - ■UML (User Mode Linux) [5]を使用
- 仮想ネットワーク機器を用いた演習が可能
 - □実機を使う必要がない
 - □物理的スペース問題も解決
- Webブラウザ上で動作
 - □場所にとらわれずに演習が可能
- [4] Nobukazu Iguchi: Development of a self-study and testing function for NetPowerLab, an IP networking practicesystem,
- International Journal of SpaceBased and Situated Computing, Vol. 4, No. 175-183 (2014).
- [5] User Mode Linux, 入手先<http://user-mode-linux.sourceforge.net/>, (参照:2022-01-03).

NPLの課題

- UMLを用いた課題
 - □ドキュメントの不足
 - ■UMLの開発が終了
 - ■UMLの起動時間が長い
- Layer2プロトコルの演習に対応していない
 - ■VLAN, STP, EtherChannel等の演習ができない

補足: Layer2について

- Layer2
 - □OSI参照モデルの第二層(データリンク層)
 - □直接接続された機器とのルールを定める
- Layer2技術の例: VLAN
 - □論理的にネットワークをグループに分割する技術
 - ■グループ内の通信を許可しその他は禁止する といった用途に使用

目的・アプローチ

- ■目的
 - □学習者のネットワーク構築学習環境の利便性向上
- アプローチ
 - □開発環境・ネットワークの起動速度の改善
 - 使用技術の見直し
 - システムアーキテクチャの一新
 - ■Layer2 Switchの追加により演習の幅を拡張

目次

- 研究背景
- ■研究内容
 - ■システムアーキテクチャの見直し
 - ■対応技術
 - □システム構成
 - □コマンド変換機能
 - □ネットワーク保存機能
 - □課題演習機能
- ■実験
- ■まとめ

システムアーキテクチャの見直し

- UML
 - ■UML上でソフトウェアやOSを動作させることで 仮想ネットワーク機器を実現可能
- Docker[6]
 - □コンテナ上でソフトウェアやOSを動作させることで 仮想ネットワーク機器を実現可能
 - □迅速にコンテナを起動可能

システムアーキテクチャの見直し

■ 各プロセスの比較 UML(仮想マシン)

アプリケーションプロセス (ルータなどの仮想機器の動作)

LinuxOSの起動

仮想ハードウェアの初期化 (CPU, RAM, ROM等々)

仮想マシンをブート(起動) するのがボトルネックに Dockerコンテナ

コンテナプロセス (ルータなどの仮想機器の動作)

ホストPCのもの を再利用

システムアーキテクチャの見直し

- VyOS[7] ■仮想ルータ実現のために使用
- CentOS[8] ■仮想ホスト実現のために使用
- Open vSwitch[9]
 - □仮想スイッチ実現及びコンテナ間の結線に使用 Open vSwitchを使用

- [7] VyOS, 入手先 < https://vyos.io/>, (参照:2022-01-03).
- [8] The CentOS Project, 入手先 https://www.centos.org/, (参照:2022-01-03)
- [9] Open vSwitch-Overview,

入手先 < https://www.openvswitch.org/features>, (参照:2022-01-03)

実装済みの技術について

■ ルータを用いた技術[10]

■既存システム: Quagga[11] を用いて実装 本システム: VyOS を用いて実装

技術	既存システム(Quagga)	本システム(VyOS)
静的ルーティング	0	0
動的ルーティング(RIP, OSPF)	0	0
冗長化 (パッシブインタフェース)	0	0
ACL	0	△(実装中)
VRRP	×	0
NAT	×	△(実装中)
DHCP	×	△(実装中)

[10] Quagga Routers comp, 入手先 https://openmaniak.com/quagga_func.php, (参照:2022-02-08)

[11] Quagga Software Routing Suite, 入手先 http://www.nongnu.org/quagga/, ¹³ (参照:2022-02-08)

実装済みの技術について

■スイッチを用いた技術

□既存システム: 未実装

本システム: Open vSwitchを用いて実装

技術	既存システム	本システム(Open vSwitch)
VLAN	×	0
EtherChannel	×	0
STP	×	0

システム構成

アプリケーション画面

機器情報一	覧
-------	----------

NodeName	Interface	IPAddress	NetMask	MacAddress	Status	
Router0	eth0			56:4e:53:a5:b9:51		_
Router0	eth1			56:4e:53:22:6b:82		
Switch0	eth0			56:4e:53:ca:75:77		
Switch0	eth1			56:4e:53:f7:9d:3d		
Switch0	eth2			56:4e:53:6a:e4:f1		
Switch1	eth0			56:4e:53:f6:f7:19		
Switch1	eth1			56:4e:53:a7:8e:1c		
Switch1	eth2			56:4e:53:48:a9:64		-

機器情報一覧

コマンド変換機能の実装

- ■コマンド変換機能
 - ■学習者がCisco IOSコマンドの文法に則り入力した コマンドを仮想機器へのコマンドに変換する機能

interface ethernet 0 ip address 192.168.1.1 255.255.255.0 Ciscoルータ

set interfaces ethernet eth0 address 192.168.1.1/24

VyOS

コマンド変換機能の実装

- コマンド変換機能
 - ■学習者がCisco IOSコマンドの文法に則り入力した コマンドを仮想機器へのコマンドに変換する機能

変換前のコマンド(CISCO IOS用コマンド) interface ethernet 0 ip address 192.168.1.1 255.255.255.0

変換後のコマンド(VyOS用コマンド) set interfaces ethernet eth0 address 192.168.1.1/24

コマンド変換機能の実装

```
Hello, This is Authorized Access Only!
Router> enable
{Router, message, user, 01}
Router# configure terminal
{Router, message, privilege, 07}
Router(config)# interface ethernet 0
{Router, message, global-config, 11, 0}
Router(config-if)# ip address 192.168.1.1 255.255.255.0
{Router, message, interface-config, 07, eth0, 192.168.1.1, 255.255.255.0}
                                     - コマンドID L パラメータ
                                        権限レベル
               ネットワーク機器の種別
```

コマンドid: 07

パラメータ1: eth0, パラメータ2: 192.168.1.1

パラメータ3: 255.255.255.0

変換後のコマンド(VyOS用コマンド) set interfaces ethernet eth0 address 192.168.1.1/24

ネットワーク保存機能の実装

■ネットワーク保存機能

Host1

eth0

□作業中のネットワークをXMLファイルに 保存し作業再開時に復元することが可能

192.168.1.2

255 255 255 0

56:4e:53:15:c7:e5

ネットワーク保存機能の実装: XML

```
<?xml version="1.0" encoding="UTF-8"?>
         ifdst="Host0" ifdst_port="eth0" ifsrc="Switch0" ifsrc_port="eth0"></line>
         <vm name="Host0" position_x="215" position_y="319">
                   <host name="Host0">
                            <if mac="56:4e:53:6a:ab:a8" name="eth0" status="----">
                                   <ip address="192.168.1.1" netmask="255.255.255.0"></ip>
                            </if>
                   </host>
         </vm>
```

ネットワーク保存機能の実装: デモ

ping -c 4 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.048 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.040 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=64 time=0.040 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=64 time=0.040 ms
— 192.168.1.2 ping statistics —

4 packets transmitted, 4 received, 0% packet loss, time 58ms
rtt min/avg/max/mdev = 0.040/0.096/0.258/0.093 ms
ping -c 4 192.168.1.10
PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.
64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=0.045 ms
64 bytes from 192.168.1.10: icmp_seq=2 ttl=64 time=0.045 ms
64 bytes from 192.168.1.10: icmp_seq=3 ttl=64 time=0.043 ms
64 bytes from 192.168.1.10: icmp_seq=4 ttl=64 time=0.037 ms
— 192.168.1.10 ping statistics —

4 packets transmitted, 4 received, 0% packet loss, time 79ms
rtt min/avg/max/mdev = 0.037/0.079/0.191/0.064 ms

機器情報一覧

Confia

NodeName	Interface	IPAddress	NetMask	MacAddress	Status
Router0	eth0	192.168.1.10	255.255.255.0	56:4e:53:27:8e:16	ир
Switch0	eth0			56:4e:53:85:d:e6	
Switch0	eth1			56:4e:53:f5:f3:9b	
Switch0	eth2			56:4e:53:40:6f.a6	
Host0	eth0	192.168.1.1	255.255.255.0	56:4e:53:6a:ab:a8	
Host1	eth0	192.168.1.2	255.255.255.0	56:4e:53:21:6f.c8	

課題演習機能の実装

- 課題演習機能
 - □指定されたネットワークを正しく作成できるか

課題演習機能の実装: 採点方法について

目次

- ■研究背景
- ■研究内容
- ■実験
 - □性能評価実験
- ■まとめ

性能評価実験

- ■目的
 - □本システムと既存システムの仮想機器の起動速度を 比較し優位性を確認
- ■実験の方法
 - □各ネットワーク機器を50台ずつ起動し50台の 起動速度の平均時間・標準偏差を算出
 - ■以下の環境にてVirtualBoxを用いて実施

ハードウェア	
CPU	CPU: Intel® Core™ i5-10300H CPU @ 2.50GHz 2コア割り当て
RAM	8.0GB 割り当て

性能評価実験

■実験結果

	既存シス	ステム(s)	本システム(s)		
機器名	平均	標準偏差	平均	標準偏差	
Router	9.0	0.7	0.2	0.02	
Host	10.7	0.6	0.2	0.03	
Switch			0.02	0.01	

起動時間を約1/50程度に削減することが可能

目次

- ■研究背景
- ■研究内容
- ■実験
- ■まとめ

まとめ

- ■研究概要
 - □背景・既存システムの課題
 - ■目的・アプローチ
- ■研究内容
 - ■システムアーキテクチャの見直し
 - □対応技術・システム構成
 - □各種機能
- ■実験
 - □性能評価実験
- ■今後の課題
 - □演習の幅の拡張
 - □利用評価実験の実施