MẬT MÃ ỨNG DỤNG TRONG ATTT

Bài 05. Mật mã trên đường cong elliptic

- Nhóm hữu hạn trên đường cong elliptic
- Mật mã trên đường cong elliptic
- Nhúng số vào điểm trên đường cong elliptic

- Nhóm hữu hạn trên đường cong elliptic
- Mật mã trên đường cong elliptic
- Nhúng số vào điểm trên đường cong elliptic

Đường cong elliptic

- p là số nguyên tố
- Fp là trường hữu hạn các số nguyên theo modulo p
- Đường cong elliptic E trên trường Fp được xác định bởi phương trình

$$y^2 = x^3 + ax + b \qquad (1)$$

• Với điều kiện: $\begin{cases} a,b \in F_p \\ 4a^3 + 27b^2 \neq 0 \pmod{p} \end{cases}$

Đường cong elliptic

$$y^2 = x^3 + ax + b \tag{1}$$

- Một cặp (x, y) trong đó x, y∈ F_p được gọi là một điểm thuộc đường cong nếu chúng thỏa mãn (1)
- Ngoài ra có «điểm ở vô cùng»,ký hiệu là O, (∞)

Đường cong elliptic

Ví du, xét đường cong E trên F₇

$$E: y^2 = x^3 + 2x + 4 \tag{2}$$

- Tập hợp các điểm thuộc đường cong là: $E(F_7) = \{\infty, (0,2), (0,5), (1,0), (2,3), \\ (2,4), (3,3), (3,4), (6,1), (6,6)\}$
- Có thể tìm tất cả các điểm thuộc E bằng cách duyệt mọi giá trị x, nhưng không thể áp dụng khi p lớn → có thuật toán hiệu quả hơn.

6

Luật nhóm các điểm trên đường cong elliptic

□Luật nhóm:

- Xét tập tất cả các điểm của một đường cong E
- Đinh nghĩa phép công điểm trên tập E sao cho (E,+) là một nhóm hữu han

Luât nhóm các điểm trên đường cong elliptic

□Luât nhóm:

"Điểm ở vô cùng", kí hiệu là ∞: đường thẳng đị qua hai điểm có thể không cắt đường cong ở điểm thứ ba. Khi đó, coi rằng nó cắt đường cong ở vô cùng!

Luật nhóm các điểm trên đường cong elliptic

□Luât nhóm:

$$E: y^2 = x^3 + ax + b; \quad P_1, P_2 \in E, \quad P_1 \neq \infty, \quad P_2 \neq \infty$$

 $P_1 = (x_1, y_1); \quad P_2 = (x_2, y_2); \quad P_1 + P_2 = P_3 = (x_3, y_3)$

1. Nếu
$$x_2 = x_1$$
, $y_2 = -y_1$ thì $P_1 + P_2 = \infty$,

2. Ngược lại
$$P_1 + P_2 = (x_3, y_3)$$
 trong đó:

• Ngược lại
$$P_1 + P_2 = (x_3, y_3)$$
 trong do:
• $x_3 = \lambda^2 - x_1 - x_2$
• $y_3 = \lambda(x_1 - x_3) - y_1$ Và
$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P_1 \neq P_2 \\ \frac{3x_1^2 + a}{2y_1}, & \text{if } P_1 = P_2 \end{cases}$$

Luật nhóm các điểm trên đường cong elliptic

□Luât nhóm:

$$E: y^2 = x^3 + ax + b;$$
 $P_1, P_2 \in E,$ $P_1 \neq \infty,$ $P_2 \neq \infty$
 $P_1 = (x_1, y_1);$ $P_2 = (x_2, y_2);$ $P_1 + P_2 = P_3 = (x_3, y_3)$

3.
$$P + \infty = \infty + P = P$$
, $\forall P \in E$

4. Phép lấy nghịch đảo được tính toán khá dễ dàng, nghịch đảo của (x, y) là -(x, y) và = (x, -y)

Luật nhóm các điểm trên đường cong elliptic

Ví dụ:
$$E: y^2 = x^3 + 2x + 4; p = 7$$

 $E(F_7) = \{\infty, (0,2), (0,5), (1,0), (2,3), (0,2), (0,$

VD1:

$$P_1 = (x_1, y_1) = (0, 2); \quad P_2 = (x_2, y_2) = (0, 5)$$

Obviously: $(x_1 = x_2)$ and $(y_2 = -y_1)$

$$\Rightarrow P_1 + P_2 = \infty \Rightarrow P_1 = -P_2$$

Luật nhóm các điểm trên đường cong elliptic

□Ví dụ: $E: y^2 = x^3 + 2x + 4; \quad p = 7$ $E(F_7) = \{\infty, (0,2), (0,5), (1,0), (2,3), \}$ (2,4), (3,3), (3,4), (6,1), (6,6)**VD2**: $P_1 = (x_1, y_1) = (0, 2); P_2 = (x_2, y_2) = (2, 3)$ *Obviously*: $(x_1 \neq x_2)$ $\lambda = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{2 - 0} = \frac{1}{2} = 2^{-1} = 4 \pmod{7}$ $x_3 = \lambda^2 - x_1 - x_2 = 4^2 - 0 - 2 = 0 \pmod{7}$ $y_3 = \lambda(x_1 - x_3) - y_1 = 4(0 - 0) - 2 = -2 = 5 \pmod{7}$

Luât nhóm các điểm trên đường cong elliptic

□Tính chất phép công điểm

- Tính chất giao hoán $P_1 + P_2 = P_2 + P_1 \quad \forall P_1, P_2 \in E$
- Tính chất kết hợp $(P_1 + P_2) + P_3 = P_1 + (P_2 + P_3) \quad \forall P_1, P_2, P_3 \in E$
- Tồn tai phần tử trung hòa $P + \infty = \infty + P = P \quad \forall P \in E$
- Tồn tai phần tử đối $\exists P' \in E : P' + P = P + P' = \infty \quad \forall P \in E$
- Tính đóng

Luật nhóm các điểm trên đường cong elliptic

□Phần tử đối:

 $\Rightarrow P_3 = (x_3, y_3) = (0,5)$

- $P = \infty$
- $P = P(x,0) \Rightarrow -P = P$
- $P = P(x, y) \Rightarrow -P = P'(x, -y)$

□Ghi chú

$$P(x,y) \in E \implies P'(x,-y) \in E$$

□Ví du

- $P = (2,3) \Rightarrow -P = (2,-3) = (2,4)$
- $P = (1,0) \implies -P = (1,0)$

Luật nhóm các điểm trên đường cong elliptic

- □Bậc của điểm P: Cho đường cong E(F_n) và P là một điểm thuộc đường cong. Bác của P là số nguyên n nhỏ nhất thỏa mãn $n \cdot P = \infty$
- ■Nhóm con cyclic sinh bởi P: Cho đường cong $E(F_n)$ và P là một điểm thuộc đường cong. Giả sử P có bậc là n. Khi đó, nhóm con cyclic sinh bởi P được kí hiệu là <P> và:

$$\langle P \rangle = \{ \infty, P, 2P, 3P, ..., (n-1)P \}$$

- Nhóm hữu han trên đường cong elliptic
- Mật mã trên đường cong elliptic
- Nhúng số vào điểm trên đường cong elliptic

Mật mã trên đường cong elliptic

□Bài toán logarit rời rạc trên Z*,

Cho p, a

- Biết x. Tính y = a^x (mod p) DĒ
- Biết y. Tìm x: y = a^x (mod p) KHÓ

□Bài toán logarit rời rạc trên E(Fp)

Cho p, $P \in E(F_n)$

- Biết k. Tính Q = kP
- DĒ Biết Q. Tìm k: Q = kP KHÓ

Mật mã trên đường cong elliptic

□Sinh cặp khóa

IN: Tham số hệ thống $\langle p, E(a,b), P, n \rangle$ OUT: Khóa công khai Q và khóa bí mật d

- 1. Chọn ngẫu $d \in [1, n-1]$
- 2. Tính Q = dP
- 3. Kết quả là:
 - + KCK: 0
 - + KBM: *d*

Mật mã trên đường cong elliptic

□Mã hóa

IN: Tham số hệ thống $(p, E_{(a,b)}, P, n)$ Khóa công khai QThông điệp m

OUT: Bản mã (C_1, C_2)

- 1. Biểu diễn m thành điểm $M \in E$
- 2. Chọn ngẫu $k \in [1, n-1]$
- 3. Tính $C_1 = kP$
- 4. Tính $C_2 = M + kQ$
- 5. Kết quả là $C = (C_1, C_2)$

20

Mật mã trên đường cong elliptic

□Giải mã

IN: Tham số hệ thống $(p, E_{(a,b)}, P, n)$

Khóa bí mật dBản mã $C = (C_1, C_2)$

OUT: Thông điệp ban đầu *m*

- 1. Tính $M = C_2 dC_1$
- 2. Trích xuất *m* từ *M*
- 3. Kết quả là *m*

- Nhóm hữu hạn trên đường cong elliptic
- Mật mã trên đường cong elliptic
- Nhúng số vào điểm trên đường cong elliptic

Nhúng số vào điểm thuộc đường cong elliptic

- 1. Cho đường cong E(F_p): $y^2 = f(x) = x^3 + ax + b$
- Cho m là số nguyên. Muốn mã hóa m bằng ECC thì cần chuyển m thành điểm M=(x,y) nào đó.
- 3. Ý tưởng nhúng:
 - 1. Coi m là hoành độ của M, tức M = (m, y)
 - 2. Thay x = m vào phương trình của E và giải phương trình $y^2 = f(m)$ đối với y, tìm được nghiệm u
 - 3. Điểm cần tìm là M = (m, u)
- Trở ngại: Chỉ có khoảng ½ số phần tử của F_p là thặng dư bậc 2 → xác suất tìm được u là ½ → xác suất nhúng thành công là ½.

Nhúng số vào điểm thuộc đường cong elliptic

- 1. Xác định giới hạn $m_{\text{max}} \ll p$ đối với m
- 2. Tính hệ số nhúng $l = |p/(m_{\text{max}} + 1)|$
- Đối với mỗi số m cần nhúng, ánh xạ m thành m' ∈ [lm, lm+l−1] sao cho f(m') là thặng dư bậc 2. Xác suất thất bai là 2^{-l}.
- 4. Nhúng m' thành điểm M bằng phương pháp đã biết
- 5. Từ m' tìm lại m bằng công thức m = |m'/l|

Nhúng số vào điểm thuộc đường cong elliptic

□Ví dụ
$$E(F_{67}): y^2 = x^3 + 3x + 2$$

 $m \in \{0,1,2,3,4,5\} \implies m_{\text{max}} = 5 << p = 67$

☐Khi không dùng hệ số nhúng

m	f(m)	$\sqrt{f(m)}$
0	2	không tồn tại
1	6	26, 41
2	16	4, 63
3	38	không tồn tại
4	11	không tồn tại
5	8	không tồn tại

Nhúng số vào điểm thuộc đường cong elliptic

 \Box Ví dụ $E(F_{67}): y^2 = x^3 + 3x + 2$

 $m \in \{0,1,2,3,4,5\} \implies m_{\text{max}} = 5 << p = 67$

 \square Khi dùng hệ số nhúng (l = 11)

	and stand in so initially (v 11)									
m	lm	lm+l-1	m'	f(<i>m</i> ')	$\sqrt{f(m')}$	M	$m = \left\lfloor \frac{m'}{l} \right\rfloor$			
0	0	10	1	6	26	(1, 26)	0			
1	11	21	11	26	19	(11, 19)	1			
2	22	32	24	29	37	(24, 37)	2			
3	33	43	33	59	40	(33, 40)	3			
4	44	54	47	49	60	(47, 60)	4			
5	55	65	55	47	39	(55, 39)	5			

Nhúng số vào điểm thuộc đường cong elliptic

□Bài tập về nhà (có trong đề thi)

- 1. Thuật toán Euclid mở rộng
- 2. Kí hiệu Legendre
- 3. Thuât toán Tonelli-Shank
- 4. Nhúng số vào điểm thuộc đường cong elliptic xác định trên ${\sf F}_{\sf p}$

