NIĞDE ÖMER HALISDEMIR ÜNİVERSİTESİ NÍĞDE TEKNİK BİLİMLER MESLEK YÜKSEKOKULU SINAV TUTANAĞI

DERS KODU:

MKT2002-1

DERS ADI:

BILGISAYARLI KONTROL SISTEMLERI

DERS SORUMLUSU: Arş.Gör. MEHMET CANEVI

GÖZETMEN:

Öğr.Gör. MESUT TANIR

IMZA

TARIH: 11.03.2025

SAAT: 14.00

SALON: 201

S.N.	ÖĞRENCİ NO	ADI SOYADI	MASA	IMZA	GIRME
1	232406006	ALPEREN KAÇGAN	1	CH.	
2	232406004	HATICE KAR	2	100	
3	232406034	IBRAHİM HALİL BATMAZ	3	60-	
4	222456014	MEHMET MUHAMMET ÖZ	4		\overline{X}
5	222406042	ALI NUR	5	200	
6	212456314	ZİŞAN EMİN GÜNDÜZ	6		X
7	222456018	SERHAT TURMUŞ	7		\times
8	222456302	TARIK ŞAHİN	8		
9	232406017	ÇAĞRI KOÇAK	9		\times
10	232456026	IBRAHIM AYAZ	10	10	
11	222406036	MEHMET MERT ALAOSMAN	11	=	
12	232406007	HÜSEYİN GÜNDÜZ	12		
13	232456027	FATMA SILA DÜNDAR	13	tude.	
14	232406041	MURAT UMUT SÜRMELİ	14	199	
15	232406303	MEHMET ÜFLER	15	da 11	
16	232406048	GÜLŞEN AKIN	16	Gust.	
17	232406015	HÜSEYİN ÖZTÜRK	17		\mathbb{X}
18	232406032	EMÍN ALPEREN MUT	18		\times
19	232456028	VOLKAN TORUN	19	- 6 L.	
20	232406023	ALÍ ALCI	20	A.	

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sinav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60 dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	Lin	20	70	100

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Soru-3 (30p) Elde ettiğiniz y(s)'yi zaman tanım bölgesine çeviriniz. y(t)=?

Soru 35 =) 25 wn 5 Swn = 5 Si 2 = 5

wn=4

$$G(5) = \frac{1}{5^2 + 5s + 4}$$

$$y'(s) = \frac{12U(s)}{s^2 + 5s + 4}$$

$$y(s) = \frac{I2.U(s)}{5(s^2+5s+6)}$$

$$y(s)=) = 12.0(s)$$

 $s(s+1)(s+6)$

$$\frac{y(s)}{s(s+1)(s+4)} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+4}$$

 $\frac{s(s+1)(s+4)}{s(s+3)(s+4)} = \frac{S}{s(s+4)} + \frac{S}{s+4} + \frac{C}{s+4}$

$$y(s) = 3 \cdot \frac{\pi}{5} - 4 \cdot \frac{\pi}{5+1} + \frac{\pi}{5+4}$$

$$y(t) = 1^{-1} \left\{ 3 \cdot \frac{\pi}{5} - 4 \cdot \frac{\pi}{5+4} + \frac{\pi}{5+4} \right\}$$

$$y(t) = 1^{-1} \left\{ 3 \cdot \frac{\pi}{5} \right\} - 1^{-1} \left\{ 4 \cdot \frac{\pi}{5+4} \right\} + 1^{-1} \left\{ \frac{\pi}{5+4} \right\}$$

$$= 1^{-1} \cdot 3 \left\{ \frac{\pi}{5} \right\} - 1^{-1} \cdot 4 \left\{ \frac{\pi}{5+4} \right\} + 1^{-1} \left\{ \frac{\pi}{5+4} \right\}$$

$$y(t) = 3 \cdot \left\{ \frac{\pi}{5} \right\} - 4 \cdot \left\{ e^{-t} \right\} + 1^{-1} \left\{ e^{-6t} \right\}$$

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sinav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60 dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	30	ACI	-	Lily

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- · Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s}$$
(2)

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

1-)
$$\frac{12^{2}}{5^{2}+255n5+4n^{2}}$$

 $\Delta = (255n)^{2}-4.5^{2}$
 $= 45^{2}5n-4.25n$
 $= 4.25n(5^{2}-1)$
 $\frac{12}{5+4}$. $\frac{12}{5+1}$
 $6(s) = 4.1$
 $(s+4)(s+1)$
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 eq
 e

$$5^{2}+25\omega_{n}5+\omega_{n}^{2}$$

 $=5^{2}+5s+4$
 $5=5\omega_{n}5$ 30
 $4=\omega_{n}^{2}$
 $\omega=2$ $(5=52n5)$

$$= \int_{-1}^{1} \left\{ \frac{12}{2\pi} \cdot \frac{1}{2} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

$$= \int_{-1}^{1} \left\{ \frac{1}{2} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\} - \int_{-1}^{1} \left\{ \frac{1}{2\pi} \right\}$$

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Smay Türü:	Ara Sinav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	10	140	2/1	60

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Sorut:
$$G(s) = \frac{12 = \omega_n^2}{s^2 + 5\zeta \omega_n^2 + 4\omega_n^2}$$

$$\Delta = (5\zeta \omega_n)^2 + 4\omega_n^2$$

$$= 40\zeta^2 \omega_n^2 + 4\omega_n^2$$

$$= 4\omega_n^2 (\zeta^2 + 1)$$

Soru 2:
$$G(s) = \frac{12}{5^2 + 5s + 4}$$

$$\frac{4(s)}{0(s)} = \frac{12}{5^2 + 5s + 4}$$

$$4(s) = \frac{0(s)}{5^2 + 5s + 4}$$

$$G(s) = \frac{12}{s^2 + 5s + 4}$$

$$\frac{Y(s)}{U(s)} = \frac{12}{s^2 + 5s + 4}$$

$$Y(s) = \frac{12}{s(s^2 + 5s + 4)}$$

$$Y(s) = \frac{12}{s(s + 4)(s + 4)}$$

$$Y(s) = \frac{12}{s(s+12)(s+4)}$$

$$\frac{12}{s(s+12)(s+4)} = \frac{A}{s} + \frac{B}{s+12} + \frac{C}{s+4}$$

$$\frac{12}{S(S+12)(S+4)} = \frac{A(S+12)(S+4) + B(S)(S+4) + C(S)(S+12)}{S(S+12)(S+4)}$$

$$A(s+12)(s+4) + B(s)(s+4) + Cs(s+12) = 1$$

 $A(s^2+5s+4) + B(s^2+4s) + C(s^2+s) = 1$
 $As^2+5As+4A+Bs^2+4Bs+Cs^2+Cs=1$
 $(A+B+C)s^2+(5A+4B+C)s+(4A)=1$

$$A + B + C = 0$$

 $5A + 4B + C = 0$
 $4A = 1$

$$4(s) = \frac{1}{4} \frac{1}{s} - \frac{1}{2} \frac{1}{s+12} + \frac{1}{8} \frac{1}{s+4}$$

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sınav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	1179	15	10	25

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sinav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	10	An	10	- 30

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

$$= \int_{-1}^{-1} \left\{ \frac{1}{s} \right\} - \int_{-1}^{-1} \left\{ \frac{1}{s+p} \right\}$$

$$G(z) = Z \begin{cases} \frac{S}{s + 0.0S} & \frac{1 - e^{-0.13}}{T_S + 1} \\ = \frac{(2 - 1)^2}{z^2} & \frac{Z}{s^3 + 0.0S} \end{cases}$$

$$G(z) = \frac{7}{2} \left\{ \frac{5}{5+0.05} \frac{(1-e^{-0.15})^2 (T_5+1)}{T_5^2} \right\}$$

$$= \left(\frac{(2-1)^2}{2^2} \right) \frac{5}{2} \left\{ \frac{5(5+10)}{5^3+0.055^2} \right\}$$

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sinav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	40	30	10	Lot

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

1)
$$\Delta = b^{2} - 4aC$$

$$(55)^{2} - 4.1.4 = 255^{2} - 16$$

$$\frac{12}{5^{2} + 55 + 4} = \frac{12 \omega_{0}^{2}}{5^{2} + 55 \omega_{0} + 5 + 4 \omega_{0}^{2}} = \frac{5^{2} \omega_{0}^{2} - 4 \omega_{0}^{2}}{5^{2} + 55 \omega_{0}^{2} + 4 \omega_{0}^{2}} = \frac{5^{2} \omega_{0}^{2} - 4 \omega_{0}^{2}}{5^{2} + 55 \omega_{0}^{2} + 4 \omega_{0}^{2}} = \frac{5^{2} \omega_{0}^{2} - 4 \omega_{0}^{2}}{5 \omega_{0}^{2} + 4 \omega_{0}^{2}} = \frac{12}{5 \omega_{0}^{2} + 55 \omega_{0}^{2} + 4 \omega_{0}^{2}} = \frac{12}{5 (5 + 4) (5 + 1)} = \frac{12}{5 ($$

A(5+4)(5+1) + B(5)(5+4) + C(5)(5+1) = 12 $A(5^{2}+5+4) + B(5^{2}+5) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+5) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+5) + C(5^{2}+45) = 12$ $A(5^{2}+5+5) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+5) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+5) + C(5^{2}+45) = 12$ $A(5^{2}+5+5) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+5+4) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+45) = 12$ $A(5^{2}+6) + B(5^{2}+4) + C(5^{2}+4) + C(5^{2}+4) + C(5^{2}+4) + C(5^{2}+4) = 12$ $A(5^{2}+6) + A(5^{2}+4) + C(5^{2}+4) +$

29

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sınav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60 dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	(1)	(1)	1)	70

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Smav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	10	AO	10	120

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} = \begin{cases} 5^2 + 2 & \text{which } (1) \end{cases}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

1)
$$G(s) = \frac{12}{3^2 + 5.3 + 4}$$

 $G(s) = \frac{12}{3 + 15 + 4}$
 $G(s) = \frac{12}{28}$

2)
$$G(s) = G(s) = \frac{1}{5}$$

 $G(s) = O(s) = \frac{1}{3}$
 $G(s) = O(s) = 3$

5=3
$$S = \text{Restorde deger verdin,}$$

$$\text{Belivi: bir durum yot.}$$

$$6(s) = \frac{1}{3} = \frac{12}{28}$$

$$6(s) = 3^{2} + 2 \text{ (was + wa?)}$$

$$6(s) = 3 + 2 \text{ (was + wa?)}$$

$$6(s) = 3 + 2 \text{ (was + wa?)}$$

$$6(s) = 11 \text{ (was + wa?)}$$

$$6(s) = 22 \text{ (was + wa?)}$$

$$(\frac{12}{28}, 3, 11, 22, \frac{1}{3}, 9) \text{ Fide edilen}$$

$$\sqrt{\frac{12}{28}}, 3, 11, 22, \frac{1}{3}, 9 \text{ Fide edilen}$$

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sınav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	(1)	(1)	h	713

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Ders Kodu:	MKT2002	Tarih:	11.04.202
Sınav Türü:	Ara Sinav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60 dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	20	(1)	1	20

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Soru-3 (30p) Elde ettiğiniz y(s)'yi zaman tanım bölgesine çeviriniz. y(t) = ?

x2+2 5+

$$G(S) = \frac{W_n^2}{S^2 + 2 S w n S + w_n^2} \frac{\rho}{S + \rho}$$

$$= \frac{40}{S^2 + 2 S 12 + 55 + 12^2 + 4}$$

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Smav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60 dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	30	An	10	40

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Soru-3 (30p) Elde ettiğiniz y(s)'yi zaman tanım bölgesine çeviriniz. y(t) = ?

 $24w_{n}=5$ 30 $w_{n}^{2}=4-)w_{n}=2$ Yenine toyalim 25'(2)=4=1

1(+)=1-A- e-Funt sin (wd +

sistem parametrelarini bul

(Karakteristik denklen)

" 29 Wn=5 0 W2 = 4 = Wn = 4 = 2

5= 5 259 21.25 wd= 2.57 20.4375

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Smav Türü:	Ara Sınav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	10	(1)	(1)	(1)

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

Ders Kodu:	MKT2002	Tarih:	11.04.2025
Sınav Türü:	Ara Sınav	Saat:	14:00
Dönemi:	2024-2025	Süre:	60dk

Soru:	1	2	3	Toplam
Puan:	40	30	30	100
Not:	15	1	9)	15

Uyarı:

- Soruları dikkatlice okuyunuz. Hesap makinesi kullanılabilir.
- Defter, kitap ve notlar açık bir sınavdır.
- İşlemleri atlamadan ve ayrıntılı olarak veriniz. Sadece nümerik yanıtlar veya çizimler ara işlemler olmadan kabul edilmemektedir.

Bir transfer fonksiyonu

$$G(s) = \frac{12}{s^2 + 5s + 4} \tag{1}$$

olarak verilmiştir.

Soru-1 (40p) G(s) için sönüm oranı ζ 'yı ve doğal frekans ω_n 'yi hesaplayınız.

Soru-2 (30p) G(s) sistemine birim basamak giriş

$$u(s) = \frac{1}{s} \tag{2}$$

uygulanması durumunda oluşan çıkış y(s)'yi elde ediniz.

$$G(S) = \frac{\omega^{2}}{5^{2} + 25 \omega_{n} s + \omega^{2}}$$

$$\Delta = (25 \omega_0)^2 - 4 \omega_0^2$$

$$= 45^2 \omega_0^2 - 4 \omega_0^2$$

$$= 4 \omega_0^2 (5^2 - 1)$$

$$= 4 \omega_0^2 (5^2 - 1)$$

$$\Delta = (55)^2 - 4w^2 n$$

$$= 1255^2 - 4w^2 n$$