Project Charter: Dashboard de Visualização de Dados do DataSUS com Streamlit

1. Título do Projeto

Desenvolvimento de Dashboard de Visualização de Dados do DataSUS utilizando Streamlit

2. Objetivo do Projeto

Desenvolver um dashboard interativo com Streamlit que simplifique a visualização e análise dos dados do DataSUS para gestores públicos de saúde. O dashboard será projetado para ser intuitivo, facilitando a compreensão e a tomada de decisões baseadas em dados, substituindo a complexidade das ferramentas atuais como Tabwin e Tabnet.

3. Justificativa do Projeto

Os gestores públicos de saúde enfrentam desafios significativos ao usar ferramentas complexas como Tabwin e Tabnet para analisar os dados do DataSUS. Este projeto visa desenvolver um dashboard com Streamlit, que simplifica o processo de análise, permitindo aos gestores tomarem decisões mais rápidas e informadas, contribuindo para uma gestão mais eficiente da saúde pública.

4. Escopo do Projeto

Inclusões:

- Coleta, tratamento e análise dos dados do DataSUS (incluindo armazenamento em base de dados própria).
- Desenvolvimento de um dashboard interativo utilizando Streamlit.
- Criação de visualizações personalizadas e relatórios automáticos.
- Interface amigável para gestores de saúde, com funcionalidades de filtragem e exploração de dados.
- Treinamento para uso do dashboard e documentação técnica.

Exclusões:

- Desenvolvimento de infraestrutura física.
- Expansão para dados fora do escopo do DataSUS.

5. Entregáveis Principais

- Pipeline de coleta e tratamento de dados do DataSUS.
- Versão beta do dashboard em Streamlit para feedback dos usuários.

- Versão final do dashboard pronta para uso.
- Documentação detalhada do código e manuais de uso.
- Sessões de treinamento para usuários finais.

6. Cronograma de Alto Nível

• Fase de Planejamento: 1 semana

Coleta e Tratamento de Dados: 2 semanas

• Desenvolvimento do Dashboard: 3 semanas

• Testes e Feedback com Usuários: 1 semana

• Treinamento e Implementação: 1 semana

• Lançamento Oficial: 1 semana

• Suporte e Manutenção: Contínuo após o lançamento

8. Stakeholders Principais

- Patrocinador do Projeto: Ministério da Saúde / Secretarias Estaduais e Municipais de Saúde
- Gerente do Projeto: Wanderson Rafael Mendonça Batista
- **Equipe de Ciência de Dados:** Cientistas de dados, engenheiros de dados e desenvolvedores especializados em Python e Streamlit.
- **Usuários Finais:** Gestores Públicos de Saúde, Epidemiologistas, Profissionais de Saúde Pública.
- Parceiros: Universidades e Centros de Pesquisa, Fornecedores de Infraestrutura Tecnológica.

9. Riscos Principais

- Risco de Qualidade dos Dados: Problemas com a qualidade e consistência dos dados do DataSUS.
- Risco de Integração: Desafios técnicos na integração dos dados do DataSUS no dashboard.
- Risco de Adoção pelo Usuário: Baixa adesão dos gestores ao novo dashboard.
- Risco de Escopo: Mudanças no escopo do projeto durante o desenvolvimento, impactando prazos e custos.

10. Arquitetura do Aplicativo

A arquitetura do aplicativo será projetada para maximizar a eficiência e a usabilidade, garantindo que o dashboard possa lidar com grandes volumes de dados e fornecer visualizações em tempo real ou quase em tempo real. A seguir estão os principais componentes da arquitetura:

Frontend (Interface de Usuário):

- Desenvolvido em Streamlit para criar uma interface web interativa e responsiva.
- Integração com bibliotecas de visualização de dados, como Plotly,
 Matplotlib e Altair, para gráficos e visualizações dinâmicas.
- Funcionalidades de filtragem, pesquisa e exportação de relatórios em formatos como PDF e Excel.

• Backend (Lógica de Negócio):

- Python como linguagem principal para processamento de dados e lógica de negócios.
- Integração com APIs do DataSUS para extração e atualização contínua dos dados.
- Processamento de dados utilizando Pandas e Numpy para manipulação de grandes datasets.

• Banco de Dados:

- Utilização de bancos de dados relacionais (ex. PostgreSQL) ou NoSQL (ex. MongoDB) para armazenar e gerenciar dados históricos e processados.
- Mecanismos de caching (ex. Redis) para melhorar a velocidade de acesso a dados frequentemente utilizados.

11. Critérios de Sucesso

- Entrega do dashboard no prazo e dentro do orçamento.
- Alta taxa de adoção e satisfação dos usuários.
- Melhoria na eficiência e precisão das análises de dados pelos gestores públicos.
- Documentação completa e treinamentos eficazes para os usuários finais.