Proposition: For all $n, m \in \mathbb{N}$ where m < n, it follows that S_n : if 2|n and 2|m, then $2|\binom{n}{m}$.

Proof. (Strong Induction).

Basis step. Suppose m = 1 and n = 2.

Observe that $\binom{2}{1} = 2$, thus statement is true.

Inductive step. Suppose S_n for $n, m \in \mathbb{N}$ where $2 < m, 2 \le n, m < n$ and $2 \mid n$ but $2 \nmid m$.

We now show S_n implies S_k for all $k \in \mathbb{N}$ where 2|k and m < k. Observe that

$$= \binom{k-2}{m} + \binom{k-2}{m-1} + \binom{k-2}{m-1} + \binom{k-2}{m-2}$$
 (Def. of Pascal's triangle) (2)

$$= \binom{k-2}{m} + 2\binom{k-2}{m-1} + \binom{k-2}{m-2} \tag{3}$$

Since $2|2\binom{k-2}{m-1}$, it follows that the second term is even. Note that 2|k implies $2 \nmid m-2$, and $2 \nmid m$ implies $2 \nmid m-2$, thus the first and third terms are even. Since the sum of three even terms is even, it follows that $\binom{k}{m}$ is even.

It follows by mathematical induction that S_n for all $n, m \in \mathbb{N}$ where m < n.