Embedded Systems with ARM Cortex-M3 Microcontrollers in Assembly Language and C

Chapter 15 General-purpose Timers

Dr. Yifeng Zhu Electrical and Computer Engineering University of Maine

Spring 2015

Timer

- Free-run counter (independent of processor)
- Functions
 - Input capture
 - Output compare
 - Pulse-width modulation (PWM) generation
 - One-pulse mode output

Timer's Clock

$$f_{CK_CNT} = \frac{f_{CL_PSC}}{Prescaler + 1}$$

Output Compare

Output Compare Mode (OCM)	Timer Output (OCREF)	
000	Frozen	
001	High if CNT == CCR	
010	Low if CNT == CCR	
011	Toggle if CNT == CCR	
100	Forced low (always low)	
101	Forced high (always high)	

Output Mode

Example: Toggle LED Every Second

Slow down the counter clock to I KHz

We get

$$f_{CK_CNT} = \frac{f_{CL_PSC}}{Prescaler + 1}$$

$$Prescaler = \frac{f_{CL_PSC}}{f_{CK_CNT}} - 1 = \frac{2.097MHz}{1KHz} - 1$$

$$= 2096$$

Set ARR to 999. The timer counts from 0 to 999 repeatedly (1000 steps).

PWM Diagram

Duty Cycle = 1/6

Mode	Counting Mode	Counter < Reference	Counter ≥ Reference
PWM mode I	Upcounting	Active	Inactive
	Downcounting	Active	Inactive
PWM mode 2	Upcounting	Inactive	Active
	Downcounting	Inactive	Active

PWM Output: Duty Cycle = $\frac{Ton}{Ton+Toff}$

$$duty\ cycle = \frac{pulse\ on\ time}{pulse\ switching\ period} \times 100\% = \frac{T_{on}}{T_{on} + T_{off}} \times 100\%$$

Duty Cycle = 1/3

Counting up, down, center

PWM Mode 1 vs PWM Mode 2

Input Capture

Monitor both rising and falling edge

Input Capture

Monitor only rising edges or only falling edge

Input Capture

Input Filtering

Input Capture Diagram

Ultrasonic Distance Sensor

Distance =
$$\frac{Round \ Trip \ Time \times Speed \ of \ Sound}{2}$$
=
$$\frac{Round \ Trip \ Time(\mu s) \times 10^{-6} \times 340m/s}{2}$$
=
$$\frac{Round \ Trip \ Time(\mu s)}{58}$$

Ultrasonic Distance Sensor

The echo pulse width corresponds to round-trip time.

$$Distance (cm) = \frac{Pulse \ Width \ (\mu s)}{58}$$

or

$$Distance\ (inch) = \frac{Pulse\ Width\ (\mu s)}{148}$$

If pulse width is 38ms, no obstacle is detected.

Ultrasonic Distance Sensor

