Introduction to Econometrics 2: Recitation 5

Seung-hun Lee

Columbia University

February 19th, 2020

Wald Test Statistics

- Assume that you have found any kind of a GMM estimator
- he GMM estimator $\hat{\beta}_{GMM}$ that you found has a limiting distribution that can be characterized as

$$\sqrt{n}(\hat{\beta}_{GMM} - \beta) \xrightarrow{d} N(0, V_{\beta})$$

- Define a fuction $r(\beta): \mathbb{R}^k \xrightarrow{p} \Theta \in \mathbb{R}^q$ that characterizes the type of limitations we put on our parameter of interest β
- For $\theta = r(\beta)$, the GMM estimator of θ would naturally be $\hat{\theta}_{GMM} = r(\hat{\beta}_{GMM})$
- By delta method, we can characterize the limiting distribution of $\hat{\theta}_{GMM}$ as

$$\sqrt{n}(\hat{\theta}_{GMM} - \theta) \xrightarrow{d} R'N(0, V_{\beta}) = N(0, \underbrace{R'V_{\beta}R}_{=V_{\theta}})$$

where
$$R = \frac{\partial r(\beta)'}{\partial \beta} \in \mathbb{R}^{k \times q}$$

Wald Test Statistics

The hypothesis test can be set up in the following manner

$$H_0: \theta = \theta_0, \quad H_1: \theta \neq \theta_0$$

We can use the following Wald statistic

$$W \equiv n(\hat{\theta} - \theta)' \hat{V}_{\theta}^{-1} (\hat{\theta} - \theta)$$

where $W \xrightarrow{d} \chi_q^2$ under H_0

- If we conduct a test with a significance level α , we need to find a critical value C such that $\alpha = 1 F(C)$ where F is the CDF for χ_I^2 .
- We reject H_0 if W > C and do not reject if otherwise.

Restricted GMM (Constrained GMM)

- Consider $r(\beta) = 0$ as a constraint on β
- Finding a restricted GMM (or constrained GMM) is not too different from the unconstrained GMM.
 - The only difference is that we are now solving a constrained minimization problem.
- In math, CGMM estimator is the solution to the following problem

$$\hat{\beta}_{CGMM} = \arg\min_{\beta} J_n(\beta) \text{ s.t. } r(\beta) = 0$$

• Example: Consider a linear constraint on β coefficients in the form of $R'\beta=c$. We can write this out in a Lagrangian form.

$$n\bar{g}(\beta)'W\bar{g}(\beta) + \lambda'[R'\beta - c]$$

where $\lambda \in \mathbb{R}^q$ is the vector of Lagrange multipiers.

Restricted GMM (Constrained GMM)

• Suppose that the moment condition given is $E(z_ie_i) = 0$. Then

$$\bar{g}(\beta) = \left(\frac{Z'y}{n} - \frac{Z'X\beta}{n}\right)$$

• To find the optimal β , we differentiate the objective function with respect to β . This will become

$$\frac{y'ZWz'Y}{n} - \frac{y'ZWZX\beta}{n} - \frac{\beta'X'ZWZ'y}{n} + \frac{\beta'X'ZWZ'X\beta}{n} + \lambda'R'\beta - \lambda'C$$

$$\xrightarrow{\partial\beta} -2\frac{X'ZWZ'y}{n} + 2\frac{X'ZWZ'X\beta}{n} + R\lambda = 0$$

- Unconstrained GMM can be written as $\left(\frac{X'ZWZ'X}{n}\right)^{-1} \frac{X'ZWZ'y}{n}$.
- Using this, we pre-multiply $-R'\left(\frac{X'ZWZ'X}{n}\right)^{-1}$

Restricted GMM (Constrained GMM)

Thus the FOC becomes

$$2R'\hat{\beta}_{GMM} - 2R'\beta - R'\left(\frac{X'ZWZ'X}{n}\right)^{-1}R\lambda = 0$$

• We can find what λ is

$$\lambda = 2\left(R'\left(\frac{X'ZWZ'X}{n}\right)^{-1}R\right)^{-1}R'(\hat{\beta}_{GMM} - \beta)$$

Then put this back into the FOC

$$-2\frac{X'ZWZ'y}{n} + 2\frac{X'ZWZ'X\beta}{n} + 2R\left(R'\left(\frac{X'ZWZ'X}{n}\right)^{-1}R\right)^{-1}R'(\hat{\beta}_{GMM} - \beta) = 0$$

We can further rewrite the above as

$$(X'ZWZ'X)\beta - R(R'(X'ZWZ'X)^{-1}R)^{-1}\underbrace{R'\beta} = X'ZWZ'y - R(R'(X'ZWZ'X)^{-1}R)^{-1}X'Y - R(R'(X'ZWZ'X)^{-1}R)$$

Restricted GMM (Constrained GMM)

Or we can write

$$(X'ZWZ'X)\beta = X'ZWZ'y - R(R'(X'ZWZ'X)^{-1}R)^{-1}(R'\hat{\beta}_{GMM} - c)$$

$$\implies \hat{\beta}_{CGMM} = \hat{\beta}_{GMM} - (X'ZWZ'X)^{-1}R(R'(X'ZWZ'X)^{-1}R)^{-1}(R'\hat{\beta}_{GMM} - c)$$

• Note that if we premultiply R' to both sides, we can get

$$R'\hat{\beta}_{CGMM} = R'\hat{\beta}_{GMM} - R'(X'ZWZ'X)^{-1}R(R'(X'ZWZ'X)^{-1}R)^{-1}(R'\hat{\beta}_{GMM} - c)$$

= $R'\hat{\beta}_{GMM} - R'\hat{\beta}_{GMM} + c = c$

which shows that the CGMM satisfies the constraint.

Distance Test

- If we are working with a possibly nonlinear form of $r(\beta)$, we can use an alternative criterion-based statistic.
- The basic idea of distance test is to compare unrestricted and restricted estimators by contrasting the criterion functions
- Define

$$J(\beta) = n\bar{g}_n(\beta)'\widehat{\Omega}^{-1}\bar{g}_n(\beta)$$

where $\bar{g}_n(\beta)$ is $\frac{1}{n} \sum_{i=1}^n g(w_i, \beta)$ and $\widehat{\Omega}$ is the efficient weight matrix

 With the unconstrained estimator and the constrained estimator, we can write

$$\begin{split} J(\hat{\beta}_{GMM}) &= n\bar{g}_n(\hat{\beta}_{GMM})'\widehat{\Omega}^{-1}\bar{g}_n(\hat{\beta}_{GMM}) \\ J(\hat{\beta}_{CGMM}) &= n\bar{g}_n(\hat{\beta}_{CGMM})'\widehat{\Omega}^{-1}\bar{g}_n(\hat{\beta}_{CGMM}) \end{split}$$

• The distance statistic D, is defined as

$$D \equiv J(\hat{\beta}_{CGMM}) - J(\hat{\beta}_{GMM}) \ge 0$$

Distance Test

As we did for hypothesis testing on Wald test statistic, we can use D
for hypothesis tests of the following setup

$$H_0: r(\beta) = \theta, \quad H_1: r(\beta) \neq \theta$$

- Under H_0 , D converges in distribution to χ_q^2 .
- We can find a critical value c s.t. $\alpha = 1 F(c)$, where F is the CDF for χ_q^2 and reject H_0 if D > c.
- The idea is that if H₀ is true, then imposing the restriction does not alter the moment equations greatly, making it a sensible restriction.
 Otherwise, the moment equation changes greatly, making it unreasonable constraint.
- In fact, we can show that when $r(\beta)$ is linear, D becomes identical to the Wald Test Statistic W (after a long algebra)

Overidentification Test

- In this section, we generalize the overidentification test we learned in 2SLS setup to a GMM setting.
- We can allow for heteroskedasticity (Sargan's test relied on homoskedasticity)
- If $\dim(g_i) = l > k = \dim(\beta)$, it is possible that there exists no β s.t. $E[g(w_i, \beta)] = 0$ is satisfied. Therefore, the overidentifying restrictions become testable.
- Effectively, we are testing the hypothesis

$$H_0: E[g(w_i, \beta)] = 0 \text{ vs. } H_1: E[g(w_i, \beta)] \neq 0$$

• Let β_0 be the true value for the parameter of interest. Then $\bar{g}_n(\beta_0) = \frac{Z'y - Z'X\beta_0}{n} = \frac{Z'e}{n}$ has a limiting distribution characterized by

$$\sqrt{n}\bar{g}_n(\beta_0) \xrightarrow{d} N(0,\Omega), \quad \Omega \in \mathbb{R}^{I \times I}$$

and thus $J(\beta_0) \xrightarrow{d} \chi_I^2$.

Overidentification Test

- Use a GMM estimator to build our test statistic $J=J(\hat{\beta}_{GMM})$, which has a limiting distribution χ^2_{I-k}
- Like before, we can find c s.t. $\alpha = 1 F(c)$, and then reject H_0 when J > c.
- It should be noted that when the H_0 is rejected, we only know that some moment condition is violated. We cannot pick out which. Nevertheless, rejection of the H_0 is a bad sign

Overidentification Test

- We can apply overidentification test on a (strict) subset of instruments whose validity is uncertain.
- ullet To do this, we can partition z_i into two sets $z_{ai} \in \mathbb{R}^{l_a}$ and $z_{bi} \in \mathbb{R}^{l_b}$.
- We are uncertain about z_{bi} and want to test

$$H_0: E(z_{bi}e_i) = 0$$
, vs. $H_1: E(z_{bi}e_i) \neq 0$

- Test statistic
 - Estimate the model by the efficient GMM with only the z_{ai} set of instruments and obtain the GMM criterion. This will be denoted as J_a
 - Then, estimate the model with the full set of instruments and obtain a separate GMM criterion, denoted as $J_{a,b}$
 - Create a test statistic

$$C = J_{a,b} - J_a \xrightarrow{d} \chi^2_{I - I_a = I_b}$$

• Then, we find a critical value c for a significance level α and reject the null hypothesis if C > c.

Overidentification Test (Endogeneity)

- One example of a subset overidentification test is an endogeneity test.
- Assume a following data generating process

$$y_i = x'_{1i}\beta_1 + x'_{2i}\beta_2 + e_i$$

where x_{1i} is exogenous but x_{2i} may not be

• Then, we want to test

$$H_0: E(x_{2i}e_i) = 0$$
, vs. $H_1: E(x_{2i}e_i) \neq 0$

• Let $z_i = (x_{1i} \quad z_{2i})' \in \mathbb{R}^I$ and assume that $E(z_i e_i) = 0$ '

Overidentification Test (Endogeneity)

- Create a test statistic
 - Estimate the efficient GMM by using (x_{1i}, z_{2i}) to instrument (x_{1i}, x_{2i}) . Then obtain the GMM criterion \tilde{J} .
 - Work with a larger set by using (x_{1i}, x_{2i}, z_{2i}) to instrument (x_{1i}, x_{2i}) . After this, we can get the GMM criterion \widehat{J} .
 - The relevant test statistic is

$$C = \widehat{J} - \widetilde{J} \xrightarrow{d} \chi_{k_2}^2$$

- we find a relevant critical value c for a significance level α and reject H_0 of exogeneity for x_2 if C>c
- We know that x_{1i} and z_{2i} are exogenous. If x_{2i} is also exogenous, then the GMM criterion obtained by using all three should not be too different from GMM criterion from variables x_{1i} and z_{2i}

Conditional Moment Conditions

 Assume that the data generating process and conditional moment condition of interest is

$$y_i = m(x_i, \beta^0) + e_i \quad E(e_i(\beta)|z_i) = 0$$

- One way to address is to use the idea that $E[e_i|z_i] = 0 \implies E[h(z_i)e_i] = 0$ to construct some number of instruments and solve a GMM with unconditional moments
- The other is to construct an optimal instrument

$$R(z_i) = E\left[\frac{\partial e_i(\beta^0)}{\partial \beta} \mid z_i\right] \in \mathbb{R}^k, \sigma^2(z_i) = E[e_i(\beta^0)^2 \mid z_i]$$

Then, the optimal instrument is defined by

$$A_i = -\frac{R(z_i)}{\sigma^2(z_i)} \in \mathbb{R}^k$$

yielding the optimal moment

$$g_i^*(\beta) = A_i e_i(\beta)$$

Motivation

- Let y and $x = (x_11, x_2, ..., x_k)$ be the observable factors.
- Denote α as an unobservable random variable that is incorporated into the data generating process additively.
- Then, we can write $E[y|x,\alpha]$ as

$$E[y|x,\alpha] = x'\beta + \alpha$$

where β is the coefficient of interest

- If α is independent from x, the it is not different from the idiosyncratic error
- ullet If otherwise, then we cannot find a consistent estimator for eta
- \bullet If α is fixed across time for an individual and we have access to panel data, we can address this issue

Framework

 The data now has two dimensions - dimensions across different unit of observation i and across time t. In maths,

$$(y_{it}, x_{it})$$
 where $i = 1, ..., n$, and $t = 1, ..., T$

To be more concrete, we can write the data generating process as

$$y_{it} = x'_{it}\beta + \alpha_i + u_{it}$$

where x_{it} is an observable variable that varies across individuals and time periods. α_i is the **individual (fixed) effect** that is unobservable.

• We can define $v_{it} = \alpha_i + u_{it}$ and rewrite the data generating process as

$$y_{it} = x'_{it}\beta + v_{it}$$

A word of caution

- Depending on whether α_i is correlated with x_{it} or not, we can categorize α_i into the following
 - Random Effects: There is no correlation between the observables and α_i
 - **Fixed Effects**: The correlation between x_{it} and α_i is nonzero.
- Caveat: In case you are looking into some old textbooks, the categorization is slightly different. If α_i is considered to be a parameter to be estimated, the old textbooks refers to this as fixed effects. If α_i is a random variable, it was called a random effect. Note that in the above discussion, α_i is random variable in both fixed and random effects.

Estimation

 The following assumption is required to show whether the panel estimates are consistent or not

Strict Exogeneity

We say that the regressor x_{it} is **strictly exogenous** with respect to u_{it} if

$$E[y_{it}|x_{i1},..,x_{iT},\alpha_i] = E[y_{it}|x_{it},\alpha_i]$$

which boils down to

$$E[u_{it}|x_{i1},..,x_{iT},\alpha_i] = E[u_{it}|x_{it},\alpha_i] = 0$$

The above condition also implies that

$$E[x_{is}u_{it}] = 0 \ (s,t) = 1,..,T$$

Pooled OLS

Given that our model is

$$y_{it} = x'_{it}\beta + \underbrace{\alpha_i + u_{it}}_{=v_{it}}$$

The estimator can be written as

$$\hat{\beta}_{POLS} = \left(\sum_{i=1}^{n} \sum_{t=1}^{T} x_{it} x_{it}'\right)^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} x_{it} y_{it}$$

or

$$\hat{\beta}_{POLS} - \beta = \left(\sum_{i=1}^{n} \sum_{t=1}^{T} x_{it} x'_{it}\right)^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} x_{it} v_{it}$$

• Since I can write $E[x_{it}(\alpha_i + u_{it})]$ instead, it can be seen that unless $cov(x_{it}, \alpha_i) = 0$, the $E[x_{it}\alpha_i]$ term will remain. Thus, POLS estimator is not consistent.

First Difference

• To obtain the first difference estimator, we need to subtract the original data generating process by one lag of y_{it} . Or

$$\Delta y_{it} = \Delta x_{it}' \beta + \Delta u_{it}$$
 ($i = 1, ..., n$ and $t = 2, ..., T$)

- Notice that since α_i is same across t = 1, ..., T (but different for each i), it vanishes.
- By taking an OLS, we can obtain

$$\hat{\beta}_{FD} = \left(\sum_{i=1}^{n} \sum_{t=2}^{T} \Delta x_{it} \Delta x'_{it}\right)^{-1} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta x_{it} \Delta y_{it}$$

First Difference

• We can show that this is a consistent estimator. Write

$$\hat{\beta}_{FD} - \beta = \left(\sum_{i=1}^{n} \sum_{t=2}^{T} \Delta x_{it} \Delta x'_{it}\right)^{-1} \sum_{i=1}^{n} \sum_{t=2}^{T} \Delta x_{it} \Delta u_{it}$$

• We need to show that $E[\Delta x_{it} \Delta u_{it}] = 0$, which can be written

$$E[\Delta x_{it} \Delta u_{it}] = E[(x_{it} - x_{i,t-1})(u_{it} - u_{i,t-1})]$$

$$= E[x_{it} u_{it}] - E[x_{it} u_{i,t-1}] - E[x_{i,t-1} u_{it}] + E[x_{i,t-1} u_{i,t-1}]$$

$$= 0 - 0 - 0 + 0 = 0$$

Therefore, $\hat{\beta}_{FD}$ is consistent.

• Another requirement for this to be defined is that $\left(\sum_{t=2}^{T} \Delta x_{it} \Delta x_{it}'\right)$ should be a full column matrix so that the inverse matrix is defined. This would effectively rule out time-constant regressors.

Within Estimator

Write

$$\bar{y}_i = \frac{1}{T} \sum_{t=1}^T y_{it}$$

 By average over time across all variables, we can get a cross-sectional equation

$$\bar{y}_i = \bar{x}_i'\beta + \alpha_i + \bar{u}_i$$

 So subtract the cross-sectional equation from the original data generating process to get

$$\tilde{y}_{it} = \tilde{x}'_{it}\beta + \tilde{u}_{it}, \quad (i = 1, ..., n, \text{ and } t = 1, ..., T)$$

• The within estimator is obtained by taking an OLS to above equation

$$\hat{\beta}_{WE} = \left(\sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{y}_{it}$$

Within Estimator

To show consistency, rewrite the above as

$$\hat{\beta}_{WE} - \beta = \left(\sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{x}'_{it}\right)^{-1} \sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{x}_{it} \tilde{u}_{it}$$

• $E[\tilde{x}_{it}\tilde{u}_{it}]$ can be written as

$$E[\tilde{x}_{it}\tilde{u}_{it}] = E[x_{it}u_{it}] - E[x_{it}\bar{u}_{i}] - E[\bar{x}_{i}u_{it}] + E[\bar{x}_{i}\bar{u}_{i}]$$

- Since \bar{x}_i , \bar{u}_i incorporates regressors and errors from all time periods, applying strict exogeneity (and strict exogeneity only) reduces the above equation to 0
- In addition, we need that $E\left[\tilde{x}_{it}\tilde{x}'_{it}\right]$ be a full column rank for its inverse to be defined. Time-constant regressors are ruled out.

Least Square Dummy Variables

- Let Dk_i be the dummy variable that equals 1 if i = k and 0 otherwise. The idea is to put a total of N-1 of such dummy variables into the regression
- Therefore, we work with

$$y_{it} = x'_{it}\beta + D1_i\alpha_1 + ... + D(n-1)_i\alpha_{n-1} + u_{it}$$

- Each individual has his/her own constant term.
 - For the *n*'th individual, the constant term is represented by the β_0 , the coefficient on the column vector of x_{it} . For $k(\neq n)$ 'th individual, the intercept term is $\beta_0 + \alpha_k$.

Some Interesting Topics: WE vs FD

- When T = 2, it can be shown that they are numerically equal.
- When $T \geq 3$, they are no longer equal
 - If u_{it} is free from serial correlation (or IID), then taking a first difference would introduce serial correlation. This is because

$$cov(\Delta u_{it}, \Delta u_{i,t-1}) = E[u_{it}u_{it-1}] - E[u_{it}u_{it-2}] - E[u_{it-1}u_{it-1}] + E[u_{it-1}u_{it-2}]$$

= 0 - 0 - var(u_{it-1}) + 0 \neq 0

As such, first difference in this situation suffers from inconsistency problem

• There may be a case when Δu_{it} is serially uncorrelated. For instance, u_{it} could be a random walk process in the sense that

$$u_{it} = u_{it-1} + \eta_{it} \quad (E[\eta_{it}] = 0, E[\eta_{it}\eta_{is}] = 0 (s \neq t), var(u_{it}) = \sigma^2)$$

If we use a first difference estimator here, we get to obtain the most efficient estimator.

Some Interesting Topics: WE=LSDV

- With the knowledge of Kronecker product and bunch of algebra, we can show that these are numerically equal
- I have the details in the recitation note. Derivation took 90 minutes.