Problem 1

Denote $\mathbb{F}_0[x]$ the set of monic polynomials. Show that $\mathbb{F}_0[x]$ plus divisibility form a partially ordered set (poset, for short). That is, it has the following properties for $f, g, h \in \mathbb{F}_0[x]$

- Reflexivity: f|f.
- Antisymmetry: If f|g and g|f then f=g.
- Transitivity: If f|h and h|g then f|g.

If we consider $\mathbb{F}[x]$ instead of $\mathbb{F}_0[x]$, does divisibility still defines a poset?

Problem 2

- Show that if $p = \sum_{i=0}^n a_i x^i \in \mathbb{Z}[x]$ has a rational root $\frac{r}{s} \in \mathbb{Q}$ (with gcd(r, s) = 1), then $r|a_0$ and $s|a_n$.
- If $f \in \mathbb{Z}[x]$ is monic and $\deg(f) \geq 1$, then show that if f has a rational root then the root is necessarily an integer.
- Let us apply these results. Consider $p = x^3 + 6x^2 3x 4$, find all its rational roots (if any).

Problem 3

Poor man's Nullstellensatz. Hilbert's Nullstellensatz is a theorem that goes back to the 1900's and it is one of the fundamental theorems in commutative algebra and algebraic geometry. The theorem states that if $f_1 = \ldots = f_r = 0$ is a system of multivariate polynomials (over \mathbb{C}), then it has no solution if and only if the exist polynomials $\alpha_1, \ldots, \alpha_r$ such that $\sum_{i=1}^r \alpha_i f_i = 1$. We will prove it for the case of univariate polynomials (over \mathbb{C}), i.e., when all polynomials belong to $\mathbb{C}[x]$. Start by proving the following statements:

- If $q, r, f \in \mathbb{C}[x]$ satisfy f = qg + r then $\gcd(f, g) = \gcd(g, f qg) = \gcd(g, r)$
- $gcd(f_1,\ldots,f_s)=gcd(f_1,gcd(f_2,\ldots,f_s)).$
- If g_1, g_2 are $gcd(f_1, \ldots, f_s)$ then $g_1 = cg_2$, with $c \in \mathbb{C}$.
- Show that the Euclidean algorithm works (i.e., that indeed returns gcd(f,g)).

Note that these results then gives you an algorithm to compute $gcd(f_1, \ldots, f_s)$ for any s. Now, we are almost ready, first show the following

• If h is $gcd(f_1, \ldots, f_s)$, there exist polynomials $\alpha_1, \ldots, \alpha_s \in \mathbb{C}[x]$ such that

$$h(x) = \sum_{i=1}^{s} \alpha_i(x) f_i(x) \tag{1}$$

Hint: you can try induction in s.

then, using the previous results show Hilbert's Nullstellensatz for univariate polynomials:

• The polynomials $f_1, \ldots, f_s \in \mathbb{C}[x]$ have no common root if and only if there exist $\alpha_1, \ldots, \alpha_s \in \mathbb{C}[x]$ such that

$$1 = \sum_{i=1}^{s} \alpha_i(x) f_i(x) \tag{2}$$

Problem 4

Three proofs of Lagrange interpolation. We will prove Lagrange interpolation in three different ways. Let $x_0, \ldots, x_n \in \mathbb{C}$ be n+1 distinct numbers and consider the numbers $w_0, \ldots, w_n \in \mathbb{C}$ (not necessarily distinct). Our objective is to prove that there exist a unique polynomial $f(x) \in \mathbb{C}[x]$ of degree at most n satisfying $f(x_i) = w_i$ for all $i = 0, \ldots, n$ (i.e. there exist a unique polynomial function of degree less or equal than n whose graph in \mathbb{R}^2 passes through all the points (x_i, w_i) , $i = 0, \ldots, n$).

- Via Vandermonde matrix: Show that solving the linear system for finding f(x) is equivalent to invert a Vandermonde matrix¹ and has a unique solution if and only if all $x_i's$ are distinct (here you can use what your results from Homework 2).
- Via rank-nullity theorem: Define $T: \mathbb{C}_n[x] \to \mathbb{C}^{n+1}$ (here $\mathbb{C}_n[x] = \{p \in \mathbb{C}[x] | \deg(p) \leq n\}$) by $T(f) = (f(x_0), \dots, f(x_n))$.
 - 1. Prove that T is linear (you can use that $\mathbb{C}_n[x]$ and \mathbb{C}^{n+1} are vector spaces).
 - 2. Show that $\mathbb{C}_n[x]$ is finite dimensional by finding a basis of $\mathbb{C}_n[x]^2$
 - 3. Use rank-nullity theorem to show that T is bijective and conclude the statement of Lagrange interpolation³.

¹See Homework 2 for the definition of Vandermonde matrix.

²Remember that a basis of a finite dimensional vector space V (of dimension s), over \mathbb{C} is a list of vectors v_1, \ldots, v_s such that every element in V can be written as $\sum_{i=1}^s a_i v_i$ with the a_i 's in \mathbb{C} .

³ Remember from Linear Algebra 1 that the rank-nullity theorem for a linear function $T: V \to W$ states that $\dim(\operatorname{Ker}(T)) + \dim(\operatorname{Image}(T)) = \dim(V)$. Naturally, this only works for finite dimensional vector spaces

• Via explicit solution: Consider the following collection of functions:

$$p_k := \prod_{j \neq k} (x - x_k) = (x - x_0)(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n) \qquad k = 0, \dots, n$$
 (3)

using the functions p_k 's construct a explicit solution for the interpolation problem i.e. write a explicit solution for $f(x) \in \mathbb{C}[x]$ of degree at most n satisfying the required properties (**Hint**: what are the values of $p_k(x_j)$ for j = 0, ..., n?)

Problem 5

Consider $\mathbb{R}_n[x]$ defined as in Problem 4 and define the function $T: \mathbb{R}_5[x] \to \mathbb{R}_{10}[x]$ by $T(p(x)) = p(x^2)$.

- \bullet Prove that T is linear.
- Find a basis for Image(T) (**Hint**: you can consider taking the image of a basis of the domain).
- \bullet Show that T is injective.