Research Statement

Robotic Systems with a Guaranteed Quality of Service under Uncertainty

Research Problem

Research Plan

In my first five years as assistant professor, I will carry out research on the following:

- 1) Guaranteed Robotic Systems under Rich Models of Spatiotemporal Uncertainty.
- 2) Guarantees which Improve with the Model.
- 3) Anytime Algorithms for Simultaneous Decision-Making and Verification.

Research Philosophy. I believe in a *practical approach* to robotics research. The benefits of any robotic technique are not fully understood until they have been deployed on hardware to solve a real-world problem. This brings many practical challenges, but is essential for effective dissemination across the robotics community. Moreover, hardware deployments often highlight interesting, undiscovered problems which feed back into the research process.

Dissemination & Collaborations

Dissemination. I have a strong publication record in top venues such as the *IEEE Transactions on Robotics (T-RO)*, the *Journal for Artificial Intelligence Research (JAIR)*, and the *International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS)*. To highlight the current challenges in my field, I ran a half day tutorial on multi-robot planning under uncertainty at AAMAS 2023. Here, I covered the sources of uncertainty which affect multi-robot systems, and discussed how researchers can design decision-making techniques to make robots robust to these effects. This was supported with a survey article published in *Springer's Current Robotics Reports*¹.

Collaborations.

Mention Google scholarship application with Leonardo here.

¹Street, C., Mansouri, M. and Lacerda, B., 2023. Formal Modelling for Multi-Robot Systems Under Uncertainty. Current Robotics Reports, 4(3), pp.55-64.

Summary

My research has produced rich models of uncertainty and decision-making techniques which exploit them. Formal verification and model checking have been at the core of my work but never at the forefront. As outlined in this statement, I will address this by developing novel frameworks for guaranteed quality of service which can be deployed on physical robotic systems for safety and reliability. This research brings numerous challenges, and the inter-disciplinary expertise in the school of computer science will provide an exicting environment to address them in.