

#2

OIPE

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/990,385

DATE: 12/06/2001

TIME: 17:15:54

Input Set : A:\PTO.DC.txt

Output Set: N:\CRF3\12062001\I990385.raw

SEQUENCE LISTING

4 (1) GENERAL INFORMATION:

5 (i) APPLICANT: Koji YANAI et al.

6 (ii) TITLE OF INVENTION: BETA-FRUCTOFURANOSIDASE AND ITS GENE, METHOD OF
7 ISOLATING BETA-FRUCTOFURANOSIDASE GENE, SYSTEM FOR

PRODUCING

8 BETA-FRUCTOFURANOSIDASE, AND BETA-FRUCTOFURANOSIDASE

VARIANT

9 (iii) NUMBER OF SEQUENCES: 35

10 (iv) CORRESPONDENCE ADDRESS:

11 (A) ADDRESSEE: Wenderoth, Lind & Ponack, L.L.P.

12 (B) STREET: 2033 K Street, N.W., Suite 800

13 (C) CITY: Washington

14 (D) STATE: D.C.

15 (E) COUNTRY: U.S.A.

16 (F) ZIP: 20006

17 (v) COMPUTER READABLE FORM:

18 (A) MEDIUM TYPE: Diskette, 3.5 inch, 1.44 mb

19 (B) COMPUTER: IBM Compatible

20 (C) OPERATING SYSTEM: MS-DOS

21 (D) SOFTWARE: Wordperfect 5.1

22 (vi) CURRENT APPLICATION DATA:

23 (A) APPLICATION NUMBER: US/09/990,385

24 (B) FILING DATE: 10-Sep-1998

25 (vii) PRIOR APPLICATION DATA:

26 (A) APPLICATION NUMBER: 09/142,623

27 (B) FILING DATE: September 10, 1998

28 (viii) ATTORNEY/AGENT INFORMATION:

29 (A) NAME: Lee Cheng

30 (B) REGISTRATION NUMBER: 40,949

31 (C) REFERENCE/DOCKET NUMBER: 2001-1611

32 (ix) TELECOMMUNICATION INFORMATION:

33 (A) TELEPHONE: 202-721-8200

34 (B) TELEFAX: 202-721-8250

35 (2) INFORMATION FOR SEQ ID NO: 1:

36 (i) SEQUENCE CHARACTERISTICS:

37 (A) LENGTH: 635 amino acid residues

38 (B) TYPE: amino acid

39 (C) STRANDEDNESS: Not relevant

W--> 40 (D) TOPOLOGY: Not relevant

41 (ii) MOLECULE TYPE: protein

42 (vi) ORIGINAL SOURCE:

43 (A) ORGANISM: Microorganism: Aspergillus niger ACE-2-1
44 (ATCC 20611)

45 (ix) FEATURE:

46 (A) NAME/KEY: mat peptide

47 (B) LOCATION: 1..635

48 (C) IDENTIFICATION METHOD: E

49 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/990,385

DATE: 12/06/2001
TIME: 17:15:54

Input Set : A:\PTO.DC.txt
Output Set: N:\CRF3\12062001\I990385.raw

50 Ser Tyr His Leu Asp Thr Thr Ala Pro Pro Pro Thr Asn Leu Ser Thr
 51 1 5 10 15
 52 Leu Pro Asn Asn Thr Leu Phe His Val Trp Arg Pro Arg Ala His Ile
 53 20 25 30
 54 Leu Pro Ala Glu Gly Gln Ile Gly Asp Pro Cys Ala His Tyr Thr Asp
 55 35 40 45
 56 Pro Ser Thr Gly Leu Phe His Val Gly Phe Leu His Asp Gly Asp Gly
 57 50 55 60
 58 Ile Ala Gly Ala Thr Thr Ala Asn Leu Ala Thr Tyr Thr Asp Thr Ser
 59 65 70 75 80
 60 Asp Asn Gly Ser Phe Leu Ile Gln Pro Gly Gly Lys Asn Asp Pro Val
 61 85 90 95
 62 Ala Val Phe Asp Gly Ala Val Ile Pro Val Gly Val Asn Asn Thr Pro
 63 100 105 110
 64 Thr Leu Leu Tyr Thr Ser Val Ser Phe Leu Pro Ile His Trp Ser Ile
 65 115 120 125
 66 Pro Tyr Thr Arg Gly Ser Glu Thr Gln Ser Leu Ala Val Ala Arg Asp
 67 130 135 140
 68 Gly Gly Arg Arg Phe Asp Lys Leu Asp Gln Gly Pro Val Ile Ala Asp
 69 145 150 155 160
 70 His Pro Phe Ala Val Asp Val Thr Ala Phe Arg Asp Pro Phe Val Phe
 71 165 170 175
 72 Arg Ser Ala Lys Leu Asp Val Leu Leu Ser Leu Asp Glu Glu Val Ala
 73 180 185 190
 74 Arg Asn Glu Thr Ala Val Gln Gln Ala Val Asp Gly Trp Thr Glu Lys
 75 195 200 205
 76 Asn Ala Pro Trp Tyr Val Ala Val Ser Gly Gly Val His Gly Val Gly
 77 210 215 220
 78 Pro Ala Gln Phe Leu Tyr Arg Gln Asn Gly Gly Asn Ala Ser Glu Phe
 79 225 230 235 240
 80 Gln Tyr Trp Glu Tyr Leu Gly Glu Trp Trp Gln Glu Ala Thr Asn Ser
 81 245 250 255
 82 Ser Trp Gly Asp Glu Gly Thr Trp Ala Gly Arg Trp Gly Phe Asn Phe
 83 260 265 270
 84 Glu Thr Gly Asn Val Leu Phe Leu Thr Glu Glu Gly His Asp Pro Gln
 85 275 280 285
 86 Thr Gly Glu Val Phe Val Thr Leu Gly Thr Glu Gly Ser Gly Leu Pro
 87 290 295 300
 88 Ile Val Pro Gln Val Ser Ser Ile His Asp Met Leu Trp Ala Ala Gly
 89 305 310 315 320
 90 Glu Val Gly Val Gly Ser Glu Gln Glu Gly Ala Lys Val Glu Phe Ser
 91 325 330 335
 92 Pro Ser Met Ala Gly Phe Leu Asp Trp Gly Phe Ser Ala Tyr Ala Ala
 93 340 345 350
 94 Ala Gly Lys Val Leu Pro Ala Ser Ser Ala Val Ser Lys Thr Ser Gly
 95 355 360 365
 96 Val Glu Val Asp Arg Tyr Val Ser Phe Val Trp Leu Thr Gly Asp Gln
 97 370 375 380
 98 Tyr Glu Gln Ala Asp Gly Phe Pro Thr Ala Gln Gln Gly Trp Thr Gly

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/990,385

DATE: 12/06/2001
TIME: 17:15:54

Input Set : A:\PTO.DC.txt
Output Set: N:\CRF3\12062001\I990385.raw

99	385	390	395	400
100	Ser Leu Leu Leu Pro Arg Glu Leu Lys Val Gln Thr Val Glu Asn Val			
101	405	410	415	
102	Val Asp Asn Glu Leu Val Arg Glu Glu Gly Val Ser Trp Val Val Gly			
103	420	425	430	
104	Glu Ser Asp Asn Gln Thr Ala Arg Leu Arg Thr Leu Gly Ile Thr Ile			
105	435	440	445	
106	Ala Arg Glu Thr Lys Ala Ala Leu Leu Ala Asn Gly Ser Val Thr Ala			
107	450	455	460	
108	Glu Glu Asp Arg Thr Leu Gln Thr Ala Ala Val Val Pro Phe Ala Gln			
109	465	470	475	480
110	Ser Pro Ser Ser Lys Phe Phe Val Leu Thr Ala Gln Leu Glu Phe Pro			
111	485	490	495	
112	Ala Ser Ala Arg Ser Ser Pro Leu Gln Ser Gly Phe Glu Ile Leu Ala			
113	500	505	510	
114	Ser Glu Leu Glu Arg Thr Ala Ile Tyr Tyr Gln Phe Ser Asn Glu Ser			
115	515	520	525	
116	Leu Val Val Asp Arg Ser Gln Thr Ser Ala Ala Pro Thr Asn Pro			
117	530	535	540	
118	Gly Leu Asp Ser Phe Thr Glu Ser Gly Lys Leu Arg Leu Phe Asp Val			
119	545	550	555	560
120	Ile Glu Asn Gly Gln Glu Gln Val Glu Thr Leu Asp Leu Thr Val Val			
121	565	570	575	
122	Val Asp Asn Ala Val Val Glu Val Tyr Ala Asn Gly Arg Phe Ala Leu			
123	580	585	590	
124	Ser Thr Trp Ala Arg Ser Trp Tyr Asp Asn Ser Thr Gln Ile Arg Phe			
125	595	600	605	
126	Phe His Asn Gly Glu Gly Glu Val Gln Phe Arg Asn Val Ser Val Ser			
127	610	615	620	
128	Glu Gly Leu Tyr Asn Ala Trp Pro Glu Arg Asn			
129	625	630	635	
132	(2) INFORMATION FOR SEQ ID NO: 2:			
133	(i) SEQUENCE CHARACTERISTICS:			
134	(A) LENGTH: 1905 base pairs			
135	(B) TYPE: Nucleic acid			
136	(C) STRANDEDNESS: Double stranded			
137	(D) TOPOLOGY: Linear			
138	(ii) MOLECULE TYPE: Genomic DNA			
139	(vi) ORIGINAL SOURCE:			
140	(A) ORGANISM: Microorganism: Aspergillus niger ACE-2-1			
141	(ATCC 20611)			
142	(ix) FEATURE:			
143	(A) NAME/KEY: mat peptide			
144	(B) LOCATION: 1 .. 1905			
145	(C) IDENTIFICATION METHOD: E			
146	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:			
147	TCATACCACC TGGACACCAC GGCCCCGCCG CCGACCAACC TCAGCACCT CCCCAACAAC	60		
148	ACCTCTTCC ACGTGTGGCG GCCGCGCGC CACATCCTGC CCGCCGAGGG CCAGATCGGC	120		
149	GACCCCTGCG CGCACTACAC CGACCCATCC ACCGGCCTCT TCCACGTGGG GTTCCTGCAC	180		

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/990,385

DATE: 12/06/2001
TIME: 17:15:54

Input Set : A:\PTO.DC.txt
Output Set: N:\CRF3\12062001\I990385.raw

150	GACGGGGACG	GCATCGCGG	CGCCACCACG	GCCAACCTGG	CCACCTACAC	CGATAACCTCC	240
151	GATAACGGGA	GCTTCCTGAT	CCAGCCGGG	GGGAAGAACG	ACCCCGTCGC	CGTGTTCGAC	300
152	GGCGCCGTCA	TCCCCGTCGG	CGTCAACAAC	ACCCCCCACCT	TACTCTACAC	CTCCGTCTCC	360
153	TTCCTGCCA	TCCACTGGTC	CATCCCCTAC	ACCCGCGGA	GCGAGACGCA	GTCGTTGGCC	420
154	GTCGCGCGC	ACGGCGGCCG	CCGCTTCGAC	AAGCTCGACC	AGGGCCCCGT	CATCGCCGAC	480
155	CACCCCTTCG	CCGTCGACGT	CACCGCCTTC	CGCGATCCGT	TTGTCTTCCG	CAGTGCCAAG	540
156	TTGGATGTG	TGCTGTCGTT	GGATGAGGAG	GTGGCGCGGA	ATGAGACGGC	CGTGCAGCAG	600
157	GCCGTCGATG	GCTGGACCGA	GAAGAACGCC	CCCTGGTATG	TCGGCGTCTC	TGGCGGGGTG	660
158	CACGGCGTCG	GGCCCGCGCA	GTTCCTCTAC	CGCCAGAACG	GCGGGAACGC	TTCCGAGTTC	720
159	CAGTACTGGG	AGTACCTCGG	GGAGTGGTGG	CAGGAGGCGA	CCAACTCCAG	CTGGGGCGAC	780
160	GAGGGCACCT	GGGCCGGGCG	CTGGGGGTTC	AACTTCGAGA	CGGGGAATGT	GCTCTTCCTC	840
161	ACCGAGGAGG	GCCATGACCC	CCAGACGGGC	GAGGTGTTCG	TCACCCCTCGG	CACGGAGGGG	900
162	TCTGGCCTGC	CAATCGTGCC	GCAGGTCTCC	AGTATCCACG	ATATGCTGTG	GGCGGCGGGT	960
163	GAGGTCGGG	TGGGCACTGA	GCAGGAGGGT	GCCAAGGTCG	AGTTCTCCCC	CTCCATGGCC	1020
164	GGGTTCTGG	ACTGGGGGTT	CAGGCCTAC	GCTGCGGCCG	GCAAGGTGCT	GCCGGCCAGC	1080
165	TCGGCGGTG	CGAAGACCAG	CGGCGTGGAG	GTGGATCGGT	ATGTCTCGTT	CGTCTGGTTG	1140
166	ACGGGCGACC	AGTACGAGCA	GGCAGACGGG	TTCCCCACGG	CCCAGCAGGG	GTGGACGGGG	1200
167	TCGCTGCTGC	TGCCCGCGA	GCTGAAGGTG	CAGACGGTGG	AGAACGTCGT	CGACAACGAG	1260
168	CTGGTGCAGC	AGGAGGGCGT	GTCGTGGGTG	GTGGGGGAGT	CGGACAACCA	GACGGCCAGG	1320
169	CTGCGCACCG	TGGGGATCAC	GATGCCCGG	GAGACCAAGG	CGGCCCTGCT	GGCCAACGGC	1380
170	TCGGTGACCG	CGGAGGAGGA	CCGCACGCTG	CAGACGGCGG	CCGTCGTGCC	GTTCGCGCAA	1440
171	TCGCGAGCT	CCAAGTTCTT	CGTGCTGACG	GCCCAGCTGG	AGTTCCCCGC	GAGCGCGCGC	1500
172	TCGTCCCCGC	TCCAGTCCGG	GTTCGAAATC	CTGGCGTCGG	AGCTGGAGCG	CACGGCCATC	1560
173	TACTACCACT	TCAGCAACGA	GTCGCTGGTC	GTCGACCGCA	GCCAGACTAG	TGCGGCGGC	1620
174	CCCACGAACC	CCGGGCTGGA	TAGCTTTACT	GAGTCCGGCA	AGTTGCGGTT	GTTCGACGTG	1680
175	ATCGAGAACG	GCCAGGAGCA	GGTCGAGACG	TTGGATCTCA	CTGTCGTCTG	GGATAACGCG	1740
176	GTTGTCGAGG	TGTATGCCA	CGGGCGCTTT	CGCTTGAGCA	CCTGGGCGAG	ATCGTGGTAC	1800
177	GACAACCTCA	CCCAGATCCG	CTTCTTCCAC	AACGGCGAGG	GCGAGGTGCA	GTTCAGGAAT	1860
178	GTCTCCGTG	CGGAGGGGCT	CTATAACGCC	TGGCGGGAGA	GAAAT		1905

180 (2) INFORMATION FOR SEQ ID NO: 3:

181 (i) SEQUENCE CHARACTERISTICS:

182 (A) LENGTH: 20 amino acid residues

183 (B) TYPE: Amino acid

184 (C) STRANDEDNESS: Not relevant

185 (D) TOPOLOGY: Linear

186 (ii) MOLECULE TYPE: Peptide

187 (v) FRAGMENT TYPE: internal fragment

188 (vi) ORIGINAL SOURCE:

189 (A) ORGANISM: Microorganism: Aspergillus niger ACE-2-1
(ATCC 20611)

191 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

192 Leu Asp Gln Gly Pro Val Ile Ala Asp His Pro Phe Ala Val Asp Val

193 1 5 10 15

194 Thr Ala Phe Arg

195 20

197 (2) INFORMATION FOR SEQ ID NO: 4:

198 (i) SEQUENCE CHARACTERISTICS:

199 (A) LENGTH: 20 amino acid residues

200 (B) TYPE: Amino acid

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/990,385

DATE: 12/06/2001
TIME: 17:15:54

Input Set : A:\PTO.DC.txt
Output Set: N:\CRF3\12062001\I990385.raw

201 (C) STRANDEDNESS: Not relevant
202 (D) TOPOLOGY: Linear
203 (ii) MOLECULE TYPE: Peptide
204 (v) FRAGMENT TYPE: internal fragment
205 (vi) ORIGINAL SOURCE:
206 (A) ORGANISM: Microorganism: Aspergillus niger ACE-2-1
207 (ATCC 20611)
208 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:
209 Val Glu Phe Ser Pro Ser Met Ala Gly Phe Leu Asp Trp Gly Phe Ser
210 1 5 10 15
211 Ala Tyr Ala Ala
212 20
214 (2) INFORMATION FOR SEQ ID NO: 5:
215 (i) SEQUENCE CHARACTERISTICS:
216 (A) LENGTH: 20 amino acid residues
217 (B) TYPE: Amino acid
218 (C) STRANDEDNESS: Not relevant
219 (D) TOPOLOGY: Linear
220 (ii) MOLECULE TYPE: Peptide
221 (v) FRAGMENT TYPE: internal fragment
222 (vi) ORIGINAL SOURCE:
223 (A) ORGANISM: Microorganism: Aspergillus niger ACE-2-1
224 (ATCC 20611)
225 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
226 Val Gln Thr Val Glu Asn Val Val Asp Asn Glu Leu Val Arg Glu Glu
227 1 5 10 15
228 Gly Val Ser Trp
229 20
231 (2) INFORMATION FOR SEQ ID NO: 6:
232 (i) SEQUENCE CHARACTERISTICS:
233 (A) LENGTH: 20 amino acid residues
234 (B) TYPE: Amino acid
235 (C) STRANDEDNESS: Not relevant
236 (D) TOPOLOGY: Linear
237 (ii) MOLECULE TYPE: Peptide
238 (v) FRAGMENT TYPE: internal fragment
239 (vi) ORIGINAL SOURCE:
240 (A) ORGANISM: Microorganism: Aspergillus niger ACE-2-1
241 (ATCC 20611)
242 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:
W--> 243 Ala Ala Leu Leu Ala Xaa Gly Ser Val Thr Ala Glu Glu Asp Arg Thr
244 1 5 10 15
245 Leu Gln Thr Ala
246 20
248 (2) INFORMATION FOR SEQ ID NO: 7:
249 (i) SEQUENCE CHARACTERISTICS:
250 (A) LENGTH: 6 amino acid residues
251 (B) TYPE: Amino acid
252 (C) STRANDEDNESS: Not relevant

VERIFICATION SUMMARY
PATENT APPLICATION: US/09/990,385

DATE: 12/06/2001
TIME: 17:15:55

Input Set : A:\PTO.DC.txt
Output Set: N:\CRF3\12062001\I990385.raw

L:23 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]
L:24 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]
L:40 M:246 W: Invalid value of Alpha Sequence Header Field, [TOPOLOGY:], SeqNo=1
L:243 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:6
L:269 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=8
L:279 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=9
L:356 M:246 W: Invalid value of Alpha Sequence Header Field, [TOPOLOGY:], SeqNo=11
L:487 M:246 W: Invalid value of Alpha Sequence Header Field, [TOPOLOGY:], SeqNo=13
L:621 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=15
L:631 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=16
L:641 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=17
L:651 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=18
L:661 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=19
L:671 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=20
L:681 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=21
L:691 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=22
L:701 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=23
L:711 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=24
L:721 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=25
L:731 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=26
L:741 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=27
L:751 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=28
L:761 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=29
L:771 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=30
L:781 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=31
L:791 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=32
L:801 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=33
L:811 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=34
L:821 M:246 W: Invalid value of Alpha Sequence Header Field, [MOLECULE TYPE:], SeqNo=35