Rank-65831 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_0^2 X_2 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65831

General information

Number of lines	10
Number of points	13
Number of singular points	1
Number of Eckardt points	6
Number of double points	0
Number of single points	6
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{10}
Type of lines on points	$6, 3^6, 1^6$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 10 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{6} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{6} = \mathbf{Pl}(0,0,0,1,0)_{9}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{2} = \mathbf{Pl}(1,0,0,0,1,0)_{10}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{30} = \mathbf{Pl}(0,0,0,1,0,0)_{5}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \mathbf{Pl}(1,0,0,1,0,0)_{6}$$

$$\ell_{5} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \mathbf{Pl}(0,0,0,1,1,0)_{15}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{16} = \mathbf{Pl}(1,0,0,1,1,0)_{16}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0,1,0,0,1,0)_{11}$$

$$\ell_{8} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0,1,0,1,0,0)_{7}$$

$$\ell_{9} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \mathbf{Pl}(0,1,0,1,1,0)_{17}$$

Rank of lines: (0, 6, 2, 30, 14, 13, 16, 20, 33, 27)

Rank of points on Klein quadric: (0, 9, 10, 5, 6, 15, 16, 11, 7, 17)

Eckardt Points

The surface has 6 Eckardt points:

 $0: P_0 = \mathbf{P}(1, 0, 0, 0) = \mathbf{P}(1, 0, 0, 0), T = 2$

 $1: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0), T = 2$

 $2: P_5 = \mathbf{P}(1, 1, 0, 0) = \mathbf{P}(1, 1, 0, 0), T = 2$

 $3: P_9 = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1), T = 2$

 $4: P_{10} = \mathbf{P}(0, 1, 0, 1) = \mathbf{P}(0, 1, 0, 1), T = 2$

 $5: P_{11} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1). T = 2$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

 $0: P_4 = (1, 1, 1, 1)$ lies on line ℓ_9

1: $P_6 = (1, 0, 1, 0)$ lies on line ℓ_7

2: $P_7 = (0, 1, 1, 0)$ lies on line ℓ_8

3: $P_8 = (1, 1, 1, 0)$ lies on line ℓ_9

4: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_7

5: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_8

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

	0123456789
0	0111111000
1	1011111111
2	1101111000
3	$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 &$
4	11111011000
5	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1$
6	1111110000
7	0101010011
8	0101010101
9	0101010110

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_0	P_0	P_1	P_1	P_5	P_5

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8	ℓ_9
in point	P_0	P_0	P_3	P_9	P_3	P_9	P_3	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_0	P_0	P_{10}	P_{11}	P_{11}	P_{10}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_7	ℓ_8	ℓ_9
in point	P_1	P_3	P_{10}	P_1	P_3	P_{10}	P_3	P_3	P_3

 ${\bf Line~4~intersects}$

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_1	P_9	P_{11}	P_1	P_{11}	P_9

 ${\bf Line~5~intersects}$

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6	ℓ_7	ℓ_8	ℓ_9
in point	P_5	P_3	P_{11}	P_3	P_{11}	P_5	P_3	P_3	P_3

 ${\bf Line~6~intersects}$

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5
in point	P_5	P_9	P_{10}	P_{10}	P_9	P_5

Line 7 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_8	ℓ_9
in point	P_3	P_3	P_3	P_3	P_3

Line 8 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_7	ℓ_9
in point	P_3	P_3	P_3	P_3	P_3

Line 9 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_7	ℓ_8
in point	P_3	P_3	P_3	P_3	P_3

The surface has 13 points: The points on the surface are:

$0 \cdot D = (1 \ 0 \ 0 \ 0)$	F. D. (1.0.1.0)	10 · D (1 1 0 1)
$0: P_0 = (1,0,0,0)$	$5: P_6 = (1,0,1,0)$	$10: P_{11} = (1, 1, 0, 1)$
$1: P_1 = (0, 1, 0, 0)$	$6: P_7 = (0, 1, 1, 0)$	$11: P_{13} = (1,0,1,1)$
$2: P_3 = (0,0,0,1)$	$7: P_8 = (1, 1, 1, 0)$	$12: P_{14} = (0, 1, 1, 1)$
$3: P_4 = (1, 1, 1, 1)$	$8: P_9 = (1,0,0,1)$	
$4: P_5 = (1, 1, 0, 0)$	$9: P_{10} = (0, 1, 0, 1)$	