

# DEVICE PERFORMANCE SPECIFICATION

Revision 3.0 MTD/PS-0307

March 19, 2007



## KODAK KAI-2093 IMAGE SENSOR

1920 (H) X 1080 (V) INTERLINE CCD IMAGE SENSOR

**Kodak**  
Image Sensor Solutions

## TABLE OF CONTENTS

|                                                           |           |
|-----------------------------------------------------------|-----------|
| <b>Summary Specification .....</b>                        | <b>4</b>  |
| Description .....                                         | 4         |
| Features.....                                             | 4         |
| Applications .....                                        | 4         |
| <b>Ordering Information .....</b>                         | <b>5</b>  |
| <b>Device Description .....</b>                           | <b>6</b>  |
| Architecture .....                                        | 6         |
| Pin Description and Physical Orientation.....             | 7         |
| <b>Imaging Performance .....</b>                          | <b>8</b>  |
| Typical Operational Conditions .....                      | 8         |
| Optical Specifications.....                               | 8         |
| CCD Specifications .....                                  | 8         |
| Output Amplifier Specifications.....                      | 9         |
| General Specifications .....                              | 9         |
| <b>Typical Performance Curves.....</b>                    | <b>10</b> |
| Monochrome Quantum Efficiency .....                       | 10        |
| Monochrome with Microlens Angular Quantum Efficiency..... | 10        |
| Color with Lenslet Quantum Efficiency.....                | 11        |
| Frame Rates .....                                         | 12        |
| <b>Defect Definitions.....</b>                            | <b>13</b> |
| Operational Conditions.....                               | 13        |
| Specifications .....                                      | 13        |
| Defect Zones.....                                         | 13        |
| Defect Classes.....                                       | 13        |
| <b>Operation.....</b>                                     | <b>14</b> |
| Absolute Maximum Ratings .....                            | 14        |
| DC Bias Operating Conditions .....                        | 14        |
| AC Operating Conditions.....                              | 14        |
| Clock Capacitance.....                                    | 15        |
| Operation Notes .....                                     | 16        |
| Progressive and Interlaced Timing.....                    | 16        |
| Single Output Mode .....                                  | 16        |
| Dual Output Mode.....                                     | 16        |
| Exposure Control.....                                     | 17        |
| Dark References.....                                      | 17        |
| Connections to the Image Sensor.....                      | 17        |
| <b>Timing.....</b>                                        | <b>18</b> |
| Requirements and Characteristics .....                    | 18        |
| Frame Timing .....                                        | 19        |
| Frame Timing – Progressive Scan.....                      | 19        |
| Vertical Clock Edge Alignment .....                       | 20        |
| Frame Timing – Field Integration Mode .....               | 21        |
| Frame Timing – Frame Integration Mode .....               | 22        |
| Line Timing .....                                         | 23        |
| Electronic Shutter Timing .....                           | 24        |
| <b>Storage and Handling .....</b>                         | <b>25</b> |
| Storage Conditions .....                                  | 25        |
| ESD .....                                                 | 25        |

|                                                        |           |
|--------------------------------------------------------|-----------|
| Cover Glass Care and Cleanliness .....                 | 25        |
| Environmental Exposure.....                            | 25        |
| Soldering Recommendations .....                        | 25        |
| <b>Mechanical Drawings.....</b>                        | <b>26</b> |
| Completed Assembly .....                               | 26        |
| Cover Glass.....                                       | 28        |
| Clear Cover Glass .....                                | 28        |
| Quartz Cover Glass with AR Coatings.....               | 29        |
| Glass Transmission.....                                | 30        |
| <b>Quality Assurance and Reliability .....</b>         | <b>31</b> |
| Quality Strategy .....                                 | 31        |
| Replacement .....                                      | 31        |
| Liability of the Supplier .....                        | 31        |
| Liability of the Customer.....                         | 31        |
| Reliability .....                                      | 31        |
| Test Data Retention.....                               | 31        |
| Mechanical.....                                        | 31        |
| <b>Warning: Life Support Applications Policy .....</b> | <b>31</b> |
| <b>Revision Changes.....</b>                           | <b>32</b> |

## TABLE OF FIGURES

|                                                                           |    |
|---------------------------------------------------------------------------|----|
| Figure 1: Sensor Architecture .....                                       | 6  |
| Figure 2: Package Pin Designations - Top View .....                       | 7  |
| Figure 4: Quantum Efficiency Spectrum for Monochrome Sensors.....         | 10 |
| Figure 5: Angular Dependence of Quantum Efficiency .....                  | 10 |
| Figure 6: Quantum Efficiency Spectrum for Color Filter Array Sensors..... | 11 |
| Figure 7: Color Filter Array Pattern .....                                | 11 |
| Figure 3: Progressive Frame Rate vs. HCCD Clock Frequency.....            | 12 |
| Figure 8: Defect Zones.....                                               | 13 |
| Figure 9: Progressive Frame Timing .....                                  | 19 |
| Figure 10: Ideal Vertical Clock Edge Position.....                        | 20 |
| Figure 11: Interlaced Frame Timing - Field Integration Mode .....         | 21 |
| Figure 12: Interlaced Frame Timing - Frame Integration Mode.....          | 22 |
| Figure 13: Line Timing .....                                              | 23 |
| Figure 14: Electronic Shutter Timing Diagram.....                         | 24 |
| Figure 15: Completed Assembly (1 of 2) .....                              | 26 |
| Figure 16: Completed Assembly (2 of 2) .....                              | 27 |
| Figure 17: Clear Cover Glass Drawing.....                                 | 28 |
| Figure 18: Quartz Cover Glass with AR Coating Drawing.....                | 29 |
| Figure 19: Cover Glass Transmission .....                                 | 30 |

## SUMMARY SPECIFICATION

### KODAK KAI-2093 IMAGE SENSOR

#### 1920 (H) X 1080 (V) PROGRESSIVE SCAN INTERLINE CCD IMAGE SENSOR

### DESCRIPTION

The KODAK KAI-2093 Image Sensor is a high-performance multi-megapixel image sensor designed for a wide range of medical imaging and machine vision applications.

The 7.4  $\mu\text{m}$  square pixels with microlenses provide high sensitivity and the large full well capacity results in high dynamic range. The split horizontal register offers a choice of single or dual output allowing either 15 or 30 frame per second (fps). The architecture allows for either progressive scan or interlaced readout. The imager features 5V clocking to facilitate camera design. The vertical overflow drain structure provides antiblooming protection, and enables electronic shuttering for precise exposure control.



### FEATURES

- Progressive scan (non-interlaced)
- HCCD and output amplifier capable of 40 MHz operation
- 5 V HCCD clocking
- Single or dual video output operation
- 28 light shielded reference columns per output
- Only 2 vertical CCD clocks and 2 horizontal CCD clocks
- Electronic shutter
- Low Dark Current
- Antiblooming protection

### APPLICATIONS

- Industrial Imaging
- Scientific Imaging

| Parameter                                                     | Typical Value                                              |
|---------------------------------------------------------------|------------------------------------------------------------|
| Architecture                                                  | Interline CCD, Progressive Scan or Interlaced Readout      |
| Total Number of Pixels                                        | 1984 (H) x 1092 (V)                                        |
| Number of Effective Pixels                                    | 1928 (H) x 1084(V)                                         |
| Number of Active Pixels                                       | 1920 (H) x 1080 (V)                                        |
| Pixel Size                                                    | 7.4 $\mu\text{m}$ (H) x 7.4 $\mu\text{m}$ (V)              |
| Active Image Size                                             | 14.208 mm (H) x 7.992 mm (V)<br>16.3 mm (diagonal)         |
| Aspect Ratio                                                  | 16:9                                                       |
| Number of Outputs                                             | 1 or 2                                                     |
| Saturation Signal                                             | 40,000 electrons                                           |
| Output Sensitivity                                            | 14 $\mu\text{V}/\text{electron}$                           |
| Quantum Efficiency KAI-2093-ABA (490 nm)                      | 40%                                                        |
| Quantum Efficiency KAI-2093-CBA R(620 nm), G(540nm), B(460nm) | 37%, 34%, 30%                                              |
| Total Noise                                                   | 40 electrons rms                                           |
| Dark Current [Typical]                                        | <0.5 nA/cm <sup>2</sup>                                    |
| Dynamic Range                                                 | 60 dB                                                      |
| Blooming Suppression                                          | 100 X                                                      |
| Smear                                                         | <0.03%                                                     |
| Image Lag                                                     | <10 electrons                                              |
| Frame Rate                                                    |                                                            |
| Single Output, 20 MHz                                         | 9 fps                                                      |
| Single Output, 35 MHz                                         | 15 fps                                                     |
| Dual Outputs, 20 MHz                                          | 17 fps                                                     |
| Dual Outputs, 37 MHz                                          | 30 fps                                                     |
| Maximum Data Rate                                             | 40 MHz/Channel (2 channels)                                |
| Package                                                       | 32 pin cerDIP                                              |
| Cover Glass                                                   | Clear Glass or<br>Quartz Glass with AR Coating,<br>2 sides |

Parameters above are specified at T = 40° C unless otherwise noted.

## ORDERING INFORMATION

| Catalog Number | Product Name              | Description                                                                                                                         | Marking Code                |
|----------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 2H4736         | KAI- 2093-AAA-CP-AE       | Monochrome, No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Engineering Sample                    | KAI-2093<br>Serial Number   |
| 2H4617         | KAI- 2093-AAA-CP-BA       | Monochrome, No Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Standard Grade                        |                             |
| 2H4728         | KAI- 2093-ABA-CB-AE       | Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Engineering Sample                 |                             |
| 4H0174         | KAI- 2093-ABA-CB-B1       | Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Grade 1                            |                             |
| 2H4725         | KAI- 2093-ABA-CB-B2       | Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Grade 2                            |                             |
| 2H4923         | KAI- 2093-ABA-CK-AE       | Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Quartz Cover Glass with AR coating (both sides), Engineering Sample | KAI-2093M<br>Serial Number  |
| 2H4920         | KAI- 2093-ABA-CK-BA       | Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Quartz Cover Glass with AR coating (both sides), Standard Grade     |                             |
| 2H4618         | KAI- 2093-ABA-CP-AE       | Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Engineering Sample           |                             |
| 2H4616         | KAI- 2093-ABA-CP-BA       | Monochrome, Telecentric Microlens, CERDIP Package (sidebrazed), Taped Clear Cover Glass (no coatings), Standard Grade               |                             |
| 4H0137         | KAI- 2093-CBA-CB-AE       | Color (Bayer RGB), Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Engineering Sample          | KAI-2093CM<br>Serial Number |
| 4H0136         | KAI- 2093-CBA-CB-BA       | Color (Bayer RGB), Telecentric Microlens, CERDIP Package (sidebrazed), Clear Cover Glass (no coatings), Standard Grade              |                             |
| 4H0705         | KEK-4H0705-KAI-2093-10-40 | Evaluation Board, 10 Bit, 40 MHz [Complete Kit]                                                                                     | n/a                         |
| 4H0706         | KEK-4H0706-KAI-2093-12-20 | Evaluation Board, 12 Bit, 20 MHz [Complete Kit]                                                                                     | n/a                         |

Please see the User's Manual (MTD/PS-0715) for information on the Evaluation Kit for this part.

Please see ISS Application Note "Product Naming Convention" (MTD/PS-0892) for a full description of naming convention used for KODAK image sensors.

Address all inquiries and purchase orders to:

Image Sensor Solutions  
Eastman Kodak Company  
Rochester, New York 14650-2010

Phone: (585) 722-4385  
Fax: (585) 477-4947  
E-mail: [imagers@kodak.com](mailto:imagers@kodak.com)

Kodak reserves the right to change any information contained herein without notice. All information furnished by Kodak is believed to be accurate.

## DEVICE DESCRIPTION

### ARCHITECTURE



Figure 1: Sensor Architecture

There are 4 light shielded rows followed by 1084 photoactive rows and finally 4 more light shielded rows. The first and last 2 photoactive rows are buffer rows giving a total of 1080 lines of image data.

In the single output mode all pixels are clocked out of the Video L output in the lower left corner of the sensor. The first four empty pixels of each line do not receive charge from the vertical shift register. The next 28 pixels receive charge from the left light shielded edge followed by 1928 photoactive pixels and finally 28 more light shielded pixels from the right edge of the sensor. The first and last 4 photoactive pixels are buffer pixels giving a total of 1920 pixels of image data.

In the dual output mode the clocking of the right half of the horizontal CCD is reversed. The left half of the image is clocked out Video L and the right half of the image is clocked out Video R. Each row consists of 4 empty pixels followed by 28 light shielded pixels followed by 960 photoactive pixels. When reconstructing the image, data from Video R will have to be reversed in a line buffer and appended to the Video L data.

## PIN DESCRIPTION AND PHYSICAL ORIENTATION



Figure 2: Package Pin Designations - Top View

| Pin | Label |
|-----|-------|
| 1   | φR    |
| 2   | φH2BL |
| 3   | φH1BL |
| 4   | φH1SL |
| 5   | φH2SL |
| 6   | GND   |
| 7   | OG    |
| 8   | RD    |
| 9   | RD    |
| 10  | OG    |
| 11  | GND   |
| 12  | φH2SR |
| 13  | φH1SR |
| 14  | φH1BR |
| 15  | φH2BR |
| 16  | φR    |

| Pin | Label |
|-----|-------|
| 17  | VSS   |
| 18  | VOUTR |
| 19  | GND   |
| 20  | φV2O  |
| 21  | φV1   |
| 22  | VSUB  |
| 23  | GND   |
| 24  | VDDR  |
| 25  | VDDL  |
| 26  | GND   |
| 27  | VSUB  |
| 28  | φV1   |
| 29  | φV2E  |
| 30  | ESD   |
| 31  | VOUTL |
| 32  | VSS   |

The horizontal shift register is on the side of the sensor parallel to the row of pins 1 through 16. In single output mode the pixel closest to pin 1 will be read out first through Video L, the pixel closest to pin 17 will be read out last. In dual output mode the pixel closest to pin 16 will be read out first through Video R.

## IMAGING PERFORMANCE

### TYPICAL OPERATIONAL CONDITIONS

| Description                                        | Condition                                        |
|----------------------------------------------------|--------------------------------------------------|
| Temperature                                        | 40 °C                                            |
| Integration Time                                   | 33 ms (40 MHz HCCD frequency, 30 fps frame rate) |
| Operation                                          | Nominal voltages and timing                      |
| Image defects are excluded from performance tests. |                                                  |

### OPTICAL SPECIFICATIONS

| Symbol            | Description                                             | Min | Nom | Max | Unit    | Notes |
|-------------------|---------------------------------------------------------|-----|-----|-----|---------|-------|
| QE <sub>max</sub> | Peak Quantum Efficiency                                 | 33  | 36  |     | %       | 1     |
| λQE               | Peak Quantum Efficiency Wavelength                      |     | 490 |     | nm      | 1     |
| QE(540)           | Quantum Efficiency at 540nm                             | 31  | 33  |     | %       | 1     |
| θQE <sub>h</sub>  | Microlens Acceptance Angle (horizontal)                 | ±12 | ±13 |     | degrees | 2     |
| θQE <sub>v</sub>  | Microlens Acceptance Angle (vertical)                   | ±25 | ±30 |     | degrees | 2     |
| NL                | Maximum Photoresponse Nonlinearity                      |     | 2   |     | %       | 3, 4  |
| ΔG                | Maximum Gain Difference Between Outputs                 |     | 10  |     | %       | 3, 4  |
| ΔNL               | Maximum Signal Error caused by Nonlinearity Differences |     | 1   |     | %       | 3, 4  |

Notes:

1. For monochrome sensors.
2. Value is the angular range of incident light for which the quantum efficiency is at least 50% of QE<sub>max</sub> at a wavelength of λQE. Angles are measured with respect to the sensor surface normal in a plane parallel to the horizontal axis (θQE<sub>h</sub>) or in a plane parallel to the vertical axis (θQE<sub>v</sub>).
3. Value is over the range of 10% to 90% of photodiode saturation.
4. Value is for the sensor operated without binning.

### CCD SPECIFICATIONS

| Symbol | Description                    | Min | Nom  | Max | Unit               | Notes      |
|--------|--------------------------------|-----|------|-----|--------------------|------------|
| VNe    | Vertical CCD Charge Capacity   | 45  | 50   |     | e <sup>-</sup>     |            |
| HNe    | Horizontal CCD Charge Capacity |     | 100  |     | e <sup>-</sup>     |            |
| PNe    | Photodiode Charge Capacity     | 35  | 40   |     | e <sup>-</sup>     | 1          |
| Id     | Dark Current                   |     | 0.3  | 1.0 | nA/cm <sup>2</sup> |            |
| Lag    | Image Lag                      |     | < 10 | 50  | e <sup>-</sup>     | 2          |
| Xab    | Antiblooming factor            | 100 | 300  |     |                    | 3, 4, 5, 6 |
| Smr    | Vertical Smear                 |     | -75  | -72 | dB                 | 3, 4       |

Notes:

1. This value depends on the substrate voltage setting. Higher photodiode saturation charge capacities will lower the antiblooming specification. Substrate voltage will be specified with each part for nominal photodiode charge capacity.
2. This is the first field decay lag at 70% saturation. Measured by strobe illumination of the device at 70% of photodiode saturation, and then measuring the subsequent frame's average pixel output in the dark.
3. Measured with a spot size of 100 vertical pixels.
4. Measured with F/4 imaging optics and continuous green illumination centered at 550 nm.
5. A blooming condition is defined as when the spot size doubles in size.
6. Antiblooming factor is the light intensity which causes blooming divided by the light intensity which first saturates the photodiodes.

## OUTPUT AMPLIFIER SPECIFICATIONS

| Symbol            | Description       | Nominal | Unit               | Notes |
|-------------------|-------------------|---------|--------------------|-------|
| P <sub>d</sub>    | Power Dissipation | 120     | mW                 | 1     |
| F <sub>-3dB</sub> | Bandwidth         | 140     | MHz                | 1     |
| C <sub>L</sub>    | Max Off-chip Load | 10      | pF                 | 2     |
| A <sub>v</sub>    | Gain              | 0.75    |                    | 1     |
| ΔV/ΔN             | Sensitivity       | 14      | μV/ e <sup>-</sup> | 1     |

Notes:

1. For a 5 mA output load on each amplifier. Per amplifier.
2. With total output load capacitance of C<sub>L</sub>= 10 pF between the outputs and AC ground.

## GENERAL SPECIFICATIONS

| Symbol           | Description   | Nominal | Unit               | Notes |
|------------------|---------------|---------|--------------------|-------|
| n <sub>e-T</sub> | Total Noise   | 40      | e <sup>-</sup> rms | 1     |
| DR               | Dynamic Range | 60      | dB                 | 2     |

Notes:

1. Includes system electronics noise, dark pattern noise and dark current shot noise at 20 MHz.
2. Uses 20LOG(PNe/n<sub>e-T</sub>)

## TYPICAL PERFORMANCE CURVES

### MONOCHROME QUANTUM EFFICIENCY



Figure 3: Quantum Efficiency Spectrum for Monochrome Sensors

### MONOCHROME WITH MICROLENS ANGULAR QUANTUM EFFICIENCY



Figure 4: Angular Dependence of Quantum Efficiency

For the curve marked "Horizontal", the incident light angle is varied in a plane parallel to the HCCD.  
For the curve marked "Vertical", the incident light angle is varied in a plane parallel to the VCCD.

## COLOR WITH LENSLET QUANTUM EFFICIENCY



Figure 5: Quantum Efficiency Spectrum for Color Filter Array Sensors



Figure 6: Color Filter Array Pattern

## FRAME RATES



Figure 7: Progressive Frame Rate vs. HCCD Clock Frequency

## DEFECT DEFINITIONS

### OPERATIONAL CONDITIONS

| Description      | Condition                                                    |
|------------------|--------------------------------------------------------------|
| Temperature      | 40 °C                                                        |
| Integration Time | 33 ms (40 MHz HCCD frequency, no binning, 30 fps frame rate) |
| Light source     | Continuous green illumination centered at 550 nm             |
| Operation        | Nominal voltages and timing                                  |

### SPECIFICATIONS

| Name                  | Definition                                                                                                                                                                                                                        |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major Defective Pixel | A pixel whose signal deviates by more than 25 mV from the mean value of all active pixels under dark field condition or by more than 15% from the mean value of all active pixels under uniform illumination of 80% of saturation |
| Minor Defective Pixel | A pixel whose signal deviates by more than 8 mV from the mean value of all active pixels under dark field conditions                                                                                                              |
| Cluster Defect        | A group of 2 to 10 contiguous major defective pixels with a width no wider than 2 defective pixels                                                                                                                                |
| Column Defect         | A group of more than 10 contiguous major defective pixels along a single column                                                                                                                                                   |

Notes:

1. There will be at least two non-defective pixels separating any two major defective pixels
2. Buffer and dark reference pixels are not used for defect tests

### DEFECT ZONES



Figure 8: Defect Zones

### DEFECT CLASSES

KAI-2093-ABA-CB-B1

| Maximum Number of Defects |                |               |                |               |                |               |                |
|---------------------------|----------------|---------------|----------------|---------------|----------------|---------------|----------------|
| Major Point               |                | Minor Point   |                | Cluster       |                | Column        |                |
| Within Zone A             | Outside Zone A | Within Zone A | Outside Zone A | Within Zone A | Outside Zone A | Within Zone A | Outside Zone A |
| 3                         | 10             | 20            | 100            | 0             | 4              | 0             | 0              |

### All Other Part Numbers

Zone A is not used

| Maximum Number of Defects |             |         |        |
|---------------------------|-------------|---------|--------|
| Major Point               | Minor Point | Cluster | Column |
| 10                        | 100         | 4       | 0      |

## OPERATION

### ABSOLUTE MAXIMUM RATINGS

|                         |                           | <b>Min</b>                | <b>Max</b> | <b>Unit</b> | <b>Notes</b> |
|-------------------------|---------------------------|---------------------------|------------|-------------|--------------|
| Temperature             | Operation without damage  | -50                       | 70         | °C          |              |
| Voltage<br>between pins | VSUB to GND               | 8                         | 20         | V           | 1            |
|                         | VDD, OG to GND            | 0                         | 17         | V           |              |
|                         | VRD to GND                | 0                         | 14         | V           |              |
|                         | φV1 to φV2                | -20                       | 20         | V           |              |
|                         | φH1 to φH2                | -15                       | 15         | V           |              |
|                         | φR to GND                 | -15                       | 15         | V           |              |
|                         | φH1, φH2 to OG            | -15                       | 15         | V           |              |
|                         | φH1, φH2 to φV1, φV2      | -15                       | 15         | V           |              |
|                         | Current                   | Video Output Bias Current | 0          | 10          | mA           |
| Current                 | Video Output Bias Current | 0                         | 10         | mA          | 2            |

Notes:

1. For electronic shuttering VSUB may be pulsed to 50 V for up to 10 µs.
2. Total for both outputs. Current is 5 mA for each output. Note that the current bias effects the amplifier bandwidth

### DC BIAS OPERATING CONDITIONS

| <b>Symbol</b> | <b>Description</b>      | <b>Min</b> | <b>Nom</b> | <b>Max</b> | <b>Unit</b> | <b>Notes</b> |
|---------------|-------------------------|------------|------------|------------|-------------|--------------|
| OG            | Output Gate             | -3.0       | -2.5       | -2.0       | V           |              |
| VRD           | Reset Drain             | 10.0       | 10.5       | 11.0       | V           |              |
| VSS           | Output Amplifier Return | 0.0        | 0.7        | 1.0        | V           |              |
| VDD           | Output Amplifier Supply | 14.5       | 15.0       | 15.5       | V           |              |
| GND           | Ground, P-well          |            | 0.0        |            | V           |              |
| VSUB          | Substrate               | 8.0        | TBD        | 17.0       | V           |              |
| VESD          | ESD Protection          | -8.0       | -7.0       | -6.0       | V           | 1            |

Notes:

1. VESD must be at least 1 V more negative than φH1L and φH2L during sensor operation AND during camera power turn on.

### AC OPERATING CONDITIONS

| <b>Symbol</b> | <b>Description</b>           | <b>Min</b> | <b>Nom</b> | <b>Max</b> | <b>Unit</b> | <b>Notes</b> |
|---------------|------------------------------|------------|------------|------------|-------------|--------------|
| φV2H          | Vertical CCD Clock High      | 7.5        | 8.0        | 8.5        | V           |              |
| φV1M, φV2M    | Vertical CCD Clocks Midlevel | -1.6       | -1.5       | -1.4       | V           |              |
| φV1L, φV2L    | Vertical CCD Clocks Low      | -9.5       | -9.0       | -8.5       | V           |              |
| φH1H, φH2H    | Horizontal CCD Clocks High   | 0.5        | 1.0        | 2.0        | V           |              |
| φH1L, φH2L    | Horizontal CCD Clocks Low    | -5.0       | -4.0       | -3.8       | V           |              |
| φR            | Reset Clock Amplitude        |            | 5.0        |            | V           |              |
| φRL           | Reset Clock Low              | -4.0       | -3.5       | -3.0       | V           |              |
| VShutter      | Electronic Shutter Voltage   | 44         | 48         | 52         | V           |              |

## CLOCK CAPACITANCE

| Clocks                   | Capacitance | Units | Notes |
|--------------------------|-------------|-------|-------|
| $\phi V1$ to GND         | 25          | nF    | 1     |
| $\phi V2$ to GND         | 25          | nF    | 1     |
| $\phi V1$ to $\phi V2$   | 5           | nF    |       |
| $\phi H1S$ to GND        | 45          | pF    | 2     |
| $\phi H2S$ to GND        | 38          | pF    | 2     |
| $\phi H1B$ to GND        | 21          | pF    | 2     |
| $\phi H2B$ to GND        | 20          | pF    | 2     |
| $\phi H2B$ to $\phi H1S$ | 10          | pF    | 2     |
| $\phi H1B$ to $\phi H1S$ | 10          | pF    | 2     |
| $\phi H2B$ to $\phi H2S$ | 10          | pF    | 2     |
| $\phi H1B$ to $\phi H2S$ | 10          | pF    | 2     |
| $\phi R$ to GND          | 10          | pF    |       |

Notes:

1. Gate capacitance to GND is voltage dependent. Value is for nominal VCCD clock voltages.
2. For nominal HCCD clock voltages, total capacitance for one half (H1SR only or H1SL only).

## OPERATION NOTES

### Progressive and Interlaced Timing

Progressive and interlaced output modes are achieved by applying the proper waveforms to the vertical clock input pins  $\phi V1$ ,  $\phi V2E$  and  $\phi V2O$ . For progressive output,  $\phi V2 = \phi V2E = \phi V2O$ , with each of the 1092 lines read out individually using the timing in Figure 9.

For interlaced output, there are two modes, field integration mode and frame integration mode. In both modes,  $1092/2 = 546$  lines are read in each frame readout, with one even frame readout and one odd frame readout necessary for a complete frame. Field integration mode bins together alternate lines, and the timing is shown in Figure 11. As with progressive readout,  $\phi V2 = \phi V2E = \phi V2O$ .

Frame integration mode reads out the photodiodes of the even and odd lines separately, and the timing is shown in Figure 12. In this case,  $\phi V2E$  and  $\phi V2O$  are clocked individually.

### Single Output Mode

When operating the sensor in single output mode all pixels of the image sensor will be shifted out the Video L output (pin 31). To conserve power and lower heat generation the output amplifier for Video R may be turned off by connecting VDDR (pin 24) and VOUTR (pin 18) to GND (zero volts).

The  $\phi H1$  timing from the timing diagrams should be applied to  $\phi H1SL$ ,  $\phi H1BL$ ,  $\phi H1SR$ ,  $\phi H2BR$ , and the  $\phi H2$  timing should be applied to  $\phi H2SL$ ,  $\phi H2BL$ ,  $\phi H2SR$ ,  $\phi H1BR$ . In other words, the clock driver generating the  $\phi H1$  timing should be connected to pins 4, 3, 13, and 15. The clock driver generating the  $\phi H2$  timing should be connected to pins 2, 5, 12, and 14.

The horizontal CCD should be clocked for 4 empty pixels plus 28 light shielded pixels plus 1928 photoactive pixels plus 28 light shielded pixels for a total of 1988 pixels.

### Dual Output Mode

In dual output mode the connections to the  $\phi H1BR$  and  $\phi H2BR$  pins are swapped from the single output mode to change the direction of charge transfer of the right side horizontal shift register. In dual output mode both VDDL and VDDR (pins 25, 24) should be connected to 15 V.

The  $\phi H1$  timing from the timing diagrams should be applied to  $\phi H1SL$ ,  $\phi H1BL$ ,  $\phi H1SR$ ,  $\phi H1BR$ , and the  $\phi H2$  timing should be applied to  $\phi H2SL$ ,  $\phi H2BL$ ,  $\phi H2SR$ ,  $\phi H2BR$ . The clock driver generating the  $\phi H1$  timing should be connected to pins 4, 3, 13, and 14. The clock driver generating the  $\phi H2$  timing should be connected to pins 2, 5, 12, and 15.

The horizontal CCD should be clocked for 4 empty pixels plus 28 light shielded pixels plus 964 photoactive pixels for a total of 996 pixels.

If the camera is to have the option of dual or single output mode, the clock driver signals sent to  $\phi H1BR$  and  $\phi H2BR$  may be swapped by using a relay. Another alternative is to have two extra clock drivers for  $\phi H1BR$  and  $\phi H2BR$  and invert the signals in the timing logic generator. If two extra clock drivers are used, care must be taken to ensure the rising and falling edges of the  $\phi H1BR$  and  $\phi H2BR$  clocks occur at the same time (within 3 ns) as the other HCCD clocks.

## Exposure Control

If the sensor is operated at 20 MHz horizontal CCD frequency then the frame rate will be 9 fps and the integration time will be 1/9 s or 111 ms. To achieve shorter integration times, the electronic shutter option may be used by applying a pulse to the substrate (pins 22 and 27). The time between the falling edge of the substrate pulse and the falling edge of the transition of the  $\phi V2$  clock from  $\phi V2H$  to  $\phi V2M$  is defined as the integration time. The substrate pulse and integration time are shown in Figure 14.

Integration times longer than one frame time (111 ms in this example) do not require use of the electronic shutter. Without the electronic shutter the integration time is defined as the time between when the  $\phi V2$  clock is at the  $\phi V2H$  level of 9.5 V (when the  $\phi V2$  clock is at the  $\phi V2H$  level charge collected in the photodiodes is transferred to the vertical shift register). To extend the integration time, increase the time between each  $\phi V2H$  level of the  $\phi V2$  clock. While the photodiodes are integrating photoelectrons the vertical and horizontal shift registers should be continuously clocked to prevent the collection of dark current in the vertical shift register. This is most easily done by increasing the number of lines read out of the image sensor. For example, to double the integration time read out 2184 lines instead of 1092 lines (but remember only the first 1092 lines will contain image data).

Depending on the image quality desired and temperature of the sensor, integration times longer than one second may require the sensor to be cooled to control dark current. The output amplifiers will also generate a non-uniform dark current pattern near the bottom corners of the sensor. This can be reduced at long integration times by only turning on VDD to each amplifier during image readout. If the vertical and horizontal shift registers are also stopped during integration time, the dark current in the shift registers should be flushed out completely before transferring charge from the photodiodes to the vertical shift register.

## Dark References

There are 28 light shielded columns at the left and right side of the image sensor. The first and last two light shielded columns should not be used as a dark reference due to some light leakage under the edges of the light shielding. Only the center 24 columns should be used for dark reference line clamping. There are 4 light shielded rows at the top and bottom of the image sensor. Only the center two light shielded rows should be used as a dark reference.

## Connections to the Image Sensor

The reset clock signal operates at the pixel frequency. The traces on the circuit board to the reset clock pins should be kept short and of equal length to ensure that the reset pulse arrives at each pin simultaneously. The circuit board traces to the horizontal clock pins should also be placed to ensure that the clock edges arrive at each pin simultaneously. If reset pulses and the horizontal clock edges are misaligned the noise performance of the sensor will be degraded and balancing the offset and gain of the two output amplifiers will be difficult.

The bias voltages on OG, RD, VSS and VDD should be well filtered with capacitors placed as close to the pins as possible. Noise on the video outputs will be most strongly effected by noise on VSS, VDD, GND, and VSUB. If the electronic shutter is not used then a filtering capacitor should also be placed on VSUB. If the electronic shutter is used, the VSUB voltage should be kept as clean and noise free as possible.

The voltage on VSS may be set by using the 0.6 to 0.7 volt drop across a diode. Place the diode from VSS to GND. To disable one of the output amplifiers connect VDD to GND, do not let VDD float.

The ESD voltage must reach its operating point before any of the horizontal clocks reach their low level. If any pin on the sensor comes within 1 V of the ESD pin the electrostatic damage protection circuit will become active and will not turn off until all voltages are powered down. Operating the sensor with the ESD protection circuit active may damage the sensor.

## TIMING

### REQUIREMENTS AND CHARACTERISTICS

| Symbol     | Description                   | Min  | Nom  | Max   | Unit          | Notes |
|------------|-------------------------------|------|------|-------|---------------|-------|
| $T_{HD}$   | HCCD Delay                    | 1.3  | 1.5  | 10.0  | $\mu\text{s}$ |       |
| $T_{VCCD}$ | VCCD Transfer time            | 1.3  | 1.5  |       | $\mu\text{s}$ |       |
| $T_{V3rd}$ | Photodiode Transfer time      | 8.0  | 12.0 | 15.0  | $\mu\text{s}$ |       |
| $T_{3P}$   | VCCD Pedestal time            | 20.0 | 25.0 | 50.0  | $\mu\text{s}$ |       |
| $T_{3D}$   | VCCD Delay                    | 15.0 | 20.0 | 100.0 | $\mu\text{s}$ |       |
| $T_R$      | Reset Pulse time              | 5.0  | 10.0 |       | ns            |       |
| $T_S$      | Shutter Pulse time            | 3.0  | 5.0  | 10.0  | $\mu\text{s}$ |       |
| $T_{SD}$   | Shutter Pulse delay           | 1.0  | 1.6  | 10.0  | $\mu\text{s}$ |       |
| $T_H$      | HCCD Clock Period             | 25.0 | 50.0 | 200.0 | ns            |       |
| $T_{VR}$   | VCCD rise/fall time           | 0.0  | 0.1  | 1.0   | $\mu\text{s}$ |       |
| $T_{VE}$   | Vertical Clock Edge Alignment | 0.0  |      | 100.0 | ns            |       |

## FRAME TIMING

### Frame Timing – Progressive Scan



### Frame Timing for Vertical Binning by 2



Figure 9: Progressive Frame Timing

### Vertical Clock Edge Alignment



Figure 10: Ideal Vertical Clock Edge Position

### Frame Timing – Field Integration Mode

#### Interlaced Frame Timing - Field Integration Mode - Even Field Readout



#### Interlaced Frame Timing - Field Integration Mode - Odd Field Readout



Figure 11: Interlaced Frame Timing - Field Integration Mode

### Frame Timing – Frame Integration Mode

#### Interlaced Frame Timing - Frame Integration Mode - Even Field Readout



#### Interlaced Frame Timing - Frame Integration Mode - Odd Field Readout



Figure 12: Interlaced Frame Timing - Frame Integration Mode

## LINE TIMING

### Progressive Line Timing



### Interlaced Line Timing and Line Timing for Vertical Binning by Two



Figure 13: Line Timing

## ELECTRONIC SHUTTER TIMING

### Electronic Shutter Line Timing



### Integration Time Definition



Figure 14: Electronic Shutter Timing Diagram

## STORAGE AND HANDLING

### STORAGE CONDITIONS

| Description | Symbol | Minimum | Maximum | Units | Notes |
|-------------|--------|---------|---------|-------|-------|
| Temperature | T      | -55     | 70      | °C    | 1     |
| Humidity    | RH     | 5       | 90      | %     | 2     |

Notes:

1. Long-term exposure toward the maximum temperature will accelerate color filter degradation.
2. T=25°C. Excessive humidity will degrade MTTF.

### ESD

1. This device contains limited protection against Electrostatic Discharge (ESD). CCD image sensors can be damaged by electrostatic discharge. Failure to do so may alter device performance and reliability.
  2. Devices should be handled in accordance with strict ESD procedures for Class 0 (<250V per JESD22 Human Body Model test), or Class A (<200V JESD22 Machine Model test) devices.
- Devices are shipped in static-safe containers and should only be handled at static-safe workstations.
3. See Application Note MTD/PS-0224 "Electrostatic Discharge Control for Image Sensors" for proper handling and grounding procedures. This application note also contains recommendations for workplace modifications for the minimization of electrostatic discharge.
  4. Store devices in containers made of electro-conductive materials.

### COVER GLASS CARE AND CLEANLINESS

1. The cover glass is highly susceptible to particles and other contamination. Perform all assembly operations in a clean environment.
2. Touching the cover glass must be avoided
3. Improper cleaning of the cover glass may damage these devices. Refer to Application Note MTD/PS-0237 "Cover Glass Cleaning for Image Sensors"

### ENVIRONMENTAL EXPOSURE

1. Do not expose to strong sun light for long periods of time. The color filters and/or microlenses may become discolored. Long time exposures to a static high contrast scene should be avoided. The image sensor may become discolored and localized changes in response may occur from color filter/microlens aging.
2. Exposure to temperatures exceeding the absolute maximum levels should be avoided for storage and operation. Failure to do so may alter device performance and reliability.
3. Avoid sudden temperature changes.
4. Exposure to excessive humidity will affect device characteristics and should be avoided. Failure to do so may alter device performance and reliability.
5. Avoid storage of the product in the presence of dust or corrosive agents or gases.

Long-term storage should be avoided. Deterioration of lead solderability may occur. It is advised that the solderability of the device leads be re-inspected after an extended period of storage, over one year.

### SOLDERING RECOMMENDATIONS

1. The soldering iron tip temperature is not to exceed 370°C. Failure to do so may alter device performance and reliability.
2. Flow soldering method is not recommended. Solder dipping can cause damage to the glass and harm the imaging capability of the device. Recommended method is by partial heating. Kodak recommends the use of a grounded 30W soldering iron. Heat each pin for less than 2 seconds duration.

## MECHANICAL DRAWINGS

### COMPLETED ASSEMBLY



Figure 15: Completed Assembly (1 of 2)

#### Notes:

1. See Ordering Information for marking code
2. Cover glass is manually placed and visually aligned over die – location accuracy is not guaranteed

SHOWN WITHOUT COVER GLASS



SHOWN WITH SEALED COVER GLASS



Figure 16: Completed Assembly (2 of 2)

Notes:

1. Center of image is nominally coincident with the center of the package
2. Die is aligned within  $\pm 2$  degree of any package cavity edge

## COVER GLASS

### Clear Cover Glass



Figure 17: Clear Cover Glass Drawing

Notes:

1. Cover Glass Material: Schott D263 or equivalent
2. Dust/Scratch: 5 microns maximum

Quartz Cover Glass with AR Coatings



Figure 18: Quartz Cover Glass with AR Coating Drawing

Notes:

1. Cover Glass Material: SK1300 or equivalent
2. Dust/Scratch: 10 microns maximum
3. MAR Coat Each Side:  
340nm - 360nm: Reflectance <= 0.5%  
520nm - 550nm: Reflectance <= 4%

## GLASS TRANSMISSION



Figure 19: Cover Glass Transmission

## QUALITY ASSURANCE AND RELIABILITY

### QUALITY STRATEGY

All image sensors will conform to the specifications stated in this document. This will be accomplished through a combination of statistical process control and inspection at key points of the production process. Typical specification limits are not guaranteed but provided as a design target. For further information refer to ISS Application Note MTD/PS-0292, Quality and Reliability.

### REPLACEMENT

All devices are warranted against failure in accordance with the terms of Terms of Sale. This does not include failure due to mechanical and electrical causes defined as the liability of the customer below.

### LIABILITY OF THE SUPPLIER

A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the customer.

### LIABILITY OF THE CUSTOMER

Damage from mechanical (scratches or breakage), electrostatic discharge (ESD) damage, or other electrical misuse of the device beyond the stated absolute maximum ratings, which occurred after receipt of the sensor by the customer, shall be the responsibility of the customer.

Kodak reserves the right to change any information contained herein without notice. All information furnished by Kodak is believed to be accurate.

### WARNING: LIFE SUPPORT APPLICATIONS POLICY

Kodak image sensors are not authorized for and should not be used within Life Support Systems without the specific written consent of the Eastman Kodak Company. Product warranty is limited to replacement of defective components and does not cover injury or property or other consequential damages.

### RELIABILITY

Information concerning the quality assurance and reliability testing procedures and results are available from the Image Sensor Solutions and can be supplied upon request. For further information refer to ISS Application Note MTD/PS-0292, Quality and Reliability.

### TEST DATA RETENTION

Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2 years after date of delivery.

### MECHANICAL

The device assembly drawing is provided as a reference. The device will conform to the published package tolerances.

## REVISION CHANGES

| Revision Number | Description of Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0             | <ul style="list-style-type: none"> <li>Initial Formal Version.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.0             | <ul style="list-style-type: none"> <li>Page 8 section 3.5 AC Timing Conditions table: Added Tve: Vertical Clock Edge Alignment</li> <li>Page 10: Added Figure 5 Vertical Clock Timing – Edge Position</li> <li>Page 15: Updated Figure 9 Frame Rate to show dual mode out to 40MHz. Previous plot cut off dual mode at 35 MHz</li> <li>Page 22: Added that a cluster defect will be no wider than two defective pixels.</li> <li>Page 22: Added a note that there will be at least two good pixels between any two major defects (pixels or clusters)</li> <li>Removed appendix 1</li> <li>Added revision changes</li> </ul> |
| 2.0             | <ul style="list-style-type: none"> <li>Section 4.2, new color quantum efficiency</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.0             | <ul style="list-style-type: none"> <li>Updated format</li> <li>Updated defect definitions section</li> <li>Added Storage and Handling section</li> <li>Updated completed assembly drawing</li> <li>Added cover glass drawings</li> <li>Added cover glass transmission curves</li> </ul>                                                                                                                                                                                                                                                                                                                                      |



This page intentionally left blank.



This page intentionally left blank.



This page intentionally left blank.



©Eastman Kodak Company, 2007. Kodak and Pixelux are trademarks.