深層学習とA*アルゴリズム による高速なCCG解析

A* CCG parsing with category and dependency factored model 2018/09/28 TokyoCL勉強会 NAIST D2 吉川将司

組み合わせ範疇文法(Combinatory Categorial Grammar; CCG)

自然言語の理論:

- •複雑な文構造(e.g. 並列句構造)を説明可能
- •意味の理論へのインターフェース(文の論理式への変換)
- 効率的な構文解析アルゴリズムの存在

• 自然言語処理での応用:

- CCG木から論理式へ変換し、論理推論
 - 含意関係認識: (Mineshima+, 2015)、(Abzianidze, 2015)
 - •質問応答: (Reddy+, 2014)
 - •文間類似度: (Yanaka+, 2017)

背景:既存の CCG解析手法

既存:Category-factoredモデル(Lewis+, 2014)

これまで: Full derivationモデル

p(y|x)は木の導出全体に依存

Category-factoredモデル

木の確率は終端カテゴリのみで表現可

$$p(\mathbf{y} \mid \mathbf{x}) = \prod p_{tag}(c_i \mid \mathbf{x})$$

既存:Category-factoredモデル(Lewis+, 2014)

これまで: Full derivationモデル

 $p(\mathbf{y} | \mathbf{x})$ は木の導出全体に依存

Category-factoredモデル

木の確率は終端カテゴリのみで表現可

$$p(\mathbf{y} \mid \mathbf{x}) = \prod p_{tag}(c_i \mid \mathbf{x})$$

- なぜこのようなモデルが可能か?
 - ・カテゴリが構造について多くの情報を持つ(標準形のもとで一意)

既存:Category-factoredモデル(Lewis+, 2014)

これまで: Full derivationモデル

 $p(\mathbf{y} | \mathbf{x})$ は木の導出全体に依存

Category-factoredモデル

木の確率は終端カテゴリのみで表現可

$$p(\mathbf{y} \mid \mathbf{x}) = \prod p_{tag}(c_i \mid \mathbf{x})$$

- なぜこのようなモデルが可能か?
 - ・カテゴリが構造について多くの情報を持つ(標準形のもとで一意)
- **高速**なチャートによる構文解析で最適解が求まる
 - ・すべての単語とカテゴリに対する $p_{tag}(c_i | \mathbf{x})$ は事前に計算可 o 複数文を並列処理
 - 外側確率(=ゴールまでのコスト)が容易に求まる \rightarrow A*解析へ拡張

Category-factoredモデルの限界

- 同じカテゴリ列から複数の木が導出できるケース
 - 等確率になってしまい文構造を一意に決定できない

対処(1):人手によるルール

- 長距離依存を伴うものを優先(Lewis+, 2014)
 - CCG木から係り受け木への変換規則を定義

対処(1):人手によるルール

- 長距離依存を伴うものを優先(Lewis+, 2014)
 - CCG木から係り受け木への変換規則を定義
- 問題:必ずしも長距離依存が正解でない
 - e.g. "house of suburbs of Paris"は短距離が正解N (N\N)/N N (N\N)/N N

対処②: グローバルモデル

- Tree LSTMによる木全体を考慮したモデル(Lee+, 2016)
 - (Lewis+, 2016)を拡張
- 木構造全体を考慮したスコアで高精度を達成
- 問題:局所的な項に分解不可 → 実行速度に影響

Category-factoredモデルは日本語に不適

• 係り先が曖昧なカテゴリが存在:S/S (連体修飾、副詞)

Category-factoredモデルは日本語に不適

• 係り先が曖昧なカテゴリが存在:S/S (連体修飾、副詞)

- ・人手ルールの改良では**対処困難**
 - 「昨日」と動詞の時制の一致など

提案手法

提案:係り受け構造の尤もらしさを明示的にモデル化

- Category & Dependency-factoredモデル
 - $p(\mathbf{y} | \mathbf{x}) = \prod p_{tag}(c_i | \mathbf{x}) \times \prod p_{dep}(h_i | \mathbf{x})$
- •係り受け構造を用いて終端以上の構造の良さを考慮
- p_{tag} と p_{dep} の局所的な項の積に分解可能
 - Category-factoredモデル同様にA*構文解析が可能
 - すべての単語について P_{tag} と P_{dep} は事前に計算可

高速

P_{tag} と P_{dep} の深層学習モデル

- ・双方向LSTMの表現ベクトル: Γ_i
- Biaffine(Dozat+, 2017)で係り受け予測

$$p_{dep}(x_j) \propto \mathbf{r}_i^T W \mathbf{r}_j + \mathbf{r}_i^T \mathbf{u}$$

 \mathbf{r}_4 - 係り受け構造を利用しカテゴリ予測

$$\begin{array}{c} \text{LSTM} & p_{tag}(c_i = c) \propto \mathbf{r}_i^T W_c \mathbf{r}_{i_head} \end{array}$$

- 学習: 負の対数尤度の合計を最適化
- ・これらはA*解析前に計算可

A*構文解析

最短経路問題

チャート構文解析

$$f = g + h$$
に基づき探索

g =これまでの経路の**コストの合計**

h =ゴールまでの**コストの推定値(下界)**

• e.g. マンハッタン距離

A*構文解析

最短経路問題

遷移先	f
(1,1)	0.1
(2,0)	0.1
(0,1)	0.1
(0,2)	0.9
(3,0)	0.99
	•••

PriorityQueue(f)

$$f = g + h$$
に基づき探索

g =これまでの経路の**コストの合計**

h =ゴールまでの**コストの推定値(下界)**

• e.g. マンハッタン距離

チャート構文解析

PriorityQueue(f)

0.1

0.1

0.1

0.9

0.99

$$f = g + h$$
に基づき探索

エッジ:部分木を表すデータ構造

$$h =$$
ゴール(=構文木)までの**コストの下界**

$$f = g + h$$
 に基づき探索

g = 部分木の**コスト**(=負の対数確率)

 $h = \vec{J} - \mu (= 構 \chi + \pi)$ までの**コストの推定値(下界)**

s.t. *h* ≤ *h** (真のコスト)

• エッジ **N**3,5 について…

 $h(\frac{N_{3,5}}{N_{N_{4,5}}}) = \frac{N_{3,5}}{N_{5,5}}$ Tom had Indian chicken curry

• エッジ **N**3,5 について…

• エッジ $N_{3,5}$ について…

• エッジ N_{3,5} について…

計算は簡単

計算は簡単

エッジ	f
N 3,5	0.1
N 1,1	0.1
S\N/N _{2,2}	0.1
N 4,4	0.9
S\N _{2,2}	0.99

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

エッジ	f
N _{1,1}	0.1
S\N/N _{2,2}	0.1
N 4,4	0.9
S\N _{2,2}	0.99

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

エッジ	f
N 4,4	0.9
S\N _{2,2}	0.99

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

エッジ	f
N _{4,4}	0.9
S\N _{2,2}	0.99

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加

エッジ	f
N _{4,4}	0.9
S\N _{2,2}	0.99

PriorityQueue(f)

- •f値が最も低いエッジをキューからポップしチャートに挿入
- 新しいエッジを構築できればキューに追加
- $p_{\textit{tag}}$ と $p_{\textit{dep}}$ の予測が正確 \Rightarrow h = h* \Rightarrow 無駄な探索なし
- ・gが単調増加 : エッジの再訪なし(CLOSEリスト不要)

高速

Tri-trainingによる半教師あり学習(Weiss+, 2015)

Tri-trainingの提案法への適用

実験

実験設定

- モデル: 4層300次元双方向LSTM、1層100次元MLP
- 実験①: 英語CCGBank (Hockenmaier+, 2007)
 - 100次元GLoVeベクトル、30次元接辞ベクトル(Lewis+, 2016)
 - 評価:意味的な依存関係による指標(Clark+, 2007)
- 実験②: 日本語CCGBank (Uematsu+, 2015)
 - 200次元日本語エンティティベクトル、50次元文字ベクトルから畳 み込み→100次元(dos Santos+, 2015)
 - 評価:終端のカテゴリの正答率、文節係り受けの係り受け正答率

- •CCGBankで実験
 - Category-factoredモデル(Lewis+, 2016)より向上
 - •Full derivation + 深層学習モデル(Vaswani+, 2016)に劣る
- Tri-trainingを行うことで、最高精度

実験②:日本語CCGbank test

- (Noji+, 2016):shift-reduce法によるCCG解析器
- LewisらのCategory-factoredモデルは日本語では低精度
- 提案法は日本語でも最高精度

まとめと今後の予定

- まとめ: CCG木の確率をカテゴリと係り受け構造でモデル化
 - カテゴリ列で表現できない構造の違い:特に日本語は重要
 - •局所的な要素の積に分解可:高速なA*解析を実現
 - •日本語最高精度、半教師あり学習(Tri-training)で英語も

• 今後の予定

- 今年度:CCG解析の多分野テキストへの適応
- ・今年度:CCGを用いた並列句の範囲同定
- 来年度:CCG解析を用いた意味解析(RTE, QAなど)で有効性を検証

おまけ

実験③:実行速度の評価

単位は文/秒

	タグ付け	A*解析	全体
Lewis+, 2016 の再実装	24.8	185.2	21.9
Lee+, 2016	21.7	16.7	9.33
提案法	16.6	114.6	14.5

- (Lewis+, 2016)に実行速度は劣る
 - タグ付けは深層学習モデルが少し複雑になったため
 - A*解析はなぜか少し遅い(提案法のhのほうがtightな推定値のはず?)
 - 行列の前処理など本質的でないところで遅くなっている可能性
- これまでの最高精度の(Lee+, 2016)と比べるとかなり高速

CCG木から係り受け木への変換

- 変換方法は自明ではく、自分でデザイン
- 本研究では2種類の変換方法を検討

Lewisらによる変換規則

- それぞれの組み合わせ規則について規則を定義
- 直感的にもっともな係り受け木

HeadFirst変換規則

- 常に左の子を親として選ぶ
 - •単純だが理論的には変
 - 予測は簡単
 - •94.5% vs. 92.5% (UAS, WSJの開発データ, 解析器は(Dyer+, 2015))

実験④:係り受けの種類による精度

Method	Labeled	Unlabeled
CCGbank		
LEWISRULE w/o dep	85.8	91.7
LEWISRULE	86.0	92.5
HEADFIRST w/o dep	85.6	91.6
HEADFIRST	86.6	92.8
Tri-training		
LEWISRULE	86.9	93.0
HEADFIRST	87.6	93.3

- PTB devセットでの評価
- w/o depは係り受けスコアを捨ててCategory-factoredモデルで解析
 - 係り受けを使うことが有効
- Headfirstのほうが精度が高い

Consistent CCG Parsing over Multiple Sentences

Joint decoding via Dual Decomposition:

$$(Y^*, \boldsymbol{z}^*) = \underset{Y \in \mathcal{Y}(X), \boldsymbol{z} \in \mathcal{Z}(X)}{\arg \max} P(Y|X) + g(\boldsymbol{z})$$

Experiments

- The RTE results of ccg2lambda and LangPro (Abzianidze, 2017)
- Inter-sentence constraints: あり (✓), なし (✗)

Method	MRF	Accuracy	Precision	Recall
LangPro (EasyCCG)	X	79.05	98.00	52.67
LangPro	X	78.85	97.48	52.48
LangPro	\checkmark	79.20	97.60	53.23
ccg2lambda (EasyCCG)	X	81.59	97.73	58.48
ccg2lambda	X	81.95	97.19	59.98
ccg2lambda	✓	82.86	97.14	62.18

Table: RTE results on the test section of the SICK dataset

Method	MRF	Accuracy	Precision	Recall
ccg2lambda (jigg)	Х	75.0	92.7	65.4
ccg2lambda	X	67.87	88.34	56.77
ccg2lambda	\checkmark	71.31	88.88	62.24

Table: RTE results on Japanese Semantics Test Suite (JSeM)

ccg2lambda(Mineshima+, 2015)

- 問題①: 外部知識(Wordnet等)の拡充と効率性の緊張 ✓

問題②: 一度Coqを終了しないといけない

ccg2lambda(Mineshima+, 2015)

- 問題①: 外部知識(Wordnet等)の拡充と効率性の緊張 ✓

問題②: 一度Coqを終了しないといけない ←

Coqプラグイン(abduction) による更なる高速化

Coqプラグイン(abduction) による更なる高速化

```
subgoal
   (exists x : Entity, man x / \ hike x) ->
   exists x : Entity, man x /\walk x
t < intro.
1 subgoal
  H : exists x : Entity, man x / hike x
  exists x : Entity, man <math>x / \setminus walk x
t < abduction.
1 subgoal
  H: exists x: Entity, man x /\ hike x
  NLax1: forall x: Entity, hike x -> walk x
   exists x : Entity, man <math>x / \setminus walk x
```

Coqプラグイン(abduction)

による更なる高速化

```
subgoal
                                                       コンテキストとゴールから
                                                        述語のペアリストを構築
   (exists x : Entity, man <math>x / \ hike x)
   exists x : Entity, man x /\walk x
t < intro.
 subgoal
  H : exists x : Entity, man x / hike x
                                          (man, walk)
  exists x : Entity, man <math>x / \setminus walk x
                                          (man, hike)
t < abduction.
                                          (hike, walk)
1 subgoal
  H: exists x: Entity, man x /\ hike x
  NLax1: forall x: Entity, hike x -> walk x
   exists x : Entity, man <math>x / \setminus walk x
```

Coqプラグイン(abduction)

による更なる高速化

```
subgoal
                                                      コンテキストとゴールから
                                                       述語のペアリストを構築
   (exists x : Entity, man <math>x / \ hike x)
   exists x : Entity, man x /\walk x
                                                        Pythonサーバに送信
t < intro.
 subgoal
  H : exists x : Entity, man x / hike x
                                                      ComplExモデルで述語の
                                         (man, walk)
                                                           関係を評価
  exists x : Entity, man <math>x / \setminus walk x
                                         (man, hike)
t < abduction.
                                         (hike, walk)
1 subgoal
  H: exists x: Entity, man x /\ hike x
  NLax1: forall x: Entity, hike x -> walk x
   exists x : Entity, man <math>x / \setminus walk x
```

Coqプラグイン(abduction)

による更なる高速化

Coqプラグイン(abduction) による更なる高速化

Coq +abduction

- Coqを終了しなくてOK
- Pythonサーバ
 - DLライブラリ(GPUも)
 - 証明の成否を教師信号に?
 - Premise selectionなど

実験

- SICK(Marelli+, 2014)testデータで評価
 - 精度と証明時間
 - (trialデータで5回実験のマクロ平均、タイムアウト100秒)
- 知識ベース補完モデル (ComplEx, Trouillon+ 2016)
 - ・ロジスティック損失: $\sum_{((s,r,o),t)\in\mathcal{D}} t\log f(s,r,o) + (1-t)\log(1-f(s,r,o))$
- ・学習データ
 - ・WordNetから3つ組抽出: (同義、反義、上位、下位)
 - ・頻度等によりフィルタ(論文詳述)
 - VerbOcean(Chklovski+, 2004): 動詞間の関係

	正答率	処理速度(秒/問題)
公理生成なし	77.38	4.21
ベースライン(WordNet)	83.55	10.92
+VerbOcean	83.84	11.06
知識グラフ補完(WordNet)	82.82	4.63
+VerbOcean	82.95	4.63

• ベースライン:検索による公理生成(Martínez-Gómez+, 2017)

	正答率	処理速度(秒/問題)
公理生成なし	77.38	4.21
ベースライン(WordNet)	83.55	10.92
+VerbOcean	83.84	11.06
知識グラフ補完(WordNet)	82.82	4.63
+VerbOcean	82.95	4.63

- ベースライン:検索による公理生成(Martínez-Gómez+, 2017)
- **正答率**: ベースラインにすこし劣る

	正答率	処理速度(秒/問題)
公理生成なし	77.38	4.21
ベースライン(WordNet)	83.55	10.92
+VerbOcean	83.84	11.06
知識グラフ補完(WordNet)	82.82	4.63
+VerbOcean	82.95	4.63

- ベースライン:検索による公理生成(Martínez-Gómez+, 2017)
- **正答率**: ベースラインにすこし劣る
- **処理速度**: 公理生成なしの場合と同等に高速化

	正答率	処理速度(秒/問題)
公理生成なし	77.38	4.21
ベースライン(WordNet)	83.55	10.92
+VerbOcean	83.84	11.06
知識グラフ補完(WordNet)	82.82	4.63
+VerbOcean	82.95	4.63

- ベースライン:検索による公理生成(Martínez-Gómez+, 2017)
- **正答率**: ベースラインにすこし劣る
- **処理速度**: 公理生成なしの場合と同等に高速化
- VerbOceanでデータ拡張: 処理速度同じ、正答率は向上