K unst 1 st , Bewährtes zu erhalten!

Fabio Parizzi, Rapperswil / SG / CH

Kunst Ist, ALLERL zu ma Thema tisieren!

Peter Hammer chaosachso21@gmail.com

Armin Widmer widmer.ar@bluewin.ch

Felix Huber felix.68@gmx.ch

Rätsel des Monats $24 \cdot 1 + 2 \cdot 0 = 24$

ach so - auch so

Idee Armin Widmer, Felix Huber

Wer bewundert es nicht, das magische Quadrat des Nürnberger Künstlers **Albrecht Dürer** (1471-1528). Wer nicht auf mindestens **24 Arten** die Summe mit der magischen Zahl 34 entdeckt, ist definitiv blind. https://www.youtube.com/watch?v=XPQT9W04pgl

10			
	20	24	
	1	3	
			15

Wir wollen den Kupferstich aus dem Jahre **1514** (unten im Zentrum sichtbar) nicht abkupfern, sondern vielmehr uns durch dieses Kunststück inspirieren lassen und versuchen, die **magische Zahl 24** zu verdoppeln. Das heisst, unser magisches Quadrat mit der magischen **Zahl 48** soll zugleich die Summe 48 (diagonal, waagrecht, senkrecht, und ...) auf möglichst viele Arten «ab- oder aufdecken».

Frage Wie lässt sich das 4 x 4 Quadrat mit der magischen Zahl 2 x 24 vervollständigen, so dass möglichst oft die Summe 48 erscheinen wird. Das Einsetzen gleicher Zahlen ist erlaubt!

Was ist merkwürdig und **auch so** sogar denkwürdig ? Gute Frage ! Denkwürdig erscheint uns zum Beispiel, dass es eine Parallele gibt zwischen Piro Silvan, der am 11. Dezember 23 zur Welt kam, und Vera Zoe die am 23. Januar **24** das Licht der Welt erblickte. Für beide gilt die Zauber-Formel **«Tag + Monat = Jahr»**.

Bei Piro Silvan ist dies 11 + 12 = 23 und bei Vera Zoe 23 + 1 = 24.

Frage Wie viele Jahre in diesem Jahrhundert gibt es, bei denen die Anzahl Tage pro Jahr, welche die Formel T + M = J erfüllen, zweistellig ist?

In welchem Jahr in diesem Jahrhundert hat es am meisten Tage, welche das Produkt $T \times M = J$ erfüllen (zum Beispiel $3 \times 8 = 24$)?

Wer kommt auf die Idee, ein unendlich grosses Schachbrett wie in der Abbildung zu nummerieren und eine «ach so – auch so» Frage zu inszenieren ?

Richtig – es muss **Armin Widmer** sein!

3	7	36		35 34		33		32		31				
3	8	17		1	16 <mark>15</mark>		14		1 3		3	0		
3	9	1	8	-	5	4		3		1	2	2	9	
4	0	1	9	(6	4		-	2	1	1	2	8	
4	1	2	0	•	7	-8		ļ	9-	1	0	2	7	
4	2	21		22		23	3	24		25		2	6	1
4	3	44		4	5	4(3	4	7	4	8	4	9	

Es ist «high time» zu erwähnen, dass die **Zahl 24** in der Liste der «highly composite number» den 6. Rang einnimmt. Eine «HCN» ist eine Zahl, die mehr Teiler als jede der vorangehenden Zahlen hat. Die **Zahl 24** hat acht Teiler und somit mehr als beispielsweise die Zahl 16 mit nur fünf Teilern. Übrigens, die kleinste Zahl mit mehr als 1'000 Teilern ist eine Zahl, die mit **24** beginnt – wie könnte es auch anders sein!

$$245'044'800 = 2^6 \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17$$
 1'008 Teiler

https://en.wikipedia.org/wiki/Highly_composite_number

Mit der Idee, die Menge der Teiler «einzuteilen», stecken wir definitiv auf unserer zu analysierenden Springer-Tour, die im Zentrum beginnt und im Nirgendwo endet.

- Zieh den Springer auf das Feld mit der Zahl mit den meisten Teilern!
- Haben mehrere Zahlen gleich viele Teiler, ist die kleinste Zahl zu wählen!
- Ein Feld darf nicht mehrmals besucht werden!

Frage Wie wird die Felderfolge 1, 24, 45, ... fortgesetzt?

LiebhaberInnen des Programmierens wollen wissen:

Wird das Feld mit der Zahl 2'024 auch besucht?

Nach wie vielen Sprüngen heisst es unmissverständlich «anhalten bitte!», da alle erreichbaren Felder bereits besucht sind?