

22AIE301: PROBABILITY

AIRCRAFT TAKEOFF SAFETY ANALYSIS USING MONTE CARLO SIMULATION

Presented By Group C02

Hari Vaarthan T D - CB.SC.U4AIE23228
Joseph Binu - CB.SC.U4AIE23235
Jerome Richard D- CB.SC.U4AIE23265
S Sajeev - CB.SC.U4AIE23272

Amrita Vishwa Vidyapeetham Coimbatore

PROBLEM STATEMENT

- Aircraft over-rotation during takeoff is a rare but catastrophic event (P $\approx 10^{-3}$)
- Traditional analytical methods fail with multiple uncertain parameters
- Standard Monte Carlo requires excessive computational resources for rare events

OBJECTIVE:

Estimate probability that aircraft Angle of Attack (AoA) exceeds Threshold during takeoff using Monte Carlo methods

LITERATURE REVIEW

SL NO	Title	Author	Observation	Drawbacks
1	Replicating NASA's Importance Sampling Monte Carlo	Jeffrey A. Ouellette, Langley Research Center, NASA	This project shows how NASA's Importance Sampling Monte Carlo (IS-MC) method improves rare-event detection during aircraft takeoff. Using a simplified model with five key parameters weight, thrust, drag coefficient, rotation speed, and wind speed the results showed 10–15% higher maximum angles of attack and a 5–10% improvement in capturing extreme values like the 99.9th percentile. The median importance weights stayed around 0.5–0.8, ensuring stable and unbiased sampling, and these improvements came without added computational cost, while still matching expected aerodynamic behavior.	The model is simplified, using only five parameters instead of NASA's 130+, which limits realism. Parameter distributions were assumed rather than taken from real operational data. The 2,000-sample size also limits accuracy for very rare events. Additionally, the study focused only on takeoff dynamics and was not validated with flight test data, making it less generalizable to other flight phases.

MONTE CARLO SIMULATION

Definition:

Statistical method using random sampling to estimate probabilities of complex event with uncertain input parameters

Core Principle:

$$P_{event} = rac{1}{N} \sum_{i=1}^{N} I\left(x_i
ight)$$

UNCERTAIN INPUT PARAMETERS

Parameter & Symbol	Distribution	Impact on AoA	
Aircraft Weight (W)	Normal N(70,000, 2,500²)	Heavier aircraft increases AoA	
Engine Thrust (T)	Normal N(120,000, 5,000²)	Lower thrust increases risk	
Runway Friction (μ)	Uniform U(0.02, 0.06)	Lower friction extends runway roll	
CG Offset (δ_CG)	Uniform U(-0.04, 0.04)	Aft CG increases sensitivity	
Rotation Error (ε_Vr)	Gamma Γ(6, 0.3)	Early rotation increases AoA risk	
Headwind (V_wind)	Normal N(5, 2²)	Lower headwind impacts ground speed	

- Six independent parameters capture realistic takeoff uncertainty
- Different distributions match underlying physics of each parameter
- Combined effect determines probability of dangerous AoA > 08°
- Each simulation samples all parameters to compute takeoff outcome

STANDARD MONTE CARLO

Aircraft Takeoff Physics Model:

```
\alpha_{AoA} = f(weight, thrust, friction, cgOffset, rotation, error, wind)
```

Algorithm:

FOR i = 1 to N:

Sample all 6 parameters randomly

Calculate AoA = takeoff_simulator(parameters)

IF AoA > 4°: dangerous_events++

END

Probability = dangerous_events / N

Challenges:

For P \approx 0.01, need N \approx 50,000 samples for reliable estimate

ADVANCED MONTE CARLO

Bias sampling toward dangerous scenarios, then correct mathematically

$$P_{event} = rac{1}{N} \sum_{i=1}^{N} I\left(x_i
ight) imes w_i$$

where,

$$w_i = rac{f\left(x
ight)}{g\left(x
ight)} \; = \; rac{OriginalPDF}{BiasedSamplingPDF}$$

$$f(x) = f_1(x_1) \times f_2(x_2) \times f_3(x_3) \times f_4(x_4) \times f_5(x_5) \times f_6(x_6)$$

$$g(x) = g_1(x_1) \times g_2(x_2) \times g_3(x_3) \times g_4(x_4) \times g_5(x_5) \times g_6(x_6)$$

IMPORTANCE SAMPLING & HOW IT WORKS

Standard Monte Carlo Limitation:

- Approximately 99% of samples represent normal, safe operating conditions
- Rare dangerous events are poorly represented in sample population

Importance Sampling Strategy:

Step 1: Design Biased Distributions

- Weight: $N(72,000, 2,500^2) \leftarrow$ Sample heavier aircraft more frequently
- Thrust: $N(118,000, 5,000^2) \leftarrow$ Sample reduced thrust scenarios
- Friction: Beta $(0.3, 2.0) \leftarrow$ Emphasize poor runway conditions

Step 2: Calculate Importance Weights
$$w_i = \frac{f\left(x\right)}{g\left(x\right)}$$

VALIDATION METRICS

EFFECTIVE SAMPLE SIZE

STANDARD ERROR

$$ESS = rac{{{{\left({\sum
olimits_{i = 1}^N {w\left({{x_i}}
ight)}^2}} {}} }}{{\sum
olimits_{i = 1}^N {w{\left({{x_i}}
ight)}^2} }} \qquad SE_{IS} = \sqrt {rac{1}{{N\left({N - 1}
ight)}}\sum
olimits_{i = 1}^N {\left({w\left({{x_i}}
ight)}I_{danger}\left({{x_i}}
ight) - P
ight)^2} }}$$

$$Relative Efficiency = rac{SE_{SMC}}{SE_{IS}} \hspace{0.5cm} SE_{SMC} = \sqrt[2]{rac{P\left(1-P
ight)}{N}}$$

RESULTS AND ANALYSIS

FIGURING OUT THRESHOLD

```
Analyzing drivers of high-angle-of-attack events...
```

Tail probability at threshold: 1.0000%

Feature	Baseline Mean	Tail Mean	Direction	Tail/Baseline
weight	70006.804	70139.621	up	1.00
thrust	119998.903	122076.927	up	1.02
headwind	5.000	4.268	down	0.85
runway_mu	0.040	0.054	up	1.35
cg_offset	-0.000	0.002	up	-13.03
speed err	1.799	1.264	down	0.70

Tail-driver interpretation:

rot

- weight: tail samples are higher than average (baseline 70006.804 → tail 70139.621)
- thrust: tail samples are higher than average (baseline 119998.903 → tail 122076.927)
- headwind: tail samples are lower than average (baseline 5.000 → tail 4.268)
- runway_mu: tail samples are higher than average (baseline 0.040 → tail 0.054)
- cg_offset: tail samples are higher than average (baseline -0.000 → tail 0.002)
- rot_speed_err: tail samples are lower than average (baseline 1.799 → tail 1.264)

Determining common threshold for fair comparison.

Sample size for threshold determination: 100,000

Quantile used: 99.0%

Common threshold: $\tau = 3.745^{\circ}$

AoA Distribution Statistics:

Mean: 1.60°

Std: 0.85°

95th percentile: 3.06° 99th percentile: 3.75°

Maximum: 6.29°

Event probability at threshold: 0.0100

Expected events in 50k samples: 500

STANDARD MC

ADVANCED IS

COMPARISON

Comprehensive Monte Carlo Methods Comparison Dashboard

VALIDATION & ANALYSIS

Metric	Standard Monte Carlo (SMC)	Importance Sampling (IS)	Interpretation
Sample Size	50	50	Equal computational effort
Threshold (AoA)	3.745°	3.745°	Same critical event definition
Probability Estimate	934	984	5% difference - good agreement
Standard Error	43	42	IS has 2.3% lower uncertainty
Execution Time	0.074 sec	0.008 sec	IS is 9× faster
Relative Efficiency	_	106	IS is 6% more efficient
Precision Gain	_	103	IS provides 3% better precision
CI Improvement	_	103	IS has 3% tighter confidence intervals

CONCLUSION

- At a critical threshold of 3.745° (99th percentile), Standard Monte Carlo estimated a rare-event probability of 0.934% (467 dangerous events in 50,000 samples), indicating approximately 1 in 107 takeoffs could experience excessive Angle of Attack beyond safe operational limits.
- Importance Sampling achieved a higher probability estimate of 0.984% (1013 events), with 2.3% lower standard error (0.00042 vs 0.00043), demonstrating superior precision through variance reduction and tail-focused sampling strategy despite 9× longer execution time.
- Both methods showed strong statistical agreement (1.16σ), validating the aircraft physics model and confirming that the 6-parameter uncertainty quantification (weight, thrust, headwind, runway friction, CG offset, rotation error) reliably predicts takeoff safety margins.
- The 6% relative efficiency gain and 3% precision improvement of Importance Sampling justify its recommendation for aerospace safety certification, where accurate estimation of rare critical events directly impacts risk assessment and regulatory compliance.
- This analysis confirms that aircraft over-rotation events exceeding 3.745° AoA occur at approximately 1% probability, providing quantitative evidence for design margins and pilot training requirements to prevent dangerous takeoff configurations.

THANK YOU