CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 6651: Algorithm Design Techniques

Winter 2017

Quiz # 3

First Name	Last Name	ID#	
------------	-----------	-----	--

Question 1

Establish a recursive formula that relates the optimal solution of a large problem to optimal solutions of smaller subproblems. What is the complexity for computing an optimal solution?

Balance Partition. You have a set of n integers each in the range 0, 1, ..., K. Partition these integers into two subsets such that you minimize $|S_1 - S_2|$, where S_1 and S_2 denote the sums of the elements in each of the two subsets.

Recursive Formula	

Complexity			
Complexity			
$\mathbf{Complexity}$			
Complexity			
${f Complexity}$			
Complexity	Complexity		
	Complexity		

^	0
Question	2
a account	_

•
Design a greedy algorithm that solves $\underline{\text{exactly}}$ the following problem for matching skiers and skis.
A skier of height h with a pair de skis of length ℓ has a discrepancy of $ h - \ell $.
Input: A set of n skiers of heights h_1, h_2, \ldots, h_n and a set of skis of lengths $\ell_1, \ell_2, \ldots, \ell_n$.
Output: A matching between the n pairs of skis and the n skiers that minimizes the maximum discrepancy.
Description of the Greedy Algorithm
Complexity of the Greedy Algorithm

Proof that the Greedy Algorithm outputs an optimal solution