Image Analysis Project 8QA01

Part 4 – Evaluating your method

Dr. Veronika Cheplygina

Goal: Evaluate if your method is suitable for assessing skin lesions

- You developed some features and classifiers, now what?
- Evaluate features and/or features + classifier

Q1: Age	•••	Q7: Color	New feature
20		1	1.7
25		1	2.5
40		2	1.3
70		3	0.1

Pre	edicted label
0	
1	
0	
0	

Evaluating features

- Calculate features for artificial images (e.g. a circle) are the values logical?
- Compare features to measuring properties by hand
 - Correlation, inter-observer agreement, ...

Asymmetry (algorithm)	Asymmetry (observer 1)
0	0
1	1
2	4
100	3

Evaluating features

Look at plots of your features per class – are there clusters?

- Compare predicted label to true label
- Accuracy = correctly classified images / total images * 100 (here/75%)

True label	Predicted label
0	0
1	1
0	0
1	0

- If classifier predicts a probability, convert to a label by thresholding
- The threshold is a hyperparameter
 - Use 0.5 or select a different one based on training/validation sets

True label	Predicted probability		Predicted label
0	0.2	> 0.5 ?	0
1	0.9		1
0	0.3		0
1	0.4		0

- Accuracy is not always a suitable metric
- If we have only 1% cancer in the data, predicting all images as healthy is 99% accurate!
- Consider other metrics, such as precision/recall, AUC (area under the receiveroperating curve) and others

- Our method has 75% performance on the test set
- Now what?

Table 1: Performance of our method

75%

Evaluating classifiers - wrongly classified examples

- Which images are incorrectly classified?
 - Confusion matrix

Predicted → True ↓	NC	С
Non-Cancer	70	30
Cancer	5	95

Evaluating your method - wrongly classified examples

- Inspect the images visually
 - If your classifier outputs probabilities, look at "most incorrect" ones
- Are there any patterns?
 - Images too light/dark
 - Etc

True label	P(class 1)
0	0.9
0	0.6
1	0.1
1	0.4

Evaluating classifiers - different versions of your method

- What is the most important part of your method?
- Repeat your experiment, but remove 1 feature or parameter at a time
- Also referred to as "ablation experiments"

Evaluating classifiers – multiple runs

- Classifier A has 75% and classifier B has 76% is B better?
- Repeat the experiment 5 times, shuffling the data, to get mean + standard deviation
 - 75 \pm 0.1% and 76 \pm 0.1% vs
 - 75 \pm 5% and 76 \pm 5%
- You can shuffle the data, or use cross-validation

Evaluating algorithms

- We discuss evaluation from an algorithm's point of view,
- In practice, other factors should be considered
 - Do people trust this technology?
 - What are the rewards and risks to society?
 - Etc

Summary

- Goal of project
- Extracting features
- Training a classifier
- Evaluating your method
- Next: requirements for assignment