Curvas e Superfícies 2021.1

Escola de Matemática Aplicada, Fundação Getulio Vargas Professora Asla Medeiros e Sá Monitor Lucas Machado Moschen

Entrega 26/05/2021

Lista 6

Exercício 1 Provar que toda bola aberta $\mathcal{B}(x;r)$ é um conjunto aberto.

Solução 1. Seja $y \in \mathcal{B}(r;x)$. Queremos provar que existe $\epsilon > 0$ tal que $\mathcal{B}(y;\epsilon) \subseteq \mathcal{B}(r;x)$. Definimos para isto $\epsilon := r - |y - x| > 0$. Logo, dado qualquer ponto $z \in \mathcal{B}(y;\epsilon)$, temos que

$$|z - x| \le |z - y| + |y - x| < \epsilon + |y - x| = r - |y - x| + |y - x| = r.$$

Logo $z \in \mathcal{B}(x;r)$. Isto é, $\mathcal{B}(y;\epsilon) \subseteq \mathcal{B}(x;r)$. Concluímos que $\mathcal{B}(x;r)$ é aberto.

Exercício 2 Provar que $Z := \{(x,y) \in \mathbb{R}^2 : xy < 0\}$ é aberto. Dica: Seja (a,b) no conjunto Z. Seja $\epsilon := \min\{|a|,|b|\} > 0$. Provar que $\mathcal{B}((a,b);\epsilon) \subseteq Z$.

Solução 2.

Exercício 3 Provar que união de conjuntos abertos é um conjunto aberto.

Solução 3. Seja $\{A_{\lambda} : \lambda \in \Lambda\}$ uma família de abertos, onde Λ é um conjunto de índices (possívelmente infinito, não enumerável). Consideremos a união:

$$A := \bigcup_{\lambda \in \Lambda} A_{\lambda}.$$

Seja $z \in A$. Logo $z \in A_{\lambda}$ para algum índice λ . Dado que A_{λ} é aberto, existe $\epsilon > 0$ tal que $\mathcal{B}(z;\epsilon) \subseteq A_{\lambda}$. Logo $\mathcal{B}(z;\epsilon) \subseteq A$. Concluímos que A é aberto.

Exercício 4 Provar que a interseção de uma quantidade finita de abertos é um conjunto aberto.

Solução 4.

Exercício 5 Provar que a interseção de conjuntos fechados é um conjunto fechado. Será que união de fechados é também fechado? Se não for certo, dar um contraexemplo.

Solução 5.

Exercício 6 Dê exemplos de conjuntos que não são nem abertos nem fechados.

Solução 6.

Exercício 7 Prove que

$$C = \{(x, y) \in \mathbb{R}^2 : y > 0\}$$

é aberto.

Solução 7.

Exercício 8 Prove que um conjunto em \mathbb{R}^n é aberto se, e somente se, é união de bolas abertas.

Solução 8.

Exercício 9 Provar que $\mathbb{R} \times \{0\}$ é fechado em \mathbb{R}^2 .

Solução 9.

Exercício 10 Prove que as bolas fechadas são conjuntos fechados.

Solução 10.

Exercício 11 Seja $A \subseteq \mathbb{R}^n$ tal que existe d > 0 tal que $||x - y|| \ge d$ para todo par de pontos $x, y \in A$. Prove que A é fechado em \mathbb{R}^n .

Solução 11.

Exercício 12 Seja $A\subseteq\mathbb{R}^2$ um conjunto não vazio contido numa reta de \mathbb{R}^2 . Prove que A não é aberto.

Solução 12.

Exercício 13 Seja $A \subseteq \mathbb{R}^n$. Prove que $\mathbb{R}^n/int(A)$ é fechado.

Solução 13.

Exercício 14 Seja $A \subset B \subseteq \mathbb{R}^n$, e x ponto de acumulação de A. Será que x é também ponto de acumulação de B?

Solução 14.

Exercício 15 Se $A \subset \mathbb{R}^n$ é aberto, prove que sua fronteira tem interior vazio.

Solução 15.

Exercício 16 Seja $A \subseteq \mathbb{R}^n$ com $n \ge 2$. Prove que, dado $a \in \mathbb{R}^n/A$, o conjunto $A \cup \{a\}$ é aberto se, e somente se, a é um ponto isolado da fronteira de A.

Solução 16.

Exercício 17 Prove que se $F \subseteq \mathbb{R}^n$ é fechado então sua fronteira tem interior vazio.

Solução 17.

Exercício 18 Sejam $F \in \mathbb{R}^n$ fechado e $f : F \to \mathbb{R}^m$ uma aplicação contínua. Mostre que f leva subconjuntos limitados de F em subconjuntos limitados de \mathbb{R}^m . Prove, exibindo um contra-exemplo, que não se conclui o mesmo removendo-se a hipótese de F ser fechado.

Solução 18.

Exercício 19 Prove que duas bolas abertas de \mathbb{R}^n são homeomorfas.

Solução 19. Dados $a \in \mathbb{R}^n$ e r > 0, consideremos a aplicação:

$$f: \mathcal{B}(0,1) \to \mathcal{B}(a,r)$$

 $x \mapsto rx + a$

A aplicação f é bijetiva e contínua. Sua inversa, $f^{-1}: \mathcal{B}(a,r) \to \mathcal{B}(0,1)$, é dada por $f^{-1}(y) = \frac{1}{r}(y-a)$, donde se vê que f^{-1} é contínua, portanto f é um homeomorfismo. Pela transitividade da relação de homeomorfismo, conclui-se que duas bolas abertas quaisquer de \mathbb{R}^n são homeomorfas. Um argumento análogo prova que vale o mesmo para duas bolas, ambas, fechadas.

Exercício 20 Verifique que a aplicação:

$$f: \mathcal{B}(0,1) \to \mathbb{R}^n$$

 $x \mapsto \frac{x}{1 - ||x||}$

é um homeomorfismo entre a bola aberta unitária $\mathcal{B}(0,1)$ e \mathbb{R}^n . Conclua que qualquer bola aberta de \mathbb{R}^n é homeomorfa a todo o espaço \mathbb{R}^n .

Solução 20.

Exercício 21 Mostre que o cone $C = \{(x, y, z) \in \mathbb{R}^3; z = x^2 + y^2\}$ e \mathbb{R}^2 são homeomorfos.

Solução 21.