

Microphysics of Contrail to Cirrus

지구환경과학부 오영훈 지구환경과학부 현동규

Contrail

An artificial, linear cloud created by an aircraft Composed with ice crystals, below about -40°C Visible human influence to atmosphere

Contrail Formation

Mixing process

Thermodynamically decided

- Temperature
- RH
- The fuel energy content
- The amount of water vapor exhausted
- Propulsion efficiency

Contrail Cirrus

• Line-shaped persistent contrails transform into irregularly shaped ice clouds, or contrail cirrus

Condition

Wind shear

Turbulence

Ice-saturated air

Contrail cirrus .vs. Natural cirrus

Difficult to distinguish! – visual, microphysical, optical aspects

Observing the Contrail – Cirrus Changing

Contrail

Developing

Cirrus

High concentration

Spherical ice crystal

Diameter 1~10 μm

?

Typical concentration

Irregular ice crystal

Diameter 10~20 μm

Contrail Evolution; Three Phases

- Initial jet phase (~20 sec)
 - 배기가스 배출, 혼합
 - Schmidt-Appleman criterion nucleation, forming ice crystal
- Vortex phase (20 sec ~ 2 min)
 - 비행기 날개 뒤
 - 하강하며 단열압축, 얼음 결정 승화 (상대습도, 온도의 영향)
 - Unstable, 2분 뒤 소멸
- Final dispersion Phase (minutes ~ hours)
 - Atmosphere turbulent & wind shear lower the concentration
 - Contrail become Cirrus in this phase

What happens in dispersion phase

$$\frac{dx_w}{dt} = -j_w x - (x_w - x_{wa}) \frac{\alpha}{t}$$

A simplified parcel model

By Schroder et al(1999)

$$\frac{dm}{dt} = -m_w j_w$$

$$x(t) = x_0(\frac{t_0}{t})^{\alpha}$$

$$T(t) = T_0 + \nu \left(\frac{dT}{dt}\right)_{ad} (t - t_0)$$

Simplified Parcel Model - Approximation

- Consider
 - Dilution by mixing
 - Deposition of water vapor

Crystal size of contrail is very small

- Ignore
 - Ventilation The process happen in very short time
 - Latent heat
 - Crystal coagulation $\propto \exp(\text{temp.})$, ignore sat., crystal strct.
 - Break up process
 - Sedimentation loss \propto a*D^b (D=0.01 for contrail)

Results of Model ~ Observation

- Ice crystal concentration
 - 2~3 order decreased

- Mean diameter
 - 9μm increased

Similar to observation But some microphysical process is omitted

Results of Model ~ Observation

Similar to observation
But some microphysical process is omitted

SUMMARY

Some contrail changes to cirrus

How does it change?—Contrail evolution (3 phases)

Dispersion phase—Simplified Parcel Model

Results

REFERENCES

Schröder, F., and Coauthors, 2000: On the transition of contrails into cirrus clouds. *J. Atmos. Sci.*, **57**, 464–480. Heymsfield, A., *et. al.*, 2010: Contrail Microphysics. *Bulletin of American Meteorological Society,* **94**(4), 465-472.

THANK YOU FOR LISTENING & ANY QUESTION