قوانين مهمة لطالب البكالوريا لوحدات الكيمياء

n : كمية المادة (mol)	$n = \frac{m}{M}$	علاقة كمية المادة بالكتلة:
(g) على المادة m	M	ر حالة صلب أو سائل أو غاز)
$g.mol^{-1}$. الكتلة المولية الجزيئية . M	17	
(mol) عمية المادة: N عجم الغاز: N عجم الغاز: N	$n = \frac{V_g}{V_M}$	علاقة كمية المادة بحجم غاز:
$L.mol^{-1}$ الحجم المولي: V_{M}	, M	(حالة غاز)
n العجم الموتي n العجم المادة (mol)	N	,
الما الما الما الما الما الما الما الما	$n = \frac{N}{N_A}$	علاقة كمية المادة بعدد الافراد
(mol^{-1}) عدد أفوغادرو: $N_{_A}$		الكيميائية
$(\mathit{mol}.L^{-1})$ التركيز المولي: C	$C = \frac{n}{n}$	
(mol) عصية المادة: n	$C = \frac{n}{V}$	التركيز المولي لمحلول مائي C
(L) عجم المحلول: V		
$(g.L^{-1})$ التركيز الكتلي: $C_{\scriptscriptstyle m}$	$C_m = \frac{m}{V}$	
m : كتلة المادة المنحلة (g)	_ <i>"''</i>	C_m التركيز الكتلي لمحلول مائي
(L) حجم المحلول: V		
$(mol.L^{-1})$ التركيز المولي: C	$C = \frac{C_m}{M}$	
$(g.L^{-1})$ التركيز الكتلي: C_m	M	العلاقة بين التركيز المولي C
$(g.mol^{-1})$ الكتلة المولية الجزيئية: M		C_m والتركيزالكتلي
(mol) عمية مادة المنحل قبل وبعد التمديد $n_1=n_2$	$n_1 = n_2$	علاقة التمديد (التخفيف)
حيث: C_1V_1 : قبل التمديد و C_2V_2 : بعد التمديد	$C_1 V_1 = C_2 V_2$, , , , , , , , , , , , , , , , , , ,
$(F>1)$: معامل التمديد (بدون وحدة $_{ m C}$. حيث : $_{ m C}$		
	$F = \frac{C_1}{C_1} = \frac{V_2}{C_1}$	معامل التمديد (F)
$(mol.L^{-1})$ التركيز المولي للمحلول المركز رقبل التمديد) التركيز المولي للمحلول المركز وقبل التمديد) المحلول المركز وقبل التمديد) V_1	$F = \frac{1}{C_2} = \frac{1}{V_1}$	
$(mol.L^{-1})$ التركيز المولي للمحلول الممدد $($ بعد التمديد $)$: C_2	2 1	ملاحظة: حجم الماء المقطر المضاف
$\cdot(L)$ حجم المحلول الممدد (بعد التمديد) $\cdot V_2$		$V_{eau} = V_2 - V_1$
$(mol.L^{-1})$ التركيز المولي: C		
P : درجة النقاوة (%)	$C = \frac{10 \ P \ d}{M}$	علاقة التركيز المولي بدرجة نقاوة
ط : كثافة المذاب بالنسبة للماء : d	M	محلول تجاري
$(g.mol^{-1})$ الكتلة المولية الجزيئية: M		
$(kg.L^{-1})$ الكتلة الحجمية $(g.mL^{-1})$ أو $ ho$		علاقة الكتلة الحجمية بكتلة
m : كتلة النوع الكيمائي (g) أو (kg)	$\rho = \frac{m}{V}$	و حجم نوع كيميائي
(L) أو (mL) عجم النوع الكيمائي: V	V	

Prof Salim

الكتلة الحجمية للهواء : $ ho_{air}=1,3{}^{g}/_{L}$: m_{g} : كتلة الغاز . m_{g} : كتلة نفس حجم الغاز من الهواء . m_{air}	$d = \frac{m_g}{m_{air}}$ $d = \frac{\rho_g}{\rho_{air}}$	كثافة غاز بالنسبة للهواء
M : الكتلة المولية الجزيئية للغاز (g.mol ⁻¹) . M . كثافة الغاز (بدون وحدة) . d	$d = \frac{M}{29}$	ملاحظة: إذا كان الغاز في الشرطين النظاميين من ضغط ودرجة الحرارة $ heta=0^{\circ}C, \qquad P=1$
d: d : الكثافة (بدون وحدة) . $\rho_{eau}: \rho_{eau}$: الكتلة الحجمية للماء . $\rho_{eau}=1g/cm^3=1g/mL=1000g/L$. . الكتلة الحجمية للنوع الكيميائي الصلب أو السائل . ρ	$d = \frac{m}{m_{ecau}}$ $d = \frac{\rho}{\rho_{eau}}$	كثافة نوع كيميائي سائل أو صلب بالنسبة للماء :
P: ضغط الغاز P : ضغط الغاز P : P : خجم الغاز P : P : P : حجم الغاز P : P : خمية مادة الغاز P : P : ثابت الغاز المثالي P : درجة الحرارة المطلقة P : ثابت الغان P : درجة الحرارة المطلقة P :	PV = nRT	القانون العام للغازات المثالية
$(^{\circ}C)$ حيث $\theta(^{\circ}C)$ درجة الحرارة المنوية $T(K) = \theta(^{\circ}C) + 273$	ملاحظةمهمة	

\cdot الناقلية وحدتها السيمنس \cdot الناقلية وحدتها السيمنس: G		الناقلية الكهربائية 🕜		
$\cdot (S.m^{-1})$. الناقلية النوعية للمحلول σ	$G = \sigma \frac{S}{L}$	ناقلية جزءمن محلول شاردي		
$\cdot (m^2)$ مساحة سطح اللبوس: S	$G = G = \frac{1}{L}$	محصور بين لبوسين		
(m) البعد بين اللبوسين: L	$K = \frac{S}{I}$: حيث	صفیحتین) ناقلین		
(m) . ثابت الخليم: K	L			
ا : مقاومة المحلول (Ω) .	$G = \frac{1}{}$	علاقة أخرى للناقلية		
G : الناقلية وحدتها السيمنس G	R	الكهربائية G :		
$(mol.m^{-3})$: التركيز المولي للشوارد الموجبة $[X^+]$	$\sigma = \lambda_{X_1^+} [X_1^+] + \lambda_{X_2^-} [X_2^-] + \dots$	الناقلية النوعية σ لجزء		
$(molm^{-3})$: التركيز المولي للشوارد السالبة $[X^-]$	X_1^+ $[-1]$ $X_2^ [-2]$	محلول شاردي مخفف:		
X^+ الناقلية النوعية المولية الشاردية للشاردة: $\lambda_{\chi_1^+}$				
X^- الناقلية النوعية المولية الشاردية للشاردة: $\lambda_{\chi_2^-}$				
ملاحظة مهمة: كل الشوارد الموجودة في الوسط التفاعلي تشارك في الناقلية الكهربائية حتى الخاملة منها.				

بالتوفيق للجميع...