Lecture 8 - Properties of Integers

The Division Algorithm

- Definition $b \mid a$ (b divides a) if and only if a = bn
- Theorems, for all $a,b,c\in\mathbb{Z}$:
 - $\circ \ \ 1 \mid a \ \mathsf{and} \ a \mid 0$
 - $\circ [(a \mid b) \land (b \mid a)] \implies a = \pm b$
 - $\circ \ [(a \mid b) \land (b \mid c)] \implies a \mid c$
 - $\circ \hspace{0.1in} (a \mid b) \implies a \mid bx ext{ for all } x \in \mathbb{Z}$
 - \circ If x=y+z for some $x,y,z\in\mathbb{Z}$ and a divides two of the three integers x,y and z then a divides the remaining integer
 - $\circ \ \ [(a\mid b)\land (a\mid c)] \implies a\mid (bx+cy) ext{ for all } x,y\in \mathbb{Z} ext{ (the expression } bx+cy ext{ is called a linear combination of b and c)}$
 - \circ For $1\leq c_i\leq n$, let $c_i\in\mathbb{Z}.$ If a divides each c_i then $a\mid (c_1x_1+c_2x_2+\ldots+c_nx_n)$ there $x_i\in\mathbb{Z}$ for all $1\leq i\leq n.$
- If $a,b \in \mathbb{Z}$, then there exist unique $q,r \in \mathbb{Z}$ with a=qb+r, $0 \leq r < b$.
 - Here q is called quotient
 - r remainder
 - b divisor and
 - a dividend

Greatest Common Divisor

- Definition: c is the greatest common divisor of a and b iff:
 - $\circ \;\; c \mid a \; \mathsf{and} \; c \mid b$

- $\circ~$ For any common divisor d of a and b, $d\mid c$
- GCD is unique
- GCD is the smallest positive integer we can write as a linear combination of a and b
- gcd(a,b) = gcd(b,a)
- gcd(a,b) = gcd(a,-b) = gcd(-a,b) = gcd(-a,-b)
- gcd(a,0) = |a|
- gcd(0,0) is not defined
- We call a and b **relatively prime** (co-prime) if gcd(a,b)=1

Euclidean Algorithm

```
function gcd(a, b)
while a ≠ b
    if a > b
        a := a - b
    else
        b := b - a
return a
```

Least Common Multiple

- Definition: The least common Multiple is the smallest of all positive integers that are common multiples of a and b.
- lcm(1, n) = lcm(n, 1) = n
- lcm(a, na) = na
- If $n \geq m$, $lcm(a^m, a^n) = a^n$
- If c = lcm(a, b) and d is a common multiple of a and b, then $c \mid d$.
- $a \cdot b = lcm(a, b) \cdot gcd(a, b)$

Diophantine Equations

- · Diophantine equations are of the form
 - $\circ \ \ ax^n = by^n = c^n$, where all numbers are integers
- ax + by = c has a solution only if gcd(a,b) is a factor of c
- To solve
 - \circ Find gcd(a,b)=d, then $d\mid c$, so $c=d\cdot n$ for some integer n.
 - \circ Express d in the form d=as+bt for some integers s and t
 - Multiply by n to get x = sn, y = tn
 - Then, all the solutions can be generated like this:

$$x=x_1-rac{rb}{d} \ y=y_1+rac{ra}{d}$$

 \circ Where x_1 and y_1 are a single solution to this equation.

Pythagorean Triples

- Pythagorean triples are of the form $a^2+b^2=c^2$
- To find these:
 - pick an odd positive number
 - divide its square into two integers which are as close to being equal as possible
 - \circ Example: $7^2=49=24+25$ gives triples 7,24,25
 - Alternatively pick any even integer n
 - $\circ~$ triples are $2n, n^2-1$ and n^2+1
 - \circ Example: picking 8 gives 16,63,65