A deep learning model with self-supervised learning and attention mechanism for COVID-19 diagnosis using chest X-ray images

박정훈, 곽일엽, 임창원 (중앙대학교 통계학과)

연구 배경 및 목적

- COVID-19의 창궐
- 기존 검진 방법인 RT-PCR 방법의 한계 ex) 큰 비용, 결과가 나오는데 까지 걸리는 시간, 변동성 있는 결과
- 폐질환 진단에 있어서 딥러닝 모델의 중요성 대두
- COVID-19 Chest X-ray 데이터의 양적 한계
- 딥러닝 모델에 있어서 부족한 데이터는 과적합 문제를 야기할 수 있기 때문에 이를 해결하고자 함
- 과적합을 방지하고 일반화 성능을 높이기 위해 자기지도학습 기법을 적용한 새로운 딥러닝 기반 분류모델 제안

데이터 수집 및 전처리

- 다양한 소스에서의 COVID-19 Chest X-ray 데이터 수집 (COVID-19 image data collection, COVID-19 Radiography Database 등)
- Classification model을 위한 정상, 폐렴 Chest X-ray 데이터 수집 정상 및 폐렴: NIH Chest X-ray dataset
- 자기 지도 학습을 위한 대용량 Chest X-ray 데이터 수집 NIH Chest X-ray dataset: 112,120 장의 X-Ray 이미지 데이터 수집
- 통계적 가정을 만족하기 위한 전처리
 모두 다른 소스에서 수집한 데이터이므로 다른 분포를 따를 것이라는 가정 아래 모든 pixel value를 0에서 1사이의 값으로 정규화

Class	Sources	Number of data
Normal	NIH CXRs dataset	607
Pneumonia	NIH CXRs dataset	607
COVID-19	COVID-19 image data collection	468
	Figure 1 COVID-19 CXRs	35
	Actualmed COVID-19 CXRs	58
	COVID-19 Radiography Database	46

Self-supervised learning image restoration task

Self-supervised learning

대용량의 unlabeled data를 사용하여 데이터의 특성에 대한 학습을 한 뒤 학습된 가중치를 사용하여 original task에 대해 fine-tuning 함으로써 과적합 방지 및 모델의 성능 개선 가능

- Pretext task by Model genesis self-supervised learning technique.
Linear transformation, Local shuffling, In or out painting을 사용하여
original image를 변형한 후, 원 이미지로 복원하는 과정을 통해 Chest X-ray
의 특성 학습

UNet and CBAM attention for self-supervised learning

Segmentation에 사용되는 Unet (Ronneberger et al. 2015) 구조와 convolutional attention 기법인 CBAM attention (Woo et al. 2018)을 사용한 self-supervised learning을 통해 1-SSIM index loss function을 사용하여 Chest X-ray를 복원하며 특성을 학습함

COVID-19 Diagnosis classification task

- Self-supervised learning task

NIH Chest X-ray - train: 111,120 validation: 1,000

- Chest X-ray diagnosis task

COVID-19: 607, Pneunomia: 607, Normal: 607 Train set: 1160, Validation set: 290, Test set: 363

- Overall diagnosis task

Result of self-supervised learning & Diagnosis

- Results of self –supervised learning - Result of classification table

Original Image : COVID

Pred Class : COVID

Original Image : COVID

Original Image : Normal

Original Image : Pneumonia

Pred Class : Pneumonia

Well Classified Score CAM Explanation

Conclusion

- 10만 여 장의 대용량 Chest X-ray 데이터를 자기지도학습에 사용하여 Chest X-ray의 특성을 잘 학습할 수 있음
- 자기지도학습의 가중치를 fine-tuning 함으로써 분류 모델의 성능을 향상시 킬 수 있음
- Score-CAM (Wang et al. 2020)을 통해 딥러닝 모델의 가중치가 폐 조직에 활성화 되어 딥러닝 모델이 정확한 이유로 분류하고 있음을 확인

참고문헌

- 1. Ronneberger, O, Fischer, P, Brox, T. (2015), U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, 234-241, Springer, Cham.
- 2. Woo S, Park J, Lee JY, So Kweon I. (2018), Cham: Convolutional block attention module, In Proceedings of the European conference on computer vision (ECCV), 3-19.
- 3. Wang, H, Wang, Z, Du, M, Yang, F, Zhang, Z, Ding, S, Mardziel, P, Hu, X. (2020), Score-CAM: Score-weighted visual explanations for convolutional neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 24-25.

This research was supported by Next Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT(No.2017M3C4A7083281).