Inequalities

Doan Ngoc Phu

September 26, 2020

Theorem 1. (Markov's inequalities) Let X be a non-negative random variable and suppose $\mathbb{E}(X)$ exists. For any, t > 0,

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t}$$

Proof. fk8y We have X > 0 so:

$$\mathbb{E}(x) = \int_0^{+\infty} x f(x) dx$$

$$= \int_0^t x f(x) dx + \int_t^{+\infty} x f(x) dx$$

$$\geq \int_t^{+\infty} x f(x) dx$$

$$\geq t \int_t^{+\infty} f(x) dx$$

$$= t \mathbb{P}(X > t)$$

Theorem 2. (Chebysev's inequality) Let $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$. Then,

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \quad and \quad \mathbb{P}(|Z| \ge k) \le \frac{1}{k^2}$$

where $Z = (X - \mu)/\sigma$.

Proof.

$$\mathbb{P}(|X - \mu| \ge t) = \mathbb{P}(|X - \mu|^2 \ge t^2) \le \frac{\mathbb{E}((X - \mu)^2)}{t^2} = \frac{\sigma^2}{t^2}$$
$$\mathbb{P}(|Z| \ge k) = \mathbb{P}(|X - \mu| \ge \sigma k) \le \frac{\sigma^2}{\sigma^2 k^2} = \frac{1}{k^2}$$

Theorem 3. (Hoeffding's inequality) Let $Y_1, Y_2, ..., Y_n$ be independent observations such that $\mathbb{E}(X_i) = 0$ and $a_i \leq Y_i \leq b_i$. Let $\epsilon > 0$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(\sum_{i=1}^{n} Y_i \ge \epsilon) \le e^{-t\epsilon} \prod_{i=1}^{n} e^{t^2(b_i - a_i)^2/8}$$

Let $X_1, X_2, \ldots, X_n \sim Bernulli(p)$. Then, for any $\epsilon > 0$,

$$\mathbb{P}(|\overline{X_n} - p| > \epsilon) \le 2e^{-2n\epsilon^2}$$

where $\overline{X_n} = \frac{X_1 + X_2 + \dots + X_n}{n}$

Theorem 4. (Cauchy-Schwarz inequality) If X and Y have finite variances then

$$\mathbb{E}(|XY|) \le \sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$

Theorem 5. (Jensen's Inequality) If g is convex then

$$\mathbb{E}g(X) \ge g(\mathbb{E}(X))$$

if g is concave then

$$\mathbb{E}g(X) \le g(\mathbb{E}(X))$$