บทที่ 6 วงจรบวกลบเลขไบนารี่

บทน้ำ

วงจรบวก-ลบเลขไบนารี่ คือวงจรลอจิกที่ทำหน้าที่การคำนวนทางคณิตศาสตร์มีความสำคัญต่อภาค คำนวณในระบบคอมพิวเตอร์ ส่วนการคูณและการหารนั้นจะใช้วิธีการบวกและลบ หลายๆครั้ง เพื่อให้ได้ค่าตาม ต้องการ

สาระการเรียนรู้

- 1. การบวกเลขไบนารี่
- 2. วงจรบวกเลขไบนารี่
- 3. การลบเลขไบนารี่
- 4. วงจรลบเลขไบนารี่

สรรถนะประจำหน่วย

- 1. แสดงความรู้เกี่ยวกับความหมายของการบวกเลขไบนารื่ได้
- 2. แสดงความรู้เกี่ยวกับการออกแบบวงจรบวกเลขไบนารี่ได้
- 3. แสดงความรู้เกี่ยวกับความหมายของการลบเลขไบนารี่ได้
- 4. แสดงความรู้เกี่ยวกับการออกแบบวงจรลบเลขไบนารี่ได้

จุดประสงค์การเรียนรู้ เพื่อให้

- 1. มีความรู้ความเข้าใจเกี่ยวกับวงจรบวกลบเลขไบนารี่
- 2. มีทักษะในการออกแบบวงจรบวกลบเลขไบนารี่
- 3. มีกิจนิสัยในการทำงานด้วยความรับผิดชอบ รอบคอบและปลอดภัย

6.1 การบวกเลขไบนารี่

เลขไบนารี่หรือเลขฐานสองนั้นประกอบไปด้วยเลขจำนวนสองตัว คือ 0 และ 1 ดังนั้นแต่ละหน่วยของ เลขไบนารี่จึงมีค่าไม่เกิน 1 หากทำการบวกกันแล้วเกินหนึ่งจะต้องทดไปในหน่วยถัดไป โดยทำการบวกเหมือน เลขฐานสิบที่ใช้ในชีวิตประจำวัน ซึ่งทำการบวกจากทางขวามือไปทางซ้ายมือ

หลักการบวกเลขเลขไบนารี่

ตัวอย่าง จงบวกเลขไบนารี่ 1111101₂ + 1101101₂

สรุป 1011101₂ + 1111001₂ = 11010110₂

ตัวอย่าง จงบวกเลขไบนารี่ 1100101₂ + 1001100₂

สรุป $1100101_2 + 1001100_2 = 10110001_2$

6.2 วงจรบวกเลขไบนารี่

6.2.1 วงจรบวกเลขไบนารี่ จำนวน 2 บิต โดยไม่คิดตัวทด ซึ่งมีการใช้งานคือ เมื่อป้อนค่าเลขไบนารี่ จำนวน 2 บิตแล้ว ให้แสดงผลการบวก และแสดงผลว่ามีตัวทดในการบวกครั้งนั้นหรือไม่

กำหนดจำนวนตัวแปร

กำหนดให้อินพุตมีทั้งหมด 2 ตัวแปร คือ A และ B กำหนดให้เอาต์พุตมีทั้งหมด 2 ตัวแปร คือ C_o และ Y ตารางความจริงจากตัวแปรอินพุตและเอาต์พุต

ตารางที่ 6.1 ตารางความจริงวงจรบวกเลขไบนารี่แบบไม่คิดตัวทด

อิง	นพุต	เอาต	า์พุต
Α	В	Y (ผลลัพธ์)	C _o (ตัวทด)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

สมการลอจิก เอาต์พุต 1 คือ Y = A \oplus B สมการลอจิก เอาต์พุต 2 คือ C $_{\rm o}$ = A·B นำสมการลอจิกเขียนเป็นวงจรลอจิกเกท

ภาพที่ 6.1 วงจรบวกเลขไบนารี่ จำนวน 2 บิต โดยไม่คิดตัวทด

6.2.2 วงจรบวกเลขไบนารี่ จำนวน 2 บิต โดยคิดตัวทด ซึ่งมีการใช้งานคือ เมื่อป้อนค่าเลขไบนารี่จำนวน 2 บิตแล้ว ให้แสดงผลการบวกโดยคิดตัวทด และแสดงผลตัวทด

กำหนดจำนวนตัวแปร

กำหนดให้อินพุตมีทั้งหมด 2 ตัวแปร คือ A, B และ C_i กำหนดให้เอาต์พุตมีทั้งหมด 2 ตัวแปร คือ C_o และ Y

ตารางความจริงจากตัวแปรอินพุตและเอาต์พุต ตารางที่ 6.2 ตารางความจริงวงจรบวกเลขไบนารี่โดยคิดตัวทด

	อินพุต	ที	เอาต์ทุ	ព
А	В	C _i (ตัวทดเข้า)	C _o (ตัวทดออก)	Y (ผลลัพธ์)
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

ภาพที่ 6.2 วงจรบวกเลขไบนารี่ โดยคิดตัวทด

6.3 การลบเลขไบนารี่

การลบเลขไบนารี่หรือเลขฐานสองนั้น วิธีการลบจะเหมือนกับการลบเลขฐานสิบที่ใช้ในชีวิตประจำวัน คือ การลบหลักที่มีค่าต่ำที่สุดก่อนแล้วจึงลบหลักที่มีค่ามากขึ้นไปทางซ้ายมือ หากตัวตั้งมีค่ามากกว่าตัวลบ ผลลัพธ์ที่ได้ จะไม่ติดลบ หากตัวตั้งน้อยกว่าตัวลบจะต้องยืมหลักถัดไปทางซ้ายมือคือหลักที่มีค่ามากกว่า และเมื่อยืมหลัก ทางซ้ายมือค่าของตัวยืมจะมีค่าเท่ากับ 2

หลักการลบเลขฐานสอง

0 - 0	ได้ 0
0 - 1	ลบไม่ได้ ต้องยืมหลักถัดไป เมื่อยืมแล้ว ลบได้ 1
1 - 0	ได้ 1
1 - 1	ได้ 0

ตัวอย่าง จงลบเลขฐานสอง 1101111₂ - 1001110₂

สรุป 11011112 - 10011102 = 100012

ตัวอย่าง จงลบเลขฐานสอง 1101101₂ - 1001100₂

สรุป 1100101₂ - 1001100₂ = 1011₂

6.4 วงจรลบเลขไบนารี่

6.4.1 วงจรลบเลขไบนารี่ จำนวน 2 บิต โดยไม่คิดตัวยืม ซึ่งมีการใช้งานคือ เมื่อป้อนค่าเลขไบนา รี่จำนวน 2 บิตแล้ว ให้แสดงผลการลบโดยคิดตัวยืม และแสดงผลตัวยืม

กำหนดจำนวนตัวแปร

กำหนดให้อินพุตมีทั้งหมด 2 ตัวแปร คือ A และ B กำหนดให้เอาต์พุตมีทั้งหมด 2 ตัวแปร คือ B_o และ Y ตารางความจริงจากตัวแปรอินพุตและเอาต์พุต

ตารางที่ 6.3 ตารางความจริงวงจรลบเลขไบนารี่ โดยไม่คิดตัวยืม

อิ๋ง	นพุต	เอาต์	ก์พุต
А	В	Y (ผลลัพธ์)	B _o (ตัวยืม)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

สมการลอจิก เอาต์พุต 1 คือ Y = A \oplus B สมการลอจิก เอาต์พุต 2 คือ B $_{
m o}$ = $ar{\rm A}\cdot$ B นำสมการลอจิกเขียนเป็นวงจรลอจิกเกท

ภาพที่ 6.3 วงจรลบเลขไบนารี่ โดยไม่คิดตัวยืม

6.4.2 วงจรลบเลขไบนารี่ จำนวน 2 บิต โดยคิดตัวยืม คือให้อินพุต A เป็นตัวตั้ง ลบอินพุต B และลบด้วย B_i (ตัวยืมเข้า) ด้วยซึ่งมีการใช้งานคือ เมื่อป้อนค่าเลขไบนารี่จำนวน 2 บิตแล้ว ให้แสดงผลการลบโดยคิดตัวยืม และแสดงผลตัวยืมออก

กำหนดจำนวนตัวแปร

กำหนดให้อินพุตมีทั้งหมด 2 ตัวแปร คือ A, B และ B_i กำหนดให้เอาต์พุตมีทั้งหมด 2 ตัวแปร คือ B_o และ Y

ตารางความจริงจากตัวแปรอินพุตและเอาต์พุต ตารางที่ 6.4 ตารางความจริงวงจรลบเลขไบนารี่ โดยคิดตัวยืม

	อินพุต		เอาเ	ท์พุต
А	В	B _i (ตัวยืมเข้า)	Y (ผลลัพธ์)	B _o (ตัวยืมออก)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

สมการลอจิก เอาต์พุต 1 คือ Y = A \oplus B \oplus B $_i$ สมการลอจิก เอาต์พุต 2 คือ B $_o$ = $\overline{A}\cdot$ B+B $_i(\overline{A}\overline{\oplus}\overline{B})$

นำสมการลอจิกเขียนเป็นวงจรลอจิกเกท

ภาพที่ 6.4 วงจรลบเลขไบนารี่ จำนวน 2 บิต โดยคิดตัวยืม

1. จงแสดงวิธีทำการบวกเลขไบนารี่ 1110001 ₂ + 1101101 ₂	
and a Maria	
2. จงแสดงวิธีทำการบวกเลขไบนารี่ $1001101_2 + 1111101_2$	
2. จงแสดงวิธีทำการบวกเลขใบนารี 1001101 ₂ + 1111101 ₂	
2. จงแสดงวิธีทำการบวกเลขไบนารี 1001101 ₂ + 1111101 ₂	
2. จงแสดงวิธีทำการบวกเลขไบนารี 1001101 ₂ + 1111101 ₂	
2. จงแสดงวิธีทำการบวกเลขไบนารี 1001101 ₂ + 1111101 ₂	
2. จงแสดงวิธีทำการบวกเลขไบนารี 1001101 ₂ + 1111101 ₂	
2. จงแสดงวิธีทั่าการบวกเลขไบนารี 1001101 ₂ + 1111101 ₂	

3. จงแสดงวิธีทำการลบเลขฐานสอง 1100011₂ - 1001110₂

4. จงแสดงวิธีทำการลบเลขฐานสอง 1110001	14 444440
4. จงแสดงวธทาการลบเลขฐานสอง 1110001	11 111110
ત્ર	112-11111102
વ્ય	112-11111102
qq	
qq	112-11111102
ga	
da	
da	112-11111102
- Asi	112-11111102
	112-11111102
	112-11111102
	112-11111102
	112-11111102
	112-11111102
	112-11111102
	112-1111102

5. จงออกแบบวงจรลอจิกการบวกเลขไบนารี่ จำนวน 2 บิต โดยคิดตัวทด

6. จงออกแบบวงจรลอจิกการลบเลขไบนารี่ จำนวน 2 บิต โดยคิดตัวยืม	