Another Approach to Acsoli's Theorem.

This set of notes and problems is to show how Ascoli's theorem can be deduced from the Tychonoff product theorem. I will not try for the most generality, but that the method generalizes should be clear. We start with some elementary topology.

Proposition 1. If K is a compact subset of a Hausdorff space X, then K is a closed subset of X.

Problem 1. Prove this. \Box

Proposition 2. It X and Y are topological spaces and $f: X \to Y$ continuous, then if $K \subseteq X$ is compact, then f[K] is a compact subset of Y.

Problem 2. Prove this.

The following is elementary but quite useful.

Theorem 3. Let X and Y be topological spaces with X compact and Y Hausdorff and $f: X \to Y$ a continuous bijection, then f is a homeomorphism.

Problem 3. Prove this. HINT: As f is a bijection the inverse $f^{-1}: Y \to X$ exists. Showing the f^{-1} is continuous is equivalent to showing that f is open. Let $U \subset X$ be open. Then $K := X \setminus U$ is closed in X and therefore compact. Thus f[K] is compact in Y and therefore $f[U] = Y \setminus f[K]$ is open.

Here is an example of use of this theorem. Let $f: [a, b] \to [c, d]$ be a continuous strictly increasing function with f(a) = c and f(b) = d. Then the inverse $f^{-1}: [c, d] \to [a, b]$ is continuous. This is because [a, b] is compact and [c, d] is Hausdorff.

Exercise 1. Try proving this directly without use Theorem 3.

Corollary 4. Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on X with $\mathcal{T}_1 \subseteq \mathcal{T}_2$. Assume that \mathcal{T}_2 is compact and \mathcal{T}_1 is Hausdorff. Then $\mathcal{T}_1 = \mathcal{T}_2$.

Problem 4. Prove this. HINT: Apply Theorem 3 to the identity map $I: (X, \mathcal{T}_2) \to (X, \mathcal{T}_1)$.

For the rest of these notes X and Y are both compact metric space. Let C > 0 be a positive constant and let

$$\mathcal{L} := \{ f \colon X \to Y : d_Y(f(x_1), f(x_2)) \le C d_X(x_1, x_2) \}.$$

That is \mathcal{L} is the set of all Lipschitz maps from X to Y with Lipschitz constant C. Let C(X,Y) be the metric space of all continuous function $f:X\to Y$ with the metric

$$d_C(f,g) = \sup_{x \in X} d_Y(f(x), g(x)).$$

Thus convergence with respect to the metric d_C is just uniform convergence. Our goal is to show that \mathcal{L} is a compact subset of C(X,Y).

We consider the space Y^X of all functions $f: X \to Y$ with the product topology. As Y is compact this Tychonoff's theorem implies that Y^X us a compact Hausdorff space.

Lemma 5. Show that \mathcal{L} is a closed, and thus compact, subset of Y^X .

Problem 5. Prove this.
$$\Box$$

Lemma 6. Let \mathcal{T}_C be the topology on \mathcal{L} induced by the metric d_C and let \mathcal{T}_P be the topology induced on \mathcal{L} by the product topology on Y^X . Then $\mathcal{T}_C \subseteq \mathcal{T}_P$.

Problem 6. Prove this. HINT: Let $U \in \mathcal{T}_C$. Then it is required to show that U is open in the \mathcal{T}_P topology. Let $f \in U$, then, by the definition of the metric topology, there is an r > 0 such that $B_C(f,r) := \{g \in \mathcal{L} : d_C(f,g) < r\} \subseteq U$. As X is compact there is a finite set $\{x_1, \ldots, x_n\} \subset X$ such that for every point $x \in X$ there an x_i with $d_X(x,x_i) < r/(3C)$. Let $V := \{g \in \mathcal{L} : d_Y(f(x_i), g(x_i) < r/3, \text{ for } i = 1, \ldots, n\}$. This is open in the \mathcal{T}_P topology. If $g \in V$, then for any $x \in X$ choose an x_i such that $d_X(x,x_i) < r/(3C)$. Then

$$d_Y(f(x), g(x)) \le d_Y(f(x), f(x_i)) + d_Y(f(x_i), g(x_i)) + d_Y(g(x_i), f(x_i))$$

$$< Cd_X(x, x_i) + \frac{r}{3} + Cd_X(x, x_i)$$

$$< C\frac{r}{3C} + \frac{r}{3} + C\frac{r}{3C} = r.$$

This holds for all x, so $d_C(f,g) < r$ and therefore $g \in B_C(f,r)$. As g was an arbitrary element of V, this implies $f \in V \subset B_C(f,r) \subseteq U$. Therefore U contains a \mathcal{T}_P neighborhood, V, about any of its points, f, and so $U \in \mathcal{T}_P$.

Theorem 7. With the topology induced by the metric d_C , the set \mathcal{L} is a compact subset of C(X,Y).

Problem 7. Prove this. HINT: By Lemma 5 the topology \mathcal{T}_P is compact. The topology \mathcal{T}_C is Hausdorff and by Lemma 6 the inclustion $\mathcal{T}_C \subseteq \mathcal{T}_P$ holds. By Corollary 4 this implies $\mathcal{T}_C = \mathcal{T}_P$.

Remark 8. It only takes minor variants on this argument to prove the full form of Ascoli's Theorem.