6.1 Bayes' Rule for Discrete Value of \$ heta\$

Zongyi Liu

2023-06-12

This chapter mainly deals with inferring a binomial proportion via grid approximation (for discrete values).

6.1 Bayes' Rule for Discrete Value of θ

In previous chapter, the parameter θ denotes the value of a binomial proportion, such as the underlying propensity for a coin to come up heads.

Previously, we assume that θ was continuous over the interval [1,0], We assume that θ has any value in that domain. The prior probability density at each value of θ , such as a beta distribution.

However, in this case, we assume that θ is discrete, like 0.25, 0.75, etc. Then the Bayes' rule can be expressed as

$$p(\theta|D) = \frac{p(D|\theta) p(\theta)}{\sum_{\theta} p(D|\theta) p(\theta)}$$

where the sum in the denominator is over the finite number of discrete values of θ that we are considering, and $p(\theta)$ denotes the probability mass at θ .