

DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models

Liangbin Xie*1,2,3

Xintao Wang*3

Xiangyu Chen*1,2,5

Gen Li⁴

Ying Shan³

Jiantao Zhou¹

Chao Dong^{2,5}

¹University of Macau, ²Shenzhen Institutes of Advanced Technology ³Applied Research Center (ARC), Tencent PCG, ⁴Platform Technologies, Tencent Online Video ⁵Shanghai AI Lab

Background – GAN-SR Models in Real World Scene

- GAN-SR methods often generate perceptually unpleasant artifacts, which would seriously affect the user experience.
- These artifacts appear in the real-world unseen data during inference, which can be defined as GAN-inference artifacts. They are typically out of training distribution and do not appear in the training phase. Solving GAN-inference artifacts has great practical value.

In this paper, we deal with GAN-inference artifacts with two characteristics:

- The artifacts do not appear in the pretrained MSE-SR model.
- The artifacts are obvious and have a large area, which can be observed at the first glance.

• First step: we detect GAN-inference artifacts automatically.

➤ We adopt the MSE-based results as the reference

• First step: we detect GAN-inference artifacts automatically.

ightharpoonup We calculate the difference between standard deviations of GAN-SR patch and MSE-SR patch to measure the texture difference $m{d}$ as

$$d(x,y) = (\sigma_x - \sigma_y)^2$$

 σ_x refers to the local standard deviation of GAN-SR patches; σ_y refers to the local standard deviation of MSE-SR patches

• First step: we detect GAN-inference artifacts automatically.

➤ We calculates the relative difference of local variance *D* between MSE-SR and GAN-SR patches

$$D = \frac{2\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2 + C}$$

 σ_x refers to the local standard deviation of GAN-SR patches; σ_y refers to the local standard deviation of MSE-SR patches

• First step: we detect GAN-inference artifacts automatically.

We further introduce semantic-aware adjustment to enlarge the difference in perceptually artifact-sensitive regions (e.g., building, sea) while suppressing the difference in textured regions (e.g., foliage, animal fur).

• First step: we detect GAN-inference artifacts automatically.

➤ We then filter out detection noises and perform morphological manipulations to generate the final artifact mask.

• Second step: we make the pseudo GT and finetune the GAN-SR model.

➤ We use MSE-SR results to replace the regions where artifacts were detected in GAN-SR results.

• Second step: we make the pseudo GT and finetune the GAN-SR model.

➤ We use MSE-SR results to replace the regions where artifacts were detected in GAN-SR results.

• Second step: we make the pseudo GT and finetune the GAN-SR model.

➤ We use MSE-SR results to replace the regions where artifacts were detected in GAN-SR results.

➤ We then use a small amount of data to generate the data pairs (LR & pseudo GT) from real data to finetune the model.

We only need to finetune the model for a few iterations (about 1K iterations) and the updated model would produce perceptually pleasant results without obvious artifacts. Moreover, it does not influence other fine details in regions without artifacts.

Experiments — Artifact Detection Results

Table 1. Artifact detection results based on Real-ESRGAN (Wang et al., 2021c). LDL* represents the modified detection method in LDL (Liang et al., 2022b).

Method	IoU (†)	Precision	Recall
NIQE	2.9	0.0494	0.1054
PAL4Inpainting	8.4	0.0855	0.0992
LDL*(threshold=0.01)	29.9	0.3504	0.3485
LDL*(threshold=0.005)	36.2	0.2618	0.5442
LDL*(threshold=0.001)	35.3	0.1410	0.8391
DeSRA-det (ours)	51.1	0.7055	0.6081

Table 2. Artifact detection results based on LDL (Liang et al., 2022b). LDL* represents the modified detection method in LDL (Liang et al., 2022b).

Method	IoU (†)	Precision	Recall
NIQE	2.6	0.0236	0.1770
PAL4Inpainting	8.8	0.0699	0.1337
LDL*(threshold=0.01)	32.7	0.3070	0.4110
LDL*(threshold=0.005)	36.7	0.2100	0.5770
LDL*(threshold=0.001)	31.1	0.1003	0.8659
DeSRA-det(ours)	44.5	0.6087	0.5335

Our method obtains the best IoU and Precision that far outperform other schemes

Experiments — Artifact Detection Results

The detection results obtained by our approach have significantly higher accuracy than other schemes.

Experiments — Improved GAN-SR Results

Table 3. Artifact detection results of GAN-SR models with and without using DeSRA finetuning.

Method	IoU (↓)	Removal rate	Addition rate
Real-ESRGAN	51.1	-	-
Real-ESRGAN-DeSRA	12.9	75.43%	0%
LDL	-44.5		
LDL-DeSRA	13.9	74.97%	0%

Three-quarters of the artifacts on unseen test data can be completely removed after finetuning.

Experiments — Improved GAN-SR Results

Table 3. Artifact detection results of GAN-SR models with and without using DeSRA finetuning.

			, – – – – 🔨
Method	IoU (↓)	Removal rate	Addition rate
Real-ESRGAN	51.1	-	-
Real-ESRGAN-DeSRA	12.9	75.43%	0%
LDL	$\frac{1}{44.5}$		
LDL-DeSRA	13.9	74.97%	0%
	_		<u> </u>

Our method does not introduce new additional artifacts, as the addition rate is 0.

Experiments — Improved GAN-SR Results

Artifacts are obviously alleviated for results produced by the improved GAN-SR models.

Experiments — User Study

- Our method largely removes the artifacts generated by the original model.
- The finetuned GAN-SR model generates more detailed results than the MSE-SR model.

Thanks for Watching

DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models

Liangbin Xie

Xintao Wang

Xiangyu Chen

Gen Li

Ying Shan

Jiantao Zhou

Chao Dong

Codes