SGU 做题表格

翁健 were

Last updated on $\,2014$ 年 5 月 21 日

题号	题意	做法
100	a + b	不解释.
101	给定几张骨牌,正反面有数字,	把牌面上的数字看作点,把每张
	牌面上数字相同的可以相邻放在	牌看作连接两面的点的边,做一
	一起, 牌可以翻面, 然后问是否	遍欧拉路径. trick 在于如果一个
	存在一种方案, 使得所有牌都用	点没有连边就当这个点不存在,
	上.	但是如果其他情况造成的图不连
		通是无解的.
102	问一个数以内有多少个数字和它	范围很小,可以暴力,如果想写
	互质.	个欧拉函数也不反对.
103	给定一个源点一个汇点,每个点	问题主要在怎么算交替,最短路
	上有一个初始颜色,每个颜色会	模型很裸. 每次先判是否当前颜
	周期性蓝紫交替,当颜色相同时	色相同,如果颜色相同无需等待.
	候边可以通行. 可以在当前节点	如果不同就分别算下一次变色的
	等待至颜色相同再通行, 求最短	时间, 然后较小的就是等待时间,
	路.	如果相同就继续算等待时间. 一
		共算两次,如果还是相同说明这
		条边没用.
104	给若干束花和若干个花瓶, 花插	因为花要按照顺序插,所以就是
	进花瓶里面有个美观值,花要按	DP 了,输方案就在转移的时候
	照顺序插,问最大美观值之和,	记录一下.
	输方案.	

105	问把 1N 所有数字按照一个字	写个暴力找规律,我就不剧透了.
	符串展开,变成一个好长的数字.	
	前 N 个这样的数字能被 3 整除	
	的个数.	
106	给一条直线 $Ax+By+C=0$, 然	先特判直线不存在、直线水平、
	后给一个矩形的左上角 (x1, y1)	直线垂直三种情况. 然后对直
	右下角 (x2, y2), 问这条直线在	线的 A,B 做一遍扩展欧几里
	这个矩形里面有多少个整点.	德,算出一组解 (x,y) 和 $d=$
		gcd(A,B),那么直线上的解就是
		$x = \frac{C}{d}$ 和 $y = \frac{C}{d}$. 每组解就是 $x + i \frac{B}{d}$
		和 $y + i\frac{A}{d}$, i 是整数. 然后就是
		求在 [x1,x2] 和 [y1,y2] 值域的
		限制下 i 在数轴上的整点个数了.
107	求 N 位数里面,平方末尾是	暴力出9位有多少个,然后10
	987654321 的数字个数.	位先 *9,11 位开始每次加一个
		0.
108	每个数字可以向后生成一个新的	筛法是很容易想到的,但是题目
	数字, 法则是自己加上自己各个	卡 $4MB$ 的内存,所以要压位了
	位上的数字. 然后有些数字是没	乱搞.
	法通过这个方法生成出来的,称	
	作"封闭数". 问 N 以内的封闭	
	数个数,还有 K 次询问,每次问	
	N 以内第 s 大的封闭数是几.	
109	这是一个异常恶趣味的题目, 你	先让他走 N 步,把曼哈顿距离
	和一个人玩游戏,在一个 $N*N$	> N 的都删掉(如果 $N=2$ 这
	的棋盘上面,他从最左上角开始	步省略). 然后每次走奇数步, 你
	走,每次你可以规定他走一定的	会发现会从国际象棋棋盘上的黑
	步数. 然后你可以把他永远走不	格走到白格,白格走到黑格,所
	到的一些点给删掉,最后把他逼	以只要删掉最右下角的一条对角
	死在一个点上. 每次走的步数不	线就可以了~最后对手就被你逼
	能小于 N ,并且用过的数字不能	回最左上角了.
	再用.	

110	给你一束光, N 个球体, 然后照	其实这题二维和三维一样做,一
	射球体反射,输出前十次反射,	束光用直线的参数方程会方便好
	如果不足十次就输出前若干次,	多, 先算个解析式的交点, 然后
	多于十次就输个'etc.'.	枚举每一个球找一个在光射出点
		最近的点作作为入射点. 射出方
		向就是原来方向的在法向量分量
		上反向,所以用点积搞搞就可以
		了~
111	高精度开根号.	第一遍写了个二分,发现细节有
		点多,好再有 java. 第二次用的
		牛顿迭代,发现精度上也有点问
		题要判断一下才能过.
112	求 $a^b - b^a$.	高精度,java 秒.
113	判断一个数能否被表示成两个质	分解质因数.
	数的乘积.	
114	在数轴上找一个点,使得其它所	懒得推方程了,于是写了一个整
	有点到这个点的点权 * 距离之和	体三分,貌似精度有点问题,最
	最小.	后把精度放低反而过了.
115	问 2001 年的某月某日是礼拜几,	枚举日期模拟.
	如果这个日子不存在输出 Im-	
	possible.	
116	定义一个数字是超级质数,那么	求出质数表然后做个背包.
	这个数字是质数,并且它在质数	
	里面的 rank 也是质数. 给你一	
	个数 N ,输出 N 最少能被几个	
	超级质数表示出来, 无解输出 0.	
117	给你 N 个数字, 然后问它们的	快速幂. 我赶脚数据范围问题,应
	M 次里面有多少个是能被 K 整	该不会爆 int 才对,我用了 int64
	除的.	才给过.
118	先算出 $\sum_{i=1}^{N} \prod_{j=1}^{i} a_j$,然后迭代	高精度,java 秒.
	算各个位上的数字之和,直到变	
	成一位数.	

119	问所有能够使得 $ax + by N$ 的	开始觉得又要拓展欧几里德了,
	(x,y) 在那些 (a',b') 下面也成立.	后来发现想多了. $ax + by = kN$
		要有 $a'x + b'y = k'N$,则 $a' =$
		$\frac{k'}{k}a$ 和 $b' = \frac{k'}{k}b$. 所以是求相异的
		$(i*a \mod N, i*b \mod N)$
		对个数.
120	一个正 N 边形,每个点按照顺	先确定几何中心, 然后用向量旋
	时针标号, 然后给定点的编号和	转跑一圈.
	坐标,还原这个多边形.	
121	给一张图,不重边不自环,将边	逐个连通块找奇数度数的点进行
	黑白染色,要求每个点如果度大	交替染色,如果没有就找偶数度
	于 1, 那么有至少有连有一条黑	数的.
	边一条白边.	
122	给一张图,满足 Ore 性质,构造	因为满足 Ore 性质,所以是可做
	一条汉密尔顿回路.	的. 做法是先随便找一条链(越
		长越好,保证复杂度),然后把它
		翻成一条链. 翻成一条链的方法
		形象地说就是翻成一个 8 字然后
		拉直 —找两个相邻的点, 链头与
		靠近链尾的点相邻,链尾与靠近
		链头的点相邻. 因为满足 Ore 性
		质,所以我们不用担心这对点找
		不到, 然后每次都这么做, 做完
		在链上开个小口重新开始上面的
		步骤. 最后算法复杂度是 N^2 的.
123	Fibonacci 数列的前缀和,貌似	
	不要高精度.	

124	问一点与一个多边形的关系,这	和坐标轴平行这个性质我开始
	个多边形的边和坐标轴平行. 关	以为要充分利用 —离散化了再
	系有"在里面"、"在边上"和在	floodfill,后来证明想多了. 然后
	外面三种.	其实是有几何的方法的,找一条
		射线和这个多边形求交点,奇数
		个就在内,偶数个就在外.有几
		个非规范的情况,比如和一条边
		相切、和一个顶点相交(这个比
		较麻烦,自己画画图就会发现把
		一个顶点当成一个交点或者两个
		线段的两个交点都不对). 貌似
		和坐标轴平行就是为了避免大量
		的不规范情况. 然后我开始一度
		以为是我的代码写错了,最后改
		了一改射线的方向就过了,我用
		的方向是水平.
125	有 A B 两个矩阵, B 矩阵表示 A	范围很小, 所以搜索, 边搜边判
	矩阵中每个值四联通的边上,有	就能过.
	多少个值比它大. 要求用 B 矩阵	
	随便还原出一个 A 矩阵来.	
126	(a,b) 两个数,不断进行小的 *2,	因为是*2,所以我觉得答案不可
	大的减去小的增量这个过程,问	能很大,一定在 log 级别内,所
	能否使得其中一方为零.	以暴力模拟就可以了,然后如果
		暴力迭代次数太多,就 break 输
		出无解.
127	一本目录,已经有了两页,然后	开始 $ans=2$,然后遇到一组首
	每一页最多只能有 K 行数据,数	数字相同的就个数除以 K 取上
	据按照升序排好,如果两个相邻	整,细节有点多
	的数据的首数字不同要新开一	
	页. 问最后一共要用多少页.	

125	/A -> >	
128	给定 N 个点,每个点都是一个多	因为每个都是拐角,所以构造
	边形的拐角 90°, 每条边都和坐	方案是唯一的. 然后就排序两次,
	标轴平行,每个点都要用上,然	对着一行或者一列里面间隔连
	后把这些点还原成一个多边形,	边. 然后判断多边形的自交, 把
	多边形不自交.	线段分成横向纵向两种,随便判
		判就好. 如果构成的不是一个也
		要输出无解, wa 了 N 久.
129	判断一条线段在一个凸多边形里	先用凸包还原出这个凸多边形.
	面的长度.	接下来判交情况比较多,我开始
		一直木有一个优美的做法. 然后
		叉姐给了一个做法,先用叉积判
		断交点,然后再用叉积判断线段
		和凸多边形的边的旋转方向,从
		而判断在里面还是在外面,最后
		两段逼近.
130	N 个点一周摆在一个圆上, 然后	随便递推一下就好.
	问不相交连 N 条线有多少种连	
	法.	
131	给一个 NM 的 grid, 然后问用	状压 DP, $F_{i,S}$ 表示前 $i-1$ 行盖
	2*2的 L 型和 1*2 的矩形, 有	满,第 i 行的状态为 S 的方案数.
	多少种方法盖满.	转移是枚举 $i-1$ 行的状态,然
		后 dfs 每个格子是填放什么,生
		成 i 行的状态.
132	给一个 grid, 开始有一些点已经	这题卡得有点久,主要原因是 dp
	被占领了,问最少放多少个1*2	不熟练. 做法是记录两行的状态,
	的矩形使得不能再放 1*2 的矩	$F_{i,S,T}$ 代表第 $i-1$ 行状态为 S ,
	形.	第 i 行为 T 时候最少放几个. 此
		时 S 应该不能再塞. 转移就是以
		一行为公有的,然后用原有的占
		领点作为初始状态, dfs 转移. dfs
		转移的时候我一直在纠结两个本
		来是满的状态拼起来就不满怎么
		办,然后发现自己少判半(?)种
		情况.

133	问有多少个区间被其他区间完全	这题被坑了啊,开始以为是有多
	严格包含,所谓严格包含就是对	少组这个关系,还写了个平衡树,
	于 $[l,r]$ 与 $[l',r']$,有 $l < l' \land r' <$	最后发现 sort 一下扫一遍 T_T.
	r.	
134	给一棵树, 删掉一个点之后使得	先 bfs 求出每个点的 $size_i$, 然后
	剩下的连通块最大的最小的点称	就随便乱搞了.
	作重心,问有几个重心,分别是	
	谁.	
135	在平面上画 N 条直线,最多把平	规律题,我就不剧透了.
	面划成几块.	
136	给定一个多边形的中点, 然后随	高斯消元的特殊情况,问题在于
	便还原出来一个符合的多边形.	奇偶要特判,奇数一定有唯一解,
		偶数可能有矛盾或者有无穷解,
		然后随便构造. 两条边在一条直
		线啦~自交啦~什么都可以啦~
137	给一个 N 和一个 S, 构造一个长	考虑 A = 10, B = 01 两个序
	度为 N,和为 S 的序列,使得这	列,那么我们可以在这个序列里
	个序列头 -1 尾 +1 之后,可以通	面按照取模均匀填入 SmodN 个
	过圆环旋转,转回原序.	1,使得头为0尾为1,那么我
		们要做的就是求出这个"均匀"
		的长度, $k(S \mod N) \equiv$
		N(modN). 因为题目保证了
		(N,S)=1 所以这个方程一定
		有解, 然后枚举求解构造就可
		以了,构造的时候把多余的值用
		$\lfloor \frac{S}{N} \rfloor$ 平铺.
139	十五数码判解.	这题是有结论的,先把原数组一
		维蛇形展开,并且忽略空位 0,求
		取逆序对, 逆序对个数为奇数有
		解反之无解.
140	给一个 N 维向量,问是否存在一	把 B 也看做向量的一维,变成一
	个 N 维向量使得它们的点积在	个 N+1 元的不定方程组,每次
	modB 的情况下为给定的 P.	把前面的值打包,当成二元的做
		N 遍拓展欧几里得.

141	给定一组 x_1,x_2,K,P ,求一组	这题开始做的时候想歪了(不是
	N_1, N_2, P_1, P_2 使得 $N_1 * x_1 - P_1 *$	那个方面 觉得要解一个不定方
	$x_1 + N_2 * x_2 - P_2 * x_2 = P$, 其	程和一个不定方程组. 后来发现
		想多了,先讲 N_1,P_1 和 N_2,P_2
		打包成 A 和 B ,用拓展欧几里
		得找出一组解,然后用 gcd 的变
		化量找出这个解系中找出一个
		A + B 最小的,如果最小还是
		比 K 大, 那么无解. 剩下的步
		数平分,左右走浪费掉.如果不
		能平分,就在最小的解两边抖动,
		看是否能使得剩下的步数平分,
		如果不能就是无解.
142	给定一棵树,求这棵树权最大的	是树形 DP 么?我赶脚就是个贪
	一个连通子树.	心水水
144	AB 两个人,在两个整点之间到	画个图发现是求一个两条直线
	达, 先到的会等后到的 Z 分钟,	围成的多边形在一个矩形内的面
	问两个人会面的概率.	积.
145	给定源汇, 求一条简单路径第 K	本来想用 spfa 多记几个状态就
	最短路.	好了,但是发现显然不是这样的,
		因为求出来的不是简单路径, 可
		能重复走来走去. 所以正确做法
		是二分一个长度, 然后暴力出小
		于等于这个值的路径, 随便 K
		条. 如果不足就放大二分, 足够
		就缩小范围. 最后确定长度之后
		随便暴力出一条等于这个值的路
		径.

146	一个人在环形跑道上跑步,分为 N 个时段,每个时段作匀速运动,问在结束的时候与起点的距离.	读入输出都是指明小数点后四位,并且时间和速度也都是整数,所以转换成整数来做,但是在强制类型转换的时候貌似有精度误差,我也不会调,乱抖动一下吧. P.S. 貌似可以用 fmod 实数取模函数来搞?!
148	恐怖分子要炸水库,每一个水库有一个蓄水量一个初始水量,上游的水库炸坏了水会流到下游来,从而涨破下游的水库,破损的水的水库里面的水会全部向下流。每一个水库炸毁有一个代价,要求最后的代价最小,输出方案。	最朴素的暴力,枚举要强制炸毁的第一个水库,然后贪心向后扫. 然后可以观察到强制毁坏水库 i 的话,要毁坏的水库集合为 $\{i\} \cup \{j s_j - s_{i-1} \le l_j\}$,其中 l_j 是水库 j 的最大需水量, $s_j - s_{i-1}$ 是 ij 的水库里面的总水量. 然后移项得到 $\{i\} \cup \{j s_j - l_j \le s_{i-1}\}$,从而我们可以从大到小枚举 i ,将 $s_j - l_j \le s_{i-1}$ 维护在一个堆中.
149	给定一棵无向有权树,然后求每 一个点能到的最远的点的距离.	两遍 dfs,第一遍求取每节点能 向下走走到的最远点和次远点. 第二遍,想办法维护每个点走上 去能走到的最远点,即维护一个 一个集合,从根走到该点的路径 上,这些点到该点的距离 + 它们 能够走下去最远的点,在里面选 一个最大的.
151	给定两边和一条中线,求三点, 使得这三点构成的三角形符合.	具体怎么推大家都会,主要是精度比较坑,看了别人的代码才回调 eps 的.

152	给定一群人中每个人的得票数,	具体做法是每次截尾取整, 顺带
	然后要求算每个人的得票率精确	统计下截尾取整的得票余数,然
	到整数(每个人可能上整可能下	后把余数积累到一定程度的时候
	整), 要求最后的得票率之和为	就把某个人取上整.
	100,构造一种上下整的方式,使	
	之符合要求.	
154	找最小的 N , 使得 $N!$ 末尾恰好	二分答案然后统计因子五的个
	有 Q 个 0.	数.
155	构造笛卡尔树(就是给定每个节	sort 之后线段树搞搞 T_T.
	点的 pri 构造一个 treap.	
160	给定 N 个数字和一个 M, 要求	迭代宽搜.
	求出一个 N 个数字的子集, 使得	
	这个子集的积 mod M 的值最大.	
163	给 N 个数字 a_i ,然后给定一个	b 很小,可以暴力乘方,然后和
	b ,然后求取所有正的 a_i^b 的和.	0 取个 max.
168	给一个原矩阵, 然后要求求一个	目标矩阵其实是个和下标有关的
	目标矩阵.	曼哈顿距离的形状,然后随便搞
		搞.
169	求 K 位数里面,能被各个位乘	结论题,好久前写的了不记得结
	积整除的数字的个数.	论了,貌似是只有 11111X 这样
		的数字才有意义,然后逐 1-9
		证明一下就好.
170	给定两个字符串,问 A 最少经过	因为只有两种字母所以维护个队
	多少次交换能变成 B.	列随便搞搞就可以了.
172	学校要安排考试,有的考试不能	二分图判定(为啥不是 2-SAT).
	被安排在同一天, 问能不能两天	
	考完.	
174	有好多线段,都和坐标轴平行,	并查集.
	然后每次加入一条, 问什么时候	
	这些线段组成的曲线闭合(线段	
	不会自交).	

175	给定一个字符串加密的方法,然	仔细观察发现加密是一个两支递
1.0	后问长度为 N 加密前在位置 Q	归的过程,然后模拟的时候只要
	的字幕最终在哪里.	走一支,所以 logN 的复杂度可
		以保证.
179	问合法的括号序列,字典序的下	找最左边一个能把左括号变成右
	一个是什么.	括号的地方.
180	找逆序对.	树状数组.
181	给一个数列的生成方法,然后问	mod 的数字很小,所以找一下循
	第 k 个是几.	环节就好,然后注意 ρ 形状的循
		环节.
184	求一个序列经过 M 此区间翻转	splay 搞搞吧,回头用块链写一
	的结果.	次.
186	这题题意是读不懂的.	所以自求多福.
187	每次反转一个区间.	splay 搞搞.
190	一个 $N \times N$ 的 grid, 要铺满 2×2	二分图最大匹配.
	的骨牌, 然后问怎么铺.	
193	N 个人围成圈, 然后从 1 开始传	暴力打表找规律,然后写个高精
	球给后 K 个人, 然后问有多少个	度.
	K 是可以回到 1 手里的.	
194	无源汇可行流.	建图有点纠结,上网找的→_←
196	给一个 $N \times M$ 的矩阵,是一张	经过观察可以发现,就是每个节
	图, 然后求这个矩阵和它的转置	点的度数和.
	矩阵的乘积的和.	
199	双关键字的最长不下降子序列.	先排序排掉第一个关键字,就变
		成单关键字的最长不下降子序列
		了,然后再用二分的方法做一遍
		NlogN 的最长不下降子序列.
550	给一棵树,然后每次删掉一条边,	这题我是用 ETT 做的, 因为扒
	输出这条边的边权,然后两边的	出一个子树比较方便,然后关于
	边,size 较小的一遍乘上这条边	两边等分其实不要维护什么多余
	权,较大的加上这条边权,如果	的域,只管暴力扫一遍两边的点
	等分,就编号较小的一遍乘上这	就好. 这样最后就是在均摊上面
	条边全,较大的加上这条边权.	多个 log.