1 Упорядоченная пара; декартово произведение; операции над множествами

Упорядоченная пара - двухэлементное семейство, где множеством индексов является $\{1,2\}$. При этом в обозначении упорядоченной пары (a,b) считается, что на первом месте стоит элемент, занумерованный индексом 1, а на втором - индексом 2. Равенство пар (a,b), (c,d) означает, что a=b и c=d.

Декартовым или **прямым произведением** множеств X и Y называется множество всех упорядоченных пар, таких что первый элемент пары принадлежит X а второй - Y.

$$X * Y = \{(x, y) : x \in X, y \in Y\}$$

Операции над множествами:

1. Пусть $\{X_{\alpha \in A}\}$ - семейство множеств. Пересечением семейства $\{X_{\alpha \in A}\}$ назывется множество всех элементов, которые принадлжат каждому из множеств X_{α} :

$$\bigcap_{\alpha \in A} X_{\alpha} = \{x : \forall \alpha \in Ax \in X_{\alpha}\}$$

2. Пусть $\{X_{\alpha \in A}\}$ - семейство множеств. Объединением семейства $\{X_{\alpha \in A}\}$ назывется множество всех элементов, которые принадлжат хотя бы одному из множеств X_{α} :

$$\bigcup_{\alpha \in A} X_{\alpha} = \{ x : \exists \alpha \in Ax \in X_{\alpha} \}$$

3. **Разностью** множеств X и Y назывется множество всех элементов, которые принадлежат X, но не принадлежат Y:

$$X\backslash Y=\{x:x\in X,x\notin Y\}$$

Рис. 1: Расширенное множество вещественных чисел, операции и порядок в нем Множество $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ называется расширенной числовой прямой. Таким образом, в $\overline{\mathbb{R}}$ к вещественным числам добавляются два новых символа (несобственных элемента): $-\infty$ и $+\infty$.

Считают, что $-\infty < x < +\infty$ для любого $x \in \mathbb{R}$ и $-\infty < +\infty$. Тогда можно рассматривать промежутки в $\overline{\mathbb{R}}$ вида $\langle a, +\infty \rangle$ или $[-\infty, b\rangle$.

С несобственными элементами можно совершать некоторые операции. Полагают

$$x + (+\infty) = (+\infty) + x = +\infty, \quad x \in \mathbb{R},$$

$$x + (-\infty) = (-\infty) + x = -\infty, \quad x \in \mathbb{R},$$

$$x \cdot (+\infty) = (+\infty) \cdot x = \begin{cases} +\infty, & x > 0, \\ -\infty, & x < 0, \end{cases}$$

$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty, & x > 0, \\ +\infty, & x < 0, \end{cases}$$

$$(+\infty) + (+\infty) = +\infty, \quad (-\infty) + (-\infty) = -\infty,$$

$$(+\infty) \cdot (+\infty) = (-\infty) \cdot (-\infty) = +\infty,$$

$$(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = -\infty.$$

16 ГЛАВА 1. Введение

Символам $(+\infty) + (-\infty)$, $(+\infty) - (+\infty)$, $(-\infty) - (-\infty)$, $0 \cdot (\pm \infty)$ и $(\pm \infty) \cdot 0$ не приписывается никакого значения.

Рис. 2: Подмножество в R, ограниченное сверху

Определение. Множество $E \subset \mathbb{R}$ называется *ограниченным* cepxy, если существует такое число $M \in \mathbb{R}$, что $x \leqslant M$ для всех $x \in E$. Число M при этом называется eepxheй epxheй множества $extit{E}$.

Рис. 3: Максимальный элемент множества

Определение. Число M называется максимумом или наибольшим элементом множества $E \subset \mathbb{R}$, если $M \in E$ и $x \leqslant M$ для всех $x \in E$.

Рис. 4: Последовательность

Определение. Отображение множества натуральных чисел в множество Y называется *последовательностью* в Y. Если Y — числовое множество, то последовательность называется числовой (например, вещественной или комплексной).

Рис. 5: Образ и прообраз множества при отображении; инъекция, сюръекция, биекция

Определение. Пусть $f: X \to Y, A$ — множество. Множество

$$f(A) = \{ y \in Y : \exists x \in A \ f(x) = y \}$$

называется образом множества A при отображении f. Множесством значений отображения f называется множество f(X), то есть образ множества X.

Определение. Пусть $f: X \to Y, B$ — множество. Множество

$$f^{-1}(B) = \{ x \in X : \ f(x) \in B \}$$

называется *прообразом* множества B при отображении f.

Определение. Пусть $f: X \to Y$. Если f(X) = Y, то отображение f называется сюръективным, или сюръекцией, или отображением "на" (отображением X на Y).

Определение. Пусть $f: X \to Y$. Если для любых различных элементов X их образы различны, то отображение f называется инъективным, или инъекцией, или обратимым отображением.

Определение. Пусть $f: X \to Y$. Если отображение f одновременно сюръективно и инъективно, то f называется биективным, или биекцией, или взаимно-однозначным отображением (соответствием).

	Рис. 6: Целая часть числа
	THE. O. HESTER THESTE
imagesMin/7.png	

Рис. 7: График отображения

Определение. Пусть $f: X \to Y$. Графиком отображения f называется множество

$$\Gamma_f = \{(x, y) : x \in X, y = f(x)\}.$$

Таким образом, $\Gamma_f \subset X \times Y$. В знакомой из школы ситуации, когда f — вещественнозначная функция вещественной переменной, график f есть подмножество плоскости.

График отображения обладает следующим свойством:

если
$$(x, y_1), (x, y_2) \in \Gamma_f$$
, то $y_1 = y_2$.

На плоскости это означает, что никакая вертикальная прямая не может иметь двух общих точек с графиком. Обратно, если множество $G \subset X \times Y$ удовлетворяет условию:

если
$$(x, y_1), (x, y_2) \in G$$
, то $y_1 = y_2$, (7)

то G есть график некоторого отображения. Его областью определения служит множество

$$E = \{ x \in X : \exists y \in Y \ (x, y) \in G \},\$$

а правило таково: каждому $x \in E$ сопоставляется тот (единственный в силу (7)) элемент $y \in Y$, для которого $(x, y) \in G$.