Kempf-Ness type theorems and Nahm's equations

Maxence Mayrand

University of Toronto

December 7, 2019

Setup of Kempf-Ness type theorems

Let $(M, \omega, I, L, \|\cdot\|)$ be a **Hodge manifold**, i.e.

- (M, ω, I) Kähler manifold (not necessarily compact);
- $\omega = \frac{i}{2\pi}F$, F curvature of unitary holomorphic line bundle $L \to M$ with hermitian metric $\|\cdot\|$ (prequantization).

Example (standard)

- $M \subseteq \mathbb{CP}^n$, $\omega = \omega_{FS}|_M$, $L = \mathcal{O}(1)|_M$.
- $M \subseteq \mathbb{C}^n$, $\omega = \omega_{\text{flat}}|_{M}$, $L = M \times \mathbb{C}$.

Example (non-standard)

- Kodaira: compact + Hodge $\implies M \subseteq \mathbb{CP}^n$ projective. But $\omega \neq \omega_{\mathrm{FS}}|_M$ in general.
- $M \subseteq \mathbb{C}^n$ with Kähler potential $f: M \to \mathbb{R}$, i.e. $\omega = 2i\partial \bar{\partial} f$. \nexists isometry $M \hookrightarrow \mathbb{C}^N$ in general.

Setup of Kempf–Ness type theorems

Input

- $(M, \omega, I, L, \|\cdot\|)$ Hodge manifold, $L \to M$ complex algebraic;
- G compact Lie group;
- $G_{\mathbb{C}} \circlearrowright L$ such that G preserves $\|\cdot\|$.

Then, $G \supset M$ preserving (ω, I) and there is a **canonical moment map**

$$\mu: M \longrightarrow \mathfrak{g}^*, \quad \mu(p)(x) = \frac{d}{dt}\Big|_{t=0} \frac{1}{2\pi} \log \|e^{itx} \cdot \hat{p}\|,$$

for $x \in \mathfrak{g}$, $p \in M$, $\hat{p} \in L^* \setminus \{0\}$, $\hat{p} \mapsto p$.

Output

Two types of quotients:

1 Symplectic quotient: $\mu^{-1}(0)/G$ (stra

(stratified symplectic space)

Q GIT quotient:

 $M/\!/_{L}G_{\mathbb{C}}$

(complex algebraic variety)

Kempf–Ness type theorems

• We have $\mu^{-1}(0) \subseteq M^{L\text{-ss}}$, so there is a map

$$\mu^{-1}(0)/G \longrightarrow M/\!/_L G_{\mathbb{C}}. \tag{1}$$

- A **Kempf–Ness type theorem** is a condition which implies (1) is an isomorphism, i.e.
 - a homeomorphism respecting the natural stratifications;
 - the symplectic structures on the strata of the LHS and the complex structures on the strata of the RHS give Kähler structures.
- Example. M compact \Longrightarrow (1) is \cong . [Kirwan 1984] for the case $M \subseteq \mathbb{CP}^n$ with $\omega = \omega_{\mathrm{FS}}|_M$. [Sjamaar 1994] for the general case $(M \subseteq \mathbb{CP}^n \text{ but } \omega \neq \omega_{\mathrm{FS}}|_M)$.
- If M is non-compact, we have to be more careful. We will discuss the case of affine varieties with $\omega=2i\partial\bar\partial f$ in detail.

Complex analytic version of the Kempf-Ness theorem

First step: Complex analytic version.

$$M^{\mu\text{-ss}} \coloneqq \{ p \in M : \overline{G_{\mathbb{C}} \cdot p} \cap \mu^{-1}(0) \neq \emptyset \} \subseteq_{G_{\mathbb{C}\text{-invariant open}}} M.$$

Theorem (Guillemin–Sternberg 1982, Kirwan 1984, Sjamaar 1994, Heinzner–Loose 1994)

There is a categorial quotient in the category of complex analytic spaces for $G_{\mathbb{C}} \circlearrowright M^{\mu\text{-ss}}$, denoted $M^{\mu\text{-ss}}/\!\!/ G_{\mathbb{C}}$. Moreover,

$$\mu^{-1}(0) \longrightarrow M^{\mu ext{-ss}} \ \downarrow \ \downarrow \ \mu^{-1}(0)/G \stackrel{\cong}{\longrightarrow} M^{\mu ext{-ss}}/\!\!/ G_{\mathbb C}.$$

Complex analytic version of the Kempf-Ness theorem

• Recall: GIT quotient

$$M/\!\!/_L G_{\mathbb C} = M^{L ext{-ss}} /\!\!/_L G_{\mathbb C}.$$
 categorical quot. algebraic varieties

Luna 1976: Underlying complex analytic space

$$M/\!\!/_L G_{\mathbb C} = M^{L ext{-ss}} /\!\!/_G G_{\mathbb C}.$$
 categorical quot. complex spaces

By previous theorem,

$$\mu^{-1}(0)/G \cong M^{\mu\text{-ss}} /\!\!/ G_{\mathbb{C}}$$
 categorical quot. complex spaces

so, by uniqueness of categorical quotients, Kempf-Ness holds if

$$M^{\mu ext{-ss}}=M^{L ext{-ss}}$$

analytic semistability = algebraic semistability

The general Kempf–Ness theorem

Theorem (Kempf–Ness 1979, Mumford, Guillemin–Sternberg 1982, Ness 1984, Kirwan 1984, Sjamaar 1994, Heinzner–Loose 1994, ...)

- $(M, \omega, I, L, \|\cdot\|)$ Hodge manifold
- $G_{\mathbb{C}} \circlearrowright L$, G preserves $\|\cdot\|$

Then, $G \circlearrowright (M, \omega, I)$ with canonical moment map $\mu : M \to \mathfrak{g}^*$. We have $\mu^{-1}(0) \subseteq M^{L\text{-ss}}$ so there is a map $\mu^{-1}(0)/G \longrightarrow M/\!\!/_L G_{\mathbb{C}}$. (2)

Suppose:

- (i) Algebraic Condition: (M, L) satisfies the geometric criterion: $M^{L\text{-ss}} = \{ p \in M : \exists \hat{p} \in L^* \setminus \{0\}, \hat{p} \mapsto p, \overline{G_{\mathbb{C}} \cdot \hat{p}} \subseteq L^* \setminus \{0\} \}$ e.g. M is projective, affine, or projective-over-affine.
- (ii) Analytic Condition: $\|\cdot\|^2:L^*\to\mathbb{R}$ is proper on closed $G_{\mathbb{C}}$ -orbits disjoint from the zero-section.

Then, $M^{\mu\text{-ss}} = M^{L\text{-ss}}$ so (2) is an isomorphism.

Example. M compact \implies (i) & (ii). So $\mu^{-1}(0)/G \cong M//_{I}G_{\mathbb{C}}$.

(I) Kempf–Ness 1979

- $M \subseteq \mathbb{C}^n$ complex affine
- ullet $G_{\mathbb C} \circlearrowleft M$ via $G_{\mathbb C} o \mathrm{GL}(n,{\mathbb C})$
- $\omega = \omega_{\text{flat}}|_{M}$
- $L = M \times \mathbb{C}$, $G_{\mathbb{C}} \circlearrowright L$, $g \cdot (p, z) = (g \cdot p, z)$.

$$\implies \mu = \mu_{\rm std}$$

$$\mu_{\mathrm{std}}: M \longrightarrow \mathfrak{g}^*, \quad \mu_{\mathrm{std}}(p)(x) = -\frac{1}{2} \mathrm{Im}\langle xp, p \rangle, \quad (p \in M, x \in \mathfrak{g}).$$

Kempf-Ness holds, so

$$\mu_{\mathrm{std}}^{-1}(0)/G\cong\operatorname{Spec}\mathbb{C}[M]^{G_{\mathbb{C}}}$$

(II) King 1994

- $M \subseteq \mathbb{C}^n$ complex affine
- ullet $G_{\mathbb C} \circlearrowleft M$ via $G_{\mathbb C} o \mathrm{GL}(n,{\mathbb C})$
- $\omega = \omega_{\text{flat}}|_{M}$
- $\bullet \ \boxed{L_\chi = \mathsf{M} \times \mathbb{C}, \quad g \cdot (\mathsf{p}, \mathsf{z}) = (g \cdot \mathsf{p}, \chi(\mathsf{g}) \mathsf{z}), \quad \chi : \mathsf{G}_\mathbb{C} \to \mathbb{C}^*}$

$$\implies \mu = \mu_{\rm std} - \xi$$

$$\xi := \frac{i}{2\pi} d\chi \in \mathfrak{g}^*$$

Kempf-Ness holds, so

$$\mu^{-1}(\xi)/G \cong M/\!\!/_{L_\chi} G_\mathbb{C} = \operatorname{Proj}\left(\bigoplus_{n=0}^\infty \mathbb{C}[M]^{G_\mathbb{C},\chi^n}\right)$$

(III) Azad-Loeb 1993

- $M \subseteq \mathbb{C}^n$ complex affine
- ullet $G_{\mathbb C} \circlearrowleft M$ via $G_{\mathbb C} o \mathrm{GL}(n,{\mathbb C})$

•
$$\omega = 2i\partial \bar{\partial} f$$
, $f: M \to \mathbb{R}$, G -invariant $(f = \|\cdot\|^2 \text{ recovers (I)})$.

•
$$L = M \times \mathbb{C}$$
, $g \cdot (p, z) = (g \cdot p, z)$

 $\implies \mu = \mu_f$, where

$$\mu_f: M \longrightarrow \mathfrak{g}^*, \quad \mu_f(p)(x) = df(Ix_p^\#), \quad (p \in M, x \in \mathfrak{g}).$$

Kempf-Ness holds if f is proper and bounded below. In that case,

$$\mu_f^{-1}(0)/G\cong\operatorname{Spec}\mathbb{C}[M]^{G_{\mathbb{C}}}.$$

(IV)

- $M \subseteq \mathbb{C}^n$ complex affine
- ullet $G_{\mathbb C} \circlearrowleft M$ via $G_{\mathbb C} o \mathrm{GL}(n,{\mathbb C})$
- ullet $\omega=2i\partialar{\partial}f,\quad f:M o\mathbb{R},\quad G ext{-invariant}$
- $\bullet \mid L_{\chi} = M \times \mathbb{C}, \quad g \cdot (p, z) = (g \cdot p, \chi(g)z), \quad \chi : G_{\mathbb{C}} \to \mathbb{C}^*$

$$\implies \mu = \mu_f - \xi$$

Kempf–Ness can fail even if f is proper and bounded below:

Example

$$\mathbb{C}^* \circlearrowleft \mathbb{C}^*$$
 with $f(z) = \sqrt{1 + (\log |z|^2)^2}$ and $\chi(z) = z^3$. Then,

$$\mu_f^{-1}(\xi)/G = \emptyset, \quad M/\!\!/_{L_\chi} G_{\mathbb{C}} = \{pt\}.$$

Theorem

If

$$\mathbb{C}[M] \subseteq o(e^f)$$

i.e.

$$\forall$$
 polynomial $u: M \to \mathbb{C}$, $\lim_{p \to \infty} \frac{u(p)}{e^{f(p)}} = 0$,

then the Kempf-Ness theorem holds, so

$$\mu_f^{-1}(\xi)/G \cong \operatorname{Proj}\left(\bigoplus_{n=0}^{\infty} \mathbb{C}[M]^{G_{\mathbb{C}},\chi^n}\right),$$

where $\mu_f(p)(x) = df(Ix_p^{\#})$ and $\xi = \frac{i}{2\pi}d\chi \in \mathfrak{g}^*$.

For example, $\mathbb{C}[x] \subseteq o(x^{\log x}) = o(e^{(\log x)^2})$. The example with Nahm's equations will look like this, i.e. $f(x) \sim (\log |x|)^2$.

Example from Nahm's equations

Nahm's equations: 1D reduction of the self-dual Yang-Mills equations.

$$A = (A_0, A_1, A_2, A_3) : I \subseteq \mathbb{R} \longrightarrow \mathfrak{g} \otimes \mathbb{H}$$

$$\dot{A}_1 + [A_0, A_1] + [A_2, A_3] = 0$$

$$\dot{A}_2 + [A_0, A_2] + [A_3, A_1] = 0$$

$$\dot{A}_3 + [A_0, A_3] + [A_1, A_2] = 0.$$

Natural action by gauge transformations:

$$\mathcal{G} \coloneqq \{g : I \to G\} \circlearrowleft \{\text{solutions to Nahm's eqs.}\}$$

- I = [0,1], $G_0 = \{g \in G : g(0) = g(1) = 1\}$.
- $\bullet \ \mathcal{M} \coloneqq \{ \text{solutions to Nahm's eqs} \} / \mathcal{G}_0$

Theorem (Kronheimer 1988)

- \mathcal{M} is a hyperkähler manifold; $(\mathcal{M}, g, I, J, K)$.
- $\mathcal{M} \cong T^*G_{\mathbb{C}}$, biholomorphism with respect to 1.

Example from Nahm's equations

Theorem (Dancer-Swann 1996)

- $G \times G \circlearrowleft T^*G_{\mathbb{C}}$ preserves hyperkähler structure.
- There is a hyperkähler moment map

$$\mu: \mathcal{T}^*\mathcal{G}_{\mathbb{C}} \longrightarrow (\mathfrak{g}^* imes \mathfrak{g}^*)^3, \quad \mu(A) = \begin{pmatrix} A_1(0) & A_2(0) & A_3(0) \ -A_1(1) & -A_2(1) & -A_3(1) \end{pmatrix}.$$

For all closed subgroup $H \subseteq G \times G$ and $\chi_1, \chi_2, \chi_3 : H \to S^1$,

$$T^*G_{\mathbb{C}}/\!/\!/_{\xi}H:=\mu_{\mathfrak{h}}^{-1}(\xi)/H$$

is a stratified hyperkähler space, where $\xi=rac{i}{2\pi}(d\chi_1,d\chi_2,d\chi_3)\in(\mathfrak{h}^*)^3$ and

$$\mu_{\mathfrak{h}}: \mathcal{M} \stackrel{\mu}{\longrightarrow} (\mathfrak{g}^* \times \mathfrak{g}^*)^3 \stackrel{i_{\mathfrak{h}}^*}{\longrightarrow} (\mathfrak{h}^*)^3.$$

Example from Nahm's equations

- $T^*G_{\mathbb{C}}$ is a complex affine variety
- \sharp isometric $T^*G_{\mathbb{C}} \hookrightarrow \mathbb{C}^N$ in general
- $\omega_1 = 2i\partial\bar{\partial}f$ and $\mu_1 = \mu_f$, where

$$f: T^*G_{\mathbb{C}} \longrightarrow \mathbb{R}, \quad f(A) = \frac{1}{4} \int_0^1 (2\|A_1\|^2 + \|A_2\|^2 + \|A_3\|^2)$$

• $\mu_{\mathbb{C}} \coloneqq \mu_2 + i\mu_3 : T^*G_{\mathbb{C}} \to \mathfrak{g}_{\mathbb{C}}^* \times \mathfrak{g}_{\mathbb{C}}^*$ is complex algebraic

Theorem

We have

$$\boxed{\mathbb{C}[T^*G_{\mathbb{C}}]\subseteq o(e^f).}$$

Hence, for all $H \subseteq G \times G$ and $\chi_1, \chi_2, \chi_3 : H \to S^1$,

$$T^*G_{\mathbb{C}}/\!\!/\!\!/_{\xi}H\cong\operatorname{Proj}\left(igoplus_{n=0}^{\infty}\mathbb{C}[\mu_{\mathbb{C}}^{-1}(\xi_2+i\xi_3)]^{H_{\mathbb{C}},\chi_1^n}
ight).$$