

Agent-Based Modelling -Glosten Milgrom Model

TEAM 1 - THE INFORMED TRADERS

YU-KUAN LIN, ATANASIJE LALKOV, MOHIT NARAYAN SHAH, YING-JUI CHU

Agenda

- 1. What is the Agent Based Model?
- 2. Targets and achievements
- 3. Detailed analysis of one particular experiment
- 4. What we have learnt

Introduction to the Glosten Milgrom Model

Glosten Milgrom Model simulates the process of information impacting the formation of transaction price in a market maker market.

In particular, the key is the market maker learning the true fundamental value of the traded security from the information contained in the orders she received.

Agents:

- Informed traders I, taking up $\mu \times 100\%$ of the trader population
- Uninformed traders U, with $p(buy) = \gamma$
- \bullet A market maker M, who does not have inventory issues

Introduction to the Glosten Milgrom Model – pseudo code

1. Traded security value V sampled from Bernoulli(σ) \in {high, low} 2. for every trader coming to the market maker: 3. if informed trader: 4. action = buy order if V == high else sell order 5. elif uninformed trader: 6. action sampled from Bernoulli(γ) \in {buy order, sell order} if buy order: 8. market maker provides ask price # The learning part. 9. transaction price = ask price 10. elif sell order: 11. market maker provides bid price # The learning part. 12. transaction price = bid price 13. Terminate loop when market maker has learned what V is

Introduction to the Glosten Milgrom Model (cont'd)

Some highlights of the model settings:

- M cannot distinguish between U and I.
- But M knows the value of σ , μ , and γ .
- Traders are always active, i.e., they never choose to not submit an order.
- There only exist fully informed and fully uninformed traders.

Targets and Achievements

- 1. Exploring the parameters of the model (Appendix 1)
- 2. Importance of market maker's initial belief to the learning process (Appendix 2)
- 3. Additional strategy to uninformed traders opportunity of being inactive (Appendix 3)
- 4. Introduction of new agents partially informed traders

Additional agent and Parameter

- I: fully informed trader
 - μ_i : the fraction of fully informed trader
- *P*: partially informed trader
 - $\circ \mu_p$: the fraction of partially informed trader
 - η : confidence of making correct orders

 $U: Uninformed\ trader$

M: Market Maker

Eta (η)

 $Eta(\eta)$ represents the confidence that Partially informed trader(P) makes correct orders.

- $\eta = 0.95 : 95\%$ of actions are rational (e.g., buy when he should)
- $\eta = 0.05 : 95\%$ of actions are irrational(e.g., buy when he shouldn't)

Thus,

- if $\eta > 0.5$, M receives more correct information from P
- if $\eta < 0.5$, M receives more deceiving information from P

While $\mu_i = 0$

$$\eta = 0.95$$

Figure 1 - learning efficiency when eta = 0.95

$$\eta = 0.05$$

Figure 2 - learning efficiency when eta = 0.05

Whether M receives rational or irrational orders, she still can learn from the information and converge the learning process.

The correctness of what M learns

$(if \ \mu_i = 0)$	$\eta=0.95$ (Correct Info)	$\eta=0.05$ (Deceiving Info)	
True intrinsic value is	V_H	V_H	
Market Maker learns	V_H	V_H	

Table 1: An example of what Market Maker learns from different information

The correctness of what M learns (cont'd)

•Intuitively, we expect M to arrive at an incorrect conclusion when there is much false information.

•Surprisingly, M manages to learn correctly even with false information.

•M knowing eta allows her to translate the irrational behaviour somehow and obtain the correct conclusion.

Summary of the project

- Implement and simulate agent based model from scratch
- Sensitivity analysis of parameters
- Experimenting with different agents and strategy sets
- Analysing agent's behaviour as well as systemic dynamics
- Intuitive belief might not be reflected in empirical results
- Use of Python for implementation and analysis

Thank you for your attention

Feel free to reach out for further information and you can view additional analysis slides in appendix

Appendix 1 - Sensitivity analysis of parameter µ

- Next information parameter which is crucial to the market maker learning is µ the fraction of informed traders in the market
- In the GM model the normal behaviour of the model has a constant parameter μ
- In actual markets this parameter varies when the market maker receives orders so what is the sensitivity of μ?
- Agent-based model is simulated with a varying μ to analyse learning efficiency

Simulation results (Figure 3):

- For low values of μ (less informed traders) market maker does not learn
- When market maker learns the efficiency increases with μ (directly proportional)
- Overall, this indicates the high levels of sensitivity

Figure 3 - learning efficiency with varying μ

Appendix 2 - Importance of initial belief σ

- For the market maker to provide a price to the traders requires the use of Bayesian inference to update her probability of σ which determines the market maker's belief of the asset value being either V^H or V^L .
- •Normal behaviour of ABM assumes that $\sigma = 0.5$, which indicates high entropy of the marker maker's initial belief.
- •We will now update the market maker's initial belief when she knows the market trend is either bullish or bearish.
- $Market\ Maker\ Learnining\ Efficiency=Number\ of\ orders\ recieived\ to\ learn\ true\ value\ of\ asset$
- •We update initial belief to 0.4 which indicates marker maker belief is that the market is bullish. We also update the value of sigma to mildly bullish/bearish market conditions and extreme bullish/bearish market conditions.
- Results: Learning efficiency does not change. Market maker initial belief is not important.

Market make	r belief	is that	market	is Bullish
		belief	Sigma	Efficiency
Market type				
Normal		0.5	0.50	49.02
Bullish		0.4	0.25	50.31
Bearish		0.4	0.75	49.08

Figure 4- learning efficiency in mildly bullish/bearish conditions

Market maker	belief	is that	market	is Bullish
	Intial	belief	Sigma	Efficiency
Market type				
Normal		0.5	0.5	48.71
Bullish		0.4	0.1	49.56
Bearish		0.4	0.9	51.51

Figure 5- learning efficiency in extreme bullish/bearish conditions

Appendix 3 - Inactive Trader

- New feature for uninformed traders to remain inactive.
- •Parameter θ (theta) which decides the probability of uninformed traders submitting an order or making a trade.
- •Impact on learning process of Market Maker with varying theta and hence the efficiency:
 - $\theta = 1$ implies original Glosten Milgrom Model.
 - θ decreases Market Maker's efficiency increases.
 - θ increases Market Maker's efficiency decreases.
- •Impact on Liquidity on the Market with varying theta.
 - High θ implies higher chances of UI of submitting random traders.
 - Low $\boldsymbol{\theta}$ implies higher chances of remaining inactive or less orders submitted

Figure 6 - learning efficiency with varying theta