

## **Assignment Cover Sheet**

| Student Name       | Student number |
|--------------------|----------------|
| Taha Yaseen Parker | 8243578        |

| Subject code and name | ECTE202 – Circuits and Systems |
|-----------------------|--------------------------------|
| Lab Instructor        | Ms. Eva Barbulescu             |
| Title of Assignment   | Lab 5                          |
| Lab Number            | 5                              |

#### Student declaration and acknowledgment

By submitting this assignment online, the submitting student declares on behalf of the team that:

- 1. All team members have read the subject outline for this subject, and this assessment item meets the requirements of the subject detailed therein.
- 2. This assessment is entirely our work, except where we have included fully documented references to the work of others. The material in this assessment item has yet to be submitted for assessment.
- 3. Acknowledgement of source information is by the guidelines or referencing style specified in the subject outline.
- 4. All team members know the late submission policy and penalty.
- 5. The submitting student undertakes to communicate all feedback with the other team members.

# Lab 5

# **Task 1: Transfer Function of a First Order Circuit RC Circuit**

Calculations:

Applying Kirchhoff's Law,

$$V_{in} = V_C + V_R$$

For a capacitor,

$$i_c(t) = C \frac{dv(t)}{dt}$$

Taking the Laplace transform (assuming zero initial conditions):

$$I(s) = CsV_C(s)$$

Since  $V_C = V_0$ ,

$$I(s) = CsV_0(s)$$

Substituting for the resistor,

$$V_R(t) = IR = CsV_0(s)R$$

Substituting,

$$V_{in} = V_0 + CsV_0R$$

$$V_{in} = V_0(1 + CsR)$$

$$H = \frac{V_0}{V_{in}} = \frac{1}{1 + CsR} = \frac{1}{1 + (5 \times 2)s} = \frac{1}{10s + 1}$$

```
% Circuit Parameters
R = 5; % Resistance in ohms
C = 2; % Capacitance in Farads
% Transfer Function Coefficients
num = [1]; % Numerator Coefficients
den = [R*C 1]; % Denominator Coefficients = [10 1]
% Create Transfer Function
H = tf(num, den);
% Generate Bode Plot and get data
[mag, phase, w] = bode(H);
mag = squeeze(mag);
phase = squeeze(phase);
w = squeeze(w);
mag_dB = 20*log10(mag);
disp(table(w, mag_dB, phase, 'VariableNames', {'Frequency_rad_s',
'Magnitude_dB', 'Phase_deg'}));
% Generate Bode Plot
bode(H);
grid on;
% Display transfer function
disp(H);
```

Decline begins at 0.1000 rad/s with magnitude -3.0103 dB

At -3 dB point: Frequency: 0.1000 rad/s

Filter type: This is a low-pass filter because the magnitude starts at 0 dB and declines.

#### Magnitude and phase values:

| Frequency_rad_s | Magnitude_dB | Phase_deg |
|-----------------|--------------|-----------|
|                 |              |           |
| 0.001           | -0.00043427  | -0.57294  |
| 0.002           | -0.0017368   | -1.1458   |
| 0.0023388       | -0.0023749   | -1.3398   |
| 0.0027349       | -0.0032473   | -1.5666   |
| 0.0031982       | -0.0044399   | -1.8318   |

| 0.0037399 | -0.0060703 | -2.1418 |
|-----------|------------|---------|
| 0.0043734 | -0.0082988 | -2.5042 |
| 0.0051143 | -0.011344  | -2.9277 |
| 0.0059806 | -0.015506  | -3.4225 |
| 0.0069936 | -0.02119   | -4.0005 |
|           | • • •      |         |
| 1.4299    | -23.127    | -85.999 |
| 1.6721    | -24.481    | -86.577 |
| 1.9553    | -25.836    | -87.072 |
| 2.2865    | -27.192    | -87.496 |
| 2.6738    | -28.549    | -87.858 |
| 3.1268    | -29.906    | -88.168 |
| 3.6564    | -31.264    | -88.433 |
| 4.2757    | -32.623    | -88.66  |
| 5         | -33.981    | -88.854 |
| 10        | -40        | -89.427 |



#### **RL Circuit**

Calculations:

Applying Kirchhoff's Law,

$$V_{in} = V_L + V_R$$

For an inductor,

$$v_L = L \frac{di(t)}{dt}$$

Taking the Laplace transform (assuming zero initial conditions):

$$V_L(s) = sLI(s)$$

Substituting,

$$V_{in} = IR + sLI$$

$$V_{in} = I(R + sL)$$

$$I = \frac{V_{in}}{R + sL}$$

$$H = \frac{V_0}{V_{in}} = \frac{sLI}{V_{in}} = \frac{sLV_{in}}{V_{in}(R + sL)}$$

$$H = \frac{sL}{R + sL} = \frac{2s}{2s + 3}$$

```
% Circuit Parameters
R = 3; % Resistance in ohms
L = 2; % Inductance in Henries
% Transfer Function Coefficients
num = [L 0]; % Numerator Coefficients
den = [L R]; % Denominator Coefficients
% Create Transfer Function
H = tf(num, den);
% Generate Bode Plot and get data
[mag, phase, w] = bode(H);
mag = squeeze(mag);
phase = squeeze(phase);
w = squeeze(w);
mag_dB = 20*log10(mag);
disp(table(w, mag_dB, phase, 'VariableNames', {'Frequency_rad_s',
'Magnitude_dB', 'Phase_deg'}));
% Generate Bode Plot
bode(H);
grid on;
% Display transfer function
disp(H);
```

Incline begins at 0.1667 rad/s with magnitude -19.1 dB

At -3 dB point: Frequency: 1.5 rad/s

This is a high-pass filter because the magnitude increases.

#### Magnitude and phase values:

| Frequency_rad_s | Magnitude_dB | Phase_deg |
|-----------------|--------------|-----------|
|                 |              |           |
|                 |              |           |
| 0.01            | -43.522      | 89.618    |
| 0.03            | -33.981      | 88.854    |
| 0.035082        | -32.623      | 88.66     |

| 0.041024 | -31.264     | 88.433  |
|----------|-------------|---------|
| 0.047973 | -29.906     | 88.168  |
| 0.056099 | -28.549     | 87.858  |
| 0.065602 | -27.192     | 87.496  |
| 0.076714 | -25.836     | 87.072  |
| 0.089708 | -24.481     | 86.577  |
| 0.1      | -23.541     | 86.186  |
| 0.1049   | -23.127     | 85.999  |
| 0.12267  | -21.776     | 85.325  |
| 0.14345  | -20.427     | 84.537  |
|          |             |         |
| 46.901   | -0.0044399  | 1.8318  |
| 54.846   | -0.0032473  | 1.5666  |
| 64.136   | -0.0023749  | 1.3398  |
| 75       | -0.0017368  | 1.1458  |
| 100      | -0.00097705 | 0.85937 |



#### Comparision between RC and RL Circuit:

- The RC circuit behaves as a **low-pass filter**, meaning it allows low-frequency signals to pass while attenuating higher frequencies.
- The RL circuit acts as a **high-pass filter**, meaning it blocks low-frequency signals and allows higher frequencies to pass.
- In the **Bode plot**, the RC circuit's magnitude **gradually declines**, while the RL circuit's magnitude **gradually increases** after a certain point.
- The -3dB cutoff frequency of the **RC circuit** is **0.1 rad/s**, whereas for the **RL circuit**, it is **1.5 rad/s**.

### Task 2: RLC Parallel Circuit

Calculations:

Given Values

$$R_1 = 2\Omega$$
,  $R_2 = 4\Omega$ ,  $L = 1H$ ,  $C = 0.1F$ 

Using Laplace Transformations:

Inductor: 
$$sL = s \cdot 1 = s$$

Capacitor: 
$$\frac{1}{sC} = \frac{1}{s \cdot 0.1} = \frac{10}{s}$$

Parallel Impedance

$$Z_p = \left(\frac{1}{R_2} + \frac{1}{Z_C}\right)^{-1} = \left(\frac{1}{4} + \frac{s}{10}\right)^{-1}$$

$$Z_p = \left(\frac{10+4s}{40}\right)^{-1} = \frac{40}{10+4s} = \frac{20}{5+2s}$$

Series Impedance

$$Z_s = R_1 + sL = 2 + s$$

Using Voltage Divider Rule

$$H = \frac{Z_p}{Z_s + Z_p} = \frac{\frac{20}{5 + 2s}}{(2 + s) + \frac{20}{5 + 2s}}$$

$$H = \frac{20}{(2+s)(5+2s)+20} = \frac{20}{2s^2+9s+30}$$

$$H = \frac{10}{s^2 + 4.5s + 15}$$

```
% Circuit Parameters
R1 = 2; % Ohms
L1 = 1;
         % Henry
R2 = 4; % Ohms
C1 = 0.1; % Farad
% Transfer Function Coefficients
             % Numerator: 10
num = [10];
                   % Denominator: s^3 + 4.5s^2 + 15
den = [1 4.5 15];
% Create Transfer Function
H = tf(num, den);
% Generate Bode Plot and get data
[mag, phase, w] = bode(H);
mag = squeeze(mag);
phase = squeeze(phase);
w = squeeze(w);
mag_dB = 20*log10(mag);
disp(table(w, mag_dB, phase, 'VariableNames', {'Frequency_rad_s',
'Magnitude_dB', 'Phase_deg'}));
% Generate Bode Plot
bode(H);
grid on;
% Display transfer function
disp(H);
```

Decline begins at 3 rad/s with magnitude -3.44 dB

At -3 dB point: The line does not have any value at -3dB. The line starts at 0 rad/s with a magnitude of -3.52dB.

Filter type: This is a low-pass filter because the magnitude starts at 0 dB and declines.

The Bode magnitude plot declines because the system is a second-order low-pass filter with two poles and no zeros

Magnitude and phase values:

| Frequency_rad_s | Magnitude_dB | Phase_deg |
|-----------------|--------------|-----------|
|                 |              |           |
| 0.1             | -3.5199      | -1.7195   |

| 0.10592 | -3.5197 | -1.8214 |
|---------|---------|---------|
| 0.12387 | -3.5189 | -2.1303 |
| 0.14485 | -3.5179 | -2.4917 |
|         |         |         |
| 18.52   | -30.589 | -165.74 |
| 21.657  | -33.337 | -167.89 |
| 25.325  | -36.078 | -169.69 |
| 29.615  | -38.813 | -171.21 |
| 34.631  | -41.544 | -172.5  |
| 40.497  | -44.272 | -173.6  |
| 47.357  | -46.997 | -174.54 |
| 55.379  | -49.72  | -175.33 |
| 64.76   | -52.442 | -176.01 |
| 75.729  | -55.163 | -176.59 |
| 88.557  | -57.883 | -177.09 |
| 100     | -59.996 | -177.42 |

