Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof: This proposition can be stated as the following

let
$$\varepsilon > 0$$
 be given $(\forall \varepsilon > 0)(\exists n \in \mathbb{N})(\forall m > n)(|Ma_m - ML| < \varepsilon)$

Since
$$M > 0$$
, $|Ma_m - ML| = M|a_m - L| < \varepsilon$

Then
$$|a_m - L| < \frac{\varepsilon}{M}$$

Now let $\mathbf{k} = \frac{\varepsilon}{M}$, since both ε and M are greater than 0, \mathbf{k} is also greater than 0.

From the definition of the limit of a sequence $\{a_y\}_{y=1}^{\infty}$ tends to limit L as $y \to \infty$, means that **for every** k > 0, there exists an integer x such that if x > y then $|a_y - L| < k$ then

$$|Ma_{y} - ML| < M\mathbf{k}$$

$$|Ma_y - ML| < M\frac{\varepsilon}{M}$$

$$|Ma_{\nu} - ML| < \varepsilon$$

This concludes our proof.