Homework 11

Problem 1

```
In [30]:
         import numpy as np
         import scipy as sc
In [56]: def trapezoidal(f, a, b, n):
             h = float(b-a)/n
             result = 0.5*f(a) + 0.5*f(b)
             for i in range(1, n):
                 result += f(a + i*h)
             result *= h
             return result
         def simps(f, a, b, n):
           sum = 0
           w = (b - a) / n
           for i in range(n + 1):
             x = a + (i * w)
             if x==0:
                continue
             summand = f(x)
             if (i != 0) and (i != n):
               summand *= (2 + (2 * (i % 2)))
             sum += summand
           return ((b - a) / (3 * n)) * sum
         #inspired by code found online
         a)
In [11]: f = lambda x: 1/(1+x**2)
         a=-5
         b=5
         n=100
         print(trapezoidal(f,a,b,n))
        2.7467768808079054
In [12]: print(simps(f,a,b,n))
        2.7468015268957795
         b)
 In [ ]: #accurate value of integral acheived through
         #online integral calculator:
         accurate = 2.74680153389
```

```
for i in range(1,n):
   tol = 1e-4
    test = 2*i
    trap_check = False
    simp_check = False
    trap = trapezoidal(f,a,b,test)
    simp = simps(f,a,b,test)
    if (abs(accurate-trap) <= tol) and (trap_check == False):</pre>
        print("Iterations required for trapezoidal = ", test)
        print("Trapezoidal approximation error = ", abs(accurate - trap) )
        trap_check = True
    if (abs(accurate-simp)<=tol) and (simp_check == False):</pre>
        print("Iterations required for simpsons = ", test)
        print("Simpsons approximation error = ", abs(accurate - simp) )
        simp_check = True
    if test == 2*n-2:
        print("uh oh")
    if trap_check & simp_check:
        break
```

```
Iterations required for simpsons = 32
Simpsons approximation error = 9.08168982540758e-05
Iterations required for simpsons = 34
Simpsons approximation error = 4.758839259011438e-05
Iterations required for simpsons = 36
Simpsons approximation error = 2.607496336315407e-05
Iterations required for simpsons = 38
Simpsons approximation error = 1.3357968808414e-05
Iterations required for simpsons = 40
Simpsons approximation error = 7.575314374452802e-06
Iterations required for simpsons = 42
Simpsons approximation error = 3.673019449923487e-06
Iterations required for simpsons = 44
Simpsons approximation error = 2.2644333008692286e-06
Iterations required for simpsons = 46
Simpsons approximation error = 9.534706912894819e-07
Iterations required for simpsons = 48
Simpsons approximation error = 7.228677421089458e-07
Iterations required for trapezoidal = 50
Trapezoidal approximation error = 9.859134571188477e-05
Iterations required for simpsons = 50
Simpsons approximation error = 2.0411972823097813e-07
```

So the required iterations for simpsons rule is 32, and for trapezoidal is 50.

c)

```
In [37]: simp = simps(f,a,b,n)
    trap = trapezoidal(f,a,b,n)
    scipysVersion4 = sc.integrate.quad(f,a,b, epsrel = 1e-4, full_output=1)
    scipysVersion6 = sc.integrate.quad(f,a,b, epsrel = 1e-6, full_output=1)
In [49]: print("Simpson = ", simp)
```

```
print("Trapezoidal = ", trap)
print("Scipy's tol - 1e-4 = ", scipysVersion4[0])
print("Scipy's n for tol 1e-4 = ", scipysVersion4[2]["neval"])
print("Scipy's tol - 1e-6 = ", scipysVersion6[0])
print("Scipy's n for tol 1e-6 = ", scipysVersion6[2]["neval"])
```

```
Simpson = 2.7468015268957795
Trapezoidal = 2.7467768808079054
Scipy's tol - 1e-4 = 2.746801533909586
Scipy's n for tol 1e-4 = 63
Scipy's tol - 1e-6 = 2.7468015338900327
Scipy's n for tol 1e-6 = 147
```

This number of iterations is much higher than the two methods outlined above. With the number required for 10^{-4} the same order of magnitude as for Simpsons and Trapezoidal.

Problem 2

Here the problem is estimated.

```
In [59]: g = lambda t: -np.cos(1/t)*t
    a2 = 1
    b2 = 0

simp2 = simps(g,a2,b2,5)
print(-simp2)
```

-0.017740046481729693

This answer is similar to the answer found by an online integral solver, and so seems to be at least at the right order of magnitude and correct to 10^{-2} .

Problem 3

$I - I_n = \frac{C_1}{n\sqrt{n}} + \frac{C_2}{n^2} + \frac{C_3}{n^2\sqrt{n}} + \frac{C_4}{n^3} + \cdots$	
$I_{n} = I - \left(\frac{C_{1}}{h\sqrt{n}} + \frac{C_{2}}{h^{2}} + \frac{C_{3}}{h^{2}\sqrt{n}} + \dots\right)$	
$50 \text{ In}_{12} = I - \left(2\sqrt{2} \frac{C_{1}}{n\sqrt{n}} + 4\frac{C_{2}}{n^{2}} + 4\sqrt{2} \frac{C_{3}}{n^{2}\sqrt{n}} + \dots\right)$	
$T_{n/4} = T - (8 \frac{c_1}{h J h} + 16 \frac{c_2}{h^2} + 32 \frac{c_3}{h^2 V h} + \dots)$	
Want: In = X In+BIng + VIn	
$50: I_n = I - \left(\frac{1}{n\sqrt{n}} + \frac{C_2}{n^2} + O\left(\frac{1}{n\sqrt{n}}\right)\right)$	\
$I_{n/2} = I - \left(2\sqrt{2} + \sqrt{n} + 4 + \frac{C_2}{n^2} + O(\frac{1}{n^2\sqrt{n}})\right)$ $I_{n/2} = I - \left(8 + \frac{C_1}{n\sqrt{n}} + 16 + \frac{C_2}{n^2} + O(\frac{1}{n^2\sqrt{n}})\right)$	<u> </u>
$50: \propto +\beta + \delta = 1$ $\propto +2\sqrt{2}\beta + 87 = 0$ $\propto +4\beta + 168 = 0$	
So: < = 0	
So: $\chi = 0$	
eg: In= \frac{1}{3} In/2-1/3 In/4	