1

Sumário:

- Teoria dos conjuntos
- Funções Lógicas
- Tabelas de Verdade
- Funções Lógicas elementares
- Postulados da álgebra de Boole
- Propriedades da álgebra de Boole
- Teoremas da álgebra de Boole
- Formas Canónicas

Álgebra de Boole

2

Teoria dos conjuntos?

Aplica-se a sistemas matemáticos que só consideram dois elementos possíveis:

0 (Falso) e 1 (Verdadeiro)

Não exprimem quantidades mas sim estados, como por exemplo:

1 (Ligado) - 0 (Desligado)

3

Funções lógicas

Define-se como **Função Lógica** toda a *variável binária* cujo valor depende de uma *expressão algébrica* formada por outras *variáveis binárias* relacionadas através dos *sinais* (+) e (.).

$$F = (A \bullet B) + (B \bullet C)$$

(+) e (.) indicam relações lógicas entre as variáveis, onde (+) é interpretado como uma conjunção (OU) e (.) é interpretado como uma conjunção (E).

Nota: $A + A \neq 2A$

Álgebra de Boole

4

As funções lógicas representam circuitos eléctricos.

$$F = (A \bullet B) + (B \bullet C)$$

- F → lâmpada
- A, B e C → interruptores
- Cada interruptor tem apenas dois estados possíveis → ligado (1) ou desligado (0)
- A lâmpada só tem dois estados → ligada (1) ou desligada (0)

5

Tabelas de verdade

Toda a função lógica pode ser representada *graficamente* através de uma **Tabela de**

Tabela de Verdade é um quadrado formado por tantas colunas quantas as variáveis que a função tem mais a correspondente a esta e por tantas linhas quantas as combinações binárias que seja possível construir com estas variáveis (2^{n.º} de variáveis).

Álgebra de Boole

6

E se a função lógica tiver duas variáveis?

Com a tabela de verdade é possível saber qual o funcionamento do circuito para todas as combinações possíveis entre as variáveis presentes na função.

7

O operador OU (+) indica que vão existir dois ramos em paralelo e que em cada um desses ramos estará presente um interruptor (A ou B).

Como preencher a tabela de verdade?

Álgebra de Boole

8

Assumindo que:

- A ou B = $0 \rightarrow$ interruptor desligado
- A ou B =1 \rightarrow interruptor ligado
- F=0 → lâmpada desligada
- F=1 \rightarrow lâmpada ligada

Tabela de verdade

Α	В	F
0	0	?
0	1	?
1	0	?
1	1	?

9

Analisando linha a linha da tabela de verdade:

 Quando A=0 e B=0, isto é, ambos os interruptores desligados, o que acontece à lâmpada? Liga ou desliga?

Resposta: a lâmpada desliga, isto é, F=0

 Quando A=0 e B=1, isto é, interruptor A desligado e interruptor B ligado, o que acontece à lâmpada? Liga ou desliga?

Resposta: a lâmpada liga, isto é, F=1

Álgebra de Boole

10

Analisando linha a linha da tabela de verdade:

 Quando A=1 e B=0, isto é, interruptor A ligado e interruptor B desligado, o que acontece à lâmpada? Liga ou desliga?

Resposta: a lâmpada liga, isto é, F=1

Quando A=1 e B=1, isto é, ambos os interruptores A e B ligados, o que acontece à lâmpada? Liga
 Quando A=1 e B=1, isto é, ambos os interruptores A e B ligados, o que acontece à lâmpada? Liga

Resposta: a lâmpada liga, isto é, F=1

11

Agora é possível preencher toda a tabela de verdade.

Com a tabela de verdade é possível saber qual o funcionamento do circuito para todas as combinações possíveis entre as variáveis presentes na função.

Álgebra de Boole

12

E agora se a minha função tiver o operador E (.)?

Qual o funcionamento do circuito para todas as combinações possíveis entre as variáveis presentes na função.

1,5

Analisando linha a linha da tabela de verdade:

 Quando A=0 e B=0, isto é, ambos os interruptores desligados, o que acontece à lâmpada? Liga ou desliga?

Resposta: a lâmpada desliga, isto é, F=0

 Quando A=0 e B=1, isto é, interruptor A desligado e interruptor B ligado, o que acontece à lâmpada? Liga ou desliga?

Resposta: a lâmpada desliga, isto é, F=0

Álgebra de Boole

16

Analisando linha a linha da tabela de verdade:

 Quando A=1 e B=0, isto é, interruptor A ligado e interruptor B desligado, o que acontece à lâmpada? Liga ou desliga?

Resposta: a lâmpada desliga, isto é, F=0

 Quando A=1 e B=1, isto é, ambos os interruptores A e B ligados, o que acontece à lâmpada? Liga ou deslina?

Resposta: a lâmpada liga, isto é, F=1

Algek	ora de Boole	
ostulados	da álgebra de Boole	
Postulado 1	a soma algébrica de uma variável mais um 1 lógico equivale a 1 lógico	A+1=1
Postulado 2	a soma algébrica de uma variável mais um 0 lógico equivale ao valor da variável	A+0=A
Postulado 3	o produto lógico de uma variável por um 1 lógico é igual ao valor da variável	$A \bullet 1 = A$
Postulado 4	o produto lógico de uma variável por um 0 lógico é igual a zero	$A \bullet 0 = 0$
Postulado 5	a soma algébrica de duas variáveis iguais equivale ao valor dessa variável	A + A = A
Postulado 6	o produto lógico de duas variáveis iguais equivale ao valor dessa variável	$A \bullet A = A$
Postulado 7	a soma algébrica de uma variável mais a mesma variável negada equivale a 1 lógico	$A + \overline{A} = 1$
Postulado 8	o produto lógico de uma variável mais a mesma variável negada equivale a 0 lógico	$A \bullet \overline{A} = 0$
Postulado 9	se uma variável é negada duas vezes, esta não varia	$\overline{\overline{A}} = A$
Postulado 10	se invertem dois membros de uma igualdade esta não sofre nenhuma variação	$F = A + B \rightarrow \overline{F} = \overline{A + B}$

29	Álgebra de Boole		
	ropriedades da álgebra de Boole		
	Propriedade Comutativa	$A + B = B + A$ $A \bullet B = B \bullet A$	
	Propriedade Associativa	$A + B + C = A + (B + C)$ $A \bullet B \bullet C = A \bullet (B \bullet C)$	
	Propriedade Distributiva	$A \bullet (B+C) = (A \bullet B) + (A \bullet C)$ $A + (B \bullet C) = (A+B) \bullet (A+C)$	

,	Álgebra de Boole	
30 T	eoremas da álgebra de Boole	
	Teorema 1 – Lei da Absorção	a) $A + (A \bullet B) = A$ b) $A \bullet (A + B) = A$
	Teorema 2	a) $A + (\overline{A} \bullet B) = A + B$ b) $B \bullet (A + \overline{B}) = B \bullet A$
	Teorema 3 – Leis de Morgan	a) $\overline{A+B} = \overline{A} \bullet \overline{B}$ b) $\overline{A \bullet B} = \overline{A} + \overline{B}$

31

Demonstração do Teorema 1 – Lei da Absorção

a)
$$A + (A \bullet B) = A$$

Demonstração:
$$A + (A \bullet B) = \\ = A \bullet (1 + B) = \\ = A \bullet 1 = \\ = A$$
Postulado 1
Postulado 3

b)
$$A \bullet (A+B) = A$$

Demonstração:
$$A \bullet (A+B) = \\ = A \bullet A + A \bullet B = \\ = A + A \bullet B = \\ = A$$
Propriedade Distributiva
Postulado 6
Teorema 1 (a)

Álgebra de Boole

32

Demonstração do Teorema 2

$$a) \quad A + \left(\overline{A} \bullet B\right) = A + B$$

Demonstração:
$$A + \left(\overline{A} \bullet B\right) = \\ = \left(A + \overline{A}\right) \bullet \left(A + B\right) = \\ = 1 \bullet \left(A + B\right) = \\ = A + B$$
Propriedade Distributiva

Postulado 7

Postulado 3

$$b) \quad B \bullet \left(A + \overline{B}\right) = B \bullet A$$

Demonstração:
$$B \bullet \left(A + \overline{B}\right) = \\ = B \bullet A + B \bullet \overline{B} = \\ = B \bullet A + 0 = \\ = B \bullet A$$
 Propriedade Distributiva Propriedado 7 Postulado 3

33

Demonstração do Teorema 3 – Leis de Morgan

a) $\overline{A+B} = \overline{A} \bullet \overline{B}$

Demonstração:

Α	В	A + B	$\overline{A+B}$
0	0	0	1
· · · · · · · · · · · · · · · · · · ·	1	1	0
1	0	1	0
1	1	1	0

Α	В	\overline{A}	\overline{B}	$\overline{A} \bullet \overline{B}$
0	0	1	1	1
0	1	1	0	0
1	0	0		0
1	1	0	0	0

Álgebra de Boole

34

Demonstração do Teorema 3 – Leis de Morgan

b) $\overline{A \bullet B} = \overline{A} + \overline{B}$

Demonstração:

Α	В	$A \bullet B$	$\overline{A \bullet B}$
0	0	0	1
0	1	0	1
1	0	0	
1	1	1	U

A	В	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Formas canónicas

Uma função lógica é uma expressão constituída por um **produto de somas** ou uma soma de produtos na qual aparecem todas as variáveis intervenientes em forma directa ou complementada.

$$F_1 = \left(A \bullet B \bullet \overline{C}\right) + \left(A \bullet \overline{B} \bullet C\right)$$

$$F_2 = \left(A + B + \overline{C}\right) \bullet \left(A + \overline{B} + C\right)$$

$$1^{\text{3}} \text{ Forma canónica (minterms):}$$

$$2^{\text{3}} \text{ Forma canónica (maxterms):}$$

soma de produtos

$$F_2 = \left(A + B + \overline{C}\right) \bullet \left(A + \overline{B} + C\right)$$

2ª Forma canónica (maxterms): produto de somas

Álgebra de Boole

1^a forma canónica

Uma função lógica escrita na 1ª forma canónica é uma expressão constituída por uma soma de produtos na qual aparecem todas as variáveis intervenientes em forma directa ou complementada.

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Tabela de verdade

1º forma canónica: obtém-se somando os produtos lógicos que dão à função o valor lógico 1.

$$F = (\overline{A} \bullet \overline{B} \bullet \overline{C}) + (A \bullet \overline{B} \bullet C) + (A \bullet B \bullet \overline{C}) + (A \bullet B \bullet C)$$

37

2ª forma canónica

Uma função lógica escrita na 2ª forma canónica é uma expressão constituída por um **produto de somas** na qual aparecem todas as variáveis intervenientes em forma directa ou complementada.

Α	В	С	F
0	0	0	1
0		1	
0		0	
0		1	
1		0	
1	0	1	1
1	1	0	1
1	1	1	1

Tabela de verdade

2ª forma canónica: obtém-se multiplicando as somas lógicas que dão à função o valor lógico 0.

$$F = (A + B + \overline{C}) \bullet (A + \overline{B} + C) \bullet (A + \overline{B} + \overline{C}) \bullet (\overline{A} + B + C)$$