AI25BTECH11030 -Sarvesh Tamgade

Question: Which of the following expressions are meaningful?

(a) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$

(c) $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$

(b) $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$

(d) $\mathbf{u} \times (\mathbf{v} \cdot \mathbf{w})$

Solution:

Let \mathbf{u} , \mathbf{v} , \mathbf{w} be vectors in \mathbb{R}^3 .

(a) $\mathbf{u}(\mathbf{v} \times \mathbf{w})$:

The expression $\mathbf{v} \times \mathbf{w}$ is a vector (cross product), and the expression $\mathbf{u}(\mathbf{v} \times \mathbf{w})$ denotes the scalar triple product (sometimes written as the inner product of \mathbf{u} and the vector $\mathbf{v} \times \mathbf{w}$).

Meaningful.

(b) $(\mathbf{u}^{\mathsf{T}}\mathbf{v})\mathbf{w}$:

Here, $(\mathbf{u}^{\mathsf{T}}\mathbf{v})$ represents the inner (dot) product, which is a scalar. Multiplying a scalar by a vector \mathbf{w} is valid. However, if it is interpreted as $(\mathbf{u}^{\mathsf{T}}\mathbf{v})^{\mathsf{T}}\mathbf{w}$ having a dot between scalar and vector, that is not defined.

Not meaningful if interpreted as scalar dot vector.

(c) $\langle \mathbf{u}^{\mathsf{T}} \mathbf{v} \rangle^{\mathsf{T}} \mathbf{w}$:

 $\langle \mathbf{u}, \mathbf{v} \rangle$ denotes the inner product (a scalar) and multiplying this scalar by vector \mathbf{w} is valid scalar multiplication of a vector.

Meaningful.

(d) $\mathbf{u} \times (\mathbf{v}^{\mathsf{T}} \mathbf{w})$:

 $\mathbf{v}^{\mathsf{T}}\mathbf{w}$ inside parentheses denotes the inner product (scalar), and cross product between a vector and scalar is undefined.

Not meaningful.

Answer: Only (a) and (c) are meaningful

1

Fig. 4.1: Vector Representation