Team 8

Efficient X-Ray Representations For Classifying Diseases

UBC Medicine Datathon 2025

BACKGROUND

Chest X-rays are a primary diagnostic tool for identifying thoracic diseases.

KEY CHALLENGES

Data Scale
Usable representation
Annotation Constraints

OBJECTIVES

To create an **efficient** and **accurate** representation of x-ray images using a combination of feature extraction and dimensionality reduction

PIPELINE

FEATURE EXTRACTION

Challenge

Data Scale: I I 2GB → 2.7GB

Reduction: 40x

DIMENSIONALITY REDUCTION

Challenges: Usable Representation

Top 20 autoencoding features

IMPLICATIONS

Disclaimer: Als are not doctors nor do they play them on TV.

However, there needs to be studies on the complex of human-robot interaction.

Using algorithms to **assist** preliminary decisions

Like any other model, the model is vulnerable to concept drift.

TEAM

Ethan Rajkumar

Pushya Jain

Joel Bonnie

Vivaan Jhaveri

Charity Grey

Erhan Javed

REFERENCES

- Wang, Xiaosong, et al. "Chestx-Ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases." 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 3462–3471, https://doi.org/10.1109/cvpr.2017.369.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).
- Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A.Y. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.
- Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.

APPENDIX

RANDOM FOREST

SVC → bad ROC score < 50%
Gradient boosted → slow
Random Forest → best

RESULTS-TYPES OF DISEASE

