Econ 675: HW 2

Erin Markiewitz

October 11, 2018

Contents

1	1	
		6
1	2	4
1	3	Ę
	1.3.1	Ę
	1.3.2	Ę
	1.3.3 C	ļ
2 I	Linear Smoothing, Cross-Validation and Series	6
2	2.1	6
2	2.2	-
3 5	Semiparametric Semi-Linear Model	8
3	8.1	8
3	3.2	Ç
	3.2.1	Ç
	3.2.2	(
3	.3	1(
	3.3.1	1(
	3.3.2	1(
ર	3.6.2	1(

1 Kernel Density Estimation

1.1

First we consider the kernel density derivative estimator. $\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{N} k\left(\frac{X_i - x}{h}\right)$ The expectation of the estimator is:

$$\mathbb{E}[\hat{f}^{(s)}(x)] = \mathbb{E}[\hat{f}^{(s)}(x, h_n)] = \int_{-\infty}^{\infty} \frac{(-1)^s}{h^{1+s}} k^{(s)} \left(\frac{z-x}{h}\right) f(z) dz$$

where $k^{(s)}$ is the s^{th} derivative of the kernel function Now integrate by parts

$$\int_{-\infty}^{\infty} \frac{(-1)^s}{h^{1+s}} k^{(s)} \left(\frac{z-x}{h}\right) f(z) dz =$$

$$(-h)k^{(s-1)} \left(\frac{z-x}{h}\right) f^{(1)}(z)|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{(-1)^{s-1}}{h^{1+s-1}} k^{(s)} \left(\frac{z-x}{h}\right) f^{(1)}(z) dz$$

As k(.) is a P^{th} order kernel function and s-1 < P, the first term on the RHS of the equation above is equal to zero. Integrating by parts s-1 more times and changing the base, we get the following expression

$$\int_{-\infty}^{\infty} k(u) f^{(s)}(uh + x) du$$

So now we take a P^{th} order taylor expansion of $f^{(s)}(uh+x)$ around x, which gives us

$$f^{(s)}(x) + \frac{1}{P!} \int_{-\infty}^{\infty} k(u) f^{(s+P)}(uh+x)(uh+x-x)^p du + o(h_n^P)$$

$$= f^{(s)}(x) + \frac{1}{P!} \int_{-\infty}^{\infty} k(u) f^{(s+P)}(uh+x)(uh)^p du + o(h_n^P)$$

$$= f^{(s)}(x) + \frac{f^{(s+P)}(x)}{P!} \mu_P(K) h_n^p + o(h_n^P)$$

where $\mu_P(K) = \int_{\mathbb{R}} u^P K(u) du$ - which gives the result. (Note: the second term is the bias of the estimator)

Now consider the variance of the estimator

$$\mathbb{V}[\hat{f}^{(s)}(x)] = \frac{1}{nh^{2+2s}} \mathbb{V}\left[\left[k^{(s)}\left(\frac{z-x}{h}\right)\right] = \frac{1}{nh^{2+2s}} \mathbb{E}\left[k^{(s)}\left(\frac{z-x}{h}\right)\right]^2 - \frac{1}{n} \mathbb{E}\left[\frac{1}{nh^{1+s}} k^{(s)}\left(\frac{z-x}{h}\right)\right]^2 + \frac{1}{n} \mathbb{E}\left[\frac{1}{n$$

Now using our derivation of the expected value of our estimator we can rewrite the expression above as:

$$\frac{1}{nh^{2+2s}}\mathbb{E}\left[k^{(s)}\left(\frac{z-x}{h}\right)\right]^2 - \frac{1}{n}f^{(s)}(x)^2 + O\left(\frac{1}{n}\right)$$

(This comes from $\{\frac{f^{(s+P)}(x)}{P!}\mu_P(K)h_n^p + o(h_n^p)\}$ being bounded) So continuing on, we just expand the first term a bit

$$\mathbb{V}[\hat{f}^{(s)}(x)] = \frac{1}{nh^{2+2s}} \int_{-\infty}^{\infty} k^{(s)} \left(\frac{z-x}{h}\right)^2 f(z) dz - \frac{1}{n} f^{(s)}(x)^2 + O\left(\frac{1}{n}\right)$$

$$= \frac{1}{nh^{1+2s}} \int_{-\infty}^{\infty} k^{(s)}(u) f(uh+x) du - \frac{1}{n} f^{(s)}(x)^2 + O\left(\frac{1}{n}\right)$$

$$= \frac{f(x)}{nh^{1+2s}} \int_{-\infty}^{\infty} k^{(s)}(u) du - \frac{1}{n} f^{(s)}(x)^2 + O\left(\frac{1}{n}\right)$$

$$= \frac{f(x)\nu_s(k)}{nh^{1+2s}} - \frac{1}{n} f^{(s)}(x)^2 + O\left(\frac{1}{n}\right)$$

where $\nu_s(k) = \int_{\mathbb{R}} k^{(s)} (u)^2 du$ is the roughness of the s^{th} derivative of a given function k -which gives the result.

1.2

The optimal bandwith estimator solves the following problem

$$\min_{h} AIMSE[h] = \min_{h} \int_{-\infty}^{\infty} \left[\left(h_n^p \mu_p(k) \frac{f^{(P+s)}(x)}{P!} \right)^2 + \frac{\nu_s(k) f(x)}{n h_n^{1+2s}} \right] dx$$

Take first order conditions

$$0 = 2Ph^{2P-1} \int_{-\infty}^{\infty} \left[\left(\mu_p(k) \frac{f^{(P+s)}(x)}{P!} \right)^2 - \frac{(1+2s)\nu_s(k)f(x)}{nh^{2s}} \right] dx$$

$$\begin{split} \frac{2Pnh^{1-2P-2s}}{(1+2s)\nu_s(k)} &= \left(\frac{P!}{\mu_p(k)\nu_{(P+s)}(f))}\right)^2 \\ h_{AIMSE,s} &= \left(\frac{(1+2s)\nu_s(k)(P!)^2}{2Pn\mu_p(k)^2\nu_{(P+s)}(f))}\right)^{\frac{1}{1-2P-2s}} \\ h_{AIMSE,s} &= \left(\frac{(1+2s)(P!)^2}{2Pn}\frac{\nu_s(k)}{\mu_p(k)^2\nu_{(P+s)}(f))}\right)^{\frac{1}{1-2P-2s}} \end{split}$$

Now for a consistent bandwith estimator we use cross validation procedure from the lecture notes. Cross-Validation minimizes the estimated mean-squared error through a choice of bandwith.

$$h^* = \operatorname{argmin}_{h \in \mathbb{R}^{++}} CV(h) = \frac{1}{n^2 h} \sum_{i=1}^n \sum_{j=1}^n K\left(\frac{X_i - X_j}{h}\right) K\left(\frac{X_i - X_j}{h}\right) - \frac{2}{n} \sum_{i=1}^n \hat{f}_{-i}(X_i)$$

where $\hat{f}_{-i}(X_i)$ is the estimated density w/o x_i in the sample.

1.3

1.3.1

PUT GRAPHS HERE

1.3.2

Talk about convergence here!!!!

1.3.3 C

onsidering a rule-of-thumbs estimate of the bandwith, we assume the DGP is gaussian, so

$$\bar{h}_{AIMSE} = M^{-1} \sum_{m=1}^{M} \hat{h}_{AIMSE,m} =$$

2 Linear Smoothing, Cross-Validation and Series

2.1

Local polynomial regression solves the following problem:

$$\hat{\beta}_{LPR} = \operatorname{argmin}_{\beta \in \mathbb{R}^P + 1} \frac{1}{n} \sum_{i=1}^{N} (Y_i - r_p(x - x)\beta)^2 K(\frac{x_i - x}{h})$$

where $r_p(u) = (1, u, u^2, ..., u^p)'$ The true regression function $e(x_i)$ is estimated by $\hat{e}(x) = \hat{\beta}_{LPR}$, which can be rewritten as a weighted least-squares problem where $\hat{\beta}_{LPR}(x) = (\mathbf{R}'_{\mathbf{p}}\mathbf{W}\mathbf{R}_{\mathbf{p}})^{-1}\mathbf{R}'_{\mathbf{p}}\mathbf{W}\mathbf{Y}$ where the weighting matrix is a diagonal matrix with the kernel functions of the x_i .

where

$$\mathbf{R}_p = \begin{bmatrix} 1 & (x_1 - x) & (x_1 - x)^2 & \cdots & (x_1 - x)^p \\ \vdots & \cdots & \ddots & \ddots & \vdots \\ 1 & (x_n - x) & \cdots & \cdots & (x_n - x)^p \end{bmatrix}$$

and W is a matrix with kernel weights of x_i s on the diagonal

$$\mathbf{W} = \begin{bmatrix} K(\frac{x_1 - x}{h}) & 0 & 0 & 0\\ 0 & K(\frac{x_2 - x}{h}) & 0 & 0\\ 0 & 0 & \ddots & 0\\ 0 & 0 & 0 & K(\frac{x_n - x}{h}) \end{bmatrix}$$

So we can rewrite the estimator of our regression equation as $\hat{e}(x) = \mathbf{e_1'}bet\hat{a}_{LPR} = R_p'WR_p)^{-1}R_p'WY$ where $\mathbf{e_1}$ is a basis vector of length 1 + p.

Therefore we can rewrite the estimator above as a sum.

$$\hat{e}(x) = \mathbf{e}_{1}' \left(\sum_{i=1}^{n} r_{p}(x_{i} - x) r_{p}(x_{i} - x)' K\left(\frac{x_{i} - x}{h}\right) \right)^{-1} \left(\sum_{i=1}^{n} r_{p}(x_{i} - x) r_{p}(x_{i} - x) y_{i} K\left(\frac{x_{i} - x}{h}\right) \right)$$

Now we consider the series estimator, which solves the following problem

$$\hat{\beta}_s = \operatorname{argmin}_{\beta \in \mathbb{R}^{k_n}} \frac{1}{n} \sum_{i=1}^{N} (Y_i - r_{k_n}(x)\beta)^2 K(\frac{x_i - x}{h})$$

where $r_{k_n}(x)$ is the basis of some series defined on x, so that

$$\hat{e}(x) = \mathbf{r_{k_n}}(\mathbf{x})'\hat{\beta}$$

where

$$\hat{\mathrm{beta}}_{\mathrm{s}} = \left(\mathrm{R}_{\mathrm{p}}^{\prime}\mathrm{R}_{\mathrm{p}}\right)^{-1}\mathrm{R}_{\mathrm{p}}\mathrm{Y}$$

and

$$\mathbf{R}_p = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^p \\ \vdots & \cdots & \ddots & \ddots & \vdots \\ 1 & x_n & \cdots & \cdots & x_n^p \end{bmatrix}$$

So we can rewrite the estimated regression function as

$$\hat{e}(x) = \mathbf{r_p}(\mathbf{x})' \left(\mathbf{R_p'} \mathbf{R_p} \right)^{-1} \mathbf{R_p} \mathbf{Y}$$

and

$$\hat{e}(x) = \mathbf{r}_{\mathbf{p}}(\mathbf{x})' \left(\sum_{i=1}^{n} r_p(x_i) r_p(x_i)' \right)^{-1} \left(\sum_{i=1}^{n} r_p(x_i) y_i \right)$$

2.2

Next, we need to show the following simplified cross-validation formula holds for local polynomial regression and series estimation:

$$CV(c) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{e}(x_i))^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{e}_{(i)}(x_i)}{1 - w_{n,1}(x_i)} \right)^2$$

where c is a tuning parameter (h_n for LPR or a truncation K for series estimators)

3 Semiparametric Semi-Linear Model

3.1

The following question concerns this moment condition:

$$\mathbb{E}[(t_i - h_0(x_i))(y_i - t_i\theta)] = 0$$
, where $h_0(x_i) = \mathbb{E}[t_i|x_i]$

As long as t_i is not collinear with x_i then θ_0 will be identifiable. Assuming that θ_0 is identifiable, it satisfies the moment condition above:

$$\mathbb{E}[t_i y_i] + \mathbb{E}[h_0(x_i)t_i\theta] - \mathbb{E}[h_0(x_i)y_i] - \mathbb{E}[t_i t_i\theta)] = 0$$

$$\mathbb{E}[\mathbb{E}[t_i y_i | t_i, x_i]] + \mathbb{E}[\mathbb{E}[h_0(x_i)t_i\theta | t_i, x_i]] - \mathbb{E}[\mathbb{E}[h_0(x_i)y_i | t_i, x_i]] + \mathbb{E}[\mathbb{E}[t_i t_i\theta) | t_i, x_i]] = 0$$

$$\mathbb{E}[h_0(x_i)\mathbb{E}[y_i | t_i, x_i]] + \mathbb{E}[h_0(x_i)h_0(x_i)]\theta - \mathbb{E}[h_0(x_i)\mathbb{E}[y_i | t_i, x_i]] + \mathbb{E}[h_0(x_i)h_0(x_i)]\theta = 0$$

$$0 = 0$$

To derive a closed form equation for θ_0 we follow the steps outlined in Hansen's notes on nonparametrics (chapter 7), which describes Robinson (Econometrica, 1988).

$$y_i = t_i \theta_0 + g(x_i) + \epsilon_i$$

First we take the conditional expectation with respect to the treatment and other covariates. (We assume the treatment is not collinear with the other covariates.)

$$\mathbb{E}[y_i|t_ix_i] = \mathbb{E}[t_i|t_ix_i]\theta_0 + \mathbb{E}[g(x_i)|t_ix_i] + 0\mathbb{E}[y_i|t_ix_i] = h_o(x_i)\theta_0 + g(x_i) + 0$$

Next, let's define $g_{y,x} := \mathbb{E}[y_i|t_ix_i]$, and subtract the equation above from the original regression.

$$y_i - g_{y,x} = (t_i - h_o(x_i))\theta_0 + g(x_i) - g(x_i) + \epsilon_i$$

Now, we can rewrite the regression as a residual regression:

$$\epsilon_{yi} = \epsilon_{ti}\theta_0 + \epsilon_i$$
$$y_i = g_{y,x} + \epsilon_{yi}$$
$$t_i = h_o(x_i) + \epsilon_{ti}$$

Which produces the infeasible estimtor:

$$\beta = \left(\sum_{i=1}^{n} \epsilon_{ti} \epsilon'_{ti}\right)^{-1} \left(\sum_{i=1}^{n} \epsilon_{ti} \epsilon'_{yi}\right)$$

Note that we can rewrite the residual regression as:

$$M_{yx}y_i = M_{tx}t_i\theta_0 + \epsilon_i$$

Which is the second stage of an IV regression that partials out the effects of X_i on y_i and t_i using anhibition matrixes.

3.2

3.2.1

If the treatment is undetermined by the power series of the covariates, θ_0 is simply

$$\theta_0 = (T'T)^{-1}(T'Y)$$

which has a feasible estimator of

$$\hat{\theta}(K) = (\sum_{i=1}^{n} t_i t_i)^{-1} (\sum_{i=1}^{n} t_i y_i)$$

3.2.2

If the treatment is correlated to the other covariates, in order to estimate a feasible estimator, one must run Nadaraya - Watson kernel regressions of the outcome and treatment variables onto the power series.

$$\hat{y}_{i} = \frac{\sum_{i=1}^{n} k \left(\frac{p^{K_{n}}(x_{i}) - p^{K_{n}}(x)}{h} \right) y_{i}}{\sum_{i=1}^{n} k \left(\frac{p^{K_{n}}(x_{i}) - p^{K_{n}}(x)}{h} \right)}$$

$$h_{0}(x_{i}) = \frac{\sum_{i=1}^{n} k \left(\frac{p^{K_{n}}(x_{i}) - p^{K_{n}}(x)}{h} \right) t_{i}}{\sum_{i=1}^{n} k \left(\frac{p^{K_{n}}(x_{i}) - p^{K_{n}}(x)}{h} \right)}$$

Now, construct residualize

$$\hat{\epsilon}_{yi} = y_i - \hat{y}_i = M_{yx}y_i$$

$$\hat{\epsilon}_{ti} = t_i - h_0(x_i) = M_{tx}t_i$$

Which produces the feasible estimator

$$\hat{\theta}(K) = \left(\sum_{i=1}^{n} \hat{\epsilon}_{ti} \hat{\epsilon}'_{ti}\right)^{-1} \left(\sum_{i=1}^{n} \hat{\epsilon}_{ti} \hat{\epsilon}'_{yi}\right)$$

3.3

3.3.1

Fixing K, the reason this approach is called a "flexible parametric" estimation because you are estimating θ_0 , while letting

If $K \to \infty$ does not invalidate the "fixed K" assumption as long as the ratio between the observations and covariates is fixed $\left(\frac{K_n}{n} = \frac{\bar{K}}{\bar{n}}\right)$

3.3.2

Using the results above the confidence interval is

$$CI_{95} = \left[\hat{\theta}(K) - 1.96\sqrt{\hat{V}_{HCO}/n}; \hat{\theta}(K) + 1.96\sqrt{\hat{V}_{HCO}/n}\right]$$

3.4