Digital Signal Processing

EE3900: Linear Systems and Signal Processing Indian Institute of Technology Hyderabad

Ankit Saha AI21BTECH11004

1 Aug 2022

1. Software Installation

Install the necessary packages by running the following commands

sudo dnf up

sudo dnf install libffi-devel libsndfile python3scipy python3-numpy python3-matplotlib python -m pip install cffi pysoundfile

2. Digital Filter

2.1 Download the sound file from

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes/ Sound Noise.wav

2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Up-load the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find?

Solution: There is a lot of background noise and the key strokes are audible. This noise is represented by the large blue and red regions spread from 440 Hz to beyond 18.9 kHz. The key tones are represented by the yellow lines that are present in the lower regions between 440 Hz and 5.1 kHz.

2.3 Write the python code for removal of out of band noise and execute the code.

Solution: Download the python code for the reduction of noise by executing the following command

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /2.3.py Run the code by executing

python 2.3.py

Play the newly created audio file by executing

1

aplay Sound With Reduced Noise.wav

2.4 The output of the script python Problem 2.3 audio in is the file Sound With Reduced Noise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The noise has been reduced considerably and the key strokes are not audible anymore. The blue region is restricted between 440 Hz and 5.1 kHz and there are no signals beyond this range.

3. Difference Equation

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n)

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n)

Solution: Download the following Python code that plots Fig. 3.2.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /3.2.py

Run the code by executing

Fig. 3.2. The sketches of x(n) and y(n)

python 3.2.py

3.3 Repeat the above exercise using a C code. **Solution:** Download the following C code that generates the values of y(n)

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /3.3.c

Compile and run the C program by executing the following

cc 3.3.c ./a.out

Download the following Python code that plots Fig. 3.3 using the data generated by the above C code

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /3.3.py

Run the code by executing

python 3.3.py

4. Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

Fig. 3.3. Plot of y(n)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution:

$$\mathcal{Z}\{x(n-1)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$
 (4.4)

Substitute n - 1 = m

$$Z\{x(n-1)\} = \sum_{m=-\infty}^{\infty} x(m)z^{-(m+1)}$$
 (4.5)

$$= z^{-1} \sum_{m=1}^{\infty} x(m) z^{-m}$$
 (4.6)

$$= z^{-1} \mathcal{Z}\{x(m)\} \tag{4.7}$$

$$= z^{-1}X(z) (4.8)$$

$$\mathcal{Z}\lbrace x(n-k)\rbrace = \sum_{n=-\infty}^{\infty} x(n-k)z^{-n}$$
 (4.9)

$$= \sum_{m=-\infty}^{\infty} x(m) z^{-(m+k)}$$
 (4.10)

$$= z^{-k} \sum_{m=-\infty}^{\infty} x(m) z^{-m}$$
 (4.11)

$$= z^{-k}X(z) \tag{4.12}$$

For the x(n) given in (3.1)

$$X(z) = \mathcal{Z}\{x(n)\}\tag{4.13}$$

$$=\sum_{n=0}^{5} x(n)z^{-n} \tag{4.14}$$

$$= 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.15)

Also

$$Z{x(n-k)} = z^{-k}X(z)$$
 (4.16)

$$Z\{x(n-k)\} = z^{-k} + 2z^{-(k+1)} + 3z^{-(k+2)} + 4z^{-(k+3)} + 2z^{-(k+4)} + z^{-(k+5)}$$
(4.17)

4.2 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.18}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution:

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2)$$
 (4.19)

On applying the Z-transform on both sides of the equation, we get

$$Z\left\{y(n) + \frac{1}{2}y(n-1)\right\} = Z\{x(n) + x(n-2)\}$$
(4.20)

Since we are assuming that the Z-transform is a linear operation,

$$Z{y(n)} + \frac{1}{2}Z{y(n-1)} = Z{x(n)} + Z{x(n-2)}$$
(4.21)

$$\implies Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
(4.22)

$$\implies Y(z)\left(1 + \frac{1}{2}z^{-1}\right) = X(z)(1 + z^{-2})$$
(4.23)

$$\therefore H(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
(4.24)

4.3 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.25)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.26)

is

$$U(z) = \frac{1}{1 - z^{-1}} \quad |z| > 1 \tag{4.27}$$

Solution:

$$\mathcal{Z}\{\delta(n)\} = \sum_{n=-\infty}^{\infty} \delta(n) z^{-n}$$
 (4.28)

$$= \delta(0)z^{-0} \tag{4.29}$$

$$= 1 \tag{4.30}$$

$$\mathcal{Z}\lbrace u(n)\rbrace = \sum_{n=-\infty}^{\infty} u(n)z^{-n} \qquad (4.31)$$

$$=\sum_{n=0}^{\infty} \left(z^{-1}\right)^n \tag{4.32}$$

This is the sum of an infinite geometric progression with first term 1 and common ratio z^{-1} . The sum converges when

$$|z^{-1}| < 1 \iff |z| > 1$$
 (4.33)

Therefore,

$$U(z) = \mathbb{Z}\{u(n)\} = \frac{1}{1 - z^{-1}} \quad |z| > 1 \quad (4.34)$$

4.4 Show that

$$a^{n}u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.35}$$

Solution:

$$Z{a^n u(n)} = \sum_{n=-\infty}^{\infty} a^n u(n) z^{-n}$$
 (4.36)

$$=\sum_{n=0}^{\infty} \left(az^{-1} \right)^n \tag{4.37}$$

This is the sum of an infinite geometric progression with first term 1 and common ratio az^{-1} . The sum converges when

$$|az^{-1}| < 1 \iff |z| > |a|$$
 (4.38)

Therefore.

$$\mathcal{Z}\{a^n u(n)\} = \frac{1}{1 - az^{-1}} \quad |z| > |a| \qquad (4.39)$$

4.5 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.40)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discrete-Time Fourier Transform* (DTFT) of x(n)

Solution:

$$H(e^{J\omega}) = \frac{1 + e^{-2J\omega}}{1 + \frac{1}{2}e^{-J\omega}}$$
(4.41)

$$\implies |H(e^{J\omega})| = \frac{\left|1 + \cos 2\omega - J\sin 2\omega\right|}{\left|1 + \frac{1}{2}\cos \omega - \frac{1}{2}\sin \omega\right|}$$
(4.42)

$$= \sqrt{\frac{(1 + \cos 2\omega)^2 + (\sin 2\omega)^2}{(1 + \frac{1}{2}\cos \omega)^2 + (\frac{1}{2}\sin \omega)^2}}$$
(4.43)

$$= \sqrt{\frac{2 + 2\cos 2\omega}{\frac{5}{2} + \cos \omega}}$$
(4.44)

$$=\sqrt{\frac{2+2\cos 2\omega}{\frac{5}{4}+\cos \omega}}\tag{4.44}$$

$$= \sqrt{\frac{2(2\cos^2\omega)4}{5 + 4\cos\omega}}$$

$$= \frac{4|\cos\omega|}{\sqrt{5 + 4\cos\omega}}$$
(4.45)

$$=\frac{4\left|\cos\omega\right|}{\sqrt{5+4\cos\omega}}\tag{4.46}$$

Download the following Python code that plots Fig. 4.5.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment 1/codes /4.5.py

Run the code by executing

python 4.5.py

Fig. 4.5. The plot of the magnitude of the discrete-time Fourier transform of x(n)

From the plot, it is clear that the magnitude of the discrete-time Fourier transform of x(n) is symmetric about x = 0 (even function) and is

periodic with a period of 2π which is consistent with what we obtained theoretically.

$$e^{J(\omega+2\pi)} = e^{J\omega} \tag{4.47}$$

$$\implies H\left(e^{J(\omega+2\pi)}\right) = H\left(e^{J\omega}\right) \tag{4.48}$$

The period of $|\cos \omega|$ is π and that of $\sqrt{5} + 4\cos\omega$ is 2π . Therefore, the period of their quotient is given by

$$lcm(\pi, 2\pi) = 2\pi \tag{4.49}$$

Also, the function attains a maximum value of 4 at

$$x = (2n+1)\pi, \quad n \in \mathbb{Z} \tag{4.50}$$

and a minimum of 0 at

$$x = (2m+1)\frac{\pi}{2}, \quad m \in \mathbb{Z}$$
 (4.51)

5. Impulse Response

5.1 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z) \tag{5.1}$$

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse* response of the system defined by (3.2)

Solution:

$$H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

$$= \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.3)

From (4.35),

$$\frac{1}{1 - az^{-1}} \stackrel{\mathcal{Z}}{\rightleftharpoons} a^n u(n) \quad |z| > |a| \tag{5.4}$$

$$\implies \frac{1}{1 + \frac{1}{2}z^{-1}} \stackrel{\mathcal{Z}}{\rightleftharpoons} \left(-\frac{1}{2}\right)^n u(n) \quad |z| > \frac{1}{2} \quad (5.5)$$

$$\Longrightarrow \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}} \stackrel{\mathcal{Z}}{\rightleftharpoons} \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad |z| > \frac{1}{2}$$

$$(5.6)$$

Since the Z-transform is a linear operator, for $|z| > \frac{1}{2}$

$$H(z) \stackrel{\mathcal{Z}}{\rightleftharpoons} \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
 (5.7)

Therefore,

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (5.8)$$

5.2 Sketch h(n). Is it bounded? Convergent? **Solution:** Download the following Python code that plots Fig. 5.2.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /5.2.py

Run the code by executing

python 5.2.py

Fig. 5.2. The plot of h(n)

Using the ratio test for convergence

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \lim_{n \to \infty} \left| \frac{\left(-\frac{1}{2}\right)^{n-1} \left(\frac{1}{4} + 1\right)}{\left(-\frac{1}{2}\right)^{n-2} \left(\frac{1}{4} + 1\right)} \right| \quad (5.9)$$

$$= \lim_{n \to \infty} \left| -\frac{1}{2} \right| \quad (5.10)$$

$$= \frac{1}{2} < 1 \quad (5.11)$$

Therefore, h(n) is convergent which implies that it is bounded.

5.3 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.12}$$

Is the system defined by (3.2) stable for the impulse response in (5.1)?

Solution:

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^n u(n) + \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2} \right)^{n-2} u(n-2) \quad (5.13)$$

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n + \sum_{n=2}^{\infty} \left(-\frac{1}{2} \right)^{n-2}$$
 (5.14)

These are both sums of infinite geometric progressions with first terms 1 and common ratios $-\frac{1}{2}$

$$\sum_{n=-\infty}^{\infty} h(n) = \frac{1}{1 - \left(-\frac{1}{2}\right)} + \frac{1}{1 - \left(-\frac{1}{2}\right)}$$
 (5.15)
= $\frac{4}{3} < \infty$ (5.16)

Therefore, the system is stable. The same has been verified in the following code

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /5.3.py

Run the code by executing

python 5.3.py

5.4 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2)$$
 (5.17)

This is the definition of h(n)

Solution:

$$h(0) = 1 \tag{5.18}$$

Now, for n = 1,

$$h(1) + \frac{1}{2}h(0) = \delta(1) + \delta(-1) = 0$$
 (5.19)

$$\implies h(1) = -\frac{1}{2}h(0) = -\frac{1}{2} \tag{5.20}$$

For n=2,

$$h(2) + \frac{1}{2}h(1) = \delta(2) + \delta(0) = 1$$
 (5.21)

$$\implies h(2) = 1 - \frac{1}{2}h(1) = \frac{5}{4}$$
 (5.22)

For n > 2, the right hand side of the equation is always zero. Thus,

$$h(n) = -\frac{1}{2}h(n-1)$$
 $n > 2$ (5.23)

$$h(3) = \frac{5}{4} \left(-\frac{1}{2} \right) \tag{5.24}$$

$$h(4) = \frac{5}{4} \left(-\frac{1}{2} \right)^2 \tag{5.25}$$

$$\vdots (5.26)$$

$$h(n) = \frac{5}{4} \left(-\frac{1}{2} \right)^{n-2} \tag{5.27}$$

Therefore,

$$h(n) = \begin{cases} 1 & n = 0 \\ -\frac{1}{2} & n = 1 \\ \frac{5}{4} \left(-\frac{1}{2} \right)^{n-2} & n \ge 2 \end{cases}$$
 (5.28)

Thus, it is bounded and convergent to 0

$$\lim_{n \to \infty} h(n) = 0 \tag{5.29}$$

Download the following Python code that plots Fig. 5.4.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /5.4.py

Run the code by executing

Fig. 5.4. The plot of h(n) from its definition

5.5 Compute

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.30)

Comment. The operation in (5.30) is known as *convolution*

Solution:

$$x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.31)

$$= \sum_{k=0}^{5} x(k)h(n-k)$$
 (5.32)

since x(k) = 0 for k < 0 and k > 5Download the following Python code that plots Fig. 5.5.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /5.5.py

Run the code by executing

python 5.5.py

Fig. 5.5. Plot of the convolution of x(n) and h(n)

The plot is exactly the same as that obtained in Fig. 3.2. Therefore, we can conclude that

$$y(n) = x(n) * h(n)$$
 (5.33)

Alternatively, download the following Python code for computing the convolution by using a Toeplitz matrix which is generated by a C code

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /5.5.c

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /5.5-toeplitz.py

Compile and run the C program by executing the following

cc 5.5.c ./a.out

Run the Python code by executing

python 5.5-toeplitz.py

Fig. 5.5. Plot of the convolution of x(n) and h(n)

5.6 Show that

$$y(n) = \sum_{k=-\infty}^{\infty} x(n-k)h(k)$$
 (5.34)

Solution: We know that

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (5.35)

Substitute k = n - i

$$\sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{n-i=-\infty}^{\infty} x(n-i)h(n-(n-i))$$
(5.36)

$$=\sum_{i=-\infty}^{-\infty}x(n-i)h(i)$$
 (5.37)

$$=\sum_{i=-\infty}^{\infty}x(n-i)h(i) \qquad (5.38)$$

since the order of limits does not matter for a summation. Thus,

$$\sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{k=-\infty}^{\infty} x(n-k)h(k) \quad (5.39)$$

$$\implies x(n) * h(n) = h(n) * x(n)$$
 (5.40)

Therefore, convolution is commutative.

6. DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N} \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n)

Solution: Download the following Python code that plots Fig. 6.1.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /6.1.py

Run the code by executing

python 6.1.py

Fig. 6.1. Plots of the real parts of the discrete Fourier transforms of x(n) and h(n)

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Solution: Download the following Python code that plots Fig. 6.2.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /6.2.py

Run the code by executing

python 6.2.py

Filter Output using DFT

4

3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Fig. 6.3. Plot of the inverse discrete Fourier transform of Y(k)

Fig. 6.2. Plot of Y(k)

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) e^{j2\pi k n/N} \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: Download the following Python code that plots Fig. 6.3.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /6.3.py

Run the code by executing

The plot is exactly the same as that obtained in Fig. 3.2. Therefore, we conclude that

$$y(n) = x(n) * h(n)$$
 (6.4)

$$\iff Y(k) = X(k)H(k)$$
 (6.5)

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** Download the following Python code that plots Fig. 6.4.

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment_1/codes /6.4.py

Run the code by executing

python 6.4.py

Fig. 6.4. Plot of y(n) by fast Fourier transform

The plot is exactly the same as that obtained in Fig. 3.2

6.5 Wherever possible, express all the above equations as matrix equations.

Solution:

$$\mathbf{x} = \begin{pmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{pmatrix}^{\mathsf{T}} \tag{6.6}$$

$$\mathbf{h} = \begin{pmatrix} x_0 & x_1 & \cdots & x_{N-1} \end{pmatrix}^{\mathsf{T}} \tag{6.7}$$

$$\mathbf{y} = \mathbf{x} \otimes \mathbf{h} \tag{6.8}$$

$$\mathbf{y} = \mathbf{x} \otimes \mathbf{h}$$

$$\begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_{2N-1}
\end{pmatrix} = \begin{pmatrix}
h_0 & 0 & 0 & \cdots & 0 \\
h_1 & h_0 & 0 & \cdots & 0 \\
h_2 & h_1 & h_0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \\
0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\
0 & 0 & h_{N-1} & \cdots & h_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & h_{N-1}
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_N
\end{pmatrix}$$

$$\vdots$$

The convolution can be written using a Toeplitz matrix.

Consider the DFT matrix

$$\mathbf{W} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \cdots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(N-1)} \\ 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \omega^{3(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

$$(6.10)$$

where $\omega = e^{-j2\pi/N}$ is the N^{th} root of unity Then the discrete Fourier transforms of x and **h** are given by

$$\mathbf{X} = \mathbf{W}\mathbf{x} \tag{6.11}$$

$$\mathbf{H} = \mathbf{Wh} \tag{6.12}$$

Y is then given by

$$\mathbf{Y} = \mathbf{X} \circ \mathbf{H} \tag{6.13}$$

where o denotes the Hadamard product (element-wise multiplication)

But Y is the discrete Fourier transform of the filter output v

$$\mathbf{Y} = \mathbf{W}\mathbf{y} \tag{6.14}$$

Thus,

$$\mathbf{W}\mathbf{y} = \mathbf{X} \circ \mathbf{H} \tag{6.15}$$

$$\implies \mathbf{y} = \mathbf{W}^{-1} \left(\mathbf{X} \circ \mathbf{H} \right) \tag{6.16}$$

$$= \mathbf{W}^{-1} (\mathbf{W} \mathbf{x} \circ \mathbf{W} \mathbf{h}) \tag{6.17}$$

This is the inverse discrete Fourier transform of Y

Download the following Python code that plots Fig. 6.5

wget https://github.com/Ankit-Saha-2003/ EE3900/raw/main/Assignment 1/codes /6.5.pv

Run the code by executing

python 6.5.py

The plot is exactly the same as that obtained in Fig. 3.2

7. Exercises

Answer the following questions by looking at the python code in Problem 2.3

7.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k) \quad (7.1)$$

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify. **Solution:** On taking the Z-transform on both sides of the difference equation

$$\sum_{m=0}^{M} a(m) z^{-m} Y(z) = \sum_{k=0}^{N} b(k) x(n-k)$$
 (7.2)