2-2.삼각함수의 그래프

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일: 2020-03-10

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[삼각방정식의 풀이]

- •삼각방정식의 풀이
- ① 주어진 방정식을 $\sin x = k$ (또는 $\cos x = k$ 또는 $\tan x = k$) 꼴로
- ② 함수 $y = \sin x$ (또는 $y = \cos x$ 또는 $y = \tan x$)의 그래프와 직선 y = k를 그린다.
- ③ 주어진 범위에서 삼각함수의 그래프와 직선의 교점의 x좌표를 찾아 방정식의 해를 구한다.

[삼각방정식의 실근의 개수]

• 방정식 f(x) = g(x)의 서로 다른 실근의 개수는 두 함수 y = f(x)와 y = g(x)의 그래프의 서로 다른 교점의 개수와 같다.

[삼각부등식의 풀이]

- 삼각부등식의 풀이
- ① $\sin x > k$ (또는 $\cos x > k$ 또는 $\tan x > k$)꼴의 부등식: 함수 $y = \sin x$ (또는 $y = \cos x$ 또는 $y = \tan x$)의 그래프와 직선 y=k의 교점의 x좌표를 이용하여 삼각함수의 그래프가 직선 y = k보다 위쪽에 있는 x의 값의 범위를 구한다.
- ② $\sin x < k$ (또는 $\cos x < k$ 또는 $\tan x < k$)꼴의 부등식: 함수 $y = \sin x$ (또는 $y = \cos x$ 또는 $y = \tan x$)의 그래프와 직선 y=k의 교점의 x좌표를 이용하여 삼각함수의 그래프가 직선 y = k보다 아래쪽에 있는 x의 값의 범위를 구한다.

기본문제

- **1.** 방정식 $(2\sin x + \sqrt{3})(2\cos x + 1) = 0$ 의 모든 해의 합은? (단, $0 \le x < 2\pi$)
 - \bigcirc 3π
- ② $\frac{10}{3}\pi$
- $3\frac{11}{3}\pi$
- 4π
- ⑤ $\frac{13}{3}\pi$

[문제]

- **2.** $2^{1+2\cos x}=4$ 의 해가 $x=\alpha$ 또는 $x=\beta$ 라 할 때, $\beta - \alpha$ 의 값은? (단, $0 \le x < 2\pi$)
 - ① $\frac{1}{3}\pi$

- $4 \frac{4}{3}\pi$
- $5\frac{5}{3}\pi$

[예제]

- 방정식 $\log_{4}\cos x < -\frac{1}{2}$ 의 해가 a < x < b 또는 c < x < d일 때, (b-a) + (d-c)의 값은? (단, $0 \le x < 2\pi$)
 - ① $\frac{1}{3}\pi$
- ② $\frac{2}{3}\pi$

- $4 \frac{4}{3}\pi$
- $(5) \frac{5}{3} \pi$

[문제]

- 전체집합 $U = \{x | 0 \le x < 2\pi\}$ 의 부분집합 $A = \{x \mid \sqrt{2} \sin x > 1\}, B = \{x \mid 4\cos x > -2\}$ 에 대하 여 다음 중 집합 $A \cap B^C$ 의 원소인 것은?
 - (1) 0

- $2\frac{1}{c}\pi$
- $3\frac{2}{3}\pi$
- Φ
- $(5) \frac{3}{2} \pi$

평가문제

[스스로 확인하기]

- 5. $2\cos x = -\sqrt{2}$ 의 해를 α , $|\tan x| = 1$ 의 해를 β , γ 라 할 때, $\alpha + \beta \gamma$ 의 값은? (단, $0 \le x < \pi$, $\beta < \gamma$)
 - ① $-\frac{1}{2}\pi$
- ② $-\frac{1}{4}\pi$
- 3 0
- $4 \frac{1}{4}\pi$

[스스로 확인하기]

- 6. 어떤 야구 선수가 배트로 야구공을 쳤을 때, 야구 공의 처음 속력을 $v \, \mathrm{m/s}$, 야구공이 배트에 맞는 순간 지면과 이루는 각의 크기를 θ , 야구공이 날아간 거리를 $f(\theta) \, \mathrm{m}$ 라 하면 $f(\theta) = \frac{v^2}{10} \sin 2\theta$ 가 성립한다고 한다. 야구공의 처음 속력이 $40 \, \mathrm{m/s}$ 일 때, 야구공이 날아간 거리가 $80 \, \mathrm{m}$ 이상이 되게 하는 각 θ 의 값의 범위가 $\alpha \leq \theta \leq \beta$ 일 때, $\beta \alpha$ 의 값은? (단, $0 \leq \theta \leq \frac{\pi}{2}$ 이고, 공기의 저항은 고려하지 않는다.)
 - ① $\frac{1}{6}\pi$
- $3\frac{1}{2}\pi$
- $(4) \frac{2}{3}\pi$
- $(5) \frac{5}{6} \pi$

[스스로 마무리하기]

- 7. 방정식 $\cos^2 x + \sqrt{2} \sin x = \frac{3}{2}$ 를 만족시키는 모든 x의 값의 합은? (단, $0 \le x < 2\pi$)
 - ① $\frac{5}{2}\pi$
- 2π
- $3\frac{3}{2}\pi$
- Φ π
- ⑤ $\frac{1}{2}\pi$

[스스로 마무리하기]

8. 모든 실수 x에 대하여 부등식

 $-\sin^2 x - 4\cos x + p \ge 0$

이 항상 성립하게 하는 실수 p의 최솟값은?

(1) 0

② 1

3 2

4 3

⑤ 4

[스스로 마무리하기]

9. x에 대한 이차방정식

 $x^2 - 4x \sin\theta + (2 + 2\sqrt{3})\sin\theta - \sqrt{3} = 0$

의 실근이 존재하지 않을 때, θ 의 값의 범위를 구하 시오. (단, $0 \le \theta < 2\pi$)

$$\textcircled{1} \ \frac{\pi}{6} \!<\! \theta \!<\! \frac{\pi}{3} \ \texttt{E-} \ \frac{2}{3}\pi \!<\! \theta \!<\! \frac{5}{6}\pi$$

- ② $0 < \theta < \pi$
- $\textcircled{4} \ \frac{1}{3}\pi < \theta < \frac{2}{3}\pi$

유사문제

- **10.** $0 \le x \le 2\pi$ 일 때, 방정식 $2\cos x + \sqrt{3} = 0$ 의 모든 해의 합은?
 - ① $\frac{5}{3}\pi$
- 2π
- $\Im \frac{7}{3}\pi$
- $4 \frac{8}{3}\pi$
- $\bigcirc 3\pi$

- **11.** $0 \le x < 2\pi$ 에서 방정식 $3\sin^2 x 2 = 0$ 의 모든 실
 - $\bigcirc \frac{\pi}{2}$
- ② π
- $3\frac{3}{2}\pi$
- $\bigcirc 2\pi$
- $\bigcirc 4\pi$
- **12.** $0 \le \theta < 2\pi$ 일 때, x에 대한 이차방정식 $4x^2 + \left(4\sqrt{2}\sin\theta\right)x + \cos\theta + 1 = 0$
 - 이 실근을 갖도록 하는 모든 θ 의 값의 범위는 $\alpha \le \theta \le \beta$ 이다. $\beta - \alpha$ 의 값은?

 - $3\frac{2}{3}\pi$
- ④ π
- $\frac{4}{3}\pi$
- **13.** 방정식 $4\cos^2 x 4\sin x = k$ 가 실근을 가질 때, 상 수 k값의 범위는 $a \le k \le b$ 이다. a+b의 값은?

- 3 1
- $(4) \frac{3}{2}$
- ⑤ 2
- **14.** $\frac{\pi}{2} < x < \frac{5}{2}\pi$ 에서 부등식 $\cos x > \sin x$ 를 만족하 는 x값의 범위가 $\alpha < x < \beta$ 일 때, $\beta - \alpha$ 의 값은?
- $\bigcirc \frac{\pi}{2}$
- $3\frac{3}{4}\pi$
- $(5) \frac{5}{4} \pi$

정답 및 해설

1) [정답] ③

[해설]
$$(2\sin x + \sqrt{3})(2\cos x + 1) = 0$$
 에서
$$\sin x = -\frac{\sqrt{3}}{2}, \quad \cos x = -\frac{1}{2}$$

$$\sin x = -\frac{\sqrt{3}}{2}$$
 에서 $x = \frac{4}{3}\pi$ 또는 $x = \frac{5}{3}\pi$
$$\cos x = -\frac{1}{2}$$
 에서 $x = \frac{2}{3}\pi$ 또는 $x = \frac{4}{3}\pi$ 따라서 모든 해의 합은 $\frac{2}{3}\pi + \frac{4}{3}\pi + \frac{5}{3}\pi = \frac{11}{3}\pi$

2) [정답] ④

[해설]
$$2^{1+2\cos x}=4$$
에서 $1+2\cos x=2$, $\cos x=\frac{1}{2}$ 이므로 $\alpha=\frac{1}{3}\pi$ 또는 $\beta=\frac{5}{3}\pi$ \therefore $\beta-\alpha=\frac{4}{3}\pi$

3) [정답] ①

[해설]
$$\log_4 \cos x < -\frac{1}{2}$$
 에서 $\log_4 \cos x < \log_4 \frac{1}{2}$ 이므로 $\cos x < \frac{1}{2}$ 이다. $\therefore \frac{1}{3}\pi < x < \frac{5}{3}\pi$ \cdots ① 그런데 로그의 진수조건에 의해 $\cos x > 0$ 이므로 $0 \le x < \frac{\pi}{2}$ 또는 $\frac{3}{2}\pi < x < 2\pi$ 이다. \cdots 따라서 ③, ②에 의해
$$\frac{\pi}{3} < x < \frac{\pi}{2}$$
 또는 $\frac{3}{2}\pi < x < \frac{5}{3}\pi$ 이므로 $(b-a) + (d-c) = \frac{\pi}{6} + \frac{\pi}{6} = \frac{\pi}{3}$ 이다.

4) [정답] ③

[해설]
$$\sqrt{2}\sin x > 1$$
, 즉, $\sin x > \frac{\sqrt{2}}{2}$ 의 해는
$$\frac{1}{4}\pi < x < \frac{3}{4}\pi \circ | \Box \mathcal{Z}$$

$$A = \left\{ x \left| \frac{1}{4}\pi < x < \frac{3}{4}\pi \right| \right\}$$

$$4\cos x > -2$$
, 즉, $\cos x > -\frac{1}{2}$ 의 해는
$$0 \le x < \frac{2}{3}\pi$$
 또는 $\frac{4}{3}\pi < x < 2\pi \circ | \Box \mathcal{Z}$
$$B^{C} = \left\{ x \left| \frac{2}{3}\pi \le x \le \frac{4}{3}\pi \right| \right\}$$

$$A \cap B^{C} = \left\{ x \left| \frac{2}{3}\pi \le x < \frac{3}{4}\pi \right| \right\} \circ | \Box \mathcal{Z}$$
 따라서 보기 중 $A \cap B^{C}$ 의 원소인 것은 $\frac{2}{3}\pi \circ | \Box \mathcal{Z}$.

5) [정답] ④

[해설]
$$2\cos x = -\sqrt{2}$$
 에서 $\cos x = -\frac{\sqrt{2}}{2}$ $0 \le x < \pi$ 에서 위 방정식을 만족하는 x 의 값은 $x = \frac{3}{4}\pi$ 이다.
$$\therefore \alpha = \frac{3}{4}\pi$$
 $|\tan x| = 1$ 에서 $\tan x = 1$, 또는 $\tan x = -1$ $0 \le x < \pi$ 에서 $\tan x = 1$ 을 만족하는 x 의 값은 $x = \frac{1}{4}\pi$ $0 \le x < \pi$ 에서 $\tan x = -1$ 을 만족하는 x 의 값은 $x = \frac{3}{4}\pi$
$$\therefore \beta = \frac{1}{4}\pi, \ \gamma = \frac{3}{4}\pi$$
 따라서 $\alpha + \beta - \gamma = \frac{1}{4}\pi$

6) [정답] ②

[해설]
$$v = 40$$
일 때
$$\frac{40^2}{10}\sin 2\theta = 160\sin 2\theta \ge 80$$

$$\sin 2\theta \ge \frac{1}{2}$$

$$\frac{1}{6}\pi \le 2\theta \le \frac{5}{6}\pi, \ \frac{1}{12}\pi \le \theta \le \frac{5}{12}\pi$$

$$\alpha = \frac{1}{12}\pi, \ \beta = \frac{5}{12}\pi$$
이므로 $\beta - \alpha = \frac{1}{3}\pi$

7) [정답] ④

8) [정답] ⑤

[해설]
$$-\sin^2 x - 4\cos x + p \ge 0$$
 에서 $\sin^2 x = 1 - \cos^2 x$ 이므로 $\cos^2 x - 4\cos x + p - 1 \ge 0$ $\cos x = t$ 로 놓으면 $-1 \le t \le 1$ 이고 주어진 부등식은 $t^2 - 4t + p - 1 \ge 0$ $f(t) = t^2 - 4t + p - 1$ 로 놓으면 $f(t) = (t-2)^2 + p - 5$ 이때 $-1 \le t \le 1$ 에서 $f(t)$ 는 $t = 1$ 일 때 최솟값 $p - 4$ 을 가지므로 $p - 4 \ge 0$, 즉 $p \ge 4$ 따라서 구하는 실수 p 의 최솟값은 4이다.

9) [정답] ①

[해설] 이차방정식

 $x^2 - 4x \sin\theta + (2 + 2\sqrt{3}) \sin\theta - \sqrt{3} = 0$ 의 짝의 판 별식을 D/4라 하면

실근이 존재하지 않으므로 D/4 < 0

$$4\sin^2\theta - \left(2 + 2\sqrt{3}\right)\sin\theta + \sqrt{3} < 0$$

$$(2\sin\theta - 1)(2\sin\theta - \sqrt{3}) < 0$$

$$\frac{1}{2} < \sin\theta < \frac{\sqrt{3}}{2}$$

따라서 θ 의 값의 범위는

$$\frac{\pi}{6} < \theta < \frac{\pi}{3} \quad 또는 \quad \frac{2}{3}\pi < \theta < \frac{5}{6}\pi$$

10) [정답] ②

[해설] 방정식을 정리하면

$$\cos x=-\frac{\sqrt{3}}{2}$$
 , $x=\frac{5\pi}{6}$ 또는 $\frac{7\pi}{6}$ 이므로
모든 해의 합은 2π 이다.

11) [정답] ⑤

[해설]
$$\sin x = \pm \sqrt{\frac{2}{3}}$$
 가 되는 지점을 구하면 된다.
 $y = \sin x$ 의 그래프를 그리고 이를 표시하자.

 $a_1 + a_2 = \pi$, $a_3 + a_4 = 3\pi$ 이므로 합은 4π 이다.

12) [정답] ⑤

[해설] x에 대한 판별식을 이용하면

$$(2\sqrt{2}\sin\theta)^2 - 4(\cos\theta + 1) \ge 0$$
,

$$8(1-\cos^2\theta)-4\cos\theta-4 \ge 0$$
,

 $(\cos\theta + 1)(2\cos\theta - 1) \le 0 ,$

$$-1 \le \cos \theta \le \frac{1}{2}$$
이다.

따라서 $y = \cos\theta$ $(0 \le \theta < 2\pi)$ 인 그래프를 그리면

 $\therefore \alpha = \frac{\pi}{3}, \beta = \frac{5}{3}\pi$

13) [정답] ③

[해설] $\cos^2 x = 1 - \sin^2 x$ 이므로

$$4(1-\sin^2 x) - 4\sin x = k$$
, $4-4\sin^2 x - 4\sin x = k$,
 $4\sin^2 x + 4\sin x + k - 4 = 0$,

$$(\sin x + \frac{1}{2})^2 + \frac{k}{4} - \frac{5}{4} = 0$$

위 방정식이 실근을 가지려면

$$0 \leq rac{5}{4} - rac{k}{4} \leq rac{9}{4}$$
이어야 하므로 $-4 \leq k \leq 5$

$$\therefore a+b=-4+5=1$$

14) [정답] ④

[해설]

주어진 x의 범위에서 $\cos x > \sin x$ 를 만족하는 x값의 범위는 $\frac{5}{4}\pi < x < \frac{9}{4}\pi$ 이다.

따라서
$$\alpha = \frac{5}{4}\pi$$
, $\beta = \frac{9}{4}\pi$ 이다.

$$\therefore \beta - \alpha = \frac{9}{4}\pi - \frac{5}{4}\pi = \pi$$