Number Theory (Practice Sheet I) Solution

- 1. Does 17 divide each of these numbers?
 - a) 68 b) 84 c) 357 d) 1001

Ans:

- a) 68 % 17 = 0
 - So, 17 | 68
- b) 84 % 17 = 16

So, 17 does not divide 84

- c) 357 % 17 = 0
 - So, 17 | 357
- d) 1001 % 17 = 15

So, 17 does not divide 1001

2. Show that if a, b, and c are integers, where a = 0 and c = 0, such that $ac \mid bc$, then $a \mid b$.

Ans:

From Theorem 1(ii), we know that if a | b, then a | bc for all integers c;

Now, let x as an integer.

ac | bcx

Now if we divide both sides by c,

We get, a | bx

Again using Theorem 1(ii) -

We get a | b

- 3. What time does a 12-hour clock read
 - a) 80 hours after it reads 11:00?
 - b) 40 hours before it reads 12:00?
 - c) 100 hours after it reads 6:00?

Ans:

a) 11+80 = 91 91%12= 7

So, a 12- hour clock reads 7:00

b) 12-40=-28 -28%12= 8

So, a 12-hour clock reads 8:00

c) 6+100=106 106%12=10

So, a 12-hour clock reads 10:00

- 4. Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that
 - a) $c \equiv 9a \pmod{13}$.
 - b) $c \equiv 11b \pmod{13}$.
 - c) $c \equiv a + b \pmod{13}$.

```
d) c \equiv 2a + 3b \pmod{13}.
```

e)
$$c \equiv a2 + b2 \pmod{13}$$
.

f)
$$c \equiv a3 - b3 \pmod{13}$$
.

Ans:

a)
$$9 \cdot 4 \mod 13 = 36 \mod 13 = 10$$

b)
$$11.9 \mod 13 = 99 \mod 13 = 8$$

c)
$$4 + 9 \mod 13 = 13 \mod 13 = 0$$

d)
$$2 \cdot 4 + 3 \cdot 9 \mod 13 = 35 \mod 13 = 9$$

f)
$$43 - 93 \mod 13 = -665 \mod 13 = 11$$
 (because $-665 = -52 \cdot 13 + 11$)

5. Show that if n and k are positive integers, then n/k = (n - 1)/k + 1. Ans:

The quotient n/k lies between two consecutive integers, say b-1 and b,

So,
$$b-1 < n/k <= b$$
. $[n/k]=b$

So,
$$n/k > b-1$$
; $n-1 >= k(b-1)$; $(n-1)/k >= b-1$

So,
$$[b-1] = [(n-1)/k]$$
 and $[n/k] = [b]$

$$[(n-1)/k] <= (n-1)/k < n/k <= b$$

So, we can write [(n-1)/k] < b;

$$[(n-1)/k] <= b-1$$

$$[(n-1)/k] = [n/k]-1$$

$$[n/k] = [(n-1)/k]+1$$

6. Find a div m and a mod m when

c)
$$a = -10101$$
, $m = 333$.

d)
$$a = -765432$$
, $m = 38271$.

Ans:

a) Quotient: 1, Remainder: 109

b) Quotient: 40, Remainder: 89

c) Quotient: -31, Remainder: 222

d) Quotient: -21 , Remainder: 38259

7. List all integers between–100 and 100 that are congruent to -1 modulo 25.

Ans:

An integer a is congruent to b modulo n if a-b is divisible by n. So, we need to find integers such that a-(-1) is divisible by 25. This is

```
equivalent to:
a + 1 \equiv 25k [k is an integer]
a = 25k - 1
When k=-5, we get a = -126
When k=-4, we get a = -101
When k=-3, we get a=-76
When k=-2, we get a = -51
When k=-1, we get a=-26
When k=0, we get a=-1
When k=1, we get a=24
When k=2, we get a=49
When k=3, we get a=74
When k=4, we get a=99
So, the integers between -100 and 100 that are congruent to -1
modulo 25 are:
[-76, -51, -26, -1, 24, 49, 74, 99]
```

8. Show that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b$ (mod m), where a and b are integers, then $a \equiv b$ (mod n).

Ans:

```
Here, given, n \mid m and

From a \equiv b \pmod{m}, we get m \mid (a-b)

Now, using Theorem 1 (iii) -[ if a \mid b and b \mid c, then a \mid c.]

we can write n \mid (a-b)

So, a \equiv b \pmod{n}.
```

9. Deterr	nine whether the integers in each of these sets are pairwise relatively
prime	2.
a) 11,	15, 19
b) 14	, 15, 21
c) 12,	17, 31, 37
d) 7, 8	8, 9, 11
Ans:	
	a)Let us determine the prime factorization of each integer:
	11=1*11
	15=3*5
	19=1*19
	Let us use the prime factorizations to determine the greatest common divisor of each pair
	of the given integers.
	gcd(11,15)=1
	gcd(15,19)=1
	gcd(11,19)=1
	The integers are then pairwise relatively prime, because all greatest common divisors are equal to 1.
	b) Let us determine the prime factorization of each integer:
	14=2*7
	15=3*5
	21=3*7
	Let us use the prime factorizations to determine the greatest common divisor of each pair

of the given integers.

$$gcd(14,15)=1$$

$$gcd(15,21)=3$$

$$gcd(14,21)=7$$

The integers are then not pairwise relatively prime, because there exists a pair of integers that has a greatest common divisor different from 1.

c) Let us determine the prime factorization of each integer:

Let us use the prime factorizations to determine the greatest common divisor of each pair

of the given integers.

$$gcd(12,17) = 1$$

$$gcd(17,31) = 1$$

$$gcd(31,37) = 1$$

$$gcd(12,37) = 1$$

$$gcd(17,37) = 1$$

$$gcd(12,31) = 1$$

The integers are then pairwise relatively prime, because all greatest common divisors are equal to 1.

d) Let us determine the prime factorization of each integer:

```
7= 1*7
8= 4*2
9= 3*3
11= 1*11
```

Let us use the prime factorizations to determine the greatest common divisor of each pair

of the given integers.

```
gcd(7,8) =1
gcd(7,9) =1
gcd(7,11) =1
gcd(8,9) =1
gcd(8,11) =1
gcd(9,11) =1
```

The integers are then pairwise relatively prime, because all greatest common divisors are equal to 1.

10.What is the greatest common divisor of 17 and 22?

Ans: The positive common divisors of 17 and 22 is 1 Hence, gcd(17,22) = 12.

11.Determine whether the integers 10, 17, and 21 are pairwise relatively prime

Ans: Similar process as question-9

12.Use the Euclidean algorithm to find

```
a) gcd(12, 18).
```

- b) gcd(111, 201).
- c) gcd(1001, 1331).
- d) gcd(12345, 54321).

3

- e) gcd(1000, 5040).
- f) gcd(9888, 6060)

Ans:

a) Using the Euclidean algorithm-

$$12=6.2+0$$

Here, 6 is the last non-zero remainder. So, GCD(12,18) = 6

b) Using Euclidean algorithm-

$$90 = 21.4 + 6$$

$$21 = 6.3 + 3$$

$$6 = 3.2 + 0$$

Here, 3 is the last non-zero remainder. So, GCD(201,111) = 3

c) Using Euclidean algorithm-

Here, 11 is the last non-zero remainder. So, GCD(1331,1001) = 11

d) Using Euclidean algorithm-

$$15 = 3.5 + 0$$

Here, 3 is the last non-zero remainder. So, GCD(12345.54321) = 3

e) Using Euclidean algorithm-

$$1000 = 40.25 + 0$$

Here, 40 is the last non-zero remainder. So, GCD(1000,5040) = 40

f) Using Euclidean algorithm-

$$6060 = 3828.1 + 2232$$

$$1596 = 636.2 + 324$$

$$324 = 312.1 + 12$$

$$312 = 12.26 + 0$$

Here, 12 is the last non-zero remainder. So, GCD(9888,6060) = 12

13.How many divisions are required to find gcd(34, 55) using the Euclidean algorithm?

Ans:

Using Euclidean algorithm-

$$55 = 34.1 + 21$$

$$8 = 5.1 + 3$$

$$5 = 3.1 + 2$$

$$3 = 2.1 + 1$$

$$2 = 1.2 + 0$$

Hence. GCD (34,55) is 1

So , 8 divisions are required to find gcd(34, 55) using the Euclidean algorithm

14. What are the greatest common divisors of these pairs of integers?

a)
$$37 \cdot 53 \cdot 73$$
, $211 \cdot 35 \cdot 59$

c) 2331, 2317

Ans:

- a) These numbers have no common prime factors, so the gcd is 1 .
- b) These numbers have no common prime factors, so the gcd is 1.

c)
$$2331 = 3^2.7.37$$

 $2317 = 7.331$

The second number has no prime factors of 3, so the gcd has no 3's. Since the first number has one factor of 7 and the second number has one as well. So the gcd is 7.

15.Find gcd(92928, 123552) and lcm(92928, 123552), and verify that gcd(92928, 123552) · lcm(92928, 123552) = 92928 · 123552. [Hint: First find the prime factorizations of 92928 and 123552.]

Ans:

Prime factorization-

92928 =
$$2^8$$
. 3. 11^2
123552 = 2^5 . 3^3 . 11. 13
Now, GCD (92928,123552) = $2^{min(8,5)}$. $3^{min(1,3)}$. $11^{min(1,2)}$. $13^{min(0,1)}$
= 2^5 3^1 11^1

LCM (92928,123552) =
$$2^{max(8,5)}$$
. $3^{max(1,3)}$. $11^{max(1,2)}$. $13^{max(0,1)}$
= 2^8 . 3^3 . 11^2 . 13
= 10872576
Now, gcd(92928, 123552) · lcm(92928, 123552) = 2^5 . 3^1 . 11^1 . 2^8 . 3^3 . 11^2 . 13

Now, gcd(92928, 123552) \cdot lcm(92928, 123552) = $2^3 \cdot 3^1 \cdot 11^1 \cdot 2^0 \cdot 3^3 \cdot 11^2 \cdot 13$ = $(2^8 \cdot 3 \cdot 11^2) \cdot (2^5 \cdot 3^3 \cdot 11 \cdot 13)$ = $92928 \cdot 123552$