Math 240A: Real Analysis, Fall 2019 Homework Assignment 4 Due Friday, October 25, 2019

- 1. Let (X, \mathcal{M}) be a measurable space. Prove the following:
 - (1) A function $f: X \to \mathbb{R}$ is measurable if and only if $f^{-1}((r, \infty)) \in \mathcal{M}$ for any $r \in \mathbb{Q}$;
 - (2) If $f_n: X \to \mathbb{R}$ (n = 1, 2, ...) are measurable functions, then $\{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists }\}$ is a measurable set.
- 2. If $f: \mathbb{R} \to \mathbb{R}$ is a monotonic function then it is Borel measurable.
- 3. Let (X, \mathcal{M}) be a measurable space. If $X = A \cup B$ for some $A, B \in \mathcal{M}$, then a function $f: X \to \mathbb{R}$ is measurable if and only if f is measurable on A and on B.
- 4. Construct a function $f: \mathbb{R} \to \mathbb{R}$ that is Lebesgue measurable but nowhere continuous.
- 5. Let μ be a finite Borel measure on \mathbb{R} . Let V be a nonempty, bounded, open subset of \mathbb{R} . Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \mu(V + x)$. Is f necessary continuous?
- 6. Let $f:[0,1]\to[0,1]$ be the Cantor function (§1.5), and let g(x)=f(x)+x.
 - (1) Show that g is a bijection from [0,1] to [0,2] and that $h=g^{-1}$ is continuous from [0,2] to [0,1].
 - (2) Let C be the Cantor set. Show that m(g(C)) = 1.
 - (3) By Problem 10 of Homework Assignment 3, g(C) contains a Lebesgue nonmeasurable set A. Let $B = g^{-1}(A)$. Prove that B is Lebesgue measurable but not Borel measurable.
 - (4) There exist a Lebesgue measurable function F and a continuous function G on \mathbb{R} such that $F \circ G$ is not Lebesgue measurable.
- 7. Let $f, g: (0,1) \to \mathbb{R}$ be monotonically decreasing and left-continuous. Assume $m(\{x \in (0,1): f(x) \ge \alpha\}) = m(\{x \in (0,1): g(x) \ge \alpha\})$ for any $\alpha \in \mathbb{R}$. Prove that f = g on (0,1).
- 8. Let (X, \mathcal{M}, μ) be a measure space and denote by L^+ the set of all measurable functions from X to $[0, \infty]$. Let $f \in L^+$. Define $\lambda(E) = \int_E f \, d\mu$ for any $E \in \mathcal{M}$. Then λ is a measure on \mathcal{M} . Moreover, $\int_X g \, d\lambda = \int_X g f \, d\mu$ for any $g \in L^+$.
- 9. Let (X, \mathcal{M}, μ) be a measure space. Let $f: X \to [0, \infty]$ be a measurable function such that $\int_X f d\mu < \infty$. Prove the following:
 - (1) The set $\{x \in X : f(x) = \infty\}$ is a μ -null set and the set $\{x \in X : f(x) > 0\}$ is σ -finite;
 - (2) For any $\varepsilon > 0$, there exists $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and $\int_E f d\mu > \int_X f d\mu \varepsilon$.
- 10. Let (X, \mathcal{M}, μ) be a measure space and $f: X \to \mathbb{R}$ a measurable function. Prove that the following are equivalent:
 - (1) $f = 0 \ \mu$ -a.e. on X;
 - (2) $\int_X |f| d\mu = 0;$
 - (3) $\int_{E}^{\cdot} f d\mu = 0$ for any $E \in \mathcal{M}$;
 - (4) $\int_X fg \, d\mu = 0$ for any measurable function $g: X \to \mathbb{R}$.