COL 106 Lecture 33

Topic: Breadth-First Traversal

	Vertex and	Adjacency	Adjacency
Operation	Edge lists	Matrix	Lists
add Vertex (v)	1	n (amortised)	1
add Edge (u,v)	1	1	1. (if u, v edge is guaranteed to not exist already)
del Edge (4,N)	Y	1	du +dv
del Vertex (V)	M	depends!	Z du unbrotu
			Can be improved to do with a little trick. How?

Some interesting computational problems

Given a graph G:

1. Reachability: Does there exist a path between 4 and 1?

2. Find a shortest path between u and v (if a path exists).

3. Connectivity: Does there exist a path between every

pair of vertices?

4. Identify the connected components of G.

4 connected components

Algorithm for Connectivity (?)

Input: G, u, V

9 ← Empty queue

q. Enqueue (u)

while (q is not empty):

x ← q. Dequere ()

If x = v then return True

Enqueue all neighbors of & into q.

return False

Doesn't work! Runs forever.

Idea: Enqueue every vertex at most once.

A Unifying Problem (a.k.a. Single Sourch Shortest Path Problem)

Given a graph G and a vertex s of G

Label each t with the distance of a shortest s-t path (oo if no such path exists.)

Breadth - First Traversal BFT (G, s): q Empty queue, curr < 1 Enqueue s followed by # into q. while (TRUE): x ← q. Dequere () If q is empty > 0(1)
break If x is #: over all curr < curr +1; Enqueue # into 9 > dx iterations Else For each nbry of & such that d[y]=00 d [y] Lar prev [y] <- 2 Enqueue y into q. Let n'= # vertices and m'= # edges in the connected component of s. Time Complexity: $O(n' + \sum dx) = O(n'+m')$, because da = 2ml, by Handshake Lemma. comp-ofs