



# Proba scrisă la MATEMATICĂ

#### PROBA D

Varianta ....058

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$ 

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

### SUBIECTUL I (20p)

- (4p) a) Să se determine conjugatul numărului complex  $z = i^{10} + i^{11}$ .
- (4p) b) Să se determine  $x \in \mathbf{R}$  știind că are loc egalitatea de numere complexe  $(1 + x \cdot i)^2 = 1$ .
- (4p) c) Să se calculeze  $\cos \frac{\pi}{4} + \cos \frac{\pi}{2}$ .
- (4p) d) Să se calculeze  $\sin \frac{\pi}{4} \cdot \sin \frac{\pi}{2}$ .
- (2p) e) Să se determine  $c, d \in \mathbb{R}$  știind că punctele P(c,1), Q(2,d) sunt situate pe dreapta de ecuație 2x y 3 = 0.
- (2p) f) Să se dea un exemplu de punct M(a,b) situat pe parabola de ecuație  $y^2 = 9x$ .

#### SUBIECTUL II (30p)

1.

- (3p) a) Știind că  $a = \log_2 24$  și  $b = \log_2 6$ , să se arate că a b este un număr natural.
- (3p) b) Să se calculeze determinantul  $\begin{vmatrix} 7 & 4 \\ 14 & 8 \end{vmatrix}$ .
- (3p) c) Dacă  $A = \begin{pmatrix} 7 & 4 \\ 14 & 8 \end{pmatrix}$  și  $B = \begin{pmatrix} 2 & 6 \\ a & 3 \end{pmatrix}$ , să se determine  $a \in \mathbf{R}$  astfel încât rang  $(A) = \operatorname{rang}(B)$ .
- (3p) d) Dacă  $f: \mathbf{R}^* \to \mathbf{R}$ ,  $f(x) = x + \frac{1}{x}$ , să se calculeze  $(f \circ f)(1)$ .
- (3p) e) Să se dea un exemplu de mulțime care are exact 4 submulțimi.

2.

- (3p) a) Să se calculeze  $\lim_{n\to\infty} \frac{\sin n}{n}$ .
- (3p) b) Dacă  $f: \mathbf{R} \to \mathbf{R}$ ,  $f(x) = x^3 + x$ , să se calculeze f'(x),  $x \in (0, \infty)$ .
- (3p) c) Să se arate că funcția  $f: \mathbf{R} \to \mathbf{R}$ ,  $f(x) = -x^4$  este concavă pe  $\mathbf{R}$ .
- (3p) d) Să se determine numărul punctelor de extrem local ale funcției  $f : \mathbf{R} \to \mathbf{R}$ ,  $f(x) = (x-2)^2$ .
- (3p) e) Să se calculeze  $\int_0^1 \frac{2x+1}{x^2+x+1} dx.$



#### SUBIECTUL III (20p)

Se consideră matricele  $A = \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} \in M_2(\mathbf{C})$ , unde  $a,b,c,d \in \mathbf{R}$ , notăm

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \quad \text{si} \quad O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

- (4p) a) Să se arate că există  $x, y, z, t \in \mathbb{R}$ , astfel ca A = xE + yI + zJ + tK.
- **(4p) b)** Să se arate că  $\det(A) = a^2 + b^2 + c^2 + d^2$ .
- (4p) c) Să se arate că, dacă det(A) = 0, atunci  $A = O_2$ .
- (2p) d) Să se arate că  $I^2 = J^2 = K^2 = -E$ ,  $I \cdot J = -J \cdot I = K$ ,  $J \cdot K = -K \cdot J = I$ ,  $K \cdot I = -I \cdot K = J$ .
- (2p) e) Să se arate că, dacă  $A \neq O_2$ , atunci A este inversabilă și să se determine  $A^{-1}$ .
- (2p) f) Dacă  $A' = \begin{pmatrix} a'+ib' & c'+id' \\ -c'+id' & a'-ib' \end{pmatrix}$  să se arate că  $A \cdot A' = (aa'-bb'-cc'-dd')E + (ab'+ba'+cd'-dc')I + (ac'-bd'+ca'+db')J + (ad'+bc'-cb'+da')K$
- (2p) g) Știind că  $\det(X \cdot Y) = \det(X) \cdot \det(Y)$ ,  $\forall X, Y \in M_2(\mathbf{C})$ , să se deducă relația  $(a^2 + b^2 + c^2 + d^2)(a'^2 + b'^2 + c'^2 + d'^2) = (aa' bb' cc' dd')^2 + \\ + (ab' + ba' + cd' dc')^2 + (ac' bd' + ca' + db')^2 + (ad' + bc' cb' + da')^2.$

## SUBIECTUL IV (20p)

Se consideră funcția  $f_a: \mathbf{R} \to \mathbf{R}$ ,  $f_a(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$ , unde  $a \in \mathbf{R}$ .

- (4p) a) Să se calculeze  $\lim_{x\to\infty} f_a(x)$ .
- (4p) b) Să se demonstreze că  $f_a$  este continuă pe **R** dacă și numai dacă a = 1.
- (4p) c) Să se calculeze  $f'_a(x)$ ,  $x \in \mathbf{R}^*$ .
- (2p) d) Să se demonstreze că  $f_a$  este derivabilă pe **R** dacă și numai dacă a = 1.
- (2p) e) Să se demonstreze inegalitatea  $\frac{2}{\pi} \le f_a(x) < 1$ , pentru orice  $x \in \left(0, \frac{\pi}{2}\right]$  și  $a \in \mathbb{R}$ .
- (2p) f) Să se demonstreze inegalitatea  $1 < \int_{0}^{\frac{\pi}{2}} f_1(x) dx < 1 + \cos 1$ .
- (2p) g) Să se calculeze  $\lim_{x\to 0} \int_{x}^{2x} \frac{f_1(t)}{t} dt$ .