

Final Project Presentation

Nomor Kelompok: 2

Nama Mentor: Rachmadio Noval

Nama:

- Damar Amarsa Ajiputra
- Dea Salsa Nisrina Hanuradi
 Machine Learning Class

Program Studi Independen Bersertifikat Zenius Bersama Kampus Merdeka

- Latar Belakang
- Explorasi Data dan Visualisasi
- Modelling
- Kesimpulan

Latar Belakang

Latar Belakang Project

Sumber Data:

https://www.kaggle.com/datasets/barun2104/telecom-churn?datas

etld=567482

Problem: classification

Tujuan:

 Mengurangi Churn dari para pelanggan dan mengetahui faktor apa saja yang dapat mempengaruhi Churn

Explorasi Data dan Visualisasi

Business Understanding

- Dataset yang digunakan adalah dataset mengenai customer churn pada suatu perusahaan telekomunikasi.
- **Churn** adalah kondisi dalam dunia industri yang menunjukan adanya customer berhenti menggunakan layanan suatu perusahaan ataupun customer yang berpindah layanan ke perusahaan lain.
- Dengan adanya churn, perusahaan tentunya akan rugi sangat besar karena kehilangan pelanggan. Dengan begitu, *Growth Rate* dari perusahaan pun juga akan terhambat.

Understanding Dataset

Dataset berisi 11 Kolom

Nama Kolom	Deskripsi	Tipe Data	Isi Data
Churn	Apakah Customer Churn atau tidak	Kategorikal	1=Customer Churn 0=Tidak
AccountWeeks	Jumlah mingguan customer memiliki akun aktif	Numerikal	
ContractRenewal	Apakah Customer baru saja memperbarui kontrak	Kategorikal	1=Ya 0=Tidak
DataPlan	Apakah Customer memiliki Paket Data	Kategorikal	1=Ya 0=Tidak

Understanding Dataset

Nama Kolom	D	eskripsi		Tipe Data	Isi Data
DataUsage	Penggunan	data	(dalam	Numerikal	
	Gigabyte) da	alam 1 bul	an		
CustServCalls	Jumlah pang	ggilan ke	customer	Numerikal	
	service				
DayMins	Rata-rata p	engguna	an menit	Numerikal	
	harian dalam	1 bulan			
DayCalls	Rata-rata	jumlah	panggilan	Numerikal	
	harian				

Understanding Dataset

Nama Kolom	Deskripsi	Tipe Data	Isi Data
MonthlyCharge	Rata-rata tagihan pembayaran bulanan	Numerikal	
OverageFee	Biaya berlebih terbesar dalam 12 bulan terakhir	Numerikal	
RoamMins	Rata-rata jumlah menit roaming	Numerikal	

Data Cleansing

Rang	eIndex: 3333 entr	ies, (o to 3332	
Data	columns (total 1	1 colu	umns):	
#	Column	Non-I	Null Count	Dtype
0	Churn	3333	non-null	int64
1	AccountWeeks	3333	non-null	int64
2	ContractRenewal	3333	non-null	int64
3	DataPlan	3333	non-null	int64
4	DataUsage	3333	non-null	float64
5	CustServCalls	3333	non-null	int64
6	DayMins	3333	non-null	float64
7	DayCalls	3333	non-null	int64
8	MonthlyCharge	3333	non-null	float64
9	OverageFee	3333	non-null	float64
10	RoamMins	3333	non-null	float64

Dataset memiliki 3333 baris

Tidak ada Missing Value dalam dataframe, dan data berisi data Kategorikal dan Numerical

Data Cleansing

Outliers tidak perlu dibersihkan karena data tersebut masih mungkin terjadi

Terdapat korelasi yang sangat kuat dengan DataUsage dan DataPlan. Korelasi terkuat berikutnya adalah antara Penggunaan Data (DataPlan, DataUsage, DayMins) dan MonthlyCharge. Korelasi kuat antara OverageFee dan MonthlyCharge disebabkan oleh pelanggan dengan pembelanjaan yang lebih tinggi menjadi lebih mungkin untuk dikenakan dan overage charge.

Data Biner (Kategorikal)

Contract Renewal

Data Biner (Kategorikal)

DataPlan

Data Biner (Kategorikal)

Atribut ContractRenewal dan DataPlan adalah dua atribut penting dalam churn pelanggan. Jika kedua atribut ini adalah "1", kemungkinan churn pelanggan rendah.

Dampak ContractRenewal lebih besar dari DataPlan

Data Numerikal

DataUsage:

- Median dari grup churn maupun no churn bernilai 0.
- Dalam grup churn, rentang interquartile tidak sebesar dari grup yang no churn.
- Hal tersebut berarti data usage lebih menyebar untuk pelanggan yang kemudian tinggal di perusahaan (No churn).

Data Numerikal

CustServCalls:

 Customer yang churn rata-rata memiliki satu panggilan Customer Service daripada mereka yang tetap tinggal di perusahaan.

Data Numerikal

DayMins:

 Memiliki rata-rata menit harian yang lebih tinggi per bulan untuk customer yang churn.

Data Numerikal

MonthlyCharge:

 Customer yang churn memiliki rata-rata Monthly Charge yang lebih tinggi daripada yang tinggal di perusahaan.

Melihat Relationship

Relationship terbaik antara 2 data numerikal (MonthlyCharge dan DataUsage)

Melihat Relationship

Pemisahan Churn dan No Churn

Segmentasi

- DataUsage 0-1 = Segment 1
- DataUsage >1 = Segment 2

Segmentasi

CustServCalls

Segmentasi

MonthlyCharge

Segmentasi

DataUsage

Segmentasi

DayCalls

Segmentasi

DataPlan

Modelling

Persiapan

1. Imbalance Problem

Upper Sampling

Under Sampling

Persiapan

2. One Hot Encoding

One Hot Encoding tidak ada pengaruh karena sebelumnya dataframe tidak mempunyai tipe data string

3. Train Test Split

Data yang sudah di upper sampling dan under sampling kemudian di train untuk langkah selanjutnya yaitu modelling

Modelling

- 1. Logistic Regression
- 2. Decision Tree
- 3. Random Forest
 - Tanpa Hyperparameter Tuning
 - Menggunakan Hyperparameter Tuning

Evaluation

Data Default (sebelum Upper Sampling/Under Sampling)

Pemodelan	Akurasi	Presisi	Recall
Logistic Regression	0,849	0,669	0,552
Decision Tree	0,865	0,735	0,741
Random Forest (tanpa Hyperparameter Tuning)	0,921	<mark>0,923</mark>	0,751
Random Forest (menggunakan Hyperparameter Tuning)	<mark>0,933</mark>	0,908	<mark>0,812</mark>

Model yang paling bagus untuk tahap ini adalah Random Forest menggunakan Hyperparameter Tuning

Evaluation

Upper Sampling

Pemodelan	Akurasi	Presisi	Recall
Logistic Regression	0,747	0,747	0,747
Decision Tree	0,952	0,954	0,952
Random Forest (tanpa Hyperparameter Tuning)	0,880	0,880	0,880
Random Forest (menggunakan Hyperparameter Tuning)	0,932	0,933	0,932

Model yang paling bagus untuk tahap ini adalah Decision Tree

Evaluation

Under Sampling

Pemodelan	Akurasi	Presisi	Recall
Logistic Regression	0,757	0,758	0,756
Decision Tree	0,736	0,736	0,736
Random Forest (tanpa Hyperparameter Tuning)	<mark>0,852</mark>	<mark>0,852</mark>	<mark>0,852</mark>
Random Forest (menggunakan Hyperparameter Tuning)	0,829	0,829	0,829

Model yang paling bagus untuk tahap ini adalah Random Forest tanpa

Hyperparameter Tuning

Conclusion

Cara untuk Mempertahankan Customer

- Semakin banyak Customer Service Call, maka semakin rentan untuk Churn
- Optimalkan harga waktu panggilan untuk customer segmen 1
- Perkenalkan paket data kepada customer yang menggunakan data tanpa paket data secepatnya.
- Optimalkan harga paket data untuk customer segmen 2

Terima Kasih!

Ada pertanyaan?

