Série n°1

Outils mathématiques pour la physique

Exercice 1 Composition et projection de vecteurs

- I- Calculer la norme de la résultante \vec{R} des forces dans les cas suivants (1) et (2).
 - 1) $F_1 = 4N$, $F_2 = 3N$ et $\alpha = (\vec{F}_1, \vec{F}_2) = 90^{\circ}$
 - 2) $F_1 = 1N$, $F_2 = 2N$ et $\alpha = (\vec{F}_1, \vec{F}_2) = 60^\circ$
- II-1) Donner les expressions littérales des composantes R_x et R_y de la résultante \vec{R} des forces représentées sur le schéma ci-dessous, en fonction de F_1 , F_2 , F_3 , F_4 , α et β .
 - 2) En déduire l'expression littérale de la norme de la résultante \vec{R} en fonction des normes F_1 , F_2 , F_3 , F_4 , α et β .

Exercice 2 Produit scalaire et vectoriel

- 1- On considère, dans un repère orthonormé de base $(\vec{u}_x,\vec{u}_y,\vec{u}_z)$, les trois vecteurs :
- \vec{U} , \vec{V} et \vec{W} de composantes respectives: $\vec{U}(-4x,-2,+4)$; $\vec{V}(-1,+2,+3)$; $\vec{W}(-2,+4y,+6)$
- a) Calculer la norme de chacun des vecteurs pour x = 0 et y = -1.
- b) Calculer le produit scalaire $\vec{U}.\vec{V}$, donner la valeur de x pour laquelle \vec{U} est orthogonal à \vec{V} .
- 2- Calculer le produit vectoriel $\vec{V} \wedge \vec{W}$, pour quelle valeur de y les vecteurs \vec{V} et \vec{W} sont colinéaires?

Exercice 3 Dérivées utilisées en cinématique et en dynamique

Calculer les dérivés des fonctions suivantes :

- 1- $f(t) = A\sin(\omega t)$; A et ω sont des constantes
- 2- $f(t) = A\cos(\omega t)$; A et ω sont des constantes
- 3- $f(t) = Ae^{\omega .t}$

4-
$$f(t) = \sqrt{4(1-t^2)}$$

- 5- $f(t) = A\cos(\theta(t))$; θ est une fonction de la variable temps t, on pose $\theta = \frac{d\theta}{dt} = \text{dérivée de } \theta$ par rapport à la variable t.
- 6- $f(t) = A\cos^2(\theta(t))$; (θ est une fonction de la variable temps t).

7-
$$f(t) = A(\dot{\theta}(t))^2$$
. On pose: $\dot{\theta} = \frac{d\dot{\theta}}{dt} = \frac{d^2\theta}{dt^2}$