Test Cases for the Influence Diagram Form Implementation of Multivariate Gaussian Distributions

C. Robert Kenley

Purdue University
315 N. Grant St.
West Lafayette, IN, United States 47907
kenley@purdue.edu

1 Definition of the Forms

1.1 Covariance Form

1.2 Influence Diagram Form

2 Algorithms for Converting from One Form to Another

The algorithms for converting form one form to another are in the sections indicated by the table below.

		Covariance	Influence Diagram
	Covariance	N/A	2.2.1
From Form	Influence Diagram	2.1.1	N/A

2.2 Converting to Covariance Form

2.2.1 Converting Influence Diagram Form to Covariance Form

2.2.1.1 Test Case

Input

$$\begin{aligned} & \text{Domain} = \{X1, X2, X3, X4\} \\ & \mu = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T \\ & B = \begin{bmatrix} 0 & 0.5 & -1.75 & -0.125 \\ 0 & 0 & 5 & 0.5 \\ 0 & 0 & 0 & -0.5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \\ & v = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \end{bmatrix} \end{aligned}$$

Output

$$\begin{aligned} & Domain = \{X1, X2, X3, X4\} \\ & \mu_X = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T \\ & 16 & 8 & 12 & -4 \\ & 8 & 5 & 11 & -4 \\ & 12 & 11 & 70 & -31 \\ & -4 & -4 & -31 & 63 \end{bmatrix} \end{aligned}$$

2.2.1.2 Test Case

Input

$$\begin{aligned} & \text{Domain} = \{X1, X2, X3, X4, X5, X6\} \\ & \mu = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T \\ & \begin{bmatrix} 0 & 0.5 & -1.75 & -0.125 & 1 & 0.5 \\ 0 & 0 & 5 & 0.5 & -1 & 0.5 \\ 0 & 0 & 0 & -0.5 & 1 & -0.5 \\ 0 & 0 & 0 & 0 & 1 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ & B = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \\ 4 \\ 25 \end{bmatrix} \end{aligned}$$

Output

$$\begin{split} \text{Domain} &= \{X1,\,X2,\,X3,\,X4,\,X5,\,X6\} \\ \mu_X &= \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^T \\ 16 \quad 8 \quad 12 \quad -4 \quad 16 \quad 12 \\ 8 \quad 5 \quad 11 \quad -4 \quad 10 \quad 4 \\ 12 \quad 11 \quad 70 \quad -31 \quad 40 \quad -19 \\ -4 \quad -4 \quad -31 \quad 63 \quad 32 \quad 59 \\ 16 \quad 10 \quad 40 \quad 32 \quad 82 \quad 50 \\ 12 \quad 4 \quad -19 \quad 59 \quad 50 \quad 97 \end{split}$$

2.2.1.3 Test Case

$$\begin{split} & \text{Domain} = \{X1, X2, X3, X4, X5, X6\} \\ & \mu = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T \\ & \begin{bmatrix} 0 & 0.5 & 0 & 1.75 & -0.7987805 & -0.9363173 \\ 0 & 0 & 2 & -3.3548387 & 2.59581882 & 0.8922853 \\ 0 & 0 & 0 & 0.67741935 & 0.65853659 & 0.8558952 \\ 0 & 0 & 0 & 0 & -0.543554 & 0.0713246 \\ 0 & 0 & 0 & 0 & 0 & 0 & -0.8922853 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{split}$$

$$7 = \begin{vmatrix} 16\\1\\62\\55.548\\14.362\\3.5662 \end{vmatrix}$$

$$\begin{split} \text{Domain} &= \{X1, X2, X3, X4, X5, X6\} \\ \mu_X &= \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^T \\ 16 \quad 8 \quad 16 \quad 12 \quad 12 \quad -4 \\ 8 \quad 5 \quad 10 \quad 4 \quad 11 \quad -4 \\ 16 \quad 10 \quad 82 \quad 50 \quad 40 \quad 32 \\ 12 \quad 4 \quad 50 \quad 97 \quad -19 \quad 59 \\ 12 \quad 11 \quad 40 \quad -19 \quad 70 \quad -31 \\ -4 \quad -4 \quad 32 \quad 59 \quad -31 \quad 63 \end{bmatrix} \end{split}$$

2.2.1.4 Test Case

Input

$$\begin{aligned} & Domain = \{X1,\, X2,\, X3,\, X4,\, X5,\, X6\} \\ & \mu_X = [0\,\,0\,\,0\,\,0\,\,0]^T \end{aligned}$$

$$\Sigma_X = \begin{vmatrix} \infty & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \infty & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 70 & -31 & 40 & -19 \\ 0 & 0 & -31 & 63 & 32 & 59 \\ 0 & 0 & 40 & 32 & 73.0182661641055 & 40.1832415192808 \\ 0 & 0 & -19 & 59 & 40.1832415192808 & 57.0922006378658 \end{vmatrix}$$

2.2.1.5 Test Case

Input

Output

$$\begin{split} & \text{Domain} = \{X1, X2, X3, X4, X5, X6\} \\ & \mu_X = \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^T \\ & \infty \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ & 0 \quad \infty \quad 0 \quad 0 \quad 0 \quad 0 \\ & 0 \quad 0 \quad 73.0182661641055 \quad 40.1832415192808 \quad 40 \quad 32 \\ & 0 \quad 0 \quad 40.1832415192808 \quad 57.0922006378658 \quad -19 \quad 59 \\ & 0 \quad 0 \quad 40 \quad -19 \quad 70 \quad -31 \\ & 0 \quad 0 \quad 32 \quad 59 \quad -31 \quad 63 \end{split}$$

2.3 Converting to Influence Diagram Form

2.3.1 Converting Covariance Form to Influence Diagram Form

2.3.1.1 Test Case

Input

$$\begin{aligned} & Domain = \{Y\} \\ & \mu_Y = 0 \\ & \Sigma_Y = \infty \end{aligned}$$

Output

$$\begin{aligned} & Domain = \{Y\} \\ & \mu = [0] \\ & B = [0] \\ & v = [\infty] \end{aligned}$$

2.3.1.2 Test Case

Input

$$\begin{aligned} & \text{Domain} = \{X1, X2, X3, X4\} \\ & \mu_X = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T \\ & 16 & 8 & 12 & -4 \\ & 8 & 5 & 11 & -4 \\ & 12 & 11 & 70 & -31 \\ & -4 & -4 & -31 & 63 \end{bmatrix} \end{aligned}$$

Output

$$\begin{split} & \text{Domain} = \{X1,\, X2,\, X3,\, X4\} \\ & \mu = \begin{bmatrix} 0 \; 0 \; 0 \; 0 \end{bmatrix}^T \\ & B = \begin{bmatrix} 0 \; 0 \; 0 \; 5 & -1.75 & -0.125 \\ 0 \; 0 \; 5 & 0.5 \\ 0 \; 0 \; 0 & -0.5 \\ 0 \; 0 \; 0 \; 0 \end{bmatrix} \\ & v = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \end{bmatrix} \end{split}$$

2.3.1.3 Test Case

$$\begin{split} & \text{Domain} = \{X1, X2, X3, X4, X5, X6\} \\ & \mu_X = \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^T \\ & \begin{bmatrix} 16 & 8 & 12 & -4 & 16 & 12 \\ 8 & 5 & 11 & -4 & 10 & 4 \\ 12 & 11 & 70 & -31 & 40 & -19 \\ -4 & -4 & -31 & 63 & 32 & 59 \\ 16 & 10 & 40 & 32 & 82 & 50 \\ 12 & 4 & -19 & 59 & 50 & 97 \end{bmatrix} \end{split}$$

$$\begin{aligned} & \text{Domain} = \{X1, X2, X3, X4, X5, X6\} \\ & \mu = \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^T \\ & B = \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ -0.5 \ 1 \ -0.5 \\ 0 \ 0 \ 0 \ 0 \ -0.5 \ 1 \ -0.5 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix} \\ & v = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \\ 4 \\ 25 \end{bmatrix} \end{aligned}$$

2.3.1.4 Test Case

Input

$$\begin{split} \text{Domain} &= \{X1, X2, X3, X4, X5, X6\} \\ \mu_X &= \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^T \\ 16 \quad 8 \quad 16 \quad 12 \quad 12 \quad -4 \\ 8 \quad 5 \quad 10 \quad 4 \quad 11 \quad -4 \\ 16 \quad 10 \quad 82 \quad 50 \quad 40 \quad 32 \\ 12 \quad 4 \quad 50 \quad 97 \quad -19 \quad 59 \\ 12 \quad 11 \quad 40 \quad -19 \quad 70 \quad -31 \\ -4 \quad -4 \quad 32 \quad 59 \quad -31 \quad 63 \\ \end{split}$$

$$\begin{split} & \text{Domain} = \{X1, X2, X3, X4, X5, X6\} \\ & \mu = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T \\ & 0 & 0.5 & 0 & 1.75 & -0.7987805 & -0.9363173 \\ & 0 & 0 & 2 & -3.3548387 & 2.59581882 & 0.8922853 \\ & 0 & 0 & 0 & 0.67741935 & 0.65853659 & 0.8558952 \\ & 0 & 0 & 0 & 0 & -0.543554 & 0.0713246 \\ & 0 & 0 & 0 & 0 & 0 & 0 & -0.8922853 \\ & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{split}$$

$$y = \begin{vmatrix} 16 \\ 1 \\ 62 \\ 55.548 \\ 14.362 \\ 3.5662 \end{vmatrix}$$

2.3.1.5 Test Case

Input

$$\begin{aligned} & \text{Domain} = \{X1, \, X2, \, X3, \, X4, \, X5, \, X6\} \\ & p = 1 \\ & \mu_X = \begin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^T \\ & \infty \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\ & 0 \quad \infty \quad 0 \quad 0 \quad 0 \quad 0 \\ & 0 \quad \infty \quad 0 \quad 0 \quad 0 \quad 0 \\ & 0 \quad 0 \quad -31 \quad 40 \quad -19 \\ & 0 \quad 0 \quad -31 \quad 63 \quad 32 \quad 59 \\ & 0 \quad 0 \quad 40 \quad 32 \quad 73.0182661641055 \quad 40.1832415192808 \\ & 0 \quad 0 \quad -19 \quad 59 \quad 40.1832415192808 \quad 57.0922006378658 \end{aligned}$$

Output

$$\mathbf{v} = \begin{bmatrix} \infty \\ 70 \\ 49.271 \\ 0 \\ 0 \end{bmatrix}$$

2.3.1.6 Test Case

$$\begin{aligned} & Domain = \{X1,\, X2,\, X3,\, X4,\, X5,\, X6\} \\ & \mu_X = \left[0\;0\;0\;0\;0\;0\right]^T \end{aligned}$$

$$\Sigma_X = \begin{bmatrix} \infty & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \infty & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 73.0182661641055 & 40.1832415192808 & 40 & 32 \\ 0 & 0 & 40.1832415192808 & 57.0922006378658 & -19 & 59 \\ 0 & 0 & 40 & -19 & 70 & -31 \\ 0 & 0 & 32 & 59 & -31 & 63 \end{bmatrix}$$

3 Methods Applicable to Influence Diagram Form

3.1 Enter Evidence in Influence Diagram

3.1.1 Test Case

Input
$$\begin{aligned} & \text{Domain} = \{X_1, X_2\} \\ & n_0 = 1, \, n_1 = 1, \, n_2 = 0 \\ & \mu = [0 \, 0]^T \\ & B = [0 \, 1 \\ & 0 \, 0] \\ & v = [\infty \, 1]^T \\ & \text{Evidence:} \, X_2 = 20 \end{aligned}$$
 Output
$$\begin{aligned} & \text{Domain} = \{X_1, \, X_2\} \\ & \mu = [20 \, 0]^T \\ & B = [0 \, 0 \\ & 0 \, 0] \end{aligned}$$

$$v = [1 \ 0]^T$$

3.1.2 Test Case

Input

Domain =
$$\{X_1, X_2\}$$

 $n_0 = 1, n_1 = 1, n_2 = 0$
 $\mu = [0 \ 0]^T$
 $B = [0 \ 1$
 $0 \ 0]$
 $v = [\infty \ 1]^T$
Evidence: $X_2 = 80$

Output

$$\begin{aligned} & Domain = \{X_1, X_2\} \\ & \mu = [80 \ 0]^T \\ & B = [0 \ 0 \\ & 0 \ 0] \\ & v = [1 \ 0]^T \end{aligned}$$

3.1.3 Test Case

Input

Domain = {X₁, X₂}

$$n_0 = 1$$
, $n_1 = 2$, $n_2 = 0$

$$\mu = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} B = \begin{bmatrix} 0 & 1 & 1/2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} v = \begin{bmatrix} \infty \\ 1 \\ 1 \end{bmatrix}$$

Evidence
$$X_2 = [20 z]^T$$

Output

Domain =
$$\{X_1, X_2\}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 20 + \frac{2}{5}(z - 10) \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} \frac{4}{5} \\ 0 \\ 0 \end{bmatrix}$$

3.1.4 Test Case

Input

Domain =
$$\{X_1, X_2\}$$

 $n_0 = 1, n_1 = 2, n_2 = 0$
 $\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \boldsymbol{B} = \begin{bmatrix} 0 & 1 & 1/4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \boldsymbol{v} = \begin{bmatrix} \infty \\ 1 \\ 1 \end{bmatrix}$
Evidence $X_2 = \begin{bmatrix} 80 \ z \end{bmatrix}^T$

Domain = { {X₁, X₂}

$$\mu = \begin{bmatrix} 80 + \binom{4}{17}z - 20 \\ 0 \\ 0 \end{bmatrix} \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{v} = \begin{bmatrix} 16/17 \\ 0 \\ 0 \end{bmatrix}$$

3.2 Node Removal for Vector Nodes in Gaussian Influence Diagrams

3.2.1 Test Case

Input

pred =
$$\{X1\}$$
, **tgt** = $\{X2\}$, **succ** = $\{X3\}$
 $n_0 = 1$, $n_1 = 1$, $n_2 = 1$

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{tgt}} \\ \mu_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 36 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred,pred}} & \mathbf{B}_{\text{pred,tgt}} & \mathbf{B}_{\text{pred,succ}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt,tgt}} & \mathbf{B}_{\text{tgt,succ}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ,succ}} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.75 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

Output

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{tgt}} \\ \mu_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 16 \\ 0 \\ 61 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred,pred}} & \mathbf{B}_{\text{pred,tgt}} & \mathbf{B}_{\text{pred,succ}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt,tgt}} & \mathbf{B}_{\text{tgt,succ}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ,succ}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0.75 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

3.2.2 Test Case

$$pred = \{X1\}, tgt = \{X2, X3\}, succ = \{X4\}$$

$$n_0 = 1$$
, $n_1 = 2$, $n_2 = 1$

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\text{pred}} \\ \boldsymbol{\mu}_{\text{tgt}} \\ \boldsymbol{\mu}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred,pred}} & \mathbf{B}_{\text{pred,tgt}} & \mathbf{B}_{\text{pred,succ}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt,tgt}} & \mathbf{B}_{\text{tgt,succ}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ,succ}} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.75 & -0.125 \\ 0 & 0 & 5 & 0.5 \\ 0 & 0 & 0 & -0.5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\text{pred}} \\ \boldsymbol{\mu}_{\text{tgt}} \\ \boldsymbol{\mu}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 16 \\ 0 \\ 0 \\ 62 \end{bmatrix}$$

3.2.3 Test Case

$$\begin{array}{l} \textbf{pred} = \{X1, X2\}, \, \textbf{tgt} = \{X3, \, X4\}, \, \textbf{succ} = \{X5, X6\} \\ n_0 = 2, \, n_1 = 2, \, n_2 = 2 \end{array}$$

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{tgt}} \\ \mu_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \\ 4 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred,pred}} & \mathbf{B}_{\text{pred,tgt}} & \mathbf{B}_{\text{pred,succ}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt,tgt}} & \mathbf{B}_{\text{tgt,succ}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ,succ}} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.75 & -0.125 & 1 & 0.5 \\ 0 & 0 & 5 & 0.5 & -1 & 0.5 \\ 0 & 0 & 0 & -0.5 & 1 & -0.5 \\ 0 & 0 & 0 & 0 & 1 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 16 \\ 1 \\ 0 \\ 0 \\ 62 \\ 55.548 \end{bmatrix}$$

3.2.4 Test Case

Input

$$\mathbf{pred} = \{X1, X2\}, \, \mathbf{tgt} = \{X3, X4\}, \, \mathbf{succ} = \{X5, X6\}$$

$$n_0 = 2, \, n_1 = 2, \, n_2 = 2$$

$$\mu = \begin{bmatrix} \mu_{\mathbf{pred}} \\ \mu_{\mathbf{tgt}} \\ \mu_{\mathbf{succ}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{v}_{\mathbf{pred}} \end{bmatrix} \begin{bmatrix} \infty \\ \infty \\ 70 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} \infty \\ \infty \\ 70 \\ 49.271 \\ 0 \\ 0 \end{bmatrix}$$

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{tgt}} \\ \mu_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} \infty \\ 0 \\ 0 \\ 73.018 \\ 34.979 \end{bmatrix}$$

3.3 Arc Reversal Between Vector Nodes in Gaussian Influence Diagrams

3.3.1 Test Case

pred =
$$\{X1\}$$
, **tgt** = $\{X2\}$, **succ** = $\{X3\}$, **gc** = $\{\}$
 $n_0 = 1$, $n_1 = 1$, $n_2 = 1$ $n_3 = 0$

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{gt}} \\ \mu_{\text{gc}} \\ \mu_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}_{\text{pred}} \\ \mathbf{V}_{\text{tgt}} \\ \mathbf{V}_{\text{succ}} \\ \mathbf{V}_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 36 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred,pred}} & \mathbf{B}_{\text{pred,tgt}} & \mathbf{B}_{\text{pred,succ}} & \mathbf{B}_{\text{pred,gc}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt,tgt}} & \mathbf{B}_{\text{tgt,succ}} & \mathbf{B}_{\text{tgt,gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ,succ}} & \mathbf{B}_{\text{succ,gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{gc,gc}} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.75 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{tgt}} \\ \mu_{\text{succ}} \\ \mu_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \\ \mathbf{v}_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 16 \\ 0.5902 \\ 61 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{pred,pred} & \mathbf{B}_{pred,tgt} & \mathbf{B}_{pred,succ} & \mathbf{B}_{pred,gc} \\ \mathbf{0} & \mathbf{B}_{tgt,tgt} & \mathbf{B}_{tgt,succ} & \mathbf{B}_{tgt,gc} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{succ,succ} & \mathbf{B}_{succ,gc} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{gc,gc} \end{bmatrix} = \begin{bmatrix} 0 & 0.43852459 & 0.75 \\ 0 & 0 & 0 \\ 0 & 0.08196721 & 0 \end{bmatrix}$$

3.3.2 Test Case

$$\begin{array}{l} \textbf{pred} = \{X1\},\, \textbf{tgt} = \{X2,\, X3\},\, \textbf{succ} = \{X4\},\, \textbf{gc} = \{\}\\ n_0 = 1,\, n_1 = 2,\, n_2 = 1,\, n_3 = 0 \end{array}$$

$$\begin{split} \boldsymbol{\mu} &= \begin{bmatrix} \boldsymbol{\mu}_{pred} \\ \boldsymbol{\mu}_{tgt} \\ \boldsymbol{\mu}_{succ} \\ \boldsymbol{\mu}_{gc} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \mathbf{V} &= \begin{bmatrix} \mathbf{V}_{pred} \\ \mathbf{V}_{tgt} \\ \mathbf{V}_{succ} \\ \mathbf{V}_{gc} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \end{bmatrix} \\ \mathbf{B} &= \begin{bmatrix} \mathbf{B}_{pred,pred} & \mathbf{B}_{pred,tgt} & \mathbf{B}_{pred,succ} & \mathbf{B}_{pred,gc} \\ \mathbf{0} & \mathbf{B}_{tgt,tgt} & \mathbf{B}_{tgt,succ} & \mathbf{B}_{tgt,gc} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{succ,succ} & \mathbf{B}_{succ,gc} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{gc,gc} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.75 & -0.125 \\ 0 & 0 & 5 & 0.5 \\ 0 & 0 & 0 & -0.5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{split}$$

$$\mu = \begin{bmatrix} \mu_0 \\ \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} 16 \\ 0.9355 \\ 30.414 \\ 62 \end{bmatrix}$$

$$\boldsymbol{B} = \begin{bmatrix} 0 & 0.491933548 & -1.5172414 & -0.25 \\ 0 & 0 & 4.37931034 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -0.0322581 & -0.3103448 & 0 \end{bmatrix}$$

3.3.3 Test Case

$$\begin{array}{l} \textbf{pred} = \{X1,\,X2\},\,\textbf{tgt} = \{X3\},\,\textbf{succ} = \{X4\},\,\textbf{gc} = \{\}\\ n_0 = 2,\,n_1 = 1,\,n_2 = 1,\,n_3 = 0 \end{array}$$

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{succ}} \\ \mu_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{V}_{\text{pred}} \\ \mathbf{V}_{\text{tgt}} \\ \mathbf{V}_{\text{succ}} \\ \mathbf{V}_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred},\text{pred}} & \mathbf{B}_{\text{pred},\text{tgt}} & \mathbf{B}_{\text{pred},\text{succ}} & \mathbf{B}_{\text{pred},\text{gc}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt},\text{tgt}} & \mathbf{B}_{\text{tgt},\text{succ}} & \mathbf{B}_{\text{tgt},\text{gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ},\text{succ}} & \mathbf{B}_{\text{succ},\text{gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{gc,gc}} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.75 & -0.125 \\ 0 & 0 & 5 & 0.5 \\ 0 & 0 & 0 & -0.5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
at

$$\mu = \begin{bmatrix} \mu_{\text{pred}} \\ \mu_{\text{tgt}} \\ \mu_{\text{succ}} \\ \mu_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \\ \mathbf{v}_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 30.414 \\ 58 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred,pred}} & \mathbf{B}_{\text{pred,tgt}} & \mathbf{B}_{\text{pred,succ}} & \mathbf{B}_{\text{pred,gc}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt,tgt}} & \mathbf{B}_{\text{tgt,succ}} & \mathbf{B}_{\text{tgt,gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ,succ}} & \mathbf{B}_{\text{succ,gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{gc,gc}} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.5172414 & 0.75 \\ 0 & 0 & 4.37931034 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -0.3103448 & 0 \end{bmatrix}$$

3.3.4 Test Case

$$\begin{array}{l} \textbf{pred} = \{X1, X2\}, \, \textbf{tgt} = \{X3, \, X4\}, \, \textbf{succ} = \{X5, X6\}, \, \textbf{gc} = \{\} \\ n_0 = 2, \, n_1 = 2, \, n_2 = 2, \, n_3 = 0 \end{array}$$

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\text{pred}} \\ \boldsymbol{\mu}_{\text{tgt}} \\ \boldsymbol{\mu}_{\text{succ}} \\ \boldsymbol{\mu}_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \\ \mathbf{v}_{\text{gc}} \end{bmatrix} = \begin{bmatrix} 16 \\ 1 \\ 36 \\ 49 \\ 4 \\ 25 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{\text{pred,pred}} & \mathbf{B}_{\text{pred,tgt}} & \mathbf{B}_{\text{pred,succ}} & \mathbf{B}_{\text{pred,gc}} \\ \mathbf{0} & \mathbf{B}_{\text{tgt,tgt}} & \mathbf{B}_{\text{tgt,succ}} & \mathbf{B}_{\text{tgt,gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{succ,succ}} & \mathbf{B}_{\text{succ,gc}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{B}_{\text{gc,gc}} \end{bmatrix} = \begin{bmatrix} 0 & 0.5 & -1.75 & -0.125 & 1 & 0.5 \\ 0 & 0 & 5 & 0.5 & -1 & 0.5 \\ 0 & 0 & 0 & -0.5 & 1 & -0.5 \\ 0 & 0 & 0 & 0 & 1 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_0 \\ \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}$$

$$v = \begin{bmatrix} 16\\1\\14.362\\3.5662\\62\\55.548 \end{bmatrix}$$

3.3.5 Test Case

Input

$$\begin{aligned} & \textbf{pred} = \{X1, X2\}, \, \textbf{tgt} = \{X3, X4\}, \, \textbf{succ} = \{X5, X6\}, \, \textbf{gc} = \{\} \\ & n_0 = 2, \, n_1 = 2, \, n_2 = 2, \, n_3 = 0 \end{aligned}$$

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_{\textbf{pred}} \\ \boldsymbol{\mu}_{\textbf{tgt}} \\ \boldsymbol{\mu}_{\textbf{succ}} \\ \boldsymbol{\mu} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{\text{pred}} \\ \mathbf{v}_{\text{tgt}} \\ \mathbf{v}_{\text{succ}} \\ \mathbf{v}_{\text{gc}} \end{bmatrix} = \begin{bmatrix} \infty \\ \infty \\ 70 \\ 49.271 \\ 0 \\ 0 \end{bmatrix}$$

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_0 \\ \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \\ \boldsymbol{\mu}_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$v = \begin{bmatrix} \infty \\ \infty \\ 0 \\ 0 \\ 73.018 \\ 34.979 \end{bmatrix}$$

3.4 Implementation of Kalman Filtering Using the Influence Diagram Form

3.4.1 Mathematical Model

Dynamic Process

$$x(k+1) = \Phi(k)x(k) + \Gamma(k)w(k) \text{ for } k = 0, ..., N.$$

Measurement Process

$$z(k) = H(k)x(k) + v(k)$$
 for $k = 0, ..., N$.

Probabilistic Structure

 $E[x(0)] = \mu_0$

 $Cov[x(0)] = P_0$

E[w(k)] = 0 for k = 0, ..., N.

 $Cov[w(j), w(k)] = \delta_{jk}Q_k$ for k = 0, ..., N. Q_k are diagonal for k = 0, ..., N.

Cov[x(0), w(0)] = 0.

E[v(k)] = 0 for k = 0, ..., N.

 $Cov[v(j), v(k)] = \delta_{ik} R_k$ for k = 0, ..., N. R_k are diagonal for k = 0, ..., N.

Cov[w(j), v(k)] = 0 for j = 1, ..., N and for k = 0, ..., N.

$$Cov[x(0), v(k)] = 0$$
 for $k = 0, ..., N$.

Dimensions of Vectors

$$x(k) \in \mathbb{R}^n$$
, $w(k) \in \mathbb{R}^r$, $z(k) \in \mathbb{R}^p$, $v(k) \in \mathbb{R}^p$

3.4.2 Measurement Update for Measurement Z(K)

3.4.2.1 Test Case – Kalman Filter for Dummies

(http://bilgin.esme.org/BitsAndBytes/KalmanFilterforDummies)

Input

Time step (k)	z(k) with $p=1$	μ(k)	$\mathbf{B}(\mathbf{k})$ or $\Sigma(\mathbf{k})$	v(k)	Rk	$\mathbf{H}(\mathbf{k})$ with p=1 and n=1
0	0.39	0	1	0	0.1	1
1	0.5	0.355	0	0.091	0.1	1

Time step (k)	$\begin{bmatrix} \boldsymbol{\mu_1} \\ 0 \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{v_1} \\ \boldsymbol{0} \end{bmatrix}$	$\begin{bmatrix} B_{11} & 0 \\ 0 & 0 \end{bmatrix}$
0	$\begin{bmatrix} 0.355 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0.091 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
1	$\begin{bmatrix} 0.424 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0.048 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

3.4.2.2 Test Case

Example 5.5 (Discrete-Time Implementation with Numerical Values), p. 195-196 from Kalman Filtering: Theory and Practice Using MATLAB, 4th Edition

Input

Time step (k)	z(k) with p=2	μ(k)	$\Sigma(k)$	v(k)	Rk	$\mathbf{H}(\mathbf{k})$ with p=2 and n=2
0	$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 4 & 1 \\ 1 & 9 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$	$\begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$

Output (after converting influence diagram representation output $\begin{bmatrix} v_1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} B_{11} & 0 \\ 0 & 0 \end{bmatrix}$ to covariance representation $\begin{bmatrix} \Sigma_{11} & 0 \\ 0 & 0 \end{bmatrix}$)

Time step (k)	$\begin{bmatrix} \mu_1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$
0	$\begin{bmatrix} \frac{467}{361} \\ \frac{2819}{1444} \\ 0 \\ 0 \end{bmatrix}$ $= \begin{bmatrix} 1.29362881 \\ 1.51592798 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} \frac{144}{361} & \frac{1}{361} & 0 & 0 \\ \frac{1}{361} & \frac{351}{1444} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

3.4.2.3 Test Case

Example 5.7 (Resonator Tracking with sample interval equal to 1 s), p. 174-176, 225, 596. from Kalman Filtering: Theory and Practice Using MATLAB, 4th Edition

Input

Time step (k)	z (k) with p=1	μ(k)	$\Sigma(\mathbf{k})$		$\mathbf{R}_{\mathbf{k}}$	H(k) with p=1 and n=2
0	[0.0101]	$\begin{bmatrix} 0.0101 \\ 0.1188 \end{bmatrix}$	$\begin{bmatrix} 0.01071225 & 0.017495523 \\ 0.017495523 & 2.04175521 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	[0.01]	[1 0]

Output (after converting influence diagram representation output $\begin{bmatrix} v_1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} B_{11} & 0 \\ 0 & 0 \end{bmatrix}$ to covariance representation $\begin{bmatrix} \Sigma_{11} & 0 \\ 0 & 0 \end{bmatrix}$)

Time step (k)	$\begin{bmatrix} \mu_1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} \boldsymbol{\Sigma_{11}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$						
0	$\begin{bmatrix} 0.0101 \\ 0.1188 \\ 0 \end{bmatrix}$	0.00516961 0.008445032 0	0.008445032 2.02692169 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$				

3.4.3 Time Update From X(K) to X(K+1)

3.4.3.1 Test Case

Example 5.7 (Resonator Tracking with sample interval equal to 1 s), p. 174-176, 225, 596. from Kalman Filtering: Theory and Practice Using MATLAB, 4th Edition

Input from exam57.m

$\Sigma(k)$ with n=2							
[0.00516961	0.008445032						
L0.008445032	2.02692169						

Let (B, v) be the output of Cov_to_ID $(\Sigma(k), B, v, P)$.

(1) Then set $\mathbf{B}(\mathbf{k}) = \mathbf{B}$ and set $\mathbf{v}(\mathbf{k}) = \mathbf{v}$.

Influence Diagram Input

$\mu(k)$ with $n=2$	B (k)	v (k)	Φ (k) with n=2	Γ (k) with n=2 and r=2	Q with r=2	
$\begin{bmatrix} 0.0101 \\ 0.1188 \end{bmatrix}$	See (1)	See (1)	$\begin{bmatrix} 1.0191 & 0.0099 \\ -0.2474 & 0.9994 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0.002 & 0.002 \\ 0.002 & 0.438 \end{bmatrix}.$	

Call Table 7 algorithm using these inputs.

Output of Table 7 (after converting influence diagram representation $\begin{bmatrix} \mathbf{0} \\ \boldsymbol{v}''_2 \end{bmatrix}$, $\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{B}''_{22} \end{bmatrix}$ to covariance representation $\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$)

Time step (k)	$\begin{bmatrix} 0 \\ \boldsymbol{\mu}^{\prime\prime}_{2} \end{bmatrix}$				$\begin{bmatrix} 0 & 0 \\ 0 & \mathbf{\Sigma}_{22} \end{bmatrix}$	
0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.01146903 \\ 0.11622998 \end{bmatrix}$	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0.007738039 0.02933158	0 0 0 0 0 0.02933158 2.458630434

3.4.4 Kalman Filter Update at Time Step K

3.4.4.1 Test Case

Example 5.7 (Resonator Tracking with sample interval equal to 1 s), p. 174-176, 225, 596. from Kalman Filtering: Theory and Practice Using MATLAB, 4th Edition

Input from exam57.m

Influence Diagram Input

Ti me ste p (k)	z(k) with p=1	μ(k) with n=2	$\Sigma(k)$ with n=2	v(k) wi th n= 2	R _k wit h p=1	H(k) wit h p=1 and n=2	Φ (k) with n=2	Γ(k) wit h n=2 and r=2	Q with r=2	
0	[0.010	$\begin{bmatrix} 0.010 \\ 0.118 \end{bmatrix}$	$\begin{bmatrix} 0.01071225 & 0.0 \\ 0.017495523 & 2.0 \end{bmatrix}$		[0.01	[1 ($\begin{bmatrix} 1.0191 \\ -0.2474 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	[0.002	0. 0

Output (after converting influence diagram representation output $\begin{bmatrix} 0 \\ v'_2 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & B'_{22} \end{bmatrix}$ to covariance representation $\begin{bmatrix} 0 & 0 \\ 0 & \Sigma'_{22} \end{bmatrix}$)

Time step (k)	$\begin{bmatrix} 0 \\ \boldsymbol{\mu'}_2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & \Sigma'_{22} \end{bmatrix}$	
0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.01146903 \\ 0.11622998 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$	

4 Interfacing MATLAB Sensor Fusion Tracking Toolbox to Influence Diagram

4.1 Mathematical Models

Table 1. Mapping from Bryson and Ho to MATLAB trackingKF object and correct function

Bryson and Ho (1975, 360)	MATLAB trackingKF equations (trackingKF, 2020)	Bryson and Ho (1975, 360)	MATLAB trackingKF properties (trackingKF, 2020)	MATLAB correct and predict variables (correct 2020, predict 2020)
	<i>D</i> упат	ic Process		
$x(k+1)$ $= \Phi(k)x(k) + \Gamma(k)w(k) \text{ for } k$ $= 0,, N.$	$x_{k+1} = F_k x_k + G_k u_k + v_k$	x(k)	x_k	
		$\Phi(k)$	StateTransitionModel = F_k	
		null	ControlModel = G_K	
		$\Gamma(k)w(k)$	v_k	
	Measurer	nent Process		
z(k) = H(k)x(k) + v(k) for k = 0,, N.	$z_k = H_k x_k + w_k$	z(k)	z_k	zmeas
		H(k)	MeasurementModel = H_k	
		x(k)	x_k	
		v(k)	Wk	
	Probabilis	tic Structure		
$E[x(0)] = \mu_0$				
$Cov[x(0)] = P_0$				
E[w(k)] = 0 for $k = 0,, N$.	Implicit			

Bryson and Ho (1975, 360)	MATLAB trackingKF equations (trackingKF, 2020)	Bryson and Ho (1975, 360)	MATLAB trackingKF properties (trackingKF, 2020)	MATLAB correct and predict variables (correct 2020, predict 2020)
$Cov[w(j), w(k)] = \delta_{jk}Q_k \text{ for } k$ = 0,, N.	Implicit	Q	$ProcessNoise = \ Q_{trackingKF} = \ \Gamma(k)Q_k\Gamma^t(k)$	$Q = Q_{trackingKF}$
Cov[x(0),w(0)] = 0.	Implicit			
E[v(k)] = 0 for $k = 0,, N$.	Implicit			
$\begin{aligned} & Cov[v(j), v(k)] = \delta_{jk} R_k for k \\ &= 0,, N. \ R_k \ are \ diagonal \ for \ k \\ &= 0,, N. \end{aligned}$	Implicit	R	MeasurementNoise = R	zcov
Cov[w(j), v(k)] = 0 for j = 1,, N and for k = 0,, N.	Implicit			
Cov[x(0), v(k)] = 0 for $k = 0,, N$.	Implicit			

Table 2. Dimensions of Vectors for Bryson and Ho and for MATLAB trackingKF object

Bryson and Ho (1975, 360)	MATLAB trackingKF equations (trackingKF, 2020)
$x(k) \in \mathbb{R}^n$, $w(k) \in \mathbb{R}^r$, $z(k) \in \mathbb{R}^p$, $v(k) \in \mathbb{R}^p$	$x_k \in R^M$, $u_k \in R^L$, $v_k \in R^M$, $z_k \in R^N$, $w_k \in R^N$

4.2 Kalman Filter Update at Time Step K

4.2.1 Test Case

Example 5.7 (Resonator Tracking with sample interval equal to 1 s), p. 174-176, 225, 596. from Kalman Filtering: Theory and Practice Using MATLAB, 4th Edition

trackingKF and correct inputs

zmeas with N=1	μ with M=2	P with M=2		v wit h M =2	zcov with N=1	H with N=1 and M=2	F with M=2	Q _{trackingKF} with M=2
[0.0101	$[0.0101 \\ 0.1188]$	$\begin{bmatrix} 0.01071225 \\ 0.017495523 \end{bmatrix}$	0.0174 2.0417	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	[0.01]	[1 0	$\begin{bmatrix} 1.0191 & 0.0 \\ -0.2474 & 0.9 \end{bmatrix}$	0.002 0.00 0.002 0 .4

Output (after converting influence diagram representation output $\begin{bmatrix} \mathbf{0} \\ v'_2 \end{bmatrix}$, $\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & B'_{22} \end{bmatrix}$ to covariance representation $\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \Sigma'_{22} \end{bmatrix}$)

Time step (k)	$\begin{bmatrix} 0 \\ {\mu'}_2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & \Sigma'_{22} \end{bmatrix}$					
0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.01146903 \\ 0.11622998 \end{bmatrix}$		0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0 0.007738039 0.02933158	0 0 0 0 0 0.02933158 2.458630434

$$[\mathbf{xcorr}, \mathbf{Pcorr}] = [\boldsymbol{\mu'}_{\mathbf{2}}, \boldsymbol{\Sigma'}_{\mathbf{22}}] = \begin{bmatrix} [0.01146903] \\ 0.11622998 \end{bmatrix}, \begin{bmatrix} 0.007738039 & 0.02933158 \\ 0.02933158 & 2.458630434 \end{bmatrix}$$