

## MÉTODOS ESTATÍSTICOS APLICADOS LISTA DE EXERCÍCIOS 4 — Prática

1) Os resultados seguintes foram obtidos de um experimento em que foram avaliados três tipos de vinho (A, B, C) servidos em duas condições de temperatura (1- gelado, 2- ambiente). Foram utilizados quatro provadores que atribuíram as seguintes notas numa escala de 1 a 10 (média de três determinações):

| Duariadana   | Tratamentos      |                  |                |                       |                |                |
|--------------|------------------|------------------|----------------|-----------------------|----------------|----------------|
| Provadores - | $\mathbf{A}_{1}$ | $\mathbf{A}_{2}$ | $\mathbf{B}_1$ | <b>B</b> <sub>2</sub> | C <sub>1</sub> | C <sub>2</sub> |
| 1            | 8,2              | 4,5              | 4,2            | 5,6                   | 9,3            | 9,6            |
| 2            | 7,8              | 3,5              | 4,4            | 4,9                   | 8,7            | 8,9            |
| 3            | 6,0              | 3,8              | 5,3            | 5,4                   | 6,5            | 7,3            |
| 4            | 8,0              | 4,7              | 6,8            | 6,8                   | 7,9            | 9,3            |

Faça a os itens a seguir com o auxílio do R e use  $\alpha$ =0,05 para todos os testes:

- i. Escreva o modelo estatístico relacionado com as observações deste experimento;
- ii. Construa um gráfico exploratório para avaliar a existência de interação entre os fatores;
- iii. Faça a análise de variância do experimento acima aplicando o teste F e discuta os resultados;
- iv. Faça a análise de variância estudando o efeito de temperatura em cada tipo de vinho. Aplique o teste de Tukey, quando necessário;
- **v.** Faça a análise de variância estudando o efeito do tipo de vinho em cada temperatura. Aplique o teste de Tukey, quando necessário.
- 2) Um experimento foi conduzido sob um Delineamento em Blocos Casualizados (DBC) para estudar o a diferença entre pessoas e entre marcas de sorvete de morango. Três pessoas, cada uma representando uma classe social, foram convidadas para participar do estudo no qual foram provadas, em 4 blocos (cada bloco foi um dia do estudo), 2 marcas de sorvete.

| Daggag | Marca | Bloco |     |     |     |
|--------|-------|-------|-----|-----|-----|
| Pessoa |       | 1     | 2   | 3   | 4   |
| 1      | A     | 9,0   | 9,5 | 9,8 | 9,9 |
| 1      | В     | 8,0   | 8,6 | 8,2 | 8,4 |
| 2      | A     | 7,5   | 7,8 | 7,3 | 7,6 |
| 2      | В     | 6,6   | 6,4 | 6,8 | 6,0 |
| 3      | A     | 5,8   | 5,6 | 5,6 | 5,7 |
| 3      | В     | 6,6   | 6,4 | 6,8 | 6,0 |

Faça a os itens a seguir com o auxílio do R e use  $\alpha$ =0,05 para todos os testes:

- i. Construa um gráfico exploratório para avaliar a existência de interação entre os fatores;
- ii. Faça a análise de variância do experimento acima aplicando o teste F e discuta os resultados;
- **iii.** Faça a análise de variância estudando o efeito de pessoa em cada marca do sorvete. Aplique o teste de Tukey, quando necessário;
- iv. Faça a análise de variância estudando o efeito da marca de sorvete em cada pessoa. Aplique o teste de Tukey, quando necessário.

Programa de Pós-Graduação em Estatística Aplicada e Biometria

3) Num experimento sobre o amadurecimento de frutos de manga foi avaliado o teor de açúcares solúveis em mg/g PF. Foram comparadas três cultivares (A, B, C) em cinco tempos após a colheita (0 dias, 2 dias, 4 dias, 6 dias, 8 dias). O experimento foi conduzido em laboratório e o delineamento foi inteiramente ao acaso.

| Cultivaras | Cultivares Tempos (dias) | Repetições |      |      |
|------------|--------------------------|------------|------|------|
| Cultivares |                          | 1          | 2    | 3    |
| A          | 0                        | 14,0       | 13,5 | 14,2 |
|            | 2                        | 16,0       | 15,0 | 14,5 |
|            | 4                        | 16,5       | 17,3 | 18,1 |
|            | 6                        | 18,5       | 20,0 | 19,0 |
|            | 8                        | 18,0       | 18,5 | 19,0 |
| В          | 0                        | 18,5       | 17,3 | 18,1 |
|            | 2                        | 16,8       | 18,3 | 19,1 |
|            | 4                        | 19,0       | 18,0 | 19,5 |
|            | 6                        | 18,2       | 18,6 | 18,4 |
|            | 8                        | 17,8       | 18,5 | 19,5 |
| C          | 0                        | 14,0       | 15,8 | 15,2 |
|            | 2                        | 13,5       | 14,3 | 15,7 |
|            | 4                        | 14,5       | 15,4 | 15,6 |
|            | 6                        | 15,0       | 13,8 | 14,2 |
|            | 8                        | 16,4       | 14,2 | 17,8 |

Utilize o R para fazer as análises e use α=0,05 para todos os testes.

- i. Construa um gráfico exploratório para avaliar a existência de interação entre os fatores. Os gráficos sugerem a existência de interação? Discuta;
- ii. Faça a análise de variância do experimento e discuta os resultados;
- iii. Faça a análise de variância estudando o efeito do cultivar em cada tempo. Aplique o teste de Tukey, quando necessário;
- iv. Faça a análise de variância estudando o efeito do tempo em cada cultivar. Aplique o teste de Tukey, quando necessário;



- Faça a análise de variância considerando regressão para o tempo. Discuta os resultados. (DICA: utilize o comando fat2.dic e o argumento quali = c(TRUE, FALSE). Apresente os resultados até o modelo quadrático);
- vi. OBS.: Ao fazer o item v por meio do comando fat2.dic e considerando o argumento quali = c(TRUE,FALSE), não serão exibidas as estimativas dos parâmetros para o tempo nas cultivares B e C. Isso ocorre porque a função foi programada para proceder ao ajuste de modelos polinomiais quando os resultados da ANAVA apresentarem efeito significativo para o respectivo fator dentro do que foi desdobrado. Suponha que houvesse o interesse em ajustar os modelos de regressão de 1º e 2º graus para o efeito do tempo em relação ao teor de acucares solúveis em cada cultivar. Apresente o ajuste desses modelos, discuta os resultados e plote os respectivos gráficos.

Rotina em R para fazer o item vi.

```
### estudo de regressão para cada cultivar
# necessario ter carregado o objeto dados, que
# armazena o conjunto de dados do exercício
## CUltivar A
dadosA=subset(dados, CULTIVAR=="A")
dadosA
attach(dadosA)
### grafico dos modelos ajustados
m.yA = tapply(TEOR, TEMPO, mean); m.yA
m.x = tapply(TEMPO, TEMPO, mean); m.x
plot(m.x, m.yA, type="p", pch=16,
   xlab = "Tempo (dias)", cex.lab = 1.5,
   ylab = "Teor de acúcares solúveis (mg/g)",
   xlim = c(0, 10)
#modelo 1°grau
reg1A = lm(m.yA \sim m.x)
summary(reg1A)
curve(coef(reg1A)[1] + coef(reg1A)[2]*x,
   add=TRUE, col=2, lwd=2)
#modelo 2°grau
reg2A = lm(m.yA \sim m.x + I(m.x^2))
summary(reg2A)
curve(coef(reg2A)[1] + coef(reg2A)[2]*x + coef(reg2A)[3]*x^2,
   add=TRUE, col=3, lwd=2)
legend("topleft", legend=c("1° grau", "2° grau"),
    lty=c(1,1), lwd=c(2,2), col=c(2,3))
## ponto crítico (máximo ou mínimo)
f \leftarrow function(x) coef(reg2A)[1] + coef(reg2A)[2]*x + coef(reg2A)[3]*x^2
ot <- optimize(f, c(0, 20), tol = 0.001, maximum = TRUE)
detach(dadosA)
## CUltivar B
dadosB=subset(dados, CULTIVAR=="B")
dadosB
```



```
attach(dadosB)
### grafico dos modelos ajustados
m.yB = tapply(TEOR, TEMPO, mean); m.yB
m.x = tapply(TEMPO, TEMPO, mean); m.x
plot(m.x, m.yB, type="p", pch=16,
   xlab = "Tempo (dias)", cex.lab=1.5,
  ylab = "Teor de acúcares solúveis (mg/g)")
#modelo 1°grau
reg1B=lm(m.yB\sim m.x)
summary(reg1B)
curve(coef(reg1B)[1] + coef(reg1B)[2]*x,
   add=TRUE, col=2, lwd=2)
#modelo 2°grau
reg2B=lm(m.yB\sim m.x + I(m.x^2))
summary(reg2B)
curve(coef(reg2B)[1] + coef(reg2B)[2]*x + coef(reg2B)[3]*x^2,
   add=TRUE, col=3, lwd=2)
legend("topleft", legend=c("1° grau", "2° grau"),
    lty=c(1,1), lwd=c(2,2), col=c(2,3))
## ponto crítico (máximo ou mínimo)
f \leftarrow function(x) coef(reg2B)[1] + coef(reg2B)[2]*x + coef(reg2B)[3]*x^2
ot <- optimize(f, c(0, 20), tol = 0.001, maximum = TRUE)
detach(dadosB)
## CUltivar C
dadosC=subset(dados, CULTIVAR=="C")
dadosC
attach(dadosC)
### grafico dos modelos ajustados
m.yC = tapply(TEOR, TEMPO, mean); m.yC
m.x = tapply(TEMPO, TEMPO, mean); m.x
plot(m.x, m.yC, type="p", pch=16,
  xlab = "Tempo (dias)", cex.lab = 1.5,
   ylab = "Teor de acúcares solúveis (mg/g)")
#modelo 1ºgrau
reg1C=lm(m.yC\sim m.x)
summary(reg1C)
curve(coef(reg1C)[1] + coef(reg1C)[2]*x,
   add=TRUE, col=2, lwd=2)
#modelo 2°grau
reg2C=lm(m.yC\sim m.x + I(m.x^2))
summary(reg2C)
curve(coef(reg2C)[1] + coef(reg2C)[2]*x + coef(reg2C)[3]*x^2,
   add=TRUE, col=3, lwd=2)
legend("topleft", legend=c("1° grau", "2° grau"),
```



```
lty=c(1,1), lwd=c(2,2), col=c(2,3))
 ## ponto crítico (máximo ou mínimo)
f \leftarrow f(reg2C)[1] + coef(reg2C)[2] + coef(reg2C)[3] + coe
ot \leftarrow optimize(f, c(0, 8), tol = 0.001, maximum = TRUE)
 detach(dadosC)
```

4) Uma empresa de catálogos de compras por correios desenvolveu um experimento fatorial para testar o efeito do tamanho de um anúncio de revista e do design do anúncio sobre o número de solicitações de catálogos recebidas (dados em milhares). Três designs de anúncios e dois tamanhos diferentes foram considerados. Os dados obtidos são mostrados abaixo.

|        |   | Tamanho do anúncio |        |  |
|--------|---|--------------------|--------|--|
|        |   | Pequeno            | Grande |  |
| Design | A | 8                  | 12     |  |
|        |   | 12                 | 8      |  |
|        | В | 22                 | 26     |  |
|        |   | 14                 | 30     |  |
|        | С | 10                 | 18     |  |
|        |   | 18                 | 14     |  |

I

Faça a os itens a seguir com o auxílio do R e use  $\alpha$ =0,05 para todos os testes:

- i. Construa um gráfico exploratório para avaliar a existência de interação entre os fatores;
- ii. Faça a análise de variância do experimento acima aplicando o teste F e discuta os resultados;
- iii. É necessário realizar o teste de comparações múltiplas de médias para avaliar o tipo de design? Se sim, faça-o por meio do teste de Tukey.
- iv. É necessário realizar o teste de comparações múltiplas de médias para avaliar o tamanho do anúncio? Se sim, faça-o por meio do teste de Tukey.
- v. Faça as devidas conclusões com relação ao efeito de interação e proceda aos devidos desdobramentos se necessários.