

Winning Space Race with Data Science

Taufiq Nurrohman 01-Feb-2025

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection
- Data Wrangling
- EDA with Data Visualization
- •EDA with SQL
- Building an interactive map with folium
- Building a dashboard with Plotlydash
- Predictive Analysis (Classification)

Summary of all results

- •EDA results
- Interactive Analysis
- Predictive Analysis

Introduction

- Project background and context
 - Analyzing factors that influence rocket missions and result in successful outcomes
- Problems you want to find answers
 - Determining what factors predict successful mission outcomes

Methodology

Executive Summary

- Data collection methodology:
 - Using REST Apis
 - Using Beautiful Soup package to web scrape HTML tables
- Perform data wrangling
- •Cleaning, transforming & structuring raw data into a useable format by handling missing values, removing duplicates and correcting inconsistencies.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and PlotlyDash
- Perform predictive analysis using classification models
- •Build a machine learning pipeline, determine model with best accuracy, output the confusion matrix

Data Collection

Data Collection steps -

- Gather data from Space X REST Api
- •API will give data about launches, rockets used, payload delivered, launch specification, landing specification and landing outcome.
- Another popular data source is web scrapping using Beautiful Soup

Data Collection - SpaceX API

 Present your data collection with SpaceX REST calls using key phrases and flowcharts

Add the GitHub URL

https://github.com/smohagit/Firstrepo/blob/main/jupyter-labsspacex-data-collection-api.ipynb Getting Response from API

```
spacex url="https://api.spacexdata.com/v4/launches/past"
 response = requests.get(spacex url)
      response.json()
      data=pd.json_normalize(response.json())
      # Call getLaunchSite
      getLaunchSite(data)
      # Call getPayLoadData
      getPayloadData(data)
      # Call getCoreData
      getCoreData(data)
      # Create a data from Launch dict
      data=pd.DataFrame(launch dict)
      Show the summary of the dataframe
      # Show the head of the dataframe
_____data.info()
```

Data Collection - Scraping

 Present your web scraping process using key phrases and flowcharts

 Add the GitHub URL of the completed web scraping notebook, as an external reference and peer-review purpose

https://github.com/smohagit/Firstrepo/blob/main/Websc raping_Subhasree.ipynb

```
import plotly.graph_objects as go
from plotly.subplots import make subplots
import pandas as pd
import requests
from bs4 import BeautifulSoup
import plotly.graph_objects as go
from plotly.subplots import make subplots
tesla_data = tesla.history(period="max")
tesla_data.head(5)
                            Open
                                     High
                                                       Close
                                                                Volume Dividends Stock Split
                                               Low
                   Date
2010-06-29 00:00:00-04:00 1.266667 1.666667 1.169333 1.592667 281494500
                                                                               0.0
                                                                                           0.0
```

Data Wrangling

Describe how data were processed

Add the GitHub URL

https://github.com/smoha-git/Firstrepo/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

https://github.com/smoha-git/Firstrepo/blob/main/edadataviz.ipynb

EDA with SQL

SQL queries performed:

- Create table from another table
- Select Distinct
- Applied Where, Limit, and Between conditional clauses
- Aggregation functions like Sum, Count and Average

https://github.com/smoha-git/Firstrepo/blob/main/jupyter-labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

Map markers have been added to the map with aim to finding an optimal location for building a launch site

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

- Built, evaluated, improved, and found the best performing classification model
- Applied a standardScaler() function to preprocess data
- Split the data into training and testing samples
- Applied GridSearch to find the best hyperparameters for different classification
- Evaluated the various models' accuracy and analysed the confusion matrix

https://github.com/smoha-git/Firstrepo/blob/main/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Launches from CCAFS SLC 40 are higher in number and higher chances of success

Payload vs. Launch Site

CCAFS SLC 40 has launched majority with payload mass

Success Rate vs. Orbit Type

ES-L1, GEO, HEO & SSO are among the highest success rate

Flight Number vs. Orbit Type

Towards the end, all orbit types showed successful outcomes as the flight numbers increased, VLEO has a different trend

Payload vs. Orbit Type

Higher payloads showed better results across most orbit types for mission success

Launch Success Yearly Trend

The success rate since 2013 kept increasing till 2020

All Launch Site Names

%sql SELECT DISTINCT Launch_Site FROM SPACEXTABLE

CCAFS LC-40 VAFB SLC-4E KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

%sql SELECT * FROM SPACEXTABLE WHERE Launch_Site LIKE "CCA%" LIMIT 5

Date	Time (UTC)	Booster_Version	Launch_Site
2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40
2012-05-22	7:44:00	F9 v1.0 B0005	CCAFS LC-40
2012-10-08	0:35:00	F9 v1.0 B0006	CCAFS LC-40
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40

Total Payload Mass

%sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Customer="NASA (CRS)"

SUM(PAYLOAD_MASS_KG_)

45596

Average Payload Mass by F9 v1.1

%sql SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTABLE WHERE Booster_Version="F9 v1.1"

AVG(PAYLOAD_MASS_KG_)
2928.4

First Successful Ground Landing Date

%sql SELECT Date FROM SPACEXTABLE WHERE Landing_Outcome="Success (ground pad)" LIMIT

Date

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql select BOOSTER_VERSION from SPACEXTBL where Landing__Outcome = 'Success (drone ship)' and PAYLOAD_MASS__KG_ > 4000 and PAYLOAD_MASS__KG_ < 6000

booster version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

%sql SELECT COUNT(Mission_Outcome), Mission_Outcome FROM SPACEXTABLE GROUP BY Mission_Outcome

COUNT(Mission_Outcome)	Mission_Outcome
1	Failure (in flight)
98	Success
1	Success
1	Success (payload status unclear)

Boosters Carried Maximum Payload

%sql SELECT Booster_Version FROM SPACEXTABLE WHERE PAYLOAD_MASS__KG_=(SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTABLE)

F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3

F9 B5 B1049.7

Booster Version

2015 Launch Records

%sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

landing_outcome	mission_outcome	customer	orbit	payload_mass_kg_	payload	launch_site	booster_version	time_utc_
Success (ground pad)	Success	NASA (CRS)	LEO (ISS)	2490	SpaceX CRS-10	KSC LC-39A	F9 FT B1031.1	14:39:00
Success (drone ship)	Success	Iridium Communications	Polar LEO	9600	Iridium NEXT 1	VAFB SLC-4E	F9 FT B1029.1	17:54:00
Success (drone ship)	Success	SKY Perfect JSAT Group	GTO	4600	JCSAT-16	CCAFS LC- 40	F9 FT B1026	05:26:00
Success (ground pad)	Success	NASA (CRS)	LEO (ISS)	2257	SpaceX CRS-9	CCAFS LC- 40	F9 FT B1025.1	04:45:00
Success (drone ship)	Success	Thaicom	GTO	3100	Thaicom 8	CCAFS LC- 40	F9 FT B1023.1	21:39:00
		SKY Perfect ISAT				CCAES LC+		

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql SELECT COUNT(Landing_Outcome), Landing_Outcome FROM SPACEXTABLE WHERE Date BETWEEN "2010-06-04" AND "2017-03-20" GROUP BY Landing_Outcome ORDER BY COUNT(Landing_Outcome) DESC

Landing_Outcome	COUNT(Landing_Outcome)
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

<Folium Map Screenshot 1>

Insights

The launch sites are close to the coastal regions.

The launch sites are on similar latitudes

<Folium Map Screenshot 2>

Insights

The two launch sites on the east coast had more failed launches than successful launches.

This is possibly due to the fact that initial launches failed and over time they improved

<Folium Map Screenshot 3>

Launch site CCAFS SLC-40 is 0.87km from the coastline

< Dashboard Screenshot 1>

< Dashboard Screenshot 2>

< Dashboard Screenshot 3>

Classification Accuracy

Confusion Matrix

Conclusions

There is plenty of SpaceX launch data available online

- The two launch sites on the east coast had more failed launches than successful launches.
- The KSC LC -39A launch site had the highest success rate
- The decision tree was the best model for classification purposes

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

