1 Operatori lineari tra spazi vettoriali normati

Definizione: Siano $(V, ||.||_V)$ e $(W, ||.||_W)$ due spazi vettoriali normati. Un operatore lineare da V in W è una funzione $T: V \to W$ tale che

$$T(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 T(v_1) + \lambda_2 T(v_2) \ \forall v_1, v_2 \in V, \ \forall \lambda_1, \lambda_2 \in \mathbb{R}$$

Esempi

1) $V = W = \mathbb{R}^n$, $T : \mathbb{R}^n \to \mathbb{R}^n$

$$T(v) = A \cdot v$$
, con $A \in \mathcal{M}(n \times n, \mathbb{R})$

2) $V = C^0([a, b])$, fisso $x_0 \in (a, b)$, W = R

$$T: V \to W$$
 definita da $T(f) = f(x_0)$

3) $V = C^1([a,b]), W = C^0([a,b])$

$$T:V\to W$$
 definita da $T(f)=f'$

Osservazione: T operatore lineare $\implies T(0) = 0$

Definizione: $T:V\to W$ op. lineare, si dice continuo se, $\forall v\in V,\, T$ è continuo in v, ovvero:

$$v_n \to v \implies T(v_n) \to T(v)$$

Rispettivamente nella norma di V e W.

Osservazione: Sia $T:V\to W$ op.
lineare, allora T è continuo su $V\iff T$ è continuo in
 v=0.

Dimostrazione

 (\Longrightarrow) è immediata

(\Leftarrow) Verifichiamo che se la proprietà vale per v=0, vale per v qualsiasi. Sia v qualsiasi, e sia $v_n \to v$; considero $v_n - v \to 0$, quindi, per ipotesi $T(v_n - v) \to T(0)$

Ovvero $T(v_n) - T(v) \to 0$, cioè $T(v_n) \to T(v)$.

Definizione: Sia T op. lineare: $(V, ||.||_V) \to (W, ||.||_W)$. Si dice che T è limitato se:

$$\exists M > 0$$
 tale che $||T(v)||_W \leq M||v||_V \ \forall v \in V$

ovvero

$$\exists M>0 \text{ tale che } \frac{\|T(v)\|_W}{\|v\|_V} \leq M \ \forall v \in V \setminus \{0\}.$$

$$\exists M>0 \text{ tale che } \sup_{v\in V_0}\frac{\|T(v)\|_W}{\|v\|_V}\leq M$$

- Esempi: 1) $T:(\mathbb{R}^2,\|.\|_2)\to(\mathbb{R},|.|)$ definito da $T(v)=v_0\cdot v$ operatore lineare. T è limitato, $M=\|v_0\|$ 2) finire