

Leveraging Patient Portal Messages to Predict Emergency Department Visits

Jasmine Bilir, Tran Le, Julia Kadie Department of Computer Science, Stanford University, School of Medicine

Problem

- Stanford Medicine's goal: reduce the number of preventable visits to the emergency department (ED)
- Our research question: Can using
 MyHealth patient portal message data
 improve prediction of 1-year risk of ED
 visit? (Binary prediction: ED Visit = 1)

Background

- Stanford Medicine currently uses a logistic regression model for ED prediction with F1 score of 0.396
- Stanford MyHealth is a patient portal allowing message exchange between patients and care teams
- Turchin et al. found that BioBERT and ClinicalBERT outperformed general BERT on medical concept recognition in outpatient provider notes (Alexander Turchin, 2023)
- Our cohort includes messages from adult patients seen by primary care between 2018/8/1 - 2020/8/1. A true label for ED visit means that a patient came to an ED in the next year.
- Our data composition includes:

Method	Train	Validation	Test
First-512	Number of message	Number of message rows:	Number of message rows:
Bio_Clinical	rows: 2000	200	200
Bert Finetuning	Number of patients:	Number of patients: 28	Number of patients: 22
	2000	Prevalence rate: 21.43%	Prevalence rate: 18.18%
	Prevalence rate: 21.55%		
Chunked-512	Number of message rows:	Number of message rows:	Number of message rows:
Bio_Clinical	2000	200	200
Bert Finetuning	Number of patients: 244	Number of patients: 28	Number of patients: 22
	Prevalence rate: 19.67%	Prevalence rate: 21.43%	Prevalence rate: 18.18%
Experiments 1-4	NA	NA	Number of message rows:
			2000
			Number of patients: 187
			Prevalence rate: 23.52%

Methods

In approaching our problem, we trained models on the binary classification task of predicting ED visits in 3 major steps:

- 1. We fine-tuned the pretrained **Bio_Clinical BERT** model from **Huggingface** on our dataset. For training, We broke patient messages into chunks of size 512 and trained the model on 244 patient's messages, averaging 2740 words/patient.
- 2. To effectively use the content of an entire patient message history for our prediction task, we utilize the hierarchical approach of splitting each patient's message history into k chunks of size 318 words, approximately 512 WordPiece tokens. Patients had 9 chunks on average.
- 3. Next, we leverage our finetuned model and perform **4 post-processing experiments** to make this model adaptable to patient messages longer than 512

These experiments included: Max-Pooling, Mean-Pooling, Max-Voting, and Threshold of 1 Voting

We present our pooling model below:

Experiments

- Our dataset contains three attributes: the patient id, patient messages text, and ED visit labels (T/F)
- We obtained the following results:

Model Configuration	Evaluation Metrics	Training Time
Epic Logistic Regression Model	AUROC: 0725	Unknown
	F1: 0.396	
First-512 Bio_Clinical BERT	AUROC: 0.563	6 min
Baseline	F1: 0.213	
Chunked-512 Bio_Clinical	AUROC: 0.990	1 hour 20 min
BERT + Max Pooling	F1: 0.941	
Chunked-512 Bio_Clinical	AUROC: 0.993	1 hour 20 min
BERT + Mean Pooling	F1: 0.954	
Chunked-512 Bio_Clinical	AUROC: 0.997	1 hour 15 min
BERT + Max Voting	F1: 0.938	
Chunked-512 Bio_Clinical	AUROC: 0.985	1 hour 10 min
BERT + Threshold Voting	F1: 0.733	

Analysis

- Mean pooling produces the best F1 score of 0.954
- Mean pooling reduces overfitting by averaging out noise in the input data and preserve the locality of the input data since we are chunking the message sequentially
- Both pooling methods perform better than the voting methods: voting simply considers whether there is a certain number of true predictions in the output, whereas pooling methods filter through all the inputs to make an informed prediction
- Baseline BERT method performs worst because only first 512 tokens of each message is considered, missing context
- F1 score stays consistent across age groups:

LDA analysis on positive predictions show messages relating to "surgery", "blood", "procedure", "test", and "pain".
 See word cloud depiction:

Conclusion

- Our model **outperforms the current mode**l used by Stanford Healthcare for ED prediction
- Patient portal messages are useful in prediction of ED visits
- Next steps: Acquire more compute to run with larger datasets, combine our NLP work in larger model with patient attributes, conduct transparency analysis