位置の変化で微分を感じる

「傾き」としての微分は歩いているときにも感じる ことができる

まっすぐな坂道があって、坂道の出発点から水平 方向にxだけ進んだ地点の標高がf(x)だとする 標高f(x)はxの関数だと思うことができ、坂道を 真横から見ると、y = f(x)のグラフとみなせる

f(x+h) - f(x) は地点 x から水平に h だけ進んだときの標高の差となるので、 $\frac{f(x+h) - f(x)}{h}$ はこの地点のおおよその勾配となる

一方、f(x) が微分可能ならば、h が十分に小さいとき、この値は微分 f'(x) に近い値になっているだろう

つまり、坂道の勾配として、標高の「微分を感じて いる」ことになる

■微分を感じる例 坂道において、f(x)を出発点から水平にxだけ離れた地点の標高とすると、f'(x)はその地点における勾配を表す

* * *

坂道の勾配は、位置によって異なる

x座標が増える方向に歩いているとき、ある地点 x における勾配が f'(x) というのは、次のように感じることができる

- f'(x) > 0: 登り坂
- f'(x) < 0:下り坂
- |f'(x)| が大きい:急勾配

時間の変化で微分を感じる

時が経つにつれて変化する量は、時刻を変数とす る関数で表される

たとえば、時とともに何かものが動くときは、その 位置の座標は時刻を変数とする関数で記述できる

ここでは、このような時刻を変数として位置を表 す例を考える

位置の微分 数直線上で物体が動いていて、時刻 t におけるその位置をその座標 f(t) で表すとする

ここで、微分の定義において、極限を取る前の

$$\frac{f(t+h) - f(t)}{h}$$

という値の意味に注目する

分子は時刻tから時刻t+hの間に進んだ距離で、それをその間にかかった時間hで割っていることから、これは時間間隔hでの平均速度を表している

したがって、時間間隔hを0に近づけたときの極限、すなわち位置の微分f'(t)は、時刻tにおける(瞬間)速度を表していると理解できる

■微分を感じる例 位置の微分 f'(t) は、時刻 t に おける速度である

* * *

位置の2階微分 速度は、時刻とともに変わっていく

速度の時間変化を見るために、速度 f'(t) を時刻

tの関数とみなすと、これは位置 f(t) の導関数である

速度 f'(t) をさらに微分するということは、f(t) の 2 階微分 f''(t) を考えることになる これにも名前がついていて、加速度という 加速度 f''(t) は、速度の変化を表す量である

■微分を感じる例 位置の 2 階微分 f''(t) は、時刻 t における加速度である

* * *

運動の記述 運動という言葉は、物理学では「物体が時々刻々と位置を変える」という"motion"の意味で使われる

先ほどは、数直線上という1次元的な位置の変化 を考えたが、今度は次元を上げて、平面上あるい は空間の中における「運動」を考えてみる

そのために、座標を用いて時々刻々と変わる位置 を記述することにする

たとえば2次元の運動の場合、時刻tにおける位置を位置ベクトルとして、

とベクトルで表す

3次元空間の場合には、もう1つ z 座標を用いる

位置ベクトルのx成分、y成分をそれぞれ微分して得られるベクトル

$$(x'(t), y'(t)) = \left(\frac{dx}{dt}(t), \frac{dy}{dt}(t)\right)$$

を速度ベクトルという

速度ベクトルは大きさだけではなく、どちらの方 向に進んでいるかという向きの情報も持っている

これに対して、速度ベクトルの大きさを<mark>速さ</mark>といい、向きの情報を含む「速度」と区別した用語を使う

速さ =
$$\sqrt{x'(t)^2 + y'(t)^2}$$

加速度ベクトルは、速度ベクトルを微分した次のベクトルになる

$$(x''(t), y''(t)) = \left(\frac{d^2x}{dt^2}(t), \frac{d^2y}{dt^2}(t)\right)$$

* * *

物理法則は、座標とは無関係に成り立っている 一方、座標系を使うことで、次元が高い場合でも、 座標成分ごとに微分すれば速度ベクトルや加速度 ベクトルを求めることができるため、計算上の便 利さがある

経済学における微分

何かの消費量がqであるとき、そのことによって得られる満足感やありがたみ(の総量)を仮想的に数値化して効用と呼ぶ

効用は、消費量 q の関数とみなして<mark>効用関数</mark>とよび、

$$U = U(q)$$

と表記する

この考え方には、そもそも満足度を数値化できるのだろうか?という批判がある

そのため、現代の経済学では、効用の絶対的な大 きさには意味がなく、「どちらが好きか」という個 人の好み(<mark>選好</mark>)を描写する表現であるという考 え方が使われている

p が q と同じ程度かそれ以上に好きならば、 $U(p) \ge U(q)$ を満たすような関数 U(q) を、この選好を描写する効用関数という

同じ選好を描写する効用関数 *U(q)* は無数にあるが、どれを使っても結論が変わらない性質は、その選好から導かれる性質と考えることができる

たとえば、効用関数の微分

$$\frac{dU}{dq}(q) = U'(q)$$

の符号は、その選好を描写する効用関数のどれを 使っても変わらない

効用関数の微分 U'(q) を、経済学では限界効用とよぶ

* * *

限界効用漸減の法則 たとえば、喉が渇いている うちは、少し水を飲めるだけでも嬉しいと感じる が、何杯も飲むとありがたみが薄れてくる

このような「最初は嬉しいが、そのうち飽きてくる」という経験的事実を<mark>限界効用漸減の法則</mark>という

この性質は、効用関数 U(q) の微分(限界効用) および 2 階微分を用いて、

• ありがたいと思う: $U'(q) \ge 0$

• だんだん飽きてくる: $U''(q) \le 0$

と表される

* * *

「ありがたみ」の数式化 まず、水を「ありがたいと思う」を数式化してみる

たとえば、すでにqの分量だけ水を飲んだ後、追加で少量の水をhだけ飲んだとすると、

$$U(q+h) > U(q)$$

が「ありがたい」という選好を描写する不等式に なる

したがって、h > 0 のとき、

$$\frac{U(q+h) - U(q)}{h} > 0$$

となるので、 $h \to 0$ としたときの極限である U'(q) は、 $U'(q) \ge 0$ を満たすことになる

このようにして、「水をありがたいと思う」ことから、限界効用 U'(q) の性質 $U'(q) \ge 0$ が導かれた

* * *

「飽き」の数式化 「だんだん飽きてくる」を選好 で説明するには、効用関数 U(q) は p と q のどちら が好きかというだけではなく、好みをもう少し精 密に描写している必要がある

その1つのアプローチに、「飽きてくる」ということを「他のものに目移りする」というように、他のものとの比較をするというものがあるすなわち、複数のものに対する選好を考え、それ

を複数の変数を持つ効用関数で描写する

ここでは1変数のままで、以下のように一定量を 追加して消費したときの選好があると仮定して話 を進める すなわち、今までの消費量がq < pのとき、同じ量hの追加であっても、q しか飲んでいないときと比べて、すでにpというたくさんの量を飲んだ後では「ありがたみが薄れる」ということを、次の不等式で描写してみる

$$U(q+h) - U(q) > U(p+h) - U(p)$$

このような不等式を満たす効用関数 U(q) は無数にあるが、どれを使っても $U''(q) \le 0$ となる

このことを確かめるために、まず不等式の両辺を h>0 で割って、h を 0 に近づけた極限を取ると、 $U'(q) \geq U'(p)$ となることがわかる

次に、s > 0 として p = q + s とおくと、 $U'(q) \ge U'(p)$ より、

$$U'(q) \ge U'(q+s)$$

$$U'(q+s) - U'(q) \le 0$$

となるので、両辺をsで割って、 $s \to 0$ の極限を取ると、

$$U''(q) = \lim_{s \to 0} \frac{U'(q+s) - U'(q)}{s} \le 0$$

となる

これで、「だんだん飽きてくる」という限界効用 漸減の法則から、効用関数の 2 階微分の不等式 $U''(q) \le 0$ が導かれた

逆に「やみつきになる」場合は、限界効用漸減の法則とは正反対で、 $U''(q) \ge 0$ となる

* * *

このように、何かを消費したときに、「ありがたい」 とか「飽きてくる」という感情を描写する効用関 数はどれを使っても、その微分や 2 階微分の符号 に特徴が現れることになる

■微分を感じる例 効用関数の微分(限界効用) U'(q) の符号は、消費量が q の時点で追加で消費 することに対する「ありがたみ」を表し、2 階微分 U''(q) の符号は「飽き」や「やみつき」の傾向を表す

* * *

微分の符号とグラフの形状 「最初はありがたいが、たくさんあるとだんだん飽きてくる」という 効用関数をグラフに表すと、グラフは右上がりで上に凸になる

- 1. 限界効用が正:「ありがたみを感じる」という ことでグラフは右上がり
- 2. 2 階微分が負:「だんだん飽きてくる(関数の 増加率がだんだん減ってくる)」ということで グラフは上に凸

微分がつねに 0 ならば定数である

標語的に言えば、無限小レベルで変化がなければ、 大域的に変化がないということ

* * *

■定理 実数全体で定義された関数 f(x) について、すべての x で f'(x) = 0 ならば、その関数 f(x) は定数である

* * *

この定理は、平均値の定理という一種の「不動点 定理」から導かれる

• どの時刻でも速度が 0 ならば、実は動いていない(位置が一定)

• 限界効用が 0 ならば、そもそもこの人はそのことに無関心(効用関数 U(q) が消費量 q によらずに一定)

具体例に当てはめると当たり前に思えるが、よく 見ると局所的な性質から大域的な性質を導いてい ることがわかる

* * *

■定理 実数全体で定義された関数 g(x) について、すべての x で g'(x) = a ならば、g(x) = ax + g(0) である

* * *

証明 この定理は、前述の定理から導かれる 新たな関数として f(x) = g(x) - ax とおいてみると、

$$f'(x) = g'(x) - a = a - a = 0$$

となるので、f(x) は定数である 特に、f(x) = f(0) がすべての x に対して成り立つ

f(x) = g(x) - ax だったことを思い出すと、f(0) = g(0) となるので、

$$g(x) - ax = f(0) = g(0)$$
$$\therefore g(x) = ax + g(0)$$

が示されるロ

* * *

ここで取り上げた2つの定理は、もっとも簡単な微 分方程式を解いたとみなすこともできる