## Dummy Endogenous Variables in a Simultaneous Equation System

Econometrica, Vol. 46, No. 4 (Jul., 1978), 931-959.

James J. Heckman



Econ 312, Spring 2019

Heckman 5/29/2019

## 1. A GENERAL MODEL FOR THE TWO EQUATION CASE

• Pair of simultaneous equations for continuous latent random variables  $y_{1i}^*$  and  $y_{2i}^*$ ,

(1a) 
$$y_{1i}^* = X_{1i}\alpha_1 + d_i\beta_1 + y_{2i}^*\lambda_1 + U_{1i}$$
,

(2a) 
$$y_{2i}^* = X_{2i}\alpha_2 + d_i\beta_2 + y_{1i}^*\lambda_2 + U_{2i}$$
,

where dummy variable  $d_i$  is defined by

(1c) 
$$d_i = 1 \text{ iff } y_{2i}^* > 0,$$

 $d_i = 0$  otherwise,

and

$$E(U_{ji}) = 0$$
,  $E(U_{ji}^2) = \sigma_{jj}$ ,  $E(U_{1i}U_{2i}) = \sigma_{12}$ ,  $j = 1,2$ ;  $i = 1, ..., I$ .  $E(U_{ji}U_{j'i'}) = 0$ , for  $j, j' = 1, 2$ ;  $i \neq i'$ .

" $X_{1i}$ " and " $X_{2i}$ " are, respectively,  $1 \times K_1$  and  $1 \times K_2$  row vectors of bounded exogenous variables.

- Equations (1a) and (1b) are identified under standard conditions if  $\beta_1 = \beta_2 = 0$  and both  $y_{1i}^*$  and  $y_{2i}^*$  are observed for each of the *I* observations.
- In this special case, which conforms to the classical simultaneous equation model, standard methods are available to estimate all of the parameters of the structure.
- First, note that the model is cast in terms of latent variables  $y_{1i}^*$  and  $y_{2i}^*$  which may or may not be directly observed.
- Even if  $y_{2i}^*$  is never observed, the event  $y_{2i}^* > 0$  is observed and its occurrence is recorded by setting a dummy variable,  $d_i$  equal to one.
- If  $y_{2i}^* < 0$ , the dummy variable assumes the value zero.
- Second, note that if  $y_{2i}^* > 0$ , structural equations (1a) and (1b) are shifted by an amount  $\beta_1$  and  $\beta_2$ , respectively.

- To fix ideas, several plausible economic models are discussed that may be described by equation system (1a)-(1c).
- First, suppose that both  $y_{1i}^*$  and  $y_{2i}^*$  are observed outcomes of a market at time i, say quantity and price.
- Equation (1a) is the demand curve while equation (1b) is the supply curve.
- If the price exceeds some threshold (zero in inequality (1c), but this can be readily amended t be any positive constant), the government takes certain actions that shift both the supply curve and the demand curve, say a subsidy to consumers and a per unit subsidy to producers.
- These actions shift the demand curve and the supply curve by the amount  $\beta_1$  and  $\beta_2$ , respectively.

- As another example, consider a model of the effect of laws on the status of blacks.
- Let  $y_{1i}^*$  be the measured income of blacks in state i while  $y_{2i}^*$  is an unmeasured variable that reflects the state's population sentiment toward blacks.
- If sentiment for blacks is sufficiently favorable  $(y_{2i}^* > 0)$  the state may enact antidiscrimination legislation and the presence of such legislation in state i, a variable that can be measured, is denoted by a dummy variable  $d_i = 1$ .
- In the income equation (1a), both the presence of a law and the population sentiment towards blacks is assumed to affect the measured income of blacks.
- The first effect is assumed to operate discretely while the second effect is assumed to operate in a more continuous fashion.

- Two conceptually distinct roles for dummy variables:
  - 1. As indicators of latent variables that cross thresholds and
  - 2. As direct shifters of behavioral functions. These two roles must be carefully distinguished.

- The model of equations (1a)-(1c) subsumes a wide variety of interesting econometric models. These special cases are briefly discussed in turn.
  - CASE 1: The Classical Simultaneous Equation Model: This model arises when  $y_{1i}^*$  and  $y_{2i}^*$  are observed, and there is no structural shift in the equations  $(\beta_1 = \beta_2 = 0)$ .
  - CASE 2: The Classical Simultaneous Equation Model with Structural Shift: This model is the same as that of Case 1 except that structural shift is permitted in each equation. It will be shown below that certain restrictions must be imposed on the model in order to generate a sensible statistical structure for this case.

- **CASE 3:** The Multivariate Probit Model: This model arises when  $y_{1i}^*$  and  $y_{2i}^*$  are not observed but the events  $y_{1i}^*$  and  $y_{2i}^*$  are observed (i.e., one knows whether or not the latent variables have crossed a threshold). The notation of equations (1a)-(1b) must be altered to accommodate two dummy variables but that modification is obvious. No structural shift is permitted ( $\beta_1 = \beta_2 = 0$ ). This is the model of Ashford and Sowden [3], Amemiya [2], and Zellner and Lee [30].
- CASE 4: The Multivariate Probit Model with Structural Shift: This model is the same as that of Case 3 except that structural shift is permitted ( $\beta_1 = \beta_2 = 0$ ).

- **CASE 5:** The Hybrid Model: This model arises when  $y_{1i}^*$  is observed and  $y_{2i}^*$  is not, but the event  $y_{2i}^* \ge 0$  is observed. No structural shift is permitted ( $\beta_1 = \beta_2 = 0$ ).
- **CASE 6:** *The Hybrid Model with Structural Shift:* This model is the same as that of Case 5 except that structural shifts in the equations are permitted.

## 2. THE HYBRID MODEL WITH STRUCTURAL SHIFT

- In this section, a model with one observed continuous random variable, and one latent random variable is analyzed for the general case of structural shift in the equations.
- Consider identification only; Heckman (1978) for additional discussion.

• To facilitate the discussion, equations (1a) and (1b) may be written in semi-reduced form as

$$y_{1i} = X_{1i}\pi_{11} + X_{2i}\pi_{12} + d_i\pi_{13} + V_{1i},$$

$$y_{2i}^* = X_{1i}\pi_{21} + X_{2i}\pi_{22} + d_i\pi_{23} + V_{2i},$$

$$d_i = 1 \quad \text{iff} \quad y_{2i}^* \ge 0,$$

$$= 0 \quad \text{otherwise},$$

where

(2) 
$$\pi_{11} = \frac{\alpha_1}{1 - \gamma_1 \gamma_2}, \quad \pi_{21} = \frac{\alpha_1 \gamma_2}{1 - \gamma_1 \gamma_2}, \quad \pi_{12} = \frac{\alpha_2 \gamma_1}{1 - \gamma_1 \gamma_2}, \quad \pi_{22} = \frac{\alpha_2}{1 - \gamma_1 \gamma_2},$$

$$\pi_{13} = \frac{\beta_1 + \gamma_1 \beta_2}{1 - \gamma_1 \gamma_2}, \quad \pi_{23} = \frac{\gamma_2 \beta_1 + \beta_2}{1 - \gamma_1 \gamma_2}, \quad V_{1i} = \frac{U_{1i} + \gamma_1 U_{2i}}{1 - \gamma_1 \gamma_2},$$

$$V_{2i} = \frac{\gamma_2 U_{1i} + U_{2i}}{1 - \gamma_1 \gamma_2}.$$

- In the ensuing analysis it is assumed that exogenous variables included in both  $X_{1i}$  and  $X_{2i}$  are allocated to either  $X_{1i}$  or  $X_{2i}$  but not both.
- The absence of an asterisk on  $y_{1i}$  denotes that this variable is observed.
- " $y_{2i}^*$ " is not observed.
- Random variables  $U_{1i}$  and  $U_{2i}$  are assumed to be bivariate normal random variables.
- Accordingly, the joint distribution of  $V_{1i}$ ,  $V_{2i}$ ,  $h(V_{1i}, V_{2i})$ , is a bivariate normal density fully characterized by the following assumptions:

$$E(V_{1i}) = 0,$$
  $E(V_{2i}) = 0,$   $E(V_{1i}) = \omega_{12},$   $E(V_{2i}^2) = \omega_{22}.$ 

To obtain the true reduced form equations, assume that the conditional probability that  $d_i$  is unity given  $X_{1i}$  and  $X_{2i}$  exists, and denote this probability by  $P_i$ . Then the true reduced forms may be written

(3a) 
$$y_{1i} = X_{1i}\pi_{11} + X_{2i}\pi_{12} + P_i\pi_{13} + V_{1i} + (d_i - P_i)\pi_{13},$$

(3b) 
$$y_{2i}^* = X_{1i}\pi_{21} + X_{2i}\pi_{22} + P_i\pi_{23} + V_{2i} + (d_i - P_i)\pi_{23},$$

(3c) 
$$d_i = 1$$
 iff  $y_{2i}^* \ge 0$ ,  
 $d_i = 0$  otherwise.

The error term in each equation consists of the sum of continuous and discrete random variables that are correlated. The errors have zero conditional mean but if  $P_i$  is a nontrivial function of  $X_{1i}$ ,  $X_{2i}$ , heteroscedasticity is present in the errors.

(i) Conditions for Existence of the Model

- The first order of business is to determine whether or not the model of equations (1a)-(1b) as represented in reduced form by equations (3a)-(3b) makes sense.
- Without imposing a further restriction, it does not.
- The restriction required is precisely the restriction implicitly assumed in writing equations (3a) and (3b), i.e., the restriction that permits one to define a unique probability statement for the events  $d_i = 1$  and  $d_i = 0$  so that  $P_i$  in fact exists.
- A necessary and sufficient condition for this to be so is that  $\pi_{23} = 0$ , i.e., that the probability of the event  $d_i = 1$  is not a determinant of the event.
- Equivalently, this assumption can be written as the requirement that  $\gamma_2 \beta_1 + \beta_2 = 0$ .
- This condition is critical to the analysis and thus deserves some discussion.
- The argument supporting this assumption is summarized in the following proposition.

PROPOSITION: A necessary and sufficient condition for the model of equations (1a)-(1c) or (3a)-(3c) to be defined is that  $\pi_{23} = 0 = \gamma_2 \beta_1 + \beta_2$ . This assumption is termed the principal assumption.

PROOF: Sufficiency is obvious. Thus, only necessary conditions are discussed. Denote the joint density of  $V_{2i}$ ,  $d_i$  by  $t(V_{2i}, d_i)$  which is assumed to be a proper density in the sense that

$$\sum_{d_i=0,1} \int_{-\infty}^{\infty} t(V_{2i}, d_i) \, dV_{2i} = 1.$$

• From equations (3b) and (3c), the probability that  $y_{2i}^* \ge 0$  given  $d_i = 1$  must be unity, so that one may write

$$\Pr(V_{2i} > l_i | d_i = 1) = 1$$

where the symbols  $l_i$  and  $l'_i$  are defined by  $l_i = -(X_{1i}\pi_{21} + X_{22} + \pi_{23})$  and  $l'_i = l_i + \pi_{23}$ .

• Alternatively, one may write this condition as

(4a) 
$$\int_{l_i}^{\infty} t(V_{2i}, 1) dV_{2i} = P_i$$

and obviously

(4b) 
$$\int_{-\infty}^{l_i} t(V_{2i}, 1) dV_{2i} = 0.$$

• Using similar reasoning, one can conclude that

(4c) 
$$\int_{-\infty}^{l_i'} t(V_{2i}, 1) dV_{2i} = 1 - P_i$$

and

(4d) 
$$\int_{l_i'}^{\infty} t(V_{2i}, 0) dV_{2i} = 0.$$

- The sum of the left hand side terms of equations (4a)-(4d) equals the sum of the right hand side terms which should equal one if the probability of the event  $d_i = 1$ , meaningfully defined.
- If  $\pi_{23} = 0$ , this is the case.
- But if  $\pi_{23} < 0$ , the sum of the left hand side terms falls short of one while if  $\pi_{23} > 0$ , this sum exceeds one. *Q.E.D.*
- Notice that this argument does not rely on the assumption that  $V_{2i}$  is normally distributed but does rely on the assumption that  $V_{2i}$  has positive density at almost all points on the real line.
- An intuitive motivation for this condition is possible. Suppose that one rewrites equations (1a)-(1c) to exclude  $d_i$ , i.e., write

$$y_{1i}^* = X_{1i}a_1 + y_{2i}^*\gamma_1 + U_{1i},$$
  
 $y_{2i}^* = X_{2i}a_2 + y_{1i}^*\gamma_2 + U_{2i},$   
 $d_i = 1$  iff  $y_{2i}^* > 0,$   
 $d_i = 0$  otherwise.

- Note that  $y_{1i}^*$  is an unobserved latent variable.
- The random variable  $y_{1i}$  is observed and is defined by the following equation:

$$y_{1i} = y_{1i}^* + d_i \beta_1.$$

• Making the appropriate substitutions of  $y_{1i}$  and  $y_{1i}^*$  in the system given above, one concludes that

$$y_{1i} = X_{1i}a_1 + d_1\beta_1 + y_{2i}^*\gamma_1 + U_{1i},$$
  

$$y_{2i}^* = X_{2i}a_2 + (y_{1i} - d_i\beta_1)\gamma_2 + U_{21}.$$

- Invoking the principal assumption, one reaches equations (1a)-(1c) including  $d_i$ ,
- Thus the dummy shift variable  $d_i\beta_1$  may be viewed as a veil that obscures measurement of the latent variable  $y_{1i}^*$ .
- The principal assumption essentially requires that the latent variable  $y_{1i}^*$  and not the measured variable  $y_{1i}^*$  appears in the second structural equation.
- It is possible to use the latent variable in the second equation because  $\beta_1$  can be estimated as will be shown.
- It is important to note that the principal assumption does not rule out structural shift in equations (1a) and (1b).
- It simply restricts the nature of the shift. However, the principal assumption does exclude any structural shift in the reduced form equation that determines the probability of shift (equation (3b)).