Selected Minicourses in *Beyond Uniform Hyperbolicity 2023*

Ajorda Jiao

Contents

1		Spectrum Rigidity and Joint Integrability for Anosov Systems on Tori	
		(Yi Shi)	3
	1.1	Local Rigidity (Apr 25)	3
	1.2	Global Rigidity (Apr 26)	8
2		Methods for Studying Abelian Actions and Centralizers (Danijela	
		Damjanović / Disheng Xu)	11
3		Dimension of Stationary Measures (Francios Ledrappier / Pablo Lessa)	12

Spectrum Rigidity and Joint Integrability for Anosov Systems on Tori (Yi Shi)

§1.1 Local Rigidity (Apr 25)

Definition 1.1.1. $f \in \text{Diff}^1(M)$ is **Anosov** if there exists a continuous Df-invariant splitting $TM = E^s \oplus E^u$ such that for every unit vector $v^{s/u} \in E^{s/u}$:

$$||Df(v^s)|| < 1, \quad ||Df(v^u)|| > 1.$$

Example 1.1.2 (Arnold's cat map)

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} : \mathbb{T}^2 \to \mathbb{T}^2$$
 is Anosov.

There are two main open problems in the study of Anosov diffeomorphisms.

Question 1.1.3. Is every Anosov diffeomorphism transitive?

Question 1.1.4. Topological classification of Anosov diffeomorphism.

Theorem 1.1.5 (Franks-Manning)

Every Anosov diffeomorphism $f: \mathbb{T}^d \to \mathbb{T}^d$ conjugates to $f_*: H_1(d, \mathbb{Z}) \to H_1(d, \mathbb{Z})$.

Theorem 1.1.6 (Franks-Newhouse)

Every codimension-1 Anosov diffeomorphism must be supported on \mathbb{T}^d .

Definition 1.1.7. $f \in \text{Diff}^r(M)$ is **partially hyperbolic**, if there exists a continuous Df-invariant splitting

$$TM = E^s \oplus E^c \oplus E^u$$

and functions $\xi, \eta: M \to (0,1)$ such that for every $x \in M$ and unit vectors $v^{s/c/u} \in E^{s/c/u}$,

$$||Df(v^s)|| < \xi(x) < ||Df(v^c)|| < \eta(x)^{-1} < ||Df(v^u)||.$$

Definition 1.1.8. A partially hyperbolic diffeomorphism f is **absolutely partially hyperbolic** if $\xi = \xi_0$, $\eta = \eta_0 \in (0, 1)$,

$$||Df(v^s)|| < \xi_0 < ||Df(v^c)|| < \eta_0^{-1} < ||Df(v^u)||.$$

Let $f: M \to M$ be a partially hyperbolic diffeomorphism, then

$$TM = E^s \oplus E^c \oplus E^u$$
.

Question 1.1.9. What happens if $E^s \oplus E^u$ is integrable?

Remark 1.1.10 $E^s \oplus E^u$ integrable \Longrightarrow NOT accessible.

However, Dolgopyat-Wilkinsonm and Hertz-Hertz-Ures, etc. showed that "MOST" partially hyperbolic diffeomorphisms are accessible.

Main philosophy.

Geometric Rigidity ⇔ Dynamic Spectral Rigidity

That is, $E^s \oplus E^u$ is integrable $\implies E^c$ has exponents rigidity.

Example 1.1.11

Let

$$A = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 8 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & 8 \end{bmatrix} : \mathbb{T}^4 \to \mathbb{T}^4,$$

which is irreducible and partially hyperbolic

$$T\mathbb{T}^4 = L^s \oplus L^c \oplus L^u$$
,

where dim $L^c = 2$ and $\lambda^c(A) \equiv 0$.

Theorem (F. R. Hertz, 2005). For every f which is C^{22} -close to A with splitting $T\mathbb{T}^4 = E^s \oplus E^c \oplus E^u$, if $E^s \oplus E^u$ is integrable, then there exists homeomorphism $h : \mathbb{T}^4 \to \mathbb{T}^4$ which is C^1 -along E^c such that $h \circ f = A \circ h$. In particular, all center exponents $\lambda^c(f) \equiv 0$.

Example 1.1.12 (Reducible case)

Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $F_0 = \begin{bmatrix} A^2 & 0 \\ 0 & A \end{bmatrix} : \mathbb{T}^4 \to \mathbb{T}^4$. Assume $f : \mathbb{T}^2 \to \mathbb{T}^2$ be C^1 -close to A . Then

$$F = \begin{bmatrix} A^2 & 0 \\ 0 & f \end{bmatrix} : \mathbb{T}^4 \to \mathbb{T}^4$$

is an Anosov diffeomorphism C^1 -close to F_0 with splitting

$$T\mathbb{T}^4 = E^{ss} \oplus E^{ws} \oplus E^{wu} \oplus E^{uu}$$
.

Here $E^{ss} \oplus E^{wu} \oplus E^{uu}$, $E^{ss} \oplus E^{ws} \oplus E^{uu}$, $E^{ss} \oplus E^{uu}$ are all integrable, but f is arbitrary:

NO exponents rigidity.

Main Theorem: Local Rigidity. Assume that $A \in GL(d, \mathbb{Z})$ satisfies generic properties:

- *A* is irreducible and hyperbolic;
- two eigenvalues of *A* have the same absolute value must be conjugate complex numbers.

Here the generic property means that

$$\lim_{K \to \infty} \frac{\#\{A \text{ is generic } : \|A\| \le K\}}{\#\{A : \|A\| \le K\}} = 1.$$

Denote

$$T\mathbb{T}^d = L_1^s \oplus \cdots \oplus L_l^s \oplus L_1^u \oplus \cdots \oplus L_m^u$$

the finest dominated splitting, then dim $L_i^{s/u} \leq 2$.

Let $f \in \text{Diff}^2(\mathbb{T}^d)$ be C^1 -close to A with splitting

$$T\mathbb{T}^d = E_1^s \oplus \cdots \oplus E_k^s \oplus E_{k+1}^s \oplus \cdots \oplus E_l^s \oplus E_1^u \oplus \cdots \oplus E_m^u$$

Assume that $l \ge 2$ and $1 \le k < l$. Denote

$$E^{ss} = E_1^s \oplus \cdots \oplus E_k^s$$
 and $E^{ws} = E_{k+1}^s \oplus \cdots \oplus E_l^s$.

Then

$$T\mathbb{T}^d = E^{ss} \oplus E^{ws} \oplus E^u$$

makes f be an absolutely partially hyperbolic system.

Theorem 1.1.13 (Local rigidity, Gogolev-Shi, arXiv: 2207.00704)

Assume $A \in GL(d, \mathbb{Z})$ satisfies generic properties. For every $f \in Diff^2(\mathbb{R}^d)$ be C^1 -close to A, the following are equivalent:

- 1. $E^{ss} \oplus E^u$ is integrable.
- 2. f has spectral rigidity in E^{ws} :

$$\lambda(E_i^s, f) \equiv \lambda(L_i^s, A), \quad \forall i = k + 1, \dots, l.$$

3. The conjugacy h ($h \circ f = A \circ h$) is smooth along E^{ws} .

Dimension 3 case.

Theorem 1.1.14 (Hammerlindl-Ures, 2014)

Let $f \in \mathrm{Diff}_m^r(\mathbb{T}^3)$ be partially hyperbolic and $f_* \in \mathrm{GL}(3,\mathbb{Z})$ be hyperbolic (f is a DA-diffeo), then

- (1) either f is accessible, thus ergodic.
- (2) or there exists an f-invariant minimal foliation \mathscr{F}^{su} such that $T\mathscr{F}^{su}=E^s\oplus E^u$ and f is topologically conjugate to f_* .

Theorem 1.1.15 (Gan-Shi, 2020)

Let $f \in \mathrm{Diff}_m^{1+}(\mathbb{T}^3)$ be a partially hyperbolic DA-diffeo. The following are equivalent:

- 1. $E^s \oplus E^u$ is integrable.
- 2. f has spectral rigidity in E^c : $\lambda^c(f) \equiv \lambda^c(f_*)$.

Both imply f is Anosov.

Corollary 1.1.16 Every C^{1+} partially hyperbolic DA-diffeo is ergodic.

Proof of Theorem 1.1.13 — spectral rigidity \implies joint integrability. The case of all E_i^s are 1-dimensional is shown by [Gogolev, 2018]. For generic $A \in GL(d, \mathbb{Z})$, the statement is shown by [Gogolev-Kalinin-Sadovskaya, 2011, 2020].

Spectral rigidity in $E^s_l \implies$ smooth conjugacy in $E^s_l \implies h(\mathcal{F}^s_{l-1}) = \mathcal{L}^s_{l-1}$ (+spectral rigidity in $E^s_{l-1}) \implies$ smooth conjugacy in $E^s_{l-1} \implies \cdots \implies h(\mathcal{F}^s_{k+1}) = \mathcal{L}^s_{k+1}$ (+spectral rigidity in $E^s_{k+1}) \implies h(\mathcal{F}^{ss}) = \mathcal{L}^{ss} \implies \mathcal{F}^{ss} \oplus \mathcal{F}^u = h^{-1}(\mathcal{L}^{ss} \oplus \mathcal{L}^u)$ joint integrability.

Proof of Theorem 1.1.13 – joint integrability \implies spectral rigidity. Main ideas:

- 1. $E^{ss} \oplus E^u$ integrability $\implies h(\mathcal{F}^{ss}) = \mathcal{L}^{ss}$ is linear.
- 2. Diophantine approximation of $\mathscr{F}^{ss} \implies$ spectral rigidity in E_{k+1}^s .
- 3. $E^{ss} \oplus E^{s}_{k+1} \oplus E^{u}$ is integrable, and play induction on E^{s}_{k+2} .

Lemma 1.1.17

For every $1 \le i \le l$, the conjugation h preserves the center foliation: $h(\mathcal{F}^s_{(i,l)}) = \mathcal{L}^s_{(i,l)}$. Here, $\mathcal{F}^s_{(i,l)}$ and $\mathcal{L}^s_{(i,l)}$ are the foliations tangent to $E^s_i \oplus \cdots \oplus E^s_l$ and $L^s_i \oplus \cdots \oplus L^s_l$, respectively.

Proof. Since f is C^1 -close to A, we have

$$||A_{L_{i-1}^s}|| < \inf_{x \in \mathbb{T}^d} m(Df|_{E_i^s(x)}) =: \rho_i.$$

Let $F, H : \mathbb{R}^d \to \mathbb{R}^d$ be lifts of f and h, then $y \in \widetilde{\mathscr{F}}_{(i,l)}^s(x)$ iff

$$||H^{-1} \circ A^{-n} \circ H(x) - H^{-1} \circ A^{-n} \circ H(y)|| \leq (\rho_i - \varepsilon)^{-n} ||x - y|| + C < (||A_{L_{i-1}^s}|| + \varepsilon)^{-n} ||x - y|| + C,$$
iff $H(y) \in \widetilde{\mathcal{Z}}_{(i,l)}^s(H(x))$.

Lemma 1.1.18

If \mathscr{F} is a C^0 -foliation sub-foliated by a minimal linear foliation \mathscr{L} on \mathbb{T}^d , then \mathscr{F} is minimal and linear.

Proof. **Minimal.** every leaf $\mathcal{F}(x) \supset \mathcal{L}(x)$ is dense.

Linear. We will show that, on universal cover, $\widetilde{\mathcal{F}}(0) \subset \mathbb{R}^d$ is closed under addition. For every $x, y \in \widetilde{\mathcal{F}}(0)$, there exists $v_n \to \widetilde{\mathcal{L}}(0)$ and $k_n \in \mathbb{Z}^d$ such that $k_n + v_n \to x$. Since \mathcal{F} is sub-foliated by \mathscr{L} and \mathscr{L} is linear, we have

$$y + k_n + v_n \in \widetilde{\mathscr{F}}(y + k_n) = \widetilde{\mathscr{F}}(k_n) = \widetilde{\mathscr{F}}(k_n + v_n).$$

Take $n \to \infty$, then $y + x \in \widetilde{\mathcal{F}}(x) = \widetilde{\mathcal{F}}(0)$.

Lemma 1.1.19 If $E^{ss} \oplus E^{u}$ is integrable to \mathscr{F}^{su} , then $h(\mathscr{F}^{ss}) = \mathscr{L}^{ss}$ is linear.

Proof. Note that $h(\mathcal{F}^{su})$ is sub-foliated by $h(\mathcal{F}^{u}) = \mathcal{L}^{u}$, where \mathcal{L}^{u} is linear and minimal on \mathbb{T}^{d} . Hence $h(\mathcal{F}^{su})$ is linear, A-invariant and transverse to $\mathcal{L}^{ws} = h(\mathcal{F}^{ws})$. This implies $h(\mathcal{F}^{su}) = \mathcal{L}^{su}$. So

$$h(\mathcal{F}^{ss}) = h(\mathcal{F}^s \cap \mathcal{F}^{su}) = h(\mathcal{F}^s) \cap h(\mathcal{F}^{su}) = \mathcal{L}^s \cap \mathcal{L}^{su} = \mathcal{L}^{ss}.$$

Corollary 1.1.20

Recall that $T\mathscr{F}^{ss} = E_1^s \oplus \cdots \oplus E_k^s$. If $h(\mathscr{F}^{ss}) = \mathscr{L}^{ss}$, then for $T\mathscr{F}_i^s = E_i^s$, we have

$$h(\mathcal{F}_j^s) = \mathcal{L}_j^s, \quad \forall j = k, k+1, \cdots, l.$$

Lemma 1.1.21 (Diophantine approximation of \mathcal{F}^{ss})

There exists $C, \alpha > 0$ such that for every $x \in \mathbb{T}^d$ and R > 0, the disk $\mathscr{F}_R^{ss}(x)$ is $C \cdot R^{-\alpha}$ -dense in \mathbb{T}^d .

Proof. Since $h(\mathcal{F}^{ss}) = \mathcal{L}^{ss}$ and h is Hölder continuous, it suffices to show the Diophantine property of \mathcal{L}^{ss} . Here A is irreducible and \mathcal{L}^{ss} is algebraic, hence Diophantine.

Proof of Theorem 1.1.13. We will fist show that the Lyapunov exponent at every point is the same in the dim $E_{k+1}^s = 1$ case. Take $p, q \in Per(f)$ such that

$$\min \lambda_{k+1}^{s}(f) \approx \lambda_{k+1}^{s}(p) < \lambda_{k+1}^{s}(q) \approx \lambda_{k+1}^{s}(f).$$

Without loss of generality, we assume that p, q are fixed by f.

Take

- $x_n \in \mathcal{F}^{ss}(p)$ such that $d^{ss}(p, x_n) = K_n \to \infty$ and $d(x_n, q) \le C \cdot K_n^{-\alpha}$.
- Segments $J \subset \mathscr{F}_{k+1}^s(p)$ and $J_n \subset \mathscr{F}_{k+1}^s(x_n)$ such that $J_n = \operatorname{Hol}^{ss}(J)$ $(x_n = \operatorname{Hol}^{ss}(p))$. Besides, we have $|f^m(J)| \approx \exp[m \cdot \lambda_{k+1}^s(p)] \cdot |J|$.

Since $h(\mathcal{F}^{ss}) = \mathcal{L}^{ss}$ and $h(\mathcal{L}^{s}_{k+1}) = \mathcal{L}^{s}_{k+1}$ both are linear, we have

$$|h(J_n)| \equiv |h(J)| \qquad \Longrightarrow \qquad \exists C_0 > 0, |J_n| \geqslant C_0|J|.$$

Now we choose m_n , k_n such that

- x_n and q are very close in first k_n -steps;
- $f^{m_n}(x_n)$ is the first time entering $\mathcal{F}_1^{ss}(p)$.

Then

$$|f^{m_n}(J_n)| \gtrsim \exp[(m_n - k_n)\lambda_{k+1}^s(p) + k_n\lambda_{k+1}^s(q)]|J_n|.$$

From Diophantine estimation, $d(x_n,q) \ll [d^{ss}(p,x_n)]^{-\alpha}$, there exists $\delta > 0$ such that $k_n > \delta m_n$. It follows that

$$\frac{|f^{m_n}(J_n)|}{|f^{m_n}(J)|} \geqslant \frac{\exp[\delta(\lambda_{k+1}^s(q))]}{\exp[\delta(\lambda_{k+1}^s(p))]} \cdot \frac{|J_n|}{|J|} \to \infty.$$

However, $J_n = \operatorname{Hss}(J)$ implies that $f^{m_n}(J_n) = \operatorname{Hol}^{ss}(f^{m_n}(J))$. Since $f^{m_n}(x_n) \in \mathcal{F}_1^{ss}(p)$ and $f^{m_n}(x_n) = \operatorname{Hol}^{ss}(p)$, this contradicts to \mathcal{F}^{ss} is C^1 -smooth in $\mathcal{F}^{ss} \oplus \mathcal{F}_{k+1}^{s}(p)$.

For the case of dim $E_{k+1}^s = 2$, we repeat the argument of 1-dim case. We can obtain

- For every periodic points p, q, we have $\min \lambda_{k+1}^s(p) = \min \lambda_{k+1}^s(q)$.
- Considering the growth of area of local disks, we have

$$\operatorname{Jac}(Df, E_{k+1}^{s}(p)) = \operatorname{Jac}(Df, E_{k+1}^{s}(q)), \quad \forall p, q \in \operatorname{Per}(f).$$

Then we estimate the growth on the universal cover, the Lyapunov exponents $\lambda_{k+1}^s(f)$ at periodic points are forced to coincide with the Lyapunov exponent $\lambda_{k+1}^s(A)$.

§1.2 Global Rigidity (Apr 26)

In the last lecture, we have shown a local rigidity result. That is, we only consider diffeomorphisms f that is C^1 -close to A. Today we will consider the global rigidity, i.e., the relation between f and $f_* \in GL(d, \mathbb{Z})$.

Question 1.2.1. What happens if f is not close to $A = f_*$?

Theorem 1.2.2 (Gogolev-Farell)

For $d \ge 10$, let $A \in GL(d, \mathbb{Z})$ be a hyperbolic matrix. Then

$$\mathscr{A}_A^{1+}(\mathbb{T}^d) \coloneqq \left\{ f \in \mathrm{Diff}^{1+}(\mathbb{T}^d) \, : \, f \text{ is Anosov, } f_* = A \right\}$$

has infinitely many connected components.

Theorem 1.2.3 (Full leaf conjugacy, Gogolev-Shi, arXiv: 2207.00704)

Let $f \in \text{Diff}^1(\mathbb{T}^d)$ be Anosov with absolutely partially hyperbolic splitting $T\mathbb{T}^d = E^{ss} \oplus E^{ws} \oplus E^u$:

$$||Df_{E^{ss}}|| < \mu < m(Df|_{E^{ws}}) < ||Df|_{E^{ws}}|| < 1 < m(Df|_{E^u}).$$

If $E^{ss} \oplus E^u$ is integrable, then

1. $A = f_* \in GL(d, \mathbb{Z})$ is partially hyperbolic:

$$T\mathbb{T}^d = L^{ss} \oplus L^{ws} \oplus L^u$$
, $\dim L^{\sigma} = \dim E^{\sigma}$, $\sigma = ss, ws, u$.

2. *f* is dynamically coherent and fully conjugate to *A*:

$$h(\mathcal{F}^{\sigma}) = \mathcal{L}^{\sigma}, \quad \sigma = ss, ws, u.$$

Here $h \circ f = A \circ h$.

Question 1.2.4. Let $f = \operatorname{Diff}^1(\mathbb{T}^d)$ be Anosov with partially hyperbolic splitting $T\mathbb{T}^d = E^{ss} \oplus E^{ws} \oplus E^u$.

- Is $f_* \in GL(d, \mathbb{Z})$ partially hyperbolic?
- Is f dynamically coherent or not? If yes, does f leaf conjugate to A.

Lemma 1.2.5

Let \mathscr{F} be a C^0 -foliation on \mathbb{T}^d with C^1 -leaves. If there exists a homeomorphism $h: \mathbb{T}^d \to \mathbb{T}^d$ homotopic to $\mathrm{Id}_{\mathbb{T}^d}$ such that $h(\mathscr{F}) = \mathscr{L}$ is a linear foliation, then \mathscr{F} is quasi-isometric:

$$d_{\widetilde{\mathcal{F}}}(x,y) \leq a \cdot d(x,y) + b, \quad \forall x \in \mathbb{R}^d, y \in \widetilde{\mathcal{F}}(x).$$

Here a, b > 0 and $\widetilde{\mathcal{F}}$ is the lift of \mathcal{F} in \mathbb{R}^d .

Proof of Theorem 1.2.3. Since $h(\mathcal{F}^{ss} \oplus \mathcal{F}^u)$ is sub-foliated by minimal linear foliation $h(\mathcal{F}^u) = \mathcal{L}^u$ is linear. We have $\mathcal{L}^{ss} := h(\mathcal{F}^{ss}) = h(\mathcal{F}^s) \cap h(\mathcal{F}^{ss} \oplus \mathcal{F}^u)$ is linear.

Brin's argument shows that $E^{ws} \oplus E^u$ integrate to \mathscr{F}^{cu} and $h(\mathscr{F}^{cu})$ is linear and minimal. Then \mathscr{F}^{ws} integrate to \mathscr{F}^{ws} and $\mathscr{L}^{ws} := h(\mathscr{F}^{ws})$ is A-invariant and linear.

Note that \mathcal{L}^{ws} and \mathcal{L}^{ss} are transverse in \mathcal{L}^{s} , then A admits an invariant splitting $T\mathbb{T}^{d} = L^{ss} \oplus L^{ws} \oplus L^{u}$. We need to show this is a dominated splitting. This follows from the above lemma and the fact that h is homotopic to $\mathrm{Id}_{\mathbb{T}^{d}}$.

Theorem 1.2.6 (Global rigidity, Gogolev-Shi, arXiv: 2207.00704)

Let $f \in \text{Diff}^2(\mathbb{T}^d)$ be Anosov and irreducible. Assume that f is absolutely partially hyperbolic $T\mathbb{T}^d = E^{ss} \oplus E^{ws} \oplus E^u$ and center bunching. If $E^{ss} \oplus E^u$ is integrable, then

1. f has a finest dominated splitting on E^{ws} with the same dimensions for $A|_{L^{ws}}$:

$$E^{ws} = E_1^{ws} \oplus \cdots \oplus E_k^{ws}, \quad \dim E_i^{ws} = \dim L_i^{ws}.$$

2. f is spectrally rigid along every E_i^{ws} :

$$\lambda(E_i^{ws}, f) \equiv \lambda(L_i^{ws}, A), \quad \forall i = 1, \dots, k.$$

Remark 1.2.7 • Here f need NOT to be C^1 -close to $A = f_*$.

- To get dominated splitting, we usually need some C^1 -robust property like: robustly transitive, far from homoclinic bifurcations.
- If $A = f_*$ satisfies the generic assumption in the last lecture, then the conjugacy h is C^{1+} -smooth along \mathcal{F}^{ws} .
- The center bunching condition

$$||Df|_{E^{ws}(x)}|| < m(Df|_{E^{ws}(x)}) \cdot m(Df|_{E^{u}(x)})$$

is a technical condition, which guarantees C^{1+} -smoothness of \mathcal{F}^{su} .

Corollary 1.2.8

Let $A \in GL(d, \mathbb{Z})$ be codimension one with real simple spectrum. For every Anosov $f \in Diff_m^2(\mathbb{T}^d)$ with $f_* = A$ and

$$T\mathbb{T}^d = E^{ss} \oplus E^{ws} \oplus E^u$$
, $\dim E^{ss} = 1$,

if

- $E^{ss} \oplus E^{u}$ is integrable;
- the metric entropy $h_m(f) = h_m(A)$;

then f is C^{1+} -conjugate to A.

Main idea for showing Theorem 1.2.6. Play the game similar to the last lecture. We will use the Diophantine approximation of \mathcal{F}^{ss} to show the rigidity of smallest exponent in E^{ws} :

$$\lambda_{\min}^{ws}(p) = \lambda_{\min}^{ws}(q), \quad \forall p, q \in Per(f).$$

Then we will show the dimension of λ_{\min}^{ws} for each periodic point is constant. Next, we define the Pesin stable foliation \mathcal{F}_{\min}^{ws} and show it is \mathcal{F}^{su} -holonomy invariant, that is $\operatorname{Hol}^{su}: \mathcal{F}^{ws}(p) \to \mathcal{F}^{ws}(q)$ preserves \mathcal{F}_{\min}^{ws} , for every $p, q \in \operatorname{Per}(f)$. Finally, we show a uniform spectral exponents gap and extract out \mathcal{F}_{\min}^{ws} .

Lemma 1.2.9

Let $\operatorname{Hol}_{x,y}^{su}: \mathscr{F}(x) \to \mathscr{F}(y)$ be the holonomy map of \mathscr{F}^{su} with $\operatorname{Hol}_{x,y}^{su}(x) = y$ for every $x \in \mathbb{T}^d$ and $y \in \mathscr{F}^{su}(x)$. Then

$$\operatorname{Hol}_{x,y}^{su}(K) = h^{-1} \circ T_{h(x),h(y)} \circ h(K).$$

Here $T_{h(x),h(y)}: \mathbb{T}^d \to \mathbb{T}^d$ is the linear translation send h(x) to h(y). In particular, for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every $K \subset \mathcal{F}^{ws}(x)$ with diam $(K) > \varepsilon$, then

$$\operatorname{diam}(\operatorname{Hol}_{x,y}^{su}(K)) > \delta, \quad \forall y \in \mathscr{F}^{su}(x).$$

Remark 1.2.10 The same holds for $\operatorname{Hol}_{x,y}^{ss}: \mathscr{F}^{ws}(x) \to \mathscr{F}^{ws}(y)$ where $y \in \mathscr{F}^{ss}(x)$.

Proof. It follows immediately from *f* is fully conjugate to *A*.

Proof of Theorem 1.2.6. We fist show that

Claim 1.2.11. $\lambda_{\min}^{ws}(p) = \lambda_{\min}^{ws}(q), \forall p, q \in Per(f).$

Proof. Assume that $\lambda_{\min}^{ws}(p) < \lambda_{\min}^{ws}(q)$. Take $x_n \in \mathcal{F}^{ss}(p)$ such that $d^{ss}(x_n, p) = K_n \to \infty$ and $d(x_n, q) \leq C \cdot K_n^{-\alpha}$. Take disk $D \subset \mathcal{F}_{\min}^{ws}(p)$, the Pesin stable manifold associated to $\lambda_{\min}^{ws}(p)$. Let $D_n = \operatorname{Hol}^{ss}(D) \subset \mathcal{F}^{ws}(x_n)$, then diam $(D_n) \gg \operatorname{diam}(D)$. Applying a similar (k_n, m_n) -argument, we get a contradiction since \mathcal{F}^{ss} is C^1 -smooth in $\mathcal{F}^{ws}(p)$.

Now we have $\lambda_{\min}^{ws} := \lambda_{\min}^{ws}(p)$ for every $p \in \text{Per}(f)$. We define the Pesin stable foliation associated to λ_{\min}^{ws} for each periodic point.

Claim 1.2.12. \mathcal{F}_{\min}^{ws} is Hol^{su} -invariant.

Proof. Let $\mathscr{L}^{ws}_{\min}|_{\mathscr{L}^{ws}(p)} \coloneqq h(\mathscr{F}^{ws}_{\min}|_{\mathscr{L}^{ws}(p)})$, it suffices to show

$$T_{h(p),h(x)}(\mathscr{L}_{\min}^{ws}(p)) \subset \mathscr{L}_{\min}^{ws}(x)$$

for every $p, q \in \operatorname{Per}(f)$ and $x \in \mathcal{F}^{ws}(q)$. Otherwise, take a disk $D \subset \mathcal{F}^{ws}_{\min}(p)$, then $T_{h(p),h(x)}(h(D))$ is transverse to $\mathcal{L}^{ws}_{\min}|_{\mathcal{L}^{ws}_{\operatorname{loc}}(q)}$ at h(x). Take $x_n \in \mathcal{F}^{ss}$ such that $d^{ss}(p, x_n) = K_n \to \infty$ and $d(x_n, x) \ll K_n^{-\alpha}$, then

$$D_n := \operatorname{Hol}_{p,x_n}^{ss}(D) \to h^{-1} \circ T_{h(p),h(x)} \circ h(D).$$

It follows that $\operatorname{Hol}_{\operatorname{loc}}^u(D)$ is "uniformly transverse" (the angle will not tend to zero) to \mathcal{L}_{\min}^{ws} in $\mathcal{F}_{\operatorname{loc}}^{ws}(q)$, where $\operatorname{Hol}_{\operatorname{loc}}^u(D): \mathcal{F}^{ws}(x_n) \to \mathcal{F}^{ws}(q)$ is C^{1+} -smooth. Since the transverse direction has a weaker contracting rate, we play the (k_n, m_n) -game and get a contradiction.

Let $\mathcal{L}_{\min}^{ws} := h(\mathcal{L}_{\min}^{ws})$, then the density of $\operatorname{Per}(f)$ and minimality of \mathcal{F}^{ws} imply $T_{x,y}(\mathcal{L}_{\min}^{ws}(x)) \subset \mathcal{L}_{\min}^{ws}(y)$. By the translation invariance and the A-invariance, we have

- \mathscr{L}_{\min}^{ws} is a linear foliation on \mathbb{T}^d , and
- $L_{\min}^{ws} := T \mathcal{L}_{\min}^{ws}$ associate to an eigenspace of A.

Also by an estimate of the growth, we get $\lambda(A, L_{\min}^{ws}) \equiv \lambda_{\min}^{ws}$.

Finally, we establish the induction step. Following the idea of [Bonatti-Díaz-Pujals, 2003], consider the quotient cocycle $D\widetilde{f}: E^{ws}/E^{ws}_{\min} \to E^{ws}/E^{ws}_{\min}$ which is Hölder continuous over f. Again by a (k_n, m_n) -game, we can show that λ_2^{ws} is uniformly larger than λ_{\min}^{ws} . Then the splitting $T\mathbb{T}^d = (E^{ss} \oplus E^{ws}_{\min}) \oplus F \oplus E^u$ is an absolutely partially hyperbolic splitting. The joint integrability follows from $h(\mathcal{F}^{ss} \oplus \mathcal{F}^{ws}_{\min})$ is linear.

2 Methods for Studying Abelian Actions and Centralizers (Danijela Damjanović / Disheng Xu)

3 Dimension of Stationary Measures (Francios Ledrappier / Pablo Lessa)