中山大学本科生期末考试 考试科目:《数学物理方法》(A卷)

	物理学院	学 号:		
考试方式:		年级专业:	16 级 物理	
考试时长:		班 别: C作细则》第八条:"考试作弊	者, 不授予学士学位, "	
		大题,总分 100 分,考生请在		
一、选择题(请将	正确答案的序号填写在答	题纸上. 共 8 小题, 每小题 5	6分,共40分.)	
1. 复变函数 f(z)	$=x^2+iy^2$ 在复平面上			
(A) 处处可导	(B) 处处不可导 (C	C) 在直线 $y = -x$ 上可导	(D) 在直线 $y = x$ 上可导	
2. 已知变上限积分	$\int_{z_0}^z \mathrm{d}\zeta \mathrm{e}^{\zeta} (1/\zeta + a/\zeta^n)$ (其	+ n > 1 是正整数) 是 z 的	单值函数,则	
(A) $a=-n!$	(B) $a = n!$	(C) $a = -(n-1)!$	(D) $a = (n-1)!$	
3. z = 0 是函数 (si	$(nz)/z^2 - 1/z$ 的什么奇点	?		
(A) 本性奇点	(B) 可去奇点	(C) 一阶极点	(D) 二阶极点	
4. 将函数 (z-3)(z	-4)/(z-1)(z-2)以 a	= 0 为中心展开为 Taylor 级	数,则该级数的收敛半径 R	为
(A) 1	(B) 2	(C) 3	(D) 4	
5. x = 0 是常微分为		= 0 (其中 a、b 是常数) 的		*
(A) 正则奇点	(B) 常点	(C) 一阶极点	(D) 本性奇点	
6. f(x) 的 Fourier 变	E换为 $F(k) = (\sqrt{2\pi})^{-1} \int_{-\infty}^{\infty}$	$\int_{-\infty}^{+\infty} f(x) e^{-ikx} dx$, 设 $g(x) =$	$\int_{-\infty}^{x} f(\xi) d\xi$ 的 Fourier 变换	为 $G(k)$,
其中 f(x) 使得 g(+c				
(A) $G(k) = ikF(k)$	(B) $G(k) = F(k)/ik$	(C) G(k) = -ikF(k)	(D) $G(k) = -F(k)$	'ik
			程为 $\partial u/\partial t - a^2 \partial^2 u/\partial x^2 =$	
			λl 应取特定值, 其中最小	
(A) 2π	(B) $3\pi/2$	(C) π	(D) $\pi/2$	-/-3
		上的简化假设,下面哪一:		
(A) 振列幅度很小	(B)	(C) 振动发生在一固足 ³	平面内 (D) 弦的两端是	固定的
二、填空题(共 2 小題	题,各小题分数依次为 1	10分、15分,共25分.).	
· THULETH HOLD	为1.日夕从了			
			$r, \theta) =$. 考虑球内的	力定解问题
设球面上 $u _{r=a} = 3\cos$	$2\theta + \cos \theta$,则球内 (2	$2) \ u(r,\theta) = \underline{\hspace{1cm}}.$		
2. 考虑 1/4 平面的定	解问题 $\nabla^2 u = 0 \ (x >$	$0, y > 0), u _{x=0} = g(y)$	$, u _{y=0}=f(x). 相应的$	Green 函数
		,该 Green 函数为		
	(-)		•	
三、计算题 (共 2 小题	,各小题分数依次为1	5分、20分,共35分.)	
1. 计算积分 $I = \int_{-\infty}^{\infty}$	$\frac{1}{2n+a^{2n}}$ dx, 其中 $a>$	0, n 为正整数.		

2. 均匀导热细杆,长为l,侧面绝热,左端保持温度为零度,右端有时变热流流入,边界条件为 $\partial u/\partial x|_{z=l}=0$

 $qe^{-\alpha t}$,其中 q、 α 为常数,初始时杆上各点的温度均为零度,求以后的温度分布 u(x,t).

1.