Théorie des langages : THL CM 9

Uli Fahrenberg

EPITA Rennes

S5 2024

Aperçu

Aperçu ●○

Programme du cours

- Langages rationnels, automates finis
 - TP 1 : flex
- Parsage LL
 - TP 2 : II
- Parsage LR
- Conclusion
 - TP 3: bison
 - TP 4: flex & bison

Résumé du cours

Hiérarchie de Chomsky

typ	e langages	grammaires	automates
	-		
4	finis	à choix finis	finis acycliques
	∤ ∩	\downarrow	\downarrow
3	rationnels	régulières	finis
	∤ ∩	\downarrow	\downarrow
2	algébriques	hors-contexte	à pile
	∤ ∩	\downarrow	
1	contextuels	contextuelles	linéairement bornés
	∤ ∩	\downarrow	\downarrow
0	récursivement énumerables	syntagmatiques	de Turing

Uli Fahrenberg

Théorie des langages : THL

Hiérarchie de Chomsky

type	langages	grammaires	automates
4	finis	à choix finis	finis acycliques
	∤ ∩	\downarrow	\Downarrow
3	rationnels	régulières	finis
	∤ ∩	\Downarrow	\Downarrow
2	algébriques	hors-contexte	à pile
	† ∩	\Downarrow	
1	contextuels	contextuelles	linéairement bornés
	† ∩	↓	\downarrow
0	récursivement énumerables	syntagmatiques	de Turing

Dans le poly

- Langages rationnels, automates finis
 - chapitre 2 sauf 2.3.2, 2.3.3, 2.3.4, 2.3.5, 2.4.4
 - chapitre 3 sauf 3.1.3
 - chapitre 4 sauf 4.1.3, 4.2.1, 4.3, 4.4
- Langages algébriques, grammaires hors-contexte, automates à pile
 - chapitre 6 sauf 6.3.1
 - 9.2.2
 - Sipser 2.2
- Parsage LL
 - chapitre 7
 - section 8.1
- Parsage LR
 - section 8.2

Rationnel vs. algébrique

langages rationnels

grammaires régulières : - linéaire à droite : $N \to \Sigma N \mid \Sigma \mid \varepsilon$

– linéaire à gauche : $N
ightarrow N\Sigma \mid \Sigma \mid \varepsilon$

automates finis

déterministes / non-déterministes

décidabilité :

- appartenance $(w \in L)$ \checkmark
- vacuité $(L = \emptyset)$ ✓
- universalité ($L = \Sigma^*$) \checkmark

langages algébriques

grammaires hors contexte:

- $-N \rightarrow (N \cup \Sigma)^*$
- Greibach : $N o \Sigma NN \mid \Sigma N \mid \Sigma \mid \varepsilon$

automates à pile

- pas de déterminisation

décidabilité :

- appartenance $(w \in L)$
- vacuité ($L = \emptyset$) ✓
- universalité ($L = \Sigma^*$) X

9/28

Zoom sur type 3 (régulier / rationnel)

syntaxe

automates finis dét. complets

automates finis déterministes

 \uparrow

automates finis

 $\uparrow \cap$

aut. finis à transitions spontanées

expressions rationnelles

grammaires régulières

sémantique

langages reconnaissables

Ш

langages reconnaissables

langages reconnaissables

П

langages reconnaissables

Ш

langages rationnelles

Ш

langages réguliers

Uli Fahrenberg Théorie des langages : THL

 $L(\cdot)$

Zoom sur type 2 (hors contexte / algébrique)

syntaxe sémantique grammaires hc forme Greibach langages algébriques langages algébriques grammaires hors-contexte grammaires hc forme Chomsky langages algébriques automates à pile langages algébriques l Jk automates à pile sans transitions spont. langages algébriques automates à pile déterministes langages algébriques déterministes

Zoom sur LR

syntaxe

grammaires hors-contexte grammaires hc non-ambiguës grammaires hc déterministes grammaires LR(k)

grammaires LR(1)

grammaires LALR(1)

grammaires SLR(1)

grammaires LR(0)

sémantique

langages algébriques

lang. algébriques non-ambigués

lang. algébriques déterministes

lang. algébriques déterministes

lang. algébriques déterministes

langages LALR(1)

langages SLR(1)

langages LR(0)

11/28

Zoom sur LL

sémantique syntaxe grammaires hors-contexte langages algébriques grammaires hc non-ambiguës lang. algébriques non-ambigués grammaires hc déterministes lang. algébriques déterministes grammaires LL(k)langages LL(k)grammaires LL(2) langages LL(2) grammaires LL(1) langages LL(1)

Parsage

14/28

Parsage

15/28

Parsage LL(1): approache descendante

- **o** entrée : une grammaire hors contexte $G = (N, \Sigma, P, S)$
 - si-dessous, $V = N \cup \Sigma$
 - ullet éliminer récursion à gauche dans G; factoriser G à gauche
- calculer NULL
 - NULL = $\{A \in N \mid A \Rightarrow^* \varepsilon\}$
- construire la table FIRST
 - FIRST(A) = { $a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw$ }
- construire la table FOLLOW
 - FOLLOW(A) = $\{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta\}$
- onstruire la TABLE de parsage :
 - pour chaque production $X \to w$ (n):
 - pour chaque $a \in FIRST(w)$: TABLE $(X, a) += \{n\}$
 - $oldsymbol{0}$ si $w \in \mathsf{NULL}$ ou $w = \varepsilon$:
 - pour chaque a ∈ FOLLOW(X) : TABLE(X, a) += {n}

Uli Fahrenberg Théorie des langages : THL

Re: parsage ascendant: the basics

```
\begin{array}{l} \textbf{function} \ \text{BULRP}(\alpha) \\ \textbf{if} \ \alpha = S \ \textbf{then} \\ \textbf{return} \ \textbf{True} \\ \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ j \leftarrow i \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ A \in N \ \textbf{do} \\ \textbf{if} \ A \rightarrow \alpha_i \dots \alpha_j \ \textbf{then} \\ \textbf{if} \ \text{BULRP}(\alpha_1 \dots \alpha_{i-1} A \alpha_{j+1} \dots \alpha_n) \ \textbf{then} \\ \textbf{return} \ \textbf{False} \end{array} \right. \\ \textbf{return} \ \textbf{True} \\ \end{array}
```

Re : parsage LR(0)

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow S - n \qquad (1)$$

$$\mid n \qquad (2)$$

parser n - n:

entrée	pile	action
n-n\$	0	décaler
<i>−n</i> \$	⊥01	réduire 2
<i>−n</i> \$	⊥02	décaler
n\$	⊥024	décaler
\$	⊥0245	réduire 1
\$	⊥02	décaler
	⊥023	✓

état	action	n	_	\$	S
0	décaler	1			2
1	réduire 2				
2	décaler		4	3	
3	accepter				
4	décaler	5			
5	réduire 1				

$$S \rightarrow n$$

$$S \rightarrow S-n$$

Uli Fahrenberg

Théorie des langages : THL

Re: parsage SLR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW

Exemple:
$$Z \rightarrow S$$
\$ (0)
 $S \rightarrow n-S$ (1)
 $\mid n$ (2)

état	action	n	_	\$	S		état	n	_	\$	S
0	décaler	2			1		0	d.2			d.1
1	décaler			4			1			d.4	
2	réd. 2, déc.		3			\Longrightarrow	2		d.3	r.2	
3	décaler	2			5		3	d.2			d.5
4	accepter						4	_	- acce	pter -	_
5	réduire 1						5			r.1	

Re : parsage LR(1)

• conditionner l'action par le contexte : les symboles qui peuvent suivre

$$Z \to S$$
\$ (0)
 $S \to L = E$ (1)
 $\mid E$ (2)
 $L \to x$ (3)
 $\mid *E$ (4)
 $E \to L$ (5)

état	productions pointées élargies
0	$Z o ullet S_{ullet}^{ullet} [arepsilon]$
	$S \rightarrow \bullet L = E $ [\$], $S \rightarrow \bullet E $ [\$]
	$Z \rightarrow \bullet S \$ [\varepsilon]$ $S \rightarrow \bullet L = E [\$], S \rightarrow \bullet E [\$]$ $L \rightarrow \bullet \times [=], L \rightarrow \bullet * E [=]$ $E \rightarrow \bullet L [\$]$ $L \rightarrow \bullet \times [\$], L \rightarrow \bullet * E [\$]$ $Z \rightarrow S \bullet \$ [\varepsilon]$ $S \rightarrow L \bullet = E [\$], E \rightarrow L \bullet [\$ \checkmark]$
	$E \rightarrow ullet L [\$]$
	$L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]
1	$Z o Sullet _{ullet}^{ullet}\left[arepsilon ight]$
2	$S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$\slime\]

Exemple

	état	X	*	=	\$	5	L	Ε
	0	d.4	d.5			d.1	d.2	d.3
	1				d.6			
	2			d.7	r.5			
	3				r.2			
$Z \rightarrow S$ (0) 4			r.3	r.3			
$S \rightarrow L = E$ (1) 5	d.4	d.5				d.9	d.8
`	´ 6			— а	ccepte	er —		
,	· /	d.12	d.13				d.11	d.10
$L \rightarrow x$ (3)	8			r.4				
* <i>E</i> (4	9			r.5				
$E \rightarrow L$ (5) 10				r.1			
•	´ 11				r.5			
	12				r.3			
	13	d.12	d.13				d.11	d.14
	14				r.4			

Uli Fahrenberg

Théorie des langages : THL

Parsage LALR(1)

Définition

Deux productions pointées élargies $A \to \alpha \bullet \beta$ [a] et $A \to \alpha' \bullet \beta'$ [b] sont équivalent LALR(1) si $\alpha = \alpha'$ et $\beta = \beta'$.

 les items sont identiques, mais les contextes peuvent être différents

Définition

L'automate LALR(1) d'une grammaire hors-contexte G est le quotient de l'automate LR(1) de G sous équivalence LALR(1).

Uli Fahrenberg

Théorie des langages : THL

Exemple, re

		état	X	*	=	\$	S	L	Ε
		0	d.4	d.5			d.1	d.2	d.3
$Z \rightarrow S$ \$	(0)	1				d.6			
$S \rightarrow L=E$	(1)	2			d.7	r.5			
	` '	3				r.2			
<i>E</i>	(2)	₁ 4			r.3	r.3			
$L \rightarrow x$	(3)	/, 5	d.4	d.5				d.9	d.8
* <i>E</i>	(4)	// 6			— а	ccepte	er —		
extstyle E o extstyle L	(5)	/ 7	d.12	d.13				d.11	d.10
	()	, 8			r.4				
		9			r.5				
		\ (10				r.1			
		\\`11				r.5			
		\\12				r.3			
		13	d.12	d.13				d.11	d.14
		14				r.4			

E d.3

d.8

d.10

Exemple, re

	état	X	*	=	\$	S	L
	0	d.4	d.5			d.1	d.2
Z o S\$ (0)	1				d.6		
$S \rightarrow L = E$ (1)	2			d.7	r.5		
` ,	3				r.2		
,	4			r.3	r.3		
$L \to \mathbf{x}$ (3)	5	d.4	d.5				d.9
* <i>E</i> (4)	6			— а	ccepte	er —	
$E \rightarrow L$ (5)	7	d.12	d.13				d.11
	8			r.4	r.4		
	9			r.5	r.5		
	10				r.1		
						'	

Résolution de conflits

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E+E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k

Résolution de conflits

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E+E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); $r.1 \Rightarrow (n + n) + n$
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n

Résolution de conflits

$$Z \rightarrow E\$ \qquad (0)$$

$$E \rightarrow E + E \qquad (1)$$

$$\mid E*E \qquad (2)$$

$$\mid n \qquad (3)$$

état	+	*	n	\$	Е
0			d.2		g.1
1	d.4	d.5		d.3	
2	r.3	r.3		r.3	
3		_	- acce	pter -	_
4			d.2		g.6
5			d.2		g.6 g.7
6	d.4	d.5			
	r.1	r.1		r.1	
7	d.4	d.5			
	r.2	r.2		r.2	

- une grammaire ambiguë
- donc pas LR(k) pour n'importe quel k
- associativité : d.4 \Rightarrow n + (n + n); r.1 \Rightarrow (n + n) + n
- priorité : d.5 \Rightarrow n*(n+n); r.1 \Rightarrow (n*n)+n
- solution : règles de priorité
- ici : r.1 > d.4, r.2 > d.5, r.2 > d.4, $d.5 > r.1 \Leftarrow !$

Parsage LR généralisé

- embrace non-determinism!
- parsage GLR : en cas de conflit, suivre tous les chemins en parallel
- « parsage parallel », « parsage Tomita »
- implémenter l'automate (non-déterministe) de parsage sans déterminisation
- états : productions pointées, pas de clôture
- algorithme en temps exponentiel, pas linéaire
- optimisation : partager préfixes et suffixes de piles

