A Motivic Snaith Decomposition

Viktor Kleen

Contents

1. Introduction	1
2. Becker-Gottlieb Transfers in Motivic Homotopy Theory	2
3. Transfers of Grassmannians	6
4. Proof of the Theorem	9
A. Stable Motivic Homotopy Theory of Smooth Ind-Schemes	11

1. Introduction

THEOREM 1.1. Over a field k, there is a \mathbb{P}^1 -stable splitting $BGL_{m,+} \simeq \bigvee_{i=1}^m BGL_i/BGL_{i-1}$.

Notation

In what follows S will be an arbitrary base scheme. For a scheme X we write $\mathcal{H}(X)$ for the ∞ -category of presheaves of spaces on Sm_X localized at Nisnevich-local equivalences and projections $Y \times \mathbb{A}^1 \longrightarrow Y$. It is a presentable ∞ -category in the sense of [Lur09]. We refer to $\mathcal{H}(X)$ interchangably as the \mathbb{A}^1 -homotopy category of X or the motivic homotopy category of X. The associated pointed ∞ -category will be denoted by $\mathcal{H}_{\bullet}(X)$. Inverting $(\mathbb{P}^1, \infty) \in \mathcal{H}_{\bullet}(X)$ with respect to the smash product yields the stable motivic homotopy category $\mathcal{SH}(X)$ of X. It is a symmetric monoidal, presentable, stable ∞ -category in the sense of [Lur12]. An account of this definition of $\mathcal{H}(X)$, $\mathcal{H}_{\bullet}(X)$ and $\mathcal{SH}(X)$ for noetherian schemes and its equivalence to the approach of [MV99] is given in [Rob15], the generalization to arbitrary schemes can be found in [Hoy14, Appendix C].

We follow [Lev18] in writing $X/S \in \mathcal{SH}(S)$ for the \mathbb{P}^1 -suspension spectrum of a smooth scheme X over S. We will write $X_+ \in \mathcal{H}_{\bullet}(S)$ for X with a disjoint basepoint added. We sometimes do not distinguish notationally between the pointed motivic space $X_+ \in \mathcal{H}_{\bullet}(S)$ and its \mathbb{P}^1 -suspension spectrum $X/S = X_+ \in \mathcal{SH}(S)$.

When dealing with ind-schemes we have elected not to speak of "ind-smooth" schemes and morphisms. Instead, for us a smooth morphisms between ind-schemes will be what is usually called an ind-smooth morphism, namely a formal colimit of smooth morphisms.

2. Becker-Gottlieb Transfers in Motivic Homotopy Theory

Becker and Gottlieb introduced their eponymous transfer maps in [BG75] as a tool for giving a simple proof of the Adams conjecture. They considered a compact Lie group G and a fiber bundle $E \longrightarrow B$ over a finite CW complex with structure group G and whose fiber F is a closed smooth manifold with a smooth action by G. There is a smooth G-equivariant embedding $F \subset V$ of F into a finite dimensional representation V of G. There is an associated Pontryagin–Thom collapse map $S^V \longrightarrow F^V$ where V is the normal bundle of F in V and F^V is its Thom space. Denoting by T the tangent bundle of F one obtains a morphism

$$S^V \longrightarrow F^v \longrightarrow F^{\tau \oplus v} \simeq F_+ \wedge S^V$$

in G-equivariant homotopy theory. Assuming that $E \longrightarrow B$ is associated to a principal G-bundle $\widetilde{E} \longrightarrow B$ one gets a map

$$\widetilde{E} \times S^V \longrightarrow \widetilde{E} \times (F_+ \wedge S^V)$$

and passing to homotopy orbits with respect to the diagonal G-actions yields the transfer map $B_+ \longrightarrow E_+$ in the stable homotopy category.

This construction of the transfer was generalized in [DP80]. The map $S^V \longrightarrow F_+ \wedge S^V$ arises from a *duality datum* in parameterized stable homotopy theory over the base space B.

Definition 2.1. A *duality datum* in a symmetric monoidal category consists of a pair of objects X and X^{\vee} with morphisms $\mathbf{1} \xrightarrow{\operatorname{coev}} X \otimes X^{\vee}$ and $X^{\vee} \otimes X \xrightarrow{\operatorname{ev}} \mathbf{1}$ such that the compositions

$$X \xrightarrow{\operatorname{coev} \otimes \operatorname{id}} X \otimes X^{\vee} \otimes X \xrightarrow{\operatorname{id} \otimes \operatorname{ev}} X$$

and

$$X^{\vee} \xrightarrow{\mathrm{id} \otimes \mathrm{coev}} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{\mathrm{ev} \otimes \mathrm{id}} X^{\vee}$$

are identities. In this situation X^{\vee} is said to be a *right dual* of X and X is said to be a *left dual* of X^{\vee} . If X is additionally a right dual of X^{\vee} , then X is said to be *strongly dualizable* with dual X^{\vee} .

A duality datum in a symmetric monoidal ∞ -category $\mathscr C$ is a duality datum in the homotopy category $h\mathscr C$, see [Lur12, section 4.6.1].

REMARK 2.2. In [Lev18], Levine defines a dual $X^{\vee} = \operatorname{Map}(X,1)$ for any object X in a *closed* symmetric monoidal category. Then X is called strongly dualizable whenever the induced morphism $X^{\vee} \otimes X \longrightarrow \operatorname{Map}(X,X)$ is an equivalence. By [Lur12, Lemma 4.6.1.6] this coincides with our definition.

Dold and Puppe show that, for a fiber bundle $E \longrightarrow B$ with fiber a compact smooth manifold, there is a duality datum in the homotopy category of B-parameterized spectra. It exhibits the fiberwise Thom spectrum of the fiberwise stable normal bundle to E as a dual of the suspension spectrum of E. They then show that the transfer in [BG75] is an instance of the following general construction.

DEFINITION 2.3. In a symmetric monoidal ∞ -category $\mathscr C$, suppose that an object X is equipped with a map $\Delta\colon X\longrightarrow X\otimes C$ for some other object C. Furthermore, suppose that X is strongly dualizable. The *transfer of* X *with respect to* Δ is defined as the composition

$$\operatorname{tr}_{X \ \Lambda} \colon \mathbf{1} \xrightarrow{\operatorname{coev}} X \otimes X^{\vee} \xrightarrow{\operatorname{switch}} X^{\vee} \otimes X \xrightarrow{\operatorname{id} \otimes \Delta} X^{\vee} \otimes X \otimes C \xrightarrow{\operatorname{ev} \otimes \operatorname{id}} \mathbf{1} \otimes C \simeq C.$$

If there can be no risk of confusion we write $tr_X = tr_{X,\Delta}$.

In Appendix A we construct a symmetric monoidal ∞ -category $\mathcal{SH}(B)$ for every smooth ind-scheme B over a base scheme S. This enables us to extend the definition of the motivic Becker–Gottlieb transfer in [Lev18].

DEFINITION 2.4. For a smooth map $f: E \longrightarrow B$ between smooth ind-schemes over S with $E/B \in \mathcal{SH}(B)$ strongly dualizable we define the *relative transfer* $\mathrm{Tr}(f/B)\colon \mathbf{1}_B \longrightarrow E/B$ as follows: Applying $f_\#$ to the diagonal $E \longrightarrow E \times_B E$ gives a morphism $\Delta \colon E/B \longrightarrow E/B \wedge E/B$ in $\mathcal{SH}(B)$ and we set $\mathrm{Tr}(E/B) = \mathrm{Tr}(f/B) = \mathrm{tr}_{E/B,\Delta}$.

Additionally, since $\pi \colon B \longrightarrow S$ is a smooth ind-scheme, we can define the *absolute transfer* of f as

$$\operatorname{Tr}(f/S) = \pi_{\#}(\operatorname{Tr}(f/B)) \colon E/S \longrightarrow B/S.$$

PROPOSITION 2.5. The motivic Becker–Gottlieb transfer enjoys the following properties.

(i) The transfer is additive in homotopy pushouts: Suppose X, Y, U and V are smooth ind-schemes over a smooth ind-scheme B over S. Further suppose that there is a homotopy cocartesian square

$$\begin{array}{ccc} X/B & \longrightarrow & U/B \\ \downarrow & & \downarrow \\ V/B & \longrightarrow & Y/B \end{array}$$

in $\mathcal{SH}(B)$. Assume that Y/B, U/B and V/B are strongly dualizable. Then $\mathrm{Tr}(Y/B)$ is a sum of the compositions

$$\mathbf{1}_{B} \xrightarrow{\operatorname{Tr}(U/B)} U/B \longrightarrow Y/B$$

$$\mathbf{1}_{B} \xrightarrow{\operatorname{Tr}(V/B)} V/B \longrightarrow Y/B$$

and

$$\mathbf{1}_B \xrightarrow{\operatorname{Tr}(X/B)} X/B \longrightarrow Y/B$$

in $\mathcal{SH}(B)$.

- (ii) The relative transfer is compatible with pullback: If $p: B' \longrightarrow B$ and $f: E \longrightarrow B$ are maps of smooth ind-schemes over S and E/B is strongly dualizable in SH(B) then the pullback $p^*(E/B) \simeq (E \times_B B')/B'$ is strongly dualizable in SH(B') and $Tr(p^*f/B') \simeq p^* Tr(f/B)$.
- (iii) The absolute transfer is natural in cartesian squares: If

$$E' \longrightarrow E$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$B' \longrightarrow B$$

is a cartesian square of smooth ind-schemes over S and the vertical maps are smooth, then the square

$$E'/S \longrightarrow E/S$$

$$\operatorname{Tr}(f'/S) \uparrow \qquad \qquad \uparrow \operatorname{Tr}(f/S)$$

$$B'/S \longrightarrow B/S$$

commutes in SH(S).

To prove part (i) of Proposition 2.5 we appeal to a general additivity result of May's. In the context of symmetric monoidal triangulated categories, [May01] proves that the transfer is additive in distinguished triangles. However, since duality in symmetric monoidal ∞ -categories is characterised at the level of homotopy categories, May's theorem admits the following reformulation.

THEOREM 2.6 ([May01, Theorem 1.9]). Let $\mathscr C$ be a symmetric monoidal stable ∞ -category and let $X \longrightarrow Y \longrightarrow Z$ be a cofiber sequence in $\mathscr C$. Assume $C \in \mathscr C$ is such that $_ \otimes C$ preserves cofiber sequences. Suppose that Y is equipped with a map $\Delta_Y \colon Y \longrightarrow Y \otimes C$ and that X and Y are strongly dualizable. Then Z is strongly dualizable and there are maps Δ_X and Δ_Z such that

$$\begin{array}{cccc} X & \longrightarrow & Y & \longrightarrow & Z \\ \downarrow^{\Delta_X} & & \downarrow^{\Delta_Y} & & \downarrow^{\Delta_Z} \\ X \otimes C & \longrightarrow & Y \otimes C & \longrightarrow & Z \otimes C \end{array}$$

commutes. Furthermore, we have ${\rm tr}_{Y,\Delta_Y}={\rm tr}_{X,\Delta_X}+{\rm tr}_{Z,\Delta_Z}$ in $\pi_0\operatorname{Map}_{\mathscr C}(1,C)$.

Proof of Proposition 2.5, (i). The homotopy cocartesian square induces a cofiber sequence

$$U/B \vee V/B \longrightarrow Y/B \longrightarrow S^1 \wedge X/B$$

in $\mathcal{SH}(B)$. Shifting this sequence yields and introducing diagonal maps gives a diagram

$$X/B \longrightarrow U/B \lor V/B \longrightarrow Y/B$$

$$\downarrow^{\Delta_X} \qquad \qquad \downarrow^{\Delta_U \lor \Delta_V}$$

$$X/B \land X/B \qquad (U/B \land U/B) \lor (V/B \land V/B)$$

$$\downarrow^{(1)} \qquad \qquad \downarrow^{(2)}$$

$$X/B \land Y/B \longrightarrow (U/B \lor V/B) \land Y/B \longrightarrow Y/B \land Y/B$$

in which the outer two rows are cofiber sequences and the maps (1) and (2) are induced from the maps $X/B \longrightarrow Y/B$, $U/B \longrightarrow Y/B$ and $V/B \longrightarrow Y/B$ respectively. Then we can conclude using Theorem 2.6.

Part (ii) of Proposition 2.5 is proven in [Lev18, Lemma 1.6]. We formulate the proof of part (iii) as a lemma.

Lemma 2.7. Let S be a scheme and B and B' smooth ind-schemes over S. Suppose that $f: E \longrightarrow B$ is smooth with $E/B \in \mathcal{SH}(B)$ strongly dualizable and

$$E' \xrightarrow{i'} E$$

$$\downarrow f' \qquad \qquad \downarrow f$$

$$B' \xrightarrow{i} B$$

is cartesian. Then the square

$$E'/S \xrightarrow{i'/S} E/S$$

$$\operatorname{Tr}(f'/S) \uparrow \qquad \qquad \uparrow \operatorname{Tr}(f/S)$$

$$B'/S \xrightarrow{i/S} B/S$$

is homotopy commutative.

Proof. Write $p: B' \longrightarrow S$ and $q: B \longrightarrow S$ for the structure morphisms. There is a natural transformation $p_{\#}i^* \longrightarrow q_{\#}$ defined as the composition

$$p_{\#}i^* \xrightarrow{\text{unit}} p_{\#}i^*q^*q_{\#} \simeq p_{\#}p^*q_{\#} \xrightarrow{\text{counit}} q_{\#}.$$

Consequently, we obtain a homotopy commutative diagram

$$B'/S = p_{\#}p^{*}\mathbf{1}_{S} \xrightarrow{p_{\#}\operatorname{Tr}(f'/B')} p_{\#}f'_{\#}i'^{*}f^{*}q^{*}\mathbf{1}_{S} = E'/S$$

$$\downarrow \qquad \qquad \qquad \downarrow \text{Ex}_{\#}^{*}$$

$$p_{\#}i^{*}q^{*}\mathbf{1}_{S} \xrightarrow{p_{\#}i^{*}\operatorname{Tr}(f/B)} p_{\#}i^{*}f_{\#}f^{*}q^{*}\mathbf{1}_{S}$$

$$\downarrow \qquad \qquad \downarrow$$

$$B/S = q_{\#}q^{*}\mathbf{1}_{S} \xrightarrow{q_{\#}\operatorname{Tr}(f/B)} q_{\#}f_{\#}f^{*}q^{*}\mathbf{1}_{S} = E/S.$$

Chasing through the definition of $p_{\#}i^* \longrightarrow q_{\#}$ shows that the leftmost composite vertical map is i/S and that the rightmost vertical map is i'/S.

Finally, we will need some tools to understand when a smooth morphism $E \longrightarrow B$ of smooth ind-schemes over S determines a strongly dualizable object E/B in $\mathcal{SH}(B)$. We have the following formulation of motivic Atiyah duality.

THEOREM 2.8 (see [Voe01], [Rio05], [Ayo07b], [CD09]). If $Y \longrightarrow X$ is a smooth and proper morphism of schemes, then $Y/X \in \mathcal{SH}(X)$ is strongly dualizable.

Because the property of being strongly dualizable is formulated in the homotopy category, it is immediate that any smooth scheme $Y \longrightarrow X$ such that Y/X is \mathbb{A}^1 -homotopy equivalent to a smooth and proper scheme over X defines a strongly dualizable object in $\mathcal{SH}(X)$. Furthermore, dualizability is local in the following sense.

THEOREM 2.9 ([Lev18, Proposition 1.2, Theorem 1.10]). Let B be a scheme over S. Suppose that $E \in \mathcal{SH}(B)$ and there is a finite Nisnevich covering family $\{j_i : U_i \longrightarrow B\}$ and that $j_i^*E \in \mathcal{SH}(U_i)$ is strongly dualizable. Then E is strongly dualizable as well.

If $E \longrightarrow B$ is a Nisnevich-locally trivial fiber bundle with smooth fiber F and B is smooth over S, then E/B is strongly dualizable in SH(B) if F/S is strongly dualizable in SH(S)

3. Transfers of Grassmannians

DEFINITION 3.1. The ind-scheme Gr_r is the sequential colimit of the Grassmannians $Gr_r(n)$ of r-planes in n-space along the canonical closed immersions $Gr_r(n) \hookrightarrow Gr_r(n+1)$.

It is well known that Gr_r is a model for BGL_r in the \mathbb{A}^1 -homotopy category. In fact, let $U_r(N)$ be the scheme of monomorphisms $\mathbb{G}^r \longrightarrow \mathbb{G}^N$. Along $\mathbb{G}^N \oplus \mathbb{O} \subset \mathbb{G}^{N+1}$, there are closed embeddings $U_r(N) \hookrightarrow U_r(N+1)$ and [MV99, Proposition 4.3.7] shows that the colimit $U_r(\infty) = \operatorname{colim}_N U_r(N)$ along these embeddings is contractible in $\mathcal{H}(S)$. Also, the quotient $U_r(N)/\operatorname{GL}_r$ is isomorphic to $\operatorname{Gr}_r(N)$ and consequently $U_r(\infty)/\operatorname{GL}_r \cong \operatorname{Gr}_r$ is a model for BGL_r .

Direct sum defines a morphism $U_r(N) \times U_{n-r}(N) \longrightarrow U_n(2N)$ which is equivariant with respect to the block diagonal inclusion $GL_r \times GL_{n-r} \longrightarrow GL_n$. Passing to the colimit $N \to \infty$ and taking quotients yields a morphism

$$i_{r,n}: \operatorname{Gr}_r \times \operatorname{Gr}_{n-r} \longrightarrow \operatorname{Gr}_n.$$

This morphism is equivalent in $\mathcal{H}(S)$ to the map $\mathrm{BGL}_r \times \mathrm{BGL}_{n-r} \longrightarrow \mathrm{BGL}_n$ induced by the block diagonal inclusion $\mathrm{GL}_r \times \mathrm{GL}_{n-r} \subset \mathrm{GL}_n$. The goal of this section is to develop a partial inductive description of the absolute transfer $\mathrm{tr}_{n,r} \colon \mathrm{Gr}_{n,+} \longrightarrow \mathrm{Gr}_{r,+} \wedge \mathrm{Gr}_{n-r,+}$ of $i_{r,n}$ in $\mathcal{SH}(S)$. For this purpose a different version of $i_{r,n}$ in $\mathcal{H}(S)$ will be more convenient.

LEMMA 3.2. In $\mathcal{H}(S)$ there is an equivalence $\operatorname{Gr}_r \times \operatorname{Gr}_{n-r} \longrightarrow U_n(\infty)/(\operatorname{GL}_r \times \operatorname{GL}_{n-r})$. Along this equivalence, $i_{r,n}$ corresponds to the quotient

$$\overline{i_{r,n}}: U_n(\infty)/(\mathrm{GL}_r \times \mathrm{GL}_{n-r}) \longrightarrow U_n(\infty)/\mathrm{GL}_n \cong \mathrm{Gr}_n$$

by GL_n .

Proof. Writing $\varphi: U_r(N) \times U_{n-r}(N) \longrightarrow U_n(2N)$ for the map induced by taking direct sums, we obtain a commutative diagram

Passing to the colimit $N \to \infty$ the horizontal maps become equivalences.

LEMMA 3.3. The morphism $\overline{i_{r,n}}$ is a Zariski-locally trivial bundle over Gr_n . Its fiber is the quotient $GL_n/(GL_r \times GL_{n-r})$.

Proof. By construction, the morphism $\overline{i_{r,n}}$ is isomorphic to the colimit of the quotient maps $U_n(N)/(\mathrm{GL}_r \times \mathrm{GL}_{n-r}) \longrightarrow U_n(N)/(\mathrm{GL}_n \cong \mathrm{Gr}_n(N))$. But these are all Zariski-locally trivial with fiber $\mathrm{GL}_n/(\mathrm{GL}_r \times \mathrm{GL}_{n-r})$.

We note that $GL_n/(GL_r \times GL_{n-r})$ is equivalent to $Gr_r(n)$ in $\mathcal{H}(S)$ and this equivalence is compatible with the respective GL_n actions. This is shown in [AHW18, Lemma 3.1.5] and implies in particular that the image in $\mathcal{SH}(Gr_n)$ of the associated bundle $U_n(\infty) \times^{GL_n} Gr_r(n) \longrightarrow Gr_n$ is equivalent to that of the quotient $U_n(\infty)/(GL_r \times GL_{n-r}) \longrightarrow Gr_n$.

LEMMA 3.4. The morphism $\overline{i_{r,n}}: U_n(\infty)/(\mathrm{GL}_r \times \mathrm{GL}_{n-r}) \longrightarrow \mathrm{Gr}_n$ defines a strongly dualizable object $G_{r,n} \in \mathcal{SH}(\mathrm{Gr}_n)$.

Proof. By Lemma A.3 it will be enough to show that the pullback $i: E \longrightarrow \operatorname{Gr}_n(N)$ of $\overline{i_{r,n}}$ along the inclusion $\operatorname{Gr}_n(N) \longrightarrow \operatorname{Gr}_n$ defines a dualizable object in $\mathcal{SH}(\operatorname{Gr}_n(N))$ for all N. But, by Lemma 3.3 the morphism i is a Zariski-locally trivial fiber bundle over $\operatorname{Gr}_n(N)$ with fiber $X = \operatorname{GL}_n/(\operatorname{GL}_r \times \operatorname{GL}_{n-r})$. Hence, to show that i defines a strongly dualizable object in $\mathcal{SH}(\operatorname{Gr}_n(N))$, by Theorem 2.9 it is enough to show that $X/S \in \mathcal{SH}(S)$ is strongly dualizable.

But we have seen that $X \simeq \operatorname{Gr}_r(n)$ in $\mathcal{H}(S)$ and therefore also in $\mathcal{SH}(S)$. The scheme $\operatorname{Gr}_r(n)$ is smooth and proper over S, so motivic Atiyah duality, Theorem 2.8, implies that $\operatorname{Gr}_r(n)/S$ and therefore also X/S is strongly dualizable in $\mathcal{SH}(S)$, see for example [Lev18, Proposition 1.2]. \square

LEMMA 3.5. Suppose r < n. The open complement of the closed immersion $Gr_r(n-1) \hookrightarrow Gr_r(n)$ is the total space of an affine space bundle of rank n-r over $Gr_{r-1}(n-1)$.

Dually, the complement of the closed immersion $Gr_{r-1}(n-1) \hookrightarrow Gr_r(n)$ is the total space of an affine space bundle of rank r over $Gr_r(n-1)$.

Proof. Suppose Spec(A) is an affine scheme mapping to S. On Spec(A)-valued points, the inclusion $Gr_r(n-1) \hookrightarrow Gr_r(n)$ is given by considering a projective submodule P of A^{n-1} as a submodule of $A^n = A^{n-1} \oplus A$. It follows that the complement U of $Gr_r(n-1)$ has Spec(A)-valued points

$$U(\operatorname{Spec} A) = \{ P \subseteq A^n : P \text{ is projective of rank } r \text{ and } P \not\subset A^{n-1} \oplus 0 \}.$$

Given $P \in U(\operatorname{Spec} A)$, the module $P \cap (A^{n-1} \oplus 0)$ will be locally free of rank r-1. This gives a map $\varphi \colon U \longrightarrow \operatorname{Gr}_{r-1}(n-1)$ which is trivial over the standard Zariski-open cover of $\operatorname{Gr}_{r-1}(n-1)$ with fiber \mathbb{A}^{n-r} .

The dual statement is proved similarly. In fact, the bundle $V \longrightarrow \operatorname{Gr}_r(n-1)$ in question is the tautological r-plane bundle on $\operatorname{Gr}_r(n-1)$.

The decomposition $Gr_r(n) = U \cup V$ of the last lemma yields a homotopy cocartesian square

$$U \setminus \operatorname{Gr}_{r-1}(n-1) = U \cap V \longrightarrow V \simeq \operatorname{Gr}_r(n-1)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gr}_{r-1}(n-1) \simeq U \longrightarrow \operatorname{Gr}_r(n)$$

in the \mathbb{A}^1 -homotopy category $\mathcal{H}(S)$. It is immediate that this decomposition of $\operatorname{Gr}_r(n)$ is stable under the action of $\operatorname{GL}_{n-1} \times 1 \subset \operatorname{GL}_n$. We can therefore pass to the bundles over Gr_{n-1} associated to the universal GL_{n-1} -torsor $U_{n-1}(\infty)$ over Gr_{n-1} and obtain a homotopy cocartesian square

$$(U_{n-1}(\infty) \times^{\operatorname{GL}_{n-1}} (U \cap V))/\operatorname{Gr}_{n-1} \longrightarrow G_{r,n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_{r-1,n-1} \longrightarrow (U_{n-1}(\infty) \times^{\operatorname{GL}_{n-1}} \operatorname{Gr}_r(n))/\operatorname{Gr}_{n-1}$$

in $\mathcal{SH}(Gr_{n-1})$.

Proposition 3.6. Suppose r < n and consider the composition

$$\varphi \colon \operatorname{Gr}_{n-1,+} \xrightarrow{\operatorname{incl}} \operatorname{Gr}_{n+} \xrightarrow{\operatorname{tr}_{n,r}} \operatorname{Gr}_{r+} \wedge \operatorname{Gr}_{n-r,+}$$

where incl is given by the assignment $P \longmapsto P \oplus A$ on Spec(A)-valued points. Then there is a $map \ \psi \colon Gr_{n-1,+} \longrightarrow Gr_{r-1,+} \wedge Gr_{n-r,+}$ in $\mathcal{SH}(S)$ such that φ is the sum of the compositions

$$\begin{split} \operatorname{Gr}_{n-1,+} & \xrightarrow{\operatorname{tr}_{n-1,r}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-1-r,+} \xrightarrow{\operatorname{id} \wedge \operatorname{incl}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+} \\ \operatorname{Gr}_{n-1,+} & \xrightarrow{\operatorname{tr}_{n-1,r-1}} \operatorname{Gr}_{r-1,+} \wedge \operatorname{Gr}_{n-r,+} \xrightarrow{\operatorname{incl} \wedge \operatorname{id}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+} \end{split}$$

and

$$\operatorname{Gr}_{r-1,+} \xrightarrow{\psi} \operatorname{Gr}_{r-1,+} \wedge \operatorname{Gr}_{n-r,+} \xrightarrow{\operatorname{incl} \wedge \operatorname{id}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+}.$$

Proof. Consider the homotopy pullback

$$E = U_{n-1}(\infty) \times^{\operatorname{GL}_{n-1}} \operatorname{Gr}_r(n) \longrightarrow \operatorname{Gr}_r \times \operatorname{Gr}_{n-r}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gr}_{n-1} \xrightarrow{\operatorname{incl}} \operatorname{Gr}_n$$

in $\mathcal{H}(S)$. By the discussion following Lemma 3.5 we obtain a cofiber sequence

$$X/\operatorname{Gr}_{n-1} \longrightarrow G_{r,n-1} \vee G_{r-1,n-1} \longrightarrow E/\operatorname{Gr}_{n-1}$$

in $\mathcal{SH}(Gr_{n-1})$ where $X = U_{n-1}(\infty) \times^{GL_{n-1}} (U \cap V)$. Theorem 2.6 then shows that

$$\operatorname{tr}_{E/\operatorname{Gr}_{n-1}} = \operatorname{tr}_{G_{r,n-1}} + \operatorname{tr}_{G_{r-1,n-1}} - \operatorname{tr}_{X/\operatorname{Gr}_{n-1}}$$

in $\mathcal{SH}(Gr_{n-1})$. Passing to the absolute transfer and using Lemma 2.7 yields that φ is the sum of the compositions

$$\begin{split} \operatorname{Gr}_{n-1,+} & \xrightarrow{\operatorname{tr}_{n-1,r}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-1-r,+} \xrightarrow{\operatorname{id} \wedge \operatorname{incl}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+} \\ \operatorname{Gr}_{n-1,+} & \xrightarrow{\operatorname{tr}_{n-1,r-1}} \operatorname{Gr}_{r-1,+} \wedge \operatorname{Gr}_{n-r,+} \xrightarrow{\operatorname{incl} \wedge \operatorname{id}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+} \end{split}$$

and

$$\operatorname{Gr}_{n-1,+} \longrightarrow X_+ \longrightarrow \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+}$$

in $\mathcal{SH}(S)$. Here, the map $X_+ \longrightarrow \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+}$ is obtained from the inclusion $U \cap V \subset \operatorname{Gr}_r(n)$ by passing to associated bundles. Now, this inclusion factors through the inclusion of U into $\operatorname{Gr}_r(n)$. By Lemma 3.5 the inclusion $\operatorname{Gr}_{r-1}(n-1) \subset U$ is an \mathbb{A}^1 -equivalence, being the zero section of an affine space bundle. Therefore $X_+ \longrightarrow \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+}$ factors through the map incl \wedge id: $\operatorname{Gr}_{r-1,+} \wedge \operatorname{Gr}_{n-r,+} \longrightarrow \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+}$. This way we obtain the map ψ and the required decomposition of $\operatorname{tr}_{n,r} \circ \operatorname{incl}$.

4. Proof of the Theorem

We have the filtration

$$Gr_{0,+} \xrightarrow{i_1} Gr_{1,+} \xrightarrow{i_2} \dots \xrightarrow{i_n} Gr_{n,+} \longrightarrow \dots \xrightarrow{i_m} Gr_{m,+}$$

and we have seen that for $r \leq n$ the map $i_{r,n} \colon \operatorname{Gr}_r \times \operatorname{Gr}_{n-r} \longrightarrow \operatorname{Gr}_n$ admits an absolute transfer $\operatorname{tr}_{n,r} \colon \operatorname{Gr}_{n,+} \longrightarrow \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+}$ in the motivic stable homotopy category $\mathscr{SH}(S)$. Write $f_{n,r} \colon \operatorname{Gr}_{n,+} \longrightarrow \operatorname{Gr}_{r,+}$ for the composition

$$Gr_{n,+} \xrightarrow{\operatorname{tr}_{n,r}} Gr_{r,+} \wedge Gr_{n-r,+} \xrightarrow{\operatorname{proj}} Gr_{r,+}$$

and $\phi_{n,r}$ for the composition

$$\operatorname{Gr}_{n,+} \xrightarrow{f_{n,r}} \operatorname{Gr}_{r,+} \longrightarrow \operatorname{Gr}_r/\operatorname{Gr}_{r-1}.$$

Lemma 4.1. With notation as above, for r < n the compositions

$$\operatorname{Gr}_{n-1,+} \xrightarrow{i_n} \operatorname{Gr}_{n,+} \xrightarrow{f_{n,r}} \operatorname{Gr}_{r,+} \longrightarrow \operatorname{Gr}_r/\operatorname{Gr}_{r-1}$$

and

$$\operatorname{Gr}_{n-1,+} \xrightarrow{f_{n-1,r}} \operatorname{Gr}_{r,+} \longrightarrow \operatorname{Gr}_r/\operatorname{Gr}_{r-1}$$

coincide.

Proof. By Proposition 3.6 the composition $f_{n,r} \circ i_n$ is a sum of two compositions

$$\operatorname{Gr}_{n-1,+} \xrightarrow{\operatorname{tr}_{n-1,r}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-1-r,+} \xrightarrow{\operatorname{id} \wedge \operatorname{incl}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+} \xrightarrow{\operatorname{proj}} \operatorname{Gr}_{r,+}$$

and

$$\operatorname{Gr}_{n-1,+} \longrightarrow \operatorname{Gr}_{r-1,+} \wedge \operatorname{Gr}_{n-r,+} \xrightarrow{\operatorname{incl} \wedge \operatorname{id}} \operatorname{Gr}_{r,+} \wedge \operatorname{Gr}_{n-r,+} \xrightarrow{\operatorname{proj}} \operatorname{Gr}_{r,+}$$

in $\mathcal{SH}(S)$. But the composition

$$\operatorname{Gr}_{r-1,+} \xrightarrow{\operatorname{incl}} \operatorname{Gr}_{r,+} \longrightarrow \operatorname{Gr}_r/\operatorname{Gr}_{r-1}$$

vanishes. Therefore, $f_{n,r} \circ i_n$ coincides with the composition

$$\operatorname{Gr}_{n-1,+} \xrightarrow{f_{n-1,r}} \operatorname{Gr}_{r,+} \longrightarrow \operatorname{Gr}_r/\operatorname{Gr}_{r-1}$$

in $\mathcal{SH}(S)$.

Proof of Theorem 1.1. Proceeding by induction on n, assume that

$$\Phi = \bigvee_{r=0}^{n-1} \phi_{n-1,r} \colon \operatorname{Gr}_{n-1,+} \longrightarrow \bigvee_{r=0}^{n-1} \operatorname{Gr}_r/\operatorname{Gr}_{r-1}$$

is an equivalence in $\mathcal{SH}(S)$. Because of Lemma 4.1 we have a commutative diagram

where $\Phi' = \bigvee_{r=0}^{n-1} \phi_{n,r}$. It follows that $\Phi^{-1} \circ \Phi' \circ i_n \simeq \mathrm{id}$, i. e. i_n admits a left inverse. That is to say, the cofiber sequence

$$\operatorname{Gr}_{n-1,+} \xrightarrow{i_n} \operatorname{Gr}_{n,+} \longrightarrow \operatorname{Gr}_n/\operatorname{Gr}_{n-1}$$

splits and yields an equivalence

$$\operatorname{Gr}_{n,+} \xrightarrow{(\Phi^{-1}\Phi')\vee\phi_{n,n}} \operatorname{Gr}_{n-1,+} \vee \operatorname{Gr}_n/\operatorname{Gr}_{n-1}$$

since $\phi_{n,n}$ is by definition the canonical projection. Post-composing with $\Phi \vee \operatorname{id}$ then shows that the stable map $\Phi' \vee \phi_{n,n} \colon \operatorname{Gr}_{n,+} \longrightarrow \bigvee_{r=0}^n \operatorname{Gr}_r/\operatorname{Gr}_{r-1}$ is an equivalence in $\mathcal{SH}(S)$ as well. \square

A. Stable Motivic Homotopy Theory of Smooth Ind-Schemes

We freely use the theory of presentable ∞ -categories as developed in [Lur09, section 5.5.3]. The ∞ -category of presentable ∞ -categories with left adjoints as morphisms is denoted $\mathcal{P}r^L$ while the ∞ -category of presentable ∞ -categories with right adjoints as morphisms is denoted $\mathcal{P}r^R$. There is an equivalence $\mathcal{P}r^L \simeq (\mathcal{P}r^R)^{op}$ of ∞ -categories which is the identity on objects and sends a left adjoint functor to its right adjoint. Both $\mathcal{P}r^L$ and $\mathcal{P}r^R$ are complete and cocomplete and the homotopy limits in both $\mathcal{P}r^L$ and $\mathcal{P}r^R$ coincide with homotopy limits in the ∞ -category of ∞ -categories.

DEFINITION A.1. A *smooth ind-scheme* over S is an object of $\operatorname{Ind}(\operatorname{Sm}_S)$, the ∞ -category of ind-objects in the category of smooth schemes over S with arbitrary morphisms between them. A morphism of ind-schemes is smooth if it can be presented as a colimit of smooth morphisms in Sm_S .

The goal of this section will be to generalize the definition of the stable motivic homotopy category \mathcal{SH} to smooth ind-schemes over S. Our approach is to use part of the six functor formalism for $S\mathcal{H}$, as established in [Ayo07b; Ayo07a] for noetherian schemes and extended to arbitrary schemes in [Hoy14, Appendix C]. An overview of the standard functorialities, at least at the level of triangulated categories, can be found in [CD09].

The first functoriality of \mathcal{SH} can be summarized as follows. For every morphism $f: X \longrightarrow Y$ between smooth schemes over S we have an adjunction

$$f^*: \mathcal{SH}(X) \xrightarrow{\bot} \mathcal{SH}(Y): f_*$$

between the stable presentable ∞ -categories $\mathcal{SH}(X)$ and $\mathcal{SH}(Y)$. These adjunctions assemble into functors $\mathcal{SH}^*\colon \operatorname{Sm}_S^{\operatorname{op}} \longrightarrow \mathcal{P}r^L$ and $\mathcal{SH}_*\colon \operatorname{Sm}_S \longrightarrow \mathcal{P}r^R$ which are naturally equivalent after composing with the equivalence $\mathcal{P}r^L \simeq (\mathcal{P}r^R)^{\operatorname{op}}$. If $f\colon X \longrightarrow Y$ is smooth, then there is an additional adjunction

$$f_{\#}: \mathcal{SH}(Y) \xrightarrow{\perp} \mathcal{SH}(X): f^{*}.$$

These assemble into a functor $\mathcal{SH}_{\#}$: $Sm_{S,sm} \longrightarrow \mathcal{P}r^{L}$ from the wide subcategory of Sm_{S} consisting of smooth morphisms between smooth schemes over S. There are various exchange transformations associated with a cartesian square

$$\begin{array}{ccc}
\bullet & \xrightarrow{g} & \bullet \\
\downarrow q & & \downarrow p \\
\bullet & \xrightarrow{f} & \bullet
\end{array}$$

in Sm_S , of which we only mention the transformation

$$\operatorname{Ex}_{\#}^* : g_{\#}q^* \longrightarrow p^* f_{\#}$$

when f and hence g is smooth. More details on these exchange transformations may be found in [CD09].

Because \mathcal{P}_r^R is cocomplete, the functor \mathcal{SH}_* naturally extends to a functor

$$\mathscr{SH}_* \colon \operatorname{Ind}(\operatorname{Sm}_S) \longrightarrow \mathscr{P}_{r}^{R}$$

and we obtain a functor

$$\mathcal{SH}^* \colon \operatorname{Ind}(\operatorname{Sm}_S)^{\operatorname{op}} \longrightarrow \mathcal{P}r^{\operatorname{L}}$$

by again composing with the equivalence $\mathcal{P}_{\mathcal{V}}{}^{L}\simeq (\mathcal{P}_{\mathcal{V}}{}^{R})^{op}.$

More explicitly, if $(X_i)_{i \in I}$ is a filtered diagram of smooth schemes over S and $X = \operatorname{colim}_i X_i$ as an ind-scheme over S, then

$$\mathscr{SH}^*(X) = \underset{i}{\operatorname{holim}} \mathscr{SH}^*(X_i)$$
 and $\mathscr{SH}_*(X) = \underset{i}{\operatorname{hocolim}} \mathscr{SH}_*(X_i)$.

Note that $\mathscr{SH}^*(X)$ and $\mathscr{SH}_*(X)$ are equivalent ∞ -categories since homotopy limits along left adjoints in \mathscr{Pr}^L correspond to homotopy colimits along their right adjoints in \mathscr{Pr}^R , see [Lur09, section 5.5.3]. This description of $\mathscr{SH}(X)$ also shows that it inherits the structure of a closed symmetric monoidal, stable, presentable ∞ -category, see [Lur12, section 3.4.3, Proposition 4.8.2.18].

The adjunction $f^* \dashv f_*$ for a morphism $f: X \longrightarrow Y$ of ind-schemes is obtained by presenting f as a colimit of maps $f_i: X_i \longrightarrow Y_i$ between schemes over S and then taking f^* to be the functor induced on the homotopy limits in \mathcal{P}_r^L and f_* the functor induced on the homotopy colimits in \mathcal{P}_r^R .

It remains to construct the extra left-adjoint $f_{\#}$ for a smooth map f between ind-schemes over S. First, a morphism $f: X \longrightarrow Y$ between ind-schemes is smooth if and only if it is a filtered colimit of smooth maps $f_i\colon X_i \longrightarrow Y_i$. Each f_i^* admits a left adjoint $f_{i\#}$ and since \mathscr{Pr}^R is stable under limits, the functor $f^*\colon \mathscr{SH}^*(Y) \longrightarrow \mathscr{SH}^*(X)$ admits a left adjoint as well. That is to say, $\mathscr{SH}^*\colon \operatorname{Ind}(\operatorname{Sm}_S)^{\operatorname{op}} \longrightarrow \mathscr{Pr}^R$ from the

wide subcategory of $\operatorname{Ind}(\operatorname{Sm}_S)$ consisting of smooth maps between smooth ind-schemes over S. Composing with the equivalence $\operatorname{Pr}^L \simeq (\operatorname{Pr}^R)^{\operatorname{op}}$ then yields the functor

$$\mathcal{SH}_{\#}\colon \operatorname{Ind}(\operatorname{Sm}_{S})_{\operatorname{sm}} \longrightarrow \mathcal{P}_{\mathcal{V}}^{\operatorname{L}}.$$

In summary, we have the following proposition.

PROPOSITION A.2. For every ind-scheme X over S, there is a closed symmetric monoidal, stable, presentable ∞ -category $\mathcal{SH}(X)$. For every morphism $f: X \longrightarrow Y$ between ind-schemes there is an associated adjunction

$$f^*: \mathcal{SH}(Y) \xrightarrow{\bot} \mathcal{SH}(X): f_*$$

with f^* a monoidal functor. If f is smooth then there is an additional adjunction

$$f_{\#}: \mathcal{SH}(X) \xrightarrow{\perp} \mathcal{SH}(Y): f^{*}.$$

These data are functorial in f and admit various natural exchange transformations. If X happens to be a smooth scheme over S then this version of $\mathcal{SH}(X)$ is naturally equivalent to the usual construction.

Following [Lev18], for a smooth morphism $f: X \longrightarrow Y$ of ind-schemes over S we define $X/Y = f_\#(1_X) \in \mathcal{SH}(Y)$ where 1_X denotes the monoidal unit in $\mathcal{SH}(X)$. In particular, if Y = S, we see that any smooth ind-scheme X over S determines an object $X/S \in \mathcal{SH}(S)$. If X is a smooth scheme over S, then X/S is canonically equivalent to the \mathbb{P}^1 -suspension spectrum of X in $\mathcal{SH}(S)$; see [Ayo14, Lemma C.2].

LEMMA A.3. Suppose B is a smooth ind-scheme over S and $E \in \mathcal{SH}(B)$. If B is presented as a filtered colimit $B = \operatorname{colim}_i B_i$ of smooth schemes in $\operatorname{Ind}(\operatorname{Sm}_S)$, let $f_i \colon B_i \longrightarrow B$ be the canonical map for each i. Then $E \in \mathcal{SH}(B)$ is strongly dualizable if and only if $f_i^*E \in \mathcal{SH}(B_i)$ is strongly dualizable for every i.

Proof. This follows from [Lur12, Proposition 4.6.1.11] since we have $\mathcal{SH}(B) \simeq \lim_i \mathcal{SH}(B_i)$. \square

PROPOSITION A.4. Suppose an ind-scheme X is presented as a colimit $X = \operatorname{colim}_i X_i$ in $\operatorname{Ind}(\operatorname{Sm}_S)$. Then there is a natural equivalence $X/S \simeq \operatorname{hocolim}_i X_i/S$ in $\mathcal{SH}(S)$.

Proof. Write $\pi: X \longrightarrow S$ and $\pi_i: X_i \longrightarrow S$ for the structure morphisms. Suppose $Y \in \mathcal{SH}(S)$ is arbitrary. Then we have natural equivalences

$$\begin{aligned} \operatorname{Map}_{\mathcal{SH}(S)}(\pi_{\#}\mathbf{1}_{X}, Y) &\simeq \operatorname{Map}_{\mathcal{SH}(X)}(\mathbf{1}_{X}, \pi^{*}Y) \\ &\simeq \operatorname{holim}_{i} \operatorname{Map}_{\mathcal{SH}(X_{i})}(\mathbf{1}_{X_{i}}, \pi^{*}_{i}Y) \\ &\simeq \operatorname{holim}_{i} \operatorname{Map}_{\mathcal{SH}(S)}(\pi_{i\#}\mathbf{1}_{X_{i}}, Y) \\ &\simeq \operatorname{Map}_{\mathcal{SH}(S)}(\operatorname{hocolim}_{i} X_{i}/S, Y) \end{aligned}$$

of mapping spaces. The Yoneda lemma implies that $X/S = \pi_{\#} 1_X \simeq \operatorname{hocolim}_i X_i/S$ in $\mathscr{SH}(S)$. \square

This proposition allows us to extend the definition of the functor $_/S \colon \mathrm{Sm}_S \longrightarrow \mathscr{SH}(S)$ in [Lev18] to ind-schemes. The functor $_/S \colon \mathrm{Sm}_S \longrightarrow \mathscr{SH}(S)$ extends uniquely up to natural equivalence to a functor $_/S \colon \mathrm{Ind}(\mathrm{Sm}_S) \longrightarrow \mathscr{SH}(S)$ because $\mathscr{SH}(S)$ is cocomplete. By Proposition A.4 this coincides on objects with the previous construction $\pi_\#(\mathbf{1}_X)$ for a smooth ind-scheme $\pi \colon X \longrightarrow S$.

References

- [AHW18] A. Asok, M. Hoyois, and M. Wendt. "Affine representability results in A¹-homotopy theory, II: Principal bundles and homogeneous spaces". *Geom. Topol.* 22.2 (2018), pp. 1181–1225. ISSN: 1465-3060. DOI: 10.2140/gt.2018.22.1181. URL: https://doi.org/10.2140/gt.2018.22.1181 (cit. on p. 7).
- [Ayo07a] J. Ayoub. "Les six opéerations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II". *Astérisque* 315 (2007). ISSN: 0303-1179 (cit. on p. 11).
- [Ayo07b] J. Ayoub. "Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I". *Astérisque* 314 (2007). ISSN: 0303-1179 (cit. on pp. 6, 11).
- [Ayo14] J. Ayoub. "La réalisation étale et les opérations de Grothendieck". *Ann. Sci. Éc. Norm. Supér.* (4) 47.1 (2014), pp. 1–145. ISSN: 0012-9593. DOI: 10.24033/asens.2210. URL: https://doi.org/10.24033/asens.2210 (cit. on p. 13).
- [BG75] J. C. Becker and D. H. Gottlieb. "The transfer map and fiber bundles". *Topology* 14 (1975), pp. 1–12. ISSN: 0040-9383. DOI: 10.1016/0040-9383(75)90029-4. URL: https://doi.org/10.1016/0040-9383(75)90029-4 (cit. on pp. 2, 3).
- [CD09] D.-C. Cisinski and F. Déglise. "Triangulated categories of mixed motives". *ArXiv e-prints* (Dec. 2009). arXiv: 0912.2110 [math.AG] (cit. on pp. 6, 11, 12).
- [DP80] A. Dold and D. Puppe. "Duality, trace, and transfer". In: *Proceedings of the International Conference on Geometric Topology (Warsaw, 1978)*. PWN, Warsaw, 1980, pp. 81–102 (cit. on p. 2).
- [Hoy14] M. Hoyois. "A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula". *Algebr. Geom. Topol.* 14.6 (2014), pp. 3603–3658. ISSN: 1472-2747. DOI: 10.2140/agt.2014.14.3603. URL: https://doi.org/10.2140/agt.2014.14.3603 (cit. on pp. 1, 11).
- [Lev18] M. Levine. "Motivic Euler characteristics and Witt-valued characteristic classes". *ArXiv e-prints* (June 2018). arXiv: 1806.10108 [math.AG] (cit. on pp. 1–3, 5–7, 13, 14).
- [Lur09] J. Lurie. *Higher topos theory*. Vol. 170. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009. ISBN: 978-0-691-14049-0; 0-691-14049-9. DOI: 10.1515/9781400830558 (cit. on pp. 1, 11, 12).
- [Lur12] J. Lurie. Higher Algebra. 2012. URL: http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf (cit. on pp. 1, 2, 12, 13).
- [May01] J.P. May. "The additivity of traces in triangulated categories". Adv. Math. 163.1 (2001), pp. 34-73. ISSN: 0001-8708. DOI: 10.1006/aima.2001.1995. URL: https://doi.org/10.1006/aima.2001.1995 (cit. on p. 4).
- [MV99] F. Morel and V. Voevodsky. "A¹-homotopy theory of schemes". *Inst. Hautes Études Sci. Publ. Math.* 90 (1999), 45–143 (2001). ISSN: 0073-8301. URL: http://www.numdam.org/item?id=PMIHES_1999__90__45_0 (cit. on pp. 1, 6).
- [Rio05] J. Riou. "Dualité de Spanier-Whitehead en géométrie algébrique". C. R. Math. Acad. Sci. Paris 340.6 (2005), pp. 431–436. ISSN: 1631-073X. DOI: 10.1016/j.crma.2005.02.002. URL: https://doi.org/10.1016/j.crma.2005.02.002 (cit. on p. 6).

- [Rob15] M. Robalo. "K-theory and the bridge from motives to noncommutative motives". Adv. Math. 269 (2015), pp. 399–550. ISSN: 0001-8708. DOI: 10.1016/j.aim.2014.10.011. URL: https://doi.org/10.1016/j.aim.2014.10.011 (cit. on p. 1).
- [Voe01] V. Voevodsky. Lectures on Cross Functors. 2001. URL: http://www.math.ias.edu/vladimir/files/2015_transfer_from_ps_delnotes01.pdf (cit. on p. 6).