FEASIBILITY STUDY DOCUMENT

Project Title: Jalanidhi - A Smart Water Supply and Management Platform with IoT and AI

Enhancements

The project Jalanidhi aims to create a smart, ward-based water supply and complaint

management system that integrates IoT and AI for better transparency, accountability, and citizen

engagement. The system allows: - Citizens to apply for new connections, pay bills, receive supply

alerts, and submit geo-tagged complaints. - Supervisors to verify connections, perform QR

check-ins, log readings, and monitor tank levels. - Admins to manage supply schedules, review

complaints, and monitor service efficiency. The IoT integration enables real-time tank water level

monitoring and pressure-based leak detection, while AI modules classify user complaints

(leakages, low pressure, illegal taps, pipeline damage) for faster resolution.

1. Technical Feasibility

- Technology Stack: Flutter (citizen & supervisor app), React.js (admin dashboard), Firebase

(backend & notifications), ESP32 (IoT water level & flow sensors), TensorFlow Lite (AI complaint

categorization).

- **Reason:** Beginner-friendly, scalable, and low-cost IoT setup (~₹2,500 – ₹3,500). Cloud

services handle authentication, storage, and real-time updates efficiently.

2. Operational Feasibility

- **Users:** Citizens, Supervisors, Admins.

- Impact: Eliminates manual card marking, enables instant complaint tracking, and improves

decision-making for maintenance. User-friendly mobile apps and dashboards require minimal

training.

Conclusion: Fully operational with intuitive UI and simple workflows.

3. Economic Feasibility

- Estimated Cost for Prototype:

• ESP32 + Ultrasonic Water Level Sensor: ₹500–700

• Pressure/Flow Sensor: ₹500-700

• Miscellaneous (PCB,wires, model setup): ₹500

• Software: Free (Firebase free tier, Flutter, React.js)

• **Total:** ~₹2,000–₹3,000 for MCA prototype.

Conclusion: Economically viable with low hardware and free-tier cloud services.

4. Time Feasibility

- Mini Project (3rd Sem, 2–2.5 months): Core apps, QR check-ins, billing & notifications.

- Main Project (Final Sem, 3–3.5 months): IoT water sensor integration, Al complaint categorization, optional leak pinpointing.

Conclusion: Fits academic semester timeline with proper planning.

5. Overall Feasibility Conclusion

The Jalanidhi project is technically, operationally, economically, and temporally feasible for MCA implementation and future smart city scaling. Its IoT + AI features ensure proactive maintenance, citizen engagement, and water conservation, making it a sustainable and impactful solution.