"JUST THE MATHS"

UNIT NUMBER

1.3

ALGEBRA 3 (Indices and radicals (or surds))

by

A.J.Hobson

- **1.3.1 Indices**
- 1.3.2 Radicals (or Surds)
- 1.3.3 Exercises
- 1.3.4 Answers to exercises

UNIT 1.3 - ALGEBRA 3 - INDICES AND RADICALS (or Surds)

1.3.1 INDICES

(a) Positive Integer Indices

It was seen earlier that, for any number a, a^2 denotes a.a, a^3 denotes a.a.a, a^4 denotes a.a.a. and so on.

Suppose now that a and b are arbitrary numbers and that m and n are natural numbers (i.e. positive whole numbers)

Then the following rules are the basic Laws of Indices:

Law No. 1

$$a^m \times a^n = a^{m+n}$$

Law No. 2

$$a^m \div a^n = a^{m-n}$$

assuming, for the moment, that m is greater than n.

Note:

It is natural to use this rule to give a definition to a^0 which would otherwise be meaningless.

Clearly $\frac{a^m}{a^m} = 1$ but the present rule for indices suggests that $\frac{a^m}{a^m} = a^{m-m} = a^0$. Hence, we **define** a^0 to be equal to 1.

Law No. 3

$$(a^m)^n = a^{mn}$$
$$a^m b^m = (ab)^m$$

EXAMPLE

Simplify the expression,

$$\frac{x^2y^3}{z} \div \frac{xy}{z^5}.$$

Solution

The expression becomes

$$\frac{x^2y^3}{z} \times \frac{z^5}{xy} = xy^2z^4.$$

(b) Negative Integer Indices

Law No. 4

$$a^{-1} = \frac{1}{a}$$

Note:

It has already been mentioned that a^{-1} means the same as $\frac{1}{a}$; and the logic behind this statement is to maintain the basic Laws of Indices for negative indices as well as positive ones.

For example $\frac{a^m}{a^{m+1}}$ is clearly the same as $\frac{1}{a}$ but, using Law No. 2 above, it could also be thought of as $a^{m-[m+1]} = a^{-1}$.

Law No. 5

$$a^{-n} = \frac{1}{a^n}$$

Note:

This time, we may observe that $\frac{a^m}{a^{m+n}}$ is clearly the same as $\frac{1}{a^n}$; but we could also use Law No. 2 to interpret it as $a^{m-[m+n]} = a^{-n}$

Law No. 6

$$a^{-\infty} = 0$$

Note:

Strictly speaking, no power of a number can ever be equal to zero, but Law No. 6 asserts that a very large negative power of a number a gives a very small value; the larger the negative power, the smaller will be the value.

EXAMPLE

Simplify the expression,

$$\frac{x^5y^2z^{-3}}{x^{-1}y^4z^5} \div \frac{z^2x^2}{y^{-1}}.$$

Solution

The expression becomes

$$x^{5}y^{2}z^{-3}xy^{-4}z^{-5}y^{-1}z^{-2}x^{-2} = x^{4}y^{-3}z^{-10}.$$

(c) Rational Indices

(i) Indices of the form $\frac{1}{n}$ where n is a natural number.

In order to preserve Law No. 3, we interpret $a^{\frac{1}{n}}$ to mean a number which gives the value a when it is raised to the power n. It is called an "n-th Root of a" and, sometimes there is more than one value.

ILLUSTRATION

$$81^{\frac{1}{4}} = \pm 3$$
 but $(-27)^{\frac{1}{3}} = -3$ only.

(ii) Indices of the form $\frac{m}{n}$ where m and n are natural numbers with no common factor.

The expression $y^{\frac{m}{n}}$ may be interpreted in two ways as either $(y^m)^{\frac{1}{n}}$ or $(y^{\frac{1}{n}})^m$. It may be shown that both interpretations give the same result but, sometimes, the arithmetic is shorter with one rather than the other.

ILLUSTRATION

$$27^{\frac{2}{3}} = 3^2 = 9$$
 or $27^{\frac{2}{3}} = 729^{\frac{1}{3}} = 9$.

Note:

It may be shown that all of the standard laws of indices may be used for fractional indices.

1.3.2 RADICALS (or Surds)

The symbol " $\sqrt{}$ " is called a "radical" (or "surd"). It is used to indicate the positive or "principal" square root of a number. Thus $\sqrt{16} = 4$ and $\sqrt{25} = 5$.

The number under the radical is called the "radicand".

Most of our work on radicals will deal with square roots, but we may have occasion to use other roots of a number. For instance the **principal n-th root** of a number a is denoted by $\sqrt[n]{a}$, and is a number x such that $x^n = a$. The number n is called the **index** of the radical but, of course, when n = 2 we usually leave the index out.

ILLUSTRATIONS

1.
$$\sqrt[3]{64} = 4$$
 since $4^3 = 64$.

2.
$$\sqrt[3]{-64} = -4$$
 since $(-4)^3 = -64$.

3.
$$\sqrt[4]{81} = 3$$
 since $3^4 = 81$.

4.
$$\sqrt[5]{32} = 2$$
 since $2^5 = 32$.

5.
$$\sqrt[5]{-32} = -2$$
 since $(-2)^5 = -32$.

Note:

If the index of the radical is an odd number, then the radicand may be positive or negative; but if the index of the radical is an even number, then the radicand may not be negative since no even power of a negative number will ever give a negative result.

(a) Rules for Square Roots

In preparation for work which will follow in the next section, we list here the standard rules for square roots:

(i)
$$(\sqrt{a})^2 = a$$

(ii)
$$\sqrt{a^2} = |a|$$

(iii)
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$

(iv)
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

assuming that all of the radicals can be evaluated.

ILLUSTRATIONS

1.
$$\sqrt{9 \times 4} = \sqrt{36} = 6$$
 and $\sqrt{9} \times \sqrt{4} = 3 \times 2 = 6$.

2.
$$\sqrt{\frac{144}{36}} = \sqrt{4} = 2$$
 and $\frac{\sqrt{144}}{\sqrt{36}} = \frac{12}{6} = 2$.

(b) Rationalisation of Radical (or Surd) Expressions.

It is often desirable to eliminate expressions containing radicals from the denominator of a quotient. This process is called

rationalising the denominator.

The process involves multiplying numerator and denominator of the quotient by the same amount - an amount which eliminates the radicals in the denominator (often using the fact that the square root of a number multiplied by itself gives just the number; i.e. $\sqrt{a} \cdot \sqrt{a} = a$). We illustrate with examples:

EXAMPLES

1. Rationalise the surd form $\frac{5}{4\sqrt{3}}$

Solution

We simply multiply numerator and denominator by $\sqrt{3}$ to give

$$\frac{5}{4\sqrt{3}} = \frac{5}{4\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5\sqrt{3}}{12}.$$

2. Rationalise the surd form $\frac{\sqrt[3]{a}}{\sqrt[3]{b}}$

Solution

Here we observe that, if we can convert the denominator into the cube root of b^n , where n is a whole multiple of 3, then the square root sign will disappear.

We have

$$\frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \frac{\sqrt[3]{a}}{\sqrt[3]{b}} \times \frac{\sqrt[3]{b^2}}{\sqrt[3]{b^2}} = \frac{\sqrt[3]{ab^2}}{\sqrt[3]{b^3}} = \frac{\sqrt[3]{ab^2}}{b}.$$

If the denominator is of the form $\sqrt{a} + \sqrt{b}$, we multiply the numerator and the denominator by the expression $\sqrt{a} - \sqrt{b}$ because

$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) = a - b.$$

3. Rationalise the surd form $\frac{4}{\sqrt{5}+\sqrt{2}}$.

Solution

Multiplying numerator and denominator by $\sqrt{5} - \sqrt{2}$ gives

$$\frac{4}{\sqrt{5} + \sqrt{2}} \times \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{4\sqrt{5} - 4\sqrt{2}}{3}.$$

4. Rationalise the surd form $\frac{1}{\sqrt{3}-1}$.

Solution

Multiplying numerator and denominator by $\sqrt{3} + 1$ gives

$$\frac{1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = \frac{\sqrt{3}+1}{2}.$$

(c) Changing numbers to and from radical form

The modulus of any number of the form $a^{\frac{m}{n}}$ can be regarded as the principal *n*-th root of a^m ; i.e.

$$\mid a^{\frac{m}{n}} \mid = {}^n \sqrt{a^m}.$$

If a number of the type shown on the left is converted to the type on the right, we are said to have expressed it in radical form.

If a number of the type on the right is converted to the type on the left, we are said to have expressed it in exponential form.

Note:

The word "exponent" is just another word for "power" or "index" and the standard rules of indices will need to be used in questions of the type discussed here.

EXAMPLES

1. Express the number $x^{\frac{2}{5}}$ in radical form.

Solution

The answer is just

$$5\sqrt{x^2}$$
.

2. Express the number $\sqrt[3]{a^5b^4}$ in exponential form.

Solution

Here we have

$$^{3}\sqrt{a^{5}b^{4}} = (a^{5}b^{4})^{\frac{1}{3}} = a^{\frac{5}{3}}b^{\frac{4}{3}}.$$

1.3.3 EXERCISES

- 1. Simplify
 - (a) $5^7 \times 5^{13}$; (b) $9^8 \times 9^5$; (c) $11^2 \times 11^3 \times 11^4$.
- 2. Simplify
 - (a) $\frac{15^3}{15^2}$; (b) $\frac{4^{18}}{4^9}$; (c) $\frac{5^{20}}{5^{19}}$.
- 3. Simplify
 - (a) a^7a^3 ; (b) a^4a^5 ;
 - (c) $b^{11}b^{10}b$; (d) $3x^6 \times 5x^9$.
- 4. Simplify
 - (a) $(7^3)^2$; (b) $(4^2)^8$; (c) $(7^9)^2$.
- 5. Simplify
 - (a) $(x^2y^3)(x^3y^2)$; (b) $(2x^2)(3x^4)$;
 - (c) $(a^2bc^2)(b^2ca)$; (d) $\frac{6c^2d^3}{3cd^2}$.
- 6. Simplify
 - (a) $(4^{-3})^2$ (b) $a^{13}a^{-2}$;
 - (c) $x^{-9}x^{-7}$; (d) $x^{-21}x^2x$;
 - (e) $\frac{x^2y^{-1}}{z^3} \div \frac{z^2}{x^{-1}y^3}$.
- 7. Without using a calculator, evaluate the following:
 - (a) $\frac{4^{-8}}{4^{-6}}$; (b) $\frac{3^{-5}}{3^{-8}}$.
- 8. Evaluate the following:
 - (a) $64^{\frac{1}{3}}$; (b) $144^{\frac{1}{2}}$;
 - (c) $16^{-\frac{1}{4}}$; (d) $25^{-\frac{1}{2}}$;
 - (e) $16^{\frac{3}{2}}$; (f) $125^{-\frac{2}{3}}$.
- 9. Simplify the following radicals:
 - (a) $-3\sqrt{-8}$; (b) $\sqrt{36x^4}$; (c) $\sqrt{\frac{9a^2}{36b^2}}$.
- 10. Rationalise the following surd forms:
 - (a) $\frac{\sqrt{2}}{\sqrt{3}}$; (b) $\frac{\sqrt[3]{18}}{\sqrt[3]{2}}$; (c) $\frac{2+\sqrt{5}}{\sqrt{3}-2}$; (d) $\frac{\sqrt{a}}{\sqrt{a}+3\sqrt{b}}$.
- 11. Change the following to exponential form:
 - (a) $\sqrt[4]{7^2}$; (b) $\sqrt[5]{a^2b}$; (c) $\sqrt[3]{9^5}$.

12. Change the following to radical form:

(a)
$$b^{\frac{3}{5}}$$
; (b) $r^{\frac{5}{3}}$; (c) $s^{\frac{7}{3}}$.

1.3.4 ANSWERS TO EXERCISES

1. (a)
$$5^{20}$$
; (b) 9^{13} ; (c) 11^9 .

3. (a)
$$a^{10}$$
; (b) a^{9} ; (c) b^{22} ; (d) $15x^{15}$.

4. (a)
$$7^6$$
; (b) 4^{16} ; (c) 7^{18} .

5. (a)
$$x^5y^5$$
; (b) $6x^6$; (c) $a^3b^3c^3$; (d) $2cd$.

6. (a)
$$4^{-6}$$
; (b) a^{11} ; (c) x^{-16} ; (d) x^{-18} ; (e) xy^2z^{-5} .

7. (a)
$$\frac{1}{16}$$
; (b) 27.

8. (a) 4; (b)
$$\pm 12$$
; (c) $\pm \frac{1}{2}$;

(d)
$$\pm \frac{1}{5}$$
; (e) ± 64 ; (f) $\frac{1}{25}$;

9. (a) 2; (b)
$$6x^2$$
; (c) $\left|\frac{a}{2b}\right|$.

10. (a)
$$\frac{\sqrt{6}}{3}$$
; (b) $\frac{\sqrt[3]{72}}{2} = \sqrt[3]{9}$; (c) $-(2+\sqrt{5})(2+\sqrt{3})$; (d) $\frac{a-3\sqrt{ab}}{a-9b}$

11. (a)
$$|7^{\frac{1}{2}}|$$
; (b) $a^{\frac{2}{5}}b^{\frac{1}{5}}$; (c) $9^{\frac{5}{3}}$.

12. (a)
$${}^{5}\sqrt{b^{3}}$$
; (b) ${}^{3}\sqrt{r^{5}}$; (c) ${}^{3}\sqrt{s^{7}}$.