

मोतीलालनेहरूराष्ट्रीयप्रौद्योगिकीसंस्थानइलाहाबाद

प्रयागराज-211004 (भारत) Motilal Nehru National Institute of Technology Allahabad Prayagraj - 211 004 (India)

Department of Chemical Engineering Mid sem(odd). Examination, Session 2024-25

Programme:

B. Tech.

Branch: Chemical Engg

Course Name:

Mass Transfer operations-II

Course Code: Time:

CHN15110

1.5 h

Max. Marks: 20

Registration No.: 20

Instructions:

- 1. Attempt all questions.
- 2. Assume suitable data, wherever necessary.

	Marl	ks	Corresponding course outcome			
Calculate the composition of the equilibrium vapor phase at 60 °C for a liquid mixture consisting of 40 mol% benzene and 60 mol% toluene considering that the given mixture follows Raoults law. Also find the composition of a liquid mixture of benzene and toluene that boils at 90 °C under a pressure of 760 mmHg. Given: The saturated vapor pressures of benzene at 60 °C and 90 °C are 385 and 1013 mmHg, respectively whereas those of toluene at the respective temperatures are 140 and 408 mmHg.						
re. /h. uid nol)	CO2			
are. ol% and mes tent	5	6)	CO2			
0	7					
.0						
	1.0					

Q3	a	Define the selectivity and the distribution coefficient in liquid-liquid extraction.	(2)	CO1
	b	Describe the mixture rule on triangular coordinate system.	(3)	CO1
	c	In the triangular diagram represented below for a batch separation process, a stream F is mixed with a solvent B to produce products R and E. Substance A is the carrier liquid and C is the solute to be extracted. The amounts of B and E are 1 kg and 1.2 kg respectively. The length FM is 3.1 and length FB is 8.5 units. Calculate the ratio R/E.	(2)	CO3

	CO1	explain the concept of mass transfer operations in process industries.
	CO2	calculate the extent of separation for single stage batch and continuous, multistage continuous and
Course		differential and at distillation for himory mixtures
Outcomes:	CO3	calculate number of theoretical stages required for a given extent of separation for liquid-liquid
	11.2	extraction and solid-liquid mass transfer operations for cross current and counter current
	CO4	design the mass transfer equipment for given separation in process industries.

मोतीलालनेहरूराष्ट्रीयप्रौद्योगिकीसंस्थानइलाहाबाद

प्रयागराज-211004 (भारत)

Motilal Nehru National Institute of Technology Allahabad Prayagraj - 211 004 (India)

Department of Chemical Engineering End (odd) sem. Examination, Session 2024-25

Programme: Course Name:

B. Tech.

Mass Transfer operations-II

Branch: Chemical Engg

Course Code:

CHN15110

Max. Marks: 40

Time:

2.5 h

Registration No.: 2 0 2 2 2

Instructions:

1. Attempt all questions.

2. Assume suitable data, wherever necessary.

				•	men menginti mengapunkuh sehinjih minengi kelisisi serekan den, menembil				Marks	Course
Q1	Attempt any two of the following:							(2x3=6)	CO1	
	a	What is minimum reflux ratio? Explain the concept of optimum reflux ratio in fractionating column.								
	b	Explain the transfe	Explain the transfer unit concept in packed column for liquid extraction							
	c	State Freundlich isotherm and its limitations. How the constants are evaluated.								
Q2		A mixture consists equipped with a tot (mole fraction of A the enriching (recti	tal condens A) for liquid	er at the top d and vapo	p. A test ru r streams t	n gave the faken from t	ollowing c	ompositions	(4)	CO2
All ages are blacked		The second secon	Plate	X		у				
			n-1	0.6	8	0.795				
The end Clare			n	0.6	0	0.740				
			n+1	0.5	1	0.679				
		Determine: (i) The	reflux ratio	(ii) Th	e distillate	compositio	on			
Q3			water and k centage ext g of feed so	erosene ar raction of lution is ex	e essential nicotine stracted wi	ly insoluble	s. Ssolvent in	single stage.		CO3
	A STATE OF THE PARTY OF THE PAR	$\mathbf{x}' = \frac{\text{kg nicotine}}{\text{kg water}}$	0.0010	0.0024	0.0050	0.0075	0.0099	0.0204		
	Constitution (mention)	$y' = \frac{\text{kg nicotine}}{\text{kg kerosene}}$	0.0008	0.0019	0.0045	0.0068	0.0091	0.0187		

Q4	a	Explain the constant underflow and variable underflow conditions with the help of	5	CO3
	b	equilibrium diagrams occurs in leaching. 100 kg of flaked soybeans containing 25% oil by weight is leached with 100 kg fresh hexane solvent. If the underflow solids retain 2 kg solution with every 3 kg of insoluble solids, calculate the amount and composition of overflow and underflow from the single stage operation assuming no insoluble in overflow.	5	CO3
Q5	a	Describe the multistage countercurrent adsorption with graphical construction for number of stages.	5	CO4
	b	Experiments on decolourization of oil yielded the following equilibrium relationship: $Y = 0.004X^{2}$ Where, $Y = kg \text{ of color / kg of color free oil}$ $X = kg \text{ of color / kg adsorbent}$ $100 kg oil containing 1 part of color to 3 part of oil is agitated with 25 kg of the adsorbent in two stages. Calculate the % of color removed after each stage, if 12.5 kg adsorbent is used initially, followed by another 12.5 kg of adsorbent.$	1	

		S process industries
Course Outcomes:	CO1	explain the concept of mass transfer operations in process industries.
	CO2	calculate the extent of separation for single stage batch and continuous, multistage continuous and differential contact distillation for binary mixtures.
	CO3	calculate number of theoretical stages required for a given extent of separation for liquid-liquid extraction and solid-liquid mass transfer operations for cross current and counter-current flows. design the mass transfer equipment(adsorption) for given separation in process industries.
	CO4	design the mass transfer equipment (adsorption) for given separation in process measurement