One-Pass Ranking Models for Low-Latency Product Recommendations

Martin Saveski @msaveski

MIT (Amazon Berlin)

One-Pass Ranking Models for Low-Latency Product Recommendations

Amazon Machine Learning Team, Berlin

Antonino Freno

Rodolphe Jenatton

Cédric Archambeau

Customers Who Bought This Item Also Bought

Machine Learning: A **Probabilistic Perspective** (Adaptive Computation and > Kevin P. Murphy

★★★☆☆☆ 46

Hardcover

\$76.97 **Prime**

Learning From Data > Yaser S. Abu-Mostafa **会会会会** 88

#1 Best Seller (in Computer

Neural Networks Hardcover

The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie

★★★☆☆☆ 49

Hardcover

\$70.40 **Prime**

Probabilistic Graphical Models: Principles and Techniques (Adaptive Daphne Koller

★★★☆☆☆ 28

Hardcover

\$97.03 **Prime**

Peter Flach

★★★★★ 17

Paperback

\$51.60 **Prime**

Page 1 of 20

Constraints

Large # of examples
 Large # of features

- Large # of examples
 Large # of features
- 2. Drifting distribution

- 1. Large # of examples Large # of features
- 2. Drifting distribution
- 3. Real-time ranking (<few ms)

- Large # of examples → Small memory footprint Large # of features
- 2. Drifting distribution
- 3. Real-time ranking (<few ms)

- Large # of examples → Small memory footprint Large # of features
- 2. Drifting distribution --> Fast training time
- 3. Real-time ranking (<few ms)

- Large # of examples → Small memory footprint Large # of features
- 2. Drifting distribution --> Fast training time
- 3. Real-time ranking → Low prediction latency (<few ms)

Our approach

Product Recommendations

Small memory footprint

Fast training time

Low prediction latency

Our approach

Product Recommendations

Small memory footprint

Fast training time

Low prediction latency

Stochastic optimization
One pass learning

Our approach

Product Recommendations

Small memory footprint

Fast training time

Stochastic optimization
One pass learning

Low prediction latency -> Sparse models

Learning Ranking Functions

Learning Ranking Functions

Three broad families of models

- 1. Pointwise (Logistic regression)
- 2. Pairwise (RankSVM)
- 3. Listwise (ListNet)

Learning Ranking Functions

Three broad families of models

- 1. Pointwise (Logistic regression)
- 2. Pairwise (RankSVM)
- 3. Listwise (ListNet)

Loss functions

- Evaluation functions (NDCG)
- Surrogate functions

Lambda Rank (Burges et al., 2007)

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{x_4}$
${f r}$: Ground-truth Rank	1	1	2	3

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{x_4}$
${f r}$: Ground-truth Rank	1	1	2	3
		i		\overline{j}

Lambda Rank (Burges et al., 2007)

	Product I	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	$\mathbf{X_2}$	X3	$\mathbf{x_4}$
${f r}$: Ground-truth Rank	1	1	2	3
		i		j

Importance of sorting i and j correctly

$$\Delta \mathcal{M} = \mathcal{M}(\mathbf{r}) - \mathcal{M}(\mathbf{r}_{i/j})$$

Lambda Rank (Burges et al., 2007)

	Product 1	Product 2	Product 3	Product 4
X: Features	$\mathbf{x_1}$	$\mathbf{x_2}$	X3	X_4
${f r}$: Ground-truth Rank	1	1	2	3
		i		\overrightarrow{j}

Importance of sorting i and j correctly

$$\Delta \mathcal{M} = \mathcal{M}(\mathbf{r}) - \mathcal{M}(\mathbf{r}_{i/j})$$

Difference in scores

$$\Delta S = \max\{0, \mathbf{w^T} \mathbf{x_j} - \mathbf{w^T} \mathbf{x_i}\}$$

Lambda Rank (Burges et al., 2007)

	Product i	Product 2	Product 3	Froduct 4
X: Features	\mathbf{x}_1	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{x_4}$
${f r}$: Ground-truth Rank	1	1	2	3
		\overline{i}		\overline{j}

Droduct 2 Droduct 2

Importance of sorting i and j correctly

$$\Delta \mathcal{M} = \mathcal{M}(\mathbf{r}) - \mathcal{M}(\mathbf{r}_{i/j})$$

Difference in scores

$$\Delta S = \max\{0, \mathbf{w^T} \mathbf{x_j} - \mathbf{w^T} \mathbf{x_i}\}$$

Loss

$$L(\mathbf{X}; \mathbf{w}) = \sum_{\mathbf{r}_i \leq \mathbf{r}_j} \Delta \mathcal{M} \cdot \Delta S$$

Introducing Sparsity

Adding l_1 and l_2 penalties

$$L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2} \lambda_2 ||\mathbf{w}||_2^2$$

Introducing Sparsity

Adding l_1 and l_2 penalties

$$L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2} \lambda_2 ||\mathbf{w}||_2^2$$

Both λ_1 and λ_2 control model complexity

Introducing Sparsity

Adding l_1 and l_2 penalties

$$L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2} \lambda_2 ||\mathbf{w}||_2^2$$

Both λ_1 and λ_2 control model complexity

 \bullet λ_1 trades-off sparsity and performance

Introducing Sparsity

Adding l_1 and l_2 penalties

$$L^*(\mathbf{X}, \mathbf{w}) = L(\mathbf{X}, \mathbf{w}) + \lambda_1 ||\mathbf{w}||_1 + \frac{1}{2} \lambda_2 ||\mathbf{w}||_2^2$$

Both λ_1 and λ_2 control model complexity

- \bullet λ_1 trades-off sparsity and performance
- λ_2 adds strong convexity & improves convergence

Extensions of Stochastic Gradient Descent

Extensions of Stochastic Gradient Descent

FOBOS Forward-Backward Splitting (Duchi, 2009)

- 1. Gradient step
- 2. Proximal step involving the regularization

Extensions of Stochastic Gradient Descent

FOBOS Forward-Backward Splitting (Duchi, 2009)

- 1. Gradient step
- 2. Proximal step involving the regularization

RDA Regularized Dual Averaging (Xiao, 2010)

- Keeps a running average of all past gradients
- Solves a proximal step using the average

Extensions of Stochastic Gradient Descent

FOBOS Forward-Backward Splitting (Duchi, 2009)

- 1. Gradient step
- 2. Proximal step involving the regularization

RDA Regularized Dual Averaging (Xiao, 2010)

- Keeps a running average of all past gradients
- Solves a proximal step using the average

pSGD Pruned Stochastic Gradient Descent

- Prunes every k gradient steps
- If $|w_i| < \theta \Rightarrow w_i = 0$

Hyper-parameter Optimization

- Turn-key inference
- Automatic adjustment of hyper-parameters
- Bayesian Approach (Snoek, Larochelle, Adams; 2012)
 - Gaussian Process
 - Thomson Sampling

LETOR Experiments

ElasticRank is comparable with state-of-the-art models

Amazon.com Experiments

Experimental Setup

- • # examples ≈ millions
- # features ≈ thousands (millions of dimensions)
- Purchase logs from contiguous time interval

Experimental Results

ElasticRank performs best

Sparsity vs Performance

RDA achieves the best trade-off

Prediction Time

Contributions

How to learn ranking functions with

- Single pass
- Small memory footprint
- Sparse

WITHOUT sacrificing performance

References

- C. J. C. Burges, R. Ragno, and Q. V. Le. *Learning to rank with nonsmooth cost functions*. In Advances in Neural Information Processing Systems (NIPS), 2006.
- J. C. Duchi and Y. Singer. *Efficient online and batch learning using forward backward splitting*. Journal of Machine Learning Research (JMLR), 2009.
- L. Xiao. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization. Journal of Machine Learning Research (JMLR), 2010.
- J. Snoek, H. Larochelle, and R. P. Adams. *Practical bayesian optimization of machine learning algorithms*. In Advances in Neural Information Processing Systems (NIPS), 2012.

One-Pass Ranking Models for Low-Latency Product Recommendations

Martin Saveski @msaveski

MIT (Amazon Berlin)