DATA-DRIVEN INSIGHTS INTO HOUSING TRENDS: FORECASTING AFFORDABILITY RISKS

ETHAN SHELBURNE

BRAINSTATION - THE DIGITAL LEARNING COMPANY

"OUR HOMES ARE MORE JUST THAN YOUR INVESTMENT"

- The Broadway Plan is a 30-year redevelopment strategy for Vancouver's Broadway Corridor, focused on building high-rise housing nearby new SkyTrain stations.
- Critics fear it will lead to the displacement of renters and worsening affordability.
- This project uses machine learning to model how new developments may impact local housing affordability.

PREDICTIVE MODELING WITH MACHINE LEARNING

Goal: Build a predictive tool to estimate the effects of developments like those in the Broadway Plan.

- Define affordability metrics at the neighborhood level.
- Utilize data set of building permits in Vancouver, each representing a housing development project.
- Use supervised machine learning regression models (such as Linear Regression, Random Forest, and K-nearest neighbors) to uncover correlations between development types and shifts in affordability.

PURSUING HOUSING EQUITY WITH DATA SCIENCE

- Activists have organized protests to challenge displacement linked to large-scale redevelopment plans.
- My goal is to provide a data-driven tool to help assess how specific developments may impact neighborhood affordability.

INTRODUCING THE DATA

	Bachelor				1 Bedroom			
Zone	Oct-20		Oct-21		Oct-20		Oct-21	
Zone 1 - West End/Stanley Park	1,229		1,280		1,537	- 0	1,539	
Zone 2 - English Bay	1,340	- 10	1,337		1.637	. 0	1,621	
Zone 3 - Downtown	1.450	B	1,470		1,741	- 11	1,727	
West EndiDowntown (Zones 1-3)	1,389		1,406		1,673		1,660	
Zone 4 - South Granville/Oak	1.243		1.296		1,517	. 0	1.566	
Zone 5 - Kitstano/Point Grey	1.261	- 8	1.300	a	1.553	. 0	1,579	8
Zone 6 - Westside/Kerrisdale	1.248	8	1,156	8	1,459	. 7	1,474	a
Zone 7 - Marpole	965	10	1.046		1,138		1,161	8
Zone 8 - Mount Pleasant/Renfrew Heights	1.281	. 0	1,333		1.351	. 0	1,388	
Zone 9 - East Hastings	1.330	D.	1,385	b	1.318	. 0	1.297	8
Zone 10 - Southeast Vancouver	1,165	0	1,249	b	1,413	0	1,403	

	Column	Non-Null Count	Dtype
	PermitNumber	32744 non-null	object
1	PermitNumberCreatedDate	32744 non-null	datetime64[ns]
2	IssueDate	32744 non-null	datetime64[ns]
3	PermitElapsedDays	32744 non-null	int64
4	ProjectValue	32744 non-null	float64
5	TypeOfWork	32744 non-null	object
6	Address	32581 non-null	object
7	ProjectDescription	32744 non-null	object

- The project combines housing construction data with neighborhood-level economic indicators.
- Preliminary EDA shows the datasets are rich and detailed.
- I anticipate challenges in merging datasets and handling inconsistent values.
- To clean the CMHC data, I need to impute missing census tract values (such as average rent) with values corresponding to a higher geographic level.
- Careful adjustments will also be needed to account for macroeconomic factors.

NEXT STEPS

- Continue cleaning and organizing datasets, building a cohesive database.
- Use Python to construct a geographic hierarchy (census tract < neighborhood < census subdivision < ...) to impute missing values at different levels of granularity into CMHC data.
- Conduct feature engineering to align construction data with neighborhood-level economic indicators.
- Research machine learning models used in housing analysis to identify suitable algorithms.
- Begin baseline modeling!

