

Universität Bayreuth 95447 Bayreuth

Anorganische Chemie III

Phasendiagramme und Polymorphie

Justus Friedrich Studiengang: B.Sc. Chemie 4. Fachsemester

Matrikelnummer: 1956010 E-Mail: bt725206@myubt.de

Inhaltsverzeichnis

1	Einl	leitung	1
	1.1	Motivation	1
2	Dur	chführung	2
	2.1	Synthese von $Ni_{1\pm x}Sb_1$	2
	2.2	Gleichungen zur Berechnung	2
3	Aus	wertung	3
	3.1	Ergebnisse	3
	3.2	Diskussion	3
4	Zusa	ammenfassung	4
5	Lite	raturverzeichnis	5

1 Einleitung

1.1 Motivation

Stoffe können sich stark in ihren chemischen und physikalischen Eigenschaften unterscheiden, selbst wenn sie dieselbe Chemische Zusammensetzung besitzten. Dies liegt häufig an der Tatsache, dass sie in unterschiedlichen Kristallstrukturen auftreten können. Diese Stoffe werden Polymorphe gennant. Bereits kleine Änderungen in den Synthesebedingungen können die Ausbildung verschiedener Phasen beeinflussen.

Das Ziel dieses Versuchs ist es, gezielt metastabile Phasen von (CaCO₃) und Benzamid zu synthetisieren. Darüber hinaus soll untersucht werden, wie sich unterschiedliche Mischungsverhältnisse von Nickel und Antimon auf die entstehenden Phasen und deren Eigenschaften auswirken.¹

2 Durchführung

2.1 Synthese von $Ni_{1\pm x}Sb_1$

Es werden, um die Acht verschiedene Zusammensetzungen herzustellen, gemäß der Tabelle 1 Nickel und Sb in eine Quarzampulle gegeben. Die Quarzampulle wird evakumiert und abgeschmolzen. Anschließend wird die Quarzampulle bei 1100 °C für 1 Tag aufgeschmolzen und danach für 3 Tage bei 800 °C getempert.

Tabelle 1: Zeigt die Atom Verhältnisse des Produkt, und die dafür nötigen Eduktmassen und deren Mol Anzahl. Die Berrechungen für die Mol-Anzahl sind in Gleichung (1) und (2) dargestellt.

At% Sb	97%	75%	60%	52%	50%	46.3%	40%	37%
Masse Sb [g]	0.787	0.689	0.605	0.554	0.540	0.513	0.464	0.443
Mol Sb	6.466	5.661	4.972	4.547	4.433	4.214	3.813	3.608
[mmol]								
Mol% Ni	3%	25%	40%	48%	50%	53.7%	60%	63%
Masse Ni [g]	0.012	0.111	0.194	0.246	0.260	0.287	0.335	0.364
Mol Ni	0.200	1.887	3.315	4.197	4.433	4.888	5.720	6.203
[mmol]								

2.2 Gleichungen zur Berechnung

$$\frac{2g}{M(\mathsf{Sb}) + \frac{mol\%(\mathsf{Ni})}{mol\%(\mathsf{Sb})} \cdot M(\mathsf{Ni})} = n(\mathsf{Sb})$$
 (1)

$$\frac{2g}{M(Sb) + \frac{mol\%(Ni)}{mol\%(Sb)} \cdot M(Ni)} \cdot \frac{mol\%(Ni)}{mol\%(Sb)} = n(Ni)$$
(2)

- 3 Auswertung
- 3.1 Ergebnisse
- 3.2 Diskussion

4 Zusammenfassung

5 Literaturverzeichnis

Literatur

(1) Breu, J.; Senker, J., *Praktikum Präparative Anorganische Chemie*, 2025, S. 31–38.