Національний авіаційний університет Навчально-науковий Інститут інформаційно-діагностичних систем Кафедра прикладної математики

Завдання для лабораторних робіт з дисципліни "Комп'ютерні графічні технології та просторове моделювання"

для студентів спеціальності 6.040301 Прикладна математика

Юрчук І.А.

Зміст

Модуль 1 "Геометричні перетворення та проекції"	
Лабораторна робота 1.1	3
Лабораторна робота 1.2	4
Домашне завдання 1	7
Теоритичні питання до МКР №1	8
Модуль 2 "Побудова плоских та просторових криві	⁄ХХ"
Лабораторна робота 2.1	9
Лабораторна робота 2.2	12
Домашнє завдання 2	13
Теоритичні питання до МКР №2	15
Модуль 3 "Побудова та відображення поверхонь"	
Лабораторна робота 3.1	16
Лабораторна робота 3.2	19
Домашнє завдання 3	20
Теоритичні питання до МКР №3	21
Модуль 4 "Видалення невидимих ліній і поверхонь. Г	,O3-
ФАРБОВУВАННЯ"	
Лабораторна робота 4.1	22
Лабораторна робота 4.2	23
Домашне завдання 4	24
Теоритичні питання до МКР №4	25
Додаток 2.	26
Додаток 3.	27
Додаток 4.	28

Модуль 1 "Геометричні перетворення та проекції"

Лабораторна робота 1.1

Тема:Побудова двовимірних геометричних об'єктів.

Мета: Вивчити афінні перетворення на площині та вміти застосовувати їх до геометричних конструкцій. Вміти реалізувати довільні рухи на площині як композицію повороту, масштабування, перенесення та дзеркального відображення.

Завдання:

- 1. Вивчити всі типи афінних перетворень на площині та їх матричне представлення в однорідних координатах.
- 2. Створити програмне забезпечення для реалізації повороту, зсуву, непропорційного розтягу (стиску) та дзеркального відображення відносно прямої Ax + By + C = 0 геометричного об'єкту G, де G визначений для кожного студента окремо згідно його варіанту (див. табл.1.), дотримуючись наступних вимог:
 - значення параметрів A, B та C задаються користувачем;
- розмір та координати вузлів об'єкту G автор програми визначає на свій розсуд, виходячи з параметрів монітору та естетичних міркувань (об'єкт має бути по центру, рухи над G в полі зору і т.д.).

Таблиця 1. Варіанти завдань до ЛР 1.1.

N⁰	G	$\mathcal{N}_{\overline{0}}$	G
1	ламана, що складається з	11	трикутник
	6 відрізків		
2	рівнобедрений трикутник	12	квадрат
3	рівностороній трикутник	13	прямокутник
4	прямокутний трикутник	14	паралелограм
5	трапеція	15	п'ятикутник
6	правильний п'ятикутник	16	ламана, що складається з
			5 відрізків
7	шестикутник	17	правильний шестикутник
8	випуклий чотирикутник	18	ламана, що складається з
			4 відрізків
9	ламана, що складається з	19	прямокутна трапеція
	5 відрізків із самоперети-		
	нами		
10	шестикутник	20	ламана, що складається з
			6 відрізків із самоперети-
			нами

Структура звіту:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.

- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
 - 6. Висновки.

Лабораторна робота 1.2

Тема: Побудова просторових геометричних об'ектів.

Мета: Вивчити афінні перетворення в просторі, паралельні і перспективні проекції та вміти застосовувати їх до геометричних конструкцій.

Завдання:

- 1. Вивчити всі типи афінних перетворень, паралельних і перспективних проекцій в просторі та їх матричне представлення в однорідних координатах.
- 2. Реалізувати програмно алгоритми рухів геометричного об'єкту GO, що зображений у Додатку 2. Рухи для кожного студента описані у варіантах завдань, що наведені нижче.
- значення параметрів α , β та γ , що наведені у тексті завдання, задаються користувачем. Якщо на вказаны параметри існують обмеження, що наведені в індивідуальному завданні студента, то коритувача про це необхідно повідомити;
- розмір та координати вузлів об'єкту GO автор програми визначає на свій розсуд, виходячи параметрів монітору та естетичних міркувань (об'єкт має бути по центру, рух GO в полі зору і т.д.);
- -після виконання перетворення картинка має залишитись суцільною;

-побудовані об'єкти вивести на екран.

Варіанти завдань:

Введемо наступні позначення:

- H куб, верхня та нижня грані якого паралельні площині xOz, а бічні ребра паралельні вісі Oy;
- B правильна прямокутна зрізана піраміда, основа якої паралельна площині yOx;
- L_1, L_2 правильні трикутні призми, бічні ребра яких паралельні вісі Ox;
 - l_1, l_2, l_3 прямі паралельні вісі Oy.
- В1.Виконати: 1) поворот B відносно l_3 на кут α , $0 < \alpha \leq \frac{\pi}{4}$; 2) стандартну диметричну проекцію для L_1 та ізометрію для L_2 ; 3) проекцію Кавальє для L_2 ; 4) одноточкову перспективну проекцію H з т. $A(\gamma, 0, 0)$ на площину z = 0, де $\gamma > 0$.
- В2.Виконати: 1) рівномірний розтяг B на величину α , $1<\alpha$; 2) триметричну проєкцію L_1 з кутами повороту β відносно Ox, $\frac{\beta}{2}$ відносно Oy та $\frac{\beta}{3}$ відносно Oz, де $\frac{\pi}{6}<\beta<\frac{\pi}{3}$; 3) кабінетну проєкцію

- для L_2 ; 4) двоточкову перспективну проекцію H з т. $A(0,0,\gamma)$ та т. A_2 на площину z=0, де $\gamma>0$.
- ВЗ.Виконати: 1) стиск B на величину α вздовж Ox та $\frac{\alpha}{2}$ вздовж Oy, $0<\alpha<1$; 2) диметричну проекцію L_2 з кутами повороту β відносно Ox, $\frac{\beta}{2}$ відносно Oy, де $\frac{\pi}{6}<\beta<\frac{\pi}{3}$; 3) проекцію Кавальє для L_1 ; 4) двоточкову перспективну проекцію H з т. $A(\gamma,0,0)$ та т. A_1 на площину z=0.
- В4.Виконати: 1) розтяг B на величину α вздовж Ox, $\frac{\alpha}{2}$ вздовж Oz та $\frac{\alpha}{3}$ вздовж Oy, де $\alpha > 1$; 2) диметричну проекцію L_1 за співвідношенням довжин проекцій одиничних ортів як 3:3:1;3) кабінетну проекцію для $L_2;4$) триточкову перспективну проекцію H з т. $A(0,\gamma,0)$, т. A_1 та т. A_2 на площину z=0, де $\gamma>0$.
- В5. Виконати: 1) масштабування B на величину α вздовж Ox, $\frac{\alpha}{2}$ вздовж Oz та 3α вздовж Oy, де $0,5<\alpha<1$; 2) диметричну проекцію L_2 за співвідношенням довжин проекцій одиничних ортів як 3:3:4;3) проекцію Кавальє для $L_1;4)$ двоточкову перспективну проекцію H з т. $A(\frac{1}{\gamma},0,0)$ та т. A_2 на площину z=0.
- В6. Виконати: 1) поворот B відносно l_3 на кут α , $\frac{\pi}{4} < \alpha \leq \frac{\pi}{2}$; 2) диметричну проекцію L_2 за співвідношенням довжин проекцій одиничних ортів як 5:3:5;3) кабінетну проекцію для $L_1;4$) триточкову перспективну проекцію H з т. $A(0,-\gamma,0)$, т. A_1 та т. A_2 на площину z=0, де $\gamma>0$.
- В7. Виконати: 1) масштабування B на величину 5α вздовж Ox та α вздовж Oy, де $0,3<\alpha<1$; 2) диметричну проекцію L_1 за співвідношенням довжин проекцій одиничних ортів як 3:3:5;3) проекцію Кавальє для $L_2;4$) триточкову перспективну проекцію H з т. $A(\gamma,0,0)$, т. A_1 та т. A_2 на площину z=0.
- В8. Виконати: 1) поворот B відносно l_3 на кут α , $\frac{\pi}{2} < \alpha \leq \frac{3\pi}{4}$; 2) диметричну проекцію L_2 за співвідношенням довжин проекцій одиничних ортів як 1:1:3;3) кабінетну проекцію для $L_1;4$) триточкову перспективну проекцію H з т. $A(-\gamma,0,0)$, т. A_1 та т. A_2 на площину z=0, де $\gamma>0$.
- В9.Виконати: 1) розтяг B на величину α вздовж Ox та Oz і на величину $\frac{\alpha}{3}$ вздовж Oy, де $\alpha > 1$; 2) диметричну проекцію L_1 за співвідношенням довжин проекцій одиничних ортів як 1:2:1;3) проекцію Кавальє для $L_2;4$) двоточкову перспективну проекцію H з т. $A(0,\gamma,0)$ та т. A_2 на площину z=0, де $\gamma > 0$.
- В10. Виконати: 1) масштабування B на величину α вздовж Ox, $\frac{\alpha}{2}$ вздовж Oz та 3α вздовж Oy, де $1<\alpha<1,5;$ 2) диметричну проекцію L_1 з кутами повороту β відносно Ox, $\frac{\beta}{3}$ відносно Oz, де $\frac{\pi}{6}<\beta<\frac{\pi}{3};$ 3) кабінетну проекцію для $L_2;$ 4) триточкову перспективну проекцію H з т. $A(0,0,\gamma)$, т. A_1 та т. A_2 на площину z=0, де $\gamma>0$.

- В11. Виконати: 1) поворот B відносно l_3 на кут $-\alpha$, $0 < |\alpha| \le \frac{\pi}{4}$ 2) диметричну проекцію L_2 за співвідношенням довжин проекцій одиничних ортів як 3:3:7;3) проекцію Кавальє для $L_2;4$) одноточкову перспективну проекцію H з т. $A(0,\gamma,0)$ на площину z=0, де $\gamma>0$.
- В12.Виконати: 1) рівномірний стиск B на величину α , $0 < \alpha < 1$; 2) триметричну проєкцію L_1 з кутами повороту β відносно Ox, 2β відносно Oy та $\frac{\beta}{2}$ відносно Oz, де $0 < \beta < \frac{\pi}{6}$; 3) кабінетну проєкцію для L_2 ; 4) двоточкову перспективну проєкцію H з т. $A(\gamma, 0, 0)$ та т. A_2 на площину z = 0, де $\gamma > 0$.
- В13. Виконати: 1) стиск B на величину α вздовж Oy та $\frac{\alpha}{2}$ вздовж Oz, $0<\alpha<1$; 2) диметричну проекцію L_2 з кутами повороту β відносно Oy, 2β відносно Oz, де $\frac{\pi}{6}>\beta>0$; 3) проекцію Кавальє для L_1 ; 4) триточкову перспективну проекцію H з т. $A(0,0,-\gamma)$, т. A_1 та т. A_2 на площину z=0, де $\gamma>0$.
- В14. Виконати: 1) масштабування B на величину α вздовж Ox та $\frac{\alpha}{5}$ вздовж Oz, де $2>\alpha>1$; 2) диметричну проекцію L_2 за співвідношенням довжин проекцій одиничних ортів як 3:1:3;3) проекцію Кавальє для $L_1;4$) двоточкову перспективну проекцію H з т. $A(0,\gamma,0)$ та т. A_1 на площину z=0, де $\gamma>0$.
- В15. Виконати: 1) розтяг B на величину α вздовж Ox, де $\alpha>1$; 2) диметричну проекцію L_1 за співвідношенням довжин проекцій одиничних ортів як 5:2:2;3) кабінетну проекцію для $L_2;4$) двоточкову перспективну проекцію H з т. $A(0,-\frac{1}{\gamma},0)$ та т. A_2 на площину z=0, де $\gamma>0$.
- В16.Виконати: 1)поворот B відносно l_3 на кут $-\alpha$, $\frac{\pi}{4} < |\alpha| \le \frac{\pi}{2}$; 2) диметричну проєкцію L_1 з кутами повороту β відносно Ox, $\beta + \frac{\pi}{12}$ відносно Oz, де $\frac{\pi}{6} > \beta > 0$;3) проєкцію Кавальє для L_2 ; 4) триточкову перспективну проєкцію H з т. $A(0,0,\frac{1}{\gamma})$, т. A_1 та т. A_2 на площину z=0, де $\gamma>0$.
- В17.Виконати: поворот B відносно l_3 на кут $-\alpha$, $\frac{\pi}{2} < |\alpha| \leq \frac{3\pi}{4}$ 2) триметричну проекцію L_2 з кутами повороту β відносно Ox, $\beta + \frac{\pi}{12}$ відносно Oy та $\frac{\beta}{2}$ відносно Oz, де $0 < \beta < \frac{\pi}{6}$; 3) кабінетну проекцію для L_1 ; 4) двоточкову перспективну проекцію H з т. $A(0,0,-\frac{1}{\gamma})$ та т. A_1 на площину z=0, де $\gamma>0$.
- В18.Виконати: 1) масштабування B на величину 3α вздовж Oy та $\frac{\alpha}{2}$ вздовж Oz, де $1,5>\alpha>1$; 2) стандартну диметричну проекцію для L_2 та ізометрію для L_1 ; 3) проекцію Кавальє для L_1 ;4) триточкову перспективну проекцію H з т. $A(0,0,\frac{1+\gamma}{\gamma})$, т. A_1 та т. A_2 на площину z=0, де $\gamma>0$.
- В19. Виконати: 1) розтяг B на величину α вздовж Oy та Oz, де $\alpha > 1$; 2) диметричну проекцію L_1 за співвідношенням довжин проекцій одиничних ортів як 1:3:3;3) кабінетну проекцію для

 L_2 ; 4) двоточкову перспективну проекцію H з т. $A(0,0,\gamma)$ та т. A_1 на площину z=0, де $\gamma>0$.

В20. Виконати: 1) стиск B на величину α вздовж Oy, $\frac{\alpha}{2}$ вздовж Oz та $\frac{\alpha}{3}$ вздовж Oy, де $0<\alpha<1$; 2) диметричну проекцію L_2 за співвідношенням довжин проекцій одиничних ортів як 3:4:4;3) проекцію Кавальє для $L_1;4$) одноточкову перспективну проекцію H з т. $A(0,0,\gamma)$ на площину z=0, де $\gamma>0$.

Структура звіту:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
 - 6. Висновки.

Домашне завдання 1

Домашне завдання №1 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю №1 "Геометричні перетворення та проекції".

Тематика:

- 1. Фотографія як перспективна проекція.
- 2. Стереографічна проекція.
- 3. Методи генерації стереозображень.
- 4. Кольоровий анагліф як метод генерації стереозображень.
- 5. Поляризований анагліф як метод генерації стереозображень.
- 6. Методи виводу зображень стереографічних проекцій.
- 7. Метод побудови проекції з фіксованим об'єктом.
- 8. Метод побудови проекції з фіксованим центром проекції.
- 9. Відновлення тривимірних об'єктів за проекціями.
- 10. Картографічні проекції.
- 11. Рівнокутна картографічна проекція.
- 12. Рівновелика картографічна проекція.
- 13. Класифікація картографічних проекцій по виду паралелей та медіанів.
- 14. Проекція Меркатора у навігаційних картах.
- 15. Азимутна картографічна проекція.
- 16. Циліндрична картографічна проекція.
- 17. Конічна картографічна проекція.
- 18. Етап модельних перетворень у реалістичних зображеннях.
- 19. Етап видових перетворень у реалістичних зображеннях.

Домашне завдання 1 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками – 1, форматування по ширині, відступи: 2 см зліва, 1,5 см — справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

ТЕОРИТИЧНІ ПИТАННЯ ДО МКР №1

- 1. Чи утворюють афінні перетворення, задані в декартових координатах, лінійний простір? Віповідь обгрунтуйте.
- 2. Афінні перетворення простору \mathbb{R}^2 в декартових координатах та його властивості.
- 3. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в декартових координатах.
- 4. Однорідні координати в просторі \mathbb{R}^2 .
- 5. Чи утворюють афінні перетворення простору \mathbb{R}^2 , задані в однорідних координатах, лінійний простір? Віповідь обгрунтуйте.
- 6. Афінні перетворення простору \mathbb{R}^2 в однорідних координатах та його властивості.
- 7. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в однорідних координатах.
- 8. Методи знаходження матриць складних перетворень.
- 9. Афінні перетворення простору \mathbb{R}^3 в декартових координатах та його властивості.
- 10. Матричні форми запису афінних перетворень простору \mathbb{R}^3 в декартових координатах.
- 11. Однорідні координати в просторі \mathbb{R}^3 .
- 12. Чи утворюють афінні перетворення простору \mathbb{R}^3 , задані в однорідних координатах, лінійний простір? Віповідь обгрунтуйте.
- 13. Афінні перетворення простору \mathbb{R}^3 в однорідних координатах та його властивості.
- 14. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в однорідних координатах.
- 15. Ортографічні проекція. Матрична форма запису.
- 16. Аксонометрична проекція. Триметрія.
- 17. Поняття диметрії та ізометрії.
- 18. Косокутна проекція.
- 19. Перпективна проекція. Одноточкова перспективна проекція.

20. Двоточкова та триточкова перспективні проекції.

Модуль 2 "Побудова плоских та просторових кривих"

Лабораторна робота 2.1

Тема:Побудова плоских кривих.

Мета: Вивчити побудову інтерполяційних та згладжуючих кривих на площині, та закріпити властивість інваріантності кривих Безьє відносно афінних перетворень на площині.

Завдання:

- 1. Вивчити побудову кубічного сплайна та кривої Безьє.
- 2. Реалізувати програмно алгоритм побудови геометричного об'єкту GO, що заданий опорною ламаною (лінійним наближенням), та його руху за законом P, що визначені для кожного студента окремо згідно його варіанту.
 - об'єкт *GO* побудувати за допомогою кубічного сплайну;
 - об'єкт *GO* побудувати за допомогою кривої Безьє;
 - у висновках надати порівняльний аналіз отриманих побудов;
 - значення параметрів руху P задаються користувачем;
- при неправильному введені параметрів виводиться повідомлення про повторне введення (правильними ϵ значення, при яких рух геометричного об'єкту повністю видно на екрані)
 - -побудовані об'єкти вивести на екран.

Варіанти завдань:

- В1. Додати до GO, що наведений у додатку 3 рис. 1., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P зсувами на вектор (m_i, n_i) та масштабуванням в a_i та b_i $(a_i, b_i > 1)$ раз вдовж осей Ox та Oy, відповідно, де i = 1, 3 за схемою: зсув-маштабування-зсув-маштабування.
- В2.Додати до GO, що наведений у додатку 3 рис 2., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P поворотами на кут θ , де $0 < \theta < \frac{\pi}{6}$, та масштабуванням в a_i та b_i , $(a_i,b_i>1)$ раз вдовж осей Ox та Oy, відповідно, де i=1,3, за схемою: поворот-маштабування-поворот-маштабування-поворот-маштабування.
- ВЗ.Додати до GO, що наведений у додатку 3 рис. 3., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Ox та зсувами на вектор (m_i, n_i) , де i = 1, 3, за схемою: симетрія зсув ліворуч-симетрія зсув ліворуч.
- В4. Додати до GO, що наведений у додатку 3 рис. 4., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Oy та

- зсувами на вектор (m_i, n_i) , де i = 1, 3, за схемою: симетрія зсув вверх -симетрія зсув праворуч -симетрія зсув вниз.
- В5. Додати до GO, що наведений у додатку 3 рис. 5., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Oy та масштабуванями в a_i та b_i ($a_i, b_i > 1$) раз вдовж осей Ox та Oy, відповідно, де i = 1, 3, за схемою: симетрія-маштабування-симетрія-маштабування-симетрія-маштабування.
- В6. Додати до GO, що наведений у додатку 3 рис. 6., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P поворотами на кут θ , де $0 < \theta < \frac{\pi}{6}$, та зсувами на вектор (m_i, n_i) , де i = 1, 3, за схемою: поворот-зсув-поворот-зсув-поворот-зсув-поворот-зсув-
- В7. Додати до GO, що наведений у додатку 3 рис. 7., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P зсувами на вектори (m_i, n_i) та масштабуваннями в a_i та b_i $(0 < a_i, b_i < 1)$ раз вдовж осей Ox та Oy, відповідно, де i = 1, 3, за схемою: зсув-зсув -зсув маштабування-маштабування.
- В8. Додати до GO, що наведений у додатку 3 рис.8., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P поворотами на кут $-\theta$, де $0 < \mid \theta \mid < \frac{\pi}{6}$, та масштабуваннями в a_i та b_i , $(0 < a_i, b_i < 1)$ раз вдовж осей Ox та Oy, відповідно, де i = 1, 3, за схемою: поворот-маштабування-поворот-маштабування-поворот-маштабування.
- В9. Додати до GO, що наведений у додатку 3 рис.9., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Ox та зсувами на вектори (m_i, n_i) , де i = 1, 3, за схемою: зсув вверх-симетрія зсув ліворуч-симетрія зсув вниз-симетрія.
- В10. Додати до GO, що наведений у додатку 3 рис. 10., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Oy та зсувами на вектори (m_i, n_i) , де i = 1, 3, за схемою: симетрія зсув праворуч -симетрія зсув вверх -симетрія зсув ліворуч.
- В11. Додати до GO, що наведений у додатку 3 рис. 11., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Ox та масштабуваннями в a_i та b_i ($0 < a_i, b_i < 1$) раз вдовж осей Ox та Oy, відповідно, де i=1,3, за схемою: симетрія-маштабуваннясиметрія-маштабування.
- В12. Додати до GO, що наведений у додатку 3 рис 12., декілька горизонталей та вертикалей, що точніше передають його форму.

Задати рух P поворотами на кут $-\theta$, де $0 < \theta < \frac{\pi}{6}$, та зсувами на вектор (m_i, n_i) , де i = 1, 3, за схемою: поворот-зсув вверх-поворот-зсув зниз-поворот-зсув вверх)

В13. Додати до GO, що наведений у додатку 3 рис 13., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P зсувами на вектори (m_i,n_i) та масштабуваннями в a_i та b_i $(a_i,b_i>1)$ раз вдовж осей Ox та Oy, відповідно, де i=1,3, за схемою: маштабування-зсув-маштабування-зсув-маштабування-зсув.

В14. Додати до GO, що наведений у додатку 3 рис 14., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P поворотами на кут $-\theta$, де $\frac{\pi}{6} < \mid \theta \mid < \frac{\pi}{4}$, та масштабуваннями в a_i та b_i , $(a_i, b_i > 1)$ раз вдовж осей Ox та Oy, відповідно, де i = 1, 3, за схемою: маштабування-поворот-маштабування-поворот-маштабування-поворот.

В15. Додати до GO, що наведений у додатку 3 рис 15., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Ox та зсувами на вектори (m_i, n_i) , де i = 1, 3, за схемою: симетрія - зсув ліворуч -симетрія - зсув праворуч -симетрія - зсув ліворуч.

В16. Додати до GO, що наведений у додатку 3 рис 16., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Oy та зсувами на вектори (m_i, n_i) , де i = 1, 3, за схемою: симетрія - зсув вверх -симетрія - зсув вниз.

В17. Додати до GO, що наведений у додатку 3 рис 17., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P дзеркальними відображеннями відносно осі Oy та масштабуваннями в a_i та b_i (0 < a_i, b_i < 1) раз вдовж осей Ox та Oy, відповідно, де i=1,3, за схемою: симетрія-маштабування-симетрія-маштабування.

В18. Додати до GO, що наведений у додатку 3 рис 18., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P поворотами на кут $-\theta$, де $0 < \theta < \frac{\pi}{6}$, та зсувами на вектор (m_i, n_i) , де i = 1, 3, за схемою: поворот-зсув ліворуч-поворот-зсув праворуч-поворот-зсув ліворуч)

В19. Додати до GO, що наведений у додатку 3 рис 19., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P зсувами на вектори (m_i, n_i) та масштабуваннями в a_i та b_i $(a_i, b_i > 1)$ раз вдовж осей Ox та Oy, відповідно, де i = 1, 3, за схемою: маштабування-маштабування-маштабування-зсув-зсув-зсув.

В20. Додати до GO, що наведений у додатку 3 рис. 20., декілька горизонталей та вертикалей, що точніше передають його форму. Задати рух P поворотами на кути θ , де $\frac{\pi}{6} < \mid \theta \mid < \frac{\pi}{4}$, та масштабуваннями в a_i та b_i , $(0 < a_i, b_i < 1)$ раз вдовж осей Ox та Oy, відповідно, де i = 1, 3, за схемою: маштабування-поворот-маштабування-поворот-маштабування-поворот.

Структура звіту:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
 - 6. Висновки.

Лабораторна робота 2.2

Тема: Побудова фракталів.

Мета: Навчитись будувати різнокольорові конструктивні фрактали за допомогою генератора.

Завдання:

- 1. Провести аналіз конструктивного фракталу, що представленний своїм генератором, за допомогою масштабування та повороту.
- 2. Реалізувати програмно алгоритми побудови фракталу за заданим генератором G, що зображений у Додатку 3, та числом ітерацій p.

- Варіанти завдань:

- В1. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.1, а p=4.
- В2. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.2, а p=4.
- В3. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.3, а p=5.
- В4. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.4, а p=4.
- В5. Побудувати різнокольоровий фрактал,в якого основа пряма, генератор G зображений на мал.5, а p=3.
- В6. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.6, а p=3.
- В7. Побудувати різнокольоровий фрактал суцвіття, в якого генератор G зображений на мал.8, а p=3.
- В8. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.1, а p=4.
- В9. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.2, а p=4.

- В10. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.3, а p=5.
- В11. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.4, а p=4.
- В12. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.5, а p=3.
- В13. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.6, а p=3.
- В14. Побудувати різнокольоровий фрактал лист папороті, в якого генератор G зображений на мал.7, а p=3.
- В15. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.1, а p=4.
- В16. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.2, а p=4.
- В17. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.3, а p=5.
- В18. Побудувати різнокольоровий фрактал, в якого основа трикутник, генератор G зображений на мал.4, а p=4.
- В19. Побудувати різнокольоровий фрактал, в якого основа квадрат, генератор G зображений на мал.5, а p=3.
- В20. Побудувати різнокольоровий фрактал, в якого основа пряма, генератор G зображений на мал.6, а p=3.

Структура звіту:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
 - 6. Висновки.

Домашне завдання 2

Домашне завдання N2 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю N2 "Побудова плоских та просторових кривих".

Тематика:

- 1. TCB-сплайни в анімації. Дати їх порівняльний аналіз з кривими Безьє.
- 2. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та складених кубічних кривих Ерміта.
- 3. Порівняти побудову, властивості та застосування В-сплайнових кривих та TCB-сплайнів.
- 4. Порівняти побудову, властивості та застосування В-сплайнових кривих та раціональних кубічних В-сплайнових кривих.

- 5. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та інтерполяційних кубічних кривих Ерміта.
- 6. Порівняти побудову, властивості та застосування В-сплайнових кривих та інтерполяційних кубічних кривих Ерміта.
- 7. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та згладжуючих кубічних сплайнів.
- 8. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та ТСВ-сплайнів.
- 9. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та В-сплайнових кривих.
- 10. TCB-сплайни. Дати їх порівняльний аналіз з кривими Ерміта.
- 11. Порівняти побудову, властивості та застосування складених кубічних В-сплайнових кривих та складених кубічних кривих Безьє.
- 12. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та В-сплайнових кривих.
- 13. Порівняти побудову, властивості та застосування згладжуючих кубічних сплайнів та інтерполяційних кубічних кривих Ерміта.
- 14. Порівняти побудову, властивості та застосування інтерполяційних кубічних кривих Ерміта та згладжуючих кубічних сплайнів.
- 15. Порівняти побудову, властивості та застосування складених та раціональних кубічних В-сплайнових кривих.
- 16. Порівняти побудову, властивості та застосування раціональних кубічних В-сплайнових кривих та згладжуючих кубічних сплайнів.
- 17. Порівняти побудову, властивості та застосування складених кубічних кривих Безьє та TCB-сплайнів.
- 18. Порівняти побудову, властивості та застосування складених кубічних кривих Безьє та згладжуючих кубічних сплайнів.
- 19. Порівняти побудову, властивості та застосування складених кубічних кривих Безьє та Ерміта.

Домашне завдання 2 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками – 1, форматування по ширині, відступи: 2 см зліва, 1,5 см — справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

Теоритичні питання до МКР №2

- 1. Задачі інтерполяції та згладжування на площині;
- 2. Інтерполяційний многочлен Лагранжа;
- 3. Інтерполяційний кубічний сплайн та його крайові умови;
- 4. Алгоритм побудови кубічного сплайну;
- 5. Сплайнові криві;
- 6. Криві Безьє;
- 7. Властивості поліномів Бернштейна;
- 8. Властивості кривих Безьє;
- 9. Геометричний алгоритм для кривої Безьє;
- 10. Означення фракталу. Фрактал острів Коха;
- 11. Конструктивні та динамічні фрактали;
- 12. Означення фракталу. Фрактал острів Мінковського;
- 13. Означення фракталу. Льодовий фрактал;
- 14. Динамічні фрактали. Фрактал Жуліа;
- 15. Динамічні фрактали. Фрактал Мандельброта;
- 16. Динамічні фрактали. Фрактал Ньютона.

Модуль 3 "Побудова та відображення поверхонь"

Лабораторна робота 3.1

Тема:Побудова поверхонь.

Мета: Вивчити математичні моделі поверхонь.

Завдання:

- 1. Вивчити основні способи задання поверхонь.
- 2. Реалізувати програмно алгоритм побудови поверхонь S_1 та S_2 , що визначені для кожного студента окремо згідно його варіанту (Таблиця 1.).
 - представити поверхню у вигляді каркасу;
- при необхідності більш реалістичного зображення поверхні, що побудована, скористатись проекцією (косокутною, перспективною і т.п.)!!!!
- для кожної з побудованих поверхонь у інтерфейсі програми передбачити можливість її повертати, зміщати та розтягувати / стискати;
 - побудовані об'єкти вивести на екран.

Структура звіту:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
 - 6. Висновки.

Таблиця 1. Варіанти завдань до ЛР 3.1.

$N_{\overline{0}}$	S_1	S_2 – по-
		верхня
		Безьє
1	Поверхня утворена одночасним переносом на 5 оди-	слон
	ниць і поворотом на кут $\frac{\pi}{4}$ навколо Ох відрізка, що	
	заданий точками $P_1(0,0,0)$ та $P_1(0,4,0)$	
2	Поверхня утворена переносом на 5 одиниць вздовж	дельфін
	осі Оz кубічного спрайну, що визначається точками	
	$A_1(0,0,5), A_2(1,1,7), A_3(3,0,1) A_4(5,0,4)$	
3	Поверхня утворена зміщенням квадрату вздовж кри-	орел
	вої $x = 10t, y = \cos \pi t - 1$	
4	Білінійна поверхня здана точками $P(0,0) = (0,0,1),$	бегемот
	P(0,1) = (0,0,0), P(1,0) = (1,1,1) to $P(1,1) = (1,1,1)$	
	(0,1,0)	

No	S_1	S ₂ – по-
		верхня
		Безьє
5	Поверхня Кунса задана точками $P(0,0) = (-1,0,1),$	рак
	P(0,1) = (-1,-1,-1), P(1,0) = (1,-1,-1), P(1,1) = (-1,-1,-1), P(1,1) =	рак
	$(1,0,-1)$ та векторами $P_u(0,0)=(1,1,0), P_u(0,1)=(1,0,0)$	
	$(1,0,0)$ $P_u(1,0) = (1,-1,0), P_u(1,1) = (1,-1,0),$	
	$P_w(0,0) = (0,1,-1), P_w(0,1) = (0,-1,-1), P_w(1,0) = (0,-1,-1)$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$P_{uw}(0,1) = (a, a, a), P_{uw}(1,0) = (a, -a, -a),$	
	$P_{uw}(1,1) = (0,0,0)$	
6	Поверхня утворена одночасним переносом на 10 оди-	літак
	ниць і поворотом на кут $\frac{\pi}{2}$ навколо Оу відрізка, що	OILLOIX
	ваданий точками $P_1(0,0,0)$ та $P_1(2,0,4)$	
7	Поверхня утворена переносом на 5 одиниць вздовж	корабель
'	осі Ox кубічного спрайну, що визначається точками	кораослв
	$A_1(0,0,5), A_2(1,-1,7), A_3(-3,0,1), A_4(5,0,4)$	
8	Поверхня утворена зміщенням п'ятикутника вздовж	автомобіль
	кривої $x = 2t, y = \cos \pi t - 1$	abiomoom b
9	Білінійна поверхня здана точками $P(0,0)$ =	вантажівка
	(0,0,-1), P(0,1) = (-1,0,0), P(1,0) = (-1,-1,1) та	BalliamBla
	$\begin{array}{c} (0,0,1), \ 1(0,1) \\ (0,1,0) \end{array}$	
10	Повехня Кунса задана точками $P(0,0) = (-1,0,1),$	підводний
10	P(0,1) = (-1,-1,1), P(1,0) = (-1,1,-1), P(1,1) = (-1,1,-1)	човен
	$(1,0,1)$ та векторами $P_u(0,0)=(1,1,0), P_u(0,1)=(1,0,0)$	
	$(1,1,0), P_u(1,0) = (-1,-1,0), P_u(1,1) = (-1,-1,0),$	
	$P_w(0,0) = (0,1,-1), P_w(0,1) = (0,1,-1), P_w(1,0) = (0,1,-1)$	
	$(0,1,1), P_w(1,1) = (0,-1,1), P_{uw}(0,0) = (0,0,0),$	
	$P_{uw}(0,1) = (a, a, a), P_{uw}(1,0) = (a, -a, -a),$	
	$P_{uw}(1,1) = (1,1,0)$	
11	Поверхня утворена одночасним переносом на 5 оди-	папуга
	ниць і поворотом на кут $\frac{-\pi}{4}$ навколо Oz відрізка, що	
	заданий точками $P_1(0,0,0)$ та $P_1(1,4,3)$	
12	Поверхня утворена переносом на 5 одиниць вздовж	голуб
	осі Оу кубічного спрайну, що визначається точками	-
	$A_1(0,1,5), A_2(-1,1,7), A_3(0,3,1), A_4(5,-1,4)$	
13	Поверхня утворена зміщенням трикутника вздовж	жаба
	кривої $x = 10t, y = \cos \frac{\pi}{2}t - 1$	
14	Білінійна поверхня здана точками $P(0,0) = (0,0,1),$	крокодил
	P(0,1) = (0,0,0), P(1,0) = (1,-1,1) to $P(1,1) = 0$	
	(0, -1, 0)	

$N_{\overline{0}}$	S_1	S_2 – по-
		верхня
		Безьє
15	Поверхня Кунса задана точками $P(0,0) = (-1,0,1),$	качка
	P(0,1) = (1,-1,1), P(1,0) = (1,-1,1), P(1,1) =	
	$(1,0,-1)$ та векторами $P_u(0,0)=(1,1,1),\ P_u(0,1)=0$	
	$(1,1,1), P_u(1,0) = (-1,-1,0), P_u(1,1) = (-1,-1,0),$	
	$P_w(0,0) = (0,1,1), P_w(0,1) = (0,-1,1), P_w(1,0) = 0$	
	$(0,1,-1), P_w(1,1) = (0,-1,-1), P_{uw}(0,0) = (2,-1,1),$	
	$P_{uw}(0,1) = (0,0,a), P_{uw}(1,0) = (a,0,0), P_{uw}(1,1) = 0$	
	(0,0,1)	
16	Поверхня утворена одночасним переносом на 5 оди-	кінь
	\mid ниць і поворотом на кут $-\frac{\pi}{2}$ навколо Ох відрізка, що	
	заданий точками $P_1(0,0,0)$ та $P_1(0,4,1)$	
17	Поверхня утворена переносом на 10 одиниць вздовж	корова
	осі Оz кубічного спрайну, що визначається точками	
	$A_1(1,0,5), A_2(1,0,7), A_3(-3,0,1) A_4(-5,0,4)$	
18	Поверхня утворена зміщенням квадрату вздовж кри-	павич
	вої $x = 10t, y = \cos \frac{\pi}{4}t - 1$	
19	Білінійна поверхня здана точками $P(0,0) =$	ворона
	(-1,0,0), P(0,1) = (0,0,1), P(1,0) = (-1,-1,1) та	
	P(1,1) = (0,-1,0)	
20	Поверхня Кунса задана точками $P(0,0) =$	заєць
	(-1,-1,1), P(0,1) = (1,-1,1), P(1,0) = (0,-1,1),	
	$P(1,1) = (0,0,-1)$ та векторами $P_u(0,0) = (1,1,0),$	
	$P_u(0,1) = (1,1,0), P_u(1,0) = (-1,1,0), P_u(1,1) = (-1,1,0)$	
	$ (-1,1,0), P_w(0,0) = (0,1,1), P_w(0,1) = (0,-1,1), $	
	$P_w(1,0) = (0,1,-1), P_w(1,1) = (0,-1,-1),$	
	$P_{uw}(0,0) = (2,-1,1), P_{uw}(0,1) = (0,0,a),$	
	$P_{uw}(1,0) = (-a,0,0), P_{uw}(1,1) = (0,0,1)$	

Лабораторна робота 3.2

Тема: Алгоритми відсікання та загортання подарунка.

Мета: Вивчити основні алгоритми відсікання та загортання подарунка.

Завдання:

- 1. Вивчити основні алгоритми відсікання та алгоритм загортання подарунка.
- 2. Реалізувати програмно дані алгоритми на основі картинки, що визначена для кожного студента окремо згідно його варіанту (Таблиця 2.).
- представити об'єкти картинки плоскими для задач з рухом транспорту і об'ємними для руху джерела світла;
 - при можливості зображення розфарбувати;
- у інтерфейсі програми передбачити можливість задавати необхідні рухи;
 - побудовані об'єкти вивести на екран.

Структура звіту:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
 - 6. Висновки.

Таблиця 2. Варіанти завдань до ЛР 3.2.

$N_{\overline{0}}$	Об'єкт	ландшафт або пейзаж
1	рух джерела світла зі сходу на захід	місто (2 об'єкти)
2	рух потягу	місто (3 об'єкти)
3	рух джерела світла зі сходу на захід	стіл (2 об'єкти)
4	рух автобуса	гори (3 об'єкти)
5	взліт ракети	небо (3 об'єкти)
6	рух джерела світла із заходу на схід	гори (2 об'єкти)
7	рух автомобіля	місто (3 об'єкти)
8	рух джерела світла зі півдня на пів-	стіл (2 об'єкти)
	ніч	
9	рух літака	гори (3 об'єкти)
10	взліт ракети	космос (3 об'єкти)
11	рух джерела світла із півночі на пів-	село (2 об'єкти)
	день	
12	рух потягу	гори (3 об'єкти)
13	рух джерела світла зі півночі на пів-	сцена (2 об'єкти)
	день	
14	рух автобуса	місто (3 об'єкти)

$N_{ar{f o}}$	Об'єкт	ландшафт або пейзаж
15	політ ядра	за містом (3 об'єкти)
16	рух джерела світла із півдня на пів-	гори (2 об'єкти)
	ніч	
17	рух автомобіля	село (3 об'єкти)
18	рух джерела світла зі заходу на схід	сцена (2 об'єкти)
19	рух літака	небо (3 об'єкти)
20	політ ядра	із території замку (3 об'є-
		кти)

Домашне завдання 3

Домашнє завдання №3 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю №3 "Побудова та відображення поверхонь".

Тематика:

- 1. Лінійна поверхня Кунса.
- 2. FC-алгоритм.
- 3. Алгоритм Вейлера Азертона.
- 4. Алгоритм Ліанга-Барскі.
- 5. Метод обходу Грехема.
- 6. Бікубічна поверхня Кунса.
- 7. Променевий тест орієнтації точки відносно полігону.
- 8. Тріангуляція опуклих полігонів.
- 9. Тріангуляція неопуклих полігонів.
- 10. Тріангуляція Делоне.
- 11. Раціональні В-сплайн поверхні.
- 12. Алгоритм перетину та об'єднання опуклих полігонів.
- 13. Алгоритм перетину променя зі сферою.
- 14. Алгоритм перетину променя з площиною.
- 15. Алгоритм перетину променя з прямокутним паралелепіпедом.
- 16. Гаусова кривизна і якість поверхні.
- 17. Метод "розділяй та володарюй" побудови опуклої оболонки.
- 18. Відкритий алгоритм Препарата побудови опуклої оболонки.

Домашне завдання 3 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками – 1, форматування по ширині, відступи: 2 см зліва, 1,5 см – справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

Теоритичні питання до МКР №3

- 1. Поверхні обертання;
- 2. Лінійчасті поверхні;
- 3. Квадратичні поверхні;
- 4. Білінійні поверхні;
- 5. Бікубічна поверхня Кунса;
- 6. Поверхня Безьє;
- 7. В-сплайнові поверхні;
- 8. Тест обходу трьох точок;
- 9. Габаритний тест;
- 10. Кутовий тест;
- 11. Тест перетину прямої з полігоном;
- 12. Тест перетину відрізків;
- 13. Двовимірний алгоритм Сазерленда- Коена;
- 14. Математичні основи алгоритму Кіруса- Бека.
- 15. Алгоритм Кіруса- Бека.
- 16. Алгоритм загортання подарунку.

Модуль 4 "Видалення невидимих ліній і поверхонь. Розфарбовування"

Лабораторна робота 4.1

Тема:Видалення невидимих ліній.

Мета: Вивчити алгоритм Робертса усунення невидимих ліній та граней.

Завдання:

- 1. Вивчити алгоритм Робертса та його тести.
- 2. Реалізувати програмно алгоритм усунення невидимих ліній та граней поліедра S відносно спостерігача, що визначені для кожного студента окремо згідно його варіанту (Табл.4.1.).
- координати вершин поліедра задані в ССК (світовій системі координат);
- користувач повинен мати можливість змінювати своє місце положення в межах вказаного квадрату;
 - побудований об'єкт вивести на екран.

Структура звіту:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
 - 6. Висновки.

Позначення:

```
G_1 = \{A(-10, -180, 10), B_1(-100, -10, 200), B_2(180, -30, 140), B_3(210, 10, -150), B_4(-200, 80, -200), C_1(10, 180, 40), C_2(15, 210, -50)\};
G_2 = \{A(10, -280, 10), B_1(-100, -10, 200), B_2(180, -30, 140), B_3(210, 10, -150), B_4(-200, 80, -200), B_5(-240, 140, 10), C(15, 210, -50)\};
G_3 = \{A_1(-100, -180, -50), A_2(-140, -100, -100), A_3(-190, -40, 10), B_1(200, 60, 100), B_2(150, 30, -90), B_3(210, 100, -150), B_4(-200, 180, 20)\};
G_4 = \{A_1(-100, 180, -50), A_2(-140, 100, -100), A_3(-190, 40, 10), B_1(200, -60, 100), B_2(150, -30, -90), B_3(210, -100, -150), B_4(-200, -180, 20)\}.
```

Таблиця 4.1. Варіанти завдань до ЛР 4.1.

$\mathcal{N}_{ar{0}}$	S	Спостерігач	Nº	S	Спостерігач
		відносно цен-			відносно цен-
		тру об'єкта			тру об'єкта
1	G_1	нижче право-	2	G_2	нижче ліворуч
		руч			
3	G_3	вище праворуч	4	G_4	вище ліворуч
5	G_1	вище ліворуч	6	G_2	нижче право-
					руч
7	G_3	нижче ліворуч	8	G_4	вище праворуч
9	G_1	вище праворуч	10	G_2	вище ліворуч
11	G_3	нижче право-	12	G_4	нижче ліворуч
		руч			
13	G_1	нижче ліворуч	14	G_2	вище праворуч
15	G_3	вище ліворуч	16	G_4	нижче право-
					руч

Лабораторна робота 4.2

Тема:Розфарбоввування об'єкта.

Мета: Вивчити алгоритм трасування променів.

Деякі теоритичні аспекти: Проста модель:

1) Дзеркальне освітлювання (гладкі поверхні – метали, скло):

$$I_s = Ik_s \cos^p \alpha$$
,

де α – кут між відбитим від точки поверхні променем та вектором направленим з точки поверхні в точку спотерігача, I – інтенсивність джерела випромінювання світла, p – розмір відблиску на поверхні і $p \in [1;200]$ (великі значення відповідають металам, а малі неметалевим поверхням), а k_s – коефіцієнт дзеркального відбиття і $0 < k_s < 1$. Відбитий дзеркальний промінь від металу зберігає властивості падаючого променя.

2) Дифузне освітлювання (шорскі поверхні – папір, гіпс, пісок): $I_d = I k_d \cos \theta$, де θ – кут між напрямком від точки в якій визначається промінь на джерело світла та зовнішньою нормаллю до площини в цій точці, I – інтенсивність джерела випромінювання світла, а k_d – коефіцієнт дифузного відбиття і $0 < k_d < 1$.

Звідки

(1)
$$I = I_a k_a + \frac{I}{d+k} (k_s \cos^p \alpha + k_d \cos \theta),$$

де k_a – коефіцієнт відбиття поверхнею розсіяного світла, I_a – інтенсивність фонового розсіяного світла, яка є постійна для всіх об'єктів, d – відстань від об'єкта до джерела світла, k – деяка константа.

Приклади параметрів моделі освітлення див. Додаток 4.

Для сфокусованого джерела світла: $I_p = I \cos^t \varphi$, де φ – кут між вектором, що задає напрям джерела світла, та вектором, що направлений від джерела світла до точки поверхні, t – величина, що описує сфокусованість і змінюється від 0 до 128.

Тоді формула (1) набуде вигляду

$$I = (I_a k_a + \frac{I}{d+k} (k_s \cos^p \alpha + k_d \cos \theta)) \cos^t \varphi.$$

Зауваження 1: Для кольорових об'єктів розрахунок кожної компоненти кольору (наприклад, RGB) ведеться окремо і колір кожного пікселя зображення визначають значення складових інтенсивностей світла для відповідних компонент кольору.

Зауваження 2: якщо джерел світла декілька, то їх інтенсивності сумуються.

Завдання: За допомогою методу трасування променів створити реалістичне зображення з одним джерелом світла, поліедром S (координати поліедра з лабораторної роботи 4.1.) та вертикальною площиною, що розміщена навпроти джерела світла. Кольори площини та тип поверхні поліедра описані в таблиці 4.3.

	,	, -					
No	Колір пло-	Тип по-	Nº	Колір пло-	Тип по-		
	щини	верхні		щини	верхні		
1	синій	метал	2	червоний	папір		
		латунь					
3	зелений	метал мідь	4	фіолетовий	гіпс		
5	жовтий	метал	6	оранжевий	шліфоване		
		срібло			дерево		
7	малиновий	метал	8	жовто-	папір		
		латунь		зелений			
9	червоний	метал мідь	10	синій	гіпс		
11	фіолетовий	метал	12	зелений	шліфоване		
		срібло			дерево		
13	оранжевий	метал	14	малиновий	папір		
		латунь					
15	жовтий	метал мідь	16	коричневий	гіпс		

Таблиця 4.3. Варіанти завдань до ЛР 4.2.

ДОМАШНЕ ЗАВДАННЯ 4

Домашнє завдання №4 виконується на основі навчального матеріалу, що винесене на самостійне опрацювання студентами, і є складовою модулю №4 "Видалення невидимих ліній і поверхонь. Розфарбовування".

Тематика:

1. Алгоритм поточного горизонту усунення невидимих ліній та граней.

- 2. Метод Z-буфера.
- 3. Метод відсікання нелицьових граней.
- 4. Алгоритм розбиття картинної площини Варнока.
- 5. Метод сортування за глибиною. Алгоритм художника.
- 6. Метод Фонга.
- 7. Метод Гуро.
- 8. Алгоритм Аппеля.
- 9. Алгоритм побудови графіку функції двох змінних.
- 10. Метод сортування за глибиною як алгоритм впорядкування.
- 11. Метод двійкового розбиття простору як алгоритм сортування
- 12. Метод построкового сканування.
- 13. Метод випромінювання. Фізичні аспекти.
- 14. Алгоритмічна реалізація методу випромінювання.
- 15. Порівняльна характеристика існуючих методів усунення невидимих ліній та граней.
- 16. Порівняльна характеристика існуючих методів зафарбовування.

Домашне завдання 4 оформляється у вигляді реферату, що має складатись з:

- 1. титульної сторінки (назва міністерства, назва ВУЗу, назва кафедри, тема ДЗ, ПІБ виконавця та викладача, місто та рік);
 - 2. вступу (історія виникнення поняття та його актуальність);
 - 3. основної частини (1-2 пункти, обсяг 3-5 сторінок);
- 4. списку використаної літератури (для друкованого джерела назва, автор, видавництво, рік, сторінки; для інтернет ресурсу посилання).

Вимоги до оформлення: текст 12 пт Times New Roman, інтервал між рядками — 1, форматування по ширині, відступи: 2 см зліва, 1,5 см — справа, зверху та знизу сторінки, абзац 1 см. Назву пункту реферерату виділяти **напівжирним** шрифтом.

Теоритичні питання до МКР №4

- 1. Задача усунення невидимих ліній та граней;
- 2. Алогоритм Робертса. Його математичні аспекти;
- 3. Ідеологія алгоритму Робертса;
- 4. Тестова реалізація алгоритму Робертса;
- 5. Метод трасування променів. Фізичні аспекти;
- 6. Основна модель трасуванния променів;
- 7. Проста модель Холла трасування променів;
- 8. Модель Уіттеда трасування променів;
- 9. Побудова текстури;
- 10. Світова система координат та система координат об'єкта;
- 11. Світова та видова системи координат;
- 12. Видове перетворення.

Додаток 3.

Додаток 4.

1										
Maranian	Фон	ові кое	ϕ . k_a	Дифу	зійні ко	реф. k_d	Дзерка	альні ко	реф. k_s	Степі
Матеріал	R	G	B	R	G	В	R	G	B	нь р
латунь	0.3294	0.2235	0.0275	0.7804	0.5687	0.1137	0.9922	0.9412	0.8078	28
бронза	0.2125	0.1275	0.0540	0.7140	0.4284	0.1814	0.3935	0.2719	0.1667	26
хром	0.2500	0.2500	0.2500	0.4000	0.4000	0.4000	0.7746	0.7746	0.7746	77
мідь	0.1913	0.0735	0.0225	0.7038	0.2705	0.0828	0.2568	0.1376	0.0860	13
поліроване срібло	0.2313	0.2313	0.2313	0.2775	0.2775	0.2775	0.7739	0.7739	0.7739	90
чорна пласмаса	0.0	0.0	0.0	0.0100	0.0100	0.0100	0.5000	0.5000	0.5000	32