

Ayudantía 9

SVM y Gradient Boosting

• Algoritmo de **aprendizaje supervisado** muy utilizado en problemas de clasificación y regresión.

- Algoritmo de **aprendizaje supervisado** muy utilizado en problemas de clasificación y regresión.
- Destaca por su alto rendimiento sin necesidad de usar un alto costo computacional.

¿Cómo sabemos **qué recta usar** como clasificador?

¡SVM!

SVM nos permite encontrar una recta de alta calidad

Tomamos las muestras **más cercanas a la recta** de cada clase

Medimos sus distancias a la recta

Igualamos las distancias obtenidas

Le asignamos el valor **d**

Buscamos maximizar d

Esto es un **proceso iterativo**

Esto es un **proceso iterativo**

Siempre tenemos que estar considerando todos los datos

El modelo de optimización ya existe:)

Podemos tomar otro espacio geométrico

Podemos tomar **un plano para clasificar** los datos

La **proyección** de este plano es un **segmento** del espacio

Kernel

Conjunto de funciones que permite **transformar** el espacio de características con el que trabajamos

Existen varios tipos de Kernel para **distintas aplicaciones**

¡Vamos al código!

 Mecanismo de construcción interactiva de ensables (boosting)

- Mecanismo de construcción interactiva de ensables (boosting)
- Método de descenso de gradiente: minimizar la función de pérdida o error

- Mecanismo de construcción interactiva de ensables (boosting)
- Método de descenso de gradiente: minimizar la función de pérdida o error
- Aprendizaje a partir del error residual

Actualización de las predicciones

Nueva predicción =

Actualización de las predicciones

Nueva predicción = Predicción anterior

Actualización de las predicciones

Nueva predicción = Predicción anterior + Learning Rate

Actualización de las predicciones

Nueva predicción = Predicción anterior + Learning Rate * Árbol de residuales

¡Vamos al código!

Definición

2023-2