TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH

------oOo--------

BÀI TẬP VỀ NHÀ MÔN ĐẠI SỐ MÁY TÍNH

BÀI TẬP BUỔI 4 NHÓM

Lớp: CS522.M11

Giảng viên giảng dạy: TS. Nguyễn Đình Hiển

Nhóm sinh viên thực hiện:

1. Phan Thanh Hải

18520705

2. Trần Ngọc Sương

18521353

TP. Hồ CHÍ MINH, 11/2021

Mục lục

Bài	1	•			•			•	•	•		•	•	•	•	•	•	•			•			•	•				1
Bài	2						•	•	•			•												•		•			3
Bài	3																												4

Bài 1.

Cho (G, \cdot) là một nửa nhóm khác rỗng. Chứng minh các mệnh đề sau tương đương:

- (i) (G, \cdot) là một nhóm.
- (ii) $\forall a, b \in G$, các phương trình ax = b và ya = b đều có nghiệm trong G.
- (iii) Trong G có phần tử đơn vị trái e và:

$$\forall x \in G, \exists x' \in G \text{ sao cho } x'x = e$$

(iv) Trong G có phần tử đơn vị phải e' và:

$$\forall x \in G, \exists x'' \in G \text{ sao cho } x.x'' = e'$$

Bài làm:

1.1. Chứng minh (i) \Rightarrow (ii)

Dễ dàng, ta thấy $x=a^{-1}b$ là nghiệm của phương trình ax=b. Ta cũng có thể chứng minh đây là nghiệm duy nhất. Giả sử, $c \in G$ cũng là nghiệm của phương trình trên thì ta có: $a^{-1}(ac)=a^{-1}b$ hay $c=a^{-1}b=x$.

Chứng minh tương tự, ta cũng có $y=a^{-1}b$ là nghiệm của phương trình ax=b.

1.2. Chứng minh (ii) \Rightarrow (iii)

Do (G, \cdot) khác rỗng nên tồn tại $a \in G$. Theo (ii) thì ax = a có nghiệm trong G. Gọi $e \in G$ là nghiệm của phương trình ax = a. Cho $b \in G$. Gọi c là nghiệm của phương trình ax = b. Ta có:

$$eb = e(ac) = (ea)c = ac = b.$$

Do đó, e là phần tử đơn vị trái của G. Với mỗi $a \in G$, nghiệm của phương trình ya = e là nghịch đảo trái của a.

1.3. Chứng minh (iii) \Rightarrow (iv)

Cho $a \in G$. Gọi a' là nghịch đảo trái trái của a và a'' là nghịch đảo trái của a'. Ta có:

$$aa' = e(aa') = (a''a')(aa') = a''(a'a)a' = a''ea' = a''a' = e.$$

Khi đó, a' là nghịch đảo phải của a.

Ta lại có: $ae = a(a'a) = (aa')a = ea = a, \forall a \in G.$

Vì thế, e là phần tử đơn vị phải của G

1.4. Chứng minh (iv) \Rightarrow (i)

Từ (iv), ta có: e' là phần tử đơn vị phải và $xx'' = e, \forall x \in G, \exists x'' \in G$

Ta cần chứng minh e' cũng là phần tử đơn vị trái.

Đặt $x' \in G$ sao cho x''x' = e':

$$x''x = (x''x)e' = (x''x)(x''x') = x''(xx'')x' = x''ex' = x''x' = e'$$

Ta lại có:

 $e'x = (xx'')x = x(x''x) = xe' = x \Rightarrow e'$ là phần tử đơn vị trái của G.

Khi đó, ta có: $\forall x \in G, \exists x' \in G$ sao cho x'x = xx' = e.

Do đó, (G, \cdot) là một nhóm.

Từ 1.1, 1.2, 1.3 và 1.4, ta đã chứng mình được 4 mệnh đề trên tương đương.

Bài 2.

(Định lý Lagrange) Cho G là một nhóm con hữu hạn và H là một nhóm con của G. Chứng minh rằng khi đó:

$$|G| = |H|.|G/H|$$

Với G/H là tập thương của G trên H theo quan hệ \sim trong bài học.

Kí hiệu: |A| nghĩa là số phần tử của tập hợp A, card(A).

Bài làm:

Nếu G = H thì điều cần chứng minh là hiển nhiên đúng.

Giả sử $H = \{h_1, h_2, ...h_n\}$ nhỏ hơn nhóm G và $x \in G \setminus H$. Lúc này tất cả các phần tử của tập $Hx = \{h_1x, h_2x, ...h_nx\}$ khác nhau và không trùng với các phần tử của H. Vì từ $h_ix = h_jx$ dẫn đến $h_i = h_j$, nhưng $h_ix = h_j$ dẫn đến $x = h_i^{-1}h_j \in H$ là không thể. Nếu như $H \cup Hx = G$ thì định lý được chứng minh.

Nếu như $H \cup Hx$ nhỏ hơn G, thì có thể chọn $x' \in G \setminus (H \cup Hx)$ và thành lập nên tập $Hx' = \{h_1x', h_2x', ...h_nx'\}$. Tương tự các phần tử của tập này cũng khác nhau và không trùng với các phần tử của tập $H \cup Hx$. Cứ tiếp tục như thế, nhận kết quả như sau $G = H \cup Hx \cup Hx' \cup ...$

Từ đây có G chia hết cho n hay |G| = |H|.|G/H|.

Bài 3.

Chứng minh (G, \cdot) là nhóm với:

- a. $G = \mathbb{Z}$: tập các số nguyên.
 - · là phép toán cộng thông thường trên tập số nguyên.
- b. Cho p là một số nguyên tố.

$$G = \{1, 2, \dots, p-1\}.$$

- \cdot là phép toán nhân trên số nguyên theo modulo p.
- c. $G = \{A \mid A \in M^3(\mathbb{R}), \det(A) \neq 0\}$ với $M^3(\mathbb{R})$ là tập hợp các ma trận vuông số thực bậc 3.
 - · là phép nhân trên ma trận.

Bài làm:

a. Hiển nhiên, ta có $G \neq \emptyset$.

Phép toán cộng trên G có tính chất kết hợp (vì phép cộng trên tập số nguyên cũng có tính chất kết hợp).

Tồn tại một phần tử đơn vị là phần tử $0 \in G$ sao cho $\forall x \in G$ thì x + 0 = 0 + x = x.

Tồn tại một phần tử khả nghịch $-x \in G$ của phần tử $x \in G$ sao cho x + (-x) = -x + x = 0.

Như vậy, (G, \cdot) là nhóm. (đpcm)

b. Hiển nhiên, ta có $G \neq \emptyset$.

Phép nhân trên số nghuyên theo modulo p có tính chất kết hợp. Thật vậy, $\forall a_1, a_2, a_3 \in G, a_1 \equiv b_1 \pmod{p}, a_2 \equiv b_2 \pmod{p}, a_3 \equiv b_3 \pmod{p}$ thì ta có:

$$(a_1 \cdot a_2) \cdot a_3 \equiv (b_1 \cdot b_2) \cdot b_3 \pmod{p} \equiv b_1 \cdot (b_2 \cdot b_3) \pmod{p} \equiv a_1 \cdot (a_2 \cdot a_3).$$

Tồn tại một phần tử đơn vị là phần tử $1 \in G, 1 \equiv 1 \pmod{p}$ sao cho $\forall a \in G, a \equiv b \pmod{p}, a \cdot 1 = 1 \cdot a = a$. Thật vậy:

$$a \cdot 1 \equiv (b \cdot 1) \pmod{p} \equiv b \pmod{p} \equiv a.$$

$$1 \cdot a \equiv (1 \cdot b) \pmod{p} \equiv b \pmod{p} \equiv a.$$

Tồn tại một phần tử khả nghịch $r \in G$ của phần tử $a \in G$. Thật vậy:

Khi đó: $\gcd(a,p)=1$. Suy ra, tồn tại một cặp (r,s) sao cho ar+ps=1. Vì p là số nguyên tố nên $ar\pmod{p}\equiv 1$.

Như vậy, (G, \cdot) là nhóm. (đpcm)

c. Hiển nhiên, ta có $G \neq \emptyset$.

Phép nhân giữa 2 ma trận vuông có tính kết hợp.

 $\forall A \in G$, tồn tại một phần tử đơn vị là phần tử $I_{3,3} \in G$ sao cho $A \cdot I_{3,3} = I_{3,3} \cdot A = A$.

 $\forall\,A\in G\setminus\{0\},\ \det(A)\neq 0$ nên A là ma trận khả nghịch. Khi đó, ta luôn tìm được ma trận A^{-1} sao cho $A\cdot A^{-1}=A^{-1}\cdot A=I_{3,3}.$

Như vậy, (G, \cdot) là nhóm. (đpcm)