What do buyers value in beef calf and feeder cattle lots?

Esther McCabe

GENBA 894

August 5, 2019

About the Dataset

- Stored and maintained in Access
- Started in 1995
 - Maintained by one individual
- 241,278 lots total (26,435,097 head of cattle)
 - Cows, bulls, calves, feeders, dairy cattle

Variables

- **SYEAR**: Sale Year 1995 2018
- LOTID: Count of number of lots of beef calves
- SMONTH: Sale Month 1=January, 12=December
- **SUMMER:** Sold in a summer sale, all 1=Yes
- HEAD: Number of calves in a lot
- **SEX**: Gender of lot, 1=Steer, 2=Heifer
- ATYPE: Animal Type, 0=Unweaned, 1=Weaned
- WT: Average weight of the lot (total lot weight/# of head in lot)
- PRICE: Sale Price of lot (\$/cwt)
- **STATE**: State of origin of lot

- STATECODE: Code of state, alphabetical order starting with 1
- SAREA: Sale area, the states are divided into five areas or regions, 1=West Coast, 2=Rocky Mountain/North Central, 3=South Central, 4=Northeast, 5=Southeast
- BREED: General breed of the lot, 1=English, English crossed, 3=English-Contenintal crossed, 4=Brahman-influenced
- FRAME: Frame score of calves in lot, 3=Small, 4=Medium, 5=Large
- FLESH: Amount of flesh (body condition) of calves in lot, 2=Light, 3=Light/Medium, 4=Medium, 5=Heavy
- VAC: Vaccinations of lot, 0=vaccinated but not qualified for program, 1=vaccinated and qualify for program

Data Transformation and Cleaning

Data Transformation and Cleaning

Lots of beef calves

- No missing variables
- 94,872 lots
- Removed unnecessary variables
 - Summer
 - ATYPE
- Grouped similar, small groups with larger groups within variables

Lots of feeder cattle

- No missing variables
- **23,862 lots**
- Removed unnecessary variables
 - Summer
 - ATYPE
- Grouped similar, small groups with larger groups within variables

Descriptive Statistics

Beef calf lots

Factor	Mean	SD	Range
Size of lot (head)	111.5	72.0	5 to 1,380
Weight	561.0	79.0	235 to 960
Sale Price (\$/cwt)	134.75	48.86	41.25 to 422.00

Feeder cattle lots

Factor	Mean	SD	Range
Size of lot (head)	125.9	115.5	4 to 1,800
Weight	783.1	84.9	420 to 1,125
Sale Price (\$/cwt)	114.91	40.28	45.00 to 267.00

Sale Year

Sale Year

State

State

Comparison of Beef Calves and Feeder Cattle Lots

Vaccination Program Qualification

Calves

Feeders

Breed Description

Calves

Feeders

Average Head by Price

Average Weight by Price

Calves

Feeders

O Model

Model

- SAS 9.4
- Multiple Regression
 - Backwards selection
 - P < 0.05
- Y = Sale Price
- X = Sale Year, Sex, Sale Area, Breed, Frame, Flesh, Vaccination, Weight, Size of lot
- Random = Sale Month (Sale Year)

Random = Sale Month (Sale Year)

Beef calf lots

Effect	SYEAR	Estimate	Pr > t
SMONTH(SYEAR)	1995	-1.2735	<.0001
SMONTH(SYEAR)	1996	0.1422	0.5216
SMONTH(SYEAR)	1997	-1.5064	<.0001
SMONTH(SYEAR)	1998	-0.8703	<.0001
SMONTH(SYEAR)	1999	0.7266	<.0001
SMONTH(SYEAR)	2000	-0.42	<.0001
SMONTH(SYEAR)	2001	-1.941	<.0001
SMONTH(SYEAR)	2002	0.2041	0.1665
SMONTH(SYEAR)	2003	2.6456	<.0001
SMONTH(SYEAR)	2004	1.3014	<.0001
SMONTH(SYEAR)	2005	-0.01458	0.9236
SMONTH(SYEAR)	2006	1.7367	<.0001
SMONTH(SYEAR)	2007	1.2434	<.0001
SMONTH(SYEAR)	2008	-1.1658	<.0001
SMONTH(SYEAR)	2009	-1.0244	<.0001
SMONTH(SYEAR)	2010	1.1077	<.0001
SMONTH(SYEAR)	2011	-0.7144	<.0001
SMONTH(SYEAR)	2012	-4.0628	<.0001
SMONTH(SYEAR)	2013	5.7739	<.0001
SMONTH(SYEAR)	2014	11.7076	<.0001
SMONTH(SYEAR)	2015	-12.5981	<.0001
SMONTH(SYEAR)	2016	-1.7284	<.0001
SMONTH(SYEAR)	2017	-1.011	<.0001
SMONTH(SYEAR)	2018	0.3321	0.045

Random = Sale Month (Sale Year)

Feeder cattle lots

Effect	SYEAR	Estimate	Pr > t
SMONTH(SYEAR)	1996	0.0372	0.834
SMONTH(SYEAR)	1997	-1.0354	<.0001
SMONTH(SYEAR)	1998	-0.5117	0.0008
SMONTH(SYEAR)	1999	0.787	<.0001
SMONTH(SYEAR)	2000	0.01985	0.7849
SMONTH(SYEAR)	2001	-1.136	<.0001
SMONTH(SYEAR)	2002	0.9689	<.0001
SMONTH(SYEAR)	2003	3.0202	<.0001
SMONTH(SYEAR)	2004	1.3053	<.0001
SMONTH(SYEAR)	2005	0.1485	0.2896
SMONTH(SYEAR)	2010	0.1651	0.2502
SMONTH(SYEAR)	2011	0.9521	<.0001
SMONTH(SYEAR)	2012	-1.9697	<.0001
SMONTH(SYEAR)	2013	5.4153	<.0001
SMONTH(SYEAR)	2014	7.0232	<.0001
SMONTH(SYEAR)	2015	-9.4307	<.0001
SMONTH(SYEAR)	2016	-1.9886	<.0001
SMONTH(SYEAR)	2017	-2.012	<.0001
SMONTH(SYEAR)	2018	1.7471	<.0001

Fixed Effects

Beef calf lots

Effect	Num DF	Pr > F
SYEAR	23	<.0001
WT	1	<.0001
SEX	1	<.0001
SAREA	3	<.0001
BREED	2	<.0001
FRAME	2	<.0001
FLESH	3	<.0001
VAC	1	<.0001
HEAD	1	<.0001

Feeder cattle lots

Effect	Num DF	Pr > F
SYEAR	18	<.0001
WT	1	<.0001
SEX	1	<.0001
SAREA	3	<.0001
BREED	2	<.0001
FRAME	2	<.0001
FLESH	3	<.0001
HEAD	1	<.0001

Sale Price by Year

Sale Price by Gender

Sale Price by Sale Area

Sale Price by Breed

Sale Price by Frame

Sale Price by Flesh

Sale Price by Vaccination Status

Beef calf lots

O Model Validation

Model Validation

(28462, 11) (28462L,)

```
In [913]: # import dataset
          SLA1=pd.read_csv("DATA/SLA.csv")
          SLA1.head()
Out[913]:
             Unnamed: 0 SYEAR LOTID SMONTH HEAD SEX WT PRICE STATE STATECODE SAREA BREED FRAME FLESH VAC
                         1995
                                               115
                                                     1 425
                                                             81.25
                                                                     OK
           0
                     0
                                  1
                                                                                 25
                          1995
                                  2
                                           6
                                               220
                                                     1 460
                                                             80.00
                                                                     OK
                                                                                 25
                                                                                        3
                                                                                                3
           2
                     2
                          1995
                                  3
                                                     1 570
                                                            77.00
                                                                     MO
                                                                                 23
           3
                                                     1 610
                                                                     KS
                                                                                 22
                     3
                          1995
                                  4
                                           6
                                                             74.50
                                                                                         3
                                                                                                3
                                                                                                       5
                                                                                                                  0
           4
                     4 1995
                                  5
                                               155
                                                     1 625 68.10
                                                                     MS
                                                                                 46
                                                                                         5
                                                                                                       3
                                                                                                                  0
In [914]: SLA1 = SLA1.drop(['Unnamed: 0', 'LOTID', 'STATE', 'STATECODE'], axis=1)
          SLA1.head()
Out[914]:
             SYEAR SMONTH HEAD SEX WT PRICE SAREA BREED FRAME FLESH VAC
               1995
                              115
                                     1 425
                                            81.25
                                                       3
                                                              3
                          6
               1995
                              220
                                     1 460
                                            80.00
                                                      3
                                                              3
                                     1 570
                                            77.00
           2
               1995
                               84
                                                      3
                                                              1
                                                                     4
                                     1 610
                                            74.50
                                                      3
                                                                                0
           3
               1995
                               83
               1995
                                     1 625
                                            68.10
                              155
                                                       5
                                                                     3
                                                                                0
                          6
In [915]: SLA1 = SLA1.astype({"PRICE": int, "WT": int, "HEAD":int})
In [916]: y = SLA1['PRICE']
          X = SLA1[['SYEAR', 'SAREA', 'BREED', 'WT', 'HEAD', 'FRAME', 'SEX', 'VAC']]
In [917]: # create training and testing vars
          X_train, X_test, y_train, y_test = train_test_split(SLA1, y, test_size=0.3)
          print X_train.shape, y_train.shape
          print X test.shape, y test.shape
          (66410, 11) (66410L,)
```

```
In [918]: # fit a model
           lm = linear_model.LinearRegression()
           model = lm.fit(X_train, y_train)
           predictions = lm.predict(X_test)
In [919]: predictions[0:5]
Out[919]: array([ 74., 125., 173., 158., 226.])
In [920]: ## The line / model
           plt.scatter(y test, predictions)
           plt.xlabel('True Values')
           plt.ylabel('Predictions')
Out[920]: Text(0,0.5,'Predictions')
              400
              350
              300
            Predictions
500
500
              150
              100
              50
                             150
                                   200
                                        250
                                                   350
                        100
                                    True Values
In [921]: print 'Score:', model.score(X_test, y_test)
          Score: 1.0
In [922]: # evaluate the decision tree model using 10-fold cross-validation
           scores = cross val score(dt, X, y, scoring='accuracy', cv=10)
           print scores
           print scores.mean()
           [0.03292266 0.04167969 0.04877028 0.04546886 0.04213187 0.03835182
           0.04071247 0.04526618 0.04626372 0.04061999]
           0.042218755176322675
```

```
In [923]: # split validation
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=0)
         # Initialize DecisionTreeClassifier()
         dt = DecisionTreeClassifier()
         # Train a decision tree model
         dt.fit(X train, y train)
Out[923]: DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
                    max features=None, max leaf nodes=None,
                    min impurity decrease=0.0, min impurity split=None,
                    min samples leaf=1, min samples split=2,
                    min weight fraction leaf=0.0, presort=False, random state=None,
                    splitter='best')
In [924]: #Model evaluation
         # http://scikit-learn.org/stable/modules/model evaluation.html
         print metrics.accuracy_score(y_test, dt.predict(X_test))
         print "-----"
         print metrics.confusion_matrix(y_test, dt.predict(X_test))
         print "-----"
         print metrics.classification_report(y_test, dt.predict(X_test))
         print "-----"
         #print metrics.roc auc score(y test, dt.predict(X test))
         # y-test is the acual y value in the testing dataset
         # dt.predict(X test) is the predicted y value generated by your model
         # If they are same, we can say your model is accurate.
         0.0730961791831357
         [[0 0 0 ... 0 0 0]
          [0 2 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]
          [0 0 0 ... 0 0 0]]
                     precision recall f1-score support
                 41
                         0.00
                                  0.00
                                           0.00
                         0.67
                                  0.67
                                           0.67
                         0.00
                                           0.00
                                  0.00
```

Model Validation

```
In [997]: # import dataset
FEEDER1=pd.read_csv("DATA/FEEDER1.csv")
FEEDER1.head()
```

Out[997]:

	Unnamed: 0	SYEAR	LOTID	SMONTH	HEAD	SEX	WT	PRICE	STATE	STATECODE	SAREA	BREED	FRAME	FLESH	VAC
0	0	2010	111922	6	39	1	640	105.25	TX	26	3	4	4	4	0
1	1	2010	111923	6	39	2	640	98.25	TX	26	3	4	4	4	0
2	2	2010	111924	6	35	1	700	105.50	LA	45	5	4	3	2	0
3	3	2010	111925	6	35	2	700	99.50	LA	45	5	4	3	2	0
4	4	2010	111926	6	32	1	735	105.25	TX	26	3	4	4	4	1

In [998]: #now we can drop the orgional columns we created the dummy variables for
FEEDER1 = FEEDER1.drop(['Unnamed: 0', 'LOTID', 'STATE', 'STATECODE', 'VAC'], axis=1)
FEEDER1.head()

Out[998]:

	SYEAR	SMONTH	HEAD	SEX	WT	PRICE	SAREA	BREED	FRAME	FLESH
0	2010	6	39	1	640	105.25	3	4	4	4
1	2010	6	39	2	640	98.25	3	4	4	4
2	2010	6	35	1	700	105.50	5	4	3	2
3	2010	6	35	2	700	99.50	5	4	3	2
4	2010	6	32	1	735	105.25	3	4	4	4

```
In [999]: FEEDER1 = FEEDER1.astype({"PRICE": int, "WT": int, "HEAD":int})
```

```
In [1000]: y = FEEDER1['PRICE']
X = FEEDER1[['SYEAR', 'SAREA', 'BREED', 'WT', 'HEAD', 'FRAME', 'SEX']]
```



```
In [1001]: # create training and testing vars
           X_train, X_test, y_train, y_test = train_test_split(FEEDER1, y, test_size=0.3)
           print X train.shape, y train.shape
           print X test.shape, y test.shape
           (16703, 10) (16703L,)
           (7159, 10) (7159L,)
In [1002]: # fit a model
           lm = linear_model.LinearRegression()
           model = lm.fit(X train, y train)
           predictions = lm.predict(X_test)
In [1003]: predictions[0:5]
Out[1003]: array([139., 74., 131., 110., 62.])
In [1004]: ## The line / model
           plt.scatter(y_test, predictions)
           plt.xlabel('True Values')
           plt.ylabel('Predictions')
Out[1004]: Text(0,0.5, 'Predictions')
              250
              200
            Predictions
              150
               100
                                      150
                             100
                                                200
                                                         250
                                    True Values
```

In [1005]: print 'Score:', model.score(X_test, y_test)
Score: 1.0

```
In [1006]: # evaluate the decision tree model using 10-fold cross-validation
           scores = cross_val_score(dt, X, y, scoring='accuracy', cv=10)
           print scores
           print scores.mean()
           [0.07157218 0.07832792 0.07216072 0.07281754 0.06892231 0.08185654
           0.0625
                      0.07596567 0.06358131 0.05790161]
           0.07056057981651372
In [1007]: # split validation
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
           # Initialize DecisionTreeClassifier()
           dt = DecisionTreeClassifier()
           # Train a decision tree model
          dt.fit(X train, y train)
Out[1007]: DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
                      max features=None, max leaf nodes=None,
                      min impurity decrease=0.0, min impurity split=None,
                      min samples leaf=1, min samples split=2,
                      min weight fraction leaf=0.0, presort=False, random state=None,
                      splitter='best')
In [1008]: #Model evaluation
           # http://scikit-learn.org/stable/modules/model evaluation.html
           print metrics.accuracy_score(y_test, dt.predict(X_test))
           print "-----
           print metrics.confusion_matrix(y_test, dt.predict(X test))
           print metrics.classification_report(y_test, dt.predict(X_test))
           print "-----"
           #print metrics.roc auc score(y test, dt.predict(X test))
           # y-test is the acual y value in the testing dataset
           # dt.predict(X test) is the predicted y value generated by your model
           # If they are same, we can say your model is accurate.
           0.1169076052796983
           [[0 0 0 ... 0 0 0]
            [0 0 0 ... 0 0 0]
            [0 0 0 ... 0 0 0]
```


Implications

- Steers sell for more than heifers
 - Why?
 - More efficient in feed conversion, less management and risk (i.e. pregnancy)
- Cattle located near the Midwest have the highest sale prices
 - Why?
 - Located closer to where the feedyard and resources are located to finish cattle, less transportation cost/risk
- What breed of cattle have the most value?
 - English type cattle (i.e. Angus, Hereford)
 - English-Continental crossed cattle (i.e. Angus X Charolais)
 - Brahman-influenced cattle have the lowest sale price
- Larger frame, light/medium flesh
- Vaccinated

Implications

- Don't "over trust" the data
- Observational, producer data
 - Limitations
 - Why will the buyer value?
 - What is practical for each producer?
- Representative cowherds of +300 head
 - Average herd size in United States is 40 head
- Strive for premiums or avoid discounts?
 - Market changes impact demand

Questions?

