Algoritmo para encontrar rutas óptimas para vehículos eléctricos

Tomas Atehortua Ceferino Medellín, Fecha del día de la sustentación

Estructuras de Datos Diseñada

Gráfico 1: Grafo representado como una matriz de adyacencia

Explicación del algoritmo y su complejidad

Gráfico 2: Ejemplo de los caminos (ahorros) que son encontrados por el algoritmo de Clarke-Wright

Sub problema	Complejidad
Determinar si un nodo se puede visitar	O(n)
Calcular el camino para cada vehiculo	O(n^2)
Incluir un nodo en un camino	O(1)
Encontrar los ahorros	O(n^2)

Tabla 1: complejidad de cada uno de los subproblemas que componente el algoritmo. Donde n es la cantidad de nodos del dataset,

Criterios de Diseño del Algoritmo

Después de analizar diferentes soluciones al problema, se decidió por implementar una solución basada en el algoritmo de Clarke-Wright. Este algoritmo ayuda bastante para resolver problemas en los que el número de vehículos no es concreto.

En esta solución, se procura encontrar una ruta eficiente con limitaciones de tiempo y batería, ya que son vehículos eléctricos.

Es bueno mencionar que este algoritmo no siempre encuentra la mejor solución pero aun así es eficiente en tiempo y da una respuesta suficientemente valida.

Consumo de Tiempo y Memoria

Consumo de tiempo	Conjunto de Datos 1	Conjunto de Datos 2	Conjunto de Datos 3
Mejor caso	4 sg	3 sg	7 sg
Caso promedio	12 sg	10 sg	13 sg
Peor caso	30 sg	19 sg	25 sg

Gráfico 3: Tiempos de ejecución del algoritmo con diferentes conjuntos de datos

	Conjunto de Datos 1	Conjunto de Datos 2	Conjunto de Datos 3
Consumo de memoria	0,74 MB	0,83MB	0,84 MB

Gráfico 4: Consumo de memoria del algoritmo con diferentes conjuntos de datos

Gráfico 5: Sistema de planificación óptima de domicilios

Inserten sus propias gráficas y sus explicaciones

C. Patiño-Forero, M. Agudelo-Toro, and M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, Nov. 2016. Available at: https://arxiv.org/abs/1611.04156

Inserten el enlace del reporte aceptado en arXiv

