Linear Algebra II - Nilpotent Linear Transformation

Ming-Hsuan Kang

March 19, 2020

Nilpotent Linear Transformations

In the last lecture, we have shown that for the linear transform T on V, when $f_T(x)$ splits, V can be decomposed as a direct sum of generalized eigenspaces. Since each generalized eigenspace is T-invariant, it remains to find a nice matrix representation of T restricted on each generalized eigenspace.

Therefore, we may assume that V is equal to a single generalized eigenspace $E_{\infty}(\lambda)$. On the other hand, we can also replace T by $T - \lambda I$ so that we can further assume that $\lambda = 0$ and $V = E_{\infty}(0) = \ker_{\infty}(T)$.

Definition A linear transform T is nilpotent if $T^k \equiv 0$ for some positive integer k.

The following are equivalent definitions of nilpotency and its proof is left to readers as exercise.

Theorem 1. The following are equivalent.

- 1. T is nilpotent.
- 2. $T^n \equiv 0$ where $n = \dim V$.
- 3. $T^k \equiv 0$ for some positive integer k.

Definition For a nilpotent linear transform T, the smallest positive integer k satisfying $T^k \equiv 0$ is called the index of T.

Now suppose that T is nilpotent. Let \vec{v} be a nonzero vector. Let $\alpha = {\vec{v}, T(\vec{v}), \dots, T^{m-1}(\vec{v})}$ is the basis of the cyclic subspace W generated by \vec{v} . Then we have

$$T^{m}(\vec{v}) = a_0 \vec{v} + \dots + a_{m-1} T^{m-1}(\vec{v})$$

for some a_0, \dots, a_{m-1} in F such that

$$f_{T|_{W}}(x) = x^{m} - a_{m-1}x^{m-1} - \dots - a_{0},$$

the characteristic polynomial of T restricted on W. On the other hand, $f_{T|_W}(x)$ divides $f_T(x) = x^n$, which means $f_{T|_W}(x) = x^m$ and $T^m(\vec{v}) = \vec{0}$. In this case, we have

$$\operatorname{Rep}_{\alpha}(T|_{W}) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & \ddots & \ddots & 0 \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

Besides, it is convenient to express the action of T on W by the diagram

$$\vec{0} \leftarrow T^{m-1}(\vec{v}) \leftarrow \cdots \leftarrow T(\vec{v}) \leftarrow \vec{v}.$$

The goal of this lecture is the following theorem.

Theorem 2. Let T be a nilpotent linear transformation on V of index k. Let $\vec{v}_1, \dots, \vec{v}_m$ be vectors in V such that $T^{k-1}(\vec{v}_1), \dots, T^{k-1}(\vec{v}_m)$ forms a basis of $\text{Im}(T^{k-1})$. The following hold.

- 1. $V = \ker(T^{k-1}) \bigoplus F\vec{v_i}$.
- 2. $\sum \operatorname{cyclic}(\vec{v}_i) = \bigoplus \operatorname{cyclic}(\vec{v}_i)$.
- 3. There exists a T-invariant subspace W contained in $\ker(T^{k-1})$ such that $V = W \bigoplus \operatorname{cyclic}(\vec{v_i})$.

Proof. 1) First, we show that

$$\ker(T^{k-1}) + \sum_{i=1}^{m} F\vec{v}_i = \ker(T^{k-1}) \bigoplus_{i=1}^{m} F\vec{v}_i.$$

Suppose $\vec{0} = \vec{v} + \sum a_i \vec{v}_i$ for some $\vec{v} \in \ker(T^{k-1})$ and $a_i \in F$. Apply T^{k-1} to the both hand sides, we obtain

$$\vec{0} = \vec{0} + \sum_{i=1}^{m} a_i T^{k-1}(\vec{v}_i).$$

By assumption of \vec{v}_i , we have $a_1 = \cdots = a_m = 0$ which implies that $\vec{v} = 0$. Therefore, $\ker(T^{k-1}) + \sum F\vec{v}_i = \ker(T^{k-1}) \bigoplus F\vec{v}_i$.

On the other hand, by dimensional formula, we have

$$\dim \left(\ker(T^{k-1}) \bigoplus F \vec{v}_i \right) = \dim \ker(T^{k-1}) + \dim \operatorname{Im}(T^{k-1}) = \dim V.$$

We conclude that $\ker(T^{k-1}) \bigoplus F\vec{v_i} = V$.

2) By assumption of \vec{v}_i , the subspace $\operatorname{cyclic}(\vec{v}_i)$ admits a basis $\alpha_i = \{\vec{v}_i, T(\vec{v}_i) \cdots, T^{k-1}(\vec{v}_i)\}$. It

remains to show that $\alpha_1 \cup \cdots \cap \alpha_m$ is linearly independent. Suppose $\sum_{i,j} a_{ij} T^i(\vec{v}_j) = \vec{0}$ is a non-trivial linear relation. Let r be the smallest integer satisfying $a_{rj} \neq 0$ for some j. Then applying T^{k-r-1} to the above equation, we obtain

$$\vec{0} = T^{k-r-1} \left(\sum_{i=r}^{k} \sum_{j=1}^{m} a_{ij} T^{i}(\vec{v}_{j}) \right) = \left(\sum_{i=r}^{k} \sum_{j} a_{ij} T^{k-r-1+i}(\vec{v}_{j}) \right) = \left(\sum_{j=1}^{m} a_{ij} T^{k-1}(\vec{v}_{j}) \right).$$

Thus, we obtain a non-trivial linear relation of $T^{k-1}(\vec{v}_1), \cdots, T^{k-1}(\vec{v}_m)$, which is a contradiction.

3) Let us prove the theorem by induction on the index k. If k=1, then T is the zero transform and T^0 is the identity map. In this case, $\vec{v}_1, \dots, \vec{v}_m$ forms a basis of the whole V and $W = \{\vec{0}\}$. Now suppose k>1 and the theorem holds for index < k. Denote T restricted on $\ker(T^{k-1})$ by \tilde{T} for short. Then \tilde{T} is a nilpotent linear transform of index k-1. Note that $T(\vec{v}_1), \dots, T(\vec{v}_m)$ are contained in $\ker(T^{k-1})$ and

$$\{\tilde{T}^{k-2}(T(\vec{v}_1)), \cdots, \tilde{T}^{k-2}(T(\vec{v}_m))\} = \{T^{k-1}(\vec{v}_1), \cdots, T^{k-1}(\vec{v}_m)\}\$$

is linearly independent. Therefore, we can extent it to a basis of $\operatorname{Im}(\tilde{T}^{k-2})$, namely

$$\{\tilde{T}^{k-2}(T(\vec{v}_1)), \cdots, \tilde{T}^{k-2}(T(\vec{v}_m))\} \cup \{\tilde{T}^{k-2}(\vec{u}_1), \cdots, \tilde{T}^{k-2}(\vec{u}_r)\}.$$

By induction, the part 3) holds for \tilde{T} so that there exists a \tilde{T} -invariant subspace W_0 in $\ker(\tilde{T}^{k-2})$ such that

$$\ker(T^{k-1}) = W_0 \bigoplus_{i=1}^m \operatorname{cyclic}(T(\vec{v}_i)) \bigoplus_{j=1}^r \operatorname{cyclic}(\vec{u}_j).$$

Finally, set $W = W_0 \bigoplus_{j=1}^r \operatorname{cyclic}(\vec{u}_j)$, which is a \tilde{T} -invariant subspace in $\ker(T^{k-1})$ and also a T-invariant subspace in V. Together with the part 1), we have

$$V = \ker(T^{k-1}) \bigoplus_{i=1}^{m} F \vec{v}_i = W \bigoplus_{i=1}^{m} \operatorname{cyclic}(T(\vec{v}_i)) \bigoplus_{i=1}^{m} F \vec{v}_i = W \bigoplus_{i=1}^{m} \operatorname{cyclic}(\vec{v}_i).$$

Corollary 3. For a nilpotent linear transform T on V, V can be decomposed as a direct sum of cyclic subspaces of T.

Next, let us discuss the uniqueness of cyclic subspace decomposition. Consider the following example. Suppose

$$V = \operatorname{cyclic}(\vec{v}_1) \oplus \operatorname{cyclic}(\vec{v}_2) \oplus \operatorname{cyclic}(\vec{v}_3) \oplus \operatorname{cyclic}(\vec{v}_4)$$

and the action of T can be characterized by

From the above diagram, the red parts form the basis of ker(T).

Similarly, the blue parts form the basis of $ker(T^2)$.

Remark. If we only need care about the sizes of cyclic subspaces then it is common to use "the dot diagram" as

Let d_i be the dimension of $\operatorname{cyclic}(\vec{v_i})$. We conclude that

$$\dim \ker(T) = \#\{i | d_i \ge 1\}.$$

and

$$\dim \ker(T^2) = \#\{i | d_i \ge 1\} + \#\{j | d_j \ge 2\}.$$

In general, suppose $V = \bigoplus_{i=1}^k \operatorname{cyclic}(\vec{v_i})$. Let $d_i = \dim \operatorname{cyclic}(\vec{v_i})$. We have

$$\dim \ker(T) = \#\{i|d_i \ge 1\}$$

$$\dim \ker(T^2) - \dim \ker(T) = \#\{i|d_i \ge 2\}$$

$$\vdots$$

$$\dim \ker(T^r) - \dim \ker(T^{r-1}) = \#\{i|d_i \ge r\}.$$

Corollary 4 (Uniqueness of cyclic decomposition). For a nilpotent linear transformation T on V, let $V = \bigoplus_{i=1}^k W_i = \bigoplus_{j=1}^r U_j$ be two cyclic subspace decompositions. If none of subspace is the zero subspace, then r = k. Moreover, if $\dim W_i \geq \dim W_j$ and $\dim U_i \geq \dim U_j$ for all i > j, then $\dim W_i = \dim U_i$ for all i.

Explicit Cyclic Subspace Decomposition

The basis principle to compute cyclic subspace decompositions is to find the highest dimensional cyclic subspaces first.

Example Let

$$A = \left(\begin{array}{rrr} 3 & 12 & -9 \\ -1 & -6 & 6 \\ -1 & -4 & 3 \end{array}\right).$$

By direct computation, we have

$$\dim \ker(A) = 1, \dim \ker(A^2) = 2, \text{ and } \dim \ker(A^3) = 3$$

which implies that the dot diagram is

In this case, V admits a basis of the form

$$\vec{0} \leftarrow A^2(\vec{v_1}) \leftarrow A(\vec{v_1}) \leftarrow \vec{v_1}$$

To find \vec{v}_1 , note that

$$\operatorname{Im}(A^{2}) = \operatorname{Im}\left(\begin{pmatrix} 6 & 0 & 18 \\ -3 & 0 & -9 \\ -2 & 0 & -6 \end{pmatrix}\right) = \operatorname{span}\{A^{2}(\vec{v}_{1})\}.$$

Therefore, we can choose $A^2(\vec{v}_1) = \begin{pmatrix} 6 \\ -3 \\ -2 \end{pmatrix}$ and $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Finally let $\alpha = \{\vec{v}_1, A(\vec{v}_1), A^2(\vec{v}_1)\}$ and $P = \begin{pmatrix} 1 & 3 & 6 \\ 0 & -1 & -3 \\ 0 & -1 & -2 \end{pmatrix}$ be the matrix of change basis. Then

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Example Let

$$A = \left(\begin{array}{rrr} 3 & 6 & -3 \\ -2 & -4 & 2 \\ -1 & -2 & 1 \end{array}\right).$$

By direct computation, we have

$$\dim \ker(A) = 2$$
 and $\dim \ker(A^2) = 3$

which implies that the dot diagram is

In this case, V admits a basis of the form

First, let us find \vec{v}_1 . Note that

$$Im(A) = span\{A(\vec{v}_1)\}.$$

Therefore, we can choose $A(\vec{v}_1) = \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ and $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. To find \vec{v}_2 , note that

$$\operatorname{span}\{A(\vec{v}_1), \vec{v}_2\} = \ker(A) = \operatorname{span}\left\{\begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\0 \end{pmatrix}\right\}.$$

Therefore, we can choose $v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Finally let $\alpha = \{\vec{v}_1, A(\vec{v}_1), \vec{v}_2\}$ and $P = \begin{pmatrix} 1 & 3 & 1 \\ 0 & -2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ be the matrix of change basis. Then

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix}.$$

Example Let

$$A = \left(\begin{array}{ccccc} 2 & 4 & 0 & 0 & 4 \\ -1 & -2 & 1 & 2 & 1 \\ 0 & 0 & 3 & 6 & 9 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -2 & -3 \end{array}\right).$$

By direct computation, we have

$$\dim \ker(A) = 3$$
 and $\dim \ker(A^2) = 5$,

which implies that its dot diagram is

In this case, V admits a basis of the form

First, let us find cyclic subspaces of dimension two. Since

$$\operatorname{span}\{A(\vec{v}_1), A(\vec{v}_2)\} = \operatorname{Im}(A),$$

we can choose
$$A(\vec{v}_1) = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 and $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$; we can choose $A(\vec{v}_2) = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 0 \\ -1 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. To find \vec{v}_3 , note that

$$\operatorname{span}\{\vec{v}_3, A(\vec{v}_1), A(\vec{v}_2)\} = \ker(A) = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ -1 \\ -3 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Therefore, we can choose $\vec{v}_3 = \begin{pmatrix} 0 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix}$. Finally let $\alpha = \{\vec{v}_1, A(\vec{v}_1), \vec{v}_2, A(\vec{v}_2), \vec{v}_3\}$ and $P = \begin{pmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}$ be the matrix of change basis. Then

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Example Let
$$A = \begin{pmatrix} 4 & 6 & -2 & 2 & 0 & 2 \\ -2 & -4 & 2 & -2 & 2 & -2 \\ 3 & -1 & 0 & 0 & 11 & -8 \\ 2 & -1 & 0 & 0 & 8 & -6 \\ -2 & -2 & 1 & -1 & -2 & 1 \\ -1 & 0 & 0 & 0 & -3 & 2 \end{pmatrix}$$
. By direct computation, we have

$$\dim \ker(A) = 3, \dim \ker(A^2) = 5$$
, and $\dim \ker(A^3) = 6$

which implies that the dot diagram is

In this case, V admits a basis of the form

First, let us find the cyclic subspace of dimension three. Since

$$\operatorname{span}\{A^{2}(\vec{v}_{1})\} = \operatorname{Im}(A^{2}) = \operatorname{Im}\left(\begin{pmatrix} 0 & 0 & 4 & -4 & 0 & 4 \\ 0 & 0 & -2 & 2 & 0 & -2 \\ 0 & 0 & 3 & -3 & 0 & 3 \\ 0 & 0 & 2 & -2 & 0 & 2 \\ 0 & 0 & -2 & 2 & 0 & -2 \\ 0 & 0 & -1 & 1 & 0 & -1 \end{pmatrix}\right),$$

we can choose $A^2(\vec{v}_1) = \begin{pmatrix} 4 \\ -2 \\ 3 \\ 2 \\ -1 \end{pmatrix}$ and $\vec{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. Next, let us find the cyclic subspace of dimension two. Note that

$$\operatorname{span}\left\{A^{2}(\vec{v}_{1}), A(\vec{v}_{2})\right\} = A(\ker(A^{2})) = \operatorname{span}\left\{\begin{pmatrix} 4 \\ -4 \\ -8 \\ -6 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 11 \\ 8 \\ -2 \\ -3 \end{pmatrix}\right\}.$$

Therefore, we can choose $A(\vec{v}_2) = \begin{pmatrix} 4 \\ -4 \\ -8 \\ -6 \\ 0 \\ 2 \end{pmatrix}$ and $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \\ 0 \end{pmatrix}$. Third, let us find the cyclic subspace of dimension one. Note that

$$\operatorname{span}\left\{A^{2}(\vec{v}_{1}), A(\vec{v}_{2}), \vec{v}_{3}\right\} = \ker(A) = \operatorname{span}\left\{\begin{pmatrix} 2 \\ -2 \\ -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 2 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}\right\}.$$

Therefore, we can choose $\vec{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

Finally let $\alpha = {\vec{v}_1, A(\vec{v}_1), \vec{A^2}(\vec{v}_1), \vec{v}_2, A(\vec{v}_2), \vec{v}_3}$ and P be the corresponding matrix of change basis. Then

$$P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$