

Обучение регрессионных моделей

Сергей В. Аксёнов,

к.т.н., доцент кафедры теоретических основ информатики, Томский государственный университет

Примеры регрессионных моделей

Метрики -1

1. Средняя квадр. Ошибка (СКО): $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2$

2. Квадрат СКО:

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2}$$

3. Относит. квадр. ошибка (ОКО): $RSE = \frac{\sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$

4. Корень ОКО:

$$RRSE = \sqrt{RSE} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

 y_i - Истинные значения

 $\widetilde{y_i}$ - Предсказанное значение

 \bar{y} - Среднее значение

Метрики -2

5. Средняя абс. ошибка:
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \widetilde{y}_i|$$

6. Относит. абс. ошибка:
$$RAE = \frac{\sum_{i=1}^{n} |y_i - \widetilde{y}_i|}{\sum_{i=1}^{n} |y_i - \overline{y}|}$$

6. Коэффициент детерминации:
$$R2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

- y_i Истинные значения
- $\widetilde{y_i}$ Предсказанное значение
- \bar{y} Среднее значение

Линейная регрессия: один признак

Линейная регрессия: два признака

Пример тепловой карты и зависимости признаков

Регуляризация в регрессионных моделей

Гребневая регрессия:

$$J(w)_{Ridge} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda ||w||_2^2$$

L2:
$$\lambda ||w||_2^2 = \lambda \sum_{j=1}^m w_j^2$$

Метод Lasso:

$$J(w)_{Lasso} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda ||w||_1$$

$$L1: \lambda ||w||_1 = \lambda \sum_{j=1}^{m} |w_j|$$

Метод эластичной сети:

$$J(w)_{Elastic_Net} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2$$

Полиномиальная регрессия

$$y = w_0 + w_1 x + w_2 x^2 + \dots + w_m x^m$$

Примеры:	Начальный набор:	Новый набор:
Квадратичная регрессия (Степень=2):	\boldsymbol{x}	x, x^2
Кубическая регрессия (Степень=3):	\boldsymbol{x}	x, x^2, x^3
Квадратичная регрессия (Степень=2):	x_{1}, x_{2}	$x_1, x_2, x_1 x_2, x_1^2, x_2^2$
Кубическая регрессия (Степень=3):	x_1, x_2	$x_1, x_2, x_1x_2, x_1^2, x_2^2, x_1x_2^2, x_2x_1^2, x_1^3, x_2^3$

Сравнение регрессионных моделей

Регрессия с помощью дерева и случайного леса

Прирост информации, использующийся для бинарного расщепления:

$$IG(D_p, x) = I(D_p) - \frac{N_{left}}{N_p}I(D_{left}) - \frac{N_{right}}{N_p}I(D_{right})$$

Мера неоднородности (энтропия) для регрессии:

$$I(t) = MSE(t) - \frac{1}{N_t} \sum_{i \in D_t}^{n} (y^{(i)} - \hat{y}_t)^2$$

Предсказанное целевое значение для узла дерева:

$$\hat{y}_t = \frac{1}{N} \sum_{i \in D_t} y^{(i)}$$

Пример регрессии с помощью дерева

