Matrices and Determinants

AI24BTECH11015 - Harshvardhan Patidar

Section-A — JEE Advanced/ IIT-JEE

- 3) Fill in the Blanks:
 - v) How many 3×3 matrices M with entries from (0,1,2) are there, for which the sum of the diagonal entries of M^TM is 5?
 - i) 126
 - ii) 198
 - iii) 162
 - iv) 135

(JEEAdv.2017)

w) Let
$$M = \begin{bmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{bmatrix} = \alpha I + \beta M^{-1}$$

Where $\alpha = \alpha(\theta)$ and $\beta = \beta(\theta)$ are real numbers, and I is the 2×2 identity matrix. If a* is the minimum of the set $(\alpha(\theta): \theta \in [0, 2\pi))$ and b* is the minimum of the set $(\beta(\theta): \theta \in [0, 2\pi))$. Then the value of $a^* + b^*$ is

(JEEAdv.2019)

- 4) MCQs with More than One Correct
 - $a\alpha + b$ $\begin{vmatrix} b & c \\ a\alpha + b & b\alpha + c \end{vmatrix}$ a) The determinant $b\alpha + c$ is

equal to zero, if

- i) *a*, *b*, *c* are in A.P.
- ii) a, b, c are in G.P.
- iii) a, b, c are in H.P.
- iv) α is a root of the equation $ax^2+bx+c=0$
- v) $(x \alpha)$ is a factor of $ax^2 + bx + c$

(1986 - 2Marks)

b) If
$$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$$
, then

- i) x = 3, y = 1
- ii) x = 1, y = 3

iii)
$$x = 0, y = 3$$

iv)
$$x = 0, y = 0$$

(1998 - 2Marks)

1

- c) Let M and N be two 3×3 non-singulr skewsymmetric matrices such that MN = NM. If P^T denotes the transpose of P, then $M^{2}N^{2}(M^{T}N^{-1})^{-1}(MN^{-1})^{T}$ is equal to
 - i) M²
 - ii) $-N^2$
 - iii) -M²
 - iv) MN

(2011)

- d) If the adjoint of a 3×3 matrix P is $\begin{bmatrix} 2 & 1 & 7 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{bmatrix}$, then the possible value(s) of the determinant
 - i) -2

of P is (are)

- ii) -1
- iii) 1
- iv) 2

(2012)

- e) For 3×3 matrices M and N, which of the following statement(s) is (are) NOT correct?
 - i) N^TMN is symmetric or skew symmetric, according as M is symmetric or skew symmetric
 - ii) MN-NM is skew symmetric for all matrices M and N.
 - iii) MN is symmetric for all symmetric matrices M and N.
 - iv) (ad jM)(ad jN) = adj(MN) for all invertible matrices M and N.