Национальный исследовательский университет Высшая школа экономики

Отчет по заданию №6

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.

Вариант 9 / 2 / 1

Выполнил: студент 213 группы Александров М. А.

Преподаватель: Батузов К. А.

Содержание

1.	Постановка задачи	2	
2.	Математическое обоснование	3	
3.	Результаты экспериментов	4	
4.	Структура программы и спецификация функций	5	
5.	Сборка программы (Make-файл)	6	
6.	Отладка программы, тестирование функций	7	
7.	Анализ допущенных ошибок	8	
Сп	Список питируемой дитературы		

1. Постановка задачи

Задача заключалась в реализации многомодульной программы на языке Си и ассемблере NASM с использованием утилиты Маке, которая вычисляла бы площадь плоской фигуры, заключенной между тремя кривыми с помощью заданных численно-математических методов. А именно, метода хорд для поиска точек пересечения кривых, которые являются вершинами фигуры, и формулы прямоугольников для вычисления интегралов. Отрезки для применения метода хорд должны были быть вычислены аналитически. При этом функции, определяющие кривые, должны были быть реализованы на языке ассемблера, а вся остальная часть программы на языке Си.

Уравнения кривых:

1.
$$f1 = \frac{3}{(x-1)^2+1}$$

2.
$$f2 = \sqrt{x + 0.5}$$
.

3.
$$f3 = e^{-x}$$

2. Математическое обоснование

Для использования метода хорд требуется, чтобы корень на выбранном промежутке [a; b] был единственный (1, 2), а также чтобы выполнялось условие сходимости (3) [1]:

- 1. Функция F(x) = f(x) g(x) определена и непрерывна на данном отрезке, а также имеет разные знаки на концах отрезка.
- 2. Ее производная F'(x) не меняет знак.
- 3. F''(x) не меняет знак на промежутке [a; b]

В результате анализа представленных кривых были выбраны следующие промежутки для поиска корней (сначала покажем, что на каждом из них лежит только один корень):

- 1. [1.6, 2.5] для поиска точки пересечения f_1 и f_2 .
 - а. F(x) определена и непрерывна на данном отрезке. $(f_1(1.6) f_2(1.6))(f_1(2.5) f_2(2.5)) = (2.206 1.449)(0.923 1.732) = 0.106 * <math>(-0.809) = -0.086 < 0$. Следовательно, знак F(x) на концах отрезка различается.
 - b. F'(x) = 0 при $x \approx -0.289$ и $x \approx 0.929$. $-0.289 \notin [1.2,2.5]$, $0.929 \notin [1.2,2.5]$, следовательно, производная не меняет знак на заданном промежутке. Таким образом, на этом промежутке F(x) имеет только один корень.
- 2. [-0.25,0] для поиска точки пересечения f_1 и f_3 .
 - а. F(x) определена и непрерывна на данном отрезке. $(f_1(-0.25) f_3(-0.25))(f_1(0) f_3(0)) = (1.17 1.284)(1.5 1) = (-0.113) * 0.5 = -0.056 < 0$. Следовательно, знак F(x) на концах отрезка различается.
 - b. F'(x) = 0 при $x \approx 1.058$. $1.058 \notin [-0.4, 0]$, следовательно, производная не меняет знак на заданном промежутке. Таким образом, на этом промежутке F(x) имеет только один корень.
- 3. [0,1.2] для поиска точки пересечения f_2 и f_3 .
 - а. F(x) определена и непрерывна на данном отрезке. $(f_2(0) f_3(0))(f_2(1.2) f_3(1.2)) = (0.707 1)(1.304 0.301) = (-0.293) * 1.003 = -0.293 < 0$. Следовательно, знак F(x) на концах отрезка различается.
 - b. F'(x) > 0 на всей плоскости действительных чисел, следовательно, на этом промежутке монотонна, а имеет только один корень.

Остается лишь проверить, выполняется ли требование по сходимости на

заданных промежутках для каждой функции:

1. Для f_1 и f_2 : $F''(x) = 3\left(\frac{8(x-1)^2}{((x-1)^2+1)^3} - \frac{2}{((x-1)^2+1)^2}\right) + \frac{1}{4(x+0.5)^{3/2}}$. Заметим, что второе слагаемое (за скобками) всегда больше 0. Преобразуем выражение в скобках, приведя его к общему знаменателю. Получим:

$$\frac{6(x-1)^2-2}{((x-1)^2+1)^3}$$

При $x \ge 1.6$ получаем:

$$6(x-1)^2 \ge 6 * 0.6^2 = 2.16$$
$$2.16 > 2$$

Таким образом, числитель больше нуля. Рассмотрим знаменатель:

$$(x-1)^2 + 1 > 0$$
 всегда
Тогдаи $((x-1)^2 + 1)^3 > 0$

Следовательно, выражение в скобках больше нуля на заданном промежутке. Поскольку выражение за скобками тоже больше нуля на этом промежутке, то и вся функция на нем положительна. При этом F''(x) непрерывна и определена на данном промежутке, значит условие сходимости выполнено и [1.6;2.5] подходит.

- 2. Для f_1 и f_3 : $F''(x) = \frac{6(3x^2-6x+2)}{x^2-2x+2} e^{-x}$. Докажем, что первое слагаемое больше второго (под вторым здесь будем понимать e^{-x} , не $-e^{-x}$) на всем промежутке [-0.25;0]. Это будет означать, что функция F"(х) на данном промежутке положительна и следовательно не меняет знак. Для этого нам потребуется доказать, что оба слагаемых монотонно убывают на всем отрезке и при этом значения первого на концах отрезка больше, чем значения второго. Рассмотрим концы отрезка: $F''(-0.25) \approx 7.35 > 0$, F''(0) = 5 > 0. Таким образом, дробь (первое слагаемое) больше экспоненты (второго слагаемого) на концах отрезка. Теперь рассмотрим производную первого слагаемого. Она будет равна: $h'(x) = 48x - 48(x^2 - 2x + 2)^2 = \frac{48x}{(x^2 - 2x + 2)^2} - \frac{48}{(x^2 - 2x + 2)^2}$. Заметим, что первое слагаемое отрицательно при x < 0 (так как 48x < 0, $(x^2 - 2x + 2)^2 > 0$), а второе отрицательно всегда. Таким образом, h'(x) отрицательна на данном промежутке, следовательно, $h(x) = \frac{6(3x^2 - 6x + 2)}{x^2 - 2x + 2}$ убывает на заданном промежутке. $(e^{-x})' = -e^{-x} < 0$ для всех x, поэтому e^{-x} убывает на заданном промежутке. Итак, мы доказали, что h(x) и e^{-x} монотонно убывают на промежутке [-0.25;0], а на концах отрезка h(x)больше. Значит F''(x) > 0 на всем заданном промежутке, при этом она на нем непрерывна и определена, а следовательно выбранный нами промежуток удовлетворяет условию сходимости метода хорд.
- 3. Для f_2 и f_3 : $F''(x) = -e^{-x} + \frac{-1}{\left(4 \times (0.5 + x)^{\left(\frac{3}{2}\right)}\right)} < 0$. Первое слагаемое всегда

меньше нуля. Второе слагаемое всегда меньше нуля, потому что

знаменатель всегда больше нуля, однако числитель — отрицательное число, следовательно функция всегда отрицательна. Таким образом, F''(x) < 0 при всех значениях x, следовательно, она не меняет знак на данном промежутке, при этом она на нем определена и непрерывна, значит [0, 1.2] подходит.

Для сходимости метода прямоугольников требуется, чтобы функция была определена на данном отрезке, это условие выполнено.

Для производимых вычислений были выбраны значения $\varepsilon 1 = 0.0000001$ и $\varepsilon 2 = 0.0001$. Докажем, что эти значения достаточны для достижения требуемой точности $\varepsilon = 0.001$.

Если функция f(x) > 0 определена и непрерывна на отрезке $[x_1 - \varepsilon 1; x_2 + \varepsilon 2]$, то максимальное значение интеграла будет достигнуто при интегрировании на самом этом отрезке, а минимальное — на отрезке $[x_1 + \varepsilon 1; x_2 - \varepsilon 2]$.

Максимальное значение будет равно:

$$\int_{x_1 - \varepsilon_1}^{x_2 + \varepsilon_1} f \ dx = \int_{x_1 - \varepsilon_1}^{x_1} f \ dx + \int_{x_1}^{x_2} f \ dx + \int_{x_2}^{x_2 + \varepsilon_1} f \ dx$$

Минимальное:

$$\int_{x_1 + \varepsilon_1}^{x_2 - \varepsilon_1} f \ dx = -\int_{x_1}^{x_1 + \varepsilon_1} f \ dx + \int_{x_1}^{x_2} f \ dx - \int_{x_2 - \varepsilon_2}^{x_2} f dx$$

Чтобы вычислить максимальную погрешность необходимо взять максимум двух значений: разности максимального и реального значения интеграла и разности реального и минимального значений. Затем прибавить к полученному значению $\varepsilon 2$, таким образом учитывая и его:

$$\varepsilon_{f} = \max\left(\left(\int_{x_{1}-\varepsilon_{1}}^{x_{1}} f \, dx + \int_{x_{1}}^{x_{2}} f \, dx + \int_{x_{2}}^{x_{2}+\varepsilon_{1}} f \, dx\right) - \int_{x_{1}}^{x_{2}} f \, dx, \int_{x_{1}}^{x_{2}} f \, dx$$

$$-\left(-\int_{x_{1}}^{x_{1}+\varepsilon_{1}} f \, dx + \int_{x_{1}}^{x_{2}} f \, dx - \int_{x_{2}-\varepsilon_{2}}^{x_{2}} f \, dx\right)\right) + \varepsilon_{2} =$$

$$= \max\left(\int_{x_{1}-\varepsilon_{1}}^{x_{1}} f \, dx + \int_{x_{2}}^{x_{2}+\varepsilon_{1}} f \, dx, \int_{x_{1}}^{x_{1}+\varepsilon_{1}} f \, dx + \int_{x_{2}-\varepsilon_{2}}^{x_{2}} f\right) + \varepsilon_{2}$$

Приведём вычисления соответствующей погрешности для заданных кривых:

1. Для f_1 :

$$\max \left(\int_{x_1 - \varepsilon_1}^{x_1} f_1 \, dx + \int_{x_2}^{x_2 + \varepsilon_1} f_1 \, dx, \int_{x_1}^{x_1 + \varepsilon_1} f_1 \, dx + \int_{x_2 - \varepsilon_2}^{x_2} f_1 \right) + \varepsilon_2$$

$$\approx \max(0.00000012 + 0.00000016, 0.00000012 + 0.00000016) + 0.0001$$

$$= 0.00010028$$

2. Для f_2 :

$$\max \left(\int_{x_1 - \varepsilon_1}^{x_1} f_2 \ dx + \int_{x_2}^{x_2 + \varepsilon_1} f_2 \ dx, \int_{x_1}^{x_1 + \varepsilon_1} f_2 \ dx + \int_{x_2 - \varepsilon_2}^{x_2} f_2 \right) + \varepsilon_2$$

$$\approx \max(0.000000083 + 0.00000016, 0.000000083 + 0.00000016)$$

$$+ 0.0001 = 0.000100243$$

3. Для f_3 :

$$\max \left(\int_{x_1 - \varepsilon_1}^{x_1} f_3 \ dx + \int_{x_2}^{x_2 + \varepsilon_1} f_3 \ dx, \int_{x_1}^{x_1 + \varepsilon_1} f_3 \ dx + \int_{x_2 - \varepsilon_2}^{x_2} f_3 \right) + \varepsilon_2$$

$$\approx \max(0.00000012 + 0.000000083, 0.00000012 + 0.000000083)$$

$$+ 0.0001 = 0.00010203$$

Общая погрешность при вычислении площади фигуры равна сумме погрешностей вычисления для каждой кривой:

$$\varepsilon = \varepsilon_{f_1} + \varepsilon_{f_2} + \varepsilon_{f_3} = 0.00010028 + 0.000100243 + 0.00010203 = 0.000302553 < 0.001$$

Таким образом, общая погрешность получается меньше требуемой точности, следовательно, значения $\varepsilon 1$ и $\varepsilon 2$ являются подходящими.

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

3. Результаты экспериментов

В результате работы программы были вычислены следующие корни (таблица 1):

Кривые	х	у
f_1 и f_2	1.9561	1.5672
<i>f</i> 2 и <i>f</i> 3	0.1874	0.8291
f_1 и f_3	-0.2033	1.2254

Таблица 1: Координаты точек пересечения

А также следующие результаты вычисления площади (рис. 2):

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

4. Структура программы и спецификация функ-ций

В данном разделе необходимо привести полный список модулей и функций, описать их функциональность.

Список модулей и функций программы:

- 1. **funcs.asm** модуль программы, написанный на языке ассемблера и содержащий следующие функции:
 - а. **f1** (double f1(double)) вычисляет значение функции $\frac{3}{(x-1)^2+1}$ в заданной точке.
 - b. **f2** (double f2(double)) вычисляет значение функции $\sqrt{x + 0.5}$ в заданной точке.
 - с. **f3** (double f3(double)) вычисляет значение функции e^{-x} в заданной точке.
 - d. **t_f1** (double t_f1(double)) вычисляет значение тестовой функции $-x^2 + 5$ в заданной точке.
 - e. t_f2 (double t_f2 (double)) вычисляет значение тестовой функции $4x^2 x$ в заданной точке.
 - f. **t_f3** (double t_f2(double)) вычисляет значение тестовой функции $x^4 + 2$ в заданной точке.

2. integral.c

- a. double root (double (*f) (double), double (*g) (double), double a, double b, double eps1) функция, вычисляющая абсциссу точки пересечения 2 функций на отрезке [a, b] с заданной точностью eps1 (ε₁) при помощи метода хорд.
- b. **double integral (double (*f) (double), double a, double b, double eps2)** функция, вычисляющая определенный интеграл $\int_a^b f(x)dx$ с помощью метода прямоугольников.
- с. **static double** (*f) (**double**) **map** (**int fn**) вспомогательная функция, сопоставляющая аргумент командной строки, обозначающий номер функции, с указателем на данную функцию. Например, «1» соответствует функции $f_1, ..., (3) f_3, (4) t_f 1, ..., (6) t_f 3$.
- d. **int main (int argc, char *argv[])** основная функция, обрабатывает аргументы командной строки и вызывает соответствующие функции, производя все нужные вычисления и выдавая ответ.

Рис. 3: Схема связи компонентов программы

5. Сборка программы (Make-файл)

Список целей Makefile'а и диаграмма зависимостей:

- 1. **all** запускает полную сборку программы.
- 2. **integral** собирает исполняемый файл.
- 3. **funcs.o** ассемблирует файл **funcs.asm**, получая из него объектный файл.
- 4. **test** запускает тестирование программы, а именно функций root и integral, описанных выше.
- 5. **clean** удаляет все объектные файлы.

Рис. 4: Диаграмма зависимостей между модулями программы

Ниже приведен код из Makefile.

```
NASM = nasm

ASMFLAGS += -g -f elf32

CFLAGS ?= -02 -g

CFLAGS += -std=gnu99

CFLAGS += -wall -werror -wformat-security -wignored-qualifiers -winit-self \
-wswitch-default -wpointer-arith -wtype-limits -wempty-body \
-wstrict-prototypes -wold-style-declaration -wold-style-definition \
-wmissing-parameter-type -wmissing-field-initializers -wnested-externs \
-wstack-usage=4096 -wmissing-prototypes -wfloat-equal -wabsolute-value

CFLAGS += -fsanitize=undefined -fsanitize-undefined-trap-on-error

CC += -m32 -no-pie -fno-pie
```

```
LDLIBS = -lm
.PHONY: all clean test
all: integral
integral: integral.c funcs.o
       $(CC) $(CFLAGS) -0 $@ $^ $(LDLIBS)
funcs.o: funcs.asm
        $(NASM) $(ASMFLAGS) $< -0 $@
test: all
        ./integral --test-root 4:5:0.5:2:0.0000001:1.105
        ./integral --test-root 4:6:0.8:1.3:0.0000001:1.141
        ./integral --test-root 5:6:0.6:1.2:0.0000001:1.000000
        ./integral --test-integral 4:-1.5:2:0.00001:13.708333
        ./integral --test-integral 5:1:2:0.00001:7.833333
        ./integral --test-integral 6:0.5:3:0.00001:53.59375
clean:
       rm -rf *.o
```

6. Отладка программы, тестирование функций

Для отладки и тестирования функций **root** и **integral** были использованы следующие функции:

1. $t_1(x) = -x^2 + 5$

2. $t_1f2(x) = 4x^2 - x$

3. $t_f3(x) = x^4 + 2$

Для тестирования функции **root** были подобраны следующие значения:

1. Получив корни уравнения $t_f 1(x) = t_f 2(x)$, в соответствии с одним из них были выбраны следующие тестовые значения: 4:5:0.5:2:0.0000001:1.105

$$t_f1(x) = t_f2(x)$$

$$-x^2 + 5 = 4x^2 - x$$

$$5x^2 - x - 5 = 0$$

$$D = (-1)^2 - 4 * 5 * (-5) = 101$$

$$x_1 = \frac{-(-1) + \sqrt{101}}{2 * 5} \approx 1.105$$

2. Получив корни уравнения $t_f 1(x) = t_f 3(x)$, в соответствии с одним из них были выбраны следующие тестовые значения:

4:6:0.8:1.3:0.0000001:1.141

$$t_f1(x) = t_f3(x)$$

$$-x^2 + 5 = x^4 + 2$$

$$x^4 + x^2 - 3 = 0$$

Пусть
$$n = x^2$$
, тогда:

$$n^2 + n - 3 = 0$$

Далее с помощью формулы корней квадратного уравнения и обратной подстановки находим, что один из корней приблизительно равен 1.141.

3. Аналогично предыдущим двум пунктам, получаем тестовые значения для третьей пары функций $t_f = 4x^2 - x$ и $t_f = 3(x) = x^4 + 2$. 5:6:0.6:1.2:0.0000001:1.000000

Для тестирования функции integral были получены следующие значения:

1. 4:-1.5:2:0.00001:13.708333

$$\int_{-1.5}^{2} (-x^2 + 5) = \left(-\frac{2^3}{3} + 5 \times 2\right) - \left(-\frac{(-1.5)^3}{3} + 5 \times (-1.5)\right) \approx 13.708333$$

13

2. 5:1:2:0.00001:7.833333

$$\int_{1}^{2} (4x^{2} - x) = \left(\frac{2^{2} \times (8 \times 2 - 3)}{6}\right) - \left(\frac{1^{2} \times (8 \times 1 - 3)}{6}\right) \approx 7.833333$$

3. 6:0.5:3:0.00001:53.59375

$$\int_{0.5}^{3} (x^4 + 2) = \left(\frac{3^5}{5} + 2 \times 3\right) - \left(\frac{0.5^5}{5} + 2 \times 0.5\right) \approx 13.708333$$

7. Анализ допущенных ошибок

При реализации программы была допущена ошибка в выборе интервалов для поиска точек пересечения функций, которая была исправлена путем математического анализа данных кривых и изучения критерия сходимости метода хорд, вследствие чего были выбраны корректные промежутки.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ.Т. 1 — Москва: Наука, 198