Генерация псевдослучайных чисел в двоичном представлении с плавающей точкой

Роман Майер Александрович, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент В.В. Некруткин Рецензент: к.ф.-м.н., доцент А.И. Коробейников

17 июня 2014 г.

Постановка задачи. Проблема.

Многие генераторы псевдослучайных чисел: целые числа на решетке $\{0,\dots,2^d-1\}$. Нормировка на 2^d .

Дальнейшее моделирование: в системе представления чисел с плавающей точкой (вещественные числа).

Несоответствие, возможная потеря точности.

Постановка задачи. Возможные пути решения.

1. Построения специальных генераторов (Saito and Matsumoto, 2009): псевдослучайные числа с двойной точностью.

Достоинства: настроенность на практику, быстрота. Недостатки: эмпирическая проверка качества.

2. Преобразование результатов работы «внешнего» генератора в псевдослучайные числа, заполняющие решетку, порожденную представлением чисел с плавающей точкой.

Достоинства: теоретическая обоснованность, оптимальность в смысле минимального среднего числа обращений к внешнему генератору.

Недостатки: медленнее, чем внешний генератор.

Решение задачи. Общая логика: источник случайности

Традиционный источник случайности при моделировании — последовательность независимых р.р. [0,1] случайных величин.

Более адекватная модель — последовательность $\{\varepsilon_k\}$ независимых р.р. на $\{0,\dots,M-1\}$ случайных величин.

Теоретические результаты о моделировании дискретных распределений с помощью $\{\varepsilon_k\}$:

[Кнут, Яо, 1983] (M=2), [Воробьева, Коробейников, Некруткин (ВКН), 2012] (M>1).

У нас $M = 2^d$.

Решение задачи. Общая логика: результаты ВКН

- $1. \ \mathcal{Q}$ равномерное распределение на $\{0,\ldots,M-1\}.$
- 2. $\{\varepsilon_k\}_{k\geq 1}$ независимые с.в. с распределением \mathcal{Q} .
- 3. Распределение

$$\mathcal{P}: \left(\begin{array}{cccc} x_1 & \dots & x_n & \dots \\ p_1 & \dots & p_n & \dots \end{array}\right).$$

Задача: промоделировать $\mathcal P$ с помощью ε_k .

Результат ВКН: Оптимальное моделирование распределения ${\mathcal P}$ требует в среднем

$$\sum_{k} \sum_{m \ge 0} \{M^m p_k\} / M^m$$

случайных величин ε_k .

Решение задачи. Общая логика: конкретизация пути

- 1. Построить дискретное распределение,
 - а) аппроксимирующее равномерное распределение ${\rm U}(0,1)$
 - b) носитель которого заполнял бы все точки решетки, порожденные представлением чисел с плавающей точкой на (0,1];
- 2. Придумать (почти) оптимальный метод моделирования этого распределения исходя из «источника случайности» $\{\varepsilon_k\}$ с р.р. на $\{0,\dots,2^d-1\}$.
- 3. Реализовать полученный алгоритм и исследовать его свойства.

Числа отрезка [0,1) в стандарте IEEE 754.

Игнорируются денормализованные числа.

$$x_{00} = 0$$
, $x_{j,k} = 2^{-j} (1 + k 2^{-S})$

$$1 \le j \le L = 2^{2^{B-1}-1}, \quad k = 0, \dots, 2^S - 1.$$

Стандартные значения параметров B и S:

- B = 8 и S = 23 (одинарная точность),
- B = 11 и S = 52 (двойная точность),
- B = 15 и S = 64 (расширенная точность).

Распределения U_S и $\mathrm{U}_{S,L}$.

Обозначения: $k = 0, \dots, 2^S - 1$.

$$x_{j,k} = 2^{-j} (1 + k 2^{-S}), \quad p_{j,k} = p_j = 2^{-(j+S)}.$$

Аппроксимирующее распределение U_S .

$$U_S: \begin{pmatrix} x_{j,k} \\ p_{j,k} \end{pmatrix}, \quad j \ge 1,$$

Аппроксимирующее распределение $\mathrm{U}_{S,L}$.

$$\mathbf{U}_{S,L}: \quad egin{pmatrix} x_{jk} \\ p_{jk} \end{pmatrix}, \quad 1 \leq j < L, \quad \text{а также} \quad egin{pmatrix} 0 \\ 2^{-L} \end{pmatrix}.$$

Точность аппроксимации 2^{-S-1} (для U_S и $U_{S,L}$ при $L \ge S+1$).

Обозначения.

Источник случайности — последовательность $\{\varepsilon_n\}_{n\geq 1}$ независимых случайных величин, равномерно распределенных на множестве $\{0,\dots,2^d-1\}.$

Интерпретация: ε_n — результат n-го по порядку обращения к генератору случайных чисел.

 $au_S^{({
m opt})}$ — число обращений к генератору случайных чисел при оптимальном моделировании распределения ${
m U}_S.$

$$C^{(\mathrm{opt})}(\mathrm{U}_S) \! = \! \mathrm{E} au_S^{(\mathrm{opt})} -$$
 сложность моделирования U_S .

Для $U_{S,L}$ — аналогично.

Сложность распределений U_S и $\mathrm{U}_{S,L}$.

Обозначим $m_K = |K/d|$.

Предложение

Имеет место равенство

$$C^{(\text{opt})}(\mathbf{U}_S) = m_S + 1 + \frac{2^{-(m_S d - S)}}{2^d - 1}$$
.

Предложение

Сложность распределения $\mathrm{U}_{S,L}$ имеет вид

$$C^{(\text{opt})}(\mathbf{U}_{S,L}) = C - 2^{-L} (m_{S+L-1} - m_{L-1}) - \frac{2^{-(m_{S+L-1} d - S)}}{2^d - 1}$$
,

где
$$C = C^{(\text{opt})}(\mathbf{U}_S)$$
.

Вероятностный смысл распределений U_S , $\mathrm{U}_{S,L}$

Предложение

Пусть случайные величины η , γ независимы, причем η равномерно распределена на множестве $X_S=\{0,\dots,2^S-1\}$, а $\gamma\geq 1$ имеет геометрическое распределение с параметром 1/2. Обозначим

$$\gamma_L = egin{cases} \gamma & \mbox{при} \ \gamma \leq L, \ L+1 & \mbox{иначе}. \end{cases}$$

Положим
$$\xi_S = (\eta 2^{-S} + 1) \, 2^{-\gamma}$$
 и

$$\xi_{S,L} = egin{cases} \xi_S & \mbox{при} & \gamma_L \leq L, \ 0 & \mbox{при} & \gamma_L = L+1. \end{cases}$$

Тогда
$$\mathcal{L}(\xi_S) = \mathrm{U}_S$$
 и $\mathcal{L}(\xi_{S,L}) = \mathrm{U}_{S,L}$.

Алгоритмическая схема моделирования U_S

Случай $d \geq S$. Аналогично d < S и $\mathrm{U}_{S,L}$.

- 1. Побитовое представление ε_1 . Первые S бит η .
- 2. Если в оставшихся d-S битах есть ненулевые, то номер первой единицы γ .
- 3. Если все нулевые то первая единица в ε_2 . И т.д.
- 4. γ номер 1-й единицы среди всех обследуемых битов.
- 5. Результат: $\xi_S = (\eta 2^{-S} + 1) 2^{-\gamma}$.

Теорема

Описанное моделирование является оптимальным в смысле среднего числа используемых случайных величин ε_k .

Программа. Общее описание

- 1. Программа (с именем «Grid generator») подключаемый файл расширения (.h).
- 2. Исходный язык программы С++.
- 3. Среда разработки Microsoft Visual Studio 2010.
- 4. Генератор шаблонный класс grid generator.
- 5. Защищенные поля этого класса параметры генератора.
- 6. Переопределенный оператор скобки следующее псевдослучайное число.

Проверка качества «Grid generator». Общая схема

- 1. Гипотеза: результат работы «Grid generator» хорошо согласуется с равномерным на (0,1) распределением.
- 2. Нескольких внешних генераторов, одинарная точность (S=23).
- 3. Несколько (d) старших битов от каждого псевдослучайного числа внешнего генератора. Различные d.
- 4. 100 выборок каждая объемом 100.
- 5. Каждая из выборок по критерию Колмогорова, 100 значений p-levels.
- 6. Эти 100 значений снова по критерию Колмогорова.

Проверка качества: генератор $LCG(2^{32}, 663608941,0)$

Внешний генератор LCG(2^{32} ,663608941,0). Младшие биты генератора LCG плохие.

Используются d старших битов LC-генератора. Одинарная точность.

Таблица : Критерий Колмогорова для «Grid generator» с внешним LC-генератором.

d	17	18	19	20	21	22	23	32
p-level	0.92	0.98	0.27	0.40	0.03	0.05	0.00	0.00

Проверка качества: разные генераторы

Внешние («хорошие») генераторы:

d = 32, одинарная точность.

Таблица : Критерий Колмогорова для «Grid generator» с разными внешними генераторами.

Название	Mer Tw	W-H	M-M	S-D	K-T	LE-C
p-level	0.23	0.45	0.99	0.11	0.32	0.88

Число обращений к внешнему генератору

Среднее число обращений к внешнему генератору на одно псевдослучайное число «Grid generator».

Одинарная и двойная точность, d = 32.

Таблица: Моделирование.

Точность	ОТ	ДТ
LCG	≈ 1	≈ 2
Mersenne Twister	1.0019	2.00024

Таблица: Теория.

Точность	ОТ	ДТ
	1.002	2.0002

Характеристики работы генератора: таймирование

Таблица : Отношение времен работы «Grid generator» и внешних генераторов. Одинарная и двойная точность.

Точность	ОТ	ДТ
LCG	4.33	5.74
Mersenne twister	3.08	4.38

Таким образом, предложенная реализация «Grid generator» приводит к серьезному замедлению моделирования.

Заключение.

Предложены и изучены дискретные распределения, аппроксимирующие распределение $\mathrm{U}(0,1)$ с учетом представления чисел с плавающей точкой.

Получен алгоритм, реализующий оптимальное (или почти оптимальное) моделирование этих распределений.

Написана программа, реализующая этот алгоритм. Результаты работы программы подтверждают соответствующие теоретические выкладки.