MATH 601 (DUE 11/22)

HIDENORI SHINOHARA

Contents

1 1

Galois Theory VI

1. THE THEOREM ON SYMMETRIC POLYNOMIALS

Exercise. (Problem 1) By substituting $u_4 = 0$, we get $u_1^2 u_2 u_3 + u_1 u_2^2 u_3 + u_1 u_2 u_3^2 = s_3 s_1$. $4u_1u_2u_3u_4 + u_1u_2u_4^2 + u_1u_3^2u_4 + u_1u_3u_4^2 + u_2^2u_3u_4 + u_2u_3^2u_4 + u_2u_3u_4^2.$ Then $s_3s_1 - f$ where fis the original polynomial gives us $4u_1u_2u_3u_4 = 4s_4$. Therefore, $f = s_3s_1 - 4s_4$.

Exercise. (Problem 2) We are given that $|M - xI| = x^3 - ax^2 + bx - c$. This implies that $|M-(-x)I|=-x^3-ax^2-bx-c$. Since the determinant function preserves multiplication, $|M - xI| |M - (-x)I| = |M^2 - x^2I|$. This implies $|M^2 - x^2I| = -x^6 + (a^2 - 2b)x^4 + (b^2 + a^2)$ $(2ac)x^2+c^2$. Therefore, the characteristic polynomial of M is $-x^3+(a^2-2b)x^2+(b^2+2ac)x+c^2$.

2. Galois Theory VI

Exercise. (Problem 3)

- (a) $\{(123), (132), e\}$ is clearly a subgroup of the stabilizer group S_v of v. Since $(12) \notin S_v$, $3 \leq |S_v| \leq 5$. By Lagrange's Theorem, $S_v = \langle (123) \rangle$.
- (b) By (i), S_3v contains only $[S_3:S_v]=2$ elements. Thus $v'=(12)\cdot v=u_2u_1^2+u_1u_3^2+u_2u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+u_3^2+$ $u_3u_2^2$.
- (c) By substituting $u_3 = 0$ for v + v', we get $u_1 u_2^2 + u_2 u_1^2 = s_1 s_2$. Then $v + v' s_1 s_2 = s_1 s_2$. $-3u_1u_2u_3 = -3s_3$. Therefore, $v + v' = s_1s_2 + 3s_3$.
- (d) We will use the fundamental theorem of Galois Theory. $F(v) = K^{\langle (123) \rangle}$, so $|\langle (123) \rangle| =$ 3 = [K: F(v)]. Moreover, $|\langle \operatorname{Gal}(K/F) \rangle| = [K: F]$. Therefore, [F(v): F] = [K: F] $F]/[K:F(v)] = |\langle \operatorname{Gal}(K/F)\rangle|/3.$