Lojistik Regresyon

Lojistik regresyon normal regresyonun $\theta^T x$ olarak hesapladigi agirliklari ek bir filtre fonksiyonundan gecirerek onlari 0/1 degerleri baglaminda bir olasiliga esler. Yani elimizdeki veri pek cok boyutta veri noktalari ve o noktalarin 0 ya da 1 olarak bir "etiketi" olacaktir.

Lojistik regresyon egitimi sonrasi elimize gecen θ 'lar, katsayilarimizdir, artik bu katsayilari tahmin yapmak icin kullanabiliriz. Filtre fonksiyonu icin kullanilan bir fonksiyon sigmoid fonksiyonudur.

Sigmoid fonksiyonu

$$\frac{e^x}{1+e^x}$$

Sezgisel olarak bakarsak, fonksiyon oyle bir durumda ki, ne zaman bir x degeri gecersek, bu deger ne kadar buyuk olursa olsun, bolendeki deger her zaman bolunenden 1 daha fazla olacaktir bu da fonksiyonun sonucunun 1'den her zaman kucuk olmasini garantiler. Cok kucuk x degerleri icin bolum sonucu biraz daha buyuk olacaktir tabii, vs. Daha temiz bir ifade icin bolen ve boluneni c^{-x} ile carpalim,

$$\frac{e^x e^{-x}}{e^{-x} + e^x e^{-x}}$$

$$g(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid fonksiyonun "-sonsuzluk ile +sonsuzluk arasindaki degerleri 0 ve 1 arasina esledigi (map) / indirgedigi" sozu de litaraturde mevcuttur.

```
def sigmoid(arr):
    return 1.0/(1+exp(-arr))

x = np.array(arange(-10.0, 10.0, 0.1))
plot(x,sigmoid(x))

[<matplotlib.lines.Line2D at 0xadfea6c>]
```


Peki ustteki fonksiyon bir olasilik fonksiyonu olabilir mi?

```
import sympy
x = sympy.Symbol('x')
sympy.integrate('1/(1+exp(-x))')

x + log(1 + exp(-x))
```

Daha temizlemek icin

$$x + \ln(1 + e^{-x})$$

x ifadesi ayni zamanda suna esittir $x=\ln(e^x)$. Bu ifade bize kolaylik saglayacak boylece,

$$\ln e^x + \ln(1 + e^{-x})$$

diyebiliriz. Dogal log'un (ln) carpimlari toplamlara donusturdugunu biliyoruz, bunu tersinden uygulayalim,

$$\ln(e^x \cdot 1 + e^x e^{-x})$$

$$\ln(e^x + 1) = \ln(1 + e^x)$$

```
print log (1+exp(-inf))
print log(1+exp(inf))
```

0.0 inf

Demek ki fonksiyon bir olasilik dagilimi olamaz, cunku egri altındaki alan sonsuz buyuklugunde. Aslında bu fonksiyonun kumulatif dagilim fonksiyonu (cumulative distribution function -CDF-) ozellikleri vardir, yani kendisi degil ama turevi bir olasilik fonksiyonu olarak kullanılabilir. Bu durumda g'nin 0 ile 1 arasında olması da dagilim altındaki alanın en fazla 1 olabilmesi durumunu ortaya cikarir ki bu CDF tanımına uygundur.

Simdi elimizde olabilecek k tane degisken ve bu degiskenlerin bilinmeyen katsayilari icin 0 ve 1'e eslenecek bir regresyon olusturalim. Diyelim ki katsayilar $\theta_0, ..., \theta_k$. Bu katsayilari degiskenler ile carpip toplayarak h(x)'e verelim, ve verideki etiketlere gore (0/1) cikip cikmayacagi katsayilara bagli olacak h(x) sonucu ile eldeki veriler arasinda bir baglanti olusturmaya ugrasalim. Bu modele gore eger θ 'yi ne kadar iyi secersek, eldeki veriye o kadar yaklasmis olacagiz.

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

"Veriye olabildigince yaklasmak icin en iyi α 'yi bulmak" sozu bize maksimum olurluk (maximum likelihood) hesabini hatirlatmali. Bu hesaba gore icinde bilinmeyen α 'yi barindiran formulun uzerinden tum verinin sonuclarinin teker teker birbiri ile carpimi olabildigince buyuk olmalidir. Bu ifadeyi maksimize edecek α veriye en uygun α olacaktir.

Simdi olasiliklari dusunelim

$$P(y = 1|x;\theta) = h_{\theta}(x)$$

$$P(y = 0|x; \theta) = 1 - h_{\theta}(x)$$

Not: Olasilik degerleri (buyuk $P(\cdot)$ ile), CDF fonksiyonlari (dagilim olmasa da) olurluk hesabinda kullanilabilir. Bu arada P(X < x) gibi alansal hesaplar CDF uzerinden gerceklestirilebildigini hatirlayalim.

Hepsi bir arada olacak sekilde yanyana koyarsak,

$$p(y|x;\theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

Olurluk icin tum veri noktalarini teker teker bu fonksiyona gecip sonuclarini carpacagiz (ve verilerin birinden bagimsiz olarak uretildigini farzediyoruz), eger m tane veri noktasi var ise

$$L(\theta) = \prod_{i=1}^{m} (h_{\theta}(x^{i}))^{y^{i}} (1 - h_{\theta}(x^{i}))^{1-y^{i}}$$

Eger log'unu alirsak carpimlar toplama donusur, isimiz daha rahatlasir,

$$l(\theta) = \log L(\theta)$$

$$= \sum_{i=1}^{m} y^{i} \log((h_{\theta}(x^{i}))) + (1 - y^{i}) \log((1 - h_{\theta}(x^{i})))$$

Daha fazla ilerlemeden once bir esitlik ve bir turev gostermemiz gerekiyor. Once esitlik

$$1 - g(z) = g(-z)$$

Ispat

$$1 - \frac{1}{1 + e^{-z}} = \frac{1 + e^{-z} - 1}{1 + e^{-z}}$$

$$\frac{e^{-z}}{1+e^{-z}} = \frac{1}{1+e^z}$$

Hakikaten son esitligin sag tarafına bakarsak, g(-z)'yi elde ettigimizi goruyoruz.

Simdi tureve gelelim,

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}} = \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

 e^{-z} turevinden bir eksi isareti gelecegini beklemis olabilirsiniz, fakat hatirlayacagimiz uzere

$$\frac{d}{dx}\frac{1}{1+x} = \frac{-1}{(1+x)^2}$$

Yani eksiler birbirini yoketti. Simdi iki ustteki denklemin sag tarafini acalim

$$=\frac{1}{1+e^{-z}}\frac{e^{-z}}{1+e^{-z}}$$

$$= \frac{1}{1 + e^{-z}} \frac{1}{1 + e^z}$$

Carpimda iki bolum var, bolumler g(z) ve g(-z) olarak temsil edilebilir, ya da g(z) ve 1-g(z),

$$= g(z)(1 - g(z))$$

Artik olurluk denklemine donebiliriz. Olurlugu nasil maksimize ederiz? Gradyan inisi (gradient descent) kullanilabilir. Eger olurluk $l(\theta)$ 'nin en maksimal oldugu noktadaki θ 'yi bulmak istiyorsak (dikkat sadece olurlugun en maksimal noktasini aramiyoruz, o noktadaki θ 'yi ariyoruz), o zaman bir θ ile baslariz, ve adim adim θ 'yi maksimal olana dogru yaklastiririz. Formul

$$\theta_{yeni} = \theta_{eski} + \alpha \nabla_{\theta} l(\theta)$$

Ustteki formul niye isler? Cunku gradyan $\nabla_{\theta}l(\theta)$, yani $l(\theta)$ 'nin gradyani her zaman fonksiyon artisinin en fazla oldugu yonu gosterir. Demek ki o yone adim atmak, yani $l(\theta)$ 'a verilen θ 'yi o yonde degistirmek (degisim tabii ki θ bazinda, θ 'nin degisimi), bizi fonksiyonun bir sonraki maksimum noktasina yaklastiracaktir. Sabit α bir tek sayi sadece, atilan adimin (hangi yonde olursa olsun) olcegini azaltip / arttirabilmek icin disaridan eklenir. Adim yonu vektor, bu sabit bir tek sayi. Carpimlari vektoru azaltir ya da cogaltir.

Simdi $\nabla_{\theta} l(\theta)$ turetmemiz gerekiyor.

Eger tek bir $\frac{\partial l(\theta)}{\partial \theta_j}$ 'yi hesaplarsak ve bunu her j icin yaparsak, bu sonuclari bir vektorde ustuste koyunca $\nabla_{\theta} l(\theta)$ 'yi elde ederiz.

$$\frac{\partial l(\theta)}{\partial \theta_j} = y \frac{\frac{\partial}{\partial \theta_j} g(\theta^T x)}{g(\theta^T x)} - (1 - y) \frac{\frac{\partial}{\partial \theta_j} g(\theta^T x)}{1 - g(\theta^T x)}$$

$$= \big(y\frac{1}{g(\theta^T x)} - (1 - y)\frac{1}{1 - g(\theta^T x)}\big)\frac{\partial}{\partial \theta_i}g(\theta^T x)$$

Simdi en sagdaki kismi acalim,

$$\frac{\partial}{\partial \theta_j} g(\theta^T x) = g'(\theta^T x) \frac{\partial}{\partial \theta_j} \theta^T x = g'(\theta^T x) x_j$$

 $\frac{\partial}{\partial \theta_j} \theta^T x$ nasil x_j haline geldi? Cunku tum θ vektorunun kismi turevini aliyoruz fakat o kismi turev sadece tek bir θ_j icin, o zaman vektordeki diger tum ogeler sifir olacaktir, sadece θ_j 1 olacak, ona tekabul eden x ogesi, yani x_j ayakta kalabilecek, diger x ogelerinin hepsi sifirla carpilmis olacak.

Turevin kendisinden de kurtulabiliriz simdi, daha once gosterdigimiz esitligi devreye sokalim,

$$= g(\theta^T x)(1 - g(\theta^T x))x_j$$

Bu son formulu 3 ustteki formulun sag tarafina geri koyarsak, ve basitlestirirsek,

$$(y(1-g(\theta^Tx))-(1-y)g(\theta^Tx))x_i$$

Carpimi daha temiz gormek icin sadece y, g harflerini kullanirsak,

$$(y(1-g) - (1-y)g)x_j = (y - yg - g + yg)x_j = (y - g)x_j$$

yani

$$= (y - g(\theta^T x))x_j$$

$$= (y - h_{\theta}(x))x_j$$

Iste $\nabla_{\theta} l(\theta)$ icin ne kullanacagimizi bulduk. O zaman

$$\theta_{veni} = \theta_{eski} + \alpha(y - h_{\theta}(x))x_i$$

Her i veri noktasi icin

$$\theta_{yeni} = \theta_{eski} + \alpha(y^i - h_{\theta}(x^i))x_j^i$$

Veriye bakalim, ve kodu isletelim,

```
from pandas import *
df = read_csv("testSet.txt",sep='\t',names=['x','y','labels'],header=None)
df['intercept']=1.0
data = df[['intercept','x','y']]
labels = df['labels']
df[['x','y','labels']][:10]
```

```
y labels
0 -0.017612 14.053064 0
1 -1.395634 4.662541
                         1
2 -0.752157 6.538620
                         0
3 -1.322371 7.152853
                        0
                       0
4 0.423363 11.054677
5 0.406704 7.067335
                       1
6 0.667394 12.741452
                        0
7 -2.460150 6.866805
                       1
8 0.569411 9.548755
                       0
9 -0.026632 10.427743
                         0
```

```
def grad_ascent(data_mat, label_mat):
    m,n = data_mat.shape
    label_mat=label_mat.reshape((m,1))
    alpha = 0.001
    iter = 500
    theta = ones((n,1))
    for k in range(iter):
        h = sigmoid(dot(data_mat,theta))
        error = label_mat - h
        theta = theta + alpha * dot(data_mat.T,error)
    return theta

theta = np.array(grad_ascent(array(data),array(labels).T ))
theta.T
```

```
array([[ 4.12414349, 0.48007329, -0.6168482 ]])
```

```
def plot_theta(theta):
    x = np.array(arange(-3.0, 3.0, 0.1))
    y = np.array((-theta[0]-theta[1]*x)/theta[2])
    plt.plot(x, y)
    plt.hold(True)
    class0 = data[labels==0]
    class1 = data[labels==1]
    plt.plot(class0['x'],class0['y'],'b.')
    plt.hold(True)
    plt.plot(class1['x'],class1['y'],'r.')
    plt.hold(True)
```


Ustteki kod bir dongu icinde belli bir x noktasindan baslayarak gradyan inisi yapti ve optimal θ degerlerini, yani regresyon agirliklarini (weights) hesapladi. Sonra bu agirliklari bir ayrac olarak ustte grafikledi. Ayracin oldukca iyi degerler buldugu belli oluyor.

Rasgele Gradyan Inisi (Stochastic Gradient Descent)

Acaba θ 'yi guncellerken daha az veri kullanmak mumkun mu? Yani yon hesabi icin surekli tum veriyi kullanmasak olmaz mi?

Olabilir. Guncellemeyi sadece tek bir veri noktasi kullanarak yapabiliriz. Yine gradyani degistirmis oluruz, sadece azar azar degisim olur, fakat belki de bu sekilde sonuca daha cabuk ulasmak mumkun olacaktir.

Kodlama acisindan, θ guncellemesi icin buldugumuz formulu tek nokta bazinda da vermistik. O zaman o tek noktayi sirayla alip guncellersek, otomatik olarak yeni bir sekilde gradyan inisi yapmis oluruz.

```
def stoc_grad_ascent0(data_mat, label_mat):
    m,n = data_mat.shape
    label_mat=label_mat.reshape((m,1))
    alpha = 0.01
    theta = ones((n,1))
    for i in range(m):
        h = sigmoid(sum(dot(data_mat[i],theta)))
        error = label_mat[i] - h
        theta = theta + alpha * data_mat[i].reshape((n,1)) * error
        theta = theta.reshape((n,1))
    return theta

theta = np.array(stoc_grad_ascent0(array(data),array(labels).T ))
```

```
theta.T

array([[ 1.01702007,  0.85914348, -0.36579921]])
```


Neredeyse isimiz tamamlandi. Ustteki grafik pek iyi bir ayrac gostermedi. Niye? Problem cok fazla salinim (oscillation) var, yani degerler cok fazla uc noktalar arasinda gidip geliyor. Ayrica veri noktalarini sirayla isliyoruz, veri tabii ki rasgele bir sekilde siralanmis olabilir, ama siralanmamissa, o zaman algoritmaya raslantisal noktalari vermek icin kod icinde zar atmamiz lazim. Metotun ismi "rasgele (stochastic)" gradyan inisi, bu rasgelelik onemli. 2. problemi duzeltmek icin yapilacak belli, 1. problem icin α degeri her dongude belli oranda kucultulerek (yani α artik sabit degil) sonuca yaklasirken oradan buraya savrulmasini engellemis olacagiz. Yeni kod altta,

```
def stoc_grad_ascent1(data_mat, label_mat):
    m,n = data_mat.shape
    iter = 150
    label_mat=label_mat.reshape((m,1))
    alpha = 0.01
    theta = ones((n,1))
    for j in range(iter):
        data_index = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001
            rand_index = int(random.uniform(0,len(data_index)))
            h = sigmoid(sum(dot(data_mat[rand_index],theta)))
            error = label_mat[rand_index] - h
            theta = theta + alpha * data_mat[rand_index].reshape((n,1)) * error
```


Sonuc cok iyi, ayrica daha az islemle bu noktaya eristik, yani daha az islem ve daha hizli bir sekilde sonuca ulasmis olduk.

Kaynaklar

http://cs229.stanford.edu/notes/cs229-notes1.pdf

Harrington, P. Machine Learning in Action