

Alternathe changer zarton. Rep. As $h \rightarrow 0$. if $\mathbb{P}(N(t) - N(t) = 1) = \lambda h + o(h)$. integer-valued)

(iii) \(\begin{align*} (Ntt-eh) - Ntt) \geq 2 \\ = o(h). \\

Face Any & charge process \(\psi \end{align*} \) indep increments. \\

Sart's \(\f y \) indep \(\psi \end{align*} \) is \(\f P \) \(\psi \end{align*} \) vale \(\lambda \). eg. Bus waisely time paradox! Armbre at randome yine (unform [0,7]).

Waire three Wale time = 22. The chart [o, n] szl,2-- n

Fix a,b, was to the fast of Binom (n, n)

the number of the sine [axb] ~ Binom (n, n) > Poi (216-a)

Regurdless of the assessmen's arrival time where I ~ Exp(2) E[watchy time] = E[T] Reperposidon property! W/ Contension (Nit))tzo, (Nz(t))tzo indp PP. λ_1, λ_2 w/ intensity 2 to then $(N_1(4) + N_2(4)) + N_3(4)$ 11 Thining property " (N(t)) to be PP w/ intensity)

And such marked pt is independently of type i.

W.P. Pi for ;z1,3-- (\(\Sigma_{i}\)) (Nitt)) tre are ff w/ intensity 2.p.
and independent. Proof: (two types for employ) If you have inder Poisson Bows N. tt. N2th

Then $P\left(\frac{\lambda_{1}(t)}{y} = j, \frac{\lambda_{2}(t)}{y} = \frac{e^{-\lambda_{1}Rt}}{y!} \left(\lambda_{1}R, t\right)^{2}.$ then draw Nitt)~ Binom (Mt), Pi)

N(t)=j, N(t)=k = $\frac{e^{-\lambda t}}{(j+k)!}(\lambda t)^{j+k}\cdot j^{j+k}$. p^{j} p^{k}