- 1. Рассмотрим процесс $y_t = \sum_{j=1}^k u_j \sin(\lambda_j t) + v_j \cos(\lambda_j t)$, где λ_j некоторые константы, белые шумы (u_j) и (v_j) независимы и имеют одинаковую единичную дисперсию.
 - а) Найдите автоковариационную функцию $\gamma_h = \mathbb{C}\mathrm{ov}(y_0,y_h)$.
 - б) Стационарен ли этот процесс?
 - в) Как этот процесс классифицируется в рамках ARMA модели?
- 2. При построении обратного преобразования Фурье используют следующий геометрический факт: Если w примитивный корень степени n из единицы 1 , то $\sum_{j=1}^n (w^k)^j = 0$, если и только если k не делится на n нацело. Докажите этот факт геометрически или аналитически.

Подсказка: для k=1 достаточно нарисовать картинку и приписать справа слово «очевидно».

3. По народным приметам определите, имеет ли стационарное решение уравнение

$$\begin{pmatrix} a_t \\ b_t \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \end{pmatrix} + \begin{pmatrix} -2 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a_{t-1} \\ b_{t-1} \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} a_{t-2} \\ b_{t-2} \end{pmatrix} + \begin{pmatrix} u_t^a \\ u_t^b \end{pmatrix},$$

где (u_t) — многомерный белый шум.

- 4. Стационарный в сильном смысле белый шум (u_t) описывается ARCH(1) моделью: $u_t = \nu_t \sigma_t$, $\nu_t \sim \mathcal{N}(0;1)$, $\sigma_t^2 = 3 + 0.1 u_{t-1}^2$. Помимо уравнений предполагают, что ν_t не зависит от u_{t-1} , ν_{t-1} , u_{t-2} , ν_{t-2} ,
 - а) Найдите безусловную дисперсию u_t .
 - б) Докажите, что u_t^2 это некий ARMA-процесс и выпишите его уравнение.
- 5. Перепишите MA(1) модель $y_t=u_t+0.5u_{t-1}$, где (u_t) белый шум, в виде модели пространства состояний

$$\begin{cases} x_t = Fx_{t-1} + v_t \\ y_t = Gx_t + w_t, \end{cases}$$

где величины x_0 , (v_1, w_1) , (v_2, w_2) , ... некоррелированы.

Нужно явно выписать, как устроен вектор x_t , матрицы F и G, как связаны v_t и w_t с исходным шумом u_t .

6. В модели локального линейного тренда предполагается, что

$$\begin{cases} \ell_t = \ell_{t-1} + b_t + u_t \\ b_t = b_{t-1} + v_t, \end{cases}$$

где белые шумы (u_t) и (v_t) независимы. Дополнительно предположим, что белые шумы нормальны с $\mathbb{V}\mathrm{ar}(u_t) = \sigma_u^2$ и $\mathbb{V}\mathrm{ar}(v_t) = \sigma_v^2$.

- а) Найдите $\mathbb{E}(\ell_{t+h} \mid \ell_t, b_t, \ell_{t-1}, b_{t-1}, \ldots)$.
- б) Найдите $\mathbb{V}\mathrm{ar}(\ell_t)$.

 $^{^{1}}$ По определению, $w^{n}=1$, но $w^{k}\neq 1$ при $k\in \{1,\ldots,n-1\}$.