

Introduction to Computing for Engineers

Matrices and Vectors

Dr. Nguyen Ngoc Truong Minh

Arrays: Vectors and Matrices

- The array is the fundamental form MATLAB uses to store data
- Scalars one row and one column (special case)
- Vectors

Row – one row and multiple columns

Column - multiple rows and one column

Matrices – multiple rows and multiple columns

Row Vector nàm ở sau

[1 x n] matrix

$$A \left[a_1 a_2, \ldots, a_n \right] = \left\{ a_j \right\}$$

[m x 1] matrix

$$A = \begin{bmatrix} a_1 \\ a_2 \\ \cdots \\ a_m \end{bmatrix} = \{a_i\}$$

Matrix Review

A matrix is any doubly subscripted array of elements arranged in rows and columns. (rectangular array)

$$\begin{bmatrix} a_{11}, ..., a_{1n} \\ a_{21}, ..., a_{2n} \\ a_{m1}, ..., a_{mn} \end{bmatrix} = \{A_{ij}\}$$

Square Matrix

Same number of rows and columns

$$\begin{bmatrix} 5 & 4 & 7 \\ 8 & = & 3 & 6 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

Creating Matrices

A vector can be created in MATLAB by typing the elements (numbers) inside the square brackets []

Row vector: To create an array in a single row, separate the elements with either a space or a comma (,).

>>
$$a = [1 \ 2 \ 3 \ 4]$$
 or >> $a = [1, 2, 3, 4]$
 $a = 1 \times 4$
1 2 3 4

Column vector: To create an array in a single column, separate the elements with either a semicolon (;) or enter next line.

>>
$$b = [2; 5; 6]$$
 or >> $b = [2$ or >> $b = [2$ 5; 6]

2 6]
5

Creating Matrices

A matrix can be created in MATLAB by typing the elements (numbers) inside the square brackets []

Matrix: To create a matrix that has multiple rows, separate the rows with semicolons or enter next line.

$$>> c = [1 2 3; 4 5 6; 7 8 9]$$

or
$$>> c = [1 \ 2 \ 3]$$
 or $>> c = [1 \ 2 \ 3]$ $4 \ 5 \ 6$ $4 \ 5 \ 6$; $7 \ 8 \ 9]$

$$c = 3 \times 3$$
 $1 \quad 2 \quad 3$
 $4 \quad 5 \quad 6$
 $7 \quad 8 \quad 9$

Matrix Addition and Subtraction

A new matrix **C** may be defined as the additive **combination** of matrices **A** and **B** where:

$$C = A + B$$

is defined by:

$$\left\{C_{ij}\right\} = \left\{A_{ij}\right\} + \left\{B_{ij}\right\}$$

Note: all three matrices are of the same dimension

Addition

If
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

and
$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

then
$$C = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

Matrix Addition Example

$$A + B = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 8 & 10 \end{bmatrix} = C$$

$$>> A = [3 4; 5 6]$$

$$\mathbf{A} =$$

3 4

5 6

>> B = [1 2; 3 4]

 $\mathbf{B} =$

 $1 \quad 2$

3 4

$$>> C = A + B$$

$$\mathbf{C} =$$

4 6

8 10

Matrix Subtraction

$$C = A - B$$
 is defined by

$$\{C_{ij}\} = \{A_{ij}\} - \{B_{ij}\}$$

Note: all three matrices are of the same dimension

Matrix Multiplication

Matrices **A** and **B** have these dimensions:

Matrix Multiplication

Matrices **A** and **B** can be multiplied if:

$$[r \times c]$$
 and $[s \times d]$
 $c = s$

The resulting matrix will have the dimensions:

Computation: $A \times B = C$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 [2 x 2]

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$
 [2 x 3]

$$C = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \end{bmatrix}$$

 $[2 \times 3]$

Computation: $A \times B = C$

A =
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
 and B = $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ column A and B can be multiplied frow

$$C = \begin{bmatrix} 2*1+3*1=5 & 2*1+3*0=2 & 2*1+3*2=8 \\ 1*1+1*1=2 & 1*1+1*0=1 & 1*1+1*2=3 \\ 1*1+0*1=1 & 1*1+0*0=1 & 1*1+0*2=1 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 8 \\ 2 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

 $[3 \times 3]$

The Transpose Operation

Rows become columns and columns become rows (A^T)

The transpose operation '

For a vector: Converts a row vector to a column vector, or vice versa.

Example for a vector:

The Transpose Operation

For a matrix, interchanges the rows and columns

$$A' = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$A' = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

Identity Matrix

Square matrix with ones on the diagonal and zeros elsewhere.

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} >> I = \underbrace{eye(4)}_{0 \ 0 \ 0 \ 0 \ 0}$$

Matrix Inversion

Inverse: if A is a square matrix, then its inverse A⁻¹ is a matrix of the same size.

 $>> A^{\Lambda}-1$ or inv(A)

```
>> A = [2 -1 0; -1 2 -1; 0 -1 2];

>> inv(A)

ans =

0.7500    0.5000    0.2500

0.5000    1.0000    0.5000

0.2500    0.5000    0.7500
```

$$B^{-1}B = BB^{-1} = I$$
 $A*A^{-1}$ $ans =$ 1.00000 0 0 0 -0.00000 1.0000 -0.00000 -0.0000

Arrays of numbers are used in many applications

Examples:

Arrays of numbers can represent data:

Year	1984	1986	1988	1990	1992	1994	1996
Population	127	130	136	145	158	178	211

In MATLAB, a vector, or any list of numbers, can be entered in a horizontal (row) or vertical (column) vectors.

For example, the population data in the previous slide can be entered in rows:

[1984 1986 1988 1990 1992 1994 1996]

[127 130 136 145 158 178 211]

or in columns:

[1984]	[127]
1986	130
1988	136
1990	145
1992	158
1994	178
1996	211

The position vector can be entered in a:

row: [2 4 5]

column:

4

Entering Vectors

CREATING VECTORS WITH CONSTANT SPACING

- Two common methods
 - Specify first term: step size: last term
 - linspace (first term, last term, number of terms)

Entering Vectors

In a vector with constant spacing the difference between the elements is the same, (e.g. $v = 2 \ 4 \ 6 \ 8 \ 10 \ 12$).

A vector in which the first term is m, the spacing is q and the last term is n can be created by typing [m:q:n].

```
>> x = [1:2:13]

x = 
1 3 5 7 9 11 13
```

```
>> x = [1.5:0.1:2.1]
x =
1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 2.1000
```

If spacing is omitted the default is 1

```
>> x = [-3:7]

x = 
-3 -2 -1 0 1 2 3 4 5 6 7
```


Entering Vectors using linspace() command

A vector in which the first term is **xi**, the last term is **xf**, and the number of terms is **n**, can be created by typing linspace(**xi**, **xf**, **n**).

```
>> u = linspace(0,8,6)
u =
0 1.6000 3.2000 4.8000 6.4000 8.0000
```

If the number of terms is omitted the default is 100 Type:

```
\gg u = linspace(0,49.5)
```

press **Enter** and watch the response of the computer.

It should be:

```
u = 0 0.5000 1.0000 1.5000 ...(100 terms)... 49.0000 49.5000
```


Example

> Create the following row vectors

```
\gg u = linspace(2,6,5)
▶ [2 3 4 5 6]
```

► [1.1000 1.3000 1.5000 1.7000 1.9000]

```
▶ [8 6 4 2 0]
                >> u = linspace(8,0,5)
```

1.1000 1.3000 1.5000 1.7000 1.9000 >> a = [8:-2:0]

>> u = linspace(1.1, 1.9, 5)

u =

> Create Vector

Example

➤ Create a vector vec which consists of 20 equally spaced points in the range from –pi to +pi.

```
>> vec = linspace(-pi,pi,20);
```

> Write an expression using linspace that will result in the same as

[2: 0.2: 3]

>> linspace(2,3,6)

Two Dimensional Arrays: Matrices

A matrix is a two dimensional array of numbers.

In a **square** matrix the number of rows and columns is equal:

Three rows and three columns (3x3)

In general, the number of rows and columns can be different:

(mxn) matrix has m rows and n columns

(mxn) is called the size of the matrix

Array Addressing (vectors)

The address of an element in a **vector** is its position in the row (or column). For vector \mathbf{v} , \mathbf{v} (\mathbf{k}) refers to the element in position \mathbf{k} . The first address or position in an array is 1.

It is possible to change an element in a vector by entering a value to a specific address directly:

Single elements can be used like variables in computations:

Array Addressing (matrices)

The address of an element in a **matrix** is its position, defined by the number of the row and the number of the column.

For matrix m, m (k,p) refers to the element in row k and column p.

It is possible to change an element in a matrix by entering a value to a specific address directly:

Single elements can be used like variables in computations:

Using the colon (:) in addressing vectors

A colon can be used to access a range of elements in a vector or a matrix.

- v(:) Represents all the elements of a vector (either a row vector or a column vector)
- v(3:6) Represents elements 3 through 6 (i.e. v(3), v(4), v(5), v(6)).

```
>> v = [4 15 8 12 34 2 50 23 11]

v =

4 15 8 12 34 2 50 23 11

>> u = v(3:7)

u =

8 12 34 2 50
```


Using the colon (:) in addressing matrices

A(:, 3)	Refers to the elements in all the rows of column 3.
A(2,:)	Refers to the elements in all the columns of row 2.
A(:, 2:5)	Refers to the elements in columns 2 through 5 in all the rows.
A(2:4, :)	Refers to the elements in rows 2 through 4 in all the columns.
A(1:3, 2:4)	Refers to the elements in rows 1 through 3 and in columns 2 through 4.

Using the colon (:) in addressing matrices Examples

3 6 9 12 15; 4 8 12 16 20;

5 10 15 20 25]

$$A =$$

Using the colon (:) in addressing matrices Examples

3 6 9 12 15; 4 8 12 16 20;

5 10 15 20 25]

1	3	5	7	9	
2	4	6	8	10	
3	6	9	12	15	
4	8	12	16	20	
5	10	15	20	25	

	row	COIL	ımn			
>> E = A(2:4,:)						
E =						
2	4	6	8	10		
3	6	9	12	15		
4	8	12	16	20		

row column

		•	
>> D = O =	= A(:,	2:5)	
3	5	7	9
4	6	8	10
6	9	12	15
8	12	16	20
10	15	20	25

>> F = F =	row A(1	col 1:3,2:	umn 4)
3	5	7	
4	6	8	
6	9	12	

Array Examples

>> <u>who</u>						
Your variables are:						
Eadg						
>> whos						
Name	Size	Bytes	Class			
Е	1x1	8	double array			
a	1x1	8	double array			
d	1x4	32	double array			
g	2x3	48	double array			
Grand total is 12 elements using 96 bytes						

Example of Linear System

A system of linear equations is a set of linear equations that you usually want to solve at the same time; that is, simultaneously.

$$2x + y = 13$$
$$x - 3y = -18$$

Everyone solves this equation by hand (using matrices)

Example of Linear System

A system of linear equations is a set of linear equations that you usually want to solve at the same time; that is, simultaneously.

$$2x + y = 13$$
$$x - 3y = -18$$

Using matrix algebra

$$[A] \bullet [X] = [B]$$

$$[X] = [A]^{-1}[B]$$

$$\begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ -18 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}^{-1} \begin{bmatrix} 13 \\ -18 \end{bmatrix}$$

This matrix is called, Inverse Matrix

Example of Linear System

In MATLAB

$$A = [2 \ 1 \ 1 \ -3];$$

$$B = [13 -18];$$

$$InvA = inv(A)$$
$$X=InvA * B$$

$$[A] \bullet [X] = [B]$$

$$[X] = [A]^{-1}[B]$$

$$\begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 13 \\ -18 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}^{-1} \begin{bmatrix} 13 \\ -18 \end{bmatrix}$$

Linear System of Simultaneous Equations

$$x_1 + x_2 = 6$$

 $2x_1 + x_2 = 9$

Solution

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 9 \end{bmatrix}$$
 Note: Inverse of
$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$
 is
$$\begin{bmatrix} -11 \\ 2 - 1 \end{bmatrix}$$

$$\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}$$
 is $\begin{vmatrix} -11 \\ 2-1 \end{vmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Arithmetic Operations with Arrays

<u>Array multiplication and division</u>

and

A*B follows the multiplication rules of matrices. It is defined only if the number of columns in A is equal to the number of rows in B.

is the left division. It is used to solve a matrix equation.

If: $A^*x = B$ (x, and B are column vectors, A is a matrix)

Then:

 $x = A \setminus B$

is the right division. It is used to solve a matrix equation.

If: $x^*C = D$ (x, and D are row vectors, C is a matrix)

Then: x = D/C

Arithmetic Operations with Arrays

Element-by-element multiplication, division, and exponentiation * / \ and .^

Element-by-element operations between two vectors or matrices is done by typing a period (.) in front of the arithmetic operator. Both arrays or vectors must be of the same size.

Element-by-element operations for **vectors**:

If:
$$a = [a_1 \ a_2 \ a_3 \ a_4]$$
 and $b = [b_1 \ b_2 \ b_3 \ b_4]$

Then:
$$a \cdot * b = [a_1b_1 \ a_2b_2 \ a_3b_3 \ a_4b_4]$$

$$a \cdot / b = [a_1/b_1 \ a_2/b_2 \ a_3/b_3 \ a_4/b_4]$$

$$a \cdot ^ b = [a_1^ b_1 \ a_2^ b_2 \ a_3^ b_3 \ a_4^ b_4]$$

Arithmetic Operations with Arrays

Element-by-element operations for matrices:

Given:
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$
 and $B = \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix}$

and
$$B = \begin{vmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{vmatrix}$$

$$A \cdot * B = \begin{bmatrix} A_{11}B_{11} & A_{12}B_{12} & A_{13}B_{13} \\ A_{21}B_{21} & A_{22}B_{22} & A_{23}B_{23} \\ A_{31}B_{31} & A_{32}B_{32} & A_{33}B_{33} \end{bmatrix}$$

Then:
$$A . * B = \begin{bmatrix} A_{11}B_{11} & A_{12}B_{12} & A_{13}B_{13} \\ A_{21}B_{21} & A_{22}B_{22} & A_{23}B_{23} \\ A_{31}B_{31} & A_{32}B_{32} & A_{33}B_{33} \end{bmatrix} \quad A . / B = \begin{bmatrix} A_{11}/B_{11} & A_{12}/B_{12} & A_{13}/B_{13} \\ A_{21}/B_{21} & A_{22}/B_{22} & A_{23}/B_{23} \\ A_{31}/B_{31} & A_{32}B_{32} & A_{33}B_{33} \end{bmatrix}$$

$$A ^{2} = \begin{bmatrix} (A_{11})^{2} & (A_{12})^{2} & (A_{13})^{2} \\ (A_{21})^{2} & (A_{22})^{2} & (A_{23})^{2} \\ (A_{31})^{2} & (A_{32})^{2} & (A_{33})^{2} \end{bmatrix}$$

$$A \cdot ^{\wedge} 2 = \begin{bmatrix} (A_{11})^{2} & (A_{12})^{2} & (A_{13})^{2} \\ (A_{21})^{2} & (A_{22})^{2} & (A_{23})^{2} \\ (A_{31})^{2} & (A_{32})^{2} & (A_{33})^{2} \end{bmatrix}$$

$$6 * A = 6 \cdot * A = \begin{bmatrix} 6A_{11} & 6A_{12} & 6A_{13} \\ 6A_{21} & 6A_{22} & 6A_{23} \\ 6A_{31} & 6A_{32} & 6A_{33} \end{bmatrix}$$
Any number

Matrix Element-by-Element Examples

>>
$$A = [2, 6, 3; 5, 8, 4]$$
 $A = \begin{bmatrix} 2 & 6 & 3 \\ 5 & 8 & 4 \end{bmatrix}$
>> $B = [1, 4, 10; 3, 2, 7]$

Matrix Element-by-Element Examples


```
max(a) – (max in Column)

4 2 3
4 7 6
1 7 6
1 2 4

max(a') (transpose then max)
4 7 4

mean(a) (mean in Column)
2.0000 3.6667 4.3333
```

mean(a') (transpose then mean)

3.0000 4.6667 2.3333

Example of Matrix Operations

Element-by-element calculations are useful in processing data and in calculating the value of a mathematical function at many points.

EXAMPLE OF PROCESSING DATA

The coefficient of friction μ is determined by measuring the force F required to move a mass m by $\mu = F/(mg)$ (g = 9.81 m/s²).

Results from measuring F in five tests are given in the table.

Determine the coefficient of friction in each test, and the average from all tests.

Mass m (kg)	2	4	5	10	20	50
Force F (N)	12.5	23.2	30	61	116	294

Example of Matrix Operations

$$>>$$
 mass = [2 4 5 10 20 50];

Create the **mass** vector.

>> force = [12.5 23.2 30 61 116 294];

Create the **force** vector.

 \gg mu = force./(9.81*mass)

Calculate **mu** for each mass-force pair, using element-by-element calculations.

mu =

0.6371 0.5912 0.6116 0.6218 0.5912 0.5994

>> mu ave = mean(mu)

meu ave =

0.6087

Determine the average of the elements in the vector **mu** by using the function **mean()**.

Example of Matrix Operations: Evaluation of Function

$$y = \frac{z^3 + 5z}{4z^2 - 10}$$

calculate y for z = 1,3, 5, 7, 9, 11, 13, and 15.

SOLUTION USING MATLAB:

$$>> z = [1:2:15]$$

Create a vector **z** with eight elements.

z =

1 3 5 7 9 11 13 15

 $>> y = (z.^3+5*z)./(4*z.^2-10)$

Vector **z** is used in elementby-element calculations of the elements of vector **y**.

-1.0000 1.6154 1.6667 2.0323 2.4650 2.9241 3.3964

3.8764

Some Useful Notes about Variables

- All variables in MATLAB are arrays. A scalar is an array with one element, a vector is an array with one row or one column of elements, and a matrix is an array of rows and columns of elements.
- The variable type is defined by the input when the variable is created.
- A scalar, the elements in a vector, or the elements in a matrix can be real numbers, complex numbers, or expressions.
- The "who" command shows what variables are currently stored in the memory.
- The "whos" command lists the the variables currently stored in the memory, their type, and the amount of memory used by each.

Properties of Matrix operations

(22)

$$A + B = B + A, \qquad (1) \qquad I_m A = A = AI_n; \qquad (11)$$

$$(A + B) + C = A + (B + C), \qquad (2) \qquad (A^T)^T = A, \qquad (12)$$

$$A + 0 = A, \qquad (3) \qquad (A + B)^T = A^T + B^T, \qquad (13)$$

$$r(A + B) = rA + rB, \qquad (4) \qquad (rA)^T = rA^T, \qquad (14)$$

$$(r + s)A = rA + sA, \qquad (5) \qquad (AB)^T = B^T A^T, \qquad (15)$$

$$r(sA) = (rs)A; \qquad (6) \qquad (I_n)^T = I_n; \qquad (16)$$

$$A(BC) = (AB)C, \qquad (7) \qquad AA^{-1} = A^{-1}A = I_n, \qquad (17)$$

$$A(B + C) = AB + AC, \qquad (8) \qquad (rA)^{-1} = r^{-1}A^{-1}, \quad r \neq 0, \qquad (18)$$

$$(B + C)A = BA + CA, \qquad (9) \qquad (AB)^{-1} = B^{-1}A^{-1}, \qquad (19)$$

$$(A^T)^{-1} = I_n, \qquad (20)$$

$$(A^T)^{-1} = (A^{-1})^T, \qquad (21)$$

$$(A^T)^{-1} = A. \qquad (22)$$