COMP6651 Prof. Tiberiu Popa

Due Date: 22/Feb/2018

1 Prove or Disprove

```
1. O(2^n) = O(4^n)
   Let O(2^n) is member of the set O(4^n)
   Using O-notation, 0 \le f(n) \le cg(n)
   0 \le 2^n \le c4^n
   0 \le \frac{1}{2^n} \le c
   Since, for all value of n_o \ge 1 and n \ge n_o, C is constant.
   Let O(4^n) is member of the set O(2^n)
   Using O-notation, 0 \le f(n) \le cg(n)
   0 \le 4^n \le c2^n
   0 \leq 2^n \leq \mathbf{c}
   Since, It is impossible to exist for all value of n_o \ge 1 and n \ge n_o. Hence, it is contradicted.
   Hence, O(2^n) \neq O(4^n)
2. O(log(2^n)) = O(log(4^n))
   Let O(log(2^n)) is member of the set O(log(4^n))
   Using O-notation, 0 \le f(n) \le cg(n)
   0 \le log(2^n) \le clog(4^n)
   0 \le \frac{1}{n} \le c
   Since, for all value of n_o \ge 1 and n \ge n_o, C is constant. There must exist f(\bar{n}) \le \bar{c}g(n)
   Let O(log(4^n)) is member of the set O(log(2^n))
   Using O-notation, 0 \le f(n) \le cg(n)
   0 \le log(4^n) \le clog(2^n)
   0 \le 2 \le c
   Since, for all value of n_o \ge 1 and n \ge n_o, C \ge 2.
   Hence, O(log(2^n)) = O(log(4^n)).
3. O(n!) = O((n+1)!)
   Let O(n!) is member of the set O((n+1)!)
   Using O-notation, 0 \le f(n) \le cg(n)
   \begin{array}{l} 0 \leq n! \leq \mathbf{c}(n+1)! \\ 0 \leq \frac{1}{n+1} \leq \mathbf{c} \end{array}
   Since, for all value of n_o \ge 1 and n \ge n_o, C is constant.
   Let O((n+1)!) is member of the set O(n!)
   Using O-notation, 0 \le f(n) \le cg(n)
   0 \le (n+1)! \le cn!
```

```
0 \le n+1 \le c
```

Since, It is impossible to exist for all value of $n_o \ge 1$ and $n \ge n_o$. Hence, it is contradicted.

Hence, $n! \neq (n+1)!$).

2 Problems from the textbook:

1. Exercise 1.1-1

$$= \max(f(n), g(n)) \le \max(f(n), g(n)) + \min(f(n), g(n))$$

 $= f(n) + g(n)$

2. Exercise 3.1-2

```
When |\mathbf{a}| \leq \mathbf{n}, \mathbf{n} + \mathbf{a} \leq 2\mathbf{n}.

Let c_1 = 0.5^b and c_2 = 2^b.

0 \leq c_1 n^b \leq (n+a)^b \leq c_2 n^b

By putting value of c_1 and c_2, we will get 0 \leq (\frac{n}{2})^b \leq (n+a)^b \leq (2n)^b

Therefore, we can say that there exist c_1, c_2 and c_3 and c_4 for all \mathbf{n} \geq \mathbf{n}. Hence, \mathbf{n} = \mathbf{n}
```

3. Exercise 3.2-4

We can say that function is polynomially bounded when $f(n) = O(n^k)$, when k is some constant.

For $\lceil lgn \rceil!$, It is not polynomially bound because there must exist a, d and n_0 for all $n \ge n_0$.

It may hold true if $n = 2^k$

$$k = log n$$

$$k! \leq 2^k$$

Here, $n = 2^k$ is contradicted as $k! \le 2^k$ condition is not satisfied for $k \ge 1$ and also factorial function are not exponentially bounded.

Therefore, |lgn|! is not polynomially bounded

For
$$\lceil lglgn \rceil!$$
, Suppose $n = 2^{2^k}$

Here,
$$k! \leq 2^{2^k}$$
 for $k \geq 1$.

Therefore, $\lceil lglgn \rceil!$ is polynomially bounded.

4. Exercise 3-4 (Except h)

(a)
$$f(n) = O(g(n))$$
 implies $g(n) = O(f(n))$

$$f(n) = O(g(n))$$
 implies $g(n) = O(f(n))$ conjecture is not true. for eg. $n = O(n^2)$ but $n^2 \neq O(n)$

(b)
$$f(n) + g(n) = \Theta(min(f(n), g(n)))$$

Let f(n) = n and $g(n) = n^2$. $n + n^2 \neq \Theta(n)$ Therefore, $f(n) + g(n) = \Theta(min(f(n), g(n)))$ conjecture is not true.

(c) f(n) = O(g(n)) implies lg(f(n)) = O(lg(g(n))), where $lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.

For f(n) = O(g(n)), there exist c_1 , c_2 and n_0 for all $n \ge n_0$

 $f(n) \le cg(n)$ and $f(n) \ge 1$

Applying log on both side

 $log f(n) \leq log c + log g(n)$

Now we have to prove that $f(n) \leq dlogg(n)$

 $\frac{\log c + \log g(n)}{\frac{\log c + \log g(n)}{\log g(n)}} \leq \mathrm{d}$

From above, we can say that $logg(n) \ge 1$

(d) f(n) = O(g(n)) implies $2^{f(n)} = O(2^{f(n)})$

This Conjecture is not true.

Suppose $f(n) = 4^n$, $g(n) = 2^n$ and $f(n) \in O(g(n))$

Using O - notation, $0 \le f(n) \le cg(n)$

 $0 \le 4^n \le c2^n$

 $0 \le 2^n \le c$

Since, It is impossible to exist for all value of $n_o \ge 1$ and $n \ge n_o$. Hence, it is contradicted.

(e) $f(n) = O((f(n))^2)$

This Conjecture is not true.

Let $f(n) = \frac{1}{n}$ $0 \le \frac{1}{n} \le c \frac{1}{n^2}$

$$0 \le \frac{1}{n} \le c \frac{1}{n^2}$$

Since, c must be constant. $0 \le n \le c$ implies contradiction.

(f) f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$

This Conjecture is true.

Since, f(n) = O(g(n)) implies that there exist a c and n_0 for all $n \ge n_0$

 $O \le f(n) \le cg(n)$

 $0 \le \frac{f(n)}{c} \le g(n)$

(g) $f(n) = \Theta(f(n/2))$

Let $f(n) = 2^{2n}$

Since, f(n) = O(g(n)) implies that there exist a c_1 , c_2 and n_0 for all $n \ge n_0$

 $O \le c_1 g(n) \le f(n) \le c_2 g(n)$ $O \le c_1 2^n \le 2^{2n} \le c_2 2^n$

 $O \le c_1 \le 2^n \le c_2$

Since, c must be constant. $O \le c_1 \le 2^n \le c_2$ implies contradiction.

Therefore, Conjecture is false.

- 5. Exercise 4.5-1
 - (a) T(n) = 2T(n/4) + 1

$$a = 2, b = 4 \text{ and } f(n) = 1$$

 $n^{\log_4 2} = n^{\frac{1}{2}} = \Theta(n^{\frac{1}{2}})$

Since, $f(n) = n^{\log_2 4 - k}$, where k = 1

Using case 1, we can conclude $T(n) = \Theta(\sqrt{n})$

(b) $T(n) = 2T(n/4) + \sqrt{n}$

$$a = 2$$
, $b = 4$ and $f(n) = \sqrt{n}$

$$n^{log_42} = \sqrt{n} = \Theta(\sqrt{n})$$

Since, $f(n) = \sqrt{n}$

Using case 2, we can conclude $T(n) = \Theta(\sqrt{nlog}n)$

(c) T(n) = 2T(n/4) + n

$$a = 2$$
, $b = 4$ and $f(n) = n$

$$n^{log_42}=\sqrt{n}=\Theta(\sqrt{n})$$

Since,
$$f(n) = n$$

$$af(n/b) \leq cf(n)$$

$$2\frac{n}{4} \le \operatorname{cn}$$

$$\frac{1}{2} \le \operatorname{c}$$

$$\frac{1}{2}^{4} < 0$$

Using case 3, we can conclude that $T(n) = \Theta(n)$ as it holds regularity condition

(d) $T(n) = 2T(n/4) + n^2$

$$a = 2, b = 4 \text{ and } f(n) = n^2$$

$$n^{log_42} = \sqrt{n} = \Theta(\sqrt[n])$$

Since,
$$f(n) = n^2$$

$$af(n/b) \le cf(n)$$

$$2\frac{n^2}{16} \le cn^2$$

$$\frac{1}{8} \le cn^2$$

$$\frac{1}{8} \leq cn^2$$

Using case 3, we can conclude that $T(n) = \Theta(n^2)$ as it holds regularity condition

6. Exercise 4.5-5

Let a =1, b = 3,
$$\epsilon = 1$$
 and $f(n) = 3n + 2^{3n}$

$$n^{log_3 1} = n^0 = 1 = \Theta(1)$$

Since,
$$f(n) = 3n + 2^{3n}$$

$$af(n/b) \le cf(n)$$

$$3n + 2^{3n} \le c(3n + 2^{3n})$$

$$(n+2^n) \le c(3n+2^{3n})$$

since, $3n < n + 2^n$, It fails regularity condition, even it satisfies $f(n) = \Omega(n^{\log_b a + \epsilon})$

- 7. Exercise 4.1
 - (a) $T(n) = 2T(n/2) + n^4$

$$a = 2, b = 2 \text{ and } f(n) = n^4$$

 $n^{\log_2 2} = n = \Theta(n)$
Since, $f(n) = n^4$
 $af(n/b) \le cf(n)$
 $2 \frac{n^4}{16} \le cn^4$
 $\frac{1}{8} \le c$

as $(n/s) \le c_1(n)$ $2\frac{n^4}{16} \le cn^4$ $\frac{1}{8} \le c$ Using case 3, we can conclude that $T(n) = \Theta(n^4)$ as it holds regularity condition

(b) T(n) = T(7n/10) + n

$$a = 1, b = \frac{10}{7} \text{ and } f(n) = n$$
 $n^{\log_{\frac{10}{7}} 1} = 1 = \Theta(1)$
Since, $f(n) = n$
 $af(n/b) \le cf(n)$
 $\frac{7n}{10} \le cn$
 $0.7 \le c$

Using case 3, we can conclude that $T(n) = \Theta(n)$ as it satisfies regularity condition.

(c) $T(n) = 16T(n/4) + n^2$

a = 16, b = 4 and
$$f(n) = n^2$$

 $n^{log_4 16} = n^2 = \Theta(n^2)$
Since, $f(n) = n^2$

Using case 2, we can conclude that $T(n) = \Theta(n^2 \log n)$

(d) $T(n) = 7T(n/3) + n^2$

$$\begin{array}{l} {\rm a} = 7,\, {\rm b} = 3 \,\, {\rm and} \,\, f(n) = n^2 \\ n^{\log_3 7} = n^{1.77} = \Theta(n^{1.77}) \\ {\rm Since},\, f(n) = n^2 \\ {\rm a} f(n/b) \le c f(n) \\ 7\frac{n^2}{9} \le {\rm c} n^2 \\ \frac{7}{9} \le {\rm c} \end{array}$$

Using case 3, we can conclude that $T(n) = \Theta(n^2)$ as it holds regularity condition

(e) $T(n) = 7T(n/2) + n^2$

a = 7, b = 2 and
$$f(n) = n^2$$

 $n^{\log_2 7} = n^{2.80} = \Theta(n^{2.80})$
Since, $f(n) = n^2$

Using case 1, we can conclude that $T(n) = \Theta(n^{\log_2 7})$

(f) $T(n) = 2T(n/4) + \sqrt{n}$

$$a = 2, b = 4 \text{ and } f(n) = \sqrt{n}$$
 $n^{\log_4 2} = n^{1.77} = \Theta(n^{1.77})$
Since, $f(n) = n^2$
 $af(n/b) \le cf(n)$
 $2\frac{\sqrt{n}}{4} \le c\sqrt{n}$

 $\frac{1}{2} \le c$

Using case 3, we can conclude that $T(n) = \Theta(\sqrt{n})$ as it holds regularity condition

(g) $T(n) = T(n-2) + n^2$

The Master method is not apply to this recurrence.

8. Exercise 4.3

(a)
$$T(n) = 4T(n/3) + nlogn$$

$$a = 4, b = 3 \text{ and } f(n) = nlogn$$

 $n^{log_3 4} = n^{1.26} = \Theta(n^{1.26})$

Since,
$$f(n) = nlog \hat{n} = \Theta(nlog n)$$

Using case 1, we can conclude that $T(n) = \Theta(n^{\log_3 4})$

(b)
$$T(n) = 3T(n/3) + n/\log n$$

$$a = 3$$
, $b = 3$ and $f(n) = n/logn$
 $n^{log_3 3} = n = \Theta(n)$

Since,
$$f(n) = n/log n = \Theta(n/log n)$$

The Master method is not apply to this recurrence as it falls under case 1 and case 2.

(c)
$$T(n) = 4T(n/2) + n^2\sqrt{n}$$

a = 4, b = 2 and
$$f(n) = n^2 \sqrt{n}$$

 $n^{\log_2 4} = n^2 = \Theta(n^2)$
Since, $f(n) = n^2 \sqrt{n} = \Theta(n^2 \sqrt{n})$

Since
$$f(n) = n^2 \sqrt{n} = \Theta(n^2 \sqrt{n})$$

$$af(n/b) \le cf(n)$$

$$\begin{aligned}
&\text{a}f(n/b) \le cf(n) \\
&4\frac{n^2\sqrt{n}}{4\sqrt{2}} \le cn^2\sqrt{n}
\end{aligned}$$

$$\frac{1}{\sqrt{2}} \le c$$

Using case 3, we can conclude that $T(n) = \Theta(n^2 \sqrt{n})$ as it holds regularity condition

(d)
$$T(n) = 3T(n/3-2) + n/2$$

The Master method is not apply to this recurrence.

(e)
$$T(n) = 2T(n/2) + n/\log n$$

$$a = 2$$
, $b = 2$ and $f(n) = n/logn$

$$n^{log_2 2} = n = \Theta(n)$$

Since,
$$f(n) = n/log n = \Theta(n/log n)$$

The Master method is not apply to this recurrence as it falls under case 1 and case 2.

(f)
$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

The Master method is not apply to this recurrence.

(g) T(n) = T(n-1) + 1/n

The Master method is not apply to this recurrence.

 $\text{(h)} \ T(n) = T(n-1) + log n$

The Master method is not apply to this recurrence.

(i) T(n) = T(n-1) + 1/logn

The Master method is not apply to this recurrence.

(j) $T(n) = \sqrt{n}T(\sqrt{n}) + n$

The Master method is not apply to this recurrence.