F20T3A3

Beweisen oder widerlegen Sie die folgenden Aussagen:

- a) Jede holomorphe Funktion $f: B_1(0) = \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}$ mit |f(z)| = 1 für alle $z \in B_1(0)$ ist konstant.
- b) Jede holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ mit f(z+i) = f(z) = f(z+1) für alle $z \in \mathbb{C}$ ist konstant.
- c) Jede holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ mit f(k) = f(ik) = f(0) für alle $k \in \mathbb{Z}$ ist konstant.

Zu a)

WAHR. Da |f(z)| = 1 für alle $z \in B_1(0)$ gilt, hat $|f| : B_1(0) \to \mathbb{C}$ in jedem $\xi \in B_1(0)$ ein lokales Maximum. Nach dem Maximumsprinzip ist die holomorphe Funktion f auf der zusammenhängenden Menge $B_1(0)$ konstant.

Zu b)

WAHR. Für
$$k, l \in \mathbb{Z}$$
 sei $W_{k,l} := \{z \in \mathbb{C}: RE(z) \in [k, k+1], IM(z) \in [l, l+1]\}$. Dann ist $\mathbb{C} = \bigcup_{k,l \in \mathbb{Z}} W_{k,l}$ also $f(\mathbb{C}) = \bigcup_{k,l \in \mathbb{Z}} f(W_{k,l})$. Für $w \in W_{k,l}$ ist $f(w) = f(w-1) = \dots = f(w-k) = f(w-k-i) = \dots = f(w-k-i)$ und $w - k - li \in W_{0,0}$, also $f(\mathbb{C}) = f(W_{0,0})$.

Da $W_{0,0}$ als beschränkte und abgeschlossene Teilmenge von $\mathbb C$ kompakt ist, ist $f(W_{0,0})$ als Bild einer kompakten Menge unter einer stetigen Abbildung ebenfalls kompakt. Somit ist $f(\mathbb C)=f(W_{0,0})$ als kompakte Menge insbes. beschränkt und f als ganze beschränkte Funktion nach dem Satz von Liouville konstant.

Zu c)

FALSCH. Gegenbeispiel: f: $\mathbb{C} \to \mathbb{C}$, $z \to \sin(\pi z) * \sin(i\pi z)$ ist als Produkt zweier holomorpher Funktionen selbst holomorph und erfüllt $f(k) = \sin(k\pi) * \sin(ik\pi) = 0 = f(ik) = \sin(ik\pi) * \sin(-k\pi) = f(0)$. Aber $f\left(\frac{1}{2}\right) = \sin\left(\frac{\pi}{2}\right) * \sin\left(\frac{i\pi}{2}\right) = \frac{1}{2i}\left(e^{\frac{i\pi}{2}} - e^{\frac{-i\pi}{2}}\right) = -1 \neq 0 = f(0)$, also ist f nicht konstant.