

Note: Doesn't depend on amplitude. superposition - Could add 2 solutions tigether.

eq. 21=H, cos(w++p) + A2cos(w++p)

Now lets consider energy

if $c = A \cos(\omega t + \phi) = A \cos(\omega t)$ the set to o for now

doc = - Awsinwt

K. E = 2 mv2 = A2wmsin2wt

So K. E. Change throughout motion, Now lets consider P. E. (U(2))

When is u=0? Don't forget always offset so really ask when is U minimum?

So $E Tot = 1 \cdot E + P \cdot E$ $= \frac{1}{2} A^2 \omega^2 m \sin^2(\omega t) + \frac{1}{2} A \cos^2 \omega t$ $= \frac{1}{2} A^2 \omega^2 m \left(\sin^2(\omega t) + \cos^2(\omega t) \right)$ $= \frac{1}{2} A^2 \omega^2 m \cdot \frac{1}{2} \left(\cos^2(\omega t) + \cos^2(\omega t) \right)$

Now lets consider a pendulum	
9	Ask about resolving forces
For = masind of magcos Note Magcos	^
From rotational movement equivalent of	
N.2.	$T = ml^2$ $T = LF0$
$ \begin{aligned} -gmsin\theta &= ml^2\theta \\ -gmsin\theta &= ml \\ -gm\theta &= ml\theta \end{aligned} $ • S. H. M. with $\omega = \sqrt{9}l$	in small angle. Sin 8 x 0 DZ I vad.

or T = 211 V/g.

· Note independent of mass (and amplitude as long as sin & & 8)

So why is S. H. M Everywhere. Consider any potential that has an equilibrium.

E.g. Attraction between neutral molecules in gas

1 Sco DC (se povation)

Consider particle held by potential around x.

