Mathematics for Machine Learning

— Vector Calculus: Gradients of Vector-Valued Functions and Matrices

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

Gradients of Vector-Valued Functions

② Gradients of Matrices

Outline

Gradients of Vector-Valued Functions

Gradients of Matrices

Our Focus

• Partial derivatives and gradients of functions $f : \mathbb{R}^n \mapsto \mathbb{R}^m$, for $n \ge 1, m > 1$.

Vector of Functions

Given

- $\mathbf{f}: \mathbb{R}^n \mapsto \mathbb{R}^m$.
- $\bullet \ \mathbf{x} = [x_1, \dots, x_n]^\top \in \mathbb{R}^n.$

The corresponding *vector of functions*:

$$\mathbf{f}[\mathbf{x}] = \left[egin{array}{c} f_1(\mathbf{x}) \ dots \ f_m(\mathbf{x}) \end{array}
ight] \in \mathbb{R}^m.$$

Vector of Functions

Given

- $\mathbf{f}: \mathbb{R}^n \mapsto \mathbb{R}^m$.
- $\bullet \ \mathbf{x} = [x_1, \dots, x_n]^\top \in \mathbb{R}^n.$

The corresponding *vector of functions*:

$$\mathbf{f}[\mathbf{x}] = \left[egin{array}{c} f_1(\mathbf{x}) \ dots \ f_m(\mathbf{x}) \end{array}
ight] \in \mathbb{R}^m.$$

We can view **f** as $[f_1, \ldots, f_m]^{\top}$, such that $f_i : \mathbb{R}^n \mapsto \mathbb{R}$.

Therefore.

$$\frac{\partial \mathbf{f}}{\partial x_i} = \begin{bmatrix} \frac{\partial f_1}{\partial x_i} \\ \vdots \\ \frac{\partial f_m}{\partial x_i} \end{bmatrix} = \begin{bmatrix} \lim_{h \to 0} \frac{f_1(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f_1(\mathbf{x})}{h} \\ \vdots \\ \lim_{h \to 0} \frac{f_m(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f_m(\mathbf{x})}{h} \end{bmatrix} \in \mathbb{R}^m.$$

So,

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

So,

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

 We call this collection of all first-order partial derivatives of a vector-valued function f the Jacobian. So,

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

- We call this collection of all first-order partial derivatives of a vector-valued function f the Jacobian.
- \star Denote by $extbf{\emph{J}} =
 abla_{ extbf{\emph{x}}} extbf{\emph{f}} = rac{\mathrm{d} extbf{\emph{f}}(extbf{\emph{x}})}{\mathrm{d} extbf{\emph{x}}}$
 - $J(i,j) = \frac{\partial f_i}{\partial x_i}$.

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}f}{\mathrm{d}x} = ?$$

- $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.
- $f_i(\mathbf{x}) =$

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}f}{\mathrm{d}x} = ?$$

- $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.
- $f_i(\mathbf{x}) = \sum_{j=1}^N A_{ij} x_j$

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}f}{\mathrm{d}x} = ?$$

•
$$\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$$
, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.

•
$$f_i(\mathbf{x}) = \sum_{j=1}^N A_{ij} x_j \implies \frac{\partial f_i}{\partial x_i} = A_{ij}$$
.

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \mathbf{A}$$

- $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.
- $f_i(\mathbf{x}) = \sum_{j=1}^N A_{ij} x_j \implies \frac{\partial f_i}{\partial x_j} = A_{ij}$.

Example: Gradient of a Least-Squared Loss in a Linear Model

Consider the linear model

$$\mathbf{y} = \mathbf{\Phi} \boldsymbol{\theta},$$

where

- $oldsymbol{ heta} oldsymbol{ heta} \in \mathbb{R}^D$: a parameter vector
- $\Phi \in \mathbb{R}^{N \times D}$: input features
- $\mathbf{y} \in \mathbb{R}^N$: the corresponding observations.

We define that

$$L(e) := ||e||^2.$$

$$e(\theta) := y - \Phi \theta.$$

Compute $\frac{\partial L}{\partial \theta}$ (using the chain rule).

Note that

 $\bullet \ \ \tfrac{\partial L}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{1 \times D}$

- $\bullet \ \ \tfrac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D} \quad (\because \ L : \mathbb{R}^D \mapsto \mathbb{R}).$
- $\frac{\partial e}{\partial \theta} \in \mathbb{R}^{N \times D}$

- $\bullet \ \ \tfrac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D} \quad (\because \ L : \mathbb{R}^D \mapsto \mathbb{R}).$
- $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$ (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).

- $\frac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D}$ (: $L : \mathbb{R}^D \mapsto \mathbb{R}$).
- $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$ (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).
- $\frac{\partial L}{\partial e} \in \mathbb{R}^{1 \times N}$

- $\frac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D}$ (: $L : \mathbb{R}^D \mapsto \mathbb{R}$).
- $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$ (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).
- $\frac{\partial L}{\partial e} \in \mathbb{R}^{1 \times N}$ (: $L : \mathbb{R}^N \mapsto \mathbb{R}$).

- $\frac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D}$ (: $L : \mathbb{R}^D \mapsto \mathbb{R}$).
- $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$ (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).
- $\frac{\partial L}{\partial e} \in \mathbb{R}^{1 \times N} \quad (:: L : \mathbb{R}^N \mapsto \mathbb{R}).$
- $\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial \theta}$ (chain rule).

- $\bullet \ \ \tfrac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D} \quad (\because \ L : \mathbb{R}^D \mapsto \mathbb{R}).$
- $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$ (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).
- $\frac{\partial L}{\partial e} \in \mathbb{R}^{1 \times N} \quad (:: L : \mathbb{R}^N \mapsto \mathbb{R}).$
- $\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial \theta}$ (chain rule).
- The *d*th element: $\frac{\partial L}{\partial \theta}[1,d] = \sum_{i=1}^{N} \frac{\partial L}{\partial e}[i] \frac{\partial e}{\partial \theta}[i,d]$.

- $\bullet \ \ \tfrac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D} \quad (\because \ L : \mathbb{R}^D \mapsto \mathbb{R}).$
- $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$ (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).
- $\frac{\partial L}{\partial \mathbf{e}} \in \mathbb{R}^{1 \times N} \quad (:: L : \mathbb{R}^N \mapsto \mathbb{R}).$
- $\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial \theta}$ (chain rule).
- The *d*th element: $\frac{\partial L}{\partial \theta}[1,d] = \sum_{i=1}^{N} \frac{\partial L}{\partial e}[i] \frac{\partial e}{\partial \theta}[i,d]$.
- $L = \|\boldsymbol{e}\|^2 = \boldsymbol{e}^{\top}\boldsymbol{e}$ and $\frac{\partial L}{\partial \boldsymbol{e}} = 2\boldsymbol{e}^{\top} \in \mathbb{R}^{1 \times N}$.

- $\bullet \ \ \tfrac{\partial L}{\partial \theta} \in \mathbb{R}^{1 \times D} \quad (\because \ L : \mathbb{R}^D \mapsto \mathbb{R}).$
- $\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$ (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).
- $\frac{\partial L}{\partial e} \in \mathbb{R}^{1 \times N}$ (: $L : \mathbb{R}^N \mapsto \mathbb{R}$).
- $\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial \theta}$ (chain rule).
- The *d*th element: $\frac{\partial L}{\partial \theta}[1,d] = \sum_{i=1}^{N} \frac{\partial L}{\partial \mathbf{e}}[i] \frac{\partial \mathbf{e}}{\partial \theta}[i,d]$.
- $L = \|\boldsymbol{e}\|^2 = \boldsymbol{e}^{\top}\boldsymbol{e}$ and $\frac{\partial L}{\partial \boldsymbol{e}} = 2\boldsymbol{e}^{\top} \in \mathbb{R}^{1 \times N}$.
- $\bullet \ \frac{\partial e}{\partial \theta} = -\Phi \in \mathbb{R}^{N \times D}.$

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = -2\boldsymbol{e}^{\top}\boldsymbol{\Phi} = -2(\boldsymbol{y}^{\top} - \boldsymbol{\theta}^{\top}\boldsymbol{\Phi}^{\top})\boldsymbol{\Phi} \in \mathbb{R}^{1 \times D}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = -2\boldsymbol{e}^{\top}\boldsymbol{\Phi} = -2(\boldsymbol{y}^{\top} - \boldsymbol{\theta}^{\top}\boldsymbol{\Phi}^{\top})\boldsymbol{\Phi} \in \mathbb{R}^{1 \times D}$$

By the way, we can obtain the same result without using the chain rule:

$$L_2(\boldsymbol{\theta}) := \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta} \|^2 = (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta})^{\top} (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta}).$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = -2\boldsymbol{e}^{\top}\boldsymbol{\Phi} = -2(\boldsymbol{y}^{\top} - \boldsymbol{\theta}^{\top}\boldsymbol{\Phi}^{\top})\boldsymbol{\Phi} \in \mathbb{R}^{1 \times D}$$

By the way, we can obtain the same result without using the chain rule:

$$L_2(\boldsymbol{\theta}) := \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta} \|^2 = (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta})^{\top} (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta}).$$

• It becomes impractical for deep function compositions.

Outline

Gradients of Vector-Valued Functions

Gradients of Matrices

Motivations

- There are scenarios that we need to take gradients of matrices w.r.t. vectors (or other matrices).
 - ⇒ This results in a multidimensional tensor.
 - Multidimensional array.
- Compute the gradient of an $m \times n$ matrix **A** w.r.t. a $p \times q$ matrix **B**:
 - The Jacobian \boldsymbol{J} would be $(m \times n) \times (p \times q)$ (4-dimensional tensor).
 - $J_{ijk\ell} = \frac{\partial A_{ij}}{\partial B_{k\ell}}$.
- Matrices ⇔ linear mappings, so

Motivations

- There are scenarios that we need to take gradients of matrices w.r.t. vectors (or other matrices).
 - ⇒ This results in a multidimensional tensor.
 - Multidimensional array.
- Compute the gradient of an $m \times n$ matrix **A** w.r.t. a $p \times q$ matrix **B**:
 - The Jacobian \boldsymbol{J} would be $(m \times n) \times (p \times q)$ (4-dimensional tensor).
 - $J_{ijk\ell} = \frac{\partial A_{ij}}{\partial B_{k\ell}}$.
- Matrices ⇔ linear mappings, so

There is a vector-space isomorphism (i.e., linear, invertible mapping) between the space $\mathbb{R}^{m\times n}$ of $m\times n$ matrices and the space \mathbb{R}^{mn} of mn vector.

Visualization of Two Approaches for the Isomorphism

Partial derivatives:

Visualization of Two Approaches for the Isomorphism

Example: Gradient of Vectors w.r.t. Matrices

Consider

$$\mathbf{f} = \mathbf{A}\mathbf{x}$$
, where $\mathbf{f} \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, $\mathbf{x} \in \mathbb{R}^N$.

Goal: Compute the gradient $\frac{d\mathbf{f}}{d\mathbf{A}}$.

$$ullet$$
 $\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{A}}\in$

Example: Gradient of Vectors w.r.t. Matrices

Consider

$$\mathbf{f} = \mathbf{A}\mathbf{x}$$
, where $\mathbf{f} \in \mathbb{R}^{M}$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, $\mathbf{x} \in \mathbb{R}^{N}$.

Goal: Compute the gradient $\frac{d\mathbf{f}}{d\mathbf{A}}$.

Note:

 \bullet $\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{\Delta}} \in \mathbb{R}^{M \times (M \times N)}$

$$\frac{\mathrm{d} \boldsymbol{f}}{\mathrm{d} \boldsymbol{\mathcal{A}}} =$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{\mathcal{A}}} = \left[\begin{array}{c} \frac{\partial f_1}{\partial \boldsymbol{\mathcal{A}}} \\ \vdots \\ \frac{\partial f_M}{\partial \boldsymbol{\mathcal{A}}} \end{array} \right],$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{A}} = \left[\begin{array}{c} \frac{\partial f_1}{\partial \boldsymbol{A}} \\ \vdots \\ \frac{\partial f_M}{\partial \boldsymbol{A}} \end{array}\right], \, \frac{\partial f_i}{\partial \boldsymbol{A}} \in \mathbb{R}^{1 \times (M \times N)}.$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{A}} = \begin{bmatrix} \frac{\partial f_1}{\partial \boldsymbol{A}} \\ \vdots \\ \frac{\partial f_M}{\partial \boldsymbol{A}} \end{bmatrix}, \frac{\partial f_i}{\partial \boldsymbol{A}} \in \mathbb{R}^{1 \times (M \times N)}.$$

• We can explicitly expand $f_i = \sum_{j=1}^N A_{ij} x_j$, for $i = 1, \dots, M$.

Hence,

$$\frac{\partial f_i}{\partial A_{ia}} = x_q.$$

So we can derive

$$\frac{\partial f_i}{\partial A_{i,\cdot}} = \mathbf{x}^\top$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{A}} = \begin{bmatrix} \frac{\partial f_i}{\partial \boldsymbol{A}} \\ \vdots \\ \frac{\partial f_M}{\partial \boldsymbol{A}} \end{bmatrix}, \, \frac{\partial f_i}{\partial \boldsymbol{A}} \in \mathbb{R}^{1 \times (M \times N)}.$$

• We can explicitly expand $f_i = \sum_{j=1}^N A_{ij} x_j$, for $i = 1, \dots, M$.

Hence,

$$\frac{\partial f_i}{\partial A_{iq}} = x_q.$$

So we can derive

$$\frac{\partial f_i}{\partial A_{i,:}} = \mathbf{x}^\top \in \mathbb{R}^{1 \times (1 \times N)} \ \text{and} \ \frac{\partial f_i}{\partial A_{k \neq i,:}} = \mathbf{0}^\top \in \mathbb{R}^{1 \times (1 \times N)}.$$

Stack the partial derivatives:

$$\frac{\partial f_i}{\partial \mathbf{A}} = \begin{bmatrix} \mathbf{0}^\top \\ \vdots \\ \mathbf{0}^\top \\ \mathbf{x}^\top \\ \mathbf{0}^\top \\ \vdots \\ \mathbf{0}^\top \end{bmatrix} \in \mathbb{R}^{1 \times (M \times N)}$$

Example: Gradient of Matrices w.r.t. Matrices

Consider a matrix $\mathbf{R} \in \mathbb{R}^{M \times N}$ and $\mathbf{f} : \mathbb{R}^{M \times N} \mapsto \mathbb{R}^{N \times N}$ with

$$\mathbf{f}(\mathbf{R}) = \mathbf{R}^{\top} \mathbf{R} := \mathbf{K} \in \mathbb{R}^{N \times N}$$

Goal: Compute the gradient $\frac{d\mathbf{K}}{d\mathbf{R}}$.

Note:

• $\frac{\mathrm{d} \boldsymbol{K}}{\mathrm{d} \boldsymbol{R}} \in$

Example: Gradient of Matrices w.r.t. Matrices

Consider a matrix $\mathbf{R} \in \mathbb{R}^{M \times N}$ and $\mathbf{f} : \mathbb{R}^{M \times N} \mapsto \mathbb{R}^{N \times N}$ with

$$\mathbf{f}(\mathbf{R}) = \mathbf{R}^{\top} \mathbf{R} := \mathbf{K} \in \mathbb{R}^{N \times N}$$

Goal: Compute the gradient $\frac{d\mathbf{K}}{d\mathbf{R}}$.

Note:

- $\bullet \ \frac{\mathrm{d} \mathbf{K}}{\mathrm{d} \mathbf{R}} \in \mathbb{R}^{(N \times N) \times (M \times N)}.$
- $\frac{\mathrm{d} \mathcal{K}_{pq}}{\mathrm{d} \boldsymbol{R}} \in \mathbb{R}^{1 \times (M \times N)}$, for $p, q = 1, \dots, N$, \mathcal{K}_{pq} : the (p, q)th entry of \boldsymbol{K} .

$$K_{pq} = \mathbf{r}_p^{\top} \mathbf{r}_q = \sum_{t=1}^{M} R_{tp} R_{tq}.$$

 \mathbf{r}_i : the *i*th column of \mathbf{R} .

Example (2/2)

Compute $\frac{\partial K_{pq}}{\partial R_{ii}}$: (sum rule)

$$\frac{\partial K_{pq}}{\partial R_{ij}} = \sum_{t=1}^{M} \frac{\partial}{\partial R_{ij}} R_{tp} R_{tq} = \partial_{pqij},$$

where

$$\partial_{pqij} = \left\{ egin{array}{ll} R_{iq} & ext{if } j=p, p
eq q \ R_{ip} & ext{if } j=q, p
eq q \ 2R_{iq} & ext{if } j=p, p=q \ 0 & ext{otherwise} \end{array}
ight.$$

Compute $\frac{\partial K_{pq}}{\partial R_{ii}}$: (sum rule)

$$\frac{\partial K_{pq}}{\partial R_{ij}} = \sum_{t=1}^{M} \frac{\partial}{\partial R_{ij}} R_{tp} R_{tq} = \partial_{pqij},$$

where

$$\partial_{pqij} = \left\{ egin{array}{ll} R_{iq} & ext{if } j=p, p
eq q \ R_{ip} & ext{if } j=q, p
eq q \ 2R_{iq} & ext{if } j=p, p=q \ 0 & ext{otherwise} \end{array}
ight.$$

Hence, each entry of the desired gradient $\frac{d\mathbf{K}}{d\mathbf{R}} \in \mathbb{R}^{(N \times N) \times (M \times N)}$ is ∂_{pqij} , for $p, q, j = 1, \dots, N$ and $i = 1, \dots, M$.

Useful Identities for Computing Gradients (1/2)

$$\begin{split} & \frac{\partial}{\partial \mathbf{X}} \mathbf{f}(\mathbf{X})^{\top} = \left(\frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}} \right)^{\top}.\\ & \frac{\partial}{\partial \mathbf{X}} \mathrm{tr}(\mathbf{f}(\mathbf{X})) = \mathrm{tr}\left(\frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}} \right).\\ & \frac{\partial}{\partial \mathbf{X}} \det(\mathbf{f}(\mathbf{X})) = \det(\mathbf{f}(\mathbf{X})) \operatorname{tr}\left(\mathbf{f}(\mathbf{X})^{-1} \frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}} \right) \end{split}$$

Useful Identities for Computing Gradients (1/2)

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{f}(\mathbf{X})^{\top} = \left(\frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}}\right)^{\top}.$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{f}(\mathbf{X})) = \operatorname{tr}\left(\frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}}\right).$$

$$\frac{\partial}{\partial \mathbf{X}} \det(\mathbf{f}(\mathbf{X})) = \det(\mathbf{f}(\mathbf{X})) \operatorname{tr}\left(\mathbf{f}(\mathbf{X})^{-1} \frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}}\right) \implies \text{Exercise}$$

$$\frac{\partial}{\partial \mathbf{X}} \mathbf{f}(\mathbf{X})^{-1} = -\mathbf{f}(\mathbf{X})^{-1} \frac{\partial \mathbf{f}(\mathbf{X})}{\partial \mathbf{X}} \mathbf{f}(\mathbf{X})^{-1}$$

$$\frac{\partial \mathbf{a}^{\top} \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{Y}} = -(\mathbf{X}^{-1})^{\top} \mathbf{a} \mathbf{b}^{\top} (\mathbf{X}^{-1})^{\top}$$

Useful Identities for Computing Gradients (2/2)

$$\frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} = \mathbf{a}^{\top}$$

$$\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}^{\top}$$

$$\frac{\partial \mathbf{a}^{\top} \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^{\top}$$

$$\frac{\partial \mathbf{x}^{\top} \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = \mathbf{x}^{\top} (\mathbf{B} + \mathbf{B}^{\top})$$

$$\frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{A} \mathbf{s})^{\top} \mathbf{W} (\mathbf{x} - \mathbf{A} \mathbf{s}) = -2(\mathbf{x} - \mathbf{A} \mathbf{s})^{\top} \mathbf{W} \mathbf{A} \text{ for symmetric } \mathbf{W}.$$

Discussions