Data Mining and Machine Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Introducti Add WeChat edu assist gro

Vector Data Analy

Principal

Components Analysis (PCA)

Objectives

- To introduce Data Mining
- To outline the techniques that we will study in this part of the course a Data Mining Toolkit'
- To review b https://eduassistpro.githebitew the notions of mean variance And we chat edu_assist_pro
- To explain Principal Com alysis (PCA)
- To present an example of PCA

What is Data Mining?

- Mining
 - Digging deep into the earth, to find hidden, valuables ignment Project Exam Help
- Data Mini https://eduassistpro.github.io/
 - Analysis of large data c Add WeChat edu_assist_pro acoustic, video, text,... r structure, patterns and relationships
 - Corpora which are too large for human inspection
 - Patterns and structure may be hidden

Data Mining

- Structure and patterns in large, abstract data sets:
 - Is the data homogeneous or does it consist of several separately significant Exam Help
 - Are there p https://eduassistpro.github.io/
 - If so, do the ve interpretation?
 - Are there correlations in the edu_assist_pro
 - Is there redundancy in the data?

Data Mining

- In this part of the course we will develop a basic 'data mining toolkit'
 - Subspace projection methods (Fxam Help
 - Clustering https://eduassistpro.github.io/
 - Statistical
 - Sequence analysis

 Add WeChat edu_assist_pro
 - Dynamic Programming (DP)

Some example data

Assignment Project Exam Help

https://eduassistpro.github.io/

Fig 1: Single, spherical cluster centred at origin

Addrige Chat edu_assist_produltiple, arbitrary elliptical arbitrary elliptical clusters

Objectives

• Fig 3 shows "multiple source" data.

The data is arranged in a set of
"clusters Assignment Project Exam Help"

 How do we https://eduassistpro.github.io/ locations of

Add WeChat edu_assist_pro

Remember, in real applica

will be many points in a highdimensional vector space which is
difficult to visualise

Objectives

- Fig 1 shows simplest type of data single source data centred at origin. Equal variance in both dimensions and the requality and Help
- Fig 2 is again s
 correlated and https://eduassistpro.github.io/
 origin.
 Add WeChat edu_assist_pro
- How do we convert Fig 2 into
- We will start with this problem
- Solution is a technique called Principal Components Analysis (PCA)

Fig 1

Fig 2

UNIVERSITY OF BIRMINGHAM

Example from speech processing

Plot of high-frequency energy vs lowfrequency energy, for 25 ms speech segments, sampled every 10ms

Basic statistics

Slide 10

UNIVERSITY^{of} Birmingham

Basic statistics

Denote samples by

$$X = x_1, x_2, \dots, x_T$$
Assignment Project Exam Help where $x_t = ($

The sample https://eduassistpro.github.iox/)) vector is given by: Add WeChat edu_assist_pro

$$\mu^{n} = \frac{1}{T} \sum_{t=1}^{T} x_{t}^{n}$$

$$\mu = \left(\mu^{1}, \mu^{2}, ..., \mu^{n}, ..., \mu^{N}\right)$$

More basic statistics

• The sample variance σ (more correctly $\sigma(X)$) vector is given by:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Covariance

In this data, as the *x*value increases, the *y*value also spignate Project Exami He

oject Exam Help

This is (posithttps://eduassistpro.github.io/

<u>co</u>-variance

If y decreases as x increases, the result is negative

covariance

Definition of covariance

• The covariance between the m^{th} and n^{th} components of the sample data is defined by:

Assignment Project Exam Help

https://eduassistpro.github.io/

• In practice it is described that edu_assistment μ from each of the data points x_t .

• mean is then 0 and

The covariance matrix

Assignment Project Exam Help
$$\sigma = \begin{bmatrix} \sigma^{1,1} & \sigma^{1,2} & \sigma^{1,n} & \sigma^{1,N} \\ https://eduassistpro.github.io/\\ \sigma^{m,1} & \dots & \sigma^{m,n} & \dots \\ Add WeChat edu_assist_pro\\ \sigma^{N,1} & \dots & \dots & \sigma^{N,N} \end{bmatrix}$$

Data with mean subtracted

Sample data rotated

Data with covariance removed

Principal Components Analysis

- PCA is the technique which I used to <u>diagonalise</u> the sample covariance matrix
- The first step ginnent regine to Evaniahed matrix in the form:

 https://eduassistpro.github.io/

where *D* is diagonal enhattedu_assist_offenenting to a rotation

 You can do this using SVD (see lecture on LSI) or <u>Eigenvalue Decomposition</u>

PCA continued

U implements rotation through angle θ

 e_1 is the first column of U

$$e_1 = \begin{bmatrix} u_{11} \\ u_{21} \end{bmatrix}$$
reject Exam Help

direction e_2

$$\sigma = UDU^{T} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} d_{11} & 0 \\ 0 & d_{22} \end{bmatrix} \begin{bmatrix} u_{11} & u_{21} \\ u_{12} & u_{22} \end{bmatrix}$$

PCA Example

Abstract data set

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- Step 1: load the data into MATLAB:
 - A=load('data4');
- Step 2: Calculate the mean and subtract this from each sample
 - M=ones (https://eduassistpro.github.io/
 - N=mean (AAdd WeChat edu_assist_pro
 - -M(:,1)=M(:,1)*N(1)
 - -M(:,2)=M(:,2)*N(2);
 - -B=A-M;

Plot B

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Calculate the covariance matrix of B (or A)

- S=(B'*B)/size(B,1);
 or Assignment Project Exam Help
- S=cov (B https://eduassistpro.github.io/

$$S = \begin{bmatrix} 6.78 & 3.27 \\ 3.27 & 2.76 \end{bmatrix}$$
 We Chat edu_assist_pro

Difficult to deduce much about the data from this covariance matrix

Calculate the eigenvalue decomposition of S

$$U = \begin{bmatrix} 0.4884 & \text{https://eduassistpro.github.io/} \\ -0.8726 & -0.4884 \end{bmatrix}$$
 Add WeChat edu_assist_pro

 After transforming the data using *U* its covariance matrix becomes *E*. You can confirm this by plotting the transformed data:

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- After transformation by the matrix U, the covariance matrix has been diagonalized and is now equal to E
 - variance in the metre project exam Help
 - variance in
- This tells us th https://eduassistpro.github.io/ in the (new) y directioneChat edu_assist_pro
- There is much less variation in irection, and we could get a 1 dimensional approximation to the data by discarding this dimension
- None of this is obvious from the original covariance matrix

Final notes

- Each column of U is a principal vector
- The corresponding eigenvalue indicates the variance of the data Along that dippersion Exam Help
 - Large eig nt components of the data https://eduassistpro.github.io/
 - Small eigenvalues inclicat edu_assistiation along the corresponding eigenvecto oise
- It may be advantageous to ignore dimensions which correspond to small eigenvalues and only consider the projection of the data onto the most significant eigenvectors this way the dimension of the data can be reduced

Eigenvalues

Visualising PCA

Original pattern (blue)

Summary

 Review of basic data analysis (mean, variance and covariance)

Assignment Project Exam Help

- Introduction https://eduassistpro.githula.io/lysis
 (PCA)
 Add WeChat edu_assist_pro
- Example of PCA

