CSE 575: Statistical Machine Learning: Mid-Term 1

Instructor: Prof. Hanghang Tong

February 16th, 2017

First Name:						
Last Name:						
Email:						
ASU ID:						
Q	Topic	Max Score	Score			
1	MLE	15				
2	Bayes Classifer	25				
3	Naive Bayes	25				
4	Decision Boundary of 1NN	15				
5	Distance Metric and 1NN	20				
Total:		100				

- This exam book has 10 pages, including this cover page.
- You have 75 minutes in total.
- Good luck!

1 Maximum Likelihood Estimation (15 points)

[4 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in each trial is p ($0 \le p \le 1$). If we flip the coins twice, and observe (head, head), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is p^2 , and p=1 maximizes the likelihood.

[4 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in each trial is p ($0 \le p \le 1$). If we flip the coins twice, and observe (head, tail), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is p(1-p). take the logorithm, and calculate its derivative, and set it as zero, we have

$$1/p - 1/(1-p) = 0$$

which gives p = 0.5.

[4 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in the i^{th} trial is $i * p \ (i = 1, 2)$. If we flip the coins twice, and observe (head, head), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is p*2p. In the meanwhile, we have $0 \le 2p \le 1$. p=0.5 gives the maximum likelihood

[3 points.] Suppose we flip a coin, and observe either a head or a tail. The probability of observing a head in the i^{th} trial is $i * p \ (i = 1, 2)$. If we flip the coins twice, and observe (head, tail), what is the maximum likelihood estimation of p? Justify your answer.

Solution: likelihood is p * (1 - 2p). take the logorithm, and calculate its derivative, and set it as zero, we have p = 0.25.

2 Bayes Classifier (25 points)

Continuous Bayes Classifier. We want to build a Bayes Classifier for a binary classification task (y=1 or y=2) with a 1-dimensional input feature (x). We know the following quantities: (1) P(y=1)=0.4; (2) P(x|y=1)=0.5 for $0 \le x \le 2$ and P(x|y=1)=0 otherwise; and (3) P(x|y=2)=0.25 for $0 \le x \le 4$ and P(x|y=2)=0 otherwise.

- [3pts]. What is the prior of the class label y = 2? P(y = 2) = 0.6
- [2pts]. What is P(y = 1|x)? $P(y = 1|x) = 4/7 \ 0 \le x \le 2$ and 0 otherwise $P(y = 2|x) = 3/7 \ 0 \le x \le 2$ $P(y = 2|x) = 1 \ 2 \le x \le 4$ and 0 otherwise
- [2pts]. For x = 1, what is class label your classifier will assign? What is the risk of this decision?
 - y = 1, risk is 3/7 (1 pt for each)
- [2pts]. For x = 3, what is class label your classifier will assign? What is the risk of this decision?
 - y = 2, risk is 0 (1 pt for each)
- [2pts]. What is the decision boundary of your Bayes classifier? [0,2]: y=1; (2,4]: y=2; tie/unknown otherwise. (1 pt for each segment. lose 0.5pt if mistaken on the boundary)
- [2pts]. What is the Bayes error of your Bayes classifier? 0.3 (0.15 x 2)

Discrete Bayes Classifier. We want to build a Bayes Classifier for a binary classification task (y = 1 or y = 2) with two binary features $(x_1 \text{ and } x_2)$. We know the following quantities: (1) P(y = 1) = 0.2; (2) $P(x_1 = 0, x_2 = 0 | y = 1) = 0.3$, $P(x_1 = 0, x_2 = 1 | y = 1) = 0.4$, $P(x_1 = 1, x_2 = 0 | y = 1) = 0$, and $P(x_1 = 1, x_2 = 1 | y = 1) = 0.3$; and (3) $P(x_1 = 0, x_2 = 0 | y = 2) = 0.2$, $P(x_1 = 0, x_2 = 1 | y = 2) = 0.3$, $P(x_1 = 1, x_2 = 0 | y = 2) = 0.3$, and $P(x_1 = 1, x_2 = 1 | y = 2) = 0.2$;

• [2pts]. What is the prior of the class label y = 2? P(y = 2) = 0.8

• [2pts]. What is $P(y=2|x_1,x_2)$? $P(y=2|x_1=0,x_2=0)=8/11, \ P(y=2|x_1=0,x_2=1)=3/4, \ P(y=2|x_1=1,x_2=0)=1, \ P(y=2|x_1=1,x_2=1)=8/11 \ (0.5pt \ \text{for each case}).$

- [2pts]. For an example with the following features $x_1 = 0, x_2 = 1$, what is class label your classifier will assign? What is the risk of this decision? y = 2, risk is 0.25 (1 pt for each)
- [2pts]. For an example with the following features $x_1 = 1, x_2 = 0$, what is class label your classifier will assign? What is the risk of this decision? y = 2, risk is 0 (1 pt for each)
- [2pts]. What is the decision boundary of your Bayes classifier? all for y = 2 (0.5 pt for each case). alternatively, you can say 'no decision boundary' (since all the space is for y = 2).
- [2pts]. What is the Bayes error of your Bayes classifier? 0.2

3 Naive Bayes Classifier (25 points)

Given the training data set in Figure 1, we want to train a binary classifier. In the figure, (1) the last column is the binary class label; (2) each of the first four columns is a binary feature, and (3) each row is a training example.

Inpu	Input Feature $X = (x_1, x_2, x_3, x_4)$				
X ₁	x ₂	X ₃	X ₄	Y	
1	1	0	0	1	
0	1	1	0	1	
1	0	1	1	1	
1	1	0	0	1	
1	0	0	1	0	

Figure 1: Training Data Set

[5 points.] If we want to train a Bayes Classifier, how many *independent* parameters are there in your classifier? Justifiy your answer.

Solutions: P(y=1), for each class label, we have 2^4-1 independent parameters. Total $2*(2^4-1)+1=31$ independent parameters.

[5 points.] If we want to train a Naive Bayes Classifier, how many *independent* parameters are there in your classifier? Justifiy your answer.

Solutions: (1) P(y=1), (2) for each class lable and each dimension of the feature, one independent parameter $P(x_i=1|y=i)$ (i=1,0). Total 2*4+1=9 independent parameters.

[4 points.] Using the standard MLE (maximum likelihood estimation) to train a Naive Bayes Classifier, what is your estimation for P(Y = 0)?

Solutions: P(Y = 0) = 0.2.

[3 points.] Using the standard MLE (maximum likelihood estimation) to train a Naive Bayes Classifier, what is your estimation for $P(x_3 = 1|Y = 0)$?

Solutions: $P(x_3 = 1|Y = 0) = 0$.

[3 points.] Using the standard MLE (maximum likelihood estimation) to train a Naive Bayes Classifier, what is your estimation for $P(x_2 = 1|Y = 1)$?

Solutions: $P(x_2 = 0|Y = 1) = 0.75$.

[5 points.] Suppose we use the standard MLE (maximum likelihood estimation) to train a **Naive Bayes Classifier**. Now given a test example X = (1,0,1,1), what is the class label your classifier will predict? Justify your answer.

Solutions: $P(Y=0|X) \propto P(Y=0)P(x_1=1|Y=0)P(x_2=0|Y=0)P(x_3=1|Y=0)P(x_4=1|Y=0)=0$ (due to $P(x_3=1|Y=0)=0$ the above answer). In the meanwhile, $P(Y=1|X) \neq 0$. Therefore, the classifier will predict as the positive example (i.e., Y=1).

4 The Decision Boundary for 1NN (i.e., 1-Nearest Neighbors Classifier) (15 points)

For each of the following figures, we are given a few data points in the 2-d space, each of which is labeled as either '+' or '-'. Draw the decision boundary for 1NN, assuming we use L_2 distance. (5 points for each case).

Figure 2: Training Data Set for 1NN Classifier

5 1NN Classifier and Distance Metric (20 points)

[5 points]. Given two training data points: (1) a positive example at (0, 1) and (2) a negative example at (0, -1), what is the decision boundary of 1NN classifier if we use L_0 distance? Justify your answer.

Solution: everything except two horizonal lines: y = 1 and y = -1. If your answer is these two lines, get 2pts.

[5 points]. Given two training data points: (1) a positive example at (0, 1) and (2) a negative example at (0, -1), what is the decision boundary of 1NN classifier if we use L_1 distance? Justify your answer.

Solution: the x-axis (y = 0).

[5 points]. Given two training data points: (1) a positive example at (0, 1) and (2) a negative example at (0, -1), what is the decision boundary of 1NN classifier if we use L_2 distance? Justify your answer.

Solution: the x-axis (y = 0).

[5 points]. Given two training data points: (1) a positive example at (0,1) and (2) a negative example at (0,-1), what is the decision boundary of 1NN classifier if we use L_{∞} distance? Justify your answer.

Solutions: shown in the following figure. You also need to specify the (1) the functions for each of the four lines (y = x + 1, y = x - 1, y = -x + 1, y = -x - 1) and (2) two endpoints (1,0) and (-1,0). 0.5pt for each missed line or endpoint.

Figure 3: Decision Boundary of 1NN Classifiers with L_{∞} Distance.