AIVISAA

TECHNICAL REPORT NO. 570

ANTI-ARMOR ADVANCED TECHNOLOGY DEMONSTRATION
(A2 ATD)

VERIFICATION, VALIDATION AND ACCREDITATION

(VV&A) TOOLS

FOR SIMULATORS

March 1995

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19961018 147

DTIC QUALITY INSPECTED 3

U. S. ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY ABERDEEN PROVING GROUND, MARYLAND 21005-5071

DESTRUCTION NOTICE

Destroy by any method that will prevent disclosure of contents or reconstruction of the document

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so specified by other official documentation.

WARNING

Information and data contained in this document are based on the input available at the time of preparation.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. The report may not be cited for purposes of advertisement.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank	March 1995	3. REPORT TYPE AND D Technical R	ATES COVERED Leport; March 1995
4. TITLE AND SUBTITLE Anti-Armor Advanced Techn Verification, Validation and Simulators (Unclassified) 6. AUTHOR(S) Irene Johnson		ATD)	FUNDING NUMBERS
nene Johnson			
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	8.	PERFORMING ORGANIZATION REPORT NUMBER
Director	A - 1 - 1 - A - 1 - 1		
U.S. Army Materiel Systems	Analysis Activity		
ATTN: AMXSY-CD Aberdeen Proving Ground, N	AD 21005 5071		TR-570
9. SPONSORING/MONITORING AGE		10	SPONSORING MONITORING
Department of the Army	ich laving and application		AGENCY REPORT NUMBER
Assistant Secretary of the Ar	my for Research		
Development and Acquisi	-	ĺ	
Washington, DC 20310			N/A
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY S Approved for public release;	TATEMENT distribution is unlimited.	12	25. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words The Anti-armor Advanced T Simulation - Developmental ATD Experiments consist of automated forces (MODSAF (VV&A) of: individual simulators, modulated simulated simulat	echnology Demonstration (BDS-D) experiments for a combination of one or not. Each combination requilitators, MODSAF, and the tools have been designed DSAF and the BDS-D sim	using on A2 weapon so nore simulators couple ires Verification, Vali- entire BDS-D simulation developed to assi- culation. This report of	systems evaluations. A2 ed with modular semi- dation and Accreditation ation. Under the A2 ATD st in the VV&A process outlines and describes the
		1	
Anti-armor Advanced Techn	-l D	ATD Varification	15. NUMBER OF PAGES
	•		
Validation, Accreditation, V acquisition process, simulate		ive Silliulativil,	16. PRICE CODE
	8. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	TION 20. LIMITATION OF ABSTRACT
	JNCLASSIFIED	OF ABSTRACT UNCLASSIF	IED UNLIMITED

VV&A Tools For Simulators

TABLE OF CONTENTS

ACKNOWLEDGEMENTS		
1. BACKGROUND		1
2. VERIFICATION, VALIDATION AND ACCREDITATION OF SIMULATORS AND SIMULATIONS		
3. PURPOSE		5
4. SIMULATOR VV&A TOOLS		6 4 6 8
5 . SUMMARY	2	C
REFERENCES	2	: 1
APPENDIX A - VVATT REPORT SAMPLE	B-	- 1 - 1

VV&A Tools For Simulators

LIST OF FIGURES

Figure 1	Simplified VV&A Process	3
Figure 2	Create Observer Menu	7
Figure 3	Create Target Menu	8
Figure 4	Range Bands Menu	9
	Personnel Data Menu	
	Acquisition Data Menu	
Figure 7	Quadrant Data Menu	2

ACKNOWLEDGEMENTS

The U.S. Army Materiel Systems Analysis Activity (AMSAA) thanks the following individuals for their contributions to this report:

Written, Compiled and Edited By:

Irene M. Johnson

Peer Review:

Kathy Edwards

Technical Review:

Wilbert J. Brooks Thomas W. Ruth

LIST OF ACRONYMS

AGS - Armored Gun System

AMSAA - Army Materiel Systems Analysis Activity

APC - Armored Personnel Carrier ATMT - Anti-Tank Missile Test

A2 ATD - Anti-Armor Advanced Technology Demonstration
BDS-D - Battlefield Distributed Simulation - Developmental

CASTFOREM - Combined Arms and Support Task Force Evaluation Model

CIG - Computer Image Generator

CITY - Commander's Independent Thermal Viewer

DIS - Distributed Interactive Simulation

DISAT - DIS Analytical Tools
DVO - Direct View Optics

FLIR - Forward Looking Infrared

FOR - Field of Regard

GPS - Gunner Primary Sight

IFOV - Instantaneous Field of View

IOTE - Initial Operational Test and Evaluation

LOSAT - Line-of-Sight Anti-tank

MODSAF - Modular Semi-Automated Forces

NFOV - Narrow Field of View

NLOS - Non-Line-of-Sight Anti-tank

PDU - Protocol Data Unit SIMAN - Simulation Manger

STRICOM - Simulation, Training and Instrumentation Command

TIS - Thermal Integrated Sight

VV&A - Verification, Validation and Accreditation

VVATT - VV&A Test Tool
WFOV - Wide Field of View

1. BACKGROUND

Historically, the analytical community has used constructive models such as Janus and the Combined Arms and Support Task Force Evaluation Model (CASTFOREM) to conduct analysis for the acquisition process. These types of models do not fully represent the impacts of human interaction with the system and the human influence on combat effectiveness of the system. The Training and the Research and Development communities have used real time man-in-the-loop Distributed Interactive Simulation (DIS) for several years. However, the full potential of DIS as an evaluation tool to support material acquisition decisions has not been realized.

The purpose of the Anti-armor Advanced Technology Demonstration (A2 ATD) is to develop and demonstrate a verified, validated, and accredited (VV&A) DIS capability to support anti-armor weapon system virtual prototyping, concept formulation, requirements definition, effectiveness evaluation, and mission area analysis on a combined arms battlefield at the battalion task force or brigade level.

The Battlefield Distributed Simulation - Developmental (BDS-D) simulation's synthetic environment represents the current state-of-the art in DIS. Upgrades to the environment, simulators, data analysis tools, and verification, validation, and accreditation are required to make BDS-D simulation a viable tool for supporting acquisition decisions. The BDS-D Advanced Technology Demonstration (ATD) is upgrading the environment and has taken the first step in verification, validation, and accreditation of the modular semi-automated forces, which simulates the computer generated forces. In addition, simulators being developed will have next generation hardware and also require verification, validation, and accreditation.

The A2 ATD technical objectives are:

- 1.) Demonstrate DIS as an evaluation tool and verify, validate, and accredit simulators used in the A2 ATD experiments, modular semi-automated forces (MODSAF), and the BDS-D simulation.
- 2.) Develop, demonstrate, and document analytical tools (techniques) to evaluate the causes of simulation outcomes.
- 3.) Demonstrate the linkage of constructive models (Janus and Eagle) to DIS.

4.) Demonstrate upgraded virtual prototypes (M1A2 Abrams, M2A3/M3A3 Bradley, Line of Sight Anti-Tank (LOSAT), Non-Line of Sight (NLOS)) and virtual prototypes to be developed (Comanche, Apache, Armored Gun System (AGS), Javelin).

Simulator and semi-automated forces verification, validation, and accreditation and development of analytical tools to support the evaluation of causes of simulation outcomes were initiated in FY93 to provide the foundation for six experiments in FY94, FY95 and FY96. The first FY94 experiment replicated two M1A2 Initial Operational Test and Evaluation (IOTE) vignettes to validate the BDS-D virtual simulation for the M1A2 based upon simulations of the real tanks at Ft. Hood (IOTE). Experiments 2, 3, and 5 evaluate heavy force anti-armor modernization and validate the MODSAF representations of the M1A2, M2A3/M3A3, LOSAT, NLOS, Comanche, Apache and M1A2 firing Smart Target Acquisition Fire and Forget (STAFF) in High Resolution Scenario 29 in Southwest Asia. Experiment 4 demonstrates Janus linked to BDS-D and evaluates Janus as an alternative to the Modular Semi-automated Force (MODSAF). Experiment 6 evaluates light force anti-armor modernization and validates MODSAF representations of Javelin, LOSAT, NLOS, Comanche and Apache.

2. VERIFICATION, VALIDATION AND ACCREDITATION OF MODELS, SIMULATORS AND SIMULATIONS

VV&A is required for models, simulators and simulations (MS and S) that are used to support ASARC/DAB programs. Figure 1 shows an overview of the VV&A process.

<u>Verification</u>: is the process of determining that the MS or S accurately represents the developer's conceptual description and specifications.

<u>Validation</u>: is the process of determining the extent that the MS or S represents the intended real world entity.

<u>Accreditation</u>: is an official certification that the MS or S has achieved an established level of credibility such that it can be used for a specific application.

Figure 1 Simplified VV&A Process

The Battlefield Distributed Simulation - Developmental (BDS-D) is a simulation consisting of a combination of one or more simulators, modular semi-automated forces (MODSAF) and/or live systems. Each combination of simulators, MODSAF and live systems represents a unique simulation that requires Verification, Validation and Accreditation (VV&A). BDS-D VV&A requires VV&A of:

- 1.) individual simulators,
- 2.) MODSAF, and
- 3.) the BDS-D simulation.

The Anti-armor Advanced Technology Demonstration (A2 ATD) is focusing on the class of BDS-D applications that support A2 weapon systems evaluation. In support of the A2 ATD program, methodologies and tools have been designed and developed to assist in the VV&A process of individual simulators, MODSAF and the entire BDS-D simulation. In FY94 these methods and tools have also been demonstrated during VV&A of the M1A2 simulator, MODSAF version 1.2.3 and the A2 ATD Experiment 1. Experiment 1 was a BDS-D simulation using M1A2 simulators and MODSAF to replicate the M1A2 Operational Test at Ft. Hood.

The VV&A tools for the M1A2 simulator transfer well to other weapon systems/simulators. For example, nearly all weapon systems/simulators require a gunner to detect, recognize and identify targets; therefore, the M1A2 simulator VV&A methodology and tools developed to capture target acquisition capabilities are transferable.

3. PURPOSE

The purpose of this document is to outline and describe the VV&A tools developed for an individual simulator.

4. SIMULATOR VV&A TOOLS

The A2 ATD program requires VV&A of individual simulators. Since the purpose of A2 ATD centers on weapon systems evaluations, then the VV&A tools are also geared toward that end. Four of the VV&A tools were designed and developed under A2 ATD and the fifth tool, the Simulation Manger (SIMAN) was developed by STRICOM in order to control BDS-D simulations. However, A2 ATD used the SIMAN to assist in the VV&A. The five tools are:

- 1.) VV&A Test Tool (VVATT), for target acquisition experiments,
- 2.) VV&A Protocol Data Units (PDUs),
- 3.) Delivery Accuracy Logger Files,
- 4.) DIS Analytical Tools (DISAT), and
- 5.) Simulation Manager (SIMAN)

The following sections describe each one of these tools.

4.1 VV&A Test Tool (VVATT)

A2 ATD developed the VVATT to assist in the conduct and analysis of target acquisition tests for the M1A2 simulator. Two types of stationary target acquisition tests are supported:

- 1.) One tests the acquisition capability in the Instantaneous Field of View (IFOV), and
- 2.) the other tests the acquisition capability in a Field of Regard (FOR), i.e. search.

Tests are conducted at various ranges through each sensor (e.g. DVO, FLIR, etc.) coupled with a field of view type (e.g. narrow, wide, zoom, etc.). Figures 2 through 7 and Appendix A contain a sample of some of the VVATT menus and reports.

Prior to conducting a target acquisition test, the test conditions must be created. Figures 2 and 3 show the VVATT's Create Observer (i.e. simulator) and Create Target menus, respectively. The data entered into these menus can be obtained by first determining observer and target positions from MODSAF. A number of observer-target pairs are entered into the VVATT. Additionally, the test design involves range bands. Figure 4 shows an example of range band break-outs. This data is used by the VVATT to verify that the observer-target pairs are within the test range bands. For a FOR test, boards to mark the left and right boundaries for the field of regard/search are also entered on another menu screen. After the target acquisition test cases are input to the VVATT, then the test may be conducted.

The VVATT, in conjunction with the simulator, is used to execute a target acquisition test. Figure 5 shows the first VVATT menu. Here the observer's/soldier's personnel information is entered. When "Go" is depressed, the sequence of observer-target pairs will be executed and the acquisition data menu appears on the VVATT. The simulator is positioned at a particular location on the virtual battlefield and the target appears at a predefined location. In an IFOV test, the soldier looks through the sight and attempts to acquire the target at the highest level of acquisition that he can discern. Acquisition levels in ascending order are: no target, detection, recognition target class, and identification - target nomenclature. The acquisition data menu, Figure 6, contains the choices of soldier acquisition responses. Furthermore, the soldier will also state which partitioned segment of the sight, Figure 7, the target appears in. In the FOR test, the soldier searches for a target in an area delineated by

- Create Observer			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	Observer #1 (of 20			
Entity ID	2		FOV Type	NFOV	V
Entity Type	M1A2	\blacksquare	Sensor	DVO	V
UTM Zone	14				
Easting	608017	meters		X: -746906.928	
Northing	3458050	meters		Y: -5406307.144 Z: 3290077.019	
Location Z	269	meters			
Heading	151.000	degrees			
Turret Heading	2.346	degrees			
Bumper ID	01234567890				
Back	Prev Dup Pr				

Figure 2 Create Observer Menu

Figure 3 Create Target Menu

	RANGE BANDS	For ACQ Trials	
	MIN	MAX	
SHORT:	1600	1800	
MEDIUM:			
	2400	2600	
LONG:	3600	3800	
VERY LONG:	5400	5600	
	Check Status -	-	efault Cancel
	Check Status - Check OK	-	
	Check OK — Save/Retrieve		

Figure 4 Range Bands Menu

_ A	ACQ Personal Data
_	Student Personal Data —
	Name: John Doe
	SSN 111 22 3456 (4 digits for report fname)
	Date 11/21/94
	Trial# (provided by test personnel) Input trial file:/Datafiles/TRIAL1.DAT
	> OK, Trial file does EXIST
	Output report file:/Reportfiles/REPORT34561.DAT
	GO Cancel
	-
Г	Save/Retrieve Configuration
	File:/Datafiles/per1.cfg
	Save Retrieve Confirm Abort
L	

Figure 5 Personnel Data Menu

Figure 6 Acquisition Data Menu

Figure 7 Quadrant Data Menu

the left and right board markers. When he locates a target, the soldier states the acquisition at the highest level he can distinguish. For both IFOV and FOR tests, a stop clock tracks the time elapsed between target appearance and the soldier's response. After the target acquisition test trials are completed, the VVATT produces a report.

Appendix A pages A-2 through A-11 show the output results. Each individual observer-target pair is tracked and scored. Accounting scores for observer responses versus ground truth are maintained for detection, recognition, identification, false targets, null targets and time. Near the end of the report, summary data is produced. A sample is contained on pages A-10 and A-11.

The VVATT assists in rapidly stepping through structured target acquisition tests, scoring and summarizing the results.

4.2 VV&A Protocol Data Units (PDU's)

A PDU is a unit of data that is passed on a network between simulation entities or applications. Standard PDU's are defined by the Distributed Interactive Simulation (DIS) Community. VV&A PDU's are specialized PDU's generated by the simulator. Actually, the VV&A PDU's are not separate PDU's, but are wrapped inside an Action Response PDU customized for each VV&A category. The VV&A PDU's contain data that cannot be derived from the Standard DIS PDU's; the VV&A data contains intermediate and final calculations that the simulator must determine in order to function/operate correctly.

Six VV&A PDU's were designed, developed and used in the M1A2 simulator. These PDU's transfer well to other weapon platforms; however additional PDU's may be necessary to VV&A other weapon systems which exhibit special characteristics. Currently there are six VV&A PDU's and the structure/data fields of these PDU's are contained in Appendix B. The following briefly describes each PDU:

- 1.) <u>Target Acquisition and Tracking PDU.</u> The Target Acquisition and Tracking PDU is transmitted periodically at time intervals. From the structure contained in Appendix B, it is apparent that this information is used to analyze target tracking ability for a delivery accuracy evaluation. This PDU data can also be used to analyze search patterns for a target acquisition evaluation.
- 2.) <u>Delivery Accuracy PDU.</u> The Delivery Accuracy PDU is transmitted when a round is fired. The data in this PDU is used to conduct a delivery accuracy evaluation. This PDU is used in conjunction with the Target Acquisition and Tracking PDU in order to conduct delivery accuracy evaluations for the Sabot and HEAT rounds.
- 3.) <u>Direct Fire Vulnerability PDU.</u> The Direct Fire Vulnerability PDU is generated when the simulator receives a hit from a round. The data in this PDU provides the information to conduct an analysis regarding the direct fire vulnerability algorithms for kinetic energy, shaped charge and top-attack direct fired munitions.
- 4.) Indirect Fire Vulnerability PDU. The Indirect Fire Vulnerability PDU is generated when an indirect fire round detonates with a certain radius of the simulator. The information provides the ability to analyze the simulator's indirect fire algorithms for both high explosive and ICM type artillery rounds.

- 5.) Smart Target Acquisition Fire and Forget (STAFF) PDU. The STAFF PDU is generated when the simulator fires a STAFF munition. This PDU contains data which is customized to the STAFF munition. The STAFF round is a fire and forget round equipped with a seeker. Once a target is located by the STAFF munition, then the STAFF fires a submunition down onto the target. For analysis, the STAFF PDU is used to assess the STAFF round delivery accuracy and STAFF submunition functioning.
- 6.) Coax Machinegun PDU. The M1A2 simulator generates a Coax PDU when a 7.62mm tracer round is fired. A tracer round occurs on every 5th round of 7.62mm munition. The simulator models the tracer round in order to reduce the total number of packets which would be required if each round were modeled. This approach was chosen because of the 7.62mm coax machinegun's rapid firing rate. The Coax PDU contains data relative to a burst-fire weapon system. This PDU is used to evaluate the 7.62mm delivery accuracy.

The various VV&A PDU's can each be turned-on or turned-off. The capability of turning off the VV&A PDU's is necessary before conducting a BDS-D Experiment. There is concern that the Standard DIS PDU's generated during an Experiment could overload the network. Therefore, additional data/information generated by the VV&A PDU's simply add more packets on the network which potentially may cause network/real-time problems.

The VV&A PDU's were designed specifically for the M1A2 simulator; however they are sufficiently general that they may be used to capture the same data for nearly all ground platforms. The Target Acquisition and Tracking PDU is applicable to any weapon system that manual searches and tracks targets. This PDU could possibly also be used for automatic tracking. The Delivery Accuracy PDU may apply to any weapon system simulator that fires a round and uses biases and dispersion to model the fly-out. The Direct Fire Vulnerability and Indirect Fire Vulnerability PDU's are applicable to any simulator that uses the standard Army vulnerability algorithms. The Staff PDU may be used for other fly-over shoot-down type munitions. And finally the Coax PDU may be applicable to other burst-fired munitions.

4.3 Delivery Accuracy Logger Files

Prior to the A2 ATD Experiment 1, the delivery accuracy capability of the M1A2 simulator firing sabot and High Explosive Anti-Tank (HEAT) rounds was VV&A'd. Tests similar to the Technical Tests conducted on live M1A2 tanks at the Proving Ground were re-created in the virtual battlefield environment. Four major test scenarios are:

- 1.) stationary firer versus stationary targets,
- 2.) stationary firer versus moving targets,
- 3.) moving firer versus stationary targets, and
- 4.) moving firer versus moving targets.

The virtual test set-ups are created with logger files, which are comprised of PDU's. The M1A2 simulator is separately placed on the battlefield by use of the simulator console. During simulator delivery accuracy testing, the logger files are played back on the Datalogger while the soldiers in the simulators engage targets. Figures 8 through 11 graphically show the various delivery accuracy target board set-ups.

Figure 8 contains the stationary firer versus stationary target-board test. Four separate logger files were developed to place the eight collective target-boards at 1500, 2500, 3000, and 3500 meters range from the simulator. One logger file at a time is played back, while the gunners fire two sabot rounds at each target in sequence. Next, two HEAT rounds are fired at each target. Then, the 2500 meters logger file is played and the sequence continues until the last logger file is played back and engaged.

The stationary firer versus moving target-board tests are shown in Figure 9. One moving target is a crossing target and the other moving target is an evasive maneuvering target replicating the Anti-Tank Missile Test (ATMT) path. For the crossing target, three logger files were developed for target ranges of 1500, 2000 and 2500 meters distance from the simulator. The 1500 meter logger file is played back. After the target passes the marker; then the soldiers fire 2 sabot and 2 HEAT rounds. That same logger file is played back a number of times to obtain sufficient replications. Next, the 2000 meter logger file is engaged and replicated, followed by the 2500 meter logger file. In the case of the stationary firer versus maneuvering target, three logger files were developed for target ranges of 1500, 2000 and 2500

Figure 8 Stationary Firer vs Stationary Target

Figure 9 Stationary Firer vs Moving Target

Figure 10 Moving Firer vs Stationary Target

Figure 11 Moving Firer vs Moving Target

meters. During this test, the soldiers fired 10-20 sabot rounds in one replication and 10-20 HEAT rounds in the next replication.

The moving firer versus stationary targets tests are shown in Figure 10. The stationary targets and markers are played back in a logger file. The head-on firer approaches one of the target boards. As the simulator passes each marker, the gunner fires 2 sabot and 2 HEAT rounds. For the next replication, the simulator is repositioned to its previous location, drives toward the other target-board, and fires while passing the markers. This is repeated until sufficient replications are achieved.

The crossing firer versus stationary target, Figure 10, consists of two logger play back logger files. One logger file locates the target at 1000 meters range and the other logger file places the target at 1500 meters range. As in all cases, the simulator is positioned by the simulator console. In this test, the gunner slews the turret on target. As the simulator passes the first marker two sabot and two HEAT rounds are fired. Each logger file is replicated a number times.

The last delivery accuracy test examines the moving firer versus moving target scenario, as shown in Figure 11. One logger file was developed with markers and the target-board located at 1500 meters range. During the test, as the simulator passes the marker and the target is in between the markers, then the gunner fires two sabot rounds. Again, the logger file is replicated.

Logger files provide the ability to control a vehicle's path and speed, through specifying location points on the path and the vehicle's velocity and acceleration. Logger files also allow a target to sustain multiple hits without any damage or kill effect, which would interfere in a delivery accuracy test. Furthermore, the target's height above terrain can be held constant in a logger file, which is another desirable condition for delivery accuracy tests. MODSAF, on the other hand, does not permit the ability to input exact points on a path and to specify a particular velocity and acceleration between the points. MODSAF also forces vehicles to follow the terrain and to negotiate around unpassable terrain or obstacles.

4.4 DIS Analytical Tools (DISAT)

During VV&A testing, the simulator sends and receives standard DIS PDU's in addition to sending the specialized VV&A PDU's. All these PDU's are captured on a Datalogger. The Datalogged PDU's form the primary basic raw data which can be used in calculations to produce measures of effectiveness, performance, and behaviors. The DIS Analytical Tools (DISAT), developed by A2 ATD, consist of a number of computer routines which calculate certain measures of merit based on the Datalogged PDU's. A subset of the DISAT tool box was designed to support simulator VV&A.

The majority of the simulator VV&A DISAT routines simply extract the VV&A PDU's (actually Action Response PDU's), format the VV&A PDU fields and output the data. The VV&A PDU's contain the simulator's calculations. In addition to the VV&A PDU's, the DISAT uses other Standard DIS PDU's to determine critical data necessary to supplement and to validate the calculations that are contained in the VV&A PDU's. The Standard DIS PDU's typically used are the Entity State, Fire and Detonate. The DISAT formats and outputs applicable fields such as the simulator's location and heading, the target location and heading, round detonation location, etc. The DISAT also calculates the range to target, attack angle of rounds, velocity versus time and acceleration versus time.

4.5 Simulation Manager (SIMAN)

The Simulation Manager, developed by STRICOM, issues and receives Simulation Management PDU's in order to initiate and control an exercise. PDU's that SIMAN sends are: Set Data, Data Query, Action Request, Create Entity, Remove Entity, Start/Resume, and Stop/Freeze. PDU's that SIMAN receives are: Event Report, Data, Action Response, and Acknowledge. All these PDU's are not supported in the current SIMAN release. However, some of the SIMAN PDU's were used to support the M1A2 simulator VV&A, and as the SIMAN matures this tool may be more useful in facilitating the conduct of simulator VV&A.

The SIMAN issues Set Data PDU's that can be used to set the fuel level in a simulator. This Set Data was used in the M1A2 simulator VV&A to zero the fuel levels in the left and right fuel tanks, and to set the fuel level in the rear tank to a specific number of liters. Subsequently, a fuel consumption test could be executed with a known initial quantity of fuel. Without this tool either 1) the simulator code would have to be changed or 2) the fuel consumption test must be run with full rear and full auxiliary fuel cells requiring an inordinate amount of time to starve the simulator of fuel.

Another PDU that the SIMAN issues is the Data Query PDU. This PDU can be used to specify the periodic time interval that the simulator issues the Target Acquisition and Tracking VV&A PDU. The simulator is hard-coded to issue the Target Acquisition and Tracking PDU once every 2 seconds, currently; however, to support tracking analysis for delivery accuracy VV&A the data must be captured at a minimum frequency of 12 hertz. The Data Query PDU was used during the M1A2 VV&A to set the frequency of the Target Acquisition and Tracking PDU.

The Data Query PDU can also be used to change the Dead Reckoning parameters. This was not used for the M1A2 simulator VV&A; however, it could be used to support mobility/automotive performance tests. Appropriately changing the Dead Reckoning parameters will force Entity State PDU's to be generated more often. Entity State PDU's are the primary data source for mobility test data such as distance traveled, velocity, acceleration, etc. Frequent data points allow a better estimate of actual simulator performance.

SIMAN was only used for a few functions during the M1A2 VV&A; however, these functions were critical to obtaining quality data, reducing test time and avoiding temporarily changing hard-coded simulator default values.

5. SUMMARY

The VV&A tools will continue to evolve and mature. In addition, other tools will be developed. For example, play-back logger files for vulnerability tests would significantly reduce vulnerability test set-up and execution. The VV&A tools for simulators, to-date, have been developed for the M1A2 simulator; however the tools are sufficiently general for other weapon simulators to use or adapt.

REFERENCES

- 1. USAMSAA, Memorandum, Subject: Anti-Armor Advanced Technology Demonstration (A2 ATD) Technology Demonstration Plan (TDP), 29 Apr 1993.
- 2. "Anti-Armor Advanced Technology Demonstration (A2 ATD) Line-of-Sight Antitank (LOSAT) Simulator Verification, Validation and Accreditation Plan", Draft AMSAA Report, Feb 1994.
- 3. "Anti-Armor Advanced Technology Demonstration (A2 ATD) M1A2 Simulator Verification, Validation and Accreditation Plan", Draft AMSAA Report, Dec 1993.
- 4. Discussions between Irene Johnson (AMSAA) and Paul Monday (Loral Advanced Distributed Simulation), Subject: Logger Files and DISAT, Aug 1994.
- 5. Discussions between Irene Johnson (AMSAA) and Tung Duong (Loral Advanced Distributed Simulation), Subject: VVATT, Feb 1995.
- 6. "Interface Requirements Specification/Design Document for M1A2 Simulator System", Orion Advanced Simulation and Intel Systems Inc, OASIS-LR-9301-05-02, Mar 1994.

VV&A Tools For Simulators

(This page intentionally left blank)

APPENDIX A - VVATT SAMPLE

- VV&A Tools For Simulators

(This page intentionally left blank)

11 1995 10:42 REPOR
A2ATD PARCET ACQUISITION TEST ALTIVITI RECORD
10 Incompression 81
14 Orbs VIE: 14 Orbs VIE: 15 16: MIA2 (Tank) 16 TH coord: (Loce = 14, H = 1458050.000, E = 600017.000, S = 269.000) 17
3
23) 20) 20) 21) 22) 23) 24) 25) 26) 27) 27) 28) 28) 29) 29) 20) 20) 20) 20) 20) 20) 20) 20) 20) 20
34) PERCEIVED 9CF: 34) Identification: MIA2 (Tank) 39) Acquisition Flue: 0.20
40) 41) Detection, Recognition, and Identification 41)
44 45 comparion 02
16 OMN VZH: 14: M2A3 (APC) 50
54 COL CALLIA 1347 55 COL CALLIA 1347 56 UTH COLCIA [150.0 - 14,
59) 60) ACT: 61) WOLL Target 61)
63 PERCETVED WGT: 64 WELL Terget 65 Amguiation Time: 0.30
67 CONTRG: 68 Will Target Detected Correctly 69
70 TICONDITION &3

Jan 1	Jan 11 1985 10:12 REPORT34561.DAT.save1	DAT.save1 Page 2
72 73 75 75	MM VEK. THOSE (Truck) The 1858053.000 ON Provid: (N = -766105.81), N = -5463 FOV: NFOV (3), Sensor: OTK (3)	3658053.000, E = 588017.00C, B = 269.000) , K = -5463437.243, B = 3296236.459)
22222222	MONROS: Monrod 81 Id: 78_81ins (77) GTM count. (None - 14, N = 1458050.000. R = 58801 GTM count. (X = -76750.290. Y = -5466569.729, R GCC range: 3701.000 (Bend = 'LoWG') Powed 62 1d: 78_21ins (73) GTM count. (Enne - 14, N = 1458050.000. R = 58801 GCC counge: 5500.000 (Bend = 'VERY LOWG')	1458050_000, R = 588017.000, K = 1970.009) -, Y = -5606569.729, R = 1993156.717) - 'LOMG') 1458050_000, R = 588017.000, R = 5769.009) -, R = -5608052.383, R = 3291050.135) - 'VERY LOMG')
	ACTUAL Tot: Wild Target James [James	
001001000000000000000000000000000000000	ONT VEH (Tank) 1d LOSAT (Tank) 1d LOSAT (Tank) ONT TOTAL (Losat (A = 147350.400, E = 607) GC contd: (X = -489569 £16. I = -6306505.215, FOV: ECOH (3), fensor (TV (3))	, E = 607900.000, B = 318.840) 6505.235, B = 347162.239)
	Fig. 12 (Mal) Defileds ficerton: MPC (Mal) Defileds ord: (Fees = 0, N = 0.000 ord: (Fees = 0.233714.584. Mage: (877469.709 (Masd = 355) ord: (Masd = 355) or	. E = 0.040, B = 0.040) - 831271.616, B = 0.060) Inwelld > VENY LOME')
124 124 125 125 125 125 125 125 125 125 125 125	SCONING: Detection and 1 COEDITION 05	
	All	145619.000, E = 607900.000, E = 318.000) 1, T = -5406962.596, E = 3269050.780) 1 (4) 2 = 1456819.000, E = 607840.000, E = 4018.000) 1 = 3456819.000, E = 607840.000, E = 4018.000) 1 = 3456819.000, E = 607840.000, E = 4018.000)

Jan 11 1895 (6:12 REPORT34561.DAT.save1 Page 3	141 ACTIAL TGP: 144 ACTIAL TGP: 144 Recognition: Truck (EAL) Defilade) 145 Identification (EAC)	150 PERCEIVED 1G7: 150 PERCEIVED 1G7: 151 Identification (T-62 (Tenk) 151 Apquisition First 0 10	1534 GOORTBC: 1554 GOORTBC:	156 159 COMDITION 16 159	5	d (100 TZ	HIR LOCK (5), General ARKER TPA-IR (5)	fr 6110e. 43	(Kene - 14,	TELL TENES: SOUTH OND (Rend - VENT LONG)	173 ACTIAL SET: 174 Hengelitton: Tank Artisty Diposed)	36.	E-6-: 3467.000 (Bend - 'MEDIUM')	100 PERCENTED TOF: 101 Identification: F-b0 (Tank) 102 Appliablion line: F-b0	14 (SCONUMC:	185; Detection and Recognition 1866	PRO CONDITION 67		Id: JAVELIN (Othere)	X	4	(11)	GCC coord: (X = -689)	GCC tange: 3700.000 (Band = 'Louc')	<u> </u>	1 Identification: BMP-2 UTW OMOTA: (Some = 14, H = 347250.000, E = 608017.0	19797.416, K = -6308865.664, E = 347317.6 } (Band = 'MEDIOM')	[PERCEIVED YCT: Identification: M2A)	212) Acquisition Time: 0.10
곡	333333	2555	222	2222	123	337	199	32	725	=	222	222	44	424 :		===		==		4 21 2		4	-	~ ~	~ ~	~~	444		~

A-4

95 10:12 * * REPORT34561.DAT.save1	Page 4
214 SCORING: 215 Detection and Recognition 216 216	
219[
d: Hiaz (Tenk)	
I: (Sone = 14, M = 1	•
MOV (0).	
d 81 Id: 73_6110e (3D) 73 coord: (\$00e = 16. H = 347259,000. H = 607806	1000
(Special)	
237 GCC COUNTS (Name - 1800-180) E - 1807-180, E - 1807-180)	3
2411 Identification 7-62 (Tank) 2421 Acquisition Time: 4-36	,
245) Detection, Resognition, and Identification	
247(241) COMDITION 19	
250	
OMN VER: Id: M2A3 (APC)	
2331 UTB COOKE: (Nome = 14, N = 3454819.000, E = 407909.500, E = 318.400) 254 GCC CHOOKE (K = 747128.44) K = -5404962.996, B = 3289030.786) 255 PTF: MTCO (A) Reserve TECHNOLOGY	<u> </u>
11 Id: 76 41ine (26)	
GCC goord: (2004 - 14, M = 165819; 030, K = 607920.003, S GCC goord: (X = -7772).003, K = -5109060.135, B = 1290167 GCC target: 500.003 (1854 = /997778).	- 2010.000)
ACTION.	
264 Tannel Granton: Tenk-Thuk, Defileds)	
OTH BOOTES:	.000
GCC range: 3682.000 (Bend	
PERCEIVED TOT.	
272 Acquisition Time: 0.12	
SOOR ING:	
234	
278 COMDITION 610	
美	
242 Id: NIOS (Truck) 263 UTM ccord: (Sons = 14, N = 3456819.03G, E = 607900.000, S = 318.600)	68
GDC cocsd: (X = -747128.44)	

265	FOV: WFOV (1), Sensor: FLIR (1)
265 287 BOARDS:	
269	d 91 1d: TD_fline (27)
	K - 747125.277, Y - 5600107.541, K - 3169923 682.000 (Band - 62021')
292	•
294	234 Recognition: Toch (Bull Col)
295	DESCRIPTION COOLS (Pops - 11, N = 1456019.000, E = 607900.000, E = 4000.000)
292	GOC coord: (X = -747559.325, Y = -5410081.412, K = 3280960.478) GCC range: 3682.000 (Band = 'LOMC')
2991	.\
307	41 Identification (2-72 (Pank)
762	Acquisition Time:
201 150	SCONTING:
9	
308 100	SON SONDITION 011
1906	
311 (010)	VEE
121	- 14 W - 1456819 000 X -
ä	GCC BOOTH: (K = 747128.441, Y = -5406963.996, E = 3389050.780)
3161	Ġ
117/BOARDS:	NDS:
61	
321	Nikefuki 1971: 21(Becognition: fruck (Fully Exposed)
1226	detion: BONV
7	(x - 74)
125	GCC range: 5342.400 (Band - VENT LONG!)
327 74	1 E E
126	138 Ideatification: Down (Truck)
3	
331 90	(3) SOBRING:
ī	
134	34)
336	
225	
139	d: AB-64 (R/P)
7	Constant (Long
2	OV. HPOV (0). Sensor: DVO (0)
=	1
345	45 No Board
	3461 3471actpal: 4579-
	too!
656	100
151	T 5411640.241, 8 - 1291919.9
353	3336.00 (Maga
•	

t und	18 11 1905 10-12 REPORT34561.DAT.save1 Pege 6
35.5	Time: 0.20
150 60	200
160	
25	SELECTION III
200	Tanak i
75	•
32	(0). Sensor: DVO (B)
22.	DOANDS: No Board
17.1	
175	tion: APC (Fully Exposed) cation: BTR-60
	WIN comed: (toge = 14. N = 110011.N = 01700.100. N = 01700.100. GCC Comed: (X = -74755.)N = -5510001.412. N = 325050.470)
	196: Jac. 1904: 1909
700	Ideatitication: MIN (APC)
	Acquitation Time: V.40
300	SCONING: Detection and Recognition
	SICONDITION 614
191	
385	AVELIW (Others)
100	3
256	2
22	olboards:
86	
9	Recognition: Truck (Pully Exposed)
	coord: (
000	
	PENCHAND NOT:
	Identification: Mari (Timek) Anguleition fime: 0.20
	11: 12:5001766:
6	Detection and Becognition
415	
	CONDITION 115
33	
55	Id: KIA2 (Tenk)
	UTM COOKET: (Money = 14, T = 14) T = -5406961.996, K = 1209080.780)
Ē	į
126	415 BONRDS: 616 No Board

1 1995 199	Jan 11 1995 1012 REPORT34561.DAT.save1	Recognition: Truck (Emity Exposed) Identification: GAN-66 Identification: GAN-66 Identification: GAN-66 Identification: GAN-66 Identification: GAN-66 Identification: GAN-66 Identification: GAN-69 Identif	14 15 PERCEIVED TGT: 16 Identification: CAL-66 (Fruch) 17 Acquisition Time: 0.20	39 GCOSING: 40 Detection, Recognition, and Identification	13 13 Competon #16		53 St. S	Recognition: F/W_(Next) Exposed) Identification: F/W_(Next) Identification: F-MC The cord: (Next = Tt, W = 145819.000, E = 607900.000, E = 2900.000) GCC cord: (Next = 777410.599, W = -5409149.783, E = 1390189.955) GCC range: 2862.000 [3aad = 'MEDUTW'.	621 PERCENTED TOT: 63 Ideatification: P-15 (P/M) 64 Acquisition Time: 0.29	Scotline: Detection and Recognition	69 70 ComDETION 417 71	IN VEN: 14: KLAZ (TACK) UTM COOKE: (Wome = 14, W = 1456819.000, M = 607900.000, M = 318.000) GCC COOKE: (N = -747128.44, K = -5406962.896, M = 3289050.780) FOV: KPOV (0). Bened: DVO (0)	19 BOANDS :	Beografian: PARPATTY Exposed)	UTM coord: (Lode 11, M = 3456419.000, R = 607900.000, R = 2000.000) CCC coord: (M = -747325.27), N = -5408387.541, R = 3208923.163) GCC Emge: 1682.000 (Mand = '800RT')	FERCHIVED TGT: Identification: F-15 (F/W) Acquisition Time: 0.20	991 (2001) (2011)	Detection, Recognition, and Identification
--	--	--	---	--	------------------------	--	--	---	--	-------------------------------------	-------------------------------	---	-------------	-------------------------------	---	--	-------------------	--

Jan 11	11 1995 10:12 REPORT34561.DAT.save1 Page 6
6	
200	ON VEH:
207	1 Md: MilAt (Teak) The county (four = 14 to = 2466818 con to = 501000 con to = 240
9	GCC coord:
202	10) 404
8 8	BOARDS:
9 5	
075	Recognition: F/L (July m (1114de)
512	\
213	
515	ranga: 5562.000 (Band
216	PERCEIVED TOT:
13	Ideacation: 7/6-18 (P/W) Acquisition Fime: 0.30
519	
5211	Detection, Recognition, and Identification
225	
224	CONDITION 019
525	
223	OFFE VER
22	(Tenk)
22	UTH coord: (Loss - 14, N - 3455819.000, E - 607900.000, E - 118.000)
25	-/4/124.441, T = -5406962.93 Geneot: #70 (0)
255	
iś	To Four
255	
537	Recognition: PARTULE Exposed)
536	
200	OTH COOLD: (Mone = 14, N = 1416119.000, R = 607500.000, R = 2950.000)
200	Fanga: 2582.605 (Band - 'MEDIUM')
33	24
25	Identification: F/A-18 (F/A)
515	Acquisition Time: 0.20
3	ACORT NC :
25	I Detection, Recognition, and Identification
250	
951	Slicondifion 820
552	
25.0	
555	Id: MZA3 (APC)
386	UTK coord: (fore = 14, H = 145619.000, H
25.5	POV: MAK BOOK (6), Gensor: SESKER PPA-IR
25	
200	Board 61 Id: TB_214De (25)
26.	CTN COD
264	GCC TANGE: 1682.060 (Mand = 'SHORK')
26	Board 63 Ed: TB 414ne (26)
295	
36	GOC range: 1603.019 (Band - 'SHOAT')

S	Jan 11 1895 10:12 RE	REPORT34561.DAT.savet	Page 9
569 1177 1177 1177 1177 1177	Mecognition: F/ Mecognition: F/ Identification: UN ecord: (Low CC consort: (X =	(\$619.000, E = 607900.000, E F = 5610081.412, E = 179096	- 4000.000)
576 578 578 578	PERCEIVED TOF		
200	SCONING: Detection, Recognition,	, and Identification	
353	564 565 CONDITION 621		
58885	5874 588 (14 M2A) (APC) 588 (14 M2A) (APC) 598 (15 M2A) (2 M2A) 5911 (2 CC CCC) (1 M2A) 5921 (14 M2A) (14 M2A)	VEH: 14: M223 (APC) 17: GONG (COMP = 14, R = 2456819.0D0, E = 607900.000, B = 318.000) 50C GONG (K = 747128.443, Y = -5406962.996, E = 3289050.780) POV: MAX SCOM (6), Sensor: SERIEM FPA-TR (5)	118.060)
5951 5951 5961 5961 5961 5961	94 BOARDS: 95 BOARDS: 95 BOARDS 14: 39_4115ca 96 OTN CORES (Knas = 99) 97 GCC CORES (Na = -6) 99 GCC CORES (Na = -6)	LDS: Board el Id: YW_4line (26) OWN compd: (Enge = 0, H = 0.000, E = 0.000) GCC compd: (X = -612734.564, Y = 831271.616, E = 0.000) GCC reage: 8990659.318 (Rand = 'Invalsd > VERY LOSG')	
8822		(26) 0. H = 0.000, F = 0.000, B = 0.000) 0. 3 = 0.000, F = 0.1271.616, E = 0.000) 716 (Band = 'Invaltd > VERY LORG')	
10000	ធ្ន	DAL TCT: Remogaltion: F/M (Bull'DEGilade) Identification: gr-29 Identification: gr-29 Identification: gr-29 CC cooxel: (Enn - 6.31714.584, F - 811271.516, E - 0.000) CC cooxel: (R - 6.31714.584, F - 811271.616, E - 0.000) CCC range: 8990659.718 (Bend - 'Envalid > VERY Lowe')	
2553	PERCEIVED 767: Identification: 80-29 (P/W) Acquiation fire: 0.20		
33333	624 626 Datection, Recognition, and Identification 617	n, and Identification	
58	119 CONDITION 022		
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 CMW VZE: 23 1d: MDLL_TCT (Others) 24 DTW cocxd: (bone = 0, M = 0.000, E 25 GC cocxd: (k = -6133734.584, K = 1 26 POV: MTOW (0), Gensor: DWO (0)	E = 0.000, E = 0.000, E = 0.000) 74.584, Y = B11271.616, E = 0.000) F: DWO (0)	
525	2	Most elite: Te_fline (26) OTH coord: (Lose = 0, M = 0.000, E = 0.000, E = 0.000) GCC coord: (X = -632724.58, X = 631271.616, E = 0.002) GCC tange: 0.000 (Band = flowlid < \$600RT') Board &2 Id: Te_fline (26) UTN coord: (Ease = 0, M = 0.000, E = 0.000, E = 0.000) GCC coord: (Ease = 0, M = 0.000, E = 0.000)	
5225		(Send - 'Invalid < GEORT') Defilede)	

1019	OR-59	
33	UTH coord: (Echarati M = 0.000, R = 0.000, L = 0.000) CCC coord: (M = -63237)4.504, V = 03272.616, R = 0.000)	
33	GCC renge: 0.004 (bend - 'Invelid < SHDRF')	
	PRECEIVED FGT: Identification: ON-58 (R/W)	
55	Acquisition time: 0.00	
500	(49) ECORING: 50 Detection, Recognition, and Identification	
522		
551	5531CG/DJY10N 923	
1559		
253	1d: MULL_TOT (Others)	
1059	31371.616	
3		
33		
75	oth coord: (Rose = 0, N = 0.000, R = 0.000, S = 0.600)	
9	SHORT.)	
5	0000	
3	GOC GOOTE: (*633)74.564, Y = 03271.616, S = 0.000)	
5		
200		
5	7-1	
6	-6323734.564. Y = 431277.616. H	
	0.000 (Mand - Invelt	
65	PERCEIVED FOT: Identification: AN-64 /R/AN	
3	Asquisition fime: 0.20	
35	FOORTHE:	
35	Detantion, Recognition, and Identification	
		-
::	87 CONDITION 824	
69		
69		
69	OTH COOLS: (Rose - 0, H - 0.080, H - 0.000, C - 0.000)	
	4 'ata'T'7777	
569		
69	d 61 1d: T5_4line (26)	
66	GCC coord: (X -	
900	GCC range: 0.000 (Band - 'Invelt	
702	TT coord: (\$one - 0. H = 0.000, E = 0.000, E	
2 4	GCC coord: (X = -6323734.584, Y = 831273.616, & GCC range: 0.000 (Rend = 'Invelid < GROMT')	
205	ACTION, NET.	
2	_	
5 6	Thentification(

731 GCC Fange: 0.000 (Band - 'Invalid < SHORF') 723 FENCENTED TGT: 724 Identification: AK-1 (R/W) 725 Acquisition Time: 0.30 727 COURNEL. 729 Detection, Recognition, and Identification 720 721 CONTINUE 723 CONTINUE 724 OTHERS
Identification: AR-1 (R/W) Acquisition Time: 0.10 Modulation Time: 0.10 Modulation Time: 0.10 Modulation Recognition, and Identification Detection, Recognition, and Identification BETWEEN 34: MODIL_TT (Others) TOWN MODILS (Ense - 0.000, R - 0.000) TOWN MODILS (Ense - 6121714 514, F - 0.000) TOWN MODILS (Ense - 6121714 514, F - 0.000)
Administration: AK-1 (K/F) Administration Time: 0.10 Detection, Recognition, and Identification Detection, Recognition, and Identification DETECTION 625 OTH GOOTH: (Some - 0, F = 0.000, E = 0.000) OTH GOOTH: (Rome - 6233734 554, F = 0.000) TOW: MTOV (0), Sensor: DVO (0)
DETECTION, Recognition, and Identification DETECTION \$25 WHEN IN VEH IS GOVERNOUNDED IN CONTROL (Tone - 0, N - 0.000, E - 0.000, E - 0.000) VIN GOOTS: (N - 6233334 584, Y - 631274.616, E - 0.000) VOV: WTOV (0), Seneor: DVO (0)
MAYER: 34: MULL_TCT (Others) TM acord: (Tens - 0, N - 0.000, E - 0.000, E - 0.000) TM ACORD: (Tens - 0, N - 0.000, E - 0.000) TM ACORD: (Tens - 0, N - 0.000) TM ACORD: (Tens - 0, N - 0.000)
Markers:
VEE: 'd: #FOLL_TT (Others) VTM cord: (Ros - 0, M - 0.000, E - 0.000, E - 0.000) CC cord: (X - 623334 584, Y - 831274.616, S - 0.000) TOV: WTOV (0), Sensor: DVO (0)
CC coord: (N612174.584, F - 811274.616, B - 0.000) TOV: NTOV (0), Sensor: DVO (0)
30 BOALDS:
UTM coord: (work = 0, H = 0.000, E = 0.000) CC: coord: (work = 0, H = 0.000)
GCC renge: 0.000 (Bend = 'lsvelid < BRORY')
UTH COORD ((Cons. C.) W = 0.000, E = 0.000, E = 0.000) GCC coord: (X = -6123714:584, Y = 811271.616, B = 0.000)
ange: 0.030 (Band - 'Invalid < smort')
Monghitten: R/M (Bull Defileds)
John Li I. Gage - G. H - 6.000, E - 0.000, B - 0.000) OTC CONTROL / K 6.13734
Invalld < Amery)
Control Cont
50 Column Column
Detection and Recognition
SG CONTITION 026
34: MUL 357 (Others)
UTH GOOXE: (Lone = 0, N = 0.000, R = 0.000, B = 0.000) GCC GOOXED: (N = -0.137734.564, N = 031271.616, R = 0.000) FVE NPOV (0), Remear: 1000 (0)
POATOS:
Doard #1 Id: TB_(line (26) UTW coord: (Rose = D, W = 0.000, E = 0.000, H = 0.000)
GCC coord: (X = -6121716.566, Y = 811271.616, R = 0.000) GCC range: 0.000 (Bend = 'lavalid < 88087')
Ö
GCC coord: (X = -6123734.564, Y = 831271.616, H = 0.000) GCC range: 0.000 (Band = 'Invalid < EMONY')
אכונות שכז:
Recognition: B/W/TRUIT OF fileds) Identification (ML_24
CTM coord: (Sont - 6, W = 0.000, E = 0.000, S = 0.000) COC coord: (N = -632334, S84, N = 831233 616, N = 0.000)

Identification Time: 0.00 Detection Time: 0.00	Jan 11 1995	1995 10:12 REPORT34561.DAT.save1 P	Page 12
SCORIGO SECURIOR			
	Media Acqui	ALCION TIME:	
	8 <u>- 2</u>	t lon,	
COMDITION #27	72		
ONE VEH: WOLL TOT (CLARE) -0.000, E -0.000, S = 0.000 -0.0000000000000000000000000000000000	<u> </u>	OB 627	
ORM VEH: 12. SECTION 12. TOTAL TOTA			
### CONTRICTOR CONTRICTOR ### CONTRICTOR	A 1040		
GCC coord: (N = -6121714.384, Y = 811271.615, E = 0.80126.41	Ē	(Lone - 0, N - 0.00d, E - 0.000, S -	
MONIDS: Monitors: Mo	9 5	(X6121714.584, Y - 831271.616, B 0). Sement DVO (0)	
Months: Doard #1 Id: 72_41ine (26) Universal Communication (26) Universal Communicatio			
CTR COOK	799 BOAT	1 11 14: 73	
GCC conord: [X = -613774.546. Y = 011271.616. E-6CC range: 0.000 (Band = favalid < SEDNY') Board 62 Id: Tal. (Edsa = 0.000) GCC crange: 0.000 (Band = favalid < SEDNY') GCC crange: 0.000 (Band = favalid < SEDNY') ACTUAL VCT: BOARDS: ACC COORT: ACTUAL VCT: AC		(fose - 0, H = 0.500, K = 0.000, H =	
Board 82 Id; TP_2ine (26) OTH coord: (2018 - 0, 18 - 0,000; E - 0		(X = -6323734.586, T = 031273.616, E	
CCC coord: (Ross = 0, N = 0.009, E = 0.000. \$ = 0.000.	_	P_tithe (26)	
ACTUAL VCF: ACTUAL VCF: Recognition: N/W (ML)1 Defilads) Identification: W. (ML)1 Defilads) Identification: W. (ML)2 Defilads) Identification: W. (ML)2 Defilads) Identification: W. (ML)2 Defilads) Identification: W. (ML)2 Defilads) Identification: M. (ML)2 Defilads Identification: M. (M		(Rose - 0, M - 0.405, M - 0.006, B -	
Recognition: R/W (BLN) Defilads) Identification: Win-19 Tidentification: Win-28 CCC coord: (R = -6321734.584, Y = 831271.614, E = 0.000, E =		0.000 (Band - 'Invalld < SHORT')	
Identification: Wi-Je True coord: (Ront - 0, 00), E = 0,000, E = 0.00 GCC coord: (Ront - 0, 17), S. 6, K = 0, E. C.	-	Tor:	
UTEN COOCES (SCANT) - 0.000, E = 0.000, E = 0.00 CCC COOCES (N = -6121714.584, Y = 811771.614, E = 0.00 CCC COOCES (N = -6121714.584, Y = 811771.614, E = 0.00 CCC COOCES (N = 0.000 (Sand = 'Invalid < SECRIT') Acquisation Time: 0.70 Acquisation Time: 0.70 Acquisation Time: 0.70 CCC COOCES (N = 0.000, E = 0.000, E = 0.000, E = 0.000 TW COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.584, Y = 811771.616, E = 0.000 CCC COOCES (N = -6121714.616, E = 0.000, R = 0.000 CCC COOCES (N = -6121714.616, E = 0.000, R = 0.000 CCC COOCES (N = -6121714.616, E = 0.000, R = 0.000 CCC COOCES (N = -6121714.616, E = 0.000, R = 0.000 CCC COOCES (N = -612174.616, E = 0.000, R = 0.000 CCC COOCES (N = -612174.616, E = 0.000, R = 0.000 CCC COOCES (N = -612174.616, E = 0.000, R = 0.000 CCC COOCES (N = -612174.616, E = 0.000, R = 0.000 CCC COOCES (N = -612174.616, E = 0.000, R = 0.000 CCC COOCES (N = -612174.616, E = 0.000, R = 0.000 CCC COOCES (N = -612174.616, E = 0.000 CCC COOCES (N = -612174.616, E = 0.000 CCC COOCES (N = -612174.616,	-		
PERCEIVED TOT: Aquisition: 0.000 (Rand = 'Invalid < SECRT') Aquisition Time: 0.70 Aquisition: March 10.70 Aquisition: March 1	1110	E - 0.000. E	
Microstive Mic		(X + -6323734.584, Y + 831271.616, S 0.660 (Read + 'Invalid < 89287')	
Perceived TCS: Edectification: N1-28 (R/W) Adquisition Time: 0.70 Addition Time: 0.70 Addition: 0.70	1410		
Acquisition Time: 0.70 Acquisition Time: 0.70 Exaction. Recognition, and Identification Detaction. Recognition, and Identification Id. MULL TGT (Others) Id. MULL TGT (Others) Id. MULL TGT (Others) Id. MULL TGT (Others) TW. coord: (fore = 0, N = 0.000, E = 0.000, S = 0.000	Ę	TD TCT:	
CONDITION 828 CONDITION 828 Id. MILL. TGT (Others) TM coord: (Econe = 0, N = 0.000, E = 0.000, S = 0.000 TM coord: (Econe = 0, N = 0.000, E = 0.000, S = 0.000 TM coord: (Econe = 0, N = 0.000, E = 0.000, E = 0.000 TW coord: (Econe = 0, N = 0.000, E = 0.000, E = 0.000 TW coord: (Econe = 0, N = 0.000, E = 0.000, E = 0.000 TW coord: (Econe = 0, N = 0.000, E = 0.000, E = 0.000 TW coord: (Econe = 0, N = 0.000, E = 0.000, E = 0.000 TW coord: (Econe = 0, N = 0.000, E = 0.000, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.584, Y = 811271.616, E = 0.000 TW coord: (N = -6121714.616, M = 0.000 TW coord: (N = -6121714.616, M = 0.000 TW coord: (N = -6121714.616, M = 0.000 TW coord: (N = -612174.616, M = 0.000 TW coord: (N		strication: Ma-28 (M/W)	
COEDITION 828 CONDITION 828 Id. MILL. TGT (Others) Td. MILL. TGT (Others) Td. MILL. TGT (Others) TM coord: (Eone = 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			
COKDITION 828 Id. MULL_TGT (Others) Id. MULL_TGT (Others) Id. MULL_TGT (Others) GCC coord: (R6)23714.584, T - 831271.616. B - 6 FOV: MFOV (0), Senger: EVO (0) GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC range: 0.000 (Band - 'Invalid < SHORT') Board 0.2 Id: (R coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616. B - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.584, V - 831271.616, R - 6 GCC coord: (R6)23714.616, R - 6 GCC coord: (R6)23716.616, R - 6 GCC coord: (R6)23714.616, R - 6 GCC coor		r son.	
Td: MTLL_TGT (Others) Id: MTLL_TGT (Others) Id: MTLL_TGT (Others) Id: MTLL_TGT (Others) TW coord: (Rose - 0, M - 0.00, E - 0.000, S - 0.000 TW coord: (Rose - 0, M - 0.000, E - 0.000, E - 0.000 TW coord: (Ense - 0.000 (Band - 'Invalid < SHORT) Board 0.1 id: Tm_Line (24) CCC coord: (Rose - 0, M - 0.000, E - 0.000 MATCOAL TGT: Recognition: MAH-TG			
14 MILL_TGT (Others)	823 823 Chemina		
Id. MILL.TGT (Others) 1d. MILL.TGT (Others) 27M contd: (Ecne - 0. M - 0.050, E - 0.000, S - 0.007M contd: (Ecne - 0.0123734.584, T - 831271.616, B - 0.007M contd: (Ecne - 0.0123734.584, T - 831271.616, E - 0.000 (Ecc contd: (Ecne - 0.000, E	024		
Id. MILL.TGT (Others) JAM confd: (Ecne - 0, M - 0.000, E - 0.000, S - 0.000 ccc confd: (Ecne - 0.123734.584, T - 831271.616, B - 0.001 moving (Ecc confd: (Enne - 0.123734.584, T - 831271.616, E - 0.000, E - 0			
The ocard: (Rone = 0. M = 0.000, E = 0.000, S = 0.000 ocard: (R = -612379.584, T = 811771.616, B = 0.000 ocard: (R = -612379.584, T = 811771.616, B = 0.000 ocard: (R = -612379.584, T = 811271.616, B = 0.000 ocard: (R = -612179.454, T = 811271.616, S = 0.000 ocard: (R = -612179.454, T = 811271.616, S = 0.000 ocard: (R = -612179.454, T = 811271.616, S = 0.000 ocard: (R = -612179.454, T = 811271.616, S = 0.000 ocard: (R = -612179.454, T = 811271.616, S = 0.000 ocard: (R = -612179.454, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.584, T = 811271.616, S = 0.000 ocard: (R = -612179.616, S = 0.000 ocard: (14.	(Others)	
### COUNTY (0), Sensor: MYO (0) #### COUNTY (0) #### COUNTY (0) #### COUNTY (0) #### COUNTY (0) ###################################	820 028	one = 0, 14 = 0.000, 15 = 0.000, 15 =	
BOANDS: Board 11d: TE_fline (24) 0.000, E = 0.000 (20		6323734.584, T - 631271.616, B	
BOARDS: BOARDS: DOAD, E = 0.000, E = 0			
### ### ### ### ### ### #### #### ######	2		
CCC coord: (X = -6121714.584, Y = 811271.616, E		THE CLUB (20): (20) . (10) . (10) . (10) . (10) . (10) . (10) . (10) . (10) . (10)	
Sec range: 0.000 (Band = 'Invalid < SHORT')		(x = -6323734.584, Y = 831273.616, 8	
UTH COOKE: (Enns = 0, H = 0.000, E = 0.000, E = 0.000, E = 0.000;	_	SCC range: 0.000 (Band = 'Invalid < SHORT')	
ACTUAL TGT: RECTAL TGT: RECOGNITION: A/M. (Mand = 'Invalid < SEDRY') RECTAL TGT: RECOGNITION: A/M. (Mall Defilads) Identification: R/M. (Mall Defilads) RECTAL RECOGNITION: R/M. (Mall Defilads) Recognition: R/M. (Mall Defilads) Recognition: R/M. (Mall Defilads)	<u>.</u>	rd 12 14: 75 (110 (24)	
ACTUAL TOT: Recognition: A/W-(Mull Defilade)	_	ocord: (x = -6121)34.584, Y = 831271-616, E	
Nerdal for: Recognition: A/W-(Mull Defilads) Identification: A/W-(Mull Defilads) Identification: ANW-(Control of the Control o	_	range: 0.000 (Read - 'Invalid < SHORT')	
Recognition: A/W-(Mull Defilads) Identification: (ANW-76) Tidentification: (ANW-76) Tidentification: (ANW-76) Tidentification: (ANW-76) Tidentification: (ANW-76) Tidentification: (ANW-76) Tidentification: A/W Acquisition: A/W A	143		
Identification: [RAN-76] UTN coord: [Rose 0.100, g = 0.000, g = 6.000 (R = -6.237) 6.54, f = 811271.516, g GCC coord: (R = -6.237) 6.54, f = 811271.516, g GCC range: 0.000 (Band = 'Ruvalid < 81037') PERCEIVED TOT: Recognition: R/W Acquisition: R/W	į	contiton: A/W-(Mull Defilade)	
UTM coord: [Kone			
GCC range: 0.000 (Band = 'invalid < BMDRT') GCC range: 0.000 (Band = 'invalid < BMDRT') FERCIVED FCT: Recognition: N/W Acquisition Time: 0.30	_	ocord: (Kone 6 4 0.030, E = 0.000, & =	
PERCEIVED FCT: Recognition: R/W Acquisition Time: 0.20		coord: (K = -63237)4.584, Y = 831271.616, E	
PERCEIVED TOT: Recognition: R/W Requisition Time:		111111111111111111111111111111111111111	
Recognition: R/W Roquisition Time:	O () PERCEI	IVED TCT:	
Anguistico Time:	9501 Bec	3	
	BSI Nod	:	

Maria 128 14 Maria 14 Maria 14 Maria 14 15 15 15 15 15 15 15	BS3 (SCOREN	is the seal Consent to the	
	857 COMDIT	Cost 629	
Main_Art (Others)	1650		
CCC coord: (R = -(1317)4.584, Y = 011271.616, S = 0.000) FOV: RTOY (0), Sensor: DVD (0) FOV: RTOY (0), Sensor: DVD (0) CCC coord: (R = -(1317)4.584, Y = 011271.616, S = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, S = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, S = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -6317)4.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 011271.616, E = 0.000) CCC coord: (R = -631774.584, Y = 0.000, E = 0.000) CCC coord: (R = -631774.58	\$60 OM VE	ULL FOT (Others)	
Doze 1 1 2 2 1 1 2 2 2 2	-	coord: (Some - 0, N = 0.000, E - 0.000, S = coord: (K = -6121716.564, Y - 011271.616, K	
		: Mrdv (U), Sensor: DVO (O)	
UNY cocci (\$600 = 6, \$ 0 = 0 000, \$ = 0.000) CCC cocci (\$700 (Band - 'invalid < 80027) Board # 1 3d; FD_410 (34) CCC cocci (\$700 (Band - 'invalid < 80027) Sentification (\$700 (Band - 'invalid < 80027) CCC cocci (\$700 - 'invalid < 80027) SENTING CCC (\$700 (Band - 'invalid < 80027) SENTING CCC (\$700 (Band - 'invalid < 80027) SENTING CCC (\$700 (Band - 'invalid < 80027) SENTING CCC cocci (\$700 - 0, \$700 (0) SENTING CCC cocci (\$700 - 0,	3	rd (1 1d: 29_4)ine (26)	
		JTN coord: (Mese = 0, M = 0.000, E = 0.000, K = 0.000)	
OTH STATES (Eds. 6. 8) 6. 80 0.000, E = 0.000, E = 0.000 (CCC coord (E = 623374.584, Y = 831271.54, E = 0.000) (CCC coord (E = 623374.584, Y = 831271.54, E = 0.000) (CCC coord (E = 623274.584, Y = 831271.54, E = 0.000) (CCC coord (E = 623274.584, Y = 831271.616, E = 0.000) (CCC coord (E = 632374.584, Y = 831271.616, E = 0.000) (CCC coord (E = 632374.584, Y = 831271.616, E = 0.000) (CCC coord (E = 633274.584, Y = 831271.616, E = 0.000) (CCC coord (E = 633274.584, Y = 631271.616, E = 0.000) (CCC coord (E = 633774.584, Y = 631271.616, E = 0.000) (CCC coord (E = 633774.584, Y = 631271.616, E = 0.000) (CCC coord (E = 6. 8) (E = 0.000, E = 0.000, E = 0.000) (CCC coord (E = 6. 8) (E = 0.000, E = 0.000, E = 0.000) (CCC coord (E = 6. 8) (E = 0.000, E = 0.000, E = 0.000) (CCC coord (E = 6. 8) (E = 0.000, E = 0.000, E = 0.000) (CCC coord (E = 6. 8) (E = 0.000, E = 0.000, E = 0.000) (CCC coord (E = 6. 8) (E = 0.000, E = 0.000, E = 0.000) (CCC coord (E = 6. 8) (E = 0.000, E = 0.000, E = 0.000) (CCC coord (E = 6. 8) (E =		GC range: 0.000 (Band - 'Invalid < SHORT')	
CCC coord: (N = -6123734.384, N = 813271.616, E = 0.000 GCC range: 0.000 (Band = 'Invalid < SHORT') ACTOL FCT: ACTOL FCT: Identification: FP.ME (MATT DEVISED) CCC coord: (N = -6123714.384, V = 81371.616, E = 0.000)		or at 10; Ta_allos (40)	
ACTUAL TGT: Recognition: SP_Let (ENTIDENISED) Identification (ENT_MINE) GCC coord: (X = -6122134.584, Y = 811211.616, E = 0.000) CCC coord: (X = -6122134.584, Y = 811211.616, E = 0.000) CCC coord: (X = -6122134.584, Y = 811211.616, E = 0.000) CCC coord: (X = -6122134.584, Y = 811211.616, E = 0.000) Acquisition Tibe 0.30 CCONDITION 130 CCC condi (X = -6132134.584, Y = 81271.616, E = 0.000) CCC condi (X = -6132134.584, Y = 81271.616,		3CC coord: (K = -6323736.584, K = 631271.616, M = 0.000) 3CC range: 0.000 (Mend = 'lovalid < 680XT')	
Name of the control o	_		
### COORD STATE STATE ### COORD STATE STATE ### COORD ### CO		ognittion: SP Let (but Denieds)	
GCC range: 0.000 (band = 'Eavalid < BHDRT') FRICTIVED TC: Admittitation Timb. 0.20 (SPATT) Admittitation Timb. 0.20 (SPATT) Magnifition Timb. 0.20 (SPATT) Magnifition Timb. 0.20 (SPATT) Magnifition Timb. 0.20 (SPATT) Magnifition Timb. 0.20 (SPATT) Magnifit (Magnifit (
### CCC Trange: 0.000 (Band = 'Invalid < SHORT') #### CONTINUED TO: #### CONTINUED TO: #### CONTINUED TIBE		11271.616, E - 0.000	
Gentification Tibe_0.30 (SP_ATE) Acquisition Tibe_0.30 (SP_ATE) Acquisition Tibe_0.30 (SP_ATE) Acquisition Tibe_0.30 (SP_ATE) Detection, Recognition, and Identification [di. WILL_TGT (Others) Idi. WILL_TGT (Others) [di. WILL_TGT (Others) THE coord: (Ra - 6.32373.6.34, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.323734.384, T - 6.31271.616, E = 0.000) GCC coord: (Ra - 6.32374.616, E = 0.000)		0.000 (band - Invalld < BHORT')	
fdentification flow M10986 (FP_ART) Acquisition Flab. 0.30 Detection. Recognition, and identification COMDITION 430 COMDITION 430 The coord: (Lope = 0, M = 0.000, E = 0.000, E = 0.000) CCC ccord: (Lope = 0, M = 0.000, E = 0.000, E = 0.000) CCC ccord: (Lope = 0, M = 0.000, E = 0.000, E = 0.000) CCC ccord: (Lope = 0, M = 0.000, E = 0.000, E = 0.000) CCC ccord: (Lope = 0, M = 0.000, E = 0.000, E = 0.000) CCC ccord: (Lope = 0, M = 0.000, E = 0.000, E = 0.000) CCC ccord: (Lope = 0, M = 0.000, E = 0.000, E = 0.000) CCC ccord: (M = -6123734.584, E = 131271.616, E = 0.000) CCC ccord: (M = -6123734.584, E = 131271.616, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000, E = 0.000) CCC ccord: (M = -6123714.584, M = 0.000)	SELL PENCEL		
Acquisition Fish 0.20 Acquisition Fish 0.20 Detection, Recognition, and Identification COMDITION 610 COMMITTON 610 COMMITTON 610 COC coord: (2 = -6121734.584, Y = 611271.616, E = 0.000) COC coord: (3 = -6121734.584, Y = 611271.616, E = 0.000) COC coord: (3 = -6121734.584, Y = 0.000, E = 0.000) COC coord: (2 = -6.121734.584, Y = 0.000, E = 0.000) COC coord: (2 = -6121734.584, Y = 0.000, E = 0.000) COC coord: (X = -6121734.584, Y = 0.000, E = 0.000) COC coord: (X = -612171.616, E = 0.000) COC coord: (N = -612171.584, Y = 0.000) COC coord: (N = -612171.616, Hourly) Acquisition Thas: 0.20 Benetification Thas: 0.20 Benetification Thas: 0.20 Benetification Thas: 0.20	10	100 MON MON HOUSE	
COMPINE: Detection, Recognition, and Identification COMDITION (10) COMPITION (10) COMPITION (10) The coord: (200 = 0, M = 0.000, E = 0.000) CCC coord: (2 = -613174.584, Y = 611718.616, E = 0.000) CCC coord: (2 = -613174.584, Y = 611718.616, E = 0.000) CCC coord: (2 = -613174.584, Y = 0.000, E = 0.000) CCC coord: (2 = -6131714.584, Y = 0.1718.616, E = 0.000) CCC coord: (2 = -6131714.584, Y = 0.1718.616, E = 0.000) CCC coord: (X = -6131714.584, Y = 0.000, E = 0.000) CCC coord: (X = -6137714.584, Y = 0.000, E = 0.000) CCC coord: (N = -6137714.584, Y = 0.1771.616, E = 0.000) CCC coord: (N = -6137714.584, Y = 0.1771.616, E = 0.000) CCC coord: (N = -6137714.584, Y = 0.1771.616, E = 0.000) CCC coord: (N = -6137714.584, Y = 0.1771.616, E = 0.000) CCC coord: (N = -6137714.584, Y = 0.000)	1500	97.0	
Detection, Recognition, and Identification COMDITION 430 THE COOLE (Schere) THE COO	8		
COMDITION 130 COMMITTON 130 Id: WULL_TGT (Others) TH coord: (20ps = 0, N = 0.000, E = 0.000, E = 0.000) CCC coord: (2 = -6.21376.584, T = 831271.616, E = 0.000) FOV: WFOV (0), Sensor: DVO (0) BOANDS: BOANDS: GCC coord: (2 = -6.21374.584, T = 813.71.616, E = 0.000) GCC fange: 0.000 (Rand = 'livelid < SBORT') GCC fange: 0.000 (Rand = 'livelid < SBORT') GCC coord: (X = -6.23774.584, K = 0.000, E = 0.000) GCC coord: (X = -6.23774.584, K = 0.000) GCC coord: (X = -6.23774.584, K = 0.000) GCC coord: (X = -6.23774.584, K = 0.000) GCC coord: (N = -6.12774.584, K = 0.000) UTM coord: (Ann = 0. M = 0.00) UTM coord: (Ann = 0. M = 0.00) CCC coord: (X = -6.12774.584, Y = 0.000) CCC coord: (X = -6.12774.584, Y = 0.000) CCC coord: (X = -6.12774.584, Y = 0.000) GCC coord: (N = -6.12774.584, Y = 0.000) GCC coord: (N = -6.12774.616, F = 0.000)		ection, Recognition, and Identification	
Main	061		
Id: WULL_TGT (Others) THE COOLE : (200 = 0, M = 0.000, E = 0.000, E = 0.000) CCC coord: (2 = -613134.584, T = 611278.616, E = 0.000) FOY: KFOV (0). Seasor: DVO (0) DOANDS: DOANDS: DOANDS: DOANDS: DOANDS: DOANDS: CCC coord: (2 = -612174.584, T = 01271.616, E = 0.000) CCC cange: 0.000 (Band = 'Invalid < SONT') DOANDS: CCC coord: (2 = -6121714.584, T = 0.000) CCC coord: (3 = -612171.616, E = 0.000) CCC coord: (4 = -6121714.584, T = 0.000) CCC coord: (4 = -6121714.584, T = 0.000, E = 0.000) CCC coord: (4 = -6121714.584, T = 01271.616, E = 0.000) CCC coord: (4 = -6121714.584, T = 0.1271.616, E = 0.000) CCC coord: (4 = -6121714.584, T = 0.1271.616, E = 0.000) CCC coord: (4 = -6121714.584, T = 0.1271.616, E = 0.000) CCC coord: (4 = -6121714.584, T = 0.1271.616, E = 0.000) CCC coord: (4 = -6121714.584, T = 0.1271.616, E = 0.000) CCC coord: (4 = -6121714.584, T = 0.000) CCC coord: (4 = -6121714.584, T = 0.000) CCC coord: (5 = -6121714.584, T = 0.000) CCC coord: (5 = -6121714.584, T = 0.000) CCC coord: (6 = -6121714.616, E = 0.000) CCC coord: (7 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000) CCC coord: (8 = -6121714.616, E = 0.000)	191 COMDE	101 630	
OMM VER. 1d. WULL_TGT (Others) 7TM COOCH: (Rose = 0, M = 0.000, E = 0.000, E = 0.000) 7TM COOCH: (Rose = 0, M = 0.000, E = 0.000, E = 0.000) FOUR COOCH: (X = -6121734.584, Y = 611271.616, E = 0.000) BOANDS: BOANDS: FOUR COOCH: (X = -612174.584, Y = 0.000, E = 0.000) GCC COOCH: (X = -612174.584, Y = 0.000, E = 0.000) GCC EADGE: 0.000 (Rand = 'Invalid < SBORT') FOUR COOCH: (X = -612171.614, E = 0.000) GCC COOCH: (X = -612171.614, Y = 0.000) GCC COOCH: (X = -612171.614, Y = 0.000) FOUR COOCH: (A = -612171.614, Y = 0.000) FOUR COOCH: (A = -612171.614, Y = 0.000) FOUR COOCH: (M = -612171.614, Y = 0.000) FOUR COOCH: (M = -612171.614, Y = 0.000) GCC COOCH: (M = -612171.614, Y = 0.000) FOUR COOCH: (M = -612171.614, Y = 0.000) FOUR COOCH: (M = -612171.614, Y = 0.000) FOUR COOCHING: FOUR COOCH (M = 0.000) FOUR COOCH (M =	893;		
Add and the coord: (Accord: (Accord: Accord: (Accord: (Ac	8		
GCC coord: (N = -6323734.584, T = 631271.616, E = 0.000) BOANDS: Board 41 Id: TE_41ine (24) Board 41 Id: TE_41ine (24) GCC coord: (N = -6323734.584, N = 0.000, E = 0.000) GCC coord: (N = -6323734.584, N = 0.11271.616, E = 0.000) GCC coord: (N = -6323734.584, N = 0.11271.616, E = 0.000) GCC coord: (N = -6323734.584, N = 0.11271.616, E = 0.000) GCC coord: (N = -6323734.584, N = 0.11271.616, E = 0.000) GCC coord: (N = -6323734.584, N = 0.11271.616, E = 0.000) CCC coord: (N = -6323734.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -6323734.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.584, N = 0.11771.616, E = 0.000) CCC coord: (N = -632374.616, E = 0.000) CCC coord: (N = -632374.616, N = 0.000) CCC coord: (N = -632374.616, N = 0.000) CCC coord: (N = -632374.616, N = 0.000)		014_16f (Others)	
POW: KPOV (0), Secsor: DVO (0) BOANDS: BOARD 41 Id: TB_4line (26) GCC coord: (Ecse = 0, H = 0,000, E = 0,000, S = GCC coord: (Ecse = 0, H = 0,000, R = 6CC Inspector) GCC coord: (R = -6121714.564, F = 61171.616, B GCC Ecord: (R = -6121714.584, F = 61171.616, B GCC ecord: (R = -6121714.584, F = 61171.616, B GCC Engge: 0.000 (Band = 'Invalid < HNNT') ACTOL FOR TOTAL COORD (Band = 'Invalid < HNNT') ACTOL FOR COORD: (NOW_2519 (SP_AFF)) Heart (Intation: NOW_2519 (SP_AFF)) Acquisition Time: 0.70 GCC Tange: 0.000 (Band = 'Invalid < HNNT') RECORDED. Acquisition Time: 0.70 BOONING: BOON		cord: (X = -6323734.584, Y = 431271.616, K = 0.000)	
BOANDS: BOATG 41 Id: TB_411me (24) Gracoord: (Exce = 0, mo, revalld < 80271) GCC ccord: (R = -4223734,564, W = 81271.646, B. GCC ccord: (R = -4223734,564, W = 81271.646, B. GCC crasge: 0.000 (Rand = 'Invalld < 8027') ACTAL 7C: GCC ccord: (R = -6323734,584, W = 81271.616, B. GCC ccord: (R = -6323734,584, W = 81271.616, B. ACTAL 7C: GCC range: 0.000 (Band = 'Invalld < 8027') FRETEVED 7C: Identification: WOWL 2519 (SP_AT) Acquisition Time: 0.70 GCC range: 0.000 (Band = 'Invalld < 8027') FRETEVED 7C: Identification: WOWL 2519 (SP_AT) Acquisition Time: 0.70 BOONING: Beconing: Acquisition Time: 0.70 Beconing: Acquisition Time: 0.70	E	KPOV (0), Sensor: DVD (0)	
Deard #1 Ed: TD_41ine (24) Orn coord: (Zees = 0, m = 0,000, E = 0,000, g = GCC coord: (Zees = 0, m = 0,000, E = 0,000, g = GCC coord: (Zees = 0, m = 0,000, E = 0,000; T = GCC range: 0.000 (Rand = 'Invalid < SEORT') Orn coord: (Leas = 0, m = 0, 000, E = 0,000; E = GCC coord: (X = '6721714.584, F = 811771.616, E GCC coord: (X = '6721714.584, F = 811771.616, E GCC range: 0.000 (Rand = 'Invalid < SHORT') ACTAL TC: Resognition: Ep Pre: THAll Defilade) Identification: GDM_2519 (SP_ATE) CCC coord: (An = -6121714.584, F = 811771.616, E = 0.000 (Band = 'Invalid < SEDRT') FERCEIVED TC: Identification: NOW_2519 (SP_ATE) Acquisition Time: 0.70 SCONING: Detaction, Resognition, and Identification	9031804305	•	
GTM coord: (Ecos = 0, N = 0.000, E = 0.000, E = GCC coord: (E-0.23734.584, Y = 811371.646, B. GCC range: 0.000 (Band = 'Invalid cBONT')	901	11 Id:	
GCC coord: (N = -6121714.504, N = -811271.616, B GCC range: 0.000 (Rand = 'Invalid < BRORT') FOR Coord: (Rane = 0. N = 0.000, E = 0.000, N =		- 3 .000 - :	
GCC Range: 0.000 (Rand = 'Invalid < SBORT') Ord cord: [Loss = 0. H = 0.000, E = 0.000, E = 0.000 (Rand = 0. H = 0.000, E = 0.000, E = 0.000 (Rand = 0. H = 0.000, E = 0.000, E = 0.000 (Rand = 'Invalid < SHORT') ACTUAL TOT: A		(x6323734.504, x - 031271.616, 8	
CCC coord: (Rows = 0, W = 0.000, E = 0.000, S = GCC coord: (N = .6323714.584, F = 831271.614, E GCC coord: (N = .6323714.584, F = 831271.614, E GCC range: 0.000 (Band = 'Javalid < HORT') ACTUL TCT: Recognition: EP Art: Thull Defilade) Identification: EP Art: Thull Defilade) Identification: GOV 2519 Identification: GOV 2519 Identification: GOV (Band = 'Javalid < HORT') PERCENTED TCT: Identification: WOW 2519 (SP_Art) Identification Time: 0.70 GOOLING: Identification Time: 0.70 Identification Time: 0.70 Detection: Recognition: And Identification		GCC range: 0.000 (Band - 'Invalld < SBORT')	
ACTUAL TOT: GCC Enge: 0.000 (Band - 'Invalid < SHORT') ACTUAL TOT: GEOMITICAL SEPTEMBLY Defilade) Identification: ED POT: THAIL Defilade) Identification: GOW, 2519 CCC COORT: (Ann. O. M. O. 000, E - 0.000, S - 0.000 CCC COORT: (Ann. O. M. O. 000, E - 0.000, S - 0.000 CCC COORT: (Ann. O. 000 (Band - 'Invalid < SHORT') FENCEIVED TOT: Identification: (MOM, 2519 (SP.Art) - 1000 Acquisition Time: 0.20 GOOLING: Detection, Recognition, and Identification		(Post a 0.00 F = 0.000 K =	
GCC range: 0.000 (Band = 'Invalid < SHORT') McFCAL TCT: Memognition: EP_Art (Hall Defilade) Identification: GDM 2819 DTM coord: (Bone - O. M. D. 000, E = 0.000, S = 0.000 CCC coord: (R = -6121718.584, F = 811271.616, S = 0.000 CCC range: 0.000 (Band = 'Invalid < SEDET') PERCENTED TC: Identification: NOW 2819 (SP_Art) Acquisition Thm: 0.20 ROOTING: Detection, Recognition, and Identification	106	6323734.584, E = 832271.616, E	
ion: 6P_per: fibal Defilede) == tion: gow_25.9 d: (46121714.584, W = 811271.616, B e: 0.000 (8mnd = 'levelid < SEDET') GT: cation: Mod_2519 (8P_Art) don Time: 0.70 D. Recognition, and Identification	1806	(Bend - 'Invelld < SHORT')	
ion: Ep_per: Hall Defilede) cation: How 2819 d: (none 0_M = 0.000, E = 0.000, S = 0.000 (M = 0.000) cr: 0.000 (kend = 'levalid < SHDRT') cr: 0.000 (kend = 'levalid < SHDRT') cr: 0.000 (kend = 'levalid < SHDRT') cation: How 2819 (sP_Art) continue: 0.20 continue: 0.20	909		
Identification: Gov. 2819 DTK coord: (Aone O. M. T.) 000, E = 0.000, S = 0.00 cc coord: (N = -6121714.584, Y = 811271.616, S CC range: 0.000 (Band = 'lnvalid < SEDRY') PERCENTO TOT: Identification: NOW 2819 (SP.Art) Adentification Flas: 0.20 Detection: Recognition, and Identification Detection: Recognition and Identification	9111	Married Const. Co. Later Attails Traditional	
UTK coord: (tone d. M. C. 000, p = 0.000, s = 0.00 c c coord: (x = -6121714.54, y = 01271.616, s CCC range: 0.000 (hand = 'lavalid < SEDRY')		ntification Wor 2819	
GCC coord: (N = -612774.584, N = 871271.616, N GCC range: 0.000 (band = 'Invalid < SENET') Identification: (NOW 2519 (FP_Art) Adquisition Time: 0.20 Detection, Recognition, and Identification Detection,		- 0.000, # -	
PERCEIVED NOT: Identification: (MON_2E1) Acquisition Time: 0.70 SCORING: Detection, Recognition.		31271.616, 8	
8		: range: 0.000 (band = 'lovelid < SHDRT')	
8			
8	_	setification (NOW 2519 (SP. Art)	
8		puteltion Time: 0.20	
}	920		
	3	tection. Recognition, and Identification	

Jan 1	Jan 11 1995 10:12 REPORT34561.DAT.save1	Page 14
924 925 CO 926	10 #0111C	
226 226 210 210 210 210 210 210 210 210 210 210	M VEN: 1d: MULL_TGT (Others) TTH concal: (Edma = 0, M = 0.000, E = 0.000, E = 0.000) GCC concd: (K = -632314.504, Y = 831271.616, E = 0.000) FOV: NTOV (0), Senecg: DYO (0)	
	Board 81 3d: FP_11ins {26} Foard 81 3d: FP_11ins {26} UTW scord: (Rose = 0, M = 0.000, R = 0.000) GCC coord: (R = -632734.584, T = 811271.616, R = 0.000) GCC range: 0.000 (Bend = 'Invalid < SHOMT') Foard 82 Id: FP_4lins {26} UTW coord: (Rose = 0, M = 0.000, R = 0.000) GCC coord: (N = -613774.584, V = 81127).616, B = 0.000) GCC range: 0.000 (Band = 'Invalid < SHORT')	
77 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	McCont. TGT: Recognition: 6P Art-(MUII Defit) de) Recognition: (Bone To: Translate) UTM CONT. (Bone To: Translate) GCC CONT. (R - 6131714.584. F - 811271.614. E - 0.804) GCC range: 0.000 (Band - 'Irvalid < SHORF')	
	Identification: WONTAR M106 (RP_Art) Acquisition Time: 0:10: SCORING: Detection, Recognition, and Identification	
	155 559 CONDITION 632 640	
	### VZE; 1d: MTLL_3CT (Others) TTM cooks: [Cam = 0, W = 0.00C, E = 0.CD0, K = 0.000) CC coord: [X = -633714 S64, W = 831271.616, B = 0.000) FOV: MFTV (0), Echant: DVD (0)	
_=	Deard #1 Id: Tm_41ine (14) UTM coord: (20n = -0.000, E = 0.000, E = 0.000) GCC coord: (20n = -0.00) GCC coord: (20n = 0.00) GCC range: 0.00 (20n = 0.00) UTM coord: (20n = 0.0 = 0.00) GCC coord: (20n = 0.0 = 0.00) GCC coord: (20n = 0.0 = 0.00) GCC coord: (3 = -0.2174.546, T = 0.1271.616, E = 0.000) GCC coord: (3 = -0.2174.546, T = 0.1271.616, E = 0.000)	
26888888888888888888888888888888888888	Recognition: SP Let (Mul) Defilade) Recognition: (EONTA 2512) The coord: (Eone TO, W. T. T. D. D. D. E. O. 000) GCC coord: (K512734.584, T - 311271.636, B - 0.000) GCC range: 0.000 (Bend - 'Invelid < SHORT')	
2000	Received 1GT: Recognition R/W Acquisition Time: 0.20	
22222	990 Detection 991 Detection 991 091 091 091 091 091 091 091	

Las Las	Call I See See Se		
19610	951 9510608 VRV:		
997	Id: MULLICT (Others)		
1666	GCC coord: (X =	-6323734 - 584, Y = 631273.616, K = 0.000)	
1100	1001		
1001	Board 61 Id: ID.	(1fae (26)	
1000	DIN coord: (E		
3001	GCC range: 6.1	000 (Bead - 'Invelid < SEDRY')	
800	UTM coord: (14	200 - 0 . M - 0.000, M - 0.000, C - 0.000)	
10001	CCC coord: (X	GCC coord: (X = -6)2)736.584, Y = 031271.616, E = 0.000) GCC resem: 0.003 (Mand = Treated < minor:	
011			
210	1017 ACTOAL TOT: 1013 MUL Termet		
100			
1015	PERCEIVED TOT		
	Acquisition Time: 0.	: 0.20	
10101			
816101	9 iscourge:		
1021	200 100 100 100 100 100 100 100 100 100		
10221			
0231	1023 CONDITION 834		
1024			
0261	026 IOUN VEH:		
027		Mars)	
028		UTM coord: (labe = 0, M = 0.030, R = 0.000, E = 0.000)	
10201	CCC coord: (X •	- 031271.616, g	
033	10) 00 100	course: Od (c)	
0.12	3		
0.03	Board #1 Id: 75		
1510	CCC coord: (4	CCC coord: (*com * 0; m * 0.000, K * 0.000, K * 0.000)	
19801	GCC range: 0.		
1037	Board 12 Id: 79		
034	UN coord: (8	ODE - 0, M - 0.000, H - 0.000, 8 - 0.000)	
6501	GCC coord: (N	•	
3	GCC reage: 0.	000 (Bead - Invelld < BEDST')	
0 62	ACTOAL TGT:		
1043	Recognition: In	ok (Sull Defilade)	
1011	Identification:		
1045	Off coord: (Son	- 0.000. E -	
1046	1046 CCC coord: (X -	CCC coord: (X = -6323734.586, Y = 631271.616, E = 0.000)	
1046		(LEGGS > DETOART - DOTES)	
6001	PERCEIVED TOT:		
10501	Identification:	MIA2 (Tamb)	
1051	Acquisition Time: 0.10	0.10	
1052			
1053	8		
103		Detection, Recognition, and Identification	
10001			
1057	COMPITTOR BYS		
1058	10581		
1059			
10601	7		
1061		there	
1062	_		
1063	_	- 631271.61	
1064	_	•	

11995 10: PEPORT3456.DAT.SGY 11995 10: Percent Percent	ton 11 1005 10-12 REDORT 24551 DAT canot	### ### ### ### ######################
11995 10:	Pare 15	
10050000000000000000000000000000000000	REPORT24561 DAT savet	OMN VTH: UTA : WULL_TOT (OCHEE) UTA : WULL_TOT (OCHEE) UTA : WULL_TOT (OCHEE) UTA : WULL_TOT (OCHEE) WOULD : GCC cond: (X = -632314.564, Y = 631271.616, E = 0.00 GCC cond: (X = -632314.564, Y = 631271.616, E = 0.00 GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (X = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314.564, Y = 631271.616, E GCC cond: (M = -632314, M = 6300, E GCC cond: (M = -632314, M = 6300, E GCC cond: (M = -632314, M = 6300, E GCC cond: (M = -632314, M = 6300, E GCC cond: (M = -632314, M = 6300, E GCC cond: (M = -632314, M = 6300,

Page 16

Jan 11 1995 10:12 REPORT34561.DAT.save1	1157 MARCE BARDS: 1562, MADRY MAX 1102 1155 LOKE Min 1562, MADRY MAX 1560 1155 LOKE Min 1562, LOKE MAX 1560 1155 LOKE Min 1562, LOKE MAX 1560 1151 LOKE MIN 1560 1660 1660 1151 LOKE MAKE MARCE 1660 1660 1660 1151 LOKE MAKE MARCE 1660 1660 1660 1151 LOKE MAKE MARCE 1660 1660 1660 1151 LOKE C 1660 1151 LOKE C 1660 1151 LOKE C 1151 LOKE C 1151	
Page 17	conditions	
REPORT34561.DAT.save1	21 (100.0 %) out of 31 22 (50.3 %) 2 (15.7 %) 2 (15.2 %) 2 (15.2 %) 2 (15.2 %) 3 (15.2 %) 4 (15.2 %) 4 (15.2 %) 5 (10.0 %) 6 (10.0 %) 6 (10.0 %) 6 (10.0 %) 7 (10.0 %) 7 (10.0 %) 7 (10.0 %) 8 (10.0 %) 9 (10.0	
Jan 11 1895 10:12	1001 1000 10	

	1 b) out of 31) out of 31 (3.2 t) out of 31 (6.0 t) out of 31	Jan 11 1995 10:12	12 REPORT34561,DAT.save1	Page 19
	1) out of 31 9) out of 31 9 out of 31			
19) out of 31) out of 31 out of 31 out of 31 (77.4 () out of 31) out of 31 (3.2 () out of 31 (3.2 () out of 31 (3.3 ()	1 1) out of 31) out of 31 (3.2 %) out of 31 (3.2 %) out of 31 (3.3 %) out of 31 (6.5 %) out of 31	-		
1) out of 11) out of 11 (1.2 t) out of 11 (1.2 t) out of 11 (1.3 t) out of 11	() out of 11 () o	5	DA:	
1) out of 11) out of 11 (1.2 t) out of 11 (1.2 t) out of 11 (1.3 t) out of 11		_	- 24 (77.4 %) OUT OF	
			0 (0.0 t) out of 1	
		_	- 1 (3.2 %) out of 3	
(77.4 %) out of 31 out of	(77.4 () out of 31		1 (3.2 t) out of 3	
	(3.2 b) out of 11 out of 1		1 (3.7 %) out of 3	
		3	- 22 (21 0 81 cut of	
			- 1 (3.2 %) out of 31	
(3.2 b) out of 31 (7.4 c) out of 31 (1.2 c) out of 31 (1.2 c) out of 31 (1.3 c) out of 31			0.0	
(77.4 b) out of 31 (77.4 c) out of 31 (77.4 c) out of 31 (77.4 c) out of 31 (77.2 c) out of 31 (77.3 c) out of 31 (77.4 c) out of 31 (77.4 c) out of 31 (77.5 c) out of 31 (77.6 c) out	(77.4 %) out of 31 (77.5 %) out of 31 (77.6 %) out of 31 (77.6 %) out of 31 (77.9 %) out of 31			
			- 1 (3.2 %)	
(77.4 %) out of 31 (77.5 %) out of 31 (77.6 %) out of 31	(77.4 t) out of 31 (77.4 t) out of 31 (10.2 t) out of 31		- 1 (9.7 1)	
(77.4 b) out of 11 out of	(3.2 b) out of 11 (1) out of 11 (2) out of 11 (3) out of 11 (4) out of 11 (5) out of 11 (6) out of 11 (6	100	•	
(77.4 () out of 31 out of	(77.4 %) out of 31 out of		- 16 (51.6 t) out	
(3.2 b) out of 31 (7.4 b) out of 31 (7.4 b) out of 31 (3.2 b) out of 31 (3.3 b) out of 31	(77.4 %) out of 31 9) out of 31 9) out of 31 9) out of 31 (77.4 %) out of 31 (3.2 %) out of 31 (48.4 %) out of 31 (6.0 %) out of 31	3	- 0 (0.0 t) out of	
(77.4 b) out of 31 (77.4 b) out of 31 (1.2 b) out of 31	Out of 31 Out	=	. 0 (0.0	
(77.4 f) out of 31 out of	(77.4 b) out of 31 out of		= 0 (0.0 %) out	
(77.4 () out of 31	(77.4 %) out of 11. (1.2 %)		100 (0.0 c) our	
(3.2 t) out of (3.2 t) out of (3.2 t) out of 31	(77.4 t) out of 13.2 t)	_	- 2 (6.5 %) Out	
(17.1 t) out of 11. (17.2 t)	(77.4 %) out of (1.3 %)	_		
(77.4 %) out of (13.2 %)	(77.4 %) out of (13.2 %)	12121		
(3.2 t) out of (3.2 t)	(3.2 t) out of (3.2 t)	1012		
(3.2.1) out of 31 (3.2.1) out	(3.2 t) out of 13.2 t)	214 DETECTION S	20 4000 0 0 000 000	
(3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	(3.2 b) sut of (3.2 b	-		
(1.1.1) 9. eut of (1.1.1) 9. e	(3.2 b) out of (3.2 b	12171	13.2 P. Part of	
(3.2 b) out of (3.2 b	(3.2 b) out of (3.2 b	12141		
[3.7] [9.4] [7.7] [9.4] [9.7] [9.4] [9.7] [9.4] [9.7] [9.4] [9.7] [9.4] [9.7] [9.4]	(3.7 b) out of (3.8 b) out of (3.8 b) out of (6.8 b) out of (6.8 b) out of (6.8 c) out of (6.8 c)	12191	(3.2 e) gut of	
(3.2.2.0 out of (3.2.2.0)	(7.1.0 %) out of (7.1.0 %) out of (7.1.0 %) out of (7.1.0 %) out of (9.1.0 %)	1223) SEEKER	(9.7 4) out of	
(71.0 %) out of (71.0 %) out of (71.0 %) out of (71.1 %)	(3.2 %) out of (3.2 %)	1221		
(5.2) out of (6.5) out of (6	(3.2 %) out of (1.2 %) out of (2.0 %) out of (3.2 %) out of (3.2 %) out of (3.2 %) out of (6.5 %) out of (6.5 %) out of	1223 DWO	(71.0 %) out	
(3.29) sut of (3	(3.2 b) sut of (6.5 b	1224 PLLIR	(3.2 %) out of	
(6.1) out of (6.1)	(6.0 b) out of (6.0 b	1225	(3.3 %) out	
(6.0) out of (6.0)	(6.5 %) out of (6.5 %)	1777	(3.2 E) Que	
(0.0) out of (0	(41.4 %) cut of (3.3 %) cut of (0.0 %) cut of (0.0 %) cut of (0.0 %) cut of (6.5 %)	1210	2.7.5	
(6.4.4.) out of (6.5.4.) out of (6.5.4.) out of (6.6.5.) out of (6.5.5.) out of (6.5.5.)	(6.4 %) out of (6.5 %)	1229		
(0.00) out of (0	(0.0.1) out of (0.0.1)	1230 IDENTIFICA	400 4 0 4 044	
(0.0 1) out of (0.0 1	(0.01) out of (0.01)	12121		
(0.00) out of (0	(0.0 1) out of (0.0 1) out of (0.0 1)	12311	2 2 2 2 2 2 2 2	
(6.9 e) out of (6.9 e)	(0.0 0) out of (6.5 0) out of	7	(0.0 t) out of	
(6.5 b) out of	(6.5 b) out of	12151 12	(0.0 0) out of	
		13321 19121	(6.5 %) out of	
	-			

APPENDIX B - VV&A PDU's

(This page intentionally left blank)

This section details the message formats used for transmitting VV&A data in DIS Action Response PDUs. There is a PDU format table corresponding to each one of the 6 Action Response PDUs customized for VV&A.

Field Size (bits)	Fields Of Action F	Response PDU Customized For sition And Tracking VV&A
(01(3)	Taiget Adquit	Protocol Version - 8 bit enumeration
		Exercise ID - 8 bit unsigned integer
96	PDU	PDU Type - 8 bit enumeration
	HEADER	Padding - 8 bit unused
		Time Stamp - 32 bit unsigned integer
		Length - 16 bit unsigned integer
	3	Padding - 16 bits unused
		Site - 16 bit unsigned integer
64	ORIGINATING	Application - 16 bit unsigned integer
	EXTTY ID	Entity - 16 bit unsigned integer
		Group -16 bit unsigned integer
		Site - 16 bit unsigned integer
64	RECEIVING	Application - 16 bit unsigned integer
	EXTTY ID	Entity - 16 bit unsigned integer
		Group -16 bit unsigned integer
32	PADDING.	32 bits unused
32	REQUEST D	32 bit unsigned integer
32	REQUEST STATUS	32 bit unsigned integer
32	NUMBER OF FIXED DATUM FIELDS	0x00000000
32	NUMBER OF VARIABLE DATUM FIELDS	0x0000001
	·	0x0000012C (300)
		(See Section 4.2.2.1.2) - 32 bit unsigned int
		0x00000580 (1408)
		32 bit unsigned integer
1472	TARGET	Sight World Position - X Coordinate
	ACQUISITION AND	- 64 bit float
	TRACKING \"/&A	Sight World Position - Y Coordinate
	DATA	- 64 bit float
		Sight World Position - Z Coordinate
		- 64 bit float
		Sight World Orientation - Psi
		- 32 bit float
		Sight World Orientation - Theta - 32 bit float
		- 32 Dit HOat

Sight World Orientation - Phi
- 32 bit float
Gun Wrt Sight Offset - Azimuth - 32 bit float
Gun Wrt Sight Offset - Elevation - 32 bit float
Lead Sight - 8 bit unsigned integer
Active Handle - 8 bit unsigned integer
Active Handle - 8 bit unsigned integer Handle Signal - 8 bit unsigned integer
Padding - 8 bits unused
Target World Position - X Coordinate
- 64 bit float
Target World Position - Y Coordinate
- 64 bit float
Target World Position - Z Coordinate - 64 bit float
Target World Velocity - X Coordinate - 32 bit float
Target World Velocity - Y Coordinate - 32 bit float
Target World Velocity - Z Coordinate
- 32 bit float
Target Entity- Site ID - 16 bits
Target Entity- Application ID - 16 bits
Target Entity- Entity ID - 16 bits
Ballistic Range - 16 bit unsigned int
Ballistic Superelevation - 32 bit float
Ballistic Lead - 32 bit float
Lay Error - Azimuth
- 32 bit float
Lay Error - Elevation
- 32 bit float
Kinematic Lead Error - 32 bit float
Target Rate Wrt Vehicle - Azimuth
-32 bit float
Target Rate Wrt Vehicle - Elevation
-32 bit float
Sight Tracking Rate - Azimuth
-32 bit float
Sight Tracking Rate - Elevation -32 bit float
Tracking Rate Error - Azimuth
-32 bit float
Tracking Rate Error - Elevation -32 bit foat
Gun World Position - X Coordinate
- 64 bit foat
Gun World Position - Y Coordinate - 64 bit foat
Gun World Position - Z Coordinate - 64 bit foat
Gun World Orientation - Psi - 32 bit foat
Gun World Orientation - Theta - 32 bit foat
Gun World Orientation - Phi
- 32 bit float
System Induced Error - 32 bit float

Field Size	Fields Of Action	Response PDU Customized For ery Accuracy VV&A
(bits)	<u> </u>	Protocol Version - 8 bit enumeration
	i	Exercise ID - 8 bit unsigned integer
	PDU	PDU Type - 8 bit enumeration
96		Padding - 8 bit unused
	HEADER	Time Stamp - 32 bit unsigned integer
i		Length - 16 bit unsigned integer
	·	Padding - 16 bits unused
		Site - 16 bit unsigned integer
		Application - 16 bit unsigned integer
€4	ORIGINATING	Entity - 16 bit unsigned integer
	ENTTY ID	Group -16 bit unsigned integer
		Site - 16 bit unsigned integer
		Application - 16 bit unsigned integer
64	RECEIVING	Entity - 16 bit unsigned integer
	ENTITY ID	Group -16 bit unsigned integer
		32 bis unused
32	PADDING	32 bit unsigned integer
32	REQUEST ID	
32	REQUEST STATUS	32 bit unsigned integer
32	NUMBER OF FIXED DATUM	0x03000000
	FIELDS	0.0300001
32	NUMBER OF VARIABLE	1000000x0
	DATUM FIELDS	0.000040D (201)
		0x0005012D (301)
		(See Section 4.2.2.1.2) - 32 bit unsigned int
		0x00002140 (8512)
		32 bit ursigned integer
8576	DELIVERY	Sight World Position - X Coordinate
	ACCURACY	- 64 bit float
	VV&A	Sight World Position - Y Coordinate
	DATA	- 64 bit float
		Sight World Position - Z Coordinate
	·	- 64 bit float
		Sight World Orientation - Psi
1	-	- 32 bit float
	ì	Sight World Orientation - Thema
i		- 32 bit float
		Sight World Orientation - Ph - 32 bit float
		Gun Wrt Signt Offset - Azimum
		Gun Wit Signt Offset - Azimoth
	•	- 32 bit float Gun Wrt Signt Offset - Elevation
-		- 32 bit floa:
ļ	1	- 32 bit tioa.
		Time At Firing - 32 bit unsigned integer
		Lead Sight - 8 bit unsigned integer
1		Target Hit Status - 8 bits unsigned integer Fire Event - Site ID - 16 bits
	1	Fire Event Application ID - 16 site
		Fire Event - Application ID - 16 bits Fire Event - Event ID - 16 bits
1		Tarret World Profition - Y Coordinate
i		Target World Position - X Coordinate
	ł	- 64 bit floa:
1		Target World Position - Y Coordinate
1	1	- €4 bit floa:

Target World Position - Z Coordinate - 64 bit float
Target World Velocity - X Coordinate - 32 bit float
Target World Velocity - Y Coordinate - 32 bit float
Target World Velocity - Z Coordinate
- 32 bit float Tamet Entity- Site ID - 16 bits
Target Entity- Application ID - 16 bits Target Entity- Entity ID - 16 bits
Ballistic Range - 16 bit unsigned int
Ballistic Superelevation - 32 bit float
Ballistic Lead - 32 bit float
Ballistic Cant - 32 bit float
Bailistic Carit - 32 bit noat
Ballistic Barometric Pressure - 32 bit float
Ballistic Crosswind Direction From North - 32 bit float
Ballistic Crosswind Magnitude
- 16 bit integer
Ballistic Ammo Temperature
- 16 bit integer
Ballistic Air Temperature
- 16 bit integer
Environment Ammo Temperature
- 16 bit integer
Environment Air Temperature
- 16 bit integer
- 10 Un integer
Environment Crosswind Magnitude - 16 bit integer
Environment Crosswind Direction From North - 32 bit float
Environment Barometric Pressure
Environment Barometric Fressure
- 32 bit float
Kinematic Lead Error - 32 bit float
Lay Error - Azimuth
- 32 bit float
Lay Error - Elevation
- 32 bit float
Lay Point World Position - X Coordinate
- 64 bit float
Lay Point World Position - Y Coordinate - 64 bit float
Lay Point World Position - Z Coordinate - 64 bit float
Target Rate Wrt Vehicle - Azimuth
-32 bit float
Target Rate Wrt Vehicle - Elevation -32 bit float
Sight Tracking Rate - Azimuth
-32 bit float Sight Tracking Rate - Elevation
-32 bit float
Tracking Rate Error - Azimuth -32 bit float
Tracking Rate Error - Elevation -32 bit float

Gun World Position - X Coordinate - 64 bit float
Gun World Position - Y Coordinate
- 64 bit float Gun World Position - Z Coordinate
- 64 bit float
Gun World Orientation - Psi
- 32 bit float
Gun World Orientation - Theta
- 32 bit float
Gun World Orientation - Phi - 32 bit float
Gun World Orientation With All But Static
Round Dispersion
- Psi - 32 bit float
Gun World Orientation With All But Static
Round Dispersion
- Theta - 32 bit float
Gun World Orientation With All But Static
Round Dispersion
- Phi - 32 bit float
Gun World Orientation With All Dispersions - Psi - 32 bit float
Gun World Orientation With All Dispersions
- Theta - 32 bit float
Gun World Orientation With All Dispersions
- Phi - 32 bit float
System Induced Error - 32 bit float
Time Of Flight To Target Range
- 32 bit float
Firer-Target Mobility Status - 8 bit uns. int.
Padding - 24 bits unused
Fixed Bias - Horizontal - 32 bit float
Fixed Bias - Vertical - 32 bit float
Occasion Dispersion - Horizontal - 32 bit float
Occasion Dispersion - Vertical - 32 bit float
Static Round Dispersion - Horizontal - 32 bit
l tioat
Static Round Dispersion - Vertical - 32 bit float
Dynamic SM Dispersion Add-On - Honzoniai
- 32 bit float
Dynamic SM Dispersion Add-On - Vertical
- 32 bit float
Dynamic MS Dispersion Add-On - Horizontal - 32 bit float
Dynamic MS Dispersion Add-On - Vertical
- 32 bit float
Gun Pointing Error - Horizontal
- 32 bit float
Gun Pointing Error - Vertical
- 32 bit tloat
Total Gun Pointing Error - Horizontal - 32 bit float
Total Gun Pointing Error - Vertical
- 32 bit float
Total System Error - Horizontal
Total System End - Honzonta
- 32 bit float

- 1	Total System Error - Vertical
L	- 32 bit float
- 1	Miss Distance - Horizontal
L	- 32 bit float
	Miss Distance - Vertical
L	- 32 bit float
	Gun Direction Wrt Desired Aimpoint
L	- Horizontal - 32 bit float
	Gun Direction Wrt Desired Aimpoint
l	- Vertical - 32 bit float
	Vehicle World Velocity - X Component
ı	- 32 bit float
ſ	Vehicle World Velocity - Y Component
ı	- 32 bit float
- [Vehicle World Velocity - Z Component
ı	- 32 bit float
	Vehicle World Acceleration - X Component
1	- 32 bit float
- 1	Vehicle World Acceleration - Y Component
j	- 32 hit float
٠ ا	Vehicle World Acceleration - Z Component
- 1	- 32 bit float
ı	Vehicle Angular Velocity - X Component
	- 32 hit float
	Vehicle Angular Velocity - Y Component
	- 32 bit float
	Vehicle Angular Velocity - Z Component
	- 32 bit float
	Padding - 32 bits unused
1	Actual Trajectory-Target Plane Intersection
	World Position - X Coordinate
	- 64 bit float
	Actual Trajectory-Target Plane Intersection
	World Position - Y Coordinate
,	- 64 bit float
	Actual Trajectory-Target Plane Intersection
	World Position - 2 Coordinate
	- 64 bit float
!	Padding - 64 bits unused
1	Actual Flyout Trajectory
	- 2560 bit Trajectory-Record Flyout Trajectory With out Dispersions
	Flyout Trajectory With out Dispersions
	- 2560 bit Trajectory-Record

Figure 122: Message Format for Action Response PDU Customized For Delivery Accuracy VV&A.

Field Size	Fields Of Action R	esponse PDU Customized For
(bits)	Direct Fire Vuln	erability Assessment vvan
(Dits)		Protocol Version - 8 bit enumeration
		Exercise ID - 8 bit unsigned integer
96	PDU	PDU Type - 8 bit enumeration
90	HEADER	Padding - 8 bit unused
	I ILABEIT	Time Stamp - 32 bit unsigned integer
	•	Length - 16 bit unsigned integer
		Padding - 16 bits unused
		Site - 16 bit unsigned integer
64	ORIGINATING	Application - 16 bit unsigned integer
04	ENTITY ID	Entity - 16 bit unsigned integer
	2111111	Group -16 Lit unsigned integer
		Site - 16 bit unsigned integer
64	RECEIVING	Application - 16 bit unsigned integer
04	ENTITY ID	Entity - 16 bit unsigned integer
		Group -16 bit unsigned integer
32	PADDING	32 bits unused
32	REQUEST ID	32 bit unsigned integer
32	REQUEST STATUS	32 bit unsigned integer
32	NUMBER OF FIXED DATUM FIELDS	0x0000000
32	NUMBER OF VARIABLE DATUM FIELDS	0x0000001
		0x0000012E (302)
		(See Section 4.2.2.1.2) - 32 bit unsigned int
	,	0x00000580 (1408)
		32 bit unsigned integer
1472	DIRECT	Direct Fire Type - 8 bits unsigned int
1 '	FIRE	Padding - 8 bits unused
	VULNERABILITY	Range From Firer At Firing - 16 bit us integer
	ASSESSMENT	Fire Event - Site ID - 16 bit uns. integer
	VV&A	Fire Event - Application ID - 16 bit uns. int.
İ	DATA	Fire Event - Event ID - 16 bit uns. int.
		Firing Entity - Site ID - 15 bit uns. integer
	·	Firing Entity- Application ID - 16 bit uns. in:
		Firing Entity - Entity ID - 16 bit uns. int.
		DIS Munition Type
		- 64 bit Entity Type Record Impact Location Vehicle Position
		- X Coordinate - 54 bit float
		Impact Location Vehicle Position
	1	- Y Coordinate - 64 bit float
	į.	Impact Location Vehicle Position
		- Z Coordinate- 64 bit float
		Impact Azimuth - 32 bit float
	į.	Dispersion Of Impacting Round
		- 32 bit ficat
		Exposure Mode - 8 bit unsigned int
		Padding - 24 bits unused
		STAFF Submunition Attack Azimuth
		- 32 bit ficat
		STAFF Submunition Attack Elevation - 32 bit ficat
	1	M-Kill Probability
		- 32 bit ficat
1	1	

Padding - 40 bits

Figure 123: Message Format for Action Request PDU Customized For Direct Fire Vulnerability VV&A.

ield Size	Indirect Vulner	esponse PDU Customized For ability Assessment VV&A
(bits)	indirect value	Protocol Version - 8 bit enumeration
	•	Exercise ID - 8 bit unsigned integer
-		PDU Type - 8 bit enumeration .
96	PDU	Padding - 8 bit unused
İ	HEADER	Time Stamp - 32 bit unsigned integer
		Length - 16 bit unsigned integer
		Padding - 16 bits unused
		Site - 16 bit unsigned integer
		Application - 16 bit unsigned integer
64	ORIGINATING	Entity - 16 bit unsigned integer
	ENTTY ID	Group -16 bit unsigned integer
		Site - 16 bit unsigned integer
	DECEMBLO	Application - 16 bit unsigned integer
64	RECEIVING	Entity - 16 bit unsigned integer
	ENTITY ID	Group -16 bit unsigned integer
	DADDING	32 bits unused
32	PADDING REQUEST ID	32 bit unsigned integer
32		32 bit unsigned integer
32	REQUEST STATUS	0x0000000
32	NUMBER OF FIXED DATUM FIELDS	0,00000
	NUMBER OF VARIABLE	0x0000001
32	DATUM FIELDS	
	DATUM FIELDS	0x0000012F (303)
		(See Section 4.2.2.1.2) - 32 bit unsigned in
	,	0x00000880 (2176)
		32 bit unsigned integer
2240		Indirect Fire Type - 8 bit unsigned int
		Environment Type - 8bit unsigned integer
		Exposure Type - 8 bit unsigned integer
		Damage Function Selected - 8 bit unsigne
		integer
	INDIRECT FIRE VULNERABILITY ASSESSMENT VV&A DATA	Kill Type - 8 bit unsigned integer
		Environment Type - 8 bit unsigned integer
		Exposure Type - 8 bit unsigned integer
		Padding - 8 bits unused
		Padding - 8 bits dilused
		Vehicle World Position - X Coordinate - 64 bit float
		Vehicle World Position - Y Coordinate - 64 bit float
		Vehicle World Position - Z Coordinate - 64 bit float
		Detonation World Position - X Coordinate

	Detonation World Position - Y Coordinate - 64 bit float
	Detonation World Position - Z Coordinate - 64 bit float
	DIS Munition Type - 64 bit Entity Type Record
ı	DIS Fuze Type - 16 bit unsigned int
	Padding - 16 bits unused
	Environment Scalar
١	- 32 bit float
1	Exposure Scalar For M-Kill
1	- 32 bit float
	Exposure Scalar For F-Kill
1	- 32 bit float
·	Exposure Scalar For M or F-Kil
	- 32 bit float
	Exposure Scalar For K-Kill
	- 32 bit float
į	Lethal Area For M-Kill
	- 32 bit float
	Lethal Area For F-Kill
	- 32 bit floa: Lethal Area For M or F-Kill
	Letnal Area For Mor F-Kill - 32 bit float
	Lethal Area For K-Kill
	- 32 bit float
	HEM Initial Kill Probability - 32 bit float
	HEM RATS Value - 82 bit float
	Detonation Wrt Vehicle Offset In Range
i	- 32 bit float
	Detonation Wrt Vehicle Offset In Deflection
	- 32 bit floa:
	ICM Number Of Submunitions - 16 bit float
	Padding - 16 bits unused
	ICM Reliability - 32 bit float
	Firer-Detonation Range - 32 bit float
	Pattern Cutoff Radius - 32 bit foat
	M-Kill Probability
	- 32 bit flo≅
	F-Kill Probability
	- 32 bit flo≅
	M or F-Kill Probability
	- 32 bit float
	K-Kill Probability
	- 32 bit float
	M Only-Kill Probability
	- 32 bit float
	F Only-Kill Probability
	- 32 bit float M and F Only-Kill Probability
	- 32 bit float
	- 32 DR 1105.

1	K Only-Kill Probability
1	- 32 bit float
	Kill Thermometer - M Only Start
1	- 32 bit float
	Kill Thermometer - F Only Start
1	l - 32 bit float
	Kill Thermometer - M and F Only Start
	- 32 bit float
	Kill Thermometer - K Only Start
	- 32 bit float
1	Random Number Selected
	- 32 bit float
1	Driver Casualty Status - 8 bit unsigned
1	integer
1	Loader Casualty Status - 8 bit unsigned
	integer
	Gunner Casualty Status - 8 bit unsigned
	integer
	Commander Casualty Status - 8 bit unsigned
1	integer
	Munition Terminal World Velocity
	- X Component - 32 bit float
	Munition Terminal World Velocity
	- Y Component - 32 bit float
	Munition Terminal World Velocity
	- Z Component - 32 bit float
1	Fire Event - Site ID - 16 bits uns. int.
1	Fire Event - Application ID - 16 bits uns. int.
1	Fire Event - Event ID - 16 bits uns. int.
	Firing Entity - Site ID - 16 bits uns. int.
	Firing Entity - Application ID - 16 bits uns. Int
	Firing Entity- Entity ID - 16 bits uns. int.
	Army Munition Name[0] - 8 bit character
i	· ·
1	•
1	•
1	Army Munition Name[25] - 8 bit character
1	Army IFVA Munition Type[0] - 8 bit char.
İ	•
	•
	• • • • • • • • • • • • • • • • • • • •
1	Army IFVA Munition Type[15] - 8 bit char.
	Army Fuze Type[0] - 8 bit character
- 1	
1	Army Fuze Type[10] - 8 bit character
	Padding - 24 bits unused

Figure 124: Message Format for Action Response PDU Customized For Indirect Fire Vulnerability VV&A.

(bits) Coax Gun VV&A	Fields Of Action Response PDU Customized For Coax Gun VV&A			
Protocol Version - 6 Ci	t enumeration			
Exercise ID - 8 bit uns	igned integer			
DDILTime 9 bit or	numeration			
	unused			
HEADER Padding - 8 bit	sissed integer			
Time Stamp - 32 bit un	signed integer			
Length - 16 bit unsig	ined integer			
Padding - 16 bits				
Site - 16 bit unsign	ed integer			
64 ORIGINATING Application - 16 bit un	signed integer			
ENTITY ID Entity - 16 bit unsig	ned integer			
Group -16 bit unsig	ned integer			
Site - 16 bit unsign	ed integer			
	signed integer			
	nod intoger			
ENTITY ID Entity - 16 bit unsig	ned integer			
Group -16 bit unsig				
32 PADDING 32 bits unu				
32 REQUEST ID 32 bit unsigned	integer			
OZ hit ungigned				
32 1124020101111				
32 NUMBER OF FIXED DATUM 00000000				
02000000	01			
1 32 NONDERTOR TAKEN DEL	•			
DATUM FIELDS 0x00000130	(204)			
000000130	(304)			
(See Section 4.2.2.1.2) - 3	32 bit unsigned int			
0x00000540				
' 32 bit unsigned				
1408 COAX GUN Lay Error - Az				
VV&A -32 bit flo				
DATA Lay Error - Ele	evation			
- 32 bit flo	at			
Lay Point World Position	n - X Coordinate			
- 64 bit flo	at			
Lay Point World Position	n - Y Coordinate			
- 64 bit flo	at			
Lay Point World Position	n - 7 Coordinate			
Lay Point World P Usido	nat			
Sight World Position	A Cooldinate			
- 64 bit flo	M Constinute			
Sight World Position	Y Coordinate			
	oat			
Sight World Position				
- 64 bit flo	at			
Sight World Orien	tation - Psi			
- 32 bit flo	pat			
Sight World Orienta	ation - Theta			
- 32 bit flo	pat			
Sight World Orien				
- 32 bit fic	nat			
Lead Sight - 8 bit un				
Padding - 24 bit	S unused			
Target World Position				
- 64 bit fic	pat			
Target Word Position	- Y Coordinate			
1 talget trains	oat			

1	Target World Position - Z Coordinate
į į	- 64 bit float
l l	Target Entity- Site ID - 16 bits
	Target Entity- Application ID - 16 bits
	Target Entity- Entity ID - 16 bits
1	Firer-Target Mobility Status - 8 bit uns. int.
	Target Hit Status - 8 bit uns. int.
	Detonation World Position - X Coordinate
	- 64 bit float
1	Detonation World Position - Y Coordinate
	- 64 bit float
1 1	Detonation World Position - Z Coordinate
1	- 64 bit float
	Fixed Bias - Horizontal - 32 bit float
	Fixed Bias - Vertical - 32 bit float
	Burst Dispersion - Horizontal - 32 bit float
	Burst Dispersion - Vertical - 32 bit float
	Static Round Dispersion - Horizontal - 32 bit
i i	float
	Static Round Dispersion - Vertical - 32 bit float
	Dynamic SM Dispersion Add-On - Horizontal
	- 32 bit float
	Dynamic SM Dispersion Add-On - Vertical
	- 32 bit float
	Dynamic MS Dispersion Add-On - Horizontal
	- 32 bit float
	Dynamic MS Dispersion Add-On - Vertical
	- 32 bit float

Figure 125: Message Format for Action Response PDU Customized For Coax Gun VV&A.

Field Size	Fields Of Action Response PDU Customized For STAFF Round VV&A			
(bits)	517.	Protocol Version - 8 bit enumeration		
		Exercise ID - 8 bit unsigned integer		
		PDU Type - 8 bit enumeration		
96	PDU	Padding - 8 bit unused		
	HEADER	Time Stamp - 32 bit unsigned integer		
	·	Time Stamp - 32 bit drisigned integer		
•		Length - 16 bit unsigned integer		
		Padding - 16 bits unused		
		Site - 16 bit unsigned integer		
64	ORIGINATING	Application - 16 bit unsigned integer		
-	EVIIIAID	Entity - 16 bit unsigned integer		
	Group -16 bit unsigned integ			
		Site - 16 bit unsigned integer		
64	RECEIVING	Application - 16 bit unsigned integer		
• • • • • • • • • • • • • • • • • • • •	EVITTY ID	Entity - 16 bit unsigned integer		
		Group -16 bit unsigned integer		
32	PADDING	32 bits unused		
	REQUEST ID	32 bit unsigned integer		
32	REQUEST STATUS	32 bit unsigned integer		
32	NUMBER OF FIXED DATUM	0x00000000		
32	FIELDS			
32	NUMBER OF VARIABLE	0x0000001		
	DATUM FIELDS	0x00000131 (305)		
		(See Section 4.2.2.1.2) - 32 bit unsigned int		
	1	0x00000580 (1408)		
		⇒ bit unsigned integer		
	Ï	STAFF Fire Event - Site ID - 16 bit us in:		
		STAFF Fire Event - Applic. ID - 16 bit us int		
		STAFF Fire Event - Event ID - 16 bit us int		
	07455	STAFF Range - 16 bit unsigned integer		
1472	STAFF	Seeker Activation Range - 16 bit us integer		
	ROUND	Seeker Activation Status - 8 bit us integer		
	VV&A .	Seeker Activation Status - 8 bit us integer		
	DATA	Submunition Fire Status - 8 bit us integer		
		Time At STAFF Firing - 32 bit us integer		
	l	Time At Seeker Activation - 32 bit us intege		
		Time At Submunition Firing - 32 bit us integer		
	1	STAFF Reliability - 32 bit float		
		Random Number Drawn Against Reliability- 32 bit float		
		Antenna Beam Azimuth - 32 bit float		
		Forward Look Angle - 32 bit float		
		Range From Vehicle At Submunition Firing		
		16 bit us int		
		Tamet Entity - Site ID - 16 bit unsigned int		
		Target Freity - Application ID - 16 bit us int		
		Target Entity - Entity ID - 16 bit unsigned in		
		Target World Position - X Coordinate		
		- 64 bit float		
		Target World Position - Y Coordinate - 64 bit float		
	1	Target World Position - Z Coordinate		
	1	- 64 bit float		

1	. Target World Orientation - Psi
	- 32 bit float
	Target World Orientation - Theta
	- 32 bit float
	Target World Orientation - Phi
	- 32 bit float
	Number Of Targets Detected - 16 bits us int
	Firer-Target Mobility Status - 8 bit uns. int.
	Padding - 8 bits unused
	Submunition Firing Location- X Coordinate
	- 64 bit float
	Submunition Firing Location - Y Coordinate
	- 64 bit float
	Submunition Firing Location - Z Coordinate
	- 64 bit float
	Submunition Detonation Location
	- X Coordinate
	- 64 bit float
	Submunition Detonation Location
	- Y Coordinate
	- 64 bit float
	Submunition Detonation Location
•	- Z Coordinate
	- 64 bit float
	Fixed Bias - Horizontal - 32 bit float
1	Fixed Bias - Vertical - 32 bit float
	Aimpoint Bias - Horizontal - 32 bit float
	Aimpoint Bias - Vertical - 32 bit float
	Static Round Dispersion - Horizontal - 32 bit
	float
	Static Round Dispersion - Vertical - 32 bit float
1	Dynamic SM Dispersion Add-On - Horizontal
	- 32 bit float
	Dynamic SM Dispersion Add-On - Vertical
	- 32 bit float
	Dynamic MS Dispersion Add-On - Horizontal
	- 32 bit float
	Dynamic MS Dispersion Add-On - Vertical
	- 32 bit float

Figure 126: Message Format for Action Response PDU Customized For STAFF Round VV&A.

VV&A Tools For Simulators

(This page intentionally left blank)

VV&A Tools For Simulators

APPENDIX C - VV&A TEST DESIGN SAMPLES

VV&A Tools For Simulators

(This page intentionally left blank)

1. OVERVIEW

This Appendix gives an overview of a portion of the M1A2 VV&A Evaluation Plan and Test Design Plan for Target Acquisition and Delivery Accuracy. The purpose of this Appendix is to provide a frame of reference for the use of the simulator VV&A tools.

2. TARGET ACQUISITION

The M1A2 acquisition sensors are visually presented to the commander, gunner and driver through a Computer Image Generator (CIG). Target Acquisition is the ability to detect, recognize and identify targets; however the CIG must first accurately portray/present the targets and surrounding environment for a specific sensor device. For example the CIG must adequately portray a Forward Looking Infrared (FLIR) sensor and how that FLIR (i.e. CIG image) presents the scene to the viewer (gunner, etc). Validation of the Computer Image Generator and validation of Target Acquisition are closely linked.

<u>Issue</u>: How well does the M1A2 simulator's level 2 Computer Image Generator render realistic scenes for each sensor based on the environment to include terrain, cultural features and icons?

Criteria: CIG evaluation will be evaluated by Subject Matter Experts

<u>Issue</u>: How well does the M1A2 simulator's target acquisition capability permit the crew to detect, recognize and identify targets?

<u>Criteria</u>: Ability of the simulator crew (man-in-the-loop) to detect, recognize and identify targets must be characteristic of the M1A2 system requirements and system performance. Results will also be compared to NVESD model estimates.

The M1A2 employs four sensors as described below:

(1) The commander and gunner are equipped with the Gunner Primary Sight (GPS) which displays the Direct View Optics (DVO) in Wide Field of View (WFOV) or Narrow field of View (NFOV).

- (2) The GPS is also switchable to the Thermal Imaging System (TIS) which can be magnified to WFOV or NFOV.
- (3) The commander is equipped with an independent thermal flat panel display, the Commanders Independent Thermal Viewer (CITV), which operates in WFOV or NFOV.
- (4) The driver is equipped with three forward looking vision blocks, i.e. out-the-window view. The commander also has three vision blocks located in the cupola. The cupola/vision blocks can be rotated around 360 degrees to provide the commander with a 360 degree view.

2.1 Test Plan

The following tests will be conducted to validate CIG performance and Target Acquisition capability:

2.1.1 CIG Characterization and Icon Representation.

The terrain, cultural features and icons must be sufficiently representative of the real world being depicted. Each icon should have the same level of fidelity/detail so that target acquisition is not unduly influenced. Furthermore there should not be any unrealistic cues, such as color, which readily distinguish friendly versus enemy targets. Subject Matter Experts will qualitatively assess the CIG and Icon Representation.

2.1.2 Target Acquisition In-field-of-View - Vehicle Target Icons.

Table 1 contains the target acquisition test matrix for the terrain, cultural features and icons. Four M1A2 qualified gunners and/or commanders will detect, recognize and identify six targets. Pairs of targets were chosen from three target classes. The six targets will consist of: a tank class - M1A2 Abrams and the T80; an infantry track vehicle class - M2A2 Bradley and the BMP2; a light wheeled vehicle class - HMMWV and BTR-60. Each target will be presented in four range bands, which are: short range (1600-1800 meters); medium range (2300-2500 meters); long range (3600-3800 meters); very long range (5400-5600 meters). Additionally null targets will appear in a randomly ordered sequence. The environmental conditions include: day 7km visibility; day with 3.5km visibility; and night. These various conditions will be replicated on different backgrounds and clutter. The number of replications conducted is a function of the environmental condition.

Each gunner will look through a given sensor and magnification (e.g. TIS (N)). One target will be presented in a certain range band and under a certain environmental condition. The gunner will attempt to acquire the target to the highest level of acquisition possible. The acquisition scale in ascending order is: no detection, detection, recognition (i.e. Tank Class, APC Class, Truck Class, Air Class), identification (e.g. M1A2, BMP2, etc.). Additionally a quadrant will be drawn on the sight glass, so that the target appears to be in one of the quadrants: far left, middle left, middle right, and far right. During the test execution, for example, a gunner will be presented with one target and he will state "M1A2 far right quadrant".

2.1.3 Target Acquisition In-field-of-View - Line Pair Boards.

The standard 2.3 by 2.3 meter line-pair target boards for detection, recognition and identification will be presented to four test gunners. The boards will be randomly spaced within four range bands. Only one board will be presented at any one time. Gunners will vocally announce the number of line-pairs that are discernable and the orientation of the lines "horizontal" or "vertical". The Target Board Test Matrix is contained in Table 1.

Table 1. Target Acquisition Test Cases

ENVIRONMENT	SENSORS					
	DVO (N) DVO (W) TIS (N) TIS (W) CITV (N) CITV (W)					
Day 7km Visibility	×	ХВ	ХВ	×	ХВ	х
Day 3.5km Visibility	Υ	ΥB	YB	Y	ΥB	Y
Night	NONE	NONE	Y B	Υ	Υ	Υ

Notes:

- X = 4 simulators (i.e. gunners/commanders), 6 targets, 4 ranges, 5 replications
- Y = 4 simulators (i.e. gunners/commanders), 6 targets, 4 ranges, 2 replications
- B = Line-pair Board Test

2.2 Data Required

The following data will be collected:

- the condition presented
 - environment (e.g. day 7km visibility, etc)
 - sensor (e.g. DVO(N), etc)
 - target (e.g. M1A2, T80, line-pair board, etc)
 - •• range and range band (e.g. 1620 meters, short range band)
 - observer vehicle location (X, Y, Z, heading)
 - observer sight location (X, Y, Z, heading)
 - •• target vehicle location (X, Y, Z, heading)
 - aspect angle of target relative to observer sight location
- gunner acquisition response
- gunner quadrant response
- gunner time (seconds) to determine highest level of acquisition

The target acquisition test will be conducted with the use of the Verification, Validation and Accreditation Test Tool (VVATT). Data will be captured by Standard Protocol Data Units (PDUs), the Target Acquisition VV&A PDUs and the VVATT.

2.3 Evaluation Plan

The data will be aggregated over both similar and varying conditions. Time to acquire and probabilities of detection, recognition, identification and false targets will be determined as a function of similar and varying conditions. Results will be compared: across conditions, to NVESD model estimates and to system requirements for acquisition.

3. DELIVERY ACCURACY

<u>Issue</u>: How well does the M1A2 simulator simulate the 120mm Sabot and HEAT rounds' delivery accuracy?

<u>Criteria</u>: The simulated delivery accuracy must be comparable to demonstrated round performance from actual M1A2 technical tests and/or AMSAA analytical estimates.

The M1A2 Abrams tank M256 120mm main gun fire control attempts to simply point the gun so that a round, when fired, will hit the target aimpoint. The Abrams takes into account the offset of the sight to gun, air temperature, air pressure, cant, propellant temperature, crosswind, distance to target, gravity and the relative crossing motion of the target and Abrams. The fire control does not account for coriolis, but this influence is small. In practice, the fire control solution is only approximate because of differences between the actual tank environment and the sensed environment. Fire control errors are attributable to tracking errors, own-vehicle motion disturbances getting through the stabilizer, gun pointing errors (actual hardware), variations in ammunition size, shape, weight, integrity, yaw, muzzle velocity, launch characteristics, gun vibrations and influences. These unpredictable variations are characterized empirically by their statistical distributions.

Delivery accuracy is defined in terms of a distance from a desired aimpoint. This is called "total system error" and is the distance between the projectile and the desired aimpoint in the vertical plane, which is normal to the line of sight to the target and contains the desired aimpoint. Total system error is expressed as an angle. If the actual aimpoint and the desired aimpoint do not coincide, the angular distance between the two is termed "lay error". Lay error subtracted from the total system error, is termed the projectile "miss distance". Hitting probability is the result of integrating the total system error density function over the presented vertical target area, a projection of the target outline in a vertical plane containing the desired aimpoint.

3.1 Test Plan

Delivery accuracy tests are divided into four major scenarios:

1.) stationary firer versus stationary target,

- 2.) moving firer versus stationary target,
- 3.) stationary firer versus moving target,
- 4.) moving firer versus moving target.

In all scenarios, except moving firer versus moving target, a 2.3m x 2.3m vertical target centered on a 10m x 10m panel is used. In the moving firer versus moving target scenario, a 2.3m x 4.6m target is used. A clearly defined aimpoint is marked on each target. The gunner should follow established engagement procedures defined in the M1A2 training manual. Engagement procedures should mirror the FM 17-12 series manual as closely as possible, including ranging to target just before trigger pull.

3.1.1 Stationary Firer versus Stationary Target

Table 2 shows the stationary firer versus stationary target test matrix. In each case, the target is located out of the M1A2's narrow field of view. The gunner engages the target, and then fires a second round. The gunner continues finding targets until 60 shots have been accumulated for the engagement range.

Range (m)	Shots per Target	Number of Targets
1500	2	30
2500	2	30
3000	2	30
3500	2	30

Table 2 - Stationary Firer versus Stationary Target Test Matrix

3.1.2 Moving Firer versus Stationary Target

The moving firer versus stationary target test matrix is contained in Table 3. In the 20 kph head-on case, the M1A2 moves toward the target. The range to the target at the start of the run should be 0.5 km to 1 km farther than the engagement range. In the 20 kph crossing case, the M1A2 moves crosswise to the target.

Table 3 - Moving Firer versus Stationary Target Test Matrix

Firer Speed (kph)	Range (m)	Shots per Rep	Number of Reps
20 kph Head-on	1000 2		30
	1500	2	30
	2000	2	30
	2500	2	30
20 kph Crossing	1000	2	30
	1500	2	30

3.1.3 Stationary Firer versus Moving Target

Table 4 shows the stationary firer versus moving target test matrix. The target must remain perpendicular to the firer and the elevation of the aimpoint must remain constant. The test environment should emulate the Aberdeen Proving Ground's Bubble Moving Target Simulator.

Table 4 - Stationary Firer versus Moving Target Test Matrix

Target Path	Target Speed (kph)	Range (m)	Shots per Rep	Number of Reps
CV20	20	1500	2	30
		2000	2	30
		2500	2	30
ATMT	Variable	1500	10-20	10
		2000	10-20	10
		2500	10-20	10

CV20 is a constant speed crossing target. The ATMT path is a maneuvering combat path running for 273 seconds. In all cases the range will be kept constant. The gunner aims at the center of the target, tracks smoothly, and fires when he feels confident of hitting the target. Additional shots should be taken with the objective of being accurate.

3.1.4 Moving Firer versus Moving Target

The moving firer versus moving target test matrix is contained in Table 5. For the actual M1A2 system, this case is treated by combining stationary firer-moving target accuracy with the add-on dispersion for fire-on-the-move.

Table 5 - Moving Firer versus Moving Target Test Matrix					
Crossing S	Speed (kph)	D (m)	Shots per Rep	Number of Reps	
Firer	Target*	Range (m)	Shots per hep		
10	10	1500	3	20	
* 2.3m X 4.6n	n vertical target				

Table 5 - Moving Firer versus Moving Target Test Matrix

3.2 Data Required

Following are the individual data elements required for all the delivery accuracy tests. For the stationary firer versus stationary target tests, the data elements are not required as a function of time, but rather as a function of trigger pull.

- Desired aimpoint coordinates with respect to an earth reference (w/r/t/e),
 x,y,z, in meters, versus time in 1/10 second intervals.
- Origin of the sight line on the simulator w/r/t/e, x,y,z in meters, versus time in 1/10 second intervals.
- Midpoint of the gun trunnion w/r/t/e, x,y,z in meters, versus time in 1/10 second intervals.
- Lay error, the desired aimpoint w/r/t the midpoint of the sight reticle in mrads, horizontal and vertical, versus time in 1/10 second intervals.
- Gun pointing direction, at trunnion, w/r/t desired aimpoint in mrads, horizontal and vertical, versus time in 1/10 second intervals.

- Inputs to the fire control computer: range(m), cant(mrad), crosswind(m/sec), propellant temperature(°F), air temperature(°F), air pressure(inches Hg), boresight values(mrads), computer correction factor(s) (mrads).
 - Actual meteorological conditions, if different from those in f above.
- Ballistic solution (mrads), horizontal and vertical where the fire control wants to point the gun axis at the trunnion, w/r/t the boresight line.
- Actual trajectory of the projectile at 500m increments, desired by horizontal range(m), height(m), and deflection(m), out to, and including the point of closest approach to the aimpoint.
 - Projectile's time-of-flight as a function of the trajectory.
- Sight pointing, and gun pointing direction at the trunnion, w/r/t the desired aimpoint at trigger pull time, in mrads, horizontal and vertical. Tag these measurements with the trigger pull times.
- Gun-to-Sight offset, the difference between sight pointing and gun pointing directions.
 - Total system error, equals the projectile location minus the desired aimpoint.
- Projectile miss distance at the point of closest approach to the desired aimpoint. Miss distance equals the total system error minus lay error. Express the miss distance in terms of horizontal and vertical deflections (m).
 - Number of hits and Number of shots

Additional data items required under the stationary firer versus moving target condition and the moving firer versus moving target conditions are:

- Velocity of the desired aimpoint w/r/t/e, dx/dt, dy/dt, dz/dt, in m/sec, versus time in 1/10 second intervals.
 - Target's instantaneous rate

Additional data items required under the stationary firer versus moving target, moving firer versus stationary target, and moving firer versus moving target conditions are:

- azimuth linear lead required, equals the target's instantaneous rate multiplied by the projectile's time of flight.
- kinematic lead error, equals azimuth gun-to-sight offset minus the linear lead required
 - system induced error, equals kinematic lead error plus the lay error

The delivery accuracy test will be conducted with the use of the Delivery Accuracy Logger files, in order to present the scenario. Data will be captured by Standard Protocol Data Units (PDUs), the Target Acquisition and Tracking VV&A PDUs, and the Delivery Accuracy VV&A PDU's.

3.3 Evaluation Plan

The mean and standard deviation of each group's miss distances, lay errors, total system errors, etc. will be calculated. The grand mean and overall standard deviation will also be computed.

All the delivery accuracy statistics will be compared to the M1A2 technical test results, analytical estimates and quasi-combat values. The gun-to-sight offset will be compared to the fire control sensor inputs and manual inputs.

APPENDIX D - DISTRIBUTION

(This page intentionally left blank)

DISTRIBUTION

No. of Copies		No. o Copies	
3	Commandant U.S. Army Dismounted Warfare Test Bed ATTN: ATSH-WC (COL Canada/ Mr. John D'Errico) Ft. Benning, GA 31905-5400	2	Commander U.S. Army Aviation and Troop Command ATTN: AMSAT-R-Z (Messrs. House/ Matt Arnold) 4300 Goodfellow Boulevard St. Louis, MO 63120-1798
1	Commandant U.S. Army Infantry School ATTN: ATSH-CD (COL W. Patterson) Ft. Benning, GA 31905-5000	3	Commander U.S. Army Aviation Center & Ft Rucker Aviation Test Bed ATTN: (CPT P. Swicord/
1	Commandant U.S. Army Infantry School ATTN: ATSH-BFV-TSM (COL T.J. Strauss)		Mr. John Miller/CPT David Chapman) P.O. Box 620385 Ft. Rucker, AL 36362-0385
1	Ft. Benning, GA 31905-5000 Commander U.S. Army Armament Research, Development and Engineering Center ATTN: SMCAR-TD (Ms. Price) Picatinny Arsenal, NJ 07806-5000	2	Commander U.S. Army Materiel Command ATTN: AMCRD (MG Prather)/ AMCRD-I (Mr. Ed Westcott) 5001 Eisenhower Avenue Alexandria, VA 22333
2	Commander U.S. Army Armor Center ATTN: ATZK-CD (COL E. Bryla/ Mr. Ken Hunt)	1	Commander U.S. Army Missile Command ATTN: AMSMI-R (Dr. McCorkle) Redstone Arsenal, AL 35898-5010
1	Ft. Knox, KY 40121-5215 Commander U.S. Army Aviation Center ATTN: ATZQ-CD (COL Stewart) Ft. Rucker, AL 36362-5000	1	Commander U.S. Army Missile Command ATTN: AMSMI-RD-SS-SD (Mr. William Phillips) Redstone Arsenal, AL 35898-5010

No. of	•	No. of	f
Copies	<u>Distribution</u>	Copies	<u>Distribution</u>
3	Commander U.S. Army Mounted Warfare Test Bed ATTN: ATSB-CDC (MAJ Hu/ MAJ Wilkenson/ Mr. Paul Monday (Loral)) Ft Knox, KY 40121	2	Commander U.S. Army Training and Doctrine Command Systems Manager-CATT ATTN: ATZK-SM (COL White/ Mr. Mike Johnson) Ft. Knox, KY 40121
7	Commander U.S. Army Simulation, Training and Instrumentation Command ATTN: (Dr. Hofer/ Mr. Stan Goodman/ Mrs. Susan Harkrider/ Mr. Gene Wiehagan/ COL Drabczu/ Mr. Ben Paz/ Mr. Ray Green) 12350 Research Parkway Orlando, FL 32826-3276	1	Director U.S. Army Aviation and Troop Command ATTN: AMSAT-R-AB (Dr. Nancy Bucher M/S 243-4) Moffett Field, CA 94035-1000 Director
1	Commander U.S. Army Tank & Automotive Command ATTN: AMSTA-CR (Mr. Wheelock) Warren, MI 48397-5000		U.S. Army Operational Test and Evaluation Command ATTN: Technical Director Park Center IV 4501 Ford Avenue Alexandria, VA 22302
1	Commander U.S. Army Tank & Automotive Command Research, Development & Engineering Center ATTN: AMSTA-OI (Mr. John Brabbs)	1	Director U.S. Army Research Laboratory ATTN: AMSRL-DD (COL Miller) 2800 Powder Mill Road Adelphi, MD 20783-1145
1	Warren, MI 48397-5000 Commander U.S. Army Training and Doctrine Command ATTN: (MG Lehowicz) Fort Monroe, VA 23651-5000	3	Director U.S. Army TRADOC Analysis Command-FLVN ATTN: ATRC-ZD (Mr. Bauman/ MAJ Stratis)/ATRC-FZ Ft. Leavenworth, KS 66027-5200

No. of Copies		No. of Copies	
2	Director U.S. Army TRADOC Analysis Command-Monterey P.O. Box 8692 Naval Post Graduate School ATTN: ATRC-RDM (LTC Proctor/ MAJ Chris Pate) Monterey, CA 93940	2	Deputy Under Secretary of the Army for Operations Research ATTN: SAUS-OR (Mr. Hollis/ LTC Hardy) Room 2E660 Under Secretary of the Army 102 Army Pentagon Washington, DC 20310-0102
6	Director U.S. Army TRADOC Analysis Command-WSMR Combat Simulation Directorate ATTN: ATRC-WE (Mr. Lee Kirby/ Mr. Dave Dixon) ATRC-WA (Messrs. Reynolds/ Doug Mackey/Carrol Denney/	1	Office of the Assistant Secretary of the Army for Research, Development and Acquisition ATTN: SARD-ZS (MG Hite) Room 3E448 103 Army Pentagon Washington, DC 20310-0103
	Charles Miller) White Sands Missile Range, NM 88002-5502	1	Office of the Assistant Secretary of the Army for Research, Development and Acquisition ATTN: SARD-DO (COL Huff)
1	DTAO ATTN: Mr. Taylor 5109 Leesburg Pike Suite 317	2	Room 3E360 103 Army Pentagon Washington, DC 20310-0103 Office of the Assistant Secretary
1	Falls Church, VA 22041 Director Assessment and Evaluation ATTN: SARD-ZD (Dr. Herbert K. Fallin, Jr.) Assistant Secretary of the Army for Research, Development and Acquisition Room 2E673 103 Army Pentagon Washington, DC 20310-0103	2	of the Army for Research, Development and Acquisition ATTN: SARD-TT (Dr. A. Fenner Milton, Jr./Mr. John Yuhas) Room 3E479 103 Army Pentagon Washington, DC 20310-0103

No. of		No. of	
Copies	_	Copies	<u>Distribution</u>
1	Office of the Assistant Secretary of the Army for Research, Development and Acquisition ATTN: SARD-ZT (Mr. Singley) Room 3E374 103 Army Pentagon Washington, DC 20310-0103	2	Office of the Assistant Secretary of Defense for Program Analysis and Evaluation Land Forces Division ATTN: (Mr. Andrus Villu/ Dr. William G. Lese) 1800 Defense Pentagon Washington, DC 20310-1800
1	Office of the Deputy Chief of Staff for Operations & Plans ATTN: DAMO-FD (COL Bill Hixon) Room 3A538 103 Army Pentagon Washington, DC 20310-0103	2	Program Executive Officer Armored Systems Modernization ATTN: SFAE-ASM SFAE-ASM-AG (COL Knox) Warren, MI 48397-5000
1	Office of the Deputy Chief of Staff for Operations & Plans ATTN: DAMO-ZD (Mr. John A.Riente) Room 3A538 103 Army Pentagon Washington, DC 20310-0103	2	Program Executive Officer Aviation ATTN: SFAE-AV/SFAE-AV-LB (LTC T. Walsh/Mr. Gilbert Boen) 4300 Goodfellow Blvd St. Louis, MO 63120-1798
1	Office of the Vice Chief of Staff for Program Analysis and Evaluation ATTN: DACS-DPZ (Dr. J. J. Bellaschi) Room 3C718 103 Army Pentagon Washington, DC 20310-0103	1	Program Manager Abrams Tank System ATTN: SFAE-ASM-AB (COL Caldwell)/SFAE-ASM-AB-LF (MAJ Doug Hanify) Warren. MI 48397-5000
1	Office of the Deputy Chief of Staff for Intelligence ATTN: DAMI-FI (Ms Marilyn Macklin) Room 2E473 102 Army Pentagon Washington, DC 20310-0102	2	Program Manager Apache Modernization ATTN: SFAE-AV-AAH (COL James Snider/LTC Rick Ryles) Bldg 105 4300 Goodfellow Boulevard St. Louis, MO 63120-1798

No. of		No. of	
Copies	<u>Distribution</u>	Copies	Distribution
	Program Manager Comanche ATTN: SFAE-AV-RAH (BG Orlin L. Mullen) 4300 Goodfellow Boulevard St. Louis, MO 63120-1798	1	Program Manager Non-Line-of-Sight ATTN: SFAE-MFL-NL-TM (Mr. Brian Wheeler) Redstone Arsenal, AL 35898
3	Program Manager Bradley Fighting Vehicle System ATTN: SFAE-ASM-BV (COL Dennis Deming/ Mr. Gary Chamberlain) SFAE-ASM-BV-R (Mr. Chung Laio) Warren, MI 48397-5000	2	Program Manager Rapid Force Projection Initiative U.S. Army Missile Command ATTN: AMSMI-RD (Ms. Emily Vandiver/ Mr. Greg Tackett) Redstone Arsenal, AL 35898-5000
1	Program Manager Combined Arms Tactical Trainer U.S. Army Simulation Training and Instrumentation Command	1	Program Manager Tank Main Armament Systems Picatinny Arsenal, NJ 07806-5000
	ATTN: PM-CATT (COL James Shifflet) 12350 Research Parkway Orlando, FL 32826-3276	2	Program Manager Close Combat Anti-armor Weapons ATTN: SFAE-MSL-TO (COL Armbruster)
3	Program Manager Tactical Missiles (Javelin), ATTN: SFAE-FS-AM (COL Roddy/		SFAE-MSL-TO-Y (CPT R. Niezes) Redstone Arsenal, AL 35895-5710
	Messrs. Nalley/Robert Perry) Redstone Arsenal, AL 35898-5720	2	Illusion Engineering Inc. ATTN: (Messrs. Bob Frasier/ Hank Crooks)
3	Program Manager Line-of-Sight Anti-tank U.S. Army Missile Command		2660 Townsgate Road, Suite 530 Westgate Village, CA 91361
	ATTN: SFAE-ASM-LS (COL Marvin Smith)/ SFAE-ASM-LS-E (Mr. Allen Zumbach) Redstone Arsenal, AL 35898-8051	1	Institute for Defense Analysis ATTN: (Mr. Chris Christenson) 2001 N. Beauregard St. Alexandria, VA 22311

No. of Copies		No. of Copies	
1	Institute for Defense Analysis ATTN: (Mr. Smith) 1801 N. Beauregard St. Alexandria, VA 22311-1772	1	Naval Post Graduate School Department of Computer Science ATTN: CS/PR (Mr. Dave Pratt) Monterey, CA 93943
5	Loral Advanced Distributed Simulation ATTN: (Messrs. Mark Kenworthy Touraj Assefi/Rick Bess Dan Owen/Dale Miller/Mary Kruck) 13810 SE Eastgate Way, Suite 500 Bellevue, WA 98005	1	Nichols Research Corp. 4040 South Memorial Parkway ATTN: (Ms. Bonnie Caldwell/ Mr. Tony Wingenter) Mail Stop 907 P.O. Box 400002 Huntsville, AL 35815-1502
6	Loral Advanced Distributed Simulation ATTN: (Ms. Carol Ladd/ Messrs. Andy Ceranowicz/Wayne Civinskas Alan Dickens/Bryant Collard/ David Alvey) 50 Moulton Street Cambridge, MA 02138	2	Orion Advanced Simulation & Information Systems ATTN: (Mr. Carl Hobson/ Mr. Henry Davies/Ms. Ann Davies) 5455 Corporate Drive Suite 116 Troy, MI 48098 Rand Corp. ATTN: (Dr. Keith Brendley)
4	Loral Advanced Distributed Simulation ATTN: (Messrs. Warren Richeson/ Gordon Sayre/ Alan Aouate/ Randy Toth) 12151A Research Parkway, Suite 303 Orlando, FL 32826-3283		P.O. Box 2138 Santa Monica, CA 90407
4	Loral-Vought Systems P.O. Box 650003 ATTN: (Messrs. Jim B. Green/ Shelly W. Rilley/ Bob Pippin/Dick Hanking M/S EM90) Dallas, TX 75265-0003		

No. of Copies		No. of Copies	
	Aberdeen Proving Ground		Aberdeen Proving Ground (con't)
1	Commander U.S. Army Test and Evaluation Command ATTN: AMSTE-TD (Mr. Pollard) APG, MD 21005	35	Director U.S. Army Materiel Systems Analysis Activity ATTN: AMXSY-D(Mr. John McCarthy) AMXSY-C (Messrs. Arend Reid/ Harvey Lee)
3	Director U.S. Army Research Laboratory ATTN: AMSRL AMSRL-SL (Dr. Dietz/ Dr. Starks) APG, MD 21005-5066		AMXSY-E (Mr. Walt Clifford) AMXSY-L (Mr. Dave Shaffer) AMXSY-R (Dr. James Streilein) AMXSY-EV (Mr. John Bloomquist) AMXSY-ST (Mr. Phil Beavers/ AMXSY-SL (Mr. Erwin Atzinger) AMXSY-CD (Mr. Wilbert Brooks/ Messrs. Thomas Ruth/ Brad Bradley/Alan Dinsmore/ Dwyane Nuzman/Rich Sandmeyer/ Mrs. Irene M. Johnson/ Messrs. Wally Hughes/ Floyd Wofford/ Phil Topper/ William Yeakel/ Jack Hennessey/ Mark Burrough/ Mike McCarthy) AMXSY-EA (Messrs. Alex Wong/ Barry Siegel/ Lew Farkas) AMXSY-EI (Messrs. Rich Scungio/ Don Johnson/Paul Ferguson/ Larry Bowman) AMXSY-EF (Messrs. Bob Chandler/ Pete Rigano) AMXSY-PA (Ms. Marian. Brooks) APG, MD 21005-5071

(This page intentionally left blank)

STUDY GIST

SUBJECT: Technical Report Number: 570, Anti-Armor Advanced Technology Demonstration (A2 ATD) Verification, Validation and Accreditation (VV&A) Tools for Simulators.

PRINCIPAL FINDINGS: See Objectives below.

MAIN ASSUMPTIONS: Prior to the execution of the Anti-Armor Advanced Technology Demonstration (A2 ATD) Distributed Interactive Simulation (DIS) Experiments all the individual models/elements of the DIS Experiment must first be verified, validated and accredited (VV&A). The simulators and Modular Semi-automated Force (MODSAF) need to be VV&A'd before the experiment. Additionally the entire Experiment needs to be VV&A'd.

PRINCIPLE LIMITATIONS/SCOPE OF EFFORT: The VV&A tools contained in this report are based on the M1A2 simulator. However, these tools are sufficiently general that they transfer/adapt well to other weapon systems/simulators. For example, nearly all weapon systems/simulators require a gunner to detect, recognize and identify targets; therefore, the M1A2 simulator VV&A methodology and tools developed to capture target acquisition capabilities are transferable.

OBJECTIVES: The Anti-armor Advanced Technology Demonstration is a series of Battlefield Distributed Simulation - Developmental (BDS-D) experiments focusing on A2 weapon systems evaluations. A2 ATD Experiments consist of a combination of one or more simulators coupled with MODSAF. Each combination requires VV&A of: individual simulators, MODSAF and the entire BDS-D simulation. Under the A2 ATD program, methodologies and tools have been designed and developed to assist in the VV&A process of individual simulators, MODSAF and the BDS-D simulation. This report outlines and describes the VV&A methodologies and tools developed and demonstrated for an individual simulator.

BASIC APPROACH: Since the purpose of A2 ATD centers on weapon systems evaluations, then the VV&A tools are also geared toward that end. The tools are:

- 1.) VV&A Test Tool for target acquisition tests;
- 2.) VV&A Protocol Data Units for target acquisition, tracking, delivery accuracy, direct fire vulnerability, indirect fire vulnerability, Smart Target Acquisition Fire and Forget (STAFF) round, coax machinegun;
 - 3.) Delivery Accuracy Logger Files for test scenarios;
 - 4.) DIS Analytical Tools to format and output results;

5.) Simulation Manager for setting certain data items in the simulator (e.g. fuel quantity).

In the future, the VV&A tools will continue to evolve and mature. Additionally other tools will be developed to streamline the VV&A process.

REASON FOR PERFORMING THE STUDY OR ANALYSIS: Historically, the analytical community has used constructive models such as Janus and CASTFOREM to conduct analysis for the acquisition process. These types of models do not fully represent the impacts of human interaction with the system and the human influence on combat effectiveness of the system. The Training and the Research and Development communities have used real time man-in-the-loop DIS for several years. However, the full potential of DIS as an evaluation tool to support material acquisition decisions has not been realized; A2 ATD will explore the use of DIS as an evaluation tool. As one feeder into the use of DIS as an evaluation tool, each simulator participating in the experiment must be VV&A'd.

IMPACT OF THE STUDY/PLAN: The A2 ATD VV&A Tools for Simulators provides a blueprint for use in methodology, data collection and analysis to support simulator VV&A. These activities provide "credible" simulator responses/results and therefore provide the overall experiment with "credible" outcomes.

SPONSOR: This effort is sponsored by the Headquarters, Department of the Army, Assistant Secretary of the Army for Research, Development and Acquisition.

PRINCIPLE INVESTIGATOR: Irene Johnson, Combat Integration Division, AMSAA.

NAME/ADDRESS/PHONE NUMBER WHERE COMMENTS AND QUESTIONS CAN BE SENT: Director, AMSAA, ATTN: AMXSY-CD (Irene Johnson), Aberdeen Proving Ground, MD 21005-5071 (DSN 298-6608 or 410-278-6608).

DEFENSE TECHNICAL INFORMATION CENTER (DTIC) ACCESSION NUMBER OF FINAL REPORT: Report available by contacting AMSAA's Reports Processing Center, DSN 298-5676.

OTHER THAN THE SPONSOR, WHO COULD BENEFIT FROM THIS STUDY INFORMATION? Other DoD personnel and their contractors involved in the acquisition process, DIS experiments, simulators, computer generated forces, and/or VV&A of DIS.