Espaços vectoriais Aplicações Lineares Vectores próprios e valores próprios Cónicas e quádricas

Algebra Linear e Geometria Analitica (M1002) Espaços vectoriais e aplicações lineares

Departamento de Matemática Pura Faculdade de Ciências Universidade do Porto

1 semestre 2018/2019

2018/19 || 0.0 -

Definição

Seja E um conjunto não vazio e $K = \mathbb{R}$ ou $K = \mathbb{C}$. Suponhamos que estão definidas duas operações

• adição:
$$E \times E \longrightarrow E$$

 $(u, v) \mapsto u + v$

$$(u,v) \mapsto u+v$$

• adição:
$$(u,v) \mapsto u+v$$

• multiplicação por um escalar: $K \times E \longrightarrow E$
 $(\lambda,u) \mapsto \lambda u$

dizemos que E = (E, +, .) é um espaço vectorial sobre K se:

- adição é associativa: $\forall u, v, w \in E, (u+v) + w = u + (v+w);$
- existe elemento neutro: $\forall u \in E, u + 0_F = u = 0_F + u$;
- a adição é comutativa: $\forall u, v \in E, u + v = v + u$;
- existência de simétrico: $\forall u \in E, \exists u' \in E : u + u' = 0 = u' + u;$
- $\forall \alpha \in K, \forall u, v \in E, \alpha(u+v) = \alpha u + \alpha v;$
- $\forall \alpha, \beta \in K, \forall u \in E, (\alpha + \beta)u = \alpha u + \beta u$;
- $\forall \alpha, \beta \in K, \forall u \in E, (\alpha \beta)u = \alpha(\beta u);$
- $\forall u \in E, 1u = u$.

Dado um espaço vectorial E sobre K, aos elementos de E chamamos vectores e aos elementos de K chamamos escalares

Proposição

Seja E um espaço vectorial sobre K.

- O vector 0_E é o único vector x que satisfaz a equação: $x + v = v, \forall v \in E;$
- para todo o $v \in E$, o vector -v é o único vector y que satisfaz $v + y = 0_E$;
- Se u + v = u + w para quaisquer $u, v, w \in E$, então v = w;
- $\forall v \in E, 0_K v = 0_E;$
- $\forall \lambda \in K, \lambda 0_E = 0_E$;
- $(-\lambda)v = \lambda(-v) = -\lambda v, \forall \lambda \in K, \forall v \in E;$

Note-se que dado $\lambda \in K$, $v \in E$, se tem

$$\lambda v = 0_E \Leftrightarrow \lambda = 0_K \lor v = 0_E.$$

Definição

Seja E = (E, +, .) um espaço vectorial e U um subconjunto de E não vazio. Se (U, +, .) for também um espaço vectorial para as operações definidas em E, dizemos que U é um subespaço de E.

Proposição

Seja E um espaço vectorial sobre K e seja U um subconjunto de E. Diz-se que U é um subespaço vectorial de E se

- $0_F \in U$.
- $\forall u, v \in U, u + v \in U$ (U é estável para a adição).
- $\forall \lambda \in K, \forall u \in U, \lambda u \in U$ (U é estável para a multiplicação por um escalar).

1. $\mathbb{R}^m = \{(r_1, \dots, r_m) | r_1, \dots, r_m \in \mathbb{R}\}$ é um espaço vectorial com a adição usual de vectores e a multiplicação por um escalar definidas por:

$$+: \mathbb{R}^{m} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m} ((r_{1}, \dots, r_{m}), (s_{1}, \dots, s_{m})) \mapsto (r_{1} + s_{1}, \dots, r_{m} + s_{m}) \cdot: \mathbb{R} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}^{m} (\lambda, (s_{1}, \dots, s_{m})) \mapsto (\lambda s_{1}, \dots, \lambda s_{m})$$

2. Seja X um conjunto não vazio. O conjunto

$$\mathcal{F}_X = \{f: X \to \mathbb{R}\}$$

é um espaço vectorial sobre ${\mathbb R}$ com a multiplicação e producto por escalar definidos por

$$(f+g)(x) = f(x) + g(x), \forall f, g \in \mathcal{F}_X$$

3. O conjunto $\mathcal{P}(x)$ de todos os polinómios em x é um espaço vectorial real onde:

$$\sum_{i=0}^{n} r_i x^i + \sum_{i=0}^{n} s_i x^i = \sum_{i=0}^{n} (r_i + s_i) x^i,$$
$$\lambda \sum_{i=0}^{n} r_i x^i = \sum_{i=0}^{n} (\lambda r_i) x^i, \forall \lambda \in \mathbb{R}$$

- **4.** $\mathbb{C}^n=\{(c_1,\ldots,c_n):c_i\in\mathbb{C}\}$ é um espaço vectorial complexo $(c_1,\ldots,c_n)+(c_1',\ldots,c_n')=(c_1+c_1',\ldots,c_n+c_n')$ $\lambda(c_1,\ldots,c_n)=(\lambda c_1,\ldots,\lambda c_n), \forall \lambda\in\mathbb{C}.$
- **5.** \mathbb{C}^n é um espaço vectorial real.

Examples:

- **6.** Seja $U_1 = \{(x,y) \in \mathbb{R}^2 : x y = 0\}.$
- U_1 é um subespaço de \mathbb{R}^2 como \mathbb{R} -espaço vectorial.
- **7.** $U_2 = \{(x, y) \in \mathbb{R}^2 : x^2 y = 0\}$ não é subespaço de \mathbb{R}^2 .
- **8.** $U_3 = \{(x, y) \in \mathbb{R}^2 : x y = 7\}$ não é um subespaço de \mathbb{R}^2 .
- **9.** $U_4 = \{(x, y) \in \mathbb{R}^2 : x y \le 0\}$ não é um subespaço de \mathbb{R}^2 .
- **10.** $U_5 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 0\}$ é um subespaço vectorial de \mathbb{R}^2 .

11. Seja
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \in M_{2\times 3}(K)$$
. Tem-se que
$$W_1 = \left\{ (x, y, z) \in \mathbb{R}^3 : A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \text{ \'e um subespaço de } \mathbb{R}^3.$$

$$W_2 = \left\{ (x, y, z) \in \mathbb{R}^3 : A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} \text{ n\~ao \'e um subespaço}$$
 de \mathbb{R}^3

Seja
$$U = \{(x, y) \in \mathbb{R}^2 : x = y\}, \ V = \{(x, y) \in \mathbb{R}^2 : x = 0\}.$$
 Tem-se que

- U e V são subespaços de \mathbb{R}^2 .
- $U \cap V = \{(0,0)\}$ é subespaço vectoial de \mathbb{R}^2 .
- $U + V = \mathbb{R}^2$ é um subespaço vectorial de \mathbb{R}^2 .

Teorema

Seja E um espaço vectorial e sejam U e V subespaços vectoriais de E. Então:

- 2 $U \cap V$ é um subespaço vectorial de E.

Soluções de sistemas homogeneos

Definição

Dado $A \in M_{m \times n}(K)$ e $B \in M_{m \times 1}$, um sistema AX = B diz-se homogeneo se $B = [0]_{m \times 1}$.

Proposição

Todo o sistema homogeneo é possível.

Proposição

O conjunto de soluções de um sistema homogeneo é um espaço vectorial.

Dado $A \in M_{m \times n}$, $B \in M_{m \times 1}$, o sistema homogeneo associado ao sistema AX = B é AX = [0].

Suponhamos que o sistema AX = B é possível. Seja Z uma solução de AX = B e \mathcal{D} o conjunto das solução do sistema homogeneo AX = [0]. O conjunto das soluções de AX = B é

$$Z + D$$

Considere-se o sistema

$$\begin{cases} 2x - 4y + t &= 1\\ -x + 2y + -z + t &= -2\\ 3x - 6y + 2z &= 0 \end{cases}$$

o seu conjunto solução é

$$(2,0,-3,-3) + \{(x,y,0,0) : -x + 2y = 0\}.$$

Definição

Seja E um espaço vectorial. Suponhamos que u_1, \ldots, u_n são vectores de E. Diz-se que um vector $u \in E$ é combinação linear de u_1, \ldots, u_n se existem escalares $\lambda_1, \ldots, \lambda_n \in K$ tais que

$$u = \lambda_1 u_1 + \ldots + \lambda_n u_n.$$

Definição

Seja E um espaço vectorial e S um subconjunto não vazio de E. Diz-se que um vector $u \in E$ é combinação linear de vectores de S se existe um número finito de vectores $u_1, \ldots, u_k \in S$ e de escalares $\lambda_1, \ldots, \lambda_k \in K$ tais que

$$u = \lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_k u_k.$$

Ao conjunto de todas as combinações lineares de elementos de S chama-se subespaço gerado por S e denota-se por $\mathcal{L}(S)$ ou < S >. Se $S = \emptyset$ define-se $\mathcal{L}(S) = \{0\}$.

- 1) Considere-se $E = \mathbb{R}^2$
 - (a, b) é combinação linear de (1, 0) e (0, 1).

$$\mathcal{L}(\{(1,0),(0,1)\}) = \mathbb{R}^2.$$

• (a, b) é combinação linear de (-1, 1) e (1, 2).

$$\mathcal{L}(\{(-1,1),(1,2)\}) = \mathbb{R}^2.$$

- 2) Considere-se $E = \mathbb{R}^3$, tem-se que
 - $<(1,2,-1),(2,1,0)>=\{(x,y,z)\in\mathbb{R}^3:x-2y-3z=0\};$
 - $<(1,2,-1),(2,1,0),(4,5,-2)>=\{(x,y,z)\in\mathbb{R}^3: x-2y-3z=0\}.$

- 3) Considere-se $E = \mathcal{P}(x)$. Seja $\mathcal{P}_n(x)$ os polinómios na variável x de garu menor ou igual a n.
 - $<1, x, x^2, ..., x^n>=\mathcal{P}_n(x)$.
 - $< 1, 1 + x, 1 + x + x^2, \dots, 1 + x + x^2 + \dots + x^n > = \mathcal{P}_n(x).$

Teorema

Seja S um subconjunto de um espaço vectorial E. Então < S > é um subespaço vectorial de E, é o menor subespaço vectorial que contém S, isto é se U é um subespaço vectorial de E e $S \subseteq U$ então $< S > \subseteq U$.

Dependência Linear

Definição

Sejam u_1, \ldots, u_n vectores de um espaço vectorial E. Diz-se que u_1, \ldots, u_n são linearmente dependentes se existem $\lambda_1, \ldots, \lambda_n$ não todos nulos tais que

$$\lambda_1 u_1 + \ldots + \lambda_n u_n = 0_E.$$

Diz-se que u_1, \ldots, u_n são linearmente independentes se quaisquer que sejam os escalares $\lambda_1, \ldots, \lambda_n$

$$\lambda_1 u_1 + \lambda_2 u_2 + \ldots + \lambda_n u_n = 0_E \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0.$$

- 1) Em \mathbb{R}^2
 - (1,0), (0,1) s\(\tilde{a}\) o linearmente independentes;
 - (-1,1),(1,2) são linearmente independentes;
 - (-1,1),(0,0) são linearmente dependentes;
 - (1,2), (-10,-20) são linearmente dependentes.
- 2) Em \mathbb{R}^3
 - (1,2,-1),(2,1,0) são linearmente independentes;
 - (1,2,-1),(2,1,0),(4,5,-2) são linearmente dependentes;
 - (1,2,-1),(2,1,0),(0,1,0) são linearmente independentes e $<(1,2,-1),(2,1,0),(0,1,0)>=\mathbb{R}^3$
- 3) Em $\mathcal{P}(x)$
 - $1, 1 + x, 1 + x + x^2, \dots, 1 + x + x^2 + \dots + x^n$ são linearmente independentes.

Definição

Seja S um subconjunto não vazio de um espaço vectorial E. Diz-se que S é linearmente dependente se existem vectores $v_1, \ldots, v_p \in S$ e escalares não todos nulos $\lambda_1, \ldots, \lambda_n$ tais que

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0_E.$$

Se S não é linearmente dependente diz-se linearmente independente.

Proposição

S é linearmente independente se e só se quaisquer que sejam os vectores $v_1, \ldots, v_n \in S$

$$\lambda_1 v_1 + \ldots + \lambda_n v_n = 0_E \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0.$$

Proposição

Seja E um espaço vectorial e S um subconjunto não vazio de E. Então:

- se S é linearmente dependente qualquer subconjunto de E que contenha S é linearmente dependente;
- se < S >= E, $S \cup \{v\}$ é linearmente dependente qualquer que seja $v \in E \setminus S$;
- se S é linearmente independente, $\langle S \rangle_{\neq}^{\subseteq} E$ e $v \in E \setminus \langle S \rangle$ então $S \cup \{v\}$ é linearmente independente.

Lema

Seja E um espaço vectorial sobre K, v_1, \ldots, v_n vectores de E e $u \in E$ tal que

$$u = \lambda_1 v_1 + \ldots + \lambda_n v_n, v_i \in E.$$

Se $\lambda_i \neq 0$

$$< v_1, \dots, v_i, \dots, v_n > = < v_1, \dots, v_{i-1}, u, v_{i+1}, \dots, v_n > .$$

Lema

Seja E um espaço vectorial sobre um corpo K e sejam $v_1, \ldots, v_n \in E$. Então

$$< v_1, \ldots, v_i, \ldots, v_n > = < v_1, \ldots, \lambda v_i, \ldots, v_n >, \forall \lambda \in K \setminus \{0\}.$$

Teorema

Seja E um espaço vectorial sobre K e sejam $S_1 = \{u_1, \dots, u_p\}$ e $S_2 = \{v_1, \dots, v_n\}$ conjuntos de vectores de E tais que:

- a) S_1 é linearmente independente;
- b) $S_1 \subseteq \langle S_2 \rangle$; (isto é os vectores u_1, \ldots, u_p são combinações linear dos vectores v_1, \ldots, v_n).

Então:

- i) $p \leq n$;
- ii) podemos acrescentar a S_1 n-p vectores de S_2 de modo a que o conjunto obtido gere o subespaço $< S_2 >$.

Exercício:

Seja E um espaço vectorial e seja $S \subseteq E$. Mostre que S é um subespaço vectorial de E se e só se S = < S >.

Bases e dimensão

Definição

Seja E um espaço vectorial. Uma base de E é um subconjunto $\mathcal B$ de E tal que $\mathcal B$ é linearmente independente e gera E.

Definição

Diz-se que E tem dimensão finita se $E = \{0_E\}$ ou E tem uma base finita. A dimensão de $\{0_E\}$ é 0.

Teorema

Seja E um espaço vectorial de dimensão finita. Então, todas as bases de E têm o mesmo número de elementos.

Definição

Diz-se que um espaço vectorial E tem dimensão n>0 se E contém um base com n elementos.

- $\{(1,0),(0,1)\}$ e $\{(-1,1),(1,2)\}$ são bases de \mathbb{R}^2 .
- $\{(1,3)\}$ é uma base de $\{(x,y) \in \mathbb{R}^2 : 3x y = 0\}$.
- $\{(1,0,0),(0,1,0),(0,0,1)\}$ e $\{(1,2,-1),(2,1,0),(0,1,0)\}$ são bases de \mathbb{R}^3 .
- $\{(1,2,-1),(2,1,0)\}$ e $\{(0,3,-2),(3,0,1)\}$ são bases de $\{(x,y,z)\in\mathbb{R}^3:x-2y-3z=0\}$
- $\{(1,2,-1),(2,1,0)\}$ é uma base de $\{(a+2b+8c,2a+b+7c,-a-2c):a,b\in\mathbb{R}\}$

Teorema

Seja E um espaço vectorial de dimensão n > 0. Então:

- ① Se v_1, \ldots, v_p são vectores linearmente independentes de E e p < n existem vectores v_{p+1}, \ldots, v_n de E tais que $\{v_1, \ldots, v_n\}$ é uma base de E.
- ② Se $v_1, ..., v_n$ são vectores linearmente independentes de E, $v_1, ..., v_n$ é uma base de E.
- 3 Se $\{v_1, \ldots, v_n\}$ gera E, $\{v_1, \ldots, v_n\}$ é uma base de E.

Exercício

Seja E um espaço vectorial. $\{u_1, \ldots, u_n\}$ é base de E se e só se qualquer que seja $u \in E$ existem escalares $\lambda_1, \ldots, \lambda_n \in K$, únicos tais que

$$u = \lambda_1 u_1 + \ldots + \lambda_n u_n$$
.

- I) Seja $V = \{(x, y, z) \in \mathbb{R}^3 : x + y 3z = 0\}$ um subespaço vectorial de \mathbb{R}^3 . Determine a dimensão de V e uma base de V que contenha $\{v_1\}$. Esta base é única?
- II) Caso seja possível, determine uma base para o espaço vectorial real \mathbb{R}^5 que inclua os vectores (1,1,1,1,2),(2,1,1,1,1),(0,1,1,1,0).

Proposição

Seja $E = K^m$ um espaço vectorial sobre um corpo K, $v_1, \ldots, v_n \in E$ e A a matriz cujas linhas são os vectores $v_i, i \in \{1, \ldots, n\}$. Tem-se que

$$dim(\langle v_1,\ldots,v_n\rangle)=car(A).$$

O que acontece se em vez de tomarmos v_1, \ldots, v_n como as linhas de A os considerarmos como colunas ?

Nota

Dado K um corpo e $A \in M_{n \times p}$, sejam C_1, \ldots, C_p as suas p colunas e L_1, \ldots, L_n as suas n linhas. Tem-se que

$$dim(< L_1, ..., L_n >) = dim(< C_1, ..., C_p >).$$

Seja E um espaço vectorial de dimensão n e seja $\{u_1, \ldots, u_n\}$ uma base de E. Se considerarmos a base ordenada usa-se a notação (u_1, \ldots, u_n) .

$$\mathcal{B}_1=((1,0),(0,1))$$
 e $\mathcal{B}_2=((0,1),(1,0))$ são bases ordenadas de \mathbb{R}^2 mas $\mathcal{B}_1\neq\mathcal{B}_2.$

A base canónica de \mathbb{R}^n é a base ordenada

$$\mathcal{B}_c = ((1,0,\ldots,0),(0,1,0,\ldots,0),\ldots,(0,0,\ldots,0,1)).$$

O vector $u = (a_1, ..., a_n) \in \mathbb{R}^n$ é combinação linear dos vectores da base \mathcal{B}_c ;

$$(a_1,\ldots,a_n)=a_1(1,0,0,\ldots,0)+a_2(0,1,0,\ldots,0)+\ldots+a_n(0,0,\ldots,1)$$

 (a_1,\ldots,a_n) são as coordenadas de u na base canónica de \mathbb{R}^n

Definição

Seja $\mathcal{B} = (u_1, \ldots, u_n)$ uma base de um espaço vectorial E. Dado $v \in E$ existem escalares a_1, \ldots, a_n únicos tais que $v = a_1u_1 + \ldots + a_nu_n$. As coordenadas de v na base \mathcal{B} são (a_1, \ldots, a_n) e escreve-se $v = (a_1, \ldots, a_n)_{\mathcal{B}}$.

O vector $(2,3) \in \mathbb{R}^2$ tem coordenadas:

- (2,3) na base ((1,0),(0,1));
- (3,2) na base ((0,1),(1,0));
- (2,1) na base ((1,1),(0,1));
- (-1/3,5/3) na base ((-1,1),(1,2)).

Dado um espaço vectorial E e $\mathcal{B}=(v_1,\ldots,v_n)$ uma base de E, se $v=\alpha_1u_1+\ldots+\alpha_nu_n$ embora v determine o sistema de coordenadas $(\alpha_1,\ldots,\alpha_n)$, não confundir o vector v com o sistema das suas coordenadas.

Por exemplo considere-se em $\mathbb{R}_3[x]$ o polinómio $x^3 + 2x + 4$ que tem por coordenadas relativamente à base canónica $(1, x, x^2, x^3)$, (4, 2, 0, 1). Mas

$$x^3 + 2x + 4 \neq (4, 2, 0, 1).$$

Matrizes Mudança de Base

Definição

Sejam $\mathcal{B}_1 = (u_1, \ldots, u_n)$ e $\mathcal{B}_2 = (v_1, \ldots, v_n)$ duas bases de um espaço vectorial E. A matriz mudança de base $M(Id; \mathcal{B}_1, \mathcal{B}_2)$ é a matriz $n \times n$ cujas colunas são as coordenadas dos vectores u_j na base \mathcal{B}_2 , isto é , para $1 \leq j \leq n$, $u_j = a_{1j}v_1 + a_{2j}v_2 + \ldots + a_{nj}v_n$,

$$M(Id; \mathcal{B}_1, \mathcal{B}_2) = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

Se $v = (\lambda_1, \dots, \lambda_n)_{\mathcal{B}_1}$, as coordenadas de v na base \mathcal{B}_2 são obtidas efectuando o produto

Exemplo

Considere-se $\mathcal{B}_1 = ((1,0),(0,1))$ e $\mathcal{B}_2 = ((-1,1),(1,2))$ bases de \mathbb{R}^2 .

Dado $u=(a,b)\in\mathbb{R}^2$ existem $x,y\in\mathbb{R}$ tais que

$$(a,b) = x(-1,1) + y(1,2)$$

de facto, $x = \frac{-2a+b}{3}$ e $y = \frac{a+b}{3}$.

$$(\frac{-2a+b}{3}, \frac{a+b}{3})$$
 são as coordenadas de (a, b) na base \mathcal{B} ,

escreve-se
$$u = \left(\frac{-2a+b}{3}, \frac{a+b}{3}\right)_{\mathcal{B}_2}$$

$$M(Id; \mathcal{B}_1, \mathcal{B}_2) = \begin{bmatrix} -2/3 & 1/3 \\ 1/3 & 1/3 \end{bmatrix}$$

Tal como antes $\mathcal{B}_1 = ((1,0),(0,1))$ e $\mathcal{B}_2 = ((-1,1),(1,2))$.

$$M(Id; \mathcal{B}_2, \mathcal{B}_1) = \left[egin{array}{cc} -1 & 1 \ 1 & 2 \end{array}
ight]$$

Dado $v=(c,d)_{\mathcal{B}_2}$ as coordenadas de um vector v na base \mathcal{B}_2 , então

$$M(Id; \mathcal{B}_2, \mathcal{B}_1) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -c+d \\ c+2d \end{bmatrix}$$

Assim, (-c + d, c + 2d) são as coordenadas do vector v na base canónica.

Que relação existe entre $M(Id; \mathcal{B}_2, \mathcal{B}_1)$ e $M(Id; \mathcal{B}_1, \mathcal{B}_2)$?

$$\begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} -2/3 & 1/3 \\ 1/2 & 1/2 \end{bmatrix}$$

Teorema

Seja E um espaço vectorial de dimensão n>0 e sejam \mathcal{B}_1 , \mathcal{B}_2 bases de E. Então $M(Id;\mathcal{B}_1,\mathcal{B}_2)$ é invertível e

$$(M(Id;\mathcal{B}_1,\mathcal{B}_2))^{-1}=M(Id;\mathcal{B}_2,\mathcal{B}_1).$$

Toda a matriz mudança de base é invertível

O teorema anterior é consequência imediata da seguinte proposição:

Proposição

Seja E um espaço vectorial e $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ bases de E, tem-se que

$$M(Id; \mathcal{B}_2, \mathcal{B}_3)M(Id; \mathcal{B}_1, \mathcal{B}_2) = M(Id; \mathcal{B}_1, \mathcal{B}_3).$$

Exercício

1. Sejam $\mathcal{B}_1, \mathcal{B}_2$ bases de \mathbb{R}^3 tais que

$$M(Id; \mathcal{B}_1, \mathcal{B}_2) = \left[egin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 3 & 2 & 0 \end{array}
ight].$$

- a) Dado $u = (1, -3, 2)_{\mathcal{B}_1}$ indique as coordenadas de u na base \mathcal{B}_2 .
- b) Dado $v=(1,-3,2)_{\mathcal{B}_2}$ indique as coordenadas de v na base \mathcal{B}_1 .

Soma directa de subespaços

Definição

Seja E um espaço vectorial e F, G subespaços de E. Dizemos que F e G estão em soma directa se $F \cap G = \{0\}$.

Dizemos que E é soma directa de F com G se:

- E = F + G
- $F \cap G = \{0\}$

e escrevemos $E = F \oplus G$.

Exemplo: Em \mathbb{R}^5 os subespaços

$$F = \{(x_1, x_2, 0, 0, 0) | x_1, x_2 \in \mathbb{R}\}$$
$$G = \{(0, 0, x_3, x_4, x_5) | x_3, x_4, x_5\}$$

são tais que $\mathbb{R}^5 = F \oplus G$.

Soma directa de subespaços

Proposição

Seja E um espaço vectorial, F, G subespaços de E e (f_1, \ldots, f_r) e (g_1, \ldots, g_s) bases de F e G respectivamente.

 $F \oplus G$ se e só se $(f_1, \ldots, f_r, g_1, \ldots, g_s)$ é linearmente independente.

Proposição

Seja E um espaço vectorial de dimensão finita e F, G subespaços de E. Se $F \oplus G$ então

$$dim(F \oplus G) = dim(F) + dim(G)$$
.

Dimensão da soma de subespaços

Teorema

Seja E um espaço vectorial de dimensão finita e F, G subespaços de E. Tem-se que

$$dim(F + G) = dim(F) + dim(G) - dim(F \cap G)$$

Existência de complementares

Definição

Os subespaços F e G do espaço E dizem-se complementares um do outro se $F \oplus G = E$.

Proposição

Seja E um espaço vectorial de dimensão finita e F um subespaço de E. Existe G subespaço de E tal que $E = F \oplus G$.

Definição

Sejam E e F espaços vectoriais sobre um corpo K. Uma aplicação linear $f: E \longrightarrow F$ é uma função tal que:

- **1** $f(0_E) = 0_F$;
- 2 quaisquer que sejam $u, v \in E$,

$$f(u +_{\mathsf{E}} v) = f(u) +_{\mathsf{F}} f(v);$$

3 qualquer que seja $u \in E$ e qualquer que seja $\lambda \in K$,

$$f(\lambda u) = \lambda f(u).$$

Proposição

Sejam E e F espaços vectoriais sobre K e f : $E \longrightarrow F$ uma função. A função f é linear se e só se

Exemplos

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 é uma aplicação linear; $(x,y) \mapsto 3x - 17y$

•
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x,y) \mapsto (x-2y,0,2x)$ é uma aplicação linear;

•
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 não é uma aplicação linear; $(x,y) \mapsto x-y+4$

•
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x,y,z) \mapsto (xy+z,y)$ não é uma aplicação linear;

•
$$f: \mathbb{C}^2 \to \mathbb{C}^2$$

• $(z_1, z_2) \mapsto (z_1 - 8z_2, 0)$ é uma aplicação linear
(consideramos \mathbb{C}^2 como espaço vectorial complexo);

Exemplos - Continuação

$$f: \mathbb{C} \to \mathbb{C}$$

$$z \mapsto \overline{z}$$

- se $\mathbb C$ for considerado como espaço vectorial real (sobre $\mathbb R$), f é linear;
- se $\mathbb C$ for considerado como espaço vectorial complexo (sobre $\mathbb C$), f não é linear.

Proposição

Sejam E e F espaços vectoriais sobre K, $\mathcal{B} = (u_1, \dots, u_n)$ uma base de E e v_1, \dots, v_n vectores quaisquer de F. Então existe uma única aplicação linear

$$f: E \longrightarrow F$$

tal que
$$f(u_1) = v_1, f(u_2) = v_2, \dots, f(u_n) = v_n$$
. Se $u \in E$ e $u = \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n$ para $\lambda_1, \dots, \lambda_n \in K$ então $f(u) = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$.

Qualquer aplicação linear fica determinada pelos valores que toma numa base.

Exemplo

Seja $f:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ uma aplicação linear tal que

$$f(1,1) = (1,-2,3)$$

 $f(-1,1) = (3,0,-1).$

Note-se que ((1,1),(-1,1)) é base de \mathbb{R}^2 e que

$$(x,y) = \frac{x+y}{2}(1,1) + \frac{-x+y}{2}(-1,1).$$

Assim,

$$f(x,y) = \frac{x+y}{2}f(1,1) + \frac{-x+y}{2}f(-1,1)$$

$$= \frac{x+y}{2}(1,-2,3) + \frac{-x+y}{2}(3,0,-1)$$

$$= (-x+2y,-x-y,2x+y)$$

Definição

Sejam E e F espaços vectoriais sobre K e f : $E \longrightarrow F$ uma aplicação linear. Se $\mathcal{B} = (u_1, \ldots, u_n)$ é uma base de E e $\mathcal{B}' = (v_1, \ldots, v_n)$ uma base de F, chamamos matriz de f relativamente às bases \mathcal{B} e \mathcal{B}' a

$$M(f; \mathcal{B}, \mathcal{B}') = (a_{ij})$$

onde $(a_{1j}, a_{2j}, \ldots, a_{nj})$ são as coordenadas de $f(u_j)$ na base \mathcal{B}' , isto é $f(u_j) = a_{1j}v_1 + \ldots + a_{mj}v_m$. Se $u = \lambda_1 u_1 + \ldots + \lambda_n u_n$,

$$M(f;\mathcal{B},\mathcal{B}') \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$

dá-nos as coordenadas de f(u) na base \mathcal{B}' .

Exemplo

Considere-se a aplicação linear do exemplo anterior, $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que f(x,y) = (-x+2y,-x-y,2x+y) qualquer que seja $(x,y) \in \mathbb{R}^2$.

Considere-se as bases $\mathcal{B} = ((1,1),(-1,1))$ e $\mathcal{B}_c = ((1,0),(0,1))$ de \mathbb{R}^2 e $\mathcal{B}'_c = ((1,0,0),(0,1,0),(0,0,1))$ de \mathbb{R}^3 . Assim,

$$M(f;\mathcal{B},\mathcal{B}_c')=\left[egin{array}{ccc}1&3\\-2&0\\3&-1\end{array}
ight],\quad M(f;\mathcal{B}_c,\mathcal{B}_c')=\left[egin{array}{ccc}-1&2\\-1&-1\\2&1\end{array}
ight]$$

Note que f(x, y) tem como coordenadas em \mathcal{B}'_c as entradas da seguinte matriz

$$\begin{bmatrix} -1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x + 2y \\ -x - y \end{bmatrix}.$$

Exemplo

Considere-se a aplicação linear do exemplo anterior, $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que f(x,y) = (-x+2y,-x-y,2x+y) qualquer que seja $(x,y) \in \mathbb{R}^2$.

Considere-se as bases $\mathcal{B}=((1,1),(-1,1))$ e $\mathcal{B}_c=((1,0),(0,1))$ de \mathbb{R}^2 e $\mathcal{B}_c'=((1,0,0),(0,1,0),(0,0,1))$ de \mathbb{R}^3 . Assim,

$$M(f; \mathcal{B}, \mathcal{B}'_c) = \begin{bmatrix} 1 & 3 \\ -2 & 0 \\ 3 & -1 \end{bmatrix}, \quad M(f; \mathcal{B}_c, \mathcal{B}'_c) = \begin{bmatrix} -1 & 2 \\ -1 & -1 \\ 2 & 1 \end{bmatrix}$$

Note-se que

$$M(f; \mathcal{B}_c, \mathcal{B}'_c) = \begin{bmatrix} -1 & 2 \\ -1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -2 & 0 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$$

Exemplo:

Seja

$$\begin{array}{cccc}
f & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^3 \\
(x,y) & \mapsto & (-x+2y,-x-y,2x+y)
\end{array}$$

a apliacação linear anterior e

$$g \quad \mathbb{R}^3 \quad \longrightarrow \quad \mathbb{R}^2$$

$$(x, y, z) \quad \mapsto \quad (2x - 5y + z, x - 3z)$$

$$M(g \circ f; \mathcal{B}_c, \mathcal{B}_c) = \begin{bmatrix} 2 & -5 & 1 \\ 1 & 0 & -3 \end{bmatrix} \begin{vmatrix} -1 & 2 \\ -1 & -1 \\ 2 & 1 \end{vmatrix} = \begin{bmatrix} 5 & 10 \\ -7 & -1 \end{bmatrix}$$

Note-se que

$$g(f(x,y)) = g(-x + 2y, -x - y, 2x + y)$$

$$= (2(-x + 2y) - 5(-x - y) + 2x + y, -x + 2y - 3(2x + y))$$

$$= (5x + 10y, -7x - y)$$

Teorema

Seja $f: E \longrightarrow F$ aplicação linear entre espaços de dimensão finita e \mathcal{B}_F e \mathcal{B}_F' bases de F e \mathcal{B}_E , \mathcal{B}_E' bases de E, tem-se que

$$M(f;\mathcal{B}_E',\mathcal{B}_F')=M(Id;\mathcal{B}_F,\mathcal{B}_F')M(f;\mathcal{B}_E,\mathcal{B}_F)M(Id;\mathcal{B}_E',\mathcal{B}_E).$$

Teorema

Seja $f: E \longrightarrow F$ e $g: F \longrightarrow V$ aplicações lineares e $\mathcal{B}_E, \mathcal{B}_F$ e \mathcal{B}_V bases de E, F e V respectivamente, então

$$M(g \circ f; \mathcal{B}_E, \mathcal{B}_V) = M(g; \mathcal{B}_F, \mathcal{B}_V) M(f; \mathcal{B}_E, \mathcal{B}_F).$$

Corollary

Seja $f: E \longrightarrow F$, $g: F \longrightarrow V$ e $h: V \longrightarrow W$ aplicações lineares e $\mathcal{B}_E, \mathcal{B}_F, \mathcal{B}_V$ e \mathcal{B}_W bases de E, F e V respectivamente, então

$$M(h \circ g \circ f; \mathcal{B}_E, \mathcal{B}_W) = M(h; \mathcal{B}_V, \mathcal{B}_W) M(g; \mathcal{B}_F, \mathcal{B}_V) M(f; \mathcal{B}_E, \mathcal{B}_F).$$

Definição

Sejam E e F espços vectoriais sobre K. Diz-se que uma aplicação linear $f: E \longrightarrow F$ é um isomorfismo se f é bijectiva.

Proposição

Se f é um isomorfismo , a aplicação $f^{-1}: F \longrightarrow E$ (a inversa de f) é linear e dadas duas bases \mathcal{B}_1 e \mathcal{B}_2 de E e F, respectivamente,

$$M(f; \mathcal{B}_1, \mathcal{B}_2) = (M(f^{-1}; \mathcal{B}_2, \mathcal{B}_1))^{-1}.$$

Exemplo:

Considere-se a aplicação linear

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x,y,z) \mapsto (x-y+z,y-z,2z)$$

$$M(f;\mathcal{B}_c,\mathcal{B}_c) = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}.$$

Assim,

$$f^{-1}: \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

 $(a,b,c) \mapsto (a+b,b+\frac{c}{2},\frac{c}{2})$

e

$$M(f^{-1}; \mathcal{B}_c, \mathcal{B}_c) = \left[egin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1/2 \\ 0 & 0 & 1/2 \end{array}
ight].$$

Definição

Sejam E e F espaços vectorais sobre K e seja $f: E \longrightarrow F$ uma aplicação linear. O núcleo de f é o conjunto

$$N(f) = Ker(f) = \{x \in E : f(x) = 0_F\}.$$

A imagem de f é o conjunto $f(E) = \{f(u) : u \in E\}.$

Proposição

Sejam E e F espaços vectoriais e $f: E \longrightarrow F$ uma aplicação linear. Então o núcleo de f é um subespaço vectorial de E e a imagem de f é um subespaço vectorial de F.

Exemplo

Seja

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \mapsto (x - y + 2z, 2x + y - z)$$

$$\begin{aligned} \textit{Ker}(f) &= \{x, y, z) \in \mathbb{R} : x - y + 2z = 0 \land 2x + y - z = 0\} \\ &= \{(\lambda, -5\lambda, -3\lambda) : \lambda \in \mathbb{R}\} \\ &= \langle (1, -5, -3) \rangle \end{aligned}$$

Uma base de Ker(f) é ((1, -5, -3)).

$$f(\mathbb{R}^3) = \{(x - y + 2z, 2x + y - z) : x, y, z \in \mathbb{R}\}\$$

= \{x(1,2) + y(-1,1) + z(2,1) : x, y, z \in \mathbb{R}\}
= \leq (1,2), (-1,1), (2,1) >

Teorema

Seja $f: E \longrightarrow E'$ uma aplicação linear entre espaços vectoriais quaisquer, e seja X uma parte de E. Então

$$f(\langle X \rangle) = \langle f(X) \rangle.$$

Corollary

Se e_1, \ldots, e_n é uma base do espaço vectorial E, e se f é uma aplicação linear de domínio E então

$$Im(f) = \langle f(e_1), \ldots, f(e_n) \rangle$$
.

Teorema

Seja E e F espaços vectoriais sobre K e f : $E \longrightarrow F$ uma aplicação linear. Então:

- i) f é injectiva se e só se $Ker(f) = \{0\}$.
- ii) Se E tem dimensão finita,

$$dim(E) = dim(Ker(f)) + dim(f(E));$$

- iii) Se dim(E) = dim(F) = n, f é injectiva se e só se f é bijectiva se e só se f é sobrejectiva;
- iv) Se f é injectiva e u_1, \ldots, u_n são vectores linearmente independentes de E, $f(u_1), \ldots, f(u_n)$ são linearmente independentes.

Espaços vectoriais Aplicações Lineares Vectores próprios e valores próprios Cónicas e quádricas

Corollary

Seja E um espaço vectorial. Se $f: E \longrightarrow \mathbb{R}$ é uma aplicação linear não nula então f é sobrejectiva. Se f é não nula e dim(E) = n, então dim(Ker(f)) = n - 1

Exemplo

A aplicação

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(u, y, z) \mapsto (2x - y + z, x - 2z, y + z).$

- i) f é linear;
- ii) $Ker(f) = \{(0,0,0)\}$ (se e só se f é bijectiva).
- iii) Como as dimensões do dominio e do espaço de chegada são iguais, f é injectiva se e só se f é bijectiva.

Proposição

Sejam V e U espaços vectoriais e $\phi:V\longrightarrow U$ uma aplicação linear. É condição necessária e suficiente para que ϕ seja bijectiva que ϕ transforme uma base de V numa base de U.

Proposição

Dado V um espaço vectorial de dimensão n sobre um corpo K, V é isomorfo a K^n .

Proposição

Espaços vectoriais sobre o mesmo corpo e com a mesma dimensão são isomorfos.

Definição

Dados U e V espaços vectoiais sobre o mesmo corpo K, o conjunto de todas as aplicações lineares de U em V nota-se por $\mathcal{L}(U, V)$.

Proposição

Dados U e V espaços vectoriais sobre o mesmo corpo K, $\mathcal{L}(U,V)$ é um espaço vectorial. Se U e V forem espaços vectoriais de dimensão finita, $\dim(\mathcal{L}(U,V)) = \dim(U)\dim(V)$.

Seja $A=(a_{ij})_{1\leq i\leq m, 1\leq j\leq m}$ uma matriz com entradas em K. A aplicação linear associada a A é

$$T_A: K^n \longrightarrow K^m$$

 $X \mapsto AX$

Se
$$X = [x_1 \dots x_n]^T$$
,

$$AX = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

A matriz de T_A relativemente às bases canónicas de K^n e de K^m é A.

A característica de A é a dimensão do subespaço gerado pelos vectores coluna de A. É igual à dimensão de $T_A(K^n)$.

Proposição

Sejam V e U espaços vectoriais sobre o corpo K e $\mathcal{B} = (v_1, \dots, v_p)$ e $\mathcal{B}' = (u_1, \dots, u_n)$ bases de U e de V respectivamente. A aplicação linear $\phi : \mathcal{L}(U, V) \longrightarrow M_{n \times p}(K)$ definida por

$$\phi(\mathsf{g}) = \mathsf{M}(\mathsf{g}; \mathcal{B}, \mathcal{B}')$$

é um isomorfismo.

Definição

Seja E um espaço vectorial. Um endomorfismo de E é uma aplicação linear $f: E \longrightarrow E$.

Suponhamos que dim(E) = n > 0. O determinante de f é o escalar

$$det(f) = |M(f; \mathcal{B}, \mathcal{B})|$$

onde B é uma base de E.

Nota

- O determinante de f n\u00e3o depende da base escolhida;
- Dada uma base \mathcal{B} de E, o endomorfismo é determinado pela sua matriz $M(f; \mathcal{B}, \mathcal{B})$;
- A cada $A \in M_{n \times m}(K)$ está associado um endomorfismo $T_A : K^m \longrightarrow K^n$ que a cada X faz corresponder AX.

Definição

Seja $f: E \longrightarrow E$ um endomorfismo de um espaço vectorial. Diz-se que o escalar $\lambda \in K$ é um valor próprio de f se existir um vector não nulo $u \in E$ tal que

$$f(u) = \lambda u$$
.

Diz-se que u é vector próprio de f associado ao valor próprio λ .

Se $A \in M_{n \times n}(K)$, $\lambda \in K$ é um valor próprio de A se existir $U \in K^n \setminus \{0\}$ tal que

$$AU = \lambda U$$
.

Diz-se que U é o vector próprio associado ao valor próprio λ .

Proposição

Dado $f: E \longrightarrow E$ um endomorfismo de $E \in \lambda$ um valor próprio de f, o conjunto

$$E_{\lambda} = \{u \in E : f(u) = \lambda u\}$$

é um subespaço vectorial de E.

Definição

A E_{λ} definido na proposição anterior dá-se o nome de espaço próprio associado a λ .

Nota

Se \mathcal{B} é uma base do espaço vectorial E, os valores próprios do endomorfismo $f: E \longrightarrow E$ são os valores próprios de $M(f; \mathcal{B}, \mathcal{B})$.

Os valores próprios e vectores próprios de A são os valores próprios e vectores próprios de endomorfismo

$$T_A: K^n \longrightarrow K^n$$
.

Teorema

Seja $A \in M_{n \times n}(K)$. Então λ é valor próprio de A se e só se

$$det(A-\lambda I_n)=0.$$

Nota

Se $f: E \longrightarrow E$ é um endomorfismo de um espaço vectorial E de dimensão finita, λ é valor próprio de f se e só se $det(f - \lambda Id) = 0$.

Exemplos:

a)
$$A_1 = \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix}$$

Tem valores próprios 8, -2.

b)
$$A_2 = \begin{bmatrix} 8 & 2 \\ 0 & -2 \end{bmatrix}$$

Tem valores próprios 8, -2.

c)
$$A_3 = \begin{bmatrix} 8 & 1 \\ 0 & 8 \end{bmatrix}$$

O único valor próprio de A_3 é 8.

$$d) A_4 = \begin{bmatrix} 0 & 2 \\ -3 & 0 \end{bmatrix}$$

Não tem valores próprios reais.

Se $A_4 \in M_{2\times 2}(K)$, A_4 tem dois valores próprios $\sqrt{6}i$, $-\sqrt{6}i$.

Definição

Seja $A \in M_{n \times n}(K)$, o polinómio característico de A é o polinómio de grau n, $p(\lambda) = det(A - \lambda I_n)$.

Proposição

Seja $A \in M_{n \times n}(K)$. O escalar $\lambda \in K$ é um valor próprio de A se e só se é raiz do polinómio característico de A.

Lemma

Seja $A \in M_{n \times n}(K)$. Suponhamos que $\lambda_1, \lambda_2 \in K$ são valores próprios de A e que u_1 e u_2 são vectores próprios de A associados a λ_1, λ_2 , respectivamente. Se $\lambda_1 \neq \lambda_2$ então u_1, u_2 são linearmente independentes.

Teorema

Seja $A \in M_{n \times n}(K)$. Suponhamos que u_1, \ldots, u_n são vectores próprios de A associados aos valores próprios $\lambda_1, \ldots, \lambda_n$, respectivamente. Se os valores próprios são distinto dois a dois (isto é $\lambda_i \neq \lambda_j$ se $i \neq j$) então (u_1, \ldots, u_n) é uma base de K^n .

Proposição '

Seja E um espaço vectorial sobre K e f um automorfismo de E, isto é um endomorfismo bijectivo. Se λ é um valor próprio não nulo de f, então λ^{-1} é um valor próprio de f^{-1} .

Nota

Se $\lambda_1, \ldots, \lambda_n$ são valores próprios (não necessáriamente distintos) de $A \in M_{n \times n}(K)$ e $\mathcal{B} = (u_1, \ldots, u_n)$ é uma base de K^n constituida por vectores próprios de A tal que cada u_i é o vector próprio associado ao valor próprio λ_i , qualquer que seja $i \in \{1, \ldots, n\}$, então

$$M(T_A; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & \dots & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & & \lambda_n \end{bmatrix}$$

Exemplo:

1.
$$A_1 = \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix}$$
. $T_{A_1}(1,0) = (8,0)$, $T_{A_1}(0,1) = (0,-2)$.

2.
$$A_2 = \begin{bmatrix} 8 & 2 \\ 0 & -2 \end{bmatrix}$$
. Tem dois valores próprios 8 e -2 .

Cálculo dos vectores próprios associados a 8.

$$\begin{bmatrix} 8 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 8 \begin{bmatrix} a \\ b \end{bmatrix} \Leftrightarrow \begin{cases} 8a + 2b = 8a \\ -2b = 8b \end{cases}$$

Os vectores próprios associados a 8 são os vectores da forma (a,0) com $a \in \mathbb{R} \setminus \{0\}$.

Cálculo dos vectores próprios associados a -2.

$$\begin{bmatrix} 8 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = -2 \begin{bmatrix} a \\ b \end{bmatrix} \Leftrightarrow \begin{cases} 8a + 2b = -2a \\ -2b = -2b \end{cases}$$

Os vectores próprios associados a -2 são os vectores da forma 2018/19 | 3.0 Vectores próprios e valores próprios -

Considere-se
$$(1,0)$$
 e $(1,-5)$ vectores próprios de $A_2 = \begin{bmatrix} 8 & 2 \\ 0 & -2 \end{bmatrix}$.

Como são vectores próprios associados a valores próprios distintos são linearmente independentes. Dois vectores linearmente independentes num espaço de dimensão 2 formam uma base. Seja $\mathcal{B}=((1,0),(1,-5))$ base de \mathbb{R}^2 ,

$$M(T_{A_2}; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix}.$$

Note-se que existe relação entre A_2 e $M(T_{A_2}; \mathcal{B}, \mathcal{B})$.

$$A_{2} = M(T_{A_{2}}; \mathcal{B}_{c}, \mathcal{B}_{c})$$

$$= M(Id; \mathcal{B}, \mathcal{B}_{c})M(T_{A_{2}}; \mathcal{B}, \mathcal{B})M(Id; \mathcal{B}_{c}; \mathcal{B})$$

$$= M(Id; \mathcal{B}, \mathcal{B}_{c})M(T_{A_{2}}; \mathcal{B}, \mathcal{B})(M(Id; \mathcal{B}; \mathcal{B}_{c}))^{-1}$$

Dado $n \in \mathbb{N}$,

• Se
$$A_1 = \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix}$$
 então $A_1^n = \begin{bmatrix} 8^n & 0 \\ 0 & (-2)^n \end{bmatrix}$.

• Se
$$A_2 = \begin{bmatrix} 8 & 2 \\ 0 & -2 \end{bmatrix}$$
,

$$A_2^n = \begin{bmatrix} 1 & 1 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} 8^n & 0 \\ 0 & (-2)^n \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -5 \end{bmatrix}^{-1}$$

Exercício Calcule
$$\begin{bmatrix} 2 & 4 \\ 6 & 4 \end{bmatrix}^{1999}$$
.

Definição

Duas matrizes $A, B \in M_{n \times n}(K)$ dizem-se semelhantes se existe $P \in M_{n \times n}(K)$ matriz invertível tal que

$$B = P^{-1}AP$$
.

Nota

Duas matrizes semelhantes representam o mesmo endomorfismo.

Teorema

Duas matrizes semelhantes têm o mesmo polinómio característico logo os mesmos valores próprios.

Definição

Seja $A \in M_{n \times n}(K)$. Diz-se que A é diagonalizável se existir uma matriz $P \in M_{n \times n}(K)$ invertível tal que $P^{-1}AP$ é uma matriz diagonal (isto é, se $i \neq j$ a entrada ij de $P^{-1}AP$ é nula).

Teorema

Seja $A \in M_{n \times n}$. A matriz A é diagonalizável se e só se existe uma base \mathcal{B} de K^n constituida por vectores próprios de A.

Observação:

Suponhamos que $\mathcal{B}=(u_1,\ldots,u_n)$ é uma base de K^n tal que $Au_i=\lambda_iu_i$, para todo o $i\in\{1,\ldots,n\}$. Então

$$M(T_A; \mathcal{B}, \mathcal{B}) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

onde $T_A: K^n \longrightarrow K^n$ tal que $T_A(X) = AX$.

A matriz de T_A relativamente à base canónica é

$$A = M(T_A; bc, bc)$$
 e

$$M(T_A; bc, bc) = M(Id; \mathcal{B}, bc)M(T_A; \mathcal{B}, \mathcal{B})M(Id; bc; \mathcal{B})$$

Se $P = M(Id; \mathcal{B}, bc)$ então

$$A = PDP^{-1}$$

Potências de matrizes diagonalizáveis

Seja $A \in M_{n \times n}(K)$ uma matriz diagonalizável.

Então existe uma matriz invertível $P \in M_{n \times n}(K)$ tal que

$$P^{-1}AP = D$$

sendo D uma matriz diagonal.

Note-se que

$$P^{-1}AP = D \Leftrightarrow A = PDP^{-1}.$$

Qualquer que seja $m \in \mathbb{N}$,

$$A^m = PD^m P^{-1}$$

$$\operatorname{se} D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & 0 \end{bmatrix}, D^m = \begin{bmatrix} \lambda_1^m & 0 & \dots & 0 \\ 0 & \lambda_2^m & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & \lambda_n^m \end{bmatrix}.$$

Proposição

Seja $f: E \longrightarrow E$ um endomorfismo, λ_0 um valor próprio de f, $E_{\lambda_0} = \{u \in E: f(u) = \lambda_0 u\}$ o subespaço próprio associado a λ_0 . Então

$$dim(E_{\lambda_0}) = n - car(A - \lambda_0 I_n).$$

À dimensão de E_{λ_0} dá-se o nome de dimensão geométrica de λ_0 e escreve-se $m_g(\lambda_0)$. A dimensão algébrica de λ , $m_a(\lambda_0)$, é o maior inteiro n tal que $(\lambda - \lambda_0)^n$ divide o polinómio característico de f.

Teorema

Seja $f: E \longrightarrow E$ um endomorfismo, λ_0 um valor próprio de f de dimensão geométrica k, $p_A(\lambda)$ é divisível por $(\lambda - \lambda_0)^k$. Assim a dimensão geométrica de λ_0 é menor ou igual à dimensão algébrica de λ_0 .

Teorema

Seja E um espaço vectorial de dimensão finita, $f: E \longrightarrow E$ um endomorfismo com valores próprios $\lambda_1, \ldots, \lambda_m$. f é diagonalizável se e só se

- para todo o valor próprio λ de f, $m_g(\lambda) = m_a(\lambda)$;
- $E = E_{\lambda_1} + E_{\lambda_2} + \ldots + E_{\lambda_m}$ onde $\lambda_1, \ldots, \lambda_m$.
- $E_{\lambda_i} \cap (E_{\lambda_1} + \ldots + E_{\lambda_{i-1}} + E_{\lambda_{i+1}} + \ldots + E_{\lambda_m}) = \{0\}$, para todo $i \in \{1, \ldots, m\}$.

Teorema

Seja E um espaço vectorial de dimensão finita n, $f: E \longrightarrow E$ um endomorfismo com valores próprios distintos $\lambda_1, \ldots, \lambda_k$. f é diagonalizável se e só se

$$m_g(\lambda_1) + \ldots + m_g(\lambda_k) = n$$

Cónicas e quádricas (adaptado dos slides da Professora Ana Paula Dias

Estudamos:

• curvas de nível do gráfico de uma função escalar a duas variáveis da forma

$$f(x,y) = ax^2 + by^2 + cxy + dx + ey.$$

Tais curvas de nível designam-se de cónicas.

• superfícies de nível do gráfico de uma função escalar a três variáveis do tipo

$$f(x, y, z) = ax^2 + by^2 + cz^2 + dxy + exz + fyz + gx + hy + kz$$
.

Superfícies do segundo grau (quádricas).

Cónicas

Considerar (x,y) as coordenadas de P em relação ao referencial canónico ortonormado de \mathbb{R}^2 (considerando o produto escalar usual): $(\mathcal{O}; e_1, e_2)$ em que

$$\mathcal{O} = (0,0); e_1 = (1,0), e_2 = (0,1).$$

Estudamos equações do tipo

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$
 (1)

em que $a,b,c,d,e,f\in\mathbb{R}$ e pelo menos um dos números a,b,c é não nulo.

Neste caso (1) diz-se uma equação quadrática em x, y e

$$ax^2 + 2bxy + cy^2$$

diz-se a **forma quadrática associada** a (1).

Chama-se **cónicas** ao conjunto dos pontos de \mathbb{R}^2 que satisfazem uma equação polinomial de grau 2 com duas variáveis.

As **cónicas não degeneradas** são: elipses, hipérboles e parábolas. Estas podem ser definidas como as figuras que se obtêm quando se intersecta um cone com um plano que não passa pelo vértice do cone. Conforme a posição do plano, assim obtemos uma elipse (que pode ser uma circunferência), uma hipérbole e uma parábola.

As **cónicas degeneradas** incluem pontos e rectas (concorrentes ou paralelas).

Cónicas

Hipérbole

Parábola

Elipse

Lugar geométrico dos pontos cuja soma das distâncias a dois pontos fixos F_1 , F_2 (os focos da elipse) é igual a um comprimento dado 2a maior que a distância de F_1 a F_2 . O quociente entre a distância de F_1 a F_2 e 2a diz-se a excentricidade da elipse.

Escolhendo um referencial tal que:

 \mathcal{O} é o ponto médio do segmento $[F_1F_2]$;

Eixo das abcissas: recta contendo F_1 e F_2 ;

Eixo das ordenadas: recta perpendicular ao eixo das abcissas e contendo \mathcal{O} .

Sendo
$$F_1 = (c, 0)$$
 e $F_2 = (-c, 0)$
neste referencial e tomando $b^2 = a^2 - c^2$,
a equação da elipse é: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Parábola

Lugar geométrico dos pontos equidistantes de um ponto F (foco da parábola) e de uma recta d não contendo F (directriz da parábola).

Escolhendo um referencial tal que:

 \mathcal{O} é o ponto médio do segmento [DF] sendo D o ponto de d mais próximo de F;

Eixo das abcissas: recta paralela a d e que contem \mathcal{O} ;

Eixo das ordenadas: recta perpendicular a d e que contem \mathcal{O} .

Sendo $p = \operatorname{dist}(D, F)$, então neste referencial

$$F=(0,\pm p/2)$$
 e d tem equação $y=\overline{+}p/2$.

A equação da parábola é: $x^2 = \pm 2py$.

Hipérbole

Lugar geométrico dos pontos do plano cujo módulo da diferença das distâncias a dois pontos fixos F_1 , F_2 (os focos da hipérbole) é sempre igual a um dado comprimento 2a (positivo). O quociente entre a distância de F_1 a F_2 e 2a diz-se a **excentricidade** da hipérbole.

Escolhendo o referencial tal como para a elipse, sendo $F_1=(c,0)$ e $F_2=(-c,0)$ e tomando $b^2=a^2-c^2$, a equação da hipérbole é: $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$. As rectas de equações: $y=\pm\frac{b}{a}x$ dizem-se as **assímptotas** da hipérbole.

Cónicas - mudança de base

A equação de uma cónica em relação a um dado referencial pode não ser suficientemente simples para permitir a identificação da cónica, mas pode ser mais simples, em relação a um outro referencial.

Podemos escrever

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$
 (2)

como

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + f = 0.$$

Cónicas - mudança de base

Denotando

$$X = \begin{bmatrix} x \\ y \end{bmatrix}, \quad A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}, \quad K = \begin{bmatrix} d \\ e \end{bmatrix},$$

podemos reescrever (2) como

$$X^t A X + K^t X + f = 0. (3)$$

Note-se que A é uma matriz simétrica.

Cónicas - Mudança de base

Consideremos duas bases, $\mathcal{B}=(b_1,b_2)$ e $\mathcal{C}=(c_1,c_2)$, de \mathbb{R}^2 .

Considere-se a equação

$$X^t A X + K^t X + f = 0$$

em coordenadas relativamente ao referencial o.n. $(\mathcal{O}; b_1, b_2)$.

Consideremos um outro referencial ortonormado $(\mathcal{O}; c_1, c_2)$. Seja $P = M(id; \mathcal{C}, \mathcal{B}), X = PY$ se Y^t denota o vector das coordenadas relativamente ao referencial $(\mathcal{O}; c_1, c_2)$ de um ponto com coordenadas X^t relativamente ao primeiro referencial.

Substituindo, obtém-se

$$(PY)^tA(PY)+K^t(PY)+f=0 \Leftrightarrow Y^t\left(P^tAP\right)Y+\left(K^tP\right)Y+f=0.$$

Se
$$P^tAP = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
, $Y^t = (y_1, y_2)$ e $K^tP = (d_2, e_2)$ obtemos

Alguns resultadaos de ALGA - revisões

- Toda a matriz real simétrica A é diagonalizável ortogonalmente, isto é existe uma base ortogonal de vectores próprios de A. [(*) demonstração omitida, pode ser vista em A. Monteiro, 7.41]
- para construirmos uma base de vectores próprios ortonormada (para o produto interno usual):
 - determinamos os valores próprios
 - determinamos uma base para cada subespaço próprio
- usamos Gram-Schmidt para obtermos base on de vectores próprios
- Dadas duas bases ortonormadas \mathcal{B} e \mathcal{C} , a matriz mudança de base de uma das bases para a outra, $P = M(id; \mathcal{C}, \mathcal{B})$ é ortogonal, isto é $P^{-1} = P^t$ (verifique). Assim $|P| = \pm 1$.

Alguns resultados de ALGA - revisões

- Dada $P \in M_{n \times n}(\mathbb{R})$ uma matriz ortogonal e $T_P : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ a aplicação linear que lhe corresponde, T_P é uma isometria linear (um isomorfismo que preserva a norma de vectores, isto é, $||T_P(u)|| = ||u||, \forall u \in \mathbb{R}^n$. Note que $T_P(u) \cdot T_P(u)$ é o escalar que corresponde a $(Pu)^t(Pu)$.)
- Uma isometria linear $T_P: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ no plano é:
 - ullet uma rotação de ângulo heta se $|\mathbf{P}|=\mathbf{1}$
 - ullet uma reflexão $\mathbf{se} \; |\mathbf{P}| = -\mathbf{1}$

Alguns resultados de ALGA - rotações em \mathbb{R}^2

Seja $R_{ heta}$ a rotação de centro (0,0) e ângulo heta

Note-se que
$$R_{\theta}(x_0, y_0) = (\cos(\theta + \phi), \sin(\theta + \phi)) = (\cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi), \sin(\theta)\cos(\phi) + \cos(\theta)\sin(\phi)).$$

A matriz associada a R_{θ} é $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Processo de ortogonalização de Gram-Schmidt

Dado V um espaço vectoral com um produto interno $(x,y)\mapsto x|y$ e (v_1,\ldots,v_n) um sistema de vectores linearmente independente, existe um sistema de vectores (u_1,\ldots,u_n) equivalente ao sistema dado e ortogonal onde:

$$\begin{array}{lll} u_1 = & v_1, \\ u_2 = & v_2 - \frac{v_2|u_1}{u_1|u_1}u_1, \\ u_3 = & v_3 - \frac{v_3|u_2}{u_2|u_2}u_2 - \frac{v_3|u_1}{u_1|u_1}u_1, \\ & \vdots \\ u_n = & v_n - \frac{v_n|u_{n-1}}{u_{n-1}|u_{n-1}}u_{n-1} \dots - \frac{v_n|u_1}{u_1|u_1}u_1 \end{array}$$

Cónicas

Dada uma cónica

$$ax^2 + 2bxy + cy^2 + de + ey + f = 0$$

podemos escrever

$$X^t A X + K^t X + f = 0$$

em coordenadas relativamente ao referencial o.n. $(\mathcal{O}; b_1, b_2)$.

Como A é simétrica existe uma base ortonormada $\mathcal{C}=(c_1,c_2)$ de

 \mathbb{R}^2 constituída por vectores próprios da matriz A.

Os vectores de $\mathcal C$ dizem-se as direções principais da cónica.

A equação

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + d_2 y_1 + e_2 y_2 + f = 0$$

é a equação reduzida às direcções principais da cónica.

Cónicas

Se $\lambda_1>0$ e $\lambda_2>0$ da equação

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + d_2 y_1 + e_2 y_2 + f = 0$$

obtemos

$$\lambda_1 \left(y_1 + \frac{d_2}{2\lambda_1} \right)^2 + \lambda_2 \left(y_2 + \frac{e_2}{2\lambda_2} \right)^2 + \left(f - \frac{d_2^2}{4\lambda_1} - \frac{e_2^2}{4\lambda_2} \right) = 0$$

Assim, no referencial $\left(\mathcal{O}+\left(-\frac{d_2}{2\lambda_1},-\frac{e_2}{2\lambda_2}\right);c_1,c_2\right)$ obtido por translação de $\left(\mathcal{O};c_1,c_2\right)$ obtém-se a equação:

$$\lambda_1 z_1^2 + \lambda_2 z_2^2 = -f + \frac{d_2^2}{4\lambda_1} + \frac{e_2^2}{4\lambda_2}.$$

Translacção

Fixado $p \in \mathbb{R}^2$, a função

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \mapsto v + p$$

diz-se uma translacção.

Dado um referencial $(\mathcal{O}; c_1, c_2)$, o novo referencial $(\mathcal{O}+p; c_1, c_2)$ diz-se obtido por translacção do primeiro por mudança da origem. As novas coordenadas Z no novo referencial de um ponto com coordenadas Y no primeiro referencial são

$$Z = Y - p$$
.

Exercício

O que acontece para outros valores próprios não necessariamente positivos?

Exemplo

Descreva o lugar geométrico dos pontos de coordenadas (x,y) no referencial ((0,0);(1,0),(0,1)) tais que

$$5x^2 - 4xy + 8y^2 - 36 = 0$$

Escrevemos a equação acima como

$$X^t A X - 36 = 0$$

em que

$$A = \left[\begin{array}{cc} 5 & -2 \\ -2 & 8 \end{array} \right]$$

cujos valores próprios são: 4, 9 e:

$$E_4 = <(2\sqrt{5}/5, \sqrt{5}/5) >$$
(subespaço próprio associado a 4);

$$E_9 = <(-\sqrt{5}/5, 2\sqrt{5}/5)>$$
 (subespaço próprio associado a 9);

Como vectores próprios associados a valores próprios distintos são ortogonais, $\mathcal{B}=\left((2\sqrt{5}/5,\sqrt{5}/5),(-\sqrt{5}/5,2\sqrt{5}/5)\right)$ é uma base

Exemplo

Considerando

$$P = M(id; ((2\sqrt{5}/5, \sqrt{5}/5), (-\sqrt{5}/5, 2\sqrt{5}/5)), ((1,0), (0,1))),$$

$$P = \begin{bmatrix} 2\sqrt{5}/5 & -\sqrt{5}/5 \\ \sqrt{5}/5 & 2\sqrt{5}/5 \end{bmatrix}$$

Se Y^t corresponde ao vector de coordenadas em $((0,0);\mathcal{B})$ de um vector com coordenadas X^t relativamente ao referencial ((0,0);(1,0),(0,1)),X=PY e no referencial $\left((0,0);\left((2\sqrt{5}/5,\sqrt{5}/5),(-\sqrt{5}/5,2\sqrt{5}/5)\right)\right)$ a equação inicial corresponde a

$$\begin{bmatrix} y_1 & y_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} - 36 = 0$$

$$\iff 4y_1^2 + 9y_2^2 - 36 = 0 \iff \frac{y_1^2}{2} + \frac{y_2^2}{2} = 1$$
.

O lugar geométrico dos pontos de coordenadas (x, y) no referencial ((0,0); (1,0), (0,1)) tais que

$$5x^2 - 4xy + 8y^2 - 36 = 0$$

é uma elipse

109

Identificar a cónica de equação

$$2x^2 + y^2 - 12x - 4y + 18 = 0.$$

Temos que

$$2(x^2-6x)+(y^2-4y)+18=0 \iff 2(x-3)^2+(y-2)^2=4$$
.

Considerando a mudança de referencial

$$y_1 = x - 3$$
$$y_2 = y - 2$$

obtemos

$$\frac{y_1^2}{2} + \frac{y_2^2}{4} = 1.$$

A cónica de equação $2x^2 + y^2 - 12x - 4y + 18 = 0$ é uma elipse.

Proposição

Considere-se uma equação cartesiana da forma

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

e sejam λ_1,λ_2 os valores próprios da matriz simétrica

$$\left[\begin{array}{cc}a&b\\b&c\end{array}\right]$$

- ① Se $\lambda_1\lambda_2>0$ então a equação representa uma elipse (circunferência se $\lambda_1=\lambda_2$) ou uma das suas degenerações(um ponto ou o conjunto vazio).
- ② Se $\lambda_1\lambda_2 < 0$ então a equação representa uma hipérbole ou a sua degeneração (duas rectas concorrentes).
- ③ Se $\lambda_1\lambda_2=0$ então a equação representa uma parábola ou uma das suas degenerações (duas rectas paralelas, uma recta ou o conjunto vazio).

Cónicas

Forma canónica	Gráfico
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Hipérbole
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	Rectas concorrentes
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	Elipse
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	Ø
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	Ponto

Cónicas

Forma canónica	Gráfico
$x^2 = ay$	Parábola
$x^2 = a^2$	Rectas paralelas
$x^2 = -a^2$	Ø
$x^2 = 0$	Rectas coincidentes

Superfícies quádricas

Seja (x, y, z) as coordenadas de P em relação ao referencial canónico ortonormado de \mathbb{R}^3 (considerando o produto escalar usual): $(\mathcal{O}; e_1, e_2, e_3)$ em que

$$\mathcal{O} = (0,0,0); \ e_1 = (1,0,0), \ e_2 = (0,1,0), \ e_3 = (0,0,1).$$

Estudamos equações do tipo

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2exz + 2fyz + gx + hy + iz + j = 0$$
 (4)

em que algum a, b, c, d, e, f é não nulo.

Neste caso (4) diz-se uma equação quadrática em x, y, z e

$$ax^2 + by^2 + cz^2 + 2dxy + 2exz + 2fyz$$

diz-se a forma quadrática associada a (4).

Os gráficos de equações quadráticas em x, y, z são designados de **quádricas** ou **superfícies quádricas**.

Superfícies quádricas

Podemos escrever (4) como:

$$\begin{bmatrix} x \ y \ z \end{bmatrix} \begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + [g \ h \ i] \begin{bmatrix} x \\ y \\ z \end{bmatrix} + j = 0$$

$$\iff X^t A X + K^t X + j = 0$$

$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad A = \begin{bmatrix} a & d & e \\ d & b & f \\ e & f & c \end{bmatrix}, \quad K = \begin{bmatrix} g \\ h \\ i \end{bmatrix}$$

Superfícies quádricas

Como A é uma matriz simétrica, é diagonalizável.

Uma base de vectores próprios determina a mudança de coordenadas X = PY em que nas novas coordenadas a equação da quádrica não tem termos em xy, xz ou yz.

Finalmente, uma translacção do referencial reduz a equação da quádrica a uma das seguintes formas canónicas da tabela abaixo.

Consideremos a equação quadrática seguinte:

$$4x^{2} + 36y^{2} - 9z^{2} - 16x - 216y + 304 = 0$$

$$\iff \frac{(x-2)^{2}}{9} + (y-3)^{2} - \frac{z^{2}}{4} = 1.$$

Mudando de coordenadas (por translacção do referencial),

$$(x', y', z') = (-2, -3, 0) + (x, y, z),$$

obtemos

$$\left(\frac{x'}{3}\right)^2 + (y')^2 - \left(\frac{z'}{2}\right)^2 = 1$$

Trata-se de um hiperbolóide de uma folha.

Forma canónica	Gráfico
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	Elipsóide
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$	Ø
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$	Hiperbolóide de duas folhas
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	Hiperbolóide de uma folha
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$	Parabolóide elíptico
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$	Parabolóide hiperbólico
$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$	Ponto

	C /C
Forma canónica	Gráfico
$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$	Superfície cónica
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	Cilindro elíptico
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$	Ø
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Cilindro hipérbolico
$y^2 = ax (a > 0)$	Cilindro parabólico
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$	Recta
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$	Planos concorrentes

Forma canónica	Gráfico
$x^2 = a^2$	Planos paralelos
$x^2 = -a^2 (a \neq 0)$	Ø
$x^2 = 0$	Planos coincidentes

Elipsóide

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Hiperbolóide de uma folha

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Hiperbolóide de duas folhas

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Cilindro parabólico

$$y^2 = ax \quad (a > 0)$$

Parabolóide elíptico

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$$

Parabolóide hiperbólico

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$$

Superfície cónica

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Cilindro elíptico

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Cilindro hiperbólico

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Cónicas e quádricas Exemplo

Identifique o lugar geométrico dos pontos de coordenadas (x, y) tais que

$$4x^2 + 4y^2 + 4z^2 + 4xy + 4xz + 4yz - 3 = 0.$$

Considere-se a equação

$$4x^2 + 4y^2 + 4z^2 + 4xy + 4xz + 4yz - 3 = 0 \iff X^t AX - 3 = 0$$

em que

$$A = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array}\right) .$$

Sendo

$$P = \begin{pmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{3} \\ 0 & \frac{\sqrt{6}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$$

então

$$P^t A P = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 8 \end{array}\right) \dots$$

Considerando X = PX' obtemos nas novas coordenadas X'

$$\frac{(x')^2}{3/2} + \frac{(y')^2}{3/2} + \frac{(z')^2}{3/8} = 1.$$

Trata-se de um elipsóide.