Introduction to Topology

General Topology, Lecture 7

Haoming Wang

17 August 2019

This is the Lecture Note for the *Introduction to Topology*. The course covers the following topics: Naive Set Theory, Elementary Number Theory, Group Theory, Topological Spaces and Continuous Maps, Introduction to Algebraic Topology.

Open set on metric space

Theorem 1 (The Lebesgue number of an open cover). Let (X,d) be a metric space and $K(\subseteq X)$ a compact set. For any given open cover $O_{\alpha}(\alpha \in A)$ of K, there exists $\delta > 0$, s.t. for every $x \in K$ we have $B_{\delta}(x) \subseteq O'_{\alpha}$ for some $\alpha' \in A$ (α' depending on x).

Proof. Since K is compact, for any open cover of K, there exists an finite subcover of K, that is $\exists O_{\alpha_i}$, $i = 1, \dots, N$ such that

$$K \subseteq \bigcup_{i=1}^{N} O_{\alpha_i}$$
.

For any point $x \in K$ there exist $O_{\alpha_j} \in \{O_{\alpha_i}\}_{i=1}^N$, s.t. $x \in O_{\alpha_j}$ and exists $\delta_x > 0$, s.t. $B_{\delta_x/2}(x) \subseteq B_{\delta_x}(x) \subseteq O_{\alpha_j}$ for O_{α_j} is open. Obviously we have that $B_{\delta_x/2}(x)$ is an open cover of K, i.e.

$$K\subseteq \bigcup_{x\in K}B_{\delta_x/2}(x),$$

and $B_{\delta_x/2}(x)$ has an finite subcover of K, donate as $\{B_{\delta_{x_i}/2}(x_i)\}_{i=1}^M$. Let $\delta = \min\{\delta_{x_i}\}_{i=1}^M$. Then for any $y \in K$, there exists $B_{\delta_{x_i}/2}(x_j) \in \{B_{\delta_{x_i}/2}(x_i)\}_{i=1}^M$ such that $y \in B_{\delta_{x_j}/2}(x_j)$ and $d(y,x_j) < \delta_{x_j}/2$. and for any y' where $d(y',y) < \delta/2 < \delta_{x_j}/2$, we have $d(x_j,y') \le d(x_j,y) + d(y,y') < \delta_{x_j}$, thus $y,y' \in B_{\delta_{x_j}}(x_j) \subseteq O_{\alpha'}$, or say $y,y' \in B_{\delta/2}(y) \subseteq B_{\delta_{x_j}}(x_j) \subseteq O_{\alpha'}$.

The theorem indicates for any open cover O_{α} of K, $\exists \delta > 0$, s.t. for $\forall x \in K, x' \in X$, is $d(x, x') < \delta$, then $\exists \alpha \in A$ we have $x, x' \in O_{\alpha}$. Such a $\delta > 0$ is called a **Lebesgue number** of the given open cover $O_{\alpha}(\alpha \in A)$. Notice that the statement could be false if the compactness assumption is dropped.

Exercise 1 (Open set). Let
$$(X,d) = (\mathbb{R}, d_2), K = (0,1), O_{\alpha} = (1/2^{\alpha+1}, 1/2^{\alpha-1})(\alpha \in \mathbb{N})$$
. Thus $1/2^{\alpha} \in O_{\alpha}$ and $\notin O_{\alpha'}$ if $\alpha' \neq 0$

CONTENT:

- 1. Open set on metric space
- 2. Limits of maps

Figure 1: The Lebesgue number of an open cover

 $\alpha(\alpha, \alpha' \in \mathbb{N})$. It is easy to check O_{α} is an open cover of K, but $|1/2^{\alpha}-1/2^{\alpha+1}|=1/2^{\alpha+1}$ can be arbitrarily small if $\alpha \uparrow$. Thus there exists $x \in K$, $x' \in X$ can not be covered one O_{α} , no matter how close they are.

Exercise 2 (Unbounded set). Let $(X,d) = (\mathbb{R},d_2), K = [1/3,\infty), O_{\alpha} = (\mathbb{R},d_2)$ $(\alpha - 1 - 1/2^{\alpha - 1}, \alpha)(\alpha \in \mathbb{N})$. Thus $x = \alpha - 1/2^{\alpha} \in O_{\alpha}$ and $x' = \alpha \in A$ $O_{\alpha+1}$ and d(x,x') could be arbitrarily small as $\alpha \uparrow$. Thus there exists $x \in K, x' \in X$ can not be covered one O_{α} , no matter how close they are.

Definition 1 (Isolated point, limit point and accumulation point). Let (X, d) be a metric space and $S \subseteq X$. A point $x \in X$ is called:

- an **isolated point** of *S*, if $\exists \epsilon > 0$, s.t. $B_{\epsilon}(x) \cap S = \{x\} \ (\Rightarrow x \in S)$;
- a limit point of S, if $\forall \epsilon > 0$, s.t. $B_{\epsilon}(x) \cap S \setminus \{x\} \neq \emptyset$;
- an **accumulation point** of *S*, if \exists seq. $a_n \in S(n \in \mathbb{N})$, s.t. x = $\lim_{n\to\infty} a_n$.

Example 1. $S \subseteq X$ is as the margin figure, point $i \notin S$:

point	iso. pts. of S	limit pts. of <i>S</i>	acc. pts. of S	$\in S$
i	×	×	×	×
а	×	$\sqrt{}$	\checkmark	×
b	×	$\sqrt{}$	\checkmark	
С	×	\checkmark	$\sqrt{}$	
d	$\sqrt{}$	×	\checkmark	
e	×	$\sqrt{}$	\checkmark	
h	×	$\sqrt{}$	\checkmark	×

Notice that x is a isolated point of $S \Rightarrow x \in S$; but x is a limit/accumulate point of $S \Rightarrow x \in S$.

Exercise 3. Let (X, d) be a metric space, $S \subseteq X$,

- 1. Show that x is an isolated/limit point of $S \Rightarrow x$ is a accumulate point of S;
- 2. Donate {iso. pts. ofS}, {limit pts. ofS} and {acc. pts. ofS} by I_S , L_S , A_S respectively. Show that $I_S \cup L_S = A_S$;

- 3. Suppose $S \subseteq K \subseteq X$, where S is infinite and K is compact, show that {limit pts. of S} $\neq \emptyset$; (Prove by contradiction)
- *Proof.* 1. If x is an isolated point of S, thus $x \in S$. Let $a_n \equiv x$, then $\lim_{n\to\infty} a_n = x$, thus x is an accumulate point of S; If x is a limit point of S, then for any $\epsilon > 0$, $B_{\epsilon}(x) \cap S \setminus \{x\} \neq \emptyset$. Let $a_n \in$ $B_{1/n}(x)$ $(n \in \mathbb{N})$, then $d(a_n, x) < 1/n$ for $\forall n \in \mathbb{N}$, thus $\lim_{n \to \infty} a_n = 1$ x, and x is an accumulate point of S.
- 2. We have obtained that $I_S, L_S \subseteq A_S$. Suppose $x \in A_S \setminus (I_S \cup L_S) \neq \emptyset$. Which means : (1) there exists seq. $a_n \in S$ such that $\lim_{n\to\infty} a_n =$ x; (2) $\forall \epsilon > 0$, s.t. $B_{\epsilon}(x) \cap S \neq \{x\}$ ($\neg I_S$);(3) $\exists \epsilon' > 0$, s.t. $B_{\epsilon'}(x) \cap I_S$ $S \setminus \{x\} = \emptyset$ ($\neg L_S$). Let $B_{\epsilon}(x) \cap S = Q_{\epsilon} \neq \{x\}$, if $x \in Q_{\epsilon}$, then it leads to a contradiction with (3); If $x \notin Q_{\epsilon}$, then $Q_{\epsilon'} = \emptyset$, that is $B_{\epsilon'}(x) \cap S = \emptyset$ and for $\forall s \in S \Rightarrow d(s,x) \geq \epsilon'$, which leads to a contradiction with (1). Thus $A_S \setminus (I_S \cup L_S) = \emptyset$. Because $I_S, L_S \subseteq A_S$, we have $I_S \cup L_S = A_S$.
- 3. Since *S* is infinite, there exists an infinite seq. $a_n \in S$. By Bolzano-Weierstrass theorem, there exists a subseq. $a_{n_i} \in S$ such that $\lim_{i\to\infty} a_{n_i} = a$. Suppose $L_S = \emptyset$, which means for $\forall x, \exists \epsilon' > 0$ 0, s.t. $B_{\epsilon'}(x) \cap S \setminus \{x\} = \emptyset$, thus there exists ϵ_a , s.t. $B_{\epsilon_a}(a) \cap$ $S \setminus \{a\} = \emptyset$, which means $\forall s \in S, d(s, a) \geq \epsilon_a$ and leads to a contradiction.

Exercise 4. Let $(X, d) = (\mathbb{R}, d_2), S \subseteq \mathbb{R}$, show that if sup S (inf S) exists, then it is an accumulate point.

Proof. If $\sup S\exists$, then for $\forall x \in S$, s.t. $x \leq \sup S$ and for $\forall \epsilon > 0$, $\exists x' \in S$, s.t. $\sup S - \epsilon < x'$. For any $n \in \mathbb{N}$, there exists $x_n \in \mathbb{N}$ S s.t. $\sup S - 1/n < x' \le \sup S$, and $d(x_n, \sup S) < 1/n$, thus $x_n \to \sup S$ as $n \to \infty$.

Exercise 5. Show that, if (X, d) be a metric space, then

$$S \subseteq_{close} X \Leftrightarrow A_S = S \Leftrightarrow L_S \subseteq S$$
.

Proof. For any $x \in S$, let $a_n = x$, then $\lim_{n \to \infty} a_n = x$, thus $S \subseteq$ A_S . Since example (??), we have $S \subseteq_{close} X \Leftrightarrow A_S = S$. \Rightarrow Since $I_S \cup L_S = A_S$, we have $L_S \subseteq A_S = S$; \Leftarrow , for $L_S \subseteq A_S \subseteq S$, we have $S \subseteq A_S \Rightarrow S = A_S$.

Limits of maps

Let (X, d_X) and (Y, d_Y) be metric spaces and $S \subseteq X$. We consider a map $f: S \to Y$. e.g. $X = \mathbb{R}^2, Y = \mathbb{R}, S = \mathbb{R}^2 \setminus \{(0,0)\}, f: (x,y) \to \mathbb{R}$ $1/x^2 + y^2$. (the reason why shrink X)

Definition 2. Limit Let $a \in X$ (not necessarily $\in S$) and $b \in Y$. We say that $\lim_{x \to a} f(x) = b$ if $\forall \epsilon > 0, \exists \delta > 0, \forall x \in S$, s.t. $0 < d_X(x, a) < \delta \Rightarrow$ $d_Y(f(x),b)<\epsilon.$

Exercise 6. Show that

- 1. If a is a limit point of S and $\lim_{x\to a} f(x) = b$ and $\lim_{x\to a} f(x) = b'$ then b = b';
- 2. Let $(Y, d_Y) = (\mathbb{R}^m, d_2)$ and $f: S \mapsto Y, g: S \mapsto Y$, where $S \subseteq X$, $a \in X$. If $\lim_{x \to a} f(x) = b$ and $\lim_{x \to a} g(x) = c$, then $\lim_{x\to a} (f(x) \pm g(x)) = b \pm c$. If furthermore $(Y, d_2) = (\mathbb{R}, d_2)$, then $\lim_{x\to a} f(x)g(x) = bc$; if $c \neq 0$, then $\exists \delta > 0$, s.t. $g(x) \neq 0$ for all $x \in B_{\delta}(a) \setminus \{a\}$ and $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$.
- *Proof.* 1. Since $\lim_{x\to a} f(x) = b$ and $\lim_{x\to a} f(x) = b'$, for $\forall \epsilon > 0$, $\exists \delta_1, \delta_2 > 0$, s.t. $\forall x \in B_{\delta_1}(a) \cap S \setminus \{a\} \Rightarrow d(f(x), b) < \epsilon$, and the same thing for δ_2 . Let $\delta = \min\{\delta_1, \delta_2\}$, then for $\forall x \in B_{\delta}(a) \cap S \setminus \{a\}$, we have $d(f(x),b) < \epsilon$ and $d(f(x),b') < \epsilon$ simultaneously, thus $d(b,b') < \epsilon$ for $\forall \epsilon > 0$, thus b = b'.
- 2. for $\forall \epsilon > 0, \exists \delta > 0, \forall x \in B_{\delta}(a) \cap S \setminus \{a\} \Rightarrow d_2(f(x), b) < \epsilon$ and $d_2(g(x),c) < \epsilon$. Thus

Note 1. There are 3 points deserved mention.

- 1. 3 conditions of x: 1. $x \in B_{\delta}(a)$; 2. $x \neq a$; 3. $x \in S$. Collectively, $x \in B_{\delta}(a) \cap S \setminus \{a\}.$
- 2. We require $d_X(x, a) > 0$, since f(a)could be totally unconnective with $f(B_{\delta}(a) \cap S \setminus \{a\}).$
- 3. If $\exists r > 0$, s.t. $B_r(a) \cap S = \emptyset$, then $\lim_{x\to a} f(x) = b$ (logically) holds for every $b \in Y$. Otherwise $\exists \epsilon > 0, \forall \delta >$ $0, \exists x \in S, 0 < d_X(x, a) < \delta, \dots, \text{ but }$ if let $\delta < r$, then any $x \in S$ commits $d(x,a) > r > \delta$, which leads to a contradiction.

$$d_2(f(x) + g(x), b + c) = [(f(x) + g(x) - b - c)^T (f(x) + g(x) - b - c)]^{1/2}$$

$$= [(f(x) - b)^T (f(x) - b) + (g(x) - c)^T (g(x) - c) + 2(f(x) - b)^T (g(x) - c)]^{1/2}$$

$$< [2\epsilon^2 + 2(f(x) - b)^T (g(x) - c)]^{1/2}.$$

Notice that $(f(x) - b)^{T}(g(x) - c) = (g(x) - c)^{T}(f(x) - b)$, thus $(f(x) - b)^{T}(g(x) - c) = [(g(x) - c)^{T}(f(x) - b)(f(x) - b)^{T}(g(x) - c)^{T}(g(x) - c)^{T}(g(x$ $[c]^{1/2} = \epsilon^2$. and $d_2(f(x) + g(x), b + c) < (4\epsilon^2)^{1/2} = 2\epsilon$, thus $\lim_{x\to a} (f(x) + g(x)) = b + c$. Others are trivial.

Exercise 7 (Composite maps). Let X, Y, Z be metric space and f: $S \mapsto T, g: T \mapsto Z$, where $S \subseteq X, T \subseteq Y$. Show that if $\lim_{x \to a} f(x) =$ $b, \lim_{y\to b} g(y) = c$ and $b\notin f(S)$, then $\lim_{x\to a} (g\circ f)(x) = c$. If condition $b \notin f(S)$ is dropped, find an example s.t. $\lim_{x\to a} (g \circ f(S)) = f(S)$ $f)(x) \neq c$.

- *Proof.* 1. Since $\lim_{y\to b} g(y) = c$, then for $\forall \epsilon > 0, \exists \delta_y > 0, \forall y \in S$ $B_{\delta_u}(b) \cap T \setminus \{b\} \Rightarrow d(c, g(y)) < \epsilon$. And because $\lim_{x \to a} f(x) = b$, then $\exists \delta_x > 0$, for $\forall x \in B_{\delta_x}(a) \cap S \setminus \{a\}$, s.t. $d(b, f(x)) < \delta_y \Rightarrow$ $f(x) \in B_{\delta_u}(b) \cap T$ (Since $f: S \mapsto T$). If $\forall x \in S$ has $f(x) \neq b$, that is $b \notin f(S)$, then $f(x) \in B_{\delta_u}(b) \cap T \setminus \{b\}$, and then $d(g(f(x)), c) < \epsilon$, i.e. $\lim_{x\to a} (g\circ f)(x)\neq c$.
- 2. Intuitively, If g(y) is un-continuous as y = b, and f(x) touches b with an extremely frequence as $x \rightarrow a$ then $g \circ f$ would be

oscillating as $x \to a$. For example, let $f(x) = \sin(1/x)$, g(y) = y for $y \neq 0$ and 1 for y = 0, then $g \circ f(x)$ has no limit as $x \to 0$.

Exercise 8 (Example of nonexistence of limit). Let $f : \mathbb{R}^2 \setminus \{(0,0)\} \mapsto$ \mathbb{R} where $f(x,y) = \frac{xy}{x^2+y^2}$. Show that $\lim_{(x,y)\to(0,0)} f(x,y) \not\equiv$, using property of composite maps.

Proof. Consider map $g: \mathbb{R} \setminus \{0\} \mapsto \mathbb{R}^2 \setminus \{(0,0)\}$ thus $(0,0) \notin$ $g(\mathbb{R}\setminus\{0\})$. Let g(t)=(at,bt) then $\lim_{(x,y)\to(0,0)}f(x,y)=\lim_{t\to 0}f(g(t))=$ $\frac{ab}{a^2+b^2}$ depending on g. Thus if you set different g, that is different parameters a, b then you get different limit of composite maps $f \circ g$ which is equal to the limit of f, thus $\lim f \not\equiv$.