Labs

Optimization for Machine LearningSpring 2024

Saarland University

CISPA Helmholtz Center for Information Security **Sebastian Stich**

TAs: Yuan Gao & Xiaowen Jiang https://cms.cispa.saarland/optml24/

Problem Set 7, June 4, 2024 (Local SGD)

1 Local SGD on Heterogeneous Functions

Consider the (generalized) example from the lecture, with $f: \mathbb{R} \to \mathbb{R}$ defined as:

$$f_1(x) = \frac{1}{2}x^2$$
 $f_2(x) = a(x-1)^2$ $f(x) = \frac{1}{2}(f_1(x) + f_2(x))$,

for $a \geq 0$. Verify that the optimal solution $x^* := \operatorname{argmin} f(x)$ is given as $x^* = \frac{2a}{1+2a}$.

1.1 The optimal solution is not a fix point of Local SGD

Consider local SGD with stepsize $\gamma>0$, and $\tau=2$ local steps. Prove that when we start local SGD at $x_0=x^\star$ we end up at

$$x_2 = x^* + \frac{(a - 2a^2)\gamma^2}{1 + 2a}$$

after the first averaging round.

1.2 Similarity

Based the previous observation, can you derive conditions under which $x_2 = x^*$, i.e. the optimal solution is a fixed point? Do these conditions also hold for $\tau > 2$ local steps?

2 Verify the proof of the Local SGD Theorem (general case):

In the lecture, we left out two steps:

• Plugging the (Difference) lemma into the (Decrease) lemma, and rearranging the terms to obtain

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E} \left\| \nabla f(\bar{\mathbf{x}}_t) \right\|^2 = \mathcal{O} \left(\frac{\Delta}{\gamma T} + \gamma L \sigma^2 + \gamma^2 L^2 (\tau^2 \zeta^2 + \tau \sigma^2) \right)$$

 \bullet And the tuning of the stepsize (with respect to the constraint $\gamma \leq \frac{1}{10L\tau}).$