Assignment 2

Kotikalapudi Karthik (cs21btech11030)

ICSE class 12 2018

Question 5(b)

Verify Rolle's theorem for the following function: $f(x) = e^{-x} \sin x$ on $[0, \pi]$

Solution: Given, $f(x) = e^{-x} \sin x$ on $[0, \pi]$

For the function to satisfy the Rolle's theorem, the following conditions should be satisfied:

- 1) f(x) should be continuous in $[0,\pi]$
- 2) $f(0) = f(\pi) = 0$
- 3) f(x) should be differentiable in $(0,\pi)$

Here, e^{-x} is an exponential and continuous function and $\sin x$ is a trigonometric and continuous function $\therefore f(x) = e^{-x} \sin x$ is continuous on $[0, \pi]$. Also.

$$f(0) = e^0 \sin 0 = 0 \tag{1}$$

$$f(\pi) = e^{\pi} \sin \pi = 0 \tag{2}$$

$$\therefore f(0) = f(\pi) = 0 \tag{3}$$

f(x) is differentiable on $(0,\pi)$ if Left hand derivative(LHD) and right hand derivative(RHD) exists and equal for every $x \in (0, \pi)$ as we already know f(x) is continuous.

If $c \in (0, \pi)$, then

LHD =
$$\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h}$$
 (4)
= $\lim_{h \to 0^{-}} \frac{e^{-(c+h)} \sin(c+h) - e^{-c} \sin c}{h}$ (5)

$$= e^{-c} \lim_{h \to 0^{-}} \left(\frac{e^{-h} \sin(c+h) - \sin c}{h} \right)$$
 (6)

Similarly,

RHD =
$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h}$$

= $\lim_{h \to 0^+} \frac{e^{-(c+h)} \sin(c+h) - e^{-c} \sin c}{h}$
= $e^{-c} \lim_{h \to 0^+} \left(\frac{e^{-h} \sin(c+h) - \sin c}{h}\right)$

We know that,

$$\sin(x+h) = \sin x \cos h + \cos x \sin h \quad (10)$$

Also,
$$\lim_{h \to 0^-} \frac{\sin h}{h} = \lim_{h \to 0^+} \frac{\sin h}{h} = 1,$$
 (11)

$$\lim_{h \to 0^{-}} \cos h = \lim_{h \to 0^{+}} \cos h = 1, \tag{12}$$

$$\lim_{h \to 0^{-}} \cos h = \lim_{h \to 0^{+}} \cos h = 1,$$

$$\lim_{h \to 0^{-}} e^{-h} = \lim_{h \to 0^{+}} e^{-h} = 1$$
(12)

From equations (10) (11) (12) (13), equation (6) becomes

LHD =
$$e^{-c} \lim_{h \to 0^-} \left(e^{-h} \cos c + \frac{e^{-h} sinc - sinc}{h} \right)$$
 (14)

$$= e^{-c} \left(\cos c + \sin c \lim_{h \to 0^{-}} \frac{e^{-h} - 1}{h} \right)$$
 (15)

Similarly, from equations (10) (11) (12) (13), equation (9) becomes

$$RHD = e^{-c} \lim_{h \to 0^+} \left(e^{-h} \cos c + \frac{e^{-h} sinc - sinc}{h} \right)$$
(16)

$$= e^{-c} \left(\cos c + \sin c \lim_{h \to 0^+} \frac{e^{-h} - 1}{h} \right)$$
 (17)

We know that, $\lim_{h\to 0^-} \frac{1-e^{-h}}{h}$ and $\lim_{h\to 0^+} \frac{1-e^{-h}}{h}$

⇒ both LHD and RHD exists.

$$\lim_{h \to 0^{-}} \frac{1 - e^{-h}}{h} = \lim_{h \to 0^{+}} \frac{1 - e^{-h}}{h} = 1,$$
(18)

$$\implies$$
 LHD = RHD = $e^{-x} (\cos x - \sin x)$ (19)

: LHD and RHD exists and equal, we can say that f(x) is differentiable.

 $\implies f(x)$ is differentiable in $(0,\pi)$.

Thus, all the conditions of the Rolle's theorem are satisfied.

(8) $\therefore \exists c \in (0, \pi) \text{ such that } f'(c) = 0.$

By differentiating f(x),

$$f'(x) = e^{-x} \left(\cos x - \sin x\right) \tag{20}$$

f'(c) = 0, substituing f'(x) at x = c from equation (20),

$$e^{-c}\left(\cos c - \sin c\right) = 0\tag{21}$$

$$\implies \cos c - \sin c = 0$$
 (22)

$$\implies c = \frac{\pi}{4} \tag{23}$$

Clearly, $\frac{\pi}{4} \in (0,\pi)$ Hence, Rolle's theorem is verified.

Also, we can see from the graph clearly that all the necessary conditions for Rolle's theorem are satisfied and $f'(\frac{\pi}{4}) = 0$

Fig. 1. Graph of f(x) and f'(x) in $[0, \pi]$