# Lecture 14. Recurrent Neural Networks, Attention, and the Transformer

**COMP90051 Statistical Machine Learning** 

Zahra Dasht Bozorgi



#### This lecture

- Recurrent networks for modelling sequences
  - \* recurrent units
  - \* back-propagation through time
  - \* long-short term memory
- Transformers and attention

## Recurrent Networks

A DNN tailored to variable length sequential inputs

## Sequential input

- Until now, we have assumed fixed-sized input
  - \* Vectors of features x in d dimensions
  - Matrices of pixels in an image
- What if our input is a sequence?
  - Frames in a video clip
  - Time steps in an audio clip
  - \* Words in a sentence
  - \* A protein sequence
  - Stock prices over time ...
- How can we model this in a DNN?

#### FCNNs poor for sequences

- Consider classifying sentences
  - \* "This is the worst movie of all time, a real stinker"  $\rightarrow \otimes$
  - \* "The movie is a real stinker"  $\rightarrow \otimes$
- Issue: inputs are different lengths
  - \* pad them with empty "words" to be a fixed size
- Issue: how do we represent words as vectors?
  - learn an "embedding" vector for each word
- Issue: phrases have <u>similar meaning</u> even when at different locations
  - "a real stinker" is a key predictive feature
  - if we naively apply FCNN needs to learn this concept repeatedly

## ConvNets for Sequences?

- Sequences are just rectangular shaped images (e.g., embedding dim. times length): apply CNNs
  - \* With 1D filters
  - The filter parameters are shared across time, and can find patterns in the input
- This is called the time delay neural network
- Downside:
  - receptive field of filters are limited to finite size, i.e., the width of the convolutional filters, which can be expanded with deeper networks

#### Recurrent Neural Nets (RNNs)

- RNNs create networks dynamically, based on input sequence
  - \* given sequence of inputs  $x^{(1)}, x^{(2)}, ..., x^{(t)}$
  - \* process each symbol from left to right, to form a sequence of hidden states  $m{h}^{(t)}$
  - \* each  $h^{(t)}$  encodes all inputs up to t



## RNNs as Very Deep Networks

- Compared to NNets we've seen before:
  - unfolded RNN has depth equal to input sequence length
  - parameters shared between layers
- Can easily be 'unrolled' to cater to any input length



## RNN Applications: Seq. Classification

Sequence classification: labelling sequence



## Sequence Tagging RNN

- Assign each item/token a label in sequence
  - Given targets per item, can measure loss per item



#### **Encoder-Decoder for Sequence Translation**



E.g., English to French

Encoder RNN encodes input sequence into a context

Decoder RNN acts like a tagger, where we're trying to (re)generate next inputs

#### **RNN** Parameterisation

Consider tagging RNN:
 define f as follows

$$egin{array}{lll} oldsymbol{a}^{(t)} &=& oldsymbol{b} + oldsymbol{W} oldsymbol{h}^{(t-1)} + oldsymbol{U} oldsymbol{x}^{(t)}, \ oldsymbol{h}^{(t)} &=& anh(oldsymbol{a}^{(t)}), \ oldsymbol{o}^{(t)} &=& oldsymbol{c} + oldsymbol{V} oldsymbol{h}^{(t)}, \ oldsymbol{\hat{y}}^{(t)} &=& ext{softmax}(oldsymbol{o}^{(t)}), \end{array}$$



- Parameters are b, W, U, c, V
  - \* not specific to timestep t, but shared across all positions
  - \* this "template" can get unrolled arbitrarily

## Training RNNs: Backprop. Thru. Time

- Backpropagation algorithms can be applied to network
  - Called backpropagation through time (BPTT)
  - \* Gradients from the loss at every position must be propagated back to the very start of the network
- Suffers from gradient vanishing problem
  - \* Consider linear RNN, gradients of  $\frac{\partial \boldsymbol{h}^{(T)}}{\partial \boldsymbol{h}^{(1)}} = \boldsymbol{W}^{T-1}$ , thus can explode or vanish with large T, depending on largest eigenvalue of  $\boldsymbol{W}$  (i.e., greater than / less than one).
  - Can't learn long distance phenomena (over 10+ steps)

## Long Short-Term Memory (LSTM)

- In RNN, previous state is provided as an input
  - Multiplied by weight matrix, and non-linearity applied
- LSTM introduces state self-loop, based on copying
  - Takes copy of previous state, scaled by sigmoid forget gate
- Gradient magnitude now maintained
  - Can handle 100+ distance phenomena (vs 5-10 for RNN)



#### Mini-summary

- Recurrent networks for modelling sequences
  - \* recurrent units
  - \* back-propagation through time
  - \* long-short term memory
  - \* applications

next: Transformers

## **Transformers**

More than meets the eye.

A method for processing sequence inputs in highly parallelizable manner, using **attention**.

#### **Attention**

- RNNs over long sequences not to good at representing properties of the full sequence
  - \* Biased towards the end (or ends) of the sequence
  - Last hidden layer / context: A bottleneck!
- Attention averages over hidden sequence

\*  $c = \sum_{j} \alpha_{j} h^{(j)}$  summary weighted average

\*  $\alpha_j = \exp(e_j)/(\sum_{j'} \exp(e_{j'}))$  softmax

\*  $e_j = f(\mathbf{h}^{(j)})$  focuses at

• E.g., key phrase in review



## Repeated attention in Seq2seq models

• Consider multiple sequential outputs,  $s^{(i)}$ 

\* 
$$c_{i} = \sum_{j} \alpha_{ij} h^{(j)}$$
  
\*  $s^{(i)} = f(s^{(i-1)}, y^{(i-1)}, c_{i})$   
\*  $\alpha_{ij} = \exp(e_{ij})/(\sum_{j'} \exp(e_{ij'}))$   
\*  $e_{ij} = f(s^{(i-1)}, h^{(j)})$ 

Avoids bottleneck, and uncovers meaningful structure

Neural Machine Translation by Jointly Learning to Align and Translate.
Bahdanau, Cho, Bengio, ICLR 2015



#### **Attention in Vision**

- Can attend to other representations, e.g., images
  - Attention over matrix input
  - Roves during generation of caption





#### Self-attention

- Transformers use attention as means of representing sequences directly, instead of RNN
  - Representation of item i is based on attention to the rest of the sequence
  - \* Use item i as the query in attention against all items  $j \neq i$
- Compared to RNNs
  - No explicit position information (add to each symbol position index)
  - \* Cheap: easily done in parallel



#### **Transformer**

- The Transformer uses self-attention as its main step
  - \* Alongside residual, and normalization layers
  - Using multiple "attention heads", and deep stacking
- Applied first to translation
  - \* Then raw text, e.g., BERT, RoBERTa, GPT
  - \* Highly scalable
  - Large performance gains over RNN models



The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/

#### This lecture

- Recurrent networks for modelling sequences
  - \* recurrent units
  - \* back-propagation through time
  - \* long-short term memory
- Transformers and attention

next: Cross-validation