实验十九 分光计测量棱镜折射率 实验报告

钱思天 1600011388 No.8

2017年12月15日

1 实验数据与处理

1.1 实测数据

1.1.1 顶角 A 测量

根据实测结果, 并根据公式

$$\phi = \frac{\theta_1 - \theta_1' + \theta_2 - \theta_2'}{2}$$

表 1: 顶角 A 测量结果

角度	θ_1	θ_2	$ heta_1'$	$ heta_2'$	ϕ
1	167°18′	107°22′	$347^{\circ}16'$	$287^{\circ}16'$	59°58′
2	167°20′	107°20′	$347^{\circ}17'$	287°18′	60°00′
3	167°18′	107°22′	347°20′	287°18′	59°59′
Average	167°19′	107°21′	347°18′	287°17′	59°58.8′

得

顶角:
$$A = \bar{\phi} = 59^{\circ}58.8'$$

1.1.2 略入射法

根据实测结果, 并根据公式

$$\beta = \frac{\alpha_1 - \alpha_1' + \alpha_2 - \alpha_2'}{2}$$

耒	2.	掠λ」	計法测	量结果
1	∠.	J/N/ \	11 12 17 17	王山八

角度	α_1	α_2	α_1'	α_2'	β
1	150°31′	109°07′	$330^{\circ}28'$	$289^{\circ}04'$	$41^{\circ}24'$
2	150°31′	109°09′	330°29′	289°04′	41°24′
3	150°31′	109°06′	$330^{\circ}27'$	289°04′	41°24′
Average	150°31′	109°07′	330°28′	289°04′	41°23.8′

得

掠入射角:
$$\gamma = \bar{\beta} = 41^{\circ}23.8'$$

1.1.3 最小偏转角法

根据实测结果, 并根据公式

$$\eta = \frac{\zeta_1 - \zeta_1' + \zeta_2 - \zeta_2'}{2}$$

表 3: 最小偏转角法测量结果

角度	ζ_1	ζ_2	ζ_1'	ζ_2'	η
1	97°52′	43°43′	277°52′	223°46′	54°08′
2	97°52′	43°46′	277°48′	223°45′	54°05′
3	97°53′	43°45′	277°50′	223°43′	54°08′
Average	97°52′	43°45′	277°50′	223°45′	$54^{\circ}06.5'$

得

最小偏转角:
$$\delta_m = \bar{\eta} = 54^{\circ}06.5'$$

1.2 计算

1.2.1 顶角 A 的测量

根据顶角的计算公式,其不确定度分为两项:

B 类不确定度: 分光计的允差

$$e_0 = 1'$$

得

$$\sigma_1 = \frac{\frac{1}{3} \times (4e_0)}{\sqrt{3}} = \frac{4'}{3\sqrt{3}} = 0.8'$$

A 类不确定度: 根据标准差公式

$$\sigma_2 = \sqrt{\frac{\sum_{i=1}^{3} (A_i - \bar{A})^2}{3 \times 2}} = 0.4'$$

故

$$\sigma_A = \sqrt{\sigma_2^2 + \sigma_1^2} = 0.9'$$

$$A \pm \sigma_A = 59^{\circ}59.8' \pm 0.9'$$

同理,还可以求得掠入射法中的掠入射角 γ 和最小偏转角法中的最小偏转 角 δ_m 的不确定度

$$\sigma_{\gamma} = 0.8'; \sigma_{\delta} = 1.3'$$

$$\gamma \pm \sigma_{\gamma} = 41^{\circ}23.8' \pm 0.8'$$

$$\delta_{m} \pm \sigma_{\delta} = 54^{\circ}06.5' \pm 1.3'$$

1.2.2 掠入射法测折射率

由公式

$$n = \sqrt{1 + (\frac{\cos A + \sin \gamma}{\sin A})^2} = 1.6732$$
$$\sigma_n = \sqrt{(\frac{\partial n}{\partial A})^2 \sigma_A^2 + (\frac{\partial n}{\partial \gamma})^2 \sigma_\gamma^2}$$

而

$$(\frac{\partial n}{\partial A})^{2} \sigma_{A}^{2} = \sigma_{A}^{2} (\frac{-2\csc(A)(\cos(A) + \sin(\gamma)) - 2\cot(A)\csc^{2}(A)(\cos(A) + \sin(\gamma))^{2}}{2\sqrt{\csc^{2}(A)(\cos(A) + \sin(\gamma))^{2} + 1}})^{2}$$

$$(\frac{\partial n}{\partial \gamma})^2 \sigma_{\gamma}^2 = \sigma_{\gamma}^2 (\frac{\csc^2(A)\cos(\gamma)(\cos(A)+\sin(\gamma))}{\sqrt{\csc^2(A)(\cos(A)+\sin(\gamma))^2+1}})^2$$

为计算不确定度,将角度制转化为弧度制计算,得

$$\sigma_n = \sqrt{(\frac{\partial n}{\partial A})^2 \sigma_A^2 + (\frac{\partial n}{\partial \gamma})^2 \sigma_\gamma^2} = 0.0004$$
$$n \pm \sigma_n = 1.6732 \pm 0.0004$$

2 分析与讨论 4

1.2.3 最小偏转角法测折射率

由公式

$$n = \csc\left(\frac{A}{2}\right) \sin\left(\frac{1}{2}(A + \delta_m)\right) = 1.6787$$
$$\sigma_n = \sqrt{\left(\frac{\partial n}{\partial A}\right)^2 \sigma_A^2 + \left(\frac{\partial n}{\partial \delta_m}\right)^2 \sigma_{\delta_m}^2}$$

而

$$(\frac{\partial n}{\partial A})^2 \sigma_A^2 = \sigma_A^2 (-\frac{1}{2}\csc^2\left(\frac{A}{2}\right)\sin\left(\frac{\delta_m}{2}\right))^2$$

$$(\frac{\partial n}{\partial \delta_m})^2 \sigma_{\delta_m}^2 = \sigma_{\delta_m}^2 (\frac{1}{2}\csc\left(\frac{A}{2}\right)\cos\left(\frac{1}{2}\left(A + \delta_m\right)\right))^2$$

为计算不确定度,将角度制转化为弧度制计算,得

$$\sigma_n = \sqrt{\left(\frac{\partial n}{\partial A}\right)^2 \sigma_A^2 + \left(\frac{\partial n}{\partial \delta_m}\right)^2 \sigma_{\delta_m}^2} = 0.0003$$
$$n \pm \sigma_n = 1.6787 \pm 0.0003$$

1.3 选做部分 -测量汞灯的其余谱线

根据实测结果, 并根据公式

$$\psi = \frac{\xi_1 - \xi_1' + \xi_2 - \xi_2'}{2}$$
$$n = \csc\left(\frac{A}{2}\right) \sin\left(\frac{1}{2}(A + \psi)\right)$$

表 4: 测量及计算结果

农工 以至久月升和木							
角度	ξ_1	ξ_2	ξ_1'	ξ_2'	ψ	n	
黄	98°10′	43°42′	278°11′	223°42′	54°49′	1.6853	
暗绿	97°30′	43°41′	277°26′	223°44′	53°66′	1.6786	
紫	99°30′	43°44′	279°21′	223°45′	55°61′	1.6966	
暗紫	98°50′	43°45′	278°50′	223°43′	55°06′	1.6880	

2 分析与讨论

答 在我看来,本次实验的误差来源有以下几点

3 收获与感想 5

1 狭缝的宽度,过窄的宽度亮度较小,过宽的又存在像的尺度问题,都会对实验产生影响

2 不可避免的仪器允差等

3 收获与感想

分光计,在高中时我就对它又爱又恨。爱的是分光计的使用很有趣而原理又很巧妙,精度也很高;恨的,就是他那有些繁琐的调节了。

这次做实验也不例外,一大半的时间都消耗在了分光计的调节上。

当然,除了调节之外,这次实验的收获还是很大的。

其一就是分光计的使用了,每一次使用分光计,都不由得为它的精巧 所折服。而且从分光计的原理中,我还感受到了对于几何关系的运用。

此外,调节分光计时,我也对了逐步逼近,控制自由度等思想有了更 深的理解。