Math 650 Fall 2011 Homework #5

Due Nov. 9, Wed. in class

- P.1 Let $f: \mathbb{R}^n \to \mathbb{R}$ be a G-differentiable function. Show that f is convex if and only if $\langle \nabla f(y) \nabla f(x), y x \rangle \geq 0$, $\forall x, y \in \mathbb{R}^n$. (*Hint*: consider the convexity condition $f(y) \geq f(x) + \langle \nabla f(x), y x \rangle$.)
- P.2 Show that the following statements are equivalent:
 - (1) $f: \mathbb{R}^n \to \mathbb{R}$ is sublinear;
 - (2) $f: \mathbb{R}^n \to \mathbb{R}$ is convex and positively homogeneous;
 - (3) $f(\lambda x + \mu y) \leq \lambda f(x) + \mu f(y)$ for all $x, y \in \mathbb{R}^n$ and all $\lambda \geq 0, \mu \geq 0$. (*Hint*: for positive homogeneity, show that $f(x/\lambda) \leq f(x)/\lambda$ for any $x \in \mathbb{R}^n$ and $\lambda > 0$.)
- P.3 Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. It has been shown that the one-sided directional derivative $f'_+(x;d)$ exists. Fix $x \in \mathbb{R}^n$, define $h: \mathbb{R}^n \to \mathbb{R}$ as $h(d) := f'_+(x;d)$, where $d \in \mathbb{R}^n$.
 - (1) Show that h is convex. (Hint: use $f(x+t(\lambda d^1+(1-\lambda)d^2))=f(\lambda(x+td^1)+(1-\lambda)(x+td^2))$ for all $\lambda \in [0,1]$, $t \in \mathbb{R}$, and $d^1, d^2 \in \mathbb{R}^n$.)
 - (2) Show that $f'_{+}(x;d)$ is sublinear in d. (You may assume the positive homogeneity of h proved in HW #1.)
- P.4 For a given nonempty set $S \subseteq \mathbb{R}^n$, define its support function $\sigma_S : \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ as $\sigma_S(x) := \sup\{\langle x, z \rangle \mid z \in S\}.$
 - (1) Show that σ_S is convex, sublinear, and lower semicontinuous.
 - (2) Show that if S is bounded, then σ_S is continuous. And give an example of a set S whose support function is *not* continuous on \mathbb{R}^n .
- P.5 Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a vector $x^* \in \mathbb{R}^n$.
 - (1) Show that the subdifferential $\partial f(x^*)$ is a closed convex set provided that it is nonempty.
 - (2) Show that x^* is a global minimizer of f on \mathbb{R}^n if and only if $0 \in \partial f(x^*)$.
- P.6 Let $K \subseteq \mathbb{R}^n$ be a convex cone, and $f : \mathbb{R}^n \to \mathbb{R}$ be a G-differentiable function. Consider the convex optimization $\min_{x \in K} f(x)$, and let $x^* \in K$ be a minimizer.
 - (1) Show that if x^* is in the interior of K, then $\nabla f(x^*) = 0$.
 - (2) Show that $\nabla f(x^*) \in K^*$, where K^* is the dual cone of K.
 - (3) Show that $\nabla f(x^*) \perp x^*$.
 - (4) Show that the first order necessary condition (or the variational inequality) is equivalent to the condition (H): $K^* \ni \nabla f(x^*) \perp x^* \in K$.
 - (5) Find K^* and simplify the condition (H) for the following three cases: (i) $K = \mathbb{R}^n$; (ii) K is a subspace of \mathbb{R}^n with dimension $1 \leq \dim(K) < n$; and (iii) $K = \mathbb{R}^n_+$. (*Note*: these three cases correspond to unconstrained, equality constrained, and inequality constrained optimization problems, respectively.)