GRAPH ALGORITHMS

Tanjina Helaly

MAIN TOPICS

- Graph representation
- Graph traversal
 - Breadth-first search
 - Depth-first search

GRAPHS

- \circ *Graph* G = (V, E)
 - V = set of vertices
 - $E = \text{set of edges} \subseteq (V \times V)$
- Types of graphs
 - Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as $u \to v$. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function $w : E \to \mathbb{R}$.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: $|E| << |V|^2$.
- $|E| = O(|V|^2)$

GRAPHS

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if *G* is undirected.
 - Not necessarily so if *G* is directed.
- Path
 - a **path** in a graph is a finite sequence of edges which connect a sequence of vertices.
 - Sequence of alternating vertices and edges.
 - Start from a vertex and ends to a vertex.
 - Simple path
 - All vertices and edges are distinct.
- Cycle
 - A path whose start and end vertex is same.

REPRESENTATION OF GRAPHS

- Two standard ways.
 - Adjacency Lists.

• Adjacency Matrix.

ADJACENCY LISTS

- \circ Consists of an array Adj of |V| lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

STORAGE REQUIREMENT

• For directed graphs:

• Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{Out-degree}(v) = |E|$$
No. of edges leaving v

• Total storage: $\Theta(V+E)$

• For undirected graphs:

• Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{degree}(v) = 2 | E |$$

• Total storage: $\Theta(V+E)$

No. of edges incident on v. Edge (u,v) is incident on vertices u and v.

Pros and Cons: adj list

o Pros

- Space-efficient, when a graph is sparse.
- Can be modified to support many graph variants.

Cons

- Determining if an edge $(u,v) \in G$ is not efficient.
 - Have to search in u's adjacency list. $\Theta(\text{degree}(u))$ time.
 - $\bullet \Theta(V)$ in the worst case.

ADJACENCY MATRIX

- \circ | V| \times | V| matrix A.
- \circ Number vertices from 1 to |V| in some arbitrary manner.

• A is then given by:
$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3	4
1	0	1 0 0	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

Ш	1	2	3	4
1	0	1 0 1	1	1
2	1	0	1	0
3	1	1	0	1
4	1		1	

 $A = A^{T}$ for undirected graphs.

SPACE AND TIME

- \circ Space: $\Theta(V^2)$.
 - Not memory efficient for large graphs.
- Time: to list all vertices adjacent to u: $\Theta(V)$.
- o Time: to determine if (u, v) ∈ E: Θ(1).
- Can store weights instead of bits for weighted graph.

Graph Representation – List vs. Matrix

Figure 22.1 Two representations of an undirected graph. (a) An undirected graph G with 5 vertices and 7 edges. (b) An adjacency-list representation of G. (c) The adjacency-matrix representation of G.

GRAPHS

- Reachable checking
 - If a path exists
- Cycle checking
 - a vertex is reachable from itself.

CONNECTED COMPONENT

- An undirected graph is connected if there is a path between every pair of vertices.
- A **connected component** of an undirected graph is a maximal set of nodes such that each pair of nodes is connected by a path.

STRONGLY CONNECTED COMPONENTS

- A graph is **strongly connected** if every vertex is reachable from every other vertex.
- The strongly connected components of a directed graph is the subgraph where every vertex is reachable from every other vertices.

(c)

CONNECTED COMPONENTS

- Connected (Strongly or not) components form a **partition** of the set of graph vertices, meaning
 - connected components are non-empty,
 - they are pair-wise disjoints, and
 - the union of connected components forms the set of all vertices.
- Algorithm to find the strong connectivity of a graph takes linear time ($\Theta(V+E)$).

CONNECTED COMPONENTS

- Connected components count
 - Count of disjoint connected components
- Size of connected component
 - number of vertices in a component
- Figure
 - Fig 1: has 3 connected components with 3 different sizes
 - Fig 2: has 4 connected components with 3 different sizes

Fig 2

TREE

- Tree: Connected Acyclic undirected graph
- Forest: If an undirected graph is acyclic but possibly disconnected, it is a *forest*
- **Spanning Tree**: is a tree which includes all of the vertices of the graph.

Appendix B Sets, Etc.

Figure B.4 (a) A free tree. (b) A forest. (c) A graph that contains a cycle and is therefore neither a tree nor a forest.

PROPERTIES OF FREE TREES

- Let G ={V;E} be an undirected graph. The following statements are equivalent.
 - Any two vertices in G are connected by a unique simple path.
 - G is connected, acyclic and |E| = |V| 1.
 - G is connected, but if any edge is removed from E, the resulting graph is disconnected.
 - G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.

GRAPH-SEARCHING ALGORITHMS

- \circ Given: a graph G = (V, E), directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph
 - Pick a vertex as the root
 - Choose certain edges to produce a tree
 - Note: might also build a forest if graph is not connected
- Used to discover the structure of a graph.

GRAPH-SEARCHING ALGORITHMS

- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).
 - o "Search as deep as possible first."

GRAPH TRAVERSALS

•Both take time: O(V+E)


```
BFS(G,s)
1. for each vertex u in V[G] - \{s\}
             do color[u] \leftarrow white
3
                  d[u] \leftarrow \infty
                  \pi[u] \leftarrow \text{nil}
4
   color[s] \leftarrow gray
  d[s] \leftarrow 0
7 \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
   enqueue(Q,s)
10 while Q \neq \Phi
11
             \mathbf{do} \ \mathbf{u} \leftarrow \mathrm{dequeue}(\mathbf{Q})
12
                          for each v in Adj[u]
13
                                        do if color[v] = white
14
                                                     then color[v] \leftarrow
    gray
15
                                                             d[v] \leftarrow d[u] + 1
16
                                                              \pi[v] \leftarrow u
17
                                                              enqueue(Q,v)
18
                          color[u] \leftarrow black
```

white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices color[v]: color of v d[v]: distance from s to v $\pi[u]$: predecessor of v

Q: s 0

Q: w r 1 1

Q: r t x 1 2 2

Q: t x v 2 2 2

Q: x v u 2 2 3

Q: v u y 2 3 3

Q: u y 3 3

Q: y 3

 \mathbf{Q} :

BF Tree

APPLICATION OF BFS

- Finding Shortest Path
 - network (Computer, transportation[highway, flight])
 - GPS finding direction with shortest distance
 - Broadcasting of network node
 - Social network find people within k distance
 - Crawlers in Search Engines

DEPTH-FIRST SEARCH

PSEUDO-CODE

```
DFS(G)
1 for each vertex u \in G.V
2 u.color = WHITE
3 \quad u.\pi = NIL
4 time = 0
5 for each vertex u \in G.V
      if u.color == WHITE
           DFS-VISIT(G, u)
DFS-VISIT (G, u)
 1 time = time + 1
                               // white vertex u has just been discovered
2 u.d = time
3 u.color = GRAY
4 for each v \in G.Adj[u] // explore edge (u, v)
       if v.color == WHITE
           \nu.\pi = u
           DFS-VISIT(G, \nu)
8 \quad u.color = BLACK
                               // blacken u; it is finished
9 time = time + 1
10 u.f = time
```

Uses a global timestamp *time*.

APPLICATION OF DFS

- Finding path between 2 vertices.
- Finding connected components
- Topological sorting (Dependency resolution)
 - mainly used for scheduling a sequence of jobs or tasks based on their dependencies.

REFERENCE

o Chapter 22 (22.1, 22.2, 22.3, 22.4) (Cormen)