High precision perturbative QCD predictions for Higgs production at the LHC

Jesús Urtasun Elizari

PhD seminar - Milan, September 2020

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Outline

- QCD in a nutshell
 - Factorization in QCD
 - Partonic cross section
 - Perturbative QCD
- Resummation in QCD
 - Higher order corrections
 - Resummation of q_{\perp}
- 4 HTurbo
 - Higgs production at the LHC: HRes and HqT
 - HTurbo: Fast predictions for Higgs production
 - Results & Conclusions

LHC physics

Factorization theorem

Compute cross sections is a hard problem → QCD Factorization

$$\sigma^{\mathrm{F}}(p_1, p_2) = \int_0^1 dx_1 dx_2 \ f_{\alpha}(x_1, \mu_F^2) * f_{\beta}(x_2, \mu_F^2) * \hat{\sigma}_{\alpha\beta}^{\mathrm{F}}(x_1 p_1, x_2 p_2, \alpha_s(\mu_R^2), \mu_F^2)$$

Partonic cross section

- PDFs $f_{\alpha}(x_i, \mu_F^2)$ absorb the non perturbative effects, evaluated at μ_F
- Partonic $\hat{\sigma}_{\alpha\beta}^{F}$ can be computed as perturbative series in α_s

Perturbative QCD

- Born cross section as LO value of a perturbative series
- $\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}$ are the NLO, NNLO, N3LO corrections

$$\hat{\sigma} = \sigma^{\mathtt{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi} \right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi} \right)^3 \sigma^{(3)} + \ldots \right)$$

Leading order predictions can strongly depend on the renormalization and factorization scales \rightarrow Need higher order corrections!

Higher order corrections

- Higher order corrections are not an easy task due to infrared (IR) singularities
- Final state radiations cancel by combining real and virtual contributions
- Initial state radiations factorized inside the PDFs, then IR-free, finite $\hat{\sigma}$

d

 q_{\perp} resummation

Study the differential q_{\perp} distribution

$$h_1(p_1) + h_2(p_2) \longrightarrow F(M, \mathbf{q}_{\perp}) + X$$

$\alpha_{S}L^{2}$	α_{S} L	 $\mathcal{O}(\alpha_{S})$
$\alpha_S^2 L^4$	$\alpha_S^2 L^3$	 $\mathcal{O}(\alpha_S^2)$
• • •		 • • •
$\alpha_S^n L^{2n}$	$\alpha_S^n L^{2n-1}$	 $\mathcal{O}(\alpha_S^n)$
dominant logs		

Truncated fixed order predictions \rightarrow divergent $\alpha_s^n \ln^m(M^2/q_\perp^2)$ appear

 q_{\perp} resummation

Write partonic q_{\perp} distribution as follows

$$\frac{d\hat{\sigma}_{ab}}{dq_{\perp}^{2}} = \left[\frac{d\hat{\sigma}_{ab}^{(\text{res.})}}{dq_{\perp}^{2}}\right]_{\text{l.a.}} + \left[\frac{d\hat{\sigma}_{ab}^{(\text{fin.})}}{dq_{\perp}^{2}}\right]_{\text{f.o.}} , \quad \text{such that}$$

$$\int_{0}^{Q_{\perp}^{2}} dq_{\perp}^{2} \frac{d\hat{\sigma}_{ab}^{(\text{res.})}}{dq_{\perp}^{2}} \sim \sum \alpha_{s}^{n} \log^{m} \frac{M^{2}}{Q_{\perp}^{2}} \quad \text{for} \quad Q_{\perp} \to 0$$

$$\int_{0}^{Q_{\perp}^{2}} dq_{\perp}^{2} \frac{d\hat{\sigma}_{ab}^{(\text{fin.})}}{dq_{\perp}^{2}} \sim 0 \quad \text{for} \quad Q_{\perp} \to 0$$

Resummed and finite components need to be matched at some logarithmic accuracy (LL, NLL, NNLL, ...)

 q_{\perp} resummation

Resummation holds in impact parameter space b

$$rac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^2} = rac{\mathit{M}^2}{\hat{\mathsf{s}}} \int db \; rac{b}{2} \; J_0(bq_{\perp}) \; \mathcal{W}_{ab}(b, M)$$

Which is expressed in Mellin space (with respect to $z = M^2/\hat{s}$)

$$W_N(b, M) = \mathcal{H}_N(\alpha_s) \times \exp\{\mathcal{G}_N(\alpha_s, L)\}$$
 being $L \equiv \log(M^2 b^2)$

- Resummed effects exponentiated in the Sudakov factor $\mathcal{G}_N(\alpha_s, L)$
- Process-dependence factorized in the hard factor $\mathcal{H}_N(\alpha_s)$

HTurbo: Fast predictions for Higgs production

HqT and HRes

Predictions for Higgs q_{\perp} distribution

- HqT and HRes [de Florian, G.F., Grazzini, Tommasini] produce q₁ distributions
- Higher order corrections require high computation times
- Codes producing fast predictions are needed for precision era of the LHC

HTurbo

Starting point DYTurbo

Start from **DYTurbo** [Camarda et al.] ref. at 1910.07049, producing q_{\perp} distribution for Drell-Yan $(q\bar{q} \rightarrow I^{+}I^{-})$

- C++ interface rather that Fortran of HRes or HqT
- Set LO amplitude $gg \rightarrow H$
- Set Sudakov and Hard coefficients for Higgs production
- Compare with HRes and HqT

State of the art is just up to NNLL!

HTurbo

Starting point DYTurbo

- ullet Set LO amplitude to be gg o H
- Set Sudakov and Hard coefficients for Higgs production
- Compare with HRes and HqT

$$\mathcal{G}_{N}(\alpha_{s}, L) = L g^{(1)}(\alpha_{s}L) + g^{(2)}(\alpha_{s}L) + \frac{\alpha_{s}}{\pi}g^{(3)}(\alpha_{s}L) + \dots$$
$$\mathcal{H}_{N}(\alpha_{s}) = 1 + \frac{\alpha_{s}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{s}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \dots$$

LL(
$$\sim \alpha_s^n L^{n+1}$$
): $g^{(1)}$, $\hat{\sigma}^{(0)}$
NLL($\sim \alpha_s^n L^n$): $g^{(2)}$, $\mathcal{H}^{(1)}$

NNLL(
$$\sim \alpha_s^n L^{n-1}$$
): $g^{(3)}$, $\mathcal{H}^{(2)}$

Start by building predictions up to NNLO, then add N^3LL

Comparison HTurbo and HqT - LL

- ullet HTurbo q_{\perp} distribution matches HRes and HqT at LL
- ullet Excellent numerical agreement up to the 1/1000 level

Comparison HTurbo and HqT - NLL

- HTurbo q_{\perp} distribution matches HRes and HqT at NLL
- Agreement obtained by switching off PDF evolution

Comparison HTurbo and HqT - NNLL

- HTurbo q_{\perp} distribution matches HRes and HqT at NNLL
- Agreement obtained by switching off PDF evolution

Comparison HTurbo and HqT - all orders

- Higher orders lead to more reliable predictions √
- Agreement up to NNLL \longrightarrow ready for N³LL

Summary & Conclusions

- Fast predictions are required towards the precision era of the LHC
- $oldsymbol{0}$ q_{\perp} distributions from HTurbo match HRes and HqT up to NNLL
- HTurbo is much faster than any of the existing Higgs codes
- Next steps: Implement PDF evolution and N³LO distributions

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.