

Probability and Random Process

Aimin Tang

The University of Michigan- Shanghai Jiao Tong University Joint Institute
Shanghai Jiao Tong University

Sep. 10 2019

• 1. Introduction to Probability

- Application example
- Review of set and functions
- Models of random experiments
- Axioms and properties of probability
- Conditional probability
- Independence of events
- Combinatorics and probability

Models of random experiments

• Examples of random experiments:

- tossing a coin/dice several times
- draw cards
- throw a dart to a dartboard
- spinning a wheel/pointer
- stirring a pan of water
- read a letter of text, read a sequence of letters
- record the times of occurrence of phone calls (emails arriving at a server)
- measuring the length of queue at an airport

- What does a probability model model?
 - It models frequency → law of nature
- Probability models for a random experiment $(\Omega, \mathcal{A}, P, X)$
 - probability space (Ω, \mathcal{A}, P)
 - sample space Ω (in some textbooks S is used)
 - event space \mathcal{A}
 - probability measure *P*
 - variable name X/Y/Z (a random variable)

- Sample space Ω is the set of all possible experiment outcomes.
 - Judgement is required. (distinct, indecomposable)
- Example: tossing a die

```
1. \Omega = \{1, 2, 3, 4, 5, 6\}
```

2.
$$\Omega = \{0, 1, 2, 3, 4, 5, 6, \ldots\}$$

3.
$$\Omega$$
= {even, odd}

4.
$$\Omega = \{1, 2, 3, 4, 5, 6, \text{ even, odd}\}\$$

5.
$$\Omega = \{2, 3, 4, 5, 6\}$$

Which ones are correct?

$$-1,3$$

tossing two dices

$$-\Omega = \{(1, 1), (1, 2), \dots, (1, 6), (2, 1), \dots, (6, 6)\}$$
$$-\Omega = \{2, 3, 4, \dots, 12\}$$

wheel spin

$$-\Omega = [0, 2\pi)$$

throw a dart to a circular dartboard

$$- \Omega = \{(x, y): x^2 + y^2 \le 1\}$$

• A subset of Ω is called an **event**

• Elements or points in the sample space Ω are called **outcomes**

• Example: In a radar system, the voltage of a noise waveform at time t can be viewed as possibly being any real number. The first step in modeling such a noise voltage is to consider the sample space consisting of all real numbers, i.e.,

$$\Omega = (-\infty, \infty)$$

Is $\{1.5\}$ an event?

Yes. Notice that singleton set, that is set consisting of a single point, are also events; e.g. $\{1.5\}$, $\{-8\}$, $\{\pi\}$. Be sure you understand the difference between the outcome -8 and the event $\{-8\}$, which is the set consisting of the single outcome -8.

- Event space \mathcal{A} is a collection of subsets of the sample space Ω . (set of sets)
- A describes the "information" that
 - one has about the system that yields uncertain outcomes.
 - equivalently one has about the experiment that describes the uncertain outcomes produced by the system.

- Example: tossing a die
 - Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Subsets such as {1, 3, 5} are events.
 - Event space $\{\{2, 4, 6\}, \{1, 3, 5\}, \Omega, \emptyset\}$

- If \mathcal{A} is a collection of subsets of Ω with the following properties, then \mathcal{A} is called a σ -algebra or σ -field.
 - $\emptyset \in \mathcal{A}$
 - If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$
 - If $A_1, A_2, A_3, ... \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
- What are the other properties we can derive from the above ones?

Properties of event space

- 1. $\Omega \in \mathcal{A}$ because $A \cup A^c \in \mathcal{A}$
- 2. $A \cap B \in \mathcal{A}$ when $A, B \in \mathcal{A}$
 - Because $A \cap B = (A^c \cup B^c)^c$
- 3. $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$, when $A_1, A_2, A_3, ... \in \mathcal{A}$
- 4. $A B \in \mathcal{A}$ when $A, B \in \mathcal{A}$
 - Because $A B \triangleq A \cap B^c$ is the set of samples that belong to A but not belong to B

σ-algebra example

• Dice toss

$$-\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$-\mathcal{A}=\{\{2,4,6\},\{1,3,5\}\}$$

Which sets are missing?

$$-\Omega,\emptyset$$

- We will require event space \mathcal{A} to be a σ -algebra. \mathcal{A} is a set of subsets of Ω that is closed under union and complements
- Meaning of A
 - No matter what the outcome ω of the experiment is, ω ∈ Ω, so Ω always occurs and since we know Ω always occurs this is part of our information about the experiment and Ω ∈ A always
 - Since we know Ω always occurs, we know \emptyset never occurs, so this is part of our information about the experiment and $\emptyset \in \mathcal{A}$ always
 - If $A \in \mathcal{A}$, that is, we know that A occurs when $\omega \in A$, we also know that if A occurs A^c does not occur, so this is part of our information about the experiment, therefore, $A^c \in \mathcal{A}$ whenever $A \in \mathcal{A}$
 - Suppose $A_1, A_2, A_3, ... \in \mathcal{A}$, i.e., we "observe" A_k , k = 1, 2, ... whenever it occurs, then, whenever one A_k , k = 1, 2, ... occurs, $\bigcup_{i=1}^{\infty} A_i$ occurs

- I toss a coin twice
 - I tell you whether or not the outcomes of the coin tosses are the same or different. Then
 - $\Omega = \{HH, HT, TH, TT\}, H \Rightarrow$ "Heads", $T \Rightarrow$ "Tails"
 - $\mathcal{A} = \{\Omega, \emptyset, \{HH, TT\}, \{TH, HT\}\}$
 - I allow you to see the outcome of each coin toss. Then
 - $\Omega = \{HH, HT, TH, TT\}, H \Rightarrow$ "Heads", $T \Rightarrow$ "Tails"
 - $\mathcal{A} = 2^{\Omega}$ = power set of Ω = set of all subsets of Ω
- Note that the "information" we have about the above two cases is different

• We will require event space \mathcal{A} to be a σ -algebra, but not all σ -algebra's are acceptable event spaces.

- Why not make A the set of all subsets of Ω ?
 - Tossing a dice $\mathcal{A} = \{\emptyset, \{1\}, \{2\}, ..., \{6\}, \{1, 2\}, ..., \Omega\}$
 - fine
 - does not always work! \rightarrow the sample space Ω is continuous or uncountably infinite

- In probability theory, we are interested in **probabilities of events** (not outcomes)
- We say that an event A occurs iff the outcome of the random experiment is $\omega \in \Omega$ belongs to A, i.e., $\omega \in A$

- Probability measure P assigns probability to events in \mathcal{A} and only to events in \mathcal{A}
- Example: tossing a dice
 - Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - Event space $\{\{2, 4, 6\}, \{1, 3, 5\}, \Omega, \emptyset\}$
 - Probability measure
 - $P({2, 4, 6}) = 1/2$
 - $P(\{1, 3, 5\}) = 1/2$
 - $P(\{1,2\}) = ?$
 - does not exist.

- Why assign probability to sets/events, i.e., elements of \mathcal{A} , rather than to outcomes, i.e., elements of Ω ?
 - If Ω is finite, there is no problems
 - But if Ω is infinite (uncountable infinite), then there are problems with assigning to every outcome.
- Example: dice toss
 - $-\Omega = \{1, 2, 3, 4, 5, 6\}$
 - \mathcal{A} = all subsets of Ω
 - $Pr(3 occurs) = P(\{3\})$

- Example: wheel spin (continuous outcomes) $\Omega = [0, 2\pi)$
- Suppose we want
 - Pr(wheel = 1.6) = α (0 $\leq \alpha \leq$ 1)
 - Pr(wheel =1.7) = α
 - Pr(wheel = 1.6 or 1.7) = 2α
 - Pr(wheel is 0.001, 0.002, 0.003, ...)= $(\infty)*\alpha<1 \Rightarrow \alpha=0$
 - $Pr(\pi/2 < wheel < \pi) = 1/4$

- Why not make \mathcal{A} the set of all subsets of Ω ?
- Example: Wheel spin (continuous outcomes)
 - $-\Omega = [0, 2\pi)$
 - There is no way to assign probabilities to all subsets of Ω in a way that handles frequencies.

Set operations and events

- Set operations or relations have an interpretation in terms of events in random experiment.
 - 1. $A \subseteq B$, the occurrence of $A \Rightarrow$ occurrence of B, B occurs whenever A occurs
 - 2. $C = A \cup B$: C occurs whenever A or B occurs. (union $\cup \Rightarrow$ "or")
 - 3. $C = A \cap B$: C occurs if both A and B occur. (intersection \cap \Rightarrow "and")
 - 4. A^c : A does not occur
 - 5. A B: A occurs but B does not
 - 6. $C = A \times B$ (two experiments): if C occurs means $(X, Y) \in C = A \times B \Rightarrow X \in A$ and $Y \in B$ (A occurs and B occurs.) (cross product× \Rightarrow "and")

- If $A \in \mathcal{A}$, P(A) denotes the probability of A
 - $P(A) \in [0, 1]$
 - P(A) models for the frequency with which the event A occurs when experiments run many times
- Example: Dice toss, \mathcal{A} all possible subsets of Ω

$$P(A) = \frac{\text{# of element in } A}{6}$$

$$P(\{3\}) = \frac{1}{6}, \qquad P(\{2,3\}) = \frac{1}{3}$$

- Requirements of probability measure P
 - $\text{ If } A \in \mathcal{A}, P(A) \ge 0$
 - $-P(\Omega)=1$
 - If A_1, A_2 , ...are pairwise disjoint, i.e., $A_k \cap A_l = \emptyset$, for all $k \neq l$, then $P(A_1 \cup A_2 ...) = \sum_{i=1}^{\infty} P(A_i)$

Probability measure: examples

• Throw a dart to a circular dartboard

$$P(A) = \frac{\text{area of } A}{\text{area of } \Omega}$$

• Dice toss, \mathcal{A} all possible subsets of Ω

$$P({2,4,6}) = P({2}) + P({4}) + P({6}) = 3 * \frac{1}{6} = \frac{1}{2}$$

We use capital letters for random variables

$$X, Y, Z, ..., X_1, X_2, X_3, ...$$

- -X =voltage at some point in a circuit
- $-A \in \mathcal{A}, A = \{\text{voltage} \ge 1\} = [1, \infty), P(A) = ?$
- $Pr(X \in A)$: probability of the event that the experiment outcome X lies in A.
- $\Pr(X = 3) = \Pr(\{3\}), \Pr(X \ge 1) = \Pr([1,\infty))$

Different textbook may use different notation:

- \mathbf{x} for **random variables**, $\mathbf{x}(\xi)$ indicate the number assigned to the specific outcome ξ
- $P\{x > 1\}$

Axioms and properties of probability

Recall Kolmogorov's axioms

- Requirements of probability measure P (Kolmogorov's axioms)
 - 1. If $A \in \mathcal{A}$, $P(A) \ge 0$.
 - 2. $P(\Omega) = 1$.
 - 3. If $A_1, A_2, ...$ are pairwise disjoint, i.e., $A_k \cap A_l = \emptyset$, whenever $k \neq l$, then $P(A_1 \cup A_2 \cup A_3 ...) = \sum_{i=1}^{\infty} P(A_i)$

• Which properties can be derived from these axioms?

Consequences of the axioms

- 1. Probability of a complement: $P(A^c) = 1 P(A)$
- 2. Probability of the impossible event: $P(\emptyset) = 0$
- 3. Monotonicity: $A \subset B \Rightarrow P(A) \leq P(B)$
- 4. Inclusion-exclusion: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 5. Finite disjoint unions: $P(\bigcup_{i=1}^{N} A_i) = \sum_{i=1}^{N} P(A_i)$, A_i pairwise disjoint
- 6. Union bound: $P(A \cup B) \le P(A) + P(B)$; $P(\bigcup_{i=1}^{N} A_i) \le \sum_{i=1}^{N} P(A_i)$

- Probability of a complement: $P(A^c) = 1 P(A)$
- Proof: $P(A) + P(A^c) = P(A \cup A^c)$ (Axiom 3) = $P(\Omega) = 1$ (Axiom 2)

- Probability of the impossible event: $P(\emptyset) = 0$
- Proof: $P(A) + P(\emptyset) = P(A \cup \emptyset)$ (Axiom 3) = P(A)

So that $P(\emptyset) = 0$

- Monotonicity: $A \subset B \Rightarrow P(A) \leq P(B)$
- Proof: $A \subset B \Rightarrow B = A \cup (B \cap A^c)$

So
$$P(B) = P(A) + P(B \cap A^c)$$
, we know that $P(B \cap A^c) \ge 0$ (Axiom 1)
Thus, $P(A) \le P(B)$

• Inclusion-exclusion: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• Proof:

 $A = (A \cap B^c) \cup (A \cap B); B = (A \cap B) \cup (A^c \cap B)$ $A \cup B = (A \cap B^c) \cup (A \cap B) \cup (A^c \cap B)$ $P(A) = P(A \cap B^c) + P(A \cap B) \text{ (Axiom 3)}$ $P(B) = P(A \cap B) + P(A^c \cap B) \text{ (Axiom 3)}$ $P(A \cup B) = P(A \cap B^c) + P(A \cap B) + P(A^c \cap B)$

Ve501 2020-2021 Fall (Axiom 3)

Leave for homework

- The following limit properties are essential to answer questions about the probability that something (event) ever happens or never happens
- For any sequence of events A_i

$$P(\bigcup_{i=1}^{\infty} A_i) = \lim_{N \to \infty} P(\bigcup_{i=1}^{N} A_i)$$

$$P(\bigcap_{i=1}^{\infty} A_i) = \lim_{N \to \infty} P(\bigcap_{i=1}^{N} A_i)$$

Continuity of probability

- Continuity of probability for monotonic sequences
- A sequence of events $A_1, A_2, ...$ satisfies $\lim_{i \to \infty} P(A_i) = P(\lim_{i \to \infty} A_i)$
- if A_i 's are increasing $A_1 \subset A_2 \subset \cdots$, in which case

$$\lim_{i\to\infty} P(A_i) = P(\bigcup_{i=1}^{\infty} A_i)$$

• if A_i 's are decreasing $A_1 \supset A_2 \supset \cdots$, in which case

$$\lim_{i \to \infty} P(A_i) = P(\bigcap_{i=1}^{\infty} A_i)$$

36

Continuity of probability: example

- $\lim_{n\to\infty} P\left(\left(1,2+\frac{1}{n}\right)\right)$
 - $-A_n = (1, 2 + \frac{1}{n})$ decreasing
 - $-\lim_{n\to\infty} P\left(\left(1,2+\frac{1}{n}\right)\right) = P\left(\lim_{n\to\infty} \left(1,2+\frac{1}{n}\right)\right)$
 - $= P\left(\bigcap_{n=1}^{\infty} \left(1, 2 + \frac{1}{n}\right)\right) = P((1,2])$

More about event space and probability measures

- Event space \mathcal{A} is a collection of subsets of the sample space Ω . (set of sets)
- Event space A must be a σ -algebra
- Probability measure P assigns probability to events in \mathcal{A} and only to events in \mathcal{A}
- Requirements of P (Kolmogorov's axioms)

• Why don't we simplify our lives and always take the event space \mathcal{A} to be the power set 2^{Ω} of Ω ?

- If the sample space Ω is finite or countably infinite, this is always a possibility.
- The probability measure is usually defined as

$$P(A) \triangleq \sum_{\omega \in A} P(\omega), P(\omega) \geq 0 \& \sum_{\omega \in \Omega} P(\omega) = 1$$

• It is easy to check P satisfies the axioms of a probability measure.

• However, it might be **wasteful** in the sense that if we are only interested in a small set of events, then it forces us to assign probability to all subsets rather than just to a **minimal set of interest**

• If we do choose an event space smaller than the power set, it must be a σ -algebra. Why?

• Because *unions*, *intersections*, *complements of interesting events* are also interesting events and need to be in the event space so they are assigned probabilities.

• Note that the power set itself is a σ -algebra.

- P(A) assigns probability to events $A \in \mathcal{A}$. \mathcal{A} being a σ -algebra, the axioms of probability will be satisfied.
 - 1. $\Omega \in \mathcal{A}$
 - so it makes sense in axiom 2 to talk about $P(\Omega)$.
 - 2. $A_1, A_2, ... \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$
 - so it makes sense in axiom 3 to talk about $P(\bigcup_{i=1}^{\infty} A_i)$

- If Ω is uncountably infinite, the power set usually "does not work"
- Example: $\Omega = [0, 1]$
 - Surprising, non-intuitive fact:
 - There is no function $P: 2^{\Omega} \rightarrow [0, 1]$ such that the following two conditions hold
 - the probability of an interval to be proportional to its length P([a, b]) = b a, $\forall a, b, 0 \le a < b \le 1$
 - the axioms of probability are satisfied

What to do?

- We must choose the event space \mathcal{A} to be a smaller collection of events (smaller than the power set of Ω .)
- It should contain all the events of interest, e.g., intervals
- It should be a σ -algebra

• Let \mathcal{C} be any collection of subsets of Ω . We do not assume \mathcal{C} is a σ -algebra. Define $\sigma(\mathcal{C})$ to be the **smallest** σ -algebra that contains \mathcal{C} . By this we mean that if \mathcal{D} is any σ -algebra with $\mathcal{C} \subset \mathcal{D}$ then $\sigma(\mathcal{C}) \subset \mathcal{D}$.

The smallest σ -algebra (2)

• For general collections \mathcal{C} of subsets of Ω , the smallest σ -algebra containing \mathcal{C} is the intersection of all σ -algebra containing C, i.e.,

$$\sigma(\mathcal{C}) = \bigcap_{\mathcal{A}: \mathcal{C} \subseteq \mathcal{A}} \mathcal{A}$$

- (Proof, textbook 2 Problem 1.45)
- Note that there is at least one σ -algebra containing \mathcal{C} , namely the power set.

- Let \mathcal{B} denote the smallest σ -algebra containing all the open subsets of $R = (-\infty, \infty)$. This collection \mathcal{B} is called the Borel σ -algebra. The sets in \mathcal{B} are called Borel sets
 - All the closed subsets, semi-open subsets and singletons are Borel sets.

• Now, how to choose P on Borel σ -algebra \mathcal{A} ?

• Lebesgue measure is the standard way of assigning a probability measure to (open, closed, semi-open) intervals

$$P((a,b)) = P([a,b]) = P((a,b]) = P([a,b])$$

= $b - a$ where $0 \le a < b \le 1$.

- $\Omega = [u, v], -\infty \le u < v \le \infty$ (or any form of interval from u to v)
- $\mathcal{A} = \text{Borel } \sigma\text{-algebra on } \Omega$

for all intervals, define probability by

$$P((a,b)) = P([a,b]) = P((a,b]) = P([a,b])$$

= $\int_a^b f(x) dx$

where $u \le a < b \le v$ and f is any nonnegative function s.t. $\int_{u}^{v} f(x) dx = 1$

Thank You!