

Введение в экономико-математическое моделирование

Лекция 11. Иерархии и приоритеты

канд. физ.-матем. наук, доцент Д.В. Чупраков usr10381@vyatsu.ru

Структура лекции

- 11 Метод анализа иерархий
 - Этап 1. Декомпозиция
 - Этап 2. Ранжирование критериев
 - Ранговая шкала
 - Этап 3. Приоритеты альтернатив по критериям
 - Этап 4. Приоритет альтернатив
- 2 Пример

- Метод анализа иерархий (МАИ) разработан американским математиком Томасом Саати. Представляет собой математический инструмент системного подхода к сложным проблемам принятия решений, позволяет комплексно подойти к оценке конкурентоспособности товара, услуги предприятия.
- Метод анализа иерархий широко применяется в сфере управления качеством и конкурентоспособностью

Задача принятия решений

$$X = \{A, K, S, I\}$$

- А множество альтернатив (зависит от имеющейся базы знаний, новизны задачи);
- К множество критериев оценки альтернатив (зависит от степени детализации задачи и требуемого качества ее решения);
- 5 метод поиска (вывода) решения:
 - способ выбора альтернатив, определяемый структурой предпочтений ЛПР;
 - метод (модель) оптимизации, обусловливающий способ агрегирования критериев.
 - / уровень информации.

Подход к принятию решений

Классический

Каждый вариант решения X оценивается неотрицательной действительно-значной функцией выигрыша g(x).

$$X_{\text{опт}} = \max g(x).$$

Применяется в детерминированной среде и условиях риска.

Поведенческий

Множество последствий каждого варианта p(x) сравнивается с множеством допустимых последствий при решении данной проблемы $p_{\rm d}(x)$. Применяется в условиях неопределенности

Классический подход к выбору альтернатив

- ▶ Метод теории полезности
- Метод взвешенной суммы оценок критериев
- ▶ Метод анализа иерархий

Построение функции полезности І

- 1. Провести опрос экспертов.
- 2. Построить одномерные функции полезности.
- 3. Провести ранжирование возможных исходов без взаимного сравнения альтернатив.
- 4. Построить многомерную функцию полезности как аддитивную или мультипликативную комбинацию одномерных функций.

Допущение: критерии являются взаимно независимыми по полезности.

Построение функции полезности II

Достоинство:

возможность оценки любого количества альтернативных вариантов с использованием полученной функции.

Недостатки:

- необходимость привлечения значительных объемов информации;
- высокая трудоемкость;
- исходная информация должна быть устойчивой.

Построение функции полезности І

- 1. Определяется перечень альтернатив и перечень критериев.
- 2. Каждой альтернативе дается балльная оценка по каждому из критериев.
- 3. Критериям приписываются количественные веса, характеризующие их сравнительную важность.
- 4. Определяется ценность альтернативы путем умножения весов на критериальные оценки с последующим суммированием.
- Выбирается альтернатива с наибольшим показателем ценности.

Достоинство: простота и удобство

Недостатки: отсутствие научного обоснования при определении весов критериев и альтернатив.

План метода анализа иерархий

- 1. Декомпозиция проблемы: построение качественной модели проблемы в виде иерархии включающей
 - цель,
 - альтернативные варианты достижения цели,
 - критерии оценки качества альтернатив.
- 2. Ранжирование критериев в соответствии с заданной шкалой предпочтений.
 - построение матрицы попарных сравнений,
 - проверка согласованности,
 - определение весов критериев.
- 3. Вычисление приоритетов по каждой альтернативе.
- 4. Определение оптимальной альтернативы по совокупности критериев.

Особенности метода анализа иерархий

Достоинства:

- метод позволяет найти вариант, который наилучшим образом согласуется с пониманием сути проблемы и требованиями к ее решению.
- метод позволяет проверить качество субъективных оценок.

Недостатки: Вычислительно сложен.

Этап 1. Декомпозиция

- 1. Определение глобальной цели
- 2. Определение промежуточных целей (подцелей)
- 3. Определение критериев достижимости промежуточных целей
- 4. Формирование альтернатив
- 5. Построение иерархической структуры.

Иерархическая структура

Иерархическая структура — представление проблемы принятия решений в виде графа:

- элементы располагаются по уровням;
- на верхнем уровне находится цель принятия решения,
- элементы нижнего уровня варианты достижения цели (альтернативы);
- элементы промежуточных уровней критерии или факторам, которые связывают цель с альтернативами;
- каждый элемент, за исключением самого верхнего, зависит от одного или более выше расположенных элементов.

Полнота иерархии

Иерархия считается полной, если любой элемент заданного уровня функционирует как критерий для всех элементов нижестоящего уровня.

Иерархическая структура

Этап 2. Ранжирование критериев

Проблема: как сравнить критерии между собой.

Алгоритм ранжирования критериев

- 1. Выбор шкалы ранжирования.
- 2. Формирование матрицы попарных сравнений критериев с использованием шкалы предпочтений одного сравниваемого объекта другому.
- 3. Вычисление весов критериев и нормализация оценок.
- 4. Оценка компонент собственного вектора каждого критерия
- 5. Оценка согласованности матрицы

Раногвая шкала

Определение

Порядковая (ранговая) шкала — шкала, позволяющая указать последовательность носителей признака по степени выраженности признака.

Порядковая шкала не позволяет установить как сильно выражен признак у одного носителя по сравнению с другим. Выбор шкалы:

- шкала должна позволять эксперту улавливать разницу в оценках факторов;
- эксперт должен быть уверенным во всех градациях своих оценок одновременно.

Типовая ранговая шкала

Ранг	Описание степени превосходства
0	Объекты не сравнимы
1	Объекты одинаково важны
3	Умеренное превосходство одного над другим
5	Существенное превосходство одного над другим
7	Значительное превосходство одного над другим
9	Абсолютное превосходство одного над другим

- $ightharpoonup a_{ij} > 1$ если у носителя i признак более выражен, чем у носителя j
- $ightharpoonup a_{ij} < 1$ если у носителя j признак более выражен, чем у носителя i.
- $ightharpoonup a_{ij} = rac{1}{a_{ii}}$, если признаки сравнимы.
- $ightharpoonup a_{ij} = a_{ji} = 0$, если признаки несравнимы.

Матрица попарного сравнения критериев

Критерии	I	Ш	III	• • •	n
I	1	a ₁₂	a ₁₃		a _{1n}
II	a ₂₁	1	a ₂₃		a _{2n}
III	a ₃₁	a ₃₂	1		a _{3n}
n	a _{n1}	a _{n2}	a _{n3}		1

Матрица сравнения критериев обратно симметричная.

Вектор приоритетов критериев

Ранжирование критериев, осуществляется на основании главных собственных векторов матрицы парных сравнений.

Определение

Число λ называется собственным значением, а ненулевой вектор-столбец \vec{W} — собственным вектором квадратной матрицы A, если они связаны соотношением

$$\overrightarrow{AW} = \lambda \overrightarrow{W}$$
.

Собственный вектор, отвечающий максимальному собственному значению, называется главным собственным вектором.

Вычисление собственного вектора

Решим уравнение:

$$\overrightarrow{AW} = \lambda \overrightarrow{W}.$$

$$(A - \lambda E)\overrightarrow{W} = 0. \tag{*}$$

Это уравнение имеет ненулевое решение только в случае, когда

$$\det(A - \lambda E) = 0 \tag{**}$$

- Собственные значения квадратной матрицы могут быть вычислены как решения уравнения (**).
- Собственные векторы как решение соответствующих однородных систем (*).

Пример нахождения собственных векторов І

Пример

Для матрицы парных сравнений $A=\begin{pmatrix}1&1/4&1/2\\4&1&1/4\\2&4&1\end{pmatrix}$ вычислить главный собственный вектор.

1. Составим уравнение $(A - \lambda E)\overrightarrow{W} = 0$

$$\begin{bmatrix} \begin{pmatrix} 1 & 1/4 & 1/2 \\ 4 & 1 & 1/4 \\ 2 & 4 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{bmatrix} \overrightarrow{W} = 0$$
$$\begin{pmatrix} 1 - \lambda & 1/4 & 1/2 \\ 4 & 1 - \lambda & 1/4 \\ 2 & 4 & 1 - \lambda \end{pmatrix} \overrightarrow{W} = 0$$

Пример нахождения собственных векторов II

2. Приравняем определитель к нулю:

$$\det(A - \lambda E) = \begin{vmatrix} 1 - \lambda & 1/4 & 1/2 \\ 4 & 1 - \lambda & 1/4 \\ 2 & 4 & 1 - \lambda \end{vmatrix} =$$

$$= -\frac{1}{8}(2\lambda - 7)(4\lambda^2 + 2\lambda + 7) = 0$$

3. Решая это уравнение получаем $\lambda = \frac{7}{2} = 3.5$ Это единственный действительной корень уравнения.

Пример нахождения собственных векторов III

4. Теперь подставим найденное собственное значение в уравнение $(A - \lambda E)\overrightarrow{W} = 0$

$$\begin{pmatrix} 1 - \frac{7}{2} & 1/4 & 1/2 \\ 4 & 1 - \frac{7}{2} & 1/4 \\ 2 & 4 & 1 - \frac{7}{2} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{5}{2} & 1/4 & 1/2 \\ 4 & -\frac{5}{2} & 1/4 \\ 2 & 4 & -\frac{5}{2} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} -\frac{5}{2}w_1 + \frac{1}{4}w_2 + \frac{1}{2}w_3 = 0 \\ 4w_1 - \frac{5}{2}w_2 + \frac{1}{4}w_3 = 0 \\ 2w_1 + 4w_2 - \frac{5}{2}w_3 = 0 \end{cases}$$

Пример нахождения собственных векторов IV

5. Решая систему получим множество собственных векторов:

$$\begin{cases} w_1 = \frac{1}{4}\alpha \\ w_2 = \frac{1}{2}\alpha \\ w_3 = \alpha \end{cases}$$

6. Вычислим нормированный вектор — вектор сумма координат которого равна 1:

$$\frac{1}{4}\alpha + \frac{1}{2}\alpha + \alpha = \alpha \frac{7}{4} = 1$$

7. Подставляя $\alpha = \frac{4}{7}$ получаем.

$$\overrightarrow{W}_{\lambda_{\max}} = (w_1, w_2, w_3) = \left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)$$

Пример нахождения собственных векторов V

Итак,

$$\frac{1}{7} < \frac{2}{7} < \frac{4}{7},$$

$$w_1 < w_2 < w_3.$$

Третья альтернатива наиболее предпочтительная, затем идет вторая и первая.

Вычисление весов критериев І

Для обратно симметричной матрицы есть более простой алгоритм.

Алгоритм

1. Перемножить все элементы каждой строки и извлечь корень n-й степени, где n — число элементов в строке:

$$y_i = \sqrt[n]{\prod_{j=1}^n a_{ij}}$$

2. Нормировать их так, чтобы их сумма равнялась единице:

$$y_{iH} = \frac{y_i}{\sum_{j=1}^n y_j}$$

Вычисление весов критериев II

- ightharpoonup Вектор $(y_{1_{\mathsf{H}}},\ldots,y_{n_{\mathsf{H}}})$ это главный собственный вектор $\overrightarrow{W}_{\lambda_{\max}}$.
- ▶ Величина y_{in} вклад критерия A_i в достижение цели.

Пример:

$$A = \begin{pmatrix} 1 & 1/4 & 1/2 \\ 4 & 1 & 1/4 \\ 2 & 4 & 1 \end{pmatrix} \rightarrow \overrightarrow{W}_{\lambda_{\text{max}}} = \begin{pmatrix} \sqrt[3]{1 \cdot 1/4 \cdot 1/2} \\ \sqrt[3]{4 \cdot 1 \cdot 1/4} \\ \sqrt[3]{2 \cdot 4 \cdot 1} \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1 \\ 2 \end{pmatrix}$$

$$\overrightarrow{W}_{\lambda_{\text{max}}} = \frac{\overrightarrow{w}}{|\overrightarrow{w}|} = \frac{1}{1/2 + 1 + 2} \left(\frac{1}{2}, 1, 2 \right) = \left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7} \right)$$

Согласованность матрицы I

Насколько хорошо мы построили матрицу попарных оценок?

- ightharpoonup Если A_i предпочтительнее A_k , то A_i предпочтительней A_k
- Чем длиннее цепочка предпочтительности

$$A_i \prec A_{j_1} \prec A_{j_2} \ldots \prec A_{j_t} \prec A_k$$

между A_i и A_k , тем существеннее выражен признак у объекта A_k , чем у A_i .

Определение

Полная согласованность матрицы — выполнение двух свойств:

- $ightharpoonup A_i \prec A_i$, a $A_i \prec A_k$, to $A_i \prec A_k$.
- $ightharpoonup a_{ij}a_{jk}=a_{ik}.$

Согласованность матрицы II

- ► Если матрица *А* полностью согласована, то достаточно знать одну ее строку, чтобы вычислить все остальные.
- ightharpoonup Полная согласованность обратно симметричной матрицы n imes n эквивалентна требованию равенства

$$\lambda_{\max} = n$$

 Если предпочтительность объектов оценена только по шкале Саати, то полная согласованность не достижима.

Показатели согласованности

Максимальное собственное значение:

$$\Lambda = \begin{pmatrix} \Lambda_1 \\ \Lambda_2 \\ \dots \\ \Lambda_n \end{pmatrix} = A \cdot \overrightarrow{W}_{\lambda_{\max}}, \qquad \lambda_{\max} = \sum_{i=1}^n \Lambda_i$$

- ightharpoonup Индекс согласованности: $m arPhi C = rac{\lambda_{max} n}{n-1}$
- Случайная согласованность:

n	1	2	3	4	5	6	7	8	9	10
CC	0	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

► Отношение согласованности: $OC = \frac{NC}{CC}$

Определение согласованности матирцы

- ОС ≤ 0.1 матрица согласована
- ▶ 0.1 < OC ≤ 0.2 согласованность матрицы приемлема</p>
- ▶ OC > 0.2 согласованность матрицы неприемлема

Пример. Согласованность матирцы І

Проверим согласованность матрицы
$$A = \begin{pmatrix} 1 & 1/4 & 1/2 \\ 4 & 1 & 1/4 \\ 2 & 4 & 1 \end{pmatrix}$$

- ightharpoonup Мы помним, что $\overrightarrow{W}_{\lambda_{\max}} = \left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)$
- lacktriangle Умножим матрицу A на $\overrightarrow{W}_{\lambda_{\max}}$

$$\Lambda = A \cdot \overrightarrow{W}_{\lambda_{\max}} = \begin{pmatrix} 1 & 1/4 & 1/2 \\ 4 & 1 & 1/4 \\ 2 & 4 & 1 \end{pmatrix} \begin{pmatrix} 1/7 \\ 2/7 \\ 4/7 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1 \\ 2 \end{pmatrix}$$

ightharpoonup Сложим координаты вектора: $\lambda_{\max} = \frac{1}{2} + 1 + 2 = \frac{7}{2}$

Пример. Согласованность матирцы II

Вычислим индекс согласованности

$$MC = \frac{\lambda_{\text{max}} - n}{n - 1} = \frac{7/2 - 3}{3 - 1} = \frac{1}{4} = 0.25$$

- ▶ По таблице найдем индекс случайной согласованности СС = 0.58
- Вычислим отношение согласованности $OC = \frac{NC}{CC} = \frac{0.25}{0.58} \approx 0.43$
- ightharpoonup Так как OC = 0.43 > 0.2 матрица не согласована.

Итак, матрица
$$A=egin{pmatrix} 1 & 1/4 & 1/2 \\ 4 & 1 & 1/4 \\ 2 & 4 & 1 \end{pmatrix}$$
 не согласована.

Этап 3. Приоритеты альтернатив по критериям

- Альтернативы сравниваются попарно с целью получения локальных векторов приоритета по каждому критерию.
- Строится матрица попарных сравнений x_{ij} альтернатив i и j по критерию A_k . (Помним, что $x_{ij} = \frac{1}{x_{ii}}$).
- По построенной матрице вычисляется нормализованный вектор приоритетов по рассмотренной методике.

В результате получается вектор

$$X^{(k)} = egin{pmatrix} X_{1_{\mathrm{H}}}^{(k)} \\ X_{2_{\mathrm{H}}}^{(k)} \\ \cdots \\ X_{m_{\mathrm{H}}}^{(k)} \end{pmatrix}$$

Матрица попарного сравнения альтернатив

Альтернативы	I	Ш	III	 т
I	1	<i>X</i> ₁₂	<i>x</i> ₁₃	 X _{1m}
П	<i>x</i> ₂₁	1	X ₂₃	 X _{2m}
III	<i>X</i> 31	X32	1	 X3 _m
m	X _{m1}	X _{m2}	X _{m3}	 1

Этап 4. Приоритет альтернатив

Критерии	A_1	A_2	A ₃	 A_n	Оценка
Приоритет критерия	<i>У</i> 1н	<i>У</i> 2н	<i>У</i> 3н	 <i>Уп</i> н	
Альтернатива I	X _{1н} ⁽¹⁾	X _{1н} ⁽²⁾	X _{1н} ⁽³⁾	 X _{1н} ⁽ⁿ⁾	A_1
Альтернатива II	X _{2H} ⁽¹⁾	X _{2H} ⁽²⁾	X _{2H} ⁽³⁾	 X _{2H} ⁽ⁿ⁾	A_2
Альтернатива III	X _{3H} ⁽¹⁾	X _{3H} ⁽²⁾	X _{3H} ⁽³⁾	 X _{3H} ⁽ⁿ⁾	A ₃
Альтернатива <i>т</i>	$X_{m_{ m H}}^{(1)}$	X _{mH} ⁽²⁾	$X_{m_{\rm H}}^{(3)}$	 X _{3H} ⁽ⁿ⁾	A_m

Оценка альтернативы i вычисляется как скалярное произведение строки "Приоритет критерия" на строку "Альтернатива i":

$$A_i = \sum_{j=1}^n X_{iH}^{(j)}$$

	Проект 1	Проект 2	Проект 3
Вложения (млн. руб)	5	5.5	4.5
Срок реализации (лет)	3	2	3
Кол-во рабочих мест	20	5	0
Качество документации	среднее	низкое	высокое

Этап декомпозиции

Ранжирование критериев

	Вложения	Срок ре-	Кол-во	Качество
		ализации	рабочих	докумен-
			мест	тации
Вложения	1			
Срок ре-		-		
ализации		1		
Кол-во			1	
рабочих			1	
мест				
Качество				1
докумен-				1
тации				

Ранжирование критериев

	Вложения	Срок ре-	Кол-во	Качество
		ализации	рабочих	докумен-
			мест	тации
Вложения	1	3	5	9
Срок ре- ализации		1	3	5
Кол-во рабочих мест			1	7
Качество докумен- тации				1

Ранжирование критериев

	Вложения	Срок ре- ализации	Кол-во рабочих	Качество докумен-	
		armoaqm	мест	тации	
Вложения	1	3	5	9	
Срок ре- ализации	$\frac{1}{3}$	1	3	5	
Кол-во рабочих мест	$\frac{1}{5}$	$\frac{1}{3}$	1	7	
Качество докумен- тации	$\frac{1}{9}$	$\frac{1}{5}$	$\frac{1}{7}$	1	

Пример. Вычисление весов критериев I

	Вложения	Срок	Кол-во	Качество	Уi
		реали-	рабо-	доку-	
		зации	чих	мента-	
			мест	ции	
Вложения	1	3	5	9	$\sqrt[4]{3\cdot 5\cdot 9}\approx$
					3.41
Срок	1/3	1	3	5	$\sqrt[4]{\frac{1}{3} \cdot 3 \cdot 5} \approx$
реали-	,				1.50
зации					
Кол-во	1/5	1/3	1	7	$\sqrt[4]{\frac{1}{2} \cdot \frac{1}{2} \cdot 7} \approx$
pa-	_,-	_, _	_		$\sqrt[4]{\frac{1}{5} \cdot \frac{1}{3} \cdot 7} \approx 0.83$
бочих					0.00
мест					
Качество	1/9	1/5	1/7	1	$\sqrt[4]{\frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a}} \approx$
доку-	1,3	1,0	-/'		$\sqrt[4]{\frac{1}{9} \cdot \frac{1}{5} \cdot \frac{1}{7}} \approx 0.24$
мента-					0.24
ции					

Пример. Вычисление весов критериев II

$$W = \frac{1}{3.41 + 1.50 + 0.83 + 0.24} \begin{pmatrix} 3.41 \\ 1.50 \\ 0.83 \\ 0.24 \end{pmatrix} = \begin{pmatrix} 0.57 \\ 0.25 \\ 0.14 \\ 0.04 \end{pmatrix}$$

Согласованность

ightharpoonup Умножим матрицу A на $\overrightarrow{W}_{\lambda_{\max}}$

$$\Lambda = A \cdot \overrightarrow{W}_{\lambda_{\text{max}}} = \begin{pmatrix} 1 & 3 & 5 & 9 \\ 1/3 & 1 & 3 & 5 \\ 1/5 & 1/3 & 1 & 7 \\ 1/9 & 1/5 & 1/78 & 1 \end{pmatrix} \begin{pmatrix} 0.57 \\ 0.25 \\ 0.14 \\ 0.04 \end{pmatrix} = \begin{pmatrix} 2.38 \\ 1.06 \\ 0.62 \\ 0.17 \end{pmatrix}$$

► Сложим координаты вектора: $\lambda_{max} = 4.23$

Пример. Вычисление весов критериев III

Вычислим индекс согласованности

$$NC = \frac{\lambda_{\text{max}} - n}{n - 1} = \frac{4.23 - 4}{4 - 1} = 0.077$$

- ▶ По таблице найдем индекс случайной согласованности СС = 0.9
- Вычислим отношение согласованности $\frac{\text{OC}}{\text{OC}} = \frac{0.077}{0.9} \approx 0.09 < 0.1$
- Матрица согласована.

Итак, веса критериев

Trut, Beed Remed						
Критерий	Вложения	Срок реа-	Кол-во	Качество		
		лизации	рабочих	докумен-		
			мест	тации		
Приоритет	0.57	0.25	0.14	0.04		
критерия						

Требуемые вложения

Альтернативы	Проект 1	Проект 2	Проект 3	Уi	Уін
Проект 1	1	7	9	1	0.258
Проект 2	1/7	1	3	0.405	0.105
Проект З	1/9	1/3	1	2.466	0.637
Сумма				3.872	1

Согласованность.

$$MC = 0.019$$
 $CC = 0.58$, $OC = 0.033$

Сроки реализации

Альтернативы	Проект 1	Проект 2	Проект 3	Уi	Уін
Проект 1	1	1/5	1	0.585	0.143
Проект 2	5	1	5	2.924	0.714
Проект З	7	1/5	1	0.585	0.143
Сумма				4.094	1

Согласованность.

$$MC = 0$$
 $CC = 0.58$, $OC = 0$

Количество рабочих мест

Альтернативы	Проект 1	Проект 2	Проект 3	Уi	Уін
Проект 1	1	7	9	3.979	0.785
Проект 2	1/7	1	3	0.754	0.149
Проект З	1/9	1/3	1	0.333	0.066
Сумма				5.066	1

Качество документации

Альтернативы	Проект 1	Проект 2	Проект 3	Уi	Уін
Проект 1	1	1/3	3	1	0.258
Проект 2	3	1	5	2.466	0.637
Проект З	1/3	1/5	1	0.405	0.105
Сумма				3.871	1

Приоритет альтернатив

Критерии	A_1	A_2	A_3	A_4	Оценка
Приоритет критерия	0.57	0.25	0.14	0.04	
Проект 1	0.258	0.143	0.785	0.258	0.30
Проект 2	0.105	0.714	0.149	0.637	0.29
Проект 3	0.637	0.143	0.066	0.105	0.41

Итак, для нас оптимален проект 3.