# **Preliminary**

### **MOS Memories**

## **FUJITSU**

MB8464A-10-W, MB8464A-15-W CMOS 65,536-Bit Static Random Access Memory with Data Retention Mode

### Description

The Fujisu MB8464A-W is a 8,192-word by 8-bit static random access memory fabricated with a CMOS silicon gate process.

The memory utilizes asynchronous strouttry and may be maintained in any state for an indefinite period of time. All pins are TTL. compatible, and a single +5 Volt power supply is required.

The MB8464A-W is ideally suited for use in microprocessor eye-terns and other applications where last access time and ease of use are required. All devices offer the advantages of low power dissipation, low cost, and high performance.

### Features

Organization: \$,192 words x 8-bits

Fast access time: TAVQV = TELQV = 100 ns max.

(MBB464A-10-W) 11 mW max.
TAVOV = TELQV = 150 ns max. 
Data retention: 2.0V min. (MB8464A-15-W)

Completely static operation: No clock required

TTL compatible input/output

Three-state output

 Common data Input/output Single +5V power supply, ± 10% tolerance

Low power atandby:

26-pin ceramic package (300 mil width) (600 mil width)

■ 32-pad leadless chip carrier ■ Pin competible with MB8464-W



### MBB464A-W Block Diagram and Pin Assignment



### TRUTH TABLE

| E,  | 62 | ă | ₩  | HODE         | BUPPLY CURRENT | NO MM            |
|-----|----|---|----|--------------|----------------|------------------|
| . н | ×  | X | X  | NOT SELECTED | †sa            | HIGHZ            |
| ×   | L  | × | X  | NOT SELECTED | ¹sa-           | HIGHZ            |
| ď.  | ×  | н | М, | OUT DISABLE  | 100            | HIGH-Z           |
| L   | X  | 5 | н  | READ         | 100            | a <sub>out</sub> |
| Ŀ   | Ħ  | X | L  | WRITE        | . 600          | - 199            |



### Absolute Maximum Ratings (See note)

|                  | I I                                                                     |                                                                                                                                                                                         |
|------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol           | Value                                                                   | Unit                                                                                                                                                                                    |
| Tere             | -85 to +150                                                             | · 40                                                                                                                                                                                    |
| T <sub>BMS</sub> | ~55 to +125                                                             | •                                                                                                                                                                                       |
| V <sub>CC</sub>  | -0.5 to +7.0                                                            | v                                                                                                                                                                                       |
| V <sub>IN</sub>  | -0.5 to V <sub>CC</sub> + 0.5                                           | v                                                                                                                                                                                       |
| V <sub>OUT</sub> | -0.5 to V <sub>CC</sub> + 0.5                                           | V:                                                                                                                                                                                      |
|                  | T <sub>STG</sub> T <sub>SMS</sub> V <sub>CC</sub> V <sub>IN</sub> Voort | T <sub>ST0</sub> -65 to +150  T <sub>SMS</sub> -55 to +125  V <sub>CC</sub> -0.5 to +7.0  V <sub>IN</sub> -0.5 to V <sub>CC</sub> + 0.5  V <sub>OUT</sub> -0.5 to V <sub>CC</sub> + 0.5 |

Moter Permanent derive damage may occur if ABSOLUTE MAXINGUM RATINGS are exceeded. Functional operation should be reprinted to the cend force as detailed in the operational sections of this data silent. Exposure to ebeciste mealmum reling conditions for extended periods may effect device reliability.

Recommended Operating Conditions (Referenced to GND)

| Parameter           | Symbol                    | Min  | Тур | Max                   | Unit     |
|---------------------|---------------------------|------|-----|-----------------------|----------|
| Supply voltage      | Vcc                       | 4.5  | 5.0 | 5.5                   | v        |
| Input low voltage   | V <sub>IL</sub>           | -0.3 |     | 0.6                   | <u> </u> |
| Input high voltage  | V <sub>IH</sub> · · · · · | 2.4  |     | V <sub>CC</sub> + 0.3 | v        |
| Ambient temperature | T <sub>A</sub>            | -55  |     | +125                  | *0       |

Capacitance (T<sub>A</sub> = 25°C, f = 1 MHz)

| Parameter :                              | Symbol          | Min | Тур | Max | Unit |
|------------------------------------------|-----------------|-----|-----|-----|------|
| I/O capacitance (V <sub>VO</sub> = (IV)  | C <sub>VO</sub> |     |     | . 8 | pF   |
| Input capacitance (V <sub>2V</sub> = 0V) | Can             |     |     | 6   | pF   |

BC Characteristics (Recommended operating conditions unless otherwise noted.)

MB8464A-10-W MB8464A-15-W Parameter Symbol Min Max Unit **Test Condition**  $E_2 \le 0.2V$ ,  $\bar{E}_1 > V_{CC} - 0.2V$   $(E_2 \le 0.2V \text{ or } E_2 > V_{CO} - 0.2V)$ l<sub>981</sub> 2 mΑ Standby supply current l<sub>eee</sub> 5 mA E<sub>1</sub> = V<sub>21</sub> or E<sub>2</sub> = V<sub>4</sub>  $\vec{E}_1 = V_R$ ,  $\vec{E}_2 = V_{PH}$   $V_{IN} = V_{PH}$  or  $V_{RL}$   $I_{CUT} = 0$  mA Active aupply current L<sub>001</sub> 70 mΑ Cycle = min., duty = 100%, Operating supply current l<sub>ook</sub> 90 mA. l<sub>OUT</sub> = 0 mA input leakage current l<sub>u</sub> -10 10 μÀ VIN - OV to VCC  $V_{NO} = 0V$  to  $V_{CO}$   $E_1 = V_{SH}$  or  $E_2 = V_{SL}$  or  $G = V_{H}$  or  $W = V_{L}$ Output leakage current ~50 μA luio. 50 Output high voltage VOH 2.4 ν I<sub>OH</sub> = -1.0 mA Output low voltage VoL 0.4 ν OL = 2.1 mA

AC Characteristics (Recommended operating conditions unless otherwise noted.)

### **Read Cycle**

Note: All voltages are referenced to V<sub>SS</sub>

|                  | MB8464A-10-W                                                                  |                                                                                                | MB8464A-15-W                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol           | Min                                                                           | Max                                                                                            | Min                                                                                                                                                                                                                                                                                                                                                    | Max                                                                                                                                                                                                                                                                                                                                                                                                    | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TAWAX            | 100                                                                           |                                                                                                | 150                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TAVQV            |                                                                               | 100                                                                                            |                                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                                                                                                                                    | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TEILQV           | ٠.                                                                            | 100                                                                                            |                                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                                                                                                                                    | пв                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TE2HQV           |                                                                               | 100                                                                                            |                                                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                                                                                                                                    | ns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TGLQV            |                                                                               | . 45                                                                                           |                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TAXQX            | 10                                                                            |                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TE1LOX<br>TE2HOX | 10                                                                            |                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                        | ne .                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TGLQZ            | 5                                                                             |                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                        | ne .                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TE1HQZ<br>TE2LQZ |                                                                               | 40                                                                                             |                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TGHQZ            |                                                                               | 40                                                                                             |                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                     | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | TAWAX TAVQV TE1LQV TE2HQV TGLQV TAXQX TE1LQX TE2HQX TGLQZ TGLQZ TE1HQZ TE2LQZ | Symbol Min TAWAX 100 TAWQV TE1LQV TE2HQV TGLQV TAXQX 10 TE1LQX TE2HQX 10 TGLQZ 5 TE1HQZ TE2LQZ | Symbol         Min         Max           TAVAX         100         100           TE1LOV         100         100           TE2HOV         100         45           TAXQX         10         10           TE1LOX         10         10           TGLOZ         5         10           TE1HOZ         5         10           TE2HOZ         40         40 | Symbol         Min         Max         Min           TAWAX         100         150           TAVQV         100         150           TE1LQV         100         100           TGLQV         45         10           TAXQX         10         10           TE1LQX         10         10           TGLQZ         5         5           TE1HQZ         5         5           TE2HQZ         40         40 | Symbol         Min         Max         Min         Max           TAVAX         100         150         150           TAVQV         100         150         150           TE2HQV         100         150         150           TGLQV         45         60         60           TAXQX         10         10         10           TE2HQX         10         10         10           TGLQZ         5         5         5           TE1HQZ         40         50         50 |

Note: "Transition is measured at the point of +500 mV from steady state voltage.

### **AC Characteristics**

(Continued) (Recommended operating conditions unless otherwise noted)

### **Read Cycle Timing Diagrams**

Read Cycle I'12



### Read Cycle II'



UNDERHED

AC Characteristics (Continued) (Recommended operating conditions unless otherwise noted)

### Write Cycle

|                                |                          |      | MB8464A-10-W |     | MB8464A-15-W |      |
|--------------------------------|--------------------------|------|--------------|-----|--------------|------|
| Parameter                      | Symbol                   | Min  | Max          | Min | Max          | Unit |
| Write cycle time               | TAVAX                    | 100  |              | 160 |              | ns   |
| Address valid to end of write  | TAVWH, TAVE1L,<br>TAVE2H | 80   |              | 100 |              | ns   |
| Chip enable to end of write    | TEILEIH, TEZHZEL         | 80   |              | 100 |              | ms   |
| Date valid to end of write     | TDVWH, TDVE1L,<br>TDVE2H | 40   |              | 50  |              | ns   |
| Data hold time                 | TWHDX, TETHDX,<br>TE2LDX | 5    |              | 5   |              | ns   |
| Write pulse width              | TWLWH                    | 60 . |              | 70  |              | пэ   |
| Address setup time             | TAVWL, TAVE1L,<br>TAVE2H | 0    |              | 10  |              | ris  |
| Write recovery time            | TWHAX, TEIHAX,<br>TEXLAX | 10   |              | 10  |              | nsi  |
| Write enable to output low-2*  | TWHQX                    | 5    | : -          | 5   |              | R6   |
| Write enable to output high-Z* | TWLQZ                    |      | 40           |     | 50.          | ns   |

<sup>\*</sup>TRANSITION IS MEASURED AT THE POINT OF ±900 MV STEADY STATE VOLTAGE.

AC Characteristics (Continued) (Recommended operating conditions unless otherwise noted)

Write Cycle Timing Diagrams Write Cycle 1 (W Controlled)



\*2 TRANSITION IS MEASURED AT THE POINT OF ±500 MV FROM STEADY STATE VOLTAGE.

W UNDEPINED

AC Characteristics (Continued) (Recommended operating conditions unless otherwise noted)

### Write Cycle II (E, Controlled)



"I IF \$\vec{G}\$, \$\text{E}\_0\$ AND \$\vec{W}\$ ARE IN THE BEAD MODE DURING THIS PERIOD, DIG PINS ARE IN THE OUTPUT STATE SO THAT THE IMPUT SIGNALS OF OPPOSITE PHASE TO THE OUTPUTS MUST NOT BE APPLIED.

"2 TRANSITION IS MEASURED AT THE POINT OF ±500 mV FROM STEADY STATE VOLTAGE.

[77] DON'T CARE

**ТХТ** импелиев

### **AC Characteristics** (Continued)

(Recommended operating conditions unless otherwise noted)

### Write Cycle III (E2 Controlled)



HOTE: "S IF G. E. AND W ARE IN THE READ MODE CURING THIS PERIOD, DO PINS ARE IN THE OUTPUT STATE SO THAT THE INPUT SIGNALS OF OPPOSITE PHASE TO THE OUTPUTS MUST HOT BE APPLIED. "2 TRANSITION IS MEASURED AT THE POINT OF 1500 MY PROM STEADY STATE

777 DON'T GARE

OZMENSONU CXXX

# Data Retention Characteristics

(Recommended operating conditions unless otherwise noted)

| · ·                             |          |                |       |     |      |
|---------------------------------|----------|----------------|-------|-----|------|
| Parameter                       |          | Symbol         | Min   | Max | Unit |
| Data retention supply voltage*1 |          | VDR            | 2.0   | 5.5 | Ý    |
| Data retention supply current's | Standard | lon            |       | 0.5 | mA.  |
| Data relention setup time       | 1        | TE1HVL, TE2LVL | 0     |     | ne   |
| Operation recovery time         |          | TVHE1L, TVHE2H | TAVAX |     |      |

VOLTAGE.

"I  $E_2$  controlled:  $E_2 = 0.2V$   $E_1$  controlled:  $E_1 > V_{DR} = 0.2V$  ( $E_2 = 0.2V$  or  $E_2 > V_{DR} = 0.2V$ )

"2.  $E_2$  controlled:  $V_{DR} = 3.0V$ ,  $E_3 = 0.2V$   $E_1$  controlled:  $V_{DR} = 3.0V$ ,  $E_1 > V_{DR} = 0.2V$  ( $E_2 = 0.2V$  or  $E_2 > V_{DR} = 0.2V$ )

Data Retention Characteristics (Continued)

(Recommended operating conditions unless otherwise noted)

**Data Retention Timing** 

Data Retention I (E<sub>2</sub> Controlled)



### Data Retention II (E, Controlled)



### **AC Test Conditions**

Input Pulse Levels: Input Pulse Rise and Fall Times: Timing Reference Levels:

<OUTPUT LOAD > 0.4V to 2.6V 5 ns (Transition time between 0.6V and 2.4V) Input:  $V_{IL} = 0.6V$ ,  $V_{HI} = 2.4V$ Output:  $V_{OL} = 0.8V$ ,  $V_{OH} = 2.0V$ 

Output Load:

|         | B <sub>1</sub> | R <sub>2</sub> | CL     | PARAMETERS MEASURED                                       |
|---------|----------------|----------------|--------|-----------------------------------------------------------|
| LOADI   | 1.6 KG         | 990 Ω          | 100 pF | EXCEPT TEHQX, TGLQZ,<br>TENHOZ, TGHQZ, TWHQX<br>AND TWLQZ |
| LOAD II | 1.6 (02)       | 990 D          | 6 p#   | TEILOX, TOLOZ, TEINOZ,<br>TOHOZ, TWHOX AMS<br>TWLOZ       |



Package Dimensions Dimensions in inches (millimeters)



### 32-PAD Ceramic (Metal Seal) Leadless Chip Carrier (Case No. LCC-32C-A02)



Package Dimensions (Confinued) Dimensions in inches (millimeter)

### 28-Lead Ceramio (Metal Seal) Dual In-Line Package (Case No.: DIP-28C-A08)

