Homework 3 (Due 4/24)

Question 1 Consider the following sample of $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$:

$$\begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} -2\\-2 \end{bmatrix}, \begin{bmatrix} -3\\1 \end{bmatrix}.$$

Find its sample mean vector and sample covariance matrix. Furthermore, find the sample mean and sample variance of $X_1 + 2X_2$.

Question 2 A p-variate sample $\vec{x}_1, \ldots, \vec{x}_n$ is transformed into $\vec{y}_1, \ldots, \vec{y}_n$ by

$$y_{ij} = c_j x_{ij} + d_j, \ j = 1, \dots, p, \ i = 1, \dots, n.$$

Here $c_j > 0$ for j = 1, ..., p. In other words, the p variates $X_1, ..., X_p$ are transformed into $Y_1, ..., Y_p$ in that $Y_j = c_j X_j + d_j$. Denote by r_{jk}^x the sample correlation between X_j and X_k , and denote by r_{jk}^y the sample correlation between Y_j and Y_k . Prove that $r_{jk}^x = r_{jk}^y$.

Question 3 For a sample of $\overrightarrow{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, the sample mean and sample covariance matrix are

$$ar{m{x}} = egin{bmatrix} 1 \ -1 \end{bmatrix}, \quad m{S} = egin{bmatrix} 6 & 2 \ 2 & 6 \end{bmatrix},$$

respectively.

- (a) Find the spectral decompositions of S and S^{-1} , respectively.
- (b) Sketch the mean-centered ellipse

$$(\boldsymbol{x} - \bar{\boldsymbol{x}})^{\top} \boldsymbol{S}^{-1} (\boldsymbol{x} - \bar{\boldsymbol{x}}) \leq c^2.$$

- (c) Determine the sample correlation matrix \mathbf{R} . Find the spectral decompositions of \mathbf{R} and \mathbf{R}^{-1} , respectively.
- (d) Sketch the mean-centered ellipse

$$\boldsymbol{x}^{\top} \boldsymbol{R}^{-1} \boldsymbol{x} \leq c^2.$$

Question 4 For a sample of $\overrightarrow{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}$ with sample covariance matrix

$$m{S} = egin{bmatrix} 2 & 0 & 0 & 0 \ 0 & 2 & 1 & 0 \ 0 & 1 & 2 & 1 \ 0 & 0 & 1 & 2 \end{bmatrix}.$$

1

Find the sample cross covariance matrix between $\begin{bmatrix} X_1 + X_2 \\ X_1 - X_2 \end{bmatrix}$ and $\begin{bmatrix} X_3 + X_4 \\ X_3 - X_4 \end{bmatrix}$.

Question 5 Coming back to the random sample

$$X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2).$$

with sample mean \bar{X} and sample variance S^2 . Show that $\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim \mathcal{N}(0,1)$ and $\mathbb{E}(S^2) = \sigma^2$.