PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-142363

(43)Date of publication of application: 08.06.1993

(51)Int.CI.

GO4C 9/02

G04G 5/00

G04G 7/00

(21)Application number: 03-310646

(71)Applicant: SEIKOSHA CO LTD

(22)Date of filing:

(72)Inventor: YAMADA KUNIO

(54) RADIO WAVE CORRECTED CLOCK

(57)Abstract:

PURPOSE: To correct the time accurately in the best condition, by detecting the radio wave whose intensity of electric field is the strongest at a preset frequency, and correcting the time depending

CONSTITUTION: While a power source is fed to a tuning circuit 3b and a station selecting circuit 3d at a same time every day by the control of a control means 6, a first radio wave is received by tuning to the frequency 40kHz, its intensity of electric field MA is detected by a detecting means 4, and the value is stored. A second radio wave is received by tuning the tuning circuit 3b and the station selecting circuit 3d to the frequency 60kHz, its intensity of electric field MB is detected by the detecting means 4, and the value is stored. The amounts of the electric field intensities MA and MB are compared, and when the MA is larger, the first radio wave is received by tuning the tuning circuit 3b and the station selecting circuit 3d to the frequency 40kHz. The time data included in the first radio wave is fed to a time correcting means 5, and the time being counted by a time counting means 1 is corrected. On the other hand, when the MB is larger, the second radio wave is received by tuning the tuning circuit 3b and the station selecting circuit 3d to the frequency 60kHz, and the time correction is carried

LEGAL STATUS

[Date of request for examination]

28.03.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted abandonment

registration] [Date of final disposal for application]

17.08.1998

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-142363

(43)公開日 平成5年(1993)6月8日

(51)Int.Cl. ⁶		識別記号	庁内整理番号	FI	技術表示箇所
G 0 4 C	9/02	Н	9109-2F		
G 0 4 G	5/00	Q	9109-2F		
	7/00		7809-2F		

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号	特願平3-310646	(71)出願人	
			株式会社精工會
(22)出顧日	平成3年(1991)11月26日		東京都中央区京橋 2丁目 6番21号
		(72)発明者	山田 邦夫
	-		東京都墨田区太平四丁目1番1号 株式会
			社精工舎内
		(74)代理人	弁理士 松田 和子
•			
		1	

(54)【発明の名称】 電波修正時計

(57)【要約】

【目的】 電界の最も強い時刻電波を自動的に選択して 時刻修正に用いることのできる電波修正時計を提供す る。

【構成】 時刻を表示する表示手段2と、時刻情報を含む電波を受信する受信手段3と、受信手段3で受信した電波のうち、予め設定されている周波数でかつ最も電界の強い電波を検出する検出手段4と、検出手段4で検出した電波に含まれる時刻情報に基づいて、表示手段1で表示されている時刻の修正を行なう時刻修正手段5とを設けてある。

1

【特許請求の範囲】

【請求項】】 時刻を表示する表示手段と、

時刻情報を含む電波を受信する受信手段と、

この受信手段で受信した電波のうち、予め設定されてい る周波数でかつ最も電界の強い電波を検出する検出手段 と、

この検出手段で検出した電波に含まれる時刻情報に基づ いて、上記計時手段で計時されている時刻の修正を行な う時刻修正手段と、

を具備することを特徴とする電波修正時計。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電波修正時計に関する ものである。

[0002]

【従来の技術】アメリカやドイツでは時刻情報を重畳し た電波を発信しており、この電波を受信して時刻修正に 用いる時計が市販されている。現在、日本では郵政省の 管轄下で試験的に時刻情報を重量した標準電波を発信し ており、近い将来に本格的に電波による時刻情報の発信 20 電波検出および時刻修正動作について説明する。 を開始する計画があり、この電波を利用して時刻修正を 行なう時計の要望が強まっている。各国における時刻情 報の搬送周波数は、アメリカでは60kHz、ドイツで は77.5kHz、日本では40kHzというようにそ れぞれ異なっており、従来の電波修正時計は予めそのう ちの1つの周波数の電波のみを受信するように設定され ている。すなわち、アメリカで市販されている電波修正 時計はアメリカで供給されている時刻電波のみを受信で きるので、アメリカでのみ電波による時刻修正が行なえ るのである。

[0003]

【発明が解決しようとする課題】上記従来の時計では、 予め決められた1つの周波数の電波しか受信できない。 【0004】このため、例えばアメリカで供給されてい る電波のみを受信できるように決められている時計をド イツで使おうとしても、ドイツで供給されている時刻電 波を受信することができず、電波による時刻修正が行な えないという不都合がある。

【0005】本発明は、電界の最も強い時刻電波を自動 的に選択して時刻修正に用いることのできる電波修正時 40 計を供給することを目的としている。

[0006]

【課題を解決するための手段】本発明は、時刻を表示す る表示手段と、時刻情報を含む電波を受信する受信手段 と、この受信手段で受信した電波のうち、予め設定され ている周波数でかつ最も電界の強い電波を検出する検出 手段と、この検出手段で検出した電波に含まれる時刻情 報に基づいて、上記計時手段で計時されている時刻の修 正を行なう時刻修正手段とを設けることにより、上記課 題を解決するものである。

[0007]

【実施例】以下、本発明の一実施例を図面に基づいて説

【0008】図1において、1は時刻を計時する計時手 段、2は計時手段1で計時されている時刻を表示する表 示手段、3は時刻情報を含む電波を受信する受信手段 で、アンテナ3 a、所望の周波数の電波に同調させる同 調回路3b、髙周波増幅回路3c、不要な周波数をカッ トして検波を行なう選局回路3d、低周波増幅回路3e 10 とからなる。4は受信手段3で受信した電波のうち、予 め設定されている周波数でかつ最も電界の強い電波を検 出する検出手段、5は検出手段4で検出した電波に含ま れる時刻情報に基づいて計時手段1で計時されている時 刻の修正を行なう時刻修正手段、6は電波検出動作およ び時刻修正動作を制御する制御手段であり、ROM、R AM等を内蔵している。本例では、第1の電波として周 波数40kHz、第2の電波として周波数60kHzの 2つが制御手段6に予め設定されているものとする。

【0009】つぎに、図2のフローチャートに沿って、

【0010】まず、制御手段6の制御により、毎日同じ 時刻(例えば、00:00)に同調回路3bと選局回路 3eに電源を供給するとともに周波数40kHzに同調 させて第1の電波を受信する。そして検出手段4でその 電界強度MAを検出し、その値を記憶する(ステップ A) .

【0011】つぎに、同調回路3bと選局回路3dを周 波数60kHzに同調させて第2の電波を受信する。そ して検出手段4でその電界強度MBを検出し、その値を 30 記憶する(ステップB)。

【0012】つぎに、電界強度MAとMBのうち、どち らが大きいかを判定する(ステップC)。

【0013】ステップCでMAの方が大きいと判定した 場合には、制御手段6の制御により、同調回路3bと選 局回路3dを周波数40kHzに同調させて第1の電波 を受信する。そして第1の電波に含まれている時刻情報 を時刻修正手段5に供給し、計時手段1で計時されてい る時刻を修正する(ステップD)。

【0014】一方、ステップCでMBの方が大きいと判 定した場合には、制御手段6の制御により、同調回路3 bと選局回路3dを周波数60kHzに同調させて第2 の電波を受信する。そして第2の電波に含まれている時 刻情報によって上記と同様にして時刻修正を行なう(ス テップE)。

【0015】以上の動作により、予め設定されている周 波数でかつ最も電界の強い電波に含まれている時刻情報 により時刻修正を行なう。

【0016】なお、上記実施例においては、予め設定さ れている周波数を2種類としたが、これに限らず3種類 50 以上の周波数を設定しておき、そのうちの最も電界の強 い電波を選択するようにしてもよい。

[0017]

【発明の効果】本発明によれば、最も電界強度の強い電波を自動的に選択するので、どこでも最良の状態で正確な時刻修正が行なえる。したがって、コンパクトな携帯用にすれば世界中どこへ行っても、自動的に正確な時刻合わせが行われるので、極めて便利なものである。

【図面の簡単な説明】

*【図1】本発明の一実施例を示したブロック図 【図2】図1の動作を説明するためのフローチャート 【符号の説明】

- 2 表示手段
- 3 受信手段
- 4 検出手段
- 5 時刻修正手段

【図1】

*

[図2]

