Uebungsblatt 09

Truong (Hoang Tung Truong), Testfran (Minh Kien Nguyen), Hamdash

Aufgabe 1

a.
$$B \to id|\bot|\top|\neg B|B \wedge B|B \vee B|(B)$$

Umwandlung in eindeutige Grammatik (B ist Startsymbol):

$$B \to B \lor C|C$$

$$C \to C \land D|D$$

$$D \to \neg D|A$$

$$A \to id|\bot|\top|(B)$$

b. Ergänzung um Implikation

$$B \to E \to B|E$$

$$E \to E \vee C|C$$

$$C \to C \land D|D$$

$$D \to \neg D|A$$

$$A \to id|\bot|\top|(B)$$

Aufgabe 2

G:

$$S \to cAB|cA$$

$$A \rightarrow aAb|ab$$

$$B \to cBb|cb$$

- 1. "entferne nicht terminierende und nicht erreichbare Variablen". (Es gibt aber keine)
- 2. "Mache G ϵ -frei und entferne alle 1-Variablen Regeln".
 - *: Mache G ϵ -frei : G ist schon ϵ -frei ($\epsilon \notin L(G)$)
 - *: Entferne alle 1-Variablen Regeln: Es gibt aber keine.
- 3. "In jeder Regel $A \to \alpha$ mit $|\alpha| > 1$ ersetze terminalsymbol a durch neue Variablen x_a und füge die Regel $x_a \to a$ hinzu."

$$S \to cAB$$
 ersetzt durch $S \to X_cAB, X_c \to c$

$$S \to cA$$
 ersetzt durch $S \to X_cA$

$$S \rightarrow aAb$$
ersetzt durch $A \rightarrow X_aAX_b, X_a \rightarrow a, X_b \rightarrow b$

$$A \to ab$$
 ersetzt durch $A \to X_a X_b$

$$B \to cBb$$
 ersetzt durch $B \to X_cBX_b$

$$B \to cb$$
 ersetzt durch $B \to X_c X_b$

4. "Ersetze jede Regel der Form . . . $\rightarrow B_{n-1}B_n$ (Folie 7, Seite 42)"

 $S \to x_c AB$ ersetzt durch $S \to X_c D_1, D_1 \to AB$

 $A \to X_a A X_b$ ersetzt durch $A \to X_a D_2, D_2 \to A X_b$

 $B \to X_c B X_b$ ersetzt durch $B \to X_c D_3, D_3 \to B X_b$

 G_{CNF}

 $S \to X_c D_1$

 $S \to X_c A$

 $A \to X_a D_2$

 $A \to X_a X_b$

 $B \to X_c D_3$

 $B \to X_c X_b$

 $D_1 \to AB$

 $D_2 \to AX_b$

 $D_3 \to BX_b$

 $X_a \to a$

 $X_b \to b$

 $X_c \to c$

b.

5	S				
4	-	D_1			
3	S	-	-		
2	-	A	-	В	
1	X_c	X_a	X_b	X_c	X_b
$\overline{M_{ij}}$	С	a	b	С	b

 $S \in M_{15}$ für w = cabcb

Also $w = cabcb \in L(G_{CNF})$

c.

6	-					
5	-	-				
4	-	-	D_1			
3	-	-	-	-		
2	-	-	A	-	В	
1	X_c	X_a	X_a	X_b	X_c	X_b
$\overline{M_{ij}}$	с	a	a	b	С	b

 $S \notin M_{16}$ für w = caabcb

Also $w = caabcb \notin L(G_{CNF})$

Aufgabe 3

a.
$$G: S \to \emptyset \mid \epsilon \mid a \mid b \mid (S+S) \mid (SS) \mid S^*$$

G:

$$S \rightarrow S + B \mid B$$

$$B \to BC \mid C$$

$$C \to C^* \mid A$$

$$A \to \emptyset \mid \epsilon \mid a \mid b$$

b. G:

$$S \to A_1 b A_2$$

$$A_1 \rightarrow ab \mid bA_3b$$

$$A_3 \to aA_3 \mid \epsilon$$

$$A_2 \rightarrow baA_2 \mid bA_2 \mid \epsilon$$

c. G:

$$S \rightarrow (G) + (G) \mid U + U$$

$$G \to U+1 \mid 1+U$$

$$U \to 1 \mid (G) + 1 \mid 1 + (G)$$

Aufgabe 4

a. Jede Produktion der Form $A \to a$ kann durch die Produktion $A \to aB$ und $B \to \epsilon$ ersetzt werden, die in Abstimmung mit der Definition von rechtslinearen Grammatiken sind. \square

b.