Занятие №6

- **1.** Расстояние (в км) от наблюдателя, находящегося на небольшой высоте h километров над землей, до наблюдаемой им линии горизонта вычисляется по формуле $l=\sqrt{2Rh}$, где R=6400 (км) радиус Земли. С какой высоты горизонт виден на расстоянии 4 километра? Ответ выразите в километрах.
- **2.** По закону Ома для полной цепи сила тока, измеряемая в амперах, равна $I=\frac{\varepsilon}{R+r}$, где ε ЭДС источника (в вольтах), r=1 Ом его внутреннее сопротивление, R сопротивление цепи (в омах). При каком наименьшем сопротивлении цепи сила тока будет составлять не более 20% от силы тока короткого замыкания $I_{\text{кз}}=\frac{\varepsilon}{r}$? (Ответ выразите в омах.)
- 3. Перед отправкой тепловоз издал гудок с частотой $f_0=440$ Гц. Чуть позже издал гудок подъезжающий к платформе тепловоз. Из-за эффекта Доплера частота второго гудка f больше первого: она зависит от скорости тепловоза по закону $f(v)=\frac{f_o}{1-\frac{v}{c}}$ (Гц), где c скорость звука (в м/с). Человек, стоящий на платформе, различает сигналы по тону, если они отличаются не менее чем на 10 Гц. Определите, с какой минимальной скоростью приближался к платформе тепловоз, если человек смог различить сигналы, а c=315 м/с. Ответ выразите в м/с.
- **4.** В розетку электросети подключены приборы, общее сопротивление которых составляет $R_1=90$ Ом. Параллельно с ними в розетку предполагается подключить электрообогреватель. Определите наименьшее возможное сопротивление R_2 этого электрообогревателя, если известно, что при параллельном соединении двух проводников с сопротивлениями R_1 Ом и R_2 Ом их общее сопротивление дается формулой $R_{\rm общ}=\frac{R_1R_2}{R_1+R_2}$ (Ом), а для нормального функционирования электросети общее сопротивление в ней должно быть не меньше 9 Ом. Ответ выразите в омах.
- **5.** Амплитуда колебаний маятника зависит от частоты вынуждающей силы, определяемой по формуле

$$A(\omega) = \frac{A_0 \cdot \omega_p^2}{|\omega_p^2 - \omega^2|},$$

где ω – частота вынуждающей силы (в c^{-1}), A_0 – постоянный параметр, $\omega_p=360c^{-1}$ – резонансная частота. Найдите максимальную частоту ω , меньшую резонансной, для которой амплитуда колебаний превосходит величину A_0 не более чем на 12,5%. Ответ выразите в c^{-1} .

- **6.** Плоский замкнутый контур площадью S=0,5 м 2 находится в магнитном поле, индукция которого равномерно возрастает. При этом согласно закону электромагнитной индукции Фарадея в контуре появляется ЭДС индукции, значение которой, выраженное в вольтах, определяется формулой $E=aS\cos\alpha$, где α острый угол между направлением магнитного поля и перпендикуляром к контуру, $a=4\cdot 10^{-4}$ Тл/с постоянная, S площадь замкнутого контура, находящегося в магнитном поле (в м 2). При каком минимальном угле α (в градусах) ЭДС индукции не будет превышать 10^{-4} В?
- 7. При адиабатическом процессе для идеального газа выполняется закон $pV^k=1,25\cdot 10^8$ Па·м⁴, где p давление газа (в Па), V объём газа (в м³), $k=\frac{4}{3}$. Найдите, какой объём V (в м³) будет занимать газ при давлении p, равном $2\cdot 10^5$ Па.

8. Для обогрева помещения, температура в котором поддерживается на уровне $T_n=20\,^{\circ}C$, через радиатор отопления пропускают воду по проходящей через трубу воды m=0,3 кг/с. Проходя по трубе расстояние x, вода охлаждается от начальной температуры $T_b=60\,^{\circ}C$ до температуры T $^{\circ}C$, причем

$$x = \frac{\alpha \cdot c \cdot m}{\gamma} \cdot \log_2 \frac{T_b - T_n}{T - T_b},$$

где c=4200 $\frac{\text{Дж}}{\text{кг}\cdot{}^{\circ}C}$ — теплоемкость воды, $\gamma=21$ $\frac{\text{Вт}}{\text{м}\cdot{}^{\circ}C}$ — коэффициент теплообмена, а $\alpha=0,7$ — постоянная. Найдите, до какой температуры (в градусах Цельсия) охладится вода, если длина трубы радиатора равна 84 м.

- **9.** Датчик сконструирован таким образом, что его антенна ловит радиосигнал, который затем преобразуется в электрический сигнал, изменяющийся со временем по закону $U=U_0\sin(\omega t+\phi)$, где t время в секундах, амплитуда $U_0=2$ В, частота $\omega=120^\circ/\mathrm{c}$, фаза $\phi=-30^\circ$. Датчик настроен так, что если напряжение в нем не ниже, чем 1 В, загорается лампочка. Какую часть времени (в процентах) на протяжении первой секунды после начала работы лампочка будет гореть?
- **10.** Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути со скоростью, на 16 км/ч больше скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
- **11.** Товарный поезд каждую минуту проезжает на 750 метров меньше, чем скорый, и на путь в 180 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
- **12.** Из городов A и B навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 4 часа раньше, чем велосипедист приехал в A, а встретились они через 50 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?