# Actividad #3

### Generación de Señales Senoidales y Funciones Personalizadas en MATLAB

- Nombre:
- Fecha:
- Reposiroty: https://github.com/vasanza/SSE
- Refrence: https://github.com/vasanza/Matlab\_Code

#### **Table of Contents**

| Descripción:                                  | 1 |
|-----------------------------------------------|---|
| Objetivos:                                    | 1 |
| Copia la actividad en tu respaldo             |   |
| Desarrollo de la Actividad                    |   |
| Paso 1: Limpiar variables y linea de comandos |   |
| Paso 2: Crear un codigo basico                |   |
| Paso 3: Mostrar resultados con plot           |   |
|                                               |   |

# Descripción:

En esta práctica se desarrolla una rutina para generar, documentar y visualizar señales senoidales utilizando MATLAB. Se refuerzan conceptos clave como la frecuencia de muestreo, la parametrización de señales, y el diseño de funciones personalizadas. Además, se implementa un respaldo automático del entorno de trabajo para mantener una organización eficiente.

# **Objetivos:**

- Automatizar el respaldo de archivos del entorno de trabajo en una carpeta local.
- Diseñar y utilizar funciones personalizadas en MATLAB para generar señales.
- Aplicar el concepto de frecuencia de muestreo mínima para representar señales de forma precisa.
- Visualizar y comparar señales senoidales modificando parámetros como amplitud y fase.

# Copia la actividad en tu respaldo

#### Regresar al repositorio

```
else
    cd C:\Desktop\SSE
end
```

### Desarrollo de la Actividad

#### Paso 1: Limpiar variables y linea de comandos

```
clear % Borrar variables en el workspace y libera memoria RAM
clc % Limpia el Command Window
```

#### Paso 2: Crear un codigo basico

```
% Parámetros
              % Frecuencia de la señal en Hz
f = 10;
              % Amplitud1
A1 = 6;
A2 = 16;
              % Amplitud1
            % Fase1
fase1 = 0;
fase2 = 10;
             % Fase2
T = 0.25;
                % Duración en segundos
fsmin = f*2; % Frecuencia de muestreo minima (Nyquist-Shannon)
             % Frecuencia de muestreo en Hz
fs = 2000;
```

#### Documentacion de la senal senoidal

### Paso 3: Mostrar resultados con plot

```
t = 0:1/fs:T;
figure
plot(t,y1) %Señal 1
hold on
plot(t,y2) %Señal 2
title("Señal Senosoidal")
xlabel("Tiempo (Seg)")
ylabel("Value")
legend("Señal 1, fase1 = 0", "Señal 1, fase2 = 10")
```

