Comparing Neural Network and Knowledge-Based Approaches for Crowd Dynamics

Group C

Technical University of Munich

Machine Learning in Crowd Modeling and Simulation March 2, 2024

MLCMS (TUM) WS 2023 March 2, 2024 1/18

Presentation Overview

- 1 Introduction
- 2 Dataset
- **3** Implementing the models
- 4 Discussing the models
- **5** References

MLCMS (TUM) WS 2023 March 2, 2024 2 / 18

Introduction

- Mainly based on 2 papers:
 - Example 7: Prediction of Pedestrian Dynamics in Complex Architectures with Artificial Neural Networks
 - Example 8: Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-based Approaches
- High level goal:
 - Implement neural network and knowledge-based methods
 - Test and compare on simple scenarios

MLCMS (TUM) WS 2023 March 2, 2024 3 / 18

Difference between neural and knowledge-based approach

	Knowledge-based	Deep learning		
Semantics	Model	Algorithm		
	Parameter	Coefficient		
	Calibration	Training		
	Validation	Testing		
Methodology	Differential equation systems or cellular automata	Neural network, mostly RNN, LSTM, CNN, GAN		
Inputs	System actual state (e.g., pedestrian relative positions, velocities, etc. at time t)	Past trajectories discretised over the time interval $[t-T,t]$, $T\approx 2$ –4 s		

MLCMS (TUM) WS 2023 March 2, 2024 4 / 18

Dataset introduction

- Dokumentation von Versuchen zur Personenstromdynamik report for Project Hermes, Bergische Universität Wuppertal
- data is structured in a csv table : pedestrian id, time, x, y, z
- we remove the z coordinate as it is constant for each pedestrian
- different pedestrians have their speeds measured at different time spans (they are released gradually)
- the time is measured in 1/16s the position in cm, origin is chosen arbitrarily

(a) Numpy data

5/18

Dataset exploration

- UO unidirektional offen
- one directional bottlenecked corridor scenario, the width of the corridor was 1.8 m, the width of the bottleneck was varied 0.7, 0.95 1.2 and 1.8m

(b) experiment diagram

UO-180-180-180	1.8	1.8	1.8	200	1:29
UO-145-180-180	2×0,72	1,8	1,8	150	1:17
UO-110-180-180	0,5+0,6	1,8	1,8	100	0:59
UO-070-180-180	0,7	1,8	1,8	100	1:19
UO-060-180-180	0,6	1,8	1,8	50	0:56
UO-050-180-180	0,5	1,8	1,8	50	1:00
UO-180-180-120	1,8	1,8	1,2	150	1:19
UO-180-180-095	1,8	1,8	0,95	150	1:38
UO-180-180-070	1,8	1,8	0,7	150	1:38

(c) experiment table

6/18

MLCMS (TUM) WS 2023 March 2, 2024

Dataset exploration

- UG unidirektional geschlossen
- one directional track oval shaped track scenario
- number of pedestrians was varied 15, 30, 60, 85, 95, 110, 140, 230
- track was 1.8m wide, measurement area was 6m long, inner diameter was 2 m
- pedestrians took time to start moving was high density (85+ people)

tur experiment diagram	(d)	experiment	diagram
------------------------	-----	------------	---------

Versuch.	$b_{Korr}[m]$	N	ρ	Zeit [min]
UG-180-015	1,8	15	0,25	1:49
UG-180-030	1,8	30	0,50	1:38
UG-180-60	1,8	60	1,00	1:50
UG-180-085	1,8	85	1,50	2:01
UG-180-110	1,8	110	2,00	3:19
UG-180-140	1,8	140	2,50	2:17
UG-180-170	1,8	170	3,00	2:03
UG-180-230	1,8	230	4,00	3:26
UG-180-110-2	1,8	110	2,00	3:23

(e) experiment table

Figure: unidirektional geschlossen pedestrian trajectories (the trajectories of two chosen pedestrians progress black to white)

MLCMS (TUM) WS 2023 March 2, 2024 8 / 18

Figure: unidirektional ofnnen pedestrian trajectories (the trajectories of two chosen pedestrians progress black to white)

MLCMS (TUM) WS 2023 March 2, 2024 9 / 18

Implementation of knowledge-based model

- Microscopic speed-based model (Weidmann, 1993)
- A non-linear function of mean spacing with three parameters

$$W(\bar{s}_K, v_0, T, l) = v_0 \left(1 - e^{\frac{l - \bar{s}_K}{v_0 T}} \right)$$
$$\bar{s}_K = \frac{1}{K} \sum_i \sqrt{(x - x_i)^2 + (y - y_i)^2}$$

- Where
 - \bar{s}_K is mean Euclidean spacing to K closest neighbours
 - *T* is following time gap with neighbours
 - v_0 is pedestrian speed in free situation
 - *l* physical size of pedestrian in stopped situation

MLCMS (TUM) WS 2023 March 2, 2024 10 / 18

Implementation of neural network

- Feed-forward multi-layer perceptron
- Fully connected hidden layers h with sigmoid activation function
- Input:
 - *x*, *y* positions
 - v, u velocities
 - \bar{s}_K mean distance spacing
- Output: Prediction of pedestrian speed

MLCMS (TUM) WS 2023 March 2, 2024 11 / 18

Implementation of neural network

The four neural networks with different inputs.

• Relative positions to K closest neighbors.

$$NN_1 = NN_1(x_i - x, y_i - y, 1 \le i \le K)$$

• Relative positions and velocities to K closest neighbors.

$$NN_2 = NN_2(x_i - x, y_i - y, v_i - v, u_i - u, 1 \le i \le K)$$

• Relative positions with mean distance spacing \bar{s}_{κ}

$$NN_3 = NN_3(\bar{s}_K, (x_i - x, y_i - y, 1 \le i \le K))$$

• Relative positions and velocities with mean distance spacing \bar{s}_K

$$NN_4 = NN_4(\bar{s}_K, (x_i - x, y_i - y, v_i - v, u_i - u, 1 \le i \le K))$$

MLCMS (TUM) March 2, 2024 12 / 18

Comparison between approaches

- Metrics for testing
 - Average Displacement Error (ADE)
 - Final Displacement Error (FDE)
- Testing method
 - Use testing set to evaluate
 - Comparing predictions using metrics
- Expected results
 - DL outperforms KB
 - KB outperforms DL (insufficient data)

MLCMS (TUM) WS 2023 March 2, 2024 13 / 18

Comparison between approaches

- Benefits:
 - DL: High accuracy, complex interaction learning.
 - KB: Theoretical clarity, effective in crowds.
- Drawbacks:
 - DL: Needs large data, lacks interpretability.
 - KB: Limited to average behavior, less flexible.
- Challenges:
 - DL: Generalization, model complexity.
 - KB: Adapting to new scenarios, bias in models.

MLCMS (TUM) WS 2023 March 2, 2024 14 / 18

Conclusion and Future work

- Both DL and KB have their strengths and limitations
- Future work
 - Hybrid Approach
 - DL Expansion
 - Robustness, Input Variables

MLCMS (TUM) WS 2023 March 2, 2024 15 / 18

Thank you for your attention!

MLCMS (TUM) WS 2023 March 2, 2024 16 / 18

References

Tordeux et al. (2020)

Prediction of pedestrian dynamics in complex architectures with artificial neural networks *Journal of intelligent transportation systems* Vol 24, 556-568. Taylor & Francis.

Korbmacher et al. (2022)

Review of pedestrian trajectory prediction methods: Comparing deep learning and knowledge-based approaches *IEEE Transactions on Intelligent Transportation Systems* IEEE.

Weidmann (1993)

Transporttechnik der Fussgaenger -Transporttechnische Eigenschaften des Fussgarngerverkehrs, Literaturauswertung IVT Schriftenreihe Vol 90. ETH Zurich.

MLCMS (TUM) WS 2023 March 2, 2024 17 / 18