15/7/2021 especial	Complementos de Cálculo e de Geometria Analítica	□ ENGFIS □ FIS
Iome e nº:		
nstruções:	responda e justifique brevemente as suas respostas nos espaços	apropriado
	as) Determine a solução com condições iniciais $x(0)=2$ e $\dot{x}(0)=1$ da equação near homogénea $\ddot{x}-2\dot{x}+5x=0.$	ŭo dife-
2. (2 valore	s) Determine a solução geral da equação diferencial linear não homogénea	
	$\ddot{x} + 4x = \cos(t) .$	

3.	$(2 \ valores)$ Seja $R: \mathbb{R}^2 \to \mathbb{R}^2$ a reflexão na reta $\sqrt{2} \ y = -x$. Determine a matriz que representa R na base canónica.
	(2 valores) Seja $S: \mathbb{C}^2 \to \mathbb{C}^2$ o operador linear definido por $S(x,y) = (x+iy,y-ix)$. Determine uma base ortonormal formada por vetores próprios de S , e a matriz diagonal que representa o operador nesta base.
5.	(2 valores) Calcule os comprimentos dos semi-eixos e esboce o elipsóide definido pela equação
	$6x^2 + 2xy + 6y^2 \le 1$

6	10	valores) D	etermine	a	solução	do	sistem	2
υ.	(~	vaiores	<i>)</i> ν	etermme	a	sorução	uо	sistem	d

com condições iniciais (q(0), p(0)) = (1, 0), e esboce a órbita no plano q-p.

7. (2 valores) Considere o sistema não homogéneo

Determine a solução com condições iniciais nulas (q(0), p(0)) = (0, 0).

8.	$(0.5\ valores)$ As funções $\sinh(t)$ e $\cosh(t)$ são soluções da equação diferencial				
	$\bigcirc \ddot{x} + x = 0 \qquad \bigcirc \ddot{x} + \dot{x} = 0 \qquad \bigcirc \ddot{x} - x = 0 \qquad \bigcirc \ddot{x} - \dot{x} = 0$				
9.	$(0.5\ valores)$ O operador linear $A,$ definido no espaço euclidiano complexo $\mathbb{C}^N,$ é hermítico se $\bigcirc\ A^*A-AA^*=0 \qquad \bigcirc\ A^*A+AA^*=0 \qquad \bigcirc\ A^*=A$				
10	(0.5 valence) So A é uma matriz compleya quadrada então A^2 é hormítica				
10.	(0.5 valores) Se A é uma matriz complexa quadrada, então A^2 é hermítica.				
	○ Verdadeiro ○ Falso				
11.	$(0.5\ valores)$ Existem matrizes diagonalizáveis A e B tais que também AB é diagonalizável. \bigcirc Verdadeiro \bigcirc Falso				
12.	$(0.5 \ valores)$ Se A e B são duas matrizes unitárias, então também AB^* é unitária.				
	○ Verdadeiro ○ Falso				
13.	$(0.5 \ valores)$ Se A é uma matriz ortogonal, então os seus valores próprios são imaginários puros.				
	○ Verdadeiro ○ Falso				
14.	$(0.5 \ valores)$ Se A é uma matriz real anti-simétrica então e^A é ortogonal.				
	O Verdadeiro O Falso				
15.	(0.5 valores) Se $\operatorname{tr} A = 0$ então $\operatorname{det} \left(e^A \right) = 1.$				
	○ Verdadeiro ○ Falso				
16.	(0.5 valores) Existe uma matriz quadrada real tal que $A^5 = -I$.				
	○ Verdadeiro ○ Falso				
17.	$(0.5 \ valores)$ O grupo a um parâmetro gerado pela matriz $A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ é				
	$\bigcirc e^{tA} = \begin{pmatrix} e^t & 0 \\ te^t & e^t \end{pmatrix} \qquad \bigcirc e^{tA} = \begin{pmatrix} e^t & te^t \\ 0 & e^t \end{pmatrix} \qquad \bigcirc e^{tA} = \begin{pmatrix} e^{-t} & te^{-t} \\ 0 & e^{-t} \end{pmatrix}$				
	$\left(\begin{array}{ccc} te^t & e^t\end{array}\right) \qquad \left(\begin{array}{ccc} 0 & e^t\end{array}\right) \qquad \left(\begin{array}{ccc} 0 & e^{-t}\end{array}\right)$				
10	(0.5 valeres) A álgebra de Lie (e espace tengente na identidade) de grupe des retações $SO(n)$				
10.	$(0.5\ valores)$ A álgebra de Lie (o espaço tangente na identidade) do grupo das rotações $\mathbf{SO}(n)$ é				
	\bigcirc o espaço linear das matrizes $n \times n$ hermíticas.				
	\bigcirc o espaço linear das matrizes reais $n \times n$ anti-simétricas.				
	\bigcirc o espaço linear das matrizes reais $n \times n$ com traço nulo.				
10	(0.5 valores) Considere o sistema linear definido por				
19.	(0.0 0000105) Considere o sistema inicar definido por				
	$\begin{array}{ll} \dot{x} = & y \\ \dot{y} = & -x - y \end{array}$				
	$\dot{y} = -x - y$				
	A origem é				
	O um nodo instável. O um ponto de sela. O um foco estável. O um foco instável.				