

Apple Twitter Sentiment Analysis

A PROTOTYPE RNN

Business Problem

Traditional market analysis is:

- Expensive
- Time Consuming
- Low in Information Content

A NLP model can allow for more efficient processing of large amounts of available data on public sentiment on social media

Project Goals

Determine what kind of model would be best of this task

Test the effects of various model features

Construct a prototype sentiment analysis model

Data

Data was taken from data.world and consists of:

- 9203 tweets from the #SXSW hashtag
- All tweets contain keywords mentioning Apple or Google products
- Tweets were labeled by crowd sourcing as having either positive, negative or neutral sentiment to the brand
- 61% of the tweets were neutral, 33% positive, and only 6% negative

Visualizing the Data

Models and Features Tested

Models

- Naïve Bayesian
- Logistic
- Random Forest
- SVC
- RNN

Features

- GloVe vs Custom embedding
- Class Weighting
- Augmentation with Synonyms
- Depth
- Number of Nodes

Limits of Tradition Models in NLP

We can see in this example that:

- 1) The model failed to recognize this was a negative tweet
- 2) It failed because it was unable to recognize the relevant features

Advantage of RNN in NLP

We can see in this example that:

- 1) The RNN correctly identified this was a negative tweet
- 2) It correctly picked up on some of the clearly negative wording, though not perfectly

Comparing Model Features by Overall Performance

- Weighted models tended to do worse overall
- GloVe embedding showed some improvement
- Synonym augmentation did not improve performance
- Differences in structure were minimal on this data set

Comparing Model Features by Performance on Rare Data

- Weighted models tended to do better on rare data
- Pretrained or more embedding improved performance on rare data
- Deeper networks were somewhat better on rare data

Final Model On Test Data

GloVe model had the highest weighted F1 score of 68%

Conclusions

• RNN are promising tools for sentiment analysis and should be used in this kind of analysis *given sufficient data*

• Improvements by using RNNs can be small if the data is limited, there was only a 4% improvement in F1 score (68% for RNNs versus 64%) using a dataset this small

Limitations

 Data was specifically taken from a hashtag that was more likely to contain tweets talking about brands and products. This potentially places limits on its generalizability

• Given the extreme class imbalance in this data set, the performance on the rare category is not very likely to be reliable

Contact Information

<u>Name</u>

Lia Elwonger

<u>Email</u>

lelwonger@gmail.com

Github for this project

https://github.com/nonlocal-lia/sentiment-analysis-project

