

Fast Recovery Epitaxial Diode (FRED) Module

MEA 95-06 DA MEK 95-06 DA MEE 95-06 DA $V_{RRM} = 600 V$ $I_{FAV} = 95 A$ $t_{rr} = 250 \text{ ns}$

V _{RSM}	V _{RRM}	Туре		
V	V	MEA95-06 DA	MEK 95-06 DA	MEE 95-06 DA
600	600	1 2 3 9 9 9	1 2 3 9 9 9	1 2 3
			*	*

Symbol	Test Conditions	Maximum Ratings		
I _{FRMS} I _{FAV} ① I _{FRM}	$T_{case} = 75$ °C $T_{case} = 75$ °C; rectangular, d = 0.5 $t_p < 10 \ \mu s$; rep. rating, pulse width limited by $T_{V,IM}$	142 95 TBD	A A A	
I _{FSM}	$T_{VJ} = 45^{\circ}\text{C};$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	1200 1300	A A	
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	1080 1170	A A	
l²t	$T_{VJ} = 45^{\circ}C;$ $t = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$ $t = 8.3 \text{ ms } (60 \text{ Hz}), \text{ sine}$	7200 7100	A ² s A ² s	
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 Hz), sine $t = 8.3$ ms (60 Hz), sine	5800 5700	A ² s A ² s	
${f T}_{VJ} \ {f T}_{stg} \ {f T}_{Hmax}$		-40+150 -40+125 110	°C °C °C	
P _{tot}	T _{case} = 25°C	280	W	
V _{ISOL}	50/60 Hz, RMS $t = 1 \text{ min}$ $I_{ISOL} \le 1 \text{ mA}$ $t = 1 \text{ s}$	3000 3600	V~ V~	
M _d	Mounting torque (M5) Terminal connection torque (M5)	2.5-4/22-35 N 2.5-4/22-35 N		
d _s d _A a	Creep distance on surface Strike distance through air Maximum allowable acceleration	12.7 9.6 50	mm mm m/s²	
Weight		90	g	

Symbol Test Conditions		Characteristic Values (per diode) typ. max.		
I _R	$\begin{array}{lll} T_{VJ} = 25^{\circ}C & V_{R} &= V_{RRM} \\ T_{VJ} = 25^{\circ}C & V_{R} &= 0.8 \bullet V_{RRM} \\ T_{VJ} = 125^{\circ}C & V_{R} &= 0.8 \bullet V_{RRM} \end{array}$		2 0.5 34	mA mA mA
V _F	$I_F = 100 \text{ A};$ $T_{VJ} = 125^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$ $I_F = 300 \text{ A};$ $T_{VJ} = 125^{\circ}\text{C}$ $T_{VJ} = 25^{\circ}\text{C}$		1.36 1.55 2.05 2.09	V V V
V _{T0}	For power-loss calculations only $T_{vJ} = 125^{\circ}C$		1.01 2.85	V mΩ
R _{thJH} R _{thJC}	DC current DC current		0.550 0.450	K/W K/W
t _{rr}	$ \begin{array}{lll} I_F &= 100 \text{ A} \\ V_R &= 300 \text{ V} \\ -\text{di/dt} &= 200 \text{ A/}\mu\text{s} \end{array} \left\{ \begin{array}{ll} T_{VJ} = 100^{\circ}\text{C} \\ T_{VJ} = 25^{\circ}\text{C} \\ T_{VJ} = 100^{\circ}\text{C} \end{array} \right. $	250	300 14 21	ns A A

Features

- International standard package with DCB ceramic base plate
- Planar passivated chips
- · Short recovery time
- · Low switching losses
- · Soft recovery behaviour
- Isolation voltage 3600 V~
- UL registered E 72873

Applications

- Antiparallel diode for high frequency switching devices
- Free wheeling diode in converters and motor control circuits
- · Inductive heating and melting
- Uninterruptible power supplies (UPS)
- · Ultrasonic cleaners and welders

Advantages

- · High reliability circuit operation
- Low voltage peaks for reduced protection circuits
- · Low noise switching
- · Low losses

Dimensions in mm (1 mm = 0.0394")

 $[\]odot$ I_{FAV} rating includes reverse blocking losses at T_{VJM}, V_R = 0.6 V_{RRM}, duty cycle d = 0.5 Data according to IEC 60747 IXYS reserves the right to change limits, test conditions and dimensions

Fig. 1 Forward current I_F versus voltage drop V_F per leg

Fig. 2 Reverse recovery charge Q_r versus -di_r/dt

Fig. 3 Peak reverse current I_{RM} versus $-di_{E}/dt$

Fig. 4 Dynamic parameters Q_r , I_{RM} versus junction temperature T_{VJ}

Fig. 5 Recovery time t_{rr} versus $-di_{F}/dt$

Fig. 6 Peak forward voltage V_{FR} and t_{fr} versus di_{e}/dt

Fig. 7 Transient thermal impedance junction to heatsink

Constants for Z_{thJH} calculation:

i	R _{thi} (K/W)	t _i (s)
1	0.037	0.002
2	0.138	0.134
3	0.093	0.25
4	0.282	0.274