Information k means and application to digital images

Gautier Appert

ENSAE Paris Tech. joint work with Olivier Catoni

Representation of image with multi-level bags of labels

First step: creating a bag of labels

• Divide each image $\{X_1, \dots, X_n\}$ into non overlapping patches $\{B_i, i \in I\}$ \implies cluster all patches $\{B_i, \text{ for all } j\}$.

Figure: Firgure 1 in Bag-of-Words Representation in Image Annotation: A Review. Chih-Fong Tsai

• Each image X is then represented as $\mathbb{P}_{W|X} = \frac{1}{m} \sum_{i=1}^{m} \delta_{w_i}$.

Representation of image with multi-level bags of labels

Multi-level

- Clustering labels with respect to a distortion measure is difficult \Longrightarrow Instead use contextual modeling : cluster labels w and w' if they share the same context, but do not appear together. Define the context C of W in image X as $C = \mathbb{P}_{W|X} \circ f_{W,\Delta}^{-1}$, where $f_{W,\Delta}$ is the function that sends W to the outer state Δ . Note that $C \in \mathcal{M}^1_+(\mathcal{W} \cup \{\Delta\})$ is a random measure, and a function of the couple of random variables (X,W).
- Cluster/agreggate words $\{w, w'\}$ iff $\mathbb{P}_{C|W=w} \simeq \mathbb{P}_{C|W=w'}$.
- Which means that we are looking for a classification function $\ell:\mathcal{W}\to\mathcal{Z}$ such that

$$\mathbb{P}_{C|W} = \mathbb{P}_{C|\ell(W)} \iff C \perp \!\!\! \perp W \mid \ell(W).$$

• When this is the case, $\mathbb{P}_{\mathbb{P}_{W|X}}$ can be recovered from $\mathbb{P}_{\mathbb{P}_{\ell(W)|X}}$ and $\mathbb{P}_{W|\ell(W)}$.

Euclidian k-means: theoretical and empirical loss

Let $X \in \mathbb{R}^d$ with $\mathbb{P}_X\Big[\|X\|_2^2\Big] < \infty$ and let $\ell: \mathcal{X} \to \{1, \dots, k\}$ be the labelling function. The set \mathcal{X} can be \mathbb{R}^d or the index set $\{1, \dots, n\}$.

theoretical loss

$$\begin{split} &\inf_{\ell} \inf_{\mu_1,...,\mu_k} \mathbb{P}_X \Big[\|X - \mu_{\ell(X)}\|_2^2 \Big] \\ &= \inf_{\ell} \mathbb{P}_X \Big[\|X - \mathbb{E}[X|\ell(X)]\|_2^2 \Big] \\ &= \inf_{\mu_1,...,\mu_k} \mathbb{P}_X \Big[\min_{j \leq k} \|X - \mu_j\|_2^2 \Big] \end{split}$$

Empirical loss

$$\inf_{\ell} \inf_{\mu_1, \dots, \mu_k} \frac{1}{n} \sum_{i=1}^n \|X_i - \mu_{\ell(i)}\|_2^2$$

$$= \inf_{\ell} \frac{1}{n} \sum_{j=1}^k \sum_{i \in \ell^{-1}(j)} \|X_i - \overline{\mu}_j\|^2$$

$$= \inf_{\mu_1, \dots, \mu_k} \frac{1}{n} \sum_{i=1}^n \min_{j \le k} \|X_i - \mu_j\|_2^2$$

Lloyd 's algorithm finds a local minimum through an iterative scheme: allocate data points to the nearest centroid and recompute centers from this partition.

Geometric mean of a conditional probability measure

Definition (Geometric mean of a conditional probability measure.)

Define the geometric mean function $\mathcal{G}(\cdot,\cdot)$ of a conditional probability measure $\mathrm{d}P(t|s)=m(t|s)\,\mathrm{d}\mu(t)$ with respect to the probability measure $\mathrm{d}P(s)$ as

$$\begin{split} \mathfrak{G}\Big(\mathrm{d}P(t|s),\mathrm{d}P(s)\Big) &= Z^{-1} \; \exp\left\{\int \log \left[\mathrm{d}P(t|s)\right] \, \mathrm{d}P(s)\right\} \\ &\stackrel{\mathsf{def}}{=} Z^{-1} \; \exp\left\{\int \log \left[m(t|s)\right] \, \mathrm{d}P(s)\right\} \, \mathrm{d}\mu(t), \end{split}$$

where Z is a normalizing constant. Note that this is independent from the choice of μ : if $\nu \in \mathcal{M}^1_+$ is such that $\mu \ll \nu$, $\mathrm{d}P(t|s) = \frac{\mathrm{d}\mu}{\mathrm{d}\nu}(t)\,m(t|s)\,\mathrm{d}\nu(t)$ and $\Im\Big(\mathrm{d}P(t|s),\mathrm{d}P(s)\Big) = Z^{-1}\,\exp\left\{\int \log\Big(\frac{\mathrm{d}\mu}{\mathrm{d}\nu}(t)\,m(t|s)\Big)\,\mathrm{d}P(s)\right\}\,\mathrm{d}\nu(t).$

Information k-means: theoretical and empirical loss

Let (Y,X) be a couple of random variables, assume that $\mathbb{P}_{Y|X}$ is known, whereas \mathbb{P}_X may be unknown.

Theoretical version

$$\begin{split} &\inf_{\ell} \inf_{Q_{Y|\ell(X)}} \mathbb{P}_X \Big[\mathcal{K} \Big(Q_{Y|\ell(X)}, \mathbb{P}_{Y|X} \Big) \Big] = \inf_{Q_{Y|j}, j \leq k} \mathbb{P}_X \Big[\inf_{j \leq k} \mathcal{K} \Big(Q_{Y|j}, \mathbb{P}_{Y|X} \Big) \Big] \\ &= \inf_{\ell} \mathbb{P}_X \Big[\mathcal{K} \Big(Q_{Y|\ell(X)}^*, \mathbb{P}_{Y|X} \Big) \Big] = \inf_{\ell} \mathbb{P}_X \Big[\log \Big(Z_{\ell(X)}^{-1} \Big) \Big], \end{split}$$

where $Q_{Y|\ell(X)}^*$ (the information k-means centers) and $Z_{\ell(X)}$ (the normalizing constants) are defined as

$$\mathbb{Q}_{Y|\ell(X)}^* \stackrel{\mathrm{def}}{=} \mathcal{G}\big(\mathbb{P}_{Y|X}, \mathbb{P}_{X|\ell(X)}\big) = Z_{\ell(X)}^{-1} \ \exp\left\{\mathbb{P}_{X|\ell(X)} \Big\lceil \log \mathbb{P}_{Y|X} \Big\rceil\right\}.$$

Information k-means: theoretical and empirical loss

Consider a set of conditional probability distributions $R_{Y|i}$ for the random variable Y knowing $i \in [n]$, that we want to cluster.

Empirical loss

$$\begin{split} \inf_{\ell:\{1,...,n\}\to\{1,...,k\}} \inf_{Q_{Y|\ell(i)}} & \frac{1}{n} \sum_{i=1}^{n} \mathcal{K} \Big(Q_{Y|\ell(i)}, R_{Y|i} \Big) \\ &= \inf_{Q_{Y|j}} \frac{1}{n} \sum_{i=1}^{n} \inf_{j \in \{1,...,k\}} \mathcal{K} \Big(Q_{Y|j}, R_{Y|i} \Big) \\ &= \inf_{\ell} & \frac{1}{n} \sum_{j=1}^{k} \inf_{Q_{Y|j}} \sum_{i \in \ell^{-1}(j)} \mathcal{K} \Big(Q_{Y|j}, R_{Y|i} \Big) \\ &= \inf_{\ell} \frac{1}{n} \sum_{i=1}^{n} \mathcal{K} \Big(Q_{Y|\ell(i)}^*, R_{Y|i} \Big) = \inf_{\ell} \sum_{i=1}^{k} \frac{\left| \ell^{-1}(j) \right|}{n} \log \Big(Z_{j}^{-1} \Big), \end{split}$$

where
$$Q_{Y|j}^* = Z_j^{-1} \prod_{i \in \ell^{-1}(j)} R_{Y|i}^{1/|\ell^{-1}(j)|}$$
.

Information k-means: theoretical and empirical loss

Starting point

Due to the properties of the Kullback divergence, the following algorithm to compute an initial classification ℓ gives promising results.

- Start from k = 1 and $\ell^{-1}(1) = \{1, ..., n\}$.
- Switch from k to k+1 by removing iteratively from $\ell^{-1}(k)$ arg $\max_{i\in\ell^{-1}(k)}\mathcal{K}\left(Q_{Y|k}^*,R_{Y|i}\right)$ to put it in $\ell^{-1}(k+1)$, until $\log\left(Z_k^{-1}\right)\leq\eta$.
- Continue if $\log(Z_{k+1}^{-1}) > \eta$.

Link with Information projection

Definition (Information projection.)

Let P be a probability distribution, and let Ω be set of probability distribution. The information projection or I-projection of P onto Ω is defined as

$$Q^* \in \arg\min_{Q \in \mathfrak{Q}} \mathfrak{K}(Q, P).$$

Information k-means seen as an information projection

Consider the model

$$\begin{split} \mathbb{Q} &= \Big\{ \mathbb{Q}_{Y,X} : \mathbb{Q}_X = \mathbb{P}_X, \ \mathbb{Q}_{Y|X} = \mathbb{Q}_{Y|\ell(X)}, \ \ell(X) \in \{1,\dots,k\} \Big\}, \\ &\inf_{\mathbb{Q}_{Y,X} \in \mathbb{Q}} \mathcal{K} \Big(\mathbb{Q}_{Y,X}, \mathbb{P}_{Y,X} \Big) \\ &= \inf_{\mathbb{Q}_{Y,X} \in \mathbb{Q}} \mathbb{Q}_X \Big[\mathcal{K} \Big(\mathbb{Q}_{Y|X}, \mathbb{P}_{Y|X} \Big) \Big] + \mathcal{K} \Big(\mathbb{Q}_X, \mathbb{P}_X \Big) \\ &= \inf_{\ell, \mathbb{Q}_{Y|\ell(X)}} \mathbb{P}_X \Big[\mathcal{K} \Big(\mathbb{Q}_{Y|\ell(X)}, \mathbb{P}_{Y|X} \Big) \Big]. \end{split}$$

Information k-means become Euclidian with Gaussian distribution

Information k-means generalize Euclidian k-means

- Take $\mathbb{P}_{Y|X} = \mathcal{N}_{\rho}(X, \Sigma)$.
- One obtains

$$\begin{split} \mathrm{d} Q_{Y|\ell(X)}^*(y) &\propto \exp\left\{\mathbb{P}_{X|\ell(X)}\left[\log\left(\frac{\mathrm{d}\mathbb{P}_{Y|X}}{\mathrm{d}\lambda}(y)\right)\right]\right\} \; \mathrm{d}\lambda(y) \\ &\propto \exp\left\{-\frac{1}{2}\left(y^\top \Sigma^{-1} y - 2y^\top \Sigma^{-1} \mathbb{E}\big[X|\ell(X)\big]\right)\right\} \\ &\propto \mathcal{N}_{\rho}\big(\mathbb{E}\big[X|\ell(X)\big], \Sigma\big) \end{split}$$

- $\bullet \ \ \mathsf{Then} \ \mathcal{K}\Big(Q_{Y|\ell(X)}^*, \mathbb{P}_{Y|X}\Big) = \Big\|X \mathbb{E}\big[X|\ell(X)\big]\Big\|_{\Sigma^{-1}}^2.$
- $\bullet \ \inf_{\ell} \ \mathbb{P}_{X} \Big[\mathfrak{K} \Big(\mathcal{Q}_{Y|\ell(X)}^{*}, \mathbb{P}_{Y|X} \Big) \Big] = \inf_{\ell} \ \mathbb{P}_{X} \Big[\big\| X \mathbb{E} \big[X | \ell(X) \big] \, \big\|_{\Sigma^{-1}}^{2} \Big]$

Information k-means loss in the case of discrete \mathbb{P}_Y

Let $Y \in \mathcal{Y}$ with $|\mathcal{Y}| < \infty$.

$$\bullet \ \mathcal{L}(\mathit{Q}) = \mathbb{P}_{\mathit{X}} \Big[\min_{i \leq \mathit{k}} \mathcal{K} \big(\mathit{Q}_{\mathit{Y}|\mathit{i}}, \mathbb{P}_{\mathit{Y}|\mathit{X}} \big) \Big]$$

• Put
$$q_i = \frac{\mathrm{d}Q_{Y|i}}{\mathrm{d}\nu}$$
, $p_X = \frac{\mathrm{d}\mathbb{P}_{Y|X}}{\mathrm{d}\nu} \implies \mathcal{L}(q) = \mathbb{P}_X \Big[\min_{i \leq k} \mathcal{K}(q_i, p_X) \Big]$.

- Recall $\mathcal{K}(q_i, p_X) = \langle q_i, \log(q_i) \log(p_X) \rangle$.
- $\begin{array}{l} \bullet \ \ \mathsf{Put} \ \theta_i = (-q_i, \langle q_i, \log(q_i) \rangle)^\top, \\ \theta_{i,j} = (q_i q_j, \langle q_i, \log(q_i) \rangle \langle q_i, \log(q_i) \rangle)^\top \in \mathbb{R}^{|\Im| + 1} \ \mathsf{and} \\ W = (\log p_X, 1)^\top \in \mathbb{R}^{|\Im| + 1}. \end{array}$
- Hence, $\mathcal{K}(q_i, p_X) = \langle \theta_i, W \rangle$ and $\mathcal{K}(q_i, p_X) < \mathcal{K}(q_j, p_X) \iff \langle \theta_{i,j}, W \rangle \geq 0$.

upper bound on the Loss

Using the fact that

$$\min_{i \leq k} a_i = \sum_{i=1}^k a_i \prod_{j=1}^{i-1} \mathbb{1} \left(a_i < a_j \right) \prod_{j=i+1}^k \mathbb{1} \left(a_i \leq a_j \right).$$

We can rewritte

$$\mathcal{L}(q) \leq \sum_{i=1}^{k} \mathbb{P}_{X} \Big[\left\langle heta_{i}, W
ight
angle \prod_{i
eq i} \mathbb{1} \left(\left\langle heta_{i,j}, W
ight
angle \geq 0
ight) \Big].$$

Put a perturbation and a margin

- Gaussian perturbation $\rho_{\theta} = \mathcal{N}\left\{\theta, \beta^{-1}|_{|\mathcal{Y}|+1}\right\}$.
- Margin $M = \gamma ||W||$.

lemma

$$\mathcal{L}(q) \leq \sum_{i=1}^{k} \Phi\left(\gamma \sqrt{\beta}\right)^{-(k-1)}$$

$$\times \mathbb{P}_{X} \left[\langle \theta_{i}, W \rangle \prod_{j \neq i} \int \mathbb{1}\left(\langle \theta_{i,j}', W \rangle + \gamma \|W\| \geq 0 \right) d\rho_{\theta_{i,j}}(\theta_{i,j}') \right]$$

- Looks like some kind of classification problem with margin $M = \gamma ||W||$. [Catoni, Lecture notes , 2014].
- Estimation of the mean of $\langle \theta_i, W \rangle$. [Catoni, Giulini 2017].

Upper bound of the information k-means loss

Introduce $g_1(t) = \frac{1}{t}(\exp(t) - 1)$ and $g_2 = \frac{1}{t^2}(\exp(t) - 1 - t)$. With probability at least $1 - \varepsilon$,

$$\begin{split} \mathcal{L}(q) & \leq \Phi\left(\gamma\sqrt{\beta}\right)^{-(k-1)} \left\{ \sum_{i=1}^k \widehat{\mathbb{P}}_X^n \Big[\langle \theta_i, Z \rangle \overline{H}(W, \theta_{-i}) \Big] \right. \\ & + \frac{\lambda a}{2} \left. \left. \mathbb{P}_X \left(\langle \theta_i, W \rangle^2 \overline{H} \right) + \frac{\lambda b}{2\beta} \left. \mathbb{P}_X \left(\|W\|^2 \overline{H} \right) \right. \\ & + \frac{\alpha^p}{p+1} \left. \mathbb{P}_X \left(\left| \langle \theta_i, W \rangle \right| \|W\|^p \right) + \frac{k}{2n\lambda} \sum_{i=1}^k \left\{ \|\theta_i\|^2 + \sum_{j \neq i} \|\theta_{ij}\|^2 \right\} \frac{k \, \log(\varepsilon^{-1})}{n\lambda} \right\}, \\ & \text{where } a = g_2 \left(\frac{\lambda \|\theta_i\|}{\alpha} \right), \quad b = g_1 \left(\frac{\lambda^2}{2\beta\alpha^2} \right) \exp\left(\frac{\lambda \|\theta_i\|}{\alpha} \right), \\ & \overline{H} = \prod_{i \neq i} \Phi \Big(\sqrt{\beta} \big(\gamma + \|W\|^{-1} \langle \theta_{i,j}, W \rangle \big) \Big) \text{ and } Z = \frac{\min(\lambda \|W\|, 1))W}{\lambda \|W\|}. \end{split}$$

PAC-Bayesian Margin bounds on Euclidian k-means

Euclidian k - means loss

ullet Consider $\mathcal{L}(\mu) = \mathbb{P}_X \Big(\min_{i \leq k} \|X - \mu_i\|^2 \Big)$

Change of notation

- Put $\theta_i = (-\mu_i, \|\mu_i\|^2)^\top$, $\theta_{i,j} = (\mu_i \mu_j, \|\mu_j\|^2 \|\mu_i\|^2)^\top \in \mathbb{R}^{p+1}$ and $W = (2X, 1)^\top \in \mathbb{R}^{p+1}$.
- Hence (polarization identity), $\|X \mu_i\|^2 = \langle \theta_i, W \rangle + \|X\|^2$ and $\|X \mu_i\|^2 < \|X \mu_j\|^2 \iff \langle \theta_{i,j}, W \rangle \ge 0$.

$$\mathcal{L}(\mu) \leq \sum_{i=1}^{k} \mathbb{P}_{X} \Big[\left\langle heta_{i}, W \right
angle \prod_{i
eq i} \mathbb{1} \left(\left\langle heta_{i,j}, W
ight
angle \geq 0
ight) \Big] + \mathbb{P}_{X} \Big[\| X \|^{2} \Big].$$

• Same bound as before for $\mathcal{L}(\mu) - \mathbb{P}_X \Big[\|X\|^2 \Big]$.

How to create patches with a random support ?

- Let $(X_i, i \in I) \in \mathbb{R}^I$ be a random image, where $|I| < \infty$ is the number of pixels.
- ullet Represent the pixel location i by a random variable S, putting

$$\mathbb{P}_{S,V|X} = rac{1}{|I|} \sum_{i \in I} \delta_i \otimes \delta_{X_i}, \quad ext{ where } (S,V) \in I imes \mathbb{R}.$$

- Add noise, introducing $V' = V + \xi$ such that $\mathbb{E}\big(V'|X,S\big) = V$.
- Put U = (S, V') and change the representation of X to $\mathbb{P}_{U|X}$.
- Use an auxiliary set of images represented by the distribution $Q_{\theta,U} \in \mathcal{M}^1_+ \big[\Theta \times \big(I \times \mathbb{R}\big)\big]$, where $\big| \mathrm{supp} \big(Q_{\theta,U}\big) \big| < \infty$. Take for instance the empirical distribution of n independent copies of X, or more precisely $Q_{\theta,U} = \frac{1}{n} \sum_{i=1}^n \delta_j \otimes \mathbb{P}_{S,V|X=X_j}$, where

$$(X_j, 1 \leq j \leq n) \sim \mathbb{P}_X^{\otimes n}$$
.

• Solve $\inf_{\ell_{\theta}: \operatorname{supp}\left(Q_{U|\theta}\right) \to \{1,...,k\}} \inf_{Q_{X|\theta,\ell_{\theta}}(U)} Q_{\theta,U} \Big[\mathcal{K} \big(Q_{X|\theta,\ell_{\theta}}(U), \mathbb{P}_{X|U}\big) \Big].$

- ullet Define the patch process as $\mathbb{P}_{T|X} = Q_{ heta,\ell_{ heta}(U)|X}.$
- ullet In the exact case where $\mathbb{P}_{X|U} = \mathit{Q}_{X| heta,\ell_{ heta}(U)}$,

$$\frac{\mathrm{d}\mathbb{P}_{U|X,U\in\mathrm{supp}(Q_U)}}{\mathrm{d}\mathbb{P}_{U|U\in\mathrm{supp}(Q_U)}}(u) = Z_X^{-1}Q_{\theta|U=u}\left[\frac{\mathrm{d}Q_{\theta,\ell_{\theta}(U)|X}}{\mathrm{d}Q_{\theta,\ell(U)}}(\theta,\ell_{\theta}(u))\right].$$

Cluster the patches solving

$$\inf_{\ell: \operatorname{supp}(R_T) \to \{1, \dots, k\}} \inf_{R_{X|\ell(T)}} R_T \big[\mathcal{K} \big(R_{X|\ell(T)}, \mathbb{P}_{X|T} \big) \big]$$

- Define a new representation as $\mathbb{P}_{W|X} = R_{\ell(T)|X}$.
- In the exact case where $R_{X|\ell(T)} = \mathbb{P}_{X|T}$ and $\operatorname{supp}(R_T) = \operatorname{supp}(\mathbb{P}_T)$,

$$\frac{\mathrm{d}\mathbb{P}_{T|X}}{\mathrm{d}\mathbb{P}_{T}}(t) = Z_X^{-1} \frac{\mathrm{d}R_{\ell(T)|X}}{\mathrm{d}R_{\ell(T)}} \big(\ell(t)\big),$$

showing that the previous representation $\mathbb{P}_{T|X}$ can be recovered exactly from the next one $\mathbb{P}_{W|X} = R_{\ell(T)|X}$ and the marginal distributions \mathbb{P}_T and $R_{\ell(T)}$.

Figure : Extracted patches : 500×500 from two images 1000×1500 . .

the training sample corresponds to the extracted patches.

Figure: Selected image.

Figure : Clustering with information k-means.

Figure : Clustering with information k-means.

Figure : Clustering with information k-means.

Figure : Clustering with information k-means.

Figure : Clustering with information k-means.

Figure : Clustering with information k-means.

Figure : Clustering with information k-means.

Figure : Clustering with information k-means.