Fundamentals of Computer Graphics and Image Processing

Computer Graphics - Exercise #04

Surface Visibility

How to discard surface (triangles) that is not visible for an observer (camera).

Surface normal vector defines orientation of surface tangential plane.

Triangle Normal

Triangle normal specifies an orientation of the triangle in 3D space

$$\overrightarrow{v_0} = P_1 - P_0$$

$$\overrightarrow{v_1} = P_2 - P_1$$

$$\overrightarrow{n} = \overrightarrow{v_0} \times \overrightarrow{v_1}$$

Direction of normal can be ambiguous, therefore vertex order must be explicitly defined (CW or CCW)

$$\frac{\partial}{\partial x} = \langle a_x, a_y, a_z \rangle = a_x \cdot i + a_y \cdot j + a_z \cdot k$$

$$= b_x \cdot i + b_y \cdot j + b_z \cdot k$$

Matrix determinant

$$\frac{\partial}{\partial x} = \langle a_x, a_y, a_z \rangle = a_x \cdot i + a_y \cdot j + a_z \cdot k$$

$$= b_x \cdot i + b_y \cdot j + b_z \cdot k$$

=
$$i (a_y b_z - a_z b_y) - j (a_x b_z - a_z b_x) + k (a_x b_y - a_y b_x)$$

$$\frac{\partial}{\partial z} = \langle a_x, a_y, a_z \rangle = a_x \cdot i + a_y \cdot j + a_z \cdot k$$

$$= b_x \cdot i + b_y \cdot j + b_z \cdot k$$

=
$$i (a_y b_z - a_z b_y) - j (a_x b_z - a_z b_x) + k (a_x b_y - a_y b_x) = i \cdot c_x - j \cdot c_y + k \cdot c_z$$

$$\frac{\partial}{\partial x} = \langle a_{x}, a_{y}, a_{z} \rangle$$

$$= \langle b_{x}, b_{y}, b_{z} \rangle$$

=
$$(a_yb_z - a_zb_y) + (a_zb_x - a_xb_z) + (a_xb_y - a_yb_x) = c_x + c_y + c_z$$

$$\Rightarrow$$
 $c_x = a_y b_z - a_z b_y$

$$c_y = a_z b_x - a_x b_z$$

$$c_z = a_x b_y - a_y b_x$$

Scalar Product and Vector Angle

Having two vectors v₀ and v₁

Angle between them is denoted θ

The dot product can be defined as:

$$\overrightarrow{v_0} \cdot \overrightarrow{v_1} = |\overrightarrow{v_0}| * |\overrightarrow{v_1}| * cos(\theta)$$

When the vectors are normalized (length is equal to 1):

$$\overrightarrow{v_0} \cdot \overrightarrow{v_1} = cos(\theta)$$

Scalar Product and Vector Angle

Having two vectors v₀ and v₁

Angle between them is denoted θ

The dot product can be defined as:

$$\overrightarrow{v_0} \cdot \overrightarrow{v_1} = |\overrightarrow{v_0}| * |\overrightarrow{v_1}| * cos(\theta)$$

When the vectors are normalized (length is equal to 1):

$$\overrightarrow{v_0} \cdot \overrightarrow{v_1} = cos(\theta)$$

$$= v0_x v1_x + v0_y v1_y + v0_z v1_z$$

Back-Face Culling

Triangle is visible to the camera IF

- an angle of view vector and surface normal is less than 90°

OR

- their dot product is positive:

Phong Reflection Model

Final illumination of a surface can be divided into 3 components:

Ambient, Diffuse and Specular

Amount of each component in final mix depends on object's material

Phong Reflection Model

$$I = k_a I_a + \sum_{I_s} (k_d I_d + k_s I_s)$$

$$I_d = N \cdot L$$
$$I_s = (R \cdot V)^h$$

Material properties

 $\mathbf{k_a},\,\mathbf{k_d},\mathbf{k_s}$ - reflection constants

h - shininess constant

Working with normalized vectors!

Blinn-Phong Reflection Model

$$I = k_a I_a + \sum_{L} (k_d I_d + k_s I_s)$$

$$I_d = N \cdot L$$

$$I_S = (H \cdot N)^h \qquad H = \frac{V + L}{|V + L|}$$

Material properties

 $\mathbf{k_a},\,\mathbf{k_d},\mathbf{k_s}$ - reflection constants

h - shininess constant

Working with normalized vectors!

Shininess Constant in Blinn-Phong

Flat Shading

Phong Shading

Note: Phong reflection and Phong shading are not the same! Phong reflection model can be used for calculating lightning of both shading methods

