DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA601: Graphs and Matrices Quiz IV

Instructor: Bikash Bhattacharjya March 22, 2021

Time: 45 Minutes [including PDF making and uploading time] Maximum Marks: 8

1. Let Q be the (0,1,-1)-incidence matrix of a tree on n vertices. Show that $\det(Q'Q) = n$.

Solution: Let T be a tree with vertex set $\{1, 2, ..., n\}$ and edge set $\{e_1, ..., e_{n-1}\}$.

Let Q_i be the matrix obtained by deleting *i*-th row of Q. We know that $\det(Q_i) = \pm 1$.

By Cauchy-Binet Formula, we have

$$\det(Q'Q) = \sum_{S} \det Q[S|\{1, \dots, n-1\}]^{2},$$

where the summation is over all subsets S of $\{1, 2, ..., n\}$ with |S| = n - 1. Note that, if |S| = n - 1 and $i \notin S$, then $Q[S|\{1, ..., n - 1\}] = Q_i$. Therefore

$$\det(Q'Q) = \sum_{S} \det Q[S|\{1, \dots, n-1\}]^2 = \sum_{i=1}^n \det(Q_i)^2 = \sum_{i=1}^n 1 = n.$$

Marking Scheme:

1 mark is deducted for any minor mistake or missing a step.

2. Write the fundamental cut-matrix of the following graph with respect to the spanning tree shown by the **thick edges**. [Only write the matrix, no justification needed.]

Figure 1: A spanning tree is indicated by the thick edges

Solution: The required matrix is

$$\left[\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right].$$

Marking Scheme:

1 mark is deducted for one minor mistake.

3. Prove or disprove: If the fundamental cycle-matrix of a simple graph G with respect to a spanning tree T_1 is equal to the fundamental cycle-matrix of another simple graph H with respect to a spanning tree T_2 , then the graphs G and H are isomorphic to each other.

Solution: Consider the graphs G and H shown in Figure 2.

Figure 2: Two non-isomorphic graphs with equal fundamental cycle-matrix

These graphs are clearly non-isomorphic to each other, as H has a vertex of degree 1, while G has no vertex of degree 1.

The fundamental cycle matrix C(G) of G with respect to the spanning tree, **shown by** thick edges, is

The fundamental cycle matrix C(H) of H with respect to the spanning tree, **shown by** thick edges, is

We see that C(G) = C(H), even though $G \not\cong H$. Hence the statement is disproved by this counterexample.

Note: Many such counterexample can be constructed.

Marking Scheme:

1 or 2 marks is deducted for any minor mistake or missing a step.