Метод Метрополиса-Хастингса в научных исследованиях

Федорычев Дмитрий Александрович, 522-я группа

Санкт-Петербургский Государственный Университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель — д.ф.-м.н. **С.М. Ермаков** Рецензент — к.ф.-м.н. **Т.М. Товстик**

Санкт-Петербург 2015г.

- Изучить алгоритм Метрополиса-Хастингса.
- Промоделировать различные распределения и проанализировать особенности алгоритма.
- Промоделировать многомерное распределение в ограниченной области
- Сравнить метод Метрополиса с классическим методом моделирования.
- Промоделировать сложную плотность
- Проиллюстрировать и проанализировать полученный результат

- Изучить алгоритм Метрополиса-Хастингса.
- Промоделировать различные распределения и проанализировать особенности алгоритма.
- Промоделировать многомерное распределение в ограниченной области
- Сравнить метод Метрополиса с классическим методом моделирования.
- Промоделировать сложную плотность
- Проиллюстрировать и проанализировать полученный результат

- Изучить алгоритм Метрополиса-Хастингса.
- Промоделировать различные распределения и проанализировать особенности алгоритма.
- Промоделировать многомерное распределение в ограниченной области.
- Сравнить метод Метрополиса с классическим методом моделирования.
- Промоделировать сложную плотность
- Проиллюстрировать и проанализировать полученный результат

- Изучить алгоритм Метрополиса-Хастингса.
- Промоделировать различные распределения и проанализировать особенности алгоритма.
- Промоделировать многомерное распределение в ограниченной области.
- Сравнить метод Метрополиса с классическим методом моделирования.
- Промоделировать сложную плотность
- Проиллюстрировать и проанализировать полученный результат

- Изучить алгоритм Метрополиса-Хастингса.
- Промоделировать различные распределения и проанализировать особенности алгоритма.
- Промоделировать многомерное распределение в ограниченной области.
- Сравнить метод Метрополиса с классическим методом моделирования.
- Промоделировать сложную плотность.
- Проиллюстрировать и проанализировать полученный результат

- Изучить алгоритм Метрополиса-Хастингса.
- Промоделировать различные распределения и проанализировать особенности алгоритма.
- Промоделировать многомерное распределение в ограниченной области.
- Сравнить метод Метрополиса с классическим методом моделирования.
- Промоделировать сложную плотность.
- Проиллюстрировать и проанализировать полученный результат.

- Метод Метрополиса описывается следующим алгоритмом:
 - 1. Выбираем (произвольно) X_0 и переходную плотность $\psi(X o Y)$. Если известно $X_t(t=0,1,\dots)$, то
 - 2. Моделируем плотность $\psi(X_t \to X)$. Получаем нужную реализацию X = X'.
 - 3. Вычисляем величину $\alpha = \frac{\varphi(X')\psi(X_t \to X')}{\varphi(X_t)\psi(X' \to X_t)}$.
 - 4. Если $\alpha \geq 1$, то полагаем $X_{t+1} = X'$
 - 5. Если $\alpha < 1$, то с вероятностью α полагаем $X_{t+1} = X'$ и с вероятностью $1-\alpha: X_{t+1} = X_t$. (Ермаков С.М. "Метод М-К в выч. математике")
- Процесс Марковский, стационарное распределение которого

$$P(X_{t+1}) = P(X_t)\psi(X_t \to X_{t+1})$$

$$\psi(X_t \to X_{t+1})\varphi(X_{t+1}) = \psi(X_{t+1} \to X_t)\varphi(X_t).$$

- Метод Метрополиса описывается следующим алгоритмом:
 - 1. Выбираем (произвольно) X_0 и переходную плотность $\psi(X \to Y)$. Если известно $X_t(t=0,1,\dots)$, то
 - 2. Моделируем плотность $\psi(X_t \to X)$. Получаем нужную реализацию X = X'.
 - 3. Вычисляем величину $\alpha = \frac{\varphi(X')\psi(X_t \to X')}{\varphi(X_t)\psi(X' \to X_t)}$.
 - 4. Если $lpha \geq 1$, то полагаем $X_{t+1} = X'$
 - 5. Если $\alpha < 1$, то с вероятностью α полагаем $X_{t+1} = X'$ и с вероятностью 1α : $X_{t+1} = X_t$. (Ермаков С.М. "Метод М-К в выч. математике")
- Процесс Марковский, стационарное распределение которого

$$P(X_{t+1}) = P(X_t)\psi(X_t \to X_{t+1}),$$

$$\psi(X_t \to X_{t+1})\varphi(X_{t+1}) = \psi(X_{t+1} \to X_t)\varphi(X_t).$$

- Метод Метрополиса описывается следующим алгоритмом:
 - 1. Выбираем (произвольно) X_0 и переходную плотность $\psi(X \to Y)$. Если известно $X_t(t=0,1,\dots)$, то
 - 2. Моделируем плотность $\psi(X_t \to X)$. Получаем нужную реализацию X = X'.
 - 3. Вычисляем величину $\alpha = \frac{\varphi(X')\psi(X_t \to X')}{\varphi(X_t)\psi(X' \to X_t)}$.
 - 4. Если $\alpha \geq 1$, то полагаем $X_{t+1} = X$
 - 5. Если $\alpha < 1$, то с вероятностью α полагаем $X_{t+1} = X'$ и с вероятностью $1-\alpha: X_{t+1} = X_t$. (Ермаков С.М. "Метод М-К в выч. математике")
- Процесс Марковский, стационарное распределение которого

$$P(X_{t+1}) = P(X_t)\psi(X_t \to X_{t+1}),$$

$$\psi(X_t \to X_{t+1})\varphi(X_{t+1}) = \psi(X_{t+1} \to X_t)\varphi(X_t).$$

- Метод Метрополиса описывается следующим алгоритмом:
 - 1. Выбираем (произвольно) X_0 и переходную плотность $\psi(X o Y)$. Если известно $X_t(t=0,1,\dots)$, то
 - 2. Моделируем плотность $\psi(X_t \to X)$. Получаем нужную реализацию X = X'.
 - 3. Вычисляем величину $\alpha = \frac{\varphi(X')\psi(X_t \to X')}{\varphi(X_t)\psi(X' \to X_t)}$.
 - 4. Если $\alpha \geq 1$, то полагаем $X_{t+1} = X'$.
 - 5. Если $\alpha < 1$, то с вероятностью α полагаем $X_{t+1} = X'$ и с вероятностью 1α : $X_{t+1} = X_t$. (Ермаков С.М. "Метод М-К в выч. математике")
- Процесс Марковский, стационарное распределение которого

$$P(X_{t+1}) = P(X_t)\psi(X_t \to X_{t+1})$$

$$\psi(X_t \to X_{t+1})\varphi(X_{t+1}) = \psi(X_{t+1} \to X_t)\varphi(X_t).$$

- Метод Метрополиса описывается следующим алгоритмом:
 - 1. Выбираем (произвольно) X_0 и переходную плотность $\psi(X \to Y)$. Если известно $X_t(t=0,1,\dots)$, то
 - 2. Моделируем плотность $\psi(X_t \to X)$. Получаем нужную реализацию X = X'.
 - 3. Вычисляем величину $\alpha = \frac{\varphi(X')\psi(X_t \to X')}{\varphi(X_t)\psi(X' \to X_t)}$.
 - 4. Если $\alpha \geq 1$, то полагаем $X_{t+1} = X'$.
 - 5. Если $\alpha < 1$, то с вероятностью α полагаем $X_{t+1} = X'$ и с вероятностью $1-\alpha: X_{t+1} = X_t$. (Ермаков С.М. "Метод М-К в выч. математике")
- Процесс Марковский, стационарное распределение которого

$$P(X_{t+1}) = P(X_t)\psi(X_t \to X_{t+1}),$$

$$\psi(X_t \to X_{t+1})\varphi(X_{t+1}) = \psi(X_{t+1} \to X_t)\varphi(X_t).$$

- Метод Метрополиса описывается следующим алгоритмом:
 - 1. Выбираем (произвольно) X_0 и переходную плотность $\psi(X o Y)$. Если известно $X_t(t=0,1,\dots)$, то
 - 2. Моделируем плотность $\psi(X_t \to X)$. Получаем нужную реализацию X = X'.
 - 3. Вычисляем величину $\alpha = \frac{\varphi(X')\psi(X_t \to X')}{\varphi(X_t)\psi(X' \to X_t)}$.
 - 4. Если $\alpha \geq 1$, то полагаем $X_{t+1} = X'$.
 - 5. Если $\alpha < 1$, то с вероятностью α полагаем $X_{t+1} = X'$ и с вероятностью $1-\alpha: X_{t+1} = X_t$. (Ермаков С.М. "Метод М-К в выч. математике")
- Процесс Марковский, стационарное распределение которого

$$P(X_{t+1}) = P(X_t)\psi(X_t \to X_{t+1}),$$

$$\psi(X_t \to X_{t+1})\varphi(X_{t+1}) = \psi(X_{t+1} \to X_t)\varphi(X_t).$$

Одномерные плотности

• Промоделируем плотности Гамма и экспоненциального распределений.

$$x^{k-1} \frac{\exp\left(-\frac{x}{\theta}\right)}{\Gamma(k)\theta^k}, \qquad \lambda \exp\left(-\lambda x\right).$$

 Используя в качестве переходной — плотность нормального распределения

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

. / 15 Федорычев Д.А.

Многомерные плотности

• Промоделируем двумерную плотность:

$$\varphi_{n+1}(X) = (2\pi)^{-(n+1)/2} (\det C)^{-1/2} \exp\left(-\frac{1}{2}(X-F)^{\mathrm{T}}C^{-1}(X-F)\right),$$

с параметрами:

$$C = \begin{pmatrix} 0.25 & 0.15 \\ 0.15 & 0.25 \end{pmatrix}, \quad F = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

• Применим асимптотический метод треугольников, основанный на разложении матрицы $C = \Gamma \Gamma^{\mathrm{T}}$ и последующей замене переменных:

$$(X - F)^{\mathrm{T}} C^{-1} (X - F) = Y^{\mathrm{T}} C^{-1} Y = Y^{\mathrm{T}} (\Gamma \Gamma^{\mathrm{T}})^{-1} Y =$$

= $Y^{\mathrm{T}} (\Gamma^{-1})^{\mathrm{T}} \Gamma^{-1} Y = (\Gamma^{-1} Y)^{\mathrm{T}} (\Gamma^{-1} Y).$

делаем замену переменных: $Z = (\Gamma^{-1}Y)$

$$\tilde{\varphi}_{n+1}(Z) = (2\pi)^{-(n+1)/2} \exp\left(-\frac{1}{2}Z^{\mathrm{T}}Z\right).$$

Многомерные плотности

• Промоделируем двумерную плотность:

$$\varphi_{n+1}(X) = (2\pi)^{-(n+1)/2} (\det C)^{-1/2} \exp\left(-\frac{1}{2}(X-F)^{\mathrm{T}}C^{-1}(X-F)\right),$$

с параметрами:

$$C = \begin{pmatrix} 0.25 & 0.15 \\ 0.15 & 0.25 \end{pmatrix}, \quad F = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

• Применим асимптотический метод треугольников, основанный на разложении матрицы $C = \Gamma \Gamma^{\mathrm{T}}$ и последующей замене переменных:

$$(X - F)^{\mathrm{T}} C^{-1} (X - F) = Y^{\mathrm{T}} C^{-1} Y = Y^{\mathrm{T}} (\Gamma \Gamma^{\mathrm{T}})^{-1} Y =$$

= $Y^{\mathrm{T}} (\Gamma^{-1})^{\mathrm{T}} \Gamma^{-1} Y = (\Gamma^{-1} Y)^{\mathrm{T}} (\Gamma^{-1} Y).$

делаем замену переменных: $Z=(\Gamma^{-1}Y)$

$$\tilde{\varphi}_{n+1}(Z) = (2\pi)^{-(n+1)/2} \exp\left(-\frac{1}{2}Z^{\mathrm{T}}Z\right).$$

Многомерный случай: реализация

• Результат метода треугольников и метода Метрополиса:

Рис.: метод треугольников.

Рис.: метод Метрополиса.

4 D > 4 A > 4 B > 4 B >

$$covt = \begin{pmatrix} 0.2506 & 0.1504 \\ 0.1504 & 0.251 \end{pmatrix}, \ cov = \begin{pmatrix} 0.25 & 0.15 \\ 0.15 & 0.25 \end{pmatrix}, \ covm = \begin{pmatrix} 0.2521 & 0.1523 \\ 0.1523 & 0.2547 \end{pmatrix}$$

	Время	Число принятых реализаций(итераций)
м. треугольников	1.73	10000(10000)
м. Метрополиса	2.01	5600(10000)

Многомерный случай: реализация

• Результат метода треугольников и метода Метрополиса:

Рис.: метод треугольников.

Рис.: метод Метрополиса.

$$covt = \begin{pmatrix} 0.2506 & 0.1504 \\ 0.1504 & 0.251 \end{pmatrix}, \ cov = \begin{pmatrix} 0.25 & 0.15 \\ 0.15 & 0.25 \end{pmatrix}, \ covm = \begin{pmatrix} 0.2521 & 0.1523 \\ 0.1523 & 0.2547 \end{pmatrix}$$

	Время	Число принятых реализаций(итераций)
м. треугольников	1.73	10000(10000)
м. Метрополиса	2.01	5600(10000)

Многомерный случай: ограниченная область

• Усложним задачу: промоделируем плотность в кубе с вершинами A(0,0), B(1,0), C(1,-1), D(-1,0).

Рис.: метод треугольников.

Рис.: метод Метрополиса.

• Во всех примерах, в качестве переходной плотности использовали — плотность нормального распределения ($\mu=0$ и $\sigma=1$).

Многомерный случай: ограниченная область

• Усложним задачу: промоделируем плотность в кубе с вершинами A(0,0), B(1,0), C(1,-1), D(-1,0).

Рис.: метод треугольников.

Рис.: метод Метрополиса.

• Во всех примерах, в качестве переходной плотности использовали — плотность нормального распределения ($\mu=0$ и $\sigma=1$).

Многомерный случай: ограниченная область (продолжение)

• Зададим в качестве переходной плотности, плотность равномерного распределения, ограниченного кубом, где моделируем распределение.

Рис.: метод Метрополиса.

Рис.: метод Треугольников.

	Время	Число принятых реализаций(итераций)
м. треугольников	1.86	1465(10000)
м. Метрополиса(н.п.)	2.35	539(10000)
м. Метрополиса(р.п)	1.71	3515(10000)

Многомерный случай: ограниченная область (продолжение)

 Зададим в качестве переходной плотности, плотность равномерного распределения, ограниченного кубом, где моделируем распределение.

Рис.: метод Метрополиса.

Рис.: метод Треугольников.

	Время	Число принятых реализаций(итераций)
м. треугольников	1.86	1465(10000)
м. Метрополиса(н.п.)	2.35	539(10000)
м. Метрополиса(р.п)	1.71	3515(10000)

Многомерный случай (продолжение)

• Трудоёмкость метода Метрополиса вычисляется так:

$$t = N(p_1 + 2p_2 + \epsilon),$$

где p_1 -среднее время вычисления переходной плотности, p_2 -искомой плотности распределения, N-число итераций, ϵ -доп. вычисления (принадлежность области).

 Моделируем 10-мерное нормальное распределение с матрицей ковариаций:

$$C = \begin{pmatrix} 1.0625 & 0.25 & 0 & \dots & \dots \\ 0.25 & 1.0625 & 0.25 & \dots & \dots \\ 0 & 0.25 & 1.0625 & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & \dots & 0.25 & 1.0625 \end{pmatrix}$$

в области, ограниченной 10-мерным кубом (-1...1).

Многомерный случай: результаты

	Время	Число принятых реализаций(итераций)
м. треугольников	6.83	253(10000)
м. Метрополиса(р.п.)	2.83	7086(10000)

- Метод Метрополиса, в некоторых случаях, имеет существенное преимущество над классическими методами моделирования.
- Метод Метрополиса позволяет удобно моделировать сложные плотности, например:

$$\varphi = \exp(\exp(-xy))$$

• Результат представлен на рисунке:

Метод Метрополиса: комбинирование

Функции которые задаются бесконечными рядами рядами:

$$\exp(\exp(-xy)) = 1 + \exp(-2xy) + \frac{\exp(-4xy)}{2} + \frac{\exp(-6xy)}{6} + \frac{\exp(-8xy)}{24}$$

Идея: Комбинировать метод Метрополиса и метод композиций:

- Каждое слагаемое используем, как плотность, которую моделируем.
- Реализуем метод Метрополиса.

Была разработана программа которая реализует этот алгоритм, сравним его с уже имеющимися результатами.

Метод Метрополиса: комбинирование (продолжение)

	Время	Число принятых реализаций(итераций)
м. комбинированный	0.71	8270(10000)
м. Метрополиса(р.п.)	0.97	9124(10000)

Во всех случаях, корректные реализации случайной величины, получаем после выхода на стационар. Был исследован момент выхода на стационар, сравнением гистограмм реализации цепи, критерием χ^2 :

Метод Метрополиса: стационарность

а) 607-шаг

b) 608-шаг

d) 610-шаг

Результат

Подведем итоги:

- Был изучен метод Метрополиса-Хастингса.
- Промоделировали простые распределения.
- Промоделировали многомерное распределения при различных условиях и размерностях.
- Сравнили результаты с асимптотическим (методом).
- Была разработана формула вычисления трудоемкости метода.
- Проверен новый метод моделирования метод Метрополис + метод композиций.
- Проанализировано стационарное состояние.

Большое спасибо за внимание!