

Status: 3.5.2017

3.4 Atomic Layer Deposition

- **3.4.1 History**
- **3.4.2** Basics
- 3.4.3 Process parameters and film properties
- 3.4.4 Applications:
 - ALD of high-k dielectrics
 - ALD of diffusion barriers
 - Copper ALD for seed layers in Cu Damascene
- 3.4.5 Reactor types / Equipment

History

- ALD or ALE basic works were performed in the late 60ies in Russia
- The ALCVD technique was patented by the founder of Microchemistry Tuomo Suntola, 1974
- Early 70's: Technology was mainly used for growing Electroluminiscent (EL) thin films
- Late 70´s: The so-called Travelling Reactor concept was developed
- Mid 80's: EL films are deposited in mass production
- 1997: Microchemistry introduced Reactor for Flat Panel Coating
- Today: ASM Microchemistry, Aixtron, Applied Materials

Atomic Layer-by-layer Growth

The intrinsic surface control mechanism:

Saturation of all the reaction/adsorpion sites

Purging step

ALD Cycle

Growth Requires

- 1. Reactive volatile precursors
 - both metal and non-metal compounds
- 2. A substrate with well-characterized adsorption sites
- 3. A growth temperature that leads to the chemical reaction between the precursor and the bonding site (covalent bond formation e.g. chemisorption)
 - no condensation and decomposition allowed
- 4. A precursor dose high enough to saturate the surface
- 5. An inert gas purge to remove the unreacted precursor molecules and reaction byproducts

ALD of Al₂O₃ from TMA and H₂O

Starting surface

Step 1 & 3
Chemisorption
until surface
saturation is
reached

Chemisorption of AI(CH₃)₃

Chemisorption of H₂O

Inert gas purge

Inert gas purge

TMA - trimethylaluminium

Source: B. van Nooten, EuroNanoForum, Prague, June 2-5, 2009

4

van Nooten, Euronanoi Orum, Frague, June 2-3, 2009

Atomic Layer Deposition: Process Window

ALD Film Growth Rate Vs. Deposition Temperature

Atomic Layer Deposition: Comparison of ALD and CVD

<u>ALD</u>

- Highly reactive precursors
- Precursors react separately on the substrate
- Precursors do not decompose at process temperature
- Uniformity ensured by the saturation mechanism
- Thickness control by counting the number of reaction cycles
- Surplus precursor dosing acceptable

<u>CVD</u>

- Less reactive precursors
- Precursors react at the same time on the substrate
- Precursors can decompose at process temperature
- Uniformity requires uniform flux of reactants and temperature (in reaction rate limited case)
- Thickness control by precise process control and monitoring
- Precursor dosing important

Atomic Layer Deposition: Typical Process Characteristics

Typical cycle time	0.5 - 5 s

• Purge / carrier gas
$$N_2$$
, Ar

_	HfO ₂	$HfCl_4 + H_2O$
_	ZrO ₂	$ZrCl_4 + H_2O$
_	Al2O ₃	$AI(CH_3)_3 + H_2C$

- TiN
$$TiCl_4 + NH_3$$
 or $TiCl_4 + N_2 + H_2$

- WCN
$$Et_3B + WF_6 + NH_3$$

- Cu
$$Cu(thd)_2 + O_3$$

ALD Precursor Classes

ALD Precursors

 $C(CH_3)_3$

C(CH₃)₃

Inorganic

Metal Halides:

M-F, M-Cl, M-Br, M-I

Adv:

Thermal stability

Reactivity

Molecule size

Disadv:

By-products

Vapor pressure

Metalorganic

Metal alkoxides

Metal β-diketonates

Metal dialkylamidos

Metal amidinates

Adv:

Vapor pressure

Disadv:

Thermal stability

Reactivity

Molecule size

Organometallic

Metal alkyls

Metal cyclopentadienyls

Adv:

Reactivity

Thermal stability

By-products

Vapor pressure

Disadv:

Availability 8 4 1

Source: Picosun Oy

Overview currently available ALD Films

Front-End Operations

Oxides

- SiO2, Al2O3, HfO2, ZrO2, TiO2, Ta2O5, La2O3, Y2O3, MgO, Nb2O5, Sc2O3, CeO2, Ga2O3
- mixed oxides like HfZrO, HfAlO, HfSiO
- laminates like Al2O3/HfO2/Al2O3
- SrTiO3, BaSrTiO3, BiTiO3, SrBiTaO, LaNiO3, LaCoO3
- ZnO, ZnO:Al, In2O3, In2O3:Sn, SnO2, SnO2:Sb

Nitrides

- TiN, TaN, TaCN, WN, WCN, NbN, MoN, HfN, AlN, mixed nitrides like TiAlN, TaSiN
- Carbides
 - TaC, WC
- II-VI Compounds
 - ZnS, ZnSe, ZnTe, ZnSSe, CaS, SrS, BaS, CdS, CdTe,
 - MnTe, HgTe, HgCdTe, CdMnTe, ZnS:M (M= Mn, Tb, Tm),
 - CaS:M (M= Eu ,Ce, Tb, Pb), SrS:M (M= Ce, Tb, Pb)
- Others:
 - W, Ta, Ti, Cu, Ru, RuO2, Pt, Ir, CuO
 - La2S3, PbS, In2S3, CaF2, SrF2, ZnF2

Atomic Layer Deposition: Processes for IC Industry

High-k gate dielectrics

- Replacement of current SiO₂/Si₃N₄ films
- Processes available for ZrO₂, HfO₂, mixed materials
- Targeted (equivalent) oxide thickness EOT: ~ 1.0 nm

High-k capacitor dielectrics

- Replacement of current SiO₂/Si₃N₄, Ta₂O₅ films
- ALCVD processes for Al₂O₃, Ta₂O₅

Diffusion barriers (to avoid Cu diffusion)

- Replacement current sputtered diffusion barriers
- ALCVD processes for TiN, W(C)N, Ta(C)N, mixed nitrides

Metal films

- ALD Cu seed layers for Cu electroplating
- Electrodes for high k gate and capacitor applications

EOT – equivalent oxide thickness

AIXTRON

High-k Dielectrics for MOS Gates

HfO₂ Sub-Monolayer Thickness Control

HfO₂ - TEM study

Ref.: M. Schumacher, GMM Workshop 2002

- excellent EOT < 16Å observed
- no additional SiO₂ growth

High-k Dielectrics for MOS Gates

Surface saturation results in excellent step coverage

- c-Si body nitride 50 nm poly-Si gate nitride
 - nitride
 underlayer

 7 Å gate

 45 Å HfO₂ = 15 Å EOT

- High-k & ALCVD also enable non-planar device structures
- 50nm VRG-nMOSFET using ALCVD deposited HfO2 as gate dielectric

Source: Agere | J.M. Hergenrother et al., 2001 IEDM

Ref.: J.W. Maes, GMM Workshop 2002

More Moore Examples - 1

Front-End Operation

DRAM Trench Capacitor

- Aspect ratio: > 60
- Al₂O₃

ALD of Diffusion Barrier Films

Atomic Layer Deposition of WCN barrier films

Li et al. (ASM, Philips), IITC 2002

Application of ALD to barrier films

Advantages:
Highly conformal deposition
Controlled thickness
Extremely thin films
Excellent thickness uniformity

Disadvantages/Challenges:
Surface sensitivity
Cost-effective only for very thin films
For porous and part of low-density low-k
materials only applicable at sealed
surfaces

Atomic Layer Deposition of Copper

Why copper ALD?

- Seed layer for Cu damascene process
- Metallization of narrow holes and trenches, e.g. through-silicon vias (TSV)
- Conformally coating 3D nanostructures (porous materials, nanowires, CNTs, ...)

TEM cross section of ALD film on TaN Ellipsometric thickness: 3.6 nm

Known Approaches for Cu ALD

Approach A (R. Solanki, U.S.)

Approach B (Fraunhofer ENAS, T. Waechtler)

Approach A: ALD of Copper with n cycles of reducing agent and Cu prec.

Cu source: Cu(II) hexafluoroacetylacetonate (Cu(hfac)₂)

Reducing agents: Methanol, Ethanol, Isopropyl alcohol (IPA), Formalin

Typical deposition temperature: 300°C

Possible ALD reaction mechanism

<u>First reaction step (alhohol pulse):</u> ROH \longrightarrow R• (ad) + OH• (ad) R.. Alkyl group

Second reaction step (Cu(hfac)₂ pulse):

 $Cu(hfac)_2 \cdot X H_2O + H_2 + R \cdot (ad) + OH \cdot (ad) \longrightarrow Cu + RH + (CF_3)_2CH \cdot + (COOH)_2$

Ref.: R. Solanki, ALD Conference 2001

Approach B: Copper oxide ALD with n cycles of Cu prec. and oxidizing agent & subsequent reduction of complete film

2nd step: Vapor phase reduction

Cu(I) β-diketonate precursor

- Fluorine free avoiding adhesion issues
- Liquid under standard conditions liquid precursor delivery during ALD
- Oxidation by a mixture of water vapor and O₂
 ("wet O₂")

Well established process for Cu_xO ALD

T. Waechtler, et al., *J. Electrochem. Soc.* **156**, H453 (2009) T. Waechtler, et al., DE 10 2007 058 571, international patents pending

Zentrum für Mikrofechnologien

ECD Experiments on ALD Copper

FIB lamella preparation and STEM investigation of filled interconnect

- Good filling behavior when combining ALD Cu and Ru already under unoptimized ECD conditions (note: conformal ECD, no buttom up fill!)
- PVD TaN/Ru stack showing strong thickness inhomogeneity within features
- Good conformality and step coverage of ALD copper seed

Combination Ru/ALD Cu could enable nanoscale interconnect metallization

Equipment: Reactor Types

Reactor Flow-type

Perpendicular flow Reactor "showerhead"

Equipment: Reactor Types - Spatial ALD

Example: Applied Materials Olympia[™] ALD

Equipment: Reactor Types – Spatial ALD

Example: Applied Materials OlympiaTM ALD

Source: Technical Briefing, Applied Materials, 2015-07-13

Equipment example: AIXTRON Tricent ALD

Results:

- >95% step coverage in a 50:1 AR structures with Al₂O₃, HfO₂, HfSiOx and ZrO₂ film
- >90% step coverage in a 50:1 AR structures with TiN film
- WiW and WtW uniformity <1.0%, 1 sigma
- >10 wph for 60Å ZrO₂ film with >95% step coverage in 50:1 AR
- <20 adders with particle size >0.16µm in high volume manufacturing
- >90% Availability in high volume manufacturing
- Good thickness and interface control for nanolaminate and alloy films
- Low leakage for DRAM and Gate Dielectrics high-k films

Source: www.aixtron.com (2010)