COGNOME:

NOME:

MATRICOLA:

Calculus 1 1 febbraio 2024

1. Sia data la funzione f definita da

$$f(x) = \left(\frac{x^2}{x+1}\right)^{\frac{1}{3}}$$

- (a) Calcolare il dominio, i limiti agli estremi del dominio e determinare il segno e gli eventuali asintoti orizzontali e/o verticali di f.
- (b) Calcolare la derivata prima e determinare eventuali massimi e/o minimi assoluti e/o relativi di f.
- (c) Tracciare il grafico e determinare l'immagine di f.
- (d) Trovare quante soluzioni ha l'equazione $f(x) = \pi$.
- 2. Si consideri la funzione

$$f(x) = \frac{\cos x}{\sin^2 x + 2\sin x + 2}.$$

- (a) Trovare tutte le primitive di f, se esistono, la cui retta tangente al grafico in x=0 ha equazione $y=\frac{x}{2}+1$.
- (b) Calcolare $\int_0^{\pi/2} f(x) dx$.
- **3.** Per $\alpha, \beta \in \mathbb{R}$ si consideri la funzione

$$g_{\alpha,\beta}(x) = \begin{cases} \alpha + \arctan(x+1) & \text{se } x \le 0\\ \frac{1-\cos(\beta x)}{x} & \text{se } x > 0. \end{cases}$$

- (a) Stabilire per quali α, β , se esistono, $g_{\alpha,\beta}$ è continua su \mathbb{R} .
- (b) Stabilire per quali α, β , se esistono, $g_{\alpha,\beta}$ è derivabile su \mathbb{R} .