```
In [1]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import warnings
         warnings.filterwarnings("ignore")
In [2]: df=pd.read csv("50 Startups.csv")
         df.head()
Out[2]:
            R&D Spend Administration Marketing Spend
                                                        State
                                                                 Profit
          0
             165349.20
                           136897.80
                                           471784.10 New York 192261.83
          1
             162597.70
                           151377.59
                                           443898.53 California 191792.06
          2
             153441.51
                            101145.55
                                           407934.54
                                                      Florida 191050.39
          3
             144372.41
                            118671.85
                                           383199.62 New York 182901.99
              142107.34
                            91391.77
                                           366168.42
                                                      Florida 166187.94
In [3]: |df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 50 entries, 0 to 49
         Data columns (total 5 columns):
          #
              Column
                                 Non-Null Count
                                                  Dtype
                                                  _ _ _ _ _
          0
              R&D Spend
                                 50 non-null
                                                  float64
          1
              Administration
                                 50 non-null
                                                  float64
                                                  float64
          2
              Marketing Spend 50 non-null
          3
              State
                                 50 non-null
                                                  obiect
              Profit
                                 50 non-null
                                                  float64
         dtypes: float64(4), object(1)
         memory usage: 2.1+ KB
In [4]: df.isnull().sum()
Out[4]: R&D Spend
                             0
         Administration
                             0
         Marketing Spend
                             0
         State
                             0
         Profit
                             0
         dtype: int64
In [5]: | df.drop(["State"],axis=1,inplace=True)
```

In [6]: df.describe()

Out[6]:

	R&D Spend	Administration	Marketing Spend	Profit
count	50.000000	50.000000	50.000000	50.000000
mean	73721.615600	121344.639600	211025.097800	112012.639200
std	45902.256482	28017.802755	122290.310726	40306.180338
min	0.000000	51283.140000	0.000000	14681.400000
25%	39936.370000	103730.875000	129300.132500	90138.902500
50%	73051.080000	122699.795000	212716.240000	107978.190000
75%	101602.800000	144842.180000	299469.085000	139765.977500
max	165349.200000	182645.560000	471784.100000	192261.830000

```
In [7]: num_col=df.select_dtypes(include=["int","float"]).columns
num_col
```

```
In [8]: plt.figure(figsize=(15,10))
    count=1
    for i in num_col:
        plt.subplot(2,2,count)
        sns.distplot(df[i])
        count+=1
    plt.show()
```


In [10]: df[df["Profit"]<20000]</pre>

Out[10]:

	R&D Spend	Administration	Marketing Spend	Profit
49	0.0	116983.8	45173.06	14681.4

In [11]: df.drop(index=49,inplace=True)

In [12]: df.describe()

Out[12]:

	R&D Spend	Administration	Marketing Spend	Profit
count	49.000000	49.000000	49.000000	49.000000
mean	75226.138367	121433.636327	214409.833265	113998.991020
std	45115.141560	28301.008988	121168.170072	38171.246893
min	0.000000	51283.140000	0.000000	35673.410000
25%	44069.950000	103057.490000	134050.070000	90708.190000
50%	73994.560000	122782.750000	214634.810000	108552.040000
75%	101913.080000	145077.580000	299737.290000	141585.520000
max	165349.200000	182645.560000	471784.100000	192261.830000

```
In [13]: sns.boxplot(df["Profit"])
```

Out[13]: <AxesSubplot:xlabel='Profit'>


```
In [14]: plt.figure(figsize=(8,10))
          count=1
          for i in num_col:
              if i!="Profit":
                   plt.subplot(3,1,count)
                   sns.scatterplot(df[i],df["Profit"])
          plt.show()
              200000
              175000
              150000
           125000
100000
               75000
               50000
                                 25000
                                           50000
                                                      75000
                                                                100000
                                                                          125000
                                                                                    150000
                                                       R&D Spend
              200000
              175000
              150000
           125000
100000
               75000
               50000
                           60000
                                     80000
                                               100000
                                                          120000
                                                                    140000
                                                                               160000
                                                                                         180000
                                                     Administration
              200000
              175000
              150000
             125000
              100000
               75000
               50000
                                    100000
                                                   200000
                                                                  300000
                                                                                400000
```

Marketing Spend

```
In [15]: x=df[["R&D Spend","Marketing Spend"]]
In [16]: y=df["Profit"]
In [17]: x=df.iloc[:,:-1]
y=df.iloc[:,-1]
```

In [18]: x

Out[18]:

	R&D Spend	Administration	Marketing Spend
0	165349.20	136897.80	471784.10
1	162597.70	151377.59	443898.53
2	153441.51	101145.55	407934.54
3	144372.41	118671.85	383199.62
4	142107.34	91391.77	366168.42
5	131876.90	99814.71	362861.36
6	134615.46	147198.87	127716.82
7	130298.13	145530.06	323876.68
8	120542.52	148718.95	311613.29
9	123334.88	108679.17	304981.62
10	101913.08	110594.11	229160.95
11	100671.96	91790.61	249744.55
12	93863.75	127320.38	249839.44
13	91992.39	135495.07	252664.93
14	119943.24	156547.42	256512.92
15	114523.61	122616.84	261776.23
16	78013.11	121597.55	264346.06
17	94657.16	145077.58	282574.31
18	91749.16	114175.79	294919.57
19	86419.70	153514.11	0.00
20	76253.86	113867.30	298664.47
21	78389.47	153773.43	299737.29
22	73994.56	122782.75	303319.26
23	67532.53	105751.03	304768.73
24	77044.01	99281.34	140574.81
25	64664.71	139553.16	137962.62
26	75328.87	144135.98	134050.07
27	72107.60	127864.55	353183.81
28	66051.52	182645.56	118148.20
29	65605.48	153032.06	107138.38
30	61994.48	115641.28	91131.24
31	61136.38	152701.92	88218.23
32	63408.86	129219.61	46085.25
33	55493.95	103057.49	214634.81

	R&D Spend	Administration	Marketing Spend
34	46426.07	157693.92	210797.67
35	46014.02	85047.44	205517.64
36	28663.76	127056.21	201126.82
37	44069.95	51283.14	197029.42
38	20229.59	65947.93	185265.10
39	38558.51	82982.09	174999.30
40	28754.33	118546.05	172795.67
41	27892.92	84710.77	164470.71
42	23640.93	96189.63	148001.11
43	15505.73	127382.30	35534.17
44	22177.74	154806.14	28334.72
45	1000.23	124153.04	1903.93
46	1315.46	115816.21	297114.46
47	0.00	135426.92	0.00
48	542.05	51743.15	0.00

```
In [19]: y
Out[19]: 0
                192261.83
          1
                191792.06
          2
                191050.39
          3
                182901.99
          4
                166187.94
          5
                156991.12
          6
                156122.51
          7
                155752.60
          8
                152211.77
          9
                149759.96
          10
                146121.95
          11
                144259.40
          12
                141585.52
          13
                134307.35
          14
                132602.65
          15
                129917.04
          16
                126992.93
          17
                125370.37
          18
                124266.90
          19
                122776.86
          20
                118474.03
          21
                111313.02
          22
                110352.25
          23
                108733.99
          24
                108552.04
          25
                107404.34
          26
                105733.54
          27
                105008.31
          28
                103282.38
          29
                101004.64
          30
                 99937.59
                  97483.56
          31
          32
                  97427.84
          33
                 96778.92
          34
                  96712.80
          35
                  96479.51
          36
                  90708.19
          37
                  89949.14
          38
                  81229.06
          39
                  81005.76
          40
                  78239.91
          41
                  77798.83
          42
                  71498.49
          43
                  69758.98
          44
                  65200.33
          45
                  64926.08
          46
                  49490.75
          47
                  42559.73
          48
                  35673.41
          Name: Profit, dtype: float64
```

from sklearn.model_selection import train_test_split

In [20]:

```
In [21]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=12
In [22]: x_train.shape
Out[22]: (39, 3)
In [23]: y train.shape
Out[23]: (39,)
In [24]: x_test.shape
Out[24]: (10, 3)
In [25]: y_test.shape
Out[25]: (10,)
In [26]: from sklearn.linear_model import LinearRegression
In [27]: |mlr=LinearRegression()
In [28]: mlr.fit(x_train,y_train)
Out[28]: LinearRegression()
In [29]: y_pred_train=mlr.predict(x_train)
         y pred test=mlr.predict(x test)
In [30]: from sklearn.metrics import r2_score,mean_squared_error
In [31]: def model_performance(y_actual,y_pred):
             r2=r2_score(y_actual,y_pred)
             RMSE=np.sqrt(mean_squared_error(y_actual,y_pred))
             print("R2 Score:{} | RMSE:{}".format(round(r2,2),round(RMSE,2)))
In [32]: print("Train Performance")
         model performance(y train,y pred train)
         Train Performance
         R2 Score: 0.96 | RMSE: 7169.27
```

```
In [33]: print("Test Performance")
         model_performance(y_test,y_pred_test)
         Test Performance
         R2 Score:0.95|RMSE:9276.04
 In [ ]:
```