Séries d'exercices 4ème inf EXPONENTIELLE

MATHS AU LYCEE *** ALI ARIR Site Web: http://maths-akir.midiblogs.com/

EXERCICE N°1

Soit f la fonction définie sur R par : $f(x) = x^2 e^{2x}$.

a) Déterminer trois réels a, b et c tels que la fonction F définie sur R par : $F(x) = (ax^2 + bx + c) e^{2x}$ soit une primitive de f sur R.

b) En déduire la primitive de f sur R qui s'annule en x = 0.

EXERCICE N°2

Partie A

1°)Étudier le signe du polynôme $P(X) = -8X^2 + 2X + 1$ où X est un réel.

2°)Soit g la fonction définie sur R par $g(x) = -8e^x + e^{-x} + 2$

a)Montrer que pour tout réel x, $g(x) = \frac{-8e^{2x} + 2e^x + 1}{e^x}$

b)Résoudre dans \mathbb{R} l'équation : $-8e^x + 2e^x + 1 = 0$, en déduire les solutions de l'équation g(x)=0. c)Étudier le signe de la fonction g sur R.

Partie B

Soit f la fonction définie sur R par : $f(x) = \frac{8 - e^x}{1 + e^x}$. Sa courbe représentative C est donnée ci-dessous.

- 1°) Calculer les coordonnées des points A et B intersection de la courbe C_f avec les axes du repère.
- 2°)Étudier les limites de la fonction f en $-\infty$ et en $+\infty$. Préciser les asymptotes éventuelles à la courbe C_f .
- 3°)Calculer f '(x).
- 4°)Étudier les de variations de f sur R
- 5°)Donner les équations des tangentes à la courbe C_f aux points d'abscisses -3ln2 et 0.

EXERCICE Nº3:

Soit f la fonction définie sur R par : $f(x) = x - 1 + (x^2 + 2)e^{-x}$.

On note (C) la courbe représentative de f dans un repère orthonormal d'unité graphique 2 cm.

Partie I

Soit g to fonction définie sur R par : $g(x) = 1 - (x^2 - 2x + 2)e^{-x}$.

- 1) Etudier les limites de g en $-\infty$ et en $+\infty$.
- 2) Etudier le sens de variation de g.
- 3) Démontrer que l'équation g(x) = 0 admet une solution unique α dans R, puis justifier que : $0.35 \le \alpha \le 0.36$.
- 4) En déduire le signe de g.

Partie II

1) Etudier les limites de f en $-\infty$ et en $+\infty$.

- 2) Calculer f'(x). En utilisant la partie A, étudier le sens de variation de f.
- 3) Démontrer que $f(\alpha) = \alpha(1 + 2e^{-\alpha})$ et déterminer un encadrement de $f(\alpha)$ d'amplitude 4×10^{-2} .
- 4) Démontrer que la droite Δ d'équation y = x 1 est asymptote à (C) en $+\infty$. Préciser la position de (C) par rapport à Δ .
- 5) Donner une équation de la tangente T à (C) au point d'abscisse 0.
- 6) $Tracer \Delta$, Tet(C).

EXERCICE N°4:

On appelle f la fonction définie sur $[0; +\infty[$ par : $f(x) = x + 1 + xe^{-x}$.

On note (C) la courbe représentative de f dans le plan muni du repère orthonormal (O; \vec{i} , \vec{j}) (unité graphique : 2 cm).

- 1°) a) Calculer, pour tout réel x positif, f'(x) et f''(x).
- b) Etudier le sens de variation de la dérivée f'.

Démontrer que pour tout réel x positif, f'(x) > 0.

- c) Calculer la limite de f en $+\infty$.
- d) Dresser le tableau de variation de f.
- 2°) a) Démontrer que la droite D d'équation y = x + 1 est asymptote à (C) et préciser la position relative de D et (C).
- b) Montrer que la courbe (C) admet en un point A une tangente parallèle à la droite D. Déterminer les coordonnées de A.
- 3°) Démontrer que l'équation f(x) = 2 admet sur $[0; +\infty[$ une unique solution notée α Vérifier que $0 < \alpha < 1$.
- 4°) a) Construire la droite D, le point A défini en 2°b), la courbe (C) et la tangente en A à la courbe (C).
- b) Donner par lecture graphique une valeur approchée de α

EXERCICE N°5

On considère la fonction f définie sur $[0; +\infty[par f(x) = \frac{e^x - 1}{xe^x + 1}]$.

On désigne par (C) sa courbe représentative dans le plan rapporté à un repère orthonormal; $(O; \vec{i}, \vec{j})$ unité graphique : 4 cm.

Partie A

Soit la fonction g définie sur l'intervalle $[0; +\infty[parg(x)] \times x + 2 - e^x$.

1°)Étudier le sens de variation de g sur [0 ; +∞[et déterminer la limite de g en +∞.

2°)a) Montrer que l'équation g(x) = 0 admet une solution et une seule dans $[0; +\infty[$.

On note a cette solution.

- *b)* Prouver que 1,14 < α < 1,15.
- 3°)En déduire le signe de g(x) suivant les valeurs de x.

Partie B

- 1°) a) Montrer que, pour tout x appartenant à $[0; +\infty[, f'(x) = \frac{e^x g(x)}{(xe^x + 1)^2}]$
- b) En déduire le sens de variation de la fonction f sur $[0; +\infty]$.
- 2°)a) Montrer que, pour tout réel positif x, $f(x) = \frac{1 e^{-x}}{x + e^{-x}}$
- b) En déduire la limite de f en +∞. Interpréter graphiquement le résultat trouvé.
- 3°)a) Établir que $f(\alpha) = \frac{1}{\alpha + 1}$.
- b) En utilisant l'encadrement de α établi dans la question A.2., donner un encadrement de $f(\alpha)$ d'amplitude $10^{\circ 2}$.
- 4°)Déterminer une équation de la tangente (T) à la courbe (C) au point d'abscisse 0.
- 5°) a) Établir que, pour tout x appartenant à l'intervalle $[0;+\infty[$,

$$f(x)-x = \frac{(x+1)u(x)}{xe^x+1}$$
 avec $u(x) = e^x - xe^x - 1$.

b) Étudier le sens de variation de la fonction u sur l'intervalle $[0; +\infty[$.

En déduire le signe de u(x).

c) Déduire des questions précédentes la position de la courbe (C) par rapport à la droite (T).

 6°)Tracer (C) et (T).

