Bias in Machine Learning: An Adversarial Approach

Solange Garcia de Alford, Steven Hayden, Nicole Wittlin
Master of Science in Data Science
Southern Methodist University, Dallas, TX 75275, USA

Introduction

- Bias is very prevalent, occurring in ML models at preprocess, in-process, post-process stages.
- Examples of ML bias are widely known COMPAS, Amazon hiring algorithm/resume scan, Word2Vec. Most are binary: protected class vs unprotected class.
- Our study focuses on eliminating bias stemming from AGE when predicting employee attrition.

Main Topics

- Adversarial learning can be leveraged to mitigate bias and unfairness.
- Competing models of GAN, where Predictor (P) tries hinder Discriminator (D) with fake data, while feedback from D tries to hinder P prediction ability.
- Our study: P -- predict employee prediction; D -predict age.
- Goal: improve group fairness via demographic parity (DP) (all equally likely of positive outcome (TP + FP)).

ACCUR

Model Architecture

Baseline Model

- · Logistic Model
- $\hat{y}_{Attrition} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$

Adversarial Models

- $\hat{y}_{Attrition} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$
- $\hat{A}_{Age} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_n x_n + \varepsilon$
- Loss = $-\alpha \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$

Results -

- Improved DP: range Pre-GAN for all groups between 94-100%; Post-GAN range 98-100%.
- Small trade-off between Accuracy and Fairness Post-GAN: accuracy decreased 2% but DP increased 6%.
- **Demonstrate work beyond binary classes**: can work toward having more than one unprotected group.
- See Results Chart

		yee Attrition Dataset 84% NO / 16% YES						
Age binned in 5-year ranges								
	ttrition <= age 35							
Att	trition ● No ● Yes							
tion	300							
Count of Attrition	200							
Cor	100							
	<=25 >25 & <=30	>30 & >35 & >40 & >45 & >50 <=35 <=40 <=45 <=50 Age_group_half_Decade						

	ACCOR	< = 25	(25, 30]	(30, 35]	(35, 40]	(40, 45]	(45, 50]	> 50	Overall
	Pre GAN	0.7575	0.84	0.8315	0.9138	0.9464	0.8696	0.7941	0.8587
	Post GAN	0.6970	0.8	0.8315	0.8966	0.8929	0.9130	0.7941	0.8315
	DEMO			<i></i>	/0.5 /0.5		//	=-	
		4 - 2E	/25 201	/20 251	IDE ANI	/ AN AE1	IAE ENI	L EN	/ \\
_	PARITY	< = 25	(25, 30]	(30, 35]	(35, 40]	(40, 45]	(45, 50]	> 50	Overall
)		< = 25 0.9394	(25 , 30] 0.96	(30, 35] 0.9438	0.9655	0.9464	(45 , 50] 0.9565	> 50	0.9375
	PARITY Pre			• •	• •	•			

Conclusions / Future Work

- Bias must be addressed in advance and throughout – NOT as an afterthought.
- Re-run study with larger, real dataset and/or pre-processed data that balances attrition % or sampled differently.
- Refine code with Early Stop, when the adversary has sufficiently mitigated bias and correlation is no longer detected in the adversarial model for Z(x), Age.
- We CANNOT and MUST NOT replace the inquisitiveness, skepticism, mortal imagination and compassion that humans bring to bear on Machine Learning.