

# Florida International University

Spring 2023 Senior Design Project



eps.fiu.edu

# **EV Wireless Charging Alignment System**

Students: Christopher Prasad, Andy Alvarez, Rodolfo Ramos, Ivan Mendoza, Maximiliano Mauna Mentor: Dr. Arif Sarwat, Milad Behnamfar, Energy, Power, and Sustainability Instructor/Faculty: Dr. Wilmer Arellano, Florida International University

### Problem Statement

Inductive Power Transfer (IPT) is a technology that enables the transfer of power from one system to another across a relatively large air gap between two loosely coupled coils with no physical contact. IPT provides a clean and safe way of transferring power. However, the current issue associated with this technology is the misalignment between the coils, resulting in inefficient power transfer. It is a huge obstacle when it comes to electric vehicle wireless charging. Our project is about designing an electric vehicle alignment mechanism that will detect a charging coil under the electric vehicle. It will then align the transmitter coil directly below the charging coil allowing maximum power transfer and improving the wireless charging efficiency.

## Robotic Design

#### Hardware

- Arduino Mega 2560
- 3A Motor Shield
- 2 12V Motors
- Hall Effect Sensor
- 24V Battery Pack

#### Chassis

- Galvanized Steel Frame
- PVC Platform
- 4 Caster Wheels
- 2 Wheels

## Capabilities

- The alignment mechanism enables wireless power transfer to charge an electric vehicle.
- Capable of partially aligning a receiver coil to the transmitter coil
- The alignment mechanism fits under a standard vehicle chassis.
- The alignment mechanism shows the user the amount of misalignment as a percentage

## System Design











