Katalóg požiadaviek

Vision Lab – fyzikálne experimenty

Skupina SEJ2

Soňa Senkovičová, Erik Szalay, Jozef Kubík, Juraj Vetrák

24.10.2018

Obsah dokumentu

1. UVOD	3
1.1 ÚČEL KATALÓGU POŽIADAVIEK	3
1.2 Rozsah systému	3
1.3 Referencie	3
1.4 Prehľad nasledujúcich častí dokumentu	3
2. VŠEOBECNÝ POPIS	4
2.1 Perspektíva produktu	4
2.2 FUNKCIE PRODUKTU	4
2.3 Charakteristika používateľov	4
2.4 VŠEOBECNÉ OBMEDZENIA	4
2.5 Predpoklady a závislosti	5
3. POŽIADAVKY	5
3.1 Požiadavky z hľadiska externého rozhrania (External Interface Requirements)	5
3.1.1 Užívateľské rozhrania	5
3.1.2 Hardvérové rozhrania	5
3.1.3 Softvérové rozhrania	5
3.1.4 Komunikačné rozhrania	6
3.2 Požiadavky na funkcie	6
3.2.1 Zobrazenie záznamu z webovej kamery v reálnom čase	6
3.2.2 Grafické zvýraznenie snímaného objektu	6
3.2.3 Nastavenie rozlíšenia webovej kamery	6
3.2.4 Spustenie a zastavenie snímania	6
3.2.5 Reštartovanie snímania	6
3.2.6 Export dokumentácie z pozastavaného záznamu	6
3.2.7 Export štatistických údajov z grafu	7
3.2.8 Výber webovej kamery	7
3.2.9 Vykreslenie grafu	7
3.2.10 Nastavenie vykreslovania grafu	7
3.2.11 Nastavenie parametrov kyvadla	7
3.2.12 Manipulácia s grafom	8
3.2.13 Kalibrácia webovej kamery	8
3.2.14 Konfiguračný súbor	8
3.2.15 Vzorkovacia frekvencia snímania kamerou	8
3.3 Požiadavky, ktoré sa nevzťahujú na funkcionalitu	9
3.3.1 Implementačné požiadavky	9
3.3.2 Požiadavka na sledované objekty	9
3.3.3 Požiadavky na štandard	9
3.3.4 Prispôsobenie detskému užívateľovi	10
3.3.5 Návod na používanie	10

1. Úvod

1.1 Účel katalógu požiadaviek

Účelom tohto dokumentu je opísať vlastnosti pripravovaného softvéru a jednoznačne charakterizovať základné požiadavky na jeho tvorbu. Dokument je určený pre všetkých stakeholderov, t.j. pre zadávateľov projektu, pre vývojárov projektu (SEJ2) a pre vyučujúceho predmetu Tvorba informačných systémov.

1.2 Rozsah systému

Vyvíjaný softvér slúži ako analytický nástroj pri sledovaní fyzikálneho javu – pohybu kyvadla. Jeho hlavným účelom bude umožniť používateľovi pozorovať a vyhodnotiť fyzikálny jav – kmitanie kyvadla. Samotné pozorovanie bude realizované v dvoch zložkách, a to video v reálnom čase, kde užívateľ vidí samotný objekt na obrazovke zariadenia a vedľa vidí graf, ktorý popisuje stav objektu na kamere v aktuálnom čase. Užívateľ môže softvér využiť na edukačný a prezentačný účel. Softvér tak používateľovi umožní lepšie pochopiť skúšaný experiment a použiť namerané údaje na ďalšie skúmanie.

1.3 Referencie

[1] Motion tracking - Physics - WebCam Laboratory https://www.youtube.com/watch?v=TwBuhUa1xMQ

[2] Textový záznam zo stretnutia so zadávateľom https://github.com/TIS2018-FMFI/visionlab-fyzikalne-experimenty/blob/docs/documentation/zaznam zo stretnutia sej2.pdf

[3] Šedivý, M. Matematické Kyvadlo. https://github.com/TIS2018-FMFI/visionlab-fyzikalne-experimenty/blob/docs/documentation/InformacieOKyvadle-Vdoviak/

1.4 Prehľad nasledujúcich častí dokumentu

Druhá kapitola dokumentu všeobecne popisuje vyvíjaný softvér, konkrétne jeho perspektívu, funkcie a charakterizuje koncových používateľov softvéru. Na konci druhej kapitoly sú vytýčené všeobecné obmedzenia pri tvorbe, ako aj predpoklady a závislosti na používanie softvéru. V tretej a zároveň poslednej kapitole sú uvedené jednotlivé požiadavky rozdelené na požiadavky z hľadiska externého rozhrania, požiadavky na funkcie a požiadavky, ktoré sa priamo nevzťahujú na funkcionalitu softvéru.

2. Všeobecný popis

2.1 Perspektíva produktu

Produkt bude predovšetkým využívaný študentmi a učiteľmi na školách. Budú ho môcť použiť pri experimentoch s kyvadlami, kde sa merajú a zaznamenávajú údaje. Tie sa následne dajú uložiť a porovnávať. Môže slúžiť aj ako doplnok pri prednáške učiteľa, keďže učiteľ/ka vie už vopred namerané hodnoty odprezentovať.

2.2 Funkcie produktu

Aplikácia sa zameriava na sledovanie lankového kyvadla a analýzu jeho fyzikálnych vlastností v grafe. Používatelia môžu pozorovať záznam pohybu kyvadla v reálnom čase vďaka webovej kamere a graf, ktorý vykresľuje jeden z ponúkaných údajov [3.2.10].

Tieto údaje sa dajú uložiť do PDF, v ktorom sa bude nachádzať snímka kamery s grafom a vypočítané hodnoty zvolených veličín. Hodnoty sa budú dať uložiť aj do CSV formátu. Aplikácia ponúka aj možnosť sledovať staršie časti grafu, ktoré už nie sú na obrazovke a to pomocou horizontálneho scrollbaru. Záznam vykresľovania grafu sa dá pozastaviť a znova spustiť. V prípade, že bude do zariadenia pripojených viac webových kamier, užívatelia si budú môcť určiť, ktorú má aplikácia využívať, alebo bude pridelená systémom automaticky. Rozlíšenie webovej kamery, ktorá sníma kyvadlo, sa dá nastaviť. V rámci zobrazovania záznamu v reálnom čase sa bude kyvadlo zvýrazňovať jasnou farbou, kvôli lepšej viditeľnosti na obrazovke. V aplikácii si používateľ môže zadefinovať hmotnosť závažia na sledovanom kyvadle, čo umožní skúmať údaje súvisiace s energiou kyvadla.

2.3 Charakteristika používateľov

Aplikáciu budú využívať učitelia a študenti pri edukačnej činnosti. Študenti v rámci "experimentov" budú môcť sledovať zmenu fyzikálnych vlastností pozorovaného kyvadla v reálnom čase. Namerané údaje si budú môcť uložiť aj pre budúce pozorovania. Učitelia budú môcť vylepšiť interaktivitu vyučovania použitím zistených dát. Môžu ich namerať, uložiť a potom v triede odprezentovať alebo použiť aplikáciu priamo na vyučovaní.

2.4 Všeobecné obmedzenia

Na projekte pracuje štvorčlenná skupina pozostávajúca zo študentov tretieho ročníka odboru Aplikovaná informatika na Fakulte matematiky, fyziky a informatiky Univerzity Komenského. Funkčný softvér musí byť vyhotovený do 31.01.2019, a to vrátane dokumentácie. Program musí byť funkčný, odladený,

pričom sa hlavne prihliada na jeho stabilitu a jednoduché používateľské rozhranie.

2.5 Predpoklady a závislosti

Predpokladá sa, že užívatelia vedia narábať s počítačom, myšou, klávesnicou, USB webovou kamerou. Vedia umiesniť kyvadlo so stojanom pred webovú kameru. Užívateľ musí spustiť meranie a zabezpečiť, aby bolo celé kyvadlo, vrátane svojich výchyliek v zábere webovej kamery. Musí zabezpečiť, že v zábere webovej kamery nebude iný pohybujúci sa objekt, okrem sledovaného kyvadla a farba sledovaného kyvadla bude v kontraste s pozadím záberu.

3. Požiadavky

3.1 Požiadavky z hľadiska externého rozhrania (External Interface Requirements)

3.1.1 Užívateľské rozhrania

3.1.1.1 Užívateľské prostredie

Užívateľské prostredie aplikácie by malo tvoriť jedno komplexné okno, na ktorom sú umiestnené všetky funkcionality potrebné pre užívateľa.

3.1.1.2 Ovládanie aplikácie

Užívateľ by mal aplikáciu ovládať predovšetkým pomocou myši a klávesnice.

3.1.2 Hardvérové rozhrania

- 3.1.2.1 Desktop
- 3.1.2.2 Zabudovaná alebo externá webová kamera

3.1.3 Softvérové rozhrania

Aplikácia bude vyžadovať nainštalovaný operačný systém Windows od verzie 7. Spúšťanie na iných populárnych operačných systémoch ako Linux, MacOS nie je zamýšlané.

3.1.4 Komunikačné rozhrania

Ak bude použitá externá webová kamera, tak bude pripojená výhradne cez rozhranie USB.

3.2 Požiadavky na funkcie

3.2.1 Zobrazenie záznamu z webovej kamery v reálnom čase

Aplikácia bude na veľkej časti obrazovky vľavo zobrazovať živý záznam z webovej kamery.

3.2.2 Grafické zvýraznenie snímaného objektu

V prípade umiestnenia kyvadla pred webovú kameru s kontrastným pozadím sa poloha snímaného kyvadla farebne zvýrazní.

3.2.3 Nastavenie rozlíšenia webovej kamery

Priamo v rozhraní aplikácie možnosť nastaviť rozlíšenie webovej kamery.

3.2.4 Spustenie a zastavenie snímania

Po spustení aplikácie musí užívateľ ešte spustiť snímanie kamery tlačidlom. Následne môže užívateľ v akomkoľvek okamihu tlačidlom zastaviť obraz z webovej kamery, pričom sa zastaví aj graf a môže odsledovať aktuálnu situáciu.

3.2.5 Reštartovanie snímania

Užívateľ môže zastavené snímanie [3.2.4] kedykoľvek znovu spustiť (rovnakým tlačidlom ako pri prvotnom spustení záznamu) a začať tým nové meranie.

3.2.6 Export dokumentácie z pozastavaného záznamu

Zastavený záznam [3.2.4] si užívateľ môže stlačením tlačidla vyexportovať do dokumentu PDF, v ktorom sa bude nachádzať daná snímka z kamery, ako aj príslušný graf a vypočítané hodnoty zo zvolených veličín. Doplnený bude užívateľovým komentárom, ktorý zadá do textového poľa v aplikácii.

3.2.7 Export štatistických údajov z grafu

Užívateľ môže stlačením tlačidla exportovať z pozastaveného záznamu [3.2.4] údaje, ktoré si zvolí, a to do formátu CSV.

3.2.8 Výber webovej kamery

Užívateľ má v prípade viacerých dostupných webových kamier možnosť zvoliť si preferovanú. Inak aplikácia automaticky detekuje zariadenie.

3.2.9 Vykreslenie grafu

Na veľkej časti pravej strany obrazovky bude vykreslovaný dvojrozmerný graf. Na osi *x* bude ukazovateľ času a na osi *y* zvolená veličina [3.2.10].

3.2.10 Nastavenie vykreslovania grafu

Užívateľ si môže nastaviť, akú veličinu chce zobrazovať na grafe. Na výber bude mať nasledovné:

- Aktúalna výchylka (na osi x, na osi y, prejdená vzdialenosť od rovnovážnej polohy a uhlová výchylka)
- Rýchlosť
- Zrýchlenie
- Uhlová rýchlosť
- Uhlové zrýchlenie
- Potenciálna energia
- Kinetická energia
- Maximálna výchylka (na osi x, na osi y, vzdialenosť, uhol) *
- Perióda *
- Frekvencia *

Pri veličinách označených hviezdičkou sa do grafu bude vykresľovať jeden bod pri každom celkovom kmite kyvadla.

3.2.11 Nastavenie parametrov kyvadla

Užívateľ má možnosť kvôli čo najväčšej správnosti vykreslovania niektorých údajov manuálne nastaviť niekoľko parametrov kyvadla. Všetky nastavenie kydvadla budú prístupné v novom dialógovom okne po stlačení príslušného tlačidla.

3.2.11.1 Nastavenie hmotnosti závažia

3.2.11.2 Nastavenie gravitačného zrýchlenia v geografickej oblasti merania

3.2.11.3 Nastavenie dĺžky závesu kyvadla

3.2.12 Manipulácia s grafom

3.2.12.1 História grafu

Užívateľ má možnosť nahliadnuť do histórie vykreslovaného grafu pomocou horizontálneho scrollbaru.

3.2.12.2 Priblíženie grafu

Užívateľ môže pomocou skrolovacieho koliečka myši priblížiť alebo oddialiť vykreslené hodnoty na grafe, pričom sa mení iba os x (škálovanie hodnôt času). Os v ostane nezmenená.

3.2.13 Kalibrácia webovej kamery

Webová kamera sa pri splnení všetkých prepokladov [2.5] bude kalibrovať kliknutím na objekt v zábere. Základné nastavenia v súlade s predpokladmi sa budú nachádzať v konfiguračnom súbore.

3.2.14 Konfiguračný súbor

Konfiguračný súbor pre kalibráciu kamery bude obsahovať:

- parametre kalibracie
- hmotnost a dlzka kyvadla
- rozlisenie kamery
- zvolene jednotky zobrazene v grafe

3.2.15 Vzorkovacia frekvencia snímania kamerou

Zvolená frekvencia snímania kamerou bude maximálna, akú softvér umožnuje. Túto frekvenciu si bude môcť užívateľ v aplikácii meniť.

3.3 Požiadavky, ktoré sa nevzťahujú na funkcionalitu

3.3.1 Implementačné požiadavky

3.3.1.1 Vývojové prostredie

Microsoft Visual Studio

3.3.1.2 Programovací jazyk

C++

3.3.1.3 Knižnice pre manipuláciu s počítačovou grafikou

Open-source knižnica OpenCV. V prípade potreby a dohody so zadávateľom bude použitá komerčná knižnica BCG.

3.3.1.4 Knižnice pre tvorbu užívateľského prostredia

Microsoft Foundation Class (MFC) library.

3.3.2 Požiadavka na sledované objekty

3.3.2.1 Sledovaný objekt

Aplikácia bude vedieť pracovať len s fyzikálnym objektom zvaným kyvadlo.

3.3.2.2 Vlastnosti sledoveného objektu

Kyvadlo bude lankové, nie pružinové. Jeho pohyb bude zaznámenávaný "do strán".

3.3.2.3 Rozlíšiteľnosť objektu

Pre lepšiu rozlíšiteľnosť objektov na zábere z webovej kamery bude samotné ťažidlo kyvadla zvýraznené výraznou farbou.

3.3.3 Požiadavky na štandard

3.3.3.1 Modulárnosť, interoperabilita a flexibilnosť

Aplikácia bude logicky rozdelená na niekoľko modulov ako napríklad práca s kamerou, vykreslovanie grafu, užívateľské prostredie a pod. Je nevyhnutné zabezpečiť jednoduchosť prípadných dodatočných implementácií v budúcnosti. Takisto možnosť spolupráce aplikácie s inými softvérovými riešeniami.

3.3.3.2 Efektívnosť

Aplikácia by mala byť optimalizovaná a nezaťažovať príliš zariadenie, na ktorom beží.

3.3.3.3 Jednoduchosť používania

Aplikácia by mala mať jednoduché užívateľské prostredie, aby miera námahy pri práci, ako aj samotnom spustení aplikácie bola minimálna a vedeli ju obsluhovať rôzne skupiny ľudí.

3.3.3.4 Zrozumiteľnosť kódu

Aplikácia musí byť napísaná zrozumiteľne. V kóde sa musí vyznať samotný autor časti kódu, jeho spolupracovníci, poverená osoba od zadávateľa, ale aj iní študenti informatiky.

3.3.4 Prispôsobenie detskému užívateľovi

Softvér by z edukačného hľadiska mali využívať aj deti, rozhranie preto musí byť prívetivé.

3.3.5 Návod na používanie

K aplikácii bude priložený stručný návod na používanie.