Control Systems

G V V Sharma*

	CONTENTS		1 SIGNAL FLOW GRAPH
1	Signal Flow Graph	1	2 Bode Plot
			3 Second order System
2	Bode Plot	1	4 Routh Hurwitz Criterion
3	Second order System	1	5 STATE-SPACE MODEL
3	Second order System	1	6 Nyquist Plot
4	Routh Hurwitz Criterion	1	7 Compensators
			8 Gain Margin
5	State-Space Model	1	9 Phase Margin
<u> </u>	Nyaniat Dlat	1	10 Oscillator
6	Nyquist Plot	1	11 Root Locus
7	Compensators	1	12 Polar Plot
0	Cain Manain	1	13 PID Controller
8	Gain Margin	1	14 Feedback Circuits
9	Phase Margin	1	
10	Oscillator	1	$\stackrel{\bullet}{\searrow}$ $^{+}V_{cc}$
			$\geqslant R_{C3}$
11	Root Locus	1	\bullet + V_{cc}
10	D.L. DL 4	1	$\uparrow^{+V_{cc}} \geqslant_{R_{C2}} \uparrow^{I_c}$
12	Polar Plot	1	$\geqslant_{R_{-1}}$
13	PID Controller	1	\gtrsim R_{C1} $Q3$
			Q2
14	Feedback Circuits	1	$Q1$ I_o
			V_s $\overline{\overline{R}_F}$ I_o
	estract—This manual is an introduction to		
syster	ms based on GATE problems.Links to sample	e Fymon	>

codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

Fig. 14.0.0: circuit1

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail; 4.0.1. Part of the circuit of the MC1553 Amplifier is gadepall@iith.ac.in. All content in this manual is released under GNU 4.0.1. GPL. Free and open source.

shown in circuit1 in fig.14.0.0 Assume the loop

Parameter	Value
R_{C1}	9k Ω
R_{E1}	100Ω
R_{C2}	5kΩ
R_F	640Ω
R_{E2}	100Ω
R_{C3}	600Ω
h_{fe}	100
r_o	$\infty\Omega$
I_{C1}	0.6mA
I_{C2}	1mA
I_{C3}	4mA
r_{e1}	41.7Ω
$r_{\pi 2}$	2.5k Ω
α 1	0.99
g_{m2}	40mA/V
r_{e3}	6.25Ω
r_{o3}	$25k\Omega$
$r_{\pi 3}$	625Ω

TABLE 14.0.0: parameters

gain is large, find an approximate expression and value for the closed loop gain $A_f = \frac{I_0}{V_s}$ and for $\frac{I_c}{V_s}$,use values from Table 14.0.0

Fig. 14.0.1: circuit2

Solution: When GH >> 1,

$$A_f = \frac{I_0}{V_s} \approx \frac{1}{H}$$
 (14.0.1.1)

feedback factor H can be found from feedback network. The feedback network consists of resistors R_{E1} , R_F , R_{E2} using circuit2 in fig. 14.0.1 we get

$$H = \frac{V_f}{I_0} = \frac{R_{E2}}{R_{F2} + R_F + R_{F1}} \times R_{E1} \quad (14.0.1.2)$$

$$= \frac{100}{100 + 640 + 100} \times 100 = 11.9\Omega \ (14.0.1.3)$$

thus,

$$A_f \approx \frac{1}{H} \tag{14.0.1.4}$$

$$=\frac{1}{R_{E2}}(1+\frac{R_{E2}+R_F}{R_{E1}})$$
 (14.0.1.5)

$$= \frac{1}{11.9} = 84mA/V \tag{14.0.1.6}$$

$$\frac{I_c}{V_s} \approx \frac{I_0}{V_s} = 84mA/V$$
 (14.0.1.7)

14.0.2. Find $\frac{V_0}{V_s}$

Solution:

$$\frac{V_0}{V_s} = \frac{-I_c R_{C3}}{V_s} = -84 \times 0.6 = -50.4 V/V$$
(14.0.2.1)

14.0.3. use feedback analysis to find G , H , A_f , $\frac{V_0}{V_s}$, R_{in} and R_{out} .for calculating R_{out} assume r_0 of Q_3 is $25\mathrm{k}\Omega$

Solution: employing loading rules in fig.14.0.0,we obtain circuit3 given in fig.14.0.3 to find $G = \frac{I_0}{V_i}$ we determine the gain of first

Fig. 14.0.3: circuit3

stage, this is written by inspection as-

$$\frac{V_{c1}}{V_i} = \frac{-\alpha(R_{c1}||r_{\pi 2})}{r_{e1} + (R_{E1}||(R_F + R_{E2}))}$$
(14.0.3.1)

using values from 14.0.0

$$\frac{V_{c1}}{V_i} = -14.92V/V \tag{14.0.3.2}$$

Fig. 14.0.3: circuit4

Next, we determine the gain of the second stage, which can be written by inspection (noting that $V_{b2} = V_{c1}$) as

$$\frac{V_c 2}{V_{c1}} = -g_{m2} R_{c2} \| (h_{fe} + 1) [r_{e3} + (R_{E2} \| (R_F + R_{E1}))]$$
 (14.0.3.3

substituting ,results in

$$\frac{V_{c2}}{V_{c1}} = -131.2V/V \tag{14.0.3.4}$$

Finally, for the third stage we can write by inspection

$$\frac{I_0}{V_{c2}} = \frac{I_{e3}}{V_{b3}} = \frac{1}{r_{e3} + (R_{E2}||(R_F + R_{E1}))}$$
(14.0.3.5)

substituing values from 14.0.0 gives

$$\frac{I_0}{V_{c2}} = 10.6 mA/V (14.0.3.6)$$

combining the gains of the three stags results in

$$G = \frac{I_0}{V_i} = -14.92 \times -131.2 \times 10.6 \times 10^{-3} = 20.7A/V$$
(14.0.3.7)

the closed loop gain A_f is found from

$$A_f = \frac{I_0}{V_s} = \frac{G}{1 + GH} = \frac{20.7}{1 + 20.7 \times 11.9} = 83.7 \text{mA/V}$$
(14.0.3.8)

which we note is very close to the approximate value found in (14.0.1.7), above the voltage gain is found from

$$\frac{V_0}{V_s} = \frac{-I_c R_{c3}}{V_s} \approx \frac{-I_0 R_{C3}}{V_s} = -A_f R_{C3}$$
(14.0.3.9)

 $= -83.7 \times 10^{-3} \times 600 = -50.2V/V$ (14.0.3.10)

which is also very close to the approximate value found in (14.0.1.7) above given by

$$R_{in} = R_i f = R_i (1 + GH)$$
 (14.0.3.11)

where R_i is the input resistance of the G circuit. The value of R_i can be found from the circuit in fig. 14.0.3 as follows:

$$R_i = (h_{fe} + 1)(r_{e1} + (R_{E1}||(R_F + R_{E2}))) = 13.65K\Omega$$
(14.0.3.12)

$$R_{if} = 13.65(1 + 20.7 \times 11.9) = 3.38M\Omega$$
 (14.0.3.13)

$$R_{of} = R_o(1 + GH) \tag{14.0.3.14}$$

where R_o can be determined to be

$$R_o = (R_{E2}||(R_F + R_{E1})) + r_{e3} + \frac{R_{C2}}{h_{fe} + 1}$$
 (14.0.3.15)

from values in Table 14.0.0, yields $R_o = 143.9\Omega$. The output resistance R_{of} of the feedback amplifier can now be found as

$$R_{of} = R_o(1 + GH) = 143.9(1 + 20.7 \times 11.9) = 35.6K\Omega$$
(14.0.3.16)

 R_{out} is found by using circuit4 in fig.14.0.3

$$R_{out} = r_o 3 + [R_{of} || (r_{\pi 3} + R_{C2})] (1 + g_{m3} r_{o3} \frac{r_{\pi 3}}{r_{\pi 3} + R_{C2}})$$
(14.0.3.17)

=
$$25 + [35.6||(5.625)][1 + 160 \times 25 \frac{0.625}{5.625}] = 2.19M\Omega$$
(14.0.3.18)

thus R_{out} is increased (from r_{o3}) but not by (1+GH)

put the obtained parameters in a table **Solution:**

Parameter	Value
G	20.7A/V
Н	11.9Ω
A_f	83.7mA/V
V_o/V_s	-50.2V/V
R_{in}	$3.38M\Omega$
R_{out}	2.19ΜΩ
R_{of}	$35.6k\Omega$

TABLE 14.0.4: parameters

14.0.5. Represent this amplifier in a control system Block Diagram

Solution: figure in fig.14.0.5 represents our control system

Fig. 14.0.5: block diagram

14.0.6. write a code for doing calculations and verify the values obtained in 14.0.4

Solution: following code does all the calculations of above equations to give parameters in 14.0.4

codes/ee18btech11007/circuit calc.py