Second-Order Linear Differential Equations

Section 17.1-17.2

Outline

- Definitions and Basic Properties
- Solve Homogeneous Equations
 - Two Distinct Real Roots
 - One Real Root
 - Two Complex Roots
- Initial-Value and Boundary-Value Problems
- Solve Nonhomogeneous Equations (Find a Particular Solution)
 - The Method of Undetermined Coefficients
 - ▶ The Method of Variation of Parameters

Some Definitions

A second-order linear differential equation

has the form
$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x)$$

where P, Q, R, and G are continuous functions.

- When G(x) = 0, such equations are called homogeneous linear equations.
- If $G(x) \neq 0$ for some x, it is a nonhomogeneous differential equation.

Basic Properties

Theorem If $y_1(x)$ and $y_2(x)$ are both solutions of the linear homogeneous equation 2 and c_1 and c_2 are any constants, then the function

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

is also a solution of Equation 2.

Theorem If y_1 and y_2 are linearly independent solutions of Equation 2 on an interval, and P(x) is never 0, then the general solution is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

where c_1 and c_2 are arbitrary constants.

Solve Homogeneous Equations

Now we focus on second-order linear differential equations with constant coefficient

$$ay'' + by' + cy = 0$$

where a, b, and c are constants and $a \neq 0$.

We know that the exponential function $y = e^{rx}$ (where r is a constant) has the property that its derivative is a constant multiple of itself. We see that $y = e^{rx}$ is a solution if

$$ar^{2}e^{rx} + bre^{rx} + ce^{rx} = 0$$
 i.e. $ar^{2} + br + c = 0$

Solve Homogeneous Equations

Hence

$$ar^2 + br + c = 0$$

- This equation is called the auxiliary equation (or characteristic equation) of the differential equation ay'' + by' + cy = 0.
- Case I: $b^2 4ac > 0$
- If the roots r_1 and r_2 of the auxiliary equation $ar^2 + br + c = 0$ are real and unequal, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

Solve Homogeneous Equations

• Case II: $b^2 - 4ac = 0$

If the auxiliary equation $ar^2 + br + c = 0$ has only one real root r, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

• Case III: $b^2 - 4ac < 0$

If the roots of the auxiliary equation $ar^2 + br + c = 0$ are the complex numbers $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, then the general solution of ay'' + by' + cy = 0 is

$$y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$$

Ex: Consider ay'' + by' + cy = 0 with $b^2 + 4ac$. Let $r = \frac{-b}{2a}$. Show that $y(x) = x \cdot e^{rx}$ is a solution. Ex: Solve 4y"+4y+19=0.

The noots of $ar^2 + br + c = 0$ are $r = \alpha \pm \beta c$, where $\alpha = \frac{-b}{2a}$, $\beta = \frac{\sqrt{4ac-b^2}}{2a}$. Solutions of ay'' + by' + cy = 0 are $e^{(\alpha \pm c\beta)x} = e^{\alpha x} \cdot \frac{\pm c\beta x}{2} = e^{\alpha x} \cdot (\cos \beta x \pm c\sin \beta x)$

Hence e cospx and edx singx are solutions.

Ex: Motion of a spring.

2 Find lin x(+).

Initial-Value Problem

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solution y of the differential equation that also satisfies initial conditions of the form

$$y(x_0) = y_0$$
, $y'(x_0) = y_1$

where y_0 and y_1 are given constants.

Boundary-Value Problem

A boundary-value problem for Equation 1 or 2 consists of finding a solution *y* of the differential equation that also satisfies boundary conditions of the form

$$y(x_0) = y_0, y(x_1) = y_1$$

In contrast with the situation for initial-value problems, a boundary-value problem does not always have a solution.