

Diabetes Predictor using Decision Tree

Consider below dataset

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
5	116	74	0	0	25.6	0.201	30	0
3	78	50	32	88	31	0.248	26	1
10	115	0	0	0	35.3	0.134	29	0
2	197	70	45	543	30.5	0.158	53	1
8	125	96	0	0	0	0.232	54	1

Diabetes predictor application using Decision Tree algorithm

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

print("---- Marvellous Infosystems by Piyush Khairnar----")

print("---- Diabetes predictor using Decision Tree -----")

diabetes = pd.read_csv('diabetes.csv')

print("Columns of Dataset")
print(diabetes.columns)

print("First 5 records of dataset")
print(diabetes.head())

print("Dimension of diabetes data: {}".format(diabetes.shape))

X_train, X_test, y_train, y_test = train_test_split(diabetes.loc[:, diabetes.columns!= 'Outcome'], diabetes['Outcome'], stratify=diabetes['Outcome'],
```

random state=66)


```
tree = DecisionTreeClassifier(random state=0)
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X train, y train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X test, y test)))
tree = DecisionTreeClassifier(max depth=3, random state=0)
tree.fit(X_train, y_train)
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X test, y test)))
print("Feature importances:\n{}".format(tree.feature importances ))
def plot feature importances diabetes(model):
  plt.figure(figsize=(8,6))
  n features = 8
  plt.barh(range(n_features), model.feature_importances_, align='center')
  diabetes_features = [x \text{ for } i,x \text{ in enumerate}(diabetes.columns) if i!=8]
  plt.yticks(np.arange(n features), diabetes features)
  plt.xlabel("Feature importance")
  plt.ylabel("Feature")
  plt.ylim(-1, n_features)
  plt.show()
plot feature importances diabetes(tree)
Output of above application
---- Marvellous Infosystems by Piyush Khairnar----
---- Diabetes predictor using Decision Tree -----
Columns of Dataset
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
     'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
    dtype='object')
First 5 records of dataset
                             BloodPressure
    Pregnancies Glucose
                                                   DiabetesPedigreeFunction
                                                                               Age
Outcome
0
         6
               148
                            72 ...
                                                 0.627 50
                                                                 1
                                                0.351
1
         1
               85
                           66 ...
                                                        31
                                                                 0
2
         8
               183
                            64 ...
                                                 0.672 32
                                                                 1
3
         1
               89
                                                0.167
                                                        21
                           66
                                                                 0
                               . . .
```

40 ...

137

1

2.288

33

0

4

[5 rows x 9 columns]

Dimension of diabetes data: (768, 9)

Accuracy on training set: 1.000

Accuracy on test set: 0.714

Accuracy on training set: 0.773

Accuracy on test set: 0.740

Feature importances:

 $[0.04554275\ 0.6830362\ 0.$

0.

0.

0.27142106

0. 0.]

x=0.0256148 y=