NCS 강좌: 딥러닝 기초 1. 선형회귀

강사 윤예빈

yebinyoun@gmail.com

https://github.com/yebiny

목차

- 1.개념정리
- 2.손실함수: 평균제곱오차 (Mean Squared Error)
- 3.최적화: 경사하강법 (Gradient Descent)
- **4.실습1:** 단순선형회귀분석(Simple Linear Regression Analysis)
- 5.실습2: 다중선형회귀분석(Multiple Linear Regression Analysis)

개념정리

$$f(x_i) = wx_i + b$$

$$X \Rightarrow \frac{\text{Model}}{f(x)} \Rightarrow f(x)$$

개념정리

$$f(x_i) = wx_i + b$$

업데이트되는 파라미터 = 학습 파라미터 w^*, b^* = $arg\ min\ \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$ = $arg\ min\ \sum_{i=1}^{m} (y_i - f(x_i))^2$ = $arg\ min\ \sum_{i=1}^{m} (y_i - wx_i - b)^2$

손실함수: 평균제곱오차 (Mean squared error)

$$MSE = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

예제1. w=2, b=0

x	у	$\widehat{m{y}}$	$(y-\widehat{y})^2$
1	6		
2	9		
3	13		
4	18		
		$MSE \sum (y - \widehat{y})^2$	

손실함수: 평균제곱오차 (Mean squared error)

$$MSE = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

예제1. w=3, b=0

X	У	$\widehat{m{y}}$	$(y-\widehat{y})^2$
1	6		
2	9		
3	13		
4	18		
		$MSE \sum (y - \widehat{y})^2$	

손실함수: 평균제곱오차 (Mean squared error)

$$MSE = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{m} (y_i - wx_i - b)^2$$

최적화: 경사하강법(Gradient descent)

$$w^* = w - \alpha \frac{\theta}{\theta w} Cost(w)$$

$$MSE(\theta) = 0$$

최적화: 경사하강법(Gradient descent)

$$w^* = w - \alpha \frac{\theta}{\theta w} Cost(w)$$

기울기가 음수일 때: $\frac{\theta}{\theta w} Cost(w) < 0 \rightarrow w* = w + \alpha*(기울기)$ 기울기가 음수이면 w는 지금보다 큰 값으로 업데이트

기울기가 양수일 때: $\frac{\theta}{\theta w} Cost(w) > 0 \rightarrow w* = w - \alpha*(기울기)$ 기울기가 양수이면 w는 지금보다 작은 값으로 업데이트

실습1: 단순 선형 회귀 분석

공부시간	종합점수
0	0
1	11
2	23
3	30
4	44
5	55
6	61
7	73
8	84
9	98

$$f(x_i) = wx_i + b$$

실습2: 다중 선형 회귀 분석

공부시간	집중도	수면시간	종합성적
0	1	9	0
1	1	8.5	11
2	2	8	23
3	4	8	30
4	3	7	44
5	5	7.5	55
6	6	7	61
7	6	6	73
8	7	7	84
9	6	6.5	98

$$f(\overrightarrow{x_i}) = ec{w} ec{x}_i + b$$