Description

[METHOD FOR FAIR SHARING LIMITED RESOURCES BETWEEN MULTIPLE CUSTOMERS]

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application is related to pending U.S. Patent Application 10/____, filed concurrently herewith to Denton et al., entitled " A METHOD FOR SUPPLY CHAIN COM-PRESSION" having (IBM) Docket No. BUR920030197US1; U.S. Patent Application 10/____, filed concurrently herewith to Denton et al., entitled "METHOD FOR PURCHASE ORDER RESCHEDULING IN A LINEAR PROGRAM" having (IBM) Docket No. BUR92004009US1;.U.S. Patent Application 10/____, filed concurrently herewith to Denton et al., entitled " A Method for Supply Chain Decomposition" having (IBM) Docket No. BUR920040007US1; U.S. Patent Application 10/____, filed concurrently herewith to Denton et al., entitled "A METHOD FOR OPTIMIZING FOUNDRY CAPACITY" having (IBM) Docket No. BUR920030195US1:

U.S. Patent Application 10/ filed concurrently herewith to Denton et al., entitled "A METHOD FOR CONSIDER-ING HIERARCHICAL PREEMPTIVE DEMAND PRIORITIES IN A SUPPLY CHAIN OPTIMIZATION MODEL" having (IBM) Docket No. BUR920030198US1; U.S. Patent Application 10/_____ filed concurrently herewith to Denton et al., entitled " Method for Simultaneously Considering Customer Commit Dates and Customer Request Dates" having (IBM) Docket No. BUR920040008US1; and U.S. Patent Application 10/____, filed concurrently herewith to Orzell et al., entitled "METHOD FOR IDENTIFYING PRODUCT ASSETS IN A SUPPLY CHAIN USED TO SATISFY MULTIPLE CUSTOMER DE-MANDS" having Docket No. BUR820030346US1. The foregoing applications are assigned to the present assignee, and are all incorporated herein by reference.

BACKGROUND OF INVENTION

[0002] The present invention relates to computer implementable decision support systems for determining a production plan in a manner which fairly allocates limited resources among multiple customers. General methodologies within this field of study include advanced planning systems, optimization and heuristic based algorithms, constraint based programming, and simulation.

Description of the Related ArtA fundamental problem faced in all manufacturing industries is the allocation of material and capacity assets to meet end customer demand. Production lead times necessitate the advance planning of production starts, interplant shipments, and material substitutions throughout the supply chain so that these decisions are coordinated with the end customers" demand for any of a wide range of finished products (typically on the order of thousands in semiconductor manufacturing). Such advance planning depends upon the availability of finite resources which include: finished goods inventory, work in process inventory (WIP) at various stages of the manufacturing system, and work-center capacity. Often, there are alternative possibilities for satisfying the demand. Products may be built at alternative locations and within a location there may be choices as to which materials or capacity to use to build the product. The product may be built directly or acquired through material substitution or purchase. When limited resources prevent the satisfaction of all demands, decisions need to be made as to which demand to satisfy and how to satisfy it. This resource allocation problem is often addressed through linear programming.

[0003]

[0004] The below-referenced U.S. Patents disclose embodiments that were satisfactory for the purposes for which they were intended. The disclosures of both the belowreferenced prior U.S. Patents, in their entireties, are hereby expressly incorporated by reference into the present invention for purposes including, but not limited to, indicating the background of the present invention and illustrating the state of the art: U.S. Patent 5,971,585, "Best can do matching of assets with demand in microelectronics manufacturing," October 26, 1999; U.S. Patent 5,943,484. "Advanced material requirements planning in microelectronics manufacturing," August 24, 1999; and Nemhauser, G.L. and Wolsey, L.A., 1999, Wiley, Integer and Combinatorial Optimization.

SUMMARY OF INVENTION

[0005] In view of the foregoing and other problems and drawbacks of conventional systems and methods, the present invention provides a method and system for determining a production plan comprising a fair sharing allocation when multiple part numbers are to be shared among customers. The present invention encourages fair sharing within the context of a linear program and maintains fair share parameters according to a family hierarchy.

[0006] More specifically, the invention adds equations to a production planning linear program so that demand of equal priority will be satisfied "fairly" (proportionately). The user classifies demand(s) into "fair share sets" to specify which demand(s) should be subject to fair share. A novel set of constraints is created for each demand which keeps track of the percentage of that demand which is unsatisfied andin conjunction with similar equations for the other demands in the setidentifies the maximum proportion of demand unsatisfied by all demand elements in the fair share set. Encouraging a small maximum percentage (through the application of cost penalties) encourages a fair share allocation.

[0007] In other words, the invention provides a method for determining a production plan that creates a constraint that proportionally shares limited resources among competing demands of equal priority and then applies the constraint using a linear program to create a production plan. This process creates an objective function coefficient that encourages proportional sharing of the limited resources through the penalization of the largest percentage of cumulative demand backordered of those demand elements in a user specified set. The invention also provides pro-

portional sharing across multiple levels of a bills of materials supply chain and provides proportional sharing that considers multiple demands made on a single resource. The invention classifies the demands into sets based on demand family hierarchy and/or demand priorities.

[8000] Thus, the invention allocates resources among competing demands in a linear programming production planning system by first classifying the demands into fair share sets, wherein all demands within each set have the same priority, calculating the cumulative demand for each resource within each set, and then allocating the resources to the demands in order of fair share set priority. If, during the allocating process, the supply of a given resource cannot satisfy a given cumulative demand of a given set, the given resource is allocated proportionally (e.g., evenly or according to usage proportions) among all demands that contribute to the given cumulative demand within the given set.

[0009] This inventive process is time period dependent and simultaneously allocates multiple resources to multiple demands. The invention encourages proportional sharing by imposing penalties for non-proportional sharing. The fair share sets identify parts, priority level, locations, and tim-

ing information. During the allocating process, higher priority fair share sets are fully satisfied with a resource before lower priority sets receive any of that resource.

BRIEF DESCRIPTION OF DRAWINGS

- [0010] Figure 1: Overview of the structure of a typical linear programming application.
- [0011] Figure 2: Example illustrating fair sharing among two customers.
- [0012] Figure 3: Illustration of coordination between a customer and its supplier.
- [0013] Figure 4: Summary of the major steps of the invention.

DETAILED DESCRIPTION

[0014] In situations of limited material assets and capacity, it is desirable to allocate limited supply "fairly"(proportionately) across demands of equal priority. This is sometimes referred to as "sharing the pain." One possible method (ref. U.S. Patent Application 2002198757) tackles the challenge of sharing multiple component items by dividing each assembly manufacturing release schedule into "N" separate release schedules. In this method, the size of the integer N can impact the quality of the fair sharing and the run time of the method.

If N is too low, then the original release is divided into coarse chunks leading to a potentially unfair sharing. On the other hand, if N is too high, then run time suffers. Further conventional applications address the fair sharing of supply at a single point in the bills of materials supply chain and do not address fair sharing of supply across multiple levels of the bills of materials supply chain. Also, no known conventional system addresses fair sharing within the context of a linear program used for determining a production plan.

[0015] To contrast the present invention, a conventional production planning linear program "LP" is shown below (such as that described in U.S. Patent 5,971,585, which is incorporated herein by reference). This LP makes decisions including: production starts, material substitutions, and shipments planned to customers, between manufacturing and distribution locations, and from vendor suppliers. A LP is composed of an objective function that defines a measure of the quality of a given solution, and a set of linear constraints. The types of equations used in production planning models are well know to those practiced in the art and include:(1) Material Balance Constraints, which ensure conservation of material flow through the network

- of stocking points comprising the supply chain.
- [0016] (2) Capacity Constraints, which ensure that the capacity available for manufacturing activities is not exceeded.
- [0017] (3) Backorder Conservation Constraints, which balance the quantity of a given part backordered in a given planning period with the quantity backordered in the previous planning period and the net of new demand and new shipments.
- [0018] (4) Sourcing Constraints, which define target ranges (minimum and maximum) of shipments that should be made from a particular manufacturing or vendor location in the supply chain.
- [0019] A conventional LP formulation is provided below in the form familiar to those practiced in the art; i.e., definition of subscripts, definition of objective function coefficients, definition of constants, definition of decision variables, LP formulation or equations.
- [0020] Definition of Subscripts
- [0021] j time period
- [0022] m material (part number)
- [0023] a plant location within the enterprise
- [0024] n material being substituted

- [0025] z group (which represents a family or collection of part numbers)
- [0026] e process (a method of purchasing or manufacturing a material at a plant)
- [0027] v receiving plant location
- [0028] k demand center (i.e., customer location) (Note: the set of customer locations is mutually exclusive from the set of plant locations)
- [0029] q demand class which indicates relative priority
- [0030] w resource capacity which could be a machine, labor hour, or other constraint
- [0031] *u* represents a consumer location which refers to an internal plant, external demand center, or to a generic indicator meaning any plant/or demand center
- [0032] Definition of Objective Function Coefficients
- [0033] PRC cost of releasing one piece of part m during period j at plant a using process e
- [0034] $SUBC_{jmna}$ substitution cost per piece of part number n which is being substituted by part number m during period j at plant a
- [0035] TC_{jmav} transportation cost per piece of part number m leaving plant a during period j which are destined for

- plant ν
- [0036] INVC ima inventory cost of holding one piece of part number m at the end of period j at a particular plant a
- [0037] DMAXC_{jzau} cost per piece of exceeding the maximum amount of shipments of group z parts from plant a to consuming location(s) u during period j
- [0038] DMINC cost per piece of falling short of the minimum amount of shipments specified for group z parts from plant a to consuming location(s) u during period j
- [0039] BOC backorder cost of one piece of part m at the end of period j for class q demand at customer location k
- [0040] Definition of Constants
- [0041] DEMAND demand requested during time period j for part number m at customer location k for demand class q
- [0042] RECEIPT quantity of projected wip and purchase order receipts for part number m expected to be received at plant a during time periodj
- [0043] CAPACITY Capacity of resource w available at plant a during period j to support production starts
- [0044] CAPREQ Capacity of resource w required for part number m at plant a for process e during period j
- [0045] QTYPER quantity of component m needed per part number n during period j at plant a using process e

- [0046] YIELD output of part number m per piece released or started at plant a during time period j using process e
- [0047] SUBQTY $_{jmna}$ quantity of part number m required to substitute for one piece of part number n at plant a during time period j
- [0048] MAXPCT $_{jzau}$ maximum percentage of total shipments of group z (collection of parts) leaving supplier a during period j to support consumption at consuming location(s) u
- [0049] MINPCT minimum percentage of total shipments of group z (collection of parts) leaving supplier a during period j to support consumption at consuming location(s) u
- [0050] CT_{jmae} Cycle time. The number of periods between the release and completion of part m jobs for releases made using process e at plant a during time period j
- [0051] TT_{mav} transport time for part number m from plant a to plant v
- [0052] Definition of LP Decision Variables
- $^{[0053]}$ I $_{\rm jma}$ Inventory at the end of period j for part number m at a particular plant a
- [0054] P_{imae} Production starts of part m during period j at plant a using process e
- [0055] L_{jmna} Quantity of part number n which is being substituted by part number m during periodj at plant a

- [0056] T_{jmav} Internal shipments of part number m leaving plant a during period j which are destined for plant v
- [0057] F_{jmakq} Shipments of part number m leaving plant a during period j and satisfying class q demand at external customer k
- [0058] B $_{jmkq}$ Back orders of part m at the end of period j for class q demand at customer location k
- [0059] H_{jzu} Total shipments of group z (z is a "collection" of parts) leaving suppliers during period j to support consumption at consuming location(s) u
- [0060] S_{jzau} Amount by which total shipments of parts in z from plant a to consuming location(s) u during period j exceeds the maximum amount specified as desired in the sourcing rules
- [0061] G_{jzau} Amount by which total shipments of group z parts from plant a to consuming location(s) u during period j falls short of the minimum amount specified as desired in the sourcing rules
- [0062] LP Equations or Formulation
- [0063] The following minimizes the objective function subject to the constraints shown below.
- [0064] Objective Function:

[0065] Minimize:

[0066]
$$\sum_{j} \sum_{m} \sum_{a} \sum_{e} PRC_{jmae} P_{jmae} + \sum_{j} \sum_{m} \sum_{n} \sum_{a} SUBC_{jmma} L_{jmna} + \sum_{j} \sum_{m} \sum_{a} \sum_{v} TC_{jmvv} T_{jmav} + \sum_{j} \sum_{m} \sum_{m} \sum_{a} INVC_{jma} I_{jma} + \sum_{j} \sum_{x} \sum_{a} \sum_{v} DMAXC_{jcm} S_{jcm} + \sum_{j} \sum_{x} \sum_{a} \sum_{v} DMINC_{jcm} G_{jcm} + \sum_{j} \sum_{m} \sum_{k} \sum_{q} DMINC_{jmnkq} B_{jmkq}$$

[0067] Subject to:

[0068] Sourcing Constraints:

$$\begin{split} & H_{jzu} = \sum_{\substack{\alpha \\ ar}} \sum_{a} (T_{jmau} + \sum_{q} F_{jmauq}) \\ & \sum_{\substack{\alpha \\ r}} (T_{jmau} + \sum_{q} F_{jmauq}) - S_{jzau} \leq MAXPCT_{jzau} \ H_{jzu} \\ & \sum_{\substack{\alpha \\ r}} (T_{jmau} + \sum_{q} F_{jmauq}) + G_{jzau} \geq MINPCT_{jzau} \ H_{jzu} \end{split}$$

[0069] Capacity Constraints:

$$\sum_{m} \sum_{e} CAPREQ_{jmaew} P_{jmae} \leq CAPACITY_{jaw}$$

[0070] Backorder Constraints:

$$B_{jmkq} = B_{(j-1)mkq} + DEMAND_{jmkq} - \sum_{a} F_{jmakq}$$

[0071] Material Balance Constraints:

$$\begin{split} I_{lma} &= I_{(I-1)ma} + RECEIPT_{lma} + \sum_{\substack{321\\24 \leq ICman-I\\24 \leq Timar-I}} \sum_{v} YIELD_{ense} * P_{ansa} + \sum_{s} I_{lman} + \sum_{s} I_{lm$$

- [0072] Non-Negativity Constraints:
- [0073] all $X_{ij...} \ge 0$, where X is a generic decision variable and i, j etc. represent generic subscripts.
- [0074] In the supply chain linear programming model shown above, situations can arise where customer demands cannot be satisfied in their entirety at the time specified by the customers. For instance, capacity constraints may limit production starts and result in restricting the satisfaction of customer demand. In such cases demand is typically "backordered" and delivered as soon as possible, given the tradeoff of satisfying different types (designated by a "demand class") of demand. When multiple customers are considered in a supply chain planning application, situations arise in which customers with the same demand class cannot have their demand satisfied due to capacity constraints. In these cases, it is desirable to share the shortage among the customers rather than preferentially provide one customer with a complete order and one with a substantially under-filled order. This sharing is often referred to as "fair sharing." This inventive rule approach detailed below could also be used to "fair share" other variables in the above supply chain model such as Production, Shipments, etc.

[0075] The linear programming application shown in Figure 1 includes the transformation of input files (block 100) into output files (block 108) through a pre-processor (block 102), solver (block 104) and post-processor (block 106). The pre-processor (block 102) transforms the raw input files into a form useable by the linear programming solver. The solver (block 104) determines an optimal raw output solution which is transformed by the post-processor (block 106) into a format acceptable for usage. The present invention is embedded in the pre-processor stage (block 102) and is used to create a constraint type and objective coefficient to encourage fair sharing.

[0076] Figure 2 illustrates an example of fair sharing. In this example, there is a demand of 100 pieces each for assembly parts A and B. These parts share a common component part, Y, which has a supply limited to 120 pieces. Since the total demand of 200 cannot be satisfied on time, the figure illustrates a fair share allocation wherein 50% of the supply of Y is allocated to releases of part A and likewise 50% allocated to part B. This allocation supports releases of 60 pieces of both parts A and B. Consequently, parts A and B are each able to satisfy 60% of their demand. If the demands for A and B are of equal priority, this fair share

allocation (each part gets 60%) is preferable to an allocation where one part receives less than its fair share.

[0077] Figure 3 illustrates a possible interaction between a customer and its supplier and the corresponding need for a fair share allocation. In Figure 3, the customer (30) consumes one (32) of its two components at twice the rate of the other (31). Consequently, the customer 30 will typically place these demands 31, 32 (using a supply request 34) on the supplier 36 in a one-to-two ratio (1X vs 2X). In situations of limited supplier capability, it is desirable for the supplier 36 to satisfy those demands in a one-to-two ratio in terms of quantity or equivalently satisfy the same percentage of demand for each of the parts ordered. This fair share allocation will enable the customer to make full use of the parts received since they will be delivered in complete sets and achieve greater customer satisfaction. With the invention, if the supply of a given resource cannot satisfy a given demand, the given resource is allocated proportionally (e.g., evenly or according to usage proportions) among all demands. Having thus described the motivation for fair sharing, Figure 4 shows some of the inventive details for delivering a fair share allocation of sup-

ply within the context of a linear programming applica-

tion.

[0078] Thus, Figure 4 outlines one embodiment of the invention. Block 400 determines sets of demands that should be fairly shared. That is, within each fair share set, the LP will encourage limited resources (capacity, inventory) to be allocated so that the demands within the set are satisfied proportionately to the volume of the demands. Because not all demands are of equal priority, it is desirable to have multiple fair share sets. In general, a fair set may contain demands for any number or combination of part.

[0079] The user provides a file or other input that designates how the demands are to be grouped into sets. The invention classifies the demands into fair share sets based on demand family hierarchy and/or demand priorities. Thus, each record of this fair share input file may, for example, contain: a part number or family indicating a collection or grouping of part numbers within the set; customer location; from_demand_class_priority and to_demand_class_priority (possibly the same); effective start dates and end dates; a set identifier; and a fair share penalty value which penalizes the maximum percentage of unsatisfied demand of those demands in the set. If the file contains a blank part/family, the invention presumes that

the fair share set applies to all parts. In other words, a blank part/family is treated as a "wildcard" indicating that all parts are included in the fair share set. Similarly, if the customer location field is blank, the record applies to all customer locations. If the start date is blank, the default is to behave as if an infinitely early start date was given. If the end date is blank, the default is to behave as if a date infinitely far into the future was given.

- [0080] In one embodiment, block 400 examines all possible combinations of part m.
- [0081] The method creates sets which consume common resources and inventory throughout the bills of materials supply chain. Block 402 calculates cumulative demand through period *j* of material part *m* for demand class priority *q* demand at customer location *k* using the below formula:

$$CD_{jmkq} = \sum_{s=1}^{j} DEMAND_{smkq}$$

[0082] Block 404 adds constraints of the below form to ensure that \mathbf{M}_{js} is at least as large as the largest percentage of cumulative demand backordered for fair share set s in period j.

[0083]

Block 406 uses the penalty from the fair share input file as the coefficient to for M_{is} in the objective function of the linear programming formulation. By putting the penalty into the objective function, the LP is encouraged to make the variable M small. Consequently, the net result of blocks 400-406 is that the largest backorder of each fair share seton a percentage of cumulative demand basisis minimized. This leads toward a fair share allocation of material inventory and capacity resources. Exact fair sharing is not assured, but rather, fair sharing is encouraged. The value of the penalty (i.e., the linear program objective function cost coefficient associated with the M_{si} variable) in the fair share file indicates the degree of encouragement. In other words, the penalty value associated with theM_{is} variable acts to penalize solutions to the linear program that do not represent fair sharing. Consequently, if fair sharing is of relatively high importance, a large penalty value should be used. Conversely, if fair sharing is of relatively low importance, a small penalty value should be used.

[0084] Thus, the invention provides a method for determining a

production plan that creates a constraint that proportionally shares limited resources among competing demands of equal priority and then applies the constraint using a linear program to create a production plan (block 408). This process creates an objective function coefficient (406) that encourages proportional sharing of the limited resources through the penalization of the largest percentage of cumulative demand backgrdered of those demand elements in a user specified set. As shown above, the invention also provides proportional sharing across multiple levels of a bills of materials supply chain and provides proportional sharing that considers multiple demands made on a single resource, and classifies the demands into sets based on demand family hierarchy and/or demand priorities.

[0085]

Thus, the invention allocates resources among competing demands in a linear programming production planning system by first classifying the demands into fair share sets (400), wherein all demands within each set have the same priority, calculating the cumulative demand for each resource within each fair share set (402), and then allocating the resources to the fair share sets in order of set priority (408). If, during the allocating process, the supply of a

given resource cannot satisfy a given cumulative demand of a given set, the given resource is allocated proportionally (e.g., evenly or according to usage proportions) among all demands that contribute to the given cumulative demand within the given set.

[0086] The present invention can be implemented on an IBM P690 server using the AIX operating system. The steps for implementing the present invention are preferably programmed in C/C++. It should be understood by those of ordinary skill in the art, however, that the present invention is not limited to the above implementation and is independent of the computer/system architecture. Accordingly, the present invention may equally be implemented on other computing platforms, programming languages and operating systems, and also may be hardwired into a circuit or other computational component.

[0087] Thus, as shown above, the present invention provides a method and system for determining a production plan comprising a fair sharing allocation when multiple resources are to be shared among customers. The present invention encourages fair sharing within the context of a linear program and maintains fair share parameters according to a family hierarchy.

[0088] More specifically, the invention adds equations to a production planning linear program so that demand of equal priority will be satisfied "fairly" (proportionately). The user specifies which demand should be subject to fair share. A novel set of constraints is created for each demand which keeps track of the percentage of the demand which is unsatisfied andin conjunction with similar equations for the other demands in the setidentifies the maximum proportion of demand unsatisfied by all demand elements in the fair share set. Encouraging a small maximum percentage (through the application of cost penalties) encourages a fair share allocation.

[0089] While the invention has been described in terms of the preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.