REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Education Nationale et de la Reforme du Système Educatif Direction des Examens et des Concours

2023

Sciences physiques session complémentaire 2023

Honneur Fraternité Justice Série: Sciences de la nature

Durée: 4H Coefficient: 7

Q.C.M (2,5pts)

Nº	Libellé de la question	A	В	C	Notes
1	La déshydratation d'un alcool peut être	intermoléculaire	ménagée	intramoléculaire	(0,5pt)
2	Les aldéhydes possèdent un groupement	Carbonyle CO	Hydroxyle OH	Carboxyle COOH	(0,5pt)
3	Un satellite est en orbite autour de la Terre. Il effectue une révolution de rayon r avec une période T. La troisième loi de Kepler s'écrit :	$\frac{T^3}{r^2} = cte$	$\frac{r^3}{T^2} = cte$	$\frac{T^2}{r^3} = cte$	(0,5pt)
1	La longueur d'onde d'un photon émis par l'atome d'hydrogène pour que l'électron passe du niveau n vers un niveau inferieur p est	$\lambda_{n,p} = \frac{1}{R_H \left(\frac{1}{p^2} - \frac{1}{n^2}\right)}$	$\lambda = \frac{N}{c}$	$\lambda_{n,p} = \frac{h}{R_H \left(\frac{1}{p^2} - \frac{1}{n^2}\right)}$	(0,5pt)
5	Une particule de masse <i>m</i> et de charge <i>q</i> positive se déplace à une vitesse <i>V</i> dans un champ magnétique B pérpendiculaire à la vitesse et décrit alors un cercle de rayon <i>r</i> . On double aussi bien la valeur de la vitesse de la charge que l'intensité du champ magnétique ; le rayon du cercle	Sera divisé par 2	Reste le même	Sera quadruplé	(0,5pt)

Exercice1 (3,75pts)

Toutes les solutions sont maintenues à 25° C où le produit ionique de l'eau est Ke= 10⁻¹⁴.

On donne: $-pKa(C_2H_5COOH/C_2H_5COO)=4,9$

- Zone de virage du bleu de bromothymol : 6 - 7,6.

- Les masses molaires en g/mol: M(O) = 16; M(C) = 12; M(H) = 1.

On dissout 1,11 g d'acide propanoïque (C2H5COOH) dans 150 mL d'eau distillée.

La solution S_0 ainsi obtenue a un pH = 2,45.

1. Montrer que l'acide propanoïque est un acide faible.

(0,5pt)

2. On prépare une solution S en ajoutant à 100 mL de So un volume Ve d'eau distillée.

Le pH de la solution S obtenue est égal à 3.

2.1. Déterminer les concentrations des espèces chimiques présentes dans la solution S.

(1pt) (0,5pt)

2.2. En déduire la concentration C de cette solution S et Calculer Ve.
3. Un volume V = 100 mL de la solution S est dosé par une solution de soude de concentration

C_b= 2. 10⁻¹ mol/L en présence de quelques gouttes de bleu de bromothymol.

3.1. Quelle est la nature de la solution obtenue à l'équivalence (acide, basique ou neutre) ?

Déterminer la concentration molaire C' de cette solution.

(0,5pt)

3.2. Calculer la valeur du pH de la solution à l'équivalence en utilisant une relation entre le pH, le pKa et la concentration C'. (0,75pt)

3.3. Le bleu de bromothymol est-il un indicateur approprié pour ce dosage ? Justifier.

(0,5pt)

Exercice 2 (4;25pts)

L'oxydation des ions iodure I par l'eau oxygénée H_2O_2 est une réaction lente d'équation $H_2O_2 + 2I + 2H_3O^+ \rightarrow I_2 + 4H_2O$

A l'instant t=0, on prépare un système chimique S en mélangeant dans un bécher ; un volume V_1 =40mL d'une solution aqueuse de peroxyde d'hydrogène (ou eau oxygénée) H_2O_2 de concentration molaire C_1 =0,5mol/L avec un volume V_2 =75mL d'une solution aqueuse d'iodure de potassium KI de concentration molaire C_2 et un excès d'acide sulfurique de volume négligeable. Par une méthode convenable, on suit l'avancement de la réaction au cours du temps. voir la courbe ci-contre :

 Dresser le tableau descriptif d'évolution du système chimique réalisé. (0,5pt)2. A un instant de date t₁=6min, le mélange réactionnel présente n₁= 1,5.10⁻²mol d'ion Γ. 2.1. Déterminer à cette date l'avancement x1 de la réaction étudiée. En déduire la valeur de la concentration molaire C2. (0.75pt) 2.2. Montrer que l'ion iodure I est le réactif limitant. (0,5pt)2.3. Déterminer l'avancement final xf. En déduire en quantité de matière la composition du système à l'état final. (1.25pt) 3. 3. Définir la vitesse de réaction et calculer sa valeur à la date t=10min. Comment varie cette vitesse au cours du temps ? (0,75pt)4. On réalise à nouveau le système chimique S, sans changement de volume mais en augmentant la température. La réaction, d'oxydation des ions iodure I par l'eau oxygénée dans le système chimique S avance d'une quantité x=0,015mol à la date t=10min. Vérifier que la réaction est terminée à t=10min. En déduire le rôle que joue l'augmentation de la (0,5pt)température. Exercice3 (5,5pts) Une piste ABCM est formée de deux parties AB et BM. AB est une partie rectiligne de longueur AB= I. Elle fait un angle α = 30° avec l'horizontale ADx. • BM est une portion de cercle de centre D et de rayon r= 2,5m. (CD) est perpendiculaire à (AD). On prendra g=10m/s² et θ=80°. Un solide ponctuel de masse m=200g est propulsé du point A avec une vitesse VA. On suppose que les frottements sont négligeables sur la piste ABCM. 1.1. Déterminer la nature du mouvement sur la partie AB en déduire l'expression de la vitesse VB du solide en B. Calculer VA si $V_B=4,56$ m/s. (1,5pt)1.2. Exprimer la vitesse V_C en C en fonction de g, V_A et r. (0,5pt)1.3. Déterminer l'expression de la vitesse V_M du solide en M en fonction de g, V_A , r et θ . (0,5pt)1.4. Déterminer l'expression de la réaction R de la piste sur le solide en M en fonction de g, V_A, r, m et θ . Calculer la valeur de R. (1pt) 2. En réalité, sur le tronçon ABC existent des forces de frottement qui équivalent à une force unique d'intensité f constants. Le solide arrive en C avec une vitesse V'_C =3m/s. Déterminer l'expression de f en fonction de VA, V'C, g, r, m, I et α. Calculer la valeur de f. (1pt) 3. Le solide arrive en M avec une vitesse V_M=4m/s et continue son mouvement dans le vide. Déterminer l'équation de sa trajectoire dans le repère (O; i; j) indiqué sur la figure. (1pt) Exercice4 (4pts) Un dispositif permet d'éclairer séparément la cathode d'une cellule photoélectrique avec deux radiations monochromatiques de longueurs d'onde respectives λ_1 =0,49 μ m et λ_2 =0,4 μ m. La cathode peut être recouverte par l'un des métaux suivants : le potassium ou le strontium d'énergies d'extraction respectives $W_{01}=2,26 \text{ eV et } W_{02}=2,06 \text{ eV}$ 1. Déterminer en joule : 1.1. L'énergie des photons correspondants respectivement à la radiation de longueur d'onde λ₁ et à la radiation de longueur d'onde λ_2 (1pt) 1.2. Le travail d'extraction du potassium et du strontium. (1pt) 2. Confirmer ou infirmer, en justifiant, les affirmations suivantes : 2.1. Les deux radiations utilisées permettent toutes deux d'extraire des électrons de la cathode recouverte de 2.2. La cathode étant recouverte de strontium la valeur du potentiel d'arrêt U0 est plus grande en valeur absolue quand on éclaire la cathode avec la radiation de longueur d'onde λ_1 qu'avec celle de longueur d'onde λ2. 3. Calculer la vitesse d'émission des électrons émis par la cathode recouverte de strontium quand elle est éclairée avec la radiation de longueur d'onde λ₁. 4. Déterminer la valeur de la tension UAC qui permet aux électrons d'arriver à l'anode avec une vitesse $V_A = 1500 \text{km/s}$. (0,5pt)Données : Célérité de la lumière dans le vide : C=3.108m/s ; Constante de Planck : h=6.62.10-34J.s ;

1eV=1,6.10-19J