Page 1 of 6
BATTERY ELECTRODE AND METHOD OF MAKING THE SAME
George Cintra et al.
10/034,901
08935-249001

1/6

Page 2 of 6
BATTERY ELECTRODE AND METHOD OF MAKING THE SAME
George Cintra et al.
10/034,901
08935-249001

2/6

200

min from the from the from the first of the

F1G. 5

The state of the s

	,	,				
Discharge	Energy Density to 1.8V Cutoff (mAh/g) [efficiency]	116 [93%]	113 [86%]	120 [99%]	114 [93%]	106 [96%]
Charge	Service Hours to 1.8V @250 mW PDA	203	203	206	190	182
	Charge Capacity (mAh/g)	125	132	121	123	110
	Current Density (mA/cm ²)	0.40	0.38	0.38	0.39	0.38
	Bulk Porosity (%)	27.4	25.8	25.9	25.0	24.9
	Cathode Thickness (mm)	0.810	908.0	0.812	0.796	0.789
	Binder Wt%	4.0	4.9	4.9	5.8	5.8
	Cell	A1	<u>m</u>	B2	ಬ	22

F/G. 6

	108	108 101 94	101 94 120
~ <====================================	42 42 40	42 40 40 . 100	42 40 40 177
(o/)	21.1	21.1 24.3 21.0	21.1 24.3 21.0
(mAh/g)	135	135 134 130	135 134 130 132
(_IIISACIII)	0.37	0.37	0.37 0.37 0.41 0.37
I IIICNIIESS (IIIIII)	0.173	0.173	0.173 0.181 0.483 0.599
1	- 0	- 2 8	- 2 c 4
0.37 135 21.1 42	0.37 134 24.3 40	0.37 134 24.3 40 0.41 130 21.0 100	0.37 134 24.3 40 0.41 130 21.0 7 100 0.37 132 21.6 177

Page 6 of 6
BATTERY ELECTRODE AND METHOD OF MAKING THE SAME
George Cintra et al.
10/034,901
08935-249001

6/6

FIG. 7

Cell	Cathode Thickness (mm)	Current (mA)	Power (mW)
Α	.102	240	912
В	0.267	160	608
С	0.558	40	152 -
D	0.667	35	133
E	0.700	25	95
F	1.08	21	80