

Storage Data Point (SDP) – Hardware Foundation

Lesson Objectives

By the end of this lesson you will be able to:

- Provide a description of SDP hardware components
- Explain the SDP storage concept
- Monitor hardware connectivity

Agenda

Introduction to Comverse ONE SDP

SDP Hardware Foundations

Connectivity

SDP Storage Concept

The Service Data Point (SDP)

- The SDP is a powerful database server system used in the rating process.
- The SDP uses advanced database technology and state-ofthe-art architecture to deliver the best possible mass data server for IN services.
- It provides high-capacity storage, is fully redundant, and can be scaled to support the most demanding networks and configurations.

SDP in Online Postpaid – Basic Flow

SDP in Offline Postpaid – Basic Flow

SDP – Storage Concept and Interfaces

SDP Logical Architecture

Agenda

Introduction to Comverse ONE SDP

SDP Hardware Foundations

Connectivity

SDP Storage Concept

IBM Platforms

Low End

High End

Low-End and High-End Structure

	Low End	High End
IBM Server Type	IBM P52S	IBM P570
EMC Type	CX3-f20 / CX40-120	CX3-f40 / CX4-480
Fiber Channel	No need	Qlogic 5602
Backup Unit	BDU (Backup Device Unit)	BLU (Backup Library Unit)

The IBM p-52A (Low-End)

- Performance and Capacity:
 - 1.5M BHCE
 - 4.5M subscribers, or 100M vouchers with up to 1.5M subscribers
 - 10M CUG members and 108M IMSI/MIN users
 - 30 days of call history records
- Availability:
 - No single points of failure
 - Redundant paths to/from Hosts to HSBN, Admin LAN and SAN
 - Redundant paths from/to Hosts, FC switches, SPs, DAEs and Disk
 - Automatic switchover to redundant components

The IBM p-570 (High-End)

- Performance and Capacity:
 - 6M BHCE
 - 18M subscribers, or 500M vouchers with up to 12M subscribers
 - 10M CUG members and 108M IMSI/MIN users
 - 30 days of call history records
- Availability:
 - No single points of failure
 - Redundant paths to/from Hosts to HSBN, Admin LAN and SAN
 - Redundant paths from/to Hosts, FC switches, SPs, DAEs and Disks
 - Automatic switchover to redundant components

EMC CLARIION CX Family Introduction (1)

The CX storage systems are made up of the following modular components:

3U DAE

Disk Array Enclosure (DAE)

3U DAE

3U DAE_OS

Dual Standby Power Supplies (SPS) 1U SPS

Storage Processor Enclosure (SPE) 1U SPE

AC Powered System

EMC CLARiiON CX Family Introduction (2)

- CX architecture is based on PCIe I/O interconnect technology
- System supports both Direct Attached (DAS) and Storage Area Network (SAN) environments through FC 4 Gb/s connections
- Fully-redundant architecture:
 - Dual storage processors
 - Dual I/O paths with nondisruptive failover
 - Power, cooling, data paths, standby power supplies

- RAID levels: 0, 1, 10, 3, 5 individual disk support and global hot spare
- Hot swappable storage processors with up to 8GB of memory
- 5-480 drives
- Point-to-point connection to drives
- Online upgrade capability
- AC and DC power options, NEBS Compliant

CX3 Hardware Specification – Summary Table

Feature	CX3-20f (Low-End)	CX3-40f (High-End)
Processors per SP	1 x 2.8GHz	2 x 2.8GHz
Physical Memory per SP	2GB	4GB
Max Cache and Max Write Cache	1053MB 1053MB	3016MB 2500MB
Front-End Ports per SP	6 x 4Gb/s FC	4 x 4Gb/s FC
Back-End Ports per SP	1 x 4Gb/s FC	4 x 4Gb/s FC
Max. Drives per System	120	240

CX4 Hardware Specification – Summary Table

Feature	CX4-120 (Low-End)	CX4-480 (High-End)		
Processors per SP	1 x Dual Core 1.2GHz	1 x Dual Core 2.2GHz		
Physical Memory per SP	3GB	8GB		
Max Write Cache	600MB	4.5GB		
Front-End Ports per SP	Up to six	Up to eight		
Back-End Ports per SP	1 x 4Gb/s FC	2 x 4Gb/s FC		
Max Drives per System	120	480		

Introduction to Fiber Channel Switch (in High-End Deployments)

- Qlogic SANbox 5602
- Stackable Fiber Channel Switch
- Eight 4 Gb device ports
- Expansion to sixteen 4 Gb device ports
- Four 10-Gbps full-duplex ports
- Hot-swap dual power supply
- 1U height

nts)

ADIC	Specification (in High-End	Deploymer
Feature	Specification	
Capacity	200 GB, native per cartridge (400 Compressed) 4.8TB for 24 cartridges (Native)	
Transfer Rate	252 Gb per hour, native/uncompressed for two drives 35 MB/s per drive	
Form Factor	4U, 19" rack mount	
_TO-2 Drives	Up to 2 x LTO-2 IBM Ultrium 2 Ultra160 drives	Tar I
Cleaning Cartridge	1 x cleaning cartridge in slot 23	
Cartridges	Up to 24 (Comverse uses 22) cartridges and mail slot	
SCSI nterface	SCSI Ultra160 Wide Low Voltage Differential (LVD) SCSI connection: 68-pin	
_AN	RJ-45 from RMU module	
Serial	Bi-directional RS-232 port (D-type 9 pin) – Library serial	

RS-232 port (D-type 9 pin) – RMU serial

RMU Serial

Agenda

Introduction to Comverse ONE SDP

SDP Hardware Foundations

Connectivity

SDP Storage Concept

SDP – High-End Connectivity

SDP High-End Architecture – Fiber Channels

IBM P5 9117-570 (High-End) Rear View

P5 9117-570 I/O Port Assignment

SDP – Low-End Connectivity Structure

IBM P5 9131-52A (Low-End) Rear View

P5 9131-52A I/O Port Assignment

SDP Low-End Architecture – FS Channels

Agenda

Introduction to Comverse ONE SDP

SDP Hardware Foundations

Connectivity

SDP Storage Concept

IBM Storage Concept

- Logical Volume Storage concept
 - Physical volumes
 - Volume groups
- PowerPath Concept

Note: The power path is part of IBM

Volume Group

Lists all Volume Groups known to the system.

```
sdp1:/#lsvg
rootvg
arcvg
logvg
bkpvg
datavg
Hdatavg
Hbkpvg
oravq
workvg
sdp1vg
sdp2vg
```

Storage – EMC Disk Layout

CX300 Front View

Ispv Command

Lists physical volumes in the system

PowerPath Concept

Utility resides in the IBM:

- Provides enhanced performance and application availability
- Used to select alternate paths for the data to be routed through:
 - Multiple path I/O capabilities
 - Automatic load balancing
 - Path failover functions
- powermt is a utility used to configure and monitor PowerPath.

Monitoring High-End SDP Connectivity (1)

- Command: powermt display
- Displays all the FC Controllers controlled on this node

```
sdp1:/#powermt display
Symmetrix logical device count=0
CLARiiON logical device count=17
Hitachi logical device count=0
Invista logical device count=0
HP xp logical device count=0
Ess logical device count=0
HP HSx logical device count=0
   -- Host Bus Adapters ------ ---- I/O Paths ---- ---- Stats ----
###
    HW Path
                                                    Dead IO/Sec O-IOs Errors
                                  Summary
                                            Total
  0 fscsi0
                                               34
                                  optimal
                                                                            0
   1 fscsi1
                                  optimal
                                               34
                                                                            0
```

Monitoring High-End SDP Connectivity (2)

- Command: powermt display dev=all
- Displays all the Storage End Points (LUNs) managed by PowerPath and the status of each Path to LUN

```
sdp1:/#powermt display dev=all
Pseudo name=hdiskpower9
CLARiiON ID=CK200080200263 [oracle]
Logical device ID=60060160D3221B00049FE7F859E9DC11 [LUN 51]
state=alive; policy=CLAROpt; priority=0; queued-IOs=0
Owner: default=SP B, current=SP A
                                      - Stor -
                                                -- I/O Path -
                                                              -- Stats ---
      ----- Host -----
### HW Path
                          I/O Paths
                                      Interf.
                                                              O-IOs Errors
                                                Mode
                                                        State
  0 fscsi0
                             hdisk24
                                                active alive
                                      SP B0
  1 fscsi1
                             hdisk41
                                      SP A1
                                                active alive
  1 fscsi1
                             hdisk58
                                                active alive
                                      SP B1
  0 fscsi0
                             hdisk7
                                                active alive
                                      SP A0
```

Monitoring Low-End SDP Connectivity (1)

- Command: powermt display
- Displays all the FC Controllers controlled on this node

```
sdp1:/#powermt display
Symmetrix logical device count=0
CLARiiON logical device count=17
Hitachi logical device count=0
Invista logical device count=0
HP xp logical device count=0
Ess logical device count=0
HP HSx logical device count=0
   -- Host Bus Adapters -----
                                  ----- I/O Paths -----
                                                          ---- Stats
###
                                                    Dead
                                                         IO/Sec O-IOs Errors
    HW Path
                                  Summary
                                            Total
  0 fscsi0
                                              34
                                  optimal
   1 fscsi1
                                  optimal
                                               34
```

Monitoring Low-End SDP Connectivity (2)

- Command: powermt display dev=all
- Displays all the Storage End Points (LUNs) managed by PowerPath and the status of each Path to LUN

```
sdp1:/#powermt display dev=all
Pseudo name=hdiskpower9
CLARiiON ID=CK200080200263 [oracle]
Logical device ID=60060160D3221B00049FE7F859E9DC11 [LUN 51]
state=alive; policy=CLAROpt; priority=0; queued-IOs=0
Owner: default=SP B, current=SP A
                                                   -- I/O Path -
                                        - Stor -
                                                                  -- Stats ---
             --- Host --
###
    HW Path
                            I/O Paths
                                         Interf.
                                                   Mode
                                                           State
                                                                  O-IOs Errors
   0 fscsi0
                               hdisk24
                                         SP BO
                                                   active alive
   1 fscsi1
                               hdisk41
                                                   active alive
                                         SP A1
   1 fscsi1
                               hdisk58
                                                   active alive
                                         SP B1
   0 fscsi0
                               hdisk7
                                                   active alive
                                         SP A0
```

AIX Commands – Powermt Command

AIX Commands – Powermt Command

sdp1:/#powermt display dev=all |more

Pseudo name=hdiskpower7

CLARiiON ID=CK200060400796 [oracle]

Logical device ID=60060160AD16180001246C58A0EADA11 [LUN 190

state=alive; policy=CLAROpt; priority=0; queued-IOs=0

Owner: default=SP A, current=SP A

### HW Path	I/O Paths	- Stor - Interf.	I/O Mode		Stats Q-IOs Er	
0 fscsi0	hdisk17		active		0	0
0 fscsi0	hdisk34		active		0	0
1 fscsi1 1 fscsi1	hdisk51 hdisk68		active		0	0
I ISCSII	IICESKOO	SF BI	active	arrve	U	0

AIX Commands – NAVICLI Commands: EMC Commands (1)

Examples of basic NaviCLI commands:

- getall returns an extensive list of storage-system information
 - For example: ./navicli -h <SP_A IP> getall -lun -rg -sg
 Retrieves the status of LUNs, RAID Groups and Storage Groups
- storagegroup lets you create and manage shared storage systems
 - For example: ./navicli -h <SP_A IP> storagegroup -list
 Retrieves the list of all Storage Groups that have been defined
- getlun returns information about a LUN
 - For example: ./navicli -h <SP_A IP> getlun -name
 Retrieves all LUNs names

AIX Commands – NAVICLI Commands: EMC Commands (2)

- getrg returns information about the specified RAID Group
 - For example: ./navicli -h <SP_A IP> getrg |grep "RaidGroup ID"
 Retrieves all Raid Groups IDs
- networkadmin -get lists network name and address information
 - For example: ./navicli -h <SP_A IP> networkadmin -get
 Retrieves the network configuration for SP A

Summary

This lessons has covered:

- Introduction to Comverse ONE SDP
- SDP hardware foundations
- Connectivity
- SDP storage concept