Lab1 Report

1-1. A one bit full adder

Design Specification

Input: x,y,cin
 Output: s,cout
 s+cout=x+y+cin

Design Implementation

1. Logic function:

s 是 sum; cout 則是表示進位與否。

利用 \oplus (XOR)的特性,要有奇數個"1",結果才會是1,來表示 s。 利用相乘的特性,要 input 都是1,結果才會是1,來表示 cout。

2. Logic equations:

S=x⊕y⊕cin cout=xy+xcin+ycin

×	y	ih	cout	5
0	0	0	0	D
0	0	1	0	1
0	1	0	0	1
6	j		1	D
)	0	0	D	1
)	0	ſ	ı	O
1	,	D		0
))	l	i	ı

3. Login diagram:

Stimulation

		0.003 ns								
Name	Value	L 15 .	110 ns .	a) ns	30 ns .	40 ns .	90 ns .	150 ns .	70 ns .	80 ns .
U ₁ S	0						51551111111			
Un COUT	0									
™ X	0									
l⊕ Y	0				1000					
™ CIN	0									

●Reference

參照講義

另外還可以用 half adder 來表示 full adder

1. Logic equations:

Cout=xy+xin+ycin

=xy+cin(x+y)

=xy+cin(xy+xy'+x'y+xy)

=xy+xycin+xy'cin+x'ycin

=xy+cin(xy'+x'y)

2. Logic diagram:

Discussion

- 1. 測試出來的結果跟原本預期的一樣。
- 2. 因為要打這個結報而意外學會很多打其他符號的方式,像是 XOR 的符號 ⊕,可以利用快捷鍵先打 2295 再同時按 Alt+x 即可。

1-2. A single digit decimal adder

Design Specification

- 1. Input:A(a3,a2,a1,a0) \(B(b3,b2,b1,b0) \(Cin(ci) \)
- 2. **Output:**S(s3,s2,s1,s0) \cdot Cout(co)
- 3. {Co,s}=A+B+Ci

Design Implementation

1. Logic function

If A+B+Ci<=9,{Co,s}=A+B+Ci If A+B+Ci>9,{Co,s}=A+B+Ci+{0110}

2. Logic diagram

Stimulation

Reference

這題花費我比較多的時間,因為當初老師還沒講解的時候,還不太懂題目的意思,因此上網查之後才了解,意外透過網路上的講解,了解了output 不能隨意改動,所以才要利用 reg 再另外宣告,後面的 always 則是代表那些變數只要有變動,就要再跑一次 loop。

Discussion

測試出來的結果跟原本預期的一樣。

1-3. A 3to8 decoder

Design Specification

- 1. Input:in[3:0],en
- 2. Output:d[7:0]

Design Implementation

1. Logic equation:

d0=en*in2'*in1'*in0'
d1=en*in2'*in1'*in0
d2=en*in2'*in1*in0'
d3=en*in2'*in1*in0
d4=en*in2*in1'*in0'
d5=en*in2*in1'*in0
d6=en*in2*in1*in0'
d7=en*in2*in1*in0

	ר ענ	- ,h/	rho	d	10	6 0/3	- 0	4 d.	3 d:	2d1	do
0	0	0	D	n	0	0	ح	0	0	0	ī
1.	0	0)	0	D	0	0	o	0	1	0
2'	0		,	0	0	0	0	0	1	0	0
4	i	0	0	0	0	O	0	l	0	O	0
5.	1	0	,	19	0	0	1	0	D	υ	0
6.	1	1	D	0	1	l O	0	0	0	0	0
7.	1	1)	i	ò	9	0	0	0	0	0

2. Logic diagram:

Stimulation

Discussion

- 1. 跑出來的結果與原本預期一樣。
- 2. 可以不用用手畫圖真的是清楚很多,還可以很容易儲存!

● Lab1 Conclusion

第一次上課上到這麼興奮(在拿到板子的時候),終於有感覺可以把自己所 學實際應用出來了,雖然這一次的 lab 還蠻容易的,甚至大部分的題目都可以 從講義上找到解答,但我相信這些都是為了之後而打下基礎,但想起我上學期 的邏輯設計就冒出一把冷汗。

當初在排課的時候也問了好幾位認識的學長這門課 loading 如何,得到的答覆是算是蠻重的,之後每個禮拜幾乎都逃不出 verilog 的手掌心,甚至弄一整天都沒有做不出來的也大有人在,最後的 final project 兩人大概也花了120 小時才完成……不過雖然辛苦,但我還蠻有興趣的,寫完作業的時候都還會想要趕快看下周的作業是什麼,想要先自己拚拚看 XD,希望我可以在這門課寫出第一個我覺得對我很有喜歡、很有自信的作品出來!