Reti Neurali per il riconoscimento di immagini

PCTO Addestramento di Reti Neurali con Linguaggio Python

Reti Neurali per il riconoscimento di immagini

Classificare immagini utilizzando tecniche di Deep Learning

Ma quindi.. un MLP può fare tutto? Mettiamolo alla prova

Usiamo un dataset ancora più difficile

MNIST Dataset:

- Immagini delle 9 cifre scritte da persone diverse
- Obiettivo: creare un modello in grado di classificare correttamente la cifra visualizzata
- Dataset disponibile su tensorflow

Caricamento e preprocessing di MNIST dataset

MLP Per la classificazione

Facciamo un file mlp_mnist.py

```
# Caricamento e preprocessamento del dataset MNIST
(x_train_mnist, y_train_mnist), (x_test_mnist, y_test_mnist) = tf.keras.datasets.mnist.load_data()

# One-hot encoding delle etichette
y_train_mnist_enc = tf.keras.utils.to_categorical(y_train_mnist)
y_test_mnist_enc = tf.keras.utils.to_categorical(y_test_mnist)

# Normalizzazione dei pixel delle immagini
x_train_mnist_norm = x_train_mnist.astype(np.float32) / 255.0

x_test_mnist_norm = x_test_mnist.astype(np.float32) / 255.0
```

Ricordiamoci sempre di importare le librerie necessarie!!

```
tf == tensorflow
np == numpy
plt == matplotlib.pyplot
```

One-hot encoding

Rappresentare variabili categoriche in formato numerico

One-hot encoding di MNIST


```
0,0,0,0,0,0,0,0,0,0,1
1
2
3
4
6
7
8
9
```

Normalizzazione dei dati di input

La normalizzazione è il processo di standardizzazione dei dati di input per migliorare l'efficienza dell'addestramento delle reti neurali.

Perché Normalizzare?:

- Riduce le discrepanze di scala tra le caratteristiche, permettendo alla rete di apprendere più velocemente.
- Aiuta a prevenire l'overfitting mantenendo i pesi della rete in un intervallo gestibile.

Normalizzazione nelle Immagini:

 Per le immagini, tipicamente si divide ciascun pixel per 255 (il massimo valore di un pixel in scala di grigi o in RGB), convertendo i dati in un intervallo [0, 1]

Effetti Visivi:

• Questo processo non altera l'aspetto visivo delle immagini ma rende i dati più omogenei e facilmente interpretabili dalla rete.

Creazione del modello MLP

```
# Creazione del modello MLP
mnist_mlp = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)), # Flatten per convertire l'immagine in un vettore
tf.keras.layers.Dense(units: 128, activation='relu'), # Primo hidden layer
tf.keras.layers.Dropout(0.2), # Dropout per regolarizzazione
tf.keras.layers.Dense(units: 10, activation='softmax') # Strato di output per classificazione multicl
]
```

Overfitting e Dropout

Underfitting Overfitting Right Fit Classification (Possibile) Soluzione Regression Problema

Standard Neural Net

After applying dropout

Compilazione del modello MLP

```
# Compilazione del modello
lr = 0.001
loss_fn = tf.keras.losses.CategoricalCrossentropy()
mnist_mlp.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=lr),
    loss=loss_fn,
    metrics=['accuracy']
]
```

Addestramento del modello MLP

```
# Addestramento del modello
n_epochs = 25
mnist_mlp_history = mnist_mlp.fit(
    x_train_mnist_norm, y_train_mnist_enc,
    validation_split=0.2,
    epochs=n_epochs,
    verbose=1
}
```

Valutiamo il modello: grafico dell'errore

```
# Plot delle perdite di training e validazione
       train_loss = mnist_mlp_history.history['loss']
44
       val_loss = mnist_mlp_history.history['val_loss']
       epochs = range(1, len(train_loss) + 1)
46
47
       plt.figure(figsize=(8, 6))
48
       plt.plot( *args: epochs, train_loss, 'r-', label='Training Loss')
49
       plt.plot( *args: epochs, val_loss, 'b--', label='Validation Loss')
50
       plt.title('Andamento della Loss durante l\'addestramento')
51
       plt.xlabel('Epoche')
52
       plt.ylabel('Loss')
53
       plt.legend()
54
       plt.tight_layout()
55
       plt.show()
```

Valutiamo il modello: confusion matrix

```
# Predizioni sul test set

y_pred_mnist_prob = mnist_mlp.predict(x_test_mnist_norm)

y_pred_mnist = np.argmax(y_pred_mnist_prob, axis=1)

# Matrice di confusione

conf_matrix = confusion_matrix(y_test_mnist, y_pred_mnist)

ConfusionMatrixDisplay(conf_matrix, display_labels=np.arange(10)).plot(colorbar=True, cmap='viridis')

plt.title("Matrice di Confusione (MNIST)")

plt.show()
```

Vorrei fare altri plot...

...però che noia dover ri-addestrare il modello!

Serve la libreria pickle

```
# Salvare le metriche, le etichette vere e predette
results = {
    'history': mnist_mlp_history.history,
    'test_loss': mnist_test_loss,
    'test_accuracy': mnist_test_accuracy,
    'true_labels': y_test_mnist.flatten(),
    'predicted_labels': y_pred_mnist,
    'predicted_probabilities': y_pred_mnist_prob,
    'true_features': x_test_mnist_norm
with open(f'mlp_mnist_{n_epochs}_epochs_{lr}_lr.pkl', 'wb') as file:
    pickle.dump(results, file)
```

Prima cosa: carichiamoli!

Facciamo un file metrics.py

```
# Caricare i dati
n_epochs = 25
lr = 0.001
with open(f'mlp_mnist_{n_epochs}_epochs_{lr}_lr.pkl', 'rb') as file:
    results = pickle.load(file)
```

Con quale probabilità è stato predetta la classe di un'immagine?

```
# Plot di un'immagine e la sua probabilità predetta

def plot_immagine_prob(prob, img): 1 usage
    plt.grid(False)
    plt.xticks([])
    plt.yticks([])
    plt.imshow(img, cmap='gray')
    y_pred = np.argmax(prob)
    plt.xlabel('{} ({:.2f}%)'.format(*args: int(y_pred), 100 * np.max(prob)))
```

Vediamo se la previsione visivamente ci convince

Quanto è sicuro il modello della classe predetta?

```
# Plot delle probabilità per ogni classe

def plot_prob(prob, y): 1 usage
    plt.grid(False)
    plt.yticks([])
    plt.xticks(np.arange(10))
    prob_bar = plt.bar(np.arange(10), prob, color='grey')
    plt.ylim([0, 1])
    y_pred = np.argmax(prob)
    prob_bar[y].set_color('red')
    prob_bar[y_pred].set_color('green')
```

Con quale probabilità è stato predetta la classe di un'immagine?

```
plot_idx = np.random.choice(results['predicted_labels'].shape[0], size: 1)
plt.figure(figsize=(6, 3))
plt.subplot( *args: 1, 2, 1)
plot_immagine_prob(
    results['predicted_probabilities'][plot_idx].squeeze(),
    results['true_features'][plot_idx].squeeze()
plt.subplot( *args: 1, 2, 2)
plot_prob(
    results['predicted_probabilities'][plot_idx].squeeze(),
    results['true_labels'][plot_idx].squeeze()
plt.show()
```

Con quale probabilità è stato predetta la classe di un'immagine?

```
# Funzione per calcolare e stampare la precisione per classe

def print_class_accuracy(true_labels, predicted_labels, classes): 1 usage
    accuracy = accuracy_score(true_labels, predicted_labels)
    print(f"0verall accuracy: {accuracy * 100:.2f}%\n")
    print("Accuracy per class:")
    for i, class_name in enumerate(classes):
        class_accuracy = np.mean([true_labels == predicted_labels][0][true_labels == i])
        print(f"{class_name}: {class_accuracy * 100:.2f}%")
```

```
# Precisione per classe
classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] # MNIST classes
print_class_accuracy(results['true_labels'], results['predicted_labels'], classes)
```

Metriche durante il training: creiamo una funzione per evitare duplicazione codice

```
# Funzione per visualizzare il training
def plot_training_history(history): 1 usage
    fig, axes = plt.subplots( nrows: 1, ncols: 2, figsize=(12, 5))
    train_loss = history['loss']
    train_acc = history['accuracy']
    val_loss = history['val_loss']
    val_acc = history['val_accuracy']
    epochs = range(1, len(train_loss) + 1)
    axes[0].plot(epochs, train_loss, 'r-', label='Training Loss')
    axes[0].plot(epochs, val_loss, 'b--', label='Validation Loss')
    axes[0].set_title('Andamento della Loss durante l\'addestramento')
    axes[0].set_xlabel('Epoche')
    axes[0].set_ylabel('Loss')
    axes[1].plot(epochs, train_acc, 'r-', label='Training Accuracy')
    axes[1].plot(epochs, val_acc, 'b--', label='Validation Accuracy')
    axes[1].set_title('Andamento della Loss durante l\'addestramento')
    axes[1].set_xlabel('Epoche')
    axes[1].set_ylabel('Accuracy')
    plt.legend()
    plt.tight_layout()
    plt.show()
```

```
# Plot dell'andamento di loss e accuracy durante il training
plot_training_history(results['history'])
```

Confusion Matrix: creiamo una funzione per evitare duplicazione di codice

sns == seaborn

```
# Funzione per la matrice di confusione

def plot_confusion_matrix(true_labels, predicted_labels, classes): 1 usage
    cm = confusion_matrix(true_labels, predicted_labels)
    plt.figure(figsize=(10, 7))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=classes, yticklabels=classes)
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()
```

```
# Matrice di confusione
plot_confusion_matrix(results['true_labels'], results['predicted_labels'], classes)
```