Projection Objective having Adjacently Mounted Aspheric Lens Surfaces

Related Applications

5

10

15

20

25

30

This is a continuation application of International patent application PCT/EP 00/13148, filed Dec. 22, 2000, and claiming priority of U. S. provisional application 60/173,523, filed Dec. 29, 1999, and German applications 100 02 626.5 and 100 21 735.7, filed January 22, 2000 and May 4, 2000, respectively.

Background of the Invention

International patent publication WO 99/52004 discloses catadioptric optic projection objectives which include a plurality of aspheric lens surfaces. For example, the projection objective shown in FIG. 4 includes 12 aspheric lens surfaces for 15 lenses. The manufacturing costs of aspheric lens surfaces with the accuracy required in microlithography are very high. Accordingly, these objectives are of little interest in the marketplace because of the many required aspheric lens surfaces.

European patent publication 0 322 201 discloses an optical projection system especially for photolithography. The projection objective known from this publication includes five lens groups. The first, second, third and fifth lens groups each have only one lens. In part, the lenses are provided with aspheric lens surfaces. An aspheric object end mounted lens surface of the fifth lens group follows an aspheric lens surface mounted in the fourth lens group at the image end.

European patent publication 0 851 304 discloses the adjacent mounting of aspheric lens surfaces in a projection objective.

These aspheric lenses are supported so as to be displaceable in the radial direction. The projection objective is matched via

the relative movement of the lenses. The aspheric lens surfaces are especially rotationally unsymmetrical because of the possibility of displacing the aspheres in radial direction with respect to each other. Because of the movable support of the aspheric lenses, this arrangement is not suitable for every projection objective because projection objectives designed especially for short wavelengths react sensitively to the smallest position change of the individual lenses. Accordingly, the position stability, which is achievable because of the special support of the lenses, is not sufficient in order to reliably ensure a good imaging quality.

German patent publication 198 18 444 discloses a projection optic arrangement having a purely refractive projection objective which includes six lens groups G1 to G6. In this projection objective, the lens groups G1, G3 and G5 have positive refractive power. The lens groups G2 and G4 have negative refractive power. To correct imaging errors, some lenses, especially in the fourth and fifth lens groups, have aspheric lens surfaces.

German patent publication 199 42 281.8 discloses additional projection exposure objectives which have six lens groups. The second lens group and the fourth lens group have negative refractive power. In the projection objectives known from this publication, lenses having aspheric lens surfaces are preferably arranged in the first three lens groups. A minimum number of spherical lens surfaces are arranged between the aspheric lens surfaces. This minimum spacing between the aspheric lens surfaces appears necessary so that the utilized aspheric lenses can develop their optimal effect.

From United States Patent 4,871,237 it is already known to match an objective in dependence upon barometric pressure via the

refractive index of a fill gas in the lens intermediate spaces. For example, spherical aberration, coma and other imaging errors can be corrected with a suitable combination of intermediate spaces.

5

United States 5,559,584 discloses introducing a protective gas into the intermediate spaces between a wafer and/or a reticle and the projection objective in a projection exposure system for manufacturing microstructured components.

Summary of the Invention

10

It is an object of the invention to provide a projection objective and a projection exposure system as well as a method for manufacturing microstructured components. These components are improved with respect to the imaging quality and the resolution capacity. Furthermore, it is an object of the invention to reduce manufacturing costs.

15

20

The projection objective of the invention defines a maximum lens diameter (D2) and includes: a plurality of lenses defining an object plane (0) and an image plane (0'); at least two of the lenses having respective mutually adjacent lens surfaces which are aspheric to define a double asphere; the double asphere being mounted at a distance from the image plane (0') corresponding at least to the maximum lens diameter (D2); the lenses of the double asphere defining a mean lens diameter; and, the mutually adjacent lens surfaces being mounted at a spacing from each other which is less than half of the mean lens diameter.

25

In a projection objective having a plurality of lenses, the measure of arranging the double asphere at a spacing of at least the maximum lens diameter of the objective away from the image plane (especially the wafer plane), improves the imaging qualities of a projection objective in comparison to a projection

objective without such double aspheres. In the above, at least two mutually adjacent mounted lens surfaces are aspheric and this is identified as a double asphere. The spacing between the aspheric lens surfaces of the double asphere is maximally half the lens diameter of the mean diameter of the double asphere. The numerical aperture can especially be increased in a refractive projection objective with the use of at least one double asphere in that the first convex form is shortened so that, at a constant length of the projection objective, the third convex form experiences an increase of the numerical aperture of approximately 0.03 to 0.05.

5

10

15

20

25

30

Especially in purely refractive projection objectives, the use of double aspheres with an arrangement in the first three lens groups has been shown to be especially advantageous.

In lithographic objectives, there are particular locations, which operate especially well on difficult to control aberrations, when these locations are aspherized. Precisely here it is purposeful to utilize especially the effectiveness at the corresponding location via a complex aspheric function. The region of the first restriction and the end of the second convex form as well as regions behind the diaphragm are predestined. Since the technical realization of complex aspheres is subjected to technical limits, the complex asphere functions are realized by means of double aspheres. In this way, a still more extensive correction is possible and the aspheres of the double asphere are technically realizable.

Furthermore, it has been shown to be advantageous to provide aspheric lens surfaces as aspheric lens surfaces of the double asphere. The radius of the aspheric lens surfaces of the best-fitting spherical lens surface (identified as the profile

radius) differ very little. Preferably, the reciprocal values of the profile radius or radii of the double aspheres deviate less than 30% from each other. As a reference value, the reciprocal value of the larger radius in magnitude is applied.

It has been shown to be especially advantageous that the apex radii of the aspherical lens surfaces of the double aspheres differ by less than 30% with reference to the larger apex radius in magnitude.

In the area of microlithography, the developmental work is directed to increasing the resolution. On the one hand, the resolution can be increased by increasing the numerical aperture, utilizing ever smaller wavelengths and even by correcting the occurring imaging errors. For an increase of the image end numerical aperture, the last convex form of the objective arranged at the image end is increased. However, it is problematic that only a fixed pregiven space can be made available for the objective. Accordingly, in order to provide a larger numerical aperture, it is therefore necessary to save space in other regions of the objective.

It has been shown to be advantageous to provide the space needed for increasing the numerical aperture by shortening the first convex form. With the first convex form, especially the input telecentrics and the distortion are corrected. By utilizing double aspheres, it is possible to correct the input telecentrics as well as the distortion with ease and at a short distance. With the double asphere, a variable adjustment of the location is made available at a short distance. With the possibility of varying the location, the distortion can be corrected. Especially the input telecentrics is corrected because the angle can be flexibly influenced.

Corrective means has already been made available in the input region of the objective especially with the use of a double asphere in a refractive projection objective in the region of the first two lens groups, that is, up to and including the first lens group of negative refractive power. Accordingly, the corrective means, which is required in the third convex form, are reduced for ensuring a uniform or constant imaging quality.

5

10

15

20

25

30

Furthermore, by providing a double asphere in the forward region of the objective, especially up to the second restriction, the number of lenses is reduced. This operates advantageously on the manufacturing costs.

In purely refractive projection objectives, it has been shown to be advantageous to provide aspheric lens surfaces in the forward region of the objective ahead of the second restriction to improve the imaging quality. For example, for a numerical aperture of 0.83, the deviation from the wavefront of a spherical wave is reduced to less than 6 m λ with a field of 8x26 mm² referred to 248 nm.

The imaging characteristics of the objective can be changed because of fluctuations of the atmospheric pressure. In order to compensate for such pressure fluctuations, it has been shown to be advantageous to charge an intermediate space between two lens surfaces with pressure in a targeted manner so that pressure changes, especially of the atmospheric pressure, can be compensated. Furthermore, the targeted application of pressure can be used for a further reduction of imaging errors.

Furthermore, it has been shown to be advantageous to provide at least one of the end plates with a pressure manipulator so that a curvature of the plate or lens can be generated with a two-sided application of pressure of the particular lens or the

particular plate. For a three-point support of the end plate and an application of pressure of the gas space, the three-waviness during operation is corrected in a targeted manner by means of the through-bending of the end plate. With an n-point support, an n-waviness can be corrected.

A force, which is directed in the z-direction, for curving the lens can be introduced via coaxially mounted actuators, especially, piezos. The force, which is introduced by the actuators, is directed to the lens center point.

10 Brief Description of the Drawings

5

15

30

The invention will now be described with reference to the drawings wherein:

- FIG. 1 shows a projection exposure system;
- FIG. 2 shows a projection objective for the wavelength 157 nm having a numerical aperture of 0.8;
 - FIG. 3 is a projection objective for the wavelength 248 nm having a numerical aperture of 0.83;
 - FIG. 4 is a projection objective for the wavelength 248 nm having a numerical aperture of 0.9;
- FIG. 5 is a projection objective for the wavelength 193 nm having a numerical aperture of 0.85;
 - FIG. 6 is a projection objective for the wavelength 193 nm having a numerical aperture of 0.9;
- FIG. 7 is a projection objective for the wavelength 157 nm having a numerical aperture of 0.9;
 - FIG. 8 is a projection objective for the wavelength 193 nm having a numerical aperture of 0.9;
 - FIG. 9 is a catadioptric projection objective having a double asphere for the wavelength of 157 nm and having a numerical aperture of 0.8.

Description of the Preferred Embodiments of the Invention

5

10

15

20

25

30

Referring to FIG. 1, the principle configuration of a projection exposure system is described. The projection exposure system 1 includes an illuminating unit 3 and a projection objective 5. The projection objective 5 includes a lens arrangement 19 having an aperture diaphragm AP. An optical axis 7 is defined by the lens arrangement 19. Different lens arrangements are explained in greater detail hereinafter with respect to FIGS. 2 to 6. A mask 9 is mounted between the illuminating unit 3 and the projection objective 5. The mask 9 is held in the beam path by means of a mask holder 11. masks 9, which are used in microlithography, have a micrometer-nanometer structure which is imaged demagnified on an image plane 13 by means of the projection objective 5 up to a factor of 10, especially by the factor 4. In the image plane 13, a substrate 15 or a wafer is held. The substrate 15 or wafer is positioned by a substrate holder 17.

The minimal structures, which can still be resolved, are dependent upon the wavelength λ of the light, which is used for the illumination, as well as in dependence upon the image side numerical aperture of the projection objective 5. The maximum attainable resolution of the projection exposure system 1 increases with falling wavelength λ of the exposure illuminating unit 3 and with an increasing image end numerical aperture of the projection objective 5.

The projection objective 19 shown in FIG. 2 includes six lens groups G1 to G6. This projection objective is designed for the wavelength 157 nm. The first lens group G1 or first convex form is defined by the lenses L101 to L103 which are all biconvex lenses. This first lens group has positive refractive power.

The last lens surface of this lens group G1, which is mounted at the image end, is aspherized. This lens surface is identified by AS1. The last lens of this lens group G1 is a biconvex lens which can be clearly assigned to the first lens group.

5

10

15

The lens group G2 or first constriction, which follows the lens group G1, includes the three lenses L104 to L106. This lens group G2 has negative refractive power and defines a restriction. An object end mounted lens surface AS2 of the lens L104 is aspheric. Furthermore, the image end mounted lens surface of lens L106 is aspheric. A double asphere is formed by the two lens surfaces AS1 and AS2.

The lens group G3 has positive refractive power and is defined by the lenses L107 to L111. The last lens surface of this lens group is the lens L111 which is arranged at the image end and is aspherized. This lens group is a convex form.

The second lens group G4 of negative refractive power continues from the third lens group. This lens group G4 is defined by the lenses L112 to L115. This lens group defines a constriction.

20

The fifth lens group G5 has the lenses L116 to L125 and has positive refractive power and includes an aperture diaphragm AP which is mounted between the lens L119 and the lens L120.

25

30

The sixth lens group G6 is defined by the lenses or plates L126 and L127. This objective is designed for the wavelength 157 nm having a spectral bandwidth of the illuminating source of 1.5 pm and the lenses L113 to L115 and L119 for this objective are of sodium fluoride. With the use of a second material (here sodium fluoride), especially chromatic errors can be corrected. The chromatic transverse errors are significantly reduced because of the use of NaF in the first restriction. Even

the chromatic longitudinal error is somewhat reduced. The largest individual contribution to correction of the chromatic longitudinal errors is achieved with the use of NaF in the lens group G5.

5

The positive lenses L116 to L118 of the lens group G5 continue from the lens group G4 and are of lithium fluoride. With the use of lithium fluoride at this location in the objective, especially the monochromatic correction is facilitated because only small individual refractive powers are needed for achromatization because of the larger dispersion distance of lithium fluoride and sodium fluoride than of calcium fluoride and sodium fluoride. The basic configuration does not differ so significantly from a chromatic objective because of the special material selection.

15

10

The two positive lenses, which are arranged after the diaphragm, are likewise of lithium fluoride and also make, as explained with respect to the lithium lenses mounted ahead of the diaphragm, an important contribution to the correction of the chromatic longitudinal error.

20

The lens L122, whose two surfaces run almost at a constant spacing to each other, comprises calcium fluoride. The lens is very significant for the monochromatic correction and has only a slight influence on the chromatic longitudinal error.

25

The last three lenses of the fifth lens group G5, L123 to L125, are of lithium fluoride. These lenses supply a smaller but nonetheless very valuable contribution to the correction of the chromatic longitudinal error.

The sixth lens group includes the lenses or planar plates L126 and L127 which comprise calcium fluoride.

30

This objective is designed for illuminating a field

of 8x26 mm. The structural length from position 0 to position 0' is 1,000 mm. The numerical aperture is 0.8. The precise lens data are set forth in Table 1.

The aspheric surfaces are in all embodiments described by the equation:

$$P(h) = \frac{\delta \cdot h \cdot h}{1 + \sqrt{1 - (1 + K) \cdot \delta \cdot \delta \cdot h \cdot h}} + C_1 h^4 + \dots + C_n h^{2n+2} \qquad \delta = 1/R$$

5

10

15

20

25

The projection objective shown in FIG. 3 includes six lens groups G1 to G6 having the lenses L201 to L225 and a divided end plate (L226, L227). This objective is designed for the illumination wavelength 248 nm. The space required for this projection objective 19 amounts precisely to 1,000 mm from object plane 0 to image plane 0'. At the image end, this objective 19 has a numerical aperture of 0.83. The field which can be exposed by this projection objective is 8x26 mm.

The first lens group G1 includes the lenses L201 to L204 of which the lenses L201 to 203 are biconvex lenses.

The first lens L204 of the lens group G1 has an aspheric form on the image end lens surface. This asphere is identified by AS1.

The second lens group G2 includes the three lenses L205 to L207. These lenses have a biconcave form and the lens surfaces of the lenses L205 and L207, which face toward the respective bounding lens groups, are aspheric. The aspheric lens surface of the lens L205 is identified by AS2. In this way, a

double asphere is formed by the two mutually adjacent aspheric lens surfaces AS1 and AS2. The last lens of the lens group G2 is provided as aspheric on the side facing the wafer.

The third lens group includes the lenses L208 to L21. With this lens group G3, a convex form is provided. The lens L211 is made aspheric on the image end lens surface.

5

10

15

20

25

30

The fourth lens group G4 is formed by the lenses L213 to L215 which are all configured to be biconcave. This lens group G4 is the second lens group of negative refractive power. With this lens group, a restriction is formed.

The lens group G5 includes the lenses L216 to L225. An aperture diaphragm is mounted between the lenses L218 and L219. The diaphragm curvature between the peripheral ray at the diaphragm at a numerical aperture of 0.83 and the intersect point of the chief ray with the optical axis is 30.9 mm. With this lens group, a convex form is provided.

The sixth lens group G6 includes the lenses L226 and L227 and these lenses are configured as planar plates.

The precise lens data of this projection objective 19 are set forth in Table 2. For the same structural length of the objective from 0 to 0' of 1,000 mm compared to FIG. 2, the aperture is increased further to 0.83 with an excellent correction.

The projection objective shown in FIG. 4 includes six lens groups having the lenses L301 to L327. The objective is designed for the illuminating wavelength 248 nm and has a numerical aperture of 0.9.

The first lens group G1 includes the lenses L301 to L304.

This lens group has a positive refractive power. The refractive power especially of lenses L302 to L303 is very low. The focal

length of this lens at L302 is 1077.874 mm and is -92397.86 mm at L303.

5

10

15

20

25

30

A lens group of negative refractive power G2 continues from this last lens group and is formed by the three lenses L305 to L307. The first lens surface of this lens group G2 is arranged at the image end and is made aspheric and is identified by AS1. The lens surface of lens L305 facing toward the lens surface AS1 is made aspheric so that a double asphere is formed by the lens surfaces AS1 and AS2. Between these aspheric lens surfaces AS1 and AS2, there is a clearly recognizable spacing provided in contrast to the previous embodiment. In this double asphere, the equidistant arrangement of the surfaces AS1 and AS2 is no longer completely utilized and the double asphere opens somewhat toward the outside.

The next lens group G3 has a positive refractive power and includes the lenses L308 to L311. This lens group G3 includes an aspheric lens surface and this aspheric lens surface is mounted on the image side on the lens L311.

The second lens group of negative refractive power G4 includes the lenses L312 to L315. The lens surface of the lens L314 mounted at the image end is made aspheric.

The next lens group G5 has a positive refractive power and includes the lenses L316 to L325. The diaphragm AP is mounted between the lenses L319 and L320. The two mutually adjacent lens surfaces of lenses L321 and L322 are aspheric and are identified as AS3 and AS4. A double asphere is formed by these aspheres AS3 and AS4. An air space is enclosed by the surfaces AS3 and AS4. With this double asphere, especially the spherical aberration and the sine condition at high aperture are better decoupled and easily corrected.

The sixth lens group includes the lenses L326 and L327 which are configured as thick planar plates. The intermediate space defined by these planar plates is chargeable with an overpressure and an underpressure and/or with a gas for compensating fluctuations of the atmospheric pressure. For more extended correction possibilities, it can be provided that at least one of the planar plates with or without refractive power (that is, also as a lens which is clearly thinner) compensates n-waviness under pressure variation and point mounting. For a targeted deformation of the lens, piezo actuators can be provided on the outer periphery.

The structural length of this objective from object plane 0 to image plane 0' is 1139.8 mm. The numerical aperture at the image end amounts to 0.9 with an exposable field of 27.2 mm in the diagonal. The precise lens data are set forth in Table 3.

The projection objective 19 shown in FIG. 5 includes six lens groups G1 to G6. This projection objective is designed for a wavelength of 193 nm. The first lens group G1 includes the lenses L401 to L404. Already the first object end mounted lens surface of the lens L401 is made aspheric. This asphere acts especially positively on dish-shaped traces and distortion with excellent entry telecentrics because this asphere is mounted at the location at which the best beam separation exists for the high-aperture lithographic objective.

The lens surface of lens L404, which is provided at the object end, is aspheric and is identified by AS1. A double asphere is formed by this lens surface AS1 and the lens surface of the lens L405 which is mounted at the image end and is likewise aspheric and is identified by AS2. This double asphere operates especially positively on dish-shaped traces while

simultaneously providing good correction of the image errors caused by the high aperture. With increasing radial distance from the optical axis, the surfaces AS1 and AS2 of the double asphere have an increasing distance in the direction to the optical axis. This double asphere opens toward the outside and defines a complex corrective means with average beam separation.

5

10

15

20

25

30

The lens L404 belongs already to the second lens group which includes the lenses L405 to L407. This second lens group has a negative refractive power.

The first lenses L402 to L405 have an especially low refractive power $f_{L402}=1397.664$ mm, $f_{L403}=509.911$ mm, $f_{L404}=1371.145$ mm and $f_{L405}=-342.044$ mm. A further aspheric lens surface is provided at the image end on the lens L407.

The next lens group G3 has a positive refractive power and includes the lenses L408 to L413. The lens L409 has, at the object end, an aspheric lens surface and the lens L413 is provided with an aspheric lens surface at the image side. The aspheric lens L413 has a positive influence on the coma of higher order and on the 45° structures. The air space, which is provided between the lenses L411 and L412 is virtually equidistant.

The lens group G4 has a negative refractive power and is defined by the lenses L414 to L416. The lens L415 has an aspheric lens surface on the image side. This aspheric lens surface operates in a good mixture on aperture dependent and field dependent imaging errors, especially for objectives having a high aperture.

The next lens group G5 is defined by the lenses L417 to L427. A diaphragm AP is mounted between the lenses L420 to L421. The lens surface of the lens L422, which follows the

diaphragm AP, has an aspheric form. With this aspheric lens, it is possible to carry out the correction of the spheric aberration without influencing other imaging errors. For this purpose, it is, however, necessary with the presence of a clear diaphragm curvature, that the aspheric surface projects into the region of a slide diaphragm.

Furthermore, the mutually adjacent lens surfaces of the lenses L423 and L424 (identified by AS3 and AS4) are made to have an aspheric form. With this follow-on double asphere, it is especially possible to have an excellent aplanar correction for highest numerical aperture. The simultaneous correction of the spheric aberration and the satisfaction of the sine condition is therefore possible.

The lens group G6 is configured by the lenses L428 to L429 which are configured as planar plates. It can, in turn, be provided that the intermediate space between the planar parallel plates 428 and 429 are chargeable with a fluid.

Quartz glass is provided as a lens material. To reduce the chromatic aberration, the lenses L408 and L409 as well as L413 can be made of calcium fluoride. To reduce the compaction effect because of the high radiation load, it can be provided that calcium fluoride be used as a material for the smaller one or for both planar parallel plates L428 and L429. It is noted that, in this projection objective, the maximum diameter of the lens group G3 has, with 398 mm, a greater maximum diameter than the lens group G5. This objective is very well corrected and the deviation from the wavefront of an ideal spherical wave is $> = 1.2 \text{ m}\lambda$ referred to 193 nm. The spacing between object plane 0 and image plane 0' is 1188.1 mm and the exposable field is 8x26 mm. The precise lens data are set forth in Table 4.

The projection objective shown in FIG. 6 includes the lens groups G1 to G6 with the lenses L501 to L530. Planar plates are provided for L529 and L530. This projection objective is designed for the wavelength 193 nm and has a numerical aperture of 0.9. The spacing between the object plane 0 and the image plane 0' is 1174.6 mm. The exposable field has a size of 8x26 mm. Viewed macroscopically, this projection objective does not differ from the projection objective shown in FIG. 5. Again, especially the lenses L502 and L503 have a low refractive power. The lens L510 is provided especially for the quadratic correction.

Apart from the planar parallel plates L529 and L530, all lenses L501 to L528 are of quartz glass. This projection objective too is very well corrected and the deviation from the ideal wavefront of a spherical wave is < 3.0 m λ referred to 193 nm. The lenses L510, L515, L522 have a low refractive power. The precise lens data are set forth in Table 5. The effect of the aspheric surfaces corresponds principally to the effects described with respect to FIG. 5. The effects are still greater because of the high numerical aperture of 0.9.

The projection objective shown in FIG. 7 for the wavelength 157 nm includes six lens groups having lenses L601 to L630 with planar parallel plates L629 and L630. The structural length of this projection objective from object plane 0 to image plane 0' is 997.8 mm. A field of 7x22 mm can be exposed. The numerical aperture of this objective is 0.9. Calcium fluoride is provided as a lens material. A further correction of chromatic errors is achievable with the use of barium fluoride as a lens material for the lenses L614 to L617. The deviation from the wavefront of an ideal spherical wave

is < 1.8 m\u03b1 referred to 157 nm. Viewed macroscopically, the configuration of the projection objective shown in FIG. 7 differs only slightly from the projection objective described with respect to FIGS. 5 and 6. For this reason, reference is made to the description with respect to FIG. 5. The exact lens data are set forth in Table 6.

5

10

15

20

25

30

The projection objective shown in FIG. 8 includes six lens groups G1 to G6. The first lens group includes the lenses L701 to L704. The lens L701 at the object side and the lens L704 at the image side have aspheric lens surfaces. This first lens group includes only lenses of positive refractive power which have approximately identical diameters.

The second lens group G2 follows and has a negative refractive power and includes the lenses L705 to L708. The lens L705 has an aspheric lens surface on the side facing toward lens L704 and this aspheric lens surface is identified by AS2. A double asphere 21 is formed by the two aspheric lens surfaces AS1 and AS2. This double asphere is curved toward the wafer and opens slightly in the radial direction. Furthermore, the lens L708 has an aspheric lens surface at the image end.

The third lens group G3 has lenses L709 to L714 and has a positive refractive power. This lens group includes two aspheric lenses L710 and L714. The air gap, which is formed between the lenses L712 and L713, has an almost constant thickness.

The fourth lens group G4 includes only two negative lenses L715 and L716 with which a restriction is formed. The lens L715 is provided at the image side with an aspherical lens surface.

The fifth lens group has lenses L717 to L727 and has a positive refractive power. The diaphragm AP is mounted between

the lenses L720 and L721. In this lens group, a further double asphere 21 is provided which is formed by the two aspheric lens surfaces AS3 and AS4 of the lenses L723 and L724. Further aspheric lens surfaces are on the lens L721 on the object side and on lens L727 on the image side.

5

10

15

20

25

30

The last lens group G6 follows this lens group and is defined by the two planar parallel plates L728 and L729. An intermediate space 25 is formed by the mutually adjacent surfaces of the planar plates L728 and L729. The intermediate space 25 can be charged with pressure.

This projection objective is designed for the wavelength 193 nm and has a numerical aperture of 0.9. The distance between object plane 0 and image plane 0' is 1209.6 mm. A field of 10.5x26 mm can be exposed with this projection objective. The maximum deviation from the ideal wavefront of a spherical wave is 3.0 m λ referred to 193 nm. This deviation is determined by means of the program code CODE V. The precise lens data are set forth in Table 7.

In FIG. 9, a catadioptric projection objective is shown which is designed for the wavelength 157 nm. A field of 22x7 mm can be exposed with this projection objective. The numerical aperture is 0.8. All lenses in this projection objective are made of calcium fluoride. The first lens L801 is provided with an aspheric lens surface on the image side. This aspheric lens supplies especially a valuable contribution to the correction of the distortion.

The radiation is deflected by mirror SP 1 and impinges on the lens L802 of negative refractive power. The next lens L803 is provided with an aspheric lens surface on the lens side on the image side in the beam path. This aspheric lens supplies an

especially valuable contribution to the correction of the spherical aberration.

5

10

15

20

The radiation, which propagates from lens L803, is reflected back at the mirror SP 2 and passes the lenses L803 and L802 in the opposite sequence before it is directed via reflection at mirror SP 3 to the lens L804 which is mounted on an optical axis common with the lens L801. An intermediate image Z1 arises between the mirror SP 3 and lens L804. The next lenses L805 and L806 have aspheric lens surfaces AS1 and AS2 on the mutually adjacent surfaces. A double asphere is formed by these aspheres. Furthermore, the objective includes the lenses L807 to L818. The lenses L812, L814, L816 and L818 are provided with aspheric surfaces on the image side and the lens L817 has an aspheric lens surface on the object side. A double asphere is formed by the aspheric lens surfaces of the lenses L816 and L817.

The subject matter of PCT/EP 00/13148, filed

December 22, 2000, is incorporated herein by reference.

It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.

TABLE 1

F	M1197a					
5	LENSES	RADII	THICKNESSES	GLASSES	REFRACTIVE INDEX AT 157 nm	1/2 FREE DIAMETER
	0	infinite	32.000000000	N2	1.00000320	54.410
10		infinite	3.386300000	N2	1.00000320	61.189
	L101	331.163350000	17.963900000 1.476400000	CaF2 N2	1.55840983 1.00000320	63.195 63.531
	L102	-319.616060000 766.337390000	17.162600000	CaF2	1.55840983	63.346
	2102	-447.357070000	0.750000000	N2	1.00000320	62.932
15	L103	308.080750000	26.167800000	CaF2	1.55840983	61.274
	104	-256.921560000AS	0.781900000 7.000000000	N2 CaF2	1.00000320 1.55840983	59.279 59.017
	104	-199.459070000AS 115.459900000	26.055700000	N2	1.00000320	53.978
	L105	-155.555940000	7.000000000	.CaF2	1.55840983	54.017
20		181.538670000	32.685400000	N2	1.00000320	57.637
	L106	-105.047550000 -6182.626690000AS	7.623100000 16.767300000	CaF2 N2	1.55840983 1.00000320	59.819 74.788
	L107	-441.263450000 -441.263450000	27.09800000	CaF2	1.55840983	83.940
	2107	-151.990780000	2.318200000	N2	1.00000320	88.568
25	L108	-613.725250000	45.372400000	CaF2	1.55840983	103.501
	7100	-150.623730000	2.560000000	N2 CaF2	1.00000320 1.55840983	107.663 119.260
	L109	1648.391330000 -255.166800000	42.538400000 2.852600000	N2	1.00000320	120.183
	L110	154.432580000	47.915200000	CaF2	1.55840983	110.475
30		1162.400830000	0.929300000	N2	1.00000320	107.883
	L111	261.100680000	20.383600000 0.867900000	CaF2 N2	1.55840983 1.00000320	98.431 93.917
	L112	614.726380000AS 359.575500000	7.168800000	CaF2	1.55840983	89.668
		126.930570000	40.754900000	N2	1.00000320	76.782
35	L113	-253.190760000	7.000000000	NAF	1.46483148	74.969
	T 1 1 A	132.038930000 -338.990070000	28.180300000 7.611900000	N2 NAF	1.00000320 1.46483148	67.606 67.535
	L114	222.374240000	39.202700000	NAF N2	1.00000320	68.722
	L115	-109.896940000	7.095700000	NAF	1.46483148	69.544
40		705.107390000	19.428900000	N2	1.00000320	84.312
	L116	-706.158480000 -180.715990000	29.677100000 5.740400000	LIF N2	1.47810153 1.00000320	90.890 95.248
	L117	1725.475600000	35.904100000	LIF	1.47810153	112.495
		-263.017160000	0.75000000	N2	1.00000320	114.191
45	L118	619.827930000	64.044600000	LIF	1.47810153	121.296
	L119	-197.026470000 -195.861770000	0.750100000 7.000000000	N2 NAF	1.00000320 1.46483148	121.844 121.626
	шттэ	-469.620100000	0.750000000	N2	1.00000320	123.300
		infinite	0.750600000	N2	1.0000320	122.405
50	L120	640.893310000	25.458500000 0.980400000	LIF N2	1.47810153 1.00000320	123.549 123.525
	L121	-1089.937900000 322.108140000	34.102200000	LIF	1.47810153	121.602
	1121	-1728.500990000	31.928200000	N2	1.00000320	120.573
	L122	-234.494140000	46.273400000	CaF2	1.55840983	119.587
55	T 102	-251.236960000	0.974700000 29.502800000	N2 LIF	1.00000320 1.47810153	121.785 103.953
	L123	171.211410000 452.301450000	0.887100000	N2	1.00000320	101.542
	L124	126.180740000	28.831400000	LIF	1.47810153	88.565
60		223.894010000	0.796800000	N2	1.00000320	83.098
	L125	132.333150000 477.745080000	25.819300000 6.457300000	LIF N2	1.47810153 1.00000320	76.140 70.847
	L126	infinite	59.682500000	CaF2	1.55840983	69.261
		infinite	0.838600000	N2	1.00000320	33.343
<i>C</i> E	L127	infinite	4.000000000	CaF2	1.55840983	32.211 29.804
65	L128	infinite infinite	12.000810000	N2	1.00000320	13.603
	1120	1111111100	3.000000			

ASPHERIC CONSTANTS

60

```
Asphere of Lens L103
 5
               -0.8141
        C1
               -1.93290250e-007
                4.16659320e-011
        C2
               -4.77885250e-015
        C3
10
        C4
                3.28605790e-019
        C5
               -1.03537910e-022
        C6
                2.39743010e-026
                0.0000000e+000
        C7
                0.00000000e+000
        C8
15
                0.0000000e+000
        C9
        Asphere of Lens L104
20
               -1.0887
                1.57414760e-008
        C1
                1.63099500e-011
        C2
        C3
               -4.85048550e-015
        C4
                9.48501060e-019
25
        C5
               -2.37918310e-022
        C6
                3.60692700e-026
                0.00000000e+000
        C7
                0.00000000e+000
        C8
                0.00000000e+000
        C9
30
        Asphere of Lens L106
                4235.0115
35
        C1
                1.16160120e-007
        C2
               -1.37360280e-011
        C3
               -1.75181710e-016
        C4
               1.56917750e-019
        С5
               -1.57135270e-023
40
        C6
                5.89614270e-028
                0.00000000e+000
        C7
        C8
                0.00000000e+000
                0.00000000e+000
        C9
45
        Asphere of Lens L111
                0.0000
        K
               1.35782560e-009
        C1
               -2.31506660e-013
50
        C2
               2.14831120e-017
        C3
        C4
               -7.84495330e-022
               -4.23732680e-026
        C5
                1.17366430e-031
        C6
                0.0000000e+000
        C7
55
        C8
                0.0000000e+000
                0.0000000e+000
        C9
```

Refractive index and wavelength are referred to air.

TABLE 2

5	M1159a	à			REFRACTIVE	1/2 FREE
	LENSES	RADII	THICKNESSES	GLASSES	INDEX AT 248.38	
	0	infinite	32.00000000	Luft	0.99998200	54.410
10		infinite	0.75000000	Luft	0.99998200	61.498
	L201	359.203085922	16.544139898	SIO2	1.50837298	62.894 63.342
		-367.814285018	0.750000000	Luft	0.99998200	63.744
	L202	376.906582229 -370.266896435	16.424149202 0.75000000	SIO2 Luft	1.50837298 0.99998200	63.552
15	L203	623.868133301	12.000921336	SIO2	1.50837298	62.201
13	13203	-558.943539628	4.488271401	Luft	0.99998200	61.489
	L204	-593.881163796	10.597937240	SIO2	1.50837298	60.233
		-258.275165583AS	1.300130829	Luft	0.99998200	59.503
	L205	-195.528496730AS	7.00000000	SIO2	1.50837298	59.067
20		114.970814112	27.465616009	Luft	0.99998200	54.855
	L206	-150.593037892	7.000000000	SIO2	1.50837298	55.023 59.359
	L207	203.788990073 -116.847756998	29.227930343 7.000000015	Luft SIO2	0.99998200 1.50837298	60.888
		L029423.850607139AS	26.431412586	Luft	0.99998200	74.043
25	L208	-433.333706324	29.900058462	SIO2	1.50837298	89.733
20		-145.855178517	0.750000000	Luft	0.99998200	93.351
	L209	-740.439232493AS	44.983538148	SIO2	1.50837298	108.655
		-155.998681446	0.75000000	Luft	0.99998200	111.280
	L210	730.369450038	38.596890643	SIO2	1.50837298	120.834
30	-011	-339.830855552	0.750000000	Luft	0.99998200	121.150 112.765
	L211	159.417768241	52.577878183 0.780542469	SIO2 Luft	1.50837298 0.99998200	110.299
	L212	457732.591606731AS 190.812012094	23.738591831	SIO2	1.50837298	94.787
	11212	115.677643950	40.245663292	Luft	0.99998200	77.717
35	L213	-412.140976525	7.00000000	SIO2	1.50837298	76.256
		151.701098214	27.102188582	Luft	0.99998200	69.619
	L214	-319.487543080	7.00000000	SIO2	1.50837298	69.443
		236.707933198	42.112032397	Luft	0.99998200	70.193
4.0	L215	-105.934259216	8.769693914	SIO2	1.50837298 0.99998200	71.068 88.650
40	L216	680.231460994 -517.056865132	17.681829203 36.235608441	Luft SIO2	1.50837298	91.923
	L210	-185.271735391	0.764865888	Luft	0.99998200	100.651
	L217	2262.402798068	44.431825566	SIO2	1.50837298	119.658
		-267.329724617	8.198939895	Luft	0.99998200	123.247
45	L218	1103.186796189	40.827914599	SIO2	1.50837298	133.839
		-364.593909045	8.280602730	Luft	0.99998200	134.570
		infinite	-3.250000000	Luft	0.99998200	133.180
	L219	620.770366318 -1858.943929157	25.036239346 0.75000000	SIO2 Luft	1.50837298 0.99998200	134.241 134.164
50	L220	329.635686681	40.854820783	SIO2	1.50837298	132.227
50	11220	-1181.581276955	31.972595866	Luft	0.99998200	131.156
	L221	-249.799136729	10.00000000	SIO2	1.50837298	130.229
		6484.262988004	5.619260320	Luft	0.99998200	130.672
	L222	-2574.687141000	38.775298966	SIO2	1.50837298	130.696
55		-254.665255526	0.75000000	Luft	0.99998200	130.891
	L223	203.341746230	25.409827006	SIO2	1.50837298	110.728 108.517
	T 224	463.496973555 118.263098967	0.750000000 37.247858671	Luft SIO2	0.99998200 1.50837298	92.529
60	L224	191.067427473	0.753637388	Luft	0.99998200	84.037
	L225	137.671384625	24.859589811	SIO2	1.50837298	78.934
		507.533271700	6.693359054	Luft	0.99998200	74.624
	L226	infinite	55.768369688	SIO2	1.50837298	72.833
		infinite	0.80000000	Luft	0.99998200	35.729
<i>C</i> F	L227	infinite	4.000000000	SIO2	1.50837298	34.512
65	T 0 0 0	infinite	11.999970000 0.00000000	Luft	0.99998200 1.00000000	31.851 13.602
	L228	infinite	0.00000000		1.0000000	13.002

ASPHERIC CONSTANTS

60

```
Asphere of Lens L204
 5
               -0.7780
               -1.91000417e-007
        C1
               4.02870297e-011
        C2
        C3
               -5.55434626e-015
10
        C4
               1.68245178e-019
        C5
               2.20604311e-023
        C6
               8.09599744e-027
        C7
               0.0000000e+000
               0.0000000e+000
        C8
               0.0000000e+000
15
        C9
        Asphere of Lens L205
20
               -0.4166
               5.25344324e-008
        C1
        C2
                1.26756433e-011
               -5.25489404e-015
        C3
        C4
               7.04023970e-019
25
               -1.04520766e-022
        C5
        С6
               2.06454806e-026
                0.0000000e+000
        C7
                0.00000000e+000
        C8
                0.00000000e+000
        C9
30
        Asphere of Lens L207
        K -2116959451.7820
               1.25171476e-007
35
        C1
        C2
               -1.53794245e-011
        C3
               -3.12532578e-016
        C4
               2.00967035e-019
               -2.05026124e-023
        C5
40
        C6
                7.81326379e-028
                0.0000000e+000
        C7
                0.0000000e+000
        C8
                0.0000000e+000
        C9
45
        Asphere of Lens L211
                0.0000
                2.78321477e-009
        C1
50
                5.89866335e-014
        C2
                1.19811527e-017
        C3
               -7.81165149e-022
        C4
               1.66111023e-026
        C5
               -1.60965484e-031
        C6
55
        C7
               0.0000000e+000
        C8
                0.0000000e+000
                0.00000000e+000
        C9
```

Refractive index and wavelength were determined in air.

TABLE 3

r	M1222a					1/2 FREE
5	LENSES	RADII	THICKNESSES	GLASSES	REFRACTIVE INDEX AT 248.380nm	DIAMETER
	0	infinite	32.000000000	L710		54.410
		infinite	0.750000000	L710		62.206
10	L301	12444.588054076	17.524945114	SIO2	1.50837298	62.427
		-167.739069307	0.765384867	L710	0.99998200	63.213
	L302	1202.845295516	8.943027554	SIO2	1.50837298	63.724
		-1004.036633539	0.757676170	L710	0.99998200	63.750
1 -	L303	235.865591780	9.298971429	SIO2	1.50837298	63.464
15	- 204	231.568686620	24.888929767	L710	0.99998200 1.50837298	62.457 62.393
	L304	-148.910928631 -106.056725042AS	11.307968350 11.531057240	SIO2 L710	0.99998200	63.087
	L305	-106.056725042AS -135.467082619AS	7.000000000	SIO2	1.50837298	60.496
	Б303	236.063635384	11.820516442	L710	0.99998200	61.104
20	L306	-1613.154189634	7.000000000	SIO2	1.50837298	61.565
		222.732790977	38.103480975	L710	0.99998200	63.842
	L307	-93.477889742	7.004909948	SIO2	1.50837298	64.855
		625258.126273967AS	25.183324680	L710	0.99998200	84.949
	L308	-313.395232213	37.921288357	SIO2	1.50837298	94.853
25		-140.728421777	2.422311655	L710	0.99998200	102.129
	L309	-882.714069478AS	62.983288381	SIO2	1.50837298	129.319
	T 210	-162.454752849	0.750000000	L710	0.99998200 1.50837298	131.820 148.956
	L310	372.954030958 -446.221051696	61.566328910 0.750000000	SIO2 L710	0.99998200	148.766
30	L311	159.626550846	68.423222152	SIO2	1.50837298	126.219
50	БЭТТ	6881.817080351AS	0.754846049	L710	0.99998200	121.302
	L312	1035.238560782	11.490813397	SIO2	1.50837298	116.908
		181.491627420	22.008897360	L710	0.99998200	97.838
	L313	508.638145894	7.024491847	SIO2	1.50837298	96.444
35		144.727315074	42.480962349	L710	0.99998200	85.818
	L314	-315.769132147	7.00000000	SIO2	1.50837298	85.132
		168.042488686AS	60.840114041	L710	0.99998200	82.384
	L315	-110.641058959	7.000000000	SIO2	1.50837298 0.99998200	82.821 108.073
40	L316	460.993264759 -573.887503383	26.383956624 33.664255268	L710 SIO2	1.50837298	111.503
40	ПЭТО	-189.203245467	0.750000000	L710	0.99998200	115.508
	L317	-4374.531790288	33.200388364	SIO2	1.50837298	144.129
	202,	-365.840916872	0.750000000	L710	0.99998200	146.400
	L318	5367.437754044	32.001020330	SIO2	1.50837298	162.024
45		-556.194479444	0.857496674	L710	0.99998200	163.414
	L319	1425.923295786	68.540751990	SIO2	1.50837298	172.847
		-318.608860176	8.280602730	L710	0.99998200	173.674
	T 220	infinite	-3.250000000	L710	0.99998200 1.50837298	165.236 164.278
50	L320	524.088279104 896.107746530	18.000000000 0.750000000	SIO2 L710	0.99998200	163.371
50	L321	447.468508944	50.493798307	SIO2	1.50837298	161.574
	шэгт	-849.886554129	37.700767601	L710	0.99998200	160.560
	L322	-277.232722440	15.000000000	SIO2	1.50837298	159.396
		-359.067701243AS	13.800352685	L710	0.99998200	159.582
55	L323	-283.705002828AS	20.143173981	SIO2	1.50837298	158.903
		-264.293409160	0.750000000	L710	0.99998200	159.923
	L324	182.924856302	28.086938401	SIO2	1.50837298	124.917
	- 205	293.542915952	0.750000000	L710	0.99998200 1.50837298	122.142 107.973
60	L325	138.051507251 206.495592035	29.667601165 4.518697859	SIO2 L710	0.99998200	107.973
υσ	L326	137.608373914	37.703252491	SIO2	1.50837298	93.164
	112C	2008.206929102AS	6.230615100	L710	0.99998200	88.838
	L327	79833.713358573	27.734587521	SIO2	1.50837298	83.516
		infinite	5.00000000	L710	0.99998200	62.961
65	L328	infinite	25.000000000	SIO2	1.50837298	52.694
		infinite	10.000000000	L710	0.99998200	34.137
	L329	infinite	0.00000000			13.605

70 L710 = Air at 710 Torr

ASPHERIC CONSTANTS

```
Asphere of Lens L304
 5
               -1.5058
               -1.86740544e-007
        C1
                3.71500406e-011
        C2
        C3
               -8.38153156e-015
10
        C4
               1.06034402e-018
        C5
               -7.88993246e-023
        C6
                2.81358334e-027
                0.0000000e+000
        C7
                0.00000000e+000
        C8
15
                0.0000000e+000
        C9
        Asphere of Lens L305
20
               -1.3497
                9.59200710e-008
        C1
                3.31187872e-011
        C2
        C3
               -1.02270060e-014
        C4
               1.45048880e-018
25
        C5
               -1.18276835e-022
        C6
                5.49446108e-027
                0.00000000e+000
        C7
        C8
                0.0000000e+000
                0.00000000e+000
        C9
30
        Asphere of Lens L307
        K -23427671857767355000000000000.0000
35
               1.13856265e-007
        C1
               -9.18910043e-012
        C2
        C3
               -2.09482944e-016
        C4
               8.75414269e-020
        C5
               -6.71659158e-024
                1.94896163e-028
40
        C6
                0.0000000e+000
        C7
        C8
                0.0000000e+000
                0.0000000e+000
        C9
45
        Asphere of Lens L311
                0.0000
        K
                1.36987424e-008
        C1
               -6.69820602e-013
50
        C2
        C3
                2.24912373e-017
               -5.16548278e-022
        C4
        C5
                4.05832389e-027
                3.25008659e-032
        С6
                0.00000000e+000
55
        C7
                0.00000000e+000
        C8
                0.00000000e+000
        C9
```

60

Asphere of Lens L314

```
K 0.0000

C1 -3.81602557e-009

5 C2 -1.32998252e-012

C3 0.00000000e+000

C4 -3.24422613e-021

C5 3.55600124e-025

C6 -2.11130790e-029

10 C7 0.00000000e+000

C8 0.00000000e+000

C9 0.00000000e+000
```

15 Asphere of Lens L322

	K	0.0000
	C1	2.20018047e-011
	C2	-6.06720907e-016
20	C3	-1.85544385e-019
	C4	1.99332533e-023
	C5	-1.25615823e-028
	C6	5.72017494e-033
	C7	0.00000000e+000
25	C8	0.00000000e+000
	C9	0.00000000e+000

Asphere of Lens L323

30		
	K	0.0000
	C1	2.59747415e-011
	C2	1.15845870e-015
	C3	2.93792021e-019
35	C4	-5.20753147e-024
	C5	5.15087863e-028
	C6	-3.68361393e-033
	C7	0.00000000e+000
	C8	0.00000000e+000
40	С9	0.00000000e+000

Asphere of Lens L326

45	K	0.0000
	C1	2.53574810e-008
	C2	1.14136997e-012
	C3	-2.09898773e-016
	C4	1.80771983e-020
50	C5	-8.70458993e-025
	C6	1.83743606e-029
	C7	0.0000000e+000
	C8	0.00000000e+000
	C9	0.00000000e+000
55		

	M1450a		TABLE	4	REFRACTIVE INDEX	1/2 FREE
5	LENSES	RADII	THICKNESSES	GLASSES	AT 193.304nm	DIAMETER
	0	infinite	32.000000000	L710	0.99998200 0.99998200	54.410 61.369
	L401	infinite 1072.135967906AS		L710 SIO2	1.56028895	62.176
10	L402	-274.850778792 -195.160258125	10.038841436 9.677862773	HE SIO2	0.99971200 1.56028895	62.804 62.822
	L403	-159.034954419 -409.040910955	15.411706951 11.634800854	HE SIO2	0.99971200 1.56028895	63.649 62.424
15	L404	-184.929247238 -86.928681017	18.878098976 9.000000000	HE SIO2	0.99971200 1.56028895	62.549 61.870
13		-81.003682870AS	3.559685814	HE	0.99971200	63.469
	L405	-105.055795110AS -237.059668556	6.000000000 7.135710642	SIO2 HE	1.56028895 0.99971200	60.375 61.325
20	L406	-170.390902140 179.617978310	6.000000000 40.187039625	SIO2 HE	1.56028895 0.99971200	61.152 64.312
	L407	-108.910057000 10000.0000000000AS	6.000000000 23.032466424	SIO2 HE	1.56028895 0.99971200	66.769 84.010
	L408	-482.423484275	35.657870541	SIO2	1.56028895	98.271
25	L409	-166.024534852 -5301.825985682AS	0.712083613 59.184134830	HE SIO2	0.99971200 1.56028895	104.636 129.868
	L410	-219.603781546 -407.514819861	1.964238192 25.000000000	HE SIO2	0.99971200 1.56028895	135.616 141.192
	L411 .	-275.650807138 812.482278880	2.073256156 41.728126549	HE SIO2	0.99971200 1.56028895	143.933 150.437
30		2085.321083022	11.867512800 66.189720990	HE SIO2	0.99971200 1.56028895	150.588 151.170
	L412	1989.395979432 -336.825131023	2.208063283	HE	0.99971200	151.249
	L413	161.751335222 -7743.125302019AS	66.140524993 0.732008617	SIO2 HE	1.56028895 0.99971200	121.860 115.257
35	L414	2700.830058670 175.482298866	8.000000000 18.681794864	SIO2 HE	1.56028895 0.99971200	112.928 94.204
	L415	330.479176880 215.492418517	8.000000000 37.734500801	SIO2 HE	1.56028895 0.99971200	91.933 86.259
4.0	L416	-263.077268094	6.000000000	SIO2	1.56028895 0.99971200	83.596 77.915
40	L417	119.453498304AS -126.431526615	66.406324570 6.000000000	HE SIO2	1.56028895	80.395
	L418	1627.715124622 -517.066851877	24.178532080 30.987035837	HE SIO2	0.99971200 1.56028895	96.410 105.371
45	L419	-242.666474401 -737.673536297	0.70000000 30.292644418	HE SIO2	0.99971200 1.56028895	113.249 124.350
	L420	-270.925750340 -1051.979110054	0.70000000 27.301344542	HE SIO2	0.99971200 1.56028895	128.112 137.231
	L421	-363.545320262 914.456821676	0.711035404 50.497126159	HE SIO2	0.99971200 1.56028895	139.644 148.531
50		-500.741001160	10.00000000	HE	0.99971200	149.700 146.693
	L422	infinite 353.826401507AS	-5.000000000 22.748234242	HE SIO2	0.99971200 1.56028895	147.721
	L423	529.864238000 422.718681400	1.376970242 57.709521396	HE SIO2	0.99971200 1.56028895	146.294 146.003
55	L424	-733.506899438 -261.264462802	37.321473463 15.000000000	HE SIO2	0.99971200 1.56028895	143.238 138.711
	L425	-292.145870649AS -225.638240671AS	18.942285163 19.098948274	HE SIO2	0.99971200 1.56028895	139.089 136.464
60	L426	-230.537827019 246.284141218	0.70000000 23.038665896	HE SIO2	0.99971200 1.56028895	138.299 114.892
	L427	400.381469987 131.458744675	0.704537226 28.653621426	HE SIO2	0.99971200 1.56028895	110.931 98.090
	L428	200.500973816	0.708148286	HE	0.99971200	93.130
65	L429	139.428371855 1188.104646109AS	36.540725215 8.107454155	SIO2 HE	1.56028895 0.99971200	87.103 79.764
	L430	infinite infinite	25.934594077 5.000000000	CaF2 L710	1.50143563 0.99998200	72.791 54.980
	L431	infinite infinite	25.000000000 10.000000000	CAF2HL L710	1.50143563 0.99998200	46.911 29.741
70		infinite	0.00000000	•		13.603

L710 = Air at 710 Torr

ASPHERIC CONSTANTS

Asphere of Lens L401

```
5
                0.0000
        C1
                7.64628377e-008
                6.87967706e-013
        C2
        Ċ3
                6.32367166e-017
10
        C4
                4.65534082e-020
        C5
               -1.74760583e-023
        C6
                3.25143184e-027
               -2.97366674e-031
        C7
                0.00000000e+000
        C8
15
                0.0000000e+000
        C9
        Asphere of Lens L404
20
               -1.3306
               -2.46704917e-007
        C1
                1.00943626e-011
        C2
               -6.88338440e-015
        C3
        C4
               1.00927351e-018
25
               -1.37371749e-022
        C5
        C6
                9.94732480e-027
               -6.46127195e-031
        C7
                0.0000000e+000
        C8
                0.00000000e+000
        C9
30
        Asphere of Lens L405
               -1.1682
35
                8.44108642e-008
        C1
                6.67934072e-012
        C2
               -5.16053049e-015
        C3
        C4
                8.51835178e-019
        C5
               -9.37525700e-023
40
        С6
                3.80738193e-027
               -7.58518933e-035
        C7
                0.0000000e+000
        C8
                0.00000000e+000
        C9
45
        Asphere of Lens L407
                0.0000
                8.18369639e-008
        C1
50
               -9.75131236e-012
        C2
                3.85197305e-016
        C3
        C4
                1.05024918e-020
               -3.84907914e-024
        C5
                3.28329458e-028
        C6
55
               -1.16692413e-032
        C7
        C8
                0.00000000e+000
                0.0000000e+000
        C9
```

Asphere of Lens L409 0.0000

```
4.21547093e-009
        C1
 5
        C2
               -2.05810358e-013
               -2.19266732e-018
        C3
        C4
               -7.83959176e-023
                6.55613544e-027
        C5
        С6
               -7.33103571e-032
10
        C7
               -2.15461419e-036
                0.00000000e+000
        C8
        C9
                0.0000000e+000
```

K

15 Asphere of Lens L413

```
0.0000
                1.39800416e-008
        C1
               -1.91505190e-013
        C2
20
               -1.26782008e-017
        C3
                9.93778200e-022
        C4
               -5.55824342e-026
        C5
                1.85230750e-030
        С6
        C7
               -2.83026055e-035
                0.00000000e+000
25
        C8
        C9
                0.0000000e+000
```

Asphere of Lens L416

30 0.0000 C1 -1.87949694e-008 C2 -4.87119675e-012 -5.90009367e-017 C3 35 C4 -5.76749530e-021 C5 -3.07189672e-025 4.51160541e-029 С6 C7 -5.02037364e-033 0.00000000e+000 C8 40 C9 0.0000000e+000

Asphere of Lens L421

45 -0.0073 1.63581145e-010 C1 C2 -7.80915457e-015 6.72460331e-021 C3 C4 5.33479719e-025 50 C5 2.82144185e-028 C6 -6.16219372e-033 C7 2.37157562e-037 0.00000000e+000 C8 0.0000000e+000 C9 55

Asphere of Lens L424

```
0.0000
1.28367898e-010
         K
         C1
 5
         C2
                 -1.18938455e-014
                 -1.84714219e-019
         C3
         C4
                 4.28587779e-023
                 -1.39213579e-027
2.04883718e-032
         C5
         C6
C7
C8
                 -3.36201584e-037
10
                  0.0000000e+000
         C9
                  0.0000000e+000
```

15 Asphere of Lens L425

```
0.0000
-2.31584329e-010
         K
         C1
         C2
                 2.47013162e-014
20
                 1.13928751e-018
         C3
                -1.24997826e-023
-9.59653919e-028
         C4
         C5
                 1.46403755e-032
         С6
                 -1.23684921e-037
         С7
25
         C8
                 0.00000000e+000
                  0.0000000e+000
         C9
```

Asphere of Lens L428

30	nopner	C 01 LC.10 L120
30		
	K	0.0000 -
	C1	2.79193914e-008
	C2	5.72325985e-013
	C3	-1.69156262e-016
35	C4	1.45062961e-020
	C5	-7.24157687e-025
	C6	1.59130857e-029
	C7	9.07975701e-035
	C8	0.00000000e+000
40	C9	0.00000000e+000

	M1558a			TABLE 5		
5	LENSES	RADII	THICKNESSES	GLASSES	EFRACTIVE INDEX AT 193.304nm	1/2 FREE DIAMETER
	0	infinite	32.000000000	L710	0.99998200	54.410
		infinite	0.70000000	L710	0.99998200	61.800
1.0	L501	1062.826934956AS	17.734965551	SIO2	1.56028895 0.99971200	62.680 63.358
10	L502	-280.649155373 -198.612797944	9.921059017 9.733545477	HE SIO2	1.56028895	63.454
	1302	-157.546275141	15.417407860	HE	0.99971200	64.281
	L503	-400.277413338	11.803054495	SIO2	1.56028895	63.163
		-182.515287485	19.059582585	HE	0.99971200	63.316
15	L504	-86.486413985	9.000000000	SIO2	1.56028895	62.723 64.356
	L505	-79.976798205AS -102.262183494AS	3.314115561 6.000000000	HE SIO2	0.99971200 1.56028895	61.260
	H202	-275.242312561	7.844485351	HE	0.99971200	62.494
	L506	-191.274205909	6.000000000	SIO2	1.56028895	62.450
20		180.723494008	40.175681177	HE	0.99971200	65.811
	L507	-108.539011643	6.000000000	SIO2	1.56028895	67.752 86.379
	L508	10000.0000000000AS -481.040730284	23.009626916 35.657298256	HE SIO2	0.99971200 1.56028895	100.931
	T209	-165.828518942	0.700000000	HE	0.99971200	106.719
25	L509	-5243.952853546AS	59.233771719	SIO2	1.56028895	134.666
		-218.541408733	2.123657562	HE	0.99971200	139.441
	L510	-402.136827778	25.000000000	SIO2	1.56028895	145.856 148.618
	L511	-276.854279724 796.304534481	1.637353303 36.805305429	HE SIO2	0.99971200 1.56028895	156.741
30	TICH	2360.950907095	10.808883416	HE	0.99971200	157.059
30	L512	2256.926430541	60.789786196	SIO2	1.56028895	157.684
		-336.450738373	0.801676910	HE	0.99971200	157.856
	L513	161.617552542	66.152351274	SIO2	1.56028895	125.624
35	L514	-6835.350709889AS 2851.162473443	0.744366824 8.000000000	HE SIO2	0.99971200 1.56028895	121.362 118.726
55	1314	173.208226906	18.750820117	HE	0.99971200	97.559
	L515	318.351302869	8.000000000	SIO2	1.56028895	95.703
		214.643166184	38.151364608	HE	0.99971200	89.760
4.0	L516	-261.549915460	6.000000000	SIO2	1.56028895	88.331 82.116
40	L517	119.510683982AS -126.322271364	66.550546342	HE SIO2	0.99971200 1.56028895	83.464
	шэті	1722.207555551	24.185704173	HE	0.99971200	102.415
	L518	-506.819064828	30.988960270	SIO2	1.56028895	111.113
4 =		-242.042046428	0.70000000	HE	0.99971200	118.861
45	L519	-728.789614455	30.297084361	SIO2 HE	1.56028895 0.99971200	132.704 135.576
	L520	-269.518093553 -1024.754284774	0.700000000 27.306923440	SIO2	1.56028895	147.201
	1320	-361.037355343	0.70000000	HE	0.99971200	149.061
	L521	929.096482269	49.082091976	SIO2	1.56028895	161.109
50		-497.886578908	15.000000000	HE	0.99971200	161.854
	L522	infinite 352.973470359AS	-10.000000000 22.735479730	HE SIO2	0.99971200 1.56028895	158.597 159.957
	11,22	529.864238000	1.119499649	HE	0.99971200	158.688
	L523	422.718681400	57.532074113	SIO2	1.56028895	158.278
55		-733.230538894	37.317449332	HE	0.99971200	156.533
	L524	-261.165349728	15.000000000 18.962883498	SIO2	1.56028895 0.99971200	155.119 156.043
	L525	-292.119447959AS -226.263316842AS	19.009003051	HE SIO2	1.56028895	155.000
	11323	-231.163516914	0.700000000	HE	0.99971200	157.710
60	L526	245.306778718	23.024380018	SIO2	1.56028895	124.547
		403.694577141	0.70000000	HE	0.99971200	121.262
	L527	132.188567375	28.647981266	SIO2	1.56028895 0.99971200	104.696 101.254
	L528	199.679919884 138.967602414	0.700019350 36.537553325	HE SIO2	1.56028895	93.617
65	1720	1194.093826692AS	8.108769689	HE	0.99971200	89.148
- -	L529	infinite	25.923824338	CaF2	1.50143563	82.715
		infinite	5.000000000	L710	0.99998200	63.301
	L530	infinite	25.000000000 10.000000000	CaF2 L710	1.50143563 0.99998200	52.976 34.253
70	L531	infinite infinite	0.000000000	דיידי	0.33330200	13.603
, 0	2001	1111111100	3.0000000			

L710 = Air at 710 Torr

ASPHERIC CONSTANTS

```
Asphere of Lens L501
 5
                0.0000
        K
                7.79889739e-008
        C1
                5.96475035e-013
        C2
        C3
                5.73397945e-017
10
        C4
                5.38600405e-020
        C5
               -2.08145188e-023
        C6
                4.05094979e-027
               -3.79132983e-031
        C7
                0.00000000e+000
        C8
15
                0.0000000e+000
        C9
        Asphere of Lens L504
20
               -1.3308
               -2.46633450e-007
        C1
                1.00446806e-011
        C2
        C3
               -7.00686898e-015
        C4
                9.90840734e-019
25
        C5
               -1.31781718e-022
        C6
                9.28901869e-027
        C7
               -6.52628587e-031
        C8
                0.0000000e+000
                0.00000000e+000
        C9
30
        Asphere of Lens L505
        K
               -1.1513
35
        C1
                8.27765089e-008
                7.00992841e-012
        C2
        С3
               -5.19825762e-015
        C4
               8.12467102e-019
               -8.31805913e-023
        С5
40
        C6
                2.18925711e-027
        C7
                1.11778799e-031
        C8
                0.0000000e+000
                0.00000000e+000
        C9
45
        Asphere of Lens L507
                0.0000
        K
                8.22829380e-008
        C1
50
        C2
               -9.72735758e-012
        C3
                3.85643753e-016
        C4
                1.01114314e-020
        C5
               -3.91221853e-024
        C6
C7
                3.39732781e-028
55
               -1.20135313e-032
        C8
                0.00000000e+000
        C9
                0.0000000e+000
```

60

Asphere of Lens L509

```
0.0000
        K
                4.14637283e-009
        C1
               -2.13253257e-013
 5
        C2
        C3
               -2.08003643e-018
               -7.83152213e-023
        C4
        C5
                5.30015388e-027
               -2.59321154e-033
        С6
10
        C7
               -3.37000758e-036
                0.00000000e+000
        C8
        C9
                0.0000000e+000
```

15 Asphere of Lens L513

```
0.0000
        K
                1.39567662e-008
        C1
        C2
               -2.05760928e-013
20
        C3
               -1.29919990e-017
                1.00302455e-021
        C4
        C5
               -5.58828742e-026
                1.79594589e-030
        С6
        C7
               -2.49374487e-035
                0.00000000e+000
25
        C8
        C9
                0.0000000e+000
```

Asphere of Lens L516

30 0.0000 K -1.82058286e-008 C1 C2 -4.87410470e-012 -5.89919068e-017 C3 -4.04061992e-021 35 C4 C5 -6.60202054e-025 9.31855676e-029 С6 C7 -7.48573635e-033 0.00000000e+000 C8 40 C9 0.0000000e+000

Asphere of Lens L522

```
45
               -0.0071
               1.64455895e-010
        C1
               -7.76483415e-015
        C2
        C3
                8.29256873e-021
50
        C4
               -5.46990406e-025
        C5
                3.42070772e-028
               -8.24545949e-033
        C6
                2.57783363e-037
        C7
                0.0000000e+000
        C8
55
                0.00000000e+000
        C9
```

Asphere of Lens L524

```
0.0000
1.18780021e-010
         K
         C1
                 -1.18823445e-014
 5
         C2
                 -1.80162246e-019
         C3
                 4.08343213e-023
-1.42735407e-027
         C4
         C5
C6
                  2.34804331e-032
                 -3.79018523e-037
10
         C7
         C8
                  0.00000000e+000
                  0.00000000e+000
         C9
```

15 Asphere of Lens L525

```
0.0000
         K
                -2.15560895e-010
         C1
         C2
C3
                 2.44929281e-014
                 1.12359306e-018
20
         C4
                -1.29749910e-023
                -1.00106399e-027
         C5
                1.88165471e-032
-2.01557723e-037
         С6
         C7
25
                 0.00000000e+000
         С8
                 0.0000000e+000
         C9
```

Asphere of Lens L528

	710011	CIC OI DOND DODO
30	_	
	K	0.0000
	C1	2.73896476e-008
	C2	6.17281255e-013
	C3	-1.75474902e-016
35	C4	1.56329449e-020
	C5	-8.82259694e-025
	C6	2.92948124e-029
	C7	-4.01055770e-034
	C8	0.00000000e+000
40	C9	0.00000000e+000

	M1587a	•	נ	ABLE 6		
5	LENSES	RADII	THICKNESSES	GLASSES	REFRACTIVE INDEX AT 157.629nm	1/2 FREE DIAMETER
	. 0	infinite	27.171475840	N2	1.00031429	46.200
		infinite	0.602670797	N2	1.00031429 1.55929035	52.673
10	L601	900.198243311AS -235.121108435	15.151284556 9.531971079	CaF2 N2	1.00031429	53.454 54.049
10	L602	-167.185917779	8.294716452	CaF2	1.55929035	54.178
		-132.673519510	14.020355779	N2	1.00031429	54.901
	L603	-333.194588652	9.893809820	CaF2	1.55929035	53.988 54.132
15	L604	-155.450516203 -73.572316296	15.930502944	N2 CaF2	1.00031429 1.55929035	53.748
13	Loo4	-68.248613899AS	2.881720302	N2	1.00031429	55.167
	L605	-86.993585564AS	5.094651720	CaF2	1.55929035	52.580
	7.606	-238.150965327	5.379130780	N2 CaF2	1.00031429 1.55929035	53.729 53.730
20	L606	-165.613920870 153.417884485	5.094651720 34.150169591	N2	1.00031429	56.762
20	L607	-92.061009990	5.094651720	CaF2	1.55929035	58.081
		8491.086261873AS	19.673523795	N2	1.00031429	74.689
	L608	-407.131300451	30.380807138	CaF2	1.55929035 1.00031429	87.291 91.858
25	L609	-140.620317156 -4831.804853654AS	0.761662684 50.269660218	N2 CaF2	1.55929035	117.436
23	ПООЭ	-192.197373609	1.688916911	N2	1.00031429	121.408
	L610	-367.718684892	21.227715500	CaF2	1.55929035	127.704
	7.61.1	-233.628547894	2.224071019	N2 CaF2	1.00031429 1.55929035	129.305 137.016
30	L611	709.585855080 1238.859445357	28.736922725 9.120684720	N2	1.00031429	137.428
	L612	1205.457051945	49.281218258	CaF2	1.55929035	138.288
		-285.321880705	1.625271224	N2	1.00031429	138.379
	L613	137.549591710 -4380.301012978AS	56.718543740 0.623523902	CaF2 N2	1.55929035	108.652 106.138
35	L614	2663.880214408	6.792868960	CaF2	1.55929035	103.602
00	201.	149.184979730	15.779049257	N2	1.00031429	84.589
	L615	281.093108064	6.792868960	CaF2	1.55929035	83.373
	T C1 C	184.030288413	32.341552355 5.094651720	N2 CaF2	1.00031429 1.55929035	77.968 77.463
40	L616	-222.157416308 101.254238115AS	56.792834221	N2	1.00031429	71.826
	L617	-106.980638018	5.094651720	CaF2	1.55929035	72.237
		1612.305471130	20.581065398	N2	1.00031429	89.760
	L618	-415.596135628 -204.680044631	26.398111993 0.713343960	CaF2 N2	1.55929035 1.00031429	96.803 103.409
45	L619	-646.696622394	25.867340760	CaF2	1.55929035	116.636
	•	-231.917626896	0.766268682	N2	1.00031429	118.569
	L620	-790.657607677	23.400482872 0.721402031	CaF2 N2	1.55929035 1.00031429	128.806 130.074
	L621	-294.872053725 786.625567756	40.932308205	CaF2	1.55929035	141.705
50	2021	-431.247283013	12.736629300	N2	1.00031429	142.089
		infinite	-8.491086200	N2	1.00031429	134.586
	L622	295.022653593AS 449.912291916	20.185109438 0.619840486	CaF2 N2	1.55929035 1.00031429	139.341 137.916
	L623	358.934076212	48.662890509	CaF2	1.55929035	136.936
55	-	-622.662988878	30.955714157	N2	1.00031429	135.288
	L624	-224.404889753	12.736629300	CaF2	1.55929035	134.760
	L625	-251.154571510AS -193.582989843AS	16.079850229 16.510083506	N2 CaF2	1.00031429 1.55929035	134.853 134.101
	D025	-198.077570749	0.880353872	N2	1.00031429	136.109
60	L626	206.241795157	19.927993542	CaF2	1.55929035	101.240
	T 607	338.140581666	0.925956949 24.580089962	N2 CaF2	1.00031429 1.55929035	97.594 85.023
	L627	111.017549581 169.576109839	0.777849447	N2	1.00031429	81.164
	L628	117.982165264	31.161065630	CaF2	1.55929035	75.464
65		921.219058213AS	6.934980174	N2	1.00031429	69.501
	L629	infinite infinite	22.260797322 4.245543100	CaF2 N2	1.55929035 1.00031429	63.637 48.606
	L630	infinite	21.227715500	CaF2	1.55929035	41.032
7.0		infinite	8.491086200	N2	1.00031429	26.698
70		infinite	0.000000000		1.00000000	11.550

Wavelength and refractive index are given referred to Vacuum.

ASPHERIC CONSTANTS

```
Asphere of Lens L601
 5
                0.0000
        K
        C1
                1.28594437e-007
        C2
                8.50731836e-013
        C3
                1.16375620e-016
10
                2.28674275e-019
        C4
        C5
               -1.23202729e-022
                3.32056239e-026
        С6
        C7
               -4.28323389e-030
                0.00000000e+000
        C8
15
                0.0000000e+000
        Asphere of Lens L604
20
               -1.3312
        K
        C1
               -4.03355456e-007
               2.25776586e-011
        C2
        С3
               -2.19259878e-014
        C4
               4.32573397e-018
25
        C5
               -7.92477159e-022
        С6
               7.57618874e-026
        C7
               -7.14962797e-030
        C8
                0.0000000e+000
30
                0.0000000e+000
        C9
        Asphere of Lens L605
35
               -1.1417
        K
                1.33637337e-007
        C1
        C2
                1.56787758e-011
               -1.64362484e-014
        C3
        C4
C5
                3.59793786e-018
40
               -5.11312568e-022
                1.70636633e-026
        C6
        C7
                1.82384731e-030
        C8
                0.0000000e+000
                0.00000000e+000
        C9
45
        Asphere of Lens L607
                0.0000
50
                1.34745120e-007
        C1
        C2
               -2.19807543e-011
        C3
                1.20275881e-015
        C4
                4.39597377e-020
               -2.37132819e-023
        C5
55
        C6
                2.87510939e-027
        C7
               -1.42065162e-031
        C8
                0.0000000e+000
        C9
               0.0000000e+000
```

60

i

į

Asphere of Lens L609 0.0000 6.85760526e-009 C1 5 C2 -4.84524868e-013 -6.28751350e-018 C3 C4 -3.72607209e-022 C5 3.25276841e-026 -4.05509974e-033 C6 10 C7 -3.98843079e-035 0.0000000e+000 . C8 C9 0.0000000e+000 Asphere of Lens L613 15 0.0000 2.24737416e-008 C1 C2 -4.45043770e-013 20 C3 -4.10272049e-017 4.31632628e-021 C4 C5 -3.27538237e-025 C6 C7 1.44053025e-029 -2.76858490e-034 0.00000000e+000 25 C8 0.0000000e+000 C9 Asphere of Lens L616 30 0.0000 C1 -2.83553693e-008 -1.12122261e-011 C2 C3 -2.05192812e-016 35 -1.55525080e-020 C5 -4.77093112e-024 8.39331135e-028 C6 -8.97313681e-032 C7 0.0000000e+000 C8 0.0000000e+000 40 C9 Asphere of Lens L622 45 0.0421 K C1 C2 7.07310826e-010 -2.00157185e-014 C3 -9.33825109e-020 C4 C5

1.27125854e-024

1.94008709e-027

0.0000000e+000 0.00000000e+000

-6.11989858e-032 2.92367322e-036

60

50

55

С6

C8

į

Asphere of Lens L624

```
0.0000
                 3.02835805e-010
         C1
         C2
C3
 5
                -2.40484062e-014
                -3.22339189e-019
         C4
C5
                 1.64516979e-022
               -8.51268614e-027
                2.09276792e-031
-4.74605669e-036
         С6
10
         C7
         С8
                 0.00000000e+000
                 0.00000000e+000
         C9
15
         Asphere of Lens L625
                 0.0000
                -3.99248993e-010
5.79276562e-014
         C1
         C2
         C3
C4
20
                 3.53241478e-018
                -4.57872308e-023
         C5
C6
C7
                -6.29695208e-027
                 1.57844931e-031
                -2.19266130e-036
25
         C8
                 0.00000000e+000
         C9
                 0.00000000e+000
         Asphere of Lens L628
30
                 0.0000
4.40737732e-008
         K
         C1
         C2
C3
                 1.52385268e-012
                -5.44510329e-016
                 6.32549789e-020
35
         C4
         C5
                -4.58358203e-024
         С6
                 1.92230388e-028
                -3.11311258e-033
         C7
                 0.0000000e+000
         C8
40
                 0.0000000e+000
```

C9

ł

	M1630a		TABLE 7			
5 .	LENSES	RADII	THICKNESSES	GLASSES	REFRACTIVE INDEX AT 193.304nm	1/2 FREE DIAMETER
J ,	0	infinite infinite	32.989007360 2.050119724	L710 L710	0.99998200 0.99998200	56.080 63.700
	L701	1292.577885893AS -320.912994055	17.083079028 6.356545111	SIO2 HE	1.56028895 0.99971200	64.846 65.549
10	L702	-222.076099367 -173.186007383	9.996105426 14.918724377	SIO2 HE	1.56028895 0.99971200	65.651 66.515
	. L 703	-465.289541055 -190.575077708	12.849128877 24.825544140	SIO2 HE	1.56028895 0.99971200	65.892 66.089
15	L704	-88.003869940 -80.342454766AS	9.278158320 3.110021891	SIO2 HE	1.56028895 0.99971200	64.773 66.529
10	L705	-104.692897461AS 687.929853355	6.185438880 8.052826671	SIO2 HE	1.56028895 0.99971200	63.593 65.986
	L706	-4211.039282601 191.063416206	6.185438880 42.178241931	SIO2 HE	1.56028895	66.833 69.389
20	L707	-115.620656932 10919.608812170AS	6.185438880 23.544585745	SIO2 HE	1.56028895	71.596 91.649
	L708	-462.245785462 -166.710127403	36.857934334 0.922637637	SIO2 HE	1.56028895	105.419 110.921
25	L709	-2362.175430424AS -209.701792909	61.803635845 1.020714627	SIO2 HE	1.56028895	140.744 144.651
20	L710	-389.602200799 -307.008965979	25.772662000 0.721634536	SIO2 HE	1.56028895	151.693 156.014
	L711	629.229001456 -859.369679090	46.511934207 24.151857437	SIO2 HE	1.56028895	167.044 167.077
30	L712	-877.205712077 -357.572652646	30.754166393 4.953800031	SIO2 HE	1.56028895	164.429 164.440
	L713	168.111512940 infinite	68.382989629 0.000000000	SIO2 HE	1.56028895	129.450 125.021
35	L714	infinite 149.672876100AS	8.247251840 23.428435757	SIO2 HE	1.56028895	125.021 98.364
	L715	167.316121704 167.316121704	0.000000000 46.368104843	SIO2 HE	1.56028895 0.99971200	92.117 92.117
	L716	-276.014955570 122.032488640AS	6.185438880 68.057116286	SIO2 HE	1.56028895 0.99971200	90.583
40	L717	-131.026926440 1443.442379280	6.185438880 24.936997937	SIO2 HE	1.56028895	85.665 105.177
	L718	-570.720178737 -251.966065824	31.985422479 0.742435413	SIO2 HE	1.56028895 0.99971200	114.725 122.318
45	L719	-792.022948046 -284.699402375	31.395737994 0.732480789	SIO2 HE	1.56028895 0.99971200	136.726 139.887
	L720	-1399.942577177 -405.074653331	28.528105133 0.721634536	SIO2 HE	1.56028895 0.99971200	152.678 154.617
	L721	969.181518515 -498.113891823	52.876050649 15.463597200	SIO2 HE	1.56028895 0.99971200	166.429 167.335
50	L722	infinite 369.912797108AS	-10.309064800 22.457291722	HE SIO2	0.99971200 1.56028895	163.661 164.702
	L723	546.240476474 435.783427872	0.759815621 59.712335014	HE SIO2	0.99971200 1.56028895	163.421 163.043
55	L724	-757.138748183 -268.662949002	38.604277894 15.463597200	HE SIO2	0.99971200 1.56028895	161.173 159.696
	L725	-299.983850179AS -232.880394011AS	20.130367113 19.892839003	HE SIO2	0.99971200 1.56028895	160.684 159.263
	L726	-238.077482924 238.488298578	0.721634536 23.631362631	HE SIO2	0.99971200 1.56028895	162.099 127.621
60	L727	378.766536032 136.105324171	0.721634536 29.608483074	HE SIO2	0.99971200 1.56028895	124.291 108.001
	L728	205.107042559 143.303538802	0.785819222 37.757018324	HE SIO2	0.99971200 1.56028895	104.429 96.584
65	L729	1247.979376087AS infinite	8.449273703 26.717587971	HE CaF2	0.99971200 1.50143563	91.946 85.145
	L730	infinite infinite	5.154532400 25.772662000	L710 CaF2	0.99998200 1.50143563	65.152 54.537
70	L731	infinite infinite	10.309064800 0.000000000	L710	0.99998200	35.251 14.020
70						

L710 = Air at 710 Torr

ASPHERIC CONSTANTS

```
Asphere of Lens L701
 5
                0.0000
                6.70377274e-008
        C1
                6.84099199e-013
        C2
                1.05733405e-016
        С3
10
        C4
                3.37349453e-020
        C5
               -7.15705547e-024
        C6
                5.09786203e-028
        C7
               -6.46970874e-033
        C8
                0.0000000e+000
15
                0.0000000e+000
        C9
        Asphere of Lens L704
               -1.3610
-2.19369509e-007
20
        K
        C1
C2
                7.67800088e-012
        C3
               -6.07796875e-015
        C4
               7.90645856e-019
25
        C5
               -9.11112500e-023
                5.68885354e-027
        C6
        C7
               -4.26463481e-031
                0.00000000e+000
        C8
        C9
                0.0000000e+000
30
        Asphere of Lens L705
               -1.2060
                8.09444891e-008
35
        C1
        C2
                4.80824558e-012
               -4.20373603e-015
        C3
                5.60648644e-019
        C4
               -4.51520330e-023
        C5
40
                1.54505188e-027
        C6
        C7
                5.00741161e-032
                0.0000000e+000
        C8
        C9
                0.0000000e+000
45
        Asphere of Lens L707
                0.0000
                7.63455153e-008
        C1
               -8.56292259e-012
50
        C2
        СЗ
                3.01669569e-016
        C4
                9.61573017e-021
        C5
               -2.67588216e-024
        C6
                2.05728418e-028
55
               -6.45595651e-033
        C7
                0.0000000e+000
        C8
        C9
                0.00000000e+000
```

į

Asphere of Lens L709 0.0000 3.23214391e-009 C1 5 C2 -1.67326019e-013 C3 -4.26702152e-019 C4 -5.66712884e-023 C5 -1.24256704e-028 1.64124726e-031 -4.41379927e-036 C6 10 C7 . C8 0.0000000e+000 0.0000000e+000 C9 15 Asphere of Lens L714

```
0.0000
         C1
                 -1.63753926e-009
         C2
                  2.54837542e-013
         C3
C4
20
                  8.79430055e-018
                  9.19127213e-022
         C5
C6
                 -7.01950932e-026
1.17918461e-029
                 -8.74308763e-034
         C7
25
                  0.00000000e+000
         C8
         C9
                  0.00000000e+000
```

Asphere of Lens L716

```
30
         K
                 0.0000
                 -1.54725313e-008
         C1
         C2
C3
                 -4.26275476e-012
                 -1.01484275e-016
                 8.37843426e-022
-1.29202167e-024
35
         C4
         C5
                 1.71820044e-028
         C6
         C7
                 -1.05335330e-032
                  0.00000000e+000
         C8
                  0.00000000e+000
40
         C9
```

Asphere of Lens L722

```
45
                -0.0331
         C1
                 2.56540619e-011
                -6.98183157e-015
         C2
         C3
C4
                 7.92101859e-021
                -5.85807569e-025
50
         C5
                 2.42288782e-028
         C6
                -5.79467899e-033
                 1.63689132e-037
0.00000000e+000
         C7
         C8
         C9
                 0.00000000e+000
55
```

60

ţ

ļ

Asphere of Lens L724

```
0.0000
                8.90820785e-011
        C1
               -1.06772804e-014
 5
        C2
               -1.68281363e-019
        СЗ
        C4
                3.04828021e-023
               -1.01185483e-027
        C5
                1.61617917e-032
        С6
        C7
C8
10
                -2.40582729e-037
                0.0000000e+000
        C9
                0.0000000e+000
15
        Asphere of Lens L725
                0.0000
               -1.97757640e-010
        C1
        C2
C3
                2.05110497e-014
                8.96864099e-019
20
        C4
C5
               -9.85543257e-024
               -7.12993590e-028
        C6
C7
               1.30146671e-032
-1.36102788e-037
        C8
                0.0000000e+000
25
                0.0000000e+000
        C9
        Asphere of Lens L728
30
                0.0000
         K
        C1
C2
                2.55097376e-008
                5.47467657e-013
        C3
C4
                -1.43568713e-016
35
                1.17677649e-020
         C5
                -5.95320448e-025
                1.71763367e-029
         С6
         C7
                -1.94556007e-034
                0.00000000e+000
         C8
40
         C9
                0.00000000e+000
```

TABLE 8

			-			
5	L61					
			MUT OVEN DOCUME	CI DOCEO	REFRACTIVE INDEX	1/2 FREE
	LENSES	RADII	THICKNESSES	GLASSES	AT 157.13 nm	DIAMETER
	0	infinite	34.000000000		1.0000000	82.150
10	•	infinite	0.100000000		1.0000000	87.654
	L801	276.724757380	40.000000000	CaF2	1.55970990	90.112
		1413.944109416AS	95.000000000		1.0000000	89.442
	SP1	infinite	11.000000000		1.0000000	90.034
		infinite	433.237005445		1.0000000	90.104
15	L802	-195.924336384	17.295305525	CaF2	1.55970990	92.746
		-467.658808527	40.841112468		1.0000000	98.732
	L803	-241.385736441	15.977235467	CaF2	1.55970990	105.512
	CD2	-857.211727400AS	21.649331094		1.00000000	118.786
20	SP2	infinite 253.074839896	0.000010000 21.649331094		1.0000000 1.0000000	139.325 119.350
	L803'	857.211727400AS	15.977235467	CaF2	1.55970990	118.986
	1003	241.385736441	40.841112468	Carz	1.0000000	108.546
	L802'	467.658808527	17.295305525	CaF2	1.55970990	102.615
	2002	195.924336384	419.981357165		1.0000000	95.689
25	SP3	infinite	6.255658280		1.0000000	76.370
		infinite	42.609155219		1.0000000	76.064
	Z1	infinite	67.449547115		1.0000000	73.981
	L804	432.544479547	37.784311058	CaF2	1.55970990	90.274
30		-522.188532471	113.756133662		1.00000000	92.507
	L805	-263.167605725	33.768525968	CaF2	1.55970990	100.053
	L806	-291.940616829AS	14.536591424	C- E2	1.00000000	106.516
	. T900	589.642961222AS -5539.698828792	20.449887046 443.944079795	CaF2	1.55970990	110.482 110.523
35	L807	221.780582003	9.000000000	CaF2	1.55970990	108.311
	1007	153.071443064	22.790060084	Curz	1.0000000	104.062
	L808	309.446967518	38.542735318	CaF2	1.55970990	104.062
		-2660.227900099	0.100022286		1.0000000	104.098
	L809	23655.354584194	12.899131182	CaF2	1.55970990	104.054
		-1473.189213176	9.318886362		1.0000000	103.931
40	L810	-652.136459374	16.359499814	CaF2	1.55970990	103.644
		-446.489459129	0.100000000		1.0000000	103.877
	L811	174.593507050	25.900313780	CaF2	1.55970990	99.267
		392.239615259AS infinite	14.064505431 2.045119392		1.00000000	96.610 96.552
45	L812	7497.306838492	16.759051656	CaF2	1.00000000 1.55970990	96.383
40	1012	318.210831711	8.891640764	Carz	1.00000000	94.998
•	L813	428.724465129	41.295806263	CaF2	1.55970990	95.548
		3290.097860119AS	7.377912006		1.00000000	95.040
50	L814	721.012739719	33.927118706	CaF2	1.55970990	95.443
		-272.650872353	6.871397517		1.0000000	95.207
	L815	131.257556743	38.826450065	CaF2	1.55970990	81.345
		632.112566477AS	4.409527396		1.0000000	74.847
55	L816	342.127616157AS	37.346293509	CaF2	1.55970990	70.394
	T 017	449.261078744	4.859754445	0-70	1.00000000	54.895
	L817	144.034814702 -751.263321098AS	34.792179308 11.999872684	CaF2	1.55970990 1.0000000	48.040
	0'	infinite	0.000127776		1.0000000	33.475 16.430
	•	*******	3.00012///0		1.0000000	10.100

ASPHERIC CONSTANTS

```
Asphere of Lens L801
 5
                0.0000
                4.90231706e-009
        C1
                3.08634889e-014
        C2
        C3
C4
               -9.53005325e-019
               -6.06316417e-024
10
        C5
                6.11462814e-028
               -8.64346302e-032
        С6
                0.00000000e+000
        С7
                0.0000000e+000
        C8
15
        C9
                0.0000000e+000
        Asphere of Lens L803
                0.0000
20
        C1
               -5.33460884e-009
        C2
C3
                9.73867225e-014
               -3.28422058e-018
        C4
C5
                1.50550421e-022
25
                0.0000000e+000
        C6
C7
                0.00000000e+000
                0.0000000e+000
        C8
                0.00000000e+000
                0.00000000e+000
        C9
30
        Asphere of Lens L803'
                0.0000
                5.33460884e-009
35
        C1
        C2
               -9.73867225e-014
        СЗ
                3.28422058e-018
        C4
               -1.50550421e-022
                0.0000000e+000
        C5
        C6
C7
40
                0.0000000e+000
                0.0000000e+000
                0.0000000e+000
        C8
                0.0000000e+000
        C9
45
        Asphere of Lens L805
        K
C1
                0.0000
                2.42569449e-009
        C2
C3
50
                3.96137865e-014
               -2.47855149e-018
                7.95092779e-023
        C4
                0.0000000e+000
        C5
        С6
                0.0000000e+000
                0.00000000e+000
55
        C7
        C8
                0.0000000e+000
        C9
                0.0000000e+000
```

60

45

Asphere of Lens L806

```
0.0000
-6.74111232e-009
         K
         C1
 5
         C2
                -2.57289693e-014
         C3
                -2.81309020e-018
                 6.70057831e-023
         C4
                5.06272344e-028
-4.81282974e-032
         C5
         C6
10
         C7
                 0.0000000e+000
                 0.0000000e+000
         C8
         C9
                 0.0000000e+000
15
         Asphere of Lens L811
                 0.0000
         C1
                 2.28889624e-008
         C2
                -1.88390559e-014
20
         СЗ
                 2.86010656e-017
         C4
C5
                -3.18575336e-021
                 1.45886017e-025
         C6
C7
                -1.08492931e-029
                 0.00000000e+000
25
         C8
                 0.0000000e+000
         C9
                 0.0000000e+000
         Asphere of Lens L813
30
                 0.0000
         C1
                 3.40212872e-008
         C2
                -1.08008877e-012
                4.33814531e-017
-7.40125614e-021
         СЗ
35
         C4
         C5
                 5.66856812e-025
                 0.0000000e+000
         C6
                 0.00000000e+000
         C7
```

Asphere of Lens L815

0.0000000e+000

0.0000000e+000

45 0.0000 K -3.15395039e-008 C1 C2 C3 4.30010133e-012 3.11663337e-016 C4 C5 -3.64089769e-020 50 1.06073268e-024 0.00000000e+000 С6 C7 0.0000000e+000 C8 0.0000000e+000 0.00000000e+000 55

C8

C9

40

•

Asphere of Lens L816

```
0.0000
-2.16574623e-008
-6.67182801e-013
           K
           C1
C2
C3
 5
                     4.46519932e-016
           C4
C5
C6
C7
                    -3.71571535e-020
0.00000000e+000
                     0.0000000e+000
10
                     0.00000000e+000
           C8
                     0.00000000e+000
           C9
                     0.0000000e+000
15
           Asphere of Lens L817
                     0.0000
           C1
                     2.15121397e-008
           C2
C3
                   -1.65301726e-011
20
                   -5.03883747e-015
           C4
C5
                   1.03441815e-017
-6.29122773e-021
1.44097714e-024
           C6
C7
                     0.00000000e+000
```

0.00000000e+000 0.0000000e+000

C8

25