Red Wines - upper

Katie, Rita, and Chang 2023-11-01

Scatterplot Matrix

corr codes

Scatterplot Matrix

Scatterplot Matrix of Red Wines

Create Binary Dependent Variable

```
red$highquality = factor((red$quality >= 6))
red$highquality <- as.integer(as.logical(red$highquality))</pre>
```

Create Test and Training Data

```
library("caTools")
set.seed = 100
split = sample.split(red$highquality, SplitRatio = 0.6)
train = subset(red, split == TRUE)
test = subset(red, split == FALSE)
print(dim(train)); print(dim(test))
```

```
## [1] 959 14
```

```
## [1] 640 14
```

Descriptive Statistics

Loading required package: lattice

```
library("Rmisc")
```

```
## Loading required package: plyr
```

```
sum = summary(red)
sum
```

```
##
           id
                       fix_acidity
                                         vol_acidity
                                                            citric_acid
##
           :
                1.0
                      Min.
    Min.
                              : 4.60
                                        Min.
                                                :0.1200
                                                           Min.
                                                                  :0.000
##
    1st Qu.: 400.5
                      1st Qu.: 7.10
                                        1st Qu.:0.3900
                                                           1st Qu.:0.090
##
    Median : 800.0
                      Median : 7.90
                                        Median :0.5200
                                                           Median :0.260
            : 800.0
                              : 8.32
##
    Mean
                      Mean
                                        Mean
                                                :0.5284
                                                           Mean
                                                                  :0.271
##
    3rd Qu.:1199.5
                      3rd Qu.: 9.20
                                        3rd Qu.: 0.6400
                                                           3rd Qu.:0.420
##
    Max.
            :1599.0
                      Max.
                              :15.90
                                                :1.5800
                                                                  :1.000
##
                         chlorides
                                           free sulfur
                                                             total sulfur
        sugar
##
    Min.
            : 0.900
                      Min.
                              :0.01000
                                          Min.
                                                  : 1.00
                                                           Min.
                                                                   : 6.00
##
    1st Qu.: 1.900
                      1st Qu.:0.07000
                                          1st Qu.: 7.00
                                                            1st Qu.: 22.00
    Median : 2.200
##
                      Median :0.08000
                                          Median :14.00
                                                            Median : 38.00
##
    Mean
            : 2.539
                      Mean
                              :0.08787
                                          Mean
                                                  :15.87
                                                            Mean
                                                                   : 46.47
##
    3rd Qu.: 2.600
                      3rd Qu.:0.09000
                                          3rd Qu.:21.00
                                                            3rd Qu.: 62.00
##
    Max.
            :15.500
                              :0.61000
                                          Max.
                                                  :72.00
                                                                   :289.00
##
       density
                             рΗ
                                          sulphates
                                                              alcohol
##
    Min.
            :0.9900
                      Min.
                              :2.740
                                        Min.
                                                :0.3300
                                                           Min.
                                                                  : 8.40
##
    1st Ou.:1.0000
                      1st Ou.:3.210
                                        1st Ou.:0.5500
                                                           1st Ou.: 9.50
    Median :1.0000
##
                      Median :3.310
                                        Median :0.6200
                                                           Median :10.20
##
    Mean
            :0.9985
                      Mean
                              :3.311
                                        Mean
                                                :0.6581
                                                           Mean
                                                                  :10.42
##
    3rd Qu.:1.0000
                      3rd Qu.:3.400
                                        3rd Qu.: 0.7300
                                                           3rd Qu.:11.10
##
    Max.
            :1.0000
                      Max.
                              :4.010
                                        Max.
                                                :2.0000
                                                           Max.
                                                                  :14.90
##
       quality
                      highquality
                             :0.0000
##
    Min.
            :3.000
                     Min.
    1st Qu.:5.000
##
                      1st Qu.:0.0000
    Median :6.000
                     Median :1.0000
##
    Mean
            :5.636
                     Mean
                             :0.5347
##
    3rd Qu.:6.000
                     3rd Qu.:1.0000
    Max.
            :8.000
                     Max.
                             :1.0000
```

Plot high quality vs low quality distribution

hist (red\$highquality)

Histogram of red\$highquality

Random Forest

```
library("randomForest")

## randomForest 4.7-1.1

## Type rfNews() to see new features/changes/bug fixes.

##
## Attaching package: 'randomForest'

## The following object is masked from 'package:ggplot2':
##
## margin
```

```
library("caret")
library("e1071")
library("rpart")

rf <- randomForest(highquality ~ . - quality, data = train, mtry = 4, importance = TRUE,
ntree = 50, na.action = na.omit)</pre>
```

Warning in randomForest.default(m, y, ...): The response has five or fewer
unique values. Are you sure you want to do regression?

```
print(rf)
```

```
##
## Call:
## randomForest(formula = highquality ~ . - quality, data = train, mtry = 4, impor
tance = TRUE, ntree = 50, na.action = na.omit)
## Type of random forest: regression
## No. of variables tried at each split: 4
##
## Mean of squared residuals: 0.1566168
## % Var explained: 37.05
```

```
varImpPlot(rf)
```

rf


```
# predictions on test set
set.seed(100)
predictTest = predict(rf, newdata = test, type = "response")
# confusion matrix on test set
table(test$highquality, predictTest >= 0.5)
```

```
##
## FALSE TRUE
## 0 231 67
## 1 65 277
```

```
520/nrow(test)
```

```
## [1] 0.8125
```

```
# the model is accurate 81.3 percent of the time
```

Random Forest Model

```
# Logit
randomforestmodlogit <- glm(highquality ~ alcohol + sulphates + total_sulfur + vol_acidi
ty, data = red, family = "binomial"(link = "logit"))
summary(randomforestmodlogit)</pre>
```

```
##
## Call:
## glm(formula = highquality ~ alcohol + sulphates + total sulfur +
       vol acidity, family = binomial(link = "logit"), data = red)
##
## Deviance Residuals:
##
      Min
                10
                     Median
                                  30
                                          Max
## -3.1638 -0.8675
                      0.3076
                              0.8629
                                        2.3262
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.588813
                           0.795118 -10.802 < 2e-16 ***
## alcohol
                0.927362
                           0.069268 13.388 < 2e-16 ***
## sulphates
                2.059047
                           0.365976 5.626 1.84e-08 ***
## total sulfur -0.011976
                           0.001924 -6.225 4.83e-10 ***
## vol_acidity -3.083277
                           0.364832 -8.451 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 2209.0 on 1598 degrees of freedom
## Residual deviance: 1684.2 on 1594 degrees of freedom
## AIC: 1694.2
##
## Number of Fisher Scoring iterations: 4
```

```
# Cloglog
randomforestmodcloglog <- glm(highquality ~ alcohol + sulphates + total_sulfur + vol_aci
dity, data = red, family = "binomial"(link = "cloglog"))
summary(randomforestmodcloglog)</pre>
```

Red Wines - upper

```
##
## Call:
## glm(formula = highquality ~ alcohol + sulphates + total_sulfur +
##
       vol_acidity, family = binomial(link = "cloglog"), data = red)
##
## Deviance Residuals:
##
                 10
       Min
                      Median
                                   3Q
                                           Max
## -4.5006
                      0.2185
           -0.9020
                               0.9295
                                        2.0506
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.958517
                            0.478252 -10.368 < 2e-16 ***
## alcohol
                0.505807
                            0.038543 13.123 < 2e-16 ***
## sulphates
                 1.324184
                            0.221318 5.983 2.19e-09 ***
## total sulfur -0.009109
                            0.001364 -6.679 2.41e-11 ***
## vol_acidity -2.022997
                            0.238813 - 8.471 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 2209 on 1598 degrees of freedom
## Residual deviance: 1701 on 1594 degrees of freedom
## AIC: 1711
## Number of Fisher Scoring iterations: 7
```

The logit model performed better with a lower AIC value

Cart

```
library("caret")
library("e1071")
library("rpart")
library("rpart.plot")

cartmodel = rpart(highquality ~ . - quality, data = train)
print(cartmodel)
```

```
## n= 959
##
## node), split, n, deviance, yval
##
         * denotes terminal node
##
##
   1) root 959 238.579800 0.5349322
##
      2) alcohol< 10.525 593 138.381100 0.3709949
##
        4) sulphates< 0.535 145 17.958620 0.1448276 *
##
        5) sulphates>=0.535 448 110.604900 0.4441964
##
         10) total sulfur>=82 75 10.080000 0.1600000 *
         11) total_sulfur< 82 373 93.249330 0.5013405
##
           22) vol_acidity>=0.315 339 84.289090 0.4631268
##
##
             44) alcohol< 9.85 193 45.139900 0.3730570 *
##
             45) alcohol>=9.85 146 35.513700 0.5821918
##
               90) pH>=3.425 33
                                  6.545455 0.2727273 *
##
               91) pH< 3.425 113 24.884960 0.6725664 *
##
           23) vol acidity< 0.315 34
                                       3.529412 0.8823529 *
##
      3) alcohol>=10.525 366 58.439890 0.8005464
        6) vol acidity>=0.845 19
                                   3.157895 0.2105263 *
##
##
        7) vol_acidity< 0.845 347 48.305480 0.8328530
         14) sulphates< 0.585 87 19.333330 0.6666667
##
##
           28) vol_acidity>=0.385 60 14.850000 0.5500000 *
           29) vol acidity< 0.385 27
##
                                       1.851852 0.9259259 *
##
         15) sulphates>=0.585 260 25.765380 0.8884615 *
```

```
prp(cartmodel)
```



```
# predictions on test set
set.seed(100)
predictTest = predict(cartmodel, newdata = test, type = "matrix")
# confusion matrix on test set
table(test$highquality, predictTest >= 0.5)
```

```
##
## FALSE TRUE
## 0 223 75
## 1 93 249
```

Cart Model

```
# Logit
cartmodlogit <- glm(highquality ~ alcohol + sulphates + total_sulfur + fix_acidity, data
= red, family = "binomial"(link = "logit"))
summary(cartmodlogit)</pre>
```

```
##
## Call:
## glm(formula = highquality ~ alcohol + sulphates + total sulfur +
       fix_acidity, family = binomial(link = "logit"), data = red)
##
## Deviance Residuals:
##
      Min
                10
                     Median
                                  3Q
                                          Max
## -3.3737 -0.9154
                     0.3562
                              0.8762
                                       2.0206
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -12.172146
                           0.828396 -14.694 < 2e-16 ***
## alcohol
                 0.989178
                           0.068276 14.488 < 2e-16 ***
## sulphates
                 2.587844 0.370028 6.994 2.68e-12 ***
## total sulfur -0.011171 0.001895 -5.895 3.75e-09 ***
## fix_acidity
                 0.109461 0.035511 3.082 0.00205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 2209.0 on 1598 degrees of freedom
## Residual deviance: 1752.5 on 1594 degrees of freedom
## AIC: 1762.5
##
## Number of Fisher Scoring iterations: 4
```

```
# Cloglog
cartmodcloglog <- glm(highquality ~ alcohol + sulphates + total_sulfur + fix_acidity, da
ta = red, family = "binomial"(link = "cloglog"))
summary(cartmodcloglog)</pre>
```

Red Wines - upper

```
##
## Call:
## glm(formula = highquality ~ alcohol + sulphates + total sulfur +
      fix_acidity, family = binomial(link = "cloglog"), data = red)
##
## Deviance Residuals:
      Min
               10
                    Median
                                       Max
## -4.7058 -0.9408
                    0.3075
                            0.9490
                                     1.9387
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.835907
                         0.481268 -14.204 < 2e-16 ***
## alcohol
               0.542953
                         0.037720 14.394 < 2e-16 ***
## sulphates
               1.639060
                         0.217233 7.545 4.52e-14 ***
0.199
## fix_acidity 0.027351
                         0.021284 1.285
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 2209.0 on 1598
                                   degrees of freedom
## Residual deviance: 1777.5 on 1594
                                   degrees of freedom
## AIC: 1787.5
## Number of Fisher Scoring iterations: 18
```

The logit model performed better with the lower AIC value

Compare best logit model with AIC

```
##
## Attaching package: 'AICcmodavg'

## The following object is masked from 'package:randomForest':
##
## importance

models <- list(randomforestmodlogit, cartmodlogit)
mod.names <- c('RandomForest', 'Cart')
aictab(cand.set = models, modnames = mod.names)</pre>
```

```
##
## Model selection based on AICc:
##
## K AICc Delta_AICc AICcWt Cum.Wt LL
## RandomForest 5 1694.21 0.00 1 1 -842.09
## Cart 5 1762.56 68.35 0 1 -876.26
```

```
# The random forest logit model performed the best
```

Compare best model with BIC

```
library("flexmix")
BIC(randomforestmodlogit)

## [1] 1721.058

BIC(randomforestmodcloglog)

## [1] 1737.845

BIC(cartmodlogit)

## [1] 1789.404

BIC(cartmodcloglog)

## [1] 1814.418

# The random forest logit model performed the best
```

Confusion matrix for random forest logit model

```
confusionred = predict(randomforestmodlogit, newdata = red, type = "response")
# confusion matrix on test set
table(red$highquality, confusionred >= 0.5)
```

```
##
## FALSE TRUE
## 0 548 196
## 1 216 639
```

Predictions for random forest logit model

```
pred_test <- predict(randomforestmodlogit, test, type = "response")
pred_test</pre>
```

##	1	4	6	8	9	13	14
##	_	0.52789064	_	_	0.35226650	0.27778694	0.69723806
##	16	21	24	31	37	38	40
##	0.13867752	0.45581006	0.25095181	0.23338984	0.65305951	0.59357547	0.60541307
##	43	44	48	49	50	60	61
##	0.78970651	0.75462869	0.51951414	0.43019840	0.27520137	0.37446288	0.35540196
##	64	65	66	69	72	76	78
##	0.22177359	0.48498736	0.48498736	0.76772166	0.11856745	0.67706290	0.41857071
##	81	87	91	92	94	96	98
##						0.81609562	0.36239110
##	99	100	103	106	109	114	116
##						0.56940622	
##	121	125	126	127	129	130	132
##	134	0.17454268 135	137	138	142	0.47573192	152
##	_	0.13831261					0.86018228
##	155	156	158	160	161	166	167
##					_	0.16875609	
##	173	174	179	181	183	185	189
##				_		0.19399307	
##	190	196	202	207	213	214	215
##	0.13218057	0.11752977	0.32718865	0.85218494	0.67118625	0.29462991	0.30759231
##	217	220	221	223	226	228	230
##	0.56377995	0.12986042	0.40137970	0.36725609	0.56522890	0.26752645	0.64457164
##	231	233	234	237	238	241	247
##	0.77766942	0.47994817	0.64457164	0.19063712	0.20849103	0.39273703	0.19535300
##	252	254	255	257	258	260	267
##	0.44429231	0.11931143	0.44429231	0.50388022	0.18145879	0.80917975	0.19291723
##	268	272	274	278	282	284	288
##		0.87483178					0.63094835
##	289	292	293	294	297	299	300
##	0.69463023					0.42029514	
	301		307			_	319
##		325				0.13631050	332
						0.94054119	
	338		341				346
						0.68982583	
##		348					359
##	0.84745884					0.81776585	0.76935573
##	361	364	369	372	373	377	387
##	0.17383851	0.74339678	0.37745429	0.55754674	0.87743922	0.87515687	0.31578174
##	390	391	392	394	400	401	404
##	0.59089106	0.80025092	0.62763464	0.09608587	0.16572036	0.11072664	0.52614838
##	411	413	415	417	419	421	424
		0.13582974	0.16976587	0.86998145	0.77020269	0.79052736	0.91967155
##		430				435	437
						0.62568563	
	439		445		451		454
						0.45914078	
##						472	
##	0.22920186	U.82420951	U.29995555	U.55427468	U./4550780	0.76084070	U.68760803

	,					11		
	##	475	480	485	486	492	494	496
	##	0.69215031	0.43048988	0.97215159	0.35050201	0.97829349	0.64444930	0.84287574
	##	499	504	505	509	510	512	514
	##	0.84287574	0.92902168	0.92990496	0.40270830	0.87805407	0.40270830	0.87663195
	##	515	518	519	520	522	524	525
		0.87663195		0.93281411	0.69166380	0.35179506	0.15801090	0.23574293
	##	527	529	531	540	541	542	543
	##	0.69166380	0.28289255	0.85077943	0.79067776	0.33434428	0.81658345	0.34240899
	##	544	546	547	550	551	554	557
	##						0.26817772	
	##	561	565	566	567	568	569	570
							0.76484762	
	##	571	572	573	574	579	586	588
							0.41223315	
	##	590	594	596	601	602	614	615
							0.61614952	
	##	619	621	623	624	629	631	632
							0.31752796	
	##	634	642	644	645	649	653	656
	##						0.99329501	
	##	657	659	660	666	668	670	677
		678	680				0.51847411	
	##			681	682	683	684	690
		692				700	0.61274001 701	
	##		694	696	697		0.09555064	707
	##	710	711	712	716	717	721	726
							0.31642036	
	##	729	734	735	736	737	742	746
	##						0.12964712	
	##	750	751	754	755	756	757	761
							0.33804274	
	##					770	773	774
							0.09786165	
	##	776	777					790
	##	0.16206695	0.32070205				0.37973849	0.09437875
	##		794		796			802
	##	0.42161900	0.63971010	0.95029362	0.45940264	0.41405130	0.66715805	0.42345371
	##	807	808	809	815	818	820	821
	##	0.97273626	0.97678970	0.48396705	0.84554487	0.93891093	0.21151380	0.32105800
	##	822	831	833	836	838	839	842
	##	0.98401461	0.60268443	0.60619390	0.16263773	0.73172430	0.90163251	0.46356092
	##	843	849	861	864	866	867	869
	##	0.65608836	0.38077515	0.16845476	0.19469921	0.18470531	0.85828874	0.81336010
	##	870	874	875	877	879	882	883
	##	0.59381839	0.89396556	0.91690605	0.74967371	0.27035098	0.66426561	0.94676764
	##	884	886	887	888	889	890	894
	##	0.17504411	0.44881228	0.39943319	0.87920584	0.60509698	0.07413691	0.18472125
	##	906	907	913	917	918	919	920
	##	0.15063496	0.61655717	0.92326068	0.47643991	0.57254719	0.73857291	0.84865159
	##			934			941	
	##	0.73857291	0.85851776	0.37796683	0.61571145	0.96015192	0.95924086	0.39208642
- 1								

., 25, 0	.13 1 141				rea wines apper		
##	949	952	956	960	962	964	965
##	0.96739607	0.96007673	0.81941210	0.43498225	0.34752279	0.88720837	0.82503678
##	972	973	974	975	976	977	979
##	0.91601469	0.89840541	0.80832015	0.93910091	0.28346202	0.28346202	0.78896295
##	982	983	988	990	991	994	997
	0.26394962	0.93219598	0.31207909	0.80108051	0.40407434	0.32169795	0.91773179
##	1002	1004	1006	1016	1017	1022	1024
##	0.78374144	0.96113831	0.96113831	0.89906458	0.95824366	0.91151720	0.94561683
##	1025	1026	1030	1031	1034	1036	1037
##	0.57387540	0.31368976	0.57387540	0.77233191	0.54729817	0.77472663	0.94495889
##	1038	1043	1044	1049	1050	1052	1053
	0.08467347	0.80300719	0.82020006	0.80953886	0.78021636	0.67804325	0.91104211
##	1055	1058	1059	1062	1063	1065	1070
##						0.75516090	
##	1071	1072	1073	1074	1079	1080	1083
						0.40453879	
##	1084	1085	1086	1092	1094	1095	1098
						0.49531036	
##	1100	1103	1106	1108	1109	1110	1113
##						0.67961164	
##	1114	1115	1117	1118	1119	1122	1125
						0.88827487	
##	1127	1129	1136	1138	1139	1142	1150
##						0.79255354	
##	1154	1156	1158	1160	1164	1165	1169
						0.34911691	
##	1174	1176	1180	1183	1184	1186	1187
						0.83216767	
##	1189	1190	1193	1194	1204	1211	1213
						0.53707859	
##	1217	1220	1221	1224	1226	1228	1230
						0.43944184	
##	1231	1239				1251	
						0.61830476	
##	1261	1264				1274	1275
						0.19873507	
##				1290			
						0.93827703	
##	1298	1300	1302			1308	1311
						0.58216493	
##	1312	1313	1316			1320 0.37260225	1321
##						1332	1333
						0.06947426	
##	1336						1349
		1337	1339			1346 0.56699331	
##	1351	1357	1358		1361	1362	1369
						0.20131694	
##	1371	1372			1380		1386
						0.62870483	
##	1388	1389	1390	1392			1396
						0.15440151	
##	0.32200340	0.43031308	0.21224138	0.00//3822	0.30303380	0.13440131	0.33934980

```
1397
                                            1402
                                                                                1407
##
                     1400
                                 1401
                                                        1404
                                                                    1406
## 0.34921494 0.69724047 0.10211360 0.10211360 0.85527482 0.92222761 0.92066898
                     1410
                                 1414
                                            1415
                                                        1418
                                                                    1420
## 0.96956379 0.73685309 0.45197689 0.67996830 0.93856044 0.11430274 0.80043906
##
                                 1427
                                            1430
                                                        1432
                                                                    1435
                                                                                1436
##
  0.72836169 0.66331164 0.93501778 0.92040632 0.37563680 0.18849461 0.18849461
##
         1437
                                            1443
                                                        1447
                     1440
                                 1442
                                                                    1449
## 0.16556629 0.47741729 0.09511377 0.43582198 0.43582198 0.37160792 0.87394441
##
         1454
                     1456
                                 1457
                                            1461
                                                        1466
                                                                    1468
## 0.17120492 0.45960983 0.37601586 0.59735007 0.33900665 0.30916495 0.58301194
##
                     1477
                                 1478
                                             1479
                                                        1481
                                                                    1483
  0.19663663 0.19663663 0.96511629 0.28090696 0.49670748 0.55985828 0.47494678
         1488
                     1493
                                 1494
                                            1495
                                                        1497
                                                                    1498
                                                                               1503
## 0.66158978 0.79984815 0.14135590 0.69740812 0.14135590 0.71090938 0.28363547
         1504
                     1508
                                 1509
                                            1510
                                                        1511
## 0.81885400 0.85817699 0.83087548 0.91307103 0.57620576 0.36079233 0.46974028
##
                                            1522
                                                        1523
                                                                    1525
         1515
                     1516
                                 1517
                                                                               1533
  0.12840124 0.13049129 0.82595385 0.25612152 0.82595385 0.60658881 0.52363402
                     1538
                                 1540
                                            1543
                                                        1546
                                                                    1547
## 0.23235943 0.50712482 0.56882617 0.36046967 0.45450879 0.51435731 0.82069018
##
                     1552
                                 1555
                                            1557
                                                        1558
         1549
                                                                    1559
##
  0.60297285 \ 0.24069329 \ 0.48014133 \ 0.23011305 \ 0.48014133 \ 0.12503776 \ 0.14727854
##
         1562
                     1566
                                 1571
                                            1572
                                                        1573
## 0.14727854 0.65453799 0.96429949 0.82810158 0.10892466 0.88033989 0.51978506
         1577
                     1579
                                 1580
                                            1581
                                                        1583
                                                                    1587
## 0.85326672 0.72404537 0.73417847 0.90818659 0.71768308 0.88684408 0.65976944
         1593
                     1596
                                 1599
## 0.75118218 0.74190964 0.81940411
```

Model Diagnostics

```
accuracy = (548+639)/(548+196+216+639)
accuracy
```

```
## [1] 0.742339
```

```
sensitivity = 639/(639+196)
sensitivity
```

```
## [1] 0.7652695
```

```
specificity = 548/(548+216)
specificity
```

```
## [1] 0.7172775
```

AUC and ROC

```
library("pROC")

## Type 'citation("pROC")' for a citation.

##

## Attaching package: 'pROC'

## The following objects are masked from 'package:stats':
    ##

## cov, smooth, var
```

```
test_prob = predict(randomforestmodlogit, test, type = "response")
test_roc = roc(test$highquality ~ test_prob, plot = TRUE, print.auc = TRUE)
```

```
## Setting levels: control = 0, case = 1
```

```
## Setting direction: controls < cases</pre>
```



```
as.numeric(test_roc$auc)
```

```
## [1] 0.8093822
```

AUC and ROC with just one variable

```
library("ggplot2")

simple <- glm(highquality ~ vol_acidity, data = red, family = "binomial"(link = "logi
t"))
summary(simple)</pre>
```

```
##
## Call:
## glm(formula = highquality ~ vol_acidity, family = binomial(link = "logit"),
##
      data = red)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -1.8697 -1.1148
                     0.7156 1.0375
                                       2.0349
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.2874
                           0.1838
                                    12.45
                                            <2e-16 ***
## vol acidity -4.0607
                           0.3334 -12.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2209.0 on 1598 degrees of freedom
## Residual deviance: 2033.4 on 1597 degrees of freedom
## AIC: 2037.4
## Number of Fisher Scoring iterations: 4
```

```
ggplot(red, aes(x = vol_acidity, y = highquality)) +geom_point()+stat_smooth(method="gl
m", color="green", se=TRUE, method.args = list(family=binomial))
```

```
## `geom_smooth()` using formula = 'y ~ x'
```



```
test_prop1 = predict(simple, red, type = "response")
test_roc1 = roc(red$highquality ~ test_prop1, plot = TRUE, print.auc = TRUE)
```

```
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases</pre>
```


as.numeric(test_roc1\$auc)

[1] 0.6900011