1. Coordenadas y cambio de base

Instrucciones: Resuelva los ejercicios indicando con detalle la resolución de los mismos y argumentando sus respuestas.

- Resuelva los problemas y haga las demostraciones que hayan quedado como ejercicios en clase.
- 2. Considere las bases ordenadas de \mathbb{R}^3 : $\mathcal{B}_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ y $\mathcal{B}_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, y sea $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$. Calcule:
 - $a) v_{\mathcal{B}_1},$
 - b) $v_{\mathcal{B}_2}$,
 - c) la matriz de transición de \mathcal{B}_1 a \mathcal{B}_2 ,
 - d) la matriz de transición de \mathcal{B}_2 a \mathcal{B}_1 .
 - e) Compruebe sus resultados de a) y b) empleando las matrices de c) y d).
- 3. Sean $\mathcal{B}_1 = (2, 1-x, 1+x^2)$ y $\mathcal{B}_2 = (-3, 1+x^2, x-x^2)$ bases ordenadas de $\mathcal{P}_2(\mathbb{R})$. Calcule los mismos incisos que en el ejercicio anterior si $v = 1 + 2x + 3x^2 \in \mathcal{P}_2(\mathbb{R})$.
- 4. Sean \mathcal{E} la base canónica de matrices 2×2 con entradas reales y $\mathcal{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \right) \text{ otra base del mismo espacio. Calcule los mismos incisos que en el ejercicio anterior si } v = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}).$
- 5. En \mathbb{R}^2 suponga que $x_{\mathcal{B}_1} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, donde $\mathcal{B}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Calcule $x_{\mathcal{B}_2}$, donde $\mathcal{B}_2 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ -1 \end{pmatrix}$.
- 6. Resuelva los ejercicios 24, 25 y 26 de la lista de ejercicios 1.

2. Ejercicios de Transofrmaciones Lineales

Instrucciones: Resuelva los ejercicios indicando con detalle la resolución de los mismos y argumentando sus respuestas.

- Resuelva los problemas y haga las demostraciones que hayan quedado como ejercicios en clase.
- 2. Determine si las siguientes funciones son transformaciones lineales o no lo son.

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $T(x, y) = (x + y, 0)$.

b)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ xy \end{pmatrix}$.

c)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x - y \\ y + 1 \end{pmatrix}$.

d)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} (x_1 + x_2)^2 \\ 0 \end{pmatrix}$.

e)
$$T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^2$$
 dada por $T(a_0 + a_1x + a_2x^2) = \begin{pmatrix} -a_0 \\ a_1 + a_2 \end{pmatrix}$.

$$f)$$
 $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ dada por $T(a_0 + a_1x + a_2x^2) = \begin{pmatrix} a_0 & -a_1 \\ a_2 & 1 \end{pmatrix}$.

$$g)$$
 $T: \mathcal{M}_2(\mathbb{C}) \to \mathbb{C}^2$ dada por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b \\ c-d \end{pmatrix}$.

$$h)$$
 $D: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R})$ dada por $D(p) = p'$.

$$i)$$
 $I: \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}$ dada por $I(p) = \int_a^b p$, donde $a, b \in \mathbb{R}$ con $a < b$.

$$j)$$
 $T: \mathbb{R}^2 \to \mathbb{C}_{\mathbb{R}}$ dada por $T\begin{pmatrix} a \\ b \end{pmatrix} = a + bi$.

$$k)$$
 $T: \mathbb{C}_{\mathbb{R}} \to \mathbb{R}^2$ dada por $T(a+bi) = \begin{pmatrix} a \\ b \end{pmatrix}$.

- 3. Sea $T:V\to W$ lineal. Pruebe que el kernel de T es un subespacio de V.
- 4. Sea $T:V\to W$ lineal. Pruebe que la imagen de T es un subespacio de W.

- 5. Sea $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ con $\theta \in \mathbb{R}$. Pruebe que A es un operador lineal sobre \mathbb{R}^2 y calcule las imágenes de los vértices del cuadrado (0,0), (1,0), (1,1), (0,1). Interprete geométricamente este operador, llamado operador o matriz de rotación en el plano.
- 6. Calcule el kernel, la imagen, una base para el kernel, la nulidad, una base para la imagen y el rango de las siguientes transformaciones lineales:

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 dada por $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$.

b)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

$$c) \ T:\mathbb{R}^3 \to \mathbb{R}^3 \ \mathrm{dada} \ \mathrm{por} \ T\begin{pmatrix} x_1 \\ x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_3 \\ x_1 + 4x_2 \\ x_1 - 2x_2 + 3x_3 \end{pmatrix}.$$

d)
$$T: \mathbb{R}^4 \to \mathbb{R}^2$$
 dada por $T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+z \\ y+w \end{pmatrix}$.

e) $T: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ dada por $T(A) = A^t$ (A^t representa la transpuesta de A).

$$f)$$
 $T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$ dada por $T(a_0 + a_1 x + a_2 x^2) = \begin{pmatrix} a_0 \\ a_1 \\ -a_2 \end{pmatrix}$.

$$g) D: \mathcal{P}_n(\mathbb{R}) \to \mathcal{P}_n(\mathbb{R}) \text{ dada por } D(p) = p'.$$

7. Calcule la regla de la transformación dadas las condiciones siguientes:

a)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, inducida por la matriz
$$\begin{bmatrix} 2 & 0 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
.

b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, si

$$T\begin{pmatrix} 1\\-1\\0 \end{pmatrix} = \begin{pmatrix} 2\\3\\-2 \end{pmatrix}, \quad T\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\-3\\-1 \end{pmatrix}, \quad T\begin{pmatrix} 0\\0\\-1 \end{pmatrix} = \begin{pmatrix} 0\\-1\\0 \end{pmatrix}.$$

- 8. Determine si las transformaciones de los ejercicios 6 y 7 son isomorfismos o son invertibles.
- 9. Sea $H_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : x_1 = x_2 x_3 \right\}$ un subespacio de \mathbb{R}^3 y $H_2 = \{ p(t) = a_0 + a_1 t + a_2 t^2 + a t^3 \in \mathcal{P}_3(\mathbb{R}) : p'(0) = 0 \} \text{ un subespacio de } \mathcal{P}_3(\mathbb{R}).$ Emplee el teorema de la dimensión para determinar si $H_1 \cong H_2$. En caso positivo,

proporcione un isomorfismo entre estos subespacios y pruebe su afirmación.

10. Demuestre que $T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$ es un isomorfismo entre $\mathcal{M}_2(\mathbb{K})$ y \mathbb{K}^4 .

Este isomorfismo se llama vectorización canónica de $\mathcal{M}_n(\mathbb{K})$ a \mathbb{K}^n con n=2. Esto consiste en desdoblar una matriz para pornerla como un vector. Se hace por filas, por ejemplo, si n=3:

$$\begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \rightarrow \begin{bmatrix} a_{1,1} \\ a_{1,2} \\ a_{2,1} \\ a_{2,1} \\ a_{2,2} \\ a_{2,3} \\ a_{3,1} \\ a_{3,2} \\ a_{3,3} \end{bmatrix}.$$

11. Sea T el operador lineal sobre $\mathcal{M}_2(\mathbb{R})$ dado por T(X) = BX, donde

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

- a) Determine si T es un isomorfismo sobre el espacio $\mathcal{M}_2(\mathbb{R})$.
- b) Calcule la matriz de T respecto de la base canónica $\mathcal{E} = (E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2})$. Use la vectorización canónica del ejercicio anterior.
- c) Calcule la matriz de T respecto de la base $\mathcal{B} = (E_{1,1}, E_{2,2}, E_{1,2}, E_{2,1})$. Use la vectorización canónica del ejercicio anterior.
- 12. Muestre que el espacio vectorial $\mathcal{M}_{m\times n}(\mathbb{K})$ es isomorfo al espacio vectorial \mathbb{K}^{mn} .

- 13. Muestre que el espacio vectorial $\mathcal{P}_n(\mathbb{K})$ es isomorfo al espacio vectorial \mathbb{K}^{n+1} .
- 14. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ inducida por la matriz

$$A = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & -2 & 1 \end{bmatrix}.$$

- a) Calcule la regla del operador.
- b) Determine si T es invertible.
- c) En caso de ser T invertible, calcule la regla de la inversa, T^{-1} . Sugerencia: calcule la inversa de A para encontrar la regla.
- 15. Sea $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ definida mediante la regla

$$T(p(t)) = (-3t^2 + 2t - 2)p''(t) + (-t + 1)p'(t) + 2p(t).$$

- a) Pruebe que T es un operador lineal.
- b) Calcule la matriz $T_{\mathcal{E}}$ asociada a T respecto a la base canónica $\mathcal{E} = (1, t, t^2)$. Para comprobación calcule T(q) aplicando la regla de T, escriba al vector $T(q)_{\mathcal{E}}$ y calcule el producto $T_{\mathcal{E}}q_{\mathcal{E}}$, con $q(t) = t^2 - t + 5$.
- 16. Sea $T: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ un operador lineal cuya matriz respecto a la base canónica $\mathcal{E} = (E_{1,1}, E_{1,2}, E_{2,2}, E_{2,2})$ es

$$T_{\mathcal{E}} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

- a) Calcule la regla de T.
- b) Calcule una base para el kernel, una base para la imagen, la nulidad y el rango de T.
- c) Determine si T es invertible. En caso afirmativo, calcule la regla de T^{-1} así como $T_{\mathcal{E}}^{-1}$, la matriz de T^{-1} respecto de la base canónica \mathcal{E} .
- 17. Considere tres transformaciones lineales S, T, U dadas por sus matrices asociadas a ciertas bases:

$$S_{\mathcal{A},\mathcal{B}} = \begin{bmatrix} 3 & -2 \\ 1 & -4 \end{bmatrix}, \quad T_{\mathcal{C},\mathcal{D}} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 0 \\ 1 & -1 & -2 \end{bmatrix}, \quad U_{\mathcal{F},\mathcal{E}} = \begin{bmatrix} 0 & -1 \\ 3 & -2 \\ 2 & 1 \end{bmatrix}.$$

a) Llene la siguiente tabla:

	S	T	U
dim(dominio)	?	?	?
dim(contradominio)	?	?	?
rango	?	?	?
nulidad	?	?	?
¿es inyectiva?	?	?	?
¿es suprayectiva?	?	?	?
¿es un isomorfismo?	?	?	?
¿es invertible?	?	?	?

- b) Calcule la regla de cada transformación S,T,U.
- c) En el caso de aquellas transformaciones que sean invertibles, calcule la regla de la transformación lineal inversa correspondiente.