

Outline

- **Recalls on Convolutional Neural Networks (CNN** or ConvNets) and Deep-Learning
- **Transfer Learning**
- **Beyond Image Classification: DETECTION OF OBJECTS**
- Instance segmentation with DeepLearning
- DL for Human pose inference and depth estimation
- Semantic segmentation with DeepLearning
- Interest and use of simulations / synthetic videos

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 64

PSL Now possible to estimate Human poses from RGB images!

Real-time estimation of Human poses on *RGB* video

[Realtime Multi-Person 2D Pose Estimation using Part Affinity Field, Cao et al., CVPR'2017 [CMU]

OpenPose on streets

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 66

Human Pose estimation by DL methods

- OpenPose = 2D pose, bottom-up (localize joints, then assemble them into skeletons)
- AlphaPose = 2D pose, top-down, slower and less robuts
- HMR (Human Mesh Recovery) = 3D pose + estimate body SURFACE as a mesh

Inference of 3D (depth) from monocular vision

Unsupervised monocular depth estimation with left-right consistency C Godard, O Mac Aodha, GJ Brostow - CVPR'2017 [UCL]

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 68

Outline

- Recalls on Convolutional Neural Networks (CNN or ConvNets) and Deep-Learning
- Transfer Learning
- Beyond Image Classification: DETECTION OF OBJECTS
- Instance segmentation with DeepLearning
- DL for Human pose inference and depth estimation
- Semantic segmentation with DeepLearning
- Interest and use of simulations / synthetic videos

Drawbacks of object detections approach

- Problem for objects without sharp boundaries (trees, ...) or very dense group of objects (crowd of pedestrians, ...)
- Only « compact » objects are categorized (what about « road », « sidewalk », « building », …?)

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 70

Advantage of Semantic (full) segmentation

- One single semantic segmenter → all interesting object categories (cars, pedestrians, signs, etc...) and categorization of whole image
- Can also categorize non-compact areas (road, sky, buildings, trees, traffic lanes...)

PSL★ What is image SEGMENTATION?

Identify groups of contiguous pixels (connex sets) that « go together »

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 72

Many ≠ approaches for image segmentation

- Clustering (K-means, GMM, MeanShift, ...)
- **Graph-based (graph-cuts)**

- Node (vertex) for every pixel
- Edge between pairs of pixels, (p,q)
- Affinity weight w_{pq} for each edge
 w_{pq} measures similarity

 - Similarity is inversely proportional to difference
- Mathematical Morphology (watershed, etc...)
- **Energy minimization (Conditional Random Fields)**
- **Deep-Learning**

What is SEMANTIC Image Segmentation?

SEMANTIC segmentation: « go together » = same « type of object » ≠ from just grouping pixels with similar colors or texture

Objects detection

Semantic Segmentation

Instance Segmentation

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 74

Video example of semantic segmentation with category labels

[C. Farabet, C. Couprie, L. Najman & Yann LeCun: Learning Hierarchical Features for Scene Labeling, IEEE Trans. PAMI, Aug. 2013.

Semantic segmentation BEFORE Deep-Learning

- Relying on Conditional Random Field (CRF)
- Operating on pixels or superpixels
- Interactions between label assignments

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 76

Deep-Learning approach for semantic segmentation

Fully Convolutional Network (FCN)

« Fully Convolutional Networks for Semantic Segmentation », Evan Shelhamer, Jonathan Long, and Trevor Darrell, [Berkeley, 2015]

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 78

FCN principle

Trick = some connections skipping directly to « fuse layers »

FCN + CRF

Output from FCN rather blurry and inaccurate, but can be improved by CRF post-processing

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 80

PSL*

Convolutional Encoder-Decoder

Feature extractor

Shape generator

Deconvolution??

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 82

SegNet

"SegNet: A Deep Convolutional Encoder-Decoder Architecture for ImageSegmentation", Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla [Cambridge (UK), 2015]

SegNet example results

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 84

ICnet

« ICNet for Real-Time Semantic Segmentation on High-Resolution Images », Zhao, Hengshuang & Qi, Xiaojuan & Shen, Xiaoyong & Shi, Jianping & Jia, Jiaya. Chinese University of Hong-Kong (2017).

And many other competitors!

- 2015: U-Net (Keras) https://github.com/zhixuhao/unet
- RefineNet (2016)
- DeepLab (Caffe) https://github.com/Robotertechnik/Deep-Lab
- DeepLabv3 (Tensorflow) https://github.com/NanqingD/DeepLabV3-Tensorflow

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 86

Outline

- Recalls on Convolutional Neural Networks (CNN or ConvNets) and Deep-Learning
- Transfer Learning
- Beyond Image Classification: DETECTION OF OBJECTS
- Instance segmentation with DeepLearning
- DL for Human pose inference and depth estimation
- Semantic segmentation with DeepLearning
- Interest and use of simulations / synthetic videos

Synthetic images

More and more realistic

Example from SYNTHIA

http://synthia-dataset.net

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 88

PSL Interest of synthetic images for Machine-Learning in IV applications

- Possible to generate as many as needed at nearly no cost (in particular compared to recording while driving)
- Easy to generate controlled variability in environment, luminosity conditions, scenarii, etc
 + also images « dangerous situations »
- NO NEED FOR MANUAL LABELLING: ground truth (ie target value) for classifiers, localizers, and semantic segmentation provided automatically

Simulators dedicated to Autonomous Vehicles

Scenario-buiding with CarCraft by Google/Waymo

Simulation of a virtual scenario in XView by Google/Waymo

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 90

CARLA open-source urban driving simulator

 Still few driving simulators adapted for DL and RL, and best ones not totally mature

Simulateur	GTA	${\bf Deep Drive. io}$	AirSim	CARLA[1]
Flexibilité		++	++	++
Variété	++		22	+
Complexité/Réalisme	++		=	_
Objets mobiles	++			+
Vitesse éxecution		+	+	+
Multi-agent		_	_	++

→ Choice of CARLA

[1] A. Dosovitskiy: CARLA: An Open Urban Driving Simulator (2017)

CARLA simulator

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 92

Synthetic images use in ML/DL for IV

- Initial training of a classifier / segmenter / controller only on simulated images / videos / scenarios
- Possible to then adaptation to real-world by fine-tuning on REAL images/video datasets
- Cheaper / more extensive testing than on realworld videos
- REINFORCEMENT LEARNING in simulation!

PSL* Examples of autonomous driving obtained by DRL in CARLA

Town02: Single Lane, EU Weather: Heavy rain Traffic Light: Red

Network input

Current Order: Left Current Speed: 1.8 km/h

Work by my PhD student Marin Toromanoff (Valeo/MINES). Ranked 1st (vision-only track) on CARLA "Autonomous Driving challenge" !!

Deep_Learning for visual Scene Analysis (for IV), Pr. Fabien MOUTARDE, Center for Robotics, MINES ParisTech, PSL, Sept.2019 94