

Universidade Federal de Santa Catarina

Centro Tecnológico

Sistemas Digitais

INE 5406

Aula 1-T

1. Projeto de Unidade Lógico-Aritmética (ULA). Circuitos digitais e níveis de abstração. Representação de números inteiros em binário. Adição de números sem e com sinal, o somador paralelo carry-ripple e overflow.

Prof. José Luís Güntzel guntzel@inf.ufsc.br

www.inf.ufsc.br/~guntzel/ine5406/ine5406.html

Circuitos Digitais e Níveis de Abstração Nível Lógico:

- Circuitos vistos como associações de portas lógicas, latches e flip-flops (conforme visto em EEL5105).
- · Variáveis binárias de um bit cada.

Circuitos Digitais e Níveis de Abstração Nível RT (Register Transfer):

 Circuitos vistos como associações de componentes, feitos de portas lógicas (objeto desta disciplina).

- Circuitos Digitais e Níveis de Abstração Nível RT (Register Transfer):
 - Operações lógicas e aritméticas sobre vetores de bits, os quais representam números.
 - Sinais de controle e de status.

Circuitos Digitais e Níveis de Abstração

Matéria	Nível de abstração	Componentes
Circuitos Digitais	Lógico	Portas lógicasLatchesFlip-flops
Sistemas Digitais	RT (register-transfer)	 Somadores Subtratores ULAs (= unidades funcionais compostas) Registradores Memórias Multiplexadores Decodificadores Bloco de controle

Representação de Inteiros em Binário

Números Inteiros sem Sinal (Naturais)

assumindo-se números com 4 bits

	binário	decimal
Menor número	0000	0
Maior número	1111	15

Intervalo de representação: [0, 15]

Representação de Inteiros em Binário

Números Inteiros sem Sinal (Naturais)

Observe que:

$$1111_2 = 1x2^0 + 1x2^1 + 1x2^2 + 1x2^3 =$$
 $= 1 + 2 + 4 + 8 =$
 $= 15$

Observe também que:

$$10000_2 = 0x2^0 + 0x2^1 + 0x2^2 + 0x2^3 + 1x2^4 =$$
 $= 0 + 0 + 0 + 0 + 16 =$
 $= 16 (= 15 + 1)$

Então, podemos nos referir ao 15 como "24 - 1", para efeitos de generalização.

Representação de Inteiros em Binário

Números Inteiros sem Sinal (naturais)

assumindo-se números com 8 bits

	binário	decimal
Menor número	0000000	0
Maior número	11111111	255

Intervalo de representação: [0, 255]

Representação de Inteiros em Binário

Números Inteiros sem Sinal (Naturais)

Observe que:

$$11111111_{2} =$$
= $1x2^{0} + 1x2^{1} + 1x2^{2} + 1x2^{3} + 1x2^{4} + 1x2^{5} + 1x2^{6} + 1x2^{7} =$
= $1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255$

Observe também que:

```
100000000_{2} = 0x2^{0} + 0x2^{1} + 0x2^{2} + 0x2^{3} + 0x2^{4} + 0x2^{5} + 0x2^{6} + 0x2^{7} + 1x2^{8} = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 256 = 256 (= 255 + 1)
```

Então, podemos nos referir ao 255 como "28 - 1", para efeitos de generalização.

Representação de Inteiros em Binário

Números Inteiros sem Sinal (naturais)

Generalizando-se para n bits

	binário	decimal
Menor número	00000	0
Maior número	11111	2 ⁿ -1

Intervalo de representação: [0, 2ⁿ-1]

Representando Dados em Circuitos Digitais Exemplo: um circuito somador.

 Neste caso, cada operando tem 8 bits e o resultado é calculado com precisão de 8 bits. (Há um indicador de estouro de campo, overflow)

Representando Dados em Circuitos Digitais Exemplo: um circuito mais complexo.

 Fios que representam variáveis de mais de um bit devem ser identificados!

Representando Dados em Circuitos Digitais

Convenções

Somador-subtrator para operandos com *n* bits cada

overflow +/-

Indicando como um número de n+1 bits é composto

Representando Dados em Circuitos Digitais

Convenções (continuação)

Indicando como um número de *n*+1 bits é composto (outro exemplo)

"Decompondo" um número de *n*+1 bits em um número de *n* bits e mais um sinal

Circuitos Aritméticos

São Circuitos Combinacionais que operam sobre dados numéricos.

Exercício 1: Projetar um circuito combinacional capaz de testar se um número de 8 bits vale zero ou não. Este circuito deve operar conforme descrito na tabela abaixo.

Slide1T 15

Tabela de funcionamento:

zero	significado
0	S ≠ 0
1	S = 0

Interfaces:

Circuitos Aritméticos

Exercício 2: Projetar um circuito combinacional que compara dois números de 4 bits cada. Este circuito deve operar conforme descrito na tabela abaixo.

Tabela de funcionamento:

iguais	significado
0	A≠B
1	A = B

Interfaces:

Circuitos Aritméticos

Exercício 2: solução...

Função XOR (Exclusive OR, "OU" Exclusivo)

• Resulta "1" se as duas entradas forem iguais...

X	Y	X ⊕ Y
0	0	0
0	1	1
1	0	1
1	1	0

$$X \oplus Y = \overline{X} \cdot Y + X \cdot \overline{Y}$$

Circuito em soma de produtos

Circuitos Aritméticos

Exercício 3: Projetar um circuito combinacional que compara dois números de 4 bits cada. Este circuito deve operar conforme descrito na tabela abaixo.

Tabela de funcionamento:

maior	r significado			
0	A <= B			
1	A > B			

Interfaces:

Circuitos Aritméticos

Qual é a operação aritmética mais importante?

Resposta: a adição!

Por quê?

Porque ela serve de base para outras operações aritméticas mais frequentes nos sistemas digitais.

Revisão de Adição Binária

Adição de Números Sem Sinal

Exemplo 1:

Notação genérica Análise supondo A e B com 4 bits

Supondo um somador que trabalhe com operandos de 4 bits, então o resultado S deverá pertencer ao intervalo [0, 15]

Revisão de Adição Binária

Adição de Números Sem Sinal

Exemplo 2:

Caso o resultado não puder ser representado com 4 bits, o sinal "Cout" indicará que houve um "estouro de representação" (em inglês, overflow).

Revisão de Adição Binária

Generalizando a Adição de Números Sem Sinal

Notação genérica

Análise detalhada

Revisão de Adição Binária

Adicionando os bits menos significativos

Revisão de Adição Binária

Porém, a partir do 2^a coluna ...

Revisão de Adição Binária

Generalizando, a partir do 2ª coluna ...

Obs: $i \ge 1$

Esquema da Adição Paralela

Considerando dois números (A e B) com 4 bits cada

- Há um elemento para cada coluna da soma.
- O sinal de transporte mais à esquerda (c4, neste caso), também recebe o nome de cout.
- Se este somador operar sobre inteiros sem sinal, então cout também servirá para indicar a ocorrência de *overflow*

Somador Para a Primeira Coluna

Este circuito é conhecido por "Meio Somador" (*Half-Adder,* em inglês)

Criação da tabela-verdade:

 Listar todas as combinações de entradas (a0, b0)

 Preencher os valores das saídas s0 e c1 baseado no resultado da adição entre a0 e b0

entradas		saío	das
a0	b0	c1	s0
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

O Meio Somador

$$s0 = a0 \cdot b0 + a0 \cdot b0 = a0 \oplus b0$$

 $c1 = a0 \cdot b0$

Obs: circuito independente de tecnologia de fabricação

O Meio Somador

Redesenhando, usando porta XOR

$$s0 = a0 \cdot b0 + a0 \cdot b0 = a0 \oplus b0$$

 $c1 = a0 \cdot b0$

Somador Para as Demais Colunas

Projetando um tipo de circuito para as demais colunas:

Somador Para as Demais Colunas

Este circuito é conhecido como "Somador Completo" (*Full-Adder*, em inglês) entradas

C_i
a_i
b_i

C_{i+1} S_i

Criação da tabela-verdade:

- Listar todas as combinações de entradas (ci, ai, bi)
- Preencher os valores das saídas si e ci+1 baseado no resultado da adição entre ai, bi e ci

ci	ai	bi	ci+1	si	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

saídas

O Somador Completo

Mapa de Karnaugh para Ci+1

O Somador Completo

	entradas 人			as
ci	ai	bi	ci+1	si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Mapa de Karnaugh para si

Não é possível simplificar, logo, usaremos todos os produtos do tipo mintermo!

O Somador Completo

Manipulando a expressão para si

Normalmente, se assumem portas xor com duas entradas, as quais podem ser fabricadas diretamente usando tecnologia CMOS.

O Somador Completo

si = ci ⊕ ai ⊕ bi

ci+1 = ai·bi+ ai·ci+ bi·ci

O Somador Completo

Uma Outra Versão, usando dois MS...

	i	1		1		r	
ai	bi	ci	pi	хi	gi	ci+1	si
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
0	1	0	1	0	0	0	1
0	1	1	1	1	0	1	0
1	0	0	1	0	0	0	1
1	0	1	1	1	0	1	0
1	1	0	0	0	1	1	0
1	1	1	0	0	1	1	1

Vantagem: necessita menos portas lógicas

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico)

Símbolo no Nível RT

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico): versão 2

Símbolo no Nível RT

O Somador Paralelo Carry-Ripple (de 4 Bits)

Diagrama de Blocos (Nível Lógico): versão 3

Símbolo no Nível RT

Somador Carry-Ripple: Custo x Desempenho

- A estrutura do somador carry-ripple baseia-se na fatoração da expressão do carry. A consequência disto é:
 - Redução do custo (i.e., menor número de portas lógicas)
 - Aumento do atraso (o cálculo de c4 depende de c3, que depende de c2, que depende de c1, que depende apenas das entradas c0, a0 e b0).

Os slides complementares "somadores rápidos" mostra outros tipos de somadores.

Representação de Inteiros em Binário

Como Representar Inteiros Negativos?

Sinal-magnitude

$$\begin{array}{c}
sinal \\
+3 = 0 & 0 & 1 & 1 \\
-3 = 1 & 0 & 1 & 1
\end{array}$$

Complemento de 1

Complemento de 2

Representação de Inteiros em Binário Números Inteiros com Sinal

- Para facilitar a construção de circuitos aritméticos, os negativos são representados em complemento de dois
- Assumindo-se números com 4 bits

	binário	decimal
Menor número	1000	-8
Zero	0000	0
Maior número	0111	+7

Intervalo de representação: [-8, +7]

Representação de Inteiros em Binário Números Inteiros com Sinal

Observe que:

$$0111_2 = 1x2^0 + 1x2^1 + 1x2^2 + 0x2^3 =$$
 $= 1 + 2 + 4 + 0 =$
 $= +7$

Observe também que:

$$1111_2 = 1x2^0 + 1x2^1 + 1x2^2 - 1x2^3 =$$
 $= 1 + 2 + 4 - 8 =$
 $= -1$

O bit mais à esquerda representa o sinal: se ele valer 1, o número é negativo. Caso contrário, o número é positivo ou zero.

Representação de Inteiros em Binário

Números Inteiros com Sinal

assumindo-se números com 8 bits

	binário	decimal	
Menor número	10000000	-128	
Zero	0000000	0	
Maior número	01111111	+127	

Intervalo de representação: [-128, +127]

Representação de Inteiros em Binário

Números Inteiros com Sinal

Generalizando-se para n bits

	binário	decimal
Menor número	10000	-2 ⁿ⁻¹
Zero	00000	0
Maior número	01111	+(2 ⁿ⁻¹ -1)

Intervalo de representação: [-2ⁿ⁻¹, +(2ⁿ⁻¹-1)]

Adição de Inteiros com Sinal

Assumindo:

- Negativos são representados em complemento de dois
- Números com 4 bits

	binário	decimal	
Menor número	1000	-8	
Zero	0000	0	
Maior número	0111	+7	

Intervalo de representação: [-8, +7]

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Exemplo 3: dois números positivos, cuja soma ∈ [-8,+7]

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Exemplo 4: dois números negativos, cuja soma seja ≥ -8

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Exemplo 5: um número positivo e um número negativo, tais que o resultado é positivo

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Exemplo 6: um número positivo e um número negativo, tais que o resultado é negativo

transporte (carry)		0001	
	(-7)	1001	
	(+1)	0001	+
resultado correto	(-6)	1010	

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Exemplo 7: um positivo e um negativo, iguais em módulo

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Exemplo 8: 2 números positivos

o resultado excede o intervalo de representação = overflow

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Exemplo 9: 2 números negativos

o resultado excede o intervalo de representação = overflow

Adição de Inteiros com Sinal

(Assumindo Negativos em Complemento de 2)

Conclusões:

- Números binários em complemento de 2 podem ser adicionados como se fossem números binários sem sinal!
- Neste caso, a detecção de overflow se dá comparando-se os dois últimos sinais de carry

O Somador Paralelo Carry-Ripple (de 4 Bits) Modificado para Operar Sobre Números com Sinal

(Assumindo negativos em complemento de 2)

Diagrama de Blocos (Nível Lógico)

O Somador Paralelo Carry-Ripple (de 4 Bits)
Modificado para Operar Sobre Números com Sinal
(Assumindo negativos em complemento de 2)

Diagrama de Blocos (Nível Lógico): versão 2

O Somador Paralelo Carry-Ripple (de 4 Bits) Modificado para Operar Sobre Números com Sinal (Assumindo negativos em complemento de 2)

Diagrama de Blocos (Nível Lógico): versão 3

O Somador Paralelo Carry-Ripple (de 4 Bits)

Símbolos no Nível RT

