ECE101: Basic Electrical and Electronic Circuits

To be discussed during Feb 10-14

For linear time-invariant capacitors and inductors, i = C(dv/dt) and v = L(di/dt) respectively.

Q.1.

Sketch the waveform of the current flowing through a linear capacitor for 0 < t < 4μ sec if

- (a) a constant voltage v = 10 volts is applied to the capacitor and the capacitance C varies with time as shown below, where $C_1 = 2000 \, \text{pF}$ and $C_2 = 1000 \, \text{pF}$.
- (b) the capacitor has a constant capacitance C = 1000 pF and the applied voltage \mathbf{v} varies with time as shown below, where $\mathbf{V}_m = 10$ volts.

Q.2.

Calculate and sketch the waveform of the voltage \mathbf{v} across a linear capacitor having a constant capacitance $\mathbf{C} = 0.01 \mu F$ if the capacitor is initially uncharged and the waveform of the current \mathbf{i} flowing through the capacitor for a period of $4\mu sec$ is as given below.

A linear time-varying inductor having inductance L and a linear time-varying resistor having resistance R are connected in series with a 12V d-c voltage source. Variations in L and R with time are as shown in the graphs given below, and the resulting current through the series combination is I = 3mA (d-c). Find the values of R_1 and R_2 .

- (a) Write KVL equations for the two time intervals 0 < t < 1 (μ s) and 1 < t < 2 (μ s) in terms of R_1 and R_2 .
- (b) Hence determine the values of R₁ and R₂.

Q.4.

A voltage ${\it v}$ having the waveform given below is applied to the parallel combination of a linear time-invariant inductor having inductance ${\it L}=2$ mH and a linear time-varying resistor having resistance ${\it R}=2$ k Ω for 0 μ s < ${\it t}\le 4\mu$ s and ${\it R}=1$ k Ω for 4 μ s < ${\it t}\le 7\mu$ s. Calculate the current ${\it i}$ in the given circuit at instants of time ${\it t}=3\mu$ s and 6 μ s if the inductor current at time ${\it t}=0$ is zero.

Q.5.

Calculate the power dissipated in the 40Ω resistor and the voltage labelled v_C in each of the circuits depicted in Fig. (a) and (b).

Q.6.

Calculate v_L and i_L for each of the circuits depicted in Fig. if $j_S = 1$ mA

Q.7. Find current i and voltage v in the given circuit:

