Chapter – 9: Motion and Time

- Motion straight line, circular, periodic
- Some motion slow other motions fast

Slow or Fast

- Some vehicles move faster than others even same vehicle may move faster or slower
- Vehicles moving in straight line easy to decide faster or slower
- Distance travelled by an object given time period helps in deciding
- You went to drop off your friend bus starts moving you start pedaling
- After 5 minutes distance covered by bus much more than distance covered by you
- Faster vehicle higher speed
- 100-metre race easy to decide highest speed person taking shortest time highest speed

Speed

- Higher speed meaning fixed distance in shorter time OR longer distance in fixed time
- Easiest way decide speed compare distances in given time
- Speed distance covered by object unit (fixed) time
- Suppose car moving at 50 kilometers per hour BUT car does not move at constant speed
- Speed increases slowly decreases slowly
- When car moving at 50 kmph it means car covers 50 kilometers in 1 hour whatever speed it moves with
- This speed average speed throughout the chapter
- Speed total distance covered divided by total time taken
- Speed = $\frac{Total\ Distance\ Covered}{Total\ Time\ Taken}$

Measurement of Time

- Now a days clocks used older days no clocks present BUT used shadows in days approximate time
- Ancestors noticed many events repeat periodically (definite interval of times)
- Sun rises every day in morning time between one sunrise and next one day
- One new moon to next one month
- Year time taken by earth complete one revolution of sun
- Often measure time intervals much shorter than day
- Clocks, watches most common measuring device
- Working of clocks much complex BUT all of them use periodic motion
- Most known periodic motion simple pendulum
- Simple pendulum consist small metallic ball hanged from a stand by a thread
- Metallic ball called as bob

- Pendulum 1st at rest take the bob slightly to one side release it moves to and fro this to and fro motion oscillatory motion
- Pendulum completes one oscillation when bob starts from O, moves to A, moves to B, then back to O
- Time taken complete one oscillation time period
 - Set up simple pendulum length of string 1 metre
 - Switch off fans bob comes to rest mark it as mean position
 - o Using stopwatch, table clock, wristwatch measure time period
 - Set the pendulum in motion move it slightly to side release it DO NOT PUSH
 - o Record time at mean position record time for 20 oscillations
 - o Divide the time taken by 20 obtain time for 1 oscillation time period
- Time period approximately same all observations
- Now a days most clocks electric circuit called quartz much more accurate

Units of Time and Speed

- Basic unit of time second (s) larger units minutes (min) and hours (h) related to each other
- Speed = distance / time basic unit m / s other units m / min or km / h
- Symbols all units written in singular
- Example 50 km is right 50 kms is wrong
- Different units used different needs
- Example express age years instead of days express time taken to reach home from school minutes or hours instead of years
- Time taken saying 'two thousand and one' nearly one second
- Pulse healthy adult at rest 72 times per minute slightly higher for children
- Different time measuring devices different parts of world
- Sundial, water clocks, sand clocks different designs different parts of world

Measuring Speed

- After learning measure time and distance calculate speed
 - o Draw straight line ask your friend to stand 1 m away
 - o Ask your friend roll a ball slowly
 - O Note the time balls crosses the line when it comes to rest measure time
 - o Measure distance between line and place where ball stops
 - o Calculate speed distance / time

- Rockets launching satellites obtain speeds 8 km / h tortoise speed 8 cm / s
- You know speed calculate distance travelled in given time
- Distance speed x time
- Lots of meters fitted on vehicles
- One of them represents speed in km / h speedometer
- Another meter measures distance odometer
- School picnic Paheli noted odometer reading every 30 minutes
- Many questions raised how far is the picnic spot? speed of bus? how far till 9:45 AM?
- Teacher explained solve this problem distance-time graph

Distance-Time Graph

- Newspapers, magazines, various forms of graphs makes it interesting
- Different graphs bar graph, pie chart, line graph

- Distance-time graph line graph
 - Take a sheet of paper draw 2 perpendicular lines
 - o Mark horizontal line XOX' x-axis vertical line YOY' y-axis
 - Intersection of x-axis and y-axis O origin
 - o Both quantities shown along these 2 axes
- Positive values of x-axis along OX positive values of y-axis along OY
- This chapter only positive values are taken shaded portion of the graph

S. No.	Time (min.)	Distance (km)
1.	0	0
2.	1	1
3.	2	2
4.	3	3
5.	4	4
6.	5	5

- Steps to make a graph
 - o Draw 2 perpendicular lines OX and OY
 - Decide quantity shown along x-axis and y-axis this case time along x-axis distance along y-axis
 - Choose scale represent time and distance
 - Time $-1 \min = 1 \text{ cm}$
 - Distance -1 km = 1 cm
 - o Mark time and distance on axes according to scale
 - Mark points on graph set of values distance, time

- Observation at time $-0 \min -0 \ker \max$ at origin
- Observation at time 1 min 1 km mark on graph
 - Draw line parallel to y-axis from 1 min
 - Draw line parallel to x-axis from 1 km
 - Mark the point at intersection
- o Join all points straight line distance-time graph is ready
- o This graph straight line indicates constant speed
- Speed changes continuously graph any shape

- Generally choice of scales not simple
- We may choose different scales different axes
- Example
 - o Paheli went to picnic on a bus
 - o Distance covered by bus -80 km
 - If scale taken -1 km = 1 cm axis 80 cm long not possible
 - \circ Scale taken -10 km = 1 cm axis 8 cm long

Time (AM)	Odometer reading	Distance from the starting point
8:00 AM	36540 km	0 km
8:30 AM	36560 km	20 km
9:00 AM	36580 km	40 km
9:30 AM	36600 km	60 km
10:00 AM	36620 km	80 km

- Point to remember choosing scale
 - o Difference between highest and lowest values
 - o In between values easy to mark them
 - Utilize maximum part of graph paper
 - o Example -
 - Graph paper 25 cm x 25 cm
 - Scale chosen
 - 5 km = 1 cm
 - $6 \min = 1 \text{ cm}$
- Distance-time graph provides lots of information
- Table recording distance and time shows distance at in between times
- Distance-time graph shows distance at any time
- Suppose find distance at 8:15
 - o Mark 8:15 on the graph point A
 - o Draw a line parallel to y-axis from A intersect line graph at T
 - o Draw a line parallel to x-axis from T intersect y-axis at B
- Point B distance travelled by bus upto 8:15 AM 10 km