

Teste de normalidade

No código abaixo simulam-se dados com distribuição log-normal e sua normalidade é testada. Espera-se que o teste falhe:

```
from scipy.stats import shapiro
x = np.random.randn(100)
stats, p = shapiro(x)

(0.98558509349823, 0.34968388080596924)
```


A hipótese nula é de que os dados são normalmente distribuídos Se o valor-p é menor do que o nível de significância (α), então a hipótese nula é rejeitada

Logo, os dados NÃO SÃO REJEITADOS → são normalmente distribuídos

Comparação da Média de um Conjunto de Dados com uma Constante

```
from scipy.stats import norm
from scipy import stats
x1 = norm.rvs(loc=10000, scale=1000, size=50)
x2 = norm.rvs(loc=1000, scale=100, size=50)
x3 = norm.rvs(loc=1000, scale=100, size=50)
print(x1.mean())
print(x2.mean())
print(x3.mean())
stats.ttest 1samp(x1,0)
Ttest 1sampResult(statistic=70.689068547402044,
pvalue=5.551055102945442e-51)
```


Comparação da Média de Dois Conjuntos de Dados

Comparando x1 com x2

```
stats.ttest_ind(x1,x2)
Ttest_indResult(statistic=72.022883333939518,
pvalue=1.1191380960232934e-86)
```

Comparando x2 com x3

```
stats.ttest_ind(x2,x3)
Ttest_indResult(statistic=0.10080661932376216,
pvalue=0.91990992237400093)
```


REGRESSÃO LINEAR

Regressão

Regressão é o método estatístico usado para estimar as relações entre as variáveis.

A maneira mais fácil de analisar se a regressão é um método aplicável a seus dados, é plotando um gráfico de dispersão.

Gráfico de Dispersão - Tanino

```
import matplotlib.pyplot as plt
os.chdir("D:\Dropbox\Fund Prog e Estatistica\db")
arquivo = pd.read csv("tannin.csv")
print(arquivo.describe())
arquivo np = np.array(arquivo)
print(arquivo np[:,1])
plt.plot(arquivo np[:,0],arquivo np[:,1],'o')
plt.title('Tannin vs Growth (Training set)')
plt.xlabel('Growth')
plt.ylabel('Tannin')
plt.show()
```

Por que realizar uma inspeção visual?

Os quatro conjuntos de dados abaixo possuem a mesma média, variância, linha de regressão e coeficiente de correlação.

A regressão linear é aplicável somente no primeiro caso, ou, no máximo, no terceiro, se removermos o *outlier*.

Regressão Linear

O modelo de regressão mais simples é o linear:

$$y = \beta_0 + \beta_1 x$$

Regressão Linear - statsmodel

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
X = pd.DataFrame(arquivo["tannin"])
y = pd.DataFrame(arquivo["growth"])
X = sm.add constant(X)
model = sm.OLS(y, X).fit()
predictions = model.predict(X) # make the
predictions by the model
model.summary()
```


Dep. Variable:	growth	R-squared:	0.816
Model:	OLS	Adj. R-squared:	0.789
Method:	Least Squares	F-statistic:	30.97
Date:	Sat, 13 Apr 2019	Prob (F-statistic):	0.000846
Time:	02:38:32	Log-Likelihood:	-16.380
No. Observations:	9	AIC:	36.76
Df Residuals:	7	BIC:	37.15
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	11.7556	1.041	11.295	0.000	9.294 14.217
tannin	-1.2167	0.219	-5.565	0.001	-1.734 -0.700

Omnibus:	0.466	Durbin-Watson:	2.937
Prob(Omnibus):	0.792	Jarque-Bera (JB):	0.227
Skew:	0.319	Prob(JB):	0.893
Kurtosis:	2.554	Cond. No.	9.06

Exercício

Usando a base HBAT.csv, faça uma regressão linear simples (1 variável independente X) prevendo uma variável dependente Y. Considere como X as colunas x9 até x18 (serão 10 modelos ao total).

Considere x19 como a variável dependente Y.

Baseado na informação abaixo, sobre cada uma das variáveis analisadas, tire suas conclusões

Database

Independent Variables				
X ₆ Product Quality	X ₁₃ Competitive Price			
X ₇ E-Commerce Activities	X ₁₄ Warranty and Claims			
X ₈ Technical Support	X ₁₅ New Products			
X ₉ Complaint Resolution	X ₁₆ Ordering and Billing			
X ₁₀ Advertising	X ₁₇ Price Flexibility			
X ₁₁ Product Line	X ₁₈ Delivery Speed			
X ₁₂ Salesforce Image				

Dependent Variable

X₁₉ Satisfaction

Exercício

```
import pandas as pd
import statsmodels.api as sm
import os
os.chdir("D:\Dropbox\Fund Prog e
Estatistica\db")
dados = pd.read csv("HBAT.csv")
# Variável independente
X = ["x" + str(i) for i in range(9,19)]
# Variável dependente
y = pd.DataFrame(dados["x19"])
```


Exercício

```
for independente in X:
    x = pd.DataFrame(dados[independente])
    x = sm.add constant(x)
    # OLS - Ordinary Least Squares
    model = sm.OLS(y, x).fit()
    # Exibindo as previsões para o conjunto passado
    # model.predict(x)
    # Exibindo as estatísticas do modelo
    print(model.summary())
```


Resultados

OLS Regression Results

============	======			========	=========
Dep. Variable:		x19	R-squared:		0.333
Model:		OLS	Adj. R-square	d:	0.326
Method:		Least Squares	F-statistic:		48.92
Date:		Fri, 26 Apr 2019	Prob (F-stati	stic):	3.30e-10
Time:		13:49:22	Log-Likelihoo	d:	-138.69
No. Observation	ns:	100	AIC:		281.4
Df Residuals:		98	BIC:		286.6
Df Model:		1			
Covariance Type	e :	nonrobust			
==========	=	===========	=========	=======	
		f std err 			_
		1 0.529			
x18	0.9364	0.134	6.994 0.00) (1.202
Omnibus:	=====	0.361	======= Durbin-Watson	======= :	1.922
Prob(Omnibus):		0.835	Jarque-Bera (JB):	0.448
Skew:		-0.136			0.799
Kurtosis:		2.818	Cond. No.		22.7

Coeficiente de determinação R2

Cálculo de R2 pode ser feita através da soma do erro dos quadrados (SSE) e da soma dos quadrados da variável de resposta (SSR)

$$SST = SSE + SSR$$

$$\sum (y - \bar{y})^2 = \sum (y - \hat{y})^2 + \sum (\hat{y} - \bar{y})^2$$

Exercício

Sabendo as fórmulas para a soma dos quadrados do erro, da regressão e do total, escreva funções que retornem seus valores e, a partir delas, calcule o coeficiente de determinação

```
real = np.array(y)
yhat = np.array(pd.DataFrame(model.fittedvalues))

SSE = sum((real-yhat)**2)

SSR = sum((yhat-real.mean())**2)

SST = sum((real-real.mean())**2)

R2 = SSR/SST

1 - SSE/SST
```


R² alto é bom?

Segue um exemplo de R^2 = 98,5%, onde o gráfico resíduos vs previstos apresenta um padrão (isto é indesejável)

Facens

Em algumas áreas do conhecimento, como previsão de comportamento humano, é esperado um R² abaixo de 0,5. Isto porque seres humanos são difíceis de serem previstos.

R² ajustado

R² ajustado é preferível ao R², pois considera os graus de liberdade de cada soma dos quadrados

$$R_{adj}^2 = 1 - \frac{SSE}{df_{\varepsilon}}$$

$$\frac{SSE}{df_{\tau}}$$

R² penaliza o pesquisador quando este insere mais uma variável independente na regressão

Premissas da Regressão Linear

- Linearidade
- Y é normalmente distribuído
- $E(\varepsilon|X) = 0$
- Residuos normal i.i.d.
- $Var(\varepsilon|X) = \sigma^2 I$ (Variância homogênea = Homocedasticidade)

Análise do Erro

Homocedasticidade

```
import matplotlib.pyplot as plt
import scipy.stats as stats

plt.plot(model.fittedvalues, model.resid, 'o')
plt.title('Residuals vs Fitted Values')
plt.xlabel('Fitted Values')
plt.ylabel('Residuals')
plt.show()
```

Residuals

Fitted Values

Análise do Erro

Normalidade do Erro – $N(0, \sigma^2)$

```
z = (model.resid - model.resid.mean()) / model.resid.std()
stats.probplot(z, dist="norm", plot=plt)
plt.title("Normal Q-Q plot")
plt.show()

#Teste de Normalidade
stats, p = stats.shapiro(model.resid)
print("W: %.4f p-value: %.4f" % (stats,p))
Normal Q-Q plot
Normal Q-Q plot
```

#Gráfico de Densidade import seaborn as sns sns.distplot(model.resid)

Regressão Linear – Treinamento e Teste

Métodos de Treinamento

Métodos de treinamento

Holdout:

- Divisão em dois grupos de amostra: p e (1-p), p=2/3
- não permite avaliar o quanto o desempenho de uma técnica varia quando diferentes combinações de objetos são apresentadas em seu treinamento.

Amostragem aleatória

 diversas partições aleatórias e obter uma média de desempenho em holdout, um método às vezes referenciado como random subsampling

Métodos de treinamento

Validação cruzada r-fold (Ex: r=3)

No método de validação cruzada r-fold, o conjunto de exemplos é dividido em r subconjuntos de tamanho aproximadamente igual. Os objetos de r – 1 partições são utilizados no treinamento de um preditor, o qual é então testado na partição restante. Esse processo é repetido r vezes, utilizando em cada ciclo uma partição diferente para teste. O desempenho final do preditor é dado pela média dos desempenhos observados sobre cada subconjunto de teste. Figura 9.2(c) emprega r = 3.

Leave-one-out

• No caso extremo em que r = n, em que n representa o número de casos disponíveis, tem-se o método leave-one-out. No leave-one-out, a cada ciclo exatamente um exemplo é separado para teste, enquanto os n-1 exemplos restantes são utilizados no treinamento do preditor. O desempenho é dado pela soma dos desempenhos verificados para cada exemplo de teste individual. Esse método produz uma estimativa mais fiel do desempenho preditivo do modelo. Porém, ele é computacionalmente caro, e geralmente aplicado somente em amostras de dados pequenas.

Métodos de treinamento

Bootstrap

 No método booststrap, r subconjuntos de treinamento são gerados a partir do conjunto de exemplos original.
 Os exemplos são amostrados aleatoriamente desse conjunto, com reposição.

Regressão Linear – Treinamento e Teste

```
from sklearn.linear model import LinearRegression
from sklearn.model selection import train test split
import seaborn as seabornInstance
X = ["x" + str(i) for i in range(9,19)]
X = dados[X]
y = dados["x19"]
X train, X test, y train, y test = train test split(X, y,
test size=0.2, random state=0)
linearRegressor = LinearRegression()
linearRegressor.fit(X train, y train)
```


Obtenção dos Resultados

Intercepto ou Coeficiente Linear

print(linearRegressor.intercept_)

Coeficiente Angular (slope)

print(linearRegressor.coef_)

Previsão

```
y_pred = linearRegressor.predict(X_test)
print(y_pred)

df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
```


Métricas de Avaliação da Previsão

Erro Médio Absoluto (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y - \hat{y}|$$

Erro Quadrático Médio (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2$$

Raiz Quadrada do Erro Quadrático Médio (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2}$$

Previsão

from sklearn import metrics

MAE

```
print('Mean Absolute Error:',
metrics.mean_absolute_error(y_test, y_pred))
```

MSE

```
print('Mean Squared Error:',
metrics.mean squared error(y test, y pred))
```

RMSE

```
print('Root Mean Squared Error:',
np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```


Regressão Múltipla

```
os.chdir("D:\Henrique\Documents\POS\Aula")
data = pd.read csv("train.csv")
X = data[["Pclass", "Fare"]]
y = data["Survived"]
X = sm.add constant(X)
model = sm.OLS(y, X).fit()
predictions = model.predict(X)
model.summary()
```


Dep. Variable:	Survived	R-squared:	0.122
Model:	OLS	Adj. R-squared:	0.120
Method:	Least Squares	F-statistic:	61.61
Date:	Sat, 13 Apr 2019	Prob (F-statistic):	8.78e-26
Time:	03:02:29	Log-Likelihood:	-564.07
No. Observations:	891	AIC:	1134.
Df Residuals:	888	BIC:	1149.
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf. Int.]
const	0.7310	0.060	12.197	0.000	0.613 0.849
Pclass	-0.1643	0.022	-7.501	0.000	-0.207 -0.121
Fare	0.0010	0.000	2.714	0.007	0.000 0.002

Omnibus:	1030.575	Durbin-Watson:	1.966
Prob(Omnibus):	0.000	Jarque-Bera (JB):	88.979
Skew:	0.456	Prob(JB):	4.77e-20
Kurtosis:	1.750	Cond. No.	246.

Matriz de Correlação

Permite a escolha de qual variável entra primeiro na fórmula da regressão múltipla

```
data = pd.DataFrame(dados, columns=X)
data['y'] = y
np_data = np.array(data)
print(np.corrcoef(data[:10])
```


Regressão Múltipla

Modelo de regressão múltipla, usando fórmula

```
model = smf.ols('y \sim x9 + x10 + x11', data=data).fit()
```

Exibindo resultados

model.summary()

Exibindo resultados

model.params
model.tvalues

Trabalho

Encontrar uma base de dados pública e rodar uma regressão logística e uma regressão linear, usando conceitos de treinamento e teste.

Discutir variáveis e apresentar a qualidade dos modelos treinados.

Resultados deverão ser apresentados em ppt, na aula do dia **07 de dezembro de 2019**

Submissão do ppt: via Canvas, até o início da aula (7:59h de 07/12)

Tempo de apresentação: 10 minutos

Grupo: 2 integrantes

Exercício

Escreva um código para rodar amostragem aleatória com 1.000 repetições, para prever X19 em função de X9

