	EPIT/	4 / Ii	nfoS1#
--	-------	--------	--------

NOM :

Juin 2018

Prénom :

Partiel Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (5,5 points – pas de points négatifs)

Choisissez la ou les bonnes réponses :

Soit le circuit suivant :

Q1. Ce circuit comprend

- a. 5 nœuds, 5 branches et 2 mailles
- b. 4 nœuds, 3 branches et 3 mailles
- (c.) 4 nœuds, 6 branches et 6 mailles
- d. 5 nœuds, 4 branches et 3 mailles

Q2. Si $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R$, quelle est l'expression de la résistance équivalente vue par E?

$$b - \frac{7}{13} . R$$

$$\frac{12}{7}$$
. R

$$d = \frac{7}{12.R}$$

Q3. Pour mesurer l'intensité d'un courant dans un dipôle, on utilise un ampèremètre branché en série avec ce dipôle.

b- FAUX

Q4. Si on applique la loi d'Ohm avec la tension en V et le courant en mA, on obtient directement la résistance en :

a- *A*

b- Ω

c- $m\Omega$

Q5. Dans le circuit ci-contre, que vaut U?

- a.
- 6 V
- b.
- -6V

- (c) 3V
- d. 9 V

- Q6. On considère le circuit ci-contre. Quelle est la bonne formule ?
 - a. $I_1 = \frac{1}{3R}$. I
 - (b) $I_1 = \frac{2}{3} I$
 - c. $I_1 = \frac{1}{3} I$
 - d. $I_1 = \frac{1}{2} I$

- Q7. On ne peut pas appliquer le théorème de superposition si : (2 réponses)
 - les sources ne sont pas indépendantes
 - þ. le circuit est linéaire
 - les sources sont indépendantes
 - le circuit n'est pas linéaire
- Soit le circuit ci-contre: Quelle est Q8. l'expression de U lorsqu'on annule E et qu'on conserve I_2 ?

- a. $U = R_4 I_2$ b. $U = -\frac{3R}{4}I_2$
- d. $U = \frac{R}{4}I_2$
- Q9. Le théorème de Thévenin remplace un dipôle générateur complexe par une :
 - source de tension idéale en parallèle avec une résistance a.
 - b. source de courant idéale en parallèle avec une résistance
 - source de tension idéale en série avec une résistance (c.)
 - source de courant idéale en série avec une résistance
- **Q10.** Dans le théorème de Thévenin, la tension E_{th} du générateur est aussi appelée :
 - La tension à vide

Aucune de ces réponses c.

La tension de court-circuit

Exercice 2. Lois et théorèmes (7,5 points)

Soit le circuit suivant :

1. Théorème de superposition : Déterminer U en utilisant le théorème de superposition.

$$CP. U = U_{1} + U_{2} + U_{3}$$

$$U = \frac{2(E_{1} - E_{2}) + 6R_{3} - 3E_{5}}{14}$$

2. Théorème de Thévenin

a. Déterminer le générateur de Thévenin vu par la résistance 2R placée entre A et B. (Vous pourrez utiliser la méthode de votre choix (définitions du théorème ou équivalences Thévenin/Norton)).

b. En déduire l'expression de la tension U.

En uhlisant la formule du PDT, on aura
$$U = \frac{2R}{2R + Rth} \times E + h$$

$$= 0$$

$$U = \frac{2(E_1 - E_2) + 6RI_0 - 3E5}{M}$$

Exercice 3. Théorèmes (7 points)

Soit le montage ci-dessous :

En utilisant la méthode de votre choix, déterminer l'expression de la tension aux bornes de la résistance R_1 en fonction de E, I, R et R_1 .

$$\frac{3E}{2R} + I = \frac{3E}{2R} +$$

Avec le théorème de superposition, on obtiendait.

" Etat 2: 6 a conserve
$$2E$$
 "en bas": $U_2 = \frac{2R_1}{2R_1+R_1}E$