

به نام خدا

تمرین چهارم

سیگنالها و سیستمها – بهار ۱۴۰۱

توضيحات

- پاسخ به تمرینها باید به صورت انفرادی صورت گیرد و درصورت مشاهده هر گونه تقلب نمره صفر برای کل تمرین منظور خواهد شد.
 - پاسخها مرتب و خوانا باشند.
 - مهلت ارسال پاسخها تا ساعت ۲۳:۵۹ جمعه ۹ اردیبهشت میباشد.
- پاسخهای بخش تئوری را به صورت pdf و پاسخهای بخش عملی را به صورت zip با قالب نامگذاری (HW5_FarzadRadnia_9831024 بارگذاری نمایید. (مثال: 4W8_FarzadRadnia_9831024)
- در صورت بروز هرگونه ابهام، سوال خود را از طریق ایمیل SS.2022Spring@gmail.com یا شناسه ی "y با تدریسیاران درس مطرح کنید. موضوع ایمیل را "تمرین تئوری/عملی x: سوال y: سوال y: سوال از فصل y: سوال از فصل y: سوالت خارج از تمرین از موضوع "سوال از فصل y" استفاده نمایید.

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیر کبیر

بخش اول - تمارین تئوری

۱. با استفاده از شکل سیگنالها و روابط صریح، تبدیل فوریه سیگنالهای پیوسته زمان زیر را بیابید.

- a. $e^{-2|t-1|}$
- b. $e^{(-1+j2)t}u(t)$
- c.

d.

- e. $\frac{\sin(3t)\cos(t)}{\cos(t)}$
- f. $\int_{-\infty}^{t} \frac{1}{1+\tau^2} d\tau$
- g. $e^{-3|t|+j\frac{\pi}{6}t}$
- h. $te^{-2|t-1|}$

۲. عکس تبدیل فوریه سیگنال های زیر را به دست آورید.

a)
$$X(\omega) = \frac{\omega \cos \omega - \sin \omega}{\omega^2}$$

b)
$$X(\omega) = \pi[\delta(\omega+6) + \delta(\omega-6)] * \frac{2}{9+\omega^2}$$

c)
$$X(\omega) = \frac{5}{j\omega+3} + \frac{4}{j\omega+7} = \frac{9j\omega+47}{-\omega^2+10j\omega+21}$$

d)
$$X(\omega) = \frac{\sin^2(-2\omega)}{4\omega^2}$$

. در سیستمی که در ادامه آمده است، سیگنالهای $D(j\omega)$, $C(j\omega)$, $B(j\omega)$, $A(j\omega)$ را به دست آورید.

$$x(t)=rac{sin(\pi t)}{\pi t}$$

$$p(t)=rac{sin(2\pi t)}{\pi t}$$

$$q(t) = cos(3\pi t)$$

$$H(jw)=2u(\omega+3\pi)-2u(\omega-3\pi)$$

$$r(t)=rac{sin(\pi t)}{\pi t}$$

۴. پاسخ فرکانسی سیستم LTI پایدار به صورت زیر است:

$$H(j\omega) = \frac{j\omega + 2}{6 - \omega^2 + 5j\omega}$$

الف) یک معادله دیفرانسیل که رابطه ورودی-خروجی این سیستم را مشخص میکند بنویسید.

ب) پاسخ ضربه را برای این سیستم محاسبه کنید.

ج) خروجی این سیستم را به ازای ورودی های زیر محاسبه کنید.

a)
$$x_1(t) = e^{-4t}u(t) - te^{-4t}u(t)$$

b)
$$x_2(t) = e^{2t}$$

۵. یک سیستم LTI (با سکون ابتدایی) با معادله دیفرانسیل زیر توصیف شده است.

$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 9y(t) = \frac{d^2x(t)}{dt^2} + 3\frac{dx(t)}{dt} + 2x(t)$$

الف) پاسخ ضربه این سیستم را بدست آورید.

ب) وارون این سیستم را g(t) مینامیم. g(t) سکون ابتدایی دارد و با یک معادله دیفرانسیل توصیف میشود. این معادله دیفرانسیل را بیابید.

ج) پاسخ ضربه g(t) را بیابید.

ج. (امتیازی) فرض کنید تبدیل فوریه سیگنال x(t)، به صورت سیگنال $X(j\omega)$ باشد. در این صورت در هر یک از حالات زیر مشخص کنید سیگنال x(t) باید چه خاصیتی را دارا باشد تا رابطه ذکر شده برقرار باشد.

$$\int_{-\infty}^{+\infty} X(j\omega)d\omega = 0$$
 (الف

$$\int_{-\infty}^{+\infty} \omega X(j\omega) d\omega = 0 \ (ب$$

ج)
$$X(j\omega)$$
 متناوب باشد.

د) به ازای یک lpha حقیقی $e^{jlpha\omega}X(j\omega)$ حقیقی باشد.

بخش دوم- تمارین شبیهسازی

برای ارسال این بخش، فایلهای شبیه سازی را به همراه فایل pdf از تصاویر سیگنالهای رسم شده، در قالب یک فایل با فرمت zip در سامانه بارگذاری نمایید.

تبدیل فوریهی سیگنالهای پیوسته زمان

۱. تابعی پیادهسازی کنید که سیگنالی را دریافت کرده و سیگنالِ تصویرِ تبدیل فوریهیِ آن، در محدودهی اعداد حقیقی را بازگرداند.(برای انتگرال استفاده از توابع آمادهی کتابخانهای مجاز است.)

7. ابتدا سیگنالهای زیر را در بازه ی زمانی [15, 15] و اندازه گام [0.01] رسم کرده و سپس با استفاده از تابع بخش قبل، تصویر تبدیل فوریه ی آنها را در محدوده ی اعداد حقیقی و در بازه ی فرکانسی [-15, 15] و اندازه گام [0.01] رسم کنید.

$$\mathrm{a.}\,x_1(t) = rect\left(\frac{t}{2}\right) = \begin{cases} 1, |t| \leq 1\\ 0, |t| > 1 \end{cases}$$

$$b. x_2(t) = \frac{\sin(t)}{\pi t}$$

$$c. x_3(t) = \frac{\cos(t)\sin(3t)}{\pi t}$$

$$d x_4(t) = \left(\frac{\sin(t)}{\pi t}\right)^2$$