Дана автоматная грамматика G=(Vn, Vt, P, S). $Vn=\{S, A, B, C\}$, $Vt=\{a, b, c, d\}$, $P=\{1.S\rightarrow dA \ 2.A\rightarrow aB \ 3.A\rightarrow cB \ 4.B\rightarrow bC \ 5.B\rightarrow dC \ 6.B\rightarrow d \ 7.C\rightarrow bC \ 8.C\rightarrow b\}$

- 1.(10р.) Построить конечный автомат эквивалентный данной грамматике G.
- 2. (10р.) Определить регулярное выражение для всех слов грамматики.
- 3. (10p.) Для одной допустимой цепочки, построить представление x=uvw, удовлетворяющее свойствам леммы о разрастании.
- 4. (20р.) Если данный конечный автомат является недетерминированный, тогда измените его, построив эквивалентный ему, детерминированный КА.
 - 1. Постройте эквивалентный конечный автомат.

$G=({S, A, B, C}, {a, b, c, d}, P, S),$	$AF=(Q,\Sigma,\delta,X,F), Q=\{I, J, K, N\} \cup \{F\},$	
где Р:	$\Sigma = \{0, 1, f, v, a\},\$	
1.S→dA	$\delta(S, d) = \{A\},\$	
2.A→aB	$\delta(A, a) = \{B\},\$	
3.A→cB	$\delta(A, c) = \{B\},\$	
4.B→bC	$\delta(B, b) = \{C\},\$	
5.B→dC	$\delta(B, d) = \{C\},\$	
6.B→d	$\delta(B, d) = \{F\},\$	
7.C→bC	$\delta(C, b) = \{C\},\$	
8.C→b	$\delta(C, b) = \{F\},\$	

2. Определить регулярное выражение для всех слов грамматики:

$$(a+c)(b^*+db^*)$$

3. Для одной допустимой цепочки, построить представление x=uvw, удовлетворяющее свойствам леммы о разрастании.

4. Если данный конечный автомат является недетерминированный, тогда измените его, построив эквивалентный ему, детерминированный КА.

 $AF'=(Q', \Sigma, \delta', q0, F'), \Sigma=\{a, b, c, d\},\$

- 1) **Q'** = **{S**}
 - $\delta(S, a) = []$
 - $\delta(S, b) = []$
 - $\delta(S, c) = []$
 - $\delta(S, d) = [A]$
- 2) **Q'** = {**S**, **A**}
 - $\delta(A, a) = [B]$
 - $\delta(A, b) = []$
 - $\delta(A, c) = [B]$
 - $\delta(A, d) = []$
- 3) $Q' = \{S, A, B\}$
 - $\delta(B, a) = []$
 - $\delta(B, b) = [C]$
 - $\delta(B, c) = []$
 - $\delta(B, d) = [CF]$
- 4) **Q'** = {**S**, **A**, **B**, **C**, **CF**}
 - $\delta(C, a) = []$
 - $\delta(C, b) = [CF]$
 - $\delta(C, c) = []$
 - $\delta(C, d) = []$
- 5) $Q' = \{S, A, B, C, CF\}$
 - $\delta(CF, a) = []$
 - $\delta(CF, b) = [CF]$
 - $\delta(CF, c) = []$
 - $\delta(CF, d) = []$
- 6) **Q'= {S, A, B, C, CF}**

 $F' = \{CF\}$

