

IN THE SPECIFICATION

Please amend the specification as indicated below, referencing paragraph numbers as listed in the published application:

f1
[0050] The feed roller 50 is typically as wide as the paper roll, and includes drive rollers 142 and intermediate bosses 146 on the drive shaft 144. The working drive rollers or drive bosses 142 (FIG. 3) are typically an inch or less in width, with intermediate bosses 146 (FIG. 3) located between them. Intermediate bosses 146 are slightly less in diameter than the drive rollers or drive bosses 142, having a diameter 0.015 to 0.045 inches less than the drive rollers or drive bosses 142. In this embodiment, the diameter of the intermediate bosses 146 is 0.030 inches less than the drive roller 142. This configuration of drive rollers or drive bosses 142 and intermediate bosses 146 tends to prevent the dispensing paper towel from becoming wrinkled as it passes through the drive mechanism and reduces friction, requiring less power to operate the feed roller 50.

f2
[0053] In a waterproof version of the dispenser, a thin piece of foam rubber rope is disposed within a unshaped groove of the tongue-in-groove mating surfaces of the cover 22 and the casing 48. The dispensing shelf 62 is a modular component, which is removable from the dispenser 20. In the waterproof version of the dispenser 20, the dispensing shelf 62 with the molded turning ribs 52 is removed. By removing the modular component, dispensing shelf 62, there is less likelihood of water being diverted into the dispenser 20 by the dispensing shelf 62, acting as a funnel or chute should a water hose or spray be directed at the dispenser 20, by the shelf and wetting the paper towel. The paper towel is dispensed straight downward. A most likely need for a waterproof version of the dispenser is where a dispenser is located in an area subject to being cleaned by being hosed down. The dispenser 20 has an on-off switch which goes

f2 Con to an off state when the cover 22 is pivoted downwardly. The actual switch is located on the lower face of the module module 54 and is not shown.

A3 [0061] The actual locking occurs as shown in FIG. 4C. The locking bar 36 closest to the rear of the casing 48 is adapted to fit into a generally unshaped mating structure 118 which is adapted to hold the locking bar 36 and prevent it and the carousel assembly 30 from rotating. When the locking bar 36 is pulled away from the rear of the casing 48, the locking bar 36 is disengaged from the mating structure 118. The mating structure has an upper "high" side 120 and a lower "low" side 122, where the low side has a "ramp" 124 on its lower side. As the locking bar 36 is pulled out to clear the high side 120, the carousel assembly 30 is free to rotate such that the top of the carousel assembly 30 rotates up and away from the back of the casing 48. As the carousel assembly 30 begins to rotate, the user releases the locking bar 36 which, under the influence of symmetrically placed compression springs 70, 72 returns to its rest position. As ~~the~~ the carousel assembly rotates, the end of the symmetrical locking bar 36 which originally was disposed toward the user now rotates and contacts the ramp 124. A locking bar spring, e.g., 70 or 72, is compressed as the end of the locking bar 36 contacting the ramp 124 now moves up the ramp 124. The end of the locking bar 36 is pressed into the space between the low side 122 and the high side 120, as the end of the locking bar 36 slides past the low side 122. A locked position for the carousel assembly 30 is now reestablished.

A4 [0094] The time constant for charging the capacitor XC6 206 208 is determined by resistors XVR1 220, XR13 222 and XR15 218. The resistor XR15 218 and the diode XD5 216 determine the time constant for discharge of the capacitor XC6 208.