9410601

Phytotoxicology 2001 and 2002 Investigations: Algoma Ore Division, Twp. Of Michipicoten (Wawa)

September 2003

Phytotoxicology 2001 and 2002 Investigations: Algoma Ore Division, Twp. Of Michipicoten (Wawa)

Ministry of the Environment Phytotoxicology 2001 and 2002 Investigations: Algoma Ore Division, Twp. Of Michipicoten (Wawa)

> Phytotoxicology Investigator/Author William Gizyn

Report No. Phyto-S5021-2002 September 2003

Ontario Ministry of the Environment Environmental Monitoring and Reporting Branch Biomonitoring Section, Phytotoxicology Investigations Unit 125 Resources Rd., North Wing, 2nd flr., Toronto, M9P 3V6

Copyright: Queen's Printer for Ontario, 2004

This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 3918e01

Introduction

For several decades, Algoma Steel Corporation operated an iron ore sintering plant near the Wawa townsite in the Township of Michipicoten. Algoma Ore Division (AOD) mined a low grade iron ore, siderite, at nearby deposits and processed this ore at the sinter plant to reduce the sulphur content and make it more suitable for blast furnace feed. Much of the processed ore was shipped to the Algoma steel making operation in Sault Ste. Marie. The primary air emission from the sinter plant was sulphur dioxide, which caused considerable environmental damage in an area to the north-east, known locally as the "fume-kill zone".

AOD ceased operations in 1998. The sinter plant has been razed and the mines closed. However, during its operation the sinter plant also released arsenic, which was present in the iron ore, and a concern about the effects of the soil-deposited arsenic on the health of Wawa residents was raised. In response, in 2000 the Wawa Environmental Steering Committee and the Medical Officer of Health for the Algoma Health Unit commissioned a human health risk assessment and an arsenic exposure survey of the Wawa townsite residents. The later included urine sampling for arsenic determination.

In 2001, in support of the arsenic exposure survey, the MOE Sault Ste. Marie District office requested the assistance of the Phytotoxicology Investigations Unit to sample soil on the residential properties where occupants under the age of 13 had participated in the exposure study. In 2002, additional properties were identified for sampling, either because they were inadvertently excluded the previous year or because other families had joined the exposure study. The properties to be sampled were all identified to the Phytotodxicology investigator as those where urine samples from young residents had been collected. The residential soil arsenic concentrations were provided to the consultant performing the exposure study prior to the preparation of this report.

Additionally, the Phytotoxicology Investigations Unit was asked to evaluate whether the soil concentrations of arsenic encountered on residential properties in Wawa were capable of inhibiting vegetation growth, as arsenic is known to be potentially phytotoxic. In the past, some forms of arsenic were used as herbicide.

Since there were two separate tasks in this investigation, they will be discussed separately in this report.

Investigation Methodology - Residential Property Sampling

Soil samples were collected by Phytotoxicology scientists at 28 residential properties on October 3 and 4, 2001, and at 11 additional properties on July 29, 2002. At most properties two sample sites were established, the sodded portions of the front and rear yards. Occasionally, a side yard was designated as a third sample site. Sampling was conducted using a stainless steel, tube-type soil sampler that extracts a cylindrical core of soil when it is plunged into the ground. Twelve soil cores were collected at each sample site, each to a depth of five centimetres in a grid pattern that covered the entire sample site, and placed into a labelled polyethylene bag. The sampling was repeated to yield duplicate samples from each sample site. The locations of the

properties sampled to support the arsenic exposure survey (i.e. urine analysis) is shown in Figure 1.

Samples were delivered to the Phytotoxicology processing laboratory where they were air dried, sieved through a 2 mm soil sieve to remove stones, roots etc., and then ground in an agate mortar until the soil material passed through a 355 µm soil sieve. Samples were then forwarded to the MOE Laboratory Services Branch for analysis of major and minor soil elements, including arsenic.

Results - Residential Property

All data produced by the analysis of soil samples collected at residential properties are reported in Tables 1. 2 and 3. The data were organized into these three tables based on the locations within the Wawa townsite that samples were collected. Table 1 reports data from properties located along Government Road. near the AOD sinter plant. Table 2 contains data for properties east of Third Avenue and Mission Road. The housing in this area is older and hence it can be assumed that the soil on the property has been less disturbed and exposed to deposition of material from AOD for a longer period of time. Housing west of these streets is newer and hence soil on these properties would have been disturbed by construction and exposed to AOD emissions and arsenic deposition for less time. Data for these properties is reported in Table 3. The soil data in these tables are compared to the Ministry's soil guidelines as outlined in the Guideline for Use at Contaminated Sites in Ontario (see Appendix 1). Ministry Table F values are background-based guidelines and Table B are effects-based guidelines. The Ministry's OTR₉₈ guidelines (see Appendix 2) are substituted where there are no Table F values. Table B guidelines are not available for all elements, either because there is insufficient toxicological information to establish a guideline, because the element is naturally present in very high concentrations, or because an element is essential for plant growth. Consistent exceedences of Table F guidelines (in bold font in the tables) are an indication the soil has been impacted by a contaminant source.

Discussion - Residential Property

The primary objective of the 2001 and 2002 investigations was to provide soil arsenic concentration data for use by the consultant in the arsenic exposure study. One part of this study was to determine if there was a relationship between the concentrations of arsenic found in the soil of a residential property, and the urine arsenic concentration of residents, particularly young children residing at that property. The soil data for this objective were provided to the consultant prior to the preparation of this report.

The collection of soil samples at various locations throughout the Wawa townsite, as well as from locations close to the AOD operations, provided an opportunity for a more in-depth analysis of how the long-term sinter plant emissions affected the soil chemistry. The comprehensive analysis of the soil samples produced an extensive database of element

we with

concentrations. This made it possible to look for spacial trends across Wawa as well as relationships between elements, and specifically with arsenic.

The residential sampling locations were separated into three categories based on their proximity to AOD and relative length of time that a property has been used for residential purposes. As show in Figure 1, only three properties occurring on Government Road near AOD were identified for sampling as part of the exposure study. Seven sites (yards) were sampled from those three properties. All remaining properties were within the Wawa townsite proper. As a result of the low sample number in this part of the townsite spacial concentration trends should be interpreted with caution.

During the sampling it became apparent that the townsite appeared to have been developed in two stages. Ho uses on the properties east of Third Avenue and Mission Road tended to be older than those to the west of this line. In fact, some to the west were clearly new with some lots still undeveloped.

The rationale for the first category was proximity to AOD; these properties were much closer to the sintering plant than those in the townsite. They were also along a major road that would have been used by vehicles from AOD. These vehicles could have tracked arsenic contaminated material from the plant site. The separation of the second and third category was intuitively based. Properties that contained older housing were more likely to have received air borne deposition of arsenic dust for a longer time period, particularly during the earlier years of AOD's operation s when emission controls were less effective. Construction of recent housing would have disturbed the indigenous soil on these properties and could have involved import of topsoil for landscaping. It would, therefore, be reasonable to expect the highest soil arsenic concentrations to the northwest nearest AOD, the next highest in older residential yards on the east side of the townsite, and lower soil arsenic levels in the newer homes west of Third Ave. and Mission Rd. and east of Tamarack Ave.

To determine if a distribution pattern of arsenic was present, frequency distributions of arsenic concentrations for all samples (replicates considered separately) were generated by calculating the frequency of concentrations in the ranges 0-10 μ g/g through 90-100 μ g/g and >100 μ g/g. The results of this analysis are represented in Figure 2. Each graph in Figure 2 also reports the number of samples (N) that were present in each category of properties.

The frequency distribution of arsenic concentrations for the relatively few samples collected from properties near AOD indicates two distinct groups. An examination of Table 1 shows that six samples from one property account for all data in the 0-10 μ g/g range, while the remaining eight samples from two other properties in the same vicinity account for all data in the high concentrations ranges, i.e. greater than 60 μ g/g.

A possible explanation is house age. The two properties with the high arsenic concentrations contain houses that appear to be several decades in age. Consequently, their yards have, in all probability not been disturbed since the houses were constructed. The soil in these yards would have received and retained arsenic and other elements that were emitted by AOD. They are also situated next to a road that would have been used by vehicles leaving the AOD site, possibly tracking arsenic contamination from the site itself.

The third property contained a house of recent construction, surrounded by yards that were meticulously landscaped and maintained. It is highly probable that the soil at the surface (which was sampled) is not indigenous to this property, and has not received the deposition of arsenic that other nearby soil has. Also, the residential portion of this property is set in a cleared part of a wooded area, well back from the public road. Evidence that the arsenic data reported for this residential yard is not indicative of the deposition that fell onto the woodlot around the property is provided in the data for the bioassay soil collected from Site 9, which happened to be just a few metres from the rear lawn. The arsenic concentration for this soil was $143 \mu g/g$ (Table 5), whereas the soil from the adjacent residential lawn had less than $7 \mu g/g$ arsenic (Table 1).

The frequency distributions for all remaining properties, separated into those on the older east part of Wawa and those on the newer west part of the townsite, distinguish themselves from the two properties near AOD (which are probably more typical of others near AOD) because they had arsenic concentrations that are almost all below $40 \mu g/g$. In comparison, all soil samples from the two properties near AOD were above $60 \mu g/g$ arsenic.

Having established that residential property soil in the townsite proper has much lower arsenic concentrations on average than at those properties near AOD, it is worthwhile to see if there are any distinctions between east and west Wawa. The similarities between these two groups lies in the near identical frequencies in the 10-20 μ g/g and 20-30 μ g/g intervals. The differences are in the higher frequency of samples with more than 30 μ g/g arsenic from the eastern older side of the townsite and a concomitant higher frequency of samples with less than 10 μ g/g from the western side.

If this trend is in fact real, then two explanations can be proposed. First of all, older properties would have been subjected to longer periods of arsenic deposition. Secondly, many of the west side properties are very new housing sites and the possibility of uncontaminated landscaping soil being used to finish the yards appears highly probable. Never-the-less, most of the Wawa townsite properties have reasonably low arsenic concentrations compared to those near AOD. These townsite properties were probably not subjected to fugitive or vehicle-tracked dust from AOD. Also, because of the relatively low height of the AOD stack, the ridge between AOD and the townsite, and the predominantly southwest winds during the non-snow season, much of the stack emissions would have bypassed the townsite depositing instead in the "fume-kill zone" to the northeast. The soil arsenic levels are highest on the residential properties along Government Rd. nearest AOD because these properties are among the oldest in town and are very close to AOD and so they would have been impacted not only by stack deposition but also from fugitive emissions off the AOD plant site and from vehicle traffic.

The final point of discussion regarding the arsenic data has to focus on what appears to be an anomalous property in the east Wawa group. One sample from the back yard was determined to contain 300 μ g/g of arsenic (see Table 2). This datum was substantiated by repeat laboratory analysis. The duplicate sample for that yard contained 37 μ g/g. It is clear that a very heterogeneous distribution of arsenic is present in the back yard soil at this property. The source of arsenic at this property was not identified but given that at least one other property had fill material imported from the AOD site, it is possible that others may have also. The most

probable use of such material would have been for driveway surfaces, construction aggregate, and fill.

As is evident in the data tables, the soil samples were analysed for much more than just arsenic. Given that these data are available, a brief look at the other soil elements is warranted. A statistical procedure was performed that provided correlation coefficients between each possible pair of elements. The results of this analysis is reported in Table 4 as a correlation matrix.

Due to the high number of samples available for this analysis, the level at which the correlation can be considered statistically significant is very low. In this analysis there were 162 samples and any correlation coefficient (r) with an absolute value of about 0.150 indicates a significant correlation at a confidence level of 99% (p<0.01). A positive r value means as one element increases the other element also increases in a consistent proportion. A negative r value indicates one element goes down in concentration as the other increases, or visa versa. The higher the r value the more consistent the relationship between the two and the greater the likelihood of a common origin. Clearly, there are many significant correlations between the concentrations of various pairs of elements in the soil samples collected.

It would be more useful, however, to focus only on those correlations that have the highest r values, and more specifically, those that are co-related to arsenic. To that end, the elements that are most highly correlated with arsenic are iron (r=0.6355) and manganese (r=0.6577). The correlation between iron and manganese is even greater (r=0.9270). This implies that iron and manganese concentrations are likely to be elevated on properties that have high arsenic levels. Since iron is naturally high in soil and both iron and manganese are essential plant nutrients, slightly elevated concentrations of these two elements should not adversely affect plant growth. Given that the purpose of the AOD operation was to process iron ore, and the ore was an arseno-pyrite, the arsenic-iron correlation could be expected. The fact that manganese emissions also occurred can be readily reconciled since the ore processed at AOD contained significant quantities of manganese.

Investigation Methodology - Bioassay

Arsenic can be phytotoxic, and concentrations above the MOE generic effects-based Table A guideline of 20 µg/g may cause injury to sensitive plant species. As this and previous Phytotoxicology investigations around Wawa have documented, soil arsenic concentrations in this community can substantially exceed the MOE generic Table A soil guideline. However, with the exception of the fume-kill zone, vegetation impacts have not been observed in the Wawa area. Although soil arsenic levels can be quite elevated in the fume-kill zone it is not likely that arsenic is a significant contributor to the vegetation damage in that area. The main reason the vegetation has been so dramatically impacted in the fume-kill zone is because of years of intense fumigation by sulphur dioxide, which killed the plants outright. With the plants destroyed and the organic matter in the soil eroded the site is very harsh and exposed and subject to extremes of heat, cold, and moisture stress, making it very difficult for forest-type plants to re-

colonize the fume-kill zone. With the complete cessation of emissions from AOD large areas of the fume-kill zone have re-vegetated with grasses and shrubs, particularly blueberry.

During the residential property sampling, bulk soil was collected at ten locations which were likely to provide a wide range of soil arsenic concentrations. This soil was collected for a bioassay to be conducted at the Phytotoxicology controlled environment laboratory to determine whether the concentrations of arsenic in the soil in Wawa are capable of causing an adverse effect on vegetation.

Once a candidate location was identified, a portable X-ray fluorescence spectrophotometer was used as a field screening measurement to determine the approximate soil arsenic concentration at that location to ensure that soil with a wide arsenic concentration range was being obtained. A garden spade was used to collect approximately ten litres of soil from the uppermost five centimetres at each site. Most of the locations could be described as parks, undeveloped green spaces, or vacant land near the sinter plant property. One location was a pile of soil and rock mixture that was to be used as fill on a residential property and was reported to have originated from the sinter plant property. The locations from which the bioassay soil was obtained are shown in Figure 1. The soil arsenic concentrations in the 10 bioassay samples ranged from $14~\mu g/g$ to $533~\mu g/g$ (see Table 5).

After air drying, the soil was screened through a two millimetre sieve and the sieved fraction was set aside for the bioassay. Samples for chemical analysis where taken from the now thoroughly homogenized bulk soil for laboratory quality assurance purposes, to confirm the field-screened arsenic levels, and insure there were no potentially phytotoxic levels of other chemical elements. Four replicate samples were taken from the three bulk samples collected in 2001 and three from the seven bulk samples collected in 2002. Processing of these samples destined for chemical analysis followed the same procedures as for the residential samples. In addition to soil with low arsenic concentrations (two sites with 14 μ g/g and one site with 15 μ g/g) collected from the Wawa area, a greenhouse potting soil was also used as a control. The control potting soil contained less than 17 μ g/g arsenic.

Bioassay Methodology

Each of the 10 bioassay soils, now thoroughly homogenized and screened to less than 2 mm, where transferred into three plastic pots. On August 14, 2002, each pot was seeded with five bush bean seeds (a standard bioassay plant known to be very sensitive to arsenic), watered, and placed into a temperature, lighting, and humidity controlled growth chamber. The seeds were allowed to germinate and the plants to develop. The young plants were watered as required. No fertilizer was added. The bioassay ended on September 19, 2004, after 35 days. The pots were removed from the chamber and the plants were photographed. Measurements of above ground plant biomass fresh weight, shoot length, and root elongation were recorded.

Report No Phyto-S5021-2002 Page 6 of 24

Bioassay Results

The chemistry of the bioassay soil samples is reported in Table 5. Values are reported as means of the four replicate samples. Arsenic was the only element that exceeded MOE Table A generic effects-based soil guidelines. Some bioassay treatment soils had levels of iron, magnesium, manganese, and/or zine that were marginally higher than normal background concentrations, but all were well below the Ministry's Table A generic effects-based soil guidelines. These marginally elevated concentrations of iron, manganese, magnesium, and zinc would not have adversely affected plant growth, in fact they may have been benificial as they are all nutrient elements that are essential for plant growth.

Photographs were taken at the end of the bioassay and are represented in Figure 3. These images have been cropped and scaled so that each image is at the same scale and a visual comparison of the response of the bean grown in the ten different soils can be readily made.

Table 6 summarizes the bean growth measurements for each soil arsenic treatment. The mean above ground plant biomass fresh weight was greatest for bean plants grown in 110 μ g/g arsenic, whereas the mean shoot length was longest at 14 μ g/g soil arsenic, and on average the plants with the longest roots grew in 350 μ g/g soil arsenic. On average, plant above ground biomass, shoot length, and root length were all marginally greater at the highest soil arsenic concentration of 533 μ g/g than the greenhouse control soil which contained less than 17 μ g/g.

Discussion - Bioassay

The images in Figure 3 clearly illustrate the relatively uniform growth obtained in all bioassay soil treatments. The similar between-treatment growth illustrated in Figure 3 is supported by the plant measurements summarized in Table 6, which indicated that there was no consistent relationship between plant growth and soil arsenic concentration, and that plant growth was similar across the range of soil arsenic treatments.

Most seeds germinated and bean plants developed with no signs of toxicity. Arsenic toxicity typically induces black, necrotic leaf tissue and blackened, knotted, and shortened roots. There was no difference in bean germination or apparent difference in plant growth between soil arsenic levels. In some pots a fungal infection slightly inhibited growth on a few plants. Slight differences in total plant height were not related to soil arsenic concentration and were likely the result of varying fertility levels in the test soil (no fertilizer was added).

No injury symptoms characteristic of arsenic toxicity were observed on any of the bioassay plants at any soil arsenic concentration. The highest soil arsenic concentration tested was 533 μ g/g, or about 26 times the MOE Table A generic effects-based arsenic soil guideline. The absence of arsenic toxicity symptoms in the soil bioassay is consistent with the complete lack of arsenic symptomatology on vegetation in Wawa - no injury symptoms characteristic of arsenic toxicity on vegetation have been observed by Phytotoxicology investigators since intensive Ministry studies were initiated in 1998.

In order for injury to occur the arsenic must be biologically available to the plant, which means it must be soluble in water and taken up through the roots. The arsenic in soil in Wawa must be very insoluble in water because no injury was observed in the bioassay plants. or plants anywhere in the Wawa townsite, and no adverse impacts were measured in bioassay plants at the maximum soil arsenic concentration tested (533 μ g/g). Therefore, the risk to the terrestrial ecosystem in Wawa from elevated soil arsenic concentrations is concluded to be very low. The bioassay results are completely consistent with observations of vegetation health in the general Wawa area and support the conclusions that elevated soil arsenic concentrations, up to the maximum tested concentration of 533 μ g/g, will not adversely affect plant growth and therefore there are no restrictions to the normal use of residential properties in Wawa.

Conclusions

The primary objective of this investigation was to provide data on arsenic concentrations in soil of specific residential properties to support health studies. This objective was met by providing these data to the appropriate parties before this summary report was prepared.

The sampling of numerous properties at the Wawa townsite as well as in the vicinity of AOD provided a sizeable database of soil element concentrations that permitted a general evaluation of soil contamination. This evaluation demonstrated that arsenic concentrations in residential property soil for the Wawa townsite were generally less than 50 μ g/g, with a few exceptions on properties closest to AOD or where contaminated soil or aggregate material was brought to the property.

Properties near the AOD site consistently had higher arsenic levels. These properties would have been subject to more intense deposition of AOD atmospheric and fugitive emissions, as well as tracking of the contaminant by vehicles from AOD.

The bioassay revealed that symptoms of arsenic toxicity could not be induced in a sensitive plant species at soil arsenic concentrations up to 533 μ g/g, which is considerably higher than all but a few of the most contaminated residential Wawa residential properties nearest AOD. In conclusion, the form of arsenic in the soil in Wawa must be very insoluble and therefore biologically unavailable, and so the risk to the terrestrial ecosystem in the Wawa area from elevated soil arsenic concentrations is concluded to be very low. The bioassay results are completely consistent with observations of vegetation health in the general Wawa area and support the conclusions that elevated soil arsenic concentrations, up to the maximum tested concentration of 533 μ g/g, will not adversely affect plant growth and therefore there are no restrictions to the normal use of residential properties in Wawa.

Table 1: Soil Element Concentrations (µg/g) on Residential Yards of Properties Near Algoma Ore Division

Address	Yard	Ca	F e	¥	Mg	Mn	Ba	Zu	>	S.	ပ်	Ъ	Cn	ī	00	As B	Be	Mo	рО
A Government Rd.	front	3300	14000					46			31		35	31	5.5	3.9 0.5	M>	0.5 <w< td=""><td>0.2 <₩</td></w<>	0.2 <₩
A Government Rd.	front	3800	14000	10000	3100			39			29		27	24	6.2	4.5 0.5	N>		0.3 <1
A Government Rd.	side	3200	10000					16 ⁴			19	V	7.0	1	4.4	0	0.5 <w c<="" td=""><td>0.5 ^W</td><td>0.2 ^{<w< sup=""></w<>}</td></w>	0.5 ^W	0.2 ^{<w< sup=""></w<>}
A Government Rd.	side	3600	12000					21 ⁴⊺			22		9.0	13	4.8	_	0.5 W	.5 <₩	0.2 < W
A Government Rd.	back	3800	11000					17 <⊤			21		7.0	12	4.6	0	0.5 W C	.5 ∜	0.2
A Government Rd.	back	2000	11000					17 <⊺			21	V	œ	7	4.3	4	. W> 2	.5 ≪	0.3 <1
B Government Rd.	front	4700	42000	12000	4900	1900	63	66	35	22	36	43	43 33 7.6 9	33	9.7	∞	0.5 W C	0.5 ^{⟨₩}	1.1
B Government Rd.	front	4800	33000					93			44		63	47	8.0	6	7 <1	.5 ∜	0.4 ⁴⊺
B Government Rd.	back	5300	47000					120			28		27	20	6.2 1	9		.6 <1	0.7
B Government Rd.	back	5500	51000					130			32		37	25	8.7 1	0	2 <w c<="" td=""><td>.5 <₩</td><td>1.1</td></w>	.5 <₩	1.1
C Government Lane	front	4800	44000					130			33		27	25	8.3	0	. w 5	% €.	0.9 ←⊺
C Government Lane front	front	5100	44000					130			35		28	24	8.3	9	0 %	.5 ∜	1.1
C Government Lane	back	3800	25000				31	63			22		16	21	5.5	2	0	.5 <₩	0.3 <t< td=""></t<>
C Government Lane back	back	4200	26000		3800			120			24		13	16	5.4	4	_ w 5	% €.	0.2 < W
MOE Background Guideline	eline	58000	33000	~	0009		210 '	160			71		82	43	21	~	2	5.5	1.0
MOE Effects Guideline	Je	NG	NG	Ŋ	NG	NG 7	20 (200	102	50 2	500	225	200	40	0	01	40	12
Dookaround autidolinos and Toble I and Effects autidolinos are Toble A in the	T ore at	بر ٦ مالاد	DA DEFORE	ilopino of	2000	older c	, V		•	i o bi	9	L Colling	+ 000	tomi	potor	Citor (1007)	1007	OTDOR	α

Background guidelines are Table F and Effects guidelines are Table A in the MOE Guideline for Use at Contaminated Sites (1997), OTR98 used where no Table F is available, see Appendix.

NG - no Table A Effects guideline available.

Table 2: Soil Element Concentrations (µg/g) on Residential Yards, Wawa Townsite Properties East of Third Ave. & Mission Rd.

Address	Yard	Oa	H e	A	Mg	Δ	Ва	Zn	>	Sr (2	Pb Cu	Z	ပိ	As	Be	N _o	PO
D Wood Ave.	front	3700	20000	12000	4100	580	42	65	37	21	35 2:	3 2	4 2	1.7.7	. 22	0.5 <w< td=""><td>0.5 °W</td><td>0.4 ←T</td></w<>	0.5 °W	0.4 ←T
D Wood Ave.	front	3400	19000	11000	3800	540	40	52	35	19	34 2	2 2	2 2	7.1	16	0.5 ^W	0.5 <	0.5 < ĭ
D Wood Ave.	back	2800	19000	14000	3500	510	34	62	36	9	31 1	7 2	0 2	1 7.2	15	0.5 ⁴₩	0.5 °W	0.4 ≺⊺
D Wood Ave.	back	2500	16000	12000	3200	380	56	47	31	17	28 1	-	3 1	7 5.9	9.6	0.5 ^{<w< sup=""></w<>}	0.5 <w< td=""><td>0.5 ⁴⊺</td></w<>	0.5 ⁴⊺
E Second Ave.	front	4300	18000	12000	3200	540	69	68	32	22	29 4	1 2	25 1	3.5	133	0.5 °W	0.7	0.4
E Second Ave.	front	5200	19000	11000	3300	280	83	29	33	56	28 37		29, 1	3.6.3	18	0.5 ^{<w< sup=""></w<>}	1.1 <	0.9 ←
E Second Ave.	back	5300	26000	14000	5200	820	67 1	9	43	23	44 2	7 2	26 2	1	25	0.5 ⁴₩	0.6 ⁴⊺	1.1
E Second Ave.	back	4000	22000	12000	4100	740	52	93	34	20	35 33	2	20 23	3 7.4	25	0.5 ^{<w< sup=""></w<>}	0.5 <w< td=""><td>1.0</td></w<>	1.0
F Second Ave.	front	5900	24000	11000	4000	720	46 1	20	33	56	33 4	3	1 2	7 7.5	2	0.5 <	0.5 <w< td=""><td>1.0</td></w<>	1.0
F Second Ave.	front	4900	23000	11000	3700	029	44 1	00	34	21	33 47	2	25 18	3.6.8	21	0.5 ⁴₩	0.6 ⁴₹	0.7 <⊺
F Second Ave.	back	4700	30000	12000	2000	980	50 1	02	39	22	35 120		34 2	5 9.2	35	0.5 ^w	0.5 <₩	1.2
F Second Ave.	back	5200	30000	11000	4700	970	54 1	06	37	22	38 140		37 2	8.8	38	0.5 °W	0.5 ⁴₩	1.4
G Main St.	front	4800	17000	8200	3300	290	73	81	28	23	23 40		23 18	3 5.7	2	0.5 ^{<w< sup=""></w<>}	0.5 °W	0.7 <⊺
G Main St.	front	4800	17000	8500	3500	520	82	77	30	26	26 42	-	24 1	19 5.8	18	0.5 ^{<w< sup=""></w<>}	0.5 ^{<w< sup=""></w<>}	0.5 <t< td=""></t<>
G Main St.	back	3100	14000	8500	2700	370	39	72	27	19	23 3,		12 1	4.9	14	0.5 ^{<w< sup=""></w<>}	0.5 ^{<w< sup=""></w<>}	0.6 ≺⊺
G Main St.	back	3000	13000	8200	2600	340	37	20	26	19	21 25		12 1	3 4.9	19	0.5 ^{<w< sup=""></w<>}	0.5 ^{<w< sup=""></w<>}	0.5 <⊺
H Joliet St.	front	5800	16000	9800	3900	420	35	46	31	24	31 24		24 19	9.7.6	7.5	0.5 °W	0.5 ^{<w< sup=""></w<>}	0,5 ≺⊺
H Joliet St.	front	5200	15000	9200	3700	360	31	39	32	22	29 1	3 22	2 1	3.6.5	7	0.5 ^w	0.5 ⁴₩	0.3 <1
H Joliet St.	back	3500	14000	9500	3400	380	40	63	28	19	31 19		19 1	9 6.7	15	0.5 °W	0.5 ^{<w< sup=""></w<>}	0.4 <t< td=""></t<>
H Joliet St.	back	3200	14000	9000	3400	380	35	56	28	19	34 19	-	17 1	7 6.3	15	0.5 ^{<w< sup=""></w<>}	0.5 <	0.7 <⊺
I Centennial Ave.	front	92200	25000	16000	2000	800	49	99	53	22	44 22		33 2	7	19	0.5 <	0.8 ≺⊺	0.6 ⁴⊺
I Centennial Ave.	front	5800	26000	17000	2600	840	49	73	53	22			39 2	7 12	15	0.5 ⁴₩	1.5 ⁴⊺	0.7 <t< td=""></t<>
I Centennial Ave.	back	3700	15000	10000	2500	420	38	22	30	16	23 24	· 	15 1	2.4.9	15	. 0.5 ^w	0.5 ∜	0.8 ←⊺
I Centennial Ave.	back	3900	16000	10000	2400	450	42	63	32	18	21 19	7	3 1	3.4.6	18	0.5 ^w	0.5 ^{⟨W}	0.5 ⁴⊺
J Broadway Ave.	front	4300	16000	11000	3200	480	54	52	30	23	29 27		38 1	7 5.7	17	0.5 <w< td=""><td>0.5 ^{<w< sup=""></w<>}</td><td>0.7 <t< td=""></t<></td></w<>	0.5 ^{<w< sup=""></w<>}	0.7 <t< td=""></t<>
J Broadway Ave.	front	4300	16000	10000	3100	480	51	09	29	19	33 2	5	20 1	5.5	15	0.5 ^{⟨W}	0.5 ^W	0.2 ^{<w< sup=""></w<>}
J Broadway Ave.	back	3100	15000	11000	2700	460	46	6/	27	16	27 2	2	0	9.5.6	16	0.5 <	0.5 ∜	0.6 ≺⊺
J Broadway Ave.	back	3100	14000	11000	2800	400	45	74	56	18	25 2	2	9	7 5.5	17	w> 5.0	w> 5.0	0.3 ←
MOE Background Guideline	deline	28000	33000	27000	16000	1300		160	91	78	71 120	0	5	3 2,	17	1.2	2.5	1.0
MOE Effects Guideline	ine	NG	NG	NG	NG	S	750	009	200	NG	750 200	0 225	5 200	0 40	20	1.2	40	12
Background guidelines are Table F and used where no Table F is available see	nes are T e F is ava	able Fa	nd Effects gu	Effects guidelines are	lines ar		e A in	the M	OE G	idelii	Table A in the MOE Guideline for Use		conta	at Contaminated	ed Si	Sites (1997),	7), OTR98	98

used where no Table F is available, see Appendix. NG - no Table A Effects guideline available.

Phytotoxicology 2001 and 2002 Investigations. Algoma Ore Division, Twp. of Michip .: ten IWawai

Table 2: Soil Element Concentrations (µg/g) on Residential Yards, Wawa Townsite Properties East of Third Ave. & Mission Rd.

III 8100 22000 12000 4100 790 80 III 7200 22000 13000 450 43 43 III 3900 15000 12000 3500 450 43 44 III 3400 15000 12000 3600 480 44 43 III 3400 12000 7800 300 270 28 44 III 3400 12000 7800 270 280 34 44 III 3500 12000 7500 260 290 39 34 44 III 3600 17000 17000 3700 470 39 34 46 III 5500 21000 15000 3700 400 80 58 46 44 III 5500 21000 14000 400 80 46 45 III 4600 22000 14000		Address Yard	р	a e	Ā	Mg	S C	Ва	Zu	>) Si	ŏ	Pb	on o	Ē	- - -	As	Be	Š	Ö
1 7200 22000 13000 4200 730 79 160 37 27 44 63 29 23 82 19 0.5 78 8 3900 15000 12000 3000 270 4 98 25 20 22 19 1.5 4 9.6 0.5 70 20 10 10 13 14 4.9 9.6 0.5 70 10 10 13 14 4.9 9.6 0.5 70 10 13 14 4.9 9.6 0.5 70 20 22 12 12 2 14 4.9 9.6 0.5 70 9.0 9.0 9.0 30 2 1 1 1 1 4 9.6 0.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	15000 13000 4200 790 79 160 37 27 44 63 29 23 8.2 19 0.5 *** 15000 15000 3500 450 43 93 31 19 31 28 24 19 6.3 17 0.5 *** 15000 15000 3600 480 44 98 34 71 29 21 13 14 4.9 9.6 0.5 *** 15000 2700 2700 280 33 66 23 19 23 24 10 13 44 9.6 0.5 *** 15000 2700 2500 230 32 62 23 19 23 24 11 13 4.9 9.6 0.5 *** 15000 2700 2500 230 32 62 23 19 27 24 27 19 14 13 4.9 9.6 0.5 *** 15000 2700 2	fror		22000	12000	4100	190	80	200	33	28	37	82	28	21	7.3	20	0.5	0.5 ∜	1.
k 3900 15000 15000 3500 450 43 93 31 28 24 19 13 28 19 13 28 19 13 28 19 13 28 19 13 28 19 13 28 19 13 28 19 13 28 19 13 28 11 13 49 98 36 18 28 29 12 28 16 15 18 23 18 23 19 21 28 26 16 15 49 88 36 29 21 28 26 16 15 49 88 36 21 18 21 13 41 13 41 13 41	15000 12000 3500 450 43 93 31 19 31 28 24 19 6.3 17 0.5 *** 15000 12000 3500 480 44 98 34 25 24 20 13 14 4.9 9.6 0.5 *** 15000 2500 250 23 65 25 24 25 10 13 4.9 5.8 0.5 *** 15000 2500 2500 230 23 65 23 18 23 24 10 13 4.9 5.8 0.5 *** 15000 2500 2500 230 23 65 23 18 23 24 27 27 19 13 4.9 5.8 0.5 *** 15000 2500 2500 230 23 65 23 18 23 24 27 27 19 7.9 14 0.5 *** 15000 2500 2500 2500 230 25 23 18 23 24 27 27 19 7.9 14 0.5 *** 15000 2500	fror			13000	4200	190	. 62	160	37	27	44	93	29	23	8.2	19	0.5 <₩	0.5	0.8 ⁴⊺
k 3800 16000 12000 3600 44 98 34 20 31 29 23 19 7.3 16 0.5 *** 11 3400 12000 780 3000 270 28 46 25 20 24 20 13 14 4.9 9.6 0.5 *** x 3400 15000 7800 2700 260 29 33 6 23 11 13 4.9 9.6 0.5 *** x 3600 17000 17000 2700 260 29 32 19 27 31 13 4.9 3.6 6.8 9.8 2.0 14 4.9 9.6 0.5 *** x 3600 17000 17000 3700 200 37 2 4.3 4.0 4.9 1.0 5.2 1.0 1.1 4.9 9.6 0.5 *** x 2500 400 370 4.0	15000 12000 3600 480 44 98 34 20 31 29 23 19 7.3 16 0.5 *** 15000 7800 3000 270 28 46 25 20 24 20 13 14 4.9 96 0.5 *** 15000 2600 2600 25	bac	-	15000	12000	3500	450	43	93	31	19	31	28	24	19	6.3	17	0.5 °W	0.5 *	0.4 ⁴⊺
1 3400 1700 380 270 28 46 25 20 24 20 14 4.9 9.6 0.5 *** 1 3400 15000 8400 310 380 34 71 29 21 26 26 16 15 5.4 8.6 0.5 *** 8 3500 12000 7500 2600 290 39 82 21 18 23 41 13 49 5.6 6.8 1 3600 17000 17000 17000 2000 370 40 73 31 83 41 23 17 6.8 9.6 6.8 8 3600 17000 17000 3000 300 30 66 28 18 33 41 45 5.4 80 6.8 8 3600 18000 9000 3000 470 35 66 28 18 25 20	12000 7800 3000 270 28 46 25 20 24 20 13 14 4.9 9.6 0.5 *** 12000 8400 3100 380 34 71 29 21 26 26 16 15 5.4 86 0.5 *** 12000 7500 2600 250 33 66 23 18 21 38 11 13 4.9 5.8 0.5 *** 12000 7500 3200 450 45 37 6 29 13 18 21 38 11 13 4.9 5.8 0.5 *** 15000 9000 3200 440 37 68 32 19 37 22 43 16 35 34 10 5.6 *** 15000 9000 3000 420 86 8130 37 22 43 16 35 34 10 5.6 *** 15000 14000 4200 800 530 44 120 37 22 43 16 35 34 10 5.6 *** 15000 14000 4200 800 530 44 120 37 22 43 16 35 34 10 5.6 *** 15000 14000 4200 800 530 44 120 37 22 43 16 35 34 10 5.6 *** 15000 14000 9700 3800 530 45 120 34 70 33 21 30 21 17 17 18 6.5 10 5.** 15000 14000 9700 3800 530 44 120 34 22 42 15 32 32 39 88 21 0.5 *** 15000 14000 9700 3800 530 44 120 34 22 42 15 32 32 30 88 21 0.5 *** 15000 14000 9700 800 630 64 110 38 25 24 40 45 26 9.3 41 0.5 *** 15000 14000 4900 870 68 150 49 110 38 25 34 13 2 2 3 3 4 10 5.6 *** 15000 14000 3400 150 150 150 150 150 150 150 150 150 1	pac		16000	12000	3600	480	44	86	34	20	31	59	23	19	7.3	16	0.5 °W	0.5 ∜	0.6
14 3400 15000 8400 3100 380 34 71 29 21 26 26 16 15 5.4 86 0.5 34 8 3500 12000 7700 250 33 66 23 19 22 21 10 13 4.9 5.8 0.5 5.9 11 3600 17000 1000 3700 440 37 68 28 11 13 4.9 5.8 0.5 5.9 11 3600 17000 10000 3700 440 37 68 28 18 25 22 14 15 6.6 5.8 19 33 42 14 16 6.8 14 15 34 17 18 36 28 18 25 22 14 16 16 18 18 25 22 14 15 14 18 18 25 22	15000 8400 3100 380 34 71 29 21 26 26 16 15 5.4 8.6 0.5 *** 12000 7900 2500 290 39 82 21 18 21 38 11 13 4.9 9.8 0.5 *** 12000 1000 3200 450 40 73 33 18 33 41 23 17 6.3 20 0.5 *** 17000 10000 3700 440 37 68 22 19 33 42 27 19 7.9 14 0.5 *** 15000 9000 3000 420 86 58 130 37 22 43 16 35 34 10 5.6 ** 15000 9000 3000 420 86 58 130 37 22 43 16 35 34 10 5.6 *** 15000 9000 3000 420 86 58 130 37 22 43 16 35 34 10 5.6 *** 15000 9000 3000 420 86 41 20 33 21 31 15 14 17 6.6 16 0.5 *** 15000 9000 3000 800 80 8150 41 27 42 40 45 26 9.3 41 0.5 *** 15000 1000 900 800 80 81 10 38 25 39 43 27 21 79 41 0.5 *** 15000 1000 900 800 80 80 150 80	fror	-	12000	7800	3000	270	28	46	25	20	24	50	13	14	4.9	9.6	0.5 ^{<w< sup=""></w<>}	0.5 ∜	0.4 △
K 3500 12000 7900 2700 260 33 66 23 19 22 21 11 13 49 6.3 60 5.% II 3600 12000 7500 2600 290 39 82 21 18 21 31 41 43 49 6.3 60 5% II 3600 17000 17000 17000 4700 480 37 68 32 19 27 11 13 49 6.6 5% II 3600 17000 17000 4700 480 58 16 22 21 31 41 43 49 6.6 6.6 II 3600 16000 9000 3000 420 58 170 22 42 15 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 <td> 12000 7500 2500 250 33 66 23 19 22 21 10 13 4.9 5.8 0.5 °°° 12000 7500 2600 290 39 82 21 18 21 38 11 13 4.9 9.8 0.5 °°° 17000 11000 3700 440 37 68 32 19 27 30 14 15 5.4 19 0.5 °°° 17000 10000 3700 470 39 76 29 19 27 30 14 16 5.4 19 0.5 °°° 15000 9800 3200 470 39 76 29 19 27 30 14 16 5.4 19 0.5 °°° 15000 14000 4200 860 58 130 37 22 43 16 35 34 10 5 °°° 18000 14000 4200 860 58 130 37 22 43 16 35 34 10 5 °°° 18000 14000 4200 860 58 130 37 22 43 15 14 17 6.6 16 0.5 °°° 18000 14000 4200 860 88 32 21 31 15 14 17 6.6 16 0.5 °°° 18000 14000 4200 860 88 32 21 31 15 14 17 6.6 16 0.5 °°° 18000 14000 4400 750 68 150 41 28 38 21 31 31 31 31 31 31 31</td> <td>fror</td> <td></td> <td>15000</td> <td>8400</td> <td>3100</td> <td>380</td> <td>34</td> <td>71</td> <td>29</td> <td>21</td> <td></td> <td>56</td> <td>16</td> <td>15</td> <td>5.4</td> <td>8.6</td> <td>0.5 °W</td> <td>0.5 <₩</td> <td>0.2 <₩</td>	12000 7500 2500 250 33 66 23 19 22 21 10 13 4.9 5.8 0.5 °°° 12000 7500 2600 290 39 82 21 18 21 38 11 13 4.9 9.8 0.5 °°° 17000 11000 3700 440 37 68 32 19 27 30 14 15 5.4 19 0.5 °°° 17000 10000 3700 470 39 76 29 19 27 30 14 16 5.4 19 0.5 °°° 15000 9800 3200 470 39 76 29 19 27 30 14 16 5.4 19 0.5 °°° 15000 14000 4200 860 58 130 37 22 43 16 35 34 10 5 °°° 18000 14000 4200 860 58 130 37 22 43 16 35 34 10 5 °°° 18000 14000 4200 860 58 130 37 22 43 15 14 17 6.6 16 0.5 °°° 18000 14000 4200 860 88 32 21 31 15 14 17 6.6 16 0.5 °°° 18000 14000 4200 860 88 32 21 31 15 14 17 6.6 16 0.5 °°° 18000 14000 4400 750 68 150 41 28 38 21 31 31 31 31 31 31 31	fror		15000	8400	3100	380	34	71	29	21		56	16	15	5.4	8.6	0.5 °W	0.5 <₩	0.2 <₩
K 3600 12000 7500 2600 290 39 82 21 18 21 38 41 13 49 9.8 0.5 44 3600 17000 17000 3700 440 37 68 32 19 33 41 27 19 7.9 40 5.% 4 3600 17000 17000 3700 440 37 68 32 19 37 17 6.3 40 5.% 4 3600 15000 4700 390 46 29 18 25 22 13 15 14 16 5.4 19 5.9 19 5.7 14 16 5.4 19 5.7 14 15 6.8 19 27 20 15 27 14 16 5.4 19 6.8 8.9 19 8.7 10 8.0 10 9.8 10 9.8 10	17000 7500 2600 290 39 82 21 18 33 41 23 17 6.3 20 0.5 *** 17000 11000 3200 450 40 73 33 18 33 41 23 17 6.3 20 0.5 *** 17000 11000 3700 440 37 68 32 19 27 30 14 16 54 19 0.5 *** 15000 9800 3200 420 35 66 28 18 25 22 13 15 5.6 17 0.5 *** 15000 14000 4200 890 54 120 37 22 43 16 35 34 10 20 0.5 *** 15000 14000 4200 890 54 120 34 22 42 15 32 30 88 21 0.5 *** 15000 14000 4200 890 54 120 34 22 42 15 32 30 88 21 0.5 *** 15000 14000 4000 870 68 150 41 27 42 42 15 32 30 88 21 0.5 *** 15000 14000 4000 870 68 150 41 27 42 42 42 15 32 30 88 21 0.5 *** 15000 14000 4000 870 68 150 41 27 42 42 42 15 32 30 88 21 0.5 *** 15000 14000 4000 870 68 150 41 27 42 42 42 42 17 18 6.5 10 0.5 *** 15000 14000 4000 870 68 150 41 27 42 42 42 42 42 17 18 6.5 10 0.5 *** 15000 14000 4000 870 68 150 41 27 42 42 42 42 42 42 42 42 42 42 42 42 42	pac		12000	7900	2700	250	33	99	23	19		21	10	13	4.9	5.8	0.5 ∜₩	0.5 <₩	0.3 ⁴
41 3600 17000 11000 3200 450 40 73 33 41 23 17 6.3 20 0.5 *** 41 3600 17000 10000 3700 40 37 68 32 19 33 42 27 19 7.9 14 0.5 *** 48 3600 16000 9800 3200 470 39 76 29 19 27 30 14 16 54 19 55 17 16 54 19 55 17 6.3 40 56 8** 30 41 16 54 19 56 8** 44 5500 15000 4700 860 58 130 21 20 17 16 56 17 65 66 8** 45 1600 9800 3900 380 54 12 22 42 15 10 10 10 </td <td> 17000 11000 3200 450 40 73 33 18 33 41 23 17 6.3 20 6.5 °°° 17000 3700 440 37 68 32 19 33 42 27 19 7.9 14 0.5 °°° 15600 3000 3200 470 35 66 28 18 25 22 13 15 5.6 17 0.5 °° 18000 2000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 °° 18000 2000 3800 530 34 70 33 21 31 41 41 41 41 41 41 4</td> <td>pac</td> <td></td> <td>12000</td> <td>7500</td> <td>2600</td> <td>290</td> <td>39</td> <td>82</td> <td>21</td> <td>18</td> <td></td> <td>38</td> <td>7</td> <td>13</td> <td>4.9</td> <td></td> <td>0.5 °W</td> <td>0.5</td> <td>0.5 △</td>	17000 11000 3200 450 40 73 33 18 33 41 23 17 6.3 20 6.5 °°° 17000 3700 440 37 68 32 19 33 42 27 19 7.9 14 0.5 °°° 15600 3000 3200 470 35 66 28 18 25 22 13 15 5.6 17 0.5 °° 18000 2000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 °° 18000 2000 3800 530 34 70 33 21 31 41 41 41 41 41 41 4	pac		12000	7500	2600	290	39	82	21	18		38	7	13	4.9		0.5 °W	0.5	0.5 △
11 3600 17000 10000 370 440 37 68 32 19 33 42 27 19 7.9 14 16 5.4 19 0.5 7 3600 16000 9800 3200 470 39 76 29 19 27 30 14 16 5.4 19 0.5 7 11 5500 16000 9900 300 420 36 68 130 37 22 43 16 36 14 0.5 7 11 5100 2000 14000 420 36 68 12 32 42 16 36 19 68 18 26 42 16 36 10 80 40 10 37 22 42 16 36 40 50 58 13 27 42 40 46 80 40 40 32 41 41 <td>17000 10000 3700 440 37 68 32 19 33 42 27 19 7.9 14 0.5 *** 16000 9800 3200 470 39 76 29 19 27 30 14 16 5.4 19 0.5 *** 15000 15000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 *** 21000 15000 4700 860 58 130 37 22 42 15 32 30 8.8 21 0.5 *** 16000 9900 3800 530 44 88 32 21 31 15 14 17 86 5 20 0.5 *** 15000 14000 4200 870 68 150 41 27 42 40 45 26 9.3 41 0.5 *** 22000 14000 4900 860 49 110 38 25 24 36 190 41 27 6 6 9.3 41 0.5 *** 22000 12000 3400 750 60 160 35 130 43 27 24 36 190 41 27 7.9 41 0.5 *** 22000 13000 4400 750 42 82 36 24 36 190 41 21 7.9 41 0.5 *** 22000 11000 3200 620 43 16 88 32 17 28 48 36 39 0.5 *** 14000 7500 2300 230 230 24 18 32 17 28 14 15 14 17 82 0.5 *** 14000 7500 2300 230 230 23 37 22 15 24 10 10 12 46 9.4 0.5 *** 14000 7500 2300 230 230 25 33 23 12 21 8.0 11 12 8.0 11 4.1 8.2 0.5 *** 14000 7500 2500 230 250 23 37 22 15 26 14 10 12 46 9.4 0.5 *** 14000 7500 2500 330 250 33 22 33 12 21 8.0 11 12 8.0 11 12 6.0 11 0.5 *** 14000 7500 2500 320 230 230 230 230 23 32 23 14 20 80 11 12 12 6.0 11 12 6.0</td> <td>fror</td> <td></td> <td>17000</td> <td>11000</td> <td>3200</td> <td>450</td> <td>40</td> <td>73</td> <td>33</td> <td>18</td> <td></td> <td>41</td> <td>23</td> <td>17</td> <td>6.3</td> <td></td> <td>0.5 <</td> <td>0.5 <</td> <td>0.5 ⁴</td>	17000 10000 3700 440 37 68 32 19 33 42 27 19 7.9 14 0.5 *** 16000 9800 3200 470 39 76 29 19 27 30 14 16 5.4 19 0.5 *** 15000 15000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 *** 21000 15000 4700 860 58 130 37 22 42 15 32 30 8.8 21 0.5 *** 16000 9900 3800 530 44 88 32 21 31 15 14 17 86 5 20 0.5 *** 15000 14000 4200 870 68 150 41 27 42 40 45 26 9.3 41 0.5 *** 22000 14000 4900 860 49 110 38 25 24 36 190 41 27 6 6 9.3 41 0.5 *** 22000 12000 3400 750 60 160 35 130 43 27 24 36 190 41 27 7.9 41 0.5 *** 22000 13000 4400 750 42 82 36 24 36 190 41 21 7.9 41 0.5 *** 22000 11000 3200 620 43 16 88 32 17 28 48 36 39 0.5 *** 14000 7500 2300 230 230 24 18 32 17 28 14 15 14 17 82 0.5 *** 14000 7500 2300 230 230 23 37 22 15 24 10 10 12 46 9.4 0.5 *** 14000 7500 2300 230 230 25 33 23 12 21 8.0 11 12 8.0 11 4.1 8.2 0.5 *** 14000 7500 2500 230 250 23 37 22 15 26 14 10 12 46 9.4 0.5 *** 14000 7500 2500 330 250 33 22 33 12 21 8.0 11 12 8.0 11 12 6.0 11 0.5 *** 14000 7500 2500 320 230 230 230 230 23 32 23 14 20 80 11 12 12 6.0 11 12 6.0	fror		17000	11000	3200	450	40	73	33	18		41	23	17	6.3		0.5 <	0.5 <	0.5 ⁴
K 3600 16000 9800 3200 470 39 76 29 19 27 30 14 16 54 19 0.5 °w 11 5500 15000 9000 3000 420 36 66 28 18 25 22 13 15 56 17 0.5 °w 11 5500 21000 14000 420 86 58 130 21 16 35 34 10 20 6°w 11 5100 20000 14000 4200 890 54 120 32 21 16 35 34 70 33 21 30 21 17 18 65 60 68 46 88 32 21 40 40 60 68 41 27 42 40 46 88 21 25 40 46 88 32 21 41 47 40	16000 9800 3200 470 39 76 29 19 27 30 14 16 5.4 19 0.5 °°° 15000 9000 3000 420 35 66 28 18 25 22 13 15 5.6 17 0.5 °°° 21000 14000 4200 860 58 130 37 22 42 15 32 30 8.8 21 0.5 °°° 18000 9900 3800 530 54 120 34 22 42 15 32 30 8.8 21 0.5 °°° 16000 9700 3800 530 54 120 34 27 31 15 14 17 18 6.5 20 0.5 °°° 22000 14000 4900 860 49 10 38 25 39 43 27 21 79 41 0.5 °° 23000 14000 4900 860 49 110 38 25 39 43 27 21 79 41 0.5 °° 22000 13000 4400 750 42 82 35 24 36 48 48 35 28 30 0.5 °° 22000 13000 4400 750 49 48 35 24 36 49 41 32 22 20 0.5 °° 22000 13000 4400 770 41 82 37 21 43 41 32 22 20 0.5 °° 22000 13000 4400 770 41 82 37 21 43 41 32 22 30 0.5 °° 22000 14000 2200 230 23 37 22 15 24 15 14 51 24 0.5 °° 22000 14000 2300 230 23 37 22 15 26 14 10 12 40 5 °° 22000 14000 2500 270 23 37 22 15 26 14 10 12 40 5 °° 22000 14000 2500 270 270 27 33 23 14 20 0.7 11 12 50 11 0.5 °° 22000 27000 2700 2700 2700 270 27 33 23 24 27 27 27 27 27 27 22000 27000 1300 2400 250 20 0.5 °° 20 0.5 °° 20 0.5 °° 22000 27000 1300 2400 2500 20 0.5 °° 20 0.5 °° 20 0.5 °° 22000 2700 1300 270	fror		17000	10000	3700	440	37	89	32			42	27	19	6.7		0.5 °W	0.5	0.7
K 3200 15000 9000 3000 420 56 28 18 25 22 13 15 5.6 17 0.5 ° w H 5500 21000 15000 4700 860 58 130 37 22 43 16 35 34 10 20 5.6 ° w K 3600 18000 9900 3800 530 46 88 32 21 17 18 6.5 20 6.5 ° w K 4100 16000 9700 3800 530 46 88 32 21 17 18 6.5 20 6.5 ° w K 4100 16000 9700 3600 68 150 41 27 42 40 45 26 9.3 41 6.5 ° w K 4100 2900 3800 530 49 11 27 42 40 45 26 9.3 41 <td>15000 9000 3000 420 35 66 28 18 25 22 13 15 5.6 17 0.5 °W 21000 15000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 °W 20000 14000 4200 890 54 120 34 22 42 15 32 30 8.8 21 0.5 °W 18000 9900 3800 530 46 88 32 21 31 15 14 17 6.6 16 0.5 °W 16000 9700 3800 630 46 88 32 21 31 15 14 17 6.6 16 0.5 °W 23000 14000 4200 860 49 110 38 25 39 43 27 27 17 18 6.5 16 0.5 °W 23000 14000 400 730 63 140 38 25 39 43 27 27 27 17 18 6.5 16 0.5 °W 23000 1300 4400 730 63 140 38 25 39 43 27 27 27 17 9 41 0.5 °W 22000 1300 4400 750 42 82 36 22 45 38 31 22 9.0 18 0.5 °W 22000 14000 2800 620 48 32 37 21 43 41 32 22 9.0 18 0.5 °W 22000 14000 2800 620 40 48 32 17 28 23 15 15 15 15 15 10 0.5 °W 14000 7500 2300 230 23 37 22 17 28 24 15 15 15 15 15 15 10 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 31 21 15 25 12 10 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>pac</td> <td></td> <td>16000</td> <td>9800</td> <td>3200</td> <td>470</td> <td>39</td> <td>9/</td> <td>29</td> <td></td> <td></td> <td>30</td> <td>14</td> <td>16</td> <td>5.4</td> <td></td> <td>0.5 °W</td> <td>0.5 <</td> <td>0.6 ⁴</td>	15000 9000 3000 420 35 66 28 18 25 22 13 15 5.6 17 0.5 °W 21000 15000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 °W 20000 14000 4200 890 54 120 34 22 42 15 32 30 8.8 21 0.5 °W 18000 9900 3800 530 46 88 32 21 31 15 14 17 6.6 16 0.5 °W 16000 9700 3800 630 46 88 32 21 31 15 14 17 6.6 16 0.5 °W 23000 14000 4200 860 49 110 38 25 39 43 27 27 17 18 6.5 16 0.5 °W 23000 14000 400 730 63 140 38 25 39 43 27 27 27 17 18 6.5 16 0.5 °W 23000 1300 4400 730 63 140 38 25 39 43 27 27 27 17 9 41 0.5 °W 22000 1300 4400 750 42 82 36 22 45 38 31 22 9.0 18 0.5 °W 22000 14000 2800 620 48 32 37 21 43 41 32 22 9.0 18 0.5 °W 22000 14000 2800 620 40 48 32 17 28 23 15 15 15 15 15 10 0.5 °W 14000 7500 2300 230 23 37 22 17 28 24 15 15 15 15 15 15 10 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 15 26 14 10 12 14 1 8.2 0.5 °W 14000 7500 2300 230 23 37 22 31 21 15 25 12 10 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pac		16000	9800	3200	470	39	9/	29			30	14	16	5.4		0.5 °W	0.5 <	0.6 ⁴
14 5500 21000 15000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 °w 14 5100 20000 14000 4200 890 54 120 34 15 15 32 30 8.8 21 0.5 °w 14 5100 20000 14000 4200 630 54 120 34 17 18 6.5 20 6.5 °w 14 4100 16000 9700 3800 530 44 88 32 21 17 18 6.5 20 6.5 °w 14 500 2500 1400 870 68 150 41 27 42 40 45 26 9.3 41 27 40 45 26 9.3 41 27 42 40 45 26 9.3 41 7 6.6 10 6.0	21000 15000 4700 860 58 130 37 22 43 16 35 34 10 20 0.5 cw 20000 14000 4200 890 54 120 34 22 42 15 32 30 8.8 21 0.5 cw 18000 9900 3800 530 46 88 32 21 17 18 6.5 20 0.5 cw 16000 9700 3800 630 46 88 32 21 31 15 14 17 6.6 16 0.5 cw 25000 14000 490 86 49 110 38 25 39 43 47 6.6 6.6 6.6 6.6 10 6.6 6.6 6.6 10 6.6 6.6 6.6 10 6.6 6.6 10 6.6 10 6.6 10 6.6 10 6.6 10 10	pac		15000	0006	3000	420	35	99	28	-		22	13	15			0.5 °W	0.5	0.4
III 5100 20000 14000 4200 54 120 34 22 42 15 32 30 8.8 21 0.5 *** IX 3600 18000 9900 3800 530 34 70 33 21 15 14 17 18 6.5 20 0.5 *** IX 4100 16000 9700 3600 630 46 88 32 21 31 15 14 17 18 6.5 20 6.5 *** IX 4100 2500 1400 400 870 68 150 41 27 42 40 45 6.6 6.6 6.6 6.6 41 27 42 40 45 40<	20000 14000 4200 890 54 120 34 22 42 15 32 30 8.8 21 10.6 °W 18000 9900 3800 530 34 70 33 21 17 18 6.5 20 0.5 °W 16000 9700 3800 530 46 88 32 21 17 18 6.5 20 0.5 °W 25000 14000 4000 870 68 150 41 7 6.6 9.3 41 0.5 °W 25000 12000 800 69 110 38 25 39 43 7 7 41 0.5 °W 22000 12000 4400 750 42 82 36 48 48 48 48 35 21 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	fror		21000	15000	4700	860	58	130	37			16	35	34	10		0.5 °W	0.5 <	0.3
K 3600 18000 9900 3800 530 34 70 33 21 30 21 17 18 6.5 20 0.5 ° w 4 4 4 4 4 4 4 4 4	18000 9900 3800 530 46 88 32 21 17 18 6.5 20 0.5 % 16000 9700 3600 630 46 88 32 21 31 15 14 17 6.6 16 0.5 % 25000 14000 4000 870 68 150 41 27 42 40 45 26 9.3 41 0.5 % 25000 14000 870 68 150 41 27 42 40 45 26 9.3 41 0.5 % 22000 13000 4400 750 42 82 36 45 38 46 34 41 21 7.9 41 0.5 % 22000 13000 4400 770 41 82 36 43 41 21 7.9 41 0.5 % 22000	fror		20000	14000	4200	890	54	120	34			15	32	30			0.5 °W	0.5 <	0.4 <⊺
IX. 4100 16000 9700 3600 630 46 88 32 21 31 15 14 17 6.6 16 0.6 **** 14 5000 25000 14000 4000 870 68 150 41 27 42 40 45 26 9.3 41 0.5 *** 14 7100 23000 11000 4900 860 49 110 38 25 39 43 27 21 7.9 41 0.5 *** 15 7100 23000 13000 490 130 43 28 48 48 35 28 9.8 30 6.8 40 6.8 49 10 48 35 28 48 48 48 48 35 28 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48	16000 9700 3600 630 46 88 32 21 31 15 14 17 6.6 16 0.5 *** 25000 14000 4900 870 68 150 41 27 42 40 45 26 9.3 41 0.5 *** 23000 13000 4900 860 49 110 38 25 39 43 27 21 7.9 41 0.5 *** 22000 13000 4400 750 42 82 36 45 38 31 22 8 48 48 35 28 30 0.5 *** 22000 13000 4400 750 42 82 36 24 36 10 41 0.5 *** 22000 13000 440 76 42 82 36 24 36 38 31 27 28 38 31 27 28 49	pac		18000	0066	3800	530	34	20	33			21	17	18			0.5 ∜	0.5 <	0.3
th 5000 25000 14000 4000 870 68 150 41 27 42 40 45 26 9.3 41 0.5 *** xt 7100 23000 11000 4900 860 49 110 38 25 39 43 27 21 7.9 41 0.5 *** xt 7100 23000 1300 5900 1300 60 160 35 24 36 48 35 28 48 48 35 28 49 49 35 28 48 48 35 28 49 48 35 28 48 48 35 28 49 48 35 28 49 41 0.5 *** 40 58 40 41 0.5 *** 41 0.5 *** xt 4600 2200 1200 400 770 41 82 37 21 43 41 22	25000 14000 4000 870 68 150 41 27 42 40 45 26 9.3 41 0.5 cw 23000 11000 4900 860 49 110 38 25 39 43 27 21 7.9 41 0.5 cw 22000 13000 5900 1300 60 160 35 24 36 48 35 28 9.8 30 0.5 cw 22000 13000 4400 750 42 82 36 45 38 41 21 7.9 41 0.5 cw 22000 13000 4400 770 41 82 37 21 43 41 32 22 45 38 41 32 12 41 32 41 43 41 32 41 32 41 43 41 32 44 15 44 15 43 41 44 48 32	pac		16000	9700	3600	630	46	88	32			15	14	17			0.5 °W	0.5 ^{<w< sup=""></w<>}	0.6 ⁴
It 7100 23000 11000 4900 860 49 110 38 25 39 43 27 21 7.9 41 0.5 *** X 7100 33000 13000 53 130 43 28 48 48 35 28 9.8 300 0.5 *** X 4600 22000 12000 3400 750 42 82 36 45 38 41 21 7.9 37 2.1 43 41 22 28 36 60 60 60 40 36 36 22 45 38 41 21 22 45 38 41 22 22 9.0 48 9.8 37 21 43 41 22 41 41 42 44 41 22 44 41 22 44 41 42 42 44 44 45 44 45 44 <t< td=""><td>23000 11000 4900 860 49 110 38 25 39 43 27 21 7.9 41 0.5 °W 33000 13000 5900 1300 53 130 43 28 48 48 35 28 9.8 300 0.5 °W 22000 12000 3400 750 42 82 36 45 38 41 21 7.9 37 0.5 °W 22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 48 0.5 °W 22000 11000 2800 620 40 48 32 17 28 23 15 18 0.5 °W 18000 11000 2800 620 40 48 32 17 28 44 15 18 0.5 °W 11000 750 230 29 33 22 15 44</td><td>fror</td><td></td><td>25000</td><td>14000</td><td>4000</td><td>870</td><td>89</td><td>150</td><td>41</td><td></td><td></td><td>40</td><td>45</td><td>26</td><td></td><td>-</td><td>0.5 °W</td><td>0.5 <</td><td>0.8 ⁴⊺</td></t<>	23000 11000 4900 860 49 110 38 25 39 43 27 21 7.9 41 0.5 °W 33000 13000 5900 1300 53 130 43 28 48 48 35 28 9.8 300 0.5 °W 22000 12000 3400 750 42 82 36 45 38 41 21 7.9 37 0.5 °W 22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 48 0.5 °W 22000 11000 2800 620 40 48 32 17 28 23 15 18 0.5 °W 18000 11000 2800 620 40 48 32 17 28 44 15 18 0.5 °W 11000 750 230 29 33 22 15 44	fror		25000	14000	4000	870	89	150	41			40	45	26		-	0.5 °W	0.5 <	0.8 ⁴⊺
1.	33000 13000 5900 1300 53 130 43 28 48 48 35 28 9.8 300 0.5 °W 22000 12000 3400 750 42 82 36 22 45 38 31 22 9.2 22 0.5 °W 22000 13000 4400 750 41 82 37 21 43 41 32 22 9.0 18 0.5 °W 22000 11000 3200 620 38 46 34 17 28 23 15 15 15 15 10 5 °W 14000 750 2300 290 23 37 22 15 26 14 10 12 4.6 9.4 0.5 °W 14000 7500 200 200 20 31 22 31 21 15 26 14 10 12 4.6 9.4 0.5 °W 14000 7500 200 200 20 31 22 31 21 15 26 14 10 12 4.6 9.4 0.5 °W 14000 7500 200 200 20 31 21 15 25 12 8.0 11 4.1 8.2 0.5 °W 14000 7500 200 330 26 33 23 12 21 8.0 °T 11 12 5.0 11 0.5 °W 14000 7300 2700 1500 1300 210 160 91 78 71 120 85 43 21 17 12 10 15 °W 14000 7300 1300 210 160 91 78 71 120 85 43 21 17 12 10 10 10 10 10 10 10 10 10 10 10 10 10	fror		23000	11000	4900	860	49	110	38		39	43	27	21		4	0.5 ^{<w< sup=""></w<>}	0.5 ∜	0.6 ⁴
IX 4600 22000 12000 3400 730 60 160 35 24 36 190 41 21 7.9 37 0.5 °W At 4600 22000 13000 4400 750 41 82 36 22 45 38 31 22 9.2 22 0.5 °W At 4600 22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 18 0.5 °W At 4600 22000 11000 2400 770 41 82 37 21 43 41 32 22 9.0 18 0.0 40 36 34 47 28 23 44 15 45 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 44 15 <	22000 12000 3400 730 60 160 35 24 36 190 41 21 7.9 37 0.5 °W 22000 13000 4400 750 42 82 36 22 45 38 31 22 9.2 22 0.5 °W 22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 18 0.5 °W 18000 11000 2800 620 38 46 34 17 28 23 15 15 44 15 14 15 14 16 18 0.5 °W 11000 7500 2300 29 23 37 22 15 44 15 14 1 46 48 32 17 25 44 15 14 51 24 0.5 °W 11000 740 28 37 22 15	pac		33000	13000	2900	1300	53	130	43	28	-	48	35	28	-	300	0.5 °W	0.5 ^{<w< sup=""></w<>}	0.4 △⊺
14 4600 22000 13000 4400 750 42 82 36 22 45 38 31 22 9.0 22 0.5 °W 14 4600 22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 18 0.5 °W 15 3700 20000 11000 3200 620 38 46 34 17 28 23 15 15 5.3 22 0.5 °W 16 3100 11000 7500 2300 620 40 48 32 17 25 44 15 14 5.1 24 0.5 °W 17 2800 10000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5 °W 18 2500 12000 7200 2700 270 320 27 33 23 14 20 9.0 °I 11 12 5.0 11 0.5 °W 18 2500 12000 7300 2700 1300 270 160 91 78 71 120 85 43 21 17 12 17 12 18 2800 33000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 12 17 12 18 28 29 20 120 120 120 120 120 120 120 120 120	22000 13000 4400 750 42 82 36 22 45 38 31 22 9.2 22 0.5 °W 22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 18 0.5 °W 2000 11000 3200 620 38 46 34 17 28 23 15 15 5.3 22 0.5 °W 18000 11000 2800 620 40 48 32 17 25 44 15 14 5.1 24 0.5 °W 11000 7500 2300 230 23 37 22 15 26 14 10 12 4.6 9.4 0.5 °W 12000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5 °W 12000 7200 2600 330 26 33 23 12 21 8.0 °I 12 13 5.7 12 0.5 °W 12000 7300 2700 1300 210 160 91 78 71 120 85 43 21 17 1.5 °W 13000 27000 1300 210 160 91 78 71 120 85 43 21 17 1.2 30 1.2 °W 13000 27000 1300 210 160 91 78 71 120 85 43 21 17 1.2 °W 12000 7400 2500 1300 240 100 1300 240 100 100 100 100 100 100 100 100 100 1	pac		22000	12000	3400	730	9	160	35	54		06	41	21	-	37	0.5 ⁴₩	0.5 <	1.2
14 4600 22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 18 0.5 °W 3700 20000 11000 2800 620 40 48 32 17 28 23 15 15 5.3 22 0.5 °W 14 3100 11000 2800 620 40 48 32 17 25 44 15 14 5.1 24 0.5 °W 14 2800 11000 7500 2300 230 23 37 22 15 26 14 10 12 46 9.4 0.5 °W 15 2500 12000 7200 2500 270 22 31 21 15 21 8.0 °I 12 13 5.7 12 0.5 °W 15 2500 12000 7300 2700 1300 270 130 270 160 91 78 71 120 85 43 21 17 15 5.0 11 0.5 °W 15 2800 33000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 12 17 12 17 12 18 12 17 12 18 18 19 19 19 19 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19	22000 13000 4400 770 41 82 37 21 43 41 32 22 9.0 18 0.5 ***	fror		22000	13000	4400	750	42	82	36	22		38	31	22		22	0.5 °W	1.4 <⊺	1.0
3700 20000 11000 3200 620 38 46 34 17 28 23 15 15 15 15 15 15 15 16 15 17 26 44 15 14 51 24 0.5 40 50 14 3100 11000 7500 2300 290 23 37 22 15 26 14 10 12 46 9.4 0.5 40 14 2800 10000 7400 2200 270 22 31 21 15 25 12 16 46 9.4 0.5 40 0.5 40 5500 12000 7400 2200 270 22 31 21 21 8.0 1 4.1 8.1 4.6 9.4 0.5 40 0.5 4.0 5500 12000 7300 2700 320 27 33 23 14<	20000 11000 3200 620 38 46 34 17 28 23 15 15 15 15 15 15 22 0.5 *** 11000 7500 2300 29 23 37 22 15 26 14 10 12 4.6 9.4 0.5 *** 12000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5 *** 12000 7200 2600 330 26 33 23 12 21 8.0 ** 12 12 8.0 ** 12 13 6.0 ** 12000 7300 2700 320 27 33 23 14 20 9.0 ** 11 12 6.0 ** 15 NG NG NG 160 91 78 71 12 13 17 12 10 10 6.0 ** <	fror		22000	13000	4400	270	41	82	37	21		41	32	22		18	0.5 <	1.3 ⁴.	0.6
34 100 18000 11000 2800 620 40 48 32 17 25 44 15 14 5.1 24 0.5 *** 11 2800 11000 7500 2300 230 23 37 22 15 26 14 10 12 4.6 9.4 0.5 *** 12 2800 12000 7200 2600 330 26 33 23 12 21 8.0 *** 13 2900 12000 7300 2700 15000 1300 210 160 91 78 71 120 85 43 21 17 12 14 3.1 0.5 *** 15 20 15 15 26 15 15 15 15 15 15 15 15 15 15 15 15 15	18000 11000 2800 620 40 48 32 17 25 44 15 14 5.1 24 0.5 *** 11000 7500 2300 290 23 37 22 15 26 14 10 12 4.6 9.4 0.5 *** 12000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5 *** 12000 7200 2600 330 26 33 23 12 21 8.0 ** 12 13 5.7 12 0.5 *** 12000 7300 2700 320 27 33 23 14 20 9.0 ** 11 12 5.0 11 0.5 *** 133000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 1.2 and Effects guidelines are Table A in the MOE Guideline for Use at Contaminated Sites (1997)	pac	-	20000	11000	3200	620	38	46	34	17	28	23	15	15	5.3	22	0.5 ∜	0.9 △⊺	0.3
11 2800 10000 7400 2200 230 23 37 22 15 26 14 10 12 4.6 9.4 0.5 *** 12 2500 10000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5 *** 13 2500 12000 7200 2600 330 26 33 23 12 21 8.0 *** 14 2900 12000 7300 2700 320 27 33 23 14 20 9.0 *** 15 8000 33000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 1.2 16 NG NG NG 750 600 NG 750 20 NG 750 20 40 20 1.2	11000 7500 2300 290 23 37 22 15 26 14 10 12 4.6 9.4 0.5 *** 10000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5 *** 12000 7200 2600 330 26 33 23 12 21 8.0 ** 12 13 5.7 12 0.5 *** 12000 7300 2700 320 27 33 23 14 20 9.0 ** 11 12 5.0 11 0.5 *** 33000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 1.2 33000 NG 750 600 200 NG 750 200 225 200 40 20 1.2 3400 AG MG MG MG MG MG Guideline for Use at Contaminated Sites (1997)	pac		18000	11000	2800	620	40	48	32	17	25	44	15	14	5.1	24	0.5 ⁴₩	0.6 ⁴⊺	1.0
TH 2800 10000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5 °W S.	10000 7400 2200 270 22 31 21 15 25 12 8.0 11 4.1 8.2 0.5	froi		11000	7500	2300	290	23	37	22	15	26	14	10	12	4.6	9.4	0.5 ^{<w< sup=""></w<>}	0.5 ∜	0.8 △
5.k 2500 12000 7200 2600 330 26 33 23 12 21 8.0 ° ⁻¹ 12 13 5.7 12 0.5 ° ⁻¹ 5.8000 12000 7300 2700 1300 210 160 91 78 71 120 85 43 21 17 12 1.0 5.8000 33000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 1.2 NG NG NG NG 750 600 200 NG 750 200 225 200 40 20 1.2	12000 7200 2600 330 26 33 23 12 21 8.0 °T 12 13 5.7 12 0.5 °W 12000 7300 2700 320 27 33 23 14 20 9.0 °T 11 12 5.0 11 0.5 °W 13000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 1.2 s NG NG NG 750 600 200 NG 750 200 225 200 40 20 1.2 and Effects guidelines are Table A in the MOE Guideline for Use at Contaminated Sites (1997)	fror		10000	7400	2200	270	22	31	21	15	25	12	8.0	7	4.1	8.2	0.5 <₩	0.5	0.6
58 2900 12000 7300 2700 320 27 33 23 14 20 58000 33000 27000 16000 1300 210 160 91 78 71 NG NG NG NG 750 600 200 NG 750	12000 7300 2700 320 27 33 23 14 20 9.0 ° 1 11 12 5.0 11 0 33000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 1 3 NG NG NG NG 750 200 225 200 40 20 1 and Effects guidelines are Table A in the MOE Guideline for Use at Contaminated Sites	pac			7200	2600	330	26	33	23	12	21	3.0 <⊺	12	13	5.7	12	0.5 ∜	0.5 *	0.2
58000 33000 27000 16000 1300 210 160 91 78 71 NG NG NG NG 750 600 200 NG 750	33000 27000 16000 1300 210 160 91 78 71 120 85 43 21 17 1 NG NG NG NG 750 600 200 NG 750 200 225 200 40 20 1 and Effects guidelines are Table A in the MOE Guideline for Use at Contaminated Sites	pac		,	7300	2700	320	27	33	23	14	20	3.0 ⁴	11	12	5.0	7	0.5 ^{<w< sup=""></w<>}	0.6 ⁴⊺	0.3
NG NG NG NG 750 600 200 NG 750 S	, NG NG NG NG 750 600 200 NG 750 200 225 200 40 20 1 and Effects guidelines are Table A in the MOE Guideline for Use at Contaminated Sites	MOE Background Guideline	58000		27000	16000	1300	210	160	91	78	71 1	20	85	43	21	17	1.2	2.5	1.0
	and Effects guidelines are Table A in the MOE Guideline for Use at Contaminated Sites	deline	NG	NG	NG	NG	NG	750	009	200	NG		00	225	200	40	20	1.2	40	12

used where no Table F is available, see Appendix. NG - no Table A Effects guideline available.

Table 3: Soil Element Concentrations (ug/g) on Residential Yards, Wawa Townsite Properties West of Third Ave. & Mission Rd.

РО	0.2 ·w	. 6	. 6 <1	1,5 <1	1.2 <w< th=""><th>.6 △</th><th>7 ₹</th><th>.ئ ↑</th><th>£.</th><th>.6 ≺</th><th>∞.</th><th>. ∞</th><th>∞.</th><th>۲</th><th>7 < 7</th><th>⊅</th><th>7 < T</th><th>7 ≻ 4</th><th>. 5 6.</th><th></th><th>.6 ≺⊺</th><th>₽ 8.</th><th>10 ≺</th><th>.3 △</th><th>,</th><th>7 < 1</th><th>7 < T</th><th>0</th><th>2</th><th></th></w<>	.6 △	7 ₹	.ئ ↑	£.	.6 ≺	∞.	. ∞	∞.	۲	7 < 7	⊅	7 < T	7 ≻ 4	. 5 6.		.6 ≺⊺	₽ 8.	10 ≺	.3 △	,	7 < 1	7 < T	0	2	
0	\$ \$, C	, W	٠ ۱	0 M>	٥ «	٥ پ	۰ سپ	0 w	_ [↑]	w.	0	0 M>	W =	0	0,00	0 M>	0	, ,	^	·w.	√T 0	[%] 0	«w _	· 0	0	^w [↓] 0.	-	-	OTR98
Ψ°	0.5	0 0	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.9	0.5	0.5	0.5	0.5	0.7	0.5	0.5	1.0	0.5	0.7	0.5	9.0	0.5	0.5	0.5	0.5	0.5	2.5	40	7), 0
Be	0.5 °w	0.5 %	0.5 °W	0,5 'W	0.5 <₩	0.5 ***	0.5	0.5	0.5 <₩	0.9 ⁴	1.1	1.0 △⊺	1.1	0.7	1.0 ⁴⊺	0.5 °W	0.5 °	0.5 °W	0.5 °W	0.5 ·W	0.5 ₩	0.5 <w< td=""><td>0.5 <₩</td><td>0.5 ↔</td><td>0.5 ↔</td><td>0.5 ^{<w< sup=""></w<>}</td><td>0.5 ^{<w< sup=""></w<>}</td><td>1.2</td><td>1.2</td><td>Sites (1997),</td></w<>	0.5 <₩	0.5 ↔	0.5 ↔	0.5 ^{<w< sup=""></w<>}	0.5 ^{<w< sup=""></w<>}	1.2	1.2	Sites (1997),
As	7.4	23	24	17	17	15	15	9.0	6.8	3.8	5.5	6.4	4.8	9.7	4.0	9.6	14	15	12	19	20	23	22	15	16	20	20	17	20	
Co	8.0	5.2	4.9	6.4	5.4	6.7	5.7	5.9	5.3	10	1	12	7	10	11	6.3	6.4	5.9	7.1	7.0	8.5	7.8	7.0	7.8	7.2	0.9	5.7	21	40	at Contaminated
Ē	24	16	15	29	23	30	25	22	20	69	74	29	92	52	89	22	22	24	17	20	29	23	24	18	19	15	14	43	200	ıtam
Cn	20	=======================================	=	22	17	23	19	15	13	85	94	83	94	63	88	18	18	1	16	43	49	9/	99	16	17	15	12	85	225	t Cor
Pb	52	82		2	.0 ∆	_	2	□ 0	0	_ t > 0.	5.0 ⁴⊺	0	_ t 0	1≻ O	. □> 0	_ \ \	_ ^ \ 0	1> 0	_ ∖ 0	5	15 <⊤	14	3	2	7	6	0	0	0	Jse a
ō	35 2	55	24	7 1	8 9	18	5.	3 6	3 1	66 7	60 5	55 8.0	62 7.0	50^{1}_{0} 6.0	56 6.0	26 5.	28 9.0	8 6.0	$5^{-}_{-}9.0$	2 1	45 1	40 1	0 1	9 1	3 1	0 19	0 2	1 120	0 200	for (
Ī	23	20.	9 2	21 2	18	20 2	9	19 2	19 2	9 7	30 6	7 5	30 6	25 5	28 5	16 2	16 2	15 2	18. 2	26 3	_		26 40	1 29	18 33	20 30	7 3	8 7	3 750	Jeline
' Sr	35 2	32 2	34	32 2		31 2	7. 1		24 1	45 2		44 2	48 3	39 2	_	28 1		0	29 1	25 2	32 2	0 2	8 2	2 2	1	7 2	7	1 7	0 NG	Guid
_	(7 (7	(1)	(-)	(,)	.,	(1)	N	N	F.	4	4	4	4	n	4	2	2	က	2	2	က	3	2	m	3	n	സ	6	200	MOE
Zn	54	82	9	34	28	37	30	26	21	100	110	100	110	77	100	32	37	27	44	28	58	46	51	33	34	75	29	160	900	ι the
Ва	29	42	38	33	28	36	31	26	25	150	170	160	180	110	150	22	22	21	33	20	53	99	29	29	25	54	46	210	750	e A ir
∑ Z	510, 580	640	610	400	360	400	360	510	450	510	220	630	540	570	220	570	260	380	530	880	910	870	970	200	530	029	630	1300	NG	e Tabl
Mg	4900 5200	3000	2800	3400	2800	3400	3100	3300	3100	4400	4500	4000	4200	4100	4200	4100	3500	3200	3300	2000	6200	5800	2200	4100	4300	3300	3400	16000	NG	Effects guidelines are Table A in the MOE Guideline for Use Appendix.
A	00001	1000	2000	1000	00001	1000	9800	8400	8200	26000	29000			20000	26000		8200	0066	9400	1000					9200	0086	0000	27000 1	S	guideli lix.
			_	`	_	_											_			_	_	_				_	_		ני	Effects gu Appendix
n a	19000	21000	21000	16000	15000	16000	15000	16000	14000	23000	24000	23000	23000	19000	22000	18000	18000	16000	16000	23000	26000	23000	24000	18000	20000	20000	21000	33000	NG	ind Effi
Са	3900	3200	2900	4200	3200	4000	3700	4200	4000	5100	2200	5200	5400	2000	4900	4600	3700	3000	3400	0089	7400	2600	7800	3600	3900	4400	3600	58000	NG	ole Fan able, se
Yard	front	back	back	front	front	side	side	back	back	front	front	side	side	back	back	front	front	back	back	front	front	back	back	front	front	back	×			re Tak s avail
>	##	Ď	q	± -	Tr.	S	S	Ď	ă	Ţ	Ŧ	S	S	ã	çq .	Ţ	Ţ,	ã	þś	Ţ	ţ.	ps	ps	Ţ	Ţ	þŝ	pę	ıdelin	line	nes a le Fi
Address	R Beck Ave. R Beck Ave.	R Beck Ave.	R Beck Ave.	S Maple St.	S Maple St.	S Maple St.	S Maple St.	ıple St.	ple St.	T Maple St.	Maple St.	Maple St.	Maple St.	T Maple St.	T Maple St.	U Birch St.	ch St.	ch St.	ch St.	V Superior Ave.	V Superior Ave.	V Superior Ave.	V Superior Ave.	W Superior Ave.	W Superior Ave.	W Superior Ave.	W Superior Ave.	MOE Background Guideline	MOE Effects Guideline	Background guidelines are Table F and I used where no Table F is available, see
	R Be	R Be	R Be	S Ma	S Ma	S Ma	S Ma	S Maple	S Maple	T Ma	T Ma	T Ma	T Ma	⊺ Ma	T Ma	U Bir	U Birch St	U Birch St	U Birch St	V Sup	V Sur	N Sur	N Sur	w Su	W Su	M Su	W Su	MOE	MOE	Backe

Rd.
Mission
Ave. &
f Third
Westo
operties
ownsite Pro
Wawa 1
Yards,
Residential
ig/g) or
rations (µ
Concentr
Element (
able 3: Soil E
-

Address Yard Ca	Yard	Claric Grant	9/9/1/ SII	AIA	Ma	V	9,00	70	>	2 0		Ċ	Z	5	AS	8 B	N N	C
250000	5	3	>		ח		3	i	•			,				3		5
X Superior Ave.	front	4700	24000	16000	2000	069	38	22	42	9	4 14	4			1,6	5 0.5 ^{<w< sup=""></w<>}	5.6	0.6
X Superior Ave.	front	3700	20000	13000	4200	200	31	46	36	9	8 11	<u>ന</u>	36 2		18	3 0.5 cw	1.6 △⊺	0.4 △⊺
X Superior Ave.	back	2900	21000	14000	3900	540	36	41	36	15 3	3 13	2	4		3 17	v 5.0 7	0.9 ←	0.7 <⊺
X Superior Ave.	back	3400	22000	13000	4600	280	39	48	36	17 3	8 18	2	9 2		3 18	3 0.5 cW	1.2 <⊺	0.5 ⁴
Y Regina Cres.	front	3200	13000	8400	2600	490	28	30	24	15 2	0 11	∞.	-		1 1	1 0.5 <w< td=""><td>0.5 ™</td><td>0.6</td></w<>	0.5 ™	0.6
Y Regina Cres.	front	2900	13000	7800	2500	490	29	32	22						7	3 0.5 ™	0.5 °W	0.6 ⁴⊺
Y Regina Cres.	back	2300	14000	7300	1700	929	4	36	21						2	3 0.5 °W	0.5 °W	0.6 ⁴
Y Regina Cres.	back	3200	20000	8800	2700	930	54	49	. 92						36	9 0.5 °W	0.5 <₩	0.7 <t< td=""></t<>
Z Regina Cres.	front	2000	20000	14000	2000	510	4	53	37	22 3					1 9.9	9 0.5 °W	1.2 △⊺	0.5 ←
Z Regina Cres.	front	2000	20000	14000	4900	200	40	53	36	22 3					7	1 0.5 °W	1.4 △⊺	0.5 ⁴
Z Regina Cres.	back	5200	23000	12000	4600	780	53	71	38	25 3					17	7 0.5 <₩	0.5 ⁴₩	0.7
Z Regina Cres.	back	14000	22000	12000	4500	1700	210	110	34 13	20 3					3 2(0.5 <₩	0.5 °W	1.3
AA Churchill Ave.	front	3800	14000	8300	3100	360	25	30				\			7	0.5 ⁴₩	w> 5.0 →	0.2 ^{<w< sup=""></w<>}
AA Churchill Ave.	front	3300	12000	2700	2800	320	23	28				7			7	0.5 ™	0.5 <	0.7
AA Churchill Ave.	back	2700	11000	7100	2500	270	21	28		13		F.			7 8.4	1 0.5 °W	0.5 ↔	0.3 ←
AA Churchill Ave.	back	3000	12000	7900	2800	360	24	30							0 15	5 0.5 W	0.5 ∜	0.2 <₩
AB Churchill Ave.	front	3900	20000	11000	3200	990	29	120) 0.5 °W	0.5 <w< td=""><td>0.9 ←</td></w<>	0.9 ←
AB Churchill Ave.	front	4200	20000	11000	3200	1100	29	110	38		26 38		17 1	14 6.1	1 22	2 0.5 ⁴₩	0.5 <w< td=""><td>0.7 <t< td=""></t<></td></w<>	0.7 <t< td=""></t<>
AB Churchill Ave.	back	3500	18000	10000	3400	200	25	78								7 0.5 °W	0.5 ⁴₩	0.6 ⁴⊺
AB Churchill Ave.	back	3300	16000	10000	3400	610	35	9/				-			5 23	3 0.5 ∜₩	0.5 <₩	0.4 △
AC Magpie Rd.	front	4200	14000	8100	3300	440	31	35								w> 5.0 ∑	0.5 °W	0.4 △⊺
AC Magpie Rd.	front	4600	16000	8300	3400	530	33	34	_						5 15	5 0.5 °W	0.5 °W	0.4 △⊺
AC Magpie Rd.	back	3500	21000	12000	3400	280	45	46							0	5 0.5 °W	0.5 °W	0.5
AC Magpie Rd.	back	3300	22000	11000	3400	650	48	44							3 2	0.5 ↔	0.5 ^w	0.6 ⁴
AD Third Ave.	front	5300	23000	11000	4600	290	43	73		22 3					8	3 0.5 ™	0.5 <₩	0.5 ₫
AD Third Ave.	front	4700	23000	9700	4600	160	38	89	_ 4						2 1	3 0.5 ₩	0.6 ⁴	0.7
AD Third Ave.	back	4100	21000	11000	4800	620	35	51						3 7.	9	3 0.5 *	0.5 ∜	0.4
AD Third Ave.	back	4300	22000	11000	2000	680	40	65						3 8.	-	9 0.5 °W	0.5 ∜	0.6
AE George St.	front	3700	14000	9100	2600	400	46	40					4	3 4.	0)	1 0.5 °W	0.6 <1	0.6
AE George St.	front	3300	14000	9800	2500	430	37	40			17		3 1	3.4.	7 16	3 0.5 °W	0.5 ∜₩	0.4
AE George St.	back	2500	14000	8200	2600	380	24	39			3 20	_	0	3 3.	9	1 0.5 °W	0.5 ↔	0.5
AE George St.	back	2900	14000	9000	3000	370	24	38			14 21		-	4.	2 19	9 0.5 ^w	0.5 ∜	0.5
MOE Background Guideline	deline	58000	33000	27000	16000	1300	210	160	91		71 120		35 4	3 2	7	7 1.2	2.5	1.0
MOE Effects Guideline	ine	NG	NG	NG	NG	NG	750	009	200 N	16 79	30 200	22	25 20	0 4	0 2	0 1.2	40	12
Background guidelines are Table F and Effects guid NG - no Table A Effects guideline available	Table F and E	ffects guid le	elines are Ta	able A in th	e MOE Gui	deline fo	r Use a	t Contan	inated Site	s (1997	. OTR98	used wh	ere no	rable F	is avail	able, see Ap	pendix	

Percent to Phy o Shall an

Table 3: Soil Element Concentrations (ug/g) on Residential Yards, Wawa Townsite Properties West of Third Ave. & Mission Rd.

Phytotoxicology 2001 and 2002 Investigations. Algoria Ore Division. Two of Michipicoten (Wawa.

Address Yard Ca	Yard	Ca	Fe	₹	Mg	Μ	Ba	Zn	>	Sr		Pb	Cu	ž	C O	As	-	Be Mo	PO
AF Ross St.	side	3200	16000	8900	2800	420	27	37	29	15	22	17	12	12	8.4	15	0.5 <w< td=""><td>0.5</td><td>0.6</td></w<>	0.5	0.6
AF Ross St.	side	2600	14000	7800	2100	380	28	31	26	13	18	17	8.0	9.0	3.7	4	0.5 <w< td=""><td>0.5 <</td><td>0.4 △⊺</td></w<>	0.5 <	0.4 △⊺
AF Ross St.	front	3700	15000	7500	3000	430	26	42	26	4	27	21	7	12	4.2	18	0.5 <w< td=""><td>0.5</td><td>0.6 <1</td></w<>	0.5	0.6 <1
AF Ross St.	front	3900	15000	7600	3000	420	29	39	56	15	56	18	12	13	4.4	13	0.5 <₩	0.5 °W	0.2 <₩
AF Ross St.	back	4800	16000	9200	3200	510	36	69	28	14	21	22	12	13	4.7	16	0.5 <w< td=""><td>0.5 ^{< w}</td><td>0.4 ⁴⊺</td></w<>	0.5 ^{< w}	0.4 ⁴⊺
AF Ross St.	back	4200	15000	8600	2900	450	33	54	26	15	20	21	7	12	5.2	20	0.5 <w< td=""><td>0.5 ^{< w}</td><td>0.9 <⊺</td></w<>	0.5 ^{< w}	0.9 <⊺
AG Birch St.	front	2900	15000	7900	2100	460	24	25	23	13	17	12	7.0	9.4	3.5	56	0.5 ^{⟨W}	0.5 °W	0.2 <w< td=""></w<>
AG Birch St.	front	2700	15000	8300	1900	420	23	23 ⁴	24	12	17	12	0.9	6	3.1	28	0.5 ⁴₩	0.5	0.3 <t< td=""></t<>
AG Birch St.	back	3800	14000	8000	2200	200	4	51	23	21	19	19	13	12	3.5	17	0.5 <w< td=""><td>0.5 ^{<w< sup=""></w<>}</td><td>0.3 <t< td=""></t<></td></w<>	0.5 ^{<w< sup=""></w<>}	0.3 <t< td=""></t<>
AG Birch St.	back	2600	14000	7700	2100	400	25	35	23	14	19	15	8.0	1	3.9	19	0.5 <w< td=""><td>0.5 <</td><td>0.5 <t< td=""></t<></td></w<>	0.5 <	0.5 <t< td=""></t<>
AH Churchill Ave.	front	3200	15000	9400	2400	420	20	63	56	13	24	21	7	11	3.7	25	0.5 <w< td=""><td>0.5 <w< td=""><td>0.2 <w< td=""></w<></td></w<></td></w<>	0.5 <w< td=""><td>0.2 <w< td=""></w<></td></w<>	0.2 <w< td=""></w<>
AH Churchill Ave.	front	3000	14000	9100	2300	380	19	43	24	7	24	24	10	10	3.5	h	0.5 <w< td=""><td>0.5 <w< td=""><td>0.2 <w< td=""></w<></td></w<></td></w<>	0.5 <w< td=""><td>0.2 <w< td=""></w<></td></w<>	0.2 <w< td=""></w<>
AH Churchill Ave.	back	3300	20000	10000	3200	680	38	42	40	15	31	16	13	16	5.8	34	0.5 ^{<w< sup=""></w<>}	0.5 °W	0.4 <t< td=""></t<>
AH Churchill Ave.	back	3500	19000	0096	3100	099	39	51	38	14	29	20	12	4	5.3		0.5 cw	0.6 <t< td=""><td>0.5 <⊤</td></t<>	0.5 <⊤
Al Poplar St.	front	3300	15000	7800	3100	380	22	23 ⁴	59	18	27	10	12	13	6.4	-	0.5 <w< td=""><td>1.0 ⁴</td><td>0.4 <⊺</td></w<>	1.0 ⁴	0.4 <⊺
Al Poplar St.	front	3800	17000	8800	3200	420	25	59	33	21	28	9.0 <ा	14	15	5.6	13	0.5 <w< td=""><td>0.6 <1</td><td>0.2 <w< td=""></w<></td></w<>	0.6 <1	0.2 <w< td=""></w<>
Al Poplar St.	back	2700	19000	7600	3100	520	26	36	35	17	27	10	15	16	5.4	17	0.5 <w< td=""><td>0.5 <w< td=""><td>0.2 <w< td=""></w<></td></w<></td></w<>	0.5 <w< td=""><td>0.2 <w< td=""></w<></td></w<>	0.2 <w< td=""></w<>
Al Poplar St.	back	2700	17000	0089	2900	460	25	36	30	17	22	7.0 <7	13	13	5.3	14	0.5 <w< td=""><td>0.7</td><td>0.2 <w< td=""></w<></td></w<>	0.7	0.2 <w< td=""></w<>
AJ Tamarack Ave.	front	3400	12000	6500	3000	320	20	31	22	4	25 8	8.0 <⊺	13	20	6.4	4.6	0.5 <w< td=""><td>0.5 ↔</td><td>0.2 <</td></w<>	0.5 ↔	0.2 <
AJ Tamarack Ave.	front	3600	13000	0099	3000	340	22	35		16	27 8	3.0 <⊤	14	21	8.4	5.0	0.5 <w< td=""><td>0.5 <w< td=""><td>0.4 ⁴⊺</td></w<></td></w<>	0.5 <w< td=""><td>0.4 ⁴⊺</td></w<>	0.4 ⁴⊺
AJ Tamarack Ave.	back	4000	19000	22000	3700	450	130	85		24	49	1.0 <⊺	9	61	8.7	4.1	0.8 ≺⊺	0.5 <₩	0.4 ≺⊺
AJ Tamarack Ave.	back	3400	16000	18000	3300	380	100	29	34	20	42	1.0 <⊤	25	20	7.1	6.4	0.6 ⁴⊺	0.5 °W	0.4 <⊺
AK Tamarack Ave.	front	3600	13000	0069	2900	370	23	31	24	17	21	7.0 <t< td=""><td>16</td><td>21</td><td>4.9</td><td>4.3</td><td>0.5 °W</td><td>0.5 °W</td><td>0.4 <⊺</td></t<>	16	21	4.9	4.3	0.5 °W	0.5 °W	0.4 <⊺
AK Tamarack Ave.	front	3800	14000	0069	3000	440	25	30		18	22 (3.0 <t< td=""><td>15</td><td>20</td><td>5.3</td><td>7.4</td><td>0.5 <₩</td><td>0.5 <</td><td>0.2</td></t<>	15	20	5.3	7.4	0.5 <₩	0.5 <	0.2
AK Tamarack Ave.	back	4100	18000	16000	3600	460	93	75		22	41	7> 0.7	26	49	9.7	4.5	0.6 <⊺	0.5	0.2 ^{<w< sup=""></w<>}
AK Tamarack Ave.	back	3700	15000	13000	3200	380	71	99	29	20	34 (5.0 <t< td=""><td>41</td><td>39</td><td>6.7</td><td>3.6</td><td>0.5 °W</td><td>0.5 ∜</td><td>0.2 < W</td></t<>	41	39	6.7	3.6	0.5 °W	0.5 ∜	0.2 < W
AL Superior Ave.	front	2400	12000	8000	3000	280	24	09	27	15	23 6	6.0 <⊺	12	15	2.5	7	0.5 °W	0.5 <w< td=""><td>0.2 <</td></w<>	0.2 <
AL Superior Ave.	front	3300	12000	8100	3200	320	35	59		19	24 4	4.0 <⊺	12	16	6.0	6.2	0.5 ↔	0.5 <	0.2
AM George St.	front	2000	12000	2000	3000	350	43	99	22	22		23	20	16	5.5	13	0.5 ↔	0.5 <	0.4 ⁴
AM George St.	front	2100	12000	0099	2900	360	43	44	22	21		33	20	15	4.9	14	0.5 ∜	0.5 ·W	0.2
AM George St.	back	2900	13000	7500	2300	340	29	44	56	13		22	10	7	4.7	17	0.5 <₩	0.5 ^{<w< sup=""></w<>}	0.6 <1
AM George St.	back	3800	14000	7700	2800	360	30	85	27	15	27	25	7	7	4.2	16	0.5 ↔	0.5 <	1.2
MOE Background Guideline	eline	28000	33000	27000	16000	1300	210	160	91	78		120	85	43	21	17	1.2	2.5	1.0
MOE Effects Guideline	o l	D N	NG	NG	N _G	S	750	009	200 N	1G 7	50 2	00	225	200	40	20	1.2	40	12
Background guidelines are Table F and Effects guid NG - no Table A Effects guideline available	ole F and E	ffects guide e	lines are Ta	ble A in the	in the MOE Guideline	deline for	· Use a	t Contamir	nated Site	s (199	7), OTF	98 used	where n	o Table	FISa	vailable	, see App	endix.	

Table 4: Correlation Coefficients (r) Between Pairs of Soil Chemical Elements

Cd																		₩
Mo													+				_	0.0774
Be																_	-0.0080	0.5237 0.3741 0.6173 0.3707 0.3713 0.3230 0.5726 0.2923 0.1637 0.3843 0.1963 0.1108 0.0774 0
As					1	1				* -	Ť				·-	0.1476 -0.0089 0.7591 0.2207 0.4499 0.1894 0.6448 -0.1680 0.7577 0.8549 0.4534 -0.1024	0.0314 0.0026 -0.0461 0.3410 0.0107 0.3020 -0.0446 0.2221 0.0867 0.3995 -0.0561 -0.0080	0.1963
ပိ			+-	+						+	+-		,	-	0.1635	0.4534	0.3995	0.3843
ž													-	0.7100	0.0111	0.8549	0.0867	0.1637
Cu												~	0.9054	0.7681	0.0633	0.7577	0.2221	0.2923
Pb		+		+				ŀ			_	0.0627	0.1758 0.7842 0.3749 0.6068 0.2828 0.8415 -0.0758 0.9054	0.4073 0.5631 0.5459 0.8245 0.3887 0.8876 0.1776 0.7681 0.7100	0.6577 -0.0005 0.3899 0.1496 0.0668 0.1333 0.3085 0.0633 0.0111 0.1635	-0.1680	-0.0446	0.5726
Ö			+	+			+ -	+		—	0.1190	0.8863	0.8415	0.8876	0.1333	0.6448	0.3020	0.3230
Š			1				+		-	0.5306 0.8046 0.3367	0.1231	0.3370	0.2828	0.3887	0.0668	0.1894	0.0107	0.3713
>								_	0.3592 0.3300	0.8046	0.1870	0.6403	0.6068	0.8245	0.1496	0.4499	0.3410	0.3707
Zn							_	0.3301 0.5666 0.5093		0.5306	0.3861 0.0666 0.6819 0.1870 0.1231 0.1190	0.2774 0.7839 0.4399 0.6403 0.3370 0.8863 0.0627	0.3749	0.5459	0.3899	0.2207	-0.0461	0.6173
Ba			+	+		-	0.5995 0.4977	0.5666	0.3742 0.6683	0.3025 0.6913	0.0666	0.7839	0.7842	0.5631	-0.0005	0.7591	0.0026	0.3741
Ā					-	0.2798	0.5995		a .						0.6577	-0.0089		0.5237
Mg				-	0.6689	0.3234	0.5027	0.6110	0.3623	0.6948	0.2379	0.5830	0.4506	0.7587 0.8162	7 0.3935		0.2773	0.3901
₹			-	0.4512	0.1660	0.8131	0.4203	0.7753	0.3202	0.8814	-0.0186	0.9027	0.9017	0.7587	0.0167	0.8222	0.2404	0.2736
F.		-	0.3482	0.7751	0.5336 0.9270	0.5748 0.3014	0.6279	0.3784 0.5176	0.7908 0.2413	0.4891	0.2475 0.4042 -0.0186 0.2379	0.4756 0.4442	0.3167 0.3509	0.5319 0.5723	0.2360 0.6355 -0.0167 0.3935	0.1481 0.1389 0.8222	0.0767 0.1399 0.2404	0.4524 0.5189 0.2736
Ca	_	0.4559	0.3475	0.6559	0.5336	0.5748	0.5022	0.3784	0.7908	0.4922	0.2475	0.4756	0.3167	0.5319	0.2360	0.1481	0.0767	0.4524
	Ca	E E	₹	Mg	M	Ва	Zn	>	Š	Ö	Pb	CL	Ē	Co	As	Be	Mo	Cd

Phytotoxicology 2001 and 2002 Investigations. Algoma Ore Division. Twp. +17/lichipicoten (Wawa)

Table 5: Element Concentrations (ug/g) - Soil Used in Bioassay (mean of 3 or 4 analytical replicates)

ت ت	13	U. /	<u>σ</u> α	2.0	2.7	7.7	4. o	o i	4.5	6.1	220	S N	Σ.	
Na	118												Table	
P)	0.5												OTR98 used where no Table F	
Mo	0.7	0.5	0.0	0 0	o • •	ວ (ບ ເ	C. 5	ر ئ	0.5	0.5	2.5	40	sed wh	
Be	0.5	0.5	رن دن	ا ان ان	υ. υ. υ	υ ι	O. ا ک	0.5	0.5	0.5	1.2	1.2	TR98 L	
As	4	348	108	380	2	49/	4	533	143	09	17	20		
ပ္ပ	8.2	6.2	7.6	ω ,	5.7	ე ე	7.3	=	4.3	6.7	21	40	for Use at Contaminated Sites (1997),	
ź	22	23	23	17	4,	40	<u>6</u>	32	14	21	43	200	nated S	
Cu	27	4	20	4	13	90°	17	40	7.0	22	85	225	ontami	
Pb	32	33	40	09		က က	10	103	19	36	120	200	se at C	
ర	34	22	36	31	24	26	34	43	20	26	71	750		
Š	22					1			1	1-		-	MOE Guideline	
>			43									1	MOE	
Zn			79										in the	
Ba			55										Fable A	1
M	645	5475	1200	1967	393	15333	483	9400	1900	1133	1300	N	nes	1500
Mg	4750	9400	4150	12333	2467	21000	4200	14333	3767	2533	16000	200	to onide	へいころ ついい
₹	9150	7450	20750	1867	2996	6500	6733	6700	11223	7970	27000	DNG DOO'S	Due I	1 2 2 2 1 1
E O	22250	10000	37000	43333	15333	63333	17000	162232	40223	40555	22000	22000	OF Topo	Sare Laure
е С	3900	6675 1	3700 37000 20	8100 1	3200	22000 2	5267	2020	0000	2000	3200	28000	D 3	duideline;
	Cito 1	Site -	Site 3	Site 4	Site Site	Sit of other	Site 7	טוני כ	Site 8	Site 9	Site 10	Guideline Table A	Guideline Guideline Facts of Effects of	Background

available, see Appendix.

NG - no Table A Effects guideline available.

Table 6: Summary of Arsenic Bean Growth Bioassay Results

Sample Site	Soil Arsenic in µg/g	Mean Shoot Fresh Weight in g (STD)	Mean Shoot Length in cm (STD)	Mean Root Length in cm (STD)
Control	<17	1.71 (2.63)	11.54 (3.56)	17.08 (2.09)
1	14	2.25 (3.48)	14.27 (1.44)	16.60 (4.24)
7	14	2.67 (4.38)	13.03 (1.99)	19.52 (3.97)
5	15	2.48 (3.82)	12.60 (2.25)	17.82 (3.06)
10	60	1.99 (2.88)	12.09 (2.41)	18.76 (3.20)
3	108	2.95 (4.61)	13.51 (1.17)	17.03 (2.82)
9	143	2.26 (3.41)	11.73 (2.16)	18.78 (1.99)
2	348	2.22 (3.63)	13.30 (1.05)	23.63 (5.31)
4	390	2.46 (3.63)	13.87 (2.15)	20.03 (3.73)
6	497	2.42 (3.14)	12.47 (2.32)	13.75 (2.72)
8	533	1.77 (2.56)	12.20 (1.03)	18.75 (3.66)

Mean of 15 plants per treatment STD - Standard Deviation

Figure 1: Location of Residential Properties Sampled and Bioassay Soil Collected

Arsenic Concentrations - Frequency of Occurrence Residential Sites near Algoma Ore Division

Figure 2:

Arsenic Concentrations - Frequency of Occurrence Residential Sites Wawa East

Arsenic Concentrations - Frequency of Occurrence Residential Sites Wawa West

Figure 3: Bush Bean Plants Grown for 35 Days in 10 Soils from the Wawa Area

Appendix 1

Derivation/Significance of the Ontario Ministry of the Environment (MOE) Soil Guidelines in "Guideline for Use at Contaminated Sites in Ontario"

The MOE soil clean-up *Guidelines* have been developed to provide guidance for cleaning up contaminated soil. The *Guidelines* are not legislated Regulations. Also, the *Guidelines* are not action levels, in that an exceedence does not automatically mean that a clean-up must be conducted. The *Guidelines* were prepared to help industrial property owners decide how to clean-up contaminated soil when property is sold and/or the land-use changes. Most municipalities insist that contaminated soil is cleaned up according to the MOE *Guidelines* before they will approve a zoning change for redevelopment, therefore, even though the *Guideline* is voluntary most industrial property owners and developers are obliged to use it. For example, the owner of an industrial property who plans to sell the land to a developer who intends to build residential housing can use the *Guideline* to clean up the soil to meet the residential land-use criteria. In this way previously-contaminated industrial land can be re-used for residential housing without concern for adverse environmental effects.

The *Guideline* contains a series of Tables (A through F), each having criteria for soil texture, soil depth, and ground water use for various land-use categories (eg., agricultural, residential, industrial). Table F *criteria* reflect the upper range of background concentrations for soil in Ontario. An exceedence of Table F indicates the likely presence of a contaminant source. Tables A through E *criteria* are effects-based and are set to protect against the potential for adverse effects to human health, ecological health, and the natural environment, whichever is the most sensitive. By protecting the most sensitive parameter the rest of the environment is protected by default. The *Guideline criteria* take into consideration the potential for adverse effects through direct contact, and through contaminant transfer from soil to indoor air, from ground water or surface water through release of volatile gases, from leaching of contaminants in soil to ground water, or from ground water discharge to surface water. However, the *Guideline criteria may not* ensure that corrosive, explosive, or unstable soil conditions will be eliminated.

If the decision is made that remedial action is needed, the *criteria* in Tables A to F of the *Guideline* can be used as clean-up targets. In some cases, because of economic or practical reasons, it may not be possible to clean up a site using the generic *criteria* in Tables A to F. The *Guideline* provides a process, called a *site specific risk assessment*, which is used to evaluate the soil contamination with respect to conditions that are unique to the contaminated site. In a *site specific risk assessment* the proponent examines all the potential pathways through which the contamination may impact the environment and must demonstrate that because of conditions unique to that site the environment and human health will not be adversely effected if contamination above the generic *criteria* in Table A to E is left in place.

When contamination is present and a change in land-use is not planned, for example residential properties and public green spaces near a pollution source, the *Guideline* may be used in making decisions about the need for remediation. This is different from the previously described situation where a company that caused contamination on their own property decides to clean up the soil, usually at the insistence of the municipality who will not approve a zoning change unless remediation is conducted. Decisions on the need to undertake remedial action when the *Guideline criteria* are exceeded *and* where the land-use is not changing are made on a site by site basis using *site specific risk assessment* principals and are usually

contingent on the contaminants having caused an adverse environmental effect or there is a demonstrated likelihood that the contamination may cause an adverse effect. Because of the long history of industrial operation and our practice of living close to our work place the soil in many communities in Ontario is contaminated above the effects-based *criteria* in the MOE *Guidelines*. In practice, remediation of contaminated soil on privately-owned residential property and public green spaces has only been conducted in communities when the potential for adverse health effects has been demonstrated.

The soil clean-up *Guidelines* were developed from published U.S. EPA and Ontario environmental data bases. Currently there are criteria for about 25 inorganic elements and about 90 organic compounds. Criteria were developed only if there were sufficient, defendable, effects-based data on the potential to cause an adverse effect. All of the criteria address human health and aquatic toxicity, but terrestrial ecological toxicity information was not available for all elements or compounds. The development of these clean-up *Guidelines* is a continuous program, and criteria for more elements and compounds will be developed as additional environmental data become available. Similarly, new information could result in future modifications to the existing *Guidelines*.

For more information on the MOE's soil clean-up *Guidelines* please refer to the *Guideline for Use at Contaminated Sites in Ontario. Revised February 1997*, Ontario Ministry of Environment and Energy, PIBs 3161E01, ISBN 0-7778-6114-3.

Page 22 of 24

Appendix 2 Derivation and Significance of the MOE "Ontario Typical Range" Soil Guidelines

The MOE "Ontario Typical Range" (OTR) guidelines are being developed to assist in interpreting analytical data and evaluating source-related impacts on the terrestrial environment. The OTRs are used to determine if the level of a chemical parameter in soil, plants, moss bags, or snow is significantly greater than the normal background range. An exceedence of the OTR $_{98}$ (the OTR $_{98}$ is the actual guideline number) may indicate the presence of a potential point source of contamination.

The OTR₉₈ represents the expected range of concentrations of chemical parameters in surface soil, plants, moss bags, and snow from areas in Ontario not subjected to the influence of known point sources of pollution. The OTR₉₈ represents 97.5 percent of the data in the OTR distribution. This is equivalent to the mean plus two standard deviations, which is similar to the previous MOE "Upper Limit of Normal" (ULN) guidelines. In other words, 98 out of every 100 background samples should be lower than the OTR₉₈.

The OTR₉₈ may vary between land use categories even in the absence of a point source of pollution because of natural variation and the amount and type of human activity, both past and present. Therefore, OTRs are being developed for several land use categories. The three main land use categories are Rural, New Urban, and Old Urban. Urban is defined as an area that has municipal water and sewage services. Old Urban is any area that has been developed as an urban area for more than 40 years. Rural is all other areas. These major land use categories are further broken into three subcategories; Parkland (which includes greenbelts and woodlands). Residential, and Industrial (which includes heavy industry, commercial properties such as malls, and transportation rights-of-way). Rural also includes an Agricultural category.

The OTR guidelines apply only to samples collected using standard MOE sampling, sample preparation, and analytical protocols. Because the background data were collected in Ontario, the OTRs represent Ontario environmental conditions.

The OTRs are not the only means by which results are interpreted. Data interpretation should involve reviewing results from control samples, examining all the survey data for evidence of a pattern of contamination relative to the suspected source, and where available, comparison with effects-based guidelines. The OTRs are particularly useful where there is uncertainty regarding local background concentrations and/or insufficient samples were collected to determine a contamination gradient. OTRs are also used to determine where in the anticipated range a result falls. This can identify a potential concern even when a result falls within the guideline. For example, if all of the results from a survey are close to the OTR₉₈ this could indicate that the local environment has been contaminated above the anticipated average, and therefore the pollution source should be more closely monitored.

The OTRs identify a range of chemical parameters resulting from natural variation and normal human activity. As a result, it must be stressed that values falling within a specific OTR98 should not be considered as acceptable or desirable levels; nor does the OTR_{98} imply toxicity to plants, animals or humans. Rather, the OTR_{98} is a level which, if exceeded, prompts further investigation on a case by case basis to determine the significance, if any, of the above normal concentration. Incidental, isolated or spurious exceedences of an OTR_{98} do not necessarily indicate a need for regulatory or abatement activity. However, repeated and or

extensive exceedences of an OTR_{98} that appears to be related to a potential pollution source does indicate the need for a thorough evaluation of the regulatory or abatement program.

The OTR₉₈ supersedes the Phytotoxicology ULN guideline. The OTR program is on-going. The number of OTRs will be continuously updated as sampling is completed for the various land use categories and sample types. For more information on these guidelines please refer to Ontario Typical Range of Chemical Parameters in Soil. Vegetation, Moss Bags, and Snow, MOEE Report Number HCB-151-3512-93, PIBs Number 2792. ISBN 0-778-1979-1.

Ministry of Environment Laboratory Services Branch Current/Active LSB Analytical Methods - Drinking Water

THE CHARACTERIZATION OF EXTRACTABLE ORGANICS IN WATER, WASTE AND SOIL BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) FHE DETERMINATION OF VOLATILE ORGANOHALIDES AND HYDROCARBONS IN WATER, LEACHATES AND EFFLUENTS BY HEADSPACE CAPILLARY THE DETERMINATION OF CHLOROPHENOLS (CPS) AND PHENOXYACID HERBICIDES (PAS) IN WATER BY SOLID PHASE EXTRACTION (SPE) AND IN THE DETERMINATION OF PHENOLIC COMPOUNDS IN WATER, INDUSTRIAL WASTES, LANDFILL LEACHATES AND SEWAGE BY COLOURIMETRY THE DETERMINATION OF FLUORIDE AND SULPHATE IN WATER, LEACHATES AND EFFLUENTS BY AUTOMATED ION CHROMATOGRAPHY (IC) THE DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN RAW AND TREATED DRINKING WATER BY PURGE AND TRAP CAPILLARY GAS GAS CHROMATOGRAPHY (GC) MASS SPECTROMETRY AND/OR PURGE AND TRAP GAS CHROMATOGRAPHY (GC) MASS SPECTROMETRY THE DETERMINATION OF MERCURY IN WATER BY COLD VAPOUR-FLAMELESS ATOMIC ABSORPTION SPECTROPHOTOMETRY (CV-FAAS) THE DETERMINATION OF TRACE METALS IN POTABLE WATERS BY INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY (ICP-MS) THE CHARACTERIZATION OF VOLATILE ORGANICS IN WATER AND EFFLUENT BY PURGE-AND-TRAP GAS CHROMATOGRAPHY-MASS THE DETERMINATION OF CHLORIDE IN DRINKING WATER, SURFACE WATER, SEWAGE AND INDUSTRIAL WASTE BY COLOURIMETRY VEGETATION BY SOLID/LIOUID EXTRACTION (SONIFICATION) USING GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS) THE DETERMINATION OF HEXAVALENT CHROMIUM IN WATER, LANDFILL LEACHATES AND EFFLUENTS BY COLOURIMETRY THE DETERMINATION OF CHEMICAL OXYGEN DEMAND (COD) IN DOMESTIC AND SURFACE WATERS BY COLOURIMETRY THE DETERMINATION OF TOTAL SULPHIDE IN WATER, SEWAGE AND INDUSTRIAL WASTES BY COLOURIMETRY THE ENUMERATION OF "SULPHATE REDUCING" BACTERIA IN WATER BY THE INDICATED NUMBER METHOD THE DETERMINATION OF FREE AND TOTAL CYANIDE IN ENVIRONMENTAL SAMPLES BY COLOURIMETRY CHROMATOGRAPHY- FLAME IONIZATION/MASS SELECTIVE (PT/GC-FID/MSD) DETECTION THE DETERMINATION OF SOLIDS IN LIOUID MATRICES BY GRAVIMETRY SPECTROMETRY (GC-MS) Description E3179A E3186A E3188B E3189A E3144B E3172A E3015A E3016A E3051A E3056A E3060B E3100A E3115A E3119A E3132A E3170A Method

LIMS CALCULATIONS-ION BALANCE

E3196A

December 20, 2005

Method	Description
E3217A	THE DETERMINATION OF CATIONS IN WATER, SEWAGE, HEALTH SAMPLES, INDUSTRIAL WASTE AND LANDFILL LEACHATES BY ATOMIC ABSORPTION SPECTROPHOTOMETRY (AAS)
E3218A	THE DETERMINATION OF CONDUCTIVITY, PH AND ALKALINITY IN WATER AND EFFLUENTS BY POTENTIOMETRY
E3219A	THE DETERMINATION OF TRUE COLOUR IN WATER, EFFLUENTS AND INDUSTRIAL WASTES BY COLOURIMETRY
E3226A	THE DETECTION OF COLIFORM BACTERIA INCLUDING ESCHERICHIA COLI IN DRINKING WATER BY THE PRESENCE-ABSENCE PROCEDURE
E3247B	THE DETERMINATION OF TOTAL ORGANIC CARBON IN AQUEOUS SAMPLES BY COMBUSTION AND INFRARED SPECTROMETRY
E3274A	LIMS CALCULATIONS-LANGELIERS INDEX
E3291A	THE DETERMINATION OF N-NITROSODIMETHYLAMINE (NDMA) IN WATER BY GAS CHROMATOGRAPHY-HIGH RESOLUTION MASS SPECTROMETRY (GC-HRMS)
E3310A	THE DETERMINATION OF TASTE AND ODOUR COMPOUNDS IN WATER BY GAS CHROMATOGRAPHY-HIGH RESOLUTION MASS SPECTROMETRY (GC-HRMS)
E3311A	THE DETERMINATION OF TURBIDITY IN WATER BY NEPHELOMETRY UNDER ROBOTIC CONTROL
E3364A	THE DETERMINATION OF AMMONIA NITROGEN, NITRITE NITROGEN, NITRITE PLUS NITRATE NITROGEN AND REACTIVE ORTHO-PHOSPHATE IN SURFACE WATER, DRINKING WATER AND PRECIPITATION BY COLOURIMETRY
E3367A	THE DETERMINATION OF TOTAL KJELDAHL NITROGEN AND TOTAL PHOSPHOROUS IN WATER, PRECIPITATION AND SOIL EXTRACTS BY COLOURIMETRY
E3370A	THE DETERMINATION OF MOLYBDATE REACTIVE SILICATES AND DISSOLVED CARBON IN WATER, INDUSTRIAL WASTE, SOIL EXTRACTS AND PRECIPITATION BY COLOURIMETRY
E3371A	A MEMBRANE FILTRATION METHOD FOR THE DETECTION AND ENUMERATION OF TOTAL COLIFORM, ESCHERICHIA COLI, PSEUDOMONAS AERUGINOSA AND FECAL STREPTOCOCCI
E3388A	THE DETERMINATION OF N-NITROSAMINES IN WATER BY GAS CHROMATOGRAPHY - HIGH RESOLUTION MASS SPECTROMETRY (GC-HRMS)
E3399A	THE DETERMINATION OF POLYCYCLIC HYDROCARBONS (PAH) IN AQUEOUS MATRICES BY LIQUID-LIQUID MICRO-EXTRACTION (LLME) AND GAS CHROMATOGRAPHY - MASS SPECTROMETRY (GC-MS)
E3400A	THE DETERMINATION OF ORGANOCHLORINE PESTICIDES, CHLOROBENZENES (CBS), AROCLORS AND TOXAPHENES IN WATER, EFFLUENT AND WASTEWATER BY HEXANE MICROEXTRACTION AND GAS CHROMATOGRAPHY - MASS SPECTROMETRY (GC-MS)

THE DETERMINATION OF NITRILOTRIACETIC ACID (NTA) IN AQUEOUS SAMPLES BY AUTOMATED ION CHROMATOGRAPHY (IC)

E3406A

Ministry of Environment Laboratory Services Branch Current/Active LSB Analytical Methods - Drinking Water

December 20, 2005

Description

Method

E3407A	MEMBRANE FILTRATION METHOD USING DC AGAR FOR THE SIMULTANEOUS DETECTION AND ENUMERATION OF TOTAL COLIFORMS AND ESCHERICHIA COLI
E3408A	THE SPREAD PLATE METHOD FOR THE ENUMERATION OF AEROBIC HETEROTROPHIC BACTERIA IN DRINKING WATER
E3415	THE DETERMINATION OF GLYPHOSATE AND AMINOMETHYLPHOSPHONIC ACID IN WATER AND VEGETATION BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY -ELECTROSPRAY IONIZATION- MASS SPECTROMETRY (HPLC-EI-MS)
E3417	THE DETERMINATION OF DIQUAT AND PARAQUAT IN WATER, SOIL AND VEGETATION ENVIRONMENTAL MATRICES BY HIGH PERFORMANCE LIOUID CHROMATOGRAPHY (HPLC) PHOTDIODE ARRAY AND/OR ELECTRO-SPRAY MASS SPECTROMETRY (MS)
E3418	THE DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS, POLYCHOLRDIBENZOFURANS AND DIOXIN-LIKE POLYCHLORINATED BIPHENYLS IN ENVIRONMENTAL SAMPLES BY GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)
E3430	THE DETERMINATION OF BROMINATED DIPHENYL ETHERS IN ENVIRONMENTAL MATRICES BY GAS CHROMATOGRAPHY/HIGH RESOLUTION MASS SPECTROMETRY (GC-HRMS)
E3434	THE DETERMINATION OF BROMIDE IN SOURCE WATER BY ION CHROMATOGRAPY/ELECTROCHEMICAL DETECTION AND TRACE LEVELS OF BROMATE IN OZONATED DRINKING WATER WITH THE ADDITION OF POSTCOLUMN REAGENT AND A UV/VISIBLE DETECTOR
E3435	THE DETERMINATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND TRIAZINE PESTICIDES IN WATER MATRICES BY GAS CHROMATOGRAPHY. TIME OF FLIGHT-MASS SPECTROMETRY
E3436	THE DETERMINATION OF PHENYL UREAS IN WATER AND LEACHATE BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY AND MASS SPECTROMETRY-MASS SPECTROMETRY (LC-MS-MS) ANALYSIS
E3437	THE DETERMINATION OF ORGANOPHOSPHORUS PESTICIDES IN WATER AND LEACHATE BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY AND MASS SPECTROMETRY-MASS SPECTROMETRY (LC-MS-MS) ANALYSIS
E3438	THE DETERMINATION OF CARBAMATES IN WATER AND LEACHATE BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY AND MASS SPECTROMETRY-MASS SPECTROMETRY (LC-MS-MS) ANALYSIS
E3449	THE DETERMINATION OF MOSQUITO LARVACIDE AND ADULTICIDE AND THE SCREENING OF DECOMPOSITION BY-PRODUCTS OF METHOPRENE IN ENVIROMENTAL MATRICES USING MICRO-EXTRACTION AND GAS CHROMATOGRAPHY-TIME OF FLIGHT-MASS SPECTROMETRY
E3450	THE DETERMINATION OF MICROCYSTINS AND NODULARIN IN WATER BY LIQUID CHROMATOGRAPHY-(ELECTROSPRAY IONIZATION) TANDEM MASS SPECTROMETRY [LC-(ESI]MS/MS]
E3451	THE DETECTION AND ENUMERATION OF BACILLUS THURINGIENSIS VAR. ISRAELENSIS (BTI) IN DRINKING WATER BY MEMBRANE FILTRATION AND THE COLONY PCR METHOD
E3454	THE DETERMINATION OF PHARMACEUTICALS IN ENVIRONMENTAL MATRICES BY LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY/MASS SPECTROMETRY

i i		