EA044 - Planejamento e Análise de Sistemas de Produção

20. Semestre de 2006 - 3a. Prova - Prof. Paulo Valente

RA: 03739 Nome: Guillemane M. Whate Colore Milae White

1/ Uma certa região metropolitana do estado é formada por seis cidades. O governo estadual planeja construir novas estações do corpo de bombeiros e precisa determinar em quais cidades construí-las, de tal forma que qualquer uma das cidades seja atendida por uma estação em no máximo quinze minutos. Os tempos de trajeto entre as cidades encontram-se descritos na tabela abaixo. Formule o problema de programação inteira cuja solução fornece o menor número e as localizações das novas estações do corpo de bombeiros.

De / Para	C1	C2	C3	C4	C5	C6
C1	0	1Ó	20	30	30	20
C2	10	B	25	35	20	10
C3	20	25 `	Q	15	30	20
C4	30	35	15	Q	15	25
C5	30	20	30	15	Q	14
C6	20	10	20	25	_14	9

A tabela apresentada a seguir é referente ao emprego do algoritmo branchand-bound ao problema de programação inteira

$$\begin{array}{lll} \text{maximizar} & z = 5x_1 + 4x_2 \\ \text{sujeito a} & x_1 + x_2 & \leq & 5, \\ & 10x_1 + 6x_2 & \leq & 45, \end{array}$$

onde x_1 e x_2 são variáveis inteiras não-negativas. O problema 1 (original) se ramifica nos problemas 2 e 3, o problema 3 nos problemas 4 e 5, e o problema 4 nos problemas 6 e 7. A tabela apresenta uma solução ótima para o problema acima? Justifique.

Problema	(x_1,x_2,z)	Restrição
1	(3.75, 1.25, 23.75)	_
2	(3, 2, 23)	$x_1 \leq 3$
3	(4, 0.83, 23.33)	$x_1 \geq 4$
4	(4.5, 0, 22.5)	$x_2 \le 0$
5	Infactivel	$x_2 \ge 1$
6	(4, 0, 20)	$x_1 \leq 4$
7	Infactivel	$x_1 \geq 5$

3. Resolva o problema da mochila a seguir através de programação dinâmica:

maximizar
$$z = 5x_1 + 4x_2 + 2x_3$$

sujeito a $4x_1 + 3x_2 + 2x_3 \le 8$,

onde x_1 , x_2 e x_3 são variáveis inteiras não-negativas.

4/Uma empresa deseja determinar a localização de um novo depósito. As coordenadas no plano (em km) de quatro consumidores e o número de remessas feitas anualmente para cada consumidor são indicadas na tabela abaixo. A empresa deseja localizar o depósito de forma a minimizar a distância total percorrida durante o ano do depósito aos quatro consumidores. Formule o problema de programação não-linear associado. Assuma que a distância entre dois pontos do plano quaisquer $x = (x_1, x_2)$ e $y = (y_1, y_2)$ é medida pela norma Euclideana $||x - y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$.

Consumidor	Coordenadas	No. de Remessas
. 1	(8, 16)	200
2	(16, 8)	150
3	(0, 18)	200
4	(18, 0)	300

(5,0)

Guillerme Milaré Cilneida

RA 037391

Questão 1:

C₁ 20 C₃ C₅

C₂ C₄ C₆

1) 0.5 2) 2.5 3) 0.0 9 2.0 5,0

Xi-)0, se vou la copo borhere

Seja Xi, i=1,2,34,5,6 as cidades do estado

MINIMIZAR 2= X1 + X2 + X3 + X4 + X5 +X6/ Supto a: Xi E 1915

 $10X_{2} + 20X_{3} + 30X_{4} + 30X_{5} + 20X_{6} \le 15$ $10X_{1} + 27X_{3} + 35X_{4} + 70X_{5} + 10X_{6} \le 15$ $20X_{1} + 25X_{2} + 17X_{4} + 30X_{5} + 70X_{6} \le 15$ $30X_{1} + 35X_{2} + 15X_{3} + 15X_{5} + 25X_{6} \le 15$ $30X_{1} + 20X_{2} + 30X_{3} + 15X_{4} + 14X_{6} \le 15$ $10X_{1} + 10X_{2} + 70X_{3} + 27X_{4} + 14X_{5} \le 15$

Chuestão 3:

Rebrodo:
$$\frac{2 \times_{1} \times_{2} \times_{3} \times_{4} \mid LD}{-1 \mid -5 \mid -4 \mid -2 \mid 0 \mid 0}$$

0 4 3 2 1 8

$$\frac{\overline{2}}{-1} \times_{1} \times_{2} \times_{3} \times_{4} \stackrel{(1)}{-1}$$
 $\frac{-1}{0} \times_{14} \times_{12} \times_{14} \times_{0}$
 $0 \times_{14} \times_{12} \times_{14} \times_{2}$

$$z = 326 = 10,166$$
; $x_z = 8/3 = 2,66$
 $\frac{1}{2} \le x_z \le 3$

Programação Dinámica!

Za	\times_{ℓ}	XZ	Xz	Xy	X5	X	\forall	140
-1	10	\mathcal{O}	0	0	0	\bigcirc	1	10
0	4	3	2	1	0	0	0	8
0	0	1	\bigcirc	\bigcirc	(\circ	0	7
0	1	0	0	0	\circ	u.digar	D 1	1

Za	X	XZ	X_{\ge}	Xu	XT	X	У	1 (1)
4	-1	O	0	0	\bigcirc	-1	0	-1
0	4	3	2 (2	1	0	0	0	8
Ŏ	0		0	0	1	\bigcirc	0	2
0	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1	1	[(

30	X, X2 X3 X4 X5 X6 Y	LD
,		
		\times

Guestão \$2:

(P1) | MAXIMIZAR Z= 5x, +4x2 S.C. X, + X2 \le 5 10x1 +6x2 \le 45

Pela arvoro ocina, percebo-se que a tabéle do la ten o problem PD como solução êtire, aperor de PO tember ser rolução. No entanto, 2* de PZ é maior que 2ª de P6 (Z=23, Z=23). Aleí dirio, Z* esta mais proário de LS.

$$\begin{cases} x_{1} = 3 \\ x_{2} = 2 \\ 2 = 23 \end{cases}$$

