FEUILLE DE REPONSE

(Ne pas oublier de remettre cette feuille)

NOM: Prénom:

QCM (6 points)

Questions	Réponses					
	а	b	С	d	е	f
1	X			X	X	
2			X			
3	X					
4			X			
5			X			
6			X			
7					X	
8				X		
9			X			
10		X				
11			X			
12		X				

QCM (6 points)

- 1. Lesquelles des propositions suivantes sont des adresses IP privées (RFC 1918, non routables sur Internet)? (choisir 3 réponses)
 - a. 10.1.1.1
 - **b.** 172.32.5.2.
 - **c.** 192.167.10.10.
 - d. 172.16.4.4.
 - e. 192.168.5.5
 - **f.** 224.6.6.6
- 2. Comment les données sont-elles encapsulées lorsqu'elles sont transmises vers le bas du modèle OSI ?
 - a. Données, segments, trames, paquets, bits
 - **b.** Données, paquets, segments, trames, bits
 - c. Données, segments, paquets, trames, bits (Il suffisait de lire la légende des annexes)
 - d. Données, paquets, trames, segments, bits
- 3. Combien d'adresses d'hôte utilisables sont disponibles sur un réseau /25?
 - a. 126
 - **b.** 254
 - **c.** 255
 - **d.** 256
- 4. Soit l'adresse IP 143.140.71.11 et le masque 255.255.248.0 quel est l'adresse du sous réseau
 - **a.** 143.140.80.0
 - **b.** 143.140.72.0
 - **c.** 143.140.64.0
 - **d.** 143.140.70.0
- 5. De quoi a besoin un routeur pour acheminer un paquet de l'émetteur au destinataire ?
 - a. De l'adresse IP de destination uniquement.
 - **b.** De l'adresse IP de l'émetteur et du destinataire.
 - c. De l'adresse IP de destination et d'une table de routage.
 - **d.** Ce n'est pas le rôle du routeur.
- 6. À quel type d'adresse correspond 192.168.17.111/28 ?
 - a. Adresse hôte
 - **b.** Adresse réseau
 - c. Adresse de broadcast
 - **d.** Adresse de multicast

7. Quelle est la longueur d'une adresse MAC (rappel : 1 octet = 8 bits) ?

- a. 8 bits
- **b.** 8 octets
- **c.** 24 bits
- **d.** 24 octets
- e. 48 bits (6 octets en hexa : 00 26 b9 dd bc 62)
- **f.** 48 octets

Pour toutes les questions qui suivent, on considère la capture suivante d'une trame Ethernet :

```
00 26 b9 dd bc 62 00 17 a4 41 44 a6 08 00 45 00 00 28 0f 32 40 00 7f 06 1c a6 c0 a8 03 01 0a 1a 02 35 00 50 04 8d f3 25 ad 7a a5 d3 0b 27 50 10 ff ff 89 64 00 00 00 00 00 00 00 00
```

Couche 2 trame Ethernet

```
@mac destination | @mac source | type de paquet

00 26 b9 dd bc 62 | 00 17 a4 41 44 a6 | 08 00 le 0800 indique type IP v4
```

Couche 3 paquet IP v4

```
4|5| 00 | 00 28 le 5 (IHL) nous indique la longueur du paquet (5 lignes de 32 bits)

0f 32 | 4|0 00

7f | 06 | 1c a6 le 06 (champ protocole) indique que la couche 4 est un segment TCP

c0 a8 03 01 adresse IP source

0a 1a 02 35 adresse IP destination
```

Couche 4 segment TCP

8. Que représente le champ surligné :

```
00 26 b9 dd bc 62 00 17 a4 41 44 a6 08 00 45 00 00 28 0f 32 40 00 7f 06 1c a6 c0 a8 03 01 0a 1a 02 35 00 50 04 8d f3 25 ad 7a a5 d3 0b 27 50 10 ff ff 89 64 00 00 00 00 00 00 00 00
```

- a. un champ de l'entête niveau 2 qui indique le CRC-FCS
- **b.** un champ de l'entête niveau 2 qui indique que la trame contient un paquet IP

- c. un champ de l'entête niveau 2 qui indique une partie de l'adresse IP source
- d. un champ de l'entête niveau 2 qui indique le type

9. Ouelle est l'adresse IP source

- **a.** 192.168.3.70
- **b.** 10.26.2.53
- **c.** 192.168.3.1 **c0 a8 03 01** >>> '.'.join([str(int(elt, 16)) for elt in ('c0', 'a8','03','01')])
- **d.** 10.26.2.204

10. Quel est le n° du port source :

- **a.** 1165
- **b.** 80 00 50 >>> int('0050', 16) \rightarrow 80
- **c.** 21
- **d.** 20

11. De quel protocole de niveau 4 s'agit-il et quel est le champ qui justifie cela

- a. ICMP car le champ type est égal à « a6 08 »
- **b.** IP car le champ type est égal à « 08 00 »
- c. TCP car le champ protocole est égal à « 06 » 06
- **d.** UDP car le champ protocole est égal à « 17 »

12. Que représente le champ surligné :

```
00 26 b9 dd bc 62 00 17 a4 41 44 a6 08 00 45 00 00 28 0f 32 40 00 7f 06 1c a6 c0 a8 03 01 0a 1a 02 35 00 50 04 8d f3 25 ad 7a a5 d3 0b 27 50 10 ff ff 89 64 00 00 00 00 00 00 00 00
```

- a. un champ de l'entête niveau 2 qui indique l'adresse mac destination
- b. un champ de l'entête niveau 2 qui indique l'adresse mac source
- c. un champ de l'entête niveau 3 qui indique l'adresse mac destination
- d. un champ de l'entête niveau 3 qui indique l'adresse mac source

Exercice 1 (4 points)

1. Donnez la notation étendue des adresses suivantes :

fe80::1	fe80:0000:0000:0000:0000:0000:0001
fe80::4cd2:ffa1::1	ipaddress.AddressValueError: At most one '::' permitted
::1	0000:0000:0000:0000:0000:0000:0001
3cd0::40:0:cf0	3cd0:0000:0000:0000:0040:0000:0cf0

- **2.** À partir des adresses MAC suivantes, construisez les adresses IPv6 sachant que le préfixe distribué par le fournisseur d'accès est 2a01:5d8:ccf1:4/64 :
 - a. 02-00-4c-4f-4f-50

on splitte la mac en 2 en y insérant ff:fe \rightarrow 02 :00 :4c : ff : fe :4f :4f :50

on prend le premier octet et on inverse son septième bit

(02): 00000010 inversion du septième bit $\rightarrow 00000000$ (00)

0:4cff:fe4f:4f50

2a01:5d8:ccf1:4:0:4cff:fe4f:4f50

b. 00-03-ff-18-cf-1e

on splitte la mac en 2 en y insérant ff:fe \rightarrow 00 :03 :ff:ff:fe :18 :cf :1e

on prend le premier octet et on inverse son septième bit

(00) : 000000000 inversion du septième bit $\rightarrow 00000010 (02)$

0203:ffff:fe18:cf1e

2a01:5d8:ccf1:4:203:ffff:fe18:cf1e

Exercice 2 (10 points)

1.

Adresse		Masque sous réseau		
Sous-réseau réseau	Notation décimale	Notation CIDR	Adresse Broadcast	
0	193.49.48.0	255.255.255.224	/27	193.49.48.31
1	193.49.48.32	255.255.255.224	/27	193.49.48.63
2	193.49.48.64	255.255.255.224	/27	193.49.48.95
3	193.49.48.96	255.255.255.224	/27	193.49.48.127
4	193.49.48.128	255.255.255.224	/27	193.49.48.159
5	193.49.48.160	255.255.255.224	/27	193.49.48.191
6	193.49.48.192	255.255.255.224	/27	193.49.48.223
7	193.49.48.224	255.255.255.224	/27	193.49.48.255

Note: 193.49.48.96/27 et 193.49.48.128/27 ne sont pas utilisés

2.

machine	Adresse ip
A	193.49.48.34
В	193.49.48.35
C	193.49.48.36
D	193.49.48.66
E	193.49.48.67
F	193.49.48.68
G	193.49.48.162
Н	193.49.48.163
I	193.49.48.231
J	193.49.48.236
K	193.49.48.4
L	193.49.48.17
M	193.49.48.20

Routeur	Adresses ip
R1 (subnet1)	193.49.48.33
R1 (subnet2)	193.49.48.65
R2 (subnet2)	193.49.48.69
R2 (subnet5)	193.49.48.165
R3 (subnet2)	193.49.48.70
R3 (subnet7)	193.49.48.233
R4 (subnet0)	193.49.48.1
R4 (subnet7)	193.49.48.225
R4 (subnet6)	193.49.48.193
RMP (subnet6)	193.49.48.194

4. Représentation schématique du réseau :

5. <u>Table de routage de R1</u>

Destination	Masque	Prochain saut (gw)
(subnet1) 193.49.48.32	255.255.255.224	connected
(subnet2) 193.49.48.64	255.255.255.224	connected
(subnet5) 193.49.48.160	255.255.255.224	193.49.48.69
(default) 0.0.0.0	0.0.0.0	193.49.48.70
*(subnet0) 193.49.48.0	255.255.255.224	193.49.48.70
*(subnet7) 193.49.48.224	255.255.255.224	193.49.48.70
*(subnet6) 193.49.48.192	255.255.255.224	193.49.48.70

Table de routage de R2

Destination	Masque	Prochain saut (gw)
(subnet2) 193.49.48.64	255.255.255.224	connected
(subnet5) 193.49.48.160	255.255.255.224	connected
(subnet1) 193.49.48.32	255.255.255.224	193.49.48.65
(default) 0.0.0.0	0.0.0.0	193.49.48.70
*(subnet0) 193.49.48.0	255.255.255.224	193.49.48.70
*(subnet7) 193.49.48.224	255.255.255.224	193.49.48.70
*(subnet6) 193.49.48.192	255.255.255.224	193.49.48.70

Table de routage de R3

Destination	Masque	Prochain saut (gw)
(subnet2) 193.49.48.64	255.255.255.224	connected
(subnet7) 193.49.48.224	255.255.255.224	connected
(subnet5) 193.49.48.160	255.255.255.224	193.49.48.69
(subnet1) 193.49.48.32	255.255.255.224	193.49.48.65
(default) 0.0.0.0	0.0.0.0	193.49.48.225
*(subnet0) 193.49.48.0	255.255.255.224	193.49.48.225
*(subnet6) 193.49.48.192	255.255.255.224	193.49.48.225

Table de routage de R4

Destination	Masque	Prochain saut (gw)
(subnet0) 193.49.48.0	255.255.255.224	connected
(subnet7) 193.49.48.224	255.255.255.224	connected
(subnet6) 193.49.48.192	255.255.255.224	connected
(subnet2) 193.49.48.64	255.255.255.224	193.49.48.233
(subnet5) 193.49.48.160	255.255.255.224	193.49.48.233
(subnet1) 193.49.48.32	255.255.255.224	193.49.48.233
(default) 0.0.0.0	0.0.0.0	193.49.48.194

^{*(}subnetX) indique que la route est optionnelle car déjà couverte par la « default »