

Lecture 13: Neural Networks

Applied Machine Learning

Volodymyr Kuleshov, Jin Sun Cornell Tech

Part 1: An Artifical Neuron

In this lecture, we will learn about a new class of machine learning algorithms inspired by the brain.

We will start by defining a few building blocks for these algorithms, and draw connections to neuroscience.

Review: Components of A Supervised Machine Learning Problem

At a high level, a supervised machine learning problem has the following structure:

$$\underbrace{\text{Training Dataset}}_{\text{Attributes} + \text{Features}} + \underbrace{\text{Learning Algorithm}}_{\text{Model Class} + \text{Objective} + \text{Optimizer}} \rightarrow \text{Predictive Model}$$

Where does the dataset come from?

Review: Binary Classification

In supervised learning, we fit a model of the form

$$f:\mathcal{X} o \mathcal{Y}$$

that maps inputs $x \in \mathcal{X}$ to targets $y \in \mathcal{Y}$.

In classification, the space of targets ${\mathcal Y}$ is discrete. Classification is binary if ${\mathcal Y}=\{0,1\}$

Each value of y value is a *class* and we are interested in finding a hyperplane that separates the different classes.

Review: Logistic Regression

Logistic regression fits a model of the form

$$f(x) = \sigma(heta^ op x) = rac{1}{1 + \exp(- heta^ op x)},$$

where

$$\sigma(z) = rac{1}{1 + \exp(-z)}$$

is known as the sigmoid or logistic function.

Here is how the logistic function looks like.

```
In [1]: import numpy as np
    from matplotlib import pyplot as plt

z = np.linspace(-5, 5)
    sigma = 1/(1+np.exp(-z))

plt.plot(z, sigma)
```

Out[1]: [<matplotlib.lines.Line2D at 0x1172c9160>]

A Biological Neuron

In order to define an artifical neuron, let's look first a biological one.

TODO: PUT NEURON IMAGE FROM HERE: https://cs231n.github.io/neural-networks-1/)

- Each neuron receives input signals from its dendrites
- It produces output signals along its axon, which connects to the dendrites of other neurons.

An Artificial Neuron: Example

We can imitate this machinery using an idealized artifical neuron.

- The neuron receives signals x_j at dendrites, which are modulated multiplicatively: $w_j \cdot x_j$.
- The body of the neuron sums the modulated inputs: $\sum_{j=1}^d w_j \cdot x_j$.
- These go into the activation function that produces an ouput.

TODO: PUT ARTIFICIAL NEURON IMAGE FROM HERE: https://cs231n.github.io/neural-networks-1/ (https://cs231n.github.io/neural-networks-1/)

An Artificial Neuron: Notation

More formally, we say that a neuron is a model $f:\mathbb{R}^d o [0,1]$, with the following components:

- Inputs x_1, x_2, \ldots, x_d , denoted by a vector x.
- Weight vector $w \in \mathbb{R}^d$ that modulates input x as $w^{ op}x$.
- An activation function $\sigma:\mathbb{R}\to\mathbb{R}$ that computes the output $\sigma(w^{\top}x)$ of the neuron based on the sum of modulated features $w^{\top}x$.

Logistic Regression as an Artifical Neuron

Logistic regression is a model of the form

$$f(x) = \sigma(heta^ op x) = rac{1}{1 + \exp(- heta^ op x)},$$

that can be interpreted as a neuron that uses the sigmoid as the activation function.

Perceptron

Another model of a neuron.

Example

Need to implement a small example. Can probably copy-paste implementation of LR from the LR slides.

Activation Functions

Let's list a few.

Part 2: Artificial Neural Networks

Let's now see how we can connect neurons into networks that form complex models that further mimic the brain.

Review: Artificial Neuron

We say that a neuron is a model $f:\mathbb{R}^d o [0,1]$, with the following components:

- Inputs x_1, x_2, \ldots, x_d , denoted by a vector x.
- Weight vector $w \in \mathbb{R}^d$ that modulates input x as $w^ op x$.
- An activation function $\sigma:\mathbb{R}\to\mathbb{R}$ that computes the output $\sigma(w^{\top}x)$ of the neuron based on the sum of modulated features $w^{\top}x$.

Review: Logistic Regression as Neuron

Logistic regression is a model of the form

$$f(x) = \sigma(heta^ op x) = rac{1}{1 + \exp(- heta^ op x)},$$

that can be interpreted as a neuron that uses the sigmoid as the activation function.

Neural Networks: Intuition

A neural network is a directed graph in which a node is a neuron that takes as input the outputs of the neurons that are connected to it.

Neural Networks: Layers

A neural network layer is a model $f:\mathbb{R}^d o \mathbb{R}^p$ that applies p neurons in parallel to an input x.

$$f(x) = egin{bmatrix} \sigma(w_1^ op x) \ \sigma(w_2^ op x) \ dots \ \sigma(w_n^ op x) \end{bmatrix}.$$

where each w_k is the vector of weights for the k-th neuron. We refer to p as the *size* of the layer.

By combining the w_k into one matrix W, we can write in a more succinct vectorized form:

$$f(x) = \sigma(W \cdot x) = egin{bmatrix} \sigma(w_1^ op x) \ \sigma(w_2^ op x) \ dots \ \sigma(w_p^ op x) \end{bmatrix},$$
 where $\sigma(W \cdot x)_k = \sigma(w_k^ op x)$ and $W_{kj} = (w_k)_j.$

Neural Networks: Notation

A neural network is a model $f:\mathbb{R} o\mathbb{R}$ that consists of a composition of L neural network layers:

$$f(x) = f_L \circ f_{L-1} \circ \dots f_1(x).$$

The final layer f_L has size one (assuming the neural net has one ouput); intermediary layers f_l can have any number of neurons.

The notation $f \circ g(x)$ denotes the composition f(g(x)) of functions

Example of a Neural Network

- Let's implement a small neural net in the same that we implemented logistic regression
- Then we just run it

Types of Neural Network Layers

There are many types of neural network layers that can exist. Here are a few:

- Ouput layer: normally has one neuron and special activation function that depends on the problem
- Input layer: normally, this is just the input vector x.
- Hidden layer: Any layer between input and output.
- Dense layer: A layer in which every input is connected ot every neuron.
- Convolutional layer: A layer in which the operation $w^{\top}x$ implements a mathematical convolution (https://en.wikipedia.org/wiki/Convolution).
- Anything else?

Neuroscience Angle

Annything we should say here?

Part 3: Backpropagation

We have defined what is an artificial neural network.

Let's not see how we can train it.

Review: Neural Network Layers

A neural network layer is a model $f:\mathbb{R}^d o \mathbb{R}^p$ that applies p neurons ih parallel to an input x.

$$f(x) = \sigma(W \cdot x) = egin{bmatrix} \sigma(w_1^ op x) \ \sigma(w_2^ op x) \ dots \ \sigma(w_n^ op x) \end{bmatrix},$$

where each w_k is the vector of weights for the k-th neuron and $W_{kj}=(w_k)_j$. We refer to p as the size of the layer.

Review: Neural Networks

A neural network is a model $f:\mathbb{R} \to \mathbb{R}$ that consists of a composition of L neural network layers:

$$f(x) = f_L \circ f_{L-1} \circ \dots f_1(x).$$

The final layer f_L has size one (assuming the neural net has one ouput); intermediary layers f_l can have any number of neurons.

The notation $f\circ g(x)$ denotes the composition f(g(x)) of functions

TODO: Add some kind of image from the previous part of the lecture

Review: The Gradient

The gradient $\nabla_{\theta}f$ further extends the derivative to multivariate functions $f:\mathbb{R}^d o \mathbb{R}$, and is defined at a point θ_0 as

$$abla_{ heta}f(heta_0) = egin{bmatrix} rac{\partial f(heta_0)}{\partial heta_1} \ rac{\partial f(heta_0)}{\partial heta_2} \ rac{\partial f(heta_0)}{\partial heta_d} \end{bmatrix}.$$

In other words, the j-th entry of the vector $\nabla_{\theta} f(\theta_0)$ is the partial derivative $\frac{\partial f(\theta_0)}{\partial \theta_j}$ of f with respect to the j-th component of θ .

Review: Gradient Descent

If we want to optimize an objective $J(\theta)$, we start with an initial guess θ_0 for the parameters and repeat the following update until the function is no longer decreasing:

$$heta_i := heta_{i-1} - lpha \cdot
abla_{ heta} J(heta_{i-1}).$$

As code, this method may look as follows:

```
theta, theta_prev = random_initialization()
while abs(J(theta) - J(theta_prev)) > conv_threshold:
    theta_prev = theta
    theta = theta_prev - step_size * gradient(theta_prev)
```

Backpropagation

How do we apply gradient descent to a neural network?

Explain backpropgation

Review: Chain Rule of Calculus

Probably will need to review this at some point.

Example

Let's implement backprop with the simple NN model we had earlier.