Lecture 2f

Projections Onto A Subspace

(pages 334-336)

Now that we have explored what it means to be orthogonal to a set, we can return to our original question of how to make an orthonormal basis. We will construct such a basis one vector at a time, so for now let us assume that we have an orthonormal set $\{\vec{v}_1,\ldots,\vec{v}_k\}$, and we want to find a vector \vec{v}_{k+1} such that the set $\{\vec{v}_1,\ldots,\vec{v}_k,\vec{v}_{k+1}\}$ is orthonormal. Well, if we can find any vector \vec{x} such that $\vec{x} \notin \operatorname{Span}\{\vec{v}_1,\ldots,\vec{v}_k\}$, then we can split \vec{x} into two pieces: the part of \vec{x} that is in $\operatorname{Span}\{\vec{v}_1,\ldots,\vec{v}_k\}$, and the part of \vec{x} that is orthogonal to $\operatorname{Span}\{\vec{v}_1,\ldots,\vec{v}_k\}$. We did something similar to this in Math 106, when we looked at the values $\operatorname{proj}_{\vec{y}}\vec{x}$ and $\operatorname{perp}_{\vec{y}}\vec{x}$. So what we want to do is expand these definitions to now look at the projection of a vector \vec{x} onto a subspace $\mathbb S$, instead of just a vector. Recalling that $\operatorname{proj}_{\vec{y}}\vec{x}$ is a scalar multiple of \vec{y} , we will now define $\operatorname{proj}_{\mathbb S}\vec{x}$ to be a linear combination of the basis vectors for $\mathbb S$, as this would be the generalization of a scalar multiple of one vector.

But $\operatorname{proj}_{\vec{y}}\vec{x}$ wasn't just any scalar multiple of \vec{y} . The scalar was $\frac{\vec{x} \cdot \vec{y}}{||\vec{y}||^2}$. So, to make sure that our definitions coincide in the case that $\mathbb S$ is the span of a single vector, we will take the scalars in our expanded definition to be $\frac{\vec{x} \cdot \vec{v}_i}{||\vec{v}_i||^2}$.

<u>Definition</u>: Let \mathbb{S} be a k-dimensional subspace of \mathbb{R}^n and let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_k\}$ be an orthogonal basis of \mathbb{S} . If \vec{x} is any vector in \mathbb{R}^n , the **projection** of \vec{x} onto \mathbb{S} is defined to be

$$\operatorname{proj}_{\mathbb{S}} \vec{x} = \frac{\vec{x} \cdot \vec{v}_1}{||\vec{v}_1||^2} \vec{v}_1 + \frac{\vec{x} \cdot \vec{v}_2}{||\vec{v}_2||^2} \vec{v}_2 + \dots + \frac{\vec{x} \cdot \vec{v}_k}{||\vec{v}_k||^2} \vec{v}_k$$

Note that this definition only works if \mathcal{B} is an orthogonal basis—we will not consider projections based on arbitrary bases.

Continuing to parallel our original construction of $\operatorname{proj}_{\vec{y}}$ and $\operatorname{perp}_{\vec{y}}$, we now define $\operatorname{perp}_{\mathbb{S}}$ as follows:

<u>Definition</u>: The **projection of** \vec{x} **perpendicular to** \mathbb{S} is defined to be

$$\operatorname{perp}_{\mathbb{S}} \vec{x} = \vec{x} - \operatorname{proj}_{\mathbb{S}} \vec{x}$$

Now, our hope is that $\operatorname{perp}_{\mathbb{S}}\vec{x}$ will in fact an element of \mathbb{S}^{\perp} . And it turns out that it is. To verify this, we will show that $\operatorname{perp}_{\mathbb{S}}\vec{x}\cdot\vec{v}_i=0$ for all vectors in our basis $\mathcal{B}=\{\vec{v}_1,\ldots,\vec{v}_k\}$ for \mathbb{S} .

$$\begin{split} \mathrm{perp}_{\mathbb{S}} \vec{x} \cdot \vec{v}_i &= (\vec{x} - \mathrm{proj}_{\mathbb{S}} \vec{x}) \cdot \vec{v}_i \\ &= \vec{x} \cdot \vec{v}_i - \mathrm{proj}_{\mathbb{S}} \vec{x} \cdot \vec{v}_i \\ &= \vec{x} \cdot \vec{v}_i - \left(\frac{\vec{x} \cdot \vec{v}_1}{||\vec{v}_1||^2} \vec{v}_1 + \dots + \frac{\vec{x} \cdot \vec{v}_k}{||\vec{v}_k||^2} \vec{v}_k \right) \cdot \vec{v}_i \\ &= \vec{x} \cdot \vec{v}_i - \left(\frac{\vec{x} \cdot \vec{v}_1}{||\vec{v}_1||^2} \vec{v}_1 \cdot \vec{v}_i + \dots + \frac{\vec{x} \cdot \vec{v}_k}{||\vec{v}_k||^2} \vec{v}_k \cdot \vec{v}_i \right) \\ &= \vec{x} \cdot \vec{v}_i - (0 + \dots + 0 + \frac{\vec{x} \cdot \vec{v}_i}{||\vec{v}_i||^2} \vec{v}_i \cdot \vec{v}_i + 0 + \dots + 0) \\ &= \vec{x} \cdot \vec{v}_i - \frac{\vec{x} \cdot \vec{v}_i}{||\vec{v}_i||^2} \vec{v}_i \cdot \vec{v}_i \\ &= \vec{x} \cdot \vec{v}_i - \frac{\vec{x} \cdot \vec{v}_i}{||\vec{v}_i||^2} (||\vec{v}_i||^2) \\ &= \vec{x} \cdot \vec{v}_i - \vec{x} \cdot \vec{v}_i \\ &= 0 \end{split}$$

Example: Let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}$ be an orthogonal basis for \mathbb{S} and let $\vec{x} = \begin{bmatrix} 4\\5\\-2 \end{bmatrix}$. To determine $\operatorname{proj}_{\mathbb{S}}\vec{x}$ and $\operatorname{perp}_{\mathbb{S}}\vec{x}$, we will first want to do the following calculations:

$$\begin{bmatrix} 4 \\ 5 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 4 + 10 - 6 = 8 \quad \left\| \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\|^2 = 1^2 + 2^2 + 3^2 = 14$$

$$\begin{bmatrix} 4 \\ 5 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = 4 + 5 + 2 = 11 \quad \left\| \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\|^2 = 1^2 + 1^2 + (-1)^2 = 3$$

Then we have that

$$\operatorname{proj}_{\mathbb{S}}\vec{x} = \frac{8}{14} \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \frac{11}{3} \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$
$$= \frac{12}{21} \begin{bmatrix} 1\\2\\3 \end{bmatrix} + \frac{77}{21} \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$
$$= \begin{bmatrix} 89/21\\101/21\\-41/21 \end{bmatrix}$$

and this means that

$$perp_{\mathbb{S}}\vec{x} = \vec{x} - proj_{\mathbb{S}}\vec{x}$$

$$= \begin{bmatrix} 4 \\ 5 \\ -2 \end{bmatrix} - \begin{bmatrix} 89/21 \\ 101/21 \\ -41/21 \end{bmatrix}$$

$$= \begin{bmatrix} -5/21 \\ 4/21 \\ -1/21 \end{bmatrix}$$

We can verify our calculations by noticing that

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -5/21 \\ 4/21 \\ -1/21 \end{bmatrix} = -\frac{5}{21} + \frac{8}{21} - \frac{3}{21} = 0 \text{ and } \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -5/21 \\ 4/21 \\ -1/21 \end{bmatrix} = -\frac{5}{21} + \frac{4}{21} + \frac{1}{21} = 0$$

Before we finally move on to our algorithm for constructing an orthonormal basis, we want to notice one last feature of $\operatorname{proj}_{\mathbb{S}}\vec{x}$, and that is that it is the vector in \mathbb{S} that is closest to \vec{x} .

Theorem 7.2.2 (Approximation Theorem): Let \mathbb{S} be a subspace of \mathbb{R}^n . Then, for any $\vec{x} \in \mathbb{R}^n$, the unique vector $\vec{s} \in \mathbb{S}$ that minimizes the distance $||\vec{x} - \vec{s}||$ is $\vec{s} = \operatorname{proj}_{\mathbb{S}} \vec{x}$.

<u>Proof of the Approximation Theorem</u>: Let $\{\vec{v}_1, \ldots, \vec{v}_k\}$ be an orthonormal basis for \mathbb{S} and let $\{\vec{v}_{k+1}, \ldots, \vec{v}_n\}$ be an orthonormal basis for \mathbb{S}^{\perp} , so that $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_n\}$ is an orthonormal basis for \mathbb{R}^n . Then for any $\vec{x} \in \mathbb{R}^n$, there are scalars x_1, \ldots, x_n such that

$$\vec{x} = x_1 \vec{v}_1 + \dots + x_k \vec{v}_k + x_{k+1} \vec{v}_{k+1} + \dots + x_n \vec{v}_n$$

Let $\vec{s} = s_1 \vec{v}_1 + \dots + s_k \vec{v}_k$ be an element of \mathbb{S} . Then we also have that $\vec{s} = s_1 \vec{v}_1 + \dots + s_k \vec{v}_k + 0 \vec{v}_{k+1} + \dots + 0 \vec{v}_n$, and so we can write $\vec{x} - \vec{s}$ as:

$$\vec{x} - \vec{s} = (x_1 \vec{v}_1 + \dots + x_k \vec{v}_k + x_{k+1} \vec{v}_{k+1} + \dots + x_n \vec{v}_n) - (s_1 \vec{v}_1 + \dots + s_k \vec{v}_k + 0 \vec{v}_{k+1} + \dots + 0 \vec{v}_n)$$

$$= (x_1 - s_1) \vec{v}_1 + \dots + (x_k - s_k) \vec{v}_k + x_{k+1} \vec{v}_{k+1} + \dots + x_n \vec{v}_n$$

In order to minimize $||\vec{x} - \vec{s}||$, we will minimize the easier to calculate $||\vec{x} - \vec{s}||^2$. Recall that since \mathcal{B} is an orthonormal basis, and as we have written $\vec{x} - \vec{s}$ in terms of \mathcal{B} coordinates, we can still calculate $||\vec{x} - \vec{s}||^2$ the usual way—we sum the square of the coefficients. And so we see that

$$||\vec{x} - \vec{s}||^2 = (x_1 - s_1)^2 + \dots + (x_k - s_k)^2 + x_{k+1}^2 + \dots + x_n^2$$

And clearly this value is minimized by setting $s_i = x_i$, so that $x_i - s_i = 0$ for i = 1, ..., k. This means we have shown that the vector \vec{s} in \mathbb{S} that minimizes the distance $||\vec{x} - \vec{s}||$ is

$$\vec{s} = x_1 \vec{v}_1 + \dots + x_k \vec{v}_k$$

To see that this is equal to $\text{proj}_{S}\vec{x}$, let's first recall that

$$\operatorname{proj}_{S} \vec{x} = (\vec{x} \cdot \vec{v}_{1}) \vec{v}_{1} + \dots + (\vec{x} \cdot \vec{v}_{k}) \vec{v}_{k}$$

since $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is an orthonormal basis for \mathbb{S} . And then we notice that, for any $i=1,\ldots,k$, we get

$$\vec{x} \cdot \vec{v_i} = (x_1 \vec{v_1} + \dots + x_k \vec{v_k} + x_{k+1} \vec{v_{k+1}} + \dots + x_n \vec{v_n}) \cdot \vec{v_i}$$

$$= x_1 (\vec{v_1} \cdot \vec{v_i}) + \dots + x_i (\vec{v_i} \cdot \vec{v_i}) + \dots + x_k (\vec{v_k} \cdot \vec{v_i}) + x_{k+1} (\vec{v_{k+1}} \cdot \vec{v_i}) + \dots + x_n (\vec{v_n} \cdot \vec{v_i})$$

$$= 0 + \dots + 0 + x_i ||\vec{v_i}||^2 + 0 + \dots + 0$$

$$= x_i$$

where we know that $\vec{v}_j \cdot \vec{v}_i = 0$ when $j \neq i$ because $\{\vec{v}_1, \dots, \vec{v}_n\}$ is an orthonormal set, and $x_i ||\vec{v}_i||^2 = x_i$ because $||\vec{v}_i|| = 1$. And so we see that

$$\begin{aligned} \operatorname{proj}_{\mathbb{S}} \vec{x} &= (\vec{x} \cdot \vec{v}_1) \vec{v}_1 + \dots + (\vec{x} \cdot \vec{v}_k) \vec{v}_k \\ &= x_1 \vec{v}_1 + \dots + x_k \vec{v}_k \\ &= \vec{s} \text{ (our minimum distance vector calculated above)} \end{aligned}$$