GENDER, GRADE SENSITIVITY, AND MAJOR CHOICE

Paola Ugalde A.

November 17, 2022

- ▶ Women in male-dominated majors are more sensitive to grades
 - Women that get low grades in introductory classes are more likely to change majors

- ▶ Women in male-dominated majors are more sensitive to grades
 - Women that get low grades in introductory classes are more likely to change majors
- ► Understand why women and men react differently to grades in STEM and Business majors

- ► Women in male-dominated majors are more sensitive to grades
 - Women that get low grades in introductory classes are more likely to change majors
- Understand why women and men react differently to grades in STEM and Business majors
- ► Why is this important?
 - Potentially consistent with misallocation of talent and labor market inefficiencies (Hunt, 2016; Orrell, 2020)

(

- ▶ Women in male-dominated majors are more sensitive to grades
 - Women that get low grades in introductory classes are more likely to change majors
- Understand why women and men react differently to grades in STEM and Business majors
- ► Why is this important?
 - Potentially consistent with misallocation of talent and labor market inefficiencies (Hunt, 2016; Orrell, 2020)
 - Labor market outcomes of highly skilled women
 - o STEM and Business jobs pay higher wages than other fields

- ► Women in male-dominated majors are more sensitive to grades
 - Women that get low grades in introductory classes are more likely to change majors
- Understand why women and men react differently to grades in STEM and Business majors
- ► Why is this important?
 - Potentially consistent with misallocation of talent and labor market inefficiencies (Hunt, 2016; Orrell, 2020)
 - Labor market outcomes of highly skilled women
 - STEM and Business jobs pay higher wages than other fields
 - Policymakers interest in closing the gender gap in these areas

(

- ► Using ASU administrative data:
 - Negative relationship between first-year GPA and gender gap in probability of staying in STEM and business majors.

- Using ASU administrative data:
 - Negative relationship between first-year GPA and gender gap in probability of staying in STEM and business majors.
- Designed and conducted a survey among ASU students

- Using ASU administrative data:
 - Negative relationship between first-year GPA and gender gap in probability of staying in STEM and business majors.
- Designed and conducted a survey among ASU students
 - Quantify gender differences in grade sensitivity
 - Collect data about potential mechanisms

- Using ASU administrative data:
 - Negative relationship between first-year GPA and gender gap in probability of staying in STEM and business majors.
- Designed and conducted a survey among ASU students
 - Quantify gender differences in grade sensitivity
 - Collect data about potential mechanisms
- ► I find that:
 - Women in STEM and business value an extra GPA point about \$3760 more than men

- Using ASU administrative data:
 - Negative relationship between first-year GPA and gender gap in probability of staying in STEM and business majors.
- Designed and conducted a survey among ASU students
 - Quantify gender differences in grade sensitivity
 - Collect data about potential mechanisms
- I find that:
 - Women in STEM and business value an extra GPA point about \$3760 more than men
 - Women believe they are more likely to face gender discrimination in the labor market
 - Particularly in STEM and business

- Using ASU administrative data:
 - Negative relationship between first-year GPA and gender gap in probability of staying in STEM and business majors.
- Designed and conducted a survey among ASU students
 - Quantify gender differences in grade sensitivity
 - Collect data about potential mechanisms
- ► I find that:
 - Women in STEM and business value an extra GPA point about \$3760 more than men
 - Women believe they are more likely to face gender discrimination in the labor market
 - Particularly in STEM and business
 - Those beliefs decrease the gap in grade valuation by 48%

Outline

VALUE OF GRADES

ANTICIPATED DISCRIMINATION

CONCLUSION

Value of Grades

Example:

	GPA	Study Hours	Earnings after Grad. (full-time job)
SSH	3.47	8.0	\$24,000
BEC	2.23	7.0	\$49,000
STEM	2.00	22.0	\$46,000

6/19

Example:

	GPA	Study Hours	Earnings after Grad. (full-time job)
SSH	3.47	8.0	\$24,000
BEC	2.23	7.0	\$49,000
STEM	2.00	22.0	\$46,000

- ► A major is characterized by:
 - Average GPA at graduation
 - Average weekly study time
 - Average earnings in full-time job after graduation

6/19

Example:

	GPA	Study Hours	Earnings after Grad. (full-time job)
SSH	3.47	8.0	\$24,000
BEC	2.23	7.0	\$49,000
STEM	2.00	22.0	\$46,000

- ► A major is characterized by:
 - Average GPA at graduation
 - Average weekly study time
 - Average earnings in full-time job after graduation
- Scenarios are not fully specified

Example:

	GPA	Study Hours	Earnings after Grad. (full-time job)
SSH	3.47	8.0	\$24,000
BEC	2.23	7.0	\$49,000
STEM	2.00	22.0	\$46,000

- ► A major is characterized by:
 - Average GPA at graduation
 - Average weekly study time
 - Average earnings in full-time job after graduation
- Scenarios are not fully specified
- ▶ Participants reported the probability (0-100) of choosing each major

Example:

	GPA	Study Hours	Earnings after Grad. (full-time job)
SSH	3.47	8.0	\$24,000
BEC	2.23	7.0	\$49,000
STEM	2.00	22.0	\$46,000

- ► A major is characterized by:
 - Average GPA at graduation
 - Average weekly study time
 - Average earnings in full-time job after graduation
- Scenarios are not fully specified
- ▶ Participants reported the probability (0-100) of choosing each major
- ▶ Participants faced 10 individual-specific scenarios

0 (

- ▶ Idea: estimate the role of GPA, study time, earnings when choosing a major
- Hypothetical scenarios provide a panel of probability choices per individual
 - Allows me to estimate preferences at individual level
 - No restriction on population distribution of preferences

A Model of Major Choice

Let U_{ijs} be individual i's utility from major j in scenario s:

$$U_{ijs} = X'_{ijs}\beta_i + \kappa_{ij} + \epsilon_{ijs} \tag{1}$$

- X_{ijs} matrix of major attributes
- κ_{ij} major-specific constant (tastes for major)
- ϵ_{ijs} all other attributes

Assumptions:

- Unknown at the time of elicitation
- \diamond Orthogonal to X_{ijs} conditional on major
- $\{\epsilon_{ijs}\}_I$ i.i.d Type 1 extreme value

A Model of Major Choice

► Then the choice probability of choosing each major is

$$p_{ijs} = \frac{exp(X'_{ijs}\beta_i + \kappa_{ij})}{\sum_{j'=1}^{J} exp(X'_{ij's}\beta_i + \kappa_{ij'})}$$
(2)

Applying the log-odds transformation

$$ln\left(\frac{p_{ijs}}{p_{ij's}}\right) = (X_{ijs} - X_{ij's})'\beta_i + (\kappa_{ij} - \kappa_{ij'})$$
(3)

- Use the least absolute deviations (LAD) estimator
 - Less sensitive to extreme values

Willingness to Pay (WTP)

ightharpoonup Change in earnings that makes *i* indifferent between two levels of an attribute

Willingness to Pay (WTP)

- ► Change in earnings that makes *i* indifferent between two levels of an attribute
- ► Increase attribute X_k from $X_k = x_k$ to $X_k = x_k + \Delta$ with $\Delta > 0$
- ► Indifference condition:

$$x_k \beta_{ik} + \beta_{i1} \ln(Y) = \beta_{ik} (x_k + \Delta) + \beta_{i1} \ln(Y + WTP_{ik}(\Delta))$$
(4)

Willingness to Pay (WTP)

- ► Change in earnings that makes *i* indifferent between two levels of an attribute
- ► Increase attribute X_k from $X_k = x_k$ to $X_k = x_k + \Delta$ with $\Delta > 0$
- ► Indifference condition:

$$x_k \beta_{ik} + \beta_{i1} \ln(Y) = \beta_{ik} (x_k + \Delta) + \beta_{i1} \ln(Y + WTP_{ik}(\Delta))$$
(4)

► Then,

$$WTP_{ik}(\Delta) = \left[exp\left(\frac{-\beta_{ik}}{\beta_{i1}}\Delta\right) - 1\right] \times Y \tag{5}$$

Y: average level of earnings (\$53,318).

0

WTP for GPA/Study Time

Summary Statistics

	WTP (\$)
Overall	
(1)	
8,309	
[6,608]	
-1,479	
[-638]	
1,192	
	(1) 8,309 [6,608] -1,479 [-638]

Note: Table reports mean [median] WTP.

▶ WTP for GPA: amount of average annual earnings that a student is willing to pay for a 1-point increase in the average GPA at graduation.

WTP for GPA/Study Time

Summary Statistics

		WTP (\$)	
	Overall	Female	Male
	(1)	(2)	(3)
GPA	8,309	9,089	6,799
	[6,608]	[7,790]	[4,882]
Study time	-1,479	-1,428	-1,579
	[-638]	[-608]	[-714]
N	1,192	786	406

Note: Table reports mean [median] WTP.

- ▶ Women value an extra GPA point more than men
 - Smaller differences in WTP for study time

0

WTP for GPA

Gender Gaps

$$WTP_{GPAi} = \alpha_0 + \frac{\alpha_1}{\alpha_1} Female_i + \mathbf{C}_i + \xi_i$$

	Overall	
	(1)	
Female	3,057**	
	(1,438)	
Mean	8,309	
N	1,192	

Notes: All columns control for household income, parents education, SAT/ACT, school year, honors, minority. Column (1) controls for major. Standard errors reported in parentheses. "Significant at 10%, ""5%, "*"1%.

▶ Women are willing to pay \$3,057 more than men for an extra GPA point.

WTP for GPA

Gender Gaps

$$WTP_{GPAi} = \alpha_0 + \alpha_1 Female_i + \mathbf{C}_i + \xi_i$$

	Overall	STEM/BEC	SSH
	(1)	(2)	(3)
Female	3,057**	3,760**	1,760
	(1,438)	(1,702)	(2,783)
Mean	8,309	9,414	6,307
N	1,192	768	424

Notes: All columns control for household income, parents education, SAT/ACT, school year, honors, minority. Column (1) controls for major. Standard errors reported in parentheses. "Significant at 10%, **5%, ***1%.

- ▶ Women are willing to pay \$3,057 more than men for an extra GPA point.
 - In STEM/BEC: women are willing to pay \$3,760 more than men

► Focus today: Anticipated discrimination

- ► Focus today: Anticipated discrimination
 - Considerably less work on it

- ► Focus today: Anticipated discrimination
 - Considerably less work on it
 - Not based on an inherent difference between males and females

- ► Focus today: Anticipated discrimination
 - Considerably less work on it
 - Not based on an inherent difference between males and females
- ► Intuition:
 - Women believe they will be held to more rigorous standards (STEM/BEC)

- ► Focus today: Anticipated discrimination
 - Considerably less work on it
 - Not based on an inherent difference between males and females
- ► Intuition:
 - Women believe they will be held to more rigorous standards (STEM/BEC)
 - Higher GPA than men to be competitive

- ► Focus today: Anticipated discrimination
 - Considerably less work on it
 - Not based on an inherent difference between males and females
- ► Intuition:
 - Women believe they will be held to more rigorous standards (STEM/BEC)
 - Higher GPA than men to be competitive
 - Low grades at the beginning makes them leave

Beliefs about Gender Discrimination

- Gender discrimination module
 - It would be harder to find a job because of your gender
 - Boss would treat you differently because of your gender
 - Peers would treat you differently because of your gender
- 5-point scales (Extremely unlikely Extremely likely)
- Combined these questions to create a composite index

Women believe they are more likely to experience discrimination

► Particularly in STEM/BEC fields

Women believe they will need a higher GPA to secure a job

Labor Market Standards: What is the min. GPA you need to secure a FT job?

► Especially in STEM/BEC fields.

Positive relationship between discrimination and LM standards for women

Outcome: WTP for extra GPA point

(1)
Female
3,057**
(1,438)
Min. GPA STEM/BEC

Min. GPA SSH

Gen. Discrimination STEM/BEC

Gen. Discrimination SSH

Mean	8,309	
R2	0.018	
N	1,192	

Notes: Controls: household income, parents education, SAT/ACT, school year, honors, minority, and major. *Significant at 10%, **5%, ***1%.

Outcome: WTP for extra GPA point

	(1)	(2)	
Female	3,057**	2,671*	
	(1,438)	(1,427)	J
Min. GPA STEM/BEC		5,548**	
		(2,426)	
Min. GPA SSH		-499	
		(2,057)	

Gen. Discrimination STEM/BEC

Gen. Discrimination SSH

Mean	8,309	8,309	
R2	0.018	0.024	
N	1,192	1,192	

Notes: Controls: household income, parents education, SAT/ACT, school year, honors, minority, and major. *Significant at 10%, **5%, ***1%.

Outcome: WTP for extra GPA point

	(1)	(0)	(0)
	(1)	(2)	(3)
Female	3,057**	2,671*	1,965
	(1,438)	(1,427)	(2,047)
Min. GPA STEM/BEC		5,548**	
		(2,426)	
Min. GPA SSH		-499	
		(2,057)	
Gen. Discrimination STEM/BEC			620
			(728)
Gen. Discrimination SSH			-261
			(536)
Mean	8,309	8,309	8,309
R2	0.018	0.024	0.019
N	1,192	1,192	1,192

Notes: Controls: household income, parents education, SAT/ACT, school year, honors, minority, and major. *Significant at 10%, **5%, ***1%.

Outcome: WTP for extra GPA point

(2)	(3)	(4)
* 2.671*		
2,071	1,965	1,600
(1,427)	(2,047)	(2,036)
5,548**		5,533**
(2,426)		(2,423)
-499		-487
(2,057)		(2,064)
	620	613
	(728)	(730)
	-261	-270
	(536)	(532)
8,309	8,309	8,309
0.024	0.019	0.025
1,192	1,192	1,192
3	5,548** (2,426) -499 (2,057) 8,309 0.024	8) (1,427) (2,047) 5,548** (2,426) -499 (2,057) 620 (728) -261 (536) 8,309 8,309 0.024 0.019

Notes: Controls: household income, parents education, SAT/ACT, school year, honors, minority, and major. *Significant at 10%, **5%, ***1%.

► The gender gap in WTP for GPA decreases by 48%

Conclusion

▶ Understand why women and men react differently to grades during college

Conclusion

- Understand why women and men react differently to grades during college
- Using survey data, I find
 - Women are WTP more for a one-point increase in GPA
 - Women believe they are more likely to experience gender discrimination
 - Evidence that anticipated discrimination plays a role in this context

Conclusion

- Understand why women and men react differently to grades during college
- Using survey data, I find
 - Women are WTP more for a one-point increase in GPA
 - Women believe they are more likely to experience gender discrimination
 - Evidence that anticipated discrimination plays a role in this context
- ► Future research should determine the accuracy of these beliefs

Extra Slides

Motivation: Patterns in ASU

Notes: Conditional on ACT/SAT, high school GPA, indicators for honors and exploratory students, minority, income, in-state student, first-generation status and cohort FE.

Motivation: Patterns in ASU

Notes: Conditional on ACT/SAT, high school GPA, indicators for honors and exploratory students, minority, income, in-state student, first-generation status and cohort FE.

Survey

- Online survey at ASU during Spring 2021
 - Recruitment via email and advertisement on MyASU
 - All undergraduate students were invited
- ► Compensation: lottery of 350 \$20 Amazon eGift Cards
- 2036 students completed the survey
 - 62% women, 35% men
- ▶ No differential selection on socio-demographic characteristics across genders

Comparison with ASU student body

	Survey				ASU		
	Female	Male	Diff.	Female	Male	Diff.	P-value
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Black	0.05	0.03	0.02	0.04	0.03	0.01	0.134
White	0.66	0.70	-0.04	0.46	0.48	-0.02	0.498
Hispanic	0.23	0.18	0.05	0.29	0.23	0.07	0.284
First Generation	0.29	0.23	0.06	0.31	0.23	0.08	0.263
Family Income	102	109	-7.1	126	151	-26	0.181
Freshman	0.22	0.20	0.02	0.26	0.25	0.01	0.776
Sophomore	0.24	0.23	0.00	0.26	0.25	0.01	0.853
Junior	0.30	0.30	0.01	0.22	0.22	0.00	0.806
Senior	0.24	0.27	-0.03	0.26	0.28	-0.02	0.742
ACT	27.71	28.56	-0.85	23.98	25.62	-1.64	0.003
Sample Size	1,236	700		22,755	21,637		0.000

Comparison with ASU student body

		Survey			ASU		P-value
	Female	Male	Diff.	Female	Male	Diff.	P-value
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
STEM	0.38	0.58	-0.20	0.25	0.46	-0.20	0.689
BEC	0.18	0.21	-0.03	0.18	0.27	-0.10	0.000
SSH	0.44	0.22	0.22	0.57	0.27	0.30	0.001
N	1,236	700		22,755	21,637		
			0.22			0.30	

Scenarios Wording

Imagine a situation in which you have not chosen a major yet and each major category is characterized as in the table below.

	Average GPA (a)	Average Weekly Study Hours (b)	Average Earnings After Graduation (full-time job) (c)
Social Sciences/Humanities/Other	3.47	8.0	\$24,000
Business/Economics	2.23	7.0	\$49,000
Science/Technology/Engineering/Math	2.00	22.0	\$46,000

For example, in this scenario students from Social Sciences/Humanities/Other (a) graduate with a cumulative GPA of 3.47 on average; (b) study 8.0 hours per-week on average, and (c) on average have annual earnings of \$24,000 in a full-time job.

What is the percent chance (or chances out of 100) that you would choose to graduate from each category given these characteristics?

Note: The chance of each major category should be a number between 0 and 100 and the chances assigned to the three categories should add up to 100.

Choice Probabilities by Major 💍

Choice Model

Let U_{ijs} be individual i's utility from major j in scenario s:

$$U_{ijs} = X'_{ijs}\beta_i + \kappa_{ij} + \epsilon_{ijs} \tag{6}$$

▶ Then, individual i's reported probability of choosing j in scenario s is:

$$p_{ijs} = \int \mathbb{1}\left\{U_{ijs} > U_{ij's} \quad \forall j' \neq j\right\} dH_i(\epsilon_{is}) \tag{7}$$

where $H_i(\epsilon_{is})$ is i's belief about the distribution of $\{\epsilon_{i1s},...,\epsilon_{iJs}\}$

Dealing with Rounding Bias

Assumptions:

- ▶ Reported \tilde{p}_{ijs} measures "true" p_{ijs} with error
- ► Measurement error takes linear-in-logs form such that:

$$ln\left(\frac{\tilde{p}_{ijs}}{\tilde{p}_{ij's}}\right) = (X_{ijs} - X_{ij's})'\beta_i + (\kappa_{ij} - \kappa_{ij'}) + \underbrace{\omega_{ijs}}_{m.e}$$
(8)

 $ightharpoonup \omega i1s,...,\omega_{iJs}$ have median 0 conditional on $X_{1s},...,X_{Js}s$

Then,

$$M\left[\ln\left(\frac{\tilde{p}_{ijs}}{\tilde{p}_{ij's}}\right)|X_{js},X_{j's}\right] = (X_{ijs} - X_{ij's})'\beta_i + (\kappa_{ij} - \kappa_{ij'})$$
(9)

Average Estimates

	Overall	Female	Male
	(1)	(2)	(3)
GPA	0.683***	0.696***	0.656***
	(0.064)	(0.079)	(0.118)
Study time (h/week)	-0.067***	-0.057***	-0.084***
	(0.007)	(0.009)	(0.014)
Log earnings	4.287***	3.798***	5.245***
	(0.154)	(0.182)	(0.291)
N	1,266	838	428

[▶] On average, coefficients have the expected signs

WTP for GPA/Study Time

Summary Statistics

	WTP (% of av. earnings)				
	Overall	Female	Male		
	(1)	(2)	(3)		
GPA	15.58	17.05	12.75		
	[12.39]	[14.61]	[9.16]		
Study time	-2.77	-2.68	-2.96		
	[-1.20]	[-1.14]	[-1.34]		

Note: Table reports mean [median] WTP.

"Women need a higher GPA to compete against similar man"

 $\sim 83\%$ of females somewhat agree or strongly agree in the case of STEM/BEC

Labor Market

Posterior belief

$$p(\theta; \pi_g^k) = \frac{\pi_g^k f_h(\theta)}{\pi_g^k f_h(\theta) + (1 - \pi_g^k) f_l(\theta)}$$

Labor Market

▶ Using $p(\theta; \pi_g^k)$ in the condition before, a firm hires a student if and only if:

$$\frac{f_h(\theta)}{f_l(\theta)} \ge \frac{1 - \pi^k}{\pi^k} \frac{x_l^k}{x_h^k} \tag{10}$$

- ► MLRP implies \exists ! $\tilde{\theta}(\pi^k) \in (0,1)$ such that (10) holds with equality.
- ► I.e. employer follows a cutoff hiring rule.

$$\begin{cases} \text{Hire,} & \text{if } \theta > \tilde{\theta}(\pi_g^k) \\ \text{Not hire,} & \text{otherwise} \end{cases}$$

Students Updated Beliefs

Posterior belief

$$P'(\theta_i) = \frac{Pf_h(\theta_i)}{Pf_h(\theta_i) + (1 - P)f_l(\theta_i)}$$

Gender Gap in Prob. of Changing Fields

Other Potential Mechanisms

- ► Self-confidence
 - Men rank themselves better than women in all majors.
- Beliefs about grades at graduation
 - More women overestimate the average GPA at graduation

They contribute less than anticipated discrimination and labor market standards to reducing the gender gap in WTP for GPA!

37/19

Self-Confidence

Men report higher beliefs about their ability than women

Women are more under-confident than men

Self-Confidence does not explain much of the WTP gender gap

	(1)	(2)
Female	3,057**	2,905**
	(1,438)	(1,443)
Error in Beliefs about Ability		-18
		(20)
Mean	8,309	8,309
N	1,192	1,192

Notes: Outcome variable is WTP for GPA. Controls: household income, parents education, SAT/ACT, school year, honors, minority, and major. *Significant at 10%, **5%, ***1%.

Beliefs about Grades at Graduation

Beliefs about average GPA at graduation

	Female	Male	P-value
	(1)	(2)	(3)
SSH	3.46	3.36	0.000
STEM/BEC	3.37	3.23	0.000

- Women believe that the average GPA at graduation is higher
- $\,\blacktriangleright\,$ All participants believe that the average GPA at graduation is lower in STEM/BEC

Participants underestimate the GPA at graduation in STEM/BEC

Notes: Vertical dashed lines represent the mean of the distribution.

44

Beliefs about grades do not explain much of the WTP gender gap

	(1)	(2)
Female	3,057**	2,796*
	(1,438)	(1,448)
Error in Beliefs about GPA at Graduation		1,871
		(2,397)
Mean	8,309	8,309
N	1,192	1,192

Notes: Outcome variable is WTP for GPA. Controls: household income, parents education, SAT/ACT, school year, honors, minority, and major. *Significant at 10%, **5%, ***1%.

► Formalize intuition behind how beliefs about discrimination can lead to gender differences in grade sensitivity

- ► Formalize intuition behind how beliefs about discrimination can lead to gender differences in grade sensitivity
- ► Two stages:
 - Students choose one of two majors: $k \in \{S, N\}$
 - Students receive grades and revise their major choices

- Formalize intuition behind how beliefs about discrimination can lead to gender differences in grade sensitivity
- ► Two stages:
 - Students choose one of two majors: $k \in \{S, N\}$
 - Students receive grades and revise their major choices
- Men and women with same grade revise major choices differently because of different beliefs about labor market standards

▶ Mass one of females (F) and mass one of males (M), $g \in \{F, M\}$

- ▶ Mass one of females (F) and mass one of males (M), $g \in \{F, M\}$
- ► Students are high (*h*) or low (*l*) ability

- ▶ Mass one of females (F) and mass one of males (M), $g \in \{F, M\}$
- ► Students are high (*h*) or low (*l*) ability
- Grades: θ drawn from [0, 1] according to $f_h(\theta)$ or $f_l(\theta)$
 - f_h (.) and f_l (.) satisfy the Monotone Likelihood Ratio Property (MLRP)

- ▶ Mass one of females (F) and mass one of males (M), $g \in \{F, M\}$
- ► Students are high (*h*) or low (*l*) ability
- Grades: θ drawn from [0, 1] according to $f_h(\theta)$ or $f_l(\theta)$
 - $f_h(.)$ and $f_l(.)$ satisfy the Monotone Likelihood Ratio Property (MLRP)
- ► *P* proportion of high ability individuals

Following Coate & Loury (1993)

► Separate labor market for each field

Following Coate & Loury (1993)

- ► Separate labor market for each field
- lacksquare π_g^k : employers belief about the fraction of high ability g individuals

Following Coate & Loury (1993)

- Separate labor market for each field
- \blacktriangleright π_g^k : employers belief about the fraction of high ability g individuals
- ightharpoonup Employers see grades, heta, and update beliefs following Bayes Rule
 - Posterior: $p(\theta; \pi_g^k)$

Following Coate & Loury (1993)

- Separate labor market for each field
- \blacktriangleright π_g^k : employers belief about the fraction of high ability g individuals
- ightharpoonup Employers see grades, θ , and update beliefs following Bayes Rule
 - Posterior: $p(\theta; \pi_g^k)$
- Employer gets
- $x_h^k > 0$ if hires h
- $x_l^k < 0$ if hires l

Following Coate & Loury (1993)

Firm will hire a student with grade θ iff

$$p(\theta; \pi_g^k) x_h^k - [1 - p(\theta; \pi_g^k)] x_l^k \ge 0$$
 (11)

- π_g^k : prior belief student is h
- $p(\theta; \pi_g^k)$: posterior belief student is h
- $x_h^k > 0$ if hires h
- $x_l^k < 0$ if hires l

0

Following Coate & Loury (1993)

Firm will hire a student with grade θ iff

$$p(\theta; \pi_g^k) x_h^k - [1 - p(\theta; \pi_g^k)] x_l^k \ge 0$$
 (11)

- π_g^k : prior belief student is h
- $p(\theta; \pi_g^k)$: posterior belief student is h
- $x_h^k > 0$ if hires h
- $x_l^k < 0$ if hires l
- MLRP implies a cutoff hiring rule
 - a student of gender g is hired if $\theta > \tilde{\theta}(\pi_g^k)$

0

Following Coate & Loury (1993)

Firm will hire a student with grade θ iff

$$p(\theta; \pi_g^k) x_h^k - [1 - p(\theta; \pi_g^k)] x_l^k \ge 0$$
 (11)

- π_g^k : prior belief student is h
- $p(\theta; \pi_g^k)$: posterior belief student is h
- $x_h^k > 0$ if hires h
- $x_l^k < 0$ if hires l
- MLRP implies a cutoff hiring rule
 - a student of gender g is hired if $\theta > \tilde{\theta}(\pi_g^k)$
 - $\uparrow \pi_g^k \Rightarrow \downarrow \tilde{\theta}(\pi_g^k)$

0

► Probability of getting a job

- ► Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$

- ► Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$

-
$$\underbrace{P}_{\text{Belief }h} [1 - F_h(\tilde{\theta}_g^k)] + (1 - P)[1 - F_l(\tilde{\theta}_g^k)]$$

- ► Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_e^k)$

-
$$P$$

$$[1 - F_h(\tilde{\theta}_g^k)] + (1 - P)[1 - F_l(\tilde{\theta}_g^k)]$$

Prob. of grade above cutoff if h

- Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_e^k)$

-
$$P[1 - F_h(\tilde{\theta}_g^k)] + \underbrace{(1 - P)}_{\text{Belief } l} [1 - F_l(\tilde{\theta}_g^k)]$$

- Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$

-
$$P[1 - F_h(\tilde{\theta}_g^k)] + (1 - P)$$

$$[1 - F_l(\tilde{\theta}_g^k)]$$

Prob. of grade above cutoff if l

- Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$
 - $P[1-F_h(\tilde{\theta}_g^k)] + (1-P)[1-F_l(\tilde{\theta}_g^k)]$

- ► Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$
 - $P[1 F_h(\tilde{\theta}_g^k)] + (1 P)[1 F_l(\tilde{\theta}_g^k)]$
- ► S jobs pay 1 and N jobs pay v < 1

- Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$
 - $P[1-F_h(\tilde{\theta}_g^k)] + (1-P)[1-F_l(\tilde{\theta}_g^k)]$
- ► S jobs pay 1 and N jobs pay v < 1

$$U_g^N = \nu \underbrace{\{P[1 - F_h(\tilde{\theta}_g^N)] + (1 - P)[1 - F_l(\tilde{\theta}_g^N)]\}}_{\text{Prob. of getting a job}} - \delta^N c_i$$
 (12)

- Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$
 - $P[1-F_h(\tilde{\theta}_g^k)] + (1-P)[1-F_l(\tilde{\theta}_g^k)]$
- ► S jobs pay 1 and N jobs pay v < 1

$$U_g^N = \nu \underbrace{\{P[1 - F_h(\tilde{\theta}_g^N)] + (1 - P)[1 - F_l(\tilde{\theta}_g^N)]\}}_{\text{Prob. of getting a job}} - \delta^N c_i$$
 (12)

- $ightharpoonup c_i \sim U(0,1)$: cost of an hour of studying
- ► Study hours: $\delta^S > \delta^N$

- Probability of getting a job
 - Probability that your grade will be above the employer cutoff, $\theta > \tilde{\theta}(\pi_g^k)$
 - $P[1-F_h(\tilde{\theta}_g^k)] + (1-P)[1-F_l(\tilde{\theta}_g^k)]$
- ► S jobs pay 1 and N jobs pay v < 1

$$U_g^N = \nu \underbrace{\{P[1 - F_h(\tilde{\theta}_g^N)] + (1 - P)[1 - F_l(\tilde{\theta}_g^N)]\}}_{\text{Prob. of getting a job}} - \delta^N c_i$$
 (12)

$$U_g^S = P[1 - F_h(\tilde{\theta}_g^S)] + (1 - P)[1 - F_l(\tilde{\theta}_g^S)] - \delta^S c_i$$
 (13)

- $ightharpoonup c_i \sim U(0,1)$: cost of an hour of studying
- ► Study hours: $\delta^S > \delta^N$

Initial Sorting

▶ Students choose the major that gives them more utility

Initial Sorting

- Students choose the major that gives them more utility
- ▶ $\exists \bar{c}_g \in (0,1)$ such that

$$\begin{cases} U_g^S \ge U_g^N, & \text{if } c_i \le \bar{c_g} \\ U_g^S < U_g^N, & \text{otherwise} \end{cases}$$

Initial Sorting

- Students choose the major that gives them more utility
- ▶ $\exists \bar{c}_g \in (0,1)$ such that

$$\begin{cases} U_g^S \ge U_g^N, & \text{if } c_i \le \bar{c_g} \\ U_g^S < U_g^N, & \text{otherwise} \end{cases}$$

► Low study cost students choose *S*

ightharpoonup Students receive grades θ_i

- ightharpoonup Students receive grades θ_i
- ▶ Update their beliefs about being *h* following Bayes rule
 - Posterior: $P'(\theta_i)$

- ightharpoonup Students receive grades θ_i
- ▶ Update their beliefs about being *h* following Bayes rule
 - Posterior: $P'(\theta_i)$
- ► A student chooses to stay in *S* if $U^S(\theta_i) \ge U^N(\theta_i)$

- ightharpoonup Students receive grades θ_i
- ▶ Update their beliefs about being *h* following Bayes rule
 - Posterior: $P'(\theta_i)$
- ► A student chooses to stay in *S* if $U^S(\theta_i) \ge U^N(\theta_i)$

$$\begin{split} U^N(\theta_i) &= \nu P'(\theta_i)[1 - F_h(\tilde{\theta}_g^N)] + \nu (1 - P'(\theta_i))[1 - F_l(\tilde{\theta}_g^N)] - \delta^N c_i \\ U^S(\theta_i) &= P'(\theta_i)[1 - F_h(\tilde{\theta}_g^S)] + (1 - P'(\theta_i))[1 - F_l(\tilde{\theta}_g^S)] - \delta^S c_i \end{split}$$

- ightharpoonup Students receive grades θ_i
- ▶ Update their beliefs about being *h* following Bayes rule
 - Posterior: $P'(\theta_i)$
- ► A student chooses to stay in *S* if $U^S(\theta_i) \ge U^N(\theta_i)$

$$\begin{split} U^N(\theta_i) &= v P'(\theta_i) [1 - F_h(\tilde{\theta}_g^N)] + v (1 - P'(\theta_i)) [1 - F_l(\tilde{\theta}_g^N)] - \delta^N c_i \\ U^S(\theta_i) &= P'(\theta_i) [1 - F_h(\tilde{\theta}_g^S)] + (1 - P'(\theta_i)) [1 - F_l(\tilde{\theta}_g^S)] - \delta^S c_i \end{split}$$

► MLRP implies that $\exists \theta_i^* \in (0,1)$ such that

$$\begin{cases} U^{S}(\theta_{i}) \ge U^{N}(\theta_{i}), & \text{if } \theta_{i} \ge \theta_{i}^{*} \\ U^{S}(\theta_{i}) < U^{N}(\theta_{i}), & \text{otherwise} \end{cases}$$
(14)

- ightharpoonup Students receive grades θ_i
- ▶ Update their beliefs about being *h* following Bayes rule
 - Posterior: $P'(\theta_i)$
- ► A student chooses to stay in *S* if $U^S(\theta_i) \ge U^N(\theta_i)$

$$\begin{split} U^N(\theta_i) &= \nu P'(\theta_i)[1 - F_h(\tilde{\theta}_g^N)] + \nu (1 - P'(\theta_i))[1 - F_l(\tilde{\theta}_g^N)] - \delta^N c_i \\ U^S(\theta_i) &= P'(\theta_i)[1 - F_h(\tilde{\theta}_g^S)] + (1 - P'(\theta_i))[1 - F_l(\tilde{\theta}_g^S)] - \delta^S c_i \end{split}$$

► MLRP implies that $\exists \theta_i^* \in (0,1)$ such that

$$\begin{cases} U^{S}(\theta_{i}) \ge U^{N}(\theta_{i}), & \text{if } \theta_{i} \ge \theta_{i}^{*} \\ U^{S}(\theta_{i}) < U^{N}(\theta_{i}), & \text{otherwise} \end{cases}$$
(14)

- ▶ If women believe they will face discrimination in $S(\pi_F^S < \pi_M^S)$ then
 - $\tilde{\theta}_F^S > \tilde{\theta}_M^S$
 - Women believe they face a higher cutoff to get the job

- ▶ If women believe they will face discrimination in $S(\pi_F^S < \pi_M^S)$ then
 - $\tilde{\theta}_F^S > \tilde{\theta}_M^S$
 - Women believe they face a higher cutoff to get the job
- ► Since $\frac{\partial \theta_i^*}{\partial \tilde{\theta}_g^S} > 0$, then for an identical man and woman

$$\theta_i^*(\tilde{\theta}_F^S) > \theta_i^*(\tilde{\theta}_M^S) \tag{15}$$

- ▶ If women believe they will face discrimination in $S(\pi_F^S < \pi_M^S)$ then
 - $\tilde{\theta}_F^S > \tilde{\theta}_M^S$
 - Women believe they face a higher cutoff to get the job
- ► Since $\frac{\partial \theta_i^*}{\partial \tilde{\theta}_g^S} > 0$, then for an identical man and woman

$$\theta_i^*(\tilde{\theta}_F^S) > \theta_i^*(\tilde{\theta}_M^S) \tag{15}$$

The woman requires a higher grade to stay in S!

- ▶ If women believe they will face discrimination in $S(\pi_F^S < \pi_M^S)$ then
 - $\tilde{\theta}_F^S > \tilde{\theta}_M^S$
 - Women believe they face a higher cutoff to get the job
- Since $\frac{\partial \theta_i^*}{\partial \tilde{\theta}_g^S} > 0$, then for an identical man and woman

$$\theta_i^*(\tilde{\theta}_F^S) > \theta_i^*(\tilde{\theta}_M^S) \tag{15}$$

The woman requires a higher grade to stay in S!

▶ If they get a grade θ such that

$$\theta^*(\tilde{\theta}_F^S) > \theta > \theta^*(\tilde{\theta}_M^S) \tag{16}$$

- ▶ If women believe they will face discrimination in $S(\pi_F^S < \pi_M^S)$ then
 - $\tilde{\theta}_F^S > \tilde{\theta}_M^S$
 - Women believe they face a higher cutoff to get the job
- Since $\frac{\partial \theta_i^*}{\partial \tilde{\theta}_g^S} > 0$, then for an identical man and woman

$$\theta_i^*(\tilde{\theta}_F^S) > \theta_i^*(\tilde{\theta}_M^S) \tag{15}$$

The woman requires a higher grade to stay in *S*!

▶ If they get a grade θ such that

$$\theta^*(\tilde{\theta}_F^S) > \theta > \theta^*(\tilde{\theta}_M^S) \tag{16}$$

The man stays in *S* but the woman leaves *S*!