In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. Integrated development environments (IDEs) aim to integrate all such help. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Integrated development environments (IDEs) aim to integrate all such help. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. There exist a lot of different approaches for each of those tasks. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Whatever the approach to development may be, the final program must satisfy some fundamental properties. In the 9th century, the Arab mathematician Al-Kindi described a cryptographic algorithm for deciphering encrypted code, in A Manuscript on Deciphering Cryptographic Messages.