α ட RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÈTÉ INDUSTRIELLE

PARIS

(11) Nº de publication :

2 811 993

(à n'utiliser que pour les commandes de reproduction)

No d'enregistrement national :

00 09609

(51) Int CI⁷: **C 08 G 18/65,** A 61 K 7/42.

DEMANDE DE BREVET D'INVENTION

Α1

- Date de dépôt : 21.07.00.
- Priorité:

- (71) **Demandeur(s)** : *L'OREAL Société anonyme* FR.
- Date de mise à la disposition du public de la demande : 25.01.02 Bulletin 02/04.
- Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- 69 Références à d'autres documents nationaux apparentés:
- Inventeur(s): MOUGIN NATHALIE, COTTARD FRANÇOIS, DE LA METTRIE ROLLAND et LION BER-TRAND.
- (73) Titulaire(s):
- (74) Mandataire(s): CASALONGA ET JOSSE.

NOUVEAUX POLYMERES ASSOCIATIFS CATIONIQUES ET LEUR UTILISATION COMME EPAISSISSANTS.

L'invention a trait à de nouveaux polymères amphiphiles associatifs cationiques de formule i:

R-X(P) n-L(Y)m-L'(P')p-X'-R'
dans laquelle:

R et R', identiques ou différents, représentent un groupement hydrophobe ou un atome d'hydrogène;

X et X', identiques ou différents, représentent un groupement comportant une amine tertiaire ou quaternaire portant ou non un groupement hydrophobe, ou encore le tant ou non un groupement hydrophobe, ou encore le groupement L";
L, L' et L ", identiques ou différents, représentent un groupement dérivé d'un dissocyanate;

P et P', identiques ou différents, représentent un grou-pement comportant une amine tertiaire ou quaternaire portant ou non un groupement hydrophobe;

Y représente un groupement hydrophile;

n, m, et p valent chacun indépendamment des autres entre 0 et 1000;

la molécule contenant au moins une fonction amine tertiaire ou quaternaire et au moins un groupement hydropho-

L'invention concerne également leur utilisation comme épaississants dans des compositions cosmétiques pour application topique.

La présente invention concerne de nouveaux polymères associatifs cationiques ainsi que leur utilisation dans des compositions pour application topique, notamment à usage cosmétique ou thérapeutique.

5

10

15

20

25

30

L'épaississement et/ou la gélification des milieux aqueux par des polymères est depuis longtemps un important sujet de recherche, notamment dans le domaine de la cosmétique et de la pharmacie. L'obtention d'un effet d'épaississement intéressant par un polymère hydrosoluble suppose généralement une masse molaire élevée et un volume hydrodynamique important. La gélification d'un milieu aqueux est alors considérée comme le résultat d'un réseau polymère tridimensionnel obtenu par une réticulation de polymères linéaires ou par copolymérisation de monomères bifonctionnels et polyfonctionnels. L'utilisation de tels polymères de masse molaire très élevée pose cependant un certain nombre de problèmes tels que la texture peu agréable et la difficulté d'étalement des gels obtenus.

Une approche intéressante a consisté à utiliser comme épaississant des polymères capables de s'associer réversiblement entre eux ou avec d'autres molécules ou particules. Cette association physique donne lieu à des systèmes macromoléculaires thixotropes ou rhéofluidifiables, c'est-à-dire des systèmes dont la viscosité dépend des forces de cisaillement auxquelles ils sont soumis.

De tels polymères capables de s'associer réversiblement entre eux ou avec d'autres molécules sont appelés « polymères associatifs ». Les forces d'interactions mises en jeu peuvent être de nature très différente, par exemple de nature électrostatique, de type liaison hydrogène ou des interactions hydrophobes.

Un cas particulier de polymères associatifs sont des polymères amphiphiles, c'est-à-dire des polymères comportant une ou plusieurs parties hydrophiles qui les rendent solubles dans l'eau et une ou plusieurs zones hydrophobes par lesquelles les polymères interagissent et se rassemblent entre eux ou avec d'autres molécules.

On a déjà préconisé en cosmétique l'utilisation de polymères associatifs et en particulier de polyuréthannes associatifs. Cependant, les propriétés rhéologiques et cosmétiques de ces polymères ne sont pas optimales.

On a découvert une nouvelle famille de polymères amphiphiles associatifs cationiques dont les qualités épaississantes sont excellentes et qui possèdent de bonnes propriétés cosmétiques.

Ses excellentes propriétés épaississantes permettent une utilisation du polymère en quantité réduite. Cet avantage permet une amélioration de la texture de la composition le contenant.

Le gel obtenu en utilisant les polymères associatifs de l'invention est agréable au toucher et s'étale facilement.

Un objet de la présente invention est donc une nouvelle famille de polymères associatifs amphiphiles cationiques.

Un autre objet de la présente invention est une composition cosmétique contenant au moins un polymère associatif amphiphile cationique.

Un troisième objet de l'invention est l'utilisation de ces polymères à titre d'épaississants dans les compositions pour application topique à usage cosmétique ou thérapeutique.

D'autres objets apparaîtront à la lecture de la description et des exemples qui suivent.

La famille de polymères associatifs amphiphiles cationiques conforme à l'invention peut être représentée par la formule générale (I) suivante :

$$R-X-(P)_{a}-L-(Y)_{m}-L'-(P')_{p}-X'-R'$$
 (I)

dans laquelle:

5

10

15

20

25

30

R et R', identiques ou différents, représentent un groupement hydrophobe ou un atome d'hydrogène;

X et X', identiques ou dissérents, représentent un groupement comportant une amine tertiaire ou quaternaire portant ou non un groupement hydrophobe, ou encore le groupement L";

L, L' et L", identiques ou différents, représentent un groupement dérivé d'un diisocyanate;

P et P', identiques ou différents, représentent un groupement comportant une amine tertiaire ou quaternaire portant ou non un groupement hydrophobe;

Y représente un groupement hydrophile;

5

10

20

25

30

n, m, et p valent chacun indépendamment des autres entre 0 et 1000;

la molécule contenant au moins une fonction amine tertiaire ou quaternaire et au moins un groupement hydrophobe.

Une famille préférée de polymères associatifs cationiques selon la présente invention est celle correspondant à la formule I ci-dessus dans laquelle

R et R' représentent tous les deux indépendamment un groupement hydrophobe,

X, X' représentent chacun un groupe L'',

n et p valent entre 1 et 1000 et

L, L', L'', P, P', Y et m ont la signification indiquée ci-dessus.

Une autre famille préférée de polymères associatifs cationiques selon la présente invention est celle correspondant à la formule I cidessus dans laquelle

R et R' représentent tous les deux indépendamment un groupement hydrophobe,

X et X' représentent tous les deux indépendamment un groupement comportant une amine quaternaire,

n et p valent zéro, et

L, L', Y et m ont la signification indiquée ci-dessus.

La masse moléculaire des polymères associatifs amphiphiles cationiques de l'invention est comprise de préférence entre 400 et 10 000 et plus particulièrement entre 1000 et 5000.

Par groupement hydrophobe, on entend un radical ou polymère à chaîne hydrocarbonée, saturée ou non, linéaire ou ramifiée, pouvant contenir un ou plusieurs hétéroatomes tels que P, O, N, S, ou à chaîne perfluorée ou siliconée. Lorsqu'il désigne un radical hydrocarboné, le groupement hydrophobe comporte au moins 10 atomes de carbone.

Préférentiellement, le groupement hydrocarboné provient d'un composé monofonctionnel.

A titre d'exemple, le groupement hydrophobe peut être issu d'un alcool gras tel que l'alcool stéarylique, l'alcool dodécylique, l'alcool décylique. Le groupement hydrophobe peut également être un polymère hydrocarboné tel que par exemple le polybutadiène.

Lorsque X et/ou X' désignent un groupement comportant une amine tertiaire ou quaternaire, X et/ou X' peuvent représenter l'une des formules suivantes:

$$\begin{array}{cccc} -N-R_2 & & \text{ou} & \begin{array}{c} R_3 \\ -N-R_2 \end{array} & \text{pour } X \\ R_1 & & R_1 \end{array}$$

dans lesquelles :

5

10

15

25

R₂ représente un radical alkylène ayant de 10 à 20 atomes de carbone, linéaire ou ramifié, comportant ou non un cycle saturé ou insaturé, ou un radical arylène, un ou plusieurs des atomes de carbone pouvant être remplacé par un hétéroatome choisi parmi N, S, O, P;

 R_1 et R_3 , identiques ou différents, désignent un radical alkyle ou alcényle en C_1 - C_{30} , linéaire ou ramifié, un radical aryle, l'un au moins des atomes de carbone pouvant être remplacé par un hétéroatome choisi parmi N, S, O, P;

A- est un contre-ion physiologiquement acceptable.

Les groupements L, L' et L" représentent un groupe de formule :

10

15

20

dans laquelle:

Z représente -O-, -S- ou -NH-; et

R₄ représente un radical alkylène ayant de 1 à 20 atomes de carbone, linéaire ou ramifié, comportant ou non un cycle saturé ou insaturé, un radical arylène, un ou plusieurs des atomes de carbone pouvant être remplacé par un hétéroatome choisi parmi N, S, O et P.

Les groupements P et P', comprenant une fonction amine tertiaire ou quaternaire, peuvent représenter au moins l'une des formules suivantes :

dans lesquelles:

R₅ et R₇ ont les mêmes significations que R₂;

 R_6 , R_8 et R_9 ont les mêmes significations que R_1 et R_3 ;

 R_{10} représente un groupe alkylène, linéaire ou ramifié, éventuellement insaturé et pouvant contenir un ou plusieurs hétéroatomes choisis parmi N, O, S et P,

et A est un contre-ion physiologiquement acceptable.

10

15

20

5

En ce qui concerne la signification de Y, on entend par groupement hydrophile, un groupement hydrosoluble polymérique ou non.

A titre d'exemple, on peut citer, lorsqu'il ne s'agit pas de polymère le diéthylèneglycol et l'hexaéthylèneglycol.

Lorsqu'il s'agit d'un polymère hydrophile, on peut citer à titre d'exemple les polyéthers, les polyesters sulfonés, les polyamides sulfonés, ou un mélange de ces polymères. A titre préférentiel, le composé hydrophile est un polyéther et notamment un poly(oxyde d'éthylène) ou poly(oxyde de propylène).

Le polymère amphiphile associatif cationique de formule I selon l'invention est formé à partir de différents composés possédant chacun au moins un hydrogène labile. On fait réagir ces différents groupements les uns avec les autres de manière successive afin de former les différentes séquences du polymère.

Un premier type de composés entrant dans la préparation du polymère de formule I de l'invention est un composé comportant au moins un motif amine tertiaire ou quaternaire. Ce composé peut être multifonctionnel. mais préférentiellement le composé difonctionnel, c'est-à-dire que selon un mode de réalisation préférentiel de l'invention, ce composé comporte deux atomes d'hydrogène labiles portés par exemple par une fonction hydroxyle, amine secondaire, amine tertiaire ou thiol. On peut également utiliser un mélange de composés multifonctionnels et difonctionnels dans lequel le pourcentage de composés multifonctionnels est faible.

Comme indiqué précédemment, ce composé peut comporter plus d'un motif amine tertiaire ou quaternaire. Il s'agit alors d'un polymère portant une répétition du motif amine tertiaire ou quaternaire.

Ce type de composés peut être représenté par l'une des formules suivantes :

HZ-(P), -ZH,

ou

 $HZ-(P')_p-ZH$

25

5

10

15

20

dans lesquelles Z, P, P', n et p sont tels que définis plus haut.

A titre d'exemple, on peut citer la N-méthyldiéthanolamine, la N-tert-butyl-diéthanolamine, la N-sulfoéthyldiéthanolamine.

Le deuxième composé entrant dans la préparation du polymère de formule I selon l'invention est un diisocyanate correspondant à la formule :

dans lequel R4 est défini plus haut.

5

10

15

20

25

30

A titre d'exemple, on peut citer le méthylènediphényldiisocyanate, le méthylènecyclohexanediisocyanate, l'isophoronediisocyanate, le toluènediisocyanate, le naphtalènediisocyanate, le butanediisocyanate, l'hexanediisocyanate.

Un troisième composé entrant dans la préparation du polymère de formule I selon l'invention est un composé hydrophobe destiné à la formation de la séquence hydrophobe terminale du polymère de formule I.

Cette séquence hydrophobe peut être formée à partir d'un composé comportant un hydrogène labile porté par exemple par une fonction hydroxyle, amine primaire ou secondaire, ou thiol. Il s'agit de préférence d'un composé monofonctionnel. La partie fonctionnelle de ce composé peut contenir un motif amine tertiaire ou quaternaire. La partie hydrophobe de ce composé peut ou non être un polymère.

A titre d'exemple, ce composé peut être un alcool gras, tel que notamment l'alcool stéarylique, l'alcool dodécylique, l'alcool décylique. Lorsque ce composé comporte une chaîne polymérique, il peut s'agir par exemple du polybutadiène hydrogéné α-hydroxyle.

La séquence hydrophobe du composé de formule I selon l'invention peut également résulter de la réaction de quaternisation de l'amine tertiaire du composé comportant au moins un motif amine tertiaire. Ainsi, le groupement hydrophobe est porté par l'agent quaternisant. Il s'agit alors d'un composé de type RQ ou R'Q, dans lequel R et R' sont tels que définis plus haut et Q désigne un groupe partant tel qu'un halogénure, un sulfate etc.

Le polymère amphiphile associatif cationique de l'invention peut en outre comprendre une séquence hydrophile. Cette séquence est apportée par un quatrième type de composés entrant dans la préparation du polymère. Ce composé peut être multifonctionnel. Il est

de préférence disonctionnel. On peut également avoir un mélange où le pourcentage en composé multisonctionnel est faible.

Les parties fonctionnelles, possédant l'hydrogène labile, peuvent être par exemple des fonctions alcool, amine primaire ou secondaire, ou thiol. Ce composé peut être un polymère terminé aux extrémités des chaînes par l'une de ces fonctions possédant l'hydrogène labile.

A titre d'exemple, on peut citer, lorsqu'il ne s'agit pas de polymère le diéthylèneglycol et l'hexaéthylèneglycol.

Lorsqu'il s'agit d'un polymère hydrophile, on peut citer à titre d'exemple les polyéthers, les polyesters sulfonés, les polyamides sulfonés, ou un mélange de ces polymères. A titre préférentiel, le composé hydrophile est un polyéther et notamment un poly(oxyde d'éthylène) ou poly(oxyde de propylène).

15

5

10

Le polymère préparé à partir des composés définis plus haut, est un polymère amphiphile associatif cationique de formule I selon la présente invention. Ce polymère est soluble ou dispersible dans l'eau et augmente de manière spectaculaire la viscosité de la solution aqueuse dans laquelle il est dissous ou dispersé.

20

La séquence hydrophile notée Y dans la formule I est facultative. En effet, les motifs amine quaternaire peuvent suffire à apporter la solubilité nécessaire pour ce type de polymère dans une solution aqueuse.

Etant donné ses bonnes propriétés épaississantes et son excellente affinité avec les matières kératiniques, ce type de polymère amphiphile associatif cationique selon l'invention est particulièrement adapté pour la préparation de compositions destinées à l'application topique à usage cosmétique.

30

25

En particulier, les composés selon l'invention peuvent être utilisés dans des compositions capillaires, dans des compositions pour le soin de la peau, dans des compositions pour le soin des ongles, dans

des compositions parfumantes, et dans des compositions de maquillage de la peau, des lèvres, des cils et des ongles.

A titre d'exemples, suivent ci-après des polymères amphiphiles associatifs cationiques de formule I, illustrant l'invention :

Exemple 1:

On synthétise le polymère suivant :

10 $C_{18}H_{37}$ -O-CONHR₄NHCO-O-(CH₂)₂-N⁺(CH₃)(CH₃)-(CH₂)₂-O-CONHR₂NHCO-O(POE)O-CONHR₂NHCO-O-(CH₂)₂.N⁺(CH₃)(CH₃)-(CH₂)₂-O-CONHR₄NHCO-OC₁₈H₃₇

avec:

5

15

contre ion: CH₃SO₄

 R_4 = méthylènedicyclohexyle

à partir des réactifs suivants :

	$C_{18}H_{37}OH$	2 moles
	Méthylènedicyclohexyldiisocyanate	4 moles
20	Polyéthylèneglycol	1 mole
	N-méthyléthanolamine	2 moles
	Agent quaternisant (CH ₃) ₂ SO ₄	2 moles

25 **Exemple 2**:

On synthétise le polymère suivant :

 $C_{18}H_{37}N^{+}(CH_{3})(CH_{3})-(CH_{2})_{2}-O-CONHR_{4}NHCO-O(POE)O-CONHR_{4}NHCO-O(CH_{2})_{2}-N^{+}(CH_{3})(CH_{3})C_{18}H_{37}$

30 avec :

 R_4 = méthylènedicyclohexyle

Contre ion : Cl

à partir des réactifs suivants :

Methylènedicyclohexyldiisocyanate 2 moles

Polyéthylèneglycol 1 mole
N,N-diméthyléthanolamine 2 moles
Agent quaternisant C₁₈H₃₇OH 2 moles

REVENDICATIONS

1. Nouveaux polymères amphiphiles associatifs cationiques de formule I:

$$R-X-(P)_{p}-L-(Y)_{m}-L'-(P')_{p}-X'-R'$$
 (I)

5 dans laquelle:

10

15

20

25

30

R et R', identiques ou différents, représentent un groupement hydrophobe ou un atome d'hydrogène;

X et X', identiques ou différents, représentent un groupement comportant une amine tertiaire ou quaternaire portant ou non un groupement hydrophobe, ou encore le groupement L";

L, L' et L", identiques ou différents, représentent un groupement dérivé d'un diisocyanate;

P et P', identiques ou différents, représentent un groupement comportant une amine tertiaire ou quaternaire portant ou non un groupement hydrophobe;

Y représente un groupement hydrophile;

n, m, et p valent chacun indépendamment des autres entre 0 et 1000 :

la molécule contenant au moins une fonction amine tertiaire ou quaternaire et au moins un groupement hydrophobe.

- 2. Nouveaux polymères selon la revendication 1, caractérisés en ce que R et R' représentent tous les deux indépendamment un groupement hydrophobe, X, X' représentent chacun un groupe L'', n et p valent entre 1 et 1000 et L, L', L'', P, P', Y et m ont la signification indiquée dans la revendication 1.
- 3. Nouveaux polymères sclon la revendication 1, caractérisés en ce que R et R' représentent tous les deux indépendamment un groupement hydrophobe, X et X' représentent tous les deux indépendamment un groupement comportant une amine quaternaire, n et p valent zéro, et L, L', Y et m ont la signification indiquée dans la revendication 1.

- 4. Nouveaux polymères selon l'une des revendications précédentes, caractérisés en ce qu'ils présentent une masse moléculaire comprise entre 400 et 10000, et de préférence entre 1000 et 5000.
- 5. Nouveaux polymères selon l'une quelconque des revendications précédentes, caractérisés en ce que R et R' représentent un radical ou un polymère à chaîne hydrocarbonée, saturée ou non, linéaire ou ramifiée, dans laquelle un ou plusieurs des atomes de carbone peut être remplacé par un hétéroatome choisi parmi S, N, O et P, ou à chaîne siliconée ou perfluorée.
- 6. Nouveaux polymères sclon l'une quelconque des revendications précédentes, caractérisé en ce que X et X' représentent l'une des formules :

$$\begin{array}{ccc} -N-R_2 & \text{ou} & \begin{array}{ccc} R_3 \\ -N-R_2 \\ R_1 \end{array} & \begin{array}{ccc} R_3 \\ -N-R_2 \end{array} & \text{pour } X \end{array}$$

dans lesquelles :

5

10

20

25

R₂ représente un radical alkylène ayant de 10 à 20 atomes de carbone, linéaire ou ramissé, comportant ou non un cycle saturé ou insaturé, ou un radical arylène, un ou plusieurs des atomes de carbone pouvant être remplacé par un hétéroatome choisi parmi N, S, O, P;

 R_1 et R_3 , identiques ou différents, désignent un radical alkyle ou alcényle en C_1 - C_{30} , linéaire ou ramifié, un radical aryle, l'un au moins des atomes de carbone pouvant être remplacé par un hétéroatome choisi parmi N, S, O, P;

A est un contre-ion physiologiquement acceptable.

7. Nouveaux polymères selon l'une quelconque des revendications précédentes, caractérisés en ce que les groupements L, L' et L', identiques ou différents, représentent la formule :

dans laquelle:

5

10

Z représente -O-, -S- ou -NH-; et

R₄ représente un radical alkylène ayant de 1 à 20 atomes de carbone, linéaire ou ramifié, comportant ou non un cycle saturé ou non saturé, un radical arylène, un ou plusieurs des atomes de carbone pouvant être remplacé par un hétéroatome choisi parmi N, S, O et P.

8. Nouveaux polymères selon l'une quelconque des revendications précédentes, caractérisés en ce que les groupements P et P', identiques ou différents, représentent au moins l'une des formules suivantes :

$$-R_{5}-N-R_{7}- \text{ ou } -R_{5}-N-R_{7}-\\ R_{6} \\ R_{6} \\ R_{8} \\ \text{ou } -R_{5}-CH-R_{7}-\\ \text{ou } -R_{5}-CH-R_{7}-\\ R_{6}-N-R_{9} \\ R_{8} \\ \text{ou } -R_{5}-CH-R_{7}-\\ \text{ou$$

15

dans lesquelles:

 R_5 et R_7 ont les mêmes significations que R_2 ; R_6 , R_8 et R_9 ont les mêmes significations que R_1 et R_3 ;

R₁₀ représente un groupe alkylène, linéaire ou ramifié, éventuellement insaturé et pouvant contenir un ou plusieurs hétéroatomes choisis parmi N, O, S et P, et

A est un contre-ion physiologiquement acceptable.

5

10

15

- 9. Nouveaux polymères selon l'une quelconque des revendications précédentes, caractérisés par le fait que Y représente un groupe dérivé de diéthylèneglycol ou d'hexaéthylèneglycol, ou un groupe dérivé d'un polymère choisi parmi les polyéthers, les polyesters sulfonés et les polyamides sulfonés.
- 10. Utilisation d'un polymère tel que défini dans l'une quelconque des revendications précédentes, à titre d'épaississant dans une composition pour application topique à usage cosmétique.
- 11. Composition cosmétique, caractérisée par le fait qu'elle contient au moins un polymère tel que défini dans l'une quelconque des revendications 1 à 9.

RAPPORT DE RECHERCHE PRÉLIMINAIRE

établi sur la base des dernières revendications déposées avant le commencement de la recherche

N° d'enregistrement national

FA 589526 FR 0009609

DOCL	IMENTS CONSIDÉRÉS COMME PERTINEN	TS Hevendication(s)	Classement attribué à l'invention par l'INPI
atėgorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		·
X	US 4 617 341 A (LAINE ANTOINE ET AL 14 octobre 1986 (1986-10-14) * colonne 1, ligne 38 - colonne 4, l 64 * * revendication 1; exemples 1,2 *		C08G18/65 A61K7/42
A	US 4 068 035 A (COUDURIER MAURICE ET 10 janvier 1978 (1978-01-10) * colonne 2, ligne 22 - ligne 65 * * exemples 1,9 *	AL) 1,3,4, 6-9	
A	EP 0 978 522 A (NAT STARCH CHEM INVE 9 février 2000 (2000-02-09) * page 1, ligne 56 - page 5, ligne 2 * exemples 11,19,25 *	[/,9-11	
		· .	DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
			C08G A61K C09D
	Date d'achèvement de la	recharchs	Examinateur
	5 avril 2	001 Ne	eugebauer, U
Y:p	articulièrement pertinent à tui seul à tui s	corie ou principe à la base de cument de brevet benéfician a date de dépôt et qui n'a été dépôt ou qu'à une date posi é dans la demande à pour d'autres raisons	il d'une date anterieure è publié qu'à cette date