80818 Intuitionistic Logic - Exercise Sheet 4

September 23, 2021

- 1. Work over a signature with one sort, and two 0-ary relation symbols A and B. Show the following are not provable in intuitionistic logic.
 - (a) $\neg A \lor \neg \neg A$
 - (b) $\neg (A \land B) \rightarrow \neg A \lor \neg B$
 - (c) $(A \rightarrow B) \lor (B \rightarrow A)$

Hint: In each case you might find it useful to consider a Kripke model on the following three element poset:

2. Work over a signature with one sort, a 0-ary relation A and a 1-ary relation B. The axiom ${\bf CD}$ states

$$\forall x (A \lor Bx) \rightarrow (A \lor \forall x Bx)$$

We say a Heyting valued model is global if $E(a) = \top$ for all $a \in \mathcal{M}$.

- (a) Let (Q, \leq) be a poset. Let $(V_i)_{i \in I}$ be a family of open sets in the upset topology. Show that $\bigwedge_{i \in I} V_i = \bigcap_{i \in I} V_i$.
- (b) Show that **CD** holds in every global topological model on the upset topology of some poset. You will need to assume the law of excluded middle in the metatheory where you are working.
- 3. Let (X, \mathcal{O}) be a topological space. For any subset $Y \subseteq X$, we define the *closure* of Y, \overline{Y} to be the set of $x \in X$ such that for every open neighbourhood U of x, $U \cap Y$ is non empty. You may assume the law of excluded middle throughout this question.
 - (a) Show that $\overline{U} = X \setminus (X \setminus U)^{\circ}$.
 - (b) Show that $U \subseteq (\overline{U})^{\circ}$ for any open set U.

- (c) Suppose we are given two collections of open sets $(U_i)_{i\in I}$ and $(V_i)_{i\in I}$. Suppose that $x\in \bigwedge_{i\in I}(U_i\to V_i)$. Show x has a neighbourhood W such that for all $y\in W$ and all $i\in I$, if $y\in U_i$, then $y\in V_i$.
- (d) Let V be an open set of Cantor space, and let $f \in V$. Show that $V \setminus \{f\}$ is an open set and that $(\overline{V} \setminus \{f\})^{\circ}$ contains f.
- (e) Let $((\mathcal{M}_S)_{S \in \mathfrak{S}}, (\llbracket R \rrbracket)_{R \in \mathfrak{R}}, (\llbracket O \rrbracket)_{O \in \mathfrak{D}})$ be a Heyting valued model over some signature $(\mathfrak{S}, \mathfrak{R}, \mathfrak{D})$. Show that for any formula φ and any variable assignment σ , $\llbracket \neg \neg \varphi \rrbracket_{\sigma} = (\overline{\llbracket \varphi \rrbracket}_{\sigma})^{\circ}$.
- (f) Consider the signature with one sort, a unary relation symbol A, and no operator symbols. Consider the Heyting valued model on Cantor space defined by taking \mathcal{M} to be the set of open sets of Cantor space. Define $E(U) = \top$ for all $U \in \mathcal{M}$. Take $[\![A]\!]$ to be the identity function, i.e. given U viewed as an element of \mathcal{M} , $[\![A]\!](U)$ is U, viewed as an element of the Heyting algebra of open sets.

Show that for all variable assignments σ ,

$$[\![\forall x (\neg \neg A(x) \rightarrow A(x))]\!]_{\sigma} = \bot$$