Laboratório 2:

Análise e síntese de funções combinacionais de múltiplas saídas

Professor: Osamu Saotome

Alunos:

Rodrigo Alves de Almeida

(rodrigoalalmeida@gmail.com)

Eduardo Menezes Moraes

(<u>eduardomenezesm@msn.com</u>)

Comp 22

Ex 4.1:

a) Tabela verdade:

E	S ₁	S_2	D	C	B	Α
0	х	Х	0	0	0	0
1	0	0	1	0	0	0
1	1	0	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	1

As expressões simplificadas:

$$D = S'_{1} * S'_{2} * E$$

$$C = S_{1} * S'_{2} * E$$

$$B = S'_{1} * S_{2} * E$$

$$A = S_{1} * S_{2} * E$$

b) Desenho esquemático:

Para construção do diagrama esquemático, foi utilizado o fato da porta NOR ser universal. Assim, primeiro montou-se o circuito apenas com portas AND e INVERSORAS. Após isso, substitui-se as portas INVERSORAS por uma NOR com inputs iguais, e as portas AND com um conjunto de portas NOR.

Para essa última tarefa, pensou-se em substituir uma porta AND por um conjunto de NOR, tal que fizesse o produto ABC. Desse modo, seja o produto: ABC, com De Morgan, temos ABC = (A'+B'+C')' = (A'+(B'+C')')'. Logo, conseguiu-se utilizar, como nesse exemplo, 6 portas NOR de dois inputs para substituir a porta AND de três inputs. Utilizando essa estratégia, foi realizado o esquema desse problema:

c) Tabela de temporização:

Ex 4.2:

a) Tabela Verdade:

Código Gray ABC	Binário Puro S₂S₁S₀
000	000
001	001
011	010
010	011
110	100
111	101
101	110
100	111

As expressões simplificadas:

$$S_2 = A$$

$$S_1 = A \oplus B$$

$$S_0 = B \oplus C$$

b) Diagrama Esquemático:

c) Diagrama de temporização:

Ex 4.3

a) Tabela Verdade:

E	X_2	X_1	X_o	Y ₇	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0	Χ	Χ	Χ	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

As expressões booleanas simplificadas:

$$\begin{split} Y_0 &= (E' + X_0 + X_1 + X_2)' \\ Y_1 &= (E' + X_0' + X_1 + X_2)' \\ Y_2 &= (E' + X_0 + X_1' + X_2)' \\ Y_3 &= (E' + X_0' + X_1' + X_2')' \\ Y_4 &= (E' + X_0 + X_1 + X_2')' \\ Y_5 &= (E' + X_0' + X_1 + X_2')' \\ Y_6 &= (E' + X_0 + X_1' + X_2')' \\ Y_7 &= (E' + X_0' + X_1' + X_2')' \end{split}$$

b) Diagrama Esquemático:

c) Diagrama de Temporização:

Ex 4.4:

a) Tabela Verdade:

X_3	X_2	X_1	X_0	Y_{1}	Y_0	Α
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

As expressões simplificadas das saídas na forma de produto de somas:

$$A = (X_3 + X_2 + X_1 + X_0)$$

$$Y_0 = (X_2 + \overline{X_1})(\overline{X_3})$$

$$Y_1 = (X_3 + X_2)$$

b) Diagrama Esquemático:

c) Diagrama de temporização:

Ex 4.5:

a) As expressões booleanas obtidas para o bloco H são:

$$A = A^{1} + A^{2}$$

$$Y_{2} = A^{2}$$

$$Y_{1} = Y_{1}^{2} + Y_{1}^{1} \overline{A^{2}}$$

$$Y_{0} = Y_{0}^{2} + Y_{0}^{1} \overline{A^{2}}$$

Montando o diagrama esquemático:

b) O diagrama de temporização simulado desse bloco:

c) Montando o dispositivo completo e simulando-o, obtemos:

Aplicando zoom em cada metade para imagem mais detalhada:

