IN THE CLAIMS

1. (Currently Amended) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 1,

Formula 1

$$X_1-(A_I)_n$$

wherein A₁ represents a group represented by formula 2, provided that plural A₁ may be the same or different,

Formula 2

$$-Ar_1-N$$

$$(R_1)_{na}$$

$$(R_2)_{nb}$$

wherein Ar₁ represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R₁ and R2 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; na and nb independently represent an integer of from 1 to 4; and X_1 represents a group represented by formula (a), (b), (c), (d), (e), (f), (g), (h), (i), (j), or (k),

$$R_{22}$$
 R_{23} R_{31}

formula (c)

wherein R₁₄-through R₁₄, R₂₁ through R₂₄, and R₃₁ through R₃₄ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom, provided that R14 through R14 are not simultaneously hydrogen atoms, R21 through R₂₄ are not simultaneously hydrogen atoms, and R₃₁ through R₃₄ are not simultaneously hydrogen atoms, and R11 and R12 and R13 and R14 may combine with each other, respectively, to form a ring, but does not simultaneously combine with each other; R41 and R₄₂ independently represent an alkyl group, provided that the total carbon atom number of the alkyl group is from 3 to 9; R₅₁ and R₅₂ independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; R61 represents an alkyl group; Xa represents a divalent 6- or 7-membered monocyclic heterocyclic

KOT-0085

ring which is unsubstituted or alkyl-substituted; R₇₁ through R₇₈ independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R₈₁ through R₈₈ independently represent a hydrogen atom, an alkyl group, or an alkoxy group; R91 through R98 independently represent a hydrogen atom, an alkyl group, or an alkoxy group; and "*" represents a linkage site, provided that when X₁ represents formula (a), (b), (c), (d), (e), (f) or (g), n is 2, and when X₁ represents formula (h), (i), (j), or (k), n is 4.

CANTOR COLBURN LLP

- 2. (Original) The organic electroluminescent element of claim 1, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 3. (Original) The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 4. (Original) The organic electroluminescent element of claim 2, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8,

Formula 5

Formula 6

$$\begin{matrix} R_{a1} \\ R_{a3} \\ \searrow \end{matrix} \begin{matrix} N \\ N \\ N \end{matrix} \begin{matrix} R_{a2} \\ \end{matrix}$$

$$R_{b1}$$
 R_{b2}
 R_{b3}
 R_{b4}

Formula 7

Formula 8

$$R_{c1} \longrightarrow R_{c2}$$
 $R_{c2} \longrightarrow R_{ra}$
 $A_{rb} \longrightarrow B$

wherein Ra1 through Ra3, Rb1 through Rb4, and Rc1 and Rc2 independently represent an alkyl group, an aryl group or a heterocyclic group; and A_{ra} through A_{re} independently represent an aryl group or a heterocyclic group.

- 5. (Original) The organic electroluminescent element of claim 1, wherein the light emission layer contains the compound represented by formula 1 above.
- б. (Original) The organic electroluminescent element of claim 1, wherein the organic electroluminescent element contains a phosphorescent compound.
- 7. (Original) The organic electroluminescent element of claim 6, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 8. (Previously Presented) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula 3,

Formula 3

$$X_{2}$$
- $(A_{2})_{m}$

wherein A2 represents a group represented by formula 4, provided that plural A2 may be the same or different.

Formula 4

wherein Ar₂ represents a divalent aromatic hydrocarbon or aromatic heterocyclic group; R₃ and R4 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a

substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; no and no independently represent an integer of from 1 to 4; m represents an integer of 2; and X_2 represents a group represented by formula (l), (m), (n), or (o),

Formula (1)

Formula (m)

Formula (n)

Formula (o)

wherein R_{101} through R_{110} independently represent a hydrogen atom, an alkyl group, or an alkoxy group, provided that R_{101} through R_{110} does not simultaneously hydrogen atoms; and any two of R_{101} through R_{110} do not combine with each other to form a ring; R_{111} through R_{118} independently represent a hydrogen atom, an alkyl group, or an alkoxy group; A_1 , A_2 , A_3 , and A_4 independently represent $-C(R_{k1})=$ or -N=, in which R_{k1} represents a hydrogen atom or an alkyl group, provided that at least one of A_1 , A_2 , A_3 , and A_4 is -N=; A_5 , A_6 , A_7 , and A_8 independently represent $-C(R_{k2})=$ or -N=; X_b represents

- $-N(R_{k3})=$ or $-Si(R_{k4})(R_{k5})$ -, which R_{k2} , R_{k3} , R_{k4} , and R_{k5} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and "*" represents a linkage site.
- 9. (Original) The organic electroluminescent element of claim 8, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 10. (Original) The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 11. (Original) The organic electroluminescent element of claim 9, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 12. (Original) The organic electroluminescent element of claim 8, wherein the light emission layer contains the compound represented by formula 3 above.
- 13. (Original) The organic electroluminescent element of claim 8, wherein the organic electroluminescent element contains a phosphorescent compound.
- 14. (Original) The organic electroluminescent element of claim 13, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 15. (Currently Amended) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula, H2, H3 or H4,

Formula H2

$$(R_9)_{me}$$
 $N-Ar_5-L_2-Ar_6-N$
 $(R_{11})_{mg}$
 $(R_{12})_{mh}$

wherein L₂ represents an alkylene group having at least one fluorine atom; Ar₅ and Ar₆ independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R₉, R₁₀, R₁₁, and R₁₂ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and me, mf, mg, and mh independently represent an integer of from 1 to 4, Formula H3

$$(R_{13})_{mi} \qquad (R_{15})_{mk}$$

$$N - Ar_7 - R_{h1} R_{h3} R_{h4} Ar_8 - N$$

$$(R_{14})_{mj} \qquad (R_{16})_{ml}$$

wherein Ar_7 , Ar_8 and Ar_9 independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; R_{h1} , R_{h2} , R_{h3} , and R_{h4} independently represent an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R_{13} , R_{14} , R_{15} , and R_{16} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkoxy group, a

substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and mi, mj, mk, and ml independently represent an integer of from 1 to 4,

Formula H4

$$(R_{17})_{mm}$$
 $(R_{19})_{mo}$
 $(R_{19})_{mo}$
 $(R_{19})_{mo}$
 $(R_{20})_{mp}$

wherein Ar10 and Ar11 independently represent a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group; Rh5 and Rh6 independently represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, a halogen atom, or - $\{C(R_{01})(R_{02})\}_P CF_3$, in which R_{01} and R_{02} independently represent a hydrogen atom or a fluorine atom, and p represents an integer of not less than 0, provided that at least one of Rh5 and R_{h6} is $-\{C(R_{01})(R_{02})\}_P CF_3$; R_{17} , R_{18} , R_{19} , and R_{20} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and mm, mn, mo, and mp independently represent an integer of from 1 to 4.

16. (Original) The organic electroluminescent element of claim 15, wherein a hole blocking layer is provided between the light emission layer and the cathode.

- 17. (Original) The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 18. (Original) The organic electroluminescent element of claim 16, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 19. (Original) The organic electroluminescent element of claim 15, wherein the light emission layer contains the compound represented by formula H1, H2, H3, or H4 above.
- 20. (Original) The organic electroluminescent element of claim 15, wherein the organic electroluminescent element contains a phosphorescent compound.
- 21. (Original) The organic electroluminescent element of claim 20, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 22. (Currently Amended) An organic electroluminescent <u>element</u> comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula I1, I2 or I3,

Formula I1

$$(R_{21})_{ia}$$

$$R_{i1}$$

$$R_{i2}$$

$$R_{i3}$$

$$R_{i4}$$

$$R_{i8}$$

$$R_{i7}$$

$$R_{i6}$$

$$R_{i5}$$

$$R_{i5}$$

$$R_{i6}$$

$$R_{i5}$$

Formula I2

$$(R_{25})_{ie} \\ R_{ig} \\ R_{i11} \\ R_{i12} \\ (R_{26})_{if} \\ (R_{28})_{ih} \\$$

Formula I3

$$(R_{29})_{ii}$$
 R_{i13}
 R_{i14}
 R_{i15}
 R_{i16}
 $(R_{30})_{ij}$
 $(R_{32})_{ii}$

wherein R_{i1} , R_{i2} , R_{i3} , R_{i4} , R_{i5} , R_{i6} , R_{i7} , R_{i8} , R_{i9} , R_{i10} , R_{i11} , R_{i12} , R_{i13} , R_{i14} , R_{i15} , and R_{i16} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R_{21} , R_{22} , R_{23} , R_{24} , R_{25} , R_{26} , R_{27} , R_{28} , R_{29} , R_{30} , R_{31} , and R_{32} independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a

substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ia, ib, ic, id, ie, if, ig, ih, ii, ij, ik, and io independently represent an integer of from 1 to 4.

- 23. (Original) The organic electroluminescent element of claim 22, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 24. (Original) The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.
- 25. (Original) The organic electroluminescent element of claim 23, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 26. (Original) The organic electroluminescent element of claim 22, wherein the light emission layer contains the compound represented by formula I1, I2 or I3 above.
- 27. (Original) The organic electroluminescent element of claim 22, wherein the organic electroluminescent element contains a phosphorescent compound.
- 28. (Original) The organic electroluminescent element of claim 27, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.
- 29. (Original) An organic electroluminescent comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a compound represented by formula J1 or J2,

Formula J1

$$(R_{33})_{ja} = R_{j1} R_{j2} R_{j3} (R_{35})_{jc}$$

$$(R_{34})_{jb} R_{j5} R_{j6} R_{j6} R_{j7} R_{j8}$$

Formula J2

$$(R_{37})_{je}$$
 $(R_{39})_{jg}$
 $(R_{39})_{jf}$
 $(R_{38})_{ji}$
 $(R_{40})_{jh}$

wherein R_{j1}, R_{j2}, R_{j3}, R_{j4}, R_{j5}, R_{j6}, R_{j7}, R_{j8}, R_{j9}, R_{j10}, R_{j11}, and R_{j12} independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or a halogen atom; R₃₃, R₃₄, R₃₅, R₃₆, R₃₇, R₃₈, R₃₉, and R₄₀ independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a cyano group, a hydroxyl group, a substituted or unsubstituted alkenyl group, or a halogen atom; and ja, jb, jc, jd, ie, jf, jg, and jh independently represent an integer of from 1 to 4.

- 30. (Original) The organic electroluminescent element of claim 29, wherein a hole blocking layer is provided between the light emission layer and the cathode.
- 31. (Original) The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one selected from the group consisting of a styryl compound, a triazole derivative, a phenanthroline derivative, an oxadiazole derivative and a boron derivative.

- 32. (Original) The organic electroluminescent element of claim 30, wherein the hole blocking layer is comprised of at least one selected from the group consisting of compounds represented by formula 5, 6, 7 or 8 above.
- 33. (Original) The organic electroluminescent element of claim 29, wherein the light emission layer contains the compound represented by formula J1 or J2 above.
- 34. (Original) The organic electroluminescent element of claim 29, wherein the organic electroluminescent element contains a phosphorescent compound.
- 35. (Original) The organic electroluminescent element of claim 34, wherein the phosphorescent compound is an osmium complex, an iridium complex or a platinum complex.

36-42. (Canceled)

43. (Original) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains an electron transporting material having a phosphorescence 0-0 band of not more than 450 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A,

Formula A

$$(R_1)_{n1}$$
 $(R_2)_{n2}$

wherein R₁, R₂ and R₃ independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n₁ represents an integer of from 0 to 5; and n₂

and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

- 44. (Original) The organic electroluminescent element of claim 43, wherein the organic electroluminescent element emits a white light.
- 45. (Currently Amended) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the component layer contains a hole transporting material having a phosphorescence 0-0 band of not more than 480 nm, and the light emission layer contains a phosphorescent compound and a compound represented by formula A: above.

Formula A

$$(R_3)_{n3}$$
 $(R_2)_{n2}$

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group: n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

46. (Original) The organic electroluminescent element of claim 45, wherein the organic electroluminescent element emits a white light.

47. (Currently Amended) An organic electroluminescent element comprising an anode, a cathode and a component layer including a light emission layer, the component layer being provided between the anode and the cathode, wherein the light emission layer contains a phosphorescent compound having a phosphorescence 0-0 band of not more than 480 nm and a compound represented by formula A:-above-

Formula A

wherein R_1 , R_2 and R_3 independently represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted cycloalkyl group; n_1 represents an integer of from 0 to 5; and n_2 and n_3 independently represent an integer of from 0 to 4, provided that R_1 and R_2 , R_1 and R_3 , or R_2 and R_3 , each may combine with each other to form a ring.

- 48. (Original) The organic electroluminescent element of claim 47, wherein the organic electroluminescent element emits a white light.
- 49. (Previously Presented) A display comprising the organic electroluminescent element of any one of claims 1, 8, 15, 22, 29, 43, and 45.
- 50. (Previously Presented) An illuminator comprising the organic electroluminescent element of any one of claims 1, 8, 15, 22, 29, 43, and 45.
- 51. (Original) A display comprising the illuminator of claim 50, and a liquid crystal cell as a displaying element.