CHY101 ChiPhy[™] Family

Charger Interface Physical Layer IC with Output Overvoltage Protection

Product Highlights

- Supports Quick Charge 2.0 Class A specification
 - 5 V, 9 V, and 12 V output voltage
- USB battery charging specification revision 1.2 compatible
 - Automatic USB DCP shorting D+ to D- line
 - · Default 5 V mode operation
- · Adaptive output overvoltage protection (OVP)
 - Protection triggered at 120% of set output voltage
 - · Latching or hysteretic shutdown mode
- · Supports TOPSwitch, TinySwitch and InnoSwitch
- · Very low power consumption
- Below 1 mW at 5 V output
- Fail safe operation
 - · Adjacent pin-to-pin short-circuit fault protection
 - · Open circuit pin fault protection

Typical Applications

- Battery chargers for smart phones, tablets, netbooks, digital cameras, and bluetooth accessories
- · USB power output ports

Description

CHY101 is a low-cost USB high-voltage dedicated charging port (HVDCP) interface IC for the Quick Charge 2.0 specification. It incorporates all necessary functions to add Quick Charge 2.0 capability to Power Integrations' switcher ICs such as TOPSwitch or TinySwitch and other solutions employing traditional feedback schemes.

CHY101 supports the full output voltage range of Class A (5 V, 9 V, and 12 V). CHY101 continuously monitors the output voltage and triggers OVP if the actual value exceeds 120% of the set value.

CHY101 automatically detects whether a connected Powered Device (PD) is Quick Charge 2.0 capable before enabling output voltage adjustment. If a PD not compliant to Quick Charge 2.0 is detected the CHY101 disables output voltage adjustment to ensure safe operation with legacy 5 V only USB PDs.

Figure 1. Typical Application Schematic.

SO-8 (D Package)

Figure 2. Package Option.

Figure 3. Functional Block Diagram.

Pin Functional Description

GROUND (GND) Pin:

Ground.

V1 Pin:

Open Drain input of output voltage adjustment switch. Active for 9 V and 12 V output setting. Connection for optocoupler diode for primary-side latching OVP.

V2 Pin:

Open Drain input of output voltage adjustment switch.

Active for 12 V output setting. Connection for optocoupler diode for primary-side latching OVP.

OV Pin:

Output overvoltage detection connected to the output through a sense resistor.

BYPASS (BP) Pin:

Connection point for an external bypass capacitor for the internally generated supply voltage.

REFERENCE (R) Pin:

Connected to internal band-gap reference. Provides reference current through connected resistor.

DATA LINE (D+) Pin:

USB D+ data line input.

DATA LINE (D-) Pin:

USB D- data line input.

Figure 4. Pin Configuration.

Functional Description

CHY101 is a low-cost USB high-voltage dedicated charging port (HVDCP) interface IC for the Quick Charge 2.0 specification. It incorporates all necessary functions to add Quick Charge 2.0 capability to Power Integrations' integrated switcher ICs such as TOPSwitch or TinySwitch.

CHY101 also supports other solutions with traditional feedback schemes like optocoupler and secondary reference regulator TL431 as depicted in Figure 5.

Figure 5. CHY101 with Traditional Output Regulation (CV Only).

CHY101 supports the full output voltage range of Quick Charge 2.0 Class A (5 V, 9 V, or 12 V). It automatically detects either Quick Charge 2.0 capable powered devices (PD) or legacy PDs compliant with the USB Battery Charging Specification revision 1.2 and only enables output voltage adjustment accordingly.

Shunt Regulator

The internal shunt regulator clamps the BYPASS pin at 6 V when current is provided through an external resistor ($R_{\rm BP}$ in Figure 5). This facilitates powering of CHY101 externally over the wide power supply output voltage range of 5 V to 12 V. Recommended values are $R_{\rm BP}=2.05~k\Omega$ and $C_{\rm RP}=680~nF$.

BYPASS Pin Undervoltage

The BYPASS pin undervoltage circuitry resets the CHY101 when the BYPASS pin voltage drops below 3.9 V. Once the BYPASS pin voltage drops below 3.9 V it must rise back to 4 V to enable correct operation.

Output Overvoltage Protection

The OV pin monitors voltage through resistor $\rm R_{ov}.$ As soon as the output voltage exceeds 120% of the set output voltage level (e.g. 10.8 V at 9 V set) a protection mode is turned on. In protection mode V2 is pulled low and V1 is pulled up to the BYPASS pin.

This can for instance be used to forward an optocoupler diode (see U2 in Figure 5) in order to latch-off a controller situated on the primary-side of the power supply. The recommended sense resistor value $R_{_{OV}}=475~\mathrm{k}\Omega.$

Reference Input

Resister R_{REF} at the REFERENCE pin is connected to an internal band gap reference and provides an accurate reference current for internal timing circuits. The recommended value is R_{DEF} = 127 k Ω .

Quick Charge 2.0 Interface

At power-up CHY101 turns on switch N5 (see Figure 3) in 20 ms or less after the BYPASS pin voltage has reached 4 V. Switch N4 and output switches N1 to N2 remain off. This sets the default 5 V output voltage level. With D+ and D- short-circuited the normal handshake between the AC-DC adapter (DCP) and powered devices (PD) as described in the USB Battery Charging Specification 1.2 can commence. After switch N5 has been turned on, CHY101 starts monitoring the voltage level at D+. If it continuously stays above V_{DAT(REF)} (typ. 0.325 V) and below V_{SEL(REF)} (typ. 2 V) for at least 1.25 seconds CHY101 will enter Quick Charge 2.0 operation mode. If the voltage at D+ drops any time below 0.325 V CHY101 resets the 1.25 seconds timer and stays in USB Battery Charging Specification 1.2 compatibility mode with a default output voltage of 5 V.

Once CHY101 has entered Quick Charge 2.0 operation mode, switch N5 will be turned off. Additionally switch N4 is turned on connecting a 19.53 $k\Omega$ pull-down resistor to D-. As soon as the voltage at D- has dropped low (<0.325 V) for at least 1 ms CHY101 starts accepting requests for different AC-DC adapter output voltages by means of applied voltage levels at data lines D+ and D- through the powered device. Table 1 summarizes the output voltage lookup table, corresponding AC-DC adapter output voltages and status of switches N1 to N2.

D+	D-	Output	Switch Status
0.6 V	0.6 V	12 V	N1 = N2 = On
3.3 V	0.6 V	9 V	N1 = On, N2
0.6 V	GND	5 V (default)	N1 = N2 = Off

Table 1. Output Voltage Lookup Table.

At USB cable disconnect the voltage level at D+ is pulled down by resistor $R_{\text{DAT(LKG)}}$ (see Figure 5). Once it drops below 0.325 V CHY101 will turn on switch N5 (thereby short-circuiting D+ and D-) and turns off switches N1 to N4. This sets the default output voltage of 5 V. The recommended value for $R_{\text{DAT(LKG)}}=390~k\Omega$.

Design Recommendation

For applications that require the power supply to be tolerant to high ESD stress levels, it is recommended that 1N4148 or equivalent diodes should be connected from V_{OUT} to D+ and D- (cathode to V_{OUT} and anode to D+/D-) and also from D+/D- to GND (cathode to D+/D- and anode to GND).

CHY101

Absolute Maximum Ratings ²	
BYPASS Pin Voltage	-0.3 to 9 V
REFERENCE Pin Voltage	0.3 to 9 V
V1/V2/V3 Pin Voltage	0.3 to 9 V
D+/D- Pin Voltage	0.3 to 5 V
BYPASS Pin Current	25 mA
V1/V2 Pin Current	0.5 mA
D+/D- Pin Current	1 mA
Operating Junction Temperature	40 °C to +150 °C
Operating Ambient Temperature	40 °C to 105 °C

Storage Temperature65 °C to	150	°C
Lead Temperature ⁽¹⁾	260	°C
Notes:		

- 1. 1/16 in. from case for 5 seconds.
- The Absolute Maximum Ratings specified may be applied one at a time without causing permanent damage to the product. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect product reliability.

Parameter	Symbol	Conditions SOURCE = 0 V; $T_J = -20$ °C to +85 °C (Unless Otherwise Specified)	Min	Тур	Max	Units
Supply, Reference and	Protection	Functions				_
BYPASS Pin Voltage	V_{BP}		4	5	6	V
Power-Up Reset Threshold Voltage	V _{BP(RESET)}		2.0		3.9	V
BYPASS Pin Source Current	\mathbf{I}_{BPSC}	$V_{BP} = 4.3 \text{ V, T}_{3} = 25 \text{ °C}$ N1 = N2 = N3 = Off			135	μА
BYPASS Pin Shunt Voltage	V _{BP(SHUNT)}	I _{BP} = 3 mA	5.7	6	6.3	V
REFERENCE Pin Voltage	V_R		1.18	1.23	1.28	V
OVP Function						
Output OV Detection Delay Time	t _{D(OV)}	$I_{O} \ge I_{OV(TH)}$		50		μS
Output OV Protection Blanking Time	t _{B(OV)}		500			ms
V1 Pin OV Trigger Output Current	I _{V1(OV)}	$V_{v1} = V_{BP}$	3		4.6	mA
		Output set to 5 V	9.2	9.7	10.2	
Output OV Protection Threshold Current	$I_{OV(TH)}$	Output set to 9 V	18.2	19.2	20.1	μА
		Output set to 12 V	25.2	26.5	27.9	
HVDCP Functions						
Data Detect Voltage	V _{DAT(REF)}		0.25	0.325	0.4	V
Output Voltage Selection Reference	$V_{\text{SEL(REF)}}$		1.8	2	2.2	V
12 V / 20 V Output Inhibit Threshold	$V_{_{\mathrm{INH}}}$		V _{BP} -0.6			V
Data Lines Short-Circuit Delay	T _{DAT(SHORT)}	V _{ouт} ≥ 0.8 V See Figure 5		10	20	ms
D+ High Glitch Filter Time	T _{GLITCH(BC)}		1000	1250	1500	ms
Output Voltage Glitch Filter Time	T _{GLITCH(V)} CHANGE		20	40	60	ms
D- Pull-Down Resistance	R _{DM(DWN)}		14.25	19.53	24.5	kΩ
Switch N1 On-Resistance	R _{DS(ON)N1}	I _{N1} = 200 μA			300	Ω

Parameter	Symbol	Conditions SOURCE = 0 V; $T_J = -20$ °C to +85 °C (Unless Otherwise Specified)	Min	Тур	Max	Units
HVDCP Functions (cont	t.)					,
Switch N2 On-Resistance	R _{DS(ON)N2}	$I_{N2} = 200 \mu A$			300	Ω
Switch N3 On-Resistance	R _{DS(ON)N3}	I _{N3} = 200 μA			300	Ω
Switch N4 On-Resistance	R _{DS(ON)N4}	I _{N4} = 200 μA			300	Ω
Switch N5 On-Resistance	R _{DS(ON)N5}	$I_{N5} = 200 \mu A, V_{(D+)} \le 3.6 V$		20	40	Ω
Data Line Capacitance	C _{DCP(PWR)}	See Note A			1	nF

NOTES:

A. Guaranteed by design. Not tested in production.

PACKAGE MARKING

SO-8 Package Marking

- A. Power Integrations Registered Trademark
- B. Assembly Date Code (last two digits of year followed by 2-digit work week)
- C. Product Identification (Part #/Package Type)
- D. Lot Identification Code

PI-8060-083016

CHY101

MSL Table

Part Number	MSL Rating
CHY101D	1

ESD and Latch-Up Table

<u> </u>		
Test	Conditions	Results
Latch-up at 125 °C	JESD78D	$> \pm 100$ mA or > 1.5 V (max) on all pins
Human Body Model ESD	ANSI/ESDA/JEDEC JS-001-2014	> ±2000 V on all pins
Machine Model ESD	JESD22-A115C	> ±200 V on all pins

Part Ordering Information

Notes

Revision	Notes	Date
Α	Initial Release.	02/15
В	Corrected Pin V2 and V1 protection mode direction in the Output Overvoltage Protection section on page 3.	07/15
С	Added Package Marking, MSL Table, ESD and Latch-Up Table.	08/16

For the latest updates, visit our website: www.power.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Life Support Policy

POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:

- 1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The PI logo, TOPSwitch, TinySwitch, SENZero, SCALE-iDriver, Qspeed, PeakSwitch, LYTSwitch, LinkZero, LinkSwitch, InnoSwitch, HiperTFS, HiperPFS, HiperLCS, DPA-Switch, CAPZero, Clampless, EcoSmart, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2016, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

World Headquarters

5245 Hellver Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 **Customer Service:** Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com

China (Shanghai)

Rm 2410, Charity Plaza, No. 88 North Caoxi Road Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com

China (Shenzhen)

8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com

Germany

Lindwurmstrasse 114 80337 Munich Germany

Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@power.com

Germany

HellwegForum 1 59469 Ense Germany Tel: +49-2938-64-39990

e-mail: igbt-driver.sales@ power.com

India

#1, 14th Main Road 17/F, Hivac Building, No. 2, Keji Nan Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales@power.com

Italy

Via Milanese 20, 3rd, Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@power.com

Japan

Kosei Dai-3 Bldg. 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com

Korea

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: koreasales@power.com

Singapore

51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015

e-mail: singaporesales@power.com

Taiwan

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist.

Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com

UK

Cambridge Semiconductor, a Power Integrations company Westbrook Centre, Block 5, 2nd Floor Milton Road

Cambridge CB4 1YG

Phone: +44 (0) 1223-446483 e-mail: eurosales@power.com