Maxi Brandstetter, Felix Kirschner, Arne Heimendahl

University of Cologne

September 6, 2018

Outline

- Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices

Nice slide to draw the connection between the games an LC

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \leq 1$ almost surely. Then $A=(a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \leq 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Set of all local correlation matrices: $LC_{m,n}$

Maxi Brandstetter, Felix Kirschner, Arne Heir

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \leq 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Set of all local correlation matrices: $LC_{m,n}$

Lemma

$$LC_{m,n} = conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

No matter which probabilistic strategy there is a deterministic one which as at least as good as the one one chooses

$$\mathsf{LC}_{m,n} \supset \mathsf{conv}\{\xi \eta^T \, | \, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}]$$

$$\xi \eta^T \in LC_{m,n}$$
 for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$
(Choose $X_i \equiv \xi_i, Y_i \equiv \eta_i$)

Suffices to show that $LC_{m,n}$ is convex.

Let
$$a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)} Y_j^{(k)}]$$
 for $k \in \{0, 1\}$

Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that

$$\beta a_{ij}^{(0)} + (1 - \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$$

for
$$\beta \in [0,1]$$

Define a Bernoulli random variable α such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 - \beta$ and set $X_i = X_i^{(\alpha)}$, $Y_i = Y_i^{(\alpha)}$

Then

$$\mathbb{E}[X_i Y_j] = \mathbb{E}[X_i^{(\alpha)} Y_j^{(\alpha)} \mathbb{1}_{\{\alpha=0\}}] + \mathbb{E}[X_i^{(\alpha)} Y_j^{(1)}] \mathbb{1}_{\{\alpha=1\}}]$$

$$= \beta \mathbb{E}[X_i^{(0)} Y_i^{(0)}] + (1 - \beta) \mathbb{E}[X_i^{(1)} Y_i^{(1)}]$$

Maxi Brandstetter, Felix Kirschner, Arne Heir September 6, 2018 5 / 11

$$LC_{m,n} \subset conv\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}.$$

Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_j| \leq 1$ almost surely. pause

Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.

Hypercube description by its vertices:

$$[-1,1]^d = \operatorname{conv}\{\xi \,|\, \xi \in \{-1,1\}^d\}$$

Define random variables $\lambda_{\xi}^{(X)}:\Omega^m \to [0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$ Using the same decomposition for Y we obtain

$$a_{ij} = \mathbb{E}[X_i Y_j] = \mathbb{E}[(\sum_i \lambda_{\xi}^{(X)} \xi_i)(\sum_i \lambda_{\eta}^{(Y)} \eta_j)]$$

Some nice frame to connect QCs to the games

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1, d_2 , satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$. $A = (a_{ij})$ is called *quantum correlation matrix* if there exists a state **Introduce a symbol zo define operators form one space to another** $\rho \in D(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2})$ such that

$$a_{ij} = \operatorname{Tr} \rho(X_i \otimes Y_j).$$

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1, d_2 , satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$. $A = (a_{ij})$ is called *quantum correlation matrix* if there exists a state **Introduce a symbol zo define operators form one space to another** $\rho \in D(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2})$ such that

$$a_{ij}=\operatorname{Tr}
ho(X_i\otimes Y_j).$$

Set of all quantum correlation matrices denoted by $QC_{m,n}$

Lemma

$$\mathsf{QC}_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \leq 1 \leq m, 1 \leq j \leq n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\},$$

4 D > 4 D > 4 E > 4 E > E = 99 P

 $\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \leq 1 \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$

$$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \leq 1 \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

 $a_{ij}=\operatorname{Tr}
ho X_i\otimes Y_j$, sate ho on a Hilbert space $\mathcal{H}=\mathbb{C}^{d_1}\otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1\geq m}$, $(Y_j)_{1\geq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty},\|Y_i\|_{\infty}\leq 1$

Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on \mathcal{H} by $\beta:\mathcal{H}\times\mathcal{H}\to\mathbb{R}$ where $\beta(S,T)=\operatorname{Re}(\operatorname{Tr}\rho ST)$.

perhaps verification of at least some of these properties

Obtain an inner product space $U := B^{sa}(\mathcal{H})/\ker \beta$ equipped with the inner product

$$\tilde{\beta}([S],[T]) = \beta(S,T).$$

Identify $X_i \otimes I$, $I \otimes Y_j$ with vectors x_i, y_j in U, then

$$ilde{eta}(x_i,y_j)=eta(X_i,Y_j)=\mathsf{ReTr}\,(
ho X_i\otimes Y_j)=\mathsf{a}_{ij}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 釣 へ()

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

Identify $X_i \otimes I$, $I \otimes Y_j$ with vectors x_i , y_j in U, then

$$\tilde{\beta}(x_i, y_j) = \beta(X_i, Y_j) = ReTr(\rho X_i \otimes Y_j) = a_{ij}$$

$$\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$$

(this can be shown by using a *Schmidt-decomposition* of ρ and using $\|X_i\|_\infty, \|Y_j\|_\infty \leq 1$)

Project the y_j 's orthogonally onto span $\{x_1, ..., x_m\}$ (wlog $m \le n$)

$$\pi(y_j)$$
 the projection of y_j then $\tilde{\beta}(x_i, \pi(y_j)) = \tilde{\beta}(x_i, y_j)$

Let $\{a_1,...,a_r\}$ be an orthonormal basis of $\mathrm{span}\{x_1,...,x_m\}$ with respect to β and $x_i = \sum_{k=1}^r \alpha_k^{(i)} a_k$ and $\pi(y_j) = \sum_{k=1}^r \gamma_k^{(j)} a_k$ for $\alpha^{(i)}, \gamma^{(j)} \in \mathbb{R}^r$

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le 1 \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

Let $\{a_1,...,a_r\}$ be an orthonormal basis of span $\{x_1,...,x_m\}$ with respect to β and $x_i = \sum_{k=1}^r \alpha_k^{(i)} a_k$ and $\pi(y_j) = \sum_{k=1}^r \gamma_k^{(j)} a_k$ for $\alpha^{(i)}, \gamma^{(j)} \in \mathbb{R}^r$

$$a_{ij} = \tilde{\beta}(x_i, y_j) = \tilde{\beta}(x, \pi(y)) = \sum_{1 \le k, l \le r} \alpha_k^{(i)} \gamma_l^{(j)} \tilde{\beta}(a_k, a_l)$$
$$= \sum_{k=1}^r \alpha_k^{(i)} \gamma_k^{(j)} = \langle \alpha^{(i)}, \gamma^{(j)} \rangle.$$

$$|\alpha^{(i)}|, |\gamma^{(j)}| \leq 1$$
 due to $\tilde{\beta}(x_i), \tilde{\beta}(y_i) \leq 1$

(ロ) (레) (토) (토) (토) ((이익은

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \leq 1 \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$