Classification: Probabilistic Generative Model

Ideal Alternatives

• Function (Model):

$$g(x) > 0 Output = class 1$$

$$else Output = class 2$$

Loss function:

$$L(f) = \sum_{n} \delta(f(x^n) \neq \hat{y}^n)$$

The number of times f get incorrect results on training data.

- Find the best function:
 - Example: Perceptron, SVM

Maximum Likelihood
$$f_{\mu,\Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

The Gaussian with any mean μ and covariance matrix Σ Different Likelihood can generate these points.

Likelihood of a Gaussian with mean μ and covariance matrix Σ = the probability of the Gaussian samples $x^1, x^2, x^3, \dots, x^{79}$

$$L(\mu, \Sigma) = f_{\mu,\Sigma}(x^1) f_{\mu,\Sigma}(x^2) f_{\mu,\Sigma}(x^3) \dots \dots f_{\mu,\Sigma}(x^{79})$$

Maximum Likelihood

We have the "Water" type Pokémons: $x^1, x^2, x^3, \dots, x^{79}$

We assume $x^1, x^2, x^3, \dots, x^{79}$ generate from the Gaussian (μ^*, Σ^*) with the **maximum likelihood**

$$L(\mu, \Sigma) = f_{\mu, \Sigma}(x^{1}) f_{\mu, \Sigma}(x^{2}) f_{\mu, \Sigma}(x^{3}) \dots f_{\mu, \Sigma}(x^{79})$$
$$f_{\mu, \Sigma}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu)^{T} \Sigma^{-1} (x - \mu) \right\}$$

$$\mu^*, \Sigma^* = arg \max_{\mu, \Sigma} L(\mu, \Sigma)$$

$$\mu^* = \frac{1}{79} \sum_{n=1}^{79} x^n \qquad \Sigma^* = \frac{1}{79} \sum_{n=1}^{79} (x^n - \mu^*) (x^n - \mu^*)^T$$
average

Now we can do classification

$$f_{\mu^{1},\Sigma^{1}}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^{1}|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^{1})^{T} (\Sigma^{1})^{-1} (x - \mu^{1}) \right\}$$

$$P(C_{1}|x) = \frac{P(x|C_{1})P(C_{1})}{P(x|C_{1})P(C_{1}) + P(x|C_{2})P(C_{2})}$$

$$f_{\mu^{2},\Sigma^{2}}(x) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\Sigma^{2}|^{1/2}} exp \left\{ -\frac{1}{2} (x - \mu^{2})^{T} (\Sigma^{2})^{-1} (x - \mu^{2}) \right\}$$

If $P(C_1|x) > 0.5$ x belongs to class 1 (Water)

Modifying Model

The same Σ

Less parameters

Three Steps

Function Set (Model):

$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$
If $P(C_1|x) > 0.5$, output: class 1
Otherwise, output: class 2

- Goodness of a function:
 - The mean μ and covariance Σ that maximizing the likelihood (the probability of generating data)
- Find the best function: easy

Sigmoid function

$$P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$

$$= \frac{1}{1 + \frac{P(x|C_2)P(C_2)}{P(x|C_1)P(C_1)}} = \frac{1}{1 + exp(-z)} = \frac{\sigma(z)}{1 + exp(-z)}$$
Sigmoid function

$$z = ln \frac{P(x|C_1)P(C_1)}{P(x|C_2)P(C_2)}$$

$$P(C_1|x) = \sigma(z) \qquad \qquad \Sigma_1 = \Sigma_2 = \Sigma$$

$$z = (\mu^{1} - \mu^{2})^{T} \Sigma^{-1} x - \frac{1}{2} (\mu^{1})^{T} \Sigma^{-1} \mu^{1} + \frac{1}{2} (\mu^{2})^{T} \Sigma^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

$$\mathbf{w}^{T}$$
b

$$P(C_1|x) = \sigma(w \cdot x + b)$$
 How about directly find **w** and b?

In generative model, we estimate N_1 , N_2 , μ^1 , μ^2 , Σ Then we have ${\bf w}$ and b