La luz visible del espectro está compuesta por fotones con energías entre 1,8 y 3,1 eV. Para el diamante el ancho de la BP es de 6 eV.

- a) Explicar por qué el diamante es transparente.
- b) Así mismo, explicar por qué el Si cuya BP es de 1,1 eV es transparente al infrarrojo (IR) de frecuencia comprendida entre 10¹² y 10¹⁴ Hz y no lo es a la radiación visible.

Solución

- (a) Para que pueda ser absorbida la energía y deje de ser transparente a la radiación $E \ge E_G$. Como 1,8 $\le E < 3,1$ resulta que esta radiación no se absorbe, luego es transparente.
- (b) Para el IR de $v = 10^{14}$ Hz:

$$E = hv = 6.62 \cdot 10^{-34} \text{ Js} \cdot 10^{14} \text{ Hz} = 6.62 \cdot 10^{-20} \text{ J} = 0.413 \text{ eV} < E_G.$$

Sin embargo, para el visible $E=3,1 \text{ eV} > E_G \rightarrow \text{dicha radiación puede ser absorbida y crear pares e}^{-}/h^{+}$. El número de pares de e $^{-}/h^{+}$ que puede crear es: $N=3,1/1,1=2,8\Rightarrow 2$

Cuando un fotón de energía $E >> E_G$ penetra en un material semiconductor produce pares electrón hueco (e/h^+) , esto es, se excitan electrones desde el borde de la BV hasta el fondo de la BC. Un cristal de Ge $(E_G=0,67\ eV)$ se usa como detector de rayos γ (fotones de alta energía). Determinar:

- a) ¿cuál es el número máximo de pares e/h^+ que puede producir una radiación γ de 1,5 MeV?
- b) si la resolución del detector es de $\pm 4.10^3$ pares e/h⁺, ¿cuál es la resolución de la energía óptima del detector?

Solución

(a)
$$E = N \cdot E_G$$

$$N = \frac{E}{E_G} = \frac{1.5 \cdot 10^6 \text{ eV}}{0.67 \text{ eV}} = 2.238 \cdot 10^6 \text{ pares}$$
 (b)
$$E = N \cdot E_G$$

$$E = 4 \cdot 10^3 \text{ pares} \cdot 0.67 \text{ eV} = 2.68 \cdot 10^3 \text{ eV}$$

La anchura de la banda prohibida para el Ge es $E_G = 0,67eV$. Las masas efectivas de electrones y huecos son $m^*_{n}=0'12m$ y $m^*_{p}=0'23m$, donde m es la masa del electrón libre. Calcular a 300K:

- a) La energía de Fermi
- b) La densidad de electrones
- c) La densidad de huecos

Solución

(a)
$$n = N_C e^{-\frac{E_C - E_F}{k_B T}}$$
 y $p = N_V e^{-\frac{E_F - E_V}{k_B T}}$

Para el semiconductor intrínseco:

$$n = p \Rightarrow N_C e^{-\frac{E_C - E_F}{k_B T}} = N_V e^{-\frac{E_F - E_V}{k_B T}} \Rightarrow \frac{N_C}{N_V} = e^{-\frac{2E_F + E_V + E_C}{k_B T}}$$

Despejando E_F :

$$E_F = \frac{E_C + E_V}{2} - \frac{k_B T}{2} \ln \frac{N_C}{N_V}$$

Tomando $E_V = 0$ (nivel referencia de energía) $\Rightarrow E_C = E_G$

como
$$N_C = 2 \left(\frac{2\pi \cdot m_n^* k_B T}{h^2} \right)^{\frac{3}{2}}$$
 y $N_V = 2 \left(\frac{2\pi \cdot m_p^* k_B T}{h^2} \right)^{\frac{3}{2}}$
$$\frac{N_C}{N_V} = \left(\frac{m_n^*}{m_p^*} \right)^{\frac{3}{2}} = \left(\frac{0.12}{0.23} \right)^{\frac{3}{2}}$$

$$E_F = \frac{E_C + E_V}{2} - \frac{k_B T}{2} \ln \left(\frac{0.12}{0.23} \right)^{\frac{3}{2}} = \frac{E_G}{2} + \frac{3}{4} k_B T \ln \frac{m_p^*}{m_n^*} = \frac{0.67}{2} + \frac{3}{4} k_B 300 K \ln \frac{0.23 m}{0.12 m} = 0.3476 \, eV \, eV$$

(b)
$$n = N_C e^{\frac{E_C - E_F}{k_B T}}$$

con nivel 0 en E_V , resulta $E_C - E_F = E_G - E_F = 0.67 - 0.348 = 0.322$ $k_B T = 0.86 \cdot 10^{-5} \cdot 300 = 0.0258 \,\text{eV}$

$$N_C = 2 \frac{(2\pi \cdot 0.12 \cdot 9.1 \cdot 10^{-31} \cdot 1.38 \cdot 10^{-23} \cdot 300)^{1.5}}{(6.626 \cdot 10^{-34})^3} = 2 \frac{1.517 \cdot 10^{-76}}{0.29 \cdot 10^{-99}} = 0.0104 \cdot 10^{26} \, m^{-3}$$

$$n = 0.0104 \cdot 10^{26} \, e^{-\frac{0.322}{0.0258}} = 4 \cdot 10^{18} \, m^{-3}$$

(c)
$$n = p = 4 \cdot 10^{18} m^{-3}$$

Supóngase que la masa efectiva de los huecos en un material es 4 veces la de los electrones. ¿A qué temperatura el nivel de Fermi estará un 10% por encima del punto medio de la banda prohibida? Sea $E_G=1\ eV$.

Solución

Como datos nos dicen que:

$$m_p^* = 4m_n^*$$

$$E_G = 1eV$$

Por tanto:

$$E_{F} = \frac{E_{G}}{2} + \frac{3}{4} k_{B} T \ln \frac{m_{p}^{*}}{m_{n}^{*}}$$

$$E_{F} = \frac{110}{100} \cdot \frac{E_{G}}{2}$$

$$E_{F} = \frac{E_{G}}{2} + 0.1 \frac{E_{G}}{2} \implies 0.1 \frac{E_{G}}{2} = \frac{3}{4} k_{B} T \ln 4$$

$$T = \frac{2 \cdot 0.1 E_{G}}{3 k_{B} \ln 4} = 557.6 K$$

La energía de la banda prohibida del germanio puro es $E_G = 0,67 \; eV$.

- a) Calcular el número de electrones por unidad de volumen en la banda de conducción a 250 K, 300 K y a 350 K.
- b) Hacer lo mismo para el silicio suponiendo que $E_G = 1,1 \text{ eV}$.

Datos: La masa efectiva de los electrones y huecos son en el germanio es 0'12m y 0'23 m respectivamente. En el silicio 0'31m y 0'38 m. ($m = 9,1\cdot10^{31}$ Kg es la masa de electrón libre).

Solución

(a) y (b)
$$Ge: m_n^* = 0.12 m \quad m_p^* = 0.23 m \quad E_G = 0.67 eV$$

$$Si: m_n^* = 0.31 m \quad m_p^* = 0.38 m \quad E_G = 1.1 eV$$

$$n = \sqrt{N_C N_V} e^{-\frac{E_C}{2k_B T}}$$

$$N_C = 2 \left(\frac{2\pi m_n^* k_B T}{h^2}\right)^{\frac{3}{2}} \quad N_C = 2 \left(\frac{2\pi m_p^* k_B T}{h^2}\right)^{\frac{3}{2}}$$

T (K)	Germanio (m ⁻³)			Silicio (m ⁻³)		
	N _C	N_V	n	N_C	N_V	n
250	$0,79 \cdot 10^{24}$	$2,1\cdot 10^{24}$	0,023·10 ¹⁹	3,29·10 ²⁴	$4,4\cdot10^{24}$	$0,03 \cdot 10^{16}$
300	1,04·10 ²⁴	2,8·10 ²⁴	0,40·10 ¹⁹	4,33·10 ²⁴	5,9·10 ²⁴	$0,29 \cdot 10^{16}$
350	1,31.10 ²⁴	3,5·10 ²⁴	3,24·10 ¹⁹	5,5·10 ²⁴	$7,4\cdot 10^{24}$	$7,7\cdot10^{16}$

A una barra de Ge de 10 cm de longitud y 2 cm² de sección se le aplica una d.d.p. de 10 V entre sus extremos. Conociendo como datos la concentración intrínseca de portadores, $n_i = 2,36\cdot10^{19} \text{m}^{-3}$, que μ_n (300K) = 0,39m²/Vs y que μ_p (300K) = 0,182 m²/Vs, determinar:

- a) la resistividad del Ge
- b) la resistencia de la barra
- c) la velocidad de arrastre de electrones y huecos
- d) la corriente que circula por la barra

Solución

(a) Para un semiconductor intrínseco $n = p = n_i$

$$\sigma = qn_i (\mu_n + \mu_p) = 1.6 \cdot 10^{-19} C \cdot 2.36 \cdot 10^{19} m^{-3} (0.39 + 0.182) \frac{m^2}{V_S} = 2.1628 (\Omega \cdot m)^{-1}$$

$$\rho = \frac{1}{\sigma} = 0,462 \ \Omega \cdot m$$

(b)
$$R = \rho \frac{\ell}{S} = \frac{1}{\sigma} \frac{\ell}{S} = \frac{1}{2,1628} \Omega \cdot m \frac{0,10 \, m}{2 \cdot 10^{-4} \, m^2} = 231,2 \, \Omega$$

(c)

$$V_{n} = \mu_{n}E = \mu_{n} \frac{V_{ab}}{\ell} = 0.39 \, \frac{m^{2}}{V_{S}} \frac{10 \, V}{m} = 39 \, \frac{m}{S}$$

$$V_{p} = \mu_{p}E = \mu_{p} \frac{V_{ab}}{\ell} = 0.182 \, \frac{m^{2}}{V_{S}} \frac{10}{0.1} = 18 \, \frac{m}{S}$$

(d)
$$J = \sigma E = \sigma \frac{V_{ab}}{\ell} = 2,1628 \cdot \frac{10}{0,1} = 216,3 \frac{A}{m^2}$$
$$I = J S = 216,3 \frac{A}{m^2} \cdot 2 \cdot 10^{-4} m^2 = 0,043 A = 43 mA$$

El Ge es un semiconductor con una banda prohibida $E_G = 0.7eV$. Dentro de esta banda prohibida aparecen niveles de energía debidos a impurezas. Medidos respecto a la BV estos niveles están a 0.01 eV para el aluminio (Al) y 0.69 eV para el fósforo (P).

- a) Representar, utilizando diagramas de bandas de energía, la situación expuesta en el enunciado.
- b) ¿Cuál de estas impurezas actúa como donadora y cuál como aceptora? Razona la respuesta.
- c) Si las bandas prohibidas para el Si y el Ge son respectivamente 1,1 eV y 0,7 eV, calcular la frecuencia mínima que debe tener una radiación electromagnética para poder producir conductividad en estos semiconductores.

Solución

(a)

(b) El Al, al tener los niveles más cerca de la banda de valencia (BV), actúa como <u>impureza aceptora</u>. Pueden pasar fácilmente e de la BV al nivel de energía aceptora E_A . Por tanto, el Al es aceptor.

El P actúa como <u>impureza donadora</u> ya que el nivel energético 0,69 eV está muy próximo a la BC y es fácil hacer pasar e del nivel E_D al E_C (tan sólo se requieren 0,01eV).

(c) Para que dicha radiación electromagnética pueda ser absorbida y crear pares e^{-}/h^{+} , la energía del fotón debe ser igual o mayor a la anchura de la banda prohibida ($E \ge E_G$):

$$E_{G} = h v \rightarrow v = \frac{E_{G}}{h}$$

$$Si \rightarrow v_{Si} = \frac{1.1 eV}{4.13 \cdot 10^{-15} eV \cdot s} = 2,66 \cdot 10^{14} Hz$$

$$Ge \rightarrow v_{Ge} = \frac{0.7 eV}{4.13 \cdot 10^{-15} eV \cdot s} = 1,69 \cdot 10^{14} Hz$$

Se utiliza como resistencia de una zona de un circuito integrado una barra de silicio tipo-n de 2 mm de longitud y de 2,5·10⁻⁵m² de sección. Sabiendo que la concentración de átomos donadores es $N_D = 5\cdot10^{13} \text{cm}^{-3}$ y que la movilidad de electrones es $\mu_n = 1500 \text{ cm}^2/\text{Vs}$, determinar su resistencia a 300 K demostrando que la contribución de huecos es despreciable a la conductividad. Datos: $\mu_p = 475 \text{ cm}^2/\text{Vs}$; $n_i = 1.45\cdot10^{16} \text{ m}^{-3}$.

Solución

Como el Si es tipo-n $\Rightarrow n >> p$ y $n \approx N_D$

$$\sigma = qn\mu_n = 1.6 \cdot 10^{-19} \, C \cdot 5 \cdot 10^{13} \cdot 10^6 \, m^{-3} \cdot 1500 \cdot 10^{-4} \, m^2 / Vs = 1.2 \, (\Omega \cdot m)^{-1}$$

luego
$$R = \frac{1}{\sigma_i} \frac{\ell}{S} = \frac{1}{1,2(\Omega \cdot m)^{-1}} \frac{2 \cdot 10^{-3} m}{2,5 \cdot 10^{-5} m^2} = 66,67 \Omega$$

Se ha despreciado p ya que:

$$p = \frac{n_i^2}{N_D} = \frac{(1.45 \cdot 10^{16} \, m^{-3})^2}{5 \cdot 10^{13} \cdot 10^6 \, m^{-3}} = 4.2 \cdot 10^{12} \, m^{-3}$$

 $como \mu_p = 475 cm^2/Vs$

$$qp\mu_p = 1.6 \cdot 10^{-19} \, C \cdot 4.2 \cdot 10^{12} \, m^{-3} \cdot 475 \cdot 10^{-4} \, m^2 / Vs = 3.19 \cdot 10^{-8} \, (\Omega \cdot m)^{-1}$$

que resulta ser despreciable frente a $1,2 (\Omega \cdot m)^{-1}$

Tenemos una barra de longitud L = 10 mm y sección cuadrada $S = 1 \text{ mm}^2$. Calcular la resistencia eléctrica R entre sus extremos:

- a) Si la barra es de Si intrínseco
- **b**) Si la barra es de Si dopado con 1 átomo de P (grupo V) por cada 1000000 de átomos.

Datos: $N_A = 6.02 \cdot 10^{23} \, mol^{-1}$; la densidad del Si $d = 2.33 \, \frac{g}{cm^3}$ número másico (peso atómico) del Si $M = 28 \, \frac{g}{mol}$; resistividad del Si intrínseco $\rho = 2.5 \cdot 10^5 \, \Omega \, cm$; $\mu_p = 400 \, cm^2 V^{-1} s^{-1}$ y $\mu_p = 1400 \, cm^2 V^{-1} s^{-1}$.

Solución

(a) Ley de Ohm

$$R = \rho \frac{\ell}{S}$$

Llamando R_i a la resistencia del semiconductor intrínseco:

$$R_{i} = \rho_{i} \frac{\ell}{S} = 2.5 \cdot 10^{3} \ \Omega \cdot m \frac{10 \cdot 10^{-3} \ m}{1 \cdot 10^{-6} \ m^{2}} = 2.5 \cdot 10^{7} \ \Omega$$

$$R_{i} = 2.5 \cdot 10^{7} \ \Omega.$$

(b) Llamando R_n a la resistencia del semiconductor extrínseco tipo-n:

$$N_{D} = \frac{N_{A} \cdot d_{Si}}{M_{Si}} \cdot 10^{-6} cm^{-3}$$

$$\rho_{n} = \frac{1}{\sigma_{n}} = \frac{1}{eN_{D}\mu_{n}}$$

$$\rho_{n} = \frac{1}{e\mu_{n}} \frac{M_{Si}}{N_{A} \cdot d_{Si}} \cdot 10^{6}$$

Finalmente sustituyendo en $R_n = \rho \frac{\ell}{S}$ nos queda:

$$R_n = \frac{1}{e\mu_n} \frac{M_{Si}}{N_A \cdot d_{Si}} \cdot 10^6 \frac{\ell}{s} \Omega$$

Numéricamente:

$$R_{\rm m} \approx 8.898 \ \Omega$$

Una muestra de Ge tipo-n posee una concentración de impurezas donadoras dada por $N_D = 10^{15} \text{cm}^{-3}$. Determinar la concentración de electrones y huecos a 500 K sabiendo que la concentración intrínseca viene dada por la expresión:

$$n_i = C T^{\frac{3}{2}} e^{-\frac{E_G}{2K_B}T}$$

siendo $C = 1.91 \cdot 10^{21} \, m^{-3} K^{-3/2} \, y \, E_G = 0.67 \, eV.$

Solución

Ge tipo-n: (1) $n = N_D + p$ (sistema de ecuaciones con dos incógnitas) (2) $n_i^2 = n \cdot p$

$$n_{i} = 1.91 \cdot 10^{21} \frac{1}{m^{3} K^{\frac{3}{2}}} \cdot (500)^{\frac{3}{2}} \cdot K^{\frac{3}{2}} \cdot e^{\frac{0.67eV}{2 \cdot 8.6 \cdot 10^{-5} \frac{eV}{k} \cdot 500K}} = 8.8314 \cdot 10^{21} \frac{portadores}{m^{3}}$$

$$n_{i}^{2} = 7.799 \cdot 10^{43}$$

$$n = N_D + p$$

 $n_i^2 = (N_D + p) \cdot p = N_D \cdot p + p^2$
 $p^2 + N_D \cdot p - n_i^2 = 0$

$$p = \frac{-N_D \pm \sqrt{N_D^2 + 4 \cdot n_i^2}}{2} = \frac{-10^{21} \pm \sqrt{(10^{21})^2 + 4 \cdot 7,799 \cdot 10^{43}}}{2}$$
$$p = \frac{-10^{21} + 1,769 \cdot 10^{22}}{2} = 8,345 \cdot 10^{21} \frac{portadores}{m^3}$$

$$n = \frac{n_i^2}{p} = \frac{7,799 \cdot 10^{43}}{8,345 \cdot 10^{21}} = 9,34 \cdot 10^{21}$$
 portadores/m³