

Team 2

Benjamin Crall
Dmitrii P. Fotin
Evan McClelland
John Michael Mertz

Background

Background

- Problem or Need: What is the problem being solved? Where does it arise?
 - Entertainment and not enough boom in the house or in the workplace.
- Motivation: Why is it important? What is the value of a solution (lives, money, effort, energy saved)?
 - Gives a booming experience after a game.
 - Excites young minds to the great wonders of circuits and engineering.
- How is it done today or what other alternatives exist?
 - Online Gaming and virtual simulation.

Approach

- Concept of operations: how does your product work? How is it used? What's a typical use case?
 - It is a typical gaming console that plays Snake game; however, it creates an explosion after dying or losing the game.
- What is the specific objective of this project? A design? A working prototype?
 - To make a playable & booming design.
- Requirements: What are the requirements?
 - Display the Snake Game
 - Game must be controllable by the User
 - Audible alert that the game is over (Capacitor goes boom).
 - Resettable for another game.

Design

Design Overview

ID	Task Name	Duration	Start	Finish	Predecessors	Resource Names	Oct 22, '23
1	Programming	18 days	Wed 11/1/23	Sun 11/19/23			
2	Program a working version of		Wed 11/1/23	Tue 11/7/23		Evan, John Michael	
3	functionality		Tue 11/7/23	Thu 11/9/23		Evan,John Michael	
4	code with button and OLED			Sun 11/12/23		Evan,John Michael	
5	Debug button/OLED	2 days	Sun 11/12/23	Tue 11/14/23	4	Evan, John Michael	
6	Introduce the capacitor explosion and	3 days	Tue 11/14/23	Fri 11/17/23	5	Evan,John Michael	
7	Debug overall design	2 days	Fri 11/17/23	Sun 11/19/23	6	Evan, John Michael	
8	Debug after PCB testing	2 days	Tue 11/21/23	Thu 11/23/23	27	Evan, John Michael	
9	Schematic	9 days	Mon 10/23/23	Wed 11/1/23			
10	First draft	3 days	Mon 10/23/23	Thu 10/26/23		Dmitrii	
11	Second draft	6 days	Thu 10/26/23	Wed 11/1/23	10	Dmitrii	
12	Breadboard	2 days	Mon 10/30/23	Wed 11/1/23			
13	Prototype	2 days	Mon 10/30/23	Wed 11/1/23		Ben	
14	Circuit board	16 days	Tue 10/31/23	Thu 11/16/23			
15	Preliminary layout	2 days	Tue 10/31/23	Thu 11/2/23		Dmitrii	
16	Final layout	6 days	Thu 11/2/23	Wed 11/8/23	15	Dmitrii	
17	Routing	6 days	Thu 11/2/23	Wed 11/8/23	15	Dmitrii	
18	Manufacturing	5 days	Wed 11/8/23	Mon 11/13/23	17	Third Party	
19	Assembly	3 days	Mon 11/13/23	Thu 11/16/23	18	Dmitrii,Evan,John Michael,Ben	
20				Sat 11/25/23			
21	Verify breadboard functionality	1 day	Wed 11/1/23	Thu 11/2/23	13	Evan, John Michael	
22			Mon 11/13/23		18	Ben,Dmitrii,Evan,John Michae	
23	Test the PCBA with the code	6 days	Sun 11/19/23	Sat 11/25/23			
24			Sun 11/19/23	Tue 11/21/23			
25	Verify inputs	2 days	Sun 11/19/23	Tue 11/21/23	7	Ben,Dmitrii,Evan,John Michae	
26	Verify outputs	2 days	Sun 11/19/23	Tue 11/21/23	7	Ben,Dmitrii,Evan,John Michae	
27	Verify capacitor	2 days	Sun 11/19/23	Tue 11/21/23	7	Ben,Dmitrii,Evan,John Michae	
28	Round 2	2 days	Thu 11/23/23	Sat 11/25/23			
29	Verify inputs	2 days	Thu 11/23/23	Sat 11/25/23	8	Ben,Dmitrii,Evan,John Michae	
30	Verify outputs	2 days	Thu 11/23/23	Sat 11/25/23	8	Ben,Dmitrii,Evan,John Michae	
31	Verify capacitor	2 days	Thu 11/23/23	Sat 11/25/23	8	Ben,Dmitrii,Evan,John Michae	

Schematics - Implementation

External:

- Arduino Pro Micro
- USB-C Power Chip

Internal

- Buttons
- Capacitor explosion

Board Layout - Implementation

Case

Code Overview - Implementation

```
// Interrupt function (Use? Or come up with work
void interruptpressed()

{
    delay(50);
    Serial.println("INT PRESSED");
    Serial.println(digitalRead(UPPIN));
    Serial.println(digitalRead(DWNPIN));
    Serial.println(digitalRead(LFTPIN));
    Serial.println(digitalRead(RHTPIN));
    updatedirection();
}
```

```
void updatedirection()

Serial.println("Updating direction");

butup = !digitalRead(UPPIN);
butdown = !digitalRead(DWNPIN);
butleft = !digitalRead(LFTPIN);
butright = !digitalRead(RHTPIN);
```

```
134 void updateGame()

135 v

{
136 v

137

138

display.clearDisplay();

display.drawPixel(scranPosX,scranPosY, WHITE);
scranAte = scranFood();

140

141
```

- "Interrupt" based input
- Set Directions for the game
- Update Game includes:
 - Food ("Scran") Generation
 - Food Counts -> Scores
 - Collision Handles

Tools - Implementation

- Tools used (e.g. simulation/modeling tool, PCB layout, IDE, cross-compilers)
 - KiCAD
 - Arduino IDE
 - Fusion 360

Bill of Materials - Implementation

Bill Of Materials for Team 2 ExploSnake

Last modified: 11/09/23

PCB version: 0.0.1

Totals 39.9 BOM revision: 1.0.0 10 piece Qtv Ref P/NPManufacturer MPN 1 piece \$ea CL31B105KBHNFNE Desc Dist DPN \$tot 5 C1, C4, C7, C11, C12 Samsung Electro-Mechanics 0.46 0.09 2 C2, C3 KYOCERA AVX CAP CER 1UF 50V X7R 1206 DigiKev 1276-3091-1-ND 0.14 0.7 12061A240JAT2A 0.39 0.19 CAP CER 24PF 100V NP0 1206 478-12061A240JAT2ACT-ND 0.28 0.56 2 C5. C6 CL31B104KBCNNNC Samsung Electro-Mechanics 0.07 0.15 CAP CER 0.1UF 50V X7R 1206 1276-1017-1-ND 0.11 0.22 2 C8, C10 Samsung Electro-Mechanics CAP CER 10UF 50V X5R 1206 0.18 0.36 CAP CER 10UF 50V X5R 1206 DigiKey 1276-6736-1-ND 0.27 0.54 1 C9 Samsung Electro-Mechanics CL31B105KBHNFNE CAP CER 1UF 50V X7R 1206 0.14 0.14 0.09 0.09 1276-3091-1-ND 1 C13 CL31A226MOCLNNC Samsung Electro-Mechanics 0.15 0.15 CAP CER 22UF 16V X5R 1206 1276-2728-1-ND 0.23 0.23 1 C14 Murata Electronics GRM31CR61A107MEA8L 0.28 0.28 CAP CER 100UF 10V X5R 1206 490-GRM31CR61A107MEA8LCT-ND 0.42 0.42 1 C15 dnp 0 0 0 2 D1. D4 Lite-On Inc. LTST-C150GKT 0.16 0.32 LED GREEN CLEAR 1206 SMD 0.3 DigiKey 160-1169-1-ND 0.6 1 D2 Lite-On Inc. LTST-C150KFKT 0.17 0.17 LED ORANGE CLEAR 1206 SMD DigiKey 160-1403-1-ND 0.3 0.3 1 D3 Lite-On Inc. LTST-C150EKT 0.17 0.17 LED RED CLEAR 1206 SMD 160-1168-1-ND 0.31 0.31 1 D5 KYOCERA AVX SD1206T040S1R0 0.31 0.31 DIODE SCHOTTKY 40V 1A 1206 478-7809-1-ND 0.4 0.4 DigiKey 1 F1 1812L110/33MR Littelfuse Inc. 0.54 0.54 PTC RESET FUSE 33V 1.1A 1812 DiaiKev F3486CT-ND 0.58 0.58 1 J1 dnp 0 0 0 1 J3 GCT USB4105-GF-A 0.69 0.69 CONN RCP USB2.0 TYP C 24P SMD RA DigiKey 2073-USB4105-GF-ACT-ND 0.81 0.81 4 Q1, Q2, Q3, Q4 Diodes Incorporated DMP3099L-7 0.24 0.96 MOSFET P-CH 30V 3.8A SOT23 DMP3099L-7DICT-ND 0.34 1.36 1 Q5 Infineon Technologies IRF530NSTRLPBF 1.03 1.03 MOSFET N-CH 100V 17A D2PAK DigiKey IRF530NSTRLPBFCT-ND 1.26 1.26 1 R1 Stackpole Electronics Inc RMCF1206JG100K 0.02 0.02 RES 100K OHM 5% 1/4W 1206 RMCF1206JG100K 0.1 0.1 3 R2, R6, R14 Stackpole Electronics Inc. RMCF1206JG10K0 0.02 0.06 RES 10K OHM 5% 1/4W 1206 DigiKey 738-RMCF1206JG10K0CT-ND 0.1 0.3 1 R3 Stackpole Electronics Inc. RMCF1206JT100R 0.02 0.02 RES 100 OHM 5% 1/4W 1206 DigiKey RMCF1206JT100RCT-ND 0.1 0.1 2 R4, R17 Stackpole Electronics Inc. RMCF1206JT2K20 RES 2.2K OHM 5% 1/4W 1206 RMCF1206JT2K20CT-ND 0.1 0.2 0.02 0.04 2 R5. R9 Stackpole Electronics Inc. RMCF1206JT22R0 RES 22 OHM 5% 1/4W 1206 DigiKey RMCF1206JT22R0CT-ND 0.1 0.2 0.02 0.04 3 R7, R8, R10 Stackpole Electronics Inc. RMCF1206JT1K00 RES 1K OHM 5% 1/4W 1206 DigiKey RMCF1206JT1K00CT-ND 0.1 0.3 0.02 0.06 1 R11 Stackpole Electronics Inc. RMCF1206JT51K0 RES 51K OHM 5% 1/4W 1206 RMCF1206JT51K0CT-ND 0.1 0.1 0.02 0.02 2 R12, R13 Stackpole Electronics Inc. RMCF1206JT5K10 RES 5.1K OHM 5% 1/4W 1206 0.1 0.02 0.04 DigiKey RMCF1206JT5K10CT-ND 0.2 5 SW1, SW2, SW3, SW4, SW5 C&K PTS526 SM15 SMTR2 LFS 0.14 0.68 TACT 5.2 X 5.2, 1.5 MM H, 160GF. DiaiKev CKN12220-1-ND 0.14 0.7 1 U1 CYPD3177-24LQXQT Infineon Technologies 1.98 1.98 IC USB TYPE-C PORT CONTROL 24QFN DigiKey 448-CYPD3177-24LQXQTCT-ND 22 22 1 U2 Microchip Technology IC MCU 8BIT 32KB FLASH 44TQFP IC MCU 8BIT 32KB FLASH 44TQFP ATMEGA32U4-AURCT-ND 5.39 5.39 5.39 5.39 1 U3 Nexperia USA Inc. IP4234CZ6,125 0.38 0.38 TVS DIODE 5.5VWM 6TSOP 1727-4717-1-ND 0.47 0.47 1 U4 Infineon Technologies IFX25001TFV50ATMA1 0.94 0.94 IC REG LINEAR 5V 400MA TO252-3 DigiKey IFX25001TFV50ATMA1CT-ND 1.05 1.05 1 U5 Adafruit Industries LLC MONOCHROME 1.3 128X64 1528-1512-ND 20 20 19.95 19.95 Raltron Electronics RH100-16.000-16-3030-EXT-TR

CRYSTAL 16.0000MHZ 16PF SMD

es-board-bom

DigiKev 2151-RH100-16.000-16-3030-EXT-TRCT-ND 0.21 0.21

35.86

0

0.17

0.17

IP and Prior Work

What IP license did you use for your project?

- What IP did you use in your project? Briefly summarize what use you made of prior work or IP including but not limited to ideas, designs, schematics, board layouts, code.
 - o Snake LED 16x16 Matrix Game
 - Arduino Snake Game with 32x16
 - Arduino Snake Game

Schematic Sources

USB-C PD:

EZ-PD™ BCR Datasheet by Cypress

The 'Fault' pin is used to indicate any voltage faults. When a fault condition is enabled, the output voltage of this application will go down to 0V and the EZ-PD BCR device will attempt a protocol reset to recover from fault. For a detailed reference schematic, refer to the CY4533 EZ-PD BCR EVK schematic.

Figure 3. EZ-PD BCR based Application Diagram (for Electronic Systems Requiring 12 V to 15 V Input at 2 A)

Notes

- Refer to Table 2, Table 3, and Table 4 for values of these resistor divider networks.
- 2. FLIP pin is in LOW state when TypeC Plug is upside-up, and in Hi-Z state when upside-down.
- 3. Use a 50-kΩ resistor on the FLIP pin to set the UFP VDO data capability bit to 0.

Schematic Sources

ATMega32u4

Arduino Pro Micro Schematic

by Sparkfun

Putting it all together

Assembly

Step 1 - Assemble the PCB

- 1. Generate the iBOM and open it
- 2. Go through the list and collect all of your parts. Leave them in their cut tape or bags for now
- 3. Get the PCB
- 4. Clean the PCB
 - i. File down the rabbit bites on the edges until they are flush with the edge of the board
 - ii. Wash the board with soap and water, dry it. Try not to touch component locations after this (although its not a big problem if you do)
 - iii. OPTIONAL: Wash the board with IPA.
- 5. Install U1 by reflow if possible or by hand
- 6. Install Y1 by reflow if possible or by hand if you do not plan to ultrasonic the board later
- 7. Install all R,C
- 8. Install D1-4 (Pin 1 is the end with less gold on it)
- 9. Use a DMM to confirm that VBUS_RAW, VBUS_FUSED are not shorted to ground or anything else nearby
- 10. Install F1
- 11. Install the USB C connector
- 12. Test the USBC power supply
 - i. Connect a USBC power supply capable of 20V
 - ii. Confirm that VBUS_FUSED is 20V
 - iii. Connect a USBC power supply not capable of 20V (e.g. a USB A-C cable)
 - iv. Confirm that D3 is the only LED that is lit
 - v. Confirm that VBUS_FUSED is 5V
 - vi. Unplug the power supply
- 13. Install U4
- 14. Install Q1-4

- 15. Test the USBC Power supply some more
 - i. Connect a USBC power supply capable of 20V
 - ii. Confirm that VBUS is 20V
 - iii. Confirm that D5-A net is at 5V
 - iv. Confirm that D4 is the only LED lit
 - v. Connect a USBC power supply not capable of 20V (e.g. a USB A-C cable)
 - vi. Confirm that D3 is the only LED that is lit
 - vii. Confirm that VBUS is 0V
 - viii. Confirm that 5V net is at 5V
 - ix. Unplug the power supply
- 16. Install D5. The bar is on the pin 1 side
- 17. Test the 5v rea
 - i. Connect a USBC power supply capable of 20V
 - ii. Confirm that VBUS is 20V
 - iii. Confirm that 5V is roughly 4.7V
 - iv. Confirm that D4 and D1 are both lit
 - v. Connect a USBC port to your computer
 - vi. Confirm that D3 and D1 are both lit
 - vii. Confirm that VBUS is roughly 0V
 - viii. Confirm that 5V net is at 5V
 - ix. Unplug the power supply
- 18. Install U2 and U3
- 19. Install Y1
 - i. Match the direction of the text to the silkscreen
 - ii. Install by reflow if possible or by hand if you have not already installed it
- 20. Install Q5
- 21. Install all switches
- 22. Clean the board

iBOM

E x Tean		Sn	ake			ev: v1 3-11-15	1.0 Bitwarden
▼ F			ıp Y				
000	Sou rce d	Pla ced	References	Value	Footprint	Quantity	y .
1		☑		1u	C_1206_3216Metric	5	1
							1
						2	
						2	
					C_1206_3216Metric	1	
							R13 C13 R17
7				100u	C_1206_3216Metric	1	C14 0 02 01 C5 K12 0 0
						3	reset C6
11			R5, R9	22	R_1206_3216Metric	2	
13			R15, R16	0	R_1206_3216Metric	2	20v 5v t g 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							notifier 3 txled
15				100	R_1206_3216Metric	1	OLED OOOD 5
							d c p g
17			D1, D4	green	LED_1206_3216Metric	2	
19				red	LED_1206_3216Metric	1	
					QFN-24-1EP_4x4mm_P0.5mm_E P2.8x2.8mm	1	
22			112	ATmogo22114 A	TOED 44 10v10mm DO 9mm	1	

Testing

- What was the testing strategy and plan?
 - Unit Test:
 - Voltage Test:
 - VBus, Voltage Rail, Voltage Regulator, ATMega32u4, OLED.
 - Capacitor Explosions
 - Verification:
 - Operational Microcontroller
 - OLED Screen, 4 Input Buttons
 - Capacitor Explosion on game over
 - Validation
 - Playable? Responsive? Is it actually a Snake Game?

Results

- The game works!!!!!
 - Board requests high voltage
 - Can program microcontroller with computer
 - Snake shows up on screen
 - Buttons control snake
 - Caps explode reliably

Contributions

- What we did
 - Ben: Schematic, Boom, Ordering Items, Testing, Case Printing
 - Dmitrii: Schematic, PCB, Case Printing
 - Evan: Software, Debugging
 - John: Software, debugging, documentation

Lesson Learned

- What did we learn?
 - First time PCB design/PAR and 3D modelling
 - Using GitHub to maintain version control and project documentation
 - Proper hardware and software integration
 - Capacitors don't like to explode
- What would you do differently?
 - Add more features to the game.
 - More games. DOOM!
 - Different types of Explosion connection.
 - Battery...
 - More ergonomic case
 - Work earlier
 - Finals took much effort

Demo

