

WHAT IS MACHINE LEARNING?

Machine learning allows computers to learn and infer from data.

SPAM FILTERING

SPAM FILTERING

WEB SEARCH

SPAM FILTERING

WEB SEARCH

POSTAL MAIL ROUTING

SPAM FILTERING

WEB SEARCH

POSTAL MAIL ROUTING

FRAUD DETECTION

MOVIE RECOMMENDATIONS

VEHICLE DRIVER ASSISTANCE

WEB ADVERTISEMENTS

SOCIAL NETWORKS

SPEECH RECOGNITION

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

TYPES OF SUPERVISED LEARNING

REGRESSION

Outcome is continuous (numerical)

TYPES OF SUPERVISED LEARNING

REGRESSION

Outcome is continuous (numerical)

CLASSIFICATION

Outcome is a category

SUPERVISED LEARNING OVERVIEW

REGRESSION: NUMERICAL ANSWERS

CLASSIFICATION: CATEGORICAL ANSWERS

CLASSIFICATION: CATEGORICAL ANSWERS

 Target: predicted category or value of the data (column to predict)

Sepal length	Sepal width	th Petal length Petal width		Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5 0.2	Versicolor
4.4	2.9	1.4		Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

Sepal length	Sepal width	Petal length	Petal width	Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5	Versicolor
4.4	2.9	1.4	0.2	Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)

Sepal length	Sepal width	Petal length	Petal width	Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5	Versicolor
4.4	2.9	1.4	0.2	Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)
- Example: a single data point within the data (one row)

|--|

Sepal length	Sepal width	Petal length	Petal width	Species
6.7	3.0	5.2	2.3	Virginica
6.4	2.8	5.6	2.1	Virginica
4.6	3.4	1.4	0.3	Setosa
6.9	3.1	4.9	1.5	Versicolor
4.4	2.9	1.4	0.2	Setosa
4.8	3.0	1.4	0.1	Setosa
5.9	3.0	5.1	1.8	Virginica
5.4	3.9	1.3	0.4	Setosa
4.9	3.0	1.4	0.2	Setosa
5.4	3.4	1.7	0.2	Setosa

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)
- Example: a single data point within the data (one row)
- Label: the target value for a single data point

Sepal length	Sepal width	Petal length	Petal width	Species	
6.7	3.0	5.2	2.3	Virginica	
6.4	2.8	5.6	2.1	Virginica	
4.6	3.4	1.4	0.3	Setosa	← Label
6.9	3.1	4.9	1.5	Versicolor	
4.4	2.9	1.4	0.2	Setosa	
4.8	3.0	1.4	0.1	Setosa	
5.9	3.0	5.1	1.8	Virginica	
5.4	3.9	1.3	0.4	Setosa	
4.9	3.0	1.4	0.2	Setosa	
5.4	3.4	1.7	0.2	Setosa	

A flower shop wants to guess a customer's purchase from similarity to most recent purchase.

WHAT IS NEEDED FOR CLASSIFICATION?

- Model data with:
 - Features that can be quantitated

WHAT IS NEEDED FOR CLASSIFICATION?

- Model data with:
 - Features that can be quantitated
 - Labels that are known

WHAT IS NEEDED FOR CLASSIFICATION?

- Model data with:
 - Features that can be quantitated
 - Labels that are known
- Method to measure similarity

K NEAREST NEIGHBORS CLASSIFICATION

K NEAREST NEIGHBORS CLASSIFICATION

Did not survive

K NEAREST NEIGHBORS CLASSIFICATION

WHAT IS NEEDED TO SELECT A KNN MODEL?

WHAT IS NEEDED TO SELECT A KNN MODEL?

- Correct value for 'K'
- How to measure closeness of neighbors?

K NEAREST NEIGHBORS DECISION BOUNDARY

K=1

K NEAREST NEIGHBORS DECISION BOUNDARY

K = All

VALUE OF 'K' AFFECTS DECISION BOUNDARY

VALUE OF 'K' AFFECTS DECISION BOUNDARY

Methods for determining 'K' will be discussed in next lesson

MEASUREMENT OF DISTANCE IN KNN

MEASUREMENT OF DISTANCE IN KNN

EUCLIDEAN DISTANCE

EUCLIDEAN DISTANCE (L2 DISTANCE)

MANHATTAN DISTANCE (L1 OR CITY BLOCK DISTANCE)

Number of Surgeries

Number of Surgeries

Number of Surgeries

"Feature Scaling"

"Feature Scaling"

COMPARISON OF FEATURE SCALING METHODS

- Standard Scaler: Mean center data and scale to unit variance
- Minimum-Maximum Scaler: Scale data to fixed range (usually 0–1)
- Maximum Absolute Value Scaler: Scale maximum absolute value

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Create an instance of the class

StdSc = StandardScaler()

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Create an instance of the class

StdSc = StandardScaler()

Fit the scaling parameters and then transform the data

```
StdSc = StdSc.fit(X_data)
```

X_scaled = KNN.transform(X_data)

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Create an instance of the class

```
StdSc = StandardScaler()
```

Fit the scaling parameters and then transform the data

```
StdSc = StdSc.fit(X_data)

X_scaled = KNN.transform(X_data)
```

Other scaling methods exist: MinMaxScaler, MaxAbsScaler.

MULTICLASS KNN DECISION BOUNDARY

REGRESSION WITH KNN

CHARACTERISTICS OF A KNN MODEL

- Fast to create model because it simply stores data
- Slow to predict because many distance calculations
- Can require lots of memory if data set is large

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class

KNN = KNeighborsClassifier(n neighbors=3)

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class

KNN = KNeighborsClassifier(n_neighbors=3)

Fit the instance on the data and then predict the expected value

```
KNN = KNN.fit(X_data, y_data)

y_predict = KNN.predict(X data)
```

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class

```
KNN = KNeighborsClassifier(n neighbors=3)
```

Fit the instance on the data and then predict the expected value

```
KNN = KNN.fit(X_data, y_data)
y_predict = KNN.predict(X_data)
```

The fit and predict/transform syntax will show up throughout the course.

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class

```
KNN = KNeighborsClassifier(n_neighbors=3)
```

Fit the instance on the data and then predict the expected value

```
KNN = KNN.fit(X_data, y_data)
y_predict = KNN.predict(X_data)
```

Regression can be done with KNeighborsRegressor.

K VALUE AFFECTS DECISION BOUNDARY

CHOOSING BETWEEN DIFFERENT COMPLEXITIES

HOW WELL DOES THE MODEL GENERALIZE?

UNDERFITTING VS OVERFITTING

BIAS—VARIANCE TRADEOFF

TRAINING AND TEST SPLITS

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

TRAINING AND TEST SPLITS

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

TRAINING DATA

TEST DATA

TRAINING DATA

fit the model

TEST DATA

measure performance

- predict label with model
- compare with actual value
- measure error

TEST DATA x10⁸ 4.0 3.0 2.0 1.0 x10⁸ 0.0 1.0 2.0

Fit the model

Make predictions

FITTING TRAINING AND TEST DATA

FITTING TRAINING AND TEST DATA

TRAIN AND TEST SPLITTING: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import train_test_split

TRAIN AND TEST SPLITTING: THE SYNTAX

Import the train and test split function

```
from sklearn.model_selection import train_test_split
```

Split the data and put 30% into the test set

```
train, test = train_test_split(data, test_size=0.3)
```

TRAIN AND TEST SPLITTING: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import train_test_split

Split the data and put 30% into the test set

train, test = train_test_split(data, test_size=0.3)

Other method for splitting data:

from sklearn.model_selection import ShuffleSplit

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

TRAINING DATA

VALIDATION DATA

Best model for this test set

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

TRAINING Data 1

VALIDATION DATA 1

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

TRAINING Data 2

VALIDATION DATA 2

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

VALIDATION DATA 3

TRAINING DATA 3

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

VALIDATION Data 4

TRAINING Data 4

Average cross validation results

Polynomial Degree = 1

Underfitting: training and cross validation error are high

Polynomial Degree = 15

Overfitting: training error is low, cross validation is high

Polynomial Degree = 4

Just right: training and cross validation errors are low

CROSS VALIDATION: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import cross_val_score

CROSS VALIDATION: THE SYNTAX

Import the train and test split function

```
from sklearn.model_selection import cross_val_score
```

Perform cross-validation with a given model

CROSS VALIDATION: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

Other methods for cross validation:

from sklearn.model selection import KFold, StratifiedKFold

INTRODUCTION TO LINEAR REGRESSION

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

INTRODUCTION TO LINEAR REGRESSION

INTRODUCTION TO LINEAR REGRESSION

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

$$\beta_0$$
= 80 million, β_1 = 0.6

PREDICTING FROM LINEAR REGRESSION

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

 β_0 = 80 million, β_1 = 0.6

Predict 175 Million Gross for 160 Million Budget

WHICH MODEL FITS THE BEST?

CALCULATING THE RESIDUALS

CALCULATING THE RESIDUALS

$$\left(\beta_0 + \beta_1 x_{obs}^{(i)}\right) - y_{obs}^{(i)}$$

MEAN SQUARED ERROR

$$\frac{1}{m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

MINIMUM MEAN SQUARED ERROR

$$\min_{\beta_0, \beta_1} \frac{1}{m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

COST FUNCTION

MODELLING BEST PRACTICE

- Use cost function to fit model
- Develop multiple models
- Compare results and choose best one

OTHER MODEL METRICS

Sum of Squared Error (SSE):

$$\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

OTHER MEASURES OF ERROR

Sum of Squared Error (SSE):

$$\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

Total Sum of Squares (TSS):

$$\sum_{i=1}^{m} \left(\overline{y_{obs}} - y_{obs}^{(i)} \right)^2$$

OTHER MEASURES OF ERROR

Sum of Squared Error (SSE):

$$\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

Total Sum of Squares (TSS):

$$\sum_{i=1}^{m} \left(\overline{y_{obs}} - y_{obs}^{(i)} \right)^2$$

Correlation Coefficient (R2):

$$1 - \frac{SSE}{TSS}$$

COMPARING LINEAR REGRESSION AND KNN

LINEAR REGRESSION

 Fitting involves minimizing cost function (slow)

K NEAREST NEIGHBORS

Fitting involves storing training data (fast)

COMPARING LINEAR REGRESSION AND KNN

LINEAR REGRESSION

- Fitting involves minimizing cost function (slow)
- Model has few parameters (memory efficient)

K NEAREST NEIGHBORS

- Fitting involves storing training data (fast)
- Model has many parameters (memory intensive)

COMPARING LINEAR REGRESSION AND KNN

LINEAR REGRESSION

- Fitting involves minimizing cost function (slow)
- Model has few parameters (memory efficient)
- Prediction involves calculation (fast)

K NEAREST NEIGHBORS

- Fitting involves storing training data (fast)
- Model has many parameters (memory intensive)
- Prediction involves finding closest neighbors (slow)

LINEAR REGRESSION: THE SYNTAX

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

LINEAR REGRESSION: THE SYNTAX

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

LINEAR REGRESSION: THE SYNTAX

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

LR = LinearRegression()

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```


SCALING IS A TYPE OF FEATURE TRANSFORMATION

 Predictions from linear regression models assume residuals are normally distributed

- Predictions from linear regression models assume residuals are normally distributed
- Features and predicted data are often skewed

from numpy import log, log1p from scipy.stats import boxcox

- Predictions from linear regression models assume residuals are normally distributed
- Features and predicted data are often skewed
- Data transformations can solve this issue

FEATURE TYPE

TRANSFORMATION

• Continuous: numerical values

FEATURE TYPE

TRANSFORMATION

Continuous: numerical values

Standard Scaling, Min-Max Scaling

FEATURE TYPE

- Continuous: numerical values
- Nominal: categorical, unordered features (True or False)

TRANSFORMATION

- Standard Scaling, Min-Max Scaling
- One-hot encoding (0, 1)

from sklearn.preprocessing import LabelEncoder, LabelBinarizer, OneHotEncoder

FEATURE TYPE

TRANSFORMATION

- Continuous: numerical values
- Nominal: categorical, unordered features (True or False)
- Ordinal: categorical, ordered features (movie ratings)

- Standard Scaling, Min-Max Scaling
- One-hot encoding (0, 1)
- Ordinal encoding (0, 1, 2, 3)

from sklearn.feature_extraction import DictVectorizer from pandas import get dummies

 Capture higher order features of data by adding polynomial features

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

- Capture higher order features of data by adding polynomial features
- "Linear regression" means linear combinations of features

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- Capture higher order features of data by adding polynomial features
- "Linear regression" means linear combinations of features

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

- Capture higher order features of data by adding polynomial features
- "Linear regression" means linear combinations of features

$$y_{\beta}(x) = \beta_0 + \beta_1 \log(x)$$

Can also include variable interactions

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

Can also include variable interactions

$$y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

How is the correct functional form chosen?

Check relationship of each variable or with outcome

POLYNOMIAL FEATURES: THE SYNTAX

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

POLYNOMIAL FEATURES: THE SYNTAX

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

```
polyFeat = PolynomialFeatures(degree=2)
```

POLYNOMIAL FEATURES: THE SYNTAX

Import the class containing the transformation method

from sklearn.preprocessing import PolynomialFeatures

Create an instance of the class

```
polyFeat = PolynomialFeatures(degree=2)
```

Create the polynomial features and then transform the data

```
polyFeat = polyFeat.fit(X_data, y_data)
x_poly = polyFeat.transform(X_data)
```

