Employing Ensemble Methods with scikit-learn

UNDERSTANDING ENSEMBLE LEARNING TECHNIQUES

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Ensemble learning to improve robustness and reduce overfitting

Different kinds of ensemble learning techniques

Averaging, boosting, voting, stacking

Built-in support for ensemble learning in scikit-learn

Implementing hard and soft voting in scikit-learn

Prerequisites and Course Outline

Prerequisites

Comfortable with Python programming

Prior ML exposure recommended

Building simple classification and regression models using scikit-learn

Prerequisite Courses

Building Your First scikit-learn Solution

Building Classification Models with scikit-learn

Building Regression Models with scikit-learn

Course Outline

Introducing ensemble learning

Ensemble learning using averaging - bagging and pasting models

Ensemble learning using boosting - adaptive and gradient boosting

Ensemble learning using stacking

Quick Overview of Ensemble Learning

Machine learning technique in which several learners are combined to obtain a better performance than any of the learners individually.

Machine learning technique in which several learners are combined to obtain a better performance than any of the learners individually.

Machine learning technique in which several learners are combined to obtain a better performance than any of the learners individually.

Important Questions in Ensemble Learning

What kind of individual learners to use?

How should individual learners be trained?

How should individual learners be combined?

Important Questions in Ensemble Learning

What kind of individual learners to use?

How should individual learners be trained?

How should individual learners be combined?

Choice of Individual Learners

Individual learners (models) could be of absolutely any type

Each learner should be as different as possible from other learners

Choice of Individual Learners

Decision trees are most often used

An ensemble of decision trees is a Random Forest

Random forests make it easy to build uncorrelated learners

Important Questions in Ensemble Learning

What kind of individual learners to use?

How should individual learners be trained?

How should individual learners be combined?

Training Individual Learners

If learners are different, each learner can be trained on the entire dataset

For similar learners:

- Each model is trained on random samples of training data
- Can also use random set of features to train different models

Important Questions in Ensemble Learning

What kind of individual learners to use?

How should individual learners be trained?

How should individual learners be combined?

Combining Classifier Predictions

Combining Individual Learners

Hard voting: Majority vote of individual learners (classification)

Soft voting: Probability-weighted average

Stacking: Train additional model to combine predictions from individual learners

Ensemble Learning Techniques

Averaging and Boosting

Averaging

Train predictors in parallel and average scores of individual predictors

Boosting

Train predictors in sequence where each predictor learns from earlier mistakes

Voting and Stacking

Voting

Majority vote of the individual predictors is the final prediction of the ensemble

Stacking

Fit a model on the individual predictions to get the final prediction of the ensemble

Voting

Get individual predictions from each learner

Each learner uses a different training algorithm

The different algorithms add diversity to the predictions

Voting

Hard Voting: Final output of the ensemble is the majority vote

Soft Voting: Final output of the ensemble is the category with the highest probability score

 Need to be able to aggregate probability scores for each output category

Averaging

Train multiple learners in parallel

Get individual predictions from each learner

Final prediction of the ensemble is an average of individual predictions

Voting can be considered an averaging technique

Averaging

Usually use decision trees or random forests to build different models

Train model on different samples of training data

- Bagging: Sample data with replacement
- Pasting: Sample data without replacement

Boosting

Train multiple learners sequentially

Each model learns from the mistakes made by previous models

Can tweak the learning rate or contribution of each model

Addition of a learner boosts the accuracy of the model

Boosting

Adaptive Boosting: each model pays more attention to training instances the previous model got wrong

Gradient Boosting: each model in sequence fits on residual errors of the previous model

Stacking

Train diverse individual learners

Get predictions from individual predictors

Fit a model to make the final predictions of the ensemble

"Blender model" or "Meta-learner"

Decision Trees in Ensemble Learning

Important Questions in Ensemble Learning

What kind of individual learners to use?

How should individual learners be trained?

How should individual learners be combined?

Choice of Individual Learners

Individual learners (models) could be of absolutely any type

Could combine:

- Neural networks
- Support Vector Machines
- Naive Bayes Classifiers
- Decision Trees
- Random Forests (group of decision trees)

Individual learners should be as different as possible

For most techniques, hard to generate large number of very different models

To the rescue: Decision trees and random forests

Decision Trees are the most common building blocks for Ensemble Learning

Decision Trees

ML models that construct trees based on threshold values of x-variables. Differ from rule-based trees because thresholds are determined by training.

Random Forest

An ensemble (collection) of decision trees, in which individual trees are trained on different random subsets of training data.

Important Questions in Ensemble Learning

What kind of individual learners to use?

How should individual learners be trained?

How should individual learners be combined?

Training Individual Models

If individual learners are not decision trees

- Then each has independent, full training process

Training Random Forests

Most common form of ensemble learning uses random forests

Individual learners are decision trees

Each tree is iteratively trained on randomly sampled subset

Training Random Forests

Will return to this in a later module

Decision Trees

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Jockey or Basketball Player?

Intuitively know

Jockeys tend to be light

And not very tall

Basketball players tend to be tall

And also quite heavy

Decision trees set up a tree structure on training data which helps make decisions based on rules

Fit Knowledge into Rules

Decision Based on Weight

Decision Based on Weight

Fit Knowledge into Rules

Fit Knowledge into Rules

Decision Tree

Fit knowledge into rules

Each rule involves a threshold

Decision Tree

Order of decision variables matters

Rules and order found using ML

Splitting a Decision Tree

Tree selects the best feature

And finds the best threshold for the feature

Decision Tree

"CART"

<u>Classification And</u> <u>Regression Tree</u>

Decision Trees for Classification

Decision Trees for Classification

Traverse tree to find right node

Return most frequent label of all training data points in that node

Ensemble Learning to Mitigate Overfitting

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

A simple straight line performs worse in training, but better with test data

Overfitting

Model has memorized the training data
Low training error
Does not work well in the real world
High test error

Cause of Overfitting

Sub-optimal choice in the bias-variance trade-off

An overfitted model has:

- high variance error
- low bias error

Low bias

Few assumptions about the underlying data

High bias

More assumptions about the underlying data

Model too complex

Training data all-important, model parameter counts for little

Model too simple

Model parameter all-important, training data counts for little

Variance

High variance

The model changes significantly when training data changes

Low variance

The model doesn't change much when the training data changes

Variance

Model too complex

Model varies too much with changing training data

Model too simple

Model not very sensitive to training data

Bias-variance Trade-off

Model too complex High variance error Model too simple
High bias error

Preventing Overfitting

Regularization - Penalize complex models

Cross-validation - Distinct training and validation phases

Dropout (NNs only) - Intentionally turn off some neurons during training

Ensemble Learning an important technique to mitigate overfitting

Demo

Exploring the environment and tools

Demo

Performing hard and soft voting using the VotingClassifier

Summary

Ensemble learning to improve robustness and reduce overfitting

Different kinds of ensemble learning techniques

Averaging, boosting, voting, stacking

Built-in support for ensemble learning in scikit-learn

Implementing hard and soft voting in scikit-learn