Decision procedure for string constraints involving the integer data type

Anonymous Author(s)

Abstract

We consider straight-line string constraints involving string and integer data types, specifically, we consider string constraints including concat, replaceall, transducers, reverse, substring, indexof, and length. We design the decision procedure based on a variant of cost register automata.

Keywords keyword1, keyword2, keyword3

1 Introduction

As discussed, the whole point is to use INCRA in replace of FT

2 Preliminaries

Definition for NFA, NFT.

3 The logic SL_{int}

We consider two data types, the string data type and the integer data type. We will use c, d, \ldots to denote integer constants, u, v, \ldots to denote string constants, i, j, \ldots to denote the integer variables, and x, v, \ldots to denote the string variables.

3.1 The concrete version

 SL_{int} comprises all the formulae $S \wedge A$ defined by the following rules,

```
t :: i \mid c \mid \text{length}x \mid \text{indexOf}_ux, i \mid t \mid t,

S :: i : t \mid r : \text{substringy} \mid i \mid r : y : z \mid r : re
```

 $S :: i:t \mid x: \text{substring} y, i, j \mid x:y \cdot z \mid x: \text{replaceAll}_{e,u} y \mid x: \text{reverse} y \mid x:Ty \mid S; S,$

 $A :: x \in \mathcal{A} \mid t \circ t \mid A \wedge A$

where c is an integer constant, e is a regular expression, u is a string constant, T is an NFT, \mathcal{A} is an NFA, and $o \in \{, \neq, \leq, \geq, <, >\}$. Note that $\mathsf{replaceAll}_{e,u}$ is the replaceAll function where e and u are the pattern and the replacement arguments.

We assume that S is in single static assignment (SSA) form. Moreover, for technical convenience, we assume that all the assignments i:t in S satisfy that t length x, t indexOf ux, f, or f contains no occurrences of length or indexOf functions. We also assume that all the variables in f also occur in f in f.

3.2 The abstract version

To be more abstract, we consider string formulae $S \wedge A$, where A is as above and S is defined by the following rules,

$$t :: i \mid c \mid gx_1, i_1, \dots, x_k, i_k \mid t t, S :: i : t \mid x : fx_1, i_1, \dots, x_k, i_k \mid S; S,$$

PL'18, January 01–03, 2018, New York, NY, USA 2018

where i_j $i_{j,1}, \dots, i_{j,n_j}$ for each $j \in k$, f is of the arity $\Sigma^* \times \mathbb{Z}^{n_1} \times \dots \times \Sigma^* \times \mathbb{Z}^{n_k} \to 2^{\Sigma^*}$ and g is of the arity $\Sigma^* \times \mathbb{Z}^{n_1} \times \dots \times \Sigma^* \times \mathbb{Z}^{n_k} \to 2^{\mathbb{Z}}$ (note that f resp. g can be nondeterministic).

We assume that S is in single static assignment (SSA) form. Moreover, for technical convenience, we assume that all the assignments i:t in S satisfy that either t gx_1,i_1,\cdots,x_k,i_k , or t contains no occurrences of the functions gx_1,i_1,\cdots,x_k,i_k . We also assume that all the variables in A also occur in S.

4 Incremental nondeterministic cost register automata (INCRA)

Note that for the purpose of this note, INCRA are adapted from CRA in [?] by allowing the nondeterminism and discarding the partial final cost function μ .

Let \mathcal{A} Σ , Q, I, F, R, δ be an INCRA with R $r_1 \cdots r_m$. Over an input word w $\sigma_1 \cdots \sigma_n \in \Sigma$, a run of \mathcal{A} on w is a sequence $q_0 \xrightarrow{\sigma_1,\eta_1} q_1 \cdots q_{n-1} \xrightarrow{\sigma_n,\eta_n} q_n$ such that $q_0 \in I$ and $q_{i-1},\sigma_i,\eta_i,q_i \in \delta$ for each $i \in n$. A run is accepting if $q_n \in F$. The output of an accepting run of \mathcal{A} on w is a tuple i_1,\cdots,i_m , where i_j $\eta_n r_j \cdots \eta_1 r_j 0 \cdots$ for each $j \in m$. Note that the initial value of each register r_j is zero. We define $\mathcal{A}w$ as the set of outputs of the accepting runs of \mathcal{A} on w (possibly it is an empty set). Note the in general, an output of an INCRA is a tuple, instead of a single integer. Moreover, we also use $\mathcal{L}\mathcal{A}$ to denote $\{w \in \Sigma^* \mid \mathcal{A}w \neq \emptyset\}$ and $\mathcal{R}w$ $\{w, n \mid n \in \mathcal{A}w\}$.

Given two INCRAs \mathcal{A}_1 $\Sigma, Q_1, I_1, F_1, R_1, \delta_1$ and \mathcal{A}_2 $\Sigma, Q_2, I_2, F_2, R_2, \delta_2$ with $R_1 \cap R_2 = \emptyset$, we define the product of \mathcal{A}_1 and \mathcal{A}_2 , denoted by $\mathcal{A}_1 \times \mathcal{A}_2$, as $\Sigma, Q_1 \times Q_2, I_1 \times I_2, F_1 \times F_2, R_1 \cdot R_2, \delta$ such that δ comprises the tuples $q_1, q_2, \sigma, q_1', q_2', \eta$ such that there are η_1, η_2 satisfying that $q_1, \sigma, q_1', \eta_1 \in \delta_1, q_2, \sigma, q_2', \eta_2 \in \delta_2$, and $\eta, \eta_1 \cup \eta_2$.

Given an INCRA \mathcal{A} Σ , Q, I, F, R, δ , the inverse of \mathcal{A} , denoted by \mathcal{A}^r , is Σ , Q, F, I, R, δ' where δ' comprises the set of tuples q', σ , q, η such q, σ , q', $\eta \in \delta$. Note that according to the definition, over each word w, $\mathcal{A}^r w$ $\mathcal{A} w$.

Definition 4.2 (INCRA-LA SAT). Let \mathcal{A}_1 $\Sigma, Q_1, I_1, F_1, R_1, \delta_1, \cdots, \mathcal{A}_k$ $\Sigma, Q_k, I_k, F_k, R_k, \delta_k$ be INCRAs with $R_i \cap R_i$ \emptyset for each $i \neq j \in k$ and ϕ be a

(quantifier-free) linear arithmetic formula over $R_1 \cdot \cdots \cdot R_k$. Then ϕ is said to be satisfiable w.r.t. $\mathcal{A}_1, \dots, \mathcal{A}_k$ if there are words w_1, \dots, w_k and $c_1 \in \mathcal{A}_1 w_1, \dots, c_k \in \mathcal{A}_k w_k$ such that $\phi c_1, \cdots, c_k$ holds.

Theorem 4.3. The INCRA-LA SAT problem is decidable.

For the proof of Theorem 4.3, we state and prove the following lemma.

Lemma 4.4. Let $\mathcal{A} \quad \Sigma, Q, I, F, R, \delta$ be an INCRA with R $r_1 \cdots r_m$. Then there is an existential linear arithmetic formula $\varphi_{\mathcal{A}}r_1, \cdots, r_m$ such that $\{c_1, \cdots, c_m \mid \varphi_{\mathcal{A}}c_1, \cdots, c_m \text{ holds}\}$ $_{w\in\Sigma^{*}}\mathcal{A}w.$

Proof. Let δ $\{\tau_1, \dots, \tau_l\}$ such that τ_j $p_j, \sigma_j, p'_j, \eta_j$ and $\eta_j r_i$ r_i $c_{i,j}$ for each $j \in l$ and $i \in m$. For each pair of states $q, q' \in l$ $I \times F$, it is not hard to compute a Presburger arithmetic formula $\varphi_{q,q'}j_1, \cdots, j_l$ such that $\{c_1, \cdots, c_l \mid \varphi_{q,q'}c_1, \cdots, c_l \text{ holds}\}\ de$ fines the Parikh image of the sequence of transitions of $\ensuremath{\mathcal{H}}$ starting from q and ending at q'.

Then

$$\varphi_{\mathcal{A}} :: {}_{q,q' \in I \times F} j_1 \cdots j_l. \ \varphi_{q,q'} j_1, \cdots, j_l \wedge {}_{i \in m} r_i \ {}_{j \in I} c_{i,j} j_j.$$

Theorem 4.3. Suppose for each $i \in k$, R_i $r_{i,1} \cdots r_{i,r_i}$. Then we reduce the INCRA-LA SAT problem to the satisfiability of the following existential linear arithmetic formula

$$\phi \wedge_{i \in k} \varphi_{\mathcal{A}_i} r_{i,1}, \cdots, r_{i,r_i}.$$

5 Decision procedure

Definition 5.1 (Pre-image of f). Let $fx_1, i_1, \dots, x_k, i_k : \Sigma^* \times$ $\mathbb{Z}^{n_1} \times \cdots \times \Sigma^* \times \mathbb{Z}^{n_k} \to 2^{\Sigma^*}$ and \mathcal{A} be an INCRA. Then the pre-image of f under \mathcal{A} , denoted by $f^{-1}\mathcal{A}$, is defined as

$$f^{-1}\mathcal{A} \{w_1, c_1, \cdots, w_k, c_k \mid w \in \Sigma^* : w \in fw_1, c_1, \cdots, w_k, c_k \text{ and } \mathcal{A}w \neq \emptyset \}$$
 reverse $\mathcal{A}\mathcal{A}'$.

Definition 5.2 (Cost-preserving INCRA-representation of pre-image of f). Let $fx_1, i_1, \dots, x_k, i_k : \Sigma^* \times \mathbb{Z}^{n_1} \times \dots \times \mathbb{Z}^{n_k}$ $\Sigma^* \times \mathbb{Z}^{n_k} \to 2^{\Sigma^*}$ and $\mathcal{A} \quad \Sigma, Q, I, F, R, \delta$ be an INCRA with R $r_1 \cdots r_m$. Then a cost-preserving representation of $f^{-1}\mathcal{A}$ is a pair $\mathcal{B}_{j,1}, \dots, \mathcal{B}_{j,k}$ $j \in \ell$, t (where $\ell \geq 1$) such that

- for each $j \in \ell$ and j' $\Sigma, Q'_{j,j'}, I'_{j,j'}, F'_{j,j'}, R'_{j,j'}, \delta'_{j,j'}$ with $R'_{j,j'}$ $i_{j'} \cdot r'_{j}$, where $r'_{1} r'_{1,1} \cdots r'_{1,m}, \cdots, r'_{k} r'_{k,1} \cdots r'_{k,m}$ are mutually distinct fresh registers,
- t t_1, \dots, t_m such that for each $j'' \in m$, $t_{j''}$ is a linear combination of $r'_{1,i''}, \dots, r'_{k,i''}$,
- for each $w_1, c_1, \dots, w_k, c_k \in f^{-1}\mathcal{A}$, we have

$$\begin{cases} \mathcal{H}w & \text{comprises the tuples } q_1, q_1', \sigma, q_2, q_2', \eta' \text{ satisfying that} \\ \left\{td_1r_1', \cdots, d_kr_k' \mid w_1, c_1 \cdot d_1, \cdots, w_k, c_k \cdot d_k \in \mathcal{RB}_{j,1} \times \cdots \times \mathcal{RB}_{j,k} \right\}_{j:1}^{q_1', \sigma, q_2', u \in \delta' \text{ with } u = \sigma_1 \cdots \sigma_i, p_1 \xrightarrow{\sigma_1, \eta_1} p_2 \cdots \xrightarrow{\sigma_i, \eta_i} p_2 \cdots \xrightarrow{\sigma_i, \eta_i} p_1' \text{ with } p_1 = q_1 \text{ and } p_{i1} = q_2, \text{ and } \eta' = q_1 \cdots q_i. \end{cases}$$

Definition 5.3 (INCRA-representation of *g*). Let $gx_1, i_1, \cdots, x_k, i_k : \Sigma^* \times \mathbb{Z}^{n_1} \times \cdots \times \Sigma^* \times \mathbb{Z}^{n_k} \rightarrow 2^{\mathbb{Z}}$ and r be a register. Then a representation of g w.r.t. r is a pair $\mathcal{B}_{i,1}, \cdots, \mathcal{B}_{i,k}$ $_{i \in \ell}, t$ such that

- for each *i* $\in \ell \text{ and } j' \in k, \mathcal{B}_{j,j'}$ $\Sigma, Q'_{j,j'}, I'_{j,j'}, F'_{j,j'}, R'_{j,j'}, \delta'_{j,j'}$ with $R'_{j,j'}$ $i_{j'}$ $i_{j'}$ r'_{j} , where r'_{1}, \dots, r'_{k} are mutually distinct fresh registers,
- t is a linear combination of r'_1, \dots, r'_k ,
- for each $w_1, c_1, \dots, w_k, c_k \in \Sigma^* \times \mathbb{Z}^{n_1} \times \dots \times \Sigma^* \times \mathbb{Z}^{n_k}$, we have

$$gw_1, c_1, \cdots, w_k, c_k$$

$$\left\{ td_1r'_1, \cdots, d_kr'_k \mid w_1, c_1 \cdot d_1, \cdots, w_k, c_k \cdot d_k \in \mathcal{RB}_{j,1} \times \cdots \times \mathcal{RB}_{j,k} \right\}$$

Semantic conditions of SL_{int} . S satisfies the following two conditions,

- for each function f occurring in S, there is an effective procedure to compute for a given INCRA \mathcal{A} , a costpreserving INCRA-representation of $f^{-1}\mathcal{A}$,
- for each function g occurring in S, there is an effective procedure to compute for a given register r, an INCRArepresentation of g w.r.t. r.

Note that z replaceAll_ex, y does not satisfy the semantic conditions, since the length of z is nonlinear w.r.t. the lengths of x and y in general.

Theorem 5.4. Satisfiability of abstract SL_{int} satisfying the semantic conditions is decidable.

Proof idea: Backward computation. Record relationship between integer variables in A.

The decision procedure

Corollary 5.5. *Satisfiability of concrete SL_{int} is decidable.*

Let \mathcal{A} Σ , Q, I, F, X, δ be an INCRA.

- Then $\cdot^{-1}\mathcal{A}$ is defined as $\mathcal{A}_{I,q}, \mathcal{A}_{q,Fq\in Q}$ where $\mathcal{A}_{I,q}$ Σ , Q, I, $\{q\}$, X, δ and $\mathcal{A}_{q,F}$ Σ , Q, $\{q\}$, F, X, δ .
- substring⁻¹ \mathcal{A} is the INCRA $\Sigma, Q \times \{p_0, p_1, p_2\}, I \times$ $\{p_0\}, F \times \{p_2\}, X \cup \{y_1, y_2\}, \delta' \text{ such that } \delta' \text{ comprises}$
 - the tuples $q, p_0, \sigma, q', p_0, \eta'$ such that $q, \sigma, q', \eta \in \delta$, $\eta' \ \eta \cup \{y_1 \to y_1 \ 1, y_2 \to y_2 \ 1\},$
 - the tuples $q, p_0, \sigma, q', p_1, \eta'$ such that $q, \sigma, q', \eta \in \delta$, and $\eta' \ \eta \cup \{y_1 \to y_1 \ 1, y_2 \to y_2 \ 1\},\$
 - the tuples $q, p_1, \sigma, q', p_1, \eta'$ such that $q, \sigma, q', \eta \in \delta$, $\eta' \ \eta \cup \{y_1 \to y_1, y_2 \to y_2 \ 1\},\$
 - the tuples $q, p_1, \sigma, q', p_2, \eta'$ such that $q, \sigma, q', \eta \in \delta$, and $\eta' \ \eta \cup \{y_1 \to y_1, y_2 \to y_2 \ 1\},\$
 - the tuples $q, p_2, \sigma, q', p_2, \eta'$ such that $q, \sigma, q', \eta \in \delta$, $\eta' \ \eta \cup \{y_1 \to y_1, y_2 \to y_2\}.$
- Let $T \Sigma, Q', I', F', \delta'$ such that $\delta' \subseteq Q' \times \Sigma \times Q' \times \Sigma^*$. Then $T^{-1}\mathcal{A}$ Σ , $O \times O'$, $I \times I'$, $F \times F'$, δ'' such that δ'' comprises the tuples $q_1, q'_1, \sigma, q_2, q'_2, \eta'$ satisfying that

• Let $T_{e,u}$ be the NFT corresponding to replaceAll_{e,u}. Then replaceAll_{e,u} \mathcal{H} $T_{e,u}^{-1}\mathcal{H}$.

Moreover, we know that i: lengthx and i: indexOf $_ux$, j can be captured by INCRA.

Let *S* be a program where all the assignments i:t are flattened in the sense that they are of the form i:jc, or i:jj', or i:length x, or i:length x

- if the last assignment of the current program of the form neither $i: j \ c$ nor $i: j \ j'$ is x: substringy, $i, j, x: y\cdot z, x:$ replaceAll_{e,u}y, x: reversey, or x: Ty, then construct the product INCRA \mathcal{A} of all the INCRA for x, and replace the last assignment with $y \in$ substring⁻¹ \mathcal{A} , or $y \in \mathcal{A}_{I,q}; z \in \mathcal{A}_{q,F}$ for some $q \in Q$, or $y \in$ replaceAll_{e,u} \mathcal{A} , or $y \in$ reverse⁻¹ \mathcal{A} , or $y \in T^{-1}\mathcal{A}$,
- if the last assignment of the current program of the form neither $i: j \ c$ nor $i: j \ j'$ is i: t such that t length x or t indexOf_ux, j, then replace i: t with $y \in \mathcal{A}_{length,i}$, or $x \in \mathcal{A}_{lindexOf_u,i,j}$.

Then after the above procedure, we get a program S' where all the assignments are of the form i:j c or i:j j' and all the other statements are of the form $x \in \mathcal{A}$ for some INCRA \mathcal{A} . Then the path feasibility of S' is reduced to the INCRA LASAT problem. The decidability follows from Theorem 4.3.

A Appendix

Text of appendix ...