Automat do rolet antywłamaniowych

Funkcjonalność

- Zdalne sterowanie roletą za pomocą aplikacji
- Automatyczne po zmroku

Obsługa modułów

Nucleo będzie odpowiadało za obsługę wszystkich modułów.

Wybrano STM32 NUCLEO-L152RE ze względu na niski pobór prądu.

Mechanizm opuszczania i podnoszenia rolety

Silnik

Silnik będzie odpowiedzialny za nawijanie linki w celu zmiany pozycji rolety.

Do projektu wybrano silnik krokowy JK42HW34-0334, do prototypu jego moc wystarczy a może być zasilany napięciem 12V, więc nie będzie problemu z znalezieniem zasilacza i sterownika silnika.

Ucc = 12V

I = 0,33 A

Sterownik silnika

Silnikiem nie możemy sterować bezpośrednio z nucleo, w tym celu nie zbędne będzie użycie sterownika silnika krokowego.

Wybrano sterownik silnika krokowego A4988, jego zakres napięć silnika oraz logiki zgadza się z dobranymi wcześniej komponentami.

Napięcie zasilania silnika: 8-35 V

Prąd max: 2A z radiatorem

Krańcówki

Aby była pewność, że silnik przestanie poruszać się, gdy roleta zostanie zwinięta lub rozwinięta do końca, zostaną użyte krańcówki, które w momencie wciśnięcia wyślą sygnał do mikrokontrolera.

W wyborze krańcówek sugerowano się głównie ceną.

UWAGA

Jeżeli krańcówki będą blisko silnika warto użyć filtrów ferrytowych, ponieważ nie raz może wyidukować się napięcie przez pole magnetyczne, filtry zbiją te napięcie zapewniając właściwy ruch silników

Automatyczne sterowanie

Moduł z fotorezystorem

Aby roleta zaczęła opuszczać się po zmroku, należy zastosować moduł z fotorezystorem.

Wybrano moduł Velleman VMA407, jego czułość jest wystarczająco wysoka, a dopuszczalne napięcie logiki jest zgodne z nucleo. Moduł może pracować w temperaturze pozwalającej umieszczenie go na zewnątrz.

Napięcie zasilania: od 3,3 V do 5 V

Zdalne sterowanie roletą

Aby zdalnie sterować roletą, wybrano raspberry pi na którym będzie postawiony serwer, router (aby zawsze można było się połączyć), za pomocą aplikacji napisanej w JAVA/C (front end w javie, skrypty do uart w C) po uarcie będą wysyłane informacje do nucleo.

Wybrano raspberry pi 3 z systemem raspbian. (ponieważ w przyszłości chce dokładać kolejne mikrokontrolery moduły).

Komputer

Jako super admin którym będzie komunikował się z nucleo po uart.

Zasilanie

Zasilacz 12V

Aby zapewnić zasilanie wszystkich wybranych modułów wybrano zasilacz 12V, szacowany pobór prądu układu to 0,75 A.

Wybrano zasilacz impulsowy 12V/1,5A - wtyk DC 5,5/2,5mm, ze względu na niską cenne.

Przetwornica step-down - 5V 1A

Aby zapewnić właściwe zasalanie nucleo i reszty modułu potrzebna jest przetwornica.

Wybrano powyższy moduł, ponieważ jest nie wielki posiada duża sprawność

