UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE INGENIERÍA DE SISTEMAS E INFORMÁTICA ESCUELA PROFESIONAL ACADÉMICA DE INGENIERÍA DE SOFTWARE

Internet de las Cosas - Informe Técnico de Proyecto Riego Automatizado

Integrantes

Gonza Soto, Raquel Stacy

Vasquez Palomino, Ashel Joseph

Zavala Sanchez Diego Alonso

Docentes

Rosas Cueva, Yessica

Herrera Quispe, José Alfredo

Lima, Perú

2024

Capítulo 1: Introducción

1.1. Antecedentes

El riego eficiente y preciso es esencial para el crecimiento óptimo de las plantas. Sin embargo, el riego manual puede ser ineficiente y demandar mucho tiempo. Por ello, hemos desarrollado un sistema de riego automático que utiliza sensores de humedad y temperatura para optimizar el uso del agua y mantener condiciones ideales para el crecimiento de las plantas.

1.2. Objetivos del Proyecto

- Implementar un sistema de riego automático utilizando tecnologías IoT.
- Integrar el sistema con servicios de AWS para procesamiento y almacenamiento de datos.
- Proporcionar una interfaz interactiva mediante Amazon Lex y Twilio.

Capítulo 2: Tecnologías y Dispositivos Utilizados

2.1. IoT Device

• Sensores de Humedad y Temperatura: Utilizados para monitorear las condiciones del suelo y del ambiente.

2.2. AWS IoT Core

 Función: Actúa como el núcleo central que conecta y gestiona los dispositivos IoT, permitiendo la comunicación segura y eficiente entre los sensores y otros servicios de AWS.

2.3. Amazon Kinesis Data Streams

• **Función:** Facilita la ingesta y el procesamiento en tiempo real de grandes volúmenes de datos generados por los sensores.

2.4. AWS Lambda

• **Función:** Proporciona capacidad de computación sin servidor para procesar los datos en tiempo real y tomar decisiones, como activar el sistema de riego.

2.5. Amazon DynamoDB

• **Función:** Almacena los datos procesados de los sensores y los registros del sistema para su análisis y monitoreo.

2.6. Amazon Lex y Twilio

• **Función:** Amazon Lex permite la creación de un chatbot interactivo, y Twilio facilita la integración con WhatsApp para que los usuarios puedan interactuar con el sistema a través de mensajes de texto.

Capítulo 3: Diseño del Sistema y Diagrama de Arquitectura

3.1. Arquitectura del Sistema

La arquitectura del sistema se basa en una serie de capas interconectadas que facilitan la recolección, procesamiento, almacenamiento y visualización de datos.

3.2. Diagrama de Arquitectura

Este es un ejemplo; se debe crear un diagrama real

- 1. **IoT Device (Sensores):** Recogen datos de humedad y temperatura.
- AWS IoT Core: Recibe los datos de los sensores y los envía a Amazon Kinesis Data Streams.
- 3. Amazon Kinesis Data Streams: Procesa los datos en tiempo real.
- 4. **AWS Lambda:** Analiza los datos y decide si activar el sistema de riego.
- 5. **Amazon DynamoDB:** Almacena los datos para su posterior análisis.
- 6. Amazon Lex: Permite la interacción con los usuarios mediante un chatbot.
- Twilio: Facilita la comunicación entre el chatbot de Amazon Lex y los usuarios a través de WhatsApp.

Capítulo 4: Implementación del Sistema

4.1. Descripción del Circuito

- Sensores de Humedad y Temperatura: Conectados a la Raspberry Pi mediante puertos GPIO.
- Raspberry Pi: Procesa los datos de los sensores y los envía a AWS IoT Core.

4.2. Diagrama del Circuito

Este es un ejemplo; se debe crear un diagrama real

Capítulo 5: Pruebas Realizadas

5.1. Pruebas de Funcionalidad

- Pruebas de Sensores: Verificación de la precisión y fiabilidad de los sensores de humedad y temperatura.
- **Pruebas de Conectividad:** Aseguramiento de la comunicación constante entre los sensores y AWS IoT Core.

5.2. Pruebas de Procesamiento

- **Pruebas de AWS Lambda**: Evaluación del tiempo de respuesta y la precisión en la toma de decisiones de riego.
- Pruebas de Kinesis Data Streams: Monitoreo de la capacidad de manejo de datos en tiempo real.

5.3. Pruebas de Interacción

- Pruebas de Amazon Lex: Verificación de la funcionalidad del chatbot para recibir y responder consultas de los usuarios.
- **Pruebas de Twilio:** Aseguramiento de la integración correcta entre Amazon Lex y WhatsApp.

Capítulo 6: Tecnologías Innovadoras Utilizadas

6.1. IoT y Sensores Inteligentes

• Uso de sensores de alta precisión para la recolección de datos ambientales críticos.

6.2. AWS IoT Core y Servicios de AWS

- AWS IoT Core: Gestión eficiente de dispositivos IoT y flujos de datos.
- Amazon Kinesis Data Streams: Procesamiento de datos en tiempo real.
- AWS Lambda: Computación sin servidor para procesamiento en tiempo real.
- Amazon DynamoDB: Almacenamiento de datos escalable y de alta disponibilidad.
- Amazon Lex y Twilio: Creación de interfaces de usuario interactivas y accesibles.

Capítulo 7: Resultados y Análisis

7.1. Indicadores de Éxito

- Eficiencia del Riego: Reducción en el uso de agua y mejora en las condiciones de las plantas
- Interacción del Usuario: Satisfacción de los usuarios con la interfaz de chatbot y la integración con WhatsApp.

7.2. Análisis de Datos

- Eficacia del Sistema: Evaluación del rendimiento del sistema a través de los datos recolectados.
- Impacto en el Crecimiento de las Plantas: Análisis del impacto positivo del sistema en el crecimiento de las plantas.

Capítulo 8: Conclusiones y Trabajos Futuros

8.1. Resumen de Puntos Clave

• Implementación exitosa de un sistema de riego automático eficiente y fácil de usar.

• Integración efectiva de diversas tecnologías de AWS y dispositivos IoT.

8.2. Lecciones Aprendidas

- Importancia de la calibración precisa de sensores.
- Desafíos en la integración de múltiples servicios de AWS.

8.3. Perspectivas y Trabajos Futuros

- Ampliación del sistema para diferentes tipos de cultivos y condiciones climáticas.
- Mejoras en la interfaz de usuario y en la integración con más plataformas de mensajería.

Referencias

- Documentación de AWS IoT Core, Amazon Kinesis, AWS Lambda, Amazon DynamoDB, Amazon Lex, y Twilio.
- Libros y artículos sobre IoT en la agricultura.
- Tutoriales y guías prácticas sobre el uso de Raspberry Pi y Node-RED.