

Concours d'entrée 2016-2017

Physique (Bac Libanais)

Juillet 2016 Durée 2 h

Exercice I : [12 pts] Interférences

On réalise, dans l'air, l'expérience des fentes de Young (Fig.1). Ces fentes très fines, distantes de $F_1F_2=a=1$ mm, sont éclairées par une lumière monochromatique de longueur d'onde dans l'air $\lambda=589$ nm, provenant d'une source fine F placée à une distance d=20 cm du plan deux fentes. La source F et les deux fentes sont horizontales.

L'observation se fait sur un écran se trouvant à une distance D = 100 du plan des deux fentes.

- 1. La différence de marche optique δ en un point M d'abscisse x est donnée par : $\delta = F_2M F_1M = \frac{ax}{D}$
- a) M étant le centre d'une frange brillante, déterminer l'expression de l'interfrange i et calculer sa valeur.
- b) Préciser la nature et l'ordre d'interférences de la frange dont le centre N est situé à 5,6 mm de O.
- 2. La source F est déplacée d'une distance z suivant l'axe Fy. On remarque que le centre de la frange centrale se déplace vers le haut et prend la place du centre de la dixième frange obscure. Expliquer le sens du déplacement de F et calculer ce déplacement.
- 3. On ramène F à sa position initiale et on intercale devant F_2 une petite lame à faces parallèles d'indice n=1,5 et d'épaisseur e. On remarque que la figure d'interférences subit une translation de b=10 mm. Déterminer la valeur de e, sachant que la différence de marche optique en M devient : $\delta = \frac{ax}{D} + e(n-1)$, x étant l'abscisse de M.

Exercice II : [24 pts] À propos de l'énergie

On a réalisé le montage de la figure 1 avec les composants suivants : un générateur de fém. E=4,0 V, deux conducteurs ohmiques (R_1) et (R_2) respectivement de résistances $R_1=1 \text{ k}\Omega$ et $R_2=400 \Omega$, une bobine d'inductance L=0,40 H et de résistance interne négligeable, un condensateur de capacité $C=1,0\times 10^{-6} \text{ F}$ et un commutateur K.

A- Charge du condensateur

Le condensateur étant initialement déchargé, l'interrupteur K est basculé en position 1, à l'instant $t_0 = 0$. À une date t_0 le circuit est parcouru par un courant d'intensité t_0 et la tension

aux bornes du condensateur est $u = u_{AM} = E(1 - e^{-\frac{t}{\tau}})$, où $\tau = R_1 C$.

- 1. a) Calculer la valeur de τ et déterminer, en fonction du temps t, l'expression de i.
- **b**) Tracer l'allure, en fonction du temps t, de la variation de u et de celle de $u_{PA} = R_1$ i.
- **2. a)** Montrer qu'à un instant t, la puissance dissipée par effet Joule par le circuit s'écrit : $P_J = \frac{E^2}{R_J} e^{-2\frac{t}{\tau}}$.
- b) En déduire l'expression de l'énergie W_J dissipée par le circuit au cours de la charge et calculer sa valeur.
- c) Calculer l'énergie W₀ emmagasinée par le condensateur à la fin de la charge.
- d) En déduire l'énergie fournie par le générateur pour réaliser la charge du condensateur.

B- Décharge du condensateur

Le condensateur est complètement chargé. On bascule, à l'instant $t_0 = 0$, le commutateur K en position 2.

À l'aide d'un oscilloscope, on visualise, en fonction du temps, les tensions u_{AM} (courbe 1) et u_{BM} (courbe 2) (Fig. 2).

1. Étude énergétique

Les tensions visualisées (Fig.2) montrent que le circuit est le siège d'oscillations pseudopériodiques de pseudo-période T.

- a) Donner, à l'instant $t_0 = 0$, l'énergie W_1 emmagasinée par le circuit LC.
- **b**) Déterminer, à l'instant t₁, lorsque les deux courbes se coupent pour la première fois :
- i) la valeur de l'intensité i du courant.
- ii) l'énergie électromagnétique W2 emmagasinée par le circuit LC.
- c) Calculer l'énergie qui a été dissipée par (R_2) entre les instants $t_0 = 0$ et t_1 .

2. Oscillations électriques

- **b**) La solution de cette équation différentielle est de la forme : $u = B e^{-\lambda t} \cos(\omega t \phi)$, où ω , B et ϕ sont des constantes.
- i) On pose $\delta = \ln\left(\frac{u(t)}{u(t+T)}\right)$ avec $T = \frac{2\pi}{\omega}$. Montrer que $\delta = \lambda \cdot T$.
- ii) En se référant à la courbe (1) de la figure 2, déterminer les valeurs correspondantes de T, δ , λ , B et ϕ .

Exercice III: [24 pts] Balançoire

Une balançoire, sur laquelle s'assoit un enfant de masse m et de centre d'inertie G, est assimilée à un pendule simple (S) de longueur $\ell = OG$ réglable et de masse m en G. (S) peut osciller dans un plan vertical autour d'un axe horizontal (Δ) passant par O. On suppose les frottements négligeables et les oscillations de faible amplitude.

Le plan horizontal passant par O est le niveau de référence de l'énergie potentielle de pesanteur.

Prendre
$$g = 9.8 \text{ m/s}^2$$
, $\cos \theta = 1 - \frac{\theta^2}{2} \text{ et } \sin \theta = \theta \text{ (θ en rad)}.$

A- Équation du mouvement

- (S) est dévié dans le sens positif, à partir de la position d'équilibre, d'un angle faible θ_0 puis on l'abandonne sans vitesse à la date $t_0 = 0$. (S) se met à osciller avec une amplitude θ_m supposée faible.
- **1. a)** Montrer qu'à la date t, l'énergie mécanique du système [(S), Terre] s'écrit : $E_m = \frac{1}{2} m \ell^2 \dot{\theta}^2 mg \ell \cos \theta$.
- **b**) Établir l'équation différentielle en θ qui décrit le mouvement de (S).
- c) En déduire l'expression de la période propre T_0 des oscillations de (S) en fonction de ℓ et g.
- d) Montrer que l'expression de la date τ à laquelle l'élongation de (S) atteint, pour la première fois, la valeur $\theta = 0$ rad,

s'écrit :
$$\tau = \frac{\pi}{2} \sqrt{\frac{\ell}{g}}$$
.

Fig 2 passage en θ =0 Fig 3 passage en θ = θ _{1m} Fig 4 passage en θ = θ _{2m}

- **2. a**) La solution de l'équation différentielle est de la forme : $\theta = \theta_m \cos(\frac{2\pi}{T_0} t + \phi)$. Déterminer l'expression de θ_m et calculer la valeur de ϕ .
- **b**) Montrer que l'expression de l'amplitude $\dot{\theta}_m$ de la vitesse angulaire est donnée par : $\dot{\theta}_m = \sqrt{\frac{g}{\ell}} \; \theta_m$.
- c) Calculer, pour $\ell=2.0$ m et $\theta_0=0.05$ rad , les valeurs de $\theta_m,\,\dot{\theta}_m$ et $T_0.$

B- Amplification du mouvement

L'enfant désire, à présent, augmenter (amplifier) l'amplitude θ_m des oscillations à partir de la date $t_0=0$ où $\theta_0=0.05$ rad et $\dot{\theta}_0=0$.

- Lors du premier passage en $\theta = 0$, à la date t_1 , l'enfant se lève instantanément (Fig. 2), déplaçant ainsi vers le haut son centre d'inertie G de G_1 à G_2 , avec $\ell_2 = OG_2$.
- Lors du passage en θ = θ_{1m} (déviation maximale dans le sens négatif), à la date t_2 (Fig.3), l'enfant s'assoit de nouveau instantanément, abaissant ainsi son centre d'inertie de G_2 à G_1 .
- Lors du passage de nouveau en $\theta = 0$, à la date t_3 , l'enfant se lève de nouveau instantanément, déplaçant ainsi son centre d'inertie de G_1 à G_2 (Fig. 2).
- Lors du passage en $\theta = + \theta_{2m}$ (déviation maximale dans le sens positif), à la date t_4 , l'enfant s'assoit de nouveau instantanément (Fig. 4), abaissant ainsi son centre d'inertie de G_2 à G_1 .
- **1.** Montrer que l'expression de la période T des oscillations de (S) est donnée par : $T = \pi(\frac{\sqrt{\ell_1 + \sqrt{\ell_2}}}{\sqrt{g}})$.
- 2. Juste avant le passage en $\theta = 0$, à l'instant t_1^- , l'enfant commence à se lever, ce qui se traduit par $r(t_1^-) = \ell_1$ et juste après, à l'instant t_1^+ , l'enfant termine sa montée, ce qui se traduit par $r(t_1^+) = \ell_2$.
- a) Considérons la grandeur physique $K(t) = mr^2 \dot{\theta}$ où r = OG, r pouvant être égal à ℓ_1 ou ℓ_2 . Que représente K(t)? Expliquer pourquoi $K(t_1^-) = K(t_1^+)$.
- **b**) Soient $\dot{\theta}_0^-$ et $\dot{\theta}_0^+$ respectivement les vitesses angulaires de (S) aux dates (t_1^-) et (t_1^+) . Déterminer, en fonction de ℓ_1 et ℓ_2 , l'expression du rapport $\dot{\theta}_0^+/\dot{\theta}_0^-$.
- c) En déduire que $\theta_{2m}/\theta_{0m} = \ell_1^3/\ell_2^3$, θ_{0m} et θ_{2m} sont respectivement les amplitudes angulaires de (S) aux dates t_0 et t = T.
- **3. a)** Après n oscillations, l'amplitude s'écrit θ_{2nm} . Déterminer l'expression de θ_{2nm}/θ_{0m} en fonction de ℓ_1 et ℓ_2 .
- **b**) Calculer n pour avoir $\theta_{2nm} = 10^{\circ}$, avec $\ell_1 = 2.0$ m, $\ell_2 = 1.8$ m et $\theta_{0m} = 0.05$ rad.

Concours d'entrée 2016-2017

Solution de Physique

Juillet 2016 Durée 2 h

(Bac Libanais)

Exercice I- [12 pts] Interférences

Q		Notes
1.a)	M centre d'une frange brillante, $\delta = k\lambda \Rightarrow k\lambda = \frac{ax}{D} \Rightarrow$	2.5
	Pour la frange d'ordre k: $x_k = \frac{k\lambda D}{a}$.	
	Four la frange d'ordre $k-1$. $\lambda_{k-1} = \frac{1}{a}$.	
	L'interfrange $i = x_k - x_{k-1} = \frac{\lambda D}{a}$. $i = \frac{589 \times 10^{-9} \times 1,0}{1.0 \times 10^{-3}} = 0,589 \times 10^{-3} \text{ m ou } 0,589 \text{ mm.}$	
b)	$\frac{x}{i} = \frac{5.6}{0.589} = 9.5 \Rightarrow x = 9.5$ i, ainsi N est le centre de la dixième frange obscure et son ordre est k = 9.	2.5
	1 0,589	at the
2.	La nouvelle position O' du centre de la frange centrale est : $x = 9.5$ i = 5.6 mm.	3.5
	$FF_2 + F_2O' = FF_1 + F_1O' \Rightarrow F_2O' - F_1O' = FF_1 - FF_2$. Puisque $F_2O' > F_1O' \Rightarrow FF_1 > FF_2 \Rightarrow$ donc la source F est	
	déplacée vers le bas. De même $\frac{ax}{D} = \frac{az}{d} \Rightarrow z = \frac{xd}{D} = \frac{5.6 \times 10^{-3} \times 0.2}{1.0} = 1.12 \times 10^{-3} \text{ m ou } 1.12 \text{ mm.}$	
	D a D 1,0	
3.	Pour le centre de la frange centrale la différence de marche optique est nulle: $\delta = \frac{ax}{p} + e(n-1) = 0, \Leftrightarrow$	3.5
	$e(n-1) = \frac{-a x}{D}$, donc $x < 0$ et $x = -b$, alors le centre de la frange centrale se déplace vers le bas. $\Rightarrow e(n-1) = \frac{ab}{D}$	
	\Rightarrow e(1,5-1) = $\frac{1 \times 10^{-3} \times 10 \times 10^{-3}}{1,0}$. Soit e = 20×10 ⁻⁶ m ou 20 μm.	

Exercice II : [24 pts] À propos de l'énergie

Q		Notes
A-1. a)	$\begin{array}{c} \text{Comme } \tau = R_1 C, \text{ alors } \tau = 10^3 \times 10^{-6} = 10^{-3} \text{ s ou 1 ms.} \\ \text{\grave{A} la date t, } i = C \frac{du}{dt} = C \frac{E}{\tau} e^{-\frac{t}{\tau}} \implies i = \frac{E}{R_1} e^{-\frac{t}{\tau}} \end{array}$	2
b)	Voir figure	2
2.a)	Comme la puissance dissipée par effet Joule s'écrit : $P_J = R_1 i^2$, alors : $P_J = \frac{E^2}{R_1} e^{-2\frac{t}{\tau}}$.	0.5
b)	$\begin{split} L'\text{\'e}nergie \ dissip\'ee \ par \ le \ circuit \ au \ cours \ de \ la \ charge \ W_J = \int_0^\infty P_J \ dt. \\ W_J = \int_0^\infty \frac{E^2}{R_1} e^{-\frac{2t}{\tau}} \ dt = \frac{E^2}{R_1} [-\frac{\tau}{2} \ e^{-\frac{2t}{\tau}}]_0^\infty = \frac{E^2}{R_1} \times \frac{\tau}{2} = \frac{1}{2} \ CE^2 = \frac{1}{2} \ 1 \times 10^{-6} \ 4^2 = 8 \times 10^{-6} \ J. \end{split}$	2.5
c)	L'énergie emmagasinée par le condensateur est donnée par : $W_0 = \frac{1}{2}$ CE², car, à la fin de la charge $u = E = 4$ V. Ainsi : $W_0 = \frac{1}{2}$ $10^{-6} \times 4^2 = 8 \times 10^{-6}$ J.	1
d)	$W = W_J + W_0 = 16 \times 10^{-6} J.$	1
B-1. a)	À la date $t_0 = 0$, l'énergie W_1 emmagasinée = L'énergie emmagasinée initialement par le circuit LC s'écrit : $W_1 = \frac{1}{2}$ Cu ² + $\frac{1}{2}$ Li ² = $\frac{1}{2}$ CE ² , car à $t_0 = 0$, $u_0 = E$ et $i_0 = 0$. $W_1 = 8 \times 10^{-6}$ J.	1
b) i)	À l'intersection, $u_2 = 1,7$ V. La valeur de l'intensité i : $i = u_2/R_2 = 1,7/4,0 \times 10^2 = 4,25 \times 10^{-3}$ A.	1.5
ii)	L'énergie électromagnétique W_2 emmagasinée : $W_2 = \frac{1}{2} Cu^2 + \frac{1}{2} Li^2 = \frac{1}{2} \times 10^{-6} \times 1,7^2 + \frac{1}{2} \times 0,4 \times (4,25 \times 10^{-3})^2 = 1,45 \times 10^{-6} + 3,61 \times 10^{-6} = 5,06 \times 10^{-6} J.$	2.5
c)	Initialement $W_1 = 8,0.10^{-6}$ J. Lorsque les courbes se coupent $W_2 = 5,06.10^{-6}$ J L'énergie dissipée par (R_2) entre les instants $t_0 = 0$ et t_1 , vaut : $W_{\text{dissip}} = W_1 - W_2 = 2,94 \times 10^{-6}$ J	1
2.a)	L'énergie dissipée par (R ₂) entre les instants t ₀ =0 et t ₁ , vaut : $W_{dissip} = W_1 - W_2 = 2,94 \times 10^{-6} \text{ J}$ D'après la loi d'additivité des tensions : $u_{AM} = u_{AB} + u_{BM}$, où $u_{AM} = u$, $u_{AB} = -L\frac{di}{dt}$ et $u_{BM} = -R_2i$, avec $i = \frac{dq}{dt}$ et $q = C$ u. Ainsi, $i = C\frac{du}{dt} \Rightarrow u_{AB} = -LC\frac{d^2u}{dt^2}$ et $u_{BM} = -R_2C\frac{du}{dt}$. Ainsi : $u = -LC\frac{d^2u}{dt^2} - R_2C\frac{du}{dt} \Rightarrow \frac{d^2u}{dt^2} + \frac{R_2}{L}\frac{du}{dt} + \frac{1}{LC}u = 0 \Leftrightarrow \ddot{u} + 2\lambda\dot{u} + \omega_0^2u = 0$, où $\lambda = \frac{R_2}{2L}$ et $\omega_0 = \sqrt{\frac{1}{LC}}$.	2
b) i)	$\delta = \ln\left(\frac{u(t)}{u(t+T)}\right) = \ln\left(\frac{B e^{-\lambda t} \cos(\omega t - \phi)}{B e^{-\lambda(t+T)} \cos(\omega(t+T)) - \phi}\right) = \ln\left(e^{\lambda T}\right). \text{ Ainsi, } \delta = \lambda \cdot T.$	1.5
ii)	On a T = 4,2 ms. $\delta = \ln\left(\frac{4}{0.6}\right)$ qui donne : $\delta = 1,99$, par suite : $\lambda = \frac{\delta}{T} = \frac{1,99}{4,2 \times 10^{-3}} = 474 \text{ s}^{-1}$.	2.5
	$\begin{split} \grave{A} t_0 &= 0, u = 4 V et u_R = R_2 i = 0 \Rightarrow i = 0. u = B e^{-\lambda t} \cos \left(\omega t - \phi\right), \grave{a} t_0 = 0, u = B \cos(\phi) = 4 \Rightarrow \cos(\phi) > 0. \\ i &= C \frac{du}{dt} = C B \left[-\lambda e^{-\lambda t} \cos \left(\omega t - \phi\right) - \omega e^{-\lambda t} \sin \left(\omega t - \phi\right) \right], \grave{a} t_0 = 0, i = -C B \left[\lambda \cos \phi - \omega \sin(\phi) \right] = 0. \\ tan\phi &= \frac{\lambda}{\omega} = \frac{\lambda \cdot T}{2\pi} = \frac{1,99}{2\pi} = 0,316 \Rightarrow \phi = 0,306 \text{rad}. B \cos(\phi) = 4 \Rightarrow B = \frac{4}{\cos(0,306)} = 4,2 V. \end{split}$	3

Exercice III: [24 pts] Balançoire

Q		Notes
A-1. a)	L'énergie mécanique, $E_m = \frac{1}{2} I \cdot \dot{\theta}^2 + mgz \implies E_m = \frac{1}{2} m\ell^2 \dot{\theta}^2 + mgz$. Comme $z = -\ell \cos\theta$, alors, $E_m = \frac{1}{2} m\ell^2 \dot{\theta}^2 - mg\ell \cos\theta$.	2
b)	Pas de frottement, donc conservation de l'énergie mécanique, E_m = constante.	2.5
0)	En dérivant par rapport au temps : $m\ell^2 \dot{\theta}\ddot{\theta} + mg\ell\sin\theta\dot{\theta} = 0 \Rightarrow \ell \ddot{\theta} + g\sin\theta = 0 \forall t \text{ car } \dot{\theta} \text{ n'est pas toujours}$	2.3
	nulle. Pour θ faible, $\ddot{\theta} + \frac{g}{\ell} \theta = 0$.	<u> </u>
c)	La forme générale de cette équation différentielle est : $\ddot{\theta} + \omega_0^2 \theta = 0$, on a alors des oscillations harmoniques	1.5
	simples de pulsation propre ω_0 . Par comparaison, $\omega_0^2 = \frac{g}{\ell}$. Comme $\omega_0 = \frac{2\pi}{T_0}$, ce qui donne : $T_0 = 2\pi \sqrt{\frac{\ell}{g}}$.	
d)	La date τ à laquelle (S) atteint, pour la première fois, l'élongation $\theta = 0$ rad est $\tau = T_0/4 = \frac{\pi}{2} \sqrt{\frac{\ell}{g}}$.	0.5
2.a)	La vitesse angulaire s'exprime par : $\dot{\theta} = -\frac{2\pi}{T_0} \theta_{\rm m} \sin(\frac{2\pi}{T_0} t + \phi)$.	2
	$\dot{\mathbf{A}} \mathbf{t}_0 = 0, \dot{\mathbf{\theta}}_0 = -\frac{2\pi}{T_0} \mathbf{\theta}_{\mathrm{m}} \sin(\phi) = 0 \Rightarrow \phi = 0 \text{ ou } \pi \text{ rad. } \dot{\mathbf{A}} \mathbf{t}_0 = 0, \theta = \theta_{\mathrm{m}} \cos(\phi) > 0 \Rightarrow \phi = 0 \text{ rad}$	
	et $\theta_{\rm m} = \theta_{\rm 0}$. Ainsi : $\theta = \theta_{\rm m} \cos(\frac{2\pi}{T_{\rm o}} t)$.	
b)	L'expression de la vitesse angulaire $\dot{\theta}$ est alors donnée par : $\dot{\theta} = -\frac{2\pi}{T_0} \theta_{\rm m} \sin(\frac{2\pi}{T_0} t)$.	1
	Par suite, l'amplitude de $\dot{\theta}$ s'écrit : $\dot{\theta}_{m} = \frac{2\pi}{\Gamma_{0}} \theta_{m} = \sqrt{\frac{g}{\ell}} \theta_{m}$.	d
c)	Pour $\ell = 2.0$ m et $\theta_0 = 0.05$ rad : $\theta_m = 0.05$ rad ; $\dot{\theta}_m = \sqrt{\frac{9.8}{2}} \times 0.05 = 0.111$ rad/s et $T_0 = 2.84$ s.	1.5
B-1.	Pour $\ell = \ell_1$, $T_1 = 2\pi \sqrt{\frac{\ell_1}{g}}$ et pour $\ell = \ell_2$, $T_2 = 2\pi \sqrt{\frac{\ell_2}{g}}$.	2.5
	Pour $\ell = \ell_1$, $t_1 = \frac{\pi}{2} \sqrt{\frac{\ell_1}{g}}$ et de t_1 à t_2 se passe $\frac{1}{4}$ de T_2 . Ainsi : $t_2 = t_1 + \frac{\pi}{2} \sqrt{\frac{\ell_2}{g}} = \frac{\pi}{2} \sqrt{\frac{\ell_1}{g}} + \frac{\pi}{2} \sqrt{\frac{\ell_2}{g}} = \frac{\pi}{2} (\sqrt{\frac{\ell_1}{g}} + \sqrt{\frac{\ell_2}{g}})$.	4
	Par suite, l'expression de la période T des oscillations de (S) est donnée par : $T = 2$ $t_2 = \pi(\frac{\sqrt{\ell_1 + \sqrt{\ell_2}}}{\sqrt{g}})$.	
2. a)	La grandeur physique $K(t) = mr^2\dot{\theta}$ est le moment cinétique de (S) par rapport à (Δ) à une date t .	2.5
	Entre les dates t_1^- et t_1^+ , (S) est soumis à son poids \vec{P} , force verticale passant par O et à la réaction de l'axe (Δ) en O. Donc Σ moments/(Δ) = 0. Ainsi, on a la conservation du moment cinétique et par suite : $K(t_1^-)=K(t_1^+)$.	
b)	$K(t_{1}^{+}) = M(t_{1}^{+}).$ $K(t_{1}^{+}) = M(t_{1}^{+}) \stackrel{\cdot}{\theta_{0}} \text{ et } K(t_{1}^{+}) = M(t_{2}^{+}) \stackrel{\cdot}{\theta_{0}} + K(t_{1}^{+}) \Rightarrow M(t_{1}^{+}) \stackrel{\cdot}{\theta_{0}} = M(t_{2}^{+}) \stackrel{\cdot}{\theta_{0}} + M(t_{2}^{+}) \stackrel{\cdot}{\theta_{0}} = M(t_{2}^{+}) \stackrel{\cdot}{\theta_{0}} = M(t_{2}^{+}) \stackrel{\cdot}{\theta_{0}} + M(t_{2}^{+}) \stackrel{\cdot}{\theta_{0}} = M(t_{2}^{+}) \stackrel{\cdot}{$	2
ŕ	Par suite: $\dot{\theta}_0^+/\dot{\theta}_0^- = \ell_1^2/\ell_2^2$.	
c)	L'amplitude de la vitesse angulaire est donnée par : $\dot{\theta}_0^- = \sqrt{\frac{g}{\ell_1}} \theta_{0m}$ et $\dot{\theta}_0^+ = \sqrt{\frac{g}{\ell_2}} \theta_{1m}$. Avec $\dot{\theta}_0^+/\dot{\theta}_0^- = \ell_1^2/\ell_2^2$ et	3.5
	$\dot{\theta}_{0}^{+}/\dot{\theta}_{0}^{-} = \sqrt{\frac{g}{\ell_{2}}} \theta_{1m}/\sqrt{\frac{g}{\ell_{1}}} \theta_{0m} = \sqrt{\frac{\ell_{1}}{\ell_{2}}} \theta_{1m}/\theta_{0m}. \text{Ainsi} : \ell_{1}^{2}/\ell_{2}^{2} = \sqrt{\frac{\ell_{1}}{\ell_{2}}} \theta_{1m}/\theta_{0m}. \text{Par suite} : \theta_{1m}/\theta_{0m} = \sqrt{\frac{\ell_{2}}{\ell_{1}}} \ell_{1}^{2}/\ell_{2}^{2}$	
	En descendant dans le sens positif : $\theta_{2m}/$ $\theta_{1m} = \sqrt{\frac{\ell_2}{\ell_1}} \ \ell_1^2/\ell_2^2, \ \theta_{2m}/\theta_{0m} = \sqrt{\frac{\ell_2}{\ell_1}} \ \ell_1^2/\ell_2^2 \times \sqrt{\frac{\ell_2}{\ell_1}} \ \ell_1^2/\ell_2^2 = \ell_1^3/\ell_2^3.$	
3.a)	$\theta_{2nm}/\theta_{0m} = (\ell_1^3/\ell_2^3)^n = \ell_1^{3n}/\ell_2^{3n}$	1
	$\theta_{2\text{nm}}/\theta_{0\text{m}} = (2^3/1, 8^3)^{\text{n}} = 1, 11^{3\text{n}} = 0, 1745/0, 05 = 3, 49 \Rightarrow 3 \text{ n ln}(1, 11) = \text{ln } (3, 49) \Rightarrow \text{n} = 3, 99 \approx 4.$	1.5

Concours d'entrée 2016-2017

Physique (Programme Bac Français)

Juillet 2016 Durée 2 h

Exercice I : [10 pts] Décollage de la fusée Soyouz

Une fusée Soyouz est constituée d'un corps cylindrique de 51 mètres de haut entouré de quatre boosters de 19,6 mètres de haut. Ces boosters sont destinés à emporter la fusée durant la phase de décollage, mais consomment très rapidement les 160 tonnes de carburant qu'ils contiennent et se détachent du corps de la fusée après seulement 2 minutes et 10 secondes de vol. Nous allons étudier ici la trajectoire d'un booster après qu'il se soit détaché de la fusée.

Soit le repère (O; \vec{i} ; \vec{k}) lié au sol à la verticale de l'endroit où est lâché le booster. Il pourra être considéré comme galiléen pour l'étude suivante. Le booster étudié sera assimilé à son centre de gravité G. À l'instant $t_0 = 0$ (130 secondes après le décollage), il est décroché de la fusée avec une vitesse initiale $V_0 = 1,82 \text{ km} \cdot \text{s}^{-1}$ et son vecteur vitesse fait alors un angle $\alpha = 63,0^{\circ}$ avec la verticale. Cette séparation est effectuée en A à une altitude h = 53,4 km. À cette altitude, la densité de l'atmosphère est très faible et nous pouvons négliger l'influence des frottements sur le booster. Par ailleurs, la valeur de l'intensité de la pesanteur pourra être considérée comme constante et égale à 9,60 m·s⁻². Le plan horizontal contenant Ox est le niveau de référence de l'énergie potentielle de pesanteur.

- 1. Montrer, en appliquant la deuxième loi de Newton au centre de gravité du booster, après le décrochage de la fusée, que les coordonnées du vecteur position \overrightarrow{OG} sont données par :
- $x = (V_0 \sin \alpha) t$ et $z = -\frac{1}{2}gt^2 + V_0 \cos \alpha t + h$.
- 2. a) Que dire de la vitesse du booster au sommet S de sa trajectoire ?
 - b) En déduire l'altitude maximale H qu'atteint le booster avant de commencer à retomber.
- 3. En utilisant la conservation de l'énergie mécanique, déterminer la valeur de la vitesse du booster en un point C à l'altitude 50,0 km et en déduire la valeur algébrique de la composante verticale de cette vitesse.

Exercice II: [14 pts] Quand les astrophysiciens "voient rouge"

Dans cet exercice, on se propose de déterminer la vitesse d'éloignement d'une galaxie puis sa distance par rapport à un observateur terrestre. Prendre $c = 3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$.

A- L'effet Doppler

Pour des vitesses largement inférieures à la célérité « c » de la lumière, on se cadre non-relativiste.

Fig. 1 place dans le

1. Choisir, en le justifiant, la relation entre λ_0 , la longueur d'onde mesurée en observant une source immobile, et λ' , la longueur d'onde mesurée en observant la même source s'éloignant à la vitesse « v » :

(1)
$$\lambda' = \frac{\mathbf{v}}{\mathbf{c}} \times \lambda_0$$
; (2) $\lambda' = (1 - \frac{\mathbf{v}}{\mathbf{c}}) \times \lambda_0$; (3) $\lambda' = (1 + \frac{\mathbf{v}}{\mathbf{c}}) \times \lambda_0$.

2. Montrer que l'expression de la vitesse v de la galaxie est : $v = c(\frac{\lambda t}{\lambda_0} - 1)$

3. a) Tirer, des deux figures 1 et 2, les valeurs des longueurs d'onde $\lambda_{0\alpha}$, $\lambda_{0\beta}$ et $\lambda_{0\gamma}$ respectivement des raies H_{α} , H_{β} et H_{γ} , du spectre de l'hydrogène sur Terre, ainsi que celles des longueurs d'onde λ'_{α} , λ'_{β} et λ'_{γ} de ces mêmes raies lorsqu'elles sont issues de la galaxie TGS153Z170.

b) Calculer la valeur de la vitesse de la galaxie

TGS153Z170 en travaillant avec les valeurs de la raie H_{β} . On donne la relation d'incertitude suivante pour la vitesse : $U(v) = \sqrt{2} \ c \, \frac{U(\lambda)}{\lambda \prime}$. On exprimera le résultat sous la forme : $v \pm U(v)$. Les valeurs numériques sur les spectres sont données à ± 1 nm.

4. Dans le cadre relativiste ($v \approx c$), on montre que la vitesse a pour expression : $v_{rel} = c \frac{\left(\frac{\lambda'}{\lambda}\right)^2 - 1}{\left(\frac{\lambda'}{\lambda}\right)^2 + 1}$

Pour la galaxie TGS153Z170, on trouve : $v_{rel} = (1,27 \pm 0,09) \times 10^7 \text{ m} \cdot \text{s}^{-1}$. Si l'écart relatif entre les deux vitesses précédemment calculées est inférieur à 5%, on peut choisir le modèle non relativiste plus simple à utiliser. Justifier le choix du modèle non-relativiste pour la suite de l'exercice.

B- Décalage vers le rouge

- 1. En comparant les longueurs d'onde λ_0 et λ' , justifier l'expression « décalage vers le rouge».
- 2. On définit le décalage spectral relatif défini par $z = \frac{\lambda' \lambda_0}{\lambda_0}$. Déterminer le décalage spectral relatif $z(\alpha)$, $z(\beta)$ et $z(\gamma)$ respectivement pour chacune des raies H_{α} , H_{β} et H_{γ} .
- 3. En déduire la meilleure estimation de z pour la galaxie TGS153Z170.
- 4. À l'aide de la définition de z, montrer que : $z = \frac{v}{c}$.
- 5. Calculer la nouvelle valeur de la vitesse d'éloignement de la galaxie. Expliquer pourquoi cette valeur est plus précise que celle calculée dans A-3.

Exercice III: [14 pts] UN TROU NOIR MASSIF AU CENTRE DE LA GALAXIE **Document**

Depuis plusieurs années les astronomes tournent un regard de plus en plus acéré vers le centre de notre galaxie, soupçonné d'abriter un trou noir extrêmement massif. L'orbite d'une étoile particulière a permis de démontrer l'existence d'un trou noir⁽¹⁾ de 3 à 4 millions de masses solaires.

C'est dans la période du printemps et de l'été 2002 que les choses se sont cristallisées. La chance a voulu que d'une part l'une des étoiles surveillées dénommée S2 - est passée au plus proche du centre de masse durant cette période et que, d'autre part, cette approche s'est faite à une distance remarquablement petite : seulement 17 heures-lumière.

Le fait que la trajectoire soit restée purement képlérienne⁽²⁾ a ainsi permis d'éliminer définitivement toute possibilité que la masse de quelques millions

Position du corps Étoile S2 sombre massif

Fig. 1

de masses solaires soit sous forme d'un amas dense stellaire sombre. En effet, la taille de toutes ces structures est bien plus grande que les 17 heures-lumière de la distance d'approche. Seule reste la possibilité du trou noir très massif.

D'après http://www.cnrs.fr/publications/imagesdelaphysique/couv-PDF/ldP2005/10Rouan.pdf

Données numériques :

Constante de gravitation universelle :

 $G = 6.67 \times 10^{-11} \text{ m}^3.\text{s}^{-2}\cdot\text{kg}^{-1}$

Masse du Soleil : $M_S = 2,00 \times 10^{30} \text{ kg}$ Célérité de la lumière dans le vide :

 $c = 3.00 \times 10^8 \text{ m} \cdot \text{s}^{-1}$

Une heure-lumière est la distance parcourue par la

lumière dans le vide en une heure.

(1). Trou noir: en astrophysique, un trou noir est un corps extrêmement massif dont le champ gravitationnel est si intense qu'il empêche toute forme de matière ou de rayonnement de s'en échapper. De tels objets n'émettent donc pas de lumière et sont alors percus comme étant noirs.

(2) Képlérienne : qui suit les lois de Kepler.

Ouestions

- 1. Énoncer la première loi de Kepler et, à partir de celle-ci, expliquer comment la détermination de la trajectoire de l'étoile S2 a permis de justifier l'existence d'un trou noir très massif au centre de la galaxie.
- 2. Pour déterminer un ordre de grandeur de la masse M du trou noir, on considère dans cette question que l'étoile S2, de masse m, décrit une orbite circulaire de rayon r = 132 heures-lumière, la période de révolution étant T = 15,2 ans.
- a) Énoncer la deuxième loi de Kepler, et montrer d'après cette loi, dans l'approximation d'une trajectoire circulaire, que le mouvement de l'étoile S2 est uniforme.
- b) Établir, à partir de la deuxième loi de Newton, l'expression de la valeur de la vitesse v de l'étoile S2.
- c) En déduire l'expression de la période de révolution T de l'étoile.
- d) Déterminer la valeur de la masse M du trou noir et la comparer à celle annoncée dans le document.

Exercice IV : [10 pts] Le muon, explorateur de volcan Données :

- masse du muon : $m_{\mu} = 105,\!66~MeV\cdot c^{-2}$; 1 MeV = 1,60×10^{-13} J ; 1 GeV = 10^3 MeV ; $c = 2,\!9979\times 10^8~m.s^{-1}$; $g = 10~N.kg^{-1}$
- Facteur de Lorentz : $\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$ où v est la valeur de la vitesse de la particule dans le référentiel du laboratoire ;

énergie d'une particule de masse m en mouvement : $E = \gamma \text{ mc}^2$;

Document 1 : Les muons

Découverts en 1936, les muons sont produits à grande hauteur dans l'atmosphère (5 à 30 km) à partir du rayonnement cosmique primaire.

Le muon porte une charge électrique négative. Dans le même champ magnétique et à vitesse égale, sa trajectoire est moins incurvée que celle d'un électron mais plus incurvée que celle d'un proton. En admettant que sa charge électrique négative est égale à celle de l'électron, on déduit que le muon a une masse de valeur comprise entre celle de l'électron et celle du proton.

Un muon, voyageant avec une vitesse v très élevée, de l'ordre de 0,9994 c, créé à une hauteur de 20,0 km doit mettre environ 67 µs pour arriver au sol. Mais cette durée représente 30 fois la durée de vie du muon...

Document 2 : Principe de la radiographie muonique

La radiographie muonique utilise les muons quasi-horizontaux : ceux-ci sont absorbés par les roches à travers lesquelles ils sont passés. Plus les roches sont denses, plus les muons sont absorbés.

Au niveau du sol, le flux moyen de muons est d'environ 1 muon par cm² et par minute. Chaque muon perd en moyenne 2,00 MeV par cm de roche traversée. Les muons ordinaires ont une énergie moyenne de 4,00 GeV. Cependant, certains muons possèdent une énergie très importante, supérieure à 1000 GeV, leur permettant de traverser plusieurs centaines de mètres de roche avant de se désintégrer. Ce sont ces particules qui sont utilisées pour radiographier les volcans. Des détecteurs (dits télescopes) comportant des matrices de détecteurs sont placés en contrebas du volcan pour compter et déterminer les trajectoires des muons possédant suffisamment d'énergie pour traverser le massif rocheux de l'ordre de 500 m. En comparant le flux de muons ayant traversé le volcan au flux mesuré à ciel ouvert, il est possible de connaître la quantité de matière que les muons ont rencontrée pendant leur traversée.

D'après Reflets de la physique, article 32, Janvier 2013

A- Dilatation des durées

- 1. Retrouver, à l'aide d'un calcul, l'estimation faite de la valeur du temps de parcours d'un muon créé à une altitude de 20,0 km pour arriver jusqu'au sol.
- **2.** Expliquer, sans calcul et en précisant le référentiel propre et le référentiel de mesure, en quoi la détection d'un nombre important de muons au niveau de la surface terrestre constitue une preuve expérimentale de la « dilatation » des durées.
- 3. Justifier l'affirmation « Ces muons ont un temps de vie environ égal à 30 fois leur temps de vie au repos ».

B- Les muons pour la tomographie d'un volcan

La tomographie est une technique d'imagerie permettant de reconstruire le volume d'un objet à partir d'une série de mesures.

- **1.** Expliquer pourquoi un muon ordinaire d'énergie moyenne de 4,00 GeV ne peut pas être utilisé pour radiographier un volcan.
- 2. a) Déterminer la valeur du rapport $\frac{v}{c}$ où v est la valeur de la vitesse d'un muon ordinaire d'énergie 4.00 GeV.
- b) En déduire que les muons utilisés pour la radiographie volcanique sont qualifiés d'«ultra-relativistes».

Exercice V : [12 pts] Effet piézoélectrique

La déformation, sous l'effet d'une action mécanique, de certains cristaux, induit l'apparition d'une tension électrique U; c'est l'effet piézoélectrique direct, découvert en 1880 par Pierre et Jacques Curie.

Le capteur photographié sur la figure 1, de diamètre d ≈1 cm, possède un comportement tels que des charges

électriques apparaissent sur les faces soumises à l'action mécanique modélisée par les deux forces opposées de module F; une charge électrique +Q (Q>0) apparaît sur la face supérieure tandis qu'une charge -Q apparaît sur l'autre face. Le module F de la force et la charge Q sont proportionnels ; le coefficient de proportionnalité β est appelé constante piézoélectrique.

La charge Q est également proportionnelle à la tension électrique U qui apparaît entre les deux faces : Q = C.U où la charge Q est exprimée en coulomb, U en volt et C en farad (F)..

Pour le capteur de la figure 1 : $\beta = 5,00 \times 10^{-5}$ C.N⁻¹ et C = 125×10^{-12} F (farad). On souhaite utiliser le capteur piézoélectrique de la figure 1, connecté aux bornes d'un voltmètre, pour mesurer des niveaux d'intensité sonore. Le voltmètre possède un CAN 16 bits et les calibres \pm 20 mV ; \pm 200 mV \pm 2 V ; \pm 20 V .

Fig. 1 : Exemple de capteur piézoélectrique

Données:

- L'intensité sonore I, en un point M du milieu de propagation, et l'amplitude P de la pression acoustique en ce point est donnée par : $I = \frac{P^2}{2\rho c}$, où ρ désigne la masse volumique du milieu de propagation et c la célérité de l'onde sonore dans ce milieu. Valeurs de l'intensité sonore de référence I_0 et de P_0 , l'amplitude de la pression acoustique de référence liée à I_0 : $I_0 = 1,0 \times 10^{-12}$ W.m⁻²; $P_0 = 2 \times 10^{-5}$ Pa.

1. Montrer que le niveau d'intensité sonore L et la pression p sont reliés par la relation : L = $20 \log \frac{P}{P_0}$.

Fig. 2 : Un voltmètre numérique.

- 2. Sachant que la pression est définie $p = \frac{F}{S}$, où S est la surface de ce capteur, montrer que, sur la calibre \pm 200 mV, le voltmètre affiche une tension proche de 0,2 V quand le capteur piézoélectrique perçoit un son dont le niveau d'intensité sonore vaut L = 50 dB.
- 3. Pour le calibre ± 200 mV, le multimètre affiche une tension de 199,02 mV.
- a) Indiquer le pas du CAN de ce multimètre.
- b) Ce format d'affichage paraît-il approprié compte tenu de la résolution du CAN? Justifier.
- c) Évaluer l'incertitude relative, due au pas du CAN, portant sur une mesure de 199,02 mV.
- 4. Sachant qu'un sonomètre doit être capable de mesurer des niveaux d'intensité sonore allant de 30 dB à 130 dB, peut-on prévoir d'utiliser ce capteur pour réaliser un sonomètre ?

Examen d'entrée 2016-2017

Solution Physique (Bac Français)

Juillet 2016 Durée 2 h

Exercice I : Décollage de la fusée Soyouz

Q		Notes
1.	Référentiel terrestre (galiléen), force : poids $\vec{P} = m\vec{g}$.	4
	À la date $t_0 = 0$, $x_0 = 0$ et $y_0 = h$ et $v_{0x} = V_0 \sin \alpha$ et $v_{0z} = V_0 \cos \alpha$.	
	Deuxième loi de Newton, $\vec{ma} = \vec{mg}$. $\Rightarrow \vec{a} = \vec{g}$. $a_x = 0$ et $a_z = -g$.	
	$a_x = \frac{dV_x}{dt} = 0 \Rightarrow \text{par intégration } V_x = \text{cte} = V_0 \sin \alpha$	
	$a_z = \frac{dV_y}{dt} = -g \Rightarrow \text{par intégration } V_z = -gt + V_0 \cos\alpha.$	
	$v_x = \frac{dx}{dt} = V_0 \sin \alpha \implies \text{par intégration } x = V_0 \sin \alpha t.$	
	$v_z = \frac{dy}{dt} = -gt + V_0 \cos\alpha$. \Rightarrow par intégration $y = -\frac{1}{2}g t^2 + V_0 \cos\alpha t + h$.	
2. a)	En S, le vecteur vitesse est horizontal, $v_{yS} = 0$ et $v_{xS} = v_{0x} = V_0 \sin \alpha$.	0.75
2. b)	En S, $v_{zS} = -gt + V_0 \cos \alpha = 0 \Rightarrow t_S = \frac{1,82 \times 10^3 \cos 63^0}{9,6} = 86,0 \text{ s.}$	2
	l'altitude maximale H est donnée par :	
	$H = z = -\frac{1}{2}9,6.86,1^2 + 1,82 \times 10^3 \cos 63^\circ \times 86,1 + 53,4 \times 10^3 = 8,90 \times 10^4 \text{ m ou } 89,0 \text{ km.}$	7
3.	En A, $E_m(A) = E_C + E_{PP} = \frac{1}{2} mv_0^2 + mgh$ et en C, $E_m(C) = E_C + E_{PP} = \frac{1}{2} mv_{CS}^2 + mgh_C$.	3.25
	D'après la conservation de l'énergie mécanique : $E_m(C) = E_m$.	
	$v_C^2 = 2g(h - h_C) + v_0^2 \Leftrightarrow v_C^2 = 2 \times 9,6(53,4-50,0) \times 10^3 + (1,82 \times 10^3)^2 \Leftrightarrow v_C = 1,84 \times 10^3 \text{ m/s}.$	
	$v_{Cz}^2 = v_C^2 - v_{Cx}^2 = (1.838 \times 10^3)^2 - (1.82 \times 10^3 \sin 63^\circ)^2 = 7.4855 \times 10^5 \Rightarrow \text{Soit } v_{Cz} \approx -865 \text{ m/s}.$	
		10

Exercice II: Quand les astrophysiciens voient rouge

A La galaxie étudiée s'éloigne de l'observateur ; alors les longueurs d'onde observées λ' supérieures aux longueurs d'onde réelles λ_0 (Effet Doppler-Fizeau. Les propositions (1) et (2) donnent $\lambda' < \lambda_0$; la proposition (3) est donc possible, car elle de λ' légèrement supérieure à λ_0 . Ainsi : $\lambda' = (1 + \frac{v}{c}) \times \lambda_0$. 2. L'équation (3) donne : $c\lambda' = (c+v) \times \lambda_0 \Leftrightarrow c\frac{\lambda'}{\lambda_0} = c + v$. $\Rightarrow v = c(\frac{\lambda'}{\lambda_0} - 1)$ 3. Raie λ_0 sur Terre λ' sur la galaxie λ_0 sur λ' sur la galaxie λ' sur λ	0.75
supérieures aux longueurs d'onde réelles λ_0 (Effet Doppler-Fizeau. Les propositions (1) et (2) donnent $\lambda' < \lambda_0$; la proposition (3) est donc possible, car elle de λ' légèrement supérieure à λ_0 . Ainsi : $\lambda' = (1 + \frac{v}{c}) \times \lambda_0$. L'équation (3) donne : $c\lambda' = (c+v) \times \lambda_0 \Leftrightarrow c\frac{\lambda'}{\lambda_0} = c + v. \Rightarrow v = c(\frac{\lambda'}{\lambda_0} - 1)$ Raie λ_0 sur Terre λ' sur la galaxie H_α , 656 nm 683 nm H_β 486 nm 507 nm H_γ , 434 nm 451 nm b) On a : $v = c(\frac{\lambda'}{\lambda_0} - 1)$ pour la raie H_β , la valeur de v est : $v = 3,00 \times 10^8 (\frac{507}{486} - 1) = 1,30 \times 10^7$ m/s	1.5 onne 0.75
supérieures aux longueurs d'onde réelles λ_0 (Effet Doppler-Fizeau. Les propositions (1) et (2) donnent $\lambda' < \lambda_0$; la proposition (3) est donc possible, car elle de λ' légèrement supérieure à λ_0 . Ainsi : $\lambda' = (1 + \frac{v}{c}) \times \lambda_0$. L'équation (3) donne : $c\lambda' = (c+v) \times \lambda_0 \Leftrightarrow c\frac{\lambda'}{\lambda_0} = c + v. \Rightarrow v = c(\frac{\lambda'}{\lambda_0} - 1)$ Raie λ_0 sur Terre λ' sur la galaxie H_α , 656 nm 683 nm H_β 486 nm 507 nm H_γ , 434 nm 451 nm b) On a : $v = c(\frac{\lambda'}{\lambda_0} - 1)$ pour la raie H_β , la valeur de v est : $v = 3,00 \times 10^8 (\frac{507}{486} - 1) = 1,30 \times 10^7$ m/s	0.75 1.5
1. Les propositions (1) et (2) donnent $\lambda' < \lambda_0$; la proposition (3) est donc possible, car elle de λ' légèrement supérieure à λ_0 . Ainsi : $\lambda' = (1 + \frac{v}{c}) \times \lambda_0$. 2. L'équation (3) donne : $c\lambda' = (c+v) \times \lambda_0 \Leftrightarrow c\frac{\lambda'}{\lambda_0} = c + v. \Rightarrow v = c(\frac{\lambda'}{\lambda_0} - 1)$ 3. Raie λ_0 sur Terre λ' sur la galaxie H_α , 656 nm 683 nm H_β 486 nm 507 nm H_γ , 434 nm 451 nm b) On a : $v = c(\frac{\lambda'}{\lambda_0} - 1)$ pour la raie H_β , la valeur de v est : $v = 3.00 \times 10^8 (\frac{507}{486} - 1) = 1.30 \times 10^7$ m/s	0.75
$\lambda' \text{ légèrement supérieure à λ_0. Ainsi : $\lambda' = (1 + \frac{v}{c}) \times \lambda_0$.}$ $2. L'\text{équation (3) donne : } c\lambda' = (c+v) \times \lambda_0 \Leftrightarrow c\frac{\lambda'}{\lambda_0} = c + v. \Rightarrow v = c(\frac{\lambda'}{\lambda_0} - 1)$ $3. \text{Raie} \qquad \qquad \lambda_0 \text{ sur Terre} \qquad \qquad \lambda' \text{ sur la galaxie} \qquad \qquad$	0.75
2. L'équation (3) donne : $c\lambda' = (c+v) \times \lambda_0 \Leftrightarrow c\frac{\lambda'}{\lambda_0} = c + v. \Rightarrow v = c(\frac{\lambda'}{\lambda_0} - 1)$ 3. Raie λ_0 sur Terre λ' sur la galaxie λ'' sur la	1.5
2. L'équation (3) donne : $c\lambda' = (c+v) \times \lambda_0 \Leftrightarrow c\frac{\lambda'}{\lambda_0} = c + v. \Rightarrow v = c(\frac{\lambda'}{\lambda_0} - 1)$ 3. Raie λ_0 sur Terre λ' sur la galaxie λ'' sur la	1.5
$\begin{array}{ c c c c c c }\hline 3. & Raie & \lambda_0 & sur Terre & \lambda' & sur la galaxie \\ \hline H_{\alpha}, & 656 & nm & 683 & nm \\ \hline H_{\beta} & 486 & nm & 507 & nm \\ \hline H_{\gamma}, & 434 & nm & 451 & nm \\ \hline \\ b) & On a: v = c(\frac{\lambda'}{\lambda_0} - 1) & pour la raie H_{\beta}, la valeur de v est: v = 3,00×10^8 (\frac{507}{486} - 1) = 1,30×10^7 m/s \\ \hline \end{array}$	1.5
$\begin{array}{ c c c c c c }\hline 3. & Raie & \lambda_0 & sur Terre & \lambda' & sur la galaxie \\ \hline H_{\alpha}, & 656 & nm & 683 & nm \\ \hline H_{\beta} & 486 & nm & 507 & nm \\ \hline H_{\gamma}, & 434 & nm & 451 & nm \\ \hline \\ b) & On a: v = c(\frac{\lambda'}{\lambda_0} - 1) & pour la raie H_{\beta}, la valeur de v est: v = 3,00×10^8 (\frac{507}{486} - 1) = 1,30×10^7 m/s \\ \hline \end{array}$	1.5
$\begin{array}{ c c c c c c }\hline 3. & Raie & \lambda_0 & sur Terre & \lambda' & sur la galaxie \\ \hline H_{\alpha}, & 656 & nm & 683 & nm \\ \hline H_{\beta} & 486 & nm & 507 & nm \\ \hline H_{\gamma}, & 434 & nm & 451 & nm \\ \hline \\ b) & On a: v = c(\frac{\lambda'}{\lambda_0} - 1) & pour la raie H_{\beta}, la valeur de v est: v = 3,00×10^8 (\frac{507}{486} - 1) = 1,30×10^7 m/s \\ \hline \end{array}$	
a) H_{α} , 656 nm 683 nm H_{β} 486 nm 507 nm H_{γ} , 434 nm 451 nm b) On a : $v = c(\frac{\lambda'}{\lambda_0} - 1)$ pour la raie H_{β} , la valeur de v est : $v = 3,00 \times 10^8 (\frac{507}{486} - 1) = 1,30 \times 10^7$ m/s	
a) H_{α} , 656 nm 683 nm H_{β} 486 nm 507 nm H_{γ} , 434 nm 451 nm b) On a : $v = c(\frac{\lambda \prime}{\lambda_0} - 1)$ pour la raie H_{β} , la valeur de v est : $v = 3,00 \times 10^8 (\frac{507}{486} - 1) = 1,30 \times 10^7 \text{ m/s}$	(2) 3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	/2 3
H_{γ} , 434 nm 451 nm 451 nm b) On a : v = c($\frac{\lambda'}{\lambda_0}$ - 1) pour la raie H_{β} , la valeur de v est : v = 3,00×10 ⁸ ($\frac{507}{486}$ -1) = 1,30×10 ⁷ m/s	/ ₀ 3
b) On a : $v = c(\frac{\lambda'}{\lambda_0} - 1)$ pour la raie H_β , la valeur de v est : $v = 3.00 \times 10^8 (\frac{507}{486} - 1) = 1.30 \times 10^7 \text{ m/s}$	/2 3
7.0	10
7.0	S.
$\frac{1}{1000} = \sqrt{2.5,00 \times 10^{-100}} = 9 \times 10^{-100} = 9 \times 10^$	
507	
4. L'écart relatif est : $\frac{v_{\text{non}}-v_{\text{rel}}}{v_{\text{rel}}} = \frac{1,30-1,27}{1,27} = 0,024 = 2,4\%$ qui est inférieur à 5%, donc, on peu	1.5
T C1	
choisir le modèle non relativiste plus simple à utiliser.	
	0.75
B- Comme $\lambda_0 < \lambda'$ pour les trois raies, alors les longueurs d'onde des raies augmentent ce qui	i 0.75
1. justifie l'expression « décalage vers le rouge».	
2. le tableau ci-contre donne le La raie λ_0 (nm) λ' (nm) Décalage spectral relatif	z 1.5
décalage spectral relatif pour $H\alpha$ 656 683 0,0412	
chacune des raies H_{α} , H_{β} et H_{γ} . $H\beta$ 486 507 0,0432	
Hγ 434 451 0,0392	
3. nous pouvons diminuer cette imprécision en faisant la moyenne des trois valeurs :	1.5
$z_{\text{moy}} = \frac{0,0412 + 0,0392 + 0,0432}{3} = 0,0412.$	
$\frac{2 \text{moy}}{3} = 0.0412.$	
4. $v = c(\frac{\lambda'}{\lambda_0} - 1) \Rightarrow v = c(\frac{\lambda' - \lambda_0}{\lambda_0}), \text{ or } z = \frac{\lambda' - \lambda_0}{\lambda_0}.$ Ce qui montre que : $z = \frac{v}{c}$.	1
λ_0	
	. 1
5. On a : $v = c \times z = 3,00 \times 10^8 \times 0,0412 = 1,24 \times 10^7$ m/s. Cette valeur est, à priori, plus précise of	
précédente car elle est calculée à partir de la moyenne de trois mesures expérimentale et n	ion
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
pas sur une seule.	14

Exercice III:

	Notes
L'énoncé de la première loi de Kepler, appelée aussi loi des orbites, dans un référentiel héliocentrique , la trajectoire du centre d'une planète est une ellipse dont le centre du Soleil est l'un des foyers . On peut l'adapter à la situation présentée ici : dans le référentiel du trou noir, la trajectoire du centre de l'étoile S2 est une ellipse dont le centre du trou noir est l'un des foyers. Ainsi, la forme elliptique de la trajectoire de l'étoile S2 a permis de justifier l'existence d'un trou noir très massif au centre de la galaxie.	2
D'après la $2^{\text{ème}}$ loi de Kepler (ou loi des aires), le segment (rayon) TM (joignant T centre du trou noir à M centre de l'étoile S2) balaie des aires égales (en gris sur le schéma) pendant des durées Δt égales. La trajectoire (orbite) de l'étoile est supposée circulaire dans le référentiel lié au trou noir. Comme l'aire A_1 est égale à l'aire A_2 , cela implique que la distance parcourue par S2 sur la trajectoire est la même $(\widehat{\mathbf{M_1M_2}}) = (\widehat{\mathbf{M_3M_4}})$. Alors la vitesse est constante $\mathbf{v} = \frac{\widehat{\mathbf{M_1M_2}}}{\Delta t} = \frac{\widehat{\mathbf{M_3M_4}}}{\Delta t}$, le mouvement est uniforme .	2.5
On considère que l'étoile S_2 est soumise uniquement à la force d'attraction gravitationnelle du trou noir notée \vec{F} . $\vec{F} = -G\frac{M \cdot m}{r^2} \vec{u}$. Trajectoire est circulaire, alors $\vec{n} = -\vec{u}$. Ainsi $\vec{F} = G\frac{M \cdot m}{r^2} \vec{n}$. Deuxième loi de Newton, $\vec{F} = \frac{d\vec{P}}{dt} = m\vec{a}$, $\Leftrightarrow m\vec{a} = G\frac{M \cdot m}{r^2} \vec{n}$, et $\vec{a} = G\frac{M}{r^2} \vec{n}$ Dans le repère de Frenet, $\vec{a} = a_n \vec{n} + a_t \vec{t}$, avec $a_n = \frac{v^2}{r}$ et $a_t = \frac{dv}{dt} = 0$ car le mouvement est uniforme.	4.5
Le mouvement de l'étoile étant circulaire uniforme et périodique de période T donc, la longueur de l'orbite est : $L = 2\pi . r = v \cdot T. \Leftrightarrow v = \frac{2\pi r}{T}$, donc $T = \frac{2\pi r}{v}$ et $T^2 = \frac{4\pi^2 r^2}{v^2} = \frac{4\pi^2 r^2}{\frac{GM}{r}} = \frac{4\pi^2 r^3}{GM}$.	2.5
$T^2 = \frac{4\pi^2 r^3}{\text{GM}}, \text{ donc } M = \frac{4\pi^2 r^3}{\text{GT}^2}. \text{ Après conversion :} \\ r = 132 \times 3600 \times 3,00 \times 10^8 = 1,43 \times 10^{14} \text{ m et } T = 15,2 \times 365,25 \times 24 \times 3600 = 4,80 \times 10^8 \text{ s.} \\ \text{Par suite, } M = \frac{4\pi^2 (1,43 \times 10^{14})^3}{6,67 \times 10^{-11} (4,80 \times 10^8)^2} = 7,51 \times 10^{36} \text{ kg. Et le rapport } \frac{M}{M_S} = \frac{7,51 \times 10^{36}}{2,0 \times 10^{30}} = 3,75 \times 10^6. \\ \text{Le document 1 annonce que le trou noir a une masse de 3 à 4 millions de masse solaire.} \\ \text{La valeur de la masse M du trou noir est cohérente puisqu'elle vaut 3,75 millions de masse solaire.} \\ }$	2.5
	héliocentrique, la trajectoire du centre d'une planète est une ellipse dont le centre du Soleil est l'un des foyers. On peut l'adapter à la situation présentée iei : dans le référentiel du trou noir, la trajectoire du centre de l'étoile S2 est une ellipse dont le centre du trou noir est l'un des foyers. Ainsi, la forme elliptique de la trajectoire de l'étoile S2 a permis de justifier l'existence d'un trou noir très massif au centre de la galaxie. D'après la 2ème loi de Kepler (ou loi des aires), le segment (rayon) TM (joignant T centre du trou noir à M centre de l'étoile S2) balaie des aires égales (en gris sur le schéma) pendant des durées Δt égales. La trajectoire (orbite) de l'étoile est supposée circulaire dans le référentiel lié au trou noir. Comme l'aire A_1 est égale à l'aire A_2 , cela implique que la distance parcourue par S2 sur la trajectoire est la même ($M_1 M_2$) = ($M_3 M_4$). Alors la vitesse est constante $v = \frac{M_1 M_2}{\Lambda t} = \frac{M_3 M_4}{\Lambda t}$, le mouvement est uniforme. On considère que l'étoile S2 est soumise uniquement à la force d'attraction gravitationnelle du trou noir notée \vec{F} , $\vec{F} = -G \frac{M}{r} = 0$. Trajectoire est circulaire, alors $\vec{n} = -\vec{u}$. Ainsi $\vec{F} = G \frac{M}{r^2} = 0$. Deuxième loi de Newton, $\vec{F} = \frac{d\vec{F}}{dt} = m\vec{a}$, $\Leftrightarrow m\vec{a} = G \frac{M \cdot m}{r^2} = 0$. Dans le repère de Frenet, $\vec{a} = a_n \cdot \vec{n} + a_t \cdot \vec{t}$, avec $a_n = \frac{v^2}{r}$ et $a_t = \frac{dv}{dt} = 0$ car le mouvement est uniforme. Ce qui donne que $a = a_n$ et par suite, $G \frac{M}{r^2} = \frac{v^2}{r}$, \Leftrightarrow l'expression proposée : $v = \sqrt{\frac{GM}{r}}$. Le mouvement de l'étoile étant circulaire uniforme et périodique de période \vec{T} donc, la longueur de l'orbite est : $\vec{L} = 2\pi . r = v \cdot T . \Leftrightarrow v = \frac{2\pi r}{r}$, donc $\vec{T} = \frac{2\pi r}{v} = \frac{4\pi^2 r^2}{v^2} = \frac{4\pi^2 r^2}{GM}$. L'expression de la période de révolution \vec{T} de l'étoile est : $\vec{T} = 2\pi \sqrt{\frac{3}{GM}}$. L'expression de la période de révolution \vec{T} de l'étoile est : $\vec{T} = 2\pi \sqrt{\frac{3}{GM}}$. Par suite, $M = \frac{6\pi^2 r^2}{(1.43 \times 10)^{14}} $

Exercice IV:

Q		Notes
A-1.	Les muons créés à une hauteur de 20,0 km doivent mettre environ 66,7 μ s pour arriver au sol. Comme $v = \frac{d}{\Delta t}$, soit $\Delta t = \frac{d}{v} = \frac{20 \times 10^3}{0.9994 \times 2.9979 \times 10^8} = 6,68 \times 10^{-5}$ s soit 66,8 μ s. Évènement 1 : Création du muon dans la haute atmosphère	1.5
2.	Évènement 2 : Détection du muon au niveau du sol. Dans le référentiel propre , ces deux évènements ont lieu au même endroit . Il s'agit, ici, du référentiel « muon ». Dans ce référentiel propre, on mesure la durée propre ΔT_0 . Dans le référentiel terrestre (ou référentiel de mesure), on mesure la durée mesurée ΔT . La durée mesurée ΔT de 67 μ s a subi le phénomène de « dilatation des durées » : $\Delta T = \gamma.\Delta T_0$ (avec $\gamma > 1$). Pour le muon, il s'est écoulé une durée ΔT_0 bien plus courte et donc inférieure à sa durée de vie ; ce qui explique que le muon ne soit pas encore désintégré et qu'il soit détecté au niveau du sol.	2
3.	$\Delta T \text{ et } \Delta T_0, \text{ sont liés par } \Delta T = \gamma. \Delta T_0 \text{ avec } \gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \text{ ici } v = 0,9994.c \text{ et on a} : \frac{v}{c} = 0,9994,$ $\Leftrightarrow 1-\frac{v^2}{c^2} = 1-0,9994^2 = 1,1996\times10^{-3}; \text{ par suite, } \gamma = \frac{1}{0,03464} = 28,9\approx30.$ D'après le 2ème document, chaque muon perd en moyenne 2 MeV par cm de roche traversé	1.5
B-1.	donc un muon d'énergie moyenne 4 GeV sera totalement absorbé à partir de : $\frac{4 \text{ GeV}}{2 \text{MeV} \cdot \text{cm}^{-1}} \text{s} = 2 \times 10^3 \text{ cm}, \text{ soit environ } 20 \text{ m}.$	0.75
2.a)	D'après les données, l'énergie d'une particule (relativiste) de masse m en mouvement est : $E = \gamma.m.c^2$, ainsi $\gamma = \frac{E}{m.c^2}$. De plus $\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \Leftrightarrow \gamma^2 = \frac{1}{1-\frac{v^2}{c^2}} \Leftrightarrow 1 - \frac{v^2}{c^2} = \frac{1}{\gamma^2} \Leftrightarrow 1 - \frac{1}{\gamma^2} = \frac{v^2}{c^2} \Leftrightarrow \frac{v}{c} = \sqrt{1-\frac{1}{\gamma^2}} \Leftrightarrow v$	3.5
b)	Or les muons utilisés pour la radiographie volcanique sont plus énergétiques donc plus rapides que les muons « ordinaires » : ils sont donc « ultra-relativistes ».	0.75
		10

Exercice V : Effet piézoélectrique

Q		Notes
Q 1.	$L = 10 \log \frac{I}{I_0}, \text{ or } I = \frac{P^2}{2\rho c}, \text{ alors } L = 10 \log \frac{\frac{P^2}{2\rho c}}{\frac{P_0^2}{2\rho c}} = 10 \log \frac{P^2}{P_0^2} = 10 \log \left(\frac{P}{P_0}\right)^2,$ finalement : $L = 20 \log \frac{P}{P_0}$.	1.25
2.	On a P = $\frac{F}{s}$, Q = CU et Q = β F car l'unité de β est C.N ⁻¹ .	4
	Ainsi CU = $\beta F = \beta PS \Leftrightarrow U = \frac{\beta F}{c} = \frac{\beta PS}{c}$ La surface S du capteur est donnée par : $S = \pi \left(\frac{d}{2}\right)^2 = \pi \left(\frac{1 \times 10^{-2}}{2}\right)^2 = 7.85 \times 10^{-5} \text{ m}^2.$	
	Pour un niveau d'intensité sonore L = 50 dB. L = $20 \log \frac{P}{P_0} \Leftrightarrow \frac{50}{20} = \log \frac{P}{P_0} \Leftrightarrow \frac{P}{P_0} = 10^{2.5} = 316$ avec $p_0 = 2 \times 10^{-5}$ Pa, on obtient : $P = 6.32 \times 10^{-3}$ Pa et la tension devient $U = \frac{\beta PS}{C}$	
	$U = \frac{5 \times 10^{-5} \times 6,32 \times 10^{-3} \times 7,85 \times 10^{-5}}{125 \times 10^{-12}} = 0,198 \text{ V} \approx 0,2 \text{ V}.$	
3.a)	Le pas p du CAN est donné par : $p = \frac{\text{Plage de mesure}}{2^n}$, où n est le nombre de bits. $p = \frac{400 \times 10^{-3}}{2^{16}}$. Ainsi, pour $\pm 200 \text{ mV}$, $p = 6.1 \times 10^{-6} \text{ V}$ ou 0.0061 mV .	1.25
b)	Le format d'affichage paraît approprié, car la résolution du multimètre sur ce calibre est 0,0061 mV et l'affichage indique une valeur avec deux décimales, soit une précision de 0,01 mV.	0.75
c)	Sur le calibre \pm 200 mV, le pas est : p = 6,1 x10 ⁻³ mV. \Leftrightarrow l'incertitude absolue est le $\frac{pas}{\sqrt{2}}$, soit $\Delta U = \frac{6,1\times10^{-3}}{\sqrt{2}} = 4,3\times10^{-3} \text{ mV}, \text{ soit } 5\times10^{-3} \text{ mV}.$ L'incertitude relative due au pas du CAN est : $\frac{U(U)}{U} = \frac{5\times10^{-3}}{199,02} \text{x} 100 = 0,003\%$.	2
4.	Pour L = 30 dB. $30 = 20 \log \frac{P}{P_0} \Leftrightarrow \frac{P}{P_0} = 10^{1.5} = 31,6$, avec $p_0 = 2 \times 10^{-5}$ Pa, on obtient : $P = 0.632 \times 10^{-3}$ Pa et U devient : $U_{min} = \frac{5 \times 10^{-5} \times 0.632 \times 10^{-3} \times 7.85 \times 10^{-5}}{125 \times 10^{-12}} = 0.0198 \approx 20 \text{ mV}$ Pour L = 130 dB. $130 = 20 \log \frac{P}{P_0} \Leftrightarrow \frac{P}{P_0} = 10^{6.5} = 3.16 \times 10^6$, avec $p_0 = 2 \times 10^{-5}$ Pa, on obtient : $P = 63.2$ Pa et U devient : $U_{max} = \frac{5 \times 10^{-5} \times 63.2 \times 7.85 \times 10^{-5}}{125 \times 10^{-12}} = 1.98 \times 10^3 \approx 2.0 \text{ kV}$ Pour les forts niveaux d'intensité sonore, le capteur fournit une tension électrique bien trop élevée pour le voltmètre. Ce capteur n'est pas adapté pour réaliser un sonomètre pour les niveaux sonores entre les valeurs limites indiquées.	2.75
		12