### Lecture #5

# Importance Sampling

Global Illumination
Summer Term 2021

Marc Stamminger / Kai Selgrad

# Remember: Rendering Integral – Directional Form

• 
$$L_{out}(x, \omega_{out}) = \int f(x, \omega_{in}, \omega_{out}) < N_x, \omega_{in} > L_{in}(x, \omega_{in}) d\omega_{in}$$

• Compute by numerical integration using random incoming directions  $\omega_i$ :

$$L_{out}(x, \omega_{out}) \approx \frac{2\pi}{n} \sum_{i=1}^{n} f(x, \omega_i, \omega_{out}) < N_x, \omega_i > L_{in}(x, \omega_i)$$



#### Remember: Numerical Integration

```
DirectIllumination(x, \omega_{out})

n = number of samples, e.g. 100

Lsum = 0

for i = 1 to n

\omega_i = choose random direction

y = intersect_ray(x,\omega_i)

Lsum += f(\omega_i,x,\omega_{out}) * dot(N(x), \omega_i), Le(y,-\omega_i)

return 2*PI/n * Lsum
```

#### Remember: Random Directions

- How to compute a random direction ?
- 1st try: use polar coordinates with random angles  $(\theta, \phi)$
- → biased result, more sample towards the poles...
- Better try: use as parameterization  $\omega(z,\phi) = \begin{pmatrix} \sqrt{1-z^2} \cdot \cos\phi \\ \sqrt{1-z^2} \cdot \sin\phi \\ z \end{pmatrix}$ 
  - $\rightarrow$ draw random values for z and  $\phi$
  - → random direction with uniform distribution
- Or: draw a random 3D-point  $x \in [-1,1]^3$ , discard if ||x|| > 1, otherwise normalize

#### Observation

- Obviously, the precision of numerical integration varies with the smoothness of the integrand
- Example:
  - integrating the functions  $f(x) = \cos x$ ,  $g(x) = 4(\cos x)^{16}$
- → the higher the variance, the slower the convergence



#### Variance in Direct Illumination Integral

• 
$$L_{out}(x, \omega_{out}) = \int f(x, \omega_{in}, \omega_{out}) < N_x, \omega_{in} > L_{in}(x, \omega_{in}) d\omega_{in}$$

- Variance due to BRDF:
  - Glossy surfaces. The glossier, the higher the variance, the worse
- Variance due to scalar product:
  - exists, but not very big. Always the same, independent of scene.
- Variance due to incident light:
  - depends on scene. Bad example: small light sources

### General Idea of Importance Sampling

Up to now:

$$\int_0^1 f(x) dx \approx \frac{1}{n} \sum_{i=1...n} f(x_i)$$

• Assumes that the  $x_i$  are uniformly distributed (each sample position has equal probability)

• But we can also use a non-uniform distribution of the samples:

$$\int_0^1 f(x) dx \approx \frac{1}{n} \sum_{i=1...n} \frac{f(x_i)}{p(x_i)}$$

• assumes that the  $x_i$  are distributed according to some probability  $p(x_i)$ 

#### **Probability Distribution Functions**

- p(x) is a (continuous) probability distribution function (PDF)
- continuous  $\rightarrow$  probability of a particular value x is zero, but probability that a value is from a range  $[x_0, x_1]$  is non-zero:

$$P(x \in [x_0, x_1]) = \int_{x_0}^{x_1} p(x) \ dx$$

• Special case: cumulative probability:

$$P(\bar{x}) = P(x < \bar{x}) = \int_{-\infty}^{x} p(x) dx$$

vice versa:

$$p(x) = \frac{\partial P}{\partial x}(x)$$

#### **Probability Distribution Functions**

- Example 1: uniform distribution over [0,1]
  - P(X < x) = x $\rightarrow p(x) = 1$



- Example 2: draw uniform random number  $\xi \in [0,1]$ , then use  $\xi^2$ 
  - with  $\xi \to \xi^2$  samples are shifted to the left, e.g.  $0.1 \to 0.01, 0.5 \to 0.25$
  - $P(\xi^2 < x) = P(\xi < \sqrt{x}) = \sqrt{x}$  $\rightarrow p(x) = \frac{1}{2\sqrt{x}}$
  - p even has a singularity at 0, but is integrable



### **Probability Distribution Functions**

- Properties:
  - $p(x) \geq 0$
  - $\int_{-\infty}^{\infty} p(x) \ dx = 1$
  - p(x) can be > 1 for some x !
- Such distributions can also be defined on higher dimensional domains, e.g. also on a triangle, a rectangle, a sphere, or a hemisphere

# **Probability Distributions for Sampling**

- p(x) is a function on the sampling domain that describes how likely it is that a sample is chosen around x
- Example in 1D:



- Sample density increases to the right
  - $\rightarrow$  values close to x = 1 are overemphasized
  - → when used for Monte Carlo Integration without correction, a biased result is obtained

#### Importance Sampling

- weight samples  $x_i$  with  $\frac{1}{p(x_i)}$ 
  - $\rightarrow$  there are fewer samples with small x, but these get larger weight
  - $\rightarrow$  and more samples with larger x, but with lower weight
  - → correct result, but region close to 1 sampled more densely



when does this non-uniform sampling make sense?

#### Importance Sampling

We know:

$$\int_0^1 f(x) dx \approx \frac{1}{n} \sum_{i=1...n} \frac{f(x_i)}{p(x_i)}$$

- Effectively, we integrate f/p
- If we roughly know f, we can choose p such that f/p has low variance  $\rightarrow$  faster convergence!
- p should have a "similar shape" as f
- Ideally,  $p = c \cdot f$ , then we effectively integrate  $\frac{f}{p} = \frac{1}{c} = const$ , and we get a proper result with one single sample!
- 555
- We have to choose c such that p becomes a probability distribution:

$$\int p(x)dx = 1 \to c = 1/\int f(x)dx$$

→ we must know the integral

#### Importance Sampling

How can we apply all this for our rendering integral?

$$L_{out}(x, \omega_{out}) = \int f(x, \omega_{in}, \omega_{out}) < N_x, \omega_{in} > L_{in}(x, \omega_{in}) d\omega_{in}$$

- We can compute a PDF which is proportional to f and generate sample directions  $\omega_{in}$  according to this PDF
  - → depends on the BRDF, solutions are known e.g. for Phong
  - $\rightarrow$  variance due to f is canceled out
  - → faster convergence
- Or we generate a PDF proportional to the scalar product and sample with respect to this
- ullet Or we generate a PDF according to  $L_{in}$ 
  - → see Lecture Environment Lighting
- Or we generate PDFs with respect to all factors and combine these
  - → see Lecture Multiple Importance Sampling

How can we generate samples with respect to a given PDF?

- Rejection Sampling:
  - generate a box around the graph of p
  - draw random samples within this box
  - only use samples under the curve
     → probability of a sample to survive
     is proportional to p



- Issues:
  - We need to know the maximum of p
  - Can become very slow if maximum is large
    - → most samples get rejected

#### PDF Sampling – Discretized Version

- By discretization:
   Discretize PDF and stack rectangles
- draw a random point in the resulting rectangle (→ 2D-sample)
- requires binary search to find rectangle for a given height value



- approximate only
- more difficult for multidimensional PDFs



#### PDF Sampling – Discretized Version

- Variant: we can cope with only one random sample
- Say, we use random sample  $\xi$  to select rectangle (y-coordinate)
- Use position of  $\xi$  within this rectangle to determine x-position



### PDF Sampling – Discretized Version



- Continuous version of previous approach: Inversion method
- Compute cumulative probability:

$$P(x) = \int_{-\infty}^{x} p(x') dx' \leftarrow \text{corresponds to stacking on previous slides}$$

- Invert P
- draw a random number  $\xi \in [0,1]$
- use as sample  $x = P^{-1}(\xi)$





- For the inversion method, we must be able to normalize f, to compute P, and to invert it
- Typical programming interface for a BRDF thus looks like this:

```
BRDF::sample(
const vec3 &normal, const vec3 &w_out,
vec3 &w_in, float &pdf)
```

- → for a given normal and outgoing direction, generate a sample direction w\_out and its corresponding PDF-value
- → simply weight sample by 1/\*pdf
- → default implementation returns uniform direction and pdf
- → if implementation supports importance sampling, you will automatically get better results

- Example 1: Sampling with respect to the cosine (scalar product):
  - → Malley's method:
    - Sample unit disk  $\rightarrow$  (x, y)  $\rightarrow$  sample point on unit square, reject all outside the unit disk
    - Lift to hemisphere  $\rightarrow (x, y, \sqrt{1 x^2 y^2})$



From: Physically Based Rendering, Section 13

- Example 2: importance sampling of Phong BRDF:
  - Compute reflection direction r
  - Generate basis vectors (u, v, r)
  - draw random variables  $\xi_1, \xi_2$
  - $\theta = arc \cos^{n+1} \sqrt{\xi_1}$ ,  $\varphi = \xi_2 \cdot 2\pi$
  - generate direction  $\omega = \cos \theta \cdot r + \sin \theta \cdot (\cos \varphi \cdot u + \sin \varphi \cdot v)$





### **Current Assignment**

 Uniform sampling of hemisphere

• Sampling w.r.t. BRDF





#### **Current Assignment**

- in this example: light comes only from a single light source
- → we only consider rays that hit the light source
- → wasteful, if light source is small





#### **Alternative Formulation**

• 
$$L_{out}(x, \omega_{out}) = \int f\left(x, \frac{x-y}{\|x-y\|}, \omega_{out}\right) G(x, y) V(x, y) L\left(y, \frac{y-x}{\|y-x\|}\right) dA_y$$

- We integrate over light emitting surfaces
  - → makes particular sense for light sources

direct lighting  $\rightarrow$  we only use  $L_e$  here!

• Direct Lighting:

$$L_{out}(x, \omega_{out}) = \int f\left(x, \frac{x - y}{\|x - y\|}, \omega_{out}\right) G(x, y) V(x, y) L_e\left(y, \frac{y - x}{\|y - x\|}\right) dA_y$$

#### **Direct Lighting Computation**

- Approach #1:
   Cast rays over hemisphere
  - → only rays hitting light contribute
  - → BRDF importance sampling possible



- Approach #2: Sample light source
  - → we need to check visibility
  - → most rays contribute
  - → BRDF importance sampling not directly possible...



#### **Direct Lighting Computation**

- Generate a random sample...
- ... on a rectangle a, b, c, d:
  - parameterize rectangle with two parameters  $\alpha, \beta \in [0,1]^2$ :

$$x(\alpha, \beta) = a + \alpha(b - a) + \beta(d - a)$$

- draw random values for  $\alpha$ ,  $\beta$
- ... on a triangle a, b, c:
  - parameterize with two parameters  $\alpha, \beta \in [0,1]^2$  and  $\alpha + \beta < 1$ :

$$x(\alpha, \beta) = a + \alpha(b - a) + \beta(c - a)$$

- draw random values for  $\alpha$ ,  $\beta$  until  $\alpha + \beta < 1$
- or: draw random  $\alpha, \beta$ , if  $\alpha + \beta > 1$  then  $\alpha \leftarrow 1 \alpha, \beta \leftarrow 1 \beta$
- ... on a polygon:
  - compute plane and a bounding rectangle
  - draw random points on rectangle, until one inside polygon is found

#### **Direct Lighting Computation**

- Generate a random sample...
- ... on a sphere:
  - parameterize sphere with two parameters  $\alpha \in [0,1], \beta \in [-1,1]$ :

$$x(\alpha, \beta) = \begin{pmatrix} \sqrt{1 - \beta^2} \cos 2\pi\alpha \\ \sqrt{1 - \beta^2} \sin 2\pi\alpha \\ \beta \end{pmatrix}$$

- draw random  $(\alpha, \beta) \rightarrow$  random point on sphere with uniform distribution
- or draw a random point in  $[-1,1]^3$  until it lies in unit sphere
- To draw the (random) samples  $\alpha$ ,  $\beta$ , we can use the sampling techniques shown in Lecture #2

### Direct Lighting – Importance Sampling

• 
$$\int f\left(x, \frac{x-y}{\|x-y\|}, \omega_{out}\right) G(x, y) V(x, y) L_e\left(y, \frac{x-y}{\|x-y\|}\right) dA_y$$



high variance for glossy BRDF



high
variance
for close
light
sources



high variance along shadow boundary



usually no variance

#### Direct Lighting – Importance Sampling

- Importance sampling with respect to BRDF
  - $\rightarrow$  just done
- Importance sampling w.r.t. geometric term G?
  - $\rightarrow$  next
- Importance sampling w.r.t. visibility V ?
  - $\rightarrow$  difficult, we do not know V and sampling it is expensive
- Importance sampling w.r.t. light emission ?
  - → next lecture, needed e.g. for environment lighting
- Importance sampling w.r.t. multiple terms
  - → later lecture: multiple importance sampling

- Shirley et al.: "Monte Carlo Techniques for Direct Lighting Computations"
- For now, let's assume we have diffuse surfaces
  - $\rightarrow$  BRDF=const  $\rightarrow$  variation mostly due to G and V
- $\bullet$  We know nothing about V, and evaluation is expensive
  - $\rightarrow$  importance sampling w.r.t. G
- Examples:





- Applying the inversion method for typical light source geometries (rectangle, sphere, triangle, ...) is difficult, but possible
- E.g., for rectangles, taken from "The Direct Lighting Computation in Global Illumination Methods":



• Inversion formulas are very complicated, and require numerical inversion

 Practical problem for rectangles: lights "below the horizon"



- More practical approach for rectangular lights:
  - use uniform sampling on rectangle
  - check the sample for being "under the horizon" ( $\cos\theta_1<0$ ) before evaluating visibility
  - can be seen as "rejection sampling"

- For spherical luminaires:
  - sample entire sphere:
  - $p_1 = \frac{1}{A}$
  - sample visible part of sphere:

$$p_2 = \frac{1}{A_{vis}}$$

• sample solid angle:

$$p_3 \sim \frac{\cos \theta_2}{d^2}$$

- → closed form for inversion available!
- sample w.r.t. G:

$$p_4 \sim G \sim \frac{\cos \theta_1 \cos \theta_2}{d^2}$$

- → numerical inversion needed
- → sampling is expensive









- Up to now we considered a single light source
- How about multiple, maybe many (1000s) of light sources  $L_i$  ?

• 
$$\sum_{i} \int_{L_i} f(\dots) G(\dots) V(\dots) dA_y$$

- Do we have to sample each light source ?
- No, we can unite all light sources to a single large one !  $\rightarrow$  no one claimed that a light source must be connected  $\rightarrow L = \cup L_i$
- Then we can generate an arbitrary number of samples on this light
   → correct expected value with less samples than light sources!

• How to do this?

- Solution #1:
  - for each sample, draw a random number  $\xi \in [0,1]$
  - select light source  $i = \lfloor \xi n \rfloor$  (n: number of light sources)
  - chose a random sample on light source i
  - → gives a proper result with correct expected value
  - all light sources get same sample number, maybe we can distribute samples better (more samples to brighter lights) ?

Solution #2:

Compute emitted power of each light source:  $E_i = L_i A_i$ 

ullet Choose a sample with a probability proportional to  $E_i$ 

 $\rightarrow$  draw a random number  $\xi$ 



• This is importance sampling of the light source w.r.t. its power!

- Even better solution #3: We can adapt the importance of a light source for each surface point
- E.g. estimate the contribution of each light source for the current point, ignoring visibility
  - e.g. using one sample of *G*
  - or using an analytic formula,
     e.g. for spheres
  - be careful not to underestimate the contribution as zero
    - → light source will get no sample, even if it contributes...
- recompute  $E_i$  for each sample

Shirley at al.: A scene with 100 luminaires, sampled by 49 samples per pixel



#### Sampling Strategies

• Sampling the light source

Sampling the BRDF





Veach et al.: "Optimally Combining Sampling Techniques for Monte Carlo Rendering"

# Next Week: Combining Sampling Methods

