练习题

选择题 (18 分) 1

1. 设 A 和 B 为 n 阶方阵, A^* 和 B^* 分别为 A 和 B 的伴随矩阵, 那么分 块矩阵

$$C = \begin{pmatrix} A & \\ & B \end{pmatrix}$$

的伴随矩阵为().

(A)
$$\begin{pmatrix} |A|A^* \\ |B|B^* \end{pmatrix}$$
 (B) $\begin{pmatrix} |B|B^* \\ |A|A^* \end{pmatrix}$ (C) $\begin{pmatrix} |A|B^* \\ |B|A^* \end{pmatrix}$ (D) $\begin{pmatrix} |B|A^* \\ |A|B^* \end{pmatrix}$

(C)
$$\begin{pmatrix} |A|B^* \\ |B|A^* \end{pmatrix}$$
 (D) $\begin{pmatrix} |B|A^* \\ |A|B^* \end{pmatrix}$

- (A) 合同且相似
- (B) 合同且不相似
- (C) 不合同且相似
- (D) 不合同且不相似
- 3. 设 A, B, C 均为 n 阶矩阵, 若 AB = C 且 B 可逆, 则()
 - (A) C 的行向量组与 A 的行向量组等价
 - (B) C 的列向量组与 A 的列向量组等价
 - (C) C 的行向量组与 B 的行向量组等价

- (D) C 的列向量组与 B 的列向量组等价
- 4. 设 λ_1 和 λ_2 为矩阵 A 的两个不同的特征值, 对应的特征向量分别为 α_1 和 α_2 , 则 α_1 与 $A(\alpha_1 + \alpha_2)$ 线性无关的充要条件是 ().
- (A) $\lambda_1 = 0$ (B) $\lambda_1 \neq 0$ (C) $\lambda_2 = 0$ (D) $\lambda_2 \neq 0$
- 5. n 阶实对称矩阵 A 为正定矩阵的充要条件为 ().
 - (A) A 的秩为 n
 - (B) A-1 为正定矩阵
 - (C) A 的所有特征值非负
 - (D) 对任意 k = 1, ..., n, 其 k 阶子式为正
- 6. 设齐次线性方程组 AX = 0, 其中 A 为 $m \times n$ 矩阵, 且 A 的秩为 n-3. 若 $\alpha_1,\alpha_2,\alpha_3$ 为 AX=0 的三个线性无关的解向量,则() 不是 AX = 0 的基础解系.
 - (A) $\alpha_1, \alpha_2, \alpha_3$
- (B) $\alpha_1 + 2\alpha_2, 2\alpha_2 + 3\alpha_3, \alpha_1 + 3\alpha_3$
- (C) $\alpha_1, \alpha_1 + \alpha_2, \alpha_1 + \alpha_3$ (D) $\alpha_1 + 2\alpha_2, 2\alpha_2 + 3\alpha_3, \alpha_1 3\alpha_3$

填空题 (15 分)

1. 当 λ 满足 时, 使得二次曲面是一个椭圆面

$$x^{2} + (\lambda + 2)y^{2} + \lambda z^{2} + 2xy = 5.$$

2. 行列式

$$D_n = \begin{vmatrix} a_1 & -1 \\ a_2 & x & -1 \\ a_3 & x & -1 \\ \vdots & \ddots & \ddots \\ a_{n-1} & x & x & -1 \\ a_n & x & x \end{vmatrix} = \underline{\qquad}.$$

3. 设

$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ a \end{pmatrix}.$$

当 a =___ 时, 向量组 $\alpha_1, \alpha_2, \alpha_3$ 的秩为 2.

4. 基

$$\beta_1 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \beta_2 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

到基

$$\alpha_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

的过渡矩阵为 ____.

5. xOy 面上的曲线

$$\begin{cases} y^2 &= 5x \\ y & \ge 0 \end{cases}$$

绕直线

$$\begin{cases} x = y \\ z = 0 \end{cases}$$

所得的旋转面方程为 ____.

3 (7分)

设矩阵 A 的伴随矩阵为

$$A^* = \begin{pmatrix} 1 & & & \\ & 1 & & \\ 1 & & 1 & \\ & -3 & & 8 \end{pmatrix}$$

且 $ABA^{-1} = BA^{-1} + 3E$, 其中 E 为 4 阶单位矩阵, 求矩阵 B.

4 (12 分)

设二次型

$$f(x_1, x_2, x_3) = 2x_1x_2 - 6x_2x_3 + 2x_1x_3,$$

问:

- 1. 求 f 对应的对称矩阵 A
- 2. 求正交矩阵 T, 使得在正交变换 X = TY 下, 将二次型 f 化为标准形
- 3. 对 $t \in \mathbb{R}$ 分情况讨论, 判别二次曲面 $f(x_1, x_2, x_3) = t$ 的类型.

5 (12分)

设线性方程组

$$\begin{cases} x_1 - x_2 - x_3 &= 0 \\ x_1 + 2x_2 + ax_3 &= 0 \\ x_1 + 4x_2 + a^2x_3 &= 0 \end{cases}$$

与方程

$$x_1 + 2x_2 + x_3 = a - 1$$

有公共解,问:

- 1. a 的值
- 2. 所有公共解

6 (15 分)

设 \mathbb{R}^3 中, 直线 l:

$$\frac{x-1}{1} = \frac{y+2}{0} = \frac{z-3}{a}$$

和平面 π :

$$x + z + 1 = 0.$$

问:

- 1. 求 a 满足什么条件, 使得直线 l 与平面 π 平行. 并求出 l 与 π 的距离.
- 2. 求 a 满足什么条件, 使得直线 l 与平面 π 相交. 并求出 l 与 π 的交点 和夹角.
- 3. 当 a=2 时, 设平面 π' 过 l, 且垂直于 π , 求平面 π' 的点法式方程.

7 (15分)

设 A 为 3 阶实对称矩阵, 满足:

- 各行元素之和均为3
- 方程 AX = 0 有解

$$\alpha_1 = \begin{pmatrix} -1\\2\\-1 \end{pmatrix} \qquad \text{fil} \qquad \alpha_2 = \begin{pmatrix} 0\\-1\\1 \end{pmatrix}$$

问:

- 1. 求 A 的特征值与特征向量
- 2. 求正交矩阵 T 和对角矩阵 Λ , 使得 $T^TAT = \Lambda$
- 3. 求 A 及 $(A-\frac{2}{3}E)^6$ 其中 E 为 3 阶单位矩阵

8 (6分)

设 n 阶矩阵 A 的特征值为 $\lambda_1,$ …, $\lambda_n,$ 求证: 伴随矩阵 A^* 的特征值为 $\Pi_{i\neq 1}\lambda_i,$ …, $\Pi_{i\neq n}\lambda_i.$