Interpolacja

funkcja przybliżana f(x), siatka węzłów x_i , i=0,...,n, $f_i=f(x_i)$

Dla dowolnych, różnych n+1 punktów węzłowych istnieje dokładnie jeden wielomian interpolacyjny stopnia, co najwyżej n taki, że

$$P(x_i) = f_i \text{ dla } i=0,1,...,n$$

Wzór interpolacyjny Lagrange'a

$$P(x) = \sum_{i=0}^{n} f_i \prod_{\substack{k=0 \ k \neq i}}^{n} \frac{x - x_k}{x_i - x_k}$$

Interpolacja Vandermonde'a

Współczynniki wielomianu interpolacyjnego

$$P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$

można obliczyć z:

$$\begin{bmatrix} x_{0}^{n} & x_{0}^{n-1} & \cdots & x_{0} & 1 \\ x_{1}^{n} & x_{1}^{n-1} & \cdots & x_{1} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n-1}^{n} & x_{n-1}^{n-1} & \cdots & x_{n-1} & 1 \\ x_{n}^{n} & x_{n}^{n-1} & \cdots & x_{n} & 1 \end{bmatrix} \begin{bmatrix} c_{n} \\ c_{n-1} \\ \vdots \\ c_{1} \\ c_{0} \end{bmatrix} = \begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{n-1} \\ f_{n} \end{bmatrix}$$
macierz *Vandermonde'a*,

jest nieosobliwa jeśli węzły x_i są różne, ale źle uwarunkowana (trudno ją odwrócić – w macierzy odwrotnej można spodziewać się liczb rzędu 10ⁿ)

Interpolacja przez rodzinę trójkatną

$$P(x) = c_n \varphi_n(x) + c_{n-1} \varphi_{n-1}(x) + \dots + c_1 \varphi_1(x) + c_0$$

$$\varphi_{0}(x) = 1
\varphi_{1}(x) = (x - x_{0})
\varphi_{2}(x) = (x - x_{0})(x - x_{1})
\dots ,
\varphi_{n}(x) = (x - x_{0})(x - x_{1}) \cdots (x - x_{n-1})
f_{0} = P(x_{0}) = c_{0} \implies c_{0} = f_{0}
f_{1} = P(x_{1}) = c_{1}(x_{1} - x_{0}) + c_{0} \implies c_{1} = \frac{f_{1} - c_{0}}{x_{1} - x_{0}}
f_{2} = P(x_{2}) = c_{2}(x_{2} - x_{0})(x_{2} - x_{1}) + c_{1}(x_{2} - x_{0}) + c_{0} \implies c_{2} = \cdots$$

A zapisując te równania razem:

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & x_1 - x_0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_n - x_0 & \cdots & (x_n - x_0)(x_n - x_1) \cdots (x_n - x_{n-1}) \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \cdots \\ c_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \cdots \\ f_n \end{bmatrix}_0$$

Trzeba więc rozwiązać trójkątny układ równań.

Rekurencyjne tworzenie wielomianów interpolacyjnych

Niech ${}^{P}i_{0},i_{1},...,i_{k}$ będzie wielomianem stopnia nie

większego od k, spełniającym równania węzłów $i_0, i_1, ..., i_k$:

$$P_{i_0,i_1,...,i_k}(x_{i_j}) = f_{i_j}$$
 $j = 0,...,k$

Wtedy zachodzi wzór rekurencyjny

$$P_{i}(x) = f_{i}$$
 $i = 0,...,n$

$$P_{i_0,i_1,...,i_k}(x) = \frac{(x-x_{i_0})P_{i_1,i_2,...,i_k}(x) - (x-x_{i_0})P_{i_0,i_1,...,i_{k-1}}(x)}{x_{i_k} - x_{i_0}}$$

Metoda Aitken'a

x_0	$P_0(x) = f_0$					
x_1	$P_1(x) = f_1$		$P_{0,1}(x)$			
x_2	$P_2(x) = f_2$		$P_{0,2}(x)$	$P_{0,1,2}(x)$		
x_3	$P_3(x) = f_3$		$P_{0,3}(x)$	$P_{0,1,3}(x)$	$P_{0,1,2,3}(x)$	
x_4	$P_4(x) = f_4$,	$P_{0,4}(x)$	$P_{0,1,4}(x)$	I N	$P_{0,1,2,3,4}(x)$

Instytut Automatyki Politechniki Łódzkiej - Metody Numeryczne w Inżynierii wykład 3

Reszta wzoru interpolacyjnego:

Jeżeli funkcja $f(\cdot)$ ma ciągłe pochodne do rzędu n+1 a $P(\cdot)$ jest wielomianem interpolacyjnym stopnia n, to

$$f(x) - P(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$

gdzie ξ jest pewnym punktem z najmniejszego przedziału domkniętego zawierającego $x, x_0,...,x_n$

Przykład:
$$y(x) = \frac{1}{1 + (5x)^2}$$

węzły równoodległe w [-1,1]	węzły Czebyszewa w [-1,1]
w=[];x=[];y=[];apr=[];	w=[];x=[];y=[];apr=[];
xx=-1:.01:1;yy=1./(1+(5*xx).^2);	xx=-1:.01:1;yy=1./(1+(5*xx).^2);
for n=4:16	for n=4:16
h=2/n;	
for i=1:n+1	for i=1:n+1
x(n,i)=-1+(i-1)*h;	x(n,1:n+1) = -seqcheb(n+1,2);
end	end
$y(n,1:n+1)=1./(1+(5*x(n,1:n+1)).^2);$	$y(n,1:n+1)=1./(1+(5*x(n,1:n+1)).^2);$
w = polyfit(x(n,1:n+1),y(n,1:n+1),n);	w = polyfit(x(n,1:n+1),y(n,1:n+1),n);
apr(n,:)=polyval(w,xx);	apr(n,:)=polyval(w,xx);
end	end

Obliczanie wartości wielomianu

Jeśli wielomian P(x) ma współczynniki C_n , C_{n-1} , \cdots C_1 , C_0 to możemy obliczyć jego wartości $P(x_0)$, $P(x_1)$, \cdots $P(x_m)$ w punktach x_0 , x_1 , \cdots x_m :

$$\begin{bmatrix} P(x_0) \\ P(x_1) \\ \vdots \\ P(x_{m-1}) \\ P(x_m) \end{bmatrix} = \begin{bmatrix} x_0^n & x_0^{n-1} & \cdots & x_0 & 1 \\ x_1^n & x_1^{n-1} & \cdots & x_1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m-1}^n & x_{m-1}^{n-1} & \cdots & x_{m-1} & 1 \\ x_m^n & x_m^{n-1} & \cdots & x_m & 1 \end{bmatrix} \begin{bmatrix} c_n \\ c_{n-1} \\ \vdots \\ c_n \end{bmatrix}$$

Zastosowanie postaci potęgowej

$$P(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_1x+c_0$$
 wymaga wykonania n mnożeń przez współczynniki, ale także obliczania (wysokich) potęg x . Daje to $1+2+\cdots+n=\frac{n(n+1)}{2}$ mnożeń oraz n dodawań.

Schemat Hornera:

n=3

$$P(x) = c_3 x^3 + c_2 x^2 + c_1 x + c_0 = (c_3 x + c_2) x^2 + c_1 x + c_0 = ((c_3 x + c_2) x + c_1) x + c_0$$

więc:

	$ c_2 $	c_1	c_{θ}
$c_3 = a_3$	a_3x	a_2x	a_1x
	$a_2 = c_2 + a_3 x$	$a_1=c_1+a_2x$	$P(x)=c_0+a_1x$

wymaga tylko n mnożeń oraz n dodawań!

Formula barycentryczna:
$$P(x) = \frac{\sum_{k=0}^{n} f_k \frac{\omega_k}{x - x_k}}{\sum_{k=0}^{n} \frac{\omega_k}{x - x_k}}, \quad \omega_k = \frac{1}{\prod_{\substack{i=0 \ i \neq k}}^{n} (x_i - x_k)}$$

Interpolacja odcinkowa

Czemu budować wielomian interpolacyjny wysokiego stopnia na całym przedziale?

Interpolacja odcinkowo liniowa

W przedziale $\begin{bmatrix} x_k, & x_{k+1} \end{bmatrix}$ przyjmujemy

$$L(x) = f_k + (x - x_k) \frac{f_{k+1} - f_k}{x_{k+1} - x_k}$$

L(x) jest ciągłą funkcja w całej dziedzinie x, ale pierwsza pochodna L'(x), nie jest ciągła.

Odcinkowa interpolacja sześciennymi wielomianami Hermite'a

Jeżeli w węzłach są znane nie tylko wartości interpolowanej funkcji $f_i = f(x_i)$, ale i jej pochodne $f'_i = f'(x_i)$, to można poszukać wielomianu $\varphi_i(x)$, który dla węzłów x_i, x_{i+1} spełni warunki

$$\varphi_i(x_i) = f_i, \varphi_i(x_{i+1}) = f_{i+1}, \varphi'_i(x_i) = f'_i, \varphi'_i(x_{i+1}) = f'_{i+1}$$

To cztery równania, czyli wielomian $\varphi_i(x)$ musi mieć co najmniej 4 współczynniki, więc musi być wielomianem sześciennym.

Otrzymana funkcja interpolująca

$$x \in [x_i, x_{i+1}] \Rightarrow L(x) = \varphi_i(x)$$

ma ciągłą pochodną w całym przedziale interpolacji (x_0, x_n) .

Jeśli nie znamy wartości pochodnej (nachyleń funkcji) trzeba je w jakiś sposób narzucić. Sposoby mogą być różne, na przykład w procedurach Matlaba pchip i spline są to nachylenia:

The slopes at the P(x) are chosen in such a way that P(x) preserves the shape of the data and respects monotonicity. This means that, on intervals where the data are monotonic, so is P(x); at points where the data has a local extremum, so does P(x)

Interpolacja przez funkcje sklejane (splines) (sześcienne)

Interpolacja wielomianami stopnia 3 o ciągłej drugiej pochodnej.

Rozpatrzmy n+1 węzłów x_i , i=0,...,n dzielących przedział $[x_0,x_n]$ na n podprzedziałów $[x_i,x_{i+1}]$. Skonstruujemy rodzinę n wielomianów sześciennych $\varphi_i(x)$, $x \in [x_i,x_{i+1}]$, i=0,...,n-1. Musimy więc wyznaczyć 4n współczynników wielomianów $\varphi_i(x)$, a w tym celu potrzebujemy 4n równań:

- warunki interpolacji $\varphi_i(x_i) = f_i$, i = 0,...,n dają n + 1 równań,
- warunki równości wielomianów w węzłach wewnętrznych $\varphi_i(x_{i+1}) = \varphi_{i+1}(x_{i+1}), \ i=0,...,n-2$ dają n-1 równań,
- warunki zgodności pochodnych w węzłach wewnętrznych $\varphi'_i(x_{i+1}) = \varphi'_{i+1}(x_{i+1}), \varphi''_i(x_{i+1}) = \varphi''_{i+1}(x_{i+1}), i = 0, ..., n-2$ dają 2(n-1) równań,

mamy więc 4n-2 równań. Brakujące 2 równania trzeba narzucić, na przykład zakładając, że $\varphi''_0(x_0) = \varphi''_{n-1}(x_n) = 0$, albo w przypadku gdy $f_0 = f_n$ potraktować węzeł x_0/x_n jak węzeł wewnętrzny, lub narzucić warunki ciągłości trzeciej pochodnej w wybranych węzłach.

Wszystkie warunki zebrane razem prowadzą do układu 4n równań liniowych.

Interpolacja funkcji wielu zmiennych

Triangulacja:

Trzy punkty w przestrzeni wyznaczają jednoznacznie płaszczyznę, można więc dla każdego z elementarnych trójkątów zbudować wielomian liniowy:

$$p(x,y) = ax + by + c$$

dwuwymiarowy wzór Lagrange'a: $P(x,y) = \sum_{i,j} f_{i,j} \prod_{\substack{k=0 \ k \neq i}}^n \frac{x-x_k}{x_i-x_k} \prod_{\substack{k=0 \ k \neq j}}^m \frac{y-y_k}{y_j-y_k}$

Instytut Automatyki Politechniki Łódzkiej - Metody Numeryczne wykład 3