Description

This module implements a ramp up and ramp down function. The output variable *Out* follows the desired ramp value *DesiredInput*.

.

Availability

This IQ module is available in one interface format:

1) The C interface version

Module Properties

Type: Target Independent, Application Independent

Target Devices: x281x or x280x

C Version File Names: rmp2cntl.c, rmp2cntl.h

IQmath library files for C: IQmathLib.h, IQmath.lib

Item	C version	Comments
Code Size [□]	39/39 words	
(x281x/x280x)		
Data RAM	0 words*	
xDAIS ready	No	
XDAIS component	No	IALG layer not implemented
Multiple instances	Yes	
Reentrancy	Yes	

 $^{^{\}bullet}$ Each pre-initialized "_iq" RMP2 structure consumes 14 words in the data memory

[□] Code size mentioned here is the size of the *calc()* function

C Interface

Object Definition

The structure of RMP2 object is defined by following structure definition

typedef RMP2 *RMP2_handle;

Item	Name	Description	Format	Range(Hex)
Input	DesiredInput	Desired ramp input	Q15	80000000-7FFFFFF
Output	Out	Ramp 2 output	Q15	80000000-7FFFFFF
RMP2	Ramp2Max	Maximum limit	Q15	80000000-7FFFFFF
parameter	Ramp2Min	Minimum limit	Q15	80000000-7FFFFFF
	Ramp2Delay	Delay in no. of sampling period	Q0	00000000-7FFFFFF
Internal	Ramp2DelayCo unt	Incremental delay	Q0	00000000-7FFFFFF

^{*}GLOBAL_Q valued between 1 and 30 is defined in the IQmathLib.h header file.

Special Constants and Data types

RMP2

The module definition is created as a data type. This makes it convenient to instance an interface to the ramp2 control. To create multiple instances of the module simply declare variables of type RMP2.

RMP2_handle

User defined Data type of pointer to RMP2 module

RMP2_DEFAULTS

Structure symbolic constant to initialize RMP2 module. This provides the initial values to the terminal variables as well as method pointers.

Methods

void rmp2_cntl_calc(RMP2_handle);

This definition implements one method viz., the rmp2 control computation function. The input argument to this function is the module handle.

Module Usage

Instantiation

The following example instances two RMP2 objects RMP2 rmp1, rmp2;

Initialization

```
To Instance pre-initialized objects
RMP2 rmp1 = RMP2_DEFAULTS;
RMP2 rmp2 = RMP2_DEFAULTS;
```

Invoking the computation function

```
rmp1.calc(&rmp1);
rmp2.calc(&rmp2);
```

Example

The following pseudo code provides the information about the module usage.

```
main()
{
}
void interrupt periodic_interrupt_isr()
{
        rmp1.DesiredInput = input1;
                                                // Pass inputs to rmp1
        rmp2.DesiredInput = input2;
                                                // Pass inputs to rmp2
                                                // Call compute function for rmp1
        rmp1.calc(&rmp1);
        rmp2.calc(&rmp2);
                                                // Call compute function for rmp2
        out1 = rmp1.Out;
                                                // Access the outputs of rmp1
        out2 = rmp2.Out;
                                                // Access the outputs of rmp2
}
```

Technical Background

Implements the following equations:

Case 1: When DesiredInput > Out.

Out= Out+ 1, for t = n . Td, n = 1, 2, 3, and (Out+ 1) <
$$Ramp2Max$$
 = $Ramp2Max$, for (Out+ 1) > $Ramp2Max$

where, Td = Ramp2Delay . TsTs = Sampling time period

Case 2: When DesiredInput < Out.

Out= Out- 1, for
$$t = n \cdot Td$$
, $n = 1, 2, 3, \dots$ and $(Out- 1) > Ramp2Min$
= $Ramp2Min$, for $(Out- 1) < Ramp2Min$

where, Td = Ramp2Delay . TsTs = Sampling time period

Example:

Out=0(initial value), DesiredInput=1000(user specified),

Ramp2Delay=500(user specified), sampling loop time period Ts=0.000025 Sec.

This means that the time delay for each ramp step is Td=500x0.000025=0.0125 Sec.

Therefore, the total ramp time will be Tramp=1000x0.0125 Sec=12.5 Sec