

An Introduction to Computers

Overview

- Logic
- Bits and Bytes
- Algorithms

A brief introduction to Logic

- Logic is a science that sets forth rules for properly-ordered thinking
 - Helps with identifying faulty reasoning (fallacies)
 - Helps with verifying a claim's validity
 The only true way to verify is to test!
- Critical Thinking is the application of those rules
 - Based on criteria that have been testing and verified
 - Logically combines those criteria to form an argument

Why talk about Logic

- Logic can be represented in any number of ways
 - > Through words
 - Through math
 - > Through code
- Computers fundamentally work through logic

The Turing Machine

- One of the simplest ways of representing logic is through a simple switch.
 - > On or Off. Yes or No. True or False. 1 or 0.
- A Turing machine consists of a large number of these switches.
- For instance, let's think of a light that can have 4 states:
 - > Off
 - Red Light
 - Yellow Light
 - Green Light
- How many switches would we need to use to produce these states?

Switches

- Two. Merely two. How can we do that?
- Let's call our switches Left and Right. Each can be Up or Down.
- So, here is an example of how we could match each state:
 - Off Left Down, Right Down
 - Red Light Left Down, Right Up
 - Blue Light Left Up, Right Down
 - Yellow Light Left Up, Right Up

A bit less wordy

- Okay, great, we were able to set up that light!
- That being said, out solution was a bit... Wordy.
- So, rather than saying Left or Right, let's just say Up or Down for each
- For Example:
 - ▶ Off Down, Down
 - Red Light Down, Up
 - Blue Light Up, Down
 - Yellow Light Up, Up

Can we go further?

- Alright, looking good!
- That being said, let's see if we make that even shorter
- Let's use 1 for Up and 0 for Down.
- Also, let's get rid of the comma.
- For Example:
 - \rightarrow Off 00
 - ➤ Red 01
 - ▶ Blue 10
 - ➤ Yellow 11

Even more complex

- What you just saw is Binary.
- That being said, what we wanted to combine colors?
- For instance, combine Red and Yellow to get orange.

these states:

- > Off
- Red
- Purple
- Blue
- Green
- Yellow
- Orange
- Black

 Congratulations!
 In total we have How many switches would that take?

More Switches

- One answer would be 3.
- In other words each switch represents a color.
- If a switch is off, that color is not being shown.

For Example:

- ➤ Off 000
- Red 001
- ➤ Blue 010
- ➤ Purple 011
- > Yellow 100
- Orange 101
- Green 110
- ➤ Black 111

Bits and Bytes

- In Computer Science, a Switch (0 or 1) is called a Bit
- So, our previous color scheme was represented by 3 Bits.
- A Byte, on the other hand, is represented by 8 bits.
 - > For a total of 2^8 or 256 possible combinations
 - This is the true building block for computers
- Representing letters:
 - ➤ A 01000001
 - \rightarrow B -01000010
 - \sim C 01000011

Make it less wordy!

- As you might imagine, having to type out 01000001 for A is very tedious.
 As a result of this, Computer Scientists came up with a different way of representing Bytes.
- As it turns out, one Byte can be represented by two Hexadecimal Characters. Hexadecimal goes from 0-9 and then from A-F.
- So, for instance our capital letters from before would become:
 - \rightarrow A 41
 - > B 42
 - \sim C 43

Takeaways for Binary and Hex

- At their core, computers operate through many switches
- In order to represent their values more easily, we use Hexadecimal
- Through logic, combinations of these switches can be bound to different functions (storing numbers, displaying text, etc)
- Higher level programming languages are compiled—turned into hexadecimal—in order for programmers to communicate with machines through logic.

Algorithms

- If hexadecimal is how computers "think" and programming languages are how we communicate with them, Algorithms are what we tell them to do.
- An algorithm is a repeatable process, or in other terms, a set of steps.
- This process is meant to take certain inputs and consistently produce a set of outputs.
- For example:
 - Printing out a PDF document from your laptop
 - Writing an email

Steps of an Algorithm

- Printing out a PDF Document:
 - ▶ Inputs A PDF Document, a Printer
 - Output A paper Document
 - Step 1 Open the Document
 - Step 2 Press Ctrl+P
 - Step 3 Select a Printer
 - Step 4 Click the "Print" button

Don't forget this

- Remember: computers, by nature, operate through a giant series of switches. That means they can't come up with anything on their own.
- In other words, you need to define EVERTHING
- For our previous example:
 - What is a PDF Document, how can we read it, and where is it?
 - What do we use to open it?
 - What does Ctrl+P mean?
 - What is a Printer and which one are we supposed to select?
 - How do we physically print it?

Don't despair

- Thanks to object-oriented programming, we can use and refer to things that other people have already made.
- For instance:
 - Rather than making your own file-reading code, use java.io.FileReader!
 - Rather than making code to communicate with a printer, use javax.print!
- And don't forget. This applies to code you've already made.
- So if you've done something before, use it to do something greater.

Summery Review

- Logic
 - ➤ What is logic?
 - ➤ How it works?
 - Binary logic
- Bits and Bytes
 - Bit
 - Byte
 - Hexadecimal
- Algorithms
 - Set of steps

Questions?

