FONDEMENTS DES BASES DE DONNÉES

Inférence de dépendances fonctionnelles : Fermeture d'un ensemble d'attributs

Équipe pédagogique BD

https:

//perso.liris.cnrs.fr/marc.plantevit/doku/doku.php?id=lifbdw2_2018a

Version du 19 septembre 2018

Problème d'inférence de DF

Le système d'Armstrong permet de systématiser la recherche de toutes les DF impliquées par d'autres DF.

Problème d'inférence des DF

Soit F un ensemble de DF, et f une DF, a-t-on $F \models f$?

- La résolution du problème d'inférence est "facile" pour les DF,
- ▶ linéaire en la taille de F et de f.
- Le concept fondamental utilisé dans cet algorithme est celui de fermeture.

Fermeture d'un ensemble de DFs

Soit F un ensemble de DF, on note F^+ la fermeture de F, l'ensemble de toutes les Dfs logiquement impliquées par F:

$$F^+ = \{f \mid F \models f\}$$

Fermeture d'un ensemble d'attributs

Fermeture d'un ensemble d'attributs

X est un ensemble d'attribut et F un ensemble de DF, on note X^+ la fermeture de X par rapport à F l'ensemble de tous les attributs qu'on peut "déduire" de X par des dépendances fonctionnelles :

$$X^+ = \{A \mid F \models X \to A\}$$

D'après la définition de la fermeture de F, on a de façon équivalente :

$$X^+ = \{A \mid X \to A \in F^+\}$$

Il faut aussi tenir compte de *toutes* les DFs qui qui sont dérivables à partir de F.

Définition alternative de la notion de clé

- ▶ une clé de R est un ensemble $X \subseteq R$ tels que $R: X \to R$
- ightharpoonup X est clé d'un schéma R ssi $X^+ = R$

Lemme

Soient F un ensemble de DF et $X \rightarrow Y$ une DF :

$$F \models X \rightarrow Y \text{ ssi } Y \subseteq X^+$$

- ▶ Ainsi, pour tester si on a $F \models X \rightarrow Y$, on calcule X^+ et on vérifie si $Y \subset X^+$
- \blacktriangleright On va utiliser un algorithme pour calculer simplement X^+
- On obtient ainsi un algorithme pour décide de l'implication logique des DFs¹.

Algorithme: fermeture d'un ensemble d'attributs

```
Data: F un ensemble de DF, X un ensemble d'attributs. Result: X^+, la fermeture de X par F. unused := F closure := X repeat | closure' := closure | if W \to Z \in unused and W \subseteq closure then | unused := unused -\{W \to Z\} | closure := closure \cup Z end until closure' = closure; retourner closure
```

- L'algorithme permet de vérifier si un ensemble de DF implique logiquement une dépendance d'après le lemme vu avant.
- ▶ Pour tester l'implication d'un *ensemble de dépendances*, il suffit de tester l'implication de *chaque* dépendance.

Combien de fois (au plus) teste-t-on $W \subseteq closure$ en fonction de |F| = n?

Un algorithme linéaire

Amélioration pour obtenir un temps linéaire en la taille de |F| faire en sorte de ne se servir d'une DF qu'une seule fois quand c'est nécessaire :

- ▶ Pour chaque $X \rightarrow Y \in F$ non utilisée, il faut stocker le *nombre* d'attributs de X non encore dans *closure*.
- ▶ Pour le faire efficacement, il faut maintenir à jour une liste pour chaque attribut A des DFs de F non utilisées pour lesquelles A apparaît en partie gauche.

Algorithme : fermeture linéaire

```
for W \rightarrow Z \in F do
     count[W \rightarrow Z] := |W|
    for A \in W do
         list[A] := list[A] \cup W \rightarrow Z
    end
end
closure := X, update := X
while update \neq \emptyset do
    Choose A \in update
     update := update \setminus \{A\}
    for W \to Z \in list[A] do
         count[W \rightarrow Z] := count[W \rightarrow Z] - 1
         if count[W \rightarrow Z] = 0 then
              update := update \cup (Z \setminus closure)
              closure := closure \cup Z
         end
    end
end
```

return closure

$$\Sigma = \{A \rightarrow \textit{I}; AB \rightarrow \textit{E}; B\textit{I} \rightarrow \textit{E}; \textit{CD} \rightarrow \textit{I}; \textit{E} \rightarrow \textit{C}\}$$

$$\Sigma = \{ A \rightarrow \textit{I}; AB \rightarrow \textit{E}; B\textit{I} \rightarrow \textit{E}; \textit{CD} \rightarrow \textit{I}; \textit{E} \rightarrow \textit{C} \}$$

Initialisation

update = AEclosure = AE

$$\Sigma = \{ A \rightarrow \textit{I}; AB \rightarrow \textit{E}; B\textit{I} \rightarrow \textit{E}; \textit{CD} \rightarrow \textit{I}; \textit{E} \rightarrow \textit{C} \}$$

Choose A

 $update \setminus A$;

A partir de $List[A] = \{A \rightarrow D; AB \rightarrow E\}$: $count[A \rightarrow D] = count[A \rightarrow D] - 1 = 0 \Rightarrow update \cup D \setminus closure; closure \cup D; count[AB \rightarrow E] = count[AB \rightarrow E] - 1 = 1;$

$$List[A] = \{A \rightarrow D; AB \rightarrow E\} \quad count[A \rightarrow D] = 0$$
$$count[AB \rightarrow E] = 1$$

update = DEclosure = ADE

$$\Sigma = \{A \rightarrow \textit{I}; AB \rightarrow \textit{E}; B\textit{I} \rightarrow \textit{E}; \textit{CD} \rightarrow \textit{I}; \textit{E} \rightarrow \textit{C}\}$$

Choose E

```
update \setminus E ;
```

A partir de $List[E] = \{E \to C\}$: $count[E \to C] = count[E \to C] - 1 = 0 \implies update \cup C \setminus closure; closure \cup C;$

$$List[E] = \{E \to C\} \quad count[E \to C] = 0$$

update = CDclosure = ACDE

closure = ACDE

$$\Sigma = \{A \rightarrow I; AB \rightarrow E; BI \rightarrow E; CD \rightarrow I; E \rightarrow C\}$$

$$\begin{array}{l} \textbf{Choose C} \\ \textit{update} \setminus C; \\ \textbf{A partir de } \textit{List}[C] = \{CD \rightarrow I\} : \\ \textit{count}[CD \rightarrow I] = \textit{count}[CD \rightarrow I] - 1 = 1 \\ \\ \textit{List}[C] = \{CD \rightarrow I\} \\ \\ \textit{count}[CD \rightarrow I] = 1 \\ \\ \textit{update} = D \end{array}$$

$$\Sigma = \{A \rightarrow \textit{I}; AB \rightarrow \textit{E}; B\textit{I} \rightarrow \textit{E}; \textit{CD} \rightarrow \textit{I}; \textit{E} \rightarrow \textit{C}\}$$

Choose D

```
\label{eq:local_problem} \begin{split} \textit{update} \setminus \textit{D} \,; \\ \textit{A partir de } \textit{List}[\textit{D}] &= \{\textit{CD} \rightarrow \textit{I}\} : \\ \textit{count}[\textit{CD} \rightarrow \textit{I}] &= \textit{count}[\textit{CD} \rightarrow \textit{I}] - 1 = 0 \leadsto \textit{update} \cup \textit{I} \setminus \textit{closure}; \textit{closure} \cup \textit{I}; \\ \textit{List}[\textit{D}] &= \{\textit{CD} \rightarrow \textit{I}\} \quad \textit{count}[\textit{CD} \rightarrow \textit{I}] = 0 \end{split}
```

update = Iclosure = ACDEI

closure = ACDEI

$$\Sigma = \{A \rightarrow I; AB \rightarrow E; BI \rightarrow E; CD \rightarrow I; E \rightarrow C\}$$

$$\begin{array}{l} \textbf{Choose I} \\ \textit{update} \setminus I; \\ \textbf{A partir de } \textit{List}[I] = \{BI \rightarrow E\} : \\ \textit{count}[BI \rightarrow E] = \textit{count}[BI \rightarrow E] - 1 = 1 \\ \\ \textit{count}[BI \rightarrow E] = 1 \\ \textit{List}[I] = \{BI \rightarrow E\} \end{array}$$

$$\textit{update} = \emptyset \textbf{ Condition d'arrêt}$$

Exercice

Soit l'ensemble F de DF suivant sur le schéma R = ABCDEFG:

- ► A → B
- ► *A* → *C*
- ► A → D
- ightharpoonup CD
 ightharpoonup E
- ightharpoonup BE ightharpoonup F
- ▶ $ABE \rightarrow G$
- ▶ $EG \rightarrow ABD$
- ▶ $FG \rightarrow AE$
- ▶ Démontrer que $F \models A \rightarrow F$ (avec fermeture).
- ▶ Démontrer que $F \models A \rightarrow G$ (avec fermeture).
- ▶ Démontrer que *BEF* n'est pas une clé de *R*
- ▶ Démontrer que $CDE \rightarrow A$ n'est pas impliquée par F

Fin de la séance.