PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ : C12N 15/40, 7/00, C07K 13/00		(11) International Publication Number:	WO 93/22440				
C12N 15/40, 7/60, C0/K 15/60 C12N 15/62, A61K 39/12	A1	(43	International Publication Date: 11 Nove	mber 1993 (11.11.93)				
C12P 21/00, G01N 33/50		Ĺ						
(21) International Application Number: PCT/CA	193/001	82	(74) Agents: HIRONS, Robert, G. et al., 101 Richmond Street West, Suite 23					
(22) International Filing Date: 28 April 1993	(28.04.9	93)	M5H 2J7 (CA).	oo, 1010into, Omano				
(30) Priority data: 9209243.6 29 April 1992 (29.04.92)	• • •	ЭB	(81) Designated States: AU, BB, BG, BR KP, KR, LK, MG, MN, MW, NO US, European patent (AT, BE, CF GB, GR, IE, IT, LU, MC, NL, P), PL, RO, RU, SD, I, DE, DK, ES, FR,				
(71) Applicant (for all designated States except US): NA UNIVERSITY OF SINGAPORE [SG/SG]; Ridge Crescent, Singapore 0511 (SG).	ATIONA ; 10 Ka	AL ent	(BF, BJ, CF, CG, CI, CM, GA, GN TD, TG).	, ML, MR, NE, SN,				
(71)(72) Applicant and Inventor (for CA US only): T Hwee [CA/SG]; 10 Kent Ridge Crescent, 0511 (SG).	AN, Y Singape	in- ore	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of					
(72) Inventors; and (75) Inventors/Applicants (for US only): FU, Jianlin TAN, Boon-Huan [SG/SG]; YAP, Eu-Hian CHAN, Yow-Cheong [SG/SG]; 10 Kent Ridge Singapore 0511 (SG).	SG/SG	Gj;	amendments.					
(54) Title: CDNA SEQUENCE OF DENGUE VIR	US SE	RO	TYPE 1 (SINGAPORE STRAIN)					
			(
<u>-</u>	· 							
prus E NS1 NS2	NS	3	(NS4) NS5					
pGEX-KG/EX-20		•						
pMAL	c/NS1	-10	4	·				
	рМА	L-c	PRI/NS2-1					
Γ			pGEX-KG/NS3 BH c600-1					
			pGEX-K	(G/NS5 c600 HF1				
(57) Abstract								
DEN1-S275/90 (ECACC V92042111) is a new	, strain	of T	engue virus serotune ! The complete cDN A	sequence of this vi-				
rus has been cloned and protein-coding fragmen DEN1-S275/90 in inactivated form, DEN1-S275/90 for immunisation against DEN1-S275/90 and other belled antibodies to DEN1-S275/90 proteins, and ki	ts there polype DEN1	of ptic vin	have been used in the construction of e les or fusion proteins thereof can be incorpuses. The invention further provides diagno	expression plasmids.				

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
. AU	Australia	GA	Gabon .	MW	Malawi
BB	Barbados	GB-	United Kingdom	ŊĹ	Netherlands
BÈ	Belgium	GN	Guinca	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL.	Poland
BJ	Benin	ŧΕ	Ireland	PT	Portugal
BR	Brazil	ıτ	Italy.	RO	Romania
CĄ	Canada	ĄĮ	Japan	RU	Russian Federation
CF	Central African Republic	, KP	Democratic People's Republic	SD	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzecland	KR	Republic of Korea	SK	Slovak Republic
CI	('ôte d'Ivoire	ΚZ	Kazakhstan	SN:	Senegal
CM	Cameroon	LJ	Liechtenstein	SU -	Soviet Union
cs	Czuchoslovakia -	LK	Sri Lanka	TD	Chad
CZ	Czech Republic	L.U	t.uxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagascar	us	United States of America
ES	Spain	M1.	Mali	VN	Viet Nam
· FI	Finland	MN	Mongolia		

CDNA SEQUENCE OF DENGUE VIRUS SEROTYPE 1 (SINGAPORE STRAIN)

The present invention relates to Dengue Virus Type 1.

Dengue virus infection may lead to dengue fever (DF) or its

more severe dengue haemorrhagic fever (DHF) and dengue
shock syndrome (DSS). DHF is an important virus disease of
global significance, especially in Southeast Asia. There
are four serotypes of Dengue virus (DEN1, DEN2, DEN3 and
DEN4) belonging to the family Flaviviradae.

The complete genomic sequence of DEN2 (Jamaica) has been published by Deubel et al; Virology 165, 234-244 (1988). The complete genomic sequence of DEN3 (H87) has been published by Osatomi and Sumiyoshi; Virology 176, 643-647 (1990). The complete genomic sequence of DEN4 has been published by Zhao et al; Virology 155, 77-88. To date, only a partial sequence of any variant of DEN1, DEN1 (Nauru Island), has been determined; Mason et al, Virology 161, 262-267 (1987).

We have now identified a previously unknown strain of DEN1 and established its complete nucleotide sequence. The new strain, DEN1-S275/90, was deposited at the European Collection of Animal Cell Cultures (ECACC) Porton Down, GB under Budapest Treaty conditions on 21 April 1992 and given accession number V92042111. DEN1-S275/90 differs

25 significantly from DEN2, DEN3 and DEN4 in terms of sequence homology. There are also a number of significant differences between DEN1-S275/90 and DEN1 (Nauru Island).

The present invention thus provides DEN1-S275/90 (ECACC V92042111). The invention further provides DEN1-30 S275/90 (ECACC V92042111) for use as a diagnostic reagent. The invention also provides DEN1-S275/90 in inactivated form for use as a diagnostic reagent or a vaccine.

The invention also provides the nucleic acid sequence of Seq. ID No. 1 and DNA sequences substantially corresponding to SEQ ID No. 1, e.g. degenerate variants thereof having one or more nucleotide changes but

PCT/CA93/00182

10

nevertheless capable of being translated to give the same protein sequence. The invention further provides fragments of such DNA polynucleotides, in particular the fragments encoding the C, C', PreM, M, E, NS1, NS2A, NS2B, NS3, NS4A, 5 NS4B and NS5 genes of the genome of the virus. The start and end points of these preferred fragments in the nucleic acid sequence of Seq I.D. No. 1 are shown below in Table 1. Table 1 also shows the start and end points of the proteins encoded by these genes, using the numbering of Seq. ID Nos. 1 and 2.

TABLE 1

Start and end points of the nucleic acid (n) numbers encoding the genes of \$275/90. The table also shows the 15 start and end points of the corresponding proteins (p) within the polyprotein encoded by S275/90.

•				-	
	<u>Gene</u>	Start(n)	End(n)	Start(p)	End(p)
	c	81	422	1	114
	C' .	123	422	15	114
20	PreM	423	695	115	205
	M	696	920	206	280
	E .	921	2402	281	774
	NS1	2403	3464	775	1128
	NS2A	3465	4112	1129	1344
25	NS2B	4113	4499	1345	1474
	NS3	4500	6359	1475	2093
	NS4A	6360	6809	2094	2242
	NS4B	6810	7556	2243	2492
	NS5	7557	10268	2493	3396

30

35

The nucleic acid sequences of the invention may be used as probes in an assay to determine the presence or absence of DEN1-S275/90, or they may be incorporated into a vector, eg. an expression vector.

Nucleic acid fragments according to the invention may be made by known methods of chemical synthesis or cloned

from the virus itself using known recombinant techniques.

Fragments according to the invention may also be produced by replication of DNA or RNA, by transcription from DNA to form RNA fragments or reverse transcription from RNA

5 fragments to form DNA fragments. Such transcription may be in a cell free system or may be effected in cells for instance by cloning. Cell free systems include an appropriate replicase, transcriptase or reverse transcriptase, suitable nucleotide precursors and a nucleic acid template or appropriate sequence, together with buffers and any necessary or desirable cofactors.

The present invention also provides a polyprotein as set forth in Seq. ID No. 1 and Seq. ID No. 2 and fragments thereof, eg. the C, C', PreM, M, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 proteins as identified above in Table 1. The invention thus provides a polypeptide having an amino acid sequence substantially corresponding to the sequence shown in SEQ ID No. 2 or a fragment thereof. Fusion proteins which incorporate these peptides are also provided.

The polyprotein and proteins according to the invention may be produced by synthetic peptide chemistry or by expressing vectors carrying DNA encoding the proteins in a suitable cell in order to produce expression of the DNA, followed by recovery of the expressed protein. Methods of expressing and recovering recombinant proteins, including fusion proteins, are well known in the art.

For example, for expression of a polypeptide of the invention, an expression vector may be constructed. An expression vector is prepared which comprises a DNA sequence encoding a polypeptide of the invention and which is capable of expressing the polypeptide when provided with a suitable host, eucaryotic or procaryotic. Appropriate transcriptional and translational control elements are provided, including a promoter for the DNA sequence, a transcriptional termination site, and translational start

and stop codons. The DNA sequence is provided in the correct frame such as to enable expression of the polypeptide to occur in a host compatible with the vector. The expression vector may be selected to be suitable to 5 express the nucleic acid sequences of the invention in, for example, a bacterial e.g. E. coli, yeast, insect or mammalian cell. A baculovirus expression system may be used. The nucleic acid may be expressed in order that a protein or peptide encoded by the fragment alone is 10 produced or alternatively it may be expressed to provide a fusion protein in which DEN1-S275/90 or a protein thereof, e.g. E, NS1, NS2, NS3 or NS5 as identified in Table 1 above is fused to a second amino acid sequence, e.g. a C-terminal sequence derived from glutathione S-transferase or maltose 15 binding protein or a C-terminal or N-terminal signal sequence. Such a sequence may for example cause the fusion protein to be exported from the cell. The expression vector is then provided with an appropriate host. Cells harbouring the vector are grown so as to enable expression to occur. The vector may be a plasmid or a viral vector.

Recovery and where desirable, further purification of the protein produced by an expression vector in a host cell may be by means known in the art. Such means are designed to separate the protein of the invention from the other 25 proteins of the host cell. Suitable means include chromatographic separation of the recovered protein.

The polyprotein and peptides of the invention may be used as immunogens for a vaccine against DEN1-S275/90 and other DEN1 viruses. Suitably, the proteins and peptides of the invention will be combined with a pharmaceutically acceptable carrier or diluent in order to prepare a sterile vaccine composition. The vaccine composition may then be used in a method of immunizing a human against DEN1 infections.

Advantageously, a vaccine composition against DEN1 may comprise a mixture of two or more peptides. For example,

it may comprise one non-structural (NS) peptide, eg. NS1 or NS3, together with a capsid (C), M or E peptide. A mixture of two or more NS peptides could also be used.

The proteins and peptides of the invention may also be used as antigens in an immunoassay to detect the presence or absence of DEN1, and especially DEN1-S272/90. The proteins and peptides are optionally labelled with a detectable label, eg a radioisotope, biotin or a fluorophore. The immunoassay may be conducted by bringing a known quantity of labelled protein (antigen) into contact with a sample suspected of containing antibody against DEN1 and detecting the presence or absence of antibody-antigen complex containing the labelled antigen.

The invention also provides antibodies against the

above-mentioned proteins and peptides of the invention.

The antibodies may be monoclonal or polyclonal. Monoclonal antibodies may be produced by hybridoma techniques known in the art or by recombinant means to provide hybrid antibodies such as humanized antibodies.

The antibodies of the invention may be used in a method of treatment, eg passive immunisation, of DEN1 infections. The antibodies may also be used in a method of diagnosis, eg by immunoassay, to detect the presence or absence of DEN1 in a sample. The antibodies may be labelled as described above for the proteins and peptides of the invention. They may also be labelled with a toxin or isotope selected to kill virus-infected cells. Antibodies against NS1 are particularly favoured since NS1 is expressed on the surface of Dengue virus-infected cells.

The antibodies of the invention may also be used in a method to detect the presence or absence of DEN1 protein in a sample. The method may comprise bringing the antibody into contact with a sample suspected to contain DEN1 proteins (antigens) and detecting the amount of antibody-antigen complex formed. Immunoassays according to the invention may be, for example, competitive (eg radioimmune

- 6 -

assays - RIA) or non-competitive (eg enzyme linked immunosorbent assays - ELISA).

The following Examples illustrate the invention. In the accompanying drawings:

5 Figure 1 is a diagrammatic representation of the cDNA of Dengue virus Type 1 (Singapore strain S275/90) and fragments of said DNA in expression vectors;
Figure 2 shows gel results confirming serologic responses in mice after immunisations with fusion proteins prepared as in Examples 2 - 5 with or without complete Freund's adjuvant (CFA).

Gel Lanes: Lane 1: M, Lane 2: anti E, Lane 3: anti-E+
CFA, Lane 4: anti-NS1, Lane 5: anti-NS2,
Lane 6: anti-NS2+ CFA, Lane 7: anti-NS3,
Lane 8: anti-NS3+ CFA, Lane 9: anti-NS5,
Lane 10: anti-NS5+ CFA, Lane 11: positive
rabbit sera, Lane 12: negative rabbit sera,
Lane 13: M;

Figure 3 shows gel results confirming serologic response in rabbits after immunisations with fusion proteins prepared as in Examples 2 to 5. (-), serum before immunisation; (+) serum after immunisation.

Gel Lanes: Lane 1: (-), Lane 2: (+) anti-E, Lane 3: (-), Lane 4: (+) anti-NS1, Lane 5: (-), Lane 6: (+) anti-NS2, Lane 7: (-), Lane 8: (+) anti-NS3, Lane 9: (-), Lane 10: (+) anti-NS5, Lane 11: positive Dengue, Lane 12: patient sera;

30 Figure 4 shows fluorescence microscopy of C6/36 cells infected with Dengue Type 1 DI-275 and probed with antibodies against recombinant fusion proteins. A, control antiserum; B, anti-E; C, anti-NS1; D, anti-NS2; E, anti-NS3; F anti-NS5.

EXAMPLE 1

DEN1 virus, strain S275/90, was isolated in 1990 from the serum of a DHF patient in Singapore by 3 passages in AP61 (Aedes psuedoscutellaris) cells followed by 3 passages 5 in C6/36 (Aedes albopictus) cells, and identified by immunofluorescence using type-specific monoclonal antibodies. After a further 8 to 13 passages in C6/36 cells, the virus-infected culture fluid was partially purified by precipitation with polyethylene glycol and 10 ultracentrifugation on a 30% sucrose cushion (6). viral RNA was extracted from the purified virus by treatment with phenol in the presence of sodium dodecyl sulphate. Following cDNA synthesis (cDNA Synthesis System Plus, Amersham) using random primers, the assorted cDNAs 15 were cloned into EcoRI sites of pUC18 vector via EcoRI adaptors (Promega). The Esherichia coli transformants containing Dengue-specific sequences were screened by colony hybridisation with 12P-labelled cDNA probes prepared by reverse transcription of strain S275/90 RNA. The 20 cloning procedure yielded overlapping cDNA clones containing inserts ranging in size from 0.5kb to 2.7kb. The ends of these primary clones and their subclones obtained by nested deletional analysis (Erase-a-Base System, Promega) were subjected to double-strand sequencing 25 (Sequenase Version 2.0, United States Biochemical). sequence data generated covers about 90% of the genomic sequence of S275/90.

Potential secondary structures have been postulated for the 5' and 3' ends of flaviviruses (4, 7, 8), posing a problem in obtaining clones with intact ends. A different stragegy for sequencing the 5' and 3' noncoding regions was used to increase the chances of obtaining clones which contain these sequences as well as the terminal end sequences of the genome. cDNAs of strain \$275/90 were obtained by random priming and oligo(dT) priming (after poly(A) tailing of the virus RNA); these were amplified by

polymerase chain reaction (PCR) in the presence of specific primers, 796 and 10090/B, respectively. The cDNAs of interest were then religated into pUC18 vector. The nucleotide sequences of the primers are as follows: primer 5 796, 5' CCG TGA ATC CTG GGT GTC 3'; primer 10090/B, 5' GGG AAT TCC AGT GGT GTG GATC 3' with a BamHI site at its 5' end. The sequences of the primers were selected from that of the initial clones of strain S275/90. To obtain the sequences at the 5' noncoding region, random cDNA clones 10 were first generated as described above, followed by ligation to EcoRI adaptors before insertion into the EcoRI sites of the pUC18 vector. These ligated products of assorted cDNA inserts were flanked by the reverse and forward sequencing primers of M13 in the pUC18 vector. 15 forward sequencing primer was thus used as one of the primers for PCR. The ligated cDNA clones were used as templates for PCR in the presence of primer 796 (which binds to the plus strand of the template at nucleotide position 808 to 825 of strain S275/90) and the commercial 20 M13 single-strand primer (5'GTA AAA CGA CGG CCAGT 3', Pharmacia). The amplified cDNAs thus contained the polylinker from the pUC18 vector at one end and an XbaI site (at nucleotide position 728) at the other end. the 3' noncoding region, an additional step was included 25 before cDNA synthesis. After extraction, the purified Dengue viral RNA was tailed by poly A polymerase (Bethesda Research Laboratories) with ATP. This was followed by cDNA synthesis using oligo(dT) as primer for the first strand cDNA synthesis. The same procedures of EcoRI adaptors 30 ligation and insertion into EcoRI sites of the pUC18 vector were repeated. The ligated products were again subjected to PCR amplification using the primer 10090/B (which binds to the minus strand of the template at nucleotide positions 10,086 to 10,099 of strain S275/90) and the commercial M13 single-strand primer.

All samples were amplified by 30 cycles of PCR with

melting, annealing and polymerisation conditions of 1 minute at 94°C, 2 minutes at 55°C and 3 minutes at 72°C, respectively. The amplified DNA was purified by electroelution in agarose gel followed by appropriate

5 restriction enzyme digestions. The PCR amplified cDNAs at the 5' noncoding region were double digested with XbaI and EcoRI, while those at the 3' noncoding region were digested with BamHI and EcoIR before cloning into the appropriate sites of the pUC18 vector. The clones were screened and subjected to double-strand sequencing as described above.

The sequence data obtained from the overlapping cDNA clones was ordered by homology alignment with the published sequences of the four Dengue serotypes DEN1, DEN2, DEN3 and DEN4 using the computer program of Wilbur and Lipman (9).

15 Seq ID No. 1 shows the complete nucleotide sequence of strain \$275/90, which is 10,718 nucleotides in length, and its deduced amino acid sequence. The reading frame begins with the first AUG start codon, corresponding to nucleotides 81 to 83, and contains an open reading frame of

20 10,188 nucleotides encoding a polyprotein of 3396 amino acids; there are 80 nucleotides in the 5' noncoding region and 450 nucleotides in the 3' noncoding region. The sequence in the 5' noncoding region preceding the first AUG codon of the open reading frame appears to be conserved for

25 all Dengue virus types (1-4). The length of the 3' noncoding region of strain S275/90 is longer than that of DEN2 (412 nucleotides), DEN3 (433 nucleotides) and DEN4 (384 nucleotides).

The nucleotide composition of strain S275/90 is 31.9% 30 A, 25.9% G, 21.5% T and 20.7% C. As reported for the other flaviviruses, the same purine-rich composition was observed, and there is an absence of poly(A) tract at the 3' end.

The individual protein coding segments are based on comparison with protein sequence data for all the proteins determined from the four Dengue serotypes. These cleavage

sites may reveal the involvement of viral or cellular proteases involved in protein processing. The C, preM, M, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5 proteins are cleaved at the sites M/MNQRKK, A/FXL, RXKR/SV, X/MRCXG, VQA/DXGCV, VXA/GXG, X/SWPLN, KXQR/XG, GRX/S, VXA/NE and R/G, respectively, where X refers to any residue. The cleavage sites of NS2A, NS3 and NS4B conform to the reported consensus sequences (4, 5), which were originally established by Rice et al (10).

10 The nucleotide sequences of the structural and nonstructural regions (5' noncoding end to NS1, about 2400 nucleotides in length) of Nauru Island strain of DEN1 (isolated in 1974) and strain S275/90 were compared. Nucleotide variation shows that transitions are about 85.0% [transitions/(transitions + transversions) x 100%] in the structural region and 92.1% in the NS1 region; 15% of these base changes are transversions in the structural region and 7.9% in the NS1 region. The overall 236 nucleotide differences have given rise to 27 amino acid substitutions. As shown in Table 2, the nucleotide homology is 93.1% and 20 when translated, the amino acid homology is 97.6%. Although both strains were isolated from different geographic regions with an interval of 16 years, a higher homology was still observed between the two strains. 25 can also be seen in Table 2 that strain S275/90 shows a higher homology with DEN3 then with DEN2 and DEN4. nucleotide divergence of each gene is less than the translated amino acid divergence. The greatest nucleotide and amino acid changes, and hence the greatest evolution, 30 lie in the nonstructural gene NS2A in all the four Dengue serotypes. A high homology is found in NS3 and NS5, which contain conserved sequences.

Chu et al (11) compared three topotypes of DEN1 strains (Thailand, Philippines and Caribbean) genetically at the envelope region. They found nucleotide changes to be less than 5% but translational differences of 2% at the

amino acid level. Our strain S275/90 shows nucleotide changes of 7.7% and amino acid changes of 2.6% in the envelope region. Rico-Hesse (6) compared nucleotide sequences within a chosen E/NS1 region to estimate evolutionary relationships among 40 DEN1 strains of different geographic range and time period.

TABLE 2

HOMOLOGY (%) COMPARISON OF ALIGNED NUCLEOTIDE SEQUENCES OF THE FOUR DENGUE SEROTYPES WITH STRAIN \$275/90 (AMINO ACID ALIGNMENT WITHIN BRACKETS).

S275/90	DEN1	DEN2	DEN3	DEN4
Full length	93.1 (97.6)	67.1 (70.9)	70.4 (75.5)	65.1 (67.6)
5' non- coding	100	81.7	93.8	87.7
С	97.4 (98.2)	70.5 (67.5)	80.5 (80.7)	68.1 (67.9)
PrM	91.6 (95.6)	71.1 (75.8)	75.8 (78.0)	68.0 (68.1)
М	93.3 (98.7)	64.0 (70.7)	70.3 (78.7)	60.7 (60.3)
E	92.3 (97.4)	65.4 (67.7)	69.0 (76.4)	64.8 (61.8)
NS1	92.6 (98.0)	70.1 (73.6)	74.5 (78.7)	70.1 (68.8)
NS2A	-	55.1 (39.0)	57.0 (46.8)	51.7 (37.9)
NS2B	_	66.0 (60.8)	69.4 (69.2)	63.1 (60.8)
NS3	-	72.0 (79.3)	74.0 (84.5)	69.9 (75.4)
NS4A	_	63.0 (61.4)	69.6 (68.7)	62.8 (58.7)
NS4B	-	69.7 (76.7)	74.9 (82.3)	71.1 (75.9)
NS5	-	71.7 (78.7)	73.8 (81.0)	69.9 (72.9)
3' non- coding	-	83.8	87.4	79.5

15

REFERENCES

- WESTAWAY, E.G., BRINTON, M.A., GAIDAMOVICH, S. Ya, HORZINEK, M.C., IGARASHI, A., KAARIAINEN, L., LVOV, D.K., PORTERFIELD, J.S., RUSSEL, P.K., and TRENT, D.W., Intervirology 24, 183-192 (1985).
- 2. ROSEN, L., Supplement to S. Afr. J. Med. 11, 40-42 (1986).
- 3. HALSTEAD, S., Science 239, 476-481 (1988).
- 10 4. DEUBEL, V., KINNEY, R.M., and TRENT, D.W., Virology 165, 234-244 (1988).
 - 5. OSATOMI, K. and SUMIYOSHI, H., Virology 176, 643-647 (1990).
 - 6. RICO-HESSE, R., PALLANSCH, M.A., NOTTAY, B.K., AND KEW, O.M., Virology 174, 479-493 (1990)
 - 7. BRINTON, M.A., and DISPOTO, J.H., Virology 162, 290-299 (1988).
 - 8. IRIE, K., MOHAN, P.M., SASAGURI, Y., PUTNAK, R. and PADMANABHAN, R., Gene 75, 197-211 (1989).
- 9. WILBUR, W.J., and LIPMAN, D.J., Proc. Natl. Acad.
 Sci. USA 80, 726-730 (1983).
 - 10. RICE, C.M., LENCHES, E.M., EDDY, S.R., SHIN, S.J., SHEETS, R.L., and STRAUSS, J.H., Science 229, 726-733 (1985).
- 25 11. CHU, M.C., O'ROURKE, E.J. and TRENT, D.W., J. Gen. Virol. 70, 1701-1712 (1989).

5

EXAMPLE 2

CONSTRUCTION OF EXPRESSION PLASMIDS

3 and Seq ID Nos. 3-12.

Standard recombinant DNA techniques were used for construction of the expression plasmids described below and summarised in Fig. 1 (Sambrook et al., Molecular Cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, N.Y.).

For construction of plasmids, the cDNA regions for E,

NS1, NS2, NS3 and NS5 of clone DI-275, a DEN1 cDNA clone
derived from DEN1 virus Singapore Strain S275/90 as in
Example 1, were amplified by the polymerase chain reaction
(PCR) and digested with restriction enzymes. The
restriction enzyme sites were built into the
oligonucleotide primers used in the PCR as set out in Table

Fragments of E, NS3 and NS5 cDNA digested with restriction enzymes were ligated to the pGEX-KG vector (Guan and Dixon, Anal. Biochem. 192, 262-267, 1991).

- Fragments of NS1 and NS2 cDNA were ligated to pMAL-c and pMAL-cRI vectors (New England Biolabs), respectively (Ford et al., Prot. Exp. Pur. 2, 96-107, 1991; Maina et al., Gene 74, 365-373, 1988; di Guan et al., Gene, 67, 21-30, 1991). The construction of NS5 cDNA was done in two stages. The
- 5'-region, the cDNA fragment from nucleotide 7544-8365 of NS5, was made by PCR, digested with SalI and ClaI; and the 3'-region, the fragment from nucleotide 8275 (ClaI) to the 3'-end of NS5, was isolated directly from the cDNA of clone DI-275 (D-275 cDNA) by ClaI and SacI double digestion. The
- two parts of NS5 were ligated together, then ligated into the pGEX-KG vector. Recombinant plasmids were transformed into E. coli DH5α or c600 HF1 strains. All plasmids encoded Dengue virus proteins fused to the C-terminus of glutathione S-transferase or Maltose Binding Protein (MBP).

EXAMPLE 3

PURIFICATION OF E, NS3 AND NS5 PROTEINS FROM RECOMBINANT E. COLI

5 E. coli, harbouring E, NS3 and NS5 genes (separately) were grown in LB medium A₆₀₀ of 0.5 at 37°C, then induced with IPTG at 0.2mM for 2 h at 30°C. The bacteria were harvested and resuspended on ice in MTPBS buffer (0.15 M NaCl, 0.016 M Na, HPO, 0.005 M NaH, PO, with 0.1 mg/ml 10 lysozyme, 1% triton X-100, 0.5 µg/ml aprotinin, 0.05 µg/ml Leupeptin, 0.25 μ g/ml pepstatin, 5mM DTT and 0.175 μ g/ml PMSF, and kept on ice for 10 min. The cells were sonicated at maximum power for 3 x 1 min while chilled. The lysate was centrifuged at 12,000 x g. The supernatant was added 15 to 1 ml Glutathione-Sepharose 4B beads (Pharmacia), and incubated at 4°C on a rotator for 1 h to absorb the fusion proteins. Then the beads were centrifuged and washed with PBS buffer (by centrifugation) at least 6 times, or until the wash solution read zero at A280 in a spectrophotometer. 20 The beads were resuspended in thrombin cleavage buffer, and the Dengue virus proteins were cleaved off the beads with thrombin at 4°C for 1 hr. The supernatant, containing Dengue virus proteins, was recovered by centrifugation, and the proteins were stored at -80°C.

25

30

35

EXAMPLE 4

SOLUBILISATION AND PURIFICATION OF A FUSION PROTEIN OF NS1 FROM INCLUSION BODIES

E. coli containing the NS1 fusion protein was grown as above, except the tac promoters were induced with 0.3mM IPTG for 16 h. The bacteria were harvested, 1 gram wet weight of E. coli was resuspended in 5 ml lysis buffer with lysozyme at 1.6 mg/ml and was sonicated for 2 x 15 sec. After centrifugation at 1000 x g the supernatant was again centrifuged (25,000 x g). The pellet was resuspended in 2 ml H₂O, adding a final concentration of 0.5% Triton X-100,

5

10

10 mM EDTA, and 100 mM NaCl, then centrifuged at 20,000 x g twice. The pellet was washed with 1 ml 2 M urea twice and dissolved in 8 M urea in 0.1 M Tris-HCl pH 8.8, 0.14 M 2-mercaptoethanol. The urea concentration was reduced to 1 M by adding H2O, and amylose resin (New England Biolabs) was added to adsorb the solubilised fusion protein at 22°C for 1 h. The amylose resin was washed with buffer (New England Biolabs) five times until the A280 of the clarified supernatant was near zero. A final concentration of 50 mM maltose was then added to elute the fusion protein, which was recovered by removing the beads by centrifugation.

EXAMPLE 5

PURIFICATION OF A SOLUBLE FUSION PROTEIN OF NS2

After growth of E. coli transformed with pMAL-cRI/NS2-1, lysis and sonication as in Example 3 above, the clarified extract containing the soluble NS2 fusion protein was adsorbed onto amylose resin, followed by washing and elution of the NS2 fusion protein as in Example 4 above.

EXAMPLE 6

IMMUNISATION OF RABBITS AND MICE

The soluble fusion proteins of E, NS2, NS3 and NS5 purified from recombinant E. coli, as in Examples 3 and 5 25 above, and inclusion bodies containing the NS1 fusion protein which had been purified up to the 2M urea wash stage as in Example 4, were placed directly in SDS loading buffer for preparative SDS-PAGE in 10% SDS-polyacrylamide gels. The proteins were visualised by staining with 0.05% 30 Coomassie Blue for 10 min. The gel segments were cut and homogenized in sterile PBS, mixed with Freund's adjuvant and injected directly into white rabbits intramuscularly and subcutaneously on the first, sixth and twenty first days with about 200-500 μg of fusion protein per injected 35 dose. The rabbits were bled 14 days after the last booster

- 16 -

dose. For immunisation of mice, 12-day old female Swiss mice were immunised with the soluble proteins of E, NS1, NS2, NS3 and NS5 fusion proteins with or without Freund's adjuvant. The injections were intraperitoneal or subcutaneous on the first, fourth, and fourteenth day, using about 20 μ g fusion protein per dose. The mice were bled 14 days after the last dose. The sera of rabbits and mice were used for IFA and immunoprecipitation assays.

10 EXAMPLE 7

5

RADIOIMMUNOPRECIPITATIONS

Radioimmunoprecipitations were done with rabbit and mouse antibodies against the structural and non-structural Dengue virus recombinant fusion proteins of D-275. At 36-15 40 h post-infection of C6/36 cells with Dengue virus \$275/90 strain, cell culture medium was replaced with methionine-free medium containing 3 μ g/ml actinomycin D for 3 h, followed by the addition of fresh medium with [35S] methionine at 20 μ Ci/ml and 3 μ g/ml actinomycin D for a further 3 h. The cells were washed with cold PBS, 20 dissolved in RIPA buffer [100 mM Tris-HCl pH7.5, 150 mM NaCl, 10 mM EDTA, 0.1% SDS, 0.1% NP 40, 1% sodium dexoycholate, 100 μ g/ml PMSF] on ice for 1 h, then clarified at 1000 x g for 10 min. The lysates were 25 precleared with normal serum and protein A Sepharose. immunoprecipitation, rabbit and mouse sera that had been preabsorbed with normal, uninfected C6/36 cell extract fixed by cold acetone were incubated with labeled antigen overnight at 4°C. The virus protein-antibody complexes 30 were precipitated with protein A-Sepharose and were washed with immunoprecipitation buffer [10 mM Tris-HCl, pH7.4, 0.05% aprotinin, 1% NP40, 2 mM EDTA, 0.15 M NaCl], 6 times then 2X SDS-PAGE buffer was added, boiled for 2 min, and the supernatant was loaded on a 12% SDS-polyacrylamide gel. 32 35 After fixing enhancing and drying, the gel was exposed to The results confirmed that antibodies to X-ray film.

- 17 -

recombinant E, NS1, NS2, NS3 and NS5 had been generated in mice (Fig. 2) and in rabbits (Fig. 3). These antibodies reacted with the native E, NS1, NS2, NS3 and NS5 proteins synthesised in infected C6/36 cells.

5

EXAMPLE 8

INDIRECT IMMUNOFLUORESCENCE ASSAY

The C6/36 cells infected with Dengue virus S275/90 for 2 days were fixed on glass plates with cold acetone for immunofluorescence. 2-fold dilutions of the sera of 10 rabbits or mice were incubated with the fixed cells for 1 h at 37°C, then washed with PBS. Secondary antibodies were linked to fluorescein and incubated for 1 h, followed by washing with PBS for observation using fluorescence 15 microscopy. Fig 4 shows the antisera to E, NS1, NS2, NS3 and NS5 reacted specifically with the Dengue virus S275/90 infected cells, but control antiserum did no react. Quantitation of the result (as set out in Table 4) showed that an immune response to all recombinant Dengue virus 20 proteins (E, NS1, NS2, NS3 and NS5) occurred in both mice and rabbits.

15

20

- 18 -

TABLE 3

Oligonucleotides used to prepare cDNA fragments corresponding to Dengue virus proteins (by PCR)

- 1. pGEX-KG/EX-20
- 5 DIF920E ECORI E

 5'CCA TGA ATT CCC ATG CGA TGC GTG GGA

 DIF2400X Xhol E

 5'CAC ATC TCG AGT CCG CTT GAA CCA TGA
- 2. pMAL-c/NS1-104
 DIR2400S Smal NS1
 5' TGG TTC CCG GGG ACT CGG GAT GTG TA
 DIF3458H HindIII NS1
 5'ACT AAG CTT GAT CAT GCA GAG ACC ATT GA
 - 3. pMAL-cRI/NS2-1
 DIR-NS2PM_ECORI NS2
 5'AAT CAG AAT TCT CTG CAG GGT CAG GGG AA
 DIF-NS2H HINDIII NS2
 5'ATA ACA AAG CTT ATC TTT GTT TCT
- 4. pGEX-KG/NS3 BHC6001
 DIR-NS3B BAMHI NS3
 5'GAA AGG ATC CTC TGG AGT GTT ATG GGA CAC A
 DIF-6360H HindIII NS3
 5'ACC CAA GCT TCA TCT TCC TGC TGC
- 5. pGEX-KG/NS5(C600 HF1)
 DIR-75445 Sall NS5

 5'AGG AGG TCG ACG AGG TAC GGG AGC C
 DIF-8365
 5'CAA TGA TAT CTA GGT TGG CT

TABLE 4

IMMUNE RESPONSES OF MICE AND RABBITS: INDIRECT

IMMUNOFLUORESCENCE ASSAYS

Dengue virus type 1 recombinant proteins	No. of mice	- ∑ Titrations of IFA
E E + CFA NS1 NS2 NS2 + CFA NS3 NS3 + CFA NS5 NS5 + CFA E + NS1 NS3 + NS1 NS2 + NS3 NS5 + NS3 MBP GST PBS	11 10 10 10 10 11 10 10 10 17 18 14 10 4 4	14.91 39.62 14.89 12.05 12.07 10.94 42.56 7.94 10.47 16.66 10.87 9.23 32.14 < 4 < 4
Dengue virus type 1 recombinant proteins	No. of rabbits	- ∑ Titrations of IFA
E NS1 NS2 (67) NS2 (68) NS3 NS5	1 1 1 1 1	160 160 2560 640 2560 160

SEQUENCE LISTING

(1) GENERAL INFORMATION:	
(i) APPLICANT: (A) NAME: National University of Singapore (B) STREET: 10 Kent Ridge Crescent (C) CITY: Singapore (E) COUNTRY: Singapore (F) POSTAL CODE (ZIP): 0511	
(ii) TITLE OF INVENTION: Dengue Virus	
(iii) NUMBER OF SEQUENCES: 12	
(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)	
(v) CURRENT APPLICATION DATA: APPLICATION NUMBER:	
(2) INFORMATION FOR SEQ ID NO:1:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH; 10718 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: RNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Dengue Fever Virus Type 1 (B) STRAIN: S275/90</pre>	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 8110268	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
GTGGACCGCA AAGAACAGTT TCGAATCGGA AGCTTGCTTA ACGTAGTTCT AACAGTTTTT 60)
TATTAGAGAG CAGATCTCTG ATG AAC CAA CGA AAA AAG ACG GCT CGA 11 Met Asn Asn Gln Arg Lys Lys Thr Ala Arg 1 5 10	ſΟ
CCG TCT TTC AAT ATG CTG AAA CGC GCG AGA AAC CGC GTG TCA ACT GGT Pro Ser Phe Asn Met Leu Lys Arg Ala Arg Asn Arg Val Ser Thr Gly 15 20 25	8
TCA CAG TTG GCG AAG AGA TTC TCA AAA GGA TTG CTT TCA GGC CAA GGA Ser Gln Leu Ala Lys Arg Phe Ser Lys Gly Leu Leu Ser Gly Gln Gly 30 35 40)6

Pro	ATG Met	AAA Lys 45	reu	GTG Val	ATG Met	GCT Ala	TTC Phe 50	Ile	GCA Ala	TTC Phe	CTA Lev	AGA Arg 55	Phe	CTA Leu	GCC Ala		254
ATA Ile	Pro 60	PIC	ACA Thr	GCA Ala	GGA Gly	ATT Ile 65	Leu	GCT Ala	AGA Arg	TGG Trp	GGC Gly	Ser	TTC Phe	AAG Lys	AAG Lys		302
AAT Asn 75	GIY	GCG Ala	ATC	AAA Lys	GTG Val 80	Leu	CGG Arg	GGT Gly	TTC Phe	AAG Lys 85	Lys	GAA Glu	ATC Ile	TCA Ser	AAC Asn 90		350
ATG Met	TTG Leu	AAC Asn	ATA	ATG Met 95	AAT Asn	AGA Arg	AGG Arg	AAA Lys	AGA Arg 100	Ser	GTG Val	ACC Thr	ATG Met	CTC Leu 105	CTC Leu		398
ATG Met	CTG Leu	CTG Leu	CCC Pro 110	Inr	GCC Ala	TTG Leu	GCG Ala	TTC Phe 115	CAT His	TTG Leu	ACT Thr	ACA Thr	CGA Arg 120	GGG	GGA Gly		446
GAG Glu	CCA Pro	CAC His 125	ATG Met	ATA Ile	GTT Val	AGC Ser	AAG Lys 130	CAG Gln	GAA Glu	AGA Arg	GAA Glu	AAG Lys 135	TCA Ser	CTC Leu	TTG Leu		494
TTT Phe	AAG Lys 140	inr	TCT Ser	GTA Val	GGT Gly	GTC Val 145	AAC Asn	ATG Met	TGC Cys	ACC Thr	CTT Leu 150	ATA Ile	GCG Ala	ATG Met	GAT Asp		542
TTG Leu 155	GGA Gly	GAG Glu	TTA Leu	TGT Cys	GAG Glu 160	GAC Asp	ACA Thr	ATG Met	ACT Thr	TAC Tyr 165	AAA ys	TGC	CCT Pro	CGA Arg	ATT Ile 170	•	590
ACT	GAG Glu	GCG Ala	GAA Glu	CCA Pro 175	GAT Asp	GAC Asp	GTT Val	GAT Asp	TGT Cys 180	TGG Trp	TGC Cys	AAT Asn	GCT Ala	ACA Thr 185	GAC Asp		638
ACA Thr	TGG Trp	GTG Val	ACC Thr 190	TAT Tyr	GGA Gly	ACA Thr	TGT Cys	TCC Ser 195	CAA Gln	ACT Thr	GGC Gly	GAG Glu	CAC His 200	CGA Arg	CGG Arg		686
GAC Asp	AAA Lys	CGT Arg 205	TCC Ser	GTC Val	GCA Ala	CTG Leu	GCC Ala 210	CCA Pro	CAC His	GTG Val	GGA Gly	CTT Leu 215	GGT Gly	CTA Leu	GAA Glu		734
ACA Thr	AGA Arg 220	ACC Thr	GAA Glu	ACG Thr	TGG Trp	ATG Met 225	TCC Ser	TCT Ser	GAA Glu	GGC Gly	GCT Ala 230	TGG Trp	AAA Lys	CAA Gln	ATA Ile		782
CAA Gln 235	AGA Arg	GTG Val	GAG Glu	ACT Thr	TGG Trp 240	GCT Ala	TTG Leu	CGA Arg	CAC His	CCA Pro 245	GGA Gly	TTC Phe	ACG Thr	GTG Val	ATA Ile 250		830
GCC Ala	CTT Leu	TTT Phe	CTT Leu	GCA Ala 255	CAT His	GCC Ala	ATA Ile	GGA Gly	ACA Thr 260	TCC Ser	ATC Ile	ACT Thr	CAG Gln	AAA Lys 265	GGG Gly	i	878
ATT Ile	ATT Ile	TTC Phe	ATT Ile 270	TTG Leu	TTA Leu	ATG Met	Leu	GTA Val 275	ACA Thr	CCA Pro	TCC Ser	ATG Met	GCC Ala 280	ATG Met	CGA Arg	!	926
TGC Cys	GTG Val	GGA Gly 285	ATA Ile	GGC Gly	AGC Ser	Arg	GAC Asp 290	TTC Phe	GTG Val	GAA Glu	GGA Gly	CTA Leu 295	TCA Ser	GGA Gly	GCA Ala	,	974

ACT Thr	TGG Trp	GTA Val	GAC Asp	GTG Val	GTA Val	CTG Leu	GAA Glu	CAT His	GGA Gly	AGT Ser	Cys	GTC Val	ACC Thr	ACC Thr	ATG Met	102	22
CCA	300	GAC	222	CCA	ACA	305	GAC	ልጥጥ	449	CTC	310 CTG	AAA	ACG	GAG	GTC	107	70
Ala 315	Lys	Asp	Lys	Pro	Thr 320	Leu	Asp	Ile	Glu	Leu 325	Leu	Lys	Thr	Glu	Val 330		, ,
					CTG Leu					Ile						111	18
					TCA Ser				Thr					Thr		116	56
					GCG Ala		-									121	14
					GJA GGC							Gly				126	52
					AAG Lys 400											- 13	10
					.AAA Lys					Val						13	58
					GGA Gly											140	06
			Pro	_	GCT Ala			Ser		_	_			_		14	54
		Leu			GAC Asp							Leu				15	02
	Met				ACA Thr 480	Met					Trp				AAA Lys 490	15	50
					TTA Leu					Thr					Thr	15	98
				Trp	AAC Asn				Leu					Lys	ACA Thr	1 6	46
			Lys					. Val					Gln		GGA Gly	16	94
		His					Gly					Gln			GGA Gly	17	142

ACG Thr 555	ACA Thr	ACA Thr	ATT Ile	TTT Phe	GCA Ala 560	GGA Gly	CAC His	CTG Leu	AAA Lys	TGT Cys 565	AGA Arg	CTA Leu	AAA Lys	ATG Met	GAC Asp 570	1790
ГЛЯ	CTG Leu	ACT Thr	CTA Leu	AAA Lys 575	GGG Gly	ATG Met	TCA Ser	TAT Tyr	GTG Val 580	ATG Met	TGC Cys	ACA Thr	GGC Gly	TCA Ser 585	TTT Phe	1838
AAG Lys	CTA Leu	GAG Glu	AAG Lys 590	GAA Glu	GTG Val	GCT Ala	GAG Glu	ACC Thr 595	CAG Gln	CAT His	GGA Gly	ACT Thr	GTT Val 600	TTA Leu	GTG Val	1886
CAG Gln	GTT Val	AAA Lys 605	TAC Tyr	GAA Glu	GGA Gly	ACA Thr	GAT Asp 610	GCA Ala	CCA Pro	TGC Cys	AAG Lys	ATC Ile 615	CCC Pro	TTT Phe	TCG Ser	1934
ACC Thr	CAA Gln 620	GAT Asp	GAG Glu	AAA Lys	GGA Gly	GTG Val 625	ACC Thr	CAG Gln	AAT Aan	AGA Arg	TTG Leu 630	ATA Ile	ACA Thr	GCC Ala	AAT Asn	1982
CCT Pro 635	ATA Ile	GTT Val	ACT Thr	GAC Asp	AAA Lys 640	GAA Glu	AAA Lys	CCA Pro	GTC Val	AAC Asn 645	ATT Ile	GAG Glu	ACA Thr	GAA Glu	CCA Pro 650	2030
CCT Pro	TTT Phe	GGT Gly	GAG Glu	AGC Ser 655	TAC Tyr	ATC Ile	GTG Val	GTA Val	GGG Gly 660	GCA Ala	GGT Gly	GAA Glu	ààà Lys	GCT Ala 665	TTG Leu	2078
AAA Lys	CAA Gln	TGC Cys	TGG Trp 670	TTC Phe	AAG Lys	AAA Lys	GGA Gly	AGC Ser 675	AGC Ser	ATA Ile	GGG Gly	AAA Lys	ATG Met 680	TTC Phe	GAA Glu	2126
GCA Ala	ACC Thr	GCC Ala 685	CGA Arg	GGA Gly	GCA Ala	CGA Arg	AGG Arg 690	ATG Met	GCT Ala	ATC Ile	CTG Leu	GGA Gly 695	GAC Asp	ACC Thr	GCA Ala	2174
TGG Trp	GAC Asp 700	TTC Phe	GGT Gly	TCT Ser	ATA Ile	GGA Gly 705	GGA Gly	GTG Val	TTC Phe	ACG Thr	TCT Ser 710	GTG Val	GGA Gly	AAA Lys	TTA Leu	2222
GTG Val 715	CAT His	CAG Gln	GTT Val	TTT Phe	GGA Gly 720	ACC Thr	GCA Ala	TAT Tyr	GGG	GTT Val 725	CTG Leu	TTC Phe	AGC Ser	GGT Gly	GTT Val 730	2270
TCT Ser	TGG Trp	ACC Thr	ATG Met	AAA Lys 735	ATA Ile	GGA Gly	ATA Ile	GGG Gly	ATT Ile 740	CTG Leu	CTG Leu	ACA Thr	TGG Trp	TTG Leu 745	GGA Gly	2318
TTA Leu	TAA Asn	TCA Ser	AGG Arg 750	AGC Ser	ACG Thr	TCA Ser	CTT Leu	TCG Ser 755	ATG Met	ACG Thr	TGC Cys	ATT Ile	GCA Ala 760	GTT Val	GGC Gly	2366
ATG Met	GTC Val	ACA Thr 765	CTG Leu	TAC Tyr	CTA Leu	GGA Gly	GTC Val 770	ATG Met	GTT Val	CAA Gln	GCG Ala	GAC Asp 775	TCG Ser	GGA Gly	TGT Cys	2414
GTA Val	ATC Ile 780	AAC Asn	TGG Trp	AAG Lys	GGC	AGA Arg 785	GAA Glu	CTC Leu	AAA Lys	TGT Cys	GGA Gly 790	AGT Ser	GGC Gly	ATT Ile	TTT Phe	2462
GTC Val 795	ACT Thr	AAT Asn	GAA Glu	GTC Val	CAC His 800	ACT Thr	TGG Trp	ACA Thr	GAG Glu	CAA Gln 805	TAC Tyr	T As	TTT Phe	CAA Gln	GCT Ala 810	2510

- 24 -

GAC Asp	TCC Ser	CCA Pro	AAA Lys	AGA Arg 815	CTA	TCA Ser	GCA Ala	GCC	ATC Ile 820	GGA Gly	AAG Lys	GCA Ala	TGG Trp	GAG Glu 825	GAG Glu	2558
GGT Gly	GTG Val	Cys	GGA Gly 830	ATT	CGA Arg	TCA Ser	GCC Ala	ACT Thr 835	CGT Arg	CTC Leu	GAG Glu	AAC Asn	ATC Ile 840	Met	TGG Trp	26 06
AAG Lys	CAA Gln	ATA Ile 845	TCA Ser	AAT Asn	GAA Glu	CTG Leu	AAC Asn 850	CAC His	ATC Ile	TTA Leu	CTT Leu	GAA Glu 855	AAT Asn	GAC Asp	ATG Met	2654
AAA Lys	TTC Phe 860	ACA Thr	GTG Val	GTT Val	GTA Val	GGA Gly 865	GAT Asp	GTT Val	GTT Val	GGG Gly	ATC Ile 870	Leu	GCC Ala	CAA Gln	GGG Gly	2702
AAA Lys 875	r Ayy	ATG Met	ATT Ile	AGA Arg	CCA Pro 880	CAA Gln	CCC Pro	ATG Met	GAA Glu	CAC His 885	AAA Lys	TAC Tyr	TCA Ser	TGG Trp	AAA Lys 890	2750
AGC Ser	TGG Trp	GGA Gly	AAA Lys	GCC Ala 895	AAA Lys	ATC Ile	ATA Ile	GGA Gly	GCA Ala 900	GAC Asp	ATA Ile	CAG Gln	AAC Asn	ACC Thr 905	ACC Thr	2798
TTC Phe	ATC Ile	ATT Ile	GAC Asp 910	GGC Gly	CCA Pro	GAT Asp	ACT Thr	CCA Pro 915	GAA Glu	TGT Cys	CCT Pro	GAT Asp	GAC Asp 920	CAA Gln	AGA Arg	2846
GCA Ala	TGG Trp	AAC Asn 925	ATT Ile	TGG Trp	GAA Glu	GTT Val	GAG Glu 930	GAC Asp	TAT Tyr	GGG	TTC Phe	GGA Gly 935	ATT	TTC Phe	ACG Thr	2894
ACA Thr	AAC Asn 940	ATA Ile	TGG Trp	TTG Leu	AAA Lys	TTG Leu 945	CGT Arg	GAC Asp	TCC Ser	TAC Tyr	ACC Thr 950	CAA Gln	ATG Met	TGT Cys	GAC Asp	2942
CAC His 955	CGG Arg	CTA Leu	ATG Met	TCA Ser	GCT Ala 960	GCC Ala	ATC Ile	AAG Lys	GAC Asp	AGC Ser 965	AAG Lys	GCA Ala	GTC Val	CAT His	GCT Ala 970 -	[.] 2990
GAT Asp	ATG Met	GGG Gly	TAC Tyr	TGG Trp 975	ATA Ile	GAA Glu	AGT Ser	GAA Glu	AAG Lys 980	AAC Asn	GAG Glu	ACC Thr	TGG Trp	AAG Lys 985	CTG Leu	3038
GCA Ala	AGA Arg	GCC Ala	TCT Ser 990	TTC Phe	ATA Ile	GAA Glu	GTT Val	AAA Lys 995	ACA Thr	TGT Cys	GTC Val	TGG Trp	CCA Pro 1000	Lys	TCC Ser	3086
CAC	ACT Thr	CTA Leu 1005	Trp	AGC Ser	AAT Asn	GGA Gly	GTT Val 1010	Leu	GAA Glu	AGT Ser	GAA Glu	ATG Met 1015	Ile	ATT Ile	CCA Pro	3134
AAG Lys	ATC Ile 1020	Tyr	GGA Gly	GGA Gly	CCA Pro	ATA Ile 1025	Ser	CAG Gln	CAC His	AAC Asn	TAC Tyr 1030	Arg	CCA Pro	GGA Gly	TAT Tyr	3182
TTC Phe 1035	Thr	CAA Gln	ACG Thr	GCA Ala	GGG Gly 1040	Pro	TGG Trp	CAC His	CTA Leu	GGC Gly 1049	Lys	TTG Leu	GAA Glu	CTG Leu	GAT Asp 1050	3230
TTT	GAT Asp	TTG Leu	TGT Cys	GAG Glu 1055	GIA	ACC Thr	ACA Thr	GTT Val	GTT Val 1060	Val	GAT Asp	GAA Glu	CAT His	TGT Cys 1065	Gly	3278

- 25 -

AAT CGA GGT Asn Arg Gly	CCA TCT CTT Pro Ser Leu 1070	AGA ACC ACA Arg Thr Thr 1075	Thr Val Thr	GGA AAG ATA Gly Lys Ile .1080	ATT 3326 Ile
	Cys Cys Arg	TCT TGT ACG Ser Cys Thr 1090	Leu Pro Pro		
GGA GAA GAT Gly Glu Asp 1100	GGA TGT TGG Gly Cys Trp	TAC GGT ATG Tyr Gly Met 1105	GAA ATC AGA Glu Ile Arg 1110	Pro Val Lys	GAA 3422 Glú
AAG GAA GAG Lys Glu Glu 1115	AAT CTA GTC Asn Leu Val 112	AAA TCA ATG Lys Ser Met O	GTC TCT GCA Val Ser Ala 1125	GGG TCA GGG Gly Ser Gly	GAA 3470 Glu 1130
GTG GAC AGC Val Asp Ser	TTT TCA CTA Phe Ser Leu 1135	GGA CTG CTA Gly Leu Leu	TGC ATA TCA Cys Ile Ser 1140	ATA ATG ATC Ile Met Ile 114	Glu
GAG GTG ATG Glu Val Met	AGA TCC AGA Arg Ser Arg 1150	TGG AGC AGA Trp Ser Arg 1155	Lys Met Leu	ATG ACT GGA Met Thr Gly 1160	ACA 3566 Thr
CTG GCT GTG Leu Ala Val 116	Phe Leu Leu	CTC ATA ATG Leu Ile Met 1170	GGA CAA TTG Gly Gln Leu	ACA TGG AAT Thr Trp Asn 1175	GAT 3614 Asp
CTG ATC AGG Leu Ile Arg 1180	TTA TGC ATC Leu Cys Ile	ATG GTT GGA Met Val Gly 1185	GCC AAT GCT Ala Asn Ala 1190	Ser Asp Arg	ATG 3662 Met
GGG ATG GGA Gly Met Gly 1195	ACA ACG TAC Thr Thr Tyr 120	CTA GCT CTG Leu Ala Leu O	ATG GCC ACT Met Ala Thr 1205	TTT AAA ATG Phe Lys Met	AGA 3710 Arg 1210
CCA ATG TTT Pro Met Phe	GCT GTC GGG Ala Val Gly 1215	CTG TTG TTC Leu Leu Phe	CGC AGA CTA Arg Arg Leu 1220	ACA TCT AGA Thr Ser Arg 122	Glu
GTT CTT CTT Val Leu Leu	CTT ACA ATT Leu Thr Ile 1230	GGA TTG AGT Gly Leu Ser 1235	Leu Val Ala	TCT GTG GAG Ser Val Glu 1240	TTA 3806 Leu
CCA AAT TCC Pro Asn Ser 124	Leu Glu Glu	CTG GGG GAT Leu Gly Asp 1250	GGA CTT GCA Gly Leu Ala	ATG GGC ATT Met Gly Ile 1255	ATG 3854 Met
ATT TTA AAA Ile Leu Lys 1260	TTA TTG ACT Leu Leu Thr	GAC TTT CAG Asp Phe Gln 1265	TCA CAT CAG Ser His Gln 1270	Leu Trp Ala	ACC 3902 Thr
TTG CTG TCC Leu Leu Ser 1275	TTG ACA TTT Leu Thr Phe 128	GTC AAA ACA Val Lys Thr O	ACG TTT TCC Thr Phe Ser 1285	TTG CAC TAT Leu His Tyr	GCA 3950 Ala 1290
TGG AAG ACA Trp Lys Thr	ATG GCT ATG Met Ala Met 1295	GTA CTG TCA Val Leu Ser	ATT GTA TCT Ile Val Ser 1300	CTC TTC CCC Leu Phe Pro 130	Leu
TGC CTG TCC					TTG 4046

GGA TCT CTT GGA T	GC AAA CCA CTA	Thr Met Phe Leu	ATA GCA GAA AAC 4094
Gly Ser Leu Gly C	Ys Lys Pro Leu		Ile Ala Glu Asn
1325	1330		1335
AAA ATC TGG GGA A	GG AAA AGT TGG	CCC CTC AAT GAA	Gly Ile Met Ala
Lys Ile Trp Gly A	arg Lys Ser Trp	Pro Leu Asn Glu	
1340	1345	135	
GTT GGA ATA GTC A	GC ATC CTA CTA	AGT TCA CTC CTC	AAA AAT GAT GTG 4190
Val Gly Ile Val S	Ser Ile Leu Leu	Ser Ser Leu Leu	Lys Asn Asp Val
1355	1360	1365	1370
CCG CTA GCT GGG C Pro Leu Ala Gly P	CCA CTA ATA GCT Pro Leu Ile Ala 375	GGA GGC ATG CTA Gly Gly Met Leu 1380	ATA GCA TGT TAC 4238 Ile Ala Cys Tyr 1385
GTT ATA TCT GGA A Val Ile Ser Gly S 1390	GC TCA GCC GAC Ser Ser Ala Asp	TTA TCA CTA GAG Leu Ser Leu Glu 1395	AAA GCG GCT GAG 4286 Lys Ala Ala Glu 1400
GTC TCC TGG GAA G	AA GAA GCA GAA	His Ser Gly Ala	TCA CAC AAT ATA 4334
Val Ser Trp Glu G	lu Glu Ala Glu		Ser His Asn Ile
1405	1410		1415
TTA GTG GAG GTC C	AA GAT GAT GGA	ACC ATG AAG ATA	Lys Asp Glu Glu
Leu Val Glu Val G	In Asp Asp Gly	Thr Met Lys Ile	
1420	1425	1430	
AGA GAT GAC ACG C	TA ACC ATT CTC	CTT AAA GCA ACC	CTG CTA GCA GTT 4430
Arg Asp Asp Thr L	eu Thr Ile Leu	Leu Lys Ala Thr	Leu Leu Ala Val
1435	1440	1445	1450
TCA GGG GTG TAC C Ser Gly Val Tyr P	CA TTA TCA ATA Pro Leu Ser Ile .455	CCA GCA ACC CTT Pro Ala Thr Leu 1460	TTT GTG TGG TAC 4478 Phe Val Trp Tyr 1465
TTT TGG CAG AAA A Phe Trp Gln Lys L 1470	AG AAA CAA AGA ys Lys Gln Arg	TCT GGA GTG TTA Ser Gly Val Leu 1475	TGG GAC ACA CCT 4526 Trp Asp Thr Pro 1480
AGC CCT CCA GAA G	TG GAA AGA GCA	Val Leu Asp Asp	GGT ATC TAT AGA 4574
Ser Pro Pro Glu V	'al Glu Arg Ala		Gly Ile Tyr Arg
1485	149		1495
ATT ATG CAG AGA G	GA CTG TTG GGC	AGG TCC CAA GTA	Gly Val Gly Val
Ile Met Gln Arg G	Ly Leu Leu Gly	Arg Ser Gln Val	
1500	1505	1510	
TTC CAA GAC GGC G	TTG TTC CAC ACA	ATG TGG CAC GTC	ACC AGG GGA GCT 4670
Phe Gln Asp Gly V	Val Phe His Thr	Met Trp His Val	Thr Arg Gly Ala
1515	1520	1525	1530
GTC CTT ATG TAC C	CAA GGG AAG AGG	CTG GAA CCA AGC	TGG GCC AGT GTC 4718
	Sln Gly Lys Arg	Leu Glu Pro Ser	Trp Ala Ser Val
	1535	1540	1545
AAA AAA GAC TTG A Lys Lys Asp Leu I 1550	TC TCA TAT GGA le Ser Tyr Gly	GGA GGT TGG AGG Gly Gly Trp Arg 1555	TTT CAA GGA TCC 4766 Phe Gln Gly Ser 1560
TGG AAC ACG GGA G	AA GAA GTG CAG	GTG ATT GCT GTT	GAA CCA GGA AAA 4814

AAC Asn	CCC Pro 158	råa	AAT Asn	GTA Val	CAG Gln	ACA Thr 158	Ala	CCG Pro	GGT Gly	ACC Thr	TTC Phe 159	Lys	ACC Thr	CCT Pro	GAA Glu	•	4862
GGT Gly 159	GIU	GTT Val	GGA Gly	GCT Ala	Ile 160	Ala	CTA Leu	GAT Asp	TTT Phe	AAA Lys 160	Pro	GGC Gly	ACA Thr	TCT Ser	GGA Gly 1610	•	4910
261	PIO	116	GTG Val	161	Arg 5	Glu	Gly	Lys	Ile 162	Val O	Gly	Leu	Tyr	Gly 162	Asn 5		4958
GGA Gly	GTA Val	GTG Val	ACA Thr 1630	Thr	AGT Ser	GGA Gly	ACC Thr	TAC Tyr 163	Val	AGT Ser	GCC Ala	ATA Ile	GCC Ala 164	Gln	GCC Ala	,	5006
AAA Lys	GCA Ala	TCA Ser 164	CAA Gln	GAA Glu	GGG Gly	CCC Pro	CTA Leu 1650	Pro	GAG Glu	ATT Ile	GAG Glu	GAC Asp 165	Glu	GTG Val	TTT Phe		5054
arg	1660	Arg	AAC Asn	Leu	Thr	11e 166	Met 5	Asp	Leu	His	Pro 167	Gly	Ser	Gly	Lys		5102
167	Arg.	Arg	TAT Tyr	ren	1680	Ala)	Ile	Val	Arg	Glu 1689	Ala 5	Ile	Arg	Arg	Asn 1690	5	5150
GTG Val	CGC Arg	ACA Thr	CTA Leu	ATT Ile 1695	Leu	GCT Ala	CCC Pro	ACA Thr	AGG Arg 1700	Val	\$TC al	GCT Ala	TCC Ser	GAA Glu 170	Met	5	5198
GCA Ala	GAG Glu	GCG Ala	CTC Leu 1710	rys	GGA Gly	ATG Met	CCA Pro	ATA Ile 1719	Arg	TAC Tyr	CAA Gln	ACA Thr	ACA Thr 1720	Ala	GTG Val	5	246
rys	pét	1725		TOP	GIÀ	rys	1730	Ile	Val	Asp	Leu	Met 1735	Cys	His	Ala	5	294
ACT Thr	TTC Phe 1740	THE	ATG Met	CGT Arg	CTC Leu	CTG Leu 1745	Ser	CCC Pro	GTG Val	AGA Arg	GTT Val 1750	Pro	AAT Asn	TAC Tyr	AAC Asn	5	342
ATG Met 1755	TIE	ATC Ile	ATG Met	GAT Asp	GAA Glu 1760	ATA	CAT His	TTT Phe	ACC Thr	GAT Asp 1765	Pro	GCC Ala	AGC Ser	ATA Ile	GCG Ala 1770	5	390
CGC Arg	AGA Arg	GGG Gly	TAC Tyr	ATC 11e 1775	ser	ACC Thr	CGA Arg	GTG Val	GGC Gly 1780	Met	GGT Gly	GAA Glu	GCA Ala	GCT Ala 1785	Ala	5	438
ATC Ile	TTC Phe	ATG Met	ACA Thr 1790	ATG	ACT Thr	CCC Pro	CCA Pro	GGA Gly 1795	Ser	GTG Val	GAG Glu	GCC Ala	TTT Phe 1800	Pro	CAG Gln	5	486
AGC Ser	AAT Asn	GCA Ala 1805	GTT Val	ATC Ile	CAA Gln	GAT Asp	GAG Glu 1810	Glu	AGA Arg	GAC Asp	ATT Ile	CCT Pro 1815	Glu	AGA Arg	TCA Ser	5	534
TGG Trp	AAC Asn 1820	ser	GGC Gly	TAT Tyr	GAG Glu	TGG Trp 1825	Ile	ACT [.] Thr	GAC Asp	TTC Phe	CCA Pro 1830	Gly	AAA Lys	ACA Thr	GTC Val	5	582

- 28 -

TGG T Trp P 1835	?he					Lys					Ile					56	30
AGA A Arg I					Arg					Ser					Asp	56	78
ACA G				Lys					Asp					Val		57	26
ACA G			Ser					Asn					Arg			57	74
GAC C		Arg					Pro					Asp				58	22
CGC C Arg V 1915						Pro					Val					58	370
CAG P					Ile					Asn					Gln	59	18
TAC O				Gly					Asn	,				Ala		59	66
TGG I			Ala					Asp					Pro			60)14
ATC I		Pro					Pro					Ser				6.0	062
GAC (Asp (1995	Gly					Arg					Lys					61	110
CTC 1					Asp					Leu					Ala	61	158
TCA (GAA Glu	GCC	TTC Phe 203	Gln	TAC	TCT Ser	GAC Asp	AGA Arg 203	Arg	TGG Trp	TGC Cys	TTT Phe	GAC Asp 204	Gly	GAA Glu	62	206
AGG 1	AAC Asn	AAC Asn 204	Gln	GTG Val	TTG Leu	GAG Glu	GAG Glu 205	Asn	ATG Met	GAC Asp	GTG Val	GAG Glu 205	Met	TGG Trp	ACA Thr	62	254
AAA (GAA Glu 206	Gly	GAA Glu	CGA Arg	AAG Lys	AAA Lys 206	Leu	CGA Arg	CCC Pro	CGC Arg	TGG Trp 207	Leu	GAT Asp	GCC Ala	AGA Arg	63	302
ACA Thr 1	Tyr	TCA Ser	GAC Asp	CCA Pro	CTG Leu 208	Ala	CTG Leu	CGC Arg	GAG Glu	TTT Phe 208	Lys	GAG Glu	TTT	GCA Ala	GCA Ala 2090	63	350

- 29 -

GGA AGA AGA Gly Arg Arg					
	AGT GTC TCA Ser Val Ser 2095	GGT GAT CTA	A ATA TTA GAA u Ile Leu Glu 2100	ATA GGG AAA Ile Gly Lys 210	Leu
CCA CAA CAC	TTG ACG CAA Leu Thr Gln 2110	AGG GCC CAG Arg Ala Gli 21	G AAT GCC TTG n Asn Ala Leu 15	GAC AAC CTG Asp Asn Leu 2120	GTT 6446 Val
	Asn Ser Glu		A AGA GCC TAC y Arg Ala Tyr		
GAA GAA CTT Glu Glu Leu 2140	CCA GAC ACC Pro Asp Thr	ATA GAA ACC Ile Glu Thi 2145	G TTG ATG CTC r Leu Met Leu 215	Leu Ala Leu	ATA 6542 Ile
GCT GTG TTA Ala Val Leu 2155	ACT GGT GGA Thr Gly Gly 216	Val Thr Le	G TTC TTC CTA u Phe Phe Leu 2165	TCA GGA AAG Ser Gly Lys	GGC 6590 Gly 2170
CTA GGG AAA Leu Gly Lys	ACA TCT ATT Thr Ser Ile 2175	GGC CTA CTC Gly Leu Leu	C TGC GTG ATG u Cys Val Met 2180	GCT TCA AGC Ala Ser Ser 218	Val
CTG CTA TGG Leu Leu Trp	ATG GCC AGC Met Ala Ser 2190	GTG GAG CC' Val Glu Pro 219	T CAT TGG ATA o His Trp Ile 95	GCG GCC TCC Ala Ala Ser 2200	ATC 6685 Ile
ATA CTA GAG Ile Leu Glu 220	Phe, Phe Leu	ATG GTG CTC Met Val Let 2210	G CTT ATT CCA u Leu Ile Pro	GAG CCA GAC Glu Pro Asp 2215	AGA 6734 Arg
CAG CGC ACT	CCA CAG GAC Pro Gln Asp	AAC CAG TTI Asn Gln Lee	A GCA TAT GTG	GTG ATA GGT	TTG 6782
2220	_	2225	u Ala Tyr val 223		Leu
2220 TTA TTC ATG	ATA CTC ACA	2225 GTG GCA GCC Val Ala Ala		O GGA TTA TTG	GAA 6830
TTA TTC ATG Leu Phe Met 2235 ACC ACA AAG	ATA CTC ACA Ile Leu Thr 224 AAA GAC TTA	GTG GCA GCC Val Ala Ala O GGG ATT GGC	223 C AAT GAG ATG a Asn Glu Met	GGA TTA TTG Gly Leu Leu	GAA 6830 Glu 2250 CAC 6878 His
TTA TTC ATG Leu Phe Met 2235 ACC ACA AAG Thr Thr Lys	ATA CTC ACA Ile Leu Thr 224 AAA GAC TTA Lys Asp Leu 2255 ACA ATG CTG	GGG ATT GGGGLY ILE GLY GAC GTA GAC	C AAT GAG ATG A Asn Glu Met 2245 C CAT GTA GCC Y His Val Ala 2260 C CTA CGT CCA P Leu Arg Pro	GGA TTA TTG Gly Leu Leu GCC GAA AAC Ala Glu Asn 226	GAA 6830 Glu 2250 CAC 6878 His 5
TTA TTC ATG Leu Phe Met 2235 ACC ACA AAG Thr Thr Lys CAC CAT GCT His His Ala ACC CTC TAT	ATA CTC ACA Ile Leu Thr 224 AAA GAC TTA Lys Asp Leu 2255 ACA ATG CTG Thr Met Leu 2270 GCA GTA GCC Ala Val Ala	GTG GCA GCC Val Ala Ala O GGG ATT GGC Gly Ile Gly GAC GTA GAC Asp Val Asp 22	C AAT GAG ATG A Asn Glu Met 2245 C CAT GTA GCC Y His Val Ala 2260 C CTA CGT CCA P Leu Arg Pro	GGA TTA TTG Gly Leu Leu GCC GAA AAC Ala Glu Asn 226 GCT TCA GCC Ala Ser Ala 2280 ATG ATG AGA	GAA 6830 Glu 2250 CAC 6878 His 5 TGG 6926 Trp
TTA TTC ATG Leu Phe Met 2235 ACC ACA AAG Thr Thr Lys CAC CAT GCT His His Ala ACC CTC TAT Thr Leu Tyr 228; ACA ATT GAA	ATA CTC ACA Ile Leu Thr 224 AAA GAC TTA Lys Asp Leu 2255 ACA ATG CTG Thr Met Leu 2270 GCA GTA GCC Ala Val Ala 5	GGG ATT GGGGLY ILE GLY GGG ATT GGGGLY ILE GLY GAC GTA GACA SP Val Asp Val Aca Aca GT Thr Thr Val C290	223 C AAT GAG ATG A Asn Glu Met 2245 C CAT GTA GCC Y His Val Ala 2260 C CTA CGT CCA P Leu Arg Pro 75 T ATC ACC CCC	GGA TTA TTG Gly Leu Leu GCC GAA AAC Ala Glu Asn 226 GCT TCA GCC Ala Ser Ala 2280 ATG ATG AGA Met Met Arg 2295 GCC ATT GCA Ala Ile Ala	GAA 6830 Glu 2250 CAC 6878 His 5 TGG 6926 Trp CAC 6974 His AAC 7022
Z220 TTA TTC ATG Leu Phe Met 2235 ACC ACA AAG Thr Thr Lys CAC CAT GCT His His Ala ACC CTC TAT Thr Leu Tyr 228: ACA ATT GAA Thr Ile Glu 2300 CAG GCA GCT	ATA CTC ACA Ile Leu Thr 224 AAA GAC TTA Lys Asp Leu 2255 ACA ATG CTG Thr Met Leu 2270 GCA GTA GCC Ala Val Ala 5 AAT ACA ACG Asn Thr Thr	GGG ATT GGGGIY Ile GITT Thr Thr Va 2290 GCA AAT AT AIA AS III 2305 GGA CTT GAGIY Leu As GIT GAGIY Leu As GIT GAGIY Leu As GIT GAGIY Leu As	223 C AAT GAG ATG A Asn Glu Met 2245 C CAT GTA GCC Y His Val Ala 2260 C CTA CGT CCA P Leu Arg Pro 75 T ATC ACC CCC I Ile Thr Pro T TCC CTG ACA e Ser Leu Thr	GGA TTA TTG Gly Leu Leu GCC GAA AAC Ala Glu Asn 226 GCT TCA GCC Ala Ser Ala 2280 ATG ATG AGA Met Met Arg 2295 GCC ATT GCA Ala Ile Ala 0	GAA 6830 Glu 2250 CAC 6878 His 5 TGG 6926 Trp CAC 6974 His 7022 Asn 7070

AAT CCA CTG ACG CTG Asn Pro Leu Thr Leu 2350	ACA GCG GCG GTA Thr Ala Ala Val 235	Leu Met Leu Val	GCT CAT TAC 7166 Ala His Tyr 2360
GCC ATA ATT GGA CCT Ala Ile Ile Gly Pro 2365	GGA CTG CAA GCA Gly Leu Gln Ala 2370	AAA GCG ACT AGA Lys Ala Thr Arg 2375	Glu Ala Gln
AAA AGG ACA GCG GCC Lys Arg Thr Ala Ala 2380	GGA ATA ATG AAA Gly Ile Met Lys 2385	AAT CCA ACC GTT Asn Pro Thr Val 2390	GAT GGA ATT 7262 Asp Gly Ile
GTT GCA ATA GAT TTG Val Ala Ile Asp Leu 2395	GAC CCT GTG GTT Asp Pro Val Val 2400	TAT GAT GCA AAA Tyr Asp Ala Lys 2405	TTT GAG AAA 7310 Phe Glu Lys 2410
CAA CTA GGC CAA ATA Gln Leu Gly Gln Ile 2415	Met Leu Leu Ile	Leu Cys Thr Ser 2420	Gln:Ile Leu 2425
TTG ATG CGG ACT ACA Leu Met Arg Thr Thr 2430	Trp Ala Leu Cys 2435	Glu Ser Ile Thr	Leu Ala Thr 2440
GGA CCT CTG ACC ACG Gly Pro Leu Thr Thr 2445	CTT TGG GAG GGA Leu Trp Glu Gly 2450	TCT CCA GGA AAA Ser Pro Gly Lys 2455	Phe Trp Asn
ACC ACG ATA GCG GTT Thr Thr Ile Ala Val 2460	Ser Met Ala Asn 2465	Ile Phe Arg Gly 2470	Ser Tyr Leu
GCA GGA GCA GGC CTG Ala Gly Ala Gly Leu 2475	Ala Phe Ser Leu 2480	Met Lys Ser Leu 2485	Gly Gly Gly 2490
AGG AGA GGT ACG GGA Arg Arg Gly Thr Gly 2495	Ala Lys Gly Lys	His Trp Glu Arg 2500	Asn Gly Lys 2505
GAC AGA CTG AAC CAA Asp Arg Leu Asn Gln 2510	Leu Ser Lys Ser 2515	Glu Phe Asn Thr	Tyr Lys Arg 2520
AGT GGG ATT ATG GAA Ser Gly Ile Met Glu 2525	Val Asp Arg Ser 2530	Glu Ala Lys Glu 2535	Gly Leu Lys
AGA GGA GAA ACA ACC Arg Gly Glu Thr Thr 2540	AAA CAT GCA GTG Lys His Ala Val 2545	TCG AGA GGA ACC Ser Arg Gly Thr 2550	GCC AAA TTG 7742 Ala Lys Leu
AGG TGG TTC GTG GAG Arg Trp Phe Val Glu 2555	AGG AAC CTT GTG Arg Asn Leu Val 2560	AAA CCA GAA GGG Lys Pro Glu Gly 2565	AAA GTC ATA 7790 Lys Val Ile 2570
GAC CTC GGT TGT GGA Asp Leu Gly Cys Gly 2575	Arg Gly Gly Trp	TCA TAC TAT TGC Ser Tyr Tyr Cys 2580	GCT GGG CTG 7838 Ala Gly Leu 2585
AAG AAA GTC ACA GAA Lys Lys Val Thr Glu 2590	GTG AAG GGA TAC Val Lya Gly Tyr 2595	Thr Lys Gly Gly	CCT GGA CAT 7886 Pro Gly His 2600

GAG Glu	GAA Glu	Pro 260	TIE	CCA Pro	ATG Met	GCG Ala	ACC Thr 261	TAI	GGA Gly	TGC Trp	AAC Asn	CTA Leu 261	ı Val	AAC Lys	CTA Leu	7934
TAC	Ser 262	. Gly	AAA Lys	Aar Aar	GTA Val	TTC Phe 262	Pne	ACA Thr	CCA Pro	CCT Pro	GAG Glu 263	Lys	Cya	GAC Asp	ACC Thr	7982
CTT Leu 263	. Dec	TGT Cys	GAT Asp	ATT Ile	GGT Gly 264	GIU	TCC	TCT Ser	CCA Pro	AAC Asn 264	Pro	ACT Thr	ATA Ile	GAA Glu	GAA Glu 2650	8030
GGA	AGA	ACG Thr	TTA Leu	CGC Arg 265	val	CTA Leu	AAG Lys	ATG Met	GTG Val 266	Glu	CCA Pro	TGG Trp	CTC Leu	AGA Arg 266	GGG Gly	8078
AAC Asn	CAA Gln	TTT Phe	TGC Cys 267	TIE	AAA Lys	ATT Ile	CTA Leu	AAT Asn 267	Pro	TAC	ATG Met	CCA Pro	AGT Ser 268	Val	GTG Val	8126
GAA Glu	ACT Thr	CTG Leu 268	GIU	CAA Gln	ATG Met	CAA Gln	AGA Arg 269	Lys	CAT His	GGA Gly	GGA Gly	ATG Met 269	Leu	GTG Val	CGG Arg	8174
AAT Asn	CCA Pro 270	Dea	TCA Ser	AGA Arg	AAT Asn	TCT Ser 270	Thr	CAT His	GAA Glu	ATG Met	TAT Tyr 271	Trp	GTT Val	TCA Ser	TGT Cys	8222
GGA Gly 271		GGA Gly	AAC Asn	ATT Ile	GTG Val 272	ser	GCA Ala	GTA Val	AAC Asn	ATG Met 272	Thr	TCT Ser	AGA Arg	ATG Met	TTG Leu 2730	8270
CTA Leu	AAT Asn	CGA Arg	TTC Phe	ACA Thr 273	wec	GCT Ala	CAC His	AGG Arg	AAA Lys 274	Pro	ACA Thr	TAT Tyr	GAA Glu	AGA Arg 274	Asp	8318
GTG Val	GAC Asp	TTA Leu	GGC Gly 2750	ura	GGA Gly	ACA Thr	AGA Arg	CAT His 275	Val	GCA Ala	GTG Val	GAA Glu	CCA Pro 2760	Glu	GTA Val	8366
GCC Ala	AAC Asn	CTA Leu 276	GAT Asp	ATC Ile	ATT Ile	Gly	CAG Gln 2770	Arg	ATA Ile	GAG Glu	AAC Asn	ATA Ile 277	Lys	CAT His	GAA Glu	8414
CAT His	AAG Lys 2780	OEL	ACA Thr	TGG Trp	CAT His	TAT Tyr 2785	Asp	GAG Glu	GAC Asp	AAT Asn	CCA Pro 2790	Tyr	AAA Lys	ACA Thr	TGG Trp	8462
GCC Ala 2795	- 3 -	CAT His	GGA Gly	TCA Ser	TAT Tyr 2800	GIU	GTC Val	AAG Lys	CCA Pro	TCA Ser 2805	Gly	TCA Ser	GCC Ala	TCA Ser	TCC Ser 2810	8510
ATG Met	GTC Val	AAT Asn	Gly	GTG Val 2815	AGI	AAA Lys	CTG Leu	CTC Leu	ACC Thr 2820	Lys	CCA Pro	TGG Trp	GAT Asp	GCC Ala 2825	Ile	8558
CCC Pro	ATG Met	GTC Val	ACA Thr 2830	OLII	ATA Ile	GCC Ala	ATG Met	ACT Thr 2835	Asp	ACC Thr	ACA Thr	CCC Pro	TTT Phe 2840	Gly	CAA Gln	8606
CAG Gln	AGG Arg	GTG Val 2845	TTT Phe	AAA Lys	GAG Glu	råa	GTT Val 2850	Asp	ACG Thr	CGC Arg	ACA Thr	CCA Pro 2855	Lys	GCA Ala	AAA Lys	8654

•	-				
	Ala Gln Ile			TGG TTA TGG Trp Leu Trp	
		Lys Pro Arg		AGA GAG GAG Arg Glu Glu	
				GTG TTC GTT Val Phe Val 2905	Asp
			Ala Val Glu	GAT GAG CGG Asp Glu Arg 2920	
	Val His Arg			CAG GGA AAA Gln Gly Lys 2935	
				AAA AAA CTA Lys Lys Leu O	
		Gly Ser Arg		TAC ATG TGG Tyr Met Trp	
				ATG AAC GAA Met Asn Glu 298	Asp .
			Ser Gly Val	GAA GGA GAA Glu Gly Glu 3000	
	Leu Gly Tyr			AAG ATT CCA Lys Ile Pro 3015	
				ACA AGG ATA Thr Arg Ile	•
		Glu Ala Lys		ATC ATG GAG Ile Met Glu	
				ACC TAC CAA Thr Tyr Gln 306	Asn
AAG GTG GTA Lys Val Val	AGG GTA CAG Arg Val Gin 3070	AGA CCA GCG Arg Pro Ala 307	Lys Asn Gly	A ACC GTG ATG Thr Val Met 3080	GAT 9326 Asp
Val Ile Ser		Gln Arg Gly		GTC GGA ACT	
308	35	3090		3095	

GAG TCT GAG GGA AT	C TTT TCA CCC AGC	GAA TTG GAG ACC CCA	AAT TTA 9470
Glu Ser Glu Gly Il	Phe Ser Pro Ser	Glu Leu Glu Thr Pro	Asn Leu
3115	3120	3125	3130
GCC GAG AGA GTT CT	Asp Trp Leu Glu	AAA TAT GGC GTC GAA	AGG CTG 9518
Ala Glu Arg Val Le		Lys Tyr Gly Val Glu	Arg Leu
31		3140	3145
AAA AGA ATG GCA AT	C AGC GGA GAT GAC	TGC GTG GTG AAA CCA	Ile Asp
Lys Arg Met Ala Il	Ser Gly Asp Asp	Cys Val Val Lys Pro	
3150	315	5 3160	
GAC AGG TTC GCA AC Asp Arg Phe Ala Th 3165	A GCC TTA ACA GCT c Ala Leu Thr Ala 3170	CTG AAT GAT ATG GGA Leu Asn Asp Met Gly 3175	AAA GTA 9614 Lys Val
AGA AAA GAT ATA CC Arg Lys Asp Ile Pr 3180	A CAA TGG GAA CCC D Gln Trp Glu Pro 3185	TCA AAA GGA TGG AAT Ser Lys Gly Trp Asn 3190	GAT TGG 9662 Asp Trp
CAA CAG GTG CCT TT	T TGT TCA CAC CAT	TTC CAC CAG CTG ATT	ATG AAG 9710
Gln Gln Val Pro Ph	Cys Ser His His	Phe His Gln Leu Ile	Met Lys
3195	3200	3205	3210
GAT GGG AGG GAA AT	e Val Val Pro Cys	CGC AAC CAA GAT GAA	CTT GTG 9758
Asp Gly Arg Glu Il		Arg Asn Gln Asp Glu	Leu Val
32		3220	3225
GGT AGG GCT AGA GT	A TCA CAA GGT GCT	GGA TGG IGC CTG AGA	Glu Thr
Gly Arg Ala Arg Va	L Ser Gln Gly Ala	Gly Trp er Leu Arg	
3230	323	5 3240	
GCA TGC CTA GGC AA Ala Cys Leu Gly Ly 3245	G TCA TAT GCA CAA B Ser Tyr Ala Gln 3250	ATG TGG CAG CTG ATG Met Trp Gln Leu Met 3255	TAC TTC 9854 Tyr Phe
CAC AGG AGA GAC CT His Arg Arg Asp Le 3260	G AGA CTA GCT GCT 1 Arg Leu Ala Ala 3265	AAT GCT ATC TGT TCA Asn Ala Ile Cys Ser 3270	GCC GTT 9902 Ala Val
CCA GTT GAT TGG GT	C CCA ACC AGC CGC	ACC ACT TGG TCG ATC	CAT GCC 9950
Pro Val Asp Trp Va	L Pro Thr Ser Arg	Thr Thr Trp Ser Ile	His Ala
3275	3280	3285	3290
CAT CAC CAA TGG AT	t Thr Thr Glu Asp	ATG TTG TCA GTG TGG	AAT AGG 9998
His His Gln Trp Me		Met Leu Ser Val Trp	Asn Arg
32		3300	3305
GTT TGG ATA GAG GA	A AAC CCA TGG ATG	GAG GAC AAA ACC CAT	Val Ser
Val Trp Ile Glu Gl	1 Asn Pro Trp Met	Glu Asp Lys Thr His	
3310	331	5 3320	
AGT TGG GAA GAT GT Ser Trp Glu Asp Va 3325	r CCA TAT TTA GGA l Pro Tyr Leu Gly 3330	AAA AGG GAA GAT CAG Lys Arg Glu Asp Gln 3335	TGG TGT 10094 Trp Cys
GGA TCC CTG ATA GG Gly Ser Leu Ile Gl 3340	C TTA ACA GCA AGG y Leu Thr Ala Arg 3345	GCT ACC TGG GCC ACC Ala Thr Trp Ala Thr 3350	AAC ATA 10142 Asn Ile
CAA GTG GCC ATA AA	C CAA GTG AGA AGA	·CTA ATC GGG AAT GAG	AAT TAT 10190
Gln Val Ala Ile As	n Gln Val Arg Arg	Leu Ile Gly Asn Glu	Asn Tyr
3355	3360	3365	3370

CTA GAT TAG Leu Asp Tyr	C ATG ACA TO F Met Thr So 3375	CA ATG AAG er Met Lys	AGA TTC AAG Arg Phe Lys 3380	AAC GAG AGT Asn Glu Ser	GAT CCG Asp Pro 3385	10238
AAG GGG CAG Lys Gly His	C TCT GGT G Ser Gly G 3390	lu Ser Thr	CAC TTA TGAI His Leu 3395	AAATAAA GGAA	AATAAG	10288
AAATCAAACA	AGGCAAGAAG	TCAGGCCGGA	TTAAGCCATA	GTACGGTAAG	AGCTATGCTG	10348
CCTGTGAGCC	CCGTCCAAGG	ACGTAAAATG	AAGTCAGGCC	GAAAGCCACG	GTTTGAGCAA	10408
ACCGTGCTGC	CTGTAGCTTC	ATCGTGGGGA	TGTAAAAACC	TGGGAGGCTG	CAACCCATGG	10468
AAGCTGTACG	CATGGGGTAG	CAGACTAGTG	GTTAGAGGAG	ACCCCTCCCA	AAACATAACG	10528
CAGCAGCGGG	GCCCAACACC	AGGGGAAGCT	GTATCCTGGT	GGTAAGGACT	AGAGGTTAGA	10588
GGAGACCCCC	GGCATAACAA	TAAACAGCAT	ATTGACGCTG	GGAGAGACCA	GAGATCCTGC	10648
TGTCTCTACA	GCATCATTCC	AGGCACAGAA	CGCCAGAAAA	TGGAATGGTG	CTGTTGAATC	10708
AACAGGTTCT		·	•			10718

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3396 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Asn Gln Arg Lys Lys Thr Ala Arg Pro Ser Phe Asn Met Leu
1 10 15

Lys Arg Ala Arg Asn Arg Val Ser Thr Gly Ser Gln Leu Ala Lys Arg 20 25 30

Phe Ser Lys Gly Leu Leu Ser Gly Gln Gly Pro Met Lys Leu Val Met 35 40 45

Ala Phe Ile Ala Phe Leu Arg Phe Leu Ala Ile Pro Pro Thr Ala Gly 50 60

Ile Leu Ala Arg Trp Gly Ser Phe Lys Lys Asn Gly Ala Ile Lys Val 65 70 75 80

Leu Arg Gly Phe Lys Lys Glu Ile Ser Asn Met Leu Asn Ile Met Asn 85 90 95

Arg Arg Lys Arg Ser Val Thr Met Leu Leu Met Leu Leu Pro Thr Ala 100 105 110

Leu Ala Phe His Leu Thr Thr Arg Gly Gly Glu Pro His Met Ile Val 115 120 125

Ser Lys Gln Glu Arg Glu Lys Ser Leu Leu Phe Lys Thr Ser Val Gly 130 135 140

Val 145	Asn	Met	Cys	Thr	Leu 150	Ile	Ala	Met	Asp	Leu 155	Gly	Glu	Leu	Cys	Glu 160
Asp	Thr	Met	Thr	Tyr 165	ŗàa	Cys	Pro	Arg	Ile 170	Thr	Glu	Ala	Glu	Pro 175	Asp
Asp	Val	Asp	Сув 180	Trp	Cys	Asn	Ala	Thr 185	Asp	Thr	Trp	Val	Thr 190	Tyr	Gly
Thr	Cys	Ser 195	Gln	Thr	Gly	Glu	His 200	Arg	Arg	Asp	Lys	Arg 205	Ser	Val	Ala
Leu	Ala 210	Pro	His	Val	Gly	Leu 215	Gly	Leu	Glu		Arg 220	Thr	Glu	Thr	Trp
Met 225	Ser	Ser	Glu	Gly	Ala 230	Trp	Lys	Gln	Ile	Gln 235	Arg	Val	Glu	Thr	Trp 240
Ala	Leu	Arg	His	Pro 245	Gly	Phe	Thr	Val	Ile 250	Ala	Leu	Phe	Leu	Ala 255	His
Ala	Ile	Gly	Thr 260	Ser	Ile	Thr	Gln	Lys 265	Gly	Ile	Ile	Phe	Ile 270	Leu	Leu
Met	Leu	Val 275	Thr	Pro	Ser	Met	Ala 280	Met	Arg	Cys	Val	Gly 285	Ile	Gly	Ser
Arg	Asp 290	Phe	Val	Ģlu	Gly	Leu 295	Ser	Gly	Ala	Thr	Trp 300	Val	Asp	Val	Val
Leu 305	Glu	His	Gly	Ser	Cys 310	Val	Thr	Thr	Met	Ala 315	Lys	Asp	Lys	Pro	Thr 320
Leu	Asp	Ile	Glu	Leu 325	Leu	Lys	Thr	Glu	Val 330	Thr	Asn	Pro	Ala	Val 335	Leu
Arg	Lys	Leu	Cys 340	Ile	Glu	Ala	Lys	11e 345	Ser	Asn	Thr	Thr	Thr 350	Asp	Ser
Arg	Cys	Pro 355	Thr	Gln	Gly	Glu	Ala 360	Thr	Leu	Val	Glu	Glu 365	Gln	Asp	Ala
Asn	Phe 370	Val	Cys	Arg	Arg	Thr 375	Phe	Val	Asp	Arg	Gly 380	Trp	Gly	Asn	Gly
Сув 385	Gly	Leu	Phe	Gly	Lys 390	Gly	Ser	Leu	Leu	Thr 395	Сла	Ala	Lys	Phe	Lys 400
Cys	Val	Thr	Lys	Leu 405	Glu	GJA	Lys	Ile	Val 410	Gln	Tyr	Glu	Asn	Leu 415	Lys
Tyr	Ser	Val	11e 420	Val	Thr	Val	His	Thr 425	Gly	Asp	Gln	His	Gln 430	Val	Gly
Asn	Glu	Thr 435	Thr	Glu	His	Gly	Thr 440	Ile	Ala	Thr	Ile	Thr 445	Pro	Gln	Ala
Pro	Thr 450	Ser	Glu	Ile	Gln	Leu 455	Thr	Asp	Tyr	Gly	Ala 460	Leu	Thr	Leu	Asp
Cys 465	Ser	Pro	Arg	Thr	Gly 470	Leu	Asp	Phe	Asn	Glu 475	Met	Val	Leu	Leu	Thr 480

Met	Lys	Glu	Lys	Ser 485	Trp	Leu	Vạl	His.	Lys 490	Gln	Trp	Phe	Leu	Asp 495	Leu
Pro	Leu	Pro	Trp 500	Thr	Ser	Gly	Ala	Ser 505	Thr	Ser	Gln	Glu	Thr 510	Trp	Asn
Arg	Gln	Asp 515	Leu	Leu	Val	Thr	Phe 520	Lys	Thr	Ala	His	Ala 525	Lys	Lys	Gln
Glu	Val 530	Val	Val	Leu	GŢĀ	Ser 535	Gln	Glu	Gly	Ala	Met 540	His	Thr	Ala	Leu
Thr 545	Gly	Ala	Thr	Glu	Ile 550	Gln	Thr	Ser	Gly	Thr 555	Thr	Thr	Ile	Phe	Ala 560
Gly	His	Leu	Lys	Cys 565	Arg	Leu	Lys	Met	Asp 570	Lys	Leu	Thr	Leu	L ys 575	Gly
Met	Ser	Tyr	Val 580	Met	Cys	Thr	Gly	Ser 585	Phe	Lys	Leu	Glu	Lys 590	Glu	Val
Ala	Glu	Thr 595	Gln	His	Gly		Val 600	Leu	Val	Gln	Val	Lys 605	Tyr	Glu	Gly
Thr	Asp 610	Ala	Pro	Cys	Lys	11e 615	Pro	Phe	Ser	Thr	Gln 620	Äsp	Glu	Lys	Сĵå
625					630		Thr			635	• .		•	_	640
				645		-	Thr		650					655	
			660	-			Lys	665					670	•	
		675			-		Met 680					685	_	Ĩ.	-
	690	-			•	695	Asp	-			700			-	
705					710		Gly			715		•			720
Thr	Ala	Tyr	Gly	Val 725	Leu	Phe	Ser	Gly	Val 730	Ser	Trp	Thr	Met	Lys 735	Ile
Gly	Ile	Gly	Ile 740	Leu	Leu	Thr	Trp	Leu 745	Gly	Leu	Asn	Ser	Arg 750	Ser	Thr
Ser	Leu	Ser 755	Met	Thr	Cys	Ile	Ala 760	Val	GLY	Met	Val	Thr 765	Leu	Tyr	Leu
	770					775	Ser				780			_	
785	•				790		Cly	:		795				·	800
Thr	Trp	Thr	Glu	Gln 805	Tyr	Lys	Phe	Gln	Ala 810		Ser	Pro	ГЛа	Arg	

Ser Ala Ala Ile Gly Lys Ala Trp Glu Glu Gly Val Cys Gly Ile Arg Ser Ala Thr Arg Leu Glu Asn Ile Met Trp Lys Gln Ile Ser Asn Glu 840 Leu Asn His Ile Leu Leu Glu Asn Asp Met Lys Phe Thr Val Val Val Gly Asp Val Val Gly Ile Leu Ala Gln Gly Lys Lys Met Ile Arg Pro Gln Pro Met Glu His Lys Tyr Ser Trp Lys Ser Trp Gly Lys Ala Lys Ile Ile Gly Ala Asp Ile Gln Asn Thr Thr Phe Ile Ile Asp Gly Pro 900 Asp Thr Pro Glu Cys Pro Asp Asp Gln Arg Ala Trp Asn Ile Trp Glu Val Glu Asp Tyr Gly Phe Gly Ile Phe Thr Thr Asn Ile Trp Leu Lys Leu Arg Asp Ser Tyr Thr Gln Met Cys Asp His Arg Leu Met Ser Ala Ala Ile Lys Asp Ser Lys Ala Val His Ala Asp Met Gly Tyr Trp Ile 970 Glu Ser Glu Lys Asn Glu Thr Trp Lys Leu Ala Arg Ala Ser Phe Ile Glu Val Lys Thr Cys Val Trp Pro Lys Ser His Thr Leu Trp Ser Asn Gly Val Leu Glu Ser Glu Met Ile Ile Pro Lys Ile Tyr Gly Gly Pro 1015 Ile Ser Gln His Asn Tyr Arg Pro Gly Tyr Phe Thr Gln Thr Ala Gly 1035 Pro Trp His Leu Gly Lys Leu Glu Leu Asp Phe Asp Leu Cys Glu Gly 1045 1050 Thr Thr Val Val Val Asp Glu His Cys Gly Asn Arg Gly Pro Ser Leu 1060 1065 Arg Thr Thr Thr Val Thr Gly Lys Ile Ile His Glu Trp Cys Cys Arg 1080 Ser Cys Thr Leu Pro Pro Leu Arg Phe Lys Gly Glu Asp Gly Cys Trp 1095 Tyr Gly Met Glu Ile Arg Pro Val Lys Glu Lys Glu Glu Asn Leu Val 1105 . 1110 Lys Ser Met Val Ser Ala Gly Ser Gly Glu Val Asp Ser Phe Ser Leu 1130 Gly Leu Leu Cys Ile Ser Ile Met Ile Glu Glu Val Met Arg Ser Arg

- Trp Ser Arg Lys Met Leu Met Thr Gly Thr Leu Ala Val Phe Leu Leu 1155 1160 1165
- Leu Ile Met Gly Gin Leu Thr Trp Asn Asp Leu Ile Arg Leu Cys Ile 1170 1180
- Met Val Gly Ala Asn Ala Ser Asp Arg Met Gly Met Gly Thr Thr Tyr 1185 1190 1195 1200
- Leu Ala Leu Met Ala Thr Phe Lys Met Arg Pro Met Phe Ala Val Gly 1205 1210 1215
- Leu Leu Phe Arg Arg Leu Thr Ser Arg Glu Val Leu Leu Leu Thr Ile 1220 1225 1230
- Gly Leu Ser Leu Val Ala Ser Val Glu Leu Pro Asn Ser Leu Glu Glu 1235 1240 1245
- Leu Gly Asp Gly Leu Ala Met Gly Ile Met Ile Leu Lys Leu Leu Thr 1250 1255 1260
- Asp Phe Gln Ser His Gln Leu Trp Ala Thr Leu Leu Ser Leu Thr Phe 1265 1270 1275 1280
- Val Lys Thr Thr Phe Ser Leu His Tyr Ala Trp Lys Thr Met Ala Met 1285 1290 1295
- Val Leu Ser IIe Val Ser Leu Phe Pro Leu Cys Leu Ser Thr Thr Ser 1300 1305 1310
- Gln Lys Thr Thr Trp Leu Pro Val Leu Leu Gly Ser Leu Gly Cys Lys 1315 1320 1325
- Pro Leu Thr Met Phe Leu Ile Ala Glu Asn Lys Ile Trp Gly Arg Lys 1330 1340
- Ser Trp Pro Leu Asn Glu Gly Ile Met Ala Val Gly Ile Val Ser Ile 1345 1350 1355 1360
- Leu Leu Ser Ser Leu Leu Lys Asn Asp Val Pro Leu Ala Gly Pro Leu 1365 1370 1375
- Ile Ala Gly Gly Met Leu Ile Ala Cys Tyr Val Ile Ser Gly Ser Ser 1380 1385 1390
- Ala Asp Leu Ser Leu Glu Lys Ala Ala Glu Val Ser Trp Glu Glu Glu 1395 1400 1405
- Ala Glu His Ser Gly Ala Ser His Asn Ile Leu Val Glu Val Gln Asp 1410 1415 1420
- Asp Gly Thr Met Lys Ile Lys Asp Glu Glu Arg Asp Asp Thr Leu Thr 1425 1430 1435 1436
- Ile Leu Leu Lys Ala Thr Leu Leu Ala Val Ser Gly Val Tyr Pro Leu 1445 1450 1455
- Ser Ile Pro Ala Thr Leu Phe Val Trp Tyr Phe Trp Gln Lys Lys 1460 1465 1470
- Gln Arg Ser Gly Val Leu Trp Asp Thr Pro Ser Pro Pro Glu Val Glu 1475 1480 1485

- Arg Ala Val Leu Asp Asp Gly Ile Tyr Arg Ile Met Gln Arg Gly Leu 1490 1495 1500
- Leu Gly Arg Ser Gln Val Gly Val Gly Val Phe Gln Asp Gly Val Phe 1505 1510 1515 1520
- His Thr Met Trp His Val Thr Arg Gly Ala Val Leu Met Tyr Gln Gly 1525 1530 1535
- Lys Arg Leu Glu Pro Ser Trp Ala Ser Val Lys Lys Asp Leu Ile Ser 1540 1550
- Tyr Gly Gly Gly Trp Arg Phe Gln Gly Ser Trp Asn Thr Gly Glu Glu 1555 1560 1565
- Val Gln Val Ile Ala Val Glu Pro Gly Lys Asn Pro Lys Asn Val Gln 1570 1580
- Thr Ala Pro Gly Thr Phe Lys Thr Pro Glu Gly Glu Val Gly Ala Ile 1585 1590 1595 1600
- Ala Leu Asp Phe Lys Pro Gly Thr Ser Gly Ser Pro Ile Val Asn Arg 1605 1610 1615
- Glu Gly Lys Ile Val Gly Leu Tyr Gly Asn Gly Val Val Thr Thr Ser 1620 1625 1630
- Gly Thr Tyr Val Ser Ala Ile Ala Gln Ala Lys | la Ser Gln Glu Gly 1635 1640 1645
- Pro Leu Pro Glu Ile Glu Asp Glu Val Phe Arg Lys Arg Asn Leu Thr 1650 1660
- Ile Met Asp Leu His Pro Gly Ser Gly Lys Thr Arg Arg Tyr Leu Pro 1665 1670 1675 1680
- Ala Ile Val Arg Glu Ala Ile Arg Arg Asn Val Arg Thr Leu Ile Leu 1685 1690 1695
- Ala Pro Thr Arg Val Val Ala Ser Glu Met Ala Glu Ala Leu Lys Gly 1700 1705 1710
- Met Pro Ile Arg Tyr Gln Thr Thr Ala Val Lys Ser Glu His Thr Gly 1715 1720 1725
- Lys Glu Ile Val Asp Leu Met Cys His Ala Thr Phe Thr Met Arg Leu 1730 1735 1740
- Leu Ser Pro Val Arg Val Pro Asn Tyr Asn Met Ile Ile Met Asp Glu 1745 1750 1755 1760
- Ala His Phe Thr Asp Pro Ala Ser Ile Ala Arg Arg Gly Tyr Ile Ser 1765 1770 1775
- Thr Arg Val Gly Met Gly Glu Ala Ala Ala Ile Phe Met Thr Ala Thr 1780 1785 1790
- Pro Pro Gly Ser Val Glu Ala Phe Pro Gln Ser Asn Ala Val Ile Gln 1795 1800 1805
- Asp Glu Glu Arg Asp Ile Pro Glu Arg Ser Trp Asn Ser Gly Tyr Glu 1810 1815 1820

- Trp Ile Thr Asp Phe Pro Gly Lys Thr Val Trp Phe Val Pro Ser Ile 1825 1830 1835 1840
- Lys Ser Gly Asn Asp Ile Ala Asn Cys Leu Arg Lys Asn Gly Lys Arg 1845 1850 1855
- Val Ile Gln Leu Ser Arg Lys Thr Phe Asp Thr Glu Tyr Gln Lys Thr 1860 1865 1870
- Lys Asn Asn Asp Trp Asp Tyr Val Val Thr Thr Asp Ile Ser Glu Met 1875 1880 1885
- Gly Ala Asn Phe Arg Ala Asp Arg Val Ile Asp Pro Arg Arg Cys Leu 1890 1895 1900
- Lys Pro Val Ile Leu Lys Asp Gly Pro Glu Arg Val Ile Leu Ala Gly 1905 1910 1915 1920
- Pro Met Pro Val Thr Val Ala Ser Ala Ala Gln Arg Arg Gly Arg Ile 1925 1930 1935
- Gly Arg Asn Gln Asn Lys Glu Gly Asp Gln Tyr Val Tyr Met Gly Gln 1940 1945 1950
- Pro Lou Asn Asn Asp Clu Asp His Ala His Trp Thr Glu Ala Lys Met 1955 1960 1965
- Leu Leu Asp Asn Ile Asn Thr Pro Glu Gly Ile Ile Pro Ala Leu Phe 1970 1975 1980
- Glu Pro Glu Arg Glu Lys Ser Ala Ala Ile Asp Gly Glu Tyr Arg Leu 1985 1990 1995 2000
- Arg Gly Glu Ala Arg Lys Thr Phe Val Glu Leu Met Arg Arg Gly Asp 2005 2010 2015
- Leu Pro Val Trp Leu Ser Tyr Lys Val Ala Ser Glu Gly Phe Gln Tyr 2020 2025 2030
- Ser Asp Arg Arg Trp Cys Phe Asp Gly Glu Arg Asn Asn Gln Val Leu 2035 2040 2045
- Glu Glu Asn Met Asp Val Glu Met Trp Thr Lys Glu Gly Glu Arg Lys 2050 2055 2060
- Lys Leu Arg Pro Arg Trp Leu Asp Ala Arg Thr Tyr Ser Asp Pro Leu 2065 2070 2075 2080
- Ala Leu Arg Glu Phe Lys Glu Phe Ala Ala Gly Arg Arg Ser Val Ser 2085 2090 2095
- Gly Asp Leu Ile Leu Glu Ile Gly Lys Leu Pro Gln His Leu Thr Gln 2100 2105 2110
- Arg Ala Gln Asn Ala Leu Asp Asn Leu Val Met Leu His Asn Ser Glu 2115 2120 2125
- Gln Gly Gly Arg Ala Tyr Arg His Ala Met Glu Glu Leu Pro Asp Thr 2130 2135 2140
- Ile Glu Thr Leu Met Leu Leu Ala Leu Ile Ala Val Leu Thr Gly Gly 2145 2150 2155 2160

- Val Thr Leu Phe Phe Leu Ser Gly Lys Gly Leu Gly Lys Thr Ser Ile 2165 2170 2175
- Gly Leu Leu Cys Val Met Ala Ser Ser Val Leu Leu Trp Met Ala Ser 2180 2185 2190
- Val Glu Pro His Trp Ile Ala Ala Ser Ile Ile Leu Glu Phe Phe Leu 2195 2200 2205
- Met Val Leu Leu Ile Pro Glu Pro Asp Arg Gln Arg Thr Pro Gln Asp 2210 2215 2220
- Asn Gln Leu Ala Tyr Val Val Ile Gly Leu Leu Phe Met Ile Leu Thr 2225 2230 2235 2240
- Val Ala Ala Asn Glu Met Gly Leu Leu Glu Thr Thr Lys Lys Asp Leu
 2245 2250 2255
- Gly Ile Gly His Val Ala Ala Glu Asn His His His Ala Thr Met Leu 2260 2265 2270
- Asp Val Asp Leu Arg Pro Ala Ser Ala Trp Thr Leu Tyr Ala Val Ala 2275 2280 2285
- Thr Thr Val Ile Thr Pro Met Met Arg His Thr Ile Glu Asn Thr Thr 2290 2295 2300
- Ala Asn Ile Ser Leu Thr Ala Ile Ala Asn Gln Ala Ala Ile Leu Met 2305 2310 2315 2320
- Gly Leu Asp Lys Gly Trp Pro Ile Ser Lys Met Asp Ile Gly Val Pro 2325 2330 2335
- Leu Leu Ala Leu Gly Cys Tyr Ser Gln Val Asn Pro Leu Thr Leu Thr 2340 2345 2350
- Ala Ala Val Leu Met Leu Val Ala His Tyr Ala Ile Ile Gly Pro Gly 2355 2360 2365
- Leu Gln Ala Lys Ala Thr Arg Glu Ala Gln Lys Arg Thr Ala Ala Gly 2370 2375 2380
- Ile Met Lys Asn Pro Thr Val Asp Gly Ile Val Ala Ile Asp Leu Asp 2385 2390 2395 2400
- Pro Val Val Tyr Asp Ala Lys Phe Glu Lys Gln Leu Gly Gln Ile Met 2405 2410 2415
- Leu Leu Ile Leu Cys Thr Ser Gln Ile Leu Leu Met Arg Thr Thr Trp 2420 2425 2430
- Ala Leu Cys Glu Ser Ile Thr Leu Ala Thr Gly Pro Leu Thr Thr Leu 2435 2440 2445
- Trp Glu Gly Ser Pro Gly Lys Phe Trp Asn Thr Thr Ile Ala Val Ser 2450 2455 2460
- Met Ala Asn Ile Phe Arg Gly Ser Tyr Leu Ala Gly Ala Gly Leu Ala 2465 2470 2475 2480
- Phe Ser Leu Met Lys Ser Leu Gly Gly Gly Arg Arg Gly Thr Gly Ala 2485 2490 2495

- Lys Gly Lys His Trp Glu Arg Asn Gly Lys Asp Arg Leu Asn Gln Leu 2500 2505 2510
- Ser Lys Ser Glu Phe Asn Thr Tyr Lys Arg Ser Gly Ile Met Glu Val 2515 2520 2525
- Asp Arg Ser Glu Ala Lys Glu Gly Leu Lys Arg Gly Glu Thr Thr Lys 2530 2535 2540
- His Ala Val Ser Arg Gly Thr Ala Lys Leu Arg Trp Phe Val Glu Arg 2545 2550 2555 2560
- Asn Leu Val Lys Pro Glu Gly Lys Val Ile Asp Leu Gly Cys Gly Arg 2575 2570 2575
- Gly Gly Trp Ser Tyr Tyr Cys Ala Gly Leu Lys Lys Val Thr Glu Val 2580 2585 2590
- Lys Gly Tyr Thr Lys Gly Gly Pro Gly His Glu Glu Pro Ile Pro Met 2595 2600 2605
- Ala Thr Tyr Gly Trp Asn Leu Val Lys Leu Tyr Ser Gly Lys Asp Val 2610 2615 2620
- Phe Phe Thr Pro Pro Glu Lys Cys Asp Thr Leu Leu Cys Asp Ile Gly 2625 2630 2635 2640
- Glu Ser Ser Pro Asn Pro Thr Ile Glu Glu Gly Arg Thr Leu Arg Val 2645 2650 2655
- Leu Lys Met Val Glu Pro Trp Leu Arg Gly Asn Gln Phe Cys Ile Lys 2660 2665 2670
- Ile Leu Asn Pro Tyr Met Pro Ser Val Val Glu Thr Leu Glu Gln Met 2675 2680 2685
- Gln Arg Lys His Gly Gly Met Leu Val Arg Asn Pro Leu Ser Arg Asn 2690 2695 2700
- Ser Thr His Glu Met Tyr Trp Val Ser Cys Gly Thr Gly Asn Ile Val 2705 2710 2715 2720
- Ser Ala Val Asn Met Thr Ser Arg Met Leu Leu Asn Arg Phe Thr Met 2725 2730 2735
- Ala His Arg Lys Pro Thr Tyr Glu Arg Asp Val Asp Leu Gly Ala Gly 2740 2745 2750
- Thr Arg His Val Ala Val Glu Pro Glu Val Ala Asn Leu Asp Ile Ile 2755 2760 2765
- Gly Gln Arg Ile Glu Asn Ile Lys His Glu His Lys Ser Thr Trp His 2770 2780
- Tyr Asp Glu Asp Asn Pro Tyr Lys Thr Trp Ala Tyr His Gly Ser Tyr 2785 2790 2795 2800
- Glu Val Lys Pro Ser Gly Ser Ala Ser Ser Met Val Asn Gly Val Val 2805 2810 2815
- Lys Leu Leu Thr Lys Pro Trp Asp Ala Ile Pro Met Val Thr Gln Ile 2820 2825 2830

- Ala Met Thr Asp Thr Thr Pro Phe Gly Gln Gln Arg Val Phe Lys Glu 2835 2840 2845
- Lys Val Asp Thr Arg Thr Pro Lys Ala Lys Arg Gly Thr Ala Gln Ile 2850 2855 2860
- Met Glu Val Thr Ala Arg Trp Leu Trp Gly Phe Leu Ser Arg Asn Lys 2865 2870 2875 2880
- Lys Pro Arg Ile Cys Thr Arg Glu Glu Phe Thr Arg Lys Val Arg Ser 2885 2890 2895
- Asn Ala Ala Ile Gly Ala Val Phe Val Asp Glu Asn Gln Trp Asn Ser 2900 2905 2910
- Ala Lys Glu Ala Val Glu Asp Glu Arg Phe Trp Asp Leu Val His Arg 2915 2920 2925
- Glu Arg Glu Leu His Lys Gln Gly Lys Cys Ala Thr Cys Val Tyr Asn 2930 2935 2940
- Met Met Gly Lys Arg Glu Lys Lys Leu Gly Glu Phe Gly Lys Ala Lys 2945 2950 2955 2960
- Gly Ser Arg Ala Ile Trp Tyr Met Trp Leu Gly Ala Arg Pho Leu Glu 2965 2970 2975
- Phe Glu Ala Leu Gly Phe Met Asn Glu Asp His Trp Phe Ser Arg Glu 2980 2985 2990
- Asn Ser Leu Ser Gly Val Glu Gly Glu Gly Leu His Lys Leu Gly Tyr 2995 3000 3005
- Ile Leu Arg Asp Ile Ser Lys Ile Pro Gly Gly Asn Met Tyr Ala Asp 3010 3015 3020
- Asp Thr Ala Gly Trp Asp Thr Arg Ile Thr Glu Asp Asp Leu Gln Asn 3025 3030 3035 3040
- Glu Ala Lys Ile Thr Asp Ile Met Glu Pro Glu His Ala Leu Leu Ala 3045 3050 3055
- Thr Ser Ile Phe Lys Leu Thr Tyr Gln Asn Lys Val Val Arg Val Gln 3060 3065 3070
- Arg Pro Ala Lys Asn Gly Thr Val Met Asp Val Ile Ser Arg Arg Asp 3075 3080 3085
- Gln Arg Gly Ser Gly Gln Val Gly Thr Tyr Gly Leu Asn Thr Phe Thr 3090 3095 3100
- Asn Met Glu Ala Gln Leu Ile Arg Gln Met Glu Ser Glu Gly Ile Phe 3105 3110 3115 3120
- Ser Pro Ser Glu Leu Glu Thr Pro Asn Leu Ala Glu Arg Val Leu Asp 3125 3130 3135
- Trp Leu Glu Lys Tyr Gly Val Glu Arg Leu Lys Arg Met Ala Ile Ser 3140 3145 3150
- Gly Asp Asp Cys Val Val Lys Pro Ile Asp Asp Arg Phe Ala Thr Ala 3155 3160 3165

Leu Thr Ala Leu Asn Asp Met Gly Lys Val Arg Lys Asp Ile Pro Gln 3170 3175 3180

Trp Glu Pro Ser Lys Gly Trp Asn Asp Trp Gln Gln Val Pro Phe Cys 3185 3190 3195 3200

Ser His His Phe His Gln Leu Ile Met Lys Asp Gly Arg Glu Ile Val 3205 3210 3215

Val Pro Cys Arg Asn Gln Asp Glu Leu Val Gly Arg Ala Arg Val Ser 3220 3230

Gln Gly Ala Gly Trp Ser Leu Arg Glu Thr Ala Cys Leu Gly Lys Ser 3235 3240 3245

Tyr Ala Gln Met Trp Gln Leu Met Tyr Phe His Arg Arg Asp Leu Arg 3250 3255 3260

Leu Ala Ala Asn Ala Ile Cys Ser Ala Val Pro Val Asp Trp Val Pro 3265 3270 3275 3280

Thr Ser Arg Thr Thr Trp Ser Ile His Ala His His GIn Trp Met Thr 3285 3290 3295

Thr Glu Asp Met Leu Ser Val Trp Asn Arg Val Trp Ile Glu Glu Asn 3300 3305 3310

Pro Trp Met Glu Asp Lys Thr His Val Ser Ser Trp Glu Asp Val Pro 3315 3320 3325

Tyr Leu Gly Lys Arg Glu Asp Gln Trp Cys Gly Ser Leu Ile Gly Leu 3330 3335 3340

Thr Ala Arg Ala Thr Trp Ala Thr Asn Ile Gln Val Ala Ile Asn Gln 3345 3350 3355 3360

Val Arg Arg Leu Ile Gly Asn Glu Asn Tyr Leu Asp Tyr Met Thr Ser ... 3365 3370 3375

Met Lys Arg Phe Lys Asn Glu Ser Asp Pro Lys Gly His Ser Gly Glu 3380 3385 3390

Ser Thr His Leu 3395

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - •
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CCATGAATTC CCATGCGATG CGTGGGA

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:

27

PCT/CA93/00182

	(A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	٠
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
CAC	ATCTCGA GTCCGCTTGA ACCATGA	27
(2)	INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
TGG	TTCCCGG GGACTCGGGA TGTGTA	26
(2)	INFORMATION FOR SEQ ID NO:6:	
•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
•	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
ACT	AAGCTTG ATCATGCAGA GACCATTGA	29
(2)	INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
AAT	CAGAATT CTCTGCAGGG TCAGGGGAA	29
(2)	INFORMATION FOR SEQ ID NO:8:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA (genomic)

		•		•	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:8:	•	
ATA	CAAA	SC TTATETTIGT TTETTTTTCT			30
(2)	INFO	RMATION FOR SEQ ID NO:9:			
	· (Ţ)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOFOLOGY: linear			٠
	(ii)	MOLECULE TYPE: DNA (genomic)	• <u>:</u>		•
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:9:		
GAAA	GGAT	CC TCTGGAGTGT TATGGGACAC A		-	31
(2)	INFO	RMATION FOR SEQ ID NO:10:	• •		٠.
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
	(ii)	MOLECULE TYPE: DNA (genomic)	•	• .	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:10:		
ACCO	AAGC!	IT CATCTTCTTC CTGCTGC			27
(2)	INFO	RMATION FOR SEQ ID NO:11:			
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
	(ii)	MOLECULE TYPE: DNA (genomic)			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:11:		
AGGF	GCTC	GA CGAGGTACGG GAGCC			25
(2)	INFO	RMATION FOR SEQ ID NO:12:	·.		
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
	(ii)	MOLECULE TYPE: DNA (genomic)			
	(xi)	SEQUENCE DESCRIPTION: SEQ ID	NO:12:	-	
CAAT	'GATA'	IC TAGGTTGGCT			20

CLAIMS

- 1. DEN1-S275/90 (ECACC V92042111)
- 2. DEN1-S275/90 (ECACC V92042111) in inactivated 5 form.
 - 3. A DNA polynucleotide encoding DEN1-S275/90 (ECACC V92042111) whose sequence is substantially as shown in Seq. ID No. 1
- 4. A fragment of a DNA polynucleotide as claimed in claim 3, said fragment encoding the C, C', PreM, M, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 gene of DEN1-S275/90 (ECACC V92042111).
 - 5. A DNA polynucleotide or a fragment thereof according to claim 3 or claim 4 in an expression vector.
- 6. An expression vector as claimed in claim 5 selected from pGEX-KG/EX-20, pMAL-c/NS1-104, pMAL-cRI/NS2-1, pGEX-KG/NS3 BH c600-1 and pGEX-KG/NS5 c600 HF1.
 - 7. A cell harbouring an expression vector as claimed in claim 5 or claim 6.
- 20 8. A cell as claimed in claim 7 which is <u>E.coli</u> or an insect cell.
 - 9. A polypeptide in substantially isolated form which is the C, C', PreM, M, E, NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 polypeptide of DEN1-S275/90 (ECACC <u>V92042111</u>).
- 25 10. A polypeptide as claimed in claim 9 which is in the form of a fusion protein.
 - 11. A fusion protein as claimed in claim 10 which is coded by an expression vector selected from the expression vectors of claim 6.
- 12. A method of preparing a polypeptide as claimed in any one of claims 9 to 11 which comprises culturing a cell line according to claim 7 or claim 8 and recovering the polypeptide.
- 13. A polypeptide as claimed in claim 9 carrying a label.

WO 93/22440 PCT/CA93/00182

- 48 -

- 14. A vaccine comprising one or more polypeptides as claimed in any one of claims 9 to 11 or the inactivated virus as claimed in claim 2 in combination with a pharmaceutically acceptable carrier or diluent.
- 15. The vaccine of claim 14 wherein one polypeptide is selected from E, NS1, NS2, NS3, NS5 and fusion proteins thereof capable of eliciting antibodies to a DEN1 viral protein.
- 16. An antibody against a polypeptide as claimed in any one of claims 9 to 11 capable of binding a DEN1 viral protein, optionally carrying a revealing label.
- 17. A test kit for the detection of the presence or absence of DEN1 virus comprising the antibody of claim 16 or the polypeptide of claim 9 or 13 fixed to a solid support.

FIGURE 1 pGEX-KC/NS5 6600 HF1 pGEX-KG/NS3 BH 6600-1 NS5 pMAL-cRI/NS2-1 (NS4) pMAL-c/NS1-104 NS3 pGEX-KG/EX-20 NS2 NSI 1

1/4

2/4

FIGURE 2

FIGURE 3

4/4

FIGURE 4

INTERNATIONAL SEARCH REPORT

Enternational Application No

PCT/CA 93/00182

I. CLASSIFI	CATION OF SUBJE	CT MATTER (If several classification	symbols assiv, indicate all)	· · · · · · · · · · · · · · · · · · ·
		Classification (IPC) or to both National		
	5 C12N15/40 A61K39/12); C12N7/00;	C07K13/00; G01N33/50	C12N15/62
IL FIELDS	SEARCHED			
		Minimum Docum	mentation Searchol?	
. Clessificati	na System		Classification Symbols	
Int.Cl.	5	CO7K ; C12N		
	-		er than Minimum Documentation as are included in the Fields Searched ⁸	
			·	
III. DOCUM		d to be relevant		
Category *	Citation of D	ocument, 11 with indication, where approp	printe, of the relevant passages 12	Raisvant to Claim No.13
Р,Х	pages 9 FU,J. E Dengue S275/90	8, no. 2, 1992, 53 - 958 T AL. 'Full-Length cDN Type 1 Virus (Singapor		1-17
A	VIROLOG vol. 17 pages 4 RICO-HE Distrib 2 in Na	Y 4, no. 2, February 199 79 - 493 SSE ,R. 'Molecular Evo ution of Dengue Viruse	olution and	1
			-/	-
T de se	national to se of party riter document but put ing date comment which may the ich is cited to establis ation or other special icament referring to as her means	meral state of the art which is not calar relevance lished on or after the laterantional ow doubts on priority cizim(s) or h the publication date of another reason (as specified) a smal disclosure, use, exhibition or r to the international filing date but	"I" later document published often or priority date and not in one chief to understand the principle invention. "X" document of particular relevant cannot be considered nevel or involve an inventive step. "Y" document of particular relevant cannot be considered to involve document is combined with or ments, such combination bells in the set. "A" document member of the same	offict with the application but ple or theory underlying the sounce the classed invention cannot be considered to not; the classed invention so as inventive step when the seer more other such docu- g obvious to a person skilled
IV. CERT	DICATION			
	•	the International Search JUNE 1993	Date of Mailing of this laters 0 2 -0	ational Search Report 9- 1993
Internation	al Searching Authority EUROPI	EAN PATENT OFFICE	Signature of Authorized Offic CHAMBONNET F	_

International Application N

JE DOCIM	ENTS CONSIDERED TO BE RELEVANT (CONTINUED PROM THE SECOND SHEET)	
Cutagory *	Citation of Document, with indication, where appropriate, of the relevant passages	Rejerant to Claim No.
3		
A	VACCINES 80 1988, COLD SPRING HARBOR pages 393 - 399 LAL, CJ. ET AL. 'Cloning Full-Length DNA	1
	Sequences of the Dengue Virus Genome for use in Elucidating Pathogenesis and Development of Immunoprophylaxis'	·
`		-
·		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потикр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.