# Quantum Computing Companies Stock Price Prediction

Xiaoyan Hua Mingqian Chen

# Why We Want to Learn Quantum Computing Companies Stock Prices?

- ▶ 1. Current state of quantum computing market
- ▶ 2. Predict the quantum computing market trend
- > 3. Which company to invest
- 4. The future of market and impact on academia

#### Outline

- ► Theoretical Background:
  - Linear regression
  - Recurrent neural network (RNN)
  - Long short-term memory (LSTM)
- Data Analysis:
  - Data preparation
  - Comparison of the model performance
    - linear regression with time series, improved linear regression with SMA
    - > LSTM, improved LSTM
- Conclusion

# Companies to Predict

- Companies to predict:
  - > ACN IBM MSFT QNC.V INTC BIDU NOK MIELY
- Dataset:
  - Kaggle Project (quantumstock1.csv)
  - Quantum Computing Company Report

#### Methods to Solve Stock Predictions

Linear Regression

$$y_t = \beta_0 + \beta_1 X_t$$

Recurrent Neural Network(RNN)

$$egin{aligned} h_t &= \sigma_h(W_h x_t + U_h h_{t-1} + b_h) \ y_t &= \sigma_y(W_y h_t + b_y) \end{aligned}$$

Long Short-Term Memory (LSTM)

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \end{aligned} \qquad egin{aligned} c_t &= f_t \circ c_{t-1} + i_t \circ ilde{c}_t \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned} \ ilde{c}_t &= \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \end{aligned}$$

## Naive Recurrent Neural Network (RNN)



1. Allow previous outputs to be used as inputs while having hidden states

2. Gradient vanishing/exploding

## **Gradient Vanishing**

- The optimizer of RNN gets the first-order derivative of the loss function to search for the optimal values. Because RNN is recursive, the first-order derivation process will make a number smaller and smaller, then eventually vanish.
- This certain mathematic process makes RNN not a good choice to retain the past memories.

We need a recursive structure that the information does not vanish quickly.



#### Long Short-Term Memory (LSTM)

- Uses the short-term memory processes to create longer memory
- Cell:
  - Remembers values over arbitrary time intervals
- Input gate, output and forget gates:
  - Regulate the flow of information into and out of the cell.
  - Sigmoid functions with output in [0,1] to pass limited information or all information. A value of zero means filter out the information completely, while a value of one means passing the information completely.

## Forget Gate $f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$

- $ightharpoonup h_{t-1}$ : output of the memory cell at t-1
- ▶ It discover the details to be discarded from the block.
- It looks at the previous state  $h_{t-1}$  and the content input  $x_t$  and
- Use a sigmoid function to decide it.
- ▶ Output (for each number in the cell state  $C_{t-1}$ ):
  - ▶ 0 (omit)
  - ▶ 1 (keep)

# Input Gate

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- It takes the previous output and current input and applies both a sigmoid and tanh activation.
- Sigmoid function
  - decides what must be kept from the input. 0 discard, 1 keep.
- tanh function
  - > normalizes the values into the range [-1, +1], stabilizing the training process.

#### **Output Gate**

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh(C_t)$$

- It takes a normalized value for memory through tanh and a sigmoid activated value for the previous output and current input
- Decides what must be predicted for the current input value
- Output value, pass value and memory to the next cell.

## Prepare Dataset

#### ► Take ACN as an example

> data shape: (5190, 8)

date period: 2001-07-19 to 2021-03-03

> features: Open, High, Low, Close, Adjclose, Volume

|      | Date       | open  | high  | low   | close | adjclose  | volume     | ticker |
|------|------------|-------|-------|-------|-------|-----------|------------|--------|
| 9592 | 2001-07-19 | 15.10 | 15.29 | 15.00 | 15.17 | 11.223610 | 34994300.0 | ACN    |
| 9593 | 2001-07-20 | 15.05 | 15.05 | 14.80 | 15.01 | 11.105230 | 9238500.0  | ACN    |
| 9594 | 2001-07-23 | 15.00 | 15.01 | 14.55 | 15.00 | 11.097830 | 7501000.0  | ACN    |
| 9595 | 2001-07-24 | 14.95 | 14.97 | 14.70 | 14.86 | 10.994254 | 3537300.0  | ACN    |
| 9596 | 2001-07-25 | 14.70 | 14.95 | 14.65 | 14.95 | 11.060840 | 4208100.0  | ACN    |

|       |                                                   | Д                                                 | CN stock                                                                   | price                                                               |                                                            |                                                                            |
|-------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|
| 400 - |                                                   |                                                   |                                                                            |                                                                     |                                                            |                                                                            |
| 350 - |                                                   |                                                   |                                                                            |                                                                     |                                                            | A I                                                                        |
| 300 - |                                                   |                                                   |                                                                            |                                                                     |                                                            | $f^* \mid \cdot \mid$                                                      |
| 250 - |                                                   |                                                   |                                                                            |                                                                     | h                                                          |                                                                            |
| 200 - |                                                   |                                                   |                                                                            |                                                                     | . N                                                        |                                                                            |
| 150 - |                                                   |                                                   |                                                                            |                                                                     | ו אית                                                      |                                                                            |
| 100 - |                                                   |                                                   |                                                                            | Mary Mary                                                           |                                                            |                                                                            |
| 50 -  | A                                                 | ~~~                                               | - Alexander                                                                |                                                                     |                                                            |                                                                            |
| 0 -   | 10000                                             | 11000                                             | 12000                                                                      | 13000                                                               | 14000                                                      | 15000                                                                      |
|       | 350 -<br>300 -<br>250 -<br>200 -<br>150 -<br>50 - | 350 -<br>300 -<br>250 -<br>200 -<br>150 -<br>50 - | 400 -<br>350 -<br>300 -<br>250 -<br>200 -<br>150 -<br>100 -<br>50 -<br>0 - | 400 -<br>350 -<br>300 -<br>250 -<br>200 -<br>150 -<br>100 -<br>50 - | 350 -<br>300 -<br>250 -<br>200 -<br>150 -<br>100 -<br>50 - | 400 -<br>350 -<br>300 -<br>250 -<br>200 -<br>150 -<br>100 -<br>50 -<br>0 - |

#### **Stock Features**

Open:

The start price of a stock on a trading day

- Low / High:
  The lowest/highest price on a trading day
- Close:The end price of a stock on a trading day
- Adjust Close:

Amends a stock's closing price to reflect that stock's real value

Volume:

Number of shares of a security traded between daily open and close



#### Prepare Dataset

#### Input and Output:

- Output: predicting Close aims to determine the future movement of the stock value of a financial exchange
- > Input: Different models require different input features and forms

#### Train and Test:

Considering the amount of data, we divide dataset into a training set (90%) and a test set(10%)

# Prepare Dataset: Normalization

|      | Date       | open  | high  | low   | close | adjclose  | volume     | ticker |
|------|------------|-------|-------|-------|-------|-----------|------------|--------|
| 9592 | 2001-07-19 | 15.10 | 15.29 | 15.00 | 15.17 | 11.223610 | 34994300.0 | ACN    |
| 9593 | 2001-07-20 | 15.05 | 15.05 | 14.80 | 15.01 | 11.105230 | 9238500.0  | ACN    |
| 9594 | 2001-07-23 | 15.00 | 15.01 | 14.55 | 15.00 | 11.097830 | 7501000.0  | ACN    |
| 9595 | 2001-07-24 | 14.95 | 14.97 | 14.70 | 14.86 | 10.994254 | 3537300.0  | ACN    |
| 9596 | 2001-07-25 | 14.70 | 14.95 | 14.65 | 14.95 | 11.060840 | 4208100.0  | ACN    |



|   | open     | high     | low      | close    | adjclose | volume   |
|---|----------|----------|----------|----------|----------|----------|
| 0 | 0.009139 | 0.007479 | 0.009195 | 0.008227 | 0.006056 | 0.389084 |
| 1 | 0.009015 | 0.006887 | 0.008698 | 0.007830 | 0.005764 | 0.101229 |
| 2 | 0.008892 | 0.006788 | 0.008077 | 0.007805 | 0.005746 | 0.081810 |
| 3 | 0.008768 | 0.006690 | 0.008450 | 0.007458 | 0.005491 | 0.037510 |
| 4 | 0.008151 | 0.006640 | 0.008325 | 0.007681 | 0.005655 | 0.045007 |

## Accuracy

► Root Mean Square Error (RMSE):

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

► Mean Absolute Percentage Error (MAPE):

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} |\frac{(\hat{y}_i - y_i)^2}{y_i}|$$

# Linear Regression 1: Time Series

- Input Set:
  - Trading date
- Output Set:
  - Close price
- Pros and cons:
  - Easy to implement
  - > Fail to capture nonlinear changes in price
  - Unable to reflect other features
- Accuracy:
  - > RMSE:0.3180
  - > MAPE:0.4124



train set and test set



only test set

# Linear Regression 2: SMA

- Input Set:
  - Simple moving average(SMA) of Open from 30 days before the predicted day
- Output Set:
  - Close price
- Pros and cons:
  - > Better fitness than before
  - Unable to reflect the impact of volume
  - Unable to fit mutations in time
- Accuracy:
  - RMSE: 0.0401
  - > MASE: 0.0494





#### **Basic LSTM Model**

#### ► Input:

- Open: If we have higher Close than the Open that we have some profit otherwise we saw losses
- Volume: indicates market strength, as rising markets on increasing volume viewed strong and vice versa
- > Data of first 60 days as an input unit

#### Output:

Close of the predicted day



#### **Basic LSTM Model**

#### Pros and Cons:

- Model chronological sequences and their long-range dependencies precisely
- Solve problem of vanishing gradients of RNN
- Require more resources and time to get trained
- > Affected by random weight initialization
- Prone to overfitting
- Accuracy:
  - > RMSE:0.0336
  - > MAPE:0.0406



# Some ways to improve LSTM Model

#### ► Add hidden layer:

- Adding stacked multi-layers is for extracting more abstract information.
- > In this case, we changed layers from 1 into 3

#### Add Dropout:

- A regular method to reduce overfitting and improving model performance
- > In this case, we added dropout of 0.2 at each layer of LSTM

#### Increase epochs:

- The times that the learning algorithm will work through the entire training dataset
- > In this case, we Increased epochs from 10 to 100

# Improved LSTM model





- Input and output:
  - The same as basic model
- Accuracy:
  - > RMSE:0.0185
  - > MAPE:0.0224

# Evaluating Prediction Performance for Stock Price Prediction

|             | Linear r | egression | LSTM   |        |  |
|-------------|----------|-----------|--------|--------|--|
| Corporation | RMSE     | MAPE      | RMSE   | MAPE   |  |
| ACN         | 0.0401   | 0.0494    | 0.0185 | 0.0224 |  |
| IBM         | 0.0351   | 0.0419    | 0.0152 | 0.0174 |  |
| MSFT        | 0.0285   | 0.0356    | 0.0343 | 0.0416 |  |
| QNC.V       | 0.0474   | 0.1724    | 0.0260 | 0.0933 |  |
| INTC        | 0.0470   | 0.0501    | 0.0214 | 0.0214 |  |
| BIDU        | 0.0648   | 0.0762    | 0.0297 | 0.0381 |  |
| NOK         | 0.0069   | 0.1070    | 0.0034 | 0.0438 |  |
| MIELY       | 0.0377   | 0.0420    | 0.0181 | 0.0207 |  |

Linear regression model here refers to linear regression with SMA LSTM model refers to improved LSTM

#### Conclusion

- In this project, we implement two models to predict stock price: linear regression and LSTM
- According to our comparison, LSTM is more precise than linear regression in most cases
- Due to its complicated cell, LSTM requires far more resources and time to get trained
- We may try another commonly used method next: Gated Recurrent Unit(GRU) which has fewer training parameter and executes faster

# Thank you!