# Company Profile



**Gas Sensor Manufacturer** 

### **COMPANY PROFILE**

# EXSEN

## 가스 센서 전문 기업 (주) 엑센

- Since 2012.10, Ceramic based Gas Sensor Start-up
- Air Quality Monitoring Sensor & Module Manufacturer
- Located in Daejeon, South of Korea
- Korea, Global 300 company







### Biz Area



### **CEO**

Kim Jun woong, Ph.D, KAIST(Korean Institute of Science and Technology)

**Pollutions** 

Patent (Original Sensor Material Patent, Sensor Operating Algorithm)

### Organization

CEO

Development

Qual.

**Production** 

Sales



### CO<sub>2</sub> GAS SENSOR

### Atmospheric air (Earth)



### CO<sub>2</sub> Sensor



- O<sub>2</sub> decreasing means CO<sub>2</sub> increasing
- Change amount of Indoor O<sub>2</sub>(CO<sub>2</sub>) concentration: 0~5,000 ppm
- O<sub>2</sub> change rate <5% (5,000 ppm / 209,500 ppm)
- CO<sub>2</sub> change rate >1000% (5,000 ppm / 400 ppm)

 $CO_2$  sensing is more accurate compare with  $O_2$  measurement to determine the indoor  $O_2$  concentration.



Ref. Elevated Indoor Carbon Dioxide Impairs Decision-Making Performance, Berkley Lab

### O<sub>2</sub> consumption of brain



Brain is only 2% of Human Weight 20% of O<sub>2</sub> consumption

### CO2 Concentration – Human

## ▮ 이산화탄소(CO₂)

### ▋정의

- 탄소나 그 화합물이 완전히 **연소**되거나 생물의 **호흡 또는 발효** 할 때 생성되는 기체
- 무색, 무취
- 상온/상압에서 비활성 기체
- 1.977g/L로 공기 대비 60% 정도 높은 밀도
- 대기의 약 0.035%~0.045%(약 400 ppm)를 차지함

### 생성

- 공업적으로 석회석에 산을 가하거나 석회석을 가열해서 얻음
- 알코올과 같은 탄소화합물이 연소할 때 물과 함께 생성
- 생물체가 유기물을 분해하는 과정(발효)에서 생성
- 생명체는 호흡을 통해 유기물을 분해하면서 생명유지에 필요 한 에너지를 얻는데, 이때 이산화탄소가 생성되어 날숨을 통해 공기 중으로 배출됨

### ▋이산화탄소 농도 기준

- 단체별 실내 환경 기준치(ppm)

| 오염물질  | 실내 환경 기준치(ppm, 이하 유지) |            |            |  |
|-------|-----------------------|------------|------------|--|
|       | 일본 건축기준법              | WHO Europe | ASHRAE(미국) |  |
| 이산화탄소 | 1,000                 | 920        | 1,000      |  |

- 나라별 실내 환경 기준치(ppm)

|           | 실내 환경 기준치(ppm, 이하 유지) |                |       |       |                       |
|-----------|-----------------------|----------------|-------|-------|-----------------------|
| 오염물질      | 대한민국<br>(기계환기)        | 대한민국<br>(자연환기) | 캐나다   | 싱가포르  | 일본<br>(문무과학<br>성, 학교) |
| 이산화<br>탄소 | 1,000                 | 1,500          | 3,500 | 1,000 | 1,500                 |

### ▋인체에 미치는 영향

| CO <sub>2</sub><br>농도 | 영향                                         | 장소 예시                            |
|-----------------------|--------------------------------------------|----------------------------------|
| <450                  | 건강한 환기 레벨                                  |                                  |
| ~700                  | 장시간 노출되어도 문제 없는 실내 수준                      |                                  |
| ~1,000                | 건강에 피해는 없지만, 불쾌감 느끼는 사람이 있는<br>수준,         | 사무실                              |
| ~2,000                | 졸림을 느끼는 등 컨디션 변화가 있는 수준                    | 고속버스<br>엘리베이터<br>한겨울/한여<br>름 가정집 |
| ~3,000                | 어깨 결림이나 두통을 느끼는 사람이 있는 등 건강<br>피해가 생기기 시작함 | 지하철                              |
| ~4,000                | 눈, 목 점막 자극, 두통, 귀울림, 어지러움, 혈압상승            |                                  |
| ~6,000                | 호흡수 증가                                     |                                  |
| ~8,000                | 호흡 곤란                                      |                                  |
| ~10,000               | 2~3분 이내에 의식 상실, 시력 장애                      |                                  |
| ~20,000               | 사망                                         |                                  |

### CO2 Concentration – Student activity

A study of CO<sub>2</sub> influence on student activity in classroom

Average student results at each part and CO<sub>2</sub> concentrations during the seminary period

|                                  | Class |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                                  | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| Part 1                           | 8.76  | 8.79  | 8.72  | 8.72  | 8.63  | 8.74  | 8.80  | 8.79  | 8.59  | 8.80  |
| CO <sub>2</sub> - part<br>1[ppm] | 792   | 573   | 732   | 785   | 1717  | 889   | 439   | 968   | 2184  | 693   |
| Part 2                           | 9.31  | 9.35  | 9.17  | 9.39  | 9.11  | 9.26  | 9.24  | 9.13  | 8.95  | 9.32  |
| CO <sub>2</sub> - part<br>2[ppm] | 1030  | 866   | 1949  | 572   | 1853  | 1601  | 1575  | 1830  | 2129  | 1064  |



Fig 4 Estimation of efficiency for: a) part 1, b) part 2; c) together based on CO<sub>2</sub> concentration

A study of CO2 influence on student activity in classroom, Revista Romana de inginerie Civila, Volumul 4(2013), Numarul 2

Table 3



## Product (CO2 Gas Sensor)

| Model              | HX-105N                                                                                                                               | LX-100                                                                                                      | EX-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BX-8                                     | RX-9                                                                                                                                                    | EX-14                                                                                                |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Picture            | SIFF I BEE                                                                                                                            |                                                                                                             | 100 May 2 Avol. 3 17725 A 1772 |                                          |                                                                                                                                                         |                                                                                                      |
| Dim.<br>(WxLxT,mm) | 35 x 21 x 14.4                                                                                                                        |                                                                                                             | 35 x 21 x 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.2 x 19.6 x7                           | 20 x 12 x6.4                                                                                                                                            | 35 x 21 x 6.4                                                                                        |
| Feature            | <ul> <li>Wide operating temperature</li> <li>Very high humidity resistance</li> <li>Various Communication (I2C, UART, AVO)</li> </ul> | <ul> <li>Outdoor         Application</li> <li>Resin coated         PCB to proof         moisture</li> </ul> | <ul> <li>Wide Operating<br/>Voltage</li> <li>Low thickness</li> <li>Good price</li> <li>Fast Feedback</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compatible     with other CO2     sensor | <ul> <li>Smallest CO2 sensor</li> <li>2 Voltage output</li> <li>No MCU</li> <li>Very low price</li> <li>Calibration information with QR code</li> </ul> | <ul> <li>Low thickness</li> <li>Low price</li> <li>Various Communication (I2C, UART, AVO)</li> </ul> |
| Op. Volt (V)       | 3.5 ~ 5.5                                                                                                                             | 5.5 ~ 13                                                                                                    | 3.2 ~ 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2 ~ 5.5                                | 3.2 ~ 3.4                                                                                                                                               | 3.5~5.5                                                                                              |
| Op. Temp<br>(°C)   | -40 ~ 85                                                                                                                              | -40 ~ 85                                                                                                    | -40 ~ 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -40 ~ 60                                 | -20 ~ 60                                                                                                                                                | -40~60                                                                                               |
| Application        | <ul><li>Indoor</li><li>High     Performance</li><li>Vehicle</li></ul>                                                                 | <ul><li>Outdoor</li><li>High Reliability</li></ul>                                                          | <ul><li>Indoor</li><li>General purpose</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | General purpose                          | Competitive     Price Solution                                                                                                                          | Competitive     Price Solution                                                                       |
| Customer           | LG                                                                                                                                    | LG                                                                                                          | Various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Various                                  | On Promotion<br>LG Reviewing                                                                                                                            | On Promotion<br>LG Reviewing                                                                         |

### Freshness (RX-9 Simple mode)



- Simple mode
  - Simple algorithm
  - Intuitive view
  - Very Low-cost price of sensor

### **CO2 Concentration**



- Ppm output mode
  - Algorithm provided
  - Calibration information is on the QR-code
  - Good Accuracy
  - Low-cost

### **Product Development Road Map**



### Main Specification (교육용 예시)

| Parameters |                         | Min                         | Тур                                      | Max                          | Unit  |   |
|------------|-------------------------|-----------------------------|------------------------------------------|------------------------------|-------|---|
| Gas        | Target gas              |                             | CO <sub>2</sub>                          |                              | -     | _ |
| Data       | Sensor type             |                             | Electrochemical                          |                              |       | _ |
|            | Detection range         |                             | 400-6,200                                |                              | ppm   | П |
|            | Resolution              |                             | 1                                        |                              | ppm   | ٦ |
|            | Accuracy                | -40 ppm<br>-3% of reading   | After Starting<br>15 min <sup>1)2)</sup> | +40 ppm +3%<br>of reading    |       |   |
|            |                         | -70 ppm -5% of<br>reading   | 10 min                                   | +70 ppm +5% o<br>f reading   | %     |   |
|            |                         | -100 ppm -10%<br>of reading | 3 min                                    | +100 ppm +10<br>% of reading |       |   |
| Time       | Response                | 2min for 90%                | 6 for diffusion sam                      | oling method                 |       | ٦ |
|            | Warm-up                 | 1                           | 3                                        | -                            | min   | ٦ |
|            | Life-time               |                             | 10                                       |                              | Years | ٦ |
| Power      | Input                   | 3.2                         | 5                                        | 5.1                          | V     |   |
|            | Current Consump<br>tion | -                           | 0.12                                     | 0.15                         | А     |   |
|            | Warm-up consum ption    | 0.35                        | 0.6                                      | 1                            | W     |   |
| Output     | Interface connecti ons  |                             | UART                                     |                              |       |   |
|            | I2C-ppm                 |                             | 400~6,200                                |                              | ppm   |   |
|            | UART-ppm                |                             | 400~6,200                                |                              | ppm   |   |
|            | State                   | 0:                          | Normal, 1:Warm-ı                         | qu                           |       |   |
|            | Error                   |                             | 0:Normal, 1:Error                        |                              |       |   |
|            | Sampling interval       |                             | 1                                        |                              | Hz    |   |
|            | Connector               |                             | SMAW-250-05P                             |                              |       |   |
| Ambient    | Operating Temp          | -40                         | 25                                       | 60                           | °C    |   |
|            | Operating Humidi<br>ty  | 0                           | -                                        | 95                           | %     |   |
|            | Storage Temp            | -40                         | 25                                       | 105                          | °C    |   |
|            | Storage Humidity        | 5                           | -                                        | 90                           | %     |   |
| Cali       | bration                 | Not requ                    | ired. and Self mod                       | e is ready                   | -     | ╛ |

#### 이산화탄소 감지 범위

400 ~ 6200 ppm

지구 대기: 400~450 ppm 가정집: 400~ 3000 ppm 차량: 400~5000 ppm

#### 정확도

±10%(of Reading)

- 센서 가동 후 48 시간 이후 정확도 측정 가능
- 계속 가동 상태에서는 빠르게 센서 정확도를 측 정 가능
- 비가동 방치 상태에서 센서 재 가동시 48시간 이후 정확도 측정 가능(48시간 이내에는 다소 오차가 있는 값을 출력함)

#### Warm-up

1~3분

- 주변의 이산화탄소를 측정하기 위해서 센서를 가열해야 하는데, 가열하는데 걸리는 최소 시간
- Warm-up 이후 출력값 사용

#### 소모 전력

120~150 mA, 0.6W~1W

- 센서 연속 구동시 약 0.6~1W 정도의 전력 소모 함
- 배터리 구동 시스템은 배터리 용량 산정에 참고 해야 함
- 연속 구동을 권장함

#### 지원 통신

12C, UART, AVO

- 제품별로 지원하는 통신 규격이 다르니, 고객 요 구 사항에 맞춰 제안해야 함

### Main Specification (교육용 예시)

| Parameters |                         | Min                         | Тур                                      | Max                          | Unit  |
|------------|-------------------------|-----------------------------|------------------------------------------|------------------------------|-------|
| Gas        | Target gas              |                             | $CO_2$                                   |                              |       |
| Data       | Sensor type             |                             | Electrochemical                          |                              |       |
|            | Detection range         |                             | 400-6,200                                |                              | ppm   |
|            | Resolution              |                             | 1                                        |                              | ppm   |
|            | Accuracy                | -40 ppm<br>-3% of reading   | After Starting<br>15 min <sup>1)2)</sup> | +40 ppm +3%<br>of reading    |       |
|            |                         | -70 ppm -5% of<br>reading   | 10 min                                   | +70 ppm +5% o<br>f reading   | %     |
|            |                         | -100 ppm -10%<br>of reading | 3 min                                    | +100 ppm +10<br>% of reading |       |
| Time       | Response                | 2min for 90%                | 6 for diffusion sam                      | pling method                 |       |
|            | Warm-up                 | 1                           | 3                                        | -                            | min   |
|            | Life-time               |                             | 10                                       |                              | Years |
| Power      | Input                   | 3.2                         | 5                                        | 5.1                          | V     |
|            | Current Consump<br>tion | -                           | 0.12                                     | 0.15                         | Α     |
|            | Warm-up consum ption    | 0.35                        | 0.6                                      | 1                            | W     |
| Output     | Interface connections   |                             | UART                                     |                              |       |
|            | I2C-ppm                 |                             | 400~6,200                                |                              | ppm   |
|            | UART-ppm                |                             | 400~6,200                                |                              | ppm   |
|            | State                   | 0:                          | Normal, 1:Warm-                          | up                           |       |
|            | Error                   |                             | 0:Normal, 1:Error                        |                              |       |
|            | Sampling interval       |                             | 1                                        |                              | Hz    |
|            | Connector               |                             | SMAW-250-05P                             |                              |       |
| Ambient    | Operating Temp          | -40                         | 25                                       | 60                           | °C    |
|            | Operating Humidi<br>ty  | 0                           | -                                        | 95                           | %     |
|            | Storage Temp            | -40                         | 25                                       | 105                          | °C    |
|            | Storage Humidity        | 5                           | -                                        | 90                           | %     |
| Cal        | ibration                | Not requ                    | ired. and Self mod                       | e is ready                   | -     |

#### 측정 간격

1초

- UART: 초당 1회씩 데이터 출력
- I2C: I2C command 발생시마다 업데이트/출력
- AVO: 실시간 업데이트/출력

#### 커넥터

커넥터 가격 50원 이하, >MOQ 수량에 대해 커넥터 삽입/납품 가능

- 커넥터 삽입 후 반품 불가
- 일반적인 커넥터 사양만 가능(특수 커넥터 불가)

### 사용 온도/ 보관 온도

- 사용 가능한 온도: 센서가 구동 중에 기능을 상 실하지 않는 온도
- 보관 온도: 센서를 해당 온도에 보관하여도 센서 가 기능을 상실하지 않는 온도
- 정확도 측정 온도: 센서의 정확도는 25도씨50% 이하에서 구동한 경우에 적용됨

### 자동 교정(Auto Calibration Logic)

- 모든 센서는 시간이 경과에 따라 센서 고유의 값이 변화함
- 엑센의 센서는 자동 교정 기능에 의해 주기적으로 센서의 값을 교정함
- 모듈로 판매되는 제품(Rx-9 제외)은 모두 자동 교정 기능이 구현되어 있음

### Sensor structure



### **Auto Calibration Logic**

### **Auto Calibration Logic**

- 모든 센서는 출력값이 시간 변화에 따라 변화함
- 이를 보정하기 위해 계측기는 주기적으로 보정을 진행
- 엑센의 이산화탄소 센서는 주기적으로 센서의 출력농도를 파악하여 센서를 자동 보정하기 때문에, 설치 후에 교정 혹은 교체가 필요 없음



- 1주기 내 최저 농도를 기록함
- 지구 대기 보다 낮은 이산화탄소 농도는 자연적 으로 발생할 수 없음
- 지구 대기는 약 400 ppm
- 1주기 내 최저 농도를 400 ppm으로 환산
- 해당 주기 종료 후, 새로운 주기가 시작될 때 적용
- 엑센 제품의 자동 보정 주기는 1~2일(어플리케이션 마다 다름)
- 해외 경쟁사의 자동 보정 주기는 4~5주

Q: 1주기 내에 상시 높은 농도가 계속해서 유지되는 경우에는 어떻게 작동하는지?

A: 1주기 내 낮은 농도에 노출되지 않는 다면, 높은 농도의 값을 지구 대기 농도인 400ppm으로 계산합니다. 이 부분이 문제가 될 수 있지만, 센서가 설치되는 어플리케이션에 따라 주기를 조절하여 해결이 가능합니다. 또한, 이에 의해 센서 출력값이 잘못 출력되더라도 단 한번이라도 깨끗한 공기(바깥공기)에 노출이 되면 바로 정상값으로 출력이 가능합니다.

### **Electrochemical sensor**



- 엑센의 고체 전기화학식 센서는 기존의 MOS(반도체식) 센서와 다른 센서입니다. MOS 센서 대비 우수한 성능/수명을 보유하고 있습니다. (>10 year) 주기적인 교체가 필요한 액체 전기화학식 센서와는 달리 엑센의 고체 전기화학식 센서는 교체 없이 사용이 가능합니다.

-  $H_2S$ 

### **COMPETING TECH**



### Characteristics according to CO2 Concentration Change

As shown by Figure 1, the RX-9 has good response and repeatability to CO<sub>2</sub> gas concentration change and exhibits nearly the same characteristics per sample. RX-9 exhibits a very good liner relationship between Sensor's Signal (EMF) and CO<sub>2</sub> gas concentration on a logarithmic scale.



[Figure 1] Evaluation of sensor performance according to the CO<sub>2</sub> Concentration change.

### **COMPETING TECH**

|                                                                    |                      | NDIR                                                                                                               |   | Electrochemical                             |   | Electrochemical             |
|--------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------|---|-----------------------------|
| Sensor structure                                                   |                      |                                                                                                                    |   | ALLEN HORSE                                 |   |                             |
| Competitor                                                         |                      | Global                                                                                                             |   | KOREA EXSEN<br>(HX-105N)                    |   | JAPAN F COMPANY<br>CDM4161A |
| Dimension         44.5 x 35 (mm²)         35 x 21 (mm²)         45 |                      | 45 x 26 (mm <sup>2</sup> )                                                                                         |   |                                             |   |                             |
| Operating Temp                                                     |                      | -5~60°C (S company)<br>0~50°C (E company)<br>-25~55°C (G company)<br>-40~60°C (E2 company)<br>-30~80°C (N company) |   | -40~85°C (HX-105N)<br>-20~60°C (EX-7, Rx-9) |   | 0~50°C (F company)          |
|                                                                    | High<br>Temp         | Good                                                                                                               | < | Very Good                                   | = | Very Good                   |
| Reliability                                                        | High<br>Humi         | Good                                                                                                               | < | Very Good                                   | > | Good                        |
|                                                                    | Particle resistivity | Bad                                                                                                                | < | Excellent                                   | = | Excellent                   |
|                                                                    | Life Time            | 10 years                                                                                                           | = | 10 years                                    | = | 10 years                    |
| Resolution                                                         |                      | 1 ppm                                                                                                              | = | 1 ppm                                       | = | 1ppm                        |
| Cost                                                               |                      | 100%                                                                                                               | < | <50%                                        | > | 100%                        |

### Comparison of response time with NDIR Sensor

Figure 5 compares the  $CO_2$  output of the RX-9 mounted on the evaluation board with the NDIR sensor. As can be seen, the response and recovery time for  $CO_2$  gas are almost similar.



Figure 5. Evaluation of gas response and recovery characteristics.

### **COMPETING TECH**

| Туре               | 특징                                                                  | 장점                                                         | 단점                                                                                                                  |
|--------------------|---------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Liquid Electrolyte | 전해질 구성: 액체   산 혹은 염기성의 액체   상온 구동 가능                                | <ul> <li>다양한 가스 감지 가능</li> <li>상온 구동 = 낮은 전력 소모</li> </ul> | <ul> <li>짧은 수명, 주기적인 센서 교체 필요</li> <li>고온 노출시 전해질 증발</li> <li>노출되는 가스의 농도에 따라 수명이 결정됨, 고농도 노출시 급격한 수명 저하</li> </ul> |
| Solid Electrolyte  | <ul> <li>전해질 구성: 고체</li> <li>이터 필요</li> <li>Carbonate 계열</li> </ul> | • 높은 신뢰성 • 긴 수명                                            | • 상대적으로 높은 전력 소모                                                                                                    |

### Warm-up



To sense carbon dioxide gas with solid electrolyte sensor, sensor should be heated about 400 Celsius degree. So it takes few minutes to heat sensor.

Temperature of heater core is very high. But the Surface of sensor package is warm ,50~70 Celsius degree.

### **Storage Condition**



Under non-operating, VOC gas and  $H_2O$  gas could adsorb to sensor. Because the sensor is ceramics it have very many pores can keep the gas. So when operate the sensor again. It may needs the time to heat to remove the gas from sensor. After the burning the gas on the sensor, sensor will be operated properly. It takes time about 1 or 2 days to burn it. so storage the sensor under dry and clean atmosphere.

### Expected Life-Time of EXSEN CO<sub>2</sub> Sensor

Acceleration test for predicting the lifetime of a solid electrochemical sensor is a method to confirm the degradation point of the sensor output value (EMF) according to the heater temperature. As shown in the figure 6, when the heater temperature increases by about 50 degrees, the time to maintain the sensor stability is shortened by 10 times.

At a heater temperature of 500°C, a stable sensor output value was measured for about 80 days. Based on this, it is used as a basis to judge the life time of about 800 days for a heater temperature of 450°C and about 8,000 days (20 years) for a temperature of 400°C.



Figure 5. Acceleration test for sensor life prediction

## **Reliability Test**

| No | Sensor<br>Characteristics          | Test conditions and evaluation method                                                                                                                                                                                                                                                                                                                                                                                | Criteria and<br>Results                       | Page  |
|----|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|
| 1  | High Temperature/<br>Humidity Test | <ul> <li>Non-Operation Test: Exposure for 500 hours in 85°C/85%R.H.</li> <li>→ Performance Determination         <ol> <li>I. Perform aging at room temperature, humidity, and atmospheric CO₂ concentration</li> <li>II. After the self-compensation cycle, standard carbon dioxide gas is injected to determine accuracy.</li> </ol> </li> </ul>                                                                    | Within ±10% of standard Gas (Pass)            | 23    |
| 2  | Temperature Test                   | <ul> <li>■ High Temperature Operation Test: Exposure for 240 hours in 85°C</li> <li>■ High Temperature Non-Operation Test: Exposure for 240 hours in 85°C</li> <li>■ Low Temperature Operation Test: Exposure for 240 hours in -40°C</li> <li>■ Low Temperature Non-Operation Test: Exposure for 240 hours in -40°C</li> <li>→ Performance Determination: Same as high temperature and high humidity test</li> </ul> | Within ±10% of<br>standard Gas<br>(Pass)      | 24-27 |
| 3  | Humidity Test                      | ■ 1cycle: 95% R.H. 8hr-> 5% R.H. 2hr, 10times in total  → Performance Determination: Same as high temperature and high humidity test                                                                                                                                                                                                                                                                                 | Within ±10% of standard Gas (Pass)            | 28-29 |
| 4  | Heat Cycle Test                    | ■ 1 cycle : -40°C 30min, 85°C 30min, 300times in total  → Performance Determination : Same as high temperature and high humidity test                                                                                                                                                                                                                                                                                | Within ±10% of standard Gas (Pass)            | 30    |
| 5  | Vibration/Shock<br>Test            | ■ Automotive parts test conditions (KSR 1034)  → Performance Determination  Visual inspection : Mechanical damage such as deformation, separation,  crack, loosening of screw, etc.  Performance check : LED on check                                                                                                                                                                                                | Visual &<br>Operation<br>Inspection<br>(Pass) | 31-32 |
| 6  | ESD Test                           | ■ Apply 4kV static positive / negative voltage to the input and output terminals 10 times  → Performance Determination : Same as vibration test                                                                                                                                                                                                                                                                      | Visual &<br>Operation<br>Inspection<br>(Pass) | 33    |
| 7  | Accuracy Test                      | $\blacksquare$ Accuracy Test when standard $CO_2$ concentration changes from 500ppm to 5,000ppm.                                                                                                                                                                                                                                                                                                                     | Within ±10% of standard Gas (Pass)            | 34-35 |

## High Temperature/Humidity Test Results (HTHH NO-BIAS)

RX-9 Sensor maintains stable characteristics even if the sensor is used in high temperature and humidity conditions.

### ☐ Test Condition & Equipment





▶ Test temperature : 85 °C▶ Test humidity : 85% R.H.

► Test time: 502 h

Check point : Before the test, After the testStatus of product : ① Un-packaged product

② Non-operation

Test voltage : DC 5 VSample quantity : 5 EA

**PASS** 





## High Temperature Test Results \_ Temp. of Operation (HT Bias)

Stable CO<sub>2</sub> Sensitivity can be expected even if RX-9 Sensor is exposed to extremely high temperature.

### ☐ Test Condition & Equipment





▶ Test temperature : 85°C

► Test time : 242 h

► Check point : Before the test, After the test ► Status of product : ①Un-packaged product

②Operation

► Test voltage : DC 5 V

► Sample quantity: 5 EA

## **PASS**





## High Temperature Test Results \_ Temp. of Storage (HT No-Bias)

Stable CO<sub>2</sub> Sensitivity can be expected even if RX-9 Sensor is exposed to extremely high temperature.

### ☐ Test Condition & Equipment





► Test temperature : 120°C

► Test time : 243 h 10min

► Check point : Before the test, After the test

► Status of product : ①Un-packaged product

②Non-Operation

► Test voltage : DC 5 V

► Sample quantity: 5 EA

**PASS** 





## Low Temperature Test Results \_ Temp. of Operation (LT Bias)

Stable CO<sub>2</sub> Sensitivity can be expected even if RX-9 Sensor is exposed to extremely low temperature.

### ☐ Test Condition & Equipment





► Test temperature : -40°C

▶ Test time : 242 h 10min

► Check point : Before the test, After the test

► Status of product : ① Un-packaged product

② Operation

► Test voltage : DC 5 V

► Sample quantity : 5 EA

**PASS** 





## Low Temperature Test Results \_ Temp. of Storage (LT No-Bias)

Stable CO<sub>2</sub> Sensitivity can be expected even if RX-9 Sensor is exposed to extremely low temperature.

### ☐ Test Condition & Equipment





► Test temperature : -40 °C

► Test time : 242 h 10min

► Check point : Before the test, After the test

► Status of product : ① Un-packaged product

② Non-Operation

► Test voltage : DC 5 V

► Sample quantity: 5 EA

**PASS** 





## Humidity Test Results \_ Humidity of Operation (RT HH Bias)

There is almost no influence by humidity on the sensitivity characteristics of RX-9 Sensors.

### ☐ Test Condition & Equipment





▶ Test Temperature : 25 °C
 ▶ Test Humidity : 0~95% R.H.

➤ Test Cycle : 10cycles ➤ Test Time : 150h

▶ Check point : Before the test, After the test
 ▶ Status of product : ① Un-packaged product
 ② Operation

▶ Test voltage : DC 5 V▶ Sample quantity : 5 EA

**PASS** 



## **Humidity Test Results \_ Humidity of Storage (RTHH No-Bias)**

There is almost no influence by humidity on the sensitivity characteristics of RX-9 Sensor.

### ☐ Test Condition & Equipment





Test Temperature : 25 °C
 Test Humidity : 10~95% R.H.

► Test Cycle : 10cycles ► Test Time : **150h** 

▶ Check point : Before the test, After the test
 ▶ Status of product : ① Un-packaged product
 ② Non-Operation

▶ Test voltage : DC 5 V▶ Sample quantity : 5 EA

# **PASS**





## Heat Cycle Test Results (Thermal Shock No-Bias)

RX-9 Sensor has sufficient durability against the severity of heat cycle conditions.

### ☐ Test Condition & Equipment





► Test Temperature : (-40 ~ 85) °C

Test Cycle: 100cycles

Test Time: 100h

► Check point : Before the test, After the test ► Status of product : ① Un-packaged product 2 Non-Operation

► Test voltage : DC 5 V ► Sample quantity: 5 EA

**PASS** 





**PASS** 

# 05

## **Vibration Test Results**

RX-9 Sensor operate without damage even under severe vibration conditions.

### ☐ Test Condition & Equipment



► Test Type : Sweep sine

▶ Frequency : (10 ~ 200) Hz

► Accelerometer : 44.1 m/s2

► Sweep rate : 5 min/sweep

► Sweep cycles : Z–24 cycles(48sweeps),X,Y–12cycles(24sweeps)

► Test time : 8 h in total (Z - 4 h, X,Y - 2 h)

▶ Test axis : Vertical (Z), Transverse (X), Longitudinal (Y)

► Check time : Before, After the test

► Sample condition : Unpackaged/Non operation

► Sample quantity: 5 EA

#### □ Test Results



| Check Item                                                                                             | Test Results          |
|--------------------------------------------------------------------------------------------------------|-----------------------|
| Visual inspection - Mechanical damage such as deformation, separation, crack, loosening of screw, etc. | No abnormal was found |
| Performance check –<br>LED on check                                                                    | Pass                  |

**PASS** 

# 05

## **Shock Test Results**

RX-9 Sensor operate without damage even under severe shock conditions.

### ☐ Test Condition & Equipment



► Test Type : Half sine

► Accelerometer : 490 m/s2

▶ Duration : 11 ms



► Test axis : Vertical (Z), Transverse (X), Longitudinal (Y)

► Check time : After the test

► Sample condition : Unpackaged/Non operation

► Sample quantity: 5 EA

#### □ Test Results



| Check Item                                                                                             | Test Results          |
|--------------------------------------------------------------------------------------------------------|-----------------------|
| Visual inspection - Mechanical damage such as deformation, separation, crack, loosening of screw, etc. | No abnormal was found |
| Performance check –<br>LED on check                                                                    | Pass                  |

# 106 ESD Test Results

RX-9 Sensor operate without damage even under severe shock conditions.

### ☐ Test Condition & Equipment



► Test Equipments

: ESD SIMULATOR / NSG438 / SCHAFFNER



► Test Site

: Shield Room

**▶** Environment Conditions

: Temperature : 21°C

: Humidity: 40% R.H.

: Atmospheric Pressure : 100.1kPa

▶ Test Point : Pin 1 to 9

#### **□** Test Results



| Direct Application |                     |                        |      |         |      |  |  |  |
|--------------------|---------------------|------------------------|------|---------|------|--|--|--|
| Model              | Discharge<br>Method | Number of<br>Discharge | Leve | Results |      |  |  |  |
| RX-9               | Contact             | ≥10 times              | +4   | -4      | Pass |  |  |  |

\*\* Remark : LED was checked by inserting Test Jig after the test.

# Accuracy Test Results (1)

Error rate of RX-9 sensor compared to reference instrument when standard carbon dioxide concentration changes from 500ppm to 5,000ppm (No. of test samples : 35)



## Accuracy Test Results (2)

| Ref(ppm)      |       |       |       |        |        |        |        |        |        |        |        |        |        |        |        |        |       |       |       |
|---------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|
| No.           | 507   | 1000  | 1497  | 2002   | 2499   | 3000   | 3501   | 3999   | 4500   | 5001   | 4500   | 4002   | 3502   | 3000   | 2499   | 2000   | 1500  | 1001  | 503   |
| #1            | 512   | 985   | 1523  | 1993   | 2429   | 2928   | 3480   | 3895   | 4406   | 4926   | 4433   | 3923   | 3488   | 2978   | 2435   | 2005   | 1540  | 968   | 506   |
| #2            | 467   | 959   | 1368  | 1853   | 2394   | 2878   | 3415   | 3708   | 4324   | 4841   | 4319   | 3704   | 3391   | 2879   | 2368   | 1833   | 1353  | 987   | 516   |
| #3            | 489   | 1006  | 1526  | 2141   | 2738   | 3135   | 3681   | 4148   | 4885   | 5477   | 4780   | 4140   | 3653   | 3140   | 2708   | 2117   | 1507  | 953   | 533   |
| #4            | 470   | 949   | 1362  | 1865   | 2421   | 2863   | 3189   | 3872   | 4089   | 4609   | 4126   | 3910   | 3207   | 2722   | 2437   | 1887   | 1389  | 942   | 529   |
| #5            | 511   | 947   | 1463  | 1893   | 2332   | 2829   | 3353   | 3732   | 4252   | 4774   | 4246   | 3727   | 3328   | 2812   | 2305   | 1872   | 1447  | 918   | 511   |
| #6            | 514   | 948   | 1402  | 1895   | 2324   | 2886   | 3460   | 3875   | 4386   | 4914   | 4408   | 3898   | 3463   | 2949   | 2325   | 1902   | 1414  | 926   | 473   |
| #7            | 478   | 994   | 1430  | 2009   | 2475   | 3078   | 3688   | 4121   | 4651   | 5154   | 4680   | 4151   | 3698   | 3181   | 2483   | 2023   | 1449  | 979   | 540   |
| #8            | 511   | 997   | 1495  | 2142   | 2727   | 3230   | 3662   | 4151   | 4940   | 5448   | 4924   | 4136   | 3627   | 3111   | 2690   | 2111   | 1469  | 937   | 499   |
| #9            | 499   | 935   | 1404  | 2085   | 2560   | 3141   | 3721   | 4151   | 4673   | 5178   | 4707   | 4186   | 3736   | 3216   | 2573   | 2104   | 1428  | 925   | 492   |
| #10           | 511   | 943   | 1419  | 1919   | 2350   | 2886   | 3450   | 3847   | 4358   | 4883   | 4385   | 3875   | 3458   | 2981   | 2356   | 1931   | 1436  | 926   | 504   |
| #11           | 532   | 968   | 1453  | 2113   | 2670   | 3201   | 3629   | 4315   | 4899   | 5413   | 4900   | 4317   | 3611   | 3092   | 2650   | 2099   | 1444  | 925   | 517   |
| #12           | 531   | 963   | 1450  | 2133   | 2589   | 3144   | 3739   | 4148   | 4659   | 5181   | 4686   | 4176   | 3747   | 3237   | 2595   | 2145   | 1467  | 946   | 545   |
| #13           | 529   | 987   | 1530  | 2026   | 2480   | 2994   | 3569   | 3989   | 4505   | 5018   | 4500   | 3985   | 3545   | 3033   | 2454   | 2006   | 1515  | 938   | 487   |
| #14           | 501   | 940   | 1392  | 1889   | 2308   | 2889   | 3454   | 3867   | 4387   | 4904   | 4378   | 3859   | 3426   | 2913   | 2278   | 1865   | 1373  | 912   | 550   |
| #15           | 533   | 965   | 1446  | 1947   | 2392   | 2935   | 3491   | 3916   | 4433   | 4958   | 4470   | 3954   | 3509   | 3024   | 2408   | 1969   | 1473  | 958   | 490   |
| #16           | 519   | 947   | 1410  | 1921   | 2366   | 2920   | 3489   | 3872   | 4392   | 4911   | 4386   | 3867   | 3464   | 2948   | 2339   | 1900   | 1394  | 918   | 496   |
| #17           | 523   | 955   | 1408  | 1900   | 2329   | 2874   | 3459   | 3866   | 4377   | 4899   | 4399   | 3889   | 3462   | 2948   | 2330   | 1907   | 1420  | 933   | 480   |
| #18           | 544   | 984   | 1485  | 2152   | 2633   | 3202   | 3803   | 4229   | 4759   | 5256   | 4788   | 4259   | 3813   | 3258   | 2641   | 2166   | 1504  | 969   | 513   |
| #19           | 500   | 1028  | 1372  | 1855   | 2282   | 2847   | 3419   | 3795   | 4314   | 4822   | 4298   | 3780   | 3384   | 2868   | 2345   | 1914   | 1407  | 968   | 518   |
| #20           | 516   | 941   | 1448  | 1884   | 2298   | 2792   | 3329   | 3734   | 4256   | 4770   | 4290   | 3769   | 3344   | 2824   | 2311   | 1903   | 1472  | 931   | 535   |
| #21           | 513   | 944   | 1412  | 1914   | 2351   | 2928   | 3495   | 3925   | 4436   | 4956   | 4463   | 3953   | 3503   | 3026   | 2357   | 1926   | 1429  | 927   | 517   |
| #22           | 526   | 958   | 1443  | 2006   | 2480   | 3063   | 3674   | 4115   | 4632   | 5148   | 4633   | 4117   | 3656   | 3137   | 2460   | 1992   | 1434  | 915   | 507   |
| #23           | 485   | 942   | 1359  | 1983   | 2455   | 3047   | 3628   | 4074   | 4585   | 5103   | 4612   | 4102   | 3636   | 3126   | 2461   | 1995   | 1511  | 1022  | 519   |
| #24           | 487   | 1016  | 1358  | 2092   | 2556   | 3149   | 3762   | 4186   | 4702   | 5223   | 4697   | 4182   | 3738   | 3226   | 2530   | 2072   | 1377  | 967   | 494   |
| #25           | 537   | 969   | 1460  | 2148   | 2736   | 3244   | 3691   | 4192   | 4756   | 5358   | 4747   | 4184   | 3663   | 3150   | 2706   | 2124   | 1441  | 916   | 482   |
| #26           | 539   | 969   | 1435  | 2176   | 2665   | 3262   | 3612   | 4367   | 4884   | 5406   | 4921   | 4387   | 3730   | 3245   | 2681   | 2177   | 1462  | 962   | 485   |
| #27           | 516   | 988   | 1519  | 2133   | 2610   | 3160   | 3778   | 4244   | 4764   | 5277   | 4758   | 4239   | 3753   | 3237   | 2583   | 2112   | 1503  | 938   | 522   |
| #28           | 477   | 952   | 1385  | 1836   | 2370   | 2843   | 3383   | 3758   | 4269   | 4855   | 4291   | 3781   | 3386   | 2872   | 2371   | 1843   | 1397  | 930   | 494   |
| #29           | 520   | 1023  | 1564  | 2138   | 2621   | 3201   | 3846   | 4277   | 4807   | 5304   | 4836   | 4266   | 3756   | 3239   | 2629   | 2152   | 1583  | 1008  | 514   |
| #30           | 539   | 964   | 1446  | 1985   | 2418   | 2954   | 3516   | 3919   | 4438   | 4955   | 4422   | 3904   | 3481   | 2965   | 2381   | 1954   | 1420  | 904   | 500   |
| #31           | 541   | 982   | 1444  | 1953   | 2379   | 2944   | 3557   | 3965   | 4487   | 4996   | 4521   | 4000   | 3572   | 3052   | 2392   | 1972   | 1468  | 972   | 507   |
| #32           | 480   | 1014  | 1352  | 1833   | 2497   | 2804   | 3363   | 3758   | 4269   | 4791   | 4296   | 3786   | 3371   | 2894   | 2503   | 1845   | 1369  | 997   | 473   |
| #33           | 508   | 948   | 1443  | 1961   | 2410   | 2930   | 3485   | 3907   | 4424   | 4936   | 4425   | 3909   | 3467   | 2948   | 2390   | 1947   | 1434  | 905   | 507   |
| #34           | 476   | 967   | 1387  | 1931   | 2423   | 2900   | 3381   | 3761   | 4272   | 4868   | 4299   | 3789   | 3389   | 2879   | 2429   | 1943   | 1404  | 950   | 459   |
| #35           | 488   | 940   | 1370  | 1834   | 2359   | 2815   | 3272   | 3619   | 4225   | 4741   | 4220   | 3615   | 3248   | 2736   | 2333   | 1814   | 1355  | 924   | 457   |
| Min (ppm)     | 467   | 935   | 1352  | 1833   | 2282   | 2792   | 3189   | 3619   | 4089   | 4609   | 4126   | 3615   | 3207   | 2722   | 2278   | 1814   | 1353  | 904   | 457   |
| Min (%)       | -7.9% | -9.5% | -9.7% | -8.4%  | -8.7%  | -6.9%  | -8.9%  | -9.5%  | -9.1%  | -7.8%  | -8.3%  | -9.7%  | -8.4%  | -9.3%  | -8.8%  | -9.3%  | -9.8% | -9.7% | -9.1% |
| Max (ppm)     | 544   | 1028  | 1564  | 2176   | 2738   | 3262   | 3846   | 4367   | 4940   | 5477   | 4924   | 4387   | 3813   | 3258   | 2708   | 2177   | 1583  | 1022  | 550   |
| Max (%)       | 7.3%  | 2.8%  | 4.5%  | 8.7%   | 9.6%   | 8.7%   | 9.9%   | 9.2%   | 9.8%   | 9.5%   | 9.4%   | 9.6%   | 8.9%   | 8.6%   | 8.4%   | 8.9%   | 5.5%  | 2.1%  | 9.3%  |
| Average (ppm) | 509   | 969   | 1433  | 1987   | 2469   | 2997   | 3541   | 3980   | 4511   | 5036   | 4521   | 3992   | 3534   | 3024   | 2464   | 1986   | 1443  | 946   | 505   |
| Average (%)   | 0.4%  | -3.1% | -4.3% | -0.8%  | -1.2%  | -0.1%  | 1.1%   | -0.5%  | 0.3%   | 0.7%   | 0.5%   | -0.3%  | 0.9%   | 0.8%   | -1.4%  | -0.7%  | -3.8% | -5.5% | 0.4%  |
| STD           | 22.38 | 26.25 | 55.52 | 112.08 | 136.37 | 147.88 | 161.72 | 198.50 | 228.41 | 228.75 | 222.73 | 197.25 | 159.38 | 154.98 | 131.84 | 108.57 | 53.58 | 29.45 | 22.68 |

### FAQ 1) Long term Non-Operating Sample Properties



#### 샘플 정보

- Normal Sample: 가동 샘플

- Un-operated Sample: 장기 비가동 방치 샘플

테스트 구간 정보

(1)구간: Warming up

(2)구간: 1차 가스 노출/배기 단계 (3)구간: 2차 가스 노출/배기 단계 (4)구간: 3차 가스 노출/배기 단계

- · (1)구간: 장기 비가동 방치 샘플은 초기 안정화 시간이 가동 샘플에 비해 더 오래 걸림
- (2)구간: 안정화 시간이 부족한 경우, 가스 주입시 변화량이 적음
- (3)구간: 충분한 안정화시간이 주어지면, 장기 비가동 방치 샘플의 경우에도 가 동 샘플 수준으로 복귀함
- (4)구간: 재확인 결과 성능 회복 확인
- → 장기 비가동 방치 샘플의 경우 센서의 안정화시간이 동작 샘플에 비해 길지만, 센서의 동작 메커니즘이 손상된 것은 아니며, 장시간 구동시 센서 본래의 신호를 회복함

### FAQ 2) PAPP configuration

### **PAPP Function**

- Sequence
  - 전원 입력
  - Warm-up 시간 종료 직후, CO2 센서 출력값 확 인
  - PAPP에서 설정한 값보다 높은 농도일 경우, 센서 Manual Calibration 실행
- 목적
  - 센서 보관/이송 중에 발생한 누적 영향을 빠르 게 제거하기 위함
- 기능
  - 전원 인가 시 센서가 빠르게 정상값을 표시하 도록 센서를 리셋함
- 실사용
  - 고객 사용시 센서 값에 대해 의문이 생길 경우 전체 시스템의 전원을 재가동하면 센서 리셋 을 시킬 수 있음
  - 고객 불만을 빠르게 해소할 수 있음
  - 개발 과정에서는 개발자들이 불만을 호소하는 경우가 있음

#### 어플리케이션 별 PAPP 사용 현황

| 순번 | Application                   | Setting value | Client            |  |  |
|----|-------------------------------|---------------|-------------------|--|--|
| 1  | System<br>Airconditioner      | 400           | LG                |  |  |
| 2  | Indoor Air Quality<br>Monitor | 6200          | LG, COMMAX        |  |  |
| 3  | Indoor Air Quality<br>Monitor | 400           | KD                |  |  |
| 4  | Air Cleaner                   | 400           | Prexco, HAATZ     |  |  |
| 5  | Total Heat<br>Exchanger       | 400           | Air pass, HIMPEL, |  |  |
| 6  | Dash CAM                      | 400           | Chunho. Etc       |  |  |

## FAQ 3) Interference of gases

## R410a

| 주입 농도                                 | 출력 CO <sub>2</sub> (ppm) |     |  |  |
|---------------------------------------|--------------------------|-----|--|--|
| (ppm)                                 | #1                       | #2  |  |  |
| CO <sub>2</sub> 500ppm                | 535                      | 530 |  |  |
| CO <sub>2</sub> 500ppm+R410a 500ppm   | 528                      | 523 |  |  |
| CO <sub>2</sub> 500ppm+R410a 1,000ppm | 524                      | 520 |  |  |
| CO <sub>2</sub> 500ppm                | 537                      | 533 |  |  |



## ▋에탄올 750 ppm

| 주입 농도                             | 출력 CO <sub>2</sub> (ppm) |     |  |  |
|-----------------------------------|--------------------------|-----|--|--|
| (ppm)                             | #1                       | #2  |  |  |
| CO <sub>2</sub> 500ppm            | 499                      | 491 |  |  |
| CO <sub>2</sub> 500ppm+에탄올 750ppm | 535                      | 524 |  |  |
| CO <sub>2</sub> 500ppm            | 504                      | 494 |  |  |
|                                   |                          |     |  |  |



# THANK YOU!!