EDS Mini Project -(G Division)

Group members name: Kanishka Garud – 723

Apurva Koli – 736

Shravani Halkude - 727

Problem Statement:

Implement a mini project based onclassification (Linear Regression / KNN Classification) or Clustering (K-Means) and also Develop an interactive dashboard using the matplotlib/Seaborn library.

Data set:

Α	В	C	D	E	
Brand	Category	Price	Color	Size	
Zara	T-shirt	19.99	Black	S	
н&м	Jeans	39.99	Blue	M	
GAP	Hoodie	29.99	Gray	L	
Forever 2:	Dress	24.99	Red	S	
Nike	Shoes	79.99	White	8	
Adidas	T-shirt	29.99	Blue	L	
Levi's	Jeans	49.99	Black	32	
Puma	Shorts	19.99	Gray	XL	
Calvin Kle	Underwea	14.99	Black	M	
Tommy Hi	Shirt	34.99	White	M	

Code:

	Brand	Category	Price	Color	Size
0	Zara	T-shirt	19.99	Black	s
1	H&M	Jeans	39.99	Blue	М
2	GAP	Hoodie	29.99	Gray	L
3	Forever 21	Dress	24.99	Red	s
4	Nike	Shoes	79.99	White	8
5	Adidas	T-shirt	29.99	Blue	L
6	Levi's	Jeans	49.99	Black	32
7	Puma	Shorts	19.99	Gray	XL
8	Calvin Klein	Underwear	14.99	Black	М
9	Tommy Hilfiger	Shirt	34.99	White	М

```
x
=
d
```

```
[['H&M' 'Jeans' 39.99 'Blue']

["Levi's" 'Jeans' 49.99 'Black']

['Puma' 'Shorts' 19.99 'Gray']

['Forever 21' 'Dress' 24.99 'Red']

['Zara' 'T-shirt' 19.99 'Black']

['Adidas' 'T-shirt' 29.99 'Blue']]
```

Code: Linear Regression

```
#
```

```
data_set

df = pd.DataFrame(data set)

* LinearRegression
LinearRegression()
```

#print the coefficient

Code:Visualization

```
#visaulization
#
b
a
```



```
# Scatter plot of price vs. category
plt.figure(figsize=(10, 6))
plt.scatter(df['Category'], df['Price'])
plt.xlabel('Category')
plt.ylabel('Price')
plt.title('Price vs. Category')
plt.xticks(rotation=45)
plt.show()
```



```
# Bar plot of size frequencies
size_counts = df['Size'].value_counts()
plt.figure(figsize=(10, 6))
plt.bar(size_counts.index, size_counts.values)
plt.xlabel('Size')
plt.ylabel('Frequency')
plt.title('Size Frequencies')
plt.show()
```


Code: Manupulation


```
Brand Price
            Zara 19.99
0
1
             H&M 39.99
2
             GAP
                  29.99
      Forever 21 24.99
            Nike 79.99
4
          Adidas 29.99
          Levi's 49.99
6
            Puma 19.99
8
    Calvin Klein 14.99
 Tommy Hilfiger 34.99
```

#

```
Brand Category Price Color Size
1
             н&м
                    Jeans 39.99
                                  Blue
4
            Nike
                    Shoes 79.99 White
                                          8
          Levi's
6
                    Jeans 49.99 Black
                                         32
 Tommy Hilfiger
                    Shirt
                           34.99 White
                                          M
```

Sort the dataframe by a

```
Brand
                   Category Price Color Size
            Nike
                      Shoes 79.99
                                   White
6
          Levi's
                      Jeans 49.99
                                  Black
                                           32
1
             H&M
                      Jeans 39.99
                                   Blue
                                            М
   Tommy Hilfiger
9
                      Shirt 34.99
                                  White
                                            М
                                    Gray
             GAP
                     Hoodie 29.99
                                            L
          Adidas
                    T-shirt 29.99
                                    Blue
3
                                     Red
                                            s
      Forever 21
                      Dress 24.99
                    T-shirt 19.99
0
            Zara
                                  Black
                                            5
                     Shorts 19.99
            Puma
                                    Gray
                                           XL
    Calvin Klein Underwear 14.99 Black
```

#

```
Price
Category
           24.99
Dress
           29.99
Hoodie
Jeans
           44.99
Shirt
           34.99
Shoes
           79.99
Shorts
           19.99
T-shirt
           24.99
Underwear 14.99
```

#

```
Brand
                  Category Price Color Size
            Zara
                   T-shirt 19.99 Black
            н&н
                                 Blue
                    Jeans 39.99
                    Hoodie 29.99
            GAP
                                 Gray
                                          L
      Forever 21
                   Dress 24.99
                                   Red
                                          5
           Nike
                    Shoes 79.99 White
                                          8
          Adidas
                   T-shirt 29.99
                                 Blue
                                          L
6
          Levi's
                     Jeans 49.99
                                Black
                                         32
            Puma
                    Shorts 19.99
                                 Gray
                                         XL
8
    Calvin Klein Underwear 14.99
                                 Black
                     Shirt 34.99
  Tommy Hilfiger
                                 White
```

Code: K-means clustering

```
#k-means clustering
#
P
r
e
```

```
#
Add
the
clus
ter
```

Code: KNN clasification

```
#KNN clasification
#
P
```

```
X_train, X_test,
y_train, y_test =
train_test_split(X,
```

▼ KNeighborsClassifier KNeighborsClassifier(n_neighbors=3)

#

Accuracy: 0.0