Кусочно-параболический метод на локальном шаблоне для решения линейного уравнения переноса

Выполнил: Токарев А. И.

Научный руководитель: к. ф.-м. н., доц. каф. ФН2 Лукин В.В.

МГТУ им. Н.Э. Баумана

29 июня 2022 г.

Содержание

• Постановка задачи

2 Методы решения

3 Тестирование и сравнение методов

• Заключение

Постановка задачи

Линейное уравнение переноса

$$\frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x} = 0. {1}$$

Характеристики

Характеристикой уравнения (1) является множество точек (x,t), удовлетворяющее уравнению:

$$\frac{dx}{dt} = a, (2)$$

то есть множество x-at=b. Таким образом, вдоль характеристики выполняется следующее равенство:

$$\frac{dy}{dt} = 0.$$

Точное решение

Точное решение линейного уравнения переноса (1) представляется в виде:

$$y(x,t) = y_0(x - at),$$

где y_0 – начальный профиль.

Постановка задачи

Задача Коши (начальная задача)

$$\begin{cases} \frac{\partial y}{\partial t} + a \frac{\partial y}{\partial x} = 0, & x \in (-\infty, +\infty), \quad t > 0, \\ y(x, 0) = y_0(x). \end{cases}$$
 (3)

Решение задачи (3) заключается в сносе неизменного профиля по характеристикам. Его свойством является сохранение начального профиля y_0 .

Сетка

Введем сетку, на которой будем решать задачу:

$$\Omega_h = \left\{ x_i = l_1 + ih, \ i = 1 \dots n, \ h = \frac{l_2 - l_1}{n - 1} \right\},$$

где $[l_1,l_2]$ – отрезок, на котором определена сетка; n – число узлов; h – шаг. Определим y(x) ее разностным аналогом $y_i=y(x_i)$ на этой сетке. Значения y_i будем соотносить с узлами сетки, а $y_{i+\frac{1}{2}}=y_i^R$ и $y_{i-\frac{1}{2}}=y_i^L$ – с половинными узлами.

Интегро-интерполяционный метод. Перенос узлов

Определив решения y_i в момент времени t_j , можно вычислить \hat{y}_i на следующем временном слое t_{j+1} , применив интегро-интерполяционный метод к уравнению переноса в прямоугольнике $\left[x_{i-\frac{1}{3}},x_{i+\frac{1}{3}}\right] \times [t_j,t_{j+1}]$:

$$\int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}\int\limits_{t_{j}}^{t_{j+1}}\frac{\partial y(x,t)}{\partial t}\,dt\,dx\ +\ \int\limits_{t_{j}}^{t_{j+1}}\int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}a\frac{\partial y(x,t)}{\partial x}\,dx\,dt\ =\int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}\int\limits_{t_{j}}^{t_{j+1}}0\,dt\,dx\ =0.$$

Рассмотрим интегралы по отдельности:

$$\begin{split} \sum_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \int\limits_{t_{j}}^{t_{j+1}} \frac{\partial y(x,t)}{\partial t} \, dt \, dx \, &= \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \left[y(x,t_{j+1}) - y(x,t_{j}) \right] dx = h \left[\frac{1}{h} \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j+1}) \, dx - \frac{1}{h} \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(x,t_{j}) \, dx \right] = h(\overline{y}(x_{i},t_{j+1}) - \overline{y}(x_{i},t_{j})) = h(\hat{y}_{i} - y_{i}). \end{split}$$

Интегро-интерполяционный метод. Перенос узлов

Воспользуемся особенностью переноса значений по характеристикам для интеграла, подинтегральная функция которого является потоком (рис. 1):

$$\begin{split} \int\limits_{t_{j}}^{t_{j+1}} \int\limits_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} a \frac{\partial y(x,t)}{\partial x} \, dx \, dt \; &= \int\limits_{t_{j}}^{t_{j+1}} a \big(y(x_{i+\frac{1}{2}},t) - y(y_{x-\frac{1}{2}},t) \big) \, dt \; = \int\limits_{x_{i+\frac{1}{2}} - a\tau}^{x_{i+\frac{1}{2}}} a y(x,t_{j}) \, dt \, - \\ & - \int\limits_{x_{i-\frac{1}{2}} - a\tau}^{x_{i-\frac{1}{2}}} a y(x,t_{j}) \, dt = a \tau \big(a \overline{y}_{i+\frac{1}{2}} - a \overline{y}_{i-\frac{1}{2}} \big). \end{split}$$

Объединяя оба интеграла получаем:

$$h(\hat{y}_i - y_i) + a\tau \left(a\overline{y}_{i + \frac{1}{2}} - a\overline{y}_{i - \frac{1}{2}}\right) = 0 \implies \hat{y}_i = y_i - \frac{a\tau}{h} \left(a\overline{y}_{i + \frac{1}{2}} - a\overline{y}_{i - \frac{1}{2}}\right). \tag{4}$$

В соответствии с формулой (4) переносятся значения в узлах сетки $y_i = y(x_i)$ на следующий временной слой.

Рис. 1. Интегрирование потока по пространству, вместо времени

Методы решения

Общая идея

Имея значения в узлах x_i , $i=0\dots n$, доопределяем значения в половинных узлах, то есть исходная сетка Ω_h преобразуется в набор отрезков $\left[x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}\right]$ с определенными в них параболами (рис. 2):

$$y(x) = y_i^L + \xi(\Delta y_i + y_i^{(6)}(1 - \xi)), \quad \xi = (x - x_{i - \frac{1}{2}})h^{-1}, \quad \Delta y_i = y_i^R - y_i^L,$$

$$y_i^{(6)} = 6\left[y_i - \frac{1}{2}(y_i^R + y_i^L)\right], \quad x \in [x_{i - \frac{1}{2}}, x_{i + \frac{1}{2}}].$$
(5)

Рис. 2. Парабола внутри разностной ячейки

Средние значения на отрезке

Для выражение (5) выполняется соотношение:

$$y(x_i) = \frac{1}{h} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} y(\chi) d\chi,$$
 (6)

то есть значения в узлах сетки Ω_h являются средними значениями.

Среднее значение на отрезке

После определения парабол можно считать средние значения на отрезках $[x_{i+\frac{1}{2}}-\alpha,x_{i+\frac{1}{2}}]$ и $[x_{i+\frac{1}{2}},x_{i+\frac{1}{2}}+\alpha]$:

$$\overline{y}_{i+\frac{1}{2}}^{L}(\alpha) = \frac{1}{\alpha} \int_{x_{i+\frac{1}{2}} - \alpha}^{x_{i+\frac{1}{2}}} y(x)dx = y_i^R - \frac{\alpha}{2h} \left[\Delta y_i - \left(1 - \frac{2\alpha}{3h} \right) y_i^{(6)} \right], \tag{7}$$

$$\overline{y}_{i+\frac{1}{2}}^{R} = \frac{1}{\alpha} \int_{x_{i+\frac{1}{2}}}^{x_{i+\frac{1}{2}} + \alpha} y(x)dx = y_{i+1}^{L} + \frac{\alpha}{2h} \left[\Delta y_{i+1} + \left(1 - \frac{2\alpha}{3h} \right) y_{i+1}^{(6)} \right]. \tag{8}$$

Граничные значения в РРМ

$$y_i^R = y_{i+1}^L = y_{i+\frac{1}{2}} = \frac{1}{2}(y_i + y_{i+1}) - \frac{1}{6}(\delta y_{i+1} - \delta y_i), \quad \delta y_i = \frac{1}{2}(y_{i+1} + y_{i-1}).$$

Для того, чтобы обеспечить монотонность решения, δy_i заменяется на:

$$\delta_m y_i = \begin{cases} \min(|\delta y_i|, \, 2|y_i - y_{i-1}|, \, 2|y_{i+1} - y_i|) \cdot sign(\delta y_i), & (y_{i+1} - y_i)(y_i - y_{i-1}) > 0, \\ 0, & (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0. \end{cases}$$

Граничные значения в РРМL

В качестве альтернативы предлагает перенос граничных узлов по характеристикам.

Пусть
$$\frac{dx}{dt} = a$$
.

• Если a > 0, то получаем:

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_i^L(t_j) + \xi(\Delta y_i(t_j) + y_i^{(6)}(t_j)(1-\xi)), \quad \xi = 1 - \frac{a\tau}{h}.$$

При a < 0:

$$y_{i+\frac{1}{2}}(t_{j+1}) = y_i^R(t_{j+1}) = y_{i+1}^L(t_j) + \xi(\Delta y_{i+1}(t_j) + y_{i+1}^{(6)}(t_j)(1-\xi)), \quad \xi = -\frac{a\tau}{h}.$$

イロト イ部ト イミト イミト 一里

Монотонизация

Рис. 3. Перенос значений на границах вдоль характеристик в методе PPML

Избавление от локальных экстремумов

• y_i является локальным экстремумом, тогда:

$$y_i^L = y_i^R = y_i, \quad (y_{i+1} - y_i)(y_i - y_{i-1}) \le 0;$$

• y_i лежит слишком близко к границе:

$$y_i^L = 3y_i - 2y_i^R, \quad \Delta y_i \cdot y_i^{(6)} > (\Delta y_i)^2,$$

$$y_i^R = 3y_i - 2y_i^L, \quad \Delta y_i \cdot y_i^{(6)} < -(\Delta y_i)^2.$$

Тестирование и сравнение методов

Нормы ошибок решения в различных пространствах

Норма ошибка в пространстве C:

$$||z||_C = \max_{\Omega_h \times [0,T]} |z|, \quad z = |y(x,t) - y_h(x,t)|.$$

Норма ошибка в пространстве L_1 :

$$||z||_{L_1} = \int_0^1 \int_{\Omega_h} |z| dxdt, \quad z = |y(x,t) - y_h(x,t)|.$$

Норма ошибка в пространстве L_2 :

$$||z||_{L_2} = \left(\int\limits_0^T \int\limits_{\Omega_h} z^2 \, dx dt\right)^{\frac{1}{2}}, \quad z = |y(x,t) - y_h(x,t)|.$$

Исходные параметры

Рассмотрим несколько начальных профилей [3] и проанализируем точность каждого из методов в различных сценариях. Примем $l=200,\ l_1=10,\ l_2=30,\ l_{11}=\frac{50}{3},\ l_{22}=\frac{70}{3},\ l_{12}=20,\ T=200,\ h=1,\ a=1.$

29 июня 2022 г.

Анализ точного вычисления граничных и серединных узлов

 $\mbox{Puc.}$ 4. Правый треугольник для PPM при $\sigma=1$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.0625
$\ \cdot\ _C$	0.5125	0.506	0.503	0.501	0.5
$\ \cdot\ _{L_1}$	25.6	6.32	1.57	0.39	0.1
$\ \cdot\ _{L_2}$	2.89	1.44	0.72	0.36	0.18

Анализ точного вычисления граничных и серединных узлов

Рис. 5. Правый треугольник для PPML при $\sigma=1$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.0625
$\ \cdot\ _C$	0.5125	0.505	0.5029	0.5025	0.5
$\ \cdot\ _{L_1}$	25.6	6.32	1.57	0.39	0.1
$\ \cdot\ _{L_2}$	2.86	1.42	0.71	0.305	0.17

Таблица 2. Нормы ошибок для правого треугольника в методе PPML

Анализ кусочно-линейного графика при уменьшенном числе Куранта

Рис. 6. Зуб для РРМ при $\sigma=0.8$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.0625
$\ \cdot\ _C$	0.716	0.7099	0.7067	0.7023	0.7
$\ \cdot\ _{L_1}$	41.15	10.14	2.518	0.62	0.3
$\ \cdot\ _{L_2}$	0.8	0.39	0.195	0.097	0.04

Таблица 3. Нормы ошибок для профиля "зуб"в методе РРМ

15 / 19

Анализ кусочно-линейного графика при уменьшенном числе Куранта

Pис. 7. Зуб для PPML при $\sigma=0.8$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.0625
$\ \cdot\ _C$	0.58	0.56	0.557	0.554	0.55
$\ \cdot\ _{L_1}$	39.85	9.9	2.2	0.56	0.27
$\ \cdot\ _{L_2}$	0.7	0.34	0.187	0.08	0.03

Таблица 4. Нормы ошибок для профиля "зуб"в методе PPML

Анализ методов на гладком графике

Рис. 8. Косинус для РРМ при $\sigma=0.5$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.0625
$\ \cdot\ _C$	0.244	0.1117	0.044	0.019	1e-05
$\ \cdot\ _{L_1}$	2.59	0.327	0.04	0.005	2e-05
$\ \cdot\ _{L_2}$	0.99	0.18	0.003	0.00055	2e-05

Таблица 5. Нормы ошибок для косинуса в методе РРМ

Анализ методов на гладком графике

Рис. 9. Косинус для PPML при $\sigma=0.5$

	h=1	h = 0.5	h = 0.25	h = 0.125	h = 0.0625
$\ \cdot\ _C$	0.048	0.015	0.005	0.0016	1e-06
$\ \cdot\ _{L_1}$	2.55	0.32	0.0398	0.0049	2e-06
$\ \cdot\ _{L_2}$	0.99	0.18	0.003	0.00055	2e-06

Таблица 6. Нормы ошибок для косинуса в методе PPML

Заключение

Рассмотрен кусочно-параболический метод на локальном шаблоне. Выбор в пользу использования решений с предыдущего временного слоя, вместо интерполяционной процедуры, оказался удачным, так как обеспечивает более точное решение и уменьшенную диссипацию. Метод РРМL был протестирован на ряде примеров, рассмотренных с различными шагами, числами Куранта и профилями. Точность оценивалась на основе норм разности между точным и численным решениям в пространствах C, L_1 , L_2 . В пространствах L_1 , L_2 РРМL оказался точнее во всех случаях. Однако в пространстве C результат нельзя интерпретировать однозначно. Но как уже отмечалось, актуальной является сходимость нормы ошибки в L_2 .