Player Behavior Analysis and Dropout Prediction in Digital Games

USING DEEP NEURAL NETWORKS WITH STEAM PLAYER DATA

KAĞAN KILIÇ ARDA RENDA FURKAN ÇIMİLİ

Introduction

•PLAYER CHURN IS A KEY ISSUE IN DIGITAL GAMES.

Goal: Predict if a player will drop out based on usage trends.

Dataset: Monthly Steam player statistics.

Dataset Overview

SOURCE

•SteamCharts.com (monthly records)

FEATURES

Avg_players, Gain,Percent_Gain, Peak_Players,etc.

CHURN LABEL

•Based on Percent_Gain direction.

Feature Engineering

GAIN_RATIO

Percent change in players.

GAIN_DIRECTION

Positive/negative gain.

VOLATILITY

Absolute relative change.

LABEL

churn = 1 (drop), 0 (retain).

Deep Neural Network (DNN) with 3 hidden layers.

Model Architecture

Activation: ReLU Output: Sigmoid

```
model = Sequential()
model.add(Dense(64, input_dim=X_train.shape[1], activation='relu')
model.add(Dropout(0.3))
model.add(Dense(32, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```


Optimizer: Adam

Loss: Binary Crossentropy

Epochs: 50

Training Results

•Test Accuracy: 100%

•Confusion Matrix: [[512, 0], [0, 520]]

 Loss curve shows perfect convergence.

High Gain_Direction Gain Feature value Gain_Ratio Avg_players Peak_Players Volatility Low 0.2 0.4 -0.4SHAP value (impact on model output)

SHAP Explainability

- •Explains why model made each prediction.
- Top features:Gain_Direction, Gain,Gain_Ratio.

Visual: SHAP summary plot used.

Conclusion & Future Work

• ACCURATE CHURN PREDICTION WITH SIMPLE FEATURES.

•FUTURE: USE IN-GAME METRICS, EXTEND TO OTHER GAMES.

•TRY LSTM OR TEMPORAL MODELS.

Thank you!

KAĞAN KILIÇ

47368026556

ARDA RENDA

47206480236

FURKAN ÇİMİLİ

50776079090