Simplified Exchange Lemma

We need a tool to iteratively transform one set of generators into another.

- ▶ You have a set *S* of vectors.
- ▶ You have a vector z you want to inject into S.
- \triangleright You want to maintain same size so must eject a vector from S.
- ▶ You want the span to not change.

Exchange Lemma tells you how to choose vector to eject.

Simplified Exchange Lemma:

- ► Suppose *S* is a set of vectors.
- ► Suppose **z** is a nonzero vector in Span *S*.
- ▶ Then there is a vector **w** in S such that

$$\mathsf{Span}\; (S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \mathsf{Span}\; S$$

Simplified Exchange Lemma proof

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Proof: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$. Since **z** is in Span *S*, can write

$$\mathbf{z} = \alpha_1 \, \mathbf{v}_1 + \cdots + \alpha_n \, \mathbf{v}_n$$

By Superfluous-Vector Lemma, Span $(S \cup \{z\}) = \operatorname{Span} S$. Since **z** is nonzero, at least one of the coefficients is nonzero, say α_i . Rewrite as

$$\mathbf{z} - \alpha_1 \mathbf{v}_1 - \dots - \alpha_{i-1} \mathbf{v}_{i-1} - \alpha_{i+1} \mathbf{v}_{i+1} - \dots - \alpha_n \mathbf{v}_n = \alpha_i \mathbf{v}_i$$

Divide through by α_i :

$$(1/\alpha_i)\mathbf{z} - (\alpha_1/\alpha_i)\mathbf{v}_1 - \dots - (\alpha_{i-1}/\alpha_i)\mathbf{v}_{i-1} - (\alpha_{i+1}/\alpha_i)\mathbf{v}_{i+1} - \dots - (\alpha_n/\alpha_i)\mathbf{v}_n = \mathbf{v}_i$$

By Superfluous-Vector Lemma, Span $(S \cup \{z\}) = \text{Span } (S \cup \{z\} - \{w\}).$ QED

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Simplified Exchange Lemma helps in transforming one generating set into another...

Trying to put squares in—when you put in one square, you might end up taking out a previously inserted square

Simplified Exchange Lemma: Suppose S is a set of vectors, and \mathbf{z} is a nonzero vector in Span S. Then there is a vector \mathbf{w} in S such that Span $(S \cup \{\mathbf{z}\} - \{\mathbf{w}\}) = \operatorname{Span} S$.

Need to enhance this lemma. Set of *protected* elements is *A*:

Exchange Lemma:

- ▶ Suppose *S* is a set of vectors and *A* is a subset of *S*.
- ▶ Suppose **z** is a vector in Span *S* such that $A \cup \{z\}$ is linearly independent.
- ▶ Then there is a vector $\mathbf{w} \in S A$ such that Span $S = \text{Span } (S \cup \{\mathbf{z}\} \{\mathbf{w}\})$

Now, not enough that z be nonzero—need A to be linearly independent.

Exchange Lemma proof

Exchange Lemma: Suppose S is a set of vectors and A is a subset of S. Suppose \mathbf{z} is a vector in Span S such that $A \cup \{\mathbf{z}\}$ is linearly independent.

Then there is a vector $\mathbf{w} \in S - A$ such that Span $S = \text{Span } (S \cup \{\mathbf{z}\} - \{\mathbf{w}\})$

Proof: Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w}_1, \dots, \mathbf{w}_\ell\}$ and $A = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$. Since \mathbf{z} is in Span S, can write

$$\mathbf{z} = \alpha_1 \, \mathbf{v}_1 + \dots + \alpha_k \, \mathbf{v}_k + \beta_1 \, \mathbf{w}_1 + \dots + \beta_\ell \, \mathbf{w}_\ell$$

By Superfluous-Vector Lemma, Span $(S \cup \{z\}) = \text{Span } S$.

If coefficients $\beta_1, \ldots, \beta_\ell$ were all zero then we would have $\mathbf{z} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k$, contradicting the linear independence of $A \cup \{\mathbf{z}\}$.

Thus one of the coefficients $\beta_1, \ldots, \beta_\ell$ must be nonzero... say β_1 . Rewrite as

$$\mathbf{z} - \alpha_1 \mathbf{v}_1 - \cdots - \alpha_k \mathbf{v}_k - \beta_2 \mathbf{w}_2 - \cdots - \beta_\ell \mathbf{w}_\ell = \beta_1 \mathbf{w}_1$$

Divide through by β_1 :

$$(1/\beta_1)\mathbf{z} - (\alpha_1/\beta_1)\mathbf{v}_1 - \cdots - (\alpha_k/\beta_1)\mathbf{v}_k - (\beta_2/\beta_1)\mathbf{w}_2 - \cdots - (\beta_\ell/\beta_1)\mathbf{w}_\ell = \mathbf{w}_1$$

QED

By Superfluous-Vector Lemma, Span $(S \cup \{z\}) = \text{Span } (S \cup \{z\} - \{w_1\}).$

Proof of correctness of the Grow algorithm for Minimum Spanning Forest

 $\mathsf{def}\; \mathsf{Grow}(G)$

 $F := \emptyset$

consider the edges in increasing order for each edge e:

if e's endpoints are not yet connected add e to F.

We will show that this greedy algorithm chooses the minimum-weight spanning forest.

(Assume all weights are distinct.)

Let F = forest found by algorithm.

Let $F^* = \text{truly minimum-weight spanning forest.}$

Goal: show that $F = F^*$

Assume for a contradiction that they are different.

Proof of correctness of the Grow algorithm for Minimum Spanning Forest

Assume for a contradiction that F and F^* are different.

Let e_1, e_2, \ldots, e_m be the edges of G in increasing order.

Let e_k be the minimum-weight edge on which F and F^* disagree.

Let A be the set of edges before e_k that are in both F and F^* .

Since at least one of the forests includes all of A and also e_k , we know $A \cup \{e_k\}$ has no cycles (is linearly independent).

Consider the moment when the Grow algorithm considers e_k . So far, the algorithm has chosen the edges in A, and e_k does not form a cycle with edges in A, so the algorithm must also choose e_k .

Since F and F^* differ on e_k , we infer that e_k is not in F^* .

Now we use the Exchange Lemma.

- \triangleright A is a subset of F^* .
- ▶ $A \cup \{e_k\}$ is linearly independent.
- ▶ Therefore there is an edge e_n in $F^* A$ such that

$$\mathsf{Span}\; (F^* \cup \{e_k\} - \{e_n\}) = \mathsf{Span}\; F^*$$

That is, $F^* \cup \{e_k\} - \{e_n\}$ is also spanning.

But e_k is cheaper than e_n so F^* is not minimum-weight solution. **Contradiction.**QED.