Fórmulas para a IPhO

Tradução adaptada da versão de 16 MAR 2012

I Matemática

1. Série de Taylor (omita as ordens maiores para aproximações):

$$F(x) = F(x_0) + \sum_{n} F^{(n)}(x_0)(x - x_0)^n / n!$$

Caso Especial — aproximação linear:

$$F(x) \approx F(x_0) + F'(x_0)(x - x_0)$$

Alguns exemplos para $|x| \ll 1$:

$$\sin x \approx x$$
, $\cos x \approx 1 - x^2/2$, $e^x \approx 1 + x$

$$\ln(1+x) \approx x, \ (1+x)^n \approx 1 + nx$$

- 2. Método das Pertubações: encontre a solução iterativamente usando a solução "não perturbada" (solução direta) do problema como a aproximação de ordem zero; as correções para cada próxima aproximação são calculadas a partir da anterior.
- **3.** Solução da equação diferencial linear de coeficientes constantes ay'' + by' + cy = 0:

$$y = A \exp(\lambda_1 x) + B \exp(\lambda_2 x),$$

onde $\lambda_{1,2}$ é a solução da equação característica $a\lambda^2+b\lambda+c=0$ se $\lambda_1\neq\lambda_2$. Se a solução da equação característica é um complexo, enquanto $a,\ b$ e c são números reais, então $\lambda_{1,2}=\gamma\pm i\omega$ e

$$y = Ce^{\gamma x}\sin(\omega x + \varphi_0).$$

4. Números complexos

$$z = a + bi = |z|e^{i\varphi}, \ \bar{z} = a - ib = |z|e^{-i\varphi}$$
$$|z|^2 = z\bar{z} = a^2 + b^2, \ \varphi = \arg z = \arcsin \frac{b}{|z|}$$
$$\operatorname{Re} z = (z + \bar{z})/2, \ \operatorname{Im} z = (z - \bar{z})/2$$
$$|z_1 z_2| = |z_1||z_2|, \ \arg z_1 z_2 = \arg z_1 + \arg z_2$$
$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$

 ${\bf 5.}$ O produto vetorial e o produto escalar são distributivos: a(b+c)=ab+ac.

 $\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}, \ \sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2}$

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = a_x b_x + a_y b_y + \dots = ab \cos \varphi$$

$$\begin{split} |\vec{a}\times\vec{b}| &= ab\sin\varphi; \quad \vec{a}\times\vec{b} = -\vec{b}\times\vec{a}\perp\vec{a},\vec{b}\\ \vec{a}\times\vec{b} &= (a_yb_z-b_ya_z)\vec{e}_x + (a_zb_x-b_za_x)\vec{e}_y + \dots\\ \vec{a}\times[\vec{b}\times\vec{c}] &= \vec{b}(\vec{a}\cdot\vec{c}) - \vec{c}(\vec{a}\cdot\vec{b}). \end{split}$$

Produto misto. (volume do paralelepípedo definido. por 3 vetores):

$$(\vec{a}, \vec{b}, \vec{c}) \equiv (\vec{a} \cdot [\vec{b} \times \vec{c}]) = ([\vec{a} \times \vec{b}] \cdot \vec{c}) = (\vec{b}, \vec{c}, \vec{a}).$$

6. Lei dos senos e dos cossenos:

$$c^2 = a^2 + b^2 - 2ab\cos\varphi$$

$$a/\sin\alpha = b/\sin\beta = 2R$$

7. Um ângulo inscrito em um círculo é metade do ângulo central subtendido pelo mesmo arco de círculo.

Conclusões: a hipotenusa de um triângulo retângulo é o diâmetro de seu circuncirculo; se os ângulos de um quadrilátero são suplementares, ele é um quadrilátero cíclico

8. Derivando:

$$(fg)' = fg' + f'g, \ f[g(x)]' = f'[g(x)]g'$$

$$(\sin x)' = \cos x, \ (\cos x)' = -\sin x$$

$$(e^x)' = e^x, \ (\ln x)' = 1/x, \ (x^n)' = nx^{n-1}$$

$$(\arctan x)' = 1/(1+x^2)$$

$$(\arcsin x)' = -(\arccos x)' = 1/\sqrt{1-x^2}$$

9. Integração: as fórmulas são as mesmas que as de derivação, mas com os lados esquerdo e direitos trocados. (operação inversa!), e.g.

$$\int x^n dx = x^{n+1}/(n+1).$$

Caso especial do método de integração por substituição:

$$\int f(ax+b)dx = F(ax+b)/a.$$

10. Métodos numéricos. Método iterativo de Newton de encontrar raízes f(x) = 0:

$$x_{n+1} = x_n - f(x_n)/f'(x_n).$$

Regra do trapézio para integração aproximada:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2n} [f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)]$$

11. Derivadas e integrais de vetores: diferencie/integre cada componente; alternativamente, diferencie através da regra do triângulo para a diferença de dois vetores infinitesimalmente próximos.

II Recomendações gerais

- 1. Cheque a veracidade de todas as fórmulas: a) examine as dimensões; b) teste casos simples especiais (dois parâmetros iguais, 1 parâmetro tendendo a 0 ou ∞); c) verifique a plausibilidade do comportamento qualitativo da solução.
- 2. Se há uma coincidência extraordinária no enunciado do problema (e.g. duas coisas são iguais), então o segredo da solução pode estar aí.
- 3. Leia atentamente as recomendações no enunciado do problema. Preste atenção na formulação do problema as vezes, detalhes insignificantes podem conter informação vital. Se você já está tentando resolvê-lo por um tempo, sem sucesso, então leia o enunciado novamente talvez você tenha entendido o problema de maneira errônea.
- **4.** Adie longos e trabalhosos cálculos matemáticos para o final (quando todo o resto já tiver sido feito) enquanto escreve todas as equações iniciais que deverão ser simplificadas.
- 5. Se o problema parece ser desesperançosamente difícil, ele provavelmente possui uma solução extremamente simples (e uma resposta simples). Isso é valido apenas para problemas de olimpíadas, os quais são definitivamente solucionáveis.
- **6.** Nos experimentos a) esboce o esquema experimental mesmo que você não tenha tempo para fazer as medições; b) pense em como aumentar a precisão dos experimentos; c) escreva, em uma tabela, todas as usas medições diretas.

III Cinemática

1. Para um ponto ou para o movimento de translação de um corpo rígido (integral \rightarrow área debaixo do gráfico):

$$\vec{v} = \frac{d\vec{x}}{dt}, \ \vec{x} = \int \vec{v}dt \quad (x = \int v_x dt \text{ etc.})$$

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{x}}{dt^2}, \ \vec{v} = \int \vec{a}dt$$

$$t = \int v_x^{-1} dx = \int a_x^{-1} dv_x, \ x = \int \frac{v_x}{a_x} dv_x$$

Se a = Const., então as integrais anteriores podem ser resolvidas facilmente, e.g.

$$x = v_0 t + at^2/2 = (v^2 - v_0^2)/2a$$
.

2. Movimento de rotação — análogo ao de translação: $\omega=d\varphi/dt,\, \varepsilon=d\omega/dt;$

$$\vec{a} = \vec{\tau} dv/dt + \vec{n}v^2/R$$

- **3.** Movimento curvilíneo o mesmo que o ponto 1, mas os vetores devem ser substituídos por velocidades lineares, acelerações e comprimento do caminho.
- 4. Movimento de um corpo . a) $v_A \cos \alpha = v_B \cos \beta; \vec{v}_A, \vec{v}_B$ velocidades dos pontos. A e B; α , β ângulos formados por \vec{v}_A , \vec{v}_B com a reta AB. b) O centro instantâneo de rotação (\neq diferente do centro de curvatura do material) pode ser encontrado pela intersecção da perpendiculares a \vec{v}_A e \vec{v}_B traçadas respectivamente em A e B, ou (se \vec{v}_A , $\vec{v}_B \perp AB$) como o ponto de intersecção de AB com a reta conectando as pontas de \vec{v}_A e \vec{v}_B .
- 5. Referenciais não inerciais:

$$\vec{v}_2 = \vec{v}_0 + \vec{v}_1, \ \vec{a}_2 = \vec{a}_0 + \vec{a}_1 + \omega^2 \vec{R} + \vec{a}_{Cor}$$

Note: $\vec{a}_{Cor} \perp \vec{v}_1, \vec{\omega}$; $\vec{a}_{Cor} = 0$ se $\vec{v}_1 = 0$.

6*. Problema balístico: região alcançável

$$y \le v_0^2/(2g) - gx^2/2v_0^2.$$

- 7. Para encontrar os caminhos mais rápidos, os princípios de Fermat e Huygens podem ser usados.
- **8.** Para achar um vetor (velocidade, aceleração), é suficiente encontrar sua direção e sua projeção em um único eixo (possivelmente inclinado)

IV Dinâmica

- 1. Para um equilíbrio 2D e um corpo rígido há 2 equações para a força e 1 para torque. Uma eq. para força pode ser substituída pela do torque. Torque é usualmente melhor forças "chatas" podem ser eliminadas ao fazer uma escolha adequada para a origem. Se forças são aplicadas em apenas 2 pontos, as linha de aplicação delas coincidem; para 3 pontos, as 3 linhas se encontram em um único ponto.
- **2.** 2^a lei de Newton para mov. transl. e rot. :

$$\vec{F} = m\vec{a}, \ \vec{M} = I\vec{\varepsilon} \quad (\vec{M} = \vec{r} \times \vec{F}).$$

Para uma geometria de duas dimensões, \vec{M} e $\vec{\varepsilon}$ são essencialmente escalares e $M=Fl=F_tr$, onde l é o braço da força.

- **3.** Coordenadas generalizadas. Faça com que o estado do sistema seja definido por apenas um parâmetro ξ e sua derivada temporal $\dot{\xi}$ de tal forma que a energia pot. seja $\Pi = \Pi(\xi)$ e a energia cin. $K = \mu \dot{\xi}^2/2$; então $\mu \ddot{\xi} = -d\Pi(\xi)/d\xi$. (Logo para um mov. transl. a força é a derivada da energia pot.)
- **4.** Se o sistema consiste de pontos de massa m_i :

$$\vec{r}_c = \sum m_i \vec{r}_i / \sum m_j, \ \vec{P} = \sum m_i \vec{v}_i$$

$$\vec{L} = \sum m_i \vec{r}_i \times \vec{v}_i, \ K = \sum m_i v_i^2 / 2$$

$$I_z = \sum m_i (x_i^2 + y_i^2) = \int (x^2 + y^2) dm.$$

5. Em um referencial com velocidade \vec{v}_c em relação ao centro de massa (o índice c denota as quantidades relacionadas ao centro de massa):

$$\vec{L} = \vec{L}_c + M_{\Sigma} \vec{R}_c \times \vec{v}_c, \ K = K_c + M_{\Sigma} v_c^2 / 2$$

$$\vec{P} = \vec{P}_c + M_{\Sigma} \vec{v}_c$$

- **6.** O teorema de Steiner é análogo (b é a distância do centro de massa ao eixo de rot.): $I = I_c + mb^2$.
- 7. Com \vec{P} e \vec{L} dados pelo item 5), a 2^a lei de Newton se torna:

$$\vec{F}_{\Sigma} = d\vec{P}/dt, \ \vec{M}_{\Sigma} = d\vec{L}/dt$$

 8^* . Complementarmente a 5) o mom. de inércia relativo ao eixo z que passa pelo centro de massa pode ser calculado por:

$$I_{z0} = \sum_{i,j} m_i m_j [(x_i - x_j)^2 + (y_i - y_j)^2]/2M_{\Sigma}$$

- **9.** Mom. de inércia relativo a origem $\theta = \sum m_i \vec{r}_i^2$ é útil para calcular I_z de corpos bidimensionais ou corpos com simetria central, usando que: $2\theta = I_x + I_y + I_z$.
- **10.** Pêndulo físico com comprimento reduzido \tilde{l} ; l é a distância do CM ao pivô:

$$\omega^2(l) = g/(l+I/ml),$$

$$\omega(l) = \omega(\tilde{l}-l) = \sqrt{g/\tilde{l}}, \quad \tilde{l} = l+I/ml$$

- **11.** Coeficientes dos momentos de inércia: Cilindro $\frac{1}{2}$, esfera sólida $\frac{2}{5}$, casca esférica fina $\frac{2}{3}$, barra $\frac{1}{12}$ (rel. a ponta $\frac{1}{3}$), quadrado $\frac{1}{6}$.
- 12. Leis de conservação frequentemente aplicadas: *energia* (corpos elásticos, sem friccão).

momento (sem força resultante externa; pode ser utilizada em cada eixo),

momento angular (sem torque resultante ext., e.g. os braços das forças externas valem zero (pode ser escrito em relação a 2 ou 3 pontos, podendo então substituir a conservação do mom. linear.).

- 13. Forças adicionais em ref. não inerciais: : força inercial $-m\vec{a}$, força centrífuga $m\omega^2\vec{R}$ e força de Coriolis * $2m\vec{v}\times\vec{\Omega}$ (melhor evitá-la; sendo \perp a velocidade, ela não realiza nenhum trabalho).
- 14. Coordenadas inclinadas: para o movimento em um plano inclinado, é normalmente prático alinhas os eixos de forma a ficarem ao longo e \bot ao plano; a aceleração gravit. tem então componentes tanto em x- quanto em y- . Os eixos também podem ser oblíquos (não \bot), mas então para $\vec{v} = v_x \vec{e}_x + v_y \vec{e}_y$, $v_x \neq$ da projeção em x- de \vec{v} .
- 15. Colisão de 2 corpos: são conservados a) o mom. total, b) o mom. angular total, c) o mom. angular de um dos corpos em relação ao ponto de impacto, d) a energia total (para colisões elásticas); em caso de fricção, a energica cinética é conservada apenas ao longo do eixo \bot a força de fricção, ou seja, ao logo do eixo da colisão e.g. na colisão entre uma bola e um plano, a energia cinética é conservada na direção perpendicular ao plano. Também, e) se o escorregamento para durante o impacto, as velocidades finais dos pontos de contato terão projeções iguais no plano de contato f) se o escorregamento não para, o momento cedido de um corpo para o outro forma um ângulo arctan μ com a normal do plano de contato.

- **16.** Todo movimento de um corpo rígido pode ser representado como uma rotação ao redor do eixo instantâneo de rotação C (em termos das velocidades dos pontos do corpo) Não confunda! A distância de um ponto do corpo, P a $C \neq$ do raio de curvatura da trajetória de P.
- 17. Tensão na mola: para uma mola massiva pendurada, componente horizontal da tensão é constante e a componente vertical muda conforme a massa da mola abaixo do ponto considerado. Força de pressão (por unidade de comprimento) de uma mola em repouso em uma superfície lisa é determinada por seu raio de curvatura e sua tensão: N=T/R. Analogia: pressão da tensão superficial: $p=2\sigma/R$; para deduzi-la, estude a força da pressão ao longo do diâmetro, ou calcule o trabalho realizado pelo aumento do raio.
- 18^* . Invariante adiabático: se a taxa de variação dos parâmetros em um sistema oscilante é pequena durante um período, a área do loop desenhada no plano de fase (i.e. em p-x coordenadas) é conservado com uma acurácia muito boa.
- 19. Ao estudar estabilidade use a) princípio da energia potencial mínima ou b) princípio de deslocamento virtual infinitesimal.
- 20*. Teorema do Virial para um movimento finito:
- a) Se $F \propto |\vec{r}|$, então $\langle K \rangle = \langle \Pi \rangle$ (média temporal);
- b) Se $F \propto |\vec{r}|^{-2}$, então $2\langle K \rangle = -\langle \Pi \rangle$.
- **21.** Equação do foguete de Tsiolkovsky $\Delta v = u \ln \frac{M}{m}$.

V Oscilação e ondas

1. Oscilações amortecidas :

$$\ddot{x} + 2\gamma \dot{x} + \omega_0^2 = 0 \ (\gamma < \omega_0).$$

Solução para essa equação é (cf. I.2.):

$$x = x_0 e^{-\gamma t} \sin(t\sqrt{\omega_0^2 - \gamma^2} - \varphi_0).$$

- **2.** Eq. do movimento para um sistema de osciladores acoplados: $\ddot{x}_i = \sum_j a_{ij} x_j$.
- **3.** Um sistema de N osciladores acoplados possui N modos naturais (modos normais) diferentes de vibração onde todos os osciladores vibram com a mesma frequência ω_i , $x_j = x_{j0} \sin(\omega_i t + \varphi_{ij})$, e N frequências naturais ω_i (as quais podem ser iguais (raízes múltiplas), $\omega_i = \omega_j$). A solução

geral (com 2N constantes de integração X_i e ϕ_i)é a superposição de todos os modos naturais:

$$x_j = \sum_{i} X_i x_{j0} \sin(\omega_i t + \varphi_{ij} + \phi_i)$$

- **4.** Se um sistema é descrito por uma coordenada generalizada ξ (cf. IV-2) e $K = \mu \dot{\xi}^2/2$ possui um estado de equilíbrio em $\xi = 0$, para pequenas oscilações $\Pi(\xi) \approx \kappa \xi^2/2$ [onde $\kappa = \Pi''(0)$] tal que $\omega^2 = \kappa/\mu$.
- **5.** A fase da onda no ponto x,t é $\varphi=kx-\omega t+\varphi_0$, onde $k=2\pi/\lambda$ é o vetor de onda. O valor em x,t é $a_0\cos\varphi=\Re a_0e^{i\varphi}$. A velocidade de fase é $v_f=\nu\lambda=\omega/k$ e a velocidade de grupo $v_q=d\omega/dk$.
- **6.** Para ondas lineares (eletromagnéticas, sonoras com baixa amplitude, ondas na água) qualquer pulso pode ser considerado como uma superpos. de ondas senoidais; Uma onda estacionária é a soma de duas ondas idênticas se propagando em direcões contrárias:

$$e^{i(kx-\omega t)} + e^{-i(kx-\omega t)} = 2e^{-\omega t}\cos kx.$$

7. Velocidade do som em um gás

$$c_s = \sqrt{(\partial p/\partial \rho)_{\text{adiab}}} = \sqrt{\gamma p/\rho} = \bar{v}\sqrt{\gamma/3}.$$

- **8.** Velocidade do som em materiais elásticos $c_s = \sqrt{E/\rho}$, onde E é o módulo de Young.
- **9.** Velocidade de ondas rasas $(h \ll \lambda)$ na água: $v = \sqrt{gh}$.
- **10.** Efeito Doppler: $\nu = \nu_0 \frac{1 + \nu_{\parallel}/c_s}{1 \mu_{\parallel}/c_s}$.
- 11. Princípio de Huygens: a frente de onda pode ser construída passo a passo, colocando uma fonte de ondas imaginária em cada ponto da frente de onda anterior. As curvas resultantes são separadas por uma distância $\Delta x = c_s \Delta t$, onde Δt é is a variação de tempo considerada e c_s é a velocidade no ponto dado. Ondas se propagam \perp à frente de onda.

VI Óptica geométrica, Fotometria.

- 1. Princípio de Fermat: o caminho seguido pela onda de um ponto A a um ponto B é tal que ela o percorre no tempo mínimo.
- 2. Lei de Snell:

$$\sin \alpha_1 / \sin \alpha_2 = n_2 / n_1 = v_1 / v_2$$
.

- **3.** Se o índice de refração muda continuamente, então nós dividimos imaginariamente o meio em camadas com n constante e aplicamos a lei de Snell. O raio de luz pode viajar ao longo de uma camada de n constante, se a condição para reflexão interna total é marginalmente satisfeita: n' = n/r (onde r é o raio de curvatura).
- **4.** Se o índice de refração depende apenas de z, os mom. p_x , p_y , do fóton e a energia são conservados

$$k_x, k_y = \text{Const.}, \ |\vec{k}|/n = \text{Const.}$$

5. A equação das lentes finas (preste atenção aos sinais):

$$1/a + 1/b = 1/f \equiv D.$$

- **6.** Eq. de Newton $(x_1, x_2 \text{distância do objeto e da imagem ao plano focal): <math>x_1x_2 = f^2$.
- 7. Método paralático de encontrar a posição de uma imagem: encontre uma posição para a ponta do lápis tal que a posição dele não mude em relação à da imagem ao mover seus olhos em uma direção perpendicular direção ao lápis.
- 8. Construções geométricas para encontrar a trajetória de raios de luz através de lentes:
- a) raio passando pelo centro da lente não refrata;
- b) raio || ao eixo óptico passa através do foco;<
- c)após a refr., raios inicialmente ||
se encontram no plano focal:
- d) A imagem de um plano é um plano; esses dois planos se encontram no plano da lente.
- 9. Fluxo luminoso Φ [unidade: lúmen (lm)] mede a energia da luz(emitida, passando por um contorno, etc), ponderada de acordo com a sensibilidade do olho. Intensidade luminosa [candela (cd)] é o fluxo luminoso (emitido por uma fonte) por ângulo sólido: $I = \Phi/\Omega$. Iluminância [lux (lx)] é o fluxo luminoso (caindo em uma área) por unidade de área: $E = \Phi/S$.
- 10. Teorema de Gauss para o fluxo luminoso: o fluxo passando através de uma superfície fechada circundando fontes pontuais de intensidade I_i é $\Phi = 4\pi \sum I_i$; caso de uma única fonte luminosa: a uma distância $r, E = I/r^2$.
- 11. Uma dica experimental: se uma mancha de gordura em um papel é tão brilhante quanto o papel ao seu redor, então o papel é igualmente iluminado de ambos os lados.

VII Óptica física (ondulatória)

- 1. Difração método baseado no princípio de Huygens: se obstáculos dividem a frente de onda em fragmentos, a frente de onda pode ser pode ser dividida em pequenas partes cada uma servindo como fontes imaginárias puntiformes; a amplitude da onda observada será a soma das contribuições dessas fontes.
- 2. Interferência em dupla fenda (a largura de fenda $d \ll$ (a, λ) : ângulos de máximo $\varphi_{\max} = \arcsin(n\lambda/a), n \in \mathbb{Z}$; $I \propto \cos^2(k\frac{a}{2}\sin\varphi)$, onde $k=2\pi/\lambda$.
- ângulos de *mínimo* φ_{\min} = **3.** Fenda única: $\arcsin(n\lambda/d), n \in \mathbb{Z}, n \neq 0$. Não esqueca! O máximo central possui o dobro dessa largura. $I \propto \sin^2(k\frac{d}{2}\sin\varphi)/\varphi$. Para deduzi-la divida a fenda imaginariamente em metades, quartos, oitavos, etc; veja pt. 1.Outra maneira de deduzi-la é utilizar a fase completa da onda, usando o princípio de pt. 1 e integrar.
- 4. Grade de Difração: o máximo central é o mesmo que o de pt. 2, a largura dos máximo principal — é o mesmo que o de pt. 3 com d sendo o comprimento da grade de difração. Poder de resolução (espectral) $\frac{\lambda}{\Delta\lambda} = nN$, onde n é a ordem do máximo principal e N — o número de fendas.
- 5. Poder de resolução de um equipamento espectral: $\frac{\lambda}{\Delta \lambda}$ $\frac{L}{\lambda}$, onde L é a diferença de caminho óptico entre o raio mais "curto" e o mais "longo".
- **6.** Poder de resolução de um prisma:: $\frac{\lambda}{\Delta \lambda} = a \frac{dn}{d\lambda}$.
- 7. Distância angular para a qual dois pontos são resolvíveis por um telescópio ideal (lentes): $\varphi = 1.22\lambda/d$. Onde d é o diâmetro da lente e λ o comprimento de onda considerado. Para esse ângulo, o centro da imagem de um dos pontos cai no primeiro mínimo de difração do outro ponto.
- 8. Teoria de Bragg: Um conjunto de planos de átomos em um cristal refletem raios X se $2a \sin \alpha = k\lambda$; a é a distância entre os planos vizinhos, e α é o ângulo de incidência.
- 9. Reflexão por um meio dielétrico opticamente mais denso: mudança de fase de π . Filmes semi-transparentes também produzem diferenças de fase.
- 10. Interferômetro de Fabry-Perot: dois espelhos \parallel semi- método generalizado das imagens elétricas χ r. Poder de resolução $\frac{\nu}{\Delta\nu} \approx \frac{2a}{\lambda(1-r)}$. O espectro de transmis- dos potenciais nos nós (defina um potencial para cada nó); torno). Teoremas: $L_{12} = L_{21} \equiv M$; $M \leq \sqrt{L_1 L_2}$.

são pode ser encontrado ao introduzir 5 ondas planas (para ondas se propagando para a esquerda e para a direita antes do equipamento, dentro do equipamento, e após o equipamento) e adequando todos os "contornos" da região. Outra maneira é considerar cada reflexão como uma multiplicação por um número complexo $re^{i\theta}$ onde r é a refletividade e θ é a diferença de fase entra as ondas, e utilizar a fórmula de soma infinita de PG com razão < 1.

- 11. Ondas eletromagnéticas coerentes: campos elétricos são somados; fasores podem ser utilizados, sendo o ângulo entre os fasores a diferença de fase; Atenção! Dispersão: $n = n(\omega) = \sqrt{\varepsilon(\omega)}$. Fluxo da densidade de energia (en. por unidade de área e tempo): $I = c\varepsilon_0 nE^2$.
- 12. Lei de Malus: para luz linearmente polarizada I = $I_0\cos^2\varphi$, onde φ é o ângulo entre os planos de polarização.
- 13. Ângulo de Brewster: raios refletidos e paralelos são ⊥; raio refletido é completamente polarizado; ângulo de incidência $\tan \varphi_B = n$.
- 14. Difração com elementos ópticos: não há necessidade de calcular o caminho óptico: trabalhe simplesmente com imagens e.g. com a imagem do objeto em um espelho. Conclusão particular: um biprisma da a mesma difração que uma dupla fenda.
- 15*. Fibras Ópticas: Interferômetro de Mach-Zehnder é análogo a difração de dupla fenda; Ressonador circular — no interferômetro de Fabry-Perot; filtros de Bragg funcionam similarmente ao caso dos raios-X . Fibras ópticas de modo único (monomodo, SMF) $\Delta n/n \approx \lambda/d$.

VIII Circuitos

1.
$$U=IR,\ P=UI$$

$$R_{\rm series}=\sum R_i,\ \ R_{\parallel}^{-1}=\sum R_i^{-1}$$

2. Leis de Kirchoff:

$$\sum_{n\acute{o}} I = 0, \sum_{percurso\ fechado} U = 0$$

- 3. Resistência em uma série infinita: use auto-semelhança; resistência entre nós vizinhos em uma grade infinita: use o

método das correntes em loop (defina uma corrente para cada circuito fechado independente: circuitos equivalentes (quaisquer 3 terminais \Rightarrow delta ou estrela; quaisquer 2 terminais com emf (força eletromotriz) $\Rightarrow r \in \mathcal{E}$ em série).

5. AC: aplique pts. 1 a 4 substituindo R por Z:

$$Z_R = R, Z_C = 1/i\omega C, Z_L = i\omega L;$$

$$\varphi = \arg Z, \ U_{\text{eff}} = |Z|I_{\text{eff}}$$

$$P = |U||I|\cos(\arg Z) = \sum I_i^2 R_i.$$

- **6.** Tempos característicos: $\tau_{RC} = RC$, $\tau_{LR} = L/R$, $\omega_{LC} = 1/\sqrt{LC}$. Relaxamento para a corrente estacionária, distribuição exponencial, $\propto e^{-t/\tau}$.
- 7. Conservação da energia para circuitos elétricos: $\Delta W + Q = Uq$, onde q é a carga que passou pela diferença de potencialU;O trabalho realizado pela emf é $A = \mathcal{E}q$.
- 8. $W_C = CU^2/2$, $W_L = LI^2/2$.
- **9.** $\mathcal{E} = -d\Phi/dt = -d(LI)/dt$, $\Phi = BS$.
- 10. Elementos não lineares: método gráfico encontre a solução em coordenadas U-I como um ponto de intersecção da curva não linear e uma reta representando as leis de Ohm/Kirchoff. No caso de vários pontos de intersecção, estude a estabilidade — algumas soluções são normalmente instáveis.
- 11. Faca uso dos limites para tempos longos e curtos. Para $t_{observac\tilde{a}o} \gg \tau_{RC}$ ou τ_{LR} , o equilíbrio é quase alcançado: $I_C\approx 0$ (O fio está quebrado próximo a C) e $\mathcal{E}_L\approx 0$ (L está efetivamente em curto-circuito). Para $t_{observac\tilde{a}o} \ll \tau_{RC}$ ou τ_{LR} , a variação de carga em C e a queda da corrente em L são pequenos, $\Delta Q \ll Q$ e $\Delta I \ll I$: C está em "curto circuito" e L está "quebrado".
- **12.** Se $L \neq 0$, então I(t) é uma função contínua.
- 13. Em um contorno supercondutor, o fluxo magnético $\Phi =$ Const. Em particular, quando não há campo elétrico externo B, LI = Const.
- 14. Indutância mútua: fluxo magnético através de um transparentes com uma refletividade alta r (1 - $r \ll 1$). 4. Para reduzir o número de equações em p.t.2: $m\acute{e}todo$ contorno $\Phi_1 = L_1I_1 + L_{12}I_2$ (I_2 — corrente no segundo con-

IX Eletromagnetismo

- 1. $F = kq_1q_2/r^2$, $\Pi = kq_1q_2/r$ leis de Kepler são aplicáveis (Cap. XII).
- **2.** Lei de Gauss $\oint \vec{B}d\vec{S} = 0$,

$$\oint \varepsilon \varepsilon_0 \vec{E} d\vec{S} = Q, \ \oint \vec{g} d\vec{S} = -4\pi GM.$$

3. Teorema da circulação

$$\oint \vec{E}d\vec{l} = 0 \ (= \dot{\Phi}), \ \oint \frac{\vec{B}dl}{\mu\mu_0} = I, \oint \vec{g}d\vec{l} = 0.$$

4. Campo magnético gerado por um elemento de corrente:

$$d\vec{B} = \frac{\mu\mu_0 I}{4\pi} \frac{d\vec{l} \times \vec{e_r}}{r^2};$$

logo, no centro de uma espira: $I: B = \frac{\mu_0 I}{2\pi}$

- 5. $\vec{F} = e(\vec{v} \times \vec{B} + \vec{E}), \ \vec{F} = \vec{I} \times \vec{B}l.$
- 6. Da lei de Gauss e da lei da circulação:

fio carregado:
$$E=\frac{\sigma}{2\pi\varepsilon_0 r},$$
 superfície carregada $E=\frac{\sigma}{2\varepsilon_0},$ plano de

DC: $B = \frac{I\mu_0}{2\pi r}$;

superfície carregada $E = \frac{\sigma}{2\varepsilon_0}$, plano de corrente $B = \frac{\mu_0 j}{2}$; dentro de uma esfera (ou casca cilíndrica infinita) de carga superficial constante, E=0, dentro de uma superfície cilíndrica com corrente superficial \parallel ao eixo B=0,

dentro de uma bola (d = 3), cilindro (d = 2) ou camada (d=1) com ρ ou \vec{j} (independente da direção!) uniformes:

$$\vec{E} = \frac{\vec{\rho}}{d\varepsilon_0}\vec{r}; \ \vec{B} = \frac{\mu_0}{d}\vec{j} \times \vec{r}.$$

Para deduzir, compare: o cálculo do potencial elétrico Φ por integração com o potencial vetor \vec{A} e a diferenciação necessária para o cálculo de \vec{E} e \vec{B} por diferenciação $\nabla \cdot \Phi \ e \ \nabla \times \vec{A}$.

- 7. Solenoide longo: dentro $B = In\mu\mu_0$, for 0, Nos demais lugares $B_{\parallel}=\frac{In\mu\mu_0\Omega}{4\pi}$; fluxo $\Phi=NBS$ e indutância $L = \Phi/I = \ln^2 \mu \mu_0$ onde $n = \frac{N}{I}$).
- 8. Medindo campos magnéticos com uma pequena bobina e um galvanômetro balístico: $q = \int \frac{\mathcal{E}}{R} dt = NS\Delta B/R$.
- 9. Energia potencial de um sistema de cargas:

$$\Pi = k \sum_{i>j} \frac{q_i q_j}{r_{ij}} = \frac{1}{2} \int \varphi(\vec{r}) dq, \ dq = \rho(\vec{r}) dV.$$

10. Força entre partes de uma esfera ou superfície cilíndrica uniformemente carregadas: substitua a forca devido as cargas por uma força devido a pressão hidrostática. Você pode calcular essa força calculando a diferença de energia entre cascas esféricas/cilíndricas de mesma carga porém com

raios infinitesimalmente diferentes e igualar essa diferença de energia a $Area \times pressão \times dr$.

- 11. Se todas as cargas estão a uma distância R (e.g. no centro de uma esfera ou anel heterogeneamente carregados), $\varphi = kQ/r$.
- 12. Para achar a carga total (ou potencial) induzido por cargas externas, use o princípio da superposição: "espalhe" as cargas para tornar o problema simétrico.
- 13. Blindagens elétricas e campos elétricos, e.g. a distribuição de carga dentro de uma esfera oca não pode ser visto do exterior (é semelhante a uma bola condutor possuindo uma carga total Q)
- **14.** Capacitâncias: $C = \varepsilon \varepsilon_0 S/d$ (plano), $4\pi \varepsilon \varepsilon_0 r$ (esfera), $2\pi\varepsilon\varepsilon_0 l(\ln R/r)^{-1}$ (cilindros coaxiais).
- 15. Momento de dipolo:

$$\vec{d}_e = \sum q_i \vec{r}_i = \vec{l}q, \ \vec{d}_\mu = I\vec{S}.$$

16. Energia e torque em um dipolo:

$$W = \vec{d} \cdot \vec{E} (\vec{B}), \quad \vec{M} = \vec{d} \times \vec{E} (\vec{B}).$$

- 17. Campo de um dipolo: $\varphi = k\vec{d} \cdot \vec{e}_r/r^2$; $E, B \propto r^{-3}$.
- **18.** Forças agindo em um dipolo: $F = (\vec{E}\vec{d}_e)', F = (\vec{B}\vec{d}_u)';$ interação entre dois dipolos: $F \propto r^{-4}$.
- 19. Imagens elétricas e magnéticas: planos aterrados (supercondutores para os magnéticos) agem como espelhos. Campo de uma esfera aterrada (ou isolada) pode ser encontrado como o campo de uma (ou duas) cargas fictícias dentro da esfera. O campo uma fenda entre placas metálicas (guia de onda) pode ser encontrado pela superposição de ondas eletromagnéticas.
- 20. Polarização de esferas (cilindros) em um campo elétrico homogêneo: superposição de duas esferas (cilindros) homogeneamente carregados ($+\rho e - \rho$), $d \propto E$.
- 21. Correntes de Foucault (correntes de redemoinho ou correntes parasitas):(bloco $a \times h \times d$, com resistividade ρ , com velocidade v em uma região de campo magnético B) densidade de dissipação da potência (quando o bloco está penetrando ou saindo da região com corrente) $\sim B^2 v^2/\rho$; momento recebido durante uma "passada" (entrar e sair da região com campo): $F\tau \sim B^2 a^3 d/\rho$ (onde d—largura do bloco; a — lado, considerando h = a). Considerando ele um paralelepípedo, poderíamos completar: $F\tau \sim B^2a^2dh/\rho$

22. Uma carga, solta do repouso, em um campo magnético homogêneo $\vec{B} = B\vec{e}_z$ move-se com velocidade de deriva v = E/B = F/eB (velocidade média ao longo de um "ciclo") ao longo de uma ciclóide; mom. generalizado é conservado, salva impulso dado por forças externas e.g. $E \cdot e$

$$p_x'=mv_x-Byq,\ p_y'=mv_y+Bxq,$$
assim como o mom. angular gen. $L'=L+\frac{1}{2}Bqr^2.$

- 23. Dentro de um supercondutor e para processos rápidos dentro de um condutor B=0 e portanto I=0 (a corrente passa pela superfície — efeito pelicular; skin effect).
- 24. Gerador MHD (Magneto hidrodinâmico, transforma energia térmica ou cinética diretamente em energia elétrica) (a — comprimento na direção de \vec{E} ; b e c são os comprimentos nas outras duas direcões; v é a velocidade, ρ é a resistividade do fluido):

$$\mathcal{E} = vBa, \ r = \rho a/bc.$$

- 25. Histerese: curva em formato de S (loop) em coordenadas B-H (para uma bobina com núcleo, também em coordenadas B-I): a área do loop dá a densidade de dissipação da energia térmica em um ciclo.
- **26.** Campos em materiais: $\vec{D} = \varepsilon \varepsilon_0 \vec{E} = \varepsilon_0 \vec{E} + \vec{P}$, onde \vec{P} é o vetor de polarização dielétrico (densidade volumétrica do momento de dipolo); $\vec{H} = \vec{B}/\mu\mu_0 = \vec{B}/\mu_0 - \vec{J}$, onde \vec{J} é o vetor de magnetização (densidade volumétrica do momento magnético).
- **27.** Na interface entre duas substâncias E_t , D_n (= εE_t), $H_t (= B_t/\mu)$ e B_n são contínuos.
- **28.** Densidade de energia: $W = \frac{1}{2}(\varepsilon \varepsilon_0 E^2 + B^2/\mu \mu_0)$.
- **29.** Para $\mu \gg 1$, as linhas de campo de B são atraídas para o ferromagnético (ele age como um poço de potencial, cf. pt. 28).
- **30.** Densidade de corrente $\vec{j} = ne\vec{v} = \sigma \vec{E} = \vec{E}/\rho$.

X Termodinâmica

- **1.** $pV = \frac{m}{\mu} RT$
- **2.** Energia interna de um mol $U = \frac{i}{2}RT$.
- 3. Volume de um mol em condições padrões. é 22,4 l.
- 4. Processos adiabático: são lentos, se comparados com a velocidade do som; não há troca de calor: $pV^{\gamma} = \text{Const.}$ (e $TV^{\gamma-1} = \text{Const.}$).

- **5.** $\gamma = c_n/c_n = (i + 2)/i$, onde i $qraus\ de\ liberd.\ disponive is (rot. + transl. + 2 \times vibr.)$
- 6. Distribuição de Boltzmann:

$$\rho = \rho_0 e^{-\mu g h/RT} = \rho_0 e^{-U/kT}$$
.

- 7. Distribuição de Maxwell (o número de moléculas com velocidade v) $dN_{(v)} \propto e^{-mv^2/2kT}$.
- 8. Pressão atm. : se $\Delta p \ll p$, então $\Delta p = \rho g \Delta h$.
- **9.** $p = \frac{1}{3}mn\bar{v}^2$, $\bar{v} = \sqrt{3kT/m}$, $\nu = vnS$.
- 10. Ciclo de Carnot 2 adiabáticas, 2 isotérmicas. $\eta =$ $(T_1 - T_2)/T_1$; deduza usando coordenadas S-T, ou usando um ciclo infinitesimal em coordenadas P-V.
- 11. Bomba de calor, ciclo de Carnot inverso: $\eta = \frac{T_1}{T_1 T_2}$.
- 12. Entropia: dS = dQ/T.
- **13.** I lei da termodinâmica: $\delta U = \delta Q + \delta A$
- **14.** II lei da termodinâmica: $\Delta S \geq 0$ (e $\eta_{\text{real}} \leq \eta_{\text{Carnot}}$).
- 15. Trabalho do gás (veja também pt. 10)

$$A=\int pdV$$
, adiabática: $A=rac{i}{2}\Delta(pV)$

- **16.** Lei de Dalton (lei das pressões parciais): $p = \sum p_i$.
- 17. Fervura: pressão saturada de vapor $p_v = p_0$; na inter- 1. $F = GMm/r^2$, $\Pi = -GMm/r$. face entre 2 líquidos: $p_{v1} + p_{v2} = p_0$.
- mica); analogia a circuitos DC (P corresponde a I, ΔT a U, $k \ a \ 1/R$).
- 19. Capacidade térmica: $Q = \int c(T)dT$. Sólidos: em pe-N — número de íons na estrutura cristalina.
- **20.** Tensão superficial:

$$U = S\sigma, \ F = l\sigma, \ p = 2\sigma/R.$$

Mecânica quântica

- 1. $\vec{p} = \hbar \vec{k} \ (|\vec{p}| = h/\lambda), E = \hbar \omega = h\nu.$
- 2. Interferência: assim como em óptica ondulatória.
- 3. Incerteza (como um teorema matemático):

$$\Delta p \Delta x \geq \frac{\hbar}{2}, \ \Delta E \Delta t \geq \frac{\hbar}{2}, \ \Delta \omega \Delta t \geq \frac{1}{2}.$$

Para estimativas qualitativas para formatos não suaves, h é mais adequado ($\Delta p \Delta x \approx h$ etc).

- = 4. Espectro: $h\nu = E_n E_m$; a largura das linhais espectrais 8. Um círculo e uma elipse com um foco no centro do círculo esta relacionado ao tempo de vida (tempo característico): podem se tangenciar apenas no semieixo maior.
 - 5. Oscilador(e.g. molécula) níveis de en. (como frequência natural ν_0): $E_n = (n + \frac{1}{2})h\nu_0$. Para várias frequências naturais: $E = \sum_{i} h n_i \nu_i$.
 - 6. Tunelamento: barreira Γ com largura l é facilmente penetrável se $\Gamma \tau \approx \hbar$, onde $\tau = l/\sqrt{\Gamma/m}$.
 - 7. Modelo de Bohr: $E_n \propto -1/n^2$. Em uma órbita circular (calculada classicamente)há um número inteiro de comprimento de ondas $\lambda = h/mv$.
 - 8. Efeito Compton se um fóton é espalhado por um elétron, $\Delta \lambda = \lambda_C (1 - \cos \theta)$.
 - 9. Efeito fotoelétrico $A + mv^2/2 = h\nu$ (A função trabalho). I-U- gráfico: a corrente começa a passar quando a contra-voltagem $U = -(h\nu - A)/e$, e ela é saturada para altos valores de U na direção a favor.
 - **10.** Lei de Stefan-Boltzmann: $P = \sigma T^4$.

XII Leis de Kepler

- 2. Interação gravitacional de duas massas pontuais (I lei de 18. Fluxo de calor $P = kS\Delta T/l$ (k — condutibilidade tér- Kepler): a trajetória de cada um deles é uma elipse, parábola ou hipérbole, com um foco no centro de massa do sistema. Deduza a partir de v. R.L. (pt 9).
- 3. II lei de Kepler (conserv. do mom. angular): para uma quenas temperaturas, $c \propto T^3$; para altas T, c = 3NkT, onde massa central em um campo de forças centrais, o ario vetor cobre áreas iguais em intervalos de tempos iguais.
 - 4. III lei de Kepler: para duas massas pontuais em orbitas elípticas em um campo de forças r^{-2} , o período de revolução estão relacionados com o semieixo maior pela potência de $\frac{3}{3}$: $T_1^2/T_2^2 = a_1^3/a_2^3$.
 - 5. A energia total $(K + \Pi)$ de um corpo em um campo gravitacional:

$$E = -GMm/2a$$
.

- **6.** Para excentricidades pequenas $\varepsilon = d/a \ll 1$, trajetórias podem ser consideradas como tendo formas circulares, com focus deslocados.
- 7. Propriedades das elipses: $l_1 + l_2 = 2a (l_1, l_2 \text{distâncias})$ aos focos), $\alpha_1 = \alpha_2$ (luz de um foco é refletido no outro), $S = \pi ab$.

- **9*.** Vetor Runge-Lenz (o vetor da excentricidade):

$$\vec{\varepsilon} = \frac{\vec{L} \times \vec{v}}{GMm} + \vec{e_r} = \text{Const.}$$

Teoria da relatividade

1. Transformações de Lorentz (rotação no espaço-tempo 4D da geometria de Minkowski), $\gamma = 1/\sqrt{1-v^2/c^2}$:

$$x' = \gamma(x - vt), \ y' = y, \ t' = \gamma(t - vx/c^2)$$

$$p'_{x} = \gamma(p_{x} - mv), \ m' = \gamma(m - p_{x}v/c^{2})$$

2. Norma (comprimento) de um quadrivetor 4-vector:

$$s^2 = c^2 t^2 - x^2 - y^2 - z^2$$

$$m_0^2 c^2 = m^2 c^2 - p_x^2 - p_y^2 - p_z^2$$

3. Adição de velocidades:

$$w = (u+v)/(1+uv/c^2).$$

4. Efeito dopler:

$$\nu' = \nu_0 \sqrt{(1 - v/c)/(1 + v/c)}.$$

- 5. O espaço de Minkowski pode ser tornado Euclidiano se o tempo for imaginário $(t \to ict)$. Então, para o ângulo de rot. φ , $\tan \varphi = v/ic$. Expresse $\sin \varphi$, e $\cos \varphi$ via $\tan \varphi$, e aplique as fórmulas da geometria Euclidiana.
- **6.** Contração do espaço: $l' = l_0/\gamma$.
- 7. Dilatação do tempo: $t' = t_0 \gamma$.
- 8. Simultaneidade é relativa, $\Delta t = -\gamma v \Delta x/c^2$.
- **9.** $\vec{F} = d\vec{p}/dt \ [= \frac{d}{dt}(m\vec{v}), \text{ onde } m = m_0 \gamma].$
- 10. Aproximação ultra-relativística: $v \approx c$, $p \approx mc$, $\sqrt{1-v^2/c^2} \approx \sqrt{2(1-v/c)}$.
- 11^* . Transformação de Lorentz para E-B: $\vec{B}'_{||} = \vec{B}_{||}$,

$$\vec{E}'_{\perp} = \gamma (\vec{E}_{\perp} + \vec{v} \times \vec{B}_{\perp}), \quad \vec{B}'_{\perp} = \gamma (\vec{B}_{\perp} - \vec{v} \times \frac{\vec{E}_{\perp}}{c^2}).$$

 $Corrections/suggestions \Rightarrow kalda@ioc.ee.$

Composed by J. Kalda, translated by U. Visk and J.K.

Erros de tradução/gramática⇒itadeufa@gmail.com

Traduzido ao português por Ivan Tadeu Ferreira Antunes Filho

marca um material avancado.