Modelling and solving the Present Wrapping Problem with Satisfiability Modulo Theory

Cellini Lorenzo - 0000951921

lorenzo.cellini3@studio.unibo.it

November 4, 2020

This work describes a proposed solution to the Present Wrapping Problem in the framework of Satisfiability Modulo Theory (SMT). Two models have been developed: the "basic" one addresses the easier version of the problem, where there is only one copy for each piece and rotation is not allowed; the "general" one addresses the more relaxed version of PWP problem, where rotation is allowed and there could also be repeated rectangles.

1 PROBLEM DESCRIPTION

1.1 The Present Wrapping Problem PWP

The present wrapping problem is a well known constraint optimization problem that can be described as follow: given an enclosing rectangle of area w*h and a list of smaller rectangles i of given dimensions $dimension_{ij}$, where i is the rectangle index and $j \in \{1,2\}$ the width or heigth, find a satisfying assignement for the rectangles position such that they cover the entire area. In the literature there exist several different formulation of the same problem, where what changes is the goal: e.g. it could be asked to find the configuration that minimizes the covered area or minimizes only one of the two dimensions. Futhermore the rectangles used to cover the area could take different shapes, like circles or irregular polygons as well.

In this work the problem addressed is the first mentioned: the goal is to find a satisfying assignement for the positions of the given rectangles, in order to exactly cover the entire given enclosing area.

1.2 Data pre- and post-processing

1.2.1 Instances format

The given instances are .txt files of the form:

9 12

5

- 3 3
- 2 4
- 2 8
- 3 9
- 4 12

where the first line represents the width and height of the enclosing area, the second line states how many rectangles are at disposal and the following lines are the actual rectangles expressed as the couple $dimension_{i1}*dimension_{i2}$

1.2.2 Instances preprocessing

Instances preprocessing is done by the scripts <code>basic_model.py</code> and <code>general_model.py</code>, just before solving the instance. The only required input is the instace file directory, provided by passing its path to the parameter <code>instances_dir</code>. If this is the only input argument, both the scripts run over all the files in the given directory, otherwise the optional parameter <code>file_name</code>, that specifies instance to solve, can be passed.

1.2.3 Scripts output

Both the scripts write the output in the folder "../out/*_model_smt", where "../" means the parent directory with respect to the current directory and "*" stands for "basic" or "general". Each script write the instance solution in the format "<instance_name>-out.txt" and create two subfolders: *graph* and *stats*, where the graphical representation and solving statistics are stored.

2 THE BASIC MODEL

2.1 Modeling

The idea behind this SMT model is the same as the CP one: mapping each rectangle to its bottom-left corner and use the latter as the problem variable. Because the rectangles rotation is not allowed, the only degree of freedom is the rigid translation of the rectangles. So the problem can be translated into: *find a satisfaction assignement for the rectangles bottom-left corners such that the relative rectangles cover the entire area and do not overlap.*

Under this assumption the formulation of the problem constraints is straigthforward:

- for a rectangle i to stay in the enclosing area w*h, its bottom left corner coordinates can take values only from $\{0..w-dimension_{i1}, 0..h-dimension_{i2}\}$;
- the non overlap constraints means that when a rectangle i is placed, the set of points in $\{x_i..x_i + dimension_{i1}, y_i..y_i + dimension_{i2}\}$ are removed from the domains of the remaining variables.

REMARK: in all the mathematical formulae I will maintain the notation (1,2) for coordinates indexes, but it is worth to highligth that in python array's indexes start from 0, so in the Z3 program we'll see (0,1) as arrays' indexes, while variables name will have (1,2) as indexes. In other words: $coords_{i1}$ maps to the 0^{th} index of the corresponding array and $coords_{i2}$ maps to the 1^{st} index.

While in CP is useful to add redundant constraints in order to improve constraint propagation and speed the search up, it is not obvious that the same technic brings benefits in the framework of SMT. The same cumulative constraint as the one used in the CP program will be encoded here, but the decision on wheter or not include it in the final model is postponed to the Conclusion section. The cumulative constraint is:

• the amount of heigth (width) that can be used in any position during packing is up to h(w), so one can think about rectangles as tasks of duration $dimension_{i1}$ ($dimension_{i2}$) and resource consumption $dimension_{i2}$ ($dimension_{i1}$) and the cumulative constraint must hold in any solution.

What discussed for the cumulative constraint also applies to symmetry breaking constraint. I will report here the constraint postponing the decision, on wheter or not include it in the final model, to the Conclusion section.

Symmetry breaking constraint:

• setting a fixed and predetermined position (e.g. the paper origin (0,0)) for the most difficult to place rectangle, the biggest one.

In the following paragraphs a detailed explanation of data, variables and constraints is given.

2.1.1 Data

The following is an excerpt of code from the python Z3 *basic_model.py* program:

```
####################
##################
                        Data
print("Declaring problem data...")
# The first line contains the width and height of the enclosing rectangle
first_line = instance_file_read.readline().strip().split(" ")
# w = width
w = int(first_line[0])
# h = height
h = int(first_line[1])
# The second line contains the number of pieces to wrap
second_line = instance_file_read.readline().strip().split(" ")
# n = number of pieces;
n = int(second_line[0])
TILES = range(int(str(n)))
# Extracting the tiles dimensions from the rest of the file
rest_of_lines = instance_file_read.readlines()
# Removing possibly empty lines
rest_of_lines = [line.strip() for line in rest_of_lines if line.strip()]
# dimension is the tensor of sides' lenghts
dimension = []
for line in rest_of_lines:
    rectangle = [int(line.split(" ")[0]), int(line.split(" ")[1])]
    dimension.append(rectangle)
```

As mentioned before, the script preprocesses input instance file on the fly and generates needed data objects (arrays, matrices, constants etc.)

Data used at this stage are the number of rectangles n, width w and height h of the enclosing area (paper roll). From these, a dimension tensor is built: it is an n-array, where n is the number of rectangles, containing n 2-array of rectangles' dimensions.

2.1.2 Variables

As stated before, in this basic version of the problem, the only degree of freedom is the rigid translation of rectangles and so the only variables are the coordinates of rectangles' bottom-left corner. For compliance with the CP program, these variables have been called $coords_{i,j}$.

2.1.3 Local constraints

In this and the following paragraph problem constraints are explained.

The first constraint is on the **domain of bottom-left corner**. Indeed, there are a lower and an upper bound on the coordinates that make any rectangle to completely stay in the enclosing area.

This constraint can be written as follow:

```
# Bottom left corner constraint
bl_constraint = [
   And(
   coords[i][0] >= 0,
   coords[i][0] <= w - dimension[i][0],
   coords[i][1] >= 0,
   coords[i][1] <= h - dimension[i][1],
    )
   for i in TILES
]</pre>
```

2.1.4 Global constraints

The second constraint is the **non-overlap** constraint, meanig that for any two given rectangles i and j, j can be placed on the rigth OR on the left OR below OR above the rectangle i. This can be expressed as follows:

```
# Non-overlap constraint
no_overlap_constraint = [
    Or(
        coords[i][0] + dimension[i][0] <= coords[j][0],
        coords[j][0] + dimension[j][0] <= coords[i][0],
        coords[i][1] + dimension[i][1] <= coords[j][1],
        coords[j][1] + dimension[j][1] <= coords[i][1],
    )
    for i in TILES</pre>
```

```
for j in TILES
if j > i
]
```

At this point the model is already able to find good solutions, but it still miss the cumulative constraint and symmetry breaking constraint. At this stage it is not clear wheter or not these constraints will bring any improvements, but it will be after the discussion of collected runtime statistics.

So, the third constraint is the **cumulative** constraint. This comes from the family of scheduling constraints: indeed rectangles can be treated as tasks, their dimensions are the duration along the respective coordinates, the other dimension represents the resource consumption and the upper bounds are respectively the width and height of the paper roll.

Obviously for any packing solution, where the previous two constraints are satisfied, cumulative must also hold. Indeed this is a **redundant** constraint.

In theory, in SMT it is not useful to add redundant constraints, because there is not a constraint propagation phase that cuts variables' domains in order to reduce the search space: on the contrary, adding redundant constraints will increase the number of equations that both the theory solver and the SAT solver must handle, causing the solving phase to slow down. Anyway, cumulative constraint is a project requirement here, so I will include it for now and discuss the best performant model later.

Cumulative constraint can be encoded in the following way:

```
# Implied constraint - "cumulative" in MiniZinc
cumulative_constraint = []
# 1. Cumulative on heighh capacity:
for i in range(w):
    vertical_sum = Sum(
        If(
                And(coords[j][0] \leq i, coords[j][0] + dimension[j][0] > i),
                dimension[j][1],
                0,
            for j in TILES
        ]
    )
    cumulative_constraint.append(vertical_sum <= h)</pre>
# 2. Cumulative on width capacity:
for i in range(h):
    horizontal_sum = Sum(
        Tf(
                And(coords[j][1] \le i, coords[j][1] + dimension[j][1] > i),
                dimension[j][0],
                0,
            for j in TILES
```

```
]
)
cumulative_constraint.append(horizontal_sum <= w)</pre>
```

It is encoded in two step: respectively the horizontal and the vertical set of constraints.

2.1.5 Symmetry breaking constraints

As for the CP case, here also there are symmetries (isomorphisms) that can be broken, but, as discussed for cumulative constraint, this shouldn't lead to performance improvement because of how SMT engine works.

As before, I chose to encode the symmetry breaking constraint anyway, and delay the decision about its inclusion in the final model after statistics comparison.

Symmetry breaking constraint:

```
# Symmetry breaking - isomorphisms breaking
surface = [dimension[i][0] * dimension[i][1] for i in TILES]
biggest_rect = np.argmax(surface)
symm_break = [And(coords[biggest_rect][0] == 0, coords[biggest_rect][1] == 0)]
```

As in the CP program, the biggest rectangle is located at runtime and constrained in the (0,0) position.

3 THE GENERAL MODEL

3.1 Modeling

In the general case, what changes is the possibility to have **rectangles with the same dimensions** and **rectangle rotation is now allowed**. This means that the solution space is larger than before because, now, each rectangle can be placed in two different ways and for each instance containing repeated tiles, the solution space contains all the solution given by the permutations of pieces with the same dimensions. The possibility to have repeated rectangles introduces a symmetry, but, again, it is not obvious the need to break it. From the theory perspective, there would not be advantages in breaking symmetries for the SMT engine, but, taking a data-driven approach, I will encode this breaking symmetry constraint and decide about its inclusion in the final model by looking at statistics comparison.

To model this case one can extend the previous basic model: indeed the bottom-left corner coordinates can still be used as variable, but another variable set, $kind_i$, is needed in order to address the rotation possibility. It represents the orientation of the i^{th} rectangle: indeed the problem to place a rectangle and take into account its rotation can be viewed as the problem to assign a value to its bottom-left corner coordinates plus the problem to choose wich, of the two possible values, the horizontal dimension takes (respectively vertical).

3.1.1 Data

In order to address the increased complexity of the problem, some new auxiliary variables are needed.

```
##################
                        Data
                                 ####################
print("Declaring problem data...")
# The first line contains the width and height of the enclosing rectangle
first_line = instance_file_read.readline().strip().split(" ")
# w = width
w = int(first_line[0])
# h = height
h = int(first_line[1])
# The second line contains the number of pieces to wrap
second_line = instance_file_read.readline().strip().split(" ")
# n = number of pieces;
n = int(second_line[0])
TILES = range(int(str(n)))
# Extracting the tiles dimensions from the rest of the file
rest_of_lines = instance_file_read.readlines()
# Removing possibly empty lines
rest_of_lines = [line.strip() for line in rest_of_lines if line.strip()]
# Building a shape tensor where each element is the couple of
# the two different orientations for each rectangle.
shape = []
count_of_shapes = {}
for line in rest_of_lines:
    dims = \Pi
    rectangle = [int(line.split(" ")[0]), int(line.split(" ")[1])]
    dims.append(rectangle)
    key = "{}x{}".format(rectangle[0], rectangle[1])
    count_of_shapes[key] = count_of_shapes.get(key, 0) + 1
    if rectangle[0] != rectangle[1]:
        dims.append([rectangle[1], rectangle[0]])
        shape.append(dims)
    else:
        dims.append([-99, -99])
        shape.append(dims)
ncopy = list(count_of_shapes.values())
num_distinct_tiles = np.array([ncopy]).size
```

In the previous except of code, constants n, w, h and TILES are the same as in the basic

model.

The *shape* object is a tensor where each element is the couple of the two different orientations for each rectangle. For example, for the instance in the Data pre- and post-processing section, the *shape* tensor would be: [[[3, 3], [-99, -99]], [[2, 4], [4, 2]], [[2, 8], [8, 2]], [[3, 9], [9, 3]], [[4, 12], [12, 4]]]

As it can be seen, in case of squares, the dummy array [-99, -99] is used: this is needed in order to make *shape* tensor to have the correct number of dimensions. Obviously, squares of side l could be treated as the tensor [[1, 1], [1, 1]] but this would generate symmetric configuration.

The *count_of_shapes* object is a dictionary where the key is the rectangle and the value is the number of times that rectangle appears in the given list. For the previous example, it is:

```
{
    "3x3": 1,
    "2x4": 1,
    "2x8": 1,
    "3x9": 1,
    "4x12": 1
}
```

Finally, *ncopy* and *num_distinct_tiles* store respectively the number of copies for each rectangle (array) and the number of distinct rectangles (constant).

3.1.2 Variables

The only difference with respect the basic case is the new array of variables, called *dimension*. These variables are responsible to select the rectangle rotation among the two possible.

3.1.3 Constraints

The **bottom-left corner domain**, the **non overlapping constraint** and the **cumulative** constraints are the same as for the basic model.

The following constraint, instead, is needed in order to take into account rectangles rotation:

It is clear here the role of the variable $shape_{ijk}$, where i is the rectangle index, j is the rotation and k the axis, in selecting the dimension, so implicitly selecting the rotation.

3.1.4 Symmetry breaking constraints

Again, in order to break isomorphisms it suffices to manually set the position of the biggest rectangle but letting the algorithm to choose the orientation. The symmetry breaking constraint become:

```
# Symmetry breaking constraints
```

```
# 1. isomorphisms breaking
surface = [
    shape[i][j][0] * shape[i][j][1]
    for i in range(num_distinct_tiles)
    for j in range(1)
]
biggest_rect = np.argmax(np.array(surface))
symm_break = [And(coords[biggest_rect][0] == 0, coords[biggest_rect][1] == 0)]
```

Besides the isomorphism symmetry, this time another class of symmetry arise because of the permutations of rectangles with the same dimensions. This is the kind of symmetry broken by lexicographical ordering. In order to do that the following constraint is added:

```
# 2. Ordering symmetries breaking for rectangles with the same size
order_constraint = []
base = []
for i in range(num_distinct_tiles):
    if i == 0:
        base.append(0)
    else:
        base.append(sum(ncopy[0:i]))
for i in range(num_distinct_tiles):
    for j in range(ncopy[i] - 1):
        order_constraint.append(
            And(
                 coords[base[i] + j][0] <= coords[base[i] + j + 1][0],</pre>
                 Implies(
                     coords[base[i] + j][0] == coords[base[i] + j + 1][0],
                     coords[base[i] + j][1] <= coords[base[i] + j + 1][1],</pre>
                 ),
```

)

This constraint can be understood in this way: for each distinct rectangle loop over its replicas (if there are) and for any pair of equal rectangles, let's call them i and j, $coords_{i1} \leq coords_{j1} \wedge (coords_{i1} = coords_{i1} \rightarrow coords_{i2} \leq coords_{i2})$.

Under the assumption that the given rectangles are ordered ascending, the *base* array contains the starting index of each series of rectangle with the same dimension. For example, given the array [3x3,3x3,3x3,4x5,4x5,6x7] the corresponding *base* array would be [0,3,5]. The *base* array lets to apply the lexicographical ordering only to rectangles with the same dimensions.

4 SOLVING THE PROBLEM

The following tables show the number of conflicts and running time for basic and general model respectively, for four different combination of active constraints. The goal is to investigate the best combination of constraints and at the same time, check if the symmetry breaking constraint brings some improvement in SMT framework. While both the metrics are reported here, I would rather look only at the number of conflicts, because the running time kpi is too much related to hardware performance.

instance	cumul + symbre	cumul	symbre	base
8x8	1	4	1	1
9x9	16	24	5	1
10x10	11	13	7	10
11x11	59	117	12	8
12x12	67	111	198	270
13x13	11	105	119	156
14x14	48	128	257	125
15x15	66	108	123	115
16x16	203	193	357	633
17x17	339	228	165	861
18x18	9206	47917	968	7618
19x19	542	534	903	7713
20x20	1242	184	2115	2567
21x21	1596	1246	5900	3789
22x22	647	278	7226	628
23x23	21710	66074	30955	3594
24x24	2996	3070	48408	16506
25x25	1703	2235	54422	4778
26x26	18885	50705	195303	94394
27x27	7952	12554	74549	39275
28x28	26079	13379	40722	6185
29x29	198342	261455	39669	898219
30x30	2792	34877	31014	2474
31x31	2493	8184	1381	2577
32x32	81555	158083	64011	83746
33x33	18335	8559	49177	80720
34x34	19542	807	27665	45202
35x35	22388	10558	5297	57344
36x36	8925	62861	38865	47158
37x37	1456697	1216635	1907517	1503147
38x38	13417	14987	49744	58708
39x39	1009095	1186619	3197486	9399847
40x40	6613	16267	6883	3670

Table 4.1: Comparing number of conflicts for basic model on different combination of active constraints

instance	cumul + symbre	cumul	symbre	base
8x8	3	4	2	2
9x9	2	6	2	2
10x10	2	4	1	8
11x11	4	11	2	1
12x12	4	10	3	2
13x13	3	11	3	2
14x14	5	17	5	4
15x15	6	18	4	2
16x16	13	25	7	10
17x17	19	35	6	15
18x18	635	5501	34	218
19x19	226	92	21	79
20x20	442	54	37	23
21x21	228	168	131	41
22x22	170	72	183	11
23x23	2747	7986	1177	64
24x24	635	413	1750	335
25x25	228	416	2359	92
26x26	2918	9692	4540	2657
27x27	812	2953	2845	1410
28x28	2807	3326	2135	297
29x29	36950	87995	2487	19096
30x30	478	6074	1318	117
31x31	288	1743	65	111
32x32	9155	92694	3065	3590
33x33	2711	1860	2598	3107
34x34	2630	253	1315	2568
35x35	2779	2964	300	2746
36x36	988	12128	2425	2613
37x37	1687949	956682	39412	35863
38x38	1454	2087	2191	2612
39x39	1267819	907482	57569	191184
40x40	774	4242	342	234

 $\begin{tabular}{ll} Table 4.2: Comparing running time, in centi-seconds, for basic model on different combination of active constraints \end{tabular}$

instance	base	ord	cumul	ord + symbre	ord + cumul	all
8x8	18	8	7	6	7	8
8x8_symmetry	3	8	4	3	2	2
9x9	195	147	5	34	5	41
10x10	46	46	17	17	17	20
10x10_symmetry	412	171	99	133	114	81
11x11	975	2220	199	649	92	100
12x12	1454	2974	517	1606	230	176
13x13	215	1545	489	3493	165	246
14x14	4164	17499	1258	9663	747	79
15x15	2156	87	1486	90	580	260
16x16	1305	32826	1694	2766	1896	443
16x16_symmetry	86	584	106	154	145	48
17x17	22299	14551	6153	10112	4122	892
18x18	1632237	2902071	162324	217584	30356	179898
19x19	22258	212961	46188	15294	3304	68669
20x20	43677	48964	1525	141072	20264	33437
21x21	42965	247161	1677	77532	18919	53016
22x22	290478	133075	58093	129802	3738	134400
23x23	2681959	810377	136290	3020291	482305	1135933
24x24	1085211	200835	303971	218447	286140	12319
25x25	2551686	455184	294542	2653111	1503066	2811231
26x26	2406351	2449466	-	2623958	546322	560058
27x27	2385970	43177	-	2414730	282726	806091
28x28	2489856	2450036	-	2484190	106160	-
29x29	2312453	2493072	-	2733977	143251	-
30x30	121647	2820277	329776	1058976	7	-
31x31	434514	2711212	-	95237	5	-
32x32	1973620	2122234	-	2410299	-	-
33x33	2298444	280850	-	740086	-	-
34x34	33946	170936	546322	129843	-	-
35x35	216887	1757625	-	101178	-	-
36x36	41274	255703	282726	2354887	-	-
37x37	2250975	2455477	-	2344739	-	-
38x38	2564468	35193	106160	2631743	-	-
39x39	2128746	2200407	-	2359941	-	-
40x40	381840	113240	143251	2573426	-	-

 $\begin{tabular}{ll} Table 4.3: Comparing number of conflicts for general model on different combination of active constraints \\ \end{tabular}$

instance	base	ord	cumul	ord + symbre	ord + cumul	all
8x8	1	1	3	1	1	2
8x8_symmetry	3	5	2	3	2	4
9x9	2	2	3	1	2	3
10x10	4	4	3	3	4	3
10x10_symmetry	10	5	6	5	7	7
11x11	10	20	9	7	12	11
12x12	26	52	18	17	9	12
13x13	10	24	23	39	24	18
14x14	57	287	56	107	36	10
15x15	35	7	82	3	30	19
16x16	23	628	86	39	74	26
16x16_symmetry	3	10	11	3	11	7
17x17	576	369	419	190	256	65
18x18	128086	324455	22332	6086	2470	23522
19x19	691	12223	4220	384	327	5697
20x20	1223	2707	167	3533	1445	2521
21x21	1315	19262	167	2097	1337	5327
22x22	12081	8558	7539	3945	374	17950
23x23	237927	87511	20465	230428	117136	570065
24x24	63848	18893	77835	8500	50839	1157
25x25	195284	48043	65561	172345	787434	2491829
26x26	228229	400593	-	208538	256667	160484
27x27	213385	5172	-	179457	134863	322289
28x28	267162	344059	-	248057	34209	-
29x29	217653	222129	-	282279	45155	-
30x30	14276	324082	123994	73321	8	-
31x31	53300	435154	-	4527	3	-
32x32	270976	470070	-	293390	-	-
33x33	192340	24879	-	61948	-	-
34x34	2027	11645	217872	7911	-	-
35x35	14092	162045	-	6207	-	-
36x36	2913	19393	72656	250890	-	-
37x37	236793	279511	-	270072	-	-
38x38	178903	2158	21633	279437	-	-
39x39	242021	291638	-	290922	-	-
40x40	24144	5834	28641	214839	-	-

Table 4.4: Comparing running time, in centi-seconds, for general model on different combination of active constraints

5 CONCLUSION

Looking at the tables above, the best basic model seems to be the one with both cumulative and symmetry breaking constraint active, but, taking a look at only instances between 30x30 and 40x40, the most difficult to solve, the verdict is no more so obvious. Indeed each model has 3 "victory" in this interval. The situation becomes a little more clear if one imagines to look at the same table with only the first two columns: this is like redefining the basic model as the basic plus the cumulative constraint and deciding on wheter include symmetry breaking

constraint or not. In this way one can see that the model that includes the symmetry breaking performs better in 6 over 10 cases. So, if the driver is the efficiency in terms of memory, it could be safe to choose the complete model as the production one.

In terms of running time, it is obvious that the faster model is the one with less constraint: in SMT framework each constraint generates a bunch of equations and/or inequalities, so the more the number of constraints the more the number of object to compute and to store in memory.

Maybe, a more effective approach, but beyond the scope of this work, to the symmetry breaking matter could be to intervene at the SAT engine level and prevent it to generate symmetric formulae before feed them to the theory solver.

For what concerns the general model, as it can be seen from tables above, on very hard instances, between 30x30 and 40x40, the best performant model is the baseline where active constraints are only the bottom-left corner, no-overlapping and rotation constraints, thus only these constraints will be included in the final version of the general_model. For instances' entries marked with the "-" symbol I stopped the execution after a computation time greater than one hour.

6 REFERENCES

- · Class lectures
- Z3py tutorial