A Superlinearly-Convergent Proximal Newton-Type Method for the Optimization of Finite Sums

Anton Rodomanov Dmitry Kropotov anton.rodomanov@gmail.com dmitry.kropotov@gmail.com

Motivation

Consider the minimization of the composite finite-average of many functions:

$$\min_x \left[\phi(x) := rac{1}{n} \sum_{i=1}^n f_i(x) + h(x)
ight],$$

where f_i are twice continuously differentiable and convex, h is closed convex.

- \blacksquare Big data setting: n is very large (millions, billions etc.).
- Incremental/stochastic optimization methods, which process only one f_i at each iteration, are among the most effective methods for this task.
- There exists many different incremental optimization schemes:
 - SGD, oLBFGS [Schraudolph et al., 2007], AdaGrad [Duchi et al., 2011], SQN [Byrd et al., 2014], Adam [Kingma, 2014] etc.
 - SAG [Schmidt et al., 2013], SVRG [Johnson & Zhang, 2013], SAGA [Defazio et al., 2014a], MISO [Mairal, 2015] etc.
- They all have either a sublinear or linear convergence rate. 🗟
- Goal: an incremental optimization method with a superlinear rate of convergence.

Main idea

lacksquare Build the second-order Taylor approximation of each f_i :

$$m_k^i(x) := f_i(v_k^i) +
abla f_i(v_k^i)^ op (x - v_k^i) + rac{1}{2} (x - v_k^i)^ op
abla^2 f_i(v_k^i) (x - v_k^i).$$

- Then ϕ can be approximated with $m_k(x) := rac{1}{n} \sum_{i=1}^n m_k^i(x) + h(x)$.
- lacksquare Find the minimizer of the model: $ar{x}_k := \operatorname{argmin}_x m_k(x)$.
- lacksquare Choose next iterate x_{k+1} between x_k and $ar{x}_k$: $x_{k+1} = x_k + lpha_k(ar{x}_k x_k)$.
- lacktriangle Each time update only one v_k^i to keep the iteration cost independent of n:

$$v_{k+1}^i := egin{cases} x_{k+1} & ext{if } i=i_k, \ v_k^i & ext{otherwise,} \end{cases}$$

where $i_k \in \{1, \ldots, n\}$ is the index of the component to update.

Note: m_k is a (composite) quadratic,

$$m_k(x) = (g_k - u_k)^ op x + rac{1}{2} x^ op H_k x + h(x) + ext{const},$$

and is determined only by the following three quantities:

$$H_k := rac{1}{n} \sum_{i=1}^n
abla^2 f_i(v_k^i), \; u_k := rac{1}{n} \sum_{i=1}^n
abla^2 f_i(v_k^i) v_k^i, \; g_k := rac{1}{n} \sum_{i=1}^n
abla f_i(v_k^i)$$

which can be updated in iterations using the "add-subtract" principle.

Inexact model minimization

- lacksquare In general, there is no need to find the minimizer $ar{x}_k$ of the model exactly.
- Define the composite gradient mapping:

$$egin{aligned} T_L(x,\xi) &:= rgmin \left[\xi^ op y + rac{L}{2} \|y-x\|^2 + h(y)
ight], \ G_L(x,\xi) &:= L(x-T_L(x,\xi)). \end{aligned}$$

Note: for $h \equiv 0$, we have $G_L(x,\xi) \equiv \xi$.

lacktriangleq We show that, instead of $ar{x}_k = \mathrm{argmin}_x[m_k(x) =: s_k(x) + h(x)]$, any point $\hat{x}_k = T_L(x;
abla s_k(x))$ can be used in NIM provided that

$$\|G_L(x,
abla s_k(x))\| \leq \min\{1,(\Delta_k)^\gamma\}\Delta_k, \qquad \Delta_k:=\|G_1(ar v_k,g_k)\|.$$

Here L can be any such that $L \geq L_0 \equiv 1$, $ar{v}_k := rac{1}{n} \sum_{i=1}^n v_k^i$ and $\gamma \in (0,1]$.

- Intuition: the closer NIM to the optimum, the more accurate \hat{x}_k is required.
- Possible inner solver: Fast Gradient Method [Nesterov, 2013].

Algorithm NIM (Newton-type Incremental Method)

- 1: Input: $x_0,\ldots,x_{n-1}\in\mathbb{R}^d$: initial points; $\{\alpha_k\}$: step lengths.
- 2: Initialize model: $v^i := x_{i-1}$ for $i=1,\ldots,n$ and

3:
$$H:=rac{1}{n}\sum_{i=1}^n
abla^2f_i(v^i),\quad u:=rac{1}{n}\sum_{i=1}^n
abla^2f_i(v^i)v^i,\quad g:=rac{1}{n}\sum_{i=1}^n
abla^f_i(v^i)$$

- 4: for k > n-1 do
- Compute minimizer: $\hat{x} pprox \operatorname{argmin}_x \left[(g-u)^{ op} x + \frac{1}{2} x^{ op} H x + h(x) \right]$
- Make a step: $x_{k+1} := x_k + \alpha_k(\hat{x} x_k)$
- Update model for $i := (k+1) \mod n + 1$ (cyclic order):
- $H:=H+rac{1}{n}\left[
 abla^2f_i(x_{k+1})abla^2f_i(v^i)
 ight]$
- $u:=u+rac{1}{n}\left[
 abla^2f_i(x_{k+1})x_{k+1}abla^2f_i(v^i)v^i
 ight]$
- $g := g + rac{1}{n} \left[
 abla f_i(x_{k+1})
 abla f_i(v^i)
 ight]$
- $v^i=x_{k+1}$ 11:
- 12: end for

Convergence rate

- lacksquare Suppose $abla f_i$ and $abla^2 f_i$ are Lipschitz-continuous with constants L_f and M_f .
- lacksquare Assume x^* is a minimizer of ϕ with $rac{1}{n}\sum^n m{
 abla}^2 f_i(x^*)\succeq \mu_f I\succ 0$, and all the initial points are close enough to x^* : $||x_i - x^*|| \leq R$ for $0 \leq i \leq n-1$.
- lacksquare Then the sequence of iterates $\{x_k\}$ of NIM with $lpha_k\equiv 1$ converges to x^* at an R-superlinear rate, i.e. there exist $\{z_k\}$ and $\{q_k\}$ such that for $k\geq n$

$$\|x_k-x^*\|\leq z_k, \qquad z_{k+1}\leq q_kz_k, \qquad q_k o 0.$$

If the model is minimized exactly, i.e. $\hat{x}_k = \bar{x}_k$, then

$$R := rac{\mu_f}{2 M_f}, \qquad q_k := \left(1 - rac{3}{4n}
ight)^{2^{\lceil k/n
ceil - 1}}.$$

If the model is minimized inexactly using the proposed conditions, then

$$R := \min \left\{ rac{\mu_f}{2M_f}, \left(rac{\mu_f^3}{128(2+L_f)^{5+2\gamma}}
ight)^{1/(2\gamma)}
ight\}, \qquad q_k := \left(1-rac{7}{16n}
ight)^{(1+\gamma)^{\lceil k/n
ceil}/2}.$$

lacktriangle For certain types of h (e.g. when h is differentiable or an indicator function) one can prove a global linear convergence of NIM for a small enough step size.

Order of component selection (cyclic vs randomized)

- lacksquare Consider $f_1(x) := rac{1}{2} \|x\|^2 + rac{n}{3} \|x\|^3, \; f_i(x) := rac{1}{2} \|x\|^3, \; i > 1, \; h \equiv 0.$
- lacksquare If one uses $i \sim \mathrm{Unif}\{1,\ldots,n\}$ in NIM and $\|x_0-x^*\| < 1$, then

$$\mathbb{E}[\|x_k - x^*\|^2] \geq rac{1}{3} \left(1 - rac{1}{n}
ight)^{k-n} \|x_0 - x^*\|^2,$$

which is a linear convergence rate.

lacksquare At the same time, for i=(k+1) mod n+1 and $k\geq n$, we get $||x_k - x^*|| \le ||x_{k-n} - x^*||^2$.

i.e. a quadratic rate w.r.t. epochs and superlinear rate w.r.t. iterations.

Experiments (logistic regression)

L2-reg	SUSY	'(n=5)	000 000,	d=18)	alpha	a (n=500	0000, d=	<i>500)</i>	mnist8	m (n=8)	100 000, d	d=784)
Res	NIM	SAG	Newton	LBFGS	NIM	SAG	Newton	LBFGS	NIM	SAG	Newton	LBFGS
10^{-1}	.09s	2.71s	2.48s	1.78s	1.91s	1.36s	1.6m	4.01s	57.68s	34.91s	47.8m	1.1m
10^{-2}	.13s	3.84s	4.30s	2.52s	13.37s	6.72 s	2.6m	17.68s	1.6m	2.1m	1.4h	5.2m
10^{-4}	1.36s	1.3m	11.33s	2.60s	36.65s	36.04s	3.4m	58.35s	16.7m	7.1m	-	1.6h
10^{-5}	2.78s	1.9m	14.43s	4.09s	46.66s	1.0m	3.6m	1.4m	26.7m	1.0h	-	-
10^{-6}	3.95s	2.2m	16.71s	5.26s	53.92s	1.5m	4.0m	1.9m	33.5m	-	-	-
10^{-8}	5.30 s	2.6m	19.41s	8.43s	1.0m	2.7m	4.1m	2.8m	46.0m	-	-	-
10^{-10}	5.95s	3.4m	20.80s	9.01s	1.2m	4.3m	4.7m	3.4m	53.3m	_	_	_

	L1-reg	SUSY (n=5 000	0000, d=18)	alpha (n=50000	00, d=500)	mnist8	m (n=8.10)	00 000, d=784)
_	Res	NIM	SAG	Newton	NIM	SAG	Newton	NIM	SAG	Newton
	10^{-1}	.09s	4.63s	2.72s	26.76s	1.31s	1.1m	15.7m	33.62s	53.6m
	10^{-2}	.89s	6.55s	5.63s	44.94s	6.52 s	1.8m	37.0m	2.1m	1.8h
	10^{-4}	3.31s	-	13.12s	1.1m	35.51s	2.5m	1.0h	7.3m	3.1h
	10^{-5}	4.57 s	-	15.87s	1.3m	1.0m	2.9m	1.2h	1.4h	-
	10^{-6}	6.25 s	-	18.46s	1.3m	1.5m	3.1m	1.5h	-	-
	10^{-8}	11.56s	_	38.31s	1.5m	2.9m	3.5m	2.3h	-	-
	10^{-10}	17 51c	_	45 08c	1 6m	4 8m	4 5m	3 4h		_