Instituto Superior de Engenharia de Coimbra

Exame de Álgebra Linear (Época Normal)

Engenharia Informática e Curso Europeu de Informática

Nota: Deve justificar convenientemente todas as respostas.

- 1. Considere o número complexo $z=-1+i\sqrt{3}$. Escreva-o na forma polar (ou trigonométrica) e, de seguida, usando as fórmulas de De Moivre, calcule z^3 , simplificando o mais possível o resultado.
- 2. Sendo c um parâmetro real, considere

27 de Janeiro de 2016

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & c \end{bmatrix}, B = \begin{bmatrix} 2 & -3 & 1 \\ -1 & 3 & -1 \\ 1 & -2 & 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} e \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}.$$

- (a) Indique, justificando, duas maneiras de ordenar as matrizes A^T , A e B por forma a que o produto destas três matrizes figue definido. Não é necessário calcular os produtos.
- (b) Discuta o sistema de equações lineares $A\mathbf{x} = \mathbf{b}$ de acordo com o valor do parâmetro real c.
- (c) Supondo que c=2, use o método de eliminação de Gauss para classificar e determinar o conjunto solução do sistema $A\mathbf{x} = \mathbf{b}$.
- (d) Sem usar a regra de Sarrus, calcule det(B).
- (e) Sem calcular explicitamente a matriz $F = -2BB^T$, calcule det(F).
- (f) Calcule a inversa de B usando um método à sua escolha.
- (g) Determine a matriz X que verifica a equação $(X^{-1}B)^{-1} = B$.
- 3. Sejam I a matriz identidade e O a matriz nula. Suponha que ambas são $n \times n$. Dada a matriz definida por blocos $A = \begin{bmatrix} O & -I \\ I & O \end{bmatrix}$, calcule A^{23} .
- 4. Considere os pontos do espaço P(1,2,2), Q(2,-1,0) e R(1,-1,1).
 - (a) Calcule a área do triângulo de vértices P, Q e R.
 - (b) Determine as equações cartesianas da recta que passa no ponto P e é perpendicular ao triângulo.
- 5. Considere os seguintes vetores de \mathbb{R}^3 : $\mathbf{u} = (1,0,1)$, $\mathbf{v} = (2,2,1)$ e $\mathbf{w} = (0,-2,1)$.
 - (a) Estude a dependência linear dos três vetores.
 - (b) Se possível, escreva \mathbf{w} como combinação linear de \mathbf{u} e \mathbf{v} .
 - (c) Explique porque é que o conjunto $C = \{\mathbf{u}, \mathbf{v}\}$ forma uma base do subespaço de \mathbb{R}^3 gerado por C.
 - (d) Encontre uma condição que caracterize o subespaço de \mathbb{R}^3 gerado por C.

Duração: 2h30m

6. Considere a matriz
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$
.

- (a) Calcule os valores próprios de A e conclua que $\sigma(A) = \{0, 1, 3\}$. (Sugestão: Calcule o determinante usando o desenvolvimento de Laplace na $2^{\underline{a}}$ linha).
- (b) Sem calcular os espaços próprios de A, explique porque é que A é diagonalizável.
- (c) Determine o espaço próprio E(1).
- (d) Dê exemplos de dois vetores próprios associados a $\lambda=1.$