# The Term Structure of Debt Commitments, Liquidity Concerns, and Durable Good Choices

Laura Murphy

Wilfrid Laurier University

January 9, 2025

#### Motivation

- Explosion of interest in importance of liquidity constraints in macro models
   Moving away from permanent income hypothesis
- Study importance of liquidity constraints in an important asset category: auto loans
  - Auto loans good laboratory to study liquidity constraints
  - Auto borrowers tend to be lower-income and lower-asset
- Term length choice an important contract feature for auto loans
   Determines monthly payment, interest rate, speed of repayment, ...
- Key facts: term lengths are heterogeneous and rising

#### Motivation

- Explosion of interest in importance of liquidity constraints in macro models
   Moving away from permanent income hypothesis
- Study importance of liquidity constraints in an important asset category: auto loans
  - Auto loans good laboratory to study liquidity constraints
  - Auto borrowers tend to be lower-income and lower-asset
- Term length choice an important contract feature for auto loans
   Determines monthly payment, interest rate, speed of repayment, ...
- Key facts: term lengths are heterogeneous and rising
  - How do liquidity considerations impact term length choices?

## Auto term lengths heterogeneous and rising



## Term lengths *seem* to be chosen by low-liquidity households





## Households less liquidity constrained over time



## Relative cost of borrowing over time



## This paper

- Empirical work:
  - Document causal relationship between liquidity and term length choice
  - Use consumer credit panel with liquidity measure and term length
  - IV strategy to get exogenous variation in liquidity measure
- Model work:
  - Simple and quantitative model of term length choice
  - Show importance of distance to liquidity constraint in determining term lengths

    Precautionary motive for choosing long term lengths
  - Distance to liquidity constraint interacts with relative cost of borrowing to determine term lengths

#### **Preview of Results**

- 1. Document that cross-section variation of terms driven by liquidity
  - Novel empirical evidence showing causal effect of liquidity on term length choice
  - 1 sd increase in liquidity  $\rightarrow$  4 month decrease in term length
  - Model importance of heterogeneity in liquidity for term choice

#### **Preview of Results**

- 1. Document that cross-section variation of terms driven by liquidity
  - Novel empirical evidence showing causal effect of liquidity on term length choice
  - 1 sd increase in liquidity  $\rightarrow$  4 month decrease in term length
  - Model importance of heterogeneity in liquidity for term choice
- Document that the time-series variation of terms driven by relative cost interacted with liquidity
  - Decrease in spread between borrowing and saving rates over time
  - Causes near-constrained households to increase term lengths

#### Contributions to Literature

#### 1. Term lengths in auto loans

Attanasio et al. (2008), Hertzberg et al. (2018), An, Cordell & Tang (2020), Argyle et al. (2020), Guo,

Zhang & Zhao (20220), Katcher et al. (2024)

 $\rightarrow$  model term length choice from household perspective, find liquidity important driver of longer term lengths

Mishkin (1976), Heitfield & Sabarwal (2004), Attanasio et al. (2008), Adams, Einav & Levin (2009), Mian &

Vavra (2015), Guerrieri and Lorenzoni (2017), Gavazza and Lanteri (2021), McKav & Wieland (2021).

#### 2. Liquidity constraints and durable demand

Sufi (2012), Benmelech et al. (2017), Gavazza and Lanteri (2021)

→ Link liquidity constraints and term length choice for autos

## 3. Models of durable goods demand

Grossman and Laroque (1990), Caballero (1993), Eberly (1994), Kaplan and Violante (2014), Berger and

Berger et al. (2023). Beraia & Zorzi (2024)

ightarrow Quantitative model of auto demand with term length choice

#### Outline

- 1. Background & Stylized Facts
- 2. Data & Empirical Strategy
- 3. Results
- 4. Simple Model
- 5. Quantitative Model
- 6. Conclusion

## **Background & Stylized Facts**

#### Background

- Car financing contracts are simple-interest installment loans
- Schedule of term-lengths and interest rates conditional on household characteristics
   Relevant characteristics include: car value, down payment size, FICO score, income
- Households pay fixed monthly payments (M) to the lender which satisfy the following:

$$P = \frac{M}{(1+i)} + \frac{M}{(1+i)^2} + \dots + \frac{M}{(1+i)^T}$$

P is the principal amount borrowed, i is the monthly interest rate, and T is the term length in months

- Refinancing not common in auto loans
- No prepayment penalties

#### Term lengths ease liquidity constraints: lower monthly payments



## Term lengths ease liquidity constraints: lower monthly payments



Benefit: increasing term length leads to lower monthly payments

## Term lengths ease liquidity constraints: pre-extracting liquidity



## Term lengths ease liquidity constraints: pre-extracting liquidity



## Auto loan large commitment for borrowers



## Auto debt most important for low-asset households



#### Term length: costs and benefits

- Benefits:
  - Lower monthly payments
  - Provides liquidity buffer for entire loan commitment
  - Particularly important:
    - 1. Cannot adjust liquidity without adjusting car/entire loan
    - 2. Car borrowing large commitment for households that tend to be lower-asset/income

#### Term length: costs and benefits

#### Benefits:

- Lower monthly payments
- Provides liquidity buffer for entire loan commitment
- Particularly important:
  - 1. Cannot adjust liquidity without adjusting car/entire loan
  - 2. Car borrowing large commitment for households that tend to be lower-asset/income

#### Costs:

- Increase term length leads to a higher interest rate and overall larger total interest payment

What is the causal relationship between liquidity and term length choice?

## Data & Empirical Strategy

#### Data

#### 1. NY Fed Equifax Consumer Credit Panel

- Anonymous quarterly credit panel
- Includes share unused revolving credit (proxy for liquidity)
- Term length of auto loans can be inferred from principal and monthly payment
- Other details: risk score (not FICO score), age, zip-code/state, repayment history

#### 2. Zip Code Income

- IRS provides average income by zip code from tax returns from 2005 – 2021

## Linking low liquidity and high terms

$$I_{it} = \alpha + \gamma_t + \beta b_{it} + \Gamma X_{it} + \epsilon_{it}$$

- *i* is loan, *t* is quarter
- $I_{it}$  is term length/indicator for term length above 60
- *b<sub>it</sub>* share revolving credit limit remaining (measure of liquidity)
  - 0 = fully constrained; 1 = fully unconstrained
- $X_{it}$  individual controls, such zip-code income, age, and state x time FEs

Hypothesis: high term lengths chosen by liquidity constrained  $\rightarrow \beta < 0$ 

## Linking low liquidity and high terms

$$I_{it} = \alpha + \gamma_t + \beta b_{it} + \Gamma X_{it} + \epsilon_{it}$$

- *i* is loan, *t* is quarter
- *l<sub>it</sub>* is term length/indicator for term length above 60
- *b<sub>it</sub>* share revolving credit limit remaining (measure of liquidity)
  - 0 = fully constrained; 1 = fully unconstrained
- $X_{it}$  individual controls, such zip-code income, age, and state x time FEs

Concern: OLS estimates biased towards zero

## Instrument for liquidity: age of oldest account

Age of oldest credit account as instrument for liquidity
 Braxton et al. (2024)

#### Instrument for liquidity: age of oldest account

- Age of oldest credit account as instrument for liquidity
   Braxton et al. (2024)
- Relevance ( $Cov(z_{it}, b_{it}) \neq 0$ )
  - Automatic credit increases as a function of age
  - Credit agencies use age of oldest account as proxy for physical age
  - $\rightarrow$  higher credit limit as function of age of account

## Instrument for liquidity: age of oldest account

- Age of oldest credit account as instrument for liquidity
   Braxton et al. (2024)
- Relevance ( $Cov(z_{it}, b_{it}) \neq 0$ )
  - Automatic credit increases as a function of age
  - Credit agencies use age of oldest account as proxy for physical age
  - $\rightarrow$  higher credit limit as function of age of account
- Conditional exogeneity ( $Cov(z_{it}, \epsilon_{it}|b_{it}) = 0$ )
  - Instruments increases credit score, could affect interest rates offered?
  - $\rightarrow$  control for credit score as robustness

## Results

|                        | OLS       | OLS | IV  | IV  |
|------------------------|-----------|-----|-----|-----|
|                        | (1)       | (2) | (3) | (4) |
| % limit left           | -2.939*** |     |     |     |
|                        | (0.386)   |     |     |     |
| Observations           | 307,906   |     |     |     |
| Term mean              | 62.49     |     |     |     |
| Indep. var. sd.        | 0.389     |     |     |     |
| F-stat                 | -         |     |     |     |
| Credit group & type FE | No        |     |     |     |

 $Notes: \begin{tabular}{ll} Notes: \begin{tabular}{ll} *** p < 0.001, \begin{tabular}{ll} ** p < 0.05. \end{tabular} Source: Federal Reserve Bank of New York's Consumer Credit Panel/Equifax data (CCP) with author's calculations. \end{tabular} The p < 0.01, \begin{tabular}{ll} ** p < 0.05. \end{tabular} The p$ 

|                        | OLS       | OLS       | IV  | IV  |
|------------------------|-----------|-----------|-----|-----|
|                        | (1)       | (2)       | (3) | (4) |
| % limit left           | -2.939*** | -1.625*** |     |     |
|                        | (0.386)   | (0.302)   |     |     |
| Observations           | 307,906   | 306,165   |     |     |
| Term mean              | 62.49     | 62.50     |     |     |
| Indep. var. sd.        | 0.389     | 0.387     |     |     |
| F-stat                 | -         | -         |     |     |
| Credit group & type FE | No        | Yes       |     |     |

 $Notes: \ ^{***}p < 0.001, \ ^**p < 0.01, \ ^*p < 0.05. \ Source: Federal Reserve Bank of New York's Consumer Credit Panel/Equifax data (CCP) with author's calculations.$ 

|                        | OLS       | OLS       | IV        | IV  |
|------------------------|-----------|-----------|-----------|-----|
|                        | (1)       | (2)       | (3)       | (4) |
| % limit left           | -2.939*** | -1.625*** | -8.262*** |     |
|                        | (0.386)   | (0.302)   | (0.931)   |     |
| Observations           | 307,906   | 306,165   | 307,906   |     |
| Term mean              | 62.49     | 62.50     | 62.49     |     |
| Indep. var. sd.        | 0.389     | 0.387     | 0.389     |     |
| F-stat                 | -         | -         | 220.2     |     |
| Credit group & type FE | No        | Yes       | No        |     |

Notes: \*\*\* p<0.001, \*\* p<0.01, \* p<0.05. Source: Federal Reserve Bank of New York's Consumer Credit Panel/Equifax data (CCP) with author's calculations.

|                        | OLS<br>(1) | OLS<br>(2) | IV<br>(3) | IV<br>(4) |
|------------------------|------------|------------|-----------|-----------|
| % limit left           | -2.939***  | -1.625***  | -8.262*** | -12.51*** |
|                        | (0.386)    | (0.302)    | (0.931)   | (1.925)   |
| Observations           | 307,906    | 306,165    | 307,906   | 306,165   |
| Term mean              | 62.49      | 62.50      | 62.49     | 62.50     |
| Indep. var. sd.        | 0.389      | 0.387      | 0.389     | 0.387     |
| F-stat                 | -          | -          | 220.2     | 126.4     |
| Credit group & type FE | No         | Yes        | No        | Yes       |

Notes: \*\*\* p<0.001, \*\* p<0.001, \* p<0.05. Source: Federal Reserve Bank of New York's Consumer Credit Panel/Equifax data (CCP) with author's calculations.

1 sd increase in % limit left  $\rightarrow$  4 month increase in term length

#### Robustness

- Condition on positive percent limit left
- Alternate controls:
  - Different credit bins
  - Linear age (rather than age FEs)
  - Zipcode (rather than state) FEs
- Alternate independent measurement:
  - Use lagged percent limit left
- ▶ Results

## Simple Model

### Simple Model Set-Up

#### Demand/household:

- Face uninsurable income risk
- Inherit car debt b<sub>0</sub> and risk-free assets a<sub>0</sub>
- Consume  $(c_t)$  and save  $(a_{t+1})$  in each period of life
- Choose term length: modelled as permanent repayment speed ( $\mu$ ) where  $b_t = (1 \mu)b_{t-1}$

#### Supply/lender:

- Offer interest rate schedule  $r_b(\mu)$  on car debt

where 
$$r_b'(\mu) < 0$$

## Why choose a longer term?

$$\max_{\mu, c_t, a_{t+1}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t.  $c_t + a_{t+1} + (r_b(\mu) + \mu)b_t = y_t + (1 + r_a)a_t$ 

$$a_{t+1} \ge 0$$

$$b_{t+1} = (1 - \mu)b_t = (1 - \mu)^{t+1}b_0$$

$$y_t = \rho y_{t-1} + \epsilon_t$$

Benefit lower  $\mu$ : pay less in the short term via  $(r_b(\mu) + \mu)$ 

Cost lower  $\mu$ : higher interest rate  $r_b(\mu)$  and pay more in the long term ( $b_t = (1 - \mu)^t b_0$ )

## Why choose a longer term





# Longer term lengths valued by low-liquidity households



# Households less liquidity constrained over time



## Relative cost of borrowing over time



# Longer term lengths when $r_b(\mu) - r_a$ declines



# Longer term lengths when $r_b(\mu) - r_a$ declines



# **Quantitative Model**

### Model Set-Up

In addition to simple model set up...

- Households have two discrete choices:
  - 1. Durable/loan adjustment
  - 2. Term length  $(\mu)$
- And four continuous choices:
  - 1. flexible consumption (c), risk-free assets (a), durable consumption (d), and durable loan (b)

## Non-adjusters' problem

$$\begin{split} V^{n-adj}(y,\mu,d,b,a) &= \max_{c,a'} u(c,d') + \beta \mathbb{E} \left[ V(y',\mu,d',b',a') | y \right] \\ \text{s.t. } c + a' + (\chi \delta p) d + \nu d' &= y + (1+r) a - (r^b(\mu) + \mu) b \\ a' &\geq 0 \\ d' &= (1-(1-\chi)\delta) d \\ b' &= (1-\mu) b \\ u(c,d') &= \frac{\left( c^{\alpha} d'^{1-\alpha} \right)^{1-\sigma}}{1-\sigma} \end{split}$$

## Adjusters' problem

$$egin{aligned} V_{\mu'}^{adj}(y,d,b,a) &= \max_{\{c,d',b',a'\}} u(c,d') + eta \mathbb{E}\left[V(y',\mu',d',b',a')|y
ight] \ & ext{s.t. } c + a' + (p + 
u)d' - b' = \ & y + (1+r)a + (1-f)(1-\delta)pd - (1+r^b)b \ & a' \geq 0 \ & b' \in [0,\lambda pd] \ & u(c,d') = rac{\left(c^{lpha}d'^{1-lpha}
ight)^{1-\sigma}}{1-\sigma} \end{aligned}$$

#### Discrete choices

1. Adjuster's u choice:

$$\textit{V}^{\textit{adj}}(\textit{y},\textit{d},\textit{b},\textit{a}) = \max\left\{\textit{V}^{\textit{adj}}_{\mu_1}(\textit{y},\textit{d},\textit{b},\textit{a}) + \epsilon_{\mu_1},\textit{V}^{\textit{adj}}_{\mu_2}(\textit{y},\textit{d},\textit{b},\textit{a}) + \epsilon_{\mu_2}\right\}$$

2. Whether to adjust choice:

$$V(y,\mu,d,b,a) = \max\left\{V^{adj}(y,d,b,a) + \epsilon_{adj}, V_{\mu_1}^{n-adj}(y,\mu,d,b,a) + \epsilon_{nadj}
ight\}$$

Where the  $\epsilon_x$  represent taste shocks drawn from EV1 distributions

# **Calibration targets**

| $β$ Discount factor 0.955 Liq assets/Y $\approx 0.26$ $α$ Consumption weight in preferences 0.725 D spending/C $\approx 17\%$ $κ$ Utility adjustment cost 0.65 Adj prob $\approx 0.296$ $σ^a$ Adjustment taste shock scale 0.08 Relative MPX D v. C $σ^μ$ Term choice taste shock scale 0.5 Low $μ$ share $\approx 0.6$ $σ$ Inverse EIS 2 Standard $λ$ LTV 80% Common for cars $γ$ Interest rate 1.05% Avg. Fed Funds Rate $μ$ Repayment speed 7%, 20% 5/7 year duration Interest rate on cars 5.181%, 3.08% Avg. spread on loan | Parameter      | Explanation                       | Value         | Source/Target                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------|---------------|-------------------------------|
| $\kappa$ Utility adjustment cost 0.65 Adj prob $\approx$ 0.296 $\sigma^a$ Adjustment taste shock scale 0.08 Relative MPX D v. C $\sigma^\mu$ Term choice taste shock scale 0.5 Low $\mu$ share $\approx$ 0.6 $\sigma$ Inverse EIS 2 Standard $\lambda$ LTV 80% Common for cars $\sigma$ Interest rate 1.05% Avg. Fed Funds Rate $\sigma$ Repayment speed 7%, 20% 5/7 year duration                                                                                                                                               | β              | Discount factor                   | 0.955         | Liq assets/Y $\approx$ 0.26   |
| $\sigma^a$ Adjustment taste shock scale 0.08 Relative MPX D v. C $\sigma^\mu$ Term choice taste shock scale 0.5 Low $\mu$ share $\approx$ 0.6 $\sigma$ Inverse EIS 2 Standard $\lambda$ LTV 80% Common for cars $\tau$ Interest rate 1.05% Avg. Fed Funds Rate $\mu$ Repayment speed 7%, 20% 5/7 year duration                                                                                                                                                                                                                   | α              | Consumption weight in preferences | 0.725         | D spending/C $pprox$ 17%      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\kappa$       | Utility adjustment cost           | 0.65          | Adj prob $\approx$ 0.296      |
| $\sigma$ Inverse EIS 2 Standard $\lambda$ LTV 80% Common for cars $\sigma$ Interest rate 1.05% Avg. Fed Funds Rate $\sigma$ Repayment speed 7%, 20% 5/7 year duration                                                                                                                                                                                                                                                                                                                                                            | $\sigma^{a}$   | Adjustment taste shock scale      | 0.08          | Relative MPX D v. C           |
| $\lambda$ LTV 80% Common for cars $r$ Interest rate 1.05% Avg. Fed Funds Rate $\mu$ Repayment speed 7%, 20% 5/7 year duration                                                                                                                                                                                                                                                                                                                                                                                                    | $\sigma^{\mu}$ | Term choice taste shock scale     | 0.5           | Low $\mu$ share $\approx$ 0.6 |
| rInterest rate1.05%Avg. Fed Funds Rate $\mu$ Repayment speed7%, 20%5/7 year duration                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sigma$       | Inverse EIS                       | 2             | Standard                      |
| $\mu$ Repayment speed 7%, 20% 5/7 year duration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\lambda$      | LTV                               | 80%           | Common for cars               |
| 5.404% 0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r              | Interest rate                     | 1.05%         | Avg. Fed Funds Rate           |
| r <sub>b</sub> Interest rate on cars 5.181%, 3.08% Avg. spread on loan                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mu$          | Repayment speed                   | 7%, 20%       | 5/7 year duration             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $r_b$          | Interest rate on cars             | 5.181%, 3.08% | Avg. spread on loan           |

## Adjuster policy functions



### $r_b - r_a$ shock

- Shock  $r_b r_a$  by 1pp
- Leads to change in low  $\mu$  share of households to change between 1–3pp
- Analogous to simple model, changes are driven by near-constrained rather than fully constrained households

# Conclusion

#### Conclusion

- 1. Document that cross-section variation of terms driven by liquidity
  - Novel empirical evidence showing causal effect of liquidity on term length choice
  - 1 sd decrease in liquidity  $\rightarrow$  4 month decrease in term length
  - Model importance of heterogeneity in liquidity for term choice
- 2. Document that the time-series variation of terms driven by relative cost interacted with liquidity
  - Decrease in spread between borrowing and saving rates over time
  - Causes near-constrained households to increase term lengths
  - True in simple model, and robust to quantitative model which allows durable size choice

#### **Next Steps**

1. Look at impact of liquidity considerations on other aspects of auto demand/contract (likelihood purchase, new/used, value purchase)

Can use existing dataset to begin to address some of these

- 2. Look at impact of interest rate gap interacted with liquidity considerations empirically
- 3. Use quantitative model with term choice to evaluate how MP transmission impacted

Thank you!

# **Appendix**

#### **Additional Results**

|                        | Independent variable: Share limit remaining |            |           |           |
|------------------------|---------------------------------------------|------------|-----------|-----------|
|                        | OLS                                         | OLS        | IV        | IV        |
|                        | (1)                                         | (2)        | (3)       | (4)       |
| Term Length Above 60   | -0.114***                                   | -0.0519*** | -0.401*** | -0.310*** |
|                        | (0.0143)                                    | (0.0091)   | (0.0311)  | (0.0610)  |
| Observations           | 307,906                                     | 306,165    | 307,906   | 306,165   |
| Term mean              | 62.49                                       | 62.50      | 62.49     | 62.50     |
| Indep. var. sd.        | 0.389                                       | 0.387      | 0.389     | 0.387     |
| F-stat (above 60)      | -                                           | -          | 238.2     | 131.3     |
| Credit group & type FE | No                                          | Yes        | No        | Yes       |



## First stage





### First Stage

|                        | Independent variable: Age Oldest Account (1) (2) |               |  |
|------------------------|--------------------------------------------------|---------------|--|
|                        |                                                  |               |  |
|                        |                                                  |               |  |
| Share Limit Left       | 0.000477***                                      | -0.000218 *** |  |
|                        | (0.0000140)                                      | (0.000124)    |  |
| Observations           | 307,906                                          | 306,165       |  |
| Observations           | 307,700                                          | 300,103       |  |
| Age sd.                | 113.2                                            | 113.3         |  |
| Credit group & type FE | No                                               | Yes           |  |



#### **Robustness: Alternative Controls**

|                      | Independent variable: Share limit remaining |           |           |           |
|----------------------|---------------------------------------------|-----------|-----------|-----------|
|                      | OLS                                         | OLS       | IV        | IV        |
|                      | (1)                                         | (2)       | (3)       | (4)       |
| Term Length          | -2.745***                                   | -1.404*** | -9.280*** | -12.30*** |
|                      | (0.339)                                     | (0.229)   | (0.974)   | (2.116)   |
| Observations         | 276,477                                     | 274,610   | 276,477   | 274,610   |
| Term mean            | 62.30                                       | 62.32     | 62.30     | 62.32     |
| F-stat (term length) | -                                           | -         | 227.7     | 140.3     |



#### **Robustness: Alternative Controls**

|                      | Independent variable: Share limit remaining |            |           |           |
|----------------------|---------------------------------------------|------------|-----------|-----------|
|                      | OLS OLS IV                                  |            |           |           |
|                      | (1)                                         | (2)        | (3)       | (4)       |
| Term Length Above 60 | -0.109***                                   | -0.0477*** | -0.440*** | -0.313**  |
|                      | (0.0125)                                    | (0.00727)  | (0.0323)  | (0.06664) |
| Observations         | 276,477                                     | 274,610    | 276,477   | 274,610   |
| Term mean            | 62.30                                       | 62.32      | 62.30     | 62.32     |
| F-stat (above 60)    | -                                           | -          | 266.9     | 145.4     |



### Robustness: Lagged Limit Left

|                        | Independent variable: Lagged share limit remaining |           |           |           |
|------------------------|----------------------------------------------------|-----------|-----------|-----------|
|                        | OLS                                                | OLS       | IV        | IV        |
|                        | (1)                                                | (2)       | (3)       | (4)       |
| Term Length            | -8.360***                                          | -11.70*** | -10.62*** | -9.359*** |
|                        | (0.953)                                            | (0.876)   | (1.525)   | (0.990)   |
| Observations           | 307,909                                            | 299,864   | 298,311   | 276,480   |
| Term mean              | 62.49                                              | 62.50     | 62.50     | 62.30     |
| Indep. var. sd.        | 0.389                                              | 0.311     | 0.310     | 0.397     |
| F-stat (term length)   | -                                                  | -         | 414.7     | 223.6     |
| Credit group & type FE | No                                                 | Yes       | No        | Yes       |



#### Robustness: Lagged Limit Left

|                        | 1         | Independent variable: Lagged share limit remaining |           |           |  |
|------------------------|-----------|----------------------------------------------------|-----------|-----------|--|
|                        | OLS       | OLS                                                | IV        | IV        |  |
|                        | (1)       | (2)                                                | (3)       | (4)       |  |
| Term Length Above 60   | -0.406*** | -0.529***                                          | -0.266*** | -0.445*** |  |
| <b>G</b>               | (0.0312)  | (0.0292)                                           | (0.0500)  | (0.0324)  |  |
| Observations           | 307,909   | 299,864                                            | 298,311   | 276,480   |  |
| Term mean              | 62.49     | 62.50                                              | 62.50     | 62.30     |  |
| Indep. var. sd.        | 0.389     | 0.311                                              | 0.310     | 0.397     |  |
| F-stat (above 60)      | -         | -                                                  | 346.0     | 269.7     |  |
| Credit group & type FE | No        | Yes                                                | No        | Yes       |  |
|                        |           |                                                    |           |           |  |



# Households less liquidity constrained over time

