A comparative analysis between ML models for sarcasm detection

CS3244 Project Group 21

Joshua Chew Jian Xiang Cao Ngoc Linh Chen Yiyang Ernest Lian Qi Quan Quah Xi Wen

Literature Review

Multi-rule based ensemble feature selection model for sarcasm type detection in Twitter.

Author: Sundararajan, K., & Palanisamy, A. (2020)

- Focuses on feature selection
- 15 features identified to be used in our own project

SARCASM detection using machine learning algorithms in Twitter: A systematic review

Author: Sarsam, S. M., Al-Samarraie, H., Alzahrani, A. I., & Wright, B. (2020)

- Model: SVM and CNN
- Features: lexical, pragmatic, frequency, and part-of-speech tagging
- Ensembling: Combining SVM and CNN gives the best performance

A Deeper Look into Sarcastic Tweets Using Deep Convolutional Neural Networks

Author: Poria, S., Cambria, E., Hazarika, D., Vij, P. (2017)

- Model: CNN
- **Features:** sentiment, emotion and personality features
- **Ensembling:** Combining SVM and CNN also give the best performance

Our Project

Questions We Will Answer

1. Which ML models work best for detecting sarcastic comments on their own without any context?

2. How do we **improve** these ML models to better detect sarcasm without context?

3. Why do certain ML models not perform as well for this specific task?

Dataset Exploration

Sarcasm on Reddit | Kaggle

y = df['label']

parent_commen	created_utc	е	date	downs	ups	score	subreddit	author	comment	abel
Yeah, I get that argument. At this point, I'd .	2016-10-16 23:55:23	0 2	2016-10	-1	-1	2	politics	Trumpbart	NC and NH.	0
The blazers and Mavericks (The wests 5 and 6 s.	2016-11-01 00:24:10	1 :	2016-11	-1	-1	-4	nba	Shbshb906	You do know west teams play against west teams	0
They're favored to win	2016-09-22 21:45:37	9 2	2016-09	0	3	3	nfl	Creepeth	They were underdogs earlier today, but since G	0
deadass don't kill my buz	2016-10-18 21:03:47	0 2	2016-10	-1	-1	-8	BlackPeopleTwitter	icebrotha	This meme isn't funny none of the "new york ni	0
Yep can confirm I saw the tool they use for th.	2016-12-30 17:00:13	2 2	2016-12	-1	-1	6	MaddenUltimateTeam	cush2push	I could use one of those tools.	0
	nused)	un	(u							7

Ground Truth:

Comment is **sarcastic** if it was accompanied by a '/s' tag (removed from dataset)

Sarcasm on Reddit | Kaggle - Parent Comments

y = df['label']

Ground Truth:

Comment is **sarcastic** if it was accompanied by a '/s' tag (removed from dataset)

Balanced Data

Data Preprocessing

Vector Representations

1. TF-IDF Vectors

Obtained through cross-validation with a **Naive Bayes** model TfIdfVectorizer <u>SelectKBest</u> <Sparse vector</pre> $min_df = 2$ comment of length 20000> top k = 20000 $ngram_range = (1,3)$ Generate **TF-IDF** vector for Set a limit for the number unigrams, bigrams and trigrams of features per vector

2. Keras Sentence Embeddings

The title of this article should be:

"How to not have sex ever again"

array([44204,4,272,0,...,0],
dtype=int32)

3. DocToVec Sentence Embeddings

4. WordToVec Sentence Embeddings

5. Manual Feature Extractions

I love Machine Learning! I am totally not going to totally fail! WOOHOO! :)

		<u> </u>			
Nouns	2	Exclamation marks	3	Intensifiers	3
Verbs	4	Question marks	0	Positive Intensifiers	Ø
Positive Words	2	Uppercase letters	3	Negative Intensifiers	3
Negative Words	11	>3 Repeated letters	0	Emoticon Sentiments	1
Polarity Flips	1	Interjections	1	Sentiment Score	0.7646

(2, 4, 2, 11, 1, 0.7646, 3, 0, 3, 0, 1, 3, 0, 3, 1)

6. Combining Manual Features and TF-IDF

Models

Technical Approach

1. Naive Bayes (NB)

Macroscopic Analysis - Improving Performance

Input Vectors	Hyperparameters	Training ROC-AUC	Testing ROC-AUC
TF-IDF	ngram_range=(1,1), alpha=1.0, fit_prior=True	0.723	0.669
TF-IDF	ngram_range=(1,1), alpha=1.0, fit_prior=False	0.725	0.674
TF-IDF	ngram_range=(1,3), top_k=20000, alpha=0.01, fit_prior=False	0.719	0.705
TF-IDF + 15 Manual	ngram_range=(1,3), top_k=1000000, alpha=0.3, fit_prior=False	0.829	0.711
TF-IDF + 13 Manual	ngram_range=(1,3), top_k=1000000, alpha=0.3, fit_prior=False	0.830	0.712
TF-IDF	ngram_range=(1,3), top_k=1000000, alpha=0.8, fit_prior=False	0.827	<mark>0.717</mark>

Macroscopic Analysis - TF-IDF Model

Best hyperparameters

ngram_range	(1,3)	top_k	1000000
alpha	0.8	fit_prior	False

Confusion Matrix

Actual

		Sarcastic	Not Sarcastic
icted	Sarcastic	70408	27869
Predi	Not Sarcastic	30578	73300

Classification Report (wrt. Sarcastic)

Precision	0.720
Recall	0.700
F1-Score	0.710

2. Logistic Regression (LR)

Macroscopic Analysis - Improving Performance

Input Vectors	Hyperparameters	Training ROC-AUC	Testing ROC-AUC
15 Manual Features	Default	0.573	0.572
TF-IDF + 15 Manual	C=1, ngram_range=(1,3), top_k=20000	0.748	0.649
TF-IDF + 15 Manual	C=1000, ngram_range=(1,3), top_k=20000	0.686	0.685
Keras Embeddings	Embed size=100	0.741	0.692
TF-IDF	ngram_range=(1,3) top_k=20000	0.726	0.715
TF-IDF	C=10, ngram_range=(1,3) top_k=20000	0.733	<mark>0.716</mark>

Macroscopic Analysis - Manual Feature Model

Worst input vector: 15 Manual Features

Confusion Matrix

Actual

		Sarcastic	Not Sarcastic
icted	Sarcastic	34015	19421
Pred	Not Sarcastic	66971	81748

Low recall for Sarcastic **High recall** for Non-Sarcastic

For Sarcastic label:

Precision	0.640
Recall	0.340
F1-Score	0.440

For Non-Sarcastic label:

Precision	0.550
Recall	0.810
F1-Score	0.650

Microscopic Analysis - FN

Low % of actual **sarcastic** comments detected. *Why?* Performing LIME on a **false negative** case:

Actually sarcastic; Predicted as non-sarcastic

Good to see my tax dollars are going to a good cause.

- LR model seems to place large focus on intensifiers and questions.
- Positive words not given a high weightage despite being an indication of sarcasm → possibly due to lack of context

Microscopic Analysis - TN

High % of actual **non-sarcastic** comments detected. *Why?* Performing LIME on a **true negative** case:

Actually non-sarcastic; Predicted as non-sarcastic

In Newfoundland they're called 'Mother in law doors'.

- Lack of intensifiers and questions
 - → Likely to be a factual statement
 - → Not Sarcastic!
- Small difference in probabilities between labels


```
intensifiers \leq 0.00
        questions \le 0.00
  negative intensiners ..
                            repeat_letters <= 0.00
                            0.05
positive_intensifiers <=...
                            emoticon sentiments ...
  positive\_words \le 0.00
    polarity_flip \le 0.00
                            sentiment\_score \le 0.00
                            0.02
    interjections \leq 0.00
                            -0.03 < exclamations ...</p>
                            8.00 < negative words...
    2.00 < nouns <= 4.00
     1.00 < \text{verbs} \le 2.00
   uppercase letters <=..
```

Microscopic Analysis - TN

High % of actual **non-sarcastic** comments detected. *Why?* Performing LIME on a **true negative** case:

Actually non-sarcastic; Predicted as non-sarcastic

Yeah and France has a crappy army compared to Germany and the UK cant conduct naval invasions yet since its too early.

- More negative words used
 - → Likely to be an honest opinion
 - → Not Sarcastic!

3. Support Vector Machine (SVM)

Macroscopic Analysis - Improving Performance

Likely the culprit. Failed to converge!

Input Vectors	Hyperparameters	Training ROC-AUC	Testing ROC-AUC
TF-IDF	ngram_range=(1,3) top_k=50000, max_iter=20000	0.487	0.484
TF-IDF + 15 Manual	ngram_range=(1,3) top_k=50000, max_iter=20000	0.517	0.518
15 Manual Features	Default	-	0.590

Macroscopic Analysis - Manual Feature Model

Analysed model: 15 Manual Features, max_iter=1000

Confusion Matrix

Actual

		Sarcastic	Not Sarcastic
ictec	Sarcastic	84606	81351
Pred	Not Sarcastic	16380	19818

Very high recall for Sarcastic **Very low recall** for Non-Sarcastic

For Sarcastic label:

Precision	0.510
Recall	0.840
F1-Score	0.630

For Non-Sarcastic label:

Precision	0.550
Recall	0.200
F1-Score	0.290

Microscopic Analysis - TP

High % of actual **sarcastic** comments detected. *Why?* Performing LIME on a **true positive** case:

```
Actually sarcastic; Predicted as sarcastic

Viagra is a cover up for the real cause of ED, fluoride in the tap water
```

- SVM model regards negative words and nouns as indicators of sarcasm, unlike LR
- Noun count given a higher weightage

```
meg_count > 13.00
                           0.07
                          noun count > 4.00
                           0.04
       flip count \leq 0.00
      verb\_count \le 1.00
                          sentiment score \leq 0.00
                          0.00
0.00 < repeat_count <=...
     inten count \leq 0.00
       neg_inten \le 0.00
                          inter count \leq 0.00
                           -0.03 < exclam count ...
                          quest_count <= 0.00
                          0.00 < \text{emot} <= 1.00
                          pos count \leq 0.00
0.00 < pos inten <= 1.00
                          upper_count \leq 0.00
```

Microscopic Analysis - TP

High % of actual **sarcastic** comments detected. *Why?* Performing LIME on a **true positive** case:

```
Actually sarcastic; Predicted as sarcastic

Shit I had *excellent* credit when I was an 18 year old dumb ass, Gunny.
```

Polarity flips are also well-detected

```
noun count > 4.00
                        flip count > 1.00
                         repeat_count > 1.00
                         0.03
8.00 < \text{neg count} <= ...
  upper_count \leq 0.00
   inten count \leq 0.00
     pos inten \leq 0.00
exclam_count <= -0.03
   inter count \leq 0.00
     neg_inten \le 0.00
                     0.00
2.00 < verb_count <=..
                     0.00
   quest\_count \le 0.00
                     0.00
                         sentiment score \leq 0.00
                         0.00
                         pos_count > 1.00
                         emot <= 0.00
                        0.00
```

Microscopic Analysis - FP

Low % of actual **non-sarcastic** comments detected. *Why?* Performing LIME on a **false positive** case:

Actually non-sarcastic; Predicted as sarcastic

it is a sci[ENT]ific FACT that people just hand out PhD's in religious studies!

- SVM over-emphasizes on *negative words*
- Comments that are critical but non-sarcastic can be mislabelled

```
meg_count > 13.00
                          noun_count > 4.00
                           0.05
                          repeat_count > 1.00
                          0.03
      flip\_count \le 0.00
     verb count \leq 1.00
                          inten count \leq 0.00
     inter\_count \le 0.00
    upper_count \leq 0.00
0.00 < pos inten <= 1.00
                          quest_count > 0.00
sentiment_score <= 0.00
                          0.00 < pos_count <=...
                          exclam_count > 0.36
                          0.00
      neg inten \leq 0.00
                          0.00 < \text{emot} <= 1.00
```

4. Stacked Model

Stacking Classifier

Macroscopic Analysis

Model	Input Vectors	Hyperparameters	Training ROC-AUC	Testing ROC-AUC
Stacked	TF-IDF	ngram_range=(1,3) top_k=50000	0.743	0.719
Stacked	TF-IDF + 13 Manual	ngram_range=(1,3) top_k=50000	0.744	0.725
Stacked	15 Manual Features	Default	0.578	0.579
Support Vector Machine	15 Manual Features	Default	-	0.590
Logistic Regression	TF-IDF	C=10, ngram_range=(1,3) top_k=20000	0.733	0.716
Naive Bayes	TF-IDF	ngram_range=(1,3), top_k=1000000, alpha=0.8, fit_prior=False	0.827	0.717

Macroscopic Analysis - TF-IDF + Manual Feature

Analysed model: TFIDF + 15 Manual Features

Confusion Matrix

Actual

		Sarcastic	Not Sarcastic
ictec	Sarcastic	76686	24483
Pred	Not Sarcastic	31197	69789

Improved Metrics for Sarcastic

For Sarcastic label:

Precision	0.73
Recall	0.73
F1-Score	0.73

	SVM	NB	LR
Precision	0.510	0.72	0.72
Recall	0.840	0.70	0.72
F1-Score	0.630	0.71	0.72

Microscopic Analysis - TN

Why? Performing LIME on a **true negative** case:

Actually non sarcastic; Predicted as non sarcastic

Wow, amazing trade considering tochkin is a massive bust, and we only loose out on a 4th rounder for an already developed 23 year old, and ahl depth.

 Emphasis on intensifiers and questions (similar to logistic regression) for non sarcastic labels

```
inten count \leq 0.00
quest count \leq 0.00
 neg_count > 13.00
                    sentiment_score \leq 0.00
                       0.13
                     verb count > 3.00
                     0.07
                    noun count > 4.00
                     0.07
                    pos inten > 1.00
                     0.06
                    repeat count \leq 0.00
                     0.05
       emot > 1.00
 neg_inten \le 0.00
                    exclam count > 0.49
                    0.03
inter count \leq 0.00
                    0.00 < flip_count <= 1.00
                    upper_count <= 0.00
                    pos_count > 1.00
```

Microscopic Analysis - TP

Why? Performing LIME on a **true positive** case:

Actually sarcastic; Predicted as sarcastic

Yeah because those people are running our government now and doing such a great job.

 Regards sentiment score and negative words as indicators of sarcasm (like SVM) though to a smaller extent

```
inten_count \leq 0.00
quest count \leq 0.00
                     sentiment\_score <= 0.00
                         0.14
  neg_inten \le 0.0
                      8.00 < neg count <= ...
                      repeat count \leq 0.00
                      exclam count > 0.49
 flip_count \leq 0.00
inter_count <= 0.00
                      2.00 < verb count <=...
                     0.00 < pos_inten <= 1.00
0.00 < \text{emot} <= 1.00
   pos count > 1.00
                     2.00 < noun count <=...
                     upper_count <= 0.00
```

5. Convolutional Neural Networks (CNN)

CNN Architecture

CNN Model 2

Macroscopic Analysis - Keras Embedding, 2 Models

Hyperparameters: epoch=1, vocab_size=160000, embedding_dim=200, maxlen=200

Evaluation Metrics	Model 1	Model 2	
Precision	0.7748	0.7624	
Recall	0.7092	0.7018	
F1 Score	0.7406	0.7309	
ROC-AUC	0.8327	0.8183	
	Actual Sarcastic Not Predicted Sarcastic	Actual Sarcastic Not Predicted Sarcastic	
Confusion Matrix	Sarcastic 320892 83344	Sarcastic 315816 88420	
	Not 117601 286781 Sarcastic	Not 120591 283791 Sarcastic	

CNN with Word2Vec

Architecture

main_input	InputLayer	Input	(None, 200)
		Output	(None, 200)
		+	
embedding	Embedding	Input	(None, 200)
		Output	(None, 200, 300)
conv1d	Conv1D	Input	(None, 200, 300)
		Output	(None, 197, 50)
max_pooling_1d	MaxPooling 1D	Input	(None, 197, 50)
5754 80766		Output	(None, 98, 50)
conv1d_1	Conv1D	Input	(None, 98, 50)
		Output	(None, 96, 100)
		•	79
max_pooling_1d_1 MaxPooling 1D		Input	(None, 96, 100)
		Output	(None, 48, 100)
flatten	Flatten	Input	(None, 48, 100)
, nation	, accom	Output	(None, 4800)
fully_connected	Dense	Input	(None, 4800)
	0,000,000,000,000	Output	(None, 100)
		·	
dense	Dense	Input	(None, 100)
		Output	(None, 2)

Hyperparameters	Training	Test
epoch=3, vocab_size=159591, embedding_dim=300, weights=W2V_embedding_matrix	0.7924	0.7223

Precision	Recall	F1
0.7223	0.7223	0.7223

Actual Predicted	Sarcastic	Not Sarcastic
Sarcastic	39541	11177
Not Sarcastic	16891	33468

Macroscopic Analysis - Keras Embedding

Hyperparameters	Training Accuracy	Testing Accuracy
epoch=10, vocab_size=30000, embedding_dim=200, maxlen=100	0.8524	0.6922
epoch=1, vocab_size=100000, embedding_dim=200, maxlen=100	0.7233	0.7116
epoch=1, vocab_size=30000, embedding_dim=200, maxlen=100	0.7257	0.7123
epoch=3, vocab_size=200000, embedding_dim=200, maxlen=200	0.8282	0.7213
epoch=1, vocab_size=200000, embedding_dim=200, maxlen=200	0.7507	0.7262
epoch=1, vocab_size=20000, embedding_dim=200, maxlen=200	0.7470	0.7264

Macroscopic Analysis - Keras Embedding

Analysed model: epoch=1, vocab_size=20000, embedding_dim=200, maxlen=200

Confusion Matrix

Actual

		Sarcastic	Not Sarcastic
icted	Sarcastic	79763	21406
Pred	Not Sarcastic	34332	66654

For Sarcastic label:

Precision	0.760
Recall	0.660
F1-Score	0.710

For Non-Sarcastic label:

Precision	0.700
Recall	0.790
F1-Score	0.740

Microscopic Analysis - TP

High % of actual **sarcastic** comments detected. *Why?* Performing LIME on a **true positive** case:

Actually sarcastic; Predicted as sarcastic

And you are not at all racist and hateful.

 LIME gives the "weight" for each word in the embeddings that may contribute to sarcasm

Text with highlighted words

And you are not at all racist and hateful.

Microscopic Analysis - TN

High % of actual **sarcastic** comments detected. *Why?* Performing LIME on a **true negative** case:

Actually not sarcastic; Predicted as not sarcastic

She's a pretty shitty person overall, I'll move out by next year once I have a stable income.

 LIME suggests that intensifiers in this sentence gives most contribution to the sentence being not sarcastic.

Microscopic Analysis - FP

% of actual **non-sarcastic** comments detected. *Why?* Performing LIME on a **false positive** case:

Actually not sarcastic; Predicted as sarcastic

But a liberal told me the party of Lincoln were the new democrats and we as republicans have always been racists and can't take credit for anything....

- The model over-emphasises on the words that are likely to be sarcastic
- For example, the same word 'racist' that contribute to sarcasm in the TP example before.

not sarcastc

Text with highlighted words

But a liberal told me the party of Lincoln were the new democrats and we as republicans have always been racists and can't take credit for anything....

Microscopic Analysis - FN

% of actual **sarcastic** comments detected.

Why? Performing LIME on a **false negative** case:

Actually sarcastic; Predicted as not sarcastic

If everyone was a Trump supporter the world would be a better place.

- In this example, all word choices seem normal and non-sarcastic.
- The model fails as it does not know the real world context.

Text with highlighted words

If everyone was a Trump supporter the world would be a better place.

Discussion

Why do Manual Features work poorly?

- Our manual features were found to have **low linear correlation** with sarcasm, with an R² score of **0.036**.
 - Manual features are tailored to sarcasm context but perform worse than TF-IDF and embeddings
- Embeddings perform better in CNN
 - The embedding layer is trainable
 - Words likely contributing to sarcasm are assigned greater weights
 - Embeddings are able to capture specific words while manual features do not
- Manual features work better for SVM
 - Smaller dimensions, allowing SVM to converge much faster

Answers to Our Questions

- Sarcasm detection without context is difficult even for humans much less machines.
- LR and SVM are better at detecting non-sarcasm and sarcasm respectively
 - Ensembling for better overall performance
- **CNN** performs the best for detecting sarcasm without context
 - Marginally better
 - Longer training time
 - Overfitting and higher model complexity.
- Recall is a good metric to evaluate a model for sarcasm detection

Future Research and Improvements

- Feed CNN output into SVM for final prediction
- Training the CNN with Doc2Vec embeddings
- Multicollinearity analysis on manual features

A baby learns to crawl, walk and then run. We are in the crawling stage when it comes to applying machine learning.

Dave Waters