# Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Wilhelm-Schickard-Institut für Informatik

# Bachelor Thesis Computer Science

# Higher-Order Unification for Data and Codata Types

Julia Wegendt

Date

Reviewer

Prof. Dr. Klaus Ostermann Department of Computer Science University of Tübingen

# Wegendt, Julia

Higher-Order Unification for Data and Codata Types Bachelor Thesis Computer Science Eberhard Karls Universität Tübingen Period: from-till

# Abstract

Write here your abstract.

# Acknowledgements

Write here your acknowledgements.

CONTENTS iii

# Contents

| 1 | Intr                                       | Introduction 1                          |      |  |
|---|--------------------------------------------|-----------------------------------------|------|--|
|   | 1.1                                        | Data and codata                         | 1    |  |
|   | 1.2                                        | Higher-Order Unification                | 1    |  |
| 2 | The Untyped Calculus ND                    |                                         |      |  |
|   | 2.1                                        | Syntax of the Untyped Calculus ND       | 3    |  |
|   | 2.2                                        | How is this used?                       | 3    |  |
|   | 2.3                                        | Dualities in data and codata            | 5    |  |
|   | 2.4                                        | Free Variables, Substitutions, Contexts | 5    |  |
|   | 2.5                                        | Conversion                              | 7    |  |
| 3 | Sim                                        | aple Types                              | es 8 |  |
|   | 3.1                                        | Typing Rules                            | 9    |  |
| 4 | Firs                                       | t-Order Unification 10                  |      |  |
| 5 | Hig                                        | er-Order Unification 11                 |      |  |
| 6 | Pat                                        | tern Unification                        | 13   |  |
| 7 | The Algorithm For Higher-Order Unification |                                         | 16   |  |
|   | 7.1                                        | Decomposing Constraints                 | 16   |  |
|   | 7.2                                        | Unification                             | 19   |  |
|   | 7.3                                        | The algorithm                           | 20   |  |
| 8 | $\operatorname{Lit}_{\epsilon}$            | erature review                          | 20   |  |

iv CONTENTS

## 1 Introduction

I want you to understand roughly what all the terms in the title of, as well as the goal of this thesis in the next few paragraphs.

#### 1.1 Data and codata

While data (as in algebraic data types) is a well-known concept, its brother codata is less talked about. Codata is dual to data, meaning any concept expressed using data may also be expressed through codata. On a high level: While data is concerned with how values are constructed or stored, codata is concerned with how values are destructed or used. For instance, look at these different ways to define the same tuple:

Example 1.1 (Two ways to define the same tuple).

While the first instantiation focuses on what we put into the tuple, the second focuses on how we can take its components out of it.

One form of codata often talked about is streams:

Example 1.2 (Streams).

$$Trues = \mathbf{cocase}\{\mathtt{fst} \Rightarrow \mathtt{True}, \mathtt{snd} \Rightarrow Trues\}$$

As you can see, we can also instantiate infinite codata. This is the stream that contains an infinite amount of Trues. Also notice again that there is an emphasis on how we can take things out of our stream, rather than how it is constructed.

# 1.2 Higher-Order Unification

Most people probably first encounter unification problems in school, when solving simple math problems. It is also necessary in a few important applications in computer science: Type checking and type inference, in proof assistants, as well as more particular fields like logic programming and computational linguistics.

While unification means solving equations with unknown variables, there are two major types of unification: First-order unification and higher-order unification. For the type systems in most typed programming languages, first-order unification is enough. It is only when more complex types are introduced, like in the interactive theorem prover Coq or in the programming language Agda, higher-order unification is required.

**Example 1.3** (First-order unification problems).

$$5 \equiv \alpha^? \tag{1}$$

$$\mathsf{True} \equiv \mathsf{False} \tag{2}$$

$$\mathsf{List}(\alpha^?) \equiv \mathsf{List}(\beta^?) \tag{3}$$

$$Tup(1, \alpha^?) \equiv \beta^? \tag{4}$$

Each of the given equations can be seen as their own unification problem. The first has an obvious solution  $[5/\alpha^?]$ , so substituting 5 for  $\alpha^?$  (even though there are multiple solutions even here). The second is a unification problem without unification variables, and has no solution. The second and third are both unification problems on types with 2 unification variables, and have many solutions.

**Example 1.4** (Higher-order unification problems). In this first example, we are looking for a function that when applied to 5, evaluates to 5:

$$\alpha^?.ap(5) \equiv 5 \tag{1}$$

We can think of two obvious solutions for this:  $[id/\alpha^?]$  and the constant function which always returns 5:  $[\mathbf{cocase}\{\mathbf{ap}(x)\Rightarrow 5\}/\alpha^?]$  As already implied before, sometimes our unification problems have more than one solution, but we are interested in a particular solution. This is the solution that is more general, the one from which the others can be generated. In this case however, there is no one such solution. This can only happen in higher-order unification, but this will be explored more formally below.

Another example:

$$\alpha^?.\mathbf{case}\{\mathtt{True}\Rightarrow \mathtt{1},\mathtt{False}\Rightarrow \mathtt{2}\}\equiv \mathtt{1}$$
 (2)

Here we have an example of pattern matching implementing an if-clause. If we were to substitute  $[True/\alpha^2]$ , the right side would contract to 1, since the first case matches - solving the equation.

In this thesis, I will explore a calculus that has copattern matching and a focus on codata. As the goal is to present a higher-order pattern unification algorithm for this calculus, I go over some other smaller subsets of unification, and then explain all parts of the algorithm in more detail.

# 2 The Untyped Calculus ND

I will be introducing the Untyped Calculus ND, based on ...

(4)

## 2.1 Syntax of the Untyped Calculus ND

I write  $\overline{e}$  to mean a (possibly empty) sequence:  $\overline{e} = e_1, ..., e_n$ . Constructors and destructors both get a <u>list of expressions</u> and construct or destruct terms. A pattern match  $e.\mathbf{case}\{\overline{K(\overline{x})} \Rightarrow t\}$  matches an expression e against a sequence of clauses, each clause consisting of a constructor and an term t. For a copattern match  $\mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow e\}$  the same rules apply, but instead of constructors, the expression is matched against destructors.

**Definition 2.1** (Terms of the Calculus ND).

$$e, r, s, t ::= x, y$$
 Variable  $|K(\overline{e})|$  Constructor  $|e.\mathbf{case}\{\overline{K(\overline{x})} \Rightarrow t\}$  Pattern match  $|\mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow t\}$  Copattern match  $|e.d(\overline{e})|$  Destructor

In pattern and copattern matching, every con- or destructor may occur no more than once. This is so we don't match multiple clauses (since  $\text{Tup}(x_1, x_2)$  and Tup(x, y) have the same meaning).

#### 2.2 How is this used?

To get familiar with the syntax and to understand the underlying semantics, I will go through some examples and explain what they implement.

We use constructors for types:

**Example 2.1** (Constructing Types with constructors). Simple Types like Int, Bool, ... are constructors on an empty sequence, while there are of course Types that require arguments.

Pair(Int, Bool)

Types are explored in detail and formally later on in 3.

But we also use constructors for instantiating data types:

Example 2.2 (Instantiating data with constructors).

We can use constructors to define recursive data types, as you can see from the last example. Numbers are also implemented recursively, as Peano numbers. I use actual numbers as a shorthand throughout this thesis, though.

Example 2.3 (Using pattern matching to take apart data).

$$Tup(1,2).case\{Tup(x,y) \Rightarrow x\} \tag{1}$$

$$Cons(True, Cons(False, Nil)).case\{Cons(x, y) \Rightarrow y\}$$
 (2)

This is the pattern matching you know and love. We will see later (2.9) how these get evaluated to 1 and Cons(False, Nil), respectively.

Since we use pattern matching to deconstruct data like Booleans, we can naturally also use it to implement conditionals:

Example 2.4 (Using pattern matching to represent conditionals).

$$t.\mathbf{case}\{\mathsf{True} \Rightarrow e_1, \mathsf{False} \Rightarrow e_2\}$$
 (1)

$$e.\mathbf{case}\{\mathsf{Cons}(\mathsf{True},x)\Rightarrow\mathsf{True},\mathsf{Nil}\Rightarrow\mathsf{False},\mathsf{Cons}(x,y)\Rightarrow\mathsf{False}\}$$
 (2)

The first example is equivalent to if  $t e_1$  else  $e_2$ . The second expression tests whether a given list starts with True.

Example 2.5 (Using copattern matching to instantiate codata).

$$\mathbf{cocase}\{\mathtt{fst} \Rightarrow \mathtt{1}, \mathtt{snd} \Rightarrow \mathtt{2}\}\tag{1}$$

$$TrafficLight = \mathbf{cocase}\{\mathtt{Green} \Rightarrow \mathtt{Yellow}, \mathtt{Yellow} \Rightarrow, \mathtt{Red} \Rightarrow \mathtt{Green}\}$$
 (2)

$$Trues = \mathbf{cocase}\{\mathtt{fst} \Rightarrow \mathtt{True}, \mathtt{snd} \Rightarrow Trues\}$$
 (3)

We have seen examples like this in the introduction; the first one is a tuple with the values 1 and 2.

In the second, we assume that there are destructors (on an empty sequence) for an algebraic data type that implements the colors of a traffic light. Notice again, that we could have defined our traffic light as what colors it displays (using a sum type), but chose to focus on how these colors change, what our traffic light **does**.

The third is the infinite stream of Trues.

Example 2.6 (Using destructors to take apart codata).

$$\mathbf{cocase}\{\mathsf{fst} \Rightarrow 1, \mathsf{snd} \Rightarrow 2\}.\mathsf{fst} \tag{1}$$

$$TrafficLight.$$
Green (2)

$$id.ap(5)$$
 (3)

These do exactly what you think they do: We select the first value of the tuple, and turn our traffic light Yellow, respectively We will see how these examples resolve to 1, Yellow and 5 later on. ap() is the destructor that implements function application: It applies the function on which it is "called" to the argument in the brackets.

You might have noticed already that there is no option for function definition in the syntax of our calculus. This is because we can use copattern matching to implement function definition:

Example 2.7 (Using copattern matching for function definitions).

$$id = \mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow x\}$$
 (1)

$$\mathbf{cocase}\{\mathsf{ap}(x) \Rightarrow (\mathsf{ap}(y) \Rightarrow x)\}\tag{2}$$

$$\mathbf{cocase}\{\mathtt{ap}(x) \Rightarrow (\mathtt{ap}(y) \Rightarrow y)\}\tag{3}$$

The first example implements the identity function. The second and third examples implement a function that takes two arguments, ignores one and gives back the other.

#### 2.3 Dualities in data and codata

You might have wondered why in the syntax definition, copatterns are defined first, even though they need destructors to function, which are defined afterwards. The reason becomes clear when rereading the titles of the definitions: Constructors are used to instantiate data, pattern matching is used to take apart data. Copattern matching is used to instantiate codata, destructors are used to take apart codata. The order of the syntax definitions emphasizes these conceptual dualitites. Consider one more clean example to drive the point home:

**Example 2.8** (Dualities in a tuple defined in two ways).

|             | data                                               | codata                                                                                                                     |
|-------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| instantiate | Tup(1,2)                                           | $\mathbf{cocase}\{\mathtt{fst}\Rightarrow\mathtt{1},\mathtt{snd}\Rightarrow\mathtt{2}\}$                                   |
| take apart  | $.\mathbf{case}\{\mathtt{Tup}(x,y)\Rightarrow x\}$ | .fst                                                                                                                       |
| example     | $Tup(1,2).case\{Tup(x,y) \Rightarrow x\}$          | $igc  \mathbf{cocase} \{ \mathtt{fst} \Rightarrow \mathtt{1}, \mathtt{snd} \Rightarrow \mathtt{2} \}. \mathtt{fst} \ igc $ |

## 2.4 Free Variables, Substitutions, Contexts

**Definition 2.2** (Free Variables). The set of free variables of a term e is FV(e). A term is closed if this set is empty. Free Variables are defined recursively over the structure of terms as follows:

$$FV(x) := \{x\}$$

$$FV(K(e_1, ...e_n)) := FV(e_1) \cup \cdots \cup FV(e_n)$$

$$FV(e.\mathbf{case}\{\overline{K(\overline{x}) \Rightarrow t}\}) := FV(e) \cup (FV(e_1) \setminus \overline{x}) \cup \cdots \cup (FV(e_n) \setminus \overline{x})$$

$$FV(\mathbf{cocase}\{\overline{d(\overline{x}) \Rightarrow t}\}) := (FV(e_1) \setminus \overline{x}) \cup \cdots \cup (FV(e_n) \setminus \overline{x})$$

$$FV(e.d(e_1, ...e_n)) := FV(e) \cup FV(e_1) \cup \cdots \cup FV(e_n)$$

**Definition 2.3** (Substitution). A simultaneous substitution  $\sigma$  of the terms  $e_1, ... e_n$  for the distinct variables  $x_1, ... x_n$  is defined as follows:

$$\sigma ::= [e_1, ... e_n \backslash x_1, ... x_n]$$

The set of variables for which the substitution is defined is called the domain. The set of free variables which appear in the substitution is called the range.

**Definition 2.4** (Domain and Range of a Substitution). The definitions of Domain and Range of a Substitution are as follows:

$$dom([e_1,...e_n/x_1,...x_n]) := \{x_1,...x_n\}$$
  
 
$$rng([e_1,...e_n/x_1,...x_n]) := FV(e_1) \cup \cdots \cup FV(e_n)$$

What is actually interesting is what happens when we appy a substitution to an expression

**Definition 2.5** (Action of a Substitution). The action of a substitution  $\sigma$  on a term e, written as  $e\sigma$  and is defined as follows:

$$x[e_1,...e_n/x_1,...x_n] := e_i \quad (\text{if } x = x_i)$$

$$y\sigma := y \quad (\text{if } y \notin \text{dom}(\sigma))$$

$$(K(e_1,...e_n))\sigma := K(e_1\sigma,...,e_n\sigma)$$

$$(e.\text{case}\{\overline{K(\overline{x})} \Rightarrow \overline{t}\})\sigma := (e\sigma).\text{case}\{\overline{K(\overline{y}} \Rightarrow (e\sigma')\sigma)\}$$

$$(\text{cocase}\{\overline{d(\overline{x})} \Rightarrow \overline{t}\})\sigma := \text{cocase}\{\overline{(d(\overline{y})} \Rightarrow (e\sigma')\sigma)\}$$

$$(e.d(e_1,...e_n))\sigma := (e\sigma).d(e_1\sigma,...,e_n\sigma)$$

Where  $\sigma'$  is a substitution that ensures that we don't bind new variables:  $\sigma'$  has the form  $[y_1, \ldots, y_n/x_1, \ldots x_n]$  and all  $y_i$  are fresh for both the domain and the range of  $\sigma$ .

The composition of two substitutions  $\sigma_2 \circ \sigma_1$  which is equivalent to first applying the substitution  $\sigma_1$ , then the substitution  $\sigma_2$ .

**Definition 2.6** (Composition of Substitutions). Given two substitutions

$$\sigma_1 := [e_1, ... e_n/x_1, ... x_n], \qquad \sigma_2 := [t_1, ..., t_m/y_1, ..., y_m]$$

Composition is defined as:

$$\sigma_2 \circ \sigma_1 := [e_1 \sigma_2, \dots, e_n \sigma_2, t_i, \dots, t_k / x_1, \dots x_n, y_i, \dots, y_k]$$

Where  $j, \ldots, k$  ist the greatest sub-range of indices  $1, \ldots, m$  such that none of the variables  $y_j$  to  $y_k$  is in the domain of  $\sigma_1$ 

2.5 Conversion 7

**Definition 2.7** (Idempotency). A substitution  $\sigma$  is idempotent, iff.  $\sigma \circ \sigma = \sigma$ . Concretely, this means that it doesn't matter how often we apply a substitution to a given problem.

Consider these two examples of an idempotent substitution, and one that is not idempotent:

**Example 2.9.** [cocase{ap(x)  $\Rightarrow x$ }/y] is idempotent, since:

$$[\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow x\}/y] \circ [\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow x\}/y]$$

$$=[\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow x\}[\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow x\}/y]/y]$$

$$=[\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow x\}/y]$$
(1)

On the other hand, the substitution [cocase{ap(y)  $\Rightarrow x$ }/x] is not idempotent, since:

$$[\mathbf{cocase}\{\mathsf{ap}(y) \Rightarrow x\}/x] \circ [\mathbf{cocase}\{\mathsf{ap}(y) \Rightarrow x\}/x]$$

$$=[\mathbf{cocase}\{\mathsf{ap}(y) \Rightarrow x\}[\mathbf{cocase}\{\mathsf{ap}(y) \Rightarrow x\}/x]/x]$$

$$=\mathbf{cocase}\{\mathsf{ap}(y) \Rightarrow (\mathsf{ap}(y) \Rightarrow x)\} \neq [\mathbf{cocase}\{\mathsf{ap}(y) \Rightarrow x\}/x]$$

$$(2)$$

**Definition 2.8** (More General). A substitution  $\sigma$  is more general than a substitution  $\theta$ , iff. there exists a mapping  $\tau$ , such that:  $\theta = \tau \circ \sigma$ .

For example, in the following unification problem, we are trying to substitute types for two unification variables:

#### Example 2.10.

$$\mathsf{List}(\alpha^?) \equiv \mathsf{List}(\beta^?)$$
$$\alpha^? \equiv \mathsf{Int}$$

One solution might be:  $\theta = [\mathsf{Int}, \mathsf{Int}/\alpha^?, \beta^?]$ , so substituting  $\mathsf{Int}$  for both unification variables. The more general solution is  $\sigma = [\mathsf{Int}, \alpha^?/\alpha^?, \beta^?]$ , however. This is because there exists a mapping  $\tau = [\mathsf{Int}/\alpha^?]$ , such that:

$$\tau \circ \sigma = [\mathsf{Int}/\alpha^?] \circ [\mathsf{Int}, \alpha^?/\alpha^?, \beta^?]$$
$$= [\mathsf{Int}[\mathsf{Int}/\alpha^?], \alpha^?[\mathsf{Int}/\alpha^?]/\alpha^?, \beta^?] = [\mathsf{Int}, \mathsf{Int}/\alpha^?, \beta^?] = \theta$$

#### 2.5 Conversion

**Definition 2.9** (Beta-Conversion). A single step of beta-conversion  $e_1 \equiv_{\beta}^1 e_2$  is defined as follows:

$$K(\overline{e}).\mathbf{case}\{\ldots, K(\overline{x}) \Rightarrow e, \ldots\} \equiv_{\beta}^{1} e[\overline{e}/\overline{x}]$$
 (\$\beta\$-data)  $\mathbf{cocase}\{\ldots, d(\overline{x}) \Rightarrow e, \ldots\}.d(\overline{e}) \equiv_{\beta}^{1} e[\overline{e}/\overline{x}]$  (\$\beta\$-codata)

8 3 SIMPLE TYPES

We require that the constructor  $K(\overline{e})$  and the constructor  $K(\overline{x})$  have the same number of arguments. This, in short ensures that we don't generate stuck terms, i.e. terms that can't be evaluated.

Consider the following examples:

#### Example 2.11.

$$\mathsf{True}.\mathbf{case}\{\mathsf{False}\Rightarrow\mathsf{True},\mathsf{True}\Rightarrow\mathsf{False}\}\equiv^1_\beta\mathsf{False} \tag{1}$$

$$\mathbf{cocase}\{\mathtt{ap}(x)\Rightarrow\mathtt{True}\}.\mathtt{ap}(x)\equiv^1_\beta\mathtt{True}[x/x]=\mathtt{True} \qquad (2)$$

$$\mathbf{cocase}\{\mathsf{ap}(y) \Rightarrow y\}.\mathsf{ap}(x) \equiv_{\beta}^{1} y[x/y] = x \tag{3}$$

Intuitively, beta-conversion means not only function application but also the reduction under pattern or copattern matching.

**Definition 2.10** (Eta-Conversion for codata). A single step of eta-conversion  $e_1 \equiv_{\eta}^1 e_2$  is defined as follows:

$$\mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow e.d(\overline{x})\} \equiv_{\eta}^{1} e \quad (\text{if } \overline{x} \notin FV(e))$$
  $(\eta\text{-codata})$ 

The expression e needs to be the same in all the different clauses!

**Example 2.12** (Eta-conversion for codata).

$$\mathbf{cocase}\{\mathtt{ap}(y)\Rightarrow id.\mathtt{ap}(y)\}\equiv^1_{\eta}id$$
 (1)

$$\mathbf{cocase}\{\mathtt{fst} \Rightarrow specificPair.\mathtt{fst}, \mathtt{snd} \Rightarrow specificPair.\mathtt{snd}\} \equiv_{\eta}^{1} e \qquad (2)$$
 where  $specificPair = \mathbf{case}\{\mathtt{fst} \Rightarrow \mathtt{1}, \mathtt{snd} \Rightarrow \mathtt{2}\}$ 

The first example says: The function that takes a term and applies the identity function to it, does the same thing as the identity function. In the second example, we have a pair that contains the first value of a specific pair, and the second value of a specific pair, which is obviously just that specific pair.

# 3 Simple Types

We want to be able to use the unification algorithm to discern types for given terms. To start, let's look at some examples terms and their types:

9

#### Example 3.1.

```
\begin{array}{c} \texttt{5:Int} \\ \texttt{False:Bool} \\ \texttt{Tup}(\texttt{1}, \texttt{True}) : \texttt{Pair}(\texttt{Int}, \texttt{Bool}) \\ \texttt{cocase}\{\texttt{fst} \Rightarrow \texttt{1}, \texttt{snd} \Rightarrow \texttt{True}\} : \texttt{LPair}(\texttt{Int}, \texttt{Bool}) \\ \texttt{Cons}(\texttt{1}, \texttt{Cons}(\texttt{2}, \texttt{Nil})) : \texttt{List}(\texttt{Int}) \\ \texttt{cocase}\{\texttt{ap}(x) \Rightarrow x.\texttt{case}\{\texttt{True} \Rightarrow \texttt{False}, \texttt{False} \Rightarrow \texttt{True}\}\} : \texttt{Bool} \rightarrow \texttt{Bool} \\ \texttt{Trues} = \texttt{cocase}\{\texttt{hd} \Rightarrow \texttt{True}, \texttt{tl} \Rightarrow \texttt{Trues}\} : \texttt{Stream}(\texttt{Bool}) \end{array}
```

## 3.1 Typing Rules

To be able to give our examples a formal basis, we will introduce typing rules. These will not cover all the types one could construct using our calculus, but instead all the basic composite types. This will be enough to construct examples covering each case we have to consider, and hopefully give an idea how to construct any type.

When writing  $\Gamma \vdash t : \tau$ , we mean that from the variables and their types in  $\Gamma$ , we can deduce that t has the type  $\tau$ .

$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau}\,\mathrm{Var}\qquad \overline{\Gamma\vdash \mathrm{True}:\mathrm{Bool}}\,\,\overline{\mathrm{True}}\qquad \overline{\Gamma\vdash \mathrm{False}:\mathrm{Bool}}\,\,\overline{\mathrm{False}}$$
 
$$\frac{\Gamma\vdash t_1:\tau_1\Gamma\vdash t_2:\tau_2}{\Gamma\vdash \mathrm{Tup}(t_1,t_2):\mathrm{Pair}(\tau_1,\tau_2)}\,\,\mathrm{Tup}$$
 
$$\frac{\Gamma\vdash t:\mathrm{Pair}(t_1,t_2)\qquad \Gamma,x\vdash :\tau_1,y:\tau_2,t':\tau'}{\Gamma\vdash t.\mathrm{case}\{\mathrm{Tup}(t_1,t_2)\Rightarrow t'\}:\tau'}\,\,\mathrm{Case}\text{-Pair}$$
 
$$\overline{\Gamma\vdash \mathrm{Nil}:\mathrm{List}(\tau)}\,\,\mathrm{NIL}\qquad \frac{\Gamma\vdash t_1:\tau\qquad \Gamma\vdash t_2:\mathrm{List}(\tau)}{\Gamma\vdash \mathrm{Cons}(t_1,t_2):\mathrm{List}(\tau)}\,\,\mathrm{Cons}$$
 
$$\frac{\Gamma\vdash t:\mathrm{List}(\tau')\qquad \Gamma\vdash t_1:\tau\qquad \Gamma,y:\tau',z:\mathrm{List}(\tau')\vdash t_2:\tau}{\Gamma\vdash t.\mathrm{case}\{\mathrm{Nil}\Rightarrow t_1,\mathrm{Cons}(y,z)\Rightarrow t_2\}:\tau}\,\,\mathrm{Case}\text{-List}$$
 
$$\frac{\Gamma\vdash t_1:\tau\qquad \Gamma\vdash t_2:\mathrm{Stream}(\tau)}{\Gamma\vdash \mathrm{cocase}\{\mathrm{hd}\Rightarrow t_1,\mathrm{tl}\Rightarrow t_2\}:\mathrm{Stream}(\tau)}\,\,\mathrm{STREAM}$$
 
$$\frac{\Gamma\vdash t:\mathrm{Stream}(\tau)}{\Gamma\vdash t.\mathrm{hd}:\tau}\,\,\mathrm{HD}\qquad \frac{\Gamma\vdash t:\mathrm{Stream}(\tau)}{\Gamma\vdash t.\mathrm{tl}:\mathrm{Stream}(\tau)}\,\,\mathrm{TL}$$

$$\begin{split} \frac{\Gamma \vdash t_1 : \tau_1 & \Gamma \vdash t_2 : \tau_2}{\Gamma \vdash \mathbf{cocase}\{\mathbf{fst} \Rightarrow t_1, \mathbf{snd} \Rightarrow t_2\} : \mathsf{LPair}(\tau_1, \tau_2)} \, \mathsf{LPAIR} \\ \frac{\Gamma \vdash t : \mathsf{Lpair}(\tau_1, \tau_2)}{\Gamma \vdash t . \mathsf{fst} : \tau_1} \, \mathsf{FST} & \frac{\Gamma \vdash t : \mathsf{Lpair}(\tau_1, \tau_2)}{\Gamma \vdash t . \mathsf{snd} : \tau_2} \, \mathsf{SND} \\ \frac{\Gamma \vdash t_1 : \tau_1 \to \tau_2 & \Gamma \vdash t_2 : \tau_1}{\Gamma \vdash t_1 . \mathsf{ap}(t_2) : \tau_2} \, \mathsf{APP} \\ \frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \mathbf{cocase}\{\mathsf{ap}(x) \Rightarrow t\} : \tau_1 \to \tau_2} \, \mathsf{FUN} \end{split}$$

## 4 First-Order Unification

We want to slowly make our way to higher-order unification, and thus touch on simpler problems first. Furthermore, we need a couple concepts more to be able to talk about unification problems and describe our algorithm.

The Unification Problem is described by a set of equations with expressions on each side  $\overline{e} \equiv \overline{e}$  containing unknown unification variables  $\alpha_1^2, \alpha_2^2, ...,$  where our goal is to find a simultaneous substitution  $[e_1, ..., e_n/\alpha_1^2, ..., \alpha_n^2]$  which substitutes expressions for unification variables, such that the sides of the given equations are the same (respectively).

**Definition 4.1** (Solution). A solution to a given unification problem is described by a simultaneous substitution  $[e_1, ... e_n/\alpha_1^?, ..., \alpha_n^?]$  which when applied to the problem solves it, i.e. makes the sides of the equations equal

**Definition 4.2** (Most General). A solution is the most general unifier (mgu), iff. it is more general than all other solutions.

Now let's take a look at first-order unification. Even though first-order unification is a pretty limited subproblem of higher-order unification, in many application it is all that is needed - most simple types can be constructed from terms described by first-order unification.

Consider some examples of first-order unification first. On the left is the problem, on the right its solution or  $\emptyset$  if there is no solution.

Example 4.1 (First-order unification).

$$\alpha^? \equiv \text{True}$$
  $\sigma_1 = [\text{True}/\alpha^?]$  (1)

True 
$$\equiv$$
 False  $\sigma_2 = \emptyset$  (2)

$$\operatorname{Int} \to \alpha^? \equiv \operatorname{Int} \to \operatorname{Bool} \qquad \qquad \sigma_3 = [\operatorname{Bool}/\alpha^?] \tag{3}$$

$$\alpha^? \equiv \mathsf{List}(\alpha^?) \qquad \qquad \sigma_4 = \emptyset \tag{4}$$

The forth example is an instance of a failing occurs check.

**Definition 4.3** (First-order unification).

$$e, r, s, t ::= \alpha^?, \beta^?$$
 Unification variable 
$$|x$$
 Variable 
$$|K(\overline{e})$$
 Constructor

**Theorem 4.1** (Decidability of First-Order Unification). For first-order unification, there exists an algorithm on equations  $\overline{e} \equiv e$ , which always terminates, and returns the solution if there exists one. In particular, this solution is always a mgu (i.e. if there is a solution, then there always exists a most general one).

**Definition 4.4** (Unification algorithm for First-Order Unification ).  $\bot$  is the symbol for fail. The algorithm is defined by non-deterministically applying the below rules:

$$E \cup \{e \equiv e\} \Rightarrow E$$
 (delete)  

$$E \cup \{K(e_1...e_n) \equiv K(t_1...t_n)\} \Rightarrow E \cup \{e_1 \equiv t_1, ...e_n \equiv t_n\}$$
 (decompose)  

$$E \cup \{K_1(e_1, ...e_n) \equiv K_2(t_1, ..., t_m)\} \Rightarrow \bot$$
 if  $K_1 \neq K_2$  or if  $n \neq m$  (conflict)  

$$E \cup \{e \equiv \alpha^?\} \Rightarrow E \cup \{\alpha^? \equiv e\}$$
 (swap)  

$$E \cup \{\alpha^? \equiv e\} \Rightarrow E[e/\alpha^?] \cup \{\alpha^? \equiv e\}$$
 if  $\alpha^? \in E$  and  $\alpha^? \notin e$  (eliminate)  

$$E \cup \{\alpha^? \equiv K(e_1, ...e_n)\} \Rightarrow \bot$$
 if  $\alpha^? \in e_1, ...e_n$  (occurs check)

This algorithm is based on the version presented by Martelli and Montanari in [3], adapted to our syntax.

# 5 Higher-Order Unification

**Definition 5.1** (Higher-Order Unification).

$$e, r, s, t ::= \alpha^? \sigma, \beta^? \sigma$$
 Unification Variables with substitution 
$$|x$$
 Variable 
$$|K(\overline{e})$$
 Constructor 
$$|e.\mathbf{case}\{\overline{K(\overline{x})} \Rightarrow \overline{t}\}$$
 Pattern match 
$$|\mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow \overline{t}\}$$
 Copattern match 
$$|e.d(\overline{e})$$
 Destructor

Note that this is encompassed our syntax described in 2.1, but with the addition of unification variables with substitutions. To illustrate the need for this substitution, look at what problem arises when omitting the substitution:

**Example 5.1.** In **cocase**{ap(x)  $\Rightarrow \alpha$ ?}.ap(y)  $\equiv \beta$ ?, focus on the left side and notice that there is a redex. What happens if we reduce it?

$$\mathbf{cocase}\{\mathtt{ap}(x)\Rightarrow\alpha^?\}.\mathtt{ap}(y)\equiv^1_\beta\alpha^?[y/x]$$

If we found the solution  $\sigma = [x/\alpha^2]$  through another equation, we would actually need to substitute in  $\alpha^2$ !

This motivates our need for substitutions on unification variables: Since we don't know what the unification variable will solve to, we might need to perform a substitution on it later. Note that this is *not* possible in first-order unification, since we don't create substitutions through redexes! When the substitution is trivial, we may write  $\alpha^2$ ,  $\beta^2$  instead.

In higher-order unification in contrast to in first-order unification, we are not interested in syntactic equality, but want a broader set of terms to be equal to one another. Depending on the type of unification problem one wants to solve, they may want to only include beta-equality or both beta- and eta-equality. This further motivates the use of the symbol  $\equiv$  so far. Whereas in first-order unification it just stands for syntactic equality, in higher-order unification, I use it to mean syntactically equality, beta-equality or eta-equality. This essentially means that two terms are equivalent if they are equivalent after function application, (co-)pattern matching evaluation, and/or are equivalent externally.

In the introduction (1.4), I alluded to the fact that in problems that have multiple solutions, we prefer a certain, most general solution. Let's next consider an example again:

#### Example 5.2.

$$\alpha^?.ap(5) \equiv 5$$

This problem has multiple solutions:

$$\sigma_1 = [\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow x\}/\alpha^?]$$
 identity function  $\sigma_2 = [\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow 5\}/\alpha^?]$  constant function, always returns 5

In this case, neither solution is more general. Why becomes apparent when You take a look at the action of a substitution again. Let's say we wanted to find a substitution to apply to the identity function to get the constant function. When applying a substitution to a copattern match, we substitute new variables for our bound variables to not accidentally change the meaning of the term. This prevents us from changing our function. Since neither solution is more general (and there also is no other solution that is more general), there is no mgu for this problem!

Unification problems having no mgu is specific to higher-order unification, since in first-order unification we don't look at higher-order terms and thus don't have that problem of not changing variables.

**Theorem 5.1** (Decidability of higher-order unification). Higher-order unification includes unification problems containing higher-order terms (including functions), and is covered by our introduced syntax. Higher-order unification is not decidable. This can be proven through reducing Hilbert's tenth problem to the unification problem.

Even though higher-order unification is undecidable, in many cases we can still find solutions, or conclude that there is no solution. Since we don't only want to describe higher-order unification, but the steps necessary to solve higher-order unification problems, we need to have a framework of our equations, where we can simplify our equations, and store what we have found out about our unknown variables. This is where constraints come into play:

Definition 5.2 (Constraint).

$$C ::= \top \mid \bot \mid \Psi \vdash e \equiv t$$
 where  $\Psi = x_1, ..., x_n$   
 $\mathcal{C} ::= C \wedge \mathcal{C}$ 

The variables in the Context  $\Psi$  need to be distinct.  $\Psi$  may also be empty.

 $\Psi \vdash e \equiv t$  means that given the variables  $\Psi$ , we deduce that  $e \equiv t$ .  $\Psi$  may contain variables that occur in or are even bound in e or t.  $\Psi$  contains those variables we have seen before and want to remember. This motivates the naming of  $\Psi$  as context, as well.

We formulate our constraints from a given unification problem as follows: We take each given equation and formulate a constraint K with empty context  $\Psi$ . We join them using ands:  $\overline{e \equiv t}$  become  $\mathcal{C} = C_1 \wedge ... \wedge C_n = \vdash e_1 \equiv t_1 \wedge ... \wedge \vdash e_n \equiv t_n$ 

For clarification,  $C \wedge \mathcal{C}$  is the regular logical and thus, and  $\top \wedge \mathcal{C} = \mathcal{C}$  as well as  $\bot \wedge \mathcal{C} = \bot$ . We can also apply substitutions on a set of constraints, which just means applying the substitution to the equation part of all the constraints in the set:  $\mathcal{C}\sigma = (C \wedge \mathcal{C}')\sigma = C\sigma \wedge \mathcal{C}'\sigma = \Psi \vdash e\sigma \equiv t\sigma \wedge \mathcal{C}'$ . Applying a substitution to  $\top$  or  $\bot$  changes nothing.

## 6 Pattern Unification

Pattern unification, also sometimes called the pattern fragment is a subsection of Higher-Order Unification, with its path to a solution being similarly simple as the one to first-order unification. It was described first by Miller in [4]. Since

we are dealing with what amounts to an extension to the lambda calculus, we need to extend our definition to more than just function applications. This means that (conceptually) the pattern fragment described by Miller is a subset of our definition.

**Definition 6.1** (Pattern). A pattern is any term p

$$p ::= \alpha^?, \beta^? \mid p.d(x_1, ...x_n)$$

where it holds that all  $x_1, ... x_n$  are distinct variables.

If you are familiar with other definitions of patterns, you might have noticed that we have omitted the part about the variables being bound. We require this later on when looking at patterns as subterms.

Consider some examples for patterns. On the left is the pattern unification problem and on the right its solution:

#### Example 6.1.

$$\alpha^?.ap(x).ap(y) \equiv x$$
  $\sigma_1 = [\mathbf{cocase}\{ap(x) \Rightarrow \mathbf{cocase}\{ap(y) \Rightarrow x\}\}/\alpha^?]$  (1)  
 $\alpha^?.fst \equiv 2$   $\sigma_2 = [\mathbf{cocase}\{fst \Rightarrow 2, snd \Rightarrow x\}/\alpha^?]$  (2)

**Theorem 6.1** (Decidability of Pattern Unification). Pattern Unification is decidable. If there exists a solution, there also exists a mgu.

Note that first-order unification is not a subset of pattern unification. Equations containing first-order terms that don't contain patterns still remain solvable.

The reason there always exists an mgu lies in the constraint we put on our definition: All the variables must be distinct. To illustrate this, take the following problem where the variables are **not** distinct:

#### Example 6.2.

$$\alpha$$
?.ap $(x)$ .ap $(x) \equiv x$ 

We can name two solutions:

$$\sigma_1 = [\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow \mathbf{cocase}\{\mathbf{ap}(y) \Rightarrow x\}\}/\alpha^?]$$
  
 $\sigma_2 = [\mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow \mathbf{cocase}\{\mathbf{ap}(y) \Rightarrow y\}\}/\alpha^?]$ 

(Intuitively, the solutions say to select the first or second argument of the function applications, respectively.) These solutions are equivalent, in that no solution is more general than the other. There exists no mgu for this problem. The solutions aren't unique because the variables aren't unique.

To be able to talk about the algorithms for solving unification problems, we need another definition:

**Definition 6.2** (Normal Form). The normal form **NF** is defined as follows:

$$n ::= x \mid \alpha^? \mid n.d(\overline{v}) \mid n.\mathbf{case}\{\overline{K(\overline{x})} \Rightarrow v\}$$
$$v ::= n \mid K(\overline{v}) \mid \mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow v\}$$

Terms that satisfy the n-definition are called neutral terms, v-terms are called values.

Note that these are the terms that do not contain beta-redexes. A beta-redex is a term that can be transformed using a beta-conversion. This is apparent when one tries to construct terms containing beta-redexes in normal form: To construct the first kind of beta-redex:  $K(\overline{e})$ .case $\{\ldots, K(\overline{x}) \Rightarrow e\}$ , we start with the term n.case $\{\overline{K(\overline{x})} \Rightarrow v\}$ , now wanting to subtitute  $K(\overline{e})$  for n. This is not possible because we are limited to neutral terms, which constructors are not part of. Similarly with the second kind of beta-redex:  $\mathbf{cocase}\{\ldots, d(\overline{x}) \Rightarrow e, \ldots\}.d(\overline{e})$ , where we can not substitute the cocase in  $n.d(\overline{e})$  because we are limited to neutral terms.

This underlines the intuition that neutral terms are terms that cannot be reduced because they contain an term we can't further evaluate (either a variable or a unification variable) in the front. Even though we don't have this assurance in values, that is not a problem since values don't contain the building blocks for beta-reductions. Some examples:

## Example 6.3.

$$\alpha^?$$
.ap(cocase{ap(x)  $\Rightarrow x$ }) (1)

$$\mathbf{cocase}\{\mathtt{ap}(x)\Rightarrow\mathtt{Cons}(x,\mathtt{Cons}(y,\mathtt{Nil}))\}\tag{2}$$

$$\alpha^?.\mathsf{ap}(x_1, x, y, z) \tag{3}$$

The first and second example are in normal form and the third is a pattern in normal form.

**Theorem 6.2.** If and only if a unification problem has a solution, that solution is the same for the normal form of that problem. The same thing holds for the other way around: If and only if a normal form has a solution, that solution is the same for the extended expression of that normal form.

This is helpful for us, since we only have to consider normal forms in our algorithm. Concretely: Met with a term, we first reduce it to its normal form, and then apply the steps to find our solution. From this point on, we will only be looking at terms that have a normal form. This is enough in most applications.

For a practical example for why normal forms are helpful, consider the following problem:

**Example 6.4** (Beta-reductions before solving).

$$True.case\{True \Rightarrow \alpha^?, False \Rightarrow 2\} \equiv 3 \tag{1}$$

has the solution  $[3/\alpha^2]$ , but this is more obvious after using a beta-reduction on the left side to bring it into normal form:

True.case{True 
$$\Rightarrow \alpha^?$$
, False  $\Rightarrow$  2}  $\equiv^1_{\beta} \alpha^?$   $\implies \alpha^? \equiv 3$ 

Let's take a look at another example of a using beta-conversion:

$$\alpha^? \equiv {\tt True} \qquad (2)$$
 
$$\alpha^?.{\tt case} \{ {\tt True} \Rightarrow {\tt 2}, {\tt False} \Rightarrow {\tt 3} \} \equiv \beta^?$$

To find out that  $[2/\beta^?]$  is the solution to the second equation, we first need to find out that  $[\text{True}/\alpha^?]$  is the solution to the first equation and substitute it in the second. This is what is called **dynamic pattern unification**, where we hold off on solving some equations we don't have all the information for yet until we know more.

# 7 The Algorithm For Higher-Order Unification

## 7.1 Decomposing Constraints

It is helpful to simplify our equations a bit before starting the unification process. We do this by taking out redundant equations, spotting clearly contradictory equations or splitting our equations into smaller parts which we can further simplify and unify.

Let's look at some examples. We would like the following to be true:

**Example 7.1** (There are two kinds of variables!).

$$x \vdash x.\mathtt{fst} \equiv x.\mathtt{fst}$$
  $\mapsto \top$   $x \vdash x.\mathtt{fst} \equiv x.\mathtt{snd}$   $\mapsto \bot$   $x, y \vdash x.\mathtt{fst} \equiv y.\mathtt{fst}$   $\mapsto \bot$ 

These examples might be confusing at first. Looking at the second example, one might argue that there exists a pair, say  $x = \mathbf{cocase}\{\mathbf{fst} \Rightarrow 2, \mathbf{snd} \Rightarrow 2\}$ , such that  $x.\mathbf{fst} = x.\mathbf{snd}$ . This is where it is important to remember that we are not looking for solutions to variables like x. Whereas to our unification variables  $\alpha^2$  we want to assign any term such that our equations hold,

variables x add **constraints** to our equations. The equation  $x \vdash x.\mathtt{fst} \equiv x.\mathtt{snd}$  must hold for **any** variable x, since we cannot choose x! Since for  $x = \mathtt{cocase}\{\mathtt{fst} \Rightarrow \mathtt{2}, \mathtt{snd} \Rightarrow \mathtt{3}\}$ , the equation does not hold, we can simplify to  $\bot$ .

Example 7.2 (Constructors and Destructors).

$$\vdash \mathsf{Cons}(x, \mathsf{Nil}) \equiv \mathsf{Cons}(y, \mathsf{Nil}) \qquad \mapsto \bot \qquad (1)$$

$$\vdash \mathsf{Cons}(\alpha^?, \mathsf{Nil}) \equiv \mathsf{Cons}(\beta^?, \mathsf{Nil}) \qquad \mapsto \alpha^? \equiv \beta^? \qquad (2)$$

$$\vdash \mathsf{List}(\mathsf{Int}) \equiv \mathsf{List}(\alpha^?) \qquad \mapsto \vdash \mathsf{Int} \equiv \alpha^? \qquad (3)$$

$$x \vdash x.\mathsf{ap}(e_1) \equiv x.\mathsf{ap}(e_2) \qquad \mapsto x \vdash e_1 \equiv e_2 \qquad (4)$$

$$\vdash \alpha^?.\mathsf{fst} \equiv \beta^?.\mathsf{fst} \qquad \mapsto \vdash \alpha^? \equiv \beta^? \qquad (5)$$

**Example 7.3** (Pattern and Copattern Matching).

$$x \vdash x.\mathbf{case}\{\mathsf{T} \Rightarrow e_2, \mathsf{F} \Rightarrow e_2\} \equiv x.\mathbf{case}\{\mathsf{T} \Rightarrow t_1, \mathsf{F} \Rightarrow t_2\}^* \tag{1}$$

$$\mapsto x \vdash e_1 \equiv t_1 \land x \vdash e_2 \equiv t_2$$

$$\vdash \mathbf{cocase}\{\mathsf{ap}(x) \Rightarrow \alpha^?\} \equiv \mathbf{cocase}\{\mathsf{ap}(x) \Rightarrow \beta^?\} \qquad \mapsto x \vdash \alpha^? \equiv \beta^? \tag{2}$$

$$\mathbf{cocase}\{\mathsf{fst} \Rightarrow \mathsf{5}, \mathsf{snd} \Rightarrow \mathsf{False}\} \equiv \alpha^? \tag{3}$$

$$\mapsto \vdash \mathsf{5} \equiv \alpha^?.\mathsf{fst} \land \vdash \mathsf{False} \equiv \alpha^?.\mathsf{snd}$$

Note that all of these examples are in normal form, i.e. they don't contain redexes. This means the only way for the terms on each side of the equations to be equivalent, is for them to be equivalent **syntactically**.

We want to formulate rules which help us simplify equations like these; equations without beta-redexes. We want remove redundant constraints, split constraints made up of composite terms to find solutions to their parts, and spot redundancies to prematurely stop the solving process.

<sup>\*</sup>T and F are stand-ins for True and False.

#### **Definition 7.1** (Decomposing Constraints).

#### Removing redundancy

$$\Psi \vdash x \equiv x \qquad \qquad \mapsto_r \top \tag{1}$$

$$\Psi \vdash \alpha^? \equiv \alpha^? \qquad \qquad \mapsto_r \top \tag{2}$$

$$\Psi \vdash K() \equiv K() \qquad \qquad \mapsto_r \top \tag{3}$$

#### Decomposition

$$\circ \Psi \vdash K(\overline{e}) \equiv K(\overline{t}) \qquad \qquad \mapsto_d \overline{\Psi \vdash e \equiv t} \tag{4}$$

$$\circ \Psi \vdash e_1.d(\overline{e}) \equiv e_2.d(\overline{t})$$

$$\mapsto_d \Psi \vdash e_1 \equiv e_2 \land \overline{\Psi \vdash e \equiv t} \tag{5}$$

$$*\Psi \vdash e_1.\mathbf{case}\{\overline{K(\overline{x})} \Rightarrow e\} \equiv e_2.\mathbf{case}\{\overline{K(\overline{x})} \Rightarrow t\}$$

$$\mapsto_d \Psi \vdash e_1 \equiv e_2 \land \overline{\Psi, \overline{x} \vdash e \equiv t} \tag{6}$$

$$*\Psi \vdash \mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow e\} \equiv \mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow t\} \qquad \mapsto_d \overline{\Psi, \overline{x}} \vdash e \equiv t \tag{7}$$

$$\Psi \vdash \mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow e\} \equiv t \qquad \qquad \mapsto_d \overline{\Psi, \overline{x} \vdash e \equiv t.d(\overline{x})} \quad (8)$$

$$\Psi \vdash t \equiv \mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow e\} \qquad \qquad \mapsto_d \overline{\Psi, \overline{x} \vdash t.d(\overline{x})} \equiv e \qquad (9)$$

#### **Eta-reduction**

$$\Psi \vdash \mathbf{cocase}\{\overline{d(\overline{x})} \Rightarrow e.d(\overline{x})\} \equiv t \qquad \qquad \mapsto_e \Psi \vdash e \equiv t \qquad (10)$$

#### Removing contradictions

$$\Psi \vdash x \equiv y \qquad \qquad \mapsto_c \bot \tag{11}$$

$$\Psi \vdash K_1() \equiv K_2() \qquad \qquad \mapsto_c \bot \tag{12}$$

non-matching \*-equation 
$$\mapsto_c \bot$$
 (13)

Rules 7-9 are taken from [1], adapted to our syntax.

For equations marked with \*, we require the constructors (or destructors) to be equal to one another in each equation. We also require them to have the same list of variables as arguments, respectively (i.e. full syntactic equality). For equations marked with  $\circ$ , we only require the constructors (or destructors) to be equal to one another in each equation. (i.e. no syntactic equality among arguments required). This is because in \*-equations, we expect variables, whereas in  $\circ$ -arguments, we expect values (since we expect terms in normal form). In \*-equations where the arguments are not equal syntactically, rule 13 applies and we simplify to  $\perp$ :

#### Example 7.4 (Contradiction in (co-)pattern matching).

$$\vdash x.\mathbf{case}\{\mathsf{True} \Rightarrow \alpha^?, \mathsf{False} \Rightarrow \beta^?\} \equiv x.\mathbf{case}\{1 \Rightarrow \alpha^?, 2 \Rightarrow \beta^?\} \quad \mapsto_c \bot \quad (1)$$

$$\vdash \mathbf{cocase}\{\mathbf{fst} \Rightarrow 1, \mathbf{snd} \Rightarrow 2\} \equiv \mathbf{cocase}\{\mathbf{ap}(x) \Rightarrow 1\} \qquad \qquad \mapsto_c \bot \quad (2)$$

7.2 Unification 19

Note that 8 (as well as 9 with being just the mirror of 8) are possible through eta-conversion:

(Annotations on the right are supposed to show what rule is being used to get to the statement below.)

#### 7.2 Unification

What do we do when we can't simplify anymore? How do we actually find the solutions?

Let's start with an example. Take a look at the following unification problem:

#### Example 7.5.

$$\mathtt{Tup}(\alpha^?,\mathtt{False}) \equiv \mathtt{Tup}(\mathtt{True},\mathtt{False})$$
  
 $\beta^? \equiv \alpha^?.\mathtt{case}\{\mathtt{True} \Rightarrow \mathtt{1},\mathtt{False} \Rightarrow \mathtt{5}\}$ 

I will demonstrate how we want to solve this, introducing what to do when we found a solution.

$$\mathcal{C} = \qquad \vdash \mathsf{Tup}(\alpha^?, \mathsf{False}) \equiv \mathsf{Tup}(\mathsf{True}, \mathsf{False}) \qquad \land \vdash \beta^? \equiv \alpha^?. \mathbf{case} \{ \mathsf{True} \Rightarrow \mathsf{1}, \mathsf{False} \Rightarrow \mathsf{5} \}$$
 
$$\stackrel{(5)}{\longmapsto}_d \quad \vdash \alpha^? \equiv \mathsf{True}, \vdash \mathsf{False} \equiv \mathsf{False} \qquad \land \vdash \beta^? \equiv \alpha^?. \mathbf{case} \{ \mathsf{True} \Rightarrow \mathsf{1}, \mathsf{False} \Rightarrow \mathsf{5} \}$$
 
$$\vdash_u \quad \vdash \alpha^? \equiv \mathsf{True} \qquad \qquad \land \vdash \beta^? \equiv \mathsf{True}. \mathbf{case} \{ \mathsf{True} \Rightarrow \mathsf{1}, \mathsf{False} \Rightarrow \mathsf{5} \}$$
 
$$\stackrel{\equiv_{\beta}^1}{\equiv} \quad \vdash \alpha^? \equiv \mathsf{True} \qquad \qquad \land \vdash \beta^? \equiv \mathsf{1}$$

This is what the example tells us: When we have found an assignment to a unification variable, we want to keep it in our constraints! This is because we sometimes have to substitute that assignment in other constraints that contain the same unification variable. Doing so might introduce redexes!

**Definition 7.2** (Unification).

$$e \equiv \alpha^? \qquad \qquad \mapsto_u \alpha^? \equiv e$$
 (1)

$$\mathcal{C} \wedge \Psi \vdash \alpha^? \equiv e \qquad \qquad \mapsto_u \mathcal{C}[e/\alpha^?] \wedge \Psi \vdash \alpha^? \equiv e \qquad (\alpha^? \notin e) \qquad (2)$$

$$C \wedge \Psi \vdash \alpha^? \equiv e \qquad \qquad \mapsto_u \bot \qquad (\alpha^? \in e) \tag{3}$$

Step 2 and 3 are the occurs check.

## 7.3 The algorithm

We have described steps of the algorithm so far. How and when do we apply these steps?

Given a set of equations, we normalize the terms in them and are left with only normal forms. For each equation, we formulate a constraint and get the set of constraints through logical ands. Next, we decompose the constraints, removing redundancies and potentially terminating early since we find contradictions. We do this non-deterministically, since the order doesn't matter.

When we can't further simplify, we non-deterministically apply unification and decomposition steps. When we have found an assigned term for each unification variable, we can terminate and give the solution by formulating a substitution for each assigned term.

This algorithm works on any pattern unification problem, and in particular, any unification problem that can be reduced to a pattern unification problem.

## 8 Literature review

REFERENCES 21

In [2], Huet's algorithm is described.

## References

[1] A. Abel and B. Pientka. Higher-order dynamic pattern unification for dependent types and records. In *Proceedings of the 10th International Conference on Typed Lambda Calculi and Applications*, TLCA'11, page 10–26, Berlin, Heidelberg, 2011. Springer-Verlag.

- [2] G. Dowek. Higher-order unification and matching. In J. A. Robinson and A. Voronkov, editors, *Handbook of Automated Reasoning (in 2 volumes)*, pages 1009–1062. Elsevier and MIT Press, 2001.
- [3] A. Martelli and U. Montanari. An efficient unification algorithm. *ACM Trans. Program. Lang. Syst.*, 4(2):258–282, Apr. 1982.
- [4] D. MILLER. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification. *Journal of Logic and Computation*, 1(4):497–536, 09 1991.

22 REFERENCES

# Selbständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig und nur mit den angegebenen Hilfsmitteln angefertigt habe und dass alle Stellen, die dem Wortlaut oder dem Sinne nach anderen Werken entnommen sind, durch Angaben von Quellen als Entlehnung kenntlich gemacht worden sind. Diese Bachelorarbeit wurde in gleicher oder ähnlicher Form in keinem anderen Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift