Natural Language Processing with Deep Learning CS224N/Ling284

Christopher Manning

Lecture 12: Information from parts of words:

Subword Models

Morphemes

Announcements (Changes!!!)

- Assignment 5 written questions
 - Will be updated tomorrow

- Final Projects due: Fri Mar 13, 4:30pm
- Survey

Announcements

Assignment 5:

- Adding convnets and subword modeling to NMT
- Coding-heavy written questions-light
- The complexity of the coding is similar to A4, but:
- We give you much less help!
 - Less scaffolding, less provided sanity checks, no public autograder
 - You write your own testing code
- A5 is an exercise in learning to figure things out for yourself
- Essential preparation for final project and beyond
- You now have 7 days—budget time for training and debugging
- Get started soon!

Lecture Plan

Lecture 12: Information from parts of words: Subword Models

- 1. A tiny bit of linguistics (10 mins)
- Purely character-level models (10 mins)
- Subword-models: Byte Pair Encoding and friends (20 mins)
- 4. Hybrid character and word level models (30 mins)
- fastText (5 mins)

1. Human language sounds: Phonetics and phonology

- Phonetics is the sound stream uncontroversial "physics"
- Phonology posits a small set or sets of distinctive, categorical units: phonemes or distinctive features 音素
 - A perhaps universal typology but language-particular realization
 - Best evidence of categorical perception comes from phonology
 - Within phoneme differences shrink; between phoneme magnified

CONSONANT	rs (Pt	LMC	ONIC)																	6	200	5 IPA
	Bile	binl	Labia	dental	Des	tal	Alve	oolar	Porta	dveclar	Retroflex		Polatel		Velar		Uvular		Phoryngeal		Glottal	
Plosive	p	b					t	d			t	þ	c	J	k	g	q	G			?	
Nasal		m		nj				п				η		Jì		ŋ		N				
Trill		В						r										R				
Tap or Flap				V				r				t							20			
Pricarive	ф	β	f	v	θ	ð	S	Z	ſ	3	S	Z,	ç	j	х	Y	χ	R	ħ	ς	h	ĥ
Lateral friestive			7-110				1	ķ									-		-			
Approximent				υ	1					4		j		щ								
Lateral approximant					1					1		λ		L								

caught cot cat

病忘

Morphology: Parts of words

语义单位

- Traditionally, we have morphemes as smallest semantic unit
 - [[un [[fortun(e)]_ROOT] ate]_{STEM}]_{STEM} ly]_{WORD}
- Deep learning: Morphology little studied; one attempt with recursive neural networks is (Luong, Socher, & Manning 2013)

A possible way of dealing with a larger vocabulary – most unseen words are new morphological forms (or numbers)

Morphology

- An easy alternative is to work with character n-grams
 - Wickelphones (English past tns Rumelhart & McClelland 1986)
 - Microsoft's DSSM (Huang, He, Gao, Deng, Acero, & Hect 2013)
- Related idea to use of a convolutional layer
- Can give many of the benefits of morphemes more easily??

Words in writing systems

Writing systems vary in how they represent words – or don't

- No word segmentation 安理会认可利比亚问题柏林峰会成果
- Words (mainly) segmented: This is a sentence with words.
 - Clitics/pronouns/agreement?
 - Separated **Je vous ai apporté** des bonbons
 - so+said+we+it = فقلناها = so+said+we
 - Compounds?
 - Separated life insurance company employee
 - Joined Lebensversicherungsgesellschaftsangestellter

Models below the word level

- Need to handle large, open vocabulary
 - Rich morphology: nejneobhospodařovávatelnějšímu ("to the worst farmable one")
 - Transliteration: Christopher → Kryštof
 - Informal spelling:

Character-Level Models

- 1. Word embeddings can be composed from character embeddings
 - Generates embeddings for unknown words
 - Similar spellings share similar embeddings
 - Solves OOV problem
- 2. Connected language can be processed as characters

Both methods have proven to work very successfully!

 Somewhat surprisingly – traditionally, phonemes/letters weren't a semantic unit – but DL models compose groups

Below the word: Writing systems

Most deep learning NLP work begins with language in its written form – it's the easily processed, found data

But human language writing systems aren't one thing!

- Phonemic (maybe digraphs) jiyawu ngabulu
- · Fossilized phonemic 僵龙之thorough failure
- Syllabic/moraic <u>ちん/ 露担つ</u> していしてい
- Ideographic (syllabic) 多形 去年太空船二号坠毁
- Combination of the above インド洋の島

Wambaya

English

Inuktitut

Chinese

Japanese

2. Purely character-level models

- We saw one good example of a purely character-level model last lecture for sentence classification:
 - Very Deep Convolutional Networks for Text Classification
 - Conneau, Schwenk, Lecun, Barrault. EACL 2017
- Strong results via a deep convolutional stack

Purely character-level NMT models

- Initially, unsatisfactory performance
 - Vilar et al., 2007; Neubig et al., 2013
- Decoder only
- Some LM Model also use char-base to solve
- Junyoung Chung, Kyunghyun Cho, Yoshua Bengio. arXiv
- Then promising results
 - Wang Ling, Isabel Trancoso, Chris Dyer, Alan Black, arXiv
 2015
 - Thang Luong, Christopher Manning, ACL 2016
 - Marta R. Costa-Jussà, José A. R. Fonollosa, ACL 2016

English-Czech WMT 2015 Results

- Luong and Manning tested as a baseline a pure character-level seq2seq (LSTM) NMT system
- It worked well against word-level baseline
- But it was ssllooooww
 - 3 weeks to train ... not that fast at runtime

System	BLEU			
Word-level model (single; large vocab; UNK replace)	15.7			
Character-level model (single; 600-step backprop)	15.9			

English-Czech WMT 2015 Example

source	Her 11-year-old daughter , Shani Bart , said it felt a little bit weird						
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvlášt						
char	Její jedenáctiletá dcera , Shani Bartová , říkala , že cítí trochu <i>divně</i>						
word	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>						
	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>						

System	BLEU
Word-level model (single; large vocab; UNK replace)	15.7
Character-level model (single; 600-step backprop)	15.9

Fully Character-Level Neural Machine Translation without Explicit Segmentation

Jason Lee, Kyunghyun Cho, Thomas Hoffmann. 2017. Encoder as below; decoder is a char-level GRU

Cs-En	WMT 15	Test			
Source	Target	BLEU			
Вре	Bpe	20.3			
Вре	Char	22.4			
Char	Char	22.5			

Stronger character results with depth in LSTM seq2seq model

Revisiting Character-Based Neural Machine Translation with Capacity and Compression. 2018. Cherry, Foster, Bapna, Firat, Macherey, Google Al

3. Sub-word models: two trends

- Same architecture as for word-level model:
 - But use smaller units: "word pieces"
 - [Sennrich, Haddow, Birch, ACL'16a], Borrow from [Chung, Cho, Bengio, ACL'16].

 Mophene
- Hybrid architectures:
 - Main model has words; something else for characters
 - [Costa-Jussà & Fonollosa, ACL'16], [Luong & Manning, ACL'16].

Byte Pair Encoding PPE

- Originally a compression algorithm:
 - Most frequent byte pair → a new byte.
 Leplace bytes with character ngrams

Replace bytes with character narams

(though, actually, some people have done interesting things with bytes)

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of Rare Words with Subword Units. ACL 2016.

> https://arxiv.org/abs/1508.07909 https://github.com/rsennrich/subword-nmt https://github.com/EdinburghNLP/nematus

A word segmentation algorithm:

- Though done as bottom up clustering
- Start with a unigram vocabulary of all (Unicode)
 characters in data
- Most frequent ngram pairs → a new ngram

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs → a new ngram

Dictionary

- 5 low
- 2 lower
- 6 newest
- 3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d

Start with all characters in vocab

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs
 → a new ngram

Dictionary

- 5 low
- 2 lower
- 6 new**es**t
- 3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, **es**

Add a pair (e, s) with freq 9

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs
 → a new ngram

Dictionary

- 5 low
- 2 lower
- 6 newest
- 3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, **est**

Add a pair (es, t) with freq 9

- A word segmentation algorithm:
 - Start with a vocabulary of characters
 - Most frequent ngram pairs
 → a new ngram

Dictionary

- 5 **lo** w
- 2 **lo** wer
- 6 newest
- 3 widest

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, est, **lo**

Add a pair (1, 0) with freq 7

- Have a target vocabulary size and stop when you reach it
- Do deterministic longest piece segmentation of words
- Segmentation is only within words identified by some prior tokenizer (commonly Moses tokenizer for MT)
- Automatically decides vocab for system
 - No longer strongly "word" based in conventional way

Top places in WMT 2016! Still widely used in WMT 2018

- Google NMT (GNMT) uses a variant of this
 - V1: wordpiece model
 - V2: sentencepiece model
- Rather than char n-gram count, uses a greedy approximation to maximizing language model log likelihood to choose the pieces
 - Add n-gram that maximally reduces perplexity

- Wordpiece model tokenizes inside words
- Sentencepiece model works from raw text
 - Whitespace is retained as special token (_) and grouped normally
 - You can reverse things at end by joining pieces and recoding them to spaces

- https://github.com/google/sentencepiece
- https://arxiv.org/pdf/1804.10959.pdf

- BERT uses a variant of the wordpiece model
 - (Relatively) common words are in the vocabulary:
 - at, fairfax, 1910s
 - Other words are built from wordpieces:
 - hypatia = h ##yp ##ati ##a

 If you're using BERT in an otherwise word based model, you have to deal with this

from transformers import BertModel, BertTokenizer
import torch

4. Character-level to build word-level

Learning Character-level Representations for Part-of-Speech Tagging (Dos Santos and Zadrozny 2014)

- Convolution over characters to generate word embeddings
- Fixed window of word embeddings used for PoS tagging

Character-based LSTM to build word rep'ns

Bi-LSTM builds word representations

Ling, Luís, Marujo, Astudillo, Amir, Dyer, Black, Trancoso. **Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation**. EMNLP'15.

Character-based LSTM

Recurrent Language Model

Bi-LSTM builds word representations

Used as LM and for POS tagging

Ling, Luís, Marujo, Astudillo, Amir, Dyer, Black, Trancoso. Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation. EMNLP'15.

Character-Aware Neural Language Models Yoon Kim, Yacine Jernite, David Sontag, Alexander M. Rush. 2015

A more complex/sophisticated approach Motivation

- Derive a powerful, robust language model effective across a variety of languages.
- Encode subword relatedness: eventful, eventfully, uneventful...
- Address rare-word problem of prior models.
- Obtain comparable expressivity with fewer parameters.

Technical Approach

Convolutional Layer

- Convolutions over character-level inputs.
- Max-over-time pooling (effectively n-gram selection).

Highway Network (Srivastava et al. 2015)

- Model *n*-gram interactions.
- Apply transformation while carrying over original information.
- Functions akin to an LSTM cell.

Long Short-Term Memory Network

Highway Network Output

- Hierarchical Softmax to handle large output vocabulary.
- Trained with truncated backprop through time.

Quantitative Results

				DAT	A-S		
		Cs	DE	Es	FR	Ru	AR
Darko	KN-4	545	366	241	274	396	323
Botha	MLBL	465	296	200	225	304	-
	Word	503	305	212	229	352	216
Small	Morph	414	278	197	216	290	230
	Char	401	260	182	189	278	196
Large	Word	493	286	200	222	357	172
	Morph	398	263	177	196	271	148
	Char	371	239	165	184	261	148

		DATA-L					
		Cs	DE	Es	FR	RU	EN
Botha	KN-4	862	463	219	243	390	291
	MLBL	643	404	203	227	300	273
Small	Word	701	347	186	202	353	236
	Morph	615	331	189	209	331	233
	Char	578	305	1 69	190	313	216

Comparable performance with fewer parameters!

	PPL	Size
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN [†] (Mikolov et al. 2012)	124.7	6 m
RNN-LDA [†] (Mikolov et al. 2012)	113.7	7 m
genCNN [†] (Wang et al. 2015)	116.4	8 m
FOFE-FNNLM [†] (Zhang et al. 2015)	108.0	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net [†] (Cheng et al. 2014)	100.0	5 m
LSTM-1 [†] (Zaremba et al. 2014)	82.7	20 m
LSTM-2 [†] (Zaremba et al. 2014)	78.4	52 m

Qualitative Insights

			In Vocabulary	y	
	while	his	you	richard	trading
LSTM-Word	although letting though minute	your her my their	conservatives we guys t	jonathan robert neil nancy	advertised advertising turnover turnover
LSTM-Char (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading
LSTM-Char (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader

Qualitative Insights

computer-aided	misinformed	looooook
_	-	-
_	_	-
-	-	-
-	-	-
computer-guided	informed	look
computerized	performed	cook
disk-drive	transformed	looks
computer	inform	shook
computer-guided	informed	look
computer-driven	performed	looks
computerized	outperformed	looked
computer	transformed	looking

Take-aways

- Paper questioned the necessity of using word embeddings as inputs for neural language modeling.
- CNNs + Highway Network over characters can extract rich semantic and structural information.
- Key thinking: you can compose "building blocks" to obtain nuanced and powerful models!

Hybrid NMT

- A best-of-both-worlds architecture:
 - Translate mostly at the word level
 - Only go to the character level when needed
- More than 2 BLEU improvement over a copy mechanism to try to fill in rare words

Thang Luong and Chris Manning. **Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models**. ACL 2016.

2-stage Decoding

Word-level beam search

2-stage Decoding

Word-level beam search

 Char-level beam search for <unk> cat

Init with word hidden states.

<unk> chat

<unk>chat

English-Czech Results

- Train on WMT'15 data (12M sentence pairs)
 - newstest2015

Systems	BLEU	
Winning WMT'15 (Bojar & Tamchyna, 2015)	18.8	30x data 3 systems
Word-level NMT (Jean et al., 2015)	18.3	Large vocab + copy mechanis

English-Czech Results

- Train on WMT'15 data (12M sentence pairs)
 - newstest2015

Systems	BLEU	
Winning WMT'15 (Bojar & Tamchyna, 2015)	18.8	30x data 3 systems
Word-level NMT (Jean et al., 2015)	18.3	Large vocab + copy mechanism
Hybrid NMT (Luong & Manning, 2016)*	20.7	Then

source	The author Stephen Jay Gould died 20 years after diagnosis .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .
char	Autor Stepher Stepher zemřel 20 let po diagnóze .
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po po .
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .

translation!

source	The author Stephen Jay Gould died 20 years after diagnosis .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .
char	Autor Stepher Stepher zemřel 20 let po diagnóze.
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
word	Autor Stephen Jay Gould zemřel 20 let po po .
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .

• *Char*-based: wrong name translation

source	The author Stephen Jay Gould died 20 years after diagnosis .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze.
char	Autor Stepher Stepher zemřel 20 let po diagnóze .
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
word	Autor Stephen Jay Gould zemřel 20 let po po .
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .

• *Word*-based: incorrect alignment

source	The author Stephen Jay Gould died 20 years after diagnosis .
human	Autor Stephen Jay Gould zemřel 20 let po diagnóze .
char	Autor Stepher Stepher zemřel 20 let po diagnóze .
word	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po po .
hybrid	Autor Stephen Jay <unk> zemřel 20 let po <unk> .</unk></unk>
	Autor Stephen Jay Gould zemřel 20 let po diagnóze .

• *Char*-based & hybrid: correct translation of **diagnóze**

source	Her 11-year-old daughter, Shani Bart, said it felt a little bit weird
human	Její jedenáctiletá dcera Shani Bartová prozradila , že je to trochu zvláštní
word	Její <unk> dcera <unk> řekla , že je to trochu divné</unk></unk>
	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>
hybrid	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk></unk></unk></unk></unk></unk>
	Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i>

Word-based: identity copy fails

source	Her 11-year-old daughter, Shani Bart, said it felt a little bit weird
human	Jeji jedenáctiletá dcera Shani Bartová prozradila, že je to trochu zvlaštní
word	Její <unk> dcera <unk> <unk> řekla , že je to trochu divné</unk></unk></unk>
	Její 11-year-old dcera Shani , řekla, že je to trochu <i>divné</i>
hybrid -	Její <unk> dcera , <unk> <unk> , řekla , že je to <unk> <unk></unk></unk></unk></unk></unk>
	Její jedenáctiletá dcera , Graham <i>Bart</i> , řekla , že cítí trochu <i>divný</i>

- Hybrid: correct, 11-year-old jedenáctiletá
- Wrong: Shani Bartová

5. Chars for word embeddings

A Joint Model for Word Embedding and Word Morphology (Cao and Rei 2016)

- Same objective as w2v, but using characters
- Bi-directional LSTM to compute embedding
- Model attempts to capture morphology
- Model can infer roots of words

Enriching Word Vectors with Subword Information Bojanowski, Grave, Joulin and Mikolov. FAIR. 2016. https://arxiv.org/pdf/1607.04606.pdf https://fasttext.cc

- Aim: a next generation efficient word2vec-like word representation library, but better for rare words and languages with lots of morphology
- An extension of the w2v skip-gram model with character n-grams

- Represent word as char n-grams augmented with boundary symbols and as whole word:
- where = <wh, whe, her, ere, re>, <where>
 - Note that <her> or <her is different from her
 - Prefix, suffixes and whole words are special
- Represent word as sum of these representations.
 Word in context score is:
 - $s(w,c) = \sum_{g \in G(w)} \mathbf{z}_g^{\mathrm{T}} \mathbf{v}_c$
 - Detail: rather than sharing representation for all n-grams, use "hashing trick" to have fixed number of vectors

Word similarity dataset scores (correlations)

		sg	cbow	sisg-	sisg
AR	WS353	51	52	54	55
DE	GUR350	61	62	64	70
	Gur65	78	78	81	81
	ZG222	35	38	41	44
EN	RW	43	43	46	47
	WS353	72	73	71	71
Es	WS353	57	58	58	59
FR	RG65	70	69	75	75
Ro	WS353	48	52	51	54
RU	HJ	59	60	60	66

Differential gains on rare words

	DE		EN		Es	\mathbf{F} R
	GUR350	ZG222	WS353	RW	WS353	RG65
Luong et al. (2013)	-	84:	64	34	82	1121
Qiu et al. (2014)	-	-	65	33		-
Soricut and Och (2015)	64	22	71	42	47	67
sisg	73	43	73	48	54	69
Botha and Blunsom (2014)	56	25	39	30	28	45
sisg	66	34	54	41	49	52