

# Efficient Document-level Event Extraction via Pseudo-Trigger-aware Pruned Complete Graph

Tong Zhu<sup>1</sup>, Xiaoye Qu<sup>2</sup>, Wenliang Chen<sup>1</sup>, Zhefeng Wang<sup>2</sup>,

Baoxing Huai<sup>2</sup>, Nicholas Yuan<sup>2</sup>, Min Zhang<sup>1</sup>

https://github.com/Spico197/DocEE









Annotated-Trigger-centered Trees

## 引言: 篇章事件抽取







Annotated-Trigger-centered Trees



Directed Acyclic Graph w/o Annotated Triggers

# 引言: 任务难点和痛点





Directed Acyclic Graph w/o Annotated Triggers

- 任务本身的难点:
  - 无触发词
  - 长文本处理
- 当前方法的痛点:
  - 训练慢: 4-8卡跑将近一周
  - 推理时消耗资源多



- Pseudo Trigger
- Ordinary Argument
- ☐ NULL



Annotated-Trigger-centered Trees

如果每个事件实例只选择一个核心论元,则退化为句级事件抽取中的常用组合方法



Directed Acyclic Graph w/o Annotated Triggers



Complete Graph w/o Annotated Triggers



Pruned Complete Graph w/o Annotated Triggers

通过选择重要的论元,可以进行剪枝操作

如何选择最"重要"的论元, 从而构建为剪枝完全图?

如何根据构建的图解码出一个事件组合?



触发词在事件抽取中究竟承担什么角色?或者有什么特征?

- 存在性 (Existence): 触发词在实例中必须存在,从而指示 (identify) 事件实例
- 区分性 (Distinguishability): 触发词不被共享,可以区分不同的事件实例

可以使用一组论元角色 R 对应的 论元 作为 事件实例的"伪触发词"

一组论元角色R的存在性 =  $\frac{R$ 对应的论元中,至少有一个论元在实例中存在的数量整个事件实例的数量

一组论元角色R的区分性 =  $\frac{R$ 对应的论元中,至少有一个论元在实例中存在的数量整个事件实例的数量

重要性 = 存在性 × 区分性

Document  $\mathcal{D}_1$ 

| <b>_</b>                       |               |  |  |  |  |  |
|--------------------------------|---------------|--|--|--|--|--|
|                                | Plankton      |  |  |  |  |  |
| $\stackrel{\bigstar}{\square}$ | Krabs         |  |  |  |  |  |
|                                | NULL          |  |  |  |  |  |
|                                | Dec. 16, 2016 |  |  |  |  |  |

|                                | Plankton |  |  |  |  |  |
|--------------------------------|----------|--|--|--|--|--|
| $\stackrel{\bigstar}{\square}$ | Sandy    |  |  |  |  |  |
|                                | NULL     |  |  |  |  |  |
| <u></u>                        | NULL     |  |  |  |  |  |

| <u>~</u> "                     |               |  |  |  |  |  |
|--------------------------------|---------------|--|--|--|--|--|
|                                | Squidward     |  |  |  |  |  |
| $\stackrel{\bigstar}{\square}$ | Pearl         |  |  |  |  |  |
|                                | 3,456,000     |  |  |  |  |  |
|                                | Nov. 16, 2016 |  |  |  |  |  |

Document  $\mathcal{D}_2$ 

| <b>(</b>                    | Patrick       |  |  |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|--|--|
| $\stackrel{\wedge}{\Sigma}$ | NULL          |  |  |  |  |  |  |
|                             | 6,800         |  |  |  |  |  |  |
|                             | Jan. 16, 1993 |  |  |  |  |  |  |

| <b>_</b>                    |         |  |  |  |  |  |
|-----------------------------|---------|--|--|--|--|--|
|                             | Gary    |  |  |  |  |  |
| $\stackrel{\wedge}{\Sigma}$ | Patrick |  |  |  |  |  |
|                             | NULL    |  |  |  |  |  |
|                             | NULL    |  |  |  |  |  |

| <u>~</u> "                  |               |  |  |  |  |  |
|-----------------------------|---------------|--|--|--|--|--|
|                             | NULL          |  |  |  |  |  |
| $\stackrel{\wedge}{\Sigma}$ | SpongeBob     |  |  |  |  |  |
|                             | 6,800         |  |  |  |  |  |
|                             | Dec. 16, 2016 |  |  |  |  |  |

# 伪触发词的选择

#### **ACL-IJCAI-SIGIR**





Document  $\mathcal{D}_1$ 

| ,,                                      |                         |                         |                         |                                                                        | ,                                |
|-----------------------------------------|-------------------------|-------------------------|-------------------------|------------------------------------------------------------------------|----------------------------------|
| ,<br>1<br>1<br>1                        | Roles                   | Existence               | Distinguishability      | Importance                                                             | Sort 🔻                           |
|                                         | {⊘,☆}                   | $\frac{1+1+1+1+1+1}{6}$ | $\frac{1+1+1+1+1+1}{6}$ | $1 \times 1 = 1$ —                                                     | <b>→{∅</b> ,☆}✔                  |
|                                         | { <b>⊘</b> , <b>∰</b> } | $\frac{1+1+1+1+1+1}{6}$ | $\frac{0+0+1+1+1+1}{6}$ | $1	imesrac{4}{6}=rac{2}{3}\sqrt{2}$                                  | <b>/</b> { <b>⊘</b> , <b>₾</b> } |
| For $ \mathcal{R} =2$                   | {♦, 😂 }                 | $\frac{1+1+1+1+1+1}{6}$ | $\frac{1+1+1+1+1+1}{6}$ | $1 \times 1 = 1$                                                       | <b>/</b> { <b>☆</b> , <b>戀</b> } |
| = 6  records                            | {☆,爲}                   | $\frac{1+1+1+1+1+1}{6}$ | $\frac{1+1+1+1+1+1}{6}$ | $1 \times 1 = 1$                                                       | ,<br><b>√</b> {☆,ඪ}              |
|                                         | {☆,ඪ}                   | $\frac{1+1+1+1+1+1}{6}$ | $\frac{1+1+1+1+1+1}{6}$ | $1 \times 1 = 1$                                                       | <b>\</b> { <b>⊘</b> , <b>⋒</b> } |
| <br>                                    | {∰, 🖒 }                 | $\frac{1+0+1+1+0+1}{6}$ | $\frac{1+1+1+1+1+1}{6}$ | $rac{4}{6}	imes 1=rac{2}{3}$ —                                       | <b>→</b> { <b>઼</b> , <b>ඪ</b> } |
| <br>                                    |                         |                         |                         |                                                                        |                                  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $\mathcal{D}_1 =$       | Krabs—                  | —Plankton               | $\begin{array}{c} \text{Squidward} \longrightarrow_{N} \\ \end{array}$ | ov. 16, 2016                     |
|                                         |                         | Dec. 16, 2016           | Sandy                   | 3,456,000 Pearl                                                        |                                  |
| 1<br>1<br>1                             |                         | Y 16 1002               | 6,800                   |                                                                        |                                  |
| 1<br>1<br>1                             | $\mathcal{D}_2 =$       | Jan. 16, 1993           | Patrick Spong           | eBob                                                                   |                                  |
| 1                                       |                         | Gary                    | /                       | c. 16, 2016                                                            | ,                                |

重要性指标最大的一组触发词 论元角色对应的论元就是实例 中的伪触发词



dot-scaled attention



Step 1: Find Complete Connected Cliques

Step 2: Find Shared Neighbors for Each Clique

Step 3: Make Combination

Bron-Kerbosch 算法可解

Model

 $PTPCG_{|\mathcal{R}|=1}$ 

DuEE-fin w/o Tgg

**54.6** 

60.0

62.0

DuEE-fin w/ Tgg

**54.8** 

**58.1** 

|   |            | (w/o Emb)  | Hours | P    | R    | F1   | P    | R           | F1          | P           | R    | F1   | P    | R    | F1          |
|---|------------|------------|-------|------|------|------|------|-------------|-------------|-------------|------|------|------|------|-------------|
|   | DCFEE-O*   | 32M (16M)  | 192.0 | 73.2 | 71.6 | 72.4 | 69.7 | 57.8        | 63.2        | 56.2        | 48.2 | 51.9 | 51.9 | 49.6 | 50.7        |
|   | DCFEE-M*   | 32M (16M)  | 192.0 | 64.9 | 71.7 | 68.1 | 60.1 | 61.3        | 60.7        | 38.7        | 52.3 | 44.5 | 37.3 | 48.6 | 42.2        |
| _ | GreedyDec* | 64M (48M)  | 604.8 | 83.9 | 77.3 | 80.4 | 81.9 | 51.2        | 63.0        | 59.6        | 41.8 | 49.1 | 59.0 | 42.1 | 49.2        |
| ` | Doc2EDAG*  | 64M (48M)  | 604.8 | 83.2 | 89.3 | 86.2 | 81.1 | 77.0        | 79.0        | 66.7        | 50.0 | 57.2 | 67.1 | 51.3 | <b>58.1</b> |
|   | GIT*       | 97M (81M)  | 633.6 | 85.0 | 88.7 | 86.8 | 82.4 | <b>77.6</b> | <b>79.9</b> | <b>68.2</b> | 43.4 | 53.1 | 70.3 | 46.0 | 55.6        |
|   | DE-PPN*    | 119M(103M) | 197.6 | 78.3 | 70.1 | 74.0 | 74.2 | 58.6        | 65.5        | 63.4        | 18.4 | 28.5 | 70.3 | 11.8 | 20.2        |
|   |            | ·          | ·     | ·    | ·    | ·    |      |             |             | ·           | ·    | ·    |      | ·    |             |

83.7

ChFinAnn-All

75.4

79.4

66.7

ChFinAnn-Single

90.1

有向无环 图方法

• 效果和DAG方法比差不多,甚至在单事件单实例上的效果比它们还好

86.3

**24.0** 

**GPU** 

● 模型参数非常少,只是GIT参数量的19.8%

32M (16M)

#Params

● 训练速度非常快! 单卡只要训练24小时, 而GIT需要4卡训练将近1星期, GPU卡时是GIT的3.9%

88.2

折算为V100卡时,每个模型节省 ¥3658元 (按1卡时¥6计算)





| Model    | Too          | $ \mathcal{R} $ | Impt. |      | Dev Online Test |      |      |      |      |
|----------|--------------|-----------------|-------|------|-----------------|------|------|------|------|
| Model    | Tgg          |                 |       | P    | R               | F1   | P    | R    | F1   |
| Doc2EDAG | ×            | -               | -     | 70.8 | 55.3            | 62.1 | 66.7 | 50.0 | 57.2 |
| DOCZEDAG | $\checkmark$ | -               | -     | 73.7 | 59.8            | 66.0 | 67.1 | 51.3 | 58.1 |
| GIT      | ×            | -               | -     | 72.4 | 58.4            | 64.7 | 68.2 | 43.4 | 53.1 |
|          | $\checkmark$ | -               | -     | 75.4 | 61.4            | 67.7 | 70.3 | 46.0 | 55.6 |
|          | ✓            | 0               | 62.9  | 73.5 | 59.4            | 65.7 | 67.0 | 50.1 | 57.3 |
| 7        | <b>1</b> ✓   | 1               | 93.7  | 68.8 | 64.2            | 66.4 | 62.0 | 54.8 | 58.1 |
| PTPCG    | $\checkmark$ | 2               | 97.1  | 64.7 | 64.9            | 64.8 | 59.1 | 56.5 | 57.8 |
| PIPCO    | ×            | 1               | 83.8  | 71.0 | 61.7            | 66.0 | 66.7 | 54.6 | 60.0 |
|          | ×            | 2               | 94.3  | 63.8 | 64.8            | 64.3 | 60.2 | 58.4 | 59.3 |
|          | ×            | 3               | 97.2  | 56.7 | 64.3            | 60.3 | 52.6 | 58.9 | 55.6 |

- DuEE-fin数据集包含了触发词标注,但存在触发词共享的情况/(区分性不为100%)
- 使用伪触发词可以辅助提升结果
- 只使用伪触发词的效果比只使用金标触发词的结果还要好!

| $ \mathcal{R} $ | Impt. | SE  | ME   | TotE | #links  | Adj<br>Acc. | F1   |
|-----------------|-------|-----|------|------|---------|-------------|------|
| 1               | 88.3  | 5.0 | 37.5 | 14.6 | 10,502  | 65.8        | 79.4 |
| 2               | 95.7  | 1.0 | 20.4 | 6.7  | 23,847  | 59.1        | 77.7 |
| 3               | 97.2  | 0.9 | 18.0 | 5.9  | 55,961  | 56.7        | 74.9 |
| 4               | 97.6  | 0.5 | 16.9 | 5.3  | 75,334  | 58.2        | 74.0 |
| 5               | 97.8  | 0.4 | 13.9 | 4.4  | 88,752  | 59.5        | 73.1 |
| all             | 97.8  | 0.2 | 13.4 | 4.1  | 140,989 | 60.1        | 69.5 |

- 理论上限不为100%
  - 使用BK算法解码具有一定的理论误差,但当前模型的效果离理论误差的距离还很远
- 实体预测的结果对最终效果影响巨大
  - 当我们使用金标实体进行预测时,最终的整体F1值可以提升至少10%
- 随着伪触发词数量的增加,结果在不断下降
  - 主要原因: 图中连接的数量随着伪触发词的增加而增加, 预测难度也在不断加大
  - 我们需要对相似度计算和连接预测部分做进一步的优化

## 我们有个Demo!



https://github.com/Spico197/DocEE

http://hlt.suda.edu.cn/docee

# Thanks

Q&A

Tong Zhu tzhu7@stu.suda.edu.cn

https://github.com/Spico197/DocEE