Project: Data Exploration and Visualization Practice on Bike Rental Dataset

Import necessary libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Load data

df=

pd.read_csv("https://introtomlsampledata.blob.core.windows.net/data/bike-rental/bike-rental/bike-rental-hour.csv")

Data exploration/analysis

The head() function is used to get the first n rows. This function returns the first n rows for the object based on position. It is useful for quickly testing the type of data.

df.head()

	registered cnt	casual	casual	windspeed	hum	atemp	temp	weathersit	workingday	weekday	holiday	hr	mnth	yr	season	dteday	instant	
)	13 16	3	3	0.0	0.81	0.2879	0.24	1	0	6	0	0	1	0	1	2011-01-01	1	0
ľ	32 40	8	8	0.0	0.80	0.2727	0.22	1	0	6	0	1	1	0	1	2011-01-01	2	1
2	27 32	5	5	0.0	0.80	0.2727	0.22	1	0	6	0	2	1	0	1	2011-01-01	3	2
3	10 13	3	3	0.0	0.75	0.2879	0.24	1	0	6	0	3	1	0	1	2011-01-01	4	3
1	1 1	0	0	0.0	0.75	0.2879	0.24	1	0	6	0	4	1	0	1	2011-01-01	5	4
1		0	0	0.0	0.75	0.2879	0.24	1	0	6	0	4	1	0	1	2011-01-01	5	4

Shape of the data

```
df.shape (17379, 17)
```

The dataset contains 17379 observations and 13 attributes

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17379 entries, 0 to 17378
Data columns (total 17 columns):
              Non-Null Count Dtype
    Column
               -----
    -----
0
    instant
              17379 non-null int64
              17379 non-null object
1 dteday
2
              17379 non-null int64
    season
3
              17379 non-null int64
   vr
4 mnth
              17379 non-null int64
5
              17379 non-null int64
   hr
6 holiday
              17379 non-null int64
7 weekday 17379 non-null int64
8 workingday 17379 non-null int64
9 weathersit 17379 non-null int64
10 temp
              17379 non-null float64
11 atemp
             17379 non-null float64
12 hum
              17379 non-null float64
13 windspeed 17379 non-null float64
               17379 non-null int64
14 casual
15 registered 17379 non-null int64
               17379 non-null int64
16 cnt
dtypes: float64(4), int64(12), object(1)
memory usage: 2.3+ MB
```

The info() function is used to print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage.

Check for missing values

df.isnull().sum()

```
instant
           0
            0
dteday
season
            0
yr
mnth
           0
hr
           0
holiday
weekday
            0
workingday
weathersit
temp
            0
atemp
hum
windspeed
           0
casual
            0
registered
cnt
            0
dtype: int64
```

From the above, information we can see that there is no null values.

Convert season and weathersit columns into categorical

```
col_names = ['season','weathersit']
for col in col_names:
    df[col] = df[col].astype('category')
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17379 entries, 0 to 17378
Data columns (total 17 columns):
                Non-Null Count Dtype
    Column
                                -----
0
    instant
                17379 non-null int64
1
    dteday
                17379 non-null object
 2
    season
                17379 non-null category
 3
                17379 non-null int64
    vr
4
    mnth
                17379 non-null int64
 5
                17379 non-null int64
    hr
6
    holiday
                17379 non-null int64
7
    weekday
                17379 non-null int64
    workingday 17379 non-null int64
9
    weathersit 17379 non-null category
10 temp
                17379 non-null float64
11 atemp
                17379 non-null float64
12 hum
                17379 non-null float64
                17379 non-null float64
13 windspeed
 14 casual
                17379 non-null int64
15 registered 17379 non-null int64
                17379 non-null int64
16 cnt
dtypes: category(2), float64(4), int64(10), object(1)
memory usage: 2.0+ MB
```

Exclude/drop column names: instant, dteday, casual,registered

df = df.drop(['instant', 'dteday', 'casual' ,'registered'], axis=1)

After dropping again checking the data with head()function

df.head(10)

	season	yr	mnth	hr	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	cnt
0	1	0	1	0	0	6	0	1	0.24	0.2879	0.81	0.0000	16
1	1	0	1	1	0	6	0	1	0.22	0.2727	0.80	0.0000	40
2	1	0	1	2	0	6	0	1	0.22	0.2727	0.80	0.0000	32
3	1	0	1	3	0	6	0	1	0.24	0.2879	0.75	0.0000	13
4	1	0	1	4	0	6	0	1	0.24	0.2879	0.75	0.0000	1
5	1	0	1	5	0	6	0	2	0.24	0.2576	0.75	0.0896	1
6	1	0	1	6	0	6	0	1	0.22	0.2727	0.80	0.0000	2
7	1	0	1	7	0	6	0	1	0.20	0.2576	0.86	0.0000	3

Histogram(Seaborn Displot)

This plot allows to see the frequency of all values distributed in bins. Therefore only a single value is needed to produce this plot.

```
plt.figure(figsize=(9,8))
sns.set_style('whitegrid')
sns.distplot(df['cnt'], kde = False, color = 'red', bins = 100)
```


Now looking at this we can say that most of the count given lies between 0 and 200.

Draw a set of vertical bar plots grouped by a categorical variable

Seasonwise monthly distribution of counts

```
fig,ax=plt.subplots(figsize=(10,5))
sns.barplot(x='mnth',y='cnt',data=df[['mnth','cnt','season']],hue='season',ax=ax)
ax.set_title('Season based monthly distribution of counts')
plt.show()
```


Weather condition based monthly distribution of counts

fig,ax=plt.subplots(figsize=(10,5))
sns.barplot(x='mnth',y='cnt',data=df[['mnth','cnt','weathersit']],hue='weathersit',ax
=ax)
ax.set_title('Weather condition based monthly distribution of counts')

Correlation matrix of attributes A correlation matrix is a tabular data representing the 'correlations' between pairs of variables in a given data.

```
corr_mat=df[['holiday','weekday','workingday','temp','atemp','hum', 'windspeed',
'cnt']].corr()
fig,ax=plt.subplots(figsize=(10,5))
sns.heatmap(corr_mat,annot=True,ax=ax)
ax.set_title('Correlation matrix of attributes')
```


Sorting the correlation matrix

```
corre mat = df.corr()
corr_pairs = corr_mat.unstack()
print(corr pairs)
 holiday holiday
                          1.000000
          weekday
                         -0.102088
          workingday
                         -0.252471
          temp
                         -0.027340
                         -0.030973
          atemp
                            . . .
 cnt
                          0.404772
          temp
          atemp
                          0.400929
          hum
                         -0.322911
          windspeed
                          0.093234
          cnt
                          1.000000
 Length: 64, dtype: float64
```

sorted_pairs = corr_pairs.sort_values(kind="quicksort") print(sorted_pairs) -0.322911 hum cnt cnt hum -0.322911 windspeed hum -0.290105 windspeed hum -0.290105 workingday -0.252471 holiday . . . temp temp 1.000000 workingday workingday 1.000000 weekday weekday 1.000000 windspeed windspeed 1.000000 cnt cnt 1.000000 Length: 64, dtype: float64

Selecting negative correlation pairs

negative_pairs = sorted_pairs[sorted_pairs < 0]</pre>

print(negative_pairs)

hum	cnt	-0.322911
cnt	hum	-0.322911
windspeed	hum	-0.290105
hum	windspeed	-0.290105
holiday	workingday	-0.252471
workingday	holiday	-0.252471
holiday	weekday	-0.102088
weekday	holiday	-0.102088
hum	temp	-0.069881
temp	hum	-0.069881
atemp	windspeed	-0.062336
windspeed	atemp	-0.062336
atemp	hum	-0.051918
hum	atemp	-0.051918
weekday	hum	-0.037158
hum	weekday	-0.037158
holiday	atemp	-0.030973
atemp	holiday	-0.030973
cnt	holiday	-0.030927
holiday	cnt	-0.030927

Selecting strong correlation pairs (magnitude greater than 0.5)

```
strong_pairs = sorted_pairs[abs(sorted_pairs) > 0.5]
```

print(strong_pairs)

temp	atemp	0.987672
atemp	temp	0.987672
holiday	holiday	1.000000
hum	hum	1.000000
atemp	atemp	1.000000
temp	temp	1.000000
workingday	workingday	1.000000
weekday	weekday	1.000000
windspeed	windspeed	1.000000
cnt	cnt	1.000000

dtype: float64