

עבודת מאטלב

סינון רעשים

מגישים: אביתר כהן 205913858, חי מויאל 315669739

<u>מבוא:</u>

בחלק זה אנו צריכים לממש פונקציה אשר מקבלת אות ומבצעת לו התמרת פורייה.

כיוון שהתמרת פורייה היא מחזורית, לא נקבל מידע חדש מעבר לתחום של 2π ,ולכן, בנינו פונקציה כיוון שהתמרת פורייה היא מחזורית, לא נקבל מידע מתבססת על נוסחת ההתמרה הרגילה אך מתבצעת רק בתחום $[-\pi\,,\pi]$ ולא על כל המישור.

פונקציית ההתמרה הינה:

```
ex1.m × Matlab_2022_PureToneRemoval.m × my_DTFT.m * × my_DTFT.m × +
       %this funch calcultate the DFT
       %input: x - SIGNAL, n - time vector ,Nw - num of sampels
       %output: \boldsymbol{X} , omega - signal in omega axis
4
5 🖃
       function [X,omega] = my_DTFT(x,n, Nw)
6
       if mod(Nw,2)==0
                          %if the num of sumpel
           k=-Nw/2+1:1:Nw/2;
7
                               %k is sum that strat from -Nw/2 +1 to Nw/2
8
       else
                                   % k is odd
                                       %k is sum that strat from -(Nw-1)/2 to (Nw-1)/2
9
           k=-(Nw-1)/2:1:(Nw-1)/2;
10
       end
11
       omega=2*pi*(k)/Nw;
                                   %w=w0*k ,w0=2*pi/Nw
12
       if size(n,1)==1
13
          n=n.';
14
15
       if size(x,2)==1
16
          x=x.';
       end
17
       expo=exp(-1i*n*omega);
18
                                    %Multiplication between vector and expo
19
       X=x*expo;
20
       end
```

<u>חלק א:</u>

בחלק הראשון נתבקשנו להריץ אותות שונים ולקבל את התמרת הפורייה שלהם בתוכנת מטלב.

$$x_1[n] = \cos[\omega_0 \cdot n] : \omega_0 = 2.5$$

תוצאת חישוב אנליטי

$$X_1 = \pi (\delta(\omega - 2.5) + \delta(\omega + 2.5))$$

התמרת פונקציית קוסינוס הינה 2 דלתאות על ציר התדר.

התוצאות תאמו את ציפיותינו

'סעיף ב

<u>תוצאת חישוב אנליטי:</u>

$$X_2 = \frac{1}{0} \frac{|\omega| \le B}{o.w}$$

התמרת פונקצית SINC הינה חלון על ציר בציר התדר.

נשים לב כי תופעת גיבס מתקיימת בקצוות.

התוצאות תאמו את ציפיותינו

נשים לב כי רוחב החלון הוא B לכל צד

$$x_3[n] = \sum_{k=-\infty}^{\infty} \delta[n - k \cdot N_{train}] : Ntrain = 10$$

<u>תוצאת חישוב אנליטי</u>

$$X_3 = \frac{2\pi}{N} \sum_{-\infty}^{\infty} \delta[n - 2\pi k]$$

התוצאה תואמת את ציפיותינו, שכן קיבלנו אות שהוא גם רכבת הלמים. NTRAIN=10 נשים לב כי הרווח בין זוג הלמים הינו $\frac{2\pi k}{N} = 0.6259$ כיוון שבחרנו

$$x_4[n] = u[n+N] \cdot u[N-n]$$

<u>תוצאת חישוב אנליטי</u>

$$X_4 = \sum_{-N}^{N} \frac{\sin(\omega(N+0.5))}{\sin(\frac{\omega}{2})}$$

בהכפלת 2 מדרגות נקבל פונקצית חלון, שכן ההתמרה שלה היא פונקציה SINC במישור התדר. נוכל לראות כי כאשר w=0 נקבל נקודת מקסימום.

<u>חלק ב'</u>

הכנסנו את תעודת הזהות (315669739) ושמענו את האות עם רעש של צפצוף ברקע.

(SNR = -5.8095) כאשר יחס האות לרעש

בחלק זה נממש שלושה מסננים אשר באמצעותם נוכל להפחית הפרעה זו.

להלן סיגנל האות עם הרעש.

. ראשית נמצא את תדר ההפרעה ω_0 ע"י התמרת פורייה של הסיגנל בפריים האחרון

הגדרנו n ווקטור הזמנים להיות בין 0:511- בקפיצות של 1 ע"מ שנוכל לעשות נכון את כפל (n , x_last_game) עם זמן מחזור של

נקבל: x_last_frame נבצע התמרה ל

w0=2.88388 כאשר

 $cos(w0*n) = \left(e^{(j*w0*n)} + e^{(-j*w0*n)}\right)/2$ אכן מתקיים כי cos(w0t) שכן מתקיים כי expo ארס את המרה של בזמן זה הזזה בתדר ולכן ניתן להסיק את

על מנת לסנן את האות נשתמש ב BSF שיחסום לנו את טווח התדרים שאנו לא מעוניינים בהם.

21 סעיף א' - מימוש מסנן

בסעיף זה נממש את המסנן הבא:

$$h_1[n] = 2 \cdot \cos[w_0 n] \cdot \frac{\sin(Bn)}{\pi n}$$

. באשר B פרמטר קבוע מראש

v[n] = x[n] * h[n] עם תדר ההפרעה BSF שיטה: ראשית נחשב את ה

(עם ההפרעה) ולאחר מכן נחסיר את התוצאה מהסיגנל מהסיר את ולאחר מכן עוסיר את את ולאחר v[n] = x[n] - v[n]

$$V[jw] = X \cdot H \leftarrow$$
 חישובים: קונבולוציה בזמן מכפלה בתדר $\frac{V[jw] = X \cdot H}{\sin(Bn)} + \sin(Bn) + \sin($

h1=(1,1001)=0.04 'אותו הצבנו בפונק (אפס/אפס) וקיבלנו 0.04, אותו הצבנו בפונק $B=\frac{\pi}{50}$ עבור ונקבל:

מסנן תדר ההפרעה

כעת נחסיר את במסנן מהסיגנל המקורי ונשים לב שההפרעה פחתה, נקבל כי יחס האות לרעש הינו (SNR = 18.9379)

האות לאחר הפחתת הרעש

<u>סעיף ב' – מימוש במסנן 2:</u>

בסעיף זה נממש את המסנן הבא:

$$h_2[n] = \frac{1}{2N+1} (2 \cdot \cos[w_0 n])$$

.w0 נבצע לה התמרה עבור אותו, h2 באופן דומה, נתונה תגובה להלם

לאחר חישוב הקונבולוציה והצבה בנוסחה נקבל כי H2

מסנן תדר ההפרעה

שוב, נחסיר את המסנן מהאות המקורי ונשים לב כי ההפרעה הונחתה כאשר:

SNR = 24.2937

האות לאחר הפחתת הרעש

<u>:סעיף ג' – סינון רקורסיבי</u>

נגדיר 2 אותות:

$$\begin{split} z_1[n] &= \alpha e^{j\omega_0} \cdot z_1[n-1] + (1-\alpha) \cdot x[n] \\ z_2[n] &= \alpha e^{-j\omega_0} \cdot z_2[n-1] + (1-\alpha) \cdot x[n] \end{split}$$

כאשר a=0.99 וכמו כן המערכת נמצאת במנוחה התחלתית.

נמצא את התגובה להלם של המערכת, מתקיים כי במישור התדר:

$$H(w) = \frac{Y[W]}{X[W]}$$

ולכן לאחר חישוב נקבל כי תגובת ההלם היא:

האות במוצא שהתקבל הוא:

$$y[n] = x[n] - z_1[n] - z_2[n]$$

והסיגנל לאחר הנחתת האות הינו:

SNR = 11.811 יחס אות לרעש הינו

<u>סעיף ד' – מסקנות</u>

המסנן הטוב ביותר הוא מסנן מספר 3 (הן מבחינת יעילות והן מבחינת איכות שמע) ואילו המסנן הכי פחות טוב הוא מסנן מספר 1.

באשר הפעלנו את המוצא של המסננים מספר 2, 1 היה ניתן לשמוע את הרעש בצורה מוחלשת

לעומת זאת כאשר הפעלנו את מסנן מספר 3 כמעט ולא ניתן לשמוע את הרעש, אלא רק בהתחלה.

נשים לב כי מסנן 3 מבצע רק 2 הכפלות בכל נקודת זמן לעומת מסננים 1,2 ולכן זמן הריצה הוא $O(n\)$ כיוון נשים לב כי מסנן 3 מבצע רק 2 הכפלות בכל נקודת זמן לעומת מסננים $for\$ בלולאת $for\$ בלולאת שהאורך של ה

 $O(n^2)$ של מסדר גודל מסדר הוא ולכן ממן קונבולציה ולכן קונבולציה בפועלת מסדר בפועלת קונבולציה ולכן מאונים במסננים אודל של

 $n_1 = 2000$, $n_2 = 200$ באשר

לכן עבור אותות ארוכים נעדיף להשתמש במסנן 3.