Put W = 800, d = 120 and T = 40 in eq. (ii), we get
$$40 = \frac{800 \times 120}{200P}$$

$$P = \frac{800 \times 120}{200 \times 40}$$

$$P = 12 \text{ hp}$$

The kinetic energy (K.E.) of a body varies jointly as the mass "m" of the 9. body and the square of its velocity "v". If the kinetic energy is 4320 ft/lb when the mass is 45 lb and the velocity is 24 ft/sec. Determine the kinetic energy of a 3000 Ib automobile travelling 44 ft/sec.

Given that
$$K.E \propto MV^2$$

 $\Rightarrow K.E = KmV^2$ (i)
Put K.E = 4320, m = 45 and V = 24 in eq. (i), we get
 $4320 = k(45)(24)^2$
 $K = \frac{4320}{45 \times 576}$
 $K = \frac{1}{6}$

Put K =
$$\frac{1}{6}$$
 in eq. (i), we get
K.E = $\frac{1}{6}$ mV²____(ii)

Put m = 3000 and V = 44 in eq. (ii), we get

$$K.E = \frac{1}{6} (3000) (44)^2$$
$$= 968000$$

SOLVED MISCELLANEOUS EXERCISE . 3

Multiple Choice Questions 1.

> Four possible answers are given for the following questions. Tick (1) the correct answer.

- (i) In a ratio a: b, a is called
 - (a) relation
- (b) antecedent
- (c) consequent (d) None of these

- (ii) In a ratio x : y, y is called
 - (a) relation
- (b) antecedent
- (c) consequent (d) None of these
- (iii) In a proportion a: b:: c: d, a and d are called,
 - (a) means

(b) extremes

(c) third proportional

(d) None of these

(iv)	In a proportion a: 1 (a) means (c) fourth proportion		e called (b) extremes (d) None of the	se	
(v)		rtion a : b = b : c, ac	$c = b^2$, b is said to	be .	proportional
	between a and c. (a) third	(b) fourth	(c) means	(d)	None of these
(vi)	In continued propos	rtion a : b = b : c, c	is said to be		proportional to a and
	(a) third	(b) fourth	(c) means	(d)	None of these
(vii)	Find x in proportion	14:x::5:15			
	(a) $\frac{75}{4}$	(b) $\frac{4}{3}$	(c) $\frac{3}{4}$	(d)	12
(viii)	If $u \propto v^2$, then				
•	If $u \propto v^2$, then (a) $u = v^2$	(b) $u = kv^2$	$(c) uv^2 = k$	(d)	$uv^2 = 1$
(ix)	If $y^2 \propto \frac{1}{x^3}$, then		•		
	$(a) y^2 = \frac{k}{x^3}$	(b) $y^2 = \frac{1}{x^3}$	(c) $y^2 = x^2$	(d)	$y^2 = kx^3$
(x)	If $\frac{u}{v} = \frac{v}{w} = k$, then				
	(a) $u = wk^2$	(b) $u = vk^2$	(c) $u = w^2 k$	(d)	$u = v^2 k$
(xi)	The third proportion	nal of x² wdy² is:			
` ,	2	(b) x^2y^2	(c) $\frac{y^4}{x^2}$	(d)	$\frac{y^2}{x^4}$
(xii)	The fourth proportion	onal w of x : y :: v :	w is		
, ,	(a) $\frac{xy}{y}$	(b) $\frac{vy}{x}$	(c) xyv	(d)	x vy
(xiii)	If $a:b=x:y$, then a	alternant property i	S		
	(a) $\frac{a}{x} = \frac{b}{y}$		(b) $\frac{a}{b} = \frac{x}{y}$		
	(c) $\frac{a+b}{b} = \frac{x+y}{y}$		(d) $\frac{a-b}{x} = \frac{x-y}{y}$	<u>Y</u>	
(xiv)	If $a:b=x:y$, then i	nverted property is			
	(a) $\frac{a}{x} = \frac{b}{y}$	property is	(b) $\frac{a}{a-b} = \frac{x}{x-y}$	- Y	

(c)
$$\frac{a+b}{b} = \frac{x+y}{y}$$

(d)
$$\frac{b}{a} = \frac{y}{x}$$

(xv) If, $\frac{a}{b} = \frac{c}{d}$ then component property is:

(a)
$$\frac{a}{a+b} = \frac{c}{a+d}$$

(b)
$$\frac{a}{a-b} = \frac{c}{a-d}$$

(c)
$$\frac{ad}{bc}$$

(d)
$$\frac{a-b}{b} = \frac{c-d}{d}$$

Answers:

(i)	ь	(ii)	С	(iii)	ь	(iv)	а	(v)	С
(vi)	а	(vii)	d	(viii)	ь	(ix)	а	(x)	a
(xi)	С	(xii)	b	(xiii)	а	(xiv)	d	(xv)	а

2. Write short answers of the following questions.

(i) Define ratio and give one example.

Ans: Ratio:

A relation between two quantities of the same kind is called ratio.

(ii) Define proportion.

Ans: Proportion:

A proportion is a statement, which is expressed as equivalence of two ratios.

(iii) Define direct variation.

Ans: Direct variation:

If two quantities are related in such a way that increase (decrees) in one quantity causes increase (decrease) in the other quantity is called direct variation.

(iv) Define inverse variation.

Ans: Inverse Variation:

If two quantities are related in such a way that when one quantity increases, the other decreases is called inverse variation.

(v) State theorem of componendo-dividendo.

Ans: The theorem of componendo-dividendo is

If
$$a : b = c : d$$
, then
 $a + b : a - b = c + d : c - d$

(vi) Find x, if 6:x::3:5,

Ans: 6:x::3:5

Product of means = Product of extremes

$$(x)(3) = (6)(5)$$

 $3x = 30$
 $x = 10$

(vii) If x and y^2 varies directly, and x = 27 when y = 4. Find the value of y when x = 3.

$$\Rightarrow$$

Given that
$$x \propto y^2$$

 $\Rightarrow x = ky^2$ (i)
Put $x = 27$ and $y = 4$ in eq. (i), we get
 $27 = K (4)^2$

$$27 = K (4)^2$$

$$K = \frac{27}{16}$$

Put $K = \frac{27}{16}$ in eq. (i), we get

$$x = \frac{27}{16}y^2$$
 (ii)

Put x = 3 in eq. (ii), we get

$$3 = \frac{27}{16} y^2$$

$$y^2 = 3 \times \frac{16}{27}$$

$$y^2 = \frac{16}{9}$$

$$y^2 = \frac{16}{9}$$
 \Rightarrow $y = \pm \frac{4}{3}$

(viii) If u and v varies inversely, and u = 8, when v = 3. Find v when u = 12.

Given that Ans:

$$u \propto \frac{1}{V}$$

$$u = \frac{K}{V}$$
 ____(i)

Put u = 8 and V = 3 in eq. (i), we get

$$8=\frac{K}{3}$$

$$K = 24$$

Put K = 24in eq. (i), we get

$$u = \frac{24}{V}$$
 ____(ii)

Put u = 12 in eq. (ii), we get

$$12 = \frac{24}{V} \quad \Rightarrow \quad V = \frac{24}{12} = 2$$

(ix) Find the fourth proportional to 8, 7, 6.

Let x be the fourth proportional, then Ans:

Product of extremes = Product of means

$$(8)(x) = (7)(6)$$

$$8x = 42$$

$$x = \frac{42}{8} \implies x = \frac{21}{4}$$

(x) Find a mean proportional to 16 and 49.

$$m. m = 16 \times 49$$

$$m = 784$$

$$\Rightarrow m = \sqrt{784} = \pm 28$$

(xi) Find a third proportional to 28 and 4.

Ans: Let x be the fourth proportional, then

$$(28)(C) = (4)(4)$$

$$C = \frac{16}{28}$$

$$C = \frac{4}{7}$$

(xii) If
$$y \propto \frac{x^2}{z}$$
 and $y = 28$ when $x = 7$, $z = 2$, then find y.

Ans: Given $y \propto \frac{x^{2}}{Z}$

$$y = \frac{x^2}{7}$$
 ____(i)

Put
$$x = 7$$
 and $y = 28$ in eq. (i), we get

$$28 = K \frac{(7)^2}{2}$$

$$28 = K \frac{49}{2}$$

or
$$K = \frac{56}{49}$$

$$K = \frac{8}{7}$$

Put
$$K = \frac{8}{7}$$
 in eq. (i), we get

$$y = \frac{8x^2}{72}$$
 (ii)

Put
$$x = 7$$
 and $Z = 2$ in eq. (ii), we get

$$y = \frac{8(7)^2}{7(2)} = 28$$

(xiii) If $z \propto xy$ and z = 36 when x = 2, y = 3, then find z.

Given Z ∝ xv Ans:

$$z = Kxy$$
 ____(i)

z = Kxy (i) Put z = 36 x = 2 and y = 3 in eq. (i), we get

$$36 = K(2)(3)$$

or
$$36 = 6k$$

$$\Rightarrow$$
 K = 6

Put
$$K = 6$$
 in eq. (i), we get

$$Z = 6 xy$$

(xiv) If $w \propto \frac{1}{x^2}$ and w = 2 when v = 3, then find w.

Given $W \propto \frac{1}{V^2}$

$$\Rightarrow$$
 $W = \frac{K}{a^2}$ ____(i)

Put W = 2 and y = 3 in eq. (i), we get

$$2=\frac{K}{\left(3\right)^2}$$

$$2=\frac{K}{9}$$

$$K = 18$$

Put K = 18 in eq. (i), we get

$$W = \frac{18}{V^2}$$

O3. Fill in the blanks:

- (i) The simplest form of the ratio $\frac{(x+y)(x^2+xy+y^2)}{x^3-y^3}$ is
- (ii) In a ratio x: y; x is called ————.
- (iii) In a ratio a: b; b is called———.
- (iv) In a proportion a: b:: x: y, a and y are called ------
- (v) In a proportion p: q:: m: n; q and m are called—————
- (vi) In proportion 7:4::p:8, p = -----
- (vii) If 6: m :: 9 : 12, then m = ----.
- (viii) If x and y varies directly, then $x = \frac{1}{2}$
 - (ix) If v varies directly as u^3 , then $u^3 = -$
 - (x) If w varies inversely as p^2 , then k = ----
- (xi) A third proportional of 12 and 4, is ———.

- (xii) The fourth proportional of 15, 6, 5 is ———.
- (xiii) The mean proportional of 4m² n⁴ and p⁶ is ———.
- (xiv) The continued proportion of 4, m and 9 is _____.

Answer:

(i)	<u>x + y</u>	(ii)	Antecedent	(iii)	Consequent
	<u>x - y</u>				
(iv)	Extremes	(v)	Means	(vi)	P = 14
(vii)	m = 8	(viii)	Ку	(ix)	V K
(x)	P ² w	(xi)	4/3	(xii)	2
xiii)	$\pm mn^2p^2$	(xiv)	m = ±6		

SUMMARY

- A relation between two quantities of the same kind is called ratio.
- A proportion is a statement, which is expressed as equivalence of two ratios.
- If two ratios a: b and c: d are equal, then we can write a: b = c: d
- If two quantities are related in such a way that increase (decrease) in one quantity causes increase (decrease) in the other quantity is called direct variation.
- If two quantities are related in such a way that when one quantity increases, the other decreases is called inverse variation.
- Theorem on proportions:

(1) Theorem of Invertendo

If c : b = c : d, then b : a = d : c

(2) Theorem of Alternando

If a:b=c:d, then a:c=b:d

(3) Theorem of Componendo,

If a:b=c:d, then

(i)
$$a + b : b = c : d : d$$

and (ii) a: a + b = c: c + d

(4) Theorem of Dividendo

If a: h = c: d, then

(i)
$$a-b:b=c-d:d$$

(ii)
$$a: a-b=c: c-d$$

(5) Theorem of Componendo-dividendo

If
$$a:b=c:d$$
, then
 $a+b:a-b=c+d:c-d$

A combination of direct and inverse variations of one or more than one variable forms joint variation.