CLAIM AMENDMENTS

In the Claims

Claim 1. (Currently Amended) A compound having the structure

$$R^2$$
 $R^1 - X$
 R^3
 R^4

wherein n is 4;

X is N;

Z is a 5- or 6-membered nitrogen-containing monocyclic heteroaryl group which is selected from the group consisting of imidazole attached at its 4- or 5-position to the ring, aminoimidazole, alkylimidazole, alkylthioimidazole, alkylthio(amino)imidazole, amino-(alkyl)imidazole, (alkanoylamino)imidazole, aminothiazole, aminooxazole, aminooxadiazole, dialkylimidazole, alkyl(alkanoylamino)imidazole, alkyl(amino)imidazole, arylaminocarbonylamino(alkyl)imidazole, alkoxycarbonylamino(alkyl)imidazole, alkylcarbonylamino(alkyl)imidazole, aminotriazole or diaminopyrimidine;

R¹ is heteroaryl,

and R¹ may be unsubstituted or substituted with from one to five substituents; and wherein the R¹ heteroaryl group is selected from

R², R³ and R⁴ are the same or different and are independently H, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl)₃Si (where each alkyl or aryl group is independent), cycloalkyl, cycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylalkylamino, aryl, arylalkyl, arylamino, aryloxy, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl, heteroarylamino, heteroaryloxy, arylthio, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, halogen, haloalkyl, polyhaloalkyl, polyhaloalkoxy, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, hydroxy, acyl, carboxy, aminocarbonyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylcarbonyl, arylcarbonyloxy, arylcarbonylamino, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro, alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino, alkenylaminocarbonylamino, alkynylaminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonyloxy, alkoxycarbonylamino, 1,1-(alkoxyl or aryloxy)₂alkyl

(where the two aryl or alkyl substituents can be independently defined, or linked to one another to form a ring), $S(O)_2R^6R^7$, $-NR^6(C=NR^7)$ alkyl, $-NR^6(C=NR^7)$ alkenyl, $-NR^6(C=NR^7)$ heteroaryl, $-NR^8(C=NCN)$ -amino,

$$-\frac{1}{2} \left(\frac{1}{2} \right)^{n} R^{8}$$

pyridine-N-oxide,

$$-\underbrace{\overset{\circ}{\underset{n'}{\bigvee}}}_{R^{B}} \underbrace{\overset{R^{B}}{\underset{n'}{\bigvee}}}_{n'} \underbrace{-\overset{\circ}{\underset{N}{\bigvee}}}_{Q}$$

(where Q is O or H₂ and n' is 0, 1, 2 or 3) or

R⁶, R⁷, R⁸, R^{8a} and R⁹ are the same or different and are independently hydrogen, alkyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, or cycloheteroalkyl;

or a pharmaceutically acceptable salt thereof, or a prodrug thereof, and all stereoisomers thereof.

Claim 2. (Cancelled).

Claim 3. (Original) The compound as defined in Claim I wherein at least one of R^1 , R^2 , R^3 and R^4 is aryl or heteroaryl.

Claims 4-7. (Cancelled).

Claim 8. (Previously Amended) The compound as defined in Claim 1 wherein the R¹ group may be substituted within from one to five of the following groups:

alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl)₃Si (where each alkyl or aryl group is independent), cycloalkyl, cycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylalkylamino, aryl, arylalkyl, arylamino, aryloxy, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl, heteroarylamino, heteroaryloxy, arylthio, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, halogen, haloalkyl, polyhaloalkyl, CF3 and CF3CH2, polyhaloalkyloxy, CF3O and CF3CH2O, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, hydroxy, acyl, carboxy, aminocarbonyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylcarbonyl, arylcarbonyloxy, arylcarbonylamino, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro, alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino, alkenylaminocarbonylamino, alkynylaminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonyloxy, 1,1-(alkoxyl or aryloxy)2alkyl (where the two aryl or alkyl substituents can be independently defined, or linked to one another to form a ring, such as 1.3-dioxane or 1.3-dioxolane), S(O)₂R⁶R⁷, -NR⁶(C=NR⁷)alkyl,

$$\begin{array}{c} -\frac{0}{11}O - \frac{1}{2}R^8 \\ NR^6(C=NR^7) \text{alkenyl, -NR}^6(C=NR^7) \text{alkynyl,} \end{array}$$

NR⁶(C=NR⁷)heteroaryl, -NR⁸(C=NCN)-amino, pyridine-N-oxide,

$$-\underbrace{N}_{n'}^{R^8}, \underbrace{N}_{n'}^{R^8}, -\underbrace{N}_{n'}^{N}$$

heteroarylalkoxy, cycloheteroalkyl, cycloheteroalkylalkyl, cycloheteroalkoxy, or cycloheteroalkylalkoxy);

R⁶, R⁷, R⁸, R^{8a} and R⁹ are independently hydrogen, alkyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl or cycloheteroalkyl, which substituents may be the same or different from each other and may be the same or different from the base R¹ group.

Claim 9. (Original) The compound as defined in Claim 1 wherein R¹ is substituted with one to five of the following substituents: alkyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkylcarbonylamino, heteroaryl, halo, aryl, cycloalkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, alkoxycarbonylamino, guanidinyl, nitro, cycloheteroalkyl, aryloxycarbonylamino, heteroaryloxylcarbonylamino, uriedo (where the uriedo nitrogens may be substituted with alkyl, aryl or heteroaryl), heterocyclylcarbonylamino (where the heterocycle is connected to the carbonyl group via a nitrogen or carbon atom), alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino,

$$R^{20} \qquad 0 \qquad N - \qquad R^{21} \qquad N - \qquad$$

Where J is:
$$CHR^{23}$$
, CH^{23} , CH^{23} , CH^{24} , CH^{25} or CH^{24} , CH^{25}

R²³, R²⁴ and R²⁵ are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or cycloalkylalkyl;

R²⁰, R²¹, R²² are independently hydrogen, halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, hydroxy or haloalkyl; and these preferred substituents may either be directly attached to R¹, or attached via an alkylene chain at an open position, which substituents may be the same or different from each other and may be the same or different from the base R¹ group.

Claim 10. (Previously Presented) The compound as defined in Claim 1 wherein Z is imidazole attached at its 4- or 5-position to the ring, aminoimidazole, alkylimidazole, alkylthioimidazole, alkylthioimidazole, amino(alkyl)imidazole or (acetylamino)imidazole.

Claims 11-13. (Cancelled).

Claim 14. (Currently Amended) The compound as defined in Claim 1 wherein the moiety

Claim 15. (Original) The compound as defined in Claim 1 wherein R² and R³ are independently H, lower alkyl, lower alkoxy or aryl, and R⁴ and R⁵ are each hydrogen.

Claim 16. (Cancelled).

Claim 17. (Previously Presented) The compound as defined in Claim 1 wherein n is 4, R² and R³ are independently H or lower alkyl, and R⁴ and R⁵ are each H, and R¹ is aryl or heteroaryl.

Claim 18. (Cancelled).

Claim 19. (Previously Presented) The compound as defined in Claim 1 wherein R¹ is

Claim 20. (Original) The compound as defined in Claim 1 wherein R¹, R², R³ and/or R⁴ may be joined together with the N atom and/or carbons to which they are attached to form a non-aromatic ring.

Claim 21. (Cancelled).

Claim 22. (Currently Amended) The compound as defined in Claim 14 wherein

$$R^{1}$$
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{4}

Claim 23. (Cancelled).

Claim 24. (Currently Amended) The compound as defined in Claim 1 wherein

$$\begin{array}{c|c}
R^2 & & R^2 \\
\hline
R^1 - X & & R^1 - N \\
\hline
R^4 & & R^4
\end{array}$$

Claim 25. (Previously Presented) The compound as defined in Claim 1 having the structure

Claim 26. (Previously Presented) The compound as defined in Claim 1 wherein R¹ is phenyltetrazole, 1-(2,4-dihalo-5-alkoxyphenyltetrazol-5-yl, alkylphenyltetrazole, halophenyltetrazol, 1-(2-alkoxy-5-halophenyl)tetrazol-5-yl, 1-(3-alkyl-4-halophenyl)tetrazol-5-yl, alkoxyphenyltetrazole, alkyl(halo)phenyltetrazole, alkoxy(halo)phenyltetrazole, alkoxy(alkyl)(halo)phenyltetrazole, phenylalkyl-pyrazole, alkoxyphenyl-alkyl-pyrazole, alkoxy(halo)phenyl-alkyl-pyrazole, alkoxy(alkyl)phenyl-alkyl-pyrazole, alkoxy(halo)phenyl-alkyl-pyrazole, alkoxy(alkyl)phenyl-alkyl-pyrazole, dihalophenyl-alkyl-pyrazole, dialkylphenyl-alkyl-pyrazole, alkoxyphenyl-alkyl-pyrazole, halophenyl-haloalkyl-pyrazole, alkoxyphenyl(alkyl)(halo)pyrazole, phenylpyrimidine, phenyl(halo)pyrimidine, diphenylpyrimidine, halophenyl(halo)pyrimidine, dihalophenylpyrimidine, dialkyl(halo)pyrimidine, dihalophenylpyrimidine, dialkyl(halo)pyrimidine, dihalophenylpyrimidine,

alkylphenylpyrimidine, alkoxyphenylpyrimidine, alkyl(halo)phenyl(alkoxy)pyrimidie, dialkylphenyl(alkoxy)pyrimidine, alkyl(halo)phenyl(alkoxy)pyrimidine, alkoxy(halo)phenyl(alkoxy)pyrimidine, dihalophenyl(dialkylamino)pyrimidine, heteroaryl(dihalophenyl)pyrimidine, halophenylpyrimidine, alkoxy(phenyl)pyrimidine, haloalkoxyphenylpyrimidine, phenoxy(phenyl)pyrimidine, heteroaryl(phenyl)pyrimidine, dialkoxyphenylpyrimidine, dialkylphenylpyrimidine, cycloheteroalkyl(phenyl)pyrimidine, alkoxy(halo)phenylpyrimidine, cycloheteroalkyl(dihalophenyl)pyrimidine, halophenyl(alkoxy)pyrimidine, alkyl(halo)phenylpyrimidine, nitrophenylpyrimidine, dihalophenyl(alkoxy)pyrimidine, carboxyphenylpyrimidine, alkylcarbonylphenylpyrimidine, naphthylpyrimidine, alkylthiophenylpyrimidine, alkyl(halophenyl)triazole, alkyl(halo)phenyl-(alkyl)triazole, alkylimidazopyridine

phenylimidazopyridine, halophenylimidazopyridine, dihalophenylimidazopyridine, alkoxyphenylimidazopyridine.

Claim 27. (Previously Presented) The compound as defined in Claim 1 wherein

R² is CH₃ or H;

R³ is CH₃ or H;

R⁴ is H:

R¹ is 2,3-dihydrobenzofuran-4-yl, 1-phenyltetrazol-5-yl,

1-(2,4-dichloro-5-methoxyphenyl)tetrazol-5-yl,

1-(3-chlorophenyl)tetrazol-5-yl,

1-(3-chloro-4-methyl)tetrazol-5-yl,

1-(3-methylphenyl)tetrazol-5-yl,

1-(2-chlorophenyl)tetrazol-5-yl,

1-(2-methoxy-5-chloro)tetrazol-5-yl,

1-(3-methyl-4-chlorophenyl)tetrazol-5-yl,

1-(2-methoxy-5-chlorophenyl)tetrazol-5-yl,

1-(3-methoxyphenyl)tetrazol-5-yl,

1-(2-methoxy-5-chlorophenyl)tetrazol-5-yl,

- 1-(3-chlorophenyl)-3-methylpyrazol-5-yl,
- 1-(3-fluorophenyl)-3-methylpyrazol-5-yl,
- 1-(3-methoxyphenyl)-3-methylpyrazol-5-yl,
- 1-(3,5-dichlorophenyl)-3-methylpyrazol-5-yl,
- 1-(3-chlorophenyl)-3-ethylpyrazol-5-yl,
- 1-(3-chloro-4-methylphenyl)-3-methylpyrazol-5-yl,
- 1-(2,4-dimethylphenyl)-3-methylpyrazol-5-yl,
- 1-(3-chloro-4-fluorophenyl)-3-methylpyrazol-5-yl,
- 1-(3-trifluoromethylphenyl)-3-methylpyrazol-5-yl,
- 1-(3-chlorophenyl)-3-trifluoromethylpyrazol-5-yl,
- 1-(3-methylphenyl)3-methylpyrazol-5-yl,
- 1-(3-chlorophenyl)-3-ethylpyrazol-5-yl,
- 5-(3-chloro-4-fluorophenyl)pyrimidin-4-yl,
- 5-(2-chlorophenyl)pyrimidin-4-yl,
- 5-(3-methylphenyl)pyrimidin-4-yl,
- 5-(3-trifluoromethylphenyl)pyrimidin-4-yl,
- 5-(2,4-dichlorophenyl)pyrimidin-4-yl,
- 5-(2,5-dimethylphenyl)pyrimidin-4-yl,
- 5-(3,4-dichlorophenyl)pyrimidin-4-yl,
- 5-(2,3-dimethylphenyl)pyrimidin-4-yl,
- 5-(2-methoxy-5-chlorophenyl)pyrimidin-4-yl,
- 5-(2-methoxy-5-fluorophenyl)pyrimidin-4-yl,
- 5-(3-methyl-4-fluorophenyl)pyrimidin-4-yl,
- 5-(3-chloro-4-fluorophenyl)-2-methoxy-pyrimidin-4-yl,
- 5-(3-chloro-4-fluorophenyl)-2-dimethylamino-pyrimidin-4-yl,
- 5-(3-chloro-4-fluorophenyl)-2-morpholinyl-pyrimidin-4-yl,
- 1-(3-chlorophenyl)-3-methyltriazol-5-yl,
- 1-(3-chloro-4-methylphenyl)-3-methyltriazol-5-yl,
- 5-(2,5-dichlorophenyl)pyrimidin-4-yl,
- 5-(3-chlorophenyl)pyrimidin-4-yl,
- 5-(3-trifluoromethoxyphenyl)pyrimidin-4-yl,
- 5-(2-chlorophenyl)-2-methoxypyrimidin-4-yl,
- 5-(3-chlorophenyl)-2-methoxypyrimidin-4-yl,
- 5-(3-trifluoromethylphenyl)-2-methoxypyrimidin-4-yl,

5-(2,4-dichlorophenyl)-2-methoxypyrimidin-4-yl,

5-(3-methylphenyl)-2-methoxypyrimidin-4-yl,

5-(2,5-dimethylphenyl)-2-methoxypyrimidin-4-yl, or

5-(3-methyl-4-fluorophenyl)-2-methoxypyrimidin-4-yl;

Z is 2-amino-5-methyl-imidazol-4-yl, 2,5-dimethylimidazol-4-yl, 2-amino-5-ethyl-imidazol-4-yl, 2-amino-5-methyl-imidazol-4-yl, 5-methyl-imidazol-4-yl, imidazol-4-yl, or 4-methylimidazol-5-yl.

Claim 28. (Previously Presented) A compound having the structure

Claim 29. (Previously Presented) A compound having the structure

Claim 30. (Previously Presented) A compound having the structure

Claim 31. (Original) A pharmaceutical composition comprising a compound as defined in Claim 1 and a pharmaceutically acceptable carrier therefor.

Claims 32-62. (Cancelled).

Claim 63. (Previously Presented) A compound having the following structure

Claim 64. (Previously Presented) A compound having the structure

$$R^{1} - X = X$$

$$R^{4} = X$$

wherein n is 4;

X is N:

Z is a 5- or 6-membered nitrogen-containing monocycle heteroaryl group which is selected from the group consisting of imidazole attached at its 4- or 5-position to the ring, aminoimidazole, alkylimidazole, alkylimidazole, alkylimidazole, amino(alkyl)imidazole, (alkanoylamino)imidazole, aminothiazole, aminooxazole, aminooxadiazole, dialkylimidazole, alkyl(alkanoylamino)imidazole, alkyl(amino)imidazole, arylaminocarbonylamino(alkyl)imidazole, alkoxycarbonylamino(alkyl)imidazole, alkylcarbonylamino(alkyl)imidazole, aminotriazole or diaminopyrimidine;

R¹ is tetrazolyl, pyrazolyl, thiazolyl, oxazole, triazole or substituted or substituted with from one to five substituents;

R², R³ and R⁴ are the same or different and are independently H, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl)₃Si (where each alkyl or aryl group is independent), cycloalkyl, cycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino,

arylalkylamino, aryl, arylalkyl, arylamino, aryloxy, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl, heteroarylamino, heteroaryloxy, arylthio, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, halogen, haloalkyl, polyhaloalkyl, polyhaloalkoxy, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, hydroxy, acyl, carboxy, aminocarbonyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylcarbonyl, arylcarbonyloxy, arylcarbonylamino, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro, alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino, alkenylaminocarbonylamino, alkynylaminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonyloxy, alkoxycarbonylamino, I,I-(alkoxyl or aryloxy)2alkyl (where the two aryl or alkyl substituents can be independently defined, or linked to one another to form a ring), S(O)₂R⁶R⁷, -NR⁶(C=NR⁷)alkyl, -NR⁶(C=NR⁷)alkenyl, -NR⁶(C=NR⁷)alkynyl, -NR⁶(C=NR⁷)heteroaryl, -NR⁸(C=NCN)-amino.

$$-\frac{1}{2} \left(\frac{1}{2} \right)^{n}$$

pyridine-N-oxide,

$$-N \longrightarrow \mathbb{R}^{8} \longrightarrow \mathbb{R}^{0} \longrightarrow \mathbb{R}$$

(where Q is O or H₂ and n' is 0, 1, 2 or 3) or

 $\frac{{}^{NR}{}^8R^9}{{}^{C} = {}^{CH} = {}^{C} = {}^{R}{}^{8a}; \ tetrazolyl, \ pyriadyl, \ thiazolyl, \ pyrimidinyl, \ imidazole, \ oxazole, \ or \ triazole, \ -PO(R^{13})(R^{14}), \ (where \ R^{13} \ and \ R^{14} \ are \ independently \ alkyl, \ aryl, \ alkoxy, \ aryloxy, \ heteroarylalkyl, \ heteroarylalkyl, \ heteroarylalkyl, \ cycloheteroalkylalkyl,$

cycloheteroalkoxy, or cycloheteroalkylalkoxy); and may be optionally independently substituted with from one to five substituents, which may be the same or different;

R⁶, R⁷, R⁸, R^{8a} and R⁹ are the same or different and are independently hydrogen, alkyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl, or cycloheteroalkyl;

or a pharmaceutically acceptable salt thereof, or a prodrug thereof, and all stereoisomers thereof.

Claim 65. (Previously Presented) The compound as defined in Claim 64 wherein Z is imidazole attached to its 4- or 5-position to the ring, aminoimidazole, alkylimidazole, alkylthioimidazole, alkylthioimidazole, amino-(alkyl)imidazole, (alkanoylamino)imidazole, aminothiazole, aminooxazole, aminooxadiazole, dialkylimidazole, alkyl(alkanoylamino)imidazole, alkyl(amino)imidazole, arylaminocarbonylamino(alkyl)imidazole, alkoxycarbonylamino(alkyl)imidazole, aminotriazole or diaminopyrimidine.

Claim 66. (Previously Presented) The compound as defined in Claim 1 wherein the R¹ group may be substituted within from one to five of the following groups:

alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, (alkyl or aryl)₃Si (where each alkyl or aryl group is independent), cycloalkyl, cycloalkenyl, amino, alkylamino, dialkylamino, alkenylamino, alkynylamino, arylalkylamino, aryl, arylalkyl, arylamino, aryloxy, cycloheteroalkyl, cycloheteroalkylalkyl, heteroaryl, heteroarylamino, heteroaryloxy, arylthio, arylsulfinyl, arylsulfonyl, thio, alkylthio, alkylsulfinyl, alkylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, halogen, haloalkyl, polyhaloalkyl such as CF₃ and CF₃CH₂, polyhaloalkyloxy such as CF₃O and CF₃CH₂O, aminothio, aminosulfinyl, aminosulfonyl, alkylsulfonylamino, alkenylsulfonylamino, alkynylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, hydroxy, acyl, carboxy, aminocarbonyl, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, alkylcarbonylamino, arylcarbonyl, arylcarbonyloxy, arylcarbonylamino, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroarylcarbonylamino, cyano, nitro. alkenylcarbonylamino, alkynylcarbonylamino, alkylaminocarbonylamino, alkenylaminocarbonylamino, alkynylaminocarbonylamino, arylaminocarbonylamino, heteroarylaminocarbonylamino, alkoxycarbonylamino, alkenyloxycarbonylamino, alkynyloxycarbonylamino, aryloxycarbonylamino, heteroaryloxycarbonylamino, aminocarbonylamino, alkylaminocarbonyloxy, 1,1-(alkoxyl or aryloxy)2alkyl (where the two aryl or

alkyl substituents can be independently defined, or linked to one another to form a ring, such as 1,3-dioxane or 1,3-dioxolane), S(O)₂R⁶R⁷, -NR⁶(C=NR⁷)alkyl,

NR⁶(C=NR⁷)alkenyl, -NR⁶(C=NR⁷)alkynyl, NR⁶(C=NR⁷)heteroaryl, -NR⁸(C=NCN)-amino, pyridine-N-oxide,

$$-\underset{\stackrel{\bullet}{\text{N}}}{\overset{\bullet}{\text{N}}}_{\text{n'}}^{\text{R}^{\text{8}}}$$

where Q is O or H_2 and n' is 0,1,2 or 3) or $-\overset{\text{NR}^8\text{R}}{\text{C}} \overset{\text{O}}{\text{C}} = \text{CH} - \overset{\text{I}}{\text{C}} - \text{R}^{8a}$; tetrazolyl, pyrazolyl, pyridyl, thiazolyl, pyrimidinyl, oxazole or triazole; -PO(R¹³)(R¹⁴), (where R¹³ and R¹⁴ are independently alkyl, aryl, alkoxy, aryloxy, heteroaryl, heteroarylalkyl, heteroaryloxy, heteroarylalkoxy, cycloheteroalkyl, cycloheteroalkyl, or cycloheteroalkylalkoxy);

R⁶, R⁷, R⁸, R^{8a} and R⁹ are independently hydrogen, alkyl, haloalkyl, aryl, heteroaryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl or cycloheteroalkyl, which substituents may be the same or different from each other and may be the same or different from the base R¹ group.

Claim 67. (Previously Presented) The compound as defined in Claim 64 wherein R¹ is substituted with one to five of the following substituents: alkyl, alkylaminocarbonyl, arylaminocarbonyl, heteroarylaminocarbonyl, alkylcarbonylamino, heteroaryl, halo, aryl, cycloalkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, alkoxycarbonylamino, guanidinyl, nitro, cycloheteroalkyl, aryloxycarbonylamino, heteroaryloxylcarbonylamino, uriedo (where the uriedo nitrogens may be substituted with alkyl, aryl or heteroaryl), heterocyclylcarbonylamino (where the heterocycle is connected to the carbonyl group via a nitrogen or carbon atom), alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino,

$$R^{21} \xrightarrow{\Gamma} N - R^{22}$$

R²³, R²⁴ and R²⁵ are independently hydrogen, alkyl, alkenyl, alkynyl, aryl, arylalkyl, heteroarylaikyl, cycloalkyl, or cycloalkylalkyl;

R²⁰, R²¹, R²² are independently hydrogen, halo, alkyl, alkenyl, alkoxy, aryloxy, aryl, arylalkyl, alkylmercapto, arylmercapto, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, hydroxy or haloalkyl, and these substituents may either be directly attached to R¹, or attached via an alkylene chain at an open position, which substituents may be the same or different from each other, and may be the same or different from the base R¹ group.

Claim 68. (Previously Presented) The compound as defined in Claim 64 wherein Z is imidazole attached at its 4- or 5-position to the ring, aminoimidazole, alkylimidazole, alkylthioimidazole, alkylthioimidazole, alkylthioimidazole, amino(alkyl)imidazole or (acetylamino)imidazole.

Claim 69. (Currently Amended) The compound as defined in Claim 64 wherein the moiety

Claim 70. (Previously Presented) The compound as defined in Claim 64 wherein R² and R³ are independently H, lower alkoxy or aryl, and R⁴ and R⁵ are each hydrogen.

Claim 71. (Previously Presented) The compound as defined in Claim 64 wherein R1 is

Claim 72. (Previously Presented) The compound as defined in Claim 64 wherein R¹, R², R³ and/or R⁴ may be joined together with the N atom and/or carbons to which they are attached to form a non-aromatic ring.

Claim 73. (Currently Amended) The compound as defined in Claim 64 wherein

Claim 74. (Previously Presented) The compound as defined in Claim 64 having the structure

$$R^{1}-X$$

$$R^{1}-X$$

$$R^{1}-X$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}-X$$

$$R^{3}$$

$$R^{1}-X$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{1}-X$$

$$R^{3}$$

Ar NH (R²⁷ = alkyl or aryl)

$$R^{30}$$
 Ar NH (R³⁰ = alkyl or halo)

 R^{30} Ar NH (alkyl)₂N, alkyl-S or alkyl)

Claims 75 and 76. (Cancelled).