Parallelization of the Mean Shift Clustering with OpenMP

Emilio Cecchini

June 12, 2019

Università degli Studi di Firenze emilio.cecchini@stud.unfi.it

Overview

The Mean Shift Clustering

Sequential implementation

OpenMP

Parallelization of the Mean Shift with OpenMP

Speedup

The Mean Shift Clustering

Mean Shift key concepts

- Non-parametric technique to find the maxima of a density function.
- At each step, a kernel function is applied to each point that causes the points to shift in the direction of the local maxima determined by the kernel.

Gaussian Kernel

 There are many different types of kernel, the most used is the Gaussian kernel:

$$k(x) = e^{-\frac{X}{2\sigma^2}}$$

ullet The standard deviation σ is the bandwidth parameter, with a high bandwith value you will get a few large clusters and vice versa.

Mean Shift Clustering

Suppose x is a point to be shifted and N(x) are the sets of points near to that point. Let $dist(x, x_i)$ be the distance from the point x to the point x_i . The new position x' where x has to be shifted is computed as follows:

$$x' = \frac{\sum_{x_i \in N(x)} k(dist(x, x_i)^2) x_i}{\sum_{x_i \in N(x)} k(dist(x, x_i)^2)}$$

The mean shift algorithm applies that formula to each point iteratively until they converge, that is until the position does not change.

Sequential implementation

Sequential implementation

```
Algorithm 1 Mean shift core

1: while allPointsHaveStoppedShifting() do

2: for each point p do

3: if hasStoppedShifting(p) then

4: continue

5: end if

6: shift(p)

7: end for

8: end while
```

OpenMP

First slide

Second slide

Parallelization of the Mean Shift

with OpenMP

First slide

Second slide

Speedup

First slide

Second slide