Министерство науки и вышего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

« Российский химико-технологический университет имени Д.И. Менделеева »

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2 Вариант 22

Выполнил студент группы КС-36: Золотухин Андрей Александрович

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Принял: Лебедев Данила Александрович

Дата сдачи: 02.04.25

Москва

2025

Оглавление

Описание задачи	:
Выполнение задачи	4
Задание 1	4
Задание 2	4
Задание 3	
Задание 4	
Задание 5	
Задание 6	
Задание 7	
Задание 8	
Задание 9	
Задание 10	
Задание 11	
Оадание 11	č

Описание задачи

Вариант	Уравнение	Интервалы переменных	Начальные и граничные условия
22	$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$	x in [0, 1] t in [0, 1]	$u(t = 0, x) = e^{x}$ $u(t, x = 0) = e^{t}$ $u(t, x = 1) = e^{t+1}$

Для заданного уравнения:

- 1. записать неявную разностную схему;
- 2. определить порядок аппроксимации разностной схемы;
- 3. доказать абсолютную устойчивость разностной схемы (с помощью метода гармоник);
- 4. привести схему к виду, удобному для использования метода прогонки;
- 5. проверить сходимость прогонки;
- 6. найти $\alpha_1, \beta_1, u_N^{n+1}$
- 7. записать рекуррентное прогоночное соотношение;
- 8. составить алгоритм (блок-схему) расчёта;
- 9. построить программу на любом удобном языке программирования;
- 10. провести численный расчёт с использованием различных значений $\Delta t(0.1, 0.01, 0.001), h = 0.1$
- 11. составить отчёт о проделанной работе;
- 12. сравнить результаты расчётов заданий №1 и №2 друг с другом, а также с истинными значениями функции u и в соответствующих точках разностной сетки (ucmunhoe pewenue ypashehus bydem by

Выполнение задачи

Задание 1

Записать неявную разностную схему:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{h^2}.$$
 (1)

В записанной разностной схеме уравнения 1 аппроксимация второй производной функции u(t,x) по координате рассматривается на n+1-м шаге по времени, т.е. относительно точки t^{n+1} , для которой рассматривается аппроксимация всего уравнения. Такая разностная схема называется неявной.

Задание 2

Определить порядок аппроксимации разностной схемы уравнения 1: Для этого запишу разложение значений $u_j^{n+1},\,u_{j+1}^{n+1},\,u_{j-1}^{n+1}$ в ряд Тейлора относительно точки $(t^{n+1},\,x_j)$:

$$u_{j}^{n} = u_{j}^{n+1} - \frac{\partial u}{\partial t}|_{j}^{n+1} \Delta t + \frac{\partial^{2} u}{\partial t^{2}}|_{j}^{n+1} \frac{(\Delta t)^{2}}{2!} - \frac{\partial^{3} u}{\partial t^{3}}|_{j}^{n+1} \frac{(\Delta t)^{3}}{3!} + \dots,$$
 (2)

$$u_{j+1}^{n+1} = u_j^{n+1} + \frac{\partial u}{\partial x}|_j^{n+1} h + \frac{\partial^2 u}{\partial x^2}|_j^{n+1} \frac{h^2}{2!} + \frac{\partial^3 u}{\partial x^3}|_j^{n+1} \frac{h^3}{3} + \frac{\partial^4 u}{\partial x^4}|_j^{n+1} \frac{h^4}{4} + \dots,$$
(3)

$$u_{j-1}^{n+1} = u_j^{n+1} - \frac{\partial u}{\partial x}|_j^{n+1} h + \frac{\partial^2 u}{\partial x^2}|_j^{n+1} \frac{h^2}{2!} - \frac{\partial^3 u}{\partial x^3}|_j^{n+1} \frac{h^3}{3} + \frac{\partial^4 u}{\partial x^4}|_j^{n+1} \frac{h^4}{4} + \dots$$
 (4)

Подставляя зависимости уравнения 2 - уравнения 4 в разностную схему уравнения 1, получаю:

$$\frac{\partial u}{\partial t}|_{j}^{n+1} - \frac{\partial^{2} u}{\partial t^{2}}|_{j}^{n+1} \frac{(\Delta t)}{2!} + \frac{\partial^{3} u}{\partial t^{3}}|_{j}^{n+1} \frac{(\Delta t)^{2}}{3!} - \dots = \frac{\partial^{2} u}{\partial x^{2}}|_{j}^{n+1} \frac{h^{2}}{2!} + \frac{\partial^{4} u}{\partial x^{4}}|_{j}^{n+1} \frac{h^{4}}{4} + \dots$$

$$\Rightarrow \frac{\partial u}{\partial t}|_{j}^{n+1} + O(\Delta t) = \frac{\partial^{2} u}{\partial x^{2}}|_{j}^{n+1} + O(h^{2}).$$

Таким образом, неявная разностная схема уравнения 1 аппроксимирует исходное дифференциальное уравнение с первым порядком по времени и со вторым порядком по координате, что записывается в следующем виде:

$$O(\Delta t) + O\left(h^2\right)$$
 или $O(\Delta t, h^2).$

Задание 3

Доказать абсолютную устойчивость разностной схемы уравнения 1 (с помощью метода гармоник):

Представляю решение разностной схемы в виде гармоники:

$$u_i^n = \lambda^n e^{i\alpha j}. (5)$$

Подставляя уравнения 5 в разностную схему уравнения 1, получаю:

$$\frac{\lambda^{n+1}e^{i\alpha j}-\lambda^n e^{i\alpha j}}{\Delta t}=\frac{\lambda^{n+1}e^{i\alpha (j+1)}-2\lambda^{n+1}e^{i\alpha j}+\lambda^{n+1}e^{i\alpha (j-1)}}{h^2}.$$

Упрощаю полученное выражение, деля левую и правую его части на $\lambda^n e^{i\alpha j}$:

$$\frac{\lambda - 1}{\Delta t} = \frac{\lambda e^{i\alpha} - 2\lambda + \lambda e^{-i\alpha}}{h^2}$$

Преобразую комплексные числа из экспоненциальной формы в тригонометрическую:

$$e^{\pm i\alpha} = \cos \alpha \pm i \sin \alpha \Rightarrow \frac{\lambda - 1}{\Delta t} = \lambda \frac{2\cos \alpha - 2}{h^2}.$$

Используя тригонометрические тождества

$$\cos \alpha = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} = 1 - 2\sin^2 \frac{\alpha}{2},$$

получаю формулу, из которой затем выражаю λ:

$$\frac{\lambda - 1}{\Delta t} = \frac{-4\lambda \sin^2 \frac{\alpha}{2}}{h^2} \Rightarrow \lambda = \frac{1}{1 + \frac{4\Delta t \sin^2 \frac{\alpha}{2}}{h^2}}.$$

C учётом необходимого условия устойчивости разностных схем $|\lambda| \leq 1$ имею:

$$-1 \le \frac{1}{1 + \frac{4\Delta t \sin^2 \frac{\alpha}{2}}{h^2}} \le 1.$$

В полученном двойном неравенстве левое и правое условие выполняются автоматически.

Для любых значений Δt и h неравенство выполняется. Следовательно, разностная схема абсолютно устойчива.

Задание 4

Привести схему к виду, удобному для использования метода прогонки:

Преобразую неявную разностную схемы уравнения 1, группируя в левой части члены, содержащие значение функции u(t, x) на (n + 1) шаге по времени, а в правой части - все остальные члены:

$$-\frac{\Delta t}{h^2}u_{j+1}^{n+1} + \left(1 + 2\frac{\Delta t}{h^2}\right)u_j^{n+1} - \frac{\Delta t}{h^2}u_{j-1}^{n+1} = u_j^n.$$
 (6)

Введу следующие обозначения:

$$a_{j} = -\frac{\Delta t}{h^{2}}; b_{j} = \left(1 + 2\frac{\Delta t}{h^{2}}\right); c_{j} = -\frac{\Delta t}{h^{2}}; \xi_{j}^{n} = u_{j}^{n}. \tag{7}$$

С учётом обозначений уравнения 7 равенство уравнения 6 будет иметь вид:

$$a_j u_{j+1}^{n+1} + b_j u_j^{n+1} + c_j u_{j-1}^{n+1} = \xi_j^n$$

Данное преобразование называется *преобразованием неявной разностной схемы к виду,* удобному для использования метода прогонки.

Задание 5

Проверить сходимость прогонки:

Теорема. Достаточным условием сходимости метода прогонки к решению исходной дифференциальной задачи является выполнение неравенства:

$$|a_j| + |c_j| < |b_j|$$

Легко видеть, что для разностной схемы достаточное условие сходимости прогонки выполняется:

$$|a_j| + |c_j| = 2\frac{\Delta t}{h^2} < 1 + 2\frac{\Delta t}{h^2} = |b_j|$$

Задание 6

Найти $\alpha_1, \, \beta_1, \, u_N^{n+1}$:

Для реализации неявной разностной схемы требуется ввести некоторое дополнительно условие, связывающее значения функции u(t, x) на (n+1)-м шаге по времени. Представлю это дополнительное условие в виде линейной зависимости

$$u_j^{n+1} = \alpha_j u_{j+1}^{n+1} + \beta_j, \tag{8}$$

справедливой для любого значений j=1, ..., N-1.

Соотношение уравнения 8 называют **рекуррентным прогоночным соотношением**, а коэффициенты a_j , β_j - **прогоночными коэффициентами**.

Для определния прогоночных коэффициентов на 1-м шаге по координате x, использую рекуррентное прогоночное соотношение уравнения 8, записанное для j=1:

$$u_1^{n+1} = \alpha_1 u_2^{n+1} + \beta_1,$$

и левое граничное условие:

$$u_1^{n+1} = e^{(n+1)\Delta t}$$

Сравнивая эти два соотношения, получаю:

$$\alpha_1=0, \beta_1=e^{(n+1)\Delta t}.$$

Значение функции u(t, x) на (n+1)-м шаге по времени в крайней правой точке, которое можно определить из правого граничного условия:

$$u_N^{n+1} = e^{(n+1)\Delta t + 1}.$$

Задание 7

Записать рекуррентное прогоночное соотношение:

Соотношение уравнения 8 является рекуррентным прогоночным соотношением.

Задание 8

Составить алгоритм (блок-схему) расчёта:

Задание 9

Построить программу на любом удобном языке программирования:

```
#include <iostream>
#include <cmath>
#include "../include/Constants.h"

int main() {
  int N_x = 1 + (Constants::x_end - Constants::x_start) / Constants::h;
  int N_t[Constants::amount_of_delta_t] = {0};
  for (int i = 0; i < Constants::amount_of_delta_t; i++)
    N_t[i] = 1 + (Constants::t_end - Constants::t_start) / Constants::delta_t[i];</pre>
```

```
double u[N_x][N_t[0]] = \{0.0\};
for (int j = 0; j \le N_x - 1; j++) {
  u[0][j] = std::exp(j * Constants::h);
}
double a[N_x] = \{0\};
double b[N x] = \{0\};
double c[N x] = \{0\};
double ksi[N_x] = \{0\};
double alpha[N_x] = {0};
double beta[N x] = \{0\};
int n = 0;
while (!(n == (N t[0] - 1))) {
  alpha[0] = 0.0;
  beta[0] = std::exp((n + 1) * Constants::delta t[2]);
  for (int j = 1; j \le N_x - 2; j++) {
    a[j] = - (Constants::delta_t[2]) / (std::pow(Constants::h, 2));
    b[j] = 1 + 2 * (Constants::delta_t[2]) / (std::pow(Constants::h, 2));
    c[j] = - (Constants::delta_t[2]) / (std::pow(Constants::h, 2));
    ksi[j] = u[n][j];
    alpha[j] = - (a[j]) / (b[j] + c[j] * alpha[j - 1]);
    beta[j] = (ksi[j] - c[j] * beta[j - 1]) / (b[j] + c[j] * alpha[j - 1]);
  }
  u[n + 1][N_x - 1] = std::exp((n + 1) * Constants::delta_t[2] + 1);
  for (int j = N_x - 2; j \ge 0; j - -) {
    u[n + 1][j] = alpha[j] * u[n + 1][j + 1] + beta[j];
  }
 n++;
}
std::ofstream csvFile(Constants::csvPath);
csvFile << "t\\x,";</pre>
for (int j = 0; j \le N_x - 1; j++) {
  csvFile << j * Constants::h;</pre>
  if (j != (N_x - 1)) csvFile << ",";</pre>
csvFile << "\n";
for (int n = 0; n < N_t[0]; n++) {
  double t = (n + 1) * Constants::delta_t[2];
  csvFile << t << ",";
  for (int j = 0; j < N_x; j++) {
    csvFile << u[n][j];
   if (j != (N_x - 1)) csvFile << ",";</pre>
  }
  csvFile << "\n";
}
csvFile.close();
std::ofstream plotFile(Constants::plotPath);
```

```
for (int n = 0; n < N_t[0]; n++) {
    double t = (n + 1) * Constants::delta_t[2];
    for (int j = 0; j < N_x; j++) {
        double x = j * Constants::h;
        plotFile << t << " " << x << " " << u[n][j] << "\n";
    }
    plotFile.close();

return 0;
}</pre>
```

Задание 10

Провести численный расчёт с использованием различных значений $\Delta t (0.1,\ 0.01,\ 0.001),\ h=0.1$:

$\mathbf{t} \backslash \mathbf{x}$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0.001	1	1.10517	1.2214	1.34986	1.49182	1.64872	1.82212	2.01375	2.22554	2.4596	2.71828
0.002	1.001	1.10628	1.22263	1.35121	1.49332	1.65037	1.82394	2.01577	2.22777	2.46207	2.721
0.003	1.002	1.10739	1.22385	1.35256	1.49482	1.65203	1.82577	2.01779	2.23	2.46453	2.72372
0.004	1.003	1.1085	1.22508	1.35392	1.49631	1.65368	1.8276	2.01981	2.23224	2.467	2.72645
0.005	1.00401	1.10961	1.2263	1.35528	1.49781	1.65534	1.82943	2.02183	2.23447	2.46947	2.72918
0.006	1.00501	1.11072	1.22753	1.35663	1.49931	1.657	1.83126	2.02386	2.23671	2.47194	2.73191
0.007	1.00602	1.11183	1.22876	1.35799	1.50081	1.65866	1.8331	2.02589	2.23895	2.47442	2.73464
0.008	1.00702	1.11294	1.22999	1.35935	1.50232	1.66032	1.83494	2.02792	2.24119	2.4769	2.73738
0.009	1.00803	1.11406	1.23123	1.36072	1.50382	1.66198	1.83677	2.02995	2.24344	2.47938	2.74012
0.01	1.00904	1.11517	1.23246	1.36208	1.50533	1.66365	1.83861	2.03198	2.24569	2.48186	2.74286
0.011	1.01005	1.11629	1.23369	1.36344	1.50684	1.66531	1.84046	2.03402	2.24794	2.48434	2.7456

Задание 11

Составить отчёт о проделанной работе. График функции u(t, x) (Рис. 1).

График зависимости u(t, x)

Рис. 1: График функции u(t, x).