

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO. FILING DATE		ING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
10/689,617 10/22/2003		0/22/2003	Satoru Okamoto	12732-170001	4799	
26171	7590	11/02/2006		EXAMINER		
FISH & RI		ON P.C.	DAHIMENE, MAHMOUD			
P.O. BOX 1022 MINNEAPOLIS, MN 55440-1022				ART UNIT	PAPER NUMBER	
			DATE MAILED: 11/02/2006			

Please find below and/or attached an Office communication concerning this application or proceeding.

			Application No.		Applicant(s)				
Office Action Summary			10/689,617		OKAMOTO, SATORU				
			Examiner		Art Unit				
			Mahmoud Da		1765				
Period fo	The MAILING DATE of this commun r Reply	ication appe	ears on the co	ver sheet with the c	orrespondence ad	dress			
A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).									
Status						•			
1)⊠	Responsive to communication(s) file	ed on <i>08 Au</i> c	gust 2006.						
•=	This action is FINAL . 2b)⊠ This action is non-final.								
· · · ·	Since this application is in condition	for allowand	ce except for	formal matters, pro	secution as to the	e merits is			
,	closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.								
Disposition of Claims									
4)⊠	☑ Claim(s) <u>1-95</u> is/are pending in the application.								
	4a) Of the above claim(s) is/are withdrawn from consideration.								
5)⊠	☑ Claim(s) 85-95 is/are allowed.								
6)⊠	Claim(s) 1-84 is/are rejected.								
7)	Claim(s) is/are objected to.								
8)□	8) Claim(s) are subject to restriction and/or election requirement.								
Applicati	on Papers								
9)	The specification is objected to by th	e Examiner.							
10)	The drawing(s) filed on is/are	: a) acce	pted or b)	objected to by the I	Examiner.				
	Applicant may not request that any obje	ction to the d	Irawing(s) be h	neld in abeyance. See	e 37 CFR 1.85(a).				
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).									
11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.									
Priority (ınder 35 U.S.C. § 119								
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 									
2) Notice 3) Information	et(s) te of References Cited (PTO-892) te of Draftsperson's Patent Drawing Review (Imation Disclosure Statement(s) (PTO/SB/08) tr No(s)/Mail Date		5)	Interview Summary Paper No(s)/Mail Do Notice of Informal F	ate				

DETAILED ACTION

Claim Rejections - 35 USC § 112

- 1. The following is a quotation of the first paragraph of 35 U.S.C. 112:
 - The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.
- 2. Claim 1 is rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. The negative limitation "not to form a semiconductor device" does not have basis in the original disclosure see MPEP §2173.05(i).

Claim Rejections - 35 USC § 103

- 1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 1765

2. Claim 1-5, 7 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chow et al. (US 6,872,322) in view of Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).

Regarding claim 1, Chow discloses a method for cleaning a chamber with a plasma including the steps of steps of forming a polysilicon/semiconductor film over a substrate and a tungsten silicide /conductive layer over the semiconductor film (col 11, lines 1-3); filling a chamber with Cl2 and generating plasma from the Cl2 to clean the chamber (col 11, lines 35-42); placing the wafer/substrate with the polysilicon/semiconductor film and a tungsten silicide/conductive layer in the chamber being cleaned with added cleaning gas/cleaned chamber to etch the conductive film in the cleaned chamber by repeating the etching steps (col 10, lines 52-57; col 11, lines 1-20; fig. 3).

Chow discloses forming a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17). The oxide layer of Chow is a gate oxide deposited on top of a semiconductor film which forms the channel underneath the gate, as anyone with ordinary skill in the art would know that the semiconducting channel is formed on a "first" substrate. It is noted that Chow is silent about the formation of the transistor channel including the oxide layer being deposited on a conductive layer, however Wolf teaches p-wells or n-wells are conventionally used in device formation see figure 1-7 of Wolf (page 11). One of ordinary skill in the art would have been motivated to use p-wells or n-wells in order to form a twin-well CMOPS structure as suggested by Wolf.

1705

Art Unit: 1765

Chow discloses the use of dummy wafers/substrates for seasoning the chamber, however, It is noted that Chow is silent about using a second substrate which is not to form a device (conventionally known as a dummy substrate) for cleaning the chamber.

Lui discloses dummy substrates are conventionally used for etch chamber cleaning (column 1, line 33).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process of Chow to use a dummy substrate because dummy substrates are conventionally used for etch chamber cleaning. One of ordinary skill in the art would have been motivated to use a dummy substrate in order to decouple the process of chamber cleaning from the process of etching when the substrate is sensitive to the cleaning byproducts. One of ordinary skill in the art would have been motivated to modify the method of Chow by performing cleaning independently of the etching step when the cleaning process result in undesirable effects on the substrate such as contamination or incontrollable etch, the method of Chow could obviously be extended to process more delicate substrates, by performing independent etch and clean steps. Lui teaches cleaning the chamber using a dummy wafer on the chuck while cleaning.

Applicant does not specify what specific kind of etching in performed, it would appear that the chamber cleaning procedure and the etch step of Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of

Art Unit: 1765

layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment. Chow teaches the general concept of chamber cleaning for the purpose of increasing etch selectivity by reducing the concentration of unwanted species released from deposits on the chamber walls from a previous etch process performed within the same chamber.

Regarding claim 2, Chow discloses using an ICP etching method (col 6, lines 35-40)

Regarding claim 3, Chow discloses that the fluorine gas is CF4 (col 9, lines 37-40),

As to claim 4, it is noted that Chow is silent about a glass or quartz dummy wafer for the cleaning step, however, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process of Chow to use a dummy substrate made of any material including glass or quartz wich is compatible with the chamber and process chemistry because a dummy wafer is used only during cleaning. One of ordinary skill in the art would have been motivated to use glass or quartz in order to prevent introducing impurities in the chamber since glass or quartz (SiO2) is conventionally used as a material for material fill or gate material, also quartz is resistant to the cleaning chemistry, and glass or quartz wafers are readily available as dummy wafers.

Regarding claims 5, Chow discloses adding oxygen gas to the cleaning plasma (col 9, lines 37-40), and cites "The present process allows etching of one or more layers

on a substrate 25 and simultaneous cleaning of the plasma etching chamber 30 in which the etching process is performed, without stopping the etching process. In one or more of the etch process stages, a cleaning gas is added to the etchant gas in a volumetric ratio selected so that the etching residue formed in any one of the etching stages; or the residue formed in all of the etching stages is substantially entirely removed during the etching process. The etchant gas comprises one or more of Cl.sub.2, N.sub.2, O.sub.2, HBr, or He--O.sub.2; and the cleaning gas comprises one or more of NF.sub.3, CF.sub.4, or SF.sub.6. It has been discovered that combinations of these gases provide unique and unexpected etching and cleaning properties" (colum 9, lines 1-14). Chow teaches that it has been discovered that combinations of these gases provide unique and unexpected etching and cleaning properties, it would have been obvious to one of ordinary skill in the art at the time the invention was made to remove the etching component of the gas mixture during cleaning step while keeping the cleaning component of the gas mixture.

As to claim 7, fig. ld of Chow shows an island shaped semiconductor structure is formed.

Claim Rejections - 35 USC § 103

3. Claims 8-13, 22-28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chow et al. (US 6,872,322) in view of Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).

Art Unit: 1765

Regarding claims 8, 22, 27, the references of Chow, Lui and Wolf have been discussed above.

Chow discloses a method for plasma cleaning a plasma etching chamber comprising the steps of:

placing a substrate having a first polysilicon layed conductive film and a second conductive film of tungsten silicide over the first conductive film within a chamber (col 11, lines 1-3)

etching the first conductive film and the second conductive film within the chamber

using an etching gas and cleaning the chamber with a plasma generated from CI2 or a mixed gas of CI2 and a fluorine-based gas after the first conductive film and the second conductive film have been etched, etching the second conductive film within the cleaned chamber by repeating the etching step (col 10, lines 52-57; col 11, lines 1-20; fig. 3).

It is noted that Chow discloses the use of dummy wafers/substrates for seasoning the chamber, however, it is noted that Chow is silent about using a second substrate which is not to form a device conventionally known as a dummy substrate for cleaning the chamber.

Lui discloses dummy substrates are conventionally used for etch chamber cleaning (column 1, line 33).

Chow discloses forming a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17). The oxide layer of Chow is a gate oxide deposited on top of a

semiconductor film which forms the channel underneath the gate, as anyone with ordinary skill in the art would know that the semiconducting channel is formed on a "first" substrate It is noted that Chow is silent about the formation of the transistor channel including the oxide layer being deposited on a conductive layer, however Wolf teaches p-wells or n-wells are conventionally used in device formation see figure 1-7 of Wolf (page 11). One of ordinary skill in the art would have been motivated to use p-wells or n-wells in order to form a twin-well CMOPS structure as suggested by Wolf.

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process of Chow to use a dummy substrate because dummy substrates are conventionally used for etch chamber cleaning. One of ordinary skill in the art would have been motivated to use a dummy substrate in order to decouple the processes of chamber cleaning from etching when the substrate is sensitive to the cleaning byproducts.

Applicant does not specify what specific kind of etching in performed, it would appear that the chamber cleaning procedure and the etch step of Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment. Chow teaches the general concept of chamber cleaning for the purpose of increasing etch selectivity by reducing the concentration of unwanted species released from

deposits on the chamber walls from a previous etch process performed within the same chamber.

Regarding claims 9, 23, Chow discloses using an ICP etching method (col 6, lines 35-40)

Regarding claim 10, 24, Chow discloses that the fluorine gas is CF4 (col 9, lines 37-40)

Regarding claims 11, 13, 25, 28, it is noted that Chow is silent about a glass or quartz dummy wafer for the cleaning step, however, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process of Chow to use a dummy substrate made of any material including glass or quartz wich is compatible with the chamber and process chemistry because a dummy wafer is used only during cleaning. One of ordinary skill in the art would have been motivated to use glass or quartz in order to prevent introducing impurities in the chamber since glass or quartz (SiO2) is conventionally used as a material for material fill or gate material, also quartz is resistant to the cleaning chemistry, and glass or quartz wafers are readily available as dummy wafers.

Regarding claims 12, 26, 27 Chow discloses adding oxygen gas to the cleaning plasma (col 9, lines 37-40) and cites "The present process allows etching of one or more layers on a substrate 25 and simultaneous cleaning of the plasma etching chamber 30 in which the etching process is performed, without stopping the etching process. In one or more of the etch process stages, a cleaning gas is added to the etchant gas in a volumetric ratio selected so that the etching residue formed in any one

of the etching stages; or the residue formed in all of the etching stages is substantially entirely removed during the etching process. The etchant gas comprises one or more of Cl.sub.2, N.sub.2, O.sub.2, HBr, or He--O.sub.2; and the cleaning gas comprises one or more of NF.sub.3, CF.sub.4, or SF.sub.6. It has been discovered that combinations of these gases provide unique and unexpected etching and cleaning properties" (colum 9, lines 1-14). Chow teaches that it has been discovered that combinations of these gases provide unique and unexpected etching and cleaning properties, it would have been obvious to one of ordinary skill in the art at the time the invention was made to remove the etching component of the gas mixture during cleaning step while keeping the cleaning component of the gas mixture.

Claim Rejections - 35 USC § 103

4. Claims 15-19, 21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chow et al. (US 6,872,322) in view of Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).

The references of Chow, Lui and Wolf have been discussed above.

Chow discloses a method for cleaning a plasma etching chamber comprising the steps of:

placing a substrate having a conductive film of tungsten silicide within a chamber (col 11, lines 1-3),

Art Unit: 1765

cleaning the chamber with a plasma generated from CI2, etching the conductive film within the cleaned chamber by repeating the etching step (col 10, lines 52-57; col 11, lines 1-20; fig. 3), Chow discloses that the fluorine gas is CF4 (col 9, lines 37-40)

Chow discloses forming a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17).

Chow discloses forming a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17). The oxide layer of Chow is a gate oxide deposited on top of a semiconductor film which forms the channel underneath the gate, as anyone with ordinary skill in the art would know that the semiconducting channel is formed on a "first" substrate. It is noted that Chow is silent about the formation of the transistor channel including the oxide layer being deposited on a conductive layer, however Wolf teaches p-wells or n-wells are conventionally used in device formation see figure 1-7 of Wolf (page 11). One of ordinary skill in the art would have been motivated to use p-wells or n-wells in order to form a twin-well CMOPS structure as suggested by Wolf.

It is noted that Chow discloses the use of dummy wafers/substrates for seasoning the chamber, however, Chow is silent about using a second substrate which is not to form a device conventionally known as a dummy substrate for cleaning the chamber.

Lui discloses dummy substrates are conventionally used for etch chamber cleaning (column 1, line 33).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process of Chow to use a dummy substrate

Art Unit: 1765

because dummy substrates are conventionally used for etch chamber cleaning. One of ordinary skill in the art would have been motivated to use a dummy substrate in order to decouple the processes of chamber cleaning from etching when the substrate is sensitive to the cleaning byproducts. One of ordinary skill in the art would have been motivated to modify the method of Chow by performing cleaning independently of the etching step when the two processes result in undesirable effects on the substrate such as contamination or incontrollable etch, the method of Chow could obviously be extended to process more delicate substrates, by performing independent etch and clean steps.

Applicant does not specify details on the kind of etching performed in applicant's claim 15, it would appear that the chamber cleaning procedure and the etch step of Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment.

Regarding claim 16, Chow discloses using an ICP etching method (col 6, lines 35-40)

Regarding claim 17, Chow discloses that the fluorine gas is CF4 (col 9, lines 37-40)

The limitation of claim 18 has been discussed above

Art Unit: 1765

Regarding claim 19, Chow discloses adding oxygen gas to the cleaning plasma (col 9, lines 37-40)

Regarding claim 21, Chow discloses using a etching gas mixture of Cl2, SF6 and oxygen (col 9, lines 36-51)

Claim Rejections - 35 USC § 103

- 5. Claims 29-35 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chow et al (US 6,872,322) in view of Ye et al (US 5,756,400) and of Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).
- 6. The references of Chow, Lui and Wolf have been discussed above.

Regarding claims 29, 35, Chow discloses a method for cleaning a plasma etching chamber comprising the steps of:

filling the chamber with CI2 and generating plasma from the CI2 to clean the chamber (col 11, lines 35-40), a ceiling of the chamber is made of transparent dielectric material, the ceiling is exposed to the inside of the chamber (col 6, lines 29-32; fig. 2), which reads on a exposed part of the chamber is made from quartz, applying a dielectric magnetic field through the ceiling/quarts and the electrode to generate plasma (col 6, lines 30-54), etching residues are adhered to the chamber surface that includes the ceiling/quartz surface (col 11, lines 40-42).

Chow discloses forming a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17).

Chow discloses forming a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17). The oxide layer of Chow is a gate oxide deposited on top of a semiconductor film which forms the channel underneath the gate, as anyone with ordinary skill in the art would know that the semiconducting channel is formed on a "first" substrate. It is noted that Chow is silent about the formation of the transistor channel including the oxide layer being deposited on a conductive layer, however Wolf teaches p-wells or n-wells are conventionally used in device formation see figure 1-7 of Wolf (page 11). One of ordinary skill in the art would have been motivated to use p-wells or n-wells in order to form a twin-well CMOPS structure as suggested by Wolf.

It is noted that Chow discloses the use of dummy wafers/substrates for seasoning the chamber, however, Chow is silent about using a second substrate which is not to form a device conventionally known as a dummy substrate.

Lui discloses dummy substrates are conventionally used for etch chamber cleaning (column 1, line 33).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process of Chow to use a dummy substrate because dummy substrates are conventionally used for etch chamber cleaning. One of ordinary skill in the art would have been motivated to use a dummy substrate in order to decouple the processes of chamber cleaning from etching when the substrate is sensitive to the cleaning byproducts. One of ordinary skill in the art would have been motivated to modify the method of Chow by performing cleaning independently of the etching step when the two processes result in undesirable effects on the substrate such

as contamination or incontrollable etch, the method of Chow could obviously be extended to process more delicate substrates, by performing independent etch and clean steps.

Applicant does not specify details of the kind of etching performed in applicant's claim 29, it would appear that the chamber cleaning procedure and the etch step of Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment.

As to claim 35, Unlike the instant claimed invention as per claim 35, Chow fails to disclose that BOx/residue is adhered to the surface of the quartz and etching to remove Box from the chamber Ye discloses a method for cleaning a plasma etching apparatus comprising a step of cleaning an inner surface of a chamber with chlorine containing gas to remove BOx adhered to the chamber surface (Table 1)

Since Chow is concerned with an etching step using Cl2, one skilled in the art at the time the invention was made would have found it obvious that Chow etching step would have resulted in BOx/residue adhered to the surface of the chamber in view of Ye teaching because Ye discloses that during a chlorine base etch process, non-volatile contaminants are deposited on the chamber wall/inner surface of the chamber (col 7, lines 60-67, col 8, lines 1-5). One skilled in the art at the time the invention was made

Art Unit: 1765

would also have found it obvious to employ Chow cleaning step to remove Box from an inner surface of the chamber in view of Ye teaching because Ye discloses that the concept of using the halogenated gas mixture to remove by-products is applicable to semiconductor processing chambers in general (col 6, lines 40-45).

Regarding claim 30, Chow discloses using an ICP etching method (col 6, lines 35-40)

Regarding claim 31, Chow discloses that the fluorine gas is CF4 (col 9, lines 37-40)

The limitation of claim 32, have been discussed above, Chow discloses adding oxygen gas to the cleaning plasma (col 9, lines 37-40), fig. ld of Chow shows an island shaped semiconductor structure is formed.

Regarding claim 33, Chow discloses using a etching gas mixture of CI2, SF6 and oxygen (col 9, lines 36-51)

As to claim 34, the limitation of a quartz dummy wafer has been discussed above.

Claim Rejections - 35 USC § 103

- 7. Claims 36-41 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lu et al (US 6,352,081) in view Chow et al (US 6,872,322) Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).
- 8. The references of Chow, Lui and Wolf have been discussed above.

Art Unit: 1765

Lu discloses a method of cleaning processing chamber. The method comprises the steps of:

performing plasma etching using a gas containing BCI3 as an etching gas in the chamber (col 9, lines 50-55), changing/replacing the etching gas with CI2 gas after the plasma etching (col 10, lines 60-65), generating plasma from the CI2 (col 10, lines 63-65), the chamber includes a quartz exposed to the inside of the chamber (col 7, lines 15-20; fig. 2C)

It is noted that Lu is silent about a conductive film.

Chow discloses forming a conductive film, a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17).

Chow discloses forming a silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17). The oxide layer of Chow is a gate oxide deposited on top of a semiconductor film which forms the channel underneath the gate, as anyone with ordinary skill in the art would know that the semiconducting channel is formed on a "first" substrate. It is noted that Chow is silent about the formation of the transistor channel including the oxide layer being deposited on a conductive layer, however Wolf teaches p-wells or n-wells are conventionally used in device formation see figure 1-7 of Wolf (page 11). One of ordinary skill in the art would have been motivated to use p-wells or n-wells in order to form a twin-well CMOPS structure as suggested by Wolf.

It is noted that Chow discloses the use of dummy wafers/substrates for seasoning the chamber, however, Lu and Chow are silent about using a second

substrate which is not to form a device conventionally known as a dummy substrate for chamber cleaning.

Lui discloses dummy substrates are conventionally used for etch chamber cleaning (column 1, line 33).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the modified process of Lu to use a dummy substrate because dummy substrates are conventionally used for etch chamber cleaning. One of ordinary skill in the art would have been motivated to use a dummy substrate in order to decouple the processes of chamber cleaning from etching when the substrate is sensitive to the cleaning byproducts. One of ordinary skill in the art would have been motivated to further modify the method of Lu by performing cleaning independently of the etching step when the two processes result in undesirable effects on the substrate such as contamination or incontrollable etch, the method of Lu and Chow could obviously be extended to process more delicate substrates, by performing independent etch and clean steps.

Applicant does not specify details of the kind of etching performed in applicant's claim 36, it would appear that the chamber cleaning procedure and the etch step of Lu and Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films

Art Unit: 1765

would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment.

Regarding claim 37, Lu discloses using an ICP etching method (col 8, lines 42-45)

Regarding claims 38-39, 41, Lu discloses that the fluorine gas is CF4 (col 8, lines 49-50), using a quartz plate in the chamber (col 8, lines 46-48)

Regarding claim 42, Lu discloses adding oxygen gas to the cleaning plasma (col 10, lines 62-64)

Claim Rejections - 35 USC § 103

- 9. Claims 43-56 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chow et al (US 6,872,322) in view of Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).
- 10. The references of Chow, Lui and Wolf have been discussed above.

Regarding claims 43- 48, the reference of Chow has been discussed above, it discloses manufacturing a semiconductor device by forming a semiconductor film over a substrate, and a conducting film (comprising at least two conductive layers)over the semiconductor film (Column 8, lines 8-18). Chow discloses cleaning the chamber with Cl2. N2. CF4 and O2 (column 9, line 40) plasma.

It is noted that Chow is silent about an insulating film between the semiconductor layer and the first conductive layer, however, Chow discloses forming a

Art Unit: 1765

silicon oxide layer under the polysilicon and tungsten layers (col 8, lines 15-17). The oxide layer of Chow is a gate oxide deposited on top of a semiconductor film which forms the channel underneath the gate, as anyone with ordinary skill in the art would know that the semiconducting channel is formed on a "first" substrate. It is noted that Chow is silent about the formation of the transistor channel including the oxide layer being deposited on a conductive layer, however Wolf teaches p-wells or n-wells are conventionally used in device formation see figure 1-7 of Wolf (page 11). One of ordinary skill in the art would have been motivated to use p-wells or n-wells in order to form a twin-well CMOPS structure as suggested by Wolf. It would appear that the etching/cleaning method of Chow would be effective even when an insulating layer is present in the film stack because the cleaning chemistry would react with the chamber walls regardless of the presence or absence of an insulating intermediate layer.

Fig. Id of Chow shows an island shaped semiconductor structure is formed.

It is noted that Chow discloses the use of dummy wafers/substrates for seasoning the chamber, however, Lu and Chow are silent about using a second substrate which is not to form a device conventionally known as a dummy substrate.

Lui discloses dummy substrates are conventionally used for etch chamber cleaning (column 1, line 33).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the modified process of Lu to use a dummy substrate because dummy substrates are conventionally used for etch chamber cleaning. One of ordinary skill in the art would have been motivated to use a dummy

substrate in order to decouple the processes of chamber cleaning from etching when the substrate is sensitive to the cleaning byproducts. One of ordinary skill in the art would have been motivated to further modify the method of Lu by performing cleaning independently of the etching step when the two processes result in undesirable effects on the substrate such as contamination or incontrollable etch, the method of Lu and Chow could obviously be extended to process more delicate substrates, by performing independent etch and clean steps.

Applicant does not specify details of the kind of etching performed in applicant's claim 43, it would appear that the chamber cleaning procedure and the etch step of Lu and Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment.

As to claim 49, Chow discloses BCl3 and O2 are conventionally used for etching (column 8, line 50-52), hence, it would have been obvious to one of ordinary skill in the art at the time the invention was made to expect Box to be included in the chamber walls in the deposit.

As to claims 50-56, it would have been obvious to one of ordinary skill in the art at the time the invention was made to perform the cleaning after any etching step including the conductive layer first etching step or the second etching step or after the

Art Unit: 1765

first and second etching step because Chow teaches the concept of intermediate cleaning step and Lui teaches the concept of dummy wafer cleaning step, one of ordinary skill in the art would have been motivated to fine tune a cleaning step using the teachings of Chow and Lui to enhance the etching characteristics of a layer stack with similar materials by routine experimentation including modifying the cleaning sequence, in order to obtain the best possible results according the specific layer stack.

Claim Rejections - 35 USC § 103

- 11. Claims 57-63 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chow et al (US 6,872,322) in view of Lu et al (US 6,352,081), Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).
- 12. The references of Chow, Lui and Wolf have been discussed above.

Regarding claim 57, It is noted that Chow is silent about an etching step using BCI3 on a first device

Lu discloses a method of cleaning processing chamber. The method comprises the steps of:

performing plasma etching using a gas containing BCl3 as an etching gas in the chamber (col 9, lines 50-55), changing/replacing the etching gas with Cl2 gas after the plasma etching (col 10, lines 60-65), generating plasma from the Cl2 (col 10, lines 63-

65) before etching with SF6/a gas that is inhibited from generating Box (col 11, lines 40-45) the chamber includes a quartz exposed to the inside of the chamber (col 7, lines 15-20; fig. 2C).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to perform the cleaning after any etching step including the conductive layer first etching step or the second etching step or after the first and second etching step because Chow teaches the concept of intermediate cleaning step and Lui teaches the concept of dummy wafer cleaning step, one of ordinary skill in the art would have been motivated to fine tune a cleaning step using the teachings of Chow and Lui to enhance the etching characteristics of a layer stack with similar materials by routine experimentation including modifying the cleaning sequence, in order to obtain the best possible results according the specific layer stack. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment.

As to the limitations of forming a first semiconductor device and a second semiconductor device Chow discloses the method can be used for etching a structure as shoen in figure 1b, and also for forming a structure as shown in figure 1d.

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to perform both types of etches in the same chamber. One of ordinary skill in the art would have been motivated to perform two types of etches in the same chamber in order to lower the manufacturing cost, Chow teaches how to

Art Unit: 1765

reduce or eliminate undesired effects due to residuals in the chamber by performing chamber cleaning between etch steps.

As to claims 58-63, all the limitation of these claims have been discussed above.

Claim Rejections - 35 USC § 103

- 13. Claims 64-70 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lu et al (US 6,352,081) in view of Chow et al (US 6,872,322), Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).
- 14. The references of Chow, Lui and Wolf have been discussed above.

Lu discloses a method of cleaning processing chamber. The method comprises the steps of:

processing a first semiconductor device by performing plasma etching using a gas containing BCI3 as an etching gas in the chamber (col 9, lines 50-55),

changing/replacing the etching gas with CI2 gas after the plasma etching (col 10, lines

60-65), generating plasma from the CI2 (col 10, lines 63-65) before etching with SF6/a gas that is inhibited from generating Box (col 11, lines 40-45)

Unlike the instant claimed inventions as per claim 57, 64, Lu fails to expressly disclose manufacturing a second semiconductor device using the cleaned chamber although Lu discloses performing wafer processing runs (col 12, lines 40-42)

Chow, as discussed above, discloses a method for cleaning a plasma etching chamber comprising the steps of processing/manufacturing a second semiconductor device using the cleaned chamber (col 11, lines 14-20).

Chow discloses forming a silicon oxide layer between the polysilicon and tungsten layers (col 8, lines 15-17)

It is noted that Chow discloses the use of dummy wafers/substrates for seasoning the chamber, however, Chow is silent about using a second substrate which is not to form a device conventionally known as a dummy substrate.

Lui discloses dummy substrates are conventionally used for etch chamber cleaning (column 1, line 33).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify the process of Chow to use a dummy substrate because dummy substrates are conventionally used for etch chamber cleaning. One of ordinary skill in the art would have been motivated to use a dummy substrate in order to decouple the processes of chamber cleaning from etching when the substrate is sensitive to the cleaning byproducts. One of ordinary skill in the art would have been motivated to modify the method of Chow by performing cleaning independently of the etching step when the two processes result in undesirable effects on the substrate such as contamination or incontrollable etch, the method of Chow could obviously be extended to process more delicate substrates, by performing independent etch and clean steps.

Art Unit: 1765

Applicant does not specify what kind of etching in performed in applicant's claim 64, it would appear that the chamber cleaning procedure and the etch step of Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment.

One skilled in the art at the time the invention was made would have found it obvious to modify Lu method by manufacturing a second semiconductor device using the cleaned chamber because it is conventional in the art as taught by Chow

Regarding claim 65, Lu discloses using an ICP etching method (col 8, lines 42-45)

Regarding claims 66, 67, 70, Lu discloses that the fluorine gas is CF4 (col 8, lines 49-50), using a quartz plate in the chamber (col 8, lines 46-48)

Regarding claim 68, Lu discloses adding oxygen gas to the cleaning plasma (col 10, lines 62-64)

Claim Rejections - 35 USC § 103

Art Unit: 1765

15. Claims 71-84 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lu

et al (US 6,352,081) in view of Izawa et al (US 6,842,658) and further in view of Chow

et al (US 6,872,322) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep

Submicron Process Technology, Lattice Press, 2002, page 11).

The references of Chow, Lu and Wolf have been discussed above.

Lu discloses a method of cleaning processing chamber. The method comprises the steps of:

performing plasma etching using a gas containing BCI3 as an etching gas in the chamber (col 9, lines 50-55), changing/replacing the etching gas with CI2 gas after the plasma etching (col 10, lines 60-65), generating plasma from the CI2 (col 10, lines 63-65) before etching with SF6/a gas that is inhibited from generating Box (col 11, lines 40-45) the chamber includes a quartz exposed to the inside of the chamber (col 7, lines 15-20; fig. 2C)

lzawa discloses a method of manufacturing a semiconductor device comprises a step of applying a dielectric magnetic field generated from the electrode through the quartz adjacent the electrode (col 8, lines 50-54; fig. 3).

Lu fails to expressly disclose manufacturing a second semiconductor device using the cleaned chamber although Lu discloses performing wafer processing runs (col 12, lines 40-42)

Chow discloses a method for cleaning a plasma etching chamber comprising the steps of processing/manufacturing a second semiconductor device using the cleaned chamber (col 11, lines 14-20)

Art Unit: 1765

One skilled in the art at the time the invention was made would have found it obvious to modify Lu method by manufacturing a second semiconductor device using the cleaned chamber because it is conventional in the art as taught by Chow.

It is noted that Lu is silent about the exact film stack as described in applicant's claim 71. The film stack of Chow has been described above.

Applicant does not specify details about the kind of etching performed in applicant's claim 71, it would appear that the chamber cleaning procedure and the etch step of Chow would be effective regardless of whether an insulating layer is present under the conducting layer or not, etching is usually performed on the topmost layer. It would also appear obvious to one of ordinary skill in the art at the time the invention was made that the sequence of layers positioned bellow the topmost layers of conductive films would not affect the chamber cleaning step since those layers are not exposed to the cleaning environment.

Regarding claim 72, 79, Lu discloses using an ICP etching method (col 8, lines 42-45)

Regarding claim 73, 74, 80, 81, 83, Lu discloses that the fluorine gas is CF4 (col 8, lines 49-50), using a quartz plate in the chamber (col 8, lines 46-48)

Regarding claims 75, 82, Lu discloses adding oxygen gas to the cleaning plasma (col 10, lines 62-64)

Claims 77, 84 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lu et al (US 6,352,081) in view of Izawa et al (US 6,842,658) and further in view of

Chow et al (US 6,872,322) and Ye et al (US 5,756,400) based on the ground of rejection set forth in paragraphs 13-15 above.

Claim Rejections - 35 USC § 103

16. Claims 6,14, 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over Chow et al (US 6,872,322) in view of Lui et al. (US 6,566,270) and Ye et al (US 5,756,400) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).

Chow method has been described above. Unlike the instant claimed invention as per claim 6, Chow fails to disclose cleaning includes removing BOx from an inner surface of the chamber

Ye discloses a method for cleaning a plasma etching apparatus comprising a step of cleaning an inner surface of a chamber with chlorine containing gas to remove BOx (Table 1)

Since Chow is directed to a step of cleaning a chamber using chlorine containing gas, one skilled in the art at the time the invention was made would have found it obvious to employ Chow cleaning step to remove Box from an inner surface of the chamber in view of Ye teaching because Ye discloses that the concept of using the halogenated gas mixture to remove by-products is applicable to semiconductor processing chambers in general (col 6, lines 40-45)

Art Unit: 1765

Claim Rejections - 35 USC § 103

17. Claims 42, 49, 56, 62, 69 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lu et al (US 6,352,081) in view of Izawa et al (US 6,842,658) and further in view of Ye et al (US 5,756,400) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).

Lu as modified by Izawa has been described above. Unlike the instant claimed invention as per claim 42, 49, 56, 62, 69, Lu and Izawa fails to disclose cleaning includes removing BOx from an inner surface of the chamber. Ye discloses a method for cleaning a plasma etching apparatus comprising a step of cleaning an inner surface of a chamber with chlorine containing gas to remove BOx. (Table 1.)

Since Lu is directed to a step of cleaning a chamber using chlorine containing gas, one skilled in the art at the time the invention was made would have found it obvious to employ Lu and Izawa cleaning step to remove Box from an inner surface of the chamber in view of Ye teaching because Ye discloses that the concept of using the halogenated gas mixture to remove by-products is applicable to semiconductor processing chambers in general (col 6, lines 40-45)

Allowable Subject Matter

- 18. Claims 85-95 are allowed.
- 19. The reasons for allowance of claims 85-95 has been stated in the office Action filed on 8/08/2005.

Art Unit: 1765

20. The indicated allowability of claims 5, 26, 27 is withdrawn in view of the newly discovered reference(s) to Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11). Rejections based on the newly cited reference(s) is provided above.

Response to Arguments

21. Applicant's arguments, see pages 25-28, filed 08/08/2006, with respect to the rejection(s) of claim(s) 1-84 have been fully considered and are persuasive in view of the new amendments to independent claims 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71 and 78. Therefore, the rejection has been withdrawn. However, upon further consideration, a new ground(s) of rejection is made in view of Lui et al. (US 6,566,270) and Wolf (Silicon Processing for the VLSI Era, Volume 4- Deep Submicron Process Technology, Lattice Press, 2002, page 11).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mahmoud Dahimene whose telephone number is (571) 272-2410. The examiner can normally be reached on week days from 8:00 AM. to 5:00 PM..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nadine Norton can be reached on (571) 272-1465. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 1765

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

MD.

SHAMIM AHMED PRIMARY EXAMINER