Билет № 20. Открытые и замкнутые множества. Критерий компактности. Лемма Гейне–Бореля.

Определение. $E \subset \mathbb{R}, \ E \neq \emptyset$. Точка $x \in \mathbb{R}$ является точкой прикосновения множества E, если: $\forall \varepsilon > 0 \Rightarrow U_{\varepsilon}(x) \cap E \neq \emptyset$.

Определение. Множество **замкнуто**, если оно содержит все свои точки прикосновения (cl $E \subset E$). Например: E = [a, b].

Определение. $E \subset \mathbb{R}, E \neq \emptyset$. Точка $x_0 \in E$ называется внутренней точкой E, если: $\exists \varepsilon > 0 \colon U_{\varepsilon}(x_0) \subset E$.

Определение. Множество G **открыто**, если каждая его точка является его внутренней точкой (G = int G). Например: G = (a, b).

Теорема (Закон двойственности). $G \subset \mathbb{R}$ открыто $\iff \mathbb{R} \setminus G$ замкнуто.

Доказательство: Пусть G открыто. Тогда $\forall x \in G \ \exists \varepsilon > 0 \colon U_{\varepsilon}(x) \subset G \iff \forall x \in G \ \exists \varepsilon > 0 \colon U_{\varepsilon}(x) \cap (\mathbb{R} \setminus G) = \varnothing$.

 $G=\mathbb{R}\setminus(\mathbb{R}\setminus G)$. Любой $x\in\mathbb{R}\setminus(\mathbb{R}\setminus G)$ не является точкой прикосновения $\mathbb{R}\setminus G$. Все точки $\mathbb{R}\setminus G$ лежат в $\mathbb{R}\setminus G$. Оно замкнуто.

Теорема.

- 1. $\{G_a\}_{a\in I}$ семейство открытых множеств $\Rightarrow G=\bigcup_{a\in I}G_a$ открыто
- 2. $\{F_b\}_{b\in J}$ семейство замкнутых множеств $\Rightarrow F=\bigcap_{b\in J}F_b$ замкнуто

Доказательство:

- 1. Пусть $x \in \bigcup G_a$. $\exists a' \in I : x \in G_{a'}$, но $G_{a'}$ открыто $\Rightarrow \exists \varepsilon > 0 : U_{\varepsilon}(x) \subset G_{a'} \subset \bigcup G_a$. x выбрано произвольно \Rightarrow объединение открыто.
- 2. $\bigcap_{b\in J} F_b = \mathbb{R}\setminus \left(\bigcup_{b\in J} (\mathbb{R}\setminus F_b)\right)$, но $\mathbb{R}\setminus F_b$ открыто $\forall b\in J\Rightarrow \bigcup(\mathbb{R}\setminus F_b)$ открыто $\Rightarrow \mathbb{R}\setminus (\bigcup(\mathbb{R}\setminus F_b))$ замкнуто.

Замечание: Пересечение бесконечного числа открытых множеств может не быть открытым, а объединение бесконечного числа замкнутых может не быть замкнутым.

Лемма.

- 1. Объединение конечного числа замкнутых множеств замкнуто
- 2. Пересечение конечного числа открытых множеств открыто

Доказательство для открытых: Пусть $x \in \bigcap_{k=1}^{N} G_k$, где G_k открыты. $\forall k \in \{1, \dots, N\}$ $\exists \delta_k > 0 \colon U_{\delta_k}(x) \subset G_k$.

Пусть $\delta = \min\{\delta_1, \dots, \delta_N\} > 0$. Тогда $U_{\delta}(x) \subset G_k \ \forall k \Rightarrow U_{\delta}(x) \subset \bigcap_{k=1}^N G_k$. Пересечение открыто.

Определение компакта.

Множество $K \subset \mathbb{R}$ называется **компактом**, если $\forall \{x_n\} \subset K \ \exists x \in K$ и подпоследовательность $\{x_{n_j}\}$: $\lim x_{n_j} = x$.

Примеры:

• Компакты: [0,1]

• **Некомпакты:** \mathbb{R} , (0,1)

Критерий компактности.

K - компакт $\iff K$ ограничено и замкнуто.

Замечание: Ø - компакт.

Доказательство:

- (\Rightarrow) Пусть K компакт.
 - 1. Ограниченность: Предположим, K неограничено. Тогда $\forall n \in \mathbb{N} \ \exists x_n \in K \colon |x_n| > n$. Тогда $\{x_n\}$ бесконечно большая, $\lim |x_n| = +\infty$. Любая подпоследовательность $\{x_n\}$ ББ. Нельзя выделить сходящуюся в K подпоследовательность. Противоречие.
 - 2. Замкнутость: Предположим, K не замкнуто. Тогда $\exists x'$ предельная точка K: $x' \notin K$. По критерию предельной точки $\exists \{x_n\} \subset K \colon x_n \to x'$. Тогда любая подпоследовательность $\{x_n\}$ сходится к $x' \notin K$. Противоречие.
- (\Leftarrow) Пусть K ограничено и замкнуто. Докажем, что K компакт. Возьмём произвольную последовательность $\{x_n\} \subset K$. Т.к. K ограничено, то $\{x_n\}$ ограниченная последовательность. По **теореме Больцано-Вейерштрасса** у ограниченной последовательности существует сходящаяся подпоследовательность $\{x_{n_k}\}$:

$$\lim_{k \to \infty} x_{n_k} = x \in \mathbb{R}$$

Т.к. все $x_{n_k} \in K$ и K замкнуто, то x - точка прикосновения K, а значит $x \in K$. Таким образом, для любой $\{x_n\} \subset K$ \exists подпоследовательность $\{x_{n_k}\}$, сходящаяся к некоторому $x \in K$. Следовательно, K - компакт по определению.

Определение. $E \subset \mathbb{R}, E \neq \emptyset$. $\{V_a\}_{a \in I}$ - система подмножеств в \mathbb{R} . Будем говорить, что $\{V_a\}$ является **покрытием** множества E, если $E \subset \bigcup_{a \in I} V_a$.

Определение. $\{V_a\}_{a\in I}$ - покрытие E. Система $\{V_b\}_{b\in J}$ - подпокрытие покрытия $\{V_a\}$, если $J\subset I$ и $E\subset\bigcup_{b\in I}V_b$.

Определение. Покрытие называется **открытым**, если $\forall a \in I \colon V_a$ - открытое множество.

Лемма Гейне-Бореля.

Пусть $K \subset \mathbb{R}$ - непустой компакт. Тогда для любого открытого покрытия $\{V_a\}_{a \in I}$ множества K существует конечное подпокрытие $\{V_{a_i}\}_{i=1}^N$.

Доказательство: K - ограниченное множество $\Rightarrow \exists$ отрезок $I_0 \supset K$.

Поделим I_0 пополам: I_0^1 , I_0^2 . Рассмотрим $I_0^1 \cap K$ и $I_0^2 \cap K$. $\{V_a\}$ - покрытие $K \Rightarrow$ покрытие этих множеств.

Предположим, из $\{V_a\}$ нельзя выделить конечное подпокрытие \Rightarrow хотя бы для одного из этих множеств нельзя выделить конечное подпокрытие. Выберем I_1 - ту половину, для которой нельзя выделить конечное подпокрытие.

По индукции: построена последовательность вложенных отрезков $I_0\supset I_1\supset I_2\supset\dots,\ l(I_j)=\frac{l(I_0)}{2^j},$ причём из $\{V_a\}$ нельзя выделить конечное подпокрытие для $I_j\cap K$.

По теореме Кантора $\exists !x' = \bigcap_{l=0}^{\infty} I_l$. Причём $x' \in K$, т.к. x' - точка прикосновения K, а K замкнуто.

Ho $\{V_a\}$ покрывает $K\Rightarrow x'\in V_{a'}$ для некоторого $a'\in I.\ V_{a'}$ открыто $\Rightarrow\exists \varepsilon'>0:\ U_{\varepsilon'}(x')\subset V_{a'}.$

Тогда $\exists l': I_{l'} \subset U_{\varepsilon'}(x') \subset V_{a'} \Rightarrow I_{l'} \cap K$ покрывается конечным подпокрытием $\{V_{a'}\}$ - противоречие.