## TEORETIČNE OSNOVE RAČUNALNIŠTVA

## DISKRETNE STRUKTURE ZA RAČUNALNIČARJE



Matjaž Krnc, Štefko Miklavič, Martin Milanič, Rok Požar, Primož Škraba

Pomlad 2021 – Verzija 0.1

CIP – Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana

123.4(567)(8.901.2)

TEORETIČNE osnove računalništva [Elektronski vir] : Diskretne strukture za računalničarje / avtorji M. Krnc, Š. Miklavič, M. Milanič, R. Požar, P. Škraba; [urednik] M. Krnc. - Verzija. - El. knjiga. - Ljubljana : samozal. M. Krnc, 2020.

Način dostopa (URL):

https://github.com/mkrnc/TOR1-zapiski-s-predavanj

ISBN 978-961-XXX-XXX-X (pdf) 123456789

#### **PREDGOVOR**

Pred tabo so zapiski iz predavanj za predmet TOR1, ki se predava študentom prvega letnika na FAMNIT, Univerza na Primorskem. Predmet pokriva osnove iz različnih področij teoretičnega računalništva in je usmerjen potrebam računalničarjev.

Gradivo je osnovano na izročkih predhodnih predavateljev istega predmeta, ter na knjigi:

Niko Prijatelj (1996): *Matematične strukture* 1. Društvo matematikov, fizikov in astronomov Slovenije.

Dokument je zamišljen kot dopolnjevanje predavanj, in se ga ne sme jemati kot samostojno gradivo za pripravo na izpit. Morebitna vprašanja in najdene napake, lepo prosim, sporočite na matjaz.krnc@upr.si.

## Teoretične osnove računalništva

Diskretne strukture za računalničarje

**Urednik:** Matjaž Krnc

Avtorji: Matjaž Krnc, Štefko Miklavič,

Martin Milanič, Rok Požar, Primož

Škraba

Samozaložba in oblikovanje: Matjaž Krnc

**ISBN:** 978-961-XXX-XXX-X

Ljubljana, Pomlad 2021

## KAZALO

```
MATEMATIČNA LOGIKA
       Vezniki med logičnimi izjavami
                                           9
   1.2 Logične ekvivalence
   1.3 Izbrani obliki izjav
                              17
   1.4 Preklopna vezja
   1.5 Logične implikacije
                               25
   1.6 Načini dokazovanja
                               28
        1.6.1
              Množice izjav
                                34
        1.6.2 Pravila sklepanja
                                   36
   1.7 Izjave s predikati in kvantifikatorji
                                             36
       Naloge
   1.8
                   45
  TEORIJA MNOŽIC
                       59
       Množice
   2.1
                    59
        2.1.1
              Podmnožice
        2.1.2
              Prazna množica
                                  62
        2.1.3 Unija
                        62
        2.1.4 Presek
                         66
              Razlika množic
                                 68
        2.1.5
        2.1.6
              Vennovi diagrami
                                    71
              Potenčna množica
        2.1.7
                                    72
        2.1.8 Urejeni par
                              73
              Kartezični produkt
                                     74
   2.2 Na kratko o aksiomih
              Russellova antinomija
        2.2.1
                                        76
              Aksiomi teorije množic (po Endertonu)
        2.2.2
   2.3 Pregled najpomembnejših pojmov in nekaj nalog
3 RELACIJE
               81
       Splošno o relacijah
   3.1
               Inverzna relacija
                                   84
```

```
Kompozitum relacij
       3.1.2
       3.1.3 Univerzalna, ničelna in identična relacija
                                                        86
   3.2 Posebne lastnosti binarnih relacij
   3.3 Ekvivalenčna relacija
   3.4 Funkcije
                   93
              Inverzna relacija, praslike
       3.4.1
                                          96
              Kompozitum funkcij
       3.4.2
                                      98
       3.4.3 Zožitve in razširitve
                                     99
              Kanonična dekompozicija funkcije
                                                 100
   3.5 Strukture urejenosti
                             103
              Mreža
                       108
       3.5.1
       3.5.2 Dobra urejenost
                                113
   3.6 TODO: Grafi
   3.7 Pregled najpomembnejših pojmov in nekaj nalog
              (Binarne) relacije
       3.7.1
       3.7.2
              Funkcije
                         121
              Strukture urejenosti
       3.7.3
                                    122
  VELIKOST MNOŽIC
                      125
      Ekvipolentne množice
   4.1
                               125
       Primerljivost množic
   4.2
                              128
5 KONČNE IN NESKONČNE MNOŽICE
                                      133
   5.1 Končne množice
   5.2 Neskončne množice
                             137
              Lastnosti števno neskončnih množic
       5.2.1
                                                   139
              Zgledi števno neskončnih množic
       5.2.2
   5.3 Neštevno neskončne množice
       Pregled najpomembnejših pojmov in nekaj nalog
                                                        144
  DODATNA POGLAVJA IZ TEORIJE MNOŽIC
      Aksiomi teorije množic (po Edertonu)
   A.2 Aksiomi teorije množic (po Dugundjiju)
   A.3 Neformalni pogled na univerzum množic
B AKSIOM IZBIRE
       Principi maksimalnosti
```

- B.2 Izrek o dobri ureditvi 158
- B.3 Pregled najpomembnejših pojmov in nekaj nalog 159
- B.4 Dodatek: Zanimiva uporaba ekvivalenčnih relacij in aksioma izbire 161
- C TODO: OSNOVE TEORIJE GRAFOV 163
- D TODO: OSNOVE TEORIJE KATEGORIJ 165

# MATEMATIČNA LOGIKA

Kaj je izjava? *Trdilna izjava*, ki je bodisi pravilna ali pa nepravilna.<sup>1</sup>

Prispevek logike k znanju je v odkrivanju novih izjav, ki so logične posledice drugih.

- Celotno teorijo naravnih števil je moč zgraditi iz 5 osnovnih izjav, ki jih običajno imenujemo Peanovi aksiomi. Teh pet izjav lahko z besedico "in" povežemo v eno samo izjavo.
- Hilbert je pokazal, da je vso kopico izrekov elementarne geometrije moč dokazati iz 20 aksiomov (osnovnih izjav).
- V splošnem so matematične strukture definirane s peščico aksiomov, iz katerih se s pomočjo logičnega sklepanja izpelje izreke in gradi teorije.

O razvoju logike in teorije množic si lahko preberete v Prijateljevi knjigi (Osnove matematične logike, 1. poglavje, 2. podpoglavje).

## 1.1 VEZNIKI MED LOGIČNIMI IZJAVAMI

Negacija: Ne A; ni res, da A

Oznaka:  $\neg A$ .

 $\neg A$  je negacija izjave A. Izjava  $\neg A$  je pravilna, če je A nepravilna, in je nepravilna, če je A pravilna.

Zgled: Jutri bo dež. Negacija: Jutri ne bo dežja. (Ni res, da bo jutri dež.)

Vrednost vsake sestavljene izjave je enolično določena z vrednostmi osnovnih izjav, ki v njej nastopajo. Za nazoren pregled te odvisnosti si

<sup>1</sup> Izjave boste podrobneje obravnavali na uvodnem predavanju pri Analizi I.

pomagamo s t.i. *pravilnostnimi tabelami*. Dogovorimo se, da bomo vrednost *pravilno* označevali z 1, vrednost *nepravilno* pa z o.

Pravilnostna tabela za negacijo:

|    | A | $\neg A$ |
|----|---|----------|
| 1. | 1 | 0        |
| 2. | О | 1        |

Konjunkcija: A in B

Oznaka:  $A \wedge B$ 

 $A \wedge B$  je konjunkcija izjavA in B. Ta sestavljena izjava je pravilna, kadar sta obe izjavi A in B pravilni, in nepravilna sicer.

Zgled: Sneg pada. Veter piha. Konjunkcija: Sneg pada in veter piha.

**Disjunkcija:** *A* ali *B* (inkluzivno)

Oznaka:  $\overline{A} \vee \overline{B}$ 

 $A \lor B$  je disjunkcija izjav A in B. Ta sestavljena izjava je pravilna, brž ko je ena izmed izjav A in B pravilna, in nepravilna sicer.

Zgled: Janez bo jutri vprašan fiziko. Janez bo jutri vprašan matematiko. Disjunkcija: Janez bo jutri vprašan fiziko ali matematiko.

**Implikacija:** Če *A*, potem *B* 

Oznaka:  $A \Rightarrow B$ 

 $A \Rightarrow B$  je implikacija izjav A in B. Ta sestavljena izjava je nepravilna, kadar je A pravilna, B pa nepravilna. V vseh ostalih primerih je pravilna.

A - antecedens, zadostni pogoj

B - konsekvens

## Zgled

Če Andrej naredi maturo, potem mu kupim kolo.

**Ekvivalenca:** *A* če in samo če *B* 

Oznaka:  $A \Leftrightarrow B$ 

 $A \Leftrightarrow B$  je ekvivalenca izjav A in B. Ta sestavljena izjava je pravilna, kadar sta izjavi A in B ali obe pravilni ali obe nepravilni. V vseh ostalih primerih je nepravilna.

" $A \Leftrightarrow B$ "beremo:

A če in samo če B

A tedaj in samo tedaj kot B

A natanko tedaj kot B

#### Zgled

Andreju kupim kolo, če in samo če naredi maturo.

# Pravilnostne tabele za konjuncijo, disjunkcijo, implikacijo in ekvivalenco:

|    | A, B | $A \wedge B$ | $A \vee B$ | $A \Rightarrow B$ | $A \Leftrightarrow B$ |
|----|------|--------------|------------|-------------------|-----------------------|
| 1. | 1, 1 | 1            | 1          | 1                 | 1                     |
| 2. | 1, 0 | О            | 1          | О                 | О                     |
| 3. | 0, 1 | О            | 1          | 1                 | О                     |
| 4. | 0, 0 | О            | О          | 1                 | 1                     |

Izjave, dobljene z uprabo 5 osnovnih povezav, so *sestavljene*. V splošnem pravimo, da je dana izjava *sestavljena*, če je izid zaporedne uporabe 5 osnovnih povezav na osnovnih izjavah  $A_1, \ldots, A_n$ , pa tudi na izjavah, ki smo jih že prej napravili. Dvomom o tem, katera povezava sledi prej in katera pozneje, se izognemo z uporabo oklepajev. Uporabo oklepajev pa z uporabo naslednjega dogovora omejimo, kolikor se da:

- Kadar izjava nastopa osamljeno, je ne oklenemo z oklepaji:
  - npr.: namesto  $(A \land B)$  pišemo  $A \land B$
- Kadar ista vrsta povezave nastopi večkrat zapored, jo obravnavamo z leve proti desni.

npr.: namesto 
$$((A \land B) \land C) \land D$$
 pišemo  $A \land B \land C \land D$ 

Upoštevamo naslednji prednostni red operacij: ¬, ∨, ∧, ⇒, ⇔
 (v vsaki sestavljeni izjavi najprej upoštevamo negacije, za njimi disjunkcije itd.)

npr.: namesto 
$$(A \land B) \Rightarrow (\neg C)$$
 pišemo  $A \land B \Rightarrow \neg C$ 

Pravilnostne tabele lahko zapišemo tudi za sestavljene izjave, z uporabo poljubnega zaporedja, s katerim sestavimo izjavo.

| Zgle | Zgled                                                                     |                   |                   |                                             |          |                 |     |  |  |
|------|---------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------|----------|-----------------|-----|--|--|
|      | $(A \Rightarrow B) \land (B \Rightarrow C) \land (\neg A \lor C) \tag{1}$ |                   |                   |                                             |          |                 |     |  |  |
|      |                                                                           |                   |                   |                                             |          |                 |     |  |  |
|      | A,B,C                                                                     | $A \Rightarrow B$ | $B \Rightarrow C$ | $(A \Rightarrow B) \land (B \Rightarrow C)$ | $\neg A$ | $\neg A \lor C$ | (1) |  |  |
| 1.   | 1, 1, 1                                                                   | 1                 | 1                 | 1                                           | 0        | 1               | 1   |  |  |
| 2.   | 1, 1, 0                                                                   | 1                 | О                 | 0                                           | О        | О               | О   |  |  |
| 3.   | 1, 0, 1                                                                   | О                 | 1                 | 0                                           | 0        | 1               | О   |  |  |
| 4.   | 1, 0, 0                                                                   | О                 | 1                 | 0                                           | 0        | О               | О   |  |  |
| 5.   | 0, 1, 1                                                                   | 1                 | 1                 | 1                                           | 1        | 1               | 1   |  |  |
| 6.   | 0, 1, 0                                                                   | 1                 | О                 | 0                                           | 1        | 1               | О   |  |  |

Naj bo A izjava, sestavljena iz osnovnih izjav  $A_1, \ldots, A_n$ .

*Določilo izjave A*: določitev vrednosti 1 / o (pravilno / nepravilno) vsaki od izjav  $A_1, \ldots, A_n$ 

Prostor izjave: vsa različna mogoča določila, ki pripadajo tej izjavi.

Če je izjava sestavljena iz n osnovnih izjav, potem ima izjava natanko  $2^n$  določil.

Podprostor pravilnosti: določila, pri katerih je izjava pravilna.

Dve vrsti izjav si zaslužita posebno ime:

0, 0, 1 0, 0, 0

- *Tavtologija*: pri vseh določilih pravilna izjava (primer:  $A \vee \neg A$ )
- *Protislovje*: pri vseh določilih nepravilna izjava (primer:  $A \wedge \neg A$ )

## Zgled

Za vsako od naslednjih dveh izjav s pomočjo pravilnostne tabele določi, ali je izjava tavtologija in ali je protislovje.

(a) 
$$(A \Rightarrow B) \Rightarrow A \lor B$$
,

(b) 
$$(A \Rightarrow B) \Leftrightarrow A \land \neg B$$
.

Pravilnostna tabela za prvo izjavo:

|          | A, B | $A \Rightarrow B$ | $A \vee B$ | $(A \Rightarrow B) \Rightarrow A \vee B$ |
|----------|------|-------------------|------------|------------------------------------------|
| 1.       | 1, 1 | 1                 | 1          | 1                                        |
| 2.<br>3. | 1, 0 | О                 | 1          | 1                                        |
| 3.       | 0, 1 | 1                 | 1          | 1                                        |
| 4.       | 0, 0 | 1                 | О          | О                                        |

Izjava ni ne tavtologija ne protislovje.

Pravilnostna tabela za drugo izjavo:

|    | A, B | $A \Rightarrow B$ | $\neg B$ | $A \wedge \neg B$ | $(A \Rightarrow B) \Leftrightarrow A \land \neg B$ |
|----|------|-------------------|----------|-------------------|----------------------------------------------------|
| 1. | 1, 1 | 1                 | О        | 0                 | 0                                                  |
| 2. | 1,0  | О                 | 1        | 1                 | 0                                                  |
| 3. | 0, 1 | 1                 | О        | О                 | 0                                                  |
| 4. | 0, 0 | 1                 | 1        | 0                 | 0                                                  |

Izjava ni tavtologija, je pa protislovje.

## Domača naloga:

- **1.** Dani sta izjavi *A*: "Andrej govori francosko." in *B*: "Andrej govori dansko." V naravnem jeziku zapiši naslednje sestavljene izjave:
  - (a)  $A \vee B$
  - (b)  $A \wedge B$
  - (c)  $A \wedge \neg B$
  - (d)  $\neg A \lor \neg B$
  - (e)  $\neg \neg A$

(f) 
$$\neg (\neg A \land \neg B)$$

- **2.** Dani sta izjavi *A*: "Janez je bogat." in *B*: "Janez je srečen." Naslednje izjave zapiši simbolično:
- (a) Če je Janez bogat, potem je nesrečen.
- (b) Janez ni niti srečen niti bogat.
- (c) Janez je srečen, samo če je reven.
- (d) Janez je reven natanko tedaj, ko je nesrečen.

#### Vitezi in oprode

S pomočjo pravilnostnih tabele lahko rešujemo uganke o vitezih in oprodah. Vitezi vselej govorijo resnico, oprode pa vselej lažejo.

Naloga: Artur in Bine podata naslednji izjavi:

• Artur: "Bine je oproda."

• Bine: "Nobeden od naju ni oproda."

Za vsakega od njiju določi, ali je vitez ali oproda!

Naj bo *A* izjava: "Artur je vitez," *B* pa izjava: "Bine je vitez."

Določimo pravilnost izjav A in B s pomočjo pravilnostne tabele. Iz Arturjeve izjave sklepamo na pravilnost izjave  $A \Leftrightarrow \neg B$ . Iz Binetove izjave sklepamo na pravilnost izjave  $B \Leftrightarrow A \wedge B$ . Torej je konjunkcija teh dveh izjav pravilna:

$$(A \Leftrightarrow \neg B) \wedge (B \Leftrightarrow A \wedge B)$$
.

Za kateri nabor določil za A in B je ta izjava pravilna?

| A | В | $\neg B$ | $A \Leftrightarrow \neg B$ | $A \wedge B$ | $B \Leftrightarrow A \wedge B$ | $(A \Leftrightarrow \neg B) \wedge (B \Leftrightarrow A \wedge B)$ |
|---|---|----------|----------------------------|--------------|--------------------------------|--------------------------------------------------------------------|
| 1 | 1 | 0<br>1   | О                          | 1            | 1                              | О                                                                  |
| 1 | О | 1        | 1                          | О            | 1                              | 1                                                                  |
| O | 1 | O        | 1                          | О            | О                              | О                                                                  |
| O | О | 1        | О                          | О            | 1                              | О                                                                  |

Artur je vitez, Bine pa oproda.

Še ena podobna naloga: Tokrat podata Artur in Bine naslednji izjavi:

• Artur: "Jaz in Bine nisva iste vrste."

• Bine: "Natanko eden od naju je vitez."

Naslednja konjunkcija izjav je pravilna:

$$[A \Leftrightarrow (A \land \neg B) \lor (\neg A \land B)] \land [B \Leftrightarrow (A \land \neg B) \lor (\neg A \land B)].$$
 (2)

| A | В | $A \wedge \neg B$ | $\neg A \wedge B$ | $(A \land \neg B) \lor (\neg A \land B) \ (*)$ | $B \Leftrightarrow (*)$ | $A \Leftrightarrow (*)$ | (2) |
|---|---|-------------------|-------------------|------------------------------------------------|-------------------------|-------------------------|-----|
| 1 | 1 | О                 | О                 | О                                              | О                       | О                       | 0   |
| 1 | 0 | 1                 | О                 | 1                                              | 1                       | О                       | 0   |
| O | 1 | О                 | 1                 | 1                                              | О                       | 1                       | 0   |
| О | 0 | О                 | О                 | О                                              | 1                       | 1                       | 1   |

Oba sta oprodi.

Domača naloga: Reši naslednji nalogi o vitezih in oprodah:

Artur: "Ni res, da je Bine oproda." Bine: "Nisva oba iste vrste."

 Artur: "Ni res, da je Cene oproda." Bine: "Cene je vitez ali pa sem jaz vitez." Cene: "Bine je oproda."

Videli smo, kako priredimo vsaki sestavljeni izjavi njeno pravilnostno tabelo. Obratna naloga: Če imamo dane neodvisne izjave  $A_1, \ldots, A_n$ , kako konstruirati iz njih sestavljeno izjavo, ki bo imela pri vsakem izmed  $2^n$  določil *vnaprej predpisano logično vrednost?* 

Da bi rešili to nalogo, si najprej poglejmo t.i. logične ekvivalence.

## 1.2 LOGIČNE EKVIVALENCE

Naj bosta B in C izjavi, sestavljeni iz izjav  $A_1, \ldots, A_n$ . Če je izjava  $B \Leftrightarrow C$  tavtologija, pravimo, da sta B in C logično ekvivalentni. Za logiko: B = C (dve različni obliki iste izjave).

Naštejmo najpoglavitnejše logične ekvivalence:

1.  $A \Leftrightarrow \neg(\neg A)$ , zakon dvakratne negacije

П

- 2.  $A \wedge B \Leftrightarrow B \wedge A$ ,  $A \vee B \Leftrightarrow B \vee A$ , komutativnost konjunkcije in disjunkcije
- 3.  $A \land (B \land C) \Leftrightarrow (A \land B) \land C$ ,  $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$ , asociativnostna zakona
- 4.  $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ ,  $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$ , distributivnostna zakona

5. 
$$A \wedge A \Leftrightarrow A$$
,  $A \vee A \Leftrightarrow A$ 

6. 
$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

7. 
$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$
, De Morganova zakona (6. in 7.)

8. 
$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

9. 
$$(A \Rightarrow B) \Leftrightarrow \neg A \lor B$$

10. 
$$(A \Rightarrow B) \Leftrightarrow \neg (A \land \neg B)$$

11. 
$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

12. 
$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$
, komutativnost ekvivalence

13. 
$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$$

14. 
$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \lor B) \land (A \lor \neg B)$$

15. 
$$(A \Leftrightarrow B) \Leftrightarrow (A \land B) \lor (\neg A \land \neg B)$$

16. 
$$\neg(A \Leftrightarrow B) \Leftrightarrow (A \Leftrightarrow \neg B)$$

Za vajo se prepričajmo v pravilnost 16. ekvivalence s pomočjo pravilnostne tabele:

|    | A, B | $A \Leftrightarrow B$ | $\neg(A \Leftrightarrow B)$ | $\neg B$ | $A \Leftrightarrow \neg B$ |
|----|------|-----------------------|-----------------------------|----------|----------------------------|
| 1. | 1, 1 | 1                     | О                           | О        | О                          |
| 2. | 1, 0 | О                     | 1                           | 1        | 1                          |
| 3. | 0, 1 | О                     | 1                           | О        | 1                          |
| 4. | 0, 0 | 1                     | О                           | 1        | О                          |

**Domača naloga:** S pomočjo pravilnostnih tabel (ali kako drugače) se prepričaj v pravilnost preostalih ekvivalenc.

S pomočjo zgornjih ekvivalenc se lahko prepričamo, da 5 osnovnih povezav med izjavami ni med seboj neodvisnih. Vse sestavljene izjave lahko izrazimo *samo z dvema osnovnima povezavama*, če ju le primerno izberemo. Zadošča že:

- (a) negacija ¬ in disjunkcija ∨
- **(b)** negacija ¬ in konjunkcija ∧
- (c) negacija  $\neg$  in implikacija  $\Rightarrow$

Te izbire so edine mogoče.

## Zgled

Vzemimo izjavo "Če je kakšna reč lepa, potem je minljiva."

 $(\neg \text{ in } \lor)$  Reč ni lepa, ali pa je minljiva.

 $(\neg \text{ in } \land)$  Ni res, da je kakšna reč lepa in ni minljiva.

 $(\neg \text{ in } \Rightarrow)$  Če kakšna reč ni minljiva, potem ni lepa.

## 1.3 IZBRANI OBLIKI IZJAV

Od zadnjič dolgujemo še rešitev naslednje naloge: iz danih izjav  $A_1, \ldots, A_n$  konstruiraj izjavo, ki bo imela pri vsakem izmed  $2^n$  določil vnaprej predpisano vrednost.

**1. način:** Vsakemu določilu d za izjave  $A_1, \ldots, A_n$  priredimo konjunkcijo

$$C_1 \wedge \ldots \wedge C_n$$

in sicer takole: izjava je  $C_i = A_i$ , če ima  $A_i$  v določilu d vrednost 1, in naj bo  $C_i = \neg A_i$ , sicer. Tako dobljena konjunkcija je pravilna pri določilu d in nepravilna pri vsakem drugem določilu. Imenuje se osnovna konjunkcija določila d.

Sedaj pa napravimo osnovne konjunkcije natanko tistih določil, za katere naj bo iskana izjava pravilna, in jih povežimo z disjunkcijami!

Tako dobljeno izjavo imenujemo izbrana disjunktivna oblika.

Ta postopek deluje v vsakem primeru, le v primeru protislovja ne! Za protislovje lahko iskano izjavo konstruiramo posebej, npr.  $A_1 \land \neg A_1$ .

#### 2. način:

d - določilo

Sedaj tvorimo osnovno disjunkcijo določila d:

$$D_1 \vee \cdots \vee D_n$$

kjer je

 $D_i = \neg A_i$ , če ima  $A_i$  v d vrednost 1 in

 $D_i = A_i$ , če ima  $A_i$  v d vrednost o.

Tako dobljena disjunkcija je nepravilna pri d in pravilna pri vsakem drugem določilu.

Napravimo osnovne disjunkcije natanko tistih določil, za katere naj bo iskana sestavljena izjava nepravilna, in jih povežimo med seboj s konjunkcijami.

Tako dobljeno izjavo imenujemo izbrana konjunktivna oblika.

Ta postopek deluje v vsakem primeru, le v primeru tavtologije ne! Za tavtologijo lahko konstruiramo iskano izjavo posebej, npr.  $A_1 \vee \neg A_1$  ("zakon izključene tretje možnosti", vsaka izjava je bodisi pravilna bodisi nepravilna).

**Zgled:** Iščemo izjavo *D*, sestavljeno iz izjav *A*, *B* in *C*, za katero velja:

| A | В | С | D | osnovna konjunkcija                | osnovna disjunkcija         |
|---|---|---|---|------------------------------------|-----------------------------|
| 1 | 1 | 1 | 1 | $A \wedge B \wedge C$              |                             |
| 1 | 1 | О | О |                                    | $\neg A \lor \neg B \lor C$ |
| 1 | О | 1 | О |                                    | $\neg A \lor B \lor \neg C$ |
| 1 | О | О | О |                                    | $\neg A \lor B \lor C$      |
| O | 1 | 1 | 1 | $\neg A \wedge B \wedge C$         |                             |
| O | 1 | О | О |                                    | $A \vee \neg B \vee C$      |
| O | О | 1 | 1 | $\neg A \land \neg B \land C$      |                             |
| O | О | О | 1 | $\neg A \land \neg B \land \neg C$ |                             |

Izbrana disjunktivna oblika izjave D je

$$(A \wedge B \wedge C) \vee (\neg A \wedge B \wedge C) \vee (\neg A \wedge \neg B \wedge C) \vee (\neg A \wedge \neg B \wedge \neg C)$$
.

izbrana konjunktivna oblika pa je

$$(\neg A \lor \neg B \lor C) \land (\neg A \lor B \lor \neg C) \land (\neg A \lor B \lor C) \land (A \lor \neg B \lor C).$$

## Zgled

Recimo, da so vas ujeli ljudožerci v Afriki. Njihov poglavar pa se odlikuje z izrednim smislom za humor in z ljubeznijo do logike. Zato vas spravi v ječo z dvema izhodoma in veli takole: "En izhod iz ječe vodi neposredno v kotel, drugi pa v zlato svobodo. Premisli in izberi! Da ti bo izbira lažja, ti dajem v pomoč dva svoja hrabra vojščaka in enemu od njih smeš postaviti eno samo vprašanje. Vendar pomni! Eden od njiju govori vedno resnico, medtem ko drugi neprestano laže."

Zadeva ni rožnata, vendar se s pomočje logike lahko izognete kotlu. Kakšno vprašanje boste postavili?

Naj bo *A* izjava "Prvi izhod vodi v svobodo."in *B* izjava "Vi govorite resnico."Iz teh dveh izjav je treba sestaviti tako izjavo, da bo odgovor "da" nanjo pomenil, da je izjava *A* pravilna in odgovor "ne" pa, da je izjava *A* nepravilna, in sicer ne glede na to, katerega od obeh vojščakov boste vprašali. Označimo iskano izjavo s *C*. Potem mora veljati:

| A | В | С | osnovna konjunkcija    | osnovna disjunkcija |
|---|---|---|------------------------|---------------------|
| 1 | 1 | 1 | $A \wedge B$           |                     |
| 1 | О | О |                        | $\neg A \lor B$     |
| O | 1 | О |                        | $A \vee \neg B$     |
| O | О | 1 | $\neg A \wedge \neg B$ |                     |

Izbrana disjunktivna oblika odrešilne izjave C je

$$(A \wedge B) \vee (\neg A \wedge \neg B),$$

izbrana konjunktivna oblika pa je

$$(\neg A \vee B) \wedge (A \vee \neg B).$$

П

Vprašanje lahko zastavimo v preprostejši obliki: opazimo, da sta obe obliki izjave logično ekvivalentni izjavi

$$A \Leftrightarrow B$$
.

Obrnemo se k enemu od vojščakov in ga povprašamo: "Ali je res, da vodi prvi izhod v svobodo, če in samo če vi govorite resnico?"

#### 1.4 PREKLOPNA VEZJA

Logične izjave lahko modeliramo s t.i. preklopnimi vezji.

Preklopno vezje je sistem žic in preklopov (stikal), ki vežejo dve izhodni točki, med katerima obstaja električna napetost. Vsako stikalo je bodisi "zaprto" (če skozenj teče tok) ali "odprto" (če tok ne teče).



Recimo, da imamo tako vezje in da vemo, katera stikala so odprta in katera zaprta. Zanima nas, ali je celotno vezje "zaprto" (tj., skozenj teče tok) ali "odprto" (če tok ne teče).

Poglejmo si dve zelo preprosti vezji:

(1) zaporedno vezani stikali:

$$T_1 - - - A - - - B - - - T_2$$

Zaporedno vezje je zaprto natanko tedaj, kadar sta obe stikali zaprti: **konjunkcija**.

(2) vzporedno vezani stikali:



Vzporedno vezje je zaprto natanko tedaj, kadar je vsaj eno stikalo zaprto: **disjunkcija**.

Vsakemu takemu vezju ustreza neka logična izjava, sestavljena iz izjav, ki ustrezajo stikalom.

Obratno: če omogočamo *identična* in *obratna* stikala, potem lahko vsako sestavljeno izjavo predstavimo z vezjem!

Identični stikali sta taki stikali, ki sta bodisi hkrati odprti ali hkrati zaprti.

Obratni stikali sta taki stikali, da je natanko eno od njiju odprto.

Zveza med vezji in izjavami: vezje je zaprto natanko tedaj, ko je ustrezna izjava pravilna, in odprto sicer.

#### Zgled

Vzemimo izjavo

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (\neg A \lor C)$$

V poglavju 1.2. smo izračunali pravilnostno tabelo te izjave:

|    | A | В | С | $(A \Rightarrow B) \land (B \Rightarrow C) \land (\neg A \lor C)$ |
|----|---|---|---|-------------------------------------------------------------------|
| 1. | 1 | 1 | 1 | 1                                                                 |
| 2. | 1 | 1 | О | О                                                                 |
| 3. | 1 | 0 | 1 | О                                                                 |
| 4. | 1 | О | О | О                                                                 |
| 5. | О | 1 | 1 | 1                                                                 |
| 6. | О | 1 | О | О                                                                 |
| 7. | О | О | 1 | 1                                                                 |
| 8. | О | О | О | 1                                                                 |

V prejšnjem podpoglavju smo zapisali to izjavo v izbrani disjunktivni obliki kot:

$$(A \land B \land C) \lor (\neg A \land B \land C) \lor (\neg A \land \neg B \land C) \lor (\neg A \land \neg B \land \neg C).$$

Tej obliki ustreza naslednje vezje:



Izbrani konjunktivni obliki

$$(\neg A \lor \neg B \lor C) \land (\neg A \lor B \lor \neg C) \land (\neg A \lor B \lor C) \land (A \lor \neg B \lor C)$$

pa ustreza vezje



Vidimo, da dani izjavi ustreza več preklopnih vezij. Pri dejanski konstrukciji vezij, ki simulirajo dano izjavo, je torej utemeljena zahteva, da naj bo vezje čimbolj enostavno, da naj ustreza določenim predpisom itd. (s tem se tu ne bomo ukvarjali).

## Zgled

Dano je naslednje preklopno vezje:



*Pri katerih položajih stikal je vezje zaprto?* Problem rešimo z logiko. Prirejena sestavljena izjava, recimo ji *D*, je:

$$(A \wedge B \vee \neg C) \vee (\neg A \wedge B) \vee (A \vee \neg C \wedge \neg A).$$

Njena pravilnostna tabela pa je:

|    | A | В | С | $A \wedge B \vee \neg C$ | $\neg A \wedge B$ | $A \vee \neg C \wedge \neg A$ | D |
|----|---|---|---|--------------------------|-------------------|-------------------------------|---|
| 1. | 1 | 1 | 1 | 1                        | О                 | 0                             | 1 |
| 2. | 1 | 1 | О | 1                        | О                 | О                             | 1 |
| 3. | 1 | О | 1 | О                        | О                 | О                             | О |
| 4. | 1 | О | О | 1                        | О                 | О                             | 1 |
| 5. | О | 1 | 1 | О                        | 1                 | О                             | 1 |
| 6. | О | 1 | О | О                        | 1                 | 1                             | 1 |
| 7. | О | О | 1 | О                        | О                 | О                             | О |
| 8. | О | О | О | О                        | О                 | 1                             | 1 |

Vidimo, da je vezje odprto natanko takrat, ko je stikalo *B* odprto, *C* pa zaprto, in zaprto v vseh drugih primerih.

Torej bi vezje lahko zamenjali tudi z naslednjim preprostejšim vezjem:

$$T_1 \longrightarrow T_2$$

Do istega rezultata lahko pridemo tudi po logični poti:

Iz pravilnostne tabele razberemo izbrano konjunktivno obliko izjave  ${\cal D}$ 

$$(\neg A \lor B \lor \neg C) \land (A \lor B \lor \neg C).$$

zaradi distributivnosti je ta izjava ekvivalentna izjavi

$$(\neg A \land A) \lor (B \lor \neg C)$$

ker pa je konjunkcija  $\neg A \land A$  vselej nepravilna, je ta izjava ekvivalentna izjavi  $B \lor \neg C$  .

Zaključimo poglavje o vezjih še z enim zgledom bolj praktične narave.

## **Zgled**

Imamo odbor 3 poslancev, ki glasujejo o posameznih predlogih po določenem volilnem načelu. Konstruirati je treba tako preklopno vezje, ki bo nemudoma sporočilo, ali je predlog sprejet ali ne.

Oglejmo si dve možni volilni načeli:

- (a) načelo enostavne večine
- (b) načelo enostavne večine, pri čemer ima poslanec *A* pravico veta Pravilnostna tabela veli:

| $\overline{A}$ | В | С | (a) | (b) |  |
|----------------|---|---|-----|-----|--|
| 1              | 1 | 1 | 1   | 1   |  |
| 1              | 1 | О | 1   | 1   |  |
| 1              | 0 | 1 | 1   | 1   |  |
| 1              | 0 | О | О   | О   |  |
| O              | 1 | 1 | 1   | О   |  |
| О              | 1 | О | О   | О   |  |
| O              | 0 | 1 | О   | 0   |  |
| О              | О | 0 | О   | 0   |  |

Če se odločimo za izbrano disjunktivno obliko, potem se zaželena izjava v primeru (a) glasi

$$(A \wedge B \wedge C) \vee (A \wedge B \wedge \neg C) \vee (A \wedge \neg B \wedge C) \vee (\neg A \wedge B \wedge C)$$

v primeru (b) pa

$$(A \wedge B \wedge C) \vee (A \wedge B \wedge \neg C) \vee (A \wedge \neg B \wedge C)$$
.

Ustrezni vezji pa sta:

(a)



Domača naloga: Sestavite vezje, prirejeno izjavi

$$(A \Rightarrow B) \lor (\neg B \Rightarrow C) \lor (A \Leftrightarrow C).$$

## 1.5 LOGIČNE IMPLIKACIJE

Logična implikacija je tavtologija, pri kateri je glavna povezava implikacija.

Veljajo naslednje resnice o logičnih implikacijah:

- 1. Če je antecedens tavtologija, mora biti tudi konsekvens tavtologija.
- 2. Če je konsekvens protislovje, mora biti tudi antecedens protislovje.
- 3. Če je konsekvens tavtologija, je lahko antecedens katerakoli izjava.
- 4. Če je antecedens protislovje, je lahko konsekvens katerakoli izjava.
- 5. Vsaka izjava logično implicira samo sebe.
- 6. Vsaka izjava, ki logično implicira hkrati kakšno izjavo *A* in njeno negacijo ¬*A*, mora biti protislovje.
- 7. Izjava, ki logično implicira svojo negacijo, je protislovje.

Zgled logične implikacije:

$$A \Rightarrow B \Rightarrow (A \land C \Rightarrow B \land C)$$
.

Dokažimo jo. Ta implikacija bi bila nepravilna le pri takem določilu, pri katerem bi bila izjava  $A\Rightarrow B$  pravilna, izjava  $A\land C\Rightarrow B\land C$  pa nepravilna. To je po definiciji implikacije res samo, če sta izjavi  $A\land C$  pravilni, izjava B pa nepravilna. V tem primeru pa je implikacija  $A\Rightarrow B$  nepravilna, kar je v nasprotiju s predpostavko, da je pravilna. Torej ne obstaja tako določilo, za katero bi bila izjava  $A\Rightarrow B$  pravilna, izjava  $A\land C\Rightarrow B\land C$  pa nepravilna. Implikacija je res tavtologija.

Na vajah boste spoznali in dokazali številne druge logične implikacije.

### Nekaj poglavitnih logičnih implikacij

1. 
$$A \wedge (A \Rightarrow B) \Rightarrow B$$

2. 
$$\neg B \land (A \Rightarrow B) \Rightarrow \neg A$$

3. 
$$\neg A \land (A \lor B) \Rightarrow B$$

4. 
$$A \wedge B \Rightarrow A$$

5. 
$$A \Rightarrow A \vee B$$

6. 
$$A \wedge \neg A \Rightarrow B$$

7. 
$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

8. 
$$(A \Rightarrow B) \Rightarrow ((C \Rightarrow A) \Rightarrow (C \Rightarrow B))$$

9. 
$$(A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

10. 
$$(A \Rightarrow B) \Rightarrow (A \land C \Rightarrow B \land C)$$

11. 
$$(A \Rightarrow B) \Rightarrow (A \lor C \Rightarrow B \lor C)$$

12. 
$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

13. 
$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

14. 
$$(A \Leftrightarrow B) \Rightarrow (B \Rightarrow A)$$

15. 
$$A \wedge (A \Leftrightarrow B) \Rightarrow B$$

16. 
$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

17. 
$$B \Rightarrow (A \Leftrightarrow A \land B)$$

18. 
$$\neg B \Rightarrow (A \Leftrightarrow A \vee B)$$

19. 
$$(A \Rightarrow (B \land \neg B)) \Rightarrow \neg A$$

Za vajo se prepričajte o veljavnosti teh logičnih implikacij. Namesto pravilnostnih tabel lahko uporabite tole metodo: *Izhajamo iz definicije implikacije in poskušamo konstruirati tako določilo, za katero bi bila implikacija nepravilna. Potem se mora seveda izkazati, da takega določila ni.* 

#### Zgled

Dokažimo 10. logično implikacijo s seznama:

$$A \Rightarrow B \Rightarrow (A \land C \Rightarrow B \land C)$$

Ta implikacija bi bila nepravilna le pri takem določilu, pri katerem bi bila izjava  $A\Rightarrow B$  pravilna, izjava  $A\land C\Rightarrow B\land C$  pa nepravilna. To je po definiciji implikacije res samo, če sta izjavi  $A\land C$  pravilni, izjava B pa nepravilna. V tem primeru pa je implikacija  $A\Rightarrow B$  nepravilna, kar je v nasprotju s predpostavko, da je pravilna. Torej ne obstaja tako določilo, za katero bi bila izjava  $A\Rightarrow B$  pravilna, izjava  $A\land C\Rightarrow B\land C$  pa nepravilna. Implikacija 10. je res tavtologija.

## 1.6 NAČINI DOKAZOVANJA

Logične implikacije uporabljamo pri dokazovanju novih trditev iz aksiomov in že dokazanih trditev. Poglejmo si nekaj načinov dokazovanja.

#### 1) Direktni dokaz implikacije $A \Rightarrow B$

Dokazujemo logično implikacijo  $A \Rightarrow B$ . Predpostavimo, da je A pravilna izjava in direktno izpeljemo pravilnost izjave B.

## **Zgled**

Če je n liho naravno število, je tudi  $n^2$  liho število.

**Dokaz.** Naj bo n liho naravno število. Tedaj ga lahko zapišemo kot n=2k-1, kjer je k naravno število. Sledi  $n^2=(2k-1)^2=4k^2-4k+1=2(2k^2-2k)+1$ , torej je  $n^2$  liho število.

```
DirektnidokazimplikacijeA \Rightarrow BDokaz:Predpostavimo A....Torej, B.Sledi A \Rightarrow B.
```

## 2) Indirektni dokaz implikacije $A \Rightarrow B$

Dokazujemo pravilnost logične implikacije  $A \Rightarrow B$ . Včasih se izkaže, da je ugodneje direktno dokazovati ekvivalentno implikacijo  $\neg B \Rightarrow \neg A$ .

## Zgled

```
Če je n^2 sodo število, je n sodo število.

Dokaz. Izjava je ekvivalentna implikaciji:

Če je n število, ki ni sodo, je n^2 število, ki ni sodo.

Ekvivalentno: Če je n liho število, je n^2 liho število.

To pa smo že dokazali.

Indirektni dokaz implikacije

A \Rightarrow B

Dokaz:

Predpostavimo \neg B.

\vdots

Torej, \neg A.

Sledi \neg B \Rightarrow \neg A.

Posledično A \Rightarrow B.
```

#### 3) Dokaz izjave A s protislovjem

Želimo dokazati pravilnost izjave A. Predpostavimo, da je A nepravilna in pokažemo, da vodi ta predpostavka v protislovje (ki ga označimo s  $\bot$ ). S tem smo pokazali pravilnost izjave  $\neg A \Rightarrow \bot$ . Ta izjava pa je pravilna le, če je izjava  $\neg A$  nepravilna, torej je A pravilna.

#### Zgled

Število  $\sqrt{2}$  ni racionalno.

**Dokaz.** Predpostavimo, da je  $\sqrt{2}$  racionalno število. Tedaj ga lahko zapišemo kot  $\sqrt{2}=p/q$ , kjer sta p in q tuji si naravni števili.

Sledi

$$2 = p^2/q^2$$
.  
 $p^2 = 2q^2$ .

Torej je  $p^2$  sodo število. Sledi (po prej dokazanem), da je p sodo število.

Pišimo p = 2m, kjer je m naravno število.

```
Dobimo 4m^2 = 2q^2. Sledi 2m^2 = q^2. Torej je tudi q sodo število. To pa je protislovje. (Predpostavili smo, da sta p in q tuji si števili in dokazali, da sta obe deljivi z 2, torej da si nista tuji.)
```

```
Dokaz izjave A s protislovjem
Dokaz:
Predpostavimo \neg A.

:
Torej, B.
:
Torej, \neg B.
Sledi, da je pravilna tudi izjava B \land \neg B, ta pa je protislovje.
Posledično A.
```

## 4) Dokaz ekvivalence $A \Leftrightarrow B \ v \ dveh \ delih$

Želimo dokazati pravilnost logične ekvivalence  $A \Leftrightarrow B$ . Dokažemo vsako od obeh implikacij.

Za dokazovanje obeh delov lahko uporabimo različne metode. Pogosto je dokaz implikacije v eno smer lažji od dokaza v drugo smer.

#### Zgled

Pozitivno celo število p > 1 je praštevilo natanko tedaj, ko ne obstaja tako naravno število n, večje od 1 in manjše ali enako  $\sqrt{p}$ , ki deli p.

#### Dokaz.

(i) Dokazujemo indirektno. Predpostavimo, da obstaja tako naravno število n, večje od 1 in manjše ali enako  $\sqrt{p}$ , ki deli p. Torej je n delitelj p, različen od 1 in p, in p ni praštevilo.

(ii) Tudi tu dokazujemo indirektno. Predpostavimo, da p ni praštevilo. Lahko ga torej zapišemo v obliki  $p=n_1\cdot n_2$ , kjer sta  $n_1$  in  $n_2$  pozitivni celi števili, različni od 1 in p. Trdimo, da je vsaj eno od števil  $n_1$  in  $n_2$  manjše ali enako  $\sqrt{p}$ . Če to ne bi veljalo, bi imeli  $n_1>\sqrt{p}$  in  $n_2>\sqrt{p}$  in posledično  $p=n_1n_2>\sqrt{p}\cdot\sqrt{p}=p$ , protislovje. Naj bo torej n tako število izmed  $n_1$  in  $n_2$ , za katerega velja  $n\leq\sqrt{p}$ . Število n je tedaj naravno število, večje od 1 in manjše ali enako  $\sqrt{p}$ , ki deli p.

## **Zgled**

Naj bosta m in n celi števili. Tedaj sta števili m in n iste parnosti natanko tedaj, ko je število  $m^2 + n^2$  sodo.

#### Dokaz.

- (i) Predpostavimo, da sta m in n iste parnosti. Obravnavamo dva primera.
- (a) Če sta m in n sodi števili, potem je m=2k in n=2j za neki celi števili k in j. Sledi  $m^2+n^2=(2k)^2+(2j)^2=2(2k^2+2j^2)$ , kar je sodo število.
- (b) Če sta m in n lihi števili, potem je m = 2k + 1 in n = 2j + 1 za neki celi števili k in j. Sledi  $m^2 + n^2 = (2k + 1)^2 + (2j + 1)^2 = 2(2k^2 + 2k + 2j^2 + 2j + 1)$ , kar je sodo število.

V obeh primerih je  $m^2 + n^2$  sodo število.

- (ii) Predpostavimo, da je  $m^2 + n^2$  sodo število. Spet obravnavamo dva primera.
- (a) Če je m sodo število, potem je tudi  $m^2$  sodo število. Torej, ker je  $m^2 + n^2$  sodo število in  $m^2$  sodo število, je sodo tudi število  $n^2 = (m^2 + n^2) m^2$ . Od tod sledi, da je n sodo.

(b) Če je m liho število, potem je tudi  $m^2$  liho število. Torej, ker je  $m^2 + n^2$  sodo število in  $m^2$  liho število, je liho tudi število  $n^2 = (m^2 + n^2) - m^2$ . Od tod sledi, da je n liho.

V obeh primerih sta m in n iste parnosti.

Povzemimo:

Dokaz ekvivalence  $A \Leftrightarrow B$  v dveh delih

#### Dokaz:

- (i) Dokažemo  $A \Rightarrow B$ .
- (ii) Dokažemo  $B \Rightarrow A$ .

Torej,  $A \Leftrightarrow B$ .

## 5) "Če in samo če" dokaz $A \Leftrightarrow B$

Pravilnost logične ekvivalence  $A \Leftrightarrow B$  lahko dokažemo z zaporedjem logično ekvivalentnih izjav. Začnemo z izjavo A in jo zamenjamo z zaporedjem ekvivalentnih izjav, ki se konča z izjavo B.

## Zgled

Dan je trikotnik T s stranicami dolžin a, b, c. S pomočjo kosinusnega izreka dokaži, da je T pravokotni trikotnik s hipotenuzo dolžine c natanko tedaj, ko je  $a^2 + b^2 = c^2$ .

Kosinusni izrek:  $a^2 + b^2 = c^2 + 2ab\cos\gamma$ , kjer je  $\gamma$  kot med stranicama dolžin a in b.

#### Dokaz.

Iz kosinusnega izreka sledi

$$a^2+b^2=c^2$$
 če in samo če  $2ab\cos\gamma=0$  če in samo če  $\cos\gamma=0$  če in samo če  $\gamma=90^\circ$ .

Torej je  $a^2 + b^2 = c^2$  natanko tedaj, ko je T pravokotni trikotnik s hipotenuzo dolžine c.

Če imamo n vmesnih izjav  $C_1, \ldots, C_n$ , ima dokaz naslednjo obliko:



## 6) Analiza primerov

Včasih nam pri dokazu pravilnosti izjave A pomaga, če pregledamo vse primere, ter ugotovimo da je B vedno pravilna.

| Dokazovanje A s pomočjo analize p | rime- |
|-----------------------------------|-------|
| rov.                              |       |
| Dokaz:                            |       |
| Primer 1: predpostavimo B         |       |
| <br>A.                            |       |
| Primer 2: predpostavimo $\neg B$  |       |
|                                   |       |
| <i>A</i> .                        |       |

#### 1.6.1 Množice izjav

Dane so atomarne izjave  $A_1, \ldots, A_n$  (take, da v njih ne nastopa nobena logična povezava).

Koliko različnih izjav lahko sestavimo iz njih?

Zdi se, da neskončno mnogo! Vendar pa, za logiko sta dve izjavi isti, če sta logično ekvivalentni.

Izjav, ki med seboj niso logično ekvivalentne, pa je le končno mnogo.

Vsaka izjava, sestavljene iz  $A_1, \ldots, A_n$ , ima natanko  $2^n$  različnih določil. Izjava je enolično določena, brž ko so določene njene vrednosti za vsako od teh  $2^n$  določil.

Vsako določilo ima vrednost o ali 1, neodvisno od drugih. Sledi, da je vseh možnih izjav  $2^{(2^n)}$ .

Oglejmo si konstrukcijo vseh možnih izjav za n = 1 in n = 2.

#### n = 1

Imamo eno samo izjavo, A. Iz nje lahko sestavimo  $2^{(2^1)}=4$  izjave,  $C_1,\ldots,C_4.$ 

| A | $C_1$ | $C_2$ | $C_3$ | $C_4$ |
|---|-------|-------|-------|-------|
| 1 | 1     | 1     | 0     | 0     |
| O | 1     | О     | 1     | 0     |

 $C_1$  je tavtologija, npr.  $A \vee \neg A$ .

 $C_4$  je protislovje, npr.  $A \wedge \neg A$ .

Za  $C_2$  lahko vzamemo kar A.

Za  $C_3$  pa  $\neg A$ .

n = 2

Imamo dve izjavi, A in B. Iz njiju lahko sestavimo  $2^{(2^2)}=16$  izjav,  $C_1,\ldots,C_{16}$ .

| A | В | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$ | $C_6$ | C <sub>7</sub> | $C_8$ | C <sub>9</sub> | $C_{10}$ | $C_{11}$ | $C_{12}$ | $C_{13}$ | $C_{14}$ | $C_{15}$ | ( |
|---|---|-------|-------|-------|-------|-------|-------|----------------|-------|----------------|----------|----------|----------|----------|----------|----------|---|
| 1 | 1 | 1     | 1     | 1     | 1     | 1     | 1     | 1              | 1     | О              | О        | О        | О        | О        | О        | О        |   |
| 1 | О | 1     | 1     | 1     | 1     | О     | О     | О              | О     | 1              | 1        | 1        | 1        | О        | О        | О        |   |
| O | 1 | 1     | 1     | О     | O     | 1     | 1     | О              | О     | 1              | 1        | О        | О        | 1        | 1        | О        |   |
| O | О | 1     | О     | 1     | О     | 1     | О     | 1              | О     | 1              | 0        | 1        | О        | 1        | О        | 1        |   |

Seveda je  $C_1$  je tavtologija, npr.  $A \vee \neg A$  in  $C_{16}$  protislovje  $A \wedge \neg A$ . Ker so izjave  $C_2$ ,  $C_3$ ,  $C_5$  in  $C_9$  nepravilne le pri enem določilu, bomo v teh primerih izbrali izbrano konjunktivno obliko:

- $C_2 = A \vee B$
- $C_3 = A \vee \neg B$
- $C_5 = \neg A \lor B$
- $C_8 = \neg A \lor \neg B$

Podobno za izjave  $C_8$ ,  $C_{12}$ ,  $C_{14}$  in  $C_{15}$  izrazimo s pomočjo izbrane disjunktivne oblike:

- $C_8 = A \wedge B$
- $C_{12} = A \land \neg B$
- $C_{14} = \neg A \wedge B$
- $C_{15} = \neg A \wedge \neg B$

Vse preostale izjave pa so pravilne pri dveh določilih in prav tako nepravilne pri dveh določilih.

Za C<sub>4</sub> vzamemo

$$(A \wedge B) \vee (A \wedge \neg B)$$
,

kar je ekvivalentno

$$A \wedge (B \vee \neg B)$$

in ker je disjunkcija  $B \vee \neg B$  vedno pravilna izjava, je torej izjava  $C_4$  ekvivalentna z izjavo A.

Podobno se prepričamo, da je:

- izjava C<sub>6</sub> ekvivalentna z izjavo B,
- izjava  $C_{11}$  ekvivalentna z izjavo  $\neg B$ ,
- izjava  $C_{13}$  ekvivalentna z izjavo  $\neg A$ .

Za C<sub>7</sub> pišimo

$$(A \wedge B) \vee (\neg A \vee \neg B)$$
,

kar je ekvivalentno z

$$A \Leftrightarrow B$$
.

Podobno pa lahko za  $C_{10}$  vzamemo ekvivalenco

$$A \Leftrightarrow \neg B$$
.

## 1.6.2 Pravila sklepanja

Kako pa pokažemo pravilnost sklepa? Zapis pravilnostne tabele in preverjanje vseh naborov je časovno potraten postopek. Precej rajši bi imeli kratko izpeljavo, v kateri bi izvajali relativno enostavne, majhne korake proti cilju. Majhne, enostavne sklepe, ki jih bomo potrebovali za dokazovanje pravilnosti sklepov, imenujemo pravila sklepanja.

| ime                    | predpostavke                       | sklep             |  |  |
|------------------------|------------------------------------|-------------------|--|--|
| modus ponens           | $A, A \Rightarrow B$               | В                 |  |  |
| modus tollens          | $A \Rightarrow B, \neg B$          | $\neg A$          |  |  |
| hipotetični silogizem  | $A \Rightarrow B, B \Rightarrow C$ | $A \Rightarrow C$ |  |  |
| disjunktivni silogizem | $A \vee B$ , $\neg A$              | В                 |  |  |
| združitev              | A, B                               | $A \wedge B$      |  |  |
| poenostavitev          | $A \wedge B$                       | A                 |  |  |
| pridružitev            | A                                  | $A \vee B$        |  |  |

## 1.7 IZJAVE S PREDIKATI IN KVANTIFIKATORJI

Kvantifikatorji povedo, za koliko objektov neke vrste velja neka izjava. Pri tem moramo povedati, katere vrste objekti nas zanimajo (npr. elementi množic  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ , itd.), pogosto pa je to že razvidno iz konteksta.

Naj bo A(x) neka izjava, smiselna za vsak objekt x iz domene pogovora. Taki izjavi pravimo *predikat*. Predikati oblike A(x) so enomestni. Poznamo pa tudi dvo- in večmestne predikate, npr. A(x,y),  $P(x_1,x_2,x_3)$  ipd.

Za zapis izjav s kvantifikatorji bomo uporabljali naslednje oznake:

- $(\forall x)A(x)$ : to je izjava, ki je pravilna natanko tedaj, ko je za vsak x izjava A(x) pravilna
  - ∀ je t.i. *univerzalni kvantifikator*
- $(\exists x)A(x)$ : to je izjava, ki je pravilna natanko tedaj, ko obstaja vsaj en x, za katerega je izjava A(x) pravilna
  - ∃ je t.i. *eksistencialni kvantifikator*
- $(\exists!x)A(x)$ : to je izjava, ki je pravilna natanko tedaj, ko obstaja **natanko en** x, za katerega je izjava A(x) pravilna

Ekvivalentno:  $(\exists x) A(x) \land (\forall y) (\forall z) (A(y) \land A(z) \Rightarrow y = z)$ 

## Zgled

Zadnjič smo dokazali izjavo *Če je n liho naravno število, je tudi n*<sup>2</sup> *liho število.* To pomeni: za vsako naravno število n velja, da če je liho, potem je tudi n<sup>2</sup> liho število. To lahko zapišemo kot  $(\forall n)A(n)$ , kjer je A(n) izjava "Če je n liho število, potem je tudi n<sup>2</sup> liho število."

# Zgled

Dana je izjava "Vsa jabolka so okusna." Kako bi to izjavo zapisali s predikati in kvantifikatorji?

Uporabimo ∀, a kako?

Če se omejimo le na objekte, ki so jabolka, potem zapišemo  $(\forall x)(x)$  je okusen).

Če pa je x lahko poljubno sadje, potem moramo uporabiti dve izjavi:

A(x): x je jabolko

in

B(x): x je okusen

Kako pa zapišemo izjavo vsi A(x) so B(x)? Kot  $(\forall x)(A(x) \land B(x))$  ali kot  $(\forall x)(A(x) \Rightarrow B(x))$ ? Prva izjava bi pomenila, da je vsako sadje okusno jabolko, tega pa ne želimo trditi. Pravilen je drugi zapis.

## Zgled

Dana je izjava "Nekatera jabolka so okusna." Kako bi pa to izjavo zapisali s kvantifikatorji, pri čemer kot objekte upoštevamo vse vrste sadja? Naj bo spet

```
A(x): x je jabolko in B(x): x je okusen
Bomo zapisali (\exists x)(A(x) \land B(x)) ali (\exists x)(A(x) \Rightarrow B(x))?
```

Prva izjava pomeni, da obstaja sadje, ki je okusno jabolko, in to je pravilen zapis. Druga izjava pa trdi, da za vsako sadje velja, da če je jabolko, potem je okusno. Ta izjava pa ne zagotavlja obstoja jabolka; pravilna je v vsakem kontekstu, kjer obstaja objekt, ki ni jabolko ali pa je okusno. Tega pa ne želimo trditi.

#### Povzemimo:

```
Izjavo oblike "vsi A(x) so B(x)žapišemo kot (\forall x)(A(x) \Rightarrow B(x)). Izjavo oblike "nekateri A(x) so B(x)"pa kot (\exists x)(A(x) \land B(x)).
```

# Še nekaj zgledov izjav s kvantifikatorji:

Naj bo domena pogovora množica naravnih števil. Tedaj so naslednje izjave s kvantifikatorji smiselne:

- $(\forall n)$  (n je deljiv z 2).
- $(\exists n)$  (n je deljiv z 2).
- $(\exists!n)$  (*n* je najmanjše naravno število).

Kako bi zapisali zgornje izjave, če bi bila domena pogovora množica realnih števil z uporabo predikata N(n): "n je naravno število"?

- $(\forall n) (N(n) \Rightarrow n \text{ je deljiv z 2}).$
- $(\exists n)$   $(N(n) \land n$  je deljiv z 2).
- $(\exists!n)$   $(N(n) \land n$  je najmanjše naravno število).

## Negacije izjav s kvantifikatorji

## Negacija ∀

$$\neg(\forall x)A(x) \Leftrightarrow (\exists x)(\neg A(x))$$

# Zgled

B: Vsak državljan Slovenije je rjavolas.

 $\neg B$ : Ni res, da je vsak državljan Slovenije rjavolas. Ekvivalentno: Obstaja vsaj en državljan Slovenije, ki ni rjavolas.

## Negacija ∃

$$\neg(\exists x)A(x) \Leftrightarrow (\forall x)\neg A(x)$$

## **Zgled**

B: V škatli obstaja rdeča kroglica.

 $\neg B$ : Ni res, da obstaja v škatli rdeča kroglica.

Ekvivalentno: Za vse kroglice v škatli velja, da niso rdeče.

# Zgled

Naj P(x) označuje izjavo "x je praštevilo".

Za vsako naravno število x obstaja naravno število y, večje od x, ki je praštevilo:  $(\forall x)(\exists y)(y>x \land P(y))$ .

Negacija:

$$\neg(\forall x)(\exists y)(y > x \land P(y)) \Leftrightarrow (\exists x)\neg(\exists y)(y > x \land P(y))$$
  
$$\Leftrightarrow (\exists x)(\forall y)\neg(y > x \land P(y)) \Leftrightarrow (\exists x)(\forall y)(y \le x \lor \neg P(y)).$$

## Zgled

Zapišimo negacijo izjave  $(\forall x)(\exists y)(y < x)$ .

$$\neg(\forall x)(\exists y)(y < x)$$

$$\Leftrightarrow (\exists x)(\neg(\exists y)(y < x))$$

$$\Leftrightarrow (\exists x)(\forall y)\neg(y < x)$$

$$\Leftrightarrow (\exists x)(\forall y)(y \ge x)$$

• Ali je izjava pravilna v realnih številih?

$$(\forall x)(\exists y)(y < x)$$

Da, izjava je pravilna!

• Ali je izjava pravilna v naravnih številih?  $(\forall x)(\exists y)(y < x)$ Ne, pravilna je njena negacija:  $(\exists x)(\forall y)(y \ge x)$ , obstaja namreč najmanjše naravno število.

## Domača naloga:

Ali je naslednja izjava pravilna?

Obstaja realno število x, za katerega velja  $\frac{1}{1+x^2} > 1$ .

## Dokazovanje izjav s kvantifikatorji

Poglejmo si nekaj načinov dokazovanja izjav s kvantifikatorji.

# 1) Direktni dokaz izjave $(\forall x)A(x)$

Dokazujemo trditev oblike  $(\forall x)A(x)$ . Pokazati moramo torej, da je izjava A(x) pravilna za vsak objekt x iz domene pogovora.

## Zgled

Dokaži, da za vsako naravno število n velja  $4n^2 - 4n + 1 \ge 0$ .

#### Dokaz.

Trditev je oblike  $(\forall x)A(x)$ , kjer preučujemo naravna števila,  $\mathbb{N}$ , in je A(x) izjava " $4x^2 - 4x + 1 \ge 0$ ".

Naj bo n poljubno naravno število. Zapišimo  $4n^2-4n+1=(2n-1)^2$ . Kvadrat poljubnega realnega števila je nenegativno število. Torej je  $4n^2-4n+1\geq 0$ . Ker je bilo število n poljubno, smo pokazali, da velja  $4n^2-4n+1\geq 0$  za vsa naravna števila.

## Direktni dokaz izjave $(\forall x)A(x)$

#### Dokaz:

Naj bo *x* poljuben objekt iz domene pogovora. (*Katere vrste objektov preučujemo, mora biti zapisano v trditvi ali razvidno iz konteksta.*)

:

Torej, A(x) je pravilna izjava.

Ker je bil x poljuben, je izjava  $(\forall x)A(x)$  pravilna.

## 2) Dokaz izjave $(\forall x)A(x)$ s protislovjem

Za dokazovanje izjav oblike  $(\forall x)A(x)$  pogosto uporabimo dokaz s protislovjem.

# Zgled

*Dokaži, da za vse x*  $\in$  (0,  $\pi$ /2) *velja*  $\sin x + \cos x > 1$ .

#### Dokaz.

*Trditev je oblike*  $(\forall x)A(x)$ , *kjer je* A(x) *izjava* " $0 < x < \pi/2 \Rightarrow \sin x + \cos x > 1$ ".

Predpostavimo, da je trditev napačna. Tedaj obstaja neko realno število t, za katerega je  $0 < t < \pi/2$  in  $\sin t + \cos t \le 1$ . Ker sta funkciji  $\sin x$  in  $\cos x$  pozitivni za vse  $x \in (0, \pi/2)$ , velja  $\sin t > 0$  in  $\cos t > 0$ . Sledi:

- $0 < \sin t + \cos t < 1$
- $0 < (\sin t + \cos t)^2 \le 1^2 = 1$
- $0 < \sin^2 t + 2\sin t \cos t + \cos^2 t \le 1$
- $0 < 1 + 2\sin t \cos t \le 1$

```
-1 < 2\sin t \cos t \le 0 (Uporabili smo identiteto \sin^2 t + \cos^2 t = 1.) Ampak 2\sin t \cos t \le 0 je nemogoče, saj sta tako \sin t kot \cos t pozitivna. Torej, če je 0 < x < \pi/2, potem je \sin x + \cos x > 1.
```

Ker je izjava  $\neg(\forall x)A(x)$  ekvivalentna izjavi  $(\exists x)\neg A(x)$ , ima dokaz s protislovjem naslednjo obliko:

```
Dokaz izjave (\forall x)A(x) s protislovjem

Dokaz:
Predpostavimo, da \neg(\forall x)A(x).
Tedaj (\exists x)\neg A(x).
Naj bo t objekt, za katerega velja \neg A(t).

\vdots
Torej, B \land \neg B.
Sledi, da je izjava (\exists x)\neg A(x) nepravilna, torej je izjava (\forall x)A(x) pravilna.
```

# 3) Dokazovanje izjav oblike $(\exists x)A(x)$

Kako dokazujemo eksistenčne izreke, tj. trditve oblike  $(\exists x)A(x)$ ? Včasih lahko kar direktno.

## Zgled

Dokaži, da obstaja sodo praštevilo.

Dokaz. Število 2 je sodo praštevilo.

Nekateri dokazi so težji. Znameniti matematik Euler je sredi 18. stoletja vprašal, ali obstaja tako naravno število, katerega n-to potenco lahko zapišemo kot vsoto manj kot n n-tih potenc drugih števil. (Euler je postavil domnevo, da takih števil ni. Protiprimeri so znani za n = 4, 5.)

## Zgled

Dokaži, da obstaja naravno število, katerega četrta potenca je vsota četrtih potenc treh drugih naravnih števil.

**Dokaz.** Tako število je npr. 20.615.673, saj velja

$$20615673^4 = 2682440^4 + 1536539^4 + 18796760^4.$$

(Zgornjo rešitev je našel Noam Elkies leta 1988. Kmalu zatem je Roger Frye našel najmanjšo rešitev:  $95.800^4 + 217.519^4 + 414.560^4 = 422.481^4$ .)

Včasih pa je ugodneje uporabiti dokaz s protislovjem.

## Zgled

Hribolazec krene na pot iz doline v ponedeljek ob 9:00 in prispe na vrh gore ob 15:00. Tam prenoči in v torek zjutraj krene nazaj ob 9:00 po isti poti in se vrne v dolino ob 15:00. Na poti navzdol se je vmes večkrat ustavil, ponekod pa hodil hitreje kot prejšnji dan navzgor. Dokaži, da obstaja točka na poti, na kateri je bil oba dneva ob istem času.

#### Dokaz.

Če merimo čas v urah od 0 do 6 (t = 0 ustreza času 9:00, t = 6 pa času 15:00, je treba dokazati:

 $(\exists t \in (0,6))$  (točka na poti ob času t v ponedeljek je enaka točki na poti ob času t v torek).

Recimo, da taka točka ne obstaja. Torej za vsak  $t \in (0,6)$  točka na poti ob času t v ponedeljek različna od točke na poti ob času t v torek. Vzemimo dva hribolazca, ki gresta istočasno po poti od 9:00 dalje, prvi gre navzgor, in sicer z enakim tempom kot je šel naš hribolazec navzgor v ponedeljek, drugi pa navzdol, in sicer z enakim tempom kot je šel naš hribolazec navzdol v torek. Ker sta ta dva hribolazca ves čas na različnih točkah, se ne bosta nikoli srečala. To pa ni možno, enkrat se namreč morata srečati, saj gresta po isti poti. To je protislovje.

Sledi, da obstaja točka na poti, na kateri je bil hribolazec oba dneva ob istem času.

Dokaz izjave  $(\exists x)A(x)$  s protislovjemDokaz:Predpostavimo, da  $\neg(\exists x)A(x)$ .Tedaj  $(\forall x)\neg A(x)$ . $\vdots$ Torej,  $B \land \neg B$ , protislovje.Sledi, da je izjava  $(\forall x)\neg A(x)$  nepravilna, torej je izjava  $(\exists x)A(x)$  pravilna.

## 4) Dokazovanje izjav oblike $(\exists!x)A(x)$

## Zgled

Vsako neničelno realno število ima enoličen multiplikativni inverz.

#### Dokaz.

Izjava ima obliko  $(\forall x)(x \neq 0 \Rightarrow (\exists !y)(xy = 1))$ , domena pogovora je množica realnih števil.

Naj bo  $x \neq 0$ . Obstoj inverza bomo pokazali v dveh korakih: najprej bomo pokazali, da tako število y obstaja, potem pa še, da x ne more imeti dveh različnih inverzov.

- (*i*) Naj bo y=1/x. Ker je  $x \neq 0$ , je y realno število. Tedaj je  $xy=x\cdot (1/x)=1$ . Število x torej ima multiplikativni inverz.
- (ii) Naj bosta y in z multiplikativna inverza števila x. (Tu ne predpostavimo, da je ta y enak y iz točke (i).)

Sledi xy = 1 in xz = 1 in od tod

$$xy = xz$$

$$xy - xz = 0$$

$$x(y-z)=0.$$

Ker je  $x \neq 0$ , sledi y - z = 0, torej y = z.

## **Dokaz izjave** $(\exists!x)A(x)$

#### Dokaz:

- (*i*) Dokaži pravilnost izjave  $(\exists x)A(x)$  (s katerokoli metodo).
- (ii) Dokaži pravilnost izjave  $(\forall y)(\forall z)(A(y) \land A(z) \Rightarrow y = z)$ . Predpostavi, da sta y in z obravnavana objekta, za katera sta izjavi A(y) in A(z) pravilni.

:

Torej, y = z.

Iz (i) in (ii) izpeljemo, da je izjava  $(\exists!x)A(x)$  pravilna.

## 1.8 NALOGE

- 1. (Naloga o vitezih in oprodah) A, B, C, D, E
  - A: "D je oproda in C je oproda."
  - B: "Če sta A in D oprodi, potem je C oproda."
  - C: "Če je B oproda, potem je A vitez."
  - D: "Če je E oproda, potem sta C in B oprodi."

#### **Rešitev:**

Naj bo A izjava: "A je vitez", itd. Iščemo tisto edino določilo d, za katerega je izjava

$$A_1 \wedge B_1 \wedge C_1 \wedge D_1$$

pravilna, kjer je:

 $A_1: A \Leftrightarrow (\neg D \land \neg C)$ 

 $B_1: B \Leftrightarrow (\neg A \land \neg D \Rightarrow \neg C)$ 

 $C_1: C \Leftrightarrow (\neg B \Rightarrow A)$ 

 $D_1: D \Leftrightarrow (\neg E \Rightarrow \neg C \land \neg B)$ 

Ker bi pravilnostna tabela vsebovala 32 vrstic, rešimo nalogo raje z analizo primerov.

**1. primer:** A(d) = 1. Zaradi  $A_1$  je potem D(d) = 0 in C(d) = 0.

V izjavo  $C_1$  vstavimo A(d) = 1 in C(d) = 0, dobimo:  $\neg(\neg B \Rightarrow 1)$ ,

 $\neg (B \lor 1)$ ,

 $\neg 1$ , to pa je nepravilna izjava.

Torej 1. primer ni mogoč.

**2. primer:** A(d) = 0**.** 

Zaradi  $A_1$  je bodisi C(d) = 1 ali pa D(d) = 1.

**2.1.:** C(d) = 1.

Zaradi  $C_1$  je  $\neg B \Rightarrow 0$ , torej je  $\neg B = 0$  in posledično B(d) = 1.

V izjavo  $B_1$  vstavimo A(d) = 0, B(d) = 1, C(d) = 1, dobimo:

 $1 \land \neg D \Rightarrow 0$ 

 $\neg D \Rightarrow 0$ 

Sledi  $\neg D = 0$  oz. D(d) = 1.

Vstavimo v izjavo  $D_1$  znane vrednosti:

 $(\neg E \Rightarrow 0 \land 0)$ 

Sledi E(d) = 1.

**2.2.:** C(d) = 0 in D(d) = 1.

Iz izjave  $B_1$  dobimo B(d) = 1.

Izjava  $C_1$  pa je sedaj nepravilna:  $0 \Leftrightarrow (0 \Rightarrow 1)$ .

Torej so *B*, *C*, *D* in *E* vitezi, *A* pa je oproda.

2. (Sklepanje) Ali je naslednje sklepanje pravilno?

Mislim, torej sem. Mislim, torej sklepam. Sklep: Sem, torej sklepam.

## **Rešitev:**

 $A_1$ : Mislim.

 $A_2$ : Sem.

 $A_3$ : Sklepam.

Zanima nas pravilnost implikacije

$$(A_1 \Rightarrow A_2) \land (A_1 \Rightarrow A_3) \Rightarrow (A_2 \Rightarrow A_3)$$

Pri določilu  $A_1(d) = 0$ ,  $A_2(d) = 1$ ,  $A_3(d) = 0$  je ta implikacija nepravilna! (Ne mislim, sem, ne sklepam.) Torej je sklepanje napačno.

3. (Sklepanje) Ali je naslednje sklepanje pravilno?

Dojenčki se obnašajo nelogično. Kdor je sposoben ukrotiti krokodila, je spoštovanja vreden. Kdor se obnaša nelogično, ni spoštovanja vreden. Sklep: Dojenčki niso sposobni ukrotiti krokodila.

#### Rešitev:

 $A_1$ : Sem dojenček.

 $A_2$ : Obnašam se nelogično.

 $A_3$ : Sposoben sem ukrotiti krokodila.

 $A_4$ : Vreden sem spoštovanja.

$$(A_1 \Rightarrow A_2) \land (A_3 \Rightarrow A_4) \land (A_2 \Rightarrow \neg A_4) \Rightarrow (A_1 \Rightarrow \neg A_3)$$

Pa recimo, da je sklep napačen. Tedaj obstaja določilo d, da velja

- (1)  $(A_1(d) \Rightarrow \neg A_3(d)) = 0$
- (2)  $(A_1(d) \Rightarrow A_2(d)) = 1$
- (3)  $(A_3(d) \Rightarrow A_4(d)) = 1$
- (4)  $(A_2(d) \Rightarrow \neg A_4(d)) = 1$

Torej je, zaradi (1),  $A_1(d) = 1$  in  $A_3(d) = 1$ . Zaradi (2) je  $A_2(d) = 1$ . Zaradi (4) je  $A_4(d) = 0$ . To pa je protislovje s (3).

Torej je sklepanje pravilno.

- 4. The following two propositions are given: *A*: "Andrej speaks French." and *B*: "Andrej speaks Danish." Write the following compound propositions in natural language:
  - (a)  $A \vee B$
  - (b)  $A \wedge B$
  - (c)  $A \wedge \neg B$

- (d)  $\neg A \lor \neg B$
- (e)  $\neg \neg A$
- (f)  $\neg (\neg A \land \neg B)$
- 5. The following two propositions are given: *A*: "Janez is rich." and *B*: "Janez is happy."

Write the following propositions symbolically:

- (a) If Janez is rich, then he is unhappy.
- (b) Janez is neither happy nor rich.
- (c) Janez is happy only if he is poor.
- (d) Janez is poor if and only if he is unhappy.
- 6. Solve the following exercises about knights and servants:
  - Arthur: "It is not true that Bine is a servant." Bine: "We are not both of the same kind."
  - Arthur: "It is not true that Cene is servant." Bine: "Cene is a knight or I am a knight." Cene: "Bine is a servant."
- 7. A similar exercise: Now Arthur and Bine say the following:
  - Arthur: "Me and Bine are not of the same kind."
  - Bine: "Exactly one of us is a knight."
- 8. Given the propositions:

*A* : "It's cold outside"

B: "It's raining"

express the following propositions in natural language:

- a) ¬*A*
- b)  $A \wedge B$
- c)  $A \vee B$
- d)  $B \vee \neg A$
- 9. Given the propositions:

A: "John reads The New York Times."

B: "John reads The Wall Street Journal."

C: "John reads The Daily Mail."

Transcribe the following statements into symbolic propositions:

- a) John reads The New York Times, but not The Wall Street Journal.
- b) Either John reads both The New York Times and The Wall Street Journal, or he does not read The New York Times and The Wall Street Journal.
- c) It is not true that John reads The New York Times, and does not read The Daily Mail.
- d) It is not true that John reads The Daily Mail or The Wall Street Journal, and not The New York Times.
- 10. Find the truth tables for the symbolic propositions from (2).
  - a) For three lines p, q, r we may construct also geometric propositions. Suppose that the following is true:

$$(p||q) \land (p \cap q \neq \emptyset) \land (q \cap r \neq \emptyset).$$

What can you ay about the lines p, q, r?

- 11. Knights and servants! For both cases below (separately) determine the roles.
  - a) Arthur: It's not true that Chloe is a servant.

Bob: Chloe is a knight, or I am a knight.

Chloe: Bob is a servant.

- b) Arthur: Chloe or Bob are servants. Bob: Cene and Arthur are knights.
- 12. Express the propositions below with connectives  $\land$  and  $\neg$  only!
  - a)  $A \vee B$
  - b)  $A \Rightarrow B$
  - c)  $A \Leftrightarrow B$
- 13. Find the canonical disjunctive normal form (DNF) and the canonical conjuctive normal form (CNF) for the following propositions:

(i) 
$$\neg (A \land B) \Rightarrow (\neg B \Rightarrow A)$$

(ii) 
$$\neg (A \lor B) \land (A \Rightarrow B)$$

*Rešitev.* (i) Napiši pravilnostno tabelo. DNO: vzemi vrstice z enicami (poveži jih med sabo s konjunkcijo) in jih poveži med sabo z disjunkcijo  $(A \land B) \lor (A \land \neg B) \lor (\neg A \land B)$ . KNO: vzemi vrstice z ničlami (vzemi nasprotne vrednosti in jih poveži med sabo z disjunkcijo) in jih poveži med sabo s konjunkcijo  $(A \lor B)$ . (ii) Podobno.

14. For the following compound proposition find a truth table, determine DNF, CNF and draw the corresponding circuit.

$$(A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C)).$$

15. Find a compound proposition  $\mathcal{I}$  such that

$$(A \Rightarrow (\mathcal{I} \Rightarrow \neg B)) \Rightarrow (A \land B) \lor \mathcal{I}$$

is tautology.

 $\it Re \~sitev.$  Napiši pravilnostno tabelo za osnovni izjave  $\it A,B$  skupaj s (sestavljeno) izjavo  $\it I.$  Iz nje razberi, da je pravilnostna tabela za  $\it I.$  enaka

Torej je  $\mathcal{I} \Leftrightarrow \neg A \lor \neg B \lor KNO$ .

16. For the following circuits find the corresponding compound propositions

(i)



(ii)



(iii)



17. Simplify the following logical equivalence

$$(A \Rightarrow B) \lor (B \Rightarrow C).$$

Rešitev.

$$(A \Rightarrow B) \lor (B \Rightarrow C) \Leftrightarrow (\neg A \lor B) \lor (\neg B \lor C)$$

$$\Leftrightarrow \neg A \lor B \lor \neg B \lor C$$

$$\Leftrightarrow \neg A \lor (B \lor \neg B) \lor C$$

$$\Leftrightarrow \neg A \lor 1 \lor C$$

$$\Leftrightarrow 1.$$

- 18. Show that the following propositions are logical implications (a tautology where the main connective is implication).
  - (i)  $A \wedge (A \Rightarrow B) \Rightarrow B$
  - (ii)  $\neg B \land (A \Rightarrow B) \Rightarrow \neg A$
  - (iii)  $\neg A \land (A \lor B) \Rightarrow B$
  - (iv)  $(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$
  - (v)  $A \wedge (A \Leftrightarrow B) \Rightarrow B$

*Rešitev.* (i) Recimo  $A \wedge (A \Rightarrow B)$  pravilna, B pa nepravilna. Potem je A pravilna in  $A \Rightarrow B$  pravilna. Sledi B pravilna. Protislovje.

- 19. Are the following propositions logical implications?
  - (i)  $(A \Rightarrow B) \land (A \Rightarrow C) \land A \Rightarrow B \land C$
  - (ii)  $\neg (A \lor B) \land (A \lor C) \land (D \Rightarrow C) \Rightarrow D$

(iii) 
$$(A \Rightarrow B) \land (A \Rightarrow C) \land (D \land E \Rightarrow F) \land (C \Rightarrow E) \Rightarrow F$$

- 20. Z direktnim dokazom implikacije pokaži: Če je n sodo število, potem je  $n^2 + 3n$  sodo. Ali je obrat pravilen?
- 21. Z direktnim dokazom implikacije pokaži: Če je realno število x nenegtivno, potem je vsota števila x in njegove obratne vrednosti večja ali enaka 2.

*Rešitev.* Pokažimo  $x+\frac{1}{x}\geq 2$ . Ker  $x\geq 0$ , pomnožimo neenakost z x in dobimo  $x^2+1\geq 2x$  oziroma  $(x-1)^2\geq 0$ . Slednje je očitno vedno res.

22. S protislovjem pokaži, da je praštevil neskončno.

*Rešitev.* Recimo, da jih je končno mnogo  $p_1, p_2, \ldots, p_n$ . Potem  $p = p_1 p_2 \cdots p_n + 1$  ni deljivo z nobenim praštevilom  $p_i$  in  $p_i \neq p$  za vsak i. Po definiciji je torej p praštevilo, ki ni enako nobenemu prejšnjemu. Protislovje.

23. Poišči napako v naslednjem dokazu.

**Trditev:** 1 je največje naravno število.

**Dokaz** (s protislovjem): Predpostavimo nasprotno. Naj bo n > 1 največje naravno število. Ker je n pozitivno, lahko neenakost n > 1 pomnožimo z n. Torej  $n > 1 \Leftrightarrow n^2 > n$ . Dobili smo, da je  $n^2$  večje od n, kar je v protislovju s predpostavko, da je n največje naravno število. Torej je bila predpostavka napačna in je 1 največje naravno število.

Rešitev. Nasporotna trdtev je: obstaja naravno število, ki je večje od 1.

24. Naj bosta x in y realni števili, da velja x < 2y. Z indirektnim dokazom pokaži: Če je  $7xy \le 3x^2 + 2y^2$ , potem je  $3x \le y$ .

*Rešitev.* Naj bo x < 2y, to je, 2y - x > 0. Pokazali bomo: če je 3x > y, potem je  $7xy > 3x^2 + 2y^2$ . Predpostavimo torej, da je 3x - y > 0. Potem je  $(2y - x)(3x - y) = 7xy - 3x^2 - 2y^2 > 0$ , to je,  $7xy > 3x^2 + 2y^2$ .

25. Dokaži naslednjo ekvivalenco v dveh delih: Naj bosta m in n celi števili. Tedaj sta števili m in n različnih parnosti natanko tedaj, ko je število  $m^2 - n^2$  liho.

*Rešitev.* ( $\Rightarrow$ ) Predpostavimo, da sta različnih parnosti. Pišimo m=2k in n=2l+1, vstavimo v izraz  $m^2-n^2$  in rezultat sledi.

- ( $\Leftarrow$ ) Pokažemo indirektno in sicer: Če sta m in n iste parnosti, potem je  $m^2-n^2$  sodo. Obravnavaj oba primera.
- 26. Z uporabo če in samo če dokaza pokaži:  $ac \mid bc \Leftrightarrow a \mid b$ .
- 27. Ali je naslednji sklep pravilen?

(i) Če je danes sreda bom imel vaje. Danes je sreda. Sklep: Imel bom vaje.

*Rešitev.* 
$$(A \Rightarrow B) \land A \Rightarrow B$$
. Res je.

(ii) Če se učim, bom opravil izpit. Nisem se učil. Sklep: Ne bom opravil izpita.

*Rešitev.* 
$$(A \Rightarrow B) \land \neg A \Rightarrow \neg B$$
. Ni nujno res.

- 28. Ali je naslednji premislek pravilen?
  - (i) Študent se je z mestni avtobusom odpravil na izpit. Rekel si je: Če bo na naslednjem semaforju zelena luč, bom naredil izpit. No, ko je avtobus pripeljal na naslednji semafor, na semaforju ni svetila zelena luč, študent pa si je dejal: Presneto, spet bom padel.

*Rešitev.* 
$$((A \Rightarrow B) \land \neg A) \Rightarrow \neg B$$
. Ni nujno res.

(ii) Inženir, ki obvlada teorijo, vedno načrta dobro vezje. Dobro vezje je ekonomično. Torej, inženir, ki načrta neekonomično vezje, ne obvlada teorije.

*Rešitev.* 
$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (\neg C \Rightarrow \neg A)$$
. Res je.

- 29. Which of the following propositions are correct where the language of the conversation are real numbers?
  - (i)  $(\forall x)(\exists y)(x+y=0)$ .
  - (ii)  $(\exists x)(\forall y)(x+y=0)$ .
  - (iii)  $(\exists x)(\exists y)(x^2 + y^2 = -1)$ .
  - (iv)  $(\forall x)[x > 0 \Rightarrow (\exists y)(y < 0 \land xy > 0)].$
- 30. Let  $A = \{x \in \mathbb{N}; x < 7\}, B = \{x \in \mathbb{Z}; |x 2| < 4\} \text{ and } C = \{x \in \mathbb{R}; x^3 4x = 0\}.$ 
  - (i) Write down the elements for all three sets.
  - (ii) Find  $A \cup C$ ,  $B \cap C$ ,  $B \setminus C$ ,  $(A \setminus B) \setminus C$  and  $A \setminus (B \setminus C)$ .
- 31. Let  $\mathbb{Z}$  be a universal set and let P denote the set of all prime numbers, and S the set of all even integers. Write the following propositions in terms of set theory:

- (i) There exists an even prime number.  $[P \cap S \neq \emptyset]$
- (ii) 0 is an integer, but it is not natural number.  $[0 \in \mathbb{Z} \setminus \mathbb{N}]$
- (iii) Every natural number is an integer.  $[\mathbb{N} \subseteq \mathbb{Z}]$
- (iv) Not every integer is a natural number.  $[\mathbb{Z} \nsubseteq \mathbb{N}]$
- (v) Every prime number except 2 is odd.  $[P \setminus \{2\} \subseteq \overline{S}]$
- (vi) 2 is an even prime number.  $[2 \in S \cap P]$
- 32. Let *A*, *B*, *C* and *D* be subsets of some universal set *U*. Simplify the following expression

$$\overline{(\overline{(A \cup B)} \cap \overline{(\overline{A} \cup C)})} \setminus \overline{D}.$$

33. Show that  $(A \cup C) \cap (B \setminus C) = (A \cap B) \setminus C$ . *Rešitev.* 

$$x \in (A \cup C) \cap (B \setminus C) \quad \Leftrightarrow \quad (x \in A \lor x \in C) \land (x \in B \land x \notin C)$$

$$\Leftrightarrow \quad ((x \in A \lor x \in C) \land (x \notin C)) \land x \notin B$$

$$\Leftrightarrow \quad ((x \in A \land x \notin C) \lor (x \in C \land x \notin C)) \land x \in B$$

$$\Leftrightarrow \quad x \in A \land x \notin C \land x \in B$$

$$\Leftrightarrow \quad x \in A \land x \in B \land x \notin C$$

$$\Leftrightarrow \quad x \in (A \cap B) \setminus C.$$

- 34. (Zadnja lastnost pri uniji) Prove that  $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$ . *Rešitev.* Direktno.
- 35. (Predzadnja lastnost pri preseku) Prove that  $A \subseteq B \Leftrightarrow A \cap B = A$ . *Rešitev.* V dveh delih.
- 36. (Predzadnja lastnost pri kartezičnemu produktu) Prove that  $A \times (B \cap C) = (A \times B) \cap (A \times C)$ .

Rešitev.

$$(x,y) \in A \times (B \cap C) \quad \Leftrightarrow \quad x \in A \land y \in B \cap C$$

$$\Leftrightarrow \quad x \in A \land y \in B \land y \in C$$

$$\Leftrightarrow \quad x \in A \land x \in A \land y \in B \land y \in C$$

$$\Leftrightarrow \quad x \in A \land y \in B \land x \in A \land y \in C$$

$$\Leftrightarrow \quad (x,y) \in A \times B \land (x,y) \in A \times C$$

$$\Leftrightarrow \quad (x,y) \in (A \times B) \cap (A \times C).$$

37. (Predzadnja lastnost pri razliki) Prove that  $(A \cap B) \setminus B = \emptyset$ . *Rešitev*.

$$x \in (A \cap B) \setminus B \quad \Leftrightarrow \quad x \in (A \cap B) \land x \notin B$$

$$\Leftrightarrow \quad (x \in A \land x \in B) \land x \notin B$$

$$\Leftrightarrow \quad x \in A \land (x \in B \land x \notin B)$$

$$\Leftrightarrow \quad x \in \emptyset.$$

- 38. Determine the following sets:
  - (i)  $\{\emptyset, \{\emptyset\}\} \setminus \emptyset \quad [\{\emptyset, \{\emptyset\}\}]$
  - (ii)  $\{\emptyset, \{\emptyset\}\} \setminus \{\emptyset\}$
  - (iii)  $\{\emptyset, \{\emptyset\}\} \setminus \{\}\emptyset\}$
  - (iv)  $\{1,2,3,\{1\},\{5\}\}\setminus\{2,\{3\},5\}$
- 39. Which of the following propositions are correct for arbitrary sets *A*, *B* and *C*:
  - a) If  $A \in B$  and  $B \in C$ , then  $A \in C$ .
  - b) If  $A \subseteq B$  and  $B \in C$ , then  $A \in C$ .
  - c) If  $A \cap B \subseteq \overline{C}$  and  $A \cup C \subseteq B$ , then  $A \cap C = \emptyset$ .
  - d) If  $A \neq B$  and  $B \neq C$ , then  $A \neq C$ .
  - e) If  $A \subseteq \overline{(B \cup C)}$  and  $B \subseteq \overline{(A \cup C)}$ , then  $B = \emptyset$ .

Rešitev.

- a) Napačna. Vzemi  $A=\emptyset$ ,  $B=\{\emptyset\}$ ,  $B=\{\{\emptyset\}\}$ .
- b) Napačna. Vzemi isti primer kot v (a).

- c) Pravilna. Dokaz s protislovjem. Recimo, da trditev ni pravilna. Naj bo  $A \cap B \subseteq \overline{C}$ ,  $A \cup C \subseteq B$  in naj obstaja  $x \in A \cap C$ . Torej je  $x \in A$  in  $x \in C$ . Ker je po drugi predpostavki  $A \cup C \subseteq B$ , je  $x \in B$ . Sledi  $x \in A \cap B$ . Ker je po prvi predpostavki  $A \cap B \subseteq \overline{C}$ , je  $x \in \overline{C}$ . Protislovje, saj  $x \in C$ .
- d) Napačna. Vzemi  $A = C \neq B$ .
- e) Napačna. Vzemi tri paroma disjunktne neprazne množice.

# 2 TEORIJA MNOŽIC

## 2.1 MNOŽICE

Množice so osnovni matematični objekti. Pojma množice ne definiramo. Množice imajo elemente (ki so lahko tudi sami množice), običajno jih bomo označevali z malimi črkami:  $a, b, \ldots, x, y, z$  (+ indeksi:  $a_6, x_1, z_\lambda$ )

Množice pa bomo običajno pisali z velikimi črkami: A, B, ..., X, Y, Z (+ indeksi)

Množice in elemente druži relacija pripadnosti:

 $a \in F$ : element a pripada množici F, a je element množice F.

∈: znak pripadnosti

 $a \notin F$ : a ni element (ne pripada) množici F.

**Zgled:** Če je G množica vseh sodih števil, je  $16 \in G$  in  $3 \notin G$ .

*Enakost množic:* Množici *A* in *B* sta enaki natanko takrat, kadar imata iste reči za elemente:

$$A = B \Leftrightarrow (\forall x)(x \in A \Leftrightarrow x \in B)$$

Ta definicija je potrebna, saj podaja pomembno lastnost, ki ji mora relacija pripadnosti ustrezati!

**Primer:** Recimo, da so objekti, ki jih preučujemo, ljudje, in zapišimo  $x \in A$  natanko tedaj, ko je x prednik A-ja. Ali lahko to definicijo uporabimo, da definiramo ljudi kot množice? Zgornja ekvivalenca pravi:

- Če sta dva človeka enaka, potem imata iste prednike. To drži.
- Če imata dva človeka iste prednike, potem sta enaka. To pa ne drži!

# Načini podajanja množic:

1. Množico lahko podamo tako, da navedemo vse njene elemente:

$$A = \left\{1, \frac{1}{2}, \frac{\pi}{3}, 2i + 8\right\}.$$

Vrstni red *ni pomemben!* Včasih pa je ta zapis nepraktičen (kadar je množica neskončna ali pa končna, a prevelika).

2. Množico lahko podamo tudi tako, da jo opišemo. Opis pa mora biti **nedvoumen:** za vsako reč mora veljati bodisi, da je element dane množice, ali pa da ni element te množice.

V splošnem lahko zapišemo:

$$A = \{x; P(x)\},\,$$

kjer je P(x) nek enomestni predikat. *Množica A je množica vseh elementov x, za katere je izjava* P(x) *pravilna*. Ali pa, če imamo več izjav  $P_1, \ldots, P_n$ :

$$A = \{x; P_1(x) \land \cdots \land P_n(x)\}\$$

$$A = \{x; P_1(x) \vee \cdots \vee P_n(x)\}$$

Kot bomo kmalu videli, lahko take množice tvorimo le z elementi množic, ki jih že poznamo (oz. za katere vemo, da obstajajo).

## Zgled

Naj bo *A* množica vseh takih kompleksnih števil *x*, ki so rešitev kakšne enačbe oblike

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$
,

kjer je  $n \in \mathbb{N}$  in  $a_i \in \mathbb{Z}$  za vse i = 0, 1, ..., n.

A - množica vseh algebraičnih števil.

Ali je  $2^{\pi} \in A$ ? Ne vemo (današnja matematika še ne more odgovoriti na to vprašanje).

Pozor: škatla, ki vsebuje klobuk, ni ista reč kot klobuk. Tako tudi množica  $\{a\}$  ni ista reč kot a. Za vsako reč a pa velja  $a \in \{a\}$ .

#### 2.1.1 Podmnožice

Dani sta množici A in B.

Pravimo, da je *A podmnožica* množice *B* natanko takrat, ko je vsak element množice *A* tudi element množice *B*.

Oznaka:  $A \subseteq B$ 

$$A \subseteq B \Leftrightarrow (\forall x)(x \in A \Rightarrow x \in B)$$

Seveda je vsaka množica podmnožica same sebe:

$$(\forall A)(A \subseteq A)$$
.

Če je  $A \subseteq B$  in  $A \neq B$ , potem je A prava podmnožica množice B:  $A \subset B$ .

$$A \subset B \Leftrightarrow (A \subseteq B \land A \neq B)$$

Očitno velja:

•  $A \subseteq B \land B \subseteq A \Leftrightarrow A = B$ .

Ta ekvivalenca je izjemno pomembna za dokazovanje enakosti dveh množic!

•  $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$  (tranzitivnost inkluzije)

Dokažimo tranzitivnost inkluzije:  $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$  *Direkten dokaz*:

Privzemimo, da je  $A \subseteq B$  in  $B \subseteq C$ . Dokazati moramo:  $(\forall x)(x \in A \Rightarrow x \in C)$ .

Vzemimo poljuben  $x \in A$ .

- Ker je  $x \in A$  in  $A \subseteq B$ , sledi  $x \in B$ .
- Ker je  $x \in B$  in  $B \subseteq C$ , sledi  $x \in C$ .

Ker je bil x poljuben, smo dokazali  $(\forall x)(x \in A \Rightarrow x \in C)$ , tj.,  $A \subseteq C$ .

**V razmislek:** Ali obstajata množici A in B, za kateri velja  $A \subset B$  in  $B \subset A$ ?

**Pozor:** Relacija inkluzije  $\subseteq$  in relacija pripadnosti  $\in$  sta povsem različna pojma!

 $1 \in \{1,2,3\}$ , toda 1 ni podmnožica množice  $\{1,2,3\}$ . Množica  $\{1\}$  pa je podmnožica množice  $\{1,2,3\}$ , toda  $\{1\}$  ni element množice  $\{1,2,3\}$ .

**V** razmislek: Naj bo  $X = \{1, 2, \{1\}, \{2\}\}$ . Ali je 1 element množice X? Ali je 1 podmnožica množice X? Ali je  $\{1\}$  element množice X? Ali je  $\{1\}$  podmnožica množice X?

#### 2.1.2 Prazna množica

Množico, ki nima nobenega elementa, označimo s simbolom ∅ — *prazna množica*.

$$X = \emptyset \Leftrightarrow (\forall x)(x \notin X)$$

Seveda velja:

$$(\forall X)(\emptyset \subseteq X)$$

Domača naloga: Dokažite, da velja:

$$X = \emptyset \Leftrightarrow (\forall Y)(X \subseteq Y)$$
.

## 2.1.3 Unija

Dani sta množici A in B. Unija teh dveh množic je množica  $A \cup B$ , ki ima za elemente natanko tiste reči, ki so elementi množice A ali množice B:

$$A \cup B = \{x; x \in A \lor x \in B\}.$$

**Zgled:** 
$$A = \{1,3,5,7\}, B = \{1,2,4,8\}.$$
  $A \cup B = \{1,3,5,7,2,4,8\}.$ 

Posplošimo sedaj pojem unije dveh množic na unijo poljubne družine množic.  $A \cup B$  je unija družine množic  $\{A,B\}$ . Tvorimo lahko množice množic (oziroma družine množic).

## Zgled

Q: množica racionalnih števil je množica množic:

$$0.5 = \left\{ \frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \cdots \right\}$$

(Ulomek razumemo kot urejen par celih števil. Urejen par (a,b) pa lahko, kot bomo videli kmalu, definiramo kot množico  $\{\{a\},\{a,b\}\}.$ )

## Unija več množic:

V splošnem lahko družino množic zapišemo na naslednji način:  $\mathcal{A} = \{A_{\lambda}; \lambda \in J\}$  - družina množic z indeksno množico J Indeksna množica je poljubna množica!

# Zgled

Za 
$$J = \{1,2\}$$
 dobimo  $A = \{A_{\lambda}; \lambda \in \{1,2\}\} = \{A_1, A_2\}.$ 

Unijo družine  ${\cal A}$  definiramo kot

$$\cup \mathcal{A} = \cup_{\lambda \in I} A_{\lambda} = \{x; (\exists \lambda)(\lambda \in I \land x \in A_{\lambda})\}\$$

# Zgled

$$J = \{1, 2\}$$

$$\cup_{\lambda \in \{1,2\}} A_{\lambda} = \{x; (\exists \lambda)(\lambda \in \{1,2\} \land x \in A_{\lambda})\} = \{x; x \in A_{1} \lor x \in A_{2}\} = A_{1} \cup A_{2}.$$

# Zgled

Vzemimo družino  $\mathcal{A} = \{A_{\lambda}; \lambda \in J\}$ , kjer je  $J = \mathbb{Z}$  množica celih števil in  $A_{\lambda} = [\lambda, \lambda + 1] = \{x; x \in \mathbb{R} \ \land \ \lambda \leq x \leq \lambda + 1\}$  za vse  $\lambda \in \mathbb{Z}$ . Tedaj je

$$\cup \mathcal{A} = \cup_{\lambda \in \mathbb{Z}} A_{\lambda} = \{x; (\exists \lambda)(\lambda \in \mathbb{Z} \land \lambda \leq x \leq \lambda + 1)\} = \mathbb{R},$$

saj vsako realno število leži med dvema zaporednima celima številoma.

Če je J končna, vzamemo po navadi  $J = \{1, 2, ..., n\}$  in pišemo

$$\cup \mathcal{A} = \cup_{i=1}^n A_i = A_1 \cup \cdots \cup A_n.$$

## Osnovne lastnosti unije:

- $A \cup B = B \cup A$ , komutativnost
- $(A \cup B) \cup C = A \cup (B \cup C)$ , asociativnost
- $A \cup A = A$ , idempotentnost
- $A \cup \emptyset = A$
- $A \subseteq A \cup B$ ,  $B \subseteq A \cup B$
- $A \subseteq B \Leftrightarrow A \cup B = B$
- $A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$

#### Dokažimo lastnost

$$A \subseteq B \Leftrightarrow A \cup B = B$$
:

Ekvivalenco bomo dokazali tako, da dokažemo obratno ekvivalenco  $\neg(A\subseteq B)\Leftrightarrow \neg(A\cup B=B)$ : Izkaže se, da je ugodneje obravnati najprej negacijo izjave na desni.

$$\neg(A \cup B = B)$$

$$\neg((A \cup B \subseteq B) \land (B \subseteq A \cup B))$$

$$\Leftrightarrow$$

$$\neg(A \cup B \subseteq B) \lor \neg(B \subseteq A \cup B)$$

$$\Leftrightarrow$$

$$\neg(A \cup B \subseteq B)$$

$$\Leftrightarrow$$

$$(\exists x)(x \in A \cup B \land x \notin B)$$

$$\Leftrightarrow$$

$$(\exists x)((x \in A \lor x \in B) \land x \notin B)$$

$$\Leftrightarrow$$

$$(\exists x)((x \in A \land x \notin B) \lor (x \in B \land x \notin B))$$

$$\Leftrightarrow$$

$$(\exists x)(x \in A \land x \notin B)$$

$$\Leftrightarrow$$

$$\neg(\forall x)(x \in A \Rightarrow x \in B)$$

$$\Leftrightarrow$$

$$\neg(A \subseteq B)$$

Domača naloga: Dokažite preostale lastnosti.

#### 2.1.4 Presek

Dani sta množici A in B. Presek teh dveh množici je množica  $A \cap B$ , ki ima za elemente natanko tiste reči, ki so elementi množice A in množice B:

$$A \cap B = \{x; x \in A \land x \in B\}.$$

**Zgled:** 
$$A = \{1,3,5,7\}, B = \{1,2,4,8\}.$$
  $A \cap B = \{1\}.$ 

#### Presek več množic:

 $\mathcal{A} = \{A_{\lambda}; \lambda \in J\}$  - družina množic z indeksno množico  $J, J \neq \emptyset$ ! Indeksna množica je poljubna **neprazna** množica! Presek neprazne družine  $\mathcal{A}$  definiramo kot

$$\cap \mathcal{A} = \cap_{\lambda \in I} A_{\lambda} = \{x; (\forall \lambda)(\lambda \in J \Rightarrow x \in A_{\lambda})\}$$

(Če bi bil  $J = \emptyset$ , bi  $\cap A$  = vse. To pa ni možno zaradi Russellove antinomije (ki ste jo že spoznali pri Analizi 1)!)

Če je J končna, vzamemo po navadi  $J = \{1, 2, ..., n\}$  in pišemo

$$\cap \mathcal{A} = \bigcap_{j=1}^n A_j = A_1 \cap \cdots \cap A_n.$$

Če velja  $A \cap B = \emptyset$ , pravimo, da sta si množici A in B tuji (ali da sta disjunktni).

## Osnovne lastnosti preseka:

- $A \cap B = B \cap A$ , komutativnost
- $(A \cap B) \cap C = A \cap (B \cap C)$ , asociativnost
- $A \cap A = A$ , idempotentnost
- $A \cap \emptyset = \emptyset$
- $A \cap B \subseteq A$ ,  $A \cap B \subseteq B$ ,
- $A \subseteq B \Leftrightarrow A \cap B = A$
- $A \subseteq B \land A \subseteq C \Rightarrow A \subseteq B \cap C$

**Domača naloga:** Dokažite te lastnosti. (Dokazi so podobni dokazom analognih lastnosti za unijo.)

Unija in presek sta povezana z distributivnostnima zakonoma:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Dokažimo prvi distributivnostni zakon:  $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ .

Kako dokažemo enakost dveh množic, X = Y? Možnih je več načinov:

1. Po definiciji. Torej direktno dokažemo pravilnost izjave  $(\forall x)(x \in X \Leftrightarrow x \in Y)$ .

ALI

- 2. S pomočjo ekvivalence  $X = Y \Longrightarrow X \subseteq Y \land Y \subseteq X$ .
  - a) Dokažemo  $X \subseteq Y$ , tj., pravilnost izjave  $(\forall x)(x \in X \Rightarrow x \in Y)$ .
  - b) Dokažemo še  $Y \subseteq X$ , tj., pravilnost izjave  $(\forall x)(x \in Y \Rightarrow x \in X)$ .

Poglejmo si 1. način:

$$x \in (A \cup B) \cap C$$

$$\Leftrightarrow$$

$$(x \in A \cup B) \land (x \in C)$$

$$\Leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \in C)$$

$$\Leftrightarrow$$

$$(x \in A \land x \in C) \lor (x \in B \land x \in C)$$

$$\Leftrightarrow$$

$$(x \in A \cap C) \lor (x \in B \cap C)$$

$$\Leftrightarrow$$

$$x \in (A \cap C) \cup (B \cap C).$$

Ker gornja veriga ekvivalenc velja za poljuben x, je izjava

$$(\forall x)(x \in (A \cup B) \cap C \Leftrightarrow x \in (A \cap C) \cup (B \cap C))$$

pravilna. Torej sta množici enaki.

Distributivnostna zakona veljata tudi bolj splošno, za neprazne družine množic:

$$\left(\bigcup_{\lambda \in J} A_{\lambda}\right) \cap \left(\bigcup_{\mu \in K} B_{\mu}\right) = \bigcup_{\lambda \in J, \mu \in K} \left(A_{\lambda} \cap B_{\mu}\right).$$
  
$$\left(\bigcap_{\lambda \in J} A_{\lambda}\right) \cup \left(\bigcap_{\mu \in K} B_{\mu}\right) = \bigcap_{\lambda \in J, \mu \in K} \left(A_{\lambda} \cup B_{\mu}\right).$$

**Domača naloga:** Dokažite, da za poljubne tri množice *A*, *B*, *C* velja:

$$(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A.$$

(Pogoj na desni je neodvisen od množice *B*!)

Ponovimo: Unijo družine množic  $\mathcal{A} = \{A_{\lambda}; \lambda \in J\}$  smo definirali kot  $\cup \mathcal{A} = \{x; (\exists \lambda)(\lambda \in J \land x \in A_{\lambda})\}$ , presek neprazne družine množic pa kot

$$\cap \mathcal{A} = \{x; (\forall \lambda)(\lambda \in J \Rightarrow x \in A_{\lambda})\}.$$

Kaj dobimo v primeru  $A = \{A_1\}$ ?  $J = \{1\}$ .

$$\cup \{A_1\} = \{x; (\exists \lambda)(\lambda \in \{1\} \land x \in A_{\lambda})\} = \{x; (\exists \lambda)(\lambda = 1 \land x \in A_{\lambda})\} = \{x; x \in A_1\} = A_{\lambda}$$

$$\cap \{A_1\} = \{x; (\forall \lambda)(\lambda \in \{1\} \Rightarrow x \in A_{\lambda})\} = \{x; (\forall \lambda)(\lambda = 1 \Rightarrow x \in A_{\lambda})\} = \{x; x \in A_1\} = \{x; (\forall \lambda)(\lambda \in \{1\} \Rightarrow x \in A_{\lambda})\} = \{x; x \in A_1\} = \{x; (\forall \lambda)(\lambda \in \{1\} \Rightarrow x \in A_{\lambda})\} = \{x; x \in A_1\} = \{x; (\forall \lambda)(\lambda \in \{1\} \Rightarrow x \in A_{\lambda})\} = \{x; x \in A_1\} = \{x; (\forall \lambda)(\lambda \in \{1\} \Rightarrow x \in A_{\lambda})\} = \{x; x \in A_1\} = \{x; (\forall \lambda)(\lambda \in \{1\} \Rightarrow x \in A_{\lambda})\} = \{x; x \in A_1\} = \{x; (\forall \lambda)(\lambda \in \{1\} \Rightarrow x \in A_{\lambda})\} = \{x; x \in A_{\lambda}\} = \{x \in A_{\lambda}\} = \{x; x \in A_{\lambda}\} = \{x \in A_{\lambda}\} = \{x \in A_{\lambda}\} = \{x \in A_{\lambda}\} = \{x$$

Pisano brez indeksov:  $\cup \{A\} = \cap \{A\} = A$ .

Podobno velja tudi  $\cup \{\emptyset\} = \cap \{\emptyset\} = \emptyset$  in  $\cup \emptyset = \emptyset$ .

## 2.1.5 Razlika množic

Dani sta množici A in B.

Razlika množic A in B je množica, ki ima za elemente natanko tiste reči, ki so elementi množice A, niso pa elementi množice B.

$$A \setminus B = \{x; x \in A \land x \notin B\}.$$

**Zgled:** Naj bo A množica praštevil, B pa množica vseh pozitivnih lihih števil. Tedaj je

$$A \setminus B = \{2\}$$
 (2 je edino sodo praštevilo)  $B \setminus A = \{1, 9, 15, 21, 25, \ldots\}$  (množica vseh lihih števil, ki niso praštevila)

#### Osnovne lastnosti:

• 
$$A \setminus A = \emptyset$$

• 
$$A \setminus (A \cap B) = A \setminus B$$

• 
$$A \cap (A \setminus B) = A \setminus B$$

• 
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

• 
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$

• 
$$(A \setminus B) \cup B = A \cup B$$

• 
$$(A \cup B) \setminus B = A \setminus B$$

• 
$$(A \cap B) \setminus B = \emptyset$$

• 
$$(A \setminus B) \cap B = \emptyset$$

Dokažimo enakost  $(A \setminus B) \cup B = A \cup B$ :

$$x \in (A \setminus B) \cup B$$

$$\Leftrightarrow$$

$$x \in A \setminus B \lor x \in B$$

$$\Leftrightarrow$$

$$(x \in A \land x \notin B) \lor x \in B$$

$$\Leftrightarrow$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \in B)$$

$$\Leftrightarrow$$

$$(x \in A \lor x \in B)$$

## $x \in A \cup B$

Domača naloga: Dokažite preostale lastnosti.

Zelo pogosto smo v matematiki v temle položaju: podana je neka  $univerzalna\ množica\ S$ , zanimamo se izključno za elemente in podmnožice množice S.

Naj bo  $A \subseteq S$ . Tedaj lahko definiramo *komplement množice A (glede na množico S)* kot:

$$C_S A = \overline{A} = S \setminus A$$
.

Če množice S ne definiramo, ne moremo govoriti o komplementu:  $\overline{\emptyset}$  = množica vseh množic — ta pa ne obstaja (Russellova antinomija)!

# Zgled

Naj bo  $S = \{0,1,2,3,\ldots\}$  množica naravnih števil, množica A pa množica praštevil. Potem je  $\overline{A} = \{0,1,4,6,8,9,10,12,\ldots\}$ .

Lastnosti komplementa:

• 
$$\overline{S} = \emptyset$$
,  $\overline{\emptyset} = S$ 

• 
$$\overline{\overline{A}} = A$$
,  $A \cup \overline{A} = S$ ,  $A \cap \overline{A} = \emptyset$ 

• 
$$A \setminus B = A \cap \overline{B}$$

• 
$$A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A}$$

• 
$$A = B \Leftrightarrow \overline{A} = \overline{B}$$

• 
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
,  $\overline{A \cap B} = \overline{A} \cup \overline{B}$  (De Morganova zakona)

De Morganova zakona veljata tudi za poljubno družino množic  $\mathcal{A}=\{A_{\lambda}:\lambda\in J\}$ :

$$\overline{\cup_{\lambda\in I}A_{\lambda}}=\cap_{\lambda\in I}\overline{A}_{\lambda}$$

$$\overline{\cap_{\lambda\in I}A_{\lambda}}=\cup_{\lambda\in I}\overline{A}_{\lambda}$$

Zaradi De Morganovih zakonov se izreki v teoriji množic pogosto pojavljajo v parih. Če v neki inkluziji, enakosti ali ekvivalenci o unijah, presekih in komplementih podmnožic neke množice zamenjamo vsako množico z njenim komplementom, zamenjamo vse unije in preseke in obrnemo vse inkluzije, je rezultat spet neka veljavna inkluzija, enakost ali ekvivalenca. Temu principu pravimo **princip dualnosti**.

## **Zgled**

**Trditev** 

$$(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$$
.

postane

$$(\overline{A} \cup \overline{B}) \cap \overline{C} = \overline{A} \cup (\overline{B} \cap \overline{C}) \Leftrightarrow \overline{A} \subseteq \overline{C}$$
,

kar je ekvivalentno trditvi

$$(A \cup B) \cap C = A \cup (B \cap C) \Leftrightarrow A \subseteq C$$

(zamenjali smo vloge množic in njihovih komplementov).

## 2.1.6 Vennovi diagrami

Vse odnose in operacije med podmnožicami dane univerzalne množice lahko nazorno prikažemo s t.i. *Vennovimi diagrami*.



Seveda pa tako "slikanje" nima nobene zveze z dokazovanjem.

## 2.1.7 Potenčna množica

*Potenčna množica* dane množice *A* je družina množic, ki ima za svoje elemente natanko podmnožice množice *A*:

$$\mathcal{P}(A) = \{X; X \subseteq A\}$$

# Zgled:

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\emptyset) = \{\emptyset\}.$
- $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$

Če ima množica A n elementov, potem ima njena potenčna množica  $\mathcal{P}(A)$   $2^n$  elementov.<sup>1</sup>

#### Lastnosti:

- $A \subseteq B \Rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$ .
- $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$ .
- $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$ .

Prva lastnost sledi iz tranzitivnosti inkluzije:

$$X \in \mathcal{P}(A) \land A \subseteq B \Leftrightarrow X \subseteq A \subseteq B \Rightarrow X \subseteq B \Leftrightarrow X \in \mathcal{P}(B).$$

Dokaz druge lastnosti:

$$X \in \mathcal{P}(A) \cup \mathcal{P}(B) \Leftrightarrow X \subseteq A \vee X \subseteq B \Rightarrow X \subseteq A \cup B \Leftrightarrow X \in \mathcal{P}(A \cup B).$$

Dokaz tretje lastnosti:

$$X \in \mathcal{P}(A) \cap \mathcal{P}(B) \Leftrightarrow X \in \mathcal{P}(A) \land A \in \mathcal{P}(B) \Leftrightarrow X \subseteq A \land X \subseteq B$$
  
 
$$\Leftrightarrow X \subseteq A \cap B \Leftrightarrow X \in \mathcal{P}(A \cap B)$$

V razmislek: Ali v prvi lastnosti velja ekvivalenca?

V razmislek: Zakaj v drugi lastnosti ne velja enakost?

#### 2.1.8 Urejeni par

Vzemimo dve reči *a* in *b*.

Za množico  $\{a,b\}$  vrstni red ni pomemben,  $\{a,b\} = \{b,a\}$ .

Kadar je vrstni red pomemben, govorimo o urejenem paru:

$$(a,b)$$
 - urejen par,  $(a,b) \neq (b,a)$ 

a - prva koordinata

b - druga koordinata

Kdaj sta dva urejena para enaka?

$$(a,b) = (u,v) \Leftrightarrow a = u \wedge b = v.$$

Urejeni par (a,b) definiramo kot množico  $\{\{a\},\{a,b\}\}.$ 

**Domača naloga:** Dokažite, da velja  $\{\{a\},\{a,b\}\}=\{\{u\},\{u,v\}\}\Leftrightarrow a=u \land b=v$  .

<sup>1</sup> Za vsakega od n elementov množice A je potrebno določiti, neodvisno od ostalih, ali ga množica  $X \subseteq A$  vsebuje ali ne. Skupaj imamo torej n neodvisnih izbir ene izmed dveh možnosti, kar nam da, za vse podmnožice  $X \subseteq A$ , ravno  $2^n$  možnosti.

#### 2.1.9 Kartezični produkt

Pojem kartezičnega produkta ste spoznali že pri Analizi I.

*Kartezični produkt* množic A in B je množica, ki ima za elemente natanko vse urejene pare (x,y), kjer je prva koordinata iz množice A, druga koordinata pa iz množice B:

$$A \times B = \{(x, y) ; x \in A \land y \in B\}$$

**Zgled:** 
$$\{1\} \times \{2,3\} = \{(1,2),(1,3)\},$$
  $\{2,3\} \times \{1\} = \{(2,1),(3,1)\}.$ 

Lastnosti kartezičnega produkta:

- $A \times B \neq B \times A$  (razen če je A = B)
- $A \times B = \emptyset \Leftrightarrow A = \emptyset \vee B = \emptyset$ .
- $A \times (B \cup C) = (A \times B) \cup (A \times C)$ .
- $A \times (B \cap C) = (A \times B) \cap (A \times C)$ .
- $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$ .

Kartezični produkt treh množic definiramo kot:

$$A \times B \times C = (A \times B) \times C = \{((x,y),z) ; x \in A \land y \in B \land z \in C\}.$$

Po navadi pišemo kar: ((x,y),z)=(x,y,z) (urejena trojica).

Kartezični produkt množic  $A_1, \ldots, A_n$  definiramo kot množico vseh urejenih n-teric:

$$A_1 \times A_2 \times \cdots \times A_n = \prod_{i=1}^n A_i = \{(x_1, \dots, x_n) ; x_1 \in A_1 \land x_2 \in A_2 \land \cdots \land x_n \in A_n\}.$$

Če so vsi faktorji enaki,  $A_1 = A_2 = ..., = A_n = S$ , dobimo *n-kratni* kartezični produkt množice S s samo seboj,

$$S^n = \prod_{i=1}^n S = S \times \cdots \times S$$
 *n* faktorjev.

# Zgled

Če je  $S = \mathbb{R}$  množica realnih števil, dobimo za n = 2 množico točk v ravnini ( $\mathbb{R}^2$ ), za n = 3 pa množico točk v prostoru ( $\mathbb{R}^3$ ).

# Rešitev dveh domačih nalog:

Dokažimo, da za poljubne tri množice A, B, C velja:

$$(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A.$$

(⇒): Naj bo 
$$(A \cap B) \cup C = A \cap (B \cup C)$$
.  
  $C \subseteq (A \cap B) \cup C = A \cap (B \cup C) \subseteq A$ . Uporabimo tranzitivnost inkluzije.

(⇐): Naj bo 
$$C \subseteq A$$
. Tedaj je  $A \cup C = A$ . Torej je  $(A \cap B) \cup C = (A \cup C) \cap (B \cup C) = A \cap (B \cup C)$ .

Dokažimo implikacijo

$$A \subseteq C \land B \subseteq C \Rightarrow A \cup B \subseteq C$$
:

Dokaz s protislovjem:

$$\neg(A \cup B \subseteq C)$$

$$\Leftrightarrow$$

$$(\exists x)(x \in A \cup B \land x \notin C)$$

$$\Leftrightarrow$$

$$(\exists x)((x \in A \lor x \in B) \land x \notin C)$$

$$\Leftrightarrow$$

$$(\exists x)((x \in A \land x \notin C) \lor (x \in B \land x \notin C))$$

$$\Leftrightarrow$$

$$(\exists x)((x \in A \land x \notin C) \lor (x \in B \land x \notin C))$$

$$\Leftrightarrow$$

$$(\exists x)(x \in A \land x \notin C) \lor (\exists x)(x \in B \land x \notin C)$$

$$\Leftrightarrow$$

$$\neg(\forall x)(x \in A \Rightarrow x \in C) \lor \neg(\forall x)(x \in B \Rightarrow x \in C)$$

$$\Leftrightarrow$$

$$\neg(A \subseteq C) \lor \neg(B \subseteq C)$$

$$\Leftrightarrow$$

$$\neg(A \subseteq C \land B \subseteq C).$$

Dokazali smo ne samo implikacijo, ampak ekvivalenco

$$A \subseteq C \land B \subseteq C \Leftrightarrow A \cup B \subseteq C$$
.

#### 2.2 NA KRATKO O AKSIOMIH

Vsaka matematična teorija temelji na množici aksiomov — osnovnih trditev, ki jih *privzamemo* za pravilne. Ti aksiomi opredeljujejo osnovne lastnosti, ki jim morajo zadoščati objekti obravnavane teorije (npr. naravna števila, realna števila, grupe, vektorski prostori, topološki prostori, ...) Iz aksiomov pa potem s pomočjo logičnega sklepanja izpeljujemo nove resnice, ki jim pravimo trditve, posledice, izreki.

V teoriji množic ni nič drugače! Obstaja več družin aksiomov, najbolj pa je uveljavljenih 7 aksiomov, imenovanih *aksiomi ZFC* (Zermelo–Fraenkel–(Axiom of) Choice).

Aksiomi zagotavljajo obstoj množic in tvorjenje novih množic iz že obstoječih.

Da bi razumeli, zakaj potrebujemo aksiome, si poglejmo, zakaj množica vseh množic ne obstaja.

# 2.2.1 Russellova antinomija

Ali obstaja množica vseh množic?

Recimo, da obstaja. Naj bo A množica vseh množic.

Za vsako množico se lahko vprašamo, ali ima samo sebe za element. N nima same sebe za element! Množica vseh abstraktnih pojmov pa ima samo sebe za element.

Naj bo  $B \subseteq A$  tista podmnožica množice A, ki ima za elemente natanko tiste množice iz A, ki nimajo same sebe za element.

Ali ima množica *B* samo sebe za element?

Če ja, potem nima same sebe za element!

Kaj pa če B nima same sebe za element? Potem pa po definiciji  $B \in B$ . Protislovje.

Množica vseh množic ne obstaja!

Nič ne vsebuje vsega. (Matematično) vesolje ne obstaja.

Torej pri oblikovanju množic ne smemo preveč zaupati svoji intuiciji. Potrebni so aksiomi, ki zagotavljajo obstoj nekaterih množic.

#### 2.2.2 Aksiomi teorije množic (po Endertonu)

1. Aksiom o ekstenzionalnosti (enakost množic)

$$\forall A \, \forall B \, (\forall x \, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B)$$

2. Aksiom o prazni množici: Obstaja prazna množica.

$$\exists B \, \forall x \, (x \notin B)$$

3. Aksiom o paru: Obstajajo dvoelementne množice.

$$\forall u \, \forall v \, \exists B \, \forall x \, (x \in B \Leftrightarrow x = u \, \text{ali} \, x = v)$$

4. Aksiom o uniji: Obstaja unija poljubne družine množic.

$$\forall A \,\exists B \,\forall x \,(x \in B \Leftrightarrow (\exists b \in A)x \in b)$$

5. Aksiom o potenčni množici: Obstaja potenčna množica vsake množice.

$$\forall a \,\exists B \,\forall x (x \in B \Leftrightarrow x \subseteq a)$$

6. Aksiomska shema o podmnožicah: *Obstajajo raznovrstne podmnožice*. Za vsako predikatno formulo  $\varphi$  o množicah  $t_1, \ldots, t_k$ , ki ne vsebuje črke B, je naslednji izraz aksiom:

$$\forall t_1 \cdots \forall t_k \forall c \exists B \forall x (x \in B \Leftrightarrow x \in c \land \varphi)$$

# Zgled

(Za k = 1):

$$\forall a \, \forall c \, \exists B \, \forall x \, (x \in B \Leftrightarrow x \in c \land x \in a)$$

To pomeni, da za vsaki dve množici a in c obstaja množica  $B = a \cap c$ , njun presek.

Zgornja aksiomska shema omogoča opisovanje množic v obliki

$$\{x \in A; P(x)\}.$$

# Zgled

$${x \in \mathbb{R}; x \ge 0}.$$

7. Aksiom o neskončnosti: Obstaja neskončna množica.

$$\exists A (\emptyset \in A \land (\forall a \in A) (a \cup \{a\} \in A))$$

8. Aksiom izbire: Vsaka relacija vsebuje funkcijo z isto domeno.

$$(\forall \text{ relacijo } R)(\exists \text{ funkcija } F)(F \subseteq R \land \mathcal{D}(F) = \mathcal{D}(R))$$

Ta aksiom bomo podrobno obravnavali v poglavju 2.5.

Nekatere aksiome oz. aksiomske sheme, in sicer 2., 3. in 6. z zgornjega seznama, je moč izpeljati iz preostalih 7 aksiomov.

# 2.3 PREGLED NAJPOMEMBNEJŠIH POJMOV IN NEKAJ NALOG

#### Ključni pojmi:

- Relacija pripadnosti. Enakost množic.
- Presek in unija družine množic. Distributivnost. Razlika dveh množic, komplement.
- Podmnožica, relacija inkluzije. Prava podmnožica. Prazna množica.
- Russellova antinomija.
- De Morganova zakona, princip dualnosti.
- Potenčna množica. Kartezični produkt.

Naloga (Enakost množic). Katere naslednjih množic so med seboj enake?

$$\{r,s,t\},\{t,r,s,t\},\{s,s,r,r,t\},\{t,s,r\}$$

Odgovor: Vse.

**Naloga.** Ali obstajajo take množice A, B, C, da velja  $B \neq C$  in  $A \cap B = A \cap C$ ?

Odgovor: Da: lahko vzamemo npr.  $A=\emptyset$  in poljubni različni množici  $B\neq C$  (potem bo namreč  $A\cap B=A\cap C=\emptyset$ ).

Ali pa: 
$$A = \{1,2\}, B = \{2,3\}, C = \{2,4\}.$$

**Naloga.** Dana je množica A. Poišči vse množice B, za katere velja  $A \setminus B = B \setminus A$ .

#### Rešitev:

#### 1. način:

Očitno je  $(A \setminus B) \cap (B \setminus A) = \emptyset$ . Ob upoštevanju predpostavke  $A \setminus B = B \setminus A$  zveza  $(A \setminus B) \cap (B \setminus A) = \emptyset$  postane  $A \setminus B = \emptyset$  in  $B \setminus A = \emptyset$ , kar pomeni  $A \subseteq B$  in  $B \subseteq A$ . Torej je B = A.

#### 2. način:

$$A \backslash B = B \backslash A \Rightarrow (A \cap B) \cup (A \backslash B) = (B \cap A) \cup (B \backslash A) \Rightarrow A = B.$$

# Naloga. Drži ali ne drži?

Za poljubne množice A, B in C velja:

$$A \cup (B \times C) = (A \cup B) \times (A \cup C).$$

Ne drži. Že zato, ker množica na levi strani ni nujno kartezični produkt dveh množic.

Zgled: 
$$A = \{1\}, B = C = \emptyset$$
.

**Domača naloga:** Poišči neprazne množice A, B in C, za katere velja  $A \cup (B \times C) = (A \cup B) \times (A \cup C)$ . Pri tem si lahko pomagaš z ekvivalenco  $A \cup (B \times C) = (A \cup B) \times (A \cup C) \Leftrightarrow A \subseteq B \cap C \cap (B \times C)$ .

Poišči še neprazne množice A, B in C, za katere velja  $A\cap (B\times C)=(A\cap B)\times (A\cap C)$  .

# 3 | RELACIJE

Znotraj vsake matematične teorije  $\mathcal{T}$  z univerzalno množico S lahko vsako smiselno lastnost P(x) predstavimo z množico

$$\{x : x \in S \land P(x)\}.$$

Tudi odnose ali relacije moremo predstaviti z množicami.

Primeri dvomestnih (binarnih) relacij:  $\in$ ,  $\subseteq$ , =,  $\le$ , >, vzporeden, skladen

• Primer: 3 in 5 sta v relaciji "manjši".

Trimestne relacije: vsota, razlika, produkt

"Družinske" relacije: oče, sin, mati, sestra, mož, tašča, ...

starši - trimestna relacija (x, y, z so v relaciji natanko tedaj, ko sta x in y starša z)

# 3.1 SPLOŠNO O RELACIJAH

Naj bo R neka smiselna binarna relacija za neko matematično teorijo  $\mathcal T$  z univerzalno množico S.

*R* bomo predstavili z množico natanko tistih urejenih parov množice *S*, katerih prva koordinata je v relaciji *R* z drugo koordinato.

x je v relaciji R z y: xRy ali R(x,y).

$$R = \{(x,y) ; x,y \in S \land xRy\}$$

ali krajše (če se razume, kaj je univerzalna množica S):

$$R = \{(x,y) ; xRy\}.$$

Če je R n-mestna relacija, pa uporabimo n-terice:

$$R = \{(x_1, \ldots, x_n) ; R(x_1, \ldots, x_n)\}$$

Dvomestna relacija je torej **podmnožica kartezičnega produkta**  $S \times S =: S^2$ .

n-mestna relacija pa je podmnožica n-kratnega kartezičnega produkta množice S s samo seboj,  $S^n$ .

# Zgled

$$S = \{1, 2, 3, 4\},\$$

Dvomestna relacija "manjši",  $<(x,y) \Leftrightarrow x < y$ :

$$\langle = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}.$$

Trimestna relacija "vsota",  $+(x,y,z) \Leftrightarrow x+y=z$ :

$$+ = \{(1,1,2), (1,2,3), (1,3,4), (2,1,3), (2,2,4), (3,1,4)\}.$$

# Zgled

$$S = \{1, 2, 3, 4, 5, 6\},\$$

Dvomestna relacija R "je večkratnik",  $R(x,y) \Leftrightarrow x$  je večkratnik y, tj.,

 $(\exists k)(k \text{ je pozitivno naravno število in } x = k \cdot y)$ :

$$R = \{(1,1), (2,1), (2,2), (3,1), (3,3), (4,1), (4,2), (4,4), (5,1), (5,5), (6,1), (6,2), (6,3), (6,3), (6,3), (6,4), (6,2), (6,3), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6,4), (6$$

Trimestna relacija "produkt",  $\cdot(x,y,z) \Leftrightarrow z = x \cdot y$ :

$$\cdot = \{(1,1,1), (1,2,2), (1,3,3), (1,4,4), (1,5,5), (1,6,6), (2,1,2), \}$$

$$(2,2,4), (2,3,6), (3,1,3), (3,2,6), (4,1,4), (5,1,5), (6,1,6)$$
.

Enomestna relacija "praštevilo",  $P(x) \Leftrightarrow x$  je praštevilo:  $P = \{2, 3, 5\}$ .

Ker smo relacije predstavili z množicami, lahko govorimo tudi o relacijah  $R \cup T$ ,  $R \cap T$ ,  $R \setminus T$  (če sta relaciji R in T obe n-mestni relaciji za isti n).

# Zgled

Če z  $R_{\leq}$ ,  $R_{<}$ ,  $R_{=}$ ,  $R_{\geq}$ ,  $R_{>}$  in  $R_{\neq}$  zaporedoma označimo relacije "manjši ali enak", "manjši", "enak", "večji ali enak", "večji" in "neenak" (npr. na množici naravnih števil), potem velja:

$$R_{\leq} = R_{<} \cup R_{=}$$

$$R_{>}=R_{\geq}\setminus R_{=}=R_{\geq}\cap R_{\neq}$$

Osredotočimo se sedaj na **binarne relacije** (te so posebnega pomena, kot bomo videli v poglavju o strukturah urejenosti).

Naj bo R binarna relacija v univerzalni množici S:

$$R = \{(x,y) ; xRy\}.$$

Množico vseh prvih koordinat elementov iz R imenujemo *domena relacije* R.

Množico vseh drugih koordinat elementov iz *R* pa imenujemo *zaloga vrednosti* (*kodomena*) *relacije R*.

Domena:

$$\mathcal{D}R = \{x \; ; \; (\exists y)(xRy)\}$$

Zaloga vrednosti:

$$\mathcal{Z}R = \{y ; (\exists x)(xRy)\}$$

(v uporabi sta tudi oznaki RR in ImR)

# Zgled

$$R = \{(1,2), (2,3), (2,4)\}.$$
  
 $\mathcal{D}R = \{1,2\},$   
 $\mathcal{Z}R = \{2,3,4\}$ 

# Zgled

Naj bo X poljubna množica in  $S=X\cup \mathcal{P}(X)$ . Relacija R je podmnožica  $S\times S$ , definirana s predpisom

$$xRy \Leftrightarrow x \in X \land y \in \mathcal{P}(X) \land x \in y.$$

Tedaj je  $\mathcal{D}R = X$  in  $\mathcal{Z}R = \mathcal{P}(X) \setminus \{\emptyset\}$ .

#### 3.1.1 Inverzna relacija

$$R^{-1} = \{(y, x) ; xRy\}$$

Očitno je:

- $yR^{-1}x \Leftrightarrow xRy$ .
- $\mathcal{D}R^{-1} = \mathcal{Z}R$  in  $\mathcal{Z}R^{-1} = \mathcal{D}R$ .
- $(R^{-1})^{-1} = R$ .

# Zgled

$$\begin{array}{ll} R_{\leq}^{-1} &=& R_{\geq}\,,\\ R_{<}^{-1} &=& R_{>}\,,\\ R_{=}^{-1} &=& R_{=}\,,\\ R_{\neq}^{-1} &=& R_{\neq}\,. \end{array}$$

#### 3.1.2 Kompozitum relacij

Dani sta binarni relaciji R in T.

 $T \circ R$ : kompozitum relacije R z relacijo T

$$xT \circ Ry \Leftrightarrow (\exists u)(xRu \wedge uTy)$$

$$T \circ R = \{(x,y) ; (\exists u)(xRu \wedge uTy)\}\$$

Očitno velja:  $T \circ R \subseteq (\mathcal{D}R) \times (\mathcal{Z}T)$ .

# Zgled

$$R = \{(1,3), (2,3)\}, T = \{(3,1), (2,1)\}$$
  
 $T \circ R = \{(1,1), (2,1)\}, R \circ T = \{(3,3), (2,3)\}.$   
brat  $\circ$  oče  $\subseteq$  oče  
oče  $\circ$  brat  $\subseteq$  stric  
(oče  $\circ$  brat) $\cup$ (mati  $\circ$  brat) = stric  
sestra  $\circ$  mati  $\subseteq$  mati  
(žena  $\circ$  mati)  $\cup$  (mož  $\circ$  mati) = tašča

Torej v splošnem  $T \circ R \neq R \circ T$ . Velja pa asociativnost.

**Trditev.** Naj bodo V, T, R binarne relacije v univerzalni množici S. Tedaj velja

$$V \circ (T \circ R) = (V \circ T) \circ R$$
.

Dokaz.

$$(x,y) \in V \circ (T \circ R) \Leftrightarrow xV \circ (T \circ R)y \Leftrightarrow$$

$$(\exists u)(x(T \circ R)u \wedge uVy) \Leftrightarrow (\exists u)(\exists v)(xRv \wedge vTu \wedge uVy) \Leftrightarrow$$

$$(\exists v)(xRv \wedge (\exists u)(vTu \wedge uVy)) \Leftrightarrow (\exists v)(xRv \wedge v(V \circ T)y) \Leftrightarrow$$

$$x((V \circ T) \circ R)y \Leftrightarrow (x,y) \in (V \circ T) \circ R.$$

Inverz kompozituma je enak kompozitumu inverzov v obratnem vrstnem redu:

**Trditev.** Naj bosta T in R binarni relaciji v univerzalni množici S. Tedaj velja

$$(T \circ R)^{-1} = R^{-1} \circ T^{-1}$$
.

Dokaz.

$$(x,y) \in (T \circ R)^{-1} \Leftrightarrow (y,x) \in T \circ R \Leftrightarrow$$
$$(\exists u)(yRu \wedge uTx) \Leftrightarrow (\exists u)(uR^{-1}y \wedge xT^{-1}u) \Leftrightarrow$$
$$(\exists u)(xT^{-1}u \wedge uR^{-1}y) \Leftrightarrow x(R^{-1} \circ T^{-1})y \Leftrightarrow (x,y) \in R^{-1} \circ T^{-1}.$$

Zgled

Naj bosta  $a, b \in \mathbb{R}$ .

Definirajmo relaciji

$$R = \{(x,y) ; x + y = a\},\$$
  
 $T = \{(x,y) ; x + y = b\}.$ 

Todaj io

Tedaj je

$$T \circ R = \{(x,y) ; (\exists u)(x + u = a \land u + y = b)\} = \{(x,y) ; x - y = a - b\}.$$

$$R \circ T = \{(x, y) ; x - y = b - a\}.$$

 $R^{-1} = R, T^{-1} = T.$ 

Enakost v zgornji trditvi v tem primeru postane  $(T \circ R)^{-1} = R \circ T$ .

# 3.1.3 Univerzalna, ničelna in identična relacija

V vsaki množici S imamo tri posebne relacije:

 $S \times S$  – univerzalna relacija

∅ – ničelna relacija

 $I = \{(x, x) ; x \in S\}$  – identična relacija (relacija identitete)

**Trditev.** Naj bo R binarna relacija v univerzalni množici S.

Tedaj velja 
$$I \circ R = R \circ I = R$$
.

Dokaz. 
$$xI \circ Ry \Leftrightarrow (\exists u)(xRu \wedge uIy) \Leftrightarrow xRy$$
.  $xR \circ Iy \Leftrightarrow (\exists u)(xIu \wedge uRy) \Leftrightarrow xRy$ .

Velja tudi:

• 
$$\emptyset \circ R = R \circ \emptyset = \emptyset$$

• 
$$(S \times S) \circ R = (\mathcal{D}R) \times S$$
 in  $R \circ (S \times S) = S \times \mathcal{Z}R$ .

Dokažimo enakost  $R \circ (S \times S) = S \times \mathcal{Z}R$ :  $x(R \circ (S \times S))y \Leftrightarrow (\exists u)(x(S \times S)u \wedge uRy) \Leftrightarrow (\exists u)(uRy) \Leftrightarrow y \in \mathcal{Z}R \Leftrightarrow x \in S \wedge y \in \mathcal{Z}R \Leftrightarrow x(S \times \mathcal{Z}R)y$ .

**Domača naloga**: Dokažite enakost  $(S \times S) \circ R = (\mathcal{D}R) \times S$ .

# 3.2 POSEBNE LASTNOSTI BINARNIH RELACIJ

Nekatere lastnosti binarnih relacij so še posebej pomembne:

*R* je *refleksivna*  $\Leftrightarrow$   $(\forall x)(x \in S \Rightarrow xRx)$ 

**Zgled:** relacija  $\leq$  v realnih številih

*R* je irefleksivna  $\Leftrightarrow$   $(\forall x)(x \in S \Rightarrow \neg(xRx))$ 

 $\mathbf{Zgled:}\ \mathrm{relacija} < \mathrm{v}\ \mathrm{realnih}\ \mathrm{\check{s}tevilih}$ 

*R* je simetrična  $\Leftrightarrow$   $(\forall x)(\forall y)(x \in S \land y \in S \land xRy \Rightarrow yRx)$ 

**Zgled:** vzporednost premic

*R* je asimetrična  $\Leftrightarrow (\forall x)(\forall y)(x \in S \land y \in S \land xRy \Rightarrow \neg(yRx))$ 

**Zgled:** relacija < v realnih številih

*R* je antisimetrična  $\Leftrightarrow$   $(\forall x)(\forall y)(x \in S \land y \in S \land xRy \land yRx \Rightarrow x = y)$ 

**Zgled:** relacija  $\leq$  v realnih številih

relacija  $\subseteq$  v množicah

*R* je tranzitivna  $\Leftrightarrow (\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land z \in S \land xRy \land yRz \Rightarrow xRz)$ 

 $\mathbf{Zgled:}\ \mathrm{relacija} < \mathrm{v}\ \mathrm{realnih}\ \mathrm{\check{s}tevilih}$ 

relacija ⊂ v množicah

*R* je *intranzitivna*  $\Leftrightarrow$   $(\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land z \in S \land xRy \land yRz \Rightarrow \neg(xRz))$  **Zgled:** relacija *R* v realnih številih, definirana s predpisom  $xRy \Leftrightarrow x = y + 1$ 

pravokotnost premic v ravnini

*R* je *sovisna*  $\Leftrightarrow$   $(\forall x)(\forall y)(x \in S \land y \in S \land x \neq y \Rightarrow (xRy) \lor (yRx))$  **Zgled:** relacija < v realnih številih

*R* je *strogo sovisna*  $\Leftrightarrow$   $(\forall x)(\forall y)(x \in S \land y \in S \Rightarrow (xRy) \lor (yRx))$  **Zgled:** 

relacija  $\leq$  v realnih številih

**Domača naloga:** Izberite si nekaj sorodstvenih relacij in za vsako od njih ugotovite, katere od zgornjih lastnosti imajo.

Nekatere od zgornjih lastnosti niso med seboj neodvisne:

- R je strogo sovisna  $\Rightarrow R$  je sovisna.
- R je asimetrična  $\Rightarrow R$  je irefleksivna.
- R je simetrična in tranzitivna  $\Rightarrow R$  je refleksivna (če je  $\mathcal{D}R = S$ ).

# 3.3 EKVIVALENČNA RELACIJA

R je ekvivalenčna  $\Leftrightarrow R$  je refleksivna, simetrična in tranzitivna.

**Zgled:** relacija identitete

Ekvivalenčne relacije lahko karakteriziramo na naslednji način.

**Trditev.** R je ekvivalenčna  $\Leftrightarrow \mathcal{D}R = S$  in  $R^{-1} \circ R = R$ .

Dokaz. Pogoj je potreben:

$$xRx \Rightarrow \mathcal{D}R = S$$

 $xR^{-1} \circ Ry \Rightarrow (\exists z)(xRz \wedge zR^{-1}y) \Rightarrow (\exists z)(xRz \wedge yRz) \Rightarrow (\exists z)(xRz \wedge zRy) \Rightarrow xRy$ .

$$xRy \Rightarrow (xRy \land yRy) \Rightarrow (xRy \land yR^{-1}y) \Rightarrow xR^{-1} \circ Ry$$
.

Torej  $R^{-1} \circ R = R$ .

Pogoj je pa tudi zadosten:

Naj bo  $\mathcal{D}R = S$  in  $R^{-1} \circ R = R$ .

Refleksivnost: dokazujemo  $(\forall x)(x \in S \Rightarrow xRx)$ . Naj bo  $x \in S$ . Ker je  $\mathcal{D}R = S$ , je  $x \in \mathcal{D}R \Rightarrow (\exists y)(y \in S \land xRy)$ .

$$xRy \Rightarrow xRy \land yR^{-1}x \Rightarrow xR^{-1} \circ Rx \Rightarrow xRx$$
.

Simetričnost: dokazujemo  $(\forall x)(\forall y)(x \in S \land y \in S \land xRy \Rightarrow yRx)$ . Naj bo  $x \in S \land y \in S \land xRy$ . Tedaj je

$$xRy \Rightarrow (xRy \land yRy) \Rightarrow (yRy \land yR^{-1}x) \Rightarrow yR^{-1} \circ Rx \Rightarrow yRx$$
.

Tranzitivnost: dokazujemo  $(\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land z \in S \land xRy \land yRz \Rightarrow xRz)$ . Naj bo  $x \in S \land y \in S \land z \in S \land xRy \land yRz$ . Tedaj je

$$xRy \wedge yRz \Rightarrow xRy \wedge zRy \Rightarrow xRy \wedge yR^{-1}z \Rightarrow xR^{-1} \circ Rz \Rightarrow xRz$$
.

Ekvivalenčna relacija ima to lepo lastnost, da razdeli množico *S*, na kateri je definirana, na *same neprazne in paroma disjunktne množice, katerih unija je prav množica S*.

#### Ekvivalenčni razredi.

Naj bo R ekvivalenčna relacija, definirana v množici S. Naj bo  $x \in S$ . Ekvivalenčni razred elementa x glede na ekvivalenčno relacijo R je množica vseh elementov, ki so v relaciji z x:

$$R[x] = \{ y : y \in S \land yRx \}.$$

Za ekvivalenčne razrede velja naslednje:

- Ker je R refleksivna relacija, velja  $x \in R[x]$ . Posledično je  $R[x] \neq \emptyset$ .
- $y \in R[x] \Rightarrow R[y] = R[x]$ .

Res: Naj bo  $y \in R[x]$ .

$$z \in R[y] \Rightarrow zRy \land yRx \Rightarrow zRx \Rightarrow z \in R[x].$$

$$z \in R[x] \Rightarrow zRx \land yRx \Rightarrow zRx \land xRy \Rightarrow zRy \Rightarrow z \in R[y].$$

•  $y \notin R[x] \Rightarrow R[x] \cap R[y] = \emptyset$ . Res:  $(\exists z)(z \in R[x] \cap R[y]) \Rightarrow (\exists z)(R[z] = R[x] \land R[z] = R[y]) \Rightarrow y \in R[y] = R[x]$ . Protislovje z domnevo  $y \notin R[x]$ .

#### Sledi:

- 1. Vsak element množice *S* je v natanko enem ekvivalenčnem razredu. Namreč v tistem, v katerem so združeni vsi elementi množice *S*, ki so z njim v relaciji *R*.
- 2. Vsak ekvivalenčni razred je povsem določen s poljubnim elementom, ki mu pripada. Zato pravimo, da je poljuben element danega razreda *predstavnik* tega razreda.
- 3. Z ekvivalenčnimi razredi dane ekvivalenčne relacije *R* je množica *S* razdeljena na same neprazne in paroma tuje podmnožice, katerih unija je množica *S*.



Takim razdelitvam pravimo particije. Particija množice S = družina nepraznih in paroma disjunktnih množic, katerih unija je množica S.

Vsaki ekvivalenčni relaciji torej ustreza neka particija množice S. Velja pa tudi obratno. Vsaka particija  $\mathcal{A}$  množice S določa natanko eno ekvivalenčno relacijo R, in sicer tako, da so množice v particiji ravno ekvivalenčni razredi glede na relacijo R:

 Poljubna elementa x in y sta v relaciji R natanko takrat, ko pripadata isti množici iz particije:

$$xRy \Leftrightarrow (\exists X)(X \in \mathcal{A} \land x \in X \land y \in X).$$

Premislimo, da je tako definirana relacija ekvivalenčna:

- refleksivna:  $x \in S \Rightarrow (\exists X)(X \in \mathcal{A} \land x \in X) \Rightarrow xRx$ .
- simetrična:  $xRy \Rightarrow (\exists X)(X \in \mathcal{A} \land x \in X \land y \in X) \Rightarrow (\exists X)(X \in \mathcal{A} \land y \in X \land x \in X) \Rightarrow yRx$ .
- tranzitivna:  $xRy \wedge yRz \Rightarrow (\exists X)(X \in \mathcal{A} \wedge x \in X \wedge y \in X) \wedge (\exists Y)(Y \in \mathcal{A} \wedge y \in Y \wedge z \in Y).$

Torej je y hkrati v množici X in Y. Ker pa so množice paroma disjunktne, sledi X = Y. Potem pa je element z tudi v množici X. Sledi xRz.

**V razmislek:** Utemelji, da particija  $\mathcal{A}$  sovpada z množico ekvivalenčnih razredov relacije R.

Vsaki množici *S*, v kateri je definirana kakšna ekvivalenčna relacija *R*, moremo prirediti neko novo množico, katere elementi so ekvivalenčni razredi relacije *R*:

Faktorska množica množice S glede na relacijo R:

$$S/R = \{R[x] ; x \in S\} = \{X ; (\exists x)(x \in S \land X = R[x])\}$$

• Faktorska množica predstavlja matematično formulacijo logičnega principa *abstrakcije*: S tem ko iz dane množice *S* preidemo na faktorsko množico, abstrahiramo vse razlike med rečmi, ki pripadajo istemu ekvivalenčnemu razredu!

# Zgled

Naj bo  $S = \{1,2,3\}$  in  $R = \{(1,1), (1,3), (2,2), (3,1), (3,3)\}$ . Relacija R je ekvivalenčna.

$$R[1] = R[3] = \{1,3\}, R[2] = \{2\}.$$

$$S/R = \{R[1], R[2], R[3]\} = \{R[1], R[2]\} = \{\{1, 3\}, \{2\}\}.$$

Če definiramo particijo  $\mathcal{A} = \{\{1,3\}, \{2\}\}$  množice S, potem lahko definiramo relacijo R' s predpisom  $xR'y \Leftrightarrow (\exists X)(X \in \mathcal{A} \land x \in X \land y \in Y)$ . Velja

$$R' = \{(1,1), (1,3), (3,1), (2,2), (3,3)\} = R \text{ in } S/R' = \{\{1,3\}, \{2\}\} = A.$$

# Zgledi ekvivalenčnih relacij

#### 1. Ulomki.

V množici ulomkov

$$a/b$$
,

kjer sta a in b poljubni celi števili in je  $b \neq 0$ , je definicija enakosti dveh ulomkov

$$a/b = c/d \Leftrightarrow ad = bc$$

očitno ekvivalenčna relacija. Vsak ekvivalenčni razred glede na to relacijo druži vse med seboj enake ulomke in predstavlja tedaj ustrezno *racionalno število*. Prirejena faktorska množica je *množica racionalnih števil*.

#### 2. Kongruence.

V množici *celih števil* je relacija *kongruence po modulu m*, kjer je m > 0 poljubno pozitivno celo število,

$$a \equiv b \pmod{m} \Leftrightarrow m \operatorname{deli} a - b$$
,

ekvivalenčna relacija.

Ekvivalenčni razredi so v tem primeru razredi ostankov po modulu m. V vsakem ekvivalenčnem razredu so vsa tista števila, ki dajo pri deljenju z m isti ostanek.

Očitno je takih razredov natanko *m*. Te razrede imenujemo *cela števila po modulu m*. Faktorska množica je množica celih števil po modulu *m*.

#### 3. Vzporednost premic.

V množici *vseh premic* je relacija "vzporeden" ekvivalenčna relacija. V vsakem ekvivalenčnem razredu so torej vse premice, ki so med seboj vzporedne, in predstavljajo potemtakem določeno *smer*. Faktorska množica je tukaj *množica vseh smeri*.

#### 3.4 FUNKCIJE

Funkcija je osrednji pojem klasične in moderne matematike. Od 18. stoletja naprej je pojem funkcije postajal vse bolj precizen in splošen. Definicijo funkcije, kot jo poznamo danes, sta uvedla Cauchy in Riemann:

Za dani množici A in B je funkcija iz A v B predpis, ki vsakemu elementu množice A priredi natanko določen element množice B. Oznaka:  $f:A\to B$ .

Da pa se izognemo dvomu, kaj je mišljeno z besedo "predpis", funkcije lahko definiramo kot posebne vrste relacij.

Binarna relacija R je enolična, če velja:

$$(x,y) \in R \land (x,z) \in R \Rightarrow y = z$$

Parcialna funkcija je enolična binarna relacija. Parcialne funkcije navadno označujemo s črkami f,g,h,...

Funkcija, ki preslika množico A v množico B (ali krašje: funkcija iz A v B), je taka parcialna funkcija f, da velja

$$\mathcal{D}f = A$$
 in  $(x,y) \in f \Rightarrow x \in A \land y \in B$ .

Oznaka:  $f: A \rightarrow B$ .

Funkcijam pravimo tudi *preslikave, upodobitve, transformacije*. Množico vseh funkcij iz  $A \ v \ B$  označimo z  $B^A$ .

Pišemo

$$y = f(x) \Leftrightarrow (x,y) \in f.$$
  
$$f = \{(x,y) ; x \in A \land y = f(x) \in B\}.$$

 $x \in A$ : neodvisna spremenljivka, original, argument y(=f(x)): odvisna spremenljivka, slika elementa x.

V uporabi sta tudi oznaki  $x \mapsto f(x)$  "x se preslika v f(x)",  $A \xrightarrow{f} B$  "f preslika  $A \vee B$ ".

# Zgledi funkcij:

• 
$$A = \{1,2,3\}, B = \{2,4,6\}$$
  
 $f = \{(1,2),(2,4),(3,4)\}$ 

- $A=\{$ točke na površju planeta Zemlja $\}$ ,  $B=\mathbb{R}$ , f(x)=temperatura v  $^{\circ}C$  v kraju x dne 1. 1. 2015 ob 6:00 po lokalnem času
- $A = \{ \text{ljudje, } \text{živeči na Zemlji ob času } T \}, B = \mathbb{N},$  f(x) = starost (v sekundah) osebe x v času T.

Množici  $\{(x,y): x \in A \land y = f(x)\}$  včasih pravimo tudi *graf funkcije*.

**Upodobitve funkcij.** V primeru, ko je  $A \subseteq \mathbb{R}$  in  $B = \mathbb{R}$ , lahko graf funkcije upodobimo kot množico točk v ravnini.

**Zgled:** 
$$f: \mathbb{R} \to \mathbb{R}$$
,  $f(x) = x^2$ .



Na enak način lahko upodobimo tudi *relacije* na množici  $S = \mathbb{R}$ : Naj bo  $xRy \Leftrightarrow x^2 + y^2 = 4$ . Tedaj relacijo R predstavlja krožnica z radijem 2 in s središčem v koordinatnem izhodišču.



Naj bo  $f: A \rightarrow B$ . Domena funkcije f:

$$\mathcal{D}f = \{x ; (\exists y)((x,y) \in f)\} = A$$

Zaloga vrednosti funkcije f:

$$\mathcal{Z}f = \{y : y \in B \land (\exists x)(x \in A \land (x,y) \in f)\} \subseteq B.$$

Množici *B* pravimo *kodomena* funkcije *f* .

#### Zgled

Naj bo 
$$f = \{(1,2), (2,4), (3,4)\}, A = \{1,2,3\}, B = \{2,4,6\}.$$
  
Tedaj je  $\mathcal{D}f = \{1,2,3\}, \mathcal{Z}f = \{2,4\}.$ 

Pri analizi ste obravnavali tudi realne funkcije, ki jih običajno podamo kar s predpisom f(x), ne da bi navajali domeno in kodomeno. Za domeno v tem primeru vzamemo množico  $\{x \in \mathbb{R}; f(x) \in \mathbb{R}\}$ , ki ji pravimo (naravno) definicijsko območje funkcije f.

V splošnem je  $\mathbb{Z}f\subseteq B$ . Če je  $\mathbb{Z}f=B$ , pravimo, da je f *surjektivna* funkcija. V tem primeru pravimo, da f preslika množico A *na* množico B.

**Zgled:**  $A = \{1,2,3\}$ ,  $B = \{2,4,6\}$ .  $f = \{(1,2),(2,4),(3,4)\}$  ni surjektivna.  $g: A \to B$ ,  $g = \{(1,2),(2,6),(3,4)\}$ , pa je.

Definicija funkcije dopušča, da ima več originalov isto f-sliko. V skrajnem primeru preslika f vse elemente množice A v isti element množice B. Tako funkcijo imenujemo konstanta.

Drugo skrajnost (ko imata dva različna originala vselej različni sliki) pa opisuje naslednja definicija:

$$f$$
 je injektivna  $\Leftrightarrow (\forall y)(y \in \mathcal{Z}f \Rightarrow (\exists!x)(x \in A \land f(x) = y))$   
 $\Leftrightarrow (\forall x)(\forall y)(f(x) = f(y) \Rightarrow x = y)$ 

**Zgled:**  $f = \{(1,2), (2,4), (3,4)\}$  ni injektivna.  $g = \{(1,2), (2,6), (3,4)\}$  pa je.

Naj bo  $U \subseteq A$ . Tedaj pišemo:

$$f(U) = \{ y : y \in B \land (\exists x)(x \in U \land f(x) = y) \}$$

f(U) – slika podmnožice U pri preslikavi f

**Zgled:** 
$$f = \{(1,2), (2,4), (3,4)\}.$$
  $U = \{2,3\}.$   $f(U) = \{f(2), f(3)\} = \{4\}.$ 

Očitno je:

- $f(\emptyset) = \emptyset$ ,  $f(A) = \mathcal{Z}f$ .
- $U \subseteq V \Rightarrow f(U) \subseteq f(V)$ .

Slike se takole obnašajo glede na unije in preseke:

- $f(U \cup V) = f(U) \cup f(V)$ ,
- $f(U \cap V) \subseteq f(U) \cap f(V)$ .

Domača naloga: Dokažite zgornji dve lastnosti.

# 3.4.1 Inverzna relacija, praslike

Inverzna relacija:

$$f^{-1} = \{(y, x) ; f(x) = y\}.$$

 $f^{-1}$  ni nujno parcialna funkcija!

**Zgled:**  $f = \{(1,2), (2,4), (3,4)\}.$   $f^{-1} = \{(2,1), (4,2), (4,3)\}$  - ni parcialna funkcija.

Praslika elementa y:

$$f^{-1}(y) = \{x : x \in A \land f(x) = y\}.$$

Naj bo  $E \subseteq B$ . *Praslika podmnožice E* (pri preslikavi f):

$$f^{-1}(E) = \{x : x \in A \land f(x) \in E\}$$

**Zgled:** 
$$f = \{(1,2), (2,4), (3,4)\}.$$
  $f^{-1}(2) = \{1\}, f^{-1}(4) = \{2,3\},$   $f^{-1}(\{2,4\}) = \{1,2,3\}$ 

Očitno:

• 
$$f^{-1}(\mathcal{Z}f) = A$$

Velja še:

• 
$$E \subseteq F \Rightarrow f^{-1}(E) \subseteq f^{-1}(F)$$

Praslike so v dobrih odnosih z unijami, preseki in razlikami:

• 
$$f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$$

• 
$$f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$$

• 
$$f^{-1}(E \setminus F) = f^{-1}(E) \setminus f^{-1}(F)$$

**Dokaz lastnosti**  $f^{-1}(E \cap F) = f^{-1}(E) \cap f^{-1}(F)$ :

$$x \in f^{-1}(E \cap F) \Leftrightarrow f(x) \in E \cap F \Leftrightarrow f(x) \in E \land f(x) \in F \Leftrightarrow$$
$$\Leftrightarrow x \in f^{-1}(E) \land x \in f^{-1}(F) \Leftrightarrow x \in f^{-1}(E) \cap f^{-1}(F)$$

Domača naloga: Dokažite še drugi dve lastnosti.

Podobno se lahko prepričamo, da velja:

• za vsak  $U \subseteq A$  je

$$U \subseteq f^{-1}(f(U))$$

• za vsak  $E \subseteq B$  je

$$f(f^{-1}(E)) \subseteq E$$

Naj bo  $f: A \to B$ . Kdaj je inverzna relacija  $f^{-1}$  (parcialna) funkcija?

 $f^{-1}$  je funkcija iz  $\mathcal{Z}f$  v  $A \Leftrightarrow f$  je injektivna.

(Res: da bo  $f^{-1}$  parcialna funkcija, ne smeta obstajati dva različna urejena para v  $f^{-1}$ , ki bi imela isto prvo koordinato  $\Leftrightarrow$  ne smeta obstajati dva različna urejena para v f, ki bi imela isto drugo koordinato, tj. f je injektivna.)

Če je torej  $f^{-1}$  funkcija, potem za vsak element  $y \in \mathcal{Z}f$  obstaja natanko določen  $x \in \mathcal{D}f$ , da velja  $f^{-1}(y) = x$ . Velja zveza

$$f^{-1}(y) = x \Leftrightarrow f(x) = y.$$

Torej:

$$f^{-1}(f(x)) = x$$

in

$$f(f^{-1}(y)) = y.$$

Posebno zanimiv primer nastane, ko je funkcija f ne samo injektivna, ampak tudi surjektivna. V tem primeru rečemo, da je funkcija f bijektivna.

Če je f bijektivna, je  $\mathbb{Z}f = B$  in  $f^{-1}$  je funkcija, ki preslika B v A.

# 3.4.2 Kompozitum funkcij

Naj bosta f in g parcialni funkciji. Tedaj velja

$$g \circ f = \{(x, z); (\exists y)((x, y) \in f \land (y, z) \in g)\}$$
$$= \{(x, z); (\exists y)(f(x) = y \land g(y) = z)\}.$$

Torej, če je  $\mathcal{Z}f\cap\mathcal{D}g=\emptyset$ , potem je  $g\circ f=\emptyset$ . Ta primer ni posebej zanimiv, zato po navadi zahtevamo:  $\mathcal{Z}f\subseteq\mathcal{D}g$ , torej obstajajo take množice A,B,C, da velja

$$A \stackrel{f}{\to} B \stackrel{g}{\to} C$$
.

Zdaj pa velja:

$$g \circ f = \{(x, z) ; z = g(f(x))\}$$

Relacija  $g \circ f$  je prav tako funkcija (ki preslika  $A \lor C$ ):  $(g \circ f)(x) = g(f(x))$ .

**Zgled:** 
$$f = \{(1,2), (2,4), (3,4)\}, g = \{(2,3), (4,5)\}$$
 (Opazimo, da je  $\mathcal{D}g = \mathcal{Z}f.$ )  $g \circ f = \{(1,3), (2,5), (3,5)\}$ 

Tako kot za kompozitume binarnih relacij tudi za kompozitume funkcij velja

#### **Asociativnost:**

Če je

$$A \stackrel{f}{\to} B \stackrel{g}{\to} C \stackrel{h}{\to} D$$
,

potem je

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

#### 3.4.3 Zožitve in razširitve

Kdaj sta dve parcialni funkciji f in g enaki?

Po definiciji enakosti množic le tedaj, kadar imata za elemente iste urejene pare. To pa je res natanko tedaj, ko velja dvoje:

- $\mathcal{D}f = \mathcal{D}g$
- za vsak element x te skupne domene velja f(x) = g(x).

Poseben način, kako moremo spremeniti funkcijo:

**Zožitev:** Dana je funkcija  $f: A \to B$  in podmnožica domene  $U \subseteq A$ . *Zožitev* ali *restrikcija* funkcije f na množico U je funkcija g, ki ima za svojo domeno množico U in za vse  $x \in U$  velja g(x) = f(x). Oznaka:

$$g = f|_{U}$$

**Zgled:** 
$$f = \{(1,2), (2,4), (3,4)\}, A = \{1,2,3\}, U = \{1,2\}.$$
  $f|_{U} = \{(1,2), (2,4)\}$ 

Če je funkcija g zožitev funkcije f, pravimo, da je funkcija f razširitev funkcije g.

#### 3.4.4 Kanonična dekompozicija funkcije

Dana je funkcija  $f: A \rightarrow B$ . Vpeljimo na množici A naslednjo relacijo R:

$$xRy \Leftrightarrow f(x) = f(y)$$
.

Očitno je *R* ekvivalenčna relacija:

- za vsak  $x \in A$  je xRx,
- $xRy \Rightarrow f(x) = f(y) \Rightarrow f(y) = f(x) \Rightarrow yRx$ ,
- $xRy \land yRz \Rightarrow f(x) = f(y) \land f(y) = f(z) \Rightarrow f(x) = f(z) \Rightarrow xRz$ .

Zdaj pa napravimo faktorsko množico A/R (množico vseh ekvivalenčnih razredov).

Preslikajmo najprej množico A na množico A/R:

$$p: A \rightarrow A/R$$

$$p(a) = R[a]$$

Preslikava p je očitno surjektivna. Imenujemo jo naravna preslikava.

Zdaj pa preslikajmo še množico A/R v množico B s takšno preslikavo g, da bo funkcija f kompozitum funkcij p in g,  $f = g \circ p$ :

$$g: A/R \rightarrow B$$

$$g(u) = f(x),$$

kjer je x poljuben predstavnik razreda u (torej  $x \in u$ ).

• Preslikava g je dobro definirana (vrednost g(u) je neodvisna od izbire predstavnika razreda u):

$$x \in u \land y \in u \Rightarrow xRy \Rightarrow f(x) = f(y)$$
.

• Preslikava *g* je injektivna:

$$g(u) = g(v) \land g(u) = f(x) \land g(v) = f(y) \Rightarrow f(x) = f(y) \Rightarrow xRy \Rightarrow u = v.$$

• Po definicijah funkcij g in p je  $f = g \circ p$ : Naj bo  $x \in A$ .

$$(g \circ p)(x) = g(p(x)) = g(R[x]) = f(x).$$

Preslikavo *f* lahko razstavimo takole:

$$A \xrightarrow{\text{surj.}} A/R \xrightarrow{\text{inj.}} B$$

To dekompozicijo lahko še malce izpopolnimo, tako da vpeljemo preslikavo h, ki je podana z istim predpisom kot g, le da slika v množico  $\mathcal{Z}f$ . Preslikava h je potem bijektivna:

$$h: A/R \rightarrow \mathcal{Z}f$$

$$h(u) = g(u).$$

Množico  $\mathcal{Z}f$  pa nazadnje preslikamo v množico B z *identično preslikavo i,* ki pribije vsak element:

$$i: \mathcal{Z}f \rightarrow B$$

$$i(y) = y$$
.

Očitno je, da za vse  $x \in A$  velja

$$i(h(p(x))) = h(p(x)) = g(p(x)) = f(x).$$

Torej je

$$f=i\circ h\circ p.$$

Tako dobimo kanonično dekompozicijo funkcije f:

$$A \xrightarrow{\text{surj.}} A/R \xrightarrow{\text{bij.}} \text{Im} f \xrightarrow{\text{i}} B$$

$$f$$

**Zgled:**  $A = \{1,2,3\}, B = \{2,4,6\}, f = \{(1,2),(2,4),(3,4)\}$  (tj., f(1) = 2, f(2) = f(3) = 4) Ekvivalenčna relacija:  $R = \{(1,1),(2,2),(3,3),(2,3),(3,2)\}$  Faktorska množica:  $A/R = \{\{1\},\{2,3\}\}$   $\mathcal{Z}f = \{2,4\}$  Naravna preslikava  $p: p(1) = \{1\}, p(2) = p(3) = \{2,3\}.$  Preslikava  $g: \{\{1\},\{2,3\}\} \rightarrow \{2,4,6\}:$   $g(\{1\}) = f(1) = 2, g(\{2,3\}) = f(2) = f(3) = 4.$  Preslikava  $h: \{\{1\},\{2,3\}\} \rightarrow \{2,4\}: h(\{1\}) = g(\{1\}) = 2, h(\{2,3\}) = g(\{2,3\}) = 4.$  Identična preslikava  $i: \{2,4\} \rightarrow \{2,4,6\}: i(2) = 2, i(4) = 4.$ 

$$\{1,2,3\} \xrightarrow{p} \{\{1\},\{2,3\}\} \xrightarrow{\text{bij.}} \{2,4\} \xrightarrow{\text{inj. (identična)}} \{2,4,6\}$$

# 3.5 STRUKTURE UREJENOSTI

Poleg ekvivalenčnih relacij in funkcij so v matematiki posebno pomembne tudi relacije, ki ustvarjajo med elementi dane množice <u>red</u> ali urejenost. Red je lahko bolj ali manj strog, zato imamo opravka z različnimi strukturami urejenosti. Kot bomo videli, te strukture urejenosti tvorijo hierarhijo in so tudi same po svoje urejene.

Začnimo pri najsplošnejših strukturah.

Dana je univerzalna množica *S* in relacija *R* na *S*.

Najsplošnejšo strukturo dobimo, če zahtevamo le tranzitivnost. To ni posebej zanimiva struktura: ničelna relacija, identična relacija in univerzalna relacija so vse tranzitivne!

R navidezno ureja  $S \Leftrightarrow R$  je tranzitivna in refleksivna.

Beseda "navidezno" se nanaša na našo intuitivno predstavo o urejenosti, saj je že univerzalna relacija  $S \times S$  navidezna urejenost, pa čeprav ničesar ne ureja!

R delno ureja  $S \Leftrightarrow R$  je tranzitivna, refleksivna in antisimetrična.

Naj *R* delno ureja *S*.

xRy: "x je vsebovan v y" ali

"x je manjši ali enak y" ali

"y vsebuje x" ali

"y je večji ali enak x".

**Zgled za relacijo delne urejenosti:** relacija inkluzije " $\subseteq$ ", definirana na poljubni družini podmnožic dane univerzalne množice  $\mathcal{U}$ .

Lahko se zgodi, da množici *A* in *B* nista primerljivi glede na relacijo inkluzije!

To velja tudi v splošnem. Od tod tudi ime "delna urejenost".

Zgled: Relacija deljivosti na množici pozitivnih naravnih števil.

Tudi to je delna urejenost. Lahko se zgodi, da dve števili nista primerljivi glede na to relacijo (npr. 5 in 7).

Tudi relacija "≤" na množici realnih števil izpolnjuje vse pogoje za delno urejenost.

Velja pa še več: ta relacija je tudi strogo sovisna, saj za vsaki dve realni števili x in y velja  $x \le y$  ali  $y \le x$ .

R popolno ali linearno ureja  $S \Leftrightarrow R$  je tranzitivna, refleksivna, antisimetrična in strogo sovisna.

```
Toda: R je strogo sovisna \Rightarrow R je refleksivna! (če v pogoju (\forall x)(\forall y)(xRy \lor yRx) vzamemo y=x, dobimo (\forall x)(xRx)). Torej:
```

R popolno (linearno) ureja  $S \Leftrightarrow R$  je tranzitivna, antisimetrična in strogo sovisna.

Relaciji stroge inkluzije "⊂" in stroge neenakosti "<":

- obe sta tranzitivni, a irefleksivni
- obe sta asimetrični
- relacija stroge inkluzije določa le delno urejenost (obstajajo namreč pari neprimerljivih mnnožic)
- relacija stroge neenakosti pa določa popoln red: je *sovisna*, poljubni dve *različni* realni števili sta med seboj primerljivi glede na <.

Vsaka asimetrična relacija je tudi irefleksivna. Torej lahko definiramo R strogo delno ureja  $S \Leftrightarrow R$  je tranzitivna in asimetrična.

#### Analogno definiramo:

R strogo linearno ureja  $S \Leftrightarrow R$  je tranzitivna, asimetrična in sovisna.

Naj R strogo delno ureja S.

xRy: "x je pod y" ali

"x je manjši od y" ali

"*y* je nad *x*" ali

"y je večji od x".

To terminologijo uporabljamo tudi za primer, ko je xRy, kjer je relacija R delna urejenost in je  $x \neq y$ .

Oglejmo si še eno relacijo urejenosti: šibka urejenost.

Njen model je na primer relacija "vsaj tako velik kot" v množici vseh ljudi.

Je tranzitivna, strogo sovisna (torej tudi refleksivna).

Ni pa antisimetrična!

Če je x "vsaj tako velik kot" y in y "vsaj tako velik kot" x, potem smemo sklepati le, da sta x in y enako velika, nikakor pa ni nujno, da je x = y. R šibko ureja  $S \Leftrightarrow R$  je tranzitivna in strogo sovisna.

Doslej smo našteli 7 različnih struktur urejenosti. Definirajmo v množici, ki ima za elemente teh 7 struktur, relacijo "je poseben primer".

x je poseben primer y, če ima vsaka relacija  $R_x$ , ki določa strukturo x, tudi vse lastnosti strukture y.

#### • Primer:

Linearna urejenost je poseben primer delne urejenosti.

Stroga linearna urejenost je poseben primer stroge delne urejenosti.

Relacija "je poseben primer" je tranzitivna, refleksivna in antisimetrična, torej določa delno urejenost med temi strukturami.

Delno urejenost pa moremo prikazati s t.i. Hassejevim diagramom:



Hassejev diagram

R - relacija, ki delno ali strogo delno ureja S

 $xRy \Leftrightarrow \text{ od } x \text{ do } y \text{ lahko pridem od spodaj navzgor po črtah v diagramu}$ 

# Zgled

 $A = \{1,2,3\}, S = \mathcal{P}(A), R$ : stroga inkluzija



**Primer:** Hassejev diagram množice s 6 elementi, ki je linearno ali strogo linearno urejena



#### 3.5.1 Mreža

Struktura *mreže* je delna urejenost s posebej lepimi lastnostmi. Da bi jo definirali, potrebujemo nekaj definicij.

Množica S naj bo delno urejena z relacijo R in naj bo  $U \subseteq S$ .

Če obstaja tak  $a \in S$ , da za vsak  $x \in U$  velja aRx, potem je a R-spodnja meja za U.

Če obstaja tak  $b \in S$ , da je xRb za vsak  $x \in U$ , potem je b R-zgornja meja za U.

Če ima U kakšno R-spodnjo mejo, potem je U R-navzdol omejena.

Če ima *U* kakšno *R*-zgornjo mejo, potem je *U R*-navzgor omejena.

Če ima *U* kakšno *R*-zgornjo mejo in kakšno *R*-spodnjo mejo, potem je *U R-omejena*.

 $a \in S$  je R-največja spodnja meja (R-infimum) podmnožice  $U \Leftrightarrow a$  je R-spodnja meja in za vsako R-spodnjo mejo x za U velja xRa.

Oznaka: a = R-inf U.

 $b \in S$  je R-najmanjša zgornja meja (R-supremum) podmnožice  $U \Leftrightarrow b$  je R-zgornja meja in za vsako R-zgornjo mejo x za U velja bRx.

Oznaka: b = R-sup U.

### Zgled

Vzemimo množico  $S = \mathcal{P}(\{1,2,3\}) \setminus \{\emptyset\}$ , delno urejeno glede na relacijo inkluzije,  $R = \subseteq$ .

Za podmnožice  $U_1 = \{\{1,2\}, \{1,3\}\}, U_2 = \{\{1,2\}, \{1,3\}, \{2,3\}\}$  in  $U_3 = \{\{2\}, \{3\}\}$  in elemente  $a = \{1\}, b = \{1,2,3\}$  in  $c = \{2,3\}$  velja:

- Množica  $U_1$  ima eno samo spodnjo mejo, a, in eno samo zgornjo mejo, b. Posledično je  $\subseteq$ -inf  $U_1 = a$  in  $\subseteq$ -sup  $U_1 = b$ .
- Množici  $U_2$  in  $U_3$  nimata nobene spodnje meje, torej nista navzdol omejeni (in posledično nimata infimuma).
- Množica  $U_2$  ima eno samo zgornjo mejo, b, zato je  $\subseteq$ -sup  $U_2 = b$ .
- Množica  $U_3$  ima dve zgornji meji, b in c, in  $\subseteq$ -sup  $U_3 = c$ .



Zaradi antisimetričnosti ima vsak  $U\subseteq S$  kvečjemu en R-sup in kvečjemu en R-inf.

Lahko ju pa nima (tudi če je omejena)!

# Zgled

$$S = \mathbb{Q}$$
,  $R = \leq$ 

$$U = \{x : x \in \mathbb{Q} \land 0 \le x \land x^2 \le 2\}$$

Množica U je navzdol in navzgor omejena! inf U = 0, sup U pa ne obstaja!

$$V = \{x : x \in \mathbb{Q} \land 0 \le x \land 2 \le x^2 \le 5\}$$

Množica V je omejena, ne obstajata pa niti infV niti sup V.

**Definicija.** Množica S ima strukturo mreže glede na relacijo  $R \Leftrightarrow R$  delno ureja S in vsaka dvoelementna podmnožica  $X \subseteq S$  ima tako R-supremum kot R-infimum.

Opomba: Strukturo mreže je moč definirati tudi povsem algebraično.

# Zgledi mrež:

- 1. A množica
  - $\mathcal{P}(A)$  potenčna množica
  - $\mathcal{P}(A)$  je mreža glede na  $R=\subseteq$ :
    - delna urejenost √
    - $E, F \subseteq A, E \neq F$ :  $\inf\{E, F\} = E \cap F$  $\sup\{E, F\} = E \cup F$
- 2. Naj R linearno ureja S.
  - delna urejenost √
  - $a, b \in S, a \neq b \Rightarrow aRb$  ali bRa  $aRb \Rightarrow R-\inf\{a, b\} = a, R-\sup\{a, b\} = b.$  $bRa \Rightarrow R-\inf\{a, b\} = b, R-\sup\{a, b\} = a.$
- 3.  $S = \mathbb{N} \setminus \{0\}$ , R = | (relacija deljivosti).
  - delna urejenost √

•  $x,y \in \mathbb{N} \setminus \{0\}, x \neq y$   $\inf\{x,y\} = \text{največji skupni delitelj } x \text{ in } y$  $\sup\{x,y\} = \text{najmanjši skupni večkratnik } x \text{ in } y$  Še nekaj zgledov s Hassejevimi diagrami:



V mreži ima tudi vsaka <u>končna</u> neprazna podmnožica množice *S* infimum in supremum!

**Trditev.** Naj ima S strukturo mreže glede na R. Tedaj za vsake tri elemente  $a_1, a_2, a_3 \in S$  velja

$$R$$
-inf $\{a_1, a_2, a_3\} = R$ -inf $\{R$ -inf $\{a_1, a_2\}, a_3\}$ .

Dokaz. Naj bo  $a = R - \inf\{R - \inf\{a_1, a_2\}, a_3\}.$ 

a je spodnja meja množice  $\{a_1, a_2, a_3\}$ :

 $aRa_3$ , saj je a spodnja meja množice  $\{R\text{-}\inf\{a_1,a_2\},a_3\}$ .

Podobno je  $aR(R-\inf\{a_1,a_2\})$ , ker pa je  $(R-\inf\{a_1,a_2\})Ra_1$  in je R tranzitivna, je  $aRa_1$ . Podobno je tudi  $aRa_2$ .

a je največja spodnja meja množice  $\{a_1, a_2, a_3\}$ :

Naj bo x poljubna spodnja meja množice  $\{a_1, a_2, a_3\}$ . Torej je  $xRa_1, xRa_2$  in  $xRa_3$ .

$$xRa_1, xRa_2 \Rightarrow xR(R-\inf\{a_1, a_2\}).$$
  
 $xR(R-\inf\{a_1, a_2\}) \land xRa_3 \Rightarrow xRa.$ 

Podobno za supremum. Postopek lahko ponavljamo in pokažemo obstoj infimuma in supremuma poljubne končne neprazne množice.

**Posledica.** Če je S mreža glede na R, ima vsaka <u>končna</u> neprazna množica R- inf in R- sup.

Obstoj infimuma in supremuma pa moremo zahtevati tudi za *vse* neprazne podmnožice (ne le za končne):

**Definicija.** Množica S ima strukturo polne mreže glede na relacijo  $R \Leftrightarrow R$  delno ureja množico S in <u>vsaka</u> neprazna podmnožica X množice S ima R-inf in R-sup.

Očitno je vsaka polna mreža tudi mreža glede na isto relacijo *R*. Vsaka končna mreža pa je tudi polna mreža.

# Zgled

*A* – poljubna množica

 $\mathcal{P}(A)$  je polna mreža za  $\subseteq$ :

Če je  $\mathcal{A}$  neprazna družina podmnožic množice A, potem je

$$(\subseteq)$$
- inf  $\mathcal{A} = \cap \mathcal{A}$ 

in

$$(\subseteq)$$
- sup  $\mathcal{A} = \cup \mathcal{A}$ .

Množica realnih števil  $\mathbb R$  ni polna mreža glede na  $\leq$ : cela množica  $\mathbb R$  namreč ni omejena! (nima ne supremuma ne infimuma)

Množico realnih števil lahko dopolnemo do polne mreže, tako da ji dodamo elementa  $\infty$  in  $-\infty$ , s pravilom  $x \le \infty$  za vse  $x \in \mathbb{R}$  in  $-\infty \le x$  za vse  $x \in \mathbb{R}$ .

Slika 1 prikazuje Hassejev diagram 9 struktur urejenosti, ki smo jih spoznali.

# 3.5.2 Dobra urejenost

Prav tako kakor množica realnih števil  $\mathbb R$  je tudi množica naravnih števil  $\mathbb N$  z relacijo "<" strogo linearno urejena. Ima pa še dodatno lastnost:

V vsaki neprazni podmnožici naravnih števil obstaja najmanjši element! Primer:

• V množici vseh naravnih števil je tak element kar element o.



Slika 1: Hassejev diagram 9 struktur urejenosti, ki smo jih spoznali. Relacijo interpretiramo kot:  $xRy \Leftrightarrow x$  je poseben primer y.

V množici vseh praštevil je najmanjši element število 2.

Množica realnih števil pa take lastnosti nima!

- množica R nima najmanjšega elementa
- množica  $\{x : x \in \mathbb{R} \land x > 0\}$  tudi ne

Lastnosti, da ima vsaka neprazna množica najmanjši element, pravimo dobra urejenost.

R – relacija na množici S (običajno delna ali stroga delna urejenost)

- $a \in S$  je minimalen element množice S glede na relacijo R (ali R-minimalen element množice S)  $\Leftrightarrow$   $(\forall y)(y \in S \land y \neq a \Rightarrow \neg(yRa))$
- $b \in S$  je *prvi element* množice S glede na relacijo R (ali R-prvi element množice S)  $\Leftrightarrow$   $(\forall y)(y \in S \land y \neq b \Rightarrow bRy)$

Spomnimo se terminologije:

xRy in  $x \neq y$ : "x je pod y"

Noben element množice S ni pod minimalnim elementom. Prvi element je pod vsakim drugim elementom. • Vsak element, ki ni primerljiv z nobenim drugim, je minimalen.

# Zgled - prvi in minimalni elementi

Delni urejenosti R in T sta podani z naslednjima Hassejevima diagramoma:



Trditev. Naj bo R antisimetrična. Potem je vsak R-prvi element tudi R-minimalen.

Dokaz. S protislovjem. Recimo, da obstaja nek R-prvi element b, ki ni R-minimalen.

*b* ni *R*-minimalen:

$$\neg(\forall y)(y \in S \land y \neq b \Rightarrow \neg(yRb))$$
  
\Rightarrow (\Begin{aligned} \Begin{aligned} \Gamma \eta & y \neq b \leq & yRb \end{aligned}

Ker je b R-prvi, velja bRy. Ker pa je R antisimetrična, iz  $bRy \wedge yRb$  sledi y = b. To pa je protislovje z dejstvom  $y \neq b$ .

**Trditev.** Naj bo R sovisna. Potem je vsak R-minimalen element tudi R-prvi.

*Dokaz.* 
$$x$$
 je  $R$ -minimalen za  $S \Rightarrow (\forall y)(y \in S \land y \neq x \Rightarrow \neg(yRx))$   
Sovisnost:  $y \neq x \land \neg(yRx) \Rightarrow xRy$   
Posledično:  $(\forall y)(y \in S \land y \neq x \Rightarrow xRy)$   
Torej je  $x$   $R$ -prvi element. □

**Definicija.** R dobro ureja  $S \Leftrightarrow R$  je sovisna, irefleksivna in  $(\forall X)(X \subseteq S \land X \neq \emptyset \Rightarrow X \text{ ima } R\text{-minimalen element})$ 

**Trditev.** R dobro ureja  $S \Rightarrow R$  strogo linearno ureja S.

*Dokaz*. Pokazati je treba, da je *R* tranzitivna, asimetrična in sovisna. Sovisnost sledi iz definicije dobre urejenosti.

Asimetričnost: Recimo, da velja xRy in yRx. Ker je R irefleksivna, je  $y \neq x$ . Potem pa množica  $\{x,y\}$  nima R-minimalnega elementa:

- $xRy \Rightarrow y$  ni R-minimalen
- $yRx \Rightarrow x$  ni R-minimalen

R je torej asimetrična.

Tranzitivnost dokažemo podobno: Recimo, da velja

$$xRy \wedge yRz \wedge \neg(xRz)$$
.

Ker je R irefleksivna, sledi  $x \neq y$  in  $y \neq z$ . Če je x = z, potem velja  $xRy \wedge yRx$ , kar je v protislovju z asimetričnostjo (ki smo jo že dokazali). Torej  $x \neq z$ . Množica  $\{x, y, z\}$  ima R-minimalen element, vendar:

- ta element ni y, saj velja  $xRy \land x \neq y$ ,
- ta element ni z, saj velja  $yRz \wedge y \neq z$ .

Sledi: R-minimalen element množice  $\{x, y, z\}$  je x. Ker  $z \neq x$ , iz sovisnosti in  $\neg(xRz)$  sledi zRx. To pa je protislovje z dejstvom, da je x minimalen element. R je torej tranzitivna.

Iz zgornjih trditev sledi:

**Posledica.** Naj R dobro ureja S. Potem za vse  $x \in S$  velja:

x je R-prvi  $\Leftrightarrow x$  je R-minimalen .

Velja tudi enoličnost:

**Trditev.** Naj relacija R dobro ureja neprazno množico X. Potem v množici X eksistira en sam R-prvi (ali R-minimalen) element.

*Dokaz.* Recimo, da obstajata dva različna R-prva elementa x in y. Potem velja xRy (ker je x R-prvi in  $x \neq y$ ) in podobno yRx. To pa je protislovje z asimetričnostjo!

Glede na zgornje trditve lahko dobro urejenost definiramo tudi s pomočjo *R*-prvih elementov:

**Posledica.** R dobro ureja S natanko takrat, ko je R sovisna, asimetrična in velja:  $(\forall X)(X \subseteq S \land X \neq \emptyset \Rightarrow X \text{ ima } R\text{-prvi element}).$ 

Pojem dobre urejenosti je pomemben zato, ker posploši urejenost < na množici naravnih števil. Tudi princip popolne indukcije se da posplošiti na dobro urejene množice (to je t.i. *transfinitna indukcija*).

#### Neposredni naslednik. Zadnji element.

V naravnih številih, urejenih glede na relacijo "<", ima vsako število svojega (enolično določenega) neposrednega naslednika. Kaj pa karakterizira neposrednega naslednika *y* danega števila *x*?

- x < y</li>
- za vsako drugo naravno število z, za katerega je tudi x < z, mora veljati hkrati y < z.

Naj relacija R dobro ureja množico S. Element y je *neposredni naslednik* elementa  $x \Leftrightarrow xRy$  in  $(\forall z)(z \in S \land z \neq y \land xRz \Rightarrow yRz)$ .

Vsaka končna neprazna podmnožica naravnih števil ima poleg prvega tudi *zadnji element*. To je pač tisto število te množice, imenujmo ga x, s katerim je vsako drugo število y v relaciji y < x.

Definicijo posplošimo:

Naj R dobro ureja S in naj bo  $X \subseteq S$ . Element  $x \in X$  je R-zadnji element množice  $X \Leftrightarrow (\forall y)(y \in X \land y \neq x \Rightarrow yRx)$ .

**Trditev.** Naj R dobro ureja S in naj bo  $x \in S$ . Če x ni R-zadnji element množice S, potem ima x natanko enega neposrednega naslednika.

Dokaz. Oglejmo si množico

$$X = \{z ; z \in S \land xRz\}.$$

Ker x ni R-zadnji, je množica X neprazna. Množica X ima zato natanko en R-prvi element y. Dokažimo, da je y neposredni naslednik x:

- Ker je  $y \in X$ , je xRy.
- Če pa je  $z \in S$  tak element, da je xRz in  $z \neq y$ , potem je yRz (ker je  $z \in X$  in je y R-prvi element množice X).

y je tudi edini neposredni naslednik elementa x:

Recimo, da obstaja  $z \neq y$ , ki je neposredni naslednik elementa x. Ker je xRz, je  $z \in X$ .

Ker je y R-prvi element množice X,  $z \in X \land z \neq y$ , je tudi yRz. To pa je protislovje z definicijo neposrednega naslednika x.

Definiciji neposrednega naslednika in *R*-zadnjega elementa lahko vpeljemo tudi za splošne delno urejene in strogo delno urejene množice. Vendar analog zgornje trditve v splošnem ne drži:



Tudi v strogo linearno urejenih množicah se lahko zgodi, da nek element nima nobenega neposrednega naslednika. V množici realnih števil  $\mathbb R$  število 0 (kot tudi katerokoli drugo realno število) nima nobenega neposrednega naslednika glede na relacijo "<" (čim je 0 < y, za število z = y/2

velja  $z \neq y$ , 0 < z, vendar pa  $\neg (y < z)$ ). Podobno velja tudi za relacijo "<" na množici racionalnih števil  $\mathbb{Q}$ .

Pojem neposrednega predhodnika definiramo podobno kot pojem neposrednega naslednika. Vendar pa analogna trditev za dobro urejenost R, ki pravi, da ima vsak element x, ki ni R-prvi, natanko enega neposrednega predhodnika, ne drži!

## Zgled

Naj bo  $S = \mathbb{N} \cup \{\infty\}$ . Za R pa vzemimo običajno urejenost < na  $\mathbb{N}$ , razširjeno s pravilom  $n < \infty$  za vse  $n \in \mathbb{N}$ . Tedaj R dobro ureja S. Vendar pa element  $\infty$  nima nobenega neposrednega predhodnika.

Zaključimo poglavje o strukturah urejenosti s Hassejevim diagramom 10 struktur urejenosti, ki smo jih spoznali. Ob vsaki strukturi je naveden zgled modela strukture.



x je pod  $y \Leftrightarrow x$  je poseben primer y

- 3.6 TODO: GRAFI
- 3.7 PREGLED NAJPOMEMBNEJŠIH POJMOV IN NEKAJ NALOG

### 3.7.1 (Binarne) relacije

Ključni pojmi:

- Binarne relacije:  $R = \{(x, y); xRy\} \subseteq S \times S$ .
- Unija, presek, razlika relacij.
- Domena binarne relacije, zaloga vrednosti binarne relacije.
- Inverzna relacija. Kompozitum relacij.
- Refleksivnost, irefleksivnost, simetričnost, asimetričnost, antisimetričnost, tranzitivnost, intranzitivnost, sovisnost, stroga sovisnost.
- Ekvivalenčna relacija. Faktorska množica *S/R*.

**Naloga.** V množico  $A = \{a, b, c, d, e, f\}$  vpeljemo relaciji  $R = \{(a, c), (a, d), (d, e), (e, a)\}$  in  $S = \{(a, c), (a, f), (d, c), (f, d)\}$ .

- (a) Ali je relacija  $(R \circ R) \cap S$  irefleksivna?
- (b) Ali je relacija  $S \circ R$  sovisna?
- (c) Ali je relacija  $S \cup (S \circ S)$  tranzitivna?
- (d) Ali je relacija  $S^{-1} \cup R$  simetrična?

#### Rešitev:

(a) 
$$R \circ R = \{(a,e), (d,a), (e,c), (e,d)\}.$$

Sledi  $(R \circ R) \cap S = \emptyset$ . To pa je irefleksivna relacija.

(b) 
$$S \circ R = \{(a,c), (e,c), (e,f)\}$$

Ta relacija ni sovisna, saj  $(a,b) \notin S \circ R$   $(b,a) \notin S \circ R$ .

(c) 
$$S \circ S = \{(a,d), (f,c)\}.$$

$$S \cup (S \circ S) = \{(a,c), (a,d), (a,f), (d,c), (f,d), (f,c)\}.$$

Ta relacija je tranzitivna, saj velja  $x(S \cup (S \circ S))y \wedge y(S \cup (S \circ S))z \Rightarrow x(S \cup (S \circ S))y$ .

(d) 
$$S^{-1} = \{(c,a), (f,a), (c,d), (d,f)\}$$
.

$$S^{-1} \cup R = \{(c,a), (f,a), (c,d), (d,f), (a,c), (a,d), (d,e), (e,a)\}$$
. Relacija ni simetrična, saj je  $(f,a) \in S^{-1} \cup R$  in  $(a,f) \notin S^{-1} \cup R$ .

#### 3.7.2 Funkcije

# Ključni pojmi:

• funkcija = enolična binarna relacija:

$$(\forall x)(\forall y)(\forall z)(xRy \land xRz \Rightarrow y = z).$$

- Surjektivnost. Injektivnost. Slika podmnožice *U* pri preslikavi *f* .
- Inverzna relacija funkcije. Praslike.
- Kompozitum funkcij.
- Zožitve in razširitve.
- Kanonična dekompozicija funkcije.

**Naloga.** *Naj bo A* = {1,2,3,4},  $B = \{x, y, z\}$ ,  $C = \{a, b\}$ . *Dani sta funkciji f* :  $A \rightarrow B$  *in g* :  $B \rightarrow C$ .

$$f = \{(1, x), (2, y), (3, y), (4, x)\}$$

$$g = \{(x, a), (y, b), (z, b)\}$$

- (a) Ali je f injektivna?
- (b) Ali je f surjektivna?
- (c) Ali je g injektivna?
- (d) Ali je g surjektivna?
- (e) Ali je  $g \circ f$  surjektivna?
- (f) Zapiši množici  $f^{-1}(\{x,z\})$  in  $g(\{x,z\})$ .
- (g) Zapiši kanonično dekompozicijo funkcije f.

#### Rešitev:

- (a) Ne, saj je f(1) = f(4).
- (b) Ne, saj  $z \notin \mathcal{Z}f$ .

- (c) Ne, saj je g(y) = g(z).
- (d) Da.
- (e)  $g \circ f = \{(1, a), (2, b), (3, b), (4, a)\}$ . Da,  $g \circ f$  je surjektivna.
- (f)  $f^{-1}(\{x,z\}) = \{1,4\}, g(\{x,z\}) = \{a,b\}.$

# 3.7.3 Strukture urejenosti

### Ključni pojmi:

- Tranzitivnost, navidezna urejenost, šibka urejenost, delna urejenost, linearna urejenost, stroga delna urejenost, stroga linearna urejenost.
- Dobra urejenost. Mreža. Polna mreža.
- Hassejev diagram.
- *R*-prvi element. *R*-minimalni element. Neposredni naslednik. Zadnji element.
- *R*-spodnja meja, *R*-zgornja meja, *R*-navzdol omejena množica, *R*-navzgor omejena množica, *R*-omejena množica, *R*-infimum (največja spodnja meja), *R*-supremum (najmanjša zgornja meja).

**Naloga.** Množica  $S = \{1, ..., 5\}$  je strogo delno urejena z naslednjo relacijo R:



- (a) Zapišite vse urejene pare, ki tvorijo relacijo R.
- (b) Poiščite vse minimalne in maksimalne elemente.
- (c) Ali ima množica S prvi element? Ali ima množica S zadnji element?
- (d) Ali je množica S dobro urejena?

#### Rešitev:

- (a)  $R = \{(5,2), (5,1), (4,2), (4,1), (5,3), (4,1), (2,1), (3,1)\}.$
- (b) Noben element ni pod elementoma 4 in 5, torej sta 4 in 5 minimalna elementa. Maksimalen element pa je samo eden: 1.

- (c) Množica *S* nima prvega elementa. Elementa 4 in 5 sta sicer minimalna, vendar nobeden od njiju ni pod drugim. Množica *S* pa ima zadnji element: to je element 1, saj so vsi drugi elementi pod njim.
- (d) Ne, saj ni sovisna: Elementa 2 in 3 nista primerljiva:  $(2,3) \notin R$ ,  $(3,2) \notin R$ .

**Opomba:** Naj relacija R strogo delno ureja množico S. Tedaj je  $x \in S$  minimalni element natanko tedaj, ko  $x \notin \mathcal{Z}R$ .

 $(ZR = zaloga \ vrednosti \ relacije \ R = množica \ vseh \ drugih \ koordinat).$ 

 $x \in S$  pa je maksimalen element natanko tedaj, ko  $x \notin \mathcal{D}R$ .

(DR = domena relacije R = množica vseh prvih koordinat).

# 4 VELIKOST MNOŽIC

Kdaj imata dve končni množici enako mnogo elementov?

Odstranimo iz vsake množice po en element in postopek ponavljamo. Množici imata enako mnogo elementov natanko tedaj, kadar se pri tem postopku sočasno "izčrpata". Na ta način smo poiskali bijektivno preslikavo med množicama.

# 4.1 EKVIPOLENTNE MNOŽICE

Množica A je *ekvipolentna* množici B natanko takrat, ko obstaja vsaj ena bijektivna preslikava množice A na množico B.

Oznaka:

$$A \sim B$$
.

Pravimo tudi, da imata množici A in B isto moč.

# **Zgled**

```
2\mathbb{N} = \{0, 2, 4, \ldots\}, \quad \mathbb{N} = \{0, 1, 2, \ldots\}
 f: 2\mathbb{N} \to \mathbb{N}, f(2n) = 2n, ni bijektivna preslikava.
 g: 2\mathbb{N} \to \mathbb{N}, g(2n) = n, pa je! Torej sta množici ekvipolentni.
```

# Zgled

Dana je množica X. Naj bo  $\{0,1\}^X$  množica vseh funkcij oblike  $f: X \to \{0,1\}$ . Potem je  $\{0,1\}^X \sim \mathcal{P}(X)$ .

Res: Oglejmo si preslikavo  $F:\{0,1\}^X \to \mathcal{P}(X)$ , definirano s predpisom

$$F(f) = f^{-1}(1) = \{x \in X : f(x) = 1\}$$

za vse  $f \in \{0,1\}^X$ . Preslikava F je bijektivna preslikava množice  $\{0,1\}^X$  na množico  $\mathcal{P}(X)$ :

• injektivnost:

Pokazali bomo  $(\forall f, g \in \{0,1\}^X) (f \neq g \Rightarrow F(f) \neq F(g)).$ 

Vzemimo različni funkciji f in g iz  $\{0,1\}^X$ . Ker velja  $\mathcal{D}f = \mathcal{D}g = X$ , funkciji pa sta različni, obstaja tak  $x \in X$ , da velja  $f(x) \neq g(x)$ .

Če je f(x) = 1, potem je g(x) = 0 in je  $x \in f^{-1}(1) \setminus g^{-1}(1) = F(f) \setminus F(g)$ , torej  $F(f) \neq F(g)$ .

Če pa je f(x) = 0, potem je g(x) = 1 in je  $x \in g^{-1}(1) \setminus f^{-1}(1) = F(g) \setminus F(f)$ , torej spet  $F(f) \neq F(g)$ .

V vsakem primeru je torej  $F(f) \neq F(g)$ .

surjektivnost:

Naj bo  $A \in \mathcal{P}(X)$ . Tedaj je očitno  $F(\chi_A) = A$ , kjer je  $\chi_A : X \to \{0,1\}$ , **karakteristična funkcija** množice A, definirana s predpisom

$$\chi_A(x) = \begin{cases} 1, & \text{\'e je } x \in A; \\ 0, & \text{\'e je } x \notin A. \end{cases}$$

# Lastnosti ekvipolentne relacije

- $A \sim A$  (refleksivnost) (identiteta  $i: A \rightarrow A$  je bijektivna)
- $A \sim B \Rightarrow B \sim A$  (simetričnost) (inverz bijektivne preslikave je bijektivna preslikava!

Če je  $f: A \stackrel{bij.}{\rightarrow} B$ , potem je  $f^{-1}: B \stackrel{bij.}{\rightarrow} A$ )

•  $A \sim B$  in  $B \sim C \Rightarrow A \sim C$  (tranzitivnost)

(Kompozitum bijektivnih preslikav je bijektivna preslikava!

Če je 
$$f: A \xrightarrow{bij.} B$$
 in  $g: B \xrightarrow{bij.} C$ , potem je  $g \circ f: A \xrightarrow{bij.} C$ )

Relacija ekvipolence  $\sim$  je torej ekvivalenčna relacija!

$$A \sim B \text{ in } C \sim D \text{ in } A \cap C = \emptyset \text{ in } B \cap D = \emptyset \implies A \cup C \sim B \cup D$$

*Dokaz.* Naj bo  $f: A \xrightarrow{bij.} B$  in  $g: C \xrightarrow{bij.} D$ .

Definirajmo  $h:A\cup C\to B\cup D$  s predpisom

$$h(x) = \begin{cases} f(x), & \text{\'e je } x \in A; \\ g(x), & \text{\'e je } x \in C. \end{cases}$$

Preslikava h je bijektivna preslikava množice  $A \cup C$  na množico  $B \cup D$ , vsak element iz množice  $B \cup D$  je namreč slika natanko enega elementa iz množice  $A \cup C$ .

$$A \sim B \text{ in } C \sim D \implies A \times C \sim B \times D$$

*Dokaz.* Naj bo  $f: A \xrightarrow{bij.} B$  in  $g: C \xrightarrow{bij.} D$ .

Definirajmo  $h: A \times C \rightarrow B \times D$  s predpisom

$$h(x,y) = (f(x), g(y)).$$

Preslikava h je bijektivna preslikava množice  $A \times C$  na množico  $B \times D$ :

• injektivnost:

$$h(x,y) = h(x',y') \Rightarrow (f(x),g(y)) = (f(x'),g(y')) \Rightarrow f(x) = f(x') \text{ in } g(y) = g(y')$$
  
 
$$\Rightarrow x = x' \text{ in } y = y' \Rightarrow (x,y) = (x',y')$$

• surjektivnost:

Naj bo  $(b,d) \in B \times D$ . Ker sta f in g surjektivni, obstajata taka elementa  $a \in A$  in  $c \in C$ , da velja f(a) = b in g(c) = d. Torej je (b,d) = (f(a),g(c)) = h(a,c).

$$A \times B \sim B \times A$$

*Dokaz.* Definirajmo  $f: A \times B \rightarrow B \times A$  s predpisom

$$f(x,y) = (y,x).$$

Preslikava *f* je bijektivna:

• injektivnost:

$$f(x,y) = f(x',y') \Rightarrow (y,x) = (y',x') \Rightarrow y = y' \text{ in } x = x' \Rightarrow (x,y) = (x',y').$$

• surjektivnost:  $(b, a) \in B \times A$  je slika elementa (a, b).

Brez dokaza navedimo še nekaj lastnosti:

- 1.  $(A \times B) \times C \sim A \times (B \times C)$ .
- 2.  $A \times \{a\} \sim A$ .
- 3. Poljubnima dvema množicama X in Y lahko vedno priredimo dve *disjunktni* množici U in V, tako da velja  $X \sim U$  in  $Y \sim V$ .

Res: 
$$U = X \times \{\emptyset\}, V = Y \times \{\{\emptyset\}\}.$$

4. Spomnimo se, da s simbolom  $A^B$  označujemo množico vseh funkcij iz množice B v množico A.

$$A \sim C \text{ in } B \sim D \implies A^B \sim C^D.$$

Domača naloga: Dokažite lastnosti 1. in 2. V razmislek: Kako bi dokazali 4. lastnost?

# 4.2 PRIMERLJIVOST MNOŽIC

Ali bi lahko nad množicami definirali relacije, podobne relacijam  $\leq$ , <,  $\geq$ , >? Ali je možno množice smiselno primerjati med seboj glede na množino njihovih elementov?

Naj bosta *A* in *B* poljubni množici. V poštev pridejo naslednje štiri logične možnosti:

П

- (1) Množica A ima vsaj eno podmnožico  $A_1$ , ki je ekvipolentna množici B, množica B pa nima nobene podmnožice, ki bi bila ekvipolentna množici A.
- (2) Množica B ima vsaj eno podmnožico  $B_1$ , ki je ekvipolentna množici A, množica A pa nima nobene podmnožice, ki bi bila ekvipolentna množici B.
- (3) Množica A ima vsaj eno podmnožico  $A_1$ , ki je ekvipolentna množici B, množica B pa ima vsaj eno podmnožico  $B_1$ , ki je ekvipolentna množici A.
- (4) Množica *A* nima nobene podmnožice, ki bi bila ekvipolentna množici *B*, množica *B* pa nima nobene podmnožice, ki bi bila ekvipolentna množici *A*.
  - (1): Pravimo, da ima množica A večjo moč kot množica B.
  - (2): Množica *B* ima *večjo moč* kot množica *A*.
  - (1): A > B, (2): B > A

Neposredno iz definicije sledi, da je relacija > irefleksivna, asimetrična in tranzitivna (je torej stroga delna urejenost)!

- A ≯ A
- $A > B \Rightarrow B \not> A$
- A > B in  $B > C \Rightarrow A > C$

Če je B > A, potem zapišemo tudi A < B in pravimo, da ima množica A manjšo moč kot množica B.

$$A < B \Leftrightarrow B > A$$
.

Primer (3) obravnava naslednji izrek.

Schröder-Bernsteinov izrek:

$$(3) \Rightarrow A \sim B$$
.

(Dokaz kasneje.)

Komentar: Očitno velja  $A \sim B \Rightarrow (3)$ . (Lahko vzamemo kar  $A_1 = A$ ,  $B_1 = B$ .) Schröder-Bernsteinov izrek pa trdi, da velja implikacija tudi v drugo smer.

Najbolj "problematičen" pa je primer (4):

(4): "A in B nista primerljivi niti glede na relacijo ekvipolence  $\sim$  niti glede na relacijo "ima večjo moč kot" >"

Brž ko sprejmemo aksiom izbire, pa ta možnost dejansko nikoli ne nastopi!

Aksiom izbire  $\Rightarrow$  Od poljubnih dveh množic A in B je vsaj ena izmed njiju ekvipolentna neki podmnožici druge.

(Brez dokaza. Za dokaz glej A.A. Fraenkel: Abstract Set Theory, North-Holland Publishing Company, Amsterdam 1953, str. 319–321.)

#### Zakon trihotomije:

Poljubni dve množici A in B sta primerljivi glede na njuno moč. Velja natanko ena izmed možnosti

$$A > B$$
,  $B > A$  ali  $A \sim B$ .

Velja:

Aksiom izbire ⇔ zakon trihotomije.

**Izrek** (Schröder-Bernsteinov izrek). Dani sta množici A in B. Naj ima množica A vsaj eno podmnožico  $A_1$ , ki je ekvipolentna množici B, množica B pa vsaj eno podmnožico  $B_1$ , ki je ekvipolentna množici A. Potem je

$$A \sim B$$
.

Schröder-Bernsteinov izrek lahko ekvivalentno formuliramo na naslednji način, z obstojem injektivnih in bijektivnih preslikav med množicama.

**Izrek.** Dani sta množici A in B. Če obstajata injektivni preslikavi  $f: A \to B$  in  $g: B \to A$ , potem obstaja tudi bijektivna preslikava  $h: A \to B$ .

*Dokaz.* Obstaja množica  $A_1 \subseteq A$ , da velja  $A_1 \sim B$ .

Obstaja množica  $B_1 \subseteq B$ , da velja  $B_1 \sim A$ .

Naj bosta  $f: A \rightarrow B_1$  in  $g: B \rightarrow A_1$  bijekciji.

Poiskali bomo taki podmnožici  $A_0 \subseteq A$  in  $B_0 \subseteq B$ , da bo  $f|_{A_0}: A_0 \to B_0$  bijekcija in  $g|_{B \setminus B_0}: B \setminus B_0 \to A \setminus A_0$  bijekcija.

Potem bo sledilo:

$$A = A_0 \cup (A \setminus A_0) \sim B_0 \cup (B \setminus B_0) = B$$

saj je 
$$A_0 \cap (A \setminus A_0) = \emptyset$$
 in  $B_0 \cap (B \setminus B_0) = \emptyset$ .

Priredimo najprej vsaki podmnožici X množice A neko podmnožico X' množice A, in sicer takole:

$$X' = A \setminus g(B \setminus f(X)).$$

Velja:

$$X_1 \subseteq X_2 \Rightarrow X_1' \subseteq X_2'$$
.

Res:

$$X_{1} \subseteq X_{2} \Rightarrow Y_{1} = f(X_{1}) \subseteq f(X_{2}) = Y_{2} \Rightarrow$$

$$\Rightarrow B \setminus Y_{2} \subseteq B \setminus Y_{1} \Rightarrow g(B \setminus Y_{2}) \subseteq g(B \setminus Y_{1}) \Rightarrow$$

$$\Rightarrow X'_{1} = A \setminus g(B \setminus Y_{2}) \subseteq A \setminus g(B \setminus Y_{1}) = X'_{2}.$$

Podmnožica  $Z \subseteq A$  je *izbrana podmnožica*, če je

$$Z \subseteq Z'$$
.

 $\emptyset$  je izbrana podmnožica množice A!

Naj bo  $A_0$  unija vseh izbranih podmnožic množice A!

Če je Z izbrana podmnožica, potem velja  $Z\subseteq A_0\Rightarrow Z'\subseteq A_0'\Rightarrow$ 

$$Z \subseteq Z' \subseteq A'_0$$
.

Torej je tudi  $A_0$  zajeta v  $A'_0$ :

$$A_0 \subseteq A'_0$$

 $A_0$  je torej izbrana podmnožica!

 $A_0 \subseteq A_0' \Rightarrow A_0' \subseteq (A_0')' \Rightarrow A_0'$  je izbrana podmnožica  $\Rightarrow A_0' \subseteq A_0$ . Dobimo torej

$$A_0 = A_0'.$$

S tem pa smo prišli do iskane množice  $A_0$ , ki jo funkcija f preslika bijektivno na množico  $B_0$ :

$$B_0 = f(A_0) \subset B$$
.

Funkcija g pa preslika množico  $B \setminus B_0$  bijektivno na množico  $A \setminus A_0$ :

$$g(B \setminus B_0) = g(B \setminus f(A_0)) = A \setminus A_0$$
,

saj je 
$$A_0 = A \setminus g(B \setminus f(A_0)).$$

Relacija > je stroga delna urejenost.

V razmislek: Privzemimo zakon trihotomije.

- Naj bo  $\gtrsim$  relacija na množicah, definirana s predpisom  $A \gtrsim B \Leftrightarrow (A > B \text{ ali } A \sim B)$ . Ali je ta relacija strogo sovisna? Ali je delna urejenost?
- Naj bo  $\geq$  relacija na množicah, definirana s predpisom  $A \geq B \Leftrightarrow (A > B \text{ ali } A = B)$ . Ali je ta relacija strogo sovisna? Ali je delna urejenost?

# 5 | KONČNE IN NESKONČNE MNOŽICE

Za definicijo (nes)končnih množic je več možnosti. Če privzamemo aksiom izbire, so vse te možnosti med seboj ekvivalentne.

(s ромоčіо NARAVNIH ŠTEVIL.) Dana množica *S* je končna tedaj in le tedaj, ko obstaja tako naravno število *n*, da ima ta množica natanko *n* elementov. Če množica ni končna, je neskončna.

#### Slabosti:

- Definicija sloni na pojmu naravnega števila.
- Za nekatere množice lahko prav gotovo trdimo, da so končne, pa čeprav ne poznamo natančnega števila njihovih elementov. Npr.: množica vseh knjig, natisnjenih na Zemlji do leta 2015, je prav gotovo končna.
- (PEIRCE IN DEDEKIND.) Dana množica *S* je neskončna tedaj in le tedaj, če ima vsaj eno pravo podmnožico, ki ji je ekvipolentna. Če množica ni neskončna, je končna.

To definicijo lepo ponazarja t.i. Hilbertov Veliki hotel:

V hotelu z neskončno mnogo sobami (oštevilčenimi zaporedoma z 1,2,3,...) je v vsaki sobi nek gost. V hotel pride še nekaj gostov. Ali jih lahko razporedimo v sobe?

# Oglejmo si dva primera:

- Pride končno mnogo gostov. Recimo, da jih pride 10.
   Gosta v sobi j premaknemo v sobo j + 10 za vse j = 1,2,3,...
   Novih 10 gostov pa razporedimo v sobe 1,2,...,10, ki so medtem postale proste.
- Pride neskončno mnogo gostov  $g_1, g_2, g_3, ...$ Gosta v sobi j premaknemo v sobo 2j za vse j = 1, 2, 3, ...

Nove goste pa razporedimo na naslednji način:

$$g_1 \mapsto 1$$

$$g_2 \mapsto 3$$

$$g_3 \mapsto 5$$

. . .

$$g_i \mapsto 2j-1$$

Pri prerazporejanju "starih" gostov smo uporabili dejstvi, da je

$$\{1,2,3,\ldots\} \sim \{1,2,3,\ldots\} \setminus \{1,\ldots,10\}$$
 in  $\{1,2,3,\ldots\} \sim \{2,4,6,\ldots\}$ .

Pri razporejanju neskončno mnogo novih gostov pa še dejstvo, da je  $\{1,2,3,\ldots\} \sim \{1,3,5,\ldots\}$ .

(TARSKI.) Minimalni element: a je minimalen element v S glede na relacijo R, če za noben drug element y te množice ne velja yRa.

Če je S poljubna množica, potem je vsaka družina njenih podmnožic z relacijo inkluzije  $\subseteq$  delno urejena. Glede na to relacijo pa ta družina lahko ali ima ali pa nima minimalnega elementa. Minimalni element je v tem primeru taka podmnožica, ki nima nobene druge podmnožice iz te družine za svojo podmnožico!

**Zgled:** 
$$A = \{1, 2, 3\}.$$

Družina  $\mathcal{D}_1=\{\{1\},\{1,2\},\{1,2,3\}\}$  ima en minimalen element: množico  $\{1\}$ .

Družina  $\mathcal{D}_2 = \{\{1\}, \{2\}, \{1,2\}, \{2,3\}\}$  ima dva minimalna elementa: množico  $\{1\}$  in množico  $\{2\}$ .

Vsaka neprazna družina podmnožic množice A ima vsaj en minimalen element glede na relacijo  $\subseteq$ .

**Zgled:** 
$$\mathbb{N}^+ = \{1, 2, 3, \ldots\}.$$

Za  $k \ge 1$  naj bo

$$\mathbb{N}_k = \mathbb{N}^+ \setminus \{1, 2, \dots, k\} = \{k+1, k+2, \dots\}.$$

Oglejmo si neprazno družino podmnožic

$$\mathcal{D} = \{\mathbb{N}_1, \mathbb{N}_2, \mathbb{N}_3, \ldots\}$$
.

Opazimo, da za vse  $k \ge 1$  velja  $\mathbb{N}_{k+1} \subseteq \mathbb{N}_k$ . Torej  $\mathcal{D}$  nima minimalnega elementa glede na  $\subseteq$ .

**Definicija Tarskega:** Dana množica S je končna tedaj in le tedaj, kadar ima vsaka neprazna družina podmnožic množice S vsaj en minimalen element glede na relacijo inkluzije " $\subseteq$ ". Če množica ni končna, je neskončna.

# 5.1 KONČNE MNOŽICE

#### **Primer:**

- Množica  $\{a,b\}$  je končna.
- Prazna množica ∅ je končna.

Očitno: Če je A končna množica in je  $B\subseteq A$ , potem je tudi B končna množica.

**Posledica.** Če je A končna množica in B poljubna množica, potem sta  $A \cap B$  in  $A \setminus B$  končni množici.

**Lema.** Če sta A in B končni množici, potem je tudi njuna unija  $A \cup B$  končna množica.

Brez dokaza. Iz zgornje leme sledi:

**Izrek.** Če je A končna množica, potem je tudi  $A \cup \{x\}$  končna množica.

**Izrek.** Vsaka neprazna družina podmnožic kakšne končne množice ima vsaj en maksimalen element glede na relacijo inkluzije  $\subseteq$ .

*Dokaz.* S protislovjem. Recimo, da obstajata končna množica A in taka neprazna družina  $\mathcal{D}$  podmnožic množice A, ki nima nobenega maksimalnega elementa glede na relacijo inkluzije  $\subseteq$ .

Oglejmo si družino

$$\mathcal{F} = \left\{ Z \; ; \; (Z = A \setminus X) \land X \in \mathcal{D} \right\}.$$

Ta družina očitno nima nobenega minimalnega elementa:

• Če bi bil  $Z \in \mathcal{F}$  minimalen element družine  $\mathcal{F}$ , potem bi bil  $X = A \setminus Z$  maksimalen element družine  $\mathcal{D}$ .

To pa je v protislovju s hipotezo, da je množica A končna.

**Izrek** (Princip indukcije). *Naj bo A končna množica in naj bo P lastnost, ki je smiselna za podmnožice množice A.* 

Če velja  $P(\emptyset)$  in če za vsak  $x \in A$  in za vsak  $X \subseteq A$  velja

$$P(X) \Rightarrow P(X \cup \{x\})$$
,

potem

$$P(A)$$
.

Dokaz. Naj bo

$$\mathcal{D} = \{X ; X \subseteq A \land P(X)\}.$$

Ta družina podmnožic je neprazna, saj je  $\emptyset \in \mathcal{D}$ . Torej ima  $\mathcal{D}$  vsaj en maksimalen element, označimo ga z M!

Če  $M \neq A$ , potem obstaja nek element  $x \in A \setminus M$ . Ker pa je P(M), po predpostavki sledi  $P(M \cup \{x\})$  in torej  $M \cup \{x\} \in \mathcal{D}$ . Ker je  $M \subset M \cup \{x\}$ , je to v nasprotju s predpostavko, da je M maksimalen.

Torej mora veljati 
$$M = A \Rightarrow A \in \mathcal{D} \Rightarrow P(A)$$
.

**Posledica.** Naj bo A končna množica in  $\mathcal{F}$  poljubna družina množic. Če velja  $\emptyset \in \mathcal{F}$  in če za vsak  $X \subseteq A$  in za vsak  $x \in A$  velja sklep

$$X \in \mathcal{F} \Rightarrow X \cup \{x\} \in \mathcal{F}$$
,

potem je  $A \in \mathcal{F}$ .

*Dokaz.* Uporabimo zgornji izrek za lastnost  $P(X) = "X \in \mathcal{F}"$ .

# Zgled:

Naj bo *A* končna množica, *f* pa funkcija, ki množico *A surjektivno* preslika na neko množico *B*. Potem je tudi *B* končna množica.

Res: naj bo 
$$\mathcal{F} = \{X \; ; \; X \subseteq A \land f(X) \; \text{končna} \}.$$
  $\emptyset \in \mathcal{F} \checkmark$ 

$$X \in \mathcal{F}, x \in A \Rightarrow f(X)$$
 končna  $\Rightarrow f(X \cup \{x\}) = f(X) \cup \{f(x)\}$  končna! Torej je  $A \in \mathcal{F}$  in zato  $f(A) = B$  končna množica.  $\checkmark$ 

**Poseben primer:** *f* je bijektivna:

• A končna in  $A \sim B \Rightarrow B$  končna.

#### Posledično:

• A neskončna in  $A \sim B \Rightarrow B$  neskončna.

Brez dokaza navedimo še nekaj zanimivih lastnosti končnih množic:

- A končna  $\Rightarrow \mathcal{P}(A)$  končna
- $\mathcal{D}$  končna družina končnih množic  $\Rightarrow \cup \mathcal{D}$  končna.
- A končna, B neskončna  $\Rightarrow A < B$
- A končna, B končna  $\Rightarrow A \times B$  končna

# 5.2 NESKONČNE MNOŽICE

Množica naravnih števil  $\mathbb N$  je neskončna, saj je  $\mathbb N \sim 2\mathbb N$ .

N – model množice, ki ustreza *Peanovim aksiomom*:

- 1.) V množici N obstaja nek element, ki ga označimo z o.
- 2.) Če  $x \in \mathbb{N}$ , potem obstaja natanko en element  $x' \in \mathbb{N}$ , ki ga imenujemo *neposredni naslednik* elementa x.
- 3.) Ne obstaja tak  $x \in \mathbb{N}$ , za katerega bi veljalo x' = 0.
- $4.) \ x'=y'\Rightarrow x=y.$
- 5.) Če je  $M\subseteq\mathbb{N}$  taka podmnožica, da velja (i)  $0\in M$  in (ii)  $(x\in M\Rightarrow x'\in M)$ , potem je  $M=\mathbb{N}$ .

#### **Primer:**

Množica

$$N = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}, \ldots\}.$$

je Peanova množica (množica, ki ustreza vsem petim Peanovim aksiomom)!

1. 
$$0 = \emptyset$$

2. 
$$A \in \mathbb{N} \Rightarrow A' = A \cup \{A\}$$
.

3. 
$$A \in N$$
,  $A' = A \cup \{A\} = \emptyset$  – nesmisel!

4. 
$$A \cup \{A\} = B \cup \{B\} \implies A = B$$

Če bi veljalo  $A \neq B$ , bi imeli  $A \in B$  in  $B \in A$ , kar pa ni možno zaradi aksioma regularnosti: Vsaka neprazna množica A ima vsaj en tak element x, da A in x nimata nobenega skupnega elementa.

Res: če je  $A \neq B$ , potem je  $A \in B \cap \{A, B\}$  in  $B \in A \cap \{A, B\}$ . Po aksiomu regularnosti pa mora biti  $A \cap \{A, B\} = \emptyset$  ali  $B \cap \{A, B\} = \emptyset$ .

5. Po konstrukciji: naj bo  $N' \subseteq N$  taka podmnožica, da velja  $0 \in N'$  in  $(A \in N' \Rightarrow A \cup \{A'\} \in N')$ . Potem je N' = N.

Na Peanovi množici

$$\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}, \ldots\}$$
.

lahko definiramo strukturo stroge linearne urejenosti! Postavimo A < B natanko tedaj, ko je množica A hkrati element in podmnožica množice B.

• Zgled:

Vsaka množica, ki je ekvipolentna množici naravnih števil, je *števno* neskončna.

Če je A števno neskončna množica, potem obstaja neka bijektivna preslikava  $f: \mathbb{N} \to A$ . Torej lahko množico A zapišemo kot

$$A = \{f(0), f(1), f(2), \ldots\}.$$

Izrek. Vsaka neskončna množica ima vsaj eno števno neskončno podmnožico.

Dokaz. Naj bo S neskončna množica in naj bo  $S' \subset S$  prava podmnožica, ekvipolentna množici S.

Naj bo  $f: S \to S'$  bijekcija.

Po predpostavki je  $S \setminus S' \neq \emptyset$ . Izberimo nek  $a_0 \in S \setminus S'$ .

$$a_1 = f(a_0) \in S' \subset S$$

$$a_2 = f(a_1) \in S' \subset S$$

$$a_3 = f(a_2) \in S' \subset S$$

itd.

Na ta način dobimo množico

$$A = \{a_0, a_1, a_2, \ldots\}$$
.

Pokažimo, da so vsi elementi  $a_0, a_1, a_2, \ldots$  med seboj različni.

Pa recimo, da niso. Naj bo j prvi indeks, da je  $a_i = a_j$  za nek i < j.

$$a_0 \in S \setminus S'$$
 in  $a_k \in S'$  za  $k \ge 1 \implies i \ne 0$ .

$$a_i = f(a_{i-1}), a_j = f(a_{j-1})$$

Ker je  $a_i = a_j$  in je f injektivna  $\Rightarrow a_{i-1} = a_{j-1}$ , to pa je protislovje z definicijo indeksa j.

Preslikava

$$g:A\to\mathbb{N}$$

$$g(a_i) = i$$

je torej bijekcija.

Sledi  $A \sim \mathbb{N}$ .

# 5.2.1 Lastnosti števno neskončnih množic

Kako iz danih števno neskončnih množic "pridelamo" nove števno neskončne množice?

(1.) Če je A končna množica, B števno neskončna množica in  $A \cap B = \emptyset$ , potem je njuna unija  $A \cup B$  števno neskončna.

$$A = \{a_1, \ldots, a_k\}, B = \{b_0, b_1, \ldots, b_i, \ldots\}$$

$$A \cup B = \{a_1, \ldots, a_k, b_0, b_1, \ldots, b_i, \ldots\}$$

$$f:A\cup B\to B$$

$$f(a_1) = b_0$$
  
 $f(a_2) = b_1$   
...  
 $f(a_k) = b_{k-1}$   
 $f(b_0) = b_k$   
 $f(b_1) = b_{k+1}$ 

Ta funkcija je očitno bijekcija!

Torej je množica  $A \cup B$  števno neskončna.

(2.) Če sta A in B števno neskončni množici z  $A\cap B=\emptyset$ , potem je njuna unija  $A\cup B$  števno neskončna množica.

$$A \cup B = \{a_0, b_0, a_1, b_1, \ldots\}$$

$$f : A \cup B \to A$$

$$f(a_0) = a_0$$

$$f(b_0) = a_1$$

$$f(a_1) = a_2$$

$$f(b_1) = a_3$$
...
$$f \text{ je bijekcija!}$$

Torej je množica  $A \cup B$  števno neskončna.

(3.) (nadaljevanje (2.))

Če množici A in B nista disjunktni, pa zapišemo unijo  $A \cup B$  kot unijo dveh disjunktnih množic:  $A \cup B = A \cup (B \setminus A)$ . Če je množica  $B \setminus A$  končna, uporabimo zgornji premislek, če pa je neskončna, potem je števno neskončna. V vsakem primeru je unija  $A \cup B$  števno neskončna množica.

V razmislek: Pokažite veljavnost naslednje trditve:

Vsaka neskončna podmnožica števno neskončne množice je števno neskončna.

Posledica:

 $A_1,\ldots,A_k$  množice, vsaka od njih je končna ali števno neskončna  $\Rightarrow A_1\cup\cdots\cup A_k$  je števno neskončna (če je le vsaj ena od  $A_i$  števno neskončna),

saj je

$$A_1 \cup \cdots \cup A_k = (\cdots ((A_1 \cup A_2) \cup A_3) \cup \cdots \cup A_k).$$

(4.) Danih je števno neskončno paroma disjunktnih števno neskončnih množic

$$A_1, A_2, A_3 \dots$$

Njihova unija je števno neskončna:



Funkcija

$$f: \cup_k A_k \to \mathbb{N}$$

definirana s predpisom:

$$f(a_1^1) = 0$$

$$f(a_1^2) = 1$$

$$f(a_2^1) = 2$$

$$f(a_3^1) = 3$$

$$f(a_2^2) = 4$$

$$f(a_1^3) = 5$$

. . .

je bijekcija!

Predpostavka, da so množice paroma disjunktne, ni bistvena. Če imajo te množice kakšne skupne elemente, potem preslikamo vsak tak element samo enkrat, namreč takrat, ko pride prvič na vrsto (pri nadaljnih pojavitvah pa ga preprosto izpustimo).

# 5.2.2 Zgledi števno neskončnih množic

*Množica celih števil*  $\mathbb{Z}$  je števno neskončna (saj je  $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N})$ ).

\_\_\_\_\_\_

Tudi *množica racionalnih števil* Q je števno neskončna!

Očitno je dovolj pokazati, da je množica pozitivnih racionalnih števil  $\mathbb{Q}_+$  števno neskončna, saj je  $\mathbb{Q}=\mathbb{Q}_-\cup\{0\}\cup\mathbb{Q}_+$  in je  $\mathbb{Q}_-\sim\mathbb{Q}_+$ .

Množico  $Q_+$  pa lahko zapišemo kot števno unijo števno neskončnih množic:

$$\mathbb{Q}_+ = A_1 \cup A_2 \cup \cdots$$

kjer je:

$$A_{1} = \{\frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \dots\},\$$

$$A_{2} = \{\frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \dots\},\$$

$$A_{3} = \{\frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \dots\},\dots$$

Algebraično število: tako kompleksno število x, ki je rešitev kake enačbe oblike

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0$$
,

kjer je  $n \in \mathbb{N}$ ,  $n \neq 0$ ,  $a_n \neq 0$  in  $a_i \in \mathbb{Z}$  za vse i. Tudi množica algebraičnih števil je števno neskončna. Zapišemo jo namreč lahko kot (števno neskončno) unijo končnih množic:

$$A_1 \cup A_2 \cup A_3 \cup \cdots$$
,

kjer je  $A_k$  množica vseh kompleksnih števil, ki so rešitve kakšne enačbe zgornje oblike, pri čemer za njene koeficiente velja  $n+|a_0|+|a_1|+\ldots+|a_n|\leq k$ . Vsaka množica  $A_k$  je končna, saj vsebuje le ničle kvečjemu  $(2k+1)^{k+1}$  polinomov stopnje  $\leq k$  s koeficienti iz množice  $\{-k,-(k-1),\ldots,k-1,k\}$ , vsak od takih polinomov pa ima  $\leq k$  ničel.

# 5.3 NEŠTEVNO NESKONČNE MNOŽICE

Množica realnih števil pa ni števno neskončna!

Pokažimo, da že množica realnih števil na intervalu

$$(0,1] = \{x : x \in \mathbb{R} \land 0 < x \le 1\}$$

ni števno neskončna.

 $x \in (0,1] \Rightarrow x$  se da zapisati v obliki neskončnega decimalnega števila

$$0, a_1a_2a_3\cdots$$

pri čemer se nikoli ne zgodi, da bi bila vsa števila od nekod naprej enaka o:

$$\frac{1}{2} = 0,5000 \cdots = 0,4999 \cdots$$
  
 $1 = 0,9999 \cdots$ 

Recimo, da je  $f : \mathbb{N} \to (0,1]$  bijekcija!

$$f(0) = 0, a_1^0 a_2^0 \cdots$$

$$f(1) = 0, a_1^{\bar{1}} a_2^{\bar{1}} \cdots$$

$$f(k) = 0, a_1^k a_2^k \cdots a_{k-1}^k$$

Definirajmo število  $b \in (0,1]$ , na naslednji način:

$$b=0,b_1b_2b_3\cdots$$

Če je  $a_1^0 \neq 1$ , naj bo  $b_1 = 1$ , če pa je  $a_1^0 = 1$ , naj bo  $b_1 = 2$ . Če je  $a_2^1 \neq 1$ , naj bo  $b_2 = 1$ , če pa je  $a_2^1 = 1$ , naj bo  $b_2 = 2$ .

Če je  $a_k^{k-1} \neq 1$ , naj bo  $b_k = 1$ , če pa je  $a_k^{k-1} = 1$ , naj bo  $b_k = 2$ .

Očitno je  $b \in (0,1]$  in

$$b \neq f(0)$$
 (saj  $b_1 \neq a_1^0 = (f(0))_1$ ),

$$b \neq f(1)$$
 (saj  $b_2 \neq a_2^1 = (f(1))_2$ ),

$$b \neq f(k)$$
 (saj  $b_{k+1} \neq a_{k+1}^k = (f(k))_{k+1}$ ).

Število b torej ni v zalogi vrednosti preslikave f. To pa je protislovje s surjektivnostjo!

Interval (0,1] torej ni števno neskončna množica (in zato tudi  $\mathbb R$  ni).

Pravkar podanemu argumentu pravimo "Diagonalni dokaz" (tudi diagonalizacija, diagonalni argument, ... Cantor, 1891).

# 5.4 PREGLED NAJPOMEMBNEJŠIH POJMOV IN NEKAJ NALOG

# Ključni pojmi:

- Relacija ekvipolence:  $A \sim B$ .
- Relacija > na množicah ("ima večjo moč kot").
- Schröder-Bernsteinov izrek: Množici A in B sta ekvipolentni, če je vsaka od njiju ekvipolentna neki podmnožici druge.
- Zakon trihotomije.
- Definicije končnih in neskončnih množic. (S pomočjo N; Peirce-Dedekind; Tarski.)
- Množica N, Peanovi aksiomi.
- Števno neskončne množice.
- Interval (0,1] ni števno neskončna množica; Cantorjev dokaz.
- $(0,1] \sim [0,1) \sim [0,1] \sim (0,1) \sim (-1,1) \sim \mathbb{R}$ .
- Kontinuum.  $\mathbb{R} > \mathbb{N}$ .
- Cantorjev izrek. Domneva kontinuuma.

**Naloga.** Pokažite, da ima množica vseh funkcij  $\{f : \mathbb{R} \to \mathbb{R}\}$  večjo moč kot  $\mathbb{R}$ .

**Rešitev:** Pokazali smo, da je potenčna množica poljubne množice X ekvipolentna množici  $\mathcal{C}(X)$  vseh funkcij  $f:X\to\{0,1\}$ . Po Cantorjevem izreku je torej

$$\mathcal{C}(\mathbb{R}) \sim \mathcal{P}(\mathbb{R}) > \mathbb{R} \,.$$

Torej ima že množica vseh funkcij  $f: \mathbb{R} \to \{0,1\}$  večjo moč od kontinuuma!

### **Dodatek**



### DODATNA POGLAVJA IZ TEORIJE MNOŽIC

#### A.1 AKSIOMI TEORIJE MNOŽIC (PO EDERTONU)

1. Aksiom ekstenzionalnosti (enakost množic)

$$\forall A \, \forall B \, [\forall x \, (x \in A \Leftrightarrow x \in B) \Rightarrow A = B]$$

2. Aksiom o prazni množici

$$\exists B \, \forall x \, (x \notin B)$$

3. Aksiom o paru

$$\forall u \, \forall v \, \exists B \, \forall x \, [x \in B \Leftrightarrow x = u \, \text{ali} \, x = v]$$

4. Aksiom o uniji

$$\forall A \exists B \forall x [x \in B \Leftrightarrow (\exists b \in B) x \in b]$$

5. Aksiom o potenčni množici

$$\forall a \,\exists B \,\forall x [x \in B \Leftrightarrow x \subseteq a]$$

6. Aksiomi o podmnožicah

Za vsako formulo  $\varphi$  o množicah, ki ne vsebuje črke B, je naslednji izraz aksiom:

$$\forall t_1 \cdots \forall t_k \, \forall c \, \exists B \, \forall x \, [x \in B \Leftrightarrow x \in c \, \land \, \varphi]$$

7. Aksiom neskončnosti

$$\exists A \left[ \emptyset \in A \land (\forall a \in A) \, a^+ \in A \right]$$

(Pri tem je  $a^+ = a \cup \{a\}$ .)

#### 8. Aksiom izbire

$$(\forall \text{ relacijo } R)(\exists \text{ funkcija } F)(F \subseteq R \land \mathcal{D}(F) = \mathcal{D}(R))$$

9. Aksiomi o zamenjavi

Za vsako formulo  $\varphi(x,y)$ , ki ne vsebuje črke B, je naslednji izraz aksiom:

$$\forall t_1 \cdots \forall t_k \, \forall A \, [(\forall x \in A) \, \forall y_1 \, \forall y_2 \, (\varphi(x, y_1) \land \varphi(x, y_2) \Rightarrow y_1 = y_2)$$
$$\Rightarrow \exists B \, \forall y \, [y \in B \Leftrightarrow (\exists x \in A) \, \varphi(x, y)]$$

10. Aksiom regularnosti

$$(\forall A \neq \emptyset) (\exists m \in A) (m \cap A = \emptyset)$$

#### A.2 AKSIOMI TEORIJE MNOŽIC (PO DUGUNDJIJU)

- 1. Aksiom individualnosti:  $(x \in A) \land (x = y) \Rightarrow y \in A$
- 2. Aksiom o formaciji razredov = Aksiom o podmnožicah po Endertonu
- 3. Aksiom o prazni množici
- 4. Aksiom o paru
- 5. Aksiom o uniji
- 6. Aksiom o potenčni množici
- 7. Aksiom o zamenjavi: slika vsake preslikave je množica.
- 8. Aksiomi ("Sifting"): Presek vsake množice z razredom je množica.
- 9. Aksiom regularnosti
- 10. Aksiom neskončnosti
- 11. Aksiom izbire

#### A.3 NEFORMALNI POGLED NA UNIVERZUM MNOŽIC

Množice lahko obravnavamo bodisi kot **hereditarne množice** (induktivno definirane kot množice, katerih vsi elementi so spet hereditarne množice –  $\emptyset$  je hereditarna množica) ali pa imamo podano še neko množico *atomov*, ki niso množice, so pa lahko elementi množic.

Za abstraktno, matematično obravnavo zadoščajo že hereditarne množice. Te tvorijo t.i. *von Neumannovo hierarhijo množic*.

Na dnu hierarhije je le prazna množica,  $V_0 = \emptyset$ . Če imamo dano množico  $V_i$ , pa je  $V_{i+1} = \mathcal{P}(V_i)$ . Na ta način dobimo  $V_0, V_1, V_2, \ldots$ 

To pa še ni vse. Napravimo unijo vseh the množic:  $V_{\omega} = \bigcup_{\lambda \in \mathbb{N}} V_{\lambda}$ . In postopek ponovimo:  $V_{\omega+1} = \mathcal{P}(V_{\omega})$  itd. Ponavljamo v nedogled:



Slika 2: von Neumannova hierarhija hereditarnih množic

Množice v hierarhiji postanejo zelo hitro nepredstavljivo velike.  $V_0$  ima 1 element,  $V_1$  ima 2 elementa,  $V_2$  ima 4 elemente,  $V_3$  ima  $2^4=16$  elementov,  $V_4$  ima  $2^{16}=65536$  elementov,  $V_5$  pa ima že  $2^{65536}$  elementov, itd.  $V_{\omega}$  je neskončna množica in vse nad njo prav tako.

**Pomen hiererhije:** Vsaka hereditarna množica se pojavi (kot element) v eni od množic $V_{\lambda}$  v zgornji hierarhiji.

Podobno hierarhijo lahko zgradimo za obravnavo množic z atomi. Edina razlika je v tem, da postavimo  $V_0 = A$  (kjer je A množica atomov) in naslednji element hierarhije tvorimo iz prejšnjega s pravilom  $V_{i+1} = V_i \cup \mathcal{P}(V_i)$ .

## B AKSIOM IZBIRE

 $A_1$ ,  $A_2$ : množici

$$A_1 \times A_2 = \{(x,y) ; x \in A_1, y \in A_2\}$$

Vsak urejeni par je določen tako, da prvi element izberemo iz množice  $A_1$ , drugega pa iz  $A_2$ . Tako izbiro lahko ponazorimo s funkcijo:

 $f: \{1,2\} \rightarrow A_1 \cup A_2$ , za katero velja

$$f(1) \in A_1 \text{ in } f(2) \in A_2.$$

Torej

$$A_1 \times A_2 = \{f : \{1,2\} \to A_1 \cup A_2, f(1) \in A_1, f(2) \in A_2\}.$$

Podobno lahko zapišemo za kartezične produkte končnega števila faktorjev:

$$A_1 \times \cdots \times A_n = \{f : \{1,\ldots,n\} \to A_1 \cup \cdots \cup A_n, f(1) \in A_1,\ldots,f(n) \in A_n\}.$$

Na ta način moremo posplošiti definicijo kartezičnega produkta na produkt poljubne družine množic.

Naj bo

$$\mathcal{A} = \{A_{\lambda} ; \lambda \in I\}$$

poljubna družina množic.  $\mathit{Kartezični produkt}$  družine  $\mathcal A$  definiramo kot

$$\prod \mathcal{A} = \prod_{\lambda \in I} A_{\lambda} = \left\{ f : I \to \cup_{\lambda \in I} A_{\lambda}, \ (\forall \lambda) (\lambda \in I \Rightarrow f(\lambda) \in A_{\lambda}) \right\}.$$

 $f \in \prod_{\lambda \in I} A_{\lambda}$  se imenuje *funkcija izbire*.

Če je vsaj ena od množic $A_{\lambda}$  prazna, je tudi produkt  $\prod_{\lambda \in I} A_{\lambda}$  prazna množica (saj v primeru  $A_{\lambda} = \emptyset$  pogoj  $f(\lambda) \in A_{\lambda}$  prav gotovo ne more biti izpolnjen)!

• 
$$(\exists \lambda)(\lambda \in I \land A_{\lambda} = \emptyset) \Rightarrow \prod_{\lambda \in I} A_{\lambda} = \emptyset.$$

V končnem primeru velja tudi obrat:

$$(\forall \lambda)(\lambda \in I \Rightarrow A_{\lambda} \neq \emptyset) \Rightarrow \prod_{\lambda \in I} A_{\lambda} \neq \emptyset.$$

Kaj pa v neskončnem primeru??

"Če je  $A_{\lambda} \neq \emptyset$  za vse  $\lambda \in I$ , potem obstaja vsaj ena funkcija izbire." *Ali lahko to dokažemo?* 

Cohen (1963): ta trditev je nedokazljiva iz drugih aksiomov teorije množic.

#### Aksiom o kartezičnem produktu:

Če je  $\mathcal A$  poljubna družina nepraznih množic, potem je  $\prod \mathcal A$  neprazna množica.

#### Aksiom izbire:

Če je  $\mathcal{A}=\{A_{\lambda}:\lambda\in I\}$  poljubna družina nepraznih množic, potem obstaja vsaj ena funkcija  $f:I\to \cup_{\lambda\in I}A_{\lambda}$ , za katero velja  $f(\lambda)\in A_{\lambda}$  za vsak  $\lambda\in I$ .

Zermelo, 1904 – uporabil AI pri dokazu izreka o dobri urejenosti množic (Zermelov aksiom)

Gödlov izrek (1940): Aksiom izbire je konsistenten z drugimi aksiomi teorije množic:<sup>1</sup>

• Če pridemo do protislovja v sistemu, kjer poleg drugih aksiomov privzamemo tudi aksiom izbire, potem je mogoče protislovje konstruirati tudi v sistemu, ki sloni le na drugih aksiomih in nima aksioma izbire.

S pomočjo aksioma izbire je moč dokazati številne pomembne izreke na različnih področjih matematike (algebra, analiza, topologija, ...), pa tudi nekatere manj intuitivne izreke, npr. **paradoks Banacha in Tarskega:** Tridimenzionalno kroglo je moč razkosati na končno mnogo paroma disjunktnih delov, ki se jih s translacijami in rotacijami sestavi v *dve* identični kopiji prvotne krogle!

<sup>1</sup> Kurt Gödel je istočasno s konsistentnostjo aksioma izbire dokazal tudi konsistentnost hipoteze kontinuuma z drugimi aksiomi teorije množic. S tem je rešil prvega od znamenitih 23 problemov, ki jih je leta 1900 matematični javnosti zastavil nemški matematik David Hilbert.

Aksiom izbire je ekvivalenten mnogim drugim trditvam, npr. naslednjima dvema:

- Vsaka binarna relacija vsebuje funkcijo z isto domeno.
- Če je  $\mathcal A$  družina paroma disjunktnih nepraznih množic, potem obstaja taka množica X, da za vsak  $A \in \mathcal A$  množica  $X \cap A$  vsebuje natanko en element.

#### B.1 PRINCIPI MAKSIMALNOSTI

Podali bomo štiri t.i. principe maksimalnosti in pokazali, da so med seboj logično ekvivalentni. Ekvivalentni so tudi aksiomu izbire.

Najprej navedimo dve definiciji:

- Naj R delno ureja S. Če v S obstaja element m, tako da za noben drug element  $x \in S$  ne velja mRx, potem pravimo, da je m R-maksimalen element množice S.
- Podmnožica X množice S, ki je z relacijo R delno urejena, je veriga v množici S, če jo R linearno ureja.

**Zgled:** Naj bo  $S = \{1, 2, ..., 8\}$  in naj bo R delacija deljivosti na S (xRy natanko tedaj, ko x deli y). To delno urejenost prikazuje naslednji Hassejev diagram:



Ima 4 maksimalne elemente (5, 6, 7, 8), vsebuje pa naslednje verige:

- ∅ (1 veriga brez elementov)
- {1}, {2},..., {8} (8 enoelementnih verig)
- {1,2}, {1,3},..., {1,8}, {2,4}, {2,6}, {2,8}, {3,6}, {4,8} (12 dvoelementnih verig)
- {1,2,4}, {1,2,6}, {1,2,8}, {1,3,6}, {1,4,8}, {2,4,8} (6 troelementnih verig)
- {1,2,4,8} (1 štirielementna veriga)

#### 1. Hausdorffov princip maksimalnosti.

Naj bo S z relacijo R delno urejena. Naj bo V družina vseh verig:

$$\mathcal{V} = \{ X \subseteq S ; X \text{ je veriga} \}.$$

Množica  $\mathcal{V}$  je delno urejena glede na relacijo  $\subseteq$ .

Kdaj je X maksimalen element  $\mathcal{V}$ ?

Ko za vsak drug  $Y \in \mathcal{V}$  velja, da X ni podmnožica Y:  $X \nsubseteq Y$ . Takemu elementu pravimo *maksimalna veriga*.

#### Hausdorffov princip maksimalnosti:

 $\overline{Množica \ V}$  ima vsaj en maksimalen element glede na  $\subseteq$ .

Vsaka delno urejena množica ima vsaj eno maksimalno verigo.

#### 2. Zornova lema.

Zornova lema pravi, da je pogoj, da je vsaka veriga v delno urejeni množici navzgor omejena, zadosten pogoj za obstoj maksimalnega elementa dane množice.

Zornova lema: Naj bo S z relacijo R delno urejena in naj ima vsaka veriga v S vsaj eno R-zgornjo mejo. Potem ima množica S vsaj en R-maksimalen element.

#### 3. Tukeyev princip maksimalnosti.

Naj bo S poljubna množica in  $\mathcal D$  poljubna (neprazna) družina podmnožic množice S (torej  $\mathcal D\subseteq \mathcal P(S)$ ).

**Definicija.**  $\mathcal{D}$  ima karakter končnosti  $\Leftrightarrow$  poljubna množica  $X \subseteq S$  je v  $\mathcal{D}$  natanko takrat, ko je v  $\mathcal{D}$  vsaka končna podmnožica množice X.

#### Zgled

Naj bo S množica vseh pozitivnih celih števil in  $\mathcal{D}$  družina vseh množic paroma tujih naravnih števil:  $X \in \mathcal{D}$  natanko tedaj, ko velja:

$$(\forall x)(\forall x)(x \in X \land y \in X \land x \neq y \Rightarrow n.s.d.(x,y) = 1)$$
,

kjer n.s.d.(x,y) označuje največjega skupnega delitelja števil x in y. Družina  $\mathcal{D}$  ima karakter končnosti, saj za vsak  $X\subseteq S$  velja:  $X\not\in\mathcal{D}$  natanko tedaj, ko obstajata **dve** različni števili  $x,y\in\mathcal{X}$ , ki nista tuji.

Po drugi strani pa družina  $\mathcal{D}'$ , definirana kot

$$\mathcal{D}' = \{X \subseteq S; X \text{ je končna}\},$$

nima karakterja končnosti. Množica S namreč ni v družini  $\mathcal{D}'$ , čeprav so v  $\mathcal{D}$  vse končne podmnožice S.

#### Tukeyev princip maksimalnosti:

Če ima  $\mathcal{D}$  karakter končnosti, potem ima  $\mathcal{D}$  vsaj en maksimalen element glede na relacijo " $\subseteq$ " (ki  $\mathcal{D}$  delno ureja).

#### 4. Lema Kuratowskega.

Naj bo S delno urejena z relacijo R. Naj bo  $V \subseteq S$  veriga v S.

$$\mathcal{U}_V = \{X \subseteq S \text{ ; } X \text{ je veriga v } S \text{ in } V \subseteq X\}.$$

 $\mathcal{U}_V$  je delno urejena z relacijo " $\subseteq$ ".

Lema Kuratowskega:  $U_V$  ima vsaj en maksimalen element glede na inkluzijo  $\subseteq$ .

Vsaka veriga je vsebovana v neki maksimalni verigi.

Vsi ti principi maksimalnosti so med seboj logično ekvivalentni. Velja:

$$(Hausdorff) \Rightarrow (Zorn) \Rightarrow (Tukey) \Rightarrow (Kuratowski) \Rightarrow (Hausdorff)$$

#### 1. etapa: (Hausdorff) $\Rightarrow$ (Zorn)

Naj R delno ureja S in naj ima vsaka veriga v S R-zgornjo mejo. Po Hausdorffu obstaja v S vsaj ena maksimalna veriga V.

Po hipotezi Zornove leme ima V neko R-zgornjo mejo m.

Trdimo, da je *m R-*maksimalen element.

Pa recimo, da to ni res. Tedaj obstaja nek element  $x \in S$ , da velja  $x \neq m$  in mRx.

Naj bo  $y \in V$ . Ker je m zgornja meja verige V, velja yRm in tudi mRx in posledično, zaradi tranzitivnosti, yRx. Sledi  $y \neq x$ , saj bi iz y = x sledilo mRx in xRm in tudi x = m.

Potemtakem pa je veriga V prava podmnožica množice  $V \cup \{x\}$ . Množica  $V \cup \{x\}$  pa je z relacijo R linearno urejena, torej je veriga. To pa je v protislovju z zahtevo, da je V maksimalna veriga.

S tem smo pokazali, da ima množica S nek R-maksimalen element.  $\square$ 

#### 2. etapa: (Zorn) $\Rightarrow$ (Tukey)

Naj bo  $\mathcal{D}$  neprazna družina podmnožic dane množice S in naj ima karakter končnosti.

Družina  $\mathcal{D}$  je delno urejena glede na relacijo " $\subseteq$ ".

Preverimo, da ima vsaka veriga v tej družini zgornjo mejo!

Naj bo V poljubna veriga v družini  $\mathcal{D}$ . Elementi množice V so podmnožice množice S, ki so z relacijo  $\subseteq$  linearno urejene (saj je V veriga). Napravimo unijo vseh elementov te verige,  $W = \cup V$ . Očitno je W zgornja meja verige V (saj za vsak element  $X \in V$  velja  $X \subseteq \cup V = W$ ).

Pokažimo, da je  $W \in \mathcal{D}$ . Ker ima  $\mathcal{D}$  karakter končnosti, je dovolj pokazati, da je vsaka končna podmnožica množice W vsebovana v  $\mathcal{D}$ . Naj bo  $A = \{a_1, \ldots, a_n\} \subseteq W$ . Torej obstajajo take množice  $A_1, \ldots, A_n \in V$ , da velja  $a_i \in A_i$  za vse i. Ker pa so te množice linearno urejene, morajo nujno v eni izmed teh n podmnožic, recimo ji  $A_j$ , biti vse druge. V množici  $A_j$  je potem tudi množica A. Ker je  $A \subseteq A_j \in V$  in torej tudi  $A_j \in \mathcal{D}$ , pa sledi, da je tudi  $A \in \mathcal{D}$ , saj je A končna podmnožica množice V, ki je element  $\mathcal{D}$ , družina  $\mathcal{D}$  pa ima karakter končnosti.

Pokazali smo torej, da ima vsaka veriga zgornjo mejo glede na relacijo inkluzije. Po Zornovi lemi od tod sledi, da ima družina  $\mathcal D$  vsaj en maksimalen element.

#### 3. etapa: (Tukey) $\Rightarrow$ (Kuratowski)

Naj relacija R delno ureja množico S in naj bo V poljubna veriga v S.

Naj bo  $\mathcal D$  družina vseh tistih podmnožic X množice S, za katere je  $X \cup V$  veriga v množici S.

Prepričajmo se, da ima  $\mathcal{D}$  karakter končnosti!

Naj bo  $X \in \mathcal{D}$ . Potem je tudi vsaka končna podmnožica X' množice X v  $\mathcal{D}$ :  $V \cup X$  je namreč veriga, torej je tudi  $V \cup X'$  veriga.

In obratno: naj bo X taka podmnožica množice S, da je v  $\mathcal{D}$  vsaka končna podmnožica množice X. Potem za vsaka dva elementa  $x,y \in X$  velja, da je  $\{x,y\} \cup V$  veriga. Torej je očitno tudi  $X \cup V$  veriga. Torej je  $X \in \mathcal{D}$ .

Po Tukeyu torej v množici  $\mathcal D$  eksistira vsaj en maksimalen element M glede na relacijo inkluzije  $\subseteq$ .

Po definiciji družine  $\mathcal{D}$  pa je potem  $M \cup V$  maksimalna veriga v množici S, v kateri je veriga V. To pa je trditev leme Kuratowskega.  $\square$ 

#### 4. etapa: (Kuratowski) $\Rightarrow$ (Hausdorff)

Naj relacija *R* delno ureja množico *S*. Izberimo za verigo v množici *S* prazno množico. Ta je prav gotovo veriga, saj je zahteva po linearni urejenosti na prazno izpolnjena.

Toda prazna množica je podmnožica vsake verige množice S. Po lemi Kuratowskega maksimalna veriga obstaja in je hkrati tudi maksimalen element družine  $\mathcal V$  vseh verig glede na relacijo inkluzije  $\subseteq$ . To pa je vsebina Hausdorffovega principa maksimalnosti.

Principi maksimalnosti so tudi ekvivalentni aksiomu izbire:

 $(Tukey) \Rightarrow (aksiom izbire) \Rightarrow (Hausdorff)$ 

#### (Tukey) $\Rightarrow$ (aksiom izbire)

Naj bo  $A = \{A_{\lambda} : \lambda \in I\}$  poljubna družina nepraznih množic.

Naj bo  $\mathcal{F}$  množica vseh (parcialnih) funkcij, katerih domena  $\mathcal{D}f$  je podmnožica množice I in ki priredijo vsakemu  $\lambda \in \mathcal{D}f$  določen element  $f(\lambda) \in A_{\lambda}$ .

Vsaka taka funkcija je množica urejenih parov, torej

$$f \subseteq I \times \cup \mathcal{A}$$
.

Množica  $\mathcal F$  pa je družina podmnožic kartezičnega produkta  $I \times \cup \mathcal A$ .

Trditev: F ima karakter končnosti.

Dokaz trditve: Naj bo funkcija  $f \in \mathcal{F}$ . Očitno je tudi vsaka končna podmnožica funkcije f element  $\mathcal{F}$ .

Zdaj pa vzemimo poljubno podmnožico g kartezičnega produkta  $I \times \cup \mathcal{A}$ , ki ima lastnost, da je vsaka njena končna podmnožica element družine  $\mathcal{F}$ .

V tem primeru je tudi g funkcija in je element družine  $\mathcal{F}$ . Če bi namreč v množici g obstajala različna para  $(\lambda, a)$  in  $(\lambda, b)$  z isto prvo koordinato, potem bi dvoelementna podmnožica  $\{(\lambda, a), (\lambda, b)\}$  ne bila funkcija, kar pa je v nasprotju s predpostavko.

Podobno ugotovimo, da je  $g \in \mathcal{F}$ , saj za vsak  $(\lambda, a) \in g$  velja, da je  $\{(\lambda, a)\} \in \mathcal{F}$ , torej  $\lambda \in I$  in  $a \in A_{\lambda}$ .

Pokazali smo trditev, da ima  $\mathcal{F}$  karakter končnosti. Po Tukeyjevem principu maksimalnosti ima  $\mathcal{F}$  vsaj en maksimalen element F glede na relacijo " $\subseteq$ ".

Prepričajmo se, da je prav ta F funkcija izbire!

Ker je  $F \in \mathcal{F}$ , je F funkcija. Dovolj je torej pokazati, da je domena funkcije F množica I. Pa recimo, da ni. Tedaj obstaja nek indeks  $\lambda \in I \setminus \mathcal{D}f$ . Naj bo a poljuben element neprazne množice  $A_{\lambda}$  in napravimo urejeni par  $(\lambda,a)$  in nato unijo  $F \cup \{(\lambda,a)\}$ . Ta unija je element družine  $\mathcal{F}$ , ki vsebuje funkcijo F kot pravo podmnožico. To pa je v nasprotju s trditvijo, da je F maksimalen element družine  $\mathcal{F}$ .

Potem pa je  $\mathcal{D}F = I$  in je F res funkcija izbire.

Da se pokazati, da (aksiom izbire)  $\Rightarrow$  (Hausdorff).

Dokaz opustimo, glej Niko Prijatelj: Matematične strukture I, str. 135–142.

Za dokaz implikacije (aksiom izbire)  $\Rightarrow$  (Zornova lema) glej *Paul Halmos: Naive Set Theory, str.* 63–65.

#### B.2 IZREK O DOBRI UREDITVI

Morda najgloblji razlog, zaradi katerega se zdi mnogim matematikom aksiom izbire problematičen, tiči v tem, da je mogoče iz njega izpeljati izrek o dobri ureditvi, ki pravi, da je vsako množico mogoče dobro urediti.

**Izrek o dobri ureditvi**: Za vsako množico *S* obstaja neka relacija *R*, ki to množico dobro ureja.

Izrek o dobri ureditvi ⇔ aksiom izbire.

Pokažimo enostavnejšo od obeh implikacij:

Izrek o dobri ureditvi  $\Rightarrow$  aksiom izbire.

Naj bo  $\mathcal{A} = \{A_{\lambda} : \lambda \in I\}$  poljubna družina nepraznih množic. Po izreku o dobri ureditvi obstaja neka relacija R, ki dobro ureja *unijo družine*  $\mathcal{A}, \cup \mathcal{A}$ .

Ker pa je vsaka množica  $A_{\lambda}$  družine  $\mathcal{A}$  neprazna podmnožica unije  $\cup \mathcal{A}$ , ima zato neki R-prvi element. Funkcijo izbire f zdaj lahko definiramo tako, da vsakemu elementu  $\lambda \in I$  priredi R-prvi element množice  $A_{\lambda}$ :

$$f(\lambda) = R$$
-prvi element v  $A_{\lambda}$ .

S to konstrukcijo je aksiom izbire potrjen.

Da se pokazati tudi implikacijo (aksiom izbire) ⇒ (izrek o dobri ureditvi).

Dokaz opustimo, glej *Niko Prijatelj: Matematične strukture I, str.* 143−151. Za dokaz implikacije **(Zornova lema)** ⇒ **(izrek o dobri ureditvi)** glej *Paul Halmos: Naive Set Theory, str.* 68.

#### B.3 PREGLED NAJPOMEMBNEJŠIH POJMOV IN NEKAJ NALOG

#### Ključni pojmi:

- Kartezični produkt poljubne družine množic. Funkcija izbire.
- Aksiom o kartezičnem produktu. Aksiom izbire. Cohenov izrek.
- *R*-maksimalen element, veriga.
- Hausdorffov princip maksimalnosti: Vsaka delno urejena množica ima vsaj eno maksimalno verigo.

- Zornova lema: Če je vsaka veriga v delno urejeni množici navzgor omejena, potem ima ta množica vsaj en maksimalen element.
- Tukeyev princip maksimalnosti: Vsaka družina podmnožic dane množice, ki ima karakter končnosti, ima vsaj en maksimalen element glede na relacijo inkluzije.
- Lema Kuratowskega: Vsaka veriga v delno urejeni množici je vsebovana v neki maksimalni verigi.
- Izrek o dobri ureditvi.
- Logične ekvivalence med temi trditvami.

**Naloga.** Množica  $S = \{1, ..., 5\}$  je strogo delno urejena z naslednjo relacijo R:



Naj bo V množica vseh nepraznih verig te relacije, urejena glede na strogo inkluzijo. Narišite Hassejev diagram te relacije.

#### Rešitev:

Elementi množice V so naslednji:



#### B.4 DODATEK: ZANIMIVA UPORABA EKVIVALENČNIH RELACIJ IN AKSIOMA IZBIRE

Vsak od neskončno mnogo igralcev, oštevilčenih z naravnimi števili (0, 1, 2, ...), vrže pošten kovanec. Vsak izmed igralcev vidi izide (cifra ali mož) kovancev vseh ostalih igralcev, le svojega ne. Vsi igralci nato hkrati (in neodvisno drug od drugega) ugibajo izide svojih kovanev. Pokaži, da obstaja strategija ugibanja, pri kateri bodo vsi igralci, razen končno mnogo njih, pravilno uganili izid svojega kovanca.

Označimo možna izida pri metu kovanca z 0 in 1. Kombinacijo izidov metov kovancev vseh igralcev teda lahko opišemo z neskončnim zaporedjem  $(a_n)_{n=0}^{\infty}$ , kjer je  $a_n \in \{0,1\}$  za vse  $n \in \mathbb{N}$ . Naj bo S množica vseh takih zaporedij.<sup>2</sup>

Definirajmo na množici S relacijo R s predpisom

$$aRa' \Leftrightarrow \text{množica } \{n \in \mathbb{N}; a_n \neq a'_n\}$$
 je končna.

Dve zaporedji sta torej v relaciji natanko tedaj, ko se razlikujeta le v končno mnogo členih. Hitro lahko preverimo, da je relacija *R* ekvivalenčna relacija. Relacija *R* množico *S* razdeli na ekvivalenčne razrede. To so paroma disjunktne in neprazne množice. Uporabimo sedaj aksiom izbire. Ena od ekvivalentnih oblik aksioma se glasi:

• Če je  $\mathcal A$  družina paroma disjunktnih nepraznih množic, potem obstaja taka množica X, da za vsak  $A \in \mathcal A$  množica  $X \cap A$  vsebuje natanko en element.

Naj bo  $\mathcal{A}$  faktorska množica S po R, torej množica vseh ekvivalenčnih razredov relacije R. Uporabimo zgornjo obliko aksioma izbire in naj bo X taka množica, da za vsak  $A \in \mathcal{A}$  množica  $X \cap A$  vsebuje natanko en element. Množica X torej vsebuje po enega predstavnika vsakega ekvivalenčnega razreda.

Naj  $a \in S$  označuje zaporedje, ki opisuje izide vseh metov. Igralci ugibajo izide metov svojih kovancev z naslednjo strategijo:

<sup>2</sup> Elemente množice S lahko identificiramo s funkcijami oblike  $f: \mathbb{N} \to \{0,1\}$ , pa tudi z elementi potenčne množice  $\mathcal{P}(\mathbb{N})$ .

- Oglejmo si igralca, oštevilčenega z  $n \in \mathbb{N}$ . Igralec n pozna zaporedje a v celoti, razen vrednosti člena  $a_n$ , ki je bodisi 0 ali 1.
- Označimo z b<sup>n</sup> zaporedje v S, podano s predpisom

$$b_i^n = \begin{cases} a_i, & \text{\'e je } i \neq n; \\ 0, & \text{\'e je } i = n. \end{cases}$$

Tedaj je  $aRb^n$ , od koder sledi  $R[a] = R[b^n]$ .

• Naj bo c edini element množice  $X \cap R[a]$ . Tedaj je  $c \in S$ . Igralec n za izid svojega meta kovanca ugiba vrednost, ki jo opisuje  $c_n$ .

Trdimo, da bodo z zgornjo strategijo ugibanja vsi igralci, razen končno mnogo, pravilno uganili izid svojega kovanca. Z drugimi besedami, množica  $\{n \in \mathbb{N}; c_n \neq a_n\}$  je končna. To je ekvivalentno pogoju, da sta zaporedji a in c v relaciji R. To pa drži, saj je  $c \in X \cap R[a]$  in torej  $c \in R[a]$ .

Zgornji zgled bi lahko interpretirali tudi v jeziku vremenske napovedi, če predpostavimo, da dneve štejemo z naravnimi števili in da imamo vsak dan lahko le dva možna izida (npr. jasno ali oblačno). Če bi torej vsak dan poznali tako zgodovino kot tudi prihodnost vremena, bi lahko skoraj vse dni vreme pravilno napovedali za tekoči dan.

# TODO: OSNOVE TEORIJE GRAFOV

# TODO: OSNOVE TEORIJE KATEGORIJ