Security of Networks, Services, and Systems Intrusion Detection Systems

Ricardo Morla FEUP – SSR/M.EEC, SR/M.EIC

Types of intrusion detection

- HIDS vs. NIDS
- IDS vs. IPS
- Knowledge-based vs. behavior-based

Where are intrusions being detected?

- In a host
 - Host IDS
 - Host-based systems detect intrusions by looking at data from the operating system (memory, file-system, ...) and applications
- In the network or at some network interface
 - NIDS, Network IDS
 - Network-based systems detect intrusions by looking at network traffic

What do you do when you detect?

- Nothing not immediately at least
 - It's an intrusion **detection** system
 - Have larger time constant actions on the target system
- Drop packet, remove file, kill process, ...
 - So that'll be an intrusion **prevention** system
 - Immediately respond to prevent intrusion

Location of Network IDS/IPS

How do you know what to detect?

- Knowledge-based
 - Encode pre-existing knowledge about intrusions into rules
 - How do you get gre-existing knowledge? Threat intel, etc
- Behavior-based
 - Learn from the data how to detect intrusions
 - Extract 'knowledge' from data

Knowledge-based IDS

Protocol

alert icmp any any -> any any (msg: "ICMP Packet found";)

Content

alert tcp 192.168.1.0/24 any -> any any (content: "HTTP"; offset: 4; msg: "HTTP matched";)

SYN flood

 alert tcp any any -> \$HOME_NET 80 (flags: S; msg:"Possible TCP DoS"; flow: stateless; detection_filter: track by_dst, count 70, seconds 10;)

Knowledge-based IDS

• TLS fingerprinting (ja3, ja3s)

```
alert tls any any -> any any (msg:"match JA3 hash";
ja3.hash;
content: "e7eca2baf4458d095b7f45da28c16c34";
sid:100001;)
   "id": 0.
   "desc": "ThunderBird (v38.0.1 OS X)",
   "record_tls_version": "0x0301",
   "tls_version": "0x0303"
   "ciphersuite_length": "0x0016",
   "ciphersuite": "0xC02B 0xC02F 0xC00A 0xC009 0xC013 0xC014 0x0033 0x0039 0x002F 0x0035 0x000A",
   "compression_length": "1",
   "compression": "0x00",
   "extensions": "0x0000 0xFF01 0x000A 0x000B 0x0023 0x0005 0x000D 0x0015",
   "e_curves": "0x0017 0x0018 0x0019",
   "sig_alg": "0x0401 0x0501 0x0201 0x0403 0x0503 0x0203 0x0402 0x0202",
   "ec point fmt": "0x00"
```

Some knowledge-based Network IDS/IPS tools

- Suricata
 - https://suricata.io
- Snort
 - https://www.snort.org
- Zeek
 - https://github.com/zeek/zeek

Knowledge-based IPS vs. Firewall

- How different are IPS's from Firewalls?
- Firewalls also have rules
- Application-layer firewalls can also inspect packet payloads
- Maybe knowledge-based IPS's are not very different from applicationlayer firewalls
 - Maybe firewalls are most of the times based on rules, which is a significant difference to behavior-based IPS's

Behavior-based IDS

- Anomaly detection, often relying on learning from data
 - But could also be classification
- Problems
 - Defining normal behavior hard, training data
 - Normal behavior and traffic drifting
 - Excessive sensitivity and high false positive rate
 - Adversarial traffic can blind the IDS, detecting normal traffic as intrusion and vice-versa
 - Root-cause analysis to detect attack source and adequately stop intrusion

Learning from data

- Learn model for normal behavior
 - Unsupervised learning, no labels
 - Apply outlier detection techniques to find intrusions
- Learn model that distinguishes normal from intrusion
 - Classification problem
 - Need to label normal and intrusion data
 - More normal data than intrusion can cause problems in learning

Network data types

- Packet traces
- Counters
- Flow data
- Others

• In any case, need structured data set as input for learning problem

#1 Packet traces

- Motion-picture-like recording of everything that goes through the network
 - What, when, where, who (?), why (?)
- Raw data powerful but hard to use
- Difficult to manage
 - Capture limitations (copy data at 1, 10, etc Gbps scale)
 - Storage limitations (Gbps * minutes, hours, days = ?)
- Difficult to use and process
 - Not in a table like format would be easier
 - Can write processing rules to create tables but only partial vision
 - Al and deep learning etc to process traces (raw or features)

#2 Traffic counters on links

- Routers keep track of how much traffic goes through each link
 - Packets, bytes
 - Periodically every n minutes
- Simple to use but limited in scope
 - Coarse metrics
 - Link failures, capacity DoS

#3 Flow measurements

- IP flows
 - Source, destination IP address and TCP/UDP ports (4 fields)
 - L3 header protocol (TCP, UDP, other)
 - Other info ToS field, ??
- Keeps record of traffic for each flow
 - Packet, byte count on each direction
 - Duration, first/last packet timestamps, TCP flags
 - etc
- Tradeoff
 - simpler to use than packet traces
 - more information than counters
 - simply opening a web page can generate dozens of TCP flows

Other data

- Extract custom information from packet traces
- Tshark, the command line version of wireshark, other tools
- Examples:
 - sequence of TLS records per flow
 - flags for specific protocols
 - domain name queries
 - ...

Stratosphere IPS

S. Garcia, Modelling the Network Behaviour of Malware To Block Malicious Patterns. the Stratosphere Project: a Behavioural IPS" in Virus Bulletin, pp. 1-8, September 2015. https://www.virusbulletin.com/uploads/pdf/conference/vb2015/Garcia-VB2015.pdf

- Feature extraction
 - 4-tuple object: Source IP, Destination IP+TCP port
 - Each letter represents a TCP connection belonging to the 4-tuple object

	Small Size			Medium Size			Big Size		
Duration	Short	Medium	Long	Short	Medium	Long	Short	Medium	Long
Not enough data	1	2	3	4	5	6	7	8	9
Strongly periodic	a	b	С	d	е	f	g	h	i
Weakly periodic	Α	В	С	D	Е	F	G	Н	1
Not periodic	r	s	t	u	V	w	х	У	z

Botnet C2 host talking with C2 server

Host connecting to Google services

Packet x-ray

Zhou, Z., Yao, L., Li, J., Hu, B., Wang, C., & Wang, Z. (2018). Classification of botnet families based on features self-learning under Network Traffic Censorship. 2018 Third International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC), 1–7. https://doi.org/10.1109/SSIC.2018.8556792

- Classify botnet traffic
- First 400 IP payload bytes, TCP flows
- 20x20 pixels, 0-255
- CNN classifier
- Mostly good classification results

Fig. 8. Six samples of representation of the input data

Kitsune

https://github.com/ymirsky/Kitsune-py https://arxiv.org/pdf/1802.09089.pdf

- General purpose online intrusion detection
 - unsupervised learning
 - Learns for 5 minutes, then starts detecting
 - Input: raw packet data

Many threats to detect in knowledge and behavior-based IDS

- Command and control
 - DGA, TLS, ...
- Exfiltration
 - DNS, malformed packets, ...
- Phishing
 - URLs
- DoS
 - Low intensity from botnets

• ...

Security of Networks, Services, and Systems Intrusion Detection Systems

Ricardo Morla FEUP – SSR/M.EEC, SR/M.EIC

