Elementi di teoria della Computazione (Prof.ssa De Felice) Anno Acc. 2016-2017

Prova scritta - 8 febbraio 2018

Nome e Cognome, email:

Matricola:

Firma:

Spazio riservato alla correzione: non scrivere in questa tabella.

1	2	3	4	5	6	Tot.	7
							SI NO

Leggere le tracce con attenzione!

Giustificare le risposte, risposte non giustificate non saranno valutate.

La domanda n.7 non concorre al raggiungimento della sufficienza, ma solo alla determinazione del voto finale.

È vietato copiare, collaborare o comunicare con altri studenti. È vietato l'utilizzo di libri, appunti o lucidi.

I risultati della prova scritta e le informazioni per la conclusione dell'esame saranno pubblicati sulla piattaforma e-learning domenica 11 febbraio, con possibile convocazione anche lunedì 12 febbraio.

È consentita la descrizione ad alto livello delle macchine di Turing utilizzate.

- 1. (15 punti)
 - Dare la definizione di espressione regolare, indicando anche il linguaggio rappresentato.
 - Definire un'espressione regolare E che denoti il linguaggio L(A) riconosciuto dall'automa finito non deterministico $A = (Q, \Sigma, \delta, q_0, F)$, dove $Q = \{q_0, q_1, q_2, q_3\}$, $\Sigma = \{a, b, c\}$, $F = \{q_2\}$ e δ è descritta dalla tabella riportata di seguito (cioè definire un'espressione regolare E tale che L(E) = L(A)).

	a	b	c
q_0	$\{q_1\}$	$\{q_2\}$	$\{q_0\}$
$ q_1 $	Ø	$\{q_0\}$	Ø
$ q_2 $	$\{q_2\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_2\}$	Ø

- 2. (15 punti)
 - Fornire le definizioni delle seguenti operazioni sui linguaggi
 - concatenazione,
 - potenza,
 - star.
 - Esiste un linguaggio L tale che $L^* = \emptyset$? Motivare la risposta.
 - Sia L il linguaggio riconosciuto dall'automa finito deterministico $\mathcal{A}=(Q,\Sigma,\delta,q_1,F)$, dove $Q=\{q_1,q_2,q_3\}, \Sigma=\{a,b\}, F=\{q_3\}$ e δ è descritta dalla tabella riportata di seguito.

$$\begin{array}{c|cccc} & a & b \\ \hline q_1 & q_2 & q_3 \\ q_2 & q_3 & q_1 \\ q_3 & q_3 & q_2 \\ \end{array}$$

Usando la procedura descritta sul libro di testo, definire l'automa finito che riconosce L^* .

Prova scritta 2

3. (15 punti)

Definire il linguaggio A_{TM} . Provare che A_{TM} è indecidibile.

4. (15 punti)

Si consideri la funzione $f: \Sigma^* \to \Sigma^*$ definita come segue:

$$f(w) = \begin{cases} ab & \text{se } w = \langle \phi \rangle \text{ e } \phi \text{ è un'espressione booleana soddisfacibile,} \\ a & \text{altrimenti.} \end{cases}$$

Rispondere alle seguenti domande motivando la risposta. Risposte non motivate non saranno valutate.

- (a) Esiste una macchina di Turing che calcola f?
- (b) Sia $SAT = \{ \langle \phi \rangle \mid \phi \text{ è un'espressione booleana soddisfacibile} \}$. È vero che $SAT \leq_m \{ab\}$?
- 5. (15 punti)
 - 1) Dare la definizione di riduzione polinomiale (definendo ogni termine utilizzato).
 - 2) Definire i linguaggi 3-SAT e CLIQUE (definendo ogni termine utilizzato).
 - 3) Dare la definizione di riduzione polinomiale di 3-SAT a CLIQUE descritta nel libro di testo.
- 6. (15 punti)
 - (a) Definire le classi di complessità P ed NP.
 - (b) Sia \overline{CLIQUE} il complemento di CLIQUE. Dire quali delle seguenti affermazioni è vera. Occorre motivare la risposta, enunciando tutti i risultati intermedi utilizzati. Risposte non motivate non saranno valutate.
 - Se $P \neq NP$ allora \overline{CLIQUE} non è decidibile.
 - Se $P \neq NP$ allora \overline{CLIQUE} non è in P.
 - Se P = NP allora \overline{CLIQUE} è in P.
- 7. Provare o confutare che il linguaggio $L = \{xcy \mid x, y \in \{a, b\}^* \in |x| = |y|\}$ è regolare.