Final Competition Design

2025/05/29

Dog is detected!!!!!! The landing point would be 4 Start recognizing tags Tag 2 is detected (original) Start finding the target tag Finding the target tag: 0 The location would be (x: 0.4607325111036157, y: 0.9868553063575978) Moving to the target tag move_x: -0.7574997833622037, move_y: 2.457268364152192 Landing!!!!

d ▷ ~/Doc/hcc_final_competition ७ 🎖 main !1 ?1 >

Venue introduction

Given info:

Field size (Square map)

Known Apriltags' position * 9 - 海報版

Unknown Apriltags' position * 3 - 柱子

All landing spots' position * 9 - 粉色板子

**Match the objects in the image according to colors.

Step

- Object Detection: Before taking off, drone will identify the image. It should land in corresponding landing spot later.
- Detect Position: There are 3 apriltags of unknown position in the field, estimate their position.
- 3. **Landing Accuracy:** Fly to the corresponding landing spot and land.
- Speed: Finish all task as fast as possible.

Before starting the competition

- Students will know the categories and can train first. Each category will have a set landing position, as shown in the table.
- Let the drone identify the landing position by recognizing the target object.

Categories	For example: Landing position (m, m)
hh_shuai	(1, 3)
lc_wang	(0, 2)
lw_ko	(0, 1)
cc_wang	(-1, 3)

Details for Object Detection

The goal is to recognize images of the professors from this course!!!

王茄君 教授

王傑智 教授

柯立偉 教授

帥宏翰 教授

- We have provided a <u>training dataset</u>; however, images used in the final competition are not included in this dataset.
- It is recommended that you print the color images, post them on a wall, and collect and label the data yourself.

Score

1. Image Recognize: 20%

Recognize correct	20%
Recognize to one of the other items	10%
Recognize error	0%

2. **Detect Position:** 10% each by accuracy, 30% in total

the world coordinate of the target is (1.2003, 0.0075)

you guess the target is (x, y)

distance = $[(x-1.2003)^2+(y-0.0075)^2]^{1/2}$

score
10
8
6
4
2
0

Score

3. **Landing Accuracy:** 40% by accuracy

(m)	score
<= 0.075	40
<= 0.15	30
<= 0.2	20
> 0.2	0

(based on the battery)

4. **Speed:** 10%, only counted if you score >0 points on all tasks

Details of the Competition

- At the start of the competition, each team will draw four positions from a 3×3 grid.
- 2. The three unknown AprilTag positions will be randomly changed during the competition.
- 3. The drone must move without manual control. The flight path is not restricted, and you can pre-program the drone's movement.
- Recognition can't depend on guessing one of the four professor. (We will check your code !!!)