| ax.set_ return  ef mohr_to npts =  s1 = S: s2 = S: s3 = S: [s1,s2] step = sig_n :  s12_tat s13_tat s23_tat # Do tt ax.plo ax.plo ax.plo ax.fil: ax.fil: ef print_r txt = return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o_axis(Sig, ax): 1000  ig[0,0] ig[1,1] ig[2,2] ,s3] = sorted([s1,s2,s3], reverse=True)   (s1-s3)/npts = np.sort( np.append( np.arange(s3,s1,step), [s1, s2, s3]) )  u = shear( sig_n, s1, s2 ) u = shear( sig_n, s1, s3 ) u = shear( sig_n, s2, s3 )  the plotting stuff t(sig_n, s12_tau, c='gray') t(sig_n, s12_tau, c='gray') t(sig_n, s13_tau, c='gray') t(sig_n, s13_tau, c='gray') 1_between(sig_n, s12_tau, s13_tau, color='lightgray') 1_between(sig_n, s23_tau, s13_tau, color='lightgray')  mmatrix(A,title, ax=None): f"\${title} = " +\ r"\begin{bmatrix}" +\ r"\\', join(r' & '.join('%0.0f' % (x+1e-6) for x in y) for y in A) +\ r"\\', join(r' & '.join('%0.0f' % (x+1e-6) for x in y) for y in A) +\ r"\\', join(r' & '.join('%0.0f' % (x+1e-6) for x in y) for y in A) +\ r"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| if not fig fig = 6 fig.se ax.xax: ax.yax: with m ax.td fig. plt.: ef SG_to_ # Faul: SS = n CS = n CS = n SD = n CD = n CD = n CD = n Nd = n Nd = n Nd = n Nd = n Tau = 1  return  ef process SIGn, for d,: SIG TAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>r'\end{bmatrix}\$' ax : ,ax = plt.subplots() axx.figure t_size_inches(3, 1) is.set_visible(False) is.set_visible(False) pl.rc_context({'text.usetex':1, 'text.latex.preamble': r'\usepackage{amsmath}'}): ext( 0.1, 0.5, txt, fontsize=8 ) tight_layout() show()  fault( Sg, Pp, dip, strike ) : t coordinate system p.sin(strike) p.cos(strike) p.cos(strike) p.sin(dip) .cos(dip) p.array([ -SS*SD, CS*SD, -CD ]) p.array([ CS, SS, 0 ]) p.array([ -SS*CD, CS*CD, SD ])</pre> Sg ect Sg to the fault coordinate system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mport pand mport num  mport mat  lt.style.def SP_to_S # ROTATIO CA, SA = CG, SG = RPG = np [  )  # MATRIX Sg = RPG return Sg - Input the eographica  [2]: POINT E p = np.ari [10] [10] [11] [11] [12] [12] [13] [14] [15] [15] [16] [17] [17] [18] [18] [19] [19] [10] [10] [10] [11] [11] [12] [13] [14] [15] [15] [16] [17] [17] [18] [18] [18] [18] [18] [18] [18] [18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | das as pd py as np plotlib.pyplot as plt use('default') ## reset! use('paper.mplstyle') SG(Sp, alpha, beta, gamma): ON MATRIX np.cos(alpha), np.sin(alpha) np.cos(beta), np.sin(beta) np.cos(gamma), np.sin(gamma) .array( [CA*CB, SA*CG, SA*SB*SG + CA*CG, CB*SG], [CA*SB*CG + SA*SG, SA*SB*CG - CA*SG, CB*CG]]  MULTIPLICATION - STRESS IN GEOGRAPHIC COORDINATES T @ Sp @ RPG g e principal stress tensor at Depth E in the principal directions coordinate system and calculate the tensor in the al coordinate system.  TOTAL STRESS ray( 1322, 0 , 0 ], 0 , 9540 , 0 ], 0 , 9540 , 0 ], 0 , 9 940 , 0 ],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $sigma_g[1, 1]$ $sigma_g[2, 2]$ $sigma_g[2, 2$ | $\begin{aligned} &0\  = \text{Sigma}_B[0,0] - \text{Pp} \\ &1\  = \text{Sigma}_B[1,1] - \text{Pp} \\ &2\  = \text{Sigma}_B[2,2] - \text{Pp} \end{aligned}$ $\begin{aligned} &\text{ix}(\text{Sp}, \text{ "S_P"}) \\ &\text{ix}(\text{Sg}, \text{ "S_G"}) \\ &\text{ix}(\text{Sigma}_B, \text{ "Sigma}_G") \\ &\text{Sp} = \ln(\text{Sp})") \\ &\text{InSg} = \ln(\text{Sg})") \\ &\text{InSg} = \ln(\text{Sigma}_g) \end{aligned}$ $\begin{aligned} &\text{Im} &I$ |
| mport numport mate and mport mport mport and mport mp | <pre>stereonet plotlib.pyplot as plt  p.random.rand(N) * np.pi/2 p.random.rand(N) * np.pi * 2  ng = process_fracture_set(Sg, Pp, DIP, STRIKE)  mits np.linspace(0,4000,10) = shear_x * 0.6</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| x.set_xlai<br>x.set_ylai<br>x.set_xlin<br>x.set_ylin<br>x.set_tit:<br>Plot fil:<br>= (STRIK!<br>= (DIP*18;<br>ig, ax = n<br>x.pole(x,y)<br>x.set_tit:<br>4000 -<br>3500 -<br>1500 -<br>1000 -<br>1000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tween(shear_x, shear_y_n, shear_y_p, color='gray', alpha=0.2) beb("\$\staga_n^5 (psi)") bel("\$\tau\$ (psi)")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 270°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stereogram for all faults  0°  115°  45°  90°  Stress projection on the fault planes for the faults close to shear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 270°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stereogram for the faults close to shear $0^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| colors = etcm = mp: ins = np.:  1_colors : 2_colors :  Plot TAU ig, ax =   ig.set_si: ohr(1552,:  x.set_xlal x.set_ylal x.set_ylin x.set_tit: ig.tight_:  Plot TAU ig, ax =   ig.set_si: ohr(1552,: x.set_tit: ig.tight_:  Plot TAU ig, ax =   ig.set_si: ohr(1552,: x.set_tit: ig.tight_:  x.set_ylal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.colomops['jet'].resampled(n_colors) # {0,1} Inspace(-5,0.6,n_colors)  = [jetcm(1) for i in np.digitize(sl_tau / sl_sn, bins )] = [jetcm(1) for i in np.digitize(sl_tau / sl_sn, bins )]  > 7500 plt.subplots()  pt.insubplots() (sl_sn_sl_tau, seW, marker = 'o', c=sl_colors, alpha=.W) twen(shern_w, shean_y_n, shean_y_n, color='gray', alpha=8.2) tel('Stitus) (psi)  bel('Stitus) (psi)  psi (sl_sn_sl_tau, seW, marker = 'o', c=sl_colors, alpha=8.2) tel('Stitus) (psi)  psi (sl_sn_sl_tau, seW, marker = 'o', c=sl_colors, alpha=8.2) tel('Stress projection on the fault planes - SET 1") layout()  x 5100 psi (sl_sn_sl_tau, seW, marker = 'o', c=sl_colors, alpha=8) tel('Stitus) (sl_sn_sl_tau, seW, marker = 'o', c=sl_colors, alpha=8) tel('Sti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3500 -<br>3500 -<br>2500 -<br>1500 -<br>500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stress projection on the fault planes - SET 2 $\frac{1}{1000} = \frac{1000}{1000} = \frac{1500}{1000} = \frac{2500}{2500} = \frac{3000}{3000} = \frac{3500}{3000} = \frac{4000}{4000}$ is $\mathbf{e}$ 2 database.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| For James 1  For James 2  For James 3  For James 4  For James 3  For James 4  For J | ad_csv("fault_data.txt", sep='\t')  # psi/ft  -d4 # psi/ft  = df.origin.apply(eval).apply(np.array)  f.end.apply(eval).apply(np.array)  = df.end - df.origin  '] = df.apply( lambda x: np.arctan2(x.dist[0], x.dist[1]) , axis=1)  = df.dip * np.pi / 180  dip_dir.str.contains('N')  k, "strike"] = df[mask].strike + np.pi  deg'] = df.strike * 180 / np.pi  g'] = df.dip * 180 / np.pi  dby_dz * df.depth  dbp_dz * df.depth  dbp_dz * df.depth  dpp_dz * df.depth  df.apply( lambda x: np.array( [ (x.Shmin, 0, 0 ], [ 0, x.Shmax, 0 ], [ 0, 0, x.Sv ]] ), axis=1)  = df.apply( lambda x: np.array( [ (x.Shmin-x.Pp), 0, 0 ], [ 0, (x.Shmax-x.Pp), 0 ], [ 0, 0, (x.Sv-x.Pp) volume = df.Sv - df.Pp  s_fracture_set_2( SG, PP, DIP, STRIKE ):  TAU = np.array([]), np.array([]), pp.d, s in zip(SG, PP, DIP, STRIKE):  ytu = SG_to_fault( Sg, Pp, d, s )  to = np.append( SIGn, sn)  U = np.append( TAU, tau )  SIGn, TAU  = process_fracture_set_2( df.Sg, df.Pp, df.dip, df.strike )  = SIGn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dump some f[["id","6 t[5]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .a= 5510. 0.57 0.  b= 5434. 0.56 0.  .c= 5358. 0.55 0.  d= 5548. 0.576 0.  = 5700. 0.592 0.  a= 5624. 0.584 0.  b= 5624. 0.584 0.  c= 5700. 0.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8. 0. ] 127.5 0. ] 9. 7250. ]] 9. 0. ] 148.5 0. ] 148.5 0. ] 169.5 0. ] 170. 7050. ]] 9. 0. ] 170. 7050. ]] 9. 0. ] 171. 0. ] 172. 0. ] 173. 0. ] 174. 0. ] 175. 0. ] 175. 0. ] 176. 0. ] 177. 0. ] 178. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ] 179. 0. ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.<br>d=<br>5852.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0. 7500.]]  0. 0.]  13. 0.]  15. 0.]  17. 0.]  18. 8300.]]  19. 0. ]  19. 8350.]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.  e= 6308. 0. 655 0.  f= 6346. 0. 65 0.  a= 6080. 0. 632 0.  b= 6232. 0. 647 0.  a= 6194. 0. 64 0.  a= 6232. 0. 647 0.  c= 6194. 0. 64 0.  d= 6232. 0. 647 0.  d= 6232. 0. 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0. 0.] 8. 0.] 9. 8200.]] 0. 8.] 0. 0.] 10. 0.] 10. 0.] 10. 0.] 10. 8100.]] 11. 0. 0.] 12. 0.] 138.5 0.] 138.5 0.] 14. 0.] 15. 0.] 16. 0.] 17. 0. 8150.]] 18. 0.] 19. 8200.]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Advanced geomechanics - WP2

Creates a shear series for given values of principal stresses and  $\operatorname{sig\_n}$ 

Renato Poli (rep2656)

**Exercise 1** 

Suport functions:

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

plt.style.use('default') ## reset!
plt.style.use('paper.mplstyle')

tau\_sq = radius \* radius - dx \* dx

tau\_sq[ tau\_sq < 0 ] = None
return np.sqrt( tau\_sq )</pre>

import matplotlib as mpl

def shear( sig\_n, s1, s2 ) :
"""

center = (s1 + s2)/2radius = (s1 - s2)/2dx =  $sig_n$  - center

In [1]:

09/11/2023

