Third Year BS (Honors) 2020-2021

Math Lab Assignment 03

Course Code: **AMTH 350** Course Title: **Math Lab III**Department of Applied Mathematics
University of Dhaka

Name: Roll: Group:

Consider the following nonlinear third order ODE

$$f''' + ff'' = 0, (1)$$

with initial conditions f(0) = f'(0) = 0 and f''(0) = 0.4696. The independent variable is η . Eq. 1 is associated with a developing laminar boundary past a flat plate.

- (a) Convert Eq. 1 and the boundary conditions to a system of three first-order ODEs using substitutions X = f, Y = f' and Z = f''.
- (b) Implement the system of ODEs formulated in (a) in MATLAB, and solve it with ode45. Reproduce the results shown in Fig. 1.

Figure 1: Numerical solution of equation 1.

(c) The self similarity variable η is related to x and z by

$$\eta = z\sqrt{\frac{U_{\infty}}{2\nu x}}\tag{2}$$

where, U_{∞} and ν are the free-stream velocity and kinematic viscosity, respectively. Taking $U_{\infty} = 0.1 \quad m/s$ and $\nu = 10^{-6} \quad m^2/s$, create a plot of the velocity

 $u(x,z) = U_{\infty}f'(\eta)$, shown below (Fig. 2). Create a grid with *meshgrid* and use 1-D interpolation function *interp1* to obtain the value of η at the grid nodes.

Figure 2: Contours of horizontal velocity.

(d) Change the previous value of U_{∞} as $U_{\infty} = 0.2 - m/s$ and reproduce the figure below. Compare and contrast the height of the boundary layers of the figures 2 and 3.

Figure 3: Contours of horizontal velocity. Here, $U_{\infty}=0.2~m/s$