- **Exercices: Suites**
- 1. On pose  $u_n = (1 + \frac{1}{n})^n$  et  $v_n = (1 + \frac{1}{n})^{n+1}$  pour  $n \ge n$ . Vérifier que ces deux suites sont adjacentes et encadrent le réel e.
- 2. On pose  $\begin{cases} u_n = \sqrt{1 + \sqrt{2 + \ldots + \sqrt{n 1 + \sqrt{n}}}} \\ v_n = \sqrt{1 + \sqrt{2 + \ldots + \sqrt{n 1 + \sqrt{2n}}}} \end{cases}$ 
  - (a) Donner des valeurs approchées des cinq premiers termes de chaque suite.
  - (b) Montrer que  $(u_n)_{n\geq 3}$  est croissante et  $(v_n)_{n\geq 3}$  est décroissante.
  - (c) Montrer que pour  $n \geq 2$ :

$$0 \le v_n - u_n \le \frac{\sqrt{2 + \ldots + \sqrt{n - 1 + \sqrt{2n}}} - \sqrt{2 + \ldots + \sqrt{n - 1 + \sqrt{n}}}}{2}$$

- (d) En déduire que les suites u et v sont convergentes.
- 3. On pose  $u_1 = 1$  et  $u_{n+1} = \sqrt{u_n^2 + \frac{1}{2^n}}$  pour  $n \ge 1$ . Montrer que  $u_{n+1} < u_n + \frac{1}{2^{n+1}}$ .

En déduire que la suite  $(u_n)$  converge.

- Étudier la suite  $(u_n^2)$ ; en déduire la limite de  $(u_n)$ .
- 4. Montrer que la suite  $(u_n)_{n\in\mathbb{N}}$  définie par la donnée de  $u_0=1$  et par la relation de récurrence

$$u_{n+1} = \frac{n}{n^2 + 2}e^{-u_n}$$

est convergente et déterminer sa limite.

**5.** Soit I un intervalle de  $\mathbb{R}$  et f une fonction continue et dérivable sur I. On suppose aussi que  $f(I) \subset I$  et que  $\exists M \in [0, +\infty[, \forall x \in I, |f'(x)| \leq M$  et que l'équation f(x) = x admet une unique solution l sur I.

Soit  $u_n$  la suite définie par  $u_o \in I$  et  $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$ .

(a) Montrer que

$$\forall n \in \mathbb{N}, \quad |u_{n+1} - l| \le M|u_n - l|$$

(b) En déduire que

$$\exists a \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad |u_n - l| \le aM^n$$

- (c) On suppose que  $M \in ]0,1[$ . Montrer que la suite  $u_n$  est convergente et préciser sa limite.
- 6. Algorithme de Héron

Soit a > 0, et  $(u_n)_{n \in \mathbb{N}}$  la suite définie par  $u_0 > 0$  et

$$\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left( u_n + \frac{a}{u_n} \right)$$

- (a) Montrer que  $(u_n)$  converge, et déterminer sa limite.
- **(b)** Montrer que pour tout  $n \in \mathbb{N}^*$ ,  $|u_{n+1} \sqrt{a}| \le \frac{(u_n \sqrt{a})^2}{2\sqrt{a}}$ .
- (c) En déduire une majoration de  $|u_n \sqrt{a}|$  en fonction de  $a, u_1$  et n
- (d) On prend  $a=u_0=2$ . Déterminer une valeur de n aussi petite que possible pour laquelle  $u_n$  donne une valeur approchée de  $\sqrt{2}$  à  $10^{-100}$  près.
- 7. Soit  $(u_n)_{n\in\mathbb{N}}$  une suite réelle ou complexe telle que les suites extraites  $(u_{3n+2})_{n\in\mathbb{N}}$ ,  $(u_{4n+1})_{n\in\mathbb{N}}$ ,  $(u_{5n+3})_{n\in\mathbb{N}}$  convergent.

Peut-on affirmer que la suite  $(u_n)_{n\in\mathbb{N}}$  converge?

- 8. Soit  $(u_n)$  une suite à termes dans  $\mathbb{Z}$ . Montrer que la suite  $(u_n)$  converge si et seulement si elle est stationnaire.
- 9. Etude de suites récurrentes

(précisez la convergence et la limite éventuelle en fonction de la valeur de  $u_0$  choisie.)

(a) 
$$u_0 \neq -5$$
 et  $u_{n+1} = \frac{4u_n + 2}{u_n + 5}$ 

- (b) Soit  $(u_n)$  définie, à partir de  $u_0 > 0$  par la relation de récurrence :  $u_{n+1} = \sqrt{2 + u_n}$ .
- (c)  $u_0 > 0$  et  $\forall n \in \mathbb{N}$   $u_{n+1} = \sin u_n$ .
- (d)  $u_0 > 0$  et  $\forall n \in \mathbb{N}$   $u_{n+1} = \cos u_n$ .
- (e)  $u_0 > 0$  et  $\forall n \in \mathbb{N} \quad u_{n+1} = 1 u_n^2$ .
- **10.** On définit les 2 suite u et v. pour tout  $n \ge 0$  no pose  $u_n = 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$  et  $v_n = u_n + \frac{1}{n!}$ .
  - (a) Montrer que ces suites sont adjacentes. Que peut on en déduire?
  - (b) On note l leur limite commune. Montrer que l est irrationnel. (on pourra raisonner par l'absurde). En fait l = e (voir plus tard dans l'année...)
- 11. On pose

$$u_n = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n}$$
 et  $v_n = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} - 2\sqrt{n+1}$ 

Montrer que les suites  $(u_n)$  et  $(v_n)$  sont adjacentes.

En déduire un équivalent de

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}}$$

- 12.(a) Montrer que la suite de terme général  $S_n = \sum_{k=1}^n \frac{(-1)^k}{\sqrt{k}}$  converge vers une limite notée  $l \in \mathbb{R}$ . (on pourra étudier les suites extraites  $(S_{2n})$  et  $(S_{2n+1})$ .)
  - (b) Donner une valeur approchée de l à  $10^{-1}$  près.
- 13. Pour tout  $n \in \mathbb{N}$ , on considère l'équation  $(\mathbf{E_n}) : x + \ln x = n$  d'inconnue  $x \in \mathbb{R}_+^*$ .
  - (a) Montrer que l'équation  $(\mathbf{E_n})$  possède une unique solution dans  $\mathbb{R}_+^*$ . On la note  $x_n$ .
  - (b) Montrer que la suite  $(x_n)$  diverge vers  $+\infty$ .
  - (c) Donner un équivalent simple de  $x_n$ .
- **14.** Pour tout  $n \in \mathbb{N}$ , on considère l'équation  $(\mathbf{E_n})$ :  $xe^x = n$  d'inconnue  $x \in \mathbb{R}_+$ .
  - (a) Montrer que l'équation  $(\mathbf{E_n})$  possède une unique solution dans  $\mathbb{R}_+$ . On la note  $x_n$ .
  - (b) Déterminer la limite de  $(x_n)$ .
  - (c) Donner un équivalent simple de  $x_n$ .
- **15.** Soit n un entier naturel et  $E_n$  l'équation  $x + \tan x = n$  d'inconnue  $x \in \in ]-\pi/2;\pi/2[$ .

2

- (a) Montrer que l'équation  $E_n$  possède une solution unique notée  $x_n$ .
- (b) Montrer que la suite  $(x_n)$  converge et déterminer sa limite.
- **16.** Soit  $\theta \in \mathbb{R}$  tel que  $\theta \not\equiv 0[\pi]$ . On pose  $u_n = \cos(n\theta)$  et  $v_n = \sin(n\theta)$ 
  - (a) Montrer que la suite  $(u_n)$  converge si et seulement si  $(v_n)$  converge. (utiliser des relations trigonométriques)
  - (b) En déduire que les 2 suites sont divergentes.(idem)

17. Soit une suite  $(u_n)$  bornée vérifiant :

$$\forall n \in \mathbb{N}^*, \, 2u_n \leqslant u_{n+1} + u_{n-1}$$

On définit une suite  $(v_n)$  en posant pour tout  $n \in \mathbb{N}$ ,  $v_n = u_{n+1} - u_n$ . Montrer que la suite  $(v_n)$  converge et calculer sa limite.

indication : Étudier la monotonie de la suite v. Puis montrer par l'absurde que cette suite converge vers 0.

18. On considère une suite  $(u_n)$  vérifiant :

$$\forall k \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, \ 0 \leqslant u_n \leqslant \frac{k}{n} + \frac{1}{k}$$

Montrer que la suite  $(u_n)$  est convergente, déterminer sa limite.

indication : Utiliser la partie entière de  $\sqrt{n}$ .

19. Soit a > 0. Étudier la suite de terme général :

$$u_n = \sqrt{a + \sqrt{a + \ldots + \sqrt{a}}}$$

indication: Se ramener à une suite définie par récurrence.

**20.** Étudier la suite définie par  $u_0 > 0$  et pour tout  $n \ge 0$ ,  $u_{n+1} = 1 + \frac{1}{u_n}$ .

**21.** On considère une suite  $(u_n)$  définie par  $u_0 > 0$  et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + u_n}$$

En étudiant la suite  $(\frac{1}{u_n})$ , montrer que  $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$ .

