ฉบับแปลไทย (Thai Translations)

Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation https://www.pnas.org/content/117/41/25254

ลักษณะทางซูเปอร์แอนติเจนของส่วนแทรกที่พบได้เฉพาะในส่วน หนามของ SARS-CoV-2 ซึ่งสนับสนุนโดยเรเพอร์ทัวร์ TCR ที่ บิดเบือนในผู้ป่วยที่มีภาวะอักเสบมากผิดปกติ

ความสำคัญ

กลุ่มอาการภาวะอักเสบมากผิดปกติซึ่งทำให้นึกถึงกลุ่มอาการท็อกซิกช็อก (TSS) พบได้ในผู้ป่วย โควิด 19 ที่มีอาการรุนแรง รวมไปถึงเด็กที่มีกลุ่มอาการอักเสบหลายระบบในเด็ก (MIS-C) โดย ปกติแล้ว TSS มีสาเหตุจากซูเปอร์แอนติเจนก่อโรคซึ่งกระตุ้นการสั่งงานของระบบภูมิคุ้มกันแบบ ปรับตัวมากเกินไป เราได้แสดงให้เห็นว่าส่วนหนามของ SARS-CoV-2 มีลักษณะเด่นของลำดับและ โครงสร้างที่มีความคล้ายคลึงกับซูเปอร์แอนติเจนแบคทีเรียอย่างมาก และอาจเกาะกับตัวรับทีเซลล์ โดยตรง เรารายงานเพิ่มเติมถึงเรเพอร์ทัวร์ของตัวรับทีเซลล์ที่บิดเบือนในผู้ป่วยโควิด 19 ที่มีภาวะ อักเสบมากผิดปกติขั้นรุนแรง ซึ่งสนับสนุนผลของซูเปอร์แอนติเจนดิเจนดังกล่าว สิ่งที่เด่นชัดคือ ไม่พบลักษณะเด่นซึ่งคล้ายซูเปอร์แอนติเจนในโคโรนาไวรัสตระกูลโรคซาร์สชนิดอื่นๆ ซึ่งอาจเป็นเหตุผล ที่ SARS-CoV-2 มีความสามารถเฉพาะตัวในการก่อให้เกิดทั้ง MIS-C และการผลิตไซโตไคน์ จำนวนมาก ซึ่งพบได้ในโรคโควิด 19 ในผู้ใหญ่

บทคัดย่อ

กลุ่มอาการอักเสบหลายระบบในเด็ก (MIS-C) ซึ่งเกี่ยวข้องกับโควิด 19 เป็นภาวะซึ่งเพิ่งเป็นที่รู้จัก ์ในเด็กที่ติดเชื้อโคโรนาไวรัสก่อโรคทางเดินหายใจเฉียบพลันรูนแรง 2 (SARS-CoV-2) เมื่อไม่นาน ้มานี้ ผู้ป่วยซึ่งเป็นเด็กและผู้ใหญ่ที่มีภาวะอักเสบมากผิดปกติขั้นรุนแรงเหล่านี้ปรากฏกลุ่มอาการ ต่างๆ ที่คล้ายคลึงอย่างมากกับกลุ่มอาการท็อกซิกช็อก ซึ่งเป็นการเพิ่มระดับการตอบสนองของ ระบบภูมิคุ้มกันแบบปรับตัวต่อพิษต่อเซลล์ เมื่อซูเปอร์แอนติเจนก่อโรคจับกับตัวรับทีเซลล์ (TCR) หรือโมเลกุลเมเจอร์ฮิสโตคอมแพททาบิลิตีคอมเพล็กซ์คลาส II (MHCII) ในที่นี้เราใช้โมเดลการ คำนวนทางคณิตศาสตร์อิงโครงสร้างเพื่อแสดงให้เห็นว่าไกลโคโปรตีนส่วนหนาม (S) ของ SARS-CoV-2 แสดงลักษณะเด่นของความสามารถจับตัวรับที่สูงสำหรับการจับ TCR และอาจก่อเกิดคอม เพล็กซ์สามส่วนร่วมกับ MHCII เอพิโทปยึดเกาะที่ S มีลักษณะเด่นของลำดับเฉพาะตัวของ SARS-CoV-2 (ไม่พบในโคโรนาไวรัสโรคโรคซาร์สชนิดอื่นๆ) ซึ่งมีทั้งลำดับและโครงสร้างที่คล้ายคลึง อย่างมากกับซูเปอร์แอนติเจนแบคทีเรีย สแตฟฟิโลคอกคัล เอนเทอโรทอกซิน บี อันตรกิริยา ระหว่างไวรัสและที่เซลล์ของมนษย์ดังกล่าวอาจได้รับการส่งเสริมจากการกลายพันธ์ที่พบได้ยาก (D839Y/N/E) จาก SARS-CoV-2 สายพันธุ์ยุโรป นอกจากนี้ ส่วนสัมผัสยังมีสิ่งตกค้างบางอย่าง จากลักษณะเด่นคล้ายโมเลกูลยึดเกาะระหว่างเซลล์ (ICAM) ซึ่งพบร่วมกันในไวรัสโรคซาร์สจาก การระบาดใหญ่ในปี 2003 และ 2019 ลักษณะเด่นของลำดับที่คล้ายพิษต่อระบบประสาทที่ส่วนยึด จับตัวรับยังแสดงถึงแนวโน้มสงในการยึดเกาะ TCR อีกด้วย การวิเคราะห์เรเพอร์ทัวร์ TCR ในผ้ป่วย โควิด 19 ที่เป็นผู้ใหญ่บ่งชี้ว่าผู้ที่เป็นโรคภาวะอักเสบมากผิดปกติขั้นรุนแรงแสดงออกถึงการ บิดเบือนของ TCR ซึ่งสอดคล้องกับการสั่งงานเนื่องจากซเปอร์แอนติเจน ข้อมลเหล่านี้บ่งบอกว่า ส่วน S ของ SARS-CoV-2 อาจมีบทบาทเป็นซูเปอร์แอนติเจนซึ่งการกระตุ้นการพัฒนาของ MIS-C รวมไปถึงการผลิตไซโตไคน์จำนวนมากในผู้ป่วยโควิด 19 ที่เป็นผู้ใหญ่ ซึ่งมีนัยสำคัญสำหรับการ พัฒนาวิธีการบำบัด

โคโรนาไวรัสก่อโรคทางเดินหายใจเฉียบพลันรุนแรง 2 (SARS-CoV-2) ไวรัสก่อโรคโควิด 19 เป็นเบตาโคโรนาไวรัส (β-CoV) ซึ่งมีความเกี่ยวข้องอย่างใกล้ชิดกับ SARS-CoV และโรคทางเดิน หายใจตะวันออกกลาง (MERS)-CoV (1) โควิด 19 สามารถทำให้ผู้ใหญ่มีการอักเสบของผนังถุง ลมปอดขั้นรุนแรงร่วมกับภาวะอักเสบมากผิดปกติ ขณะที่อาการแสดงเกี่ยวกับการหายใจขั้นรุนแรง จะพบได้น้อยในเด็ก (2↓−4) อย่างไรก็ตาม เมื่อไม่นานมานี้มีการพบกลุ่มอาการอักเสบหลายระบบ (MIS-C) ในเด็ก ในผู้ป่วยทั้งที่ได้ผลตรวจโควิด 19 เป็นบวก (ด้วยวิธี PCR หรือวิธีทางชีรัมวิทยา) หรือมีความเชื่อมโยงทางระบาดวิทยากับโควิด 19 (5↓−7) หลังจากที่มีการรายงานเบื้องตันในส หราชอาณาจักร (5) ก็มีการรายงานเคสจำนวนมากในยุโรป (6, 7) และนิวยอร์ก (ศูนย์ควบคุมและ ป้องกันโรค) อย่างไรก็ตาม ไม่มีการรายงานเคสดังกล่าวในประเทศจีน ญี่ปุ่น หรือเกาหลีใต้ ซึ่ง ได้รับผลกระทบอย่างรุนแรงจากการระบาดใหญ่ของโควิด 19 เช่นกัน (ศูนย์ป้องกันและควบคุมโรค แห่งสหภาพยุโรป)

อาการแสดงของ MIS-C ได้แก่ มีไข้ตลอดเวลา และมีภาวะอักเสบมากผิดปกติซึ่งเกี่ยวข้องกับ ระบบอวัยวะหลายส่วน รวมถึงอาการทางหัวใจ ระบบทางเดินอาหาร (GI) ไต ระบบเลือด ผิวหนัง และทางประสาทวิทยา (5ุป−7) อาการเหล่านี้ทำให้นึกถึงกลุ่มอาการท็อกซิกช็อก (TSS) (8, 9) (ตารางที่ 1) มากกว่าโรคคาวาซากิ (KD) เนื่องจากความแตกต่างที่เด่นชันในทางสถิติประชากร ทางคลินิก และในห้องทดลอง (6) ที่จริงแล้ว กรณีศึกษาย้อนกลับแบบไม่มีตัวควบคุมเมื่อไม่นาน มานี้ได้สรุปว่า MIS-C ไม่เหมือนกับ KD และกลุ่มอาการซ็อก KD (10) ความคล้ายคลึงกับ TSS และความเชื่อมโยงของ MIS-C ต่อโควิด 19 ทำให้เราสันนิษฐานว่า SARS-CoV-2 อาจมีชิ้นส่วน ซูเปอร์แอนติเจนที่เหนี่ยวนำการอักเสบเป็นลำดับ และอาจมีส่วนร่วมในภาวะอักเสบมากผิดปกติและ การผลิตไซโตไคน์จำนวนมากซึ่งพบในผู้ป่วยโควิด 19 ซึ่งเป็นผู้ใหญ่ที่มีอาการรุนแรง (3, 4) คำถามของเราก็คือ ส่วนหนาม (S) ของ SARS-CoV-2 มีชิ้นส่วนซูเปอร์แอนติเจนที่อาจนำไปสู่ ปฏิกิริยาดังกล่าวเมื่อจับกับโปรตีนที่เกี่ยวข้องในการตอบสนองของระบบภูมิคุ้มกันแบบปรับตัวต่อ พิษต่อเซลล์ของโฮสต์หรือไม่? ปฏิกิริยาดังกล่าวไม่พบในของของ SARS-CoV เมื่อปี 2003 (ต่อไปนี้จะเรียกว่า SARS1) อะไรคือความเฉพาะตัวของ SARS-CoV-2 และการกลายพันธุ์ที่ส่วน S ของ SARS-CoV-2 เมื่อไม่นานมานี้มีส่วนต่อความอันตรายของเชื้อที่สงขึ้นหรือไม่?

ตารางที่ **1** ความคล้ายคลึงระหว่างลักษณะทางคลินิกและในห้องทดลองของ MIS-C และ TSS ในเด็ก

ลักษณะทางคลินิก	MIS-C*	TSS ในเด็ก†
ไข้สูง	+	+
ผื่นที่ผิวหนัง	+	+
เยื่อบุตาอักเสบ	+	+
ความผิดปกติของเยื่อบุช่องปาก	+	+
ปวดกล้ามเนื้อ	+	+
ความดันโลหิตต่ำ	+	+
ความผิดปกติของกล้ามเนื้อหัวใจ (ทำหน้าที่ผิดปกติ)	+	+
อาการเกี่ยวกับกระเพาะอาหารและลำไส้ (อาเจียน ท้องเสีย	+	+
ปวดท้อง)		
ความผิดปกติของไต	+	+
อาการ CNS ความรู้สึกตัวเปลี่ยนแปลง	+	+
ปวดศีรษะ	+	+
โปรตีนตอบสนอง C (CRP) สูง	+	+
เฟอร์ริตินสูง	+	+
IL-6 สูง	+	+
ดีไดเมอร์สูง	+	+
โปรแคลซิโทนินสูง	+	+
ลิมโฟไซด์ต่ำ	+	+
จำนวนเกล็ดเลือดลดลง	+	+
จำนวนนิวโทรฟิลเพิ่มขึ้น	+	+
แอสพาเทตอะมิโนทรานสเฟอเรส (AST) และอะลานีนทรานซา	+	+
มิเนส (ALT) เพิ่มขึ้น		
โปรเนตริยูเรติกเปปไทด์ชนิดบี (pro-BNP) สูง	+	NA
โทรโพนินสูง	+	NA
การแยกแบคทีเรียเหนี่ยวนำ TSS (สแตฟฟิโล	_	+
คอกคัส หรือ สเตรปโตคอกคัส)		
NA หมายถึงไม่เกี่ยวข้อง; + แส _ุ ดงถึงความเชื่อมโยงกับเคสที่		
รายงาน; – หมายถึงไม่มีความเชื่อมโยง		
<u> </u>		
<u>ุ ุ⊬† จากข้อมูลอ้างอิง 8, 9, 61 และ 62</u>		

TSS อาจเกิดจากซูเปอร์แอนดิเจน (SAg) สองชนิด): แบคทีเรียหรือไวรัส ได้มีการศึกษาเกี่ยวกับ SAg ที่เป็นแบคทีเรียอย่างครอบคลุม ซึ่งรวมถึงโปรตีนที่ขับจาก สแตฟฟิโลคอกคัสออ เรียส และ สเตรปโตคอกคัสไพโอจีเนส ซึ่งกระตุ้นการผลิตไซโตไคน์การอักเสบจำนวนมากและท็ อกซิกช็อก ดัวอย่างทั่วไปได้แก่ TSS ทอกซิน 1 และ สแตฟฟิโลคอกคัลเอนเทอโรทอกซิน B (SEB) และ H (SEH) ซึ่งออกฤทธิ์สูงในการกระตุ้นทีเซลล์ซึ่งสามารถจับยึดกับโมเลกุลเมเจอร์ฮิส โตคอมแพททาบิลิตีคอมเพล็กซ์ (MHC) คลาส II (MHCII) และตัวรับทีเซลล์ (TCR) ทั้งของที เซลล์ CD4+ และ CD8+ ความสามารถของ SAg ในการบายพาสความจำเพาะของแอนดิเจนของ TCRs ส่งผลให้มีการสั่งงานทีเซลล์เป็นวงกว้างและการผลิตไซโตไคน์จำนวนมาก และนำไปสู่กลุ่ม อาการท็อกซิกช็อก (11, 12) ที่สำคัญคือ SAg ไม่จับกับช่องจับยึดเปปไทด์หลัก (แอนดิเจน) ของ MHCII แต่จับกับบริเวณอื่นๆ รวมถึง αβTCR โดยตรง ขณะที่ศึกษาในช่วงเริ่มแรกแสดงให้เห็นว่า SAg แบคทีเรียสั่งงานทีเซลล์โดยการจับกับสายโซ่ β ของไดเมอร์ TCR ที่บริเวณแปรผัน (V) (13 – 15) ซึ่งการศึกษาหลังจากนั้นเปิดเผยว่าพวกมันสามารถจับกับสายโซ่ α หรือ β หรือทั้งสอง สาย (16) ดังนั้น คำถามคือ ส่วน S ของ SARS-CoV-2 มีขึ้นส่วนหรือบริเวณซูเปอร์แอนดิเจนที่ สามารถจับกับ TCR ใด้หรือไม่?

ในที่นี่เราใช้โมเดลการคำนวนทางคณิตศาสตร์เพื่อระบุว่าส่วน S ของ SARS-CoV-2 มีขึ้นส่วนและ กิจกรรมที่คล้าย SAg หรือไม่ เราแสดงให้เห็นว่าส่วนแทรกโพลีเบสิกที่ปรากฏในส่วน S ของ SARS-CoV-2 ซึ่งไม่มีในไกลโคโปรตีนส่วน S ของ β-CoV ที่เกี่ยวข้องกับโรคซาร์สชนิดอื่นๆ เป็นตัวกลาง ในการจับกับ TCR โดยไม่เจาะจงและมีความสามารถจับตัวรับสูง โดยเฉพาะลักษณะเด่นของกรดอะ มิโน ~20 ซึ่งล้อมส่วนแทรกดังกล่าวและพบได้เฉพาะใน SARS-CoV-2 มีลักษณะของลำดับและ โครงสร้างที่คล้ายคลึงอย่างมากกับของทอกซิน SEB การวิเคราะห์ของเราสามารถระบุเพิ่มเติมว่า การกลายพันธุ์ที่ส่วน S ของ SARS-CoV-2 ซึ่งตรวจพบในสายพันธุ์ยุโรปอาจมีส่วนปรับปรุงการจับ TCR นอกจากนี้ การวิเคราะห์กลุ่มร่วมรุ่นผู้ป่วยโควิด 19 ที่เป็นผู้ใหญ่ยังเปิดเผยว่า ผู้ที่เป็นโรคภาวะ อักเสบมากผิดปกติขั้นรุนแรงแสดงออกถึงการบิดเบือนของเรเพอร์ทัวร์ TCR ซึ่งสอดคล้องกับ กิจกรรมของ SAg ดังนั้น สิ่งที่ค้นพบเหล่านี้จึงมีความหมายโดยนัยที่สำคัญสำหรับการจัดการและ การรักษาผู้ป่วยทั้งโรค MIS-C และโควิด 19 ที่มีกลุ่มอาการภาวะอักเสบมากผิดปกติ

ผลลัพธ์และการอภิปราย

ส่วนหนามของ SARS-CoV-2 มีไซต์ที่มีความสามารถจับตัวรับสูงสำหรับการจับ สายโซ่ β ของ TCR ซึ่งมีการแทรก P₆₈₁RRA₆₈₄ ซึ่งเป็นลักษณะเฉพาะตัวของ SARS2

ก่อนอื่นเราได้ตรวจสอบว่าส่วน S ของ SARS-CoV-2 สามารถจับกับสายโซ่ α หรือ β ของ TCR ได้ หรือไม่ ตามวัตถุประสงค์ดังกล่าว เราได้สร้างโมเดลเชิงโครงสร้างสำหรับส่วนหนามของ SARS-CoV-2 โดยอ้างอิงโครงสร้างที่ระบุด้วยกล้องจุลทรรศน์ไครโออิเล็กตรอน (cryo-EM) สำหรับไกล โคโปรตีนส่วน S (17) จากนั้นเราใช้โครงสร้างเอ็กซ์เรย์ของ αβTCR ซึ่งระบุได้ในคอมเพล็กซ์สาม ส่วนซึ่งมี SEH และ MHCII (16) เพื่อสร้างชุดโมเดลเชิงโครงสร้างสำหรับการก่อคอมเพล็กซ์ S—TCR ของ SARS-CoV-2 ที่เป็นไปได้ โดยใช้ ClusPro (18) การจำลองของเราเปิดเผยถึงไซต์จับ TCR ที่เป็นไปได้มากที่สุดสองไซต์ที่แต่ละโมโนเมอร์ของ S: ไซต์หนึ่งที่ส่วนยึดจับตัวรับ (RBD; ส่วนคงเหลือ R319 ถึง K529) และอีกไซต์หนึ่งใกล้กับคลีเวจไซต์ S1/S2 ระหว่างซับยูนิต S1 และ S2 ไซต์แรกสามารถพบได้ในส่วน S ของ SARS1 และ MERS-CoV เช่นกัน ในขณะที่ไซต์ที่สอง เป็นลักษณะเฉพาะตัวของส่วน S ของ SARS-CoV-2 ซึ่งพบได้มาก ตามที่ได้อธิบายไว้โดยละเอียด ใน ภาคผนวก SIฎาพประกอบ S1 และ S2 ดังนั้น เราจึงมุ่งเน้นไซต์ที่สอง ซึ่งแสดงใน

<u>ภาพประกอบ</u> **1***A* เนื่องจากเป็นกลไกที่มีความเป็นไปได้มากที่สุดของการก่อคอมเพล็กซ์ซึ่งทำให้ ส่วน S ของ SARS-CoV-2 แตกต่างไปจาก β-CoV ชนิดอื่นๆ มุมมองระยะใกล้ของส่วนสัมผัส ระหว่าง S และ TCRVβ (<u>ภาพประกอบ</u> **1***B*) เผยให้เห็นถึงอันตรกิริยาระหว่างอะตอมที่เด่นชัดซึ่ง เกี่ยวข้องกับส่วนคงเหลือ S680-R683 ของส่วนหนามและส่วนคงเหลือ Q52, D56, R70 ถึง E74 (CDR2) และ S96 ถึง Q103 (CDR3) ของ Vβ

ภาพประกอบ 1.

การจับของ TCR เข้ากับไตรเมอร์ส่วนหนามของ SARS-CoV-2 ใกล้กับส่วนแทรก "PRRA" ภาพแสดง (A) โดยรวม และ (B) ระยะใกล้ของคอมเพล็กซ์และอันตรกิริยา ส่วนสัมผัส ในภาพ A โมโนเมอร์ส่วนหนามแสดงด้วยสีขาว ฟ้า/เทา และไล่ระดับสี จากสีน้ำเงิน (บริเวณเทอร์มินัล N) จนถึงสีแดง ซึ่งทั้งหมดแสดงไว้เพื่อแสดงถึงพื้นผิว มีป้ายกำกับเทอร์มินัล N และ C และ RBD ของโมโนเมอร์ที่แสดงโดยไล่ระดับสี ที่ สามารถจับกับ TCR เช่นกัน และเพื่อให้แสดงด้วยภาพได้ดียิ่งขึ้น ไตรเมอร์ส่วน S จะ หันไปในทิศทางซึ่ง RBD อยู่ที่ด้านล่าง สายโซ่ a และ β ของ TCR คือเส้นแถบสีแดง และสีฟ้า ในภาพ B ส่วน S₆₈₀PPRAR₆₈₅ รวมถึงส่วนแทรก PRRA และคลีเวจไซต์ R685 ซึ่งถูกรักษาไว้เป็นอย่างดี จะแสดงด้วยรูปแบบแวนเดอร์วาลส์ (ตัวอักษรสีดำ); ส่วน คงเหลือ CDR ใกล้เคียงของบริเวณ Vβ ของ TCR จะกำกับด้วยตัวอักษรสีน้ำเงิน/สีขาว โปรดดข้อมลเพิ่มเดิมใน ภาคผนวก SI ภาพประกอบ S1

เราสังเกตว่าเอพิโทปจับ TCRVβ ที่ส่วน S ของ SARS-CoV-2 อยู่ที่ตำแหน่งกลาง ลักษณะเด่นลำดับ P₆₈₁RRA₆₆₄ (ต่อจากนี้จะเรียกว่า PRRA) และมีส่วนข้างเคียงเชิงลำดับ และเชิงพื้นที่ของลักษณะเด่นดังกล่าว การเปรียบเทียบกับลำดับ S ของ β-CoV ชนิด อื่นๆ แสดงให้เห็นว่า (19) สามารถแยกแยะส่วน S ของ SARS-CoV-2 ได้จากการคงอยู่ ของส่วนแทรกส่วนคงเหลือทั้งสี่ส่วนนี้ PRRA คลีเวจไซต์ซึ่งมีอยู่ก่อน S1/S2 (พันธะเปปไทด์ R685–S686) (ภาพประกอบ 2A) การเปรียบเทียบเชิงโครงสร้างของ ไกลโคโปรตีนส่วน S ระหว่าง SARS1 และ SARS-CoV-2 เพิ่มเดิมยังแสดงถึงความ คล้ายคลึงเชิงโครงสร้างโดยทั่วไป [ยกเว้น RBD ที่เกี่ยวข้องกับอันตรกิริยาการสัมผัส ที่เจาะจง (17)] แต่ไกลโคโปรตีน S สองส่วนมีความแตกต่างที่ชัดเจนใกล้กับลักษณะ เด่น PRRARS ที่พบเฉพาะใน SARS-CoV-2 ซึ่งมองเห็นได้จากภายนอก (ภาพประกอบ 2B) ที่น่าสนใจคือ การปรากฏสู่ภายนอกของลักษณะเด่นดังกล่าวและส่วนข้างเคียง ลำดับใกล้เคียงยังถูกเน้นให้ชัดเจนยิ่งขึ้นด้วยไตรเมอร์ S1 (ภาพประกอบ 2C) ซึ่งขับ หลังจากการตัดแบ่งโดยโปรตีเอสของมนุษย์ (TMPRSS2 หรือฟูริน) เพื่อให้สามารถ สั่งงานฟิวชันไตรเมอร์ของซับยนิต S2 ได้

ภาพประกอบ 2.

คุณสมบัติเชิงลำดับและโครงสร้างของส่วนแทรก PRRA (A และ B) SARS-CoV-2 จะ เข้ารหัสทั้งคลีเวจไซต์และลักษณะเด่นที่คล้าย SAg (20) ใกล้กับ PRRA แทรก ซึ่งทำ ให้แตกต่างไปจาก β-CoV ที่เกี่ยวข้องกับโรคซาร์สทั้งหมด (A) การจัดเรียงลำดับของ SARS-CoV-2 และสายพันธุ์ที่เกี่ยวข้องกับโรคซาร์สจำนวนมาก (1) ใกล้กับ PRRA แทรก (B) การจัดเรียงโครงสร้างของ SARS-CoV-2 และ SARS1 ที่บริเวณเดียวกัน ลักษณะเด่น PRRARS แสดงด้วยแท่งสีแดง (C) ไตรเมอร์ส่วน S ของ SARS-CoV-2 ประกอบด้วยซับยูนิต S1 เท่านั้น โปรโตเมอร์จะแสดงด้วยสีส้ม แดง และเทา และ แสดงด้วยซับยูนิต S1 เท่านั้น โปรโตเมอร์จะแสดงด้วยสีส้ม แดง และเทา และ เป็นด่าง ในลักษณะเด่นที่ยื่นออก E661 ถึง R685 แสดงด้วยสีขาว เขียว แดง และน้ำ เงิน ตามลำดับ (D) ความคล้ายคลึงเชิงลำดับระหว่างส่วนข้างเคียงของส่วนแทรก PRRA ลักษณะเด่นพิษต่อระบบประสาทที่มีการรายงานก่อนหน้านี้ (20) และลักษณะ เด่นซูเปอร์แอนติเจน gp120 ของ HIV-1 (63) อยู่ในแถวสุดท้าย

การตรวจสอบเพิ่มเติมสำหรับลักษณะเด่นใกล้เคียง PRRA เผยให้เห็นความ คล้ายคลึงเชิงโครงสร้างที่ชัดเจนกับซูเปอร์แอนติเจน SEB รวมถึงความ คล้ายคลึงเชิงลำดับกับพิษต่อระบบประสาทและ SAg ไวรัส

PRRA แทรก พร้อมด้วยส่วนคงเหลือซึ่งมีอยู่ก่อนเชิงลำดับเจ็ดส่วน และ R685 ที่สืบทอด (ถูก รักษาไว้ใน β-CoV ชนิดต่างๆ) ก่อตัวเป็น Y₆₇₄QTQTNSPRRAR₆₈₅ มีตันกำเนิดเดียวกับพิษต่อระบบ ประสาทจาก *Ophiophagus* (งูเห่า) และ *Bungarus genera* รวมถึงบริเวณที่คล้ายพิษต่อระบบ ประสาทจาก RABV สามสายพันธุ์ (20) (ภาพประกอบ 2*D*) เราได้สังเกตเพิ่มเติมว่าชิ้นส่วน เดียวกันมีความคล้ายคลึงอย่างมากกับลักษณะเด่น F164 ถึง V174 ของ SAg gp120 ของไกลโค โปรตีน HIV-1 ความคล้ายคลึงเชิงลำดับที่เด่นชัดดังกล่าวกับทั้ง SAg แบคทีเรียและไวรัส เป็นการ สนับสนุนลักษณะซูเปอร์แอนติเจนที่อาจมีอยู่ของช่วง Y674 ถึง R685 ของส่วน S ของ SARS-CoV-2 ทำให้เราทำการวิเคราะห์เพิ่มเติมเกี่ยวกับลำดับและโครงสร้างเฉพาะส่วน

การวิเคราะห์ของเราทำให้ทราบถึงความคล้ายคลึงเชิงลำดับที่น่าสนใจระหว่างชิ้นส่วน T678 ถึง Q690 ของส่วน S ของ SARS-CoV-2 และเปปใทด์นี้แสดงถึงให้เห็นว่ามีการรักษา SAg ไว้อย่างครอบคลุม ทั้งในสแตฟฟิโลคอกคัลและสเตรปโตคอกคัล (21, 22) เราสังเกตว่าส่วน ที่มีการจัดเรียงลำดับของ SARS1 (S664 ถึง K672) มีความคล้ายคลึงเพียงเล็กน้อยกับ SAg ของ SEB (ภาพประกอบ 3 A ด้านซ้าย) สิ่งที่น่าสนใจกว่านั้นก็คือ ลักษณะเด่นของ SARS-Cov-2 แสดง ถึงพฤติกรรมพาลินโดรมเกี่ยวกับลำดับ SEB ซูเปอร์แอนติเจนดังกล่าว โดยช่วงที่กว้างขึ้น จาก E661 ถึง R685 สามารถจัดเรียงสอดคล้องกับเปปใทด์ของ SAg โดยย้อนทิศทางได้ด้วย (ภาพประกอบ 3 A ด้านขวา) ซึ่งทำให้เราสนใจถึงความอเนกประสงค์และแนวโน้มที่สูงที่ส่วน คงเหลือของไซต์จับยึด TCRVβ ที่ส่วน S ของ SARS-CoV-2 อาจนำไปสู่การตอบสนองที่คล้าย SAg

ภาพประกอบ 3.

ส่วนแทรก "PRRA" ในส่วนหนามของ SARS-CoV-2 แสดงถึงคุณสมบัติเชิงลำดับและโครงสร้างที่ คล้ายกับของซูเปอร์แอนติเจนแบคทีเรีย SEB (A) การจัดเรียงลำดับซูเปอร์แอนติเจน SEB (21) เทียบกับลำดับส่วนหนาม SARS-CoV-2 ที่มีตันกำเนิดเดียวกัน ใกล้กับส่วนแทรก PRRA และส่วน S ของ SARS1 ที่สอดคล้องกัน การจัดเรียงได้แสดงทั้งทิศทางไปข้างหน้า (*ด้านบน*) และย้อนกลับ (*ด้านล่าง*) ตามลำดับของ SEB พึงสังเกตความคล้ายคลึงระหว่างทั้งสองส่วนก่อนหน้านี้ ขณะที่ส่วน ที่สาม (SARS1 S) แสดงถึงความคล้ายคลึงกับ SARS-CoV-2 แต่ไม่คล้ายกับลำดับของ SEB กรดอะมิโนมีประจและแอสพาราจีนวิกฤติซึ่งมีการรักษาไว้ในเชิงโครงสร้างระหว่างส่วน S ของ SARS-CoV-2 และ SEB ตามภาพประกอบ B และ C เขียนด้วยตัวหนาในการจัดเรียง ด้านล่าง (B) โครงสร้างของเปปไทด์ซูเปอร์แอนติเจน (T150-D161) ที่พบในโครงสร้างผลึกของ SEB (<u>64</u>) (PDB รหัสระบ 3SEB) (*C*) โมเดลเชิงโครงสร้างสำหรับลักษณะเด่นพาลินโดรม E661-R685 ของ ส่วน S ของ SARS-CoV-2 (*D*) บริเวณที่มีต้นกำเนิดเดียวกันในส่วน S ของ SARS1 แสดงถึงลักษณะ เชิงโครงสร้างที่แตกต่างออกไปอย่างชัดเจน ลักษณะสามอย่าง (เน้นด้วยวงกลมสีชมพ น้ำเงิน และ เหลือง) ไม่พบในส่วน S ของ SARS1 ลักษณะเด่นใน B และ C คือโพลีเบสิก (ไลซีนสามตำแหน่ง และอาร์จินีนสามตำแหน่งในแต่ละกรณี) ขณะที่ส่วน S ของ SARS1 มีส่วนคงเหลือพื้นฐานส่วนเดียว (R667) เท่านั้น สองชนิดแรกมี ASN ลักษณะโครง ซึ่งไม่พบใน SARS1 (*E*) การจัดเรียงเชิง โครงสร้างของ CD28 ตัวรับซึ่งจับกับ SEB ที่บริเวณ TCRVβ ซึ่งสนับสนนความสามารถในการ ปรับเปลี่ยนของไซต์ SAg ที่คาดว่าเอื้ออำนวยอันตรกิริยาของส่วนหนามต่อ TCRVβ หรือ SEB-CD28

A SEB SAg: (150) TN-KKKATVQELD(161) SARS-CoV-2: (678) TNSPRRARSVASQ(690) SARS-CoV: (664) SLL----RSTSQK(672)

Inv SEB SAg: (161) DLE------QVTA-KKKNT(150)
SARS-CoV-2: (661) ECDIPIGAGICASYQTQ-TNSPRRAR(685)
SARS-CoV: (647) ECDIPIGAGICASYHTVSLL----R(667)

ที่สำคัญคือ โครงสร้างของส่วนที่คล้าย SAg ของส่วน S ของ SARS-CoV-2 และของเปปไทด์ SEB แสดงถึงความคล้ายคลึงกันอย่างเด่นชัด (ภาพประกอบ 3 β และ C): สะพานเกลือ (E159–K152 ใน SEB และ E661–R685 ในส่วน S ของ SARS-CoV-2) ช่วยให้ลักษณะเด่นเชิงโครงสร้างทั้งสอง ชนิดเสถียร ทิศทางสัมพัทธ์ของส่วนคงเหลือที่มีประจุบวกสามส่วน (K152, K153 และ K154 ใน SEB และส่วน R682, R683 และ R685 ในส่วน S ของ SARS-CoV-2) ถูกรักษาไว้ และแอสพารา จีน (N151 ใน SEB, N679 ใน SARS-CoV-2) ทำให้ลักษณะเด่นดังกล่าวสมบูรณ์ ลักษณะทั้งสาม อย่างนี้ไม่พบในส่วน S ของ SARS1 (ภาพประกอบ 3 D) สาย β ซึ่งดูเหมือนทำหน้าที่เป็นโครงถูก รักษาไว้ในส่วนหนามทั้งสามส่วน และเราสังเกตถึงชีสเทอีนคู่หนึ่งซึ่งอาจก่อพันธะไดซัลไฟด์ใน ส่วนหนามของ SARS-CoV-2 และ SARS1 (C662–C671 และ C648–C657 ตามลำดับ)

การวิเคราะห์นี้สรุปโดยรวมว่า ขึ้นส่วน T₆₇₈NSPRRAR₆₈₅ อาจก่อให้เกิดแกนซูเปอร์แอนติเจนซึ่งมีการ กล่าวถึง ซึ่งจัดเรียงอย่างสอดคล้องกับ SAg แบคทีเรียหรือไวรัสชนิดต่างๆ (<u>ภาพประกอบ</u> 2C และ 3 A_C) ไม่ว่าจะมีกรดอะมิโนข้างเคียงร่วมด้วยหรือไม่ อย่างไรก็ตาม การวิเคราะห์รวม สำหรับลำดับและโครงสร้างในระดับที่กว้างยิ่งขึ้นใน <u>ภาพประกอบ 3 A (ด้านขวา) และ B และ C</u> เผยให้เห็นถึงลักษณะที่น่าสนใจยิ่งกว่านั้น: แกน SAg ซึ่งมีการกล่าวถึงนี้ มีโครงสร้างที่ประกอบขึ้น จากส่วนที่อยู่ใกล้เคียงเป็นส่วนที่เป็นกรดซึ่งถูกรักษาไว้ E₆₆₁CD₆₆₃ ซึ่งก่อตัวเป็นสะพานเกลือที่มี ความเสถียรอย่างมาก โดยมีส่วนโพลีเบสิก PRRAR ของส่วน S ของ SARS-CoV-2 ในลักษณะ เดียวกับสะพานเกลือที่พบใน SEB (แต่ไม่พบในส่วน S ของ SARS1) เสริมด้วยแอสพาราจีนที่พบ ร่วมกันระหว่างส่วน S ของ SARS-CoV-2 และ SEB (แต่ไม่พบในส่วน S ของ SARS1) และลักษณะ ของ SAg อาจได้มาจากลักษณะโครงของโครงสร้างชนิดนี้

เราทราบถึงการรายงานว่าเปปไทด์ซูเปอร์แอนติเจน SEB Y₁₅₀NKKKATVQELD₁₅₁ สามารถจับกับ CD28 (21) TCR ที่ให้สัญญาณร่วมกระตุ้นซึ่งจำเป็นสำหรับการสั่งงานและการอยู่รอดของทีเซลล์ บริเวณ CD28 และ TCRV มีรูปทรงทบ (อิมมูโนโกลบูลิน, Ig) (ภาพประกอบ 3 €) และกลไกการ จับซึ่งแสดงใน ภาพประกอบ 1 ฿ สามารถปรับได้ โดยการจัดลำดับใหม่เพียงเล็กน้อย เพื่อมีอันตร กิริยากับโมเลกุลรูปทรงทบ Ig อื่นๆ รวมถึงสารภูมิต้านทานยับยั้งเชื้อ เนื่องจากส่วนซูเปอร์ แอนติเจนที่มีต้นกำเนิดเดียวกันของ SEB ซึ่งจับกับ CD28 เราจึงทำการทดสอบศักยภาพของส่วน คงเหลือ E661 ถึง R685 ของส่วนหนามของ SARS-CoV-2 ในการจับกับ CD28 ด้วย การจำลอง ของเราบ่งบอกว่าส่วนเดียวกันสามารถจับกับ CD28 ได้เท่าเทียมกัน ซึ่งสนับสนุนแนวโน้มที่ชัดเจน ว่าส่วนดังกล่าวอาจกระตุ้นการสั่งงานทีเซลล์ได้

ลักษณะเด่นที่คล้าย ICAM-1 ซึ่งพบร่วมกันระหว่างส่วนหนามของ SARS1 และ SARS-CoV-2 มีปฏิกิริยากับ TCRVa ซึ่งช่วยให้คอมเพล็กซ์ S-TCR เสถียรยิ่งขึ้น

การพบโมเลกุลที่อาจเป็นซูเปอร์แอนติเจน เป็นพิษ หรือคล้ายโมเลกุลยึดเกาะระหว่างเชลล์ (ICAM) ใน SARS1 ได้รับการตรวจสอบอย่างละเอียดโดย Li และคณะ (23) หลังจากการระบาด ใหญ่เมื่อปี 2003 ซึ่งนำไปสู่การระบุช่วงลำดับเก้าช่วง รวมถึงตัวตั้งต้นของพิษต่อระบบประสาท *โบ ทูลินัม* ประเภท D หรือ G สามชนิด และลักษณะเด่นสองชนิดที่คล้ายคลึงกับ ICAM-1 อย่างมาก การวิเคราะห์เชิงเปรียบเทียบกับลำดับของส่วน S ของ SARS-CoV-2 เปิดเผยว่าลักษณะเด่นเหล่านี้ มีเจ็ดชนิดที่ถูกรักษาไว้ (มีลำดับตรงกัน >68%) ระหว่างส่วนหนามของ SARS1 และ SARS-CoV-2 (*ภาคผนวก SI* ภาพประกอบ S3) ซึ่งจากทั้งหมดนี้ ลักษณะเด่นคล้าย (CD54) ของ ICAM-1 Y_{279} NENGTITDAVDCALDPLSETKC $_{301}$ ยังมีส่วนในความเกี่ยวข้องระหว่างส่วนหนามของ SARS-CoV-2 และ α

ความมีส่วนร่วมของ ICAM-1 สำคัญอย่างยิ่งในการเป็นตัวกลางการตอบสนองของภูมิคุ้มกันและการ อักเสบ อันตรกิริยาที่พบของลักษณะเด่นที่คล้าย ICAM-1 ของส่วน S ของ SARS-CoV-2 และ TCRVa ร่วมด้วยอันตรกิริยาของลักษณะเด่น SAg ที่กล่าวถึงข้างต้น (ใกล้ส่วนแทรก PRRA) กับ TCRVβ น่าจะส่งเสริมความเกี่ยวข้องของไวรัสต่อทีเซลล์และการสั่งงาน แน่นอนว่า T286 (S) มีการ สัมผัสอย่างใกล้ชิดกับ S94 (CDR3); E281 (S) ก่อพันธะไฮโดรเจนกับ T51 (CDR2); และ N280 และ N282 (S) มีความเกี่ยวข้องกับ R69 อย่างใกล้ชิด (ภาพประกอบ 4 D)

ส่วนคล้ายพิษต่อระบบประสาทที่ RBD อาจจับกับ aβTCR ได้เช่นกัน จึงทำให้มี การตอบสนองทางภูมิคุ้มกันมากยิ่งขึ้น

การตรวจสอบเพิ่มเติมที่ส่วน S ของ SARS-CoV-2 ซึ่งมีต้นกำเนิดทางลำดับเดียวกับลำดับคล้าย พิษต่อระบบประสาทที่ระบุ (23) สำหรับส่วน S ของ SARS1 (แถวสีเขียว ภาพประกอบ 54) ทำ ให้เกิดความสนใจที่ลักษณะเด่นสองส่วนซึ่งถูกรักษาไว้ระหว่าง CoV สองชนิด: ส่วนคงเหลือ 299 ถึง 351 ที่ S1 ของ SARS-CoV-2 ซ้อนทับเป็นบางส่วนกับ RBD และส่วนคงเหลือ 777 ถึง 807 ที่ S2 การจำลองของเราเพื่อค้นหาการยึดจับที่เป็นไปได้ของ TCR กับลักษณะเด่นที่คล้ายพิษต่อ ระบบประสาทเหล่านี้ แสดงให้ถึงแนวโน้มที่สูงที่ลักษณะเด่น T299 ถึง Y351 (ไซต์ที่มีความสามารถจับสั่วรับสูงเป็นอันดับที่สองรองจากบริเวณ PRRA) และลักษณะเด่นเดียวกันที่พบใน SARS1 (ไซต์ที่มีความสามารถจับตัวรับสูงที่สุด) จะสามารถจับกับ TCR ได้ ภาพประกอบ 5 C แสดงคอมเพล็กซ์เหล่านี้

ภาพประกอบ 5.

ลำดับคล้ายพิษต่อระบบประสาทใน RBD ส่วน S ของ SARS-CoV-2 และความสามารถ ในการจับกับ TCR (A) การเปรียบเทียบส่วนที่มีฤทธิ์ทางชีวภาพคล้ายพิษต่อระบบ ประสาท (สีเขียว) และส่วนคล้าย ICAM (สีส้ม) ที่ระบุได้ สำหรับ SARS1 และส่วนหนาม ของ SARS-CoV-2 (B) ตำแหน่งซึ่งมีบริเวณคล้ายพิษต่อระบบประสาทสองบริเวณ (ล้อมด้วยวงกลมสีเขียว) และ ICAM-1 หนึ่งบริเวณ (วงกลมสีส้ม; โปรดดู ภาพประกอบ 4) ถูกรักษาไว้ระหว่าง CoV สองชนิด ซึ่งแสดงที่โมโนเมอร์เดียว (เน้นด้วยสีเหลือง) ของส่วน S ของ SARS-CoV-2 (C) ลักษณะการจับยึดของ TCR กับโปรตีนส่วน S ของ SARS-CoV-2 (ซ้าย) และ SARS1 (ขวา) มีการสัมผัสกับลักษณะเด่นพิษต่อระบบ ประสาทที่ถูกรักษาไว้ดังที่แสดง

	١
	1
$\boldsymbol{\Gamma}$	7

ลำดับคล้ายพิษต่อ และคล้าย ICAN ของ SARS1 และ S	∕lของส่วน S	% ตรงกัน ของลำดับ	
SARS1	147-173	37%	
SARS-CoV-2	154-180		
SARS1	227-249	30%	
SARS-CoV-2	234-262		
SARS1	266-288	74%	
SARS-CoV-2	279-301		
SARS1	286-338	75%	
SARS-CoV-2	299-351		
SARS1	759-789	84%	
SARS-CoV-2	777-807		

การศึกษาเมื่อไม่นานมานี้ (24) ตรวจพบความไวปฏิกิริยาของทีเซลล์ที่มีนัยสำคัญต่อเอพิโทป 66 ชนิดของไกลโคโปรตีนส่วน S ของ SARS-CoV-2 ในผู้ที่ไม่เคยได้รับไวรัสมาก่อน ทำให้คาดถึง ความเป็นไปได้ที่อาจเป็นการตอบสนองทางความจำซึ่งได้รับมาเมื่อได้รับ CoV ในมนุษย์ (HCoV) เช่น เชื้อหวัดทั่วไปชนิด HCoV-OC43, HCoV-HKU1, HCoV-NL63 และ HCoV-229E ซึ่งมีต้น กำเนิดลำดับเดียวกับจีโนมของ SARS-CoV-2 มีการระบุเอพิโทปที่เกิดการตอบสนองข้ามชนิด ทั้งหมด 142 ชนิด จากการตรวจคัดกรองเปปไทด์ 474 ชนิดในโปรติโอมของ SARS-CoV-2 (24)

เราได้ตรวจสอบว่าบริเวณที่คล้ายพิษต่อระบบประสาทซึ่งระบุในที่นี้เป็นส่วนหนึ่งของเอพิโทปที่เกิด การตอบสนองข้ามชนิดดังกล่าวหรือไม่ โดยเฉพาะ ในเอพิโทปสี่อันดับสูงสุด (จัดอันดับตามความ ใวปฏิกิริยาของทีเซลล์ซึ่งตรวจวัดจากเซลล์ [SFC]/106 PBMC) ที่ก่อเกิดจุด มีสองชนิด (เปปไทด์ 321 ถึง 335 และ 316 ถึง 330) ที่เป็นของส่วนคล้ายพิษต่อระบบประสาท T299 ถึง Y351 และ หนึ่งชนิด (เปปไทด์ 236 ถึง 250) เป็นของส่วน 234 ถึง 262 ที่จริงแล้วชนิดแรกล้วนอยู่ในเอพิโทปที่เกิดการตอบสนองข้ามชนิดซึ่งมีการซ้อนทับเป็นบางส่วนแปดชนิด ดังที่แสดงใน *ภาคผนวก SI* ภาพประกอบ S4, ซึ่งบ่งบอกถึงความสามารถที่เด่นชัดของบริเวณดังกล่าวในการกระตุ้นการ ตอบสนองของทีเซลล์ CD4+ สิ่งที่ค้นพบเหล่านี้เป็นการสนับสนุนข้อสันนิษฐานว่าลักษณะเด่น ดังกล่าวน่าจะมีความความสามารถสูงในการจับกับ TCR (ภาพประกอบ 5 C)

กล่าวโดยรวมคือ เราควรให้ความสนใจลำดับคล้ายพิษต่อระบบประสาท T299 ถึง Y351 ดังกล่าว เนื่องจากอาจเป็นตันเหตุของความผิดปกติของระบบประสาทส่วนกลาง (CNS) ในผู้ป่วยโควิด 19

จากเอพิโทปทั้ง 66 ชนิด เราสามารถระบุ 661 ถึง 675 ซึ่งอยู่ภายในบริเวณคล้าย SAg E661-R685 (ภาพประกอบ 3) แม้ว่าจะมีความไวปฏิกิริยาและความถี่ต่ำก็ตาม การไม่ปรากฏของส่วน แทรก PRRA ในเอพิโทปที่เกิดการตอบสนองข้ามชนิดไม่ใช่เรื่องที่น่าแปลกใจ เมื่อพิจารณาว่าส่วน แทรกดังกล่าวพบได้เฉพาะในส่วน S ของ SARS-CoV-2 เท่านั้น จากบรรดา βCo-V ที่เกี่ยวข้องกับ โรคซาร์สทั้งหมด และความไวปฏิกิริยาข้ามชนิดเพิ่มขึ้นร่วมกับความคล้ายคลึงทางลำดับกับ แอนติเจน/เปปไทด์ซึ่งผู้บริจาคตัวอย่างเคยได้รับ ลำดับที่ตรงกันระหว่าง SARS-CoV-2 และ SARS1 มี 40% ที่อยู่ในส่วน 671 ถึง 685 ของบริเวณคล้าย SAg และมีการรายงานว่ามีเปปไทด์ที่ เกิดการตอบสนองข้ามชนิด 1% ที่มีลำดับตรงกัน 33 ถึง 40% (24) ในทางกลับกัน เป็นที่น่าสนใจ ที่ในศึกษาเมื่อไม่นานมานี้ (25) เกี่ยวกับเอพิโทปที่แสดงความไวปฏิกิริยาของทีเซลล์ที่สูง ใน ผู้ป่วยโควิด 19 ระดับรุนแรงซึ่งอยู่ในระยะฟื้นตัว คาดว่าเอพิโทป (680 ถึง 688) ซึ่งซ้อนทับกับ ส่วนที่มี PRRA ของบริเวณ SAg เป็นหนึ่งในเอพิโทปที่มีความสามารถจับกับ HLA สูงที่สุด

การกลายพันธุ์ D839Y/E ที่พบได้ยาก ซึ่งพบเมื่อไม่นานมานี้ในสายพันธุ์หนึ่ง ของ SARS2 จากยุโรป อาจมีส่วนร่วมในการเพิ่มเสถียรภาพให้กับอันตรกิริยากับ TCR

ที่น่าสนใจคือ บริเวณที่จับกับส่วน S ของ SARS-CoV-2 มีส่วนคงเหลือสามส่วนซึ่งเมื่อไม่นานมานี้ ได้มีการรายงานการกลายพันธุ์ในสายพันธุ์ใหม่จากยุโรปและสหรัฐอเมริกา (26, 27): D614G, A831V และ D839Y/N/E ซึ่งสองส่วนแรกอาจมีอันตรกิริยากับ MHCII ตามโมเดลสามส่วนที่เรา ได้สร้างขึ้นสำหรับส่วน S ของ SARS-CoV-2, MHCII และ TCR (\mathfrak{I}_{I} กายหนวก \mathfrak{I}_{I} กาพประกอบ \mathfrak{I}_{I} ขณะที่ส่วนสุดท้าย (\mathfrak{I}_{I} D839) อยู่ใกล้กับ TCRV \mathfrak{I}_{I} และมีอันตรกิริยาที่ชัดเจนกับ N30 (\mathfrak{I}_{I} กาพประกอบ \mathfrak{I}_{I} และมีอันตรกิริยาระหว่างส่วนหนามและ TCRV \mathfrak{I}_{I} อีกด้วย อันตรกิริยาการสัมผัสในสายพันธุ์ผ่าเหล่า D839Y มีเสถียรภาพเนื่องจากพันธะไฮโดรเจนระหว่าง Y839 และ D32 อันตรกิริยาอะโรเมติก (มี ขั้วกับ \mathfrak{I}_{I}) ระหว่าง Y839 และ N30 และอาจมีอันตรกิริยาไฟฟ้าสถิตกับ K73 และ S97 การ เปลี่ยนแปลงของความสามารถจับระหว่างส่วนหนามและ TCR สำหรับ D839 ที่กลายพันธุ์กับไทโร ซีนคือ $\Delta\Delta G_{D\rightarrow Y} = -0.9 \pm 0.7$ kcal/mol ซึ่งแสดงถึงการเพิ่มขึ้นของความสามารถจับประมาณสี่ เท่าเมื่อแทนที่กรดแอสพาร์ติกด้วยไทโรซีนที่ดำแหน่งนี้ สำหรับสายพันธุ์ผ่าเหล่าเกิดผลเชิง คุณภาพแบบเดียวกันร่วมกับแอสพาราจีนหรือกรดกลูตามิก แต่ผลดังกล่าวอยู่ในระดับที่ต่ำกว่า สำหรับรายละเอียดเกี่ยวกับวิธีการและผลลัพธ์ โปรดดู \mathfrak{I}_{I} ตาราง S1

การวิเคราะห์เรเพอร์ทัวร์ของ TCR แสดงถึงการบิดเบือนของ TCRVβ และความ หลากหลายของจุดเชื่อมต่อซึ่งบ่งบอกถึงผลของ SAg ในผู้ป่วยโควิด 19 ที่มี อาการร้ายแรงและมีภาวะอักเสบมากผิดปกติ

การยึดจับของ SAg เข้ากับสายโซ่ TCR Vβ บางชนิดส่งผลให้ Vβ เกิดการบิดเบือน โดยที่ที่เซลล์ ที่มีสายโซ่ Vβ และมีความจำเพาะแอนติเจนที่หลากหลาย มีสัดส่วนเป็นส่วนใหญ่ในเรเพอร์ทัวร์ ของ TCR (11, 13) หากลักษณะเด่นที่เราระบุในส่วน S ของ SARS-CoV-2 มีบทบาทเป็น SAg เราสามารถวิเคราะห์ได้ว่าผู้ป่วยโควิด 19 ที่มีอาการเล็กน้อย/ปานกลางและหายโดยที่ไม่มีภาวะ อักเสบมากผิดปกติ น่าจะแสดงถึงการตอบสนองของระบบภูมิคุ้มกันแบบปรับตัวโดยมีตัวกลางคือที่ เซลล์ซึ่งระบุเอพิโทป SARS-CoV-2 ในลักษณะที่มี CDR3 เป็นตัวกลาง ซึ่งผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติน่าจะแสดงออกถึงการตอบสนองทางภูมิคุ้มกันที่สอดคล้อง กับการระบุ SAg บางส่วนเป็นอย่างน้อย ด้วยวัตถุประสงค์ดังกล่าว เราได้ทำการวิเคราะห์ข้อมูล ลำดับภูมิคุ้มกันจากการวิเคราะห์ลำดับรุ่นถัดไป (NGS) จากผู้ป่วยโควิด 19 ที่มีอาการรุนแรงและมีภาวะอักเสบ มากผิดปกติจำนวน 8 คน (ตัวอย่าง 42 ชุด) และผู้ป่วยโควิด 19 ที่มีอาการรุนแรงและมีภาวะอักเสบ มากผิดปกติจำนวน 8 คน (ตัวอย่าง 24 ชุด) ซึ่งเป็นส่วนหนึ่งของกลุ่มร่วมรุ่นที่ทำการศึกษาก่อน หน้านี้ (28) การวิเคราะห์องค์ประกอบหลัก (PCA) ของเรเพอร์ทัวร์ยีนตัวแปรสายโซ่ TCR β (TRBV) สำหรับสองกลุ่มดังกล่าวช่วยให้ทราบว่าผู้ป่วยโควิด 19 ที่มีอาการเล็กน้อย/ปานกลาง อยู่ ในกลุ่มที่แยกจากผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ (ภาพประกอบ 64)

ภาพประกอบ 6.

การบิดเบือนของการใช้ TRBV ในผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ ทำการวิเคราะห์ 24 เรเพอร์ทัวร์ของเคสโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ เทียบกับ 42 เรเพอร์ทัวร์ของเคสโควิด 19 ที่มีอาการเล็กน้อย/ปานกลาง โดยที่มีและไม่มี 23 เรเพอร์ทัวร์ของผู้บริจาคที่มีสุขภาพดีและอายุตรงกัน (อายุตรงกับกลุ่มโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบ มากผิดปกติ) (A) PCA ของการใช้ TRBV แสดงองค์ประกอบหลัก 1 และ 2; เปอร์เซ็นต์ของการ แจกแจงตามแกนจะระบุไว้ในวงเล็บ ทำการวิเคราะห์ทางสถิติโดยการวิเคราะห์ความแปรปรวนหลาย ตัวแปร (MANOVA) ด้วยการทดสอบพิลไล—บาร์ตเลต (B) การใช้ TRBV องค์ประกอบย่อยของยืน TRBV จำเพาะต่อเรเพอร์ทัวร์จะแสดงด้วยค่าเฉลี่ย ± SEM ยืน TRBV จะจัดเรียงตามองค์ประกอบย่อยที่พบมากในกลุ่มอาการรุนแรง/ภาวะอักเสบมากผิดปกติ เปรียบเทียบกับผู้ป่วยโควิด 19 ที่มี อาการเล็กน้อย/ปานกลาง โดยเรียงจำดับน้อยไปมากจากล่างขึ้นบน TRBV อันดับสูงสุดพบมากใน ผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ (TRBV5-6, TRBV14, TRBV13 และ TRBV24-1) จะแสดงโดยขยายใน ภาพแทรก (C) PCA ของการใช้ TRBJ ที่ได้อธิบายไว้ใน A โปรดดูข้อมูลเพิ่มเดิมที่ ภาคผนวก SI ภาพประกอบ S7

การวิเคราะห์การใช้ยีนเชิงเปรียบเทียบแสดงให้เห็นว่ายีน TRBV จำนวนมากมีมากเกินไปในกลุ่ม ผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ (ภาพประกอบ 6) ต่างจาก PCA ของ การแจกแจงยีน J แสดงถึงการบิดเบือนที่น้อยกว่ามาก ซึ่งบ่งบอกว่ามีความกดดันที่เฉพาะเจาะจง ต่อการแจกแจงยีน V เป็นพิเศษ (ภาพประกอบ 6) เพื่อสำรวจเพิ่มเติมถึงความหลากหลายของยีน J ที่เฉพาะเจาะจงสำหรับยีน V ซึ่งมีมากเกินไปในเคสโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ เราได้แยกแยะยีน J ทั้งหมดโดยจัดเรียงใหม่โดยใช้ TRBV5-6, TRBV13, TRBV14 และ TRBV24-1 จากเรเพอร์ทัวร์ของผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ แล้ว นำมาเปรียบเทียบกับยีน J ที่แยกแยะจากผู้บริจาคที่มีสุขภาพดีที่อายุตรงกัน การวิเคราะห์ดังกล่าว ชี้ให้เห็นถึงการแจกแจงยีน TRBJ ที่มีความหลากหลายอย่างมาก บ่งบอกถึงความหลากหลายของ CDR3 ในรูปแบบจัดเรียงที่ขยายแต่ละรูปแบบ (ภาคผนวก SI ภาพประกอบ S7)

เมื่อพิจารณาร่วมกัน ผลลัพธ์ของเราบ่งบอกว่าผู้ป่วยโควิด 19 ที่มีอาการรุนแรงและภาวะอักเสบมาก ผิดปกติแสดงถึงการขยายของ TCR โดยใช้ยืน V ที่โดดเด่น ร่วมกับความหลากหลายของยืน J/CDR3 ในรูปแบบจัดเรียงเหล่านี้ มีความสอดคล้องกับกระบวนการคัดเลือก SAg

TCR ที่สอดคล้องกับการสั่งงานยืน TRBV ในผู้ป่วยโควิด 19 ที่มีอาการรุนแรง สามารถจับกับบริเวณคล้าย SAg ของส่วน S ของ SARS-CoV-2 ได้

และท้ายสุด เราพิจารณา TCR ซึ่งระบุโดยโครงสร้าง ซึ่งประกอบด้วยสายโซ่ Vβ ที่เข้ารหัสโดยยืน TRBV5-6, TRBV13, TRBV14 และ TRBV24-1 ซึ่งพบมากในผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ เราได้ทำการทดสอบความสามารถของ TCR เหล่านี้ในการจับกับบริเวณ คล้าย SAg E661 ถึง R685 ของส่วน S ของ SARS-CoV-2 ในลักษณะเดียวกับ TCR ใน ภาพประกอบ 1 การค้นหาใน Protein Data Bank (PDB) ของเราพบโครงสร้าง αβTCR ที่ สอดคล้องกับ TRBV5-6, TRBV14 และ TRBV24-1 กล่าวคือ TCR ที่มีสายโซ่ Vβ ตรงกับ ผลิตภัณฑ์โปรดีนของยืนสามชนิดดังกล่าว 95 ถึง 100% ดังที่แสดงใน ภาคผนวก SI ภาพประกอบ S8, ทั้งสามชนิดได้รับการตรวจสอบว่าสามารถจับกับไซต์คล้าย SAg โดยมีความสามารถในการจับ สูง และมีอันตรกิริยาการสัมผัสที่คล้ายคลึงอย่างมากกับที่แสดงไว้ใน ภาพประกอบ 1 โมเดลและ การจำลองของเรายังชี้ให้เห็นถึงความเป็นไปได้ของการก่อคอมเพล็กซ์สามส่วนขึ้นได้เองโดยไม่ ต้องใช้พลังงาน ระหว่าง TCR เหล่านี้ MHCII และส่วนหนาม กล่าวโดยรวมคือ การจำลองเหล่านี้ แสดงให้เห็นว่า TCR เหล่านี้ซึ่งพบมากในผู้ป่วยโควิด 19 ที่มีอาการรุนแรง/การอักเสบ สามารถจับ กับส่วน S ของ SARS-CoV-2 ที่บริเวณคล้าย SAg และก่อเกิดคอมเพล็กซ์สามส่วนร่วมกับ MHCII

การสรุปผล

ความเข้าใจเกี่ยวกับลักษณะทางพยาธิวิทยาภูมิคุ้มกันที่นำไปสู่อาการแสดงระดับรุนแรงของโควิด 19 ทั้งในผู้ใหญ่และเด็ก มีความสำคัญอย่างยิ่งสำหรับการจัดการและการรักษาโรคอย่างมี ประสิทธิภาพ MIS-C แสดงถึงความคล้ายคลึงกับ TSS ในเด็กอย่างชัดเจน (<u>5↓↓↓−9</u>) การสร้าง โมเดลและวิเคราะห์ด้วยคอมพิวเตอร์ช่วยให้เราพบว่า SARS-CoV-2 มีการเข้ารหัสลักษณะเด่น ซเปอร์แอนติเจนใกล้กับคลีเวจไซต์ S1/S2 บริเวณดังกล่าวมีความคล้ายคลึงอย่างมากในเชิงลำดับ และโครงสร้างกับลักษณะเด่น SAq ของ SEB ซึ่งมีอันตรกิริยาทั้งกับ TCR และ CD28 (21) และ เป็นตัวกลางของ TSS โดยที่ SEB ทำให้มีการสั่งงานและเพิ่มจำนวนทีเซลล์อย่างกว้างขวาง (12) ส่งผลให้มีการสร้างไซโตไคน์ส่งเสริมการอักเสบจำนวนมาก ซึ่งรวมถึง IFNy, TNFa และ IL-2 จากทีเซลล์ เช่นเดียวกับ IL-1 และ TNFa จากเซลล์แสดงแอนติเจน (12) การผลิตไซโตไคน์ ้จำนวนมากดังกล่าวนำไปสู่ความเสียหายของเนื้อเยื่ออวัยวะหลายส่วน เช่นเดียวกับที่พบในกลุ่ม อาการ MIS-C ในขณะนี้ ผลลัพธ์ของเราบ่งบอกว่ากลุ่มอาการภาวะอักเสบมากผิดปกติดังกล่าว สืบเนื่องจากกิจกรรมซูเปอร์แอนติเจนของไกลโคโปรตีนที่ส่วน S ของ SARS-CoV-2 นอกจากนี้ สิ่ง ที่ค้นพบเหล่านี้ยังเสนอความเป็นไปได้ที่ภาวะอักเสบมากผิดปกติซึ่งพบในเคสโควิด 19 ที่เป็น ผู้ใหญ่และอาการร้ายแรง อาจมีกิจกรรมซึ่งคล้าย SAg ของโปรตีนส่วน S เป็นปัจจัยผลักดัน ที่จริง แล้ว SAg มีการเหนี่ยวนำรูปแบบของไซโตไคน์การอักเสบที่คล้ายกับที่คาดการณ์ไว้สำหรับโควิด 19 กรณีอาการรุนแรงและเสียชีวิต ซึ่งรวมถึง IL-6, TNFα, IL-8 และ IL-1β (**12**, **29**) นอกจากนี้ การวิเคราะห์ของเราเกี่ยวกับการตอบสนองทางภมิคัมกันของทีเซลล์ในผู้ป่วยโควิด 19 ยังบ่งบอก ว่า ผู้ที่เป็นโรคภาวะอักเสบมากผิดปกติขั้นรุนแรงแสดงออกถึงการบิดเบือนของ TCRVβ ซึ่ง สอดคล้องกับกิจกรรมของ SAq

ที่น่าสนใจคือ การศึกษาโดยละเอียดเกี่ยวกับการกระตุ้นการสร้างภูมิคุ้มกันของ SARS1 ได้ ดำเนินการในกลุ่มร่วมรุ่นผู้ที่หายจาก SARS1 จำนวน 128 คน (30) แสดงว่าส่วนหนามของ SARS1 18-mer D649-L666 (DIPIGAGICASYHTVSLL) เป็นหนึ่งในเปปไทด์ที่ทีเซลล์ระบุได้ บ่อยที่สุด จาก 1,843 เปปไทด์ที่ทำการคัดกรอง ซึ่งครอบคลุมโปรติโอมทั้งหมดของ SARS1 CoV [ตารางที่ 3 ใน Li และคณะ (30)] ส่วนดังกล่าวสอดคล้องกับบริเวณ E647 ถึง R667 ของส่วน S ของ SARS1 ซึ่งมีต้นกำเนิดเดียวกันในทางลำดับ (และทางโครงสร้าง) กับลักษณะเด่น E661 ถึง R685 ซึ่งคล้าย SAg ที่ส่วนหนามของ SARS-CoV-2 ของเรา (ภาพประกอบ 3A การจัดเรียง ด้านล่าง) นี่จึงเป็นข้อมูลสนับสนุนที่สำคัญถึงความสามารถของลักษณะเด่น SAg ของเราในการ กระตุ้นที่เซลล์ หากพิจารณาว่ามีสัดส่วนกรดอะมิโน 12/18 ส่วนร่วมกับ 18-mer ของ SARS1 และ กรดอะมิโนคงเหลือ (รวมถึงส่วนแทรก PRRA ซึ่งไม่พบในส่วน S ของ SARS1) น่าจะส่งเสริมให้ เกิดคุณสมบัติซูเปอร์แอนติเจนมากขึ้น เนื่องจากมีความคล้ายคลึงกับขึ้นส่วน SEB ที่จัดเรียง

สิ่งที่เราค้นพบเสนอความเป็นไปได้ที่น่าดื่นเต้นเกี่ยวกับทางเลือกที่ใช้สำหรับ TSS ซึ่งอาจมี ประสิทธิภาพสำหรับ MIS-C รวมถึงการให้โกลบูลินภูมิคุ้มกันทางหลอดเลือด (IVIG) และส เตียรอยด์ ที่จริงแล้วมีรายงานที่ได้เผยแพร่และยกเลิกการเผยแพร่ ซึ่งเสนอว่าผู้ป่วย MIS-C ตอบสนอง IVIG เป็นอย่างดี ไม่ว่าจะให้สเตียรอยด์หรือไม่ (5ุ −7) IVIG ประกอบด้วยสารภูมิ ต้านทานซึ่งยับยั้ง SEB (31) เนื่องจาก SEB มีความคล้ายคลึงเชิงโครงสร้างกับลักษณะเด่น SAg ของโปรตีนส่วน S ของ SARS-CoV-2 จึงมีแนวโน้มที่อิมมูโนโกลบูลินเหล่านี้จะมีการตอบสนอง ข้ามชนิด ซึ่งอาจอธิบายการตอบสนองของเคส MIS-C ต่อ IVIG ได้บ้าง ยาต้านการอักเสบที่ องค์การอาหารและยารับรองชนิดอื่นๆ ซึ่งไดมีการทดสอบในโมเดล SEB TSS อาจมีประสิทธิภาพ เช่นกัน รวมถึง CTLA4-Ig ซึ่งสามารถยับยั้งการร่วมกระตุ้น CD28 (32) และราพาไมซินยับยั้ง

เป้าหมายของราพาไมซินในสัตว์เลี้ยงลูกด้วยนม (mTOR) (33) ซึ่งมีการใช้งานสำหรับโควิด 19 อยู่แล้ว นอกจากนี้ Ab ต้าน SEB โมโนโคลนซึ่งปรับสำหรับมนุษย์ (34, 35) อาจมีประโยชน์ใน การบำบัดผู้ป่วย MIS-C โดยเฉพาะผลลัพธ์ของโมเดล TSS ในหนู ซึ่งสามารถป้องกันการได้รับ ซูเปอร์แอนติเจนจริงของ SEB ระดับที่ทำให้ตาย โดยการเลียนแบบเปปไทด์สั้นของลักษณะเด่น ซูเปอร์แอนติเจน (21) การตรวจสอบถึงความเป็นไปได้ในการเลียนแบบเปปไทด์สั้นของบริเวณ ซูเปอร์แอนติเจนส่วนหนามของ SARS-CoV-2 เพื่อป้องกัน/บรรเทาการเหนี่ยวนำยืนไซโตไคน์การ อักเสบและท็อกซิกช็อกในผู้ป่วย MIS-C อาจเป็นเรื่องที่น่าสนใจ

ในขณะนี้การรักษาด้วยสารภมิต้านทานโควิด 19 ภายใต้การตรวจสอบ โดยส่วนใหญ่ได้รับการ ออกแบบมาเพื่อมุ่งเป้า RBD และบริเวณเทอร์มินัล N (NTD) ของส่วนหนามของ SARS-CoV-2 การศึกษาของเราบ่งบอกว่า "ก้าน" ของส่วนหนาม หรือลักษณะเด่นคล้าย SAg ของส่วนดังกล่าว อาจมีบทบาทเป็นเป้าหมายเช่นกัน เมื่อเปรียบเทียบกับ RBD จะพบบริเวณ SAg ของ SARS-CoV-2 มีการผ่าเหล่าค่อนข้างน้อยกว่า โดยเฉพาะส่วนแทรก PRRA ซึ่งพบได้เฉพาะใน SARS-CoV-2 ้เท่านั้น และยังคงอย่ในเชื้อที่คัดแยกและวิเคราะห์ลำดับจนถึงปัจจบัน (26, 27) เป็นเรื่องสำคัญที่ ต้องพิจารณาว่า รายงานโครงสร้างจาก cryo-EM ส่วนใหญ่สำหรับโปรตีนส่วน S ของ SARS-CoV-2 มีการเปลี่ยนทดแทน GSAS หรือ GSGS ที่ R₆₈₂RAR₆₈₅ หลังจากผลงานดั้งเดิมของ Wrapp และ คณะ (**17**) ซึ่งส่วนดังกล่าวได้มีการกลายพันธุ์ (**42**∜∜−<u>45</u>) หรือถูกนำออก (**38**∜∜−<u>41</u>) เพื่อให้ สามารถแสดงหรือระบุโปรตีนในการศึกษาส่วนหนามที่มีพันธะกับสารภูมิต้านทาน นาโนบอดี หรือ Fab โดยใช้ cryo-EM ดังนั้น "ส่วนหนามผ่าเหล่า" จึงปราศจากลักษณะเฉพาะ ซึ่งลักษณะดังกล่าว น่าจะได้รับการส่งเสริมโดยส่วนแทรกโพลีเบสิก P₆₈₁RRA และคลีเวจไซต์ข้างเคียง R₆₈₅S และอาจ ทำให้ไม่พบความไวปฏิกิริยาที่สูงของ R₆₈₂RAR₆₈₅ ในการศึกษาเหล่านี้ การออกแบบสารภูมิ ต้านทานหรือยาซึ่งมุ่งเป้าบริเวณ SAg ดังกล่าวอาจเป็นประโยชน์ ไม่เพียงเพื่อปรับการเหนี่ยวนำยืน ไซโตไคน์การอักเสบซึ่งเหนี่ยวนำโดย SAg (<u>12</u>) เท่านั้น แต่เพื่อสกัดกั้นการตัดแบ่งซึ่งจำเป็น สำหรับการสู่เซลล์ของไวรัสด้วย (<u>1</u>, <u>19</u>) หรืออาจพิสูจน์ได้ถึงประโยชน์ของการรักษาแบบผสมซึ่ง ม่งเป้าทั้งบริเวณคล้าย SAg และ RBD

โชคดีที่อาการแสดงเกี่ยวกับระบบทางเดินหายใจขั้นรุนแรงของโควิด 19 ในเด็ก และการพัฒนา ของ MIS-C เป็นกรณีที่พบได้ยาก ซึ่งอาจมีสาเหตุเนื่องจากภูมิคุ้มกันที่ได้รับการฝึกฝน (2) ที่ เซลล์และบีเซลล์มีบทบาทสำคัญในการตอบสนองต้านไวรัส ทีเซลล์ CD4+ และ CD8+ จากผู้ป่วย โควิด 19 ที่ฟื้นตัวสามารถระบุเอพิโทปของ SARS-CoV-2 อย่างกว้างขวาง และโปรตีน S เป็น เป้าหมายหลัก ที่น่าสนใจคือ ที่เซลล์จากผู้ที่ไม่เคยได้รับเชื้อมีการตอบสนองต่อเอพิโทปโปรตีน S จาก SARS-CoV-2 เช่นกัน ซึ่งสนับสนุนสมมุติฐานเกี่ยวกับภูมิคุ้มกันไวรัสข้ามชนิดจากโคโรนา ไวรัสสายพันธุ์อื่นๆ (24, 46) อย่างไรก็ตาม ยังไม่เป็นที่แน่ชัดถึงสาเหตุที่พบการพัฒนาของ MIS-C ในเด็กที่ติดเชื้อในสัดส่วนเพียงเล็กน้อย เราได้แสดงให้เห็นว่า D839Y ผ่าเหล่าที่พบใน SARS-CoV-2 สายพันธุ์ยุโรปทำให้ลักษณะเด่น SAg มีความสามารถจับกับ TCR สูงขึ้น ซึ่งอาจอธิบาย (อย่างน้อยก็บางส่วน) ถึงการบิดเบือนทางภูมิศาสตร์ของ MIS-C ในพื้นที่ที่สายพันธุ์ยุโรปกลายเป็น โรคประจำถิ่น และยังเป็นไปได้ที่การตอบสนองของสารภูมิต้านทานต่อไวรัสที่ไม่ดีในช่วงเริ่มแรกไม่ สามารถยับยั้ง SAg ได้ ดังที่พบในผู้ป่วย MIS-C เมื่อไม่นานมานี้ (47) ซึ่งนำไปสู่การปรับปรุง ภูมิคุ้มกันหลังจากได้รับเชื้ออีกครั้ง HLA บางชนิดมีความยืดหยุ่นสูงกว่าในการจับกับ SAg และที่ จริงแล้ว HLA ได้แสดงให้เห็นว่ามีบทบาทต่อโอกาสในการติดเชื้อโควิด 19 (48) จากเก้าเคสที่มี การรายงานในช่วงเริ่มแรกในสหราชอาณาจักร หกเคสมีเชื้อสายแอโฟรแคริบเบียน ซึ่งบ่งบอกถึง

แนวโน้มทางพันธุกรรมที่อาจมีผลต่อโอการในการติดเชื้อเช่นกัน (<u>5</u>) นอกจากนี้ ~80% ของผู้ที่มี อายุมากกว่า 12 ปีมีสารภูมิต้านทานต้าน SEB (<u>49</u>, <u>50</u>) ซึ่งอาจให้การป้องกันผลของ SAg ที่มีต่อ โปรตีนส่วน S ของ SARS-CoV-2 ความชุกของสารภูมิต้านทานต้าน SEB ที่มีอยู่เดิมอาจมีส่วน เกี่ยวข้องในการกระจายเชิงอายุของเคสโควิด 19 ระดับรุนแรงในผู้ใหญ่ เนื่องจากค่าไตเตอร์ SEB จะลดลงในผู้สูงอายุซึ่งมีอายุมากกว่า 70 ปี

ควรพิจารณาว่าประมาณหนึ่งในสามหรือน้อยกว่านั้นของผู้ป่วย MIS-C ได้รับผลตรวจ SARS-CoV-2 เป็นบวก แต่ส่วนใหญ่แล้ว (ไม่ใช่ทั้งหมด) ปรากฎหลักฐานทางซีรัมวิทยาของการติดเชื้อหรือ ประวัติการได้รับเชื้อโควิด 19 (5-7) ซึ่งอาจบ่งบอกว่า SAg ของ SARS-CoV-2 อาจเป็นสาเหตุ ของการตอบสนองภาวะอักเสบมากผิดปกติที่ล่าช้าในเด็กบางราย SAg มีความเชื่อมโยงกับภาวะภูมิ ต้านตนเองโดยการกระตุ้นที่เชลล์ตอบสนองตัวเอง (11) การปรับปรุงที่มีสารภูมิต้านทานเป็น ตัวกลางเมื่อได้รับไวรัสอีกครั้ง อาจมีส่วนร่วมในการติดเชื้อและการอักเสบที่ไม่มีการควบคุม (51) และยังอาจเป็นไปได้ที่แม้จะได้ผลตรวจ PCR จากตัวอย่างหลังโพรงจมูกเป็นลบ แต่ยังคงมีไวรัส ปรากฏอยู่ในระบบทางเดินอาหาร (52) ผู้ป่วย MIS-C แสดงออกถึงอาการของระบบทางเดินอาหาร ปวดท้อง อาเจียน และท้องเสีย ที่รุนแรงกว่าปกติ นอกเหนือจากการทำหน้าที่ผิดปกติของกล้ามเนื้อ หัวใจระดับรุนแรงและภาวะซ็อกจากโรคหัวใจ (5 √ 7) และอาการของระบบทางเดินอาหารระดับ รุนแรงดังกล่าวยังมักเกี่ยวข้องกับการตอบสนองต่อ SAg (9) ในกรณีของ SEB การตัดแบ่งและการ ปล่อยชิ้นส่วนที่เฉพาะเจาะจงมีบทบาทในการเหนี่ยวนำอาการทางระบบทางเดินอาหาร ยังคงต้อง ตรวจสอบเพิ่มเติมว่าโครงสร้างคล้าย SAg ของ SARS-CoV-2 ที่เราค้นพบมีการตัดแบ่งที่คล้ายคลึง กันหรือไม่ และเป็นสาเหตุของอาการเกี่ยวกับทางเดินอาหารที่พบในผู้ป่วย MIS-C หรือไม่

เรายังพบว่าชิ้นส่วนคล้ายพิษต่อระบบประสาท (T299 ถึง Y351) มีการซ้อนทับบางส่วนกับ RBD ที่ แสดงออกถึงความสามารถในการจับกับ TCR ที่สูง โดยเฉพาะอย่างยิ่ง มีการสังเกตเมื่อไม่นานมานี้ ว่าบริเวณดังกล่าวนำไปสู่ความไวปฏิกิริยาระดับสูงและบ่อยครั้งของทีเซลล์ โดยมีทีเซลล์ CD4+ เป็นตัวกลาง ในผู้บริจาคที่ไม่เคยได้รับเชื้อ SARS-CoV-2 มาก่อน (24) ซึ่งทำให้เกิดความสนใจ ถึงความสามารถที่อาจมีอยู่ในการกระตุ้นการตอบสนองทางภูมิคุ้มกันต่อพิษต่อระบบประสาทในผู้ที่ ไม่เคยได้รับ CoV ที่มีเปปไทด์ที่มีมีต้นกำเนิดเดียวกันเชิงลำดับ ในอนาคต เป็นเรื่องสำคัญที่จะให้ ความสนใจต่อบริเวณดังกล่าวสำหรับความผิดปกติในที่มักมีการรายงานในเด็กที่มีภาวะ MIS-C รวม ไปถึงผู้ใหญ่

กล่าวโดยสรุปคือ เราได้ศึกษาเรื่องที่สำคัญห้าประเด็น: 1) PRRAR และส่วนข้างเคียงเชิงลำดับ มี อันตรกิริยากับ CDR ของ TCRVβ และความเกี่ยวข้องดังกล่าวมีความคล้ายคลึงอย่างมากกับ SAg ของ SEB ต่อ TCRVβ; 2) D839 ใกล้เคียงมีส่วนร่วมในอันตรกิริยาดังกล่าว และการผ่าเหล่าเป็น ใทโรซีนอาจเสริมความเชื่อมโยงกับ TCRVβ; 3) ลักษณะเด่นเชิงลำดับ (N280 ถึง T286) ซึ่งเป็น เอกลักษณ์ของ ICAM-1 มีอันตรกิริยากับ TCRVα ซึ่งเพิ่มเสถียรภาพให้กับความเชื่อมโยงระหว่าง ส่วนหนามและ TCR ของโฮสต์เซลล์; 4) ลักษณะเด่นคล้ายพิษต่อระบบประสาท (T299 ถึง Y351) ได้แสดงถึงแนวโน้มสูงในการจับกับ TCR และมีแนวโน้มที่จะกระตุ้นการตอบสนองต่อพิษต่อระบบประสาท ซึ่งผลกระทบอย่างหลังอาจบรรเทาได้หากผู้ที่ติดเชื้อ SARS-CoV-2 เคยได้รับ HCoV ที่มีชิ้นส่วนที่มีมีตันกำเนิดเดียวกัน ดังที่ได้มีการเสนอ (24) ในการศึกษาเมื่อไม่นานมานี้; และ 5) ผู้ป่วยผู้ใหญ่ที่ป่วยด้วยโควิด 19 และมีอาการรุนแรง/ภาวะอักเสบมากผิดปกติ แสดงออก ถึงเรเพอร์ทัวร์ Vβ ของ TCR ที่บิดเบือน ซึ่งแยกแยะพวกเขาออกจากผู้ป่วยโควิด 19 ที่มีอาการ เล็กน้อย/ปานกลาง กล่าวโดยรวมคือ ผลลัพธ์ของเราทั้งจากโมเดลการคำนวนทางคณิตศาสตร์และ

การวิเคราะห์ TCRB โดยวิเคราะห์ข้อมูลลำดับภูมิคุ้มกันด้วย NGS ในตัวอย่างจากมนุษย์ บ่งบอกว่า กลยุทธ์ที่ใช้สำหรับการรักษา TSS ที่มี SEB เป็นตัวกลาง หรือวิธีการสกัดกั้นอันตรกิริยาของโปรตีน S ต่อ TCR อาจช่วยลดอาการแสดงของภาวะอักเสบมากผิดปกติหรือผลของพิษ (ต่อระบบ ประสาท) ของโควิด 19 ทั้งในผู้ใหญ่และเด็ก

ข้อมูลและวิธีการ

โมเดลส่วนหนามของ SARS-CoV-2 (P0DTC2) และ SARS-CoV (CVHSA_P59594) ได้ถูกสร้าง ขึ้นโดยใช้ SWISS-MODEL (53) โดยอ้างอิงโครงสร้างไกลโคโปรตีนส่วนหนามที่ระบุได้ของ SARS-CoV-2 (17) (PDB รหัสระบุ 6VSB) และ SARS-CoV (54) (PDB รหัสระบุ 6ACD) ลูปที่ หายไปในโครงสร้างผลึกถูกสร้างขึ้นโดยใช้คลังชิ้นส่วนแกนหลัก (55) หรือโดยการสร้างขึ้นส่วน แกนหลักเหล่านี้ขึ้นใหม่ในพื้นที่จำกัด (56) สายพันธุ์ผ่าเหล่าสองสายพันธุ์ที่เชื่อมโยงกับผู้ป่วยโค วิด 19 ในยุโรป (26) สร้างขึ้นโดยใช้ CHARMM-GUI (57): สายพันธุ์หนึ่งคือสายพันธุ์ผ่าเหล่า หลัก D614G และสายพันธุ์ผ่าเหล่าอื่นๆ อีกสี่สายพันธุ์ ได้แก่ Q239K, A831V, D614G และ D839Y สายพันธุ์ผ่าเหล่าที่ส่วนหนามของ SARS-CoV-2 สองสายพันธุ์และ SARS-CoV-2 (P0DTC2) ซึ่งเดิมทีนำมาจากเมืองอู่ฮั่น ถูกนำมาใช้เพื่อตรวจสอบการจับกับ aβTCR และ MHCII (PDB รหัสระบุ 2XN9) (16) โดยใช้ ClusPro (18) และ PRODIGY (58) โปรดดูรายละเอียด ใน ภาคผนวก SI ข้อมูลจากการวิเคราะห์ข้อมูลลำดับภูมิคุ้มกันด้วย NGS ถูกนำมาวิเคราะห์โดยใช้ วิธีการที่ได้อธิบายไว้ก่อนหน้านี้ (59, 60) และสรุปใน ภาคผนวก SI

การเข้าถึงข้อมูล

ข้อมูลจากการศึกษาอื่นๆ ทั้งหมดได้รวมอยู่ในบทความและ *ภาคผนวก SI*

กิตติกรรมประกาศ

เราขอขอบคุณการสนับสนุนจาก NIH Awards P41 GM103712 (ไปยัง I.B.) และ R01 AI072726 (ไปยัง M.A.) รวมถึงความคิดเห็นที่เป็นประโยชน์จาก ดร. A. M. Brufsky, M. T. Lotze, S.-J. Gao และ S. D. Shapiro ที่มหาวิทยาลัยศูนย์การแพทย์พิตต์สเบิร์ก เราขอขอบคุณ ทีมโควิด 19 ฝ่ายคลินิกที่ Halle สำหรับการสนับสนุนตัวอย่างแก่ธนาคารเก็บตัวอย่างทางชีวภาพ

เชิงอรรถ

- ฝ¹M.A. และ I.B. มีส่วนร่วมอย่างเท่าเทียมกันในงานวิจัยนี้
- <u>ฝ</u>²โปรดติดต่อที่ อีเมล: moshe.arditi@cshs.org หรือ bahar@pitt.edu.
- ความมีส่วนร่วมของผู้จัดทำ: M.H.C., M.A. และ I.B. ออกแบบการวิจัย; M.H.C., S.Z., R.A.P., L.P., E.W., M.B., M.A. และ I.B. ทำการวิจัย; M.H.C., S.Z., R.A.P., M.N.R., M.B., M.A. และ I.B. วิเคราะห์ข้อมูล; และ M.H.C., R.A.P., M.A. และ I.B. จัดทำ เอกสาร
- ผู้ตรวจสอบ: T.A.C. โรงพยาบาลเด็กบอสตัน; R.N., Frederick National Laboratory; และ C.A.S. สถาบันการแพทย์มหาวิทยาลัยแมสซาชูเซตส์
- คำแถลงว่าด้วยประโยชน์เชิงแข่งขัน: ได้เริ่มต้นกระบวนการขอสิทธิบัตรสำหรับลำดับเปป ไทด์สั้นเพื่อยับยั้งขึ้นส่วนชูเปอร์แอนติเจนแล้ว
- บทความนี้มีข้อมูลสนับสนุนออนไลน์
 ที่ https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2010722117/-/DCSupplemental
- สงวนลิขสิทธิ์ © 2020 โดยผู้จัดทำ เผยแพร่โดย PNAS

บทความที่เข้าถึงแบบเสรีนี้เผยแพร่ภายใต้ <u>Creative Commons Attribution License 4.0 (CC</u>BY)