PLANES IN SYMPLECTIC VECTOR SPACES

SIMON KAPFER

1. Symplectic linear algebra

Let V be a symplectic vector space of dimension $n \in 2\mathbb{N}$ over a field F with a nondegenerate symplectic form $\omega: \Lambda^2V \to F$. A line is a one-dimensional subspace ov V, a plane is a two-dimensional subspace of V. A plane $P \subset V$ is called isotropic, if $\omega(x,y)=0$ for any $x,y\in P$, otherwise non-isotropic. The symplectic group $\operatorname{Sp} V$ is the set of all linear maps $\phi:V\to V$ with the property $\omega(\phi(x),\phi(y))=\omega(x,y)$ for all $x,y\in V$.

Proposition 1.1. The symplectic group $\operatorname{Sp} V$ acts transitively on the set of non-isotropic planes as well as on the set of isotropic planes.

Proof. Given two planes P_1 and P_2 , we may choose vectors v_1, v_2, w_1, w_2 such that v_1, v_2 span P_1, w_1, w_2 span P_2 and $\omega(u_1, u_2) = \omega(w_1, w_2)$. We complete $\{v_1, v_2\}$ as well as $\{w_1, w_2\}$ to a symplectic basis of V. Then define $\phi(v_1) = w_1$ and $\phi(v_2) = w_2$. It is now easy to see that the definition of ϕ can be extended to the remaining basis elements to give a symplectic morphism.

Remark 1.2. The set of planes in V can be identified with the simple tensors in $\Lambda^2 V$ up to multiples. Indeed, given a simple tensor $v \wedge w \in \Lambda^2 V$, the span of v and w yields the corresponding plane. Conversely, any two spanning vectors v and w of a plane give the same element $v \wedge w$ (up to multiples).

Proposition 1.3. If $\phi \in \operatorname{Sp} V$ acts through multiplication of a scalar, $\phi(v) = \alpha v$, then $\alpha = \pm 1$ (this is immediate from the definition). Moreover, if $\phi(v) \wedge \phi(w) = \alpha v \wedge w$, then $\alpha = 1$.

Proof. We may assume that V is two-dimensional, generated by v and w. Our condition on ϕ reads then $\det \phi = \alpha$. But the condition on ϕ being symplectic is $\det \phi = 1$, because on a two-dimensional vector space there is only one symplectic form up to scalar multiple.

Remark 1.4. If F is the field with two elements, then the set of planes in V can be identified with the set $\{\{x,y,z\} \mid x,y,z \in V \setminus \{0\}, x+y+z=0\}$. Observe that for such a $\{x,y,z\}$, $\omega(x,y)=\omega(x,y)=\omega(y,x)$ and this value gives the criterion for isotropy.

From now on we assume that F is finite of cardinality q.

Date: February 14, 2016.

Proposition 1.5.

(1) The number of lines in
$$V$$
 is $\frac{q^n-1}{q-1}$.

(2) the number of planes in V is
$$\frac{(q^n-1)(q^{n-1}-1)}{(q^2-1)(q-1)}$$
,

(3) the number of isotropic planes in V is
$$\frac{(q^n-1)(q^{n-2}-1)}{(q^2-1)(q-1)}$$
,

(4) the number of non-isotropic planes in V is
$$\frac{q^{n-2}(q^n-1)}{q^2-1}$$
.

Proof. A line ℓ in V is determined by a nonzero vector. There are q^n-1 nonzero vectors in V and q-1 nonzero vectors in ℓ . A plane P is determined by a line $\ell_1 \subset V$ and a unique second line $\ell_2 \in V/\ell_1$. We have $\frac{q^2-1}{q-1}$ lines in P. The number of planes is therefore

$$\frac{\frac{q^{n-1}}{q-1} \cdot \frac{q^{n-1}-1}{q-1}}{\frac{q^{2}-1}{q-1}} = \frac{(q^{n}-1)(q^{n-1}-1)}{(q^{2}-1)(q-1)}.$$

For an isotropic plane we have to choose the second line from ℓ_1^{\perp}/ℓ_1 . This is a space of dimension n-2, hence the formula. The number of non-isotropic planes is the difference of the two previous numbers.

Conjecture 1.6. There are 6q orbits of the induced action of Sp(4,q) on $\Lambda^2 \mathbb{F}_q^4$.

2. Ranks of orbit spaces

Assume now that V is a four-dimensional vector space over $F = \mathbb{F}_q$. Consider the free F-module F[V] with basis $\{X_i \mid i \in V\}$. It carries a natural F-algebra structure given by $X_i \cdot X_j := X_{i+j}$ with unit $1 = X_0$. Let J be the ideal generated by all elements of the form $(X_i - 1)$.

We introduce an action of $\operatorname{Sp}(4, F)$ on F[V] by setting $\phi(X_i) = X_{\phi(i)}$. Furthermore, the underlying additive group of V acts on F[V] by $v(X_i) = X_{i+v} = X_v X_i$.

Definition 2.1. We define subsets of F[V]:

$$B_N := \left\{ \sum_{i \in P} X_i \, | \, P \subset V \text{ non-isotropic plane} \right\}$$
$$B_I := \left\{ \sum_{i \in P} X_i \, | \, P \subset V \text{ isotropic plane} \right\}.$$

Denote by $\langle B_{\alpha} \rangle$ and by (B_{α}) the linear span of B_{α} and the ideal generated by B_{α} , respectively. Note that (B_{α}) is the linear span of $\{v \cdot b \mid b \in B, v \in V\}$. Further, let D_{α} be the linear span of $\{v(b) - b \mid b \in B, v \in V\}$. Then D_{α} is in fact an ideal, namely the product of ideals $J \cdot (B_{\alpha})$.

The following table illustrates the dimensions of these objects:

F	$\dim_F \langle B_N \rangle$	$\dim_F(B_N)$	$ \dim_F D_N $	$\dim_F \langle B_I \rangle$	$\dim_F(B_I)$	$\dim_F D_I$
$\overline{\mathbb{F}_2}$	10	11	5	10	10	10
\mathbb{F}_3	30	50	31	25	25	25
\mathbb{F}_5	121	355	270	91	91	91

Conjecture 2.2. For $F = \mathbb{F}_q$, $\dim_F \langle B_I \rangle = \dim_F (B_I) = \dim_F D_I = \frac{(q+2)(q^2+1)}{2}$.