Natural Language Processing Neural Networks

Felipe Bravo-Marquez

August 2, 2019

Introduction to Neural Networks

- Very popular machine learning models formed by units called neurons.
- A neuron is a computational unit that has scalar inputs and outputs.
- Each input has an associated weight w.
- The neuron multiplies each input by its weight, and then sums them (other functions such as max are also possible).
- It applies an activation function g (usually non-linear) to the result, and passes it to its output.
- Multiple layers can be stacked.

Activation Functions

- The nonlinear activation function g has a crucial role in the network's ability to represent complex functions.
- Without the nonlinearity in g, the neural network can only represent linear transformations of the input.

⁰Source:[Goldberg, 2017]

Feedforward Network with two Layers

⁰Source:[Goldberg, 2017]

Feedforward Network Neural Networks

- The feedforward network from the picture is a stack of linear models separated by nonlinear functions.
- The values of each row of neurons in the network can be thought of as a vector.
- The input layer is a 4-dimensional vector (\vec{x}) , and the layer above it is a 6-dimensional vector (\vec{h}^1) .
- The fully connected layer can be thought of as a linear transformation from 4 dimensions to 6 dimensions.
- A fully connected layer implements a vector-matrix multiplication, $\vec{h} = \vec{x}W$.
- The weight of the connection from the i-th neuron in the input row to the j-th neuron in the output row is W_[j,j].
- The values of \vec{h} are transformed by a nonlinear function g that is applied to each value before being passed on as input to the next layer.

⁰Vectors are assumed to be row vectors and superscript indices correspond to network layers.

Neural Netoworks as Mathematical Functions

- The Multilayer Perceptron (MLP) from the figure is called MLP2 because it has two hidden layers.
- A simpler model would be MLP1, a multilayer perceptron of one hidden layer:

$$NN_{MLP1}(\vec{x}) = g(\vec{x}W^{1} + \vec{b}^{1})W^{2} + \vec{b}^{2}$$

$$\vec{x} \in \mathcal{R}^{in}, W^{1} \in \mathcal{R}^{d_{in} \times d_{1}}, \vec{b}^{1} \in \mathcal{R}^{1}, W^{1} \in \mathcal{R}^{in}, \vec{b}^{1} \in \mathcal{R}^{in}$$
(1)

- Here W^1 and \vec{b}^1 are a matrix and a bias term for the first linear transformation of the input.
- The function g is a nonlinear function that is applied element-wise (also called a nonlinearity or an activation function).
- W^2 and \vec{b}^2 are the matrix and bias term for a second linear transform.
- When describing a neural network, one should specify the dimensions of the layers (d₁) and the input (d_{in}).

Neural Netoworks as Mathematical Functions

MLP2 can be written as the following mathematical function:

$$NN_{MLP2}(\vec{x}) = \vec{y}$$

$$\vec{h}^{1} = g^{1}(\vec{x}W^{1} + \vec{b}^{1})$$

$$\vec{h}^{2} = g^{2}(\vec{h}^{1}W^{2} + \vec{b}^{2})$$

$$\vec{y} = \vec{h}^{2}W^{3}$$

$$\vec{y} = (g^{2}(g^{1}(\vec{x}W^{1} + \vec{b}^{1})W^{2} + \vec{b}^{2}))W^{3}.$$
(2)

- The matrices and the bias terms that define the linear transformations are the parameters of the network.
- Like in linear models, it is common to refer to the collection of all parameters as Θ.

Representation Power

- [Hornik et al., 1989] and [Cybenko, 1989] showed that a multilayer perceptron of one hidden later (MLP1) is a universal approximator.
- MLP1 can approximate all continuous functions on a closed and bounded subset of Rⁿ.
- This may suggest there is no reason to go beyond MLP1 to more complex architectures.
- The result does not say how easy or hard it is to set the parameters based on training data and a specific learning algorithm.
- It also does not guarantee that a training algorithm will find the correct function generating our training data.
- Finally, it does not state how large the hidden layer should be.

Activation Functions

The nonlinearity g can take many forms.

Sigmoid.

Training

- When training a parameterized function (e.g., a linear model, a neural network) one defines a loss function L(ŷ, y), stating the loss of predicting ŷ when the true output is y.
- The training objective is then to minimize the loss across the different training examples.
- Functions are trained using gradient-based methods.
- They work by repeatedly computing an estimate of the loss L over the training set.
- They compute gradients of the parameters with respect to the loss estimate, and moving the parameters in the opposite directions of the gradient.
- Different optimization methods differ in how the error estimate is computed, and how moving in the opposite direction of the gradient is defined.

Gradient Descent

⁰Source: https://sebastianraschka.com/images/faq/closed-form-vs-gd/ball.png

Online Stochastic Gradient Descent

Algorithm 2.1 Online stochastic gradient descent training.

Input:

- Function $f(x; \Theta)$ parameterized with parameters Θ .
- Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n .
- Loss function L.

```
1: while stopping criteria not met do
```

- 2: Sample a training example x_i, y_i
- 3: Compute the loss $L(f(x_i; \Theta), y_i)$
 - $\hat{g} \leftarrow \text{gradients of } L(f(x_i; \Theta), y_i) \text{ w.r.t } \Theta$
- S: $\Theta \leftarrow \Theta \eta_t \hat{g}$
- 6: return Θ
- The learning rate can either be fixed throughout the training process, or decay as a function of the time step *t*.
- The error calculated in line 3 is based on a single training example, and is thus
 just a rough estimate of the corpus-wide loss L that we are aiming to minimize.
- The noise in the loss computation may result in inaccurate gradients (single examples may provide noisy information).

Mini-batch Stochastic Gradient Descent

- A common way of reducing this noise is to estimate the error and the gradients based on a sample of m examples.
- This gives rise to the minibatch SGD algorithm

```
Algorithm 2.2 Minibatch stochastic gradient descent training. 

Input:

- Function f(x; \Theta) parameterized with parameters \Theta.

- Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n.

- Loss function L.

1: while stopping criteria not met do
2: Sample a minibatch of m examples \{(x_1, y_1), \ldots, (x_m, y_m)\}
3: \hat{g} \leftarrow 0
4: for i = 1 to m do
5: Compute the loss L(f(x_i; \Theta), y_i)
6: \hat{g} \leftarrow \hat{g} + g radients of \frac{1}{m}L(f(x_i; \Theta), y_i) w.r.t \Theta
7: \Theta \leftarrow \Theta - \eta_t \hat{g}
8: return \Theta
```

- Higher values of m provide better estimates of the corpus-wide gradients, while smaller values allow more updates and in turn faster convergence.
- For modest sizes of m, some computing architectures (i.e., GPUs) allow an
 efficient parallel implementation of the computation in lines 3-6.

⁰Source:[Goldberg, 2017]

Loss Functions

Hinge (or SVM loss): for binary classification problems, the classifier's output is a single scalar \$\tilde{y}\$ and the intended output y is in {+1, -1}. The classification rule is \$\tilde{y} = sign(\tilde{y})\$, and a classification is considered correct if \$y \cdot \tilde{y} > 0\$.

$$L_{\text{hinge(binary)}}(\tilde{y}, y) = \max(0, 1 - y \cdot \tilde{y})$$

• Binary cross entropy (or logistic loss): is used in binary classification with conditional probability outputs. The classifier's output \tilde{y} is transformed using the sigmoid function to the range [0,1], and is interpreted as the conditional probability P(y=1|x).

$$L_{\text{logistic}}(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

Loss Functions

 Categorical cross-entropy loss: is used when a probabilistic interpretation of multi-class scores is desired. It measures the dissimilarity between the true label distribution y and the predicted label distribution ỹ.

$$L_{\text{cross-entropy}}(\hat{y}, y) = -\sum_{i} y_{[i]} \log(\hat{y}_{[i]})$$

 The predicted label distribution of the categorical cross-entropy loss (ŷ) is obtained by applying the softmax function the last layer of the network ỹ:

$$\hat{y}_{[i]} = \mathsf{softmax}(\tilde{y})_{[i]} = \frac{e^{\tilde{y}_{[i]}}}{\sum_{j} e^{\tilde{y}_{[j]}}}$$

• The softmax function squashes the k-dimensional output to values in the range (0,1) with all entries adding up to 1. Hence, $\hat{y}_{[i]} = P(y = i|x)$ represent the class membership conditional distribution.

- Backpropagation is an efficient technique for evaluating the gradient of a loss function L for a feed-forward neural network with respect to all its parameters [Bishop, 2006].
- Those parameters are: $W^1, \vec{b}^1, \dots, W^m, \vec{b}^m$, for a network of m layers.
- Recall that superscripts are used to denote layer indexes (not exponentiations).
- For simplicity, we will assume that L is calculated over a single example.
- In a general feed-forward network, each unit computes a weighted sum of its inputs in the form:

$$\vec{h}_{[j]}^{l} = \left(\sum_{i} W_{[i,j]}^{l} \times \vec{z}_{[i]}^{(l-1)}\right) + \vec{b}_{[j]}^{l}$$
 (3)

- The variable $\vec{z}_{[i]}^{(l-1)}$ is an input that sends a connection to unit $\vec{h}_{[i]}^l$, $W_{[i,j]}^l$ is the weight associated with that connection, and l is the layer index.
- The biases vectors $\vec{b}_{[j]}$ can be excluded from (eq.3) and included to the weight matrix $W_{[i,j]}^l$ by introducing an extra unit, or input, with activation fixed at +1.

¹The following slides on backpropagation are based on [Bishop, 2006], we adapted the notation to be consistent with [Goldberg, 2017].

• The inputs at layer I, $\vec{z}_{[i]}^{(l-1)}$ are the result of applying the activation function g to units from the previous layer:

$$\vec{z}'_{[j]} = g(\vec{h}'_{[j]})$$
 (4)

• For the input layer (l = 0), \vec{z} corresponds to the input vector $\vec{z} = \vec{x}$

$$\vec{Z}_{[j]}^{0} = \vec{X}_{[j]} \tag{5}$$

- For each instance in the training set, we supply the corresponding input vector \$\vec{x}\$ to the network.
- Next we calculate the activations of all of the hidden and output units in the network by successive application of (eq.3) and (eq.4).
- This process is often called forward propagation because it can be regarded as a forward flow of information through the network.

- Now consider the evaluation of the derivative of L with respect to a weight $W'_{[i,j]}$.
- We can therefore apply the chain rule for partial derivatives to give

$$\frac{\partial L}{\partial W_{[i,j]}^{l}} = \frac{\partial L}{\partial \vec{h}_{[j]}^{l}} \times \frac{\partial h_{[j]}^{l}}{\partial W_{[i,j]}^{l}}$$
(6)

· We now introduce a useful notation:

$$\vec{\delta}_{[j]}^{l} \equiv \frac{\partial L}{\partial \vec{h}_{[j]}^{l}} \tag{7}$$

• Using (3), we can write

$$\frac{\partial \vec{h}_{[i]}^{l}}{\partial W_{[i,l]}^{l}} = \vec{z}_{[i]}^{(l-1)} \tag{8}$$

Substituting (7) and (8) into (6), we then obtain

$$\frac{\partial L}{\partial W_{[i,j]}^{l}} = \vec{\delta}_{[j]}^{l} \times \vec{Z}_{[i]}^{(l-1)} \tag{9}$$

- Equation (9) tells us that the required derivative is obtained simply by multiplying the value of $\vec{\delta}_{ll}^{l}$ by the value of $\vec{z}_{ll}^{(l-1)}$.
- Thus, in order to evaluate the derivatives, we need only to calculate the value of $\vec{\delta}_{[j]}^{l}$ for each hidden and output unit in the network, and then apply (9).
- Calculating $\vec{\delta}_{[j]}^m$ for output units (l=m), is usually straightforward, since activation units $\vec{h}_{[j]}^m$ are directly observed in the loss expression.
- The same applies for shallow linear models.

• To evaluate the $\vec{\delta}_{[j]}^{l}$ for hidden units, we again make use of the chain rule for partial derivatives:

$$\vec{\delta}'_{[j]} \equiv \frac{\partial L}{\partial \vec{h}'_{[j]}} = \sum_{k} \left(\frac{\partial L}{\partial \vec{h}'^{l+1}_{[k]}} \times \frac{\partial \vec{h}'^{l+1}_{[k]}}{\partial \vec{h}'_{[j]}} \right) \tag{10}$$

- The sum runs over all units $\vec{h}_{[k]}^{l+1}$ to which unit $\vec{h}_{[j]}^{l}$ sends connections.
- We assume that connections go only to consecutive layers in the network (from layer / to layer (/ + 1)).
- The units $\vec{h}_{[k]}^{l+1}$ could include other hidden units and/or output units.
- If we now substitute the definition of $\vec{\delta}_{l\bar{l}}^{l}$ given by (eq.7) into (eq.10), we get

$$\vec{\delta}_{[l]}^{l} \equiv \frac{\partial L}{\partial \vec{h}_{[l]}^{l}} = \sum_{k} \left(\vec{\delta}_{[k]}^{(l+1)} \times \frac{\partial \vec{h}_{[k]}^{l+1}}{\partial \vec{h}_{[l]}^{l}} \right) \tag{11}$$

• Now, for expression $\vec{h}_{[k]}^{l+1}$ we can go to its definition (eq.3):

$$\vec{h}_{[k]}^{(l+1)} = \left(\sum_{i} W_{[i,k]}^{l+1} \times \vec{z}_{[i]}^{l}\right) + \vec{b}_{[k]}^{(l+1)}$$

• Now, we replace (eq.4) $(\vec{z}'_{ij} = g(\vec{h}'_{ij}))$ into previous equation and we obtain:

$$\vec{h}_{[k]}^{(l+1)} = \left(\sum_{i} W_{[i,k]}^{l+1} \times g(\vec{h}_{[i]}^{l})\right) + \vec{b}_{[k]}^{(l+1)}$$

- Now when calculating $\frac{\partial \tilde{h}_{[k]}^{l+1}}{\partial \tilde{h}_{[j]}^{l}}$ all the terms in the summation where $i \neq j$ get canceled out.
- · Hence:

$$\frac{\partial \vec{h}_{[k]}^{l+1}}{\partial \vec{h}_{l,i}^{l}} = W_{[j,k]}^{l+1} \times g'(\vec{h}_{[j]}^{l})$$
 (12)

Now, if we substitute (eq.12) into (eq.11)

$$\vec{\delta}_{[j]}^{l} \equiv \frac{\partial L}{\partial \vec{h}_{[j]}^{l}} = \sum_{k} \left(\vec{\delta}_{[k]}^{(l+1)} \times W_{[j,k]}^{l+1} \times g'(\vec{h}_{[j]}^{l}) \right)$$
(13)

• Since $g'(\vec{h}'_{[j]})$ doesn't depend on k we can obtain the following backpropagation formula:

$$\vec{\delta}'_{[j]} = g'(\vec{h}'_{[j]}) \times \sum_{k} \left(\vec{\delta}^{(l+1)}_{[k]} \times W^{l+1}_{[j,k]} \right)$$
 (14)

• Which tells us that the value of δ for a particular hidden unit can be obtained by propagating the δ 's backwards from units higher up in the network. [Bishop, 2006].

The backpropagation procedure can be summarized as follows.

- 1. Apply an input vector \vec{x} to the network and forward propagate through the network using (eq.3) and (eq.4) to find the activations of all the hidden and output units.
- 2. Evaluate the $\vec{\delta}^m_{[j]}$ for all the output units (recall that the derivatives involved here are easy to calculate).
- 3. Backpropagate the $\vec{\delta}_{[k]}^{(l+1)}$ using (eq.14) to obtain $\vec{\delta}_{[j]}^{l}$ for each hidden unit in the network. We go from higher to lower layers in the network.
- 4. Use (eq.9) ($\frac{\partial L}{\partial W^l_{l_i,l_i}} = \vec{\delta}^l_{[l]} \times \vec{z}^{(l-1)}_{[l]}$) to evaluate the required derivatives.

The Computation Graph Abstraction

- One can compute the gradients of the various parameters of a network by hand and implement them in code.
- This procedure is cumbersome and error prone.
- For most purposes, it is preferable to use automatic tools for gradient computation [Bengio, 2012].
- A computation graph is a representation of an arbitrary mathematical computation (e.g., a neural network) as a graph.
- Consider for example a graph for the computation of (a*b+1)*(a*b+2):

- The computation of *a* * *b* is shared.
- The graph structure defines the order of the computation in terms of the dependencies between the different components.

The Computation Graph Abstraction

- Te computation graph abstraction allows us to:
 - 1. Easily construct arbitrary networks.
 - 2. Evaluate their predictions for given inputs (forward pass)

Algorithm 5.3 Computation graph forward pass.

```
1: for i = 1 to N do
2: Let a_1, ..., a_m = \pi^{-1}(i)
3: v(i) \leftarrow f_i(v(a_1), ..., v(a_m))
```

Compute gradients for their parameters with respect to arbitrary scalar losses (backward pass or backpropagation).

 The backpropagation algorithm (backward pass) is essentially following the chain-rule of differentiation².

²A comprehensive tutorial on the backpropagation algorithm over the computational graph abstraction:

Train, Test, and Validation Sets

- Neural networks are prone to overfit the data.
- Hence, performance on training data can be misleading.
- Held-out set: split training set into training and testing subsets (80% and 20% splits). Train on training and compute accuracy on testing.
- Problem: in practice you often train several models, compare their quality, and select the best one.
- Selecting the best model according to the held-out set's accuracy will result in an overly optimistic estimate of the model's quality.
- You don't know if the chosen settings of the final classifier are good in general, or are just good for the particular examples in the held-out sets.

Train, Test, and Validation Sets

- The accepted methodology is to use a three-way split of the data into train, validation (also called development), and test sets³.
- This gives you two held-out sets: a validation set (also called development set), and a test set.
- All the experiments, tweaks, error analysis, and model selection should be performed based on the validation set.
- Then, a single run of the final model over the test set will give a good estimate of its expected quality on unseen examples.
- It is important to keep the test set as pristine as possible, running as few experiments as possible on it.
- Some even advocate that you should not even look at the examples in the test set, so as to not bias the way you design your model.

³An alternative approach is cross-validation, but it doesn't scale well for training deep neural networks.

Train, Test, and Validation Sets

³source:

Deep Learning Frameworks

Several software packages implement the computation-graph model. All these packages support all the essential components (node types) for defining a wide range of neural network architectures.

- TensorFlow (https://www.tensorflow.org/): an open source software library for numerical computation using data-flow graphs originally developed by the Google Brain Team.
- Keras: High-level neural network API that runs on top of Tensorflow as well as other backends (https://keras.io/).
- PyTorch: open source machine learning library for Python, based on Torch, developed by Facebook's artificial-intelligence research group. It supports dynamic graph construction, a different computation graph is created from scratch for each training sample. (https://pytorch.org/)

Questions?

Thanks for your Attention!

References I

Bishop, C. M. (2006).

Pattern recognition and machine learning. springer.

Cybenko, G. (1989).

Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303–314.

Goldberg, Y. (2017).

Neural network methods for natural language processing. Synthesis Lectures on Human Language Technologies, 10(1):1–309.

Hornik, K., Stinchcombe, M., and White, H. (1989).

Multilayer feedforward networks are universal approximators.

Neural networks, 2(5):359-366.