

Prova de Sistemas Lineares - ITA

1 - (ITA-11) O sistema
$$\begin{cases} x + 2y + 3z = a \\ y + 2z = b \\ 3x - y - 5cz = 0 \end{cases}$$

A () é possível,
$$\forall$$
 a, b, c \in IR

B () é possível quando
$$a = \frac{7b}{3}$$
 ou $c \neq 1$

C () é impossível quando c = 1,
$$\forall$$
 a,b \in IR

D () é impossível quando
$$a \neq \frac{7b}{3}$$
, $\forall c \in \mathbb{R}$

E () é possível quando c = 1 e
$$a \neq \frac{7b}{3}$$

2 - (ITA-09) O sistema

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}, \ a_1, a_2, b_1, b_2, c_1, c_2 \in IR$$

Com
$$(c_1, c_2) \neq (0,0)$$
, $a_1c_1 + a_2c_2 = b_1c_1 + b_2c_2 = 0$, é

- a) determinado.
- b) determinado somente quando $c_1 \neq 0$ e $c_2 \neq 0$.
- c) determinado somente quando $c_1 \neq 0$ e $c_2 = 0$ ou $c_1 = 0$ e $c_2 \neq 0$.
- d) impossível.
- e) indeterminado.

3 - (ITA-08) Considere o sistema Ax = b, em que:

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & k & 6 \\ -1 & 3 & k-3 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 6 \\ 0 \end{pmatrix} \ e \ k \in R.$$

Sendo T a soma de todos os valores de k que tornam o sistema impossível e sendo S a soma de todos os valores de k que tornam o sistema possível e indeterminado, então o valor de T – S é:

$$a) - 4$$
 $b) - 3$ $c) 0$ $d) 1$ $e) 4$

4 - (ITA-06) A condição para que as constantes reais a e b tornem incompatível o sistema linear

$$\begin{cases} x + y + 3z = 2 \\ x + 2y + 5z = 1 & \text{\'e} \\ 2x + 2y + az = b \end{cases}$$

a)
$$a - b \ne 2$$
 b) $a + b = 10$ c) $4a - 6b = 0$ d) $a/b = 3/2$ e) $a \cdot b = 24$

5 - (ITA-06) Seja o sistema linear nas incógnitas x e y, com a e b reais, dado por

$$\begin{cases} (a-b)x - (a+b)y = 1 \\ (a+b)x + (a-b)y = 1 \end{cases}$$

Considere as seguintes afirmações:

I – O sistema é possível e indeterminado se a = b = 0.
II – O sistema é possível e determinado se a e b não são simultaneamente nulos.

III –
$$x^2 + y^2 = (a^2 + b^2)^{-1}$$
, se $a^2 + b^2 \neq 0$.

Então, pode-se afirmar que é(são) verdadeira(s) apenas a) I b) II c) III d) I e II e) II e III

6 - (ITA-05) Em uma mesa de uma lanchonete, o consumo de 3 sanduíches, 7 xícaras de café e 1 pedaço de torta totalizou R\$ 31,50. Em outra mesa, o consumo de 4 sanduíches, 10 xícaras de café e 1 pedaço de torta totalizou R\$ 42,00. Então, o consumo de 1 sanduíche, 1 xícara de café e 1 pedaço de torta totaliza o valor de

- a) R\$ 17,50
- b) R\$ 16,50
- c) R\$ 12,50
- d) R\$ 10,50
- e) R\$ 9,50

7 - (ITA-05) O sistema linear

$$\begin{cases} bx + y = 1 \\ by + z = 1 \\ x + bz = 1 \end{cases}$$

não admite solução se e somente se o número real **b** for igual a

- a) -1 b) 0 c) 1 d) 2 e) -2
- **8 -** (ITA-03) O número de todos os valores de a \in [0, 2π], distintos, para os quais o sistema nas incógnitas x, y

e z, dado por
$$\begin{cases} -4x + y - 6z = \cos 3a \\ x + 2y - 5z = \sin 2a, & \text{\'e} \\ 6x + 3y - 4z = -2\cos a \end{cases}$$

possível e não-homogêneo, é igual a:

- a) 2 b) 3 c) 4 d) 5 e) 6
- 9 (ITA-01) Seja $m \in R$, m > 0. Considere o sistema $\begin{cases} 2x (log_4 m)y + 5z = 0\\ (log_2 m)x + y 2z = 0\\ x + y (log_2 m^2)z = 0 \end{cases}$

O produto dos valores de m para os quais o sistema admite solução não-trival é:

a) 1 b) 2 c) 4 d) 8 e) 2 log₂5

10 - (ITA-99) A soma de todos os valores de $a \in [0, 2\pi]$ que tornam o sistema

$$\begin{cases} x + y + z = 0 \\ x \operatorname{sen} a + y \cos a + z (2 \operatorname{sen} a + \cos a) = 0 \\ x \operatorname{sen}^{2} a + y \cos^{2} a + z (1 + 3 \operatorname{sen}^{2} a + 2 \operatorname{sen} 2a) = 0 \end{cases}$$

possível e indeterminado é:

a)
$$5\pi$$

c)
$$3\pi$$

11 - (ITA-98) Sejam a, b $\in \Re$. Considere os sistemas lineares em x, y e z:

$$\begin{cases} x+y-z=0 \\ x-3y+z=1 \\ -2y+z=a \end{cases} \qquad \begin{cases} x-y=0 \\ x+2y-z=0 \\ 2x-by+3z=0 \end{cases}$$

Se ambos admitem infinitas soluções reais, então:

a)
$$\frac{a}{1} = 11$$

b)
$$\frac{b}{2} = 22$$

a)
$$\frac{a}{b} = 11$$
 b) $\frac{b}{a} = 22$ c) $ab = \frac{1}{4}$

d)
$$ab = 22$$
 e) $ab = 0$

$$e)$$
 $ab = 0$

12 - (ITA-97) Seja a, b, $c \in \Re_+^* \text{ com } a^2 = b^2 + c^2$. Se x, y e z satisfazem o sistema

$$\begin{cases} c\cos y + b\cos z = a \\ c\cos x + a\cos z = b , \text{ então } \cos x + \cos y + \cos z \text{ \'e igual} \\ b\cos x + a\cos y = c \end{cases}$$

a:

$$a) (a - b)/c$$

c)
$$(b + c)/a$$

$$d) (c + a)/b$$

e)
$$(b^2 + c^2)/a$$

13 - (ITA-97) A seqüência (a₁, a₂, a₃ e a₄) é uma progressão geométrica de razão $q \in \Re^*$ com $q \neq 1$ e $a_1 \neq$ 0. Com relação ao sistema:

$$\begin{cases} a_1x + a_2y = c \\ a_3x + a_4y = d \end{cases} \text{, podemos afirmar que:}$$

- a) É impossível para c, $d \in [-1, 1]$
- b) É possível e determinado somente se c = d.
- c) É indeterminado quaisquer que sejam c, $d \in \Re$.
- d) É impossível quaisquer que sejam c, $d \in \Re^*$.
- e) É indeterminado somente se $d = cq^2$.

14 - (ITA-96) Seja a \in R [- π /4, π /4] um número real dado. A solução (x_0, y_0) do sistema de equações:

$$\begin{cases} (sen a)y - (cos a)x = -tga \\ (cos a)y + (sen a)x = -1 \end{cases}$$
 é tal que:

a)
$$x_0$$
. $y_0 = tg a$

b)
$$x_0$$
. $y_0 = -\sec a$ c) x_0 . $y_0 = 0$

d)
$$v_0 \cdot v_0 = sen^2$$

d)
$$x_0$$
. $y_0 = sen^2 a$ e) x_0 . $y_0 = sen a$

15 - (ITA-96) Sejam a₁, a₂, a₃ e a₄ quatro números reais (com a₁ ≠ 0), formando nessa ordem uma progressão geométrica.

Então, o sistema em x e y $\begin{cases} a_1x + a_3x = 1 \\ a_1a_2x + a_1a_4x = a_2 \end{cases} \text{\'e um}$

sistema:

- a) Impossível.
- b) Possível e determinado.
- c) Possível e indeterminado.
- d) Possível determinado para $a_1 > 1$.
- e) Possível determinado para $a_1 < -1$.

16 - (ITA-95) Se S é o conjunto dos valores de a para os quais o sistema

$$\begin{cases} x+y+z=0\\ x+(\log_3 a)^2.y+z=0 & \text{em que há indeterminação,}\\ 2x+2y+(\log_3 \frac{27}{a})z=0 \end{cases}$$

então:

d)
$$S \subset [1, 3]$$
. e) $S \subset [0, 1]$.

17 - (ITA-94) O sistema indicado abaixo, nas incógnitas x, v e z,

$$3^{a}x - 9^{a}y + 3z = 2^{a}$$

$$3^{a+1}x - 5y + 9z = 2^{a+1}$$

$$x + 3^{a-1}y + 3^{a+1}z = 1$$

É possível e determinado quando o número a é diferente de:

a)
$$\log_3 2 e^{\frac{1}{2}(-1 + \log_2 5).b) \log_2 3 e^{\frac{1}{2}(\log_2 5).}$$

c)
$$\log_2 1 e^{\frac{1}{2}} (\log_2 3)$$
.

c)
$$\log_2 1 e^{\frac{1}{2}} (\log_2 3)$$
. d) $\frac{1}{2} (-1 + \log_2 1) e^{\frac{1}{2}} (-1 + \log_2 3)$.

e)
$$\log_3 1$$
 e $\frac{1}{2}$ (-1 + $\log_3 5$).

18 - (ITA-93) Analisando o sistema
$$\begin{cases} 3x - 2y + z = 0 \\ x + y - z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

concluímos que este é:

- a) possível e determinado com xyz = 7
- d) possível e indeterminado
- b) possível e determinado com xyz = -8
- e) impossível
- c) possível e determinado com xyz = 6
- 19 (ITA-91) Considere o sistema:

(P)
$$\begin{cases} x + z + w = 0 \\ x + ky + k^2w = 1 \\ x + (k+1)z + w = 1 \\ x + z + kw = 2 \end{cases}$$

Podemos afirmar que (P) é possível e determinado quando:

a)
$$k \neq 0$$

c)
$$k \neq -1$$

d)
$$k \neq 0$$
 e $k \neq -1$

20 - (ITA-91) Se (x , y , z , t) é solução dos sistema:

$$\begin{cases} x - y + 2z - t = 0 \\ 3x + y + 3z + t = 0 \\ x - y - z - 5t = 0 \end{cases}$$

Qual das alternativas abaixo é verdadeira?

- a) x + y + z + t e x tem o mesmo sinal.
- b) x + y + z + t e t tem o mesmo sinal.
- c) x + y + z + t e y tem o mesmo sinal.
- d) x + y + z + t e z tem sinais contrários.
- e) n.d.a.
- **21** (ITA-90) Dizemos que dois sistemas de equações lineares são equivalentes se, e somente se, toda solução de um qualquer dos sistemas for também uma solução do outro. Considere as seguintes afirmações:
- I- Dois sistemas de equações lineares 3x3, ambos homogêneos, são equivalentes.
- II- Dois sistemas de equações lineares, 3x3, ambos indeterminados, não são equivalentes.
- III- Os dois sistemas de equações lineares dados a seguir são equivalentes:

$$\begin{cases} x + y = 5 \\ y + z = 8 \\ x + y + z = 10 \end{cases} \begin{cases} x + 2y - z = 3 \\ x - y + z = 4 \\ 4x - y + 2z = 14 \end{cases}$$

De acordo com a definição dada podemos dizer que:

- a) As três afirmações são verdadeiras;
- b) Apenas a afirmação (I) é verdadeira;
- c) Apenas as afirmações (I) e (II) são verdadeiras;
- d) Apenas as afirmações (I) e (III) são verdadeiras;
- e) As três afirmações são falsas.
- **22 -** (ITA-90) Considere o sistema linear homogêneo nas incógnitas x_1 , x_2 , ..., x_n dado por

$$\begin{cases} a_1x_1 + (a_1 + 1)x_2 + ... + (a_1 + n - 1)x_n = 0 \\ a_2x_1 + (a_2 + 1)x_2 + ... + (a_2 + n - 1)x_n = 0 \\ ... \\ a_nx_1 + (a_n + 1)x_2 + ... + (a_n + n - 1)x_n = 0 \end{cases}$$

onde a_1 , a_2 , ..., a_n são números reais dados. Sobre a solução deste sistema podemos afirmar que:

- a) Se $a_i > 0$, i = 1, 2, ..., n o sistema possui uma única solução;
- b) Se $a_i < 0$, i = 1, 2, ..., n o sistema possui uma única solução;
- c) Se $a_i > 0$, i = 1, 2, ..., n o sistema é impossível;
- d) Se $a_i < 0$, i = 1, 2, ..., n o sistema é impossível;
- e) O sistema possui infinitas soluções quaisquer que sejam os valores dos números a₁, ..., a_n dados.

23 - (ITA-88) Sobre o sistema
$$\begin{cases} 8x - y - 2z = 0 \\ 7x + y - 3z = 0 \\ x - 2y + 3z = 0 \end{cases}$$

Podemos afirmar que:

- a) é possível e determinado
- b) é impossível
- c) é possível e qualquer solução (x, y, z) é tal que os números x, y, z formam nesta ordem, uma progressão aritmética de razão igual a x.
- d) é possível e qualquer solução (x, y, z) é tal que y = (x + z)/3
- e) é possível e qualquer solução (x, y, z) é tal que os números x, y, z formam nesta ordem, uma progressão aritmética de razão igual a (x + y + z)/3.
- **24** (ITA-87) Suponha que x e y são números reais, satisfazendo simultaneamente às equações 2x + 3y = 21 e 7x 4x = 1. Nestas condições, se S = x + y, então:

25 - (ITA-84) Os valores reais de a, que tornam o sistema

$$\begin{cases} 3^{2a+1}.x + y = 1 \\ x + y = 0 & \text{possível e determinado, são:} \\ (3^a.10 - 3)x + y = 1 \end{cases}$$

- a) qualquer valor de a.
- b) apenas a = 0 e a = 3.
- c) apenas a = 2.
- d) apenas a = 1 e a = -1.
- e) não existe valor de a nestas condições.

GABARITO

1	В
2	D
3	Α
4	Α
5	E
6	D
7	Α
8	Α
9	Α
10	Α
11	В
12	С
13	E
14	С
15	С
16	Α
17	E
18	С
19	E
20	С
21	E
22	SR
23	С
24	В
25	D

