

Método Simplex Revisado

Prof. Fernando Augusto Silva Marins

Departamento de Produção

Faculdade de Engenharia – Campus de Guaratinguetá

UNESP

www.feg.unesp.br/~fmarins fmarins@feg.unesp.br

Introdução

Método Simplex Tradicional - MST:

Em cada iteração são modificados todos os elementos das tabelas usadas na aplicação do método.

Informações necessárias para a continuidade do Simplex:

- •Coeficientes de custo relativo (\overline{C}_i) ;
- •Coeficientes da variável não básica que entra nas restrições (coluna do pivot);
- •Quais são as variáveis básicas atuais e seus valores (\overline{b}_i) .

Observação: as demais colunas da tabela do simplex não contém informações relevantes para o pivoteamento: para modelos de PL de porte razoável a aplicação do MST pode ser ineficiente e custosa do ponto de vista computacional.

Método Simplex Revisado

Códigos comerciais com implementações do Simplex usam um refinamento conhecido como *Método Simplex Revisado - MSR*.

Características do *MSR*:

- •Usa os mesmos princípios do MST;
- •Não atualiza toda a tabela em cada iteração;
- •As informações para concretizar cada iteração são obtidas diretamente a partir dos dados originais.

Vantagens do MSR sobre o MST

Quando o número de variáveis do modelo é bem maior que o número de restrições (n >> m) o total de operações em cada iteração é menor no MSR, pois trabalha-se com tabelas cuja dimensão é determinada pelo número de restrições (m);

Há um controle maior de erros de arredondamento no MSR;

Para modelos onde há muitos coeficientes nulos nas restrições, usando o MST estes coeficientes nulos desaparecem já nas operações iniciais de pivoteamento;

O MSR é útil para a abordagem facilitada de outros tópicos de Programação Linear.

Forma Matricial do Método Simplex

Considere o modelo de PL na forma padrão:

Min Z = C'X s. a. :
$$\{AX = b \ (\ge 0), X \ge 0\}$$

Considere as partições: $A = [B \mid N]$, $X^t = [X_B \mid X_N]$, $C = [C_B \mid C_N]$ onde,

B = colunas básicas, N = colunas não-básicas,

 X_B = variáveis básicas (VB), X_N = variáveis não-básicas (VNB),

C_B = coeficientes de VB na Função Objetivo (F.O.),

 C_N = coeficientes de variáveis não-básicas na F.O.

Forma Matricial do Método Simplex

Pode-se reescrever o modelo na forma padrão:

Min
$$Z = C_B X_B + C_N X_N$$
 s.a:
$$\begin{cases} B X_B + N X_N = b & (1), \\ X_B \ge 0 & (2), X_N \ge 0 & (3) \end{cases}$$

De (1) tem-se: $X_B = B^{-1} b - B^{-1} N X_N$, e substituindo na F. O. :

$$Z = C_B (B^{-1} b - B^{-1} N X_N) + C_N X_N = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$
 (4)

Denote e calcule por:

$$Z_0 = C_B B^{-1} b = C_B \overline{b}$$
 = valor da F.O. da S.B.V. dada por $X_0^t = (X_B 0)$.
 $\overline{C}_N = C_N - C_B B^{-1} N$ = vetor dos coeficientes de custo relativo das VNB na solução X_0^t .

Seja o modelo de PL:

Max Z =
$$3X_1 + 4X_3 - 1$$

S. a:
$$\begin{cases} X_1 + 2X_2 + 2X_3 + X_4 &= 8 \\ 3X_1 + 4X_2 + X_3 &+ X_5 &= 7 \\ X_i \geq 0, i = 1, 2, 3, 4, 5. \end{cases}$$

Onde:

$$A = (a_1 \ a_2 \ a_3 \ a_4 \ a_5), a_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, a_2 = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, a_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$C = (3\ 0\ 4\ 0\ 0) = (c_1\ c_2\ c_3\ c_4\ c_5), \qquad X^t = (X_1\ X_2\ X_3\ X_4\ X_5),$$

$$b = \begin{pmatrix} 8 \\ 7 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Tabelas do MST no Exemplo

	VB	X_1	X_2	X_3	X_4	X_5	b
Tabela 1	X_4	1	2	2	1	0	8
inicial	X_5	3	4	1	0	1	7
	-Z	3	0	4	0	0	1
	X_3	1/2	1	1	1 /2	0	4
Tabela 2	X_5	<i>5/2</i>	3	0	-1 /2	1	3
	-Z	1	-4	0	-2	0	-15
Tabela 3	x ₃ *	0	2/5	1	3/5	-1/5	17/5
ótima	\mathbf{x}_{1}^{*}	1	6/5	0	-1/5	2/5	6/5
	-Z*	0	-26/5	0	-9/5	-2/5	-81/5

Método Simplex Revisado

Todos os coeficientes das Tabelas 2 e 3 podem ser obtidos a partir dos dados originais e da matriz B⁻¹.

- Para a Tabela 2:

B = columns básicas =
$$(a_3 a_5)$$
 = $\begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ \Rightarrow B⁻¹ = $\begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix}$

- Colunas atualizadas da matriz A:

$$\bar{a}_j = B^{-1} a_j$$
 para j=1,5.

$$\overline{\mathbf{a}}_1 = \mathbf{B}^{-1} \, \mathbf{a}_1 = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 5/2 \end{pmatrix}$$

$$\overline{a}_2 = B^{-1} a_2 = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Método Simplex Revisado

Constantes atualizadas das restrições (ou seja os valores das variáveis básicas):

$$\overline{\mathbf{b}} = \mathbf{B}^{-1} \mathbf{b} = \begin{pmatrix} 1/2 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Coeficientes de custo relativo atualizados: com λ sendo o *Vetor de Multiplicadores do Simplex* = $C_B B^{-1}$

$$\overline{\mathbf{C}}_{\mathbf{j}} = \mathbf{C}_{\mathbf{j}} - \mathbf{C}_{\mathbf{B}} \overline{\mathbf{a}}_{\mathbf{j}} \text{ ou } \overline{C}_{\mathbf{j}} = \mathbf{C}_{\mathbf{j}} - \mathbf{C}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{a}_{\mathbf{j}} = \mathbf{C}_{\mathbf{j}} - \lambda \mathbf{a}_{\mathbf{j}}$$

$$j = 1 \rightarrow \overline{\mathbf{C}}_{\mathbf{i}} = \mathbf{C}_{\mathbf{i}} - \mathbf{C}_{\mathbf{B}} \overline{\mathbf{a}}_{\mathbf{i}} = 3 - (4 \quad 0) \begin{pmatrix} 1/2 \\ 5/2 \end{pmatrix} = 1$$

$$j = 2 \rightarrow \overline{C}_2 = C_2 - C_B \overline{a}_2 = 0 - (4 \quad 0) \begin{pmatrix} 1 \\ 3 \end{pmatrix} = -4$$

MSR - Problemas de Minimização

Considere uma Solução Básica Viável inicial (SBV) $\mathbf{X}_{\mathbf{B}} = \mathbf{B}^{-1} \mathbf{b} = \overline{\mathbf{b}}$

Passo1: Montar a tabela com a SBV Inicial

Solução inicial	B-1	$\overline{\mathbf{b}} = \mathbf{B}^{-1} \mathbf{b}$	Variável que entra	Coluna do pivot
X _B	Inversa da matriz das colunas básicas	Valores da variáveis básicas	A ser preenchida no Passo 2	A ser preenchida no Passo 3

Passo 2: Teste de otimalidade/escolha da variável não-básica que entra

•Calcular $\overline{C}_j = C_j - C_B \overline{a}_j$ para toda VNB X_j

•Se todo $\overline{C}_i \ge 0 \Rightarrow$ Parar. Solução Ótima

•Senão escolha x_r com $\overline{C}_r < 0$ para ser a VNB que entra (preencher a tabela)

MSR - Problemas de Minimização

Passo 3: calcular a coluna atualizada do pivot/escolha da VB que sai

• Achar coluna atualizada do pivot $\bar{\mathbf{a}}_{\mathbf{r}} = \mathbf{B}^{-1}\mathbf{a}_{\mathbf{r}}(preencher\ a\ tabela)$

• Determinar
$$\overline{\mathbf{b}}_{s} = \mathbf{MIN} \left\{ \frac{\overline{\mathbf{b}}_{i}}{\overline{\mathbf{a}}_{ir}} \right\} \mathbf{PARA} \, \overline{\mathbf{a}}_{ir} > 0 \implies \mathbf{x}_{s} = \overline{\mathbf{b}}_{s} \quad \text{sai}, \, \text{pivot} = \overline{\mathbf{a}}_{sr}$$

• Se $\exists \overline{a}_{ir} > 0 \Rightarrow Parar$. Solução Ilimitada

Passo 4: atualizar a SBV, a matriz B⁻¹, e o vetor $\overline{\mathbf{b}} = \mathbf{B}^{-1} \mathbf{b}$ pelo pivoteamento. Voltar ao **Passo 2**.

Exemplo completo de aplicação do Método Simplex Revisado

$$\text{Max } Z = 3X_1 + X_2 + 3X_3 \text{ s. a: } \begin{cases} 2X_1 + X_2 + X_3 \leq 2 \\ X_1 + 2X_2 + 3X_3 \leq 5 \\ 2X_1 + 2X_2 + X_3 \leq 6 \\ X_i \geq 0, \ i = 1, \ 3. \end{cases}$$

Colocando este **modelo na forma padrão de minimização** e identificando os dados originais que serão usados nas iterações do Método Simplex Revisado:

		\mathbf{a}_1	a_2	a_3	a_4	a_5	a_6	
	X_{B}	X_1	X_2	X_3	X_4	X_5	X_6	b
S. B. V.	X_4	2	1	1	1	0	0	2 b ₁
Inicial	X_5	1	2	3	0	1	0	5 b ₂
	X_6	2	2	1	0	0	1	$6 b_3$
	-Z	-3	-1	-3	0	0	0	0
		\mathbf{C}_1	C_2	C_3	C_4	\mathbf{C}_5	C_6	$-Z_0$

Exemplo - MSR

Expressões úteis:

 $\lambda = Vetor \ de \ multiplicadores \ do \ simplex = C_R B^{-1}$

$$\overline{\mathbf{C}}_{N} = \mathbf{C}_{N} - \mathbf{C}_{R} \mathbf{B}^{-1} \mathbf{N} = \mathbf{C}_{N} - \lambda \mathbf{N}$$

$$\overline{\mathbf{a}}_{\mathbf{j}} = \mathbf{B}^{-1} \mathbf{a}_{\mathbf{j}} , \overline{\mathbf{b}} = \mathbf{B}^{-1} \mathbf{b}$$

Passo I:

$$C_B = (0 \ 0 \ 0)$$
 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $N = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}$ $C_N = (-3 \ -1 \ -3)$

$$N = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix}$$

$$C_N = (-3 -1 -3)$$

Tabela 1

S.B.V.		B-1		$\overline{\mathbf{b}}$	Variável que entra	Coluna Pivot
X_4	1	0	0	2		
X_5	0	1	0	5	Passo 2	Passo 3
X_6	0	0	1	6		

Passo 2 - Cálculos: $\lambda = C_B B^{-1} = (0 \ 0 \ 0) I_3 = (0 \ 0 \ 0)$

$$\overline{C}_{N} = (\overline{C}_{1} \ \overline{C}_{2} \ \overline{C}_{3}) = C_{N} - \lambda N = (-3 \ -1 \ -3) - (0 \ 0 \ 0) \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix} = (-3 \ -1 \ -3)$$

Candidatas a entrar: X_1 , X_2 e X_3 . Escolhendo X_1 para entrar (Preencher a Tabela 1).

Passo 3 - Coluna do pivot: $\overline{\mathbf{a}}_1 = \mathbf{B}^{-1} \mathbf{a}_1 = \mathbf{I}_3 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ (Preencher Tabela 1)

Determinação do pivot: $\min \left\{ \overline{b}_{i} / a_{i1} \right\}$ para $a_{i1} > 0$

Min
$$\left\{\frac{2}{2}, \frac{5}{1}, \frac{6}{2}\right\} = \frac{2}{2} = 1 \Rightarrow \text{sai } X_4 \text{ e o pivot } = \overline{a}_{11} = 2$$

Tal	bel	9	1
1 a	U C	la	

S.B.V.		B-1		$\overline{\mathbf{b}}$	Variável que entra	Coluna Pivot
X_4	1	0	0	2		2
X_5	0	1	0	5	X_1	1
X_6	0	0	1	6		2

A seguir efetuar o pivoteamento em B^{-1} e $\overline{\mathbf{b}}$ \Rightarrow Tabela 2 com nova SBV com X_1 no lugar de X_4 .

Aplicar os Passos 2 – 4 na Tabela 2

Tabela 2

S.B.V.		B-1		$\overline{\mathbf{b}}$	variável entra	coluna pivot
X_1	1/2	0	0	1		
X_5	-1/2	1	0	4	Passo 2	Passo 3
X_6	-1	0	1	4		

Método Simplex Revisado

Passo 2 - 3

Cálculos: $\lambda = C_B B^{-1} = (-3/2 \ 0 \ 0)$

$$\overline{C}_{N} = (\overline{C}_{2} \ \overline{C}_{3} \ \overline{C}_{4}) = (-1 \ -3 \ 0) - (-3/2 \ 0 \ 0) \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 2 & 1 & 0 \end{pmatrix} = (1/2 \ -3/2 \ 3/2)$$

Candidata a entrar: X_3 (Preencher a Tabela 2).

Coluna Pivot:
$$\bar{\mathbf{a}}_3 = \mathbf{B}^{-1} \mathbf{a}_3 = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 5/2 \\ 0 \end{pmatrix}$$
 (Preencher Tabela 2)

Tabela 2

S.B.V.		B-1		$\overline{\mathbf{b}}$	variável entra	coluna pivot
X_1	1/2	0	0	1		1/2
X_5	-1/2	1	0	4	X_3	5/2
X_6	-1	0	1	4		0

Determinação do Pivot:
$$Min \left\{ \overline{b}_i \middle/ a_{i3} \right\}$$
 para $a_{i3} > 0$

Min
$$\left\{\frac{1}{\frac{1}{2}}, \frac{4}{\frac{5}{2}}\right\} = \frac{8}{5} \Rightarrow \text{sai } X_5 \text{ e o pivot } = \overline{a}_{23} = 5/2$$

Efetuando o pivoteamento em B⁻¹ e $\overline{\mathbf{b}}$ \Rightarrow Tabela 3 com nova SBV com X₃ no lugar de X₅.

Tabela 3

S.B.V.		B^{-1}		$\overline{\mathbf{b}}$	variável entra	coluna pivot
X_1	3/5	-1/5	0	1/5		•
X_3	-1/5	2/5	0	8/5	Passo 2	Passo 3
X_6	-1	0	1	4		

Método Simplex Revisado

Tabela 3

S.B.V.		B-1		$\overline{\mathbf{b}}$	variável entra	coluna pivot
\mathbf{X}_1	3/5	-1/5	0	1/5		
X_3	-1/5	2/5	0	8/5	Passo 2	Passo 3
X_6	-1	0	1	4		

$$C_{B} = (-3 \quad -3 \quad 0)$$
 $B = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ $N = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}$ $C_{N} = (-1 \quad 0 \quad 0)$

Cálculos:
$$\lambda = C_B B^{-1} = \begin{pmatrix} -3 & -3 & 0 \end{pmatrix} \begin{pmatrix} 3/5 & -1/5 & 0 \\ -1/5 & 2/5 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -6/5 & -3/5 & 0 \end{pmatrix}$$

Exemplo - MSR

$$\overline{C}_{N} = (\overline{C}_{2} \ \overline{C}_{4} \ \overline{C}_{5}) = (-1 \ 0 \ 0) - (-6/5 \ -3/5 \ 0) \begin{pmatrix} 1 \ 1 \ 0 \\ 2 \ 0 \ 1 \\ 2 \ 0 \ 0 \end{pmatrix} = (7/5 \ 6/5 \ 3/5)$$

 $\overline{C}_{N} \ge 0 \Rightarrow a SBV da Tabela 3 é ótima:$

$$X_1^* = 1/5, \quad X_3^* = 8/5, \quad X_6^* = 4, \quad X_2^* = X_4^* = X_5^* = 0$$

$$Z^* = C_B B^{-1} b = \lambda b = (-6/5 - 3/5 0) \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix} = -27/5$$

$$W^* = -Z^* = 27/5$$

Método do Big M para inicialização do MSR

Nas restrições onde não há *Variáveis Naturais* (originais e de folga) do modelo que possam ser variáveis básicas são incorporadas novas Variáveis denominadas Artificiais.

Estas Variáveis Artificiais (≥ 0) também são incorporadas à função objetivo recebendo, para modelos de Minimização (Maximização), coeficientes penalizantes dados por M (-M), onde M é um número positivo suficientemente grande com relação aos demais coeficientes envolvidos com o modelo original.

Desta maneira obtém-se uma solução básica viável inicial para o *modelo ampliado* que contém todas as variáveis artificiais.

Método do Big M para inicialização do MSR

Aplica-se o MSR anteriormente ao modelo ampliado, buscando a substituição das Variáveis Artificiais (VA) básicas por Variáveis *Naturais* (Decisão e de Folga) do modelo original.

As VA que se tornam não-básicas podem ser desconsideradas nas iterações subsequentes do MSR.

A aplicação do MSR ao modelo ampliado pode levar a duas situações:

- (A) Existe VA como variável básica na solução ótima do modelo ampliado \Rightarrow neste caso a conclusão é que o *modelo original é* inviável.
- (B) Não existe VA como variável básica na solução ótima do modelo ampliado ⇒ neste caso *o modelo original é viável* e uma *solução* ótima com Variáveis Naturais do modelo original foi obtida.

Exemplo de aplicação do MSR com Big M

Min Z = -3
$$X_1 + X_2 + X_3$$
 s. a:
$$\begin{cases} X_1 - 2X_2 + X_3 \le 11 & (1) \\ -4X_1 + X_2 + 2X_3 \ge 3 & (2) \\ 2X_1 - X_3 = -1 & (3) \\ X_i \ge 0, i = 1, 3. & (4) \end{cases}$$

Modelo original na forma padrão:

Sendo X_4 e X_5 as *variáveis de folga* para as restrições (1) e (2), respectivamente; Y₁, e Y₂ as variáveis artificiais para as restrições (2) e (3), respectivamente.

$$Min Z = -3X_1 + X_2 + X_3 + MY_1 + MY_2$$

$$\begin{cases} X_{1}-2X_{2}+X_{3}+X_{4} & =11 & (1) \\ -4X_{1}+X_{2}+2X_{3} & -X_{5}+Y_{1} & =3 & (2) \\ -2X_{1}+X_{3} & +Y_{2} & =1 & (3) \\ X_{i} \geq 0, i = 1, 5. \ Y_{j} \geq 0, j = 1, 2. & (4) \end{cases}$$

Sujeito a:
$$-2X_1 + X_3 + Y_2 = 1$$
 (3)

$$X_i \ge 0, i = 1, 5. Y_j \ge 0, j = 1, 2.$$
 (4)

Aplicação do MSR com *Big M* Identificação dos dados originais

$$A = \begin{pmatrix} 1 & -2 & 1 & 1 & 0 & 0 & 0 \\ -4 & 1 & 2 & 0 & -1 & 1 & 0 \\ -2 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$C_1$$
 C_2 C_3 C_4 C_5 C_6 C_7
 $C = \begin{pmatrix} -3 & 1 & 1 & 0 & 0 & M & M \end{pmatrix}$

$$b = \begin{pmatrix} 11 \\ 3 \\ 1 \end{pmatrix} b_1 \\ b_2 \\ b_3$$

Tabela 1

X_{B}	B-1	$\overline{\mathbf{b}}$	variável entra	coluna pivot
$\overline{X_4}$	1 0 0	11		
\mathbf{Y}_{1}	0 1 0	3	Passo 2	Passo 3
Y_2	0 0 1	1		

Dados referentes a solução básica viável da Tabela 1:

$$C_{B} = (0 \text{ M M}), B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & -2 & 1 & 0 \\ -4 & 1 & 2 & -1 \\ -2 & 0 & 1 & 0 \end{pmatrix}, C_{N} = \begin{pmatrix} -3 & 1 & 1 & 0 \\ -3 & 1 & 1 & 0 \end{pmatrix}$$

Cálculos:
$$\lambda = (O \ M \ M) \ I_3 = (O \ M \ M)$$

$$\overline{C}_N = (\overline{C}_1 \ \overline{C}_2 \ \overline{C}_3 \ \overline{C}_5) = (-3 \ 1 \ 1 \ 0) - (0 \ M \ M) \begin{pmatrix} 1 \ -2 \ 1 \ 0 \\ -4 \ 1 \ 2 \ -1 \\ -2 \ 0 \ 1 \ 0 \end{pmatrix} = (M \ -M \ -M \ M)$$

Tabela 1

$X_{\rm R}$	B-1	$\overline{\mathbf{b}}$	variável entra	coluna pivot
X_4	1 0 0	11		
\mathbf{Y}_{1}^{\cdot}	0 1 0	3	X_3	Passo 3
Y_2	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	1		

Variáveis X_2 e X_3 são candidatas a entrar. Escolhendo X_3 para entrar (preencher a Tabela 1).

Coluna do pivot:
$$\bar{\mathbf{a}}_3 = \mathbf{B}^{-1} \mathbf{a}_3 = \mathbf{I}_3 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 (preencher Tabela 1)

Tabela 1

X_{B}	B-1			$\overline{\mathbf{b}}$	variável entra	coluna pivot
$\overline{X_4}$	1	0	0	11		1
\mathbf{Y}_{1}	0	1	0	3	X_3	2
\mathbf{Y}_2	0	0	1	1		1

Determinação do pivot:

Min
$$\left\{\frac{\overline{\mathbf{b}}_{i}}{\overline{\mathbf{a}}_{i3}}\right\}$$
, $\overline{\mathbf{a}}_{i3} > \mathbf{0} \implies \left\{\frac{1}{1}, \frac{3}{2}, \frac{1}{1}\right\} = \frac{1}{1} \Rightarrow \text{Sai } Y_{2} \text{ e o pivot } = \overline{\mathbf{a}}_{33} = 1.$

Nova SBV: Pivotear em \overline{a}_{33} , B⁻¹, \overline{b} na Tabela 1 \Rightarrow Tabela 2.

Tabela 2								
X_{B}	B-1	$\overline{\mathbf{b}}$	variável entra	coluna pivot				
$\overline{X_4}$	1 0 -1	10						
\mathbf{Y}_1	0 1 -2	1	Passo 2	Passo 3				
X_3	0 0 1	1						

Dados referentes a SBV da Tabela 2:

$$C_{B} = (0 \ M \ 1), B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & -2 & 0 & 0 \\ -4 & 1 & -1 & 0 \\ -2 & 0 & 0 & 1 \end{pmatrix}, C_{N} = \begin{pmatrix} -3 & 1 & 0 & M \end{pmatrix}$$

Cálculos:
$$\lambda = (O \ M \ 1) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = (O \ M \ -M)$$

$$\overline{C}_{N} = (\overline{C}_{1} \quad \overline{C}_{2} \quad \overline{C}_{5} \quad \overline{C}_{7}) = (-3 \quad 1 \quad 0 \quad M) - (0 \quad M \quad -M) \begin{pmatrix} 1 & -2 & 0 & 0 \\ -4 & 1 & -1 & 0 \\ -2 & 0 & 0 & 1 \end{pmatrix} = (-1 \quad -M \quad M \quad M)$$

Tabela 2

X_{R}	B-1	b	variável entra	coluna pivot
X_4	1 0 -1	10		
\mathbf{Y}_{1}	0 1 -2	1	${ m X}_2$	
X_3	0 0 1	1		

Variáveis X_1 e X_2 são candidatas a entrar. Escolhendo X_2 para entrar (*preencher a Tabela 2*).

Coluna do pivot:
$$\overline{\mathbf{a}}_2 = \mathbf{B}^{-1} \mathbf{a}_2 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$
 (preencher Tabela 2)

Tabela 2

X_{B}	B-1	b	variável entra	coluna pivot
X_4	1 0 -1	10		-2
\mathbf{Y}_1	0 1 -2	1	X_2	1
X_3	0 0 1	1		0

Determinação do pivot:

Min
$$\left\{\frac{\overline{\mathbf{b}}_{i}}{\overline{\mathbf{a}}_{i2}}\right\}$$
, $\overline{\mathbf{a}}_{i2} > \mathbf{0}$ \Rightarrow Min $\left\{\frac{1}{1}\right\} = \frac{1}{1} \Rightarrow \text{sai } Y_{1} \text{ e o pivot } = \overline{\mathbf{a}}_{22} = 1$.

Nova SBV: Pivotear em \overline{a}_{22} , B⁻¹, \overline{b} na Tabela 2 \Rightarrow Tabela 3.

Tabela 3

X_{B}	B-1	$\overline{\mathbf{b}}$	variável entra	doluna pivot
X_4	1 2 -5	12		
X_2	0 1 -2	1	Passo 2	Passo 3
X_3	0 0 1	1		

Dados referentes a solução básica viável da Tabela 3:

$$C_{B} = (0 \ 1 \ 1), B = \begin{pmatrix} 1 \ -2 \ 1 \\ 0 \ 1 \ 2 \\ 0 \ 0 \ 1 \end{pmatrix}, N = \begin{pmatrix} 1 \ 0 \ 0 \ 0 \\ -4 \ -1 \ 1 \ 0 \\ -2 \ 0 \ 0 \ 1 \end{pmatrix}, C_{N} = \begin{pmatrix} -3 \ 0 \ M \ M \end{pmatrix}$$

Cálculos:
$$\lambda = (0 \ 1 \ 1) \begin{pmatrix} 1 & 2 & -5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} = (0 \ 1 \ -2)$$

$$\overline{C}_{N} = (\overline{C}_{1} \quad \overline{C}_{5} \quad \overline{C}_{6} \quad \overline{C}_{7}) = (-3 \quad 0 \quad M \quad M) - (0 \quad 1 \quad -2) \begin{pmatrix} 1 & 0 & 0 & 0 \\ -4 & -1 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{pmatrix} = (-1 \quad -1 \quad M \quad M)$$
33

created using
BCL easyPDF
Printer Driver
Olick here to purchase a license to remove this image

Tabela 3										
X_{B}		\mathbf{B}^{-1}		$\overline{\mathbf{b}}$	variável entra	coluna pivot				
X_4	1	2	-5	12						
X_2	0	1	-2	1	X_1					
X_3	0	0	1	1						

Variável X₁ é candidata única a entrar. (*Preencher a Tabela 3*).

Coluna do pivot:
$$\bar{\mathbf{a}}_1 = \mathbf{B}^{-1} \mathbf{a}_1 = \begin{pmatrix} 1 & 2 & -5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$
 (preencher Tabela 3)

Tabela 3

X_{B}	B-1	$\overline{\mathbf{b}}$	variável entra	coluna pivot
X_4	1 2 -5	12		3
X_2	0 1 -2	1	\mathbf{X}_1	0
X_3	0 0 1	1		-2

Determinação do pivot:

Min
$$\left\{\frac{\overline{\mathbf{b}}_{i}}{\overline{\mathbf{a}}_{i1}}\right\}$$
, $\overline{\mathbf{a}}_{i1} > \mathbf{0} \implies \text{Min } \left\{\frac{12}{3}\right\} = 4 \Rightarrow \text{sai } X_{4} \text{ e o pivot} = \overline{\mathbf{a}}_{11} = 3.$

Nova SBV: Pivotear em \overline{a}_{11} , B⁻¹, \overline{b} na Tabela 3 \Rightarrow Tabela 4.

Tabela 4

X_{B}		B-1		$\overline{\mathbf{b}}$	variável entra	coluna pivot
X_1	1/3	2/3	-5/3	4		
X_2	0	1	-2	1		
X_3	2/3	4/3	-7/3	9		

Dados referentes a SBV da Tabela 4:

$$C_{B} = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & 1 \\ -4 & 1 & 2 \\ -2 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 1 & -0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, C_{N} = \begin{pmatrix} 0 & 0 & M & M \end{pmatrix}$$

Cálculos:
$$\lambda = (-3 \ 1 \ 1) \begin{pmatrix} 1/3 & 2/3 & -5/3 \\ 0 & 1 & -2 \\ 2/3 & 4/3 & -7/3 \end{pmatrix} = (-1/3 \ 1/3 \ 2/3)$$

$$\overline{C}_{N} = (\overline{C}_{4} \quad \overline{C}_{5} \quad \overline{C}_{6} \quad \overline{C}_{7}) = (0 \quad 0 \quad M \quad M) - (-1/3 \quad 1/3 \quad 2/3) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (1/3 \quad 1/3 \quad M \quad M)$$

Como <u>não há VNB candidatas a entrar</u>. ⇒ A solução da <u>Tabela 4</u> é ótima.

$$X_1^* = 4, X_2^* = 1, X_3^* = 9, X_4^* = X_5^* = 0.$$

$$\mathbf{Z}^* = \mathbf{C}_{\mathbf{B}} \overline{\mathbf{b}} = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 9 \end{pmatrix} = -2$$