Параллельные алгоритмы 20250218_04

Базовые параллельные алгоритмы

Якобовский Михаил Владимирович

Основные характеристики параллельной программы

- \square Ускорение $oldsymbol{S_p} = rac{T_1}{T_p}$
- \square Эффективность $E_p = rac{s_p}{p}$
- □ Предел масштабируемости минимальное число процессоров при котором достигается максимальное ускорение
 - Число выполняемых операций
 - Время выполнения
 - Объём обрабатываемых данных

Неубедительность тестирования

- ... если для нас представляют интерес реально работающие системы, то требуется убедиться (и убедить всех сомневающихся) в корректности наших построений
- ... системе часто придется работать в невоспроизводимых обстоятельствах, и мы едва ли можем ожидать сколько-нибудь серьезной помощи от тестов

Dijkstra E.W.

Метод сдваивания

Определение суммы элементов массива

rank	0	1	2	3	4	5	6	7
i	0 n/8-1	n/8 2 n/8-1	2n/8 3n/8-1	3n/8 4n/8-1	4n/8 5n/8-1	5n/8 6n/8-1	6n/8 7n/8-1	7n/8 8n/8-1
	s = sum(a[i])							
1	Recv(1,c)	Send(0,s)	Recv(3,c)	Send(2,s)	Recv(5,c)	Send(4,s)	Recv(7,c)	Send(6,s)
	S = S + C		S = S + C		S = S + C		S = S + C	
2	Recv(2,c)		Send(0,s)		Recv(6,c)		Send(4,s)	
	S = S + C				S = S + C			
3	Recv(4,c)				Send(0,s)			
	S = S + C							

$$T_p = \frac{n}{p}\tau_c + (\tau_c + \tau_s)\log p$$

$$S_p = p\frac{1}{1 + \left(1 + \frac{\tau_s}{\tau_c}\right)\frac{p}{n}\log p}$$

Метод сдваивания

Определение суммы элементов массива

rank	0	1	2	3	4	5	6	7
i	0 n/8-1	n/8 2 n/8-1	2n/8 3n/8-1	3n/8 4n/8-1	4n/8 5n/8-1	5n/8 6n/8-1	6n/8 7n/8-1	7n/8 8n/8-1
	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])				
1	Recv(1,c) ←	Send(0,s)	Recv(3,c) <	Send(2,s)	Recv(5,c) ←	Send(4,s)	Recv(7,c) <	Send(6,s)
	S = S + C		S = S + C		S = S + C		S = S + C	
2	Recv(2,c)←		Send(0,s)		Recv(6,c) ←		Send(4,s)	
	S = S + C				S = S + C			
3	Recv(4,c)				Send(0,s)			
	S = S + C							

$$T_p = \frac{n}{p}\tau_c + (\tau_c + \tau_s)\log p$$

$$S_p = p\frac{1}{1 + \left(1 + \frac{\tau_s}{\tau_c}\right)\frac{p}{n}\log p}$$

Метод сдваивания

Определение суммы элементов массива

rank	0	1	2	3	4	5	6	7
i	0 n/8-1	n/8 2 n/8-1	2n/8 3n/8-1	3n/8 4n/8-1	4n/8 5n/8-1	5n/8 6n/8-1	6n/8 7n/8-1	7n/8 8n/8-1
	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])	s = sum(a[i])
1	Recv(1,c)	Send(0,s)	Recv(3,c) <	Send(2,s)	Recv(5,c)	Send(4,s)	Recv(7,c) ←	Send(6,s)
2	s = s + c Recv(2,c)		s = s + c Send $(0,s)$		s = s + c Recv(6,c)		s = s + c Send(4,s)	
3	s = s + c Recv(4,c)				s = s + c Send $(0,s)$			
	s = s + c							

$$T_p = \frac{n}{p}\tau_c + (\tau_c + (\tau_s))\log p$$

$$S_p = p \frac{1}{1 + (1 + \frac{\tau_s}{\tau_c})\frac{p}{n}\log p}$$

Масштабируемость – число процессоров, при котором достигается максимальное ускорение

Неубедительность тестирования

- ... если для нас представляют интерес реально работающие системы, то требуется убедиться (и убедить всех сомневающихся) в корректности наших построений
- ... системе часто придется работать в невоспроизводимых обстоятельствах, и мы едва ли можем ожидать сколько-нибудь серьезной помощи от тестов

Dijkstra E.W.

Циклическая обработка локально связанных данных

- Обработка изображений
- Обработка данных, заданных на решетках или произвольных графах
- Моделирование физических процессов (течений жидкости и газов, теплопереноса, упругости, ...)

— ...

Одномерная явная разностная схема для уравнения диффузии

$$N_{t} = D \frac{\partial^{2} N}{\partial x^{2}}$$
 $\frac{\overline{N}_{i} - N_{i}}{\tau} = D \frac{N_{i+1} - 2N_{i} + N_{i-1}}{h^{2}}, \quad i = 1, \dots, n-1$ $\overline{N}_{0} = N_{0} \quad \overline{N_{n}} = N_{n} \quad n -$ число ячеек $\overline{N}_{n} - N_{n} = D \frac{N_{n} - N_{n-1}}{h}$ $\kappa -$ число шагов по времени

$$\overline{N}_i = N_i + \tau \frac{D}{h^2} (N_{i+1} - 2N_i + N_{i-1}), \qquad i = 1, ..., n-1$$

Решения одномерного уравнения, соответствующие 9ти моментам времени

Одномерная явная разностная схема для уравнения диффузии

```
n — число ячеек
\kappa — число шагов по времени
       for(j = 0; j < k; j + +)
            for(i = 1; i < n; i + +)
                \overline{N}_i = N_i + \tau \frac{D}{h^2} (N_{i+1} - 2N_i + N_{i-1})
            \overline{N}_0 = N_0
            \overline{N}_n = N_n
            for(i = 0; i \le n; i + +)
                 N_i = \overline{N_i}
```

Решения одномерного уравнения, соответствующие 9ти моментам времени

проце	ccop (]	проце	eccop	1	 	проце	eccop 2	2	Π	роце	ccop (3
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0	\circ	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc	0	\bigcirc	\bigcirc	\circ	\circ	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0			\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\circ	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	
		\bigcirc	0	ZAK		\bigcirc	0			7	\bigcirc			
		•						•						•

проце	ccop (]	проце	eccop	1	 	проце	eccop ?	2	П	іроце	ccop 3	}
\bigcirc	\circ	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	τ_c	– врем	ия выч	ислен	ия <i>f u</i>	n(f-	-, f , f -	+)
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	$\mid au_{s} \mid$	– врем	ия пер	есылк	и чис.	ла		
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	1	2	3	4	5	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	0	R	ecv(3	$,f_{5})$	Se	nd(2)	$,f_1)$	
		\bigcirc	0	ZAK		\bigcirc				7	0			
							i							•

проце	ccop (]	проце	eccop	1	 	проц	eccop ?	2	Γ.	гроце	ccop 3	}
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	τ_c	– врем	ия выч	ислен	іия <i>f</i> и	n(f-	-, f , f -	+)
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	$\mid au_{s} \mid$	– врем	ия пер	есылк	и чис.	ла		
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	1	2	3	4	5	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	R	ecv(3	$,oldsymbol{f_5})$	Se	nd(2)	$,f_1)$	
		\bigcirc	0	ZAK		\bigcirc				7				
							i							•

проце	ccop 0			проце	eccop	1	 - - - -	проце	eccop	2	Г	іроце	ссор 3	3
\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc		0	\bigcirc	\bigcirc		τ_c	– врем	ия выч	ислен	ия <i>f</i> и	in(f-	-, f , f	+)
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	$ au_{\scriptscriptstyle S} $	– врем	ия пер	есылк	и чис	ла		
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc	$ au_s $	– врем	ия пер	есылк	и чис	ла		
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0	1	2	3	4	5		\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	S	end(3	(s, f_4)	Re	cv(2)	$,f_0)$	
\bigcirc	\circ	\circ		\bigcirc	\bigcirc	\bigcirc		R	ecv(3	(f_5)	Se	nd(2	$,f_1)$	
		\bigcirc	0	ZAK		\bigcirc				7				
							1							•

проце	ccop ()	I	троце	eccop	1	 	проц	eccop	2	П	роце	ccop 3	3
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	τ_c -	- врем	ия выч	ислен	: пия <i>f u</i>	n(f-	-, f , f -	+)
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	$\mid au_{\scriptscriptstyle S} ag{-}$	- врем	мя пер	есылк	и чис.	па		
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		\bigcirc	$ au_{\scriptscriptstyle S}$ -	- врем	ия пер	есылк	и чис.	па		
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\circ	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
\bigcirc	\bigcirc			\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0		\bigcirc	\bigcirc	
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	
		\bigcirc	0	ZAK		\bigcirc	0			7				
							; —							

Метод геометрического параллелизма р – число процессов

$$S_{p}(kn) = p \frac{1}{1 + 4 \frac{p}{n} \frac{\tau_{s}}{\tau_{c}}}$$

$$E_{p}(kn) = \frac{1}{1 + 4\frac{p}{n}\frac{\tau_{s}}{\tau_{c}}}$$

Верно или нет?

```
T_{p}(kn) = \tau_{c} \frac{kn}{p} + 4k\tau_{s}
for( war = 0; war < k; war++
   for( i=rank*n/p; i<(rank+1)*n/p ; i++)</pre>
     fun(i-1, i, i+1)
   if(rank > 0 ) Send(rank-1, f )
   if(rank < p-1) Send(rank+1, f)
   if(rank > 0) Recv(rank-1, f)
   if(rank < p-1) Recv(rank+1, f)
```

```
T_p(kn) = \tau_c \frac{kn}{p} + 4k\tau_s
```

Верно ли, что именно 4?

```
for(war=0;war<k;war++)
{
   for( i=rank*n/p; i<(rank+1)*n/p ; i++)
      fun( i-1, i, i+1 )

   if(rank > 0 ) Send(rank-1, f )
   if(rank < p-1 ) Send(rank+1, f )
   if(rank > 0 ) Recv(rank-1, f )
   if(rank < p-1 ) Recv(rank+1, f )
}</pre>
```

0	1	2	3	4	5
	⇐	⇐	⇐	=	\Leftarrow
\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	
	>=	>=	>=	>=	>=
=<	=<	=<	=<	=<	

$T_p(kn) = \tau_c \frac{kn}{p} + 4k\tau_s \leftarrow ---$

Верно ли, что именно 4?

0	1	2	3	4	5
	=	=	=	=	=
\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	
	>=	>=	>=	>=	>=
=<	=<	=<	=<	=<	

$$T_p(kn) = \tau_c \, \frac{kn}{p} + 4k \, \tau_s$$

$$T_p(kn) = \tau_c \, \frac{kn}{p} + 4k \, \tau_s$$

0	1	2	3	4	5
=<	(((((
\Rightarrow	=<	=<	=<	=<	>=
	\Rightarrow	\Rightarrow	\Rightarrow	\Rightarrow	
	>=	>=	>=	>=	

$$T_p(kn) = \tau_c \, \frac{kn}{p} + 1k \, \tau_s$$

0	1	2	3	4	5
=<	(
\Rightarrow	=<	(((=
	\Rightarrow	=<	=<	=<	>=
	>=	\Rightarrow	\Rightarrow	\Rightarrow	
		>=	>=	>=	

$$T_p(kn) = \tau_c \, \frac{kn}{p} + 2k\tau_s$$

0	1	2	3	4	5
=<	←	(
\Rightarrow	\Rightarrow	=<	(((
	>=	⇒ >=	=< ⇒	=< ⇒	>=
			>=	>=	

$$T_p(kn) = \tau_c \, \frac{kn}{p} + 3k \, \tau_s$$

0	1	2	3	4	5
=<	< =<	(
\Rightarrow	\Rightarrow	\Rightarrow	=<	\leftarrow	<= >=
	>=	>=	\Rightarrow	=<	>=
			>=	⇒ >=	
				>=	

$$T_p(kn) = \tau_c \, \frac{kn}{p} + 4k \, \tau_s$$

0	1	2	3	4	5
=<	₩ ₩				
_	\rightarrow	_		=<	_
\Rightarrow	⇒ >=	⇒ >=	⇒ >=	\Rightarrow	⇐ >=
				>=	

$$T_p(kn) = \tau_c \frac{kn}{p} + pk\tau_s$$

0	1	2	3	4	5
=<	< =<	(
					=
\Rightarrow	⇒ >=	\Rightarrow	\Rightarrow	\Rightarrow	>=
	>=	>=	>=	>=	

$$T_p(kn) = \tau_c \frac{kn}{p} + (p+1)k\tau_s$$

0	1	2	3	4	5
=<	← =<	(
\Rightarrow	⇒ >=	\Rightarrow	\Rightarrow	⇒ >=	
	>=	>=	>=		

$$T_p(kn) = \tau_c \frac{kn}{p} + (p+2)k\tau_s$$

0	1	2	3	4	5
=<	₩	(
					—
\Rightarrow	⇒ >=	⇒ >=	>=		

$$T_p(kn) = \tau_c \frac{kn}{p} + (p+3)k\tau_s$$

0	1	2	3	4	5
=<		↓		↓	← >=
\Rightarrow	⇒ >=	>=			

$$T_p(kn) = \tau_c \frac{kn}{p} + (p+4)k\tau_s$$

0	1	2	3	4	5
=<	(
\Rightarrow	>=				

$$T_p(kn) = \tau_c \frac{kn}{p} + 2pk\tau_s$$

0	1	2	3	4	5
=<	(
\Rightarrow					

$$T_p(kn) = \tau_c \frac{kn}{p} + 4k\tau_s$$

0	1	2	3	4	5
=< <	-	=< <		=< <	-
\Rightarrow	>=	\Rightarrow			 >=
	=< ` ⇒		=< ` ⇒		
	\rightarrow	>=	\rightarrow	>=	

$T_p(kn) = \tau_c \frac{kn}{p} + 4k\tau_s$

```
for(war=0;war<k;war++)
    for (\kappa \mu p \pi u u = rank * n/p; \kappa \mu p \pi u u < (rank + 1) * n/p; \kappa \mu p \pi u u + +)
       Уложить (кирпич)
    if(rank%2)
    if(rank>0)
                    Send(rank-1, кирпич уложен!)
    if(rank>0)
                    Recv(rank-1, место готово?
    if(rank<p-1)
                    Recv(rank+1, место готово?
    if(rank<p-1)</pre>
                    Send(rank+1, кирпич уложен!)
    else
    if(rank<p-1)</pre>
                    Recv(rank+1, место готово?
    if(rank<p-1)
                    Send(rank+1, кирпич уложен!)
    if(rank>0)
                    Send(rank-1, кирпич уложен!)
    if(rank>0)
                    Recv(rank-1, место готово?
```

Метод геометрического параллелизма р – число процессов

$$S_{p}(kn) = p \frac{1}{1 + 4 \frac{p}{n} \frac{\tau_{s}}{\tau_{c}}}$$

$$E_{p}(kn) = \frac{1}{1 + 4\frac{p}{n}\frac{\tau_{s}}{\tau_{c}}}$$

Возможные причины потери эффективности?

$$T_{1}(kn) = \tau_{c}kn \qquad T_{p}(kn) = \tau_{c}\frac{kn}{p} + 4k\tau_{s}$$

$$S_{p}(kn) = p\frac{1}{1+4\frac{p}{n}\frac{\tau_{s}}{\tau_{c}}} \qquad E_{p}(kn) = \frac{1}{1+4\frac{p}{n}\frac{\tau_{s}}{\tau_{c}}}$$

Возможные причины потери эффективности?

n — ширина стены

к – высота стены

Контакты

Якобовский М.В.

чл.-корр. РАН, проф., д.ф.-м.н., заместитель директора по научной работе Института прикладной математики им. М.В. Келдыша Российской академии наук

mail: lira@imamod.ru

web: http://lira.imamod.ru