Being able to try out ideas quickly allows deep learning engineers to iterate more quickly.

Correct
Yes, as discussed in Lecture 4.

Faster computation can help speed up how long a team takes to iterate to a good idea.

Correct
Yes, as discussed in Lecture 4.

It is faster to train on a big dataset than a small dataset.

Un-selected is correct

Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).

Correct
Yes. For example, we discussed how switching from sigmoid to ReLU activation

functions allows faster training.

4. When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to Introduction to the deepple at many grouph different models. True/False? ı / 1 Qu<mark>jgoji ပု</mark>ရှုuestions True False Correct Ves. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model. 5. Which one of these plots represents a ReLU activation function? Figure 1: ₄a  $\mathbf{x}$ Figure 2: a  $\mathbf{z}$ Figure 3: a  $\mathbf{z}$ Correct Correct! This is the ReLU activation function, the most used in neural networks. Figure 4:



 $\begin{tabular}{ll} \textbf{Images for cat recognition is an example of "structured" data, because it is represented as a structured array in a computer. True/False? \end{tabular}$ 

1/1 points

True

○ False

Carrag

Yes. Images for cat recognition is an example of "unstructured" data.

| Quiz, 10 ques   | growth is an example of "unstructured" data because it contains data coming from different sources. True/False?                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| points          | True                                                                                                                                                                                                     |
|                 | False                                                                                                                                                                                                    |
|                 | <b>Correct</b> A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets. |
| 0/1 points      | 8. Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)                                                                     |
| ,               |                                                                                                                                                                                                          |
|                 | It can be trained as a supervised learning problem.                                                                                                                                                      |
|                 | $\label{eq:correct} \textbf{Yes. We can train it on many pairs of sentences} \times (\textbf{English}) \ \text{and} \ y \ (\textbf{French}).$                                                            |
|                 | It is strictly more powerful than a Convolutional Neural Network (CNN).                                                                                                                                  |
|                 | Un-selected is correct                                                                                                                                                                                   |
|                 | It is applicable when the input/output is a sequence (e.g., a sequence of words),                                                                                                                        |
|                 | This should be selected                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                          |
|                 | RNNs represent the recurrent process of Idea->Code->Experiment->Idea->  Un-selected is correct                                                                                                           |
|                 | Unserecteurs correct                                                                                                                                                                                     |
|                 |                                                                                                                                                                                                          |
| •               | 9. In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?                                                                             |
| 1 / 1<br>points | Large Neural<br>Network                                                                                                                                                                                  |
|                 | Medium Neural<br>Network                                                                                                                                                                                 |
|                 | Small Neural<br>Network                                                                                                                                                                                  |
|                 | Traditional learning algorithms                                                                                                                                                                          |
|                 |                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                          |
|                 | x-axis is the amount of data                                                                                                                                                                             |
|                 | y-axis (vertical axis) is the performance of the algorithm.                                                                                                                                              |
|                 | Correct                                                                                                                                                                                                  |
|                 | x-axis is the input to the algorithm                                                                                                                                                                     |
|                 | y-axis is outputs.      x-axis is the performance of the algorithm                                                                                                                                       |
|                 | y-axis is the periormance of the agontum     y-axis (vertical axis) is the amount of data.                                                                                                               |
|                 | x-axis is the amount of data     y-axis is the size of the model you train.                                                                                                                              |
|                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                    |
| ~               | 10. Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)                    |
| 1 / 1<br>points | Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.                                                                                      |
|                 | Correct Yes. Bringing more data to a model is almost always beneficial.                                                                                                                                  |
|                 | Decreasing the size of a neural network generally does not hurt an algorithm's                                                                                                                           |
|                 | performance, and it may help significantly.                                                                                                                                                              |
|                 | Un-selected is correct                                                                                                                                                                                   |
|                 | Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.                                                                               |
|                 |                                                                                                                                                                                                          |
|                 | Correct  Yes. According to the trends in the figure above, big networks usually perform better than small networks.                                                                                      |

Un-selected is correct

← Introduction to deep learning

Quiz, 10 questions

0 0 E