Branch: CSE/IT

Batch: Hinglish

Discrete Mathematics Graph Theory

DPP-04

[MCQ]

- **1.** If a hypercube (Q_n) is given with edges 193, then the number of vertices will be
 - (a) 6
 - (b) 5
 - (c) 7
 - (d) None of these

[MCQ]

2. consider the following statements:

 S_1 : Every hypercube graph is a bipartite graph.

S₂: Every bipartite graph is also a hypercube.

Which of the following options is True?

- (a) S_1 only
- (b) S_2 only
- (c) Both S_1 and S_2
- (d) Neither S_1 nor S_2

[NAT]

3. A certain graph G has order 16 and size 29. The degree of each vertex of G is 3, 4 or 5. There are six vertices of degree 4. How many vertices of G having degree 5?

[MCQ]

- 4. If the sequence x, 7, 7, 5, 5, 4, 3, 2 is graphical then what are the possible value of x $(0 \le x \le 4)$?
 - (a) 0

(b) 2

(c) 3

(d) 1

[MSQ]

5. Which of the following graphs are isomorphic graph?

- (a) G_1 and G_2 are isomorphic
- (b) G₃ and G₄ are isomorphic
- (c) G_1 and G_2 are not isomorphic
- (d) G₃ and G₄ are not isomorphic

Answer Key

1. (d)

2. (a)

3. (2)

4. (c)

5. (a, d)

Hints and solutions

1. (d)

As we know that the number of edges in a hypercube (Q_n) is given as:

Number of edges = $n.2^{n-1}$

$$\therefore$$
 193 = n. 2^{n-1}

Here for any integer value of 'n', the hypercube would not contain 193 edges.

Hence, the correct option is d.

2. (a)

Statement S₁: True

Every hypercube have cycle of length even hence it is possible to divide the vertices into two sets.

So, Every hypercube is a bipartite graph.

Statement S₂: False

Every bipartite graph is not hypercube graph.

Example:

The above graph is bipartite graph as $V_1 = \{A, G, F, D\}$ and $V_2 = \{B, E, H, C\}$ with number of edge = 12 and vertices = 8.

Still the above graph is not hypercube.

3. (2)

I. In the problem number of vertices is given 16 and number of edges given is 29.

Now, we have 6 vertices of degree 4.

Assume x is total number of vertices with degree 5. So, number of vertices with degree 3 will be:

$$(16-6-x)=(10-x)$$

II. Now, by using Handshaking lemma:

Sum of degree = 2 * |E|

$$(6*4) + (x*5) + (10-x)*3 = 2*29$$

$$\Rightarrow$$
 24 + 5x + 30 - 3x = 58

$$\Rightarrow$$
 $5x - 3x = 58 - 54$

$$\Rightarrow 2x = 4$$

$$\therefore$$
 $x = 2$

Hence, we have 2 vertices with degree 5 and 8 vertices with degree 3.

4. (c)

I. In any graph the number of odd degree vertices must be even. Now, in the given degree sequence, we have 5 vertices with odd degree {7, 7, 5, 5, 3}

Thus, the value of x must be odd number between 0 to 4 that is either 1 or 3.

II. Now, case I assume x = 1:

Degree sequence: 1, 7, 7, 5, 5, 4, 3, 2

↓ order

as we know that if we have 2 vertices with maximum degree (n - 1) then the degree of each vertex must be ≥ 2 .

Thus, x will be 3 only.

Hence, right answer is option c.

5. (a, d)

- I. G_1 and G_2 are isomorphic as it has equal number of vertices, edges and same degree sequence.
- II. G_3 and G_4 are not isomorphic because incident property not satisfied.

Degree of V_2 is 5 in G_3 but there is not any vertex in G_4 with same degree.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5

For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if