Random Forest Classification Model

Premier League Win-Loss Prediction Seasons 2016 - 2019

Project Team

- Dragan Bogatic
- Howard Edwards
- Jordan Gross
- August Money
- Ryan Reisner

Project Goal

Make accurate predictions about Premier League game
 Win-Loss based on historical game statistics using Machine
 Learning Model

Objectives

- Research available sources of historical soccer game data
- Download data in standardized format
- Clean the data
- Select model features
- Select prediction variable
- Transform data into format to fit machine learning model

Objectives cont'd

- Select prediction model
- Train and test the model
- Evaluate prediction performance of the model
- Fine-tune model hyper-parameters to improve model prediction
- Evaluate results
- Conclusions

Resources

- Data source: RapidAPI
- Data: Premier League Seasons 2016 2019
- Data format: CSV
- Dataset type: detailed fixture game stats by season game
- Dataset size: approx. 1.4 mil. rows by 33 columns

Machine Learning Model

- Model selected: Balanced Random Forest Classifier (BRF)
- Reduces overfitting
- Proven performer in classification prediction problems
- Works with categorical and continuous values
- Uses Ensemble Learning technique (many weak learners strong together)

Base BRF Model Features and Prediction

- Total features in dataset: 32
- 100 Trees Balanced Random Forest
- Train data: seasons 2016-2018
- Test data: season 2019
- Prediction: h_result (Win-Loss)

Base BRF Model Confusion Matrix

- 100 Trees
- 32 Features

	Predicted 0	Predicted 1		
Actual (48	57		
Actual :	L 51	34		

Base BRF Model Accuracy

Balanced Accuracy Score: 0.4285714285714286

Base BRF Classification Report

	pre	rec	spe	f1	geo	iba	sup
0 1	0.48 0.37	0.46 0.40	0.40 0.46		0.43 0.43	0.18 0.18	105 85
avg / total	0.44	0.43	0.43	0.43	0.43	0.18	190

Most Important Features

Fine-Tuned BRF Model Features and Prediction

- Total features in dataset: 6 most important from Base BRF
- 128 Trees BRF (higher number (500) did not add to accuracy)
- Features selected for the base model:
 - 0 h_accurate_passes
 - 0 h_total_passes
 - o h_pass_percentage
 - o h ball possession
 - o h total shots
 - o h fouls
- Prediction: h_result (Win-Loss)

Fine-Tuned BRF Model Features and Prediction

- Dropped Season 2019 because of insufficient data
- Train data 2016-2017
- Test data: 2018

Modified BRF Model Accuracy

Balanced Accuracy Score: 0.6418001610261251

Confusion Matrix

	Predicted 0	Predicted 1		
Actual 0	129	70		
Actual 1	66	115		

Classification Report

	f1-score	precision	recall	support
0	0.654822	0.661538	0.648241	199.000000
1	0.628415	0.621622	0.635359	181.000000
accuracy	0.642105	0.642105	0.642105	0.642105
macro avg	0.641619	0.641580	0.641800	380.000000
weighted avg	0.642244	0.642525	0.642105	380.000000

Most Important Features

Alternative Classification Models

- Easy Ensemble Classifier
- SMOTEENN Model

Easy Ensemble Classifier Accuracy Score

Balanced Accuracy Score: 0.608900857880563

Easy Ensemble Classification Report

Classification	Report						
	pre	rec	spe	f1	geo	iba	sup
0	0.62	0.64	0.57	0.63	0.61	0.37	199
1	0.59	0.57	0.64	0.58	0.61	0.37	181
avg / total	0.61	0.61	0.61	0.61	0.61	0.37	380

SMOTEENN Model Accuracy Score

SMOTEEN Balanced Accuracy Score = 0.4908381687442739

SMOTEENN Classification Report

	pre	rec	spe	f1	geo	iba	sup
0 1	0.52 0.47	0.52 0.46	0.46 0.52	0.52 0.47	0.49 0.49	0.24 0.24	199 181
avg / total	0.49	0.49	0.49	0.49	0.49	0.24	380

Conclusions

- Random Forest best performing classification model
- Fine-tuning hyper-parameter improved significantly prediction ability of the Base BRF model
- Longer data history would potentially improve model score
- Alternative classification models underperformed BRF model

Conclusions cont'd

- Overall accuracy of Modified BRF model (0.64) puts prediction odds in our favor
- BRF model could benefit from more data history to potentially further improve accuracy