University of Southern California

Viterbi School of Engineering

EE577A VLSI System Design

Transient Behavior of MOS Gates

References: syllabus textbook, Professor Massoud Pedram's slides, online resources

Shahin Nazarian

Spring 2013

Background

CMOS Inverter with a Single Lumped Load

 C_{gd} , C_{gs} , C_{gb} : Oxide caps

C_{db}, C_{sb}: Junction caps

Miller Capacitance

$$\Delta V \uparrow - C - K\Delta V \downarrow$$

$$Q = C(\Delta V - (-K\Delta V))$$

$$= \underbrace{(K+1)C\Delta V}_{C_{eff}}$$

$$K = 1 \rightarrow C_{eff} = 2C$$

$$C_{eff-out} = \frac{K+1}{K}C$$

$$K = 1 \rightarrow C_{eff-out} = 2C$$

Effective Capacitance increases because of Miller Effect

Timing-Related Definitions

Rise and Fall times aka transition times aka slews:

$$t_{fall} = t_B - t_A$$
$$t_{rise} = t_D - t_C$$

Average Capacitance Current Method

• Let $I_{avg,HL}$: average current during high-to-low output transition $I_{avg,LH}$: average current during low-to-high output transition

· We can write:

$$\begin{split} I_{avg,HL} &= \frac{1}{2} [i_c (V_{in} = V_{OH}, V_{out} = V_{OH}) + i_c (V_{in} = V_{OH}, V_{out} = V_{50\%})] \\ I_{avg,LH} &= \frac{1}{2} [i_c (V_{in} = V_{OL}, V_{out} = V_{50\%}) + i_c (V_{in} = V_{OL}, V_{out} = V_{OL})] \end{split}$$

· Therefore,

$$\begin{split} \tau_{pHL} &= \frac{C_{load} \Delta V_{HL}}{I_{avg,HL}} = \frac{C_{load} \left(V_{OH} - V_{50\%} \right)}{I_{avg,HL}} \\ \tau_{pLH} &= \frac{C_{load} \Delta V_{LH}}{I_{avg,LH}} = \frac{C_{load} \left(V_{50\%} - V_{OL} \right)}{I_{avg,LH}} \end{split}$$

 Similar expressions may be written for rise/fall time calculation

Delay Calculation for Small-Geometry

 MOS Current driving capability is significantly reduced by velocity saturation:

$$I_D(sat) = W.v_d(sat).C_{ox}.V_{DSAT}$$
 $V_{DSAT} = V_{DD}-V_T$

- Assume discharge and charge currents are approximated with the saturation current (this shows the weak dependence of t_d in low geometry)
 - Better delay estimates possible with better current models such as Sakurai-Newton current model

$$t_{df} = \frac{C_{load}(V_{DD}/2)}{W_{n}.v_{d}(sat).C_{ox}(V_{DD}-V_{T,n})}$$

Delay Calculation for CMOS Gates Under Step Input: Quick Approximate Formula

Long channel devices (quadratic current equations)

$$\tau_{pHL} = \frac{C_{load}V_{DD}}{k_n \left(V_{DD} - V_{tn}\right)^2}$$

$$\tau_{pLH} = \frac{C_{load}V_{DD}}{k_p \left(V_{DD} - \left|V_{tp}\right|\right)^2}$$

• Short channel devices (alpha-power current equations) $\underset{\text{With } 1.3 \le \alpha \le 1.6,}{\text{equations}}$

$$\tau_{pHL} = \frac{C_{load}V_{DD}}{k_{n}\left(V_{DD} - V_{tn}\right)^{\alpha}}$$

$$\tau_{pLH} = \frac{C_{load}V_{DD}}{k_{p}\left(V_{DD} - \left|V_{tp}\right|\right)^{\alpha}}$$

Gate Delay for Ramp Input

Fast Ramp Inputs

- Let $V_1 = V_{in} V_{tn}$ while V_2 denote output voltage when input voltage reaches its final value
- Fast input transitions, i.e,

$$T_{r,in} < 2\tau_{pHL,ramp}$$
 or $T_{f,in} < 2\tau_{pLH,ramp}$

This corresponds to the case when the driver transistor is still saturated when the input voltage ramp reaches its final value (here $V_2 \ge V_1$)

$$T_{f,out} = 2 \tau_{pHL,step}$$
 $T_{r,out} = 2 \tau_{pLH,step}$

$$\tau_{pHL,ramp} = \tau_{pHL,step} + \frac{T_{r,in}}{6} \left(1 + 2 \frac{V_{tn}}{V_{DD}} \right)$$

$$\tau_{pLH,ramp} = \tau_{pLH,step} + \frac{T_{f,in}}{6} \left(1 + 2 \frac{\left| V_{tp} \right|}{V_{DD}} \right)$$

Slow Ramp Inputs

Slow input transitions, i.e.,

$$T_{r,in} \ge 2\tau_{pHL,ramp}$$
 or $T_{f,in} \ge 2\tau_{pLH,ramp}$

- Driver transistor leaves saturation while the input voltage is still ramping (here $V_2 < V_1$)
- For delay calculation there are two cases to consider: $V_2 < V_{DD}/2$ and $V_2 > V_{DD}/2$. The exact expressions are intricate and involve the *erf* and *In* functions, respectively
- Output transition calculation requires a complicated derivation based on solving differential equations with appropriate initial values for different regions of transistor operation

Approximate Gate Delay and Transition Time Calculation for Slow Ramp Inputs

for slow input transitions, ignoring the Miller capacitance which causes over/undershoots and also causes short circuit current flow during the output transition:

Notice that:

$$\tau_{pHL,ramp} = \frac{\tau_{pHL,step}}{1 - \frac{V_{tn}}{V_{DD}}}$$

$$T_{f,out} = 2\tau_{pHL,step}$$

Approximate expressions for slow input transitions, ignoring the Miller capacitance which causes over/undershoots and also causes short circuit current flow during the output transition:
$$T_{p,UH,ramp} = \tau_{p,UH,step} + \frac{T_{r,in}}{2} \cdot \frac{|V_{tp}|}{|V_{DD}|}$$

An Example Calculation for Ramp Input

Consider an inverter driving load C_L with $t_{pHL,step}$ =100ps. Calculate the gate delay and output fall time for a rising input with $T_{r,in}$ =25ps. Assume V_{tn}/V_{DD} =1/4.

Repeat calculation for $T_{r,in}$ =300ps.

Solution:

For fast ramp, $T_{r,in} = 25 ps$,

$$\tau_{pHL,ramp} = \tau_{pHL,step} + \frac{T_{r,in}}{6} \left(1 + 2 \frac{V_{tn}}{V_{DD}} \right) = 100 + \frac{25}{6} \left(1 + \frac{2}{4} \right) = 106.25 \, ps$$

$$T_{f,out} = 2 \tau_{pHL,step} = 2(100) = 200 \, ps$$

For slow ramp, $T_{r,in} = 300 ps$,

$$\tau_{pHL,ramp} = \tau_{pHL,step} + \frac{T_{r,in}}{2} \cdot \frac{V_{tn}}{V_{DD}} = 100 + \frac{300}{2} \left(\frac{1}{4}\right) = 137.5 \, ps$$

$$T_{f,out} = 2 \, \tau_{pHL,step} \cdot \frac{1 - \frac{V_{tn}}{V_{DD}}}{\frac{1}{2} + \frac{\tau_{pHL,ramp}}{T_{r,in}} - \frac{V_{tn}}{V_{DD}}} = 2(100) \left(\frac{1 - \frac{1}{4}}{\frac{1}{2} + \frac{137.5}{300} - \frac{1}{4}} \right) = 200 \left(\frac{0.75}{0.708} \right) = 211.76 \, ps$$