AFEM: Axisymmetric Project

Derek Lontine, Stuart Childs, Alex Bailey April 20, 2016

Introduction

Analytical Formulation

Computational Implementation

The axisymmetric elements we produced are fundamentally quite simple. They modify the basic quad element found in pyfem2. This

3.1 Full integration

```
from numpy import *
2 from .isop2_4 import CSDIsoParametricQuad4 as BaseElement
                                  - Axisymmetric Quad Element
5 #
  class AxiSymmetricQuad4(BaseElement):
6
        ndir = 3
        nshr = 1
        integration = 4
9
        elefab = {'formulation': 1}
10
        gaussw = ones(4)
11
        gaussp = array([[-1., -1.], [-1., -1.], [-1., 1.], [-1., 1.])) / sqrt(3.)
13
        @property
        def formulation (self):
14
15
             return self.axisymmetric
       @formulation.setter
16
        def formulation(self, arg):
17
18
             assert arg in (0, 1, 2)
             self.axisymmetric = arg
19
        def bmatrix (self, dN, N, xi,
20
             rp = dot(N, self.xc[:,0])
21
             B = zeros((4, 8))
            \begin{array}{l} B = 2eros\left((4, 6)\right) \\ B[0, 0::2] = B[3, 1::2] = dN[0, :] \\ B[1, 1::2] = B[3, 0::2] = dN[1, :] \\ B[2, 0::2] = N / rp \end{array}
23
24
25
```

3.2 Selective Reduced Integration

```
selective_reduced = True
13
       srip = array([[0.,0.]])
14
       sriw = array([4.])
       @property
       def formulation(self):
17
           return self.axisymmetric
18
       @formulation.setter
19
       def formulation(self, arg):
20
            assert arg in (0, 1, 2)
21
            {\tt self.axisymmetric} \, = \, {\tt arg}
22
       def bmatrix(self, dN, N, xi, *args):
23
            rp = dot(N, self.xc[:,0])
24
            B = zeros((4, 8))
25
            B[0\;,\;\;0::2\;]\;=\,B[3\;,\;\;1::2\;]\;=\,dN[0\;,\;\;:]
26
            B[1, 1::2] = B[3, 0::2] = dN[1, :]
27
            B[2, 0::2] = N'/ rp
28
            return B
```

3.3 Reduced Integration with Hourglass Control

```
1 from numpy import *
2 from .isop2_4 import CSDIsoParametricQuad4 as BaseElement
3 #
                   - Axisymmetric Reduced Integration With Hourglass Element
                                                                                                                          #
4 #
5 #
                                                                                                                          #
   class AxiSymmetricQuad4Reduced(BaseElement):
6
         ndir = 3
          nshr = 1
         integration = 1
9
          elefab = { 'formulation ': 1}
         gaussw = array([4.])
11
         gaussp = array([[0.,0.]])
12
         hourglass_control = True
13
         #HOURGLASS CONTROL PARAMETERS
14
          \begin{array}{l} {\rm hglassp} \; = \; {\rm array} \, (\, [\, [\, 0 \, . \, , 0 \, . \, , ]\, ]\, ) \\ {\rm hglassv} \; = \; {\rm array} \, (\, [\, [\, 1 \, . \, , -1 \, . \, , 1 \, . \, , -1 \, . \, ]\, ]\, ) \\ \end{array} 
15
16
17
         #REST
         @property
18
         def formulation(self):
19
               return self.axisymmetric
20
          @formulation.setter
21
         def formulation(self, arg):
22
23
               assert arg in (0, 1, 2)
                self.axisymmetric = arg
24
          def bmatrix (self, dN, N, xi,
25
                                                     *args):
               rp = dot(N, self.xc[:,0])
26
               B = zeros((4, 8))
27
               \begin{array}{l} B = 2clos\left((4, 8)\right) \\ B[0, 0::2] = B[3, 1::2] = dN[0, :] \\ B[1, 1::2] = B[3, 0::2] = dN[1, :] \\ B[2, 0::2] = N / rp \end{array}
28
29
30
               return B
```

3.4 Implementation

The following listing is required for __init__.py in order for the elements above to be implemented into pyfem2.

```
12
13 from .CSDT3EF import PlaneStrainTria3
14 from .CSDT3SF import PlaneStressTria3
{\color{red} \textbf{from}} \quad . CSDQ4EB \quad \underline{\textbf{import}} \quad PlaneStrainQuad4BBar
from .CSDQ4EF import PlaneStrainQuad4 from .CSDQ4ER import PlaneStrainQuad4Reduced
{\scriptstyle 19} \hspace{0.1in} \textbf{from} \hspace{0.1in} . CSDQ4ES \hspace{0.1in} \textbf{import} \hspace{0.1in} PlaneStrainQuad4SelectiveReduced \\
{\scriptstyle \tt 21} \ \ \textbf{from} \ \ .CSDAX4F \ \ \textbf{import} \ \ AxiSymmetricQuad4
from .CSDAX4S import AxiSymmetricQuad4SelectiveReduced from .CSDAX4R import AxiSymmetricQuad4Reduced
from .CSDQ4SF import PlaneStressQuad4
26 from .CSDQ4SI import PlaneStressQuad4Incompat
27
_{\rm 28} from .CSDQ8EB import PlaneStrainQuad8BBar
29 from .CSDQ8EF import PlaneStrainQuad8
30 from .CSDQ8ER import PlaneStrainQuad8Reduced
31
32 from .CSDQ8SF import PlaneStressQuad8
```

Verification Problems

Performance Evaluation