Cálculo de Determinantes mediante Diferentes Métodos

Patricio Alejandro Ricardí Alvarez

1. Método de Pivote (Expansión de Laplace)

Se tiene la matriz general:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

El método de pivote (Expansión de Laplace) consiste en descomponer el determinante en términos de determinantes menores:

$$\det(A) = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$
$$= (aei + bfg + cdh) - (ceg + bdi + afh)$$

Este método se generaliza a matrices de cualquier tamaño.

2. Método de la Lluvia y Método de la Estrella (La regla de Sarrus)

El método de la lluvia (La regla de Sarrus) se basa en expandir la matriz copiando las dos primeras columnas a la derecha:

$$\begin{array}{ccc|cccc} a & b & c & a & b \\ d & e & f & d & e \\ g & h & i & g & h \end{array}$$

Luego, se suman los productos de las diagonales descendentes y se restan los productos de las diagonales ascendentes:

$$det(A) = (aei + bfg + cdh) - (ceg + bdi + afh)$$

El método de la estrella es idéntico al método de la lluvia, pero sin copiar las primeras dos columnas. Se observa que estos métodos son equivalentes al método de pivote.

3. Problema a Resolver

Aplique el método de la lluvia a la siguiente matriz 4×4 :

$$B = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix}$$

1. ¿Es posible aplicar el método de la lluvia a una matriz 4×4 ? Justifique su respuesta.

No, no es posible aplicar el método de la lluvia (regla de Sarrus) a una matriz 4×4 . La regla de Sarrus solo es válida para matrices 3×3 , ya que se basa en un truco visual que involucra la copia de las dos primeras columnas y el cálculo de diagonales. Este método no se puede generalizar a matrices de mayor tamaño, como las matrices 4×4 o más grandes.

2. Si no es posible, explique por qué y qué método alternativo recomendaría para calcular el determinante.

El método de la lluvia no es aplicable a matrices 4×4 porque la regla de Sarrus está diseñada específicamente para matrices 3×3 . Para matrices más grandes, como una matriz 4×4 , se recomienda utilizar el **método de expansión de Laplace** (también conocido como expansión por cofactores). Este método consiste en descomponer el determinante en términos de determinantes menores, reduciendo el problema a calcular determinantes de matrices más pequeñas hasta llegar a matrices 2×2 o 3×3 , que son más fáciles de manejar.

Por ejemplo, para una matriz 4×4 , se puede expandir el determinante a lo largo de una fila o columna, calculando los cofactores correspondientes. Este método es más general y puede aplicarse a matrices de cualquier tamaño.

Ejemplo de Expansión de Laplace para una Matriz 4×4

Para la matriz B dada, el determinante se puede calcular expandiendo a lo largo de la primera fila:

$$\det(B) = a \cdot C_{11} - b \cdot C_{12} + c \cdot C_{13} - d \cdot C_{14}$$

Donde C_{ij} son los cofactores de la matriz B. Cada cofactor C_{ij} se calcula como:

$$C_{ij} = (-1)^{i+j} \cdot \det(M_{ij})$$

Donde M_{ij} es la matriz menor que resulta de eliminar la fila i y la columna j de la matriz B.

Este proceso se repite hasta reducir el problema a determinantes de matrices 3×3 , que luego pueden resolverse usando la regla de Sarrus.