第五章 基本放大电路

—— 5.6 一般组合放大电路

李泳佳 东南大学电子系国家ASIC工程中心 yongjia.li@outlook.com

第五章内容

- 5.1 放大电路的组成及技术指标
- 5.2 放大电路的分析方法
- 5.3 放大电路的稳定偏置
- 5.4 各种基本组态放大电路的分析与比较
- 5.5 放大电路的频率相应
- 5.6 一般组合放大电路

5.6 一般组合放大电路

本节内容

- 5.6.1 组合放大电路的级间耦合方式
- 5.6.2 组合放大电路的分析方法
- 5.6.3 共源-共射放大电路
- 5.6.4 共射-共基放大电路

✓ 为什么要组合放大电路:

- 单级放大电路无法兼顾实际应用中的所有要求:
 - 电压放大倍数
 - 带宽
 - 输入阻抗
 - 输出阻抗
 -

✓ 一般使用两级或者两级以上的基本放大电路构成:

- 可以是级联, 也可以是并联, 或其他形式

- ✓ 耦合方式: 级与级间的连接, 即信号的传送
 - 直接耦合、阻容耦合、变压器耦合
 - 前后级直接相连
 - 优点: 易于集成, 能处理从直流到交流的信号
 - 缺点: 级间直流工作点相互影响,

零点漂移(工作点Q随时间/温度偏离),可用差动放大解决

- ✓ 耦合方式: 级与级间的连接, 即信号的传送
 - 直接耦合、阻容耦合、变压器耦合
 - 前后级采用电容或电阻与电容的串并联 (分立器件常用)
 - 优点: 静态工作点相互独立, 电容大, 信号损失小, 放大倍数高
 - 缺点: 下限截止频率,不能处理直流信号,且不易集成

- ✓ 耦合方式: 级与级间的连接, 即信号的传送
 - 直接耦合、阻容耦合、变压器耦合
 - 前后级采用变压器实现信号传递
 - 优点: 静态工作点相互独立, 阻抗易变换易匹配
 - 缺点: 频率特性差, 难以集成(目前已有全集成产品)

5.6.2 组合放大电路的分析

✓ 静态分析:

- 直流通路的静态工作点(Q): 与耦合方式有关

- 阻容耦合、变压器耦合: 各级Q相互独立

- 直接耦合: 各级Q相互影响

5.6.2 组合放大电路的分析

✓ 动态分析:

- 与耦合方式无关

$$-A = \frac{V_0}{V_i} = \frac{V_{01}}{V_i} \cdot \frac{V_{02}}{V_{i2}} \cdot \frac{V_{03}}{V_{i3}} \dots \frac{V_0}{V_{in}}$$

- $-R_i=R_{i1}$
- $-R_o=R_{on}$

5.6.2 组合放大电路的分析

✓ 动态分析:

- 前一级对后一级:信号源,即V_{o1}, =V_{s2}, R_{o1}=r_{s2}

- 后一级对前一级: 负载,即R_{i2}=R_{L1}

5.3.1 温度对工作点的影响

✓ 两种电路比较:

性能	固定式偏置	分压式偏置
电压放大倍数	$-\frac{\beta R'_L}{r_{be}}$	$-\frac{\beta R'_L}{r_{be} + (1+\beta)R_E}$
输入电阻	$r_{be}//R_{B}$	$[r_{be} + (1+\beta)R_E//R'_B$
输出电阻	R _C	R_{C}

✓ 静态分析:

- MOSFET输入阻抗高,对前一级形成的负载较轻
- BJT跨导能力强
- 发射极退耦电阻形成本地反馈

✓ 静态分析:

- 直流通路

✓ 动态分析:

- 交流通路

✓ 动态分析: 小信号阻抗分析

输入阻抗

$$R_i = R_{G3} + R_{G1} // R_{G2}$$

输出阻抗

$$R_o \approx R_C$$

源电压增益

$$\dot{A}_{us} = \frac{R_{i}}{r_{s} + R_{i}} \cdot \dot{A}_{u}$$

✓ 输入阻抗:高

✓ **输出阻抗**:由R_C决定

✓ 动态分析: 小信号增益分析

$$\dot{A}_{u1} = -g_{m}(R_{D} / / R_{B1} / / R_{B2} / / R_{i2}')$$

$$R'_{i2} = r_{be} + (1 + \beta) \cdot R_{E1}$$

$$r_{be} = r_{b'b} + (1 + \beta) \frac{26 \text{ (mV)}}{I_{E} \text{ (mA)}}$$

$$\dot{A}_{u2} = -\frac{\beta (R_{C} / / R_{L})}{r_{be} + (1 + \beta) \cdot R_{E1}}$$

$$\dot{A}_{u} = \dot{A}_{u1} \cdot \dot{A}_{u2}$$

$$= g_{m} \{R_{D} / / R_{B1} / / R_{B2} / / [r_{be} + (1 + \beta)R_{E1}]\} \cdot \frac{\beta (R_{C} / / R_{L})}{r_{c} + (1 + \beta)R_{E1}}$$

- ✓ 退耦化的共射放大:增益为C端与E端看到的负载的比值
- ✓ 密勒效应: 对带宽有影响

5.4.1 共基组态基本放大电路

✓ 交流分析:

- 输入电阻: $u = -i_b \cdot r_{be}$

$$i' = -(i_b + \beta \cdot i_b)$$

$$R'_{i} = u / i' = \frac{r_{be}}{1 + \beta}$$

$$R_i = R_E ||R'_i = R_E || \frac{r_{\text{be}}}{1+\beta} \approx \frac{r_{\text{be}}}{1+\beta}$$

- 输出电阻: R_O≈R_C

✓ 共射-共基-共集电路:

- 共发射共基极/共源共栅: cascode, 从真空电子管时代就开始使用
- 共集电极输出, 阻抗低, 驱动较强

✓ 静态分析: 直流通路

✓ 静态分析: 直流通路

$$\begin{split} U_{B1} &= \frac{R_3}{R_1 + R_2 + R_3} \cdot V_{CC} \\ U_{B2} &= \frac{R_2 + R_3}{R_1 + R_2 + R_3} \cdot V_{CC} \\ I_{C2Q} &\approx I_{C1Q} \approx \frac{U_{B1} - U_{BE1Q}}{R_5} \\ I_{C3Q} &\approx I_{E3Q} \approx \frac{V_{CC} - I_{C2Q} \cdot R_4 - U_{BE3Q}}{R_6} \\ U_{CE1Q} &= (U_{B2} - U_{BE2Q}) - (U_{B1} - U_{BE1Q}) \\ &\approx U_{B2} - U_{B1} \\ U_{CE3Q} &= V_{CC} - I_{C2Q} \cdot (R_4 + R_5) - U_{CE1Q} \\ U_{CE3Q} &= V_{CC} - I_{E3Q} \cdot R_6 \end{split}$$

✓ 动态分析:交流通路

✓ 动态分析:交流通路

输入阻抗

$$R_i = R_2 // R_3 // r_{be1}$$

输出阻抗

源电压增益

$$A_{us} = \frac{R_{i}}{r_{s} + R_{i}} \cdot A_{u}$$

/ 阻抗换算:基极阻抗折换

到发射极要除以增益

5.4.1 共基组态基本放大电路

✓ 直流分析:

- 与共射组态相同

✓ 交流分析:

$$R'_L = R_C // R_L$$

✓ 增益: BE的跨导将输入电 压转换为电流, 然后施加 到输出负载电阻上形成电 压增益

5.4.2 共集组态基本放大电路

✓ 交流分析:

- 电压放大倍数:

$$R_{L}' = R_{E} \| R_{L}$$

$$u_{i} = i_{b} \cdot r_{be} + (i_{b} + \beta \cdot i_{b}) \cdot R_{L}'$$

$$u_{o} = (i_{b} + \beta \cdot i_{b}) \cdot R_{L}'$$

$$\dot{A}_{u} = \frac{u_{o}}{u_{i}} = \frac{(1+\beta)R'_{L}}{r_{be} + (1+\beta)R'_{L}}$$

✓ 增益: 发射极视为内阻为 rbe/(1+β)的电压源, 增益 为内阻与负载电阻的分压

✓ 动态分析:交流通路

电压增益 $A_u = A_{u1} \cdot A_{u2} \cdot A_{u3}$

$$R_{i2} = \frac{r_{be2}}{1 + \beta_2}$$

$$A_{u1} = -\frac{\beta_1 R_{i2}}{r_{be1}} = -\frac{\beta_1}{1 + \beta_2} \cdot \frac{r_{be2}}{r_{be1}}$$

$$r_{\text{be}} = r_{\text{b'b}} + (1 + \beta) \frac{26(\text{mV})}{I_{\text{E}}(\text{mA})}$$

$$\dot{A}_{u2} = \frac{\beta_2 \left(R_4 \parallel R_{i3} \right)}{r_{be2}}$$

$$\dot{A}_{u3} = \frac{(1+\beta_3)(R_6 \parallel R_L)}{r_{be3} + (1+\beta_3)(R_6 \parallel R_L)}$$

- ✓ **发射极负载**: 增益低,密
 勒效应较小,带宽较高
- ✓ VT₂作为中间级电流缓冲
- ✓ VT₃作为输出级电压缓冲