DIALOG(R) File 347: JAPIO (c) 1999 JPO & JAPIO. All rts. reserv.

Image available 04842718 FABRICATION OF SEMICONDUCTOR DEVICE

07-135318 [JP 7135318 A] PUB. NO.: May 23, 1995 (19950523) PUBLISHED:

INVENTOR(s): CHIYOU KOUYUU

YAMAGUCHI NAOAKI TAKEMURA YASUHIKO

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD [470730] (A Japanese

Company or Corporation), JP (Japan) 05-301176 [JP 93301176] APPL. NO.: FILED:

November 05, 1993 (19931105)

ABSTRACT

PURPOSE: To form a self-aligned high resistance region within a source/drain region by setting at least two conditions on the energy for accelerating impurity element ions in a step for introducing N type or P type impurity element ions selectively into an active layer using a gate electrode and a gate insulating film as a mask.

CONSTITUTION: When accelerated N type or P type impurity ions are implanted into an active layer, two types of accelerating condition are set, i.e., high speed ion and low speed ion. Regions 110, 113, not covered with gate insulating film, are substantially implanted with low speed ions at first. When high speed ions are implanted subsequently, the ions are also implanted into regions 111, 112 through the gate insulating film and the majority of ions pass through the regions 110, 113 and implanted into the regions 111, 112. When the dosage of low speed ion is set higher than that of high speed ion, the regions 110, 113 become a low resistance region and the regions 111, 112 become a high resistance region.

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-135318

: (43)公開日 平成7年(1995)5月23日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FI	技術表示箇所
H01L 29/786				
21/336				
		9056-4M	H01L 29/78	311 P

審査請求 有 請求項の数6 FD (全 9 頁)

(21)出顯番号	特顧平5-301176	(71) 出顧人 000153878	
			株式会社半導体エネルギー研究所
(22)出顧日	平成5年(1993)11月5日		神奈川県厚木市長谷398番地
		(72)発明者	張 宏勇 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内
·		(72)発明者	山口 直明 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内
		(72)発明者	竹村 保彦 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

(54) [発明の名称] 半導体装置の作製方法

(57) 【要約】 (修正有)

【目的】 薄膜トランジスタにおいて、ソース/ドレイン領域に高抵抗領域(HRD)を自己整合的に形成する方法を提供する。

【構成】 ゲイト電極の近くの領域ではゲイト絶縁膜が存在し、より遠い領域ではゲイト絶縁膜のない状態が得られる。この状態で、ゲイト電極部をマスクとした、イオン注入による自己整合的な不純物ドーピングをおこなう。この際、高速イオンを低ドーズ量で注入すると、ゲイト電極の近くのゲイト絶縁膜に覆われた領域に、主としてドーピングがおこなわれ、低濃度の不純物領域となる。そして、連続的に、同じ導電型の低速イオンを高ドーズ量で注入すると、前記のゲイト絶縁膜で覆われた領域にはほとんど注入されず、ゲイト絶縁膜で覆われていない領域に主として注入され、高濃度の不純物領域となる。すなわち、自己整合的に高抵抗領域が形成される。

【特許請求の範囲】

【請求項1】 絶縁表面上に活性層と、前記活性層上に 第1の絶縁膜と、前記絶縁膜上にゲイト電極と、を形成 する第1の工程と、

前記ゲイト電極に電解溶液中で電流を印加することによ って、主として該ゲイト電極の側面に第1の陽極酸化物 層を形成する第2の工程と前記第1の陽極酸化物層をマ スクとして、前記第1の絶縁膜をニッチングし、薄くす る、もしくは除去することによってゲイト絶縁膜とする

前記第1の陽極酸化物層を選択的に除去する第4の工程

前記ゲイト電極およびゲイト絶縁膜をマスクとして、前 記活性層に選択的にN型もしくはP型の不純物元素イオ ンを導入する第5の工程とを有することを特徴とする半 導体装置の作製方法において、前記第5の工程では、不 純物元素イオンの加速エネルギーが少なくとも2条件あ ることを特徴とする半導体装置の作製方法。

【請求項2】 請求項1の第5の工程において、不純物 元素イオンの加速エネルギーの高い条件でのドーズ量 は、加速エネルギーの低い条件でのドーズ量よりも小さ いことを特徴とする半導体装置の作製方法。

【請求項3】 請求項1の第5の工程の後、レーザーも しくは同等な強光を照射することによって不純物の活性 化をおこなうことを特徴とする半導体装置の作製方法。

【請求項4】 請求項1において、第4の工程と第5の 工程の間もしくは、第5の工程の後に、窒素、酸素、炭 素のいずれかから選ばれた少なくとも1種類の元素のイ オンを、活性層に自己整合的に導入する工程を有するこ と特徴とする半導体装置の作製方法。

【請求項5】 請求項1において、第5の工程の後、ゲ イト絶縁膜の一部を除去する工程とを有することを特徴 とする半導体装置の作製方法。

【請求項6】 半導体活性層上に選択的にマスク用絶縁 膜を有し、前記マスク用絶縁膜のある領域の下側の前記 活性層の第1の領域と、前記マスク用絶縁膜のない、ま たは薄い領域の前記活性層の第2の領域とは、同じ導電 型であり、かつ、P型またはN型の不純物のドーピング の際の加速電圧を可変することによって異なる領域に添 加されたことを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ガラス等の絶縁材料、 あるいは珪素ウェハー上に酸化珪素等の絶縁被膜を形成 した材料等の絶縁表面上に形成される絶縁ゲイト型トラ ンジスタ(TFT)およびその作製方法に関する。本発 明は、特にガラス転移点(歪み温度、歪み点とも言う) が750℃以下のガラス基板上に形成されるTFTに有 効である。本発明による半導体装置は、液晶ディスプレ 一等のアクティブマトリクスやイメージセンサー等の駆 50 ブ等の熱源によって、ドーピングされた不純物の活性化

動回路、あるいは3次元集積回路に使用されるものであ

[0002]

【従来の技術】従来より、アクティブマトリクス型の液 晶表示装置やイメージセンサー等の**駆動**の目的で、 TF T(薄膜トランジスタ)を形成することが広く知られて いる。特に、最近は、高速動作の必要から、非晶質珪素 を活性層に用いた非晶質珪素TFTにかわって、より電 界移動度の高い結晶珪素TFTが開発されている。しか 10 しながら、より高度な特性と高い耐久性が必要とされる ようになると、半導体集積回路技術で利用されるような 髙抵抗領域(不純物の添加のないオフセットゲートを有 するドレインもしくは低不純物濃度ドレイン(LD D))を有することが必要とされた。しかしながら、公 知の半導体集積回路技術とは異なって、TFTには解決 すべき問題が多くあった。特に、素子が絶縁表面上に形 成され、反応性イオン異方性ニッチングが十分できない ため、微細なパターンができないという大きな制約があ った。

【0003】図3には、現在まで用いられているHRD 20 を作製する代表的なプロセスの断面図を示す。まず、基 板301上に下地膜302を形成し、活性層を結晶珪素 303によって形成する。そして、この活性層上に酸化 珪素等の材料によって絶縁被膜304を形成する。 (図 3 (A))

【0004】次に、ゲイト電極305が多結晶珪素(燐 等の不純物がンドーピングされている)やタンタル、チ タン、アルミニウム等で形成される。さらに、このゲイ ト電極をマスクとして、イオンドーピング等の手段によ って不純物元素(リンやホウ素)を導入し、自己整合的 にドーピング量の少ない高抵抗領域(HRD)306、 307が活性層303に形成される。不純物が導入され なかったゲイト電極の下の活性層領域はチャネル形成領 域となる。(図3(B))

【0005】そして、レーザーもしくはフラッシュラン プ等の熱源によって、ドーピングされた不純物の活性化 がおこなわれる。次に、プラズマCVD、APCVD等 の手段によって酸化珪素等の絶縁膜308を形成(図3 (C)) し、これを異方性エッチングすることによっ て、ゲイト電極の側面に隣接して側壁309を形成す る。(図3(D))そして、再び、イオンドーピング等 の手段によって不純物元素を導入し、ゲイト電極305 および側壁309をマスクとして自己整合的に十分な高 濃度の不純物領域(低抵抗不純物領域、ソース/ドレイ ン領域)310、311が活性層303に形成される。 すなわち、2回の独立した不純物のドレインへの注入が おこなわれ、それぞれの注入工程の間には、異方性エッ チングの工程が存在する。(図3(E))

【0006】そして、レーザーもしくはフラッシュラン

30

がおこなわれる。最後に、層間絶縁物312を形成し、 さらに、層間絶縁物を通して、ソース/ドレイン領域に コンタクトホールを形成し、アルミニウム等の金属材料 によって、ソース/ドレインに接続する配線・電極31 3、314を形成する。(図3(F))

3

[0007]

【発明が解決しようとする課題】以上の方法は従来の半 導体集積回路におけるLDD作製プコセスをそのまま踏 襲したものであって、ガラス基板上のTFT作製プコセ スにはそのまま適用することの困難な工程や、あるいは 10 生産性の面で好ましくない工程がある。

【0008】第1には不純物注入工程、およびレーザー 照射等による不純物の活性化が少なくとも2度必要な点 である。しかも、これらの工程の間には、例えば、異方 性エッチングのような工程が間に存在し、その度に基板 を真空チャンバーから取り出す必要があった。このため 生産性が低下した。特に、不純物の活性化については、 従来の半導体集積回路においては不純物元素の活性化は 熱アニールによっておこなわれていたため、不純物の活 性化は不純物導入が全て終了してから(すなわち、図3 (E) の工程が終了してから) まとめておこなわれた。 【0009】しかしながら、特にガラス基板上のTFT においては、基板の温度制約から熱アニールをおこなう ことは難しく、いきおい、レーザーアニール、フラッシ ュランプアニール (RTAあるいはRTP) に頼らざる をえない。しかしながら、これらの手法は被照射面が選 択的にアニールされるため、例えば、側壁309の下の 部分はアニールされない。したがって、不純物ドーピン

【0010】第2は側壁の形成の困難さである。絶縁膜 308の厚さは0.5~2µmもある。通常、基板上に 設けられる下地膜302の厚さは1000~3000A であるので、このエッチング工程において誤って、下地 膜をエッチングしてしまって、基板が露出することがよ くあり、歩留りが低下した。TFTの作製に用いられる 基板は珪素半導体にとって有害な元素が多く含まれてい るので、基板まで達するオーバーエッチは、極力避ける ことが必要とされた。また、側壁の幅を均一に仕上げる ことも難しいことであった。これは反応性イオンエッチ ング(RIE)等のプラズマドライエッチングの際に、 半導体集積回路で用いられる珪素基板とは異なって、基 板表面が絶縁性であるためにプラズマの微妙な制御が困 難であったからである。

グの度にアニールが必要となる。

【0011】高抵抗ドレインは高抵抗であるので、その 幅を可能な限り狭くする必要があるが、上記のばらつき によって量産化が困難であり、この工程において、自己 整合的(すなわち、フォリソグラフィー法を用いること なく位置を決める)プロセスをいかに制御しやすくおこ なうかが課題であった。

カプロセスを簡略化して、高抵抗不純物領域を形成する 方法およびそのようにして形成された高抵抗領域(高抵 抗ドレイン、HRD)を有するTFTに関する。ここ て、高抵抗ドレイン(HRD)とは、低不純物濃度にし て高抵抗化したドレインに加えて、不純物濃度に関わら ず、炭素、酸素、窒素等を添加して不純物の活性化を妨 げて、結果として高抵抗化したドレインのことも含む。 [0013]

【課題を解決するための手段】高抵抗領域を形成するう えで、本発明ではゲイト電極の陽極酸化等の手段によっ て形成された酸化物層を積極的に用いることを特徴とす る。特に陽極酸化物はその厚さの制御が精密におこな え、また、その厚さも1000A以下の薄いものから5 000A以上の厚いものまで幅広く、しかも均一に形成 できるという特徴を有しているため、従来の異方性エッ チングによる側壁に代替する材料として好ましい。

【0014】特に、いわゆるバリヤ型の陽極酸化物はフ ッ酸系のエッチャントでなければエッチングされないの に対し、多孔質型の陽極酸化物は燐酸等のエッチャント によって選択的にニッチングされる。このため、TFT を構成する他の材料、例えば、珪素、酸化珪素には何ら ダメージ(損傷)を与えることなく、処理することがで きるのが特徴である。また、バリヤ型、多孔質型とも陽 極酸化物はドライエッチングでは極めてエッチングされ にくい。特に、酸化珪素とのエッチングにおいては選択 比が十分に大きいことも特徴である。本発明は、以下の ような作製工程によってTFT作製することを特徴と し、この工程を採用することによって、より一層、確実 にHRDを構成し、また、量産性を向上させることがで

【0015】図1は本発明の基本的な工程を示してい る。まず、基板101上に下地絶縁膜102を形成し、 さらに活性層103を結晶性半導体(本発明では単結 晶、多結晶、セミアモルファス等、結晶が少しでも混在 している半導体を結晶性半導体という)によって形成す る。そして、これを覆って酸化珪素等の材料によって絶 縁膜104を形成し、さらに陽極酸化可能な材料によっ て被膜を形成する。この被膜の材料としては、陽極酸化 の可能なアルミニウム、タンタル、チタン、珪素等が好 ましい。本発明では、これらの材料を単独で使用した単 層構造のゲイト電極を用いてもよいし、これらを2層以 上重ねた多層構造のゲイト電極としてもよい。例えば、 アルミニウム上に珪化チタンを重ねた2層構造や窒化チ タン上にアルミニウムを重ねた2層構造である。各々の 層の厚さは必要とされる素子特性に応じて実施者が決定 すればよい。

【0016】さらにその被膜を覆って、陽極酸化におい てマスクとなる膜を形成し、この両者を同時にパターニ ング、エッチングして、ゲイト電極105とその上のマ 【 $0\ 0\ 1\ 2$ 】本発明は、上記のような問題を解決し、よ 50 スク膜 $1\ 0\ 6$ を形成する。このマスク膜の材料としては 通常のフォトリングラフィー工程で用いられるフォトレジスト、あるいは感光性ポリイミド、もしくは通常のポリイミドでエッチングの可能なものを使用すればよい。 (図1(A))

【0017】次に、ゲイト電極105に電解溶液中で電 流を印加することによってゲイト電極の側面に多孔質の 陽極酸化物107を形成する。この陽極酸化工程は、3 ~20%のクエン酸もしくはショウ酸、燐酸、クコム 酸、硫酸等の酸性の水溶液を用いておこなう。この場合 には、5~30 V程度の低電圧で0.5 μ m以上の厚い 10 陽極酸化物を形成することができる。(図1(B)) 【0018】そして、ドライエッチング法、ウェットエ ッチング法等によって絶縁膜104をニッチングする。 このニッチング深さは任意であり、下に存在する活性層 が露出するまでエッチングをおこなっても、その途中で とめてもよい。しかし、量産性・歩留り・均一性の観点 からは、活性層に至るまでエッチングすることが望まし い。この際には陽極酸化物107およびゲイト電極10 5に覆われた領域の下側の絶縁膜(ゲイト絶縁膜)には もとの厚さの絶縁膜が残される。なお、ゲイト電極がア ルミニウム、タンタル、、チタンを主成分とし、一方、 絶縁膜104が酸化珪素を主成分とする場合において、 ドライエッチング法を用いる場合には、フッ案系(例え ばNF: 、SF:) のエッチングガスを用いて、ドライ エッチングをおこなえば、酸化珪素である絶縁膜104 は素早くエッチングされるが、酸化アルミニウム、酸化 タンタル、酸化チタンのエッチングレートは十分に小さ いので絶縁膜104を選択的にエッチングできる。

【0019】また、ウェットエッチングにおいては、1 /100フッ酸等のフッ酸系のエッチャントを用いれば 30 よい。この場合にも酸化珪素である絶縁膜104は素早くエッチングされるが、酸化アルミニウム、酸化タンタル、酸化チタンのエッチングレートは十分に小さいので絶縁膜104を選択的にエッチングできる。(図1(D))

【0020】その後、陽極酸化物107を除去する。エッチャントとしては、燐酸系の溶液、例えば、燐酸、酢酸、硝酸の混酸等が好ましい。しかし、例えばゲイト電極がアルミニウムの場合には燐酸系のエッチャントを用いると、同時にゲイト電極もエッチングされてしまう。このような場合には、その前の工程(図1(C))でゲイト電極に3~10%の酒石液、硼酸、硝酸が含まれたエチレングルコール溶液中で、電流を印加することによって、ゲイト電極の側面および上面にバリヤ型の陽極酸化物108を設けておくと良い。この陽極酸化工程においては、得られる陽極酸化物の厚さはゲイト電極105と対向の電極との間に印加される電圧の大きさによって決定される。

【0021】注目すべきは、バリヤ型の陽極酸化が後の 工程であるにもかかわらず、多孔質の陽極酸化物の外側 50

にバリヤ型の陽極酸化物ができるのではなく、バリヤ型の陽極酸化物108は多孔質陽極酸化物107とゲイト電極105の間に形成されることである。上記の燐酸系のエッチャントにおいては、多孔質陽極酸化物のエッチングレートはバリヤ型陽極酸化物のニッチングレートの10倍以上である。したがって、適当な厚さのバリヤ型の陽極酸化物108は、燐酸系のエッチャントでは実質的にエッチングされないので、内側のゲイト電極を守ることができる。もちろん、多孔質陽極酸化物のニッチングに用いるエッチャントでゲイト電極がエッチングされないのであれば、このようなバリヤ型の陽極酸化物を設けなくともよいことはいうまでもない。(図1(C)、(E))

【0022】以上の工程によって、ゲイト電極の下側に選択的に絶縁膜104の一部(以下、これをゲイト絶縁膜と称することにする)が残存した構造を得ることができる。そして、このゲイト絶縁膜104、は、もともと多孔質陽極酸化物107の下側に存在していたので、ゲイト電極105、バリヤ型陽極酸化物108の下側のみならず、バリヤ型陽極酸化物108からyの距離だけ離れた位置にまで存在し、その幅yは自己整合的(フォトリソグラフィー工程によることなく)に決定されることが特徴である。換言すれば、活性層103におけるゲイト電極下のチャネル形成領域の外側にはゲイト絶縁膜104、の存在する領域と、存在しない領域とが自己整合的に形成されるのである。

【0023】この構造で加速したN型もしくはP型の不 純物のイオンを活性層に注入する。当然のことながら、 ゲイト電極105(およびその周囲の陽極酸化物10 8) の下の活性層には実質的に注入されない。本発明で は、不純物イオンの加速条件を少なくとも2つ用いる。 例えば、高い加速エネルギーを得たイオン(高速イオ ン)と低い加速エネルギーを得たイオン(低速イオン) というような2種類の加速条件を設定する。そして、最 初に低速イオンを注入すると、これは、活性層のうちゲ イト絶縁膜104′で覆われた領域111、112には 到達できず、主として、ゲイト絶縁膜で覆われていない 領域110、113に注入される。次に、高速イオンを 注入する。この時のエネルギーは、ゲイト絶縁膜10 4'を通過する程度のものとする。この場合には、ゲイ ト絶縁膜を通過して、領域111、112にもイオンが 注入される。一方、領域110、113では多くのイオ ンは通過してしまい、結局、この場合には主として領域 111、112に注入される。(図1 (E)、(F)) 【0024】そして、低速イオンのドーズ量を、高速イ オンのドーズ量よりも大きくすれば、領域110、11 3は低抵抗領域、領域111、112は高抵抗領域とな る。 ドーズ量は、ドーピング時間やイオン発生量によっ て制御すればよい。以上のドーピング工程においては、 不純物元素のイオン源はそのままで、加速電圧のみを変

えればよい。そして、この場合も上記の例のように、最 初に低速イオンで、後で高速イオンというようにしても よいし、その逆でもよい。

【0025】さらに、図4 (A) に示すように加速電圧 は段階的に変化させてもよいし、同図(B)のように連 統的に変化させてもよい。しかし、いずれの方法でも、 本発明では、基板をドーピング装置にセットしたら、一 度も外部に取り出すことなく全てのドーピング工程が終 丁するという意味で、1回のドーピング工程によって高 抵抗領域が形成されることを特徴としている。

[0026]

【作用】このように、本発明では高抵抗不純物領域の幅 を陽極酸化物107の厚さyによって自己整合的に制御 することに特徴がある。そして、さらにゲイト絶縁膜1 .04′の端部109と高抵抗領域(HRD)112の端 部117を概略一致させることができる。図3に示した 従来の方法ではこのような役割を果たす側壁の幅の制御 は極めて困難であったが、本発明においては、陽極酸化 物107の幅は、陽極酸化電流(電荷量)によって決定 されるため、極めて微妙な制御が可能である。

【0027】さらに、上記の工程からも明らかなよう に、不純物ドーピングの工程が実質的に 1 回であって も、低抵抗領域、高抵抗領域を形成でき、さらに、その 後の活性化の工程も当然、1回の処理で済む。このよう に本発明では、ドーピング、活性化の工程を減らすこと により量産性を高めることができる。従来から、HRD は抵抗が大きいため、電極とオーム接触させることが難 しいこと、および、この抵抗のためドレイン電圧の低下 をきたすことが問題となっていた。しかし、他方、HR Dの存在により、ホットキャリヤの発生を抑止でき、高 30 い信頼性を得ることができるというメリットも併せ持っ ていた。本発明はこの矛盾する課題を一挙に解決し、自 己整合的に形成される $0.1\sim1\mu$ m幅のHRDと、ソ ース/ドレイン電極に対してオーム接触を得ることがで きる。

【0028】また、本発明においては図1の陽極酸化物 108の厚さを適切に利用することによって、ゲイト電 極の端部と不純物領域の位置関係を任意に変更でき、い わゆるオフセット構造を得ることもできる。一般にオフ セット状態では、逆方向リーク電流が低下し、オン/オ 40 フ比が向上するという特徴を有し、例えば、アクティブ マトリクス液晶ディスプレーの画素の制御に用いられる TFT(画素TFT)のように、リーク電流の少ないこ とが必要とされる用途に適している。しかしながら、H RDの端部で発生したホットキャリヤが陽極酸化物にト ラップされることによって、劣化するという欠点も合わ せ持つ。

[0029]

【実施例】

〔実施例1〕

ーニング7059、300mm×400mmもしくは1 00mm×100mm) 101上に下地酸化膜102と して厚さ1000~3000Aの酸化珪素膜を形成し た。この酸化膜の形成方法としては、酸素雰囲気中での スパッタ法を使用した。しかし、より量産性を高めるに は、TEOSをプラズマCVD法で分解・堆積した膜を 用いてもよい。

【0030】その後、プラズマCVD法やLPCVD法 によって非晶質珪素膜を300~5000点、好ましく は500~1000萬堆積し、これを、550~600 ℃の還元雰囲気に4~24時間放置して、結晶化せしめ た。この工程は、レーザー照射によっておこなってもよ い。そして、このようにして結晶化させた珪素膜をパタ ーニングして島状領域 103を形成した。さらに、この 上にスパッタ法によって厚さ700~1500Aの酸化 珪素膜104を形成した。

【0031】その後、厚さ1000Å~3μmのアルミ ニウム(1wt%のSi、もしくは $0.1\sim0.3wt$ %のSc(スカンジウム)を含む)膜を電子ビーム蒸着 法もしくはスパッタ法によって形成した。そして、フォ 20 トレジスト(例えば、東京応化製、OFPR800/3 0 c p) をスピンコート法によって形成した。フォトレ ジストの形成前に、陽極酸化法によって厚さ100~1 000Åの酸化アルミニウム膜を表面に形成しておく と、フォトレジストとの密着性が良く、また、フォトレ ジストからの電流のリークを抑制することにより、後の 陽極酸化工程において、多孔質陽極酸化物を側面のみに 形成するうえで有効であった。その後、フォトレジスト とアルミニウム膜をパターニングして、アルミニウム膜 と一緒にエッチングし、ゲイト電極105マスク膜10 6 とした。(図 1 (A))

【0032】さらにこれに電解液中で電流を通じて陽極 酸化し、厚さ3000~6000Å、例えば、厚さ50 00 Åの陽極酸化物107を形成した。陽極酸化は、3 ~20%のクエン酸もしくはショウ酸、燐酸、クロム 酸、硫酸等の酸性水溶液を用いておこない、5~30V の一定電流をゲイト電極に印加すればよい。本実施例で はシュウ酸溶液(30℃)中で電圧を8∨とし、20~ 40分、陽極酸化した。陽極酸化物の厚さは陽極酸化時 間によって制御した。陽極酸化電圧は、レジスト塗布前 の陽極酸化電圧よりも低いことが好ましかった。 (図1

【0033】次に、マスクを除去し、再び電解溶液中に おいて、ゲイト電極に電流を印加した。今回は、3~1 0%の酒石液、硼酸、硝酸が含まれたエチレングルコー ル溶液を用いた。溶液の温度は10℃前後の室温より低 い方が良好な酸化膜が得られた。このため、ゲイト電極 の上面および側面にバリヤ型の陽極酸化物108が形成 された。陽極酸化物108の厚さは印加電圧に比例し、 図1に本実施例を示す。まず、基板(コ 50 印加電圧が150Vで2000人の陽極酸化物が形成さ

9

れた。陽極酸化物108の厚さは必要とされるオフセット幅によって決定したが、3000A以上の厚さの陽極酸化物を得るには250V以上の高電圧が必要であり、TFTの特性に悪影響を及ぼすので3000A以下の厚さとすることが好ましい。本実施例では80~150Vまで上昇させ、必要とする陽極酸化膜108の厚さによって電圧を選択した。(図1(C))

【0035】その後、燐酸、酢酸、硝酸の混酸を用いて 陽極酸化物 1 0 7 をエッチングした。このエッチングで 20 は陽極酸化物107のみがエッチングされ、エッチング レートは約600 A/分であった。その下のゲイト絶縁 膜104)はそのまま残存した。そして、イオンドーピ ング法によって、TFTの活性層103に、ゲイト電極 部(すなわちゲイト電極とその周囲の陽極酸化膜)およ びゲイト絶縁膜をマスクとして自己整合的に不純物を注 入し、低抵抗不純物領域(ソース/ドレイン領域)11 0、113、高抵抗不純物領域111、112を形成し た。ドーピングガスとしてはフォスフィン(PH:) を 用いたため、N型の不純物領域となった。P型の不純物 領域を形成するにはジボラン(B1 H6)をドーピング ガスとして用いればよい。まず、加速エネルギーを1~ 30keV、例えば、5kVでドーピングした。ドーズ 量は5×10¹⁴~5×10¹⁵ c m⁻⁷、例えば、1×10 15 cm-1とした。この結果、主として、ゲイト絶縁膜 1 04'で覆われていない領域110、113に不純物が ドーピングされ、低抵抗領域となった。(図1(E)) 【0036】その後、基板をドーピング装置にセットし たまま、加速エネルギーを65~110keV、例え ば、90kVに上昇させた。ドーズ量は5×10¹²~5 ×10¹³ c m⁻²、例えば、1×10¹³ c m⁻²とした。こ の結果、主として、ゲイト絶縁膜104°で覆われた領 域111、112に不純物がドーピングされ、高抵抗領 域となった。(図1 (F)) その後、KrFエキシマー レーザー (波長248nm、パルス幅20nsec) を 照射して、活性層中に導入された不純物イオンの活性化 をおこなった。このようにして、高抵抗領域111、1 12を得ることができた。

【0037】〔実施例2〕 図2に本実施例を示す。まず、絶縁表面を有する基板(例えばNHテクノグラス社 50

製NA35ガラス)201上に実施例1の図1(A)、 (B) の工程を用いて、下地酸化膜202、島状性珪素 半導体領域(例えば結晶性珪素半導体)203、酸化珪 素膜204、アルミニウム膜(厚さ200nm~1μ m)のゲイト電極205とゲイト電極の側面に多孔質の 陽極酸化物(厚さ3000A~1μm、例えば5000 A)206を形成した。(図2(A)) そして、実施例 1と同様にバリヤ型の厚さ1000~2500Aの陽極 酸化物207を形成した。さらに、多孔質陽極酸化物2 06をマスクとして、酸化珪素膜204をエッチング し、ゲイト絶縁膜204′を形成した。図2(B)) 【0038】その後、バリヤ型陽極酸化膜207をマス クとして、多孔質陽極酸化膜206をニッチング除去し た。その後、ゲイト電極部(205、207)およびゲ イト絶縁膜204′をマスクとしてイオンドーピング法 によって窒素イオンを注入した。ドーピングガスは窒素 ガス (N1) を用いた。ドーズ量は1×10¹⁴~3×1 016 c m-1、例えば、2×1015 c m-1、加速電圧は6 5~110kV、例えば、80kVとした。このドーピ ングにおいては、窒素イオンが高速であるため、ゲイト 絶縁膜204.で覆われていない領域208、211で は、イオンが通過してしまい、ほとんどドーピングされ ず(SIMS(二次イオン質量分析)法によると1×1 0¹⁹ c m⁻⁷以下であった。) 一方、ゲイト絶縁膜で覆わ れている領域209、210には5×10¹⁹~2×10 ²¹ c m⁻¹ (深さによって異なる) の濃度の窒素が導入さ れた。 (図2 (C))

【0039】次に、ドーピングチャンバーの雰囲気をフ ォスフィン(PH:)に変更し、燐イオンの注入をおこ なった。まず、加速エネルギーを65~110keV、 例えば、90kVとした。ドーズ量は5×1012~5× 10¹¹ c m⁻¹、例えば、1×10¹¹ c m⁻¹とした。この 結果、主として、ゲイト絶縁膜204′で覆われた領域 208、211に不純物がドーピングされ、高抵抗領域 となった。(図2(D))その後、基板をドーピング装 置にセットしたまま、加速エネルギーを1~30ke V、例えば、5kVでドーピングに低下させた。ドーズ 量は5×10¹⁴~5×10¹⁵ c m⁻²、例えば、1×10 15 cm-1とした。この結果、主として、ゲイト絶縁膜2 04'で覆われていない領域208、211に不純物が ドーピングされ、低抵抗領域となった。(図2(E)) 【0040】その後、KrFエキシマーレーザー(波長 248nm、パルス幅20nsec)を照射して、活性 層中に導入された不純物イオンの活性化をおこなった。 レーザーとしては、XeClエキシマーレーザー(波長 308mm、パルス幅50msec)を用いてもよかっ た。なおエキシマーレーザー以外に、他のレーザーを用 いてもよいことはいうまでもない。 パルスレーザーに関 しては、Nd:YAGレーザー(Qスイッチパルス発振 が望ましい)のごとき赤外光レーザーやその第2高調波 のごとき可視光レーザーが使用できるが、金属膜の上面からレーザー照射をおこなう場合には金属膜に反射されないような波長のレーザーを選択する必要がある。 もっとも、金属膜が極めて薄い場合にはほとんど問題がない。また、レーザー光は、基板側から照射してもよい。この場合には下に存在する珪素半導体膜を透過するレーザー光を選択する必要がある。

【0041】また、レーザーの代わりに、可視光線もしくは近赤外光の照射によるランプアニールによるものでもよい。ランプアニールを行う場合には、被照射面表面が600~1000℃程度になるように、600℃の場合は数分間、1000℃の場合は数10秒間のランプ照射を行うようにする。近赤外線(例えば1.2 μmの赤外線)によるアニールは、近赤外線が珪素半導体に選択的に吸収され、ガラス基板をそれ程加熱せず、しかも一回の照射時間を短くすることで、ガラス基板に対する加熱を抑えることができ、極めて有用である。

【0042】最後に、図2(F)に示すように、全面に 層間絶縁物212として、CVD法によって酸化珪素膜 を厚さ2000Å ~1 μ m、例えば、3000 Å形成し、TFTのソース/ドレインにコンタクトホールを形成し、アルミニウム配線・電極213、214を2000 0 Å ~1 μ m、例えば5000 Åo 厚さに形成した。このアルミニウム電極213、214 と低抵抗領域20 8、211 の間にバリヤメタルとして、例えば窒化チタンを形成するとより一層、信頼性を向上させることができる。

【0043】本実施例では、結果的に高抵抗領域209、210に選択的に窒素をドーピングすることができた。これは酸素、炭素、あるいはこれらの混合でもよい。このようにすることによってTFTのリーク電流を抑制することができ、これは特に、本実施例のTFTをアクティブマトリクス等の高い電荷保持特性が要求される用途には最適である。本実施例におけるドーピングプロセスの様子を図4(C)に示す。このように最初に窒素ドープをおこなったのの、図4(D)のように後で窒素ドーブをおこなってもよい。いずれにしても、本実施例では、燐ドーブも窒素ドーブも基板をドーピング変置にセットしたまま連続的におこなえることが特徴である。

[0044]

【発明の効果】本発明によって、実質的に1回のドーピングおよび1回のレーザーアニール、RTA等の活性化工程によって、高抵抗領域(HRD)を形成することができた。すなわち、従来のように2種類の同導電型領域を独立な工程によって形成する必要はなくなった。この工程の短縮化は量産性を高め、TFT製造ラインへの投資額を減額するうえで有効である。また、本発明ではHRDの幅が極めて精度良く形成されるので、歩留り、均一性の優れたTFTが得られる。

12

【0045】本発明のTFTは、半導体集積回路が形成された基板上に3次元集積回路を形成する場合でも、ガラスまたは有機樹脂等の上に形成される場合でも同様に形成されることはいうまでもないが、いずれの場合にも絶縁表面上に形成されることを特徴とする。特に周辺回路を同一基板上に有するモノリシック型アクティブマトリクス回路等の電気光学装置に対する本発明の効果は著しい。

【図面の簡単な説明】

- 【図1】 実施例1によるTFTの作製方法を示す。
 - 【図2】 実施例2によるTFTの作製方法を示す。
 - 【図3】 従来法によるTFTの作製方法を示す。
 - 【図4】 本発明におけるドーピング工程の様子を示す。

【符号の説明】

	101	絶縁基板
	102	下地酸化膜(酸化珪素)
	103	活性層(結晶珪素)
	104	絶縁膜(酸化珪素)
9	104'	ゲイト絶縁膜
	105	ゲイト電極(アルミニウム)
	106	マスク膜(フォトレジスト)
	107	陽極酸化物(多孔質酸化アルミニウ
	۵)	
	108	陽極酸化物(バリヤ型酸化アルミニウ
	۵)	
	109	ゲイト絶縁膜の端部
	110,113	低抵抗不純物領域
	111,112	高抵抗不純物領域(HRD)

