DL в графах

НИС 4.12 Потапов Юрий

Beltrami Flow, diffusion time=0

Для каких задач нужен графовый DL?

Задачи на вершинах

- Классификация вершин: соцсети ->
 - определение типа пользователя на основе его активности.
- Предсказание свойств вершин:

соцсети ->
предсказание
возраста, пола или
интересов
пользователя
основе его связей и
взаимодействий.

Задачи на ребрах

- Прогнозирование связей:
 - соцсети -> вероятности появления связей между вершинами, например, в прогнозировании дружбы между пользователями.
- Детекция аномалий:
 - финансы -> выявление аномальных связей в сети, таких как подозрительные транзакции в финансовых графах.

Задачи на графах

- Графовая
 классификация:
 - классификации целых графов. Дороги -> дать характеристику графу дорог, его плюсы и минусы
- Анализ схожести:
 определение
 структурной или
 функциональной
 схожести между
 различными графами

(любой домен)

Совместные задачи

- Графовая генерация:
 - Генерация новых графов с заданными свойствами, например, создание химических молекул с определенными химическими свойствами.

Fig. 3. An overview of computational modules.

Типы модулей в графовых нейронных сетях

Появление графовых нейронок (2005г.)

The state x_n is defined as the solution of the system of equations:

$$\boldsymbol{x}_n = f_{\boldsymbol{w}}(\boldsymbol{l}_n, \boldsymbol{x}_{\text{ne}[n]}, \boldsymbol{l}_{\text{ne}[n]}), \ n \in \boldsymbol{N}$$
 (1)

where l_n , $x_{ne[n]}$, $l_{ne[n]}$ are the label of n, and the states and the labels of the nodes in the neighborhood of n, respectively.

Fig. 2. State x_1 depends on the neighborhood information.

For each node n, an output vector $o_n \in \mathbb{R}^m$ is also defined which depends on the state x_n and the label l_n . The dependence is described by a parametric output function g_w

$$o_n = q_{W}(x_n, l_n), \ n \in N. \tag{2}$$

Let x and l be respectively the vectors constructed by stacking all the states and all the labels. Then, Equations (1) and (2) can be written as:

$$\begin{array}{rcl}
\boldsymbol{x} & = & F_{\boldsymbol{w}}(\boldsymbol{x}, \boldsymbol{l}) \\
\boldsymbol{o} & = & G_{\boldsymbol{w}}(\boldsymbol{x}, \boldsymbol{l})
\end{array} \tag{3}$$

А дальше авторы минимизируют t_i – нужный выход на вершине

FиG - multilayer perceptron / matrix

https://www.researchgate.net/profile/Franco-Scarselli/publication/4202380 A new model for earning in rap h domains/links/0c9605188cd580504f000000/A-new-model-for-earning-in-raph-domains.pdf

Сверточная графовая нейронная сеть (2014г.)

(Potentially) Learnable parameters.

Сверточная графовая нейронная сеть (2017г)

$$H^{(l+1)} = \sigma \Big(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \Big)$$

$$H^{(l+1)} = \sigma \left(\hat{D}^{-rac{1}{2}} \hat{A} \hat{D}^{-rac{1}{2}} H^{(l)} W^{(l)}
ight)$$

где:

- ullet $H^{(l)}$ имеет размерность $N imes F^{(l)}$,
- ullet $W^{(l)}$ имеет размерность $F^{(l)} imes F^{(l+1)}$,
- ullet $\hat{A}=A+I$ имеет размерность N imes N (где N количество узлов в графе),
- ullet \hat{D} диагональная матрица степеней \hat{A} размерности N imes N,
- ullet σ функция активации.

https://arxiv.org/pdf/1312.6203.pdf

Graph Sage Convolution Network

```
for all v \in V .
Node v's
                              ... is just node v's
initial
                              original features.
embedding.
and for k = 1, 2, \ldots upto K:
m{h_v^{(k)}} = f^{(k)} \left( W^{(k)} \cdot \left[ \underset{u \in \mathcal{N}(v)}{\operatorname{AGG}}(\{h_u^{(k-1)}\}), \ m{h_v^{(k-1)}} \right] \right)
                                                                                                       for all v \in V .
 Node v's
                                              Aggregation of
                                                                            ... Node v's
embedding at
                                              v's neighbour's
                                                                           embedding at
                                                                            step k-1.
 step k.
                                              embeddings at
                                              step k - 1 ...
                                                            ... concatenated
                                                            with ...
Color Codes:
       lacksquare Embedding of node v.
       \blacksquare Embedding of a neighbour of node v.
      (Potentially) Learnable parameters.
```

ChebNet (2017r)

Convolution in CNNs

Convolutions in CNNs are inherently localized.

Neighbours participating in the convolution at the center pixel are highlighted in gray.

Localized Convolution in GNNs

GNNs can perform localized convolutions mimicking CNNs. Hover over a node to see its immediate neighbourhood highlighted on the left. The structure of this neighbourhood changes from node to node.

Как это работает?

Then, the graph Laplacian L is the square $n \times n$ matrix defined as: L = D - A.

Input Graph G

Laplacian L of G

Polynomials of the Laplacian

Now that we have understood what the graph Laplacian is, we can build polynomials of the form:

$$p_w(L) = w_0 I_n + w_1 L + w_2 L^2 + \ldots + w_d L^d = \sum_{i=0}^d w_i L^i.$$

Each polynomial of this form can alternately be represented by its vector of coefficients $w=[w_0,\ldots,w_d]$. Note that for every w, $p_w(L)$ is an $n\times n$ matrix, just like L.

These polynomials can be thought of as the equivalent of 'filters' in CNNs, and the coefficients w as the weights of the 'filters'.

Once we have constructed the feature vector x_{i} we can define its convolution with a polynomial filter p_{w} as:

$$x' = p_w(L) x$$

Далее можно придумывать специальные многочлены (ChebNet), нормализовать Лапласиан.

Обучение далее не будет особо отличаться от других графов

GNN usage in 2019

Google Maps ETA Improvements Around the World

The ever-industrious DeepMind researchers meanwhile have been working on further improving Google Maps, and this week the UK-based AI company and research lab unveiled a partnership with Google Maps that has leveraged advanced Graph Neural Networks (GNNs) to improve estimated time of arrival (ETA) accuracy.

The coordinated efforts have boosted the accuracy of real-time ETAs by up to 50 percent in cities such as Berlin, Jakarta, São Paulo, Sydney, Tokyo and Washington DC.

Graph Attention Network

$$oldsymbol{h}_v^{(0)} \hspace{0.5cm} = \hspace{0.5cm} x_v \hspace{0.5cm} ext{ for all } v \in V.$$

... is just node v's Node v's initial original features.

embedding.

and for $k = 1, 2, \ldots$ upto K:

$$m{h_v^{(k)}} \qquad = \quad f^{(k)} \left(W^{(k)} \cdot \left[\sum_{u \in \mathcal{N}(v)} lpha_{vu}^{(k-1)} h_u^{(k-1)} + lpha_{vv}^{(k-1)} m{h_v^{(k-1)}}
ight]
ight) \qquad ext{for all } v \in V.$$

Node v's embedding at step k.

Weighted mean of v's neighbour's embeddings at step k-1.

Node v's embedding at step k-1.

where the attention weights $\alpha^{(k)}$ are generated by an attention mechanism $A^{(k)}$, normalized such that the sum over all neighbours of each node v is 1:

$$lpha_{vu}^{(k)} = rac{A^{(k)}(oldsymbol{h}_v^{(k)}, h_u^{(k)})}{\sum A^{(k)}(oldsymbol{h}_v^{(k)}, h_w^{(k)})}$$
 for all $(v,u) \in E$.

Color Codes:

- \blacksquare Embedding of node v.
- \blacksquare Embedding of a neighbour of node v.
- (Potentially) Learnable parameters.

Multimodal graph attention network for COVID-19 outcome prediction (2023)

Graphormer (2021)

Graphormer Usage (2023)

Graphormer - это пакет глубокого обучения разработанный Microsoft для моделирования молекул.

Разработан для ускорения исследований в области искусственного интеллекта в молекулярной науке, таких как открытие материалов и лекарств.

Поддерживает различные задачи, включая предсказание свойств и молекулярную динамику. Победил в соревнованиях по квантовой химии и молекулярной динамике, подтверждая свою эффективность. В будущем планируется расширение функционала для важных задач, таких как предсказание реакций и генерация молекул.

Выводы

- 1) графовые данные особый вид данных, который редко получается эффективно заменить на более удобный для машины
- 2) важно использовать структуру графа в обучении
- 3) графовые методы продолжают улучшаться, потому что есть тенденция к использованию DL подходов в медицине/химии/биологии/физике, где графовых данных очень много