Moving Beyond Memorisation Resources for Generalisable Protein Complex Prediction

P(L)INDER training workshop

The Protein-Ligand Interaction Dataset and Evaluation Resource

> more data more diversity more flexible

The Protein Interaction Dataset and Evaluation Resource

higher quality less leakage better evaluation

Huggingface model

and leaderboard submission

Generate images

Fast, easy setup

Gradio can be <u>installed with pip</u>. Creating a Gradio interface only requires adding a couple lines of code to your project.

Seamlessly use any python library on your computer. If you can write a python function, gradio can run it.

Present and share

Gradio can be embedded in <u>Python notebooks</u> or presented as a **webpage**.

A Gradio interface can automatically generate a public link you can share with colleagues that lets them interact with the model on your computer remotely from their own devices.

Permanent hosting

Once you've created an interface, you can permanently host it on Hugging Face.

<u>Hugging Face Spaces</u> will host the interface on its servers and provide you with a link you can share.

github.com/gradio-app/gradio

Apache 2.0 license

Develop gradio app locally or on Google Colab

Run on remote machine (workstation, cluster, huggingface) and access UI from your laptop

127.0.0.1 AND aosdokoe23as.gradio.live

Resources on HuggingFace

Choose a hardware for your Space. You'll be billed on a per minute basis. View usage in your billing settings. Display price: per hour per month Building something cool as a side project? Apply for a community GPU grant.

ZeroGPU

Free A100 in the cloud

REST api

```
import requests
response = requests.post("https://simonduerr-proteinmpnnesm.hf.space/run/proteinmpnn",
json={
  "data": [
   "1PGA", // pdb code
   None, // alternative, file as base64
    "A", // designed chain
   "B", // fixed chain
   False, // homomer?
   10, // num of sequences
    "0.1", // sampling temp
    "v_48_002", // model
    "O", // backbone noise
]}).json()
data = response["data"]
```

Why is a REST API useful?

Example ChimeraX Commands

This prediction of farnesyltransferase subunit alpha takes about 20 seconds and uses the sequence from an experimental structure PDB 7t0a chain A.

```
open 7T0A esmfold predict /A
```

You can also make the prediction the sequence with no experimental structure.

esmfold predict MGSSHHHHHHSQDLMVTSTYIPMSQRRSWADVKPIMQDDGPNPVVPI MYSEEYKDAMDYFRAIAAKEEKSERALELTEIIVRMNPAHYTVWQYRFSLLTSLNKSLEDEL RLMNEFAVQNLKSYQVWHHRLLLLDRISPQDPVSEIEYIHGSLLPDPKNYHTWAYLHWLYSH FSTLGRISEAQWGSELDWCNEMLRVDGRNNSAWGWRWYLRVSRPGAETSSRSLQDELIYILK SIHLIPHNVSAWNYLRGFLKHFSLPLVPILPAILPYTASKLNPDIETVEAFGFPMPSDPLPE DTPLPVPLALEYLADSFIEQNRVDDAAKVFEKLSSEYDQMRAGYWEFRRRECAE

Inference for the MLSB challenge will be on HF Spaces

```
inference_app.py
   def predict:
       #add your code here
                                  gradio
   import gradio as gr
   with gr.Blocks().
       Inp = Provided for you
       Btn = gr.Button()
      btn.click(predict, inputs, outputs)
```


Inference templates

The Molecule3D component

```
. .
import gradio as gr
from gradio_molecule3d import Molecule3D
reps =
      "model": 0,
      "style": "stick",
      "color": "whiteCarbon",
      "around": 0,
def predict(x):
    print("predict function", x)
    print(x.name)
    return x
with gr.Blocks() as demo:
    gr.Markdown("# Molecule3D")
    inp = Molecule3D(label="Molecule3D", reps=reps)
    out = Molecule3D(label="Output", reps=reps)
    btn = gr.Button("Predict")
    btn.click(predict, inputs=inp, outputs=out)
if __name__ == '__main__':
  demo.launch()
```

DOCKERFILE

```
WORKDIR /usr/src/app
COPY . .
# install dependcies
RUN conda install -y pandas numpy scikit-learn
RUN pip install --no-cache-dir -r requirements.txt
EXPOSE 7860
ENV GRADIO_SERVER_NAME="0.0.0.0"

CMD ["python", "inference_app.py"]
```

```
RUN useradd -m -u 1000 user
                                                        Real world example
WORKDIR /usr/src/app
COPY --link --chown=1000 ./ /usr/src/app
COPY . .
# install dependcies
RUN apt-get update
RUN apt-get -y install gcc
RUN conda install -y -c conda-forge -c openbabel rdkit openbabel
RUN pip install mdtraj cython ipython
RUN pip install git+https://github.com/bowman-lab/enspara
RUN pip install biopython
RUN pip install pdb-tools
RUN pip install gradio gradio_molecule3d
USER USET
RUN wget https://sourceforge.net/projects/smina/files/smina.static/download -O smina.static
RUN chmod u+x smina.static
# don't change below
EXPOSE 7860
ENV GRADIO_SERVER_NAME="0.0.0.0"
CMD ["python", "inference_app.py"]
```

How will we run inference

How to submit?

- Duplicate HuggingFace template for challenge in your personal HF account
- Develop and test your space locally and set up DOCKERFILE to match your local environment
- Push your local space to Huggingface and verify it builds correctly (GPUs won't be assigned yet so inference might be slow)
- Once everything is ready:
 - Fill submission form: https://huggingface.co/spaces/MLSB/leaderboard2024
 - Transfer space to MLSB organization
- We will grant the GPU once we start running inference, your space will remain accessible after the challenge as well

How to transfer space to MLSB organization

Go to your personal space and transfer it to MI SB

MLSB 2024 Leaderboard

Timeline

<u>Leaderboard Opens:</u> October 9th, 2024 (following acceptance notifications for MLSB).

Leaderboard Closes: November 9th, 2024

Winner Notification: Wednesday, November 27th, 2024

Resources to get started

Discord server for questions: https://discord.gg/NFVgccusBi

Templates:

https://huggingface.co/spaces/MLSB/pinder_inference_template

https://huggingface.co/spaces/MLSB/plinder_inference_template