

HITO 1 FUNDAMENTOS DE BIODISEÑO

GRUPO 14

INTEGRANTES:

- Rodríguez Cruz, Ivanna Jael
- Saenz Villarreal, Luciana Mercedes
- Reymundo Capcha, Sebastián Adriano
- Neciosup Villarreal, Jared Matias
- Salazar Zárate, Alexandra Estephania
- Quispe Cueva, Tatiana Abigail

CONTENIDO

- 1 Análisis del caso
- 2 Estado del arte
- 3 Metodología VDI
- 4 Conclusiones / siguientes pasos

WWW.SITIOINCREIBLE.COM

ANALISIS DEL CASO

El paciente presenta una lesión medular completa a nivel T4-A, con perdida total de sensibilidad y movilidad en las piernas. La presión prolongada en zonas como el sacro y parte del glúteo general ulceras por presión (UPP).

A nivel mundial, 25-80% de personas con lesión medular desarrollan UPP al menos una vez [Paquin et al., 2025].

En Lima, la prevalencia alcanza el 21%, con predominio en la zona sacra [Galindo et al., 2022].

Tabla 1. Características de la población de estudio y ulcera por presión. Hospital de Lima. Perú 2017

Características	UPP	No UPP	Total
Género			
Femenino	20 (17,39)	95 (82,61)	115
Masculino	30 (21,28)	111 (78,72)	141
Grupo etario			
Joven	1 (2,27)	43 (97,73)	44
Adulto	16 (11,59)	122 (88,41)	138
Adulto mayor	33 (44,59)	41 (55,41)	74
Nivel de instrucción			
Primaria	23 (29,49)	55 (70,51)	78
Secundaria	23 (18,70)	100 (81,30)	123
Superior	4 (7,27)	51 (92,73)	55

Gráfico 1. Prevalencia de Úlcera por Presión según Estadio en pacientes hospitalizados. Hospital de Lima, Perú 2017

ANÁLISIS DEL CASO

LIMITACIONES

- Ausencia de sensibilidad por debajo del nivel de la lesión.
- Ausencia de movilidad en las articulaciones por debajo del nivel de la lesión.
- Dependencia y uso por un tiempo prolongado de la silla de ruedas para su movilidad.

- Aviso de presión excesiva en las zonas de apoyo.
- Asistencia para redistribuir la presión en las zonas de contacto.
- Estimular la circulación sanguínea y evitar la isquemia tisular.

NECESIDADES

ANÁLISIS DEL CASO

JUSTIFICACIÓN

- Dependencia de un cuidador para realizar actividades cotidianas.
- Requiere de personal médico para evitar que sus UPPs empeoren.
- Adaptaciones en su silla ruedas.
- Agravamiento de las UPP por la ausencia de sensibilidad.
- El tratamiento de las UPP suele ser costoso.

Se requiere de un dispositivo que ayude a prevenir las generación de UPPs en pacientes dependientes de silla de ruedas

PORTABLE CUSHION AND METHOD OF USE US 11,191,687 B2

COJÍN CON VIBRACIÓN TERAPÉUTICA CONTROLADA POR APP.

Dispositivo no invasivo orientado a prevenir úlceras por presión mediante vibraciones terapéuticas localizadas.

PATENTES

COJÍN DE SOPORTE

ES2977286T3

COJÍN INFLABLE CON CÁMARAS DE AIRE (PODS) CONTROLADAS POR MICROCONTROLADOR.

Cojín inflable y portátil, con múltiples cámaras de aire (pods) equipadas con sensores de presión y temperatura.

PRESSURE ULCER PREVENTION SYSTEM US20200405217A1

COJÍN CON SENSORES TEXTILES DE PRESIÓN Y HUMEDAD, MONITOREO POR APP

Sistema textil sensorizado integrado en un cojín, advierte tempranamente sobre la necesidad de cambio de postura.

PRODUCTOS COMERCIALES

COJÍN TERAPÉUTICO PARA REDISTRIBUCIÓN DE PRESIÓN

VENTAJAS

- Redistribución activa de presión mediante celdas de aire.
- Celdas reemplazables individualmente para fácil mantenimiento.
- Se ajusta sin necesidad de cambiar de posición.
- Fácil de limpiar y mantener con materiales resistentes.
- Se adapta dinámicamente a los movimientos del usuario.

[4]

DESVENTAJAS

- No ofrece datos ni visualización clínica.
- Precio elevado en algunos mercados (entre s/640 s/1138).
- Sensible a pinchazos y fugas.
- Requiere entrenamiento para uso óptimo.

20HO QUADTRO

PRODUCTOS COMERCIALES

SISTEMA DE EVALUACIÓN CLÍNICA CON SENSORES DE PRESIÓN

VENTAJAS

- Imágenes de presión en tiempo real para evaluación clínica precisa.
- Alta resolución de sensores (1.296 puntos) sin necesidad de recalibración.
- Software con herramientas de análisis postural y generación de informes.
- Sensor lavable, flexible y duradero.
- Cumple con estándares HIPAA para seguridad de datos. [5]

DESVENTAJAS

- No redistribuye presión, solo evalúa.
- Requiere dispositivo compatible (tablet o PC) para operar.
- No está diseñado para uso continuo por el paciente
- Alto precio (alrededor de s/5000).

PROPUESTA DE SOLUCIÓN

Diseñar un cojín que prevenga la aparición de úlceras por presión mediante la distribución adecuada de carga

LISTA DE REQUERIMIENTOS

Categoria principal	Campo	Características subordinadas	Explicación práctica	Requisito funcional y/o no funcional	Clasificación de requisitos
Función	Funciones principales y subordinadas	Función principal; Funciones subordinadas / secundarias	Qué hace el sistema en esencia y qué funciones complementarias lo apoyan.	El cojin debe aplicar calor controlado para mejorar la perfusión sanguinea y prevenir úlceras por presión. Como funciones secundarias, debe activarse automáticamente al detectar peso mediante celdas de carga y ajustar la temperatura según el sensor de temperatura.	Must have
	Flujos de energia	Entrada de energia; Conversión; Transmisión; Uso	Cómo se alimenta, transforma y usa la energía (eléctrica, mecánica, térmica, etc.).	El sistema se alimenta mediante fuente USB. La energia eléctrica se convierte en energia térmica a través de resistencias calefactoras controladas por un MOSFET.	Must have
	600 O 1,000	Transporte; Transformación; Almacenamiento;	Cómo maneja el sistema materia física (fluidos, sólidos,	El sistema transmite calor al cuerpo humano a través del material superficial. No transporta materiales ni almacena residuos. El sudor puede ser absorbido o disipado por	45 (185)
	Flujos de material	Eliminación/salida	fuerzas transmitidas).	materiales transpirables.	Should have
	Flujos de Información	Adquisición; Procesamiento; Transmisión; Almacenamiento; Visualización	Cómo capta, procesa, transmite, guarda y presenta datos.	El sistema usa sensores de temperatura (DS18B20) y celdas de carga como entradas. El Arduino procesa los datos de peso y temperatura, y controla el encendido de la resistencia térmica.	Must have
	Definición de interfaces	Interfaces entre subsistemas; Interacción entre disciplinas; Estándares de comunicación	Cómo se conectan las partes del sistema entre sí y con el entorno.	El sistema debe permitir la conexión segura entre sensores (DS18820), arduino y la film calefactor de poliimida a través de cableado interno, evitando interferencias eléctricas. También debe permitir recarga segura via conector USB.	Must have
		Dimensiones; Requisitos de espacio; Número de	Requisitos de tamaño, forma y ubicación del sistema o de sus	El cojin debe ser capaz de adaptarse a cualquier silla de ruedas prexistente por lo que sus dimensiones deben corresponder a una silla de ruedas estandar. Para la zona glútea se tendrán medidas de 0.45m de ancho 0.40m de profundidad y 0.15 m de espesor aproximadamente. Para la zona lumbar se tendrá una altura de 0.4 m y las mismas medidas de ancho y espesor. El usuario solo requerirá de un	
	Geometria	Integración en la máquina; Aislamiento frente a vibraciones; Movimiento; Velocidad/aceleración; Rigidez; Deformación; Tolerancias; Amortiguamiento; Resonancias; Estrés térmico;	Estabilidad mecánica, precisión de movimiento y resistencia	producto. El interior del cojín tendrá un material viscoelástico que amortiguará los golpes o vibraciones propios del uso y del traslado. La funda (tejido 3D espaciador) debe evitar la acumulación de calor por fricción entre la funda y la piel. Una	Must have
	Mecánica Eléctrica / Electrónica	Tensión nominal; Corriente nominal; Potencia y conexiones; Compatibilidad con E-STOP; Apagado independiente de ejes; Interfaces internas/externas; Conformidad con estándares	Condiciones de alimentación, integración y seguridad eléctrica/electrónica.	base rígida para evitar un cambio de posición de los sensores. Una fuentes de SV alimentará al Arduino y al resto del circuito. Los sensores DS18B20 y las celdas de carga estrán conectadas al microcontrolador mediante cableado interno y aislado. El film de poliimida no tendrá contacto directo con la piel y se apagará cuando la temperatura llegue a 34°C.	Must have
Diseño / Estructura		Arquitectura HW/SW; Multiprocesador; Entorno de desarrollo; Lenguajes; Versionado; Actualizaciones; Modos	Decisiones de software, modularidad y aseguramiento de	Se divide en diferentes módulos: lectura de datos mediante los sensores (DS18B2O y celdas de carga); procesamiento (encendido y apagado del sistema, regulación de temperatura) y actuador (film de polimida mediado por	
	Software	de operación; Pruebas sin HW; Gemelo digital	calidad en simulación y pruebas.	MOSFET).	Should have
		Seguridad funcional; Integración en parada de emergencia;	·	El film se desactivará cuando se alcance los 34°C o no haya presión ejercida. El sistema opera con una baja tensión, por lo	
	Seguridad	Redundancia; Mecanismos fail-safe; Pruebas de seguridad	Que el sistema sea confiable y seguro en operación.	que reduce el riesgo de fallos eléctricos.	Must have
	Regulación	Cumplimiento normativo; Certificación de componentes; Disponibilidad a largo plazo; Actualizaciones remotas o locales	Asegurar conformidad normativa y sostenibilidad en el ciclo de vida.	Los componentes seleccionados (DS18B2D, arduino, MOSFET, film calefactor) son de uso común en prototipos biomédicos y cumplen con estándares básicos de compatibilidad eléctrica. Se considerará la futura certificación del sistema si se	***************************************
	Ergonomía	HMI; Claridad; Iluminación; Fuerzas de operación; Dimensiones antropométricas; Accesibilidad	Que el sistema sea fácil y seguro de usar para distintos usuarios.	No se requiere de una configuración previa para su uso, ya que se enciende y se apaga según detecte una presión o la temperatura se encuetre dentro del rango válido.	Should have
	Diseño industrial	Codificación táctil; Háptica; Funciones estéticas; Funciones simbólicas; Reconocimiento de producto; Coloración; Orientación a segmentos	Factores de aceptación social, identidad de producto y atractivo visual.	La codificación táctil busca transmitir comodidad mediante materiales suaves y transpirables. Las funciones estéticas y simbólicas apuntan a que el producto sea agradable a la vista por lo que será de colores neutros.	Should have
	Compra	Disponibilidad de componentes; Garantia de disponibilidad; Costos de adquisición; Certificación de proveedores; Logística	Adquisición de piezas y aseguramiento de suministro.	Los sensores D518820 y el arduino presenta alta disponibilidad local, bajo costo y garantía de continuidad de tiempo. Las celdas de carga se encuentran con relativa facilidad en versiones genéricas. Los MOSFET de potencia son componentes estándar ampliamente distribuidos, con varias alternativas equivalentes. El film calefactor de polimida es menos común en el mercado local pero puede adquirise en tamaños estandar a través de proveedores internacionales. En todos los casos se priorizó la compra de componentes económicos y accesibles que garanticen la viabilidad del prototipo.	Must have

LISTA DE REQUERIMIENTOS

	Fabricación	Procesos de fabricación; Tiempo de ciclo; Costos de producción; Nivel de automatización; Capacidad de producción; Recursos e infraestructura	Cómo se fabrica el sistema, tiempos y costos.	y costuras, además del ensamblaje de los componentes electrónicos. El tiempo de ciclo se alinea con los plazos asignados mientras que se intenta minimizar los costos de producción.	Must have
Realización / Producción		Tolerancias; Métodos de inspección; Pruebas en proceso; Trazabilidad: Certificación de lotes	Cómo se garantiza la precisión y la fiabilidad.	±0.5 °C en sensores de temperatura, ±5% en celdas de carga, ±5 mm en dimensiones del cojin.Pruebas funcionales de sensores, verificación térmica, revisión visual del ensamblaje. Validación de sensores antes del encapsulado, prueba del circuito antes del cierre y prubea de carga. Registro de lote de componentes electrónicos y fecha de ensamblaje. Certificación individual en fase piloto; muestreo estadístico en producción comercial.	Must have
	Ensamblaje	Estrategia de ensamblaje; Tiempo de ensamblaje;	Cómo se montan piezas y se asegura repetibilidad.	Ensamblaje en capas: base estructural, sensores, encapsulado, espuma, funda externa. 1.5 horas por unidad en fase piloto; proyectado a 30 minutos con entrenamiento. Diseño modular sin herramientas especializadas; guía visual para facilitar el proceso. Componentes internos accesibles mediante apertura de funda; reemplazo de batería y sensores sin desmontaje completo. Sensores y módulos electrónicos intercambiables; conectores estandarizados.	
	Despliegue de software	Entorno de despliegue; Instalación local/remota; Actualizaciones automáticas/manuales; Compatibilidad; Pruebas de integración	Cómo se entrega, instala y actualiza el software.	Software cargado en microcontrolador vía USB; entorno Arduino IDE.Instalación local en fase piloto; actualización remota vía Bluetooth en versiones avanzadas. Manuales inicialmente; sistema de actualización remota proyectado. Compatible con sensores DS18B2O, celdas HX711, microcontroladores Arduino.Pruebas de lectura de sensores, activación térmica, respuesta bajo carga simulada, validación de lógica de encendido automático.	Must have
	Mantenimiento	Acceso a componentes; Sustitución de piezas; Limpieza; Costos de mantenimiento; Documentación	Cómo mantener el sistema funcional a lo largo del tiempo.	El diseño debe permitir un fácil acceso a los componentes internos, el cual facilite la sustitución de piezas como baterías o sensores sin necesidad de reemplazar el dispositivo completo. Para asegurar la higiene, se contempla el uso de fundas desmontables y lavables.	
	Uso	Facilidad de uso; Curva de aprendizaje; Experiencia de usuario; Interfaz hombre-máquina (HMI); Condiciones de operación; Seguridad del usuario; Fiabilidad/durabilidad	Cómo interactúa el usuario y en qué condiciones funciona de forma segura.	El usuario no necesita manipular botones ni configuraciones; el sistema detecta automáticamente las zonas de presión mediante celdas de carga. La experiencia es pasiva y confortable, regula la temperatura según sea necesario.	Should have
Uso	Reciclaje	Reciclabilidad de materiales; Reutilización; Procesos de disposición final; Impacto ambiental	Qué tan sostenible es al final de su vida útil.	Las celdas de carga y componentes electrónicos son desmontables para facilitar su reutilización o reciclaje especializado. Las baterías deben desecharse en puntos autorizados para reducir impacto ambiental.	Must have
	Transporte	Portabilidad; Movilidad; Resistencia al transporte; Peso y dimensiones; Embalaje	Qué tan fácil y seguro es moverlo o transportarlo.	Debe ser portátil y ligero, no mayor a 2 kg, de modo que se coloque y retire de la silla de ruedas con facilidad. Tambiém debe ser resistente a las vibraciones, compresión prolongada y golpes propios del uso.	Must have
	Planificación	Costos de ciclo de vida; Disponibilidad a largo plazo; Estrategia de actualización; Capacitación y roles	Cómo se asegura la gestión a lo largo del tiempo.	El costo de ciclo de vida es bajo comparado con los gastos médicos de tratar úlceras. La disponibilidad de componentes como celdas de carga, arduino y DS18820 está asegurada por su uso extendido en electrónica.	Must have
	Sostenibilidad	Consumo energético; Huella de carbono; Reciclabilidad; Impacto ambiental	Qué tan sostenible es el sistema durante todo su ciclo de vida.	Bajo consumo energetico debido a que ya que sensores como el DS18820 y el arduinotrabajan con 3–5 V. Huella ambiental reducida por los materiales son ligeros.	Must have
Organización	Aceptación social	Atractivo cultural y simbólico; Diseño percibido; Confianza del usuario; Riesgos éticos y regulatorios Viabilidad comercial; Segmentación de usuarios;	Qué tan aceptado y confiable es por la sociedad y los usuarios.	Diseño discreto, sin complejidad al usar y aceptado por usuarios. Brinda autonomia y seguridad. El cojin puede posicionarse de forma innovadora frente a productos convencionales al integrar la regulación térmica automática para la prevención de úlceras. Además, se debe asegurar que el dispositivo no solo cumpla con las normas	Must have
	Mercado	Diferenciación frente a competidores; Estrategia de posicionamiento	Qué tan competitivo y viable es en el mercado objetivo.	técnicas de seguridad eléctrica, sino también con las disposiciones éticas sobre el manejo de datos del individuo.	Must have

ESQUEMA DE FUNCIONES

Funcio	nes	Alternativa 1	Alternativa 2	Alternativa 3
1	Distribuir carga	Espuma viscoelástica	Gel polimérico	Cámara de aire
2	Soportar presión ejercida	Estructura multicapa	Base semirrígida	Malla elástica de soporte
3	Transmitir presión a sensores	Zona glútea	Zona lumbar	Zona glútea + zona lumbar
4	Transmitir vibraciones	Conductores de vibración sólidos	Material viscoelástico conductor	Módulos resonantes
5	Amortiguar movimiento	Gel amortiguador	Espuma viscoelástica	
6	Estabilizar superficie	Isla rígida ABS	Acrílico rígido	Policarbonato delgado
7	Sensar presión en zona 1/2	Piezorresistivos	Capacitivos	Inductivos
8	Detectar errores de presión	Comparación diferencial	Promedio móvil	Análisis estadístico
9	Acondicionar energía	Regulación lineal	Regulación conmutada	Conversión DC-DC
10	Acondicionar energía para actuadores	Regulación dual	Modulación por ancho de pulso	Control de corriente constante
11	Acondicionar energía para sensores	Fuente estabilizada	Sistema recargable	Alimentación USB
12	Energizar	Energía cableada	Batería interna recargable	Energía por inducción
13	Generar vibración	Motor LRA	Dispositivos vibrador cicloidal	Motor ERM
14	Encender indicación (ON/OFF)	luminación LED	Notificación digital	Señal acústica
15	Generar vibración por zona	Control independiente por zona	Distribución simultánea	Secuencia alternada
16	Encender indicación de vibración	Automático	Activación manual (botón)	Activación mediante notificación (app móvil)
17	Controlar vibración	Control analógico	Control digital	Control adaptativo automático
18	Controlar interfaz del usuario	APP móvil bluetooth	Botonera física	Pantalla táctil
19	Activar alerta de sobrepresión	Lógica de umbral	Control manual con interruptor	Control automático con software
20	Identificar datos	Procesamiento en microcontrolador	Procesamiento en software local	Procesamiento híbrido
21	Detectar fallas en sensores o actuadores	Autodiagnóstico por software	Redundancia de señales	Análisis de consistencia de datos
22	Verificar señales	Filtro digital	Promedio móvil	Análisis comparativo de sensores
23	Supervisar errores de presión	Análisis en tiempo real mediante algoritmos de umbral	Procesamiento de datos en la aplicación móvil con alerta	Supervisión combinada
24	The internet of things	Wifi	Bluetooth	Wifi + Bluetooth

MATRIZ MORFOLÓGICA

SOLUCIÓN 1 SOLUCIÓN 2

uncio	nes	Criterios	Solución 1	Solución 2
1	Distribuir carga	Durabilidad/coste/comodidad	4	4
2	Soportar presión ejercida	Eficacia/facilidad de implementación	3	2
3	Transmitir presión a sensores	Facilida de implementación/coste/comodidad	3	3
4	Transmitir vibraciones	Comodidad/durabilidad	4	4
5	Amortiguar movimiento	Comodidad/durabilidad	4	4
6	Estabilizar superficie	Eficacia	4	3
7	Sensar presión en zona 1/2	Confiabilidad/robustez/consumo energético	3	3
8	Detectar errores de presión	Confiabilidad/eficacia	4	3
9	Acondicionar energía	Consumo energético/rendimiento	4	4
10	Acondicionar energía para actuadores	Consumo energético/rendimiento	4	3
11	Acondicionar energía para sensores	Consumo energético/rendimiento	4	3
12	Energizar	Consumo energético/rendimiento	4	4
13	Generar vibración	Eficacia/robustez/viabilidad económica	3	3
14	Encender indicación (ON/OFF)	Eficacia	4	4
15	Generar vibración por zona	Eficacia/experiencia usuario	4	4
16	Encender indicación de vibración	Confiabilidad/experiencia usuario	4	2
17	Controlar vibración	Rendimiento/confiabilidad	3	3
18	Controlar interfaz del usuario	Experiencia usuario/ facilidad de implementación	4	2
19	Activar alerta de sobrepresión	Rendimiento/confiabilidad	3	2
20	Identificar datos	Rendimiento/confiabilidad	4	4
21	Detectar fallas en sensores o actuadores	Rendimiento/confiabilidad	4	4
22	Verificar señales	Rendimiento/confiabilidad	4	4
23	Supervisar errores de presión	Rendimiento/confiabilidad	4	4
24	The internet of things	Rendimiento/facilidad de implementación	4	3
otal			90	79

TABLA DE EVALUACIÓN

SOLUCIÓN A - PRIMERA OPCIÓN SOLUCIÓN B

BOCETOS

CONCLUSIONES

- El proyecto busca prevenir úlceras por presión en pacientes con lesión medular mediante un cojín inteligente que combina sensores y vibración terapéutica.
- Esta propuesta mejora la circulación, promueve la autonomía del usuario y plantea una alternativa accesible e innovadora para la rehabilitación y el cuidado diario.
- El diseño integra la metodología VDI, lo que asegura un enfoque estructurado desde la identificación del problema hasta la generación de soluciones funcionales.

REFERENCIAS

- C. Paquin, F. Nindorera, M. Gagnon, M.-È. Lamontagne, y F. Routhier, «Personal risk factors for pressure injuries among wheelchair users: an umbrella review of new insights in 2024», Disability And Rehabilitation Assistive Technology, pp. 1-16, ene. 2025, doi: 10.1080/17483107.2024.2448161.
- M. V. G. Galindo, B. H. Flores, y Y. Musayón-Oblitas, «Prevalencia de Úlcera por Presión en Pacientes Hospitalizados de un Hospital de Lima», Revista Enfermería Herediana, vol. 13, pp. 20-27, mar. 2022, doi: 10.20453/renh.v13i0.4146.
- Li C, Chen Y, Yao G, Lv Q, Xu T, Zhang S, et al. The global prevalence of pressure injuries among people with spinal cord injury: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2020;21(1):603. doi:10.1186/s12891-020-03369-
- Crealey S, Regan J, Richardson K. Cojín de soporte. Patente ES2977286T3. 2022.
- Sachdev HS, Sachdev KS. Portable cushion and method of use. Patente US 11,191,687 B2. 2021.
- Jayaraman S, Park S. Pressure ulcer prevention system. Patente US20200405217A1. 2020.

GRACIAS