Statistical Errors paper

A p-value is an answer to the question:

"Is it plausible that the TRUE effect was 0?"

Key points

small p-value from a implausible treatment is not strong evidence

small p-value from an experiment with low power won't replicate

you can get a small p-value with a meaningless effect if your experiment is large

If your experiment is small and your p-value is small, your effect size is probably over-estimated

Power: Probability of detecting an effect when it is real

Detection threshold: Declare significant if $p < \alpha$

What determines the Power of an experiment?

What goes into p?

2*pt(t,df,lower.tail=F)

$$t = \frac{\hat{\delta}}{SED} \quad \text{TRUE effect size } \delta \\ \sqrt{\frac{s_{pooled}^2}{n_B} + \frac{s_{pooled}^2}{n_A}} \quad \sigma_y^2 = \sigma_\mu^2 + \sigma_m^2 \\ \text{Sample size}$$

df Denominator of s_{pooled}^2 (n_A -1)+(n_B-1)

What controls α ?

You choose $\alpha!$

Higher α -> higher power

But also greater chance of a False Positive

Calculating Power

n = # samples **per treatment**

delta = **TRUE** effect size

sd = **TRUE** standard deviation of observations

 $sig.level = \alpha$

power = $1 - \beta$

Choose 1 of these to set to NULL

R will calculate its value

Need to guess at delta and sd

Questions:

What happens to **Power** when you **increase** each of the other parameters?

List 4 ways in increase Power in an experiment

Calculating Power

n = # samples **per treatment**

delta = **TRUE** effect size

sd = **TRUE** standard deviation of observations

 $sig.level = \alpha$

power = $1 - \beta$

Other options:

type: two.sample = No replication paired = Replicated treatment effects $\text{one.sample} = \text{Test if } \mu_{A} = 0$

alternative: two.sided: test if $\delta \neq 0$

one.sided: test if $\delta > 0$

5 nitrogen regimes (applied to plots): 0, 90, 150, 210, 270 lbs / acre at emergence

10 reps / treatment combination

Response: total yield per plot

Structure	Variable	Туре	#levels	Replicate	Experimental Unit
Treatment	Nitrogen	Categorical or Numeric	5	None	Plot
Design	Plot	Categorical	50		
Response	Yield	Numeric	50		

What questions should we address with these data?

"Questions" should be phrased around treatment effects (δ_{E-B} , etc)

Is +Nitrogen better than 0-Nitrogen?

Which [Nit] change Yield?

What [Nit] increases Yield the most relative to 0-Nitrogen

5 nitrogen regimes (applied to plots): 0, 90, 150, 210, 270 lbs / acre at emergence

10 reps / treatment combination

Response: total yield per plot

Reporting $\hat{\delta}_{90-0}$:

Estimate
$$\hat{\delta}_{90-0} = \hat{\mu}_{90} - \hat{\mu}_{0}$$

Calculate SED =
$$\sqrt{\frac{s_p^2}{n_{90}} + \frac{s_p^2}{n_0}}$$

Report CI: $\hat{\delta}_{90-0} \pm t_c \times SED$

Note: s_{pooled}^2 uses replicates from all 5 treatments

$$df = 5*(10-1)$$

Reporting $\hat{\delta}_{150-0}$:

Same ...

Reporting $\hat{\delta}_{150-90}$:

Same ...

5 nitrogen regimes (applied to plots): 0, 90, 150, 210, 270 lbs / acre at emergence

10 reps / treatment combination

Response: total yield per plot

What is the maximum improvement we could get?

Answer: What is the effect of the best level of Nitrogen?

Report
$$\hat{\delta}_{150-0} \pm t_c \times SED$$

Can any addition of Nitrogen actually increase yield?

Answer: Power is highest when δ is biggest

Run T-test for
$$\delta_{150-0} = 0$$

Both of these answers are misleading because we chose to run the statistics because the estimated yield for N-150 was highest

Once you look at the data, neither CIs nor p-values are valid

With 4 **new** treatments each compared to the control we are making 4 estimates

Estimated treatment effect 0 -

For each CI, there's a 5% chance that the TRUE effect is outside the interval

There is a 15% chance that the TRUE effect is outside **at least one** of these intervals

What is the maximum improvement we could get?

 $\hat{\delta}_{150-0}$ $\hat{\delta}_{210-0}$ $\hat{\delta}_{270-0}$

There's a good chance the biggest estimated effect was overestimated

We're "safe" if we can ensure all CIs include their TRUE values

Strategy: Adjust CIs so that the chance that **any** true effect is outside of the interval is $100\alpha\,\%$

CI:
$$\hat{\delta}_{i-0} \pm t_c^D \times SED$$

 $t_{lpha,df}^{D(k)}$ comes from the Dunnett distribution

k: # new treatments (excluding control)

 α : False Positive rate

df: Degrees of freedom from all treatments

Bigger value than t_c

Accounting for multiple comparisons

T-distribution

 $|\hat{\delta} - \delta|$ Actual error

Estimated average error

Distribution of Normalized errors

How much bigger than SED could my actual error have been?

*Valid for a single treatment effect

Dunnett(4) distribution

Estimate: $\hat{\delta}_{90-0}$, $\hat{\delta}_{150-0}$, $\hat{\delta}_{210-0}$, $\hat{\delta}_{270-0}$

 $\frac{max |\hat{\delta}_i - \delta_i|}{\mathsf{SED}}$

Actual size of **biggest** error

Estimated average error

Distribution of Biggest Normalized errors

Can any addition of Nitrogen actually increase yield?

If we run a T-test for $\delta_{150-0}=0$, the p-value will be **too small**

Instead calculate p-value from the Dunnett(4) distribution

Corrected p-value: Probability of the biggest observed Normalized effect being this large if all 4 treatments had no effect

With 5 treatment levels, we can make 10 pairwise comparisons

At least 1 CI won't include the TRUE effect ~27% of the time

We'd conclude that at least 2 levels differ ~27% of the time even if Nitrogen had no effect at all

Solution:

CI:
$$\hat{\delta}_{i-0} \pm t_c^T \times SED$$

 $t_{\alpha,df}^{T(k)}$ comes from the Tukey distribution

k: # total treatments

 α : False Positive rate

df: Degrees of freedom from all treatments

Bigger value than t_c from either T or Dunnett

5 nitrogen regimes (applied to plots): 0, 90, 150, 210, 270 lbs / acre at emergence

10 reps / treatment combination

Response: total yield per plot

If you are specifically asked about the effect of N=90 vs N=0:

Use the T-distribution

Specify: emmeans(..., at=list(Nitrogen=c(0,90))

If you are interested in which (if any) are different from the control (N=0)

Use the Dunnett distribution

Cannot compare the new treatments

Remember: Not significant \neq No effect

Specify: contrast(...,method = 'trt.vs.ctrl',ref='0')

If you are interested in which (if any) are different from any other

Use the Tukey distribution

Most common situation

Specify: contrast(...,method = 'pairwise')

What happens if you don't account for multiple comparisons?

Say Nitrogen actually had ZERO effect on yield...

5% of the time the CI for $\hat{\delta}_{150-0}$ would not cross zero (False Positive) 15% of the time at least one of the 4 CIs would not cross zero 15% of the time you would conclude "Nitrogen has an effect"

Our confidence in the $\hat{\delta}_{150-0}$ doesn't change with the number of levels of Nitrogen assayed

But if we pick out the **top effect(s)** or **significant effects** our confidence in their effect sizes is lower

Scenario: you're evaluating 10 fertilizer products from 10 companies

A) You will report back to each company the effect of their product

Distribution: T-distribution

B) You are reporting to a store which products are worth putting on the shelves

Distribution:

Dunnett(10) if all that improve yield over no fertilizer will be sold

Tukey(11) if only the best few will be sold

What can go wrong?

Estimates are biased

CI too small

CI too big

Assumptions for calculating Confidence Intervals

- EU are independent
 Count n for SEM and df
- 2) $\sigma_{\mu_i}^2$ and σ_m^2 are the same across groups Pooling deviations to calculate s_{pooled}^2 , maximizing df
- 3) μ_{ij} and ϵ_{ij} are Normally distributed T-distributions, Confidence Intervals and p-values

What can go wrong?

$$s_{pooled}^2$$
 is a weighted average of s_i^2

SEs for treatment means:

$$SEM_A = \sqrt{\frac{s_p^2}{n_A}}$$
 too small $SEM_B = \sqrt{\frac{s_p^2}{n_B}}$ too large

Cls for treatment effects:

$$\hat{\delta}_{B-A} \pm t_c \times SED$$
 too small

$$\hat{\delta}_{C-A} \pm t_c \times SED$$
 too small

$$\hat{\delta}_{C-B} \pm t_c \times SED$$
 too large

Accounting for multiple comparisons

T-distribution

Distribution of Normalized errors for one specific treatment effect

Dunnett(4) distribution

Distribution of the biggest Normalized error among 4 new treatments compared against a single control

Tukey(5) distribution

Distribution of the biggest Normalized error among 5 treatments compared in all pairwise combinations