浙江工业大学 2023/2024 学年第一学期 概率论与数理统计A(48学时)期末考试试卷

	学号:	姓名:		
	班级:	任课教师:		
5	↑位点数据:			
	$\Phi(2) = 0.9772 \Phi(3) = 0.9987 \chi$	$\chi^{2}_{0.1}(24) = 33.196 \chi^{2}_{0.1}(25) = 34.382$		
- .	选择题(每题3分,共24分)			
1.	已知 A,B,C 为三个随机事件,则 随机事	事件 A − (B \ C) 表示	()
	(A) A 发生, B, C 不都发生	(B) A 发生, B, C 都不发生		
	(C) A 不发生, B, C 都发生	(D) A 不发生, B, C 不都发生		
2.	设 X 服从 $[-a,a](a>0)$ 上的均匀分布,	且 $Y = X^2$,则 $X 与 Y$	()
	(A) 相关且独立	(B) 相关不独立	`	
	(C) 独立不相关	(D) 不独立不相关		
3.	下列函数中,可作为某一随机变量的分布	函数的是	()
	(A) $F(x) = \frac{1}{1+x^2}$	(B) $F(x) = \begin{cases} \frac{1}{2} (1 - e^{-x}), & x > 0, \\ 0, & x \le 0 \end{cases}$		
	(C) $F(x) = \begin{cases} \frac{x+1}{x+2} & x > 0, \\ -\frac{1}{x-1}, & x \le 0 \end{cases}$	(D) $F(x) = \frac{1}{\pi} \arctan x + \frac{1}{2}$		
4.	设随机变量 X 和 Y 相互独立且 $X \sim B$	$(1,\frac{1}{2}), Y \sim U(0,1), \mathbb{M} P(X+Y \leq \frac{1}{3}) =$	= ()
	(A) $\frac{1}{6}$ (B) $\frac{1}{3}$	(C) $\frac{1}{4}$ (D) $\frac{1}{2}$		
5.	设非负随机变量 X 满足 $E(X^2) = 1.1$	D(X) = 0.1,则根据切比雪夫不等式,	有 <i>P</i> (0	<
	$X < 2) \ge$		()
	(A) 0.1 (B) 0.5	(C) 0.9 (D) 1		
6.	设随机变量 (X,Y) 服从二维正态分布 1	V (0, 0; 1, 4; - = 1), 则下列随机变量中服从	标准正	态
	分布且与 X 独立的是	(, , , , , , 2),	()
	(A) $\frac{\sqrt{5}}{5}(X+Y)$	(B) $\frac{\sqrt{5}}{5}(X-Y)$		
	(C) $\frac{\sqrt{3}}{3}(X+Y)$	(D) $\frac{\sqrt{3}}{3}(X-Y)$		

	设总体 X 的数学期望 $E(X)=0$,方差 $D(X)=\sigma^2$,而 $X_1,X_2,\cdots,X_n (n>2)$ 是来自总体 X 的简单随机样本, $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i, S^2=\frac{1}{n-1}\sum_{i=1}^n \left(X_i-\overline{X}\right)^2$,则下列属于 σ^2 的无偏估计量 的是 $ (A) n\overline{X}^2+S^2 \qquad \qquad (B) \frac{1}{2}\left(n\overline{X}^2+S^2\right) \qquad \qquad (D) \frac{1}{4}\left(n\overline{X}^2+S^2\right) $						
8.	设总体 $X \sim N\left(\mu, \sigma^2\right)$, 其中 σ^2 未知, $S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2$, 样本容量 n , 则参数 μ 的 置信度为 $1 - \alpha$ 的双侧置信区间为 $ (A) \left(\overline{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n)\right) $ (B) $\left(\overline{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right) $ (C) $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n), \overline{X} + \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n)\right) $ (D) $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right) $						
L. 填空题(每空 2 分, 共 16 分)							
9.	. 某人向同一目标独立重复射击,每次射击命中目标的概率为 $\frac{1}{3}$,则此人第 4 次射击恰好第 2 次命中目标的概率为						
10.	已知事件 A,B 恰有一个发生的概率为 0.3 , 且 $P(A)+P(B)=0.5$,则 A,B 至少有一个不发生的概率为						
11.	已知随机变量 X 服从指数分布 $Exp(\lambda)$,若 $P(X \ge 1) = \frac{1}{2}$,则 $P(X \ge 3 \mid X \ge 1) = \frac{1}{2}$						
12.	设随机变量 X 的概率密度函数 $f(x)=$ $\begin{cases} \frac{1}{2}\cos\frac{x}{2}, & 0< x<\pi,\\ 0, & \text{对 }X\text{ 重复观察 4 次, 用 }Y \end{cases}$ 表示 4 次观察中出现 $\{X>\frac{\pi}{3}\}$ 的次数,则 $E(Y)=$						
13.	设随机变量列 $X_1, X_2, \cdots, X_n, \cdots$ 独立同分布于泊松分布 $P(2)$,当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛于						
14.	设总体 $X \sim N(0,4)$, 且 X_1, X_2, X_3, X_4, X_5 为来自总体的简单随机样本, 且满足						
$a(X_1 - X_2)^2 + b(X_3 + X_4 + X_5)^2$							
	服从 $\chi^2(2)$, 则常数 $a =$						
15.	计算机在进行加法时,每个加数按四舍五人取最接近它的整数,设各个加数的取整误差是相互独立的,它们都服从区间为 (-0.5,0.5) 的均匀分布,现有 300 个加数相加,则由中心极限定理,得误差总和绝对值超过 15 的概率约为						

三. 解答题(共 60 分)

16. (8分) 第一袋中有 2 个白球 4 个黑球,第二袋中有 6 个白球 2 个黑球,现从这两袋中各 任取一球,再从取出的两球中任取一球.

求: (1) 这球是白球的概率是多少?

- (2) 如发现这球是白球, 问原先从两个袋子中取出的是相同颜色球的概率是多少?
- 17. (12分)设连续型随机变量 X 的概率密度函数 f(x) = $\begin{cases} ax, & 1 \leq x < 2, \\ b, & 2 \leq x < 3, \\ 0, & \text{其他}, \end{cases}$

 $P(1 \le X < 2) = 2P(2 \le X < 3).$

求: (1) 常数 a 与 b 的值; (2) X 的分布函数; (3) 随机变量 $Y = 9X^2 + 1$ 的数学期望.

18. (10分) 设随机变量 (X,Y) 服从分布律

Y X	0	1
0	0.4	a
1	b	0.1

已知事件 $\{X + Y = 1\}$ 与 $\{X = 0\}$ 相互独立.

求: (1) 常数a, b 的值; (2) Cov(X + Y, X - Y).

19. (12分)设二维连续型随机变量 (X,Y) 的联合概率密度函数 $f(x,y) = \begin{cases} xy, & 0 \le x \le 1, 0 \le y \le 2, \\ 0, &$ 其他.

求: (1) P(X + Y > 1);

- (2) 边缘概率密度 $f_X(x)$ 和条件概率密度 $f_{X|Y}(x \mid y)$,判断 X 与 Y 是否相互独立,并说明理由:
- (3) Z = X + Y 的概率密度函数 $f_Z(z)$.
- 20. (10分) 已知总体 X 的分布函数为 $F(x;\theta) = \begin{cases} 1 \frac{1}{x^{\theta}}, & x \geq 1, \\ 0, & x < 1, \end{cases}$ 其中参数 $\theta > 1$, 且 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本.

求: (1) 未知参数 θ 的矩估计量; (2) 未知参数 θ 的最大似然估计量.

21. (8分) 某洗衣粉厂用自动包装机进行包装, 正常情况下包装的重量(单位: g) $X\sim N\left(\mu,\sigma^2\right)$. 现随机抽取 25 袋洗衣粉, 测得平均重量 $\bar{x}=501.5$ g, 样本标准差 s=2.5 g. 取显著性水平 $\alpha=0.1$,问可否认为 σ^2 显著大于 6 g^2 ?