$^{137}_{55}$ Cs $_{82}$

1 Decay Scheme

The 137 Cs decays by 100% beta-minus emission to the ground and excited states of the 137 Ba. Le 137 Cs se désintègre à 100% par émission bêta moins vers l'état fondamental et les états excités du 137 Ba.

2 Nuclear Data

2.1 β ⁻ Transitions

	Energy (keV)	Probability (%)	Nature	$\log ft$
$\beta_{0,2}^{-}$	513,97 (17)	94,61 (30)	Forbidden 1^{st} unique	9,7
$\beta_{0,1}$	892,17 (18)	0,0006(1)	Forbidden 2^{nd} unique	16,6
$\beta_{0,0}$	1175,63 (17)	5,39 (30)	Forbidden 2^{nd} non-unique	12,8

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} P_{\gamma+ce} \\ (\%) \end{array}$	Multipolarity	$\begin{array}{c} \alpha_K \\ (10^{-2}) \end{array}$	$\begin{array}{c} \alpha_L \\ (10^{-2}) \end{array}$	$\begin{pmatrix} \alpha_M \\ (10^{-2}) \end{pmatrix}$	$\begin{array}{c} \alpha_T \\ (10^{-2}) \end{array}$
$\gamma_{1,0}(Ba)$ $\gamma_{2,1}(Ba)$ $\gamma_{2,0}(Ba)$	283,46 (7)	0,00063 (11)	M1+E2	4,61 (7)	0,726 (11)	0,1516 (22)	5,52 (8)
	378,20 (7)	0,0000202 (17)	E5	46,3 (7)	34,4 (5)	7,87 (11)	90,4 (13)
	661,657 (5)	94,61 (35)	M4	9,15 (13)	1,648 (23)	0,352 (5)	11,24 (16)

3 Atomic Data

3.1 Ba

 $\begin{array}{rclcr} \omega_K & : & 0,900 & (4) \\ \bar{\omega}_L & : & 0,110 & (5) \\ n_{KL} & : & 0,888 & (4) \end{array}$

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ ({\rm keV}) \end{array}$		Relative probability
X_{K}				
	$K\alpha_2$	31,8174		54,28
	$K\alpha_1$	$32{,}1939$		100
	$K\beta_3$	36,3045)	
	$K\beta_1$	36,3786	}	29,41
	$\mathrm{K}eta_5^{\prime\prime}$	36,654	J	
	$K\beta_2$	37,258)	
	$K\beta_4$	37,312	}	$7,\!41$
	$\mathrm{KO}_{2,3}$	$37,\!425$	J	
X_{L}				
	$\mathrm{L}\ell$	3,9544		
	$L\alpha$	4,4515 - 4,4666		
	$\mathrm{L}\eta$	4,3307		
	$L\beta$	4,8278 - 5,207		
	${ m L}\gamma$	5,3715 - 5,8104		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL KLX KXY	25,314 - 26,786 30,095 - 32,179 34,86 - 37,41	100 47,7 5,7
Auger L	2,6614 - 5,8064	

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
$\mathrm{e_{AL}}$	(Ba)	2,6614 - 5,8064		7,39 (5)
e_{AK}	(Ba) KLL KLX KXY	25,314 - 26,786 30,095 - 32,179 34,86 - 37,41	}	0,78 (4)
$\begin{array}{c} {\rm ec_{2,0}\ T} \\ {\rm ec_{2,0}\ K} \\ {\rm ec_{2,0}\ L} \\ {\rm ec_{2,0}\ M} \end{array}$	(Ba) (Ba) (Ba) (Ba)	624,216 - 661,642 624,216 (5) 655,668 - 656,410 660,364 - 660,876		9,56 (14) 7,78 (11) 1,402 (20) 0,2994 (44)
$\beta_{0,2}^-$	max:	513,97 (17) 173,67 (6)	}	94,61 (30)
$\beta_{0,1}^-$	max: avg:	892,17 (18) 332,51 (7)	}	0,0006 (1)
$\beta_{0,0}^-$	max: avg:	1175,63 (17) 284,90 (5)	}	5,39 (30)

5 Photon Emissions

5.1 X-Ray Emissions

		$\begin{array}{c} {\rm Energy} \\ ({\rm keV}) \end{array}$		Photons (per 100 disint.)		
XL	(Ba)	3,9544 - 5,8104		0,919 (16)		
$\begin{array}{c} XK\alpha_2 \\ XK\alpha_1 \end{array}$	(Ba) (Ba)	31,8174 $32,1939$		1,99 (4) 3,66 (6)	}	$K\alpha$
$\begin{array}{c} {\rm XK}\beta_3 \\ {\rm XK}\beta_1 \\ {\rm XK}\beta_5^{\prime\prime} \end{array}$	(Ba) (Ba) (Ba)	36,3045 $36,3786$ $36,654$	$\bigg\}$	1,078 (21)		$\operatorname{K}'\beta_1$
$XK\beta_2$ $XK\beta_4$ $XKO_{2,3}$	(Ba) (Ba) (Ba)	37,258 $37,312$ $37,425$	$\bigg\}$	0,272 (8)		$\operatorname{K}'\beta_2$

5.2 Gamma Emissions

	$\begin{array}{c} {\rm Energy} \\ ({\rm keV}) \end{array}$	Photons (per 100 disint.)
$\gamma_{1,0}(\mathrm{Ba})$	283,46 (7)	0,0006 (1)
$\gamma_{2,1}(\mathrm{Ba})$	378,20 (7)	0,0000106 (9)
$\gamma_{2,0}(\mathrm{Ba})$	661,655 (5)	85,05 (29)

6 Main Production Modes

The ¹³⁷Cs is mainly produced by thermal neutron-induced fission of the ²³⁵U in nuclear reactors.

7 References

- H. Daniel, H. Schmitt. Z.Physik 86 (1962) 47 (Beta decay intensity)
- J.S. MERRITT, J.G.V. TAYLOR. Anal.Chem. 37 (1965) 351 (137m Ba half-life, Beta decay intensity)
- P.G. Marais, F.J. Haasbroek, E.V.S. Lotz, J.V.R. Smit. J.S.Afr.Chem.Inst. 19 (1966) 1 (137mBa half-life)
- V. MIDDELBOE. Mat.-Fys.Medd. 35 (1966) 1-19 (137m Ba half-life)
- S.T. HSUE, L.M. LANGER, S.M. TANG. Nucl. Phys. 86 (1966) 47 (Beta decay intensity)
- K. ZARNOWIECKI. Nucl.Instr.Methods 55 (1967) 329 (Level energy)
- H.H. Hansen, G. Lowenthal, A. Spernol, W. van der Eijk, R. Vaninbroukx. Z.Phys. 218 (1969) 25 (137m Ba half-life, Gamma intensity)
- J. LEGRAND, J.P. BRETHON, F. LAGOUTINE. CEA-R 4428 (1973) (137m Ba half-life, Beta decay intensity, Gamma intensity)
- I.W. GOODIER, J.L. MAKEPEACE, L.E.H. STUART. Int.J.Appl.Radiat.Isotop. 26 (1975) 490 (Beta decay intensity)
- G.L. Borchert. Z.Naturforsch. 31a (1976) 387 (Level energy)
- K.Y. Gromov, T. Kretsu, V.V. Kuznetsov, G.Makarie. Bull.Acad.Sci.USSR, Phys.Ser. 42 (1978) 85 (Beta decay intensity)
- J.S. MERRITT, F.H. GIBSON. AECL-6203 (1978) (Gamma intensity)
- H. Behrens, P. Christmas. Nucl.Phys. A 399 (1983) 131 (Beta decay intensity, Gamma intensity)
- R.H. Martin, J.G.V. Taylor. Nucl.Instrum.Methods Phys.Res.A 286 (1990) 507 (137Cs half-life)
- V.A. Bondarenko, I.L. Kuvaga, P.T. Prokofjev, A.M. Sukhovoj, V.A. Khitrov, Yu.P. Popov, S. Brant, V. Paar. Nucl. Phys. A 582 (1995) 1 (Level energy)
- I. Bikit, I. Anicin, J. Slivka, M. Krmar, J. Puzovic, Lj. Conkic. Phys.Rev. C 54 (1996) 3270 (Gamma intensity)
- E. Schönfeld, H. Janssen. Nucl.Instrum.Methods Phys.Res.A 369 (1996) 527 (Atomic data)
- B.K. Wagner, P.E. Garrett, M. Yeh, S.W. Yates. J.Radioanal.Nucl.Chem. 219 (1997) 217 (Level energy, Gamma intensity)
- E. SCHÖNFELD, G. RODLOFF. PTB-6.11-98-1 (1998) (Auger data)

- E. SCHÖNFELD, G. RODLOFF. PTB-6.11-1999-1 (1999) 1 (X-rays data)
- R.G. Helmer, C. van der Leun. Nucl.Instrum.Methods Phys.Res. A 450 (2000) 35 (Level energy)
- E. Schönfeld, H. Janssen. Appl.Radiat.Isot. 52 (2000) 595 (Emission code)
- V.O. SERGEEV, F.F. VALIEV. Bull.Rus.Acad.Sci.Phys. 71 (2007) 827 (Level energy, Gamma intensity)
- E. Browne, J.K. Tuli. Nucl.Data Sheets 108 (2007) 2173 (Level spin & parity)
- T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR.. Nucl.Instrum.Methods Phys.Res.A 589 (2008) 202 (BrIcc code)
- C. Dulieu, M.M. Bé, V. Chisté. Proc.Intern.Conf.Nuclear Data for Science and Technology (2008) 97 (Saisinuc)
- H. SCHRADER. Appl.Radiat.Isot. 68 (2010) 1583 ($^{137}\mathrm{Cs}$ half-life)
- E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo. Phys.Lett. B 710 (2012) 114 (137Cs half-life)
- K. Moran, E.A. McCutchan, C.J. Lister, S. Zhu, M.P. Carpenter, P. Chowdhury, J.P. Greene, T. Lauritsen, E. Merchan, R. Shearman. Phys.Rev. C 90 (2014) 041303 (Gamma intensity)
- F. Juget, Y. Nedjadi, T. Buchillier, F. Bochud, C. Bailat. Appl.Radiat.Isot. 118 (2016) 215 (137Cs half-life)
- X. MOUGEOT. Appl.Radiat.Isot. 154 (2019) 108884 (BetaShape code)
- P.A. Zyla, PDG collaboration. Prog.Theor.Exp.Phys. 2020 (2020) 083C01 (Particle masses)
- M.P. Unterweger, R. Fitzgerald. Appl. Radiat.
Isot. 159 (2020) 108976 ($^{137}\mathrm{Cs}$ half-life)
- M. Wang, W.J. Huang, F.G. Kondev, G. Audi, S. Naimi. Chin. Phys. C 45 (2021) 030003 (Nuclide masses)

