Санкт-Петербургский политехнический университет Петра Великого Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

Отчёт

по лабораторной работе №5

Дисциплина: Техническое зрение

Тема: Aruco маркеры

Студент гр. 3331506/70401

Преподаватель

Водорезов Г.И.

Варлашин В.В.

« »_____2021 г.

Санкт-Петербург

Цель

Ознакомление со встроенными функциями для контурного анализа из библиотеки *OpenCV*, и их использование для нахождения необходимых объектов на заданных изображениях.

Задачи

- 1. Откалибровать собственную камеру при помощи доски aruco и шахматной доски;
 - 2. Откалибровать с помощью Calibration Toolbox (Matlab);
- 3. Написать программу, которая бы детектировала маркер на изображении и рисовала куб с основанием в виде маркера (куб должен быть спроецирован на плоскость изображения и иметь различные цвета ребер).

Ход работы

1. Калибровка с использованием OpenCV

Для калибровки камеры использовалась доска aruco размерами 5x7 и шахматная доска, показанные на рисунках 1 и 2 соответственно.

Рисунок 1 – Доска aruco

Рисунок 2 — Шахматная доска

В результате калибровки были получены матрицы внутренних параметров. Пример матрицы показан на рисунке 3.

$$A = \left[egin{array}{ccc} f_x & 0 & c_x \ 0 & f_y & c_y \ 0 & 0 & 1 \end{array}
ight]$$

Рисунок 3- Матрица внутренних параметров камеры где f_x и f_y – фокусные расстояния камеры вдоль осей x и y соответственно, c_x и c_y – координаты центра изображения.

Матрица внутренних параметров, полученная калибровкой при помощи доски aruco, представлена в таблице 1.

Таблица 1 - Результат калибровки доской aruco

1007,5	0	679,45		
0	1009,3	371,5		
0	0	1		

Матрица внутренних параметров, полученная калибровкой при помощи шахматной доски, представлена в таблице 2.

Таблица 2 - Результат калибровки шахматной доской

1005,7	0	676,45		
0	1007,37	370,6		
0	0	1		

2. Калибровка в MATLAB

Калибровка камеры в MATLAB производилась с использованием встроенного приложения Camera Calibrator.

Полученная матрица внутренних параметров представлена в таблице 3.

Таблица 3 - Результат калибровки в MATLAB

1003,4	0	675,39		
0	1002,7	369,56		
0	0	1		

3. Отрисовка куба на маркере aruco

Алгоритм решения данного задания:

- 1. Захват кадра с видео камеры;
- 2. Детектирование маркера с помощью функции detectMarkers;
- 3. Нахождение матриц поворота и переноса для каждого маркера с помощью функции estimatePoseSingleMarkers;
- 4. Проецирование 3D-точек (вершин куба) на плоскость изображения с помощью функции *projectPoints*;
- 5. Соединение спроецированных точек линиями функцией *line* и обозначение их функцией *circle*.

Результат отрисовки куба показан на рисунке 4.

Рисунок 4 – Отрисовка куба на маркере aruco.

4. Дополнительное задание

В рамках дополнительного задания (защиты) необходимо было отрисовывать на каждой гране куба одну из сторон игральных кубиков.

Алгоритм решения данного задания:

- 1. Используются спроецированные точки куба из п.3.
- 2. Вычисляются площади каждой грани с помощью функции *contourArea*.
- 3. Нахождение матрицы гомографии с помощью функции *findHomography* и искажаем изображение стороны игральной кости с помощью функции *warpPerspective*.
- 4. Наложение искаженного изображения на исходное с помощью маски и битовых операций bitwise_not, bitwise_and и bitwise_or.
- 5. Наложение изображений сторон игральной кости на исходное изображение происходит в зависимости от площади контуров.

Результат отрисовки игрального кубика показан на рисунке 5.

Рисунок 5 — Отрисовка игрального кубика.

Вывод

В ходе работы были изучены методы создания маркеров aruco, проведена калибровка камеры тремя способами: доской aruco, шахматной доской и при помощи встроенного приложения MATLAB.

Так же были освоены навыки проецирования точек 3D пространства на плоскость изображения.

Результаты всех трех калибровок приведены в таблице 4.

Таблица 4 – Сравнение результатов калибровок

Доска агисо		Шахматная доска		MATLAB				
1007,5	0	679,45	1005,7	0	676,45	1003,4	0	675,39
0	1009,3	371,5	0	1007,37	370,6	0	1002,7	369,56
0	0	1	0	0	1	0	0	1