Prediction of Variables from Cancer Reports

Candidato

Federico Magnolfi

Relatori

Prof. Paolo Frasconi Prof. Simone Marinai

Correlatori

Leonardo Ventura, Stefano Martina

Università degli Studi di Firenze Corso Laurea Magistrale in Ingegneria Informatica

May 31, 2021

Introduction •00

Introduction

Tuscany cancer reports

- Doctors write reports after oncological visits
- ISPRO collects reports in Tuscany
- Experts extract variables from reports

Variables

- describe the progress of the pathology
- used to ensure that patients are receving the correct care

Problem

Reports are analyzed with some years of delay (\sim 5 years)

Prediction of variables

Objective

Predict variables to **speedup** the analyses of reports

This thesis

Study the **predictability** of these variables for breast cancer reports

Previous work ¹

Dataset with all cancer types, prediction of **primary site** and **morphology**

¹S. Martina, L. Ventura and P. Frasconi, "Classification of Cancer Pathology Reports: A Large-Scale Comparative Study"

Breast cancer dataset

Example of report

field	value
notizie	
macroscopia	Q.I.C. mammella sn (cm 12x8x5):\nT1-4) neoplasia (mm 23), distanza dai margini >mm 10; MS) margine superiore; MI) margine inferiore; MM) margine mediale; ML) margine laterale; MP) margine profondo; CU) margine cutaneo. \n(eseguita colorazione ematossilina-eosina e valutazione parametri biologici con controllo di qualiti; §).
diagnosi	CARCINOMA DUTTALE INFILTRANTE (N.O.S.) (G2) DELLA MAMMELLA CON ASSOCIATE ESPRESSIONI INTRADUTTALI DI BASSO GRADO (T1-4\)nNON EVIDENTE PERMEAZIONE NEOPLASTICA VASCOLARE \n NESSUNA PROLIFERAZIONE CANCERIGNA NEI MARGINI DI SEZIONE CHIRURGICA (MS, MI, ML, MM, MP), NELLLA CUTE (CU), NEL LINFONODO SENTINELLA (vedi es. B. 10508/12).\n(p T2 N0(OSNA -))* \n*(TNM, VIIï¿\(\frac{1}{2}\) ed., 2009)\nParametri biologici: ER: + 90%; PGR: + 60%; ki67: + 10%; Her 2:

Example of report

field	value
Helu	value
notizie	
	Q.I.C. mammella sn (cm 12x8x5):\nT1-4) neoplasia (mm 23),
	distanza dai margini >mm 10; MS) margine superiore;
macroscopia	MI) margine inferiore; MM) margine mediale;
macroscopia	ML) margine laterale; MP) margine profondo; CU) margine
	cutaneo. \n(eseguita colorazione ematossilina-eosina e
	valutazione parametri biologici con controllo di qualiti; 1/2).
	CARCINOMA DUTTALE INFILTRANTE (N.O.S.) (G2)
	DELLA MAMMELLA CON ASSOCIATE ESPRESSIONI
	INTRADUTTALI DI BASSO GRADO (T1-4)\nNON
	EVIDENTE PERMEAZIONE NEOPLASTICA VASCOLARE
diagnosi	\n NESSUNA PROLIFERAZIONE CANCERIGNA NEI
ulagilosi	MARGINI DI SEZIONE CHIRURGICA (MS, MI, ML, MM, MP),
	NELLLA CUTE (CU), NEL LINFONODO SENTINELLA
	(vedi es.B 10508/12).\n(p T2 N0(OSNA -))* \n*(TNM,
	VIIï¿₫ ed., 2009)\nParametri biologici:
	ER: + 90%; PGR: + 60%; ki67: + 10%; Her 2:

field	value
id_paz	5*****
anno_diagnosi	2012
sede_icdo3	C509
morfologia_icdo3	85003
dimensioni	23
tipo_T	Р
metastasi	
modalita_T	E
modalita_N	E
stadio_T	2
stadio_N	0SN
recettori_estrogeni	90
recettori_progestin	60
numero_sentinella_asportati	1
numero_sentinella_positivi	0
mib1	
cerb	0
ki67	10
grading	2
anno_referto	2012
id_isto	5*****

Example of report

field	value
notizie	
macroscopia	Q.I.C. mammella sn (cm 12x8x5):\nT1-4) neoplasia (mm 23), distanza dai margini >mm 10; MS) margine superiore; MI) margine inferiore; MM) margine mediale; ML) margine laterale; MP) margine profondo; CU) margine cutaneo. \n(eseguita colorazione ematossilina-eosina e valutazione parametri biologici con controllo di qualiti¿½).
diagnosi	CARCINOMA DUTTALE INFILTRANTE (N.O.S.) (©2) DELLA MAMMELLA CON ASSOCIATE ESPRESSIONI INTRADUTTALI DI BASSO GRADO (T1-4)\nNON EVIDENTE PERMEAZIONE NEOPLASTICA VASCOLARE \n NESSUNA PROLIFERAZIONE CANCERIGNA NEI MARGINI DI SEZIONE CHIRURGICA (MS, MI, ML, MM, MP), NELLLA CUTE (CU), NEL LINFONODO SENTINELLA (vedi es. B. 10508/12).\n(p. T2) NO(OSNA -))* \n*(TNM, VIIï¿å ed., 2009)\nParametri biologici: ER: +90%; PGR: +60%; ki67: +10%; Her 2: .

field	value
id_paz	5*****
anno_diagnosi	2012
sede_icdo3	C509
morfologia_icdo3	85003
dimensioni	23
tipo_T	Р
metastasi	
modalita_T	E
modalita_N	E
stadio_T	2
stadio_N	0SN
recettori_estrogeni	90
recettori_progestin	60
numero_sentinella_asportati	1
numero_sentinella_positivi	0
mib1	
cerb	0
ki67	10
grading	2
anno_referto	2012
id_isto	5*****

- **grading**: difference between cancer cells and healthy ones
- tumor stage: extension of the primary tumor
- lymph nodes stage: involvement of lymph nodes
- **ki67**: marker of tumor cells proliferation speed
- removed lymph nodes: how many lymph nodes was removed
- positive lymph nodes: how many lymph nodes had malignant cells
- size: size of the primary tumor

Dataset info

- breast cancer
- \sim 25k patients
- $ightharpoonup \sim 115$ k reports
- more than 10 variables

Dataset info

- breast cancer
- $lue{}\sim 25$ k patients ightarrow labeled from 2003 to 2015
- ~ 115 k reports
- $lue{}$ more than 10 variables ightarrow many missing values

Types of variables

binary variable

Types of variables

Types of variables

with missing values

Federico Magnolfi

percentages

Types of variables

Federico Magnolfi

UniFI

Question we want to answer

Question

Is it possible to **predict variables** from these reports?

There are no previous references to compare

Approach

Different strategies for different variables:

classification

Examples:

- "carcinoma duttale infiltrante nos g3"
- "nessuna proliferazione neoplastica nel linfonodo sentinella"

2 segmentation

Examples:

- "Ki67 (clone MIB1): 80%"
- "neoplasia (mm 23), distanza dai margini >mm 10;"

Different strategies for different variables:

classification

→ machine learning models

Examples:

- "carcinoma duttale infiltrante nos g3"
- "nessuna proliferazione neoplastica nel linfonodo sentinella"

segmentation

→ regex-based algorithm

Examples:

- "Ki67 (clone MIB1): 80%"
- "neoplasia (mm 23), distanza dai margini >mm 10;"

Federico Magnolfi

Example:

"CARCINOMA DUTTALE INFILTRANTE (NOS) DELLA MAMMELLA. Grado 3 secondo Elston- Ellis."

↓ preprocess

"carcinoma duttale infiltrante (nos) della mammella . g3 secondo elston - ellis ."

↓ tokenize

["carcinoma", "duttale", "infiltrante", "(", "nos", ")", "della", "mammella", ".", "g3", "secondo", "elston", "-", "ellis", "."]

Classifications: models

Transforme

- at the base of state-of-the-art in many NLP tasks
- usually take advantage of large amounts of unlabeled data.
- ...but we do not investigate this path due to the nature of the dataset

Classifications: models

- \blacksquare Random Forest \rightarrow Trees ensemble
- Linear SVM

Transformer

- at the base of state-of-the-art in many NLP tasks
- usually take advantage of large amounts of unlabeled data...
- ...but we do not investigate this path due to the nature of the dataset.

Example:

"CARCINOMA DUTTALE INFILTRANTE NOS G3, MULTIFOCALE. INVASIONE VASCOLARE ...

TNM 2010 VII edizione: pT1c (m), pN1 mi (sn). PARAMETRI BIOLOGICI: ER (clone SP1): POSITIVO 100% INTENSITA' DELLA COLORAZIONE: MARCATA PgR (clone 1E2): POSITIVO 70% INTENSITA' DELLA COLORAZIONE: MARCATA Ki67 (clone MIB1): 30% c-erbB-2 (policlonale A 0485): POSITIVO > 10% INTENSITA' DELLA COLORAZIONE: MODERATA. SCORE 2+."

Example:

"CARCINOMA DUTTALE INFILTRANTE NOS G3. MULTIFOCALE. INVASIONE VASCOLARE ...

TNM 2010 VII edizione: pT1c (m), pN1 mi (sn). PARAMETRI BIOLOGICI: ER (clone SP1): POSITIVO 100% INTENSITA' DELLA COLORAZIONE: MARCATA PgR (clone 1E2): POSITIVO 70% INTENSITA' DELLA COLORAZIONE: MARCATA Ki67 (clone MIB1): 30% c-erbB-2 (policlonale A 0485): POSITIVO > 10% INTENSITA' DELLA COLORAZIONE: MODERATA. SCORE 2+."

Steps:

1 find a marker of the variable

 $ki67 s?. \{, 10\}$:

Results

Example:

"CARCINOMA DUTTALE INFILTRANTE NOS G3. MULTIFOCALE. INVASIONE VASCOLARE ...

TNM 2010 VII edizione: pT1c (m), pN1 mi (sn). PARAMETRI BIOLOGICI: ER (clone SP1): POSITIVO 100% INTENSITA' DELLA COLORAZIONE: MARCATA PgR (clone 1E2): POSITIVO 70% INTENSITA' DELLA COLORAZIONE: MARCATA Ki67 (clone MIB1): 30% c-erbB-2 (policlonale A 0485): POSITIVO > 10% INTENSITA' DELLA COLORAZIONE: MODERATA, SCORE 2+."

Steps:

1 find a marker of the variable

take a window of characters

 $ki67 \ s?. \{, 10\}$:

Example:

"CARCINOMA DUTTALE INFILTRANTE NOS G3. MULTIFOCALE. INVASIONE VASCOLARE ...

TNM 2010 VII edizione: pT1c (m), pN1 mi (sn). PARAMETRI BIOLOGICI: ER (clone SP1): POSITIVO 100% INTENSITA' DELLA COLORAZIONE: MARCATA PgR (clone 1E2): POSITIVO 70% INTENSITA' DELLA COLORAZIONE: MARCATA (clone MIB1): 30% c-erbB-2 (policionale A 0485): POSITIVO > 10% INTENSITA' DELLA COLORAZIONE: MODERATA, SCORE 2+."

Steps:

- 1 find a marker of the variable
- 2 take a window of characters
- 3 cut after a foreign marker

 $ki67\slash s?.\{,10\}$:

cerb|pgr|\ser\s|progest|estrog

Federico Magnolfi

Example:

"CARCINOMA DUTTALE INFILTRANTE NOS G3. MULTIFOCALE. INVASIONE VASCOLARE ...

TNM 2010 VII edizione: pT1c (m), pN1 mi (sn). PARAMETRI BIOLOGICI: ER (clone SP1): POSITIVO 100% INTENSITA' DELLA COLORAZIONE: MARCATA PgR (clone 1E2): POSITIVO 70% INTENSITA' DELLA COLORAZIONE: MARCATA (clone MIB1): 30% c-erbB-2 (policionale A 0485): POSITIVO > 10% INTENSITA' DELLA COLORAZIONE: MODERATA. SCORE 2+."

Steps:

1 find a marker of the variable $ki67\slash s?.\{,10\}$:

2 take a window of characters

3 cut after a foreign marker cerb|pgr|\ser\s|progest|estrog

4 find a number in the window $(\d?\d?\d)\%$

Accuracy							
	Grading Stadio N Stadio T Sentinella Asportati Sentinella Positivi						
Decision Tree	92.3%	95.3%	89.6%	75.6%	87.6%		
Random Forest	94.8%	97.6%	97.0%	83.5%	92.2%		
XGBoost	94.2%	97.2%	97.6%	84.6%	90.7%		
SVM	93.4%	96.8%	94.4%	83.9%	91.1%		
MLP	91.6%	93.1%	94.0%	71.7%	86.8%		
Transformer	94.0%	93.4%	94.6%	70.1%	86.8%		
num classes	3	5	5	4	3		

Observations

- Grading, Stadio-N, Stadio-T are easier
- Random Forest and XGBoost have the best results

Tipo-T variable

	Accuracy	Precision	Recall	F1
Decision Tree	96.5%	48.2%	70.2%	57.1%
Random Forest	96.5%	47.8%	77.2%	59.1%
XGBoost	96.4%	46.1%	61.4%	52.6%
SVM	96.4%	47.1%	71.9%	56.9%
MLP	96.9%	53.1%	45.6%	49.1%
Transformer	95.6%	40.2%	68.4%	50.6%

Observations

- Highly unbalanced classification
- Random Forest has the best results.

Observations

- trees were greedily constructed...
- ... but learned trees are very compact

Segmentations results

Metrics

Extracted: % of predictions on the total

- Accuracy on extracted
- Hit: % of correct predictions on the total

	Extracted	Acc. on extracted	Hit
recettori estrogeni	96.3%	71.3%	68.7%
recettori progestin	96.8%	89.9%	87.0%
mib1	100%	18.2%	18.2%
cerb	96.1%	83.6%	80.4%
ki67	97.7%	81.9%	80.0%
dimensioni	76.9%	73.7%	56.7%

Problems

- mib1 has very few labels
- dimensioni has different unit of measure

Conclusions

Answering the question

Question

Is it possible to **predict variables** from these reports?

Answer

It's possible to predict them with high accuracy in most cases.

Whether these accuracies are enough can be verified only using these models in practice.

Recap

- RF and XGBoost are **good classifiers** for some variables
- NN do not obtain better results
- in [1] complex models were not much better than simpler ones
- regex-based algorithm is a good baseline for many variables
- further improvements are possible

¹ S. Martina, L. Ventura and P. Frasconi, "Classification of Cancer Pathology Reports: A Large-Scale Comparative Study"

Conclusions

Considerations

- the aim is not to replace human experts
- two registers that proceed at different speed

Future works

- predict presence of the variable
- access to similar datasets
- numbers extraction as a learning problem
- focus on interpretable models

Thank you for the attention. Are there any questions?

Macro F1 on the test set for the multi-class classification variables.

Macro F1					
	Grading Stadio N Stadio T Sentinella Asportati Sentinella Positiv				
Decision Tree	91.5%	92.3%	84.5%	66.3%	75.5%
Random Forest	94.1%	96.5%	93.3%	73.1%	80.4%
XGBoost	93.5%	95.9%	94.4%	77.2%	81.2%
SVM	92.5%	95.3%	89.8%	75.4%	82.0%
MLP	90.6%	87.7%	82.8%	62.6%	69.0%
Transformer	93.3%	89.7%	91.6%	64.3%	72.8%
num classes	3	5	5	4	3

Important tokens for Random Forest

	Grading	Stadio N	Stadio T
1	g2	n1	t2
2	g3	n0	p t2
3	g1	n1 a	p t1
4	nos g3	n2 a	t1
5	(g2	n2	ptis
6	scarsamente differenziato	p n1	t1 c
7	scarsamente	p n1 a	pt1 c
8	infiltrante nos g3	n3 a	: p t2
9	(g3	n0 (t2 ,
10	moderatamente differenziato	n3	infiltrante

Data format

Transformer:

- tokens indices
- vector of integers

Other models:

- bag of *n*-grams of tokens
- vector of booleans

Attention

Scaled Dot-Product Attention

Multi-Head Attention

Transformer architecture

we use only the left part (encoder)

Federico Magnolfi

Pipeline of Transformer-based model

Numbers segmentation as position regression

Ground truth location can be ambiguous

