Control Systems

G V V Sharma*

CONTENTS

1 Shunt	Feedback Voltage Amplifier: Series-	1
2 Series	Feedback Current Amplifier: Shunt- 2.1 Ideal Case	1 1 1
3	Feedback Current Amplifier: Example	1
4 fier: S	Feedback Transconductance Ampli- Series-Series	3

Abstract—This manual is an introduction to control systems in feedback circuits. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/feedback/codes

- 1 FEEDBACK VOLTAGE AMPLIFIER: SERIES-SHUNT
- 2 FEEDBACK CURRENT AMPLIFIER: SHUNT-SERIES
- 2.1 Ideal Case
- 2.2 Practical Case
 - 3 FEEDBACK CURRENT AMPLIFIER: EXAMPLE
- 3.1. Fig. 3.1.1 shows a feedback current amplifier. Draw the equivalent control system.

Solution: See fig 3.1.2

3.2. Refer table 3.2 for the parameters and draw the small signal equivalent model of the fig 3.1.1

Solution: See fig 3.2

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 3.1.1

Fig. 3.1.2

Component	Description
R_{id}	Input Resistance of Op Amp
R_{out}	Output Resistance of Op Amp
I_s	Input Current
I_o	Output Current
R_M, R_F	Feedback Resistances
R_L	Load Resistance

TABLE 3.2

3.3. Given G (open-loop gain), H (feedback gain)

Therefore,

$$I_1 = -\frac{V_o}{R_M} {(3.3.9)}$$

$$\implies I_1 = I_f \frac{R_F}{R_M} \tag{3.3.10}$$

The output current is also expressed as,

$$I_o = I_f + I_1 \tag{3.3.11}$$

$$\implies \frac{I_o}{1 + \frac{R_F}{R_M}} = I_f \tag{3.3.12}$$

Now substituting I_f in eq. 3.3.7 we get,

$$I_o = \mu \left(I_s - \frac{I_o}{1 + \frac{R_F}{R_M}} \right)$$
 (3.3.13)

(3.3.14)

(3.3.15)

and T (closed-loop gain) as

$$G = \frac{I_o}{I_i} \tag{3.3.1}$$

$$H = \frac{I_f}{I_o} \tag{3.3.2}$$

$$T = \frac{I_o}{I_f} \tag{3.3.3}$$

Therefore,

$$\implies H = \frac{I_f}{I_o} = \frac{1}{1 + \frac{R_F}{R_M}}$$
 (3.3.16)

Find G and H as a function of the resistances. **Solution:** Refer fig. 3.2, We get,

 $I_o = \mu I_i \tag{3.3.4}$

$$\implies G = \frac{I_o}{I_c} = \mu \tag{3.3.5}$$

And,

$$I_i = I_s - I_f (3.3.6)$$

Using eq. 3.3.5, we get,

$$I_o = \mu \left(I_s - I_f \right) \tag{3.3.7}$$

Assuming virtual ground at V_1 , we get,

$$V_o = -I_f R_F \tag{3.3.8}$$

3.4. What will be closed-loop gain(T) if $\mu \to \infty$ **Solution:** From eq. 3.3.15 we get,

 $\implies T = \frac{I_o}{I_s} = \frac{\mu}{1 + \frac{\mu}{1 + \frac{R_F}{R_{rel}}}}$

$$T = \frac{\mu}{1 + \frac{\mu}{1 + \frac{R_F}{R_M}}}$$
(3.4.1)

$$T = \frac{1}{\frac{1}{\mu} + \frac{1}{1 + \frac{R_F}{R_M}}}$$
(3.4.2)

Applying the limit, we get,

$$\implies T = 1 + \frac{R_F}{R_M} \tag{3.4.3}$$

3.5. Refer table 3.5 and find G, H and T

Component	Value
μ	104
R_{id}	$1 M\Omega$
r_o	100 Ω
R_L	10 kΩ
R_M	100 Ω
R_F	10 kΩ

TABLE 3.5

Solution: Using eqs. 3.3.5, 3.3.16 and 3.3.15 We get,

$$G = \mu = 10^4 \tag{3.5.1}$$

$$H = \frac{1}{1 + \frac{R_F}{R_M}} = 9.9 \times 10^{-3}$$
 (3.5.2)

$$G = \mu = 10$$
 (3.5.1)

$$H = \frac{1}{1 + \frac{R_F}{R_M}} = 9.9 \times 10^{-3}$$
 (3.5.2)

$$T = \frac{\mu}{1 + \frac{\mu}{R_F}} = 100$$
 (3.5.3)

3.6. Tabulate your results.

Solution: Refer table 3.6,

Gain	Value
G	10^4
Н	9.9×10^{-3}
T	100

TABLE 3.6

4 FEEDBACK TRANSCONDUCTANCE AMPLIFIER: SERIES-SERIES