Analysis2 Note

lin150117

Contents

25	Positive linear functionals and Radon measures	1
	25.4 Regularity and Lusin's theorem	1
	25.5 Regularity beyond finite measures	2
26	Theorems of Fubini and Tonelli for Radon measures	2
	26.1 Products of Radon measure	2
	26.2 Theorems of Fubini and Tonelli	3
27	The marriage of Hilbert spaces and integral theory	3
	27.1 The definition of L^p spaces	3
	27.2 Approximation in L^p spaces	5
	27.3 The Riesz-Fischer Theorem	6
	27.4 Introduction to dualities in L^p spaces	6
2 8	From the implicit function theorem to differential manifolds	7
	28.1 The inverse function theorem	7
	28.2 The Implicit Theorem	7
29	Differential calculus on manifold	10
	29.1 Tangent Space and Cotangent Space	10
30	The change of variables formula	12

25 Positive linear functionals and Radon measures

25.4 Regularity and Lusin's theorem

Corollary 25.29. Let $E \subset X$ such that E is contained in an open set with finite measure. Then the following are equivalent:

- 1. $E \in \mathfrak{M}$
- 2. For every $\epsilon>0$ there exists a compact set $K\subset X$ and an open set $U\subset X$ such that $K\subset E\subset U$ and $\mu(U\backslash K)<\epsilon$
- 2' There exist a σ -compact set $A \subset X$ and a G_{δ} set $BA \subset X$ such that $A \subset E \subset B$ and $\mu(B \setminus A) < \epsilon$

25.5 Regularity beyond finite measures

Theorem 25.37. μ is σ -finite. Then $\forall E \subset X, E \in \mathfrak{M} \Leftrightarrow \forall \epsilon, \exists U \supset E$ open in $X, F \subset E$ closed, such that $\mu(U \setminus F) < \epsilon$

Theorem 25.38. Let X be second countable LCH. $\mu: \mathfrak{B}_X \to [0, +\infty]$ s.t. $\mu(K) < +\infty, \forall K$ compact. Then μ is a Radon measure.

Proof. We need to prove a lemma:

Lemma 25.39. μ is inner regular on open sets.

The first proof is given by RM theorem.

The second proof use the Cor 25.29

The third proof shows that the regular sets are regular.

Theorem 25.40. If $f \in C([a,b],\mathbb{R})$. Then f is Stieltjes integrable. $I_p : C([a,b],\mathbb{R}) \to \mathbb{R}, I_p(f) = f(a)\rho(a) + \int_a^b f d\rho$

Lemma 25.41. Let $\rho : [a,b] \to \mathbb{R}_{\geq 0}$ be increasing. Assume that $a \leq c < d \leq b$. Let $f \in C([a,b],[0,1])$ s.t. $f|_{[a,c]} = 1, f|_{[d,b]} = 0$. Then $\rho(c) \leq I_p(f) \leq \rho(d)$

Theorem 25.42 (Riesz Representation Theorem). We have a bijection $\rho \mapsto I_{\rho}$ between increasing right continuous $\rho : [a,b] \to \mathbb{R}_{\geq 0}$ and positive linear functionals $\Lambda : C([a,b],\mathbb{R}) \to \mathbb{R}$

26 Theorems of Fubini and Tonelli for Radon measures

26.1 Products of Radon measure

Lemma 26.1. X be LCH, $\Lambda: C_c(X) \to \mathbb{C}$ positive linear functional. For each precompact open $U \subset X$, $\Lambda|_{C_c(U)}: C_c(U) \to \mathbb{C}$ is bounded.

Theorem 26.2. X_1, \dots, X_N with positive linear function $\Lambda_i : C_c(X_i) \to \mathbb{C}$. Then there exists a unique positive linear function $\Lambda : C_c(X_1 \times \dots \times X_N) \to \mathbb{C}$ such that $\forall f_i \in C_c(X_i), \Lambda(f_1 \dots f_N) = \Lambda_1(f_1) \dots \Lambda_N(f_N)$

where
$$f_1 \cdots f_N : X_1 \times \cdots \times X_N \to \mathbb{C}, (x_1, \cdots x_N) \mapsto f_1(x_1) \cdots f_N(x_N)$$

Definition 26.1.1. The completion of the Radon measure associated to $\Lambda_1 \otimes \cdots \otimes \Lambda_N$ is denoted by $\mu_1 \times \cdots \times \mu_N(\mu_i)$ is the completion of the Radon measure for Λ_n) called **Radon Product**

26.2 Theorems of Fubini and Tonelli

Theorem 26.3 (Tonelli's theorem). $f \in LSC_+(X \times Y)$. Then $\int_Y f dv : X \to [0, +\infty]$

Theorem 26.4 (Tonelli's theorem). Assume μ, ν are σ -finite. Let $f \in \mathcal{L}(X \times Y)$ i.e. f is $(\mu \times \nu)$ measurable

- (a) $f(x,\cdot): Y \to [0,+\infty]$ is $\nu measurable$ for $x \in X$ a.e.
- (b) $x \mapsto \int_V f(x,\cdot) dv$ is measurable.
- (c) $\int_{X\times Y} f d(\mu \times \nu) = \int_{X} \int_{Y} f d\nu d\mu$

Proposition 26.5. Assume μ, ν are σ -finte. Then for measurable $A \subset X, B \subset Y, A \times B$ is $(\mu \times \nu)$ measurable, and $(\mu \times v)(A \times B) = \mu(A)\nu(B)$.

Example 26.6. μ is completion of Radon on X, $(Y, 2^Y, \nu)$ counting measure.

Then if $E \subset X \times Y$ is open $\Rightarrow \chi_E$ is lower semicontinuous.

Tonelli's theorem
$$\Rightarrow (\mu \times \nu)(E) = \sum_{y \in y} \nu(E_y)$$

Tonelli's theorem $\Rightarrow (\mu \times \nu)(E) = \sum_{y \in y} \nu(E_y)$ Assume μ is σ -finite, $f: X \times Y \to [0, +\infty]$ is Borel. Apply Prop 26.5, we have

$$\sum_{y \in Y} \int_X f_y d\mu = \int_X \sum_{y \in Y} f_y d\mu$$
 (a)

(a) is true if f is LCH or if Y is countable.

Let $I = fin(2^Y), \forall \alpha \in I, g_{\alpha} = \sum_{u \in \alpha} f_{\alpha}$. We have

$$\lim_{\alpha} \int_{X} g_{\alpha} d\mu = \int_{X} \lim_{\alpha} g_{\alpha} d\mu$$

if f is LSC or $Y = \mathbb{Z}$.

The marriage of Hilbert spaces and integral theory 27

27.1 The definition of L^p spaces

Definition 27.1.1. $f \in \mathcal{L}(X,\mathbb{C}), ||f||_{L^p} = ||f||_p = (\int_X |f|^p d\mu)^{\frac{1}{p}}$

Theorem 27.1. Assume $f, g \in \mathcal{L}(X, \mathbb{C})$ or $f, g \in \mathcal{L}_+(X)$. We have **Minkowski's inequality**

$$||f + g||_p \le ||f||_p + ||g||_p$$

And if $\frac{1}{p} + \frac{1}{q}$, $1 < p, q < +\infty$. We have **Hölder's inequality**

$$|\int_{X} fg d\mu| \le ||f||_{p} ||g||_{q}$$
$$||f + g||_{p} \le |||f| + |g|||_{p}$$

Definition 27.1.2. Let $\mathcal{L}^p(X,\mu) = \{ f \in \mathcal{L}(X,\mathbb{C}) : ||f||_p < +\infty \}$. Then $||\cdot||_p$ is a semi-norm on $\mathcal{L}^p(X,\mu)$

 $L^p(X,\mu) = \mathcal{L}^p(X,\mu)/_{\{f \in \mathcal{L}^p(X,\mu): ||f||_p = 0\}}$ is a NVS with norm $||\cdot||_p$.

$$||f||_p = 0 \Leftrightarrow \int |f|^p = 0 \Leftrightarrow f = 0$$
 a.e.

 $L^p(X,\mu)$ is the space of all $f \in \mathcal{L}(X,\mathbb{C})$ satisfying $||f||_p < +\infty$, but f,g are the same iff f = g a.e.

Definition 27.1.3. $f \in \mathcal{L}(X,\mathbb{C})$. Define

$$||f||_{L^{\infty}} = ||f||_{\infty} = \inf\{a \in \overline{\mathbb{R}}_{\geq 0} : \mu\{|f| > a\} = 0\}$$

where $\{|f| > a\} = \{x \in X : ||f(x)|| > a\}$

Proposition 27.2. Let $f, g \in \mathcal{L}(X, \mathbb{C})$

- (a) If f = g a.e., then $||f||_{\infty} = ||g||_{\infty}$
- (b) f = 0 a.e. iff $||f||_{L^{\infty}} = 0$

Proposition 27.3. Let $f \in \mathcal{L}(X,\mathbb{C}), \lambda = ||f||_{L^{\infty}}$. Then

$${a \in \overline{\mathbb{R}} \ge 0 : \mu\{|f| > a\} = 0\} = [\lambda, +\infty]}$$

In particular, λ is the smallest number s.t. $\{|f| > \lambda\}$ is null.

Corollary 27.4. Let $A = \{|f| \leq \lambda\}$. Then $X \setminus A$ is null, and $||f\chi_A||_{l^{\infty}} = ||f||_{L^{\infty}}$

Proposition 27.5. Let (f_n) be in $\mathcal{L}(X,\mathbb{C})$. TFAE

- $(1) \lim_{n \to \infty} ||f_n||_{L^{\infty}} = 0$
- (2) \exists measurable A with $\mu(A^c) = 0$ s.t. $f_n|_A$ uniformly converge to 0.

Proposition 27.6.

$$||f + g||_{L^{\infty}} \le ||f||_{L^{\infty}} + ||g||_{L^{\infty}}$$

 $||af||_{L^{\infty}} = |a| \cdot ||f||_{L^{\infty}}$

Definition 27.1.4.

$$\mathcal{L}^{\infty}(X) = \{ f \in \mathcal{L}(X, \mathbb{C}) : ||f||_{l^{\infty}} < +\infty \}$$

And

$$L^{\infty}(X,\mu) = \mathcal{L}^{\infty}(X)/_{\{f \in \mathcal{L}^{\infty}(X): ||f||_{L^{\infty}} = 0\}}$$
$$= \mathcal{L}^{\infty}(X)/_{\{f \in \mathcal{L}^{\infty}(X): f = 0 \text{ a.e.}\}}$$

27.2 Approximation in L^p spaces

Theorem 27.7. Let X be LCH. Let μ be (the completion of) a Radon measure on X $1 \le p < +\infty$ Then $C_c(X)$ is dense in $L^p(X,\mu)$

Hint. First we prove $||f||_{l^{\infty}} < +\infty$, second we approximate f by $f\chi_{E_n}$

Corollary 27.8. Let $e_n: x \mapsto e^{inx}$ in $C(S^1)$. If $1 \le p < +\infty$, then e_n spans a dense subspace of $L^p(S^1, \frac{m}{2\pi})$ where m is the Lebesgue measure.

Theorem 27.9. Let X be second countable LCH. μ is (the completion of) a Radon measure on X. Let $1 \le p < +\infty$. Then $L^p(X, \mu)$ is separable.

Hint. First for X compact. We have proved that C(X) is l^{∞} -separable. Easy to check that it is true for L^{∞} .

For arbitary X. Let $K_1 \subset K_2 \subset \cdots \subset K_n \subset \cdots \subset X$, $\bigcup_n K_n = X$. And $\lim_n f \chi_{K_n} = f$. It suffices to prove that $\mu|_{K_n}$ is Radno measure.

Theorem 27.10. Let (X,μ) be measurable, $1 \leq p \leq +\infty$. Then $L^p(X,\mu) \cap S(X,\mathbb{C})$ is dense in $L^p(X\mu)$.

Note. Elements in $L^p \cap S$ are exactly:

$$\begin{cases} S(X,\mathbb{C}), & p = +\infty \\ \sum a_n \chi_{E_n}, a_n \in \mathbb{C}, \mu(E_n) < \infty, & p < +\infty \end{cases}$$

And we only need to check that for $f \geq 0$.

Proposition 27.11. $L^{\infty}(X,\mu)$ is complete.

In inner product space, we prove a similar theorem for completeness

Theorem 27.12. If V is NVS, then V is complete \Leftrightarrow if (v_n) in V s.t. $\sum ||v_n|| < +\infty$, then $\sum v_n$ converges.

27.3 The Riesz-Fischer Theorem

Theorem 27.13 (Riesz-Fischer Theorem). If $1 \le p < +\infty$. Then $L^p(X, \mu)$ is complete(Banach) space.

Moreover, if (f_n) in $L^p(X,\mu)$, $f \in L^p(X,\mu)$ and $\lim_n ||f - f_n||_{L^p} = 0$, then (f_n) has a subsequence converging a.e. to f.

Corollary 27.14 (Riesz-Fischer). We have a unitary $L^2([-\pi,\pi],\frac{m}{2\pi})\to l^2(\mathbb{Z}), f\mapsto \hat{f}$.

27.4 Introduction to dualities in L^p spaces

We now assume $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p, q \le +\infty$. (X, μ) measurable space.

Proposition 27.15. Assume μ is σ -finte if $p = +\infty, q = 1$. Then \exists linear isometry $\Psi : L^p(X, \mu) \to L^q(X, \mu)^*$ s.t. $\forall F \in L^p, g \in L^q$,

$$\langle \Psi(f), g \rangle = \int_{Y} f g \mathrm{d}\mu$$

Proposition 27.16. $|\langle \Psi(f), g \rangle| \leq ||f||_p \cdot ||g||_q$

Example 27.17. (X,μ) measurable space, $f \in L^{\infty}(X,\mu)$. Define

$$M_f: L^2(X,\mu) \to L^2(X,\mu), g \mapsto fg$$

Called multiplication operator

 M_x has no eigenvalue, when X = [0, 1]

Theorem 27.18. Let $T \in \mathfrak{L}(\mathcal{H})$ be self-adjoint, $a \leq T \leq B$. There exists $(\mu_i)_I$ of Randon measures on [a,b] and unitary $U: \mathcal{H} \to \bigoplus_{i \in I} L^2([a,b],\mu_i)$ s.t. $UTU^{-1} = \bigoplus_{i \in I} M_x$.

Definition 27.4.1. A unitary representation of \mathcal{A} on \mathcal{H} is a linear $\pi: \mathcal{A} \to \mathfrak{L}(\mathcal{H})$ s.t. $\pi(ab) = \pi(a)\pi(b)$, $\pi(1) = 1_{\mathcal{H}}$, $\pi(a^*) = \pi(a)^*$. pi is called a unital *-homomorphism.

If $\Omega \in \mathcal{H}$ s.t. $\pi(\mathcal{A})\Omega = \{\pi(a)\Omega : a \in \mathcal{A}\}$ is dense, we say π is a **cyclic representation**. Ω is called a **cyclic vector**.

If K is a closed linear subspace of \mathcal{H} . If K is \mathcal{A} -invariant, i.e. $\pi(a)K \subset K$ for all $a \in \mathcal{A}$, we call K is a subrepresentation.

Fact 27.19. If K is subrepresentation, then $\mathcal{H} \cong K \oplus K^{\perp}$.

Proposition 27.20. Let $\pi: \mathcal{A} \to \mathfrak{L}(\mathcal{H})$ be unitary representation. then $\exists (\mathcal{H}_i)_{i \in I}$ of unitary subrepresentation of (π, \mathcal{H}) s.t.

- (a) Every \mathcal{H}_i is a cyclic representation.
- (b) $\mathcal{H}_i \perp \mathcal{H}_j$ if $i \neq j$.

(c) Span $\{\mathcal{H}_i : i \in I\}$ is dense in \mathcal{H} .

Theorem 27.21. Let X be compact Hausdorff. $\pi: C(X) \to \mathfrak{L}(\mathcal{H})$ cyclic representation with cyclic vector Ω . Then \exists Randon measure μ on X and an unitary equivalence $U: (\mathcal{H}, \pi) \to (L^2(X, \mu), M)$, $U\Omega = 1$

For $T \in \mathfrak{L}(\mathcal{H})$, define

$$\pi_T: \mathbb{C}[x] \to \mathfrak{L}\mathcal{H}$$

$$f \mapsto f(T)$$

Theorem 27.22. Let $T \in \mathfrak{L}(\mathcal{H})$ be self-adjoint. $a \leq T \leq b$. Then $\pi_T : \mathbb{C}[x] \to \mathfrak{L}(\mathcal{H})$ has operator norm $||\pi_T|| \leq 1$ if $\mathbb{C}[x]$ is equipped with $l^{\infty}[a, b]$.

Proposition 27.23. Let $f \in \mathbb{C}[x]$, T_{α} is a net in $\mathfrak{L}(\mathcal{H})$. If $T_{\alpha} \to T$, $\sup ||T_{\alpha}|| < +\infty$. Then $f(T_{\alpha}) \to f(T)$

Proposition 27.24. If $\sup ||T_{\alpha}|| < +\infty$, $T_{\alpha} \to T$, $\eta_{\beta} \to \eta$, then $\lim_{\alpha,\beta} T_{\alpha} \eta_{\beta} = T \eta$

28 From the implicit function theorem to differential manifolds

28.1 The inverse function theorem

Definition 28.1.1. Let $U \subset \mathbb{R}^n$ open, $V \subset \mathbb{R}^m$ open. $f: U \to V$ is called a C^r -diffeomorphism $(0 \le r \le \infty)$, if f is bijective and $f, f^{-1} \in C^r$. In fact, m = n since $\operatorname{Jac}(f) \cdot \operatorname{Jac}(f^{-1}) = I$

Theorem 28.1 (Inverse Function Theorem). Let $\Omega \subset \mathbb{R}^n$ open. Let $\varphi : \Omega \to \mathbb{R}^n$ be C^r -map, $1 \leq r \leq +\infty$. Let $p \in \Omega$. Assume $d\varphi|_p : \mathbb{R}^n \to \mathbb{R}^n$ is invertible. Then \exists a neighborhood $U \subset \Omega$ of p, neighborhood $V \subset \mathbb{R}^n$ of $q = \varphi(p)$ s.t. $\varphi : U \to V$ is C^r -diffeomorphism.

Lemma 28.2. First prove it is true for φ bijective.

Corollary 28.3. $r \geq 1, \ \Omega \subset \mathbb{R}^n$ open. $\varphi : \Omega \to \mathbb{R}^n$ injective C^r -map s.t. $Jac(\varphi)$ is invertible everywhere. Then $\varphi(\Omega)$ is open in $\mathbb{R}^n, \ \varphi : \Omega \to \varphi(\Omega)$ is a C^r -diffeomorphism.

28.2 The Implicit Theorem

Corollary 28.4. $\Omega \subset \mathbb{R}^d \times \mathbb{R}^k$ open, $(x,y) = (x^1, \dots, x^d, y^1, \dots, y^k)$, $f = (f^1, \dots, f^k) : \Omega \to \mathbb{R}^k$ is C^r function, $r \geq 1$. Assume $Jac_y(f)$ is invertible at $p \in \Omega$. Then \exists neighborhood $U \subset \Omega$ of p and open $V \subset \mathbb{R}^d \times \mathbb{R}^k$ s.t. we have C^r -different equations.

$$(x^1, \cdots, x^d, f^1, \cdots, f^k): U \to V$$

Corollary 28.5. $f = (f^1, \dots, f^k) : \Omega \to \mathbb{R}^k$, Ω open in $\mathbb{R}^d \times \mathbb{R}^k$. If $Jac_y(f)$ invertible at $p \in \Omega$. Then $\exists p \in U \subset \Omega$, $V \subset \mathbb{R}^d \times \mathbb{R}^k$ s.t.

$$(x^1, \dots, x^d, f^1, \dots, f^k) = (x, f) : U \cong V$$

is a diffeomorphism.

Definition 28.2.1. Let $M \subset \mathbb{R}$, $r \geq 1$. We say M is an **(embedding)** C^r -submanifold of \mathbb{R}^n if for every $p \in M$, $\exists U \in Nbh_{\mathbb{R}^n}(p)$, $0 \leq d \leq n, k = n - d$, $\exists C^r$ -functions

$$(\varphi^1, \cdots, \varphi^d, f^1, \cdots, f^k) : U \to \mathbb{R}^n$$

satisfying:

- (a) $(\varphi, f): U \cong V$ is a C^r -diffeomorphism.
- (b) $(\varphi, f)^{-1}((\mathbb{R}^d \times 0) \cap V) = M \cap U$, (equivalently, $(\varphi, 0)$ is bijective)

Proposition 28.6. $\varphi(M \cap U)$ is an open subset of \mathbb{R}^d . Moreover, $\forall h \in C^r(U, \mathbb{R}), \exists ! g : \varphi(M \cap U) \to \mathbb{R}$ s.t.

$$h|_{M\cap U} = g \circ \varphi|_{M\cap U} \tag{\triangle}$$

Moreover, any g satisfying (\triangle) is C^r

Lemma 28.7. Let $\Omega \subset \mathbb{R}^n$ open, $\psi = (\psi^1, \dots, \psi^n) : \Omega \to \mathbb{R}^d$ is a C^r function. Assume Ω, ψ satisfying a similar property as U, φ in Def 28.2.1. Then $(U, \varphi|_{M \cap U})$ and $(\Omega, \psi|_{M \cap \Omega})$ are C^r -compatible, i.e.

$$\Psi|_{M\cap U,\Omega} \circ (\varphi|_{M\cap U\cap\Omega})^{-1} : \varphi(M\cap U\cap\Omega) \to \Psi(M\cap U\cap\Omega)$$

is a C^r -diffeomorphism of open subsets of \mathbb{R}^d .

Definition 28.2.2. Let M be a nonempty Hausdorff. A set $\mathcal{U} = \{(U_{\alpha}, \varphi_{\alpha})_{\alpha \in \mathcal{A}}\}$ is called a C^r -atlas of M if

- $M = \bigcup_{\alpha} U_{\alpha}$, U_{α} is open,
- $\varphi_{\alpha}: U_{\alpha} \xrightarrow{\cong} \varphi(U_{\alpha})$ is homeomorphism, $\varphi(U_{\alpha})$ is open in $\mathbb{R}^{d_{\alpha}}$
- $\forall \alpha, \beta \in \mathcal{A}, \ \varphi_{\alpha} \text{ and } \varphi_{\beta} \text{ are } C^r \text{ compatible, i.e. } \varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\cong} \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \text{ is a } C^r\text{-diffemmorphism.}$

(M, \mathcal{U}) is called a C^r -manifold.

We assume M is second countable.

We call C^{∞} -manifold differential manifold or smooth manifold.

Definition 28.2.3. U_{α} is d_{α} -dimensional. If $p \in U_{\alpha}$, $\dim_p M = d_{\alpha}$.

If $\dim_p M = d$ independent of p, we say M is equidimensional.

Proposition 28.8. $\forall d \in \mathbb{N}, U_d = \{x \in M : \dim_x M = d\}$ is open and closed in M.

In particular, if M is connected, then M is equidimensional.

Definition 28.2.4. A C^r -chart on (M, \mathcal{U}) is (V, ψ) s.t.

- V is open in M, $\psi(V)$ open in \mathbb{R}^d .
- $\psi: V \to \psi(V)$ homeomorphism.
- (V, ψ) is C^r -compatible with any member of \mathcal{U} .

 $\overline{\mathcal{U}} = \{C^r - \text{chart of } (M, \mathcal{U})\}\ \text{is the maximal } C^r \text{ at las contain } \mathcal{U}.$

A maximal C^r -atlas on M is called a C^r -structure.

Definition 28.2.5. M, N are C^r -manifolds, $F: M \to N$ is a C^r -map if F is continuous and if for every chart (U, φ) of M and (V, ψ) of N, we have

$$\psi \circ F \circ \varphi^{-1} : \varphi(U \cap F^{-1}(V)) \to \psi(V)$$

is C^r function.

If F is bijective, F and F^{-1} are C^r , we sat F is a C^r -diffeomorphism.

Proposition 28.9. Let M be a C^r -submanifold of N, then the inclusion map $\iota: M \to N$ is C^r .

Proposition 28.10. Let X, N be C^r -submanifolds. M is C^r -submanifold of N. Let $\iota : M \to N$. Let $F: X \to M$. Then F is C^r iff $\iota \circ F$ is C^r .

Example 28.11. $P \subset M, Q \subset N$ submanifold, then $P \times Q \subset M \times N$ submanifold.

Theorem 28.12 (Impliet Function Theorem). Let $(x,y)=(x^1,\cdots,x^d,y^1,\cdots,y^k)$ be standard coordinates on $\mathbb{R}^d\times\mathbb{R}^k$. $\Omega\subset\mathbb{R}^d\times\mathbb{R}^k$ open. Let $M\subset\mathbb{R}^d\times\mathbb{R}^k$. Assume $\exists\,C^r\,f=(f^1,\cdots,f^k):\Omega\to\mathbb{R}^k$ s.t.

- 1. $M \cap \Omega = Z(f)$.
- 2. Jac_y f is invertible at $p \in M$

Then \exists Neighborhood $p \in U \subset \Omega$ s.t. $M \cap U$ is a C^r -submanifold of $\mathbb{R}^d \times \mathbb{R}^k$ and $(M \cap U, x|_{M \cap U})$ is a chart on $M \cap U$.

29 Differential calculus on manifold

Recall that for V is \mathbb{F} -vector space, with $e_i, 1 \leq i \leq n$ basis. There is dual basis e^i in V^* s.t. for $\xi \in V$, $\xi = \sum_{i=1}^n \langle \xi, e^i \rangle e_i$.

29.1 Tangent Space and Cotangent Space

Definition 29.1.1. For C^{∞} -map $\gamma:(a,b)\to M.$ $p\in M.$ Define

$$T_pM = \{\text{smooth } \gamma: (-\epsilon, \epsilon) \to M, \gamma(0) = p\}/_{\sim} = \{\gamma'(t_0): \gamma(t_0) = p, t_0 \in \mathbb{R}\}$$

where $\gamma_1 \sim \gamma_2$ if and only if \exists chart (U, φ) s.t. $\operatorname{Jac}(\varphi \circ \gamma_1)|_0 = \operatorname{Jac}(\varphi \circ \gamma_2)|_0$ $\gamma'(t_0)$ is the equivalence class of $t \mapsto \gamma(t + t_0)$ in $T_{\gamma(t_0)}M$

Theorem 29.1. Let $p \in M$, for each chart $(U, \varphi^1, \dots, \varphi^n)$ containing p, \exists bijection $d\varphi|_p$ defined by $d\varphi|_p : T_pM \to \mathbb{R}^n$, $d\varphi|_p \cdot \gamma'(0) = \operatorname{Jac}(\varphi \circ \gamma)|_0$ if γ is smooth path and $\gamma(0) = p$.

Remark 29.2. In this way, we can define a \mathbb{R} -vector space structure on TM. cf. Def 29.1.2

Definition 29.1.2. Tangent bundle

$$TM = \bigsqcup_{p \in M} T_p M$$

 $X: M \to TM$ is called a vector field if $\forall p \in M, X|_p \in T_pM$

Definition 29.1.3. For (U, φ) is chart on M. Define

$$\partial_{\varphi^i} = \frac{\partial}{\partial \varphi^i} : U \to TM$$

$$\partial_{\varphi^i}|_p = (\mathrm{d}\varphi|_p)^{-1}e_i$$

Theorem 29.3. Let $F: M \to N$ be C^{∞} . Then $\forall p \in M$, let q = F(p). Then \exists unique linear map $\mathrm{d}F|_p: T_pM \to T_qN$, $\mathrm{d}F|_p \cdot \gamma'(0) = (F \circ \gamma)'(p)$ for $\gamma: (-\epsilon, \epsilon) \to M$ smooth, $\gamma(0) = p$. Moreover, if $(U, \varphi^1, \cdots, \varphi^m)$ and $(V, \psi^1, \cdots, \psi^n)$ are charts of M, N containing p, q, then

$$dF|_p \cdot (\frac{\partial}{\partial \varphi^1}, \cdots, \frac{\partial}{\partial \varphi^m})_p = (\frac{\partial}{\partial \psi^1}, \cdots, \frac{\partial}{\partial \psi^1})_q \cdot Jac(\psi \cdot \varphi^{-1})|_{\varphi(p)}$$

Remark 29.4. It's hard to prove the existence of $dF|_p$ but the chain rule.

Proposition 29.5 (Chain rule).

$$d(G \circ F)_p = dG|_{F(p)} \cdot dF|_p$$

Definition 29.1.4. $X: M \to TM$ is called a smooth vector field if TFEC true:

- 1. \forall chart $(U, \varphi^1, \dots, \varphi^n)$ if $X|_U = \sum_{i=1}^n X^i \frac{\partial}{\partial \varphi^i}, X^i : U \to \mathbb{R}$ smooth.
- 2. \exists atlas \mathcal{U} s.t. $\forall (U, \varphi) \in \mathcal{U}$, X^i is smooth.

Definition 29.1.5. The cotangent space is

$$T^*M = \bigsqcup_{p \in M} T_p^*M$$

where T_p^*M is the (real) dual space of T_pM .

 $\omega: M \to T^*M$ is called a **1-form** if $\forall p \in M, \omega|_p \in T_p^*M$

Definition 29.1.6. 1-form $\omega: M \to T^*M$ is called smooth if \forall open $U \subset M$, \forall smooth $X: U \to TM$, $\langle \omega, X \rangle: p \in U \mapsto \langle \omega|_p, X|p \rangle$ is smooth.

Definition 29.1.7. $f \in C^{\infty}(M, \mathbb{R}), \forall p \in M$,

$$\mathrm{d}f|_p:T_pM\to T_{f(p)}\mathbb{R}\cong\mathbb{R},\mathrm{d}f|_p\in T_p^*M$$

 $\mathrm{d}f:M\to T^*M$ is 1-form.

Proposition 29.6. Let $f \in C^{\infty}(M,\mathbb{R})$, df is smooth 1-form. Moreover, if $(U,\varphi^1,\cdots,\varphi^n)$ is chart

$$\frac{\partial}{\partial \varphi^j} f|_p = \partial_j (f \circ \varphi^{-1})|_{\varphi(p)}, p \in M$$

$$\partial_{\varphi^j} f = (\partial_j (f \circ \varphi^{-1})) \circ \varphi$$

Corollary 29.7. $f \in C^{\infty}(M, \mathbb{R}), (U, \varphi^1, \dots, \varphi^n)$ chart, then

$$\mathrm{d}f = \sum_{i=1}^{n} \frac{\partial f}{\partial \varphi^{i}} \mathrm{d}\varphi^{j}$$

Corollary 29.8. $f, g \in C^{\infty}(M, \mathbb{R})$, then $d(fg) = df \cdot g + dg \cdot f$

Definition 29.1.8. If $F: M \to N$ smooth, $F^*|_p: T^*_{F(p)}N \to T^*_pM$ is defined by transpose of $dF|_p: T_pM \to T_{F(p)}N$.

 F^* is called **cotangent map**

 $F^* \cdot \omega'$ called **pullback** of ω' by F.

If $\omega: N \to T^*N$ is a 1-form, its **pullback** is $F^*\omega: M \to T^*M, p \mapsto F^*(\omega|_{F(p)}) \in T_p^*M$.

Proposition 29.9. Let $\omega: N \to T^*N$ be smooth 1-form, then $F^*\omega$ is smooth. Moreover, if $f \in C^{\infty}(N, \mathbb{R})$, $F^*df = d(f \circ F)$

Definition 29.1.9. $F: M \to N$ is called a (smooth) **embedding** if F(M) is a C^{∞} -submanifold of N, and F restricts to a diffeomorphism on M.

Proposition 29.10. Let $F: M \to N$ be smooth embedding, then $\forall p \in M$, $dF|_p: T_pM \to T_{F(p)}N$ is injective.

Theorem 29.11. Let $F: M \to N$ be smooth, let $q \in N$. Assume $\forall p \in F^{-1}(q)$, $dF|_p: T_pM \to T_qN$ is surjective (F is a submersion at q) Then $F^{-1}(q)$ is a smooth submanifold of M.

Moreover, $T_p(F^{-1}(q) = \ker(dF|_p)$

In particular, $\dim_p F^{-1}(q) = \dim_p M - \dim_q N$

Theorem 29.12. Let $F: M \to N$ be smooth. Let $p \in M$, q = F(p), $dF|_p: T_pM \to T_qN$ linear isomorphism. Then $\exists U \in Nbh(p), V \in Nbh(q)$ s.t. F restructs to a diffeomorphism $F: U \to V$

30 The change of variables formula

Definition 30.0.1. μ, ν are Borel measures of X. $\mu \leq \nu$ if one of the following equivalent holds.

- 1. $\forall E \in \mathcal{B}_X, \mu(E) \leq \nu(E)$
- 2. \forall Borel $f: X \to [0, +\infty], \int f df \leq \int f dv$.
- 3. \forall open $U \subset X$, $\mu(U) \leq \nu(U)$
- 4. \forall compact $K \subset X$, $\mu(K) \leq \nu(K)$
- 5. $\forall f \in C_c(X, \mathbb{R}_{>0}), \int f d\mu \leq \int f dv$

Proposition 30.1. Let μ, ν be Randon measures of LCH X, \mathcal{U} is an open cover of X. Then $\mu \leq \nu$ iff $\forall u \in \mathcal{U}$ we have $\mu|_{U} \leq \nu|_{U}$

Proposition 30.2. Let $\Omega \subset \mathbb{R}^n$ open, μ, ν Radon on Ω . TFAE

- 1. $\mu \leq \nu$
- 2. \forall cube $Q \subset \Omega$, $\mu(Q) \leq \nu(Q)$
- 3. \forall open cube $Q \subset \Omega$, $\mu(Q) \leq \nu(Q)$

Theorem 30.3. $\Omega, \Delta \subset \mathbb{R}^n$ open, $\Phi : \Omega \xrightarrow{\cong} \Delta$. Then

$$\Phi^* \mathrm{d} m_{\triangle} = |J(\Phi)| \mathrm{d} m_{\Omega}$$

Equivalently, \forall Borel $f: \triangle \rightarrow [0, +\infty]$, we have

$$\int_{\Delta} f dm = \int_{\Omega} (f \circ \Phi) \cdot |J\Phi| dm$$

Definition 30.0.2. A (linear) **product** $\bigcirc: V_1 \times \cdots \times V_N \to V_1 \odot \cdots \odot V_N$ is a N-linear map.

Definition 30.0.3. A tensor product is a surjective linear product s.t. for all linear product there exists a homomorphism to it. \Box

\mathbf{Index}

Symbols		Inverse Function Theorem	7
C^r -atlas	8		
C^r -diffeomorphism	7	М	
C^r -manifold	8	Minkowski's inequality	4
$L^{\infty}(X)$	5	multiplication operator	6
$L^p(X,\mu)$	4		
$\mathcal{L}^p(X,\mu)$	4	R	
$ f _{L^\infty}, f _\infty$ in $\mathcal{L}(X,\mathbb{C})$	4	Randon Product	3
$\mathcal{L}^{\infty}(X)$	5	Riesz Representation Theorem	2
(embedding) C^r -submanifold	8	Riesz-Fischer Theorem	6
1-form	11	S	
C^r -chart	9	smooth vector field	10
$ f _{L^p}, f _p$	3		
		Т	
С		Tangent bundle	10
cotangent map	11	Tonelli's theorem	3
cotangent space	11	U	
Н		unital *-homomorphism	6
Hölder's inequality	4	unitary representation	6
		cyclic representation	6
I		cyclic vector	6
Implict Function Theorem	9	subrepresentation	6