Résolutions de systèmes linéaires

Q Ces exercices vous font réviser comment la méthode du pivot de Gauß permet de résoudre des systèmes linéaires. Vous rencontrerez ici toutes les situations, à peu près équitablement : zéro, une, ou une infinité de solutions.

Remarque sur le corrigé. Pour faciliter la programmation, j'élimine toujours les variables dans cet ordre : x, y, z puis t. Si vous voyez des simplifications plus intéressantes en commençant par éliminer une autre variable, ne suivez pas servilement la démarche du corrigé.

Exercice 1. Résoudre le système :

$$\rightarrow$$
 page 15

$$(S) \begin{cases} - & 9x + 3y - 3z = 0 \\ & 3x - y + z = 0 \\ - & 3x + y - z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 2. Résoudre le système :

$$\rightarrow$$
 page 15

$$(S) \begin{cases} 4x & + 4z & = -72 \\ - 6x & - 5z + t = 0 \\ - 4x + y - z - t = 1 \\ - 16x + 3y - 9z - 2t = -36 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 3. Résoudre le système :

$$\rightarrow$$
 page 15

$$(S) \begin{cases} 2x + 2y + 2z = 0 \\ 2x - 2y - 3z = 0 \\ x - y - 2z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 4. Résoudre le système :

$$\rightarrow$$
 page 16

$$(S) \begin{cases} 2x - 5y + 2t = 0 \\ 8x - 2y + z + 12t = 0 \\ -2x + 7y + 6t = 0 \\ 5x + 9y + z + 23t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 5. Résoudre le système :

$$\rightarrow$$
 page 16

$$(S) \begin{cases} -8x + 6y + 5z = -1 \\ -4x + 2y + z = -5 \\ 4x - y + z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 6. Résoudre le système :

$$\rightarrow$$
 page 17

$$(S) \begin{cases} x & -3z = -3 \\ x - y & = 1 \\ 4x - y - 9z = 5 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 7. Résoudre le système :

$$\rightarrow$$
 page 17

 \rightarrow page 17

 \rightarrow page 18

 \rightarrow page 18

 \rightarrow page 19

 \rightarrow page 19

 \rightarrow page 19

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 8. Résoudre le système :

$$(S) \begin{cases} -2x + y + 4z = 0 \\ 6x - 3y - 12z = 0 \\ 2x - 3z = -3 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 9. Résoudre le système :

$$(S) \begin{cases} -4x - 4y - 4z - 16t = 44 \\ -4x - 4y - 4z - 16t = 44 \\ -2x - 2y - 2z - 8t = 22 \\ -x - y - z - 4t = 11 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 10. Résoudre le système :

$$(S) \begin{cases} -2x - 2y - 2z = 0 \\ -x - y - z = 0 \\ x + y + z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 11. Résoudre le système :

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 12. Résoudre le système :

$$(S) \begin{cases} -5x + 5y + 5z = -45 \\ -x + y + z = -9 \\ 2x - 2y - 2z = 18 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 13. Résoudre le système:

$$(S) \begin{cases} -4x + 24y - 4z - 8t = 154 \\ -x + 6y - z - 2t = 12 \\ -x + 6y - z - 2t = -3 \\ x - 6y + z + 2t = 3 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 14. Résoudre le système :

$$(S) \begin{cases} x - y + 3z = 0 \\ 2x - 2y + 6z = 0 \\ -2x + y - 4z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 15. Résoudre le système :

 \rightarrow page 20

$$(S) \begin{cases} -x + y - 17z = 0 \\ x - y + 17z = 0 \\ -x + y - 17z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 16. Résoudre le système:

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 17. Résoudre le système :

$$(S) \begin{cases} -3x + 3y - 6z = -21 \\ x - 2y + 6z = -1 \\ x - y + 2z = 7 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 18. Résoudre le système:

$$(S) \begin{cases} 2x + y - 5z = -4 \\ 2x + y - 5z = 40 \\ 2x + y - 5z = 8 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 19. Résoudre le système :

$$(S) \begin{cases} 2x - 4y - 5z = 0 \\ -x - y - 2z = 0 \\ 2y + 3z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 20. Résoudre le système :

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 21. Résoudre le système :

$$(S) \begin{cases} - & x + 2y + 4z + t = 0 \\ - & x - 2z - t = 0 \\ 4x - 3y - z + t = 0 \\ - & y - 3z - t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 22. Résoudre le système:

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

 \rightarrow page 20

 \rightarrow page 21

 \rightarrow page 21

 \rightarrow page 21

 \rightarrow page 22

 \rightarrow page 22

 \rightarrow page 23

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 24

 \rightarrow page 25

 \rightarrow page 25

 \rightarrow page 26

Exercice 23. Résoudre le système:

$$(S) \begin{cases} 7x + 16y + z - 5t = 0 \\ -2x - 13y - 2z + 2t = 0 \\ 3x + 5y - 2t = 0 \\ 2x - 13y - 4z = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 24. Résoudre le système :

$$(S) \begin{cases} - & 6x + 2y + z + 2t = -1 \\ - & 18x + 6y + 3z + 6t = -3 \\ - & 6x + 2y + z + 2t = -1 \\ 6x - & 2y - z - 2t = 1 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 25. Résoudre le système:

$$(S) \begin{cases} 4x - 4y + 4z = -5 \\ 3x + 3y - z = 0 \\ - 3y + 2z = 11 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 26. Résoudre le système:

$$(S) \begin{cases} -4x + 2y + 8z + 2t = 0 \\ -2x + y + 4z + t = 0 \\ 2x - y - 4z - t = 0 \\ 2x - y - 4z - t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 27. Résoudre le système:

$$(S) \begin{cases} -8x & -6z = 0 \\ y - 18z = 0 \\ -4x - y + 14z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 28. Résoudre le système :

$$(S) \begin{cases} -8x + 8y - 7z = 1 \\ -x + 2z = 7 \\ x - y = -8 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 29. Résoudre le système :

$$(S) \begin{cases} -x - 14y - z & = 0 \\ x - 2y - z + 2t = 0 \\ x + 14y + z & = 0 \\ x + 14y + z & = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 30. Résoudre le système :

$$(S) \begin{cases} x & -16z + 4t = 4 \\ -x & +21z - 5t = 1 \\ 2x & -2z + 2t = 1 \\ -2x - 2y - 11z - 2t = -1 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 31. Résoudre le système :

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 32. Résoudre le système :

$$(S) \begin{cases} 2x + 2y + 6z - 2t = 3\\ x + y + 3z - t = 0\\ -x - y - 3z + t = 0\\ 4x + 4y + 12z - 4t = -3 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 33. Résoudre le système:

$$(S) \begin{cases} -10x + 4y - 6z - 6t = 0 \\ x - 6y - z - t = 0 \\ 4x + 6y + 2z + 4t = 0 \\ 9y + 2t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 34. Résoudre le système :

$$(S) \begin{cases} 3x + 2y + 2z = 20 \\ 5x + 4y + 2z = 6 \\ -x - 3y + 2z = -5 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 35. Résoudre le système :

$$(S) \begin{cases} -4x - 2y + 5z = 1 \\ x + 2y - 2z = 9 \\ 2y - z = -33 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 36. Résoudre le système:

$$(S) \begin{cases} -x - y + z = 0 \\ x + y - z = 0 \\ x + y - z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 37. Résoudre le système:

$$(S) \begin{cases} -2x + y - 5z = 0 \\ -3x - 6z = 0 \\ 2x - y + 5z = 0 \end{cases},$$

 \rightarrow page 26

 \rightarrow page 27

 \rightarrow page 27

 \rightarrow page 28

 \rightarrow page 28

 \rightarrow page 28

 \rightarrow page 29

 \rightarrow page 30

 \rightarrow page 30

 \rightarrow page 30

 \rightarrow page 31

 \rightarrow page 31

 \rightarrow page 31

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 38. Résoudre le système:

$$(S) \begin{cases} -4x & = 0 \\ -8x - 12y + 4z = 0 \\ -x - 6y + 2z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 39. Résoudre le système:

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 40. Résoudre le système :

$$(S) \begin{cases} x - y - 4z = 0 \\ - 4y - 6z = 0 \\ x + y + 2z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 41. Résoudre le système :

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 42. Résoudre le système :

$$(S) \begin{cases} -x + y - z - 2t = 0 \\ -x + y - z - 2t = 0 \\ x - y + z + 2t = 0 \\ -x + y - z - 2t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 43. Résoudre le système :

$$(S) \begin{cases} x - 5y + 4z = 0 \\ -x - 4y - z = 3 \\ -x + 2y - 3z = 1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 44. Résoudre le système:

$$(S) \begin{cases} -14x & + 14z + t = 5 \\ -3x - 2y + 2z - 2t = 0 \\ -8x & -2z - t = 0 \\ 9x + y & +2t = -3 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 45. Résoudre le système :

$$(S) \begin{cases} 5x + 3y + 3z - 4t = -6 \\ -7x + 5y + 5z + t = -79 \\ 2y + 2z - t = -19 \\ -x + 3y + 3z - t = -33 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 46. Résoudre le système:

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 47. Résoudre le système:

$$(S) \begin{cases} 2x + 2y - 2z = 2 \\ x + y - z = 1 \\ x + y - z = 1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 48. Résoudre le système:

$$(S) \begin{cases} - & x & - & t = 0 \\ - & 2x - 4y - z - 2t = -4 \\ - & x - 2y & - t = 0 \\ - & 13x + 4y & - 9t = 4 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 49. Résoudre le système :

$$(S) \begin{cases} -x - y + z = 0 \\ x + y - z = 0 \\ x + y - z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 50. Résoudre le système :

$$(S) \begin{cases} -7x + 6y - 9z - t = 0 \\ -5x - 4y - 11z = -1 \\ -2x + 3y - 4z - 2t = -41 \\ -4x + 7y - 6z - 3t = -54 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 51. Résoudre le système :

$$(S) \begin{cases} x - y + 4z - t = -1 \\ -5x - 15y + z + 6t = 0 \\ -7x - 17y - 2z + 8t = -24 \\ y - 3z + t = -143 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 52. Résoudre le système :

$$(S) \begin{cases} 8x - y - z - 2t = 1 \\ 8x - y - z - 2t = 1 \\ -16x + 2y + 2z + 2t = 4 \\ 16x - 3y - z + t = -72 \end{cases},$$

 \rightarrow page 32

 \rightarrow page 33

 \rightarrow page 33

 \rightarrow page 34

 \rightarrow page 34

 \rightarrow page 35

 \rightarrow page 36

 \rightarrow page 36

 \rightarrow page 36

 \rightarrow page 37

 \rightarrow page 37

 \rightarrow page 37

 \rightarrow page 38

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 53. Résoudre le système:

$$(S) \begin{cases} 3x + 6y - 18z = 1 \\ -x - 2y + 6z = 2 \\ -x - 2y + 6z = -1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 54. Résoudre le système:

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 55. Résoudre le système:

$$(S) \begin{cases} 7x + 8y - 24z - 8t = 0 \\ x - 6z - 3t = 0 \\ x + y - 3z - t = 0 \\ - 25x - 2y - 2t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 56. Résoudre le système:

$$(S) \begin{cases} - & x + y + z = 0 \\ - & 2x + 2y + 2z = 2 \\ & 5x - 5y - 5z = 1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 57. Résoudre le système:

$$(S) \begin{cases} x + 5y + z = 0 \\ -3x - 15y - 3z = 0 \\ -x - 5y - z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 58. Résoudre le système:

$$(S) \begin{cases} - & x & - & 3y & + & 8z & - & 4t & = & 3 \\ - & 3x & + & y & - & 4z & & = & 13 \\ - & 3x & & & - & 3z & - & t & = & 0 \\ - & 6x & + & y & - & 7z & - & t & = & 13 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 59. Résoudre le système :

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 60. Résoudre le système :

$$(S) \begin{cases} -3x - 11y + 2z + t = 3 \\ -7x - 17y - 4z - 7t = -1 \\ 3x + 2y - 5z = -1 \\ -14y - 4z + 2t = 8 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 61. Résoudre le système :

$$(S) \begin{cases} -2x - 4y - 2z - 6t = 2 \\ -x + 2y + z + 3t = 1 \\ x - 2y - z - 3t = 0 \\ x - 2y - z - 3t = 0 \end{cases}$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 62. Résoudre le système :

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 63. Résoudre le système:

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 64. Résoudre le système :

$$(S) \begin{cases} x - 2y + 5z - 8t = -1 \\ 2x - 2z = 1 \\ x - y + 2z - 4t = -1 \\ -2x + 2z = 1 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 65. Résoudre le système :

$$(S) \begin{cases} -8x - 24y + 4z = 4 \\ 6x + 18y - 3z = -3 \\ 2x + 6y - z = -1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 66. Résoudre le système:

$$(S) \begin{cases} -6x + 12y - 2z = -2 \\ 3x - 4y + 3z = 1 \\ 4y + 4z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 67. Résoudre le système:

$$(S) \begin{cases} 11x + 13y - 5z = 0 \\ -10x - 12y + z = 0 \\ -10x - 12y - 7z = 0 \end{cases},$$

 \rightarrow page 39

 \rightarrow page 39

 \rightarrow page 39

 \rightarrow page 39

 \rightarrow page 40

 \rightarrow page 40

 \rightarrow page 41

 \rightarrow page 41

 \rightarrow page 41

 \rightarrow page 42

 \rightarrow page 42

 \rightarrow page 42

 \rightarrow page 43

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 68. Résoudre le système:

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 69. Résoudre le système :

$$(S) \begin{cases} -4x - 4y + 8z = 4 \\ 8x + 8y - 16z = -8 \\ x + y - 2z = -1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 70. Résoudre le système:

$$(S) \begin{cases} x - y + z = 0 \\ 3x + 3y - 3z = 0 \\ x + y - 2z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 71. Résoudre le système :

$$(S) \begin{cases} 2x + 16y - 4z = 0 \\ x + 8y - 2z = 0 \\ -x - 8y + 2z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 72. Résoudre le système:

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 73. Résoudre le système:

$$(S) \begin{cases} 10x - 20y + 10z + 10t = 2\\ x - 2y + z + t = 1\\ -x + 2y - z - t = -1\\ -3x + 6y - 3z - 3t = 6 \end{cases}$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 74. Résoudre le système :

$$(S) \begin{cases} 2x + 2y & = 0 \\ 3x + 3y - z & = 1 \\ -2x - 2y & = 1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 75. Résoudre le système :

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 76. Résoudre le système:

$$(S) \begin{cases} x - y - 2z + t = 0 \\ x - y - 2z + t = 0 \\ -4x + 4y + 8z - 4t = 0 \\ x - y - 2z + t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 77. Résoudre le système:

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 78. Résoudre le système:

$$(S) \begin{cases} -2x + y + 3z & = 0 \\ -2x + y + 5z - 2t = 2 \\ -x + 9z & = 6 \\ 5x - 4y + 3z + 9t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 79. Résoudre le système:

$$(S) \begin{cases} -x + 4y + 3z + t = 16 \\ -2x + 7z - t = -9 \\ -3y + 2z - t = -2 \\ x + 4y - 4z + 2t = -2 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 80. Résoudre le système:

$$(S) \begin{cases} - & 10x - 10y + 10z = 0 \\ & x + y - z = 0 \\ - & 3x - 3y + 3z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 81. Résoudre le système :

$$(S) \begin{cases} x - 2y - z = 5 \\ x - 2y - z = 5 \\ - 6x + 12y + 6z = -30 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 82. Résoudre le système:

$$(S) \begin{cases} -3x - 7y + 7z = -4 \\ y - z = 1 \\ -x - 3y + 3z = -2 \end{cases},$$

 \rightarrow page 43

 \rightarrow page 43

 \rightarrow page 44

 \rightarrow page 44

 \rightarrow page 45

 \rightarrow page 45

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 83. Résoudre le système:

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 84. Résoudre le système:

$$(S) \begin{cases} -x + y - 2z = -3 \\ -x + y - 2z = -3 \\ -3x + 3y - 6z = -9 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 85. Résoudre le système:

$$(S) \begin{cases} -7x + y - 5z - 2t = -1 \\ 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -5x + 5z + 5t = 35 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 86. Résoudre le système:

$$(S) \begin{cases} -7x + 7y + 4z = 0 \\ x - 2y = 0 \\ -7x + 8y + 2z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 87. Résoudre le système:

$$(S) \begin{cases} 6x + y + 2z = 0 \\ 3z = 0 \\ 20x + 3y + 10z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 88. Résoudre le système:

$$(S) \begin{cases} -5x - y - z = 0 \\ -5x - y - z = -1 \\ 5x + y + z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 89. Résoudre le système :

$$(S) \begin{cases} -2x - 3y - 15z = 0 \\ 3x - y + 12z = 0 \\ -2x + 2y - 6z = -6 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 90. Résoudre le système:

$$(S) \begin{cases} -x + 4y + 6z - t = 0 \\ -2x + 2y - 3z - 2t = 6 \\ -y - 7z - 3t = 4 \\ x + 2y - 5t = 0 \end{cases}$$

 \rightarrow page 46

 \rightarrow page 46

 \rightarrow page 46

 \rightarrow page 47

 \rightarrow page 48

 \rightarrow page 48

 \rightarrow page 48

 \rightarrow page 49

 \rightarrow page 49

 \rightarrow page 50

 \rightarrow page 50

 \rightarrow page 51

 \rightarrow page 51

 \rightarrow page 51

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 91. Résoudre le système:

$$(S) \begin{cases} - & x + y + 2z + t = -2 \\ - & x + y + 2z + t = -2 \\ - & 2x + 2y + 4z + 2t = -4 \\ - & x + y + 2z + t = -2 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 92. Résoudre le système :

$$(S) \begin{cases} -6x + 6y - z + 5t = 2\\ 2x - 2y + z - t = 2\\ 7x - 7y + 2z - 5t = 1\\ -21x + 21y - 8z + 13t = -11 \end{cases}$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 93. Résoudre le système:

$$(S) \begin{cases} -x + 2y + 5z = 0 \\ -x + y + 2z = 0 \\ x - y - 2z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 94. Résoudre le système:

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 95. Résoudre le système:

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

Exercice 96. Résoudre le système :

$$(S) \begin{cases} 5x - y + z + t = -1 \\ -10x + 2y - 2z - 2t = 0 \\ -5x + y - z - t = 1 \\ 10x - 2y + 2z + 2t = -6 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$.

Exercice 97. Résoudre le système:

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 98. Résoudre le système:

$$(S) \begin{cases} - & x + y & = 0 \\ & 2x & + 2z = 0 \\ & - y - z = 0 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 99. Résoudre le système :

$$(S) \begin{cases} x + y + z + t = 0 \\ -24y & -4t = 0 \\ -6y & -t = 0 \\ 4x - 14y + 4z + t = 0 \end{cases},$$

d'inconnue $(x, y, z, t) \in \mathbb{R}^4$. Si l'ensemble des solutions est non trivial : l'écrire comme un « Vect ».

Exercice 100. Résoudre le système :

$$(S) \begin{cases} x - y + 2z = 2 \\ -x = 2 \\ 3x - 4y + 8z = -1 \end{cases},$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$.

 \rightarrow page 52

Corrigé 1. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 1

$$\begin{cases} - & 9x + 3y - 3z = 0 \\ & 3x - y + z = 0 \\ - & 3x + y - z = 0 \end{cases} \iff \begin{cases} & 3x - y + z = 0 \\ - & 9x + 3y - 3z = 0 \\ - & 3x + y - z = 0 \end{cases}$$
$$\iff \begin{cases} & 3x - y + z = 0 \\ - & 3x + y - z = 0 \end{cases}$$
$$\iff \begin{cases} & 3x - y + z = 0 \\ & 0 = 0 & (L_2 \leftarrow L_2 + 3L_1) \\ & 0 = 0 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} 3x - y + z = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = \frac{1}{3}y - \frac{1}{3}z \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = \frac{1}{3}a - \frac{1}{3}b \\ y = a \\ z = b \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}\left(\left(\frac{1}{3}, 1, 0\right), \left(-\frac{1}{3}, 0, 1\right)\right).$$

Corrigé 2. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 1

$$\begin{cases} 4x & + 4z & = -72 \\ - 6x & - 5z + t = 0 \\ - 4x + y - z - t = 1 \\ - 16x + 3y - 9z - 2t = -36 \end{cases} \iff \begin{cases} 4x & + 4z & = -72 \\ & z + t = -108 \ (L_2 \leftarrow L_2 + \frac{3}{2}L_1) \\ y + 3z - t = -71 \ (L_3 \leftarrow L_3 + L_1) \\ 3y + 7z - 2t = -324 \ (L_4 \leftarrow L_4 + 4L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x & + 4z & = -72 \\ y + 3z - t = -71 \\ & z + t = -108 \ (L_3 \leftrightarrow L_2) \\ 3y + 7z - 2t = -324 \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x & + 4z & = -72 \\ y + 3z - t = -71 \\ & z + t = -108 \ (L_3 \leftrightarrow L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x & + 4z & = -72 \\ y + 3z - t = -71 \\ & z + t = -108 \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x & + 4z & = -72 \\ y + 3z - t = -71 \\ & z + t = -108 \\ & - 2z + t = -111 \ (L_4 \leftarrow L_4 - 3L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x & + 4z & = -72 \\ y + 3z - t = -71 \\ & z + t = -108 \\ & 3t = -327 \ (L_4 \leftarrow L_4 + 2L_3) \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} 4x & + 4z & = -72 \\ y + 3z - t = -71 \\ z + t = -108 \\ 3t = -327 \end{cases} \iff \begin{cases} x = -z - 18 \\ y = -3z + t - 71 \\ z = -t - 108 \\ t = -109 \end{cases}$$

$$\iff \begin{cases} x = -2 - 18 \\ y = -3z + t - 71 \\ z = -t - 108 \\ t = -109 \end{cases}$$

$$\iff \begin{cases} x = -19 \\ y = -183 \\ z = 1 \\ t = -109 \end{cases}$$

d'où le résultat.

Corrigé 3. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases}
2x + 2y + 2z = 0 \\
2x - 2y - 3z = 0
\end{cases}
\Leftrightarrow
\begin{cases}
x - y - 2z = 0 \\
2x - 2y - 3z = 0
\end{cases}$$

$$\Rightarrow
\begin{cases}
x - y - 2z = 0 \\
2x + 2y + 2z = 0
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
x - y - 2z = 0 \\
2x + 2y + 2z = 0
\end{cases}$$

$$\Rightarrow
\begin{cases}
x - y - 2z = 0 \\
4y + 6z = 0
\end{cases}$$

$$\Rightarrow
\begin{cases}
x - y - 2z = 0 \\
4y + 6z = 0
\end{cases}$$

$$\Rightarrow
\begin{cases}
x - y - 2z = 0 \\
4y + 6z = 0
\end{cases}$$

$$z = 0 (L_3 \leftrightarrow L_3 - 2L_1)$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} & x - y - 2z = 0 \\ & 4y + 6z = 0 \\ & z = 0 \end{cases} \iff \begin{cases} x = y + 2z \\ y = -\frac{3}{2}z \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

d'où le résultat.

Corrigé 4. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 1

$$\begin{cases} 2x - 5y + 2t = 0 \\ 8x - 2y + z + 12t = 0 \\ -2x + 7y + 6t = 0 \\ 5x + 9y + z + 23t = 0 \end{cases} \iff \begin{cases} 2x - 5y + 2t = 0 \\ -18y + z + 4t = 0 & (L_2 \leftarrow L_2 - 4L_1) \\ 2y + 8t = 0 & (L_3 \leftarrow L_3 + L_1) \\ \frac{43}{3}y + z + 18t = 0 & (L_4 \leftarrow L_4 - \frac{5}{2}L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 & (L_3 \leftrightarrow L_3 + L_1) \\ 2y + 8t = 0 & (L_4 \leftrightarrow L_4 - \frac{5}{2}L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 & (L_3 \leftrightarrow L_2) \\ \frac{43}{2}y + z + 18t = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 & (L_3 \leftrightarrow L_3 - 9L_2) \\ 2y + 8t = 0 & (L_4 \leftarrow L_4 - \frac{43}{4}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 \\ 2y + 8t = 0 & (L_4 \leftarrow L_4 - \frac{43}{4}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 \\ 2y + 8t = 0 & (L_4 \leftarrow L_4 - \frac{43}{4}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 \\ 2y + 8t = 0 & (L_4 \leftarrow L_4 - \frac{43}{4}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 \\ 2y + 8t = 0 & (L_4 \leftarrow L_4 - \frac{43}{4}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 \\ 2y + 8t = 0 & (L_4 \leftarrow L_4 - \frac{43}{4}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 5y + 2t = 0 \\ 2y + 8t = 0 & (L_4 \leftarrow L_4 - \frac{43}{4}L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} 2x - 5y & + 2t = 0 \\ 2y & + 8t = 0 \\ z - 68t = 0 & \iff \exists a \in \mathbb{R}, \end{cases} \begin{cases} x = \frac{5}{2}y - t \\ y = -4t \\ z = 68t \\ t = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \end{cases} \begin{cases} x = \frac{5}{2}y - t \\ y = -4t \\ z = 68t \\ t = a \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((-11, -4, 68, 1)).$$

Corrigé 5. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} -8x + 6y + 5z = -1 \\ -4x + 2y + z = -5 \\ 4x - y + z = 0 \end{cases} \iff \begin{cases} -4x + 2y + z = -5 \\ -8x + 6y + 5z = -1 \\ 4x - y + z = 0 \end{cases} (L_2 \leftrightarrow L_1)$$

$$\Leftrightarrow \begin{cases} -4x + 2y + z = -5 \\ 2y + 3z = 9 \\ y + 2z = -5 \end{cases} (L_3 \leftarrow L_3 + L_1)$$

$$\Leftrightarrow \begin{cases} -4x + 2y + z = -5 \\ 2y + 3z = 9 \end{cases} (L_3 \leftrightarrow L_2)$$

$$\Leftrightarrow \begin{cases} -4x + 2y + z = -5 \\ y + 2z = -5 \\ -zy + 3z = 9 \end{cases} (L_3 \leftrightarrow L_2)$$

$$\Leftrightarrow \begin{cases} -4x + 2y + z = -5 \\ -2y + 3z = -5 \\ -z = 19 \end{cases} (L_3 \leftarrow L_3 - 2L_2)$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -4x + 2y + z = -5 \\ y + 2z = -5 \\ -z = 19 \end{cases} \iff \begin{cases} x = \frac{1}{2}y + \frac{1}{4}z + \frac{5}{4}z +$$

d'où le résultat.

Corrigé 6. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 1

6. On resolut ce systeme inhearie avec la methode du prvot de Gaus. Soit
$$(x, y, z) \in \mathbb{R}^{n}$$
. Alc
$$\begin{cases} x & -3z = -3 \\ x - y & =1 \\ 4x - y - 9z = 5 \end{cases} \iff \begin{cases} x & -3z = -3 \\ -y + 3z = 4 & (L_{2} \leftarrow L_{2} - L_{1}) \\ -y + 3z = 17 & (L_{3} \leftarrow L_{3} - 4L_{1}) \end{cases}$$

$$\iff \begin{cases} x & -3z = -3 \\ -y + 3z = 4 \\ 0 = 13 & (L_{3} \leftarrow L_{3} - L_{2}) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 7. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 1

$$\begin{cases}
-2x - 2y + 11z = 7 \\
-2x - 2y + 11z = 7 \\
4x + 4y - 22z = -14
\end{cases}
\iff
\begin{cases}
-2x - 2y + 11z = 7 \\
0 = 0 & (L_2 \leftarrow L_2 - L_1) \\
0 = 0 & (L_3 \leftarrow L_3 + 2L_1)
\end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} -2x - 2y + 11z = 7 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -y + \frac{11}{2}z - \frac{7}{2} \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -a + \frac{11}{2}b - \frac{7}{2} \\ y = a \\ z = b \end{cases}$$

d'où le résultat.

Corrigé 8. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} -2x + y + 4z = 0 \\ 6x - 3y - 12z = 0 \\ 2x - 3z = -3 \end{cases} \iff \begin{cases} -2x + y + 4z = 0 \\ 0 = 0 & (L_2 \leftarrow L_2 + 3L_1) \\ y + z = -3 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$
$$\iff \begin{cases} -2x + y + 4z = 0 \\ y + z = -3 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} -2x + y + 4z = 0 \\ y + z = -3 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = \frac{1}{2}y + 2z \\ y = -z - 3 \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = \frac{3}{2}a - \frac{3}{2} \\ y = -a - 3 \\ z = a \end{cases}$$

d'où le résultat.

Corrigé 9. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 2

$$\begin{cases} -4x - 4y - 4z - 16t = 44 \\ -4x - 4y - 4z - 16t = 44 \\ -2x - 2y - 2z - 8t = 22 \\ -x - y - z - 4t = 11 \end{cases} \iff \begin{cases} -x - y - z - 4t = 11 \\ -4x - 4y - 4z - 16t = 44 \\ -2x - 2y - 2z - 8t = 22 \\ -4x - 4y - 4z - 16t = 44 \end{cases} (L_4 \leftrightarrow L_1)$$

$$\Leftrightarrow \begin{cases} -x - y - z - 4t = 11 \\ -4x - 4y - 4z - 16t = 44 \\ -2x - 2y - 2z - 8t = 22 \\ -4x - 4y - 4z - 16t = 44 \end{cases} (L_4 \leftrightarrow L_1)$$

$$\Leftrightarrow \begin{cases} -x - y - z - 4t = 11 \\ 0 = 0 & (L_2 \leftarrow L_2 - 4L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 - 2L_1) \\ 0 = 0 & (L_4 \leftarrow L_4 - 4L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} - & x & - & y & - & z & - & 4t & = & 11 \\ & & 0 & = & 0 \\ & & & 0 & = & 0 \\ & & & 0 & = & 0 \end{cases} \iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x & = & -y - z - 4t - 11 \\ y & = & a \\ z & = & b \\ t & = & c \end{cases}$$

$$\iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x & = & -y - z - 4t - 11 \\ y & = & a \\ z & = & b \\ t & = & c \end{cases}$$

d'où le résultat.

Corrigé 10. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 2

$$\begin{cases} - & 2x & - & 2y & - & 2z & = & 0 \\ - & x & - & y & - & z & = & 0 \\ & x & + & y & + & z & = & 0 \end{cases} \iff \begin{cases} - & x & - & y & - & z & = & 0 \\ - & 2x & - & 2y & - & 2z & = & 0 \\ & x & + & y & + & z & = & 0 \end{cases}$$
$$\iff \begin{cases} - & x & - & y & - & z & = & 0 \\ & x & + & y & + & z & = & 0 \end{cases}$$
$$\iff \begin{cases} - & x & - & y & - & z & = & 0 \\ & 0 & = & 0 & (L_2 \leftarrow L_2 - 2L_1) \\ & 0 & = & 0 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
-x - y - z &= 0 \\
0 &= 0 \\
0 &= 0
\end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x &= -y - z \\
y &= a \\
z &= b
\end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x &= -a - b \\
y &= a \\
z &= b
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((-1, 1, 0), (-1, 0, 1)).$$

Corrigé 11. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 2

$$\begin{cases} x + 7y - z - t = -5 \\ 4x + 11y + 3z - 4t = 1 \\ -9x - 23y - 5z - 5t = 1 \\ 7x + 18y + 4z + 3t = 1 \end{cases} \iff \begin{cases} x + 7y - z - t = -5 \\ -17y + 7z - 36 + 14t = -44 & (L_3 \leftarrow L_3 + 9L_1) \\ 40y - 14z - 14t = -44 & (L_3 \leftarrow L_3 + 9L_1) \\ -31y + 11z + 10t = 36 & (L_4 \leftarrow L_4 - 7L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - 14t = \frac{92}{17} & (L_3 \leftarrow L_3 + \frac{40}{17}L_2) \\ -\frac{30}{17}z + 10t = -\frac{39}{17} & (L_4 \leftarrow L_4 - \frac{31}{17}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - 14t = \frac{92}{17} & (L_4 \leftrightarrow L_3) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - 14t = \frac{92}{17} & (L_4 \leftrightarrow L_3) \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t - t = -5 \\ -17y + 7z - 2 - t = -5 \\ -17y + 7z - 2 - t = -5 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 7y - z - t - t - 5 - t - 17y + 7z - 2 - t - 17y + 7z - 17y$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 12. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 2

$$\begin{cases} -5x + 5y + 5z = -45 \\ -x + y + z = -9 \\ 2x - 2y - 2z = 18 \end{cases} \iff \begin{cases} -x + y + z = -9 \\ -5x + 5y + 5z = -45 \\ 2x - 2y - 2z = 18 \end{cases} \\ \Leftrightarrow \begin{cases} -x + y + z = -9 \\ 0 = 0 & (L_2 \leftarrow L_2 - 5L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + 2L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} - & x + y + z = -9 \\ & 0 = 0 \\ & 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = y + z + 9 \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = a + b + 9 \\ y = a \\ z = b \end{cases}$$

d'où le résultat.

Corrigé 13. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 2

$$\begin{cases} -4x + 24y - 4z - 8t = 154 \\ -x + 6y - z - 2t = 12 \\ -x + 6y - z - 2t = -3 \\ x - 6y + z + 2t = 3 \end{cases} \iff \begin{cases} -x + 6y - z - 2t = 12 \\ -4x + 24y - 4z - 8t = 154 & (L_2 \leftrightarrow L_1) \\ -x + 6y - z - 2t = -3 \\ x - 6y + z + 2t = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 6y - z - 2t = 12 \\ -x + 6y - z - 2t = 12 \\ 0 = 106 & (L_2 \leftarrow L_2 - 4L_1) \\ 0 = -15 & (L_3 \leftarrow L_3 - L_1) \\ 0 = 15 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 14. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} & x - y + 3z = 0 \\ & 2x - 2y + 6z = 0 \\ & - 2x + y - 4z = 0 \end{cases} \iff \begin{cases} & x - y + 3z = 0 \\ & 0 = 0 & (L_2 \leftarrow L_2 - 2L_1) \\ & - y + 2z = 0 & (L_3 \leftarrow L_3 + 2L_1) \end{cases}$$
$$\iff \begin{cases} & x - y + 3z = 0 \\ & - y + 2z = 0 \\ & 0 = 0 \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} x - y + 3z = 0 \\ - y + 2z = 0 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = y - 3z \\ y = 2z \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = -a \\ y = 2a \\ z = a \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}((-1, 2, 1)).$$

Corrigé 15. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

oit
$$(x, y, z) \in \mathbb{R}^3$$
. Alors: \leftarrow page 2

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
-x + y - 17z &= 0 \\
0 &= 0 \\
0 &= 0
\end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x &= y - 17z \\
y &= a \\
z &= b
\end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x &= a - 17b \\
y &= a \\
z &= b
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((1, 1, 0), (-17, 0, 1)).$$

Corrigé 16. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\leftarrow$$
 page 3

$$\begin{cases} x + y + z - 2t = 1 \\ -7x - 7y - 7z + 14t = -1 \\ 3x + 3y + 3z - 6t = 1 \\ -x - y - z + 2t = -1 \end{cases} \iff \begin{cases} x + y + z - 2t = 1 \\ 0 = 6 & (L_2 \leftarrow L_2 + 7L_1) \\ 0 = -2 & (L_3 \leftarrow L_3 - 3L_1) \\ 0 = 0 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x + y + z - 2t &= 1 \\ 0 &= 6 \\ 0 &= -2 \\ 0 &= 0 \end{cases} \iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x &= -y - z + 2t + 1 \\ y &= a \\ z &= b \\ t &= c \end{cases}$$

$$\iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x &= -y - z + 2t + 1 \\ y &= a \\ z &= b \\ t &= c \end{cases}$$

d'où le résultat.

Corrigé 17. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 $\leftarrow \text{page } 3$

$$\begin{cases} -3x + 3y - 6z = -21 \\ x - 2y + 6z = -1 \\ x - y + 2z = 7 \end{cases} \iff \begin{cases} x - 2y + 6z = -1 \\ -3x + 3y - 6z = -21 \\ x - y + 2z = 7 \end{cases} \Leftrightarrow \begin{cases} x - 2y + 6z = -1 \\ -3y + 12z = -24 \\ y - 4z = 8 \\ -3y + 12z = -24 \\ (L_2 \leftarrow L_2 + 3L_1) \\ y - 4z = 8 \\ -3y + 12z = -24 \\ (L_3 \leftrightarrow L_3 - L_1) \end{cases} \Leftrightarrow \begin{cases} x - 2y + 6z = -1 \\ y - 4z = 8 \\ -3y + 12z = -24 \\ (L_3 \leftrightarrow L_3 - L_1) \end{cases} \Leftrightarrow \begin{cases} x - 2y + 6z = -1 \\ y - 4z = 8 \\ 0 = 0 \\ (L_3 \leftarrow L_3 + 3L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} x - 2y + 6z = -1 \\ y - 4z = 8 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = 2y - 6z - 1 \\ y = 4z + 8 \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = 2a + 15 \\ y = 4a + 8 \\ z = a \end{cases}$$

d'où le résultat.

Corrigé 18. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 3

$$\begin{cases} 2x + y - 5z = -4 \\ 2x + y - 5z = 40 \\ 2x + y - 5z = 8 \end{cases} \iff \begin{cases} 2x + y - 5z = -4 \\ 0 = 44 & (L_2 \leftarrow L_2 - L_1) \\ 0 = 12 & (L_3 \leftarrow L_3 - L_1) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 19. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 3

$$\begin{cases} -x & -4y & -5z & = 0 \\ -x & -y & -2z & = 0 \\ 2y & +3z & = 0 \end{cases} \iff \begin{cases} -x & -y & -2z & = 0 \\ 2x & -4y & -5z & = 0 \\ 2y & +3z & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x & -y & -2z & = 0 \\ -6y & -9z & = 0 \\ 2y & +3z & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x & -y & -2z & = 0 \\ -6y & -9z & = 0 \\ 2y & +3z & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x & -y & -2z & = 0 \\ -2y & +3z & = 0 \\ -6y & -9z & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x & -y & -2z & = 0 \\ -2y & +3z & = 0 \\ 0 & = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x & -y & -2z & = 0 \\ -6y & -9z & = 0 \\ 0 & = 0 \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} - & x & - & y & - & 2z & = & 0 \\ & & 2y & + & 3z & = & 0 \\ & & & 0 & = & 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x & = & -y - 2z \\ y & = & -\frac{3}{2}z \\ z & = & a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x & = & -\frac{1}{2}a \\ y & = & -\frac{3}{2}a \\ z & = & a \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}\left(\left(-\frac{1}{2}, -\frac{3}{2}, 1\right)\right).$$

Corrigé 20. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 3

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls: x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x + y - 3z = 0 \\ y - 4z = 0 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = -y + 3z \\ y = 4z \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = -a \\ y = 4a \\ z = a \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}((-1, 4, 1)).$$

Corrigé 21. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 3

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls: x, y) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} -x + 2y + 4z + t = 0 \\ -y - 3z - t = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = 2y + 4z + t \\ y = -3z - t \\ z = a \\ t = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -2a - b \\ y = -3a - b \\ z = a \\ t = b \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((-2, -3, 1, 0), (-1, -1, 0, 1)).$$

Corrigé 22. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 3

$$\begin{cases}
-2x + 6y - 7z = 0 \\
-x - 3y + 2z = 0 \\
x + 3y - 5z = 0
\end{cases}
\iff
\begin{cases}
-x - 3y + 2z = 0 \\
2x + 6y - 7z = 0 \\
x + 3y - 5z = 0
\end{cases}$$

$$\iff
\begin{cases}
-x - 3y + 2z = 0 \\
x + 3y - 5z = 0
\end{cases}$$

$$\iff
\begin{cases}
-x - 3y + 2z = 0 \\
x + 3y - 5z = 0
\end{cases}$$

$$\iff
\begin{cases}
-x - 3y + 2z = 0 \\
x + 3z = 0
\end{cases}$$

$$\iff
\begin{cases}
-x - 3y + 2z = 0 \\
-3z = 0
\end{cases}$$

$$\iff
\begin{cases}
-x - 3z = 0
\end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls: x, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
-x & -3y + 2z = 0 \\
-3z & = 0 \\
-3z & = 0
\end{cases} \iff \exists a \in \mathbb{R}, \begin{cases}
x = -3y + 2z \\
y = a \\
z = 0
\end{cases}$$

$$\iff \exists a \in \mathbb{R}, \begin{cases}
x = -3a + 2z \\
y = a \\
z = 0
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}((-3, 1, 0)).$$

Corrigé 23. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 4

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des

solutions. Plus précisément:

$$\begin{cases} -2x & -13y & -2z & +2t & =0\\ & -\frac{29}{2}y & -3z & +t & =0\\ & & \frac{3}{29}z & -\frac{1}{29}t & =0\\ & & 0 & =0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x & =-\frac{13}{2}y - z + t\\ y & =-\frac{6}{29}z + \frac{2}{29}t\\ z & =\frac{1}{3}t\\ t & =a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x & =\frac{2}{3}a\\ y & =0\\ z & =\frac{1}{3}a\\ t & =a \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}} \left(\left(\frac{2}{3}, 0, \frac{1}{3}, 1 \right) \right).$$

Corrigé 24. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 4

$$\begin{cases} -6x + 2y + z + 2t = -1 \\ -18x + 6y + 3z + 6t = -3 \\ -6x + 2y + z + 2t = -1 \\ 6x - 2y - z - 2t = 1 \end{cases} \iff \begin{cases} -6x + 2y + z + 2t = -1 \\ 0 = 0 & (L_2 \leftarrow L_2 - 3L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 - L_1) \\ 0 = 0 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} -6x + 2y + z + 2t = -1 \\ 0 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a, b, c) \in \mathbb{R}^3, \begin{cases} x = \frac{1}{3}y + \frac{1}{6}z + \frac{1}{3}t + \frac{1}{6}y \\ y = a \\ z = b \\ t = c \end{cases}$$
$$\iff \exists (a, b, c) \in \mathbb{R}^3, \begin{cases} x = \frac{1}{3}y + \frac{1}{6}z + \frac{1}{3}t + \frac{1}{6}y \\ y = a \\ z = b \\ t = c \end{cases}$$

d'où le résultat.

Corrigé 25. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 4

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 26. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} -4x + 2y + 8z + 2t = 0 \\ -2x + y + 4z + t = 0 \\ 2x - y - 4z - t = 0 \\ 2x - y - 4z - t = 0 \end{cases} \iff \begin{cases} -2x + y + 4z + t = 0 & (L_2 \leftrightarrow L_1) \\ -4x + 2y + 8z + 2t = 0 \\ 2x - y - 4z - t = 0 \\ 2x - y - 4z - t = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + y + 4z + t = 0 & (L_2 \leftrightarrow L_1) \\ -2x - y - 4z - t = 0 \\ 2x - y - 4z - t = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + y + 4z + t = 0 & (L_2 \leftrightarrow L_1) \\ 0 = 0 & (L_2 \leftarrow L_2 - 2L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \\ 0 = 0 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} -2x + y + 4z + t = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x = \frac{1}{2}y + 2z + \frac{1}{2}t \\ y = a \\ z = b \\ t = c \end{cases}$$

$$\iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x = \frac{1}{2}a + 2b + \frac{1}{2}c \\ y = a \\ z = b \\ t = c \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \text{Vect}_{\mathbb{R}}\left(\left(\frac{1}{2}, 1, 0, 0\right), (2, 0, 1, 0), \left(\frac{1}{2}, 0, 0, 1\right)\right).$$

Corrigé 27. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases}
-8x & -6z = 0 \\
y - 18z = 0 \\
-4x - y + 14z = 0
\end{cases} \iff \begin{cases}
-4x - y + 14z = 0 \\
y - 18z = 0 \\
-8x - 6z = 0 (L_3 \leftrightarrow L_1)
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-4x - y + 14z = 0 \\
y - 18z = 0 \\
2y - 34z = 0 (L_3 \leftarrow L_3 - 2L_1)
\end{cases}$$

$$\Leftrightarrow \begin{cases}
-4x - y + 14z = 0 \\
y - 18z = 0 \\
2z = 0 (L_3 \leftarrow L_3 - 2L_2)
\end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -4x - y + 14z = 0 \\ y - 18z = 0 \\ 2z = 0 \end{cases} \iff \begin{cases} x = -\frac{1}{4}y + \frac{7}{2}z \\ y = 18z \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

d'où le résultat.

Corrigé 28. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} -8x + 8y - 7z = 1 \\ -x + 2z = 7 \\ x - y = -8 \end{cases} \iff \begin{cases} -x + 8y - 7z = 1 \\ -8x + 8y - 7z = 1 \\ x - y = -8 \end{cases} (L_2 \leftrightarrow L_1)$$

$$\Leftrightarrow \begin{cases} -x + 2z = 7 \\ 8y - 23z = -55 \end{cases} (L_2 \leftarrow L_2 - 8L_1)$$

$$-y + 2z = -1 \quad (L_3 \leftarrow L_3 + L_1)$$

$$\Leftrightarrow \begin{cases} -x + 2z = 7 \\ -y + 2z = -1 \\ 8y - 23z = -55 \end{cases} (L_3 \leftrightarrow L_2)$$

$$\Leftrightarrow \begin{cases} -x + 2z = 7 \\ -y + 2z = -1 \\ -7z = -63 \quad (L_3 \leftarrow L_3 + 8L_2) \end{cases}$$

 \leftarrow page 4

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -x & +2z = 7 \\ -y & +2z = -1 \\ -7z & = -63 \end{cases} \iff \begin{cases} x = 2z - 7 \\ y = 2z + 1 \\ z = 9 \end{cases}$$
$$\iff \begin{cases} x = 11 \\ y = 19 \\ z = 9 \end{cases}$$

d'où le résultat.

Corrigé 29. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 4

$$\begin{cases} -x - 14y - z & = 0 \\ x - 2y - z + 2t = 0 \\ x + 14y + z & = 0 \\ x + 14y + z & = 0 \end{cases} \iff \begin{cases} -x - 14y - z & = 0 \\ -16y - 2z + 2t = 0 & (L_2 \leftarrow L_2 + L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \\ 0 = 0 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls: x, y) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} -x & -14y & -z & =0 \\ -16y & -2z & +2t & =0 \\ 0 & =0 & \iff \exists (a,b) \in \mathbb{R}^2, \end{cases} \begin{cases} x = -14y - z \\ y = -\frac{1}{8}z + \frac{1}{8}t \\ z = a \\ t = b \end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -14y - z \\ y = -\frac{1}{8}z + \frac{1}{8}t \\ z = a \\ t = b \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}} \left(\left(\frac{3}{4}, -\frac{1}{8}, 1, 0 \right), \left(-\frac{7}{4}, \frac{1}{8}, 0, 1 \right) \right).$$

Corrigé 30. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 4

Corrige 30. On resolut ce systeme lineaire avec la methode du pivot de Gaub. Soit
$$(x, y, z, t) \in \mathbb{R}^{3}$$
. Alors:

$$\begin{cases}
x & -16z + 4t = 4 \\
-x & +21z - 5t = 1 \\
2x & -2z + 2t = 1 \\
-2x - 2y - 11z - 2t = -1
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x & -16z + 4t = 4 \\
5z - t = 5 & (L_2 \leftarrow L_2 + L_1) \\
30z - 6t = -7 & (L_3 \leftarrow L_3 - 2L_1) \\
-2y - 43z + 6t = 7 & (L_4 \leftarrow L_4 + 2L_1)
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x & -16z + 4t = 4 \\
-2y - 43z + 6t = 7 \\
30z - 6t = -7 \\
5z - t = 5 & (L_4 \leftrightarrow L_2)
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x & -16z + 4t = 4 \\
-2y - 43z + 6t = 7 \\
5z - t = 5 \\
30z - 6t = -7 & (L_4 \leftrightarrow L_3)
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x & -16z + 4t = 4 \\
-2y - 43z + 6t = 7 \\
5z - t = 5 \\
30z - 6t = -7 & (L_4 \leftrightarrow L_3)
\end{cases}$$

$$\Leftrightarrow \begin{cases}
x & -16z + 4t = 4 \\
-2y - 43z + 6t = 7 \\
5z - t = 5 \\
0 = -37 & (L_4 \leftarrow L_4 - 6L_3)
\end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 31. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} 2x - y + z - t = 0 \\ -2x + y - z + t = 1 \\ -25x + 12y - 13z + 13t = 0 \\ -4x + y - 3z + 3t = 2 \end{cases} \iff \begin{cases} 2x - y + z - t = 0 \\ 0 = 1 & (L_2 \leftarrow L_2 + L_1) \\ -\frac{1}{2}y - \frac{1}{2}z + \frac{1}{2}t = 0 & (L_3 \leftarrow L_3 + \frac{25}{2}L_1 - y - z + t = 2) \\ -2x - y - z + t = 2 & (L_4 \leftarrow L_4 + 2L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - y + z - t = 0 \\ -\frac{1}{2}y - \frac{1}{2}z + \frac{1}{2}t = 0 \\ 0 = 1 & (L_3 \leftrightarrow L_2) \\ -y - z + t = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - y + z - t = 0 \\ -\frac{1}{2}y - \frac{1}{2}z + \frac{1}{2}t = 0 \\ 0 = 1 & 0 = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - y + z - t = 0 \\ 0 = 1 & 0 = 2 \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 32. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 5

$$\begin{cases} 2x + 2y + 6z - 2t = 3 \\ x + y + 3z - t = 0 \\ -x - y - 3z + t = 0 \\ 4x + 4y + 12z - 4t = -3 \end{cases} \iff \begin{cases} x + y + 3z - t = 0 \\ 2x + 2y + 6z - 2t = 3 & (L_2 \leftrightarrow L_1) \\ -x - y - 3z + t = 0 \\ 4x + 4y + 12z - 4t = -3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y + 3z - t = 0 \\ 0 = 3 & (L_2 \leftarrow L_2 - 2L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \\ 0 = -3 & (L_4 \leftarrow L_4 - 4L_1) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 33. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 5

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des

solutions. Plus précisément:

$$\begin{cases} x - 6y - z - t = 0 \\ 9y + 2t = 0 \\ 6z + \frac{4}{3}t = 0 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = 6y + z + t \\ y = -\frac{2}{9}t \\ z = -\frac{2}{9}t \\ t = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = -\frac{5}{9}a \\ y = -\frac{2}{9}a \\ z = -\frac{2}{9}a \\ t = a \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}\left(\left(-\frac{5}{9}, -\frac{2}{9}, -\frac{2}{9}, 1\right)\right).$$

Corrigé 34. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 5

Frigé 34. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit
$$(x, y, z) \in \mathbb{R}^3$$
. Alors:
$$\begin{cases} 3x + 2y + 2z = 20 \\ 5x + 4y + 2z = 6 \\ -x - 3y + 2z = -5 \end{cases} \iff \begin{cases} -x - 3y + 2z = -5 \\ 5x + 4y + 2z = 6 \\ 3x + 2y + 2z = 20 \end{cases} (L_3 \leftrightarrow L_1)$$
$$\Leftrightarrow \begin{cases} -x - 3y + 2z = -5 \\ -11y + 12z = -19 \end{cases} (L_2 \leftarrow L_2 + 5L_1) \\ -7y + 8z = 5 \end{cases} (L_3 \leftarrow L_3 + 3L_1)$$
$$\Leftrightarrow \begin{cases} -x - 3y + 2z = -5 \\ -7y + 8z = 5 \\ -11y + 12z = -19 \end{cases} (L_3 \leftrightarrow L_2)$$
$$\Leftrightarrow \begin{cases} -x - 3y + 2z = -5 \\ -7y + 8z = 5 \\ -7y + 8z = 5 \end{cases} (L_3 \leftarrow L_3 - \frac{11}{7}L_2)$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -x & -3y & +2z & = & -5 \\ & -7y & +8z & = & 5 \\ & & -\frac{4}{7}z & = & -\frac{188}{7} \end{cases} \iff \begin{cases} x & = & -3y + 2z + 5 \\ y & = & \frac{8}{7}z - \frac{5}{7} \\ z & = & 47 \end{cases}$$
$$\iff \begin{cases} x & = & -60 \\ y & = & 53 \\ z & = & 47 \end{cases}$$

d'où le résultat.

Corrigé 35. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\leftarrow$$
 page 5

$$\begin{cases} -4x - 2y + 5z = 1 \\ x + 2y - 2z = 9 \\ 2y - z = -33 \end{cases} \iff \begin{cases} x + 2y - 2z = 9 \\ -4x - 2y + 5z = 1 \\ 2y - z = -33 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 6y - 3z = 37 \\ 2y - z = -33 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 6y - 3z = 37 \\ 2y - z = -33 \\ 6y - 3z = 37 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 2y - z = -33 \\ 6y - 3z = 37 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 2y - z = -33 \\ 6y - 3z = 37 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 2y - z = -33 \\ 6y - 3z = 37 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 2y - z = -33 \\ 6y - 3z = 37 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 2y - z = -33 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 2y - z = -33 \end{cases}$$

$$\Leftrightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 2y - 2z = 9 \\ 2y - z = -33 \end{cases}$$

$$\Leftrightarrow \end{cases}$$

$$\Leftrightarrow \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 36. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
-x - y + z = 0 \\
0 = 0 \\
0 = 0
\end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = -y + z \\
y = a \\
z = b
\end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = -a + b \\
y = a \\
z = b
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S}=\operatorname{Vect}_{\mathbb{R}}\left(\left(-1,\,1,\,0\right),\left(1,\,0,\,1\right)\right).$$

Corrigé 37. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\leftarrow$$
 page 5

$$\begin{cases} -2x + y - 5z = 0 \\ -3x - 6z = 0 \\ 2x - y + 5z = 0 \end{cases} \iff \begin{cases} -2x + y - 5z = 0 \\ -\frac{3}{2}y + \frac{3}{2}z = 0 & (L_2 \leftarrow L_2 - \frac{3}{2}L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases}
-2x + y - 5z = 0 \\
-\frac{3}{2}y + \frac{3}{2}z = 0 \\
0 = 0
\end{cases} \iff \exists a \in \mathbb{R}, \begin{cases}
x = \frac{1}{2}y - \frac{5}{2}z \\
y = z \\
z = a
\end{cases}$$

$$\iff \exists a \in \mathbb{R}, \begin{cases}
x = -2a \\
y = a \\
z = a
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}((-2, 1, 1)).$$

Corrigé 38. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\leftarrow$$
 page 6

$$\begin{cases} -4x & = 0 \\ -8x - 12y + 4z = 0 \\ -x - 6y + 2z = 0 \end{cases} \iff \begin{cases} -x - 6y + 2z = 0 & (L_3 \leftrightarrow L_1) \\ -8x - 12y + 4z = 0 \\ -4x & = 0 \end{cases}$$

$$\iff \begin{cases} -x - 6y + 2z = 0 \\ 36y - 12z = 0 & (L_2 \leftarrow L_2 - 8L_1) \\ 24y - 8z = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$

$$\iff \begin{cases} -x - 6y + 2z = 0 & (L_3 \leftrightarrow L_2) \\ 24y - 8z = 0 & (L_3 \leftrightarrow L_2) \\ 36y - 12z = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$

$$\iff \begin{cases} -x - 6y + 2z = 0 & (L_3 \leftrightarrow L_2) \\ 24y - 8z = 0 & (L_3 \leftrightarrow L_3 - \frac{3}{2}L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions.

Plus précisément:

$$\begin{cases}
-x & -6y + 2z = 0 \\
24y - 8z = 0 \\
0 = 0
\end{cases} \iff \exists a \in \mathbb{R}, \begin{cases}
x = -6y + 2z \\
y = \frac{1}{3}z \\
z = a
\end{cases}$$

$$\iff \exists a \in \mathbb{R}, \begin{cases}
x = 0 \\
y = \frac{1}{3}a \\
z = a
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}} \left(\left(0, \frac{1}{3}, 1 \right) \right).$$

Corrigé 39. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 6

$$\begin{cases} 2x + y + 3z + 4t &= 0 \\ y + 3z + 2t &= -1 \\ -3x + 4z + 5t &= 3 \end{cases} \iff \begin{cases} 2x + y + 3z + 4t &= 0 \\ y + 3z + 2t &= -1 \\ y + 5z + 6t &= -1 \\ -3x + 4z + 5t &= 3 \end{cases} \Leftrightarrow \begin{cases} 2x + y + 3z + 4t &= 0 \\ y + 3z + 2t &= -1 \\ 3\frac{1}{2}y + \frac{17}{2}z + 11t &= 3 (L_4 \leftarrow L_4 + \frac{3}{2}L_1) \end{cases} \Leftrightarrow \begin{cases} 2x + y + 3z + 4t &= 0 \\ y + 3z + 2t &= -1 \\ 2z + 4t &= 0 (L_3 \leftarrow L_3 - L_2) \\ 4z + 8t &= \frac{9}{2} (L_4 \leftarrow L_4 - \frac{3}{2}L_2) \end{cases} \Leftrightarrow \begin{cases} 2x + y + 3z + 4t &= 0 \\ y + 3z + 2t &= -1 \\ 2z + 4t &= 0 \\ 0 &= \frac{9}{2} (L_4 \leftarrow L_4 - 2L_3) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 40. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 6

$$\begin{cases} x - y - 4z = 0 \\ -4y - 6z = 0 \\ x + y + 2z = 0 \end{cases} \iff \begin{cases} x - y - 4z = 0 \\ -4y - 6z = 0 \\ 2y + 6z = 0 \end{cases} (L_3 \leftarrow L_3 - L_1)$$

$$\iff \begin{cases} x - y - 4z = 0 \\ -2y + 6z = 0 \\ -4y - 6z = 0 \end{cases} (L_3 \leftrightarrow L_2)$$

$$\iff \begin{cases} x - y - 4z = 0 \\ -2y + 6z = 0 \\ -4y - 6z = 0 \end{cases} (L_3 \leftrightarrow L_2)$$

$$\iff \begin{cases} x - y - 4z = 0 \\ -2y + 6z = 0 \\ -2y + 6z = 0 \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} x - y - 4z = 0 \\ 2y + 6z = 0 \\ 6z = 0 \end{cases} \iff \begin{cases} x = y + 4z \\ y = -3z \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

d'où le résultat.

Corrigé 41. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 6

$$\begin{cases} 2x - y - 5z = -1 \\ -4x + 2y + 10z = 2 \\ -2x + y + 5z = 1 \end{cases} \iff \begin{cases} 2x - y - 5z = -1 \\ 0 = 0 & (L_2 \leftarrow L_2 + 2L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des

solutions. Plus précisément:

$$\begin{cases} 2x - y - 5z = -1 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = \frac{1}{2}y + \frac{5}{2}z - \frac{1}{2} \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = \frac{1}{2}a + \frac{5}{2}b - \frac{1}{2} \\ y = a \\ z = b \end{cases}$$

d'où le résultat.

Corrigé 42. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 6

$$\begin{cases} - & x + y - z - 2t = 0 \\ - & x + y - z - 2t = 0 \\ x - y + z + 2t = 0 \\ - & x + y - z - 2t = 0 \end{cases} \iff \begin{cases} - & x + y - z - 2t = 0 \\ 0 = 0 & (L_2 \leftarrow L_2 - L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \\ 0 = 0 & (L_4 \leftarrow L_4 - L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} -x + y - z - 2t &= 0 \\ 0 &= 0 \\ 0 &= 0 \end{cases} \iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x &= y - z - 2t \\ y &= a \\ z &= b \\ t &= c \end{cases}$$
$$\iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x &= a - b - 2c \\ y &= a \\ z &= b \\ t &= c \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((1, 1, 0, 0), (-1, 0, 1, 0), (-2, 0, 0, 1)).$$

Corrigé 43. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 6

$$\begin{cases} x - 5y + 4z = 0 \\ -x - 4y - z = 3 \\ -x + 2y - 3z = 1 \end{cases} \iff \begin{cases} x - 5y + 4z = 0 \\ -9y + 3z = 3 & (L_2 \leftarrow L_2 + L_1) \\ -3y + z = 1 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$
$$\iff \begin{cases} x - 5y + 4z = 0 \\ -3y + z = 1 \\ -9y + 3z = 3 & (L_3 \leftrightarrow L_2) \end{cases}$$
$$\iff \begin{cases} x - 5y + 4z = 0 \\ -3y + z = 1 \\ 0 = 0 & (L_3 \leftarrow L_3 - 3L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} x - 5y + 4z = 0 \\ -3y + z = 1 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = 5y - 4z \\ y = \frac{1}{3}z - \frac{1}{3} \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = -\frac{7}{3}a - \frac{5}{3} \\ y = \frac{1}{3}a - \frac{1}{3} \end{cases}$$

d'où le résultat.

Corrigé 44. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} -3x & -2y & +2z & -2t & =0 \\ -8x & -2z & -t & =0 \\ 9x & +y & +2t & =-3 \end{cases} \iff \begin{cases} -3x & -2y & +2z & -2t & =0 \\ 14x & +14z & +t & =5 \\ -8x & -2z & -t & =0 \\ 9x & +y & +2t & =-3 \end{cases} \Leftrightarrow \begin{cases} -3x & -2y & +2z & -2t & =0 \\ -8x & -2z & -t & =0 \\ 9x & +y & +2t & =-3 \end{cases} \end{cases} \Leftrightarrow \begin{cases} -3x & -2y & +2z & -2t & =0 \\ -2x & -2x & -2t & =0 \\ -2x & -2x$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 45. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors: \leftarrow page 6

$$\begin{cases} -5x + 3y + 3z - 4t = -6 \\ -7x + 5y + 5z + t = -79 \\ 2y + 2z - t = -19 \\ -x + 3y + 3z - t = -33 \end{cases} \iff \begin{cases} -x + 3y + 3z - t = -33 \\ -7x + 5y + 5z + t = -79 \\ 2y + 2z - t = -19 \\ 5x + 3y + 3z - 4t = -6 & (L_4 \leftrightarrow L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ -16y - 16z + 8t = 152 & (L_2 \leftarrow L_2 - 7L_1) \\ 2y + 2z - t = -19 \\ 18y + 18z - 9t = -171 & (L_4 \leftarrow L_4 + 5L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ -16y - 16z + 8t = 152 & (L_3 \leftrightarrow L_2) \\ 18y + 18z - 9t = -171 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ -16y - 16z + 8t = 152 & (L_3 \leftrightarrow L_2) \\ 18y + 18z - 9t = -171 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ -16y - 16z + 8t = 152 & (L_3 \leftrightarrow L_2) \\ -18y + 18z - 9t = -171 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ -16y - 16z + 8t = 152 & (L_3 \leftrightarrow L_2) \\ -18y + 18z - 9t = -171 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ -16y - 16z + 8t = 152 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ -16y - 16z + 8t = 152 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ -16y - 16z + 8t = 152 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls: x, y) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} -x + 3y + 3z - t = -33 \\ 2y + 2z - t = -19 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = 3y + 3z - t + 33 \\ y = -z + \frac{1}{2}t - \frac{19}{2} \\ z = a \\ t = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = \frac{1}{2}b + \frac{9}{2} \\ y = -a + \frac{1}{2}b - \frac{19}{2} \\ z = a \\ t = b \end{cases}$$

d'où le résultat.

Corrigé 46. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} 3x - 4y - z - 3t = 0 \\ -y + z = 2 \\ 3x - 4y + 3z + 3t = 16 \\ -4x + 7y - 3z - t = 4 \end{cases} \iff \begin{cases} 3x - 4y - z - 3t = 0 \\ -y + z = 2 \\ 4z + 6t = 16 & (L_3 \leftarrow L_3 - L_1) \\ \frac{5}{3}y - \frac{13}{3}z - 5t = 4 & (L_4 \leftarrow L_4 + \frac{4}{3}L_1) \end{cases}$$

$$\iff \begin{cases} 3x - 4y - z - 3t = 0 \\ -y + z = 2 \\ 4z + 6t = 16 \\ -\frac{8}{3}z - 5t = \frac{22}{3} & (L_4 \leftarrow L_4 + \frac{5}{3}L_2) \end{cases}$$

$$\iff \begin{cases} 3x - 4y - z - 3t = 0 \\ -y + z = 2 \\ -\frac{8}{3}z - 5t = \frac{22}{3} & (L_4 \leftarrow L_4 + \frac{5}{3}L_2) \end{cases}$$

$$\iff \begin{cases} 3x - 4y - z - 3t = 0 \\ -y + z = 2 \\ -\frac{8}{3}z - 5t = \frac{22}{3} \\ 4z + 6t = 16 & (L_4 \leftrightarrow L_3) \end{cases}$$

$$\iff \begin{cases} 3x - 4y - z - 3t = 0 \\ -y + z = 2 \\ -\frac{8}{3}z - 5t = \frac{22}{3} \\ -\frac{3}{2}t = 27 & (L_4 \leftarrow L_4 + \frac{3}{2}L_3) \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} 3x - 4y - z - 3t = 0 \\ - y + z = 2 \\ - \frac{8}{3}z - 5t = \frac{22}{3} \\ - \frac{3}{2}t = 27 \end{cases} \iff \begin{cases} x = \frac{4}{3}y + \frac{1}{3}z + t \\ y = z - 2 \\ z = -\frac{15}{8}t - \frac{11}{4} \\ t = -18 \end{cases}$$

$$\iff \begin{cases} x = 31 \\ y = 29 \\ z = 31 \\ t = -18 \end{cases}$$

d'où le résultat.

Corrigé 47. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 7

$$\begin{cases} 2x + 2y - 2z = 2 \\ x + y - z = 1 \\ x + y - z = 1 \end{cases} \iff \begin{cases} x + y - z = 1 \\ 2x + 2y - 2z = 2 \\ x + y - z = 1 \end{cases} \Leftrightarrow \begin{cases} x + y - z = 1 \\ 2x + 2y - 2z = 2 \end{cases} (L_2 \leftrightarrow L_1) \Leftrightarrow \begin{cases} x + y - z = 1 \\ 0 = 0 \end{cases} (L_2 \leftarrow L_2 - 2L_1) \\ 0 = 0 \end{cases} (L_3 \leftarrow L_3 - L_1)$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} & x + y - z = 1 \\ & 0 = 0 \\ & 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \ \begin{cases} & x = -y + z + 1 \\ & y = a \\ & z = b \end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \ \begin{cases} & x = -a + b + 1 \\ & y = a \\ & z = b \end{cases}$$

d'où le résultat.

Corrigé 48. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 $\leftarrow \text{page } 7$

$$\begin{cases} - & x & - & t = 0 \\ - & 2x - 4y - z - 2t = -4 \\ - & x - 2y & - & t = 0 \\ - & 13x + 4y & - & 9t = 4 \end{cases} \iff \begin{cases} - & x & - & t = 0 \\ - & 4y - z & = -4 & (L_2 \leftarrow L_2 - 2L_1) \\ - & 2y & = 0 & (L_3 \leftarrow L_3 - L_1) \\ 4y & + & 4t = 4 & (L_4 \leftarrow L_4 - 13L_1) \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 4y - z & = -4 & (L_3 \leftrightarrow L_2) \\ 4y & + & 4t = 4 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 4y - z & = -4 & (L_3 \leftrightarrow L_2) \\ 4y & + & 4t = 4 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \end{cases}$$

$$\iff \begin{cases} - & x & - & t = 0 \\ - & 2y & = 0 \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -x & -2y & -t = 0 \\ -z & = 0 \\ -t & = -4 \\ 4t = 4 \end{cases} \iff \begin{cases} x = -t \\ y = 0 \\ z = 4 \\ t = 1 \end{cases}$$

$$\iff \begin{cases} x = -t \\ y = 0 \\ z = 4 \\ t = 1 \end{cases}$$

d'où le résultat.

Corrigé 49. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 7

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
-x - y + z = 0 \\
0 = 0 \\
0 = 0
\end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = -y + z \\
y = a \\
z = b
\end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = -a + b \\
y = a \\
z = b
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((-1, 1, 0), (1, 0, 1)).$$

Corrigé 50. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 7

$$\begin{cases} -7x + 6y - 9z - t = 0 \\ -5x - 4y - 11z & = -1 \\ -2x + 3y - 4z - 2t = -41 \\ -4x + 7y - 6z - 3t = -54 \end{cases} \iff \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -5x - 4y - 11z & = -1 \\ -7x + 6y - 9z - t = 0 \\ -4x + 7y - 6z - 3t = -54 \end{cases} \iff \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -7x + 6y - 9z - t = 0 \\ -4x + 7y - 6z - 3t = -54 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2\frac{23}{2}y - z + 5t = \frac{203}{2} \\ -2\frac{2}{2}y + 5z + 6t = \frac{207}{2} \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2\frac{23}{2}y - z + 5t = \frac{203}{2} \\ -2\frac{23}{2}y - z + 5t = \frac{203}{2} \\ -2\frac{23}{2}y - z + 5t = \frac{287}{2} \\ -2\frac{23}{2}y - z + 5t = \frac{287}{2} \\ -2\frac{23}{2}y - z + 5t = \frac{267}{2} \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t = -41 \\ -2x + 3y - 4z - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t = -41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t - 41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t - 41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t - 41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t - 41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t - 41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t - 41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y - 4z - 2t - 2t - 41 \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x + 3y$$

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des

solutions. Plus précisément :

$$\begin{cases} -2x + 3y - 4z - 2t = -41 \\ y + 2z + t = 28 \\ 14z + \frac{21}{2}t = \frac{539}{2} \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = \frac{3}{2}y - 2z - t + \frac{41}{2} \\ y = -2z - t + 28 \\ z = -\frac{3}{4}t + \frac{77}{4} \\ t = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = \frac{5}{4}a - \frac{135}{4} \\ y = \frac{1}{2}a - \frac{21}{2} \\ z = -\frac{3}{4}a + \frac{77}{4} \\ t = a \end{cases}$$

d'où le résultat.

Corrigé 51. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 7

$$\begin{cases} x - y + 4z - t = -1 \\ - 5x - 15y + z + 6t = 0 \\ - 7x - 17y - 2z + 8t = -24 \\ y - 3z + t = -143 \end{cases} \iff \begin{cases} x - y + 4z - t = -1 \\ - 20y + 21z + t = -5 \\ 0 - 24y + 26z + t = -31 \\ 0 - 3z + t = -143 \end{cases}$$

$$\Leftrightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 24y + 26z + t = -31 \\ 0 - 24y + 26z + t = -31 \\ 0 - 24y + 26z + t = -31 \\ 0 - 24y + 26z + t = -143 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 20y + 21z + t = -5 \\ 0 - 20y + 21z + t = -5 \end{cases} (L_4 \Leftrightarrow L_2)$$

$$\Leftrightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 30z + 21t = -2865 \\ 0 - 46z + 25t = -3463 \end{cases} (L_3 \Leftrightarrow L_3 + 24L_2)$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 46z + 25t = -3463 \end{cases} (L_4 \Leftrightarrow L_3)$$

$$\Leftrightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 46z + 25t = -3463 \end{cases} (L_4 \Leftrightarrow L_3)$$

$$\Leftrightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

$$\Rightarrow \begin{cases} x - y + 4z - t = -1 \\ 0 - 39z + 21t = -2865 \\ 0 - 39z + 21t = -2865 \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} x - y + 4z - t = -1 \\ y - 3z + t = -143 \\ -39z + 21t = -2865 \\ \frac{3}{13}t = -\frac{1089}{13} \end{cases} \iff \begin{cases} x = y - 4z + t - 1 \\ y = 3z - t - 143 \\ z = \frac{7}{13}t + \frac{955}{13} \\ t = -363 \end{cases}$$

$$\iff \begin{cases} x = -22 \\ y = -146 \\ z = -122 \\ t = -363 \end{cases}$$

d'où le résultat.

Corrigé 52. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 7

$$\begin{cases} 8x - y - z - 2t &= 1 \\ 8x - y - z - 2t &= 1 \\ -16x + 2y + 2z + 2t &= 4 \\ 16x - 3y - z + t &= -72 \end{cases} \iff \begin{cases} 8x - y - z - 2t &= 1 \\ 0 &= 0 & (L_2 \leftarrow L_2 - L_1) \\ -2t &= 6 & (L_3 \leftarrow L_3 + 2L_1) \\ -y + z + 5t &= -74 & (L_4 \leftarrow L_4 - 2L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 8x - y - z - 2t &= 1 \\ -y + z + 5t &= -74 \\ -2t &= 6 \\ 0 &= 0 & (L_4 \leftrightarrow L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, t) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des

solutions. Plus précisément:

$$\begin{cases} & 8x - y - z - 2t = 1 \\ & - y + z + 5t = -74 \\ & - 2t = 6 \\ & 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} & x = \frac{1}{8}y + \frac{1}{8}z + \frac{1}{4}t + \frac{1}{8}y + \frac{1}{8}z + \frac{1}{4}t + \frac{1}{8}y + \frac{1}{8}z + \frac{1}{4}z + \frac{1}{8}z + \frac{1$$

d'où le résultat.

Corrigé 53. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 8

$$\begin{cases} 3x + 6y - 18z = 1 \\ -x - 2y + 6z = 2 \\ -x - 2y + 6z = -1 \end{cases} \iff \begin{cases} -x - 2y + 6z = 2 \\ 3x + 6y - 18z = 1 \\ -x - 2y + 6z = -1 \end{cases} (L_2 \leftrightarrow L_1)$$

$$\Leftrightarrow \begin{cases} -x - 2y + 6z = 2 \\ 0 = 7 & (L_2 \leftarrow L_2 + 3L_1) \\ 0 = -3 & (L_3 \leftarrow L_3 - L_1) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 54. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 8

$$\begin{cases} -2x & = -1 \\ -7x - 7y - 14z = 28 \\ -5x - 4y - 8z = 3 \end{cases} \iff \begin{cases} -2x & = -1 \\ -7y - 14z = \frac{63}{2} & (L_2 \leftarrow L_2 - \frac{7}{2}L_1) \\ -4y - 8z = \frac{11}{2} & (L_3 \leftarrow L_3 - \frac{5}{2}L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x & = -1 \\ -4y - 8z = \frac{11}{2} & (L_3 \leftarrow L_3 - \frac{5}{2}L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x & = -1 \\ -4y - 8z = \frac{11}{2} & (L_3 \leftrightarrow L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} -2x & = -1 \\ -4y - 8z = \frac{11}{2} & (L_3 \leftrightarrow L_3 - \frac{7}{4}L_2) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 55. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} x & -6z - 3t = 0 \\ y + 3z + 2t = 0 \\ -6z - 3t = 0 \\ -t = 0 \end{cases} \iff \begin{cases} x = 6z + 3t \\ y = -3z - 2t \\ z = -\frac{1}{2}t \\ t = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \\ t = 0 \end{cases}$$

d'où le résultat.

Corrigé 56. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 8

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 57. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 8

$$\begin{cases} & x + 5y + z = 0 \\ -3x - 15y - 3z = 0 \\ -x - 5y - z = 0 \end{cases} \iff \begin{cases} & x + 5y + z = 0 \\ & 0 = 0 \quad (L_2 \leftarrow L_2 + 3L_1) \\ & 0 = 0 \quad (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x + 5y + z = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -5y - z \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -5a - b \\ y = a \\ z = b \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \text{Vect}_{\mathbb{R}} ((-5, 1, 0), (-1, 0, 1)).$$

Corrigé 58. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 $\leftarrow \text{page } 8$

$$\begin{cases} -x - 3y + 8z - 4t = 3 \\ -3x + y - 4z & = 13 \\ -6x + y - 7z - t = 13 \end{cases} \iff \begin{cases} -x - 3y + 8z - 4t = 3 \\ 10y - 28z + 12t = 4 & (L_2 \leftarrow L_2 - 3L_1) \\ 9y - 27z + 11t = -9 & (L_3 \leftarrow L_3 - 3L_1) \\ 19y - 55z + 23t = -5 & (L_4 \leftarrow L_4 - 6L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} -x - 3y + 8z - 4t = 3 \\ 9y - 27z + 11t = -9 \\ 10y - 28z + 12t = 4 & (L_3 \leftrightarrow L_2) \\ 19y - 55z + 23t = -5 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x - 3y + 8z - 4t = 3 \\ 9y - 27z + 11t = -9 \\ 2z - \frac{2}{9}t = 14 & (L_3 \leftarrow L_3 - \frac{10}{9}L_2) \\ 2z - \frac{2}{9}t = 14 & (L_4 \leftarrow L_4 - \frac{19}{9}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} -x - 3y + 8z - 4t = 3 \\ 9y - 27z + 11t = -9 \\ 2z - \frac{2}{9}t = 14 & (L_4 \leftarrow L_4 - \frac{19}{9}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} -x - 3y + 8z - 4t = 3 \\ 9y - 27z + 11t = -9 \\ 2z - \frac{2}{9}t = 14 & (L_4 \leftarrow L_4 - \frac{19}{9}L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} -& x & -& 3y & + & 8z & - & 4t & = & 3\\ & & 9y & -& 27z & + & 11t & = & -9\\ & & & 2z & -& \frac{2}{9}t & = & 14\\ & & & 0 & = & 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x & = & -3y + 8z - 4t - 3z\\ y & = & 3z - \frac{11}{9}t - 1\\ z & = & \frac{1}{9}t + 7\\ t & = & a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x & = & -\frac{4}{9}a - 7\\ y & = & -\frac{8}{9}a + 20\\ z & = & \frac{1}{9}a + 7\\ t & = & a \end{cases}$$

d'où le résultat.

Corrigé 59. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 8

é 59. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit
$$(x, y, z) \in \mathbb{R}^3$$
. Alo
$$\begin{cases} 2x - 4y - 6z = 0 \\ -x + 2y + 3z = 0 \\ -2x + 4y + 6z = 0 \end{cases} \iff \begin{cases} -x + 2y + 3z = 0 & (L_2 \leftrightarrow L_1) \\ 2x - 4y - 6z = 0 \\ -2x + 4y + 6z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 2y + 3z = 0 \\ 0 = 0 & (L_2 \leftarrow L_2 + 2L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 - 2L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
-x + 2y + 3z = 0 \\
0 = 0 \\
0 = 0
\end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = 2y + 3z \\
y = a \\
z = b
\end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = 2y + 3z \\
y = a \\
z = b
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \text{Vect}_{\mathbb{R}}((2, 1, 0), (3, 0, 1)).$$

Corrigé 60. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} -3x - 11y + 2z + t = 3\\ -7x - 17y - 4z - 7t = -1\\ 3x + 2y - 5z = -1\\ -14y - 4z + 2t = 8 \end{cases} \iff \begin{cases} -3x - 11y + 2z + t = 3\\ \frac{26}{3}y - \frac{26}{3}z - \frac{28}{3}t = -8 & (L_2 \leftarrow L_2 - \frac{7}{3}L_1)\\ -9y - 3z + t = 2 & (L_3 \leftarrow L_3 + L_1)\\ -14y - 4z + 2t = 8 \end{cases}$$

$$\iff \begin{cases} -3x - 11y + 2z + t = 3\\ \frac{26}{3}y - \frac{26}{3}z - \frac{28}{3}t = -8\\ \frac{26}{3}y - \frac{26}{3}z - \frac{28}{3}t = -8\\ -12z - \frac{113}{13}t = -\frac{82}{13} & (L_3 \leftarrow L_3 + \frac{27}{13}L_2)\\ -18z - \frac{170}{13}t = -\frac{64}{3} & (L_4 \leftarrow L_4 + \frac{21}{13}L_2) \end{cases}$$

$$\iff \begin{cases} -3x - 11y + 2z + t = 3\\ \frac{26}{3}y - \frac{26}{3}z - \frac{28}{3}t = -8\\ -12z - \frac{113}{13}t = -\frac{82}{13} & (L_4 \leftarrow L_4 + \frac{21}{13}L_2)\\ -18z - \frac{12}{16}t = \frac{59}{13} & (L_4 \leftarrow L_4 - \frac{3}{2}L_3) \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -3x & -11y & +2z & +t & =3\\ & \frac{26}{3}y & -\frac{26}{3}z & -\frac{28}{3}t & =-8\\ & -12z & -\frac{113}{13}t & =-\frac{82}{13}\\ & -\frac{1}{26}t & =\frac{59}{13} \end{cases} \iff \begin{cases} x & =-\frac{11}{3}y + \frac{2}{3}z + \frac{1}{3}t - 1\\ y & =z + \frac{14}{3}t - \frac{12}{13}\\ z & =-\frac{113}{156}t + \frac{41}{78}\\ t & =-118 \end{cases}$$

$$\iff \begin{cases} x & = 171\\ y & =-42\\ z & =86\\ t & =-118 \end{cases}$$

d'où le résultat.

Corrigé 61. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 9

$$\begin{cases}
-2x - 4y - 2z - 6t = 2 \\
-x + 2y + z + 3t = 1 \\
x - 2y - z - 3t = 0 \\
x - 2y - z - 3t = 0
\end{cases}
\iff
\begin{cases}
-x + 2y + z + 3t = 1 \\
2x - 4y - 2z - 6t = 2 & (L_2 \leftrightarrow L_1) \\
x - 2y - z - 3t = 0 \\
x - 2y - z - 3t = 0
\end{cases}$$

$$\Leftrightarrow
\begin{cases}
-x + 2y + z + 3t = 1 \\
0 = 4 & (L_2 \leftarrow L_2 + 2L_1) \\
0 = 1 & (L_3 \leftarrow L_3 + L_1) \\
0 = 1 & (L_4 \leftarrow L_4 + L_1)
\end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 62. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 9

$$\begin{cases} -x & -9y & -10z & = 0 \\ x & +6y & +z & = 0 \\ -y & -z & = 0 \end{cases} \iff \begin{cases} -x & -9y & -10z & = 0 \\ -3y & -9z & = 0 \\ -y & -z & = 0 \end{cases}$$

$$\iff \begin{cases} -x & -9y & -10z & = 0 \\ -y & -z & = 0 \\ -3y & -9z & = 0 \\ -3y & -9z & = 0 \end{cases}$$

$$\iff \begin{cases} -x & -9y & -10z & = 0 \\ -y & -z & = 0 \\ -y & -z & = 0 \\ -z & -z & = 0 \end{cases}$$

$$\iff \begin{cases} -x & -9y & -10z & = 0 \\ -z & -z & -2z & = 0 \\ -z & -z & -z & = 0 \\ -z & -z & -z & = 0 \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} - & x & - & 9y & - & 10z & = & 0 \\ & - & y & - & z & = & 0 \\ & & - & 6z & = & 0 \end{cases} \iff \begin{cases} x & = & -9y - 10z \\ y & = & -z \\ z & = & 0 \end{cases}$$
$$\iff \begin{cases} x & = & 0 \\ y & = & 0 \\ z & = & 0 \end{cases}$$

d'où le résultat.

Corrigé 63. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 9

$$\begin{cases} -2x - 10y - 2z - t = 0 \\ 2x + 10y + 2z + t = 7 \\ 2x + 10y + 2z + t = 4 \\ 2x + 10y + 2z + t = -2 \end{cases} \iff \begin{cases} -2x - 10y - 2z - t = 0 \\ 0 = 7 & (L_2 \leftarrow L_2 + L_1) \\ 0 = 4 & (L_3 \leftarrow L_3 + L_1) \\ 0 = -2 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 64. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} x - 2y + 5z - 8t = -1 \\ 2x - 2z & = 1 \\ x - y + 2z - 4t = -1 \\ -2x & + 2z & = 1 \end{cases} \iff \begin{cases} x - 2y + 5z - 8t = -1 \\ 4y - 12z + 16t = 3 & (L_2 \leftarrow L_2 - 2L_1) \\ y - 3z + 4t = 0 & (L_3 \leftarrow L_3 - L_1) \\ -4y + 12z - 16t = -1 & (L_4 \leftarrow L_4 + 2L_1) \end{cases}$$

$$\iff \begin{cases} x - 2y + 5z - 8t = -1 \\ y - 3z + 4t = 0 \\ 4y - 12z + 16t = 3 & (L_3 \leftrightarrow L_2) \\ -4y + 12z - 16t = -1 \end{cases}$$

$$\iff \begin{cases} x - 2y + 5z - 8t = -1 \\ y - 3z + 4t = 0 \\ 0 = 3 & (L_3 \leftrightarrow L_3 - 4L_2) \\ 0 = -1 & (L_4 \leftarrow L_4 + 4L_2) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 65. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 $\leftarrow \text{page } 9$

$$\begin{cases} -8x - 24y + 4z = 4 \\ 6x + 18y - 3z = -3 \\ 2x + 6y - z = -1 \end{cases} \iff \begin{cases} 2x + 6y - z = -1 \\ 6x + 18y - 3z = -3 \\ -8x - 24y + 4z = 4 \\ (L_3 \leftrightarrow L_1) \end{cases}$$
$$\iff \begin{cases} 2x + 6y - z = -1 \\ 0 = 0 & (L_2 \leftarrow L_2 - 3L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + 4L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} 2x + 6y - z = -1 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -3y + \frac{1}{2}z - \frac{1}{2} \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -3a + \frac{1}{2}b - \frac{1}{2} \\ y = a \\ z = b \end{cases}$$

d'où le résultat.

Corrigé 66. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 9

$$\begin{cases} -6x + 12y - 2z = -2 \\ 3x - 4y + 3z = 1 \\ 4y + 4z = 0 \end{cases} \iff \begin{cases} 3x - 4y + 3z = 1 \\ -6x + 12y - 2z = -2 \\ 4y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 4y + 3z = 1 \\ 4y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 4y + 3z = 1 \\ 4y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 4y + 3z = 1 \\ 4y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 4y + 3z = 1 \\ 4y + 4z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 4y + 3z = 1 \\ 0 = 0 \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} 3x - 4y + 3z = 1 \\ 4y + 4z = 0 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = \frac{4}{3}y - z + \frac{1}{3} \\ y = -z \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = -\frac{7}{3}a + \frac{1}{3} \\ y = -a \\ z = a \end{cases}$$

d'où le résultat.

Corrigé 67. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} & 11\,x \ + \ 13\,y \ - \ 5\,z \ = \ 0 \\ - \ 10\,x \ - \ 12\,y \ + \ z \ = \ 0 \\ - \ 10\,x \ - \ 12\,y \ + \ z \ = \ 0 \end{cases} \iff \begin{cases} & - \ 10\,x \ - \ 12\,y \ + \ z \ = \ 0 \\ & 11\,x \ + \ 13\,y \ - \ 5\,z \ = \ 0 \ (L_2 \leftrightarrow L_1) \\ - \ 10\,x \ - \ 12\,y \ - \ 7\,z \ = \ 0 \end{cases} \\ \Leftrightarrow \begin{cases} & - \ 10\,x \ - \ 12\,y \ + \ z \ = \ 0 \\ & - \ \frac{1}{5}\,y \ - \ \frac{39}{10}\,z \ = \ 0 \ (L_2 \leftarrow L_2 + \frac{11}{10}L_1) \\ & - \ 8\,z \ = \ 0 \ (L_3 \leftarrow L_3 - L_1) \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -10x - 12y + z = 0 \\ -\frac{1}{5}y - \frac{39}{10}z = 0 \\ -8z = 0 \end{cases} \iff \begin{cases} x = -\frac{6}{5}y + \frac{1}{10}z \\ y = -\frac{39}{2}z \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

d'où le résultat.

Corrigé 68. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 10

68. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit
$$(x, y, z) \in \mathbb{R}^3$$
. Al
$$\begin{cases} -2x - 2y - z = -3 \\ x + y + z = 3 \\ x + y = -1 \end{cases} \iff \begin{cases} x + y + z = 3 \\ -2x - 2y - z = -3 \\ x + y = -1 \end{cases} (L_2 \leftrightarrow L_1)$$
$$\Leftrightarrow \begin{cases} x + y + z = 3 \\ z = 3 \end{cases} (L_2 \leftarrow L_2 + 2L_1)$$
$$-z = -4 (L_3 \leftarrow L_3 - L_1)$$
$$\Leftrightarrow \begin{cases} x + y + z = 3 \\ z = 3 \\ 0 = -1 \end{cases} (L_3 \leftarrow L_3 + L_2)$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 69. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 10

$$\begin{cases} -4x - 4y + 8z = 4 \\ 8x + 8y - 16z = -8 \\ x + y - 2z = -1 \end{cases} \iff \begin{cases} x + y - 2z = -1 \\ 8x + 8y - 16z = -8 \\ -4x - 4y + 8z = 4 \end{cases} (L_3 \leftrightarrow L_1)$$

$$\Leftrightarrow \begin{cases} x + y - 2z = -1 \\ 0 = 0 \end{cases} (L_2 \leftarrow L_2 - 8L_1)$$

$$0 = 0 \quad (L_3 \leftarrow L_3 + 4L_1)$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x + y - 2z = -1 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -y + 2z - 1 \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -a + 2b - 1 \\ y = a \\ z = b \end{cases}$$

d'où le résultat.

Corrigé 70. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} x - y + z = 0 \\ 3x + 3y - 3z = 0 \\ x + y - 2z = 0 \end{cases} \iff \begin{cases} x - y + z = 0 \\ 6y - 6z = 0 & (L_2 \leftarrow L_2 - 3L_1) \\ 2y - 3z = 0 & (L_3 \leftarrow L_3 - L_1) \end{cases}$$

$$\iff \begin{cases} x - y + z = 0 \\ 2y - 3z = 0 \\ 6y - 6z = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$

$$\iff \begin{cases} x - y + z = 0 \\ 2y - 3z = 0 \\ 3z = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} x - y + z = 0 \\ 2y - 3z = 0 \\ 3z = 0 \end{cases} \iff \begin{cases} x = y - z \\ y = \frac{3}{2}z \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

d'où le résultat.

Corrigé 71. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 10

$$\begin{cases} 2x + 16y - 4z = 0 \\ x + 8y - 2z = 0 \\ -x - 8y + 2z = 0 \end{cases} \iff \begin{cases} x + 8y - 2z = 0 & (L_2 \leftrightarrow L_1) \\ 2x + 16y - 4z = 0 \\ -x - 8y + 2z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 8y - 2z = 0 & (L_2 \leftrightarrow L_1) \\ 0 = 0 & (L_2 \leftrightarrow L_2 - 2L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x + 8y - 2z = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -8y + 2z \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -8a + 2b \\ y = a \\ z = b \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((-8, 1, 0), (2, 0, 1)).$$

Corrigé 72. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 10

$$\begin{cases} & x - y + z + t = -1 \\ -2x + y - z - t = 0 \\ 3x - 2y + 2z + 2t = 0 \\ -x + y - z - t = -1 \end{cases} \iff \begin{cases} & x - y + z + t = -1 \\ & - y + z + t = -2 & (L_2 \leftarrow L_2 + 2L_1) \\ & y - z - t = 3 & (L_3 \leftarrow L_3 - 3L_1) \\ & & 0 = -2 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

$$\iff \begin{cases} & x - y + z + t = -1 \\ & - y + z + t = -1 \\ & - y + z + t = -2 \\ & 0 = 1 & (L_3 \leftarrow L_3 + L_2) \\ & 0 = -2 \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 73. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 $\leftarrow \text{page } 10$

$$\begin{cases} 10x - 20y + 10z + 10t = 2\\ x - 2y + z + t = 1\\ - x + 2y - z - t = -1\\ - 3x + 6y - 3z - 3t = 6 \end{cases} \iff \begin{cases} x - 2y + z + t = 1\\ 10x - 20y + 10z + 10t = 2\\ - x + 2y - z - t = -1\\ - 3x + 6y - 3z - 3t = 6 \end{cases}$$

$$\iff \begin{cases} x - 2y + z + t = 1\\ 0 = -8 & (L_2 \leftarrow L_2 - 10L_1)\\ 0 = 0 & (L_3 \leftarrow L_3 + L_1)\\ 0 = 9 & (L_4 \leftarrow L_4 + 3L_1) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 74. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 10

$$\begin{cases} 2x + 2y & = 0 \\ 3x + 3y - z & = 1 \\ -2x - 2y & = 1 \end{cases} \iff \begin{cases} 2x + 2y & = 0 \\ -z & = 1 \\ 0 & = 1 \end{cases} (L_2 \leftarrow L_2 - \frac{3}{2}L_1)$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 75. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 10

$$\begin{cases} 3x + y + z = -1 \\ 7x + 2y + 2z = -2 \\ -12x - 2y - 2z = 2 \end{cases} \iff \begin{cases} 3x + y + z = -1 \\ -\frac{1}{3}y - \frac{1}{3}z = \frac{1}{3} & (L_2 \leftarrow L_2 - \frac{7}{3}L_1) \\ 2y + 2z = -2 & (L_3 \leftarrow L_3 + 4L_1) \end{cases}$$
$$\iff \begin{cases} 3x + y + z = -1 \\ -\frac{1}{3}y - \frac{1}{3}z = \frac{1}{3} \\ 0 = 0 & (L_3 \leftarrow L_3 + 6L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} 3x + y + z = -1 \\ -\frac{1}{3}y - \frac{1}{3}z = \frac{1}{3} \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = -\frac{1}{3}y - \frac{1}{3}z - \frac{1}{3} \\ y = -z - 1 \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = 0 \\ y = -a - 1 \\ z = a \end{cases}$$

d'où le résultat.

Corrigé 76. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 11

$$\begin{cases} & x - y - 2z + t = 0 \\ & x - y - 2z + t = 0 \\ & - 4x + 4y + 8z - 4t = 0 \\ & x - y - 2z + t = 0 \end{cases} \iff \begin{cases} & x - y - 2z + t = 0 \\ & 0 = 0 \ (L_2 \leftarrow L_2 - L_1) \\ & 0 = 0 \ (L_3 \leftarrow L_3 + 4L_1) \\ & 0 = 0 \ (L_4 \leftarrow L_4 - L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x - y - 2z + t = 0 \\ 0 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a, b, c) \in \mathbb{R}^3, \begin{cases} x = y + 2z - t \\ y = a \\ z = b \\ t = c \end{cases}$$

$$\iff \exists (a, b, c) \in \mathbb{R}^3, \begin{cases} x = a + 2b - c \\ y = a \\ z = b \\ t = c \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((1, 1, 0, 0), (2, 0, 1, 0), (-1, 0, 0, 1)).$$

Corrigé 77. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} 6x - 2y + 6z = 2 \\ 12x - 4y + 12z = 4 \\ - 6x + 2y - 6z = -2 \end{cases} \iff \begin{cases} 6x - 2y + 6z = 2 \\ 0 = 0 & (L_2 \leftarrow L_2 - 2L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
6x - 2y + 6z = 2 \\
0 = 0 \\
0 = 0
\end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = \frac{1}{3}y - z + \frac{1}{3} \\
y = a \\
z = b
\end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = \frac{1}{3}a - b + \frac{1}{3} \\
y = a \\
z = b
\end{cases}$$

d'où le résultat.

Corrigé 78. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 11

$$\begin{cases} -2x + y + 3z & = 0 \\ -2x + y + 5z - 2t & = 2 \\ -x + 9z & = 6 \\ 5x - 4y + 3z + 9t & = 0 \end{cases} \iff \begin{cases} -x + 9z & = 6 \\ -2x + y + 3z - 2t & = 2 \\ -2x + y + 3z - 2t & = 0 \\ 5x - 4y + 3z + 9t & = 0 \end{cases} \Leftrightarrow \begin{cases} -x + 9z & = 6 \\ y - 13z - 2t & = -10 & (L_2 \leftarrow L_2 - 2L_1) \\ y - 15z & = -12 & (L_3 \leftarrow L_3 - 2L_1) \\ -4y + 48z + 9t & = 30 & (L_4 \leftarrow L_4 + 5L_1) \end{cases}$$
$$\Leftrightarrow \begin{cases} -x + 9z & = 6 \\ y - 13z - 2t & = -10 \\ -2z + 2t & = -2 & (L_3 \leftarrow L_3 - L_2) \\ -4z + t & = -10 & (L_4 \leftarrow L_4 + 4L_2) \end{cases}$$
$$\Leftrightarrow \begin{cases} -x + 9z & = 6 \\ y - 13z - 2t & = -10 \\ -2z + 2t & = -2 & (L_3 \leftarrow L_3 - L_2) \\ -4z + t & = -10 & (L_4 \leftarrow L_4 + 4L_2) \end{cases}$$
$$\Leftrightarrow \begin{cases} -x + 9z & = 6 \\ y - 13z - 2t & = -10 \\ -2z + 2t & = -2 \\ -3t & = -6 & (L_4 \leftarrow L_4 - 2L_3) \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -x & +9z & =6\\ y & -13z & -2t & =-10\\ -2z & +2t & =-2\\ -3t & =-6 \end{cases} \iff \begin{cases} x = 9z-6\\ y = 13z+2t-10\\ z = t+1\\ t = 2 \end{cases}$$

$$\iff \begin{cases} x = 9z-6\\ y = 33z+2t-10\\ z = t+1\\ t = 2 \end{cases}$$

$$\iff \begin{cases} x = 21\\ y = 33\\ z = 3\\ t = 2 \end{cases}$$

d'où le résultat.

Corrigé 79. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} -x + 4y + 3z + t = 16 \\ -2x + 7z - t = -9 \\ x + 4y - 4z + 2t = -2 \end{cases} \iff \begin{cases} -x + 4y + 3z + t = 16 \\ -8y + z - 3t = -41 & (L_2 \leftarrow L_2 - 2L_1) \\ -3y + 2z - t = -2 \\ 8y - z + 3t = 14 & (L_4 \leftarrow L_4 + L_1) \end{cases}$$

$$\iff \begin{cases} -x + 4y + 3z + t = 16 \\ -3y + 2z - t = -2 \\ -8y + z - 3t = -41 & (L_3 \leftrightarrow L_2) \\ 8y - z + 3t = 14 \end{cases}$$

$$\iff \begin{cases} -x + 4y + 3z + t = 16 \\ -3y + 2z - t = -2 \\ -8y + z - 3t = -41 & (L_3 \leftrightarrow L_2) \\ 8y - z + 3t = 14 \end{cases}$$

$$\iff \begin{cases} -x + 4y + 3z + t = 16 \\ -3y + 2z - t = -2 \\ -\frac{13}{3}z - \frac{1}{3}t = -\frac{107}{3} & (L_3 \leftarrow L_3 - \frac{8}{3}L_2) \\ \frac{13}{3}z + \frac{1}{3}t = \frac{26}{3} & (L_4 \leftarrow L_4 + \frac{8}{3}L_2) \\ -\frac{13}{3}z - \frac{1}{3}t = -\frac{107}{3} & 0 = -27 & (L_4 \leftarrow L_4 + L_3) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 80. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 11

$$\begin{cases} -10x - 10y + 10z = 0 \\ x + y - z = 0 \\ -3x - 3y + 3z = 0 \end{cases} \iff \begin{cases} x + y - z = 0 \\ -10x - 10y + 10z = 0 \\ -3x - 3y + 3z = 0 \end{cases}$$
$$\iff \begin{cases} x + y - z = 0 \\ 0 = 0 & (L_2 \leftarrow L_2 + 10L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 + 3L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x + y - z = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -y + z \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = -a + b \\ y = a \\ z = b \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((-1, 1, 0), (1, 0, 1)).$$

Corrigé 81. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 11

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x - 2y - z = 5 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = 2y + z + 5 \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = 2a + b + 5 \\ y = a \\ z = b \end{cases}$$

d'où le résultat.

Corrigé 82. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 11

$$\begin{cases} -3x - 7y + 7z = -4 \\ y - z = 1 \\ -x - 3y + 3z = -2 \end{cases} \iff \begin{cases} -x - 3y + 3z = -2 \\ y - z = 1 \\ -3x - 7y + 7z = -4 & (L_3 \leftrightarrow L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} -x - 3y + 3z = -2 \\ y - z = 1 \\ 2y - 2z = 2 & (L_3 \leftarrow L_3 - 3L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} -x - 3y + 3z = -2 \\ y - z = 1 \\ 0 = 0 & (L_3 \leftarrow L_3 - 2L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions.

Plus précisément:

$$\begin{cases} -x & -3y & +3z & = & -2 \\ y & -z & = & 1 \\ 0 & = & 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x & = & -3y + 3z + 2 \\ y & = & z + 1 \\ z & = & a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x & = & -1 \\ y & = & a + 1 \\ z & = & a \end{cases}$$

d'où le résultat.

Corrigé 83. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 12

$$\begin{cases} 3x - 2y - 7z = 0 \\ - y - 5z = 0 \\ - x - z = 0 \end{cases} \iff \begin{cases} - x - z = 0 & (L_3 \leftrightarrow L_1) \\ - y - 5z = 0 \\ 3x - 2y - 7z = 0 \end{cases}$$

$$\iff \begin{cases} - x - z = 0 \\ - y - 5z = 0 \\ - 2y - 10z = 0 & (L_3 \leftrightarrow L_1) \end{cases}$$

$$\iff \begin{cases} - x - z = 0 \\ - y - 5z = 0 \\ - y - 5z = 0 \\ 0 = 0 & (L_3 \leftrightarrow L_3 + 3L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases}
-x & -z = 0 \\
-y & -5z = 0 \\
0 = 0
\end{cases} \iff \exists a \in \mathbb{R}, \begin{cases}
x = -z \\
y = -5z \\
z = a
\end{cases}$$

$$\iff \exists a \in \mathbb{R}, \begin{cases}
x = -a \\
y = -5a \\
z = a
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}} ((-1, -5, 1)).$$

Corrigé 84. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 12

$$\begin{cases} - & x + y - 2z = -3 \\ - & x + y - 2z = -3 \\ - & 3x + 3y - 6z = -9 \end{cases} \iff \begin{cases} - & x + y - 2z = -3 \\ 0 = 0 & (L_2 \leftarrow L_2 - L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 - 3L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases}
-x + y - 2z = -3 \\
0 = 0 \\
0 = 0
\end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = y - 2z + 3 \\
y = a \\
z = b
\end{cases}$$

$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases}
x = a - 2b + 3 \\
y = a \\
z = b
\end{cases}$$

d'où le résultat.

Corrigé 85. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

$$\begin{cases} -7x + y - 5z - 2t = -1 \\ 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -5x + 5z + 5t = 35 \end{cases} \iff \begin{cases} -3x + 7y + 9z + 6t = -11 \\ -7x + y - 5z - 2t = -1 \\ -2y - 4z - 3t = -5 \\ -5x + 5z + 5t = 35 \end{cases} \iff \begin{cases} -3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -5x + 5z + 5t = 35 \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 7y + 9z + 6t = -11 \\ \frac{52}{3}y + 16z + 12t = -\frac{80}{3} (L_2 \leftarrow L_2 + \frac{7}{3}L_1) \\ -2y - 4z - 3t = -5 \\ \frac{32}{3}y + 16z + 12t = -\frac{80}{3} (L_4 \leftarrow L_4 + \frac{5}{3}L_1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ \frac{52}{3}y + 16z + 12t = -\frac{80}{3} (L_3 \leftrightarrow L_2) \\ \frac{35}{3}y + 20z + 15t = \frac{50}{3} (L_3 \leftrightarrow L_2) \\ \frac{35}{3}y + 20z + 15t = \frac{50}{3} (L_4 \leftarrow L_4 + \frac{35}{3}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -\frac{56}{3}z - 14t = -70 (L_3 \leftarrow L_3 + \frac{26}{6}L_2) \\ -\frac{10}{3}z - \frac{5}{2}t = -\frac{25}{2} (L_4 \leftarrow L_4 + \frac{35}{6}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -\frac{10}{3}z - \frac{5}{2}t = -\frac{25}{2} (L_4 \leftarrow L_4 + \frac{35}{6}L_2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -\frac{10}{3}z - \frac{5}{2}t = -\frac{25}{2} \\ -\frac{5}{3}z - 14t = -70 (L_4 \leftrightarrow L_3) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -\frac{10}{3}z - \frac{5}{2}t = -\frac{25}{2} \\ -\frac{5}{3}z - 14t = -70 (L_4 \leftrightarrow L_3) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 7y + 9z + 6t = -11 \\ -2y - 4z - 3t = -5 \\ -\frac{10}{3}z - \frac{5}{2}t = -\frac{25}{2} \\ -\frac{5}{3}z - 14t = -70 (L_4 \leftrightarrow L_3) \end{cases}$$

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} & 3x + 7y + 9z + 6t = -11 \\ & - 2y - 4z - 3t = -5 \\ & - \frac{10}{3}z - \frac{5}{2}t = -\frac{25}{2} \\ & 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} & x = -\frac{7}{3}y - 3z - 2t - \frac{11}{3} \\ & y = -2z - \frac{3}{2}t + \frac{5}{2} \\ & z = -\frac{3}{4}t + \frac{15}{4} \\ & t = a \end{cases} \end{cases}$$

$$\iff \exists a \in \mathbb{R}, \begin{cases} & x = -\frac{7}{3}y - 3z - 2t - \frac{11}{3} \\ & y = -2z - \frac{3}{2}t + \frac{5}{2} \\ & z = -\frac{3}{4}t + \frac{15}{4} \\ & y = -5 \\ & z = -\frac{3}{4}a + \frac{15}{4} \\ & t = a \end{cases}$$

d'où le résultat.

Corrigé 86. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 12

$$\begin{cases} -7x + 7y + 4z = 0 \\ x - 2y & = 0 \\ -7x + 8y + 2z = 0 \end{cases} \iff \begin{cases} x - 2y & = 0 \\ -7x + 7y + 4z = 0 & (L_2 \leftrightarrow L_1) \\ -7x + 8y + 2z = 0 \end{cases}$$
$$\iff \begin{cases} x - 2y & = 0 \\ -7y + 4z = 0 & (L_2 \leftarrow L_2 + 7L_1) \\ -6y + 2z = 0 & (L_3 \leftarrow L_3 + 7L_1) \end{cases}$$
$$\iff \begin{cases} x - 2y & = 0 \\ -6y + 2z = 0 \\ -7y + 4z = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$
$$\iff \begin{cases} x - 2y & = 0 \\ -6y + 2z = 0 \\ -7y + 4z = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$
$$\iff \begin{cases} x - 2y & = 0 \\ -6y + 2z = 0 \\ -6y + 2z = 0 \\ -6y + 2z = 0 \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} x - 2y & = 0 \\ - 6y + 2z = 0 \\ \frac{5}{3}z = 0 \end{cases} \iff \begin{cases} x = 2y \\ y = \frac{1}{3}z \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

d'où le résultat.

Corrigé 87. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 12

$$\begin{cases} 6x + y + 2z = 0 \\ 3z = 0 \end{cases} \iff \begin{cases} 6x + y + 2z = 0 \\ -\frac{1}{3}y + \frac{10}{3}z = 0 \end{cases} (x, y, z) \in \mathbb{R} \times \mathbb{R}$$

$$\Leftrightarrow \begin{cases} 6x + y + 2z = 0 \\ -\frac{1}{3}y + \frac{10}{3}z = 0 \end{cases} (L_3 \leftarrow L_3 - \frac{10}{3}L_1)$$

$$\Leftrightarrow \begin{cases} 6x + y + 2z = 0 \\ -\frac{1}{3}y + \frac{10}{3}z = 0 \end{cases}$$

$$3z = 0 \quad (L_3 \leftrightarrow L_3)$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} & 6x + y + 2z = 0 \\ & -\frac{1}{3}y + \frac{10}{3}z = 0 \\ & & 3z = 0 \end{cases} \iff \begin{cases} x = -\frac{1}{6}y - \frac{1}{3}z \\ y = 10z \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

d'où le résultat.

Corrigé 88. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 12

$$\begin{cases}
-5x - y - z = 0 \\
-5x - y - z = -1 \\
5x + y + z = 0
\end{cases}
\iff
\begin{cases}
-5x - y - z = 0 \\
0 = -1 & (L_2 \leftarrow L_2 - L_1) \\
0 = 0 & (L_3 \leftarrow L_3 + L_1)
\end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} -5x - y - z &= 0 \\ 0 &= -1 \\ 0 &= 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x &= -\frac{1}{5}y - \frac{1}{5}z \\ y &= a \\ z &= b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x &= -\frac{1}{5}a - \frac{1}{5}b \\ y &= a \\ z &= b \end{cases}$$

d'où le résultat.

Corrigé 89. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 12

$$\begin{cases} -2x - 3y - 15z = 0 \\ 3x - y + 12z = 0 \\ -2x + 2y - 6z = -6 \end{cases} \iff \begin{cases} -2x - 3y - 15z = 0 \\ -\frac{11}{2}y - \frac{21}{2}z = 0 & (L_2 \leftarrow L_2 + \frac{3}{2}L_1) \\ 5y + 9z = -6 & (L_3 \leftarrow L_3 - L_1) \end{cases}$$

$$\iff \begin{cases} -2x - 3y - 15z = 0 \\ 5y + 9z = -6 \\ -\frac{11}{2}y - \frac{21}{2}z = 0 & (L_3 \leftrightarrow L_2) \end{cases}$$

$$\iff \begin{cases} -2x - 3y - 15z = 0 \\ 5y + 9z = -6 \\ -\frac{3}{5}z = -\frac{33}{5} & (L_3 \leftarrow L_3 + \frac{11}{10}L_2) \end{cases}$$

Le système est ainsi échelonné. On en déduit aisément qu'il n'existe qu'une seule solution, à savoir :

$$\begin{cases} -2x & -3y & -15z & = 0\\ 5y & +9z & = -6\\ -\frac{3}{5}z & = -\frac{33}{5} \end{cases} \iff \begin{cases} x = -\frac{3}{2}y - \frac{15}{2}z\\ y = -\frac{6}{5}z - \frac{6}{5}\\ z = 11 \end{cases}$$
$$\iff \begin{cases} x = -51\\ y = -21\\ z = 11 \end{cases}$$

d'où le résultat.

Corrigé 90. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 12

$$\begin{cases} -x + 4y + 6z - t = 0 \\ -2x + 2y - 3z - 2t = 6 \\ -y - 7z - 3t = 4 \\ x + 2y - 5t = 0 \end{cases} \iff \begin{cases} -x + 4y + 6z - t = 0 \\ -6y - 15z - 6t = 0 \\ -y - 7z - 3t = 4 \\ 6y + 6z - 6t = 0 \end{cases} (L_2 \leftarrow L_2 - 2L_1)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \\ -6y - 15z - 6t = 0 \end{cases} (L_4 \leftarrow L_4 + L_1)$$

$$\Leftrightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \\ -6y - 15z - 6t = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \\ 27z + 18t = -18 \end{cases} (L_3 \leftarrow L_3 - 6L_2)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \end{cases} (L_4 \leftarrow L_4 + 6L_2)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \end{cases} (L_4 \leftarrow L_4 + 6L_2)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \end{cases} (L_4 \leftarrow L_4 + 6L_2)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \end{cases} (L_4 \leftarrow L_4 + 6L_2)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \end{cases} (L_4 \leftarrow L_4 + 6L_2)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \end{cases} (L_4 \leftarrow L_4 + 6L_2)$$

$$\Rightarrow \begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \end{cases} (L_4 \leftarrow L_4 + 6L_2)$$

Le système est ainsi échelonné. Nous avons trois équations principales (trois pivots non nuls: x, y, z) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} -x + 4y + 6z - t = 0 \\ -y - 7z - 3t = 4 \\ 27z + 18t = -18 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = 4y + 6z - t \\ y = -7z - 3t - 4 \\ z = -\frac{2}{3}t - \frac{2}{3} \\ t = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = \frac{5}{3}a - \frac{4}{3} \\ y = \frac{5}{3}a + \frac{2}{3} \\ z = -\frac{2}{3}a - \frac{2}{3} \\ t = a \end{cases}$$

d'où le résultat.

Corrigé 91. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 13

$$\begin{cases} - & x + y + 2z + t = -2 \\ - & x + y + 2z + t = -2 \\ - & 2x + 2y + 4z + 2t = -4 \\ - & x + y + 2z + t = -2 \end{cases} \iff \begin{cases} - & x + y + 2z + t = -2 \\ 0 = 0 & (L_2 \leftarrow L_2 - L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 - 2L_1) \\ 0 = 0 & (L_4 \leftarrow L_4 - L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} - & x + y + 2z + t = -2 \\ & 0 = 0 \\ & 0 = 0 \\ & 0 = 0 \end{cases} \iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x = y + 2z + t + 2 \\ y = a \\ z = b \\ t = c \end{cases}$$

$$\iff \exists (a,b,c) \in \mathbb{R}^3, \begin{cases} x = a + 2b + c + 2 \\ y = a \\ z = b \\ t = c \end{cases}$$

d'où le résultat.

Corrigé 92. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls: x, z) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} 2x - 2y + z - t = 2 \\ -\frac{3}{2}z - \frac{3}{2}t = -6 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = y - \frac{1}{2}z + \frac{1}{2}t + 1 \\ y = a \\ z = -t + 4 \\ t = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = y - \frac{1}{2}z + \frac{1}{2}t + 1 \\ y = a \\ z = -b + 4 \\ t = b \end{cases}$$

d'où le résultat.

Corrigé 93. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 13

$$\begin{cases} -& x & + & 2y & + & 5z & = & 0 \\ -& x & + & y & + & 2z & = & 0 \\ & x & - & y & - & 2z & = & 0 \end{cases} \iff \begin{cases} -& x & + & 2y & + & 5z & = & 0 \\ & -& y & - & 3z & = & 0 & (L_2 \leftarrow L_2 - L_1) \\ & y & + & 3z & = & 0 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$

$$\iff \begin{cases} -& x & + & 2y & + & 5z & = & 0 \\ & -& y & - & 3z & = & 0 \\ & & 0 & = & 0 & (L_3 \leftarrow L_3 + L_2) \end{cases}$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases}
-x + 2y + 5z = 0 \\
-y - 3z = 0 \\
0 = 0
\end{cases} \iff \exists a \in \mathbb{R}, \begin{cases}
x = 2y + 5z \\
y = -3z \\
z = a
\end{cases}$$

$$\iff \exists a \in \mathbb{R}, \begin{cases}
x = 2y - 5z \\
y = -3z \\
z = a
\end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}((-1, -3, 1)).$$

Corrigé 94. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

$$\begin{cases} x - y - z = 0 \\ -7x + 7y + 7z = 0 \\ 4x - 4y - 4z = 0 \end{cases} \iff \begin{cases} x - y - z = 0 \\ 0 = 0 & (L_2 \leftarrow L_2 + 7L_1) \\ 0 = 0 & (L_3 \leftarrow L_3 - 4L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

$$\begin{cases} x - y - z = 0 \\ 0 = 0 \\ 0 = 0 \end{cases} \iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = y + z \\ y = a \\ z = b \end{cases}$$
$$\iff \exists (a,b) \in \mathbb{R}^2, \begin{cases} x = a + b \\ y = a \\ z = b \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathcal{S} = \text{Vect}_{\mathbb{R}} ((1, 1, 0), (1, 0, 1)).$$

Corrigé 95. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 13

$$\begin{cases} x + 3y + 3z = 1 \\ x - y - 3z = -1 \\ -x - 5y - 6z = 4 \end{cases} \iff \begin{cases} x + 3y + 3z = 1 \\ -4y - 6z = -2 & (L_2 \leftarrow L_2 - L_1) \\ -2y - 3z = 5 & (L_3 \leftarrow L_3 + L_1) \end{cases}$$
$$\iff \begin{cases} x + 3y + 3z = 1 \\ -2y - 3z = 5 \\ -4y - 6z = -2 & (L_3 \leftrightarrow L_2) \end{cases}$$
$$\iff \begin{cases} x + 3y + 3z = 1 \\ -2y - 3z = 5 \\ 0 = -12 & (L_3 \leftarrow L_3 - 2L_2) \end{cases}$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 96. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 13

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.

Corrigé 97. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 13

$$\begin{cases} 2x & -11y & -3z & +t & =0 \\ -2x & +11y & +3z & -t & =0 \\ -2x & +11y & +3z & -t & =0 \\ 4x & -22y & -6z & +2t & =0 \end{cases} \iff \begin{cases} 2x & -11y & -3z & +t & =0 \\ 0 & =0 & (L_2 \leftarrow L_2 + L_1) \\ 0 & =0 & (L_3 \leftarrow L_3 + L_1) \\ 0 & =0 & (L_4 \leftarrow L_4 - 2L_1) \end{cases}$$

Le système est ainsi échelonné. Nous avons une équation principale (un pivot non nul: x) et trois équations auxiliaires. Il y a par conséquent trois inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}} \left(\left(\frac{11}{2}, 1, 0, 0 \right), \left(\frac{3}{2}, 0, 1, 0 \right), \left(-\frac{1}{2}, 0, 0, 1 \right) \right).$$

Corrigé 98. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors:

 \leftarrow page 13

$$\begin{cases} - & x + y & = 0 \\ 2x & + 2z = 0 \\ - & y - z = 0 \end{cases} \iff \begin{cases} - & x + y & = 0 \\ & 2y + 2z = 0 \\ & - y - z = 0 \end{cases} (L_2 \leftarrow L_2 + 2L_1)$$

$$\iff \begin{cases} - & x + y & = 0 \\ & - y - z = 0 \\ & 2y + 2z = 0 \end{cases}$$

$$\iff \begin{cases} - & x + y & = 0 \\ & - y - z = 0 \\ & 0 = 0 \end{cases} (L_3 \leftrightarrow L_2)$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls : x, y) et une équation auxiliaire. Il y a par conséquent une inconnue auxiliaire, nous permettant de paramétrer l'ensemble des solutions. Plus précisément :

$$\begin{cases} -x + y & = 0 \\ -y - y - z = 0 \\ 0 = 0 \end{cases} \iff \exists a \in \mathbb{R}, \begin{cases} x = y \\ y = -z \\ z = a \end{cases}$$
$$\iff \exists a \in \mathbb{R}, \begin{cases} x = -a \\ y = -a \\ z = a \end{cases}$$

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}}((-1, -1, 1)).$$

Corrigé 99. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z, t) \in \mathbb{R}^4$. Alors:

 \leftarrow page 14

$$\begin{cases} & x + y + z + t = 0 \\ & - 24y & - 4t = 0 \\ & - 6y & - t = 0 \\ & 4x - 14y + 4z + t = 0 \end{cases} \iff \begin{cases} & x + y + z + t = 0 \\ & - 24y & - 4t = 0 \\ & - 6y & - t = 0 \\ & - 18y & - 3t = 0 \end{cases} (L_4 \leftarrow L_4 - 4L_1)$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \\ & - 24y & - 4t = 0 \\ & - 24y & - 4t = 0 \\ & - 18y & - 3t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \\ & - 18y & - 3t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \\ & - 18y & - 3t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 6y & - t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t = 0 \end{cases}$$

$$\iff \begin{cases} & x + y + z + t = 0 \\ & - 18y + t$$

Le système est ainsi échelonné. Nous avons deux équations principales (deux pivots non nuls: x, y) et deux équations auxiliaires. Il y a par conséquent deux inconnues auxiliaires, nous permettant de paramétrer l'ensemble des solutions. Plus précisément:

d'où le résultat. On peut aussi écrire l'espace vectoriel des solutions ainsi:

$$\mathscr{S} = \operatorname{Vect}_{\mathbb{R}} \left((-1, 0, 1, 0), \left(-\frac{5}{6}, -\frac{1}{6}, 0, 1 \right) \right).$$

Corrigé 100. On résout ce système linéaire avec la méthode du pivot de Gauß. Soit $(x, y, z) \in \mathbb{R}^3$. Alors :

 $\leftarrow \text{page } 14$

$$\begin{cases} x - y + 2z = 2 \\ -x = 2 \\ 3x - 4y + 8z = -1 \end{cases} \iff \begin{cases} x - y + 2z = 2 \\ -y + 2z = 4 \\ -y + 2z = -7 \end{cases} (L_2 \leftarrow L_2 + L_1) \\ -y + 2z = -7 \end{cases} (L_3 \leftarrow L_3 - 3L_1)$$
$$\iff \begin{cases} x - y + 2z = 2 \\ -y + 2z = 4 \\ 0 = -11 \end{cases} (L_3 \leftarrow L_3 - L_2)$$

Nous tombons sur une équation fausse, donc le système n'admet pas de solution. D'où le résultat : l'ensemble des solutions est vide.