Theory of Computation, Fall 2023 Assignment 9 (Due December 27 Wednesday 10:00 am)

Only part I will be graded.

Part I

Q1. Let $f: \mathcal{N} \to \mathcal{N}$ be a primitive recursive function. Define $F: \mathcal{N} \to \mathcal{N}$ to be

$$F(n) = f(f(\dots f(n) \dots))$$

where there are n compositions. For example, F(0) = f(0) and F(1) = f(f(1)). Show that F is primitive recursive.

Q2. Show that for any $k \geq 2$, the following function is primitive recursive.

$$\varphi_k(n_1,\ldots,n_k) = \max\{n_1,\ldots,n_k\}$$

for any $n_1, \ldots, n_k \in \mathcal{N}$.

Part II

- Q3. Prove that if A is in \mathcal{P} , so is \overline{A} .
- Q4. Define co- \mathcal{NP} to be the following set of languages.

$$\operatorname{co-}\mathcal{NP} = \{A : \overline{A} \in \mathcal{NP}\}\$$

Prove that $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

Q5. Construct a polynomial-time verifier for the following language.

 $L = \{G : G \text{ is a graph that contains a Hamiltonian cycle}\}\$

We say a cycle is a Hamiltonian cycle in G if it visits every vertex of G exactly once.