Universidade Federal de Pernambuco

Pós-Graduação em Ciência da Computação Centro de Informática

2024.2

TOMADA INTELIGENTE: Para correção de fator de potência em tempo real

PLANO DE PROJETO

Disciplina: Engenharia de Sistemas Embarcados

Professor: Abel Guilhermino

Aluno: RAFAEL MARINHO DOS ANJOS {rma8@cin.ufpe.br}

18 de Outubro de 2024

1. Motivação

Qualidade energética é um fator que influencia diretamente o fornecimento da rede elétrica. Um dos indicadores que afetam a qualidade é o consumo de potência reativa, que é a parcela da energia consumida que não é transformada em trabalho, ou seja, energia desperdiçada. Para o fornecimento, uma alta potência reativa indica desperdício de energia no ponto de consumo e um aumento da corrente que passa pela rede, o que provoca um aumento da energia dissipada por efeito Joule durante o fornecimento, ou seja, quanto maior a potência reativa, menor a eficiência.

As concessionárias de energia definem metas de consumo reativo para os seus clientes na forma de fator de potência (fp), que é o percentual da potência ativa em relação ao consumo total de energia, em outras palavras, o percentual de energia que é transformada em trabalho. Os clientes que não atendem aos requisitos de consumo de fp comumente estão sujeitos a multa (pode variar de acordo com a concessionária), além disso, um baixo fp indica que há um alto consumo de energia que não é aproveitada, o que gera um encarecimento da conta de energia no fim do mês.

O consumo reativo de energia é proveniente da magnetização dos circuitos de aparelhos que possuem elementos de indutância (ou chaveamento) internos, como indutores ou motores elétricos, por exemplo: computadores, ventiladores, máquinas de lavar, fogões por indução etc.

Considerando que uma fonte de computador possui fator de potência entre 0.6 e 0.7 [1], uma fonte de 500W que alimenta um computador que seja utilizado em média 8 horas por dia (jornada de trabalho padrão), obtém-se um consumo total em torno de 120kWh ao mês, onde apenas 78kWh são convertidos em trabalho para o computador (para um fp de 0,65).

O cálculo do consumo de potência reativa para esse caso é de 91.19 kWh. Em Pernambuco, a taxa cobrada por consumo reativo é de 0.33909 R\$/kWh [2] para um consumidor B1 (residencial), o que resulta em um valor pago de R\$ 30,92 mensalmente por consumo reativo apenas do computador, quando o restante dos eletrodomésticos da uma casa são adicionados a essa conta, a cobrança atinge valores ainda maiores.

A potência reativa consumida pode ser compensada utilizando bancos de capacitores, que por sua vez precisa estar devidamente ajustado para o consumo atual, senão injetará ainda mais potência reativa na rede, portanto o processo de compensação de consumo deve ser feito de forma adaptada ao consumo atual, ou seja, depende de quais eletrodomésticos estão em uso naquele momento e do fp de cada um.

2. Objetivos

Este trabalho tem como objetivo desenvolver uma tomada inteligente, que faz a correção do fp em tempo real, de acordo com a potência reativa da carga que esteja conectada à ela.

O usuário poderá sincronizar a tomada com uma plataforma online onde poderá verificar relatórios de consumo e filtrar de acordo com o tempo (mensal, diário, geral ou últimas leituras). Nesse relatório será possível acompanhar o consumo total da carga conectada, economia de energia e economia convertida em reais de acordo com o valor da tarifa em vigência da concessionária configurada para a localidade onde tenha sido instalada.

Cada usuário também poderá cadastrar diversas tomadas para a sua conta e poderá verificar relatórios individual ou coletivamente, selecionando um conjunto de tomadas cadastradas na conta para verificar o consumo coletivo. Recurso útil para segmentar o relatório de consumo por áreas da residência.

O cadastro das tomadas na plataforma online é feito utilizando um código gerado automaticamente. Após o login na plataforma online, o usuário poderá adicionar um novo dispositivo, nesse processo é gerado o código de identificação e é mostrado para o usuário poder inserir durante a configuração do dispositivo via aplicativo próprio. Na plataforma também é possível atribuir descrição e endereço de instalação para cada tomada individualmente.

O envio dos dados da tomada para o servidor da aplicação é feito via WiFi, portanto é necessário que a instalação seja realizada em uma área que possua conexão disponível. Caso o dispositivo seja instalado em uma área sem conexão WiFi, a correção do fp funcionará normalmente, porém os relatórios de consumo não serão registrados.

A configuração da conexão (SSID e senha da rede, além dos dados de identificação da tomada para o servidor) podem ser feitos via Bluetooth ao iniciar a tomada no modo de configuração. O modo de configuração pode ser iniciado ao ligar a tomada enquanto pressiona o botão indicado, feito isso, a conexão Bluetooth ficará disponível para que o dispositivo seja configurado via aplicativo próprio.

O aplicativo utilizado para configuração permite que o usuário acesse a tomada via conexão Bluetooth, no aplicativo é possível configurar o acesso à rede WiFi utilizada, bem como informar o código de identificação da tomada para envio de dados ao servidor.

3. Visão Geral e Resultados Esperados

O desenvolvimento do projeto será realizado seguindo os seguintes passos:

- 1. Implementação do código e circuitos responsáveis pela leitura dos valores de tensão e corrente aplicados à carga conectada, com cálculo de frequência, valores eficazes e defasagem;
- 2. Controle do chaveamento dos capacitores para correção do fp;
- 3. Desenvolvimento da aplicação online para acompanhamento das leituras e correções do fp;
- 4. Desenvolvimento da aplicação responsável pela configuração local da tomada;
- 5. Aprimoramentos.

Na figura 01 é mostrada como é feita a utilização da tomada.

Figura 01: Visão geral da instalação da tomada inteligente.

Na Figura 02 é exibido como é realizada a utilização da tomada em modo de configuração.

Figura 02: Visão geral da configuração da tomada inteligente.

3.1. Implementação do código e circuitos de leitura.

Toda a leitura será realizada com o auxílio de uma placa ESP32, que consegue realizar a leitura de valores de tensão entre 0V e 3.3V, portanto serão necessárias adaptações dos valores de tensão e corrente lidos.

Como o valor mínimo de tensão lido pela placa é 0V, primeiramente será necessário definir uma tensão de referência com o auxílio de um divisor de tensão feito com dois resistores de mesmo valor conectado aos pinos GND e 3V3 do ESP32. Na Figura 03 é exibida a ligação dos resistores para definição da tensão de referência.

Figura 03: Ligação dos resistores do divisor de tensão.

Com uma tensão de referência superior a 0V será possível ler os semiciclos negativos da corrente alternada, porém ao fazer isso estaremos alterando os limites dos valores de leitura para -1.65V a 1.65V (ainda será necessário aplicar um *offset* sobre o valor lido em código para que a leitura seja apropriada).

3.1.1. Leitura dos valores de tensão.

A leitura dos valores de tensão será feita acoplando o ESP32 à rede através de um transformador de potencial. A rede de 220V apresenta, sob condições normais, uma tensão de pico de aproximadamente 311.13V, considerando um fator de segurança de 20% para picos de tensão na leitura, o dispositivo deve conseguir ler valores de até 380V, portanto a relação de transformação escolhida deve ser de 380 para 1.65 ou 230:1. Na Figura 04 é mostrada a ligação do transformador.

Figura 04: Ligação do transformador de leitura.

3.1.2. Leitura dos valores de corrente.

A leitura da corrente será feita com o auxílio de um sensor de corrente não invasivo. A relação de transformação do sensor será definida de acordo com os limites de potência definidos para a tomada. Na equação a seguir é mostrado o cálculo da relação de transformação do sensor em Amperes por Volt.

$$rel = \frac{\sqrt{2} \cdot S_{nom}}{V_{PMS} \cdot V_{MAYLeityrg}} \cdot FS$$

Onde S_{nom} é a potência aparente nominal da tomada em VA, V_{RMS} é a tensão eficaz fornecida pela rede elétrica, $V_{MAXLeitura}$ é o valor máximo de tensão lido pela placa e FS é o fator de segurança para possíveis surtos de corrente.

Considerando uma tomada com potência nominal de 20VA, um fator de segurança de 20%, 220V para tensão da rede e 1.65V para o valor máximo de tensão lida, a relação de transformação obtida para o sensor de corrente é de aproximadamente 100 mA/V.

Na Figura 05 é exibida a ligação do sensor de corrente.

Figura 05: Ligação do sensor de corrente.

3.1.3. Interpretação dos sinais de corrente e tensão lidos.

A leitura dos sinais de tensão e corrente são feitas através de amostragem. É importante que a frequência de amostragem utilizada seja significativamente superior à frequência do sinal lido, pois quanto maior o número de amostras, maior a precisão obtida. Na figura 06 é exibida a relação entre frequência de amostragem e precisão de leitura.

Figura 06:Relação entre frequência de amostragem e erro de leitura.

Considerando que a frequência da rede é de 60Hz, para uma taxa de amostragem escolhida 50 vezes maior, tem-se que a frequência com que o ESP32 realiza a leitura dos valores de tensão e corrente deverá ser de 3 kHz.

3.1.3.1. Detecção de ciclos e cálculo da frequência dos sinais lidos.

A detecção dos períodos do sinal lido é feita observando a passagem por zero, mais precisamente, toda vez que houver uma mudança do semiciclo negativo para o semiciclo positivo há o fim de um período e o início de outro.

Como a taxa de amostragem é fixa, o tempo decorrido entre uma leitura e outra é constante, portanto, para calcular a frequência do sinal basta contar o número de leituras feitas entre duas passagens por zero (exceto passagens do semiciclo positivo para o negativo), sendo assim, é possível calcular a frequência do sinal lido de acordo com a equação a seguir.

$$F_{sinal} = 1/T_{sinal}$$
 Onde:
$$T_{sinal} = n \cdot T_{amostra}$$
 n: número de amostras coletadas
$$T_{amostra} = 1/F_{amostra}$$

Fazendo as substituições necessárias para desenvolver a equação acima, obtém-se a seguinte expressão para o cálculo da frequência.

$$F_{sinal} = \frac{F_{amostra}}{n}$$

3.1.3.2. Cálculo de valores RMS.

Após feita a leitura dos sinais, o restante dos cálculos é feito utilizando os valores eficazes de tensão e corrente. Valor eficaz indica o valor contínuo (de tensão ou corrente) que é capaz de produzir a mesma potência que o sinal sobre uma resistência. O seu cálculo é feito de acordo com a seguinte equação.

$$V_{ef} = \sqrt{\frac{1}{T} \int_{0}^{T} v^2 dt}$$

Porém essa forma de cálculo é feita apenas para sinais contínuos, como a amostragem retorna uma série discreta, o cálculo deve ser adaptado. A equação a seguir mostra o cálculo de valor eficaz com valores discretos.

$$V_{ef} = \sqrt{\frac{1}{n} \sum_{0}^{n} v_n^2}$$

Como o cálculo de valor eficaz é feito utilizando um somatório das amostragens, não é necessário guardar todos os valores lidos, o que diminui bastante a quantidade de memória utilizada do hardware.

3.1.3.3. Cálculo da defasagem e fator de potência.

A informação mais importante para se calcular o fator de potência é a defasagem. Ela indica o quanto que o sinal da corrente está atrasado (ou adiantado se a reatância for capacitiva) em relação à tensão e é uma medida de ângulo. Na Figura 07 é mostrada a defasagem da corrente em relação à tensão.

Figura 07: Defasagem da corrente em relação à tensão.

O cálculo da defasagem pode ser feito usando a razão entre o período do sinal e o tempo decorrido entre o início de um ciclo de tensão e o início do ciclo da corrente. Na equação a seguir é feito o cálculo da defasagem.

$$\theta = 2\pi \cdot \frac{Atraso}{Periodo}$$

Uma vez calculada a defasagem em radianos, o fator de potência pode ser obtido fazendo o seu cosseno.

3.1.4. Cálculo das potências ativa, reativa e aparente.

Após calcular os valores eficazes de tensão, corrente e defasagem/fp, já é possível realizar o cálculos das potências ativa (P), reativa (Q) e aparente (S). A potência aparente é dada pelo produto direto entre a tensão e a corrente eficazes.

$$S = V_{ef} \cdot I_{ef}$$

Para calcular as potências ativa e reativa, basta fazer o produto da aparente e com cosseno e seno da defasagem.

$$P = S \cdot cos(\theta)$$
$$Q = S \cdot sen(\theta)$$

Uma outra maneira de se calcular essas potências é fazendo algumas substituições necessárias, dessa forma o cálculo ficaria da seguinte forma.

$$P = S \cdot fp$$

$$Q = \sqrt{S^2 - P^2}$$

Como a segunda forma de cálculo utiliza raiz e essa operação é mais pesada do que o cálculo do seno, a forma de cálculo anterior é mais indicada a ser utilizada.

3.2. Controle do chaveamento dos capacitores.

A correção do fator de potência utilizando capacitores consiste em produzir uma reatância capacitiva de mesmo valor que a reatância indutiva da carga, dessa forma, as duas reatâncias irão se compensar eliminando o consumo de energia reativa.

Para isso, primeiro é necessário calcular a capacitância necessária para se produzir uma potência reativa de valor equivalente à lida utilizando os capacitores. Primeiramente é necessário calcular a reatância dos capacitores, que é estimada pela seguinte equação:

$$X_C = (2\pi fC)^{-1}$$

Onde

f = frequência

C = capacitância

Uma vez calculada a reatância, a sua potência reativa é dada pela equação:

$$Q = \frac{V^2}{X_C}$$

Como o objetivo é descobrir a capacitância necessária para corrigir o fator de potência e os valores de Q, V e f são conhecidos, é possível calculá-la realizando substituições nas equações anteriores.

$$C = \frac{Q}{2\pi f V^2}$$

3.2.1. Dimensionamento do banco de capacitores.

Como o valor de capacitância não é fixo, o banco de capacitores deve ser ajustado de forma que consiga ajustar diversos valores caso seja necessário, para isso é necessário a utilização de vários capacitores diferentes, cada um com um relé próprio para realizar o seu chaveamento.

A relação entre os capacitores do banco pode ser dada em potências de 2 para se obter uma resolução maior para os valores de capacitância reprodutíveis. O valor de cada capacitância é dado por:

$$C_n = 2^n \cdot C_{base}$$

Dado um banco com um total de m
 capacitores de uma tomada de potência nominal $S_{nom'}$ sua capacitância base é de:

$$C_{base} = \frac{S_{nom}}{2\pi f V^2} \cdot \frac{1}{2^m - 1}$$

Considerando uma tomada de 20VA, instalada numa rede com tensão de 220V, frequência de 60Hz e 10 capacitores em seu banco, a capacitância base calculada é de aproximadamente 1.1nF (arredondando para valor comercial).

3.2.2. Chaveamento do banco de capacitores.

Com o banco de capacitores já dimensionado, para realizar o chaveamento basta fazer a razão entre a potência reativa lida e a potência nominal da tomada, multiplicando esse valor pela resolução do banco (de acordo com o número total de capacitores), o resultado desse cálculo arredondado para inteiro e convertido para a base binária consiste no chaveamento para cada capacitor.

Chaveamento =
$$\left(floor\left(\frac{Q_{lido}}{S_{nom}}\cdot\left(2^m-1\right)\right)\right)_2$$

Onde

m = número total de capacitores no banco

floor = arredondamento para número inteiro menor mais próximo

Feito o cálculo do chaveamento, obtém-se bit a bit a informação de se o capacitor correspondente deve ser ligado (caso 1) ou desligado (caso 0).

3.2.3. Ligação do banco de capacitores.

Cada capacitor do banco deve ser ligado a um relé correspondente, este que por sua vez é controlado por um pino do ESP32. Na Figura 08 é exibida a ligação interna dos capacitores no banco.

Figura 08: Ligação interna dos capacitores no banco.

É importante também que o banco esteja instalado antes do ponto de leitura para que não afete a potência reativa lida da carga. Na Figura 09 é mostrado o ponto de instalação do banco de capacitores.

Figura 09: Local de instalação do banco de capacitores.

3.3. Aplicativo web para acompanhamento de relatórios.

Será desenvolvida uma aplicação web em Python e Flask para a visualização dos relatórios da tomada. Em um primeiro momento essa aplicação será específica para visualizar apenas os relatórios da tomada desenvolvida durante a disciplina.

A expansão da aplicação web para visualização de diversas tomadas assim como sistemas de login de usuário está mapeada como melhoria futura.

3.4. Aplicação mobile para configuração local da tomada.

Como melhoria futura espera-se desenvolver um aplicativo mobile para android com o objetivo de realizar a configuração da tomada para que essa possa se comunicar apropriadamente com o servidor da aplicação web.

É importante salientar que em conjunto com o desenvolvimento dessa aplicação mobile também se faz necessário adaptar o código carregado no ESP32 para que a comunicação via Bluetooth entre a tomada e o smartphone que fará a configuração seja possível.

3.5. Aprimoramentos.

Durante a disciplina é esperado que seja desenvolvido o que foi especificado do item 3.1 ao 3.3. Em um primeiro momento, o desenvolvimento do projeto e testes serão feitos simulando o consumo e fornecimento de energia com um gerador de sinal senoidal e uma carga de baixa potência (um resistor e um indutor) para evitar possíveis danos aos equipamentos utilizados no projeto. A utilização do equipamento instalado diretamente na rede e com carga real será realizada dependendo da disponibilidade de material apropriado (componentes de acordo com os valores dimensionados no projeto) no laboratório e com autorização do professor responsável.

Sobre a aplicação web, durante a disciplina será feita com o propósito de exibir relatórios para uma única tomada específica. Como aprimoramentos futuros se espera desenvolver recursos de login para os usuários e gerenciamento de diversas tomadas por conta.

A aplicação mobile só será desenvolvida durante a disciplina caso haja tempo disponível suficiente para que seja feita, caso contrário, continua sendo considerada como melhoria futura para o projeto.

Sobre o sistema físico da tomada e código embarcado é esperado que sejam feitos estudos para melhoria de design dos circuitos elétricos e de ajustes de parâmetros de acordo com as capacidades do hardware, como frequência de amostragem limite ou microcontroladores alternativos de menor custo.

4. Modelo de Negócio

O principal produto comercializado por esse negócio é a própria tomada física. Cada cliente pode adquirir a sua (ou as suas) própria tomada comprando diretamente do fabricante.

O segundo produto comercializado é o aplicativo web. O uso deste aplicativo está condicionado a um contrato onde o cliente terá que aceitar a utilização dos seus dados de consumo (de forma anônima) para a geração de relatórios por região, relatórios esses que podem ser disponibilizados a terceiros em caso de convênios futuros com concessionárias de energia. O aplicativo web também possuirá a versão gratuita, com um número de tomadas máximo por conta e relatórios limitados, e versão paga, sem restrições. A versão paga é disponibilizada com planos mensal, semestral ou anual.

5. Cronograma

O cronograma abaixo demonstra as datas de checkpoint das atividades principais do desenvolvimento do projeto da disciplina.

Datas	18/ 10	22/ 10	25/ 10	08/ 11	29/ 11	06/ 12
Apresentação do Plano do Projeto			x			
Apresentação Parcial do Projeto				x		
Apresentação Final do Projeto					x	
Avaliação sobre o projeto						
Entrega de Artigo.						

4. Referências

- [1] Consumo de um equipamento: WATTS x VA Entendendo a diferença, **Caramuru**, Disponível em http://www.caramuru.com.br/page5multifancalwatt.html, Acesso em 18/10/2024 às 18:00.
- [2] TABELA DE TARIFAS DE ENERGIA ELÉTRICA GRUPO B, **Neoenergia Pernambuco**, Disponível em https://servicos.neoenergiapernambuco.com.br/residencial-rural/Documents/01_NEOENERGIA%20PERNAMBUCO_TARIFAS%20DE%20ENERGIA%20EL%C3%89TRICA%20GRUPO%20B%20_MAIO_2023_REH_N%C2%BA%203.195.pdf, Acesso em 18/10/2024 às 20:00.