微介實驗十一 步進馬達

報告者:林柏均

Outline

- 實驗目的
- 實驗元件
- 實驗原理
- 實驗電路
- 實驗程式

Outline

- 實驗目的
- 實驗元件
- 實驗原理
- 實驗電路
- 實驗程式

實驗目的

- 了解步進馬達的運作原理
- 了解介面電路設計的觀念

Outline

- 實驗目的
- 實驗元件
- 實驗原理
- 實驗電路
- 實驗程式

實驗元件

器材名稱		數量
AT89S51		1
12MHz 石英震盪器		1
LED 型體		4
按壓開關		1
1N4001_極體		4
電晶體TIP102		4
反向器SN74LS04N		1
步進馬達28BYJ-48 5V		1
電阻	1kΩ	4
	100Ω	4
	10 kΩ	1
電容	20pF	2
	10uF	1

Outline

- 實驗目的
- 實驗元件
- 實驗原理
- 實驗電路
- 實驗程式

- 步進馬達 Step Motor
 - 直流馬達,又稱脈波馬達,與傳統類比馬達不同
 - 根據輸入的訊號可以使轉軸往特定方向旋轉固定角度,但若不改變輸入的脈衝訊號則不會繼續旋轉,
 - 一次訊號旋轉一步,故名「步進」
 - 常用於高精度速度、定位控制
 - 主要結構為不可動的定子與可動的轉子
 - > 定子為電磁鐵,藉由外部的訊號控制磁極
 - ▶轉子為永久磁鐵,藉由定子的磁性轉動

Pros

- 系統結構簡單
- 轉速與脈波頻率成正比
- 控制容易,無須位置回授
- 定位精準度高
- 靜止時仍保有一定轉矩

Cons

- 高速運轉時容易失步
- 在某些頻率容易發生 共振或震動現象
- 重量較重

- 步進馬達 Step Motor
 - 根據定子的線圈配置可分為2、4、5相等
 - ▶本次實驗使用的是五線2相步進馬達
 - ▶五條線分別控制COM和A、B兩組定子
 - 外部訊號控制定子線圈亦有多種驅動方式
 - ▶本次實驗會使用1相驅動和2相驅動兩種方式
 - ▶另有一種驅動方式為1.5相驅動

- 步進馬達Step Motor
 - 為方便表達,定子以永久磁鐵表示,並以箭頭 指出電流方向(概略圖非實際模樣)

11

- 1相驅動(O/4)
 - 一次只磁化一個定子

1相驅動(1/4)- 次只磁化一個定子

- 1相驅動 (1/4)
 - 一次只磁化一個定子

- 1相驅動 (2/4)
 - 一次只磁化一個定子

- 1相驅動 (2/4)
 - 一次只磁化一個定子

- 1相驅動(3/4)
 - 一次只磁化一個定子

- 1相驅動(3/4)
 - 一次只磁化一個定子

- 1相驅動 (4/4)
 - 一次只磁化一個定子

- 1相驅動(4/4)
 - 一次只磁化一個定子

- 1相驅動
 - -由上可觀察到,1相驅動的方式為依序輸入High 訊號給 $A \times B \times A^- \times B^-$
 - 若要將逆轉旋轉方向,則只需將輸入順序顛倒 即可

- 2相驅動(O/4)
 - 一次磁化兩個定子

- 2相驅動 (1/4)
 - 一次磁化兩個定子

- 2相驅動 (1/4)
 - 一次磁化兩個定子

- 2相驅動 (2/4)
 - 一次磁化兩個定子

- 2相驅動 (2/4)
 - 一次磁化兩個定子

- 2相驅動(3/4)
 - 一次磁化兩個定子

- 2相驅動(3/4)
 - 一次磁化兩個定子

- 2相驅動(4/4)
 - 一次磁化兩個定子

- 2相驅動(4/4)
 - 一次磁化兩個定子

- 2相驅動
 - 相較於1相驅動,有著較強的扭矩
 - 類似1相驅動,2相驅動的方式為依序給予控制線AB、BA $^-$ 、A $^-$ B $^-$ 、B $^-$ A高電位訊號
 - 若要將逆轉旋轉方向,則只需將輸入順序顛倒 即可

歸零

- 在二相驅動的範例中,可以發現第一次驅動時 旋轉的角度與後續不同
- 為求每次皆能精準地旋轉,通常會在最一開始輸出一個初始訊號使馬達歸零

- 1.5相驅動
 - 又稱半步驅動,因每次步進角度僅有前兩者的一半
 - 訊號輸入方法為交錯輸入1相及2相驅動的訊號 $, A \times AB \times B \times BA^{-} \times A^{-} \times A^{-}B^{-} \times B^{-} \times B^{-}A$ 高電 位訊號
 - 若要將逆轉旋轉方向,則只需將輸入順序顛倒 即可

- 步進角度
 - 每次旋轉的角度
 - 公式:步進角度 = 360°/齒數 相數×2
 - -上面範例的步進角度 = $\frac{360^{\circ}/6}{2\times2}$ = 15°
 - 本次實驗使用的馬達步進角度為1.8°

• 比較

差異性驅動方式	消耗功率	步進角度	特性
1 相	Р	一個步進角	 1. 耗損功率小 2. 步進時易發生錯亂
2 相	2P	一個步進角	 轉矩較大 温度上升快,易發熱 消耗功率較大 步進時較穩定
1.5 相	1.5P	半個步進角	1. 特性介於上方兩者之間2. 步進角度是原步進角的二分之一,可做較精密的控制

Outline

- 實驗目的
- 實驗元件
- 實驗原理
- 實驗電路
- 實驗程式

Outline

- 實驗目的
- 實驗元件
- 實驗原理
- 實驗電路
- 實驗程式

實驗程式-流程圖

實驗程式

```
#include<regx51.h>
1.
       void delay (int);
       void turn ();
       code char one_phase[] = {0x01,0x02,0x04,0x08};
4.
       code char two_phase[] = \{0x0c,0x06,0x03,0x09\};
5.
       int dir , delay_time;
6.
7.
       void main ()
8.
9.
              delay_time = 3000;
              dir = 1;
10.
              while(1)
11.
12.
                            turn();
13.
14.
15.
```

實驗程式

```
16.
       void turn()
17.
18.
             int x;
19.
             if(dir == 1) //one phase, turn right
20.
21.
                           for(x=0;x<4;x++)
22.
                                         P1=one_phase[x];
23.
                                         delay(delay_time);
24.
25.
26.
             else //two phase, turn left
27.
28.
29.
                           for(x=0;x<4;x++)
30.
31.
                                         P1=two_phase[x];
32.
                                         delay(delay_time);
33.
34.
35.
```

實驗程式

```
36. void delay(int t)37. {38. while(t--);39. }40.
```

補充-TIP102腳位

TIP102 Pinout

www.Circuits-DIY.com

END