Reg. No

B.Tech DEGREE EXAMINATION, MAY 2024

Fifth Semester

18MAB304T - PROBABILITY AND APPLIED STATISTICS

(For the candidates admitted during the academic year 2018 - 2019 to 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours

Max. Marks: 100

PART - A $(20 \times 1 = 20 \text{ Marks})$

Marks BL CO

Answer all Questions

1. In the simultaneous tossing of two perfect dice, the probability of obtaining 4 as
the sum of the resultant faces is

 $(A) \frac{4}{12}$

(B) $\frac{3}{12}$

 $(C) \quad \frac{2}{12}$

(D) $\frac{1}{12}$

2. If the occurrence of an event A is affected by the occurrence of another event B, then $P(A \cap B) =$

2 1

(A) P(A)P(B)

(B) P(A) + P(B)

(C) P(A)P(B/A)

(D) $P(A) + P(B) - P(A \cap B)$

3. Var(4x + 8) is

3 1

(A) 12 Var(x)

(B) 4 Var(x) + 8

(C) $_{16\ Var(x)+8}$

(D) 16 Var(x)

4. The Moment generating function of random variable *X* is given by

3 1

 $M_{\alpha}(t) = \frac{e^t}{2 - e^t}$. The mean of X is

(A) 2

(B) 5

(C) 7

(D) 1

5. If the probability that in a factory a worker skilled is 0.6 then the probability that out of 5 workers none will be skilled is

3

Sparyers,

(A) $_{5C_1}\left[\frac{6}{10}\right]^1\left[\frac{4}{10}\right]^4$

 $^{\text{(B)}} \, 5C_0 \left[\frac{6}{10}\right]^4 \left[\frac{4}{10}\right]^4$

(C) $5C_0 \left[\frac{6}{10}\right]^0 \left[\frac{4}{10}\right]^5$

(D) $5C_1 \left[\frac{6}{10}\right]^0 \left[\frac{4}{10}\right]^5$

6.	If the probability that for an army soldies the probability mass function is	ers hit	the target on any shot is $\frac{2}{10}$, then	1	2	2
	$(A) \left(\frac{8}{10}\right) \left(\frac{2}{10}\right)^{x-1}$	(B)	$\left(\frac{2}{10}\right)\left(\frac{8}{10}\right)^{x-1}$			
	$ \left(\frac{2}{10}\right)^{x-1} $	(D)	$\left(\frac{8}{10}\right)^{x-1}$:*:		
7.	If the cumulative distribution function of the exportant then the pdf is	ncntial	distribution is $F(x) = \begin{cases} 1 - e^{-\theta x}, x \ge 0 \\ 0, x < 0 \end{cases}$,	general d	3	2
	(A) $e^{-\theta x}$	(B)	$e^{\theta x}$			
	(C) $\theta e^{-\theta x}$	(D)	$e^{ heta x}$ $ heta e^{ heta x}$			
8.	The mean of the exponential distrib	ution	with pdf $\lambda e^{-\lambda x}$, $x > 0$ is	1	3	2
	(A) λ	(B)	and the second s			
	(C) $\frac{1}{\lambda^2}$	(D)	1			
9.	An estimator t of θ is called asym	uptot	ically unbiased if	demond.	2	3
	(A) $\lim_{n \to \infty} E(\theta) = t$	(B)	$\lim_{n\to\infty}E(t)=\theta$			
	(C) $\lim_{n \to \infty} E(t) = 1$	(D)	$\lim_{n\to\infty}E(t)=0$			
10.				- Section	Preserte	3
	Maximum likelihood estimators are					
	(A) Necessarily unbiased	(B)	Most inefficient			
	(C) Most efficient	(D)	Most insufficient			
Economic Sperrouth	If consistent estimator converges to θ , if f $\lim_{n\to\infty} P\{ t_n-\theta <\varepsilon\}$ is	or eac	h positive integer ε , the value of	Name of the Control o	4	3
	(A) ()	(B)	1			
	(C) &	(D)	-1			
12.	Neymann's Factorization theorem	used	to check the existence of	1	7	3
	(A) Unbiasedness	(B)	Consistent estimator			

(D) Sufficient estimator

(C) Efficient estimator

13.	Type I error in testing of hypothes	is is,	1	, in	4
	(A) Reject H_0 when it is false	(B) Accept H_0 when it is false			
	(C) Reject H_0 when it is true	(D) Accept H_0 when it is true			
14.	If the critical region is located equally in both sides test is called	s of the normal curve of test statistic then the	1	3	4
	(A) Level of significance	(B) Level of confidence			
	(C) One-tailed test	(D) Two-tailed test			
15.	The chi-square goodness of fit test can l	be used to test for	1	3	4
	(A) the significant difference between the theory and experiment.(C) Normality	(B) Difference between population means (D) Probability			
16	If the null hypothesis is false then which of	•	you.	ş man	4
IV.	(A) Null Hypothesis (C) Negative Hypothesis	(B) Positive Hypothesis (D) Alternative Hypothesis.			
17.	The two lines of regression are given $x +$	$-2y - 5 = 0, \ 2x + 3y - 8 = 0,$) peaned	3	5
	then the mean values of x and y are res	pectively given by:			
	(A) (3,1)	(B) (1,2)			
	(C) $(1,-2)$	(D) (-1,2)			
18.	The regression co-efficients are b ₂ and b	b_1 , then the correlation co-efficient r is	boson	5	5
	(A) $\frac{b_1}{b_2}$	$\frac{b_2}{b_1}$			
	(C) b_1b_2	(D) $\pm \sqrt{b_1 b_2}$			
19.	In two way classification the data are classific	ed according to different factors.	****	ing.	Š
	(A) five	(B) three			
	(C) two	(D) one			
20.	The total sum of square is 58 and the sum of squar within samples is		1	4	5
	(A) 65	(B) 406			
	(C) 51	(D) 50			
	PART - B $(5 \times 4 = 2)$ Answer any 5 Qu		Marks	BL	СО
21.	The distribution function of a rand by $F(x) = 1 - (1+x)e^{-x}$. $x \ge$ function, mean and variance.		4	3	200
22.	Let X be a random variable with proba	bility density function	4	3	Ĭ.
	$f(x) = \frac{1}{3}e^{-x/3}$, $x > 0$. Find the m	noment generating function of x and the			
	mean.				

- 23. A travel company has two cars for hiring. The demand for a car on each day is distributed as Poisson variate, with mean 1.5. Calculate the proportion of days on which (i) neither cars were used (ii) some demand is refused.

3

Marks BL

2

3

(1)

- 24. If X is uniformly distributed over (0,10). Find
 - (i) P(x < 4) (ii) P(2 < x < 5)
- 25. Prove that $t = \frac{\sum x}{n+1}$ is a biased estimator of the population mean μ .
- 26. The number of air-craft accidents that occurred during the various days of a week are given below. Test whether the accidents are uniformly distributed over the week. Mon Tue Wed Thu Fri Sat No. of accidents 15 | 19 | 13 | 12 | 16 | 15
- 5 5 27. The following data were available $\bar{x} = 970$, $\bar{y} = 18$, $\sigma_X = 38$, $\sigma_Y = 2$. Correlation coefficient r = 0.6. Find the line of regression and obtain the values of X and Y = 20.

12 28. A random variable X has the following probability distribution.

X	0	percent	2	3	4	5	6	7	9
P(x)	a	3a	5a	7a	9a	11a	13a	15a	17a

- (i) Find the value of α .
- Find P(-2 < x < 2) and P(x < 2). (ii)
- Evaluate the mean and variance of X. (iii)
- Find the cumulative distribution function of X. (iv) (OR)

(b) (i) A box contains 2000 components of which 15% are defective. A second box contains 5000 components of which 25% are defective. Two other boxes contain 1000 components each with 10% defective components. A box is chosen at random and an item selected was found to the defective. Find the probability that this has come from the first box and second box [6 Marks].

(11) The density function of a random variable X is given by f(x) = kx(2-x), 0 < x < 2. Find k . mean, variance and rth moment. [6 Marks].

29. (a) Fitting a binomial distribution for the following values

***	•											
X	0	1	2	3	4	5	6					
Frequency	5	18	28	12	7	6	4					

Find the theoretical frequencies.

(OR)

- (b) In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and S.D.
- 30. (a) (i) Show that sample mean \bar{x} is a consistent estimator of the population μ [6 Marks].

(ii) Find out a sufficient estimator for σ^2 in $N(x : \sigma^2)$ [6 Marks].

(OR)

(b) If $x_1, x_2, ... x_n$ are random observations from a population with mean θ and variance σ^2 . Verify whether the following estimator are unbiased and consistent of θ :

(i)
$$t_1 = \frac{3x_1 + x_2}{4}$$
 (ii) $t_2 = \frac{2x_1 + 3x_2}{10}$

31. (a) (i) In a large city A, 20% of a random sample of 900 school boys had a slight physical defect. In another large city B, 18.5% of a random sample of 1600 school boys had the same defect. Is the difference between the proportions significant?

[6 Marks]

(ii) A sample of 900 members is found to have a mean 3.5 cm. Can it be reasonable regarded as a simple sample from a large population whose mean is 3.38 cm and a standard deviation 2.4 cm? [6 Marks]

(OR)

(b) The nicotine contents in two independent samples of tobacco are given below.

Sample I	21	24	25	26	27	***
Sample II	22	27	28	30	31	36

Can you say that the two samples come from same normal population?

12

12

12

2

32. (a) Marks obtained by 10 students in Mathematics (x) and Statistics (y) are given below. Find (i) The Regression equations (ii) Also find y when x = 55

12	5	5

Marks Maths (x)	i	60	34	40	50	45	40	22	43	42	64
Marks Statistics (y	ìII	75	32	33	40	45	3.3	12	30	34	51

(OR)

(b) An Experiment was designed to study the performance of 4 different detergents for cleaning fuel injectors. The following cleanness readings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different model of engines.

	Engine 1	Engine 2	Engine 3
Detergent A	45	43	51
Detergent B	47	46	52
Detergent C	48	50	- 55
Detergent D	42	37	49

Looking on the detergents of treatments and the Engines at blocks, obtain the appropriate anova table and test at 1% level of significance. Perform Two way classification.

* * * * *