VHIR

Píndoles estadístiques UEB-VHIR

Comparacions multiples I Multiple testing Perque, Quan, Com?

Alex Sanchez-Pla
Unitat d'Estadística i Bioinformàtica (VHIR)
Dept. de Genetica, Micro I Estadistca (UB)

Dilluns 16 de Desembre de 12:30 a 13:30 Sala d'Actes de Traumatologia i Rehabilitació

Les píndoles estadístiques son sessions divulgatives, organitzades per la Unitat d'Estadística i Bioinformàtica (UEB) del VHIR, on es presenten problemes i solucions estadístiques dirigides als professionals interessats del Campus Vall d'Hebron

Statistics and Bioinformatics

Unit (UEB)

http://ueb.vhir.org

Outline of the talk

- Why this pill. Motivation & Cases
- From Type I errors to Multiple Error Rates
- Strategies for Multiple Testing Adjustments
- Multiple testing adjustment in practice
- Variations on a theme
- Should we correct or not? When?
- Recomendations (guidelines)
- Summary

(Bad management) of multiplicity can yield potentially spurious results

But, what is multiplicity?

- The multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously ...
- The more inferences are made, the more likely erroneous inferences are to occur.
- Multiplicity appears in many distinct situations

Example: Multiple outcomes

Frantic paresis association with distinct outcomes

Frantic paresis associa	tion with distinct o	utcomes
Categorical outcome	Odds-Ratio	P-value
Tracheobronchitis	2.80	0.0121
Neumonia	1.60	0.335
Tracheostomy	5.10	1.8E-07
ICU-Mortality	0.48	0.222
Numeric Outcome	Mean difference	P-value
Mechanic Ventilation Days	19	8E-06
ICU days	22	3.9E-06
Hospital days	27	0.00035
	·	

Example: **Several groups**

Raw p-values of post-Hoc (after ANOVA) pairwise comparisons

Example: Omics data

A simple microarray analysis yields tables with thousands of test results

gen	SYMBOL	GENENAME	logFC	AveExpr	t	P.Value	adj.P.Val
1	Dcst1	DC-STAMP domain containing 1	3.67559	4.69707	14.65697	0.00000011	0.000024208
2	Dio2	deiodinase, iodothyronine, type II	-3.56532	9.09379	-14.60544	0.00000011	0.000024208
3	Cdhr5	cadherin-related family member 5	2.28073	6.70668	14.50082	0.00000012	0.000024208
4	D630039A03Rik	RIKEN cDNA D630039A03 gene	2.20739	2.46498	11.92132	0.000000097	0.000120170
5	Gys2	glycogen synthase 2	-3.36608	7.13253	-11.88752	0.00000100	0.000120170
6	Dcst2	DC-STAMP domain containing 2	-1.81633	4.45705	-11.15264	0.00000195	0.000188620
7	Them7	thioesterase superfamily member 7	2.11593	5.41287	11.02483	0.000000220	0.000188620
8	Gk	glycerol kinase	-2.05576	9.74829	-10.42198	0.00000394	0.000295272
9	Cpn2	carboxypeptidase N, polypeptide 2	-1.77256	6.05494	-9.95801	0.00000629	0.000418672
10	St8sia6	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl	1.55094	6.50413	9.52587	0.00000987	0.000591609
11	Eci3	enoyl-Coenzyme A delta isomerase 3	-2.16774	5.34872	-9.12197	0.000001527	0.000832279
12	Dhrs9	dehydrogenase/reductase (SDR family) member	-3.00131	7.77390	-9.02358	0.00001703	0.000850492
13	Got1	glutamic-oxaloacetic transaminase 1, soluble	1.19586	9.55212	8.30667	0.00003868	0.001783300
14	Cntnap1	contactin associated protein-like 1	-1.32228	6.13394	-7.90574	0.000006264	0.002566810
15	Slc4a4	solute carrier family 4 (anion exchanger), memb	-1.19605	10.94534	-7.88522	0.000006423	0.002566810
5690	Cul5	cullin 5	-0.00052	7.44326	-0.00337	0.99737	0.99859
5691	Gm15753	predicted gene 15753	-0.00100	3.68334	-0.00330	0.99742	0.99859
5692	Bdh1	3-hydroxybutyrate dehydrogenase, type 1	0.00051	2.19023	0.00264	0.99794	0.99879
5693	Pnn	pinin	0.00061	7.59266	0.00261	0.99796	0.99879
5694	Slco2a1	solute carrier organic anion transporter family,	-0.00060	6.46110	-0.00240	0.99812	0.99879
5695	Nudt18	nudix (nucleoside diphosphate linked moiety X)-	0.00073	6.02751	0.00198	0.99845	0.99879
5696	Mzt2	mitotic spindle organizing protein 2	0.00055	4.56552	0.00198	0.99846	0.99879
5697	Fig4	FIG4 phosphoinositide 5-phosphatase	-0.00029	6.54977	-0.00128	0.99900	0.99917
5698	Rfc4	replication factor C (activator 1) 4	-0.00020	6.61395	-0.00106	0.99918	0.99918

Hypothesis Testing Refresher

- Most situations desbribed above can be described or related with a test of hypothesis.
- Tests use to be summarized with p-values.
- **p-value**: Probability, assuming no effect (H_0) , to obtain a difference greater or equal than the one observed on a given sample.
- ullet Standard criterion: "reject H_0 if $p \geq lpha$ ".

Decision table and error types

- When decisions are made, based on data, one can take right or wrong decisions
- Wrong decisions: **type I** or **type II errors**.

	•	Reported decision							
		H0 is Accepted (No effect claim ed)	H0 is Rejected (Effect claimed)						
State of the nature ("Truth")	H0 is true (No Effect)	TN , prob: β	FP: Prob: α Type I error ⊗						
	H0 is false (Effect)	FN: prob: 1-β Type II error ⊗	TP, prob: 1-α ⊜						

Controlling (type I) Errors

ullet A test is said to *control type I error* if the probability of wrongly rejecting H_0 is smaller than the significance level of the test.

$$P[\operatorname{Reject} H_0|H_0\operatorname{true}] = P[FP] \leq \alpha$$

- This does not guarantee anything on the power of the test.
 - A test can control type I error while having small power

From 1 to > 1 hypotheses

- As more hypothesis are tested simultaneously, the probability of wrongly rejecting at least one true null increases:
- P(Making 1 error) = α
- P(**Not** Making 1 error) = 1-lpha
- P(**Not** Making 1 error in 2 tests) = $(1-lpha)^2$
- 3, 4, ..., m tests
- P(Not Making 1 error in m tests) = $(1-\alpha)^m$
- P(Making **at least** 1 error in m tests) = $1-(1-lpha)^m$

From 1 to > 1 hypotheses

m	Prob
1	0.05000
2	0.09750
4	0.18549
8	0.33658
12	0.45964
100	0.99408
1000	1.00000

Implications for our examples

- If we test multiple hypothesis simultaneously the overall type I error probability is not controlled anymore.
- Testing 12 tests simultaneosly yields almost a 50% chance of a statistically significant result even if none of the hypothesis tested is false
- How do we incorporate the impact of multiple testing on our inference?

A simulated example (1)

- We simulated an omics study with 6000 genes whose expression has been measured on 8 cases and 8 controls, and where no gene shows real difference between them.
- ullet What happens if we call differentially expressed any gene with p < 0.05
- The number of genes falsely rejected will be on average of 6000 imes lpha.

We start with no differences ...

Gene	p-value	t-Statistic	X1	X2	Х3	X4	X5	X6	X7	X8	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8		
1	0.7079	0.3824	0.29	1.49	0.43	-1.4	-0.3	-1.2	1.27	0.33	-0.5	0.74	-1.3	1.4	0.8	-0.1	-1.3	-0.3	Thes are "fake" micro	oarray data
2	0.4381	0.7981	-1.5	-0.7	0.52	-1.3	-1.2	-0.4	-0.3	0.36	-0.2	0.81	-1.8	-0.6	-0.2	-0.1	-0.7	0.87	They have been gen	
3	0.8077	0.2480	-0.7	0.11	0.72	0	1.4	0.24	0.98	-0.3	-0.5	-0.2	-0.5	1.53	1.93	0.74	0.86	-0.1	a unique normal distr	ibution
4	0.8186	0.2337	0.23	-0.5	-1.3	0.05	0.3	0.26	-1	0.1	-0.9	0.22	0.22	0.68	0.74	0.48	-2	-0.6		
5	0.4029	0.8626	0.59	-0.2	0.5	-0.5	-1.7	-1	-1.4	-0.2	0.22	0.11	1.96	0.19	-0.9	-0.2	-0.1	-1.7	Mean:	-0.0090342
6	0.6181	0.5099	0.25	0.95	-0.1	-0.9	-1.2	0.78	-0.5	0.12	-0.2	-0.5	2.08	1.09	0.56	0.32	-1	-1.1	Standard deviation:	1.004293235
7	0.7516	0.3229	0.31	-1.5	-0.5	-0.4	-2.5	-0.6	0.25	-0.8	-1	-0.2	0.58	-0.5	-0.8	-0.9	1	-2.5		
8	0.2748	1.1365	0.72	-2	-0.4	0.28	-0.8	-0.4	0.94	-0.8	0.82	-0.2	-2.3	-0.1	1.19	0.32	1.33	1.34		
9	0.7172	0.3696	0.52	-0.1	1.2	1.74	0.66	-0.4	-0.8	-0.2	-0.9	0.65	0.05	-0.2	0.07	1.49	0.42	0		
10	0.5794	0.5675	1.38	0.38	0.56	-1	-0.9	0.71	-0.1	-0.3	2.65	2.38	1.15	-0.7	0.19	-1.7	-0.3	-0.3		
11	0.1472	1.5346	1.09	-1.4	-1.3	-0.3	0.99	1.35	0.59	-1.9	1.9	0.98	0.8	1.34	-0.6	0.13	0.07	1.25		
12	0.3745	0.9173	-1.7	2.84	1.85	1.43	1.32	0.13	1.41	-0.9	1.6	0.05	-0.9	0.32	0.66	-0.6	0.54	0.24		
13	0.2181	1.2896	-0.9	-1.8	-1.9	0.4	0.08	0	0.68	-0.6	-2	0.01	-0.5	0.35	-0.8	1.67	1.7	1.59		
14	0.9019	0.1256	-0.5	1.24	1.21	0.88	1.94	-0.7	1.01	2.19	0.52	-1.3	1.57	0.84	3.3	0.73	0.83	1.34		
15	0.1497	1.5242	1.12	1.29	-1	0.06	0.58	0.4	1.21	0.65	1.85	-1.4	-0.4	-0.9	0.76	-1.5	-0.3	0.29		
16	0.7913	0.2697	1.72	0.49	0.41	0	0.26	-0.1	0.67	0	-0.1	-0.4	0.18	0.76	0.25	1.68	0.12	1.59		
17	0.3928	0.8818	-0.5	0.79	-0.2	0.16	1.65	2.06	0.27	-0.8	0.24	-0.1	0	1.93	-1.5	1.19	-1.4	-0.9		

As more genes are checked ...

Gene	p-value	t-Statistic	X1	X2	Х3	X4	X5	X6	X7	X8	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8
211	0.0380	2.2915	0	-0.2	1.23	0.76	0	-0.3	0.1	-1.1	-1.7	-0.6	-1.3	0	-1.3	-0.8	0.53	-0.8
212	0.4444	0.7870	0.44	-0.7	-0.3	0.1	0.52	-1.5	-0.7	1.02	-2.8	-2	-0.8	-0.9	-1.2	1.29	-0.6	1.97
213	0.1631	1.4720	1.21	-0.9	-0.5	1.48	-0.1	-0.4	1.49	0.78	0.01	-2.3	0.1	-1.3	0.18	-0.2	0.06	0.82
214	0.0259	2.4921	-1.2	-1.5	1.27	-0.2	-0.9	-1	-2	-1.3	0	-0.9	1.02	1.11	0.07	0.91	-0.5	0.39
215	0.9993	0.0008	0.89	-0.3	-0.4	-0.1	0.33	0.5	-1.7	0.74	-0.2	2.04	0.1	-0.4	-0.4	-0.3	-1.2	0.47
216	0.6719	0.4326	1.78	1.18	-2.2	1.5	0.83	-1.3	0.53	-0.7	-0.3	1.26	0.59	-0.8	0.64	-1.4	-1.2	0.79
217	0.9994	0.0008	-0.6	-0.7	0.07	-2.1	-0.8	-1.2	2.38	-1.7	-0.9	-0.9	-0.4	0.49	-1.4	-0.7	-0.3	-0.7
218	0.2880	1.1044	-0.6	0.48	1.48	0.32	-2.1	0.31	-0.4	-0.3	0.34	-0.2	-0.5	-1.3	-0.5	-0.6	-1.6	-0.2
219	0.2511	1.1972	-0.2	0.16	0.77	-1.2	-1.7	-0.4	0.73	0.92	-0.2	-1.1	0.27	-0.1	-0.9	-1	-0.6	-0.9
220	0.9673	0.0418	-0.6	-1.9	-0.6	1.13	-2.1	0	1.41	1.13	-0.2	0.03	-0.1	-0.8	-0.2	-1.3	-0.1	0.96
221	0.8993	0.1288	0.2	0.36	-0.2	2.08	0.28	-0.8	-0.6	0.3	0.9	1.35	-0.3	0.64	0.5	-0.7	-0.1	-0.2
222	0.4814	0.7233	-0.3	2.14	-1.3	0.89	0.3	0	-0.6	-0.4	-1.4	0.12	-0.2	-1.8	1.43	-0.9	0.15	0.38
223	0.7884	0.2736	-0.8	-0.5	-0.8	0.42	-1.6	0.02	-0.3	-0.8	-0.6	-1.2	-1.1	-0.4	-0.6	0.53	0.44	-0.7
224	0.6595	0.4502	-1.1	-1	0.97	-0.3	-0.6	-0.1	-0.8	0.77	-1.8	-0.3	1.14	0.86	-0.4	-0.6	-0.1	0.62
225	0.9715	0.0363	1.67	1.59	-0.6	1.95	-0.9	-1.6	0.74	0.52	0.91	1.04	0.68	1.84	-0.6	0.73	-0.1	-1.4
226	0.2204	1.2828	-0.7	0.42	-0.5	-0.6	-1	-0.7	-0.2	-0.4	1.4	-0.3	1.24	0.11	1.18	-1.5	-0.8	-0.7
227	0.0258	2.4928	0.19	-0.1	-0.8	0.02	-0.2	0.62	-1.4	-0.3	0.42	0.83	0	1.97	0.58	0.49	-0.4	0.83
228	0.8879	0.1436	0.16	-0.9	0.94	2.05	-1.8	0.59	-0.2	0.07	0.01	0	1.76	-1.6	-0.5	-0.3	0.62	0.28
229	0.1398	1.5654	-1.9	-0.7	1.27	0.38	1.75	-0.1	1.11	1.72	-1	-1.1	-1.7	0.21	-0.8	0.68	0.42	-0.1
230	0.2118	1.3084	-1.2	1.44	-3	0.75	-0.4	0.99	0.75	-1.2	0.59	-0.9	1.75	1.59	-1	1.83	1.18	0.15
231	0.4661	0.7493	-0.2	-0.6	0.68	0.12	0.02	-1.1	0.16	-0.6	0.88	0.2	0.01	0.75	-1.2	-0.6	0.69	-0.3
232	0.6779	0.4242	-1.5	0.24	1.38	0.53	-0.9	0.07	1.01	-0.9	0.42	-0.3	-0.9	0.17	0.08	0.51	-0.2	-1.4
233	0.5496	0.6131	1.7	-1.4	0.08	-1	0.03	0.72	0.06	0.2	-0.6	-0.3	-0.4	-0.5	-0.4	0.28	0.87	-0.7
234	0.8899	0.1410	0.69	-0.1	-1.7	0.24	-0.5	0.77	1.61	-2.1	0.18	0.46	-0.4	-1.4	-0.7	-0.2	1.67	-0.1
235	0.0238	2.5346	-1.3	0.38	-0.2	-0.9	-1.6	-0.4	-2.4	-0.5	-0.2	-0.4	0.05	0.58	0.21	-1.1	1.5	1.95
236	0.9046	0.1220	0.42	-0.5	-0.6	-1.5	-1.1	0.25	-0.6	-0.6	1.03	-1.5	0.05	-0.2	0.62	-1.8	-1.3	-0.6

All together, sorted by p-values

Gene	p-value	t-Statistic	X1	X2	Х3	X4	X5	X6	X7	X8	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8
2132	9.2801E-05	5.40482888	-0.9	0.01	-0.9	-0.3	-0.6	-1.5	-1.6	-1.5	0.1	0.9	0.32	0.32	0.99	0.13	0.97	0.61
2381	0.000422777	4.587026656		0.4	1 0	0.6							1 17	0.01	0.05	0.78	0.43	0.6
707	0.000446161	4.558778883				9				f less t me fro			distri	bution	4	-0.7	-0.8	-0.3
2945	0.000662585	4.352658186		we ha							//// tric	Juin	, distri	battor)1	0.15	1.73	-0.7
1306	0.000682671	4.337186373	-(We	е ехре	cted (6000 *	0.05	= 300	FP or	avera	age				.1	0.99	0.78	0.19
664	0.001271354	4.017625809	2.26	0.73	1.72	0.77	0.59	-0.2	1.1	0.77	-0.8	0	-1.7	-0.1	0.65	-1.2	-0.2	-0.8
3906	0.001743125	3.857057903	-0.6	-0.3	-0.3	-1.3	-0.4	-0.1	-0.8	-0.3	-0.8	1.51	0.93	0.76	1.12	0.86	0.41	0.49
2882	0.002499024	3.67479096	1.46	0.93	2.09	0.34	0.92	0.77	2.2	0.57	-0.8	-1.6	-1.2	1.61	-0.9	-0.5	0.3	-0.7
4366	0.002643532	3.64642387	0.74	-1.1	-1.5	0	-0.4	-2.1	-2.1	-1.4	0.22	1.55	1.38	-0.3	0.41	-0.1	0.81	1.04
2428	0.002736875	3.628922003	-1.7	-0.2	-0.9	-2.2	-0.8	-0.6	0.67	-0.8	-0.7	1.35	1.92	0.58	1.59	0.32	0.71	0.19
2925	0.003053207	3.573796247	2.07	0.92	1.09	-0.3	0	3.38	0.76	-0.4	-1.2	-1.9	-1.4	-1.1	-0.9	-0.2	-1	-0.2
3884	0.003195558	3.550845365	0.5	1.41	1.1	0	0.52	1.74	0.21	0.77	0.38	-0.9	-1.3	-0.4	-0.3	-0.9	0.87	-0.7
5367	0.003260925	3.54064957	-1.3	-0.9	-0.5	0.98	-2.2	-1.2	-0.8	-1.3	-1.1	1.48	0.24	0.48	1.63	0.57	0.75	1.55
545	0.00328505	3.536938555	1.79	-0.1	0.37	0.81	0.27	0.32	1.85	1.07	0.16	-0.2	-1.1	-1.3	0.25	-0.8	-0.1	0
1209	0.003300778	3.534534023	-0.1	1.45	-0.1	1.64	0.92	1.03	1.21	0.75	0	0.19	-1.6	0.09	-0.5	-2.3	0.14	-0.5
1072	0.003392546	3.520730005	0.38	-0.5	-1.8	-2.5	-0.4	0.41	-0.8	-1.3	0.9	1.75	2.27	1.96	1.44	-0.1	0.75	-0.9
2186	0.003412249	3.517815306	-0.2	0.67	0.33	0.71	-0.5	0.17	0.05	0.68	-0.7	-0.8	-0.9	-0.4	-0.6	-2.1	-0.7	0.15
4168	0.00355642	3.496989878	-1.8	-1.4	-2.5	0.11	-1.5	-0.4	0.59	-0.1	0.84	0.7	0.1	1.39	2.1	0.19	0.85	-0.1
3045	0.003654273	3.483333503	-0.2	1.18	-0.4	-1.6	-0.3	-0.5	-1.4	-1.5	0.14	0.64	0.91	0	0.96	1.74	1.98	0.52

So what can be done?

- Intuitive idea: Doing many tests increases the chances of calling false positives,
- This may be compensated
 - Using more restrictive error rates, for instance 0.01 or 0.005 instead of 0.05.
 - Adjusting ("correcting") the p-values to compensate for the number of tests.

Distinct Error Rates

- Individual error rate (IER)
 - Error rate of a single test.
 - For a test with 5% significance level the IER is 0.05
- Global Error Rate
 - Error rate for one or several groups of tests.
 - For a group of tests each with 5%
 significance the global error rate is > 5%

Decision table for many tests

• With many tests we count discoveries

•		Reported of	Reported decision						
		Accepted ("Non Discoveries")	Rejected ("Discoveries")	Total					
State of the	True Null Hypotheses	TN ☺	FD 🙁	m _o					
nature ("Truth")	False Null Hypotheses	FN ⊜	TD ©	m ₁					
	Total	N	D	m					

Two main error rate extensions

- Family Wise Error Rate (FWER)
 - FWER is probability of at least 1 False
 Discovery
 - \circ FWER = P (FD > 0)
- False Discovery Rate (FDR)
 - FDR is expected value of proportion of False
 Discoveries among all Discoveries .
 - \circ FDR = E (FD/D; D>0)

FWER / FDR control procedures

FWER

- Bonferroni
- Holm (1979)
- Hochberg (1986)

• FDR

- Benjamini & Hochberg (1995)
- Benjamini & Yekutieli (2001)

Controlling the FWER

(Bonferroni)

- Bonferroni procedure: Adjust significance level for number of tests performed (m)
 - \circ Use significance level lpha/m,
- Equivalently, adjust p-values multiplying all p-values by m.
- Other, more efficient procedures available: See a statistician

Example. Presenting data.

- García-Arenzana et al. (2014) tested associations of 25 dietary variables with mammographic density, an important risk factor for breast cancer, in Spanish women.
- They found the following results (only first 10 are shown)

See complete example

Dietary variable	P value
Total calories	< 0.001
Olive oil	0.008
Whole milk	0.039
White meat	0.041
Proteins	0.042
Nuts	0.06
Cereals and pasta	0.074
White fish	0.205
Butter	0.212
Vegetables	0.216
_	

Example. Bonferroni (FWER)

		number of tests:	10
critical value:	0.05	Adjusted critical value:	0.005
Dietary variable	↓ P-values ↓	Bonferroni-corrected significance	Bonferroni- adjusted P-value
Total calories	0.001	significant	0.01
Olive oil	0.008	not significant	0.08
Whole milk	0.039	not significant	0.39
White meat	0.041	not significant	0.41
Proteins	0.042	not significant	0.42
Nuts	0.06	not significant	0.6
Cereals and pasta	0.074	not significant	0.74
White fish	0.205	not significant	1
Butter	0.212	not significant	1
Vegetables	0.216	not significant	1
_		_	

Controlling the FDR (B & H)

- Benjamini-Hochberg procedure: Provides control of FDR for a fixed FDR value
 - 5% FDR: On average, 5% of your significant findings will be false
- Important: FDR is not an individual error rate.
 - A number higher than 0.05, such as 0.10 or
 0.25 can be used

Benjamini & Hochberg

- Procedure is relatively simple
 - Order the p-values
 - \circ To provide control at a Q FDR value compare i-th smallest p-value to i imes Q/m
- Instead of setting the FDR at a fixed value and establishing significance/non significance an, adjusted p-value may be computed.

Example. B-H (FDR)

false discovery rate (Q)	0.1		number of P-values (m)	10
\downarrow labels (optional) \downarrow	↓ P-values ↓	Benjamini- Hochberg significance	Benjamini- Hochberg P-value	
Total calories	0.001	significant	0.0100	
Olive oil	0.008	significant	0.0400	
Whole milk	0.039	significant	0.0840	
White meat	0.041	significant	0.0840	
Proteins	0.042	significant	0.0840	
Nuts	0.06	not significant	0.1000	
Cereals and pasta	0.074	not significant	0.1057	
White fish	0.205	not significant	0.2160	
Butter	0.212	not significant	0.2160	
Vegetables	0.216	not significant	0.2160	

What error rate to control for

- FWER Controls for no (0) false positives
 - Rejects many fewer hypothese (less false positives),
 - but you are likely to miss many.
 - Adequate if goal is to identify few cases that differ between two groups.

What error rate to control for

- FDR Controls the (expected) proportion of false positives
 - if you can tolerate more false positives
 - you will get many fewer false negatives
 - Adequate if goal is to pursue the study e.g. to determine functional relationships among genes

Philosophical issues: To adjust

or not.

- Differing opinions on whether or when adjustment is needed
- Choice of family of hypotheses to adjust for is arbitrary, and results are very sensitive to this choice
 - Choose small, more focused families, specified a priori (in writing) to avoid cheating.
- Increase in type II errors due to adjustment (loss of power or ability to detect real differences)

Philosophical issues: To adjust

or not.

- Need for adjustment, and best method of adjustment, is often scenario dependent
- Things to consider (Westfall et al., 1999)
 - Is it plausible that many of the null hypotheses might be true?
 - Do you want to ensure reproducibility, or be able to claim that an identified significant finding is in fact real?
 - Do you want to heavily mine the data to find a "significant" result?
 - Is your study expensive and unlikely to be

References

QUESTIONS?

