

Upsampling and Channel Mixing with Convolutions

Antonio Rueda-Toicen

Learning goals

- Master upsampling and channel mixing with convolutions
- Use bilinear interpolation to resize images
- Understand hypercolumns and feature combination for image generation

Upsampling filters (aka transposed convolution / upconvolution / atrous convolution / deconvolution)

Original Image Size: 224x224

Upscaled Image (Transposed Convolution) Size: 447x447

Upconvolution of 3x3 and stride = 1 padded with zeros

Effect: the output is a 5x5 image with 'synthetic' pixels

Activity: Conv2D in Pytorch (Colab notebook)

Usage of 'up-convolution': decoder paths in image generation models

Upconvolution of 3x3 and stride = 1 padded with zeros

Effect: the output is a 5x5 image with 'synthetic' pixels

Activity: Conv2D in Pytorch (Colab notebook)

The checkerboard artifact from "deconvolution"

Deconv in last two layers. Other layers use resize-convolution. Artifacts of frequency 2 and 4.

Deconv only in last layer. Other layers use resize-convolution. Artifacts of frequency 2.

All layers use resize-convolution. No artifacts.

Upscaled Image (Transposed Convolution) Size: 447x447

Image from <u>Deconvolution and Checkerboard artifacts</u>

Problem: "checkerboard" artifacts

Bilinear interpolation

$w_x=rac{x-x_1}{x_2-x_1}$

input

$$Q = egin{bmatrix} 10 & 20 \ 30 & 40 \end{bmatrix}$$

$$f(x,y) = \begin{bmatrix} 1 - w_x & w_x \end{bmatrix}$$

$$w_y=rac{y-y_1}{y_2-y_1}$$

$$(x_1,y_1)=(0,0) \quad ext{coordinates of } Q_{11}$$
 $(x_2,y_2)=(1,1) \quad ext{coordinates of } Q_{22}$

$$(x_2,y_2)=(1,1)$$
 coordinates of Q_{22}

$$(x,y)=(0.6,0.7)$$
 target point

$$f(x,y) = egin{bmatrix} 1-w_x & w_x \end{bmatrix} egin{bmatrix} Q_{11} & Q_{12} \ Q_{21} & Q_{22} \end{bmatrix} egin{bmatrix} 1-w_y \ w_y \end{bmatrix}$$

Bilinear interpolation in PyTorch

```
import torch
import torch.nn.functional as F
# Create a 1x1x2x2 tensor (batch_size x channels x height x width)
# Notice that the batch size and channel dimensions are created by wrapping
# the height and width tensor with two pairs of extra square brackets
input = torch.tensor([[[[10, 20],
                        [30, 40]]],
                      dtype=torch.float32)
# Upscale to 4x4
output = F.interpolate(input, size=(4, 4), mode='bilinear',
align_corners=True)
import matplotlib.pyplot as plt
# The colormap is just for illustration of corner alignment
plt.imshow(input.squeeze(), cmap="jet")
plt.imshow(output.squeeze(), cmap="jet")
```

input (with colormap) shape: 2x2

output (with colormap) shape: 4x4

1x1 convolutions mix image channels

Image from "What does a 1x1 convolution do?" by Andrew Ng

Upsampling and channel mixing with 1x1 convs

Original Image Size: 224x224

Sample Upsampled Outputs Size: 448x448

Sample Convolution Outputs (4 of 64) Size: 224x224

Final Output (After 1x1 Conv) Size: 448x448


```
layers = nn.Sequential(
   nn.Conv2d(
        in_channels=1.
        out_channels=64,
        kernel_size=3,
        padding=1.
        bias=False
   nn.Upsample(
        scale_factor=2,
       mode='bilinear',
        align_corners=True
   nn.Conv2d(
        in_channels=64,
        out_channels=1,
        kernel_size=1,
        bias=False
```

Note: no checkerboard artifacts

Combining "hypercolumns" is a common use of 1x1 convolutions

Images from "Hypercolumns for Object Segmentation and Fine-grained Localization"

Summary

1x1 convolutions mix channel information

Mixing channels allows us to create new images by combining learned features

Transposed convolutions enable upsampling (with checkerboard artifacts)

Bilinear interpolation and channel mixing is a better alternative

Further reading and references

A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

Network in network (1x1 convolutions)

https://arxiv.org/abs/1312.4400

Hypercolumns for object segmentation and fine-grained localization

 https://openaccess.thecvf.com/content_cvpr_2015/papers/Hariharan_Hypercolumns_for_ Object_2015_CVPR_paper.pdf

SPONSORED BY THE