HW4 (CSCI-C241)

Lillie Donato

6 February 2024

1. Question One

- (a) This proof is valid.
- (b) This proof is not valid, as in their proof by contradiction, they are not proving the entire conclusion and only one part of it.
- (c) This proof is valid.
- (d) This proof is valid.

2. Question Two

(a) Claim: $P \wedge Q \vdash \neg (P \rightarrow \neg Q)$ Goal: $\neg (P \rightarrow \neg Q)$

Pf: Assume $P \wedge Q$.

1. From $P \wedge Q$, we can conclude P and Q

 $(\land - Elimination)$

- 2. Subproof
- 3. Suppose towards a contradiction that $P \to \neg Q$
- From P, we can apply $P \to \neg Q$ and conclude $\neg Q$ 4. (Application)
- Under the assumption of $P \to \neg Q$, we proved an impossibility, so therefore $\neg(P \to \neg Q)$ (Proof By Contradiction)

(b) Claim: $\vdash \neg((P \land Q) \land (P \rightarrow \neg Q))$ Goal: $\neg(X \land Z)$

Proof.

- 1. Subproof
- Suppose $(P \land Q) \land (P \rightarrow \neg Q)$ towards a contradiction 2.
- 3. From $(P \wedge Q) \wedge (P \rightarrow \neg Q)$, we can conclude $P \wedge Q$ and $P \rightarrow \neg Q$ $(\land - Elimination)$
- 4. From $P \wedge Q$, we can conclude P and Q

 $(\land - Elimination)$

From P, we can apply $P \to \neg Q$ and conclude $\neg Q$ 5. (Application)

6. Under the assumption of $(P \land Q) \land (P \rightarrow \neg Q)$ we proved an impossibility of

Q and $\neg Q$ so therefore $\neg((P \land Q) \land (P \rightarrow \neg Q))$

(c) With the truth assignment (A = false, B = true), the proof is invalid.

(d) Claim: $(W \wedge X) \rightarrow \neg Y, X \vdash \neg (W \wedge Y)$ Goal: $\neg (W \land Y)$

(Proof By Contradiction)

Assume $(W \wedge X) \rightarrow \neg Y, X$.

- 1. Subproof
- 2. Suppose $W \wedge Y$ towards a contradiction
- 3. From $W \wedge Y$, we can conclude W and Y $(\land - Elimination)$
- 4. From W and X, we can conclude $W \wedge X$ $(\land -Introduction)$
- 5. From $W \wedge X$, we can apply $(W \wedge X) \rightarrow \neg Y$ and conclude $\neg Y$ (Application)
- Under the assumption of $W \wedge Y$ we proved an impossibility of Y and $\neg Y$ so therefore $\neg (W \land Y)$

(Proof By Contradiction)

(e) Claim: $(W \land X) \rightarrow \neg Y \vdash X \rightarrow \neg (W \land Y)$ Goal: $X \to \neg(W \land Y)$

Assume $(W \wedge X) \rightarrow \neg Y$.

- Assume X1.
- Suppose $W \wedge Y$ towards a contradiction 2.
- 3. From $W \wedge Y$, we can conclude W and Y $(\land - Elimination)$
- From W and X, we can conclude $W \wedge X$ $(\land -Introduction)$ 4.
- From $W \wedge X$, we can apply $(W \wedge X) \rightarrow \neg Y$ and conclude $\neg Y$ (Application) 5.
- Under the assumption of $W \wedge Y$ we proved an impossibility of Y and $\neg Y$ 6. so therefore $\neg (W \land Y)$

(Proof By Contradiction)

7. Under the assumption of X, we proved $\neg (W \land Y)$, so therefore $X \to \neg (W \land Y)$ (Direct Proof)

(f) Claim: $U \to V, \neg V \vdash \neg (U \land W)$ Goal: $\neg(U \land W)$

Assume $U \to V, \neg V$.

- 1. Subproof
- 2. Suppose $U \wedge W$ towards a contradiction
- $(\land Elimination)$ 3. From $U \wedge W$, we can conclude U and W
- 4. From U, we can apply $U \to V$ and conclude V(Application)
- 5. Under the assumption of $U \wedge W$ we proved an impossibility of V and $\neg V$ so therefore $\neg(U \land W)$

(Proof By Contradiction)

(g) With the truth assignment (U = false, V = false, W = true), the proof is invalid.

(h) Claim: $U \to V, W \to V, \neg V \vdash \neg U \land \neg W$ Goal: $\neg U \wedge \neg W$

Assume $U \to V, W \to V, \neg V$.

- 1. Subproof
- 2. Suppose U towards a contradiction
- 3. From U, we can apply $U \to V$ and conclude V (Application)
- 4. Under the assumption of U we proved an impossibility of V and $\neg V$ so therefore $\neg U$ (Proof By Contradiction)
- $5. \quad Subproof$
- 6. Suppose W towards a contradiction
- 7. From W, we can apply $W \to V$ and conclude V (Application)
- 8. Under the assumption of U we proved an impossibility of V and $\neg V$ so therefore $\neg W$ (Proof By Contradiction)
- 9. From $\neg U$ and $\neg W$, we can conclude $\neg U \land \neg W$ $(\land -Introduction)$

3. Question Three

- (a) This would be true because the main connective in this statement holds the same meaning as the word "and".
- (b) This would not be the case, as there are no assignments that satisfy both A and $\neg A$, but there are assignments that satisfy $B \leftrightarrow (X \oplus \neg Q)$.
- (c) This argument would be valid for the reason that there are no assignments where the premises are satisfied and the conclusion is not.
- (d) Yes, it would be possible but only if the premises were contradictions as well.
- (e) Yes, this would be possible but only if that other formula was also a contradiction.
- 4. Question Four

Claim: $\vdash P \lor \neg P$ Goal: $P \lor \neg P$

Proof.

- 1. Suppose $\neg (P \lor \neg P)$ towards a contradiction
- 2. Suppose P towards a contradiction
- 3. From P, we can conclude $P \vee \neg P$ (Weakening)
- 4. Under the assumption of P we proved an impossibility of

 $(P \vee \neg P) \wedge \neg (P \vee \neg P)$ so therefore $\neg P$ (Proof By Contradiction)

- 5. From P, we can conclude $P \vee \neg P$ (Weakening)
- 6. Under the assumption of $\neg (P \lor \neg P)$ we proved and impossibility of

 $(P \vee \neg P) \wedge \neg (P \vee \neg P)$, so therefore $P \vee \neg P$ (Proof By Contradiction)

5. Question Five

(a) Claim: $(A \to B) \to C \equiv (\neg A \to C) \land (B \to C)$

Pf: Assume $(A \to B) \to C \equiv (\neg A \to C) \land (B \to C)$.

1. $(A \to B) \to C$ $\equiv \neg(\neg A \lor B) \lor C$ (Material Implication)

2. $\equiv (\neg \neg A \land \neg B) \lor C$ (De Morgan's)

3. $\equiv (A \land \neg B) \lor C$ (Double Negation)

4. $(\neg A \to C) \land (B \to C)$ $\equiv (\neg \neg A \lor C) \land (\neg B \lor C)$ (Material Implication)

5. $\equiv (A \lor C) \land (\neg B \lor C)$ (Double Negation)

6. $\equiv (A \land \neg B) \lor C$ (Distributive)

- (b) With the truth assignment (A = true, B = false, C = false), the two formulas are not equivalent.
- (c) With the truth assignment (W = true, X = false, Y = true, Z = false), the two formulas are not equivlaent.
- (d) Claim: $\neg((W \land \neg X) \to (\neg Y \lor Z)) \equiv (Y \land \neg Z) \land (W \land \neg X)$

Pf: Assume $\neg((W \land \neg X) \to (\neg Y \lor Z)) \equiv (Y \land \neg Z) \land (W \land \neg X)$.

- 1. $\neg((W \land \neg X) \to (\neg Y \lor Z)) \equiv \neg(\neg(W \land \neg X) \lor (\neg Y \lor Z))$ (Material Implication) $\equiv \neg((\neg W \lor \neg \neg X) \lor (\neg Y \lor Z))$ (De Morgan's) 2. $\equiv (\neg(\neg W \vee \neg \neg X) \wedge \neg(\neg Y \vee Z))$ (De Morgan's) 3. $\equiv (\neg(\neg W \lor X) \land \neg(\neg Y \lor Z))$ 4. (Double Negation) $\equiv (\neg \neg W \land \neg X) \land (\neg \neg Y \land \neg Z)$ (De Morgan's) 5.
- 6. $\equiv (W \land \neg X) \land (Y \land \neg Z)$ (Double Negation)
- 7. $\equiv (Y \land \neg Z) \land (W \land \neg X)$ (Commutative)
- (e) Claim: $P \wedge (\neg Q \rightarrow R) \equiv (P \rightarrow \neg R) \rightarrow (P \wedge Q)$

Pf: Assume $P \land (\neg Q \rightarrow R) \equiv (P \rightarrow \neg R) \rightarrow (P \land Q)$.

- 1. $P \wedge (\neg Q \rightarrow R)$ $\equiv P \wedge (\neg \neg Q \vee R)$ (Material Implication) 2. $\equiv P \wedge (Q \vee R)$ (Double Negation)
- 3. $(P \to \neg R) \to (P \land Q)$ $\equiv \neg(\neg P \vee \neg R) \vee (P \wedge Q)$ (Material Implication)
- $\equiv (\neg \neg P \land \neg \neg R) \lor (P \land Q)$ (De Morgan's) $\equiv (P \land R) \lor (P \land Q)$ 5. (Double Negation)
- $\equiv P \wedge (Q \vee R)$ 6. (Distributive)
- (f) Claim: $(M \to N) \land (\neg M \to N) \equiv N$

Pf: Assume $(M \to N) \land (\neg M \to N) \equiv N$.

- 1. $(M \to N) \land (\neg M \to N)$ $\equiv (\neg M \lor N) \land (\neg \neg M \lor N)$ (Material Implication)
- 2. $\equiv N \vee (\neg M \wedge \neg \neg M)$ (Distributive)
- 3. $\equiv N \vee (\neg M \wedge M)$ (Double Negation)
- 4. $\equiv N \vee \bot$ (Contradiction)
- 5. $\equiv N$ $(\vee - Identity)$