

B19

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization  
International Bureau**



A standard linear barcode is located at the bottom of the page, spanning most of the width.

(43) International Publication Date  
16 January 2003 (16.01.2003)

PCT

(10) International Publication Number  
**WO 03/004670 A2**

(51) International Patent Classification<sup>7</sup>: C12P 13/00

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,  
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,  
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,  
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,  
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,  
VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/EP02/06563

**(22) International Filing Date:** 14 June 2002 (14.06.2002)

**(25) Filing Language:** English

(26) Publication Language: English  
 (30) Priority Data:  
 101 32 946.6 6 July 2001 (06.07.2001) DE  
 60/303,790 10 July 2001 (10.07.2001) US  
 (44) Designated States (regional): ARIPO patent (GN, GM,  
 KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),  
 Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),  
 European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,  
 GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent  
 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,  
 NE, SN, TD, TG).

(71) Applicant (for all designated States except US): DE-  
GUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düssel-  
dorf (DE).

**Declaration under Rule 4.17:**  
— *of inventorship (Rule 4.17(iv)) for US only*

(72) Inventor; and

(75) Inventor/Applicant (for US only): RIEPING, Mechthild [DE/DE]; Mönkebergstrasse 1, 33619 Bielefeld (DE).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,  
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

**Published:**

*— without international search report and to be republished upon receipt of that report*

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

(54) Title: PROCESS FOR THE PREPARATION OF L-AMINO ACIDS USING STRAINS OF THE ENTEROBACTERIACEAE FAMILY



# BEST AVAILABLE COPY

33/004670 A2

**Process for the Preparation of L-Amino Acids using Strains  
of the Enterobacteriaceae Family**

**Field of the Invention**

This invention relates to a process for the preparation of  
5 L-amino acids, in particular L-threonine, using strains of  
the Enterobacteriaceae family in which at least the ptsG  
gene is enhanced.

**Prior Art**

L-Amino acids, in particular L-threonine, are used in human  
10 medicine and in the pharmaceuticals industry, in the  
foodstuffs industry and very particularly in animal  
nutrition.

It is known to prepare L-amino acids by fermentation of  
strains of Enterobacteriaceae, in particular Escherichia  
15 coli (E. coli) and Serratia marcescens. Because of their  
great importance, work is constantly being undertaken to  
improve the preparation processes. Improvements to the  
process can relate to fermentation measures, such as e.g.  
stirring and supply of oxygen, or the composition of the  
20 nutrient media, such as e.g. the sugar concentration during  
the fermentation, or the working up to the product form, by  
e.g. ion exchange chromatography, or the intrinsic output  
properties of the microorganism itself.

Methods of mutagenesis, selection and mutant selection are  
25 used to improve the output properties of these  
microorganisms. Strains which are resistant to  
antimetabolites, such as e.g. the threonine analogue α-  
amino-β-hydroxyvaleric acid (AHV), or are auxotrophic for  
metabolites of regulatory importance and produce L-amino  
30 acid, such as e.g. L-threonine, are obtained in this  
manner.

Methods of the recombinant DNA technique have also been employed for some years for improving the strain of strains of the Enterobacteriaceae family which produce L-amino acids, by amplifying individual amino acid biosynthesis genes and investigating the effect on the production.

#### Object of the Invention

The object of the invention is to provide new measures for improved fermentative preparation of L-amino acids, in particular L-threonine.

#### Summary of the invention

The invention provides a process for the preparation of L-amino acids, in particular L-threonine, using microorganisms of the Enterobacteriaceae family which in particular already produce L-amino acids and in which the nucleotide sequence which codes for the ptsG gene is enhanced.

#### Detailed Description of the invention

Where L-amino acids or amino acids are mentioned in the following, this means one or more amino acids, including their salts, chosen from the group consisting of L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L-isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan and L-arginine. L-Threonine is particularly preferred.

The term "enhancement" in this connection describes the increase in the intracellular activity of one or more enzymes or proteins in a microorganism which are coded by the corresponding DNA, for example by increasing the number of copies of the gene or genes, using a potent promoter or a gene or allele which codes for a corresponding enzyme or

protein with a high activity, and optionally combining these measures.

By enhancement measures, in particular over-expression, the activity or concentration of the corresponding protein is 5 in general increased by at least 10%, 25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% or 500%, up to a maximum of 1000% or 2000%, based on that of the wild-type protein or the activity or concentration of the protein in the starting microorganism.

10 The process is characterized in that the following steps are carried out:

- a) fermentation of microorganisms of the Enterobacteriaceae family in which the ptsG gene is enhanced,
- 15 b) concentration of the corresponding L-amino acid in the medium or in the cells of the microorganisms of the Enterobacteriaceae family, and
- c). isolation of the desired L-amino acid, constituents of the fermentation broth and/or the biomass in its entirety or portions (> 0 to 100 %) thereof 20 optionally remaining in the product.

The microorganisms which the present invention provides can produce L-amino acids from glucose, sucrose, lactose, fructose, maltose, molasses, optionally starch, optionally 25 cellulose or from glycerol and ethanol. They are representatives of the Enterobacteriaceae family chosen from the genera Escherichia, Erwinia, Providencia and Serratia. The genera Escherichia and Serratia are preferred. Of the genus Escherichia the species Escherichia 30 coli and of the genus Serratia the species Serratia marcescens are to be mentioned in particular.

Suitable strains, which produce L-threonine in particular, of the genus *Escherichia*, in particular of the species *Escherichia coli*, are, for example

- 5           *Escherichia coli* TF427
- Escherichia coli* H4578
- Escherichia coli* KY10935
- Escherichia coli* VNIIgenetika MG442
- Escherichia coli* VNIIgenetika M1
- Escherichia coli* VNIIgenetika 472T23
- 10          *Escherichia coli* BKIIM B-3996
- Escherichia coli* kat 13
- Escherichia coli* KCCM-10132.

Suitable L-threonine-producing strains of the genus *Serratia*, in particular of the species *Serratia marcescens*,  
15 are, for example

- Serratia marcescens* HNr21
- Serratia marcescens* TLr156
- Serratia marcescens* T2000.

Strains from the Enterobacteriaceae family which produce L-  
20 threonine preferably have, inter alia, one or more genetic or phenotypic features chosen from the group consisting of: resistance to  $\alpha$ -amino- $\beta$ -hydroxyvaleric acid, resistance to thialysine, resistance to ethionine, resistance to  $\alpha$ -methylserine, resistance to diaminosuccinic acid,  
25 resistance to  $\alpha$ -aminobutyric acid, resistance to borrelidin, resistance to rifampicin, resistance to valine analogues, such as, for example, valine hydroxamate, resistance to purine analogues, such as, for example, 6-dimethylaminopurine, a need for L-methionine, optionally a  
30 partial and compensable need for L-isoleucine, a need for meso-diaminopimelic acid, auxotrophy in respect of threonine-containing dipeptides, resistance to L-threonine, resistance to L-homoserine, resistance to L-lysine, resistance to L-methionine, resistance to L-glutamic acid,

resistance to L-aspartate, resistance to L-leucine,  
resistance to L-phenylalanine, resistance to L-serine,  
resistance to L-cysteine, resistance to L-valine,  
sensitivity to fluoropyruvate, defective threonine  
5 dehydrogenase, optionally an ability for sucrose  
utilization, enhancement of the threonine operon,  
enhancement of homoserine dehydrogenase I-aspartate kinase  
I, preferably of the feed back resistant form, enhancement  
of homoserine kinase, enhancement of threonine synthase,  
10 enhancement of aspartate kinase, optionally of the feed  
back resistant form, enhancement of aspartate semialdehyde  
dehydrogenase, enhancement of phosphoenol pyruvate  
carboxylase, optionally of the feed back resistant form,  
enhancement of phosphoenol pyruvate synthase, enhancement  
15 of transhydrogenase, enhancement of the RhtB gene product,  
enhancement of the RhtC gene product, enhancement of the  
YfiK gene product, enhancement of a pyruvate carboxylase,  
and attenuation of acetic acid formation.

It has been found that microorganisms of the  
20 Enterobacteriaceae family produce L-amino acids, in  
particular L-threonine, in an improved manner after  
enhancement, in particular over-expression, of the ptsG  
gene.

The use of endogenous genes is in general preferred.  
25 "Endogenous genes" or "endogenous nucleotide sequences" are  
understood as meaning the genes or nucleotide sequences  
present in the population of a species.

The nucleotide sequences of the genes of *Escherichia coli*  
belong to the prior art and can also be found in the genome  
30 sequence of *Escherichia coli* published by Blattner et al.  
(*Science* 277: 1453-1462 (1997)).

The following information on the ptsG gene is known, inter  
alia, from the prior art:

- Description: Glucose-specific IIBC component of the phosphotransferase system (PTS)
- EC No.: 2.7.1.69
- Reference: Erni and Zanolari; Journal of Biological Chemistry 261(35): 16398-16403 (1986) Bouma et al.; Proceedings of the National Academy of Sciences USA 84(4): 930-934 (1987) Meins et al.; Journal of Biological Chemistry 263(26): 12986-12993 (1988)
- 5 10 Accession No.: AE000210
- Alternative gene names: CR, car, cat, gpt, umg, glcA
- The nucleic acid sequences can be found in the databanks of the National Center for Biotechnology Information (NCBI) of the National Library of Medicine (Bethesda, MD, USA), the 15 nucleotide sequence databank of the European Molecular Biologies Laboratories (EMBL, Heidelberg, Germany or Cambridge, UK) or the DNA databank of Japan (DDBJ, Mishima, Japan).
- Alleles of the ptsG gene which result from the degeneracy 20 of the genetic code or due to "sense mutations" of neutral function can furthermore be used.
- To achieve an enhancement, for example, expression of the genes or the catalytic properties of the proteins can be increased. The two measures can optionally be combined.
- 25 To achieve an over-expression, the number of copies of the corresponding genes can be increased, or the promoter and regulation region or the ribosome binding site upstream of the structural gene can be mutated. Expression cassettes which are incorporated upstream of the structural gene act 30 in the same way. By inducible promoters, it is additionally possible to increase the expression in the course of fermentative L-threonine production. The expression is likewise improved by measures to prolong the life of the m-RNA. Furthermore, the enzyme activity is

- also enhanced by preventing the degradation of the enzyme protein. The genes or gene constructs can either be present in plasmids with a varying number of copies, or can be integrated and amplified in the chromosome.
- 5 Alternatively, an over-expression of the genes in question can furthermore be achieved by changing the composition of the media and the culture procedure.

Instructions in this context can be found by the expert, *inter alia*, in Chang and Cohen (*Journal of Bacteriology* 10 134: 1141-1156 (1978)), in Hartley and Gregori (*Gene* 13: 347-353 (1981)), in Amann and Brosius (*Gene* 40: 183-190 (1985)), in de Broer et al. (*Proceedings of the National Academy of Sciences of the United States of America* 80: 21-25 (1983)), in LaVallie et al. (*BIO/TECHNOLOGY* 11: 187-15 193 (1993)), in PCT/US97/13359, in Llosa et al. (*Plasmid* 26: 222-224 (1991)), in Quandt and Klipp (*Gene* 80: 161-169 (1989)), in Hamilton (*Journal of Bacteriology* 171: 4617-4622 (1989)), in Jensen and Hammer (*Biotechnology and Bioengineering* 58: 191-195 (1998)) and in known textbooks 20 of genetics and molecular biology.

Plasmid vectors which are capable of replication in Enterobacteriaceae, such as e.g. cloning vectors derived from pACYC184 (Bartolomé et al.; *Gene* 102: 75-78 (1991)), pTrc99A (Amann et al.; *Gene* 69: 301-315 (1988)) or pSC101 25 derivatives (Vocke and Bastia, *Proceedings of the National Academy of Sciences USA* 80(21): 6557-6561 (1983)) can be used. A strain transformed with a plasmid vector, wherein the plasmid vector carries at least one nucleotide sequence which codes for the ptsG gene, can be employed in a process 30 according to the invention.

It is also possible to transfer mutations which affect the expression of the particular gene into various strains by sequence exchange (Hamilton et al. (*Journal of Bacteriology* 171: 4617 - 4622 (1989))), conjugation or transduction.

It may furthermore be advantageous for the production of L-amino acids, in particular L-threonine, with strains of the Enterobacteriaceae family to enhance one or more enzymes of the known threonine biosynthesis pathway or enzymes of 5 anaplerotic metabolism or enzymes for the production of reduced nicotinamide adenine dinucleotide phosphate, in addition to the enhancement of the ptsG gene.

Thus, for example, one or more of the genes chosen from the group consisting of

- 10 • the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase (US-A-4,278,765),
- the pyc gene which codes for pyruvate carboxylase (DE-A-19 831 609),
- 15 • the pps gene which codes for phosphoenol pyruvate synthase (Molecular and General Genetics 231(2): 332-336 (1992)),
- the ppc gene which codes for phosphoenol pyruvate carboxylase (Gene 31: 279-283 (1984)),
- 20 • the pntA and pntB genes which code for transhydrogenase (European Journal of Biochemistry 158: 647-653 (1986)),
- the rhtB gene which imparts homoserine resistance (EP-A-0 994 190),
- 25 • the mqo gene which codes for malate:quinone oxidoreductase (WO 02/06459),
- the rhtC gene which imparts threonine resistance (EP-A-1 013 765),
- the thrE gene of Corynebacterium glutamicum which codes for the threonine export protein (WO 01/92545),

- the *gdhA* gene which codes for glutamate dehydrogenase (Nucleic Acids Research 11: 5257-5266 (1983); Gene 23: 199-209 (1983)),
- the *hns* gene which codes for the DNA-binding protein 5 HLP-II (Molecular and General Genetics 212(2): 199-202 (1988), Accession No. AE000222),
- the *lrp* gene which codes for the regulator of the leucine Lrp regulon and high-affinity transport systems 10 of branched-chain amino acids (Journal of Biological Chemistry 266(17): 10768-10774 (1991), Accession No. AE000191),
- the *pgm* gene which codes for phosphoglucomutase (Journal of Bacteriology 176: 5847-5851 (1994), Accession No. AE000172),
- 15 • the *fba* gene which codes for fructose bisphosphate aldolase (Biochemical Journal 257: 529-534 (1989), Accession No. AE000376),
- the *dps* gene which codes for the global regulator Dps 20 (Genes & Development 6(12B): 2646-2654 (1992), Accession No. AE000183),
- the *ptsH* gene of the *ptsHICrr* operon which codes for the phosphohistidine protein hexose phosphotransferase of 25 the phosphotransferase system PTS (Journal of Biological Chemistry 262(33): 16241-16253 (1987), Accession No. AE000329),
- the *ptsI* gene of the *ptsHICrr* operon which codes for enzyme I of the phosphotransferase system PTS (Journal of Biological Chemistry 262(33): 16241-16253 (1987), Accession No. AE000329),
- 30 • the *crr* gene of the *ptsHICrr* operon which codes for the glucose-specific IIA component of the phosphotransferase

system PTS (Journal of Biological Chemistry 262(33): 16241-16253 (1987), Accession No. AE000329),

- the *mopB* gene which codes for chaperone GroES (Journal of Biological Chemistry 261(26): 12414-12419 (1986),  
5 Accession No. AE000487),

- the *ahpC* gene of the *ahpCF* operon which codes for the small subunit of alkyl hydroperoxide reductase (Proceedings of the National Academy of Sciences USA 92(17): 7617-7621 (1995), Accession No. AE000166),

- 10 • the *ahpF* gene of the *ahpCF* operon which codes for the large subunit of alkyl hydroperoxide reductase (Proceedings of the National Academy of Sciences USA 92(17): 7617-7621 (1995), Accession No. AE000166),

can be enhanced, in particular over-expressed.

- 15 The use of endogenous genes is in general preferred.

It may furthermore be advantageous for the production of L-amino acids, in particular L-threonine, in addition to the enhancement of the *ptsG* gene, for one or more of the genes chosen from the group consisting of

- 20 • the *tdh* gene which codes for threonine dehydrogenase (Journal of Bacteriology 169: 4716-4721 (1987)),
- the *mdh* gene which codes for malate dehydrogenase (E.C. 1.1.1.37) (Archives in Microbiology 149: 36-42 (1987)),
- the gene product of the open reading frame (orf) *yjfA* 25 (Accession Number AAC77180 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA)),
- the gene product of the open reading frame (orf) *ytfP* (Accession Number AAC77179 of the National Center for Biotechnology Information (NCBI, Bethesda, MD, USA)),

- the pckA gene which codes for the enzyme phosphoenol pyruvate carboxykinase (Journal of Bacteriology 172: 7151-7156 (1990)),
- the poxB gene which codes for pyruvate oxidase (Nucleic 5 Acids Research 14(13): 5449-5460 (1986)),
- the aceA gene which codes for the enzyme isocitrate lyase (Journal of Bacteriology 170: 4528-4536 (1988)),
- the dgsA gene which codes for the DgsA regulator of the phosphotransferase system (Bioscience, Biotechnology and 10 Biochemistry 59: 256-251 (1995)) and is also known under the name of the mlc gene,
- the fruR gene which codes for the fructose repressor (Molecular and General Genetics 226: 332-336 (1991)) and is also known under the name of the cra gene, and
- 15 • the rpoS gene which codes for the sigma<sup>38</sup> factor (WO 01/05939) and is also known under the name of the katF gene,

to be attenuated, in particular eliminated or for the expression thereof to be reduced.

- 20 The term "attenuation" in this connection describes the reduction or elimination of the intracellular activity of one or more enzymes (proteins) in a microorganism which are coded by the corresponding DNA, for example by using a weak promoter or a gene or allele which codes for a 25 corresponding enzyme with a low activity or inactivates the corresponding enzyme (protein) or gene, and optionally combining these measures.

By attenuation measures, the activity or concentration of the corresponding protein is in general reduced to 0 to 30 75%, 0 to 50%, 0 to 25%, 0 to 10% or 0 to 5% of the activity or concentration of the wild-type protein or of

the activity or concentration of the protein in the starting microorganism.

- It may furthermore be advantageous for the production of L-amino acids, in particular L-threonine, in addition to the enhancement of the ptsG gene, to eliminate undesirable side reactions (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
- 10 The microorganisms produced according to the invention can be cultured in the batch process (batch culture), the fed batch (feed process) or the repeated fed batch process (repetitive feed process). A summary of known culture methods is described in the textbook by Chmiel
- 15 (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik [Bioprocess Technology 1. Introduction to Bioprocess Technology (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen [Bioreactors and Peripheral Equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).
- 20

- The culture medium to be used must meet the requirements of the particular strains in a suitable manner. Descriptions of culture media for various microorganisms are contained in the handbook "Manual of Methods for General
- 25 Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

- Sugars and carbohydrates, such as e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and optionally cellulose, oils and fats, such as e.g. soya oil, sunflower oil, groundnut oil and coconut fat, fatty acids, such as e.g. palmitic acid, stearic acid and linoleic acid, alcohols, such as e.g. glycerol and ethanol, and organic acids, such as e.g. acetic acid, can be used as the source

of carbon. These substances can be used individually or as a mixture.

Organic nitrogen-containing compounds, such as peptones, yeast extract, meat extract, malt extract, corn steep liquor, soya bean flour and urea, or inorganic compounds, such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, can be used as the source of nitrogen. The sources of nitrogen can be used individually or as a mixture.

- 10 Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts can be used as the source of phosphorus. The culture medium must furthermore comprise salts of metals, such as e.g. magnesium sulfate or iron sulfate,
- 15 which are necessary for growth. Finally, essential growth substances, such as amino acids and vitamins, can be employed in addition to the above-mentioned substances. Suitable precursors can moreover be added to the culture medium. The starting substances mentioned can be added to
- 20 the culture in the form of a single batch, or can be fed in during the culture in a suitable manner.

Basic compounds, such as sodium hydroxide, potassium hydroxide, ammonia or aqueous ammonia, or acid compounds, such as phosphoric acid or sulfuric acid, can be employed

25 in a suitable manner to control the pH of the culture. Antifoams, such as e.g. fatty acid polyglycol esters, can be employed to control the development of foam. Suitable substances having a selective action, e.g. antibiotics, can be added to the medium to maintain the stability of

30 plasmids. To maintain aerobic conditions, oxygen or oxygen-containing gas mixtures, such as e.g. air, are introduced into the culture. The temperature of the culture is usually 25°C to 45°C, and preferably 30°C to 40°C. Culturing is continued until a maximum of L-amino

acids or L-threonine has formed. This target is usually reached within 10 hours to 160 hours.

The analysis of L-amino acids can be carried out by anion exchange chromatography with subsequent ninhydrin 5 derivation, as described by Spackman et al. (Analytical Chemistry 30: 1190-1206 (1958), or it can take place by reversed phase HPLC as described by Lindroth et al. (Analytical Chemistry 51: 1167-1174 (1979)).

The process according to the invention is used for the 10 fermentative preparation of L-amino acids, such as, for example, L-threonine, L-isoleucine, L-valine, L-methionine, L-homoserine and L-lysine, in particular L-threonine.

The present invention is explained in more detail in the following with the aid of embodiment examples.

15 The minimal (M9) and complete media (LB) for Escherichia coli used are described by J.H. Miller (A Short Course in Bacterial Genetics (1992), Cold Spring Harbor Laboratory Press). The isolation of plasmid DNA from Escherichia coli and all techniques of restriction, ligation, Klenow and 20 alkaline phosphatase treatment are carried out by the method of Sambrook et al. (Molecular Cloning - A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press). Unless described otherwise, the transformation of Escherichia coli is carried out by the method of Chung et al. (Proceedings 25 of the National Academy of Sciences of the United States of America (1989) 86: 2172-2175).

The incubation temperature for the preparation of strains and transformants is 37°C.

Example 1

## Construction of the expression plasmid pTrc99AptsG

The ptsG gene from E. coli K12 is amplified using the polymerase chain reaction (PCR) and synthetic oligonucleotides. Starting from the nucleotide sequence of the ptsG gene in E. coli K12 MG1655 (Accession Number AE000210, Blattner et al. (Science 277: 1453-1462 (1997))), PCR primers are synthesized (MWG Biotech, Ebersberg, Germany). The sequences of the primers are modified such that recognition sites for restriction enzymes are formed. The recognition sequence for XbaI is chosen for the ptsG1 primer and the recognition sequence for HindIII for the ptsG2 primer, which are marked by underlining in the nucleotide sequence shown below:

15 ptsG1: 5' - CGTAAATCTAGAACCCATACTTAGG - 3' (SEQ ID No. 1)

ptsG2: 5' - CCTAAGCTTCCCCAACGTCTTAC - 3' (SEQ ID No. 2)

The chromosomal E. coli K12 MG1655 DNA employed for the PCR is isolated according to the manufacturer's instructions with "Qiagen Genomic-tips 100/G" (QIAGEN, Hilden, Germany). A DNA fragment approx. 1500 bp in size can be amplified with the specific primers under standard PCR conditions (Innis et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press) with Pfu-DNA polymerase (Promega Corporation, Madison, USA). The PCR product is cleaved with the restriction enzymes XbaI and HindIII and ligated with the vector pTrc99A (Pharmacia Biotech, Uppsala, Sweden), which has been digested with the enzymes XbaI and HindIII. The E. coli strain XL1-Blue MRF' (Stratagene, La Jolla, USA) is transformed with the ligation batch and plasmid-carrying cells are selected on LB agar, to which 50 µg/ml ampicillin are added. Successful cloning can be demonstrated after plasmid DNA isolation by

control cleavage with the enzymes KpnI and PvuI. The plasmid is called pTrc99AptsG (figure 1).

Example 2

Preparation of L-threonine with the strain  
5 MG442/pTrc99AptsG

The L-threonine-producing E. coli strain MG442 is described in the patent specification US-A- 4,278,765 and deposited as CMIM B-1628 at the Russian National Collection for Industrial Microorganisms (VKPM, Moscow, Russia).

- 10 The strain MG442 is transformed with the expression plasmid pTrc99AptsG described in example 1 and with the vector pTrc99A and plasmid-carrying cells are selected on LB agar with 50 µg/ml ampicillin. The strains MG442/pTrc99AptsG and MG442/pTrc99A are formed in this manner. Selected
- 15 individual colonies are then multiplied further on minimal medium with the following composition: 3.5 g/l Na<sub>2</sub>HPO<sub>4</sub>\*2H<sub>2</sub>O, 1.5 g/l KH<sub>2</sub>PO<sub>4</sub>, 1 g/l NH<sub>4</sub>Cl, 0.1 g/l MgSO<sub>4</sub>\*7H<sub>2</sub>O, 2 g/l glucose, 20 g/l agar, 50 mg/l ampicillin. The formation of L-threonine is checked in batch cultures of 10 ml contained
- 20 in 100 ml conical flasks. For this, 10 ml of preculture medium of the following composition: 2 g/l yeast extract, 10 g/l (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 1 g/l KH<sub>2</sub>PO<sub>4</sub>, 0.5 g/l MgSO<sub>4</sub>\*7H<sub>2</sub>O, 15 g/l CaCO<sub>3</sub>, 20 g/l glucose, 50 mg/l ampicillin are inoculated and the batch is incubated for 16 hours at 37°C and 180 rpm
- 25 on an ESR incubator from Kühner AG (Birsfelden, Switzerland). 250 µl portions of this preculture are transinoculated into 10 ml of production medium (25 g/l (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 2 g/l KH<sub>2</sub>PO<sub>4</sub>, 1 g/l MgSO<sub>4</sub>\*7H<sub>2</sub>O, 0.03 g/l FeSO<sub>4</sub>\*7H<sub>2</sub>O, 0.018 g/l MnSO<sub>4</sub>\*1H<sub>2</sub>O, 30 g/l CaCO<sub>3</sub>, 20 g/l
- 30 glucose, 50 mg/l ampicillin) and the batch is incubated for 48 hours at 37°C. For complete induction of the expression of the ptsG gene, 100 mg/l isopropyl β-D-thiogalactopyranoside (IPTG) are added in parallel batches. The formation of L-threonine by the starting strain MG442

is investigated in the same manner, but no addition of ampicillin to the medium takes place. After the incubation the optical density (OD) of the culture suspension is determined with an LP2W photometer from Dr. Lange 5 (Düsseldorf, Germany) at a measurement wavelength of 660 nm.

The concentration of L-threonine formed is then determined in the sterile-filtered culture supernatant with an amino acid analyzer from Eppendorf-BioTronik (Hamburg, Germany) 10 by ion exchange chromatography and post-column reaction with ninhydrin detection.

The result of the experiment is shown in Table 1.

Table 1

| Strain            | Additions | OD<br>(660 nm) | L-Threonine g/l |
|-------------------|-----------|----------------|-----------------|
| MG442             | -         | 5.6            | 1.4             |
| MG442/pTrc99A     | -         | 3.8            | 1.3             |
| MG442/pTrc99AptsG | -         | 6.8            | 1.8             |
| MG442/pTrc99AptsG | IPTG      | 5.7            | 2.3             |

15 Brief Description of the Figure:

- Figure 1: Map of the plasmid pTrc99AptsG containing the ptsG gene.

The length data are to be understood as approx. data. The abbreviations and designations used have the following 20 meaning:

- Amp: Ampicillin resistance gene
- lacI: Gene for the repressor protein of the trc promoter
- Ptrc: trc promoter region, IPTG-inducible
- 5 • ptsG: Coding region of the ptsG gene
- 5S: 5S rRNA region
- rrnBT: rRNA terminator region

The abbreviations for the restriction enzymes have the following meaning

- 10 • HindIII: Restriction endonuclease from Haemophilus influenzae
- KpnI: Restriction endonuclease from Klebsiella pneumoniae
- PvuI: Restriction endonuclease from Proteus vulgaris
- 15 • XbaI: Restriction endonuclease from Xanthomonas campestris

**What is claimed is:**

1. Process for the preparation of L-amino acids, in particular L-threonine, wherein the following steps are carried out:
  - 5        a) fermentation of microorganisms of the Enterobacteriaceae family which produce the desired L-amino acid and in which the ptsG gene or the nucleotide sequence which codes for this, is enhanced, in particular over-expressed,
  - 10      b) concentration of the desired L-amino acid in the medium or in the cells of the microorganisms, and
  - 15      c) isolation of the desired L-amino acid, constituents of the fermentation broth and/or the biomass in its entirety or portions (> 0 to 100%) thereof optionally remaining in the product.
2. Process according to claim 1, wherein microorganisms in which further genes of the biosynthesis pathway of the desired L-amino acid are additionally enhanced are employed.
- 20 3. Process according to claim 1, wherein microorganisms in which the metabolic pathways which reduce the formation of the desired L-amino acid are at least partly eliminated are employed.
- 25 4. Process according to claim 1, wherein the expression of the polynucleotide which codes for the ptsG gene is increased.
- 30 5. Process according to claim 1, wherein the regulatory and/or catalytic properties of the polypeptide (protein) for which the polynucleotide ptsG codes are improved or increased.

6. Process according to claim 1, wherein, for the preparation of L-amino acids, microorganisms of the Enterobacteriaceae family in which in addition at the same time one or more of the genes chosen from the group consisting of:
- 5           6.1       the thrABC operon which codes for aspartate kinase, homoserine dehydrogenase, homoserine kinase and threonine synthase,
- 10          6.2       the pyc gene which codes for pyruvate carboxylase,
- 6.3       the pps gene which codes for phosphoenol pyruvate synthase,
- 6.4       the ppc gene which codes for phosphoenol pyruvate carboxylase,
- 15          6.5       the pntA and pntB genes which code for transhydrogenase,
- 6.6       the rhtB gene which imparts homoserine resistance,
- 20          6.7       the mqo gene which codes for malate:quinone oxidoreductase,
- 6.8       the rhtC gene which imparts threonine resistance,
- 6.9       the thrE gene which codes for the threonine export protein,
- 25          6.10      the gdhA gene which codes for glutamate dehydrogenase,
- 6.11      the hns gene which codes for the DNA-binding protein HLP-II,

- 6.12 the lrp gene which codes for the regulator of the leucine Lrp regulon,
- 6.13 the pgm gene which codes for phosphoglucomutase,
- 5 6.14 the fba gene which codes for fructose bisphosphate aldolase,
- 6.15 the dps gene which codes for the global regulator Dps
- 10 6.16 the ptsH gene which codes for the phosphohistidine protein hexose phosphotransferase,
- 6.17 the ptsI gene which codes for enzyme I of the phosphotransferase system,
- 15 6.18 the crr gene which codes for the glucose-specific IIA component,
- 6.19 the mopB gene which codes for chaperone GroES,
- 6.20 the ahpC gene which codes for the small sub-unit of alkyl hydroperoxide reductase,
- 20 6.21 the ahpF gene which codes for the large sub-unit of alkyl hydroperoxide reductase,
- is or are enhanced, in particular over-expressed, are fermented.
7. Process according to claim 1, wherein, for the preparation of L-amino acids, microorganisms of the Enterobacteriaceae family in which in addition at the same time one or more of the genes chosen from the group consisting of:
- 25 7.1 the tdh gene which codes for threonine dehydrogenase.

- 7.2 the *mdh* gene which codes for malate dehydrogenase,
- 7.3 the gene product of the open reading frame (orf) *yjfa*,
- 5 7.4 the gene product of the open reading frame (orf) *ytfP*,
- 7.5 the *pckA* gene which codes for phosphoenol pyruvate carboxykinase,
- 7.6 the *poxB* gene which codes for pyruvate oxidase,
- 10 7.7 the *aceA* gene which codes for isocitrate lyase,
- 7.8 the *dgsA* gene which codes for the DgsA regulator of the phosphotransferase system,
- 7.9 the *fruR* gene which codes for the fructose repressor,
- 15 7.10 the *rpoS* gene which codes for the sigma<sup>38</sup> factor
- is or are attenuated, in particular eliminated or reduced in expression, are fermented.

Figure 1:



## SEQUENCE PROTOCOL

5 <110> Degussa AG  
<120> Process for the preparation of L-amino acids using  
strains of the Enterobacteriaceae family

10 <130> 020099 BT  
<160> 2  
  
<170> PatentIn version 3.1

15 <210> 1  
<211> 25  
<212> DNA  
<213> artificial sequence

20 <220>  
<221> Primer  
<222> (1)..(25)  
<223> ptsG1

25 <400> 1  
cgtaaaatctta gaaccctatac ttagg 25  
  
<210> 2  
<211> 23  
<212> DNA  
<213> artificial sequence

30 <220>  
<221> Primer  
<222> (1)..(23)  
<223> ptsG2

35 <400> 2  
cctaagcttc cccaaacgtct tac 23  
  
<210> 2  
<211> 23  
<212> DNA  
<213> artificial sequence

40 <220>  
<221> Primer  
<222> (1)..(23)  
<223> ptsG2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization  
International Bureau**



A standard linear barcode is located at the bottom of the page, spanning most of the width.

(43) International Publication Date  
16 January 2003 (16.01.2003)

PCT

(10) International Publication Number  
**WO 03/004670 A3**

(51) International Patent Classification<sup>7</sup>: C12N 15/31,  
C12P 13/08

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,  
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,  
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,  
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,  
VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/EP02/06563

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 14 June 2002 (14.06.2002)

**(25) Filing Language:** English

**(26) Publication Language:** English

(30) Priority Data:  
101 32 946.6 6 July 2001 (06.07.2001) DE  
60/303.790 10 July 2001 (10.07.2001) US

(71) Applicant (*for all designated States except US*): DEGUSSA AG [DE/DE]; Bennigsenplatz 1, 40474 Düsseldorf (DE).

**Declaration under Rule 4.17:**

— of inventorship (Rule 4.17(iv)) for US only

**Published:**

— with international search report

(88) Date of publication of the international search report:  
31 July 2003

(72) Inventor; and  
(75) Inventor/Applicant (*for US only*): RIEPING, Mechthild [DE/DE]; Mönkebergstrasse 1, 33619 Bielefeld (DE).

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

**(54) Title: PROCESS FOR THE PREPARATION OF L-AMINO ACIDS USING STRAINS OF THE ENTEROBACTERIACEAE FAMILY WITH ENHANCED PTS-G EXPRESSION**



WO 03/004670 A3

(57) Abstract: The invention relates to a process for the preparation of L-amino acids, in particular L-threonine.

# INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP 02/06563

**A. CLASSIFICATION OF SUBJECT MATTER**  
IPC 7 C12N15/31 C12P13/08

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)  
IPC 7 C12N C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                               | Relevant to claim No. |
|------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A          | US 4 278 765 A (DEBABOV VLADIMIR G ET AL)<br>14 July 1981 (1981-07-14)<br>cited in the application<br>the whole document<br>---- | 1-7                   |
| A          | US 6 159 738 A (DONNELLY MARK I ET AL)<br>12 December 2000 (2000-12-12)<br>the whole document<br>----                            | 1-7                   |
| A          | WO 00 04182 A (DCV INC D B A BIO TECHNICAL<br>RE) 27 January 2000 (2000-01-27)<br>the whole document<br>----                     | 1-7                   |
|            |                                                                                                                                  | -/-                   |



Further documents are listed in the continuation of box C.



Patent family members are listed in annex.

\* Special categories of cited documents :

- \*A\* document defining the general state of the art which is not considered to be of particular relevance
- \*E\* earlier document but published on or after the international filing date
- \*L\* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- \*O\* document referring to an oral disclosure, use, exhibition or other means
- \*P\* document published prior to the international filing date but later than the priority date claimed

\*T\* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

\*X\* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

\*Y\* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

\*&\* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

Tel (+31-70) 340-2040, TX 31 651 epo nl.  
Fax: (+31-70) 340-3016

Lejeune, R

## INTERNATIONAL SEARCH REPORT

International Application No  
PCT/EP 02/06563

## C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

| Category | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                           | Relevant to claim No. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| A        | TATARKO M ET AL: "Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in <i>Escherichia coli</i> "<br>CURRENT MICROBIOLOGY, NEW YORK, NY, US,<br>vol. 43, July 2001 (2001-07), pages 26-32,<br>XP002229632<br>ISSN: 0343-8651<br>the whole document<br>--- | 1-3                   |
| A        | EP 0 994 190 A (AJINOMOTO KK)<br>19 April 2000 (2000-04-19)<br>the whole document<br>---                                                                                                                                                                                                                     | 1-7                   |
| A        | SAWERS G: "THE ANAEROBIC DEGRADATION OF L-SERINE AND L-THREONINE IN ENTEROBACTERIA: NETWORKS AND PATHWAYS AND REGULATORY SIGNALS"<br>ARCHIVES OF MICROBIOLOGY, BERLIN, DE,<br>vol. 171, no. 1, 1998, pages 1-5,<br>XP002953871<br>ISSN: 0302-8933<br>the whole document<br>---                               | 1-7                   |
| E        | WO 03 004598 A (RIEPING MECHTHILD ;DEGUSSA (DE)) 16 January 2003 (2003-01-16)<br>claim 6<br>& WO 03 004663 A<br>16 January 2003 (2003-01-16)<br>& WO 03 004664 A<br>& WO 03 004665 A<br>& WO 03 004669 A<br>& WO 03 004671 A<br>& WO 03 004674 A<br>& WO 03 004675 A<br>---                                  | 6                     |
| T        | WO 03 004662 A (DEGUSSA)<br>16 January 2003 (2003-01-16)<br>the whole document<br>-----                                                                                                                                                                                                                      | 1-7                   |

## INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 02/06563

| Patent document cited in search report |   | Publication date |                                                                | Patent family member(s)                                                                                                                                                   | Publication date                                                                                                                                                     |
|----------------------------------------|---|------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US 4278765                             | A | 14-07-1981       | SU<br>HU                                                       | 875663 A1<br>190999 B                                                                                                                                                     | 15-09-1982<br>28-12-1986                                                                                                                                             |
| US 6159738                             | A | 12-12-2000       | NONE                                                           |                                                                                                                                                                           |                                                                                                                                                                      |
| WO 0004182                             | A | 27-01-2000       | US<br>AU<br>CA<br>CN<br>EP<br>JP<br>US<br>WO                   | 6372457 B1<br>5102899 A<br>2332380 A1<br>1314951 T<br>1095158 A1<br>2002520067 T<br>2003044939 A1<br>0004182 A1                                                           | 16-04-2002<br>07-02-2000<br>27-01-2000<br>26-09-2001<br>02-05-2001<br>09-07-2002<br>06-03-2003<br>27-01-2000                                                         |
| EP 0994190                             | A | 19-04-2000       | RU<br>AU<br>BR<br>CN<br>EP<br>JP<br>KR<br>SK<br>US<br>US<br>ZA | 2144564 C1<br>4755099 A<br>9904955 A<br>1254014 A<br>0994190 A2<br>2000116390 A<br>2000029006 A<br>140899 A3<br>6303348 B1<br>2002102670 A1<br>2002058314 A1<br>9906042 A | 20-01-2000<br>20-04-2000<br>12-12-2000<br>24-05-2000<br>19-04-2000<br>25-04-2000<br>25-05-2000<br>16-05-2000<br>16-10-2001<br>01-08-2002<br>16-05-2002<br>04-04-2000 |
| WO 03004598                            | A | 16-01-2003       | DE<br>WO<br>WO<br>WO<br>WO<br>WO<br>WO<br>WO<br>WO<br>WO<br>WO | 10132946 A1<br>03004663 A2<br>03004669 A2<br>03004674 A2<br>03004670 A2<br>03004664 A2<br>03004598 A2<br>03004665 A2<br>03004671 A2<br>03004675 A2                        | 16-01-2003<br>16-01-2003<br>16-01-2003<br>16-01-2003<br>16-01-2003<br>16-01-2003<br>16-01-2003<br>16-01-2003<br>16-01-2003<br>16-01-2003                             |
| WO 03004662                            | A | 16-01-2003       | DE<br>WO<br>US                                                 | 10132945 A1<br>03004662 A2<br>2003017556 A1                                                                                                                               | 16-01-2003<br>16-01-2003<br>23-01-2003                                                                                                                               |

**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: \_\_\_\_\_**

**IMAGES ARE BEST AVAILABLE COPY.**

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.