Análise de Algoritmos - Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

- Introdução
- Programação Dinâmica
- Problemas

Sumário

Introdução

Introdução

Divisão e Conquista

- Combina soluções de subproblemas para construir uma solução maior.
- Se subproblemas se sobrepõem, fazemos mais trabalho que o necessário.
 - Um problema se sobrepõe a outro quando compartilham subproblemas.

Introdução

- Na programação dinâmica, não há necessidade em resolver subproblemas que já foram resolvidos anteriormente.
- Resolvemos cada subproblema uma única vez e guardamos sua solução.
- Geralmente aplicamos esse paradigma em problemas de otimização.
 - Maior/menor resposta.
- Contudo, nada impede de utilizar as respostas de cada subproblema para resolver o problema de busca associado.

Introdução

Framework de Programação Dinâmica

- Caracterize a estrutura de uma solução ótima.
- Recursivamente, defina o valor de uma solução ótima.
- Ompute o valor da solução ótima.
- Construa a solução ótima de informação já computadas.

Sumário

- \bullet Entrada: comprimento de uma barra de aço (em cm) e uma tabela P contendo os preços do pedaço por seu tamanho.
- Saída: o maior lucro.

Exemplo

${\sf comprimento}\ i$	0	1	2	3	4	5	6	7	8	9	10
preço P_i	0	1	5	8	9	10	17	17	20	24	30

• Qual a melhor solução para uma barra de tamanho 4?

• Quantos jeitos de cortar a barra nós temos?

- Quantos jeitos de cortar a barra nós temos?
- 2^{n-1} .

- Quantos jeitos de cortar a barra nós temos?
- 2^{n-1} .
- Necessariamente temos um algoritmo $\Omega(2^n)$?

Figura: Maneiras de se cortar uma barra de tamanho 4.

• Suponha um corte ótimo:

$$n = i_1 + i_2 + \ldots + i_k$$

A renda máxima obtida é:

$$r_n = p_{i_1} + p_{i_2} + \ldots + p_{i_k}$$

De maneira geral, temos:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots r_{n-1} + r_1)$$

- $r_1 = 1$ (sem corte).
- $r_2 = 5$ (sem corte).
- $r_3 = 8$ (sem corte).
- $r_4 = 10$ (solução $r_2 + r_2$).
- $r_5 = 13$ (solução $r_2 + r_3$).
- $r_6 = 17$ (sem corte).
- $r_7 = 18$ (solução $r_1 + r_6$ ou $r_2 + r_2 + r_3$).
- $r_8 = 22$ (solução $r_2 + r_6$).
- $r_9 = 25$ (solução $r_3 + r_6$).
- $r_{10} = 30$ (sem corte).

- Esse problema de subestrutura ótima!.
- Soluções ótimas de subproblemas incorporam soluções ótimas de problemas maiores.
- Outra forma de enxergar a solução: um corte ótimo vai se basear em um pedaço de barra de tamanho i e na solução do corte de um pedaço de barra de tamanho n-i.
- Podemos resolvê-lo recursivamente com base na seguinte equação:

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

• Estamos assumindo $r_0 = 0$.

Algoritmo Recursivo

Algorithm 1: CUT-ROD(p, k)

7 return q

Análise

 O custo de pior caso do algoritmo é dado pela seguinte relação de recorrência:

$$T(n) = \begin{cases} \Theta(1), & n \le 1\\ \sum_{j=1}^{n-1} T(j) + \Theta(1), & n > 1 \end{cases}$$

• Mostre que $T(n) = \Omega(2^n)$.

Análise

Figura: Árvore de recursão.

• Qual o problema da solução?

- Qual o problema da solução?
- Resolve os mesmos problemas várias vezes. . .

- Qual o problema da solução?
- Resolve os mesmos problemas várias vezes. . .
- A programação dinâmica se encarrega disso ao salvar as soluções dos subproblemas, dessa forma não é necessário recomputá-los.

- Qual o problema da solução?
- Resolve os mesmos problemas várias vezes. . .
- A programação dinâmica se encarrega disso ao salvar as soluções dos subproblemas, dessa forma não é necessário recomputá-los.
- Trocamos tempo por espaço!

Top-Down vs Bottom-Up

- Temos duas abordagens, Top-Down ou Bottom-Up.
- Top-Down: usa a técnica memoization. Se baseia na recursão salvando o progresso para cada subproblema resolvido. Soluções já computadas são aproveitadas sem esforço adicional.
- Bottom-Up: resolvemos os problemas menores primeiro para depois resolver os problemas maiores com base nas soluções dos problemas menores.

Algoritmo Recursivo com Memoization

Algorithm 2: INITIALIZATION(P, R, n)

Input: P[0,n], n

Output: $R[0,n]=(r_0,r_1,\ldots,r_n)$, inicializado

- **1** $R[0] \leftarrow 0$
- $\mathbf{2} \ \ \mathbf{for}(\ i \leftarrow 1; i \leq n; i++\)$
- 3 $R[i] \leftarrow -\infty$

Algoritmo Recursivo com Memoization

```
Algorithm 3: MEMOIZED-CUT-ROD(P,R,k)
```

• Chamada de interesse: Memoized-cut-rod(P, R, k), em que k é o tamanho da barra inteira.

Algoritmo Bottom-Up

- Podemos implementar a solução de uma outra maneira.
- Computando as soluções de problemas menores para então computar as soluções dos problemas maiores.
- Abordagem *Bottom-Up*.
- Implementação iterativa.

Algoritmo Bottom-Up

Algorithm 4: BOTTOM-UP-CUT-ROD(P,R)

```
Input: P[0,n], R[0,n], n
Output: r_n

1 R[0] \leftarrow 0
2 for( j \leftarrow 1; j \leq n; j++)
3 \qquad q \leftarrow -\infty
4 for( i \leftarrow 1; i \leq j; i++)
5 \qquad q \leftarrow \max(q, P[i] + R[j-i])
6 \qquad R[j] \leftarrow q
7 return R[n]
```


Análise

• Qual a complexidade da solução usando Programação Dinâmica?

Análise

- Qual a complexidade da solução usando Programação Dinâmica?
- \bullet $\Theta(n^2)$.

Sumário

3 Problemas

Problemas

- Apresentaremos alguns problemas que possuem solução eficiente utilizando Programação Dinâmica.
- Perceba que os problemas possuem subproblemas compartilhados.
- Procuraremos elaborar uma solução recursiva e depois elaborar a solução utilizando Programação Dinâmica.

Sumário

- **Problemas**
 - Parentetização Ótima de Matrizes
 - Subsequência Comum mais Longa

Multiplicação de Matrizes

```
Algorithm 5: MATRIX-MULTIPLICATION(A,B)
```

```
Input: A[0, n_1 - 1][0, m_1 - 1], B[0, n_2 - 1][0, m_2 - 1]
  Output: C[0, n_1 - 1][0, m_2 - 1]
1 if (m_1 \neq n_2)
       REPORT-ERROR()
3 else
       for( i \leftarrow 0; i < n_1; i + + )
           for( i \leftarrow 0; i < m_2; i + + )
5
                C[i][j] \leftarrow 0
6
               for( k \leftarrow 0; k < m_1; k + + )
                 C[i][j] \leftarrow C[i][j] + A[i][k] \cdot B[k][j]
```

9 return C

Multiplicação de Matrizes

- Claramente, o algoritmo mostrado é $\Theta(n^3)$.
- Só é possível multiplicar duas matrizes que são compatíveis.
- E se quiséssemos multiplicar várias matrizes? Qual a melhor maneira?
- Lembre-se que a multiplicação em matrizes possui a propriedade associativa:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Multiplicação de Matrizes

- Imagine que queremos fazer uma multiplicação de matrizes, e suponha que temos as matrizes $A^0_{10\times100}, A^1_{100\times5}$ e $A^2_{5\times50}$.
- Quantas operações são feitas em $(A^0 \cdot A^1) \cdot A^2$.
- Quantas operações são feitas em $A^0 \cdot (A^1 \cdot A^2)$.
- Qual o melhor jeito de multiplicar as matrizes?

Problemas

Parentetização Ótima de Matrizes

Parentetização Ótima de Matrizes

- Entrada: matrizes (A_0, \ldots, A_{n-1}) . Cada matriz A_i tem dimensão $p_i \times p_{i+1}$.
- Saída: parentetização ótima de matrizes que minimize o número de operações feitas.

Exemplo

Tabela: Exemplo Anterior

i	0	1	2	3
P[i]	10	100	5	50

Contando o Número de Parentetizações

 O número de parentetizações de matrizes é expressa pela seguinte relação de recorrência:

$$T(n) = \begin{cases} 1, & n = 1\\ \sum_{k=1}^{n-1} T(k) \cdot T(n-k), & n > 1 \end{cases}$$

Contando o Número de Parentetizações

 O número de parentetizações de matrizes é expressa pela seguinte relação de recorrência:

$$T(n) = \begin{cases} 1, & n = 1\\ \sum_{k=1}^{n-1} T(k) \cdot T(n-k), & n > 1 \end{cases}$$

•
$$T(n) \in \Omega(\frac{4^n}{n^{3/2}})$$

- Esse problema pode ser resolvido por Programação Dinâmica.
- Vários subproblemas são compartilhados entre os problemas?
- Vamos seguir o framework para desenvolver um algoritmo de PD.
 - Caracterizar a estrutura de uma solução ótima.
 - Recursivamente definir o valor de uma solução ótima.
 - Omputar o valor de uma solução ótima.
 - Construir uma solução ótima a partir de valores computados anteriormente.

Problemas

Parentetização de Matrizes

Caracterização de uma Solução Ótima

- Buscamos uma parentetização ótima do subproblema envolvendo as submatrizes $A_i \dots A_j$.
- Temos que achar o índice k que divide $A_i \dots A_k$ de $A_{k+1} \dots A_j$ de modo que o número de operações entre $A_{i,k}$ e $A_{k+1,j}$ seja o menor possível.
- ullet Note que para o resultado final ser ótimo, $A_{i,k}$ tem que ser uma parentetização ótima, caso contrário, poderíamos substituir para uma melhor e ter um resultado final melhor. O mesmo argumento vale para $A_{k+1,j}$
- Podemos construir uma solução ótima a partir de soluções ótimas dos subproblemas.

Definição de uma Solução Recursiva

- Seja M(i,j) o número mínimo de operações para computar o produto de $A_{i,j}$.
- M(i,j) é trivial quando i=j, pois são necessárias 0 operações para computar $A_{i,i}$ (não há produto).
- Suponha que a parentetização ótima divide $A_{i,j}$ em produto de $A_{i,k}$ e $A_{k+1,j}$

Definição de uma Solução Recursiva

- Neste caso, $M(i,j) = M(i,k) + M(k+1,j) + p_i \cdot p_{k+1} \cdot p_{j+1}$.
- De maneira genérica, a parentetização ótima é aquela que minimiza o resultado dentre todas as formas de particionamento:

$$M(i,j) = \begin{cases} 0, & i = j \\ \min_{i \le k < j} \{ M(i,k) + M(k+1,j) + p_i \cdot p_{k+1} \cdot p_{j+1} \}, & j > i \end{cases}$$

Computação da Solução Ótima

- A partir da solução recursiva, podemos implementar a solução PD.
- Como temos vários problemas que compartilham subproblemas, a PD vai ser bem eficiente.

Algorithm 6: MATRIZ-CHAIN-ORDER(P)

```
Input: P[0,n]
   Output: M[0, n-1][0, n-1], S[0, n-1][0, n-1]
1 for( i \leftarrow 0; i < n; i + +)
M[i][i] \leftarrow 0
3 for(l \leftarrow 1; l < n; l + +)
       for( i \leftarrow 0; i < n - l; i + + )
           i \leftarrow i + l
           M[i][j] \leftarrow \infty
            for (k \leftarrow i; k < j; k++)
                q \leftarrow M[i][k] + M[k+1][j] + P[i] \cdot P[k+1] \cdot P[j+1]
                if (q < M[i][j])
10
11
```


• Vamos rodar o algoritmo para a seguinte entrada:

Matriz	A_0	A_1	A_2	A_3	A_4	A_5	
dimensão	30×35	35×15	15×5	5×10	10×20	20×25	
i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

	0	1	2	3	$\mid 4 \mid$	5
0	0					
1		0				
2			0			
3				0		
4					0	
5						0

	0	1	2	3	4	5
0	0	•				
1		0				
2			0			
3				0		
$\overline{4}$					0	
5						0

$$M[0][1] = \min \left\{ \ M[0][0] + M[1][1] + P[0] \cdot P[1] \cdot P[2] = 15750 \ \right\}$$

i	0	1	2	3	4	5	6	
P	30	35	15	5	10	20	25	

	0	1	2	3	$\mid 4 \mid$	5
0	0	15750				
1		0	•			
2			0			
3				0		
4					0	
5						0

$$M[1][2] = \min \left\{ \ M[1][1] + M[2][2] + P[1] \cdot P[2] \cdot P[3] = 2625 \ \right\}$$

i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

	0	1	2	3	4	5
0	0	15750				
1		0	2625			
2			0	•		
3				0		
$\overline{4}$					0	
5						0

$$M[2][3] = \min \left\{ \ M[2][2] + M[3][3] + P[2] \cdot P[3] \cdot P[4] = 750 \ \right\}$$

	0	1	2	3	4	5
0	0	15750				
1		0	2625			
$\overline{2}$			0	750		
3				0	•	
4					0	
5						0

$$M[3][4] = \min \left\{ \begin{array}{l} M[3][3] + M[4][4] + P[3] \cdot P[4] \cdot P[5] = 1000 \end{array} \right\}$$

30 35

$$M[4][5] = \min \{ M[4][4] + M[5][5] + P[4] \cdot P[5] \cdot P[6] = 5000 \}$$

10 20

i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

	0	1	2	3	4	5
0	0	15750	•			
1		0	2625			
$\overline{2}$			0	750		
3				0	1000	
4					0	5000
5						0

$$M[0][2] = \min \left\{ \begin{array}{l} M[0][0] + M[1][2] + P[0] \cdot P[1] \cdot P[3] = 7875 \\ M[0][1] + M[2][2] + P[0] \cdot P[2] \cdot P[3] = 18000 \end{array} \right\}$$

i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

	0	1	2	3	4	5
0	0	15750	7875			
1		0	2625	•		
2			0	750		
3				0	1000	
4					0	5000
5						0

$$M[1][3] = \min \left\{ \begin{array}{l} M[1][1] + M[2][3] + P[1] \cdot P[2] \cdot P[4] = 6000 \\ M[1][2] + M[3][3] + P[0] \cdot P[4] \cdot P[4] = 4375 \end{array} \right\}$$

i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

	0	1	2	3	4	5
0	0	15750	7875			
1		0	2625	4375		
$\overline{2}$			0	750	•	
3				0	1000	
4					0	5000
5						0

$$M[2][4] = \min \left\{ \begin{array}{l} M[2][2] + M[3][4] + P[2] \cdot P[3] \cdot P[5] = 2500 \\ M[2][3] + M[4][4] + P[2] \cdot P[4] \cdot P[5] = 3750 \end{array} \right\}$$

	i	0	1	2	3	4	5	6	
·	P	30	35	15	5	10	20	25	

	0	1	2	3	4	5
0	0	15750	7875			
1		0	2625	4375		
2			0	750	2500	
3				0	1000	•
4					0	5000
5						0

$$M[3][5] = \min \left\{ \begin{array}{l} M[3][3] + M[4][5] + P[3] \cdot P[4] \cdot P[6] = 6250 \\ M[3][4] + M[5][5] + P[3] \cdot P[5] \cdot P[6] = 3500 \end{array} \right\}$$

	0	1	2	3	4	5
0	0	15750	7875	•		
1		0	2625	4375		
2			0	750	2500	
3				0	1000	3500
$\overline{4}$					0	5000
5						0

$$M[0][3] = \min \left\{ \begin{array}{l} M[0][0] + M[1][3] + P[0] \cdot P[1] \cdot P[4] = 14875 \\ M[0][1] + M[2][3] + P[0] \cdot P[2] \cdot P[4] = 21000 \\ M[0][2] + M[3][3] + P[0] \cdot P[3] \cdot P[4] = 9375 \end{array} \right\}$$

	0	1	2	3	4	5
0	0	15750	7875	9375		
1		0	2625	4375	•	
$\overline{2}$			0	750	2500	
3				0	1000	3500
4					0	5000
5						0

$$M[1][4] = \min \left\{ \begin{array}{l} M[1][1] + M[2][4] + P[1] \cdot P[2] \cdot P[5] = 13000 \\ M[1][2] + M[3][4] + P[0] \cdot P[3] \cdot P[5] = 7125 \\ M[1][3] + M[4][4] + P[0] \cdot P[4] \cdot P[5] = 11375 \end{array} \right\}$$

	0	1	2	3	4	5
0	0	15750	7875	9375		
1		0	2625	4375	7125	
$\overline{2}$			0	750	2500	•
3				0	1000	3500
4					0	5000
5						0

$$M[2][5] = \min \left\{ \begin{array}{l} M[2][2] + M[3][5] + P[2] \cdot P[3] \cdot P[6] = 5375 \\ M[2][3] + M[4][5] + P[2] \cdot P[4] \cdot P[6] = 9500 \\ M[2][4] + M[5][5] + P[2] \cdot P[5] \cdot P[6] = 10000 \end{array} \right\}$$

	0	1	2	3	4	5
0	0	15750	7875	9375	•	
1		0	2625	4375	7125	
2			0	750	2500	5375
3				0	1000	3500
$\overline{4}$					0	5000
5						0

$$M[0][4] = \min \left\{ \begin{array}{l} M[0][0] + M[1][4] + P[0] \cdot P[1] \cdot P[5] = 28125 \\ M[0][1] + M[2][4] + P[0] \cdot P[2] \cdot P[5] = 27250 \\ M[0][2] + M[3][4] + P[0] \cdot P[3] \cdot P[5] = 11875 \\ M[0][3] + M[4][4] + P[0] \cdot P[4] \cdot P[5] = 15375 \end{array} \right\}$$

	0	1	2	3	4	5
0	0	15750	7875	9375	11875	
1		0	2625	4375	7125	•
$\overline{2}$			0	750	2500	5375
3				0	1000	3500
4					0	5000
5						0

$$M[1][5] = \min \left\{ \begin{array}{l} M[1][1] + M[2][5] + P[1] \cdot P[2] \cdot P[6] = 18500 \\ M[1][2] + M[3][5] + P[1] \cdot P[3] \cdot P[6] = 10500 \\ M[1][3] + M[4][5] + P[1] \cdot P[4] \cdot P[6] = 18125 \\ M[1][4] + M[5][5] + P[1] \cdot P[5] \cdot P[6] = 24625 \end{array} \right\}$$

i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

	0	1	2	3	$\mid 4 \mid$	5
0	0	15750	7875	9375	11875	•
1		0	2625	4375	7125	10500
$\overline{2}$			0	750	2500	5375
3				0	1000	3500
4					0	5000
5						0

$$M[0][5] = \min \left\{ \begin{array}{l} M[0][0] + M[1][5] + P[0] \cdot P[1] \cdot P[6] = 36750 \\ M[0][1] + M[2][5] + P[0] \cdot P[2] \cdot P[6] = 32375 \\ M[0][2] + M[3][5] + P[0] \cdot P[3] \cdot P[6] = 15125 \\ M[0][3] + M[4][5] + P[0] \cdot P[4] \cdot P[6] = 21875 \\ M[0][4] + M[5][5] + P[0] \cdot P[5] \cdot P[6] = 26875 \end{array} \right\}$$

i	0	1	2	3	4	5	6
P	30	35	15	5	10	20	25

	0	1	2	3	$\mid 4 \mid$	5
0	0	15750	7875	9375	11875	15125
1		0	2625	4375	7125	10500
2			0	750	2500	5375
3				0	1000	3500
4					0	5000
5						0

$$M[0][5] = \min \left\{ \begin{array}{l} M[0][0] + M[1][5] + P[0] \cdot P[1] \cdot P[6] = 36750 \\ M[0][1] + M[2][5] + P[0] \cdot P[2] \cdot P[6] = 32375 \\ M[0][2] + M[3][5] + P[0] \cdot P[3] \cdot P[6] = 15125 \\ M[0][3] + M[4][5] + P[0] \cdot P[4] \cdot P[6] = 21875 \\ M[0][4] + M[5][5] + P[0] \cdot P[5] \cdot P[6] = 26875 \end{array} \right\}$$

- Qual a complexidade do algoritmo?
- Está claro que é $O(n^3)$, pois temos que preencher a metade superior de uma matriz quadrada levando tempo O(n) para cada célula.
- Será que também é $\Omega(n^3)$ e portanto $\Theta(n^3)$?

Queremos mostrar que

$$\sum_{l=1}^{n-1} \sum_{i=0}^{n-l-1} \sum_{k=0}^{l-1} \Theta(1) \in \Omega(n^3)$$

$$\sum_{l=1}^{n-1} \sum_{i=0}^{n-l-1} \sum_{k=0}^{l-1} \Theta(1)$$

$$\geq d \sum_{l=1}^{n-1} \sum_{i=0}^{n-l-1} \sum_{k=0}^{l-1} 1$$

$$= d \sum_{l=1}^{n-1} \sum_{i=0}^{n-l-1} l$$

$$= d \sum_{l=1}^{n-1} nl - l^2$$

$$=d\left(\sum_{l=1}^{n-1} nl - \sum_{l=1}^{n-1} l^2\right)$$

$$=d\left(n\sum_{l=1}^{n-1} l - \sum_{l=1}^{n-1} l^2\right)$$

$$=d\left(\frac{n(n^2 - n)}{2} - \sum_{l=1}^{n-1} l^2\right)$$

$$=d\left(\frac{n^3 - n^2}{2} - \sum_{l=1}^{n-1} l^2\right)$$

$$\begin{split} d\left(\frac{n^3-n^2}{2}-\sum_{l=1}^{n-1}l^2\right) \\ =&d\left(\frac{n^3-n^2}{2}-\frac{(n-1)(n)(2n)}{6}\right) \\ =&d\left(\frac{n^3-n^2}{2}-\frac{2n^3-2n^2}{6}\right) \\ =&d\left(\frac{3n^3-3n^2-2n^3+2n^2}{6}\right) \\ =&d\left(\frac{n^3-n^2}{6}\right)=\frac{dn^3-dn^2}{6}\geq cn^3, \quad \diamond \quad 0< c<\frac{d}{6} \text{ e } n \text{ s.f.g} \end{split}$$

Construindo a Solução Ótima

- A matriz S guarda o índice k que torna a parentetização ótima para cada subproblema.
- ullet Podemos utilizar S para construir a melhor parentetização.
- Um problema de otimização vira agora um problema de busca.


```
Algorithm 7: PRINT-OPTIMAL-PARENS(S, i, j)
 Input: S[0, n-1][0, n-1], i, j
 Output: Parentetização ótima de A_{i,j}
1 if( i = j )
     PRINT("A_i")
3 else
     PRINT("(")
     PRINT-OPTIMAL-PARENS(S, i, S[i, j])
     PRINT-OPTIMAL-PARENS(S, S[i, j] + 1, j)
     PRINT(")")
```


Sumário

- **Problemas**
 - Parentetização Ótima de Matrizes
 - Subsequência Comum mais Longa

Definição (Subsequência)

Dada uma sequência $X = x_0 x_1 \dots x_{n-1}$ e outra sequência $Z = z_0 \dots z_{m-1}$, dizemos que Z é subsequência de X, se existe uma sequência crescente de índices $(i_0, i_1, \dots, i_{m-1})$ tal que, para todo k, $0 \le k < m$, $X_{i_k} = Z_k$.

Exemplo

Z = BCDB é subsequência de X = ABCBDAB.

Problemas

LCS

Definição (Subsequência Comum)

Dadas duas sequências X e Y, Z é uma subsequência comum de X e Y se:

- Z é subsequência de X.
- Z é subsequência de Y.

Definição (Longest Commom Subsequence)

- ullet Entrada: duas sequências X e Y.
- Saída: maior subsequência comum de X e Y (LCS).

Exemplo

- Entrada: X = ABCBDAB e Y = BDCABA.
- Saída: Z = BCBA ou Z = BDAB.
- Não existe subsequência comum de tamanho ≥ 5 .

Solução Força-Bruta

- Gere todas as subsequências de X.
- ullet Para cada subsequência gerada a partir de X, verifique se ela também é uma subsequência de Y.
- Armazene a maior subsequência comum encontrada.
- Inviável: 2^n subsequências de X.

Caracterizando uma LCS

- Seja $X=x_0\dots x_{n-1}$ e $Y=y_0\dots y_{m-1}$ sequências. Tome $Z=z_0\dots z_{k-1}$ a maior subsequência comum entre X e Y.
 - ① Se $x_{n-1}=y_{m-1}$, então $z_{k-1}=x_{n-1}=y_{m-1}$. Z[0,k-2] tem que ser uma LCS de X[0,n-2] e Y[0,m-2].
 - ② Se $x_{n-1} \neq y_{m-1}$, e $z_{k-1} \neq x_{n-1}$, então Z é uma LCS de X[0,n-2] e Y.
 - § Se $x_{n-1} \neq y_{m-1}$, e $z_{k-1} \neq y_{m-1}$, então Z é uma LCS de X e Y[0,m-2].

Caracterizando uma LCS

• É fácil ver que a caracterização possui subestrutura ótima.

Solução Recursiva

- Seja C(i,j) o tamanho da maior subsequência entre X[0,i-1] e Y[0,j-1].
- Logo:

$$C(i,j) = \begin{cases} 0, & i = 0 \lor j = 0 \\ C(i-1,j-1) + 1, & i,j > 0 \land x_{i-1} = y_{j-1} \\ max(C(i-1,j),C(i,j-1)), & i,j > 0 \land x_{i-1} \neq y_{j-1} \end{cases}$$

- Podemos ver que existem várias sobreposições de subproblemas:
 - ▶ LCS de X[0, n-1] e Y[0, m-2] e LCS de X[0, n-2] e Y[0, m-2].

Solução Bottom-Up

- A partir da solução recursiva, podemos elaborar uma solução PD bottom-up.
- Essa solução resolve subproblemas menores para assim, resolver os subproblemas maiores.

Algorithm 8: LCS(X, Y)

```
Input: X[0, n-1], Y[0, m-1]
      Output: C[0, n-1][0, m-1], D[0, n-1][0, m-1]
 1 C[i][0] \leftarrow 0, \quad 0 < i < n
 2 C[0][j] \leftarrow 0, \quad 0 < i < m
 3 for (i \leftarrow 1; i < n; i++)
              for(j \leftarrow 1; j < m; j + +)
                      if(X[i-1] = Y[j-1])

\begin{array}{c|c}
\tilde{C}[i][j] \leftarrow \tilde{C}[i-1][j-1] + 1 \\
D[i][j] \leftarrow' \nwarrow'
\end{array}

                      else if( C[i-1][j] \ge C[i][j-1] )
                            C[i][j] \leftarrow C[i-1][j]
                        \begin{array}{c|c} C[i][j] \leftarrow C[i][j] \leftarrow C[i][j] \leftarrow C[i][j] \leftarrow C[i][j] \leftarrow C[i][j] \leftarrow C[i][i] \end{array}
10
11
                      else
                         C[i][j] \leftarrow C[i][j-1]
D[i][j] \leftarrow' \leftarrow'
12
13
```


Recuperando a LCS

 \bullet Para recuperar a LCS, basta seguir a matriz de direções D.

Figura: LCS entre X e Y.

Análise

• Qual a complexidade do Algoritmo?

Análise

- Qual a complexidade do Algoritmo?
- $\bullet \ \Theta(n \cdot m).$