# Основы машинного обучения

Лекция 17

Понижение размерности. Ранжирование.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2025

- Principal component analysis (PCA)
- Проецирует данные в пространство меньшей размерности
- Относится к методам фильтрации
- Относится к методам извлечения признаков





- Порождение новых признаков
- Их должно быть меньше
- Они должны содержать как можно больше информации из исходных признаков

- Линейные методы
- Каждый новый признак линейная комбинация исходных

- Исходные признаки:  $x_{ik}$ , D штук
- Новые признаки:  $z_{ij}$ , d штук
- Линейный подход:

$$z_{ij} = \sum_{k=1}^{D} w_{jk} x_{ik}$$

Новые признаки

Вклад исходного k-го признака в новый j-й

Исходные признаки

• Матричная запись:

$$Z = XW^T$$

• j-й столбец W — коэффициенты при исходных признаках для вычисления нового j-го признака

- Геометрический смысл поиск гиперплоскости для проецирования выборки
- Как выбирать гиперплоскость?



- Чем выше дисперсия выборки после проецирования, тем лучше
- Дисперсия мера количества информации





### Максимизация дисперсии

$$\begin{cases} \sum_{j=1}^{d} w_j^T X^T X w_j \to \max_{W} \\ W^T W = I \end{cases}$$

### Максимизация дисперсии



### Собственные векторы

- A матрица размера  $n \times n$
- Пусть  $Ax = \lambda x$
- Тогда x собственный вектор,  $\lambda$  собственное значение
- x вектор, который не меняет направление под воздействием матрицы

#### Решение

- Столбцы W собственные векторы матрицы  $X^TX$ , соответствующие наибольшим собственным значениям  $\lambda_1, \lambda_2, \dots, \lambda_d$
- $\frac{\sum_{i=1}^d \lambda_i}{\sum_{i=1}^D \lambda_i}$  доля дисперсии, сохранённой при понижении размерности

#### original data space



- Данные среднее потребление продуктов в неделю в каждой провинции
- Не очень удобно смотреть на них







|                    | England            | N Ireland | Scotland | Wales              |  |
|--------------------|--------------------|-----------|----------|--------------------|--|
| Alcoholic drinks   | 375                | 135       | 458      | 475                |  |
| Beverages          | 57                 | 47        | 53       | /3                 |  |
| Carcase meat       | 245                | 267       | 242      | 227                |  |
| Cereals            | 1472               | 1404      | 11/2     | 1502               |  |
| Cheese             | 105                | 66        | 103      | 103                |  |
| Confectionery      | 54                 | 41        | 62       | 64                 |  |
| Fats and oils      | 193                | 209       | 184      | 235                |  |
| 1 1511             | 147                | 70        | 122      | 100                |  |
| Fresh fruit        | <mark>1</mark> 102 | 674       | 957      | <mark>1</mark> 137 |  |
| Fresh potatoes     | 720                | 1033      | 566      | 874                |  |
| Fresh Veg          | 253                | 143       | 171      | 265                |  |
| Other meat         | 685                | 586       | 750      | 803                |  |
| Other Veg          | 488                | 355       | 418      | 570                |  |
| Processed potatoes | 198                | 187       | 220      | 203                |  |
| Processed Veg      | 360                | 334       | 337      | 365                |  |
| Soft drinks        | 1374               | 1506      | 1572     | <mark>12</mark> 56 |  |
| Sugars             | 156                | 139       | 147      | 175                |  |

### Ограничения



| -99.99 | -99.99 | 315.7  | 317.45 | 317.5  | 317.26 | 315.86 | 314.93 | 313.2  | 312.44 | 313.33 | 314.67 | -99.99 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 315.62 | 316.38 | 316.71 | 317.72 | 318.29 | 318.16 | 316.54 | 314.8  | 313.84 | 313.26 | 314.8  | 315.58 | 315.98 |
| 316.43 | 316.97 | 317.58 | 319.02 | 320.03 | 319.59 | 318.18 | 315.91 | 314.16 | 313.84 | 315    | 316.19 | 316.91 |
| 316.93 | 317.7  | 318.54 | 319.48 | 320.58 | 319.77 | 318.57 | 316.79 | 314.8  | 315.38 | 316.1  | 317.01 | 317.64 |
| 317.94 | 318.56 | 319.68 | 320.63 | 321.01 | 320.55 | 319.58 | 317.4  | 316.25 | 315.42 | 316.69 | 317.7  | 318.45 |
| 318.74 | 319.08 | 319.86 | 321.39 | 322.24 | 321.47 | 319.74 | 317.77 | 316.21 | 315.99 | 317.12 | 318.31 | 318.99 |
| 319.57 | -99.99 | -99.99 | -99.99 | 322.24 | 321.89 | 320.44 | 318.7  | 316.7  | 316.79 | 317.79 | 318.71 | -99.99 |
| 319.44 | 320.44 | 320.89 | 322.13 | 322.16 | 321.87 | 321.39 | 318.8  | 317.81 | 317.3  | 318.87 | 319.42 | 320.04 |
| 320.62 | 321.59 | 322.39 | 323.87 | 324.01 | 323.75 | 322.39 | 320.37 | 318.64 | 318.1  | 319.79 | 321.08 | 321.38 |
| 322.06 | 322.5  | 323.04 | 324.42 | 325    | 324.09 | 322.55 | 320.92 | 319.31 | 319.31 | 320.72 | 321.96 | 322.16 |
| 322.57 | 323.15 | 323.89 | 325.02 | 325.57 | 325.36 | 324.14 | 322.03 | 320.41 | 320.25 | 321.31 | 322.84 | 323.05 |
| 324    | 324.42 | 325.64 | 326.66 | 327.34 | 326.76 | 325.88 | 323.67 | 322.38 | 321.78 | 322.85 | 324.12 | 324.63 |
| 325.03 | 325.99 | 326.87 | 328.14 | 328.07 | 327.66 | 326.35 | 324.69 | 323.1  | 323.16 | 323.98 | 325.13 | 325.68 |
| 326.17 | 326.68 | 327.18 | 327.78 | 328.92 | 328.57 | 327.34 | 325.46 | 323.36 | 323.57 | 324.8  | 326.01 | 326.32 |
| 326.77 | 327.63 | 327.75 | 329.72 | 330.07 | 329.09 | 328.05 | 326.32 | 324.93 | 325.06 | 326.5  | 327.55 | 327.45 |
| 328.55 | 329.56 | 330.3  | 331.5  | 332.48 | 332.07 | 330.87 | 329.31 | 327.51 | 327.18 | 328.16 | 328.64 | 329.68 |
| 329.35 | 330.71 | 331.48 | 332.65 | 333.09 | 332.25 | 331.18 | 329.4  | 327.43 | 327.37 | 328.46 | 329.57 | 330.25 |
| 330.4  | 331.41 | 332.04 | 333.31 | 333.96 | 333.6  | 331.91 | 330.06 | 328.56 | 328.34 | 329.49 | 330.76 | 331.15 |
| 331.75 | 332.56 | 333.5  | 334.58 | 334.87 | 334.34 | 333.05 | 330.94 | 329.3  | 328.94 | 330.31 | 331.68 | 332.15 |
| 332.93 | 333.42 | 334.7  | 336.07 | 336.74 | 336.27 | 334.93 | 332.75 | 331.59 | 331.16 | 332.4  | 333.85 | 333.9  |
| 334.97 | 335.39 | 336.64 | 337.76 | 338.01 | 337.89 | 336.54 | 334.68 | 332.76 | 332.55 | 333.92 | 334.95 | 335.51 |
| 336.23 | 336.76 | 337.96 | 338.89 | 339.47 | 339.29 | 337.73 | 336.09 | 333.91 | 333.86 | 335.29 | 336.73 | 336.85 |
| 338.01 | 338.36 | 340.08 | 340.77 | 341.46 | 341.17 | 339.56 | 337.6  | 335.88 | 336.02 | 337.1  | 338.21 | 338.69 |
| 339.23 | 340.47 | 341.38 | 342.51 | 342.91 | 342.25 | 340.49 | 338.43 | 336.69 | 336.86 | 338.36 | 339.61 | 339.93 |
| 340.75 | 341.61 | 342.7  | 343.57 | 344.13 | 343.35 | 342.06 | 339.81 | 337.98 | 337.86 | 339.26 | 340.49 | 341.13 |
| 341.37 | 342.52 | 343.1  | 344.94 | 345.75 | 345.32 | 343.99 | 342.39 | 339.86 | 339.99 | 341.15 | 342.99 | 342.78 |
| 343.7  | 344.5  | 345.28 | 347.08 | 347.43 | 346.79 | 345.4  | 343.28 | 341.07 | 341.35 | 342.98 | 344.22 | 344.42 |
| 344.97 | 346    | 347.43 | 348.35 | 348.93 | 348.25 | 346.56 | 344.68 | 343.09 | 342.8  | 344.24 | 345.55 | 345.9  |
| 346.3  | 346.96 | 347.86 | 349.55 | 350.21 | 349.54 | 347.94 | 345.9  | 344.85 | 344.17 | 345.66 | 346.9  | 347.15 |
| 348.02 | 348.47 | 349.42 | 350.99 | 351.84 | 351.25 | 349.52 | 348.1  | 346.45 | 346.36 | 347.81 | 348.96 | 348.93 |
| 350.43 | 351.73 | 352.22 | 353.59 | 354.22 | 353.79 | 352.38 | 350.43 | 348.72 | 348.88 | 350.07 | 351.34 | 351.48 |
| 352.76 | 353.07 | 353.68 | 355.42 | 355.67 | 355.13 | 353.9  | 351.67 | 349.8  | 349.99 | 351.29 | 352.52 | 352.91 |
| 353.66 | 354.7  | 355.39 | 356.2  | 357.16 | 356.23 | 354.82 | 352.91 | 350.96 | 351.18 | 352.83 | 354.21 | 354.19 |
| 354.72 | 355.75 | 357.16 | 358.6  | 359.33 | 358.24 | 356.17 | 354.02 | 352.15 | 352.21 | 353.75 | 354.99 | 355.59 |
| 355.98 | 356.72 | 357.81 | 359.15 | 359.66 | 359.25 | 357.02 | 355    | 353.01 | 353.31 | 354.16 | 355.4  | 356.37 |
| 356.7  | 357.16 | 358.38 | 359.46 | 360.28 | 359.6  | 357.57 | 355.52 | 353.69 | 353.99 | 355.34 | 356.8  | 357.04 |
| 358.37 | 358.91 | 359.97 | 361.26 | 361.68 | 360.95 | 359.55 | 357.48 | 355.84 | 355.99 | 357.58 | 359.04 | 358.89 |
| 359.97 | 361    | 361.64 | 363.45 | 363.79 | 363.26 | 361.9  | 359.46 | 358.05 | 357.76 | 359.56 | 360.7  | 360.88 |
| 362.05 | 363.25 | 364.02 | 364.72 | 365.41 | 364.97 | 363.65 | 361.48 | 359.45 | 359.6  | 360.76 | 362.33 | 362.64 |
| 363.18 | 364    | 364.56 | 366.35 | 366.79 | 365.62 | 364.47 | 362.51 | 360.19 | 360.77 | 362.43 | 364.28 | 363.76 |
| 365.33 | 366.15 | 367.31 | 368.61 | 369.3  | 368.87 | 367.64 | 365.77 | 363.9  | 364.23 | 365.46 | 366.97 | 366.63 |
| 368.15 | 368.87 | 369.59 | 371.14 | 371    | 370.35 | 369.27 | 366.93 | 364.63 | 365.13 | 366.67 | 368.01 | 368.31 |
| 369.14 | 369.46 | 370.52 | 371.66 | 371.82 | 371.7  | 370.12 | 368.12 | 366.62 | 366.73 | 368.29 | 369.53 | 369.48 |
| 370.28 | 371.5  | 372.12 | 372.87 | 374.02 | 373.3  | 371.62 | 369.55 | 367.96 | 368.09 | 369.68 | 371.24 | 371.02 |
| 372.43 | 373.09 | 373.52 | 374.86 | 375.55 | 375.41 | 374.02 | 371.49 | 370.7  | 370.25 | 372.08 | 373.78 | 373.1  |
| 374.68 | 375.63 | 376.11 | 377.65 | 378.35 | 378.13 | 376.62 | 374.5  | 372.99 | 373.01 | 374.35 | 375.7  | 375.64 |
| 376.79 | 377.37 | 378.41 | 380.52 | 380.63 | 379.57 | 377.79 | 375.86 | 374.07 | 374.24 | 375.86 | 377.47 | 377.38 |
| 378.37 | 379.69 | 380.41 | 382.1  | 382.28 | 382.13 | 380.66 | 378.71 | 376.42 | 376.88 | 378.32 | 380.04 | 379.67 |
| 381.38 | 382.03 | 382.64 | 384.62 | 384.95 | 384.06 | 382.29 | 380.47 | 378.67 | 379.06 | 380.14 | 381.74 | 381.84 |
| 382.45 | 383.68 | 384.23 | 386.26 | 386.39 | 385.87 | 384.39 | 381.78 | 380.73 | 380.81 | 382.33 | 383.69 | 383.55 |
| 385.07 | 385.72 | 385.85 | 386.71 | 388.45 | 387.64 | 386.1  | 383.95 | 382.91 | 382.73 | 383.96 | 385.02 | 385.34 |



- Частный случай нелинейного понижения размерности
- d = 2 или d = 3
- Нужно сохранить структуру данных и зависимости

#### **MNIST**





#### **MNIST**

- Каждое изображение 784 признака
- Внутренняя размерность данных гораздо ниже
- Случайное изображение такого же размера не является изображением цифры









#### t-SNE

- t-Stochastic Neighbor Embedding
- Метод визуализации
- Ищет такие точки на плоскости, которые лучше всего сохраняют расстояния из исходного пространства

### **MNIST**





Deep Blue beat Kasparov at chess in 1997.

Watson beat the brightest trivia minds at Jeopardy in 2011.

Can you tell Fido from Mittens in 2013?



- Визуализация не очень осмысленная
- Мы использовали интенсивности пикселей как признаки
- Современный подход прогнать изображения через свёрточную нейронную сеть, взять выходы одного из последних слоёв









https://indico.io/blog/visualizing-with-t-sne/

#### Резюме

- Методы понижения размерности позволяют убрать неинформативные признаки и ускорить работу над моделями
- Классы методов: отбор признаков и извлечение признаков
- Отбор признаков: фильтрация и использование моделей
- Извлечение признаков: РСА
- Визуализация данных: t-SNE

### На прошлых лекциях

- Дано: матрица «объекты-признаки» X и ответы y
- Модель должна выдавать прогнозы, близкие к истинным ответам

### На прошлых лекциях

- Методы обучения с учителем: линейные модели, решающие деревья, случайные леса, ...
- Дано: матрица «объекты-признаки» X и ответы y
- Найти: модель a(x)
- Модель должна выдавать прогнозы, близкие к истинным ответам



#### машинное обучение



ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

#### **W Машинное обучение** — Википедия

ru.wikipedia.org > Машинное обучение •

**Машинное обучение** (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

#### Что такое машинное обучение и почему оно может...

lifehacker.ru > Лайфхакер > ...-mashinnoe-obuchenie ▼

**Машинное обучение** избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему.

#### Курс «Машинное обучение» 2014 - YouTube

youtube.com > playlist?list=...\_b9zqEQiiBtC ▼

Курс "Машинное обучение" является одним из основных курсов Школы, поэтому он является обязательным для всех студентов ШАД.

#### **Р Машинист** электропоезда - **обучение** | Про профессии.ру

proprof.ru > Машинист электропоезда ▼

**Машинист** электропоезда - **обучение**. И метрополитен, и РЖД приглашают на **обучение** в собственные учебно-производственные центры.

#### Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...



#### машинное обучение



ПОИСК КАРТИНКИ ВИДЕО КАРТЫ МАРКЕТ НОВОСТИ ПЕРЕВОДЧИК ЕЩЁ

#### **W Машинное обучение** — Википедия

ru.wikipedia.org > Машинное обучение •

**Машинное обучение** (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...



lifehacker.ru > Лайфхакер > ...-mashinnoe-obuchenie ▼

**Машинное обучение** избавляет программиста от необходимости подробно объяснять компьютеру, как именно решать проблему.

Курс «Машинное обучение» 2014 - YouTube

youtube.com > playlist?list=...\_b9zqEQiiBtC ▼

Курс "Машинное обучение" является одним из основных курсов Школы, поэтому он является обязательным для всех студентов ШАД.

Р Машинист электропоезда - обучение | Про профессии.ру

proprof.ru > Машинист электропоезда ▼

**Машинист** электропоезда - **обучение**. И метрополитен, и РЖД приглашают на **обучение** в собственные учебно-производственные центры.

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...











- Дан набор запросов  $\{q_1, \dots, q_m\}$
- Дан набор документов  $\{d_1, \dots, d_n\}$
- Нужно для каждого запроса правильно упорядочить документы
- Что такое «правильно»?

- Дан набор запросов  $\{q_1, \dots, q_m\}$
- Дан набор документов  $\{d_1, ..., d_n\}$
- Рассматриваем пары «запрос-документ» (q,d)
- Для некоторых троек  $(q,d_1,d_2)$  известно, что для запроса q документ  $d_1$  должен стоять раньше, чем  $d_2$
- Обозначение: R множество троек  $(q,d_1,d_2)$ , для которых известен такой порядок

- Раньше: строим модель a(x), которая приближает ответы
- Сейчас: строим модель a(q,d), которая правильно упорядочивает документы для запросов

$$(q, d_1, d_2) \in R \Rightarrow a(q, d_1) > a(q, d_2)$$

### Пример

- Для запроса q известны пары  $(d_3,d_1)$ ,  $(d_3,d_2)$ ,  $(d_1,d_4)$
- Какие наборы прогнозов модели лучше?
- (3, 2, 4, 1)
- (2, 3, 4, 1)
- (3, 4, 2, 1)
- (13, 10, 20, 7)

### Пример

- Для запроса q известны пары  $(d_3,d_1)$ ,  $(d_3,d_2)$ ,  $(d_1,d_4)$
- Какие наборы прогнозов модели лучше?
- (3, 2, 4, 1)
- (2, 3, 4, 1)
- (3, 4, 2, 1)
- (13, 10, 20, 7)

• Важен порядок, а не абсолютные значения!

# Метрики качества ранжирования

### Целевая переменная

- Определение задачи через пары правильно, но сложно
- Упростим постановку:
  - Объекты пары «запрос-документ»  $x_i = (q, d)$
  - Ответы числа  $y_i$
  - Требование если есть объекты  $(q,d_1)$  и  $(q,d_2)$ , такие что  $y_1>y_2$ , то должно быть  $a(q,d_1)>a(q,d_2)$

### Целевая переменная, пример

- $(q_1, d_1), 1$
- $(q_1, d_2), 0.7$
- $(q_1, d_3), 0$
- $(q_2, d_1), 0$
- $(q_2, d_2), 1$
- Для  $q_1$  должны получить ранжирование  $(d_1, d_2, d_3)$
- Для  $q_2$  должны получить ранжирование  $(d_2, d_1)$

### Качество ранжирования

#### **W Машинное обучение** — Википедия

ru.wikipedia.org > Машинное обучение ▼

**Машинное обучение** (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

#### **Обучение машиниста** бурильно-крановых машин — AHO...

ccrp.ru > rabochie/mashinist burilno-kranovoy... ▼

**Обучение машиниста** бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

#### 

ccrp.ru > rabochie/mashinist\_burilno-kranovoy... ▼

**Обучение машиниста** бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

#### **W Машинное обучение** — Википедия

ru.wikipedia.org > Машинное обучение •

**Машинное обучение** (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

#### 

ccrp.ru > rabochie/mashinist\_burilno-kranovoy... ▼

**Обучение машиниста** бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

#### **W Машинное обучение** — Википедия

ru.wikipedia.org > Машинное обучение 🔻

**Машинное обучение** (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

- Какое ранжирование лучше?
- Какое хуже всех?

### DCG (Discounted cumulative gain)

$$DCG@k(q) = \sum_{i=1}^{k} \frac{2^{y_i} - 1}{\log(i+1)}$$

- ullet Вычисляется по первым k документам из выдачи для запроса q
- $y_i$  истинный ответ для документа на i-й позиции
- Чтобы получить итоговую оценку, DCG усредняется по всем запросам

### Качество ранжирования

#### **W Машинное обучение** — Википедия

ru.wikipedia.org > Машинное обучение ▼

**Машинное обучение** (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

**Обучение машиниста** бурильно-крановых машин — AHO...

ccrp.ru > rabochie/mashinist burilno-kranovoy... ▼

**Обучение машиниста** бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

#### **Обучение машиниста** бурильно-крановых машин — AHO...

ccrp.ru > rabochie/mashinist\_burilno-kranovoy... ▼

**Обучение машиниста** бурильно-крановой самоходной машины регламентировано Приказом Минтруда России № 208н от 01.03.2017 г...

#### **W Машинное обучение** — Википедия

ru.wikipedia.org > Машинное обучение 🔻

**Машинное обучение** (англ. Machine Learning) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи...

Обучение - машина - Большая Энциклопедия Нефти...

ngpedia.ru > id201843p1.html ▼

После обучения машины или в ходе его, смотря по алгоритму, проводится прогнозирование новых катализаторов...

$$DCG = \frac{2^{1} - 1}{\log(2)} + \frac{2^{0} - 1}{\log(3)} + \frac{2^{0} - 1}{\log(4)} \approx 1.44$$

$$DCG = \frac{2^0 - 1}{\log(2)} + \frac{2^1 - 1}{\log(3)} + \frac{2^0 - 1}{\log(4)} \approx 0.91$$

# Методы ранжирования

### Поточечный (pointwise) подход

- Обучим модель a(q,d), чтобы она как можно точнее приближала ответы  $y_i$
- Например, линейная регрессия:

$$\sum_{(q,d,y)\in R} (\langle w, x(q,d) \rangle - y_i)^2 \to \min_{w}$$

• x(q,d) — признаки для пары «запрос-документ»

### Поточечный (pointwise) подход

- Простой в реализации
- Можно использовать любую из известных моделей (линейные, деревья, случайные леса, нейронные сети...)
- Восстанавливает точные значения  $y_i$ , хотя нас интересует порядок

### Попарный (pairwise) подход

• В ранжировании требуется правильно располагать пары документов — формализуем это

$$\sum_{(q,d_i,d_j)\in R} \left[ a(q,d_i) - a(q,d_j) < 0 \right]$$

• Штрафуем, если второй документы из пары оказался раньше

### Попарный (pairwise) подход

- Получили разрывный функционал сложно оптимизировать
- Перейдём к гладкой верхней оценке (как в линейных классификаторах):

$$\sum_{(q,d_i,d_j)\in R} \left[a(q,x_i)-a(q,x_j)<0\right] \leq \sum_{(q,d_i,d_j)\in R} L\left(a(q,x_i)-a(q,x_j)\right)$$

• Пример:  $L(z) = \log(1 + e^{-z})$ 

### Попарный (pairwise) подход

- Сложнее поточечного (больше слагаемых в функционале)
- Обычно даёт качество выше, чем поточечный

• Реализации: SVM<sup>light</sup>, xgboost (rank:pairwise)

### Резюме

- Ранжирование задача сортировки документов по релевантности
- Метрика должна учитывать позиции, а не абсолютные значения прогнозов например, DCG
- Поточечный и попарный подходы
- Отдельная задача разработка признаков