IN THE CLAIMS:

1-29. (Canceled).

30. (Currently Amended) A method of treating a mammalian disease condition mediated by picornaviral protease activity that comprises the step of administering to a mammal in need thereof a therapeutically effective amount of at least one compound as defined in claim 1 or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof of the formula (I):

wherein

M is O or S;

R₁ is H, F, an alkyl group, OH, SH, or an O-alkyl group;

R₂ and R₅ are independently selected from H,

or an alkyl group, wherein said alkyl group is different from

with the proviso that at least one of R₂ or R₅ must be

and wherein, when R₂ or R₅ is

X is =CH or =CF and Y_1 is =CH or =CF.

- or X and Y_1 together with Q' form a three-membered ring in which Q' is $C(R_{10})(R_{11})$ or -O-, X is -CH- or -CF-, and Y_1 is -CH-, -CF-, or -C(alkyl)-, where R_{10} and R_{11} independently are H, a halogen, or an alkyl group, or, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group,
- or $X \text{ is -CH}_2$ -, -CF₂-, -CHF-, or -S-, and $Y_1 \text{ is -O-, -S-, -NR}_{12}$ -, -C(R₁₃)(R₁₄)-, -C(O)-, -C(S)-, or -C(CR₁₃R₁₄)-,

wherein R₁₂ is H or alkyl, and R₁₃ and R₁₄ independently are H, F, or an alkyl group, or, together with the atoms to which they are bonded, form a cycloalkyl group or a heterocycloalkyl group;

A₁ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆,

wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a

heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together

with the atom to which they are bonded, form a heterocycloalkyl group;

 D_1 is a moiety with a lone pair of electrons capable of forming a hydrogen bond; and

B₁ is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈, wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

and with the provisos that when D_1 is the moiety $\equiv N$ with a lone pair of electrons capable of forming a hydrogen bond, B_1 does not exist; and when A_1 is an sp^3 carbon, B_1 is not -

 $NR_{17}R_{18}$ when D_1 is the moiety $-NR_{25}R_{26}$ with a lone pair of electrons capable of forming a hydrogen bond, wherein R_{25} and R_{26} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group; and wherein D_1 - A_1 - B_1 optionally forms a nitro group where A_1 is N; and further wherein, when R_2 or R_5 is

$$X$$
 Y_2
 A_2
 B_2
 D_2

X is =CH or =CF and Y_2 is =C, =CH, or =CF,

- or X and Y_2 together with Q' form a three-membered ring in which Q' is $C(R_{10})(R_{11})$ or -O-, X is -CH- or -CF-, and Y_2 is -CH-, -CF-, or -C(alkyl)-, where R_{10} and R_{11} independently are H, a halogen, or an alkyl group, or, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group.
- or $X \text{ is -CH}_2$ -, -CF₂-, -CHF-, or -S-, and $Y_2 \text{ is -O-, -S-, -N}(R'_{12})$ -, -C(O)-, - $C(R'_{13})(R'_{14})$ -, -C(S)-, or -C(CR'₁₃R'₁₄)-,

wherein R'₁₂ is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR'₁₃, - NR'₁₃R'₁₄, -C(O)-R'₁₃, -SO₂R'₁₃, or -C(S)R'₁₃, and R'₁₃ and R'₁₄, independently are H, F, or an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

A₂ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆,

wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a

heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together

with the atom to which they are bonded, form a heterocycloalkyl group;

 D_2 is a moiety with a lone pair of electrons capable of forming a hydrogen bond; and

B₂ is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈, wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

and further wherein any combination of Y₂, A₂, B₂, and D₂ optionally can form a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group;

R₃ and R₆ are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -C(O)R₁₇, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈.

wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group; or, R₃ and R₆, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

R₇ is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈.

wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group; or R₇, together with R₃ or R₆ and the atoms to which they are attached, forms a heterocycloalkyl group;

R₂₀ is H, OH, or any suitable organic moiety; and

Z and Z_1 are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-C(O)R_{21}$, $-CO_2R_{21}$, -CN, $-C(O)NR_{21}$, R_{22} , $-C(O)NR_{21}$, R_{22} , $-C(O)NR_{21}$,

- PO(NR₂₁R₂₂)(NR₂₃R₂₄), -C(O)NR₂₁NR₂₂R₂₃, or -C(S)NR₂₁NR₂₂R₂₃,
 wherein R₂₁, R₂₂, R₂₃, and R₂₄ are independently H, an alkyl group, a cycloalkyl
 group, a heterocycloalkyl group, an aryl group, a heteroaryl group, an acyl group, or
 a thioacyl group, or wherein any two of R₂₁, R₂₂, R₂₃, and R₂₄, together with the
 atom(s) to which they are bonded, form a heterocycloalkyl group;
- or Z_1 , as defined above, together with R_1 , as defined above, and the atoms to which Z_1 and R_1 are bonded, form a cycloalkyl or heterocycloalkyl group,
- or Z and Z₁, both as defined above, together with the atoms to which they are bonded, form a cycloalkyl or heterocycloalkyl group;

or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof; and wherein said compound, or pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof, has antipicornaviral activity with an EC₅₀ less than or equal to 10 μM in the HI-HeLa cell culture assay.

31. (Currently amended) A method of inhibiting the activity of a picornaviral 3C protease that comprises the step of contacting the picornaviral 3C protease with an effective amount of at least one compound as defined in claim 1 or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof of the formula (I):

wherein

M is O or S;

R₁ is H, F, an alkyl group, OH, SH, or an O-alkyl group;

R₂ and R₅ are independently selected from H,

or an alkyl group, wherein said alkyl group is different from

with the proviso that at least one of R₂ or R₅ must be

$$X$$
 Y_1
 A_1
 D_1
 D_2
 D_2

and wherein, when R2 or R5 is

$$X^{Y_1} \xrightarrow{A_1}^{B_1}$$

X is =CH or =CF and Y_1 is =CH or =CF.

- or X and Y₁ together with Q' form a three-membered ring in which Q' is
 C(R₁₀)(R₁₁)- or -O-, X is -CH- or -CF-, and Y₁ is -CH-, -CF-, or -C(alkyl)-,

 where R₁₀ and R₁₁ independently are H, a halogen, or an alkyl group, or,

 together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group,
- or $X \text{ is -CH}_2$ -, -CF₂-, -CHF-, or -S-, and $Y_1 \text{ is -O-}$, -S-, -NR₁₂-, -C(R₁₃)(R₁₄)-, -C(O)-, -C(S)-, or -C(CR₁₃R₁₄)-,

wherein R_{12} is H or alkyl, and R_{13} and R_{14} independently are H, F, or an alkyl group, or, together with the atoms to which they are bonded, form a cycloalkyl group or a heterocycloalkyl group;

A₁ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆,

wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a

heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together

with the atom to which they are bonded, form a heterocycloalkyl group;

D₁ is a moiety with a lone pair of electrons capable of forming a hydrogen bond;

and

B₁ is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈, wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

and with the provisos that when D_1 is the moiety $\equiv N$ with a lone pair of electrons capable of forming a hydrogen bond, B_1 does not exist; and when A_1 is an sp^3 carbon, B_1 is not - $NR_{17}R_{18}$ when D_1 is the moiety $-NR_{25}R_{26}$ with a lone pair of electrons capable of forming a hydrogen bond, wherein R_{25} and R_{26} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group; and wherein D_1 - A_1 - B_1 optionally forms a nitro group where A_1 is N; and further wherein, when R_2 or R_5 is

$$X^{Y_2}$$
 A_2 B_2 D_2

X is =CH or =CF and Y_2 is =C, =CH, or =CF,

- X and Y_2 together with Q' form a three-membered ring in which Q' is $C(R_{10})(R_{11})$ or -O-, X is -CH- or -CF-, and Y_2 is -CH-, -CF-, or -C(alkyl)-, where R_{10} and R_{11} independently are H, a halogen, or an alkyl group, or, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group,
- or $X \text{ is -CH}_2$ -, -CF₂-, -CHF-, or -S-, and $Y_2 \text{ is -O-, -S-, -N}(R'_{12})$ -, -C(O)-, -C(R'₁₃)(R'₁₄)-, -C(S)-, or -C(CR'₁₃R'₁₄)-,

wherein R'₁₂ is H, an alkyl group, a cycloalkyl group, a
heterocycloalkyl group, an aryl group, a heteroaryl group, -OR'₁₃, NR'₁₃R'₁₄, -C(O)-R'₁₃, -SO₂R'₁₃, or -C(S)R'₁₃, and R'₁₃ and R'₁₄.

independently are H, F, or an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

A₂ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆, wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the atom to which they are bonded, form a heterocycloalkyl group;

D₂ is a moiety with a lone pair of electrons capable of forming a hydrogen bond; and

B₂ is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈, wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

and further wherein any combination of Y₂, A₂, B₂, and D₂ optionally can form a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group; R₃ and R₄ are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -C(O)R₁₇, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈

wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group; or, R₃ and R₆, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

R₇ is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈,

wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a - 9 -

heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group; or R_7 , together with R_3 or R_6 and the atoms to which they are attached, forms a heterocycloalkyl group;

R₂₀ is H, OH, or any suitable organic moiety; and

Z and Z_1 are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-C(O)R_{21}$, $-CO_2R_{21}$, -CN, $-C(O)NR_{21}$, R_{22} , $-C(O)NR_{21}$, $-C(S)NR_{21}$, $-C(S)NR_{21}$, $-SO_2$,

- wherein R_{21} , R_{22} , R_{23} , and R_{24} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heterocycloalkyl group, or a thioacyl group, or wherein any two of R_{21} , R_{22} , R_{23} , and R_{24} , together with the atom(s) to which they are bonded, form a heterocycloalkyl group;
- or Z_1 , as defined above, together with R_1 , as defined above, and the atoms to which Z_1 and R_1 are bonded, form a cycloalkyl or heterocycloalkyl group,
- or Z and Z₁, both as defined above, together with the atoms to which they are bonded, form a cycloalkyl or heterocycloalkyl group;

or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof; and wherein said compound, or pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof, has antipicornaviral activity with an EC₅₀ less than or equal to 10 μM in the HI-HeLa cell culture assay.

32. (Currently Amended) A method of inhibiting the activity of a rhinoviral protease that comprises the step of contacting the rhinoviral protease with an effective amount of at least one compound as defined in claim 1 or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof of the formula (I):

wherein_

M is O or S;

R₁ is H, F, an alkyl group, OH, SH, or an O-alkyl group;

R₂ and R₅ are independently selected from H,

or an alkyl group, wherein said alkyl group is different from

with the proviso that at least one of R₂ or R₅ must be

and wherein, when R₂ or R₅ is

$$X$$
 Y_1
 A_1
 D_1

X is =CH or =CF and Y₁ is =CH or =CF,

or X and Y_1 together with Q' form a three-membered ring in which Q' is - $C(R_{10})(R_{11})$ - or -O-, X is -CH- or -CF-, and Y_1 is -CH-, -CF-, or -C(alkyl)-, where R_{10} and R_{11} independently are H, a halogen, or an alkyl group, or, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group,

or $X \text{ is -CH}_2$ -, -CF₂-, -CHF-, or -S-, and $Y_1 \text{ is -O-, -S-, -NR}_{12}$ -, -C(R₁₃)(R₁₄)-, -C(O)-, -C(S)-, or -C(CR₁₃R₁₄)-,

wherein R₁₂ is H or alkyl, and R₁₃ and R₁₄ independently are H, F, or an alkyl group, or, together with the atoms to which they are bonded, form a cycloalkyl group or a heterocycloalkyl group;

A₁ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆, wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the atom to which they are bonded, form a heterocycloalkyl group;

 D_1 is a moiety with a lone pair of electrons capable of forming a hydrogen bond; and

B₁ is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈, wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

and with the provisos that when D_1 is the moiety $\equiv N$ with a lone pair of electrons capable of forming a hydrogen bond, B_1 does not exist; and when A_1 is an sp^3 carbon, B_1 is not - $\operatorname{NR}_{17}R_{18}$ when D_1 is the moiety - $\operatorname{NR}_{25}R_{26}$ with a lone pair of electrons capable of forming a hydrogen bond, wherein R_{25} and R_{26} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group; and wherein D_1 - A_1 - B_1 optionally forms a nitro group where A_1 is N; and further wherein, when R_2 or R_5 is

$$X^{Y_2}$$
 A_2
 D_2
 B_2

X is =CH or =CF and Y_2 is =C, =CH, or =CF,

- X and Y₂ together with Q' form a three-membered ring in which Q' is C(R₁₀)(R₁₁)- or -O-, X is -CH- or -CF-, and Y₂ is -CH-, -CF-, or -C(alkyl)-,
 where R₁₀ and R₁₁ independently are H, a halogen, or an alkyl group, or,
 together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group,
- or $X \text{ is -CH}_2$ -, -CF₂-, -CHF-, or -S-, and $Y_2 \text{ is -O-}$, -S-, -N(R'₁₂)-, -C(O)-, - $C(R'_{13})(R'_{14})$ -, -C(S)-, or -C(CR'₁₃R'₁₄)-,

wherein R'₁₂ is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR'₁₃, -NR'₁₃R'₁₄, -C(O)-R'₁₃, -SO₂R'₁₃, or -C(S)R'₁₃, and R'₁₃ and R'₁₄, independently are H, F, or an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

A₂ is C, CH, CF, S, P, Se, N, NR₁₅, S(O), Se(O), P-OR₁₅, or P-NR₁₅R₁₆, wherein R₁₅ and R₁₆ independently are an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group, or, together with the atom to which they are bonded, form a heterocycloalkyl group;

D is a mojety with a lone pair of electrons capable of forming a hydrogen bond:

 D_2 is a moiety with a lone pair of electrons capable of forming a hydrogen bond; and

B₂ is H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈, wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group:

and further wherein any combination of Y_2 , A_2 , B_2 , and D_2 optionally can form a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group;

 R_3 and R_6 are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-C(O)R_{17}$, $-OR_{17}$, $-SR_{17}$, $-NR_{17}R_{18}$, $-NR_{19}NR_{17}R_{18}$, or $-NR_{17}OR_{18}$

wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group; or, R₃ and R₆, together with the carbon atom to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

R₇ is H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, -OR₁₇, -SR₁₇, -NR₁₇R₁₈, -NR₁₉NR₁₇R₁₈, or -NR₁₇OR₁₈.

wherein R₁₇, R₁₈, and R₁₉ independently are H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or an acyl group;

or R₇, together with R₃ or R₆ and the atoms to which they are attached, forms a heterocycloalkyl group;

R₂₀ is H, OH, or any suitable organic moiety; and

Z and Z_1 are independently H, F, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, $-C(O)R_{21}$, $-CO_2R_{21}$, -CN, $-C(O)NR_{21}R_{22}$, $-C(O)NR_{21}NR_{22}R_{23}$, or $-C(O)NR_{21}NR_{22}R_{23}$.

wherein R_{21} , R_{22} , R_{23} , and R_{24} are independently H, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, an acyl group, or a thioacyl group, or wherein any two of R_{21} , R_{22} , R_{23} , and R_{24} , together with the atom(s) to which they are bonded, form a heterocycloalkyl group;

- or Z_1 , as defined above, together with R_1 , as defined above, and the atoms to which Z_1 and R_1 are bonded, form a cycloalkyl or heterocycloalkyl group,
- or Z and Z₁, both as defined above, together with the atoms to which they are bonded, form a cycloalkyl or heterocycloalkyl group;

or a pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof;

and wherein said compound, or pharmaceutically acceptable prodrug, salt, active metabolite, or solvate thereof, has antipicornaviral activity with an EC $_{50}$ less than or equal to 10 μM in the HI-HeLa cell culture assay.

33-34. (Canceled).