(T)EE2026 Digital Fundamentals

(L7: Logic IC families)

Prof. Massimo Alioto

Dept of Electrical and Computer Engineering

Email: massimo.alioto@nus.edu.sg

Outline

- Introduction to digital IC technologies
- Logic gate characteristics
- CMOS logic gates
- TTL logic gates
- Commercial logic families
- CMOS-TTL Interfacing

Logic gate characteristics

Static parameters

- V_{OL} → Maximum Logic LOW output voltage
- V_{OH} → Minimum Logic HIGH output voltage
- V_{II} → Maximum Logic LOW input voltage
- V_{IH} → Minimum Logic HIGH input voltage
- NM_H → Noise margin high
- NM₁ → Noise margin low
- I_{OL}/I_{OH} → Logic LOW/HIGH output currents
- $-I_{IL}/I_{IH}$ → Logic LOW/HIGH input currents (for TTL only)
- Power dissipation

Dynamic parameters

- Propagation delay
- Fan-out

V_{OH} , V_{OL} , V_{IH} , V_{IL}

- V_{OH} is minimum output voltage that establishes valid logic high to the following gate
- V_{OL} is the maximum output voltage that established valid logic low to the following gate
- V_{IH} is the minimum valid logic high input voltage
- V_{IL} is the maximum valid logic low input voltage

I_{OH} , I_{OL} , I_{IH} , I_{IL}

- I_{OH} is maximum current that can flow out of an output when output voltage maintains a valid logic high
- I_{OL} is the maximum current that can flow into an output when output voltage maintains a valid logic low
- I_{IH} is the current flowing into or out of an input when the input voltage is a valid logic high
- I_{IL} is the current flowing into or output an input when the input voltage is a valid logic low

Logic '1'

Noise margin (NM_H, NM_L)

$$NM_H = V_{OH} - V_{IH}$$
$$NM_L = V_{IL} - V_{OL}$$

Power Dissipation

- Represents the amount of power needed by the gate. Often expressed in mW (milliwatts).
- Calculated from the supply voltage V_{CC} and the current I_{CC} that is drawn by the circuit.
- Power dissipation P_D = V_{CC} * I_{CC}
- Current drawn depends on the logic state of gate.

Propagation delay

Fan-Out

- Determines how many standard loads can be connected to the output of a gate
 - A standard load is defined as the amount of current needed by an input of another gate in the same logic family
 - Loading is also used to indicate fan-out.
- The output of a gate can supply a limited amount of current. Above that it is said to be overloaded.
- Each input of a gate also requires current
- Each additional connection adds to the gate load
- Exceeding the maximum load may cause malfunction

Fan-Out

Output is logic HIGH:

Output is logic LOW:

- Calculated from the amount of current available in the gate-output to that is needed in the input.
- Fan-out = min(I_{OH}/I_{IH} , I_{OL}/I_{IL})
- Example: standard TTL gates

$$I_{OH} = 400 \mu A$$
, $I_{IH} = 40 \mu A$, $I_{OL} = 16 mA$, $I_{IL} = 1.6 mA$

- Fan-out = min(400/40, 16/1.6) = 10
- The maximum number of gates that can be connected (or driven) is 10

Digital IC technologies

- Digital integrated circuits can be designed in different technologies
- Technology will impact on the performance of ICs
- The two mainstream technologies are
 - CMOS IC technology
 - Bipolar IC technology
- CMOS IC technology is based metal-oxidesemiconductor field-effect transistors (MOSFET)
- Bipolar IC technology is based on bipolar junction transistors (BJT)

Transistor as a switch

- In this part, we consider an MOS transistor (MOSFET) as a switch
- MOS transistors can be either NMOS or PMOS transistors
- We view a 3-terminal MOSFET as a blackbox whose drain and source terminals are equivalent to the two terminals of an ordinary switch and the gate controls the switch

NMOS transistor:

 $V_G = V_{DD}$ ("1") \rightarrow NMOS is **on** (switch closed) $V_G = 0V$ ("0") \rightarrow NMOS is **off** (switch open)

PMOS transistor:

 $V_G = 0V ("0") \rightarrow PMOS$ is **on** (switch closed) $V_G = V_{DD} ("1") \rightarrow PMOS$ is **off** (switch open)

Logic ICs based on BJT IC technology

- TTL (Transistor-Transistor Logic)
 - Invented by <u>TRW Inc.</u> in US, first commercial TTL logic IC was introduced by Sylvania in 1963 and became popular with <u>Texas</u> Instrument's 5400 and 7400 series
- ECL (Emitter-Coupled Logic)
 - Invented by IBM, first commercial integrated-circuit ECL family was introduced by <u>Motorola</u> in 1962
 - Suitable for high-speed logic circuits

TTL logic gates

Features of TTL logic gates

- Based on BJTs
- Most widely used logic ICs at gate or MSI level
- Typically operated under 5V supply voltage
- Having different series that optimized for low power, high speed, etc
- Inputs of the gate draw static current
- Due to lack of prerequisite, we will not discuss circuit details of logic gates (look forward to seeing you attending EE4415 module)

CMOS/TTL Comparison (static)

Input/output voltage levels (in volts) with $V_{\rm DD}$ = $V_{\rm CC}$ = +5 V.

	СМОЅ						TTL				
Parameter	4000B	74HC	74HCT	74AC	74ACT	74AHC	74AHCT	74	74LS	74AS	74ALS
V _{IH} (min)	3.5	3.5	2.0	3.5	2.0	3.85	2.0	2.0	2.0	2.0	2.0
V_{IL} (max)	1.5	1.0	0.8	1.5	8.0	1.65	0.8	0.8	0.8	8.0	0.8
V_{OH} (min)	4.95	4.9	4.9	4.9	4.9	4.4	3.15	2.4	2.7	2.7	2.7
V_{OL} (max)	0.05	0.1	0.1	0.1	0.1	0.44	0.1	0.4	0.5	0.5	0.4
V_{NH}	1.45	1.4	2.9	1.4	2.9	0.55	1.15	0.4	0.7	0.7	0.7
$V_{\rm NL}$	1.45	0.9	0.7	1.4	0.7	1.21	0.7	0.4	0.3	0.3	0.4

Noise margin H and L

Summary

- Digital IC technology
 - BJT and MOSFET
 - BJT and CMOS technology
- CMOS logic gates
 - Implementation of NOT, NAND, NOR, AND and OR gates
- Commercial logic families
 - TTL and CMOS
- Logic gate characteristics
 - Static parameters (V_{OH}, V_{OL}, V_{IH}, V_{IL}, I_{OH}, I_{OL}, I_{IH}, I_{IL}, NM_H, NM_L and P_D)
 - Dynamic parameters (t_p and fan-out)
 - CMOS/TTL comparison
- Logic family interfacing (TTL driving CMOS, CMOS driving TTL)

To keep in mind, overall...

MOTIVATION: WHY ARE WE DOING THIS?

IMPACT: WHAT CAN YOU DO WITH YOUR KNOWLEDGE?

What You Will Be Able to Do in a Few Weeks...

What You Will Be Able to Do in a Few Years...

What You Will Be Able to Do in a Few Years...

What You Will Be Able to Do in a Few Years...

Comparison table and summary (best performance in bold)

specification		[3]	[4]	This work	
process		90nm	32nm	28nm	
area (F², with F=min. feature size)		247·10 ⁶	43·10 ⁶ *	167·10 ⁶	
EQ scalable		NO	NO	YES	
ADC on chip		NO (fully analog)	NO	YES	
sampling rate (kS/s)		N.A.	16	8	
interval between decisions (ms)		< 100	10	8†	
energy (nJ/frame)		600 (10.6X)	500* (8.9X)*	56.5 - 182.4 (1 - 3.2X)	
VAD	accuracy	87% ‡	97%	85.8% - 87.6%	
classification quality	F-measure ‡	87.3%	N.A.§	83.4%	
SNR in adopted benchmark (dB)		12	N.A.§	10	

- * analog interface is not included
- † shorter interval between decisions means finer temporal granularity in classification, increasing the opportunities to save energy in the subsequent blocks (e.g., speech recognition)
- ‡ assuming 50% true positives and 50% true negatives
- § no information on benchmark is available
- ∥at OSR=512

LOWER QUALITY OFTEN ACCEPTABLE

level	example					
APPLICATION	automated light control in the presence of speech needs lower accuracy than security					
CONTEXT	lower accuracy is enough if uninterrupted speech was detected for a long period					
DATASET	highest quality is not useful in noisy environment (max accuracy is degraded anyway)					

 4.1 MHz (oversampling of 8 kHz (downsail) 			
8 kHz (downsar			
	mpling		
	clock)		
area 0.015 mm ²			
integrator RC time constant			
frequency 8 kHz			
FFT architecture 64-pt SDF radio	64-pt SDF radix-2		
FF bit width 23 bits			
PSD frequency 512 kHz	512 kHz		
overall voltage 0.5 V			
area 0.046 mm ²	0.046 mm ²		
voltage 0.5 V	0.5 V		
DT frequency 8 kHz	8 kHz		
area 0.069 mm ²	0.069 mm ²		
memory size 10.5 kb	10.5 kb		
overall area 0.13 mm ²			
power 7.06 – 22.8 μW	7.06 – 22.8 µW		

What You Will Be Able to Do in a Few Weeks...

The limit is our imagination and creativity...

Unleash them (please)

Let Us Play a Bit...

re we interested in minimizing Boolean func

y do we learn about digital systems, and FPG

υþ

Commercial logic families

- 74xxx Series
 - TTL family (Transistor-Transistor Logic)
 - Use Bipolar or CMOS technology
- Name convention
 - 1st field: 2 or 3 letters → Manufacturer (sometimes omitted)
 - 2nd field: 74 → Commercial temperature range (54 → Military)
 - 3rd field: 4 letters → Logic sub-family
 - 4th field: 2 or more digits → Type of device
 - 5th field: Type of package or other information (sometimes omitted)

<u>DM 74 LS 14 N</u>

_ow power shottky

National Semiconductor

Commercial temperature range

Hex inverters with schmitt trigger inputs Plastic package

74 series Logic Sub-families (3rd field)

- TTL (Bipolar)
 - 74L \rightarrow Low power
 - 74H → High speed
 - 74LS → Low power Schotty
 - 74AS → Advanced low power schotty
 - 74ALS → Advanced low power schotty
 - **–**
- CMOS (not TTL, but retains some compatibility)
 (same part numbers as bipolar are retained to identify the function)
 - 74C → CMOS 4-15V
 - 74HC → High speed
 - 74AC → Advanced CMOS
 - 74LVC \rightarrow Low voltage, 1.65 to 3.3V
 - 74LVX → 3.3V with 5V tolerant inputs

–

Some 74 series Logic gates

7400 (74HC00) (Quad 2-input NAND gate)

7402(74HC02) (Quad 2-input NOR gate)

7410(74HC10) (Dual 3-input AND gate)

7427(74HC27) (Quad 3-input NOR gate)

7421(74HC21) (Dual 4-input AND gate)

7404(74HC04) (Hex inverters)

