

基于CSNS Back-n装置的中子能量分辨率函数模拟研究

报告人: 唐生达^{1,2,3}

导师: 陈永浩^{2,3},杨振¹

- 1. 中山大学中法核工程与技术学院,珠海,519082
- 2. 中国科学院高能物理研究所, 北京, 100049
- 3. 散裂中子源科学中心, 东莞, 523803

第三届"粤港澳"核物理论坛,广东·深圳, 2024.11.15-18

目录

- CSNS Back-n装置
- 能量分辨率函数
- Geant4模拟研究
- 分辨率函数拟合
- 小结与展望

CSNS 与 Back-n装置

基于中国散裂中子源 (China spallation neutron source-CSNS) 的Back-n装置是我国的第一台高性能白光中子源,具有中子能量范围宽、通量高、能量分辨好等特点。 Back-n搭配包括中子开关在内的三个准直器,可满足多种实验需求,是开展中子核数据测量、中子多学科应用研究的良好平台。

能量分辨率函数

- 能量分辨率函数 Energy Resolution Function (ERF) 描述了谱仪装置的本征中子能量分辨率与中子能量的函数关系,ERF是共振截面测量、中子共振透射分析等研究方向的重要参数。
- 对脉冲中子源而言,ERF与脉冲束流的时间结构、散裂靶的材料与结构、中子在散裂靶中产生的位置、 慢化、散射效应密切相关。由于中子在散裂靶系统中的产生、输运等过程较为复杂,通常需要结合蒙 卡模拟的方式研究。

$$\frac{\Delta E}{E} = \gamma(\gamma + 1) \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta T}{T}\right)^2}$$

$$\gamma = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}}$$

慢化长度: $v T_{mod} \approx \Delta L$

中子产生、输运及探测示意图

能量分辨率函数

RPI函数

RPI函数是用于描述谱仪能量分辨函数的常见函数形式,在n_TOF、GELINA为代表的白光中子源装置得到了良好的应用效果。它由卡方函数和指数函数,以及对应的待拟合参数组成。

$$I(t) = A_0 \left\{ \frac{t+\tau}{2 + A_3} e^{-\frac{t_2+\tau}{A}} + A_1 \left[A_2 e^{-A_3(t_2+t_0)} + A_4 e^{-A_5(t_2+t_0)} \right] X(t_2) \right\}$$
 (1)

$$\tau(E) = \tau_1 e^{-\tau_2 E} + \tau_3 e^{-\tau_4 E} + \tau_5 + \tau_6 E^{-\tau_7}$$
 (2)

$$\Lambda(E) = \Lambda_0 + \Lambda_1 \ln(E) + \Lambda_2 [\ln(E)]^2 + \Lambda_3 E^{\Lambda_4}$$
(3)

$$A_i(E) = \{a_{i1}e^{-a_{i2}E} + a_{i3}e^{-a_{i4}E} + a_{i5} + a_{i6}e^{-a_{i7}E}\}a_i$$
(4)

结合模拟得到的慢化长度形状分布,基于RPI函数的形式对慢化长度分布进行拟合,最终得到能量分辨率函数。

Geant4模拟研究

- ▶ 能量分辨率函数与散裂靶、慢化体、反射体系统 (Target-moderate-reflector (TMR) system) 紧密相关。
- ➤ Geant4提供了慢化时间、角度、位置等重要参数接口,方便获取慢化长度、得到能量分辨率函数。

Geant4 TMR模型示意图

模型相关参数

系统组成	材料与尺寸
—————————————————————————————————————	钨靶(11片,全长:650 mm) 截面积 170 mm(H) × 70 mm(V)
钽	厚度: 0.3 mm
靶冷却	冷却水层:1.2 mm other size: 20 mm
反射层	Be: Φ700 mm × 800 mm
屏蔽体	Fe:1000 mm × 1000 ×1000 mm
靶容器	SS316 前向: 2.5 mm 后向: 12 mm 上下: 7.5 mm 左右t: 12 mm
慢化器	CHM: Φ150 mm ×100 mm DPHM: 120 mm ×120 mm × 50 mm DWM: 110 mm× 110 mm × 50mm

35-30-

25 20 15

10-

Geant4模拟研究

• 利用120*40 mm,均匀分布的束斑模拟质子打靶,统计出靶表面物理信息。

Mean y

Std Dev x

Std Dev y

靶面出射中子分布

在出靶表面处的能谱中,可以清晰的观察到Ta、W、Fe等主要元素的共振吸收结构。

Geant4模拟研究

中子光学与"二次抽样"

- 出靶表面的中子需经过准直器筛选以到达实验位置。可根据每个中子的位置和角动量信息,重建其出射方向,判断是否能够通过准直器。
- 在靶面计数的基础上,筛选出小角度范围出射的中子,进一步添加一个很小的锥角范围进行"二次抽样",采用这种方式增加到达实验厅位置的计数,再此基础上提取慢化长度,拟合中子能量分辨函数。

Geant4模拟研究

对不同能区对应的慢化长度进行投影得到慢化长度分布,中子能量对应的慢化长度分布有所不同,需结合函数进行拟合,得到相应的参数,以描述能量分辨函数随中子能量的变化关系。

分辨率函数拟合

确定RPI函数形式,依次对每个能量间隔投影下的慢化长度分布进行拟合,在此基础上进一步拟合 A_1 、 A_3 、 A_5 、 A_5 、 A_5 、 A_5

分辨率函数拟合

能量分辨函数应用

待定参数 /、τ 4.结里

付走参数A、l、A _i 结未		
Λ_{θ} : -9.58647109e+06	<i>A</i> ₁₄ : -6.55705130e-03	
Λ_1 : 1.58815024e+05	A_{15} : -1.05917698e+03	
Λ ₂ : -1.20520197e+03	A ₁₆ : 1.18404653e-02	
Λ_3 : 9.5880484e+06	<i>A</i> ₁₇ : 9.96205577e-01	
<i>Λ</i> ₄ : -1.66386582e-02	<i>A</i> ₃₅ : 1.13085799e-04	
τ ₅ : 1.51482644e+01	<i>A</i> ₃₆ : 3.12018773e-06	
τ ₆ : -9.22537775e+02	<i>A</i> ₃₇ : 3.01325136e-01	
τ ₇ : -4.77991758e-01	A ₅₃ : 4.27711906e-02	
<i>A</i> ₁₁ : 1.05919149e+03	A ₃₄ : -1.86183811e-07	
<i>A</i> ₁₂ : 1.09397701e-05	A ₃₅ : -4.26419945e-02	
<i>A</i> ₁₃ : -9.36831526e-08		

在100 eV以内,将能量分辨率函数与理论数据进 行卷积后,与实验结果符合较好。

小结与展望

小结

- 基于Geant4对CSNS TMR系统能量分辨率进行了模拟研究,采用RPI函数形式 对能量分辨率进行参数化。
- 基于三个准直器构成的简易光学,采用二次抽样的方式提高统计,对经过准直器筛选后的中子进行慢化长度投影并结合RPI函数进行拟合。
- 现有RPI函数对100 eV以下结果符合较好,但在100 eV以上能区展宽效果有待进一步提高。

展望

□ 物理模型的结构和材料是影响能量分辨函数的重要因素。下一步将对现有TMR模型中的材料和结构等问题进行优化和深入研究,以得到更准确的能量分辨函数。

谢谢大家!

