Sistema Autónomo

A autonomia do sistema foi concluída e apresenta os seguintes componentes:

- 1. Painel Solar de 12V 3W (*2);
- 2. Gestor de energia solar
- 3. Bateria de Li-Po (3.7v 7AH)

1. Painel Solar

A escolha do painel solar foi efetuada de modo que o tempo de carga da bateria seja o mais baixo possível, pois o nem sempre existe sol nominal e existem perdas no sistema.

Considerando que a corrente máxima de carga (Solar ou USB) é de 2A então a corrente máxima de carga do painel solar não poderá passar esse valor pois poderá danificar o sistema. A tabela seguinte mostra o processo de escolha do painel adequado, assim como uma estimativa de tempo de carga da bateria. A coluna da **corrente fornecida** é obtida através de P = V*I. A **corrente máxima de carga** é Imax = Ifornecida*(Vpainel/Vbateria), sendo Vbateria de 3.7. Finalmente a última coluna apresenta o **tempo de carga** (este valor é expresso em horas) e obtém-se através de tcarga = Ebat/Pot_painel.

	Painel Solar		Corrente fornecida	Corrente Max. De	Tempo de
	Tensão(V)	Potencia(W)	(A)	Carga (A)	Carga
1	12	6	0,5	1,621621622	4,316667
2	12	10	0,833333333	2,702702703	2,59
3	12	5	0,416666667	1,351351351	5,18
4	21,2	5	0,235849057	1,351351351	5,18
5	12	20	1,666666667	5,405405405	1,295
6	18,2	5	0,274725275	1,351351351	5,18

Table 1 - Escolha do painel solar adequado

Através deste raciocínio foi possível proceder à escolha do painel adequado e concluiuse que serão utilizados 2 painéis solares de 12V 3W (Figura 1).

Figure 1 - Painel fotovoltaico 12V 3W.

Este painel apresenta as seguintes características:

Alta taxa de conversão;

Material Policristalino;

Potência: 3W;Tensão: 12V;

Dimensões: 145 x 145 x 2.5mm.

2. Gestor de energia solar

Este componente é responsável por toda a gestão energética e regulação da tensão que irá alimentar o repetidor. É compatível com baterias de Lipo de 3.7V e com painéis solares até 20W. Apresenta 3 saídas de tensão regulada:

OUT1: 5V 1.5A
OUT2: 3.3V 1^a
OUT3: 9V/12V 0.5^a

A figura seguinte mostra em detalhe as diversas funcionalidades deste componente (I/O's).

Deste componente será aproveitada a saída USB que será conectada à entrada micro-USB do pygate (via cabo USB \rightarrow micro-USB).

3. Bateria LiPo

O principal aspeto para a escolha da bateria adequada ao sistema foi o tempo de descarga. É importante conhecer a corrente necessária para alimentar o pygate (Ipygate = 360mA). Sabendo este valor de corrente considerou se, inicialmente, uma bateria de 3.7V 2Ah. Considerando que o gestor de energia tem uma eficácia de 86%, o pygate é alimentado a 5V e a bateria é de 3.7V então a capacidade da bateria é reduzida em Efic*(Vbat/Vsys) = 0.64. Para este raciocínio foi ainda considerado como base de tempo 10h. Este tempo é o tempo mínimo aceitável para escolher a bateria adequada ao sistema.

Tensão (V)	Energia (Ah)	Tempo de
1011000 (1)		carga
3.7	2	3,5555556
3.7	4	7,11111111
3.7	6	10,6666667
3.7	7	12,444444

Table 2 - Escolha da bateria adequada.

A tecnologia considerada para a bateria foi a de *Lithium polymer* devido, principalmente à capacidade de funcionamento a temperaturas elevadas visto que o repetidor poderá estar exposto a grandes temperaturas. O polímero é um material usado para proteger componentes de entrarem em combustão.

Figure 2 - Bateria Li-Po 3.7V 7Ah.

4. Arquitetura do sistema

Figure 3 - Arquitetura sistema autónomo

5. Resultado

Após receção do material foi possível avançar para implementação do sistema autónomo, como é possível verificar na figura 4. Quando finalizada a implementação, este foi testado num end-device e foram efetuados alguns testes.

Figure 4 - Sistema autónomo implementado.

Como o módulo Repetidor (Pygate+Lopy4) estava em fase de atualização de firmware, os testes efetuados para o consumo energético foram realizados num end-device (Lopy4). A tabela seguinte mostra os 2 testes realizados com a Lopy4, sendo que o primeiro foi *sleepmode* e o segundo foi a conectar-se a rede.

Teste	Potência Instantânea [mW]		
Lopy4 em sleepmode	136		
Lopy4 a conectar-se à rede	185		

Table 3 -Testes realizados com sistema autónomo.

Apenas com estes dois testes efetuados foi possível verificar que, de facto, o dispositivo tem um baixo consumo energético e que o sistema autónomo tem um bom funcionamento. Como proposta de testes futuros segue a seguinte tabela.

Testes a Realizar (Consumo energético diário)				
Enviar Join Request e Join Accept				
Alterar Spreading Factor				
Variação de tempo de <i>sleep mode</i> após <i>listening</i>				

Table 4 - Proposta de teste a realizar.

De notar que estes testes podem ser realizados com um dispositivo (end-device) como prova de conceito, mas posteriormente devem ser efetuados no Repetidor.