第5章 数值积分与数值微分

本章主要内容

- (1) 插值型求积公式
- (2) 复化求积公式
- (3) Romberg 求积法
- (4) Gauss 求积公式
- (5) 数值微分

1 基本概念

考虑定积分
$$I(f) = \int_a^b f(x)dx$$
.

- (1) 当 f(x) 的原函数不能用初等函数表示, 如 e^{-x^2} , $\frac{\sin x}{x}$, $\frac{1}{\ln x}$ 等.
- (2) f(x) 是一个函数表,即不知道 f(x) 的表达式. 在上述 2 种情况下,只能求积分 I(f) 的近似值.由定积分定义,

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_k) \Delta x_k,$$

其中 $\Delta x = \max_{1 \le k \le n} \Delta x_k$. 因此有

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} f(x_k) \Delta x_k.$$

一般的数值积分公式为:

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k}),$$

其中称 x_k 为求积点, A_k 为求积系数. 记

$$I(f) = \int_{a}^{b} f(x)dx, \quad I_{n}(f) = \sum_{k=0}^{n} A_{k}f(x_{k}).$$

定义 1.1 称

$$R(f) = I(f) - I_n(f)$$

为求积公式的截断误差.

2 插值型求积公式

2.1 插值型求积公式

给定节点 $a \le x_0 < x_1 < \cdots < x_n \le b$, 已知 f(x) 在这些点上的函数值为 $f(x_i)$ ($i = 0, 1 \cdots, n$). 由插值理论, f(x) 的 n 次插值多项式为:

$$L_n(x) = \sum_{k=0}^n f(x_k) l_k(x) = \sum_{k=0}^n f(x_k) \prod_{\substack{j=0 \ j \neq k}}^n \frac{x - x_j}{x_k - x_j}.$$

$$I(f) = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} L_{n}(x)dx$$
$$= \sum_{k=0}^{n} \left[\int_{a}^{b} l_{k}(x)dx \right] f(x_{k})$$
$$= \sum_{k=0}^{n} A_{k}f(x_{k}).$$

其中
$$A_k = \int_a^b l_k(x) dx$$
. 记

$$I_n(f) = \sum_{k=0}^n A_k f(x_k),$$

则

$$I(f) \approx I_n(f).$$
 (2.1)

定义 2.1 设有计算积分 I(f) 的求积公式

$$I_n(f) = \sum_{k=0}^n A_k f(x_k),$$

如果求积系数 $A_k = \int_a^b l_k(x) dx \ (k = 0, 1, \dots, n)$,则称该求积公式为插值型求积公式.

记 $R(f) = I(f) - I_n(f)$, 由插值多项式的余项得插值型求积公式的截

断误差

$$R(f) = I(f) - I_n(f) = \int_a^b f(x)dx - \sum_{k=0}^n \left[\int_a^b l_k(x)dx \right] f(x_k)$$

$$= \int_a^b f(x)dx - \int_a^b L_n(x)dx$$

$$= \int_a^b [f(x) - L_n(x)]dx$$

$$= \int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{k=0}^n (x - x_i)dx, \quad \xi \in (a, b).$$
(2.2)

定义 2.2 如果求积点 $x_k(k=0,1,\cdots,n)$ 是等距的, 即

$$x_k = a + kh, \quad h = \frac{b-a}{n}, \quad k = 0, 1, \dots, n,$$

则称对应的插值型求积公式为 Newton-Cotes 公式.

下面假设节点等距. 令 $x = a + th, t \in [0, n]$, 则 $x_k = a + kh$,

$$x_j = a + jh$$

$$A_{k} = \int_{a}^{b} l_{k}(x)dx = \int_{a}^{b} \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{x - x_{j}}{x_{k} - x_{j}} dx$$

$$= h \int_{0}^{n} \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{t - j}{k - j} dt$$

$$= \frac{(-1)^{n-k}h}{k!(n-k)!} \int_{0}^{n} \prod_{\substack{j=0 \ j \neq k}}^{n} (t - j) dt$$

$$= (b - a) \frac{(-1)^{n-k}}{n \cdot k!(n-k)!} \int_{0}^{n} \prod_{j=0}^{n} (t - j) dt, \quad k = 0, 1, \dots, n.$$

$$C_{n,k} = \frac{(-1)^{n-k}}{n \cdot k!(n-k)!} \int_0^n \prod_{j=0}^n (t-j)dt, \quad k = 0, 1, \dots, n,$$
 (2.3)

则 Newton-Cotes 公式可写为

$$I_n(f) = (b-a) \sum_{k=0}^{n} C_{n,k} f(x_k),$$

其中 $C_{n,k}$ 只依赖与 k 和 n.

(1) $n = 1, h = b - a, x_0 = a, x_1 = b$. 由 (2.3) 可以求得 $C_{1,0} = \frac{1}{2}, C_{1,1} = \frac{1}{2}$. 得 2 个等距节点的插值型求积公式:

$$T(f) = \frac{b-a}{2}[f(a) + f(b)]. \tag{2.4}$$

(2.4) 称为梯形公式.

(2)
$$n = 2, h = \frac{b-a}{2}, x_0 = a, x_1 = \frac{a+b}{2}, x_2 = b.$$
 由 (2.3) 求得 $C_{2,0} = \frac{1}{6}, C_{2,1} = \frac{2}{3}, C_{2,2} = \frac{1}{6}$. 得 3 个等距节点的插值型求积公式

$$S(f) = \frac{b-a}{6} \left| f(a) + 4f(\frac{a+b}{2}) + f(b) \right|. \tag{2.5}$$

(2.5) 称为 **Simpson** 公式.

(3)
$$n = 4, h = \frac{b-a}{4}, x_0 = a, x_1 = \frac{3a+b}{4}, x_2 = \frac{a+b}{2}, x_3 = \frac{a+3b}{4}, x_4 = b$$
, 由 (2.3) 求得

$$C_{4,0} = \frac{7}{90}, \quad C_{4,1} = \frac{32}{90},$$
 $C_{4,2} = \frac{12}{90}, \quad C_{4,3} = \frac{32}{90},$
 $C_{4,4} = \frac{7}{90}.$

可得 5 个等距节点的插值型求积公式

$$C(f) = \frac{b-a}{90} \left[7f(a) + 32f(\frac{3a+b}{4}) + 12f(\frac{a+b}{2}) + 32f(\frac{a+3b}{4}) + 7f(b) \right].$$
(2.6)

(2.6) 称为 Cotes 公式.

2.2 代数精度

定义 2.3 给定一个求积分 $I(f) = \int_a^b f(x)dx$ 的求积公式

$$I(f) \approx I_n(f) = \sum_{k=0}^n A_k f(x_k), \tag{2.7}$$

如果当 f(x) 是任意次数不超过 m 的多项式时, 求积公式精确成立, 即对任意次数不超过 m 次的多项式 $p_m(x)$ 有

$$I(p_m) = I_n(p_m), \quad \text{ if } \int_a^b p_m(x) dx = \sum_{k=0}^m A_k p_m(x_k),$$

而至少对 1 个 m+1 次多项式不精确成立, 即存在 m+1 次多项式 $q_{m+1}(x)$, 使得

$$I(q_{m+1}) \neq I_n(q_{m+1}), \quad \mathcal{A} \quad \int_a^b q_{m+1}(x)dx \neq \sum_{k=0}^n A_k q_{m+1}(x_k)$$

则称求积公式 (2.7) 的代数精度是 m.

注 2.1 设 \mathcal{P}_r 是 r 次多项式空间,则代数精度 $m = \max\{r|I(f) = I_n(f), \forall f \in \mathcal{P}_r\}.$

由 插值型求积公式的截断误差 (2.2) 知, n+1 个节点的插值型求积公式的代数精度至少是 n.

定理 2.1 求积公式

$$I_n(f) = \sum_{k=0}^n A_k f(x_k)$$

至少具有n次代数精度 \iff 该求积公式是插值型求积公式,即

$$A_k = \int_a^b l_k(x)dx, \quad , k = 0, 1, \cdots, n.$$

定理 2.2 求积公式

$$I(f) \approx I_n(f) = \sum_{k=0}^{n} A_k f(x_k)$$
 (2.8)

的代数精度是 $m \iff$ 它对 $1, x, x^2, \dots, x^m$ 精确成立, 而对 x^{m+1} 不精确成立. 即

$$I(x^k) = I_n(x^k), \quad , k = 0, 1 \cdots, m, \quad I(x^{m+1}) \neq I_n(x^{m+1}).$$

例 2.1 求下面 Simpson 公式的代数精度:

$$S(f) = \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right].$$

解 Simpson 公式是 3 个等距节点的插值型求积公式, 故其代数精度至少是 2. 当 $f(x) = x^3$ 时,

$$I(f) = \int_{a}^{b} x^{3} dx = \frac{b^{4} - a^{4}}{4},$$

$$S(f) = \frac{b - a}{6} \left[a^{3} + 4 \left(\frac{a + b}{2} \right)^{3} + b^{3} \right]$$

$$= \frac{b^{4} - a^{4}}{4}.$$

当 $f(x) = x^4$ 时,

$$I(f) = \int_{a}^{b} x^{4} dx = \frac{b^{5} - a^{5}}{5},$$

$$S(f) = \frac{b - a}{6} \left[a^{4} + 4 \left(\frac{a + b}{2} \right)^{4} + b^{4} \right]$$

$$\neq \frac{b^5 - a^5}{5}.$$

所以 Simpson 公式的代数精度是 3.

一般, n+1 个节点的 Newton-Cotes(等距节点插值型) 公式的

代数精度 =
$$\begin{cases} n, & n \neq 5 \\ n+1, & n \neq 6 \end{cases}$$

2.3 梯形公式、Simpson 公式和 Cotes 公式的截断误差

(1) 梯形公式的截断误差

$$R_T(f) = I(f) - T(f) = \int_a^b \frac{f''(\xi)}{2} (x - a)(x - b) dx$$
$$= \frac{f''(\eta)}{2} \int_a^b (x - a)(x - b) dx$$
$$= -\frac{(b - a)^3}{12} f''(\eta), \quad \eta \in (a, b).$$

(2) Simpson 公式的截断误差

作 f(x) 的 3 次 Hermite 插值多项式 H(x), 满足

$$H(a) = f(a),$$
 $H\left(\frac{a+b}{2}\right) = f\left(\frac{a+b}{2}\right),$ $H(b) = f(b),$ $H'\left(\frac{a+b}{2}\right) = f'\left(\frac{a+b}{2}\right).$

则其余项

$$f(x) - H(x) = \frac{f^{(4)}(\xi)}{4!}(x - a)\left(x - \frac{a + b}{2}\right)^2 (x - b), \ \xi \in (a, b).$$

由于 Simpson 公式的代数精度为 3, 即

$$\int_{a}^{b} H(x)dx = S(H),$$

所以有

$$\int_{a}^{b} H(x)dx = S(H) = \frac{b-a}{6} \left[H(a) + 4H\left(\frac{a+b}{2}\right) + H(b) \right]$$
$$= \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$
$$= S(f).$$

截断误差为

$$R_s(f) = I(f) - S(f) = \int_a^b f(x)dx - \int_a^b H(x)dx$$

$$= \int_{a}^{b} [f(x) - H(x)] dx$$

$$= \int_{a}^{b} \frac{f^{(4)}(\xi)}{4} (x - a) \left(x - \frac{a + b}{2} \right)^{2} (x - b) dx$$

$$= \frac{f^{(4)}(\eta)}{4} \int_{a}^{b} (x - a) \left(x - \frac{a + b}{2} \right)^{2} (x - b) dx$$

$$= -\frac{b - a}{180} \left(\frac{b - a}{2} \right)^{4} f^{(4)}(\eta), \quad \eta \in (a, b).$$

(3) Cotes 公式的截断误差

$$R_C(f) = I(f) - C(f) = -\frac{2(b-a)}{945} \left(\frac{b-a}{4}\right)^6 f^{(6)}(\eta), \quad \eta \in (a,b).$$

3 复化求积公式

由上节截断误差看出, 求积公式的截断误差依赖于区间长度. 要减小误差, 就要减小区间长度. 将区间 [a,b] 作 n 等分, 记 h = (b-a)/n, $x_k = a + kh$, $k = 0, 1, \dots, n$.

$$I(f) = \int_{a}^{b} f(x)dx = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x)dx.$$

3.1 复化梯形公式

对小区间上的积分 $\int_{x_k}^{x_{k+1}} f(x) dx$ 应用梯形公式, 就得到复化梯形公式.

$$T_n(f) = \sum_{k=0}^{n-1} \frac{h}{2} [f(x_k) + f(x_{k+1})].$$

由 梯形公式的截断误差, 可得复化梯形公式 $T_n(f)$ 得截断误差

$$I(f) - T_n(f) = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x) dx - \sum_{k=0}^{n-1} \frac{h}{2} [f(x_k) + f(x_{k+1})]$$

$$= \sum_{k=0}^{n-1} \left\{ \int_{x_k}^{x_{k+1}} f(x) dx - \frac{h}{2} [f(x_k) + f(x_{k+1})] \right\}$$

$$= \sum_{k=0}^{n-1} \left[-\frac{h^3}{12} f''(\eta_k) \right], \quad \eta_k \in [x_k, x_{k+1}].$$

设 $f(x) \in C^2[a,b]$, 则由连续函数介值定理, $\exists \eta \in (a,b)$, 使

$$\frac{1}{n}\sum_{k=0}^{n-1}f''(\eta_k) = f''(\eta).$$

所以得 $T_n(f)$ 的截断误差

$$I(f) - T_n(f) = -\frac{h^3}{12} n f''(\eta) = -\frac{b-a}{12} h^2 f''(\eta).$$
 (3.1)

记 $M_2 = \max_{a \le x \le b} |f''(x)|$, 对于给定的精度 ε , 只要

$$\frac{b-a}{12}M_2h^2 \le \varepsilon,$$

就有

$$|I(f) - T_n(f)| = \frac{b - a}{12} h^2 |f''(\eta)| \le \frac{b - a}{12} M_2 h^2 \le \varepsilon.$$
 (3.2)

(3.2) 称为先验误差估计.

由 (3.1) 可得

$$\frac{I(f) - T_n(f)}{h^2} = -\frac{1}{12} \times h \sum_{k=0}^{n-1} f''(\eta_k) \longrightarrow -\frac{1}{12} \int_a^b f''(x) dx$$

$$= \frac{1}{12} [f'(a) - f'(b)], \text{ as } h \to 0.$$

当 h 很小时,有

$$I(f) - T_n(f) \approx \frac{h^2}{12} [f'(a) - f'(b)].$$
 (3.3)

同样,将 [a,b] 进行 2n 等分,得

$$I(f) - T_{2n}(f) \approx \frac{1}{12} \left(\frac{h}{2}\right)^2 [f'(a) - f'(b)].$$
 (3.4)

由(3.3)和(3.4)可得

$$I(f) - T_{2n}(f) \approx \frac{1}{4} [I(f) - T_n(f)],$$

或

$$I(f) - T_{2n}(f) \approx \frac{1}{3} [T_{2n}(f) - T_n(f)].$$
 (3.5)

给定精度 ε , 当

$$\frac{1}{3}|T_{2n}(f) - T_n(f)| \le \varepsilon,$$

就有

$$|I(f) - T_{2n}(f)| \le \varepsilon.$$

(3.5) 称为后验误差估计.

假设 $T_n(f)$ 已知, 求 $T_{2n}(f)$ 时可以用下面的公式计算:

$$T_{2n}(f) = \sum_{k=0}^{n-1} \left\{ \frac{1}{2} \times \frac{h}{2} [f(x_k) + f(x_{k+\frac{1}{2}})] + \frac{1}{2} \times \frac{h}{2} [f(x_{k+\frac{1}{2}}) + f(x_{k+1})] \right\}$$
$$= \frac{1}{2} T_n(f) + \frac{h}{2} \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}}).$$

3.2 复化 Simpson 公式

记 $x_{k+\frac{1}{2}} = \frac{1}{2}(x_k + x_{k+1})$,对每个小区间上积分 $\int_{x_k}^{x_{k+1}} f(x) dx$ 应用 Simpson 公式,得到下面的复化 Simpson 公式:

$$S_n(f) = \sum_{k=0}^{n-1} \frac{h}{6} [f(x_k) + 4f(x_{k+\frac{1}{2}}) + f(x_{k+1})].$$

利用 Simpson 公式的截断误差,可得复化 Simpson 公式的截断误差:

$$I(f) - S_n(f)$$

$$= \sum_{k=0}^{n-1} \left\{ \int_{x_k}^{x_{k+1}} f(x) dx - \frac{h}{6} [f(x_k) + 4f(x_{k+\frac{1}{2}}) + f(x_{k+1})] \right\}$$

$$= \sum_{k=0}^{n-1} -\frac{h}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\eta_k), \quad \eta_k \in [x_k, x_{k+1}],$$

$$= -\frac{h}{180} \left(\frac{h}{2}\right)^4 \sum_{k=0}^{n-1} f^{(4)}(\eta_k), \quad \eta_k \in [x_k, x_{k+1}]. \tag{3.6}$$

设 $f(x) \in C^4[a,b]$, 由连续函数介值定理, 存在 $\eta \in (a,b)$, 使

$$\frac{1}{n}\sum_{k=0}^{n-1}f^{(4)}(\eta_k)=f^{(4)}(\eta),$$

所以得

$$I(f) - S_n(f) = -\frac{h}{180} \left(\frac{h}{2}\right)^4 n f^{(4)}(\eta)$$

$$= -\frac{b - a}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\eta), \quad \eta \in (a, b).$$
 (3.7)

记 $M_4 = \max_{a \le x \le b} |f^{(4)}(x)|$. 对给定的精度 ε , 选取 h 使得

$$\frac{b-a}{180} \left(\frac{h}{2}\right)^4 M_4 \le \varepsilon,$$

就有

$$|I(f) - S_n(f)| \le \varepsilon.$$

(3.7) 称为复化 Simpson 的先验误差估计. 由 (3.6) 可得

$$\frac{I(f) - S_n(f)}{\left(\frac{h}{2}\right)^4} = -\frac{1}{180} \times h \sum_{k=0}^{n-1} f^{(4)}(\eta_k) \to -\frac{1}{180} \int_a^b f^{(4)}(x) dx,$$

$$= \frac{1}{180} [f^{(3)}(a) - f^{(3)}(b)], \quad \text{as } h \to 0,$$

当 h 很小时有

$$I(f) - S_n(f) \approx \frac{1}{180} [f^{(3)}(a) - f^{(3)}(b)] \left(\frac{h}{2}\right)^4,$$

$$I(f) - S_{2n}(f) \approx \frac{1}{180} [f^{(3)}(a) - f^{(3)}(b)] \left(\frac{\frac{h}{2}}{2}\right)^4.$$

从而有

$$I(f) - S_{2n}(f) \approx \frac{1}{16} [I(f) - S_n(f)],$$

 $I(f) - S_{2n}(f) \approx \frac{1}{15} [S_{2n}(f) - S_n(f)].$

对于给定精度 ε , 当

$$\frac{1}{15}|S_{2n}(f) - S_n(f)| \le \varepsilon,$$

就有

$$|I(f) - S_{2n}(f)| \le \varepsilon.$$

3.3 复化 Cotes 公式

记

$$x_{k+\frac{1}{4}} = x_k + \frac{1}{4}h, x_{k+\frac{1}{2}} = x_k + \frac{1}{2}h, x_{k+\frac{3}{4}} = x_k + \frac{3}{4}h.$$

对积分 $\int_{x_k}^{x_{k+1}} f(x) dx$ 应用 Cotes 公式, 即得复化 Cotes 公式:

$$C_n(f) = \sum_{k=0}^{n-1} \frac{h}{90} \left[7f(x_k) + 32f(x_{k+\frac{1}{4}}) + 12f(x_{k+\frac{1}{2}}) + 32f(x_{k+\frac{3}{4}}) + 7f(x_{k+1}) \right].$$

其截断误差为

$$I(f) - C_n(f) = -\frac{2(b-a)}{945} \left(\frac{h}{2}\right)^6 f^{(6)}(\eta), \quad \eta \in (a,b).$$

当 h 很小时有

$$I(f) - C_n(f) \approx \frac{2}{945} [f^{(5)}(a) - f^{(5)}(b)] \left(\frac{h}{2}\right)^6$$

$$I(f) - C_{2n}(f) \approx \frac{1}{63} [C_{2n}(f) - C_n(f)].$$

对于给定精度 ε , 当

$$\frac{1}{63}|C_{2n}(f) - C_n(f)| \le \varepsilon,$$

就有

$$|I(f) - C_{2n}(f)| \le \varepsilon.$$

3.4 复化求积公式的阶数

定义 3.1 设有计算积分 I(f) 的复化求积公式 $I_n(f)$, 如果存在正整数 p 和非零常数 C, 使

$$\lim_{h \to 0} \frac{I(f) - I_n(f)}{h^p} = C,$$

则称公式 $I_n(f)$ 是 p 阶的.

从上面定义知, 复化梯形公式为 2 阶; 复化 Simpson 公式为 4 阶; 复化 Cotes 公式为 6 阶.

4 Romberg 求积法

由 (3.5) 有

$$I(f) - T_{2n}(f) \approx \frac{1}{3} [T_{2n}(f) - T_n(f)],$$

上式也可以写成

$$I(f) \approx \frac{4}{3}T_{2n}(f) - \frac{1}{3}T_n(f).$$
 (4.1)

(4.1) 说明其右端项可以近似积分 I(f). 记

$$\tilde{T}_n(f) = \frac{4}{3}T_{2n}(f) - \frac{1}{3}T_n(f)$$

$$= \frac{4}{3}\sum_{k=0}^{n-1} \left\{ \frac{h}{4} [f(x_k) + f(x_{k+\frac{1}{2}})] + \frac{h}{4} [f(x_{k+\frac{1}{2}}) + f(x_{k+1})] \right\}$$

$$-\frac{1}{3}\sum_{k=0}^{n-1} \frac{h}{2} [f(x_k) + f(x_{k+1})]$$

$$= \sum_{k=0}^{n-1} \left[\frac{h}{3} \left(f(x_k) + 2f(x_{k+\frac{1}{2}}) + f(x_{k+1}) \right) - \frac{h}{6} \left(f(x_k) + f(x_{k+1}) \right) \right]$$

$$= \sum_{k=0}^{n-1} \frac{h}{6} [f(x_k) + 4f(x_{k+1}) + f(x_{k+1})]$$

$$= S_n(f).$$

即得

$$S_n(f) = \frac{4}{3}T_{2n}(f) - \frac{1}{3}T_n(f).$$

同样, 由复化 Simpson 公式误差估计

$$I(f) - S_{2n}(f) \approx \frac{1}{15} [S_{2n}(f) - S_n(f)]$$

得

$$I(f) \approx \frac{16}{15} S_{2n}(f) - \frac{1}{15} S_n(f).$$

可以验证

$$C_n(f) = \frac{16}{15}S_{2n}(f) - \frac{1}{15}S_n(f).$$

$$I(f) - C_{2n}(f) \approx \frac{1}{63} [C_{2n}(f) - C_n(f)],$$

记

$$R_n(f) = \frac{64}{63}C_{2n}(f) - \frac{1}{63}C_n(f). \tag{4.2}$$

(4.2) 称为 Romberg 公式. 可以证明 Romberg 公式的截断误差为 $O(h^8)$. 从而可得

$$I(f) - R_{2n}(f) \approx \frac{1}{255} [R_{2n}(f) - R_n(f)].$$

利用 Romberg 求积法可以列表计算.

区间等分数 (n)			$S_n(f)$		$C_n(f)$		$R_n(f)$
1	T_1		S_1		C_1		R_1
2	$\overset{\downarrow}{T_2}$	7	S_2	ア	C_2	7	R_2
4	T_4		S_4		C_4		R_4
8	T_8	7	S_8	ブ	C_8	7	:
16	T_{16}	7	S_{16}		:		
32	T_{32}		:				
:	:						

例 4.1 分别用复化梯形公式、复化 Simpson 公式、复化 Cotes 公式和 Romberg 求积法计算积分

$$\int_{1}^{5} \frac{\sin x}{x} dx,$$

精确至7位有效数字.

解

(1) 复化梯形公式. 要求

$$\frac{1}{3}|T_{2n} - T_n| \le \frac{1}{2} \times 10^{-7}.$$

计算得 2n = 4096, 即要求 4097 个节点.

(2) 复化 Simpson 公式. 要求

$$\frac{1}{15}|S_{2n}(f) - S_n(f)| \le \frac{1}{2} \times 10^{-7}.$$

计算得 2n = 32, 即要求 65 个节点.

(3) 复化 Cotes 公式. 要求

$$\frac{1}{63}|C_{2n}(f) - C_n(f)| \le \frac{1}{2} \times 10^{-7}.$$

计算得 2n = 8, 即要求 33 个节点.

(4) Romberg 求积法. 要求

$$\frac{1}{255}|R_{2n}(f) - R_n(f)| \le \frac{1}{2} \times 10^{-7}.$$

计算得 2n = 2, 即要求 17 个节点.

5 Gauss 求积公式

例 5.1 用梯形公式求积分 $\int_{2}^{5} [2 + (x-3)^{2}] dx$ 的近似值.

图 5.1 数值积分误差示意图

图 5.2 数值积分误差示意图

定义 5.1 设

$$I(f) = \int_{a}^{b} f(x)dx, \qquad I_{n}(f) = \sum_{k=0}^{n} A_{k}f(x_{k}),$$

 $I_n(f)$ 是求积分 I(f) 的求积公式. 如果求积公式 $I_n(f)$ 的代数精度是 (2n+1), 则称该求积公式是 Gauss-Legendre 公式 (简称 Gauss公式), 对应的求积点 $x_k(k=0,1\cdots,n)$ 称为 Gauss 点.

由代数精度知, 求积公式 $I(f) \approx I_n(f)$ 的代数精度为 $(2n+1) \iff$

$$\int_{a}^{b} x^{i} dx = \sum_{k=0}^{n} A_{k} x_{k}^{i}, \quad i = 0, 1, \dots, 2n + 1.$$

例 5.2 考虑求积公式

$$\int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1),$$

决定求积系数 A_0 , A_1 和求积点 x_0 , x_1 , 使其成为 2 点 Gauss 公式.

解 n=1, 即要使公式的代数精度为 2+1=3. 由代数精度得

$$f(x) = 1, \quad A_0 + A_1 = \int_{-1}^{1} 1 dx = 2,$$

$$f(x) = x, \quad A_0 x_0 + A_1 x_1 = \int_{-1}^{1} x dx = 0,$$

$$f(x) = x^2, \quad A_0 x_0^2 + A_1 x_1^2 = \int_{-1}^{1} x^2 dx = \frac{2}{3},$$

$$f(x) = x^3, \quad A_0 x_0^3 + A_1 x_1^3 = \int_{-1}^{1} x^3 dx = 0.$$

求得
$$A_0 = A_1 = 1, x_0 = -\frac{1}{\sqrt{3}}, x_1 = \frac{1}{\sqrt{3}},$$
 故 $[-1, 1]$ 上两点 Gauss 公式为
$$\int_{-1}^1 f(x) dx \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right).$$

定理 5.1 设

$$I(f) = \int_{a}^{b} f(x)dx, \qquad I_{n}(f) = \sum_{k=0}^{n} A_{k}f(x_{k}),$$

 $I_n(f)$ 是计算积分 I(f) 的 插值型求积公式, 记

$$W_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n),$$

则求积公式 $I(f) \approx I_n(f)$ 是 Gauss 求积公式 (代数精度 2n+1, 或 $\{x_k\}_{k=0}^n$ 为 Gauss 点) $\iff W_{n+1}(x)$ 与任意一个次数不超过 n 的多项式 p(x) 正交, 即

$$\int_a^b p(x)W_{n+1}(x)dx = 0.$$

证明 " ⇒ ": 设 $I_n(f)$ 是 Gauss 公式, 则其代数精度为 (2n+1), 即对任意一个次数不超过 (2n+1) 的多项式精确成立. 设 p(x) 是任意一个次数不超过 n 的多项式, 则 $p(x)W_{n+1}(x)$ 是一个次数不超过 (2n+1) 的多项式, 有

$$\int_{a}^{b} p(x)W_{n+1}(x)dx = \sum_{k=1}^{n} A_{k}p(x_{k})W_{n+1}(x_{k}) = 0.$$

" \longleftarrow ": 设对任意次数不超过 n 的多项式 p(x), 有

$$\int_{a}^{b} p(x)W_{n+1}(x)dx = 0.$$

设 f(x) 是任意一个次数不超过 (2n+1) 的多项式,用 $W_{n+1}(x)$ 除 f(x), 设得商 s(x) 和余式 r(x). 即有

$$f(x) = s(x)W_{n+1}(x) + r(x),$$

显然 s(x), r(x) 都是次数不超过 n 的多项式. 因此有

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} s(x)W_{n+1}(x)dx + \int_{a}^{b} r(x)dx$$

$$= \int_{a}^{b} r(x)dx \quad (由正交性条件)$$

$$= \sum_{k=0}^{n} A_{k}r(x_{k}) \quad (由插值型求积公式性质)$$

$$= \sum_{k=0}^{n} A_{k}s(x_{k})W_{n+1}(x_{k}) + \sum_{k=0}^{n} A_{k}r(x_{k}) \quad (W_{n+1}(x_{k}) = 0)$$

$$= \sum_{k=0}^{n} A_{k}f(x_{k}).$$

这说明求积公式代数精度为 (2n+1), 即它为 Gauss 公式.

5.1 正交多项式

定义 5.2 设

$$g_n(x) = a_{n,0}x^n + a_{n,1}x^{n-1} + \dots + a_{n,n-1}x + a_{n,n}, \quad n = 0, 1, 2, \dots,$$

其中 $a_{n,0} \neq 0$. 如果对任意的 $i, j = 0, 1, \dots, i \neq j$ 有

$$(g_i, g_j) = \int_a^b g_i(x)g_j(x)dx = 0,$$

则称 $\{g_k(x)\}_{k=0}^{\infty}$ 为区间 [a,b] 上的正交多项式序列, 称 $g_n(x)$ 为区间 [a,b] 上的 n 次正交多项式.

定理 5.2 设 $\{g_k(x)\}_{k=0}^{\infty}$ 为区间 [a,b] 上的正交多项式序列,则对任意的 n,多项式

$$g_0(x), g_1(x), \cdots, g_n(x)$$

线性无关.

由该结论知, 如果 $\{g_k(x)\}_{k=0}^{\infty}$ 为区间 [a,b] 上的正交多项式序列, 则 $g_0(x), g_1(x), \dots, g_n(x)$ 组成 n 次多项式空间的一组基, 从而 $g_n(x)$ 与任意一个次数不超过 n-1 的多项式正交.

定理 5.3 设 $\{g_k(x)\}_{k=0}^{\infty}$ 为区间 [a,b] 上的正交多项式序列,则 $g_n(x)$ 在 (a,b) 上有 n 个不同的实零点.

定义 5.3 称

$$P_n(t) = \frac{1}{2^n n!} \frac{d^n (t^2 - 1)^n}{dt^n}, \quad n = 0, 1, 2, \dots$$

为n次勒让德(Legendre)多项式.

由定义可知

$$P_0(t) = 1,$$
 $P_1(t) = t,$ $P_2(t) = \frac{1}{2}(3t^2 - 1),$
 $P_3(t) = \frac{1}{2}(5t^3 - 3t),$ $P_4(t) = \frac{1}{8}(35t^4 - 30t^2 + 2), \cdots.$

定理 5.4 Legendre 多项式序列 $\{P_k(t)\}_{k=0}^{\infty}$ 是区间 [-1,1] 上的正交多项式序列.

5.2 区间 [-1,1] 上的 Gauss 公式

考虑区间 [-1,1] 上的 Gauss 公式

$$I(g) = \int_{-1}^{1} g(t)dt \approx \sum_{k=0}^{n} \tilde{A}_{k}g(t_{k}),$$

由定理 5.1, 定理 5.2 和定理 5.3 知, n+1 次 Legendre 多项式 $P_{n+1}(t)$ 的 零点就是 Gauss 公式的节点, 而求积系数

$$\tilde{A}_k = \int_{-1}^1 \prod_{\substack{j=0 \ j \neq k}}^n \frac{t - t_j}{t_k - t_j} dt, \quad k = 0, 1, \dots, n.$$

当 n = 0 时, $t_0 = 0$, $\tilde{A}_0 = 2$, 得 1 个节点的 Gauss 公式

$$\int_{-1}^{1} g(t)dt \approx 2g(0).$$

$$n=1$$
 时, $t_0=-\frac{1}{\sqrt{3}}, t_1=\frac{1}{\sqrt{3}}, \tilde{A}_0=1, \tilde{A}_1=1$, 得到 2 个节点的 Gauss

公式

$$\int_{-1}^{1} g(t)dt \approx g\left(-\frac{1}{\sqrt{3}}\right) + g\left(\frac{1}{\sqrt{3}}\right).$$

当 n=2 时, $t_0=-\sqrt{\frac{3}{5}}$, $t_1=0$, $t_2=\sqrt{\frac{3}{5}}$, $\tilde{A}_0=\frac{5}{9}$, $\tilde{A}_1=\frac{8}{9}$, $\tilde{A}_2=\frac{5}{9}$. 得到

3 点 Gauss 公式

$$\int_{-1}^{1} g(t)dt \approx \frac{5}{9}g\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}g(0) + \frac{5}{9}g\left(\sqrt{\frac{3}{5}}\right).$$

5.3 区间 [a,b] 上的 Gauss 公式

考虑区间 [a,b] 上的积分

$$I(f) = \int_{a}^{b} f(x)dx,$$

作变换 $x = \frac{a+b}{2} + \frac{b-a}{2}t$, 可得

$$I(f) = \int_{-1}^{1} \frac{b-a}{2} f\left(\frac{a+b}{2} + \frac{b-a}{2}t\right) dt.$$

由 [-1,1] 上的 Gauss 公式得 [a,b] 上的 Gauss 公式

$$I_n(f) = \sum_{k=0}^n \frac{b-a}{2} \tilde{A}_k f\left(\frac{a+b}{2} + \frac{b-a}{2} t_k\right).$$

\$

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}t_k, \quad A_k = \frac{b-a}{2}\tilde{A}_k, \quad k = 0, 1, 2, \dots, n,$$

则得 [a,b] 上的 Gauss 公式为

$$I_n(f) = \sum_{k=0}^n A_k f(x_k).$$

5.4 Gauss 公式的截断误差

定理 5.5 设 $f(x) \in C^{2n+2}[a,b]$, 则 Gauss 公式

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$

的截断误差为

$$R(f) = \int_{a}^{b} f(x)dx - \sum_{k=0}^{n} A_{k}f(x_{k})$$
$$= \frac{f^{(2n+2)}(\xi)}{(2n+2)!} \int_{a}^{b} W_{n+1}^{2}(x)dx,$$

其中
$$W_{n+1}(x) = \prod_{j=0}^{n} (x - x_j), \quad \xi \in (a, b).$$

5.5 Gauss 公式的稳定性和收敛性

定理 5.6 Gauss 公式

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$

的求积系数 $A_k > 0 (k = 0, 1, \dots, n)$.

在利用求积公式 $I_n(f) = \sum_{k=0}^n A_k f(x_k)$ 计算中, 由于舍入误差影响,

 $f(x_k)$ 往往有误差, 即计算时用 $f(x_k)$ 的近似值 \tilde{f}_k 计算, 因而实际求得 定积分近似值为

$$I_n(\tilde{f}) = \sum_{k=0}^n A_k \tilde{f}_k.$$

定义 5.4 求积公式 $I_n(f) = \sum_{k=0}^n A_k(f(x_k), 其近似值为 <math>I_n(\tilde{f}) =$

 $\sum_{k=0}^{n} A_k \tilde{f}_k$. 如果对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $\max_{0 \le k \le n} |f(x_k) - \tilde{f}_k| < \delta$

时,有 $|I_n(f) - I_n(\tilde{f})| < \varepsilon$,则称该求积公式是稳定的.

定理 5.7 Gauss 公式

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k} f(x_{k})$$

是稳定的.

定义 5.5 给定求积公式

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n} A_{k}^{(n)} f(x_{k}^{(n)}),$$

如果对任意 $\varepsilon > 0$, 存在正整数 N, 当 n > N 时, 有 $|I(f) - I_n(f)| < \varepsilon$, 则称该求积公式收敛.

定理 5.8 设 $f(x) \in C[a,b]$, 则 Gauss 公式收敛.

- 例 5.3 设 $f(x) \in C^4[a,b]$, 对积分 $I(f) = \int_a^b f(x) dx$
 - (1) 构造具有 3 次代数精度的 Gauss 公式 G(f);

(2) 证明
$$I(f) - G(f) = \frac{1}{135} \left(\frac{b-a}{2}\right)^5 f^{(4)}(\xi), \quad \xi \in (a,b);$$

(3) 构造对应的 2 点复化 Gauss 公式 $G_n(f)$.

6 数值微分

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$
, (向前差商)
 $f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h}$, (向后差商)
 $f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$, (中心差商)

将
$$f(x_0 + h)$$
, $f(x_0 - h)$ 在 x_0 点 Taylor 展开, 可以得
$$f'(x_0) - \frac{f(x_0 + h) - f(x_0)}{h} = -\frac{h}{2}f''(x_0) + O(h^2),$$

$$f'(x_0) - \frac{f(x_0) - f(x_0 - h)}{h} = \frac{h}{2}f''(x_0) + O(h^2),$$

$$f'(x_0) - \frac{f(x_0 + h) - f(x_0 - h)}{2h} = -\frac{h^2}{6}f'''(x_0) + O(h^3),$$

图 8.1 数值微分

7 习题

p.253 \sim 266

1(1),(3), 2(1), 3(1)(2), 6(1), 10, 12, 21.

上机题:用 Romberg 求积法计算积分

$$\int_{-1}^{1} \frac{1}{1 + 100x^2} dx$$

的近似值, 要求误差不超过 0.5×10^{-7} .