Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

· · · · · · · · · · · · · · · · · · ·	1	2	3	4	Запас
					Ы
1	4	7	4	7	12
2	5	2	5	2	16
3	6	2	3	5	11
Потре	7	10	15	7	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\Sigma a = 12 + 16 + 11 = 39$$

$$\sum b = 7 + 10 + 15 + 7 = 39$$

Занесем исходные данные в распределительную таблицу.

				י עי	
	1	2	3	4	Запас
					Ы
1	4	7	4	7	12
2	5	2	5	2	16
3	6	2	3	5	11
Потре	7	10	15	7	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	4[7]	7	4[4]	7[1]	12
2	5	2[10]	5	2[6]	16
3	6	2	3[11]	5	11
Потре	7	10	15	7	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 4*7 + 4*4 + 7*1 + 2*10 + 2*6 + 3*11 = 116$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ij}$, полагая, что $u_1 = 0$.

	$v_1 = 4$	v ₂ =7	v ₃ =4	v ₄ =7
$u_1 = 0$	4[7]	7	4[4]	7[1]

$u_2 = -5$	5	2[10]	5	2[6]
$u_3 = -1$	6	2	3[11]	5

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (3;2): 2

Для этого в перспективную клетку (3;2) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

•	цисся знаки «-//, « - //, «-//.							
		1	2	3	4	Запас		
						Ы		
	1	4[7]	7	4[4][+	7[1][-]	12		
]				
	2	5	2[10][-	5	2[6][+	16		
]]			
	3	6	2[+]	3[11][-	5	11		
]				
	Потре	7	10	15	7			
	бност							
	И							

Цикл приведен в таблице (3,2; 3,3; 1,3; 1,4; 2,4; 2,2;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(1, 4) = 1. Прибавляем 1 к объемам грузов, стоящих в плюсовых клетках и вычитаем 1 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

J	Justane mony min messin emephism man.					
		1	2	3	4	Запас
						Ы
	1	4[7]	7	4[5]	7	12
	2	5	2[9]	5	2[7]	16
	3	6	2[1]	3[10]	5	11
	Потре	7	10	15	7	
	бност					
	И					

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ij}$, полагая, что $u_1 = 0$.

I		- 1],		
	$v_1 = 4$	$v_2 = 3$	v ₃ =4	$v_4 = 3$
$u_1 = 0$	4[7]	7	4[5]	7
$u_2 = -1$	5	2[9]	5	2[7]
$u_3 = -1$	6	2[1]	3[10]	5

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют условию $u_i + v_i <= c_{ij}$.

Минимальные затраты составят:

$$F(x) = 4*7 + 4*5 + 2*9 + 2*7 + 2*1 + 3*10 = 112$$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.