Assignment 4 Solution 1 Output

....

a) Which variable would you add next? Why?

After BMI and S5, we added all other attributes of the dataset namely Bp, S1, S2, S3, S4, and S6. We focused the analysis on Root Mean Squarred Error (RMSE), and R² Score. We calculated the values and found that addition of BP resulted in lowering of RMSE. Thus, we decided to select BP as the next attribute to be added.

Feature RMSE R² Score

Added

- bp 53.768366 0.454331
- s3 53.705538 0.455605
- s6 53.810247 0.453481
- s1 54.221504 0.445095
- s2 54.090240 0.447778
- s4 53.801874 0.453651
- b) How does adding it affect the model's performance? Compute metrics and compare to having just bmi and s5.

We observed that addition of BP reduced the Root Mean Squarred Error (RMSE). With less error, the prediction power of the model will improve.

Model RMSE R² Score

Base (bmi, s5) 53.868701 0.452293

Base + bp 53.768366 0.454331

c) Does it help if you add even more variables?

To test this, we considered bmi + s5 + bp as the new base and then further added other features one by one.

Model RMSE R² Score

- s3 54.127467 0.447018
- s6 53.779654 0.454102
- s1 54.180881 0.445926
- s2 53.886656 0.451927
- s4 53.854365 0.452584

What we found that the next attribute that can be added is S6. However, S6 causes the RMSE to increase. Thus, we will

not add any more attributes after bp.

Model RMSE R² Score

bmi, s5, bp 53.768366 0.454331

Assignment 4 Solution 2 Output

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 50 entries, 0 to 49

Data columns (total 6 columns):

Column Non-Null Count Dtype

--- ----- -----

0 R&D Spend 50 non-null float64

1 Administration 50 non-null float64

2 Marketing Spend 50 non-null float64

3 Profit 50 non-null float64

4 State_Florida 50 non-null bool

5 State_New York 50 non-null bool

dtypes: bool(2), float64(4)

memory usage: 1.8 KB

None

Correlation Matrix:

R&D Spend Administration ... State_Florida State_New York R&D Spend 1.000000 0.241955 ... 0.105711 0.039068 Administration 0.241955 1.000000 ... 0.010493 0.005145 Marketing Spend 0.724248 -0.032154 ... 0.205685 -0.033670 0.972900 0.200717 ... 0.116244 Profit 0.031368 State_Florida 0.105711 0.010493 ... 1.000000 -0.492366 State_New York 0.039068 0.005145 ... -0.492366 1.000000

[6 rows x 6 columns]

Selected Predictors: ['R&D Spend', 'Marketing Spend']

Training Data Metrics:

RMSE: 9101.191468669913, R²: 0.9518828286863577

Testing Data Metrics:

RMSE: 8206.32881316585, R²: 0.9168381183550247

Process finished with exit code 0

Assignment 4 Solution 3 Output

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 392 entries, 0 to 391

Data columns (total 9 columns):

Column Non-Null Count Dtype

___ ____

0 mpg 392 non-null float64

1 cylinders 392 non-null int64

2 displacement 392 non-null float64

3 horsepower 392 non-null int64

4 weight 392 non-null int64

5 acceleration 392 non-null float64

6 year 392 non-null int64

7 origin 392 non-null int64

8 name 392 non-null object

dtypes: float64(3), int64(5), object(1)

memory usage: 27.7+ KB

Optimal Ridge Regression Alpha and R²:

Alpha: 0.001, Best R² Score: 0.7942348920666245

Optimal Lasso Regression Alpha and R²:

Alpha: 0.001, Best R² Score: 0.7941834683177982

Comparison Table:

Regressor Optimal Alpha Best R² Score

0 Ridge 0.001 0.794235

1 Lasso 0.001 0.794183

Process finished with exit code 0