

01.

Elliptic (Trapzoidal)

$$T = 4\sqrt{\frac{L}{g}}K\left(\sin\left(\frac{\theta_0}{2}\right)\right),\,$$

where
$$K(z) = \int_{0}^{\pi/2} \frac{dx}{\sqrt{1-z^2 \sin^2(x)}}$$

theta=pi/3 -> K=1.68575 -> T = 1.07699 theta=pi/4 -> k=1.63359 -> T = 1.0436638 theta=pi/20-> K=1.5714 -> T = 1.00393 Compare to .63888

02

07

04

05

```
theta=pi/3 \rightarrow K=1.68575 \rightarrow T = 1.07699
theta=pi/4 \rightarrow k=1.63359 \rightarrow T = 1.0436638
theta=pi/20-> K=1.5714 \rightarrow T = 1.00393
Compare to .63888
```

 \bigoplus

0.5000000012618391331.07585013093618030.382683442461104361.04266129453882873.9259816851010862E-0021.00291046193105986.9531208250249672E-3100.63855084315729183

How the period differs through all theta from 0->pi (dx=.01)

Conclusion

Given a bad initial guess might give noisy data

Simpson

$$\int_{0}^{\infty} x^{2} e^{-x} dx$$

•

Simpson method

An interesting pattern here

03

<u>T</u>

(a)
$$\int_{0}^{2} \frac{\exp(-x^{2})}{\sqrt{3-x}} dx;$$

(b)
$$\int_{0}^{1} \frac{dx}{1+x^2} = \frac{\pi}{4}$$
.

Investigate how your result depends on a number of random points.

$$\int_{-0.5}^{1} \left(\int_{-1}^{1} \sin^2\left(x^3 y^2\right) dx \right) dy$$

 \bigoplus

 \oplus