Data Visualization 201

Advanced concepts using OpenSource software

A. Tavant

LPP-28/03/2018

Introduction

Objectives and reminding

Introduction

Objectives and reminding

What do we want to look at?

- Electron anomalous axial transport
 - azimuthal instability ¹
 - near-wall conductivity
- ► Role of wall materials ²
 - Secondary electron emission
 - Dielectric relative permittivity

¹A. Ducrocq, J.C. Adam, A. Héron, G. Laval, Phys. Plasmas, 13, 102111 (2014)

²Goebel & Katz, Fundamentals of electric propulsion: Ion and Hall thrusters, Wiley (2008)

Kinetic simulation

Model Set-up

Electrostatic

- ► E from Poisson equation
- ► Imposed B

Monte-Carlo Collisions

- ▶ *e*/*n*: elastic, excitation, ionization
- \triangleright *i/n*: elastic & inelastic scattering

Particle In Cell (PIC)

- ▶ Magnetized electrons → Boris scheme
- ► Un-magnetized ions → Leapfrog scheme

Verified

- Unitary tests
- ▶ Benchmarks ^{1,2}

¹M. Turner et al., Phys. Plasmas, 20 (2013)

²J.P. Boeuf, soon to be published.

Preliminary results

Plasma potential

 $(\mathbf{R} - \theta)$ Simulation of the exit plan

Kinetic theory considerations

Electron drift instability

$$\omega \simeq k v_d \pm \frac{k c_s}{\sqrt{1 + k^2 \lambda_{De}^2}}$$
 (1)

Associated electron transport

► confirmed by 2D PIC for
$$X_e^{-1}$$

PIC:
$$\mu_{\mathrm{PIC}} = \frac{< v_{ extsf{e},z}>}{E_0}$$
Effective: $\mu_{\mathrm{eff}} = \frac{< n_e \mathbf{E} \cdot \mathbf{e}_{ heta}>}{n_e B_0 E_0}$

$$\mu_{\text{eff}} = \frac{\langle n_e \mathbf{E} \cdot \mathbf{e}_\theta \rangle}{n_e B_0 E_0}$$

Saturation:²
$$\mu_{\rm sat} = \frac{\sqrt{T_e/U}}{4\sqrt{3}B_0}$$

¹V. Croes et al., Plasma Sources Sci. Tech., 26, 034001 (2017)

²T. Lafleur, S.D. Baalrud, P. Chabert, Phys. Plasmas, 23, 053502 (2016)

Alternative propellants

presentation

What about the other propellants?

- ⇒ Parametric study with different propellant candidates
 - ▶ 4 gases: H_e , A_r , K_r and X_e
 - ► real chemistry or *X_e* chemistry only
 - Metallic or dielectric walls

AMU	4.003	39.95	83.8	131.3
Case 1: Dielectric walls with SEE	ا میں ا	(4.)	ا میر ا	ا میر ا
Case 2: Metallic walls without SEE	{ ^O He}	$\{\sigma_{Ar}\}$	$\{OKr\}$	{ ^O Xe}
Case 3: Metallic walls without SEE	$\{\sigma_{Xe}\}$			