Relatório do Algoritmo de Similaridade do Cosseno Aplicado em um Dataset de Jogos da Steam

Rodrigo Cavalheiro Dos Santos FATEC Rubens Lara – Baixada Santista Disciplina: Álgebra Linear – 2º CD

Docente: Prof. Alexandre Garcia de Oliveira

1 Introdução

A Steam é uma plataforma de distribuição de jogos digitais lançada em 2003 e, atualmente é considerada a maior plataforma de publicação e distribuição de jogos eletrônicos.

Esse projeto tem como objetivo explorar um dataset sobre jogos publicados na Steam desde o seu lançamento até o ano de 2019. Visando aplicar técnicas de álgebra linear, stopwords e TF-IDF (Term Frequency-Inverse Document Frequency) para calcular a similaridade do cosseno entre os jogos.

2 Seleção e Explicação do Dataset

Seleção do dataset pesquisado e estudado na plataforma Kaggle, buscando um dataset simples para facilitar o tratamento e com um número de jogos relevante.

A busca por um dataset com uma quantidade razoável de jogos e com poucas colunas para facilitar a exclusão de colunas insignificantes para o projeto foi uma tarefa demorada. Os principais motivos da escolha do dataset utilizado no projeto foram: quantidade de jogos (cerca de 27 mil), número de colunas (18 no total) e o fato do autor do dataset ter excluído a maioria dos programas que não são considerados jogos. O dataset não foi criado oficialmente pela Steam, foi criado por um estudante de ciência de dados para ele aplicar em trabalhos, projetos etc.

2.1 Explicando o Dataset

O dataset original é composto por 18 colunas, são elas:

1. appid

Número único utilizado para identificar cada título na plataforma e no dataset.

2. name

Título do jogo.

3. release date

Data de lançamento do jogo.

4. english

Se o jogo suporta o idioma inglês (a linha estará com o número 1 caso tenha suporte).

5. developer

Nome da desenvolvedora.

6. publisher

Nome da publicadora.

7. platforms

Em quais sistemas operacionais o jogo está disponível.

8. required age

Idade mínima recomendada.

9. categories

Categorias em que o jogo se encaixa, separadas por ponto e vírgula (single-player, co-op etc).

10. genres

Gêneros separados por ponto e vírgula (action, RPG etc.).

11. steampsy tags

Gêneros em que o jogo se encaixa por meio de votações da comunidade da Steam, separados por ponto e vírgula (multiplayer, indie etc.).

12. achievements

Número máximo de conquistas dentro do jogo.

13. positive ratings

Número de avaliações positivas da comunidade.

14. negative ratings

Número de avaliações negativas da comunidade.

15. average playtime

Tempo médio de jogo por usuário.

16. median playtime

Mediana do tempo de jogo por usuário.

17. owners

Números de usuários que possuem o jogo.

18. price

Preço total do jogo (ignorando promoções)

As únicas colunas com texto (string) são: name, developer, publisher, platforms, categories, genres e steampsy_tags. Todas elas, menos a coluna platforms e as demais sem string serão descartadas.

3 Tratando o Dataset

A primeiro passo dado após a seleção do dataset é tratá-lo devidamente para tornar o projeto mais simples e fácil tanto para desenvolver o algoritmo quanto para o usuário que irar avaliá-lo.

Nesse processo, foi utilizado a biblioteca Pandas do Python para exclusão de colunas indesejadas e remoção de caracteres fora da formatação ASCII como: \bigcirc R e $^{\text{TM}}$.

3.1 Stopwords

A aplicação da técnica de stopwords serve para eliminar palavras que se repetem constantemente, o que dificulta a aplicação da técnica TF-IDF que, no algoritmo foi feita antes do processo de stopwords. Como o dataset é uma lista de jogos, contendo gêneros e tags majoritariamente em inglês, foi importada uma biblioteca de stopwords em inglês. Também é feita a exclusão de algumas palavras que são comumente usadas no meio de jogos, que no código é chamada de 'custom_stopwords'.

4 Matriz TF-IDF

Primeiramente é feita a configuração do código para que seja feita a combinação dos textos (gêneros, categorias, desenvolvedor etc.) para cada título de jogos, ou seja, cada linha do dataset.

Após a aplicação das configurações, é feita a matriz TF-IDF do dataset modificado convertendo texto em números, destacando os termos mais importantes de cada jogo.

5 Insights da Matriz TF-IDF

Essa parte do código serve apenas para mostrar no console os seguintes itens:

- 1. Uma amostra dos textos originais e os que foram processados na matriz de 3 jogos aleatórios.
- 2. Mostra os 10 termos que mais aparecem na matriz.
- 3. Calcula a similaridade do cosseno entre 3 pares de jogos definidos, são eles: Call of Duty 2 e Call of Duty, Portal 2 e Portal, Left 4 Dead e Left 4 Dead 2.
- 4. Mostra os termos em comum entre cada jogo acima.

6 Análise dos Resultados

Alguns exemplos dos resultados são mostrados no console para o usuário, é visto que existe uma grande similaridade entre os primeiros jogos da franquia Call of Duty, tendo uma similaridade de 0.94, Portal tendo uma similaridade de 0.68 e Left 4 Dead uma similaridade de 0.83. Nota-se que, os jogos da franquia Portal são os que tem a menor similaridade, isso é causado pela falta de alguns termos entre os jogos, por mais que Portal 2 seja a continuação do primeiro jogo, alguns termos são adicionados ao jogo por meio dos usuários da comunidade da Steam, que seria a coluna 'steampsy_tags', e a desenvolvedora pode ter adicionado mais ou menos termos nos respectivos jogos.

7 Conclusão

O algoritmo de similaridade do cosseno com TF-IDF funcionou bem para identificar o quanto os jogos da Steam se parecem, com base nas informações de gêneros, categorias, desenvolvedora, publicadora e outras descrições.

Comparações entre jogos da mesma franquia, como Call of Duty, Portal e Left 4 Dead, mostraram resultados condizentes com o esperado, revelando que os jogos realmente compartilham vários elementos em comum, mesmo que tenham algumas diferenças nos termos usados.

Durante o desenvolvimento, foi essencial limpar e preparar os dados, como tirar colunas irrelevantes e remover palavras repetitivas (stopwords), para que a análise fosse mais precisa. A junção dos textos das colunas ajudou bastante a representar melhor cada jogo e facilitou a criação da matriz TF-IDF.

Além disso, o algoritmo possui uma interface extremamente intuitiva e funcional, mostrando alguns jogos aleatórios para pesquisar, permite que o usuário não precise inserir o nome completo do jogo etc. Também conta com um gráfico de barras para melhor visualização do ranking dos 10 jogos mais similares referente ao escolhido.

8 Referências Bibliográficas

Dataset Original:

https://www.kaggle.com/datasets/nikdavis/steam-store-games/data

TF-IDF:

https://letsdatascience.com/tf-idf/

Stopwords:

https://www.geeksforgeeks.org/removing-stop-words-nltk-python/