

Contents • Tizen Device HAL and Peripheral I/O • Tizen Peripheral I/O • Tizen Connectivity • Servo Motor Control • Gyroscope Sensor • Voice Recognition Module • System Integration

DIGNSYS SPI Tizen Native API Opens a SPI slave device. int peripheral_spi_open (int bus, int cs, peripheral_spi_h *spi) Closes the SPI slave device int peripheral_spi_close (peripheral_spi_h spi) Sets the SPI transfer mode. int_peripheral_spi_set_mode (peripheral_spi_h spi, peripheral_spi_mode_e mode) int peripheral spi set bit order (peripheral spi h spi, peripheral spi bit order e bit order) Sets the number of bits per word. int_peripheral_spi_set_bits_per_word (peripheral_spi_h spi, uint8_t bits) Sets the frequency of the SPI bus. int peripheral_spi_set_frequency (peripheral_spi_h spi, uint32_tfreq_hz) Reads the bytes data from the SPI slave device. int peripheral_spi_read (peripheral_spi_h spi, uint8_t *data, uint32_t length) Writes the bytes data to the SPI slave device int peripheral_spi_write (peripheral_spi_h spi, uint8_t*data, uint32_t length) Exchanges the bytes data to the SPI slave device. $int_peripheral_spi_transfer (peripheral_spi_h spi, uint8_t*txdata, uint8_t*rxdata, uint32_t length)$ 8 DSA5105v10 Tizen on Anchor3 (Part II)

Contents

DIGNSYS www.dignsys.com

- ◆ <u>Tizen Device HAL and Peripheral I/O</u>
 - Tizen Peripheral I/O
 - <u>Tizen Connectivity</u>
- Servo Motor Control
- Gyroscope Sensor
- Voice Recognition Module
- System Integration

10

Bluetooth Porting OAL

- OAL scripts are run during the Bluetooth stack start and end
 - bt-stack-up.sh
 - This script file is used to run the hardware specific script files to power up or star t the Bluetooth hardware along the background processes, such as bluez and o bexd.
 - bt-stack-down.sh
 - This script file is used to run the hardware specific script files to power down or stop the Bluetooth hardware along with the background processes, such as blue z and obexd.
 - bt-reset-env.sh
 - This script file is used to reset the Bluetooth chip by running the bt-stack-down.s
 h script along with the resource clean up.

13

WLAN Porting OAL

- wlan.sh file (located in /usr/bin/wlan.sh)
 - which is used to load or unload the Wi-Fi driver firmware.
- Using the /usr/bin/wlan.sh script:
 - wlan.sh start:
 - Power up the Wi-Fi driver in station mode by loading the driver and running the f irmware file.
 - wlan.sh p2p:
 - Power up the Wi-Fi driver in Wi-Fi Direct mode by loading the driver and running the firmware file.
 - wlan.sh softap:
 - Power up the Wi-Fi driver in Soft AP mode by loading the driver and running the firmware file.
 - wlan.sh stop:
 - Power down the Wi-Fi driver.

15

DSA5105v10 Tizen on Anchor3 (Part II)

Contents

- Tizen Device HAL and Peripheral I/O
- Servo Motor Control
 - Servo Motor and PWM
 - PWM Peripheral I/O
 - Practice PWM Motor Control
- Gyroscope Sensor
- Voice Recognition Module
- System Integration

16

cycle_ns)
cycle_ns)
cycle_ns)
polarity_e polarity)
oolarity_e polarity)

DSA5105v10 Tizen on Anchor3 (Part II)

29

Contents Tizen Device HAL and Peripheral I/O Servo Motor Control Gyroscope Sensor Gyroscope Introduction SPI Peripheral I/O Practice Gyroscope Voice Recognition Module System Integration

Gyro Scope

Gyroscope

- A device that uses Earth's gravity to help determine orientation
- It can measure rotation from the balanced position
- A gyroscope is intended to determine an angular position

Accelerometer

- A device designed to measure non-gravitational acceleration
- Accelerometer gives users a direction of gravity

31

DSA5105v10 Tizen on Anchor3 (Part II)

MPU-9250

- MPU-9250 is a 9-axis MotionTracking device
 - 3-axis gyroscope, 3-axis accelerometer, 3-axis magnetometer
 - Multi-chip module (MCM) consisting of two dies integrated into a single package
 - InvenSense 3-Axis gyroscope and the 3-Axis accelerometer
 - AK8963 3-Axis magnetometer

Feature

- Internal Digital Motion Processing[™] (DMP[™])
- 3-axis MEMS gyroscope
- 3-axis MEMS accelerometer
- 3-axis MEMS magnetometer
- Temperature sensor

Host Interface

- 1MHz SPI serial interface for communicating with all registers
- 400kHz Fast Mode I2C for communicating with all registers

32

Contents

- Tizen Device HAL and Peripheral I/O
- Servo Motor Control
- ◆ Gyroscope Sensor
 - Gyroscope Introduction
 - SPI Peripheral I/O
 - Practice Gyroscope
- Voice Recognition Module
- System Integration

35

DSA5105v10 Tizen on Anchor3 (Part II)

DIGNSYS SPI Tizen Native API Opens a SPI slave device. int_peripheral_spi_open (int bus, int cs, peripheral_spi_h *spi) Closes the SPI slave device. int peripheral_spi_close (peripheral_spi_h spi) Sets the SPI transfer mode. int_peripheral_spi_set_mode (peripheral_spi_h spi, peripheral_spi_mode_e mode) int_peripheral_spi_set_bit_order(peripheral_spi_h spi, peripheral_spi_bit_order_e bit_order) Sets the number of bits per word. int_peripheral_spi_set_bits_per_word (peripheral_spi_h spi, uint8_t bits) Sets the frequency of the SPI bus. int_peripheral_spi_set_frequency(peripheral_spi_h spi, uint32_t freq_hz) Reads the bytes data from the SPI slave device. int_peripheral_spi_read (peripheral_spi_h spi, uint8_t*data, uint32_t length) Writes the bytes data to the SPI slave device. int peripheral_spi_write (peripheral_spi_h spi, uint8_t*data, uint32_t length) Exchanges the bytes data to the SPI slave device. $int_peripheral_spi_transfer (peripheral_spi_h spi, uint8_t*txdata, uint8_t*rxdata, uint32_t length)$ 36 DSA5105v10 Tizen on Anchor3 (Part II)


```
Access SPI Device: Initialize (2)

ret = peripheral_spl_open(bus, 0, &MPU9250_H);
if (PERIPHERAL_ERROR_NONE |= ret) {
            LOGE(*spl.open failed.*%s*, get_error_message(ret));
            return -1;
        }

ret = peripheral_spl_set_mode(MPU9250_H, PERIPHERAL_SPL_MODE_0);
if (PERIPHERAL_ERROR_NONE |= ret) {
            LOGE(*peripheral_spl_set_endef failed.*%s*, get_error_message(ret));
            goto error_after_open;
        }

ret = peripheral_spl_set_bl_order(MPU9250_H, PERIPHERAL_SPL_BIT_ORDER_MSB);
if (PERIPHERAL_ERROR_NONE |= ret) {
            LOGE(*peripheral_spl_set_bl_order failed.*%s*, get_error_message(ret));
            goto error_after_open;
        }

ret = peripheral_spl_set_bl_order(MPU9250_H, MPU9250_BPW);
if (PERIPHERAL_ERROR_NONE |= ret) {
            LOGE(*peripheral_spl_set_bls_per_word failed.*%s*, get_error_message(ret));
            goto error_after_open;
        }

ret = peripheral_spl_set_frequency(MPU9250_H, MPU9250_SPEED);
if (PERIPHERAL_ERROR_NONE |= ret) {
            LOGE(*peripheral_spl_spl_set_frequency failed.*%s*, get_error_message(ret));
            goto error_after_open;
        }

LOGI(*%s success: %d*, _func__, ref_count);
        ref_count+*;
        return 0;

setup SPI for MPU-9250

error_after_open;

JOG(*%s error: %d*, _func__, ref_count);
        peripheral_spl_cose(MPU9250_H;
            MPU9250_H = NULL;
            return -1;
```

```
DIGNSYS
Access SPI Device: Read/Write
static int resource_mpu9250_read_byte(uint8_t addr, uint8_t *val)
                                                                      static int resource_mpu9250_write_byte(uint8_t addr, uint8_t val)
                                                                        unsigned char rx[2] = \{0, \};
unsigned char tx[2] = \{0, \};
                retv_if(MPU9250_H == NULL, -1);
retv_if(val == NULL, -1);
                                                                                     retv_if(MPU9250_H == NULL, -1);
                                                                        tx[1] = addr;
tx[0] = val; /* build send frame. */
  addr |= 0x80; /* set read flag. */
tx[1] = addr; /* build send frame. */
                                                                        peripheral_spi_transfer(MPU9250_H, tx, rx, 2);
  peripheral_spi_transfer(MPU9250_H, tx, rx, 2);
  *val = rx[0] & 0xFF;
                                        void resource_mpu9250_spi_fini(void)
                                                       return:
                                                       if (ref_count == 0) {
                                                                       peripheral_spi_close(MPU9250_H);
MPU9250_H = NULL;
40
                                                                                        DSA5105v10 Tizen on Anchor3 (Part II)
```


Contents

- Tizen Device HAL and Peripheral I/O
- Servo Motor Control
- Gyroscope Sensor
 - Gyroscope Introduction
 - SPI Peripheral I/O
 - Practice Gyroscope
- Voice Recognition Module
- System Integration

41

DSA5105v10 Tizen on Anchor3 (Part II)

Measure Gyro & Accel value

- Step to Measure Gyro & Accel value
 - 1. Initialize SPI Peripheral I/O (resource_mpu9250_spi_init())
 - 2. Initialize MPU-9250 device (resource_mpu9250_dev_init())
 - 3. Start MPU-9250 measure (resource_mpu9250_start_measure())
 - 4. Read Gyro & Accel value from register (mpu9250_gyro_read(), (mpu9250_accel_read())
 - 5. Display read value (LOGI)
 - 6. Finish
 - Stop MPU9250 measure(resource_mpu9250_stop_measure())
 - Finish SPI Peripheral I/O(resource_mpu9250_spi_fini())
- Reference

https://github.com/bolderflight/MPU9250

https://blueninja.cerevo.com/wp-content/themes/blueninja/docs/reference/files.html

42

DSA5105v10 Tizen on Anchor3 (Part II)

(주) 다인시스


```
Practice Gyro & Accel (Continue)

src/resource_spi_gyro.c

mpu9250_compute_axis_angle(messure_acel(0) value, measure_acel(1) value, measure_acel(1) value, measure_acel(1) value, formation, accel(1) value, measure_axangl(1) value);

LOG(("no");
sleep(1);

resource_mpu9250_stop_measure();
resource_mpu9250_stop_measure(
```

Verify Gyro Sensor Operation Application (2375): resource, spi_gyro.c: spi_gyro_test_main(708) > spi_gyro_test_main starting... I/ANCHOR (2375): resource, spi_gyro.c: resource mpug250, spi_intl(149) > resource mpug250, spi_intl model_name: anchor3, bus: 0 I/ANCHOR (2375): resource, spi_gyro.c: resource mpug250, spi_intl(149) > resource mpug250, spi_intl model_name: anchor3, bus: 0 I/ANCHOR (2375): resource, spi_gyro.c: resource mpug250, dev_intl(276) > resource mpug250, de

Contents

- ◆ Tizen Device HAL and Peripheral I/O
- Servo Motor Control
- Gyroscope Sensor
- **♦ Voice Recognition Module**
 - V3 Voice Recognition Module
 - UART Peripheral I/O
 - Practice Voice Recognition
- System Integration

46 DSA5105v10 Tizen on Anchor3 (Part II)

(주) 다인시스

DIGNSYS

ELECHOUSE Voice Recognition Module

- Compact and easy-control speaking recognition board.
- This product is a speaker-dependent voice recognition module.
- ◆ It supports up to 80 voice commands in all.
- Max 7 voice commands could work at the same time.

47

DSA5105v10 Tizen on Anchor3 (Part II)

Terminology

- VR3: Voice Recognition Module V3
- Recognizer
 - A container where acting voice commands (max 7) were loaded.
 - Core part of voice recognition module.
- Recognizer index
 - Max 7 voice commands could be supported in the recognizer.
 - One index corresponds to one region: 0~6
- Train
- The process of recording your voice commands
- Load
- Copy trained voice to recognizer
- Voice Command Record
 - The trained voice command store in flash, number from 0 to 79
- Signature
 - Text comment for record
- Group
 - Help to manage records, each group 7 records.
 - System group and user group are supported.

48

Train One Record

- ◆ Train One Record (command: 20)
 - Train without Signature
- ◆ Format: | AA | 03+n | 20 | R0 | ... | Rn | 0A |
- Return
 - | AA | LEN | 0A | RECORD | PROMPT | 0A |
 - | AA | 05+2*n | 20 | N | R0 | STA0 | ... | Rn | STAn | SIG | 0A |
- Example
 - Command 1번: On
 - AA 03 20 01 0A
 - Command 2번 : Off
 - AA 03 20 02 0A
 - Command 3번 : Forward
 - AA 03 20 03 0A
 - Command 4번 : Backword
 - AA 03 20 04 0A

51

DSA5105v10 Tizen on Anchor3 (Part II)

Train One Record and Set Signature

- ◆ Train One Record and Set Signature (command : 21)
 - Train with signature
- Format :
 - | AA | 03+SIGLEN | 21 | RECORD | SIG | 0A | (Set signature)
- Return
 - | AA | LEN | 0A | RECORD | PROMPT | 0A | (train prompt)
 - | AA | 05+SIGLEN | 21 | N | RECORD | STA | SIG | 0A |
- Example
 - Command 1번, Signature on (signature 'on' => ASCII : 6F 6E)
 - AA 05 21 01 6F 6E 0A
 - ◈ Voice Command : "시작"
 - Command 2번, Signature off (signature 'off' => ASCII: 6F 66 66)
 - AA 06 21 02 6F 66 66 0A
 - Voice Command : "중지"
 - ▶ Command 3번, Signature Forward (signature 'fw' => ASCII : 66 77)
 - AA 05 21 03 66 77 0A
 - ◈ Voice Command : " 앞으로"
 - Command 4번, Signature Backward (signature 'bw' => ASCII : 62 77)
 - AA 05 21 04 62 77 0A
 - ⋄ Voice Command : " 뒤로"

52


```
UART Read Operation

| Dood resource_read_data(uint8_t*data, uint32_t length, bool blocking_mode) {
| Int try_again = 0; | peripheral_error_e ret = PERIPHERAL_ERROR_NONE; | refurn false; | while (1) {
| // read length byte from UART | ret = peripheral_uarf_neadig_uart_h. data, length); | return false; | return true; | /// read length byte from UART | ret = peripheral_uarf_neadig_uart_h. data, length); | return true; | /// red length byte grown UART | ret = peripheral_uarf_neadig_uart_h. data, length); | return true; | /// red length byte grown UART | return true; | /// red length byte grown UART | return true; | /// red length byte grown UART | return true; | /// red length byte grown UART | return false; | /// red length byte grown UART | return false; | /// return with false | LOGE(TV) continue; | /// return with false | /// return
```


Contents

- Tizen Device HAL and Peripheral I/O
- Servo Motor Control
- Gyroscope Sensor
- **♦ Voice Recognition Module**
 - V3 Voice Recognition Module
 - UART Peripheral I/O
 - Practice Voice Recognition
- System Integration

65

DSA5105v10 Tizen on Anchor3 (Part II)

DIGNSYS www.dignsys.com

Practice Voice Recognition

- Step to Practice Voice Recognitioni
 - 1. Training Voice on PC: on/off/forward/backward
 - 2. Initialize UART Peripheral I/O (resource_serial_init())
 - 3. Initialize VR3 device (resource_VR_setup())
 - Clear VR (handle_VR_clear())
 - Load each record (handle_VR_load_one())
 - 4. Start voice recognition(handle_VR_loop_check())
 - 5. Finish
 - Finish UART Peripheral I/O(resource_serial_fini())
- Reference

https://github.com/elechouse/VoiceRecognitionV3 https://www.elechouse.com/elechouse/images/product/VR3/VR3_manual.pdf

66

DSA5105v10 Tizen on Anchor3 (Part II)

(주) 다인시스

```
Test Voice Recognition

• /src/resource_uart_vr.c

• Caution : The Voice must trained prior to test

void uart_vr_test_main(void)
{
    int loop=0,
    bool ret = true,
    ret = resource_serial_init();
    if (ret == false) {
        LOGE(*Falled to resource_serial_init*);
        return;
    }
        Implement function to setup recognizer

/* setup Elechouse VR3 1/
    resource_VR_setup();

LOGI(*Start Voice Recognition Test : speak...*);
    for (loop=0, loop=650(loop+1){
        for (loop=0, loop-650(loop+1){
            loop_check();
        }
        resource_serial_fm();
        LOGI(*Voice Recognition Test Finished...*);
}

DSA5105v10 Tizen on Anchor3 (Part II)
```

```
Handle VR3 Record

| Include statio | I
```



```
Verify Voice Recognition Operation

| IANCHOR (2535): resource_uart_vr.c: resource_serial_init(51)>....-resource_serial_init....
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(557) > Electhouse Voice Recognition V3 Module
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(557) > Electhouse Voice Recognition V3 Module
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(567) > Electhouse Voice Recognition V3 Module
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(560) > Recognition V3 Module
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(560) > Recognition V3 Module
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(570) > Recognition V3 Module
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(570) > Welcord loaded
| IANCHOR (2535): handle_vr3.c: resource_VR_setup(570) > Welcord loaded
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Recognition Test: speak...
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 1 on |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Recognition Test: speak...
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 1 on |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 1 on |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 2 off |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > MoNE 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Mone 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Mone 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Mone 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Mone 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Mone 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Mone 3 of |
| IANCHOR (2535): handle_vr3.c: resource_VR_print(VR(618) > Mone
```

Contents Tizen Device HAL and Peripheral I/O Servo Motor Control Gyroscope Sensor Voice Recognition Module System Integration DSA5105v10 Tizen on Anchor3 (Part II)

System Integration PWM Motor Control by Voice Recognition PWM Motor Control by Gyro Sensor DSA5105v10 Tizen on Anchor3 (Part II)

	, D	IGNSYS w.dignsys.com
	질의 응답	
73	DSA5105v10 Tizen on Anchor3	(Part II)