Let R_1, R_2, ..., R_n be rings. Prove that the Cartesian product

$$R_1 \times R_2 \times \cdots \times R_n$$

is a ring under component-wise addition and multiplication. Show that if each R_i is a ring with identity, then so also is the product.

$$(a_1, a_{21}, ..., a_n) + (b_1, b_2, ..., b_n) = (a_1 + b_1, a_2 + b_2, ..., a_n + b_n)$$

 $(a_1, a_{21}, -, a_n) (b_1, b_{21}, -, b_n) = (a_1b_1, a_2b_2, ..., a_nb_n)$

Let $R = Z \times Z$, and r, s constant integers. Define the maps on R as

(a,b) + (c,d) = (a+b,c+d), and
(a,b)(c,d) = (ad + bc + rac, bd + sac).
$$(a,b) = (-a,b) = (-a,b)$$

(a) Prove that R is a ring under these operations. commutative:

$$(a,b)(c,d)(e,f) = (ad+bc+vac, bd+sac)(e,f)$$

$$= ((ad+bc+vac)f + (bd+sac)e + v(ad+bc+vac)e,$$

$$(bd+sac)f + s(ad+bc+vac)e$$

$$(a,b)((c,d)(e,f)) = (a,b)(cf+de+vce) + vac(cf+de+vce),$$

$$= (a(df+sce) + b(cf+de+vce) + vac(cf+de+vce),$$

$$= (a(df+sce) + b(cf+de+vce) + vac(cf+de+vce),$$

$$= (a(df+sce) + b(cf+de+vce) + vac(cf+de+vce),$$

(b) Prove that R is an integral domain if and only if r^2 + 4s is not a perfect square.

"
$$= \frac{1}{\sqrt{2} + 4s} \text{ in a perfect square.}$$

$$\chi^2 - \chi \chi - s = (\chi - \chi)(\chi - \beta)$$

$$\chi + \beta = \chi, \quad \chi \beta = -s$$

$$(1, -\chi)(1, -\beta) = (0, 0)$$

$$(1, -\chi)(1, -\beta) = (0, 0)$$

$$(2, -\chi)(1, -\beta) = (0, 0)$$

$$(3, -\chi)(1, -\beta) = (0, 0)$$

$$(4, -\chi)(1, -\beta) = (0, 0)$$

$$(5, -\chi)(1, -\beta) = (0, 0)$$

$$(6, -\chi)(1, -\beta) = (0, 0)$$

$$(7, -\chi)(1, -\beta) = (0, 0)$$

$$(9, 0)$$

$$(1, -\chi)(1, -\beta) = (0, 0)$$

Prove that $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$ is an integral domain. Argue that $\mathbb{Z}[\sqrt{5}]$ contains infinitely many units. Prove that $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$ is a field.

Domain:
$$72[5] \subseteq \mathbb{R}$$
 closure under -).

 $(a+b\sqrt{5}) - (c+d\sqrt{5}) = (a-c) + (b-d)\sqrt{5}$
 $(a+6\sqrt{5})(c+d\sqrt{5}) = (ac+56d) + (ad+bc)\sqrt{5}$

commutative commutative identity >> 1

 $non-zero$ zero divisors -> \times

Units in $72[\sqrt{5}]$: $(a+b\sqrt{5})(c+d\sqrt{5}) = 1$
 $u(a+6\sqrt{5})(a-b\sqrt{5}) = 1$
 $u(a+6\sqrt{5})(a-b\sqrt{5}) = 1$
 $u(a^2-5b^2) = 1$
 $u(a+6\sqrt{5})(a-b\sqrt{5}) = 1$

$$a^{2} = 5b^{2} = 1$$
 $9^{2} - 5 \times 4 = 1$

$$a = \pm 1, b = 0$$
 $a = \pm 1, b = 0$
 $a = \pm 1, b$

$$\frac{7}{9} = -1$$

$$(2+\sqrt{5})(2-\sqrt{5}) = -1$$

$$(2+\sqrt{5})(-2+\sqrt{5}) = 1$$

$$(2+\sqrt{5})^{4}(-2+\sqrt{5})^{4} = 1$$

$$(2+\sqrt{5})^{4}(-2+\sqrt{5})^{4} = 1$$

2+ 5 > "fundamental unit" Algebraic number theory H[(5) -> number rings 1,55,75 1,35,75 1,35,75 1,35,75 $\begin{cases} a+b\sqrt{5} & a,b \in \mathbb{Q} \end{cases} \hat{u} \quad a \quad \text{field.}$ $a+b\sqrt{5} + 0 \quad \frac{1}{a+b\sqrt{5}} = \frac{a-b\sqrt{5}}{a^2-5b^2} \quad \text{denom } \neq 0 \text{ rince}$ $\sqrt{5} \hat{u} \quad \text{irrational}$ Prove that $\mathbb{Z}[\sqrt{-5}] = \{a+b\sqrt{-5} \mid a,b \in \mathbb{Z}\}$ is an integral domain. Find all the units in this ring. Prove that $\mathbb{Q}[\sqrt{-5}] = \{a+b\sqrt{-5} \mid a,b \in \mathbb{Q}\}$ is a field.

Only units:
$$\{1,-1\}$$

Prove that the set Z_n of integers modulo n is a commutative ring with identity. What are the units of Z_n? How many units? Prove that for gcd(a,n)=1, we have $a^{\phi}(n) \equiv 1 \pmod{n}$. What if n is prime?

Let R be a commutative ring with identity. Prove that the set R[x] of all univariate polynomials with coefficients from R is again a commutative ring with identity (under polynomial addition and multiplication).

Let *R* be a commutative ring. An element $a \in R$ is said to be *nilpotent* if $a^n = 0$ for some $n \in \mathbb{N}$.

- (a) Given an example of a non-zero nilpotent element in a ring.
- (b) Prove that if a and b are nilpotent, then so also is a + b.
- (c) Let R be with identity. Prove that if a is nilpotent and u is a unit, then a + u is a unit.

(a) take
$$R = 7L_{4}$$
, $\alpha = 2$
(b) $\alpha = 0$, $b^{n} = 0$
 $(\alpha + b)$ $m + n$ \rightarrow binomial expansion

- (a) Prove that there cannot be any non-zero homomorphism $\mathbb{Z}_n \to \mathbb{Z}$ for any $n \in \mathbb{N}$.
- (b) Prove that there exists a non-zero homomorphism $\mathbb{Z}_m \to \mathbb{Z}_n$ taking $[1]_m \mapsto [1]_n$ if and only if $n \mid m$.
- (c) Prove that the only non-zero homomorphism of $\mathbb{Z} \to \mathbb{Z}$ is the identity map.

(b)
$$f: \mathcal{I}_m \rightarrow \mathcal{I}_N$$

 $f(1) = 1 \qquad \Rightarrow n \mid m$
 $f(1+1) = f(1) + f(1) = 1 + 1 = 2$
 $f(1+1) = f(1) + f(1) = 1 + 1 = m$
 $f(n) = 0 \qquad m = 0 \pmod{n}$

Define an operation \circ on $G = \mathbb{R}^* \times \mathbb{R}$ as $(a,b) \circ (c,d) = (ac,bc+d)$. Prove that (G,\circ) is a non-abelian group.

$$(a,b)^{-1} = (\frac{1}{a})^{-\frac{b}{a}}$$

$$not Abelian$$
Give an example

Let G be the set of all points on the hyperbola xy = 1 along with the point $(0,\infty)$ at infinity. Define (a,1/a) + (b,1/b) = (a+b, 1/(a+b)). Prove that G is an Abelian group under this operation.

Let G be a (multiplicative) group, and H, K subgroups of G. Prove that:

- (a) $H \cap K$ is a subgroup of G.
- (b) $H \cup K$ need not be a subgroup of G.
- (c) $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.
- (d) Define $HK = \{hk \mid h \in H, k \in K\}$. Define KH analogously. Prove that HK is a subgroup of G if and only if HK = KH.

(a) Closure under mul and inverse.

(b) HUK need not be a rubgh.

$$G = (74, +) H = (274, +) K = (374, +) K =$$

(c)">"HUK is a nowly of G. Assume H & K To show that K C H. 子 helt, h年K. Take any ke K. hk EHUK or hk EK $hk \in H$ h(kh) EK hEK $(h)k = k \in H$

Let G be a group. Let $\operatorname{Aut} G$ denote the set of all automorphisms of G. Prove that $\operatorname{Aut} G$ is a group under function composition.

Prove that Aut $\mathbb{Z}_n \cong \mathbb{Z}_n^*$.

Let p be a prime. Prove that $\operatorname{Aut} \mathbb{Z}_p^* \cong \mathbb{Z}_{p-1}^*$.

Let G be a non-abelian group, and $a, b \in G$. Prove that ord(ab) = ord(ba).

Finite (not nec. abelian)

ord (ab) = M

ord (ba) = N

(ab) = e

(ba) = b

$$\Rightarrow$$
 (ba) = e

Likewise, $m(n)$
 \Rightarrow $m = n$

Let G be a finite group, and $h = \operatorname{ord}(a)$ for some $a \in G$. Prove that $\operatorname{ord}(a^k) = \frac{h}{\gcd(h,k)}$ for all $k \in \mathbb{Z}$.

$$h = \operatorname{ord}(a) = f \quad \operatorname{ord}(a^{k}) = \frac{h}{\operatorname{gcd}(h, k)}$$

$$\operatorname{ord}(a^{k}) = l.$$

$$\operatorname{ch} \frac{k}{\operatorname{gcd}(h, k)} = e$$

$$\Rightarrow l \mid \frac{h}{\operatorname{gcd}(h, k)} \mid \frac{k}{\operatorname{gcd}(h, k)}$$

Let G_1, G_2, \dots, G_n be groups and $G = G_1 \times G_2 \times \dots \times G_n$. Let each G_i be finite of order m_i . Establish that G is cyclic if and only if each G_i is cyclic and $\gcd(m_i, m_j) = 1$ for $i \neq j$.

Let G be a finite group. The smallest positive integer n such that $a^n = e$ for all $a \in G$ is called the *exponent* of G, denoted $\exp(G)$. Prove that:

- (a) $\exp(G) = \operatorname{lcm}(\operatorname{ord}(a) \mid a \in G)$.
- **(b)** $\exp(G)|\operatorname{ord}(G)$.
- (c) If G is abelian, then there exists an element of G of order equal to $\exp(G)$.
- (d) If G is abelian, and exp(G) = ord(G), then G is cyclic.
- (e) Parts (c) and (d) do not necessarily hold if G is not abelian.