

Especialização em Análise de Dados como Método de Apoio às Políticas Públicas

Disciplina: Análise Exploratória e Visualização de Dados Professor: Marcelo Montillo Provenza

ATIVIDADE 01

QUESTÃO 01

O quadro abaixo apresenta o número de homicídios e a população de quatro regiões brasileiras em um determinado ano.

Região	Homicídio	População	Taxa
Α	3.089	6.521.253	
В	1.472	2.156.904	
С	369	235.604	
D	2.561	4.562.358	

a) Calcule a taxa de homicídios por 100 mil habitantes para cada região.

Região A	Região B	Região C	Região D
3.089 - 6.521.253	1.4+2 2.156.904	369 —— 235.604	2561 — 4.562.358
A 100.000	B — 100.000	C —— 100.000	D 100.000
A _ 3089 00,000	B _ 147,200,000	C _ 36900.000	D_ 256100,000
6. 524. 253	2.156.904	235.604	4.562.358
A = 47,37	B = 68,56	C = 156,62	D 2 56, 13

b) Se a Região B reduzir seus homicídios em 15%, qual será a nova taxa?

c) Faça um comentário geral do quadro sobre as quatro regiões.

Uma leitura simplificada da tabela, considerando-se somente o valor absoluto de homicídios, poderia levar a conclusão equivocada de que a Região A é a mais perigosa. Porém, após calcular a taxa de homicídios por 100 mil habitantes, nota-se que a Região C é a que possui a maior taxa, mesmo sendo a que possui menor quantidade de homicídios. Isso ocorre devido a proporção entre homicídios e o tamanho da população, fazendo com que a Região A tenha uma taxa 3 vezes menor do que a Região C.

Especialização em Análise de Dados como Método de Apoio às Políticas Públicas

Disciplina: Análise Exploratória e Visualização de Dados Professor: Marcelo Montillo Provenza

QUESTÃO 02

Considere o gráfico abaixo que apresenta a distribuição das alturas (em centímetros) dos alunos em uma escola no ano letivo de 2015.

a) Identifique e classifique a variável de interesse.

A variável de interesse é a **estatura dos alunos** e ela é classificada como sendo uma **variável quantitativa contínua**.

b) Calcule a média, mediana e moda.

media
$$_{=}$$
 154.4 + 158.9 + 162.11 + 166.8 + 170.5 + 174.3 $_{=}$ 6520 $_{=}$ 163

4+9+11+8+5+3

40

mediana \Rightarrow 4+9+11+8+5+3=40 \Rightarrow mediana entre 20 e 21

mediana $_{=}$ 162+162 $_{=}$ 162

moda = 162

QUESTÃO 03

O quadro a seguir apresenta a distribuição de frequências relativas a uma variável quantitativa contínua, organizada por classes. Algumas informações estão ausentes. Complete o quadro abaixo.

Classes	Fr Abs	Fac Abs	Fr (%)	Fac (%)
5 10	4	4	8	8
10 - 15	12	16	24	32
15 - 20	13	29	26	58
20 - 25	19	48	38	96
25 30	2	50	4	100
Total	50			

Especialização em Análise de Dados como Método de Apoio às Políticas Públicas

Disciplina: Análise Exploratória e Visualização de Dados Professor: Marcelo Montillo Provenza

Classe 5 10	Classe 10 15	classe 15 - 20
Fr = 4 = Fac abs abs	# = 16-4=12	Fr = 58-32 = 26 %
-03		Fr = Fraks x 100
Fr (%) 4 100 8%	Fac = 24+8= 32%	total
5Ø		26 = 1 . 100 = 100 x = 1.300 => x = 1
		50
		Fac = 16+13 = 29%
		abs
classe 20 - 25	classe 25 1 30	
Fac = 58+38 = 96	fr = 100 - 96 = 4%	
	Fr = Frabs x 100 > 4 =	7 . 100 = 100 x = 200 = 2 = 2
	total	50
	Fac = 48+2 = 50	
	alas	

QUESTÃO 04

Os desenhos esquemáticos a seguir mostram as distribuições das notas de três classes A, B e C. Analise-os e descreva o comportamento dessas três distribuições.

- Classe A
- A turma possui média aproximadamente igual a 8, ou seja alta.
- A variedade de notas é pequena, uma vez que o retângulo da box é pequeno.
- A assimetria vista entre os bigodes, com o esquerdo maior, demonstra que alguns alunos tiraram notas muito baixas (próximo a 3).
- Não há outliers.
- Classe B
- - A turma possui média aproximadamente igual a 4,5, ou seja baixa.
- A assimetria vista entre os bigodes, com o direito maior, demonstra que alguns alunos tiraram notas muito altas (próximo a 9,5). O que mostra um cenário contrário ao verificado na Classe A.
- Há um outlier baixo, próximo a 1.
- Classe B
- - A turma é que possui menor média, aproximadamente igual a 3,5.
- Diferente das outras duas classes, o gráfico é simétrico, mostrando homogeneidade nas notas.
- Não há outliers.