hw8	● Graded
Student	
Giancarlos Marte	
Total Points	
35.5 / 40 pts	
Question 1	
Chomsky Normal Form	9 / 9 pts
✓ - 0 pts Correct	
Question 2	
Algorithm About DFAs	6 / 10 pts
✓ - 2 pts decider behavior incorrect; didnt construct DFA that accepts all strings with a single	gle B char (from hw1)
 ✓ - 2 pts decider behavior incorrect; should compare input DFA to DFA that accepts all stribution hw1) using EQ_DFA decider 	ings with a single B char (from
Question 3	
Algorithm About PDAs	10 / 10 pts
✓ - 0 pts Correct	
Question 4	
Regular and Decidable?	9.5 / 10 pts
 ✓ - 0.5 pts Incomplete termination argument 	
Did not state that decider halts	
Question 5	
readme	1 / 1 pt

✓ - 0 pts Correct

1) Chomsky Normal Form

Given CFG:

Step 1: New start var

Step 2: remove &

- · E-T | E-T |-T
- ·To TXF/F
- · F > L | F 1L
- · L->x/1/(E)
- .5.→E
- · E-T | E-T |-T
- · T-> TXF/F
- · F > L | F 1 L
- · L->x/1/(E)
- ·50→E
- · E->T | E-T |-T
- ·T-> TXF/F
- · F > L | F 1 L
- · L->x/1/(E)

Step 3: remove A-B

- .50→E
- · E->T | E-T | -T
- ·T-> TXF/F
- · F > L | F 1 L
- · L->x/1/(E)

- · 5. → Tx F| X| 1 (E) | F^L|E-T|-T
- · E > T x F | X | \ (E) | F ^ L | E T | T
- •T-> TXF | X | 11 (E) | F^L
- F -> X/1/(E)/F^L
- · L->x/1/(E)

Step 4: split UP RHS > 2

- . S. → Tx F|X|1| (E) | F^L|E-T|-T
- · E > Tx F| X | (E) | F ^ L | E-T | T
- •T→ TxF|X|11(E)|F^L
- · F → X | | (E) | F ^L
- · L->x/1/(E)

- · A -> xF
- · B -> E)
- · (>1L
- D → E-
- → S, > TA/x/1/(B) FC/DT/-T
 - · E -> TA | X | I | (B | FC | DT | -T
 - · T-> TA XIII (B | FC
 - · F -> x II | (B | FC
 - · LaxIII (B

Step 5: Replace all terminals

- . A → ×F
- · B -> E)
- · C>1L
- D → E-
- · S, → TA | x | 1 | (B | FC | DT | -T
- · E -> TA | XII (B | FC | DT |-T
- . T-> TA | XII (B | FC
- · F x / (B | FC
- · LaxIII(B

- · A > GF
- · B -> EH
- ・ヒッエト

・エッハ

- · D -> EK
- · S -> TAIXIIIJB|FC|DT|KT
- · E > TA | X | I | JB | FC | DT | KT
- ·T -> TA | X | 1 | JB | FC
 - · F > XIIITB FC
 - · L > XIIITB

Chomsky Normal Form:

- · J -> (
- · S -> TAIXIIITB|FC|DT|KT
- · K -> -
- · E > TA | X | 1 | JB | FC | DT | KT . G → X
- · H→) TAIXIIITBIFC
- ・エッヘ
- · F -> XIIIJB | FC
- · A -> GF
- · B -> EH · L -> XIIIJB
- · C > IL
- · D -> EK

2) An algorithm about DFA's?

Prove that the following language is decidable:

 $B_{DFA} = \{ < M > | M \text{ is a DFA that accepts all strings containing a single B character} \}$

step	statement	justification
1	A language is decidable if there is a decider that recognizes it.	definition of a decidable language
2	Let w be a string with a single B character in it.	given
3	A decider for B _{DFA} : X = "On input <m>, where M is DFA: 1. Simulate M on input string w. 2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."</m>	Creating a decider for B_{DFA} and (1)
4	Where "simulate" = • Define "current" state $q_{current} = start state \ q_0$ • For each input char x in w • Define $q_{next} = \delta(q_{current}, x)$ • Set $q_{current} = q_{next}$	A detailed explanation of what is meant by "simulate" in step 3
5	Termination argument: X from step 3 is a decider because the input w is a finite string, so the loop in the simulation has a finite amount of iterations and will always halt.	termination argument and (1)
6	B_{DFA} has a decider X that recognizes it, which means that it is a decidable language.	(1) and (3)

3) An algorithm about PDA's?

Prove the following language is decidable:

 $PW = {\langle P, w \rangle | P \text{ is a PDA where } w \in Lang(P)}$

step	statement	justification
1	A language is decidable if there is a decider that recognizes it.	definition of a decidable language
2	A_{CFG} is a decidable language, where S represents its decider.	theorem from class
3	 Decider for A_{CFG}: X = "On input <p, w="">, where P is a PDA and w is a string in the language of P:</p,> 1. Convert PDA P to an equivalent CFG C, using the procedure CFG → PDA from the theorem CFG ↔ PDA. 2. Run the turing machine S on input <c, w=""></c,> 3. If M accepts, accept; otherwise, reject." 	creating a decider for A_{CFG} , CFG \leftrightarrow PDA theorem, (1) and (2)
4	 Termination argument: X from step 3 is a decider because: It's step one (converting) always halts because there's a finite number of states in a PDA. It's step two always halts because the turing machine S is a decider. 	termination argument and (1)
5	A_{CFG} has a decider X that recognizes it, which means that it is a decidable language.	(1) and (3)

4) Regular and Decidable?

If a language L is a regular language, then L is decidable.

DFA

step	statement	justification
1	A language is regular if there is a DFA that recognizes it.	definition of a regular language from class
2	A language is decidable if there is a decider that recognizes it.	definition of a decidable language from class
3	Let X be a DFA, (Q, Σ , δ , q_0 , F) that recognizes the language L	(1) and given
4	A_{DFA} is a decidable language, where M represents a decider that recognizes it.	theorem from class
5	A decider for L: Y = "On input <x, w="">, where X is a DFA and w is a string from the language L: 1. Run the turing machine M on input <x, w="">. 2. If M accepts, accept; otherwise reject."</x,></x,>	creating a decider
6	termination argument: Y from step 5 is a decider because: • it's step one is finite because M is a decider	termination argument
7	There is a DFA X and a decider Y that recognize the language L. Therefore, L is a regular language and it is decidable.	(1), (2) and (5)

NFA

step	statement	justification
1	A language is regular if there is a NFA that recognizes it.	definition of a regular language from class
2	A language is decidable if there is a decider that recognizes it.	definition of a decidable language from class
3	Let X be an NFA, (Q, Σ , δ , q_0 , F) that recognizes the language L	(1) and given
4	A_{NFA} is a decidable language, where N represents a decider that recognizes it.	theorem from class
5	A decider for L: Y = "On input <x, w="">, where X is an NFA and w is a string from the language L: 1. Run the turing machine N on input <x, w="">. 2. If N accepts, accept; otherwise reject."</x,></x,>	creating a decider
6	termination argument: Y from step 5 is a decider because: • it's step one is finite because N is a decider	termination argument
7	There is a NFA X and a decider Y that recognize the language L. Therefore, L is a regular language and it is decidable.	(1), (2) and (5)

Regex

step	statement	justification
1	A language is regular if there is a regular expression that recognizes it.	definition of a regular language from class
2	A language is decidable if there is a decider that recognizes it.	definition of a decidable language from class
3	Let X be regular expression that recognizes L	(1) and given
4	A _{REX} is a decidable language, where P represents a decider that recognizes it.	theorem from class
5	A decider for L: Y = "On input <x, w="">, where X is a regular expression and w is a string from the language L: 1. Run the turing machine P on input <x, w="">. 2. If P accepts, accept; otherwise reject."</x,></x,>	creating a decider
6	termination argument: Y from step 5 is a decider because: • it's step one is finite because P is a decider	termination argument
7	There is a regular expression X and a decider Y that recognize the language L. Therefore, L is a regular language and it is decidable.	(1), (2) and (5)

README

name of other students: none

books or websites used: class slides and lecture

time spent: 3 hours