Introduction to
Mathematical Reason

Test #2**MATH 300**

March 11, 2008

Name:

R. Hammack

Score: _

Directions: Please answer the questions in the space provided.

1. Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$. (Suggestion: Try direct proof.)

Proof. (Direct) Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

By definition of congruence modulo n, this means n|(a-b) and n|(c-d).

By definition of divisibility, a - b = nk and $c - d = n\ell$ for some $k, \ell \in \mathbb{Z}$.

Therefore we have a = b + nk and $c = d + n\ell$. Consequently,

$$ac = (b+nk)(d+n\ell)$$

 $ac = bd + bn\ell + nkd + n^2k\ell$

$$ac - bd = bn\ell + nkd + n^2k\ell$$

$$ac - bd = n(b\ell + kd + nk\ell).$$

Since $b\ell + kd + nk\ell \in \mathbb{Z}$, it follows from the above equation that n|(ac - bd). This means that $ac \equiv bd \pmod{n}$.

2. Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then both a and b are odd. (Suggestion: Try contrapositive proof.)

Proof. (Contrapositive) Suppose it is not the case that a and b are odd.

Then, by DeMorgan's Law, a is even or b is even. Let us look at these cases separately.

Case 1. Suppose a is even. Then a = 2c for some integer c.

Thus $a^2(b^2 - 2b) = (2c)^2(b^2 - 2b) = 2(2c^2(b^2 - 2b))$, which is even.

Case 2. Suppose b is even. Then b = 2c for some integer c.

Thus $a^2(b^2 - 2b) = a^2((2c)^2 - 2(2c)) = 2(a^2(2c^2 - 2c))$, which is even.

Thus in either case $a^2(b^2 - 2b)$ is even, so it is not odd.

(NOTE: A third case where both a and b are even is not necessary.

In that case a is even, a scenario addressed in Case 1.)

3. Prove: If $a, b \in \mathbb{Z}$, then $a^2 - 4b - 2 \neq 0$. (Suggestion: Contradiction may be easiest.)

Proof. Suppose for the sake of contradiction that $a, b \in \mathbb{Z}$ but $a^2 - 4b - 2 = 0$.

Then we have $a^2 = 4b + 2 = 2(2b + 1)$, which means a^2 is even.

Therefore a is even also, so a = 2c for some integer c. Plugging this back into $a^2 - 4b - 3 = 0$ gives us

$$(2c)^{2} - 4b - 2 = 0$$

$$4c^{2} - 4b - 2 = 0$$

$$4c^{2} - 4b = 2$$

$$2c^{2} - 2b = 1$$

$$2(c^{2} - b) = 1$$

From this last equation, we conclude that 1 is an even number, a contradiction.

4. Suppose $a, b, c \in \mathbb{Z}$, and $a \neq 0$. Prove the following statement: If $a \nmid bc$, then $a \nmid b$ and $a \nmid c$.

Proof. (Contrapositive) Assume that it is not true that $a \not\mid b$ and $a \not\mid c$. Then $a \mid b$ or $a \mid c$. Thus b = ak or c = ak for some $k \in \mathbb{Z}$. Consider these cases separately. Case 1. If b = ak, then multiply both sides by c to get bc = a(kc), which means $a \mid bc$. Case 2. If c = ak, then multiply both sides by b to get bc = a(kb), which means $a \mid bc$.

Thus, in either case $a \mid bc$, so it is not true that $a \not\mid b$.