

Transpozycja

- Transpozycja to przemieszczanie się materiału genetycznego z jednego miejsca na drugie
- Sekwencje DNA posiadające taką zdolność nazywane są elememntami mobilnymi
- Konserwatywne elementy mobilne przenoszą się z jednego miejsca na drugie
- Replikujące się elementy są skopiowane i nowa kopia zostaje wbudowana w inne miejsce;
- Retropozony to elementy mobilne przenosze poprzez transkrypcję na RNA, które następnie ulega transkrypcji odwrotnej w cDNA i dopiero cDNA zostaje wbudowane w nowe miejsce
- · Liczba tych elementów powiększa się z czasem.

Odkrycie transpozonów

Pierwszy transpozon został odkryty w 1947 roku przez Barbarę McClintock. Był to element *Activator* (*Ac*) w kukurydzy. Należy on do klasy transpozonów poruszających sie poprzez "wycięcie i wklejenie" ("cut-and-paste") produktu pośredniego DNA. Elementy te są obecne u wszystkich wyższych eukariotów od roślin po ssaki.

Charakterystyka transpozonów

- Występują w genomach wszystkich organizmów
- Transpozony są odpowiedzialne za zmiany genetyczne
- · Istotnie wpływają na ewolucję genomów
 - Plastyczność genomów
 - tworzenie nowych genów
 - regulacja transkrypcji
- Narzędzia manipulacji genetycznej

Klasyfikacja

- Dwie główne grupy u bakterii:
 - > Sekwencje insercyjne insertion sequence (IS)
 - > Transpozony Transposons (Tn)
- Trzy klasy u Eukariotów
 - > retrotranspozony
 - LTRs, LINEs, SINEs, retro(pseudo)geny
 - transpozony DNA (konserwatywne transpozony)
 - Marine
 - > inne
 - np. helitron replikują się przy użyciu formy kolistej (rolling circle replication)

Sekwencje Insercyjne (IS)

- Najprostsze z transpozonów występujące w chromosomach bakteryjnych i plazmidach.
- Kodują wyłącznie geny odpowiedzialne za mobilizację i insercję elementów.
- · Wielkość od 768 pz do 5 kpz.
- IS1 (po raz pierwszy zidentyfikowany w operonie galaktozowym E. coli) jest długości 768 pz i występuje w 4-19 kopiach w chromosomie E. coli
- Na końcach wszystkich elementów IS znajdują się odwrócone powtórzenia końcowe (inverted terminal repeats).

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			

Sekwencje Insercyjne (IS) IS3 IR (inverted repeat) IR (inverted repeat) IR (inverted repeat)

Podczas insercji krótki odcinek DNA w miejscu integracji zostaje zduplikowany.

Złożone transpozony bakteryjne

- Powtórzone sekwencje na końcach, zazwyczaj odwrócone
- Powtórzone końce są same w sobie elementami IS i mogą się przenosić na nowe miejsce samodzielnie
- Końce mobilizują cały odcinek DNA znajdujący się pomiędzy nimi
- Często przenoszą geny odpowiedzialne za odporność antybiotykową, np. Tn3 (ampicylinę), Tn5 (kanamycynę), Tn10 (tetracyklinę)
- · Często znajdują się w plazmidach

Retrowirusy

- Wirusy podobne w swojej strukturze do transpozonów
- Po inwazji komórki 'gospodarza' RNA genomowe wironu ulega odwrotnej transkrypcji w wirusowe cDNA
- cDNA wironu może zintegrować się z genomem gospodarza i powstaje prowirus
- DNA pochodzące od prowirusa może następnie ulec transkrypcji w RNA, które może zostać użyte do syntezy białek wirusa lub jako genomowa sekwencja nowego wironu
- Sekwencje kodujące retrowirusów posiadają na końcach elementy LTR (long terminal repeats)

CIUSS I				
	gag	lool (9/W	
⇒⊸	CP NC	Pr RP Rnase H Int	→ \$	Retroviruses

Charakterystyka elementów posiadających LTR

- Posiadają długie powtórzenia końcowe" (Long terminal repeats - LTR): istotne w cyklu replikacyjnym
- · Geny: gag, pol
- Nie posiadają genu env i w związku z tym nie mogą samodzielnie przemieszczać się między komórkami
- Pol jest polipeptydem, prekursorem z którego tworzą sie odwrotna transkryptaza (RT), integraza (IN), RNase H (RH) i proteaza (PR)
- Tworzą cząsteczki wirusopodobne (virus-like particles VLPs)
- Integraza jest funkcjonalnie i strukturanie podobna do transpozy transpozonów DNA
- · Integracja pozostawia ślad w postaci TSD

Elementy bez LTR

- · Cechy charakterystyczne
 - Brak powtórzeń końcowych
 - Ogon poliadenylowy na końcu 3'
 - Obecność zduplikowanego miejsca integracji na obu końcach (TSD)
 - Kilka superrodzin zostało wyodrębnionych na podstawie sekwencji białek kodowanych przez tę klase elementów
 - Mogą być autonomiczne (same kodują maszynerię umożliwiającą transpozycję) lub nie

Elementy bez LTR – Long INterspersed Elements (LINEs)

- Najbardziej poznanym elementem jest ludzki L1
 - Tworzy 21% ludzkiego DNA
 - 850,000 kopii ale tylko 3-5,000 jest pełnej długości większość "obcięta" na końcu 5' – wynik kiepskiej działalności odwrotnej polimerazy która często "odpada" za wcześnie od matrycy
 - Dwie ramki odczytu I-sza o nieznanym potencjale kodującym (pozostałość po gag?), II-ga (pol) koduje maszynerię transpozonową
 - L1 jest dostarczycielem odwrotnej transkryptazy również dla niesmodzielnych retropozonów, np. SINEs, jak również jest odpowiedzialny za tworzenie retro(pseudo)genów

Elementy bez LTR – Short INterspersed Elements (SINEs)

- Z definicji są krótkie do 1000 nt
- · Nie kodują żadnego białka i są nieautonomiczne
- Ewolucyjnie pochodzą od genów RNA tRNA lub 7SL RNA
- · Najlepiej poznanym elementem jest Alu
 - Specyficzne dla ssaków naczelnych
 - Tworzy 10% ludzkiego DNA
 - Ponad 1 mln kopii, element pełnej długości ma ok. 300 nt
 - nierówny dimer, każdna jednostka pochodzi niezależnie od 7SL RNA , są połączone sekwencją bogatą w adenozynę (A)
- Inne przykłady SINEs to: MIR (obecny w genomach wszystkich ssaków), B1 specyficzny dla gryzoni

Elementy bez LTR – Retro(pseudo)geny

- Są produktami aktywności odwrotnej transkryptazy na dojrzałym mRNA
- Cechy charakterystyczne
 - Brak intronów i sekwencji promotorowych
 - Obecność TSD i ogona poliA
 - Większość z nich kończy jako pseudogeny głównie ze względu na brak promotorów
- W genomie ludzkim jest ok 20.000 pseudogenów z czego ponad 70% powstała przez retropozycję
- Większość z wykrywalnych pseudogenów jest wynikiem niedawnych retropozycji, które nastąpiły po rozdzieleniu się naczelnych i gryzoni

Rozkład transpozonów w różnych genomach ze względu na wiek

•		
•		
•		
-		
-		
•		
•		
•		
•		
-		
-		

Dystrybucja transpozonów nie jest jednolita w genomie

Dystrybucja transpozonów nie jest jednolita w genomie

Dystrybucja transpozonów nie jest jednolita w genomie

Transpozony zazwyczaj są ulokowane w intronach i przestrzeniach międzygenowych

Rzadko można je znaleźć w sekwencjach kodujących białko

Szkodliwy wpływ elementów Alu na genom człowieka

Batzer MA, Deininger PL. Nat Rev Genet. 2002 May;3(5):370-9.

Hipotezy na temat roli transpozonów w genomie gospodarza

- Ewolucja regulacji genów
- Początek replikacji DNA
- Ewolucja struktury i funkcji genów
- Tworzenie wysp CpG
- Naprawa uszkodzeń chromosomowych
- Regulacja translacji podczas stresu komórkowego
- Davidson and Britten (1973) Quart Rev Biol
- Jelinek et al. (1981) PNAS
- Chesnokov et al. (1995) JBC
- Teng et al. (1996) Nature
- Chu et al. (1998) MCB

Dlaczego transpozony są tolerowane w genomach?

- f Ekspansja genomów poprzez akumulację transpozonów zmniejsza ich negatywny wpływ na gospodarza
- f Transpozony zwiększają zdolność ewolucyjną gospodarza
 - •"gorące" miejsca rekombinacji
 - •źródło gotowych do użycia motywów
 - •mechanizm tasowania genomu

Gorące miejsca rekombinacji Ewolucja glikoforyn u ssaków naczelnych Typy motywów genomowych pochodzących z transpozonów f Elementy regulujące transkrypcję f Sygnały poliadenylacji f Sekwencje kodujące białka f retrogeny

Elementy regulujące transkrypcję

Komórkowo-specyficzna regulacja transkrypcji genu receptora IgE (FceRI-g)

Element pozytywny zarówno w bazofilach jak i limfocytach T

Hamdi et al. J Mol Biol. 2000 Jun 16;299(4):931-9.

Sygnały poliadenylacji

Ewolucja końca 3' mysiej kinazy fosforylanowej-g

Sekwencje kodujące białka

- f Różne transpozony są znajdywane w otwartych ramkach odczytu (ORF) ale ...
- f Elementy Alu są predysponowane do włączenie do mRNA
 - Kryptyczne miejsca splicingowe istnieją w Alu
 - ponad 2000 ludzkich mRNA zawierają fragmenty Alu w ORF
 - elementy Alu w ORF mogą zmienić własności fizyko-chemiczne białek

Kategorie białek z kasetami transpozonowymi w ORF other mammals 36 proteins proteins with assigned function/ 12 7 16 15 11 7 3 nucleic acid binding enzyme signal transducer structural_protein cell adhesion molecule apoptosis regulator enzyme_regulator transporter 4 2 5 2 10 2

1

103

cell cycle regulator ligand biding or carrier

defense immunity protein obsolete function unknown

chaperone

Ciągle otwarte pytanie – czy rzeczywiście mRNA z kasetami transpozonowymi kodują funkcjonalne białka

Fragmenty TE w białkach ze znaną strukturą trzeciorzędową

PDB ID	Długość	Pochodzenie	Różnica	
L DD ID	insertu	insertu	sekwencji (%)	
1i49	21 aa	LTR27	22.8	
1dmt	12 aa	L2	17.1	
1g7f	34 aa	L3	27.7	
1h9f	26 aa	L3	33.8	
1rw2	41 aa	L3	31.7	
1m1l	30 aa	L3	25.0	
	•			

Przykład I: białko survivin u człowieka – funkcja w apoptozie

Kaseta Alu w drodze alternatywnego splicingu zostaje wprowadzona w środek helisy alfa, która jest odpowiedzialna za wiązanie atomu cynku

Przykład I: strukura III-rzędowa

Alternatywne białko nie tworzy zwartej struktury – kaseta Alu najprawdopodobnie burzy natywną strukturę funkcjonalnego białka. Tak więc ta forma jest albo nieaktywna albo posiada nową funkcję

Przykład II: protein tyrosine phosphatase 1B

lwashita et al. (2005) Mol Biol Evol **20(9)**:1556-63

Białko Bcnt (CFDP) w genomie

Tasowanie genomów

Transdukcja genomowego DNA przeprowadzana przez elementy L1

Transdukcja genomowego DNA przeprowadzana przez elementy L1 – statystyka
f liczba elementów L1 w genomie człowieka 72,148
 f liczba elementów L1 które spowodowały transdukcję DNA o długości conajmniej 30 nt - 6,178
f Częstość transdukcji - 8.6%
f Najdłuższa ztransdukowany odcinek DNA - 2883 nt
f Liczba eksonów w ztransdukowanych odcinkach - 0