Appello del 30/6/2017

Nome:	COGNOME:

- 1) In un gioco vengono effettuati sequenzialmente 8 lanci di un dado, 4 con un dado regolare a 6 facce, 4 con un dado regolare a 12 facce. Non è noto quali lanci nella sequenza siano effettuati con l'uno o l'altro dado.
 - (a) omesso
 - (b) omesso
 - (c) Agli 8 lanci è associato un meccanismo di scommesse, solo parzialmente noto: il relativo guadagno complessivo G non è comunque minore di −75 €, e E(G) = −25 €. Determinare una limitazione significativa per la probabilità dell'evento (G ≥ 0).
- 2) L'urna A contiene 4 palline bianche e 2 rosse, l'urna B contiene 5 palline bianche e 1 rossa. Si effettui una sequenza di estrazioni senza reimbussolamento, tutte dall'urna A se lanciando un dado esce 6, dall'urna B altrimenti. Posto E_i = "esce bianca all'i-esima estrazione", calcolare:
 - (a) $P(E_3|\overline{E}_6)$, $P(E_2|\overline{E}_2 \vee E_4)$, $P(\overline{E}_i|\overline{E}_2 \wedge E_4)$ $(i \le 6)$;
 - (b) la covarianza fra ($|E_1| + |E_2|$) e ($|E_2| + |\overline{E}_6|$).
- 3) La coppia aleatoria (X,Y) è distribuita sul quadrato $Q = [0, a] \times [0, a]$ (a > 0) con densità congiunta (uniforme in Q) $f_{X,Y}(x, y) = 1/a^2$. Posto Z = X + Y, determinare:
 - (a) la funzione di ripartizione e la funzione di densità di Z, tracciando anche il grafico di quest'ultima;
 - (b) la varianza di Z;
 - (c) $P(X + Y \ge a \mid X \le a/2)$.

Appello del 15/9/2017

Nome:	COGNOME:	
		9

- 1) Con riferimento ad una partita di calcio (regolare) fra le squadre A e B:.
 - (a) determinare la partizione generata dagli eventi

 $E_1 = 'A \text{ vince } 1-0'$

 E_2 = 'A vince, ma non 1-0'

 $E_3 =$ 'A non perde';

- (b) supposto che sia 1/2 la probabilità dell'evento 'A non vince', per quali valori $P(E_1)$, $P(E_2)$ è massima $Cov(|E_1|, |E_1 \vee E_2|)$?
- 2) Un'urna contiene 2 palline bianche e 5 rosse; si lancia due volte una moneta e si imbussolano nell'urna 3 palline, bianche se esce testa in entrambi i lanci, rosse altrimenti. Si effettuano poi estrazioni senza reimbussolamento dall'urna, fino a vuotarla. Posto E_i = "esce bianca all'i-esima estrazione":
 - (a) calcolare $P(E_i|E_j)$, $P(E_i|\overline{E}_j)$, $P(\overline{E}_5|E_2)$;
 - (b) calcolare la probabilità di E₅ sapendo che la pallina uscita nella prima estrazione è di colore diverso da quella uscita nell'ultima;
 - (c) detto successo l'uscita di pallina bianca, si eseguano n estrazioni. Indicato con X_n il numero che conta le coppie di successi consecutivi, calcolare $E(X_n)$, $Var(X_3)$.
- 3) La coppia aleatoria (X,Y) è distribuita sul trapezio unione del triangolo T di vertici (0,0), (1,0), (1,1) e del quadrato Q di vertici opposti (1,0), (2,1) con densità

$$f(x,y) = \begin{cases} k x^3 & (x,y) \in T \\ k & (x,y) \in Q \end{cases}$$

Calcolare:

- (a) le densità marginali;
- (b) la funzione di ripartizione di X, tracciandone il grafico;
- (c) $P(Y \ge |X 1|)$.

Appello del 12/1/2018

- 1) Del numero aleatorio X è noto che E(X) = 6, P(X < 4) = 0.25, $P(X \ge 9) = 0.35$.
 - (a) Determinare una limitazione inferiore significativa per la varianza di X.
 - (b) Sia Y = -2X. Determinare una limitazione superiore per Cov(X, Y).
- 2) L'urna A contiene 2 palline bianche e 3 rosse, l'urna B contiene 5 palline bianche e 3 rosse. Si effettui una sequenza di estrazioni con contagio unitario, tutte dall'urna A con probabilità 1/4, tutte dall'urna B con probabilità 3/4. Posto E_i = "esce bianca all'i-esima estrazione":
 - (a) calcolare $P(E_i | E_1 \wedge \overline{E}_2)$, $P(\overline{E}_1 \vee \overline{E}_2 \vee E_3)$;
 - (b) calcolare la probabilità che le estrazioni avvengano dall'urna A sapendo che nelle prime due estrazioni sono uscite palline di colore diverso;
 - (c) detto successo l'estrazione di pallina bianca, sia X_n il numero che conta la differenza fra il numero di successi e il numero di insuccessi nelle prime n estrazioni. Calcolare $E(X_n)$, $E[(X_2)^2]$.
- 3) La coppia aleatoria (X,Y) è distribuita sul triangolo di vertici (-1,0), (2,0), (0,2) con densità $f_{X,Y}(x,y) = ky^2$. Calcolare:
 - (a) la densità marginale $f_X(x)$;
 - (b) la funzione di ripartizione della coppia (X, Y) nel generico punto $(x_0, 1)$, con $0 \le x_0 \le 1$;
 - (c) $P(Y > 1 | X \le 1)$.

Appello del 28/5/2018

Nome:	COGNOME:		

- 1) Dato l'insieme di eventi $D = \{E_1, E_1 \vee E_2, E_2 \wedge E_3\}$:
 - (a) determinare la partizione generata da D;
 - (b) provare che l'applicazione P: $P(E_1) = 0.4$, $P(E_1 \lor E_2) = 0.6$, $P(E_2 \land E_3) = 0.2$ è una probabilità coerente su D;
 - (c) determinare i prolungamenti coerenti di P su $E_1 \vee E_3$.
- 2) Da un'urna contenente 3 palline bianche e 6 rosse si effettuano estrazioni di una pallina alla volta con modalità non certa: con probabilità 3/4 le estrazioni sono tutte con reimbussolamento, con probabilità 1/4 tutte senza reimbussolamento. Posto E_i = "esce bianca all'i-esima estrazione" e detta S_n la frequenza assoluta di successo in *n* estrazioni (successo: uscita di pallina bianca), calcolare:
 - (a) $P(E_i)$ ($i \le 9$), $P(\overline{E}_1 \land E_3)$;
 - (b) la probabilità che le estrazioni avvengano senza reimbussolamento sapendo che nelle prime due estrazioni è uscita pallina bianca;
 - (c) $Cov(S_3, |E_1| + |\overline{E}_2|);$
 - (d) $P(S_n = n 1 | E_1 \wedge \overline{E}_2), n \le 3.$
- 3) La coppia aleatoria (X,Y) è distribuita sul trapezio di vertici (0, 0), (3, 0), (2, 1), (1,1) con densità proporzionale alla funzione x + y. Calcolare:
 - (a) la densità marginale $f_X(x)$;
 - (b) E(X);
 - (c) posto $Z = X^2 Y$, P(Z > 0).

Appello del 29/6/2018

Nome:	COGNOME:	

- 1) Siano E_1 , E_2 due eventi stocasticamente indipendenti, $S_2 = |E_1| + |E_2|$.
 - (a) Calcolare la distribuzione di probabilità P sulla partizione generata da $\{E_1, E_2\}$ sapendo che: $E(S_2) = 1$, $Var(S_2) = 3/8$, E_1 è ritenuto più probabile di E_2 .
 - (b) Sia E_3 tale che $E_1 \wedge E_2 \Rightarrow E_3$, $\overline{E}_1 \wedge \overline{E}_2 \Rightarrow \overline{E}_3$. Individuare i prolungamenti coerenti di P su E_3 .
 - (c) Per quali valori ammissibili di P(E₃) la disuguaglianza di Cebicev Bienaymè determina la limitazione più stretta per P(| |E₃| - P(E₃)| ≥ 1/2)?
- 2) Da un'urna contenente 3 palline bianche e 2 rosse si effettuano estrazioni di una pallina alla volta, le prime 5 con reimbussolamento, le successive con contagio unitario. Sia E_i = "esce bianca all'i-esima estrazione".
 - (a) Calcolare P($\overline{E}_4 \vee \overline{E}_5 \vee \overline{E}_6$), P($E_i \wedge E_j$).
 - (b) Ad ogni estrazione, Tizio vince 3 € se esce pallina bianca, perde 2 € se esce pallina rossa. Detto G_n il guadagno complessivo di Tizio fino all'n-esima estrazione (inclusa), calcolare E(G_n), Var(G_n).
 - (c) Calcolare la probabilità che alla decima estrazione esca pallina bianca, sapendo che nelle prime 4 estrazioni con contagio unitario sono uscite palline di entrambi i colori.
- 3) La coppia aleatoria (X,Y) ha determinazioni nella regione $T \cup S$, con T triangolo di vertici (-1,0), (0,0), (0,1) e S regione definita dalle condizioni $x \ge 0$, $y \ge 0$, $y + x^2 \le 1$ ed è ivi distribuita con densità congiunta f(x, y) proporzionale a

$$g(x,y) = \begin{cases} 1 & se & (x,y) \in T \\ x & se & (x,y) \in S \end{cases}$$

- (a) E' più probabile che X assuma valori positivi o valori negativi? Stabilire inoltre per quale numero reale r riesce $P(X \le r) = P(X \ge r)$.
- (b) Calcolare il valore della funzione di ripartizione congiunta in (1, 0) e in (1, 1/2).
- (c) Trovare la densità marginale di Y.

Appello del 10/1/2019

Nome:	COGNOME:	

- 1) Con riferimento ad una partita di calcio (regolare) fra le squadre A e B:
- (a) determinare la partizione generata dagli eventi

 E_1 = 'A vince l'incontro'

 E_2 = 'L'incontro termina in parità'

 E_3 = 'Durante l'incontro si segnano 3 reti';

- (b) verificare la coerenza dell'assegnazione di probabilità $P(E_1) = 0.4$, $P(E_2) = 0.3$, $P(E_3) = 0.4$;
- (c) stabilire se è coerente prolungare P sull'evento aggiuntivo F = 'A vince segnando al più 3 reti' ponendo P(F) = 0.05. Determinare inoltre, se esiste, il massimo valore di P(F) per cui il prolungamento di P su F è coerente.
- 2) L'urna A contiene 5 palline bianche e 15 rosse, l'urna B contiene 10 palline bianche e 10 rosse. Si effettua una sequenza di estrazioni con reimbussolamento da una delle due urne, scelta con un meccanismo aleatorio che assegna probabilità 3/4 alla scelta dell'urna A. Posto E_i = "esce bianca all'i-esima estrazione":
- (a) Calcolare $P(E_2 \wedge E_6 \mid \overline{E}_2 \vee E_5)$, $P(E_2 \vee E_6 \mid E_2 \wedge E_5)$, $P(\overline{E}_2 \vee \overline{E}_6 \mid \overline{E}_2 \vee E_5)$;
- (b) in ogni coppia di estrazioni successive, di cui la prima è dispari, Tizio guadagna 1 € se la pallina dell'estrazione dispari e di quella (pari) successiva hanno lo stesso colore. Determinare la speranza matematica del guadagno di Tizio nelle prime 10 estrazioni.
- (c) Stabilire la correlazione fra gli eventi 'Nelle prime 2 estrazioni Tizio guadagna 1 €' e 'Le estrazioni vengono effettuate dall'urna B'.
- 3) La coppia aleatoria (X,Y) è distribuita sul triangolo di vertici (0,0), (1,1), (-1,1) con densità proporzionale a $g(x,y) = e^{-y}$. Calcolare:
- (a) le densità marginali;
- (b) E(X).

Appello dell' 8/2/2019

Nome:	COGNOME:	
	•	

- 1) La fabbrica A produce laminati di peso medio 50 kg ciascuno e deviazione standard 0,5 kg.
- (a) Calcolare una limitazione significativa per la probabilità che un laminato differisca meno del 5% dal peso medio.
 - Un magazzino ha acquistato un lotto di 300 laminati indistinguibili, 100 da A per cui stima che la probabilità che un laminato sia da scartare è $p_A = 0.03$, 200 da B, con analoga probabilità $p_B = 0.06$.
- (b) Determinare una limitazione significativa per la probabilità che nel lotto ci siano meno di 4 pezzi da scartare.
- (c) Se, scelto a caso un laminato, questo risulta da scartare, qual è la probabilità che provenga da B?
- 2) L'urna A contiene 8 palline bianche e 2 rosse, l'urna B contiene 4 palline bianche e 6 rosse. Si effettua una sequenza di estrazioni con reimbussolamento da una delle due urne, scelta con un meccanismo aleatorio che assegna probabilità 1/4 alla scelta dell'urna A. Posto E_h = "esce bianca all'h-esima estrazione", calcolare:
- (a) $P(E_h \wedge \bar{E}_k)$, $P(E_4 | E_2 \vee \bar{E}_3)$;
- (b) speranza matematica e varianza della differenza D_n fra numero di successi (estrazioni di pallina bianca) e numero di insuccessi in n estrazioni;
- (c) la funzione di ripartizione del numero aleatorio $D_3 \cdot |E_1 \wedge \overline{E}_2|$, tracciandone il grafico.
- 3) La coppia aleatoria (X,Y) è distribuita sul quadrilatero di vertici (-1,0), (0,0), (2,1), (0,1) con densità proporzionale a $g(x,y) = 1/(y+1)^2$. Calcolare:
- (a) $P(X \ge 0)$;
- (b) $P(X < Y \mid X \ge 0)$;
- (c) il valore della funzione di ripartizione congiunta in (0,2) e in (2,0).

Appello dell' 11/6/2019

Nome:	COGNOME:
2.2.2.	

- 1) Tizio partecipa ad un gioco in cui paga 0,5€ prima di ogni lancio simultaneo di due dadi regolari, uno rosso e uno verde, per ricevere 1€ se |X Y| ≤ 1, 0€ altrimenti, essendo X (Y) il punto realizzato dal dado rosso (verde).
- (a) Quanti lanci occorrono affinché la speranza matematica del guadagno complessivo di Tizio sia −10€?
- (b) Calcolare la probabilità che in una sequenza di 10 lanci Tizio vinca 6 volte.
- (c) Determinare una limitazione inferiore significativa per $P(-40 \in G_{360} < 0 \in)$, essendo G_{360} il guadagno complessivo di Tizio in 360 lanci.
- 2) L'urna A contiene 3 palline bianche e 6 rosse. Si effettua una sequenza di estrazioni con contagio, con probabilità 1/3 unitario, con probabilità 2/3 immettendo dopo ogni lancio 2 palline dello stesso colore di quella estratta. Posto E_h = "esce bianca all'h-esima estrazione", calcolare:
- (a) $P(E_2 \vee E_3 | \bar{E}_4)$, $P(\bar{E}_4 | E_2 \vee E_3)$, $P(E_h | E_2 \vee E_h)$;
- (b) la probabilità che dopo la terza estrazione e prima della quarta nell'urna ci siano più palline bianche che rosse.
- 3) La coppia aleatoria (X,Y) è distribuita sul trapezio unione del triangolo T di vertici (0,-1), (1,0), (0,0) e del quadrato Q di vertici opposti (0,0), (1,1) con densità proporzionale a: y/(x+1) su Q, 1 su T. Calcolare:
- (a) la densità marginale di Y;
- (b) la funzione di ripartizione congiunta $F_{X,Y}(x_0,-1/2)$;
- (c) E(Z), essendo Z = 1/(Y + 2).

Appello del 27/6/2019

Nome:	COGNOME:	

- 1) Dato l'insieme di eventi $D = \{E_1, E_1 \vee E_2, E_3\}$, in cui $E_3 \Rightarrow \overline{E}_2$:
- (a) determinare la partizione generata dagli eventi di D;
- (b) verificare la coerenza dell'assegnazione di probabilità $P(E_1) = 0.2$, $P(E_1 \vee E_2) = 0.7$, $P(E_3) = 0.4$;
- (c) determinare il valore numerico minimo che può assumere un prolungamento coerente di P su E_2 .
- 2) Una sequenza di 24 estrazioni di una pallina da un'urna è effettuata con le seguenti modalità: le estrazioni pari avvengono con reimbussolamento dall'urna A contenente 6 palline bianche e 3 rosse, le estrazioni dispari senza reimbussolamento dall'urna B contenente all'inizio 6 palline bianche e 6 rosse. Posto E_i = "esce bianca all'i-esima estrazione", calcolare:
- (a) $P(E_i \wedge E_j)$ ($1 \le i, j \le 24$), $P(E_5 | \bar{E}_2 \wedge \bar{E}_3)$;
- (b) la speranza matematica e la varianza di G₂₄, il guadagno complessivo di Tizio nelle 24 estrazioni, sapendo che ad ogni estrazione Tizio vince 3 € se esce bianca, ne perde 4 se esce rossa;
- (c) $P(G_{24} = min\{G_{24}\})$.
- 3) La coppia aleatoria (X,Y) è distribuita sul triangolo di vertici (0,0), (2,-2), (2,2) con densità proporzionale a $g(x, y) = y^2 \cdot e^x$. Calcolare:
- (a) la densità marginale di Y;
- (b) la funzione di ripartizione congiunta $F_{X,Y}(0, y_0)$

Appello del 10/1/2020

Nome:	COGNOME:	

- 1) Sono dati gli eventi E_1 , E_2 , logicamente indipendenti, e l'insieme $D = \{E_1, \overline{E}_1 \vee E_2\}$.
- (a) Verificare la coerenza dell'assegnazione di probabilità P_0 su D: $P_0(E_1) = 0.6$, $P_0(\overline{E_1} \vee E_2) = 0.5$;
- (b) calcolare le limitazioni di probabilità per i prolungamenti coerenti di P_0 su $E_1 \mid E_1 \vee E_2$;
- (c) considerata, più in generale, P_c su D: $P_c(E_1) = 0.6 + c$, $P_c(\bar{E}_1 \vee E_2) = 0.5$, determinare il valore minimo del numero reale c per cui P_c è coerente su D.
- 2) L'urna A contiene 4 palline bianche e 6 rosse, l'urna B contiene 4 palline bianche e 2 rosse. Si effettua una sequenza di estrazioni con reimbussolamento da una delle due urne, stabilita con un meccanismo aleatorio che assegna probabilità 1/3 alla scelta dell'urna A. Posto E_h = "esce bianca all'h-esima estrazione", S_n : frequenza assoluta di successo (estrazione di pallina bianca) nelle prime n estrazioni, calcolare:
- (a) $P(E_2|E_4)$, $P(E_3|E_i \vee E_j)$;
- (b) $Cov(|E_2|\cdot |E_4|, S_2)$;
- (c) la probabilità che esca pallina bianca alla terza estrazione, sapendo che nelle prime due sono uscite palline di colore diverso.
- 3) La coppia aleatoria (X,Y) è distribuita sul triangolo di vertici (0,0), (-2,1), (1,1) con densità proporzionale a g(x,y) = y. Calcolare:
- (a) la densità marginale di X;
- (b) la funzione di ripartizione congiunta $F_{X,Y}(0, y_0)$;
- (c) per quali numeri reali m riesce $P(Y \le mX) = 1/6$.

Appello del 7/2/2020

Nome:	COGNOME:	
		======================================
STORE THE STORE STATE OF THE ST		

- 1) Con riferimento a lanci successivi di una moneta regolare, si considerino i numeri aleatori X: numero di teste nei primi 3 lanci, Y: numero di croci nel 2° e 3° lancio, Z: numero di teste nel 2° e 3° lancio. Calcolare:
- (a) Cov(X, Y), Cov(X, 2Y + Z);
- (b) l'indice di correlazione lineare fra Y e Z.
- 2) Da un'urna contenente 6 palline bianche e 4 rosse si estrae una pallina a caso senza reimbussolarla e successivamente un'altra pallina a caso con contagio unitario. Dopo questa fase preliminare, iniziano le estrazioni con reimbussolamento dall'urna così ottenuta. Posto E_h = "esce bianca all'h-esima estrazione con reimbussolamento", calcolare:
- (a) $P(E_h)$, $P(\bar{E}_h | \bar{E}_1 \wedge E_5)$, $P(E_1 \vee \bar{E}_2 | \bar{E}_3)$;
- (b) il valore x che rende equo il guadagno di Tizio, il quale per h = 1, 2, ..., 30 all'estrazione h-esima riceve 2h Euro se esce pallina bianca, x Euro se esce rossa;
- (c) la probabilità che all'inizio delle estrazioni (dopo la fase preliminare) nell'urna ci siano più palline bianche che rosse, sapendo che nelle prime 3 estrazioni sono uscite 3 palline rosse.
- 3) La coppia aleatoria (X,Y) ha determinazioni nella regione $T \cup R$, con T triangolo di vertici (-1,0), (0,1), (1,0) e R rettangolo di vertici (-1,0), (-1,-1), (1,-1), (1,0) ed è ivi distribuita con densità congiunta f(x, y) proporzionale a

$$g(x,y) = \begin{cases} y & se(x,y) \in T \\ 1 & se(x,y) \in R \end{cases}$$

Calcolare:

- (a) le densità marginali;
- (b) E(Y);
- (c) $P(Y \ge max\{0, X\})$.