Nikita is making a graph as a birthday gift for her boyfriend, a fellow programmer! She drew an undirected connected graph with N nodes numbered from 1 to N in her notebook.

Each node is shaded in either *white* or *black*. We define n_W to be the number of white nodes, and n_B to be the number of black nodes. The graph is drawn in such a way that:

- No 2 adjacent nodes have same coloring.
- ullet The value of $|n_W-n_B|$, which we'll call D, is minimal.

Nikita's mischievous little brother erased some of the edges and all of the coloring from her graph! As a result, the graph is now decomposed into one or more components. Because you're her best friend, you've decided to help her reconstruct the graph by adding K edges such that the aforementioned graph properties hold true.

Given the decomposed graph, construct and shade a valid connected graph such that the difference $|n_W-n_B|$ between its shaded nodes is minimal.

Input Format

The first line contains 2 space-separated integers, N (the number of nodes in the original graph) and M (the number of edges in the decomposed graph), respectively.

The M subsequent lines each contain 2 space-separated integers, u and v, describing a bidirectional edge between nodes u and v in the decomposed graph.

Constraints

- $1 \le N \le 2 \times 10^5$
- $0 \leq M \leq min(5 imes 10^5, rac{N imes (N-1)}{2})$
- It is guaranteed that every edge will be between 2 distinct nodes, and there will never be more than 1 edge between any 2 nodes.
- Your answer *must* meet the following criteria:
 - The graph is connected and no 2 adjacent nodes have the same coloring.
 - ullet The value of $|n_B-n_W|$ is minimal.
 - $K \le 2 \times 10^5$

Output Format

You must have K+1 lines of output. The first line contains 2 space-separated integers: D (the minimum possible value of $|n_B-n_W|$) and K (the number of edges you've added to the graph), respectively.

Each of the K subsequent lines contains 2 space-separated integers, u and v, describing a newly-added bidirectional edge in your final graph (i.e.: new edge $u \leftrightarrow v$).

You may print $any\ 1$ of the possible reconstructions of Nikita's graph such that the value of D in the reconstructed shaded graph is minimal.

Sample Input 0			
8 8 1 2 2 3 3 4 4 1 1 5 2 6 3 7 4 8			
Sample output 0			
0 0			
Sample Input 1			
8 6 1 2 3 4 3 5 3 6 3 7 3 8			
Sample Output 1			
4 1 1 5			
Sample Input 2			
5 4 1 2 2 3 3 4 4 1			
Sample Output 2			
1 2 2 5 4 5			

Explanation

In the figure below, the solid lines show the decomposed graph after Nikita's brother erased the edges, and the dotted lines show one possible correct answer:

In Sample 0, no additional edges are added and K=0. Because $n_W=4$ and $n_B=4$, we get $|n_W-n_B|=0$. Thus, we print $\mathfrak o$ on a new line (there is only 1 line of output, as K=0).

In Sample 1, the only edge added is (5,1), so K=1. Here, $n_W=6$ and $n_B=2$, so $|n_W-n_B|=4$. Thus, we print 4 $\,$ 1 on the first line. Next, we must print K lines describing each edge added; because K=1, we print a single line describing the 2 space-separated nodes connected by our new edge: 1 $\,$ 5.

In Sample 2, we can either add 1 edge (2,5) or (4,5), or both of them. In both cases we get $n_W=2$ and $n_B=3$, so $|n_W-n_B|=1$. Thus D=1 and K=1 or 2 both are correct.