FINM3133 Time Series for Finance and Macroeconomics

Chapter 7 Exercises

- 1. From a series of length 100, we have computed $r_1 = 0.8, r_2 = 0.5, r_3 = 0.4, \overline{Y} = 2$, and a sample variance of 5. If we assume that an AR(2) model with a constant term is appropriate, how can we get (simple) estimates of ϕ_1, ϕ_2, θ_0 , and σ_e^2 ?
- 2. If $\{Y_t\}$ satisfies an AR(1) model with ϕ of about 0.7, how long of a series do we need to estimate $\phi = \rho_1$ with 95% confidence that our estimation error is no more than ± 0.1 ?
- 3. Consider an ARMA(1,1) model with $\phi = 0.5$ and $\theta = 0.45$.
 - (a) For n = 48, evaluate the variances and correlation of the maximum likelihood estimators of ϕ and θ using Equation (7.4.5) on page 38 of lecture notes. Comment on the results.
 - (b) Repeat part (a) but now with n = 120. Comment on the new results.
- 4. Simulate an ARMA(1,1) series with $\phi = 0.7, \theta = 0.4$, and n = 72.
 - (a) Find the method-of-moments estimates of ϕ and θ .
 - (b) Find the conditional least squares estimates of ϕ and θ and compare them with part (a).
 - (c) Find the maximum likelihood estimates of ϕ and θ and compare them with parts (a) and (b).
 - (d) Repeat parts (a), (b), and (c) with a new simulated series using the same parameters and sample size. Compare your new results with your results from the first simulation.
- 5. Simulate an ARMA(1,1) time series of length $\phi = 0.7, \theta = -0.6, n = 48$ but with error terms from a chi-square distribution with 9 degrees of freedom.
 - (a) Display the sample EACF of the series. Is an ARMA(1,1) model suggested?
 - (b) Estimate ϕ and θ from the series and comment on the results.
 - (c) Repeat parts (a) and (b) with a new series under the same conditions.
- 6. The data file named **deere3** contains 57 consecutive values from a complex machine tool at Deere & Co. The values given are deviations from a target value in units of ten millionths of an inch. The process employs a control mechanism that resets some of the

parameters of the machine tool depending on the magnitude of deviation from target of the last item produced.

- (a) Estimate the parameters of an AR(1) model for this series.
- (b) Estimate the parameters of an AR(2) model for this series and compare the results with those in part (a).
- 7. The data file named **robot** contains a time series obtained from an industrial robot. The robot was put through a sequence of maneuvers, and the distance from a desired ending point was recorded in inches. This was repeated 324 times to form the time series.
 - (a) Estimate the parameters of an AR(1) model for these data.
 - (b) Estimate the parameters of an IMA(1,1) model for these data.
 - (c) Compare the results from parts (a) and (b) in terms of AIC.