1. Stieltjes-féle kvázimérték

A továbbiakban legyen $\varphi:\mathbb{R}\to\mathbb{R}$ egy monoton növekedő függvény, valamint

$$m(\emptyset) := 0, \quad m([x,y)) := \varphi(y) - \varphi(x) \qquad (x,y \in \mathbb{R}, \ x < y).$$

Az itt szereplő $\mathbf I$ halmazrendszer az üres halmazt, valamint az $\mathbb R$ balról zárt, jobbról nyílt intervallumait tartalmazza, $\mathcal I$ pedig az $\mathbf I$ félgyűrű által generált gyűrű, azaz

$$\mathbf{I} := \Big\{ \emptyset, [a,b) \subseteq \mathbb{R} \ \Big| \ a,b \in \mathbb{R}, \ a < b \Big\}, \qquad \mathcal{I} := \mathcal{G}(\mathbf{I}).$$

Mivel az m egy félgyűrűn értelmezett nemnegatív, additív és az üres halmazhoz nullát rendelő halmazfüggvény, ezért érvényes rá az alábbi kiterjesztési tétel.

1.1. Tétel

Definiáljuk az alábbi (Stieltjes-féle kvázimérték) halmazfüggvényt:

$$\widetilde{\mu}_{\varphi}: \mathcal{I} \to [0, +\infty), \qquad \mu(I) \coloneqq \sum_{k=0}^{n} m(I_k),$$

ahol az $I \in \mathcal{I}$ esetén vannak olyan páronként diszjunkt $I_0, \dots, I_n \in \mathbf{I}$, hogy

$$I = \bigcup_{k=0}^{n} I_k.$$

Ekkor $\widetilde{\mu}_{\varphi}$ előmérték, és ez az egyetlen olyan előmérték \mathcal{I} -n, amire $\widetilde{\mu}_{\varphi}|_{\mathbf{I}}=m$.

Bizonyos feltétel mellett $\widetilde{\mu}_{\varphi}$ nem
csak előmérték, hanem valóban kvázimérték.

1.2. Tétel

A most bevezetett $\widetilde{\mu}_{\varphi}$ kvázimérték $\iff \varphi$ balról folytonos.

Bizonyítás.

 \implies Indirekt tegyük fel, hogy a φ nem folytonos balról egy $x \in \mathbb{R}$ helyen.

Legyen az $(x_n): \mathbb{N} \to \mathbb{R}$ szigorúan monoton növekedő, $\lim(x_n) = x$. Ekkor

$$[x_0, x) = \bigcup_{n=0}^{\infty} [x_n, x_{n+1})$$

egy páronként diszjunkt felbontás, ezért a $\widetilde{\mu}_{\varphi}$ szigma-additivitása miatt

$$\begin{split} \widetilde{\mu}_{\varphi}\big([x_0,x)\big) &= \sum_{n=0}^{\infty} \widetilde{\mu}_{\varphi}\big([x_n,x_{n+1})\big) = \sum_{n=0}^{\infty} \Big(\varphi(x_{n+1}) - \varphi(x_n)\Big) \\ &= \lim_{n \to \infty} \sum_{k=0}^{n-1} \Big(\varphi(x_{k+1}) - \varphi(x_k)\Big) = \lim_{n \to \infty} \Big(\varphi(x_n) - \varphi(x_0)\Big) \\ &\stackrel{*}{=} \lim_{t \to x-0} \Big(\varphi(t) - \varphi(x_0)\Big) \end{split}$$

Ugyanakkor az m halmazfüggvény definíciójából adódóan

$$\widetilde{\mu}_{\varphi}([x,x_0)) = \varphi(x) - \varphi(x_0) = \lim_{t \to x - 0} (\varphi(t) - \varphi(x_0)).$$

Ez pedig pontosan azt jelenti, hogy a φ balról folytonos az x-ben.

Tehát az itt szereplő halmazfüggvény

$$m: \mathbf{I} \to [0, +\infty)$$

Ami most azzal ekvivalens, hogy

$$\lim_{t \to x - 0} \varphi(t) \neq \varphi(x).$$

Itt kihasználjuk, hogy mivel léteznek a

$$\lim_{t \to x-0} f(t), \quad \lim_{n \to \infty} x_n = x$$

határértékek, ezért az átviteli-elv miatt

$$\lim_{n \to \infty} f(x_n) = \lim_{t \to x \to 0} f(t). \tag{*}$$

Vagyis az alábbi ellentmondást kapjuk:

$$\lim_{t \to x - 0} \varphi(t) = \varphi(x).$$

 \sqsubseteq Azt kell megmutatni, hogy a $\widetilde{\mu}_{\varphi}$ szigma-additív. Ehhez elég lenne azt belátni, hogy az m szigma-additív. Mivel az m előmérték, ezért tetszőleges

$$a_n, b_n \in \mathbb{R}, \quad a_n < b_n \quad (n \in \mathbb{N}), \qquad \mathbf{I} \ni [a, b) = \bigcup_{n=0}^{\infty} [a_n, b_n)$$

páronként diszjunkt felbontás esetén

$$\sum_{n=0}^{\infty} m([a_n, b_n)) \le m\left(\bigcup_{n=0}^{\infty} [a_n, b_n)\right) = m([a, b)).$$

Most megmutatjuk, hogy fennáll a fordított irányú egyenlőtlenség is, azaz

$$m([a,b)) = \varphi(b) - \varphi(a) \le \sum_{n=0}^{\infty} (\varphi(b_n) - \varphi(a_n)).$$

Válasszunk egy tetszőleges $c \in (a, b)$ számot, lásd 1. ábra. Mivel a φ balról folytonos és monoton nő, ezért bármely $\varepsilon > 0$ -hoz és $n \in \mathbb{N}$ indexhez

$$\exists \widetilde{a}_n < a_n : \quad \varphi(a_n) - \varphi(\widetilde{a}_n) < \frac{\varepsilon}{2^n}$$
 (**)

fennáll, lásd 2 ábra. Ez alapján világos, hogy

$$[a,c] \subseteq \bigcup_{n=0}^{\infty} (\widetilde{a}_n, b_n).$$

Ekkor a Borel-lemma alapján feltehető, hogy alkalmas $N \in \mathbb{N}$ mellett

$$[a,c) \subset [a,c] \subseteq \bigcup_{n=0}^{N} (\widetilde{a}_n,b_n) \subseteq \bigcup_{n=0}^{N} [\widetilde{a}_n,b_n).$$

Mivel az m előmérték monoton és véges szubadditív, ezért

$$\varphi(c) - \varphi(a) \leq \sum_{n=0}^{N} \left(\varphi(b_n) - \varphi(\widetilde{a}_n) \right) \leq \sum_{n=0}^{\infty} \left(\varphi(b_n) - \varphi(\widetilde{a}_n) \right)$$

$$\leq \sum_{n=0}^{\infty} \left(\varphi(b_n) - \varphi(a_n) \right) + \sum_{n=0}^{\infty} \left(\varphi(a_n) - \varphi(\widetilde{a}_n) \right)$$

$$\leq \sum_{n=0}^{\infty} \left(\varphi(b_n) - \varphi(a_n) \right) + 2\varepsilon.$$

Innen a baloldali $c \to b-0$, valamint az $\varepsilon \to 0$ határátmenet következtében

$$\varphi(b) - \varphi(a) \le \sum_{n=0}^{\infty} (\varphi(b_n) - \varphi(a_n)).$$

Megjegyzés. Nyilván az identitásfüggvény eleget tesz a kívánalmaknak, és

$$\varphi(x) \coloneqq x \qquad (x \in \mathbb{R})$$

esetén visszakapjuk az úgynevezett Borel–Lebesgue-kvázimértéket, azaz

$$\widetilde{\mu}_{\varphi} = \widetilde{\mu}_1.$$

Lásd előmértékek tulajdonságai.

Itt kihasználjuk, hogy (**) miatt a

$$\sum_{n=0}^{\infty} \left(\varphi(a_n) - \varphi(\widetilde{a}_n) \right)$$

sorösszegzés felső becslése

$$\sum_{n=0}^{\infty} \frac{\varepsilon}{2^n} = \frac{\varepsilon}{1 - 1/2} = 2\varepsilon.$$