Simon König 3344789 - Klausurzettel

Turingmaschine: $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ mit $\delta : Z \times \Gamma \to Z \times \Gamma \times \Gamma$ $\{L, N, R\}$

ATM: zusätzlich $t: Z \to \{\forall, \exists\}$ Endl. Automat: $M = (Z, \Sigma, \delta, S, E)$

Gerich. Graph $G = (V, E), E = \{(v, w) \in V^2 \mid \text{von } v \text{ zu } w\}$

Unger. Graph $G = (V, E), E = \{\{v, w\} \subseteq V \mid v, w \text{ sind verbunden}\}$

Berechenbarkeit

• LOOP-Anweisungen:

- $-x_i := x_i + c$ bzw. $x_i := x_i c$ mit $c \in \mathbb{N}$
- LOOP x_i DO P END
- Hintereinanderausführung von LOOP-Programmen

Primitiv rekursive Funktionen:

- s(n)	- even(n)
- dec(n)	- odd(n)
- add(a,b)	-leq(a,b)
- sub(a,b)	- eq(a,b)
- mul(a,b)	- c(x,y)
$-c_{j}^{i}=j$	

- Turing-berechenbar (nicht LOOP):
- Ω , nirgends definierte Funktion
- -a(x,y), Ackermannfunktion

• μ-Rekursion bzw. WHILE:

- Für eine Funktion $f(x_1, x_2, \ldots, x_k)$ ist

$$\mu f(x_2, \dots, x_k) = \min\{n \in \mathbb{N} | f(n, x_2, \dots, x_k) = 0 \\ \wedge f(n_0, x_2, \dots, x_k) > 0 \ \forall n_0 < n\}$$

- Satz von Kleene: Jede WHILE-berechenbare Funktion lässt sich mit einer WHILE-Schleife darstellen. Genauso bei μ -Rekursion mit einem μ -Operator.

Entscheidbarkeit

- \bullet A < B und A nicht semi-entscheidbar, dann ist B ebenfalls nicht semi-entscheidbar. Ist B semi-entscheidbar, dann ist auch A semientscheidbar.
- **Dovetailing**: Simuliere Maschine M auf Eingabe $\omega(e(n))$ genau f(n)Schritte lang, erhöhe n. Hierbei sei $\omega(n)$ die Funktion zur rekursiven Aufzählbarkeit. e(c(a,b)) = a und f(c(a,b)) = b.
- ullet Satz von Rice: $\mathcal R$ die Menge der Turing-berechenbaren Funktionen. Die Menge

$$C(S) = \{w \mid M_w \text{ berechnet eine Funktion aus } S\}$$

ist unentscheidbar, wenn $\emptyset \neq \mathcal{S} \neq \mathcal{R}$.

ullet Eine Sprache ist genau dann semi-entscheidbar, wenn sie sich auf Hreduzieren lässt. (Vortragsübung)

- Für zwei kontextfreie Grammatiken sind unentscheidbar: Leerheit des Für alle f(n) > n gilt für die Zeitklassen Schnitts, Endlichkeit des Schnitts, Kontextfreiheit des Schnitts, Inklusion und Äquivalenz
- Entscheidharkeiten

LIILIGUIUU	abarkerteri.			
	Wortproblem	Leerheit	Äquivalenz	Schnitt
REG	✓	\checkmark	✓	\checkmark
DCFL	✓	\checkmark	✓	Χ
CFL	✓	\checkmark	Χ	Χ
CSL	✓	X	Χ	Χ
r.e.	X	X	Χ	Χ
	'			

Abschlusseigenschaften:

	Schnitt	Vereinig.	Kompl.	Konkat.	Stern
REG	✓	✓	✓	\checkmark	\checkmark
DCFL	X	X	\checkmark	X	X
CFL	X	\checkmark	Χ	\checkmark	\checkmark
CSL	✓	\checkmark	\checkmark	\checkmark	\checkmark
r.e.	✓	\checkmark	X	\checkmark	\checkmark

2.1 Entscheidbarkeitsprobleme

$K = \{w \mid M_w \text{ hält auf Eingabe } w\}$	semi
$H = \{ w \# x \mid M_w \text{ hält auf Eingabe } x \}$	semi
$H_0 = \{ w \mid M_w \text{ hält auf Eingabe } \epsilon \}$	semi
$((x_1,y_1),\ldots,(x_n,y_n))$ zusammenpassen	semi
Für alle Lösungen gilt $i_1=1$	semi
Menge aller wahren arithm. Formeln	unentsch.
Menge aller falschen arithm. Formeln	unentsch.
	$H = \{w\#x M_w \text{ hält auf Eingabe } x\}$ $H_0 = \{w M_w \text{ hält auf Eingabe } \epsilon\}$ $((x_1,y_1),\ldots,(x_n,y_n))$ zusammenpassen Für alle Lösungen gilt $i_1=1$ Menge aller wahren arithm. Formeln

Komplexität

- Wichtige Komplexitätsklassen
- PSPACE = $\bigcup DSPACE(p) = \bigcup NSPACE(p)$
- NP = | | NTIME(p)|
- $-\mathbf{P} = \overline{\bigcup \text{DTIME}(p)}$
- $NL = NSPACE(\log n)$
- $L = DSPACE(\log n)$
- $\operatorname{co} \mathcal{C} = \{ L \mid \overline{L} \in \mathcal{C} \} \text{ und } \overline{\mathcal{C}} = \{ L \mid L \not\in \mathcal{C} \}$
- In den Platzklassen ist O-Notation egal, Konstanten können vernachlässigt werden

$$DSPACE(\mathcal{O}(f)) = DSPACE(f)$$

$$NSPACE(\mathcal{O}(f)) = NSPACE(f)$$

ullet In nichtdeterministischen Zeitklassen spielt die \mathcal{O} -Notation keine Rolle

$$NTIME(\mathcal{O}(f)) = NTIME(f)$$

ullet Bei deterministischen Zeitklassen gilt i.A. $\mathrm{DTIME}(\mathcal{O}(f)) \neq$ DTIME(f), nur für größer als lineare Funktionen gilt Gleichheit d.h.

$$DTIME(\mathcal{O}(f)) = DTIME(f)$$
 $f(n) > (1 + \epsilon)n$ für ein $\epsilon > 0$

• Satz von Hennie und Stearns: Falls $\epsilon > 0, f(n) \ge (1 + \epsilon)n$, dann gilt

$$DTIME(f) \subseteq DTIME(f \log f)$$

$$DTIME(f) \subseteq NTIME(f) \subseteq DSPACE(f)$$

• Und für alle $f(n) > \log n$ gilt

$$DSPACE(f) \subseteq NSPACE(f) \subseteq DTIME(2^{\mathcal{O}(f)})$$

• Satz von Immerman und Szelepcsenyi: Falls $f \in \Omega(\log(n))$, gilt:

$$NSPACE(f) = coNSPACE(f)$$

• Alle deterministischen Zeit- und Platzklassen sind gegen Komplement abgeschlossen:

$$DSPACE(f) = coDSPACE(f)$$
$$DTIME(f) = coDTIME(f)$$

• Satz von Savitch: Sei $s \in \Omega(\log(n))$, dann gilt

$$NSPACE(s) \subseteq DSPACE(s^2)$$

• Sei $s_1 \not\in \Omega(s_2)$ und $s_2 \in \Omega(\log(n))$ und beide platzkonstruierbar, dann gilt der Platzhierarchiesatz

$$DSPACE(s_2) \setminus DSPACE(s_1) \neq \emptyset$$

 $\Rightarrow DSPACE(s_1) \subsetneq DSPACE(s_2)$

• Sei $t_1 \log(t_1) \not\in \Omega(t_2)$ und $t_2 \in \Omega(n \log(n))$ und beide zeitkonstruierbar, dann gilt der Zeithierarchiesatz

$$DTIME(t_2) \setminus DTIME(t_1) \neq \emptyset$$

$$\Rightarrow DTIME(t_1) \subsetneq DTIME(t_2)$$

• Lückensatz von Borodin: Für jede totale berechenbare Funktion $r(n) \geq n$ existiert effektiv eine totale berechenbare Funktion $s(n) \geq n$ n+1 mit

$$DTIME(s(n)) = DTIME(r(s(n)))$$

Translationtechnik:

Die Translationssätze werden verwendet, Separationen von größeren zu kleineren Klassen bzw. Gleichheiten oder Inklusionen von kleineren zu größeren Klassen zu übertragen. Die durch Padding aufgebläte Sprache ist $Pad_f(L) := \{ w \$^{f(|w|) - |w|} \mid w \in L \}.$

1. Für zwei Funktionen $f(n), q(n) \ge n$ gilt der **Translationssatz für** Zeitklassen:

$$\begin{split} Pad_f(L) \in \mathrm{DTIME}(\mathcal{O}(g)) \Leftrightarrow L \in \mathrm{DTIME}(\mathcal{O}(g \circ f)) \\ Pad_f(L) \in \mathrm{NTIME}(\mathcal{O}(g)) \Leftrightarrow L \in \mathrm{NTIME}(\mathcal{O}(g \circ f)) \end{split}$$

2. Und analog für $g \in \Omega(\log)$ und $f(n) \geq n$ der **Translationssatz** für Platzklassen:

$$Pad_f(L) \in DSPACE(\mathcal{O}(g)) \Leftrightarrow L \in DSPACE(\mathcal{O}(g \circ f))$$

 $Pad_f(L) \in NSPACE(\mathcal{O}(g)) \Leftrightarrow L \in NSPACE(\mathcal{O}(g \circ f))$

- Reduktionen
 - 1. Für zwei beliebige Sprachen A und B gilt

$$A \leq_{\log} B \Rightarrow A \leq_{p} B \Rightarrow A \leq B \Rightarrow A \leq_{T} B$$

- 2. $A \leq_n B \land B \in \mathbf{P} \Rightarrow A \in \mathbf{P}$
- 3. $A \leq_{p} B \wedge B \in \mathsf{NP} \Rightarrow A \in \mathsf{NP}$
- 4. A NP-vollständig, dann: $A \in P \Leftrightarrow P = NP$

3.1 Vollständige Probleme

• Folgende Probleme sind NP-vollständig bezüglich \leq_p :

SAT | $\{w \mid w \text{ kodiert eine erfüllbare Formel}\}$ 3KNF-SAT | KNF mit max. 3 Literalen pro Klausel erfüllbar?

CLIQUE | Enthält ein Graph eine Clique der Größe k?

FÄRB. | Gibt es eine Knotenfärbung mit k Farben?

- QBF ist PSPACE-vollständig.
- **P**-vollständig bezüglich \leq_{\log} ist
 - 1. CVP: Circuit Value Problem, Wert eines Schaltnetzes bestimmen
 - 2. L_{cfe} : Leerheit kontextfreier Sprachen
- ullet NL-vollständig bezüglich \leq_{\log} ist
 - 1. **GAP**: existiert ein Pfad vom source-Knoten zum target-Knoten in einem gerichteten Graphen?
 - 2. 2KNF-SAT

4 Beispiele

• Verhältnis von $NSPACE(2^n)$ und $DSPACE(5^n)$:

$$\begin{split} & \text{NSPACE}(2^n) \overset{\text{S.v.s.}}{\subseteq} \text{DSPACE}(2^{2n}) \\ &= \text{DSPACE}(4^n) \overset{\text{P.H.s.}}{\subsetneq} \text{DSPACE}(5^n) \end{split}$$

• Folgerung mit Translationssatz, $\mathbf{P} \subseteq \mathbf{L} \Rightarrow \mathbf{EXPTIME} \subseteq \mathbf{PSPACE}$: Sei $L \in \mathbf{EXPTIME} \Rightarrow L \in \mathrm{DTIME}(2^{n^k})$ für ein $k \in \mathbb{N}$, dann ist mit der Translationsfunktion $f(n) = 2^{\frac{n^k}{k}}$ (denn $f(n^k) = 2^{k*(n^k)*\frac{1}{k}} = 2^{n^k}$) nach dem Translationssatz für Zeitklassen $Pad_f(L) \in \mathrm{DTIME}(n^k)$. Nach der Annahme $\mathbf{P} \subseteq \mathbf{L}$ folgt dann, $Pad_f(L) \in \mathrm{DSPACE}(\log n)$. Mit dem Translationssatz für Platzklassen und der selben Funktion folgt, $L \in \mathrm{DSPACE}(\log f(n)) = \mathrm{DSPACE}(\log(2^{\frac{n^k}{k}})) = \mathrm{DSPACE}(\frac{n^k}{k}) \subseteq \mathbf{PSPACE}$. \square • Ungleichheit mit dem Translationssatz, $\forall c \in \mathbb{N} : \mathrm{NSPACE}(n^c) \neq 0$

• Ungleichheit mit dem Translationssatz, $\forall c \in \mathbb{N}: \mathrm{NSPACE}(n^c) \neq \mathsf{NP}:$

Annahme: $\exists c \in \mathbb{N} : \mathrm{NSPACE}(n^c) = \mathbf{NP}.$ Sei $L \in \mathrm{NSPACE}(n^{3c})$ beliebig. Mit $f(n) = n^3$ folgt dann, $Pad_f(L) \in \mathrm{NSPACE}(n^c) \subseteq \mathbf{NP}$

nach Annahme. Es existiert also ein $k\in\mathbb{N}:Pad_f(L)\in\mathrm{NTIME}(n^k)$, nach Zeithierarchiesatz ist $L\in\mathrm{NTIME}(n^{3k})$. Es wurde gezeigt:

$$NSPACE(n^c) \subseteq NP \Rightarrow NSPACE(n^{3c}) \subseteq NP$$

Damit folgt aber nach Annahme

$$NSPACE(n^{3c}) \subseteq NP = NSPACE(n^c)$$

Was im Widerspruch zum Platzhierarchiesatz steht.