WECN Structural Embedding/Removal

Figure

Delay-Invariant Embedding

Single-Link Auto-SCORE Algorithm - Software

Combine $N_t \times M$ matrices X_0 and X_1 into single $2N \times M$ matrix X,

Iteratively update combiner weights (preset iterations, or until stopping criterion met)

 $v = \mathbf{Su}$ $\rho = 1/2 \operatorname{sign} \{\mathbf{v}^{H}\mathbf{u}\}$ $\mathbf{u} \leftarrow \rho \mathbf{v} + \rho^{*}\mathbf{S}^{H}\mathbf{u}$ $\mathbf{v} = ||\mathbf{u}|| (\mathbf{L}_{2} \operatorname{norm})$

 $\Lambda/n \rightarrow n$

$$\mathbf{X} = [\mathbf{X}_0{}^H \, \mathbf{X}_1{}^H]^H$$

where $N = N_{\text{slot}}$, $M = M_{\text{Rx}}$ if time-slot embedding is employed at the transmitter. Compute **QR** decomposition of X,

$$X = QR$$

$$\mathbf{A} = \mathbf{A}\mathbf{K}$$

 $\mathbf{Q}^H \mathbf{Q} = \mathbf{I}$ $\mathbf{R} = \operatorname{chol}\{\mathbf{X}^H \mathbf{X}\},\$

Compute output SINR measurement γ

 $\gamma = \nu/(1-\nu)$

where Q is defined by

$$\mathbf{Q} = [\mathbf{q}_1 \dots \mathbf{q}_M]$$

= $[\mathbf{q}(1) \dots \mathbf{q}(N)]^H$

Separate Q into $N \times M$ submatrices Q_0 and Q_1 , such that

Exit

 $\gamma \geq \gamma_{\text{detect}}$?

$$O_n = X_nC$$

$$\mathbf{Q}_0 = \mathbf{X}_0 \mathbf{C}$$
$$\mathbf{Q}_1 = \mathbf{X}_1 \mathbf{C},$$

where $C = \mathbb{R}^{-1}$. Form $M \times M$ cross-correlation matrix S,

Compute slot/diversity combined output data

 $\mathbf{d} = \mathbf{Q}_0 \mathbf{u} + (\mathbf{Q}_1 \mathbf{u}) e^{-j\varphi}$

Compute phase-shift estimate ϕ ,

yes

$$\mathbf{S} = (1/N) \mathbf{Q}_0^H \mathbf{Q}_1$$

$$= [s(m,M)]$$

= $||\mathbf{u}|| (I, norm)$

$$\mathbf{u} = [s (m, M)]$$

$$\mathbf{v} = ||\mathbf{u}|| (L_2 \text{ norm})$$

$$\mathbf{u} \leftarrow \mathbf{u}/v$$

Compute unwhitened combiner weights w, aperture vector a, Initialize whitened linear combiner weights

$$\mathbf{w} = \mathbf{C}\mathbf{u}$$

$$\mathbf{a} = \mathbf{R}^H \mathbf{n}$$

Figure

6

alternative converging embedded-signal-differentiation

algorithms

Dominant-Mode Prediction

Solve: $\gamma \mathbf{u} = (\mathbf{R}^H \mathbf{R} - \mathbf{I}) \mathbf{u}$ $||\mathbf{u}|| = 1 (\mathbf{L}_2 \text{ norm})$ $\gamma = \text{max eigenvalue}$

ALTO COCUE

Solve:

 $V(\varphi) \mathbf{u} = \mathbf{S}(\varphi) \mathbf{u}$ $\mathbf{S}(\varphi) = 1/2(\mathbf{S}e^{j\varphi} + \mathbf{S}^He^{-j\varphi})$ $||\mathbf{u}|| = 1 \ (L_2 \text{ norm})$

 $v(\varphi) = \max \text{ eigenvalue}$ $\varphi = \arg \max_{\varphi} v(\varphi)$

Optimization Algorithm

Initialize: $\mathbf{u} = r(M, M) [r^*(M, 1) - 1]$ $\gamma = ||\mathbf{u}|| (L_2 \text{ norm})$ $\mathbf{u} \leftarrow \mathbf{u}/\gamma$

Iterate:

 $\begin{array}{ll}
\mathbf{u} \leftarrow \mathbf{R}^H \mathbf{v} - \mathbf{u} \\
\gamma = \|\mathbf{u}\| \ (\mathbf{L}_2 \text{ norm}) \\
\mathbf{u} \leftarrow \mathbf{u}/\gamma
\end{array}$

Optimization Algorithm

Initialize:

 $\mathbf{u} = [s(m, M)]$ $v = ||\mathbf{u}|| (L_2 \text{ norm})$ $\mathbf{u} \leftarrow \mathbf{u}/v$

Iterate:

 $\rho = 1/2 \text{ sign}\{\mathbf{V}^H\mathbf{u}\}$ nysed ナスグシn

 $v = ||\mathbf{u}|| \quad (\hat{\mathbf{L}}_2 \text{ norm})$ $\mathbf{u} \leftarrow \mathbf{u}/v$

Finalize:

 $\varphi = \arg\{\rho\}$ $\gamma = \nu/(1-\nu)$

Figure

Multilink Embedding Key Generation Algorithm

Multilink Transmit Embedding Hardware (Node n_1)

Link Detection, Separation Operation

Pseudodelay Plots and Antenna Patterns

