Problem 1.

(1) True.

This is because if the dimension of V is m, then there is max m linear independent vectors. So for all linearly independent set of vectors $\in V$, there must be $\leq m$ elements in that set. This is a theorem we used in the lectures.

(2) False.
Let
$$U = \mathbb{R}^2$$

 $W = \mathbb{R}$
 $\vec{v_1} = [1, 0]$
 $\vec{x} = [x_1, x_2] \in U$
 $T: U \to W$
Define $T(\vec{x}) = x_1$

$$span(T(\vec{v_1})) = span(1)$$

$$= \mathbb{R}$$

$$= U$$

but
$$span([1,0]) \neq \mathbb{R}^2$$

= W

(3) *True*.

Given: $\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k\}$ is linearly independent.

Suppose to the contrary that $\vec{v_k} \in \text{Span}\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_{k-1}}\}$ This means there exists a linear combination of $\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_{k-1}}\}$ that equals $\vec{v_k}$ So $\exists a_1, \cdots, a_{k-1} \ s.t. \ a_1\vec{v_1} + a_2\vec{v_2} + \ldots + a_{k-1}\vec{v_{k-1}} = \vec{v_k}$

This means that $\vec{v_k}$ is linearly dependent to $\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_{k-1}}\}$, which contradicts our given.

 \therefore Our supposition is wrong, and $\vec{v}_k \notin \text{Span}\{\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_{k-1}\}$

(4) True.
Let
$$\mathcal{B}_1 = \{x, x^2 + x, x^3 + x^2 + x, \dots, x^n + \dots + x^3 + x^2 + x\}$$
Let $\mathcal{B}_2 = \{x^n, \dots, x^3, x^2, x\}$

$$W = span(\mathcal{B}_2)$$

$$= \{b_1x + b_2x^2 + b_3x^3 + \dots + b_nx^n \mid b_1, \dots, b_n \in \mathbb{F}\}$$

$$V = span(\mathcal{B}_1)$$

$$= \{a_1x + a_2(x^2 + x) + \dots + a_n(x^n + \dots + x^3 + x^2 + x) \mid a_1, \dots, a_n \in \mathbb{F}\}$$

$$= \{(a_1 + \dots + a_n)x + (a_2 + \dots + a_n)x^2 + \dots + (a_n)x^n \mid a_1, \dots, a_n \in \mathbb{F}\}$$

$$= \{b_1x + b_2x^2 + b_3x^3 + \dots + b_nx^n \mid b_1, \dots, b_n \in \mathbb{F}\}$$

$$= span(\mathcal{B}_2)$$

$$= W,$$
as wanted.

Problem 2.

(1) $W.T.S.\ U+W$ is non-empty, closed under addition, and closed under scalar multiplication.

Stephen Guo

Non-empty:

Since we know U and W are subspaces, then there exists $\vec{0}$ for both subspaces. Therefore, we can choose $u = \vec{0} \in U$, and $w = \vec{0} \in W$ such that $\{u + w \mid u \in U, w \in W\}$. This means $\vec{0}$ is in U + W

Closed under addition:

Let $a, b \in U + W$

This means: $a = u_1 + w_1$

$$b = u_2 + w_2$$

Where: $u_1, u_2 \in U$

$$w_1, w_2 \in W$$

$$a + b = (u_1 + w_1) + (u_2 + w_2)$$
$$= (u_1 + u_2) + (w_1 + w_2)$$

$$\in U + W$$

since $(u_1 + u_2) \in U$ and $(w_1 + w_2) \in W$ which sastifies $\{u + w \mid u \in U, w \in W\}$

Since a and b are arbitrary elements in U+W, and $a+b\in U+W$, U+W is closed under addition.

Closed under scalar multiplication:

Let $a \in U + W$, $c \in \mathbb{R}$

This means $a = u_1 + w_1$

$$ca = cu_1 + cw_1$$

$$\in U + W$$

since $cu_1 \in U$ and $cw_1 \in W$ which sastifies $\{u + w \mid u \in U, w \in W\}$

Since a and b are arbitrary, and $ca \in U + W$, U + W is closed under scalar multiplication.

Since U+W is non-empty, closed under addition, and closed under scalar multiplication, U+W is a subspace of V

(2)
$$sp(\mathcal{U} \cup \mathcal{W}) = \{(a_1u_1 + \dots + a_ru_r) + (b_1w_1 + \dots + b_sw_s) \mid a_1, \dots, a_r, b_1, \dots, b_s \in \mathbb{R}\}$$

If $sp(\mathcal{U}) = U$, then all elements in U can be written as a linear combination of elements in \mathcal{U} . The same can be said for $W = sp(\mathcal{W})$

This means:
$$U = \{a_1u_1 + \dots + a_ru_r \mid a_1, \dots, a_r \in \mathbb{R}\}\$$

 $W = \{b_1w_1 + \dots + b_sw_s \mid b_1, \dots, b_s \in \mathbb{R}\}\$

All elements in U + W can be written as a linear combination of elements in \mathcal{U} and \mathcal{W} .

$$U + W = \{u + w \mid u \in U, w \in W\}$$

$$= \{(a_1u_1 + \dots + a_ru_r) + (b_1w_1 + \dots + b_sw_s) \mid a_1, \dots, a_r, b_1, \dots, b_s \in \mathbb{R}\}$$

$$= sp(\mathcal{U} \cup \mathcal{W}),$$
as wanted.

(3) W.T.S. $(a_1u_1 + \cdots + a_ru_r) + (b_1w_1 + \cdots + b_sw_s) = 0$ only has 1 unique solution, where $a_1 = \ldots = a_r = b_1 = \ldots = b_s = 0$

This is equivalent to saying
$$u + w = \vec{0}$$
 since $U = \{a_1u_1 + \cdots + a_ru_r \mid a_1, \cdots, a_r \in \mathbb{R}\}$ $W = \{b_1w_1 + \cdots + b_sw_s \mid b_1, \cdots, b_s \in \mathbb{R}\}$

This means we $W.T.S. u = w = \vec{0}$

Given:
$$u + w = \vec{0}$$

 $w \in W$
 $u \in U$
 $U \cap W = \{0\}$

Suppose to the contrary that $u \neq 0$

Then w must be the inverse elemnt of u such that u + w = 0

This means w = -u

This contradicts our given, since $w = -u \notin W$

 \therefore Our supposition is wrong, and u=0

Without loss of generality, this also applies if $w \neq 0$.

This means that
$$u = w = \vec{0}$$

 $\implies a_1 = \dots = a_r = b_1 = \dots = b_s = 0$
 $\implies \mathcal{U} \cup \mathcal{W}$ are linearly independent.

$$Dim(U + W) = |\{u_1, \dots, u_r, w_1, \dots, w_s\}|$$

= $r + s$

$$DimU + DimW = |\{u_1, \dots, u_r\}| + |\{w_1, \dots, w_s\}|$$

= $r + s$

$$\therefore Dim(U + W) = DimU + DimW$$

Problem 3.

(1) Proving V is finite-dimensional $\Longrightarrow V$ has finitely many elements

Suppose $\mathcal{B} = \{b_1, \dots, b_n\}$ is the set of basis vectors for V.

This means $V = \{a_1b_1 + \ldots + a_nb_n \mid a_1, \cdots, a_n \in \mathbb{F}\}$

Since $|\mathbb{F}|$ is finite, that means that there is a finite set of scalars for the set of basis vectors \mathcal{B} . This means the set of linear combinations is finite, which proves V has a finite number of elements.

Stephen Guo

Proving V has finitely many elements $\Longrightarrow V$ is finite-dimensional

Suppose V has finitely many elements

This means that the set of basis is \mathcal{B} finite, since \mathbb{F} is also finite. A linear combination of a finite set with a finite set of scalars is finite.

This means $dim(V) = |\mathcal{B}|$ which is a finite number. Also, $span(\mathcal{B}) = V$ which is a finite spanning set.

(2)

Suppose $\mathcal{B} = \{b_1, \dots, b_n\}$ is the set of basis vectors for V.

This means $V = \{a_1b_1 + \ldots + a_nb_n \mid a_1, \cdots, a_n \in \mathbb{F}\}\$

For all n b_i vectors, there is $|\mathbb{F}|$ choices for scalars for each b_i .

This means there is $[\mathbb{F}|\times|\mathbb{F}|\times...\times|\mathbb{F}|] = |\mathbb{F}|^n$

$$= |\mathbb{F}|^{\dim(V)}$$

number of elements in V

(3)

We know that $\mathcal{V} = \{(a_1, a_2, \dots, a_n) \mid a_1, \dots, a_n \in \mathbb{F}_3\}$

Where $\mathbb{F}_3 = \{0, 1, 2\}$

is the set of all tricolorings, where n is the number of line segments.

From what we found in (2), there must be $|\mathbb{F}|^{\dim(V)} = 3^n$ number of tricolorings.

Problem 4.

(1)
Let
$$f = a_0 + a_1 x + a_2 x^2$$

 $g = b_0 + b_1 x + b_2 x^2$
 $r \in \mathbb{R}$

W. T.S.
$$T_{\vec{c}}(rf+g) = rT_{\vec{c}}(f) + T_{\vec{c}}(g)$$

Where $T_{\vec{c}}: \mathcal{P}_2 \to \mathbb{R}^3$

$$L.S. = T_{\overline{c}}(rf+g)$$

$$= \begin{bmatrix} rf(1) + g(1) \\ rf(2) + g(2) \\ rf(1) + g(1) \end{bmatrix}$$

$$= \begin{bmatrix} ra_0 + ra_1 + ra_2 + b_0 + b_1 + b_2 \\ ra_0 + 2ra_1 + 4ra_2 + b_0 + 2b_1 + 4b_2 \\ ra_0 + ra_1 + ra_2 + b_0 + b_1 + b_2 \end{bmatrix}$$

$$R.S. = rT_{\vec{c}}(f) + T_{\vec{c}}(g)$$

$$= r \begin{bmatrix} f(1) \\ f(2) \\ f(1) \end{bmatrix} + \begin{bmatrix} g(1) \\ g(2) \\ g(1) \end{bmatrix}$$

$$= r \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 + 2a_1 + 4a_2 \\ a_0 + a_1 + a_2 \end{bmatrix} + \begin{bmatrix} b_0 + b_1 + b_2 \\ b_0 + 2b_1 + 4b_2 \\ b_0 + b_1 + b_2 \end{bmatrix}$$

$$= \begin{bmatrix} ra_0 + ra_1 + ra_2 + b_0 + b_1 + b_2 \\ ra_0 + 2ra_1 + 4ra_2 + b_0 + 2b_1 + 4b_2 \\ ra_0 + ra_1 + ra_2 + b_0 + b_1 + b_2 \end{bmatrix}$$

Since L.S. = R.S.

$$\therefore T_{\vec{c}} \text{ is linear for } \vec{c} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

(2)

$$ker(T_{\vec{c}}(f)) = \begin{bmatrix} a_0 + a_1 + a_2 \\ a_0 + 2a_1 + 4a_2 \\ a_0 + a_1 + a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{r_3 - r_1} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} a_0 - 2a_2 = 0 \\ a_1 + 3a_2 = 0 \\ a_2 \in \mathbb{F} \end{cases}$$

$$\Rightarrow \begin{cases} a_0 = 2s \\ a_1 = -3s \\ a_2 = s \\ s \in \mathbb{F} \end{cases}$$

$$\Rightarrow \ker(T_{\vec{c}}(f)) = \operatorname{span}\left(\begin{bmatrix} 2 \\ -3x \\ x^2 \end{bmatrix}\right)$$

(3)

$$C = \{ [c_0, \dots, c_n] \mid a_i \neq c_j, \ \forall i \neq j \}$$
Let $f = [a_0, a_1, \dots, a_n]$

W. T.S. $T_{\vec{c}}(f)$ is an isomorphism.

It is enough to show $det(A) \neq 0$ where $T_{\vec{c}}(f) = Af$ $\forall \ \vec{c} \in C$

$$dim(\mathbb{R}^{n+1}) = n+1$$
$$dim(\mathcal{P}_n) = n+1$$

$$T_{\vec{c}}(f) = \begin{bmatrix} 1 & c_1 & c_1^2 & \cdots & c_1^n \\ 1 & c_2 & c_2^2 & \cdots & c_2^n \\ 1 & c_3 & c_3^2 & \cdots & c_3^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_{n+1} & c_{n+1}^2 & \cdots & c_{n+1}^n \end{bmatrix} f$$

A satisfies the definition of Vandermonde matrix.

The determinant of Vandermonde matrix is

$$\det(A) = \prod_{1 \le i < j \le n+1} (c_j - c_i)$$

By definition of C, all vectors in $\vec{c} \in C$ have different values for all parts of the vector.

This means $(c_i - c_i) \neq 0$ $\forall i, j$

The product of non-zero real numbers is non-zero $\implies \det(A) \neq 0$

 $\therefore A$ is invertible $\implies T_{\vec{c}}(f)$ is an isomorphism

Problem 5.

- (1) The [I.H.] states that a set of n vectors are linearly independent. This only means that the set $\{v_1, \dots, v_n\}$ is linearly independent. So for the set $\{v_1, \dots, v_n, v_{n+1}\}$, you can only claim that $\{v_1, \dots, v_n\}$ is linearly independent. Not $\{v_2, \dots, v_n, v_{n+1}\}$
- (2) They did not state that n < m. This is because you cannot assume that n vectors is linearly independent if n > m. By the proof in **Problem 1.1**, you can only have max m linearly independent vectors.