

MERRY CHRISTMAS

ELF WELEDME

by Hugh Dagg

This program can take any message, story, letter, or figure you care to create and move it across a TV screen from right to left. It can be run on a Cosmac computer with at least five pages of memory. With five pages of memory, up to 256 characters can be displayed and be repeated endlessly. For every page of memory beyond five, 256 more characters can be displayed.

The basic setup of the pages is shown in Diagram 1. To describe the main program itself, I have used a flow chart, Diagram 2.

Using the program is relatively easy. Once the message you want is formed, encode it using the Table below and load the numbers starting at 0400. If you would like the message to repeat, load an FF after the message.

Along with messages, pictures can be displayed. An example of this is my brother's boat. To see it load 2C ZD ZE ZF lA FF starting at 0400 and start the program running again. Since it is near Christmas, my mother made up some Christmas characters portrayed in the following encoded Christmas message: 31 lA 30 lA OC 04 l1 l1 l8 lA 02 07 l1 08 l2 l3 OC 00 l2 lA FF.

To create your own objects or scenes on the screen, first draw a likeness on paper 8 lines high and less than 64 bytes long. Second, divide the scene into byte-wide columns and load it as in Diagram 3. Note loading can occur anywhere in either page 1 or 2 as long as the first of the eight bytes for a character starts at a nO or n8 where n is any hex digit.

At this point one must be aware that there is a capability of 64 characters and each character has a hex number from 00 to 3F inclusive. 00 is the number of the character represented by 0100 to 0107 up to 3F which is the number of the character represented by 02F8 to 02FF. So wherever you put your character, remember the hex character number for it.

Added Features and Notes.

- 1. Near the beginning of the program at memory location 0031 to 003F the display page is cleared. If you would like to clear just the eight lines where the message appears and have a display of your own in the rest of the page, load 47 in (M0032) and 3F in (M0035) and load in your display.
- 2. The position of the shifted message can occur anywhere on the screen by changing (M0080) which is the right-most byte of the top line. Be careful to have that hex number greater than 07 and less than C7 and of the form n0 or nF. If the number is not in the above range the register that works with the display page could increment or decrement to an adjacent page.
- 3. The rate at which the characters cross the screen is determined by (MOOAD). I have found that 05 creates a good speed.
- 4. For an interesting effect after a character string is loaded, change location (MOOA2) to OF. What is really happening here?

COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC

Dump Listing of Characters

NO.	CHAR.	ADDRESS	CO								
00	A	0100	7E	42	42	7E	42	42			
01	B	0108	7C	42	42	7C	70	42	42	7C	
02	C	0110	1E	60	40	40	40	40	60		
03 04	D E	0118	78	44	42	42	42	42	44	78	
05	F	0120	7E 7E	40	40 40	70 70	7C	40	40	7E	
05	G	0128	7E	40 40	40	40	40° 4F		40	40	
07	H	0130 0138	42	42	40	7E	4F 7E	42 42	42 42	7E	
08	n I	0140	18	18	18	18	18			42	
09	j.	0140	02	02	02	02	02	18 42	18 42	18 7E	
OA	K.	0150	42	44	48	70	70	48	44	42	
0B	Ĺ	0158	40	40	40	40	40	40	7E	7E	
OC.	м	0160	42	66	5A	42	42	42	42	42	
0D	N	0168	62	62	52	52	4A	4A	46	46	
0E	ö	0170	3C	42	42	42	42	42	42	3C	
0F	P	0178	7E	42	42	7E	42	40	40	40	
10	, Q	0180	3C	42	42	42	52	4A	46	3E	
11	Ř	0188	7Ě	42	42	7Ē	50	48	44	42	
12	Š	0140	7Ē	42	40	7E	02	02	42	7E	
13	Ť	0148	7E	18	18	18	18	18	18	18	
14	Ü	01A0	42	42	42	42	42	42	42	7E	
15	V	01A8	42	42	42	24	24	24	18	18	
16	W	01B0	42	42	42	42	42	5A	66	42	
17	X	01B8	42	24	24	18	18	24	24	42	
18	Y	01C0	42	24	18	18	18	18	18	18	
19	Z	01C8	7E	02	04	08	10	20	40	7E	
1A	(blank)	01D0	00	00	00	00	00	00	00	00	
18	*1	01D8	28	28	00	00	00	00	00	00	
10	•	01E0	00	00	00	00	00	00	40	40	
1D	,	01E8	00	00	00	00	60	60	20	40	
1E	t	01F0	18	18	18	18	18	18	00	18	
1F	?	01F8	7E	02	02	02	1E	18	00	18	
20	0	0200	7E	42	42	42	42	42	42	7E	
21	1	0208	18	28	18	18	18	18	18	7F	
22	2	0210	7E	02	02	02	02	04	18	7E	
23	3	0218	7E	02	02	3E	02	02	02	7E	
24	4	0220	42		42	42	7E	02	02	02	
25	5	0228	7E	40	40	40	7E	02	02	7E	
26	6	0230	7E	40	40	40	7E	42	42	7E	
27	7	0238	7E	02	02	02	02	02	02	02	
28	8	0240	7E	42	42	7E	42	42	42	7E	
29	9	0248	7E	42	42	7E	02	02	02	02	

```
NO.
2A
2B
2C
2D
         CHAR.
                        ADDRESS CODE
                                        00 00 1F 00 0F 0F 03 01
           tank
                         0250
                                       20 78 F8 78 FF FF 56 FC
00 00 1F 7F 04 7F 3F 1F
07 02 3F 28 28 FF FF FF
00 00 F8 28 28 FF FF FF
             1111
                         0258
           boat
                         0260
             1111
                         0268
2E
             1111
                         0270
2F
30
31
                                       00 00 1E 1E 10 F8 FC F8
08 10 60 20 3F 3E 22 22
08 08 1C 1C 3E 3E 7F 08
             1111
                         0278
       reindeer 0280
           tree
                        0288
```

Extra Space for your own characters
3F

Registers Used:

P=7 or 1 X=5 or 2 0=DMA Pointer 1=Interrupt 2=Stack Pointer 3=Work Space Pointer 4=Character Pointer 5=Display Pointer 6=Message Pointer 7=Main PC 8=Line Counter 9≂Byte Counter A=Unused B=Unused C=Unused D=Unused E=Unused F=Unused

Page 4			
ADDR CODE	COMMENT	ADDR CODE	COMMENT
0015 78	X & P> Stack	005E B4	COMPLETE
0016 22		005F 30	Branch to
0017 52	Store D	0060 6D	006D
0018 C4 0019 C4	For	0061 06	Char. # out
0019 C4	timing	0062 FC	Subtract 20
001B F8	R0=0300	0063 E0 0064 FE	and Shift
001C 03		0065 FE	3 times
001D B0	Page 3 is	0066 FE	(Multiplication by 8)
001E F8 001F 00	Display page	0067 FC	Add 7
0020 AO		0068 07 0069 A4	C+ D4 0
0021 80		0064 F8	Store R4.0
0022 E2		006B 02	R4=02
0023 E2 0024 20	Delev	006C B4	
0024 20 0025 AO	Delay between	006D 16	Increment R6
0026 E2	DMA1s	006E_F8 006F: 08	
0027 20		0070 A9	Move 8
0028 A0		0074 F8	bytes of
0029 E2 002A 20		0072 F7	character
002B A0		0073 A3 0074 04	into
002C 3C	Branch to	0075 53	00F0-00F8 Uslng
002D 21	0021 if not finished DMA	0076 24	R3 & R4
002E 2B 002F 30	Decrement RB by 1	0077 23	
0030 12	Branch to 0012	0078 29	
0031 F8	0012	0079 89 007A 3A	
0032 FF	(or 47) <only if="" td="" want<="" you=""><td>007B 74</td><td></td></only>	007B 74	
0077 45	the features	007C F8	For 8 shifts
0033 A5 0034 F8		007D 08	For whole
0035 FF	(or 3F) <only if="" td="" want<="" you=""><td>007E AA 007F F8</td><td>letter</td></only>	007E AA 007F F8	letter
	the features	0080 OF	R5=03 OF
0036 A8		0081 A5	N3-03 di
0037 E5 0038 90		0082 F8	For shifting
0039 73	Clear	0083 08	All 8 lines
003A 28	display	0084 A8 0085 F8	
003B 88	Page 3	0086 F0	R3=00 F0
003C 3A		0087 A3	
003D 38 003E 90		0088 F8	For shifting
003F 55		0089 08 008A A9	8 bytes in a line
0040 F8		008B 03	R3 contents out
0041 05	Set delay	008C FE	shift
0042 AB 0043 E2	Sex	008D 53	back in
0044 69	TV on	008E 33 008F 95	Test DF
0045 30	Branch to	0090 05	If DF=0
0046 4C	004C	0091 FE	Shift R5
0047 06 0048 FC	Character # out	0092 55	
0049 01	Add 1	0093 30 0094 9B	Branch to
004A 3A	If 00 start	0095 05	00 9B
004B 53	message over	0096 FE	If DF=0
004C 93		0097 AF	Shift R5 &
004D A6 004E F8	R6=0400	0098 1F 0099 8F	Add 1
004F 04	1.0 0400	009A 55	
0050 B6		009B 25	
0051 30	Branch to	009C 29	Till 8 bytes
0052 47 0053 06	0047 Char. # out	009D 89 009E 3A	in line are
0054 FE	Cital • # Out	009E 3A :_	done
0055 FE	Shift 3 times	00A0 85	Add 10 to
0056 FE	(Multiplication by 8)	00A1 FC	R5 to get
0057 33 0058 61	lf D≻1F branch	00A2 10	to next line
0058 61 0059 FC	To 00 61 If not add	00A3 A5 00A4 13	increment R3 by 1
005A 07	7	00A5 28	THE CHEM IS DA I
005B A4	Store R4 low	00A6 88	Do till alt
005C F8 005B 01	D4-01	00A7 3A	8 lines are
0000 01	R4=01	00A8 88	done

00A9 8B 00AA 3A Delay	
= · · · · · ·	
0010 10	
00AB A9	
00AC F8 Reset 00F0 0808 0808 0808 08F8 0000 00	005 27EE 0000
00AD 03 Delay 0100 7FA2 427F 4242 42A2 7CA2 42	27C 7C42 427C
0110 1F60 4040 4040 601F 7844 42	242 4242 4479
0120 7F40 407C 7C40 407E 7F40 40	37C 4040 4040
0000 0A DO UNITE AND 0 0130 7FA0 ADAD AFA2 A27F A2A2 A2	27F 7F42 4242
0140 1818 1818 1818 1818 0202 02	202 0242 427F
0062 /r Character shifted 0150 4244 4870 7048 4442 4040 40	040 4040 7F7F
0083 30 Branch 10 0160 4266 5A42 4242 4242 6262 52	252 4A4A 4646
00B4 47 0047 0170 3C42 4242 4242 423C 7E42 42	27E 4040 4040
0180 3C42 4242 524A 463E 7E42 42	27E 5048 4442
0190 7F42 407F 0202 427F 7F18 18	318 1818 1818
0000 9001 B2B3 B7F8 14A1 F8FU AZF8 31A7 F803 01A0 4242 4242 4242 427E 4242 42	224 2424 1818
0010 BDU 7270 2278 2252 C4C4 C4F8 03B0 F800 01B0 4242 4242 4254 6642 4224 24	118 1824 2442
0020 A080 E2EZ 20A0 E220 A0EZ 20A0 3C21 2B30 01C0 4224 1818 1818 1818 7E02 04	408 1020 407E
0030 1268 FFA3 F8FF A8E5 9073 2888 3A38 9055 01D0 0000 0000 0000 0000 2828 00	0000 0000 0000
0040 F809 ABEZ 6930 4C06 FC01 3A53 93A6 F804 01E0 0000 0000 0000 4040 0000 00	000 6060 2040
0050 B630 4706 FEFE FE33 61FC 07A4 F801 B430 01F0 1818 1818 1818 0018 7E02 02	202 1E18 0018
0060 6D06 FCE0 FEFE FEFC 07A4 F802 B416 F808 0200 7E42 4242 4242 427E 1828 18	318 1818 187E
0070 A9F8 F7A3 0453 2423 2989 3A74 F808 AAF8	23E 0202 027E
0080 0FA5 F808 A8F8 F0A3 F808 A903 FE53 3395 0220 4242 4242 7E02 0202 7E40 40)40 7EO2 027E
0090 05FE 5530 9805 FEAF 1F8F 5525 2989 3A8E 0230 7E40 4040 7E42 427E 7E02 02	202 0202 0202
00A0 85FC 10A5 1328 883A 888B 3AA9 F805 AB2A 0240 7E42 427E 4242 427E 7E42 42	27E 0202 0202
0080 8A3A 7F30 4700 0000 0000 0000 0000 0000 0250 0000 1F00 0F0F 0301 2078 F8 0000 0000 0000 0000 0000 0000 000	378 FFFF 56FC
	28 28FF FFFF
	TIE 10F8 FCF8
00E0 0000 0000 0000 0000 0000 0000 000	010 3E3E 7F08

DETE WES DOMP

by Phillip B. Liescheski III

VBiB Hex Dump is a small program which displays the contents of a certain portion of memory on a video monitor via the VBlB video board. This program was more or less created out of necessity. It is quite useful in inspecting the code of a large program after manual loading or during debugging. It makes memory inspection quick and less tedious.

Hex Dump is based on the VBlB video board. It assumes that the VBIB is operating in the 32 character/line mode, and its video memory begins and at F000. The program uses R2 as stack pointer, RA as memory inspect pointer, RB as video pointer and R4 as a subroutine call register. It assumes that R3 is the main program counter. Basically, it begins by inspecting memory at 0000. First the memory address which is contained in RA is displayed at the beginning of the line. A colon with a blank follows the memory address and then eight bytes of memory are displayed with a blank inserted in between each displayed byte. After this a new line is displayed, until twelve lines have been put on the screen. In order to view the next

portion of memory, one merely presses the Input key on the hex keypad. Since Hex Dump contains no screen clearing routine, portions of the video memory which are not written upon by the Hex Dump will remain as is, so video garbage may be seen around the edges of the display.

Hex Dump contains one subroutine known as HEXASC. It is called by using a SEP instruction and R4 is its program counter. It basically accepts a byte contained in accumulator D, converts it to ASCII code and displays it on the VB1B video board. First, it operates upon the upper nibble of D and then on the lower nibble of the D. This subroutine is called upon in order to display the memory addresses and the bytes in memory.

This program has been very handy in inspecting code and as stated earlier it was created out of necessity. Hopefully, others who have not already written similar programs can use this program in their work. Finally, it is believed that with little modification, Hex Dump can be used to operate the Gremlin video board, but this has not yet been tried.

Page 6

ADDR CODE	COMMENT
0000 E2	Set R2 as Stack Pointer
0001 93	Determine which page it is operating in
0002 B2	and push it into R2.1 and R4.1
0003 B4	
0004 F8 00	Set Memory Inspect Pointer (RA)
0006 AA BA	
0008 F8 FF	Finish setting up Stack Pointer
000A A2	
000B F8 43	Finish setting up HEXASC Subroutine
	Pointer (R4)
000D A4	
000E F8 40	Initialize Video Pointer (RB)
0010 AB	
0011 F8 F0	
0013 BB	10141.41 0.0 4 4041
0014 F8 08	Initialize 8 Counter (R1)
0016 A1	0.5.07.1.4
0017 9A	Get High Memory Address
0018 D4	Display it on Video
0019 8A	Get low Memory Address
001A D4	Display It on Video
001B F8 3A	Place a colon after Address
001D 5B	
001E 1B	Bump Video Pointer
001F F8 20	Then a Blank
0021 5B	
0022 1B	Bump Video Pointer
0023 4A	Get byte from memory and bump pointer
0024 D4	Display it on Video
0025 F8 20	Place a blank after it
0027 5B	


```
ADDR CODE
             COMMENT
0042 03
             Return
             Entry point; Save D on Stack
0043 52
0044 F6 F6
             Inspect upper nibble of D
0046 F6 F6
0048 FF 0A
             Convert it to ASCII Code
004A 33 4F
004C FC 3A
004E C8
004F FC 41
0051 5B
             Store It in Video Memory
             Bump Video Pointer
0052 1B
0053 FO
             Retrieve value from Stack
             Inspect lower mibble of D
0054 FA OF
0056 FF 0A
             Convert It to ASCII Code
0058 33 5D
005A FC 3A
              If .LT. OA, add OA+'0'
005C C8
005D FC 41
             if .GE. OA, add 'A'.
005F 5B
             Store it in Video Memory
0060 18
             Bump Video Pointer
             Branch to Return
0061 30 42
```

* XX- This program can operate in any full page of

* memory.

Registers Used:

R1= 8 Counter R2= Stack Pointer R3= Main Program Counter

R3= Main Program Counter R4= HEXASC Program Counter RA= Memory Inspect Pointer

RB= Video Pointer

QUESTDATA P.O. Box 4430 Santa Ciara, CA 95054

PublisherQuest Electronics
EditorPaul Messinger
Assistant to Editor ...Jeanette Johnson
Associate Editor ...Allan Armstrong
Contributing Editors Ron Cenker
Van Baker
Art and GraphicsHolly Olson
Proof ReadingJudy Pitkin
ProductionJudy Pitkin
CirculationSue Orr

The contents of this publication are copyright and shall not be reproduced without permission of QUESTDATA. Permission is granted to quote short sections of articles when used in reviews of this publication. QUESTDATA welcomes contributions from its readers. Manuscripts will be returned only when accompanied by a self addressed stamped envelope. Articles or programs submitted will appear with the authors name unless the contributor wishes otherwise. Payment is at the rate of \$15 per published page. QUESTDATA exists for the purpose of exchanging information about the RCA 1802 microcomputer.

0000 E293 B2B4 F800 AABA F8FF A2F8 43A4 F840 0010 ABF8 F0BB F808 A19A D48A D4F8 3A5B 1BF8 0020 205B 1B4A D4F8 205B 1B21 813A 239B FFF3 0030 323C 8BFC 22AB 9B7C 00BB 3014 3F3C 373E 0040 300E D352 F6F6 F6F6 FF0A 334F FC3A C8FC 0050 415B 1BF0 FA0F FF0A 335D FC3A C8FC 415B 0060 1B30 42

Flowchart Constant Table:

MEMINS = 0000 VMEMBG = 0500 EIGHT = 08 VMEMUE = FC LINBMP = 21 CARRY = 00

CHRISTMAS MUSIC

by Jan Beckman

Below is a Music Algorithm which is a modified version of the Algorithm written by Ed McCormick which was published in Popular Electronics Magazine Feb. 1978 issue, and published earlier in Questdata Volume I, Issue 3. Along with the Algorithm is some "Christmas Music for our Elf".

ADDR CODE		ADDR	CODE
0000 E5		0026	89
0001 F8 47	A5	0027	FF 01
0004 F8 00		0029	A9
0007 F0		002A	3A 34
0008 3A 0B		002C	88
000A 00		002D	FF 01
000B A8		002F	A8
000C 15 64	25	0030	3A 11
000F F0		0032	30 3C
0010 A7		0034	C4 C4
0011 F8 10	A9	0036	3 0 38
0014 87 FC	B4	0038	30 3A
0017 33 21		003A	30 14
0019 31 1E		003C	7A
001B 7B		003D	
001C 30 21			F8 OE BE
001E 7A			2E 9E
001F 30 21			3A 41
0021 87			30 07
0022 FF 01		0047	MUSIC PROGRAM
0024 3A 22			

joy to the World

by Gerald VanHorn

ADDR	COL	ÞΕ	ADDR CODE
0047	25	12	0081 OC 22
0049	1A	14	0083 OC 22
004B	08	17	0085 OC 22
004D	2A	1B	0087 OC 22
004F	OC.	1F	0089 OC 22
0051	19	22	008B 06 22
0053	13	27	008D 06 1F
0055	18	2 D	008F 2A 1B
0057	0E	18	0091 06 1F
0059	2F	17	. 0093 06 22
005B	0F	17	0095 QA 27
005D	34	14	0097 OA 27
005F	11	14	0099 OA 27
0061	37	12	009B 05 27
0063	12	12	009D 06 22
0065	12	12	009F 24 1F
0067	11	14	00A1 06 22
0069	0F	17	00A3 05 27
006B	0E	18	00A5 09 2D
006D	16	1B	00A7 25 12
006F	06	1F	00A9 OF 17
0071	OC.	22	00AB 16 1B
0073	12	12	00AD 05 1F
0075	12	12	00AF 0C 22
0077	11	14	00B1 0C 1F
0079	0F	17	00B3 17 22
007B	0E	1B	00B5 14 27
007D	16	1B	00B7 26 2D
007F	06	1F	00B9 00

Silent Night Music

by Jan Beckman

ADDR	COL	Œ	,	ADDR	COU	Œ
0047	21	24		0077	31	1F
0049	0Ç	1F		0079	18	1F
004B	16	24		007B	29	19
-004D	36	2D		007 D	0E	18
004F	21	24		007F	18	1F
0051	OC.	1F		0081	21	24
0053	16	24	1	0083	OC.	1F
0055	36	20		0085	16	24
0057	41	15	1	0087	24	2 D
0059	21	15	ı	0089	OB	4 C
0058	52	1B	1	008B	41	15
005D	3A	19	1	0800	21	15
005F	1D	19	İ	008F	39	11
0061	41	24	1	0091	10	15
0063	31	1F		0093	18	18
0065	18	1F		0095	4E	19
0067	29	19		0097	4 A	12
0069	0F	18		0099	0B	4C
006B	18	1F	(009B	29	19
006D	21	24		009D	08	24
006F	0Ç	1F	(009F	12	2D
0071	16	24	(00A1	27	24
0073	24	2D		00A3	OΑ	2A
0075	0B	4C	(00A5	10	33
				7A00	3A	3B
			(00A9	00	

God Rest Ye Merry Gentlemen

by Gerald M. VanHorn

Moge cognermae mosic

by Paul Thompson

Here are some more Christmas tunes to be played with the Beckman Music Algorithm.

Jolly Old Saint Nicholas	Good King Wenceslaus	Auld Lang Syne	O Christmas Tree
ADDR CODE 0047 15 27 0049 15 27 004B 15 27 004B 15 27 004F 12 2D 0051 12 2D 0053 25 2D 0055 10 33 0057 10 33 0059 10 33 0059 10 33 005B 10 33 005B 52 27 005F 0E 3F 0061 0E 3F 0063 0E 3F 0065 0E 3F 00667 0C 47 0069 0C 47 0069 0C 47 0069 10 33 0071 12 2D 0073 15 27 0075 49 2D 0077 15 27 0079 10 33 0080 10 33 0080 52 27 0087 0C 47 0099 0C 47	ADDR CODE 0047 10 33 0049 10 33 0048 10 33 004B 10 33 0051 10 33 0051 10 33 0055 0E 3F 0057 0C 47 0059 0E 3F 0058 10 37 0050 21 33 0061 10 33 0061 10 33 0065 10 33 0066 10 33 0067 12 2D 0069 10 33 0068 10 33 0068 10 33 0069 10 33 0060 19 47 006F 0E 3F 0071 0C 47 0073 0E 3F 0071 0C 47 0073 0E 3F 0071 0C 47 0075 10 37 0077 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 21 33 0079 15 27 0081 12 2D 0083 15 27 0085 12 2D 0087 21 33 0089 0E 3F 008B 0C 47 008D 0E 3F 008B 0C 47 009D 0E 3F 008B 10 37 0091 21 33 0095 0C 47 0090 0E 3F 0091 21 33 0095 0C 47 0090 0E 3F 0091 21 33 0095 0C 47 0097 0C 47 0099 0E 3F 0098 10 37 0090 10 33 0091 21 33 0095 0C 47 0097 0C 47 0099 0E 3F 0098 10 37 0090 10 33 00A1 25 2D 00A3 19 1F 00A5 16 24 00A7 15 27 00AB 21 33 00AD 2C 24 00AF 21 33 00B1 44 4C 00B3 00	ADDR CODE 0047 19 47 0049 31 33 004B 10 37 004D 21 33 004F 29 27 0051 37 2D 0053 10 33 0055 25 2D 0057 29 27 0059 31 33 005B 10 33 005B 10 33 005B 10 33 005B 10 33 005B 31 1F 0061 A5 1B 0063 37 1B 0065 4A 1F 0067 15 27 0068 21 33 006D 37 2D 006B 10 33 0071 25 2D 0073 29 27 0075 31 33 0077 0E 3F 0079 1C 3F 0078 19 47 0070 62 33 0077 0E 3F 0078 19 47 0070 62 33 0077 37 1B 0081 4A 1F 0083 15 27 0085 29 27 0087 21 33 0087 37 1B 0081 4A 1F 0083 15 27 0085 29 27 0087 31 1F 0091 4A 1F 0083 15 27 0085 29 27 0087 31 1B 0091 4A 1F 0093 15 27 0087 31 1B 0091 4A 1F 0093 15 27 0088 37 1B 0090 45 1B 0090 45 1B 0090 45 1B 0090 37 2D 008B 10 33 008D 25 2D 008B 37 1B 0091 4A 1F 0093 15 27 0085 29 27 0087 31 1F 0093 15 27 0088 37 1B 0090 45 1B 0090 45 1B 0090 37 2D 008B 10 33 008B 20 27 008B 37 1B 0091 4A 1F 0093 15 27 008B 37 1B 0091 4A 1F 0093 15 27 008B 37 1B 0091 4A 1F 0093 15 27 008B 37 1B 0091 4A 1F 0093 15 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0091 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27 008B 37 1B 0090 4A 1F 0095 29 27	ADDR CODE 0047 OC 47 0049 08 33 004B 08 33 004D 10 33 00BF 12 2D 0051 0A 27 0053 0A 27 0055 15 27 0057 15 27 0059 09 2D 005B 0A 27 005D 16 24 005F 10 37 0061 12 2D 0063 10 33 0065 0C 47 0067 08 33 0069 08 33 006B 10 33 006D 12 2D 006F 0A 27 0071 0A 27 0073 15 27 0077 09 2D 0079 0A 27 0078 16 24 007D 10 37 007F 12 2D 0081 10 33 0083 19 1F 0085 0C 1F 0087 0A 27 0078 16 24 007D 10 37 007F 12 2D 0081 10 33 0083 19 1F 0085 0C 1F 0087 0A 27 0089 1C 1B 0088 19 1F 0088 0C 1F 0087 0A 27 0089 1C 1B 0088 19 1F 0089 0C 1F 0087 0A 27 0089 1C 1B 0088 19 1F 0089 0C 1F 0087 0A 27 0089 1C 1B 0088 19 1F 0088 0C 1F 0087 0A 27 0089 1C 1B 0088 19 1F 0089 0C 1F 0087 0A 27 0089 1C 1B 0088 19 1F 0089 1C 24 0091 16 24 0092 0B 24 0093 16 24 0093 16 24 0093 16 24 0095 0B 24 0097 09 2D 0099 19 1F 0098 16 24 0097 09 2D 0099 19 1F 0098 16 24 0097 09 2D 0099 19 1F 0098 16 24 0091 033 00B9 16 24 0091 033 00B9 16 24 0092 00B 12 2D 00A5 08 33 00B9 16 24 00A6 0A 27 00B1 12 2D 00AD 0A 27 00B1 12 2D 00AD 0A 27 00B1 12 2D 00AD 0A 27 00B1 12 33 00AF 0A 27 00C1 44 4C 00B1 15 27 00C3 00

USING SUPER MONITOR 1/0

by Van C. Baker

Super Monitor versions 2.0 and 2.1 contain very useful video display output and keyboard input routines which you can use to avoid having to write your own. Version 2.0 is for use with either a Solid State Music Board or a Polymorphics Video Board, both utilizing a 64-character-per-line format. Version 21 is for use with the Gremlin board, which utilizes a 32-character-per-line format with 16 lines per screen. Both versions support ASCII keyboard input on Input Port 5, using EF2 as a Data Available flag.

INPUT: The operation of both Super Monitor versions on input is the same. The input routine resides at location 8300 and is called via a Standard Call procedure. Before calling it, however, be sure that R2 (Which becomes the Stack Pointer if not already so designated) is pointing to a free location. The parity bit (Most significant bit, D7) is automatically stripped, ie., set to 0, and the input byte with D7 zero is saved in RF.1 (High half of register F). Immediately after receiving an input byte, the input routine branches to the display routine so that the input character is automatically displayed. Your calling program retrieves the input byte by accessing RF.l.

When using Version 2.0 of the Super Monitor, you must electrically pull the MSB (Bit D7) on the keyboard input high if the Polymorphic board is used or pull it low if the Solid State Music board is being used. This is done so that the output routine can determine which board you are using. Consequently, you should not use the parity bit generated by your keyboard.

OUTPUT: Version 2.0 and 2.1 output routines function in slightly different ways because the display formats are different; however, they are both called in exactly the same way. Register F.l must first be pre-loaded with the character to be output and R2 must point to a location having at least 7 free bytes below it; ie., the stack being pointed to by R2 must be at least 7 deep. When RF.1 is loaded with the output character, the most significant bit (D7) must be zero, ie, the character must be 7-bit ASCII for the character to "print". Otherwise, if the MSB is 1, the character will not be displayed. (Version 2.1 users please see the Gremlin Users' Manual for a description of the ASCII format used for display using the Gremlin Color Video). A so-called "CRIXY" value is saved in location 98BC in the 1/4 K RAM area to hold the cursor position, so this location MUST NOT be altered at any time by your calling program.

The output routine begins at 8303. Before using the output routine you must FIRST initialize the display by outputting a FORM FEED (CLEAR SCREEN) character. This will move the cursor to the top left-hand corner of the screen and remove any random patterns from the display.

The output drivers will accept the following special control characters for moving the cursor:

CTRL H (08)	Backspace cursor
CTRL I (09)	Horizontal Tab
CIRL J (OA)	Linefeed
CIRL K (OB)	Vertical Tab (Home)
CIRL L (OC)	Form feed (Clear Screen)
CIRL X (18)	Line Cancel

Other characters such as <CR> (carriage return) and SPACEBAR function in the conventional fashion.

NOTE: The Gremlin board uses EF1 to send to the 1802 the status of the Video Generator to prevent static appearing on the TV screen. If your Version 2.1 monitor appears to be "hung up" at 836E-836F, check your Super Elf and Expansion Board Modifications to be sure they have been correctly done, especially those affecting EF1.

BREAK ROUTINE

Also included with both I/O drivers is a Break routine at 8306 which can be used in conjunction with your program to sense the input of a special "abort" character. This routine scans input port 5 for the presence of either a SPACEBAR or CIRL @ typed.

When a SPACEBAR is typed, the monitor break routine enters a loop, waiting for a non-space character to be typed. This feature is useful to temporarily stop the output display for inspection. Typing a non-space character will cause output to resume.

When a CTRL @ is typed, the DF flag is set to l. Your main program can then check for DF set and take the appropriate action to suspend the output if so. Thus, your calling program must make sure that DF is cleared (eg., via an ADI #00 instruction) prior to calling the break routine in the Monitor. Note that typing a SPACEBAR will not affect DF.

Monitor Version 20 also has a built—in pause routine which will cause the display to pause whenever the "I" key on the Hex Keypad is pressed. Releasing the key will cause output to resume. This feature is part of the Version 20 output driver and is automatic; it requires no special calling sequence.

E-PART CHROSTMAS

Lester Hands

Since the Q output of the 1802 is only one line, only one-part melodies can be synthesized and harmony is impossible, right? Wrong! Or, at least, partly wrong.

This program thinks it is a banjo. Pairs of notes are played in rapid succession so that the overall effect is of a melody plus a harmony part. The structure is so simple that it could be very easily altered to play three-part harmony.

1/4K memory is required, but if you have more, the program will run as written.

The tempo can be changed by altering 000C, and the "plucking speed" of the banjo is stored in location 0009.

,				
DR 0	ODE			COMMENT
JJ00 9	0 B1	В2		Set high addresses of R(1), R(2)
0003 F	8 1C	A1		Address of Tone subroutine
0006 F	8 31	A2		Address of Note Table
0009 F	8 04	B3		Length of each note
000C F	8 04	Α3		Number of times each note pair
				repeated
000F D	1			Call tone subroutine
0010 1	2			Point to next note in table
0011 D	1			Call tone subroutine
0012 2	2			Point to previous note in table
0013 2	3 83	3A	0F	Has tone pair been repeated
		-		enough?
				-

0017	12	12			Poir	nt to f	irst	of	пех	:	tone	pair
0019						p back						
0018					Retu							
001C						re leng						
001E		<i>5</i> Z	30			d note,				1	not :	zero
0021		05				re noțe	in H	((5)				
0022			10			rement	4.	4	- 1			
0024						note le					+	
0027	00	Эĸ	22			p back ished	IT NO	те	ае	ау	пот	
002A	CE	74	70	70								
002A			20	10		nge Q p back						
0030		16				p back e value	wac	705	٠.	ha	1+	
0031		20			11011	o value	W G3	201	υ.	ща	1 1	
0033												
0035				ADDR	COD	€	ADDR	COD	Œ			
0037				0061	20	35	008B	2F	3C			
0039				0063	20	50	0800					
0038				0065			008F					
003D				0067			0091					
003F	28	3C		0069			0093					
0041	2D	35		006B		3C	0095					
0043	2D	43		006D		2D	0097	20	43			
0045	21	35		006F	23	2D	0099					
0047		_		0071			009B 009D					
0049		2F		0073			009D					
004B						35	00A1					
004D						35 35	00A3					
004F		2D		0079 007B		2F	00A5					
0051				0070		28 20	00A7					
0053				0075 007f		2D	00A9					
0055					28		00AB					
0057				0083		21 3C	OOAD					
0059 005B		2D		0085								
	1E	35		0087								
005D	1 =	2F		5001	20							

QUESTDATA P.O. Box 4430 Santa Clara, CA 95054 A 12 issue subscription to QUESTDATA, the publication devoted entirely to the COSMAC 1802 is \$12. (Add \$6.00 for airmail postage to all foreign countries except Canada and Mexico.)

0089 2F 3C

Your comments are always welcome and appreciated. We want to

Payment.	be your 1802's best friend.
☐ Check or Money Order Enclosed	•••
Made payable to Quest Electronics	NAME
☐ Master Charge No	
☐ Bank Americard No	ADDRESS
□ Visa Card No	
Expiration Date:	

ZIP STATE CITY Signature

□ Renewal □ New Subscription

MEMORY DUMP

by
Al A. Williams WD5GNR

The following program is what I feel is an improved version of the "Memory Recaller" presented in Questdata Vol. 1, Issue #3. It runs in less memory and faster than the previous program. The program dumps each byte of memory (starting with 00) to the hex display. The memory is in no way changed by running any of the program. I am including several modifications to make it more useful. You may change the pause between bytes by changing the number in location 05.

Alternatively, in a one page system you may remove address 01 to save space. Then, of course, all addresses after 00 must be decremented. If you are placing this in another memory block use an LDI 00 and renumber accordingly. You can easily change the starting address prior to execution by inserting an LDI between the Bl and Al at location 01-02. Other modifications are apparent and trivial (i.e. single stepping under push button control, change of starting address by the keypad when running, stop bytes or addresses, etc., etc.).

ADDR 0000		OPCODE GHI RO	COMMENT; put 0 in D- use only in first page
0001 0002 0003	B1	PHI R1 PLO R1 SEX R1	;put D (0) in R1.1 ;put D (0) in R1.0 ;let X=1
0004 0005 0007 0008	F8 60 B2	OUT 4 LD1 60 PH1 R2 DCR R2	;output byte - R1+1 ;load delay ;put in R2
0009		GHI R2 BNZ 08	;decrease R2 by 1 ;get delay count ;If delay does not = 0 do it
0000	30 04	BR 04	again ;get next byte

COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC CLUB COSMAC

18 QUESTDATA P.O. Box 4430 Santa Clara, CA 95054

ADDRESS CORRECTION REQUESTED

BULK RATE
U.S. Postage Paid
QUEST
Electronics

Permit No. 549 Santa Clara, CA