06/07(一)高等数学 A 标准答案

$$-$$
, 1. $[1,+\infty)$;

$$\frac{1}{2}e^{-6x-3}+c$$
;

$$-$$
, 1. $[1,+\infty)$; 2. $-1.$; 3. $\frac{1}{2}e^{-6x-3}+c$; 4. $\frac{1}{2}\ln(x^2+1)+\arctan x+c$

5.
$$x-1$$
:

5.
$$x-1$$
; 6. $y = c_1 + c_2 x + c_3 e^x$

$$\square \cdot 1. \qquad \lim_{x \to \infty} \left(\sin \frac{2}{x} + 1 \right)^x = \lim_{x \to \infty} \left[\left(\sin \frac{2}{x} + 1 \right)^{\frac{1}{\sin \frac{2}{x}}} \right]^{\frac{\sin \frac{2}{x}}{2}}$$

$$=e^2$$

$$=e^2$$
 (6分)

2.
$$y' = \frac{t}{2}$$
 (3 分)

$$y'' = \frac{1+t^2}{4t}$$
 (6 \(\frac{1}{2}\))

3.
$$\frac{dy}{dx} + \frac{1}{x \ln x} y = \frac{1}{x} (- 阶线性) (2 分)$$

$$y = e^{-\int \frac{1}{x \ln x} dx} \left(\int \left(\frac{1}{x} e^{\int \frac{1}{x \ln x} dx} \right) dx + c \right)$$
 (4 $\frac{1}{2}$)

$$= \frac{1}{\ln x} \left(\frac{\ln^2 x}{2} + c \right) \qquad (6 \, \text{\%})$$

五、每空2分

4.2.7				
	f(x) 的奇偶性	奇	f(x) 的单调性	单调增加
	f(x) 的极值点	无	f(x) 图形的拐点	(0,0)
	f(x)图形的水平渐近线		$y = \pm \sqrt{\frac{\pi}{2}}$	

六、 设切点 A 的坐标 (x_0, y_0)

切线方程为
$$y-x_0^2=2x_0(x-x_0)$$

$$\exists \exists x = \frac{y + x_0^2}{2x_0}$$

$$\int_{0}^{x_0^2} \left(\frac{y + x_0^2}{2x_0} - \sqrt{y} \right) dy = \frac{1}{12}$$
 (2 \(\frac{1}{2}\))

$$\frac{x_0^3}{12} = \frac{1}{12}$$
,切点 A 的坐标为(1,1) (4分)

切线方程为y=2x-1 (5分)

旋转体的体积=
$$\int_{0}^{1} x^{4} dx - \int_{\frac{1}{2}}^{1} (2x-1)^{2} dx$$
 (8分)

$$=\frac{\pi}{30} \qquad (10\,\%)$$

$$\pm \cdot \cdot \Leftrightarrow F(x) = \ln x - \frac{x}{e} + \int_0^{\pi} \sqrt{1 - \cos 2x} dx$$

$$F'(x) = \frac{1}{x} - \frac{1}{e} \Leftrightarrow F'(x) = 0 \Rightarrow x = e \tag{3 \%}$$

又x < e时,F'(x) > 0,x > e时,F'(x) < 0 所以x = e是极大值点 (6分)

$$F(e) = \ln e - \frac{e}{e} + \int_0^{\pi} \sqrt{1 - \cos 2x} dx = 2\sqrt{2} > 0$$

$$F(0+0) = -\infty$$
 , $F(+\infty) = -\infty$

所以有且仅有两个不同实根。(10分)

八、由积分中值定理得
$$3\int_{\frac{2}{3}}^{1} f(x)dx = f(\xi_1) = f(0), \xi_1 \in \left(\frac{2}{3}, 1\right)$$
 (2分)

$$f(x)$$
 在[0, ξ_1]上连续,在(0, ξ_1) 内可导,且 $f(\xi_1) = f(0)$

由罗尔定理得在 $(0,\xi_1)$ \subset (0,1) 内至少存在一个 ξ ,使 $f'(\xi)=0$ (5 分)

九 (1) 原式可化为
$$(x+1)f'(x) = \int_0^x f(t)d - (x+1)f(x)$$
 , 又 $f'(x)$ 可导

等式两边求导并化简得:
$$(x+2)f'(x)+(x+1)f''(x)=0$$
 (*)

且满足
$$f(0) = 1$$
, $f'(0) = -1$

解初值问题(令 f'(x) = p, f''(x) = p' 带入 (*))得

$$f'(x) = p = -\frac{e^{-x}}{x+1}$$
 (4 \(\frac{h}{2}\))

(2) 因为当
$$x \ge 0$$
时, $f'(x) = -\frac{e^{-x}}{x+1} < 0$

所以 f(x) 在 $[0,+\infty)$ 上单调递减, $f(x) \le f(0) = 1$

$$\diamondsuit F(x) = f(x) - e^{-x}$$

$$F'(x) = f'(x) + e^{-x} = \frac{xe^{-x}}{x+1} > 0$$

$$F(x) \ge F(0) = 0$$
, $\mathbb{P}[f(x)] \ge e^{-x}$

故有
$$e^{-x} \le f(x) \le 1$$
 (8分)