Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы вычислительной техники

К ЗАЩИТЕ	допустить
	Ю. А. Луцик

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему

ПРОЕКТИРОВАНИЕ И ЛОГИЧЕСКИЙ СИНТЕЗ СУММАТОРА-УМНОЖИТЕЛЯ ДВОИЧНО-ЧЕТВЕРИЧНЫХ ЧИСЕЛ

БГУИР КР 1-40 02 01 512 ПЗ

Студент Н. А. КивачукРуководитель И. В. Лукьянова

Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

Дисциплина: Арифметические и логические основы вычислительной техники

		УТВЕРЖДАЮ
Заведу	ющи	й кафедрой ЭВМ
		Б. В. Никульшин
«	>>	2022г.

*

ЗАДАНИЕ по курсовой работе студента Кивачука Никиты Андреевича

- 1 Тема работы: «Проектирование и логический синтез сумматораумножителя двоично-четверичных чисел»
- 2 Срок сдачи студентом законченной работы: до 20 мая;
- 3 Исходные данные к работе:
 - **3.1**Исходные сомножители: Мн=78,69; Мт=11,59;
 - 3.2 Алгоритм умножения: А;
 - **3.3** Метод умножения: умножение закодированного двоичночетверичного множимого на два разряда двоичного множителя одновременно в дополнительных кодах;
 - **3.4** Коды четверичных цифр множимого для перехода к двоичночетверичной системе кодирования: $0_4 01$, $1_4 11$, $2_4 10$, $3_4 00$;
 - 3.5 Тип синтезируемого умножителя: 2;
 - **3.6** Логический базис для синтеза ОЧС: ИЛИ-НЕ; метод минимизации карты Карно-Вейча;
 - **3.7** Логический базис для синтеза ОЧУС: ИЛИ, СУММА ПО МОДУЛЮ 2, КОНСТАНТА 1; метод минимизации алгоритм Рота;

4 Содержание пояснительной записки (перечень подлежащих разработке вопросов):

Введение. 1. Разработка алгоритма умножения. 2. Разработка структурной схемы сумматора-умножителя. 3. Разработка функциональных схем основных узлов сумматора-умножителя. 4. Синтез комбинационных схем устройств на основе мультиплексоров. 5. Оценка результатов разработки. Заключение. Список литературы.

- 5 Перечень графического материала:
 - **5.1** Сумматор-умножитель второго типа. Схема электрическая структурная.
 - **5.2** Одноразрядный четверичный сумматор. Схема электрическая функциональная.
 - **5.3** Одноразрядный четверичный умножитель-сумматор. Схема электрическая функциональная.
 - **5.4** Преобразователь множителя. Реализация на мультиплексорах. Схема электрическая функциональная.
 - **5.5** Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная.

КАЛЕНДАРНЫЙ ПЛАН

Наименование этапов курсовой	Объем	Срок	Примечания
работы	этапа,%	выполнения	
		этапа	
Разработка алгоритма умножения	10	10.02-20.02	
Разработка структурной схемы	10	21.02-09.03	С выполнением
сумматора-умножителя			чертежа
Разработка функциональных схем	50	10.03-30.04	С выполнением
основных узлов			чертежа
Синтез комбинационных схем	10	1.05-15.05	С выполнением
устройств на основе			чертежа
мультиплексоров			
Завершение оформления	20	15.05-20.05	
пояснительной записки			

Дата выдачи задания: 10 февраля 2022 г.

Руководитель	И.В. Лукьянова
ЗАДАНИЕ ПРИНЯЛ К ИСПОЛНЕНИЮ	

СОДЕРЖАНИЕ

Введение	5
1. Разработка алгоритма умножения	6
2. Разработка структурной схемы сумматора-умножителя	9
3. Разработка функциональных схем основных узлов сумматора-	
умножителя	10
3.1. Логический синтез одноразрядного четвертичного сумматора	10
3.2. Логический синтез одноразрядного четверичного умножителя-	
сумматора	17
4. Логический синтез одноразрядного четвертичного сумматора на	
основе мультиплексора	21
5. Логический синтез преобразователя множителя	23
6. Оценка эффективности минимизации переключательных функций	24
Заключение	25
Список использованных источников	26
Приложение А	27
Приложение Б	28
Приложение В	29
Приложение Г	30
Приложение Д	31
Приложение Е	

ВВЕДЕНИЕ

Данная курсовая работа посвящена разработке алгоритмов выполнения операций умножения и сложения. На основе полученных алгоритмов требуется разработать и синтезировать следующие устройства: сумматор одноразрядный четвертичный одноразрядный (ОЧС), четвертичный умножитель-сумматор (ОЧУС), а также переключательные мультиплексорах. Минимизация функции ОЧС на перечисленных устройств осуществляется с помощью карт Карно-Вейча и алгоритма извлечения Рота. На основе полученных данных требуется построить схемы проанализировать (эффективность устройств результаты этих И минимизации и время выполнения операций).

1 Разработка алгоритма умножения

Исходные данные:

- исходные сомножители: MH = 78,69; MT = 11,59;
- алгоритм умножения: А;
- метод умножения: умножение закодированного двоично-четверичного множимого на два разряда двоичного множителя одновременно в прямых кодах;
- кодирование четверичных цифр множимого для перехода к двоичночетверичной системе кодирования: $0_4 - 01$, $1_4 - 11$, $2_4 - 10$, $3_4 - 00$;
- тип синтезируемого умножителя: 2-й;

Перевод сомножителей из десятичной системы счисления в четверичную.

Множимое

78 <u>4</u>	0.69	$M{H_4} = 1032,23$
<u>4 19 4</u>	4	в соответствии с заданной кодировкой
38 <u>16</u> 4 <u> 4</u>	2.76	ОТОМИЖОНМ
<u>36</u> 3 <u>4</u> 1	4	$M_{H_{2/4}} = 11010010, 1000$
2 0	3.40	

Множитель

Запишем сомножители в форме с плавающей запятой в прямом коде:

$$M_H = 0,110100101000$$
 $P_{M_H} = 0.1101 + 04_{10}$ — закодировано по заданию $M_T = 0,101110010111$ $P_{M_T} = 0.0010 + 02_{10}$ — закодировано традиционно

Порядок произведения будет следующим:

$$\begin{array}{ll} P_{M_H} = & 0.1101 \ 10_4 \\ P_{M_T} = & \underline{0.0010 \ 02_4} \\ P_{M_H \cdot M_T} = & 0.1110 \ 12_4 \end{array}$$

Результат закодирован в соответствии с заданием на кодировку множимого.

6

Знак произведения определяется суммой по модулю два знаков сомножителей, т. е.:

зн Мн
$$\oplus$$
 зн Мт = $0 \oplus 0 = 0$.

Преобразование множителя и перемножение мантисс.

$$Mm^{n}_{4} = 11'1'2121'$$

 $MT^{\Pi}_{2} = 10'1'0'1'1001100'1'$

Таблица 1.4.1 – Перемножение мантисс

Ч	етверична	ая с/с	Дь	воично-четверичн	ая с/с	Комментарии
1			2			3
0	0000000		0	01010101010101		\sum_{0}
3	2301110		1	10000111111101		Π_1 = - M_H
3	2301110		1	10000111111101		$\sum_{1}^{1} \sum_{1}^{1} *4^{-1}$
3	3230111		1	00100001111111		$\sum_{1} *4^{-1}$
0	2131120		0	10110011111001		$\Pi_2 = 2M_{\rm H}$
0	2021231		0	10011011100011		\sum_{2}^{2} $\sum_{2}*4^{-1}$
0	0202123	1	0	01100110111000	11	$\sum_{2} *4^{-1}$
0	1032230		0	11010010100001		$\Pi_3 = M_H$
0	1301013	1	0	11000111011100	11	\sum_3
0	0130101	31	0	01110001110111	0011	\sum_{3}^{3} $\sum_{3}^{*}4^{-1}$
0	2131120		0	10110001011001		$\Pi_4 = 2M_{\rm H}$
0	2321221	31	0	10001011101011	0011	\sum_4
0	0232122	131	0	01100010111010	110011	\sum_{4}^{4} $\sum_{4}^{*}4^{-1}$
3	2301110		1	100001111111101		$\Pi_5 = -M_{\rm H}$
3	3133232	131	1	00010000100010	110011	\sum_{5}
3	3313323	2131	1	00000100001000	10110011	$\sum_{5}^{5} \sum_{5} *4^{-1}$
3	2301110		1	10000111111101		$\Pi_6 = -M_{\rm H}$
3	2221033	2131	1	10101011010000	10110011	\sum_{6}
0	3222103	32131	0	00101010110100	0010110011	$\sum_{6}^{6} \sum_{6}^{*} 4^{-1}$
0	1032230		0	11010010100001		$\overline{\Pi}_7 = \mathbf{M}_{\mathbf{H}}$
0	0320333	32131	0	01001001000000	0010110011	\sum_{7}^{7}
0	0032033	332131	0	01010010010000	000010110011	$\sum_{7}^{*}4^{-1}$

После окончания умножения необходимо оценить погрешность вычислений. Для этого полученное произведение приводится к нулевому порядку, а затем переводится в десятичную систему счисления:

$$(M_H \cdot M_T)_4 = 0,0032033332131$$

 $(M_H \cdot M_T)_{10} = 911,9758$

Результат прямого перемножения операндов даёт следующее значение: $M_{H_{10}}*M_{T_{10}}=912,0171$

Абсолютная погрешность:
$$\Delta = 912,0171 - 911,9758 = 0,0413.$$

Относительная погрешность:

$$\delta = \frac{\Delta}{M_{H} \cdot M_{T}} = \frac{0.0413}{912,0171} = 0.000045 \ (\delta = 0.0045\%)$$

Эта погрешность получена за счёт приближённого перевода из десятичной системы счисления в четверичную обоих сомножителей, а также за счёт округления полученного результата произведения.

2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ СУММАТОРА-УМНОЖИТЕЛЯ

Структурная схема сумматора-умножителя второго типа для алгоритма умножения «А» представлена на в приложении А.

Структурная схема второго типа строится на базе заданных узлов ОЧУС, ОЧС, формирователя дополнительного кода и регистра результата. Управление режимами работы схемы осуществляется внешним сигналом *Mul/sum*, который определяет вид текущей арифметической операции (умножение или суммирование).

Если устройство работает как сумматор, то оба слагаемых последовательно (за два такта) заносятся в регистр множимого, а на управляющий вход формирователя дополнительного кода F2 поступает «1».

Если устройство работает как умножитель, то множимое и множитель помещаются в соответствующие регистры, а на управляющий вход Φ ДК F2 поступает «0».

Таблица 2.1 - Режимы работы формирователя дополнительного кода

<u> </u>			1 /1
Сигналы на	входах ФДК		Результат на выходах ФДК
F_1	F_2		
0	0	Д	ополнительный код множимого
0	1	Д	ополнительный код слагаемого
1	0	M	еняется знак Мн
1	1	M	еняется знак слагаемого

3. РАЗРАБОТКА ФУНКЦИОНАЛЬНЫХ СХЕМ ОСНОВНЫХ УЗЛОВ СУММАТОРА-УМНОЖИТЕЛЯ

3.1. Логический синтез одноразрядного четверичного сумматора

Одноразрядный четверичный сумматор — это комбинационное устройство, имеющее 5 двоичных входов (2 разряда одного слагаемого, 2 разряда второго слагаемого и вход переноса) и 3 двоичных выхода.

Функциональная схема реализации ОЧС приведена в приложении Б.

Принцип работы ОЧС представлен с помощью таблицы истинности (таблица 3.1.1).

Разряды обоих слагаемых закодированы: 0 - 01; 1 - 11; 2 - 10; 3 - 00.

Таблица 3.1.1 – Таблица истинности ОЧС

a 1	a 2	b 1	b 2	р	П	<i>S</i> 1	S ₂	Пример операции в четверичной с/с
1	2	3	4	5	6	7	8	9
0	0	0	0	0	1	1	0	3+3+0=12
0	0	0	0	1	1	0	0	3+3+1=13
0	0	0	1	0	0	0	0	3+0+0=03
0	0	0	1	1	1	0	1	3+0+1=10
0	0	1	0	0	1	1	1	3+2+0=11
0	0	1	0	1	1	1	0	3+2+1=12
0	0	1	1	0	1	0	1	3+1+0=10
0	0	1	1	1	1	1	1	3+1+1=11
0	1	0	0	0	0	0	0	0+3+0=03
0	1	0	0	1	1	0	1	0+3+1=10
0	1	0	1	0	0	0	1	0+0+0=00
0	1	0	1	1	0	1	1	0+0+1=01
0	1	1	0	0	0	1	0	0+2+0=02
0	1	1	0	1	0	0	0	0+2+1=03
0	1	1	1	0	0	1	1	0+1+0=01
0	1	1	1	1	0	1	0	0+1+1=02

1	0	0	0	0	1	1	1	2+3+0=11
1	0	0	0	1	1	1	0	2+3+1=12
1	0	0	1	0	0	1	0	2+0+0=02
1	0	0	1	1	0	1	1	2+0+1=03
1	0	1	0	0	1	0	1	2+2+0=10
1	0	1	0	1	1	1	1	2+2+1=11
1	0	1	1	0	0	0	1	2+1+0=03
1	0	1	1	1	1	0	0	2+1+1=10
1	1	0	0	0	1	0	1	1+3+0=10
1	1	0	0	1	1	1	1	1+3+1=11
1	1	0	1	0	0	1	1	1+0+0=01
1	1	0	1	1	0	1	0	1+0+1=02
1	1	1	0	0	0	0	0	1+2+0=03
1	1	1	0	1	1	0	1	1+2+1=10
1	1	1	1	0	0	1	0	1+1+0=02
1	1	1	1	1	0	0	1	1+1+1=03

Минимизацию функции S_I проведем картой Вейча:

Минимизацию функции Р проведем алгоритмом Рота: Определим множество единичных кубов:

 $L = \{00000,00001,00011,00100,00101,00110,00111,01001,10000,10001,10100, 10101, 10111, 11000, 11001, 11101\};$

И множество безразличных кубов:

 $N = \{\emptyset\};$

Минимизацию безразличных кубов проводить не требуется.

Сформируем множество $C_0 = L \cup N$:

 $C_0=L=\{00000,00001,00011,00100,00101,00110,00111,01001,10000,10001,10100,10101,10101,10111,11000,11001,11101\};$

Первым этапом алгоритма Рота является нахождение множества простых импликант.

Для реализации этого этапа будем использовать операцию умножения (*) над множествами C_0 , C_1 и т. д., пока в результате операции будут образовываться новые кубы большей размерности.

Первый шаг умножения ($C_0 * C_0$) приведён в таблице 3.1.2.

Таблица 3.1.2 – Поиск простых импликант(C_0*C_0)

C0*C0	00000	00001	00011	00100	00101	00110	00111	01001	10000	10001	10100	10101	10111	11000	11001	11101
00000	-															
00001	0000y	1														
00011	000yy	000y1	•													
00100	00y00	00y0y	00ууу	·												
00101	00y0y	00y01	00yy1	0010y	-											
00110	00yy0	00ууу	00y1y	001y0	001yy	•										
00111	00ууу	00yy1	00y11	001yy	001y1	0011y	-									
01001	0y00y	0y001	0y0y1	0yy0y	0yy01	Оуууу	0yyy1	-								
10000																
10001	y000y	y0001	y00y1	y0y0y	y0y01	у0ууу	y0yy1	yy001	1000y	(I=)						
10100	y0y00	y0y0y	у0ууу	y0100	y010y	y01y0	y01yy	ууу0у	10y00	10y0y						
10101	y0y0y	y0y01	y0yy1	y010y	y0101	y01yy	y01y1	yyy01	10y0y	10y01	1010y	-				
10111	у0ууу	y0yy1	y0y11	y01yy	y01y1	y011y	y0111	уууу1	10yyy	10yy1	101yy	101y1	-			
11000																
11001	yy00y	yy001	yy0y1	ууу0у	yyy01	ууууу	уууу1	y1001	1y00y	1y001	1yy0y	1yy01	1yyy1	1100y	-	
11101	ууу0у	yyy01	yyyy1	yy10y	yy101	yy1yy	yy1y1	y1y01	1yy0y	1yy01	1y10y	1y101	lylyl	11y0y	11y01	-
A1	0000x 00x00 x0000	000x1 00x01 0x001 x0001	00x11	0010x 001x0 x0100	001x1 x0101	0011x	x0111	x1001	1000x 10x00 1x000	10x01 1x001	1010x	101x1 1x101	Ø	1100x	11x01	Ø

В результате сформируем новое множество кубов:

```
A1 = \{ 0000x; 00x00; x0000; 000x1; 00x01; 0x001; x0001; 00x11; 0010x; 001x0; x0100; 001x1; x0101; 0011x; x0111; x1001; 1000x; 10x00; 1x000; 10x01; 1x001; 1010x; 101x1; 1x101; 1100x; 11x01 \}
```

Множество Z_0 кубов, не участвовавших в образовании новых кубов, пустое. Также формируется множество $B_1 = C_0 - - Z_0$

Для следующего шага получения множества Z формируется множество C_1 = $A_1 \cup B_1$.

```
C1 = \{ 0000x; 00x00; x00000; 000x1; 00x01; 0x001; x0001; 00x11; 0010x; 001x0; x0100; 001x1; x0101; 0011x; x0111; x1001; 1000x; 10x00; 1x000; 10x01; 1x001; 1010x; 101x1; 1x101; 1100x; 11x01 \}
```

В таблице 3.1.3 приведён следующий шаг поиска простых импликант с помощью операции C_1*C_1 .

Таблица 3.1.3– Поиск простых импликант(C_1*C_1)

C1*C1	0000x	00x00	x0000x	000x1	00x01	0x001	x0001	00x11	0010x	001x0	x0100	001x1	x0101	0011x	x0111	x1001	1000x	10x00	1x000	10x01	1x001	1010x	101x1	1x101	1100x	11x01
0000x																										
00x00	00000	-																								
0000x	00000	00000																								
000x1	00001	0000y	0000y	-																						
00x01	00001	00x0y	0000y	00001	-																					
0x001		_	_	-	_	-																				
x0001		,	,	_			_																			
-				_	00xy1																					
0010x			,	,																						
001x0	_		-		_																					
x0100	_	_	_		_					_	-															
001x1	_	_		'	_	•	_	_	-			_														
x0101						_	_				_		-													
0011x		_		_	_				_		_	_		_												
x0111				<u> </u>	<u> </u>	• • •		_	_			_	_	_												
x1001				_												_										
$\overline{}$	_	_	_	_	_	_	_		y0y0x		_		_			_	_					_				
10x00	_	_		-	_		_			_			_													
-	_	_	_	· ·		· ·	_		y0y00							_		_	_							
10x01				_	_		_									_										
1010x	•			•	•	•			y0y01				•													
-							_															_				
	_			_	_	_			y0101 y0101		_			_	_					_	_	_				\blacksquare
-	_	_	_	_	_	_	_		yyy0x	_	_	_	-	_	_	_			_	_	_	_	_	_		
11x01																										
	_		_	_	_	y 1001	v0v01				_			_		11001	10x0x						1,101	11101	11001	-
A2	x000x	x0x0x	x0x00		x0x01	xx001	x0x01 xx001	Ø	001xx x010x	001xx	x010x	x01x1	x01x1	Ø	Ø	Ø	1x00x	UXUX	1x00x	1xx01	1xx01	Ø	Ø	Ø	Ø	Ø

В результате этой операции образуется множество кубов:

 $A2 = \{ 00x0x; x0000x; x0x00; 00xx1; x0x01; xx001; 001xx; x010x; x01x1; 10x0x; 1x00x; 1xx01 \}$

Множество Z_1 кубов, не участвовавших в образовании новых кубов, пустое. Также формируется множество $B_2 = C_1 - Z_1$.

Для следующего шага получения множества Z формируется множество $C_2 = A_2 \cup B_2$.

 $C2 = \{ 00x0x; x0000x; x0x00; 00xx1; x0x01; xx001; 001xx; x010x; x01x1; 10x0x; 1x00x; 1xx01 \}$

В таблице 3.1.4 приведён следующий шаг поиска простых импликант – операция C_2*C_2 .

Таблица $3.1.4 - Поиск простых импликант (<math>C_2*C_2$)

C2*C2	00x0x	x000x	x0x00	00xx1	x0x01	xx001	001xx	x010x	x01x1	10x0x	1x00x	1xx01
00x0x	_											
x000x	0000x	1										
x0x00	00x00	x0000	1									
00xx1	00x01	00001	00x0y	ı								
x0x01	00x01	x0001	x0x0y	00x01	I							
xx001	00001	x0001	x000y	00001	x0001	1						
001xx	0010x	00y0x	00100	001x1	00101	00y01	1					
x010x	0010x	x0y0x	x0100	00101	x0101	x0y01	0010x	ï				
x01x1	00101	x0y01	x010y	001x1	x0101	x0y01	001x1	x0101	ı			
10x0x	y0x0x	1000x	10x00	y0x01	10x01	10001	y010x	1010x	10101	1		
1x00x	y000x	1000x	10000	y0001	10001	1x001	y0y0x	10y0x	10y01	1000x	·	
1xx01	y0x01	10001	10x0y	y0x01	10x01	1x001	y0101	10101	10101	10x01	1x001	-
A3	x0x0x	x0x0x	x0x0x	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

В результате этой операции образуется множество кубов:

$$A3 = \{ x0x0x \}$$

Множество Z_2 кубов, не участвовавших в образовании новых кубов имеет вид:

$$Z2 = \{ 00xx1; xx001; 001xx; x01x1; 1x00x; 1xx01 \}$$

Также формируется множество $B_3 = C_2 - Z_2$.

Для следующего шага получения множества Z формируется множество $C_3 = A_3 \cup B_3$.

$$C3 = \{ x0x0x \}$$

В таблице 3.1.5 приведён следующий шаг поиска простых импликант – операция C_3*C_3 .

Таблица 3.1.5

C3*C3	x0x0x
x0x0x	1
A4	Ø

Новых кубов (четвертой размерности) не образовалось. Поскольку $|C_4| \le 1$, поиск простых импликант заканчивается. Множество простых импликант:

$$Z = \{ 00xx1; xx001; 001xx; x01x1; 1x00x; 1xx01; x0x0x \}$$

Следующий этап – поиск L-экстремалей на множестве простых импликант (таблица 3.1.6). Для этого используется операция # (решётчатое вычитание).

Таблица 3.1.6-Поиск L-экстремалей

z#(Z-z)	00xx1	xx001	001xx	x01x1	1x00x	1xx01	x0x0x
00xx1	1	1x001 x1001	$(M) \cup \{v(1)\}$	101x1	1x00x	1xx01	10x0x x0x00
xx001	001x1 00x11	,	001x0	101x1	1x000	1x101	1010x 10x00 x0x00
001xx	00011	1x001 x1001	1	101x1	1x000	1x101	1010x 10x00 10x00 x0000
x01x1	00011	1x001 x1001	001x0	,	1x000	11101	10100 10x00 10x00 x0000
1x00x	00011	01001	001x0	101x1	-	11101	10100 10100 10100 00000
1xx01	00011	01001	001x0	10111	1x000	1	10100 10100 10100 00000
x0x0x	00011	01001	00110	10111	11000	11101	1
Остаток	00011	01001	00110	10111	11000	11101	10100 10100 10100 00000

В таблице 3.1.6 из каждой простой импликанты поочередно вычитаются все остальные простые импликанты $Z\#(Z\backslash z)$, результат операции (последняя строка таблицы) указывает на то, что L-экстремалями стали следующие простые импликанты:

$$E_0$$
= { 00xx1; xx001; 001xx; x01x1; 1x00x; 1xx01; x0x0x }

Проверяем в таблице 3.1.7, нет ли среди полученных L-экстремалей таких, которые стали L-экстремалями за счёт безразличных кубов.

Таблица 3.1.7- Проверка на L-экстремальность

z#(Z-z) n L	00000	00001	00011	00100	00101	00110	00111	01001	10000	10001	10100	10101	10111	11000	11001	11101
00011	Ø	Ø	00011	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
01001	Ø	Ø	Ø	Ø	Ø	Ø	Ø	01001	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
00110	Ø	Ø	Ø	Ø	Ø	00110	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
10111	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	10111	Ø	Ø	Ø
11000	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	11000	Ø	Ø
11101	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	11101
10100	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	10100	Ø	Ø	Ø	Ø	Ø
10100	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	10100	Ø	Ø	Ø	Ø	Ø
10100	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	10100	Ø	Ø	Ø	Ø	Ø
00000	00000	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø

$$Z' = Z - E = \{ \emptyset \}$$

Минимальное покрытие - множество L-экстремалей $E = \{00xx1; xx001; 001xx; x01x1; 1x00x; 1xx01; x0x0x\}$

$$f_{min\,(\text{ДН}\Phi)} = \overline{a_1}\overline{a_2}b_1 + \overline{a_1}\overline{a_2}p + \overline{a_2}\overline{b_2} + \overline{a_2}b_1p + a_1\overline{a_2}\overline{b_2}p + \overline{b_1}\overline{b_2}p + a_1\overline{b_1}\overline{b_2}$$

Минимизацию S₂ проведем картами Вейча

3.2. Логический синтез одноразрядного четверичного умножителясумматора

ОЧУС — это комбинационное устройство, имеющее шесть входов (два разряда из регистра множимого, два разряда из регистра множителя, вход переноса и управляющий вход h) и три выхода.

Функциональная схема реализации ОЧУС приведена в приложении В.

Принцип работы ОЧУС представлен с помощью таблицы истинности(таблица 3.2.1).

Разряды множителя закодированы: 0-00, 1-01, 2-10, 3-11. Разряды множимого закодированы: 0-01, 1-11, 2-10, 3-00.

Таблица истинности ОЧУС(3.2.1)

Пер.	M	Ін	N	Ίт	Упр.	Перенос	Результат		Результат операции в четверичной с/с
P 1	<i>X</i> 1	<i>X</i> 2	y 1	y 2	h	P	Q 1	Q2	
1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	х	Х	х	3·3+0=15
0	0	0	0	0	1	х	Х	х	Выход – код «03»
0	0	0	0	1	0	х	Х	х	3.0+0=00
0	0	0	0	1	1	Х	Х	х	Выход – код «03»

	1								
0	0	0	1	0	0	1	1	0	3·2+0=12
0	0	0	1	0	1	0	0	0	Выход – код «03»
0	0	0	1	1	0	0	0	0	3·1+0=03
0	0	0	1	1	1	0	0	0	Выход – код «03»
0	0	1	0	0	0	х	Х	Х	0.3+0=00
0	0	1	0	0	1	х	х	х	Выход – код «00»
0	0	1	0	1	0	х	Х	Х	0.0+0=00
0	0	1	0	1	1	х	х	х	Выход – код «00»
0	0	1	1	0	0	0	0	1	0.2+0=00
0	0	1	1	0	1	0	0	1	Выход – код «00»
0	0	1	1	1	0	х	х	х	0.1+0=00
0	0	1	1	1	1	Х	Х	х	Выход – код «00»
0	1	0	0	0	0	х	х	х	2·3+0=12
0	1	0	0	0	1	х	х	х	Выход – код «02»
0	1	0	0	1	0	х	х	х	2.0+0=02
0	1	0	0	1	1	х	х	х	Выход – код «02»
0	1	0	1	0	0	1	0	0	2·2+0=10
0	1	0	1	0	1	0	1	0	Выход – код «02»
0	1	0	1	1	0	х	х	х	2·1+0=02
0	1	0	1	1	1	х	х	х	Выход – код «02»
0	1	1	0	0	0	х	х	х	1.3+0=03
0	1	1	0	0	1	х	х	х	Выход – код «01»
0	1	1	0	1	0	0	0	0	1.0+0=00
0	1	1	0	1	1	0	1	1	Выход – код «01»
0	1	1	1	0	0	0	1	0	1.2+0=02
0	1	1	1	0	1	0	1	1	Выход – код «01»
0	1	1	1	1	0	0	1	1	1.1+0=01
0	1	1	1	1	1	0	1	1	Выход – код «01»
1	0	0	0	0	0	х	х	х	3-3+1=22
1	0	0	0	0	1	х	х	х	Выход – код «03»
1	0	0	0	1	0	х	х	х	3.0+1=01
1	0	0	0	1	1	х	х	х	Выход – код «03»
1	0	0	1	0	0	1	0	0	3·2+1=13
1	0	0	1	0	1	х	х	х	Выход – код «03»
1	0	0	1	1	0	х	х	х	3-1+1=10
1	0	0	1	1	1	х	х	х	Выход – код «03»

1	0	1	0	0	0	х	Х	х	0.3+1=01
1	0	1	0	0	1	х	х	х	Выход – код «00»
1	0	1	0	1	0	х	х	х	0.0+1=01
1	0	1	0	1	1	х	х	х	Выход – код «00»
1	0	1	1	0	0	1	1	1	0.2+1=01
1	0	1	1	0	1	х	Х	Х	Выход – код «00»
1	0	1	1	1	0	х	Х	Х	0.1+0=00
1	0	1	1	1	1	х	Х	х	Выход – код «00»
1	2	3	4	5	6	7	8	9	10
1	1	0	0	0	0	Х	Х	х	2·3+1=13
1	1	0	0	0	1	Х	Х	х	Выход – код «02»
1	1	0	0	1	0	Х	Х	х	2.0+1=01
1	1	0	0	1	1	Х	Х	х	Выход – код «02»
1	1	0	1	0	0	1	1	1	2·2+1=11
1	1	0	1	0	1	Х	Х	Х	Выход – код «02»
1	1	0	1	1	0	Х	Х	Х	2·1+1=03
1	1	0	1	1	1	Х	Х	Х	Выход – код «02»
1	1	1	0	0	0	Х	Х	Х	1.3+1=10
1	1	1	0	0	1	Х	Х	х	Выход – код «01»
1	1	1	0	1	0	х	х	х	1.0+1=02
1	1	1	0	1	1	х	х	х	Выход – код «01»
1	1	1	1	0	0	0	0	1	1.2+1=03
1	1	1	1	0	1	Х	х	х	Выход – код «01»
1	1	1	1	1	0	Х	Х	Х	1.1+1=02
1	1	1	1	1	1	Х	Х	х	Выход – код «01»

Минимизация выходов ОЧУС:

Минимизация функции Р картой Карно:

y_1y_2h								
$p_1x_1x_2$	000	001	011	010	110	111	101	100
000	*	*	*	*	*	*	*	*
001	*	*	*	*	*	*	*	*
011	*	*	0	*	*	*	*	*
010	*	*	0	*	*	*	*	*
110	0	*	0	*	*	*	*	*
111	0	*	0	*	*	*	*	*
101	0	0	0	0	*	*	*	*
100	1	0	0	1	1	0	1	1

$$f_{min(ДН\Phi)} = ((p_1 \oplus 1 + x_1) \oplus 1) + ((x_2 + y_2 + h) \oplus 1).$$

Минимизация функции Q1 картой Карно:

$$\begin{split} f_{min(\exists \mathbb{H}\Phi)} &= \left((x_1 \oplus 1 + h \oplus 1) \oplus 1 \right) + \left(\left((P \oplus 1) + (x \oplus 1) + x_2 \right) \oplus 1 \right) + \\ \left((P \oplus 1) + x_1 + (x_2 \oplus 1) \oplus 1 + (P + (x \oplus 1) + (x_2 \oplus 1) + y_1 \oplus 1) \right) \oplus 1 + \\ \left(P + x_1 + x_2 + y2 + h \right) \oplus 1 \end{split}$$

Минимизация функции Q2 картой Карно:

y_1y_2h								
$p_1x_1x_2$	000	001	011	010	110	111	101	100
000	*	*	*	*	*	*	*	*
001	*	*	*	*	*	*	*	*
011	*	*	1	*	*	*	*	*
010	*	*	0	*	*	*	*	*
110	0	*	1	*	*	*	*	*
111	0	*	1	*	*	*	*	*
101	0	1	1	0	*	*	*	*
100	0	1	0	0	1	1	1	0

$$\begin{split} f_{min(ДН\Phi)} &= (x_2 \oplus 1 + h \oplus 1) \oplus 1 + (x_1 \oplus 1 + y_1 \oplus 1 + y_2 \oplus 1) \oplus 1 + x_1 \oplus 1 + \\ (p \oplus 1 + x_1 \oplus 1) \oplus 1 + P \oplus 1 + x_2 \oplus 1 \end{split}$$

4. ЛОГИЧЕСКИЙ СИНТЕЗ ОДНОРАЗРЯДНОГО ЧЕТВЕРИЧНОГО СУММАТОРА НА ОСНОВЕ МУЛЬТИПЛЕКСОРА

Мультиплексор — это логическая схема, имеющая n информационных входов, m управляющих входов и один выход.

Принцип работы мультиплексора состоит в следующем. На выход мультиплексора может быть пропущен без изменений любой (один) логический сигнал, поступающий на один из информационных входов. Порядковый номер информационного входа, значение которого в данный момент должно быть передано на выход, определяется двоичным кодом, поданным на управляющие входы.

Функции ОЧС зависят от пяти переменных. Удобно взять мультиплексор с тремя адресными входами, это позволит упростить одну нашу большую функцию от пяти аргументов до восьми функций от двух переменных. Функции от двух переменных достаточно просты для того, чтобы самостоятельно заметить их минимальную форму.

Синтез дополнительных логических схем для $\Pi\Phi$ ОЧС приведен в таблице 4.1.

Таблица 4.1. – Таблица истинности для ОЧС на мультиплексорах

a_1	a_2	b_1	b_2	p	П	ВЫХОД П	\mathcal{S}_1	ВЫХОД S1	S_2	ВЫХОД S2
0	0	0	0	0	1		1		0	
0	0	0	0	1	1	b_2p+b_2'	0	$\acute{b_2}\acute{p}$	0	b_2p
0	0	0	1	0	0		0		0	
0	0	0	1	1	1		0		1	
0	0	1	0	0	1		1		1	
0	0	1	0	1	1	"1"	1	b_2p+b_2'	0	$b_2 + \acute{b_2} \acute{p}$
0	0	1	1	0	1		0		1	
0	0	1	1	1	1		1		1	
0	1	0	0	0	0		0		0	
0	1	0	0	1	1	$\vec{b_2}$ p	0	b_2p	1	$b_2+b_2'p$
0	1	0	1	0	0		0		1	
0	1	0	1	1	0		1		1	
0	1	1	0	0	0		1		0	
0	1	1	0	1	0	"0"	0	$b_2'p+b_2$	0	$b_2 p$
0	1	1	1	0	0		1		1	
0	1	1	1	1	0		1		0	

Продолжение схемы 4.1

1	0	0	0	0	1		1		1	
1	0	0	0	1	1	$\acute{b_2}$	1	$\vec{b_2}$ + $\mathbf{b_2}\hat{p}$	0	$\acute{b_2}\acute{p}$
1	0	0	1	0	0		1		0	
1	0	0	1	1	0		0		0	
1	0	1	0	0	1		0		1	
1	0	1	0	1	1	b_2p+b_2'	1	$\acute{b_2}$ p	1	$\vec{b_2}$ + $\vec{b_2}$ p
1	0	1	1	0	0		0		0	
1	0	1	1	1	1		0		1	
1	1	0	0	0	1		0		1	
1	1	0	0	1	1	$\acute{b_2}$	1	$b_2 + b_2' p$	1	$\vec{b_2}$ + $\mathbf{b_2}\vec{p}$
1	1	0	1	0	0		1		1	
1	1	0	1	1	0		1		0	
1	1	1	0	0	0	$\acute{b_2}p$	0		0	
1	1	1	0	1	1		0	$b_2 p$	1	$\acute{b_2}p$
1	1	1	1	0	0		1		0	
1	1	1	1	1	0		0		0	

5 ЛОГИЧЕСКИЙ СИНТЕЗ ПРЕОБРАЗОВАТЕЛЯ МНОЖИТЕЛЯ (ПМ)

Преобразователь множителя (ΠM) служит для исключения из множителя диад 11, заменяя их на триады $10\overline{1}$.

Таблица 5.1 - Таблица истинности ПМ.

Вх. д	иада	Мл. бит	Зн.	Вых.	диада
Q_n	Q_{n-1}	Q_{n-2}	P	S_1	S_2
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	0
11	0	0	1	1	0
1	0	1	1	0	1
1	1	0	1	0	1
1	1	1	1	0	0

Минимизируем выходные функции P, S_1 и S_2 картами Карно.

Таблица 5.2 – Минимизация функции Р

$$Q_{n-1}Q_{n-2}$$

 $P_{\text{МДН}\Phi} = Q_n$

 $\it Tаблица~5.3-M$ инимизация функции $\it S_1$

$$Q_{n-1}Q_{n-2}$$

$$S_{1_{\text{МДН}\Phi}} = Q_n \overline{Q}_{n-1} \overline{Q}_{n-2} + \overline{Q}_n Q_{n-1} Q_{n-2}$$

 $\it Tаблица~5.4-M$ инимизация функции $\it S_2$

$$Q_{n-1}Q_{n-2}$$

Функциональная схема ПМ приведена в приложении Д.

6 ВРЕМЕННЫЕ ЗАТРАТЫ НА УМНОЖЕНИЕ И ЭФФЕКТИВНОСТЬ МИНИМИЗАЦИИ

Формула расчёта временных затрат на умножение:

$$T=n*(T_{\Pi M}+T_{\Phi J K}+T_{C J B}+T_{O Y V C}+m*T_{O Y C}),$$
 где

 $T_{\rm IIM}$ — время преобразования множителя;

 $T_{\Phi \text{ДК}}$ – время формирования дополнительного кода множимого;

 $T_{\text{ОЧУС}}$ – время умножения на ОЧУС;

 $T_{
m O4C}$ – время формирования единицы переноса в ОЧС;

 $T_{\rm CЛВ}$ — время сдвига частичного произведения;

n – количество разрядов множителя;

т – количество разрядов множимого.

Для проведения оценки эффективности минимизации переключательных функций необходимо посчитать цену схемы до минимизации и цену схемы после минимизации. Эффективность минимизации k определяется как:

$$k = \frac{c_{\text{домин}}}{c_{\text{после_{\text{мин}}}}}$$

Таблица 6.1 – Эффективность минимизации ОЧУС

Вых.	Рассчитанная цена схемы		Эфф.
схемы	До минимизации	После минимизации	мин. k
P	c=	c=	
Q_1	c=	c=	
Q_2	c=	c=	

Таблица 6.2 – Эффективность минимизации ОЧС

	<u> </u>		
Вых.	Рассчитанная цена схемы		Эфф.
схемы	До минимизации	После минимизации	мин. k
П	c=	c=	
S_1	c=	c=	
S_2	c=	c=	

ЗАКЛЮЧЕНИЕ

В процессе выполнения курсовой работы была разработана структурная схема сумматора-умножителя второго типа, а также функциональные схемы основных узлов данного устройства. Для уменьшения стоимости логических схем были выполнены минимизации переключательных функций различными способами. Такой подход позволил выявить достоинства и недостатки этих алгоритмов.

В качестве главного достоинства минимизации картами Карно-Вейча можно выделить простоту и минимальные затраты времени. Однако применение данного способа для функций многих переменных будет затруднительно. Функциональные схемы были построены в различных логических базисах. Это позволило закрепить теоретические знания основных законов булевой алгебры, например, правило де Моргана. Также можно отметить, что необходимо сократить количество уровней в логической схеме для уменьшения времени работы данного устройства.

Реализация переключательных функций на основе мультиплексоров позволила облегчить процесс минимизации этих функций.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Луцик Ю.А., Лукьянова И.В. Учебное пособие по курсу "Арифметические и логические основы вычислительной техники". Минск: БГУИР, 2014 г.
- 2. Луцик Ю.А., Лукьянова И.В. Методические указания к курсовому проекту по курсу "Арифметические и логические основы вычислительной техники". Мн.: БГУИР, 2004 г.
- 3. Искра, Н. А. Арифметические и логические основы вычислительной техники: пособие / Н. А. Искра, И. В. Лукьянова, Ю. А. Луцик. Минск: БГУИР, 2016. 75 с.

приложение а

(обязательное)

Сумматор-умножитель второго типа. Схема электрическая структурная

приложение б

(обязательное)

Одноразрядный четверичный сумматор. Схема электрическая функциональная

приложение в

(обязательное)

Одноразрядный четверичный умножитель-сумматор. Схема электрическая функциональная

приложение г

(обязательное)

Одноразрядный четверичный сумматор. Реализация на мультиплексорах. Схема электрическая функциональная

ПРИЛОЖЕНИЕ Д (обязательное)

Преобразователь множителя. Схема электрическая функциональная

приложение е

(обязательное)

Ведомость документов