PGT

REO'D U 4

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 6月 3日

出 願 番 号 Application Number:

特願2004-165919

[ST. 10/C]:

[JP2004-165919]

出 願 人
Applicant(s):

株式会社海洋バイオテクノロジー研究所

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月17日

1) 11

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 P04-025

【提出日】平成16年 6月 3日【あて先】特許庁長官 殿【国際特許分類】C12N 15/00

【発明者】

【住所又は居所】 兵庫県明石市大蔵谷奥15-10

【氏名】 西田 康宏

【発明者】

【住所又は居所】 大阪府大阪市東淀川区東淡路4-27-2

【氏名】 米虫 節夫

【発明者】

【住所又は居所】 岩手県釜石市平田第3地割75番1 株式会社 海洋バイオテク

ノロジー研究所内

【氏名】 三沢 典彦

【発明者】

【住所又は居所】 岩手県釜石市平田第3地割75番1 株式会社 海洋バイオテク

ノロジー研究所内

【氏名】 笠井 宏朗

【発明者】

【住所又は居所】 岩手県釜石市平田第3地割75番1 株式会社 海洋バイオテク

ノロジー研究所内

【氏名】 志津里 芳一

【発明者】

【住所又は居所】 岩手県釜石市平田第3地割75番1 株式会社 海洋バイオテク

ノロジー研究所内

【氏名】 足立 恭子

【特許出願人】

【識別番号】 591001949

【氏名又は名称】 株式会社 海洋バイオテクノロジー研究所

【代表者】 柳沢 満則

【代理人】

【識別番号】 100107870

【弁理士】

【氏名又は名称】 野村 健一 【電話番号】 045-290-7480

【連絡先】 担当

【選任した代理人】

【識別番号】 100098121

【弁理士】

【氏名又は名称】 間山 世津子

【先の出願に基づく優先権主張】

【出願番号】 特願2003-388165 【出願日】 平成15年11月18日

【手数料の表示】

【予納台帳番号】 126469 【納付金額】 16,000円

【その他】 国等の委託研究の成果に係る特許出願(平成16年度新エネルギ

一・産業技術総合開発機構、ゲノム情報に基づいた未知微生物遺 伝資源ライブラリーの構築、産業活力再生特別措置法第30条の

出証特2004-3115777

適用を受けるもの)

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0314503

【書類名】特許請求の範囲

【請求項1】

以下の(a)、(b)、又は(c)に示すペプチド:

- (a) 配列番号4記載のアミノ酸配列からなるペプチド、
- (b) 配列番号4記載のアミノ酸配列において1もしくは複数個のアミノ酸が付加、欠失 もしくは置換されたアミノ酸配列からなり、かつ β -イオノン環-2-ヒドロキシラーゼ活性 を有するペプチド、
- (c) 配列番号3記載の塩基配列からなるDNA又はそれと相補的なDNAとストリンジェント な条件下でハイブリダイズするDNAがコードする細菌由来のペプチドであって、 β -イオノ ン環-2-ヒドロキシラーゼ活性を有するペプチド。

【請求項2】

以下の(a)、(b)、又は(c)に示すペプチドをコードする遺伝子:

- (a) 配列番号4記載のアミノ酸配列からなるペプチド、
- (b) 配列番号4記載のアミノ酸配列において1もしくは複数個のアミノ酸が付加、欠失 もしくは置換されたアミノ酸配列からなり、かつβ-イオノン環-2-ヒドロキシラーゼ活性 を有するペプチド、
- (c) 配列番号3記載の塩基配列からなるDNA又はそれと相補的なDNAとストリンジェント な条件下でハイブリダイズするDNAがコードする細菌由来のペプチドであって、 β -イオノ ン環-2-ヒドロキシラーゼ活性を有するペプチド。

請求項2に記載の遺伝子を導入して得られる微生物であって、β-イオノン環の2位の炭 素に水酸基を導入できる微生物。

請求項2に記載の遺伝子を、他のカロテノイド生合成遺伝子とともに導入して得られる 微生物であって、 β -イオノン環の2位の炭素に水酸基を導入できる微生物。

【請求項5】

他のカロテノイド生合成遺伝子が、ファルネシルピロリン酸からβ-イオノン環を有す るカロテノイドを合成するのに必要とされる遺伝子群の全部又は一部であることを特徴と する請求項4に記載の微生物。

【請求項6】

微生物が大腸菌であることを特徴とする請求項3乃至5に記載の微生物。

請求項3乃至6に記載の微生物を、培地で培養して培養物又は菌体からβ-イオノン環 の2位の炭素が水酸化されたカロテノイドを得ることを特徴とする、水酸化されたカロテ ノイドの製造法。

【請求項8】

 β -イオノン環の2位の炭素が水酸化されたカロテノイドが、 β , β -カロテン-2-オール $(2-ヒドロキシ-\beta-カロテン)$ 、 β , β -カロテン-2,2'-ジオール(2,2'-ジヒドロキシー β -カロテン)、カロキサンチン(2-ヒドロキシゼアキサンチン)、ノストキサンチン(2 ,2'-ジヒドロキシゼアキサンチン)、2-ヒドロキシ-β,β-カロテン-4,4'-ジオン(2-ヒドロキシカンタキサンチン)、2,2'-ジヒドロキシ- β , β -カロテン-4,4'-ジオン(2, 2'-ジヒドロキシカンタキサンチン)、2-ヒドロキシアスタキサンチン、2,3,2',3'-テ トラヒドロキシ-β,β-カロテン-4,4'-ジオン(2,2'-ジヒドロキシアスタキサンチン) であることを特徴とする請求項7に記載の水酸化されたカロテノイドの製造法。

【請求項9】

下記の化学構造式 (I) で示される2,2' –ジヒドロキシ- β , β -カロテン-4,4'-ジオン (2,2'-ジヒドロキシカンタキサンチン)。

【書類名】明細書

【発明の名称】新規なカロテノイドヒドロキシラーゼ遺伝子及び水酸化されたカロテノイ ドの製造法

【技術分野】

[0001]

本発明は、 β -イオノン環を有するカロテノイドの2位(2'位)の炭素に水酸基を導入 する新規な酵素、それをコードする遺伝子、この遺伝子を導入した微生物に関するもので ある。また、この遺伝子が導入された微生物を利用した、 β -イオノン環の2位の炭素が水 酸化されたカロテノイドの製造法に関するものである。

【背景技術】

[0002]

カロテノイド (carotenoid、カロチノイドとも呼ばれる) は、炭素鎖が40のイソプレン 骨格からなる自然界に豊富に存在する色素の総称である。現在までに600種以上のカロテ ノイドが単離されている(Pfander, H., ed., Key to Carotenoids, Basel, Birkhauser, 1987)。最近ではカロテノイドの持つ種々の癌(がん)等の慢性病に対する予防効果が 注目されており、数多くの報告がなされている(たとえば、西野輔翼,村越倫明,矢野昌 充, Food Style 21, 4, 53-55, 2000; Nishino, H. et al, Carotenoids in cancer che moprevention. Cancer Metastasis Rev. 21, 257-264, 2002; Mayne, S.T., β -Caroten e, carotenoids, and disease prevention in humans. FASEB J., 10, 690-701, 1996参 照)。

[0003]

カロテノイドは多様な種類からなるにもかかわらず、現在までに癌の予防試験(ヒト疫 学試験、動物投与試験等)に使われてきたカロテノイドの種類はごく限られたものであっ た。それらのカロテノイドは、 β -カロテン(β -carotene、 β -カロチンとも呼ばれる: 化学合成品)、リコペン(lycopene、リコピンとも呼ばれる:トマトから抽出)、 α -カ ロテン(α -carotene、 α -カロチンとも呼ばれる:パーム油から抽出)、ルテイン(lute in:マリーゴールドから抽出)、アスタキサンチン(astaxanthin:オキアミ、<u>Haematoco</u> <u>ccus</u>属藻類から抽出、または化学合成品)、フコキサンチン(fucoxanthin:食用海藻か ら抽出)、 β -クリプトキサンチン(β -cryptoxanthin:温州ミカンより抽出)等である 。これらの色素を用いた癌予防試験の結果、カロテノイドの癌予防効果は、カロテノイド の種類によって異なることが明らかとなってきた。一例として、国立がんセンター研究所 の高須賀伸夫らが行ったマウスを用いた実験結果(1996年カロテノイド研究談話会報告) を示したい。肺癌(ddyマウス肺二段階発癌モデル)の発生率は、カロテノイドを投与し ないコントロールマウスを100%とすると、リコペンまたは α-カロテン投与マウスが40% 、ルテインまたはアスタキサンチン投与マウスが70%、β-カロテン投与マウスが139%の 癌発生率であった。肝臓癌 (マウス自然肝臓癌発癌モデル) の発生率は、同じくカロテノ イドを投与しないコントロールマウスを100%とすると、アスタキサンチンまたはフコキ サンチン投与マウスが30%、 α -カロテンまたはルテイン投与マウスが50%、 β -カロテン 投与マウスが70%、リコペン投与マウスが100%の癌発生率であった。皮膚癌(マウス皮 膚癌発癌モデル)の発生率は、同じくカロテノイドを投与しないコントロールマウスを10 0%とすると、フコキサンチンまたはリコペン投与マウスが10%、アスタキサンチン投与 マウスが100%の癌発生率であった。これら3つの発癌モデルの結果を比較すると、肺癌 や皮膚癌の抑制で効果が高かったリコペンの効果が肝臓癌の抑制には効果が無いこと、肝 臓癌の抑制で効果が高かったアスタキサンチンの効果が皮膚癌の抑制には効果が無いこと 等がわかる。さらに、疫学試験や臨床試験の結果、前立腺癌を予防するカロテノイドは、 食事で摂取するカロテノイドの中で、リコペンのみという結果が報告されている(Giovan nucci, E., Ascherio, A., Rimm, E. B., Stampfer, M. J., Colditz, G. A., Willet, W . C., Intake of carotenids and retinol in relation to risk of prostate cancer. J . National Cancer Institute 87, 1767-1776, 1995; Vogt, T.M. et al, Serum lycope ne, other serum carotenoids, and risk of prostate cancer in US Blacks and Whites . Am. J. Epidemiol. 155, 1023-1032, 2002参照)。また最近、β-クリプトキサンチン の肺癌予防効果が高いことが明らかにされつつある(Yuan, J.M., Stram, D.O., Arakawa , K., Lee, H.P. and Yu M.C., Dietary cryptoxanthin and reduced risk of lung canc er: the Singapore Chinese Health Study. Cancer Epidemiol. Biomarkers Prev. 12, 8 90-898, 2003; Mannisto, S. et al, Dietary carotenoids and risk of lung cancer i n a pooled analysis of seven cohort studies. Cancer Epidemiol. Biomarkers Prev. 13, 40-48, 2004参照)。さらに癌の予防効果以外にも、循環器系の慢性病、白内障や他 の眼の慢性病、骨粗鬆症等の慢性病の予防に効果がある可能性が高いことが報告されてい る。たとえば、眼の慢性病(黄斑変性症(age-related macular degeneration)や白内障な ど)に効果が期待できるカロテノイドは、食事で摂取するカロテノイドの中で、ルテイン とゼアキサンチンのみという結果が報告されている (Semba, R.D. and Dagnelie, G., Ar e lutein and zeaxanthin conditionally essential nutrients for eye health? Med. Hypotheses 61, 465-472, 2003; Mazaffarieh, M., Sacu, S. and Wedrich, A., The ro le of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J., 2, 20, 2003参照)。

[0004]

以上の結果は、600種類以上あるカロテノイドの中で、実際に動物個体を用いたレベル以上の研究で、癌等の慢性病の予防効果が検討されているものは、高々10種類に満たないということ、それにもかかわらず、カロテノイドの癌等の慢性病に対する予防効果にはカロテノイドの個性が認められるということを示している。実際に検討されてきたカロテノイドの種類が少ないことの最大の原因は、多量に抽出、精製、または化学合成できるカロテノイドの種類が上記のものに限られているということであると考えられる。

[0005]

上記の問題を解決するための有力な手段として、カロテノイド生合成遺伝子を組み込ん だ酵母や大腸菌等で目的とするカロテノイドを多量生産する方法が考えられる。たとえば 、キリンビールの島田らは、本来カロテノイドを生合成できない食用酵母キャンディダ・ ユーティリス(Candida utilis)に、カロテノイド生合成遺伝子群を導入・発現させて、 リコペンを7.8 mg/g(乾重量)合成させるのに成功した(Shimada, H., Kondo, K., Fras er, P. D., Miura, Y., Saito, T., and Misawa, N., Increased carotenoid production by the foood yeast Candida utilis through metabolic engineering of the isopreno id pathway. Appl. Environ. Microbiol., 64, 2676-2680, 1998)。この遺伝子組換え法 によれば、種々の生合成遺伝子の組み合わせにより、これまで自然界に存在が認められて いなかったか、ごく微量しか存在していなかったようなカロテノイドをも多量生産するこ とが可能となる。たとえば、日本医科大学の高市らは、これまでナマズに微量存在してい るという報告しかなかったパラシロキサンチン(parasiloxanthin)を組換え大腸菌で主 要カロテノイド産物として生産した(Takaichi, S., Sandmann, G., Schnurr, G., Satom i, Y., Suzuki, A., and Misawa, N. The carotenoid 7,8-dihydro- Ψ end group can be cyclized by the lycopene cyclases from the bacterium Erwinia uredovora and the higher plant Capsicum annuum. Eur. J. Biochem., 241, 291-296, 1996) 。また、今ま で自然界に報告が無かった"非天然型"のカロテノイドであるアスタキサンチン $-\beta$ -ジグ ルコシド(astaxanthin-β-diglucoside)を組換え大腸菌で合成させたという報告もある (Yokoyama, A., Shizuri, Y., and Misawa, N., Production of new carotenoids, astax anthin glucosides, by Escherichia coli transformants carrying carotenoid biosynt hetic genes. Tetrahed. Lett., 39, 3709-3712, 1998) 。

[0006]

各種のカロテノイド生産用組換え微生物の作製に最も広く利用されてきたカロテノイド生合成遺伝子は、エルウィニア(<u>Erwinia</u>)属細菌 [エルウィニア・ウレドボラ (<u>Erwinia</u> <u>uredovora</u>) 等]由来のものである。エルウィニア属細菌から取得された遺伝子は、<u>crtE</u>、 <u>crtB</u>、 <u>crtI</u>、 <u>crtY</u>、 <u>crtZ</u>、 <u>crtX</u> の6遺伝子であり、これらの遺伝子がコードする生合成酵

素(CrtE、CrtB、CrtI、CrtY、CrtZ、CrtX)の機能は図1に示されている(非特許文献1 参照)。アスタキサンチンを生合成させたい場合は、さらに、海洋細菌であるパラコッカ ス (Paracoccus) 属細菌 [Paracoccus sp. MBIC 01143 (Agrobacterium aurantiacum) 等] 由来のcrtW 遺伝子が必要である(図1)。パラコッカス属細菌からは、crtB、crtI、c rtY、crtZ、crtW の5遺伝子が単離されている(非特許文献 1 参照)。crtB、crtI、crtY 、crtZ遺伝子の機能は両細菌で共通である。エルウィニア属細菌またはパラコッカス属細 菌の $\underline{\operatorname{crtE}}$ 、 $\underline{\operatorname{crtB}}$ 、 $\underline{\operatorname{crtI}}$ 、 $\underline{\operatorname{crtY}}$ 遺伝子を導入・発現させた大腸菌は β -カロテンを合成する が、これにさらに海洋細菌由来のcrtW遺伝子と、エルウィニア属細菌またはパラコッカス 属細菌由来の<u>crtZ</u>遺伝子を導入・発現させると、その組換え大腸菌はアスタキサンチンを 合成するようになる。さらに、このアスタキサンチンを合成する大腸菌にエルウィニア属 細菌のcrtX遺伝子を導入・発現させると、その組換え大腸菌は"非天然型"のアスタキサ ンチン $-\beta$ -ジグルコシドを合成するようになる(図 1)。

[0007]

以上述べてきたように、自然界に微量しか存在しない"レア"カロテノイドや存在が確 認されていなかった"非天然型"のカロテノイドを大腸菌等の微生物に多量生産させるた めに、カロテノイド生合成遺伝子を利用することが可能であることが示されつつある。一 方、現在までにクローニングされ機能解析された、この目的のために使用できるカロテノ イド生合成遺伝子の種類は25種類と限られている。それらの遺伝子は、crtM(デヒドロス クアレンシンターゼ)、 $\underline{\mathrm{crtE}}$ ($\underline{\mathrm{gps}}$, $\underline{\mathrm{al-3}}$)(ゲラニルゲラニルピロリン酸シンターゼ)、 crtB (psy, al-2) (フィトエンシンターゼ)、 crtN (デヒドロスクアレンデサチュラー ゼ)、crtP (pds1) (フィトエンデサチュラーゼ:2 つの二重結合付加)、 crtQ (zds) (ζ-カロテンデサチュラーゼ:2つの二重結合付加反応)、crtI (Rhodobacter属細菌由来 のもの)(フィトエンデサチュラーゼ:3つの二重結合付加反応とcis-trans異性化反応)、crtI(フィトエンデサチュラーゼ:4つの二重結合付加反応とcis-trans異性化反応)、 $\overline{al-1}$ (フィトエンデサチュラーゼ:5 つの二重結合付加反応と \overline{cis} - \overline{trans} 異性化反応)、 $\underline{\operatorname{crtY}}$ ($\underline{\operatorname{crtL}}$ -β)(リコペン β-シクラーゼ)、 $\underline{\operatorname{crtL}}$ -ε(リコペン ε -シクラーゼ) 、 $\underline{\operatorname{crtYm}}$ (リコペン β -モノシクラーゼ)、 $\underline{\operatorname{crtU}}$ (β -カロテンデサチュラーゼ)、 $\underline{\operatorname{crtZ}}$ (β -カロテンヒドロキシラーゼ; β -C3-ヒドロキシラーゼ)、 $\underline{\operatorname{crt}}\mathbb{W}$ ($\underline{\operatorname{bkt}}$) (β -カロテンケ トラーゼ; β -C4-オキシゲナーゼ)、 $\underline{\mathrm{crt0}}$ ($\underline{\mathrm{Synechocystis}}$ sp. PCC6803由来のもの)(β -カロテンモノケトラーゼ)、crtX (ゼアキサンチングルコシルトランスフェラーゼ)、c \underline{rtC} (ヒドロキシノイロスポレンシンターゼ)、 \underline{crtD} (メトキシノイロスポレンデサチュ ラーゼ)、crtF (ヒドロキシノイロスポレン ο-メチルトランスフェラーゼ)、crtA (ス フェロイデンモノオキシゲナーゼ)、 $\underline{\mathrm{crtEb}}$ (リコペンエロンガーゼ)、 $\underline{\mathrm{crtYe/Yf}}$ (デカ プレノキサンチンシンターゼ)、zepl (ゼアキサンチンエポキシダーゼ)、及び、ccs (カプサンチン/カプソルビンシンターゼ) である (Lee, P.C. and Schmidt-Dannert, C., Metabolic engineering towards biotechnological production of carotenoids in micr oorganisms. Appl. Microbiol. Biotechnol. 60, 1-11, 2002; Teramoto, M., Takaichi , S., Inomata, Y., Ikenaga, H. and Misawa, N. Structural and functional analysis of a lycopene β -monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett. 545, 120-126, 2003参照)。多様なカロテノイドを大腸菌 等の微生物に生産させるためには、新規のカロテノイド生合成遺伝子を単離する必要があ る。しかしながら、新規のカロテノイド生合成遺伝子のクローニングは遅々として進まな いのが現状であった。たとえば、自然界に最も豊富に存在するカロテノイドは β -イオノ ン環(eta環)を有するカロテノイド(図1では、eta-カロテン、ゼアキサンチン、カンタキ サンチン、アスタキサンチン等)であるが、 eta-イオノン環を酸化する酵素遺伝子は、 eta-イオノン環-3-ヒドロキシラーゼ(β -C3-hydroxylase)(CrtZ)と β -イオノン環-4-ケト ラーゼ (β-C4-ketolase) (CrtW) をコードする遺伝子しか得られていない。これらの酵 素遺伝子は、 $\underline{\operatorname{crtZ}}$ が1990年に、 $\underline{\operatorname{crtW}}$ が1995年に早々と取得され 機能解析されている。 eta -イオノン環-2-ヒドロキシラーゼ遺伝子は、ノストキサンチン(nostoxanthin)等の、 β -イオノン環における2位の炭素が水酸化されたカロテノイドの合成に必要であると考えら

れるが、そのようなカロテノイドの産生微生物はいくつか存在するにもかかわらず(非特 許文献2参照)、酵素や遺伝子に関する知見は全く無いのが現状であった。新規のカロテ ノイド生合成遺伝子のクローニングが難しい理由は、大腸菌における発現クローニング法 や既存のカロテノイド遺伝子との相同性を利用したクローニング法により得られるカロテ ノイド生合成遺伝子はすでに取得されてしまっており、残りの遺伝子は、これらのクロー ニング法によっては得られないものばかりであるからと考えられる。

[0008]

炭素と水素からのみなるカロテノイドはカロテンと、それに水酸基やケト基などの酸素 を含む官能基が導入されたカロテノイドはキサントフィルと呼ばれる。カロテンとキサン トフィルとは物性が大きく異なっており、生体内における生理活性もかなり異なっている 。たとえば、 β -カロテンの3位の炭素に水酸基が1つ導入されたカロテノイドは β -クリプ トキサンチンであるが、これらを摂取した時の生体内の取り込み率は、後者の方が10倍高 いことが知られている。また、 β -クリプトキサンチンは最近、日本で特に注目を集めて いるカロテノイドであり、大腸癌、喫煙者の肺癌、子宮頸部癌、食道癌、前立腺癌、リウ マチ、骨粗鬆症の予防に効果があるというデータが得られつつある(矢野 昌充、2003年 カロテノイド研究談話会報告、及び、前述のYuan, J.M., Stram, D.O., Arakawa, K., Le e, H.P. and Yu M.C., Cancer Epidemiol. Biomarkers Prev. 12, 890-898, 2003及びMan nisto, S. et al, Cancer Epidemiol. Biomarkers Prev. 13, 40-48, 2004)。そのよう な効果は β -カロテンでは認められていない。また、 β -カロテンの3(3')位の両方の炭 素に水酸基が2つ導入されたカロテノイドはゼアキサンチン(図1参照)であるが、一部前 述したように、ゼアキサンチンの生理活性は β -クリプトキサンチンとは異なることも知 られている。また、ゼアキサンチンの4(4') 位の両方のメチレン基が2つともケト基に 変換されたカロテノイドはアスタキサンチン(図1参照)であるが、アスタキサンチンの 癌予防における生理活性も β -カロテンと大きく異なることは一部前述したとおりであり 、β-クリプトキサンチンやゼアキサンチンとも異なっている。一方、ゼアキサンチンの2 (2') 位の両方の炭素に水酸基がさらに2つ導入されたカロテノイドはノストキサンチン である。一般的に、ノストキサンチンのように、 β -イオノン環の2(2')位の炭素に水 酸基が導入されたカロテノイドは、自然界に微量しか存在しなく、多量生産することが不 可能であり、したがって、種々の癌等の慢性病予防試験の実施もできなかった。

【非特許文献 1】 Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S ., Saito, T., Ohtani, T., and Miki, W., Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin bio synthetic pathway proposed at the gene level. J. Bacteriol., 177, 6575-6584 , 1995)

【非特許文献 2】 Yokoyama, A., Miki, W., Izumida, H., and Shizuri, Y., New tr ihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bact erium. Biosci. Biotech. Bioche., 60, 200-203, 1996)

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明の課題は、eta-イオノン環の2位を水酸化する酵素(eta-イオノン環-2-ヒドロキシ ラーゼ)をコードする遺伝子を取得することである。そして更に、この遺伝子を導入・発 現させた組換え微生物を利用した、 β -イオノン環の2位が水酸化されたカロテノイド(2-ヒドロキシアスタキサンチンやノストキサンチン等)の製造法を提供することである。

【課題を解決するための手段】

[0010]

本発明者らは、海洋細菌プレバンディモナス属(<u>Brevundimonas</u> sp.)SD-212株(MBIC 03018) が、2-ヒドロキシアスタキサンチンや2-ヒドロキシアドニキサンチン等の、 β -イ オノン環における2位が水酸化されたカロテノイドを作ることができることに着目した。 鋭意研究を重ねた結果、本海洋細菌より、 eta-イオノン環の2位を水酸化する酵素(eta-イ

オノン環-2-ヒドロキシラーゼ)をコードする遺伝子を世界で初めて取得することに成功 した。

[0011]

まず、ブレバンディモナス属SD-212株の染色体DNAを用いて、大腸菌におけるコスミド ライブラリーを作製した。カロテノイドを産生するエルウィニア(<u>Erwinia</u>)属細菌 [エル ウィニア・ウレドボラ(<u>Erwinia uredovora</u>)等] の染色体DNAを用いて、大腸菌における コスミドライブラリーを作製する場合は、この段階で、プレート上で黄色のコロニー(カ ロテノイド産生大腸菌)が得られるので、簡単にカロテノイド生合成遺伝子群を取得する ことができる。しかしながら、ブレバンディモナス属SD-212株のコスミドライブラリーか らは、色の変化した大腸菌は全く得られなかった。そこで次に、エルウィニア・ウレドボ ラ由来の<u>crtE、crtB、crtI、crtY、crtZ</u>遺伝子(図1参照)が導入されてゼアキサンチン を作る大腸菌(黄色コロニー)を宿主として用いて、この組換え大腸菌においてブレバン ディモナス属SD-212株のコスミドライブラリーを作製した。このコスミドライブラリーに おいて外見上、色が変化したものは得られなかったので、700株培養し、HPLC-PDA(フォ トダイオードアレィ検出器)を用いて、コントロールのゼアキサンチンに加えて、新たな カロテノイドが生成していないかどうかの検討を行った。その結果、新たなカロテノイド を合成するものは全く得られなかった。したがって、ブレバンディモナス属SD-212株のカ ロテノイド生合成遺伝子の発現クローニングは不可能であると結論した。

[0012]

次に、フィトエンデサチュラーゼ(crtI)遺伝子がカロテノイド産生細菌間で2つの保 存領域を有していることを見出し、PCR用プライマーを設計した。このプライマーを用い て、ブレバンディモナス属SD-212株の染色体DNAを鋳型としたPCRを行ったところ、1.1 kb のDNA断片が増幅された。この配列の塩基配列を決定したところ、crtIの部分配列である ことがわかった。このcrtI部分配列断片をプローブとして、SD-212株のコスミドライブラ リーを用いたコロニーハイブリダィゼーション (colony hybridization) 法を行ったとこ ろ、数個の陽性コロニーが得られた。陽性コロニーからプラスミドDNAを調製し、サザン ハイブリダィゼーション (Southern hybridization) 法を行い、陽性の12 kbの<u>Eco</u>RIのDN A断片を得た。この12 kbの<u>Eco</u>RI断片の塩基配列を決定したところ、幸運なことに、この 断片内にカロテノイド生合成遺伝子群 [既存のcrt遺伝子(6個)又はidi遺伝子(1つ)と ホモロジーがあるORF (オープンリーディングフレーム、open reading frame) が7つ] が存在することが明らかとなった。また、この12 kbのEcoRI断片内には、未知のORFが5つ 存在していた。これら12個のORFすべてを、大腸菌ベクタ-pUC18における<u>lac</u>遺伝子のプロ モータの利用とLacZのリーダ配列を利用した融合タンパク質法により大腸菌で強制発現さ せるためのコンストラクトを作製した。そして、エルウィニア属細菌またはパラコッカス 属細菌のcrt遺伝子の利用により各種カロテノイドを産生する大腸菌を宿主として、これ らの12個のORFの機能解析を行った。その結果、既存のカロテノイド生合成(crt)遺伝子 とホモロジーがあった6個のORFは予想通りの機能を有するカロテノイド生合成(crt)遺 伝子であることがわかった。そして、未知のORFのうちの1つ(ORF11)が β -イオノン環-2 -ヒドロキシラーゼをコードする遺伝子であることを突き止め、本発明を完成するに至っ たのである。

[0013]

本発明は以上のような知見を基に完成されたものである。

[0014]

即ち、本発明は、以下の(1)~(9)を提供するものである。

- (1) 以下の (a) 、 (b) 、又は (c) に示すペプチド:
- (a) 配列番号4記載のアミノ酸配列からなるペプチド、
- (b) 配列番号4記載のアミノ酸配列において1もしくは複数個のアミノ酸が付加、欠失 もしくは置換されたアミノ酸配列からなり、かつeta-イオノン環-2-ヒドロキシラーゼ活性 を有するペプチド、
- (c) 配列番号3記載の塩基配列からなるDNA又はそれと相補的なDNAとストリンジェント

な条件下でハイブリダイズするDNAがコードする細菌由来のペプチドであって、β-イオノン環-2-ヒドロキシラーゼ活性を有するペプチド。

- (2) 以下の(a)、(b)、又は(c)に示すペプチドをコードする遺伝子:
- (a) 配列番号4記載のアミノ酸配列からなるペプチド、
- (b) 配列番号 4 記載のアミノ酸配列において 1 もしくは複数個のアミノ酸が付加、欠失もしくは置換されたアミノ酸配列からなり、かつ β -イオノン環-2-ヒドロキシラーゼ活性を有するペプチド、
- (c)配列番号3記載の塩基配列からなるDNA又はそれと相補的なDNAとストリンジェントな条件下でハイブリダイズするDNAがコードする細菌由来のペプチドであって、 β -イオノン環-2-ヒドロキシラーゼ活性を有するペプチド。
- (3) (2) に記載の遺伝子を導入して得られる微生物であって、 β -イオノン環の2位の 炭素に水酸基を導入できる微生物。
- (4) (2) に記載の遺伝子を、他のカロテノイド生合成遺伝子とともに導入して得られる微生物であって、 β -イオノン環の2位の炭素に水酸基を導入できる微生物。
- (5)他のカロテノイド生合成遺伝子が、ファルネシルピロリン酸から β -イオノン環を有するカロテノイドを合成するのに必要とされる遺伝子群の全部又は一部であることを特徴とする(4)に記載の微生物。
- (6) 微生物が大腸菌であることを特徴とする(3) 乃至(5) に記載の微生物。
- (7) (3) 乃至 (6) に記載の微生物を、培地で培養して培養物又は菌体から β-イオノン環の2位の炭素が水酸化されたカロテノイドを得ることを特徴とする、水酸化されたカロテノイドの製造法。
- (8) β -イオノン環の2位の炭素が水酸化されたカロテノイドが、 β , β -カロテン-2-オール(2-ヒドロキシ- β -カロテン)、 β , β -カロテン-2, 2'-ジオール(2, 2'-ジヒドロキシ- β -カロテン)、カロキサンチン(2-ヒドロキシゼアキサンチン)、ノストキサンチン(2, 2'-ジヒドロキシゼアキサンチン)、2-ヒドロキシ- β , β -カロテン-4, 4'-ジオン(2-ヒドロキシカンタキサンチン)、2, 2'-ジヒドロキシ- β , β -カロテン-4, 4'-ジオン(2, 2'-ジヒドロキシカンタキサンチン)、2-ヒドロキシアスタキサンチン、2, 3, 2 '-テトラヒドロキシ- β , β -カロテン-4, 4 '-ジオン(2, 2 '-ジヒドロキシアスタキサンチンチン)であることを特徴とする(7)に記載の水酸化されたカロテノイドの製造法。
- (9) 下記の化学構造式 (I) で示される新規化合物2,2'-ジヒドロキシ- β , β -カロテン-4,4'-ジオン(2,2'-ジヒドロキシカンタキサンチン)。

[0015]

【化2】

[0016]

以下、本発明を詳細に説明する。

1. 遺伝子源の海洋細菌ブレバンディモナス属SD-212 株 (MBIC 03018)

目的とする遺伝子の供給源となった海洋細菌プレバンディモナス属(Brevundimonas sp.) SD-212 株 (SD212; MBIC 03018) は、火山列島の海水中より単離された α -プロテオバクテリアである。GC含量は67.1 (mol) %である。本海洋細菌が作るカロテノイドは、2-ヒ

ドロキシアスタキサンチン(2-hydroxyastaxanthin)や2-ヒドロキシアドニキサンチン(2-hydroxyadanixanthin)等の2位(2'位)に水酸基が導入されたカロテノイドであることが(株)海洋バイオテクノロジー研究所の横山らにより報告されている(非特許文献2参照)。なお、本細菌は、MBIC 03018として(株)海洋バイオテクノロジー研究所より公開・分譲されている。また、本細菌の16S rDNA配列とgyrB遺伝子配列はそれぞれ、アクセッション番号AB016849、AB014993としてGenBank/DDBJに登録されている。

[0017]

2. 海洋細菌プレバンディモナス属SD-212 株におけるカロテノイド生合成経路の推定 海洋細菌プレバンディモナス属 (Brevundimonas sp.) SD-212 株 (MBIC 03018) が生産 する、2位 (2'位) に水酸基が導入されたカロテノイドは、横山らによって詳しく分析されている (非特許文献2参照)。それらは、2,3,2',3'-テトラヒドロキシー β , β -カロテン-4,4'-ジオン (2,3,2',3'-tetrahydroxy- β , β -carotene-4,4'-dione)、2,3,2',3'-テトラヒドロキシー β , β -カロテン-4-オン (2,3,2',3'-tetrahydroxy- β , β -caroten-4-one)、2-ヒドロキシアスタキサンチン (2-hydroxyastaxanthin;2,3,3'-trihydroxy- β , β -carotene-4,4'-dione)、2-ヒドロキシアドニキサンチン (2-hydroxyadonixanthin;2,3,3'-trihydroxy- β , β -caroten-4-one) 、エリスロキサンチン (erythroxanthin;3,2',3'-trihydroxy- β , β -caroten-4-one) である (図2参照)。また、SD-212株には、前駆体として、アスタキサンチンやアドニキサンチン (4-ケトゼアキサンチン)が存在することも確認されている。 β -イオノン環の2位に水酸基を導入する新規な酵素(β -イオノン環-2-ヒドロキシラーゼ;CrtVと記載)の存在を想定すると、これ以外はすべて既存のCrt酵素との組合せにより、上記のすべてのカロテノイドの生合成経路を図2のように推定することができる。

[0018]

- 3. β -イオノン環-2-ヒドロキシラーゼをコードする遺伝子(本発明の遺伝子) 本発明には、以下の(a)、(b)、又は(c) に示すペプチドが含まれる。
- (a) 配列番号4記載のアミノ酸配列からなるペプチド、
- (b) 配列番号 4 記載のアミノ酸配列において 1 もしくは複数個のアミノ酸が付加、欠失もしくは置換されたアミノ酸配列からなり、かつ β -イオノン環-2-ヒドロキシラーゼ活性を有するペプチド、
- (c)配列番号3記載の塩基配列からなるDNA又はそれと相補的なDNAとストリンジェントな条件下でハイブリダイズするDNAがコードする細菌由来のペプチドであって、 β -イオノン環-2-ヒドロキシラーゼ活性を有するペプチド。

[0019]

また、本発明には、以下の(a)、(b)、又は(c)に示すペプチドをコードする遺伝子も含まれる。

- (a) 配列番号4記載のアミノ酸配列からなるペプチド、
- (b) 配列番号 4 記載のアミノ酸配列において 1 もしくは複数個のアミノ酸が付加、欠失もしくは置換されたアミノ酸配列からなり、かつ β イオノン環-2-ヒドロキシラーゼ活性を有するペプチド、
- (c) 配列番号 3 記載の塩基配列からなるDNA又はそれと相補的なDNAとストリンジェントな条件下でハイブリダイズするDNAがコードする細菌由来のペプチドであって、 β -イオノン環-2-ヒドロキシラーゼ活性を有するペプチド。

[0020]

(a) のペプチドは、プレバンディモナス属SD-212株から得られた β -イオノン環-2-ヒドロキシラーゼ活性を有する257個のアミノ酸配列からなるペプチド(CrtVとも呼ぶ)である。

[0021]

(b) のペプチドは、(a) のペプチドに、β-イオノン環-2-ヒドロキシラーゼ活性を 失わせない程度の変異が導入されたペプチドである。このような変異は、自然界において 生じる変異のほかに、人為的な変異をも含む。人為的変異を生じさせる手段としては、部 位特異的変異誘発法(Nucleic Acids Res. 10, 6487-6500, 1982)などを挙げることがで きるが、これに限定されるわけではない。変異したアミノ酸の数は、eta-イオノン環-2-ヒ ドロキシラーゼ活性を失わせない限り、その個数は制限されないが、通常は、30アミノ酸 以内であり、好ましくは20アミノ酸以内であり、更に好ましくは10アミノ酸以内であり、 最も好ましくは5アミノ酸以内である。

[0022]

(c) のペプチドは、DNA同士のハイブリダイゼーションを利用することにより得られ る細菌由来のβ-イオノン環-2-ヒドロキシラーゼ活性を有するペプチドである。(c)の ペプチドにおける「ストリンジェントな条件」とは、特異的なハイブリダイゼーションの みが起き、非特異的なハイブリダイゼーションが起きないような条件をいう。このような 条件は、通常、「1×SSC、0.1%SDS、37℃」程度であり、好ましくは「0.5×SSC、0.1%S DS、42℃」程度であり、更に好ましくは「0.2×SSC、0.1%SDS、65℃」程度である。ハイ ブリダイゼーションにより得られるDNAは、配列番号3記載の塩基配列により表されるDNA と通常高い相同性を有する。高い相同性とは、60%以上の相同性、好ましくは75%以上の 相同性、更に好ましくは90%以上の相同性を指す。

[0023]

本発明の遺伝子は、例えば、以下のようにして得ることができる。まず、海洋細菌ブレ バンディモナス属SD-212株のコスミドライブラリーを大腸菌において作製する。次に、実 施例7に示したようなカロテノイド生合成遺伝子の相同配列を利用したコロニーハイブリ ダイゼーション法やPCRクローニング法により得ることができる。

[0024]

なお、本発明の遺伝子であるβ-イオノン環-2-ヒドロキシラーゼ(<u>crtV</u>)遺伝子を含む ブレバンディモナス属SD-212株のカロテノイド生合成遺伝子群を含む12 kb EcoRI DNA断 片が大腸菌ベクターpBluescript II KS-に挿入されたプラスミドp5Bre2-15を有する大腸 菌は受託番号P-19580として独立行政法人産業技術総合研究所特許生物寄託センターに寄 託されている。

[0025]

4. βイオノン環の2位(2'位)の炭素に水酸基を導入できる微生物 本発明には、3に記載の β -イオノン環-2-ヒドロキシラーゼ遺伝子を導入して得られる 微生物であって、β-イオノン環の2位の炭素に水酸基を導入できる微生物も含まれる。

[0026]

微生物には、本発明の遺伝子だけでなく、他のカロテノイド生合成遺伝子も導入する場 合が多いが、微生物がもともと他のカロテノイド生合成遺伝子を含むものである場合には 、他のカロテノイド生合成遺伝子を導入する必要はないか、或いは一部のみ導入すればよ 61

[0027]

宿主とする微生物は、大腸菌を例示できるが、これ以外の微生物であってもよい。

[0028]

他のカロテノイド生合成遺伝子は、ファルネシルピロリン酸(FPP)からβ-イオノン環 を有するカロテノイドを合成するのに必要とされる遺伝子群の全部または一部を含む。こ のような遺伝子群の具体例としては、FPPからゲラニルゲラニルピロリン酸(GGPP)を合 成する酵素遺伝子<u>crtE</u>、2分子のGGPPからフィトエン(phytoene)を合成する遺伝子<u>crtB</u> 、フィトエンからリコペン(lycopene)を合成する遺伝子 $\underline{\operatorname{crt I}}$ 、リコペンから eta –カロテ ン(eta -carotene)を合成する遺伝子 $\underline{\mathrm{crtY}}$ (通常、エルウィニア属細菌由来のもの)、eta -イオノン環-3-ヒドロキシラーゼをコードする遺伝子crtZ(通常、エルウィニア属細菌ま たはパラコッカス属細菌由来のもの)、β-イオノン環-4-ケトラーゼをコードする遺伝子 crtW (通常、パラコッカス属細菌由来のもの) 等を例示できる。

[0029]

これらの遺伝子群のすべて又は一部を適当な発現ベクターに導入し、発現させたい微生 出証特2004-3115777 物に導入すれば、その組換え微生物は β -イオノン環を有するカロテノイドを作るようになる(基質のFPPはすべての微生物が作ることができる。GGPPも微生物によっては合成量が少ないものもあるが、すべての微生物が作ることができる)。その β -イオノン環を有するカロテノイド産生微生物に、本発明の遺伝子(β -イオノン環-2-ヒドロキシラーゼをコードする遺伝子、 $\underline{\mathrm{crtV}}$)をさらに導入・発現させれば、その微生物は2位(2'位)に水酸基が導入されたカロテノイドを作るようになる。

[0030]

大腸菌や酵母等の種々の微生物のベクターの情報や外来遺伝子の導入・発現法は、多くの実験書に記載されているので(たとえば、Sambrook, J., Russel, D. W., Molecular Cloning A Laboratory Manual, 3rd Edition, CSHL Press, 2001)、それらに従ってベクターの選択、遺伝子の導入、発現を行うことができる。

[0031]

5. 2位(2'位)に水酸基が導入されたカロテノイドの製造法

本発明には、上記に記載の微生物を、培地で培養して培養物又は菌体からβ-イオノン環の2位の炭素が水酸化されたカロテノイドを得ることを特徴とする、水酸化されたカロテノイドの製造法も含まれる。

[0032]

 β -イオノン環の2位の炭素が水酸化されたカロテノイドとしては、 β , β -カロテン-2-オール(2-ヒドロキシ- β -カロテン)、 β , β -カロテン-2, 2'-ジオール(2, 2'-ジヒドロキシ- β -カロテン)、カロキサンチン(2-ヒドロキシゼアキサンチン)、ノストキサンチン(2, 2'-ジヒドロキシゼアキサンチン)、2-ヒドロキシ- β , β -カロテン-4, 4'-ジオン(2-ヒドロキシカンタキサンチン)、2, 2'-ジヒドロキシ- β , β -カロテン-4, 4'-ジオン(2, 2'-ジヒドロキシカンタキサンチン)、2-ヒドロキシアスタキサンチン、2, 3, 2', 3'-テトラヒドロキシ- β , β -カロテン-4, 4'-ジオン(2, 2'-ジヒドロキシ- β , β -カロテン-4, 20'-ジオン(2, 20'-ジヒドロキシアスタキサンチン)などを例示できるが、これらに限定されるわけではない。

[0033]

本明細書の配列表の配列番号は、以下の配列を表す。

[0034]

配列番号1:プレバンディモナス属SD-212株のcrtI遺伝子の部分配列。

[0035]

配列番号2: EcoRIでpCos5-2から切り出された12 kbの断片の配列。

[0 0 3 6]

配列番号 3 : 上記EcoRI 断片に含まれるORF11 (β -イオノン環-2-ヒドロキシラーゼ遺伝子と推定される)の配列。

[0037]

配列番号4:ORF11がコードするアミノ酸配列。

[0038]

配列番号5:0RF1の増幅用のプライマー(フォワード)

配列番号6:0RF1の増幅用のプライマー(リバース)

配列番号7:crtWの増幅用のプライマー(フォワード)

配列番号8:crtWの増幅用のプライマー(リバース)

配列番号9:crtYの増幅用のプライマー(フォワード)

配列番号10:crtYの増幅用のプライマー(リバース)

配列番号11:crtIの増幅用のプライマー(フォワード)

配列番号12:crtIの増幅用のプライマー(リバース)

配列番号13:crtBの増幅用のプライマー(フォワード)

配列番号 1 4: <u>crtB</u>の増幅用のプライマー(リバース)

配列番号15:0RF6の増幅用のプライマー (フォワード)

配列番号16:ORF6の増幅用のプライマー(リバース)

配列番号17:0RF7の増幅用のプライマー (フォワード)

配列番号18:ORF7の増幅用のプライマー(リバース) 配列番号19:crtEの増幅用のプライマー(フォワード) 配列番号20:crtEの増幅用のプライマー(リバース) 配列番号21:<u>idi</u>の増幅用のプライマー(フォワード) 配列番号22:<u>idi</u>の増幅用のプライマー(リバース) 配列番号23:crtZの増幅用のプライマー(フォワード) 配列番号 2 4 : <u>crt2</u>の増幅用のプライマー(リバース) 配列番号25:0RF11の増幅用のプライマー (フォワード) 配列番号26:0RF11の増幅用のプライマー(リバース) 配列番号27:0RF12の増幅用のプライマー (フォワード) 配列番号28:0RF12の増幅用のプライマー(リバース)

【発明の効果】

[0039]

β-イオノン環の2(2')位の炭素に水酸基が導入されたカロテノイドは、自然界に微量し か存在しないものが多いが、なかには未だ発見されていないものもある。本発明により、 このようなカロテノイドを大量に製造できるようになる。

【発明を実施するための最良の形態】

[0040]

以下、実施例により本発明について具体的に説明する。もっとも、本発明はこれにより 限定されるものではない。

【実施例】

[0041]

[実施例1] 菌株、プラスミド、生育条件

本発明に用いられた菌株とプラスミドを表1に示す。菌株の培養は30℃でLB(Luria-Be rtani) 培地または、2×YT培地 (Sambrook et al., 1989) を用いて行った。必要に応じ て、アンピシリン (ampicillin; Ap , $100 \,\mu\,\mathrm{g/ml}$) または、クロラムフェニコール (chlo ramphenicol; Cm, 20 μg/ml) を培地に添加した。

[0042]

カンタキサンチン産生用プラスミドpAC-Cantha、及びアスタキサンチン、アドニキサン チン(4-ケトゼアキサンチン)産生用プラスミドpAC-Astaは以下のようにして作製した。

[0043]

パラコッカス属MBIC 01143 (<u>Agrobacterium</u> <u>aurantiacum</u>) 由来の<u>crt₩</u> 遺伝子を、酵母 キャンディダ・ユーティリス(Candida utilis)のGAP遺伝子のコドン使用に合わせて全 合成した。コードされるアミノ酸配列は元のCrtWと同じにしてある。この作製法は文献(Miura et al., 1998) に示されている。この全合成された<u>crtW</u>配列を鋳型にして、H1437 [AvaI部位(下線)、SD配列(H1437の10-15番目の配列)を含む] とH1438 [NotI部位(下線) を含む] プライマーを用いてPCRを行い、得られたPCR産物をAvaIとNot Tで切断して 、0.76 kb AvaI-crtW-NotI断片を得た。

H1437: 5'-GTCCCGAGAAGGAGGCTAGATATGTCCGCTCACGCTTTGC-3'

H1438: 5'-CGGCGCCCCCCGGGACTAAGCGGTGTCACCCTTGGTTCT-3'

プラスミドpCAR16 (Misawa et al., 1990) を鋳型にして、H1431 [NotI部位(下線) 、SD配列(H1431の16-21番目の配列)を含む]とH1432 [SalI部位(下線)を含む] プラ イマーを用いてPCRを行い、得られたPCR産物を<u>Not</u>Iと<u>Sal</u>Iで切断して、1.1 kb <u>Not</u>I-<u>crtE</u> -SalI断片を得た。

H1431: 5'-ATGCGGCCGCTTATAAGGACAGCCCGAATG-3' H1432: 5'-CAGTCGACATCCTTAACTGACGGCAGCGAG-3'

[0044]

上記の0.76 kb <u>AvaI-crtW-Not</u>I断片と1.1 kb <u>Not</u>I-<u>crtE-Sal</u>I断片を<u>Not</u>I部位を介して 転結し、pACCAR16ΔcrtXを<u>Ava</u>I/<u>Sal</u>I消化して得られた、<u>crtY</u>、<u>crtI</u>、<u>crtB</u>を有する大断 片と連結することにより、プラスミドpAC-Canthaを得た。

[0045]

さらに、同様に上記の0.76 kb <u>AvaI-crtW-Not</u>I断片と1.1 kb <u>Not</u>I-<u>crtE-Sal</u>I断片を<u>Not</u>I部位を介して転結し、pACCAR25 Δ crtXを<u>Ava</u>I/<u>Sal</u>I消化して得られた、<u>crtY</u>、<u>crtI</u>、 <u>crtB</u>、 <u>crtZ</u>を有する大断片と連結することにより、プラスミドpAC-Astaを得た。

【0046】 【表1】

本発明に用いた菌株とプラスミド

菌株/プラスミド	性質*	(献/発売元
Brevundimonas sp. MBIC03018	2-水酸化カロテノイドの生産細菌(SD-212 株)	Yokoyama et al, 1996
Escherichia coli XL1-Blue MR	コスミドベクター, SuperCos1 宿主	Stratagene
<u>E</u> . <u>coli</u> DH5 α	遺伝子操作実験用宿主	тоуово
プラスミド		
pACCAR16 A crtX	Cm ^r , <u>crtE, crtB, crtI, crtY</u> を含むプラスミド	Misawa et al, 1995
DACCAR25 △ ortX	Cm ^r , <u>crtE</u> , <u>crtI</u> , <u>crtY</u> , <u>crtZ</u> を含むプラスミド	Misawa et al, 1995
pAC-Cantha	Cm', <u>crtE</u> , <u>crtB</u> , <u>crtI</u> , <u>crtY</u> , <u>crtW</u> を含むプラスミド	本発明
pAC-Asta	Cm ^r , <u>crtE</u> , <u>crtB</u> , <u>crtI</u> , <u>crtY</u> , <u>crtZ</u> , <u>crtW</u> を含むプラスミド	本発明
SuperCos 1	Apr. コスミドベクター	Stratagene
pBluescript II KS-	Apr, クローニングベクター	тоуово
pGEM-T Easy	Apr. クローニングベクター	Promega
pUC18	Ap', クローニングベクター	тоуово .
pCos5-2	Ap', <u>Brevundimonas</u> sp. MBIC03018 株由来の 47 kb の DNA	本発明
	断片(Sau3AI で部分的に消化されたもの)が SuperCos 1 の	
	BamHI 部位に挿入されたもの	
pCRTI-SD212	Ap', <u>Brevundimonas</u> sp. MBIC03018 株由来 <u>crtl</u> が PCR で増	本発明
•	幅され pGEM-T Easy に挿入されたもの	
p5Bre2-15	Apr., pCos5-2 由来の 12 kb の <u>Eco</u> RI 断片が pBluescript II	本発明
•	KS-に挿入されたもの	
pUCBre-Oi1	Ap', p5Bre2-15 由来の 2-水酸化酵素遺伝子が PCR で増幅	本発明
•	され、pUC18 に挿入されたもの	

^{*} Apr, ampicillin 耐性, Cmr, chloramphenicol 耐性

Miura, Y., Kondo, K., Saito, T., Shimada, H., Fraser, P. D., Misawa, Production of the carotenoids lycopene, β -carotene, and astaxanthin in the food yeast <u>Candida utilis</u>. N., Appl. Environ. Microbiol., 64, 1226-1229, 1998

Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y. Nakamura, K., and Harashima, K., Elucidation of the <u>Erwinia uredovora</u> carotenoid biosynthetic pat hway by the functional analysis of gene products expressed in <u>Escherichia coli</u>. J. Bacteriol., 172, 6704-6712, 1990

Sambrook, J., Fritsch, E. F., and Maniatis T. 1989. Molecular cloning: a laborat ory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y

Yokoyama, A., Miki, W., Izumida, H., Shizuri, Y. 1996. New Trihydroxy-keto-caro tenoids isolated from an astaxanthin-producing marine bacterium. Biosci. Biotech nol. Biochem. 60, 200-203, 1996 (非特許文献2)

Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S., Saito, T., Ohtani, T., and Miki, W., Structure and functional analysis of a marine bacterial caro tenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed a

t the gene level. J. Bacteriol. 177, 6575-6585, 1995 (非特許文献1)

[0047]

[実施例2] 遺伝子操作実験

プラスミドの調製、制限酵素処理、ライゲーション反応、形質転換などの通常の遺伝子操作実験は、前述のSambrookら(1989)のMolecular Cloning(前述の文献)に示された方法により行った。

[0048]

「実施例3」 プレバンディモナス属SD-212株からの染色体DNAの調製

ブレバンディモナス属 (<u>Brevundimonas</u> sp.) SD-212 株 (SD212; MBIC 03018) を300 m 1のMarine Broth (MB) 培地 (Difco) で25℃、3日間培養した。菌体を集菌後、STE緩衝液 (100 mM NaCl, 10 mM Tris・HCl, 1 mM EDTA, pH 8.0) で二回洗浄し、68℃で15分間熱処理をした後、5 mg/ml のリゾチーム (Sigma) と100 μg/mlのRNase A (Sigma)を含むI液 (50 mM グルコース、25 mM Tris・HCl, 10 mM EDTA, pH 8.0) に懸濁した。37℃で一時間インキュベートした後、250 μg/mlになるようにProtenase K (Sigma)を加え、37℃で10分間インキュベートした。さらに最終濃度が1%になるようにN-Lauroylsarcosin・Naを添加し、転倒混和により穏やかに完全に混合した後37℃で3時間インキュベートした。さらにフェノール/クロロホルム抽出を数回行った後、2倍量のエタノールをゆっくりと添加しながら、析出してきた染色体DNAをガラス棒で巻きつけ、70% エタノールでリンスした後、2 mlのTE緩衝液 (10 mM Tris・HCl, 1 mM EDTA, pH 8.0) に溶解して、染色体DNA溶液とした。

[0049]

[実施例4] PCR法によるフィトエンデサチュラーゼ遺伝子(crtI)の部分断片の増幅 カロテノイド産生細菌間のフィトエンデサチュラーゼ (phytoene desaturase;フィト エン脱水素酵素) 遺伝子(crtI)の相同性を利用して得られたcrtI-Foプライマー(5'-TTY GAY GCI GGI CCI ACI GT -3')、crtI-Reプライマー (5' -CCI GGR TGI GTI CCI GCI C C-3') を合成し、前出した方法により得られた、ブレバンディモナス属SD-212株の染色 体DNAを鋳型として用い、PCR法により増幅した。耐熱性DNAポリメラーゼはLa-Taq(TaKaR a)を用い、96℃で5分間熱変性後、98℃で20秒、58℃で30秒、72℃で1分の条件で35サイク ルの増幅を行った。増幅産物は、1% アガロースゲル電気泳動で確認後、1.1 kbの長さのD NAをアガロースゲルから切り出し、精製 (Qiagene Gel Extraction kit、QIAGENE、もし くはGene Clean II Kit、BIO101)を行った。精製されたDNA断片は、pGEM-T Easyに連結 し、大腸菌 (DH5 α) を形質転換した。このプラスミドをpCRTI-SD212と名づけ、アンピシ リンを添加した2 mlのLB液体培地で37℃、一晩培養後、プラスミドを抽出した。抽出され たプラスミドは Big Dye Terminator Cycle Sequencing Ready Reaction Kit ver.2 (Per kin-Elmer)とmodel 3700 DNA sequencer (Perkin-Elmer)を用い付属のプロトコールに従 って塩基配列(部分配列)の決定を行った。決定されたDNA配列(配列番号1)はBlast(A ltschul and Lipman, 1990)を用いホモロジー検索を行いフィトエンデサチュラーゼ (phy toene desaturase) 遺伝子(crtI)とホモロジーを持つDNA断片であることを確認した。ま た、PCR後、精製されたDNA断片の一部は実施例7、8に示すコロニーハイブリダイゼーショ ン、サザンハイブリダイゼーションのプローブとして用いた。

Altschul, S. F. and Lipman, D. J., Protein database search for multiple alignmen ts. Proc. Natl. Acad. Sci. USA 87, 5509-5513, 1990.

[0050]

[実施例5] コスミドライブラリーの作製

ブレバンディモナス属SD-212株の染色体DNAの調製液からファージ粒子を得るところまでの実験方法はStratagene社のSuperCos 1 Cosmid Vector Kitの取扱説明書に従って行った。すなわちブレバンディモナス属SD-212株から得られた染色体DNAをSau3AIで部分消化を行いコスミドベクターのBamHI部位に連結し、LAMBDA INN(Nippon Gene)を用いてファージ粒子にパッケージングした。そして、大腸菌(Escherichia coli)XL1-Blue MR株、及び、プラスミドpACCAR25ムcrtXを含み ゼアキサンチンを作る大腸菌XL1-Blue MR株に、

そのファージを感染させ、抗生物質Ap耐性、及びAp、Cm耐性のコロニーを、Ap、及びAp、 Cmを含むLBプレート上に各々、約1,000個ずつ得た。得られたコロニーは滅菌した楊枝を 用いて、新たに抗生物質を含むLBプレート上に植え継いだ。なお、この段階で色の変化し たコロニーは全く得られなかった。

[0051]

このコスミドベクターSuperCos 1 (Stratagene) は7.9 kbのベクターで30~45 kbのDNA 断片を挿入することができる。また、cos領域が二つあるので、パッケージングの効率が よく、コスミドコンカテマーのパッケージングを防ぐための脱リン酸化操作が不要であり 、挿入したい染色体DNAの方を脱リン酸化できるために、染色体DNA断片の再結合断片の混 入の心配が無く、サイズ分画も不要であるという利点がある。

[0052]

発現クローニングの試み [実施例6]

実施例5で作製したプラスミドpACCAR25ムcrtXを含み ゼアキサンチンを作る大腸菌を宿 主として作製したコスミドライブラリー700コロニーを用いて、各々2 mlずつ培養し、ア セトンでカロテノイド色素を抽出した後、HPLC-PDA (フォトダイオードアレィ検出器)分 析により、カロテノイドの分析を行った。方法は、実施例11に示されている。コントロー ルのゼアキサンチンに加えて、新たなカロテノイドが生成していないかどうかの検討を行 った。その結果、新たなカロテノイドを合成するものは全く得られなかった。したがって 、ブレバンディモナス属SD-212株のカロテノイド生合成遺伝子の発現クローニングは不可 能であると結論した。

[0053]

コロニーハイブリダイゼーション 〔実施例7〕

実施例5で作製した大腸菌XL1-Blue MRを宿主として作製したコスミドライブラリー500 コロニーを用いて、実施例4で示したPCR法により増幅したフィトエンデサチュラーゼ遺伝 子 (crtI) の部分断片をプローブとして、コロニーハイブリダイゼーション (colony hyb ridization) 法を行い、crtI遺伝子を含むクローンのスクリーニングを行った。まず、大 腸菌をプレートに植え37℃で培養した。このとき、大腸菌は一枚のプレートあたり、48コ ロニーずつ植え付けた。一晩培養後、直径82 mmのHybond-N+メンブレン(Amersham Pharm acia)をプレートに乗せ、注射針で目印をつけた。メンブレンをはがし、菌体が付着した 面を上に向け、10% SDS溶液を含んだ3 mmろ紙(Whattman)で5分間インキュベート後、 さらに変性溶液(1.5 M NaCl, 0.5 M NaOH)を含んだ3 mmろ紙で5分間インキュベートを 行い、その後メンブレンを中和液(1.5 M NaCl, 0.5M Tris・HCl)に5分間つけた(2回) 。さらに2×SSCで2回洗浄した。このとき、細胞の破片を残さないようにキムタオルでメ ンプレンを強くこすった。処理後、メンブレンは、キムタオル、キムワイプ上で30分間風 乾後、80℃で2時間ベーキング(baking)を行い、メンブレンにDNAを固定した。プローブ DNAは、Alkphos Direct Labeling and Detection System (Amersham Pharmacia)を用い、 添付のプロトコールに従って作製し、コロニーハイブリダイゼーションを行った。その結 果、500株のクローンから、フィトエンデサチュラーゼ遺伝子(crtI)の部分断片をプロ ーブDNAとして用いたコロニーハイブリダイゼーション法により6個のポジティブクローン が得られた。6個のポジティブクローンに存在するプラスミドを、pCos5-1、pCos5-2、pCo s7-1、pCos8-1、pCos9-1、pCos10-1と名づけた。

[0054]

サザンハイブリダイゼーション 〔実施例8〕

実施例7で選抜された、6つのポジティブクローンを、Apを添加した2 mlのLB液体培地で 37℃、一晩培養した後、プラスミドDNAを抽出した。抽出後のプラスミドDNAは、<u>Eco</u>RIで3 7℃、数時間インキュベートし、完全消化した後、電気泳動を行った。コントロールとし て、ベクターのSuperCos 1、プレバンディモナス属SD-212の染色体DNAを同様に消化した ものを用いた。電気泳動には、小型のサブマリン型の電気泳動漕Mupid(コスモバイオ) を用い1%アガロースゲルを用いて50 Vで約70分電気泳動を行った。なお、電気泳動バッフ ァーには1×TBEバッファーを用いた。ゲルは電気泳動後、エチジウムプロマイドで染色し 、超純水で脱色後、UV照射下で写真撮影をした(図3)。その後0.4M NaOH溶液を用いてキ ャピラリーブロッティングを行うことによりナイロンメンブレン(Hybond N+)にトラン スファーした。処理後、メンブレンを80℃で2時間、ベーキング(baking)を行い、メン プレンにDNAを固定した。その後、Alkphos Direct Labeling and Detection System (Ame rsham Pharmacia)を用い、添付のプロトコールに従って、サザンハイブリダイゼーション を行った。また、プローブDNAには、前述したフィトエンデサチュラーゼ遺伝子 (crtI) の部分断片を用いた。その結果、6つのポジティブクローンのうちpCos5-2、pCos7-1、pCo s9-1の3つのクローンにおいて、12~kbの \underline{Eco} RI断片にポジティブシグナルが認められた(図3)。コントロールのSD-212染色体DNAは、電気泳動で確認したところ、高分子側でスミ アなバンドが認められ、ほとんど消化されていなかった。僅かながらも、高分子側で陽性 のシグナルが認められた。ほとんど消化されない原因としては、染色体DNAが部分的にメ チル化されEcoRIによる分解が阻害されたことなどが考えられる。さらに、3つのポジティ ブクローンのプラスミドとSuperCos 1、ブレバンディモナス属SD-212株の染色体DNAを<u>Bam</u> HIもしくはBamHI-EcoRIで消化し、同様の実験を行った(図4)。その結果BamHIによる消 化を行ったものでは、9 kbのDNA断片にポジティブシグナルが認められ、<u>Bam</u>HI-<u>Eco</u>RIによ る消化を行ったものでは、8.2 kbのポジティブシグナルが認められた。ブレバンディモナ ス属SD-212株の染色体DNAの消化物にも、同様のサイズのバンドでポジティブシグナルが 薄いながらも認められた。

[0055]

[実施例9] カロテノイド遺伝子クラスターの解析

実施例8で選抜された3つの陽性クローン(pCos5-2、pCos7-1、pCos9-1)のうちpCos5-2 を用い、12 kbの挿入断片を<u>Eco</u>RIで切り出し、プラスミドベクターpBluescript II KS-の E_{coRI} 部位に連結し、大腸菌(E. coli) DH5 α 株を形質転換した。このプラスミドをp5Bre 2-15と名づけた。この大腸菌を、Apを添加した2 mlのLB液体培地で37℃、一晩培養後、プ ラスミドを抽出した。抽出されたプラスミドはBig Dye Terminator Cycle Sequencing Re ady Reaction Kit ver.2 (Perkin-Elmer)とmodel 3700 DNA sequencer (Perkin-Elmer)を 用い付属のプロトコールに従って塩基配列の決定を行った。決定されたDNA配列(配列番 号2) はGeneMark.hmm (Lukashin A. and Borodovsky M.) 用い遺伝子コード領域を推定し 、SD様配列の確認などを行い、12 kbの断片中に12個のORF (open reading frame) を発見 した(図5)。Blast を用い、各ORFのアミノ酸配列レベルでのホモロジー検索を行い、12 個のうち7個は、既知のカロテノイド生合成遺伝子(<u>crtW</u>, <u>crtY</u>, <u>crtI</u>, <u>crtB</u>, <u>crtE</u>, <u>crt</u> Z, idi) と相同性を示すことがわかった (表2)。残りの5個の遺伝子は、既存のどんな遺 伝子とも全体的な相当性は有さない未知遺伝子であった。また、各<u>crt</u>遺伝子の配置を調 べてみると、crt♥、crtZ遺伝子の位置やその他の遺伝子の向きなど、かつて報告された水 酸基を β -イオノン (β -ionone) 環に有するカロテノイド類を生産する細菌のカロテノイ ド生合成遺伝子群 (Misawa et al., 1990 & 1995; Hannibal et al., 2000) と大きく異 なる構造を有することがわかった(図5)。IPPイソメラーゼ遺伝子(idi)が、カロテノ イド生合成遺伝子群内に存在するというのも初めてである。なお、上記の12個のORF(7個 のcrt遺伝子を含む) すべてを含むプラスミドp5Bre2-15を有する大腸菌は、カロテノイド を全く生産できなかった。したがって、ブレバンディモナス属(<u>Brevundimonas</u> sp.)SD-212 株のカロテノイド生合成遺伝子群は、このままの状態では大腸菌で機能発現しないこ とが明らかとなった。

[0056]

【表 2 】

Brevundimonas 属 SD-212株のカロテノイド生合成遺伝子群に存在する
各種ORFの特徴と機能の推定

ORF 名	GC%	アミノ酸残基数	予想される機能	その他生物の遺伝子産物との相同性(%)	GenBank numbe
ORF1	69.7	140			
crtW	69.6	244	β -カロテン C4オキシケ ナーセ	CrtW: Brevundimonas aurantiaca (96) AAN86030
crtY	70.2	392	リコヘ・ンシクラーセ・	CrtY: Xanthobacter autotrophicus Py2 (53) AF408848
crtI	67.3	489	フィトエンテ・サチュラーセ・	Crt I: Xanthobacter autotrophicus Py2 (72	AF408848
crtB	72	310	フィトエンシンターセ	CrtB: Xanthobacter autotrophicus Py2 (54	AF408848
ORF6	75.8	355	未知		
ORF7	74.6	315	未知		
crtE	71	298	GGPP シンターセ・	CrtE: Xanthobacter autotrophicus Py2 (42	AF408847
idi	74.9	350	Type II IPP イソメラーセ	IPP イソメラーセ: Pantoea agglomerans Ehol	(55) Q01335
crtZ	66.9	161	β -カロテン C3 ヒドロキシラーセ	CrtZ: Alcaligenes sp. PC1 (4	9) Q44262
ORF11	70.7	257	未知		
ORF12	66.7	122	未知		

CrtW, Brevundimonas aurantiaca (GenBank number AAN86030); CrtY, CrtI, CrtB, CrtE, Xanthobacter sp. Py2 (GenBank no. AF408848, AF408847); IPP isomerase, Pantoea agglomerans Eho10 (Erwinia herbicola) (GenBank no. Q01336); CrtZ Alcaligenes sp. PC1 (GenBank no. Q44282)

Lukashin A. and Borodovsky M., 1998, GeneMark.hmm: new solutions for gene findin g, NAR, Vol. 26, No. 4, pp. 1107-1115.

Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K. and Harashima, K., Elucidation of the <u>Erwinia uredovora</u> carotenoid biosynthetic pathway by functional analysis of gene products expressed in <u>Escherichia coli.</u> J. Bacteriol. 172, 6704-6712, 1990

Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S., Saito, T., Ohtani, T., and Miki, W., Structure and functional analysis of a marine bacterial caro tenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed a t the gene level. J. Bacteriol. 177, 6575-6585, 1995 (非特許文献1)

Hannibal, L., Lorquin, J., D'Ortoli, N.A., Garcia, N., Chaintreuil, C., Masson-Boivin, C., Dreyfus, B. and Giraud, E., Isolation and characterization of canthax anthin biosynthesis genes from the photosynthetic bacterium Bradyrhizobium sp. strain ORS278. J. Bacteriol. 182, 3850-3853, 2000

Larsen, R.A., Wilson, M.M., Guss, A.M. and Metcalf, W.W., Genetic analysis of pigment biosynthesis in <u>Xanthobacter autotrophicus</u> Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria Arch. Microbiol. 178, 193-201, 2002

[0057]

[実施例10] β-ガラクトシダーゼ融合タンパク質発現用プラスミドの構築

各種ORFの機能を明らかにするため、大腸菌ベクターpUC18(TOYOBO)のコードする β -ガラクトシダーゼ遺伝子(1acZ)のリード配列との融合タンパク質となるように各ORFを、プラスミドp5Bre2-15のDNAを鋳型としてPCRで増幅し、 β -ガラクトシダーゼ融合タンパク質発現用の各種プラスミドの構築を行った。この方法により大腸菌で機能発現されることを期待したからである。具体的には、各ORFを5'末端側にEcoRI部位を、3'末端側にEcoMIもしくはEcoMI部位を持つ増幅産物が得られるように設計した配列番号(5~28)のプライマーを用いてPCRにて増幅した。耐熱性DNAポリメラーゼはLa-Taq(TaKaRa)を用い、各

496 $\mathbb C$ で5分間熱変性後、98 $\mathbb C$ で20秒、56 $\mathbb C$ で30秒、72 $\mathbb C$ で1分の条件で35サイクルの増幅を行った。増幅産物の一部は、1% アガロースゲル電気泳動で確認した。残りの増幅産物はエタノール沈殿後、 \underline{EcoR} I による消化と、 \underline{Bam} H I もしくは \underline{Xba} I による消化を行い。1% アガロースゲル電気泳動を行った。次に目的の長さのDNAをアガロースゲルから切り出し、精製(Qiagene Gel Extraction kit、QIAGENE、もしくはGene Clean II Kit、BIO101)を行った。切り出されたDNAは $\underline{pUC180EcoR}$ I と、 \underline{Bam} HI もしくは \underline{Xba} I 部位に連結し、大腸菌DH5 α に形質転換した。この β – ガラクトシダーゼ融合タンパク質発現用プラスミドでは、 \underline{AORF} の本来の開始のアミノ酸配列Metの前に、 β – ガラクトシダーゼの7個のアミノ酸からなるリーダ配列MetThrMetIleThrAsnSerが付加されるようにデザインされている。

[0058]

[実施例11] β-ガラクトシダーゼ-各種Crt融合タンパク質遺伝子の発現と色素生産の 解析

実施例10で示したプラスミドのうち、<u>crtE</u>, <u>crtB</u>, <u>crtI</u>, <u>crtY</u>, <u>crtZ</u>, <u>crtW</u>遺伝子を含むプラスミドを有する大腸菌を、Apを添加した2 mlのLB液体培地で37℃、一晩培養後、プラスミドを抽出した。抽出されたプラスミドはBig Dye Terminator Cycle Sequencing Re ady Reaction Kit ver. 2 (Perkin-Elmer)とmodel 3700 DNA sequencer (Perkin-Elmer)を用い付属のプロトコールに従って塩基配列の確認を行った。各プラスミドの名前をそれぞれpUCBre-E (<u>lacZ</u>::<u>crtE</u>)、pUCBre-B (<u>lacZ</u>::<u>crtB</u>)、pUCBre-I (<u>lacZ</u>::<u>crtI</u>)、pUCBre-Y (<u>lacZ</u>::<u>crtY</u>)、pUCBre-Z (<u>lacZ</u>::<u>crtZ</u>)、pUCBre-W (<u>lacZ</u>::<u>crtW</u>)と名づけた。

その後、表3の左に示す各種カロテノイド生産性プラスミド (chloramphenicol、Cm耐性) を有する大腸菌にこれらのプラスミドを導入し、Ap、Cmを添加した2 mlのLB液体培地で1 mMのIPTG添加による誘導下で30℃、48培養後、遠心分離により集菌し、菌体をSTEで二回 洗浄後、200 μ1のアセトンを添加し、ボルテックすることにより色素を菌体からアセト ンへ移した。その後、遠心分離を行い、上清をろ過し、HPLC-PDAシステム(Waters Allia nce 2695および2996フォトダイオードアレィ検出器) で色素の分析を行った。カラムには TSK gel ODS-80Ts (TOSOH)を用い、送液条件は、A液 (95%メタノール)、B液 [メタノー ル:テトラヒドロフラン(tetrahydrofuran; THF), 7:3] で5分間A液100%を送液し、5 分から10分の間でA液 100 %からをB液 100 % に直線グラジエントを行い、その後B液を8 分間送液した。なお、検出はフォトダイオードアレィ検出器で行い、付属のEmpowerソフ トウェアで解析を行った。標品としては、各種カロテノイド合成能を有する大腸菌 (表3 左)から抽出した色素または合成品を標品として用い、470 nmでの保持時間と吸収波形の 比較により予想通りの各種カロテノイドが生産されることを確認した(表3右)。これら の結果より、ブレバンディモナス属SD-212株の各種融合<u>crt</u>遺伝子が大腸菌内で機能し、 既存の<u>crt</u>遺伝子(<u>crtE,crtB,crtI,crtY,crtZ,crtW</u>)と同様の機能を有することが 明らかとなった。ただし、pUCBre-I (<u>lacZ</u>::<u>crtI</u>)とpUCBre-Y (<u>lacZ</u>::<u>crtY</u>)の発現は、 大腸菌ではかなり弱かった。

[0059]

【表3】

Brevundimonas 属 SD-212株の各種crt遺伝子の機能の同定

宿主として用いられた	:組換え大腸菌	の性質	二重組換え大腸菌が生産するカロテノイド色素の同定					
		されるカロテノイド	プラスミド SD-212 由来の <i>crt</i> 遺伝子 (<i>lacZ</i> :: 各種 <i>cr</i> t)	生産されたカロテノイド				
pACCAR25∆crtE(<i>crt</i>	B,I,Y,Z,X)	FPP	pUCBre-E (lacZ ::crtE)	セプキサンチン, そのグルコシト				
pACCAR25 ∆ crtB(crt	tE,I,Y,Z,X)	GGPP	pUCBre-B (lacZ ::crtB)	セプアキサンチン, そのグルコシト				
pACCRT-EB(crtE,B)		フィトエン	pUCBre-I (lacZ ::crti)	りコヘ'ン (微量)				
pACCRT-EIB(<i>crtE,B</i> ,	.1)	リコペン	pUCBre-Y (lacZ ::crtY)	γ-カロテン(微量)				
pACCAR16∆crtX(<i>cr</i>	tE,B,I,Y)	β -カロテン	pUCBre-Z (lacZ:: crtZ)	セ`アキサンチン(80%), β-ウリフ`トキサンチン(10%)				
pAC-Cantha (<i>crtE,B,</i>	I,Y,W)	カンタキサンチン	pUCBre-Z (/acZ ::crtZ)	アスタキサンチン(41%), アト・ニキサンチン(47%)				
pACCAR16∆crtX(c	tE,B,I,Y)	<i>β -</i> カロテン	pUCBre-W (lacZ ::crtW)	カンタキサンチン (90%), エキネノン(5%)				

[0060]

[実施例12] β-ガラクトシダーゼ- ORF11融合タンパク質の発現と色素生産の解析 実施例10で示したプラスミドのうち、機能の推定ができないORF1, ORF6, ORF7, ORF11, ORF12を含むプラスミドを有する大腸菌を、Apを添加した2 mlのLB液体培地で37℃、一晩 培養後、プラスミドを抽出した。抽出されたプラスミドはBig Dye Terminator Cycle Seq uencing Ready Reaction Kit ver.2 (Perkin-Elmer)とmodel 3700 DNA sequencer (Perkin-Elmer)を用い付属のプロトコールに従って塩基配列の確認を行った。各プラスミドの名前をそれぞれpUCBre-01 (lacZ::SD212-ORF1)、pUCBre-06 (lacZ::SD212-ORF6)、pUCBre-07 (lacZ::SD212-ORF7)、pUCBre-011 (lacZ::SD212-ORF11)、pUCBre-012 (lacZ::SD212-ORF12) と名づけた。その後、表3の左に示す各種カロテノイド生産性プラスミド (Cm耐性)を有する大腸菌にこれらのプラスミドを導入し、Ap、Cmを添加した2 mlのLB液体培地で1 mMのIPTG添加による誘導下で30℃、48培養後、遠心分離により集菌し、菌体をSTEで二回洗浄後、200 μ1のアセトンを添加し、ボルテックすることにより色素を菌体からアセトンへ移した。その後、遠心分離を行い、上清をろ過し、HPLC-PDAシステムにより、実施例11と同様方法により色素の分析を行った。

[0061]

上記の実験を行った結果として、プラスミドpUCBre-011を導入した大腸菌のみがポジティブな結果が得られた。すなわち、ORF11の融合発現用プラスミドpUCBre-011(1acZ::SD2 12-0RF11)を、pACCAR16 Δ crtXを有する β -カロテン産生大腸菌(DH5 α)に導入した株の色素抽出液では、保持時間16分のところに β -カロテン(451 nm、478 nm)の存在が認められ、高極性側の11分のところに451.0 nm、478.8 nmの吸収極大を持つ物質が認められ、さらに、13分のところに452.2 nm、477.6 nmの吸収極大を持つ物質が認められた(図6、矢印で示されている)。ただし、変換産物の量は少なかった。これらはゼアキサンチンである可能性もあるため、pACCRT25 Δ crtX由来のゼアキサンチンを主成分とするアセトン抽出物と混合し、co-HPLCを行った。その結果、これら 2 つのピークはゼアキサンチン(保持時間:10.6分)のピークとは重ならなかったので(図6c)、これらの2つの変換産物は

、ゼアキサンチンと異なる物質であることがわかった。保持時間11分と13分のカロテノイドは、それぞれ、 β , β -カロテン-2, 2'-ジオール(β , β -carotene-2, 2'-diol; 2, 2'-ジヒドロキシ- β -カロテン)、及び、 β , β -カロテン-2-オール(β , β -caroten-2-ol; 2-ヒドロキシ- β -カロテン)であると考察された(図10参照)。

[0062]

ORF11の融合発現用プラスミドpUCBre-O11(<u>lacZ</u>::SD212-ORF11)を、pACCAR25 Δ crtXを有するゼアキサンチン産生大腸菌(DH5 α)に導入した株の色素抽出液では、10.6分の保持時間にゼアキサンチン(451 nm、480 nm)の存在が認められ、それ以外に新たなピークとして、9.1分のところに451.0 nm、478.8 nmの吸収極大を持つ物質1が認められ、また、9.9分に452.2 nm、477.6 nmの吸収を持つ物質2のピークが観察された(図7、矢印で示されている)。カロテノイド1及び2はそれぞれ、ノストキサンチン(2,2'-ジヒドロキシゼアキサンチン)、及び、カロキサンチン(2-ヒドロキシゼアキサンチン)であると同定された(図10、実施例13参照)。以上の結果は、ORF11がコードする遺伝子産物は β -イオノン環-2-ヒドロキシラーゼ(β -C2-hydroxylase)であり、 β -カロテンやゼアキサンチンにおける β -イオノン環上の2位の炭素に水酸基を導入できる酵素であることを示している。

[0063]

次に、 β -イオノン環の4位にケト基を導入する酵素遺伝子を保持するプラスミドpAC-Canthaを有するカンタキサンチン産生大腸菌(DH5 α)にプラスミドpUCBre-011(1acZ::SD 212-0RF11)を導入し、実施例11で示した方法で色素分析を行った。その結果、保持時間10.7分にカンタキサンチンのピークが認められ、高極性側に保持時間4.7分の物質3、保持時間8.7分の物質4の2つのピークが認められた(図8、矢印で示されている)。それぞれの極大吸収波長はそれぞれ、478 nm、474 nmであり、それらの波形は β -イオノン環の共役系にケト基を有するカロテノイドに見られる典型的な一山形の波形を示す物質の存在が示された。また、アスタキサンチン(保持時間6.6分前後)とのco-HPLCの結果によりこれらのピークはアスタキサンチン(保持時間6.6分前後)とのco-HPLCの結果によりこれらのピークはアスタキサンチンでないことが確認された(図8c)。カロテノイド3及び4はそれぞれ、2,2 -ジヒドロキシ- β , β -カロテン-4,4 -ジオン(2,2 -ジヒドロキシカンタキサンチン)であると同定された(図10、実施例13参照)。

[0064]

最後に、プラスミドpAC-Asta を有するアスタキサンチンやアドニキサンチン産生大腸菌 (DH5 α) にプラスミドpUCBre-011 (1acZ::SD212-ORF11) を導入し、実施例11で示した方法で色素分析を行った(図9)。その結果、保持時間 $6.4 \sim 6.7$ 分にアスタキサンチンのピークがまた、保持時間 $8.4 \sim 8.6$ 分のところにアドニキサンチンのピークが観察された。また、保持時間 $5.1 \sim 5.2$ 分のアスタキサンチンより高極性側に475 nmの吸収極大を示す、 β -イオノン環の共役系にケト基を有するカロテノイドに見られる典型的な一山形の波形を示す物質5の存在が示された(図9、矢印で示されている)。カロテノイド5は、2-ヒドロキシアスタキサンチンであると同定された(図2、実施例13参照)。また、以上の結果より、0RF11のコードする遺伝子産物 β -イオノン環-2-ヒドロキシラーゼは、他のカロテノイド生合成酵素のように基質特異性が低い(広い)ことが明らかとなった。

[0065]

[実施例13] ORF11による変換された色素の同定(既知物質)

pUCBre-011及びpACCAR25 Δ crtXを導入した大腸菌を2 L (リットル) の2xYT培地で培養し、8,000 rpmで10分間遠心することにより、菌体を集めた。菌体をSTE緩衝液(実施例3 参照)で懸濁し、8,000 rpmで10分間遠心することにより、再度、菌体を集めた。菌体にアセトンーメタノール (1:1) 400 mlを加えて1時間撹拌した。濾過後、濾液を減圧濃縮し、267 mgの抽出物を得た。これをシリカゲル-60 (15 g) カラムクロマトグラフィーで分離した。溶媒はヘキサンー酢酸エチル (8:2) (7:3) (6:4) および (1:1) 各100 mlで順次溶出し、着色した 3 フラクションを得た。 1 つはゼアキサンチンであったので、残りの2フラクションの同定を行った。同定はHPLC-PDA-MS分析、 1 H-NMR分析により行った

。HPLC-PDA-MS分析は、PDA(フォトダイオードアレィ)検出器付きセミミクロHPLCシステ ムとして資生堂製Nano Space SI-2を用い、これにサーモクエスト(ThermoQuest)社製イ オントラップ型質量分析装置LCQ advantageシステムを接続した機器を用いて行った。カ ラムはC30 カラムである野村化学社製Deverosil C30-UG-3 (1.0 mm i.d. × 150 mm) を 用い、プレカラムとしてDeverosil C30-UG-Sを用いた。溶出条件として、0.1 ml/min の 流速で、96%メタノール(A)で12分、Aからtert-メチルブチルエーテル(TMBE) (B)へ のグラジエント(B: 0-60%、 $12\sim72$ 分)、そのままの状態で $72\sim82$ 分溶出した。MSは大気 圧化学イオン化法 (APCI) により検出した。1H-NMRはバリアン社製INOVA750システムを用 いて重クロロホルム中で測定した。

[0066]

HPLC-PDA-MS分析 (保持時間 (RT) 13.48分、 λ max 449, 475 nm、m/z 601 [M+H]⁺、583 $[M+H-H_2O]$ $^+$ 、 $565[M+H-2H_2O]$ $^+$ 、及び、RT 17.75分、 λ max 450, 476 nm、m/z 585[M+H] $^+$ 、 $567[M+H-H_2O]$ +)、 $^1H-NMR分析の結果、上記の2つのフラクションに存在するカロテノ$ イドはそれぞれ、ノストキサンチン (nostoxanthin; 2,2' -ジヒドロキシゼアキサンチン)、及び、カロキサンチン(caloxanthin;2-ヒドロキシゼアキサンチン)であると同定 された (Buchecker, R., Liaaen-Jensen, S., Borch, G., Siegelman, H. W., Carotenoi ds of blue-green algae. Part 9. Carotenoids of Anacystis nidulans, structures of caloxanthin and nostoxanthin. Phytochemistry 15, 1015-1018, 1976) (図10参照)

[0067]

以下に、 1 H-NMRデータ(δ ppm、かっこ内は水素数、多重度、結合定数)を示す。ノス トキサンチン: 1.01(6H, s), 1.14(6H, s), 1.72(6H, s), 1.98-1.99(12H, s), 2.15(2H, dd, J=17.4, 10.0Hz), 2.49(2H, dd, J=17.4, 6.7Hz), 3.33(2H, d, J=10.0Hz), 3.84(2 H, dt, J=6.7, 10.0Hz,), 6.0-6.7(14H, m)、カロキサンチン: 1.01(3H, s), 1.08(6H, s), 1.14(3H, s), 1.49(1H, t, J=12.0Hz), 1.72(3H, s), 1.75(3H, s), 1.80(1H, m), 1.80(1H, m).98-1.99(12H, s), 2.05(1H, dd, J=17.4, 10.5Hz), 2.15(1H, dd, J=17.4, 10.0Hz), 2. 40(1H, dd, J=17.4, 6.3 Hz), 2.49(1H, dd, J=17.4, 6.7Hz), 3.33(1H, d, J=10.0 Hz),3.84(1H, dt, J=6.7, 10.0 Hz), 4.01(1H, m), 6.0-6.7(14H, m)

[0068]

pUCBre-011及びpAC-Astaを導入した大腸菌を2 Lの2xYT培地で培養し、8,000 rpmで10分 間遠心することにより、菌体を集めた。菌体をSTE緩衝液(実施例3参照)で懸濁し、8,00 0 rpmで10分間遠心することにより、再度、菌体を集めた。菌体にアセトン-メタノール (1:1) 400 mlを加えて1時間撹拌した。濾過後、濾液を減圧濃縮し、27 mgの抽出物を 得た。これをシリカゲル-60(15 g) カラムクロマトグラフィーで分離。溶媒はヘキサン -酢酸エチル (7:3) (6:4) および (1:1) 各100 mlで順次溶出し、着色した3フラク ションを得た。2つはアスタキサンチン及びアドニキサンチンであったので、残り1フラ クションの同定を行った。HPLC-PDA-MS分析(RT 11.98 分、λmax 473 nm、m/z 613 [M+H] $^+$) 、 1 H-NMR分析により、これは、 2 -ヒドロキシアスタキサンチン(2 -hydroxyastaxanth in) であると同定された(非特許文献2)(図2参照)。以下に 1 H-NMRデータを示す。1.22(3H, s), 1.27(3H, s), 1.30(3H, s), 1.33(3H, s), 1.82(1H, m), 1.96(6H, s), 1.98-2.01(12H, s), 2.17(1H, bm), 3.53(1H, m), 4.19(1H, m), 4.33(1H, m), 6.2-6.7(14H, m)。今回は2,3,2',3'-テトラヒドロキシ- β , β -カロテン-4,4'-ジオン(2,3,2',3'tetrahydroxy- β , β -carotene-4,4'-dione; 2,2'-ジヒドロキシアスタキサンチン) の 確認には至らなかったが、培養条件の工夫等により、これを得ることも可能であるはずで ある。

[0069]

[実施例14] ORF11による変換された色素の同定 (新規物質)

pUCBre-011及びpAC-Canthaを導入した大腸菌を2リットルの2xYT培地で培養し、8,000 r pmで10分間遠心することにより、菌体を集めた。菌体をSTE緩衝液(実施例3参照)で懸濁 し、8,000 rpmで10分間遠心することにより、再度、菌体を集めた。菌体にアセトン-メタ ノール (1:1) 400 mlを加えて1時間撹拌した。濾過後、濾液を減圧濃縮し、85 mgの抽 出物を得た。これをシリカゲル-60(15 g)カラムクロマトグラフィーで分離した。溶媒 はヘキサン-酢酸エチル (8:2) (7:3) および (1:1) 各100 mlで順次溶出し、着色し た3フラクションを得た。1つはカンタキサンチンであったので、残りの2フラクションの 同定を行った。HPLC-PDA-MS分析(RT 9.30分、λ max 472 nm、m/z 597.2 [M+H]⁺、及び、 RT 17.62 分、λ max 474 nm、m/z 581.2 [M+H]⁺)、高分解(HR)FABMS分析、¹Hならびに 各種二次元NMR分析により、これらは、2,2'-ジヒドロキシ- β , β -カロテン-4,4'-ジオ ン (2,2' -dihydroxy- β , β -carotene-4,4' -dione;2,2' -ジヒドロキシカンタキサンチ ン、新規化合物(I))、及び、2-ヒドロキシ- β , β -カロテン-4,4'-ジオン(2-hydroxy $-\beta$, β -carotene-4,4'-dione;2-ヒドロキシカンタキサンチン)であると同定された(図10参照)。

[0070] 【化3】

以下に、HRFABMS分析データと 1H -NMRデータを示す。 2 2, 2 2 -ジヒドロキシ- 2 2 9, 2 2 -カロテン -4,4'-ジオン: HRFABMS (m/z, [M]+)、 計算値 596.3866(C40H32O4)、実測値 596.3863 、¹H NMR(750MHz、重クロロホルム中、δ ppm)、1.22(6H, s), 1.26(6H, s), 1.89(6H, s), 2.00-2.02(12H, s), 2.62(2H, dd, J=17.4, 9.0Hz), 2.80(2H, dd, J=17.4, 4.5Hz), 3.90(2H, dd, J=9.0, 4.5Hz), 6.2-6.7(14H, m)。2-ヒドロキシ-β,β-カロテン-4,4'-ジオン: HRFABMS(m/z, [M]⁺)、 計算値580.3916(C₄₀H₃₂O₃), 実測値 580.3900、 ¹H NMR , 1.21(6H, s), 1.22(3H, s), 1.26(3H, s), 1.85(2H, t, J=7.0Hz), 1.89(3H, s), 1.90 (3H, s), 2.00-2.02(12H, s), 2.51(2H, t), 2.62(1H, dd, J=17.4, 9.0Hz), 2.8(1H, dd, J=17.4, 9.0Hz), J=17.4, 4.5Hz), 3.90(1H, dd, J=9.0, 4.5Hz), 6.2-6.7(14H, m).

[0071]

カンタキサンチンの2(2))位の両方の炭素に水酸基が導入された2,2'-ジヒドロキシ $-\beta$, β -カロテン-4, 4'-ジオンは上述のとおり自然界で未だ発見されていない新規化合物 であるが、片方にのみ水酸基が導入された2-ヒドロキシ-β,β-カロテン-4,4'-ジオンも 甲殼類の一種であるDaphinia magnaから単離されたという報告があるのみで、微生物によ り生産されたものはこれが初めてである (Partali, V., Olsen, Y., Foss, P., Liaaen-J ensen, L., Carotenoids in food chain studies-I. Zooplankton (<u>Daphnia magna</u>) resp onse to a unialgal (Scenedesmus acutus) carotenoid diet, to spinach, and to yeas t diets supplemented with individual carotenoids. Comp. Biochem. Physiol., 82B(4), 767-772, 1985; Foss, P., Partali, V., Olsen, Y., Borch, G., Liaaen-Jensen, S ., Animal carotnoids 29. New $(2\underline{R})$ -2-hydroxy-4-keto- β -type carotenoids from \underline{Daph} nia magna (Crustaceae). Acta Chemica Scandinavica B40,157-162, 1986) 。

【図面の簡単な説明】

[0072]

【図1】既存のカロテノイド生合成遺伝子(酵素)の機能と生合成経路を表す図。

- 【図2】ブレバンディモナス属SD-212株が生産するカロテノイドの種類とそれらのカロテノイドの推定合成経路を表す図。
- 【図3】crtI断片をプローブとして用いたサザンハイブリダイゼーション(EcoRI消化)の結果を表す図。
- 【図4】 $\underline{\operatorname{crtI}}$ 断片をプローブとして用いたサザンハイブリダイゼーション($\underline{\operatorname{BamHI}}$ 及び $\underline{\operatorname{BamHI}}$ / $\underline{\operatorname{Eco}}$ RI消化)の結果を表す図。
- _____【図5】ブレバンディモナス属SD-212株のカロテノイド生合成遺伝子群の構造を表す 図。
- 【図 6】 pACCAR16 Δ crtX(β -カロテン生産用プラスミド)導入大腸菌を宿主として利用したHPLC-PDA分析結果を表す図。a) pACCAR16 Δ crtX導入大腸菌の産生色素のHPLC クロマトグラム(470 nm)。b) pUCBre-011及びpACCAR16 Δ crtX導入大腸菌の産生色素のHPLCクロマトグラム(470 nm)。新規な色素のピークは矢印で示されている。c) b) にゼアキサンチンを添加したHPLCクロマトグラム(470 nm)。
- 【図7】pACCAR25 Δ crtX(ゼアキサンチン生産用プラスミド)導入大腸菌を宿主として利用したHPLC-PDA分析結果を表す図。a)pACCAR25 Δ crtX導入大腸菌の産生色素のHPLCクロマトグラム(470 nm)。b)pUCBre-011及びpACCAR25 Δ crtX導入大腸菌の産生色素のHPLCクロマトグラム(470 nm)。新規な色素のピークは矢印で示されている。c)b)にゼアキサンチンを添加したHPLCクロマトグラム(470 nm)。1、2 はそれぞれ、ノストキサンチン、カロキサンチンと同定された。
- 【図8】pAC-Cantha(カンタキサンチン生産用プラスミド)導入大腸菌を宿主として利用したHPLC-PDA分析結果を表す図。a)pAC-Cantha導入大腸菌の産生色素のHPLCクロマトグラム(470 nm)。b)pUCBre-011及びpAC-Cantha導入大腸菌の産生色素のHPL Cクロマトグラム(470 nm)。新規な色素のピークは矢印で示されている。c)b)にアスタキサンチンを添加したHPLCクロマトグラム(470 nm)。3、4はそれぞれ、2,2'-ジヒドロキシ- β , β -カロテン-4,4'-ジオン、及び、2-ヒドロキシ- β , β -カロテン-4,4'-ジオンであると同定された。
- 【図 9】 pAC-Asta(アスタキサンチン生産用プラスミド)導入大腸菌を宿主として利用したHPLC-PDA分析結果を表す図。a) pAC-Asta導入大腸菌の産生色素のHPLCクロマトグラム(470 nm)。b) pUCBre-011及びpAC-Asta導入大腸菌の産生色素のHPLCクロマトグラム(470 nm)新規な色素のピークは矢印で示されている。2は2,3,2',3'-テトラヒドロキシ- β , β -カロテン-4-オンと同定された。c)b)にアスタキサンチンを添加したHPLCクロマトグラム(470 nm)。5は2-ヒドロキシアスタキサンチンと同定された。
- 【図10】組換え大腸菌が生産するカロテノイドの種類とそれらのカロテノイドの推 定合成経路を表す図。

【配列表】

SEQUENCE LISTING

<110> MARINE BIOTECHNOLOGY INSTITUTE CO., LTD.

<120> A NOVEL CAROTENOID HYDOROXYLASE GENE AND A METHOD FOR PRODUCING HYDROXY CA ROTENOID

<130> P04-025

<160> 28

<170> PatentIn Ver. 2.1

<210> 1

<211> 519

<212> DNA

<213> Brevundimonas sp.

<400> 1

ttcgatgcgg ggccgacggt catcaccgat ccttcggcgc tggaggagct gttcgagggc 60 geggggegca agetgtegga etatgtegaa etgetgeegg tegeceeett etateggetg 120 tgctgggaag acggcgacgt cttcgactac gtcaacggcc aggacgagct ggaccgccag 180 atcgtcgccc gcaacccggc cgacaaggag ggctatcgcc ggttcctggc ctattcccag 240 gacctgctga aggaaggcta tctgaagctg ggcgccgtgc cctttctgga cttcgccagc 300 atggtcaagg cggcgccgga gttgatgcgg ctccaggcct ggcggtcggt ctatgacaag 360 gtcgccggct atatccagga cgagcatctg cgtcaggcct tcagctttca ctccctgctg 420 gtgggcggca atccgttcgc cacctcatcg atctacgccc tgatccacgc gctggagcgg 480 519 cgctggggcg tctggttccc gcgcggcggc accggcgcc

<210> 2

<211> 11991

<212> DNA

<213> Brevundimonas sp.

<220>

<221> CDS

<222> (10748)...(11518)

<400> 2

gaattccccg tgaagatgcg gggttcccgc ggtcagacgg aaagacccta tgaaccttta 60 ctatagette geettggegt tagegaeegt atgtgtagga taggtgggag actatgaaac 120 cggggcgcca gctctggtgg agtcgtcctt gaaataccac ccttactgtc gttgacgtct 180 aaccgaggac cgttatccgg tcccgggaca tggcgtggtg ggtagtttga ctggggcggt 240 cgcctcccaa agtgtaacgg aggcgcgcga tggtgagctc agagcggtcg gaaatcgctc 300

gctgccggtc gccctggacg gcgacatcgc cgcccatctg aagcggctgg ggccgacggc 3360 gctgagcggc ctgcgcgccg gtctgtttca tccgactacc ggctattccc tgccggacgc 3420 ggtgcggctg gcggatcatc tggcggagcg tatcgaagcg gcgccggacg gcccggccct 3480 ggcccaggtc atccgtcgcc atgcgcgcga cgtatgggcg caaagaggct tttatcggct 3540 gctgaaccgc atgctgtttc gggccgcgcg gccggatcag aggtacaggg tgctggagcg 3600 gttctatcgc ctgcctcagc cgctgatcga acgcttctat gcgggggaga cgaccttggc 3660 cgacaaggcg cggatcctca gcggcaaacc cccggtgccg atcggcgccg ccctgacctg 3720 tctggtcgaa agaggacgtg cgtgatgcga gcagcagtga tcggatcggg gttcgggggg 3780 ctgtcgctgg ccattcgcct tcagacggcg gggatccaga ccacggtctt cgaggcgcgc 3840 gacctgccgg gcggccgggc ctatgtctat aaggacaagg gctatacctt cgacgccggg 3900 ccgaccgtca tcaccgatcc ttcggcgctg gaggagctgt tcgagggcgc ggggcgcaag 3960 ctgtcggact atgtcgaact gctgccggtc gccccttct atcggctgtg ctgggaagac 4020 ggcgacgtct tcgactacgt caacggccag gacgagctgg accgccagat cgtcgcccgc 4080 aacceggeeg acaaggaggg ctategeegg tteetggeet atteeeagga eetgetgaag 4140 gaaggetate tgaagetggg egeegtgeee tttetggaet tegeeageat ggteaaggeg 4200 gcgccggagt tgatgcggct ccaggcctgg cggtcggtct atgacaaggt cgccggctat 4260 atccaggacg agcatctgcg tcaggccttc agctttcact ccctgctggt gggcggcaat 4320 ccgttcgcca cctcatcgat ctacgccctg atccacgcgc tggagcggcg ctggggcgtc 4380 tggttcccgc gcggcggcac cggcgccctg atccaggcca tggtgcggct gtttcaggac 4440 ctgggcggcg aaatccggct gaacagtccg gtcgagcgga tcaccctggc gaacgggcgc 4500 gccgacgggg tggtggtcgg cggccaggcc ctggccttcg acatggtcgc ctccaatgcg 4560 gacgtggtcc acacctatca gcgcctgctg ggccaggagc cgcgggccg caaggagggg 4620 gcgcgtctgg cctccaagcg gcattccatg tccttgttcg tcatctattt cggcctgaag 4680 cgggtccacc cggaggtgcg ccaccacacg gtgcttttcg gcccgcgcta ccgcgagctg 4740 atcggcgaaa tcttcaaggg gccggacctg ccccaggact tttccctcta tctgcacgcc 4800 ccgacccgca ccgatccgtc cctggcgccc gagggatgcg acgccttcta tgtgctggcg 4860 ccggtgccgc acctggcctc ggccgacatc gactgggcgg tcgaggggcc gcgctatcgc 4920 gaccgggtcc tggcctatct ggagcagcac tacattcccg gcctgacggc ccatctggac 4980 acctgccgca tcttcacgcc cgtggatttc cgcgaccagc tgaacgccca ccagggctcg 5040 gccttctcgc tggagccgat cctgacccag agcgcctatt tccgcgtcca taatcgcgac 5100 gaccagatcc ccaacctcta tttcgtcggc gccggcaccc atccgggcgc gggcgtgccg 5160 ggggtggtgg gctcggccaa ggccaccgcc ggcttgatga tcgaagatgc ggggcggacc 5220 gcatgagcga cgccgtcctg gaccacagcc gccagtcgat ggagcagggc tccaagagct 5280 ttgcggccgc cgcccggctg tttccggcgg ccattcggga cgacgcctgg atgttctacg 5340 cctggtgccg ccattgcgac gacgagatcg acggccaggt cctgggccat ggggcggtcg 5400 gcatcgaccc ggtcctggcg gggcgcaaac tggtcgaact gcgcgaacgc acggccgccg 5460 ccctggccgg agagccgcag acggacccgg tcttcaccgc ctttcagcgc gtcgccgccc 5520 gccacgccat tccggcagag gaggcgatgg acctgttgca ggggttcgag atggacgtgg 5580 agggccgccg ctacgacacc ctggaggaca cgctggacta cgcctatcac gtcgccggcg 5640 tggtcggggt gatgatggcc cggatcatgg gggttcagga cgcgccgacc ctgcgccgcg 5700 cccaggacct gggcctggcc tttcagctga ccaacatcgc ccgagacgtg gtggaggacg 5760 ccaagggcgg gcgggtttat ctgcccggcc agtggctgga cgaggcgggc gtgccgcgcg 5820 accaggtcga tcagcccgg catcgtcagg ccgtcgccca tacggcccag cggctggtgg 5880 cggcggcgga gccctattac gcctcggcgc gctggggctt gcgcgatctc aatccgcgct 5940 cggcctgggc cgtcgccacg gcgcggggcg tctatcgcgc catcggccgc cacgtctcgc 6000 gctcgggcgc cacggcctgg gacggccgga cctcggtcga caaggcgggc aagctggccc 6060 tggtggggcg cggggccctg atcaccctgt ggtgcaagac cctggacgcc tggcgtgaac 6120 cgccgccgcg cccggccctg tggacccaca tctgacggcg ctcagcgccc ggcgcgtctg 6180 tgctccatca tcacggccag ggcgatcccg gccagaccca cgccgcccag ggcggcccag 6240 ccggccagga ccccggcgtt gaagtcgccg cgccagatca gggcctgata ggtctccacg 6300 gcccaggcat ggggcgtgat ccagcccagg gcgcggaagg cttcgggcat caggaagcgc 6360 ggcgccatcg acccgcccag ggccgccagc agcagggcga cgaaggtggt caggggctgg 6420 gcctgttcgc gcgaccgaca ggccgccgtc agggccaggg ccacccccgc cgcgcacagg 6480 gcgaccaggg cggcggtcag gagcgccgcc gccgcctgcc aaaacgcaag atccggcagc 6540 cgaggccagg ccgccaggaa gacggccgcc gactgcatca ggccgaccgt cgtcagccag 6600 ategecegte eegecagtat gggegeegte eegeceegeg eeagggeeag eegegeetge 6660 aggcccgagc gccgttcgtc caacccgccc atggcgccgt gcatggcggc gaagaagacg 6720 aacatcacgc tgaccgcccc ggcgtaatag gcggcctgga cgtcgccctg cggccccacc 6780 tggcggacgg ggacgtcgcg cgacgggggc gcgggccgac cggccagggc cgccgccgca 6840 gggaccagcc gcgcctgaag cgccgccgcc gccacgtctc gacccgccgc cgacaccacc 6900 gtcagctggg gcgcgcctgc atcgtcgcgg gtgatcagaa cgccggcgtc ggcgcggccg 6960 tcgatcacgg cccgctccac cgcctgggcg tcgtccagac ggcgaaggcg cggccccaga 7020 tcccgcgaca gcgcctcgcc gacggcggcc gcggccgggg tgcgcgccgc atcgtgcagg 7080 gccacgctgg cgtcgatgtc gccacgcgcc ccggcgccga agacggcggc gaacagcaga 7140 tagaccaggg gcggcaaaac cagggtcagg gccatgcccg aacggtcccg ccagaagccg 7200 cgcgcccagg cgcccgccac cgccatcatg acgaggcgtc cgacagatgg gcgaccaggt 7260 cgtccaggcc ggggcgacgc acggcgacct cgccccctc ggcgtccgcc tcgggcgaaa 7320 ccctctgggc cgcgcccagg gcgtcctcgc acagcagccg ccattccagc ccgtccttgg 7380 agggcgccag acccgactgg gcgaaccggc tcgcggccag gcgcgaggcg ggccgcggca 7440 gtttgacgac cagcagccgc gccaggccga aggcctgacg cagcagggcc ttgggcggtc 7500 cttccgccag cagccggccc tgggccagga cgccgatccg atcggccgtc tcggagacga 7560 aggectegte gtggetgate ageagaeage eggegeeege etggaeegte tegegeaggg 7620 cggacgacag gacgacgcgg gcggcggcgt ccaccccttc ggtcggttcg tcggcgatca 7680 gcaggcgcgg gcgcccgacc agggcggcgc tgaggttggc gcgccgacgc catccgcccg 7740 acagtgaatg aaccggctcg tccgccctgg gggcgcatcc ggtcagggcc agggcccgct 7800

1

5

10

atc a Ile 1	atc Ile	ggc Gly	ctg Leu	cgc Arg	tat Tyr 20	ctg Leu	ctg Leu	gtc Val	ggc Gly	gcg Ala 25	gcg Ala	gcc Ala	cat His	ggg Gly	ctg Leu 30	10837
ctg Leu '	tgg Trp	gcc Ala	ggg Gly	gcg Ala 35	ggc Gly	cgg Arg	gga Gly	cgg Arg	gcg Ala 40	ctg Leu	aac Asn	ctg Leu	cgg Arg	ccg Pro 45	ccg Pro	10885
gcg Ala	atg Met	aag Lys	cgc Arg 50	atc Ile	cgc Arg	gcc Ala	gag Glu	atc Ile 55	gtc Val	gcc Ala	tcc Ser	ctg Leu	atc Ile 60	gcc Ala	tgc Cys	10933
ccc Pro	atc Ile	tac Tyr 65	Ala	ctg Leu	ccg Pro	gcg Ala	gcc Ala 70	Leu	gtg Val	ctg Leu	gag Glu	ctg Leu 75	ırp	aag Lys	cgg Arg	10981
ggc Gly	ggg Gly 80	Thr	gcg Ala	atc Ile	tac Tyr	ago Ser 85	Asp	ccc Pro	gac Asp	gcc Ala	tgg Trp 90	Pro	ctg Leu	tgg Trp	g tgg o Trp	11029
ctg Leu 95	Pro	gto Val	agt Sei	ctg Leu	ato 11e 100	· Val	tat Ty	t ctg r Lei	g ctg ı Lei	g gcg ı Ala 105	a His	e gac s Asp	gco Ala	tto a Pho	c tac e Tyr 110	11077
tac Tyr	tgg Trp	g gtg Va	g cae l Hi	c agg s Arg 115	g Ala	c ctg a Lei	g ca ı Hi	t cae s Hi	c ccass Pro	o Arg	c gto g Va	c tto l Phe	e Gl	tg y Try 12	g gcc p Ala 5	11125
cat His	gco Ala	ga a Gl	a ca u Hi 13	s Hi	c cgg s Arg	g to g Se	g cg r Ar	c ga g As 13	p Pr	c ag o Se	c gc r Al	c tte a Phe	c gc e Al 14	a se	c ttc r Phe	11173
gco Ala	tte a Ph	c ga e As 14	p Pr	g gc o Al	c ga a Gl	g gc u Al	t gc a Al 15	a Al	c ac a Th	c gc r Al	c tg a Tr	g tt p Ph 15	e Le	g cc u Pr	c gcc co Ala	: 11221 a
ctg Lei	g gc ı Al 16	a Le	gat euIl	c gt e Va	g cc ll Pr	g at o Il	e Hi	ac tg is Tr	gg gg p Gl	gc gt ly Va	ai Ai	c ct la Le 70	g ac eu Th	c ct ir Le	tg ctg eu Lei	g 11269 1
aca Th	r Le	g at u Me	tg to et Se	eg et er Le	g ac eu Th 18	r Al	cc go la A	cc ct la Le	tg as eu As	sn H	at go is Al 85	cg gg la Gl	gg cg ly Ai	gc ga rg G	ag gte lu Va 19	Ţ
tg Tr	g co p Pi	c go	cc go la A	la T	gg ct rp Le 95	tg ga eu G	ag c lu A	gg g rg A	la P	cg c ro L 00	tt ca eu A	gc tg rg T:	gg c rp L	eu 1	tc ac le Th 05	c 11365 r

gcc acc cac cac gac gcc cac cac aag cgg ttc aac gga aac tac ggc
Ala Thr His His Asp Ala His His Lys Arg Phe Asn Gly Asn Tyr Gly
210

ctc tat ttc cag ttc tgg gac cgc tgg gcc ggg act gag gtt tcg gcc
Leu Tyr Phe Gln Phe Trp Asp Arg Trp Ala Gly Thr Glu Val Ser Ala
225

11413

gcc ccc tcg cca cca tcc ccg gtc atc cct cca gag cgg ccc tca gcg
Ala Pro Ser Pro Pro Ser Pro Val Ile Pro Pro Glu Arg Pro Ser Ala
240
245
250

cct ctt cgg tgatcggctt ggtcagggcg ggcgtgggcg cccaggccgg 11558 Pro Leu Arg 255

tegecatetg cagtatggac gaegageca gaegteece geegeteatg gegatgaece 11618 geagggagte ceteaaatge egggtgteea tgatgaagtt eageeggtee eggteeggea 11678 teagaatgte eaceageaeg gegteeggee aceagteete gaegateege aaeeeggteg 11738 tgaeegttge tgeeggteagg acttggeaae eeageegttt eageateete teeagatgaa 11798 geagaaeeaeg egaategtee tegateaege agaettteae geecaaeete eagatgeaat 11858 eagggggaae taaeggatga ateeeatgtt gegteaaete ggaagaeege gttteegaet 11918 ggeeaaeggaa tte eetgetees eetgeteete eetgetees 11978 geaaeggaaa tte 11991

<210> 3 <211> 774

<212> DNA

<213> Brevundimonas sp.

<220> <221> CDS <222> (1)..(771)

ggc ctg cgc tat ctg ctg gtc ggc gcg gcc cat ggg ctg ctg tgg 96 Gly Leu Arg Tyr Leu Leu Val Gly Ala Ala Ala His Gly Leu Leu Trp 25

20	
gcc ggg gcg ggc cgg gga cgg gcg ctg aac ctg cgg ccg ccg gcg atg Ala Gly Ala Gly Arg Gly Arg Ala Leu Asn Leu Arg Pro Pro Ala Met 35 40 45	144
aag cgc atc cgc gcc gag atc gtc gcc tcc ctg atc gcc tgc ccc atc Lys Arg Ile Arg Ala Glu Ile Val Ala Ser Leu Ile Ala Cys Pro Ile 50 55 60	192
tac gcc ctg ccg gcg gcc ctg gtg ctg gag ctg tgg aag cgg ggc ggg Tyr Ala Leu Pro Ala Ala Leu Val Leu Glu Leu Trp Lys Arg Gly Gly 65 70 75 80	240
acg gcg atc tac agc gat ccc gac gcc tgg ccc ctg tgg tgg ctg ccg Thr Ala Ile Tyr Ser Asp Pro Asp Ala Trp Pro Leu Trp Trp Leu Pro 85 90 95	288
gtc agt ctg atc gtc tat ctg ctg gcg cac gac gcc ttc tac tac tgg Val Ser Leu Ile Val Tyr Leu Leu Ala His Asp Ala Phe Tyr Tyr Trp 100 105 110	336
gtg cac agg gcc ctg cat cac ccg cgc gtc ttc ggc tgg gcc cat gcc Val His Arg Ala Leu His His Pro Arg Val Phe Gly Trp Ala His Ala 115 120 125	384
gaa cac cac cgg tcg cgc gac ccc agc gcc ttc gcc tcc ttc gcc ttc Glu His His Arg Ser Arg Asp Pro Ser Ala Phe Ala Ser Phe Ala Phe 130 135 140	432
gac ccg gcc gag gct gcg gcc acc gcc tgg ttc ctg ccc gcc ctg gcc Asp Pro Ala Glu Ala Ala Ala Thr Ala Trp Phe Leu Pro Ala Leu Ala 145 150 155 160	480
ctg atc gtg ccg atc cac tgg ggc gtg gcc ctg acc ctg ctg acg ctg Leu Ile Val Pro Ile His Trp Gly Val Ala Leu Thr Leu Leu Thr Leu 165 170 175	528
atg tcg ctg acg gcc gcc ctg aac cat gcg ggg cgc gag gtc tgg ccc Met Ser Leu Thr Ala Ala Leu Asn His Ala Gly Arg Glu Val Trp Pro 180 185 190	576
gcc gcc tgg ctg gag cgg gcg ccg ctt cgc tgg ctg atc acc gcc acc Ala Ala Trp Leu Glu Arg Ala Pro Leu Arg Trp Leu Ile Thr Ala Thr 195 200 205	624
cac cac gac gcc cac cac aag cgg ttc aac gga aac tac ggc ctc tat His His Asp Ala His His Lys Arg Phe Asn Gly Asn Tyr Gly Leu Tyr 210 215 220	672

ttc cag ttc tgg gac cgc tgg gcc ggg act gag gtt tcg gcc gcc ccc 720Phe Gln Phe Trp Asp Arg Trp Ala Gly Thr Glu Val Ser Ala Ala Pro 235 230 225 tcg cca cca tcc ccg gtc atc cct cca gag cgg ccc tca gcg cct ctt 768 Ser Pro Pro Ser Pro Val Ile Pro Pro Glu Arg Pro Ser Ala Pro Leu 255 250 774 cgg tga Arg <210> 4 <211> 257 <212> PRT <213> Brevundimonas sp. <400> 4 Met Leu Arg Asp Leu Leu Ile Thr Thr Leu Ala Leu Ser Leu Ile Ile 10 5 1 Gly Leu Arg Tyr Leu Leu Val Gly Ala Ala Ala His Gly Leu Leu Trp 25 20 Ala Gly Ala Gly Arg Gly Arg Ala Leu Asn Leu Arg Pro Pro Ala Met 40 35 Lys Arg Ile Arg Ala Glu Ile Val Ala Ser Leu Ile Ala Cys Pro Ile 55 50 Tyr Ala Leu Pro Ala Ala Leu Val Leu Glu Leu Trp Lys Arg Gly Gly 75 70 65 Thr Ala Ile Tyr Ser Asp Pro Asp Ala Trp Pro Leu Trp Trp Leu Pro 85 Val Ser Leu Ile Val Tyr Leu Leu Ala His Asp Ala Phe Tyr Tyr Trp 105 100 Val His Arg Ala Leu His His Pro Arg Val Phe Gly Trp Ala His Ala 125 120 115 Glu His His Arg Ser Arg Asp Pro Ser Ala Phe Ala Ser Phe Ala Phe 135 130 Asp Pro Ala Glu Ala Ala Ala Thr Ala Trp Phe Leu Pro Ala Leu Ala 160 155 150 145 Leu Ile Val Pro Ile His Trp Gly Val Ala Leu Thr Leu Leu Thr Leu

170

165

Met Ser Leu Thr Ala Ala Leu Asn His Ala Gly Arg Glu Val Trp Pro 180 185 190

Ala Ala Trp Leu Glu Arg Ala Pro Leu Arg Trp Leu Ile Thr Ala Thr 195 200 205

His His Asp Ala His His Lys Arg Phe Asn Gly Asn Tyr Gly Leu Tyr 210 215 220

Phe Gln Phe Trp Asp Arg Trp Ala Gly Thr Glu Val Ser Ala Ala Pro 225 230 235 240

Ser Pro Pro Ser Pro Val Ile Pro Pro Glu Arg Pro Ser Ala Pro Leu 245 250 255

Arg

<210> 5

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 5

tacgaattcg atgcccctcg ccctg

25

<210> 6

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 6

tagaggatcc tcaaggagtg aactggatcg ta

32

<210> 7

<211> 26

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence:primer <400> 7 26 tacgaattcg atgaccgccg ccgtcg <210> 8 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer <400> 8 31 tagaggatcc tcaagactcg ccgcgccaca a <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer <400> 9 27 tacgaattcg ctgtcgcgga tgcaggc <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer <400> 10 32 tagaggatcc tgcggttcag cagccgataa aa <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence:primer

<400> 11 tacgaattcg atgcgagcag cagtgatcgg a	31
<210> 12 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: primer	
<400> 12 tagaggatcc aagctcttgg agccctgct	29
<210> 13 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 13 tacgaattcg atgagcgacg ccgtcct	27
<210> 14 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 14 tagaggatcc tcagatgtgg gtccacagg	29
<210> 15 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	

<400> 15

<210> 16

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 16

tagaggatcc cccacatctg acggcgct

28

<210> 17

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 17

tacgaattcg atgtccttca tctcttccgg c

31

<210> 18

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 18

tagaggatcc accgccatca tgacgagg

28

<210> 19

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 19

tacgaattcg atggcgatcg tcggcttaa

<210> 20 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 20 tagaggatcc ctagcgtcca agttcggcct	30
<210> 21 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 21 tacgaattcg atgcccaccc ccgacgacg	29
<210> 22 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 22 tagaggatcc tcagaagcgg ggctcttcca	30
<210> 23 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 23 tacgaattcg atggcctggc tgacgtggat	30

<211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 24 tagaggatcc tcaggcgccg ctgctggaa	29
<210> 25 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 25 tacgaattcg atgttgaggg atctgctcat ca	32
<210> 26 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 26 tagaggatcc tcaccgaaga ggcgctgag	29
<210> 27 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:primer	
<400> 27 tacgaattcg atgctgaaac ggctgggtt	29
<210> 28	

<211> 31 <212> DNA <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:primer

<400> 28

tagaggatcc ctatttccag ttctgggacc g

【書類名】図面【図1】

2, 3, 2', 3'-テトラヒドロキシ-β, β-カロテン-4, 4'-ジオン

【図3】

12 kb ---

M:サイズマーカー (λ/ *Hin*d III - φ X174/Hae III digest)

5-1~10-1:コスミドクローン

SCS:コスミドペクターSuperCos1

SD212:SD-212 染色体DNA

【図4】

M:サイズマーカー (λ/ Hind III - φ X174/Hae III digest)

5-2~9-1: コスミドクローン SD212: SD-212 染色体 DNA

SCS:コスミドベクターSuperCosl のBamH I / EcoR I 消化物

【図5】

Brevundimonas sp. SD-212 のカロテノイド生合成遺伝子群(12 kb-EcoRI 断片)の構造

アスタキサンチン生合成遺伝子群

Agrobacterium aurantiacum (Paracoccus sp. MBIC01143)

Bradyrhizobium sp. ORS278 のカンタキサンチン 生合成遺伝子群

ゼアキサンチン 生合成遺伝子群

Erwinia uredovora 20D3 (Pantoea ananatis)

Xanthobacter autotrophicus Py2

【要約】

【課題】 自然界に微量しか存在しない β -イオノン環の2(2')位の炭素に水酸基が導入さ れたカロテノイドを大量に製造できる手段を提供する。

【解決手段】 ブレバンディモナスSD-212株から得られ、 β -イオノン環-2-ヒドロキシラ ーゼ活性を有するペプチド、及びそれをコードする遺伝子。

【選択図】 なし

特願2004-165919

出願人履歴情報

識別番号

[591001949]

1. 変更年月日 [変更理由]

[変更理由] 住 所 氏 名 2003年 4月23日

住所変更

岩手県釜石市平田第3地割75番1号 株式会社海洋バイオテクノロジー研究所

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.