CSc 335 Special Sessim on Strong Induction February 21 2024
The only difference between
weak: Prove P(n) by assuming Q(n-1) (equiv: Q(n+1) by assuming Q(n-1)
strong: Prove cl(n) by assuming
i = 0
(re Q(o) A Q(i) A A Q(n-1)) (equiv; Q(n+1) by assuming) Q(i)) =0
eduction is The 1H
That is: for weak induction we use just Q(n-1) to prove Q(n) while for STCMa induction we man use any or

That is; for weak induction we will just Q(n-1) to prove Q(n) while for strong induction we may use any or all of Q(0), Q(1), ..., Q(n-1) to prove Q(n),

Y

Example: we show by strong induction that for every integer viz=A a sum of and be decomposed as a sum of 2's and 5's. That is: one need only have a stash of \$2 and \$5 bills to make change for any whole number of dollars > A.

For completeness, we shall also give a proof using weak induction.

So: 1et us consider the 2-5 problem, to be Solve using strong induction. From above, we see right away that we should focus on the divide & conquer part first: how con we use The hypothesis 1 Q(i) where d(i) is change can be made for \$ 2 using to show that Q(n) is true ? Since we are told n > A, we start by examining n= 1,5, ... - looking for a way to make use of the strong induction hypothesis. (SIH) n=4 -> 2+2 (10 use of sit n=5 → (no use of SIH)

use Q(4) 4+2 Λ= 6 use a (5) n=7 -use Q(A) n = 8 [OR] 2+6 use Q(A) + (9-4) use Q(5) 2+ (9-2) de 0(7) 2 A + (10-9) 218) 2 + (10-2) OR Q(6)
(10-6) 9 6 COMBOS JAMS 018 (8) 8 + (10 - 8) It appears That we can use any of

These decompositions - why not choose what appears to be simplest ____ le -The decomposition of n > 5 into 2 and n-2? (Note that we could use 4 and n- 4 for n > 8resulting in a 4-case busis step n=4,5,6,7 But it we use 2 and n-2, we need only a 2-race basis step N = 4,5 As you can see, yet other-worse? - choices are Possible) What then does me argument look like?

Basis: show the 4 and 5 cases directly SIS; Suppose n > 6. Thun n can be decomposed as 2 + (n-2)where n-2 > 4. The '2' reguires no additional analysis, and The N-2 case holds by The SIH. clearly, if change for n-z can be made using \$2 and \$5, Then change for n can similarly 52 + [change for n-2 using Ljust 1 2 and \$5

With this analysis in hand, you should go ahoud and write the associated Scheme program to solve the 2-5 problem.

But before you do, lets onk whether our current solution idea yields a good (as opposed to merely correct) solution.

can you see (write a proof!)

That The solution we have sketched

always wals The max possible

number of 2s?

Would a more balance of 2's

and 5's be preferable?

So there is another exercise for you; Figure out how to do so and Prove mat your solution has This balanced property (while still being correct), Now: what about a solution by weak induction? It is provable by strong induction is also provable by weath induction, Here is one idea for a weak 1 MUCTIM : NZA IS ETHEN EVEN OF odd. If it is even Them N = 2M for some M - So change can be made using m \$2 bils. If n is odd, Then n=2m+1 for some m. But 2m+1 = (2m-4)+5 and 2m-4 15 even make change wing \$2 for 2m-4, and Thrown a fiver, Again, how about writing the program? And again, can you say anything about the number of \$2 and \$5 used?

OK — So what about an example where it seems mat strong induction is much easter to use Than weak induction?

2) Most of the Fundamental Theorem of
2) Most of the Fundamental Theorem of Arithmetic — Strong Induction Practice
We have The Fundamental Theorem of Arthmetic as follows:
Every integer n > 2 can be written
uniquety as a product of powers of
primes. We it ignore uniquely of the factors 100=2x2x5x5 ordering of the factors
oven uniquely up to
100=2×2×5×5 ordering of in factors
= 5×5×2×2
~ ZメケメケメZ
In fact, if we allow po = 1, more
we can say " every intoger n > 1 can be written as a product of powers of primes'
written as a product of powers of primes'

Hou	I can we deploy strong induction to
Fro	I can we deploy strong induction to
	ien. 17 1. Either n 15 prime
٥٢	n is not prime. If n is prime,
	n n itself is already a product
0	Primes
	N= i product"
	i= n
H	n is not prime, shew we know
Tho	it n is composite - 1e - n nas
	dors pand q
Ja	(1013 P W) = 9
	N = P*9
P	7, 6121 10,7
Ď	y The SIH, both p and q

are products of primes. So Them is a product of primes U = | breg of brimes | breg of brimes Ba)15 step: N=2, which is a Prime. We rould stant at N=1 - in This case, he basis steps is 12at - for any prime > -1 = Po which indeed is a powers of primes

What about a weak induction
for this problem?
le issue is that n > 2
Never decomposes as
(n-1) X Some Mingelse
So how would the weak industron hypothesis help?
Mypothesis Mc/pt
Another suggested hw: can you
give a weak induction groof for
Mis Proplem?
·