ESTUDO DE CASO - RELAÇÃO ENTRE VÃO E ALTURA

Importando bibliotecas

```
In [10]: import sys
    sys.path.insert(0, '../')
    import fconcrete as fc
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
```

Leitura das amostras

```
In [7]: dados_menores_custos = pd.read_excel("Dados de custo das melhores dimensoes.xlsx")
```

Tabela com adição de colunas

Out[8]:

dados_menores_custos

	base	altura	comprimento	custo	concreto	barras Iongitudinais	barras transversais	custo/comprimento	comprimento/altura
150	15	15	150	26.552389	11.92	6.60	8.02	0.177016	10.000000
200	15	15	200	35.238586	15.90	8.64	10.70	0.176193	13.333333
250	15	15	250	43.924782	19.87	10.68	13.37	0.175699	16.666667
300	15	19	300	61.904167	30.21	15.18	16.52	0.206347	15.789474
350	15	25	350	88.298648	46.37	19.19	22.74	0.252282	14.000000
400	15	29	400	119.126072	61.47	28.95	28.70	0.297815	13.793103
450	15	35	450	154.924409	83.47	36.89	34.57	0.344276	12.857143
500	15	41	500	201.408929	108.64	49.44	43.33	0.402818	12.195122
550	15	47	550	247.964731	136.99	57.89	53.08	0.450845	11.702128
600	15	53	600	300.256021	168.52	70.81	60.92	0.500427	11.320755
650	15	59	650	364.396778	203.24	88.76	72.40	0.560610	11.016949
700	15	65	700	436.807594	241.13	110.81	84.87	0.624011	10.769231
750	15	71	750	510.608829	282.20	133.72	94.69	0.680812	10.563380
800	15	79	800	599.797505	334.93	153.68	111.19	0.749747	10.126582
850	15	85	850	689.532881	382.89	180.11	126.54	0.811215	10.000000
900	15	91	900	785.570084	434.03	213.13	138.41	0.872856	9.890110
950	15	99	950	901.924097	498.42	245.30	158.20	0.949394	9.595960
1000	15	105	1000	1017.767634	556.45	284.89	176.43	1.017768	9.523810

Visualização básica

```
In [11]: # Tamanho da figura a ser plotada
    plt.rcParams["figure.figsize"] = (8,8)
    plt.title("Relação entre a altura da viga e seu comprimento")
    plt.ylabel("Altura em centímetros")
    plt.xlabel("Comprimento da viga em centímetros")

    plt.plot(dados_menores_custos["comprimento"], dados_menores_custos["altura"], "x")
    plt.show()
```



```
In [12]: x = np.array(dados_menores_custos["comprimento"])
y = np.array(dados_menores_custos["altura"])
x_projetado = np.linspace(x[0], x[-1], 100)

In [21]: def retornar_resultados(x, y, coeficientes):
    variacoes = np.polyld(coeficientes)(x)-y
    x_com_falhas = x[variacoes < 0]
    print("Para as amostras, respectivamente, as variações são de:\n {}".format(np.ceil(variacoes)))</pre>
```

Considerando a parábola ideal

In [23]: retornar_resultados(x, y, coeficentes_da_parabola_ideal)

Para as amostras, respectivamente, as variações são de: [-1. -0. 3. 2. -0. 1. -0. -1. -1. -0. -0. 1. 2. -0. 1. 2. -0. -0.]

Considerando a reta ideal

In [25]: retornar_resultados(x, y, coeficentes_da_reta_ideal)

Para as amostras, respectivamente, as variações são de:
[-10. -4. 1. 3. 3. 4. 4. 4. 3. 3. 3. 2. 2. -0.
-1. -1. -3. -4.]

Considerando os valores da reta ideal que passa na origem

```
In [27]: real, = plt.plot(x, y, 'x', label="Amostras")

coeficentes_da_reta_passando_pela_origem = np.linalg.lstsq(np.vstack((x, np.zeros_like(x))).T, y, rcond=None)
[0]
    y_projetado_passando_origem = np.polyld(coeficentes_da_reta_pela_origem)(x_projetado)
    texto_projecao_passando_pela_origem = "Reta com menor erro passando pela origem: x/{}+0".format((coeficentes_da_reta_passando_pela_origem[0]**(-1)).round(3))
    projecao, = plt.plot(x_projetado, y_projetado_passando_origem, '--', label=texto_projecao_passando_pela_origem)

plt.title("Relação entre a altura da viga e seu comprimento")
    plt.ylabel("Altura em centímetros")
    plt.xlabel("Comprimento da viga em centímetros")
    plt.legend()
    plt.show()
```


In [28]: retornar_resultados(x, y, coeficentes_da_reta_pela_origem)

Para as amostras, respectivamente, as variações são de: [-0. 5. 9. 10. 9. 10. 8. 7. 6. 5. 3. 2. 1. -2. -4. -5. -8. -9.]

Considerando y=x/10

In [30]: retornar_resultados(x, y, coeficientes_literatura)

Para as amostras, respectivamente, as variações são de:
[0. 5. 10. 11. 10. 11. 10. 9. 8. 7. 6. 5. 4. 1. 0. -1. -4. -5.]

Todas as comprações

```
In [32]: x = np.array(dados menores custos["comprimento"])
         y = np.array(dados menores custos["altura"])
         x projetado = np.linspace(x[0], x[-1], 100)
         real, = plt.plot(x, y, 'x', label="Amostras")
         coeficentes da parabola ideal = np.polyfit(x, y, 3, )
         y projetado = np.polyld(coeficentes da parabola ideal)(x projetado)
         texto projecao parabola ideal = "Parábola com menor erro: \{\}*x^2+(\{\})*x+(\{\})".format(*coeficentes da parabola
         ideal)
         projecao, = plt.plot(x projetado, y projetado, '--', label=texto projecao parabola ideal)
         coeficentes da reta ideal = np.polyfit(x, y, 1)
         y projetado = np.poly1d(coeficentes da reta ideal)(x projetado)
         texto projecao ideal = "Reta com menor erro: {}*x+({})".format(*coeficentes da reta ideal.round(3))
         projecao, = plt.plot(x projetado, y projetado, '--', label=texto projecao ideal)
         coeficentes da reta passando pela origem = np.linalg.lstsq(np.vstack((x, np.zeros like(x))).T, y, rcond=None)
         [0]
         y projetado passando origem = np.polyld(coeficentes da reta pela origem)(x projetado)
         texto projecao passando pela origem = "Reta com menor erro passando pela origem: x/{}+0".format((coeficentes
         da reta passando pela origem[0]**(-1)).round(3))
         projecao, = plt.plot(x projetado, y projetado passando origem, '--', label=texto projecao passando pela orige
         m)
         coeficientes literatura = [1/10, 0]
         y projetado literatura = np.polyld(coeficientes literatura)(x projetado)
         projecao, = plt.plot(x projetado, y projetado literatura, '--', label="Projeção considerando y=x/10")
         plt.title("Relação entre a altura da viga e seu comprimento")
         plt.ylabel("Altura em centímetros")
         plt.xlabel("Comprimento da viga em centímetros")
         plt.legend()
         plt.show()
```

