IOI 2020 中国国家集训队第一阶段作业 解题报告

广州市第二中学 袁无为

1 Data Center Drama

1.1 题目来源

Codeforces Round #296 (Div. 1) C^1 o

1.2 题目大意

给一个无向连通图,要求加上最少的边,然后给边定向,使得每个点的入度和出度都 是偶数。可能有自环和重边。

1.3 数据范围和限制

 $n \leq 10^5, m \leq 2 \times 10^5$

保证存在一个总边数不超过 5×10^5 的解。

时间限制: 2S

空间限制: 256MiB

1.4 发掘性质

1.4.1 性质一

引理 1.1. 给边定向前, 每个点的度数都为偶数。

证明. 考虑反证法: 如果一个点的度数为奇数,那么给边定向后该点的入度和出度其中之一一定为奇数。

引理 1.2. 若原图中有 k 个度数为奇数的点,则最少加入 $\frac{k}{2}$ 条边才能满足引理 1.1。

证明. 容易证明 k 一定为奇数。因为加入一条边最多减少两个度数为奇数的点,所以至少要加入至少 $\frac{k}{2}$ 条边才能把所有点的度数都变成偶数。

¹题目链接: https://codeforces.com/problemset/problem/528/C

1.4.2 性质二

引理1.3. 总的边数为偶数。

证明. 考虑定向后的图, 那么总的边数就是每个点的出度之和, 为偶数。

1.5 算法介绍

设给出的图为 G_0 。

先加最少数量的边,满足每个点的度数都为偶数。找出 G_0 中度数为奇数的点,设有 k 个这样的点,分别为 a_1,a_2,\ldots,a_k 。可以证明 k 一定是偶数。对于 $\forall i,1 \leq i \leq \frac{k}{2}$,在 2i-1 和 2i 号点之间连一条边。加完边之后,所有点的度数就都是偶数了。这样就得到了 G_1 。由引理 1.2, G_1 是满足要求的方案中边数最少的。

但是此时 G_1 的边数可能是奇数,如果为奇数就随便找一个点加上一个自环。这样就得到了 G_2 。可以得出 $|G_1| \le |G_2| \le |G_1| + 1$ 。假设存在 G_2' 满足引理 1.1 和引理 1.3,且 $|G_2'| < |G_2|$,因为 $|G_2'|$ 和 $|G_2|$ 奇偶性相同,可得 $|G_2'| \le |G_2| - 2 < |G_1|$,与 G_1 是满足引理 1.1 的方案中边数最少的图矛盾。所以 G_2 是满足要求的图中边数最少的。

现在还剩下最后一步:给边定向。一种可行的定向方案为:找出一条欧拉回路,设路径上的边分别为 $(b_1,b_2),(b_2,b_3),\ldots,(b_{p-1},b_p),(b_p,b_{p+1}=b_1)$ $(p=|G_2|)$,方案为: $\forall i$,把边 (b_{2i-1},b_{2i}) 定向为 $b_{2i-1}\to b_{2i}$,把边 (b_{2i},b_{2i+1}) 定向为 $b_{2i+1}\to b_{2i}$ 。容易证明这个定向方案能够满足要求。

这个做法的时间复杂度为 $\Theta(n+m)$ 。

2 Two Permutations

2.1 题目来源

AtCoder Grand Contest 038 F 2 .

2.2 题目大意

给出两个 $(0,1,\cdots,N-1)$ 的排列 (P_0,P_1,\cdots,P_{N-1}) 和 (Q_0,Q_1,\cdots,Q_{N-1}) 。请求出两个 $(0,1,\cdots,N-1)$ 的排列 A 和 B,满足以下要求:

- 对于所有 $i(0 \le i \le N-1)$, A_i 为 i 或者 P_i 。
- 对于所有 $i(0 \le i \le N-1)$, B_i 为 i 或者 Q_i 。

²题目链接: https://atcoder.jp/contests/agc038/tasks/agc038_f

定义两个排列 A 和 B 之间的距离为满足 $A_i \neq B_i$ 的 i 的个数。你只需要输出 A 和 B 之间可能的最大距离。

2.3 数据范围和限制

 $1 \le N \le 10^5$

时间限制: 10S

空间限制: 1GiB

2.4 算法介绍

考虑一个包含所有 $i \to P_i$ 的边的图。记 x(i) 为 i 号点的所在的环。记 v(x(i)) = 1 如果该环中 $A_i = i$; 记 v(x(i)) = 0 如果该环中 $A_i = P_i$ 。

考虑令一个包含所有 $i \to Q_i$ 的边的图。记 y(i) 为 i 号点的所在的环。记 v(y(i)) = 0 如果该环中 $B_i = i$; 记 v(v(i)) = 1 如果该环中 $B_i = Q_i$ 。

现在观察一下什么时候会有 $A_i = B_i$:

- 1. $P_i = Q_i$: 任何时候都有 $A_i = B_i$
- 2. 以上均不满足且 $P_i = i$: $A_i = B_i \Leftrightarrow v(y(i)) = 0$
- 3. 以上均不满足且 $Q_i = i$: $A_i = B_i \Leftrightarrow v(x(i)) = 1$
- 4. 以上均不满足且 $P_i \neq Q_i$: $A_i = B_i \Leftrightarrow v(x(i)) = 1 \land v(y(i)) = 0$
- 5. 以上均不满足: $A_i = B_i \Leftrightarrow v(x(i)) \neq v(y(i))$

考虑用网络流求解:

添加一个原点 S 和一个汇点 T。

对于每个环 i, 新建一个点 c(i), 如果这个点最终属于 S 集, 那么就令 v(i) 为 0。否则令 v(i) 为 1。

对于第一种情况: 什么都不做。

对于第二种情况:加边 $c(y(i)) \to T$,容量为 1。这样把这条边割掉就说明 y(i) 被分到了 S 集,就有 $A_i = B_i$,这样答案就会减一。

对于第三种情况:加边 $S \rightarrow c(x(i))$,容量为1。

对于第四种情况:加边 $c(y(i)) \rightarrow c(x(i))$,容量为 1。

对于第五种情况: 加边 $c(x(i)) \rightarrow c(y(i))$ 和 $c(y(i)) \rightarrow c(x(i))$,容量均为 1。

这样求出最大流(最小割)后,答案为 n-第一种情况的个数 - 最小割的流量。

因为所有边的边权都是 1,这题的时间复杂度就是 $O(n\sqrt{n})$ 。

3 Wandering TKHS

3.1 题目来源

AtCoder Grand Contest 029 E 3 o

3.2 题目大意

有一棵 N 个点的树,最开始你在其中一个点,假设为 r 号点。接下来重复以下操作若干次:

• 去到还未去过的,与去过的节点相邻的编号最小的节点。

令 c_r 为他回到 1 号节点的移动次数。求 c_2, c_3, \ldots, c_N 。注意:无论他在一次移动中走过了多少条边,都只算一次移动。

3.3 数据范围和限制

 $2 \le N \le 2 \times 10^5$ 时间限制: 2S 空间限制: 1GiB

3.4 算法介绍

令这棵树的根为 1。记 p_x 为 x 的父亲, m_x 为 p_x 到根的路径上编号最大的点,Q(x,y) 为从 x 点开始走(不是按照题目的要求走),在不经过 x 的父亲以及其他的编号 > y 的点的情况下能走到多少个点。

对于每个点 x, 观察 $c_x - c_{p_x}$ 会是多少:

- 1. 如果 $x > m_x$, 那么 $c_x c_{p_x} = Q(x, m_x)$
- 2. 如果 $x < m_x$,那么 $c_x c_{p_x} = Q(x, m_x) Q(x, m_{p_x})[x \le m_{p_x}]$

以上公式可以通过枚举 x, p_x, m_{p_x} 的大小关系得到。

这样,我们就只需要求出O(x,v)了。

暴力一点的做法有线段树合并,但是这题有一些特殊性质:需要求的 Q(x,y) 中 y 都是 m_x 或 m_{p_x} ,可以帮助我们在线性时间内求出所有答案。

³题目链接: https://atcoder.jp/contests/agc029/tasks/agc029_e

考虑最暴力的做法: 直接 $O(n^2)$ DP, $Q(x,y) = 1 + \sum_{v} Q(v,y)[v \le y]$

这个特殊性质告诉我们,对于一个 x,有用的 Q(x,y) 的 y 一定是 x 到根的路径上的最大的三个点的编号其中之一。因此总的状态数就是 $\Theta(n)$ 的。

时间复杂度为 $\Theta(n)$ 。