Block Ciphers, Data Encryption Standard (DES), and TwoFish

(CS-452)

Week 3

Block Ciphers

- Block ciphers: a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.
 - Typically, a block size of 64 or 128 bits is used
 - Many current ciphers are block ciphers
 - Broader range of applications
 - DES (Data Encryption Standard): a commonly used cryptographic algorithms, especially in financial applications.

Block Ciphers: Confusion and Diffusion

- Properties of a secure block cipher
- Developed by Claude Shannon in 1945
- Confusion:
 - Basic idea: obscures the relationship between the key and the resulting ciphertext
 - Achieved by having each bit of the ciphertext depend on multiple bits of the key
 - ◆ If one bit of encryption key changes → many/all bits of the ciphertext will change (in a seemingly random manner), thus making the key difficult to derive from the ciphertext
 - Achieved through <u>substitution</u>
 - Example: a → b substitution performed with Caesar Cipher and key of 1
 - Used by both block and stream ciphers

Block Ciphers: Confusion and Diffusion

- Properties of a secure block cipher
- Developed by Claude Shannon in 1945
- Diffusion:
 - Basic idea: obscuring the relationship between the plaintext and the resulting ciphertext
 - Dissipates statistics of plaintext into long-range statistics of the ciphertext
 - If one bit of the plaintext changes → then ciphertext will change significantly and in unpredictably (pseudo-randomly)
 - Diffusion is achieved through <u>permutation</u>
 - ◆ Example: the permutation performed by Row Transposition Cipher
 - Only block ciphers use diffusion CPSC-452 Cryptography

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- There are possible different plaintext blocks.

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- There are 2ⁿ possible different plaintext blocks
- For the encryption to be reversible (for decryption to be possible), each must produce a unique ciphertext block

• Reversible:

Plaintext	Ciphertext
00	11
01	10
10	00
11	01

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- There are 2ⁿ possible different plaintext blocks,
- for the encryption to be reversible (for decryption to be possible), each must produce a unique ciphertext black

Irreversible:

Plaintext	Ciphertext
00	11
01	10
10	00
11	00

- A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits.
- There are 2ⁿ possible different plaintext blocks,
- for the encryption to be reversible (for decryption to be possible), each must produce a unique ciphertext black

• Irreversible:

Plaintext	Ciphertext
00	11
01	10
10	00
11	00

Ideal Block Cipher

- The logic of a general substitution cipher for n = 4
 - ◆ A 4-bit input produces one of 16 possible input states, which is mapped into a unique one of 16 possible output states, each of which is represented by 4 ciphertext bits.

Ideal Block Cipher

- Ideal block cipher: allows for maximum number of possible encryption mappings from the plaintext block.
 - ◆ n bits → possible mappings

Ideal Block Cipher

- Ideal block cipher: allows for maximum number of possible encryption mappings from the plaintext block.
 - ♦ n bits → 2^{n!} possible mappings
 - Impractical when n is large
 - Each mapping constitutes a key
 - $^{■}$ n=64 \rightarrow the key size is > 63*2⁶³ -- not practical.

The Feistel Cipher

- The Feistel cipher: approximate the ideal block cipher by utilizing the concept of a product cipher
 - Develop a block cipher with a key length of k bits and a block length of n bits, allowing a total of 2k possible mappings (rather than 2n! mappings)
 - Alternates substitution and permutation

Feistel Cipher Structure

- Most symmetric block ciphers are based on a Feistel Cipher Structure.
- Inputs: a plaintext block of length 2w bits and a key K.
- The plaintext block is divided into two halves L₀, R₀
 - Pass through n rounds of processing and then combined to produce the ciphertext block.
 - ◆ Each round i has inputs L_{i-1} and R_{i-1} derived from the previous round, as well as a subkey K_i derived from K.
 - ◆ In general, K_i are different from K and from each other.

Feistel Cipher Structure

- A substitution is applied to the left half
 - Applying a round function F to the right half of the data. F is parameterized by the round subkey K_i
 - Then take the exclusive-OR
 (XOR) of the output of F and
 the left half of the data.
- A permutation is then performed that consists of the interchange of the two halves of the data.

Feistel Cipher Structure

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

Feistel Cipher Decryption

- Same as the encryption process
- Except that the subkeys K_i are used in reverse order: K_n in the first round,..., k₁ in the last round.
- Need not implement two different algorithms.

Iterated Ciphers

- Feistal Cipher belongs to more general class of ciphers known as iterated ciphers that:
 - Process plaintext through multiple rounds
 - Apply the same round function at every round
 - At each round use a different sub-key derived from the main key

Data Encryption Standard (DES)

Data Encryption Standard (DES)

- A widely used block cipher
- Based on the Feistel cipher
- Developed in 1974 by IBM and the U.S. government to set a standard that everyone could use to securely communicate with each other
- The algorithm transforms 64-bit input in a series of steps into a 64-bit output.
- The same steps, with the same key, are used to reverse the encryption.
- Use of DES has flourished, especially in financial applications

DES Encryption Overview

- The plaintext passes through an initial permutation (IP) that rearranges the bits to produce the permuted input
- Then passes through 16 rounds of the same function, which involves both permutation and substitution function
- The left and right halves of the output of the last round are swapped, which is then passed through a permutation that is the inverse of IP to produce the 64-bit ciphertext
 - $\bullet \mathbf{IP}^{-1}(\mathbf{IP}(\mathbf{M})) = \mathbf{M}$

DES Encryption Overview

- The 64-bit key is passed through a permutation function.
- For each 16 round, a subkey K_i is produced by the combination of a left circular shift and a permutation.
- The permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits

Initial Permutation (IP)

Τ			4.
In	n	11	t.
***	Μ	u	··

\mathbf{M}_1	\mathbf{M}_2	\mathbf{M}_3	M_4	M_5	M_6	M_7	\mathbf{M}_8
M_9	\mathbf{M}_{10}	\mathbf{M}_{11}	M_{12}	M_{13}	\mathbf{M}_{14}	M_{15}	M_{16}
M_{17}	M_{18}	M_{19}	M_{20}	M_{21}	M_{22}	M_{23}	M_{24}
M_{25}	M_{26}	M_{27}	M_{28}	M_{29}	M_{30}	M_{31}	M_{32}
M_{33}	M_{34}	M_{35}	M_{34}	M_{35}	M_{36}	M_{37}	M_{38}
M_{41}	M_{42}	M_{43}	M_{44}	M_{45}	M_{46}	M_{47}	M_{48}
M_{49}	M_{50}	M_{51}	M_{52}	M_{53}	M_{54}	M_{55}	M_{56}
M_{57}	M_{58}	M_{59}	M_{60}	M_{61}	M_{62}	M_{63}	M_{64}
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
60 62	52 54	44 46	36 38	28 30	20 22	12 14	4 6
62	54	46	38	30	22	14	6
62 64	54 56	46 48	38 40	30 32	22 24	14 16	6 8
62 64 57	54 56 49	46 48 41	38 40 33	30 32 25	22 24 17	14 16 9	6 8 1

Initial Permutation (IP)

Output:

M_{58}	\mathbf{M}_{50}	\mathbf{M}_{42}	M_{34}	M_{26}	\mathbf{M}_{18}	\mathbf{M}_{10}	\mathbf{M}_2
M_{60}	M_{52}	M_{44}	M_{36}	M_{28}	M_{20}	M_{12}	M_4
M_{62}	M_{54}	M_{46}	M_{38}	M_{30}	M_{22}	M_{14}	M_6
M_{64}	M_{56}	M_{48}	M_{40}	M_{32}	M_{24}	M_{16}	M_8
M_{57}	M_{49}	M_{41}	M_{33}	M_{25}	M_{17}	M_9	\mathbf{M}_1
M_{59}	M_{51}	M_{43}	M_{35}	M_{27}	M_{19}	M_{11}	M_3
M_{61}	M_{53}	M_{45}	M_{37}	M_{29}	M_{21}	M_{13}	M_5
M_{63}	M_{55}	M_{47}	M_{39}	M_{31}	M_{23}	M_{15}	M_7

DES Encryption Overview

- The 64-bit key is passed through a permutation function.
- For each 16 round, a subkey K_i is produced by the combination of a left circular shift and a permutation.
- The permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits

Permuted Choice One (PC-1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
0.5	33	7/	57	91	20	1.5
7	62	54	46	38	30	22

DES Encryption Overview

- The 64-bit key is passed through a permutation function.
- For each 16 round, a subkey K_i is produced by the combination of a left circular shift and a permutation.
- The permutation function is the same for each round, but a different subkey is produced because of the repeated shifts of the key bits

Schedule of Left Circular Shifts

- The output of PC-1 is then treated as two 28 bits quantities, labeled C_1 and D_1 .
- At each round, C_i and D_i are separately subjected to a circular left shift, of 1 or 2 bits.

Round number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

DES Encryption Overview

- The plaintext passes through an initial permutation (IP) that rearranges the bits to produce the permuted input
- Then passes through 16 rounds of the same function, which involves both permutation and substitution function
- The left and right halves of the output of the last round are swapped, which is then passed through a permutation that is the inverse of IP to produce the 64-bit ciphertext
 - $\bullet \mathbf{IP^{-1}(IP(M))} = \mathbf{M}$

Inverse Initial Permutation (IP-1)

Input:

M_{58}	\mathbf{M}_{50}	\mathbf{M}_{42}	M_{34}	M_{26}	M_{18}	\mathbf{M}_{10}	\mathbf{M}_2
M_{60}	M_{52}	M_{44}	M_{36}	M_{28}	M_{20}	M_{12}	M_4
M_{62}	M_{54}	M_{46}	M_{38}	M_{30}	M_{22}	M_{14}	M_6
M_{64}	M_{56}	M_{48}	M_{40}	M_{32}	M_{24}	M_{16}	M_8
M_{57}	M_{49}	M_{41}	M_{33}	M_{25}	M_{17}	M_9	\mathbf{M}_1
M_{59}	M_{51}	M_{43}	M_{35}	M_{27}	M_{19}	M_{11}	M_3
M_{61}	M_{53}	M_{45}	M_{37}	M_{29}	M_{21}	M_{13}	M_5
M_{63}	M_{55}	M_{47}	M_{39}	M_{31}	M_{23}	M_{15}	M_7

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Inverse Initial Permutation (IP-1)

Output:

\mathbf{M}_1	M_2	M_3	M_4	M_5	M_6	M_7	M_8
M_9	\mathbf{M}_{10}	M_{11}	M_{12}	M_{13}	M_{14}	M_{15}	M_{16}
M_{17}	M_{18}	M_{19}	M_{20}	M_{21}	M_{22}	M_{23}	M_{24}
M_{25}	M_{26}	M_{27}	M_{28}	M_{29}	M_{30}	M_{31}	M_{32}
M_{33}	M_{34}	M_{35}	M_{34}	M_{35}	M_{36}	M_{37}	M_{38}
M_{41}	M_{42}	M_{43}	M_{44}	M_{45}	M_{46}	M_{47}	M_{48}
M_{49}	M_{50}	M_{51}	M_{52}	M_{53}	M_{54}	M_{55}	M_{56}
M_{57}	M_{58}	M_{59}	M_{60}	M_{61}	M_{62}	M_{63}	M_{64}

Single Round of DES Algorithm

- Uses two 32-bit L & R halves. Ki: 48 bits
- 1. The R input is expanded to 48 bits (permutation + duplication of 16 of R bits); the resulting 48 bits are XORed with Ki.

Expanded Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Single Round of DES Algorithm

- Uses two 32-bit L & R halves. K_i: 48 bits
- 1. The R input is expanded to 48 bits (permutation + duplication of 16 of R bits); the resulting 48 bits are XORed with K_i.
- 2. The 48-bits then pass through a substitution function that produces 32-bit output.

S-Boxes

- The substitution consists of a set of 8 S-boxes, each of which accepts 6 bits as input and produces 4 bits as output.
- S-Box substitution allows DES to achieve the confusion principle.

S-Boxes

- The substitution consists of a set of 8 S-boxes, each of which accepts 6 bits as input and produces 4 bits as output.
 - The first and last bits of the input to S_i form a 2-bit binary number to select one of 4 substitutions defined by the four rows (0, 1, 2, 3) in the table for S_i .
 - ◆ The middle 4 bits select one of 16 columns (0-15).
 - ◆ E.g. in S₁, input 011001

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
14 0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4 15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S-Boxes

- The substitution consists of a set of 8 S-boxes, each of which accepts 6 bits as input and produces 4 bits as output.
 - ◆ The first and last bits of the input to S_i form a 2-bit binary number to select one of 4 substitutions defined by the four rows (0, 1, 2, 3) in the table for S_i .
 - ◆ The middle 4 bits select one of 16 columns (0-15).
 - ◆ E.g. in S₁, input 011001
 - The row is 01 (row 1)
 - The column is 1100 (column 12)
 - The value is 9 output is 1001.

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
14 0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4 15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S-Box: Design Criteria (1)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis
 - Any change to the input to an S-box should result in randomlooking changes to the output
 - No output bit of any S-box should be too close a linear function of the input bits
 - Each row of an S-box should include all 16 possible output bit combinations

S-Box: Design Criteria (1)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis

<u>Criteria 1:</u> Any change to the input to an S-box should result in <u>random-looking</u> changes to the output:

```
Example: S-Box_1(000000) = 14 = 1110

S-Box_1(000001) = 0 = 0000

S-Box_1(000010) = 4 = 0100

(these changes look random...statistical tests exist to verify this)
```

S-Box: Design Criteria (2)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis

<u>Criteria 2:</u> No output bit of any S-box should be too close a *linear function* of the input bits.

Another words, it should be *impossible to use a linear* function in order to reliably predict any bit of the output based on the input bits.

S-Box: Design Criteria (3)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis

<u>Criteria 3:</u> Each row of an S-box should include all 16 possible output bit combinations.

Example: Notice each row contains all possible 4-bit values (0-15)

```
    14
    4
    13
    1
    2
    15
    11
    8
    3
    10
    6
    12
    5
    9
    0
    7

    0
    15
    7
    4
    14
    2
    13
    1
    10
    6
    12
    11
    9
    5
    3
    8

    4
    1
    14
    8
    13
    6
    2
    11
    15
    12
    9
    7
    3
    10
    5
    0

    15
    12
    8
    2
    4
    9
    1
    7
    5
    11
    3
    14
    10
    0
    6
    13
```

S-Box: Design Criteria (4)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis

<u>Criteria 4:</u> If two inputs to an S-Box differ in exactly one bit, the outputs must differ by at least two bits

Example:
$$S-Box_1(000000) = 14 = 1110$$

 $S-Box_1(000001) = 0 = 0000$

(The inputs differ by one bit. The outputs differ by 3 bits)

14															
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
4 15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S-Box: Design Criteria (5)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis

<u>Criteria 5:</u> If two inputs to an S-Box differ in two middle bits, the outputs must differ by at least two bits

Example:
$$S-Box_1(000000) = 14 = 1110$$

 $S-Box_1(001100) = 11 = 1011$

(The inputs differ by 2 middle bits. The outputs differ by 2 bits)

S-Box: Design Criteria (6)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis

<u>Criteria 6:</u> If two inputs to an S-Box are identical in the first two bits and the last two bits, the resulting outputs must be different:

Example: $S-Box_1(000000) = 14 = 1110$ $S-Box_1(001100) = 11 = 1011$

The outputs are different!

14															
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
4 15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

S-Box: Design Criteria (6)

- The design of the round function focuses on the design of S-boxes and on the permutation P.
- The design was primarily aimed at thwarting differential cryptanalysis

<u>Criteria 6:</u> If two inputs to an S-Box are identical in the first two bits and the last two bits, the resulting outputs must be different:

Example: $S-Box_1(000000) = 14 = 1110$ $S-Box_1(001100) = 11 = 1011$

The outputs are different!

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15															

Single Round of DES Algorithm

- Uses two 32-bit L & R halves. K: 48 bits
- 1. The R input is expanded to 48 bits (permutation + duplication of 16 of R bits); the resulting 48 bits are XORed with Ki.
- 2. The 48-bits then pass through a substitution function that produces 32-bit output
- 3. The 32-bit pass through a permutation function.

Permutation Function (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

- Rearrangement of bits by the P-table allows DES to achieve the diffusion principle.
- Two output bits from each S-box affect middle bits of the next round and the other two affect end bits.

Permutation Function (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
1 2 19	13	30	6	22	11	4	25

• The four output bits from each S-box affect six different S-boxes on the next round.

Expanded Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

Single Round of DES Algorithm

As for any Feistel cipher,

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

CPSC-452 Cryptography

A Recap: Remember: DES is a Feistel Cipher

DES Decryption

 As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application of the subkeys is reversed.

Avalanche Effect

- Avalanche Effect:
 - Desirable property of any encryption algorithm.
 - Small change in either the plaintext or the key should produce a significant change in the ciphertext.
 - Change in 1 bit of the plaintext or the key should produce a change in many bits of the ciphertext.
- Making attempts of guessing keys impossible
- DES exhibits strong avalanche

Avalanche Effect

• Two plaintexts:

♦ P1:

P2:

• Key K:

0000001 1001011 0100100
1100010 0011100 0011000
0011100 0110010

(a) Chan	ige in Plaintext
	Number of bits
Round	that differ
0	1
1	6
2	21
3	35
4	39
5	34
6	32
7	31
8	29
9	42
10	44
11	32
12	30
13	30
14	26
15	29
16	34

Avalanche Effect

• One plaintext P:

- 01101000 10000101
 00101111 01111010
 00010011 01110110
 11101011 10100100
- Two keys:
 - K1

1110010 1111011 1101111 0011000 0011101 0000100 0110001 1101110

◆ K2

0110010 1111011 1101111
0011000 0011101 0000100
0110001 1101110

(a) Chan	ge in Plaintext	(b) Ch	nange in Key
Round	Number of bits that differ	Round	Number of bits that differ
0	1	0	0
1	6	1	2
2	21	2	14
3	35	3	28
4	39	4	32
5	34	5	30
6	32	6	32
7	31	7	35
8	29	8	34
9	42	9	40
10	44	10	38
11	32	11	31
12	30	12	33
13	30	13	28
14	26	14	26
15	29	15	34
16	34	16	35

Strength of DES - Key Size

- 56-bit keys have $2^{56} = 7.2 \times 10^{16}$ values
- Brute force search looks hard
 - Assume: half of the key space has to be searched, a single machine performing one DES encryption per microsecond would take more than a thousand years to break the cipher
- Recent advances have shown is possible
 - ◆ In 1977, Diffie and Hellman: theorized technology existed to build a parallel machine with 1 million encryption devices; each performs one encryption per microsecond → 10 hours
 - ◆ In 1998, Electronic Frontier Foundation (EFF) had broken a DES encryption using a computer ("Deep Crack") built for less than \$250K. The attack took less than 3 days.

Strength of DES - Key Size

 EFF "Deep Crack" Consisted of 1,186 custom chips designed to try different DES keys:

Image source: https://www.eff.org/

Multiple Encryption & DES

- Problem: Clearly, a replacement for DES was needed
- Solution: Use multiple encryption with DES using multiple keys
 - Multiple encryption: a technique in which an encryption is used multiple times.
- Triple-DES is the chosen form
 - Use three stages of the DES algorithm
 - Use a total of two or three distinct keys

Double-DES?

- Could use 2 DES encrypts on each block C = E(K2, E(K1, P))
- Issue of reduction to single stage
 - Would it be possible to find a key K3 such that

$$E(K2, E(K1, P)) = E(K3, P)$$

Answer: NO - proved in 1992

Double-DES?

- Meet-in-the-middle attack
 - Works whenever use a cipher twice
 - Based on the observation:

If
$$C = E(K2, E(K1, P))$$
,
then $X = E(K1,P) = D(K2,C)$

- Encrypt P for all 2⁵⁶ keys. Store the result in a table and then sort the table.
- ightharpoonup Decrypt C with 2^{56} keys and check the result against the table for a match.
- If a match occurs, then test the two resulting keys against some more known plaintext-ciphertext pairs.

Triple-DES with Two-Keys

- An obvious counter to the meet-in-the-middle attack is to use three stages of encryption with 3 different keys
 → requiring key length 168-bits
 - Three times slower to run
- Can use 2 keys with E-D-E sequence
 - \bullet C = E(K1, D(K2, E(K1,P)))
 - ◆ The only advantage of the use of decryption for the second stage is: if K1=K2 then can work with single DES

60/71

Triple-DES with Three-Keys

- No current known practical attacks
 - ◆ Brute-force: 2¹¹²
 - ◆ Differential cryptanalysis: > 10⁵² plaintext-ciphertext pairs
- Can use Triple-DES with 3 Keys to avoid these
 - \bullet C = E(K3, D(K2, E(K1, P)))
- Has been adopted by some Internet applications, e.g., PGP, S/MIME

Other Attacks Against DES and Block Ciphers: Differential Cryptoanalysis (1)

- A cryptoanalytic technique developed by Eli Biham and Adi Shamir in late 1980s
- They attempted its use to cryptoanalyze DES:
 - Discovered that DES S-Boxes were designed to be resilient to it!
 - Evidence that NSA who co-developed DES in 1970s knew about the technique before they discovered it
 - Is this why S-Box design was kept secret?

Other Attacks Against DES and Block Ciphers: Differential Cryptoanalysis (2)

- Differential Cryptoanalysis: attempts to derive the secret key by studying the how the input plaintext affects the ciphertext.
 - Usually involves a form of a chosen plaintext attack where the attacker can encrypt any plaintext of choice
- Differential cryptoanalysis of blockciphers:
 - Monitors the changes in plaintext as it is processed through multiple rounds of transformation
 - Looks for instances where the changes appear to be non-random
 - Uses non-random changes to extract the secret key

Other Attacks Against DES and Block Ciphers: Linear Cryptoanalysis (2)

- First proposed by Matsuri in 1993 by Mitsuru Matsui and Atsuhiro Yamagishi for breaking a FEAL cipher
 - Newer than differential cryptoanalysis
- Was also applied to cryptoanalysis of DES:
 - ◆ Found that DES is more vulnerable to this technique than differential cryptoanalysis because S-Boxes were (probably) not designed with this attack in mind
 - However, a successful DES linear cryptoanalysis attack would require 2⁴³ known plaintext/ciphertext pairs, which is impractical
- Now a popular technique for attacking block ciphers

Other Attacks Against DES and Block Ciphers: Linear Cryptoanalysis (2)

- A form of a known plaintext attack, where attacker has a plaintext and its corresponding ciphertext pair.
 Tries to find the key
- Basic Idea: Assumes a linear relationship between the plaintext, key, and the ciphertext and tries to derive the key based on it.
- Formally: If ciphertext = E(Key, plaintext) where E is the encryption function, linear cryptoanalysis tries to find a linear function E' that approximates E
- Defense: Design S-Boxes so that the relationship between ciphertext, key, and plaintext is non-linear

DES Attacks Timeline

Year	Proposed/ implemented DES Attack
1977	Diffie & Hellman, (under-)estimate the costs of a key search machine
1990	Biham & Shamir propose differential cryptanalysis (247 chosen ciphertexts)
1993	Mike Wiener proposes design of a very efficient key search
	machine: Average search requires 36h. Costs: \$1.000.000
1993	Matsui proposes linear cryptanalysis (243 chosen ciphertexts)
Jun. 1997	DES Challenge I broken, 4.5 months of distributed search
Feb. 1998	DES Challenge II1 broken, 39 days (distributed search)
Jul. 1998	DES Challenge II2 broken, key search machine Deep Crack built by the
	Electronic Frontier Foundation (EFF): 1800 ASICs with 24 search engines each,
	Costs: \$250 000, 15 days average search time (required 56h for the Challenge)
Jan. 1999	DES Challenge III broken in 22 h 15 m (distributed search assisted by Deep
	Crack)
2006-2008	Reconfigurable key search machine COPACOBANA developed at the
	Universities in Bochum and Kiel (Germany), uses 120 FPGAs to break DES
	in 6.4 days (avg.) at a cost of \$10 000.

Other Block Ciphers and DES Alternatives

 In January 1997 National Institute of Standards (NIST) announced a competition for a cipher to replace DES and become Advanced Encryption Standard (AES):

Algorithm	Block Size (bits)	Key Lengths (bits)	Comments
Rijndael	128	128/192/256	The winner! Used as basis for AES
Mars	128	128/192/256	DES Replacement Finalist
RC6	128	128/192/256	DES Replacement Finalist
Serpent	128	128/192/256	DES Replacement Finalist
Twofish	128	128/192/256	DES Replacement Finalist
IDEA	64	128	DES Replacement Finalist

TwoFish (1)

- TwoFish was one of the candidates to replace DES
- Supports keys of up to 256 bits
- Uses 128-bit blocks
- Performs 16 rounds of Feistal Cipher when using 256 bit keys

TwoFish (2)

- Based on four S-Boxes
- Each S-Box outputs four bytes
- The S-Boxes are generated based on the key to achieve confusion
 - Different from DES where the S-Boxes are fixed
- Change in even 1 bit of the key results in very different S-Boxes

TwoFish (3)

- Uses Maximum Distance Separable (MDS) matrix to create diffusion
 - The output of S-Boxes is multiplied by the MDS

TwoFish (4)

- Where TwoFish is used:
 - KeePass password manager
 - File encryption
 - ◆ GSM mobile phones
 - Client-side encryption in cloud services
 - More:

https://www.schneier.com/academic/twofish/products. html