Week 2

Hari Sethuraman

By the end of Today

You should have a solid understanding of

- How computers store information
- The memory
- Datatypes

How do we write numbers?

• We write numbers in a form called 'base ten'

Examples

- 5 -> (5×10^{0})
- 65 -> $(6 \times 10^1) + (5 \times 10^0)$
- $125 \rightarrow (1 \times 10^2) + (2 \times 10^1) + (5 \times 10^0)$
- 213 -> $(2 \times 10^2) + (1 \times 10^1) + (3 \times 10^0)$

Questions:

- 159?
- 200?

Answers

- 159 -> $(1 \times 10^2) + (5 \times 10^1) + (9 \times 10^0)$
- 200 -> $(2 \times 10^2) + (0 \times 10^1) + (0 \times 10^0)$

How do computers 'write' numbers?

- Computers use something called 'Base two'
- Instead of each digit being a power of ten
- Computers use Powers of two
 - Each digit can only have two values: 0, 1
 - This is because transistors in computers can only be
 - 'Off' = 0
 - Or 'On' = 1

Continuation

Examples

```
• 1 -> (1 \times 2^0)
• 1 0 -> (1 \times 2^1) + (0 \times 2^0)
     • 2 + 0
• 1 1 0 -> (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)
     • 4 + 1 + 0
          • 5
• 1 1 0 1 1 -> (1 \times 2^4) + (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)
     • 16 + 8 + 0 + 2 + 1
          • 27
```

Problems

- •1111->?
- •10101->?
- -14 -> 8 + 4 + 2 + 0?
- •8 -> ?

Answers

```
• 1 1 1 1 -> (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)
     • 8 + 4 + 2 + 1
           • 15
• 10101-> (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)
     • 16 + 0 + 4 + 0 + 1
           • 21
• 14 \rightarrow 8 + 4 + 2 + 0
     • (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)
           • 1110
• 8 -> 8 + 0 + 0 + 0
     • (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (0 \times 2^0)
           • 1000
```

Bits and Bytes

- Each '0' or '1' is equal to one Bit
 - 1111-> Four Bits
 - 10101-> Five Bits
- Computers group Bits into Bytes
 - Eight Bits make One Byte
 - 1024 Bytes Make one Kilobyte
 - 1024 Kilobytes make one Megabyte
 - 1024 Megabytes make one Gigabyte
 - ...

What is the maximum Value you can store in a Byte?

• (A Byte is 8 bits) -> 1 1 1 1 1 1 1 1 1 -> 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1

Answer

- The maximum number you can represent is 255
- Why?
- 1 1 1 1 1 1 1 1 ·>
 - $(1 \times 2^7) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$
 - 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255
- This means you can represent 256 different values using just one Byte!
 - (256 because you include Zero 0 -> 0 0 0 0 0 0 0 0)

Memory

- The memory is a very big grid
- Each Cell is one bit.
- Each green Group is one Byte

Data types 1

- Char
 - Character: there are 256 different Characters. Represented using 'ASCII'

dec	hex oct	char	dec	hex oct	char	dec	hex oct	char	dec	hex oct	char
0		NULL	32		space	64		@	96		•
1		SOH	33		!	65		Α	97		а
2		STX	34			66		В	98		b
3		ETX	35		#	67		C	99		C
4		EOT	36		\$	68		D	100		d
5		ENQ	37		%	69		E	101		е
6		ACK	38		&	70		F	102		f
7		BEL	39			71		G	103		g
8		BS	40		(72		н	104		h
9		TAB	41)	73		1	105		i.
10		LF	42		*	74		J	106		j
11		VT	43		+	75		K	107		k
12		FF	44		,	76		L	108		1
13		CR	45		•	77		M	109		m
14		SO	46			78		N	110		n
15		SI	47		/	79		0	111		0
16 —		→ DLE	48 —	-	0	80		P	112 —		p
17		DC1	49		1	81		Q	113		q
18		DC2	50		2	82		R	114		r
19		DC3	51		3	83		S	115		S
20		DC4	52		4	84		Т	116		t
21		NAK	53		5	85		U	117		u
22		SYN	54		6	86		V	118		V
23		ETB	55		7	87		W	119		w
24		CAN	56		8	88		X	120		x
25		EM	57		9	89		Y	121		y
26		SUB	58		:	90		Z	122		z
27		ESC	59		;	91		[123		{
28		FS	60		<	92		\	124		1
29		GS	61		=	93]	125		}
30		RS	62		>	94		۸	126		~
31		US	63		?	95		_	127		DEL

Answers

- 'B' -> 66 -> 0 1 0 0 0 0 1 0
- '\$' -> 36 -> 0 0 1 0 0 1 0 0

Data types 2

• Int

- Integer: Any while number between -32,768 and 32,767
- Uses two Bytes or 16 bits of memory
- Integers are numbers you can add, divide, subtract and do other mathematical notations.

Bool

- Boolean: Can have two values: True, False
- Uses 1 byte or 8 bits of memory
- Why not 1 bit? Because the computer groups memory in bytes, we can't use an individual bit. So, we use a full byte.

Data types 3

- Float
 - Decimals: up to 4 numbers after decimal point
 - 4 bytes usually
- Double
 - Decimal: up to 8 numbers after decimal point
 - 8 bytes usually