

William Hergès¹

7 février 2025

Table des matières

1	Définition	2
2	Sous espace vectoriel	3
3	Déterminer une base du noyau	4

1. Définition

Définition 1

Une application f est dite linéaire de E dans F (deux sev) si et seulement si :

$$\forall (a,b) \in E^2, \forall (x,y) \in E^2, \quad f(ax+by) = af(x) + bf(y)$$

Théorème 1.1

Toute application linéaire est représentable par une matrice.

Exemple 1

Représentation d'une application linéaire de $\mathbb{R}^3 o \mathbb{R}^2$:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{1,1}x + a_{1,2}y + a_{1,3}z \\ a_{2,1}x + a_{2,2}y + a_{2,3}z \end{pmatrix}$$

Définition 2

L'image de A une matrice représentant l'application linéaire f de E dans F est notée ${\rm Im}A$ et :

$$Im A = \{AX | X \in E\}$$

L'image est l'ensemble des éléments atteints par l'application linéaire représentée par ${\cal A}.$

Définition 3

Le noyau de A une matrice représentant l'application linéaire f de E dans F est noté $\operatorname{Ker} A$ et :

$$Ker A = \{X | AX = 0, X \in E\}$$

Le noyau est l'ensemble des éléments donnant 0 par f.

Définition 4

La dimension d'un espace vectoriel est le nombre de vecteur d'une base (sauf si la base vaut $\{0\}$, dans ce cas là sa dimension vaut 0). On note la dimension de E dim E

D'une manière formelle, soit f une base de E, on a :

$$\dim(E) = \operatorname{card}(f)$$

(où card est le cardinal de f)

sauf si $f = \{0\}$, où dans ce cas $\dim(E) = 0$.

Théorème 4.1

La dimension de l'image de l'application linéaire f représentée par les matrices AX est égal au rang de A, i.e.

$$\dim \operatorname{Im} A = \operatorname{rg} A$$

Théorème 4.2

Théorème du rang

Soit f une application linéaire de E dans F.

 $\dim E = \dim \operatorname{Im} A + \dim \operatorname{Ker} A$

Théorème 4.3

Les vecteurs colonnes au dessus de la matrice A se trouvant au dessus des pivots constituent une base de l'image.

Exemple 2

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Après le pivot de Gauss, on obtient :

$$\begin{pmatrix} \boxed{1} & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Après le pivot de Gauss, on obtion $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Donc, une base de l'image est $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Comme $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est déjà échelonné, on a que $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ est une base de l'image

Sous espace vectoriel

Définition 5

Proposition 5.1

L'image et le noyau d'une application linéaire sont des sous-espaces vectoriels.

3. Déterminer une base du noyau

On a une base de l'image et on a A, la matrice représentant l'application linéaire à l'origine.

On sait que la base du noyau possède $\dim(E) - \dim \operatorname{Im}(A)$ (théorème du rang).

Pour chaque colonne sans pivot, on détermine un vecteur de la base du noyau (voir ce gif)