Find
$$\frac{dy}{dx}$$
.

1.
$$v = 4x^7$$

1.
$$y = 4x^7$$
 3. $y = 3x^8 + 2x + 1$ 5. $y = \pi^3$

5.
$$y = \pi^{2}$$

7.
$$y = -\frac{1}{3}(x^7 + 2x - 9)$$

Find f'(x).

9.
$$f(x) = x^{-3} + \frac{1}{x^7}$$

11.
$$f(x) = -3x^{-8} + 2\sqrt{x}$$

9.
$$f(x) = x^{-3} + \frac{1}{x^7}$$
 11. $f(x) = -3x^{-8} + 2\sqrt{x}$ 13. $f(x) = x^e + \frac{1}{x^{\sqrt{10}}}$ 15. $f(x) = \sqrt[3]{\frac{8}{x}}$

15.
$$f(x) = \sqrt[3]{\frac{8}{x}}$$

23. For
$$y = (1-x)(1+x)(1+x^2)(1+x^4)$$
 find $\frac{dy}{dx}\Big|_{x=1}$.

- 39. Find an equation of the tangent line to the graph of y = f(x) at x = -3 if f(-3) = 2 and f'(-3) = 5.
- 47. Show that $y = x^3 + 3x + 1$ satisfies y''' + xy'' 2y' = 0.
- 59. Show that the triangle that is formed by any tangent line to the graph of $y = \frac{1}{x}$, x > 0, and the coordinate axes has an area of 2 square units.
- 7. Find f'(x) of $(x^3 + 7x^2 8)(2x^{-3} + x^{-4})$ by first using the product rule, then by multiplying out and using the power rule.

Find f'(x).

13.
$$f(x) = \frac{x^2}{3x - 4}$$

15.
$$f(x) = \frac{(2\sqrt{x}+1)(x-1)}{x+3}$$

13.
$$f(x) = \frac{x^2}{3x - 4}$$
 15. $f(x) = \frac{(2\sqrt{x} + 1)(x - 1)}{x + 3}$ 17. $f(x) = (2x + 1)(1 + \frac{1}{x})(x^{-3} + 7)$

21. Find
$$\frac{dy}{dx}\Big|_{y=1}$$
 of $y = \frac{2x-1}{x+3}$.

25. Use a graphing calculator to find f'(1) of $f(x) = \frac{x}{x^2 + 1}$, then compare your answer to the falue obtained by differentiating by hand.

Find all values of x at which the tangent line to the given curve satisfies the stated property.

33.
$$y = \frac{x^2 + 1}{x + 1}$$
; parallel to the line $y = x$ 35. $y = \frac{1}{x + 4}$; passes through the origin

35.
$$y = \frac{1}{x+4}$$
; passes through the origin

- a. What should it mean to say that two curves intersect at right angles?
 - b. Show that the curves $y = \frac{1}{r}$ and $y = \frac{1}{2-r}$ intersect at right angles.