Fast Algorithms for Online Stochastic Convex Programming

SODA 2015

Online Stochastic Convex Programming

- Concave function f over a bounded domain $\subseteq \mathbb{R}^d$
- Convex set $S \subseteq [0,1]^d$ (i.e., constraints)
- Each time t, receive a set $A_t \subseteq [0,1]^d$
- $oldsymbol{v}$ Pick a vector $oldsymbol{v}_t^\dagger \in A_t$
- Goal: $maximize \ f(\boldsymbol{v}_{avg}^{\dagger}) \ subject \ to \ \boldsymbol{v}_{avg}^{\dagger} \in S$

Comparison

Bandits with Knapsack

 The available set of choices across time as the arms is persistent.

Online Packing

 The set of options in one time step is unrelated to the other time steps.

Stochastic Input Model

Random Permutation Model

- ullet T sets, $X_1,...,X_T$ in advance but unknown to the algorithm
- Set comes in an uniformly random order

IID Model

- There is a distribution \mathcal{D} over subsets of $[0,1]^d$
- For each time t, A_t is independently sample from \mathcal{D}

The RP model is stronger than the IID model

Benchmarks

```
\operatorname{avg-regret}_1(T) = \operatorname{OPT} - f(\boldsymbol{v}_{\operatorname{avg}}^{\dagger}), \text{ and}

\operatorname{avg-regret}_2(T) = d(\boldsymbol{v}_{\operatorname{avg}}^{\dagger}, S).
```

• where $d(v_{\text{avg}}^{\dagger}, S)$ represents the distance between vector v and S.

$$d(A,B) = \inf_{x \in A, y \in B} d(x,y).$$

Feasibility Problem

- A special case of online stochastic convex problem
- No objective function f
- The aim is to have v_{avg}^{\dagger} be in the set S
- Performance: the distance from the set S--- $d(v_{\text{avg}}^{\dagger}, S)$

Fenchel Duality

- Fenchel conjugate: $h^*(\theta) := \max_{\boldsymbol{y} \in [0,1]^d} \{ \boldsymbol{y} \cdot \boldsymbol{\theta} h(\boldsymbol{y}) \}$
- Dual function: $\theta \cdot z h^*(\theta)$
- Dual optimum: $\max_{\|\boldsymbol{\theta}\|_* \leq L} \{\boldsymbol{\theta} \cdot \boldsymbol{z} h^*(\boldsymbol{\theta})\}$

- In the feasibility problem, we have
- $d(\boldsymbol{x}, S) = \max_{||\boldsymbol{\theta}||_{*} < 1} \{\boldsymbol{\theta} \cdot \boldsymbol{x} h_{S}(\boldsymbol{\theta})\}$
- where h(x) = d(x, S) and $h^*(\theta) = h_S(\theta) := \max_{y \in S} \theta \cdot y$

Connection to Online Learning

- ullet In primal problem, the set A_t arrives in an online manner
- It is hard to use the online learning algorithms for making decisions in A_t (might predict an infeasible $\boldsymbol{v}_t^{\dagger}$)
- Instead of selecting $m{v}_t^\dagger$ in A_t , making decisions in dual variables $m{\theta}_t$ according to the dual function $\max_{||m{\theta}||_* \leq 1} \{ m{\theta} \cdot m{x} h_S(m{\theta}) \}$

Algorithm for the feasibility problem

```
Initialize \boldsymbol{\theta}_1.

for all t=1,...,T do

Set \boldsymbol{v}_t^{\dagger} = \arg\min_{\boldsymbol{v} \in A_t} \boldsymbol{\theta}_t \cdot \boldsymbol{v}

Choose \boldsymbol{\theta}_{t+1} by doing an OCO update with g_t(\boldsymbol{\theta}) = \boldsymbol{\theta} \cdot \boldsymbol{v}_t^{\dagger} - h_S(\boldsymbol{\theta}), and domain W = \{||\boldsymbol{\theta}||_* \leq 1\}.

end for
```

Updating rules (Online Mirror Descent):

$$\boldsymbol{\theta}_{t+1,j} = \frac{w_{t,j}}{\sum_{i} w_{t,j}}, \text{ where } w_{t,j} = w_{t-1,j} (1+\epsilon)^{g_t(\mathbf{e}_j)/M}$$

OMD: http://web.stanford.edu/~takapoui/omd.pdf

Performance

$$\begin{array}{lll} \mathbb{E}[\mathit{avg-regret}_2(T)] &:= & \mathbb{E}[\mathit{d}(\boldsymbol{v}_{\mathit{avg}}^\dagger, S)] \\ & \leq & O\left(\frac{\mathcal{R}(T)}{T} + ||\mathbf{1}_d|| \sqrt{\frac{s \log(d)}{T}}\right) \end{array} & \mathcal{R}(T) \leq O(L\sqrt{dT})$$

• where R(T) represents the regret for OCO with $g_t(\theta)$; and d and s represents the number of dimension and the coordinate-wise largest value of one vector in S

Online Stochastic Problem

 Reduce the feasibility problem to the online stochastic problem:

$$S' = \{ \boldsymbol{v} : f(\boldsymbol{v}) \geq \text{OPT}, \boldsymbol{v} \in S \}$$

• Require the estimation of OPT with $O(\frac{1}{\sqrt{t}})$ per step errors.

Involve a parameter Z

- Define OPT^{δ} as the optimal value of f with feasibility constraints relaxed to $d(\frac{1}{T}\sum_{t} v_{t}, S) \leq \delta$
- Then, given a $Z \ge 0$ such that that for all $\delta \ge 0$ have

$$OPT^{\delta} \leq OPT + Z\delta$$

Online Stochastic Problem

 Combine the objective and the constraints together with a constant factor Z.

```
Initialize \boldsymbol{\theta}_1, \boldsymbol{\phi}_1.

for all t=1,...,T do

Choose option
\boldsymbol{v}_t^\dagger = \arg\max_{\boldsymbol{v}\in A_t} -\boldsymbol{\phi}_t \cdot \boldsymbol{v} - 2(Z+L)\boldsymbol{\theta}_t \cdot \boldsymbol{v}.
Choose \boldsymbol{\theta}_{t+1} by doing an OCO update for g_t(\boldsymbol{\theta}) = \boldsymbol{\theta} \cdot \boldsymbol{v}_t^\dagger - h_S(\boldsymbol{\theta}) over domain W = \{\|\boldsymbol{\theta}\|_* \leq 1\}.
Choose \boldsymbol{\phi}_{t+1} by doing an OCO update for \psi_t(\boldsymbol{\phi}) = \boldsymbol{\phi} \cdot \boldsymbol{v}_t^\dagger - (-f)^*(\boldsymbol{\phi}) over domain U = \{\|\boldsymbol{\phi}\|_* \leq L\}.
end for
```

f is the objective, and L is the parameter of L-Lipschitz

Performance

• For online stochastic problem, the regrets are

$$\begin{split} \mathbb{E}[avg\text{-}regret_1(T)] &= (Z+L)\cdot O\left(\sqrt{\frac{C}{T}}\right) \\ \mathbb{E}[avg\text{-}regret_2(T)] &= O\left(\sqrt{\frac{C}{T}}\right) \end{split}$$

Take-aways

- The online learning algorithms usually require a fixed set over all rounds for making decisions, but these feasible sets among different rounds are hard to be fixed.
- However, online learning algorithms can work well on the dual problem---i.e., the feasible sets of dual variables could be fixed.

The analysis is still hard to follow.

Thanks!