1.1 - Description d'un corps pur diphasé

Titre d'un système diphasé liquide-gaz

Le titre en liquide ou en vapeur, notés \mathbf{x}_{L} et \mathbf{x}_{V} , est la proportion de la phase liquide ou vapeur dans un système diphasé:

n_V ou m_V

$$x_{L} = \frac{n_{L}}{n_{L} + n_{V}} = \frac{m_{L}}{m_{L} + m_{V}}$$
 $x_{V} = \frac{n_{V}}{n_{L} + n_{V}} = \frac{m_{V}}{m_{L} + m_{V}}$ (et bien sûr $x_{L} + x_{V} = 1$)

$$x_{V} = \frac{n_{V}}{n_{L} + n_{V}} = \frac{m_{V}}{m_{L} + m_{V}}$$

(et bien sûr
$$x_L + x_V = 1$$
)

n_L ou m_L

Règle des moments (démonstration à connaitre)

On considère un système constitué d'un corps pur diphasé, à la pression P, et température T.

- z est une variable d'état massique extensive du système total (v, u, h, s, etc.);
- $\mathbf{z_v}$ / $\mathbf{z_l}$ les valeurs massiques de cette variable d'état pour la vapeur / le liquide.

Les titres en liquide et vapeur sont :

$$\mathbf{x_l} = \frac{\mathbf{z} - \mathbf{z_v}}{\mathbf{z_l} - \mathbf{z_v}} \qquad \quad \mathbf{x_v} = \frac{\mathbf{z_l} - \mathbf{z}}{\mathbf{z_l} - \mathbf{z_v}}$$

$$x_{v} = \frac{z_{l} - z}{z_{l} - z_{v}}$$

I.2 - Variance d'un corps pur

Définition de la variance d'un système thermodynamique

La variance V d'un système thermodynamique est le nombre de paramètres intensifs indépendants qu'il est possible de faire varier sans rompre un état d'équilibre du système (c'est-à-dire, faire apparaitre ou disparaitre un constituant physico-chimique).

Valeur de la variance d'un corps pur monophasé ou diphasé

Un système fermé constitué d'un <u>corps pur</u> à l'équilibre possède une variance de :

- $2\,s$ 'il est sous un seul état physique $(s,l\,ou\,g)$: on peut fixer deux grandeurs intensives indépendamment $(P\,et\,T)$.
- 1 s'il est en équilibre entre 2 états (l/g,s/l,...) : si on fixe P, alors T est imposée par le système (et vice-versa).
- 0 s'il est en équilibre entre 3 états, c'est-à-dire au point triple (s/l/g) : on ne choisit rien!

1.3 - Grandeurs de changement d'état

Grandeurs de changement d'état, variation d'enthalpie et d'entropie

Lors d'une transformation d'une quantité n=m/M d'un corps pur de la phase $\alpha \to \beta$, la variation d'enthalpie et d'entropie s'écrivent :

$$\Delta H = n \cdot \Delta_{\alpha \to \beta} H$$
 $\Delta S = n \cdot \Delta_{\alpha \to \beta} S$

Où $\Delta_{\alpha o \beta} H$ et $\Delta_{\alpha o \beta} S$ sont les grandeurs de changement d'état molaires (en J. mol^{-1}). On peut faire la même chose avec les grandeurs massiques (c'est le plus souvent utilisé) :

$$\Delta H = m \cdot \Delta_{\alpha \to \beta} h$$
 et $\Delta S = m \cdot \Delta_{\alpha \to \beta} S$

Où $\Delta_{lpha oeta}$ h et $\Delta_{lpha oeta}$ s sont les grandeurs de changement d'état massiques (en J. kg $^{-1}$)

Quelques exemples numériques :

À P = 1 bar	Enthalpie de change	ement d'état Δ _{α→β} H	Entropie de changement d'état $oldsymbol{\Delta}_{lpha ightarrowoldsymbol{S}}$			
	molaire (kJ. mol ⁻¹)	massique (kJ. kg ⁻¹)	$molaire (J. K^{-1}. mol^{-1})$	massique (J. K^{-1} . kg^{-1})		
$H_2O~(l \rightarrow g)$, $100^{\circ}C$	$\Delta_{\text{vap}}H = 40.7$	$\Delta_{\text{vap}} h = 2265$	$\Delta_{\text{vap}}S = 109$	$\Delta_{\text{vap}} s = 6072$		
$H_2O(s \rightarrow l), 0^{\circ}C$	$\Delta_{\text{fus}}H = 6.0$	$\Delta_{\text{fus}} h = 334$	$\Delta_{\text{fus}}S = 22$	Δ_{fus} s = 895		

On doit savoir passer des grandeurs molaires aux grandeurs massiques sans problème (via l'utilisation de la masse molaire du composé chimique considéré):

$$\Delta H = \Delta_{\alpha \to \beta} H \cdot n = \Delta_{\alpha \to \beta} H \cdot \frac{m}{M} = \frac{\Delta_{\alpha \to \beta} H}{M} \cdot m \qquad \Rightarrow \qquad \Delta_{\alpha \to \beta} h = \frac{\Delta_{\alpha \to \beta} H}{M}$$

Lien entre enthalpie et entropie de changement d'état

On considère une transformation réversible de la phase lpha oeta, à la température de changement d'état T_c :

$$\Delta S = S_e + \underbrace{S_c}_0 = \frac{Q}{T_c} = \frac{\Delta H}{T_c} \qquad \text{avec} \qquad \begin{cases} \Delta S = n \cdot \Delta_{\alpha \to \beta} S \\ \Delta H = n \cdot \Delta_{\alpha \to \beta} H \end{cases}$$

Si on reprend l'expression de la variation d'enthalpie pour un changement $\alpha \to \beta$, on en déduit :

$$\Delta_{\alpha \to \beta} S = \frac{\Delta_{\alpha \to \beta} H}{T_c} \qquad \text{ou en massique}: \qquad \Delta_{\alpha \to \beta} s = \frac{\Delta_{\alpha \to \beta} h}{T_c}$$

II - DIAGRAMMES THERMODYNAMIQUES

On doit savoir déterminer l'allure des isotherme, isobares, isentropiques et isenthalpiques (nommées collectivement « courbes iso ») dans les cas limites du gaz parfait, de la phase condensée idéale, et dans la zone diphasée. On utilisera :

- Les équations d'état du g.p. et de la phase condensée idéale : (PV = nRT) et (v = cte) ;
- Des identités thermodynamiques : (dh = T ds + v dP) et (du = T ds P dv);
- Les deux lois de Joule : (dh = c_P dT) et (du = c_V dT) pour un g.p. et (du \simeq dh \simeq c dT) pour une phase condensée idéale ;
- La loi de Laplace pour les transformations isentropiques d'un gaz parfait : $(Pv^{\gamma} = cte)$ ou $(Tv^{\gamma-1} = cte)$.

II.1 - Diagramme de Clapeyron (P, v)

Dans un diagramme de Clapeyron, on représente la pression P du système en fonction du volume massique du fluide $v = 1/\rho = V/m$. On y distingue deux états de la matière (liquide, gaz), un domaine supercritique, et un domaine de coexistence liquide-gaz, sous la courbe de saturation.

On y représente souvent des isothermes, c'est-à-dire l'évolution d'un fluide à température constante, à mesure qu'on chauffe ou refroidit le système.

_	Dans la limite du gaz parfait $\left(Pv = \frac{R}{M}T\right)$				
Isotherme	$\text{Loi des g.p.}: P = \frac{nRT}{V} = \frac{m}{m} \cdot \frac{nRT}{V} = \frac{RT}{Mv} \Rightarrow \log(P) = \underbrace{\log(RT/M)}_{\text{cte}} - \log(v)$				
T = cte	En log-log : Droites de pente -1 En lin-lin : branches d'hyperbole				
Isenthalpique	Loi de Joule : $dh = c_P dT \xrightarrow{dh=0} dT = 0$				
$\mathbf{h} = \mathbf{cte}$	Confondues avec les isothermes (en rouge)				
Isentropique	Loi de Laplace : $Pv^{\gamma} = cte \implies P = \frac{cte}{v^{\gamma}} \implies log(P) = log(cte) - \gamma \cdot log(v)$				
s = cte	En log-log : Droites de pente $-\gamma$ En lin-lin : $1/x^{\gamma}$				
	Dans la limite du liquide idéal ($\mathbf{v} = \mathbf{cte}$)				
Toute courbe	Quel que soit le paramètre maintenu constant : $v = cte \Rightarrow log(v) = cte$				
iso.	Droites verticales				
	Zone diphasée				
Isothermes	$V = 1$ donc $(P = cte \Rightarrow T = cte)$				
Isobares	Les isothermes sont confondues aux isobares . Les deux sont horizontales.				

Les raisonnements ci-dessus doivent savoir être retrouvés pour chacun des diagrammes abordés! (voir cours et TDs)

II.2 - Diagramme des frigoristes (log(P), h)

II.3 - Diagramme entropique (T, s)

II.4 - Diagrammes de Mollier (h,s)

III - TABLES THERMODYNAMIQUES

III.1 - Tables de liquide et table de vapeur sèche

Les <u>tables du liquide</u> concernent les propriétés du liquide lorsqu'il n'est pas en équilibre avec sa vapeur (indiquer la zone ci-contre sur le diagramme (P, T)).

Ces tables indiquent le plus souvent la valeur de v, u, h et s en fonction de la température et de la pression du liquide, ces deux grandeurs pouvant varier indépendamment l'une de l'autre.

Elles peuvent prendre l'allure suivante :

°C	$v \times 10^3$ m ³ /kg	u kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K	$v \times 10^3$ m ³ /kg	u kJ/kg	<i>h</i> kJ/kg	s kJ/kg · K	
		p = 25 bar	= 2.5 MP	p = 50 bar = 5.0 MPa					
20	1.0006	83.80	86.30	.2961	.9995	83.65	88.65	.2956	
40	1.0067	167.25	169.77	.5715	1.0056	166.95	171.97	.5705	
80	1.0280	334.29	336.86	1.0737	1.0268	333.72	338.85	1.0720	
100	1.0423	418.24	420.85	1.3050	1.0410	417.52	422.72	1.3030	
140	1.0784	587.82	590.52	1.7369	1.0768	586.76	592.15	1.7343	
180	1.1261	761.16	763.97	2.1375	1.1240	759.63	765.25	2.1341	

On représente ci-contre une portion de table thermodynamique dans laquelle on indique les grandeurs massiques v, h, u et s pour l'eau liquide pure, à température variable (et pour deux pressions, 2,5 et 5 MPa).

Les <u>tables de la vapeur sèche</u> concernent les propriétés du gaz lorsqu'il n'est pas en équilibre avec son liquide (indiquer la zone ci-contre sur le diagramme (P, T)).

Ces tables indiquent le plus souvent la valeur de v, u, h et s en fonction de la température et de la pression du gaz, ces deux grandeurs pouvant varier indépendamment l'une de l'autre.

T

Elles peuvent prendre l'allure suivante :

<i>T</i> °C	v m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	s kJ/kg⋅K	v m³/kg	u kJ/kg	<i>h</i> kJ/kg	s kJ/kg⋅K		
	III-7Kg	KJ/Kg	KJ/Kg	K7\KB.I/	III-7Kg	KJ/Kg	KJ/Kg	k7/kg·l/		
	$P = 1.00 \text{ MPa } (179.88^{\circ}\text{C})$					$P = 1.20 \text{ MPa } (187.96^{\circ}\text{C})$				
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.1	6.5909		
250	0.23275	2710.4	2943.1	6.9265	0.19241					
300	0.25799	2793.7	3051.6	7.1246	0.21386	. —				
350	0.28250	2875.7	3158.2	7.3029	0.23455	"Surger over Art and Section	the control of the second control of	Stranger and accounty		
400	0.30661	2957.9	3264.5	7.4670	0.25482	And the state of the second	Action to the second second	7.3793		
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477.0	7.6779		

On représente ci-contre une portion de table thermodynamique dans laquelle on indique les grandeurs massiques v, h, u et s pour l'eau gazeuse pure, à température variable (et pour deux pressions, 1 et 1,2 MPa).

III.2 - Tables de la vapeur saturante et du liquide saturant

Ces tables concernent les propriétés du corps pur diphasé, donc de **variance égale à 1**. Il est alors impossible de fixer librement T et P simultanément. Ces tables sont donc à <u>une seule entrée</u>: la plupart du temps, la première colonne liste un ensemble de températures, et la seconde, les uniques pressions correspondantes pour lesquelles le système diphasé existe.

Puisque le système comprend à la fois du liquide et du solide, on doit indiquer dans le tableau les propriétés des deux phases. Cela prend donc l'allure suivante :

		Specific \	/olume	Sp. Intern	al Energy	Specific Enthalpy kJ/kg		Specific Entropy kJ/kg-K	
Temp	Press	m3/	kg	kJ/	kg .				
°C	bar	vf x 10 ³	vg	uf	ug	hf	hg	sf	sg
50	0.12350	1.0121	12.031	209.47	2443.0	209.48	2591.6	0.7039	8.0755
60	0.19941	1.0170	7.670	251.61	2456.2	251.63	2609.1	0.8323	7.9087
70	0.31189	1.0227	5.042	293.65	2469.1	293.69	2626.3	0.9567	7.7545
80	0.47391	1.0289	3.407	335.60	2481.7	335.65	2643.2	1.0772	7.6114
90	0.70141	1.0359	2.360	377.49	2494.1	377.56	2659.6	1.1941	7.4782
100	1.0135	1.0434	1.673	419.39	2506.0	419.50	2675.6	1.3080	7.3540
120	1.9854	1.0604	0.892	503.47	2528.8	503.68	2705.8	1.5275	7.1288
140	3.6130	1.0800	0.509	588.34	2549.6	588.73	2733.4	1.7380	6.9291

On représente ci-contre une portion de table thermodynamique dans laquelle on indique les grandeurs massiques v, h, u et s pour l'équilibre liquide-vapeur de l'eau à température variable.

Ici, les pressions sont imposées par les températures. Ce sont les pressions de vapeur saturante de l'équilibre liquide-vapeur.