

Mécanique des systèmes

Consignes générales :

- Documents autorisés : formulaire personnel (1,5 page A4), un tableau des liaisons (sans les conditions de liaison) et une calculatrice.
- Les réponses, <u>succinctes et synthétiques</u>, doivent êtres portées sur le <u>sujet</u> <u>qui sera rendu en fin de contrôle</u>. Elles ne doivent contenir que les étapes principales de calcul. Les calculs détaillés doivent être préparés et laissés au brouillon.
- Le barème est donné à titre purement indicatif.

NOM / Prénom :	GROUPE:

Le mécanisme plan, de normale \vec{y} et schématisé ci-dessous, est un mécanisme d'entrainement d'une griffe de caméra ou de projecteur de cinéma.

Le mécanisme est constitué :

• D'une bielle d'entrainement S₁, en liaison pivot d'axe $\left(O_1,\vec{y}\right)$ avec le bâti S₀.

Paramètre de mouvement 1/0 : $\theta_1 = (\vec{x}_0, \vec{x}_1)$

• D'une bielle secondaire S2, en liaison pivot d'axe (O_2, \vec{y}) avec le bâti S0.

Paramètre de mouvement 2/0 : $heta_2 = \left(ec{x}_0, ec{x}_2
ight)$

• De la griffe S₃, en liaison pivot (A, \vec{y}) avec la bielle S₁.

Paramètre de mouvement 3/0 : $\theta_3 = (\vec{x}_0, \vec{x}_3)$ attention <u>paramétrage absolu</u>

Par ailleurs:

• La griffe S_3 est en liaison pivot d'axe (B, \vec{y}) avec la bielle secondaire S_2 .

Cette liaison n'est pas paramétrée.

Questions:

Q1 Tracer les figures de changement de base et le graphe des liaisons. (2			(2 pts)
<u>Figu</u>	res de changement de base	Graphe des liaisons :	
Q2	Donner explicitement la condition de ferme associées et donner la mobilité du système.	eture de chaîne, écrire les équations de liaison	
	Les <u>projections</u> sont à effectuer impérativen	nent dans la base 0.	(4 pts)
Con	dition de fermeture :		
<u>Equa</u>	<u>itions de liaison :</u>		
<u>Mob</u>	lité :		
Q3	Décrire la trajectoire de A/0, calculer la vitess	se et l'accélération du point A/0.	(4 pts)
<u>Traje</u>	ctoire de A/0 :		
<u>Vites</u>	<u>se de A/0 :</u>		
Acce	lération de A/0 :		

Q4	Préciser, en justifiant votre réponse, la nature du mouvement 3/2 et donner son torseur		
	distributeur des vitesses au point B, en fonction de $\dot{ heta}_2$, $\dot{ heta}_3$ et des données géométriques.		
	Calculer la vitesse de C/2.	(4	

(4 pts)

Nature du mouvement 3/2 :

Torseur distributeur des vitesses au point B:

Vitesse de C/2 :

Q5 Calculer la vitesse de C/0.

(2 pts)

Indication : On conservera l'expression intrinsèque qui comporte des termes dans les bases 1 et 3.

Vitesse de C /0 :

Q6 Dans le contexte où les angles θ_i sont petits ($\cos \theta_i \approx 1$ et $\sin \theta_i \approx \theta_i$), les équations de liaison, obtenues à la question 2, peuvent être écrites sous la forme :

$$\begin{cases} a_1\,\theta_1+a_2\,\theta_2+a_3=0\\ b_3\,\theta_3+b_4=0 \end{cases} \qquad \text{où} \qquad a_1\,,\;a_2\,,\;a_3\,,\;b_3 \text{ et }b_4 \text{ sont des constantes}$$

Donner, dans ce contexte, les valeurs des coefficients a_i et b_i .

Après avoir dérivé ces équations par rapport au temps, donner les expressions des vitesses angulaires $\dot{\theta}_2$ et $\dot{\theta}_3$ en fonction de $\dot{\theta}_1$ et des paramètres géométriques.

Donner le torseur distributeur des vitesses du mouvement 3/0 en C.

Préciser, en cochant les bonnes cases :

- la nature du mouvement 3/0,
- la trajectoire de C/0.

(4 pts)

Tous les résultats de la Q6 sont exprimés en considérant les angles $\,\theta_{i}\,$ petits.

Expression des coefficients a _i et b _i :	
Expressions des vitesses angulaires $\dot{\theta}_2$ et $\dot{\theta}_3$:	
Torseur distributeur des vitesses 3/0 en C :	
Nature du mouvement 3/0 :	Nature de la trajectoire de C/0 :
\square le mouvement 3/0 est une rotation d'axe $\left(O_1,\vec{y}\right)$ \square le mouvement 3/0 est une rotation d'axe $\left(A,\vec{y}\right)$ \square le mouvement 3/0 est une translation selon $\vec{x}_1 \approx \vec{x}_0$ \square le mouvement 3/0 est une translation selon $\vec{z}_1 \approx \vec{z}_0$	□ la trajectoire de C/0 est un cercle de rayon ℓ_1 et de centre O_C tel que $\overrightarrow{O_1O_C} = \overrightarrow{AC}$ □ la trajectoire de C/0 est un cercle de rayon ℓ_1 et de centre O_C tel que $\overrightarrow{O_1O_C} = \overrightarrow{O_1A}$ □ la trajectoire de C/0 est une droite horizontale d'axe $\overrightarrow{x}_1 \approx \overrightarrow{x}_0$ □ la trajectoire de C/0 est une droite verticale d'axe $\overrightarrow{z}_1 \approx \overrightarrow{z}_0$
Justifications (mouvement 3/0 et trajectoire de C/0) :	