Modelo de probabilidad gamma

Función gamma

$$\Gamma(p) = \int_{0}^{\infty} x^{p-1}e^{-x}dx,$$

Aplicaciones

aplicaciones a experimentos o fenómenos aleatorios que tienen asociadas variables aleatorias que siempre son no negativas y cuyas distribuciones son sesgadas a la derecha, es decir, el área bajo la función de densidad disminuye a medida que nos alejamos del origen.

Características

$$E[X] = \frac{p}{a}$$
 $Var[X] = \frac{p}{a^2}$

$$f(x) = ae^{-ax}, x > 0$$

 $F(x) = 1 - e^{-ax}, x > 0$

Más concretamente, si el número de ocurrencias en un intervalo de longitud t sigue una distribución $P(\lambda t)$, tiempo de espera entre dos ocurrencias consecutivas

(o hasta la primera ocurrencia) tiene una distribución $Exp(\lambda)$.

Es una función que extiende el concepto de factorial a los números complejos. Fue presentada, en primera instancia, por Leonard Euler entre los años 1730 y 1731. Se le conoce, también, como una generalización de la distribución exponencial, además de la distribución de Erlang y la distribución Ji-cuadrada

Propiedades

- a) Γ(1) = 1
- b) $\Gamma(p) = (p-1)\Gamma(p-1), p > 1.$
- c) Si p ∈ Z⁺, Γ(p) = (p − 1)!.
- d) Si a > 0,

Ejemplos

- Intervalos de tiempo entre dos fallos de un motor.
- Intervalos de tiempo entre dos llegadas de automóviles a una gasolinera.
- Tiempos de vida de sistemas electrónigos

Relacion con la Poisson

Sirve para representar el tiempo de espera entre dos ocurrencias consecutivas de un suceso cuando las ocurrencias se dan de forma independiente a lo largo del tiempo.

