Stirling and Bessel Interpolation

Nguyen Viet Anh 20200039

January 10, 2022

CONTENTS

- GENERAL KNOWLEDGE
- STIRLING INTERPOLATION
- BESSEL INTERPOLATION
- STIRLING, BESSEL vs GAUSS FORWARD, BACKWARD
- **5** FINAL ASSESSMENTS

1. Difference

• Given a function f(x) with n known data points with constant x-interval $(x_k - x_{k-1} = h)$:

$$f(x_i) = y_i \quad \forall i \in [1, n]$$

• Difference at y_k (Δy_k) (difference of order 1):

$$\Delta y_k = y_{k+1} - y_k$$

Difference of order p:

$$\Delta^p y_k = \Delta^{p-1} y_{k+1} - \Delta^{p-1} y_k$$

- 2. Difference table
- A difference table represents the differences of all orders generated from the known set of data points, such as following:

Χ	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	
:	:					
x_2	<i>y</i> ₋₂					
x_1	<i>y</i> ₋₁	Δy_{-2} Δy_{-1}	$\Delta^2 y_{-2}$	$\Delta^3 y_{-2}$		
<i>x</i> ₀	<i>y</i> ₀		$\Delta^2 y_{-1}$		$\Delta^4 y_{-2}$	
<i>x</i> ₁	<i>y</i> 1	Δy_0 Δy_1	$\Delta^2 y_0$	$\Delta^3 y_{-1}$		
<i>x</i> ₂	<i>y</i> 2	71				
:	:					

3. Polynomial interpolation

- **Definition:** Interpolation which approximate a function f(x) with a polynomial P(x) (known as interpolating polynomial) based on a set of known data points $\{(x_i, y_i)\}_{i=1}^n$.
- $P(x_i) = f(x_i)$, $i = \overline{1, n}$
- $\deg P = n 1$ (n: number of data points)
- The deduction of polynomial P(x) from a fixed set of data points $\{(x_i, y_i)\}_{i=1}^n$ is unique.

4. Gauss Forward and Backward Interpolation

Suppose a set of 2n + 1 points is given: $\{(x_i, y_i)\}_{i=-n}^n$

• Gauss Forward Interpolation:

$$P(x_0 + ht) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n-1)(t+n-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n}$$

Error =
$$\left| \frac{\Delta^{2n} y_{-n}}{(2n)!} \cdot t \prod_{i=1}^{n} (t^2 - i^2) \right|$$

Gauss Backward Interpolation

$$P(x_0 + th) = y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n} y_{-n}$$

Error =
$$\left| \frac{\Delta^{2n} y_{-n}}{(2n)!} \cdot t \prod_{i=1}^{n} (t^2 - i^2) \right|$$

- 5. Difference table for Gauss Forward Interpolation
- Assume that a set of 5 points $\{(x_i, y_i)\}_{i=-2}^2$ is given. Hence the difference table of Gauss Forward Interpolation:

5. Difference table for Gauss Backward Interpolation

Consider the same set above for Gauss Backward Interpolation:

X	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	
:	:					
x_2	<i>y</i> _2					
x ₋₁	<i>y</i> ₋₁	Δy_{-2} Δy_{-1}	$\Delta^2 y_{-2}$	$\Delta^3 y_{-2}$		
<i>x</i> ₀	y ₀	- → Δy ₀	$\Delta^2 y_{-1}$	$\Delta^3 y_{-1}$	$\Delta^4 y_{-2}$	• • •
<i>x</i> ₁	<i>y</i> 1	Δy_1	$\Delta^2 y_0$, -		
<i>x</i> ₂	<i>y</i> ₂					
:	÷					

1. Idea

- Stirling interpolation imputes an approach for a set of odd number of data points through which the computational expense and storage, comparing to Gauss Forward and Backward Interpolation, is heavily reduced.
- **Idea overview:** Transform non-odd and non-even polynomials to odd or even polynomials, therefore using x^2 as a variable instead of x

2. Formulas

Stirling interpolation is the arithmetic mean of Gauss Forward and Backward Interpolation

$$Stirling = \frac{Gauss\ Forward + Gauss\ Backward}{2}$$

 $\begin{cases} x_0 : \text{central data point} \\ h : \text{difference between 2 consecutive data points} \end{cases}$

Let:
$$t = \frac{x - x_0}{h} \Longrightarrow x = x_0 + ht$$

2. Formulas

 Stirling interpolation is the arithmetic mean of Gauss Forward and Backward Interpolation

$$Stirling = \frac{Gauss Forward + Gauss Backward}{2}$$

 $\begin{cases} x_0 : \text{central data point} \\ h : \text{difference between 2 consecutive data points} \end{cases}$

Let:
$$t = \frac{x - x_0}{h} \Longrightarrow x = x_0 + ht$$

• Gauss Forward Interpolation:

$$P(x_0 + ht) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n-1)(t+n-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n}$$

2. Formulas

 Stirling interpolation is the arithmetic mean of Gauss Forward and Backward Interpolation

$$Stirling = \frac{Gauss\ Forward + Gauss\ Backward}{2}$$

 $\begin{cases} x_0 : \text{central data point} \\ h : \text{difference between 2 consecutive data points} \end{cases}$

Let:
$$t = \frac{x - x_0}{h} \Longrightarrow x = x_0 + ht$$

• Gauss Forward Interpolation:

$$P(x_0 + ht) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n-1)(t+n-1)\dots(t-n)}{(2n)!}\Delta^{2n} y_{-n}$$

Gauss Backward Interpolation:

$$P(x_0 + ht) = y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-2} + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n)(t+n-1)\dots(t-n+1)}{(2n)!}\Delta^{2n} y_{-n}$$

2. Formulas

• Consider the differences of odd order 2k + 1:

$$\begin{cases} \text{Gauss Forward: } \prod\limits_{\substack{i=-k\\(2k+1)!}}^k (t-i) \\ \prod\limits_{\substack{k\\(2k+1)!}}^k (t-i) \\ \text{Gauss Backward: } \frac{\prod\limits_{i=-k}^k (t-i)}{(2k+1)!} \Delta^{2k+1} y_{-k-1} \end{cases}$$

2. Formulas

Consider the differences of odd order 2k + 1:

$$\begin{cases} \text{Gauss Forward: } \frac{\prod\limits_{i=-k}^{k}(t-i)}{(2k+1)!}\Delta^{2k+1}y_{-k} \\ \prod\limits_{i=-k}^{k}(t-i)}\Delta^{2k+1}y_{-k-1} \end{cases}$$

 \implies The difference of odd order 2k + 1 for Stirling Interpolation:

$$=\frac{\prod\limits_{i=-k}^{n}(t-i)}{(2k+1)!}\frac{\Delta^{2k+1}y_{-k}+\Delta^{2k+1}y_{-k-1}}{2}$$

$$=\frac{t\prod\limits_{i=1}^{k}(t^2-i^2)}{(2k+1)!}\frac{\Delta^{2k+1}y_{-k}+\Delta^{2k+1}y_{-k-1}}{2}$$

2. Formulas

Consider the differences of even order 2k:

$$\begin{cases} \text{Gauss Forward: } \prod\limits_{i=-k}^{k-1}(t-i)\\ \frac{1}{(2k)!}\Delta^{2k}y_{-k} \end{cases} \\ \text{Gauss Backward: } \frac{\prod\limits_{i=-k+1}^{k}(t-i)}{(2k)!}\Delta^{2k}y_{-k} \end{cases}$$

2. Formulas

Consider the differences of even order 2k:

$$\begin{cases} \text{Gauss Forward: } \prod\limits_{i=-k}^{k-1} (t-i) \\ \prod\limits_{i=-k}^{k} (2k)! \Delta^{2k} y_{-k} \end{cases}$$

$$\begin{cases} \text{Gauss Backward: } \prod\limits_{i=-k+1}^{k} (t-i) \\ (2k)! \Delta^{2k} y_{-k} \end{cases}$$

 \implies The difference of even order 2k for Stirling Interpolation:

$$\frac{1}{2}(t+k+t-k)\frac{\prod\limits_{i=-k+1}^{k-1}(t-i)}{(2k)!}\Delta^{2k}y_{-k}$$

$$=\frac{\prod\limits_{i=0}^{k-1}(t^2-i^2)}{(2k)!}\Delta^{2k}y_{-k}$$

2. Formulas

The above deduces Stirling Interpolation:

$$P(x_{0} + ht) = y_{0} + t \frac{\Delta y_{0} + \Delta y_{-1}}{2} + \frac{t^{2}}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{3!} \frac{\Delta^{3} y_{-1} + \Delta^{3} y_{-2}}{2} + \dots + \frac{t(t^{2}-1^{2})(t^{2}-2^{2})...(t^{2}-(n-1)^{2})}{(2n-1)!} \frac{\Delta^{2n-1} y_{-n} + \Delta^{2n-1} y_{-n+1}}{2} + \frac{t^{2}(t^{2}-1^{2})(t^{2}-2^{2})...(t^{2}-(n-1)^{2})}{(2n)!} \Delta^{2n} y_{-n}$$

$$\implies P(x_{0} + ht) = y_{0} + \sum_{k=0}^{n-1} \left(\frac{t}{i} \prod_{i=1}^{k} (t^{2} - i^{2}) \frac{\Delta^{2k+1} y_{-k} + \Delta^{2k+1} y_{-k-1}}{2} \right) + \sum_{k=1}^{n} \left(\frac{\prod_{i=0}^{k-1} (t^{2} - i^{2})}{(2k)!} \Delta^{2k} y_{-k} \right)$$

2. Formulas

• The difference table for Stirling Interpolation **Example:** Given a 5-point set $\{(x_i, y_i)\}_{i=-2}^2$

3. Error

Error of Stirling interpolation equals the mean of errors of Gauss Forward and Gauss Backward Interpolation:

$$\implies |R(x)| \le \left| \frac{\Delta^{2n} y_{-n}}{(2n)!} \cdot t \prod_{i=1}^{n} (t^2 - i^2) \right|$$

4. Conclusion

Stirling interpolation formula:

$$P(x_0 + ht) = y_0 + t \frac{\Delta y_0 + \Delta y_{-1}}{2} + \frac{t^2}{2!} \Delta^2 y_{-1} + \frac{t(t^2 - 1)}{3!} \frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2} + \dots + \frac{t(t^2 - 1^2)(t^2 - 2^2)\dots(t^2 - (n - 1)^2)}{(2n - 1)!} \frac{\Delta^{2n - 1} y_{-n} + \Delta^{2n - 1} y_{-n + 1}}{2} + \frac{t^2(t^2 - 1^2)(t^2 - 2^2)\dots(t^2 - (n - 1)^2)}{(2n)!} \Delta^{2n} y_{-n}$$

• Error of Stirling interpolation:

$$|R(x)| \le \left| \frac{\Delta^{2n} y_{-n}}{(2n)!} \cdot t \prod_{i=1}^{n} (t^2 - i^2) \right|$$

1. Packages

vietaFormula(coeff,x0):

Input: a list 'roots' and a real number x0

Output: list with coefficients of the product polynomial of 'coeff' and (x-x0)

1. Packages

mul_list(kirito, ratio):

Input: List 'kirito' and real number 'ratio'

Output: List 'kirito' with every element is multiplied by 'ratio'

1. Packages

plus_poly(high,low):

Input: List 'high' and list 'low'

Output: Coefficients of sum polynomial of 'high' and 'low'

1. Packages

deri(ys)

Input: a list 'ys'

Output: the next order of difference

1. Packages

nodes(xs,c)

Input: a list xs and a real number c

Output: Interpolation nodes indices used for Stirling interpolation

1. Packages

1.Packages

- stirling(xs,ys,x)
 Input: 2 lists xs,ys and a real number x
 Output:
 - Approximated value for f(x) using Stirling Interpolation
 - Coefficients for $P(x_0 + ht)$ with respect to t
 - Error range

1. Packages

2. Program

Input:

- 1. List xs: contains all x values
- 2. List ys: contains all corresponding y values
- 3. Real number start: to be approximated

Output:

```
If start is not between x_{min} and x_{max} \longrightarrow \mathsf{EXIT} PROGRAM Else: \mathsf{stirling}(\mathsf{xs},\mathsf{ys},\mathsf{start})
```

1. Idea

• Similar to Stirling, except Bessel Interpolation interpolates sets with even number of data points

2. Formulas

 Bessel Interpolation is also equivalent to the arithmetic mean of Gauss Forward and Backward Interpolation, except the central data point of Gauss Backward is shifted to the following position

$$\mathsf{Bessel} = \frac{\mathsf{Gauss}\;\mathsf{Forward} + \mathsf{Gauss}\;\mathsf{Backward}(\mathsf{shifted})}{2}$$

Given a set of 2n + 2 data points $\{(x_i, y_i)\}_{i=-n}^{n+1}$

• Gauss Forward Interpolation (centered at x_0)

$$P(x_0 + ht) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n)(t+n-1)\dots(t-n)}{(2n+1)!}\Delta^{2n+1} y_{-n}$$

• Gauss Backward Interpolation (centered at $x_1 = x_0 + h$)

$$P(x_1 + ht) = y_1 + t\Delta y_0 + \frac{t(t+1)}{2!}\Delta^2 y_0 + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-1} + \dots + \frac{(t+n)(t+n-1)\dots(t-n)}{(2n+1)!}\Delta^{2n+1} y_{-n}$$

2. Formulas

Gauss Forward Interpolation (centered at x₀)

$$P(x_0 + ht) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n)(t+n-1)\dots(t-n)}{(2n+1)!}\Delta^{2n+1} y_{-n}$$

2. Formulas

Gauss Forward Interpolation (centered at x₀)

$$P(x_0 + ht) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n)(t+n-1)\dots(t-n)}{(2n+1)!}\Delta^{2n+1} y_{-n}$$
Substitute t with $t + \frac{1}{2}$:

2. Formulas

Gauss Forward Interpolation (centered at x_0)

$$P(x_0 + ht) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+1)t(t-1)(t-2)}{4!}\Delta^4 y_{-2} + \dots + \frac{(t+n)(t+n-1)\dots(t-n)}{(2n+1)!}\Delta^{2n+1} y_{-n}$$
Substitute t with $t + \frac{1}{2}$:

Substitute
$$t$$
 with $t + \frac{1}{2}$:

$$P\left(x_{0} + \frac{h}{2} + ht\right) = y_{0} + \left(t + \frac{1}{2}\right) \Delta y_{0} + \frac{\left(t + \frac{1}{2}\right)\left(t - \frac{1}{2}\right)}{2!} \Delta^{2} y_{-1} + \frac{\left(t + \frac{3}{2}\right)\left(t + \frac{1}{2}\right)\left(t - \frac{1}{2}\right)}{3!} \Delta^{3} y_{-1} + \frac{\left(t + \frac{3}{2}\right)\left(t + \frac{1}{2}\right)\left(t - \frac{3}{2}\right)}{4!} \Delta^{4} y_{-2} + \dots + \frac{\left(t + \frac{2n+1}{2}\right)\left(t + \frac{2n-1}{2}\right) \dots \left(t - \frac{2n-1}{2}\right)}{(2n+1)!} \Delta^{2n+1} y_{-n}$$

2. Formulas

• Gauss Backward Interpolation (centered at $x_1 = x_0 + h$) $P(x_1 + ht) = y_1 + t\Delta y_0 + \frac{t(t+1)}{2!}\Delta^2 y_0 + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-1} + \dots + \frac{(t+n)(t+n-1)\dots(t-n)}{(2n+1)!}\Delta^{2n+1} y_{-n}$

2. Formulas

• Gauss Backward Interpolation (centered at $x_1 = x_0 + h$) $P(x_1 + ht) = y_1 + t\Delta y_0 + \frac{t(t+1)}{2!}\Delta^2 y_0 + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} + \frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4 y_{-1} + \dots + \frac{(t+n)(t+n-1)\dots(t-n)}{(2n+1)!}\Delta^{2n+1} y_{-n}$ Substituting t with $t - \frac{1}{2}$

2. Formulas

Gauss Backward Interpolation (centered at $x_1 = x_0 + h$) $P(x_1 + ht) = y_1 + t\Delta y_0 + \frac{t(t+1)}{2!}\Delta^2 y_0 + \frac{(t+1)t(t-1)}{3!}\Delta^3 y_{-1} +$ $\frac{(t+2)(t+1)t(t-1)}{4!}\Delta^4y_{-1}+\cdots+\frac{(t+n)(t+n-1)...(t-n)}{(2n+1)!}\Delta^{2n+1}y_{-n}$ Substituting *t* with $t - \frac{1}{2}$ $P(x_1 - \frac{h}{2} + ht) = y_1 + (t - \frac{1}{2}) \Delta y_0 + \frac{(t - \frac{1}{2})(t + \frac{1}{2})}{2!} \Delta^2 y_0 +$ $\frac{\left(t+\frac{1}{2}\right)\left(t-\frac{3}{2}\right)\left(t-\frac{3}{2}\right)}{2!}\Delta^{3}v_{-1}+\frac{\left(t+\frac{3}{2}\right)\left(t+\frac{1}{2}\right)\left(t-\frac{1}{2}\right)\left(t-\frac{3}{2}\right)}{4!}\Delta^{4}v_{-1}$ $+\cdots+\frac{\left(t+\frac{2n-1}{2}\right)\left(t+\frac{2n-3}{2}\right)\cdots\left(t-\frac{2n+1}{2}\right)}{(2n+1)!}\Delta^{2n+1}V_{-n}$

2. Formulas

• Consider the difference of odd order 2k + 1

$$\begin{cases} \text{Gauss Forward: } \frac{\prod\limits_{i=-k-1}^{k-1}\left(t-\frac{1}{2}-i\right)}{(2k+1)!}\Delta^{2k+1}y_{-k} \\ \text{Gauss Backward: } \frac{\prod\limits_{i=-k}^{k}\left(t-\frac{1}{2}-i\right)}{(2k+1)!}\Delta^{2k+1}y_{-k} \end{cases}$$

2. Formulas

• Consider the difference of odd order 2k + 1

$$\begin{cases} \text{Gauss Forward: } \prod_{i=-k-1}^{k-1} \left(t - \frac{1}{2} - i\right) \\ \frac{1}{(2k+1)!} \Delta^{2k+1} y_{-k} \\ \text{Gauss Backward: } \frac{1}{i=-k} \left(t - \frac{1}{2} - i\right) \\ \frac{1}{(2k+1)!} \Delta^{2k+1} y_{-k} \end{cases}$$

Hence the difference of odd order 2k + 1 for Bessel Interpolation

$$\frac{t \prod_{i=0}^{k-1} \left(t^2 - \left(i + \frac{1}{2}\right)^2\right)}{(2k+1)!} \Delta^{2k+1} y_{-k}$$

2. Formulas

Consider the difference of even order 2k

$$\begin{cases} \text{Gauss Forward: } \frac{\prod\limits_{i=-k}^{k-1}\left(t-\frac{1}{2}-i\right)}{(2k)!}\Delta^{2k}y_{-k} \\ \text{Gauss Backward: } \frac{\prod\limits_{i=-k}^{k-1}\left(t-\frac{1}{2}-i\right)}{(2k)!}\Delta^{2k}y_{-(k-1)} \end{cases}$$

2. Formulas

Consider the difference of even order 2k

$$\begin{cases} \text{Gauss Forward: } \frac{\prod\limits_{i=-k}^{k-1}\left(t-\frac{1}{2}-i\right)}{(2k)!}\Delta^{2k}y_{-k} \\ \text{Gauss Backward: } \frac{\prod\limits_{i=-k}^{k-1}\left(t-\frac{1}{2}-i\right)}{(2k)!}\Delta^{2k}y_{-(k-1)} \end{cases}$$

Hence the difference of even order 2k for Bessel Interpolation

$$\frac{\prod\limits_{i=0}^{k-1}\left(t^2-\left(i+\frac{1}{2}\right)^2\right)}{(2k)!}\frac{\Delta^{2k}y_{-k}+\Delta^{2k}y_{-(k-1)}}{2}$$

2. Formulas

⇒ Bessel Interpolation formula:

$$P(\frac{x_0+x_1}{2}+ht) = \frac{y_0+y_1}{2} + t\Delta y_0 + \frac{t^2-\frac{1}{4}}{2!} \frac{\Delta^2 y_{-1}+\Delta^2 y_0}{2} + \frac{t(t^2-\frac{1}{4})}{3!} \Delta^3 y_{-1} + \frac{(t^2-\frac{1}{4})(t^2-\frac{9}{4})}{4!} \frac{\Delta^4 y_{-2}+\Delta^4 y_{-1}}{2} + \dots + \frac{(t^2-\frac{1}{4})(t^2-\frac{9}{4})...(t^2-(n-\frac{1}{2})^2)}{(2n)!} \frac{\Delta^{2n} y_{-n}+\Delta^{2n} y_{-(n-1)}}{2} + \frac{t(t^2-\frac{1}{4})(t^2-\frac{9}{4})...(t^2-(n-\frac{1}{2})^2)}{(2n+1)!} \Delta^{2n+1} y_{-n}$$

2. Formulas

• Difference table for Bessel Interpolation **Example:** Given a 6-point set $\{(x_i, y_i)\}_{i=-2}^3$

∫_____ : Gauss Backward ______ : Gauss Forward

3. Error

• Similar to Stirling, Bessel Interpolation error is as follows:

$$|R(x)| \le \left| \frac{\Delta^{2n+1} y_{-n}}{(2n+1)!} \prod_{i=0}^{n} \left(t^2 - \left(i + \frac{1}{2} \right)^2 \right) \right|$$

4. Conclusion

Bessel Interpolation formula:

$$P(\frac{x_0+x_1}{2}+ht) = \frac{y_0+y_1}{2} + t\Delta y_0 + \frac{t^2 - \frac{1}{4}}{2!} \frac{\Delta^2 y_{-1} + \Delta^2 y_0}{2} + \frac{t(t^2 - \frac{1}{4})}{3!} \Delta^3 y_{-1} + \frac{(t^2 - \frac{1}{4})(t^2 - \frac{9}{4})}{4!} \frac{\Delta^4 y_{-2} + \Delta^4 y_{-1}}{2} + \dots + \frac{(t^2 - \frac{1}{4})(t^2 - \frac{9}{4}) \dots (t^2 - (n - \frac{1}{2})^2)}{(2n)!} \frac{\Delta^{2n} y_{-n} + \Delta^{2n} y_{-(n-1)}}{2} + \frac{t(t^2 - \frac{1}{4})(t^2 - \frac{9}{4}) \dots (t^2 - (n - \frac{1}{2})^2)}{(2n+1)!} \Delta^{2n+1} y_{-n}$$

• Error range for Bessel Interpolation:

$$|R(x)| \leq \left| \frac{\Delta^{2n+1} y_{-n}}{(2n+1)!} \prod_{i=0}^{n} \left(t^2 - \left(i + \frac{1}{2} \right)^2 \right) \right|$$

1. Packages

vietaFormula(coeff,x0):

Input: a list 'roots' and a real number x0

Output: list with coefficients of the product polynomial of 'coeff' and (x-x0)

1. Packages

mul_list(kirito, ratio):

Input: List 'kirito' and real number 'ratio'

Output: List 'kirito' with every element is multiplied by 'ratio'

1. Packages

plus_poly(high,low):

Input: List 'high' and list 'low'

Output: Coefficients of sum polynomial of 'high' and 'low'

1. Packages

deri(ys)

Input: list ys

Output: the next order of difference

1. Packages

nodes(xs,c)

Input: a list xs and a real number c

Output: Interpolation nodes indices used for Bessel Interpolation

1.Packages

1. Packages

- bessel(xs,ys,x)
 Input: 2 lists xs,ys and a real number x
 Output:
 - Approximated value for f(x) using Bessel Interpolation
 - Coefficients for $P(\frac{x_0+x_1}{2}+ht)$ with respect to t
 - Error range

1. Packages

2. Program

Input:

- 1. List xs: contains all x values
- 2. List ys: contains all corresponding y values
- 3. Real number start: to be approximated

Output:

```
If start is not between x_{min} and x_{max} \longrightarrow \mathsf{EXIT} PROGRAM Else: bessel(xs,ys,start)
```

STIRLING, BESSEL vs GAUSS FORWARD, BACKWARD

- Stirling Interpolation (given 2n+1 data points). Thus the computational complexity of Stirling Interpolation (similarly with Bessel) is $o\left(\frac{13n^2}{2}\right)$
- Gauss Forward and Backward Interpolation possess the computational complexity of $o(12n^2)$

STIRLING, BESSEL vs GAUSS FORWARD, BACKWARD

- Stirling Interpolation (given 2n+1 data points). Thus the computational complexity of Stirling Interpolation (similarly with Bessel) is $o\left(\frac{13n^2}{2}\right)$
- Gauss Forward and Backward Interpolation possess the computational complexity of $o(12n^2)$

ASSESSMENT: Stirling and Bessel interpolation heavily reduce number of calculations, thus reduce computational cost

ADVANTAGES AND DISADVANTAGES

Advantages:

- 1. Heavily reduces number of calculations and storage
- 2. Limitation on nodes (8 for Bessel and 9 for Stirling) ensures reasonable computations yet promises stable accuracy
- 3. Considering function $f(x_0 + ht)$ significantly reduces computational complexity still, due to the linear variation between t and x, functions including integration and derivative can easily be expressed through t

ADVANTAGES AND DISADVANTAGES

Advantages:

- 1. Heavily reduces number of calculations and storage
- 2. Limitation on nodes (8 for Bessel and 9 for Stirling) ensures reasonable computations yet promises stable accuracy
- 3. Considering function $f(x_0 + ht)$ significantly reduces computational complexity still, due to the linear variation between t and x, functions including integration and derivative can easily be expressed through t

Disadvantages:

- 1. Only handle constant x-interval between data points
- 2. Inappropriate for approximating points close to bounds
- 3. Unstable error with considerably non-monotonic inputs