

Faculté de Médecine Taleb Mourad Département de Médecine

2ième année de Médecine

Présenté par Dr YAHIAOUI.A

Complexe Majeur d'Histocompatibilité (CMH)

Le 02/06/2025

I. Introduction

Introduction

En 1958, découvert du CMH humain ou <u>Système HLA (Human Leukocyte</u> <u>Antigen</u>), suite à la description de l'antigène MAC (1^{er} antigène de ce complexe) sur les leucocytes

Marqueur moléculaire de l'identité cellulaire

COMPLEXE : la région d'ADN contient plus d'une centaine de gènes codant pour des produits très divers

MAJEUR : ses produits sont à l'origine de **différences allo géniques importantes** entre individus de la même espèce

HISTOCOMPATIBILITE : ≪ dicte ≫ les règles de compatibilité tissulaire lors de greffe

Organisation génétique du CMH

Complexe multigénique (plus de 224 gènes, dont 128 seraient exprimés) d'environ 4000 kilobases (1/1000 du génome humain)

Région HLA de classe I

Gènes HLA-I:

- *Des molécules de présentation HLA-I classique ou la : HLA-A, B, C
- *Des molécules de présentation HLA-I <u>non-classiques</u> ou lb : HLA-E, F, G: rôles dans la tolérance et la réponse NK
- *HLA-I like: MIC A et B → rôle dans la réponse NK MICA/B: MHC class I associated antigen A/B

Région HLA de classe II

<u>Gènes de classe II classiques</u>: DR, DQ, DP

Pour les 03 loci il existe pour chacun d'eux:

- Des gènes A (DRA, DQA, DPA) qui codent pour une chaine α
- Des gènes B (DRB, DQB, DPB) qui codent pour une chaine β
- L'assemblage de ces deux chaines constitue la molécule HLA de classe II

Locus HLA-DP/DQ:

Deux gènes fonctionnels : DPA1/DQA1 et DPB1/DQB1

Région HLA de classe II

Autres gènes:

LMP2 et LMP7: Production

TAP1 et TAP2 : Transport

■ Tapasine, DO, DM : Processus de charge

des peptides pour les présenter aux sein des molécules HLA de

classe I ou II

Région HLA de classe III

<u>Gènes classe III :</u> dont certains impliqués dans la réponse immune :

- ✓ composants du complément (C2 ,C4, facteur B)
- $\sqrt{\text{TNF}\alpha}$, LTβ, protéines du choc thermique (HSP)

Aucun rôle dans la présentation de peptides antigéniques, ni dans l'histocompatibilité

Molécules HLA

□Classe I :

- Classique : HLA-A, HLA-B, HLA-C
- **➢ Non classique :** HLA-E, HLA-F, HLA-G, HLA-H

Chaîne
$$\alpha$$
: $\alpha 1 + \alpha 2 + \alpha 3 + TM + Cyto$
45 kDa 345 aa

β2 micro globuline monomorphe

- > 12 kDa
- **Expression de la chaîne α**
- \triangleright Conformation de la chaîne α
- ✓ Polymorphisme : α 1+ α 2
- \checkmark α 3 constant et interagit avec la CD8 & β 2 micro globuline

- Cavité de liaison au peptide: Fermée et fixe 1 Nanopeptide
- Résidus d'ancrage aux extrémités

- Expression: <u>sur presque toutes</u> les cellules nucléées et les plaquettes
- Au maxi 6 molécules différentes chez un individu : 2A, 2B et 2C
- expression augementée par ; IFN; IL1, IL4

Génes et molécules HLA de classe I

Produits des gènes A, B et C Localisation et degré du polymorphisme

Génes et molécules HLA de classe I

Génétique

Chromosome 6

Région; 1500 pb

Gènes de 7 exons

Transmission en bloc : Haplotypes -> Génotype

Allèles codominants

Déséquilibre de liaison

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon 6 Exon 7

5'NT PP α1 α2 α3 TM CY 3'NT

Polymorphisme: exons 2 et 3

*STRUCTURES (suite)

- Molécules de classe II classsiques: HLA-DR, HLA-DP, HLA-DQ
- Molécules de classe II non classsiques: HLA-DM, HLA-DO

 \triangleright Chaîne α :30-34 kDa

> Chaîne β :26-29 kDa

- Polymorphisme : β1 +++++
- β2 site d'interaction avec CD4

- Cavité de liaison au peptide Ouverte
 - ➤ Peptides de 12 à 25 aas
 - Résidus d'ancrage sur toute la longueur

- Expression: sur CPA (LB, DC, MØ)
- Après activation sur d'autres cellules: LT activé
- Synthèse favorisée par IFN
- Au maximum 8 molécules différentes chez un individu :
 - **>**2 à 4 DR, 2 DP et 2DQ

B2

Cytoplasmic

Produits des gènes DR, DQ et DP

Localisation et degré du polymorphisme

- Chromosome 6
- · Région; 1000 pb
- Genes de 4 exons
- Transmission en bloc : Haplotypes -> Génotype
- Allèles codominants
- Polymorphisme: exons 2

- Dans certains cas, présence de <u>deux</u> locus DRB:
 - > Soit seulement DRB1
 - ➤ Soit DRB1 et DRB3
 - > Soit DRB1 et DRB4
 - ➤ Soit DRB1 et DRB5

Caractéristiques des gènes HLA de classe I et II

Expression codominante

Les molécules codées par chaque haplotype sont co-exprimées à la surface cellulaire

- Au total, un individu hétérozygote peut exprimer 12 à 14 molécules HLA:
- 2 molécules HLA-A, 2 B, 2 C, 2 à 4 DR, 2 DQ, et 2 DP.

Exemple phénotype HLA:

A2 A3; B7 B8; Cw1 Cw2; DR3 DR4; DP1 DP2; DQ2 DQ3

Etroite liaison

Transmission en haplotypes, des parents aux enfants

4 combinaisons haplotypiques possibles

La probabilité pour deux enfants d'une même fratrie d'être:

- •HLA identiques est de 25%: deux haplotypes en commun.
- •HLA semi-identiques est de 50%: un haplotype en commun.
- •HLA différents est de 25%: aucun haplotype en commun.

Déséquilibre de liaison

Certains allèles d'un locus sont associés, préférentiellement, avec des allèles d'un autre locus

→ Association plus fréquente que ne le voudrait le hasard : → <u>Déséquilibre de liaison</u>.

***Variables selon les ethnies:**

- Caucasoïdes A1 B8 DR3 (4%)
- Africains A30 B42 DR3 (2%)
- Asiatiques A24 B52 DR15 (8%)
- Amérindiens A24 B35 DR4 (4%)

⊕D'autant plus forts que les loci sont proches : Ex : CW4 B35

Très fort entre DR et DQ : Ex :_

DQ2 → DR7, DR9, DR17

DQ4 → DR4 , DR8 , DR18

Des marqueurs utiles pour l'anthropologie.

<u>PEntraînent une réduction du polymorphisme</u>

Polymorphisme HLA vu par sérologie

Α	Е		Cw	DR	DQ
A1 A2 A203 A210 A3 A9 A10 A11 A19 A23(9) A24(9) A24(0) A26(10) A26(10) A28 A29(19) A30(19) A31(19) A32(19) A33(19) A34(10) A36 A43 A66(10) A68(28) A69(28) A74(19) A80	B5 B7 B703 B8 B12 B13 B14 B15 B16 B17 B18 B21 B22 B27 B2708 B35 B37 B38(16) B39(16) B3901 B3902 B40 B4005 B41 B42 B44(12) B45(12) B46 B47 B48	B49(21) B50(21) B51(5) B5102 B5103 B52(5) B53 B54(22) B55(22) B56(22) B57(17) B58(17) B59 B60(40) B61(40) B62(15) B63(15) B63(15) B64(14) B67 B70 B71(70) B72(70) B73 B75(15) B76(15) B76(15) B77(15) B78 B81 Bw4 Bw6	Cw1 Cw2 Cw3 Cw4 Cw5 Cw6 Cw7 Cw8 Cw9(w3) Cw10(w3)	DR1 DR103 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10 DR11(5) DR12(5) DR13(6) DR14(6) DR1403 DR1404 DR15(2) DR16(2) DR17(3) DR18(3) DR51 DR52 DR53	DQ1 DQ2 DQ3 DQ4 DQ5(1) DQ6(1) DQ7(3) DQ8(3) DQ9(3)

100 spécificités sérologiques

Polymorphisme HLA vu par biologie moléculaire

Α	В		DR		DQ
A1 A2 A3 A23(9) A9 A10 A11 A19 A24(9) A25(10) A26(10) A28 A29 A30 A31 A32 A33 A34(10) A32 A33 A34(10) A36 A402:08 A36 A43 A402:11 A66(10) A68(28) A74 A80 A*02:14 A*02:15 A*02:16 A*02:17 A*02:18 A*02:19 > 100	B5 B50(21) B7 B51(5) B8 B52(5) B16 B53 B12 B54(22) B13 B55(22) B14 B56(22) B15 B56(17) B17 B58(17) B18 B59 B21 B60(40) B22 B61(40) B27 B62(15) B35 B63(15) B37 B63(15) B37 B63(15) B38(16) B64(14) B39(16) B65(14) B40 B67 B41 B70 B42 B72(70) B44(12) B73 B45(12) B73 B45(12) B75(15) B46 B76(15) B47 B77(15) B48 B78 B49(21) B81 B82 B83 BW4 BW6	B15 B*15 B*15:01 B*15:02 B*15:03 B*15:04 B*15:05 B*15:06 B*15:07 B*15:08 B*15:09 B*15:10 B*15:11 B*15:11 B*15:12 B*15:13 B*15:14 B*15:15 B*15:15 B*15:15 B*15:16 B*15:17 B*15:19 >100	DR1 DR2 DR7 DR3 DR4 DR5 DR6 DR8 DR9 DR10 DR11(5) DR12(5) DR13(6) DR14(6) DR17(3) DR18(3) DR15(2) DR16(2) DR51 DR52 DR53	DR11DRB*11 DRB*11:01 DRB*11:02 DRB*11:03 DRB*11:05 DRB*11:05 DRB*11:07 DRB*11:08 DRB*11:09 DRB*11:10 DRB*11:11 DRB*11:12 DRB*11:12 DRB*11:15 DRB*11:15 DRB*11:15 DRB*11:16 DRB*11:17 DRB*11:18	DQ1 DQ2 DQ7(3) DQ3 DQ4 DQ5(1) DQ6(1) DQ8(3) DQ9(3)

Reference Guide to HLA Nomenclature

Nomenclature	Interpretation				
HLA-A	Indentification of HLA locus				
HLA-A24	Serologically defined HLA antigen				
		alleles defined by analysis of DNA			
HLA-A*24	2-digit resolution	Denotes the allele group (corresponds where possible to the serological group; often termed "low resolution"			
HLA-A*2402	4-digit resolution	Sequence variation between alleles results in amino acid substitutions (Coding variation, or nonsynonymous changes)			
HLA-A*240201	6-digit resolution	Noncoding variation; sequence changes are synonymous, do not result in amino acid substitution			
HLA-A*24020102 8-digit resolution		Sequence variation occurs within introns, or 5'/3' extremities of the gene			
HLA-A*24020102L	A*24020102L Alphabetical suffice Letters (see below) may suffix to describe the best expression of the encode A Aberrant expression C Molecule present is cytoplasm only L Low levels of expression N Null allele (not expression S Secreted molecule as soluble form				

TABLE 18.5 HLA Specificities Identified by Serology Versus Molecular Methods (as of February 2007)

Gene	Serology	Molecular	
HLA class I			
HLA-A	28	506	
HLA-B	62	851	
HLA-C	10	276	
HLA class II			
HLA-DRA1	0	3	
HLA-DRB1	25	476	
HLA-DRB3	1	44	
HLA-DRB4	1	13	
HLA-DRB5	1	18	
HLA-DQA1	0	34	
HLA-DQB1	9	81	
HLA-DPA1	0	23	
HLA-DPB1	6	126	

TABLE 18.4 Serologically Defined HLA Specificities

0	/	•			
HLA-A	HLA-B	HLA-C	HLA-DR	HLA-DQ	HLA-DP
A1	B5	Cw1	DR1, DR103	DQ1	DPw1
A2, A203,	B51(5),	Cw2	DR2	DQ5(1)	DPw2
A210	B5102,				
	B5103				
A3	B52(5)	Cw3	DR15(2)	DQ6(1)	DPw3
A9	B7, B703	Cw9(w3)	DR16(2)	DQ2	DPw4
A23(9)	B8	Cw10(w3)	DR3	DQ3	DPw5
A24(9),	B12	Cw4	DR17(3)	DQ7(3)	DPw6
A2403					
A10	B44(12)	Cw5	DR18(3)	DQ8(3)	
A25(10)	B45(12)	Cw6	DR4	DQ9(3)	
A26(10)	B13	Cw7	DR5	DQ4	
A34(10)	B14	Cw8	DR11(5)		
A66(10)	B64(14)		DR12(5)		
A11	B65(14)		DR6		
A19	B15		DR13(6)		
A74(19)	B62(15)		DR14(6),		
			DR1403,		
			DR1404		
	B63(15)		DR7		
	B75(15)		DR8		
A29(19)	B76(15)		DR9		

Serologically Defined HLA Specificities

Serologica	any Denned HL	A specificine	-5		
HLA-A	HLA-B	HLA-C	HLA-DR	HLA-DQ	HLA-DP
A30(19)	B77(15)		DR10		
A31(19)	B16		DR51		
A32(19)	B38(16)		DR52		
A33(19)	B39(16),		DR53		
A28	B3901,				
A68(28)	B3902				
A69(28)					
A36	B17				
A43	B57(17)				
A80	B58(17)				
	B18				
	B21				
	B49(12)				
	B50(12)				
	B22				
	B54(22)				
	B55(22)				
	B56(22)				
	B27, B2708				
	B35				
	B37				
	B40, B4005				
	B60(40)				
	B61(40)				
	B41				
	B42				
	B46				
	B47				
	B48				
	B53				
	B 59				
	B 67				
	B 70				
	B71(70)				
	B72(70)				
	B73				
	B7801				
	B 81				

Rôles biologiques

Rôle physiologique:

- Présentation des peptides antigéniques
- Sélection positive & négative des thymocytes
- Régulation de l'activité des NK
- Compatibilité fœto-maternelle

Rôle pathologique:

- Responsables de du rejet de greffes tissulaires
- Maladies auto-immunes

Présentation antigénique

Présentation antigénique

Voie endogène

Présentation antigénique

Voie exogène

Sélection positive & négative

Sélection positive & négative

- Sélection positive: zone corticale du thymus
- les thymocytes doivent reconnaître les molécules HLA du soi (présentées par les cellules épithéliales thymiques) avec une affinité intermédiaire
 - le thymocyte survit et poursuit sa maturation
 - > Sinon, il meurt par apoptose
- Cela permet de garder les thymocytes capables de reconnaître le soi dans le contexte HLA c'est ce qu'on appelle la restriction aux molécules HLA du soi

- Sélection négative: zone médullaire du thymus
- Les thymocytes sont exposés aux peptides du soi présentés sur HLA par des CDs, et cellules épithéliales médullaires++++
- Si un thymocyte reconnaît trop fortement un peptide du soi, il est éliminé par apoptose
- Ceci élimine les lymphocytes T auto-réactifs

Régulation de l'activité des NK

• NK surveillent l'expression HLA I sur les cellules cibles

- HLA I servent de "signal d'inhibition" pour les NK :
 - Quand les molécules HLA-I sont présentes normalement, les NK sont inhibées et ne tuent pas la cellule
- ✓ Si une cellule **perd ou diminue** l'expression de HLA-I les NK sont activées pour détruire cette cellule "anormale«

• HLA-E, sont impliquées dans cette inhibition des NK par interaction avec leurs récepteurs inhibiteurs

Transplantation

• Exclusion de paternité

• Transfusion

Anthropologie

Transplantation:

- Les molécules HLA I et II sont responsables du rejet violant de greffes entre donneur et receveur qui sont HLA incompatibles
 - HAL du donneur diffèrent des HLA du receveur
- ➤ Donc lors de transplantation ou greffe des tissus ou des organes on cherche un donneur qui est compatible avec le receveur pour les molécules HLA (donc ayant des molécules HAL identiques ou semi identiques)

- la compatibilité HLA est déterminé par le test appelé Typage HLA
- ➤ II existent deux types de typage HLA:
- 1. Typage HLA sérologique utilisant des anticorps
- 2. Typage génomique ou génotypage: analyse les allèles des gènes les plus polymorphes

Transplantation:

Typage HLA par sérologie

- ➤ Permet de déterminer les protéines HLA I et II exprimées à la surface des cellules
- ➤ Donc il définit les le phénotype HAL
- La technique utilisée: microlymphocytotoxicité (dépendante de l'activation du système du complement par IgG et IgM)

Transplantation:

Analyse génétique (génotypage): DNA typing

- par différents techniques: sso ou ssp
- > ces différentes techniques en commun une étape précédente: PCR
 - > But: amplifier les exons les plus plymormphes
 - ✓ EXON 2 ET EXON 3 codant pour HAL-I
 - ✓ EXON 2 codant pour HLA-II
- Ensuite les produits amplifiés seront analysés pour déterminer le génotype (allèles)

DNA based method of HLA typing Summary of DNA-based method of HLA typing, showing the main steps of DNA denaturation per amplification, and specific sequence detection by sequence specific oligonucleotide probe. Courtesy of Barbara S Nepom, MD.

Transplantation:

SSO: specific sequences oligonucliotides

- Cette technique utilise des oligonuclietides (probes)
- Ces oligonucltiods s'hybrident avec les exons amplifiés par PCR
- Analyse puis déduction du génotype
- ➤ donc il donne un génotype

Transplantation:

SSP: specific sequence primer

- Cette technique utilise des amorces (primer)
- les amorces sont des courts segments géniques synthétiques fournies par le fabricant
- ces amorces s'hybrident avec les exons (si ya une complémentarité nucléotidiques) amplifiés par PCR
- > Analyse puis déduction du génotype
- donc il donne un génotype

Anthropologie:

- Le polymorphisme des gènes HLA permet d'étudier les relations entre populations humaines
- ✓ Mélange migratoire
- ✓ Ethnies

Transfusion sanguine:

les plaquettes sanguines expriment les antigènes HLA de classe I
☐ Si on transfuse des plaquettes avec des HLA différents, le receveur peut développeer des anticorps ➤ Ces anticorps détruisent les plaquettes transfusées
☐ On doit donc transfuser le pateints avec des plaquettes compatibles en fonction des HLA pour que la transfusion soit efficace
Pour éviter ça, on fait un typage HLA du receveur pour trouver des plaquettes compatible

Exclusion de paternité:

- En comparant les haplotypes HLA d'un enfant(exp C/F), de sa mère(exp halotypes C/D), et d'un père(expA/B) supposé, on peut confirmer ou exclure la paternité avec un très haut degré de certitude
- Cette technique est très précise car la probabilité que deux individus non apparentés aient le même profil HLA est très faible

