Statistics Sample

Population:

Sample: independent identically distributed (iid)

Examples:

- production
- marketing research

Sample function:

a function of the observed values in the sample used for making general conclusion about the entire population.

Sample Mean, mode & median

Sample mean / average:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

Mode:

the value(s) with highest frequency

Median: X_(i) increasing sequence

$$\widetilde{X} = egin{cases} X_{(n+1)/2} & n \text{ odd} \ X_{n/2} + X_{n/2+1} & n \text{ even} \end{cases}$$

Example: Grade sample:

Mean: $\overline{x} = 55/13 = 4.23$

Mode: m = 7

Median: $\widetilde{x} = 4$

SampleRange & variance

Range:

$$R = X_{(n)} - X_{(1)}$$

Sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
 Standard div: $s = \sqrt{25.03} = 5.00$

Example cont.:

Range: r = 15

Variance:
$$s^2 = \frac{1}{13-1} \sum_{i=1}^{15} (X_i - 4.23)^2 = 25.03$$

Sample standard deviation:

$$S = \sqrt{S^2}$$

Lower case letters: Based on observations Notice!!

Upper case letters: Based on random variables

Sample mean Normal distribution

Theorem:

Let $X_1, X_2, ... X_n$ be independent normal distributed random variables with same mean μ and same finite variance σ^2 , that is

$$X_i \sim N(\mu, \sigma^2), i = 1, 2, ..., n$$
 iid.

It follows that
$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

and then
$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

Sample mean Distribution

The Central Limit Theorem (CLT):

Let $X_1, X_2, ... X_n$ be independent identically distributed random variables with same mean μ and same finite variance σ^2 . Then the distribution of

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

will tend towards the standard normal distribution as $n \to \infty$.

How large should n be before the approximation is good?

• Most distributions: $n \ge 30$

• Normal distribution : for all *n*

• • Examples

Sample mean Example

Problem: Production of light bulbs

A company produces bulbs with a life time X, which is approximately normal distributed with

mean: $\mu = 800 \text{ hours}$

standard deviation: $\sigma = 40$ hours

(a) Find the probability that a sample consisting of 16 bulbs has a mean life time less than 775 hours?

(b) If you observe a sample mean life time of 775 hours, would you believe that the population mean is in fact 800 hours?

Two sample means Comparison

Theorem:

Assume two independent samples are taken from two populations with means μ_1 and μ_2 , respectively, and finite variances σ_1^2 and σ_2^2 , respectively.

Then for the difference between the two sample means

$$\overline{X}_1-\overline{X}_2$$
 , we have $\overline{X}_1-\overline{X}_2\sim Nigg(\mu_1-\mu_2,rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}igg)$

and hence
$$\frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2} + \frac{\sigma_{2}^{2}}{n_{2}}}{n_{2}}}} \sim N(0, 1)$$

Sample variance Distribution

Theorem:

Lad $X_1, X_2, ... X_n$ be independent normal distributed random variables with mean μ and variance σ^2 .

Then
$$\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \chi^2(n-1)$$

When calculating S^2 , it's usually more convenient to use

$$S^{2} = \frac{1}{n(n-1)} \left| n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right|$$

Sample variance Example

Problem: Car batteries

A producer of car batteries claims that the life time of their batteries are normal distributed with

mean: $\mu = 3$ year

standard deviation: $\sigma = 1$ year

Sample of 5 batteries: 1.9 2.4 3.0 3.5 4.2

- (a) Calculate sample standard deviation.
- (b) Do you believe that the standard deviation is 1 year?

Sample mean Distribution (unknown variance)

Typically the variance σ^2 is unknown. If we replace the unknown variance by s^2 we obtain:

Theorem:

Lad $X_1, X_2, ... X_n$ be independent normal distributed random variables with mean μ and variance σ^2 (unknown).

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t (n - 1)$$

Sample mean Example (unknown variance)

Problem cont.: Car batteries

Producer claims that the life time of their batteries are normal distributed with

mean: $\mu = 3$ years

standard deviation: unknown

Sample of 5 batteries: 1.9 2.4 3.0 3.5 4.2

Do you believe that mean life time is 3 years?

Two sample variances Comparison

Theorem:

If two independent samples are taken from two normal populations with variances σ_1^2 and σ_2^2 , respectively, then

$$\frac{S_{1}^{2}}{\frac{\sigma_{1}^{2}}{S_{2}^{2}}} \sim F(n_{1}-1, n_{2}-1)$$

Notice!!
$$f_{1-\alpha}(n_1, n_2) = \frac{1}{f_{\alpha}(n_2, n_1)}$$
 Eg. $f_{0.95}(6, 10) = \frac{1}{f_{0.05}(10, 6)}$

Eg.
$$f_{0.95}(6,10) = \frac{1}{f_{0.05}(10,6)}$$