2.- Mathematical Induction

- Mathematical Induction: Two steps for proving that an infinite interval of (natural) numbers satisfies a property:
 - Step 1 Show that the property is true for the **first one**.
 - Step 2 Show that **if any one satisfies the property, then** the next one also satisfies it.

28

- The "Domino Effect"
 - Step 1 The **first domino** falls.
 - Step 2 When any domino falls, then the next domino also falls.

Hence, all dominos falls.

Example: For all $n \ge 1$: $3^n - 1$ is even.

- Show it is true for n = 1: $3^1 1 = 3 1 = 2$ and 2 is even.
- Assume that the property is true for n = k, that is: $3^k 1$ is even

is the **induction hypothesis** (an assumption that we treat as a fact) for proving that (then) the property is true for n=k+1, that is $3^{k+1}-1$ is even.

$$3^{k+1} - 1$$
= 3.(3^k) - 1
= 2.(3^k) + 3^k - 1
even 2.x even by I.H.

Since the sum of two even numbers is also even, then $3^{k+1} - 1$ is even.

MFDS

Matemathical Induction

Let n_0 be a natural number. To prove that "Every n such that $n \ge n_0$ satisfies a property P"

Base Step Prove that " n_0 satisfies P".

Inductive Step $(k \mapsto k+1)$ Prove that "k+1 satisfies P", for any natural number k such that $k \geq n_0$, UNDER THE HYPOTHESIS that "k satisfies P" (induction hypothesis).

or optionally

Inductive Step $(n-1\mapsto n)$ Prove that "n satisfies P", for any natural number n such that $n>n_0$, supposing that "n-1 satisfies P" (induction hypothesis).

EXERCISES

Using the version " $n-1\mapsto n$ " of the inductive step, you should prove that

- $\textbf{I} \ \, \text{Every } n \geq 0 \text{ satisfies that } 3^n 1 \text{ is divisible by } 2. \ \, \text{(Then, in Dafny)}$
- 2 Every $n \ge 6$ satisfies that $4 \cdot n < n^2 7$. (Then, in Dafny)