Sensors and Acuators

By: Aurora Clark, Malina Brown, Ethan Zumbahlen

MPU 6050

An MPU6050 has a 3-axis accelerometer and a 3-axis gyroscope that measures linear motion and angular motion, respectively.

The accelerometer uses the Piezo electric effect to measure inclination and magnitude.

The gyroscope, on the other hand, uses the Coriolis effect to measure motion around the x, y, and z axes. (Roll, Pitch, Yaw)

6.2 Accelerometer Specifications
VDD = 2.375V-3.46V, VLOGIC (MPU-6050 only) = 1.8V±5% or VDD, T_A = 25°C

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
ACCELEROMETER SENSITIVITY						
Full-Scale Range	AFS_SEL=0		±2		g	
	AFS_SEL=1		±4		g	
	AFS_SEL=2		±8		g	
	AFS_SEL=3		±16		g	
ADC Word Length	Output in two's complement format		16		bits	
Sensitivity Scale Factor	AFS_SEL=0		16,384		LSB/g	
	AFS_SEL=1		8,192		LSB/g	
	AFS_SEL=2		4,096		LSB/g	
	AFS_SEL=3		2,048		LSB/g	
Initial Calibration Tolerance			±3		%	
Sensitivity Change vs. Temperature	AFS_SEL=0, -40°C to +85°C		±0.02		%/°C	
Nonlinearity	Best Fit Straight Line		0.5		%	
Cross-Axis Sensitivity			±2		%	
ZERO-G OUTPUT						
Initial Calibration Tolerance	X and Y axes		±50		mg	1
	Z axis		±80		mg	
Zero-G Level Change vs. Temperature	X and Y axes, 0°C to +70°C		±35			
	Z axis, 0°C to +70°C		±60		mg	
SELF TEST RESPONSE						
Relative	Change from factory trim	-14		14	%	2
NOISE PERFORMANCE						
Power Spectral Density	@10Hz, AFS_SEL=0 & ODR=1kHz		400		μ <i>g</i> / √ Hz	
LOW PASS FILTER RESPONSE						
	Programmable Range	5		260	Hz	
OUTPUT DATA RATE						
	Programmable Range	4		1,000	Hz	
INTELLIGENCE FUNCTION					".05	
INCREMENT			32		mg/LSB	

6 Electrical Characteristics

6.1 Gyroscope Specifications VDD = 2.375V-3.46V, VLOGIC (MPU-6050 only) = $1.8V\pm5\%$ or VDD, $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
GYROSCOPE SENSITIVITY						
Full-Scale Range	FS_SEL=0		±250		º/s	
	FS_SEL=1		±500		º/s	
	FS_SEL=2		±1000		°/s	
	FS_SEL=3		±2000		°/s	
Gyroscope ADC Word Length			16		bits	
Sensitivity Scale Factor	FS_SEL=0		131		LSB/(°/s)	
	FS_SEL=1		65.5		LSB/(°/s)	
	FS_SEL=2		32.8		LSB/(°/s)	
	FS_SEL=3		16.4		LSB/(°/s)	
Sensitivity Scale Factor Tolerance	25°C	-3		+3	%	
Sensitivity Scale Factor Variation Over Temperature			±2		%	
Nonlinearity	Best fit straight line; 25°C		0.2		%	
Cross-Axis Sensitivity			±2		%	
GYROSCOPE ZERO-RATE OUTPUT (ZRO)						
Initial ZRO Tolerance	25°C		±20		%s	
ZRO Variation Over Temperature	-40°C to +85°C		±20		º/s	
Power-Supply Sensitivity (1-10Hz)	Sine wave, 100mVpp; VDD=2.5V		0.2		º/s	
Power-Supply Sensitivity (10 - 250Hz)	Sine wave, 100mVpp; VDD=2.5V		0.2		º/s	
Power-Supply Sensitivity (250Hz - 100kHz)	Sine wave, 100mVpp; VDD=2.5V		4		º/s	
Linear Acceleration Sensitivity	Static		0.1		°/s/g	
SELF-TEST RESPONSE						
Relative	Change from factory trim	-14		14	%	1
GYROSCOPE NOISE PERFORMANCE	FS_SEL=0					
Total RMS Noise	DLPFCFG=2 (100Hz)		0.05		%-rms	
Low-frequency RMS noise	Bandwidth 1Hz to10Hz		0.033		%-rms	
Rate Noise Spectral Density	At 10Hz		0.005		º/s/ √ Hz	
GYROSCOPE MECHANICAL FREQUENCIES						
X-Axis		30	33	36	kHz	
Y-Axis		27	30	33	kHz	
Z-Axis		24	27	30	kHz	
LOW PASS FILTER RESPONSE						
	Programmable Range	5		256	Hz	
OUTPUT DATA RATE						
	Programmable	4		8,000	Hz	
GYROSCOPE START-UP TIME	DLPFCFG=0					
ZRO Settling (from power-on)	to ±1% of Final		30		ms	

Important Characteristics

- Range
 - Range will be tested by measuring the highest and lowest values of the stimulus
- Sensitivity
- Linearity
 - Sensitivity and Linearity will be measured from the transfer function
- Accuracy
 - Will be comparing angles recorded by the sensor with a protractor
- Drift
 - This will be tested by recording the values of the sensor in a specific position and recording any deviation of those values for a period of time

Testing Process and Illustration

- Testing this sensor using a protractor and stopwatch
- In using the protractor, we can find the angle and using a ruler and a stopwatch speed can be derived from v = d/t
- Because the sensor starts from a complete stop shows its acceleration which can be found via Δx = Vit +1/2at^2

Testing Angles

<pre>Serial.print(" AcX = "); Serial.print(AcX / 65536 * ACCELE_RANGE+0.08); Serial.print("g ");</pre>
<pre>Serial.print(" AcY = "); Serial.print(AcY / 65536 * ACCELE_RANGE); Serial.print("g ");</pre>
<pre>Serial.print(" AcZ = "); Serial.print(AcZ / 65536 * ACCELE_RANGE-0.10); Serial.println("g ");</pre>

Testing accelerators					
Distance	X	Υ	Z		
0 in	-0.01 g	0.06 g	1.13 g		
1 in/s	0.04 g	0.03 g	1.15 g		
3 in/s	0.04 g	0.03 g	1.15 g		
5 in/s	0.04 g	0.03 g	1.15 g		
	Testing the Gyros				
Degrees in 1 sec	Gx	Gy	Gz		
0	0.05 d/s	-2.50 d/s	0.25 d/s		
15	-15.47 d/s	11.97 d/s	19.94 d/s		
30	-32.88 d/s	-30.56	-28.13		
45	-42.99 d/s	-45.68 d/s	-45.33 d/s		
60	-63.58 d/s	-56.68 d/s	-67.26 d/s		
90	-116.54 d/s	-121.92 d/s	-108.307d/s		

Results

Comparing test results with the manufacture specs can verify that our results are withing range

Manufacture Specs / Gyro range

±250 d/s

±500 d/s

±1000 d/s

±2000 d/s

Test results / Gyro

Min Val 0

Max Val 90 d/s

Manufacture Specs Test results / / Accelerometer

range

±2g

±4 g

±8 g

±16 g

Accelerometer

Does not change when tested

DHT-11

The DHT-11 is a commonly used low-cost temperature and humidity sensor, it is used to measure the air and gives an output of the current temperature and humidity at a rate every 1-2 seconds (or whatever you specify in the delay).

It features a calibrated digital signal output. It has a resistive-type humidity measurement component, an NTC temperature measurement component, and an 8-bit microcontroller for serial outputs for temperature and humidity.

The dht11 library is need to use the Arduino code.

Important Characteristics

- Accuracy
- Range
- Resolution

How the sensor was tested:

- The accuracy was tested by measuring the indoors and outdoors than comparing it to weather.com, and an AcuRite thermometer.
- The Range was tested by measuring the highest and lowest limit to see if the sensor can surpass it using a 3D printer bed, shower and a deep freezer.
- The Resolution was tested by watching for the smallest change in input that can be accurately detected by sensor

*All outputs were recorded and saved using Putty

AcuRite Thermometer Specifications

Outdoor Temperature Specification:

Temperature Range	-40 to 158 degrees Fahrenheit; -40 to 70 degrees Celsius
Temperature Accuracy	+/- 2 degrees Fahrenheit
Wireless Range	165 feet / 50 meters depending on home construction materials
Wireless Signal	433 MHz

Indoor Temperature Specification:

Indoor Temperature Range	32 to 122 degrees Fahrenheit; 0 to 50 degrees Celsius
Temperature Accuracy	+/- 2 degrees Fahrenheit
Indoor Humidity Range	1% to 99% Relative Humidity

Humidity and Reporting Specification:

Humidity Accuracy	+/- 5% from 0% to 10% Relative Humidity +/- 4% from 10% to 20% Relative Humidity +/- 3% from 20% to 80% Relative Humidity +/- 4% from 80% to 90% Relative Humidity +/- 5% from 90% to 100% Relative Humidity
Data Reporting	30 second updates

AcuRite Thermometer Specifications

Indoor Temperature Range	32 to 122 degrees Fahrenheit; 0 to 50 degrees Celsius	
Temperature Accuracy	+/- 2 degrees Fahrenheit	
Indoor Humidity Range	16% to 98% Relative Humidity	
Humidity Accuracy	+/- 5% from 0% to 10% Relative Humidity +/- 4% from 10% to 20% Relative Humidity +/- 3% from 20% to 80% Relative Humidity +/- 4% from 80% to 90% Relative Humidity +/- 5% from 90% to 100% Relative Humidity	

Testing Humidity & Temperature

Testing Indoor Accuracy:

AcuRite Temperature	DHT-11 Temperature	AcuRite Humidity	DHT-11 Humidity
18°C to 23°C (black) 19°C to 24°C (White)	21.4°C to 24.7°C	37% to 41% (black) 33% to 39% (white)	32.2% to 41.1%

Testing Outdoor Accuracy @ 1:57pm:

AcuRite Temperature	DHT-11 Temperature	AcuRite Humidity	DHT-11 Humidity
22°C to 32°C (white)	25.0°C to 31.5°C	22% to 33% (white)	21.2% to 37.1%
		Weather.com Temperature	Weather.com Humidity

Testing Humidity & Temperature

Upper Temperature Range:

Temperature	DHT-11 Temperature
°C to °C	°C to °C

Upper Humidity Range:

Shower Humidity	DHT-11 Humidity
% to %	% to %

Lower Range:

Deep Freezer Temperature	DHT-11 Temperature
°C to °C	°C to°C

Humidity	DHT-11 Humidity
%	% to %

Results

Manufacture Specs:

- Accuracy ±1°C and ±1%
- Range Temperature: 0°C to 50°C
 Humidity: 20% to 90%
- Resolution 1°C and 1%

Measurements Taken:

- Accuracy Compared to the AcuRite and weather app the sensor was fairly accurate, but it would have an outlier then jumped back to range.
- Range: Temperature: °C to °C
 Humidity: % to %

Before the Range is no longer accurate.

• Resolution – The smallest change perceived is 0.1°C and 0.1%.

Example of data received:

Ultrasonic Ranging Module

The ultrasonic ranging module consists of the ultrasonic transmitters, a receiver and a controller unit

The module uses an IO flip-flop to process a high-level signal of at least 10us. The module automatically sends out eight 40 khz and detects if there is a pulse signal return. If the signal returns, passing the high level, the high output IO duration is the time from the transmission of the ultrasonic wave to return of it.

Important Characteristics

Range

 Range will be tested by measuring the highest and lowest values of the stimulus

Resolution

Smallest change in input that can be accurately detected by sensor

Accuracy

Will be determined by measuring output data with actual distance

Testing

Taking a portion of the values from sensor output and plotting them against the actual value recorded from a meter stick:

- 1 (cm)
- 2 (cm)
- 3 (cm)
- 4 (cm)
- 10 (cm)
- 50 (cm)
- 100 (cm)
- 150 (cm)
- 200 (cm)
- 250...
- 500

Excel data: Actual vs. measured

1	2.78	11.3	11.12
1	4.41	11.3	12.07
		11.3	11.02
2	2.45	50	52.88
2	2.78	50	48.53
2	3.33	50	50.31
3	3.1	100	106.12
3	2.78	100	91.84
_		100	50.31
3	3.1	150	150.66
4	4.09	150	56.97
4	3.76	150	50.1
4	3.66	200	200.67
4	4.41	200	201.34
-		200	199.64
4	4.09	250	248.45
10	9.71	250	247.97
10	9.72	250	257.07
10	9.62	300	251.6
10.5	10.43	300	300.5
10.5	9.97	300	299.22
		350	349.12
10.5	10.31	350	347.88
11	11.12	350	356.79
11	10.31	380	374.59
11	10.67	380	348.1
11 0	11 10	380	403.05

How testing was conducted:

- made sure the sensor was high enough from the ground to stay within measuring angle

Results

Manufacturer Specs

- Range
 - 2cm 400cm
- Resolution
 - 0.3 cm
- Accuracy
 - 1%-3%

Measured Specs

- Range
 - 3cm 400 cm
- Resolution
 - 0.5 cm
- Accuracy
 - 1%-5%

Citations

• DHT 11 specs

https://components101.com/sensors/dht11-temperature-sensor

Ultrasonic specs

https://www.seeedstudio.com/blog/2019/11/04/hc-sr04-features-arduino-raspberrypi-guide/

• MPU 6050 specs

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf