RL: Policy Search

Analytic Gradient

Marius Lindauer

Winter Term 2021

Computing the gradient analytically

- We now compute the policy gradient analytically
- \blacktriangleright Assume policy π_θ is differentiable whenever it is non–zero and we know the gradient $\nabla_\theta \pi_\theta(s,a)$
- Denote a state-action trajectory as

$$\tau = (s_0, a_0, r_0, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

- \blacktriangleright Use $R(\tau) = \sum_{t=0}^T R(s_t, a_t)$ to be the sum of rewards for a trajectory τ
- \leadsto Focusing for now on $V(s_0,\theta) = \sum_{\tau} P(\tau;\theta) R(\tau)$

Likelihood Ratio Policy Gradient I

Denote a state-action trajectory as

$$\tau = (s_0, a_0, r_0, \dots, s_{T-1}, a_{T-1}, r_{T-1}, s_T)$$

- \blacktriangleright Use $R(\tau) = \sum_{t=0}^T R(s_t, a_t)$ to be the sum of rewards for τ
- ▶ Policy value is

Lindauer

$$V(\theta) = \mathbb{E}\left[\sum_{t=0}^T R(s_t, a_t); \pi_\theta\right] = \sum_{\tau} P(\tau; \theta) R(\tau)$$

where $P(\tau;\theta)$ is used to denote the probability over trajectories when executing policy π_{θ}

lacktriangle In this new notation, our goal is to find the policy parameters $heta^*$

$$\theta^* \in \argmax_{\theta} V(\theta) = \argmax_{\theta} \sum_{\tau} P(\tau;\theta) R(\tau)$$

Likelihood Ratio Policy Gradient II

▶ Our goal is to find the policy parameters θ^*

$$\theta^* \in \arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau;\theta) R(\tau)$$

ightharpoonup Take the gradient with respect to θ :

$$\begin{split} \nabla_{\theta} V(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau;\theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau;\theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau;\theta)}{P(\tau;\theta)} \nabla_{\theta} P(\tau;\theta) R(\tau) \\ &= \sum_{\tau} P(\tau;\theta) R(\tau) \underbrace{\frac{\nabla_{\theta} P(\tau;\theta)}{P(\tau;\theta)}}_{\text{likelihood ratio}} \end{split}$$

Lindauer

Likelihood Ratio Policy Gradient III

▶ Our goal is to find the policy parameters θ^*

$$\theta^* \in \mathop{\arg\max}_{\theta} V(\theta) = \mathop{\arg\max}_{\theta} \sum_{\tau} P(\tau;\theta) R(\tau)$$

▶ Take the gradient with respect to θ :

$$\nabla_{\theta} V(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)$$

▶ Approximate with empirical estimate for m sample trajectories under policy π_{θ} :

$$\nabla_{\theta} V(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

Lindauer

Decomposing the Trajectories Into States and Actions

▶ Approximate with empirical estimate for m sample trajectories under policy π_{θ} :

$$\nabla_{\theta} V(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$\begin{split} \nabla_{\theta} \log P(\tau^{(i)}; \theta) &= \nabla_{\theta} \log \left[\mu(s_0) \prod_{t=0}^{T-1} \pi_{\theta}(a_t \mid s_t) P(s_{t+1} \mid s_t, a_t) \right] \\ &= \nabla_{\theta} \left[\log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t \mid s_t) + \log P(s_{t+1} \mid s_t, a_t) \right] \\ &= \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \end{split}$$

→ No dynamics model required!

Lindauer