MATH 308 Assignment 15:

Exercises 5.10

Nakul Joshi

March 26, 2014

5

a)

6 **a**)

Suppose that cookie orders are represented such that,

for example, an order of 1 sugar, 2 chocolate chips, 0 oatmeal, 0 peanut butter, and 2 ginger snaps is given by |c|cc|cc|. Then, two of the bars are fixed, giving the string [??????], where the nine? symbols are to be replaced by five c's and two |'s. If we choose 5 distinct positions in which to place the c's, the positions of the remaining 's is fixed. Thus, the number of possible cookie orders is $\binom{9}{5}$.

b)

More generally, we can use 'cookie types' to represent occurances of particular elements in the chosen sets. Then, fixing the position of two |'s leaves n+1-2=n-1 |'s and n c's, for a total of 2n-1 symbols. Picking element members requires n position choices, giving the total number of set choices as $\binom{2n-1}{n}$.

 $\mathbf{c})$

For a sample S of size n, each bootstrap sample represents the choice of n elements from S with replacement. Thus, the number of bootstrap samples is as above $\binom{2n-1}{n}$.

The number of bootstrap samples with k_1 a_1 's, k_2 a_2 's $\ldots k_n a_n$'s is the same as the number of permutations of the string

$$\underbrace{a_1 a_1 \dots a_1}^{k_1 \text{times}} \underbrace{a_2 a_2 \dots a_2}^{k_2 \text{times}} \dots \underbrace{a_n a_n \dots a_n}^{k_n \text{times}}$$
n symbols

Using the formula for string permuations with repeated characters, this yields

$$\frac{n!}{k_1!k_2!\dots k_n!}$$

which, by definition, equals

$$\binom{n}{k_1, k_2 \dots k_n}$$

b)

A bootstrap sample with k_i a_i 's requires choosing k_i of n positions, after which the remaining $n - k_i$ positions can be filled by any of the remaining n-1elements. Thus, the number of such samples is:

$$(n-1)^{n-k_i} \binom{n}{k_i}$$

The total number of bootstrap samples is simply n^n . Thus, the required probability is

$$\frac{(n-1)^{n-k_i}}{n^n} \binom{n}{k_i}$$

8

a)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
18.21	19.58	20.02	20.02	20.44	22.49

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
16.19	19.26	20.03	20.03	20.87	24.43

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
12.56	17.87	19.99	20.05	21.89	33.20

b)

n	Mean	$\overline{\mathrm{SD}}$
200	20.00	8.94
50	19.98	8.98
10	19.98	9.00

c)

n	Mean	SE
200	20.00	0.65
50	19.98	1.25
10	19.98	2.82

 $\mathbf{e})$

Increasing sample size reduces the bootstrap standard error. $\,$

The evenness of N does not seem to affect the histograms, but increasing N reduces the spread.

10

 $\mathbf{a})$

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
1.00	5.00	14.20	78.08	55.50	1550.00

The data appears to be highly concentrated between 0 and 500, with several outliers that skew the mean.

b)

Mean: 78.03

95% confidence interval: 55.0-104.61

12

a)

c)

Bias is 0.37, which is $\approx 3\%$ of the SE.

11

The data is concentrated between 0 and 0.25, with one outlier at 0.9.

b)

Mean: 0.18 ± 0.05

95% Confidence Interval: 0.11-0.31

c)

Mean: 0.19 ± 0.06

95% Confidence Interval: 0.11-0.31

d)

Removing the outlier had little effect on the standard error because it was only one point.

Trimmed Mean: 17.90 95% confidence interval: 13.67 - 23.30

Bias is 0.27, which is $\approx 11\%$ of the SE. The new test statistic has a smaller 95% confidence interval at the cost of higher bias.

14

a)

	Difference of Means
800	8 @
009	
400	
500	
0 -	e 8

e)

We can reject the null at the 5% significance level.

State	Min.	25%	50%	Mean	75%	Max.
WY	2212	2934	3278	3208	3515	3995
AK	2182	3170	3558	3516	3926	4592

b)

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
-109.2	232.4	306.3	306.8	381.2	755.9

95% confidence interval: 88-525

c)

The bias is -0.64, which is about half a percent of the standard error.

d)

Our null hypothesis is that the distribution of birth weights is independent of state. Running the permutation test gave a p-value of 3.5%