Definicja 1 (n-sympleks). Najmniejszy wypukły zbiór w \mathbb{R}^m zawierający n+1 punktów nie leżących w hiperprzestrzeni wymiaru n-1.

Sympleks o wierzchołkach v_i oznaczamy $[v_0, \ldots, v_n]$.

Definicja 2 (sympleks standardowy).
$$\Delta^n = [e_0, \dots, e_n]$$

= $\{(t_0, \dots, t_n) \in \mathbb{R}^{n+1} | \sum t_i = 1, t_i \ge 0\}.$

Uwaga 3. Wierzchołki sympleksu są uporządkowane. Ustalenie porządku wyznacza kanoniczny liniowy homeomorfizm sympleksu standardowego Δ^n z dowolnym sympleksem $[v_0, \ldots, v_n]$, tj. $\Delta^n \ni (t_0, \ldots, t_n) \mapsto \sum t_i v_i$.

Uwaga 4. Ściany dziedziczą porządek wierzchołków po sympleksie.

Definicja 5 (brzeg sympleksu). Suma wyszystkich ścian sympleksu jest jego brzegiem $\partial \Delta^n$.

Definicja 6 (otwarty sympleks). $\mathring{\Delta}^n = \Delta^n \backslash \partial \Delta^n$

Definicja 7 (Δ -kompleks). Przestrzeń topologiczna X ma strukturę Δ -kompleksu, jeśli istnieje rodzina przekształceń $\sigma_{\alpha}: \Delta^{n_{\alpha}} \to X$ takich, że

- $\sigma_{\alpha}|_{\mathring{\Delta}^{n_{\alpha}}}$ jest włożeniem oraz każdy puinkt jest w obrazie dokładnie jednego z przekształceń $\sigma_{\alpha}|_{\mathring{\Delta}^{n_{\alpha}}}$,
- dowolne obcięcie σ_{α} do ściany sympleksu jest jednym z przekształceń σ_{β} ,
- zbiór $A \subseteq X$ jest otwarty w
tw, gdy $\sigma_{\alpha}^{-1}(A)$ jest otwarty w Δ^n dla każdego α .

Przykład 8. W notatkach narysowany podział torusa na komórki.

Definicja 9 (Δ-kompleks). Δ-kompleks X jest przestrzenią ilorazową przestrzeni $\bigsqcup \Delta_{\alpha}^{n}$, gdzie każdą ścianę Δ_{α}^{n} identyfikujemy z odpowiednim Δ_{β}^{n-1} odpowiadającym obcięciu $\sigma_{\beta} = \sigma_{\alpha}|_{sciana}$.

Uwaga10. Możemy też konstruować Xindukcyjnie: $X^{(0)}$ to dyskretny zbiór wierzchołków, $X^{(1)}$ z doklejonymi krawędziami itd.

Homologie simplicjalne X to Δ -kompleks, G to grupa abelowa (domyślnie \mathbb{Z}).

Definicja 11 (*n*-łańcuchy). $\Delta_n(X,G)$ to wolna grupa abelowa, której bazą są otwarte *n*-sympleksy e^n_α w $X: \Delta_n(X,G) = \{\sum_{\alpha sk} n_\alpha e^n_\alpha : n_\alpha \in G\}.$

Jej elementy nazywamy n-łańcuchami.

Uwaga 12.
$$[v_0, \ldots, v_i, v_{i+1}, \ldots, v_n] = -[v_0, \ldots, v_{i+1}, v_i, \ldots, v_n]$$

Definicja 13 (brzeg).
$$\partial[v_0,\ldots,v_n] = \sum (-1)^i[v_0,\ldots,\hat{v}_i,\ldots,v_n]$$
 $\partial_n(\sigma_\alpha) = \sum (-1)^i\sigma_\alpha|_{[v_0,\ldots,\hat{v}_i,\ldots,v_n]}$

Lemat 14. $\partial^2 = 0$

Definicja 15. Mamy kompleks łańcuchowy $\Delta(X, G)$,

$$\ldots \to \Delta_n(X,G) \xrightarrow{\partial_n} \Delta_{n-1}(X,G) \to \ldots \to \Delta_0(X,G) \to 0.$$

Definicja 16 (homologie simplicjalne). $H_n^{\Delta}(X,G) = H_n(\Delta(X,G)) = \ker \partial_n / \operatorname{im} \partial_{n+1}$ Elementy $\ker \partial_n$ nazywamy cyklami, im $\partial_{n+1} - brzegami$, $H_n(X,G) - klasami$ homologii.

Homologie singularne

Definicja 17. $C_n(X,G)$ – wolna grupa abelowa generowana przez zbiór singularnych n-sympleksów w X – kompleks łańcuchowy singularny.

$$\partial_n(\sigma) = \sum (-1)^i \sigma|_{[v_0, \dots, \hat{v}_i, \dots, v_n]}
\partial^2 = 0
H_n(X, G) = \ker \partial_n / \operatorname{im} \partial_{n+1}$$

Uwaga 18. Homologie singularne są szczególnym przypadkiem simplicjalnych (wyjaśnienie w notatkach).

Stwierdzenie 19. $H_n(X) = \bigoplus_{\alpha} H_n(X_{\alpha})$, gdzie X_{α} – składowe łukowej spójności przestrzeni X.

Stwierdzenie 20. $H_0(X,G) = \bigoplus_{\alpha} G$, α indeksują składowe łukowej spójności przestrzeni X.

Stwierdzenie 21.
$$H_n(*,G) = \begin{cases} G & n=0\\ 0 & n \geqslant 1 \end{cases}$$

Definicja 22 (przekształcenie indukowane). $f: X \to Y$ ciągłe indukuje $f_{\#}: C_n(X,G) \to C_n(Y,G)$ takie, że $\sigma \mapsto f \circ \sigma$.

Lemat 23. $F_{\#}\partial = \partial f_{\#}$

Wniosek 24. $f_{\#}$ przenosi brzegi na brzegi, cykle na cykle, czyli f indukuje $f_*: H_n(X,G) \to H_n(Y,G)$ dla każdego n.

Fakt 25.
$$(fg)_* = f_*g_*$$

Fakt 26. $(\mathrm{Id}_X)_{\#} = \mathrm{Id}_{H_n}$

Twierdzenie 27. $f \simeq_{htp} g: X \to Y \implies f_* = g_*$

Wniosek 28. $X \simeq_{htp} Y \implies H_*(X,G) = H_*(Y,G)$

Twierdzenie 29. $H_n^{sing} \simeq H_n^{\Delta}$

Definicja 30 (kompleksy). ... $\rightarrow C_{n+1} \xrightarrow{\partial} C_n \rightarrow ...$ to kompleks łańcuchowy,

 $\ldots \to C^{n+1} \stackrel{\delta}{\leftarrow} C^n \to \ldots$ to kompleks kołańcuchowy.

Mając kompleks łańcuchowy (C_n) możemy wziąć $C^n = \text{Hom}(C_n, G) = C_n^*, \delta = \partial^*$. Wtedy też $\delta^2 = 0$.

Definicja 31 (kompleks kołańcuchowy singularny). $C^n(X, H) = \text{Hom}(C_n(X, G), G)$

$$(\delta\varphi)(\sigma) = \sum_{i=0}^{n} (-1)^{i} \varphi \left(\sigma|_{[v_0,\dots,\hat{v}_i,\dots,v_n]}\right)$$

Definicja 32 (kohomologie singularne). $H^n(X,G) = \ker \delta / \operatorname{im} \delta$ ker δ to kocykle, im δ to kobrzegi.

Uwaga 33. $\varphi \in C^n(X,G)$ kocykl, jeśli $0 = \delta \varphi = \varphi \delta$, czyli jeśli φ znika na brzegach.

Uwaga 34. Jeśli X – skończony Δ-kompleks, to utożsamiamy $\Delta_n(X, \mathbb{R})$ i Hom $(\Delta_n(X, \mathbb{R}), \mathbb{R}) = \Delta_n(X, \mathbb{R})^*$.

Definicja 35. $\Delta_n(X) = \Delta_n(X, \mathbb{R}), \ \Delta^n(X) = \Delta^n(X, \mathbb{R}) \text{ etc.}$

Rozkład Hodge'a - de Rhama

X skończony Δ -kompleks, $\Delta^n(X,\mathbb{R})\cong\mathbb{R}^{\beta_i}$ przestrzenie liniowe skończonego wymiaru nad \mathbb{R} (β_i – liczba n-sympleksów) mają naturalny iloczyn skalarny

Definicja 36. $\langle f, f' \rangle = \sum f(e_{\alpha}^n) f'(e_{\alpha}^n)$

Stwierdzenie 37. $\langle \delta_{i-1}x, y \rangle = \langle x, \partial_i y \rangle$ (de facto – z definicji)

Wniosek 38 (równoważna definicja). $\delta_{n-1} = \partial_n^*$

$$\Delta^n(X) \xrightarrow{\delta_{n-1} = \partial_n^*} \Delta^{n-1}(X)$$

Wniosek 39.
$$Z^i = \ker \delta_i = (\operatorname{im} \partial_{i+1})^{\perp} = B_i^{\perp}$$

$$Z_i = \ker \partial_i = (\operatorname{im} \delta_{i-1})^{\perp} = B^{i^{\perp}}$$

$$\Delta^i(X) = B^i \oplus Z_i = B_i \oplus Z^i$$

Stwierdzenie 40. $B^i \perp B_i$

Twierdzenie 41 (rozkład H-dR). $\Delta_i(X) = B^i \oplus B_i \oplus (Z^i \cap Z_i)$

Definicja 42 (harmoniczne kołańcuchy). $\mathcal{H}_i(X) = Z_i(X) \cap Z^i(X)$

Definicja 43 (laplasjan). $\Delta_i = \partial_{i+1}\delta_i + \delta_{i-1}\partial_i : \Delta^i(X) \to \Delta^i(X)$

Lemat 44. $\mathcal{H}_i(X) = \ker \Delta_i$