Question 1

Consider the process $Y_t = 5 + e_t - \frac{1}{2}e_{t-1} + \frac{1}{4}e_{t-2}$

- a) What type of process is this?
- b) Calculate the mean and autocovariance functions for this process directly.
- c) Calculate the autocovariance function using the fact that, for a general linear process,

$$\gamma_k = \sigma_e^2 \sum_{j=0}^{\infty} \psi_j \, \psi_{j+k}.$$

d) Calculate the autocorrelation function.

Question 2

Using the formulae in Section 3.2 of Lecture 4, calculate ρ_1 and ρ_2 for MA(2) processes with parameters:

- a) $\theta_1 = 0.5, \, \theta_2 = 0.4.$
- b) $\theta_1 = 1.2, \, \theta_2 = 0.4.$
- c) $\theta_1 = -1$, $\theta_2 = 0.6$.
- d) Verify your answers to the above using the ARMAacf function in R.

Question 3

Consider the following MA(1) processes:

$$Y_t = e_t - \theta e_{t-1}$$

$$Y_t = e_t - \frac{1}{\rho}e_{t-1}$$

and assume that $|\theta| < 1$.

- a) Using the formula derived in Section 3.1, show that both of these have the same autocorrelation function.
- b) By considering the MA characteristic equation, explain which model is preferred.

Question 4

Consider two MA(2) processes: one with $\theta_1 = \theta_2 = \frac{1}{6}$ and the other with $\theta_1 = -1$ and $\theta_2 = 6$.

- a) Show that these processes have the same autocorrelation function.
- b) Compare the roots of the MA characteristic equations.

Question 5

Suppose that $\{Y_t\}$ is an AR(1) process with $|\phi| < 1$ which has $\gamma_k = \phi^k \frac{\sigma_e^2}{1-\phi^2}$ for $k \ge 0$.

a) Let $W_t = \nabla Y_t$ and show that, for $k \geq 1$,

$$Cov(W_t, W_{t-k}) = -\left(\frac{1-\phi}{1+\phi}\right)\phi^{k-1}\sigma_e^2.$$

b) Show that $Var(W_t) = \frac{2\sigma_e^2}{1+\phi}$.

Question 6

Let $\{Y_t\}$ be an AR(2) process of the special form

$$Y_t = \phi Y_{t-2} + e_t.$$

- a) Derive the ψ weights using $\phi(B) \psi(B) = 1$ and, hence, find the range of ϕ values over which this process is stationary.
- b) As an alternative to part (a) determine the conditions for stationarity by considering the roots of the AR characteristic equation.
- c) Using the ψ weights from part (a), derive the autocovariance function:

$$\gamma_k = \begin{cases} \phi^{k/2} \frac{\sigma_e^2}{1 - \phi^2} & k \text{ even} \\ 0 & k \text{ odd} \end{cases}$$

d) Derive the autocovariance function directly (without using general linear process theory).

Question 7

For the ARMA(1,2) model

$$Y_t = 0.8Y_{t-1} + e_t + 0.7e_{t-1} + 0.6e_{t-2},$$

show that

- a) $\rho_k = 0.8 \rho_{k-1}$ for k > 2.
- b) $\rho_2 = 0.8\rho_1 + 0.6\frac{\sigma_e^2}{\gamma_0}$.

Question 8

a) Consider an MA(6) model with $\theta_1 = 0.5$, $\theta_2 = -0.25$, $\theta_3 = 0.125$, $\theta_4 = -0.0625$, $\theta_5 = 0.03125$, $\theta_6 = -0.015625$. Find an AR(1) process which has almost the same ψ weights.

b) Consider an MA(7) model with $\theta_1 = 1$, $\theta_2 = -0.5$, $\theta_3 = 0.25$, $\theta_4 = -0.125$, $\theta_5 = 0.0625$, $\theta_6 = -0.03125$, $\theta_7 = 0.015625$. Find an ARMA(1,1) process which has almost the same ψ weights.

Question 9

Consider the "ARMA(2,2)" process

$$Y_t = 0.4Y_{t-1} + 0.45Y_{t-2} + e_t + e_{t-1} + 0.25e_{t-2}.$$

- a) Write this model in the form $\phi(B) Y_t = \theta(B) e_t$.
- b) Find the roots of the AR and MA polynomials. Hence, write the model in the form

$$(1 - \frac{1}{a_1}B)(1 - \frac{1}{a_2}B)Y_t = (1 - \frac{1}{m_1}B)(1 - \frac{1}{m_2}B)e_t$$

where a_1 and a_2 are the roots of the AR equation and m_1 and m_2 are the roots of the MA equation. Show that the model is in fact an ARMA(1,1) model.

c) Is the model invertible and stationary?