PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-110439

(43) Date of publication of application: 20.04.2001

(51)Int.Cl.

H01M 8/24 H01M 8/10

(21)Application number : 11-287517

(71)Applicant: TOYOTA MOTOR CORP

(22)Date of filing:

08.10.1999

(72)Inventor: AOTO AKIRA

KONSAGA TORU TANAKA HIDEYUKI

HOTTA YUTAKA

(54) FUEL CELL

(57) Abstract:

PROBLEM TO BE SOLVED: To improve practical use of a fuel cell by making it compact.

SOLUTION: Four stacks are combined via a supply/exhaust box 200 for organizing a fuel cell. A water supply opening for supplying cooled water, and a water exhaust opening for exhausting water are short circuited by a cable to eliminate difference in potentials between the two openings. A water exhaust port for exhausting waterdrop is provided near an exhaust outlet of fuel gas of the supply/exhaust box. Each stack is constructed such that end plates provided at both ends of laminated cells are gripped by an upper side tension plate and a lower side tension plate, and the tension plates and the end plates are fixed tightly with bolts, which are inserted vertically for avoiding interference between the adjacent stacks and the supply/exhaust box. An insulating body is provided in one body with a surface of the

tension plate contacting the cell. Thus, the entire organized fuel cell stored in an outer case, where the outer case is sealed tightly for preventing foreign obstacles from infiltration.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]A fuel cell comprising provided with a layer built cell which laminated a cell:

A feed hopper which is a mechanism which cools by passing a conductive refrigerant to this layer built cell, and supplies said refrigerant to said layer built cell.

A cooler style provided in a part to which potential is different from an outlet which discharges said refrigerant from said layer built cell.

It is related with a refrigerant way through which said refrigerant flows, and is a refrigerant way of the upstream from said feed hopper.

A short-circuiting means which short-circuits a refrigerant way of the downstream electrically rather than said outlet.

[Claim 2]In the fuel cell according to claim 1, this fuel cell, Have two or more said layer built cells, and said refrigerant way, It comprises a feed hopper of each layer built cell as a refrigerant way [part at least] of a refrigerant way of the upstream where at least a part of refrigerant way of the downstream is more common than an outlet of each layer built cell, A fuel cell, wherein said short-circuiting means is provided in a part constituted as a refrigerant way common to two or more layer built cells.

[Claim 3]A fuel cell comprising provided with two or more layer built cells which laminated a cell: Said two or more layer built cells.

An intensive gas passageway which is equipped with a feeding-and-discarding member which realizes feeding and discarding of fuel between the exterior and each layer built cell by achieving a function which collects a function which distributes supplied fuel gas to said each layer built cell, and emission gas from said each layer built cell and into which said collected emission gas flows through this feeding-and-discarding member as an internal structure.

A draining mechanism which branches from this intensive gas passageway and discharges waterdrop in this gas passageway.

[Claim 4]A fuel cell, wherein it is a fuel cell provided with a layer built cell which laminated a cell, said layer built cell is provided with a holddown member for fixing a laminated cell and this holddown member is provided in a field of a side in contact with said cell in [an insulating layer] one.

[Claim 5]A fuel cell comprising provided with a layer built cell which laminated a cell:

Said two or more layer built cells.

A container which has the structure sealed so that prevention of invasion of a foreign matter from the outside was possible while accommodating a layer built cell of this plurality collectively.

[Claim 6]A fuel cell which is the fuel cell according to claim 5, and is provided with a discharge mechanism for a mechanism for performing supply and discharge of fuel gas, oxidizing gas, and cooling water between said layer built cells in a container to discharge further a gas or a fluid produced in this container to the container exterior independently.

[Claim 7]A fuel cell which is provided with the following and characterized by concluding said end plate and said connecting member by a fastening member inserted in the direction which intersects perpendicularly with said laminating direction.

An elastic member to which it is a fuel cell provided with a layer built cell which laminated a cell, and said layer built cell gives elastic force to a laminating direction to said cell.

An end plate of a couple which has the rigidity it is arranged to both ends of said laminated cell at this cell and parallel, and it can be considered to said elastic force that is a rigid body.

A connecting member which connects the end plates of this couple and makes power which balances with said elastic force act on this end plate.

[Claim 8]A fuel cell which is the fuel cell according to claim 7, and is characterized by arranging this layer built cell in the direction which intersects perpendicularly with the path of insertion of said fastening member while having two or more said layer built cells.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the art which miniaturizes the stack constituted by laminating a cell about the fuel cell provided with a hydrogen pole and an oxygen pole across the electrolyte layer which penetrates a hydrogen ion.

[0002]

[Description of the Prior Art]The fuel cell which generates electromotive force is proposed by having a hydrogen pole and an oxygen pole conventionally across the electrolyte layer which penetrates a hydrogen ion, and producing the reaction according to the following reaction formula (1) and (2) in the negative pole (hydrogen pole) and the anode (oxygen pole), respectively. An electrolyte layer is the negative pole (hydrogen pole).

$$H^2 - 2H^+ + 2e^- ... (1)$$

Anode (oxygen pole)

$$(1/2) O_2 + 2H^+ + 2e^- -> H_2O ... (2)$$

[0003]As for the fuel cell, according to the kind of electrolyte layer, various forms, such as a phosphoric acid fuel cell, a fused carbonate fuel cell, a solid oxide fuel cell, and an alkaline fuel cell, are proposed. The polymer electrolyte fuel cell which applied the poly membrane of hydrogen ion conductivity as an electrolyte layer attracts attention for the reasons of power density being miniaturized highly and there being, and various improvement is considered by recent years.

[0004]Since the electromotive force in which the fuel cell of per unit cell is theoretical also in which mold is about 1.23v, it laminated many cells and has obtained desired voltage. The unit which laminated the cell and was fixed in the case is called the stack. Generally, by a stack, since the lamination accuracy of a cell appears as internal resistance, if extremely many cells are laminated, internal resistance will become large and the efficiency of a fuel cell will fall. If extremely many cells are laminated, it will become difficult to supply fuel gas to each cell uniformly. Usually desired voltage is obtained by avoiding constituting a fuel cell by the

single stack which laminated the cell even from these reasons to an obtaining [desired voltage] grade, dividing into two or more stacks, constituting a fuel cell, and connecting these in series. In the fuel cell which used two or more stacks, the applicant of this application has proposed art given [as art in which the whole miniaturization can be attained] in JP,8-171926,A while supplying fuel to each stack uniformly. This is the structure which combined four stacks via the feeding-and-discarding member.

[0005]

[Problem(s) to be Solved by the Invention] However, when it was going to carry a stack in various apparatus, such as vehicles, it was found out that various technical problems shown in the following besides the technical problem on the feeding and discarding of fuel occur. Since the miniaturization of the fuel cell was not fully conventionally taken into consideration in a means to solve each of these technical problems, when it was going to solve each technical problem, another technical problem that a fuel cell was enlarged might be caused. About each following technical problem, the desirable solving means was not enough examined by this meaning.

[0006]The 1st technical problem about a stack is a technical problem resulting from cooling. The fuel cell is cooled with cooling water. Cooling water flows through the cooling channel formed in the separator which constitutes the gas passageway of a cell, etc. Generally the separator comprises a conductive member. Therefore, cooling water is a process in which a cell is cooled and is charged by contacting a conductive separator according to the potential of an electrode. Depending on the composition of the water supply opening which supplies cooling water to a stack, and the exhaust port which discharges cooling water from a stack, potential difference may exist in these neighborhood. In this case, it originates in this potential difference and evils, such as electric corrosion, may be caused between a water supply opening and an exhaust port. If measures, such as covering a water supply opening and an exhaust port by an insulating material, are taken in order to avoid such evil, the part and a stack will be enlarged. Since the potential difference of a water supply opening and an exhaust port results in hundreds of volts especially in the structure which connects two or more stacks via a feeding-and-discarding member, the influence which will need to enlarge covering of an insulating member and it has on the size of a device is great. Since the restrictions about the installation site of a water supply opening and an exhaust port will become large if it is going to put side by side a water supply opening and an exhaust port to the part to which potential difference does not exist, the design flexibility of a cooling channel decreases and it becomes a factor which checks the miniaturization of a device.

[0007]The 2nd technical problem about a stack is a technical problem resulting from discharge of the water generated by reaction time. As for a fuel cell, water (H₂O) is generated by reaction time as the formula (1) and (2) showed previously. The water produced in this cell passes along the manifold which supplies gas to a stack, and is carried to gas exhaust by the flow of gas. In a solid-polymer-membrane type fuel cell, the water used for humidification of an electrolyte membrane is also carried to gas exhaust in the same course. Under the present circumstances, when the quantity of the water carried to gas exhaust increased, the phenomenon called flooding might arise, and operation of the fuel cell might become unstable. That is, by

reducing the cross-section area of a gas passageway, the waterdrop condensed inside gas exhaust checks the flow of gas, and generates electricity unstably by coming to check supply of the gas to each cell by extension. In order to avoid this evil, the structure which established the drain port in the stack is indicated by JP,11-204126,A. However, this structure establishes a drain valve and a discharge port in the exterior of a stack, and has the technical problem that the structure of a stack and by extension, the structure of the whole fuel cell are enlarged extremely. It will be necessary to establish the draining mechanism poured for every stack, and enlargement of a fuel cell will be increasingly caused in a fuel cell provided with two or more stacks.

[0008]The 3rd technical problem about a stack is a technical problem resulting from the insulation of a cell. A stack comprises fixing so that the laminated cell may not separate into a laminating direction. The external structure which plays the role which fixes a cell shall be called a stack case here. Since a cell is a meeting of an electrode, when it constitutes a stack in this way, it needs to insulate between cells with a stack case. Both insulation was secured by conventionally inserting insulators, such as silicone rubber, between a cell and a stack case. However, when both insulation was aimed at with this structure, the process of inserting an insulator in the manufacturing process of a stack might be needed, and productivity might fall. Since the process of laminating a cell and constituting a stack as above-mentioned was a process of which the precision which participates in internal resistance is required, when the inserting process of an insulator increased, productivity might fall extremely. Generally, in order to constitute a stack, without applying unnecessary load to a cell since insulators, such as silicone rubber, have the comparatively low accuracy to thickness, in consideration of dispersion in the thickness of an insulator, the stack case needed to be manufactured more greatly. Since a certain amount of thickness was needed in order to maintain the shape of the insulator itself, the insulator became large superfluously and enlargement of the stack case had been caused.

[0009]The applicant for this patent is indicating one art of avoiding such enlargement, as JP,8-162143,A. This art is art which applies and covers rubber to the 4th page of a stack. However, when the process of applying rubber is needed for an excess when aiming at the insulation of a stack by the method of starting, and also breakage etc. arise within the stack once covered with rubber, repair causes another technical problem are difficult. From this viewpoint, without spoiling the productivity of a stack, the stack could be insulated certainly and, moreover, the art in which enlargement of a stack case was avoidable was demanded.

[0010]The 4th technical problem about a stack is a technical problem resulting from reservation of waterproofness, protection-against-dust nature, and the rigidity of a stack. The cell of plurality [stack] is being fixed with the stack case as above-mentioned. However, in view of the workability at the time of attaching the necessity of attaching the terminal for supervising the voltage of a cell, and a terminal, etc., the stack case does not have perfect airtight structure in many cases. Therefore, when the stack of this structure was used for various devices, such as vehicles, having carried it, water, dust, etc. may have entered into the crevice between cells according to the operating environment. Usually at the time of operation of these

devices, it was accompanied by vibration, and when the load resulting from this vibration and it, etc. acted on the stack, the crevice may have arisen between cells by distortion produced in a stack. By these factors, the stack may have produced decline in the generation efficiency by increase of internal resistance, and poor power generation.

[0011]In order to solve this technical problem, while carrying out the seal of the periphery of a stack case thoroughly, it is also possible to take the method of improving the rigidity of a stack case to such an extent that it does not change by vibration etc. However, establishing the process of carrying out the seal of the periphery of a stack case will spoil the productivity of a stack. Since it is necessary to increase the board thickness of a stack case in order to fully improve the rigidity of a stack case, the weight increase of a stack and enlargement will be caused. Especially, in the fuel cell using two or more stacks, the influence was great.

[0012]The 5th technical problem about a stack is a technical problem resulting from the mechanism for giving elastic force to the laminated cell. When a cell is laminated and it constitutes a stack, in order to reduce internal resistance, it is desirable to stick cells as much as possible. On the other hand, at the time of power generation, since heat arises and a cell expands thermally by a chemical reaction, if the laminated cell is adhered thoroughly, modification by heat stress may arise and evils, such as poor power generation and a fall of a life, may be caused. The art which solves this technical problem is indicated by JP,11-233132,A. This is art which attaches an end plate to the end by which the cell was laminated via a plate spring, and it energizes the power of sticking cells, absorbing the modification which originates in thermal expansion etc. according to the elastic force of a plate spring. The applicant for this patent is also indicating the art which solves an aforementioned problem by JP,7-335243,A. While this attaches an end plate to the end of the laminated cell via an elastic member, It is the art of using the space between this end plate and the end of a cell as a pressure chamber which can pour in a fluid, and the power of sticking cells is energized, absorbing modification resulting from thermal expansion etc. using the elastic force by an elastic member, and the pressure of a fluid.

[0013]However, in such art, since the end plate was fixed with the bolt penetrated to a laminating direction, the technical problem that a stack was enlarged by a bolt space occurred. In particular, the stack was long to a laminating direction. The fuel cell needs to laminate many cells for voltage reservation, and the size of a laminating direction tends to become large inevitably. There is that it is [much] more desirable to, avoid the shape where the size of one way is extremely large, on the other hand from a viewpoint of the space reservation at the time of carrying a fuel cell in various devices, such as vehicles. The enlargement resulting from the bolt space which stopping as much as possible was desirable as for the size of the laminating direction of a cell, and was mentioned above from this viewpoint will spoil the efficiency at the time of carrying a stack in a device. Especially the influence in the fuel cell using two or more stacks is great. Therefore, the art in which the miniaturization of a stack, especially the miniaturization of a laminating direction could be attained was demanded, giving moderate elastic force to the laminating direction of a cell. [0014]There were practical various technical problems in the conventional fuel cell, it originated in these and

a big technical problem called enlargement of a stack was caused as explained above. This invention is made in view of these technical problems, and an object of this invention is to solve at least a part of five above-mentioned technical problems also including the viewpoint of enlargement evasion of a stack.

[0015]

[The means for solving a technical problem, and its operation and effect] In order to solve at least a part of various technical problems mentioned above, solving the technical problem of 1 that the miniaturization of a fuel cell is attained, this invention adopted the next composition. The feed hopper which the 1st fuel cell of this invention is a fuel cell provided with the layer built cell which laminated the cell, is a mechanism which cools by passing a conductive refrigerant to this layer built cell, and supplies said refrigerant to said layer built cell, Let it be a gist to have had the refrigerant way of the upstream, and the short-circuiting means which short-circuits the refrigerant way of the downstream electrically rather than said outlet rather than said feed hopper about the cooler style provided in the part to which potential is different from the outlet which discharges said refrigerant from said layer built cell, and the refrigerant way through which said refrigerant flows.

[0016]According to the 1st fuel cell, since the potential difference of the cooling water produced in a feed hopper and an outlet is cancelable by a short-circuiting means, evils, such as electric corrosion, are easily avoidable. Since it is realizable by connecting both by a conductive member, a means to short-circuit a refrigerant way with potential difference electrically does not cause evils, such as enlargement of a fuel cell, and increase of a manufacturing cost. Enlargement of the device by providing an insulating member in a feed hopper and an outlet by this is also avoidable. Since restrictions of providing both in a part without potential difference are also lost, design flexibility becomes possible [attaining much more miniaturization of increase and a device].

[0017]In order that a feed hopper and an outlet may carry out the feeding and discarding of the refrigerant, a hole provided in a layer built cell is meant, and "it is a refrigerant way of the upstream from a feed hopper" and "it is a refrigerant way of the downstream from an outlet" mean a refrigerant way opened for free passage by layer built cell. Therefore, a short-circuiting means of this invention is provided in the exterior instead of an inside of a layer built cell. Since it can equip with a short-circuiting means by this after constituting a layer built cell, there is an advantage which can establish a short-circuiting means without spoiling the productivity of a layer built cell. Management when obstacles, such as an open circuit, arise also has an advantage which becomes easy.

[0018]Although the above-mentioned short-circuiting means is not cared about as what is given to a single layer built cell, when this fuel cell is provided with two or more said layer built cells, A refrigerant way of the upstream at least said refrigerant way rather than a feed hopper of each layer built cell in part, And it is desirable to provide in a part where at least a part of refrigerant way of the downstream comprises an outlet of each layer built cell as a common refrigerant way, and said short-circuiting means was constituted as a refrigerant way common to two or more layer built cells.

[0019] According to this composition, since a short-circuiting means is provided in a common refrigerant way,

there is nothing until it provides a short-circuiting means in each layer built cell, and potential difference of a refrigerant can be canceled. Therefore, a process for establishing a short-circuiting means and cost can be controlled. Since a refrigerant which passed two or more layer built cells may have very big potential difference, the usefulness of this invention is dramatically high at a point which can cancel potential difference easily. A structure provided with a feeding-and-discarding member which realizes feeding and discarding of fuel between the exterior and each layer built cell can be mentioned by achieving a function which collects a function which distributes supplied fuel gas to said each layer built cell as an example of a fuel cell provided with two or more layer built cells, and emission gas from said each layer built cell. In this case, a common refrigerant way mentioned above inside a feeding-and-discarding member will be formed. In this case, composition of the above-mentioned invention is realizable by, for example, short-circuiting the neighborhood of a feed hopper for performing feeding and discarding of cooling water between feeding-and-discarding members, and an outlet.

[0020]The 2nd fuel cell of this invention is a layer built cell which laminated a cell a fuel cell which it has, and Said two or more layer built cells, It has a feeding-and-discarding member which realizes feeding and discarding of fuel between the exterior and each layer built cell by achieving a function which collects a function which distributes supplied fuel gas to said each layer built cell, and emission gas from said each layer built cell, This feeding-and-discarding member makes it a gist to be a structure provided with an intensive gas passageway into which said collected emission gas flows, and a draining mechanism which branches from this intensive gas passageway and discharges waterdrop in this gas passageway as an internal structure.

[0021]According to the 2nd fuel cell, according to a draining mechanism provided in a feeding-and-discarding member, since waterdrop in a gas passageway can be discharged suitably, flooding is avoidable. Since a draining mechanism is established in a feeding-and-discarding member, it is not necessary to provide a drain valve etc. outside, and, unlike conventional technology indicated to JP,11-204126,A, enlargement of a device can be avoided. Since a draining mechanism is especially provided in a feeding-and-discarding member, it can avoid establishing a draining mechanism individually to each layer built cell, and a device can be miniaturized.

[0022]The draining mechanism can branch from a gas passageway and can consist of an effusion mechanism in which waterdrop is stored temporarily, and a drainage pipe which discharges stored water. Although a drainage pipe can also be considered as composition which discharges water with gravity, it can also be used as a mechanism which discharges water positively using a pressure of gas which flows through inside of a gas passageway more. In order to supply fuel gas to a unit cell duly uniformly, usually gas is comparatively supplied with high voltage, and, usually gas by which, as for pressure loss, a certain thing is discharged has a pressure high enough compared with atmospheric pressure within a unit cell. Therefore, an effusion mechanism of composition of that a pressure of emission gas acts on the water surface, for example, an effusion mechanism formed in a part to which a gas passageway has bent and a pressure becomes high locally, By using an effusion mechanism etc. which were formed via branching

sharply combined to a flow direction of emission gas, it becomes possible to discharge water positively using this pressure. Since flexibility to a position of a drainage pipe becomes high as compared with a case where it drains by gravity in draining using a pressure, a device can be miniaturized further.

[0023]The 3rd fuel cell of this invention is a fuel cell provided with a layer built cell which laminated a cell, said layer built cell is provided with a holddown member for fixing a laminated cell, and this holddown member makes it a gist to provide an insulating layer in a field of a side in contact with said cell in one. [0024]According to the 3rd fuel cell, in a process in which a layer built cell is manufactured, a process of inserting an insulation material between a cell and a holddown member can be skipped, and improvement in productivity can be aimed at. Since especially lamination of a unit cell is near work which influences performance of a layer built cell greatly, simplification in this process leads to large improvement in productivity. As a method of providing an insulating layer in one, various methods, such as a method of pasting up an insulating member on the whole surface of a holddown member, and the method of applying an insulating material to the whole surface of a holddown member, are applicable. By forming in one by these methods, thickness of the insulating layer itself can be made thin as compared with a case where an insulating layer is prepared by a different body. A size error of thickness can also be controlled. Even if a gap arises in a position of an insulating layer, it is necessary to provide sufficient opening, when an insulating layer is prepared by a different body but so that between a unit cell and holddown members may not contact, and. When an insulating layer is united with a holddown member, such consideration becomes unnecessary and an opening of a unit cell and a holddown member can be reduced. The 3rd fuel cell that united an insulating layer with a holddown member can miniaturize a device by these operations. [0025]The 4th fuel cell of this invention is a fuel cell provided with a layer built cell which laminated a cell. and comprises the following:

Said two or more layer built cells.

A container which has the structure sealed so that prevention of invasion of a foreign matter from the outside was possible while accommodating a layer built cell of this plurality collectively.

Dust, water, etc. are mentioned as a foreign matter.

[0026]It becomes unnecessary to give perfect dealing with a foreign matter to each layer built cell by having this container. Therefore, structure of a layer built cell can be simplified and a miniaturization of a layer built cell can be attained. Improvement in productivity and reduction of a manufacturing cost can be aimed at. When potential of a cell needs to be supervised, since a layer built cell can be constituted from a state where the appearance of the cell can be carried out, usefulness is high by having an above-mentioned container.

[0027]The 4th fuel cell has an advantage also in a viewpoint of securing rigidity again. When it carries a fuel cell in vehicles etc., vibration and various external force act on a fuel cell. In order to generate electricity by being stabilized, it is necessary to secure the rigidity of a grade which produces modification with neither vibration nor external force about a fuel cell. Here, modification is mainly bending deformation and twist modification, and the rigidity to these can judge a geometric moment of inertia and a polar moment of inertia

of area as an index. As for these coefficients, it is known that a section where distance from a neutral axis of bending deformation and the axis of rotation of twist modification is larger will become large. In order that a container of the 4th fuel cell may accommodate a layer built cell collectively, a geometric moment of inertia and a polar moment of inertia of area become large clearly rather than a layer built cell. Therefore, the 4th fuel cell can secure sufficient rigidity, controlling board thickness of material. If a container secures rigidity, since it becomes unnecessary for a layer built cell to secure so high rigidity, it can attain a miniaturization. Since board thickness of a container can be controlled, weight increase of the whole fuel cell can also be controlled.

[0028]In the 4th fuel cell, a mechanism for performing supply and discharge of fuel gas, oxidizing gas, and cooling water between said layer built cells in a container is still better also as a thing provided with a discharge mechanism for discharging independently a gas or a fluid produced in this container to the container exterior.

[0029]Since hydrogen used as fuel gas is a very detailed molecule, as it oozes from various kinds of joined parts of a unit cell at the time of operation, it may leak. It may leak and come also out of water generated at a reaction of a fuel cell to the layer built cell exterior. Since the 4th fuel cell seals a container, a gas and a fluid which are discharged in this way may be accumulated into a container. According to the abovementioned composition, these gases and a fluid can be appropriately discharged out of a container with a discharge mechanism. As for a discharge mechanism, although it can also apply simple composition which attached an exhaust pipe, it is preferred to double and provide a valve element etc. in a mounting part in order to prevent invasion of a foreign matter from the outside.

[0030]The 5th fuel cell of this invention is a layer built cell which laminated a cell a fuel cell which it has, and said layer built cell, An elastic member which gives elastic force to a laminating direction to said cell, and an end plate of a couple which has the rigidity it is arranged to said laminated both ends of a cell at this cell and parallel, and it can be considered to said elastic force that is a rigid body, The end plates of this couple are connected, it has a connecting member which makes power which balances with said elastic force act on this end plate, and said end plate and said connecting member make it a gist to have been concluded by a fastening member inserted in the direction which intersects perpendicularly with said laminating direction. [0031]According to the 5th fuel cell, operation which fully stuck a cell and was stabilized according to elastic force of an elastic member absorbing modification by heat is realizable. Thus, in a mechanism which gives elastic force, the 5th fuel cell takes structure which supports load applied to an end plate as a reaction of elastic force given to a cell by a connecting member. Here, a fastening member of a connecting member and an end plate is inserted in the direction which intersects perpendicularly with a laminating direction. In inserting a fastening member in a laminating direction, it enlarges the part and size of product both directions, but this enlargement can be avoided when inserting in the direction which intersects perpendicularly with a laminating direction.

[0032]In a fuel cell provided with two or more layer built cells, especially its usefulness is high as the above-mentioned composition is shown below. In order to supply fuel gas etc. to each cell uniformly in a fuel cell

provided with two or more layer built cells, it is preferred to provide a feed hopper and an outlet in a laminating direction. When combining two or more layer built cells using a feeding-and-discarding member especially mentioned above, each layer built cell will be combined with a feeding-and-discarding member via one end plate. Since a fastening member is inserted in the direction which intersects perpendicularly with a laminating direction according to the 5th fuel cell, it is avoidable that a fastening member interferes by a plane of union with a feeding-and-discarding member. Since a check of a fastening state by a fastening member, etc. can be performed even after combining a feeding-and-discarding member and a layer built cell, maintainability also improves. Even when not using a feeding-and-discarding member, just a difference of a grade can acquire that and same effect.

[0033]In the 5th fuel cell, when it has two or more said layer built cells, it is desirable to arrange this layer built cell in the direction which intersects perpendicularly with the path of insertion of said fastening member. By considering it as this arrangement, it can avoid that a fastening member interferes with layer built cells, and much more miniaturization of a fuel cell can be attained. Maintainability can also be improved. In this way, the 5th fuel cell has especially high usefulness, when it has two or more layer built cells, but it cannot be overemphasized that it is applicable effective also in a single layer built cell.

[0034]although individually explained as the 1st - the 5th fuel cell, various fuel cells which combined these inventions can also be constituted from above-mentioned explanation -- respectively -- the [the 1st -] -- a fuel cell which has an advantage of each fuel cell of five is realizable. Although it is desirable to apply to a solid polymer type fuel cell with which a miniaturization is expected as for especially the above-mentioned invention, it is not limited to this and can be applied to fuel cells of various forms, such as a phosphoric acid fuel cell, a fused carbonate fuel cell, a solid oxide fuel cell, and an alkaline fuel cell.

[0035]

[Embodiment of the Invention]An embodiment of the invention is described in following order based on an example.

A. entire configuration: -- short-circuiting means [of B. cooling system]: -- C. draining mechanism: -- insulating composition [of D. tension plate]: -- arrangement [of the structure and the stack which fix E. cell]: -- F. outer case: [0036]A. Entire configuration: drawing 1 is a perspective view showing the outline composition of the stack 10 of this example. The stack 10 is formed with the gestalt of the layer built cell with which only the predetermined number laminated the cell 100 as a unit cell which produces electromotive force. The laminated cell is concluded with the tension plate 170,172 arranged up and down, and is being fixed. The cell 100 is formed as a polymer electrolyte fuel cell, respectively, and each cell produces a 1V a little more than electromotive voltage. In this example, the cell of 100 sheets is laminated so that the electromotive voltage of about 100 v may be produced in each stack. Although the detailed structure of the cell 100 is mentioned later, it is making the structure which inserted the oxygen pole, the electrolyte membrane, and the hydrogen pole into this order with the separator, respectively. The separator of the adjoining cell 100 is shared by the stack 10. Generally, the term of a "stack" may mean a structure also including the member which fixes a cell as the case where it uses as a general term of the only laminated

cell. In this specification, in meaning the structure which also includes the tension plates 170 and 172 of the upper and lower sides besides the latter meaning 100, i.e., the laminated cell, when only calling it the stack 10 and using in the sense of the former, it shall call it "a stack in a narrow sense."

[0037]The stack 10 is laminated in order of the end plate 12, the electric insulating plate 16, the collecting electrode plate 18, two or more cells 100, the collecting electrode plate 20, the electric insulating plate 22, and the end plate 14, and comprises an end. The end plates 12 and 14 are formed with metal, such as steel, in order to secure rigidity. the collecting electrode plates 18 and 20 -- gas, such as substantia-compacta carbon and a copper plate, -- it is formed of a conductive member [**** / un-], and the electric insulating plates 16 and 22 are formed of insulation members, such as rubber and resin. The electric power produced in the stack 10 is outputted by connecting to the collecting electrode plates 18 and 20.

[0038]The fuel gas feed hopper 35, the fuel gas outlet 36, the oxidizing gas feed hopper 33, the oxidizing gas outlet 34, the cooling water feed hopper 31, and the cooling-water-discharge mouth 32 are formed in one end plate 14. The fuel gas supplied to the stack 10 from the fuel gas feed hopper 35 is distributed to each cell 100, flowing toward the end plate 12. After the fuel gas distributed to each cell 100 is distributed to each cell 100 and flows into the right direction through the channel in the cell 100 from the left in a figure, flowing toward the end plate 12, it flows into the end-plate 14 side, and is discharged from the fuel gas outlet 36. After being similarly supplied from the oxidizing gas feed hopper 33, while oxidizing gas also flows toward the end plate 12, after being distributed to each cell 100 and flowing through the channel in each cell 100 caudad from the upper part in a figure, it is discharged from the oxidizing gas outlet 34. After cooling water passes along the separator for cooling formed at the predetermined intervals after being supplied from the cooling water feed hopper 31 and cools a cell, it is discharged from the cooling-water-discharge mouth 32. The gas passageway of each cell 100 is formed inside so that the stack 10 can realize the flow of such gas and cooling water. The seal of the adjacent spaces where the electrolyte membrane 132 which constitutes each cell 100 of the stack 10 touches the separators 110 and 120 is carried out. Fuel gas and oxidizing gas begin to leak from cell 100 inside, and this seal plays the role which prevents both from mixing.

[0039] Drawing 2 is a perspective view showing the structure of the cell 100. The cell 100 is constituted as a polymer electrolyte fuel cell. The cell 100 has the structure which put the electrolyte membrane 132 in the hydrogen pole 134 and the oxygen pole 136, and sandwiched the both sides with the separators 110 and 120 further. The oxygen pole 136 exists in the field of the hidden side in the rear face of the hydrogen pole 134, and a figure on both sides of the electrolyte membrane 132. The hydrogen pole 134 and the oxygen pole 136 are gas diffusion electrodes. Two or more rugged form ribs are formed in the field where the separators 110 and 120 counter with the hydrogen pole 134 and the oxygen pole 136. When the separators 110 and 120 put the hydrogen pole 134 and the oxygen pole 136 from both sides further, the oxidizing gas passage 122 is formed between the fuel gas flow route 112 and the oxygen pole 136 between the hydrogen poles 134. The rib is formed in both sides, one side forms the fuel gas flow route 112 between the hydrogen poles 134, and, as for the separators 110 and 120, other sides form the oxidizing gas passage 122 between

the oxygen poles 136 with which the adjoining cell 100 is provided. Thus, the separators 110 and 120 have played the role which separates the flow of fuel gas and oxidizing gas between the adjoining cells while forming a gas passageway between gas diffusion electrodes.

[0040]The electrolyte membrane 132 is an ion-exchange membrane of the proton conductivity formed with solid polymer material, for example, fluororesin, and shows good electrical conductivity according to a damp or wet condition. As the electrolyte membrane 132, the Nafion film (made by Du Pont) etc. are applicable, for example. Platinum as a catalyst is applied to the surface of the electrolyte membrane 132. After making the organic solvent distribute the carbon powder which supported platinum as a catalyst with this example and adding and pasting a proper quantity of electrolytic solutions (for example, Aldrich Chemical, Nafion Solution), The catalyst was applied by the method of screen-stenciling on the electrolyte membrane 132. The formation method of a catalyst bed is good also as what carries out film shaping of the paste containing the carbon powder which could apply various methods to others, for example, supported the abovementioned catalyst, produces a sheet, and is pressed on the electrolyte membrane 132. The alloy which consists of platinum and other metal can also be used for a catalyst. The hydrogen pole 134 and the oxygen pole 136 are formed by the carbon crossing which wove carbon fiber. It is good also as what forms the hydrogen pole 134 and the oxygen pole 136 by the carbon paper or carbon felt which consists of carbon fiber. Since the above-mentioned catalyst should just intervene between a gas diffusion electrode and the electrolyte membrane 132, it is good also as what applies a catalyst to the side which replaces with the method of applying a catalyst to the electrolyte membrane 132 side, and touches the electrolyte membrane 132 of the hydrogen pole 134 and the oxygen pole 136.

[0041]The separators 110 and 120 are formed by the gas unpenetrated conductive member, for example, the substantia-compacta carbon which compressed carbon and it presupposed gas un-penetrating. Two or more ribs by which the separators 110 and 120 have been arranged in parallel to the both sides are formed. It is not necessary to necessarily form a rib in parallel by both sides, and intersecting perpendicularly for every field etc. can form it at an angle of versatility. If a rib is the shape which can form the channel of fuel gas and oxidizing gas, it does not necessarily need to be a parallel groove.

[0042]The cooling water holes 151 and 152 of the circular section are formed in two places of the periphery at the separators 110 and 120. When these cooling water holes 151 and 152 laminate the cell 100, they form the cooling channel which penetrates the stack 10 to a laminating direction. Long and slender-shaped the fuel gas holes 153 and 154 and the oxidizing gas holes 155 and 156 which meet each neighborhood are formed near [each] the neighborhood of the separators 110 and 1120. When the fuel gas holes 153 and 154 and the oxidizing gas holes 155 and 156 form the stack 10 by laminating the cell 100, they form the fuel gas flow route 112 and the oxidizing gas passage 122 which penetrate the stack 10 to a laminating direction. In this example, fuel gas exhaust passage is formed along with a fuel gas supply route and the neighborhood of the right direction along with the neighborhood of the left of drawing 3. Along with the upper neighborhood, oxidizing gas exhaust passage is formed along with the neighborhood of an oxidizing gas supply route and a lower part.

[0043]The fuel gas feed hopper 35 of the stack 10 is connected with the fuel gas supply route, and the fuel gas outlet 36 is connected with fuel gas exhaust passage. The supplied fuel gas flows into the fuel gas flow route 112 of each cell 100 through a fuel gas supply route from the fuel gas feed hopper 35. And after a predetermined reaction is presented in the hydrogen pole 134, it flows out of fuel gas exhaust passage into the fuel gas outlet 36. Oxidizing gas also flows in the same course. The oxidizing gas feed hopper 33 of the stack 10 is connected with the oxidizing gas supply route, and the oxidizing gas outlet 34 is connected with oxidizing gas exhaust passage. The supplied oxidizing gas flows into the oxidizing gas passage 122 of each cell 100 through an oxidizing gas supply route from the oxidizing gas feed hopper 33. And after a predetermined reaction is presented in the oxygen pole 136, it flows out of oxidizing gas exhaust passage into the oxidizing gas outlet 34.

[0044]At the stack 10, whenever the five cells 100 are laminated, the cooling separator 140 is formed at a rate of one sheet. The cooling separator 140 is a separator for forming the cooling channel which cools the cell 100. The meandering cooling water grooves 142 which connect a cooling water hole are formed in the cooling separator 140. The cooling separator 140 and the field which counters are a flat field without a rib among the separators 110 and 120, and the slot established in the cooling separator 140 forms a cooling channel among the separators 110 and 120. The separators 110 and 120 and the cooling separator 140 can be formed with various materials which have conductivity besides substantia-compacta carbon. For example, rigidity and heat-conducting characteristic may be thought as important and it may form with metal, such as a copper alloy and an aluminum alloy. The rate of forming the cooling separator 140 can be set up in the range which was suitable for cooling according to conditions, such as calorific value of the cell 100 according to the required power of the stack 10, temperature of cooling water, and a flow.

[0045]The fuel cell 1 of this example connects the four stacks 10 mentioned above, and is constituted. <u>Drawing 3</u> is an exploded perspective view showing the outline structure of the fuel cell 1. In this example, the composition which connects the four stacks 10A-10D with the 2nd page that the feeding-and-discarding box 200 of rectangular parallelepiped shape counters was applied. The feeding-and-discarding box 200 is connected with the fuel source, the oxidizing gas supply source, and the cooling water supply source, and fuel, oxidizing gas, and cooling water, While being uniformly distributed to each stacks 10A-10D via the feeding-and-discarding box 200, respectively, it is together put by the feeding-and-discarding box 200 from each stacks 10A-10D, and is discharged outside.

[0046]Drawing 4 is an explanatory view showing fuel gas, oxidizing gas, and the feeding-and-discarding situation of cooling water. The hole which is open for free passage to the fuel gas feed hopper 35 established in each stacks 10A-10D, the fuel gas outlet 36, the oxidizing gas feed hopper 33, the oxidizing gas outlet 34, the cooling water feed hopper 31, and the cooling-water-discharge mouth 32 is provided in the feeding-and-discarding box 200. The hole for connecting with a fuel source, an oxidizing gas supply source, a cooling water supply source, etc., respectively is provided in the 4th remaining page that is not joined to the stacks 10A-10D. Although explanation detailed about the internal structure of the feeding-and-discarding box 200 is omitted, the feeding-and-discarding box 200 has realized the feeding and discarding of the fuel

gas to each stacks 10A-10D, oxidizing gas, and cooling water via these holes.

[0047]The feeding and discarding of the cooling water are carried out via the water supply opening 201 established in the upper surface of the feeding-and-discarding box 200, and the exhaust port 202 as illustrated. The channel which distributes the cooling water supplied from the water supply opening 201 to the cooling water feed hopper 31 of each stack, and supplies it, and the channel which collects the cooling water discharged from the cooling-water-discharge mouth 32 of each stack for the exhaust port 202 are formed in the inside of the feeding-and-discarding box 200. The cooling water supplied from the outside is discharged from a stack in the course which a stack is supplied in the course shown by the arrow of a solid line in a figure, and is shown with a dashed line. Here, in order to avoid complicated-ization of a figure, the course of cooling water was shown only about the stack 10C, but the same may be said of the stacks 10A, 10B, and 10D.

[0048]Oxidizing gas is supplied via the feed hopper 203 established in the upper surface of the feeding-and-discarding box 200, and is discharged from the outlet provided in the undersurface as it is illustrated. The channel for distributing the oxidizing gas supplied to the feed hopper 203 to the oxidizing gas feed hopper 33 of each stacks 10A-10D, and supplying it is established in the inside of the feeding-and-discarding box 200. The channel for collecting to an outlet the oxidizing gas discharged from the oxidizing gas outlet 34 of each stacks 10A-10D is provided. The oxidizing gas supplied from the outside is discharged from each stack while it is supplied to a stack in the course shown by an arrow in a figure. Here, in order to avoid complicated-ization of a figure, the course of oxidizing gas was shown only about the stacks 10A and 10D, but the same may be said of the stacks 10B and 10C.

[0049]Fuel gas is supplied from the feed hopper established in the back of the feeding-and-discarding box 200 in drawing 4, and is discharged from the outlet 204 provided in the front side in drawing 4. The channel for distributing the fuel gas supplied to the feed hopper to the fuel gas feed hopper 35 of each stacks 10A-10D, and supplying it is established in the inside of the feeding-and-discarding box 200. The channel for collecting the fuel gas discharged from the fuel gas outlet 36 of each stacks 10A-10D to the outlet 204 is provided. The fuel gas supplied from the outside is discharged from each stack while it is supplied to a stack in the course shown by an arrow in a figure. Here, in order to avoid complicated-ization of a figure, the course of oxidizing gas was shown only about the stacks 10A and 10D, but the same may be said of the stacks 10B and 10C.

[0050]The stacks 10A-10D are connected in series. Since each stack produces the electromotive voltage of about 100 v, the fuel cell of this example has realized the electromotive voltage of about 400 v by four stacks. Although the composition which combines each stack using the feeding-and-discarding box 200 was adopted in this example, in addition to this, various structures are applicable to combination of a stack. The number of stacks can also be variously set up according to the voltage demanded. The fuel cell of this example has accommodated the feeding-and-discarding box 200 and the four stacks 10A-10D in one outer case. The structure of an outer case is mentioned later. Above, the general outline composition about a fuel cell was explained. Below, a paragraph is divided and explained about composition characteristic about the

fuel cell of this example, respectively.

[0051]B. The short-circuiting means of a cooling system: drawing 5 is an explanatory view showing the concept of the short-circuiting means provided in the cooling system. The water supply opening for the fuel cell of this example to distribute and collect cooling water, and carry out [the four stacks 10A-100D are combined via the feeding-and-discarding box 200, and I feeding and discarding to these four stacks in the feeding-and-discarding box 200, and the outlet are provided as drawing 4 explained. Although drawing 4 showed the structure provided in the upper surface of the feeding-and-discarding box 200, in order to avoid complicated-ization of the figure at the time of illustrating the feature of a short-circuiting means here, it was shown as that by which the water supply opening 201A and the exhaust port 202A are formed in the side. [0052]In this example, the short circuit cable 210 is formed as a short-circuiting means which short-circuits both electrically between the water supply opening 201A and the exhaust port 202A which were provided in this way. In this example, in order to short-circuit certainly the water supply opening 201A and the exhaust port 202A, as it wound around both, the short circuit cable 210 of the electric conduction line was fixed. The immobilization of the short circuit cable 210 can perform electrically the water supply opening 201A and the exhaust port 202A in various modes which can be short-circuited. For example, solder ******* is also good for one point of both respectively, and a bolt stop may be carried out. It is not necessary to necessarily form the short circuit cable 210 by an electric conduction line, and the plate conducting which opened the hole which the water supply opening 201A and the exhaust port 202A penetrate can also be used. As a shortcircuiting means, the water supply opening 201A and the exhaust port 202A are connected by a conductive member in this way, and also it is good as what takes the method of contacting so that both may connect too hastily, and arranging. It does not matter with the same technique as a printed circuit board as what is formed in the surface of the feeding-and-discarding box 200 by etching etc.

[0053]The operation of the short circuit cable 210 is as follows. Since the cooling separator is formed by the conductive member in the cooling separator as for the cooling water supplied to the stack although a cell is cooled by passage ****** as drawing 2 explained, cooling water is charged according to the potential of a cell at the time of cooling. As a result, potential difference may arise to cooling water for the water supply opening 201A and the exhaust port 202A of cooling water. The flow of the cooling water in this example was shown in drawing 5. After being distributed to each stacks 10A-10D and cooling each stack, the cooling water supplied from the water supply opening 201A is collected, and is discharged from the exhaust port 202A, as illustrated. Here, in this example, since four stacks are connected in series, potential rises by 100V unit towards the stack 10D from the stack 10A. Therefore, the cooling water which cooled the stacks 10A and 10B will be charged in about 100 v, and the cooling water which cooled the stacks 10C and 10D will be charged in about 300 v as illustrated. As a result, about 200-v potential difference arises between the water supply opening 201A and the exhaust port 202A.

[0054]According to this example, with the short circuit cable 210 mentioned above, since the water supply opening 201A and the exhaust port 202A have short-circuited electrically, both potential difference is cancelable. Therefore, according to this example, evils, such as electric corrosion resulting from the

potential difference produced between the water supply opening 201A and the exhaust port 202A, are avoidable. Since it can realize comparatively easily as mentioned above, a short-circuiting means does not cause evils, such as enlargement of a fuel cell, and increase of a manufacturing cost. Enlargement of the device by providing an insulating member in a feed hopper and an outlet by this is also avoidable. Since restrictions of providing both in a part without potential difference are also lost, design flexibility becomes possible [attaining much more miniaturization of increase and a device].

[0055]In this example, the short circuit cable 210 shall be connected between the water supply opening 201A of the feeding-and-discarding box 200, and the exhaust port 202A. Although a short circuit cable may be formed for every stack, since it ends with one installation by using the feeding-and-discarding box 200, there is an advantage which can ease a work burden -- management when installing of the short circuit cable 210 becomes easy and obstacles, such as an open circuit, arise becomes easy.

[0056]The modification about the installation method of the short circuit cable 210 is shown. <u>Drawing 6</u> is an explanatory view showing the installation method of the short circuit cable 210 as the 1st modification. Here, the top view of the stacks 10A-10D and the feeding-and-discarding box 200 was shown. In the 1st modification, the water supply opening 201B and the exhaust port 202B are different from an example with the point provided in the field where the feeding-and-discarding box 200 counters as illustrated. What is necessary is in this case, just to install so that the water supply opening 201B and the exhaust port 202B may be short-circuited in the form which crosses the feeding-and-discarding box 200 for the short circuit cable 210. Although it is simple to install so that it may pass along the exterior of the feeding-and-discarding box 200 as for the short circuit cable, you may make it cross an inside in this case.

[0057] Drawing 7 is an explanatory view showing the installation method of the short circuit cable 210 as the 2nd modification. In the example, although the short circuit cable 210 was fixed to the feeding-and-discarding box 200, the case where it fixed to each stack was illustrated here. Since feed water and wastewater are made from the portion of same electric potential if a passage clear from drawing 5 sees for every stack in the composition of this example, the potential difference of cooling water is not produced. However, as shown in drawing 7, in forming the water supply opening 201C and the exhaust port 202C in the both ends of a stack, potential difference arises. In this case, the 2nd modification can be applied, and the short circuit cable 210 is formed so that the water supply opening 201C and the exhaust port 202C may be combined, as a stack is crossed.

[0058]Also in the 1st modification and 2nd modification, a short-circuiting means can be established in various modes like an example. A short-circuiting means can be provided in various modes according to the part where it is not limited to the mode illustrated in the example and the modification, but potential difference exists.

[0059]C. Draining mechanism: drawing 8 is an explanatory view showing the draining mechanism provided in the outlet 204 of fuel gas. It is a cut away figure at the time of cutting the feeding-and-discarding box 200 of this example at the flat surface containing the outlet 204 of gas. In order to avoid complicated-ization of a figure, the situation of the section showed about 204 outlet. The fuel gas discharged from each stacks 10A-

10D is collected with the feeding-and-discarding box 200, and is discharged outside from the outlet 204 of gas as already explained. The channel after the gas from each stack was collected was shown in drawing 8.

[0060]The channel of gas has branched by about 204 outlet, and the drain port 205 is formed as illustrated. The channel from branching to a drain port should just be formed in the state where water may flow, and can be suitably established in the position which does not bar other channels established in the feeding-and-discarding box 200. Although the channel bent to L shape was illustrated, you may comprise drawing 8 in the shape of a curve. In this example, the flection of the channel of L shape turns into an effusion part which stores waterdrop temporarily as mentioned later. The channel for wastewater is provided near the outlet 204 of gas, and is established in the position to which static pressure AP which became high locally in the splice portion by which another piping is connected to the outlet 204 acts on the water surface of the waterdrop stored in this effusion part enough.

[0061]The operation of a draining mechanism is as follows. A fuel cell generates water as a thing as a result of power generation in order to generate electricity based on the formula (1) previously shown by conventional technology, and (2). In this example, the solid polymer type fuel cell is used, and in order to generate electricity, it is necessary to humidify the electrolyte membrane of each cell moderately. In these results, waterdrop mixes in the fuel gas which passed the cell not a little. In a fuel cell, since fuel gas is supplied to each cell by a comparatively high pressure, these waterdrop is carried to the outlet 204 by the pressure of gas. However, it is necessary to discharge the waterdrop generated in this way in one portion of the channels of fuel gas. It is because waterdrop adheres to the inner surface of a gas passageway and may bar the feeding and discarding of fuel gas, while waterdrop had remained in the gas passageway. The draining mechanism of this example does so the operation which discharges the waterdrop mixed in the discharged gas outside.

[0062]The waterdrop carried near [outlet 204] fuel gas flows into the channel by the side of a drain port. The flection of the channel constituted by L shape plays a role of the effusion part 206 which stores these waterdrop temporarily. The channel by the side of a drain port has a desirable thing of a gas passageway established caudad so that waterdrop may flow in efficiently by operation of gravity. In this way, the stored waterdrop is discharged from the drain port 205 one by one.

[0063]Such a draining mechanism can also be provided in what kind of part of the channel which discharges fuel gas, and having provided in the exterior of a fuel cell is also possible. However, in this example, the big feature is that it provided in the part after the gas discharged from each stacks 10A-10D was collected in the feeding-and-discarding box 200. By providing in this part, it is a single draining mechanism and waterdrop can be discharged efficiently. Since it will end if a draining mechanism is provided in one place, while simplifying composition of a device, it also becomes possible to attain a miniaturization. It is not necessary to provide a drain valve etc. outside, and a device can be further miniaturized by providing in the inside of the feeding-and-discarding box 200.

[0064] The draining mechanism of this example also has an advantage which can discharge waterdrop

efficiently by using not only gravity but the pressure of fuel gas. The effusion part 206 is formed in the channel for wastewater, and it comprises this example so that pressure AP of gas may fully act on the water surface stored here, as explained previously. Since fuel gas is supplied to each stack with high voltage, the fuel gas generally discharged is also in the state where a pressure is high, as compared with atmospheric pressure. Therefore, water can be positively discharged efficiently by making this pressure act on the water surface of the waterdrop stored in the effusion part 206. Thus, by making wastewater possible using the pressure of gas, the path of the drain port 205 can be made small and it becomes possible to attain the miniaturization of a device.

[0065]Although the composition which makes static pressure AP which can be discharged water act on the effusion part 206 efficiently by providing branching near the outlet 204 of gas was adopted in this example. the position of branching and the shape can take various modes whose pressures of gas may be made to act. For example, it is good also as what provides branching in the part to which the channel of gas has bent and a pressure becomes high locally, branching is sharply combined to the flow direction of emission gas. and it may be made for the dynamic pressure of gas to act. Of course, the composition using the pressure of gas is not indispensable and it does not matter as a thing using the mechanism drained only by gravity. [0066] By draining using the pressure of gas, the flexibility to the position of a drain port also has an advantage which becomes high. The example of the drain port which harnessed this advantage is shown as a modification. Drawing 9 is an explanatory view showing the draining mechanism as a modification. In a modification, the drain port 205 is different from an example with the point established up rather than the outlet 204 of gas. The channel which reaches a drain port branches by the same part as an example from the channel which discharges gas as illustrated. The tee is provided in the lower part of the channel which discharges gas like the example. This tee constitutes the effusion part 206A. In the modification, an opening is carried out to this effusion part 206A inside, and the drain passage 207 is formed so that it may be open for free passage to the drain port 205A. Since this pressure is higher than atmospheric pressure when pressure AP of the gas discharged acts on the water surface of the effusion part 206A, waterdrop passes along the drain passage 207 and is discharged from the drain port 205A. Thus, by forming the effusion part 206A in the part to which the pressure of gas acts, the drain port 205A can be established in arbitrary parts. Therefore, the flexibility to the position of the drain port 205A becomes high, and it becomes possible to attain the miniaturization of the whole device by design. In a modification, as the example explained, the effusion part 206A can be formed in various modes on which the pressure of gas may be made to act. [0067]Drawing 8 and drawing 9 explained the draining mechanism about the discharge part of fuel gas. It is necessary to drain like [oxidizing gas] fuel gas. In this example, the same draining mechanism as fuel gas is provided also in the channel of oxidizing gas. About this mechanism, it is also possible to apply the mechanism of a modification (drawing 9).

[0068]D. Insulating composition of a tension plate: <u>drawing 10</u> is an explanatory view showing the structure of a tension plate. Here, only the tension plate 172 provided in the in a narrow sense stack [10n] undersurface among the tension plates shown in <u>drawing 1</u> was illustrated. Since composition also with the

same tension plate 170 provided in the upper surface is made, below, a graphic display and explanation are omitted.

[0069]The insulating layer 174 is formed in the plane of composition with the stack of the narrow sense which laminated the cell in the tension plate 172. At this example, the insulating layer 174 was formed by pasting up a silicon rubber sheet. The raw material of the insulating layer 174 is not necessarily restricted to a silicon rubber sheet, but can apply various raw materials which do an insulating operation so. In being with a silicon rubber sheet, there is an advantage which can also make vibration-proof the stack 10n of a narrow sense besides an insulating operation. When the tension plate 172 is formed with an insulating material and between the stack 10n in a narrow sense and the tension plates 172 does not need to be insulated anew, the insulating layer 174 may be formed as a vibration-proof layer which achieves only a vibration isolating action. The insulating layer 174 is good also as what is formed by coating besides adhesion. Thus, the insulating layer 174 can be formed by various raw materials and a method according to any shall be achieved between an insulating operation and a vibration isolating action.

[0070]If the tension plate 172 of this example is used, there is an advantage which can simplify the process of manufacturing the stack 10. For example, in forming the insulating layer 174 separately, the process of inserting an insulation material is needed between the stack 10n in a narrow sense and a tension plate, but this process can be skipped if the tension plate 172 of this example is used. Since the process of laminating a cell and forming the stack 10 is near work which influences the performance of a fuel cell greatly, the simplification in this process leads to the large improvement in productivity.

[0071]There is also an advantage which can miniaturize the stack 10 for the reason shown below by forming the insulating layer 174 in the tension plate 172 in one. When preparing [1st] an insulation material by a different body, it tends to become thick for shape maintenance of the insulation material itself, but the thickness can be made thin if the insulating layer 174 shall be formed in the tension plate 172 in one like this example. The size error of thickness can also be controlled. Even if a gap arises in the position of an insulation material, it is necessary to provide sufficient opening, when the insulation material is prepared [2nd] by the different body but so that the stack 10n in a narrow sense and the tension plate 172 may not contact, and. If the insulating layer 174 shall be formed in the tension plate 172 in one like this example, such consideration becomes unnecessary and both opening can be reduced. If the tension plate 172 explained by this example is used by these operations, it will become possible to attain the miniaturization of the stack 10 and by extension, the whole fuel cell.

[0072]Although here explained to the upper and lower sides of the stack 10 taking the case of the composition (refer to <u>drawing 1</u>) which arranges the tension plates 170 and 172, The composition which forms an insulating layer in one can be applied to various structures, when using the box-like case where the stack 10 is accommodated thoroughly, or when it fixes the 4th page of the stack 10 with a board. [0073]E. Arrangement of the structure and the stack which fix a cell: <u>drawing 11</u> is an explanatory view showing the structure which fixes a cell. The stack 10 is being fixed on both sides of the upper and lower

sides with the tension plates 170 and 172 as already explained. Here, a fixing method is explained further in

full detail.

[0074] Drawing 11 (a) is the perspective view which looked at the stack 10 from the end-plate 12 side. The end plates 12 and 14 of the stack 10 are concluded with the tension plate 170 with the eight bolts 175 inserted in the sliding direction in a figure as illustrated. Although it does not appear in a perspective view, the tension plate 172 at the bottom is similarly concluded with eight bolts inserted in the sliding direction. The projected part 12A is formed near the center at the end plate 12.

[0075] Drawing 11 (b) is an A-A sectional view of the stack 10. The stack 10 laminates many cells 100 and is formed as already explained. As the cell 100 faces across the both ends with the end plates 12 and 14, it is being fixed. The plate spring 220 is inserted between the end of the cell 100, and the end plate 12. The center section of the end plate 12 is received so that a position gap of the plate spring 220 may be prevented, and it changes into dished. The projected part 12A carries out appearance of this modification. The plate spring 220 is inserted so that the elastic force EF may be energized in the direction in which the cell 100 is stuck.

[0076]If the plate spring 220 makes elastic force act on the cell 100, the reaction F1 and F2 will work to the end plates 12 and 14. In this example, the tension plates 170 and 172 fixed up and down are forming the whole structure according to making this reaction F1, elastic force TF1 which balance with F2, and TF2 act on the end plates 12 and 14 as shown in <u>drawing 11</u> (a). The end plates 12 and 14 are formed to this elastic force by the raw material and board thickness which can maintain sufficient rigidity.

[0077]The operation by an above-mentioned structure is as follows. Since it is stuck to between the cells 100 by the elastic force EF of the plate spring 220, the internal resistance resulting from the crevice between cells, etc. can be reduced. Although the cell 100 changes with the heat at the time of power generation, since the cell 100 can be stuck the plate spring 220 absorbing this modification, the fuel cell of this example can realize always stable power generation. The plate spring 220 should just choose elastic force and a size suitably so that this operation can be enough done so.

[0078]There is also an advantage which can attain the miniaturization of a device as by concluding the tension plates 170 and 172 and the end plates 12 and 14 with the bolt inserted in the direction which intersects perpendicularly with the sliding direction in a figure, i.e., the laminating direction of the cell 100, shows below. In order to insert a bolt in the direction concerning the 1st, it can avoid that the head of a bolt projects in a laminating direction, and there are the part and an advantage which can control the size of the laminating direction of the stack 10. In order to secure voltage, in the stack's 10 becoming long to a laminating direction usually and carrying a fuel cell in apparatus, such as vehicles, generally from laminating the cell of two or more sheets, Since it is large that a severe demand is imposed especially to the size of a laminating direction, shortening of a laminating direction has a large meaning.

[0079]As shown in <u>drawing 1</u>, the fuel cell of this example combines the four stacks 10A-10D with the feeding-and-discarding box 200, and is constituted. In each stack, when the bolt for fixing a cell has projected to the laminating direction, it interferes with the feeding-and-discarding box 200, the composition for avoiding this interference is needed, and there is a possibility of leading to enlargement of the whole fuel

cell, complication of the composition of the feeding-and-discarding box 200, etc. On the other hand, according to the stack of this example, without a bolt interfering, each stacks 10A-10D can be combined with the feeding-and-discarding box 200, and the simplification of structure and a miniaturization can be attained.

[0080]An above-mentioned effect is an effect acquired by inserting a bolt in the direction which intersects perpendicularly with a laminating direction. In this example, the further miniaturization of the device is attained by devising arrangement of two or more stacks. Drawing 12 is an explanatory view showing arrangement of the stack in this example. The fuel cell of this example combines the four stacks 10A-10D with the feeding-and-discarding box 200, and is constituted as shown in drawing 1. Here, arrangement of the stacks 10A and 10D was illustrated. The arrangement to which the stacks 10B and 10C also applied to this correspondingly is made.

[0081]In this example, the two adjoining stacks 10A and 10D are arranged in the direction in which the bolt 175 was inserted, and the direction which intersects perpendicularly as illustrated. There is no interference of bolt 175 comrades by arranging in this way, and since the stacks 10A and 10D can be arranged to nectar, the miniaturization of the whole fuel cell can be attained. Drawing 13 is an explanatory view showing the state where the stack has been arranged in the direction in which the bolt 175 is inserted. Drawing 13 (a) is a perspective view at the time of accumulating the stack 10D on the stack 10A. Drawing 13 (b) is a side view in this case. Thus, since each bolt 175 comrades interfere in the field B1 between the stacks 10A and 10D, and B-2 as shown in drawing 13 (b) when the stack has been arranged to the sliding direction, can stick the stacks 10A and 10D, and they cannot be arranged, but enlargement will be caused. On the other hand, both interval can be narrowed, if the stacks 10A and 10D are arranged in the direction which intersects perpendicularly with the path of insertion of the bolt 175 as shown in drawing 12.

[0082]The arrangement of the stacks 10A and 10D should just be a direction which can avoid interference of bolt 175 comrades, and limitation is not carried out to what is arranged so that the laminating direction of the cell of the stacks 10A and 10D may become parallel, as shown in <u>drawing 12</u>. It is good also as what arranges the stacks 10A and 10D side by side to the laminating direction of a cell.

[0083]Although the case where the tension plate 170 was constituted from a rectangular board was illustrated in this example, the shape of the tension plate 170 is not limited to this. <u>Drawing 14</u> is an explanatory view showing the modification of a tension plate. At the both ends combined with an end plate, the tension plate 170A of a modification is wide, and is formed in H shape with narrow width near the center. Since elastic force TF1 and TF2 can be acted also in this shape, it is possible to constitute a stack. According to the tension plate 170A of a modification, when heat modification arises in the cell 100, tensile

load F1 which acts through an end plate, and the modification of the tension plate 170A by F2 become larger than an example. That is, the operation which absorbs heat modification of the cell 100 with the tension plate 170A besides a plate spring can be done so. As a result, the excess and deficiency of the elastic force of a plate spring can be compensated with the tension plate 170A, the selection range of a plate spring spreads, and it becomes possible to reduce the manufacturing cost of a fuel cell. The tension plate

170 can be constituted from various board thickness and shape according to a demand of not only the shape illustrated here but elastic force.

[0084]In this example and a modification, the structure which supports the end plate which pinches a cell via a plate spring from the upper and lower sides with a tension plate was illustrated. If the 1st feature of this example is inserting the bolt which concludes a tension plate in the direction which intersects perpendicularly with a laminating direction and a bolt is inserted in this direction, It is possible to take the structure of providing a tension plate in a longitudinal direction, and the structure of providing a tension plate in the 4th page of four directions. When the rigidity between an end plate and a tension plate is fully securable, it is good also as what fixes a cell with the tension plate provided only in either of vertical and horizontal. Although the case where it concluded with a bolt was illustrated in this example and the modification, a fastening member is not limited to these. The member which gives elastic force can also use suitably not only a plate spring but various springs, rubber sheets, etc.

[0085]F. Outer case: the fuel cell 1 of this example is accommodated in the outer case as the explanation about an entire configuration described. Drawing 15 is an explanatory view showing the state where the fuel cell was accommodated in the outer case. The perspective view showed the state where the fuel cell 1 was accommodated to drawing 15 (a). It is the fuel cell 1 with the dashed line in a figure. The outer case comprises the main part 2 and the lid 3 as illustrated. The drain hose 5 is attached to the main part 2, and the exhaust hose 4 is attached to the lid 3. Although the pipe for carrying out the feeding and discarding of fuel gas, oxidizing gas, and the cooling water to the fuel cell 1 was joined to the outer case, in order to avoid complicated-ization of a figure, the graphic display was omitted here.

[0086] Drawing 15 (b) is a sectional view in the B-B side of a perspective view. The portion which attached hatching in a figure is equivalent to the fuel cell 1. The main part 2 and the lid 3 of the outer case are sealed with the seal 6 in the plane of composition. In this example, in order to prevent foreign matters, such as water and dust, from infiltrating into the fuel cell 1 from the outside, the outer case is sealed. Although silicone rubber shall be applied to the seal 6 in this example, If the above-mentioned purpose is met, it is possible to seal by various raw materials and methods, for example, it is good also as what welds the main part 2 and the lid 3, and good also as what adheres the main part 2 and the lid 3 by methods, such as a caulking.

[0087]The drain hose 5 is a hose for discharging the water which accumulated in the outer case by a certain cause, and is being fixed to the hole provided in the lower part of the main part 2 by stops. The exhaust hose 4 is a hose for discharging various gas which accumulated in the outer case, and is being fixed to the hole provided in the upper part of the lid 3 by stops. The drain hose 5 and the exhaust hose 4 have structure which can control invasion of foreign matters, such as water from the outside, and dust. At this example, this operation was done so by lengthening the length of these hose enough and making it crooked moderately. In order to prevent invasion of a foreign matter still more certainly, it is good also as what provides a valve element in the mounting part of these hose. The drain hose 5 and the exhaust hose 4 are not cared about as composition which omits at least these one side, when it is not indispensable in an outer case, a possibility

that water and various gases will arise from a fuel cell in an outer case interior is low and necessity is low. [0088]The operation of an outer case is as follows. Invasion of a foreign matter can be prevented by storing the fuel cell 1 in an outer case the 1st. Therefore, it is avoidable that a foreign matter is lost and generation efficiency falls between cells. Since it becomes unnecessary for the fuel cell 1 to take the measures against the foreign matter of covering the circumference thoroughly, it can simplify the whole structure and can attain the miniaturization of a layer built cell. Improvement in the productivity of a fuel cell and reduction of a manufacturing cost can also be aimed at simultaneously.

[0089]An outer case also has again an advantage which can secure rigidity, without bringing about enlargement of weight increase or a fuel cell. The axis Ax of drawing 15 and Ay mean the neutral axis in the bending deformation of a sliding direction and a longitudinal direction, respectively. In order to secure sufficient flexural rigidity and to constitute the fuel cell 1, it is desirable to enlarge these neutral axes Ax and the geometric moment of inertia about Ay enough. Since the fuel cell itself has the neutral axis Ax and a generally small distance from Ay to a periphery, as compared with an outer case, a geometric moment of inertia becomes small here. Therefore, if it is going to secure sufficient flexural rigidity when not using an outer case, it will be necessary to thicken board thickness of the fuel cell 1, especially board thickness of a tension plate. On the other hand, since the outer case can fully secure the neutral axis Ax and the distance from Ay to a periphery, its geometric moment of inertia is large. Therefore, flexural rigidity sufficient also by comparatively thin board thickness is securable. Since a bending load stops almost acting on the fuel cell 1 when the outer case has sufficient flexural rigidity, board thickness of the fuel cell 1 can be made thin. [0090]As load which acts on the fuel cell 1, it is twisted besides the bending load mentioned above, and load is mentioned. In order to secure sufficient rigidity to twist load, it is desirable to enlarge the neutral axis Ax and the polar moment of inertia of area over the intersection of Ay in the medial axis of a twist, i.e., drawing 15. A polar moment of inertia of area becomes so large that the distance from a medial axis to a periphery is large. Therefore, when an outer case is used, as compared with the case of a fuel cell simple substance, a big polar moment of inertia of area can be realized. As a result, the outer case can secure twist rigidity sufficient by comparatively thin board thickness. Since twist load stops almost acting on the fuel cell 1 when it has twist rigidity with a sufficient outer case, board thickness of the fuel cell 1 can be made thin. [0091]By these operations, since sufficient rigidity is easily securable by using an outer case, board thickness of the fuel cell 1 can be made thin, and weight reduction and a miniaturization can be attained. By using an outer case, in capacity, Although it becomes larger than a fuel cell simple substance, the circumference of the fuel cell 1, Since a predetermined space is usually required for piping for carrying out the feeding and discarding of fuel gas, oxidizing gas, and the cooling water, capacity can cancel the demerit which becomes large by arranging these piping suitably in an outer case.

[0092]The outer case was shown in <u>drawing 15</u>, and also it can consist of various shape. <u>Drawing 16</u> is a perspective view showing the outer case as the 1st modification. In the example, the fuel cell 1 was accommodated in the main part 2 nearly thoroughly, and it had composition which puts the lid 3. On the other hand, in the modification, the main part 2A was formed comparatively small, and the lid 3A was

enlarged. For example, when fully piping the circumference of a fuel cell in fuel gas, oxidizing gas, cooling water, etc. and accommodating in an outer case, in a modification. Since it will be in the state where most fuel cells are exposed before putting the lid 3A after accommodating a fuel cell in the main part 2A, there is an advantage which can perform above-mentioned piping work easily and certainly. The size of a main part and a lid does not have to enlarge either like an example or the 1st modification, and may form it in the same size.

[0093]Drawing 17 is a perspective view showing the outer case as the 2nd modification. In the example and the modification, the case where an outer case was constituted from two, a main part and a lid, was illustrated. That is, the case where combined the member divided up and down and it was considered as an outer case was illustrated. An outer case is good also as what combines and constitutes two members which did not necessarily have to have this composition, for example, were divided into right and left. This composition is equivalent to the 2nd modification. If an outer case is the structure where foreign matters, such as water and dust, can be prevented from invading into an internal fuel cell and is a structure suitable for securing rigidity, it can apply various structures also besides having illustrated here. [0094]Of course, when so high rigidity is not required by the situation of carrying a fuel cell, it is good also as a thing using the outer case aiming only at invasion of a foreign matter. In this case, a comparatively small outer case can be used. Since rigidity is not required, forming using resin is also possible. [0095]According to the fuel cell of this example explained above, the evil resulting from the potential difference produced [1st] to cooling water by the short-circuiting means of a cooling system can be controlled. According to a draining mechanism, the poor power generation and unstable operation what is called by flooding are [2nd] avoidable. By insulating composition of a tension plate, the productivity at the time of manufacturing a fuel cell can be improved [3rd]. By arrangement of the structure and the stack which fix [4th] a cell, the suitable elastic force for the cell of a fuel cell can be given, and the poor lamination between cells can be avoided. By using an outer case for the 5th, it is avoidable that a foreign matter invades into a fuel cell. In the fuel cell of this example, the composition which considered the miniaturization of the device, respectively has realized the effect mentioned above. Therefore, according to this example, the practicality at the time of carrying a fuel cell in various devices can be improved greatly. [0096]Although the case where all of five features of the arrangement of structure and a stack and the outer case which fix the short-circuiting means of a cooling system, a draining mechanism, the insulating composition of a tension plate, and a cell were applied was illustrated in the above-mentioned example, these features can be applied individually, respectively. What is necessary is just to apply each abovementioned means selectively suitably according to the issue which the fuel cell actually used should solve. As mentioned above, although various examples of this invention were described, it cannot be overemphasized that various composition can be taken in the range which this invention is not limited to these examples and does not deviate from the meaning.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 3]

[Drawing 16]

[Drawing 9]

[Drawing 17]

[Drawing 13]

[Drawing 15]

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-110439 (P2001-110439A)

(43)公開日 平成13年4月20日(2001.4.20)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)		
H01M	8/24		H 0 1 M	8/24		Z E	5H026	
					Ī	E		
					1	M		
					R			
	8/10		8/10					
			審査請才	永簡未	請求項の数8	OL	(全 19 頁)	

(21)出願番号

特願平11-287517

(22)出願日

平成11年10月8日(1999.10.8)

(71)出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72)発明者 青砥 晃

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 昆沙賀 徹

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(74)代理人 100096817

弁理士 五十嵐 孝雄 (外3名)

最終頁に続く

(54) 【発明の名称】 燃料電池

(57)【要約】

【課題】 燃料電池の小型化を図りつつ、実用性を向上する。

【解決手段】 4つのスタックを給排ボックス200を介して結合して燃料電池を構成する。冷却水を給排する給水口、排水口をケーブルで短絡させて両者の電位差を解消する。水滴によりガスの流れが阻害されることを回避するため、給排ボックスの燃料ガス排出口近傍には水滴を排出する排水ポートを設ける。各スタックは、積層されたセルの両端に位置するエンドプレートを上下のテンションプレートで挟持して構成されるが、テンションプレートで挟持して構成されるが、テンションプレートとエンドプレートとは隣接するスタックおよび給排ボックスとの干渉を避けるため上下方向に挿入されたボルトで固定する。テンションプレートにはセルと接する面に絶縁体を一体化して設けておく。こうして構成された燃料電池は、異物の侵入を防ぐ密閉構造のアウタケースに全体を収容する。

【特許請求の範囲】

【請求項1】 単電池を積層した積層電池を備える燃料 電池であって、

該積層電池に導電性の冷媒を通過させて冷却を行う機構であって、前記冷媒を前記積層電池に供給する供給口と、前記冷媒を前記積層電池から排出する排出口とは、電位が相違する部位に設けられている冷却機構と、前記冷媒が流れる冷媒路に関し、前記供給口よりも上流側の冷媒路と、前記排出口よりも下流側の冷媒路とを電気的に短絡させる短絡手段を備えた燃料電池。

【請求項2】 請求項1記載の燃料電池において、 該燃料電池は、前記積層電池を複数備えており、 前記冷媒路は、各積層電池の供給口よりも上流側の冷媒 路の少なくとも一部、および各積層電池の排出口よりも 下流側の冷媒路の少なくとも一部が共通の冷媒路として 構成されており、

前記短絡手段が、複数の積層電池に共通の冷媒路として 構成された個所に設けられたことを特徴とする燃料電 池。

【請求項3】 単電池を積層した積層電池を複数備える 燃料電池であって、

前記複数の積層電池と、供給された燃料ガスを前記各積 層電池に分配する機能および前記各積層電池からの排出 ガスを集約する機能を果たすことによって外部と各積層 電池との間の燃料の給排を実現する給排部材を備え、 該給排部材は、内部構造として、

前記集約された排出ガスが流れる集約ガス流路と、 該集約ガス流路から分岐して、該ガス流路内の水滴を排 出する排水機構とを備える構造体である燃料電池。

【請求項4】 単電池を積層した積層電池を備える燃料 電池であって、

前記積層電池は、積層された単電池を固定するための固定部材を備え、

該固定部材は、前記単電池と接触する側の面に絶縁層が 一体的に設けられていることを特徴とする燃料電池。

【請求項5】 単電池を積層した積層電池を備える燃料 電池であって、 **

> 陰極 (水素極) H²→2 H + 2 e - 陽極 (酸素極)

 $(1/2) O_2 + 2 H^{\dagger} + 2 e^{-1}$

【0003】燃料電池は、電解質層の種類に応じて、リン酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池、アルカリ型燃料電池など種々の形式が提案されている。近年では、出力密度が高く小型化が可能である等の理由により、水素イオン導電性の高分子膜を電解質層として適用した固体高分子型燃料電池が注目されており、種々の改良が検討されている。

【0004】燃料電池は、いずれの型においても単位セル当たりの理論的な起電力は約1.23Vであるため、

* 複数の前記積層電池と、

該複数の積層電池をまとめて収容するとともに、外部からの異物の侵入を防止可能に密閉された構造を有する容器とを備える燃料電池。

2

【請求項6】 請求項5記載の燃料電池であって、 さらに、容器内の前記積層電池との間で燃料ガス、酸化 ガスおよび冷却水の供給および排出を行うための機構と は別に、該容器内に生じた気体または液体を容器外部に 排出するための排出機構を備える燃料電池。

10 【請求項7】 単電池を積層した積層電池を備える燃料電池であって、

前記積層電池は、

前記単電池に対し積層方向に弾性力を与える弾性部材と、

前記積層された単電池の両端に該単電池と平行に配置され、前記弾性力に対し剛体とみなし得る剛性を有する一対の端板と、

該一対の端板同士を連結し、該端板に前記弾性力と釣り 合う力を作用させる連結部材とを備え、前記端板と前記 連結部材とは、前記積層方向と直交する方向に挿入され た締結部材で締結されたことを特徴とする燃料電池。

【請求項8】 請求項7記載の燃料電池であって、 前記積層電池を複数備えるとともに、該積層電池が前記 締結部材の挿入方向と直交する方向に配列されているこ とを特徴とする燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水素イオンを透過する電解質層を挟んで水素極と酸素極とを備える燃料電池に関し、セルを積層して構成されるスタックを小型化する技術に関する。

[0002]

30

【従来の技術】従来より、水素イオンを透過する電解質層を挟んで水素極と酸素極とを備え、陰極(水素極)と陽極(酸素極)でそれぞれ次の反応式(1)(2)に応じた反応を生じさせることによって、起電力を発生する燃料電池が提案されている。電解質層は、

• • • (1)

 \rightarrow H₂O ··· (2)

多数のセルを積層して所望の電圧を得ている。セルを積層してケースで固定されたユニットはスタックと呼ばれている。一般にスタックではセルの積層精度が内部抵抗として現れるから、極端に多くのセルを積層すると内部抵抗が大きくなり燃料電池の効率が低下する。また、極端に多くのセルを積層すると、燃料ガスを各セルに均等に供給することが困難となる。これらの理由から、所望の電圧が得られる程度にまでセルを積層した単一のスタックにより燃料電池を構成することを避け、複数のスタ

ックに分けて燃料電池を構成し、これらを直列に接続す ることで所望の電圧を得るのが通常である。本願の出願 人は、複数のスタックを用いた燃料電池において、各ス タックに均等に燃料を供給するとともに、全体の小型化 を図ることができる技術として特開平8-171926 号記載の技術を提案している。これは、給排部材を介し て4つのスタックを結合した構造である。

[0005]

【発明が解決しようとする課題】しかし、スタックを、 車両など種々の機器に搭載しようとした場合、燃料の給 排上の課題の他、以下に示す種々の課題があることが見 出された。従来は、これらの各課題を解決する手段にお いて、燃料電池の小型化が十分に考慮されていなかった ため、各課題を解決しようとすれば、燃料電池が大型化 するという別の課題を招くことがあった。この意味で、 以下の各課題については、好ましい解決手段が十分検討 されていなかった。

【0006】スタックについての第1の課題は、冷却に 起因する課題である。燃料電池は冷却水によって冷却さ れている。冷却水は、セルのガス流路などを構成するセ 20 パレータに形成された冷却水路を流れる。セパレータ は、一般に導電性の部材で構成されている。従って、冷 却水はセルを冷却する過程で、導電性のセパレータに接 触することによって、電極の電位に応じて帯電する。ス タックに冷却水を供給する給水口と、スタックから冷却 水を排出する排水口の構成によっては、これらの近傍で 電位差が存在する場合がある。かかる場合には、この電 位差に起因して、給水口と排水口との間で電食などの弊 害を招く可能性がある。こうした弊害を回避するため に、給水口と排水口とを絶縁材料で覆うなどの措置を施 30 せば、その分、スタックが大型化してしまう。特に、給 排部材を介して複数のスタックを連結する構造では、給 水口と排水口との電位差が数百ボルトに至るため、絶縁 部材の被覆を大型化する必要が生じ、装置のサイズに与 える影響が大きい。また、電位差が存在しない部位に給 水口と排水口とを併設しようとすれば、給水口と排水口 の設置部位についての制約が大きくなるため、冷却水路 の設計自由度が低減し、装置の小型化を阻害する要因と なる。

【0007】スタックについての第2の課題は、反応時 に生成される水の排出に起因する課題である。先に式 (1)(2)で示した通り、燃料電池は反応時に水(H 20)が生成される。このセルで生じた水は、ガスの流 れによって、スタックにガスを供給するマニホールドを 通って、ガス排出口に運ばれる。また、固体高分子膜型 の燃料電池では電解質膜の加湿に用いられる水も同様の 経路でガス排出口に運ばれる。この際、ガス排出口に運 ばれる水の量が増えるとフラッディングと呼ばれる現象 が生じ、燃料電池の運転が不安定になることがあった。 つまり、ガス排出口の内部に凝縮した水滴が、ガス流路 50 の電圧を監視するための端子をとりつける必要性および

の断面積を低下させることによってガスの流れを阻害 し、ひいては各セルへのガスの供給をも阻害するように なり、発電を不安定にするのである。かかる弊害を回避 するために、スタックに排水ポートを設けた構造が特開 平11-204126に開示されている。しかしなが ら、この構造は、スタックの外部にドレインバルブや排 出ポートを設けるものであり、スタックの構造、ひいて は燃料電池全体の構造が極端に大型化するという課題が ある。また、複数のスタックを備える燃料電池では、各 スタックごとにかかる排水機構を設ける必要が生じ、ま すます燃料電池の大型化を招くことになる。

【0008】スタックについての第3の課題は、セルの 絶縁性に起因する課題である。スタックは積層されたセ ルが積層方向に分離しないように固定することで構成さ れる。セルを固定する役割を果たす外部構造をここで は、スタックケースと呼ぶものとする。セルは電極の集 まりであるから、このようにスタックを構成する場合に は、スタックケースとセルの間を絶縁する必要がある。 従来は、セルとスタックケースとの間にシリコンゴムな どの絶縁体を挿入することによって両者の絶縁性が確保 されていた。しかしながら、かかる構造で両者の絶縁を 図る場合は、スタックの製造工程において絶縁体を挿入 する工程が必要となり生産性が低下することがあった。 前述の通り、セルを積層してスタックを構成する工程 は、内部抵抗に関与する精密さを要求される工程である から、絶縁体の挿入工程が増えることにより、生産性が 極端に低下することもあった。また、一般にシリコンゴ ムなどの絶縁体は厚さに対する精度が比較的低いため、 セルに不要な荷重をかけることなくスタックを構成する ためには、絶縁体の厚さのばらつきを考慮して、スタッ クケースを大きめに製造しておく必要があった。さら に、絶縁体自体の形状を維持するためには、ある程度の 厚さが必要となるから、不必要に絶縁体が大きくなり、 スタックケースの大型化を招いていた。

【0009】本願出願人は、こうした大型化を回避する 一つの技術を特開平8-162143として開示してい る。この技術は、スタックの4面に、ゴムを塗布して被 覆する技術である。しかしながら、かかる方法でスタッ クの絶縁を図る場合、ゴムを塗布する工程が余分に必要 となる他、一旦ゴムで被覆されたスタック内で破損など が生じた場合に、修理が困難であるという別の課題を招 く。かかる観点から、スタックの生産性を損なうことな く、確実にスタックの絶縁を施すことができ、しかも、 スタックケースの大型化を回避できる技術が要望されて

【0010】スタックについての第4の課題は、防水 性、防塵性、およびスタックの剛性の確保に起因する課 題である。前述の通り、スタックは複数のセルがスタッ クケースによって固定されている。しかしながら、セル

端子を取り付ける際の作業性などに鑑みて、スタックケースは完全な密閉構造になっていないことが多い。従って、かかる構造のスタックを車両など種々の装置に搭載して使用した場合、使用環境に応じて水、埃などがセルの隙間に入り込む可能性があった。また、これらの装置の運転時には振動を伴うことが通常であり、かかる振動やそれに起因する荷重などがスタックに作用すると、スタックに生じる歪みによってセル間に隙間が生じる可能性があった。これらの要因によって、スタックは内部抵抗の増大による発電効率の低下や、発電不良などを生じる可能性があった。

【0011】かかる課題を解決するために、スタックケースの外周を完全にシールするとともに、振動などによって変形しない程度にスタックケースの剛性を高める方法を採ることも可能である。しかしながら、スタックケースの外周をシールする工程を設けることはスタックの生産性を損ねることになる。また、スタックケースの剛性を十分に高めるためには、スタックケースの板厚を増す必要があるため、スタックの重量増大および大型化を招くことになる。特に、複数のスタックを用いる燃料電 20池においては、その影響は多大であった。

【0012】スタックについての第5の課題は、積層さ れたセルに弾性力を付与するための機構に起因する課題 である。セルを積層してスタックを構成する場合、内部 抵抗を低減するためにはセル同士を可能な限り密着させ ることが望ましい。一方、発電時は化学反応によって熱 が生じ、セルが熱膨張するから、積層されたセルを完全 に固着してしまうと、熱応力による変形が生じる可能性 があり、発電不良や寿命の低下などの弊害を招く可能性 がある。かかる課題を解決する技術が、特開平11-2 33132に開示されている。これは、セルが積層され た一端に皿バネを介してエンドプレートを組み付ける技 術であり、皿バネの弾性力によって熱膨張などに起因す る変形を吸収しつつ、セル同士を密着させる力を付勢す るものである。また、本願出願人も上記課題を解決する 技術を特開平7-335243で開示している。これ は、積層されたセルの一端に弾性部材を介してエンドプ レートを取り付けるとともに、このエンドプレートとセ ルの一端との間の空間を、流体を注入可能な圧力室とし て利用する技術であり、弾性部材による弾性力と流体の 40 圧力とを利用して、熱膨張などに起因する変形を吸収し つつ、セル同士を密着させる力を付勢するものである。 【0013】しかしながら、これらの技術では、積層方 向に貫通するボルトでエンドプレートを固定しているた め、ボルトスペースによってスタックが大型化するとい う課題があった。特に、スタックが積層方向に長くなっ ていた。燃料電池は、電圧確保のために多数のセルを積 層する必要があり、積層方向の寸法は、必然的に大きく なる傾向にある。一方、燃料電池を車両など種々の装置

に搭載する際のスペース確保という観点からは、一方向 50

のサイズが極端に大きい形状を回避した方が好ましいことが多い。かかる観点から、セルの積層方向のサイズは可能な限り抑えることが望ましく、上述したボルトスペースに起因する大型化は、スタックを装置に搭載する際の効率を損ねることになる。特に、複数のスタックを用いる燃料電池における影響は多大である。従って、セルの積層方向に適度の弾性力を付与しつつ、スタックの小型化、特に積層方向の小型化を図ることができる技術が要望されていた。

【0014】以上で説明した通り、従来の燃料電池には、実用上の種々の課題があり、これらに起因してスタックの大型化という大きな課題を招いていた。本発明は、これらの課題に鑑みてなされたものであり、上述の5つの課題の少なくとも一部を、スタックの大型化回避という観点も含めて解決することを目的とする。

[0015]

【課題を解決するための手段およびその作用・効果】燃 料電池の小型化を図るという一の課題を解決しつつ、上 述した種々の課題の少なくとも一部を解決するために、 本発明は次の構成を採用した。本発明の第1の燃料電池 は、単電池を積層した積層電池を備える燃料電池であっ て、該積層電池に導電性の冷媒を通過させて冷却を行う 機構であって、前記冷媒を前記積層電池に供給する供給 口と、前記冷媒を前記積層電池から排出する排出口と は、電位が相違する部位に設けられている冷却機構と、 前記冷媒が流れる冷媒路に関し、前記供給口よりも上流 側の冷媒路と、前記排出口よりも下流側の冷媒路とを電 気的に短絡させる短絡手段を備えたことを要旨とする。 【0016】第1の燃料電池によれば、短絡手段によっ て、供給口と排出口で生じる冷却水の電位差を解消する ことができるから、電食などの弊害を容易に回避するこ とができる。電位差のある冷媒路を電気的に短絡させる 手段は、両者を導電性の部材で接続することにより実現 できるため、燃料電池の大型化、製造コストの増大など の弊害を招くこともない。また、これによって供給口と 排出口とに絶縁部材を設けることによる装置の大型化を 回避することもできる。また、両者を電位差のない部位 に設けるなどの制約もなくなるため、設計自由度が増 し、装置のより一層の小型化を図ることが可能となる。 【0017】なお、供給口、排出口は冷媒を給排するた めに積層電池に設けられた孔を意味しており、「供給口 よりも上流側の冷媒路」、「排出口よりも下流側の冷媒 路」とは、積層電池に連通された冷媒路を意味してい る。従って、本発明の短絡手段は、積層電池の内部では なく、外部に設けられたものである。このことによっ て、積層電池を構成した後で短絡手段を装着することが できるため、積層電池の生産性を損なうことなく短絡手 段を設けることができる利点がある。また、断線などの 障害が生じた場合の対処が容易になる利点もある。

【0018】上記短絡手段は、単一の積層電池に対して

施すものとしても構わないが、該燃料電池が、前記積層 電池を複数備えている場合には、前記冷媒路は、各積層 電池の供給口よりも上流側の冷媒路の少なくとも一部、 および各積層電池の排出口よりも下流側の冷媒路の少な くとも一部が共通の冷媒路として構成されており、前記 短絡手段が、複数の積層電池に共通の冷媒路として構成 された個所に設けるものとすることが望ましい。

【0019】かかる構成によれば、共通の冷媒路に短絡 手段を設けるため、各積層電池に短絡手段を設けるまで なく、冷媒の電位差を解消することができる。従って、 短絡手段を設けるための工程、コストを抑制することが できる。複数の積層電池を通過した冷媒は非常に大きな 電位差を有することがあるため、容易に電位差を解消す ることができる点で本発明の有用性は非常に高い。複数 の積層電池を備える燃料電池の一例としては、供給され た燃料ガスを前記各積層電池に分配する機能および前記 各積層電池からの排出ガスを集約する機能を果たすこと によって外部と各積層電池との間の燃料の給排を実現す る給排部材を備えた構造を挙げることができる。この場 合、給排部材の内部に上述した共通の冷媒路が形成され 20 ることになる。かかる場合には、例えば、給排部材との 間で冷却水の給排を行うための供給口、排出口の近傍を 短絡させることにより、上記発明の構成を実現すること ができる。

【0020】本発明の第2の燃料電池は、単電池を積層 した積層電池を複数備える燃料電池であって、前記複数 の積層電池と、供給された燃料ガスを前記各積層電池に 分配する機能および前記各積層電池からの排出ガスを集 約する機能を果たすことによって外部と各積層電池との 間の燃料の給排を実現する給排部材を備え、該給排部材 は、内部構造として、前記集約された排出ガスが流れる 集約ガス流路と、該集約ガス流路から分岐して、該ガス 流路内の水滴を排出する排水機構とを備える構造体であ ることを要旨とする。

【0021】第2の燃料電池によれば、給排部材に設け られた排水機構により、ガス流路内の水滴を適宜排出す ることができるから、フラッディングを回避することが できる。また、排水機構を給排部材内に設けるため、特 開平11-204126に記載された従来技術と異な り、外部にドレインバルブなどを設ける必要がなく、装 40 置の大型化を回避することができる。特に、給排部材に 排水機構を設けるため、各積層電池に対し個別に排水機 構を設けることを回避でき、装置を小型化することがで きる。

【0022】なお、排水機構はガス流路から分岐し、水 滴を一時的に蓄える蓄水機構と、蓄えられた水を排出す る排水管とから構成することができる。排水管は、重力 によって水を排出する構成とすることもできるが、より ガス流路内を流れるガスの圧力を利用して積極的に水を

に均一に滞りなく供給するため、ガスは比較的高圧で供 給されるのが通常であり、単位電池内で圧力損失はある ものの排出されるガスは大気圧に比べ十分に高い圧力を 有しているのが通常である。従って、排出ガスの圧力が 水面に作用する構成の蓄水機構、例えばガス流路が曲が っており局所的に圧力が高くなる部位に設けられた蓄水 機構や、排出ガスの流れ方向に対し鋭角的に結合された 分岐を介して設けられた蓄水機構などを用いることによ り、この圧力を利用して積極的に水を排出することが可 能となる。圧力を利用して排水する場合には、重力で排

8

【0023】本発明の第3の燃料電池は、単電池を積層 した積層電池を備える燃料電池であって、前記積層電池 は、積層された単電池を固定するための固定部材を備 え、該固定部材は、前記単電池と接触する側の面に絶縁 層が一体的に設けられていることを要旨とする。

水する場合に比較して排水管の位置に対する自由度が高

くなるから、装置を更に小型化することができる。

【0024】第3の燃料電池によれば、積層電池を製造 する過程において、単電池と固定部材との間に絶縁材を 挿入する工程を省略することができ、生産性の向上を図 ることができる。特に、単位電池の積層は、積層電池の 性能に大きく影響する精密作業であるため、かかる工程 における簡易化は、生産性の大幅な向上につながる。絶 縁層を一体的に設ける方法としては、絶縁部材を固定部 材の一面に接着する方法、絶縁材料を固定部材の一面に 塗布する方法など種々の方法を適用することができる。 これらの方法によって一体的に形成することにより、絶 縁層を別体で用意する場合に比較して、絶縁層自体の厚 さを薄くすることができる。また、厚さの寸法誤差を抑 制することもできる。さらに、絶縁層が別体で用意され ている場合には、仮に絶縁層の位置にずれが生じても、 単位電池と固定部材との間が接触しないよう、十分な空 隙を設けておく必要があるが、絶縁層を固定部材に一体 化した場合には、このような配慮が不要となり単位電池 と固定部材との空隙を縮小することができる。固定部材 に絶縁層を一体化した第3の燃料電池は、これらの作用 によって、装置を小型化することができる。

【0025】本発明の第4の燃料電池は、単電池を積層 した積層電池を備える燃料電池であって、複数の前記積 層電池と、該複数の積層電池をまとめて収容するととも に、外部からの異物の侵入を防止可能に密閉された構造 を有する容器とを備えることを要旨とする。異物として は、埃や水などが挙げられる。

【0026】かかる容器を備えることにより、各積層電 池には異物への完全な対処を施す必要がなくなる。従っ て、積層電池の構造を簡易化することができ、積層電池 の小型化を図ることができる。また、生産性の向上、製 造コストの低減を図ることができる。さらに、単電池の 電位を監視する必要がある場合には、上述の容器を備え 排出する機構とすることもできる。燃料ガスを単位電池 50 ることにより、単電池が外観できる状態で積層電池を構

成することができるため有用性が高い。

【0027】第4の燃料電池は、また、剛性確保という 観点でも利点がある。燃料電池を車両などに搭載する場 合、燃料電池には振動や種々の外力が作用する。安定し て発電を行うためには、燃料電池について、振動や外力 によって変形を生じない程度の剛性を確保しておく必要 がある。ここで、変形とは主として曲げ変形および捩れ 変形であり、これらに対する剛性は、断面二次モーメン ト、断面二次極モーメントを指標として判断することが できる。これらの係数は、曲げ変形の中立軸、および捩 10 れ変形の回転軸からの距離が大きい断面ほど大きくなる ことが知られている。第4の燃料電池の容器は、積層電 池をまとめて収容するため、断面二次モーメント、断面 二次極モーメントが積層電池よりも明らかに大きくな る。従って、第4の燃料電池は、材料の板厚を抑制しつ つ、十分な剛性を確保することができる。容器が剛性を 確保すれば、積層電池はそれほど高い剛性を確保する必 要がなくなるため、小型化を図ることができる。また、 容器の板厚を抑制することができるから、燃料電池全体 の重量の増加も抑制できる。

【0028】第4の燃料電池において、さらに、容器内 の前記積層電池との間で燃料ガス、酸化ガスおよび冷却 水の供給および排出を行うための機構とは別に、該容器 内に生じた気体または液体を容器外部に排出するための 排出機構を備えるものとしてもよい。

【0029】燃料ガスとして用いられる水素は、非常に 微細な分子であるため、運転時に単位電池の各種の接合 部から浸み出るようにして漏れることがある。また、燃 料電池の反応で生成される水も積層電池外部に漏れ出る こともある。第4の燃料電池は容器を密閉するため、こ うして排出される気体および液体が容器内に蓄積される 可能性がある。上記構成によれば、排出機構により、こ れらの気体、液体を適切に容器内から排出することがで きる。なお、排出機構は、排出管を取り付けた簡易な構 成を適用することもできるが、外部からの異物の侵入を 防ぐため、取り付け部に弁体などを合わせて設けること が好ましい。

【0030】本発明の第5の燃料電池は、単電池を積層 した積層電池を備える燃料電池であって、前記積層電池 は、前記単電池に対し積層方向に弾性力を与える弾性部 材と、前記積層された単電池の両端に該単電池と平行に 配置され、前記弾性力に対し剛体とみなし得る剛性を有 する一対の端板と、該一対の端板同士を連結し、該端板 に前記弾性力と釣り合う力を作用させる連結部材とを備 え、前記端板と前記連結部材とは、前記積層方向と直交 する方向に挿入された締結部材で締結されたことを要旨 とする。

【0031】第5の燃料電池によれば、弾性部材の弾性 力によって、熱による変形を吸収しつつ、単電池を十分 に密着させ安定した運転を実現することができる。この 50 ように弾性力を付与する機構において、第5の燃料電池 は、単電池に付与される弾性力の反作用として端板にか かる荷重を、連結部材で支持する構造を採る。ここで、 連結部材と端板との締結部材は積層方向と直交する方向 に挿入されている。締結部材を積層方向に挿入する場合 には、その分、積双方向のサイズが大型化するが、積層 方向と直交する方向に挿入する場合には、かかる大型化 を回避できる。

10

【0032】上記構成は、複数の積層電池を備える燃料 電池において、以下に示す通り、特に有用性が高い。複 数の積層電池を備える燃料電池では、各単電池に均一に 燃料ガスなどの供給を行うために、積層方向に供給口、 排出口を設けることが好ましい。特に、前述した給排部 材を用いて複数の積層電池を結合する場合、各積層電池 は一方の端板を介して給排部材に結合されることにな る。第5の燃料電池によれば、積層方向と直交する方向 に締結部材が挿入されているため、給排部材との結合面 で締結部材が干渉することを回避できる。また、給排部 材と積層電池とを結合した後も、締結部材による締結状 態の確認などを行うことができるため、整備性も向上す る。給排部材を利用しない場合でも、程度の差こそあ れ、同様の効果を得ることができる。

【0033】さらに、第5の燃料電池においては、前記 積層電池を複数備える場合には、該積層電池が前記締結 部材の挿入方向と直交する方向に配列されているものと することが望ましい。かかる配置とすることにより、積 層電池同士で締結部材が干渉することを回避でき、燃料 電池のより一層の小型化を図ることができる。また、整 備性を向上することもできる。なお、このように第5の 燃料電池は、複数の積層電池を備える場合に、特に有用 性が高いが、単一の積層電池にも有効に適用できること はいうまでもない。

【0034】上記説明では、第1~第5の燃料電池とし て個別に説明したが、これらの発明を組み合わせた燃料 電池を種々構成することもでき、それぞれ第1~第5の 各燃料電池の利点を兼ね備えた燃料電池を実現すること ができる。なお、上記発明は、特に小型化が期待されて いる固体高分子型の燃料電池に適用することが望ましい が、これに限定されるものではなく、リン酸型燃料電 池、溶融炭酸塩型燃料電池、固体電解質型燃料電池、ア ルカリ型燃料電池など種々の形式の燃料電池に適用可能 である。

[0035]

【発明の実施の形態】本発明の実施の形態について、実 施例に基づき、以下の順序で説明する。

- A. 全体構成:
- B. 冷却系統の短絡手段:
- C. 排水機構:
- D. テンションプレートの絶縁構成:
- E. セルを固定する構造およびスタックの配置:

【0036】A. 全体構成:図1は本実施例のスタック 10の概略構成を示す斜視図である。スタック10は、 起電力を生じる単位電池としてのセル100を所定数だ け積層した積層電池の形態で形成される。積層されたセ ルは、上下に配置されたテンションプレート170,1 72と締結されて固定されている。セル100は、それ ぞれ固体高分子型燃料電池として形成されており、各セ ルが1V強の起電圧を生じる。本実施例では、各スタッ クで約100Vの起電圧を生じるよう、100枚のセル 10 を積層している。セル100の詳細構造は、後述する が、それぞれセパレータで酸素極、電解質膜、水素極を この順序に挟んだ構造をなしている。スタック10で は、隣接するセル100のセパレータは共有されてい る。一般には、「スタック」という用語は、単に積層さ れたセルの総称として用いる場合と、セルを固定する部 材も含めた構造体を意味する場合とがある。本明細書で は、単にスタック10と呼ぶ場合には、後者の意味、即 ち積層されたセル100の他、上下のテンションプレー ト170、172も含めた構造体を意味し、前者の意味 20 で用いる場合には、「狭義のスタック」と呼ぶものとす る。

【0037】スタック10は、一端からエンドプレート 12、絶縁板16、集電板18、複数のセル100、集 電板20、絶縁板22、エンドプレート14の順に積層 されて構成される。エンドプレート12、14は、剛性 を確保するため、鋼等の金属によって形成されている。 集電板18、20は緻密質カーボンや銅板などガス不透 過な導電性部材によって形成され、絶縁板16、22は ゴムや樹脂等の絶縁性部材によって形成されている。ス タック10で生じた電力は、集電板18、20に結線す ることによって出力される。

【0038】一方のエンドプレート14には、燃料ガス 供給口35、燃料ガス排出口36、酸化ガス供給口3 3、酸化ガス排出口34、冷却水供給口31、冷却水排 出口32が設けられている。燃料ガス供給口35からス タック10に供給された燃料ガスは、エンドプレート1 2に向かって流れながら各セル100に分配される。各 セル100に配分された燃料ガスは、エンドプレート1 2に向かって流れながら各セル100に分配され、図中 の左方から右方にセル100内の流路を流れた後、エン ドプレート14側に流れ、燃料ガス排出口36から排出 される。酸化ガスも同様に、酸化ガス供給口33から供 給された後、エンドプレート12に向かって流れながら 各セル100に分配され、各セル100内の流路を図中 の上方から下方に流れた後、酸化ガス排出口34から排 出される。冷却水は、冷却水供給口31から供給された 後、所定の間隔で設けられた冷却用のセパレータを通 り、セルを冷却した後、冷却水排出口32から排出され

れを実現できるよう内部で各セル100のガス流路が形 成されている。スタック10の各セル100を構成する 電解質膜132は、セパレータ110、120と接する 周辺領域がシールされている。このシールは、セル10 0内部から燃料ガスおよび酸化ガスが漏れ出し、両者が

12

混合するのを防止する役割を果たす。

【0039】図2はセル100の構造を示す斜視図であ る。セル100は固体高分子型燃料電池として構成され ている。セル100は、電解質膜132を水素極13 4、酸素極136で挟み込み、さらにその両側をセパレ ータ110、120で挟んだ構造を有している。酸素極 136は電解質膜132を挟んで水素極134の裏面、 図中では隠れた側の面に存在する。水素極134、酸素 極136は、ガス拡散電極である。セパレータ110、 120は水素極134、酸素極136と対向する面に複 数の凹凸状のリブが形成されている。セパレータ11 0、120が、水素極134、酸素極136をさらに両 側から挟み込むことによって、水素極134との間に燃 料ガス流路112、酸素極136との間に酸化ガス流路 122が形成される。セパレータ110、120は両面 にリブが形成されており、片面は水素極134との間で 燃料ガス流路112を形成し、他面は隣接するセル10 0が備える酸素極136との間で酸化ガス流路122を 形成する。このように、セパレータ110、120は、 ガス拡散電極との間でガス流路を形成するとともに、隣 接するセル間で燃料ガスと酸化ガスの流れを分離する役 割を果たしている。

【0040】電解質膜132は、固体高分子材料、例え ばフッ素系樹脂により形成されたプロトン伝導性のイオ ン交換膜であり、湿潤状態で良好な電気伝導性を示す。 電解質膜132としては、例えばナフィオン膜(デュポ ン社製)などを適用することができる。電解質膜132 の表面には、触媒としての白金が塗布されている。本実 施例では、触媒としての白金を担持したカーボン粉を有 機溶剤に分散させ、電解質溶液(例えば、Aldric h Chemical社、Nafion Soluti on)を適量添加してペースト化した上で、電解質膜1 32上にスクリーン印刷する方法で触媒を塗布した。触 媒層の形成方法は、他にも種々の方法を適用でき、例え ば、上記触媒を担持したカーボン粉を含有するペースト を膜成形してシートを作製し、電解質膜132上にプレ スするものとしてもよい。また、触媒には白金と他の金 属からなる合金を用いることもできる。水素極134お よび酸素極136は、炭素繊維を織成したカーボンクロ スにより形成されている。水素極134および酸素極1 36を炭素繊維からなるカーボンペーパまたはカーボン フエルトにより形成するものとしてもよい。また、上述 の触媒は、ガス拡散電極と電解質膜132との間に介在 しておればよいため、電解質膜132側に触媒を塗布す る。スタック10は、このようなガスおよび冷却水の流 50 る方法に代えて、水素極134および酸素極136の電 解質膜 1 3 2 と接する側に、触媒を塗布するものとして もよい。

【0041】セパレータ110、120は、ガス不透過の導電性部材、例えば、カーボンを圧縮してガス不透過とした緻密質カーボンにより形成されている。セパレータ110、120はその両面に、平行に配置された複数のリブが形成されている。リブは、必ずしも両面で平行に形成する必要はなく、面毎に直交するなど種々の角度で形成することができる。また、リブは燃料ガスおよび酸化ガスの流路を形成可能な形状であれば、必ずしも平 10行な溝状である必要はない。

【0042】セパレータ110、120には、その周辺部の2カ所に、円形断面の冷却水孔151、152が形成されている。この冷却水孔151、152は、セル100を積層した際に、スタック10を積層方向に貫通する冷却水路を形成する。セパレータ110、1120の各辺付近には、それぞれの辺に沿う細長い形状の燃料ガス孔153、154および酸化ガス孔155、156が形成されている。燃料ガス孔153、154および酸化ガス孔155、156は、セル100を積層することにガス孔155、156は、セル100を積層することにガス孔155、156は、セル100を積層することにガスル155、156は、セル100を積層することにがスタック10を形成した際に、スタック10を積層方向に貫通する燃料ガス流路112および酸化ガス流路122を形成する。本実施例では、図3の左方の辺に沿って燃料ガス供給路、右方の辺に沿って燃料ガス供給路、右方の辺に沿って燃料ガス供給路、下方の辺に沿って酸化ガス排出路が形成される。

【0043】スタック10の燃料ガス供給口35は燃料ガス供給路につながっており、燃料ガス排出口36は燃料ガス排出路につながっている。燃料ガス供給口35から供給された燃料ガスは、燃料ガス供給路を通じて各セ30ル100の燃料ガス流路112に流れ込む。そして、水素極134で所定の反応に供された後、燃料ガス排出路から燃料ガス排出口36に流出する。酸化ガスも同様の経路で流れる。スタック10の酸化ガス供給口33は酸化ガス供給路につながっており、酸化ガス排出口34は酸化ガス排出路につながっている。酸化ガス供給口33から供給された酸化ガスは、酸化ガス供給路を通じて各セル100の酸化ガス流路122に流れ込む。そして、酸素極136で所定の反応に供された後、酸化ガス排出路から酸化ガス排出口34に流出する。40

【0044】スタック10では、セル100が5枚積層されるごとに1枚の割合で、冷却セパレータ140が設けられている。冷却セパレータ140は、セル100を冷却する冷却水路を形成するためのセパレータである。冷却セパレータ140には、冷却水孔を連絡する葛折状の冷却水溝142が形成されている。セパレータ110、120のうち冷却セパレータ140と対向する面は、リブのないフラットな面となっており、冷却セパレータ140に設けられた溝はセパレータ110、120との間で冷却水路を形成する。なお、セパレータ11

0、120および冷却セパレータ140は、緻密質カーボンの他、導電性を有する種々の材料によって形成することができる。例えば、剛性および伝熱性を重視して銅合金やアルミニウム合金などの金属で形成してもよい。また、冷却セパレータ140を設ける割合は、スタック10の要求出力に応じたセル100の発熱量、冷却水の温度および流量などの条件に応じて冷却に適した範囲で設定することができる。

14

【0045】本実施例の燃料電池1は、上述したスタック10を4つ連結して構成される。図3は燃料電池1の 概略構造を示す分解斜視図である。本実施例では、直方体状の給排ボックス200の対向する2面に4つのスタック10A~10Dを連結する構成を適用した。給排ボックス200は燃料供給源、酸化ガス供給源、冷却水供給源に連結されており、燃料、酸化ガス、冷却水は、それぞれ給排ボックス200を介して各スタック10A~10Dに均等に分配されるとともに、各スタック10A~10Dから給排ボックス200に集約されて外部に排出される。

【0046】図4は燃料ガス、酸化ガス、冷却水の給排 状況を示す説明図である。給排ボックス200には、各 スタック10A~10Dに設けられた燃料ガス供給口3 5、燃料ガス排出口36、酸化ガス供給口33、酸化ガ ス排出口34、冷却水供給口31、冷却水排出口32に 連通する孔が設けられている。また、スタック10A~ 10 Dと接合しない残りの4面には、それぞれ燃料供給 源、酸化ガス供給源、冷却水供給源などと連接するため の孔が設けられている。給排ボックス200の内部構造 については詳細な説明を省略するが、これらの孔を介し て給排ボックス200は、各スタック10A~10Dへ の燃料ガス、酸化ガス、冷却水の給排を実現している。 【0047】冷却水は、図示する通り、給排ボックス2 00の上面に設けられた給水口201、排水口202を 介して給排される。給排ボックス200の内部には、給 水口201から供給された冷却水を各スタックの冷却水 供給口31に分配して供給する流路、および各スタック の冷却水排出口32から排出された冷却水を排水口20 2に集約する流路が形成されている。外部から供給され た冷却水は、図中に実線の矢印で示す経路でスタックに 供給され、破線で示す経路でスタックから排出される。 ここでは、図の煩雑化を避けるため、スタック10Cに ついてのみ冷却水の経路を示したが、スタック10A、 10B、10Dについても同様である。

【0048】酸化ガスは、図示する通り、給排ボックス200の上面に設けられた供給口203を介して供給され、下面に設けられた排出口から排出される。給排ボックス200の内部には、供給口203に供給された酸化ガスを各スタック10A~10Dの酸化ガス供給口33に分配して供給するための流路が設けられている。また、各スタック10A~10Dの酸化ガス排出口34か

ら排出された酸化ガスを排出口に集約するための流路が設けられている。外部から供給された酸化ガスは、図中に矢印で示す経路でスタックに供給されるとともに、各スタックから排出される。ここでは、図の煩雑化を避けるため、スタック10A,10Dについてのみ酸化ガスの経路を示したが、スタック10B、10Cについても同様である。

【0049】燃料ガスは、図4において給排ボックス200の背面に設けられた供給口から供給され、図4において手前の側面に設けられた排出口204から排出され10る。給排ボックス200の内部には、供給口に供給された燃料ガスを各スタック10A~10Dの燃料ガス供給口35に分配して供給するための流路が設けられている。また、各スタック10A~10Dの、燃料ガス排出口36から排出された燃料ガスを排出口204に集約するための流路が設けられている。外部から供給された燃料ガスは、図中に矢印で示す経路でスタックに供給されるとともに、各スタックから排出される。ここでは、図の煩雑化を避けるため、スタック10A,10Dについてのみ酸化ガスの経路を示したが、スタック10B、1200についても同様である。

【0050】スタック10A~10Dは直列に結線されている。各スタックは約100Vの起電圧を生じるから、本実施例の燃料電池は、4つのスタックにより約400Vの起電圧を実現している。本実施例では、給排ボックス200を用いて各スタックを結合する構成を採用したが、スタックの結合には、その他種々の構造を適用することができる。また、スタックの数も、要求される電圧に応じて種々設定可能である。なお、本実施例の燃料電池は、給排ボックス200および4つのスタック10A~10Dを、一つのアウターケースに収容している。アウターケースの構造については、後述する。以上では、燃料電池についての一般的な概略構成を説明した。以下では、本実施例の燃料電池について特徴的な構成についてそれぞれ項を分けて説明する。

【0051】B. 冷却系統の短絡手段:図5は冷却系統に設けられた短絡手段の概念を示す説明図である。図4で説明した通り、本実施例の燃料電池は、給排ボックス200を介して4つのスタック10A~100Dが結合されており、給排ボックス200には、これらの4つのスタックに冷却水を分配・集約して給排するための給水口、排出口が設けられている。図4では、給排ボックス200の上面に設けられている構造を示したが、ここでは短絡手段の特徴を図示する際の図の煩雑化を回避するため、側面に給水口201A、排水口202Aが設けられているものとして示した。

【0052】本実施例では、このように設けられた給水口201Aと排水口202Aとの間に、両者を電気的に短絡させる短絡手段として短絡ケーブル210が設けられている。本実施例では、給水口201Aと排水口20

2 A とを確実に短絡するために、両者に巻回するようにして導電線の短絡ケーブル2 1 0 を固定した。短絡ケーブル2 1 0 の固定は、給水口2 0 1 A と排水口2 0 2 A とを電気的に短絡可能な種々の態様で行うことができる。例えば、両者の一点にそれぞれハンダ漬けしてもよい。また、短絡ケーブル2 1 0 は、必ずしも導電線で形成する必要はなく、給水口2 0 1 A、排水口2 0 2 A が貫通する孔をあけた導電板を用いることもできる。短絡手段としては、このように給水口2 0 1 A と排水口2 0 2 A とを導電性の部材で接続する他、両者が短絡するように接触させて配置する方法を採るものとしてもよい。さらに、プリント基板と同様の手法により、給排ボックス2 0 0 の表面にエッチングなどで形成するものとしても構わない。

16

【0053】短絡ケーブル210の作用は次の通りであ る。図2で説明した通り、スタックに供給された冷却水 は冷却セパレータを通過ることによってセルの冷却を行 うが、冷却セパレータは導電性の部材で形成されている ため、冷却水は、冷却時にセルの電位に応じて帯電す る。この結果、冷却水の給水口201Aと排水口202 Aとで冷却水に電位差が生じることがある。図5に本実 施例における冷却水の流れを示した。図示する通り、給 水口201Aから供給された冷却水は、各スタック10 A~10Dに分配され、それぞれのスタックを冷却した 後、集約されて排水口202Aから排出される。ここ で、本実施例では、4つのスタックを直列に接続してい るから、スタック10Aからスタック10Dに向けて電 位は100V刻みで上昇する。従って、図示する通り、 スタック10A、10Bを冷却した冷却水は約100V に帯電し、スタック10C、10Dを冷却した冷却水は 約300 V に帯電することになる。この結果、給水口2 01Aと排水口202Aとの間には、約200Vの電位 差が生じる。

【0054】本実施例によれば、上述した短絡ケーブル210によって、給水口201Aと排水口202Aとが電気的に短絡されているため、両者の電位差を解消することができる。従って、本実施例によれば、給水口201Aと排水口202Aとの間に生じる電位差に起因する電食などの弊害を回避することができる。また、短絡手段は、上述した通り、比較的容易に実現できるため、燃料電池の大型化、製造コストの増大などの弊害を招くこともない。また、これによって供給口と排出口とに絶縁部材を設けることによる装置の大型化を回避することもできる。また、両者を電位差のない部位に設けるなどの制約もなくなるため、設計自由度が増し、装置のより一層の小型化を図ることが可能となる。

【0055】本実施例では、給排ボックス200の給水口201Aおよび排水口202Aの間に短絡ケーブル210を接続するものとした。短絡ケーブルは各スタックでとに設けても構わないが、給排ボックス200を利用

することにより、1箇所の設置で済むため、短絡ケーブ ル210の設置が容易となり、また、断線などの障害が 生じた場合の対処が容易になるなど、作業負担を軽減で きる利点がある。

【0056】短絡ケーブル210の設置方法についての 変形例を示す。図6は第1の変形例としての短絡ケーブ ル210の設置方法を示す説明図である。ここでは、ス タック10A~10Dおよび給排ボックス200の平面 図を示した。第1の変形例では、図示する通り、給水口 201Bと排水口202Bとが給排ボックス200の対 向する面に設けられている点で、実施例と相違する。か かる場合には、短絡ケーブル210を、給排ボックス2 00を横断する形で給水口201Bと排水口202Bと を短絡するように設置すればよい。なお、この場合にお いて、短絡ケーブルは、給排ボックス200の外部を通 るように設置することが簡便であるが、内部を横断する ようにしても構わない。

【0057】図7は第2の変形例としての短絡ケーブル 210の設置方法を示す説明図である。実施例では、給 排ボックス200に短絡ケーブル210を固定したが、 ここでは、各スタックに固定する場合を例示した。図5 から明らかな通り、本実施例の構成では、各スタックご とに見れば、同電位の部分から給水および排水がなされ ているため、冷却水の電位差は生じない。しかしなが ら、図7に示すようにスタックの両端に給水口201 C、排水口202Cを設ける場合には、電位差が生じ る。第2の変形例は、かかる場合に適用でき、短絡ケー ブル210は、スタックを横断するようにして給水口2 01 Cと排水口202 Cとを結合するように設けられ

【0058】第1の変形例および第2の変形例において も、実施例と同様、種々の態様で短絡手段を設けること ができる。短絡手段は、実施例および変形例に例示した 態様に限定されず、電位差が存在する部位に応じて種々 の態様で設けることが可能である。

【0059】C. 排水機構:図8は燃料ガスの排出口2 0 4 に設けられた排水機構を示す説明図である。本実施 例の給排ボックス200をガスの排出口204を含む平 面で切断した場合のカットアウェイ図である。図の煩雑 化を避けるため、断面の様子は、排出口204近傍のみ を示した。既に説明した通り、各スタック10A~10 Dから排出された燃料ガスは給排ボックス200で集約 され、ガスの排出口204から外部に排出される。図8 には、各スタックからのガスが集約された後の流路を示 した。

【0060】図示する通り、ガスの流路は、排出口20 4近傍で分岐しており、排水ポート205が設けられて いる。分岐から排水ポートに至る流路は、水が流れ得る 状態で形成されていればよく、給排ボックス200に設

きる。図8では、L字型に折れ曲がった流路を図示した が、曲線状に構成されていても構わない。本実施例で は、後述する通り、L字型の流路の屈曲部が一時的に水 滴を蓄える蓄水部となる。排水用の流路は、ガスの排出 口204の近傍に設けられており、排出口204に別の 配管が接続される継ぎ手部分で局所的に高くなった静圧 A Pが、この蓄水部に蓄えられた水滴の水面に十分作用 する位置に設けられている。

【0061】排水機構の作用は、次の通りである。燃料 電池は、先に従来技術で示した式(1)(2)に基づい て発電を行うため、発電の結果物として水を生成する。 また、本実施例では、固体高分子型の燃料電池を用いて おり、発電を行うためには、各セルの電解質膜を適度に 加湿する必要がある。これらの結果、セルを通過した燃 料ガスには、少なからず水滴が混入する。燃料電池で は、比較的高い圧力で各セルに燃料ガスが供給されるた め、これらの水滴は、ガスの圧力によって排出口204 に運ばれる。しかしながら、こうして発生した水滴は、 燃料ガスの流路のいずれかの部分で排出する必要があ る。ガス流路に水滴が残存したままでは、水滴がガス流 路の内面に付着し燃料ガスの給排を妨げる可能性がある からである。本実施例の排水機構は、排出されたガスに 混入した水滴を外部に排出する作用を奏するものであ

【0062】燃料ガスの排出口204付近に運ばれてき た水滴は、排水ポート側の流路に流れ込む。L字型に構 成された流路の屈曲部はこれらの水滴を一時的に蓄える 蓄水部206としての役割を果たす。排水ポート側の流 路は、重力の作用によって水滴が効率的に流れ込むよ う、ガス流路の下方に設けることが望ましい。こうして 蓄えられた水滴は逐次、排水ポート205から排出され

【0063】このような排水機構は、燃料ガスを排出す る流路のいかなる部位に設けることもでき、燃料電池の 外部に設けてることも可能である。しかしながら、本実 施例では、給排ボックス200において、各スタック1 ○ A~10Dから排出されたガスが集約された後の部位 に設けた点に大きな特徴がある。かかる部位に設けるこ とにより、単一の排水機構で、水滴を効率的に排出する ことができるのである。また、排水機構を一箇所に設け れば済むため、装置の構成を簡易にするとともに、小型 化を図ることも可能となる。給排ボックス200の内部 に設けることにより、外部にドレインバルブなどを設け る必要がなく、装置を更に小型化することができる。

【0064】また、本実施例の排水機構は、重力のみな らず燃料ガスの圧力をも利用することで、効率的に水滴 を排出することができる利点もある。先に説明した通 り、本実施例では、排水用の流路内に蓄水部206が設 けられており、ここに蓄えられた水面にガスの圧力AP けられた他の流路を妨げない位置に適宜設けることがで 50 が十分に作用するように構成されている。燃料ガスは高 圧で各スタックに供給されるため、一般に排出される燃

料ガスも大気圧に比較して圧力が高い状態にある。従っ て、蓄水部206に蓄えられた水滴の水面にこの圧力を こでは、図1に示したテンションプレートのうち、狭義

20

作用させることによって、積極的に効率よく水を排出す ることができるのである。このようにガスの圧力を利用 して排水可能とすることにより、排水ポート205の径 を小さくすることができ、装置の小型化を図ることが可

能となる。

【0065】本実施例では、ガスの排出口204の近傍 に分岐を設けることにより、水を効率的に排出可能な静 圧APを蓄水部206に作用させる構成を採用したが、 分岐の位置、形状はガスの圧力を作用させ得る種々の態 様を採ることができる。例えば、ガスの流路が曲がって おり局所的に圧力が高くなる部位に分岐を設けるものと してもよいし、排出ガスの流れ方向に対し鋭角的に分岐 を結合し、ガスの動圧が作用するようにしてもよい。も ちろん、ガスの圧力を利用する構成は、必須のものでは なく、重力のみで排水する機構を用いるものとしても構 わない。

【0066】ガスの圧力を利用して排水することによ り、排水ポートの位置に対する自由度が高くなる利点も ある。かかる利点を活かした排水ポートの例を変形例と して示す。図9は変形例としての排水機構を示す説明図 である。変形例では、排水ポート205がガスの排出口 204よりも上方に設けられている点で実施例と相違す る。図示する通り、排水ポートに至る流路は、ガスを排 出する流路から、実施例と同様の部位で分岐する。分岐 部は実施例と同様、ガスを排出する流路の下部に設けら れている。この分岐部は蓄水部206Aを構成する。変 形例では、この蓄水部206Aに内に開口し、排水ポー 30 ト205Aに連通するように排水流路207が設けられ ている。排出されるガスの圧力APが蓄水部206Aの 水面に作用すると、この圧力は、大気圧よりも高いか ら、水滴は排水流路207を通り、排水ポート205A から排出される。このようにガスの圧力が作用する部位 に蓄水部206Aを設けることにより、任意の部位に排 水ポート205Aを設けることができるのである。従っ て、排水ポート205Aの位置に対する自由度が高くな り、設計によって装置全体の小型化を図ることが可能と なる。変形例においても、実施例で説明したのと同様、 蓄水部206Aはガスの圧力を作用させ得る種々の態様 で設けることができる。

【0067】図8および図9では、燃料ガスの排出部に ついての排水機構を説明した。酸化ガスについても燃料 ガスと同様、排水を行う必要がある。本実施例では、酸 化ガスの流路にも燃料ガスと同様の排水機構が設けられ ている。かかる機構について、変形例(図9)の機構を 適用することも可能である。

【0068】D. テンションプレートの絶縁構成:図1 0はテンションプレートの構造を示す説明図である。こ 50 を図ることが可能となる。

のスタック10nの下面に設けられるテンションプレー ト172のみを図示した。上面に設けられるテンション プレート170も同一の構成をなしているため、以下で は図示および説明を省略する。

【0069】テンションプレート172には、セルを積 層した狭義のスタックとの接面に絶縁層174が設けら れている。本実施例では、シリコンゴムシートを接着す ることで絶縁層174を形成した。絶縁層174の素材 は必ずしもシリコンゴムシートに限られず、絶縁作用を 奏する種々の素材を適用することができる。シリコンゴ ムシートをもちいる場合には、絶縁作用の他、狭義のス タック10 nを防振することもできる利点がある。テン ションプレート172が絶縁性の材料で形成されている 場合など、狭義のスタック10nとテンションプレート 172との間を改めて絶縁する必要がない場合などに は、絶縁層174を防振作用のみを果たす防振層として 設けても構わない。また、絶縁層174は接着の他、コ ーティングによって形成するものとしてもよい。このよ うに絶縁層174は、絶縁作用、防振作用のいずれを果 たすかに応じて、種々の素材、方法で形成することがで

【0070】本実施例のテンションプレート172を用 いれば、スタック10を製造する工程を簡素化できる利 点がある。例えば、絶縁層174を別途設ける場合に は、狭義のスタック10nとテンションプレートとの間 に絶縁材を挿入する工程が必要となるが、本実施例のテ ンションプレート172を利用すれば、かかる工程を省 略することができるのである。セルを積層してスタック 10を形成する工程は、燃料電池の性能に大きく影響す る精密作業であるため、かかる工程における簡易化は、 生産性の大幅な向上につながる。

【0071】また、絶縁層174をテンションプレート 172に一体的に形成することにより、以下に示す理由 により、スタック10を小型化することができる利点も ある。第1に絶縁材を別体で用意する場合には、絶縁材 自体の形状維持のため厚くなりがちであるが、本実施例 のようにテンションプレート172に絶縁層174を一 体的に形成するものとすれば、その厚さを薄くすること ができる。また、厚さの寸法誤差を抑制することもでき る。第2に絶縁材が別体で用意されている場合には、仮 に絶縁材の位置にずれが生じても、狭義のスタック10 nとテンションプレート172とが接触しないよう、十 分な空隙を設けておく必要があるが、本実施例のように テンションプレート172に絶縁層174を一体的に形 成するものとすれば、このような配慮が不要となり両者 の空隙を縮小することができる。これらの作用によっ て、本実施例で説明したテンションプレート172を用 いれば、スタック10、ひいては燃料電池全体の小型化

22

【0072】ここでは、スタック10の上下にテンションプレート170、172を配置する構成(図1参照)を例にとって説明したが、絶縁層を一体的に形成する構成は、スタック10を完全に収容する箱状のケースを用いる場合や、スタック10の4面を板で固定する場合など種々の構造に適用することができる。

【0073】E. セルを固定する構造およびスタックの配置:図11はセルを固定する構造を示す説明図である。既に説明した通り、スタック10は上下をテンションプレート170、172で挟んで固定されている。ここでは、固定方法について更に詳述する。

【0074】図11(a)はスタック10をエンドプレート12側から見た斜視図である。図示する通り、スタック10のエンドプレート12、14は図中の上下方向に挿入された8本のボルト175によって、テンションプレート170と締結されている。斜視図には現れないが、下面のテンションプレート172とも同様、上下方向に挿入された8本のボルトで締結されている。エンドプレート12には、中央付近に突部12Aが設けられている。

【0075】図11(b)はスタック10のA-A断面図である。既に説明した通り、スタック10は多数のセル100を積層して形成されている。セル100は、その両端をエンドプレート12、14で挟むようにして固定されている。セル100の一端とエンドプレート12との間には皿バネ220が挿入されている。エンドプレート12の中央部は、皿バネ220位置ずれを防止するよう受け皿状に変形されている。突部12Aはこの変形を外観したものである。なお、皿バネ220はセル100を密着させる方向に弾性力EFを付勢するよう、挿入されている。

【0076】皿バネ220がセル100に弾性力を作用させると、その反作用F1,F2がエンドプレート12、14に働く。本実施例では、図11(a)に示す通り、上下に固定されたテンションプレート170、172がこの反作用F1,F2と釣り合う弾性力TF1,TF2をエンドプレート12、14に作用させることで、全体の構造を成立させている。エンドプレート12、14はかかる弾性力に対し、十分な剛性を維持することができる素材および板厚で形成されている。

【0077】上述の構造による作用は次の通りである。 皿バネ220の弾性力EFによってセル100間が密着 されるため、セル間の隙間などに起因する内部抵抗を低 減することができる。セル100は発電時の熱によって 変形するが、皿バネ220はこの変形を吸収しつつ、セ ル100を密着させることができるため、本実施例の燃 料電池は常に安定した発電を実現することができる。皿 バネ220は、かかる作用を十分奏することができるよ う、弾性力および大きさを適宜選択すればよい。

【0078】また、テンションプレート170、172 50 直交する方向にスタック10A, 10Dを配置すれば、

とエンドプレート12、14とを図中の上下方向、即ちセル100の積層方向に直交する方向に挿入されたボルトで締結することによって、以下に示す通り、装置の小型化を図ることができる利点もある。第1にかかる方向にボルトを挿入するため、積層方向にボルトの頭部が突出することを回避でき、その分、スタック10の積層方向のサイズを抑制することができる利点がある。電圧を確保するために、複数枚のセルを積層することから、一般に、スタック10は積層方向に長くなるのが通常であり、燃料電池を車両などの機器に搭載する場合には、特に積層方向の寸法に対して厳しい要求が課せられることが大きいため、積層方向の短縮は意義が大きい。

【0079】また、図1に示したように本実施例の燃料電池は、給排ボックス200に4つのスタック10A~10Dを結合して構成される。各スタックにおいて、セルを固定するためのボルトが積層方向に突出している場合には、給排ボックス200と干渉し、この干渉を回避するための構成が必要となり、燃料電池全体の大型化や給排ボックス200の構成の複雑化などにつながる恐れがある。これに対し、本実施例のスタックによれば、ボルトが干渉することなく、各スタック10A~10Dを給排ボックス200に結合することができ、構造の簡素化、小型化を図ることができる。

【0080】なお、上述の効果は、ボルトを積層方向に直交する方向に挿入することによって得られる効果である。本実施例では、複数のスタックの配置を工夫することによって、装置の更なる小型化を図っている。図12は本実施例におけるスタックの配置を示す説明図である。本実施例の燃料電池は、図1に示す通り、4つのスタック10A~10Dを給排ボックス200に結合して構成されている。ここでは、それらのうち、スタック10A,10Dの配置を図示した。スタック10B,10Cもこれに準じた配置がなされている。

【0081】図示する通り、本実施例では、隣接する2 つのスタック10A、10Dは、ボルト175が挿入さ れた方向と直交する方向に配列されている。このように 配列することにより、ボルト175同士の干渉なく、ス タック10A、10Dを蜜に配置することができるた め、燃料電池全体の小型化を図ることができる。図13 はボルト175が挿入されている方向にスタックを配置 した状態を示す説明図である。図13(a)はスタック 10 Aの上にスタック10 Dを積み重ねた場合の斜視図 である。図13(b)はかかる場合の側面図である。こ のように上下方向にスタックを配置した場合には、図1 3 (b) に示す通り、スタック10A, 10Dの間の領 域 B 1 、 B 2 において、それぞれのボルト 1 7 5 同士が 干渉するため、スタック10A、10Dを密着して配置 することができず、大型化を招くことになる。これに対 し、図12に示したように、ボルト175の挿入方向に

両者の間隔を狭めることができるのである。

【0082】スタック10A,10Dの配置は、ボルト175同士の干渉を回避できる方向であればよく、図12に示すようにスタック10A,10Dのセルの積層方向が平行になるように配置するものに限定はされない。スタック10A、10Dをセルの積層方向に並べて配置するものとしてもよい。

【0083】本実施例では、テンションプレート170 を矩形の板で構成する場合を例示したが、テンションプ レート170の形状はこれに限定されない。図14はテ ンションプレートの変形例を示す説明図である。変形例 のテンションプレート170Aは、エンドプレートと結 合される両端部では幅が広く、中央付近で幅が狭いH字 型に形成されている。かかる形状でも弾性力TF1. T F2を作用することができるため、スタックを構成する ことが可能である。変形例のテンションプレート170 Aによれば、セル100に熱変形が生じた場合、エンド プレートを通じて作用する引張り荷重 F 1, F 2 による テンションプレート170Aの変形例が実施例よりも大 きくなる。つまり、皿バネの他、テンションプレート1 70Aによってもセル100の熱変形を吸収する作用を 奏することができる。この結果、皿バネの弾性力の過不 足をテンションプレート170Aで補償することがで き、皿バネの選択範囲が広がり、燃料電池の製造コスト を低減することが可能となる。テンションプレート17 0は、ここで例示した形状に限らず、弾性力の要求に応 じて、種々の板厚、形状で構成することが可能である。 【0084】本実施例および変形例では、皿バネを介し てセルを挟持するエンドプレートをテンションプレート で上下から支持する構造を例示した。本実施例の第1の 30 特徴は、テンションプレートを締結するボルトを積層方 向に直交する方向に挿入することであり、かかる方向に ボルトを挿入するものであれば、更に左右方向にテンシ ョンプレートを設ける構造、上下左右の4面にテンショ ンプレートを設ける構造を採ることが可能である。ま た、エンドプレートとテンションプレート間の剛性を十 分に確保できる場合には、上下左右のいずれか一方にの み設けられたテンションプレートでセルを固定するもの としてもよい。また、本実施例および変形例ではボルト によって締結する場合を例示したが、締結部材は、これ 40 らに限定されるものではない。また、弾性力を与える部 材も、皿バネに限らず種々のバネやゴムシートなどを適 宜用いることができる。

【0085】F. アウタケース:全体構成についての説明で述べた通り、本実施例の燃料電池1は、アウタケースに収容されている。図15は燃料電池がアウタケースに収容された状態を示す説明図である。図15(a)には燃料電池1が収容された状態を斜視図で示した。図中の破線で燃料電池1である。図示する通り、アウタケースは本体2とふた3とから構成されている。本体2には50

ドレインホース5が取り付けられており、ふた3には排気ホース4が取り付けられている。なお、アウタケースには、燃料電池1に燃料ガス、酸化ガス、冷却水を給排するためのパイプが接合されているが、図の煩雑化を回避するため、ここでは図示を省略した。

24

【0086】図15(b)は斜視図のB-B面における断面図である。図中のハッチングを付した部分が燃料電池1に相当する。アウタケースの本体2とふた3は接合面でシール6で密閉されている。本実施例では、燃料電池1に水や埃などの異物が外部から浸入することを防止するために、アウタケースを密閉している。本実施例では、シール6にシリコンゴムを適用するものとしたが、上記目的に沿うものであれば、種々の素材および方法により密閉することが可能であり、例えば、本体2とふた3とを溶接するものとしてもよいし、かしめなどの方法によって本体2とふた3とを固着するものとしてもよい。

【0087】ドレインホース5は何らかの原因によりア ウタケース内にたまった水を排出するためのホースであ り、本体2の下部に設けられた孔に止め具で固定されて いる。排気ホース4はアウタケース内にたまった種々の ガスを排出するためのホースであり、ふた3の上部に設 けられた孔に止め具で固定されている。なお、ドレイン ホース5および排気ホース4は外部からの水、埃などの 異物の侵入を抑制できる構造となっている。本実施例で は、これらのホースの長さを十分に長くし、適度に屈曲 させておくことで、かかる作用を奏するようにした。異 物の侵入を更に確実に防止するために、これらのホース の取り付け部に弁体を設けるものとしてもよい。なお、 ドレインホース5、排気ホース4は、アウタケースに必 須のものではなく、アウタケース内部で燃料電池から水 や種々の気体が生じる可能性が低い場合など、必要性が 低い場合には、これらの少なくとも一方を省略する構成 としても構わない。

【0088】アウタケースの作用は、次の通りである。第1に、アウタケース内に燃料電池1を収納することによって異物の侵入を防止することができる。従って、セル間に異物が紛れ込んで発電効率が低下することを回避できる。また、燃料電池1は、周囲を完全に被覆するといった異物への対策を施す必要がなくなるため、全体の構造を簡易化することができ、積層電池の小型化を図ることができる。同時に燃料電池の生産性の向上、製造コストの低減を図ることもできる。

【0089】アウタケースは、また、重量の増加や燃料電池の大型化をもたらすことなく、剛性を確保することができる利点もある。図15の軸Ax, Ayはそれぞれ上下方向および左右方向の曲げ変形における中立軸を意味している。十分な曲げ剛性を確保して燃料電池1を構成するためには、これらの中立軸Ax, Ayについての断面二次モーメントを十分に大きくすることが望まし

い。ここで燃料電池自体は、中立軸Ax, Ayから外周までの距離が全般に小さいため、アウタケースに比較して断面二次モーメントが小さくなる。従って、アウタケースを用いない場合に十分な曲げ剛性を確保しようとすれば、燃料電池1の板厚、特にテンションプレートの板厚を厚くする必要が生じる。これに対し、アウタケースは中立軸Ax, Ayから外周までの距離を十分に確保することができるため、断面二次モーメントが大きい。従って、比較的薄い板厚でも十分な曲げ剛性を確保することができる。アウタケースが十分な曲げ剛性を確保することができる。アウタケースが十分な曲げ剛性を確保することができる。アウタケースが十分な曲げ荷重は作用しなくなるから、燃料電池1の板厚を薄くすることができる。

【0090】燃料電池1に作用する荷重としては、上述した曲げ荷重の他に捩れ荷重が挙げられる。捩れ荷重に対して十分な剛性を確保するためには、捩れの中心軸、即ち図15において中立軸Ax, Ayの交点に対する断面二次極モーメントを大きくすることが望ましい。断面二次極モーメントは、中心軸から外周までの距離が大きい程大きくなる。従って、アウタケースを用いた場合には、燃料電池単体の場合に比較して大きな断面二次極モーメントを実現することができる。この結果、アウタケースは、比較的薄い板厚で十分な捩れ剛性を確保することができる。アウタケースが十分な捩れ剛性を有している場合、燃料電池1には、ほとんど捩れ荷重は作用しなくなるから、燃料電池1の板厚を薄くすることができる。

【0091】これらの作用により、アウタケースを用いることにより、容易に十分な剛性を確保することができるから、燃料電池1の板厚を薄くすることができ、重量軽減および小型化を図ることができる。なお、アウタケースを用いることにより容積的には、燃料電池単体よりも大きくなるものの、燃料電池1の周囲は、燃料ガス、酸化ガス、冷却水を給排するための配管のために所定のスペースが要求されるのが通常であるから、アウタケース内にこれらの配管を適宜配置することにより、容積が大きくなるデメリットを解消することができる。

【0092】アウタケースは、図15に示した他、種々の形状で構成することができる。図16は第1の変形例としてのアウタケースを示す斜視図である。実施例では、本体2に燃料電池1をほぼ完全に収容し、ふた3をかぶせる構成とした。これに対し、変形例では、本体2Aを比較的小さく形成し、ふた3Aを大きくした。例えば、燃料電池の周囲に燃料ガス、酸化ガス、冷却水などの配管を十分に施してアウタケースに収容する場合、変形例では、本体2Aに燃料電池を収容した後、ふた3Aを被せる前は、燃料電池の大半が露出されている状態となるため、上述の配管作業を容易かつ確実に行うことができる利点がある。本体およびふたの寸法は、実施例または第1の変形例のようにいずれか一方を大きくする必50

要はなく、同じ大きさで形成してもよい。

【0093】図17は第2の変形例としてのアウタケースを示す斜視図である。実施例および変形例では、本体とふたの2つからアウタケースを構成する場合を例示した。つまり、上下に分割された部材を結合してアウタケースとする場合を例示した。アウタケースは、必ずしもかかる構成とする必要はなく、例えば、左右に分割された2つの部材を結合して構成するものとしてもよい。かかる構成が第2の変形例に相当する。アウタケースは、水、埃などの異物が内部の燃料電池に侵入することを防止できる構造であり、剛性を確保するのに適した構造であれば、ここに例示した以外にも種々の構造を適用することができる。

【0094】もちろん、燃料電池を搭載する状況によって、それほど高い剛性が要求されない場合には異物の侵入のみを目的としたアウタケースを用いるものとしてもよい。かかる場合には、比較的小型のアウタケースを用いることができる。また、剛性が要求されないため、樹脂を用いて形成することも可能である。

【0095】以上で説明した本実施例の燃料電池によれ ば、第1に冷却系統の短絡手段により冷却水に生じる電 位差に起因する弊害を抑制することができる。第2に排 水機構により、いわゆるフラッディングによる発電不良 や不安定な運転を回避することができる。第3にテンシ ョンプレートの絶縁構成により、燃料電池を製造する際 の生産性を向上することができる。第4にセルを固定す る構造およびスタックの配置により、燃料電池のセルに 適切な弾性力を与え、セル間の積層不良を回避すること ができる。第5にアウタケースを用いることにより、燃 料電池に異物が侵入することを回避することができる。 さらに、本実施例の燃料電池では、それぞれ装置の小型 化に配慮した構成によって、上述した効果を実現してい る。従って、本実施例によれば、燃料電池を種々の装置 に搭載する際の実用性を大きく向上することができる。 【0096】なお、上述の実施例では、冷却系統の短絡 手段、排水機構、テンションプレートの絶縁構成、セル を固定する構造およびスタックの配置、アウタケースと いう5つの特徴を全て適用した場合を例示したが、これ らの特徴は、それぞれ個別に適用することが可能であ る。実際に使用される燃料電池が解決すべき課題に応じ て、上述の各手段を適宜選択的に適用すればよい。以 上、本発明の種々の実施例について説明したが、本発明 はこれらの実施例に限定されず、その趣旨を逸脱しない 範囲で種々の構成を採ることができることはいうまでも

【図面の簡単な説明】

【図1】本実施例のスタック10の概略構成を示す斜視 図である。

【図2】セル100の構造を示す斜視図である。

【図3】燃料電池1の概略構造を示す分解斜視図であ

る。

【図4】燃料ガス、酸化ガス、冷却水の給排状況を示す 説明図である。

27

【図5】冷却系統に設けられた短絡手段の概念を示す説 明図である。

【図6】第1の変形例としての短絡ケーブル210の設 置方法を示す説明図である。

【図7】第2の変形例としての短絡ケーブル210の設 置方法を示す説明図である。

【図8】燃料ガスの排出口204に設けられた排水機構 10 100…セル を示す説明図である。

【図9】変形例としての排水機構を示す説明図である。

【図10】テンションプレートの構造を示す説明図であ る。

【図11】セルを固定する構造を示す説明図である。

【図12】本実施例におけるスタックの配置を示す説明 図である。

【図13】ボルト175が挿入されている方向にスタッ クを配置した状態を示す説明図である。

【図14】テンションプレートの変形例を示す説明図で 20 ある。

【図15】燃料電池がアウタケースに収容された状態を 示す説明図である。

【図16】第1の変形例としてのアウタケースを示す斜 視図である。

【図17】第2の変形例としてのアウタケースを示す斜 視図である。

【符号の説明】

2、2A…本体

4…排気ホース

5…ドレインホース

6…シール

10、10A、10B, 10C, 10D…スタック

10 n…スタック

12…エンドプレート

12A…突部

14…エンドプレート

* 16…絶縁板

18、20…集電板

22…絶縁板

31…冷却水供給口

32…冷却水排出口

33…酸化ガス供給口

3 4…酸化ガス排出口

35…燃料ガス供給口

36…燃料ガス排出口

110…セパレータ

112…燃料ガス流路

122…酸化ガス流路

132…電解質膜

134…水素極

136…酸素極

140…冷却セパレータ

1 4 2 …冷却水溝

151…冷却水孔

153…燃料ガス孔

155…酸化ガス孔

170, 170 A…テンションプレート

172…テンションプレート

174…絶縁層

175…ボルト

200…給排ボックス

201、201A、201B、201C…給水口

202、202A、202B、202C…排水口

203…供給口

30 204…排出口

205、205A…排水ポート

206A…蓄水部

206…蓄水部

207…排水流路

210…短絡ケーブル

220…皿バネ

*

【図7】

【図12】

(a)

【図13】

フロントページの続き

(72)発明者 田中 秀幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 堀田 裕 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 5H026 AA06 CC03 CC08 CX08