EXAMEN D'ANALYSE NUMERIQUE

Alex Aussem, Jonas Koko, Philippe Mahey Décembre 2003

Exercice I - Considérons un réseau linéaire à 2 couches qui à chaque vecteur \mathbf{x}_k présenté en entrée du modèle fait correspondre un vecteur de sortie \mathbf{s}_k , selon les équations :

$$s_j^k = \sum_i w_{ij} x_i^k, \ \forall j, \forall k.$$

On cherche à ajuster les paramètres ajustables du modèle, w_{ij} , de façon réaliser au mieux un ensemble d'association $\{(\mathbf{x}^1, \mathbf{y}^1), \dots, (\mathbf{x}^p, \mathbf{y}^p)\}$, c'est-à-dire celle qui minimise la **somme des résidus d'erreur** $\sum_k \sum_j (y_j^k - s_j^k)^2$.

Rappels: Soit **X** une matrice (n, m) quelconque, il existe une unique matrice \mathbf{X}^{\dagger} de dimension (m, n) telle que $\mathbf{X}^{\dagger}\mathbf{X}$ soit le projecteur orthogonal sur $\text{Ker}(\mathbf{X})^{\perp}$ et $\mathbf{X}\mathbf{X}^{\dagger}$ soit le projecteur orthogonal sur $\text{Im}(\mathbf{X})$. On supposera en outre que $(\mathbf{X}^{\dagger})^T = (\mathbf{X}^T)^{\dagger}$ et que $(\mathbf{X}^{\dagger})^{\dagger} = \mathbf{X}$.

- 1. Déterminer l'expression de \mathbf{x}^{\dagger} , où \mathbf{x} est un vecteur non nul.
- 2. Déterminer l'expression de \mathbf{X}^{\dagger} lorsque les colonnes de \mathbf{X} sont linéairement indépendantes, en se fondant sur l'expression du projecteur orthogonal sur $\mathrm{Im}(\mathbf{X})$ vu en cours. Que devient \mathbf{X}^{\dagger} si \mathbf{X} est inversible?
- 3. Montrer que $\operatorname{Ker}(\mathbf{X})^{\perp} \subset \operatorname{Im}(\mathbf{X}^{\dagger})$ et $\operatorname{Ker}(\mathbf{X}^{\dagger}) \subset \operatorname{Im}(\mathbf{X})^{\perp}$. En déduire $\operatorname{Ker}(\mathbf{X}^{\dagger}) = \operatorname{Im}(\mathbf{X})^{\perp}$ et $\operatorname{Im}(\mathbf{X}^{\dagger}) = \operatorname{Ker}(\mathbf{X})^{\perp}$.
- 4. Montrer qu'on peut formuler le problème ci-dessus comme un problème de moindres carrés matriciel suivant : Trouver \mathbf{W} qui minimise $\|\mathbf{Y} \mathbf{W}\mathbf{X}\|^2$ où on explicitera la norme matricielle et les matrices \mathbf{W}, \mathbf{X} et \mathbf{Y} .
- 5. Montrer que $\mathbf{Y} = \mathbf{W}\mathbf{X}$ admet (au moins) une solution si $\mathbf{Y}\mathbf{X}^{\dagger}\mathbf{X} = \mathbf{Y}$.
- 6. Inversement, établir que si $\mathbf{Y} = \mathbf{W}\mathbf{X}$ admet une solution, alors $\mathrm{Ker}(\mathbf{X}) \subset \mathrm{Ker}(\mathbf{Y})$. En déduire que si $\mathbf{Y} = \mathbf{W}\mathbf{X}$ admet une solution, alors $\mathbf{Y}\mathbf{X}^{\dagger}\mathbf{X} = \mathbf{Y}$.
- 7. Montrer que l'ensemble des matrices solution de $\mathbf{W}\mathbf{X} = \mathbf{0}$, où $\mathbf{0}$ est la matrice nulle, est de la forme $\mathbf{W} = \mathbf{Z}(\mathbf{I} \mathbf{X}\mathbf{X}^{\dagger})$ où \mathbf{Z} est une matrice quelconque. En déduire la forme générale des solutions de $\mathbf{Y} = \mathbf{W}\mathbf{X}$ lorsque $\mathbf{Y}\mathbf{X}^{\dagger}\mathbf{X} = \mathbf{Y}$.
- 8. Montrer que la solution de norme minimale est $\mathbf{W} = \mathbf{Y}\mathbf{X}^{\dagger}$ au sens de la norme matricielle suivante : $\|\mathbf{W}\|^2 = \text{Trace}(\mathbf{W}\mathbf{W}^T)$.
- 9. Calculer $< \mathbf{W}\mathbf{X}, \mathbf{Y} \mathbf{Y}\mathbf{X}^{\dagger}\mathbf{X} >$. En déduire que $\mathbf{W} = \mathbf{Y}\mathbf{X}^{\dagger}$ réalise le minimum de $\|\mathbf{Y} \mathbf{W}\mathbf{X}\|^2$. Que devient ce résultat lorsque \mathbf{X} est inversible? Interpréter.
- 10. Etablir que $\|\mathbf{Y} \mathbf{W}\mathbf{X}\|^2 = \sum_j \|\mathbf{y}_j \mathbf{X}^T\mathbf{w}_j\|^2$ avec $\mathbf{y}_j = (y_j^1, \dots, y_j^p)^T$ et $\mathbf{w}_j = (w_{1j}, \dots, w_{pj})^T$. Retrouver la solution $\mathbf{W} = \mathbf{Y}\mathbf{X}^{\dagger}$ en minimisant chaque terme de la somme. On supposera que les lignes de \mathbf{X} sont linéairement indépendantes.
- 11. Si on adjoint à X un vecteur x de taille n tel que dans $\mathbf{x} \notin \text{Im}(\mathbf{X})$, montrer que

$$(\mathbf{X},\mathbf{x})^{\dagger} = \left(\begin{array}{c} \mathbf{X}^{\dagger}(\mathbf{I} - \mathbf{x}\mathbf{u}^{\dagger}) \\ \mathbf{u}^{\dagger} \end{array}\right)$$

avec $\mathbf{u} = (\mathbf{I} - \mathbf{X}\mathbf{X}^{\dagger})\mathbf{x}$. Quelle signification donner à \mathbf{u} ?

12. En déduire que la nouvelle matrice de connexion vérifie la formule de récurrence, $\mathbf{W}_{k+1} = \mathbf{W}_k + (\mathbf{y} - \mathbf{W}_k \mathbf{x}) \mathbf{u}^{\dagger}$.