CSE3241: Operating System and System Programming

Class-27

Sangeeta Biswas, Ph.D.

Assistant Professor
Dept. of Computer Science and Engineering (CSE)
Faculty of Engineering
University of Rajshahi (RU)
Rajshahi-6205, Bangladesh

E-mail: sangeeta.cse@ru.ac.bd / sangeeta.cse.ru@gmail.com

I/O Systems

- Many kinds of I/O devices are connected to our **beloved computer**.
 - 1. **Storage Device**: Hard Disk, Tape, Floppy Disk, Flash Memory.
 - 2. Transmission Device: Network Card, Modem
 - 3. Human-Interface Device: Screen, Keyboard, Monitor.
 - 4. **Specialized I/O Device**: Joy stick, Foot Padal.
- I/O devices are incredibly different from each other.
- Therefore, one headache of OS is how to manage I/O devices.
- OS has a special part called kernel I/O subsystem

CSE, RU 2/11

Dimensions of Varieties of I/O Systems

- Character-stream / Block: Terminal / Hard Disk.
- Sequential / Random Access: Modem / CD-ROM.
- **Synchronous** / **Asynchronous**: Tape / Keyboard.
- Sharable / Dedicated: Keyboard / Terminal.
- Speed of Operation: Keyboard / Hard Disk.
- Read-Write / Read-Only / Write-Only: Hard Disk / CD-ROM / Graphics Controller.

CSE, RU 3/11

A Kernel I/O Structure [1]

CSE, RU 4/11

Services Provided by Kernel I/O Subsystem

- I/O Scheduling.
- Buffering.
- Caching.
- Spooling and Device Reservation.
- Error Handling.
- Data Structure Handling

CSE, RU 5/11

A Typical PC Bus Structure [1]

How to Communicate (Polling, Interrupts, DMA)

- Polling.
 - ► CPU needs to talk to the controller of I/O system continuously.
- Interrupt.
 - ► CPU needs to talk to the controller when interrupts happen.
- DMA.
 - CPU needs to talk to the controller Via DMA.

CSE, RU 7/11

Event Vector Table [1]

vector number	description
0	divide error
1	debug exception
2	null interrupt
3	breakpoint
4	INTO-detected overflow
5	bound range exception
6	invalid opcode
7	device not available
8	double fault
9	coprocessor segment overrun (reserved)
10	invalid task state segment
11	segment not present
12	stack fault
13	general protection
14	page fault
15	(Intel reserved, do not use)
16	floating-point error
17	alignment check
18	machine check
19–31	(Intel reserved, do not use)
32–255	maskable interrupts

CSE, RU 8/11

Steps in a DMA Transfer [1]

CSE, RU 9/11

Two I/O Methods [1]

(a) Synchronous I/O and (b) Asynchronous I/O.

CSE, RU 10/11

References

P. B. Galvin A. Silbeschatz and G. Gagne. Operating System Concepts. John Wiley & Sons, 9 edition, 2012.

CSE, RU 11/11