10

Claims

1. A polymer comprising a repeating unit of the formula

(II), especially (IIa), or
$$\begin{bmatrix} R^{1} & R^{1} & R^{2} & R^{2} & R^{3} & R^{5} & R^{4} & R^{5} &$$

 R^1 , R^2 , R^3 , R^4 and R^5 are independently of each other an organic substituent, especially C_2 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which optionally can be substituted, X^1 , X^2 and X^3 are independently of each other a divalent linking group.

2. A polymer according to claim 1, wherein X¹ and X² are independently of each other a

group of the formula
$$R^{15}$$
, R^{15} , or R^{15} , in particular

61

10

15

20

n1, n2, n3, n4, n5, n6 and n7 are integers of 1 to 10, in particular 1 to 3, $\rm R^6$ and $\rm R^7$ are independently of each other H, $\rm C_1\text{-}C_{18}$ alkyl, $\rm C_1\text{-}C_{18}$ alkyl which is substituted by E and/or interrupted by D, $\rm C_5\text{-}C_{12}$ cycloalkyl, $\rm C_5\text{-}C_{12}$ cycloalkyl, which is substituted by E, $\rm C_6\text{-}C_{24}$ aryl, $\rm C_6\text{-}C_{24}$ aryl which is substituted by E, $\rm C_2\text{-}C_{20}$ heteroaryl, $\rm C_2\text{-}C_{20}$ heteroaryl which is substituted by E, $\rm C_2\text{-}C_{18}$ alkenyl, $\rm C_2\text{-}C_{18}$ alkynyl, $\rm C_1\text{-}C_{18}$ alkoxy, $\rm C_1\text{-}C_{18}$ alkoxy which is substituted by E and/or interrupted by D, $\rm C_7\text{-}C_{25}$ aralkyl, or -CO-R²⁸, $\rm R^8$ is $\rm C_1\text{-}C_{18}$ alkyl, $\rm C_1\text{-}C_{18}$ alkyl which is substituted by E and/or interrupted by D, $\rm C_6\text{-}C_{24}$ aryl, or $\rm C_7\text{-}C_{25}$ aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R⁹ and R¹⁰ form a ring, especially a five- or six-membered ring, which may optionally be substituted by R⁶,

 $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C=C-, and

E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

25 R²³, R²⁴, R²⁵ and R²⁶ are independently of each other H, C₆-C₁₈aryl, C₆-C₁₈aryl which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkyl, or C₁-C₁₈alkyl which is interrupted by -O-, or

15

R²⁵ and R²⁶ together form a five or six membered ring, in particular

 R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

10 R³² is C₁-C₁₈alkyl, C₆-C₁₈aryl, or C₆-C₁₈aryl, which is substituted by C₁-C₁₈alkyl.

3. A polymer according claim 1 or 2, wherein R¹ and R² are independently of each other H, C₁-C₁8alkyl, C₁-C₁8alkyl which is substituted by E and/or interrupted by D, C₂-C₁8alkenyl, C₂-C₁8alkynyl, C₁-C₁8alkoxy, C₁-C₁8alkoxy which is substituted by E and/or

wherein m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10, in particular 1 to 3, $\rm X^6$ is H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-

$$Ally = \begin{bmatrix} R^{11} \\ R^{12} \\ R^{12} \end{bmatrix}, R^{6}$$
 or

C₃₀aryl, which optionally can be substituted, especially

10

5

15

C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, or C₇-C25aralkyl,

 $\rm X^4$ is C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C24aryl, which optionally can be substituted,

- χ^5 is C_1 - C_{18} alkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl substituted by -OC $_1$ - C_{18} alkyl or -OC $_6$ - C_{24} aryl, R11, R12 and R13 are independently of each other H, C1-C18 alkyl, C1-C18 alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C7-C25aralkyl, and
- D, E, R^6 , R^7 , R^8 , R^9 , R^{10} , $R^{14'}$ and $R^{15'}$ are as defined in claim 2. 10
 - A polymer according to any of claims 1 to 3, comprising a co-monomer T which is 4.

$$R^{6}$$
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}

, in particular

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

 R^{16} is H. C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_7 - C_{25} aralkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

p is an integer from 1 to 10, especially 1, 2 or 3,

q is an integer from 1 to 10, especially 1, 2 or 3, s is an integer from 1 to 10, especially 1, 2 or 3, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are as defined in claim 2, or R⁹ and R¹⁰ together form a five or six membered ring that is substituted by R⁶, R⁹ and R¹⁰ together form a group of formula =CR¹⁰⁰R¹⁰¹, wherein 5 R^{100} and R^{101} are independently of each other H, $C_1\text{-}C_{18}$ alkyl, $C_1\text{-}C_{18}$ alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, or C2-C20heteroaryl, or C2-C20heteroaryl which is substituted by E, and R¹⁴ and R¹⁵ are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by 10 E, or C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E.

A polymer according to any of claims 1 to 3, comprising repeating units of formula la or 5. lb, wherein R1 is a group of formula

wherein R2 is H,

15

20

25

R⁶ and R⁷ are independently of each other H, C₁-C₁₂alkyl, C₅-C₁₂cycloalkyl, especially cyclohexyl, C₆-C₂₄aryl, especially phenyl, naphthyl, or biphenyl, which can be substituted by -O-C₁-C₁₂alkyl, or C₁-C₁₈alkoxy,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl interrupted by one or two oxygen atoms, or C_6 - C_{12} aryl, which optionally can be substituted by C₁-C₁₂alkyl, or C₁-C₁₂alkoxy, R⁹ and R¹⁰ are independently of each other H, C₁-C₁₂alkyl, or C₁-C₁₂alkoxy, R⁹ and R¹⁰ are independently of each other C₁-C₁8alkyl, especially C₄-C₁2alkyl, which

can be interrupted by one or two oxygen atoms, and X1 and X2 are as defined in claim 1.

A polymer according to claim 5, comprising a co-monomer T which is selected from the 6. group consisting of

-R8 is C1-C18alkyl, 5

R⁹ and R¹⁰ are independently of each other C₁-C₁₈alkyl, especially C₄-C₁₂alkyl, which can be interrupted by one or two oxygen atoms, or

R9 and R10 form a five or six membered carbocyclic ring, which optionally can be substituted by C₁-C₈alkyl.

10

15

A polymer according to claim 1, comprising a repeating unit of formula 7.

$$\begin{array}{c|c}
 & X^{2} \\
 & X^{1} \\
 & X^{2}
\end{array}$$
(la), or
$$\begin{array}{c|c}
 & X^{2} \\
 & X^{1} \\
 & X^{2}
\end{array}$$
(lb), and

x is in the range of 0.005 to 1, especially 0.4 to 0.6, and y is in the range of 0.995 to 0, especially 0.6 to 0.4, wherein the sum of x and y is 1,

15

$$A^{g^6}$$
 , or A^{g^6} , or A^{g^6} , or A^{g^6} , or A^{g^6}

R1 is a group of formula

especially
$$\xrightarrow{\mathsf{R}^6} \mathsf{x}^6$$
 , or $\xrightarrow{\mathsf{or}}$, $\xrightarrow{\mathsf{or}}$

wherein X⁶ is H, C₁-C₁₈alkyl, cyclohexyl, or C₁-C₁₈alkoxy, R² is H,

$$\stackrel{\mathsf{R}^6}{\underset{\mathsf{R}^7}{\longleftarrow}}$$
 , or

X1 and X2 are independently of each other a group of formula

$$\mathbb{R}^6$$
 \mathbb{R}^6 , especially , or , and \mathbb{R}^9 \mathbb{R}^{10} wherein s is one or two, and \mathbb{R}^9

T is a group of formula

, wherein s is one or two, and R9 and R¹⁰ are independently of each other C₁-C₁₈alkyl, especially C₄-C₁₂alkyl, which can be

interrupted by one or two oxygen atoms, and R⁶ and R⁷ are independently of each other H, C₁-C₁₂alkyl, C₅-C₁₂cycloalkyl, such as 10 cyclohexyl, C₆-C₂₄aryl, especially phenyl, naphthyl, or biphenyl, which can be substituted by $-O-C_1-C_{12}$ alkyl, or C_1-C_{18} alkoxy.

A polymer according to claim 1, comprising a repeating unit having the formula IIa, IIb 8.

group of the formula
$$R^{50}$$
 R^{59} , R^{56}

or IIc, wherein X3 is a group of the formula

$$\mathbb{R}^{58}$$
 or \mathbb{R}^{56} or \mathbb{R}^{59}

, wherein the dotted line represent the bond to the

pyrimidine ring,

5

10

15

R³, R⁴ and R⁵ are as defined in claim 1,

 R^{56} and R^{57} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_8 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^{59} and R^{60} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

 $\ensuremath{\mathsf{R}}^{59}$ and $\ensuremath{\mathsf{R}}^{60}$ form a ring, especially a five- or six-membered ring,

 R^{71} is H, C_1 - C_{18} alkyl, - $C \equiv N$, - $CONR^{25}R^{26}$ or - $COOR^{27}$,

D is -CO-; -COO-; -OCOO-; -S-; -SO-; -SO₂-; -O-; -NR²⁵-; -SiR³⁰R³¹-; -POR³²-; -CR²³=CR²⁴-; or -C=C-; and

20 E is -OR²⁹; -SR²⁹; -NR²⁵R²⁶; -COR²⁸; -COR²⁷; -CONR²⁵R²⁶; -CN; -OCOOR²⁷; or halogen; wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-; or

25 R²⁵ and R²⁶ together form a five or six membered ring, in particular

15

 R^{27} and R^{28} are independently of each other H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkoxy; C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-, and

 R^{29} is H; C_6 - C_{18} aryl; C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl; or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other $C_1\text{-}C_{18}alkyl,\,C_6\text{-}C_{18}aryl,\,or\,C_6\text{-}C_{18}aryl,\,which is substituted by <math display="inline">C_1\text{-}C_{18}alkyl,\,and$

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

A polymer according to claim 8, wherein R³, R⁴ and R⁵ are independently of each other H, C₁-C₁8 alkyl, C₁-C₁8alkyl which is substituted by E and/or interrupted by D, C₂-C₁8alkenyl, C₂-C₁8alkynyl, C₁-C₁8alkoxy, C₁-C₁8alkoxy which is substituted by E and/or

interrupted by D, R^{65} , X^4 , X^4 , X^4 , X^5 , X^5 , X^5 , X^5 , X^6 ,

$$R^{57}$$
 R^{57} R

$$R^{56}$$
 R^{57}
 R^{58}
 R^{57}
 R^{58}
 R^{58}
 R^{57}
 R^{58}
 R^{58}
 R^{57}
 R^{58}
 R^{58}
 R^{57}
 R^{58}
 R^{57}
 R^{58}
 R^{57}
 R^{58}
 R^{57}
 R^{58}
 R^{58}
 R^{57}
 R^{58}
 R^{58}
 R^{57}
 R^{58}
 R^{58}
 R^{57}
 R^{58}
 R^{58}
 R^{59}
 R^{59}

m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10, in particular 1 to 3, 5 X⁶ is H, C₁-C₁₈alkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, which can optionally be substituted,

especially
$$R^{62}$$
, R^{62} , R^{56} or R^{59} , R^{60} , C_2 - C_{20} heteroaryl, R^{61} , R^{62} , R^{63} , R^{63} , or which can optionally be substituted, especially

10

15

, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C7-C25aralkyl,

 X^4 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C2-C20heteroaryl, which can optionally be substituted,

 X^5 is C_1 - C_{18} alkyl, C_6 - C_{24} aryl, or C_2 - C_{20} heteroaryl, which can optionally be substituted by $-OC_1-C_{18}$ alkyl or $-OC_6-C_{24}$ aryl,

 R^{61} , R^{62} and R^{63} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_8 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl,

- R⁶⁴ and R⁶⁵ are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄aryl, C₆-C₂₄aryl which is substituted by E, or C₂-C₂₀heteroaryl, C₂-C₂₀heteroaryl which is substituted by E, and D, E, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹ and R⁶⁰ are as defined in claim 8.
- 10 10. A polymer according to claim 8 or 9, comprising a co-monomer T which is selected

wherein p is an integer from 1 to 10, especially 1, 2 or 3,

q is an integer from 1 to 10, especially 1, 2 or 3,

s is an integer from 1 to 10, especially 1, 2 or 3,

10 R^{72} is H, C₆-C₁₈aryl, C₆-C₁₈aryl, which is substituted by C₁-C₁₈alkyl, or C₁-C₁₈alkoxy; C₁-C₁₈alkyl; or C₁-C₁₈alkyl which is interrupted by -O-; R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{64} and R^{65} are as defined in claim 8, or R^{59} and R^{60} together form a group of formula =CR¹⁰⁰R¹⁰¹, wherein

 R^{100} and R^{101} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by E, wherein E and D are defined as in claim 8.

5

10

11. A polymer according to any of claims 8 to 10, comprising a repeating unit of formula IIb, especially a repeating unit of formula IIa, or IIc, and a co-monomer T, wherein

X³ is a group of the formula the ovrimidine ring and R⁷¹ i , wherein the dotted line represent the bond to

the pyrimidine ring and R^{71} is H, alkyl, $-C \equiv N$, or $-COOR^{27}$, wherein R^{27} is H, or C_1 - C_{18} alkyl; which optionally can be interrupted by one or more oxygen atoms, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms,

R³, R⁴, and R⁵ are independently of each other H,

T is a group of formula

15

 R^{59} $\stackrel{`}{R}^{60}$ $\stackrel{R^{39}}{R}^{80}$, wherein R^{59} and R^{60} are independently of each other C_1 - C_{18} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two

, or

- 12. An optical device or a component therefore, comprising a substrate and a polymer according to any of claims 1 to 11.
- 5 13. An optical device according to claim 12, wherein the optical device comprises an electroluminescent device.
 - 14. An optical device according to claim 13, wherein the electroluminescent device comprises
- 10 (a) a charge injecting layer for injecting positive charge carriers,
 - (b) a charge injecting layer for injecting negative charge carriers,
 - (c) a light-emissive layer located between the layers (a) and (b) comprising a polymer according to any of claims 1 to 11.
- 15 15. A monomer of the formula

$$X^{11}$$
 X^{11}
 X

wherein

5

10

 R^1 , R^2 , R^3 , R^4 and R^5 are independently of each other an organic substituent, especially C_2 - C_{30} aryl or a C_2 - C_{26} heteroaryl, which optionally can be substituted, X^1 , X^2 , and X^3 are independently of each other a divalent linking group, and X^{11} is independently in each occurrence a halogen atom, or -B(OH)₂, -B(OY¹)₂ or

 $-B \stackrel{O}{\searrow} ^2 \\ \text{o} \qquad \text{, wherein Y}^1 \text{ is independently in each occurrence a C_1-C_{10}alkyl group and} \\ Y^2 \text{ is independently in each occurrence a C_2-C_{10}alkylene group, such as} \\ -CY^3Y^4-CY^5Y^6-\text{, or } -CY^7Y^8-CY^9Y^{10}-CY^{11}Y^{12}-\text{, wherein Y}^3, Y^4, Y^5, Y^6, Y^7, Y^8, Y^9, Y^{10}, Y^{11}$ and Y^{12} are independently of each other hydrogen, or a C_1-C_{10}alkyl group, especially $-C(CH_3)_2C(CH_3)_2$-, or $-C(CH_3)_2CH_2C(CH_3)_2$- with the proviso that 2-phenyl-4,6-bis(p-bromophenyl)pyrimidine and $2,4,6$-tris(p-bromophenyl)pyrimidine are excluded.}$