- 2 Sam C. Levin *1,2,3, Dylan Z. Childs 4, Aldo Compagnoni 1,2,3, Sanne Evers 1,2,5, Tiffany M.
- 3 Knight ^{1,2,5‡}, Roberto Salguero-Gómez ^{3‡}
- 4 ¹Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108
- 5 Halle (Saale), Germany

- 6 ²German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher
- 7 Platz 5e, 04103 Leipzig, Germany
- ³Department of Zoology, 11a Mansfield Rd, University of Oxford, Oxford, OX1 3SZ, UK
- ⁴Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
- 10 ⁵Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ,
- 11 Theodor-Lieser-Straße 4, 06120, Halle (Saale), Germany
- 12 [‡]Joint senior authors
- 13 *Corresponding Author:
- 14 Sam C. Levin
- Puschstrasse 4, 04103 Leipzig, Germany
- 16 email: levisc8@gmail.com
- 17 Running title ipmr: Integral projection models in R

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Integral projection models (IPMs) are an important tool for studying the dynamics of 1. populations structured by one or more continuous traits (e.g. size, height, color). Researchers use IPMs to investigate questions ranging from linking drivers to plant population dynamics, planning conservation and management strategies, and quantifying selective pressures in natural populations. The popularity of stagestructured population models has been supported by R scripts and packages (e.g. IPMpack, popbio, popdemo, lefko3) aimed at ecologists, which have introduced a broad repertoire of functionality and outputs. However, pressing ecological, evolutionary, and conservation biology topics require developing more complex IPMs, and considerably more expertise to implement them. Here, we introduce ipmr, a flexible R package for building, analyzing, and interpreting IPMs. 2. The ipmr framework relies on the mathematical notation of the models to express them in code format. Additionally, this package decouples the model parameterization step from the model implementation step. The latter point substantially increases ipmr's flexibility to model complex life cycles and demographic processes. 3. ipmr can handle a wide variety of models, including density dependence, discretely and continuously varying stochastic environments, and multiple continuous and/or discrete traits. ipmr can accommodate models with individuals cross-classified by age and size. Furthermore, the package provides methods for demographic analyses (e.g.

asymptotic and stochastic growth rates) and visualization (e.g. kernel plotting).

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

populations structured by discrete traits (Caswell, 2001). Some of the advantages of using an IPM include (i) the ability to model populations structured by continuously distributed traits, (ii) the ability to flexibly incorporate discrete and continuous traits in the same model (e.g. seeds in a seedbank and a height structured plant population (Crandall & Knight, 2017), or number of females, males, and age-1 recruits for fish species (Erickson et

The IPM was introduced as alternative to matrix population models, which model

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

4

each with their own strengths and weaknesses (Metcalf et al. 2015).

Terminology and IPM construction

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

An IPM describes how the abundance and distribution of trait values (also called *state* variables/states, denoted z and z') for a population changes in discrete time. The distribution of trait values in a population at time t is given by the function n(z,t). A simple IPM for the trait distribution z' at time t+1 is then

$$n(z', t+1) = \int_{1}^{U} K(z', z) n(z, t) dz.$$
 (1)

have, which defines the *domain* over which the integration is performed. The integral

 $\int_{L}^{U} n(z,t)dz$ gives the total population size at time t.

To make the model more biologically interpretable, the projection kernel K(z',z) is usually decomposed into *sub-kernels* (Eq 2). For example, a projection kernel to describe a lifecycle where individuals can survive, transition to different state values, and reproduce via sexual and asexual pathways, can be decomposed as follows

$$K(z',z) = P(z',z) + F(z',z) + C(z',z),$$
 (2)

where P(z',z) is a sub-kernel describing transitions due to survival and trait changes of existing individuals, F(z',z) is a sub-kernel describing per-capita sexual contributions of existing individuals to recruitment, and C(z',z) is a sub-kernel describing per-capita asexual contributions of existing individuals to recruitment. The sub-kernels are typically comprised of functions derived from regression models that relate an individual's trait value z at time t to a new trait value z' at t+1. For example, the P kernel for Soay sheep (Ovis aries) on St. Kilda (Eq 3) may contain two regression models: (i) a logistic regression of survival on log body mass (Eq 4), and (ii) a linear regression of log body mass at t+1 on log body mass at t (Eq 5-6). In this example, f_g is a normal probability density function with μ_g given by the linear predictor of the mean, and with σ_g computed from the standard deviation of the residuals from the linear regression model.

$$Logit(s(z)) = \alpha_s + \beta_s * z$$
, (4)

$$g(z',z) = f_g(z', \mu_g, \sigma_g),$$
 (5)

$$\mu_g = \alpha_g + \beta_g * z. \quad (6)$$

Analytical solutions to the integral in Eq 1 are usually not possible (Ellner & Rees, 2006).

However, numerical approximations of these integrals can be constructed using a

numerical integration rule. A commonly used rule is the midpoint rule (more complicated

and precise methods are possible and will be implemented, though are not yet, see Ellner et

al., 2016, Chapter 6). The midpoint rule divides the domain [L, U] into m artifical size bins

centered at z_i with width h = (U - L)/m. The midpoints $z_i = L + (i - 0.5) * h$ for

i = 1, 2, ..., m. The midpoint rule approximation for Eq 1 then becomes:

121

122

123

124

$$n(z_j, t+1) = h \sum_{i=1}^{m} K(z_j, z_i) n(z_i, t)$$
 (7)

126 In practice, the numerical approximation of the integral converts the continuous projection 127 kernel into a (large) discretized matrix. A matrix multiplication of the discretized 128 projection kernel and the discretized trait distribution then generates a new trait 129 distribution, a process referred to as model iteration (sensu Easterling et al., 2000). 130 Equations 1 and 2 are an example of a *simple IPM*. A critical aspect of ipmr's functionality is 131 the distinction between *simple IPMs* and *general IPMs*. A simple IPM incorporates a single 132 continuous state variable. Equations 1 and 2 represent a simple IPM because there is only 133 one continuous state, z, and no additional discrete states. A general IPM models one or

135

136

137

138

139

140

141

142

143

144

145

146

147

Figure 1: There are generally 6 steps in defining an IPM with ipmr. (1) Vital rate models are fit to demographic data collected from field sites. This step requires the use of other packages, as ipmr does not contain facilities for regression modeling. The figure on the left shows the fitted relationship between size at t and t+1 for Carpobrotus spp. in Case Study 1. (2) The next step is deciding what type of IPM is needed. This is determined by both the research question and the data used to parameterize the regression models. This process is initiated with init_ipm(). In step (3), kernels are defined using ipmr's syntax to represent kernels and

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

how to visualize these results.

vital rate functions, (4) Having defined symbolic representations of the model, the numerical definition is given. Here, the integration rule, domain bounds, and initial population conditions are defined. For some models, initial environmental conditions can also be defined. (5) make ipm() numerically implements the proto ipm object, (6) which can then be analyzed further. The figure at the bottom left shows a K(z',z) kernel created by make ipm() and make iter kernel(). The line plots above and to the right display the left and right eigenvectors, extracted with Left ev() and right ev(), respectively. Case study 1 - A simple IPM One use for IPMs is to evaluate potential performance and management of invasive species in their non-native range (e.g. Erickson et al., 2017). Calculating sensitivities and elasticities of λ to kernel perturbations can help identify conservation management strategies (de Kroon et al., 1986, Caswell, 2001, Baxter et al., 2006, Ellner et al., 2016), Bogdan et al. (2020) constructed a simple IPM for a *Carpobrotus* species growing north of Tel Aviv, Israel. The model includes four regressions, and an estimated recruit size distribution. Table 1 provides the mathematical formulae, the corresponding R model formula, and the ipmr notation for each one. The case study materials also offer an alternative implementation that uses the generic predict() function to generate the same output. The final part of the case study provides examples of functions that compute kernel sensitivity and elasticity, the per-generation growth rate, and generation time for the model, as well as

We use an age- and size-structured IPM from Ellner et al. (2016) to illustrate how to create general IPMs with ipmr. This case study demonstrates is the suffix syntax for vital rate and kernel expressions, which is a key feature of ipmr (highlighted in bold in the 'ipmr' column in Table 2). The suffixes appended to each variable name in the ipmr formulation correspond to the sub- and/or super-scripts used in the mathematical formulation. ipmr internally expands the model expressions and substitutes the range of ages and/or grouping variables in for the suffixes. This allows users to specify their model in a way that closely mirrors its mathematical notation, and saves users from the potentially error-prone process of re-typing model definitions many times or using for loops over the range of discrete states. The case study then demonstrates how to couple age-specific survival and fertility with the model outputs.

Discussion of additional applications

We have shown above how ipmr handles a variety of model implementations that go beyond the capabilities of existing scripts and packages. The underlying implementation based on metaprogramming should be able to readily incorporate future developments in parameterization methods. Regression modeling is a field that is constantly introducing new methods. As long as these new methods have functional forms for their expected value (or a method for predict()), ipmr should be able to implement IPMs using them.

Finally, one particularly useful aspect of the package is the proto_ipm data structure. The proto_ipm is the common data structure used to represent every model class in ipmr and

provides a concise, standardized format for representing IPMs. Furthermore, the proto_ipm object is created without any raw data, only functional forms and parameters. We are in the process of creating the PADRINO IPM database using ipmr and proto_ipms as an "engine" to re-build published IPMs using only functional forms and parameter estimates. This database could act as an IPM equivalent of the popular COMPADRE and COMADRE matrix population model databases (Salguero-Gómez et al., 2015, Salguero-Gómez et al., 2016). Recent work has highlighted the power of syntheses that harness many structured population models (Adler et al., 2013, Salguero-Gómez et al., 2016, Compagnoni et al., 2020). Despite the wide variety of models that are currently published in the IPM literature, ipmr's functional approach is able to reproduce nearly all of them without requiring any raw data at all.

Citation list

197

198

199

200

201

202

203

204

205

206

207

- 209 1. Adler, P.B., Ellner, S.P. & Levine, J.M. (2010). Coexistance of perennial plants: an
- embarassment of niches. Ecology Letters 13: 1019-1029.
- 211 https://doi.org/10.1111/j.1461-0248.2010.01496.x
- 212 2. Adler, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-
- Ache, C. & Franco, M. (2014). Functional traits explain variation in plant life history
- strategies. Proceedings of the National Academy of Sciences 111(2): 740-745.
- 215 https://doi.org/10.1073/pnas.1315179111
- 3. Baxter, P.W.J., McCarthy, M.A., Possingham, H.P., Menkhorst, P.W. & McLean, N. (2006).
- Accounting for management costs in sensitivity analyses of matrix population models.

- 218 Conservation Biology 20(3): 893-905. https://doi.org/10.1111/j.1523-
- 219 1739.2006.00378.x
- 4. Bogdan, A., Levin, S.C., Salguero-Gómez, R., Knight, T.M. (2020). Demographic analysis
- of Israeli Carpobrotus populations: management strategies and future directions.
- bio Rxiv. https://doi.org/10.1101/2020.12.08.415174
- 5. Bruno, J.F., Ellner, S.P., Vu, I., Kim, K., & Harvell, C.D. (2011). Impacts of aspergillosis on
- sea fan coral demography: modeling a moving target. Ecological Monographs 81(1):
- 225 123-139. https://doi.org/19.1890/09-1178.1
- 226 6. Caswell, H. (2001) Matrix population models: construction, analysis, and
- interpretation, 2nd edn. Sunderland, MA: Sinauer Associates Inc
- 228 7. Caswell, H., & Salguero-Gómez R. (2013). Age, stage and senescence in plants. Journal
- of Ecology 101(3): 585-595. https://doi.org/10.1111/1365-2745.12088
- 230 8. Childs, D.Z., Rees, M., Rose, K.E., Grubb, P.J., & Ellner, S.P. (2004). Evolution of size-
- dependent flowering in a variable environment: construction and analysis of a
- stochastic integral projection model. Proceedings of the Royal Society B 271(1547):
- 233 425-434. https://doi.org/10.1098/rpsb.2003.2597
- 234 9. Compagnoni, A., Levin, S.C., Childs, D.Z., Harpole, S., Paniw, M., Roemer, G., Burns, J.H.,
- Che-Castaldo, J., Rueger, N., Kunstler, G., Bennett, J.M., Archer, C.R., Jones, O.R.,
- Salguero-Gomez, R., & Knight, T.M. (2020). Short-lived plants have stronger
- demographic responses to climate. bioRxiv.
- 238 https://doi.org/https://doi.org/10.1101/2020.06.18.160135

239 10. Coulson, T.N. (2012). Integral projection models, their construction and use in posing 240 hypotheses in ecology. Oikos 121: 1337-1350. https://doi.org/10.1111/j.1600-241 0706.2012.00035.x 242 11. Coulson, T., Tuljapurkar, S., & Childs, D.Z. (2010). Using evolutionary demography to 243 link life history theory, quantitative genetics and population ecology. Journal of Animal 244 Ecology 79: 1226-1240. https://doi.org/10.1111/j.1365-2656.2010.01734.x 245 12. Crandall, R.M. & Knight, T.M. (2017). Role of multiple invasion mechanisms and their 246 interaction in regulating the population dynamics of an exotic tree. Journal of Applied Ecology 55(2):885-894. https://doi.org/10.1111/1365-2664.13020 247 248 13. de Kroon, H., Plaisier, A., van Goenendael, J., & Caswell, H. (1986). Elasticity: the 249 relative contribution of demographic parameters to population growth rate. Ecology 250 67(5): 1427-1431. 251 14. Easterling, M.R., Ellner, S.P., & Dixon, P.M. (2000). Size specific sensitivity: applying a 252 new structured population model. Ecology 81(3): 694-708. 253 15. Ellner, S.P., Childs, D.Z., Rees, M. (2016) Data-driven modelling of structured 254 populations: a practical guide to the integral projection model. Basel, Switzerland: 255 Springer International Publishing AG 256 16. Ellner, S.P. & Rees, M. (2006), Integral Projection Models for species with complex 257 demography. The American Naturalist 167(3): 410-428. 258 17. Erickson, R.A., Eager, E.A., Brey, M.B., Hansen, M.J., & Kocovsky, P.M. (2017). An

integral projection model with YY-males and application to evaluating grass carp

260 control, Ecological Modelling 361: 14-25. 261 https://doi.org/10.1016/j.ecolmodel.2017.07.030 262 18. Ferrer-Cervantes, M.E., Mendez-Gonzalez, M.E., Quintana-Ascencio, P-F., Dorantes, A., 263 Dzib, G., & Duran, R. (2012). Population dynamics of the cactus Mammillaria gaumeri: 264 an integral projection model approach. Population Ecology 54: 321-334. DOI: 265 https://doi.org/10.1007/s10144-012-0308-7 266 19. Henry, L., & Wickham, H. (2020). rlang: Functions for Base Types and Core R and 267 'Tidyverse' Features. R package version 0.4.7. https://CRAN.R-268 project.org/package=rlang 269 20. Jongejans, E., Shea, K., Skarpaas, O., Kelly, D., & Ellner, S.P. (2011). Importance of 270 individual and environmental variation for invasive species spread: a spatial integral 271 projection model. Ecology 92(1): 86-97. https://doi.org/10.1890/09-2226.1 272 21. Merow, C., Dahlgren, J.P., Metcalf, C.J.E., Childs, D.Z., Evans, M.E.K., Jongejans, E., Record, 273 S., Rees, M., Salguero-Gomez R., & McMahon, S.M. (2014). Advancing population 274 ecology with integral projection models: a practical guide. Methods in Ecology and 275 Evolution 5: 99-110. https://doi.org/10.1111/2041-210X.12146S 276 22. Metcalf, C.J.E., Ellner, S.P., Childs, D.Z., Salguero-Gómez, R., Merow, C., McMahon, S.M., 277 longejans, E., & Rees, M. (2015). Statistical modelling of annual variation for inference 278 on stochastic population dynamics using Integral Projection Models. Methods in 279 Ecology and Evolution 6(9): 1007-1017. https://doi.org/10.1111/2041-210X.12405

23. Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. (2013). IPMpack: 280 281 an R package for integral projection models. Methods in Ecology and Evolution, 4(2): 282 195-200. https://doi.org/10.1111/2041-210x.12001 283 24. Ramula, S., Rees, M. & Buckley, Y. M. (2009). Integral projection models perform better 284 for small demographic data sets than matrix population models: a case study of two 285 perennial herbs. Journal of Applied Ecology 46(5): 1048-1053. 286 https://doi.org/10.1111/j.1365-2664.2009.01706.x 287 25. Salguero-Gómez, R, Jones, O.R., Archer, C.A., Buckley, Y.M., Che-Castaldo, J., Caswell, C., 288 Hodgson, D., Scheuerlein, A., Conde, D.A., Brinks, E., de Buhr, H., Farack, C., Gottschalk, 289 F., Hartmann, A., Henning, A., Hoppe, G., Roemer, G., Runge, J., Ruoff, T., et al. (2014) 290 The COMPADRE Plant Matrix Database: an online repository for plant population 291 dynamics. Journal of Ecology 103: 202-218. https://doi.org/10.1111/1365-292 2745.12334 293 26. Salguero-Gómez, R., Iones, O.R., Archer, C.R., Bein, C., de Buhr, H., Farack, C., Gottschalk, 294 F., Hartmann, A., Henning, A., Hoppe, G., Roemer, G., Ruoff, T., Sommer, V., Wille, J. 295 Voigt, J., Zeh, S., Vieregg, D., Buckley, Y.M., Che-Castaldo, J., Hodgson, D., et al. (2016) 296 COMADRE: a global database of animal demography. Journal of Animal Ecology 85: 297 371-384. https://doi.org/10.1111/1365-2656.12482 298 27. Shefferson, R.P., Kurokawa, S., & Ehrlen, J. (2020). LEFKO3: analysing individual

history through size-classified matrix population models. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13526

28. Williams, J.L., Miller, T.E.X., & Ellner, S.P. (2012). Avoiding unintentional eviction from integral projection models. Ecology 93(9): 2008-2014. https://doi.org/10.1890/11-2147.1

Math Formula	R Formula	ipmr
$\mu^g = \alpha^g + \beta^g * z$	size_2 ~ size_1, family = gaussian()	<pre>mu_g = g_int + g_slope * z</pre>
$g(z',z) = f^g(\mu^g,\sigma^g)$	$g = dnorm(z_2, mu_g, sd_g)$	$g = dnorm(z_2, mu_g, sd_g)$
$logit(s(z)) = \alpha^s + \beta^s * z$	<pre>surv ~ size_1, family = binomial()</pre>	s = plogis(s_int + s_slope * z)
$log(r^n(z)) = \alpha^{r^n} + \beta^{r^n} * z$	<pre>fec ~ size_1, family = poisson()</pre>	r_n = exp(r_n_int + r_n_slope * z)
$logit(r^p(z)) = \alpha^{r^p} + \beta^{r^p} * z$	repr ~ size_1, family = binomial()	r_p = plogis(r_p_int + r_p_slope * z)
$r^d(z') = f^{r^d}(\mu^{r^d}, \sigma^{r^d})$	dnorm(z_2, mu_f_d, sigma_f_d)	r_d = dnorm(z_2, f_d_mu, f_d_sigma)
$p^r = \frac{\#Recruits(t+1)}{\#flowers(t)}$	<pre>p_r = n_new_recruits / n_flowers</pre>	<pre>p_r = n_new / n_flowers</pre>
P = s(z) * g(z', z)		P = s * g
$F(z',z) = r^{p}(z) * r^{n}(z) * r^{d}(z') * p^{r}$		F = r_p * r_n * r_d * p_r
n(z',t+1)		
$= \int_{L}^{U} [P(z',z) + F(z',z)]n(z,t)dz$		

Table 2: Translations between mathematical notation, R's formula notation, and ipmr's notation for Ellner et al. (2016) Ovis aries IPM. The ipmr column contains the expressions used in each kernel's definition. R expressions are not provided for sub-kernels and model iteration procedures because they typically require defining functions separately, and there are many ways to do this step

(examples are in the R code for each case study in the appendix). ipmr supports a suffix based syntax to avoid repetitively typing out the levels of discrete grouping variables. These are represented as 'a' in the Math column, 'age' in the R formula column, and are highlighted in bold in the ipmr column.

Math Formula
$Logit(s(z,a)) = \alpha^{s} + \beta_{z}^{s} * z + \beta_{a}^{s} * a$
$g(z',z,a) = f^g(\mu_a^g,\sigma_a^g)$
$\mu^g(z,a) = \alpha^g + \beta_z^g * z + \beta_a^g * a$
$Logit(m^p(z,a)) = \alpha^{m^p} + \beta_z^{m^p} * z + \beta_a^{m^p} * a$
$Logit(r^{p}(a)) = \alpha^{r^{p}} + \beta_{a}^{r^{p}} * a$ $\mu^{b} = \alpha^{b} + \beta_{z}^{b} * z$
$b(z',z) = f^b(\mu^b,\sigma^b)$
$P_a(z',z) = s(z,a) * g(z',z,a)$
$F_a(z',z) = s(z,a) * m^p(z,a) * r^p(a) * b(z',z)/2$
$n_0(z', t+1) = \sum_{a=0}^{M+1} \int_L^U F_a(z', z) n_a(z, t) dz$
$n_a(z', t+1) = \int_L^U P_{a-1}(z', z) n_{a-1}(z, t) dz$

315 316

R Formula	ipmr
<pre>surv ~ size_1 + age, family = binomial()</pre>	s_age =
<pre>g = dnorm(size_2, mu_g_age, sigma_g)</pre>	g_age =
<pre>size_2 ~ size_1 + age, family = gaussian()</pre>	mu_g_a
<pre>repr ~ size_1 + age, family = binomial()</pre>	m_p_age
<pre>recr ~ age, family = binomial()</pre>	r_p_ age
<pre>rc_size_2 ~ size_1, family = gaussian()</pre>	mu_rc_s
<pre>b = dnorm(size_2, mu_rc_size, sigma_rc_size)</pre>	rc_size =
	P_age =

$$n_{M+1}(z', t+1)$$

$$= \int_{L}^{U} [P_{M+1}(z', z)n_{M+1}(z, t) + P_{M}(z', z)n_{M}(z, t)]dz$$

- 320 Author Contributions: All authors contributed to package design. SCL implemented the package. All authors wrote the first 321 draft of the manuscript.
- 322 Funding: R.S-G. was supported by a NERC Independent Research Fellowship (NE/M018458/1). SCL, AC, SE, and TMK were
- 323 funded by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship of TM
- Knight endowed by the German Federal Ministry of Education and Research. 324