Examples of Derandomization

Samuel Epstein*

August 20, 2022

Contents

1	Too	ls	1	
2	Examples			
	2.1	FUNCTION-MINIMIZATION	3	
	2.2	RANDOMIZED-QUICKSORT	4	
	2.3	INDEPENDENT-SET	5	
	2.4	Set-Membership	5	
	2.5	Parallel-Routing	6	
	2.6	CLASSIFICATION	7	
	2.7	COVER-TIME	9	
	2.8	SUPER-SET	10	
	2.9	EVEN-ODDS	10	
	2.10	BALANCING-VECTORS	11	
	2.11	MIN-CUT	12	
	2.12	Hypergraph-Coloring	12	
	2.13	K-SAT	14	
	2.14	DOMINATING-SET	14	
	2.15	LATIN-TRANSVERSAL	15	

1 Tools

Lemma 1 (Symmetric Lovasc Local Lemma) Let E_1, \ldots, E_n be a collection of events such that $\forall i : \Pr[E_i] \leq p$. Suppose further that each event is dependent on at most d other events, and that $ep(d+1) \leq 1$. Then, $\Pr\left[\bigcup_i \overline{E}_i\right] > \left(1 - \frac{1}{d+1}\right)^n$.

Lemma 2 (Asymmetric Lovasc Local Lemma) Let E_1, \ldots, E_n be a collection of events with dependency graph G = (V, E). Suppose $\Pr\left(E_i \middle| \bigcap_{j \in S} \overline{E_j}\right) \leq \Pr(E_i)$. Suppose all events have probability at most p, G has degree at most d, and and $4dp \leq 1$. Then $\Pr\left(\bigcap_i \overline{E_i}\right) \geq (1-2p)^n$.

For each i, and $S \subset \{1, \ldots, n\} \setminus \{j : (i, j) \in E\}$, we have $\Pr\left(E_i | \bigcap_{j \in S} \overline{E_j}\right) \leq x_i \prod_{(i, j) \in E} (1 - x_j)$. Then $\Pr\left(\bigcap_{i=1}^n \overline{E_i}\right) \geq \prod_{i=1}^n (1 - x_i)$.

Proposition 1

For every $c, n \in \mathbb{N}$, if x < y + c for some $x, y \in \mathbb{N}m$ then $x + n\mathbf{K}(x) < y + n\mathbf{K}(y) + O(n\log n) + 2c$.

^{*}JP Theory Group. samepst@jptheorygroup.org

Proof. $\mathbf{K}(x) <^+ \mathbf{K}(y) + \mathbf{K}(y-x)$ as x can be computed from y and (y-x). Therefore $n\mathbf{K}(x) - n\mathbf{K}(y) < n\mathbf{K}(y-x) + dn$, for some $d \in \mathbb{N}$ dependent on U. We assume that this equation is not true; then, there exists $x, y, c \in \mathbb{N}$ where x < y + c, and $g \le O(n \log n) + 2c$ where $y - x + g < n\mathbf{K}(x) - n\mathbf{K}(y) < n\mathbf{K}(y-x) + dn$, which is a contradiction for $g =^+ dn + 2c + \max_a \{2n \log a - a\} =^+ dn + 2c + 2n \log n$.

Lemma 3 For partial computable $f: \mathbb{N} \to \mathbb{N}$, for all $a \in \mathbb{N}$, $\mathbf{I}(f(a); \mathcal{H}) < ^+ \mathbf{I}(a; \mathcal{H}) + \mathbf{K}(f)$.

Proof.

$$\mathbf{I}(a;\mathcal{H}) = \mathbf{K}(a) - \mathbf{K}(a|\mathcal{H}) >^{+} \mathbf{K}(a, f(a)) - \mathbf{K}(a, f(a)|\mathcal{H}) - \mathbf{K}(f).$$

The chain rule $(\mathbf{K}(x,y) = \mathbf{K}(x) + \mathbf{K}(y|x,\mathbf{K}(x)))$ applied twice results in

$$\begin{split} \mathbf{I}(a;\mathcal{H}) + \mathbf{K}(f) >^{+} \mathbf{K}(f(a)) + \mathbf{K}(a|f(a),\mathbf{K}(f(a))) - (\mathbf{K}(f(a)|\mathcal{H}) + \mathbf{K}(a|f(a),\mathbf{K}(f(a)|\mathcal{H}),\mathcal{H}) \\ =^{+} \mathbf{I}(f(a);\mathcal{H}) + \mathbf{K}(a|f(a),\mathbf{K}(f(a))) - \mathbf{K}(a|f(a),\mathbf{K}(f(a)|\mathcal{H}),\mathcal{H}) \\ =^{+} \mathbf{I}(f(a);\mathcal{H}) + \mathbf{K}(a|f(a),\mathbf{K}(f(a))) - \mathbf{K}(a|f(a),\mathbf{K}(f(a)),\mathbf{K}(f(a)|\mathcal{H}),\mathcal{H}) \\ >^{+} \mathbf{I}(f(a);\mathcal{H}). \end{split}$$

Theorem 1 ([Lev16, Eps19]) For finite $D \subset \{0,1\}^*$, $-\log \max_{x \in D} \mathbf{m}(x) <^{\log} -\log \sum_{x \in D} \mathbf{m}(x) + \mathbf{I}(D; \mathcal{H})$.

We recall the definitions from the introduction. Random functions F over natural numbers are modeled by discrete stochastic processes indexed by \mathbb{N} , where each F(t), $t \in \mathbb{N}$, is a random variable over \mathbb{N} . \mathcal{F} is the set of all random functions. A random function $F \in \mathcal{F}$ is computable if there is a program that on input (a_1, \ldots, a_n) lower computes $\Pr[F(1) = a_1 \cap F(2) = a_2 \cap \cdots \cap F(n) = (a_n)]$. Put another way, a random function $F \in \mathcal{F}$ is computable if $X = \Pr[F(a_1) = b_1 \cap \cdots \cap F(a_n) = b_n]$ is uniformly computble in $\{(a_i, b_i)\}_{i=1}^n$. The complexity $\mathbf{K}(F)$ of a random function $F \in \mathcal{F}$, is the smallest program that computes X. \mathcal{G} is the set of all deterministic functions $G: \mathbb{N} \to \mathbb{N}$. A sample $S \in \mathcal{S}$ is a finite set of pairs $\{(a_i, b_i)\}_{i=1}^n$. The encoding of a sample is $\langle S \rangle = \langle \{(a_i, b_i)\}_{i=1}^n \rangle$. \mathcal{S} is the set of all samples. We say G(S) if G is consistent with S, with $G(a_i) = b_i$, $i = 1, \ldots, n$. For random functions, F(S) is the event that F is consistent with S.

Theorem 2 For
$$F \in \mathcal{F}$$
, $S \in \mathcal{S}$, if $s = \lceil -\log \Pr[F(S)] \rceil$ and $h = \mathbf{I}(\langle S \rangle; \mathcal{H})$, then $\min_{G \in \mathcal{G}, G(S)} \mathbf{K}(G) < \mathbf{K}(F) + s + h + O(\mathbf{K}(s, h) + \log \mathbf{K}(F))$.

Theorem 2 can be readily extended to sets of samples $\mathfrak{S} = \{S_1, \ldots, S_n\}$, where for deterministic function $G : \mathbb{N} \to \mathbb{N}$, $G(\mathfrak{S})$ if $\bigcup_{i=1}^n G(S_i)$. For random function $F \in \mathcal{F}$, $F(\mathfrak{S})$ is the union of events $F(S_i)$, $i = 1, \ldots, n$.

Corollary 1 For $F \in \mathcal{F}$, if $s = \lceil -\log \Pr[F(\mathfrak{S})] \rceil$ and $h = \mathbf{I}(\langle \mathfrak{S} \rangle; \mathcal{H})$, then $\min_{G \in \mathcal{G}, G(\mathfrak{S})} \mathbf{K}(G) <^{\log} \mathbf{K}(F) + s + h + O(\mathbf{K}(s, h) + \log \mathbf{K}(F))$.

A continuous semi-measure Q is a function $Q: \{0,1\}^* \to \mathbb{R}_{\geq 0}$, such that $Q(\emptyset) = 1$ and for all $x \in \{0,1\}^*$, $Q(x) \geq Q(x0) + Q(x1)$. For prefix free set D, $Q(D) = \sum_{x \in D} Q(x)$. Let \mathbf{M} be a largest, up to a multiplicative factor, lower semi-computable continuous semi-measure. That is, for all lower computable continuous semi-measures Q there is a constant $c \in \mathbb{N}$ where for all $x \in \{0,1\}^*$, $c\mathbf{M}(x) > Q(x)$. Thus for any lower computable continuous semi-measure W and open

set S, $-\log \mathbf{M}(S) <^+ \mathbf{K}(W) - \log W(S)$, where $\mathbf{K}(W)$ is the size of the smallest program that lower computes W.

The monotone complexity of a finite prefix-free set G of finite strings is $\mathbf{Km}(G) \stackrel{\text{def}}{=} \min\{\|p\| : U(p) \in x \supseteq y \in G\}$. Note that this differs from the usual definition of \mathbf{Km} , in that our definition requires U to halt.

Theorem 3 For finite prefix-free set $G \subset \{0,1\}^*$, $i = \lceil -\log \mathbf{M}(G) \rceil$, $h = \mathbf{I}(G; \mathcal{H})$, we have $\mathbf{Km}(G) < i + h + O(\mathbf{K}(i,h))$.

Corollary 2 For (potentially infinite) prefix-free set $G \subset \{0,1\}^*$, where if $i = \lceil -\log \mathbf{Km}(G) \rceil$, $h = \mathbf{I}(\langle G \rangle : \mathcal{H})$, then $\mathbf{Km}(G) < i + h + O(\mathbf{K}(i,h))$.

Theorem 3 can also be applied to clopen sets $C \subseteq \{0,1\}^{\infty}$. In this case $\mathbf{M}(C) = \sum \{\mathbf{M}(x) : \Gamma_x \text{ is maximal in } C\}$. In addition $\mathbf{Km}(C)$ is the shortest program that will produce a string $x \in \{0,1\}^*$ such that $\Gamma_x \subseteq C$. This also applies to Corollary 2 and open sets.

For the first model, the agent \mathbf{p} and environment \mathbf{q} are defined as follows. The agent is a function $\mathbf{p}: (\mathbb{N} \times \mathbb{N})^* \to \mathbb{N}$, where if $\mathbf{p}(w) = a$, $w \in (\mathbb{N} \times \mathbb{N})^*$ is a list of the previous actions of the agent and the environment, and $a \in \mathbb{N}$ is the action to be performed. The environment is of the form $\mathbf{q}: (\mathbb{N} \times \mathbb{N})^* \times \mathbb{N} \to \mathbb{N} \cup \{\mathbf{W}\}$, where if $\mathbf{q}(w, a) = b \in \mathbb{N}$, then b is \mathbf{q} 's response to the agent's action a, given history w, and the game continues. If \mathbf{q} responds \mathbf{W} then the agents wins and the game halts. The agent can be randomized. The game can continue forever, given certain agents and environments. This is called a win/no-halt game.

Theorem 4 If probabilistic agent \mathbf{p}' wins against environment \mathbf{q} with at least probability p, then there is a deterministic agent \mathbf{p} of complexity $<^{\log} \mathbf{K}(\mathbf{p}') - \log p + \mathbf{I}(\langle p, \mathbf{p}', \mathbf{q} \rangle; \mathcal{H})$ that wins against \mathbf{q} .

The second game is modified such that the environment gives a nonnegative rational penalty term to the agent at each round. Furthermore the environment specifies an end to the game without specifying a winner or loser. This is called a penalty game.

Corollary 3 If given probabilistic agent \mathbf{p} , environment \mathbf{q} halts with probability 1, and \mathbf{p} has expected penalty less than $n \in \mathbb{N}$, then there is a deterministic agent of complexity $<^{\log} \mathbf{K}(\mathbf{p}) + \mathbf{I}(\langle \mathbf{p}, n, \mathbf{q} \rangle; \mathcal{H})$ that receives penalty < 2n against \mathbf{q} .

2 Examples

2.1 Function-Minimization

Given computable functions $\{f_i\}_{i=1}^n$, where each $f_i: \mathbb{N} \to \mathbb{N} \cup \infty$, the goal of Function-Minimization is to find numbers $\{x_i\}_{i=1}^n$, that minimizes $\sum_{i=1}^n f_i(x_i)$. Let $p: \mathbb{N} \to \mathbb{R}_{\geq 0}$ be a lower semi-computable semi-measure, where $\mathbf{E}_p[f_i] \in \mathbb{R}$ for all $i=1,\ldots,n$. We define a computable probability $P: \{0,1\}^* \to \mathbb{R}_{\geq 0}$ where $P(\langle a_1 \rangle \langle a_2 \rangle \ldots \langle a_n \rangle) = \prod_{i=1}^n p(a_i)$. $\mathbf{K}(P) <^+ \mathbf{K}(p,n)$. Let D' be a (potentially infinite) set of strings where $x \in D$ iff $x = \langle a_1 \rangle \langle a_2 \rangle \ldots \langle a_n \rangle$ and

$$\sum_{i=1}^{n} f_i(a_i) \le \left[2 \sum_{\{b_i\}} \left(\prod_{i=1}^{n} p(b_i) \right) \sum_{i=1}^{n} f_i(b_i) \right] = \left[2 \sum_{i=1}^{n} \mathbf{E}_p[f_i] \right].$$

Let $\tau = \lceil 2 \sum_{i=1}^n \mathbf{E}_p[f_i] \rceil$. By the Markov inequality, let the finite set $D \subseteq D'$ be constructed from $\langle p, \{f_i\}, \tau \rangle$, such that P(D) > 1/2 and $\mathbf{K}(D|\langle p, \{f_i\}, \tau \rangle) = O(1)$. By Theorem 1 and Lemma 3, there a string $x \in D$ such that

$$\mathbf{K}(x) <^{\log} - \log \mathbf{m}(D) + \mathbf{I}(D; \mathcal{H})$$

$$<^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(\langle p, \{f_i\}, \tau \rangle; \mathcal{H})$$

$$<^{\log} \mathbf{K}(p, n) + \mathbf{I}(\langle p, \{f_i\}, \tau \rangle; \mathcal{H}).$$

Thus given any computable probability p and functions $\{f_i\}_{i=1}^n$, there are numbers $\{x_i\}_{i=1}^n$ such that $\sum_{i=1}^n f(x_i) \leq \lceil 2 \sum_{i=1}^n \mathbf{E}_p[f_i] \rceil = \tau$ and $\mathbf{K}(\{x_i\}_{i=1}^n) <^{\log} \mathbf{K}(n, P) + \mathbf{I}(\langle p, \{f_i\}, \tau \rangle; \mathcal{H})$.

Note that if the functions are uncomputable, then using the argument $\mathbf{I}(a; \mathcal{H}) <^+ \mathbf{I}(\beta : \mathcal{H}) + \mathbf{K}(a|\beta)$, the information term is $\mathbf{I}(\langle p, \{f_i\}, \tau \rangle : \mathcal{H})$, where $\langle p, \{f_i\}, \tau \rangle \in \{0, 1\}^{\infty}$.

An instance of this formulation is as follows. Let n=1 and $f_1(a)=[a>2^m]\infty+[a\le 2^m]2^{m-\mathbf{K}(a|m)}$. Let $p(a)=[a\le 2^m]2^{-m}$. Thus this example proves there exists a number x such that $f_1(x)\le \lceil 2\mathbf{E}_p[f_1]\rceil \le 2$. Furthermore

$$\mathbf{K}(x) <^{\log} \mathbf{K}(p) + \mathbf{I}(\langle p, f_1 \rangle; \mathcal{H}) <^{\log} \mathbf{K}(m) + \mathbf{I}(\langle m, f_1 \rangle; \mathcal{H}).$$

But if $f_1(x) \leq 2$, by the definition of f_1 , this means $\mathbf{K}(x) \geq m-1$. This means $m <^{\log} \mathbf{I}(\langle m, f_1 \rangle; \mathcal{H}) <^{\log} \mathbf{I}(f_1; \mathcal{H})$. This makes sense because f_1 is a deficiency of randomness function and therefore $m <^{\log} \mathbf{K}(f_1)$ and $\mathbf{K}(f_1|\mathcal{H}) <^+ \mathbf{K}(m)$.

2.2 RANDOMIZED-QUICKSORT

The goal of RANDOMIZED-QUICKSORT is to sort a list of n numbers. The algorithm is as follows. At the start of each round, a picot location is chosen at random. Then the array is sorted put numbers smaller than the pivot to the left and larger than the pivot to the right. For any starting array, the expected number of comparisons $< 2n \ln n$. Furthermore it is

Theorem 5 Given an array A of n numbers, there is a list x of pivots $\{v_i\}_{i=1}^m m \leq n$ for which RANDOMIZES-QUICKSORT can use to sort the array with less than $4n < \ln n$ comparisons. This list has complexity $\mathbf{K}(x) <^{\log 4 \log n} + \mathbf{I}(\langle A \rangle; \mathcal{H})$.

Proof. Let $D \subset \mathbb{N}^n$ consist of all permutations of the numbers $\{1,\ldots,n\}$, such that when applied to the RANDOMIZED-QUICKSORT algorithm, produces a sorted array in $< 4n \ln n$ comparisons. $\mathbf{K}(D|A) = O(1)$. Let P be a computable probability over $\{0,1\}^*$ that gives equal probability to each permutation to encoded numbers $\{1,\ldots,n\}$. Thus $P(D) \geq 1/2$. Thus by Theorem 1 and Lemma 3, there is an $x' \in D$, with $\mathbf{K}(x') <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D;\mathcal{H}) <^{\log} \mathbf{K}(n) + \mathbf{I}(\langle A \rangle;\mathcal{H})$. Thus there is a cut-off point $m \leq n$ in x' where the algorithm halts. Let $x \sqsubseteq x'$ be the pivot points that are used by the RANDOMIZED-QUICKSORT algorithm. Thus

$$\mathbf{K}(x) <^{\log 4 \log n} + \mathbf{I}(\langle A \rangle; \mathcal{H}).$$

2.3 Independent-Set

An independent seet in a graph G is a set of vertices with no edges between then. The INDEPENDENT-SET problem consists of an undirected graph G and the goal is to find the largest independent set of that G.

Theorem 6 For a graph G on n vertices with m edges, there exists an independent set S of size $0.75\sqrt{n} - 2m/n$ and complexity $<^{\log} \mathbf{K}(n,m) + 4(\log n)(m/n) + \mathbf{I}(G;\mathcal{H})$.

Proof. We use a modification of the algorithm in the proof of Theorem 6.5 in [MU05]. The randomized algorithm A is as follows.

- 1. Delete each vertex (along with its incident edges) independently with probability 1-p.
- 2. For each remaining edge, remove it and one of its adjacent vertices.

For X, the number of vertices that survive the first round $\mathbf{E}[X] = np$. Let Y be the number of edges that survive the first step, $\mathbf{E}[Y] = mp^2$. The second steps removes at most Y vertices. The output is an independent set size of at least $\mathbf{E}[X - Y] = np - mp^2$.

Let $p = 1/\sqrt{n}$. Thus $\mathbf{E}[X] = \sqrt{n}$, $\mathbf{E}[Y] = m/n$, and $\mathbf{E}[X - Y] = \sqrt{n} - m/n$. By the Markov inequality, $\Pr[Y < 2m/n] > 1/2$. By the Hoeffding's inequality,

$$\Pr[X \le 0.75\sqrt{n}] \le e^{-2*(0.75)^2(np)^2/n} \le e^{-2(.75^2)(n*n^{-.5})^2/n} \le e^{-2*0.5} = e^{-1}.$$

For a sequence $x \in \{0,1\}^*$, $x_1 = |\{i: x[i] = 1\}|$ and $x_0 = ||x|| - x_1$. Let $P: \{0,1\}^* \to \mathbb{R}_{\geq 0}$ be a computable probability, where for a string $x \in \{0,1\}^n$, $P(x) = (x_1)^{1/\sqrt{n}}(x_0)^{1-1/\sqrt{n}}$. Thus each x represents a selection of vertices selected according to the randomized algorithm A. Let $D \subseteq \{0,1\}^n$ be the set consists of all sequences x such that the X variable resultant from x is $|X_x| > 0.75\sqrt{n}$ and the Y variable resultant from algorithm A is $|Y_x| \leq 2m/n$. Thus $P(D) \geq (1-e^{-1})+1/2-1 > 1/10$. Furthermore D can be constructed from G, with $\mathbf{K}(D|G) = O(1)$. By Theorem 1 and Lemma 3, there exists an $x \in D$, with

$$\mathbf{K}(x) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D; \mathcal{H})$$
$$<^{\log} \mathbf{K}(n) + \mathbf{I}(G; \mathcal{H}).$$

In order for x to represent an independent set, the second step of algorithm A needs to be applied. In this case there are < 2m/n vertices that needs to be removed. Thus a modification x' that has these vertices deleted represents an independent set.

$$\mathbf{K}(x') <^{\log} \mathbf{K}(x|n) + \mathbf{K}(n,m) + (2\log n)(2m/n) <^{\log} \mathbf{K}(n,m) + (4\log n)(m/n) + \mathbf{I}(D;\mathcal{H}).$$

This independent set has $X_x > 0.75\sqrt{n}$ and $Y_x < 2m/n$, it size is $\geq 0.75\sqrt{n} - 2m/n$.

2.4 Set-Membership

For a set $G \subseteq \{0,1\}^{\ell}$, a function $f: \{0,1\}^* \to \{0,1\}$ is a partial checker for G, if f(x) = 1 if $x \in G$. We use \mathcal{U} to denote the uniform distribution over $\{0,1\}^{\ell}$. Error $(G,f) = \Pr_{x \sim \mathcal{U}}[f(x) = 1, x \notin G]$. The goal of Set-Membership, is given a set $G \subseteq \{0,1\}^{\ell}$, what is the simpliest partial checker f for G that reduces $\operatorname{Error}(G,f)$.

Theorem 7 For n > O(1), given $G \subseteq \{0,1\}^{\ell}$, |G| = m, there is a partial checker f such that $\operatorname{Error}(f,G) \leq 0.878^{n/m}$ and $\mathbf{K}(f) <^{\log} \mathbf{K}(n,m,\ell) + n + \mathbf{I}(\langle G,n \rangle; \mathcal{H})$.

Proof. We derandomize the Bloom filter algorithm [Blo70]. Let there be k random functions $h_i: \{0,1\}^{\ell} \to \{1,\ldots,n\}$, where each h_i maps each input $x \in \{0,1\}^{\ell}$ to its range with uniform probability. We start with a string $v = 0^n$. For each member $x \in G$, and $i \in \{1,\ldots,k\}$, $v[h_i(x)]$ is set to 1. Thus the functions h_i serve as a way to test membership of G. If $x \in G$, then all the indicator functions h_i would be one. The probability that a specific bit is 0 is

$$p' = \left(1 - \frac{1}{n}\right)^{km}.$$

Let X be the number of bins that are 0. Due to [MU05],

$$\Pr(|X - np'| \ge \epsilon n) \le 2e\sqrt{n}e^{-n\epsilon^2/3p'}.$$

For $\epsilon = p'/10$, we get

$$\Pr(X/n > p'9/10) < 2e\sqrt{n}e^{-np'/300}$$

Thus for proper choice of k determined later, the right hand side of the above inequality is less than 0.5. Thus with probability > .5, the expected false positive rate, r that is $x \in \{0, 1\}^{\ell}$, $x \notin G$, $h_i(x) = 1$, for all $i \in \{1, ..., k\}$ is less than

$$r \le (1 - .9p')^k$$

$$= \left(1 - .9\left(1 - \frac{1}{n}\right)^{km}\right)^k$$

$$\le \left(1 - .9e^{-km/n}\right)^k.$$

Setting $k = \lceil n/m \rceil$, with probability $\geq 1/2$, $r \leq (1 - .5e^{-2})^{m/n} \leq 0.878^{m/n}$.

Let F' consist of all encodings of k hash functions $h_i: \{0,1\}^{\ell} \to \{1,\ldots,n\}$. Let $F \subseteq F'$ consist of all hash functions such that the probability of error $\leq 0.878^{m/n}$. Let P be the uniform distribution over F'. P(F) > 1/2. $\mathbf{K}(F|G,n) = O(1)$. By Theorem 1 and Lemma 3, there is an $h \in F$ such that

$$\mathbf{K}(h) <^{\log} \mathbf{K}(P) - \log P(F) + \mathbf{I}(\langle F \rangle; \mathcal{H}) <^{\log} \mathbf{K}(n, m, \ell) + \mathbf{I}(\langle G, n \rangle; \mathcal{H}).$$

Thus h represents a set of k deterministic hash functions. Let x be the Bloom filter using h on G. Using x and h, one can define a partial checker f that is a Bloom filter such that $\operatorname{Error}(f,G) \leq 0.669^{n/m}$. Furthermore,

$$\mathbf{K}(f) <^{\log} \mathbf{K}(x|n) + \mathbf{K}(h,n) <^{\log} \mathbf{K}(n,m,\ell) + n + \mathbf{I}(\langle G,n\rangle;\mathcal{H}).$$

2.5 Parallel-Routing

The Parallel-Routing problem consists (G, d) and directed graph G = (N, V) and a set of destinations $d: N \to N$. Each node represents a processor i in a network containing a packet v_i destined for another processor d(i) in the network. The packet moves along a route represented by a path in G. During its transmission, a packet may have to wait at an intermediate node because

the node is busy transmitting another packet. Each node contains a separate queue for each of its links and follows a FIFO queuing disciple to route packets, with ties handled arbitrarily. The goal of Parallel-Routing is to provide N routes from $i \in N$ to d(i) that minimize lag time.

We restrict graphs to Boolean Hypercube networks, which is popular for parallel processing. The cube network contains $N=2^n$ processing elements/nodes and is connected in the following manner. if (i_0,\ldots,i_{n-1}) and (j_0,\ldots,j_{n-1}) are binary representation of node i and node j, then there exist directed edges (i,j) and (j,i) between the nodes if and only if the binary representation differ in exactly one position. One set of solutions, called *oblivious algrithms* satisfies the following property: a route followed by v_i depends on d(i) alone, and not on d(j) for any $j \neq i$. We focus our attention on a 2 phase oblivious routing algorithm, Two-Phase. Under this scheme, packet v_i executes the following two phases independently of all the other packets.

- 1. Pick a intermediate destination $\sigma(i)$. Packet v_i travels to node $\sigma(i)$.
- 2. Packet v_i travels from $\sigma(i)$ to destination d(i).

The method that the routes use for each phase is the *bit-fixing* routing strategy. Its description is as follows. To go from i to $\sigma(i)$: one scans the bits of $\sigma(i)$ from left to right, and compares them with i. One sends v_i out of the current node along the edge corresponding to the left-most bit in which the current position and $\sigma(i)$ differ. Thus going from (1011) to (0000), the packet would pass through (0011) and then (0001).

Theorem 8 Given a Parallel-Routing instance (G, d), there is a set of intermediate destinations $\sigma : \mathbb{N} \to \{0, 1\}^n$ for each i such that every packet i using $\sigma(i)$ and the Two-Phase algorithm reaches its destination in at most 14n steps and $\mathbf{K}(\sigma) <^{\log} \mathbf{I}(\langle G, d \rangle; \mathcal{H})$.

Proof. By Theorem 47 in [MR95], if the intermediate destinations are chosen randomly, with probability least 1-(1/N), every packet reaches its destination in 14n or fewer steps. Let $D \subset \{0,1\}^{Nn}$ be the set of all intermediate destinations $\sigma \in D$ such the lag time of instance (G,d) using σ is $\leq 14n$. Thus $\mu(D) > 0.5$, where μ is the uniform measure over the Cantor set. $\mathbf{K}(D|(G,d) = O(1)$. Theorem 3 and Lemma 3 results in

$$\mathbf{Km}(D) <^{\log} - \log \mathbf{M}(D) + \mathbf{I}(\langle D \rangle; \mathcal{H}) <^{\log} - \log \mu(D) + \mathbf{I}((G, d); \mathcal{H}) <^{\log} \mathbf{I}((G, d); \mathcal{H}).$$

Thus using $y \supseteq x \in D$ that realizes $\mathbf{Km}(D)$, one can construct a function $\sigma : \mathbb{N} \to \{0,1\}^n$ which produces the desired intermediate destinations, and $\mathbf{K}(\sigma) <^+ \mathbf{K}(y) <^{\log} \mathbf{I}((G,d);\mathcal{H})$.

2.6 CLASSIFICATION

In machine learning, Classification is the task of learning a binary function c from \mathbb{N} to bits $\{0,1\}$. The learner is given a sample consisting of pairs (x,b) for string x and bit b and outputs a binary classifier $h: \mathbb{N} \to \{0,1\}$ that should match c as much as possible. Occam's razor says that "the simplest explanation is usually the best one." Simple hypothesis are resilient against overfitting to the sample data. In The question is, given a particular problem in machine learning, how simple can the hypotheses be?

We use a probabilistic model. The target concept is modeled by a random variable \mathcal{X} with distribution p over ordered lists of natural numbers. The random variable \mathcal{Y} models the labels, and has a distribution over lists of bits, where the distribution of $\mathcal{X} \times \mathcal{Y}$ is p(x,y) with conditional probability requirement $p(y|x) = \prod_{i=1..|x|} p(y_i|x_i)$. Each such (x_i, y_i) is a labeled sample. A binary classifier f is consistent with labelled samples (x,y), if for all i, $f(x_i) = y_i$. Let $\Gamma(x,y)$ be the

minimum Kolmogorov complexity of a classifier consistent with (x, y). $\mathcal{H}(\mathcal{Y}|\mathcal{X})$ is the conditional entropy of \mathcal{Y} given \mathcal{X} .

Theorem 9

- 1. $\mathcal{H}(\mathcal{Y}|\mathcal{X}) \leq \mathbf{E}[\Gamma(\mathcal{X},\mathcal{Y})] <^{\log} \mathcal{H}(\mathcal{Y}|\mathcal{X}) + \mathbf{K}(p)$.
- 2. For each $c, b \in \mathbb{N}$, there exists random labeled samples $\mathcal{X} \times \mathcal{Y}$ with distribution p, such that, up to precision $O(\log cb)$, $\mathbf{E}[\Gamma(\mathcal{X}, \mathcal{Y})] = b + c$, $\mathcal{H}(\mathcal{Y}|\mathcal{X}) = b$, and $\mathbf{K}(p) = c$.

Proof. We start with the lower bound of part 1. $\mathbf{E}[\Gamma(\mathcal{X}, \mathcal{Y})] = \sum_x p(x) \sum_y p(y|x) \Gamma(x, y)$. Each $\Gamma(x, y)$ represents a self-delimiting program to compute a classifier f such that $f(x_i) = y_i$. Thus if $y \neq y'$, $\Gamma(x, y)$ and $\Gamma(x, y')$ represents two programs v and v' such that $v \not\sqsubseteq v'$ and $v' \not\sqsubseteq v$. Thus for a fixed x, ranged over y, $\Gamma(x, y)$ represents the length of a self-delimiting code. Due to properties of conditional entropy, which is minimal over all self-delimiting codes,

$$\mathbf{E}[\Gamma(\mathcal{X}, \mathcal{Y})] = \sum_{x} p(x) \sum_{y} p(y|x) \Gamma(x, y) \ge \sum_{x} p(x) \sum_{y} p(y|x) (-\log p(y|x)) = \mathcal{H}(\mathcal{Y}|\mathcal{X}).$$

We now prove the upper bound of part 2. To do so, we need the following lemma. The following lemma is perhaps surprising because it shows that the $\mathbf{I}(\cdot;\mathcal{H})$ terms in inequalities can be removed by averaging over a computable probability.

Lemma 4 For computable probability p, $\sum_{x} p(x)\mathbf{I}(x;\mathcal{H}) <^{+} \mathbf{K}(p)$.

Proof. This follows from Theorem 3.1.3 in [G21], and we will reproduce its arguments. Since $\mathbf{K}(x/\mathcal{H})$ is the length of a self delimiting code,

$$\sum_{x} p(x) \mathbf{K}(x/\mathcal{H}) \ge \mathcal{H}(p),$$

where $\mathcal{H}(p)$ is the entropy of p. Furthermore, for all $x \in \{0,1\}^*$, $\mathbf{K}(x) <^+ -\log p(x) + \mathbf{K}(p)$. Therefore

$$\sum_{x} p(x)\mathbf{K}(x) <^{+} \sum_{x} p(x)(-\log p(x)) + \mathbf{K}(p) <^{+} \mathcal{H}(p) + \mathbf{K}(p).$$

So

$$\sum_{x} p(x)\mathbf{I}(x;\mathcal{H}) = \sum_{x} p(x)\left(\mathbf{K}(x) - \mathbf{K}(x/\mathcal{H})\right) <^{+} \mathcal{H}(p) + \mathbf{K}(p) - \sum_{x} p(x)\mathbf{K}(x/\mathcal{H}) <^{+} \mathbf{K}(p).$$

Binary classifiers are identified by infinite sequences $\alpha \in \{0,1\}^{\infty}$. We define the computable measure $S: \{0,1\}^* \to \mathbb{R}_{\geq 0}$ over $\{0,1\}^{\infty}$, where $S(x) = \prod_{n=1..|x|} p(x_n|n)$, where $\mathbf{K}(S|p) = O(1)$. Let $\{(x_i,y_i)\}$ be a set of labelled samples and we define clopen set $C_{x,y} = \{\alpha : \alpha \in \{0,1\}^{\infty}, \alpha[x_i] = y_i\}$. Then $S(C_{x,y}) = p(y|x)$. By Theorem 3, relativized to p,

$$\min_{\alpha \in C_{x,y}} \mathbf{K}(\alpha|p) <^{\log} \mathbf{K}(S|p) - \log S(C_{x,y}) + \mathbf{I}(C_{x,y}; \mathcal{H}|p)$$

$$<^{\log} - \log S(C_{x,y}) + \mathbf{I}(C_{x,y}; \mathcal{H}|p)$$

$$<^{\log} - \log p(y|x) + \mathbf{I}(C_{x,y}; \mathcal{H}|p)$$

Averaging over all x and y using probability p, one gets

$$\sum_{x,y} p(x,y) \min_{\alpha \in C_{x,y}} \mathbf{K}(\alpha|p) <^{\log} \sum_{x,y} p(x,y) (-\log p(y|x)) + \sum_{x,y} p(x,y) \mathbf{I}(C_{x,y}; \mathcal{H}|p). \tag{1}$$

Applying Lemma 4 relative to p, we get

$$\sum_{x,y} p(x,y)\mathbf{I}(\langle C_{x,y}\rangle; \mathcal{H}|p) = \sum_{x,y} p(\langle C_{x,y}\rangle)\mathbf{I}(\langle C_{x,y}\rangle; \mathcal{H}|p) <^{+} \mathbf{K}(p|p) = O(1).$$
 (2)

Combining equations 1 and 2,

$$\sum_{x,y} p(x,y) \min_{\alpha \in C_{x,y}} \mathbf{K}(\alpha|p) <^{\log} \sum_{x,y} p(x,y) (-\log p(y|x))$$

$$\left(\sum_{x,y} p(x,y) \min_{\alpha \in C_{x,y}} \mathbf{K}(\alpha)\right) - \mathbf{K}(p) <^{\log} \sum_{x,y} p(x,y) (-\log p(y|x))$$

$$\mathbf{E}[\Gamma(\mathcal{X},\mathcal{Y})] <^{\log} \mathcal{H}(\mathcal{Y}|\mathcal{X}) + \mathbf{K}(p).$$

We now prove part 2. We ignore all $O(\log cd)$ terms. So equality = is equivalent to = $\pm O(\log cd)$. We define a probability p(x,y) over the first n=2c+2b+2 numbers and corresponding bits. Thus we can describe p as a probability measure over strings of size n, making sure to maintain p's conditional probability restriction described in the introduction.

Let $z \in \{0,1\}^c$ be a random string of size c, with $c <^+ \mathbf{K}(z)$. For all strings $w \in \{0,1\}^b$ of size b, $p(\langle z \rangle \langle w \rangle) = 2^{-b}$, with $\|\langle z \rangle \langle w \rangle\| = n$. $\mathcal{H}(\mathcal{Y}|\mathcal{X}) = -\sum_{w \in \{0,1\}^b} 2^{-b} (\log p(\langle z \rangle \langle w \rangle)) = -\sum_{w \in \{0,1\}^b} 2^{-b} (\log 2^{-b}) = b$. Furthermore $\mathbf{K}(p) = c$. The infinite sequence $\alpha = \langle z \rangle \langle w \rangle 0^{\infty}$ realizes $\Gamma(\langle z \rangle \langle w \rangle)$ up to an additive constant for each $w \in \{0,1\}^b$. Thus $\mathbf{K}(\alpha) = \mathbf{K}(z,w)$.

$$\mathbf{E}[\Gamma(\mathcal{X},\mathcal{Y})] = 2^{-b} \sum_{w \in \{0,1\}^b} \mathbf{K}(\langle z \rangle \langle w \rangle) = \mathbf{K}(z) + 2^{-b} \sum_{w \in \{0,1\}^b} \mathbf{K}(w/z, \mathbf{K}(z)).$$

Using Theorem 3.1.3 in [G21] conditioned on $\langle z, \mathbf{K}(z) \rangle$, we get that $\sum_{w \in \{0,1\}^b} 2^{-b} \mathbf{K}(w/z, \mathbf{K}(z)) = \mathcal{H}(\mathcal{U}_b) \pm \mathbf{K}(b/z, \mathbf{K}(z)) = b$, where \mathcal{U}_b is the uniform measure over strings of size b. So $\mathbf{E}[\Gamma(\mathcal{X}, \mathcal{Y})] = \mathbf{K}(z) + b = b + c$.

2.7 Cover-Time

We define the following interactive penalty game. Let G = (E, V) be a graph consisting of n vertices V and undirected edges E. The environment \mathbf{q} consists of (G, s, ℓ) . G = (E, V) is a non-bipartite graph with undirected edges, $s \in V$ is the starting vertex. ℓ is a mapping from numbers to edges to be described later.

The agent starts at $s \in V$. At round 1, the environment gives the agent the degree $s \in V$, Deg(s). The agent picks an number between 1 and Deg(s) and sends it to \mathbf{q} . The agent moves along the edge the number is mapped to and is given the degree of the next vertex it is on. Each round's mapping of numbers to edges, ℓ , is a computable function of the current vertex, round number, and the agent's past actions. The game stops if the agent has visited all vertices and the penalty is the number of turns the agents takes.

Theorem 10 There is a deterministic agent \mathbf{p} that can play against COVER-TIME instance (G, S, ℓ) , |G| = n, and achieve penalty $\frac{4}{27}n^3 + o(n^3)$ and $\mathbf{K}(\mathbf{p}) <^{\log} \mathbf{I}((G, s, \ell); \mathcal{H})$.

Proof. A probabilistic agent \mathbf{p}' is defined as selecting each edge with equal probability. Thus the agent performs a random walk. The game halts with probability 1. Due to [Fei95], the expected time (i.e. expected penalty) it takes to reach all vertices is $\frac{4}{27}n^3 + o(n^3)$. Thus by Corollary 3 there is a deterministic agent \mathbf{p} that can reach each vertex with a penalty of $\frac{8}{27}n^3 + o(n^3)$ and has complexity

$$\mathbf{K}(\mathbf{p}) <^{\log} \mathbf{K}(\mathbf{p}') + \mathbf{I}((G, s); \mathcal{H}) <^{\log} \mathbf{I}((G, s, \ell); \mathcal{H}).$$

2.8 Super-Set

Given a finite set $S \subseteq \{0,1\}^n$, the goal of SUPER-SET is to find a set $T \supseteq S$, $T \subseteq \{0,1\}^n$ that minimizes |T|.

Theorem 11 Given $m \le n$, $S \subseteq \{0,1\}^n$, $|S| < 2^{n-m-1}$ there exists a $T \supseteq S$, $T \subseteq \{0,1\}^n$ $|T| = 2^{n-m}$, $\mathbf{K}(T) <^{\log} \mathbf{K}(n,m) + (m+1)|S| + \mathbf{I}(\langle S,m \rangle; \mathcal{H})$.

Proof. Let $P: \{0,1\}^* \to \mathbb{R}_{\geq 0}$ be the the uniform distribution over all sequences of size 2^n that have exactly 2^{n-m} 1s. Let $D \subset \{0,1\}^{2^n}$ consist of all sequences $x_R \in \{0,1\}^{2^n}$ that encode sets $R \subseteq \{0,1\}^n$ in the natural way such that $R \supseteq S$ and $|R| = 2^{m-n}$. Thus if $x \in D$ then x has 2^{n-m} 1s. P(D) =

$$\left(\frac{2^{n-m}}{2^n}\right)\left(\frac{2^{n-m-1}}{2^n-1}\right)\dots\left(\frac{2^{n-m}-|S|}{2^n-|S|}\right) \ge \left(\frac{2^{n-m}-|S|}{2^n-|S|}\right)^{|S|} \ge \left(\frac{2^{n-m-1}}{2^n}\right)^{|S|} = 2^{-(m+1)|S|}.$$

 $\mathbf{K}(D|\langle S,m\rangle) = O(1)$. Thus by Theorem 1, there exists a $t \in D$, such that $\mathbf{K}(t) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D;\mathcal{H}) <^{\log} \mathbf{K}(n,m) + (m+1)|S| + \mathbf{I}(\langle S,m\rangle;\mathcal{H})$. This t encodes a set $T \supseteq S$, $T \subseteq \{0,1\}^n$ such tha $|T| = 2^{n-m}$.

2.9 Even-Odds

The sum of $\sqrt{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(0,1)$. $\Phi(x) > \frac{1}{2\pi} \frac{x}{x^2+1} e^{-x^2/2}$. $\Phi(1) = (1/4\pi)e^{-1/2}?1/8\pi$.

We define the following win/no-halt game, entitled EVEN-ODDS-N. There are N rounds. At round 1, the environment \mathbf{q} secretly records bit $e_1 \in \{0,1\}$. It sends an empty message to the agent who responds with bit $a_1 \in \{0,1\}$. The agent gets a point if $e_1 \oplus b_1 = 1$. Otherwise the agent loses a point. For round i, the environment selects a bit b_i that is a computable function of the previous agent's actions $\{a_j\}_{j=1}^{i-1}$ and sends an empty message to the agent, which responds in a_i and the agent gets a point if $e_i \oplus b_i = 1$, otherwise it loses a point. The agent wins after N rounds if it has a score of at least \sqrt{N} .

Theorem 12 For large enough N, there is a deterministic agent \mathbf{p} that can win EVEN-ODDS-N with complexity $\mathbf{K}(\mathbf{p}) <^{\log} \mathbf{I}(\mathbf{q}; \mathcal{H})$.

Proof. We describe a probabilistic agent \mathbf{p}' . At round i, \mathbf{p}' submits 0 with probability 1/2. Otherwise it submits 1. By the central limit theorem, for large enough N, the score of the probabilistic agent divided by \sqrt{N} is $S \sim \mathcal{N}(0,1)$. Let $\Phi(x) > \Pr[S > x]$. A common bound for $\Phi(x)$ is

$$\Phi(x) > \frac{1}{2\pi} \frac{x}{x^2 + 1} e^{-x^2/2}$$

$$\Phi(1) > \frac{1}{4\pi}e^{-1/2} > \frac{1}{8\pi}.$$

Thus when $S \ge 1$, the score is at least \sqrt{N} . Thus \mathbf{p}' wins with probability at least $p = \frac{1}{8\pi}$. Thus by Theorem 4, there exists a deterministic agent \mathbf{p} that can beat \mathbf{q} with complexity

$$\mathbf{K}(\mathbf{p}) <^{\log} \mathbf{K}(\mathbf{p}') - \log p + \mathbf{I}(\langle p, \mathbf{p}', \mathbf{q} \rangle; \mathcal{H}) <^{\log} \mathbf{I}(\mathbf{q}; \mathcal{H}).$$

2.10 Balancing-Vectors

For a vector $v = (v_1, \ldots, v_n) \in \mathbb{R}^n$, $||v||_{\infty} = \max_i |V_i|$. Binary matrix M is a matrix whose values are either 0 or 1. The goal of BINARY MATRIX, is given M, to find a vector $b \in \{-1, +1\}^n$ that minimizes $||Mb||_{\infty}$.

Theorem 13 Given $n \times n$ binary matrix M, there is a vector $b = \{-1, +1\}^n$ such that $||Mb||_{\infty} \le 4\sqrt{n \ln n}$ and $\mathbf{K}(b) <^{\log} \mathbf{K}(n) + \mathbf{I}(\langle M \rangle; \mathcal{H})$.

Proof. Let $v = (v_1, \ldots, v_n)$ be a row of M. Choose a random $b = (b_1, \ldots, b_n) \in \{-1, +1\}^n$. Let i_1, \ldots, i_m be the indices such that $v_{i_j} = 1$. Thus

$$Y = \langle v, b \rangle = \sum_{i=1}^{n} v_i b_i = \sum_{j=1}^{m} v_{i_j} b_{i_j} = \sum_{j=1}^{m} b_{i_j}.$$

$$\mathbf{E}[Y] = \mathbf{E}[\langle v, b \rangle] = \mathbf{E}\left[\sum_{i} v_{i} b_{i}\right] = \sum_{i} \mathbf{E}[v_{i} b_{i}] = \sum_{i} v_{i} \mathbf{E}[b_{i}] = 0.$$

By the Chernoff inequality and the symmetry Y, for $\tau = 4\sqrt{n \ln n}$,

$$\Pr[|Y| \ge \tau] = 2\Pr[v \cdot b \ge \tau] = 2\Pr\left[\sum_{j=1}^m b_{i_j} \ge \tau\right] \le 2\exp\left(-\frac{\tau^2}{2m}\right) = 2\exp\left(-8\frac{n\ln n}{m}\right) \le 2n^{-8}.$$

Thus, the probability that any entry in Mb exceeds $4\sqrt{n \ln n}$ is smaller than $2n^{-7}$. Thus, with probability $1 - 2n^{-7}$, all the entries of Mb have value smaller than $4\sqrt{n \ln n}$.

Let $P: \{0,1\}^* \to \mathbb{R}_{\geq 0}$, be the uniform measure over string of length n, with $P(x) = [||x|| = n]2^{-n}$. Let D consist of all strings that encode vectors $b_x \in \{-1, +1\}^n$ in the natural way such that $||Mb_x||_{\infty} \leq 4\sqrt{n \ln n}$. $\mathbf{K}(b|M) = O(1)$. By Theorem 1 and Lemma 3, there exists an $x \in D$, such that

$$\mathbf{K}(x) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D; \mathcal{H}) <^{\log} \mathbf{K}(n) + \mathbf{I}(M; \mathcal{H}).$$

Thus there exists a $b_x \in \{-1, +1\}^n$ that satisfies the theorem statement.

We provide another derandomization using balancing vectors.

Theorem 14 Let $v = v_1, \ldots, v_n \in \mathbb{R}^n$, all $|v_i| = 1$, Then there exist $\epsilon = \epsilon_1, \ldots, \epsilon_n = \pm 1$ such that $|\epsilon_1 v_1 + \cdots + \epsilon_n v_n| \leq \sqrt{2n}$ and $\mathbf{K}(\{\epsilon\}) < \log \mathbf{K}(n) + \mathbf{I}(v; \mathcal{H})$.

Proof. Let $\epsilon_1, \ldots, \epsilon_n$ be selected uniformly and independently from $\{-1, +1\}$. Set

$$X = |\epsilon v_1 + \dots + \epsilon_n v_n|^2.$$

Then

$$X = \sum_{i=1}^{n} \sum_{j=1}^{n} \epsilon_i \epsilon_j v_i \cdot v_j.$$

So

$$\mathbf{E}[X] = \sum_{i=1}^{n} \sum_{j=1}^{n} v_i \cdot v_j \mathbf{E}[\epsilon_i \epsilon_j]$$

When $i \neq j$, $\mathbf{E}[\epsilon_i \epsilon_j] = \mathbf{E}[\epsilon_i] \mathbf{E}[\epsilon_j] = 0$. When i = j, $\mathbf{E}[\epsilon_i^2] = 1$, so

$$\mathbf{E}[X] = \sum_{i=1}^{n} v_i \cdot v_i = n$$

So $\Pr[X \leq 2n] \geq 0.5$. Let $D \subseteq \{0,1\}^n$ consist of sequences of length n, each encoding an assignment of ϵ_1 to ϵ_n in the natural way, such that the assignment of ϵ results in an $X_{\epsilon}leq2n$. $\mathbf{K}(D|v) = O(1)$. Let P be the uniform measure over sequences of length n. By the above reasoning $\P(D) \geq 0.5$. By Theorrem 1 and Lemma 3, there is an assignment $\epsilon \in D$, such that $\mathbf{K}(\epsilon) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D;\mathcal{H}) <^{\log} \mathbf{K}(n) + \mathbf{I}(v;\mathcal{H})$. This assignment has $X_{\epsilon} \leq 2n$. Thus $|\epsilon_1 v_1 + \ldots \epsilon_n v_n| \leq \sqrt{2n}$, satisfying the theorem.

2.11 MIN-CUT

We define the following win/no-halt game, entitled MIN-CUT. The game is defined by an undirected graph G and a mapping ℓ from numbers to edges. At round i, the environment \mathbf{q} sends the number of edges of G. The player responds with a number. The environment maps the number to an edge, and this mapping can be a function of the round number and player's previous actions. The environment then contracts the graph G along the edge. The game halts when the graph G has contracted into two vertices. The player wins if the cut represented by the contractions is a min cut

Theorem 15 There is a deterministic agent \mathbf{p} that can play against COVER-TIME instance (G, S, ℓ) , |G| = n, such that $\mathbf{K}(\mathbf{p}) <^{\log 2 \log n} + \mathbf{I}((G, \ell); \mathcal{H})$.

Proof. We define the following randomized agent \mathbf{p}' . At each round, \mathbf{p}' chooses an edge at random. Thus the interactions of \mathbf{p}' and \mathbf{q} represent an implementation of Karger's algorithm. Karger's algorithm has an $\Omega(1/n^2)$ probabability of returning a min-cut. Thus \mathbf{p}' has an $\Omega(1/n^2)$ chance of winning. By Theorem 4, there exist a deterministic agent \mathbf{p} and c where \mathbf{p} can beat \mathbf{q} and has complexity $\mathbf{K}(\mathbf{p}) <^{\log} \mathbf{K}(p') - \log c/n^2 + \mathbf{I}(\langle \mathbf{q} \rangle; \mathcal{H}) <^{\log} 2 \log n + \mathbf{I}(\langle G, \ell \rangle; \mathcal{H})$.

2.12 Hypergraph-Coloring

In this section we show how to compress colorings of k-uniform hypergraph. A hypergraph is a pair J=(V,E) of vertices V and edges $E\subseteq \mathcal{P}(V)$. Thus each edge can connect ≥ 2 vertices. A hypergraph is k-uniform of the size |e|=k for all edges $e\in E$. A 2-uniform hypergraph is just a simple graph. A valid C-coloring f a hypergraph (V,E) is a mapping $f:V\to |C|$ where every edge $e\in E$ is not monochromatic $|\{f(v):v\in e\}|>1$. The goal of Hypergraph-Coloring-K is given a k uniform hypergraph, produce a coloring using the smallest amount of colors.

Theorem 16 Every k-uniform hypgraph J = (V, E), |E| = n, |V| = m has a $\lceil \sqrt[k-1]{2m} \rceil$ coloring g where $\mathbf{K}(g) <^{\log} \mathbf{K}(k, n, m) + \mathbf{I}(J; \mathcal{H})$.

Proof. We randomly color every vertex $v \in V$ using $C = \lceil \sqrt[k-1]{2m} \rceil$ colors. Let A_e be the bad event that edge e is monochromatic. This event has probability:

$$\Pr[A_e] = C \cdot (1/C)^k = (1/C)^{k-1} < 1/2m,$$

because there are C possible colors and each vertex has a 1/C chance of getting a particular color. We can get a union-bound over all m edges to find the bad probability.

$$\Pr\left[\bigcup_{e \in E} A_e\right] < \sum_{e \in E} \Pr[A_e] < m \cdot (1/2m) = 1/2.$$

We Let $D \subset \{0,1\}^{v\lceil logC \rceil}$ be the set of all encodings of C colorings (so no edge in monochromatic. $\mathbf{K}(D|J) = O(1)$. Let $P: \{0,1\}^* \to \mathbb{R}_{\geq 0}$ be a probability measure over $\{0,1\}^*$, uniformly distributed over all $x \in BT^{v\lceil logC \rceil}$ that encode a C-coloring. P(D) > .5. By Theorem 1 and Lemma 3, there is a graph coloring $g \in D$ where

$$\mathbf{K}(g) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D; \mathcal{H}) <^{\log} \mathbf{K}(k, m, n) + \mathbf{I}(J; \mathcal{H}).$$

The second result on k-hypergraph coloring uses Lovasc Local Lemma.

Theorem 17 Let J = V, E, |V| = n, |E| = m be a hypergraph and $k = \min_{f \in E} |f|$. Assume for each edge f, there are at most $2^{k-1}/e$ edges $h \in E$ such that $h \cap f \neq \emptyset$. Then for large enough k, there is a 2-coloring g of G such that $\mathbf{K}(G) <^{\log} \mathbf{K}(n) + 8m/2^k + \mathbf{I}(\langle J \rangle; \mathcal{H})$.

Proof. We will use the Lovasc Local Lemma to get a lower bound on the probability that a random assignment of colors is a 2 coloring. We assume each vertex is colored black or white with equal probability. For each edge $f \in E$, we define E_f to be the event "f is monochromatic". A valid 2-coloring exists iff $\Pr\left[\bigcap_f \overline{E}_f\right] > 0$.

Let $p = 1/2^{k-1}$ and $d = (2^{k-1}/e) - 1$. For each $f \Pr[E_f] \le p$ by the fact that f contains at least k vertices. Furthermore since f intersects at most d edges besides itself, E_f is dependent on at most d of the other events. Therefore since ep(d+1) = 1 we can appoly the Lovasc Local Lemma 1 to ge, for large enough k

$$\Pr\left[\bigcap_{f} \overline{E}_{f}\right]$$

$$> \left(1 - \frac{1}{1+d}\right)^{m}$$

$$> \left(1 - \frac{e}{2^{k-1}}\right)^{m}$$

$$> 5e^{-me/2^{k-1}}$$

Let $D = \{0,1\}^n$ be the set of all encoded 2 colorings of J. $\mathbf{K}(D|J) = O(1)$. Let $P(x) = [||x|| = n]2^{-n}$ is the uniform distribution over sequences of length n.

$$-\log P(D) < -\log .5e^{-me/2^{k-1}} <^+ (2me(\log e))/2^k <^+ 8m/2^k.$$

By Theorem 1 and Lemma 1, There exist a 2-coloring g of J such that

$$\mathbf{K}(g) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D; \mathcal{H}) <^{\log} \mathbf{K}(n) + 8m/2^k + \mathbf{I}(J; \mathcal{H}).$$

2.13 K-SAT

For a set of Boolean variables x_1, \ldots, x_n , a CNF formulala ϕ is a conjunction $C_1 \cap \cdots \cap C_m$ of clauses. Each clause C_j is a disjunction of k literals, where each literal is a variable x_i or its negation $\overline{x_i}$. Clauses C_j and C_l are said to intersect if there is some x_i such that both clauses contain either x_i or $\overline{c_i}$. A satisfying assignment is a setting of each x_i to true or false that makes ϕ evaluate to true.

Theorem 18 Let ϕ be a K-SAT instance of n variables and m clauses. If each clause intersects at most $(2^k/e) - 1$ other clauses, then, for large enough k, there exists a satisfying assignment ψ of ϕ of complexity $\mathbf{K}(\psi) <^{\log} \mathbf{K}(n) + 4em/2^k + \mathbf{I}(\phi; \mathcal{H})$.

Proof. The sample space is the set of all 2^n assignments, and for each clause C_J , E_j is the event " C_j is not satisfied". Let $p = 2^{-k}$ and $d = (2^k/e) - 1$. Thus $\forall j$, $\Pr[E_j] \leq p$ as each clause has size k and each E_j is dependent on at most d other events by the intersection property. Thus since ep(d+1), by the Lovasc Local Lemma 1, we have that, for large enough k,

$$\Pr\left[\bigcup_{j} \overline{E_j}\right] > \left(1 - \frac{1}{d+1}\right)^m = \left(1 - \frac{e}{2^k}\right)^m > .5e^{-me/2^k}.$$

Let $D \subset \{0,1\}^n$ be the set of all assignment that satisfy ϕ . $\mathbf{K}(D|\phi) = O(1)$. Let P be the uniform measure over sequences of size n.

$$-\log P(D) < -\log .5e^{-em/2^k} < +em(\log e)/2^k < +4m/2^k$$

Thus by Theorem 1 and Lemma 1, there exists an assignment $\psi \in D$ that satisfies ϕ with complexity

$$\mathbf{K}(\psi) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D; \mathcal{H}) <^{\log} \mathbf{K}(n) + 4m/2^k + \mathbf{I}(\phi; \mathcal{H}).$$

2.14 Dominating-Set

A dominating-set of an undirected graph G = (E, V) on n vertices is a set $U \subseteq V$ such that every vertex $v \in V - U$ has at least one neighbor in U.

Theorem 19 Every graph G = (V, E), |V| = n with min degree $\delta > 1$ has a dominating set U of size $2n \frac{1 + \ln(\delta + 1)}{\delta + 1}$ and complexity $\mathbf{K}(U) <^{\log} \mathbf{K}(n, \delta) + 6(n \log n)/(\delta + 1) + + \mathbf{I}(G; \mathcal{H})$.

Proof. Let $p \in [0,1]$. Let picks randomly and independently each vertex V with probability p. Let X be the random set of all vertices picked. $\mathbf{E}[|X|] = np$. Let $Y = Y_X$ be the random set of all vertices V - X that do not have a neighbor in X. $\Pr(v \in Y_X) \leq (1-p)^{\delta+1}$. Thus $\mathbf{E}[|Y_X| \leq n(1-p)^{\delta+1} \leq ne^{-p(\delta+1)}$. We set $p = \ln(\delta+1)/(\delta+1)$. $\Pr[X \leq 3n\ln(\delta+1)/(\delta+1)] \geq 2/3$. Pr $[Y_X \leq 3n/(\delta+1)] \geq 2/3$. Thus the probability of the previous two events is $\geq 1/3$.

Let $D = \subseteq \{0,1\}^n$ be the set consisting of all sequences $x \in \{0,1\}^n$ such that the X variable resultant from x is $|X_x| \leq 3n \ln(\delta+1)/(\delta+1)$] and the Y_{X_x} resultant variable is $|Y_X| \leq 3n/(\delta+1)$.

Furthermore D can be constructed from D, with $\mathbf{K}(D|G) = O(1)$. Let $P : \{0,1\}^* \to \mathbb{R}_{\geq 0}$ be a probability measure over $x \in \{0,1\}^n$, where $P(x) = \prod_{i=1}^n px[i] + (1-p)(1-x[i])$. By definition of D, $P(D) \geq 1/3$. Furthermore by Theorem 1 and Lemma 3, there is a subset of vertices $x \in D$, $x \subseteq V$, with

$$\mathbf{K}(x) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D; \mathcal{H}) <^{\log} \mathbf{K}(n, \delta) + \mathbf{I}(G; \mathcal{H}).$$

The sequence x represent the first step, however the set Y_x needs to be added to make x a dominating steps. Thus $3n/(\delta+1)$ vertices needs to be added, each can be encoded by $(2\log n)$ bits. Thus a dominating set x' of G exists of size $n\frac{1+\ln(\delta+1)}{\delta+1}$ such that

$$\mathbf{K}(x') <^{\log} \mathbf{K}(n,\delta) + 6(n\log n)/(\delta+1) + \mathbf{I}(G;\mathcal{H}).$$

2.15 Latin-Transversal

Let $A = (a_i)$ be an $n \times n$ matrix with integer entries. A permutation π is called a *Latin Transversal* if the entries $a_{i\pi(i)} (1 \le i \le n)$ are all distinct.

Theorem 20 Suppose $k \leq (n-1)/(4e)$ and suppose integers appears in exactly k entries of $n \times n$ matrix A. Then for large enough n, A has a Latin Traversal τ of complexity $\mathbf{K}(\tau) <^{\log} \mathbf{K}(n) + (k-1)(\log e) + \mathbf{I}(A; \mathcal{H})$.

Proof. Let π be a random permutation $\{1, 2, ..., n\}$, chosen according to a uniform distribution P among all possible n! permutations. Define T by the set of all ordered fourtuples (i, j, i', j') with $i < i', j \neq j'$, and $a_{ij} = a_{i'j'}$. For each $(i, j, i', j') \in T$, let $A_{iji'j'}$ denote the bad event that $\pi(i) = j$ and $\pi(i') = (j')$. Thus $A_{iji'j'}$ is the bad event that the random permutation has a conflict at (i, j) and (i', j').

Clearly $P(A_{iji'j'}) = 1/n(n-1)$. The existence of a Latin transversal is equivalent to the statment that with positive probability, none of these events hold. We define a symmetric digraph G on the vertex set T by making (i, j, i', j') adjacent to (p, q, p', q') if $\{i, i'\} \cap \{p, p'\} \neq \emptyset$ or $\{j, j'\} \cap \{q, q'\} \neq \emptyset$. Thus these two fourtuples are not adjacent iff the four cells (i, j), (i', j'), (p, q) and (p', q') occupy four distinct rows and columns of A.

The maximum degree of G is less than $4nk \leq d$ because for a given $(i, j, i', j') \in T$ there are at most 4n choices of (s, t) with either $s \in \{i, i'\}$ or $t \in \{j, j'\}$ and for each of these choices of (s, t) there are less than k choices for $(s', t') \neq (s, t)$ with $a_{st} = a_{s't'}$. Each fourtuple (s, t, s', t') can be uniquely represented as (p, q, p', q') with p < p'. Since $edp \leq e4nk/(n(n-1) \leq 1$, by the asymmetric Lovasc Local Lemma, 2, the desired bounds can be achieved if we can show that

$$\Pr\left(A_{iji'j'}\Big|\bigcap_{S}A_{pqp'q'}\right) \le 1/n(n-1),$$

for any $(i, j, i', j') \in TT$ and any subset S of T which are notadjacent in G to (i, j, i', j'). By symmetry we can assume i = j = 1, i' = j' = 2. A permutation π is good if it satisfies $\bigcap_S \overline{A}_{pqp'q'}$ and let S_{ij} denote the set of all good permutations π satisfying $\pi(1) = i$ and $\pi(2) = j$. $|S_{12}| \leq |S_{ij}|$ for all $i \leq j$.

Indeed suppose first that I, j > 2. For each good $\pi \in S_{12}$ define a permutation π^* as follows. Suppose $\pi(x) = i$, and $\pi(y) = j$. Suppose $\pi(x) = i$ and $\pi(y) = j$. Then define $\pi^*(1) = i$, $\pi^*(2) = j$,

 $\pi^*(x) = 1$, $\pi^*(y) = 2$ and $\pi^*(t) = \pi(t)$ for all $t \neq 1, 2, x, y$. One can easily check that π^* is good, since the cells (1,i), (2,j), (x,1), (y,2) are not part of any $(p,q,p',q') \in S$. Thus $\pi^* \in S_{ij}$ and since the mapping $\pi \to \pi^*$ is injective $|S_{12}| \leq |S_{ij}|$. One can define an injective mappings showing that $|S_{12}| \leq |S_{ij}|$ even when $\{i,j\} \cap \{1,2\} \neq \emptyset$. If follows that $\Pr\left(A_{1122} \cap \bigcap_S \overline{A}_{pqp'q'}\right) \leq \Pr\left(A_{1i2j} \cap \bigcap_S \overline{A}_{pqp'q'}\right)$ and hence $\Pr\left(A_{1122} \mid \bigcap_S \overline{A}_{pqp'q'}\right) \leq 1/n(n-1)$.

The numbber of bad events $A_{iji'j'}$ is $\left(\frac{n^2}{k}\right)\binom{k}{2}$. Thus by the asymmetric Lovasc Local Lemma 2, for large enough n

$$\Pr\left(\bigcap_{i} \overline{A}_{iji'j'}\right) \ge (1 - 1/n(n-1))^{\left(\frac{n^2}{k}\right)\binom{k}{2}} > e^{-\left(\frac{n^2}{kn(n-1)}\right)\binom{k}{2}} > e^{-\left(\frac{2}{k}\right)\binom{k}{2}} = e^{-(k-1)}.$$

Let $D \subset \{0,1\}^*$ be all encodings of permutations of A that are Latin Transversals. $\mathbf{K}(D|A) = O(1)$. We recall that P is the uniform distribution over all permutation of A. By the above reasoning $P(D) > e^{-(k-1)}$. Thus by Theorem 1 and Lemma 3, there exists a permutation $\tau \in D$ that is a Latin Transversal and complexity

$$\mathbf{K}(\tau) <^{\log} \mathbf{K}(P) - \log P(D) + \mathbf{I}(D; \mathcal{H}) <^{\log} \mathbf{K}(n) + (k-1)(\log e) + \mathbf{I}(A; \mathcal{H}).$$

References

[Blo70] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, page 422–426, 1970.

[Eps19] S. Epstein. On the algorithmic probability of sets. CoRR, abs/1907.04776, 2019.

[Fei95] U Feige. A tight upper bound on the cover time for random walks on graphs. *Random Struct. Algorithms*, 6(1):51–54, 1995.

[G21] Peter Gács. Lecture notes on descriptional complexity and randomness. CoRR, abs/2105.04704, 2021.

[Lev16] L. A. Levin. Occam bound on lowest complexity of elements. *Annals of Pure and Applied Logic*, 167(10):897–900, 2016. And also: S. Epstein and L.A. Levin, Sets have simple members, arXiv preprint arXiv:1107.1458, 2011.

[MR95] R Motwani and P Raghavan. *Randomized Algorithms*. Cambridge University Press, Cambridge; NY, 1995.

[MU05] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.