<u>РАЗДЕЛ 1.</u> Ведение. Основные понятия, термины и определения.

1

1.1. Технологический объект управления.

ТОУ – совокупность технологического оборудования и реализуемого на нем технологического действия

1.2. Понятие об управлении.

Управление – совокупность действий на ТОУ, выбранных на основе информации и направленных на поддержание или улучшение функционирования технологического процесса.

Управляющее возмущение должно обеспечить достижение поставленных целей (критерия управления, целевой функции) при соблюдений технологических ограничений.

Разработка специальных технических средств позволяет осуществить автоматическое управление.

1.3. Системы управления, их виды.

Рис. 3 Система ручного (дистанционного) управления

Любая система управления имеет автоматический регулятор.

Рис. 4 Система автоматического управления (САУ)

АУ – автоматическое устройство для выработки управляющего воздействия

ПУ – переключатель управления

САУ – система автоматического управления без участия человека (или с ограниченным участием)

Современными САУ с применением технических средств являются человеко-машинными системами, то есть человек – неотъемлемый элемент. Такие системы называются автоматизированными системами управления технологическими процессами (**ACYTI**).

Рис. 5 Виды Систем управления

Основная задача СУ формирование и осуществление целенаправленных воздействий на ТОУ.

1.3.1. Понятие о системах автоматического управления (САУ).

ПРИМЕР САУ.

Ресивер – объем для сглаживания колебаний (газа)

В устойчивом состоянии $F_{np} = F_{cr}$ Ресивер — регулятор прямого воздействия (без участия человека)

1.3.2. Основные задачи синтеза и анализа САУ.

Структурная схема САУ.

УУ – устройство управления

АР – автоматический регулятор

f(t) — заданная функция управляющего воздействия остальные параметры — см. расчетное задание с. 3.

Представленную САУ можно разбить на 2 уровня:

1. <u>нижний уровень</u> – **ACP** (автоматическая система регулирования) Её задача – устранение возмущений $\lambda(t)$, v(t) (внешние возмущения) Для этого необходимо выбрать структуру регулятора (AP), алгоритм его функционирования и оптимально настроить.

Критерий качества:

$$I = \mathop{\grave{o}}_{0}^{t_{p}} |y(t)| dt \otimes \min$$

Ограничение:

Степень затухания: $Y = \frac{A_1 - A_3}{A_1}$,

обычно **0.7** £ Y £ **0.9**

Изложенное является основной задачей синтеза АСР.

Чтобы настроить регулятор, необходимо выбрать:

- 1. критерий качества;
- 2. ограничения;
- 3. сформулировать и решить оптимизационную задачу.

2. верхний уровень.

В качестве критерия настройки УУ используется интеграл:

$$\mathbf{I} = \mathbf{\hat{0}}_{0}^{\mathbf{f}} | \mathbf{f}(\mathbf{t}) - \mathbf{y}(\mathbf{t}) | \mathbf{dt} \otimes \mathbf{min}$$

Настройка УУ значит, что при наличии возмущения на входе, на выходе $l_{\rm c}$ такое же возмущение (в идеале)

Можно также ввести степень затухания:

$$Y = \frac{A_1 - A_3}{A_1}$$

1.3.3. Принципы построения САУ.

- 1. Принцип иерархии
- 2. Принцип декомпозиции системы принцип разбиения системы на уровни.

Используя первый принцип, легко применить второй.

1.4. Понятие об АСУТП

(Автоматизированная система управления технологическим процессом).

АСУТП – человеко-машинная система, осуществляется автоматизированный сбор и обработка информации, необходимой для оптимизации управления.

ИП – измерительный преобразователь (информация)

ИМ – исполнительный механизм (реализация управляющих воздействий)

ПТК – программно-технический комплекс (центральное ядро АСУТП)

УСО – устройство связи с объектом

УСОП – устройство связи с оперативным персоналом

АРМ – автоматизированное рабочее место оперативного персонала

АТК – автоматизированный технологический комплекс

1.5. Основные функции и обеспечение АСУТП.

АСУТП		
Функции:	Обеспечение:	
- информационные;	- техническое;	
- управляющие;	- организационное;	
- вспомогательные.	- информационное;	
	- метрологическое;	
	- математическое;	
	- программное;	
	- лингвистическое;	
	- эргономическое;	
	- правовое.	

1.5.1. Информационные функции АСУТП.

- 1. непосредственный контроль и измерение технологических параметров
- 2. отображение информации (регистрация)
- 3. сигнализация отклонений логических параметров от заданных значений
- 4. расчет технико-экономических (косвенных) показателей (удельный расход, КПД и т.д.)
- 5. диагностирование информационной системы.

1.5.2. Управляющие функции АСУТП.

- 1. дистанционное управление
- 2. автоматическое регулирование
- 3. логическое управление (пуск и остановка оборудования, переход с режима на режим)
- 4. автоматические защиты и блокировки
- 5. оптимальное управление технологическим процессом (оптимизация)

1.5.3. Вспомогательные функции АСУТП.

- 1. решение внутренних задач
- 2. диагностирование функционирования комплекса технических средств АСУТП
 - 3. связь с вышестоящими АСУ

- АСУ предприятий (организационно экономические задачи)

1.5.4. Обеспечение АСУТП.

- Техническое обеспечение комплекс технических средств, необходимых для реализации функциональных задач АСУТП (программно-технический комплекс **ПТК** + автоматизированное рабочее место оперативного персонала **АРМ**).
- Организационное обеспечение совокупность правил и предписаний, обеспечивающих взаимодействие персонала с комплексом технических средств.
- Информационное обеспечение направление и характеристики информационных потоков.
- Метрологическое обеспечение совокупность показателей точности, надежности и быстродействия.
- Программное обеспечение совокупность программ, обеспечивающих функционирование комплекса технических средств (**КТС**) АСУТП и решение функциональных задач. Программное обеспечение (**ПО**):
- Общее ПО обеспечивает функционирование КТС АСУТП; поставляется изготовителем.
- Специальное ПО обеспечивает решение функциональных задач; разработчик АСУТП.
- Лингвистическое обеспечение совокупность терминов и правил формализации языка общения персонала с КТС.
- Эргономическое обеспечение совокупность требований, предъявляемых к способам и формам представления информации, а также к формам и размещениям КТС.
- Правовое обеспечение юридическое обоснование функционирования АСУТП.

1.5.5. Понятие об оптимальном управлении.

Оптимальное управление осуществляется в соответствии с выбранным критерием оптимальности, на который накладываются технические ограничения.

Пусть критерий оптимальности: $\mathbf{F} = \mathbf{F}\{\overline{\mathbf{x}}(t), \overline{\mathbf{y}}(t)\}$, где \mathbf{x} – входные параметры, у – выходные параметры. Критерий оптимальности равен целевой функции.

Ограничения:
$$\mathbf{x}_{\min} \quad \mathbf{f} \quad \overline{\mathbf{x}} \quad \mathbf{f} \quad \mathbf{x}_{\max}$$

Надо найти $\bar{\mathbf{x}}, \bar{\mathbf{v}}$ ® **opt**, которые соответствуют экстремуму F.

Критерий оптимальности – показатель, характеризующий качество работы технологического объекта управления и принимающий различные значения в зависимости от управляющих воздействий.

 $\Pi P U M E P$: $F = F\{x\}$

Если нет ограничений, то критерий оптимальности: \mathbf{x}_{opt} ® \mathbf{F}_{max}

Для линейной функции задача оптимизации не имеет смысла без ограничений.

2. Динамические системы. Способы математического описания.

Любой технологический объект управления (ТОУ) и любая САУ являются динамическими системами.

2.1. Понятие о динамической системе (ДС).

$$\overline{X}(t)$$
 $\overline{Y}(t)$ $\overline{Y}(t)$ $\overline{Y}(t)$ $\overline{Y}(t) = \overline{X}(t) \times F\{X(t)\}$

2.2. Описание динамической системы (ДС) с помощью дифференциальных уравнений (ДУ).

Основным математическим аппаратом, позволяющим исследовать ДС являются дифференциальные уравнения, аргументом в которых служит время. **ПРИМЕР:**

В основе дифференциальных уравнений, описывающих ДС, лежат уравнения сохранения вещества и энергии для нестационарного режима.

Уравнения материального и теплового баланса – уравнения сохранения вещества и энергии.

$$\frac{\mathbf{\hat{f}}}{\mathbf{\hat{f}}}\mathbf{G}_{\mathrm{np}}^{\mathrm{o}}\left(t\right) - \mathbf{G}_{\mathrm{cr}}^{\mathrm{o}}\left(t\right) = \mathbf{0},$$
стационарный режим $\mathbf{\hat{f}}_{\mathrm{np}}^{\mathrm{f}}\left(t\right) - \mathbf{G}_{\mathrm{cr}}\left(t\right) \times \mathbf{d}t = \mathbf{dV} = \mathbf{F}\mathbf{dH}$

 $V = F \times H \triangleright dV = FdH$ - приращение объема

Уравнение материального баланса для нестационарного режима.

$$\mathbf{F} \times \frac{\mathbf{dH}}{\mathbf{dt}} = \mathbf{G}_{np} - \mathbf{G}_{cr}$$
 - дифференциальное уравнение для емкости

$$\mathbf{G}_{\mathrm{cr}}(\mathbf{t}) = \mathbf{a}\sqrt{\mathbf{H}}, \mathbf{a}$$
 - положение клапана \mathbf{K}

$$\mathbf{F} \times \frac{\mathbf{dH}}{\mathbf{dt}} = \mathbf{G}_{np}(\mathbf{t}) - \mathbf{a}\sqrt{\mathbf{H}} \mathbf{P}$$

$$\mathbf{F} \times \frac{\mathbf{dH}}{\mathbf{dt}} + \mathbf{a} \sqrt{\mathbf{H}} = \mathbf{G}_{\mathsf{np}} \left(\mathbf{t} \right)$$
 - нелинейное уравнение, правая часть характеризует вынужденное

движение. Так как в процессе регулирования отклонения не большие, то приняли гипотезу о линеаризации дифференциальных уравнений.

2.3. Линеаризация дифференциальных уравнений.

Линеаризация методом касательной.

В основе линеаризации гладких (дифференциальных) функций лежит метод разложения в ряд Тейлора.

$$\mathbf{y}(\mathbf{t}) = \mathbf{f}[\mathbf{x}(\mathbf{t})]$$

$$y(t) = f_0[x(t)] + \frac{\P f_0[x(t)]}{\P t} \times Dx + \frac{1}{2!} \times \frac{\P^2 f_0[x(t)]}{\P t^2} \times Dx^2 + ...$$

Линеаризация не требует производных выше первого порядка (все остальное отбрасываем). $\mathbf{y}(t) - \mathbf{f}_0[\mathbf{x}(t)] = \mathbf{D}\mathbf{y}(t) = \mathbf{a} \times \mathbf{D}\mathbf{x} + \mathbf{D}\mathbf{y}(t) = \mathbf{a} \times \mathbf{D}\mathbf{x}(t)$, где \mathbf{a} — тангенс угла наклона касательной. ПРОДОЛЖЕНИЕ **ПРИМЕР**А.

$$\mathbf{F} \times \frac{\mathbf{dH(t)}}{\mathbf{dt}} = \mathbf{G}_{np}(\mathbf{t}) - \mathbf{a}\sqrt{\mathbf{H(t)}}$$

Примем, что $G_{np}(t) = G_{np,0} + DG_{np}(t)$

$$a\sqrt{H(t)} = a\sqrt{H_0(t)} + a\frac{1}{2\sqrt{H_0}}DH$$

$$a\sqrt{H_0(t)} = G_{cr0}, \ a\frac{1}{2\sqrt{H_0}}DH$$
 - производная $a\sqrt{H(t)}$

Для стационарного режима $\mathbf{G}_{\mathbf{n}\mathbf{p}\mathbf{0}}=\mathbf{G}_{\mathbf{c}\mathbf{r}\mathbf{0}}$, при этом $\mathbf{H}=\mathbf{H}_{\mathbf{0}}$

$$F\frac{d[H_{0} + DH]}{dt} = G_{np,0} + DG_{np} - G_{cr,0} - a\frac{1}{2\sqrt{H_{0}}}DH$$

$$\frac{d\mathbf{H}_0}{dt} = \mathbf{0}$$
, тта как $\mathbf{H}_0 = \mathbf{const}$

$$G_{np,0}$$
 - $G_{cr,0} = 0$, ттогд

$$\mathbf{F} \frac{\mathrm{d} \mathrm{D} \mathbf{H}(t)}{\mathrm{d} t} + \mathbf{a} \frac{1}{2\sqrt{\mathbf{H}_0}} \mathrm{D} \mathbf{H}(t) = \mathrm{D} \mathbf{G}_{\mathrm{np}}(t)$$
 - ллинейно д.у. относительно приращенного уровня

Можно принять, что DH(t) = y(t); $DG_{np}(t) = x(t)$

$$\mathbf{F} \times 2\sqrt{\mathbf{H}_0} \times \frac{1}{a} \times \frac{\mathbf{dy(t)}}{\mathbf{dt}} + \mathbf{y(t)} = \frac{2\sqrt{\mathbf{H}_0}}{a} \mathbf{x(t)}$$

$$\mathbf{F} \times 2\sqrt{\mathbf{H}_0} \times \frac{1}{a} = \mathbf{T}, \quad \frac{2\sqrt{\mathbf{H}_0}}{a} = \mathbf{k}$$

Окончательное дифференциальное уравнение: $\mathbf{T} \frac{\mathbf{dy}(t)}{\mathbf{dt}} + \mathbf{y}(t) = \mathbf{k} \times \mathbf{x}(t)$

Если задать x(t) = const = 1(t)

Т – постоянная времени, **k** – коэффициент усиления

2.4. Решение линейных дифференциальных уравнений с правой частью.

Решение складывается из свободной и вынужденной частей:

$$\mathbf{y}(t) = \mathbf{y}_{cboo}(t) + \mathbf{y}_{bbh}(t)$$

 C_i – постоянная интегрирования (определяется начальными условиями)

 $\mathbf{r_i}$ – корни характеристического уравнения

n – порядок дифференциального уравнения

$$\mathbf{y}_{\text{вын}}(t) = \mathbf{k} \times \mathbf{x}(t)$$

ПРОДОЛЖЕНИЕ **ПРИМЕР**А.

$$\mathbf{y}_{cB}(\mathbf{t}) = \mathbf{C} \times \mathbf{e}^{\mathbf{r} \times \mathbf{t}}$$

 $\mathbf{T} \times \mathbf{r} + \mathbf{1} = \mathbf{0}$ - ххарактерстическое уравнение $\mathbf{P} \cdot \mathbf{r} = -\frac{1}{\mathbf{T}}$

$$\mathbf{y}_{cB}(\mathbf{t}) = \mathbf{C} \times \mathbf{e}^{-\frac{1}{\mathbf{T}}}$$

 $\mathbf{y}(\mathbf{t}) = \mathbf{C} \times \mathbf{e}^{-\frac{\mathbf{t}}{T}} + \mathbf{k} \times \mathbf{x}(\mathbf{t})$ - решение дифференциального уравнения

Ишем С:

$$\mathbf{y}(t)\big|_{t=0} = \mathbf{C} + \mathbf{k} \times \mathbf{x}(t) = \mathbf{0} \mathbf{P} \mathbf{C} = -\mathbf{k} \times \mathbf{x}(t)$$

$$\mathbf{y}(\mathbf{t}) = -\mathbf{k} \times \mathbf{x}(\mathbf{t}) \times \mathbf{e}^{-\frac{\mathbf{t}}{\mathrm{T}}} + \mathbf{k} \times \mathbf{x}(\mathbf{t}) = \mathbf{k} \times \mathbf{x}(\mathbf{t}) \hat{\mathbf{e}}^{\mathbf{1}} - \mathbf{e}^{-\frac{\mathbf{t}}{\mathrm{T}}} \hat{\mathbf{u}}$$
 - окончательное решение $\hat{\mathbf{e}}$

Пусть $\mathbf{x}(\mathbf{t}) = \mathbf{1}, \mathbf{0}; \ \mathbf{T} = \mathbf{10}; \ \mathbf{k} = \mathbf{2},$ ттогд

$$y\!\left(t\right) = 2{\times}1 {\mathop{\hat{e}}\limits_{\hat{e}}^{\hat{e}}} 1 - {\mathop{e}\limits_{-\frac{t}{10}}}\mathop{\mathring{u}}\limits_{\hat{u}}^{\hat{u}}$$

Линеаризованная динамическая система в теории автоматического управления называется линейной динамической системой.

$$\mathbf{T}_{\mathbf{a}} \frac{\mathbf{dy}(\mathbf{t})}{\mathbf{dt}} + \mathbf{y}(\mathbf{t}) = \mathbf{k}_{\mathbf{a}} \times \mathbf{x}(\mathbf{t})$$

А-звено (апериодическое звено).

$$\mathbf{y}(\mathbf{t}) = \mathbf{k}_{\mathbf{a}} \times \mathbf{x}(\mathbf{t}) \hat{\mathbf{e}}^{\mathbf{f}} \mathbf{1} - \mathbf{e}^{\frac{-\mathbf{t}}{T_{\mathbf{a}}}} \hat{\mathbf{u}}$$
 - решение дифференциального уравнения

$$x(t) = 1$$

$$\frac{dy(t)}{dt}\Big|_{t=0} = \frac{k_a}{T_a}$$

 T_a — время по истечении которого y(t) достигнет установившегося значения, если будет изменяться с постоянной скоростью.

 $y_1(t)$

 $\mathbf{y}_{2}(\mathbf{t})$

 $y_3(t)$ $y_4(t)$

2.5. Временные характеристики линейных ДС (ЛДС).

2.5.1. Кривые разгона.

Кривая разгона ДС – это реакция на ступенчатое возмущение.

$$\mathbf{x} \times \mathbf{1}(\mathbf{t}) = \hat{\mathbf{1}}_{\hat{\mathbf{1}}}^{0}, \mathbf{t} \hat{\mathbf{4}}_{0}^{0}$$

Х – вещественное число, выбранное при эксперименте.

ДС имеет бесконечное множество кривых разгона. Для каждого

X выбирается из условия определения y(t) на фоне помех.

 $X \approx 10\text{-}20\%$ ot X_{hom}

- инерционность ЛДС

2.5.2. Переходные характеристики ЛДС.

$$\mathbf{h}(\mathbf{t}) = \frac{\mathbf{y}(\mathbf{t})}{\mathbf{x}(\mathbf{t})}$$

Переходная характеристика h(t) – реакция ЛДС на единичное ступенчатое возмущение.

$$1(t) = \frac{1}{1} \frac{0}{1} 0, t \neq 0$$

Кривые разгона нормируют (пересчитывают на переходные характеристики).

$$\mathbf{h}_{1}(t) = \frac{\mathbf{y}_{1}(t)}{\mathbf{x}_{1}(t)}, \mathbf{h}_{2}(t) = \frac{\mathbf{y}_{2}(t)}{\mathbf{x}_{2}(t)},...$$

Усредненная переходная характеристика:

$$\mathbf{h(t)}_{cp} = \frac{\dot{\mathbf{a}}_{i-1}^{n} \mathbf{h}_{i}(t)}{n}$$

Импульсные характеристики ЛДС – реакции на дельта-функцию Дирака

$$d(t) = \hat{1}_{\hat{1}} 0, t^{-1} 0$$

$$\overset{+Y}{\grave{o}}d(t)dt=1$$

$$d(t) = \frac{d1(t)}{dt}$$

 $\mathbf{d}(\mathbf{t})$ - дельта-функция равна производной единичного возмущения по времени.

$$\mathbf{w}(\mathbf{t}) = \frac{\mathbf{dh}(\mathbf{t})}{\mathbf{dt}}$$
 - импульсная характеристика.

На практике:

Если просуммировать кривые разгона от «+» импульса X и «-» импульса -X, то получим кривую $\omega(t)$

ДУ – математическая модель ДС. Решив дифференциальные уравнения при $\mathbf{x}(\mathbf{t}) = \mathbf{1}(\mathbf{t})$, получим переходную характеристику:

$$\mathbf{h}(t)\big|_{\mathbf{x}(t)=1} = \mathbf{k}_{\mathbf{a}} \mathbf{\hat{c}}_{\mathbf{c}}^{\mathbf{a}} \mathbf{1} - \mathbf{e}^{\frac{-t}{T_{\mathbf{a}}}} \ddot{\mathbf{e}}_{\dot{\mathbf{g}}}^{\mathbf{a}}$$

Чтобы получить импульсную характеристику, нужно продифференцировать $\mathbf{h}(\mathbf{t})$.

При x(t) = 2 (например) получим кривую разгона.

2.6. Частотные характеристики ЛДС.

Частотные характеристики на вход подают какие-то гармонические колебания (не ступеньку, как временные).

Частота гармонических колебаний: w = 0, Y (теоретически).

На практике: $W_p = W_1$, W_{cp}

 ${\bf W}_{{\bf cp}}$ - частота среза (частота, при которой на выходе нет сигнала).

$$\boldsymbol{w}_{i} = \frac{2 \times p}{T_{i}}, \hat{\boldsymbol{e}} \frac{p a \boldsymbol{\pi} \boldsymbol{u}}{\boldsymbol{e}} \hat{\boldsymbol{u}}$$

 $\mathbf{T}_{\mathbf{i}}$ - период колебаний $\mathbf{W}_{\mathbf{cp}}$

$$x(t) = A_x \times \sin wt$$

На выходе будут колебания с той же частотой и той же амплитудой (если система безинерционна), но они могут быть сдвинуты по фазе (инерционная система).

 $\mathbf{Dt_i} = \mathbf{t_x}$ - $\mathbf{t_y}$ («-» - отстают, «+» - опережают).

Время $\mathbf{t}_{\mathbf{x}}$ и $\mathbf{t}_{\mathbf{y}}$ надо брать, когда колебания установятся. Обработка эксперимента.

$$\mathbf{A}(\mathbf{w}_i) = \frac{\mathbf{A}_y(\mathbf{w}_i)}{\mathbf{A}_y(\mathbf{w}_i)}$$
 - модуль при $\mathbf{\omega}_i$ (относительная амплитуда)

А(w) - амплитудно-частотная характеристика (АЧХ)

 $\mathbf{j}\left(\mathbf{w}_{i}\right) = \pm \mathbf{D}\mathbf{t}_{i} \times \mathbf{w}_{i}$ - фазовый сдвиг при $\mathbf{\omega}_{i}$ (аргумент)

ј (w) - фазо-частотная характеристика (ФЧХ)

Комплексная частотная характеристика (КЧХ)

 $\mathbf{W}(\mathbf{j}\mathbf{w}) = \mathbf{A}(\mathbf{w}) \times \mathbf{e}^{\pm \mathbf{j}\mathbf{j} \ (\mathbf{w})}$ - на комплексной плоскости, либо в полярных координатах.

Другая форма записи:

$$\mathbf{W}(\mathbf{j}\mathbf{w}) = \mathbf{Re}(\mathbf{w}) + \mathbf{j}\mathbf{Im}(\mathbf{w})$$

$$\mathbf{A}(\mathbf{w}) = \sqrt{\mathbf{R}\mathbf{e}^{2}(\mathbf{w}) + \mathbf{Im}^{2}(\mathbf{w})}$$

$$A(\omega_i)$$
 $j(w) = arctg \frac{Im(w)}{Re(w)}$

3. Интегральные преобразования в ТАУ.

3.1. Интегралы свертки для входного воздействия x(t) произвольной формы.

Линейная динамическая система (ЛДС) – система, которая подчиняется $\mathbf{x}(\mathbf{t})$ принципу суперпозиции.

Принцип суперпозиции. Реакция линейной системы на суммарное входное воздействие равна сумме реакций на составляющие входного воздействия:

$$\mathbf{x(t)}_{S} = \mathbf{x}_{1}(\mathbf{t}) + \mathbf{x}_{2}(\mathbf{t})$$
$$\mathbf{y(t)}_{S} = \mathbf{y}_{1}(\mathbf{t}) + \mathbf{y}_{2}(\mathbf{t})$$

Вывод выражения для интеграла свертки.

$$x(t) = Dx_1(Dt) \times 1(t - Dt) + Dx_2(2Dt) \times 1(t - 2Dt) + ... + Dx_1(iDt) \times 1(t - iDt)$$

 ${
m Y}$ стремим число разбиений на ${
m \Delta} {f t}$ к ${
m \infty}$

$$\mathbf{y(t)} = \mathbf{Dx}_1(\mathbf{Dt}) \times \mathbf{h(t-Dt)} + \mathbf{Dx}_2(\mathbf{2Dt}) \times \mathbf{h(t-2Dt)} + \dots + \mathbf{Dx}_i(\mathbf{iDt}) \times \mathbf{h(t-iDt)}$$

$$\mathbf{y}(t) = \overset{n}{\underset{i=1}{\overset{n}{\overleftarrow{a}}}} \mathbf{D} \mathbf{x}_{i} (\mathbf{i} \mathbf{D} t) \times \mathbf{h} (t - \mathbf{i} \mathbf{D} t) \times \frac{\mathbf{D} t}{\mathbf{D} t}$$

Предельный переход:

$$\mathbf{y}(t) = \mathbf{\hat{o}}_{0}^{t} \mathbf{x}(t) \times \mathbf{h}(t - t) dt \qquad [1]$$

$$\frac{\mathrm{D}\mathbf{x_i}\left(\mathrm{i}\mathrm{D}\mathbf{t}\right)}{\mathrm{D}\mathbf{t}}$$
 ® \mathbf{x} (\mathbf{t}) - производная от \mathbf{x}

[1] – интеграл свертки через переходную характеристику h(t)

$$x(t) = 1 \times t$$

 $\mathbf{x}(\mathbf{t}) = \mathbf{1} \times \mathbf{t}$, то есть через 1 с на выходе будет 1, через 2 с – 2.

$$\mathbf{h}(t) = \mathbf{k}_{a} \mathbf{c}^{\mathbf{e}}_{\mathbf{h}} \mathbf{1} - \mathbf{e}^{\frac{-t}{T_{a}}} \mathbf{\ddot{o}}_{\dot{a}}$$

 $\mathbf{h}(\mathbf{t})$ - переходная характеристика для ЛДС, которую можно описать дифференциальным уравнением 1-го порядка.

$$\mathbf{x}^{(t)} = \mathbf{1}$$

Если свойства ЛДС заданы в виде w(t) импульсной характеристики: $w(t) = \frac{h(t)}{dt}$. x(t) заменяем не суммой ступенек, а суммой импульсов.

 $\Delta \mathbf{x_2}$

 $\Delta \mathbf{x_1}$

i∆t

 $\mathbf{x}(\mathbf{t})$

$$y(t) = \int_{0}^{t} x(t)w(t-t)dt \qquad [2]$$

$$h(t) = k_{a} \int_{c}^{c} 1 - e^{-\frac{t}{T_{a}}} \frac{\ddot{0}}{\dot{\phi}}$$

$$\frac{dh(t)}{dt} = w(t) = \frac{k_{a}}{T} \times e^{-\frac{t}{T_{a}}}$$

3.2. Интегральное преобразование Лапласа. Передаточные функции.

Интегральное преобразование Лапласа относится к методу решения задач путем замены переменных:

 $t \otimes s = -a + jw$ - время заменяется комплексной переменной s - оператор Лапласа;

 α , ω – вещественные числа

$$j = \sqrt{-1}$$

Существует прямое и обратное преобразование Лапласа.

Прямое преобразование Лапласа:

$$\mathbf{F}(\mathbf{s}) = \mathbf{\hat{o}}_{0}^{\mathbf{F}}(\mathbf{t})\mathbf{e}^{-\mathbf{s}\mathbf{t}}\mathbf{dt} = \mathbf{F}\{\mathbf{f}(\mathbf{t})\}$$

ПРИМЕР:

$$T_{a} \frac{dy(t)}{dt} + y(t) = k_{a} \times x(t)$$
 [*]

$$v(t) \otimes v(s)$$

$$y(t) \otimes F\{y(t)\}$$

$$\mathbf{x}(\mathbf{t}) \otimes \mathbf{F}\{\mathbf{x}(\mathbf{t})\} = \mathbf{X}(\mathbf{t})$$

преобразование Лапласа **L**

$$L_{\hat{1}}^{\hat{1}}\frac{dy(t)}{dt}\hat{y} = \hat{0}\frac{dy(t)}{dt}e^{-st}dt =$$

$$\begin{array}{ll} \stackrel{\acute{e}}{\hat{e}}e^{-st} = U; & U\times V = \stackrel{\grave{o}}{\hat{o}}UdV + \stackrel{\grave{o}}{\hat{o}}VdU \stackrel{\grave{u}}{\hat{u}} \\ \stackrel{\acute{e}}{\hat{e}}\frac{dy(t)}{dt} = dV; & y(t) = V; & \stackrel{\grave{o}}{\hat{o}}UdV = U\times V - \stackrel{\grave{o}}{\hat{o}}VdU \stackrel{\acute{u}}{\hat{u}} \\ \end{array}$$

$$= \mathbf{y}(t) \times \mathbf{e}^{-st} \Big|_{0}^{\mathbf{Y}} + \mathbf{\mathring{o}} \mathbf{y}(t) \times \mathbf{s} \times \mathbf{e}^{-st} \mathbf{d}t = -\mathbf{y}(0) + \mathbf{s} \mathbf{\mathring{o}} \mathbf{y}(t) \times \mathbf{e}^{-st} \mathbf{d}t = -\mathbf{y}(0) + \mathbf{s} \times \mathbf{y}(s) = \mathbf{s} \times \mathbf{y}(s)$$

$$= \mathbf{y}(t) \times \mathbf{e}^{-st} \Big|_{0}^{\mathbf{Y}} + \mathbf{\mathring{o}} \mathbf{y}(t) \times \mathbf{s} \times \mathbf{e}^{-st} \mathbf{d}t = -\mathbf{y}(0) + \mathbf{s} \times \mathbf{\mathring{o}} \mathbf{y}(t) \times \mathbf{e}^{-st} \mathbf{d}t = -\mathbf{y}(0) + \mathbf{s} \times \mathbf{y}(s) = \mathbf{s} \times \mathbf{y}(s)$$

Считается, что y(0) = 0 - нулевые начальные условия.

$$\mathbf{v}(t) = \mathbf{F}\{\mathbf{v}(t)\} = \mathbf{s} \times \mathbf{v}(\mathbf{s})$$

$$\ddot{e}^*\hat{\mathbf{u}}: \mathbb{R} \ \mathbf{T}_{\mathbf{a}} \times \mathbf{s} \times \mathbf{y}(\mathbf{s}) + \mathbf{y}(\mathbf{s}) = \mathbf{k}_{\mathbf{a}} \times \mathbf{x}(\mathbf{s})$$

$$rac{\mathbf{Y(s)}}{\mathbf{X(s)}} = \mathbf{W(s)} = rac{\mathbf{k_a}}{\mathbf{T_a \times s + 1}}$$
 - передаточная функция

Дифференциальное уравнение в общем виде.

Любую ДС можно представить в виде одного дифференциального уравнения.

$$T_{n}^{n} \times \frac{d^{n}y(t)}{dt^{n}} + T_{n-1}^{n-1} \times \frac{d^{n-1}y(t)}{dt^{n-1}} + ... + T_{1} \times \frac{dy(t)}{dt} + y(t) = \underbrace{\hat{1}}_{\hat{1}}^{n} T_{m,x}^{m} \times \frac{d^{m}x(t)}{dt^{m}} + ... + T_{1,x} \times \frac{dx(t)}{dt} + x(t) \underbrace{\hat{y}}_{\hat{b}}^{\tilde{u}} \times K$$

Т имеет размерность времени.

Это же уравнение, преобразованное по Лапласу:

$$\frac{\mathbf{K}\left(\mathbf{T}_{\mathbf{m},\mathbf{x}}^{\mathbf{m}} \times \mathbf{S}^{\mathbf{m}} + ... + \mathbf{T}_{\mathbf{1},\mathbf{x}} \times \mathbf{S} + \mathbf{1}\right)}{\mathbf{T}_{\mathbf{n}}^{\mathbf{n}} \times \mathbf{S}^{\mathbf{n}} + ... + \mathbf{T}_{\mathbf{1}} \times \mathbf{S} + \mathbf{1}} = \mathbf{W}(\mathbf{s}) = \frac{\mathbf{Y}(\mathbf{s})}{\mathbf{X}(\mathbf{s})} - \text{передаточная функция.}$$

Передаточная функция ЛДС W(s) — отношение преобразованных по Лапласу выходной переменной Y к входной переменной X при нулевых начальных условиях.

$$\mathbf{Y}(\mathbf{s}) = \mathbf{X}(\mathbf{s}) \times \mathbf{W}(\mathbf{s})$$

«+» - нет интегралов, можно использовать обычное алгебраическое действие.

 $\mathbf{Y}(\mathbf{s}) = \mathbf{L}\{\mathbf{Y}(\mathbf{t})\}$ - прямое преобразование Лапласа

 $\mathbf{Y}(\mathbf{t}) = \mathbf{L}^{-1}\{\mathbf{Y}(\mathbf{s})\}$ - обратное преобразование Лапласа

 $\mathbf{Y}(\mathbf{t})$ - оригинал, $\mathbf{Y}(\mathbf{s})$ - изображение.

$$Y(t) \int_{-a+jw,(w^{\otimes}-Y)}^{-a+jw,(w^{\otimes}+Y)} (s) \times e^{-st} ds$$

3.3. ПРИМЕР «Анализ ЛДС с применением интегральных преобразований Лапласа».

$$\xrightarrow{\mathbf{X}(\mathbf{t})} \boxed{\mathbf{ДC1}} \xrightarrow{\mathbf{y}_1(\mathbf{t})} \boxed{\mathbf{ДC2}} \xrightarrow{\mathbf{y}_2(\mathbf{t})} \boxed{\mathbf{ДC3}} \xrightarrow{\mathbf{y}_3(\mathbf{t})}$$

Представленная система описывается дифференциальными уравнениями:

$$\begin{split} & \stackrel{\grave{i}}{\overset{\centerdot}{1}} T_{1} \frac{dy_{1}(t)}{dt} + y_{1}(t) = k_{1}x(t), & [\text{ДC1}] \\ & \stackrel{\grave{i}}{\overset{\centerdot}{1}} T_{2} \frac{dy_{2}(t)}{dt} + y_{2}(t) = k_{2}y_{1}(t), & [\text{ДC2}] \\ & \stackrel{\grave{i}}{\overset{\centerdot}{1}} T_{3} \frac{dy_{3}(t)}{dt} + y_{3}(t) = k_{3}y_{2}(t), & [\text{ДC3}] \end{split}$$

Решать эту систему надо относительно $\mathbf{y}_{3}(\mathbf{t})$

Преобразованная по Лапласу система:

Виды входящих
$$\mathbf{1}(t)$$
 $\mathbf{1}(t)$ $\mathbf{1}(t)$

Программа для решения задачи в среде MathCad Prof. RZDLaplace.

$$\begin{split} k_1 &:= 1 & k_2 := 1 & k_3 := 1 \\ T_1 &:= 1 & T_2 := 2 & T_3 := 4 \\ W_1(s) &:= \frac{k_1}{T_1 \times s + 1} & W_2(s) := \frac{k_2}{T_2 \times s + 1} & W_3(s) := \frac{k_3}{T_3 \times s + 1} \\ A &:= 2 & x(t) := A \times 1 \\ W(s) &:= W_1(s) \times W_2(s) \times W_3(s) \end{split}$$

 $\mathbf{X}(\mathbf{s}) := \mathbf{x}(\mathbf{t})$ правод у робращенение к функции laplace \mathbb{R} $\frac{\mathbf{x}}{\mathbf{s}}$ - решение, точность 4 знакаа р

которое выдаст компьютер.

$$Y(t) := X(s) \times W(s) \begin{vmatrix} inlaplace, s & \mathbb{R} \\ float, 4 & -0.6667 \times exp(-1 \times t) + 4 \times exp(-0.5 \times t) - 5.330 \times exp(-0.25 \times t) + 2 \\ t & \mathbb{R} & 0 \\ \end{bmatrix}$$

Если строить график, необходимо задать определенный промежуток t.

Интегральные преобразования Фурье.

$$\mathbf{x(t)}$$
 $\mathbf{W(s)}$ $\mathbf{y(t)}$ Преобразование Лапласа $\mathbf{s} = -\mathbf{a} + \mathbf{j}\mathbf{w}$ Физического смысла такое преобразование не имеет.

Фурье ввел s = jw, имеет физический смысл.

$$\mathbf{Y}(\mathbf{j}\mathbf{w}) = \mathbf{\mathring{o}}\mathbf{Y}(\mathbf{t})\mathbf{e}^{-\mathbf{j}\mathbf{w}\mathbf{t}}\mathbf{d}\mathbf{t} = \mathbf{F}\{\mathbf{Y}(\mathbf{t})\}$$
- прямое преобразование Фурье. $\mathbf{W}(\mathbf{j}\mathbf{w})$ - комплексно-частотная характеристика (**КЧX**) $\mathbf{W}(\mathbf{j}\mathbf{w}) = \mathbf{W}(\mathbf{s})|_{\mathbf{s}=\mathbf{i}\mathbf{w}}$

ПРИМЕР:

Апериодическое звено:
$$T_a \times \frac{dy(t)}{dt} + y(t) = k_a \times x(t)$$

$$\begin{split} \mathbf{W}(\mathbf{s}) &= \frac{\mathbf{Y}(\mathbf{s})}{\mathbf{X}(\mathbf{s})} = \frac{\mathbf{k}_{\mathbf{a}}}{\mathbf{T}_{\mathbf{a}} \times \mathbf{s} + \mathbf{1}} \\ \mathbf{W}(\mathbf{j}\mathbf{w}) &= \frac{\mathbf{Y}(\mathbf{j}\mathbf{w})}{\mathbf{X}(\mathbf{j}\mathbf{w})} = \frac{\mathbf{k}_{\mathbf{a}}}{\mathbf{T}_{\mathbf{a}} \times \mathbf{j}\mathbf{w} + \mathbf{1}} \otimes \mathbf{K}\mathbf{Y}\mathbf{X} \\ \mathbf{W}(\mathbf{j}\mathbf{w}) &= \frac{\mathbf{k}_{\mathbf{a}}(-\mathbf{T}_{\mathbf{a}} \times \mathbf{j}\mathbf{w} + \mathbf{1})}{(\mathbf{T}_{\mathbf{a}} \times \mathbf{j}\mathbf{w} + \mathbf{1})(-\mathbf{T}_{\mathbf{a}} \times \mathbf{j}\mathbf{w} + \mathbf{1})} = \frac{\mathbf{k}_{\mathbf{a}}}{\mathbf{T}_{\mathbf{a}}^{2}\mathbf{X}^{2}\mathbf{X}^{2}\mathbf{T}_{\mathbf{a}}^{2}\mathbf{X}^{2}\mathbf{X}^{2}\mathbf{T}_{\mathbf{a}}^{2}\mathbf{X}^{2}\mathbf{X}^{2}\mathbf{T}_{\mathbf{a}}^{2}\mathbf{X}$$

$$\begin{split} \mathbf{W}(\mathbf{j}\mathbf{w}) &= \mathbf{A}(\mathbf{w}) \times \mathbf{e}^{\mathbf{j}\mathbf{j} \; (\mathbf{w})} \\ \mathbf{A}(\mathbf{w}) &= \sqrt{\mathbf{R}\mathbf{e}^2\left(\mathbf{w}\right)} - \mathbf{Im}^2\left(\mathbf{w}\right) \\ \mathbf{j} \; (\mathbf{w}) &= \mathbf{arctg} \frac{\mathbf{R}\mathbf{e}(\mathbf{w})}{\mathbf{Im}(\mathbf{w})} \\ \mathbf{A}(\mathbf{w}) &= \frac{\mathbf{k}_a}{\sqrt{\mathbf{T}_a^2\mathbf{w}^2 + \mathbf{1}}} - \text{модуль (или AЧX)} \\ \mathbf{j} \; (\mathbf{w}) &= -\mathbf{arctg}(\mathbf{T}_a\mathbf{w}) - \Phi \mathsf{ЧX} \\ \mathbf{W}(\mathbf{j}\mathbf{w}) &= \frac{\mathbf{k}_a}{\sqrt{\mathbf{T}_a^2\mathbf{w}^2 + \mathbf{1}}} \times \mathbf{exp}[-\mathbf{j}\mathbf{arctg}(\mathbf{T}_a\mathbf{w})] \end{split}$$

AЧX строятся при w = 0 . ¥

$$\begin{split} \mathbf{w} &= \mathbf{0} \quad \stackrel{\mathbf{i}}{\overset{\mathbf{i}}{\mathbf{I}}} \mathbf{Re}(\mathbf{w}) = \mathbf{k}_{\mathbf{a}} \\ &\stackrel{\mathbf{i}}{\overset{\mathbf{i}}{\mathbf{I}}} \mathbf{Im}(\mathbf{w}) = \mathbf{0} \\ \mathbf{w} &= \overset{\mathbf{i}}{\overset{\mathbf{i}}{\mathbf{I}}} \mathbf{Re}(\mathbf{w}) = \mathbf{0} \\ \mathbf{w} &= \overset{\mathbf{i}}{\overset{\mathbf{i}}{\mathbf{I}}} - \mathbf{arctg}(\mathbf{T}_{\mathbf{a}} \mathbf{w}) = -\frac{\mathbf{p}}{2} \\ \Pi \mathbf{p} \mathbf{u} \ \mathbf{w} &= \frac{1}{\mathbf{T}_{\mathbf{a}}}, \ \mathbf{j} \ (\mathbf{w}) = -45 \ , \quad \mathbf{A}(\mathbf{w}) = \frac{\mathbf{k}_{\mathbf{a}}}{\sqrt{2}} \end{split}$$

2 апериодических звена

 $\mathbf{Re}(\mathbf{\omega})$ - При одних и тех же частотах амплитуды различаются/

- Для безинерционных систем диапазон частот бесконечен.

<u>Построение переходных характеристик с применением</u> обратного преобразования Фурье.

Входное воздействие: $\mathbf{x}(t) = \mathbf{1}(t)$

$$\mathbf{h(t)} = \frac{2}{p} \underbrace{\mathbf{\hat{o}}_{0}}^{w_{cper}} \frac{\mathbf{Re\{W(jw)\}}}{w} \times \mathbf{Sinwt} \times \mathbf{dw}$$

Необходимо знать КЧХ $\mathbf{W}(\mathbf{j}\mathbf{w})$

ПРИМЕР (см. ранее).

Если помножить на 2.

4. Элементарные динамические звенья.

4.1. Общие сведения.

Элементарное динамическое звено (ЭДЗ) – ЛДС, описываемая дифференциальными уравнениями не выше 1-ого порядка.

Дифференциальное уравнение в общем виде: $T_{1,y} \frac{dy(t)}{dt} + y(t) = k \times T_{1,x} \frac{dx(t)}{dt} + k \times x(t)$

Свойства ЭДЗ:

- 1. детектируемость означает, что ЭДЗ однонаправленные сигнал ЭД3 проходит со входа на выход, а не наоборот.
- 2. автономность свойства одного звена не влияют на свойства другого (свойства звена определяются постоянными $T_{1,x};\ T_{1,y};\ k).$

4.2. Пропорциональное звено (П-звено).

$$\mathbf{Re}(\omega)$$
 $\mathbf{h}(t) = \frac{\mathbf{y}(t)}{\mathbf{x}(t)}$ $\mathbf{W}(s) = \frac{\mathbf{y}(s)}{\mathbf{x}(s)} = \mathbf{k}$ - передаточная функция

$$\mathbf{x}(\mathbf{s})$$

$$\mathbf{W}(\mathbf{j}\mathbf{w}) = \mathbf{k} - \mathbf{K}\mathbf{Y}\mathbf{X},$$

для любых частот КЧХ будет представлена вектором.

$$\mathbf{A}(\mathbf{w}) = \mathbf{k}$$

$$\mathbf{i}_{\mathbf{w}}(\mathbf{w}) = \mathbf{0}$$

 $\mathbf{y}(\mathbf{t}) = \mathbf{k} \times \mathbf{x}(\mathbf{t})$

ПРИМЕР: - пассивный четырехполюсник.

$$\frac{\boldsymbol{U}_{_{BX}}}{\boldsymbol{R}_{1}+\boldsymbol{R}_{2}}=\frac{\boldsymbol{U}_{_{BAIX}}}{\boldsymbol{R}_{2}}\,\boldsymbol{P}\,\,\boldsymbol{V}_{_{\boldsymbol{y}(t)}}=\frac{\boldsymbol{R}_{2}}{\boldsymbol{R}_{1}+\boldsymbol{R}_{2}}\boldsymbol{X}_{_{\boldsymbol{x}(t)}}\boldsymbol{X}_{_{\boldsymbol{x}(t)}}$$

Разностное уравнение: $\mathbf{y}_{j+1} = \mathbf{k} \times \mathbf{x}_{j}$

- применяется при имитационном моделировании

4.3. Интегрирующее звено (И-звено).

$$T_{_{H}}\frac{dy(t)}{dt}=x(t)$$

 $\mathbf{T}_{\mathbf{u}}$ - постоянная времени (интегрирования)

$$\mathbf{\hat{o}}_{0}^{t} \mathbf{dy}(t) = \frac{1}{T_{u}} \times \mathbf{x}(t) \times \mathbf{\hat{o}}_{0}^{t} \mathbf{P} \mathbf{y}(t) = \frac{1}{T_{u}} \times \mathbf{x}(t) \times t$$

Кривые разгона $\mathbf{y}(\mathbf{t})$, переходные характеристики $\mathbf{h}(\mathbf{t})$

Передаточная функция:

$$T_{H} \times S \times y(S) = x(S) \triangleright$$

$$\frac{\mathbf{y(s)}}{\mathbf{x(s)}} = \frac{1}{\mathbf{T_{_{H}}} \times \mathbf{s}}$$

$$\mathbf{W}(\mathbf{j}_{\mathbf{W}})\Big|_{\mathbf{s}=\mathbf{j}_{\mathbf{W}}} = \frac{1}{\mathbf{T}_{\mathbf{u}} \times \mathbf{j}_{\mathbf{W}}} = -\mathbf{j} \underbrace{\mathbf{T}_{\mathbf{w}} \times \mathbf{y}_{\mathbf{w}}}_{\mathbf{I}_{\mathbf{w}}(\mathbf{w}) \cdot \mathbf{y}_{\mathbf{w}}(\mathbf{w}) - \mathbf{y}_{\mathbf{w}}}$$

$$\mathbf{W}(\mathbf{j}\mathbf{w}) = \frac{1}{\mathbf{T}_{\mathbf{w}} \times \mathbf{j}\mathbf{w}} \times \mathbf{e}^{-\mathbf{j}\frac{\mathbf{p}}{2}}$$

Если подавать на вход гармонические колебания, то на выходе сигнал будет

отставать на
$$\frac{p}{2}$$
.

$$W_i f W_{i-1}$$

Разностное уравнение:
$$T_{ii} \frac{y_{j+1} - y_{j}}{Dt} = x_{j}$$

Dt - шаг (выбирается): $Dt = t_{i+1} - t_i$

$$\mathbf{y}_{j+1} = \mathbf{y}_{j} + \frac{\mathbf{Dt}}{\mathbf{T}_{u}} \times \mathbf{x}_{j}$$

Требуется задание начальных условий: $\mathbf{y_0} \neg \mathbf{0}, \ \mathbf{x_0} \neg \mathbf{0}$

ПРИМЕР: емкость постоянного сечения, в которую наливают воду с постоянным расходом.

4.4. Апериодическое звено (А-звено).

$$T_a \frac{dy(t)}{dt} + y(t) = k_a \times x(t)$$

Апериодическое, так как решение – экспонента, нет колебаний.

$$\begin{split} \mathbf{y}(t) &= \mathbf{x}(t) \times \mathbf{k}_{a} \overset{\mathcal{R}}{\overset{C}{\varsigma}} \mathbf{1} - \mathbf{e}^{-\frac{t}{T_{a}}} \overset{\ddot{\mathbf{0}}}{\overset{\dot{\mathbf{c}}}{\overset{\dot{\mathbf{c}}}{\vartheta}}} \\ \mathbf{h}(t) &= \mathbf{k}_{a} \overset{\mathcal{C}}{\overset{C}{\varsigma}} \mathbf{1} - \mathbf{e}^{-\frac{t}{T_{a}}} \overset{\ddot{\mathbf{0}}}{\overset{\dot{\mathbf{c}}}{\overset{\dot{\mathbf{c}}}{\vartheta}}} \\ \mathbf{W}(s) &= \frac{\mathbf{y}(t)}{\mathbf{x}(t)} = \frac{\mathbf{k}_{a}}{T_{a} \times s + 1} \\ \mathbf{W}(\mathbf{j}\mathbf{w}) \Big|_{s = \mathbf{j}\mathbf{w}} &= \frac{\mathbf{k}_{a}}{\sqrt{T_{a}^{2}\mathbf{w}^{2} + 1}} \times \mathbf{e}^{-\mathbf{j}\operatorname{arctg}(T_{a}\mathbf{w})} \end{split}$$

Разностные уравнения (для имитационного моделирования, числовые решения)

$$T_a \frac{y_{j+1} - y_j}{Dt} + y_j = k_a \times x_j P y_{j+1} = ...$$

ПРИМЕРЫ:

1) При - **H** Þ \mathbf{G}_{cr} - и наоборот.

 $\begin{array}{c|c} R_1 \\ \hline \\ U_{BX} \\ \hline \\ \hline \end{array}$

$$I = C \times \frac{dU_{BLIX}}{dt}$$

$$C = \frac{U_{BX} - U_{BLIX}}{R}$$

$$P \times C \times \frac{dU_{BLIX}}{dt} + V_{BLIX} = V_{BX}, \quad k_a = 1$$

4.5. Реальное дифференцирующее звено (РД-звено).

$$T_{_{\rm J}}\frac{dy(t)}{dt} + y(t) = k_{_{\rm J}} \times T_{_{\rm J}}\frac{dx(t)}{dt}$$

(идеальное дифференцирующее звено $\frac{dy(t)}{dt} = 0$)

$$\mathbf{W}(\mathbf{s}) = \frac{\mathbf{Y}(\mathbf{s})}{\mathbf{X}(\mathbf{s})} = \frac{\mathbf{k}_{\pi} \times \mathbf{T}_{\pi} \times \mathbf{s}}{\mathbf{T}_{\pi} \times \mathbf{s} + 1}$$

$$\mathbf{y}(\mathbf{t}) = \mathbf{L}^{-1}\{\mathbf{x}(\mathbf{t}) \times \mathbf{W}(\mathbf{s})\}$$

$$\mathbf{W}(\mathbf{s})|_{\mathbf{s} \otimes \mathbf{Y} \atop \mathbf{t} \otimes \mathbf{0}} = \mathbf{k}_{\mathbf{A}}$$

$$\left. \mathbf{W} \left(\mathbf{j} \mathbf{w} \right) \right|_{s=\mathbf{j} \mathbf{w}} = \frac{\mathbf{k}_{\pi} \times \mathbf{T}_{\pi} \times \mathbf{j} \mathbf{w}}{\mathbf{T}_{\pi} \times \mathbf{j} \mathbf{w} + 1} = \frac{\mathbf{k}_{\pi} \times \mathbf{T}_{\pi} \times \mathbf{w}}{\sqrt{\mathbf{T}_{\pi}^{2} \mathbf{w}^{2} + 1}} \times e^{-\mathbf{j} \operatorname{arctg} \left(\mathbf{T}_{\pi} \times \mathbf{w} \right)}$$

Выходные колебания в такой системе опережают входные.

$$w = 0;$$
 $j(w) = \frac{p}{2}$
 $w = \frac{y}{2};$ $j(w) = 0$

$$\begin{split} & \textit{ПРИМЕР:} \ \text{РД-звено} - \text{пассивный четырех полюсник.} \\ & I = C \frac{dU_c}{dt} = C \frac{d(U_{_{Bx}} - I \times R)}{dt} = C \frac{dU_{_{Bx}}}{dt} - C \times R \frac{dI}{dt} \\ & C \times R \frac{dI}{dt} + I = \frac{C \times R}{R} \frac{dU_{_{Bx}}}{dt} \\ & k_{_{_{\mathcal{I}}}} = \frac{1}{R}; \quad T_{_{_{\mathcal{I}}}} = C \times R; \quad I = y(t); \quad U_{_{Bx}} \otimes x(t) \\ & T_{_{_{\mathcal{I}}}} \frac{dy(t)}{dt} + y(t) = k_{_{_{\mathcal{I}}}} \times T_{_{_{\mathcal{I}}}} \times \frac{dx(t)}{dt} \end{split}$$

Если $\mathbf{R} \otimes \mathbf{0}$, то получим идеальное дифференцирующее звено; $\mathbf{k}_{_{\Pi}} \times \mathbf{T}_{_{\Pi}} = \mathbf{const}$.

$$\Pi$$
-звено: $\mathbf{k}_{_{\mathrm{J}}}$;

A-звено:
$$\frac{\mathbf{k}_{\pi}}{\mathbf{T}_{\pi} \times \mathbf{s} + \mathbf{1}}$$

Обычно РД-звено представляют так:

$$\mathbf{W}_{\mathrm{p,}} = \mathbf{k}_{_{\mathrm{J}}} - \frac{\mathbf{k}_{_{\mathrm{J}}}}{\mathbf{T}_{_{\mathrm{J}}} \times \mathbf{s} + \mathbf{1}} = \frac{\mathbf{k}_{_{\mathrm{J}}} \times \mathbf{T}_{_{\mathrm{J}}} \times \mathbf{s}}{\mathbf{T}_{_{\mathrm{J}}} \times \mathbf{s} + \mathbf{1}}$$
 - передаточная функция.

4.6. Запаздывающее звено (3-звено). (Звено транспортного запаздывая).

ПРИМЕР:

$$t = \frac{L}{V}, V - \text{скорость.}$$
$$\mathbf{v}(t) = \mathbf{x}(t) - t$$

$$\mathbf{y(t)} = \mathbf{x(t)} = \mathbf{t}$$
- уравнение 3-звена.
Разностное уравнение:
$$\mathbf{y}_{j+1} = \mathbf{if}_{\dot{\mathbf{e}}}^{\mathbf{x}} \mathbf{p} \mathbf{t}, \mathbf{0}, \mathbf{x}_{j} = \frac{\mathbf{t}}{\mathbf{Dt}_{\dot{\mathbf{g}}}^{\mathbf{x}}}$$

Если \mathbf{t}_{j} \mathbf{p} \mathbf{t} , то $\mathbf{y}_{j+1} = \mathbf{0}$, иначе $\mathbf{y}_{j+1} = \mathbf{x}_{j} - \frac{\mathbf{t}}{\mathbf{D}\mathbf{t}}$

$$\mathbf{W}(\mathbf{j}\mathbf{w}) = \mathbf{1} \times \mathbf{e}^{-\mathbf{j}\mathbf{w}\mathbf{t}}$$
 - КЧХ 3-звена

t - временной сдвиг, w - частота.

Фазовый сдвиг = $\mathbf{w} \times \mathbf{t}$

Знак «-» означает запаздывание.

$$\mathbf{W}(\mathbf{s})|_{\mathbf{j}_{\mathbf{W}^{\otimes}\mathbf{s}}} = \mathbf{e}^{-\mathbf{s} \cdot \mathbf{t}}$$
 -передаточная функция.

5. Соединение элементарных динамических звеньев (ЭДЗ).

5.1. Общие сведения.

Виды соединений.

- 1. параллельное;
- 2. последовательное;
- 3. встречно-параллельное;
- 4. комбинированное.

ПРИМЕР:

 $\mathbf{W_1}$, $\mathbf{W_6}(\mathbf{s})$ - передаточные функции ЭЛ систем.

Правила.

1. v

$$x(t) \longrightarrow x_1(t)$$

$$\longrightarrow x_2(t)$$

$$\longrightarrow x_3(t)$$

$$\mathbf{x}(t) = \mathbf{x}_1(t) = \mathbf{x}_2(t) = \mathbf{x}_3(t)$$

2. $x_1(t)$ x(t) алгебраический сумматор: $x(t) = \pm x_1(t) \pm x_2(t)$ $x_2(t)$

3.
$$x(s)$$
 $y(s)$ \longrightarrow $W(s)$

$$\mathbf{y}(\mathbf{s}) = \mathbf{x}(\mathbf{s}) \times \mathbf{W}(\mathbf{s})$$

5.2. Параллельное соединение ЭДЗ.

Правило: Эквивалентная передаточная функция параллельного соединения звеньев равна сумме их передаточных функций.

KЧX:
$$\mathbf{W}(\mathbf{j}\mathbf{w})|_{\mathbf{s}\otimes\mathbf{j}\mathbf{w}} = \overset{\mathbf{n}}{\mathbf{A}} \mathbf{W}_{\mathbf{i}}(\mathbf{j}\mathbf{w})$$

ПРИМЕР: (из лабораторной работы №1). Параллельное соединение П-звена и И-звена.

 $\mathbf{W}_{_{_{3KB}}}\left(s\right) = \mathbf{W}_{_{II}}\left(s\right) + \mathbf{W}_{_{II}}\left(s\right) = \mathbf{k} + \frac{1}{T_{_{II}} \times s}$

5.3. Последовательное соединение ЭДЗ.

$$\begin{array}{c}
\mathbf{x(t)} \\
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{1}(t) \\
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{2}(t) \\
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{2}(t) \\
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{1}(t) \\
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{1}(t) \\
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{2}(t) \\
\mathbf{W}_{1}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{2}(t) \\
\mathbf{W}_{2}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{2}(t) \\
\mathbf{W}_{3}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{2}(t) \\
\mathbf{y}_{3}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{3}(t) \\
\mathbf{y}_{3}(s)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{3}(t) \\
\mathbf{y}_{3}(t)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{4}(t) \\
\mathbf{y}_{5}(t)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{5}(t) \\
\mathbf{y}_{5}(t)$$

$$\begin{array}{c}
\mathbf{y}_{5}(t) \\
\mathbf{y}_{5}(t)
\end{array}$$

$$\begin{array}{c}
\mathbf{y}_{5}(t) \\
\mathbf{y}_{5}(t)$$

$$\begin{array}{c}
\mathbf{y}_{5}(t) \\
\mathbf{y}_{5}(t)
\end{array}$$

Правило: Передаточная функция или КЧХ последовательного соединения звеньев равна произведению передаточных функций или КЧХ входящих в соединение звеньев.

ПРИМЕР:

$$\mathbb{R} A_{H}(W_{i}) \times A_{a}(W_{i}); \quad j = -\frac{p}{2} - \frac{p}{4} = -\frac{3p}{4}$$

Правило перемножения векторов:

При перемножении векторов аргументы (ФЧХ) складываются, модули (АЧХ) перемножаются.

Теоретически w = 0 ¥

$$\begin{aligned} \mathbf{w} &= \mathbf{0} & \mathbf{A}_{_{\mathsf{JKB}}}\left(\mathbf{0}\right) = \mathbf{Y} & \mathbf{j}_{_{\mathsf{JKB}}}\left(\mathbf{0}\right) = -\frac{\mathbf{p}}{2} \\ \mathbf{w} &\otimes \mathbf{Y} & \mathbf{A}_{_{\mathsf{JKB}}}\left(\mathbf{Y}\right) = \mathbf{0} & \mathbf{j}_{_{\mathsf{JKB}}}\left(\mathbf{Y}\right) = -\mathbf{p} \end{aligned}$$

5.4. Встречно-параллельное соединение ЭДЗ.

 $W_{\text{экв}}(s)$ у(t) Обратная связь может быть со знаком "+" или "-".

"+" - положительная обратная связь (ПОС)

"-" – отрицательная обратная связь (ООС)

ПОС раскачивает систему. ООС стабилизирует (направлена на исключение внешнего влияния).ООС лежит в

основе стабилизирующих автоматических систем регулирования (АСР). ПОС используется в позиционном регулировании.

$$\mathbf{W}_{_{_{_{_{3KB}}}}}(\mathbf{s}) = \frac{\mathbf{y}(\mathbf{s})}{\mathbf{x}(\mathbf{s})}$$

$$\mathbf{y}(\mathbf{s}) = \mathbf{x}_{1}(\mathbf{s}) \times \mathbf{W}_{1}(\mathbf{s}) = \begin{vmatrix} \mathbf{x}_{1}(\mathbf{s}) = \mathbf{x}(\mathbf{s}) & \mathbf{y}(\mathbf{s}) \\ \mathbf{y}(\mathbf{s}) = \mathbf{x}(\mathbf{s}) & \mathbf{y}(\mathbf{s}) \\ \mathbf{y}(\mathbf{s}) = \mathbf{y}(\mathbf{s}) & \mathbf{y}(\mathbf{s}) \\ \mathbf{w}_{1}(\mathbf{s}) = \mathbf{y}(\mathbf{s}) & \mathbf{y}(\mathbf{s}) \\ \mathbf{w}_{2}(\mathbf{s}) & \mathbf{y}(\mathbf{s}) & \mathbf{w}_{2}(\mathbf{s}) \end{vmatrix} = \mathbf{y}(\mathbf{s}) + \mathbf$$

ПРИМЕР:

 $\mathbf{U}(\mathbf{s})$ - задание регулятору

1 (s) - возмущение по каналу регулирующего воздействия

выходе скомпенсировать изменение $1: \uparrow^{y(t)}$

 $\mathbf{W}_{_{_{\mathbf{K}\mathbf{B}}}}^{1-\mathbf{Y}} = \frac{\mathbf{W}_{_{\mathbf{0}}}(\mathbf{s})}{1+\mathbf{W}_{_{\mathbf{D}}}(\mathbf{s})\times\mathbf{W}_{_{\mathbf{0}}}(\mathbf{s})\times\mathbf{1}}$

$$\mathbf{W}_{_{\mathbf{j}_{KB}}}\left(\mathbf{j}_{W}\right) = \left.\mathbf{W}_{_{\mathbf{j}_{KB}}}\left(\mathbf{s}\right)\right|_{\mathbf{s}=\mathbf{j}_{W}}$$

При U(t) = 1 и l(t) = 1, y(t) можно определить:

- 1. через решение эквивалентного дифференциального уравнения
- **2.** через $W_{_{9KB}}(s)$ и обратное преобразование Лапласа $L^{-1}\{U(s) \times W_{_{9KB}}^{U-Y}(s)\}$
- 3. через W_{arg} (jw) и обратное преобразование Фурье

$$W_{_{3KB}}(s) = \frac{W_{_{1}}(s) \times [W_{_{2}}(s) + W_{_{3}}(s)] \times W_{_{4}}(s)}{1 + W_{_{1}}(s) \times [W_{_{2}}(s) + W_{_{3}}(s)] \times W_{_{4}}(s) \times [W_{_{5}}(s) + W_{_{6}}(s)]}$$

ПРИМЕР: (лабораторная работа №2)

$$k_a, T_a = const; T_u = var$$

Канал $\mathbf{U}(\mathbf{t}) \otimes \mathbf{v}(\mathbf{t})$

$$W_{_{3KB}}^{U^{-}Y} = \frac{W_{_{II}}(s) \times W_{_{a}}(s)}{1 + W_{_{II}}(s) \times W_{_{a}}(s)} = \frac{\frac{1}{T_{_{II}} \times s} \times \frac{k_{_{a}}}{T_{_{a}} \times s} \times \frac{k_{_{a}}}{T_{_{a}} \times s} \times \frac{k_{_{a}}}{t_{_{a}}}}{1 + \frac{k_{_{a}}}{T_{_{II}} \times s} \times (T_{_{a}} \times s + 1)} = \frac{\frac{k_{_{a}}}{k_{_{a}}}}{\frac{(T_{_{II}} \times T_{_{a}} \times s^{2} + T_{_{_{II}}} \times s + k_{_{a}})}{k_{_{a}}}} = \frac{\frac{k_{_{a}}}{k_{_{a}}}}{t_{_{a}}}$$

$$W_{_{3KB}}^{\mathrm{U-Y}} = \frac{1}{\underbrace{\frac{T_{_{_{\mathbf{I}}}} \times T_{_{a}}}{\mathbf{H}_{_{\mathbf{I}_{2}}^{\mathbf{k}}}} \times s^{2} + \underbrace{\frac{T_{_{_{\mathbf{I}}}}}{\mathbf{k}_{_{a}}}}_{T_{_{1}}} \times s + 1}}$$

$$s \ \mathbb{R} \ \frac{1}{dt}; \ s^2 \ \mathbb{R} \ \frac{1}{dt^2}$$

$$T_2^2 \times \frac{d^2y(t)}{dt^2} + T_1 \times \frac{dy(t)}{dt} + y(t) = 1 \times U(t)$$

В зависимости от T_2^2 и T_1 (то есть от T_u , T_a , k_a) вид y(t) будет меняться.

В такой системе расходящихся колебаний быть не может.

Решение дифференциального уравнения [1]

$$y(t) = y_{\text{RLIHYWIGH}}(t) + y_{\text{CROO}}(t)$$

 $\mathbf{y}(\mathbf{t}) = \mathbf{y}_{\text{вынужден}}(\mathbf{t}) + \mathbf{y}_{\text{своб}}(\mathbf{t})$ $\mathbf{y}_{\text{вынужден}}(\mathbf{t}) = \mathbf{1} \times \mathbf{U}(\mathbf{t}) \Big|_{\mathbf{U}(\mathbf{t})=\mathbf{1}} = \mathbf{1}$ определяется правой частью

 \mathbf{r}_1 , \mathbf{r}_2 - корни характеристического уравнения $\mathbf{r}_2^2 \times \mathbf{r}^2 + \mathbf{r}_1 \times \mathbf{r} + \mathbf{r} = \mathbf{0}$, при $\mathbf{y}(\mathbf{t})$ 1 $\mathbf{0}$

$$\mathbf{r}_{1,2} = -\frac{\mathbf{T}_1}{2\mathbf{T}_2} \pm \sqrt{\frac{x}{\xi} \frac{\mathbf{T}_1}{2\mathbf{T}_2} \frac{\ddot{\mathbf{0}}^2}{\dot{\mathbf{0}}}} - \frac{1}{\mathbf{T}_2^2}$$

* подкоренное выражение равно 0, если $T_1 = 2T_2$

корни: $\mathbf{r}_1 = -a_1$; $\mathbf{r}_2 = -a_2$ (корни вещественны и отрицательны).

$$y(t) = 1 + C_1 e^{-a_1 t} + C_2 e^{-a_2 t}$$

 C_1 и $C_2 \rightarrow$ из нулевых начальных условий:

$$y(t)\Big|_{t=0} = 1 + C_1 + C_2 = 0$$

$$y(t)\Big|_{t=0} = -a_1 \times C_1 - a_2 \times C_2 = 0$$

$$\ddot{y} \stackrel{?}{=} C_1 = -\frac{a_2}{a_2 - a_1}$$

$$\ddot{z} \stackrel{?}{=} C_2 = +\frac{a_1}{a_2 - a_1}$$

Окончательно:
$$\mathbf{y}(\mathbf{t}) = \mathbf{1} - \frac{\mathbf{a}_2}{\mathbf{a}_2 - \mathbf{a}_1} \times \mathbf{e}^{-\mathbf{a}_1 \mathbf{t}} + \frac{\mathbf{a}_1}{\mathbf{a}_2 - \mathbf{a}_1} \times \mathbf{C}_2 \mathbf{e}^{-\mathbf{a}_2 \mathbf{t}}$$

Если корни вещественны, отрицательны и различны, то такое звено называют апериодическим звеном 2-го порядка.

Такое звено можно заменить:

$$W_{_{9KB}}(s) = \frac{1}{T \times s + 1} \times e^{-t \cdot s}$$

b.
$$T_1 = 2T_2$$

$$\mathbf{r}_1 = \mathbf{r}_2 = -\mathbf{a}$$

$$y(t) = 1 + (C_1 + C_2) \times e^{-axt}$$
, при $x(t) = 1$

Начальные условия:

$$\begin{aligned} \mathbf{y}(\mathbf{t})\big|_{\mathbf{t}=\mathbf{0}} &= \mathbf{0} \ \ddot{\mathbf{y}} \\ \mathbf{y}(\mathbf{t})\big|_{\mathbf{t}=\mathbf{0}} &= \mathbf{0} \ \ddot{\mathbf{b}} \end{aligned} \mathbf{P} \ \mathbf{\hat{1}} \ \mathbf{C}_1 &= -1 \\ \mathbf{\hat{1}} \ \mathbf{C}_2 &= -a \end{aligned}$$

Окончательное решение: $\mathbf{y}(\mathbf{t}) = \mathbf{1} - (\mathbf{1} + \mathbf{a} \times \mathbf{t}) \times \mathbf{e}^{-\mathbf{a} \times \mathbf{t}}$ - граница между вещественными комплексными конями.

c. $T_1 p 2T_2$

корни: $\mathbf{r}_1 = \mathbf{r}_2 = -\mathbf{a} \pm \mathbf{j}\mathbf{w}$

$$*$$
 w = $\sqrt{rac{1}{T_2^2}-rac{\ddot{e}}{\dot{e}}rac{T_1}{2T_2}rac{\ddot{o}}{\dot{g}}^2}$ - расчетная частота собственных колебаний; $\sqrt{-1}=\mathbf{j}$

$$y(t) = 1 + (C_1 \times Coswt + C_2 \times Sinwt) \times e^{-axt}$$

Начальные условия:

$$\begin{aligned} y(t)\Big|_{t=0} &= 0 & \ddot{u} \\ y(t)\Big|_{t=0} &= 0 & \ddot{p} \end{aligned} \overset{\grave{1}}{P} \overset{\grave{1}}{\overset{\grave{1}}{I}} C_1 = -1 \\ \overset{\grave{1}}{I} C_2 &= -\frac{a}{w} \end{aligned}$$

Окончательное решение: $y(t) = 1 - \mathop{c}_{a}^{w} Coswt + \frac{a}{w} \times Sinwt \mathop{c}_{a}^{\ddot{0}} \times e^{-axt}$

1.
$$T_a = 10$$
; $T_u = 10$; $k_a = 1$

2.
$$T_{u,1} = 0.2 \cdot T_u$$

3.
$$T_{u,2} = 5 \cdot T_u$$

$$T_0 = \frac{2p}{w}$$
 – период собственных колебаний

$$\mathbf{A}_3 = \mathbf{A}_1 \times \mathbf{e}^{-\mathbf{a}}$$

$$\mathbf{I}_0 = \frac{1}{\mathbf{W}}$$
 — период сооственных колеоании
$$\mathbf{A}_3 = \mathbf{A}_1 \times \mathbf{e}^{-\mathrm{at}}$$

$$\mathbf{W} = \frac{2\mathbf{p}}{\mathbf{T}_0}$$
 — экспериментальная частота собственных колебаний

Для таких систем вводят **степень затухания:** $y = \frac{A_1 - A_3}{A}$

Возьмем отрезок $[0; T_0]$ - см. график

$$y = \frac{A_1 - A_1 \times e^{-aT_0}}{A_1} = 1 - e^{-a\frac{2p}{w}}$$

$$\frac{|a|}{|w|} = m$$
 - степень колебательности.

$$y = 1 - e^{-2pm}$$

На практике y = 0.7, 0.9

У	0.7	0.9
m	0.221	0.366

Теоретически
$$y = 0$$
, 1 $m = 0$, Y

d.
$$T_1 = 0$$

корни: $\mathbf{r}_1 = \mathbf{r}_2 = \pm \mathbf{j} \mathbf{w}$ - чисто мнимые

$$y(t) = 1 - Coswt$$

Подбирая коэффициенты T_{u} можно подобрать вид кривой.

Частотные характеристики инерционного звена 2-го порядка.

$$\left.W_{_{3KB}}\left(jw\right)\right|_{s\,\otimes\,\,jw}\,=\frac{W_{_{H}}\left(jw\right)\times W_{_{a}}\left(jw\right)}{1+W_{_{H}}\left(jw\right)\times W_{_{a}}\left(jw\right)}$$

Можно получить $\mathbf{W}_{_{_{^{3}KB}}}(\mathbf{s})$ и $\mathbf{W}_{_{_{3KB}}}(\mathbf{j}\mathbf{w})$ из дифференциального уравнения.

$$W_{_{3KB}}(s) = \frac{Y(t)}{X(t)} = \frac{1}{T_2^2 \times s^2 + T_1 \times s + 1}$$

$$\mathbf{W}_{_{_{^{3\mathbf{KB}}}}}\left(\mathbf{j}\mathbf{w}\right) = \frac{\mathbf{1} \times \left(\mathbf{1} - \mathbf{T}_{2}^{2} \times \mathbf{w}^{2} - \mathbf{j}\mathbf{T}_{1} \times \mathbf{w}\right)}{\left(\mathbf{T}_{2}^{2} \times \left(\mathbf{j}\mathbf{w}\right)^{2} + \mathbf{T}_{1} \times \mathbf{j}\mathbf{w} + \mathbf{1}\right) \times \left(\mathbf{1} - \mathbf{T}_{2}^{2} \times \mathbf{w}^{2} - \mathbf{j}\mathbf{T}_{1} \times \mathbf{w}\right)} =$$

$$= \frac{1 - T_{2}^{2} \times w^{2}}{\left(1 - T_{2}^{2} \times w^{2}\right)^{2} + T_{1}^{2} \times w^{2}} - j \times \frac{T_{1} \times w}{\left(1 - T_{2}^{2} \times w^{2}\right)^{2} + T_{1}^{2} \times w^{2}}$$

$$= \frac{1 - T_{2}^{2} \times w^{2}}{\left(1 - T_{2}^{2} \times w^{2}\right)^{2} + T_{1}^{2} \times w^{2}}$$

$$= \frac{1 - T_{2}^{2} \times w^{2}}{\left(1 - T_{2}^{2} \times w^{2}\right)^{2} + T_{1}^{2} \times w^{2}}$$

$$= \frac{1 - T_{2}^{2} \times w^{2}}{\left(1 - T_{2}^{2} \times w^{2}\right)^{2} + T_{1}^{2} \times w^{2}}$$

$$A(w) = \sqrt{Re^{2}(w) + Im^{2}(w)} = \frac{1}{\sqrt{(1 - T_{2}^{2} \times w^{2})^{2} + T_{1}^{2} \times w^{2}}}$$

$$j(w) = arctg \frac{Im(w)}{Re(w)} = -arctg \frac{T_1 \times w}{1 - T_2^2 \times w^2}$$

1 вариант: аналитический.

$$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \qquad \begin{array}{cccc} & & & \\ T_1 & \mathbf{p} & \mathbf{2T} \\ \end{array}$$

$$T_1 = 0$$

$$T_1 = 2T_2$$

$$T_1 = 2T$$

$$w=0$$
 При $T_1=2T_2$ (случай b) $\frac{T_2}{T_1}=0.5$, КЧХ – граница

1.
$$w = 0$$
, $j(0) = 0$, $A(0) = 1$

2.
$$\mathbf{w} \otimes \mathbf{Y}$$
, $\mathbf{j} (\mathbf{Y}) = -\mathbf{p}$, $\mathbf{A}(\mathbf{Y}) \otimes \mathbf{0}$

3.
$$j = -\frac{p}{2}$$
, $Re(w) = 0$ $Pw_{-\frac{p}{2}} = \frac{1}{T_2}$

Резонанс при $w = w_{\text{собств.}}$

2 вариант: графический.

$$W_{_{3KB}}\left(s\right) = \frac{W_{_{a}} \times W_{_{H}}}{1 + W_{_{a}} \times W_{_{H}}}$$

- 1. Сначала строятся КЧХ А-звена и КЧХ И-
- 2. При какой-то частоте **W**₃ строится
- 3. складываются вектора $\overset{\text{\tiny \emptyset}}{1}$ и $\overset{\text{\tiny \dots}}{W_a} \times W_{_u}$, получается вектор $1+W_a\times W_u$ 4. делим $W_a\times W_u$ на $1+W_a\times W_u$. При этом
- аргументы вычитаются, а модули делятся.

5.5. Понятие о замкнутой и разомкнутой системах.

По такой структуре строятся АСР, где $\mathbf{W_2}(\mathbf{s})$ - передаточная функция объекта регулирования $\mathbf{W}_{\!\scriptscriptstyle 1}(\!\mathbf{s})$ - передаточная функция регулятора

$$W_{\text{зам}}(s) = \frac{Y(s)}{U(s)} = \frac{W_1(s) \times W_2(s)}{1 + W_1(s) \times W_2(s)}$$
 - замкнутая АСР

Если обратную связь разорвать, то получается разомкнутая АСР.

$$\mathbf{W}_{\text{pa3}}(\mathbf{s}) = \frac{\mathbf{Y}(\mathbf{s})}{\mathbf{U}(\mathbf{s})} = \mathbf{W}_{1}(\mathbf{s}) \times \mathbf{W}_{2}(\mathbf{s})$$

$$W_{_{3aM}}\left(s\right) = \frac{W_{_{pa3}}\left(s\right)}{1 + W_{_{pa3}}\left(s\right)}$$

$$W_{pa3}(s) = \frac{2 (s)}{U(s)} = W_1(s) \times W_2(s)$$

$$W_{3aM}(s) = \frac{W_{pa3}(s)}{1 + W_{pa3}(s)}$$

$$W_{3aM}(jw) = OC \quad \begin{matrix} & & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

6. Имитационное моделирование переходных процессов в ЛДС.

6.1. Замена дифференциального уравнения высокого порядка на соединение элементарных звеньев.

ПРИМЕР: (из расчетного задания).

$$\mathbf{x}(t)$$
 $\mathbf{y}(s)$ Дифференциальное уравнение:

 $\mathbf{A}_3 \frac{\mathbf{d}^3 \mathbf{y}(t)}{\mathbf{d}t^3} + \mathbf{A}_2 \frac{\mathbf{d}^2 \mathbf{y}(t)}{\mathbf{d}t^2} + \mathbf{A}_1 \frac{\mathbf{d}\mathbf{y}(t)}{\mathbf{d}t} + \mathbf{y}(t) = \mathbf{B} \times \mathbf{x}(t)$

$${f B}_{\hat{f e}}^{\acute{f e}} {{{\bf o}^{3}/{\bf q}}_{\hat{f n}}^{\acute{f u}}}$$
 - коэффициент усиления (задано ~ 1.0)

– на схеме изменяется температура на выходе подогреваемой среды при $DG_{rop} = 1 \frac{M^3}{u}$

$$W_{o6}\left(s\right) = \frac{Y\left(s\right)}{U\left(s\right)} = \frac{B}{A_{1}X_{1}X_{2}^{3} + A_{1}X_{2}^{3} + A_{1}X_{2}^{3} + A_{1}X_{2}^{3}}$$

Эквивалентная схема: 3 А-звена.

$$\begin{array}{c|c} U(s) \\ \hline \\ T_1 \times s + 1 \end{array} \longrightarrow \begin{array}{c|c} \hline 1 \\ \hline \\ T_2 \times s + 1 \end{array} \longrightarrow \begin{array}{c|c} \hline 1 \\ \hline \\ T_3 \times s + 1 \end{array} \longrightarrow \begin{array}{c|c} \hline \\ \end{array}$$

$$W_{\text{ob}}^{\, \zeta}\left(s\right) = \frac{B}{\left(T_{1} \times s + 1\right) \times \left(T_{2} \times s + 1\right) \times \left(T_{3} \times s + 1\right)}$$

Чтобы осуществить такую замену, необходимо найти T_1 , T_2 , T_3 (известны A_1 , A_2 , A_3).

$$T_1 = -\frac{1}{r_1}$$
; $T_2 = -\frac{1}{r_2}$; $T_3 = -\frac{1}{r_3}$, где r_1, r_2, r_3 - корни характеристического уравнения [*].

Программа для MathCad:

$$f(A3,A2,A1,r) := A3 \times r^3 + A2 \times r^2 + A1 \times r + 1$$

$$j := 0K100; r_i := 0.1j - 1;$$

(Практически все корни в задании 0 , (-1))

$$y_j := f(A3, A2, A1, r_j)$$

Частный случай: \mathbf{r}_1 , $\mathbf{r}_2 = \mathbf{r}_3$

6.2. Пример имитационного моделирования замкнутой АСР

Представим замкнутую АСР в виде структурной схемы из элементарных звеньев.

$$A_1$$
-звено: $W_1(s) = \frac{B}{T_1 \times s + 1}$

A₂-3BeHo:
$$W_2(s) = \frac{B}{T_2 \times s + 1}$$

$$A_3$$
-звено: $W_3(s) = \frac{B}{T_3 \times s + 1}$

Программа:

Разностные уравнения звеньев

А-звено:
$$\mathbf{f}_{a}(\mathbf{k}_{a}, \mathbf{T}_{a}, \mathbf{dt}, \mathbf{X}, \mathbf{Y}) := \mathbf{\xi}^{a} \mathbf{1} - \frac{\mathbf{dt}}{\mathbf{T}_{a}} \mathbf{\ddot{\theta}}^{\ddot{b}} \times \mathbf{Y} + \frac{\mathbf{dt}}{\mathbf{T}_{a}} \times \mathbf{k}_{a} \times \mathbf{X}$$

И-звено:
$$\mathbf{f}_{\mathbf{u}} \overset{\mathcal{R}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}}{\overset{\mathbf{c}}{\overset{\mathbf{c}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}}{\overset{}}}}$$

П-звено:
$$\mathbf{f}_{\mathbf{p}}(\mathbf{k}_{\mathbf{p}}, \mathbf{X}) := \mathbf{k}_{\mathbf{p}} \times \mathbf{X}$$

$$\mathbf{te} := \mathbf{60}$$
 , $\mathbf{N} := \mathbf{6000}$ - число точек, $\left[\mathbf{N} = \mathbf{100} \! \times \! \mathbf{t} \right] \! , \; \mathbf{t}$ – время.

$$dt := \frac{te}{N}$$
 - mar, $j := 0KN$

 $\mathbf{t}_{\mathbf{j}} := \mathbf{dt} \times \mathbf{j}$ - текущее время

$$\begin{split} & m_{0} - 0 \ \ddot{u} \\ & mI_{0} - 0 \ \ddot{i} \\ & e_{0} - 0 \ \ddot{i} \\ & y1_{0} - 0 \ \ddot{i} \\ & y2_{0} - 0 \ \ddot{i} \\ & y3_{0} - 0 \ \ddot{b} \\ & for \ j\widehat{I} \ 0K \frac{te}{dt} \\ & P(k_{p}, T_{u}, l, U) \coloneqq \begin{bmatrix} x_{j+1} - l + mj \\ y1_{j+1} - f_{a}(k1, T1, dt, x_{j+1}, y1_{j}) \\ & y2_{j+1} - f_{a}(k2, T2, dt, y1_{j+1}, y2_{j}) \\ & y3_{j+1} - f_{a}(k3, T3, dt, y2_{j+1}, y3_{j}) \\ & e_{j+1} - U - y3_{j+1} \\ & mP_{j+1} - f_{u}(k_{p}, e_{j+1}) \\ & mI_{j+1} - f_{u}(k_{p}, T_{u}, dt, e_{j+1}, mP_{j+1}) \\ & m_{j+1} - mP_{j+1} + mI_{j+1} \\ & y3 \end{split}$$

$$V1 := P(0,1000,1,0)$$

7. Устойчивость ЛДС.

7.1. Понятие об устойчивости.

Аксиома 1: Устойчивость определяется внутренним состоянием ДС.

Аксиома 2: Устойчивость не является абсолютным свойством ДС.

ПРИМЕР:

- а) устойчивая ДС
- б) нейтральная ДС
- в) неустойчивая ДС.

В данном случае внутренним состоянием системы является форма поверхности.

- - - - граница

- устойчивая

..... - неустойчивая

Если подать на вход сигнал:

Систему можно отрегулировать так, чтобы она была устойчива.

Устойчивость – свойство ДС возвращаться в исходное состояние после снятия действующих на нее возмущений.

Устойчивость определяет свободное движение системы $\mathbf{y}_{_{\mathbf{cвоб}}}(\mathbf{t})$

$$\mathbf{y}_{cbo6}(t) = \dot{\mathbf{a}}_{i=1} \mathbf{C}_{i} \times e^{\mathbf{r}_{i}t}$$

Свободное движение системы зависит от корней характеристического уравнения.

Прямой метод оценки устойчивости – решение дифференциального уравнения $\mathbf{y}_{_{\mathbf{cвоб}}}(\mathbf{t})$

7.2. Косвенные методы оценки устойчивости ЛДС.

7.2.1. По корням характеристического уравнения ЛДС.

Дифференциальное уравнение ® характеристическое уравнение ® корни

σουσος -d-jw -d+jw -d+jw -d+jw -d-jw -d-j

Корни в общем виде: $\mathbf{r}_{1,2} = \pm \mathbf{a} \pm \mathbf{j} \mathbf{w}$

1. Корни вещественны, отрицательны $(-a_1, -a_2, \mathbf{K})$.

ЛДС – устойчивая без колебаний.

- **2.** Комплексные $(-a \pm jw)$ с отрицательной вещественной частью. ЛДС устойчива с колебаниями.
- **3.** Один из корней равен **0**. ЛДС нейтральная.
- **4.** Корни мнимые ® незатухающие колебания ® граница устойчивости.

- 5. Корень вещественный положительный. ЛДС неустойчива.
- 6. Корни комплексные с (+ а). ЛДС неустойчива (колебания).

Критерий устойчивости по корням: ЛДС устойчива, если корни характеристического уравнения лежат слева от мнимой оси; неустойчива, если корни справа от мнимой оси (хотя бы один из корней).

Мнимая ось – граница устойчивости.

<u>7.2.2. Алгебраический критерий (критерий Гурвица).</u> (по коэффициентам характеристического уравнения).

Порядок анализа:

- 1. записывается характеристическое уравнение: $\mathbf{a}_0 \times \mathbf{r}^n + \mathbf{a}_1 \times \mathbf{r}^{n-1} + \mathbf{a}_2 \times \mathbf{r}^{n-2} + \mathbf{K} + \mathbf{a}_n = \mathbf{0}$
- 2. составляется определитель Гурвица (матрица): $D^n = \begin{vmatrix} a_0 & a_2 & a_4 & K & 0 \\ 0 & a_1 & a_3 & K & 0 \\ M & M & M & O & M \\ 0 & 0 & 0 & K & a_n \end{vmatrix}$

Сначала заполняется диагональ $a_1 L a_n$.

- **3.** анализ определителя. ЛДС устойчива, если:
- а) все коэффициенты одного знака;
- $\mathbf{6}$) определитель $\mathbf{D}^{\mathbf{n}}$ \mathbf{f} $\mathbf{0}$,

12ⁿ⁻¹42^f48,

 D^2 f 0,

если вычеркнуть последнюю строку и столбец

ПРИМЕР:

$$W_{A}(s) = \frac{1}{10 \times s + 1}$$

$$W_{A}(s) = k$$

$$\mathbf{W}_{\Pi}(\mathbf{s}) = \mathbf{k}_{\mathbf{p}}$$

Определяем, при каком ${\bf k}_{\rm p}$ система на границе устойчивости.

$$W_{A}(s) = \frac{1}{10 \times s + 1}$$
$$W_{II}(s) = k_{p}$$

$$W_{_{3KB}}(s) = \frac{[W_{_{A}}(s)]^{3}}{1 + W_{_{\Pi}}(s) \times [W_{_{A}}(s)]^{3}} = \frac{\overset{\acute{e}}{\hat{e}} \frac{1}{10 \times s + 1} \overset{\grave{u}}{\mathring{u}}}{1 + \overset{\grave{e}}{k}_{_{p}} \times \overset{\acute{e}}{\hat{e}} \frac{1}{10 \times s + 1} \overset{\grave{u}}{\mathring{u}}} = \frac{1}{\underset{a_{_{0}}}{1000 \times s^{3}} + \underset{a_{_{1}}}{300 \times s^{2}} + \underset{a_{_{2}}}{300 \times s} + \overset{\grave{e}}{\underset{a_{_{2}}}{1000}} \overset{\ddot{o}}{\underset{\acute{e}}{1000}}} = \frac{1}{\underset{a_{_{2}}}{1000 \times s^{3}} + \underset{a_{_{1}}}{300 \times s^{2}} + \underset{a_{_{2}}}{300 \times s^{2}} + \underset{a_{_{2}}}{300 \times s} + \overset{\grave{e}}{\underset{\acute{e}}{1000}} \overset{\ddot{o}}{\underset{\acute{e}}{1000}}} = \frac{1}{\underset{a_{_{1}}}{1000 \times s^{3}} + \underset{a_{_{1}}}{3000 \times s^{2}} + \underset{a_{_{2}}}{300 \times s^{2}} + \underset{a_{_{2}}}{300 \times s} + \overset{\grave{e}}{\underset{\acute{e}}{1000}} \overset{\ddot{o}}{\underset{\acute{e}}{1000}}} = \frac{1}{\underset{\acute{e}}{1000 \times s^{3}} + \underset{\acute{e}}{300 \times s^{2}} + \underset{\acute{e}}$$

$$D^{3} = \begin{vmatrix} a_{1} & a_{3} & 0 \\ a_{0} & a_{2} & 0 \\ 0 & a_{1} & a_{3} \end{vmatrix}$$

$$a_0, a_1, a_2, a_3 f 0$$

$$D^2 = \begin{vmatrix} \mathbf{a}_1 & \mathbf{a}_3 \\ \mathbf{a}_0 & \mathbf{a}_2 \end{vmatrix} = \mathbf{a}_1 \times \mathbf{a}_2 - \mathbf{a}_0 \times \mathbf{a}_3$$

Если приравнять к нулю, то получим границу устойчивости @ $\mathbf{k}_{\mathtt{n}}$

$$D^2 = 300 \times 30 + 1000 \times (1 + k_p) = 0 \triangleright k_p = 8$$

При $\mathbf{k}_{_{\mathbf{p}}}$ **f** 8 \triangleright \mathbf{D}^{2} **p** 0 \triangleright ЛДС неустойчива

При **k**_p **р** 8 Р ЛДС устойчива

7.2.3. Частный критерий устойчивости (критерий Найквиста).

Об устойчивости замкнутой ДС судят по расположению на комплексной плоскости КЧХ разомкнутой системы.

$$W_{\text{замк.сист.}}(jw) = \frac{W_{\text{раз.сист.}}(jw)}{1 + W_{\text{раз.сист.}}(jw)}$$
 $1 + W_{\text{раз.сист.}}(jw) = 0 \ \text{Р} \quad W_{\text{раз.сист.}}(jw) = -1$
 $W_{\text{раз.сист.}}(jw) = A_{\text{раз.сист.}}(jw) \times e^{j \ j \ (w)}$
 $A^{\text{ЧХ раз.сист.}}$

$$\mathbf{\hat{j}}_{\mathbf{j}} \mathbf{A}_{\text{раз.сист.}} (\mathbf{j}_{\mathbf{w}}) = \mathbf{1}$$
 р условие границы устойчивости. $\mathbf{\hat{j}}_{\mathbf{j}} \mathbf{\hat{j}}_{\text{раз.сист.}} (\mathbf{j}_{\mathbf{w}}) = -\mathbf{p}$

- 1. ДС на границе устойчивости

устойчивой, если КЧХ разомкнутой системы не

Если КЧХ разомкнутой системы проходит через точку замкнутая система проходит устойчивости и является неустойчивой, если КЧХ РС охватывает точку (- **1, j0**).

ПРИМЕР: (см. п. 7.2.2)

$$W_{A}\left(jw\right) = \frac{k_{A}}{\sqrt{T_{A}^{2} \times w^{2} + 1}} \times e^{-j\operatorname{arctg}\left(T_{A} \times w\right)}; \quad W_{\Pi}\left(jw\right) = k_{\Pi}; \quad W_{p.c.}\left(jw\right) = \frac{k_{A}^{3}}{\left(\sqrt{T_{A}^{2} \times w^{2} + 1}\right)^{3}} \times k_{\Pi} \times e^{-j\operatorname{arctg}\left(T_{A} \times w\right) \cdot 3}$$

Условие устойчивости по Найквисту

$$\frac{\hat{1}}{\hat{1}} \frac{k_A^3 \times k_\Pi}{\sqrt{T_A^2 \times w^2 + 1}} = 1, \qquad [1] \qquad k_A = 1; \quad \ddot{u} \\
T_A = 10; \quad \dot{p} \quad (\text{CM. } \Pi. 7.2.2.)$$

$$\hat{T}_A = 10; \quad \dot{p} \quad k_\Pi \Rightarrow ?$$

Решение:

[2] Þ wp:
$$arctg(T_A \times w) = \frac{p}{3}$$
 Þ wp = $\frac{\sqrt{3}}{T_A}$ ® подставляем в [1]

[1]
$$\triangleright k_A^3 \times k_\Pi = 8 \triangleright k_\Pi = 8$$

Величина $\mathbf{T}_{\mathbf{A}}$ не влияет на $\mathbf{k}_{\Pi,\text{граничное}}$ (лаб. работа №3)

- 1. Граница устойчивости $\mathbf{k}_{\Pi} = \mathbf{8}$
- 2. Устойчивая система **A**_{раз.сист.} (w) **р** 1 Р **k**_п **р** 8
- 3. Неустойчивая система $A_{\text{раз.сист.}}(w)$ **f** 1 $\triangleright k_{\Pi}$ **f** 8

Алгебраический критерий используется для анализа систем,

где нет транспортного запаздывания. Для реальных промышленных систем чаще используется критерий Найквиста.

8. Оптимальный синтез АСР.

8.1. Понятие об оптимальной АСР.

АСР – совокупность объекта и регулятора, взаимодействующих между собой.

$$\mathbf{W}_{3.c.}(\mathbf{s}) = \mathbf{W}_{o}(\mathbf{s}) \times \mathbf{W}_{p}(\mathbf{s})$$

8.2. Критерий оптимальности в АСР.

В качестве критерия оптимальности используются интегральные оценки:

$$I_{M}|_{\substack{1=1\\U=0}} = \overset{t_{p}}{\grave{o}}|y(t)|dt \otimes \min$$

$$I_{M}|_{\substack{1=0\\U=1}} = \overset{b}{\grave{o}}|1-y(t)|dt \otimes \min$$

 \mathbf{I}_{M} - интеграл по модулю от регулируемого параметра $\mathbf{y}(\mathbf{t})$

 $\mathbf{t}_{\mathfrak{p}}$ - время переходного возмущения (когда $|\mathbf{y}(\mathbf{t})| \pounds \frac{\mathbf{D}}{2}$, где $\frac{\mathbf{D}}{2}$ - заданная величина, отклонение)

Линейный интегральный критерий:

$$\mathbf{I}_{\Lambda}\Big|_{\mathbf{U}=0}^{\mathbf{1}=1} = \overset{\mathbf{t}_{\mathbf{p}}}{\underset{\mathbf{0}}{\mathbf{0}}} \mathbf{y}(\mathbf{t}) \mathbf{dt}$$

$$I_{J}|_{U=1}^{1=0} = \overset{t_{p}}{\underset{0}{\overset{}{\circ}}}(1-y(t))dt$$

Линейный интегральный критерий используется для слабо колебательных процессов и применяется в задачах

оптимального синтеза АСР при ограничениях на заданный запас устойчивости.

Примечание:

Квадратичный критерий: $\mathbf{I}_{_{\mathrm{KB}}} = \overset{\mathbf{t}_{_{\mathrm{p}}}}{\overset{\mathbf{0}}{\mathbf{0}}} \mathbf{y}^{2}(\mathbf{t}) \mathbf{dt} \ \mathbb{R}$ min (исключает недостатки $\mathbf{I}_{_{\mathrm{Л}}}$, но искажает результат)

Наибольшее распространение в задачах оптимального синтеза АСР получил интеграл (при ограничении на заданный запас устойчивости).

8.3. Ограничения на запас устойчивости.

Показатели запаса устойчивости.

Степень затухания: $y = \frac{A_1 - A_3}{A_1}$

Для устойчивых систем: y = 0, 1

Критерий оптимизации: $\mathbf{I}_{_{\mathrm{J}}}$ ® **min** при $\mathbf{y} = \mathbf{0.9}$

- а) Прямые показатели (по виду переходного процесса).
 - **1.** Степень затухания. На практике рекомендуется y = 0.7, 0.9
 - 2. Интегральная степень затухания: $y_{\rm HH} = \frac{I_{\rm I}}{I_{\rm M}} = \frac{\grave{o}}{\grave{o}_{\rm p}} y(t) dt$, $\grave{o}_{\rm p} y(t) dt$

$$I_{_{\rm J}} = I_{_{\rm M}} \triangleright y_{_{\rm HH}} = 1$$

Для устойчивых возмущений: $\mathbf{y}_{_{\mathbf{H}\mathbf{H}}}$ = $\mathbf{0}$, $\mathbf{1}$

3. Степень перерегулирования: $a_{_{\rm II}} = \frac{A_{_{2}}}{A_{_{1}}}$ (в долях или процентах)

Рекомендуют $a_{\pi} = 20\%$

- б) Косвенные показатели запаса устойчивости.
 - 1. корневой показатель т

Область устойчивости с запасом характеризуется tgy

$$\mathbf{m} = \left| \mathbf{tgg} \right| = \left| \frac{\mathbf{a}}{\mathbf{w}} \right|$$
 - степень колебательности

$$\mathbf{r}_{1,2} = -\mathbf{a} \pm \mathbf{j}\mathbf{w} = -\mathbf{m} \times \mathbf{w} \pm \mathbf{j}\mathbf{w}$$

$$y = 1 - e^{-2pm}$$
; $y \otimes 1$, 0 ; $m \otimes Y$, 0

Если $\mathbf{m} = \mathbf{0}$, то никакого запаса устойчивости не будет.

При
$$y = 0.75$$
 , 0.9 ; $m = 0.221$, 0.366

2. частный показатель - М

$$\mathbf{W}_{3.c.}(\mathbf{j}\mathbf{w}) = \frac{\mathbf{W}_{p.c.}(\mathbf{j}\mathbf{w})}{1 + \mathbf{W}_{p.c.}(\mathbf{j}\mathbf{w})}$$

$$\mathbf{A}_{3.c.}(\mathbf{w}) = \left| \mathbf{W}_{3.c.}(\mathbf{j}\mathbf{w}) \right|$$

$$\mathbf{M} = \frac{\mathbf{A}(\mathbf{w}_{p})}{\mathbf{A}_{\zeta}^{\mathbf{C}} \mathbf{w}_{0} \stackrel{\dot{\cdot}}{\div} \\ \zeta_{\zeta}^{\mathbf{W}_{0}} \stackrel{\dot{\cdot}}{\div} \\ \mathbf{w}_{0} \stackrel{\dot{\sigma}}{\sigma}$$

ì y ® 0.75 î m ® 0.221 ï M ® 1.55

Задавшись M, мы можем так отрегулировать процесс, чтобы $\mathbf{A}(\mathbf{w}_{_{\mathbf{p}}})$ касалась прямой линии M.

8.4. Математическое описание промышленных объектов регулирования.

1. Определяют кривые разгона.

Для большинства промышленных объектов регулирования различают:

а) Кривые разгона с самовыравниванием (объект с самовыравниванием)

S-образные кривые, так как имеют точку перегиба

Заштрихованная область характеризует инерционность объекта.

2. Определяют методом аппроксимации $\mathbf{W}_{o}(\mathbf{s})$; $\mathbf{W}_{o}(\mathbf{j}\mathbf{w})|_{\mathbf{s}^{\otimes}_{i}\mathbf{w}}$

Такой объект аппроксимируют цепочкой из звеньев:

$$W_{o}\left(s\right) = \frac{k_{o} \times e^{-t \cdot s}}{\left(T_{1} \times s + 1\right) \times \left(T_{2} \times s + 1\right) \times K \times \left(T_{n} \times s + 1\right)}$$

Частный случай $\mathbf{n} = \mathbf{1}$.

Проводится касательная в точке перегиба (точку перегиба можно определить визуально)

$$\mathbf{W}_{o}(\mathbf{s}) = \frac{\mathbf{K}_{o} \times \mathbf{e}}{\mathbf{T}_{o} \times \mathbf{s} + 1}$$

$$\mathbf{W}_{o}\left(\mathbf{j}\mathbf{w}\right)\Big|_{s\circledast\mathbf{j}\mathbf{w}} = \frac{\mathbf{k}_{o}\times\mathbf{e}^{-t\times\mathbf{j}\mathbf{w}}}{\mathbf{T}_{o}\times\mathbf{j}\mathbf{w}+\mathbf{1}}$$

Первое приближение замены экспериментальной кривой разгона.

б) Кривые разгона без самовыравнивания.

Такая кривая разгона характерна для емкостей.

Апериодические звенья нужны, чтобы сгладить заштрихованный участок.

Заменяют:

Передаточная функция:
$$\mathbf{W}_{o}(\mathbf{s}) = \frac{1 \times e^{-t \cdot \mathbf{s}}}{T \times \mathbf{s} \times (T_{1} \times \mathbf{s} + 1) \times \mathbf{K} \times (T_{n} \times \mathbf{s} + 1)}$$

 $\mathbf{W}_{_{0}}(\mathbf{s}) = \frac{\mathbf{1} \times \mathbf{e}^{-\mathbf{t} \cdot \mathbf{s}}}{\mathbf{T} \times \mathbf{s}}$ (последовательное соединение При

интегрирующего и запаздывающего звеньев).

KYX:
$$\mathbf{W}_{o}(\mathbf{j}\mathbf{w}) = \frac{\mathbf{1} \times \mathbf{e}^{-\mathbf{t} \times \mathbf{j}\mathbf{w}}}{\mathbf{T} \times \mathbf{j}\mathbf{w}}$$

8.5. Типовые алгоритмы функционирования линейных регуляторов. (Законы регулирования).

Регулирующее возмущение - $\mathbf{m}(\mathbf{t})$

$$\underbrace{ \begin{array}{c} \epsilon(t) = U - y(t) \\ \hline \\ \end{array} \begin{array}{c} AP \end{array} \begin{array}{c} \mu(t) \\ \hline \\ \\ m(t) = k_{_{p}} \times e(t) + k_{_{u}} \times \grave{o}e(t)dt + k_{_{\pi^{1}}} \times \frac{de(t)}{dt} + k_{_{\pi^{2}}} \times \frac{d^{2}e(t)}{dt^{2}} + K \end{array}$$

 $\mathbf{k}_{_{\mathbf{D}}} \! imes \! \mathbf{e} \! \left(\mathbf{t} \right)$ - пропорциональное (П) возмущение

 $\mathbf{k}_{\mathbf{u}} \times \hat{\mathbf{h}} \mathbf{e}(\mathbf{t}) \mathbf{dt}$ - интегральное (И) возмущение

$$\mathbf{k}_{_{\mathrm{A}2}} \times \frac{\mathbf{d}^{2} \mathbf{e}(\mathbf{t})}{\mathbf{d}\mathbf{t}^{2}}$$
 - дифференциальное (Д) возмущение

Как правило, ограничиваются тремя первыми слагаемыми.

Различают:

- П-закон, И-закон (наиболее распространены)
- ПИ-закон (широкое распространение)
- ПИД-закон

Если ограничиться П-законом, то будет П-регулятор.

8.5.1. П-регулятор (П-закон, П-алгоритм).

$$\begin{array}{c|c}
\hline
 & \text{TP} & \text{TP} - T \\
\hline
 & \text{P} & \text{TP} & \text{TP} \\
\hline
\end{array}$$

ТР – типовой линейный регулятор.

 $\mathbf{e}(\mathbf{t}) = \mathbf{U}(\mathbf{t}) - \mathbf{y}(\mathbf{t})$ - отклонение регулируемой величины от заданного значения.

 $\mathbf{m}(\mathbf{t})$ - регулирующее возмущение.

Для Π -регулятора $\mathbf{m}(\mathbf{t}) = \mathbf{k}_{\mathbf{p}} \times \mathbf{e}(\mathbf{t})$ - временные частотные характеристики совпадают с Π -звеном.

ПРИМЕР 1:

Пример П-регулятора – поплавковый регулятор уровня.

При уменьшении уровня **H** $^{-}$, задвижка смещается вверх, $\mathbf{G}_{\mathtt{np}}$ - .

И наоборот **H** - **Þ G**_{пр} ⁻

ПРИМЕР 2:

$$G_{cr}$$
 -; P_{r} - P_{r}

регулируемая Особенность П-регулятора: величина не возвращается к исходному значению.

 \mathbf{d}_{cr} - остаточная неравномерность (статическая ошибка). $\mathbf{m}(\mathbf{t}) = \mathbf{k}_{\mathrm{p}} \times \mathbf{e}(\mathbf{t})$

$$m(t) = k_n \times e(t)$$

Если $e(t) \otimes 0$, то и $m(t) \otimes 0$ и никакого регулирования не будет.

Остаточная неравномерность у П-регуляторов – их недостаток.

Плюсы – быстродействие и простота П-регулятора.

При $\mathbf{k}_{_{\mathbf{p}}}$ - ® $\mathbf{d}_{_{\mathbf{cr}}}$ - , но ухудшается устойчивость.

8.5.2. И-регулятор (И-закон – интегральный).

$$m(t) = \frac{1}{T_{u}} \times \hat{0}e(t)dt$$

 T_{ii} - постоянная интегрирования (настроечный параметр И-регулятора) По характеристикам совпадает с И-звеном.

Чем больше De(t), тем круче пойдет график m(t), а T_{μ} - const.

Чем меньше $T_{\mathfrak{u}}$, тем больше регулирующее значение.

Если $T_{\mu} \otimes Y$, то $m(t) \otimes 0$.

ПРИМЕР:

- 1 манометр мембранный
- 2 струйная трубка
- 3 золотниковый усилитель
- 4 поршневой исполнительный механизм
- 5 клапан
- 6 ресивер

Давление $\mathbf{P}_{\text{газ}}$ в ресивере (6) поднимается $^{\circledR}$

Мембрана (1) прогибается вверх, перемещая струйную трубку (2) вверх, преодолевая

сопротивление пружины \mathbb{R} $\mathbf{P_1}$ \mathbf{f} $\mathbf{P_2}$. Под действием $\mathbf{DP} = \mathbf{P_1} - \mathbf{P_2}$ поршневой исполнительный механизм (4) двигается вниз \mathbb{R} $\mathbf{G_{np}}^-$. Клапан будет перекрывать $\mathbf{G_{np}}$ до тех пор, пока мембрана не вернется в прежнее положение.

Минусы: действует довольно медленно.

- сравнение примера 2 (П-рег.) и примера (И-рег.)

Чтобы динамическая ошибка (отклонение) была меньше, берут Π -регулятор, но если $\mathbf{d}_{\text{ост}}$ недопустимо, то переходят к Π -регулятору.

8.5.3. ПИ-регулятор.

$$\mathbf{m}(t) = \mathbf{k}_{\mathbf{H}} \underbrace{\mathbf{x} \mathbf{e}(t)}_{\mathbf{H}} + \frac{\mathbf{k}_{p}}{\mathbf{T}} \mathbf{\hat{o}} \mathbf{e}(t) \mathbf{d}$$

П – пропорциональная составляющая

И – интегральная составляющая

 $\mathbf{k}_{\mathbf{n}}$ - коэффициент усиления

$$\frac{\mathbf{k}_{\mathrm{p}}}{\mathbf{T}_{\mathrm{n}}} = \mathbf{k}_{\mathrm{n}}$$
 - коэффициент при И-составляющей

$$m(t) = k_p \times De + \frac{k_p}{T_u} \times De \times t$$
 (при $e(t) = De = const$)

 Π И-регулятор — параллельное соединение Π - и И-звеньев.

Структура регулятора:

8.5.4. ПИД-регулятор. (Пропорционально-интегрально-дифференциальный регулятор)

$$\mathbf{p}(t) = \mathbf{k}_{\text{пид}} \times \mathbf{e}(t) + \frac{\mathbf{k}_{p}}{T} \mathbf{\hat{o}} \mathbf{e}(t) \mathbf{d}t + \mathbf{k}_{p} \times T_{\pi} \times \frac{\mathbf{d}\mathbf{e}(t)}{\mathbf{442}} \mathbf{448}$$

 $\mathbf{m}(\mathbf{t})$ - кривая разгона (не переходная характеристика) Д-составляющая повышает чувствительность регулятора.

ПИД-регулятор настолько чувствителен, что из-за малейшего изменения объекта, он может вывести процесс из состояния равновесия и система пойдет в раскачку.

У того регулятора, частота которого больше, устойчивость меньше.

8.6. Основные сведения о нелинейных позиционных регуляторах.

8.6.1. Двухпозиционный релейный элемент.

Статистическая характеристика нелинейного релейного двухпозиционного регулятора.

$$t + A$$
 $m(t) = \frac{1}{1} + A, e^{3} 0$ $m(t) = \frac{1}{1} - A, e p 0$

На практике:

Реальный двухпозиционный релейный элемент обладает свойством гистерезиса.

D_в - зона возврата (гистерезиса)

8.6.2. Трехпозиционный релейный элемент.

Удобно использовать, если у устройства есть 3 состояния, например:

- 1 выключен
- 2 движение по часовой стрелке
- 3 движение против часовой стрелки

Идеальная статистическая характеристика.

D_н - зона нечувствительности (регулируемая)

Движение по характеристике может быть и вправо, и влево.

$$m(t) = \frac{\hat{1}}{\hat{1}} + A, \quad e^{3} \frac{D_{\pi}}{2}$$

$$m(t) = \frac{\hat{1}}{\hat{1}} 0, \quad -\frac{D_{\pi}}{2} \mathbf{p} e \mathbf{p} \frac{D_{\pi}}{2}$$

$$\frac{\hat{1}}{\hat{1}} - A, \quad e \pounds \frac{D_{\pi}}{2}$$

Реальная статистическая характеристика:

 ${\bf D}_{{}_{\bf B}}$ - зона возврата.

8.7. Одноконтурные АСР с ПИ-регулятором.

8.7.1. Расчет границы устойчивости АСР с ПИ-регулятором.

В основе расчета границ устойчивости лежит частотный критерий Найквиста:

 $W_{pc}(jw)$ проходит через точку с координатами (- 1, j0).

$$\mathbf{W}_{pc}(\mathbf{j}\mathbf{w}) = \mathbf{W}_{o}(\mathbf{j}\mathbf{w}) \times \mathbf{W}_{p}(\mathbf{j}\mathbf{w})$$

Две формы записи:

1.
$$\mathbf{W}_{pc}(\mathbf{j}\mathbf{w}) = \mathbf{Re}_{pc}(\mathbf{j}\mathbf{w}) + \mathbf{j}\mathbf{Im}_{pc}(\mathbf{j}\mathbf{w})$$

2.
$$\mathbf{W}_{pc}(\mathbf{j}\mathbf{w}) = \mathbf{A}_{pc}(\mathbf{j}\mathbf{w}) \times \mathbf{e}^{\mathbf{j}\mathbf{j}_{pc}(\mathbf{j}\mathbf{w})}$$

Граница устойчивости:

1.
$$\frac{\frac{1}{2}}{\frac{1}{4}} \frac{\text{Re}_{pc}(w) = -1}{\text{Im}_{pc}(w) = 0}$$
 Р можно найти \mathbf{k}_p и \mathbf{k}_u (настроечные параметры)

2.
$$\hat{j}_{pc}(w) = 1$$
 р можно найти k_p и k_u (настроечные параметры)

$$W = 0 , W_{cpesa}$$

$$k_{\mu} = \frac{k_{p}}{T_{\mu}}$$

Рассмотрим вариант 1:

$$\begin{split} &\mathring{\mathbf{I}} \ \mathbf{W}_{o} \left(\mathbf{j} \mathbf{w} \right) = \mathbf{Re}_{o} \left(\mathbf{w} \right) + \mathbf{j} \mathbf{Im}_{o} \left(\mathbf{w} \right) \\ &\mathring{\mathbf{I}} \ \mathbf{W}_{per}^{\Pi \Pi} \left(\mathbf{j} \mathbf{w} \right) = \mathbf{k}_{p} - \mathbf{j} \frac{\mathbf{k}_{\pi}}{\mathbf{W}} \\ &\mathring{\mathbf{E}} \ \mathbf{W}_{per} \left(\mathbf{j} \mathbf{w} \right) = \mathbf{W}_{o} \left(\mathbf{j} \mathbf{w} \right) \times \mathbf{W}_{p}^{\Pi \Pi} \left(\mathbf{j} \mathbf{w} \right) \\ &\mathring{\mathbf{H}} \ \mathbf{Re}_{pc} \left(\mathbf{w} \right) = \mathbf{k}_{p} \times \mathbf{Re}_{o} \left(\mathbf{w} \right) + \frac{\mathbf{k}_{\pi}}{\mathbf{w}} \times \mathbf{Im}_{o} \left(\mathbf{w} \right) = -1 \\ &\mathring{\mathbf{I}} \ \mathbf{Im}_{pc} \left(\mathbf{w} \right) = \mathbf{k}_{p} \times \mathbf{Im}_{o} \left(\mathbf{w} \right) - \frac{\mathbf{k}_{\pi}}{\mathbf{w}} \times \mathbf{Re}_{o} \left(\mathbf{w} \right) = 0 \end{split}$$

Программа 2 методические указания:

$$\mathbf{k}_{p} = -\frac{\mathbf{Re}_{o}(w)}{\mathbf{Re}_{o}^{2}(w) + \mathbf{Im}_{o}^{2}(w)}$$

$$\mathbf{k}_{u} = \frac{\mathbf{k}_{p}}{\mathbf{T}_{u}} = -w \times \frac{\mathbf{Im}_{o}(w)}{\mathbf{Re}_{o}^{2}(w) + \mathbf{Im}_{o}^{2}(w)}$$

Задаваясь частотой $\mathbf{w} = \mathbf{0}$, $\mathbf{w}_{\text{среза}}$

Для реального регулятора настроечные параметры положительны.

Если взять любую точку внутри выделенной области, то при таких параметрах система будет устойчива.

8.7.2. Расчет границы заданного запаса устойчивости (m=m_{зад}).

Мера запаса устойчивости $\mathbf{m} = \mathbf{m}_{_{3\mathbf{a}\mathtt{A}}}$ - корневой показатель.

Степень колебательности $y = 1 - e^{-2pm}$

Вместо **j**w записываем
$$\mathbf{1}\mathbf{w}\mathbf{y}\mathbf{y} + \mathbf{j}\mathbf{w} \left(-\mathbf{m} \times \mathbf{w} = -\mathbf{a}\right)$$

определяет запас устойнивости

На границе устойчивости $\mathbf{m} = \mathbf{0}$.

Если
$$\mathbf{m} = \mathbf{0.366} \triangleright \mathbf{y} = \mathbf{0.9}$$

$$\begin{split} & \frac{\hat{l}}{\hat{l}} k_{p} = -\frac{Re_{o}\left(m,w\right) + m \times Im_{o}\left(m,w\right)}{Re_{o}^{2}\left(m,w\right) + Im_{o}^{2}\left(m,w\right)} \\ & \frac{\hat{l}}{\hat{l}} k_{u} = \frac{k_{p}}{T_{u}} = -w \times \left(1 + m^{2}\right) \times \frac{Im_{o}\left(m,w\right)}{Re_{o}^{2}\left(m,w\right) + Im_{o}^{2}\left(m,w\right)} \end{split}$$

Чтобы на выделенной кривой выбрать оптимальную точку, необходимо применить интегральный критерий.

Другая форма записи системы [1]:

$$\mathbf{A}(\mathbf{w}) = \sqrt{\mathbf{Re}^{2}(\mathbf{w}) + \mathbf{Im}^{2}(\mathbf{w})}; \ \mathbf{Cosj}(\mathbf{w}) = \frac{\mathbf{Re}(\mathbf{w})}{\mathbf{A}(\mathbf{w})} \ \mathbf{P}$$

$$\mathbf{\hat{j}}_{\mathbf{i}}^{1} \mathbf{k}_{p} = -\frac{\mathbf{Cosj}(\mathbf{w})}{\mathbf{A}(\mathbf{w})}$$

$$\mathbf{\hat{j}}_{\mathbf{i}}^{1} \mathbf{k}_{u} = \mathbf{w} \times \frac{\mathbf{Sinj}(\mathbf{w})}{\mathbf{A}(\mathbf{w})}$$

8.7.3. Выбор оптимальных настроечных параметров (kp, ku) на линии заданного запаса устойчивости (талан.).

Для точки с координатами $(\mathbf{k}_{p, \text{opt}}, \mathbf{k}_{\text{и,opt}})$ линейный интегральный критерий $\mathbf{I}_{_{\mathrm{J}}}$ \mathbb{R} min

$$I_{\pi} = \underset{0}{\overset{Y}{\underset{\text{odd}}{\text{min}}}} I_{\pi} = \underset{0}{\overset{Y}{\underset{\text{odd}}{\text{odd}}}} y(t) dt \otimes \min$$

Передаточная функция, относительно 1(t):

$$\mathbf{W}_{3.c.}(\mathbf{p}) = \frac{\mathbf{W}_{o}(\mathbf{p})}{1 + \mathbf{W}_{o}(\mathbf{p}) \times \mathbf{W}_{p}(\mathbf{p})} = \frac{\mathbf{y}(\mathbf{p})}{1(\mathbf{p})}$$

$$y(p) = W_{3.c.}(p) \times l(p)$$

$$1 (\mathbf{p}) = \mathbf{\hat{0}} 1 (\mathbf{t}) \times \mathbf{e}^{-\mathbf{s} \cdot \mathbf{t}} \mathbf{dt} = \frac{1}{\mathbf{p}} [\mathbf{s} = \mathbf{p}]$$

$$\begin{split} \mathbf{y}(\mathbf{p}) &= \mathbf{W}_{3,c} \cdot (\mathbf{p}) \times \mathbf{1} \cdot (\mathbf{p}) \\ \mathbf{1}(\mathbf{p}) &= \mathbf{\tilde{0}} \mathbf{1}(\mathbf{t}) \times \mathbf{e}^{-\mathbf{s} \times \mathbf{t}} \mathbf{d} \mathbf{t} = \frac{1}{\mathbf{p}} \qquad \left[\mathbf{s} = \mathbf{p} \right] \\ \mathbf{y}(\mathbf{p}) &= \frac{\mathbf{W}_{o}(\mathbf{p})}{\mathbf{1} + \mathbf{W}_{o}(\mathbf{p}) \times \mathbf{\tilde{k}} \mathbf{k}_{p} + \frac{\mathbf{k}_{H}}{\mathbf{\tilde{0}}} \frac{\ddot{\mathbf{b}}}{\dot{\mathbf{t}}} \\ \mathbf{1} + \mathbf{2} \mathbf{2} \mathbf{3} \mathbf{\tilde{0}} \\ \mathbf{W}_{p}(\mathbf{p}) \end{split}$$
 [*]

$$y(p) = \left. \begin{array}{l} \frac{Y}{0} y(t) \times \mathbf{e}^{-s \cdot t} dt \right|_{s \cdot 0 \cdot 0} = \left. \begin{array}{l} \frac{Y}{0} y(t) \times dt \ \mathbf{P} \end{array} \right.$$

$$\mathbf{y}(\mathbf{s})\big|_{\mathbf{s}\otimes\mathbf{0}} = \mathbf{I}_{_{\mathrm{J}}} = \begin{vmatrix} \operatorname{поделим}\left[*\right] \operatorname{на} \mathbf{W}_{_{\mathbf{0}}}(\mathbf{s}), \\ \operatorname{перемножим c s} \end{vmatrix} = \frac{1}{\mathbf{k}_{_{\mathrm{H}}}}$$

• оптимальная точка, Lл→min - оптимальный синтез АСР с ПИ-регулятором

8.7.4. Сравнительный анализ переходных процессов в АСР с ПИ-регулятором.

ПИ-регулятор (граница заданного запаса устойчивости m = 0.366)

$$1(t) = 1.0$$

точки 2,3,4,5 настройки ПИ-регулятора;

точка 1 соответствует И-регулятору (частный случай)

точка $3 - \text{opt } \mathbf{I}_{\pi} \otimes \mathbf{min}$

точка 6 — Π -регулятор.

8.8. Особенности настройки ПИД-регулятора.

$$W_{\text{пид}}\left(s\right) = \underbrace{k_p}_{\Pi} + \underbrace{\frac{k_p}{T_u}}_{s} \times \underbrace{\frac{1}{s}}_{s} + \underbrace{k_p}_{m} \underbrace{\times T}_{m} \times s$$

 Π И – частный случай Π ИД при $\mathbf{T}_{_{\boldsymbol{\upmath}}}=\mathbf{0}$

$$a = \frac{T_{_{II}}}{T_{_{II}}}, (a = 0; 0.2; 0.4; K)$$

 $T_{_{\rm I}} = a \times T_{_{\rm II}} \otimes \text{подставляем в} [*]$

a 0 0.2 0.4

k_p K K K

T, KKKK

 T_{π} 0 K K

8.9. Приближенные методы расчета настроек ПИ и ПИД регуляторов.

Метод ВТИ (всероссийский теплотехнический институт) по экспериментальным кривым.

Из них выбирают требуемые по заданному качеству.

Снимается несколько кривых.

- 1. экспериментально определяется кривая разгона (ансамбль кривых разгона)
- **2.** обработка с целью получения переходных характеристик ${\bf h}({\bf t})$
- 3. кривая разгона аппроксимируется:

4. Для такого типа объектов (как в Р3) по формулам из таблицы определяется $\mathbf{k}_{_{\mathrm{p}}}$, $\mathbf{T}_{_{\mathrm{H}}}$, $\mathbf{T}_{_{\mathrm{H}}}$

Исходные данные: \mathbf{k}_{o} , \mathbf{T}_{o} , \mathbf{t}_{o} , \mathbf{t}_{o}

Параметр	$0 p \frac{t_o}{T_o} £ 0.2$			$0.2 p \frac{t_o}{T_o} £ 1.5$		
	П	ПИ	пид	П	пи	пид
k _p	$\frac{0.8 \times T_o}{k_o \times t_o}$	$\frac{0.6 \times T_o}{k_o \times t_o}$	$\frac{1.0 \times T_o}{k_o \times t_o}$	$\frac{0.38 \times (t_o + 0.6 \times T_o)}{k_o \times (t_o - 0.08 \times T_o)}$	$\frac{0.38 \times (t_o + 0.6 \times T_o)}{k_o \times (t_o - 0.68 \times T_o)}$	$\frac{0.22 \times (t_o + 1.5 \times T_o)}{k_o \times (t_o - 0.13 \times T_o)}$
Ти	-	3.3×t ₀	2.5×t ₀	-	0.8×T ₀	0.45×T _o
$T_{_{ m J}}$	-	•	0.2×T _н	-	-	0.2×Т _и

a = (0.2, 0.3) - на практике.

5. Построить переходный процесс.

9. Системы управления с дополнительными информационными сигналами.

9.1. Характеристика объекта управления.

 ${\bf u_1}(t),\!{\bf K},{\bf u_n}(t),\!{\bf y_1}(t),\!{\bf K},\!{\bf y_m}(t)$ - дополнительные информационные

теруктура объекта $u_1(t)$, K, $u_n(t)$ - внешние возмущения, доступные для измерения (на входе). $y_1(t)$, K, $y_m(t)$ - промежуточные (вспомогательные) параметры на

выходе объекта.

 $\mathbf{y}(\mathbf{t})$ - основной регулируемый параметр

 $\mathbf{x}(\mathbf{t})$ - основное управляющее воздействие

ПРИМЕР: паровой барабанный котел, работающий на общую паровую магистраль.

1 – впрыскивающий пароохладитель

 $\mathbf{t}_{\mathbf{ne}}$ - температура перегретого пара

 $\mathbf{t}_{\mathrm{ne}}^{\zeta}$ - промежуточное измерение температуры перегретого пара

– – – Значит, что, например, $\mathbf{D}_{\text{потр}}$ влияет и на \mathbf{t}_{ne} , и на $\mathbf{t}_{\text{ne}}^{\prime}$.

9.2. АСР с компенсацией внешних возмущений.

 $\mathbf{W}_{\mathbf{k}}\left(\mathbf{s}\right)$ - передаточная функция устройства компенсации.

Если потребитель изменит потребление пара, то $\mathbf{t}_{\rm ne}$ изменится. Без компенсатора, регулятор бы, в конце концов, вернул бы $\mathbf{t}_{\rm ne}$ в норму, но через какое-то время. При наличии

компенсатора, как только изменится $\mathbf{D}_{\text{потр.}}(\mathbf{n}(t))$, компенсатор выдает задание регулятору $\mathbf{P} \mathbf{t}_{\text{ne}} = \mathbf{const}$.

Порядок настройки:

- **1.** Настроить $W_p(s)$ обычным путем.
- **2.** Из условия инвариантности выбираем структуру и параметры $\mathbf{W}_{k}\left(\!\mathbf{s}\right)$.

Условие инвариантности: $\mathbf{y}_{1}(\mathbf{t}) = \mathbf{n}(\mathbf{t}) \times \mathbf{W}_{ob}(\mathbf{s})$

С другой стороны: $\mathbf{y}_{2}(t) = \mathbf{n}(t) \times \mathbf{W}_{\kappa}(s) \times \mathbf{W}_{p}(s) \times \mathbf{W}_{o}(s)$

$$\mathbf{y}_{1}(t) = \mathbf{y}_{2}(t) = \mathbf{y}(t)$$

$$\mathbf{W}_{k}(\mathbf{s}) = \frac{\mathbf{W}_{oB}(\mathbf{s})}{\mathbf{W}_{p}(\mathbf{s}) \times \mathbf{W}_{o}(\mathbf{s})}$$

Если точно реализовать $\mathbf{W}_{k}(\mathbf{s})$, то отклонение \mathbf{t}_{ne} на выходе не будет даже при наличии возмущений.

На практике:

а)
$$\mathbf{W}_{k}(\mathbf{s}) = \mathbf{k}_{\pi}$$
 (т.е. П-звено) $\mathbf{P} \mathbf{k}_{\pi} = \mathbf{W}_{k}(\mathbf{s})|_{\mathbf{s} \otimes \mathbf{0}} = \frac{\mathbf{k}_{\mathbf{0}\mathbf{B}}}{\mathbf{k}_{\mathbf{n}} \times \mathbf{k}_{\mathbf{0}}}$, где

 $\mathbf{k}_{\mathbf{p}}$ - коэффициент передачи регулятора

 $\mathbf{k}_{_{\mathbf{0}}},\mathbf{k}_{_{\mathbf{0B}}}$ - коэффициенты передачи объекта по каналам

б)
$$\mathbf{W}_{k}\left(s\right)=\frac{k\times T\times s}{T\times s+1}$$
, где k , T - параметры РД-звена.

ПРИМЕР:

 3_{π} – задание регулятору.

Рассмотренные АСР с компенсацией относятся к числу одноконтурных.

9.3. Многоконтурные ACP (с использованием промежуточных параметров $y_1(t) \div y_m(t)$).

В промышленности, как правило, применяются двухконтурные АСР.

9.3.1. Каскадная двухконтурная АСР.

Порядок расчета:

- **1.** Отключить $W_{pk}(s)$ (корректирующий регулятор).
- 2. Обычным способом определяются настройки $\mathbf{W}_{pc}(\mathbf{s})$ по $\mathbf{W}_{o1}(\mathbf{s})$.
- **3.** По эквивалентному объекту $\mathbf{W}_{p\kappa}^{_{\mathsf{JKB}}}(\mathbf{s})$ определяются настройки $\mathbf{W}_{p\kappa}(\mathbf{s})$:

$$W_{p\kappa}^{9\kappa B}\left(s\right) = \frac{W_{pc}\left(s\right) \times W_{o}\left(s\right)}{1 + W_{pc}\left(s\right) \times W_{o}\left(s\right)}$$

4. Уточнение настроек $\mathbf{W}_{pc}(\mathbf{s})$ и $\mathbf{W}_{p\kappa}(\mathbf{s})$:

$$\mathbf{W}_{\mathbf{p}\kappa}^{_{\mathbf{j}\kappa\mathbf{B}}}\left(\mathbf{s}\right)=\mathbf{W}_{_{\mathbf{0}}\mathbf{1}}\left(\mathbf{s}\right)+\mathbf{W}_{_{\mathbf{0}}}\left(\mathbf{s}\right)\! imes\!\mathbf{W}_{\mathbf{p}\kappa}\left(\mathbf{s}\right)$$
Р $\mathbf{W}_{\mathbf{p}c}\left(\mathbf{s}\right)$ ® настройки и т.д.

ПРИМЕР: см. раздел о схемах регулирования.

9.3.2. АСР с дифференциатором.

$$\mathbf{W}_{_{\mathcal{I}}}(\mathbf{s}) = \frac{\mathbf{k}_{_{\mathcal{I}}} \times \mathbf{T}_{_{\mathcal{I}}} \times \mathbf{s}}{\mathbf{T}_{_{\mathcal{I}}} \times \mathbf{s} + \mathbf{1}}$$
 - РД-звено

$$\mathbf{W}_{p}\left(\mathbf{s}\right) = \mathbf{k}_{p} + \frac{\mathbf{k}_{p}}{\mathbf{T}_{..} \times \mathbf{s}}$$
 - ПИ-регулятор

$$\frac{1}{W_{_{\Lambda}}(s)} = \frac{1}{k_{_{\Lambda}}} + \frac{1}{k_{_{\Lambda}} \times T_{_{\Lambda}} \times s}$$

Если обозначить $\frac{1}{\mathbf{k}_{_{\Pi}}} = \mathbf{k}_{_{\mathbf{p}1}}$, а $\mathbf{T}_{_{\Pi}} = \mathbf{T}_{_{\mathbf{H}1}}$, то получим ПИ-регулятор.

Эквивалентная структура АСР с дифференциатором.

Эквивалентная структура соответствует каскадной двухконтурной.

Если найти \mathbf{k}_{n1} , то легко найти и \mathbf{k}_{n} .

$$\mathbf{W}_{\mathrm{pk}}^{\mathrm{5KB}}\left(\mathbf{s}\right) = \frac{1}{\mathbf{W}_{\mathrm{g}}\left(\mathbf{s}\right)}$$

$$\mathbf{W}_{\mathbf{p}\mathbf{K}}^{\mathsf{SKB}}\left(\mathbf{S}\right) = \mathbf{W}_{\mathbf{g}}\left(\mathbf{S}\right) \times \mathbf{W}_{\mathbf{p}}\left(\mathbf{S}\right)$$

Порядок настройки:

1. Настройка $\mathbf{W}_{\mathbf{n}\kappa}^{\mathbf{n}\kappa}(\mathbf{s})$ ®

$$\mathbf{W}_{ob}^{_{_{_{0}}}}\left(\mathbf{s}\right)_{\mathbf{p}\mathbf{k}} = \frac{\mathbf{W}_{\mathbf{p}\mathbf{k}}^{_{_{\mathbf{N}}}}\left(\mathbf{s}\right)\times\mathbf{W}_{_{\mathbf{0}}}\left(\mathbf{s}\right)}{1+\mathbf{W}_{\mathbf{p}\mathbf{k}}^{_{_{\mathbf{N}}}}\left(\mathbf{s}\right)\times\mathbf{W}_{\mathbf{0}\mathbf{1}}\left(\mathbf{s}\right)}$$
 - эквивалентный объект для $\mathbf{W}_{\mathbf{p}\mathbf{k}}^{_{_{\mathbf{N}}}}\left(\mathbf{s}\right)$

Считаем, что
$$\mathbf{k}_{pc}^{_{9KB}}\tilde{\mathbf{n}}\tilde{\mathbf{n}}\mathbf{1}$$
. Тогда $\mathbf{W}_{o6}^{_{9KB}}(\mathbf{s})_{p\kappa}$ » $\frac{\mathbf{W}_{o}(\mathbf{s})}{\mathbf{W}_{o1}(\mathbf{s})}$, $\mathbf{W}_{o}(\mathbf{s})$ и $\mathbf{W}_{o1}(\mathbf{s})$ известны; $\mathbf{k}_{_{A}}=\frac{1}{\mathbf{k}_{_{D}}}$; $\mathbf{T}_{_{A}}=\mathbf{T}_{_{H}}$.

2. Настройка $\mathbf{W}_{\mathbf{p}}(\mathbf{s})$ по $\mathbf{W}_{\mathbf{o}\mathbf{o}}^{\mathsf{9KB}}(\mathbf{s}) = |\mathsf{cm}.\mathsf{рисунок}\;\mathsf{вышe}| = \mathbf{W}_{\mathbf{o}\mathbf{1}}(\mathbf{s}) \times \mathbf{W}_{\mathbf{n}}(\mathbf{s}) + \mathbf{W}_{\mathbf{o}}(\mathbf{s})$

Для уточнения настроек может быть применена итерационная процедура.

ПРИМЕР:

АСР температуры перегретого пара (с дифференциатором). Если не будет \mathbf{t}_{ne}^{ζ} и $\mathbf{W}_{n}(\mathbf{s})$, то получится простая одноконтурная схема.

ПП – пароперегреватель.

Требования к уровню температуры перегретого пара жесткие: отклонения $+5^{\circ}$ C; -10° C, не более.

9.4. Многомерные АСР.

Многомерные системы рассмотрим на примере двухмерной АСР.

1. многомерные системы несвязанного регулирования

2. автономные многомерные АСР

9.4.1. Двухмерная АСР несвязанного регулирования.

Настройка $W_{p1}(s)$ и $W_{p2}(s)$:

1. Если можно пренебречь связями $W_{12}(s)$ и $W_{21}(s)$, то $W_{p1}(s)$ $W_{21}(s)$, TO $W_{p1}(s)$ настраивается по $W_{11}(s)$, а $W_{p2}(s)$ настраивается по $W_{22}(s)$. 2. Пренебречь связями невозможно.

Тогда настройка по $\mathbf{W}_{o6}^{_{_{\mathbf{5}}}}(\mathbf{s})$ с учетом связей, с использованием итерационных процедур.

a)
$$W_{p1}(s)$$
 ® по $W_{11}(s)$

6)
$$W_{p2}(s) \otimes W_{3KB,,2}(s) = W_{22}(s) \begin{cases} W_{21}(s) \times W_{p1}(s) \times W_{12}(s) \\ 1 + W_{p1}(s) \times W_{11}(s) \end{cases}$$

в) Уточнение:
$$\mathbf{W}_{\text{p1}}(\mathbf{s})$$
 ® по $\mathbf{W}_{_{3KB},,1}(\mathbf{s}) = \mathbf{W}_{11}(\mathbf{s}) \underbrace{\{}_{_{T.K.OOC}} \frac{\mathbf{W}_{12}(\mathbf{s}) \times \mathbf{W}_{_{p2}}(\mathbf{s}) \times \mathbf{W}_{_{21}}(\mathbf{s})}{1 + \mathbf{W}_{_{p2}}(\mathbf{s}) \times \mathbf{W}_{_{22}}(\mathbf{s})}$

9.4.2. Автономная двухмерная АСР.

ACP Автономная многомерная подразумевает в составе устройство компенсации.

и $\mathbf{W}_{\pi,21}(\mathbf{s})$ - $W_{\pi,12}(s)$ устройства связи динамической (устройства компенсации).

 $\mathbf{W}_{_{\Pi,12}}(\mathbf{s})$ $\mathbf{W}_{1,21}(\mathbf{s})$ Структура определяется условия инвариантности (см. п. 9.2.)

Условие инвариантности:

1. $l_1(t)$:

$$W_{12}(s) - W_{3,12}(s) \times W_{p2}(s) \times W_{22}(s) = 0 P W_{3,12}(s) = \frac{W_{12}(s)}{W_{p2}(s) \times W_{22}(s)}$$

2. 1,(t):

$$\mathbf{W}_{21}(s) - \mathbf{W}_{3,21}(s) \times \mathbf{W}_{p1}(s) \times \mathbf{W}_{11}(s) = \mathbf{0} \ \mathbf{P} \ \mathbf{W}_{3,21}(s) = \frac{\mathbf{W}_{21}(s)}{\mathbf{W}_{p1}(s) \times \mathbf{W}_{11}(s)}$$

Если точно соблюдать условия инвариантности, то система получится полностью автономной. Структура может быть (см. п. 9.2.):

- а) П-звено
- **б)** РД-звено

ПРИМЕР: испаритель.

Требуется регулировать Р и Н.

РД – регулятор давления.

¬ Двухмерная АСР несвязанного регулирования.

10. Технические средства автоматизации.

10.1. Техническая структура одноконтурной АСР.

РО – регулирующий орган

ИМ – исполнительный механизм

ИП – измерительный преобразователь

ФБ рег.устр. – функциональный блок

регулирующего устройства

ФБ – устройство, реализующее алгоритм регулирования

РО - TOУ - ИП (S) - объект

 ΦB - ИМ $\ \ \, \mathbb{W}_{p}\left(s\right)$ - регулятор

10.2. Формирование алгоритма и структуры регулятора.

При формировании структуры и алгоритма регулятора следует учитывать тип исполнительного механизма.

Типы исполнительных механизмов (по виду используемой энергии):

- 1. пневматические
- 2. гидравлические
- 3. электрические.
- 1. Пневматические (используется энергия сжатого воздуха).

MUM

МИМ – мембранный исполнительный механизм. Очень инерционный механизм (газ сжимаем).

В динамическом отношении МИМ в пері

приближении можно считать П-звеном.

$$W_{\mu_M}^{\pi}(s) \gg k_{\mu_M}$$
 $(k_{\mu_M} @ 1)$

Тогда $\mathbf{W}_{\Phi \mathbf{b}}(\mathbf{s})$ определяется $\mathbf{W}_{\mathbf{p}}(\mathbf{s})$.

Пневматические регуляторы применяются в химической и нефтехимической промышленности, а также во взрывоопасных и пожароопасных производствах.

2. Гидравлические

(энергия сжатой жидкости). В качестве жидкости используются сорта машинного масла. Жидкость несжимаема, следовательно, передача практически мгновенная.

$$\mathbf{y}(\mathbf{t}) = \mathbf{\hat{0}}\mathbf{DPdt} = \mathbf{DP} \times \mathbf{t}$$

$$\mathbf{W}_{\mathrm{HM}}\left(\mathbf{s}\right) = \frac{1}{\mathbf{T}_{\mathrm{HM}} \times \mathbf{s}};$$

$$W_{\Phi B}\left(s\right) = \frac{k_{p} + \frac{k_{u}}{s} + k_{x} \times s}{\frac{1}{T_{u} \times s}} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{HM} \begin{cases} \frac{x}{\zeta} & \text{Fig. 678} \\ \frac{x}{\zeta} & \text{Fig. 678} \end{cases} = T_{H$$

3. Электрические (электрическая энергия).

В основе ЭИМ лежат асинхронные электрические двигатели с постоянным числом оборотов.

МЭО – механизм электрический однооборотный.

Электрические ИМ в динамическом отношении являются нелинейными звеньями.

Скорость
$$\mathbf{s}_{o} = \frac{100}{T_{u}}, \frac{\acute{e}\%\grave{u}}{\grave{e}} \overset{\grave{u}}{\mathbf{c}} \overset{\grave{u}}{\mathbf{u}}$$

Управляют ЭИМ с помощью подачи на его вход импульсов.

При импульсном управлении ЭИМ становится И-звеном (в первом приближении)

ШИМ – широтно-импульсный модулятор (выход преобразует в импульсы)

$$W_{\Phi B}(s) = k_p \times s + k_u + k_x \times s^2$$

ФБ реализуется в виде $\Pi Д Д^2 - 3вена$.

<u>10.3. Релейно-импульсные ПИ-регуляторы</u> с электрическим исполнительным механизмом.

РС-29 – система КОНТУР; **Р-17** – система КАСКАД

(завод МЗТА)

Структурная схема импульсного ПИ-регулятора с ЭИМ.

Импульсный ПИ-регулятор с ЭИМ реализуется с помощью релейного элемента **РЭ**, охваченного ООС в виде цепочки R-C (A-звено).

Релейный элемент:

U Статистическая характеристика РЭ.

$$x(t) = e(t) - e_{oc}(t)$$

Статическая характеристика показывает, какой сигнал будет на выходе РЭ.

D_н - зона нечувствительности

DB - зона возврата

Если $\mathbf{x}(t)$ \mathbf{f} $\frac{\mathbf{D}_{_{\mathbf{H}}}}{2}$ (или $\mathbf{x}(t)$ \mathbf{p} - $\frac{\mathbf{D}_{_{\mathbf{H}}}}{2}$), то реле сработает

Р сигнал на выходе РЭ +24B Р запустится ЭИМ.

Если сигнал положительный, то ЭИМ будет крутиться в одну сторону, и наоборот.

На вход поступает сигнал 0, +24В или -24В.

А-звено можно настроить. Настроечные параметры \mathbf{T}_{oc} и \mathbf{k}_{oc} .

Зона нечувствительности нужна для того, чтобы ЭИМ не включался/выключался постоянно (теоретически $\mathbf{D}_{u} = \mathbf{0}$).

Зона возврата участвует в формировании импульсов $\mathbf{z}(\mathbf{t})$.

Подадим на вход сумматора $e(t) f(\frac{D_{_H}}{2})$ (ступеньку).

$$\mathbf{W}_{\mathrm{p}}^{\mathrm{пи}}\left(\mathbf{s}\right)=\mathbf{k}_{\mathrm{p}}^{}+rac{\mathbf{k}_{\mathrm{p}}^{}}{\mathbf{T}_{\mathrm{u}}\cdot\mathbf{s}}$$
- идеальный ПИ-регулятор**- - -**

—— - импульсное приближение ПИ-регулятора. Передаточная функция импульсного регулятора:

$$W_{p}^{\text{IMII}}(s) = \frac{W_{p_{3}}(s) \times W_{\text{IM}}(s)}{1 + W_{p_{3}}(s) \times W_{oc}(s)}$$

$$W_{n_2}(s) \gg k_{n_2} \tilde{n} \tilde{n} 1$$

$$W_{_{\text{HM}}}(s) = \frac{s_{_{0}}}{s}; \ s_{_{0}} = \frac{100\%}{T_{_{...}}}$$

$$\mathbf{W}_{oc}(\mathbf{s}) = \frac{\mathbf{k}_{oc}}{\mathbf{T}_{oc} \times \mathbf{s} + \mathbf{1}} - \mathbf{A} - \mathbf{3}\mathbf{B}\mathbf{e}\mathbf{H}\mathbf{0}$$

Так как $\mathbf{W}_{p_3}(\mathbf{s})$ **ññ1**, то пренебрегаем **1** в знаменателе. Тогда:

$$W_{p}^{\text{\tiny HMII}}\left(s\right) = \frac{T_{oc} \times s + 1}{k_{oc}} \times \frac{s_{o}}{s} = \frac{s_{o}}{k_{oc} / T_{oc}} \times \frac{\alpha}{\xi} 1 + \frac{1}{T_{oc} \times s} \frac{\ddot{o}}{\ddot{\theta}}$$

$$rac{\mathbf{k}_{\,\mathrm{oc}}}{\mathbf{T}_{\!\mathrm{oc}}} = \mathbf{V}_{\!\mathrm{oc}}$$
 - скорость обратной связи

Обозначим
$$\frac{\mathbf{S}_{_{0}}}{\mathbf{V}_{_{0c}}}=\mathbf{k}_{_{p}}\;;\;\mathbf{T}_{_{0c}}=\mathbf{T}_{_{H}}\;.\;$$
Тогда $\mathbf{W}_{_{p}}^{_{_{\mathbf{IM\Pi}}}}\!\left(\!\mathbf{s}\right)\!=\mathbf{k}_{_{p}}^{}+\frac{\mathbf{k}_{_{p}}^{}}{\mathbf{T}_{_{\mathbf{H}}}\!\times\!\mathbf{s}}$

10.4. Общие сведения о регулирующих органах.

РО – регулирующий орган

ИМ – исполнительный механизм

Регулирующие органы бывают:

- 1. пассивные дросселирование потока
- **2.** активные изменение производительности нагнетателя Пассивные РО плохи, так как срабатывают на напор.

1. Пассивные (дроссельные) РО.

а) Шиберы.

 \mathbf{F}_{nc} - проходное сечение

 \mathbf{h} - ход РО $\left(\mathbf{0}$, $\mathbf{h}_{\max}\right)$

Q - расход через РО

Шиберы имеют:

- Конструктивную характеристику
- Расходную характеристику

Обычно используют относительные характеристики (чтобы были похожие характеристики):

$$\frac{F_{nc}}{F_{nc}^{max}} = 0 , 1$$

$$\frac{h}{h^{max}} = 0 \ . \ 1$$

Конструктивная характеристика:

ПРИМЕРЫ:

 α/α_{max}

б) Регулирующие клапаны (почти без инерционны).

¬ Тарельчатый клапан (еще есть игольчатые, шиберные) Имеют нелинейные характеристики.

Желательно, чтобы РО имел линейные конструктивные и расходные характеристики.

2. Активные РО.

- **a)** Нагнетатель (насос, компенсатор, дутьевой вентилятор, дымосос), имеет возможность изменять производительность.
- б) Направляющие аппараты на всасе.

Чем меньше поворот направляющего аппарата, тем сильнее закручивание потока.

11. Схемы автоматизации технологических процессов и установок.

11.1. Функциональные схемы автоматизации (ФСА)

ФСА выполняются в соответствии с ГОСТ 21.404-85 «Условное обозначение приборов и средств автоматизации в схемах».

ФСА:

- упрощенные;
- развернутые.

Условные обозначения:

1. Графические.

- приборы вне щита (пульта)

- исполнительный механизм

2. Буквенные (латинский алфавит).

На первом месте – обозначение измеряемого (регулируемого) параметра:

T – температура

Р – давление

 \mathbf{F} – расход

L – уровень

Q –качественные показатели (концентрация, солесодержание и т. п.)

M – влажность

 \mathbf{R} – радиоактивность

б) На второй позиции – функциональный признак (например, у измерительного прибора – он показывающий или регистрирующий)

I – индикация (показывающий)

 \mathbf{R} – регистрация

С – регулирование

A — сигнализация

- S защита, блокировка
- в) Цифры в нижней части номер позиции для сертификации.

Пример:

Упрощенная схема – теплообменник.

 ${f E}$ — первичный измерительный преобразователь (термопара, термометр сопротивления, сужающее устройство).

Развернутая схема.

Показывающий (регистрирующий) прибор

- **1-1. ТЕ** термометр сопротивления (ТСМ)
- 1-2. ТҮ нормирующий преобразователь (Ш-78)
- **1-3. TC** автоматический регулятор (PC-29)
- 1-4. НА блок управления
- **1-5. H** задатчик (изменяет задание регулятору)
- **1-6. NS** усилитель
- **1-7. GI** указатель положения PO
- **1-8.** исполнительный механизм

H – если задатчиком управляют вручную (оператор крутит ручку)

НА — в блоке управления тоже сто-то задается в ручную (например, открывается/закрывается РО) По месту — значит, что приборы находятся рядом с объектом.

11.2. Автоматизация отдельных установок.

11.2.1. Общие сведения.

Классификация:

- 1. Котельные установки (КУ):
 - топливные (газ, уголь, мазут);
 - утилизационные.
- 2. Котельные установки (КУ):
 - барабанные (с естественной циркуляцией);
 - прямоточные (с принудительной циркуляцией).
- 3. Котельные установки (по давлению):
 - низкого давления (до 1 МПа);
 - среднего давления (1÷10 МПа);
 - высокого давления (10÷22.5 МПа);
 - среднего давления (более 22.5 МПа).
- 4. Котельные установки (по производительности):
 - малой (до 75 т/час);
 - остальные (более 75 т/час: 120, 240, 500, 1000 т/час).

11.2.2. Барабанный котел как объект автоматизации.

Упрощенная технологическая схема БКУ.

 S_{τ} - разряжение в топке

1-6 – исполнительные механизмы:

1. $\mathbf{B}_{\mathbf{r}}$ - расход топлива

- **2.** $\mathbf{Q}_{\mathbf{R}}$ расход воздуха
- **3.** ${\bf Q}_{_{\rm MF}}$ расход дымовых газов
- **4. D**_{пв} питательная вода
- **5.** $\mathbf{D}_{\text{впр}}$ впрыск
- **6. D** $_{mn}$ продувочная вода
- $\mathbf{Q}_{\mathbf{2}}^{yx}$ соединение $\mathbf{O}_{\mathbf{2}}$ в дымовых газах.

Структурная схема объекта регулирования.

11.2.3. Постановка задачи автоматизации.

Обеспечение:

 $\mathbf{D}_{\mathbf{n}\mathbf{n}}$ заданное с $\mathbf{P}_{\mathbf{n}\mathbf{n}} = \mathbf{const}$, $\mathbf{t}_{\mathbf{n}\mathbf{n}} = \mathbf{const}$. При этом $\mathbf{h}_{\mathbf{k}\mathbf{y}} = \mathbf{max}$ (должно быть).

Основные задачи:

- 1. Автоматизация топливно-воздушного тракта:
 - **1.1.** регулирование тепловой нагрузки (P_{nn} , D_{nn}) с воздействием на B_{r} .
 - **1.2.** регулирование экономичности горения (регулирование соотношения топливо-воздух), регулирующее воздействие $\mathbf{Q}_{_{\mathrm{B}}}$, регулируемый параметр $\mathbf{Q}_{_{2}}^{^{\mathrm{yx}}}$.
 - **1.3.** регулирование S_{x} , регулирующее воздействие направляющий аппарат дымососа.
- 2. Автоматизация пароводяного тракта:
 - **2.1.** регулирование уровня в барабане H_{6} , регулирующее воздействие D_{ns} .
 - **2.2.** регулирование \mathbf{t}_{nn} , регулирующее воздействие $\mathbf{D}_{\text{впр}}$.
- 3. Автоматизация солевого режима.

11.3. АСР тепловой нагрузки котла.

11.3.1. Расхода топлива Вт измеряется.

Тепловая нагрузка определяется P_{nn} . Если D_{nn} - , то P_{nn} - . Данная система – двухконтурная АСР.

I – внутренний контур

II – внешний контур

Упрощенная функциональная схема АСР.

- **1-1.** измерение расхода топлива \mathbf{B}_{T} .
- **1-2.** регулятор расхода (стабилизирующий).
- **1-3.** измерение давления P_{m} .
- **1-4.** регулятор давления (корректирующий).
- **1-5.** задатчик ($P_{mn} \neg$ заданное).

11.3.2. Расхода топлива B_{T} не измеряется.

О ${\bf B}_{_{\rm T}}$ судят по косвенным оценкам (импульс по теплу).

Косвенный импульс получают из упрощенного теплового баланса в нестационарном режиме.

$$\mathbf{B}_{\mathrm{T}} \times \mathbf{Q}_{\mathrm{p}}^{\mathrm{H}} - \mathbf{D}_{\mathrm{nn}} \left(\mathbf{i}_{\mathrm{nn}} - \mathbf{i}_{\mathrm{nB}} \right) = \mathbf{A} \times \frac{\mathbf{dP}_{6}}{\mathbf{dt}} \mathbf{P}$$

$$\mathbf{B}_{_{\mathrm{T}}} @ \mathbf{a}_{_{1}} \times \mathbf{D}_{_{\mathrm{HII}}} + \mathbf{a}_{_{2}} \times \frac{\mathbf{dP}_{_{6}}}{\mathbf{dt}}$$

- **1-1.** измеритель расхода пара \mathbf{D}_{nn}
- 1-2. измеритель $\frac{dP_6}{dt}$
- 1-3. регулятор топлива
- **1-4.** измерение давления P_{nn}
- **1-5.** регулятор давления (корректирующий
- **1-6.** задатчик ($P_{nn} 3$ заданное).

11.4. АСР экономичности процесса горения.

Регулируется соотношение топливо-воздух с коррекцией по концентрации кислорода в дымовых газах.

I – внутренний контур

II – внешний контур

- 1. регулятор соотношения $\frac{\mathbf{B}_{\mathrm{T}}}{\mathbf{Q}_{\mathrm{R}}}$
- **2.** корректирующий регулятор по концентрации кислорода в уходящих газах
- 3. измеритель расхода $\mathbf{B}_{_{\mathrm{T}}}$ топлива.

Если расход топлива ${\bf B}_{_{\rm T}}$ не измеряется, то вместо $\frac{{\bf FE}}{3}$ используется импульс по теплоте (см. 11.3.2.)

11.5. АСР разрежения в топке (аэродинамический режим).

Разрежение 20÷50 Па

- ${\bf m}_{_{\rm T}}$ управляющее воздействие от ACP тепловой нагрузки.
- **1-1.** измерение разрежения S_{T}
- **1-2.** регулятор разрежения с воздействием на направляющий аппарат дымососа
- **1-3.** устройство динамической связи от АСР экономичности (от расхода воздуха) Р см. АСР с компенсацией.

11.6. ACP питания котла водой (ACP уровня в барабане).

Трех импульсная АСР уровня в барабане.

- **1-1.** импульс по уровню H_6
- **1-2.** импульс по расходу питательной воды $\mathbf{D}_{\text{\tiny IRB}}$
- **1-3.** импульс по расходу пара $\mathbf{D}_{\mathbf{n}\mathbf{n}}$
- 1-4. регулятор уровня
- **1-5.** задатчик

- РР регулятор расхода (стабилизир.)
- РУ регулятор уровня (корректир.)
- УК устройство компенсации.

Обойтись без $\frac{FE}{1-3}$ нельзя, так как при \mathbf{D}_{nn} - \mathbb{R} \mathbf{P}_{nn} - происходит вскипание воды в барабане, следовательно, \mathbf{H}_{6} мгновенно повышается \mathbb{R} регулятор должен уменьшить \mathbf{D}_{nn} , но \mathbf{D}_{nn} возросло.

11.7. АСР температуры перегретого пара.

АСР с дифференциатором.

- **1-1.** измеритель **t**_{пп}
- **1-2.** регулятор температуры с воздействием на $\mathbf{D}_{\text{впр}}$
- **1-3.** измеритель промежуточной температуры \mathbf{t}_{mn}

1-4. дифференциатор

Для котлов малой производительности и низкого дифференциатор давления используют.

11.8. АСР солесодержания котловой воды.

непрерывная продувка:
$$\mathbf{D}_{\mathsf{np}} \ @ \ (\mathbf{0.02} \ \ \mathbf{0.03}) \times \mathbf{D}_{\mathsf{nn}}$$

При
$$\mathbf{D}_{\text{пп}}$$
 - , \mathbf{C}_{NaCl} -

- 1-3. регулятор соотношения $\, D_{\rm np} \,$ $\, D_{\rm nn} \,$
- 1-4. корректирующий регулятор концентрации NaCl/