Лекция по элементам формализма теории поля Yury Holubeu, December 31, 2023

Contents

1	Main Theory			2
	1.1	О формализме теории поля		
		1.1.1	Лагранжев и гамильтонов формализмы в теории поля	
		1.1.2	Введение в симметрии и теорему Нетер	
	1.2	О нуж	кных в теорполе конструкциях математики	
		1.2.1	О метрике	
		1.2.2	О дифференциальных формах и зачем они нужны?	
	Additional Theory			
	2.1	Иллю	страция формализма на примере скалярного поля	
	2.2	О геометрических уравнениях в теории поля		
			Об уравнении геодезической	
		2.2.2	Введение в гравитацию и уравнения Эйнштейна	

1 Main Theory

1.1 О формализме теории поля

1.1.1 Лагранжев и гамильтонов формализмы в теории поля

Лагранжев формализм

$$dS_1 \approx \int dt \ dL_1[\Phi(\boldsymbol{r},t), \partial \Phi(\boldsymbol{r},t)], \quad dS_2 \approx \int dt \ dL_2[\Phi(\boldsymbol{r},t), \partial \Phi(\boldsymbol{r},t)]$$

Из аддитивности действия в локальной теории поля следует условие для функции Лагранжа $dL_{12} = dL_1 + dL_2$, которое для произвольного разбиения объема может быть выполнено только, если положить

$$dL = \mathcal{L}(\Phi(\mathbf{r}, t), \partial \Phi(\mathbf{r}, t)) dV,$$

где \mathcal{L} - локальная функция поля и его частных производных, которую называют лагранжианом, так как он является плотностью функции Лагранжа поля. Тогда суммирование по разбиению всего пространства на бесконечно малые объемы приводит к действию поля в виде интеграла

$$S[\Phi] = \int dt \, dV \mathcal{L}(\Phi(\mathbf{r}, t), \partial \Phi(\mathbf{r}, t)).$$
$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \Phi} = \frac{\partial \mathcal{L}}{\partial \Phi}$$

Фундаментальная величина классической механики - действие S, являющееся интегралом по времени от лагранжиана L.

В локальной теории поля лагранжиан может быть записан как пространственный интеграл от плотности лагранжиана, обозначаемой \mathcal{L} , которая является функцией одного или более полей $\phi(x)$ и их производных $\partial_{\mu}\phi$. Таким образом,

$$S = \int Ldt = \int \mathcal{L}(\phi, \partial_{\mu}\phi) d^{4}x.$$

Так как это книга по теории поля, далее мы называем \mathscr{L} просто лагранжианом. Принцип наименьшего действия утверждает, что когда система эволюционирует от одной заданной конфигурации к другой за промежуток времени от t_1 до t_2 , то ее «путь» в конфигурационном пространстве таков, что действие S имеет экстремум (обычноминимум). Мы можем записать это условие в виде:

$$0 = \delta S = \int d^4 x \left\{ \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta (\partial_{\mu} \phi) \right\} =$$

$$= \int d^4 x \left\{ \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \delta \phi + \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \delta \phi \right) \right\}.$$

Последнее слагаемое можно превратить в поверхностный интеграл по границе четырехмерной пространственно-временной области интегрирования. Так как начальная и конечная полевые конфигурации считаются заданными, то $\delta\phi$ равно нулю в начальный и конечный моменты времени на этой области. Если мы также ограничимся рассмотрением вариаций $\delta\phi$, исчезающих на пространственной границе области, то поверхностный интеграл равен нулю. Вынося $\delta\phi$ как множитель из первых двух слагаемых и замечая, что интеграл должен исчезать для любой вариации $\delta\phi$, делаем вывод, что множитель при $\delta\phi$ должен

исчезать во всех точках. Таким образом, мы приходим к уравнениям движения Эйлера-Лагранжа для поля:

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi \right)} \right) - \frac{\partial \mathcal{L}}{\partial \phi} = 0.$$

Если лагранжиан содержит более одного поля, то имеется по одному такому уравнению для каждого из них.

Гамильтонов формализм

Лагранжева формулировка теории поля особенно подходит для релятивистской динамики, потому что все выражения в ней явно лоренц-инвариантны. Тем не менее, в первой части этой книги мы будем использовать гамильтонову формулировку, так как с ее помощью легче осуществить переход к квантовой механике.

Напомним, что в дискретной системе для каждой динамической переменной q можно определить канонически сопряженный импульс $p \equiv \partial L/\partial \dot{q}$ (где $\dot{q} = \partial q/\partial t$). Тогда гамильтониан $H \equiv \sum p \dot{q} - L$. Обобщение на непрерывную систему легче всего понять, если представлять точки пространства \mathbf{x} расположенными дискретно. Мы можем определить

$$p(\mathbf{x}) \equiv \frac{\partial L}{\dot{\phi}(\mathbf{x})} = \frac{\partial}{\partial \dot{\phi}(\mathbf{x})} \int \mathcal{L}(\phi(\mathbf{y}), \dot{\phi}(\mathbf{y})) d^3 y \sim \frac{\partial}{\partial \dot{\phi}(\mathbf{x})} \sum_{\mathbf{y}} \mathcal{L}(\phi(\mathbf{y}), \dot{\phi}(\mathbf{y})) d^3 y = \pi(\mathbf{x}) d^3 x,$$

где

$$\pi(\mathbf{x}) \equiv \frac{\partial \mathcal{L}}{\partial \dot{\phi}(\mathbf{x})}$$

называется плотностью илпульса, сопряженного к $\phi(\mathbf{x})$. Таким образом, гамильтониан может быть записан в виде

$$H = \sum_{\mathbf{x}} p(\mathbf{x})\dot{\phi}(\mathbf{x}) - L.$$

Переходя к континууму, имеем

$$H = \int d^3x [\pi(\mathbf{x})\dot{\phi}(\mathbf{x}) - \mathcal{L}] \equiv \int d^3x \mathcal{H}.$$

В конце этого раздела, используя другой метод, мы заново получим это же выражение для плотности гамильтониана ${\mathscr H}.$

В качестве простого примера рассмотрим теорию одного поля $\phi(x)$, лагранжиан которого равен

$$\mathscr{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}(\nabla\phi)^2 - \frac{1}{2}m^2\phi^2 = \frac{1}{2}(\partial_{\mu}\phi)^2 - \frac{1}{2}m^2\phi^2.$$

Пока будем считать ϕ вещественным полем. В разделе 2.3 величина m будет интерпретирована как масса, но пока будем рассматривать ее как некий параметр. Исходя из этого лагранжиана, с помощью обычной процедуры получаем уравнение движения:

$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2\right)\phi = 0 \quad \text{ или } \quad \left(\partial^\mu \partial_\mu + m^2\right)\phi = 0,$$

которое является известным уравнением Клейна-Гордона. (В этом контексте это классическое полевое уравнение, аналогичное уравнениям Максвелла, а не квантово-механическое волновое уравнение.) Замечая, что канонически сопряженная к $\phi(x)$ плотность импульса есть $\pi(x) = \dot{\phi}(x)$, можно также построить гамильтониан

$$H = \int d^3x \mathcal{H} = \int d^3x \left[\frac{1}{2} \pi^2 + \frac{1}{2} (\nabla \phi)^2 + \frac{1}{2} m^2 \phi^2 \right].$$

Три слагаемых в правой части можно рассматривать, соответственно, как энергию «перемещения» во времени, энергию «сдвига» в пространстве и энергию, связанную с наличием самого поля. Мы исследуем этот гамильтониан более детально в разделах 2.3 и 2.4.

Связь механики и теории поля

Грубо говоря, у нас один и тот же формализм, но в механике у нас частицы, в теории поля - непрерывные поля.

(напишу подробнее)

1.1.2 Введение в симметрии и теорему Нетер

Теорема Нетер по Киселеву

Если задать траекторию q(t) - решение уравнения движения для физической системы с функцией Лагранжа L и ее преобразование в другое решение уравнений $q_a\left(t_a\right)$ с той же функцией Лагранжа, зависящее от непрерывного параметра a,

$$q_a = q_a(a, q(t), t), \quad t_a = t_a(a, q(t), t)$$

то можно рассмотреть изменение экстремума действия в зависимости от параметра a с учетом изменения граничных точек траектории. Обычно полагают, что при a=0 преобразование сводится к тождественному, т.е. $q_a=q_a(a,q(t),t)|_{a=0}=q(t)$ и $t_a=t_a(a,q(t),t)|_{a=0}=t$. Но это нисколько не меняет физического содержания теоремы, а только указывает то, что исходная траектория q(t) принадлежит классу однопараметрических преобразований, которые включают в себя тождественное преобразование как раз при a=0. Поэтому обычно рассматривают изменение действия при бесконечно малом преобразовании одной траектории в другую при $a\to 0$. Задачу решает теорема Hëтер:

$$\frac{\mathrm{d}S}{\mathrm{d}a} = \int_{t_a^{(1)}(a,q_1,t_1)}^{t_a^{(2)}(a,q_2,t_2)} \frac{\mathrm{d}}{\mathrm{d}t_a} \left\{ \frac{\partial L}{\partial \dot{q}_a} \left(\frac{\partial q_a}{\partial a} - \dot{q}_a \frac{\partial t_a}{\partial a} \right) + L \frac{\partial t_a}{\partial a} \right\} \mathrm{d}t_a$$

(вывод коротко укажу, отсылаясь к его лекциям за деталями)

$$\mathcal{I} \stackrel{\text{def}}{=} L \frac{\partial t}{\partial a} + \sum_{q} \frac{\partial L}{\partial \partial_{t} q} \left(\frac{\partial q}{\partial a} - \frac{\partial t}{\partial a} \partial_{t} q \right),$$

Теорема Нетер по Пескину Шредеру (и многим другим книгам)

Обсудим теперь связь между симметриями и законами сохранения в классической теории поля, устанавливаемую теоремой Нетер. В этой теореме рассматриваются непрерывные преобразования полей ϕ , которые в инфинитезимальной форме могут быть записаны в виде

$$\phi(x) \to \phi'(x) = \phi(x) + \alpha \Delta \phi(x),$$

где α - инфинитезимальный параметр и $\Delta \phi$ - некоторая деформация конфигурации поля. Мы называем это преобразование симметрией, если оно оставляет инвариантными уравнения движения. Это заведомо имеет место, если действие инвариантно по отношению к преобразованию (2.9). В более общем случае можно допустить, чтобы добавка к действию имела вид поверхностного слагаемого, так как наличие такого слагаемого не влияет на вывод уравнений движения Эйлера-Лагранжа (2.3). Поэтому лагранжиан должен быть

инвариантен относительно (2.9) с точностью до 4 -дивергенции от некоторого вектора \mathcal{J}^{μ} :

$$\mathcal{L}(x) \to \mathcal{L}(x) + \alpha \partial_{\mu} \mathcal{J}^{\mu}(x),$$

Сравним ожидаемое выражение для $\Delta \mathscr{L}$ с результатом, полученным при вариации полей:

$$\alpha \Delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} (\alpha \Delta \phi) + \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \partial_{\mu} (\alpha \Delta \phi) =$$

$$= \alpha \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \Delta \phi \right) + \alpha \left[\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \right] \Delta \phi$$

(Если симметрия включает больше одного поля, то первое слагаемое в этом выражении для $j^{\mu}(x)$ должно быть заменено суммой таких слагаемых по одному для каждого поля.) Этот результат означает, что ток $j^{\mu}(x)$ сохраняется. Каждой непрерывной симметрии $\mathscr L$ соответствует такой закон сохранения. Закон сохранения может быть также сформулирован как сохранение заряда

$$Q \equiv \int_{\text{BCE IIDOCTDAHCTBO}} j^0 d^3 x$$

во времени. Заметим, однако, что формулировка теории поля в терминах локальной плотности лагранжиана непосредственно приводит к локальной форме закона сохранения (2.12).

Самый простой пример такого закона возникает в теории с лагранжианом, содержавшим лишь кинетическое слагаемое: $\mathscr{L} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2$. Преобразование $\phi \to \phi + \alpha$, где α - константа, оставляет \mathscr{L} неизменным, и мы заключаем, что ток $j^{\mu} = \partial^{\mu} \phi$ сохраняется. В качестве менее тривиального примера рассмотрим лагранжиан

$$\mathscr{L} = \left| \partial_{\mu} \phi \right|^2 - m^2 |\phi|^2,$$

где теперь ϕ - комплексное поле. Можно легко показать, что уравнение движения для этого лагранжиана вновь является уравнением Клейна - Гордона (2.7). Этот лагранжиан инвариантен относительно преобразования $\phi \to e^{i\alpha}\phi$; для бесконечно малого преобразования имеем:

$$\alpha \Delta \phi = i \alpha \phi$$
; $\alpha \Delta \phi^* = -i \alpha \phi^*$.

(Мы рассматриваем ϕ и ϕ^* как независимые поля. Альтернативно можно было бы работать с вещественной и мнимой частями поля ϕ .) Теперь несложно показать, что сохраняющийся нетеровский ток равен

$$j^{\mu}=i\left[\left(\partial^{\mu}\phi^{*}\right)\phi-\phi^{*}\left(\partial^{\mu}\phi\right)\right].$$

(Общий множитель был выбран произвольно.) Используя уравнение Клейна-Гордона, можно непосредственно проверить, что дивергенция этого тока равна нулю. Ниже мы добавим к этому лагранжиану слагаемые, которые связывают ϕ с электромагнитным полем. Тогда j^{μ} можно будет рассматривать как плотность электромагнитного тока комплексного скалярного поля, а пространственный интеграл j^0 - как электрический заряд.

Теорему Нетер можно также применить к пространственно-временным преобразованиям типа трансляций и вращений. Бесконечно малая трансляция

$$x^{\mu} \rightarrow x^{\mu} - a^{\mu}$$

может быть альтернативно описана как преобразование поля:

$$\phi(x) \to \phi(x+a) = \phi(x) + a^{\mu} \partial_{\mu} \phi(x).$$

Лагранжиан также является скаляром, поэтому он должен преобразовываться аналогично:

$$\mathcal{L} \to \mathcal{L} + a^{\mu} \partial_{\mu} \mathcal{L} = \mathcal{L} + a^{\nu} \partial_{\mu} \left(\delta^{\mu}_{\ \nu} \mathcal{L} \right).$$

Сравнивая это уравнение с (2.10), видим, что теперь имеется ненулевой ток \mathcal{J}^{μ} . Учитывая это, можно применить теорему Нетер, чтобы получить четыре отдельно сохраняющихся тока

$$T^{\mu}{}_{\nu} \equiv \frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi - \mathcal{L} \delta^{\mu}{}_{\nu}$$

Это - в точности тензор энергии-натяжения, называемый также тензором энергии-импульса поля ϕ . Сохраняющийся заряд, связанный с временными трансляциями, есть гамильтониан

$$H = \int T^{00} d^3 x = \int \mathcal{H} d^3 x.$$

Вычисляя эту величину для поля Клейна-Гордона, можно еще раз получить результат (2.8). Связанные с пространственными трансляциями сохраняющиеся заряды имеют вид:

$$P^{i} = \int T^{0i} d^{3}x = -\int \pi \partial_{i} \phi d^{3}x.$$

Мы интерпретируем их как (физический) импульс, переносимый полем (не путать с каноническим импульсом).

Иллюстративные примеры симметрий

Если (???? трансляции), то сохраняется импульс (????)

Для сдвигов $\boldsymbol{r}_a = \boldsymbol{r}, t_a = t - a$ по теореме Нетер сохраняется энергия:

$$E := \frac{\partial L}{\partial \boldsymbol{v}} \boldsymbol{v} - L,$$

Для вращений $x_a = x \cos a - y \sin a, y_a = y \cos a + x \sin a$ сохраняется момент импульса

$$\ell_z := \frac{\partial L}{\partial \dot{x}}(-y) + \frac{\partial L}{\partial \dot{y}}x = xp_y - yp_x.$$

Для преобразований Галилея $\boldsymbol{r}_a = \boldsymbol{r} + \boldsymbol{v}_a t, t_a = t,$ получаем (?? конкретнее как - допишу)

$$\boldsymbol{p} = m\boldsymbol{v}, \qquad L_0 = \frac{1}{2}mv^2$$

Для преобразований Лоренца $x_{\mathfrak{u}}\approx x-\mathfrak{u}t, t_{\mathfrak{u}}\approx t-\frac{\mathfrak{u}}{c^2}x$ ток равен $\mathcal{I}=\frac{\partial L}{\partial v}\left(-t+v\frac{x}{c^2}\right)-L\frac{x}{c^2}$ для свободной частицы $x(t)=x_0+vt$ из $\frac{\mathrm{d}\mathcal{I}}{\mathrm{d}t}\equiv 0$ получаем

$$L(v) = L_0 \sqrt{1 - \frac{v^2}{c^2}} \approx L_0 - L_0 \frac{v^2}{2c^2} + \dots$$

1.2 О нужных в теорполе конструкциях математики

1.2.1 О метрике

Понятие метрики

После перехода к записи с привычным матричным умножением квадрат интервала можно записать в терминах транспонированного контрвектора и матрицы метрики,

$$ds^2 = dx^T \circ \hat{g} \circ dx, \quad \hat{g}_{\mu\nu} = g_{\mu\nu},$$

а преобразование тензора метрики можно переписать в виде умножения матриц,

$$\hat{q} = \Lambda^{\mathrm{T}} \circ \hat{q}' \circ \Lambda,$$

Тогда и закон изометрии, когда $\hat{g}' = \hat{g}$,

$$g_{\mu'\nu'} = g_{\mu\nu} \Lambda^{\mu}_{\bullet\mu'} \Lambda^{\nu}_{\bullet\nu'} = \left(\Lambda^{\mathrm{T}}\right)^{\bullet}_{\mu'} g_{\mu\nu} \Lambda^{\nu}_{\bullet\nu'}$$

согласно (17.55) можно записать с матричным умножением как ортогональные преобразования 4 -х координат пространства-времени 2 ,

$$\hat{g} = \Lambda^{\mathrm{T}} \circ \hat{g} \circ \Lambda,$$

откуда сразу следует специальное условие на детерминант матрицы преобразований 3

$$(\det \Lambda)^2 = 1,$$

а также

$$g_{00} = 1 = g_{\mu\nu} \Lambda^{\mu}_{\bullet 0} \Lambda^{\nu}_{\bullet 0} = \left(\Lambda^{0}_{0}\right)^{2} - \left(\Lambda^{\alpha}_{\bullet 0}\right)^{2},$$

О метрике в линейном приближении и обозначениях

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1$$

В линейном приближении удобно поднимать и опускать индексы с помощью фоновой метрики $\eta_{\mu\nu}$. Иногда вводится черточка:

$$h^{\bar{\mu}}_{\nu} = \eta^{\mu\lambda} h_{\lambda\nu}$$

и т.д. В первом порядке по $h_{\mu\nu}$ имеем

$$g^{\mu\nu}=\eta^{\mu\nu}-h^{\overline{\mu}\overline{\nu}},\quad |g|=1+h,\quad h=h^{\bar{\mu}}_{\mu}$$

1.2.2 О дифференциальных формах и зачем они нужны?

В чем идея дифференциальных форм?

(основные свойства)

Об интегрировании форм

(всем известные теоермы еще раз, мб пример в теории поля добавлю тоже)

2 Additional Theory

2.1 Иллюстрация формализма на примере скалярного поля

Типичный пример поля - скалярное поле. Этот пример используется во многих моделях, но нам сейчас он понадобится только для иллюстрации формализма.

(тут лишь пара формул, подробно - на следующей лекции)

2.2 О геометрических уравнениях в теории поля

2.2.1 Об уравнении геодезической

Об уравнении геодезической

$$\frac{dU^{\mu}}{ds} + \gamma^{\mu}_{\alpha\beta} U^{\alpha} U^{\beta} = 0$$

или $U^{\alpha}\left(\frac{\partial U^{\mu}}{\partial X^{\alpha}}+\gamma^{\mu}_{\alpha\beta}U^{\beta}\right)=0$ или

$$u^{\nu}\nabla_{\nu}u^{\alpha}=0$$

где $\nabla_{\nu}u^{\alpha}:=u^{\alpha}_{:\nu}=\partial_{\nu}u^{\alpha}+\gamma^{\alpha}_{\nu\lambda}u^{\lambda}$, и $\gamma^{\alpha}_{\nu\lambda}:=\frac{1}{2}g^{\mu\alpha}\left[\partial_{\nu}g_{\mu\lambda}+\partial_{\lambda}g_{\mu\nu}-\partial_{\mu}g_{\nu\lambda}\right]$ или

$$P^{\alpha} \frac{\partial P^{\mu}}{\partial X^{\alpha}} = -\gamma^{\mu}_{\alpha\beta} P^{\alpha} P^{\beta}.$$

где $P^{\mu} = mU^{\mu}$.

Получаем просто из $\frac{\mathrm{d}}{\mathrm{d}\tau} \frac{\partial \tilde{L}}{\partial u^{\mu}} = \frac{\partial \tilde{L}}{\partial x^{\mu}}$ для $S = -mc^2 \int \mathrm{d}\tau \sqrt{g_{\mu\nu}(x) \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau}}$, где аккуратно нужно подставить $u^{\mu} = \mathrm{d}x^{\mu}/\mathrm{d}\tau$ и $u^2 = c^2$, а также разбить $u^{\nu}u^{\lambda}\partial_{\nu}g_{\mu\lambda}$ на два слагаемых по симметрии.

В частности, для нерелятивистского предела геодезическая дается

$$\ddot{\boldsymbol{r}} \approx -\nabla \phi(\boldsymbol{r}), \qquad \qquad \phi(\boldsymbol{r}) :\approx \frac{c^2}{2}g_{00} + \text{ const.}$$

И обратно, для асимптотического Минковского

$$g_{00}(\mathbf{r}) \approx 1 + 2 \frac{\phi(\mathbf{r})}{c^2}$$

где $\phi(r)$ ищем по Ньютоновской механике.

Нерелятивистский предел - это по сути $u^{\mu} \approx c\left(1, \frac{v^{\alpha}}{c}\right), \quad v^{\alpha} = \frac{\mathrm{d}r^{\alpha}}{\mathrm{d}t}$, поэтому $u^{\nu}\nabla_{\nu}u^{\alpha} \approx u^{0}\frac{1}{c}\partial_{t}u^{\alpha} + \gamma_{00}^{\alpha}u^{0}u^{0} \equiv 0$, и эти два слагаемых и составляют типичное уравнение геодезической в нерелятивистском пределе.

2.2.2 Введение в гравитацию и уравнения Эйнштейна

О законах гравитации

Уравнения Эйнштейна имеют вид:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$$

имеет параметры: тензор Риччи

$$R_{ik} = g^{lm} R_{limk} = R_{ilk}^l,$$

скалярная кривизна

$$R = g^{ik} R_{ik} = g^{il} g^{km} R_{iklm}$$

определяются тензором кривизны Римана

$$R_{iklm} = \frac{1}{2} \left(\frac{\partial^2 g_{im}}{\partial x^k \partial x^l} + \frac{\partial^2 g_{kl}}{\partial x^i \partial x^m} - \frac{\partial^2 g_{il}}{\partial x^k \partial x^m} - \frac{\partial^2 g_{km}}{\partial x^i \partial x^l} \right) + g_{np} \left(\Gamma_{kl}^n \Gamma_{im}^p - \Gamma_{km}^n \Gamma_{il}^p \right),$$

где символы Кристоффеля

$$\Gamma_{kl}^{i} = \frac{1}{2}g^{im} \left(\frac{\partial g_{mk}}{\partial x^{l}} + \frac{\partial g_{ml}}{\partial x^{k}} - \frac{\partial g_{kl}}{\partial x^{m}} \right)$$

(абзац про смысл)

Энергию можно считать по формуле:

$$t_{\mu x} \equiv \frac{1}{8\pi G} \left[R_{\mu x} - \frac{1}{2} g_{\mu x} R^{\lambda}_{\ \lambda} - R^{(1)}_{\mu \varkappa} + \frac{1}{2} \eta_{\mu x} R^{(1)\lambda}_{\ \lambda} \right],$$

где линейная часть тензора Риччи $R^{(1)}_{\mu x} \equiv \frac{1}{2} \left(\frac{\partial^2 h^{\lambda}_{\lambda}}{\partial x^{\mu} \partial x^{\varkappa}} - \frac{\partial^2 h^{\lambda}_{\mu}}{\partial x^{\lambda} \partial x^{\mu}} + \frac{\partial^2 h_{\mu x}}{\partial x^{\lambda} \partial x_{\lambda}} \right)$. На самом деле тут большая теория о физическом смысле этой формулы, но для рассмотрения усреднения она не актуальна.

Для слабого поля:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1$$

Линеаризованные уравнения Эйнштейна типично пишутся через параметр

$$\psi_{\mu\nu} = h_{\mu\nu} - \frac{\eta_{\mu\nu}}{2}h,$$

как

$$\Box \psi_{\mu\nu} = -16\pi G T_{\mu\nu},$$

если мы пользуемся калибровкой $\psi^{\bar{\mu}}_{\nu,\mu}=0$. Обратно $h_{\mu\nu}=\psi_{\mu\nu}-\frac{\eta_{\mu\nu}}{d-2}\psi,\psi=\psi^{\bar{\mu}}_{\mu}=-\frac{d-2}{2}h$. Отсюда

$$h_{00} = \frac{d-3}{d-2}\psi_{00}$$
 и $h_{ij} = \frac{\psi_{00}}{d-2}\delta_{ij}$.

На больших расстояниях

$$|\psi_{00}| \gg |\psi_{0i}|,$$

(тут абзац, что по итогу можно найти h в таких-то видах, так что получаем формулы для усреднения)