CS 447/547: Computer Graphics

Homework 2

This homework must be done individually. Submission date is October 19, 2016, in class.

Question 1: This question concerns human's intensity perception. Humans are tuned to the *ratio* of intensities, not their absolute difference. If we want to make a perceptually uniform intensity system with intensities $l_1 = 1$, l_2 , l_3 , l_4 , l_5 , $l_6 = 32$. What are the values of l_2 , l_3 , l_4 , and l_5 ?

Answer:

$$\begin{cases} \frac{l_2}{l_1} = \frac{l_3}{l_2} = \frac{l_4}{l_3} = \frac{l_5}{l_4} = \frac{l_6}{l_5} \\ l_6 = 32 \\ l_1 = 1 \end{cases} \rightarrow l_6 = l_2^5 = 32 \rightarrow l_2 = 2, l_3 = 4, l_4 = 8 \text{ and } l_5 = 16.$$

Question 2: CIE L*a*b* color space is often considered approximately perceptually uniform. We can convert RGB into L*a*b* in two steps:

Step 1: Convert RGB to XYZ using the formula in our lecture 2.

Step 2: Convert XYZ to L*a*b*.

 $L^*a^*b^*$ is not a linear color space, so converting XYZ to $L^*a^*b^*$ is more complicated than RGB to XYZ. We will use the following formulas to the conversion.

$$L^* = \begin{cases} 116 * \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} - 16 & \frac{Y}{Y_n} > 0.008856 \\ 903.3 * \left(\frac{Y}{Y_n}\right) & else \end{cases}$$

$$a^* = 500 * \left(f\left(\frac{X}{X_n}\right) - f\left(\frac{Y}{Y_n}\right)\right)$$

$$b^* = 200 * \left(f\left(\frac{Y}{Y_n}\right) - f\left(\frac{Z}{Z_n}\right)\right)$$

where

$$f(t) = \begin{cases} t^{\frac{1}{3}} & t > 0.008856\\ 7.787 * t + \frac{16}{116} & else \end{cases}$$

Here $Y_n = 1.0$ is the luminance, and $X_n = 0.950455$, $Z_n = 1.088753$.

Suppose we have two colors in RGB color space: (0.5, 0, 0) and (1, 1, 1).

a. What are the coordinates for these two colors in L*a*b* color space? (2 points)

Answer:

(38.9502, 63.5844,53.3516) and (99.9923,0.0412,-0.0285)

In computer graphics, we often need to perform linear interpolation between two colors. The linear interpolation from (r_1, g_1, b_1) and (r_2, g_2, b_2) can be implemented as follows.

$$r(u) = (1 - u)r_1 + ur_2$$

$$g(u) = (1 - u)g_1 + ug_2$$

$$b(u) = (1 - u)b_1 + ub_2$$

b. We want to interpolate from (0.5, 0, 0) to (1, 1, 1) in 5 steps, which can be achieved by using u=0, u=0.25, u=0.5, u=0.75, u=1, respectively. Compute the 5 RGB colors. (5 points)

Answer:

Let C_i ($1 \le i \le 5$) be the resulting color by interpolating from $R_1(0.5,0,0)$ to $R_2(1,1,1)$,

$$\mathbf{C}_i = u\mathbf{R}_2 + (1-u)\mathbf{R}_1$$

$$C_1 = (0.5,0,0); C_2 = (0.625,0.25,0.25); C_3 = (0.75,0.5,0.5); C_4 = (0.875,0.75,0.75); C_5 = (1,1,1)$$

c. Compute the corresponding coordinates in L*a*b* color space of the above 5 RGB colors. (5 points)

Answer:

Let L_i $(1 \le i \le 5)$ be (L_i^*, a_i^*, b_i^*) corresponding to the RGB colors in (c),

$$L_1 = (38.9502, 63.5844, 53.3516); L_2 = (64.1346, 26.8609, 11.0547)$$

$$L_3 = (79.2166, 13.2815, 4.9469);$$
 $L_4 = (90.6165, 5.4298, 1.9170)$

$$L_5 = (99.9923, 0.0412, -0.0285)$$

d. Plot two graphs: one showing $L \rightarrow$ as a function of u and the other showing a^* . (2 points) **Answer:**

Here we can see that L^* and a^* are not a linear function of u.

Question 3: Consider the three sensors, A, B and C, shown below. Sensor A has a response of 1 between 400nm and 500nm, Sensor B responds between 450nm and 600nm, and Sensor C responds between 550nm and 700nm.

What is the response of each of these three sensors to the following spectrum? You need to give actual points.

Answer:

 r_A =100/3=33.3; r_B =325/3=108.3; r_C =75

Here is how we can get answers. Take sensor A as an example. Denote the sensitivity curve of sensor A as $\rho(\lambda)$ and the spectrum as $E(\lambda)$, the response r can be computed using the following equation (in Lecture 2).

$$r = \int \rho(\lambda) E(\lambda) d\lambda$$

$$where \ \rho(\lambda) = \begin{cases} 1,400 \leq \lambda \leq 500 \\ 0,otherwise \end{cases} \ and \ E(\lambda) = \begin{cases} \frac{\lambda-400}{150},400 \leq \lambda \leq 550 \\ 1-\frac{\lambda-550}{150},\ 550 \leq \lambda \leq 700 \\ 0,otherwise \end{cases}$$
 Denote $f(\lambda) = \rho(\lambda)E(\lambda)$. We can get $f(\lambda) = \begin{cases} \frac{\lambda-400}{150},400 \leq \lambda \leq 500 \\ 0,otherwise \end{cases}$. Therefore, $r = \int \rho(\lambda)E(\lambda)d\lambda = \int f(\lambda)d\lambda = 33.3$

Question 4: The **Sobel operator** is used in image processing for edge detection. The following shows a 3×3 Sobel filter mask for a vertical edge detector.

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

a. What is the response of this filter to the following 6×6 image? Ignore the boundary pixels that do not have all the pixel values for the filter, so we will get a 4×4 image.

Answer:

b. What is the response of this filter to the following 6×6 image? Again, ignore the boundary pixels that do not have all the pixel values for the filter, so we will get a 4×4 image.

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Answer:

$$\begin{bmatrix} 0 & -4 & -4 & 0 \\ 0 & -4 & -4 & 0 \\ 0 & -4 & -4 & 0 \\ 0 & -4 & -4 & 0 \end{bmatrix}$$

c. Can you design a 3×3 filter that can detect the horizontal edge in the image shown in (a)? **Answer:**

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Question 5: Gaussian is one of the most popular filters in computer graphics. What is the 9×9 2D guassian filter mask? (Use the method described in Lecture 4: first construct a 1d filter mask, and then construct the corresponding 2D filter mask. You are not required to fill in the actual number for the 2D filter mask, and a correct formula is good enough.).

Answer: Our lecture gave a 1×7 1D Gaussian filter mask. We can then first construct the following 1×9 1D Gaussian filter mask.

$$\mathbf{G}_9 = \frac{1}{256} \begin{bmatrix} 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 \end{bmatrix}^T$$
 (2 points)

We can use obtain the corresponding 9×9 2D Gaussian filter mask by vector outer product. (1 point) $\mathbf{G}_{9\times9} = \mathbf{G}_9\mathbf{G}_9^T$