

Практическое занятие 14

Поток векторного поля

Пусть $\vec{a}(M)$ — векторное поле скоростей стационарного потока несжимаемой жидкости, определенное в некоторой пространственной области. Предположим, что внутри этой области имеется проницаемая гладкая двусторонняя поверхность σ , сторону которой зафиксируем путем выбора направления нормали \vec{n} к этой поверхности. Поставим задачу о вычислении объема жидкости, протекающей через поверхность σ за единицу времени. Эта величина называется потоком векторного поля и обозначается Π .

$$\Pi = \iint_{\sigma} (\vec{a} \cdot \vec{n}) d\sigma.$$

Если поверхность σ , заданная уравнением F(x,y,z)=0, однозначно проектируется на плоскость xOy, единичный вектор нормали имеет координаты $\vec{n}=(cos\alpha,cos\beta,cos\gamma)$, то

$$\Pi = \iint_{\sigma} (\vec{a} \cdot \vec{n}) d\sigma = \iint_{D_{xy}} \frac{(\vec{a} \cdot \vec{n})}{|\cos \gamma|} \Big|_{z=z(x,y)} dxdy,$$

 γ — угол между \vec{n} и осью 0z.

Если поверхность σ однозначно проектируется на плоскость y0z, то

$$\Pi = \iint_{\sigma} (\vec{a} \cdot \vec{n}) d\sigma = \iint_{D_{yz}} \frac{(\vec{a} \cdot \vec{n})}{|\cos \alpha|} \Big|_{x=x(y,z)} dy dz,$$

 α — угол между \vec{n} и осью Ox.

Если поверхность σ однозначно проектируется на плоскость x0z, то

$$\Pi = \iint_{\sigma} (\vec{a} \cdot \vec{n}) d\sigma = \iint_{D_{xz}} \frac{(\vec{a} \cdot \vec{n})}{|\cos \beta|} \Big|_{y=y(x,z)} dxdz,$$

 β — угол между \vec{n} и осью 0у.

Формула Гаусса-Остроградского:

$$\oint_{\sigma} (\vec{a} \cdot \vec{n}) d\sigma = \iiint_{V} \operatorname{div} \vec{a} \, dV$$

Поток векторного поля через внешнюю сторону гладкой или кусочногладкой замкнутой поверхности равен тройному интегралу от дивергенции этого векторного поля по области, ограниченной этой замкнутой поверхностью.

Пример 1. Найти поток векторного поля

 $\vec{a} = (x - 3z)\bar{\iota} + (x + 2y + z)\bar{\jmath} + (4x + y)\bar{k}$ через часть плоскости x + y + z = 2, лежащей в 1 октанте.

Поверхность σ — треугольник ABC, стороны которого заданы уравнениями

$$AB: x + y = 2$$

$$BC: y + z = 2$$

$$AC: x + z = 2.$$

Запишем уравнение плоскости в неявном виде:

$$F(x, y, z) = x + y + z - 2 = 0$$

Вычислим вектор единичной нормали к плоскости:

$$\bar{n} = \pm \frac{gradF}{|gradF|} = \pm \frac{\bar{\imath} + \bar{\jmath} + \bar{k}}{\sqrt{3}}$$
 . Знак выберем «+», так как нормаль образует с осью Oz острый угол:

$$\bar{n} = \frac{\bar{\iota} + \bar{j} + \bar{k}}{\sqrt{3}}, \ \cos \gamma = \frac{1}{\sqrt{3}}.$$

Вычислим

$$(\bar{a}, \bar{n}) = \frac{1}{\sqrt{3}}(x - 3z + x + 2y + z + 4x + y) = \frac{1}{\sqrt{3}}(6x + 3y - 2z).$$

Плоскость треугольника ABC проектируется взаимно однозначно на плоскость xOy в треугольник AOB.

$$\Pi = \iint_{\sigma} (\bar{a}, \bar{n}) d\sigma = \iint_{Dxy} \frac{(\bar{a}, \bar{n})}{|\cos y|} \Big|_{z=z(x,y)} dxdy =$$

$$= \iint_{\Delta AOB} (6x + 3y - 2z)|_{z=2-x-y} dxdy = \iint_{\Delta AOB} (8x + 5y - 4) dxdy =$$

$$= \int_{0}^{2} dx \int_{0}^{2-x} (8x + 5y - 4) dy =$$

$$= \int_{0}^{2} \left(8x(2-x) + 5\frac{(2-x)^{2}}{2} - 4(2-x)\right) dx =$$

$$= \int_{0}^{2} \left(10x + 2 - \frac{11}{2}x^{2}\right) dx = \left(5x^{2} + 2x - \frac{11x^{3}}{2 \cdot 3}\right)\Big|_{0}^{2} = 9\frac{1}{3}.$$

Omeem: $\Pi = 9\frac{1}{3}$.

Пример 2. Найти поток векторного поля

 $\vec{a}=x^3\bar{\iota}+3yz^2\bar{\jmath}+3y^2z\bar{k}$ через поверхность сферы $x^2+y^2+z^2=R^2$.

Так как сфера является замкнутой поверхностью, воспользуемся формулой Гаусса-Остроградского. Вычислим дивергенцию заданного поля:

$$div\vec{a} = \frac{\partial}{\partial x}x^3 + \frac{\partial}{\partial y}(3yz^2) + \frac{\partial}{\partial z}(3y^2z) = 3x^2 + 3z^2 + 3y^2,$$

$$\Pi = \iiint_V \operatorname{div}\vec{a} \, dV = 3 \iiint_V (x^2 + z^2 + y^2) \, dx dy dz$$

Перейдем к сферическим координатам:

 $x=rsin\theta cos\varphi,\ y=rsin\theta sin\varphi,\ z=rcos\theta$ $dxdydz=r^2sin\theta d\varphi drd\theta\ ,\ x^2+z^2+y^2=r^2.$

$$\Pi = 3 \iiint_{V} r^{4} \sin\theta d\varphi dr d\theta = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{R} r^{4} dr = \frac{12}{5} \pi R^{5}.$$

Omeem: $\Pi = \frac{12}{5} \pi R^5$.

Пример 3. Найти поток векторного поля

$$\vec{a} = (x+y)\bar{\iota} - (x-y)\bar{\jmath} + xyz\bar{k}$$

через часть цилиндрической поверхности

 σ : $x^2 + y^2 = 1$, вырезанную заданными плоскостями p_1 : z = 0 и p_2 : z = 4 (выбирается внешняя нормаль к поверхности σ).

При решении данной задачи нельзя воспользоваться формулой Остроградского-

Гаусса, потому что поверхность σ , через которую требуется найти поток векторного поля, не является замкнутой. Поэтому найдем поток Π векторного поля \vec{a} через поверхность σ , исходя из его определения:

$$\Pi = \iint_{\sigma} (\vec{a} \cdot \vec{n}) d\sigma.$$
$$F(x, y, z) = x^2 + y^2 - 1 = 0$$

$$\bar{n} = \pm \frac{gradF}{|gradF|} = \pm \frac{2x\bar{\imath} + 2y\bar{\jmath}}{\sqrt{4x^2 + 4y^2}} = \pm \frac{x\bar{\imath} + y\bar{\jmath}}{\sqrt{x^2 + y^2}}$$

Выбор знака обусловлен тем, что внешняя нормаль должна образовывать острый угол с осью Ox при x > 0, т.е. $\cos \alpha > 0$ при x > 0, и тупой угол с осью Ox при x < 0, т.е. $\cos \alpha < 0$ при x < 0. Поэтому выбираем в формуле знак "+".

$$\bar{n} = \frac{x\bar{\iota} + y\bar{\jmath}}{\sqrt{x^2 + y^2}}$$

Найдем скалярное произведение $\vec{a} = (x+y)\bar{\iota} - (x-y)\bar{\jmath} + xyz\bar{k}$ и \bar{n} :

$$(\vec{a} \cdot \vec{n}) = \frac{x(x+y) - y(x-y)}{\sqrt{x^2 + y^2}} = \frac{x^2 + y^2}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2}$$
$$(\vec{a} \cdot \vec{n})|_{\sigma} = 1$$

$$\Pi = \iint_{\sigma} (\vec{a} \cdot \vec{n}) \, d\sigma = \iint_{\sigma} d\sigma = S(\sigma)$$

Площадь поверхности цилиндра вычисляется по формуле:

$$S=2\pi rh$$

где r — радиус основания, h — высота цилиндра.

$$S(\sigma) = 2\pi \cdot 1 \cdot 4 = 8\pi.$$
$$\Pi = 8\pi.$$

Пример 4. Вычислить поток векторного поля

$$\bar{a} = 2x\bar{\iota} + 3y\bar{\jmath} + (1 - 2z)\bar{k}$$

через замкнутую поверхность σ , образованную параболоидом

$$x^2 + y^2 = 1 - 2z$$
, $z \ge 0$, и плоскостью $z = 0$.

в направлении внешней нормали двумя способами: непосредственно и с помощью формулы Остроградского-Гаусса.

Нетрудно видеть, что поверхность σ состоит из двух частей: верхняя часть σ_1 представляет собой параболоид с вершиной на оси Oz при z=1/2, «чашка» которого направлена вниз, а нижняя часть σ_2 при z=0 представляет собой круг $x^2+y^2\leq 1$.

Поскольку поверхность σ_1 задана

уравнением вида F(x,y,z)=0, где $F(x,y,z)=x^2+y^2+2z-1$, то единичный вектор нормали \vec{n} к ней находится по формуле

$$\vec{n} = \pm \frac{grad(x^2 + y^2 + 2z - 1)}{\left| grad(x^2 + y^2 + 2z - 1) \right|} = \pm \frac{x\vec{i} + y\vec{j} + \vec{k}}{\sqrt{x^2 + y^2 + 1}},$$

где знак + в правой части выбран потому, что нормаль \vec{n} внешняя. При этом $\cos \gamma = \frac{1}{\sqrt{x^2 + y^2 + 1}}.$

Находим скалярное произведение $(\vec{a} \cdot \vec{n})$:

$$(\vec{a} \cdot \vec{n}) = \frac{2x^2 + 3y^2 + 1 - 2z}{\sqrt{x^2 + y^2 + 1}}$$

Поскольку поверхность проектируется на плоскость x0y в круг σ_2 , то по формуле для потока получаем

$$\Pi_{\sigma_{1}} = \iint_{\sigma_{1}} (\vec{a} \cdot \vec{n}) d\sigma = \iint_{\sigma_{2}} \frac{(\vec{a} \cdot \vec{n})}{|cos\gamma|} \Big|_{z(x,y)} dxdy =$$

$$\iint_{\sigma_{2}} \frac{2x^{2} + 3y^{2} + 1 - 2z}{\sqrt{x^{2} + y^{2} + 1}} \cdot \sqrt{x^{2} + y^{2} + 1} \Big|_{1-2z = x^{2} + y^{2}} dxdy =$$

$$= \iint_{\sigma_{2}} (3x^{2} + 4y^{2}) dxdy = \iint_{\sigma_{2}} (3r^{2}cos^{2}\varphi + 4r^{2}sin^{2}\varphi) rd\varphi dr =$$

$$= \int_{0}^{2\pi} (3 + sin^{2}\varphi) d\varphi \int_{0}^{1} r^{3} dr = \frac{7\pi}{4}$$

Последний двойной интеграл вычислили в полярных координатах.

Найдем теперь поток по поверхности $\sigma_2 = \{x^2 + y^2 \le 1\}$. Очевидно, вектор внешней нормали $\vec{n} = \{0,0,-1\}$. Поэтому

$$\Pi_{\sigma_2} = \iint_{\sigma_2} (\vec{a} \cdot \vec{n})|_{z=0} d\sigma = \iint_{\sigma_2} (2z - 1)|_{z=0} dx dy = -\pi.$$

Окончательно, искомый поток

$$\Pi_{\sigma} = \Pi_{\sigma_1} + \Pi_{\sigma_2} = \frac{7\pi}{4} - \pi = \frac{3\pi}{4}.$$

Вычислим этот поток с помощью формулы Остроградского-Гаусса, для чего находим $div\bar{a}=2+3-2=3$. Тогда

$$\Pi_{\sigma} = \iiint_{V} 3dxdydz.$$

Здесь пространственная область V ограничена сверху поверхностью, задаваемой уравнением $z=(1-x^2-y^2)/2$, снизу – плоскостью z=0, и обе эти поверхности проектируются в круг $\{x^2+y^2<1\}$. Поэтому

$$\iiint\limits_{V} 3dxdydz = 3 \iint\limits_{\{x^2 + y^2 < 1\}} dxdy \int\limits_{0}^{(1 - x^2 - y^2)/2} dz = \frac{3}{2} \iint_{\{x^2 + y^2 < 1\}} \left(1 - x^2 - y^2\right) dxdy.$$

Последний интеграл вычисляем в полярных координатах:

$$\frac{3}{2} \iint_{\{x^2+y^2<1\}} \left(1-x^2-y^2\right) dx dy = \frac{3}{2} \int_{0}^{2\pi} d\varphi \int_{0}^{1} \left(1-r^2\right) r dr = \frac{3}{2} \cdot 2\pi \cdot \left(\frac{1}{2} - \frac{1}{4}\right) = \frac{3\pi}{4}.$$

Совпадение значения потока, вычисленного двумя независимыми способами, подтверждает правильность вычислений.

Omeem:
$$\Pi = \frac{3\pi}{4}$$
.

Пример 5. Вычислить поток векторного поля

$$\bar{a} = x\bar{\iota} + (y+z)\bar{\jmath} + (z-y)\bar{k}$$

через замкнутую поверхность, состоящую из части сферы σ_0 : $x^2 + y^2 + z^2 = 9$, лежащей в $(x \ge 0, y \ge 0, z \ge 0)$ первом октанте замыкающими ee частями координатных плоскостей x = 0, y = 0, z = 0, в направлении внешней нормали способами: двумя непосредственно и с помощью формулы Остроградского-Гаусса.

Непосредственное вычисление потока. С этой целью разобьем данную поверхность на четыре части: сферическая часть и три части координатных плоскостей. Найдем потоки по каждой из этих частей.

1). Рассмотрим поток Π_0 по сферической части.

Найдем для нее единичный вектор внешней нормали \vec{n}_0 . Так как поверхность задана уравнением $F(x,y,z)=x^2+y^2+z^2-9=0$, то

$$\overline{n_0} = \pm \frac{2x\overline{\iota} + 2y\overline{\jmath} + 2z\overline{k}}{\sqrt{4x^2 + 4y^2 + 4z^2}} = \frac{x\overline{\iota} + y\overline{\jmath} + z\overline{k}}{\sqrt{x^2 + y^2 + z^2}}.$$

Следовательно,

$$cos\gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}},$$

$$(\bar{a} \cdot \bar{n_0}) = \frac{x^2 + y(y+z) + z(z-y)}{\sqrt{x^2 + y^2 + z^2}} = \sqrt{x^2 + y^2 + z^2}$$

$$(\vec{a} \cdot \bar{n_0})|_{\sigma_0} = 3$$

$$\Pi_0 = \iint_{\sigma_0} (\vec{a} \cdot \bar{n_0}) d\sigma = \iint_{\sigma_0} 3d\sigma = 3S(\sigma_0).$$

Площадь сферы вычисляется по формуле:

$$S=4\pi R^2$$

где R — радиус сферы.

 $S(\sigma_0)$ равна 1/8 части площади сферы радиуса 3.

$$S(\sigma_0) = \frac{1}{8} \cdot 4\pi \cdot 9 = \frac{9\pi}{2}.$$
$$\Pi_0 = 3 \cdot \frac{9\pi}{2} = \frac{27\pi}{2}.$$

2). Рассмотрим поток Π_1 по части координатной плоскости D_{xOy} . Найдем для нее единичный вектор внешней нормали $\overline{n_1} = (0,0,-1)$, а затем скалярное произведение $(\overline{a},\overline{n_1}) = y - z$.

$$\Pi_{1} = \iint_{D_{xOy}} (y - z)|_{z=0} dxdy = \iint_{D_{xOy}} y dxdy = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} r^{2} sin\varphi dr =$$

$$= -cos\varphi \Big|_{0}^{\frac{\pi}{2}} \cdot \frac{r^{3}}{3} \Big|_{0}^{3} = 9$$

- 3). Рассмотрим поток Π_2 по части координатной плоскости D_{yOz} . Для нее $\overline{n_2}=(-1{,}0{,}0)$, и $(\overline{a},\overline{n_2})=-x=0$ (поскольку x=0 на плоскости yOz). Следовательно, $\Pi_2=0$.
- 4). Рассмотрим поток Π_3 по части координатной плоскости D_{xOz} . Найдем $\overline{n_3}=(0,-1,0)$, и $(\overline{a},\overline{n_3})=-(y+z)=-z$, поскольку y=0 на D_{xOz} . Тогда

$$\Pi_3 = \iint\limits_{D_{xQ_z}} (-z)dxdz = -\int\limits_0^{\frac{\pi}{2}} sin\varphi d\varphi \int\limits_0^3 r^2 dr = -9$$

Искомый поток Π равен сумме рассмотренных потоков:

$$\Pi = \Pi_0 + \Pi_1 + \Pi_2 + \Pi_3 = \frac{27\pi}{2} + 9 + 0 - 9 = \frac{27\pi}{2}.$$

Второй способ. Теперь вычислим поток Π с помощью формулы Остроградского-Гаусса. $div\bar{a}=3$.

$$\Pi = \iiint_{V} 3dv = 3 \iiint_{V} dv = \frac{3}{8} \cdot V_{\text{mapa}} = \frac{3}{8} \cdot \frac{4}{3} \pi 3^{3} = \frac{27\pi}{2}.$$

Совпадение значения потока, вычисленного двумя независимыми способами, подтверждает правильность вычислений.

Ombem:
$$\Pi = \frac{27\pi}{2}$$
.

Пример 6. Вычислить поток векторного поля

$$\bar{a} = (3y - 5x)\bar{\iota} + (6x + 5y)\bar{\iota} + (4z - xy + 4)\bar{k}$$

через замкнутую поверхность $\sigma = \sigma_1 + \sigma_2$, σ_1 : z = 1, σ_2 : $x^2 + y^2 = (z+1)^2$ непосредственно по определению (выбирается внешняя нормаль к σ). Проверить правильность вычислений с помощью формулы Остроградского-Гаусса. Дать заключение о наличии источников или стоков внутри области, ограниченной поверхностью σ .

Поверхность σ состоит из двух поверхностей: σ_1 — часть плоскости z=1 и σ_2 — часть конуса $x^2+y^2=(z+1)^2$. Поэтому поток через поверхность σ равен сумме потоков векторного поля \bar{a} через составляющие поверхности σ_1 и σ_2 :

$$\Pi = \Pi_1 + \Pi_2$$

Для поверхности z=1 единичный вектор нормали $\overline{n_1}=(0,0,1),$ $cos\gamma_1=1,$ $(\overline{a},\overline{n_1})=4z-xy+4$. Поверхность z=1 проектируется взаимно однозначно на

плоскость xOy в область $S_{\sigma_{\mathbf{i}}}\colon x^2+y^2\leq 4$ – круг радиуса R=2 .

Тогда поток вектора \bar{a} через поверхность σ_1 будет равен

$$\Pi_{1} = \iint_{\sigma_{1}} (\overline{a} \cdot \overline{n_{1}}) d\sigma = \iint_{S_{\sigma_{1}}} \frac{(\overline{a} \cdot \overline{n_{1}})}{|cos\gamma_{1}|} \Big|_{z=1} dxdy = \iint_{S_{\sigma_{1}}} (4z - xy + 4)|_{z=1} dxdy =$$

$$= \iint_{S_{\sigma_{1}}} (8 - xy) dxdy = \iint_{S_{\sigma_{1}}} (8 - r^{2}cos\varphi sin\varphi) rd\varphi dr =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{2} (8 - r^{2}cos\varphi sin\varphi) rdr = 32\pi.$$

Вычислим поток через поверхность σ_2 , уравнение которой перепишем в виде:

$$x^2 + y^2 - (z+1)^2 = 0.$$

Единичный вектор внешней нормали \vec{n}_2 будет равен

$$\overrightarrow{n_2} = \frac{grad(x^2 + y^2 - (z+1)^2)}{|grad(x^2 + y^2 - (z+1)^2)|} = \frac{1}{\sqrt{x^2 + y^2 + (z+1)^2}} (x\overrightarrow{i} + y\overrightarrow{j} - (z+1)\overrightarrow{k}).$$

Выбор знака соответствует направлению внешней нормали.

$$(\vec{a} \cdot \overrightarrow{n_2}) = \frac{1}{\sqrt{x^2 + y^2 + (z+1)^2}} \cdot ((3y - 5x) \cdot x + (6x + 5y) \cdot y - (4(z+1) - xy) \cdot (z+1)) \Big|_{z+1 = \sqrt{x^2 + y^2}} =$$

$$= \frac{1}{\sqrt{2(x^2 + y^2)}} \Big(9xy - 5x^2 + 5y^2 - 4(x^2 + y^2) + xy\sqrt{x^2 + y^2} \Big) =$$

$$= \frac{1}{\sqrt{2(x^2 + y^2)}} \Big(9xy - 9x^2 + y^2 + xy\sqrt{x^2 + y^2} \Big)$$

$$(\vec{a} \cdot \overrightarrow{n_2}) d\sigma_2 = \frac{(\vec{a} \cdot \overrightarrow{n_2})}{|cos\gamma_2|} dxdy = \frac{9xy - 9x^2 + y^2 + xy\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} dxdy$$

$$\Pi_2 = \iint_{S\sigma_1} (\overline{a} \cdot \overline{n_2}) d\sigma_2$$

Полученный интеграл вычислим в полярных координатах:

$$\begin{split} \Pi_2 &= \iint\limits_{S_{\sigma_1}} (9r^2 cos\varphi sin\varphi - 9r^2 cos^2\varphi + r^2 sin^2\varphi + r^3 cos\varphi sin\varphi) d\varphi dr = \\ &\int\limits_{0}^{2\pi} d\varphi \int\limits_{0}^{2} \left(9r^2 cos\varphi sin\varphi - 9r^2 cos^2\varphi + r^2 sin^2\varphi + r^3 cos\varphi sin\varphi \right) dr = -\frac{64}{3}\pi. \end{split}$$

Таким образом, искомый поток векторного поля равен

$$\Pi = \Pi_1 + \Pi_2 = \frac{32}{3}\pi.$$

Теперь найдем решение этой задачи с помощью формулы Остроградского-Гаусса. Для этого вычислим дивергенцию вектора \bar{a} .

$$div\bar{a} = \frac{\partial(3y - 5x)}{\partial x} + \frac{\partial(6x + 5y)}{\partial y} + \frac{\partial(4z - xy + 4)}{\partial z} = 4$$

Следовательно, искомый поток будет равен

$$\Pi = \iiint\limits_V div \bar{a} \, dv = 4 \iiint\limits_V dv.$$

Здесь объем V ограничен частью плоскости z=1 и частью конуса $x^2+y^2=(z+1)^2$ ($z\geq -1$). Для вычисления тройного интеграла перейдем к цилиндрическим координатам с пределами интегрирования

 $0 \le \varphi \le 2\pi$, $0 \le r \le 2$, $r-1 \le z \le 1$ (z=r-1 – уравнение верхней части конуса $x^2+y^2=(z+1)^2$ в цилиндрических координатах). Найдем искомый поток

$$\Pi = 4 \iiint_{V} dv = 4 \int_{0}^{2\pi} d\varphi \int_{0}^{2} r dr \int_{r-1}^{1} dz = \frac{32}{3}\pi.$$

По формуле Остроградского-Гаусса получили тот же самый результат, что и при вычислении потока векторного поля непосредственно. Очевидно, что в последнем случае задача решается гораздо быстрее.

Замечание: При вычислении тройного интеграла в последней формуле можно воспользоваться его приложением: $\iiint_V dv = V$, V — объем тела, ограниченного замкнутой поверхностью $\sigma = \sigma_1 + \sigma_2$. Из рисунка видно, что это тело представляет собой круговой конус с высотой h=2 и основанием S, полученным в сечении конической поверхности $x^2 + y^2 = (z+1)^2$ плоскостью z=1:

$$\begin{cases} x^2 + y^2 = (z+1)^2 \\ z = 1 \end{cases} \Rightarrow x^2 + y^2 = 4.$$

Таким образом, основание $S: x^2 + y^2 = 4$ – круг радиуса 2.

Объем конуса определяется известной формулой: $V_{\text{конуса}} = \frac{1}{3} S_{\text{осн}} \cdot h$. В данном случае $S_{\text{осн}} = \pi r^2 = 4\pi$. Следовательно, $V = \frac{8}{3}\pi$ и искомый поток векторного поля равен:

$$\Pi = 4 \cdot \frac{8}{3}\pi = \frac{32}{3}\pi.$$

Так как найденный в данном примере поток векторного поля через замкнутую поверхность $\Pi > 0$, то векторное поле $\bar{a} = (3y - 5x)\bar{\iota} + (6x + 5y)\bar{\jmath} + (4z - xy + 4)\bar{k}$ содержит источники внутри области, ограниченной поверхностью $\sigma = \sigma_1 + \sigma_2$, где σ_1 – часть плоскости z = 1, σ_2 – часть конуса $x^2 + y^2 = (z + 1)^2$.

Задачи для самостоятельного решения:

- 1. Вычислить поток векторного поля $\vec{F} = -5x\vec{i} + 8y\vec{j} + 2z\vec{k}$ через замкнутую поверхность $\sigma: x^2 + y^2 + z^2 = 4$.
- 2. Вычислить поток векторного поля $\vec{F} = \vec{i} + 2y\vec{j} z\vec{k}$ через замкнутую поверхность $\sigma: \sigma_1 + \sigma_2 + \sigma_3$, $\sigma_1: x^2 + y^2 = 1$, $\sigma_2: z = 0$, $\sigma_3: z = 2$.
- 3. Вычислить поток векторного поля $\vec{F} = 4x\vec{i} 10y\vec{j} 3z\vec{k}$ через замкнутую поверхность $\sigma: \sigma_1 + \sigma_2$, $\sigma_1: x^2 + y^2 = z^2$, $\sigma_2: z = 3$.