

Introducció. Resum

- 2 sessions. Utilitzar l'aplicació del bloc3
- Entendre els models empírics d'il·luminació i el càlcul de la il·luminació en OpenGL.

Sessió 1:

- Afegir materials als objectes.
 - Entendre el significat de les constants.
- Normal per cara versus normal per vèrtex.
- Llum de defecte: llum de càmera.
 - Entendre l'assignació de colors.

Sessió 2:

- Afegir altres llums:
 - Posicionament de les llums => importància de la declaració de la posició de la llum en el codi=> llum de càmera, escena,...
- Llum d'escena, llum en el cotxe.
- Crear les funcionalitats demanades

Open GL i II·luminació (3)

- glLight*(light, pname, param)
 - light: la llum a modificar
 - GL_LIGHT0, GL_LIGHT1, ..., GL_LIGHT7
 - pname: paràmetre a modificar
 - GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR
 - GL_POSITION
 - Vector de 4 components.
 - Si la 4ª és 1, les tres primeres components s'interpreten com coordenades de la posició de la llum
 - Si la 4ª és 0, s'interpreten com la direcció des de la qual prové la llum

glLight*(..., GL_POSITION, ...)

IMPORTANT:

- OpenGL realitza els càlculs de la il·luminació per vèrtex en coordenades d'observador. Per això, quan es defineix la posició del focus, la multiplica per la MODELVIEW actual.
 - Llum en posició fixa respecte l'observador MODELVIEW=> identitat
 - Llum en posició fixa respecte l'escena

MODELVIEW => càmera de l'escena

<u>Cal tornar a definir la posició sempre que es modifiqui la</u> càmera

 Llum en posició fixa respecte d'un objecte que es mou MODELVIEW de l'objecte (amb la TG que calgui)

IDI 2014-2015 1Q

Aplicació final

- Funcionalitats de la sessió 1:
 - materials assignats
 - normal per cara/normal per vèrtex (tecla 'n').
- Llum 1 com a llum de càmera blanca.
- Llum 0 com llum d'escena groga.
- Moure la Llum 0 de cantonada a cantonada del terra (tecla 'm') => llegiu guió.
- Llum 2 en patricio blanca.
- Complementar activacions/desactivacions segons el guió.
- Reset també torna a condicions inicials d'il·luminació.
- Ampliar help.

Imatges d'exemple: llum 1 de càmera

- Noteu quins objectes tenen taca especular.
- Terra és especular. Per què no es veu taca especular a la imatge de la dreta?
- Noteu que el color de la paret (mate) també es modifica entre les dues imatges, per què? $_{\text{IDI 2014-2015 1Q}}$

Imatges d'exemple: llum 0 d'escena

- Llum groga a (5,1.5,5).
- Per què no es veu el terra?
- Per què no es veu la taca especular en el terra? Pots modificar la càmera per a què es vegi?

Aplicació final. Optatiu ...

- Provar Flat shading versus Smooth shading.
- Proveu passar una de les llums a direccional.
- Feu que el terra estigui format per una malla de 10x10 qüadrats. Com queda il·luminat?
- Activeu/desactiveu el Back-face culling.
 - glEnable (GL_CULL_FACE)
 - Què noteu?
- Inicialitzar un llum ambient.
 - Per defecte (0.2,0.2,0.2,1.0)
 - glLightModelfv(GL_LIGHT_MODEL_AMBIENT,*params)
 - Modiqueu el seu color.