Input file Flh14273new; Output File Flh14273tra

Sequence length 1743

M S P E C A R A A TCCGGACTAGTTCTAGACCGCTGCGGGCCCCAGGCGCCGGGA ATG TCC CCT GAA TGC GCG GCA GCG A P L R S L E Q A N R 29 GGC GAC GCG CCC TTG CGC AGC CTG GAG CAA GCC AAC CGC ACC CGC TTT CCC TTC TTC TCC D V K G D H R L V L A A V E T T V L 49 GAC GTC AAG GGC GAC CAC CGG CTG GTG CTG GCC GCG GTG GAG ACA ACC GTG CTG GTG CTC 147 I F A V S L L G N V C A L V L V ARRR ATC TTT GCA GTG TCG CTG GGC AAC GTG TGC GCC CTG GTG CTG GCG CGC CGA CGA TACLVLNLFCADLLFI 89 CGC CGC GGC GCG ACT GCC TGC CTG GTA CTC AAC CTC TTC TGC GCG GAC CTG CTC TTC ATC 267 S A I P L V L A V R W T E A W L L G P 109 AGC GCT ATC CCT CTG GTG CTG GCC GTG CGC TGG ACT GAG GCC TGG CTG CTG GGC CCC GTT 327 A C H L L F Y V M T L S G S V T I L T L GCC TGC CAC CTG CTC TTC TAC GTG ATG ACC CTG AGC GGC AGC GTC ACC ATC CTC ACG CTG 387 A A V S L E R M V C I V H L Q R G V R G 149 GCC GCG GTC AGC CTG GAG CGC ATG GTG TGC ATC GTG CAC CTG CAG CGC GGC GTG CGG GGT 447 P G R R A R A V L L A L I W G Y S A V A CCT GGG CGG CGG GCG GCA GTG CTG CTG GCG CTC ATC TGG GGC TAT TCG GCG GTC GCC 507 A L P L C V F F R V V P Q R L P G A D Q GCT CTG CCT CTC TGC GTC TTC TTT CGA GTC GTC CCG CAA CGG CTC CCC GGC GCC GAC CAG 567 E I S I C T L I W P T I P G E I S W D V 209 GAA ATT TCG ATT TGC ACA CTG ATT TGG CCC ACC ATT CCT GGA GAG ATC TCG TGG GAT GTC 627 S F V T L N F L V P G L V I V I S Y S K 229 TCT TTT GTT ACT TTG AAC TTC TTG GTG CCA GGA CTG GTC ATT GTG ATC AGT TAC TCC AAA 687 I L Q I T K A S R K R L T V S L A Y S E 249 ATT TTA CAG ATC ACA AAG GCA TCA AGG AAG AGG CTC ACG GTA AGC CTG GCC TAC TCG GAG S H Q I R V S Q Q D F R L F R T L F L L 269 AGC CAC CAG ATC CGC GTG TCC CAG CAG GAC TTC CGG CTC TTC CGC ACC CTC TTC CTC CTC 807 M V S F F I M W S P I I T I L L I ATG GTC TCC TTC TTC ATC ATG TGG AGC CCC ATC ATC ATC ACC ATC CTC CTC ATC CTG ATC 867 WPSLFFWVVAF F K Q D L V 1 CAG AAC TTC AAG CAA GAC CTG GTC ATC TGG CCG TCC CTC TTC TTC TGG GTG GCC TTC 927 T F A N S A L N P I L Y N M T L C R N E 329
ACA TTT GCT AAT TCA GCC CTA AAC CCC ATC CTC TAC AAC ATG ACA CTG TGC AGG AAT GAG 987

W K K I F C C F W F P E K G A I L T D T 349
TGG AAG AAA ATT TTT TGC TGC TTC TGG TTC CCA GAA AAG GGA GCC ATT TTA ACA GAC ACA 1047

S V K R N D L S I I S G * 362 TCT GTC AAA AGA AAT GAC TTG TCG ATT ATT TCT GGC TAA 1086

```
Sequence Description
                                                            Score
                                                                     E-value N
         PF00001 7 transmembrane receptor (rhodopsin
                                                            119.9
                                                                      4.7e-37
7tm_1
Parsed for domains:
                                  hmm-f hmm-t
Sequence Domain seq-f seq-t
                                                    score
                                                           E-value
                                    1 259 []
                                                    119.9 4.7e-37
7<del>cm_</del>1
           1/1
                    57 321 ...
Alignments of top-scoring domains:
7tm_1: domain 1 of 1, from 57 to 321: score 119.9, E = 4.7e-37
                    *->GNILVilvilrtkklrtptnifilNLAvADLLflltlppwalyylvg
                       GN+ ++++++T +++T +t +++INL ADLLf + p++ ++ -+
GNVCALVLVAR-RRRRGATACLVLNLFCADLLFISAIPLVLAVR-WT 101
   Flh14273.
                 57
                    gmedWpfGsalCklvtaldvvnmyaSillLtaISiDRYLAIvhPlryrrr
                      e W++G++ C+1+ ++++++ + il+L+a S++R + Iv l+ +x
                102 -- EAWLLGFVACHLLFYVMTLSGSVTILTLAAVSLERMVCIV-HLQRGVR 148
   F1h14273,
                    rtspxrAkuvillvWvlalllslPpllfswvktveegngtlnunvtvCli
                +r +v+++1+W +++++1P +f+ v + ++ ++ ++ ++ +C++
149 GPGRRARAVLLALIWGYSAVAALPLCVFFRVVPQRLPG--ADQEISICTL 196
   Flh14273,
                    dfpeestasvstwlrsyvllstlvgFllPllvilvcYtrIlrtlr.....
                                 ++s+ +++ ++ Fl+P lvi++ Y+ Il + + ++++
                197 IWPTIPG-----EISWDVSFVTLNFLVPGLVIVISYSKILQITKasrkr 240
   Flh14273,
                    .....kaaktllvvvvvFvlCWlPyfivllldtlc
                     + + +++++ + ++++ ++ +tl++++ F++ W P i++li +
   Flh14273,
                241 lcvslayseshcirvsqqdfRLFRTLFLLMVSFFIMWSPIIITILLILIQ 290
                    .lsiimsstCelervlptallvtlwLayvNsclNPiIY<-*
                                  + p ++++ + ++++Ns+lNPi+Y
                291 nFK-----ODLVIWPSLFFWVVAFTFANSALNPILY
                                                                 321
   Flh14273,
11
```


Analysis of Flh14273, (362 aa)

Filh14273. 1086 bases, 1825 checksum.

MEPECARAGDAPLRSLEQANATRFPFFSDVKGDHRLVLAAVETTVLVLIFAVSLLGNVC

MEVECARAGDAPLRSLEQANATRFPFFSDVKGDHRLVLAAVETTVLVLIFAVSLLGNVC

MEVLVARRRRGATACLVLLTCADLLFISAIPLVLAVRWTEAWLLGPVACHLLFYVMTL

SGSVTILTLAAVSLERMVCIVHLQRGVRGPGRRARAVLLALIWGYSAVAALPLCVFFRVV

FORLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKR

LTVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIKWSPIITILLILILQNFKQDLVIWP

SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDLSIIS

Prosite Pattern Matches for Flh14273,

>PS00001|PD0C00001|ASN_GLYCOSYLATICN N-glycosylation site.

Query: 21 NRTR 24
Query: 322 NHTL 325

>PS00004|PD0C00004|CAMP_PHOSPHO_SITE cAMP- and cGMP-dependent protein kintse phosphorylatic

Query: 239 KRLT 242

>PS00005[PD0C00005]PKC_PROSPHO_SITS Protein kinase C phosphorylation site.

Query: 237 SRK 239

Query: 350 SVK 352

>FS00006[PD0C00006[CK2_PHOSPHO_SITE Casein kinase II phosphorylation site.

Query: 256 SQQD 259

>PS00008|PD0C00008|MYRISTYL N-myristoylation site.

Query: 57 GNVCAL 62

Query: 72 GATACL 77

Query: 343 GAILTD 348

>PS00009|PDOC00009|AMIDATION Amidation site.

Query: 150 PGRR 153

>PS00029|PD0C00029|LEUCINE_ZIPPER Leucine zipper pattern.

Query: 106 LGPVACHLLFYVMTLSGSVTIL 127

Transmembrane Segments Predicted by MEMSAT

Start	End	Orient	Score
46	66	out->ins	5.1
75 .	98	ins->out	4.0
113	134	out>ins	4.0
156	177	ins>out	4.9
209	227	out>ins	3.7
266	289	ins>out	6.5
297	321	out>ins	3.2

>F1h14273.
#SPECARAAGDAPLRSLEQANRTRFPFFSDVKGDHRLVLAAVETTVLVL1FAVSLIGNVC ALVLVARRRRRGATACLVLNLFCADLLFISATPLVLAVRWTEAWLLGPVACHLLFYVMTL _sgsvtiltlaavslermvcivhlqrqvrgpgrraravllaliwgy9avaalplcyffrvv PORLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLVIVISYSKILQITKASRKR LTV3LAYSESHQIRVSQQD5RLFRTLFLLMVSFFIMWSP111T1LL1L1QNFKQDLV1WP SLFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDLSIIS

Transmembrane segments for presumed mature peptide

Start	End	Orient	Score
14	37	ins>out	4.0
52	73	out>ins	4.0
95	116	ins>out	4.9
148	166	out>ins	3.7
205	228	ins>out	6.5
236	260	out>ins	3.2

may page Age Age of the page of the first of the first

>Flh14273,_mature

LVLVARRRRRGATACLVLNLFCADLLFISAIPLVLAVRWTEAWLLGPVACHLLFYVMTLS GSVTILTLAAVSLERMVCIVHLQRCVRGPGRRARAVLLALIWGYSAVAALPLCVPPRVVP QRLPGADQEISICTLIWPTIPGEISWDVSFVTLNFLVPGLYIVISYSKILQITKASRKRL TVSLAYSESHQIRVSQQDFRLFRTLFLLMVSFFIMWSPIIITILLILIQNFKQDLVIWPS LFFWVVAFTFANSALNPILYNMTLCRNEWKKIFCCFWFPEKGAILTDTSVKRNDLSIISG

TTGCCAAGCTCAGCGTAAGCCTCTTCCA	CTGCAATCTCAC	AGAAGGGGTTCATGGA	GTGCTTCACAC	CATCAGTGACCA

CTCCAGACTTGTCCGGCTTTACCCGAATCTTCACAGCG	GAGTCGATGACCCTCTTGACAGCCACGAGCGCGCGCAGCTC

		•								;											
CG	CCAT	CTI	ccc	GGAC	GCG1	'GGGC	ceee	CGCC	cggc	M ATG	S TCC	_	E GAG	C TGT	A GCA	Q CAG	T ÀCG	T ACG	G GGC		10 30
CC			P	S TCG	H CAC	T ACC	L CTG	D GAC							F TTC						30 90
V GT			G GC	D GAC	H CAC	R CGG	L TTG	V GTG	L TTG	S AGC	V GTC	V GTG	E GAG	T ACC	T ACC	V GTT	L CTG	G GGA	L CTC	I ATC	50 150
F			V STC	S TCA	L CTG	L CTG	G GGC	N AAC	V GTG	C TGT	A GCT	L CTA	V GTG	L CTG	V GTG	A GCG	R CGC	R CGT	R CGG	R CGC	70 210
R CG	т С С	; GG (S TCA	A GCC	S AGC	L CTG	V GTG	L CTC	N AAC	L CTC	F TTC	.C TGC		D GAT	L TTG		F TTC	T ACC	S AGC	90 270
I A	C A		P	L CTA	V GTG		V GTC	V GTG	R CGC	W TGG	T ACT	E GAG	A GCC	W TGG	L	L TTG	G GGG	P CCC	V GTC	V GTC	110 330
* c		AC (L CTG	L CTC	F TTC	Y TAC	GIG V	M ATG	T ACA	M ATG	S AGC	G GGC	S AGC	V GTC	T ACG	I ATC	L CTC	T ACA	L CTG	A GCC	130 390
		rc i	S AGC	L CTG	E GAG	R CGC	M ATG	V GTG	C TGC	I ATC	V GTG	R CGC	L CTC	R CGG	R CGC	G GGC	L TTG	S AGC	G GGC	P CCG	150 450
C GC	G C	R GG √	R CGG	T ACT	Q CAG	A GCG	A GCA	L CTG	L CTG	A GCT	F TTC	I ATA	W TGG	G GGT	Y TAC	S TCG	A GCG	L CTC	A GCC	A GCG	170 510
C		P CC	L CTC	Y TAC	I ATC	L TTG	F TTC	R CGC	V GTG	V GTC	CCG	Q CAG	R CGC	L CTT	CCC	G GGC	G GGG	D GAC	Q CAG	E GAA	190 570
	_	P CG	I TTA	TGC	T ACA	L TTG	D GAT	w TGG	CCC	N AAC	R CGC	I ATA	G GGA	E GAA	I ATC	S TCA	W TGG	D GAT	V GTG	F TTT	210 630
		E AG	T ACT	TTG	N AAC	F TTC	L CTG	V GTG	CCG	G GGA	L CTG		I TTA	V GTG	ATC	S AGT					230 690
T	TA C																			AGC	250 750
С	AC C					TCC														M : ATG	270 810
G																				Q CAA	290 870
. A										-										T C ACG	310 930 330
I	TT (CC	AAC	TC	r GC	CT	AAA	ccc	: ATA	CTC	TAC	AAC	C ATC	TCC	CTG	TTC	AGG	AAC	GA2	W A TGG	
7	GG A	AAG	ATT	TT	T TG	C TG	F C TTC S	TTT	r T T7	CC	A GAG	AAG	G GGZ						T R ACC	S TCT	
							G TC														1086

 ${\tt CTAGCCTCTGGTGCCAGGTGAACCACGGTGTGCATGTAAAGGGAGGTTAACTTCAAGGAAAGCCCACCAGTGCSCCCTSCCCAGTGCCACCAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACAGTGCACCAAGTGCACAGTAGTACAGAAGTACAGTACAGTACAGTACAGTAC$

Query: 14273m,

	es for seq			ily class	sificat	ion (score	e imclud	les all de Scor e	eulus : E-value	N
7tm_	1 <u>PF000</u>	<u>)01</u> 7	tran	smembrane	s recep	tor (rhod	opsin	118.8	1e-35	1
	ed for dom ence Domai			seq-t	hmm-f	huun-t	ecore	E-value		
7tm_	1 1/1	L	57	321	1	259 []	118.8	le-36		
ŽĒm_	nments of 1: Comain		1, f *->G	rom 57 t	o 321: !rtkklr	score 118 tptnifilM	LAVADLLE	11t1ppwa		
\$1.20° f = 11.00°	14273m.	57				GASASLVLN				1
gior porty grey. Hart Land Hart apr Start	14273m,	102	_ e i	4++G+++C+	1+ +++	vvpmyasil: ++++ + il: TKSGSVTIL:	+L+a S+4	R + IV	+	8
georg surely Market Market Market Market	14273m,	149		CZ+÷++++	++₩ +	111s1Pp11: +1++1P ++- ALAALPLYII	++ V +	+÷g	++ +C+	5
endly greek to	14273m,	196	+d+9-	- - +	++5+	llstlvgFl: +++ ++ Fl· vFFETLNFL	t2 lv1++	Y+ Il +	+ +++	9 .
erozy, szertő Sezerve	14273m,	240	+ + +			kaaktll + ++ +tl+ cyrlFRTLF	+++V F++	WP i+	+11 +	9
	14273m,	290	++	+	+ p	allvilwLay ++++ + ++ LFFWVVAFTI	++Ns÷lnP	i+Y	21	

Analysis of 14273m, (362 aa)

>14273m, 1086 bases, 6943 checksum.

MSPECAQTTGPGPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC
ALVLVARRRRGASASLVLNLFCADLLFTSAIPLVLVVRWTEAWILGPVVCHLLFYVMTM
SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV
PORLPGGDQEIPICTLDWPDRIGEISWDVFFSTLNFLVPGLVIVISYSKILQITKASRKR
LTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSFFIMMSPIIITILLILIQNFRQDLVIWP
SLFFWVVAFTFANSALNPILYNMSLFRNEWRXIFCCFFFPEKGAIFTDTSVRRNDLSVIS
S*

Prosite Pattern Matches for 14273m,

>PEOCODII PDCC00001; ASN_GLYCOSYLATION N-glycosylation eite.

Query: 21 NRTH 24

Query: 322 NMSL 325

-PS00002|PD0C00002|GLYCOSAMINOGLYCAN Glycosaminoglycan attachment site.

Additional rules:

There must be at least two acidic amino acids (Glu or Asp) from -2 to RU

-4 relative to the serine.

151 Query: 148 SGPG

m

<u>PS000004</u>|PD0C00004|CAMP_PH0SPH0_SITE cAMP- and cGMP-dependent protein kinase phosphorylatic

@lery: 239 KRLT

>PS00005;PD0C00005;PKC_PHOSPHO_SITE Protein kinase C phosphorylation site.

Query: 237 239 SEK

Query: 350 352 SVR

>PS00006[PD0C00006[CK2_PHOSPHO_SITE Casein kinase II phosphorylation site.

Gnexy: 40 SVVE 43

259 Quexy: 256 SQQD

>PS00008|PD0C00008|MYRISTYL N-myristoylation site.

GretA: GNVCAL

72 77 Query: GASASL

Query: 343 GAIFTD 348

>PE00009 PDOCO0009 AMIDATION Amidation site.

Query: 150 PGRR 153

عادوت تاسات

Transmembrane Segments Predicted by MEMSAT

Sta	rt	End	Orient	Score
46		66	out>ins	5.1
77		98	ins>out	3.3
113		134	out>ins	3.8
156		177	ins>out	4.5
209		227	out->ins	2.4
266		289	ins>out	6.5
297		321	out>ins	3.2

214273m,
MSPECAQTTGPGPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC
MSPECAQTTGPGPSHTLDQVNRTHFPFFSDVKGDHRLVLSVVETTVLGLIFVVSLLGNVC
ALVLVARRRRGASASLVLNLFCADLLFTSAIPLVLVVRWJEAWLLGPVVCHLLFYVMTM
SGSVTILTLAAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALPLYILFRVV
PQRLPGGDQEIPICTLDWPNRIGEISWDVFFETLNPLVPGLVIVISYSKILQITKASRKR
MTLSLAYSESHQIRVSQQDYRLFRTLFLLMVSPPIMWSPIIITILLILIQNFRQDLVIWP
LFFWVVAFTFANSALNPILYNMSLFRNEWRKIFCCFFFPEKGAIFTDISVRRNDLSVIS

Transmembrane segments for presumed mature peptide

Start	End	Orient	Score
16	37	ins>out	3.3
52	73	out->ins	3.8
95	116	ins>out	4.5
148	166	out->ins	2.4
205	228	ins>out	6.5
236	260	out>ins	3.2

>14273m,_mature
LVLVARRRRRGASASLVLNUFCADLLFTSAIPLVLVVRWTEAWLLGPVVCHLLFYVECHS
GSVTILTLÄAVSLERMVCIVRLRRGLSGPGRRTQAALLAFIWGYSALAALFLYILFRVVP
QRLPGGDQEIPICTLDWPNRIGEISWDVFFETLNFLVPGLVIVISYSKILQITKASRKRL
TLSLAYSESHQIRVSQQDYRLFRTLFLLWVSFFIMWSPILITILLILIQNFRQDLVIWPS
LJFWVVAPTFANSALNPILYMMSLZRNEWRKIFCCFFFPEKGAIFTDTSVRRNDLSVISS