

学認クラウドオンデマンド構築サービス (OCS)の概要

2022年9月7日

大江 和一

国立情報学研究所 クラウド基盤研究開発センター

OCSとは

OCS提供の背景(1)

OCS提供の背景(2)

どの環境を選ぶべきか?

高速、だけど単価も高い..

クラウドA

OCS提供の背景(3)

構築方法もバラバラ

一度構築すると、容易に移動できない!

Databaseを利用 したい!

クラウドA

オンプレミス API

クラウドB API

ストレージ容量の空きが余りない..

クラウドB

OCSの特徴(1)

Databaseを利用 したい!

仮想APIのみで全ての資源の操作が可能!

構築を依頼

アプリ利用者

VC利用者

コントローラ

オンプレミス API

オンプレミス

クラウドA API

仮想 API

クラウドA

仮想プライベートネットワーク

クラウドB API

クラウドB

OCSの特徴(1)

VC利用者

コントローラ

オンプレミス API

オンプレミス

クラウドA API

仮想 API

クラウドA

仮想プライベートネットワーク

クラウドB API

クラウドB

OCSの特徴(2)

アプリケーションの移動も仮想APIからの 操作で可能!

容量拡大を依頼

アプリ利用者

VC利用者

コントローラ

オンプレミス API

オンプレミス

クラウドA API

仮想 API

クラウドA

仮想プライベートネットワーク

クラウドB API

クラウドB

OCSの特徴(2)

してDatabaseを移動!

仮想 API

容量拡大を依頼

アプリ利用者

vc利用者

コントローラ

OCSの特徴(3)

仮想APIはJupyter Notebookを介してアクセ スするため、構築作業の再現性が高い! 他者が作ったJupyter Notebook(テンプ レート)も流用可能。

クラウドA API

コントローラ

クラウドA

OCSの特徴(3)

仮想APIはJupyter Notebookを介してアクセVC利用者となる敷居は低いです!

仮想 AP

スするため、構築作業の再現性が高い!

他者が作ったJupyter Notebook(テンプ

レート)も流用可能。

クラウドA

■1.1 初期化Jupyter Notebookの記述例

```
parameters
         1 vcc_access_token = "@
         2 testname = "TEST-2022-03-15"
# [2]:
         1 from common import logsetting
           from vcpsdk.vcpsdk import VcpSDK
           # VCP SDK の初期化
         8 sdk = VcpSDK(vcc_access_token)
           # VCP SDK バージョン確認
        11 | sdk.version()
        13 # UnitGroup作成
        14 my_ugroup_name = "03_sample" + testname
        16 ugroup = sdk.get_ugroup(my_ugroup_name)
```

ugroup = sdk.create_ugroup(my_ugroup_name)

vcplib:

17 if ugroup is None:

filename: /home/jovyan/vcpsdk/vcplib/occtr.py
version: 20.10.0+20201001

vcpsdk:

OCSの特徴(まとめ)

■ 概要

■ テンプレート※を使って、クラウド(laaS)上のアプリケーション実行環境構築を支援するサービス

■ 利点

- クラウド上のアプリ環境の構築・再構築の運用をシンプルにできる
- 近年求められている研究環境の再現がしやすい
- オンデマンドに構成変更し再構築できるためコスト低減を図れる
- オンプレとクラウド、複数のクラウドをまたがる環境も作れる
- 他者が作ったテンプレートも利用できる
- 機関とクラウドの接続方法などの相談ができる

※テンプレート

- アプリ環境の構築ワークフローとドキュメントを記述したファイル
 - 実体は Jupyter Notebook ファイル
 - ■ドキュメントと構築スクリプトを一体化でき、説明と実態の乖離が起こりにくい
 - 図表、グラフ、画像なども利用可能
 - テンプレート内にスクリプトの実行結果も残しておくことが可能

OCSを支えるVCPの仕組み

管理ソフトウェアの概要(1)

GakuNin Cloud

- Virtual Cloud Provider (VCP)
 - 本機能の中心ソフトウェア
 - プロバイダI/Fを抽象化したREST API
 - VCPの利用を容易にするPythonライ ブラリ VCP SDK
- Jupyter Notebook(+NII拡張) からVCP SDKを利用して操作

管理ソフトウエアの概要(2)

VCP SDK

፠ [5]:

■ 各クラウドの固有設定をSDK内に隠蔽することで、Jupyter Notebookを変更することなくクラウド間での使い回しを実現

■ 1.2 新規 server を作成

VCP SDKの中で各クラウドのmediumを定義

20 # cloud上のタグ設定

21 spec.set_tag('key1', 'value1')
22 spec.set_tag('key2', 'value2')

計算インスタンス(VCノード)

- Docker in Docker 構成
 - ベースコンテナ
 - ■死活監視やメトリクス収集などシステムの基本機能
 - アプリケーションコンテナ
 - ■アプリケーションと関連ソフトウェアをベースコンテナ上に起動
 - ■Dockerのエコシステムが利用可能

モニタリング機能

- ベースコンテナ、アプリコンテナのモニタリング情報を提供
- アプリケーションの収容設計を支援

VCノード(ベースコンテナ)毎の情報

アプリコンテナ毎の情報

OCSを利用したアプリケーション配備例

■ オンプレ・複数の実クラウドを跨ってのアプリケーション配備が可能!

サービス版とポータブル版

長所:

NII側でVCP運用・保守 仮想ルータが利用可能

短所:

NIIへのVCP構築申請 が必要

長所:

VCP構築申請が不要と なり、すぐに利用可

短所:

利用機関側でVCP構築・ 運用・保守

ポータブル版の構成方法

vcコントローラ: 利用機関

JupyterNotebook: 利用機関

(クライアント)

vcコントローラ: クラウド

JupyterNotebook: 利用機関

(クライアント)

vcコントローラ: クラウド

JupyterNotebook: クラウド

(クライアント)

GakuNin

ポータブル版の構成方法

vcコントローラ: 利用機関

JupyterNotebook: 利用機関

(クライアント)

vcコントローラ: クラウド

JupyterNotebook: 利用機関

(クライアント)

vcコントローラ: クラウド

JupyterNotebook: クラウド

(クライアント)

本日の実習はこの構成!

GakuNin

動作フロー(ポータブル版+mdx)

- クラウド 環境構築 担当者
- ① OCSイメージ(Jupyter + VC CTRL)を起動
- ② mdx REST APIでOCS用のノードを確保
- ③ VC CTRL経由でベースコンテナを起動
- 4 ベースコンテナ上でアプリケーション環境構築

ハンズオン教材とのマッピング

ハンズオン教材とのマッピング

各種お問い合わせは、 NIIクラウド支援室 <u>cld-office-</u> <u>support@nii.ac.jp</u> までお願いいたします!

大学共同利用機関法人 情報・システム研究機構

国立情報学研究所

National Institute of Informatics