List of Assumption:

- 1. Image of card does not have any glare from nearby light sources.
- 2. Image of card is taken over a uniformly colored background that is darker (lower intensity) than the white parts of the card.
- 3. No shadows cast on the image.
- 4. Standard deck of playing cards is used.
- 5. RGB or Grayscale input is accepted.

Algorithm Pipeline:

- 1. Alignment and cropping
 - i. Acquire image and read into a variable
 - ii. If RGB input, convert to grayscale
 - iii. Binarize acquired image using a global threshold generated by Utso's method
 - iv. Apply a gaussian filter on the image
 - v. Extract the gradient direction of the processed image
 - vi. Find the maximum value of the gradient direction
 - vii. Use that maximum value as a rotation angle. Angle is adjusted for imrotate function
 - viii. Rotate the image using imrotate.
 - ix. Binarize rotated image using a threshold of 0.55
 - x. Use regionprops to detect the boundingbox of the processed image.
 - xi. Crop the image according to the derived boundingbox.
- 2. Suit and Rank Detection
 - Convert the image to the binary with binary factor of 0.5
 - Invert the image and fill in the holes of binary image
 - Remove small objects
 - Measure properties of image regions
 - Sort the areas
 - Region boundaries for the image with removed small objects
 - Region boundaries2 for the image
 - Find number of shapes in the image
 - If number of shapes is greater than 1
 - Center the boundaries for x and y
 - Based on the number of peaks in upper boundaries find Heart, Diamond, Spade, and Club
 - If number of shapes is 1
 - Center the boundaries2 for x and y
 - Based on the number of peaks in upper boundaries2 find Heart, Diamond, Spade, and Club
 - Card number is equal to the number of shapes
 - Define areas for Queen, King, Jack, and Ace

Subset of Results: Attached video

Contribution of group members:

- 1. Armin Rashvand: Created algorithm for suit and rank detection.
- 2. Mushfique Khan: Designed algorithm for alignment and cropping and refined suit and rank detection algorithm to detect each individual face card.

List of References:

1. Sari-Sarraf, Hamed, "Image Processing", Texas Tech University, Fall 2020