Seminar 1

Operation: $*: A \times A \to A \text{ with } x, y \in A \Rightarrow x * y \in A.$

Grupoid: (A, *)

Semigroup: (A, *) grupoid + associativity Monoid: (A, *) semigroup + identity element

Group: (A, *) monoid + all elements have a simmetric

Abelian group: (A, *) group + commutativity

Subgroupoid = stable part: $\forall a, b \in A \Rightarrow a * b \in A$

Subgroup: $H \leq (G,*)$ if H is a sable part in G $(H \subseteq G)$ and (H,*) is a group.

1. Addition: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Substraction: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

Multiplication: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$

Division: $\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*$

2. i 3 elements in 3 spaces $\Rightarrow 3^9$

	а	b	С
a			
b			
С			

ii 3^3 (3 elements in 3 free spaces) and 3^3 (3 commutative elements in 3 spaces) $\Rightarrow 3^6$.

	а	b	С
а		С	b
b	С		а
С	b	а	/

iii 34 (3 elemnts in 4 free spaces) and 3 elements, which can be e $\Rightarrow 3^5$

	е	b	С
е	е	b	С
b	b		
С	С		

Generalization:

i
$$n^{n^2}$$

ii
$$n^n \cdot n^{\frac{n(n-1)}{2}}$$

iii
$$n^{(n-1)^2+1}$$

3.
$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +) \text{ and } (\mathbb{Q}^*, \cdot), (\mathbb{R}^*, \cdot), (\mathbb{C}^*, \cdot).$$

- 4. i Stable part: $\forall x, y \in \mathbb{R} \Rightarrow x*y = x+y+xy = (x+1)(y+1)-1 \in \mathbb{R}$ Associativity: $\forall x, y \in \mathbb{R} \Rightarrow (x*y)*z = x*(y*z)$ Identity element: $\exists e \in \mathbb{R}$ such that $\forall x \in \mathbb{R} \Rightarrow x*e = e*x = x$ Commutativity: $\forall x, y \in \mathbb{R} \Rightarrow x*y = y*x$.
 - ii Let A be our interval. Then A is a stable subset of $(\mathbb{R},*) \iff \forall x,y \in A \Rightarrow x*y \in A$. $x,y \in A \Rightarrow -1 \leq x, -1 \leq y \Rightarrow 0 \leq x+1, 0 \leq y+1 \Rightarrow 0 \leq (x+1)(y+1) \Rightarrow -1 \leq (x+1)(y+1) - 1 \Rightarrow x*y \in A$
- 5. i Here is interesting to see the associativity: $\forall x, y, z \in \mathbb{N} \Rightarrow (x*y)*$ $z = \gcd(x,y)*z = \gcd(\gcd(x,y),z) = \alpha \Rightarrow \alpha \mid \gcd(x,y) \text{ and } \alpha \mid z.$ From $\gcd(x,y) = d \Rightarrow x = dx_1$ and $y = dy_1$, but $\alpha \mid d \Rightarrow \alpha \mid x$ and $\alpha \mid y \Rightarrow \alpha \mid x, y, z \Rightarrow \alpha \mid \gcd(y,z) \Rightarrow \alpha \mid \gcd(x,\gcd(y,z)).$ Analogus for $\gcd(x,\gcd(y,z)) \mid \alpha.$
 - ii $\forall x, y \in D_n \Rightarrow x \mid n \text{ and } y \mid n \Rightarrow n = xd_1 \text{ and } n = yd_2.$ We compute $x * y = gcd(x, y) = \alpha \Rightarrow x = \alpha x_1 \text{ and } y = \alpha y_1 \Rightarrow n = \alpha x_1 d_1 \text{ and } n = \alpha y_1 d_2 \Rightarrow \alpha \mid n \Rightarrow gcd(x, y) \mid n \Rightarrow x * y \in D_n$. Associativity, commutativity and identity element are easy to prove.

iii
$$D_6 = \{1, 2, 3, 6\}$$

	1	2	3	6
1	1	1	1	1
2	1	2	1	2
3	1	1	3	3
6	1	2	3	6

- 6. $H \subseteq \mathbb{Z}$ and H stable part of $\mathbb{Z} \Rightarrow \exists x \in H \Rightarrow \forall n \in \mathbb{N}^*$ we have $x^n \in H$, but H is finite $\Rightarrow \exists n \in \mathbb{N}^*$ such that $x^i = x^j, i, j \in \mathbb{N}^*$ and $0 < i < j \Rightarrow x \in \{-1, 0, 1\} \Rightarrow H$ can be $\emptyset, \{0\}, \{1\}, \{0, 1\}, \{-1, 1\}, \{-1, 0, 1\}$.
- 7. (i) \Rightarrow If G is abelian, then $xy = yx \Rightarrow (xy)^2 = xyxy = xxyy = x^2y^2$. $\Leftrightarrow \forall x,y \in G: (xy)^2 = x^2y^2 = xxyy$. But $(xy)^2 = xyxy$. So xyxy = xxyy. As G is a group, $\exists x^{-1}, y^{-1} \in G$, hence, we multiply with x^{-1} on the left and with y^{-1} on the right and we obtain $yx = xy \Rightarrow G$ is abelian.
 - (ii) $\forall x,y \in G: x^2 = 1 \text{ and } y^2 = 1 \Rightarrow x = x^{-1} \text{ and } y = y^{-1}, \text{ so } xy = x^{-1}y^{-1}.$ $\mathbf{x}^* \mathbf{x} = \mathbf{1}$, $\mathbf{1} = \mathbf{element}$ neutru Also, $(xy)^2 = 1 \Rightarrow xy = (xy)^{-1} = y^{-1}x^{-1}$. But $(yx)^2 = 1 \Rightarrow yx = (yx)^{-1} = x^{-1}y^{-1}$. Hence, $x^{-1}y^{-1} = y^{-1}x^{-1} \iff xy = yx, \forall x, y \in G$.
- 8. (i) If (A, \cdot) is a monoid, then \cdot is associative and it has an identity element, let's say $e \in A$.

Take $X, Y, Z \in P(A) : (X * Y) * Z = \{(xy)z \mid x \in X, y \in Y, z \in Z\} = \{x(yz) \mid x, \in X, y \in Y, z \in Z\} = X * (Y * Z)$. So, * is associative.

Take $X \in P(A) : X * \{e\} = \{xe \mid x \in X\} = \{ex \mid x \in X\} = \{e\} * X = \{x \mid x \in X\} = X$. So, * has the identity element $\{e\}$.

(ii) This is easy to see with a counter example.

If $A = \emptyset$, then P(A) is a group.

If $A \neq \emptyset$, take $A = \{e\} \Rightarrow P(A) = \{\emptyset, e\}$. We know that the identity element is its own inverse, but \emptyset has no inverse. Hence, P(A) is not a group.