Biermann CompPhys HW7

Emily Biermann

October 10 2020

1 CH6 EX1-3

See code.

2 CH7 EX2

First we perform a change of variable:

$$\mathbf{u}^2 = \tfrac{2\tau}{m} v^2$$

The distribution becomes

$$\rho(u)du = \frac{2}{\sqrt{\pi}}ue^{-u}du$$

Maxwell Velocity Distribution

3 CH7 EX5

Figure 1: Analytic Convolution (black), Histogram of sum (green), and rejection method (blue)

CH7 EX6 4

Since $-1 \le x \ge 1$ each Legendre polynomial has extrema values of ± 1 . Therefore the maximum value of our distribution is $P_{max} = \frac{\sqrt{3}}{\sqrt{8}} + \frac{\sqrt{7}}{\sqrt{6}} + \frac{\sqrt{14}}{\sqrt{24}} + \frac{\sqrt{15}}{\sqrt{16}}$

$$P_{max} = \frac{\sqrt{3}}{\sqrt{8}} + \frac{\sqrt{7}}{\sqrt{6}} + \frac{\sqrt{14}}{\sqrt{24}} + \frac{\sqrt{15}}{\sqrt{16}}$$

and we can use the rejection method to model the distribution.

I could not figure out how to properly scale the histogram so that the analytical solution would also show up on the graph.

5 CH7 EX12

I could not get part B to run.