Solutions to Tutorial 1

MA1521 CALCULUS FOR COMPUTING

- 1. (a) Since f is a rational function, the maximal domain of f consists of all real numbers x such that the denominator of f is nonzero. We can factorize the denominator of f over real numbers as $(4+x^2)(2-x)(4+2x+x^2)(1-x)(1+x)(1+x^2)$ whose roots are -1,1,2. Thus the maximal domain of f is $\mathbb{R} \setminus \{-1,1,2\}$.
 - (b) Given $g(x) = \sqrt{2 \ln(x 3)}$, it is defined for x satisfying $2 \ln(x 3) \ge 0$ and x 3 > 0 since \ln is defined for positive real numbers and the square root function is defined for nonnegative real numbers. Now $2 \ln(x 3) \ge 0$ and $x 3 > 0 \Leftrightarrow \ln(x 3) \le 2$ and $3 < x \Leftrightarrow x 3 \le e^2$ and $3 < x \Leftrightarrow 3 < x \le 3 + e^2$. Thus the maximal domain of g is $(3, 3 + e^2]$.
 - (c) Given $h(x) = \frac{\ln(\sqrt{16-2x}+1)}{\sqrt{\ln x}-1}$, it is defined for x such that $\ln x \ge 0$ and $\sqrt{\ln x}-1 \ne 0$ and $16-2x \ge 0$. That is $x \ge 1$ and $x \ne e$ and $8 \ge x \Leftrightarrow 1 \le x \le 8$ and $x \ne e$.
- 2. For x inside the intervals, $(-\infty, -5)$, (-5, -1), (-1, 1) and $(1, \infty)$, the function f is defined by a constant, a polynomial, a constant or a rational function, respectively. Thus f is continuous at each point inside these open intervals. We just have to examine the continuity of f at the endpoints of these intervals.

 $\lim_{x \to -5^{-}} f(x) = 2$, $\lim_{x \to -5^{+}} f(x) = \lim_{x \to -5^{+}} x^{2} - 1 = 24$. As $\lim_{x \to -5^{-}} f(x) \neq \lim_{x \to -5^{+}} f(x)$, $\lim_{x \to -5} f(x)$ does not exists, and f is not continuous at x = -5.

 $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} x^{2} - 1 = 0, \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} 0 = 0. \text{ Thus } \lim_{x \to -1} f(x) = 0 = f(0). \text{ Therefore, } f \text{ is continuous at } x = -1.$

 $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{1}{x - 1} = +\infty$. Thus $\lim_{x \to 1} f(x)$ does not exist. Therefore, f is not continuous at x = 1.

Consequently, the points of discontinuity of f are at x = -5, 1.

3. f is continuous at $x = 4 \Rightarrow \lim_{x \to 4} f(x) = f(4) \Rightarrow \lim_{x \to 4^{-}} f(x) = f(4) \Rightarrow \lim_{x \to 4^{-}} p\sqrt{x} \Rightarrow 2p = 7 \Rightarrow p = \frac{7}{2}$.

f is continuous at $x = 4 \Rightarrow \lim_{x \to 4^+} f(x) = f(4) \Rightarrow \lim_{x \to 4^+} q(x-2)^2 + 5 \Rightarrow 4q + 5 = 7 \Rightarrow q = \frac{1}{2}$.

 $\lim_{x \to 6} f(x) \text{ exists} \Rightarrow \lim_{x \to 6^{-}} f(x) = \lim_{x \to 6^{+}} f(x) \Rightarrow \lim_{x \to 6^{-}} \frac{1}{2} (x - 2)^{2} + 5 = \lim_{x \to 6^{+}} \frac{r}{x - 5} \Rightarrow 13 = r.$

1

- 4. (a) $\lim_{x \to 1} \frac{4+x}{2-x} = \frac{4+1}{2-1} = 5$.
 - (b) $\lim_{x \to 2} \frac{4 x^2}{x^2 3x + 2} = \lim_{x \to 2} \frac{(2 + x)(2 x)}{(x 1)(x 2)} = \lim_{x \to 2} \frac{-(2 + x)}{x 1} = -4.$

(c)
$$\lim_{x \to -2} \frac{4 - x^2}{\sqrt{x^2 - x - 2} - \sqrt{2 - x}}$$

$$= \lim_{x \to -2} \frac{4 - x^2}{\sqrt{x^2 - x - 2} - \sqrt{2 - x}}$$

$$= \lim_{x \to -2} \frac{4 - x^2}{\sqrt{x^2 - x - 2} - \sqrt{2 - x}} \frac{\sqrt{x^2 - x - 2} + \sqrt{2 - x}}{\sqrt{x^2 - x - 2} + \sqrt{2 - x}}$$

$$= \lim_{x \to -2} \frac{(4 - x^2)(\sqrt{x^2 - x - 2} + \sqrt{2 - x})}{x^2 - x - 2 - (2 - x)}$$

$$= \lim_{x \to -2} \frac{(4 - x^2)(\sqrt{x^2 - x - 2} + \sqrt{2 - x})}{x^2 - 4}$$

$$= \lim_{x \to -2} \frac{(2 + x)(2 - x)(\sqrt{x^2 - x - 2} + \sqrt{2 - x})}{(x + 2)(x - 2)}$$

$$= \lim_{x \to -2} -(\sqrt{x^2 - x - 2} + \sqrt{2 - x}) = -4.$$
(d)
$$\lim_{x \to 1} \frac{3 - \sqrt{x + 8}}{\sqrt{x + 3} - \sqrt{5 - x}}$$

(d)
$$\lim_{x \to 1} \frac{3 - \sqrt{x + 8}}{\sqrt{x + 3} - \sqrt{5 - x}}$$

$$= \lim_{x \to 1} \frac{3 - \sqrt{x + 8}}{\sqrt{x + 3} - \sqrt{5 - x}} \frac{\sqrt{x + 3} + \sqrt{5 - x}}{\sqrt{x + 3} + \sqrt{5 - x}}$$

$$= \lim_{x \to 1} \frac{(3 - \sqrt{x + 8})(\sqrt{x + 3} + \sqrt{5 - x})}{(x + 3) - (5 - x)}$$

$$= \lim_{x \to 1} \frac{(3 - \sqrt{x + 8})(\sqrt{x + 3} + \sqrt{5 - x})}{2(x - 1)}$$

$$= \lim_{x \to 1} \frac{(3 + \sqrt{x + 8})(3 - \sqrt{x + 8})(\sqrt{x + 3} + \sqrt{5 - x})}{2(3 + \sqrt{x + 8})(x - 1)}$$

$$= \lim_{x \to 1} \frac{(9 - (x + 8))(\sqrt{x + 3} + \sqrt{5 - x})}{2(3 + \sqrt{x + 8})(x - 1)}$$

$$= \lim_{x \to 1} \frac{-(x - 1)(\sqrt{x + 3} + \sqrt{5 - x})}{2(3 + \sqrt{x + 8})(x - 1)}$$

$$= \lim_{x \to 1} \frac{-(\sqrt{x + 3} + \sqrt{5 - x})}{2(3 + \sqrt{x + 8})(x - 1)}$$

$$= \lim_{x \to 1} \frac{-(\sqrt{x + 3} + \sqrt{5 - x})}{2(3 + \sqrt{x + 8})} = -\frac{1}{3}.$$

(e) $\lim_{x\to 1} \frac{x^2-1}{(x-1)^2} = \lim_{x\to 1} \frac{(x+1)(x-1)}{(x-1)^2} = \lim_{x\to 1} \frac{x+1}{x-1}$. This limit does not exist, or undefined as the numerator tends to a nonzero number but the denominator tends to 0.

5. (a)
$$\lim_{x \to \infty} \sqrt{\frac{9x^{10} + 3x - 1}{(x^2 + 3x + 5)^3(2x - 5)^4}} = \lim_{x \to \infty} \sqrt{\frac{9x^{10} + 3x - 1}{16x^{10} + \dots}} = \sqrt{\frac{9}{16}} = \frac{3}{4}.$$

(b)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^{10} + 3x - 1}}{(1 + 2x)^5} = \lim_{x \to -\infty} \frac{\sqrt{9x^{10} + 3x - 1}}{-\sqrt{(1 + 2x)^{10}}}$$
 since the term $(1 + 2x)^5$ is negative for $x \to -\infty$.

Thus
$$\lim_{x \to -\infty} \frac{\sqrt{9x^{10} + 3x - 1}}{(1 + 2x)^5} = \lim_{x \to -\infty} -\sqrt{\frac{9x^{10} + 3x - 1}{(1 + 2x)^{10}}} = \lim_{x \to -\infty} -\sqrt{\frac{9x^{10} + 3x - 1}{2^{10}x^{10} + \cdots}} = -\frac{3}{32}.$$

(c) Note that the term
$$(1+2x)^2(x^2+x-1)$$
 is positive as $x \to -\infty$. Thus
$$\lim_{x \to -\infty} \frac{\sqrt{9x^{10}+3x-1}}{(1+2x)^2(x^2+x-1)} = \lim_{x \to -\infty} \sqrt{\frac{9x^{10}+3x-1}{(1+2x)^4(x^2+x-1)^2}} = \lim_{x \to -\infty} \sqrt{\frac{9x^{10}+3x-1}{2^4x^8+\cdots}} = \infty.$$

6. By continuity of f and g, $4 = \lim_{x \to 3} [2f(x) - g(x)] = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - g(3) = 2\lim_{x \to 3} f(x) - \lim_{x \to 3} g(x) = 2f(3) - \lim_{x \to 3} g(x) = 2\lim_{x \to 3}$ 2(2) - g(3). Thus g(3) = 0.

Solutions to Further Exercises

- 1. First $|4x + 13| = |4x + 12 + 1| \le |4x + 12| + 1 = 4|x + 3| + 1$. Since $|x + 3| < \frac{1}{2}$, it follows that $|4x + 13| < 4(\frac{1}{2}) + 1 = 3$.
- 2. (a) Given $f(x) = \frac{x+1}{x-2}$. For f to be defined, we only require $x \ne 2$. Thus the domain of fis $\{x \in \mathbb{R} \mid x \neq 2\}$, or we may also write $\mathbb{R} \setminus \{2\}$.
 - (b) Set $\frac{x+1}{x-2} = 1$. Then x+1 = x-2 giving 1 = -2, a contradiction. Therefore, there is no value of x such that f(x) = 1.
 - (c) Set $\frac{x+1}{x-2} = c$. Solving x in terms of c, we obtain $x = \frac{2c+1}{c-1}$. (Note that from this we also see that $c \neq 1$.
 - (d) Part (ii) implies that the range of f is a subset of $\mathbb{R} \setminus \{1\}$ while part (iii) implies that $\mathbb{R} \setminus \{1\}$ lies in the range of f. Consequently, the range of g is $\mathbb{R} \setminus \{1\}$.