Fall 2024

Assignment 4

Due: Nov 18

Name: Yujie Xu, Richard Zhang

PennID: 51233809, 19331985

1 Question 1

1. Let c be the number of connected components in G. Since we know the multiplicity of the eigenvalue zero of the Laplacian matrix L_G equals the number of connected componets in G, we can deduce that the multiplicity of the eigenvalue zero is c. This implies the smallest c eigenvalues are all zero:

$$\lambda_1 = \lambda_2 = \cdots = \lambda_c = 0$$

It obvious that $c \geq k$, so $\lambda_k = 0$. Therefore, if G has at least k connected components, $\lambda_k = 0$.

Secondly, let us assume $\lambda_k = 0$, this implies the multiplicity of the zero eigenvalue is at least k. Since we also know the multiplicity of the zero eigenvalue equals the number of connected components, G should have at least k connected components. Therefore, if $\lambda_k = 0$, G should have at least k connected components.

Thus, $\lambda_k = 0$ iff the Graph G has at least k connected components.

2 Question 2

1. Consider the expression $(PAP^{-1})(Pv)$, we first regroup this expression:

$$(PAP^{-1})(Pv) = (PA)(P^{-1}Pv)$$

Notice that $P^{-1}P = I$, where I is the identity matrix:

$$P^{-1}Pv = v$$

Thus, the expression simplifies to:

$$(PAP^{-1})(Pv) = (PA)v = P(Av)$$

Notice that v is the eigenvector of A:

$$Av = \lambda v$$

Substitute it to the former expression. Notice that λ is a scalar:

$$P(Av) = P(\lambda v) = \lambda(Pv)$$

Therefore, we have show that:

$$(PAP^{-1})(Pv) = \lambda(Pv)$$

This means Pv is an eigenvector of PAP^{-1} with eigenvalue λ

2. Consider the property of the inverse P^{-1} :

$$I(i,j) = \sum_{k=1}^{n} P(i,k)P^{-1}(k,j)$$

P(i,k) = 1 if and only if $k = \sigma(i)$. I(i,j) = 1 if and only if i = j. Thus, the variable k collapses to one term:

$$1 = P(i, \sigma(i))P^{-1}(\sigma(i), i)$$

Which means for every i:

$$P^{-1}(\sigma(i), i) = 1$$

Now consider the (i, j)th entry of PAP^{-1} :

$$PAP^{-1}(i,j) = \sum_{k=1}^{n} \sum_{l=1}^{n} P(i,k)A(k,l)P^{-1}(l,j)$$

P(i,k) = 1 if and only if $k = \sigma(i)$. Thus, the sum over k collapses to the term where $k = \sigma(i)$:

$$PAP^{-1}(i,j) = \sum_{l=1}^{n} A(\sigma(i), l)P^{-1}(l, j)$$

 $P^{-1}(l,j) = 1$ if and only if $l = \sigma(j)$. Thus, the sum over l collapses to the term where $l = \sigma(j)$:

$$PAP^{-1}(i,j) = A(\sigma(i),\sigma(j))$$

Therefore the (i,j)th entry of PAP^{-1} is $A_{\sigma(i),\sigma(j)}$

3 Question 3

1. We know $\{u_i\}$ and $\{v_i\}$ form orthonormal bases, so unit vectors x and y can be expressed as follows:

$$x = \sum_{i} \alpha_i u_i, \quad y = \sum_{i} \beta_i v_i$$

We also know that $\sum_i \alpha_i^2 = 1$ and $\sum_i \beta_i^2 = 1$.

Then, we want to compute $x^T A y$.

$$x^{T}Ay = \left(\sum_{i} \alpha_{i} u_{i}^{T}\right) \left(\sum_{j} \sigma_{j} u_{j} v_{j}^{T}\right) \left(\sum_{k} \beta_{k} v_{k}\right) = \sum_{i} \sigma_{i} \alpha_{i} \beta_{i}.$$

To maximize $x^T A y$, we need to maximize $\sum_i \sigma_i \alpha_i \beta_i$ under the constraints we mentioned above.

By applying Cauchy-Schwarz inequality $(|\sum_i a_i b_i| \le (\sum_i a_i^2)^{1/2} (\sum_i b_i^2)^{1/2})$ and set $a_i = \sigma_i^{1/2} \alpha_i$ and $b_i = \sigma_i^{1/2} \beta_i$, we get:

$$\sum_{i} \sigma_{i} \alpha_{i} \beta_{i} \leq \left(\sum_{i} \sigma_{i} \alpha_{i}^{2}\right)^{1/2} \left(\sum_{i} \sigma_{i} \beta_{i}^{2}\right)^{1/2}$$

Since σ_i is in decreasing order, $\sigma_1 = \max_i \sigma_i$ because it is the largest. The maximum value is achieved when $\alpha_1 = 1$, $\beta_1 = 1$, and all other α_i , β_i are zero.

Therefore:

$$\max_{\substack{x \in \mathbb{R}^m, \|x\|_2 = 1 \\ y \in \mathbb{R}^n, \|y\|_2 = 1}} x^T A y = \sigma_1 = \max_i \sigma_i$$

$$\max_{\substack{x \in \mathbb{R}^m, \|x\|_2 = 1 \\ y \in \mathbb{R}^n, \|y\|_2 = 1}} x^T A y = \max_i \sigma_i$$

2. (a) Operator norm is as follows:

$$||A||_2 = \max_{||x||_2=1} ||Ax||_2$$

Based on triangle inequality, we can deduce that for any x with $||x||_2 = 1$:

$$||(A+B)x||_2 \le ||Ax||_2 + ||Bx||_2$$

If we divide both sides by $||x||_2$, the equation remains the same as $||x||_2 = 1$. Take the maximum over all x, we get:

$$||A + B||_2 = \max_{\|x\|_2 = 1} ||(A + B)x||_2 \le \max_{\|x\|_2 = 1} (||Ax||_2 + ||Bx||_2) \le ||A||_2 + ||B||_2$$

Therefore:

$$||A + B||_2 \le ||A||_2 + ||B||_2$$

(b) We start by recalling the definition of the operator norm for a product of matrices:

$$||AB||_2 = \max_{||x||_2=1} ||ABx||_2$$

Using the property of norms, we deduce that:

$$||ABx||_2 \le ||A||_2 ||Bx||_2$$

Next, we bound $||Bx||_2$ by applying the operator norm of B. We also know $||x||_2 = 1$:

$$||Bx||_2 \le ||B||_2 ||x||_2 = ||B||_2$$

Combine these inequalities, we get this:

$$||ABx||_2 \le ||A||_2 ||B||_2$$

Finally, taking the maximum over all x with $||x||_2 = 1$, we deduce:

$$||AB||_2 = \max_{||x||_2=1} ||ABx||_2 \le ||A||_2 ||B||_2$$

Thus,

$$||AB||_2 \le ||A||_2 \cdot ||B||_2$$

4 Question 4

1. Given that $||v - u||_2 \le \epsilon$. This means:

$$\sum_{i=1}^{n} (v_i - u_i)^2 \le \epsilon^2$$

 $|S\Delta S'|$ denote the size of the symmetric difference between sets S and S', which is:

$$|S\Delta S'| = |(S \setminus S') \cup (S' \setminus S)|$$

Notice that $S = \{i : u_i \ge 0\}, S' = \{i : v_i \ge 0\}$. By definition, the size of the symmetric difference increases when:

$$u_i > 0, v_i < 0 \text{ or } u_i < 0, v_i > 0$$

1. when $u_i \ge 0, v_i < 0$ then $u_i = \frac{1}{\sqrt{n}}, v_i < 0$. The squared difference is:

$$(v_i - u_i)^2 \ge (\frac{1}{\sqrt{n}})^2 = \frac{1}{n}$$

2. when $u_i < 0, v_i \ge 0$ then $u_i = -\frac{1}{\sqrt{n}}, v_i \ge 0$. The squared difference is:

$$(v_i - u_i)^2 \ge (\frac{1}{\sqrt{n}})^2 = \frac{1}{n}$$

Let d be the size of the symmetric difference, i.e. $d = |S\Delta S'|$, then:

$$d \cdot \frac{1}{n} \le \sum_{i \in S\Delta S'} (v_i - u_i)^2 \le \sum_{i=1}^n (v_i - u_i)^2 \le \epsilon^2$$

Thus:

$$d < \epsilon^2 n$$

This proves that $|S\Delta S'| = O(\epsilon^2 n)$