

Computational tools for metabolic pathways prediction

Marina Fedorova Computational Chemistry Group Novo Nordisk Foundation Center for Biosustainability

Technical University of Denmark

DTU Biosustain

The Novo Nordisk Foundation Center for Biosustainability

Introduction

The Novo Nordisk Foundation Center for Biosustainability (DTU Biosustain) aims to be a worldwide leader in cell factories design, construction and deployment, and thus be a driver for change towards a biosustainable society.

Introduction

- Computational Biology division:
 - In silico design of cell factories
 - Automation group
 - Lab support (LIMS)
 - Genome scale modelling
 - Integrated software platform
- Computational Chemistry group
 - Metabolic pathways prediction tool
 GemPath
 - Genome Scale Model Based
 - Used to be in Matlab, now moved to Python
 - Further extensions

Motivation

Want this:

Commodity chemical

But there is a problem:

Target Compound has low Yield in the host organim

Target Compound is not in the host organim

So you need this:

Synthetic Pathway Calculation

GEM-Path

GEMPath's individual iteration workflow

Biochemical Reaction Operators (BROs)

SMIRKS: [c:5][C:1]([H:4])([H])[O:2][H:3] >> [c:5][C:1]([H])=[O:2].[H:3].[H:4]

RDKit uses reaction SMARTS (3)

Chemical Structure Comparison

Tanimoto Coefficient & Fingerprints

- Fingerprints generation for the compounds in the metabolome and the target compound.
- Fingerprint generation for the current compound
- Tanimoto coefficient calculation between the current compound and metabolome
- Algorithm moves towards metabolome (looks for higher similarity score, but it is adjustable)

Synthetic Pathway Prediction and Strain Design **Pipeline**

Synthetic Pathway Calculation

Integration with GEM

Strain Design Computation

Synthetic Pathways

- 245 Pathways
- · 221 Reactions

Pathways Theoretical Yield Analysis

 2205 Strain/Substrate Yield Combinations

· For 20 differeunt target compounds and 9 different growth conditions

wild type max yield

growth couple

theo. yield

- · RobustKnock: 2 & 3 deletions
 - GDLS: 4 deletions

Growth Couple Analysis

- 6615 Combinations
- 1271 Strain Designs

Final Designs

· 20 High Yield Growth **Coupled Designs**

Validation of experimental pathways

RDKit Usage

- Manipulations with molecules
 - Reading molecules from different formats (smiles, smarts, sdf, mol, inchi)
 - Getting molecular information (formula, charge)
 - Standartization of molecules
 - Molecular similarity (fingerprints, tanimoto coefficient)
 - Substructure match
- Manipulations with reactions
 - Reactor (for reaction SMARTs)
 - Custom SMIRK parser
 - Automatic BROs generation (in progress)
- Properties prediction
 - Qsar library
 - Toxicity IC50 (qsar model based on fingerprints)

Post-analysis

De-novo pathway design and Host integration

HOST METABOLISM OFF-TARGET EFFECTS

HETEROLOGOUS PATHWAY OFF-TARGET EFFECTS

Summary

- Prediction of potential biochemical reactions pathways based on GEM
- Forward synthesis
- Further analysis
 - Theoretical yield
 - Off-target effect
 - Connection to other tools for further design
- Database storage
 - Graph database for pathway search
 - Sql database for additional information
- Documentation and release for user testing

The Novo Nordisk Foundation Center for Biosustainability

Thank you for your attention

Marina Fedorova mfad@biosustain.dtu.dk www.biosustain.dtu.dk

