Mesures de rayonnement gamma

Un capteur mesure pendant plusieurs années le rayonnement gamma émis par un lointain pulsar. Pour chaque gamma reçu, repéré par son rang $i(0 \le i < n)$, on mesure son énergie a_i et l'instant t_i de sa détection. L'unité d'énergie est le kilo électron-volt (keV), l'unité de temps est le dixième de seconde (1/10 s), l'origine des temps correspond au début de la campagne de mesures. On supposera n > 0. Pour tout i, la quantité a_i est un entier naturel $(a_i \in \mathbb{N})$. Les valeurs a_i sont rangées dans un tableau a de n éléments de type entier. Ces mesures n'ont pas lieu à intervalles réguliers. On note les dates t_i (exprimées en 1/10 s, $t_i \in \mathbb{N}$) dans un autre tableau t de n éléments de type entier. Pour tout t et t tels que t et t en t on a donc t et t

Question 1. Écrire une fonction compte(x,a) qui retourne, en temps linéaire en n, le nombre de fois où la valeur x apparaît dans le tableau a.

Question 2. En déduire une fonction occurrences (a) qui retourne, en temps quadratique en n, un tableau r tel que pour tout $i(0 \le i < n)$, l'élément r_i est le nombre de fois où a_i apparaît dans a.

partie I

On cherche à calculer les périodes T de temps pendant les quelles le rayonnement reste d'énergie constante.

$$T = t_i - t_i$$
 avec $a_i = a_k = a_j$ pour tout k tel que $i \le k \le j$

Question 3. Écrire une fonction maxconstant(a,t) qui retourne, en temps linéaire en n, la période la plus grande T pendant laquelle le rayonnement reste constant.

partie II

Soit *occ* le tableau calculé à la question 2.

Question 4. Écrire une fonction maxoccurrences (a,occ) qui retourne, en temps linéaire en n, les indices i_1 et i_2 de deux rayonnements m_1 et m_2 qui apparaissent le plus grand nombre de fois dans le tableau de mesures a. (Si le tableau a contient des valeurs toutes identiques, on posera $i_2 = m_2 = -1$).

On veut maintenant réorganiser les tableaux de mesures a et de dates t pour mettre en tête toutes les mesures donnant m_1 , puis celles valant m_2 , puis toutes les autres. La réorganisation des tableaux a et t demandée est donc telle que :

$$0 \le k < b \Rightarrow a_k = m_1$$

$$b \le k < r \Rightarrow a_k = m_2$$

$$r \le k < n \Rightarrow a_k \notin m_1, m_2$$

Après réorganisation, le tableau t vérifie toujours que t_i est la date à laquelle s'est produit le rayonnement $a_i (0 \le i < n)$.

Question 5. Écrire une fonction trier(a,t,m1,m2) qui réordonne, en temps linéaire en n, les tableaux a et t pour regrouper en tête les deux mesures les plus fréquentes, comme indiqué précédemment.

Indication : on parcourra les tableaux a et t (dans le sens des indices croissants) en maintenant une décomposition de la forme suivante :

avec a_i valant respectivement m_1 , m_2 et une valeur non prise dans m_1 , m_2 dans les zones 1, 2 et 4.

Au début les tableaux a et t sont de la forme :

À la fin les mêmes tableaux a et t sont de la forme :

Question 6. La fonction précédente garde-t-elle la croissance des dates à l'intérieur de chaque zone, c'est-à-dire que i < j implique $t_i < t_j$ pour i et j dans une même zone ? Justifier votre réponse.