Université de Jijel

Département de Mathématiques

Module : Mesure et Intégration

TD N°3

Exercice 1: Soit μ une mesure sur $\mathcal{B}([0,1])$. Montrer que $C([0,1],\mathbb{R}) \subset \mathcal{L}^1_{\mathbb{R}}([0,1],\mathcal{B}([0,1]),\mu)$.

Exercice 2: Soit δ_0 la mesure de Dirac en 0 et soit $f \in \mathcal{M}_+$. Calculer $\int f d\delta_0$.

Exercice 3: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction, nulle sur \mathbb{R}_- et positive décroissante sur \mathbb{R}_+^* .

- 1) Motrer que f est borélienne.
- **2)** On suppose que $\int f d\lambda < +\infty$. Montrer qu'il existe $C \in \mathbb{R}$ tel que $f(x) \leq \frac{C}{x}$, $\forall x > 0$.
- 3) Montrer que le résultat de la question précédente est faux si f n'est pas décroissante sur \mathbb{R}_+^* .

Exercice 4: Soient (E, T, μ) un espace mesuré et $f \in \mathcal{L}^1_{\mathbb{R}}(E, T, \mu)$. On suppose que $0 \le f \le 1$ p.p et que $\int f d\mu = \int f^2 d\mu$. Montrer qu'il existe un ensemble mesurable fini A tel que $f = 1_A$ p.p.

Exercice 5 : Soient (E, T, μ) un espace mesuré et $f \in \mathcal{L}^1_{\mathbb{R}}(E, T, \mu)$. Montrer que

$$f \ge 0 \, p.p \Leftrightarrow \int_A f d\mu \ge 0, \, \forall A \in T.$$

Exercice 6: Soient λ la mesure de Lebesgue sur $\mathcal{B}([0,1])$ et $f \in \mathcal{L}^1 = \mathcal{L}^1([0,1],\mathcal{B}([0,1]),\lambda)$.

- 1) Montrer que $x \mapsto e^{nx} f(x)$ appartient à \mathcal{L}^1 , $\forall n \in \mathbb{N}$.
- 2) Supposons que $f \ge 0$ p.p et $\exists M \in \mathbb{R}_+$ tels que $\int e^{nx} f(x) d\lambda(x) \le M$, $\forall n \in \mathbb{N}$.
 - (i) Montrer que f = 0 p.p.
 - (ii) Montrer que si f est continue, alors f(x) = 0, $\forall x \in [0, 1]$.

Exercice 7: Soient (E, T, μ_1) un espace mesuré et $f \in \mathcal{M}_+$. On pose $\mu_2(A) = \int_A f d\mu_1$, $\forall A \in T$.

- 1) Montrer que μ_2 est une mesure sur T.
- 2) Soit $g \in \mathcal{M}$. Montrer que $g \in \mathcal{L}^1_{\mathbb{R}}(E, T, \mu_2)$ si et seulement si $fg \in L^1_{\mathbb{R}}(E, T, \mu_1)$.

<u>Exercice 8</u>: Soient (E,T,μ) un espace mesuré et L^1 l'espace $L^1_{\mathbb{R}}(E,T,\mu)$. Soient $(f_n)_{n\in\mathbb{N}}\subset L^1$ et $f\in L^1$. On suppose que $\forall n\in\mathbb{N},\,f_n\geq 0\,p.p,\,f_n\underset{n\to+\infty}{\longrightarrow} f\,p.p$ et que $\int f_n d\mu \underset{n\to+\infty}{\longrightarrow} \int f d\mu$. Montrer que $f_n \underset{n\to+\infty}{\longrightarrow} f$ dans L^1 .