

Ch4 - 1 -

- Ch1 La Fonction Mémoire
- Ch2 Les Bascules

Copyright © F. Muller 2005-2013

- Ch3 Machines Synchrones
- Ch4 Machines à état

Logique Séquentielle

- Introduction
 - Compteurs/Décompteurs à cycles complets
 - Compteurs/Décompteurs à cycles incomplets
 - Synthèse

Copyright © F. Muller 2005-2013

Ch4 - 2 -

 Dans une machine synchrone, les bascules commutent en même temps sous la commande d'un front montant ou descendant

Copyright © F. Muller 2005-2013 Logique Séquentielle Ch4 - 3 -

- Introduction
- Compteurs/Décompteurs à cycles complets
 - Compteurs/Décompteurs à cycles incomplets
 - Synthèse

Copyright © F. Muller 2005-2013

Ch4 - 4 -

Méthode de résolution en Bascule JK **Principe**

- Dresser une table d'implication comprenant
 - Le numéros des états
 - Les états des sorties (Q₁, Q₂, ...)
 - Les fonctions de commutation (φ₁, φ₂, ...)
- Déduire avec ou sans Karnaugh les fonctions de commutation ϕ
- Par identification, déduire les fonctions d'entrée des bascules J et K
 - $\Phi_n = K_n \cdot Q_n + J_n \cdot /Q_n$
 - Identification rarement possible avec une bascule D

Copyright © F. Muller

Logique Séquentielle

Ch4 - 5 -

Méthode de résolution en Bascule JK Exemple d'un compteur modulo 8

1) Table d'implication

Remarque: les « c » en asynchrone (méthode 1) sont maintenant des « 1 »

	état	Q_2	Q_1	Q_0	φ ₂	φ1	ϕ_0
1	0	0	0	0			1
	1	0	0 -	1		(1)	1
	2	0	1 🚣	0		(1
	3	0 \	1	1	(1)	1	1
	4	1 🕊	0	0)		1
	5	1	0	1		1	1
	6	1	1	0			1
\	7	1	1	1	1	1	1

2) Déduire les fonctions de commutations

$$\begin{split} \phi_0 &= 1 \\ \phi_1 &= Q_0 \\ \phi_2 &= Q_1 \;.\; Q_0 \end{split}$$

3) Identification

$$\phi_n = K_n \cdot Q_n + J_n \cdot \overline{Q}_n$$

$$\begin{aligned} \phi_0 &= 1 & \Longrightarrow \phi_0 &= 1 \cdot (Q_0 + \overline{Q}_0) & \Longrightarrow & J_0 &= K_0 &= 1 \\ \phi_1 &= Q_0 & \Longrightarrow \phi_1 &= Q_0 \cdot (Q_1 + \overline{Q}_1) & \Longrightarrow & J_1 &= K_1 &= Q_0 \\ \phi_2 &= Q_1 \cdot Q_0 & \Longrightarrow \phi_2 &= Q_1 \cdot Q_0 \cdot (Q_2 + \overline{Q}_2) & \Longrightarrow & J_2 &= K_2 &= Q_1 \cdot Q_0 \end{aligned}$$

Copyright © F. Muller 2005-2013

Méthode de résolution en Bascule D Principe

- Dresser une table d'implication comprenant
 - Le numéro des états
 - Les états (présents) des sorties à l'instant t (Q₁, Q₂, ...)
 - Les états (futurs) des sorties à l'instant t + Δ
 - $D_1 = Q_{1+\Delta}$
 - $D_2 = Q_{2+\Delta}$
 - ...
- Déduire avec ou sans Karnaugh les fonctions ou états futurs D₁, D₂, ...

Copyright © F. Muller 2005-2013

Ch4 - 7 -

Méthode de résolution en Bascule D Exemple d'un compteur modulo 8

		Éta	at prés	présent État futur				
	état	Q_2	Q ₁	Q_0	Q ₂ + D ₂	Q ₁ ⁺ D ₁	Q_0^+ D_0^-	
1	0	0	0	0	0	0	1	
/	1	0	0	1,-	9	1	0	
/	2	9	1	0	0	1	1	
′	3	0	1	1	1	0	0	
	4	1	0	0	1	0	1	
\	5	1	0	1	1	1	0	
	6	1	1	0	1	1	1	
/	7	1	1	1	0	0	0	

2) Déduire les fonctions

$$\begin{split} &D_0 = \overline{Q}_0 \\ &D_1 = Q_1 \cdot \overline{Q}_0 + \overline{Q}_1 \cdot Q_0 \\ &D_2 = Q_2 \cdot \overline{Q}_1 + Q_2 \cdot \overline{Q}_0 + \overline{Q}_2 \cdot Q_1 \cdot Q_0 \end{split}$$

Copyright © F. Muller 2005-2013

Ch4 - 8 -

Introduction

- Compteurs/Décompteurs à cycles complets
- Compteurs/Décompteurs à cycles incomplets
- Synthèse

Copyright © F. Muller 2005-2013

Ch4 - 9 -

Exemple d'un compteur décimal Table d'implication

	État Présent			Bascule JK				Bascule D					
N	Q_3	Q_2	Q ₁	Q_0	φ ₃	φ ₂	φ ₁	ϕ_0	Q_3^+ D_3^-	Q ₂ + D ₂	Q ₁ + D ₁	Q_0^+ D_0^-	N
0	0	0	0	0				1				1	0
1	0	0	0	1			1	1			1		1
2	0	0	1	0				1			1	1	2
3	0	0	1	1		1	1	1		1			3
4	0	1	0	0				1		1		1	4
5	0	1	0	1			1	1		1	1		5
6	0	1	1	0				1		1	1	1	6
7	0	1	1	1	1	1	1	1	1				7
8	1	0	0	0				1	1			1	8
9	1	0	0	1	1			1					9

Copyright © F. Muller 2005-2013

Logique Séquentielle

Ch4 - 10 -

Exemple d'un compteur décimal **Bascules JK**

 Calcul des J_i et K_i à partir des fonctions de commutation

$$\phi_0 = 1$$

$$\varphi_1 = \overline{Q}_3.Q_0$$

$$\varphi_2 = Q_1.Q_0$$

$$\varphi_3 = Q_2.Q_1.Q_0 + Q_3.Q_0$$

$$J_0 = K_0 = 1$$

$$J_4 = K_4 = \overline{Q}_3 Q_6$$

$$J_1 = K_1 = \overline{Q}_3.Q_0$$
 $J_2 = K_2 = Q_1.Q_0$

$$J_3 = Q_2.Q_1.Q_0$$

 $K_3 = Q_0$

Copyright © F. Muller 2005-2013

Logique Séquentielle

Ch4 - 11 -

Exemple d'un compteur décimal Bascules D

- Calcul à partir de Q_i+ ou D_i
 - Même tableau que la méthode 3 sans « couper » le tableau en 2 partie

Copyright © F. Muller 2005-2013 Logique Séquentielle

Ch4 - 12 -

- Introduction
- Compteurs/Décompteurs à cycles complets
- Compteurs/Décompteurs à cycles incomplets

Synthèse

Copyright © F. Muller 2005-2013

Ch4 - 13 -

Synthèse

- Machine synchrone
 - Une seul horloge qui commande les changements d'états
- Compteurs à cycles complets/incomplets
 - Bascule JK: Utilisation de la fonction de commutation
 - Bascules D : Utilisation direct de Di ou Qi+

