Je-li funkce f v bodě x₀ spojitá, potom zde má limitu.

pravdivý

nepravdivý

protipříklad:

Je-li $\lim_{n\to\infty}a_n=0$ práve když řada $\sum_{n=0}^\infty a_n$ konverguje.

pravdivý <u>nepravdivý, porušena \Rightarrow </u> protipříklad: $\lim_{n\to\infty}\frac{1}{n+1}=0$ ale $\sum_{n=0}^{\infty}\frac{1}{n+1}$

Je-li druhá derivace funkce f v bodě x₀ rovna 0, potom je x₀ inflexní bod funkce f.

pravdivý

nepravdivý

protipříklad: $f(x) = x^4$, $x_0 = 0$

Je-li funkce f spojita na intervalu <a,b>, ma zde maximum i minimum.

pravdivý

nepravdivý

protipříklad:

Funkce f je v bodě x₀ spojitá, právě když má v bodě x₀ limitu.

Má-li funkce f v bodě x₀ vlastní limitu, potom je f v tomto bodě spojitá.

pravdivý

nepravdivý, porušena <=

protipříklad: $f(x) = \frac{x^2-4}{x-2}$, $\lim_{x\to 2} f(x) = 4$, $2 \notin D$

Je-li první derivace funkce f v bodě x_0 rovna 0, potom má funkce f v x_0 extrém.

pravdivý

nepravdivý

protipříklad: $f(x) = x^3$, $x_0=0$

Má-li funkce f v bodě x₀ derivaci, je zde spojitá.

pravdivý

nepravdivý

protipříklad:

Funkce f je na intervalu <a,b> spojita, pravě když je f na <a,b> ohraničena / integrovatelná.

Funkce f je nabývá na intervalu (a,b) svého maxima a minima právě když je na (a,b) spojitá.

Je-li funkce f integrovatelna na intervalu <a,b>, je na tomto intervalu spojita.

nepravdivý, porušena <=

protipříklad: f(x) = sgn x na < -1.1 >

Platí-li $\lim_{n\to\infty}a_n=0$, potom řada $\sum_{n=0}^\infty a_n$ konveguje. pravdivý <u>nepravdivý</u> protipříklad: $\lim_{n\to\infty}\frac{1}{n+1}=0$, ale $\sum_{n=0}^\infty\frac{1}{n+1}$ diverguje

Jestliže řada $\sum_{n=0}^{\infty} a_n$ konverguje, potom $\lim_{n \to \infty} a_n = 0$.

pravdivý

nepravdivý

protipříklad:

Je-li funkce f periodická, potom je sudá.

pravdivý

nepravdivý

protipříklad: $f(x) = \sin x$

Pro $x_0 \in R$ platí sin $x_0 > 3$ práve když $|x_0| < 0$

<u>pravd</u>ivý

nepravdivý

protipříklad:

Funkce f je prostá, platí-li: $\forall x, y$: (x = y => f(x) = f(y))

pravdivý

nepravdivý

protipříklad: f (x) =1

Je-li funkce f periodická, potom je ohraničená.

pravdivý

nepravdivý

protipříklad: f(x) = tg x

Pro $x_0 \in R$ platí sin $x_0 = 3$ právě když $|x_0| = -3$

pravdivý

nepravdivý

protipříklad:

Funkce f je prostá, platí-li: $\forall x, y : (f(x) \neq f(y) => x \neq y)$

pravdivý

nepravdivý

protipříklad: $f(x) = x^2$

Je-li funkce f prostá, potom je lichá.

pravdivý

nepravdivý

protipříklad: f(x) = x + 1

Jestliže existuje $x_0 \in R$ pro které platí $|x_0| = -1$, potom $\sqrt{x^2} = |x_0|$.

pravdivý nepravdivý protipříklad:

Funkce f je spojitá v bodě x_0 právě když je v tomto bodě diferencovatelná. pravdivý <u>nepravdivý, porušena</u> \Rightarrow protipříklad: f (x) = |x|, $x_0 = 0$

Je-li funkce f lichá, potom je prostá.

pravdivý <u>nepravdivý</u> protipříklad: $f(x) = \sin x$

Jestliže existuje $x_0 \in R$ pro které platí $\sin x_0 = 4$, potom platí $\sin^2 x_0 + \cos^2 x_0 = 1$

pravdivý nepravdivý protipříklad:

Je-li funkce f v bodě x₀ spojitá, potom zde má limitu.

pravdivý nepravdivý protipříklad:

Je-li první derivace funkce f v bodě x₀ rovna 0, potom má funkce f v x₀ extrém.

pravdivý <u>nepravdivý</u> protipříklad: $f(x) = x^3$, $x_0 = 0$

Je-li funkce f prostá, potom je ryze monotonní.

pravdivý nepravdivý protipříklad: $f(x) = \begin{cases} -1 - x & x \in (-1,0) \\ 1 - x & x \in <0,1 > \end{cases}$ prostá a není ryze monotomní

Funkce f má v bodě ∞ limitu a \Leftrightarrow : $\forall \varepsilon > 0 \exists K > 0 \forall x \in D_f$: $K => |f(x) - a| < \varepsilon$

pravdivý nepravdivý protipříklad:

Jestliže mocninná řada konverguje pro x = 2, konverguje i $\forall x \in (-2, 2)$.

pravdivy <u>nepravdivy</u> protipříklad: $\sum_{n=1}^{\infty} (x-2)^n \ divergujre \ pro \ x=0$

Funkce f je prostá ⇔ je ryze monotonní.

pravdivý nepravdivý protipříklad: $f(x) = \begin{cases} -1 - x & x \in (-1,0) \\ 1 - x & x \in (0,1) \end{cases}$ je prostá

Jediná funkce, pro kterou platí (f $^{\circ}$ f)(x) = f (x) je funkce f (x) = x .

pravdivý nepravdivý protipříklad: f(x) = |x|

Neexistuje funkce, která je současně lichá i sudá.

pravdivý <u>nepravdivý</u> protipříklad: f(x) = 0

Je-li funkce f ryze monotonní, potom je prostá.

pravdivý nepravdivý protipříklad:

Je-li funkce f integrovatelna na <a,b> , potom ma derivaci v ka.dem bod. intervalu (a,b)

pravdivý <u>nepravdivý</u> protipříklad: f(x) = |x| na intervalu $\langle -1,1 \rangle$,

nemá derivaci pro 0 x = 0

Je-li funkce f sudá, potom neexistuje f⁻¹.

pravdivý nepravdivý protipříklad:

Funkce f je prostá $\Leftrightarrow \forall x_1, x_2 \in D_f$ platí $x_1 = x_2 = f(x_1) = f(x_2)$

pravdivý <u>nepravdivý</u> protipříklad: libovolná funkce, která není prostá,

např. f(x) = 0