2026考研

高等数学基础班

主讲 武忠祥

高等数学基础班教学计划

第一章 函数 极限 连续 (10学时)

第二章 导数与微分 (3学时)

第三章 微分中值定理及其应用(4学时)

第四章 不定积分 (3学时)

第五章 定积分及反常积分(4学时)

第六章 定积分的应用(2学时)

第七章 微分方程(3学时)

第八章 多元微分及其应用 (6学时)

第九章 二重积分 (3学时)~

√ 第十章 无穷级数 (5学时) ←

第十一章 空间解析几何及其应用(1学时)

第十二章 三重积分及线面积分(4学时)

共计 48 学时

数二 前9章 38学时

数三 前10章 43学时

数一 共12章 48学时

课次	内容	页码
1 /	函数概念及常见函数,函数性质,数列极限概念	P1-P11 🗸
2 🌙	函数极限概念,极限的性质,极限存在准则,无穷小及无穷大	P11-P22 🗸
3	常考题型举例: 1.极限概念、性质、存在准则, 2.求极限方法举例(基本极限; 等价代换; 有理运算)	P22-P35
4	求极限方法举例(洛必达法则;泰勒公式;夹逼原理;单调有界准则;定积分定义)	P35-P47
5	无穷小量阶的比较举例;函数连续性及常考题型举例	P47-P60
6	导数与微分的概念及几何意义,导数公式及求导法则(有理运算;隐函数、反函数、参数方程求导法;对数求导法)	P61-P72
7	高阶导数;常考题型举例(导数定义;复合、隐函数、参数方程求导;高阶导数;导数应用)	P73-P82
8	微分中值定理(罗尔,拉格朗日,柯西);泰勒公式;函数的单调性,极值,曲线的凹向、拐点及渐近线,导数在经济学中的应用	P83-P91
9	常考题型举例(极值与最值;凹向与拐点;渐近线;方程根,证明不等式;微分中值定理证明题)	P92-P104
10	不定积分概念性质,3种主要积分法(凑微分;第二类换元,分部)3类能积得出的积分(有理函数,三角有理式,简单无理式)	P105-P119
11	不定积分举例;定积分的概念、性质及计算方法;变上限积分	P120-P131
12	定积分举例(定积分概念;定积分计算;变上限积分;)反常积分	P131-P149
13	反常积分举例(敛散性;计算),定积分应用(几何;物理)	P150-P161
14	微分方程概念,一阶方程,可降阶方程,高阶线性方程,	P162-P173
15	差分方程: 微分方程举例(方程求解;综合题;应用题)	P173-P185
16	多元微分学的概念及关系(重极限、连续、偏导数及全微分)	P186-P195
17	多元函数微分法及举例(复合函数微分法;隐函数微分法)	P195-P206
18	多元函数的极值(无约束极值;条件极值);最大最小值	P206-P212
19	二重积分 (概念、性质、计算方法及举例)	P213-P222
20	常数项级数 (定义、性质、敛散性的判别法及举例)	P223-P232
21	幂级数 (概念、性质、函数展开为幂级数,级数求和及举例)	P232-P243
22	傅里叶级数;向量代数与空间解析几何;方向导数,曲面切的平面,曲线的法线	P243-P263
23	三重积分、线面积分的概念、计算方法及举例(三重积分,曲线积分)	P264-P277
24	曲面积分计算举例;多元积分应用(质量、质心、形心、转到惯量,变力沿曲线做功,场论初步(散度,旋度)	P277-P292

教学环节

- 1. 课前预习
- 2. 听课
- 3. 课后复习(内容、例题)
- 4. 作业题(深刻)

1 PI-11 [1/2 PII-22]

第一章 函数 极限 连续

* 第一节 逐 数 /

第二节 极限

第三节 连 续

第一节函数

本节内容要点

- 一. 考试内容概要
 - (一) 函数的概念及常见函数
 - ★(二) 函数的性质
- 二. 常考题型与典型例题
 - * 题型一 函数的性质
 - 题型二 复合函数

第一节函数

考试内容概要

(一) 函数概念及常见函数

1. 函数概念

定义1 如果对于每个数 $x \in D$, 变量 x 按照一定的法则 总有一个确定的 y 和它对应, 则称 y 是 x 的函数, 记为 y = f(x). 常称 x 为自变量, y 为因变量, D 为定义域. 定义域 $D_f = D$. 值域 $R_f = f(D) = \{y | y = f(x), x \in D\}$ 【注】函数概念有两个基本要素: 定义域、对应规则.

【例1】函数
$$y = \operatorname{sgn} x = \begin{cases} -1, & x < 0, \\ 0, & x = 0, \end{cases}$$
 称为符号函数.
$$1, & x > 0$$

1,
$$x > 0$$

$$3.2 = 3 + 0.2$$

$$-3.2 = -4 + 0.8$$

$$[3.2] = 3$$

【例2】设
$$x$$
 为任意实数, 不超过 x 的最大整数称为 x

的整数部分, 记为 [x]. 函数 y = [x] 称为取整函数.

$$|X-| < [X] \leq X$$

2. 复合函数

定义2 设 y = f(u) 的定义域为 D_f , u = g(x) 的定义域为 D_g 值域为 R_g , 若 $D_f \cap R_g \neq \emptyset$, 则称函数 y = f[g(x)] 为函数 y = f(u) 与 u = g(x) 的复合函数. 它的定义域为

$$\left\{x \mid x \in D_g, g(x) \in D_f\right\}$$

 $f[g(x)] = l_n c_n x$

【注】 不是任何两个函数都可以复合,如

$$y = f(u) = \ln(u)u = g(x) = \sin(x-1)$$

$$\begin{cases} (x) = \sin x \\ (x) = \sin x \end{cases}$$

就不能复合,这是由于 $D_f = \underbrace{(0,+\infty)}_{\gamma}, R_g = \underbrace{[-2,0]}_{\gamma}, D_f \cap R_g = \phi.$

3. 反函数

定义4 设函数 y = f(x) 的定义域为 D, 值域为 R_y . 若对任意 $y \in R_y$, 有唯一确定的 $x \in D$,使得 y = f(x),则记为 $x = f^{-1}(y)$ 称其为函数 y = f(x) 的反函数.

【注】(1) 不是每个函数都有反函数. 如 $y = x^3$ 有反函数, 而 $y = x^2$ 没有反函数;

(2) 单调函数一定有反函数,但反之则不然,如 2.4

$$f(x) = \begin{cases} x, & 0 \le x < 1, \\ 3 - x, & 1 \le x \le 2 \end{cases}$$

有反函数,但不单调.

f(x)有自己的 (x) + xx (D), -> f(x,) + f(xz) (=) f - 一股好

(3) 有时也将 y = f(x) 的反函数 $x = f^{-1}(y)$ 写成 $y = f^{-1}(x)$

在同一直角坐标系中,
$$y = f(x)$$
 和 $x = f^{-1}(y)$ 的图形重和,

$$y = f(x)$$
 和 $y = f^{-1}(x)$ 的图形关于直线 $y = x$ 对称.

$$(4) \quad \underbrace{f^{-1}[f(x)]}_{\downarrow_1(e^x)} = x,$$

$$f[f_{\underline{y}}^{-1}(\underline{x})] = x.$$

$$f(x) = e^{x} \qquad f^{-1}(x) = l_{m}x$$

【例3】求函数
$$y = \sinh x = \frac{e^x - e^{-x}}{2}$$
 的反函数. $\chi = \int_{-1}^{-1} (y)$

【解】由
$$y = \frac{e^x - e^{-x}}{2}$$
 知

$$e^{2x}-2ye^x-1=0$$

解得
$$e^x = y + \sqrt{1 + y^2}$$

$$x = \ln(y + \sqrt{1 + y^2})$$

则函数
$$y = \sinh x = \frac{e^x - e^{-x}}{2}$$
 的反函数为 $y = \ln(x + \sqrt{1 + x^2})$.

4. 初等函数

定义4 将幂函数,指数,对数,三角,反三角统称为基本

初等函数. 了解它们的定义域, 性质, 图形.

$$v = x^{\mu}$$

 $y = x^{\mu}$ (μ 为实数);

指数函数

$$v = a^x$$

 $y = a^x \qquad (a > 0, a \neq 1)$

对数函数

$$y = \log_a x$$

 $y = \log_a x \qquad (a > 0, a \neq 1)$

三角函数

$$y = \sin x$$
 $y = \cos x$, $y = \tan x$ $y = \cot x$

反三角函数

$$y = \arcsin x$$

$$y = \arcsin x$$
 $y = \arccos x$ $y = \arctan x$,

定义5 由常数和基本初等函数经过有限次的加、减、乘、

除和复合所得到且能用一个解析式表示的函数, 称为初

(二) 函数的性质

1. 单调性

$$\frac{e^{-x}-1}{e^{-x}} = \frac{1+e^x}{1-e^x}$$

定义2 如果对于区间 I 上的任意两点 $x_1 < x_2$ 恒有

$$f(x_1) < f(x_2)$$

$$f(x_1) > f(x_2)$$

2. 奇偶性

定义3 设 y = f(x) 的定义域 D 关于原点对称, $\forall x \in D$

$$f(-x) = f(x)$$

$$\widetilde{f(-x)} = -\widetilde{f(x)}$$

偶函数

奇函数

【注】奇

sin x, tan x, arcsin x, arctan x, $\ln \frac{1-x}{1+x}$, $\ln (x+\sqrt{1+x^2})$,

$$\underbrace{\frac{e^x-1}{e^x+1}}, \underbrace{f(x)-f(-x)}$$

偶
$$x^2$$
, $|x|$, $\cos x$, $f(x) + f(-x)$

- 2) 奇函数的图形关于原点对称,且若 f(x) 在 x=0处有定义,则 f(0) = 0;偶函数的图形关于 y轴对称.
- 偶+偶=偶; 奇 × 奇=偶 3) 奇+奇=奇;

【证】由于
$$f(-x) = \ln(-x) + \sqrt{1 + x^2}$$
)

$$= \ln \frac{1}{x + \sqrt{1 + x^2}}$$

 $=-\ln(x+\sqrt{1+x^2})=-f(x)$

(有理化)

则
$$f(x) = \ln(x + \sqrt{1 + x^2})$$
 是奇函数.

$$f(-x) = -f(x)$$

$$f(0) = -f(0)$$

=) $f(0) = 0$

3. 周期性

定义4 若存在实数 T > 0, 对于任意 x, 恒有f(x + T) = f(x)

则称 y = f(x) 为周期函数. 使得上式成立的最小正数 T

称为最小正周期,简称为函数 f(x) 的周期.

【注】 (1)
$$\sin x, \cos x$$
 周期 (2π) $\sin 2x$, $\sin x$ 周期 π ;

(2) 若 f(x) 以 T 为周期,则 $\underbrace{f(ax+b)}_{|a|}$ 以 $\frac{T}{|a|}$ 为周期.

$$Su'\left(-5x+3\right)$$

4. 有界性

定义5 若存在 M > 0, 使得对任意的 $x \in X$, 恒有 $|f(x)| \le M$ 则称 f(x) 在 X 上为有界函数.

之 有时上有时

 $M_1 \leq f(k)$

如果对任意的 M > 0, 至少存在一个 $x_0 \in X$, 使得

 $|f(x_0)| > M$, 则 f(x)为 X 上的无界函数.

【注】1) f(x) 为有界函数 $|x| \le |f(x)| = auc t x$ 2) 堂见的有界函数 $|f(x)| \le |f(x)| = |f(x)| > 0$

2) 常见的有界函数

 $|\sin x| \le 1; |\cos x| \le 1; |\arcsin x| \le \frac{\pi}{2}; |\arctan x| \le \frac{\pi}{2}, |\arccos x| \le \pi;$

【例5】证明函数
$$f(x) = x \sin x$$
 是无界函数. $(-\infty, +\infty)$

$$(-\infty,+\infty)$$

【证】由于
$$f(2n\pi + \frac{\pi}{2}) = 2n\pi + \frac{\pi}{2}$$
,

所以,对于任意的 M>0,只要正整数 n 充分大

总有
$$\left| f(2n\pi + \frac{\pi}{2}) \right| = 2n\pi + \frac{\pi}{2} > M,$$

故函数 $f(x) = x \sin x$ 是无界函数. N→+6

常考题型与典型例题

- 1. 函数有界性、单调性、周期性及奇偶性的判定;
- 2. 复合函数;
 - (一) 函数有界性、单调性、周期性及奇偶性的判定

【例6】(1987年3)
$$f(x) = |x \sin x| e^{\cos x} (-\infty < x < +\infty)$$
 是

- √ (A) 有界函数.
 - ヾ(C) 周期函数

(D) 偶函数.

(二)复合函数

【例7】 (1997年2) 设
$$g(x) = \begin{cases} \frac{2-x}{x}, & x \le 0, \\ x+2, & x > 0, \end{cases}$$
 $f(x) = \begin{cases} x^2, & x < 0, \\ x \ge 0, \end{cases}$ 则 $g[f(x)] = ($)

(A)
$$\begin{cases} 2+x^2, & x < 0, \\ 2-x, & x \ge 0 \end{cases}$$
 (B)
$$\begin{cases} 2-x^2, & x < 0, \\ 2+x, & x \ge 0 \end{cases}$$

(c)
$$\begin{cases} 2-x^2, & x < 0, \\ 2-x, & x \ge 0 \end{cases}$$
 (D)
$$\begin{cases} 2+x^2, & x < 0, \\ 2+x, & x \ge 0 \end{cases}$$

$$\begin{cases}
f(x) = \begin{cases}
\chi^2 + 2, & \chi < 0 \\
2 + \chi, & \chi \ge 0
\end{cases}$$

【例8】 (1988年1) 已知 $f(x) = e^{x^2}$, $f[\varphi(x)] = 1 - x$ 且 $\varphi(x) \ge 0$

求 $\varphi(x)$ 并写出它的定义域.

【解】由 $f(x) = e^{x^2}$, $f[\varphi(x)] = 1-x$, 知

$$e^{\frac{\varphi^2(x)}{2}} = 1 - x \geqslant 1$$

$$(x \leq 0)$$

$$\varphi^2(x) = \ln(1-x)$$

$$(x \leq 0)$$

$$\varphi(x) = \sqrt{\ln(1-x)}$$

$$(x \le 0)$$

第二节 极限

本节内容要点

- 一. 考试内容概要
 - (一) 极限的概念
 - (二) 极限的性质
 - (三) 极限存在准则
 - (四) 无穷小
 - (五) 无穷大

二. 常考题型与典型例题

选择 + 池州

题型一 极限的概念性质及存在准则

√ 题型二 求极限

题型三 无穷小量阶的比较 /

1. 数列的极限

定义1
$$\lim_{n\to\infty} x_n = a$$
:

 $\sqrt{|\varepsilon|} > 0$, $\exists N > 0$, 当 n > N 时,恒有 $|x_n - a| < \varepsilon$.

【注】
$$_{I}(1)$$
 $_{\varepsilon}$ 与 $_{N}$ 的作用;

v(2) 几何意义;

$$\exists \frac{0 - \xi < \chi_{n} < 0 + \xi}{\chi_{1} \times \chi_{2} \times \xi = - - -}$$

J(3) 数列 $\{x_n\}$ 的极限与前

$$(4) \lim_{n \to \infty} x_n = a \Leftrightarrow \lim_{k \to \infty} x_{2k-1} = \lim_{k \to \infty} x_{2k} = a.$$

$$x_{n} = \alpha \qquad (k > 0)$$

$$x_{n+1} = \alpha \qquad (k > 0)$$

【例1】 (2006年3)
$$\lim_{n\to\infty} \left(\frac{n+1}{n}\right)^{\frac{(-1)^n}{n}} = \underline{\qquad}$$

【解1】当
$$n$$
 为奇数时 $x_n = \left(\frac{n+1}{n}\right)^{-1}$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \left(\frac{n+1}{n}\right)^{-1} = \boxed{1}$$

当
$$n$$
 为偶数时 $x_n = \left(\frac{n+1}{n}\right)$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \left(\frac{n+1}{n}\right) = 1$$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \left(\frac{n+1}{n}\right)^{(-1)^n} = 1$$

【例1】 (2006年3)
$$\lim_{n\to\infty} \left(\frac{n+1}{n}\right)^{(-1)^n} = \underline{\qquad}$$

$$\left(\frac{n+1}{n} \right)^{-1} \leq \left(\frac{n+1}{n} \right)^{-1/n} \leq \left(\frac{n+1}{n} \right)$$

【解3】
$$\left(\frac{n+1}{n}\right)^{(-1)^n} = \left[\left(1+\frac{1}{n}\right)^n\right]^{\frac{(-1)^n}{n}} \stackrel{\mathfrak{d}}{\Longrightarrow} e^{\mathfrak{d}} = |$$

【解4】
$$\ln\left(\frac{n+1}{n}\right)^{(-1)^n} = (-1)^n \ln\left(1+\frac{1}{n}\right)$$

$$\left(\frac{n+1}{4}\right)^{(-1)^{N}}$$

【例2】试证明:

- (1) 若 $\lim_{n\to\infty} x_n = a$, 则 $\lim_{n\to\infty} |x_n| = |a|$, 但反之不成立;
- (2) $\lim_{n\to\infty} x_n = 0$ 的充分必要条件是 $\lim_{n\to\infty} |x_n| = 0$.

$$X_{N} = (-1)^{N}$$

由①

X>00

$$\int_{X \to K_0}^{L_1} f(x) = 0 \iff \int_{X \to K_0}^{L_2} |f(x)| = 0$$

