

ÍNDICE

O1
OBJETIVOS

O2 CONTEXTO HISTÓRICO

FUNDAMENTO TEÓRICO

03

04
REALIZACIÓN PRÁCTICA

RESULTADOS

05

OBJETIVOS

OBJETIVOS

Uso de técnicas de espectrometría y red de difracción.

Obtención espectro visible del Hidrógeno y del Helio.

Determinar longitudes de onda de los espectros del Hidrógeno y del Helio

CONTEXTO HISTÓRICO

COMIENZO DE LA ESPECTROSCOPÍA

Primera mitad del siglo XIX

Fraunhofer

Primero en medir longitudes de onda tomando las líneas espectrales como referencia. Descubrió, con el espectro solar, las Líneas de Fraunhofer.

Bunsen y Kirchhoff

Espectro de muchos elementos conocidos. Leyes fundamentales de la espectroscopía. Estudio del espectro solar y descubrimiento del Cs y del Rb.

ESPECTRO ATÓMICO DEL HIDRÓGENO Y DEL HELIO

Anders Jonas Ångström

Primeras líneas espectrales del Hidrógeno.

Johann Balmer

Fórmula empírica para las longitudes de onda de las líneas espectrales del Hidrógeno.

Norman Lockyer

Descubrimiento del Helio: no pudo asociar línea amarilla del espectro solar a ningún elemento conocido.

FUNDAMENTO TEÓRICO

SERIE DE BALMER

$$\nu = B\left(\frac{1}{2^2} - \frac{1}{n^2}\right) \quad \text{con n = 3,4,5,6}$$

Rydberg: expandió el resultado de Balmer:

$$\frac{1}{\lambda} = \Re\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \quad \cos n_2 > n_1$$

REALIZACIÓN EXPERIMENTAL

REALIZACIÓN EXPERIMENTAL

HELIO

Líneas espectrales del Helio utilizando un espectrómetro con prisma.

PARTE 1

HIDRÓGENO

Líneas espectrales del Hidrógeno utilizando una red de difracción.

HIDRÓGENO

MATERIAL: PARTE 1

- 1. Lámpara de Hidrógeno.
- 2. Generador corriente alterna.
- 3. Sistema óptico:
 - Lentes convergentes focales 50, 100 y 100 mm.
 - Red de difracción de 600 líneas/mm.
 - Pantalla.

MONTAJE EXPERIMENTAL: PARTE 1

Fuente de alimentación (AC)

Red de difracción

Pantalla

TRAZADO DE RAYOS

¿QUÉ ES UNA RED DE DIFRACCIÓN?

- Estructura periódica de rendijas paralelas muy próximas entre sí.
- Dispersa la luz en sus longitudes de onda.
- **Principio de Difracción:** generan ondas esféricas en cada rejilla que interfieren entre sí.
- En la pantalla vemos los máximos (interferencia constructiva).

PROCEDIMIENTO: PARTE 1

FÓRMULA DE LA RED DE DIFRACCIÓN:

$$\lambda = \frac{g \cdot \sin(\beta)}{N}$$

donde:
$$g = \frac{1}{600}mm$$

$$\beta = \arctan\left(\frac{d}{f_3}\right)$$

Mediremos 2d (la distancia entre líneas)

TOMA DE MEDIDAS

MATERIAL: PARTE 2

- 1. Prisma
- 2. Lámpara de He (y de H)
- 3. Colimador
- 4. Anteojo
- 5. Espectrogoniómetro
- 6. Fuente de alimentación

MONTAJE EXPERIMENTAL: PARTE 2

Medir **ángulo** con el que sale el espectro por la otra cara del prisma girando el anteojo.

Precisión = 1 minuto

DISPERSIÓN DE LUZ POR UN PRISMA

Relación δ_{min} y el índice de refracción :

$$n = \frac{\sin\left(\frac{\alpha + \delta_m}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)}$$

- Método utilizado para determinar espectros atómicos.
- \rightarrow Luz monocromática sobre un prisma con un ángulo α .
- \rightarrow Ángulo de desviación δ depende solo del ángulo de incidencia ϵ .

¿CÓMO SE MIDE EL ÁNGULO DE DESVIACIÓN MÍNIMA?

Movemos el prisma a la vez que movemos el anteojo para ir siguiendo las líneas del espectro, llega un punto en el que cambia de sentido, para este ángulo la desviación es mínima.

PROCEDIMIENTO: PARTE 2

Ecuación de Cauchy:

$$n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \cdots$$

- Medición ángulo desviación mínima.
- → Cálculo índice de refracción.
- → Obtenemos las longitudes de onda de la ecuación de Cauchy.

$$\lambda = \sqrt{\frac{2C}{-B + \sqrt{B^2 - 4C(A - n)}}}$$

RESULTADOS

ESPECTRO VISIBLE HIDRÓGENO

PARTE 1: ESPECTRO DEL HIDRÓGENO

	λ_{α} (nm)	λ _β (nm)	λ _γ (nm)	λ_{δ} (nm)
Experimental	645 ± 13	481 ± 15	436 ± 15	-
Teórico	656,28	486,13	434,05	410,13

PARTE 2: ÁNGULO DESVIACIÓN MÍNIMA HIDRÓGENO

RESULTADO DEL CALIBRADO

Ajuste polinomial de grado 2 :

$$y = 1,5988 + 7379,14x + 2,5881 \times 10^8 \times^2 = A + Bx + Cx^2$$

$$\lambda = \sqrt{\frac{2C}{-B + \sqrt{B^2 - 4C(A - n)}}}$$

ESPECTRO VISIBLE HELIO

PARTE 2: ÁNGULO DESVIACIÓN MÍNIMA HELIO

PARTE 2: ESPECTRO DEL HELIO

	λ _α (nm)	λ _β	λ (pm)	$\lambda_{\delta}^{}$ (nm)	$λ_ε$ (nm)	λ_{ζ} (nm)
Experimental	672±10	584±5	503±4	492±4	473±3	449±2
Teórico	667,82	587,56	501,57	492,19	471,31	447,15

CÁLCULO DE ERRORES

Método de propagación de errores:

• ERROR DE LA LONGITUD DE ONDA (H):

$$\Delta \lambda = \frac{\partial \lambda}{\partial \beta} \Delta \beta = \frac{g \cos(\beta)}{N} \Delta \beta \text{ , donde: } \Delta \beta = \frac{\partial \beta}{\partial d} \Delta d = \frac{1}{1 + \left(\frac{d}{f}\right)^2} \frac{1}{f} \Delta d$$

ERROR DEL ÍNDICE DE REFRACCIÓN:

$$\Delta n = \frac{\partial n}{\partial \delta_{min}} \Delta \delta_{min} = \frac{\frac{1}{2} \cos\left(\frac{\alpha + \delta_{min}}{2}\right)}{\sin\left(\frac{\alpha}{2}\right)} \Delta \delta_{min}$$

• ERROR DE LA LONGITUD DE ONDA (He): $\Delta \lambda = -\frac{2^{\frac{3}{2}}C^{\frac{3}{2}}}{\sqrt{4C(n-A) + B^2}(\sqrt{4C(n-A) + B^2} - B)^2} \Delta n$

REFERENCIAS

Enlaces que podemos usar:

- https://espanol.libretexts.org/Quimica/Libro%3A_Qu%C3%ADmica_-_La_Ci_ encia_Central_(Brown_et_al.)/6%3A_Estructura_electr%C3%B3nica_de_los_ _%C3%A1tomos/6.3%3A_Espectro_de_l%C3%ADneas_y_Modelo_de_Bohr
- → http://hyperphysics.phy-astr.gsu.edu/hbasees/quantum/atspect.html
- https://culturacientifica.com/2019/08/20/las-lineas-de-balmer/
- https://www.studysmarter.es/resumenes/fisica/ondas/redes-de-difraccion/

