

UNIVERSIDAD TECNOLÓGICA DE QUERÉTARO

Voluntad. Conocimiento. Servicio

Programa Educativo:

Ingeniería en Nanotecnología

FÍSICA MODERNA

Manual de Asignatura 2025

Autor:

Velázquez Hernández Rubén

Fecha de publicación: Enero 2025

Índice general

Int	ntroducción	Ш
1.	. Teoría de la Relatividad	1
	1.1. Introducción a la teoría de la Relatividad	. 1
	1.2. La transformación galileana y la teoría electromagnética.	. 1
	1.3. Comparación entre Física Clásica y Física Moderna	. 1
2.	. Modelo Nuclear del Átomo	2
	2.1. El descubrimiento del núcleo atómico	. 2
	2.2. Experimento de Rutherford	. 2
3.	. Dualidad Onda-Partícula	3
	3.1. Efecto Fotoeléctrico	. 3
	3.2. Hipótesis de De Broglie	. 3
	3.3. Interacción Radiación-Materia	. 3
	3.4. Postulado de Planck y Radiación de cuerpo negro	. 4
4.	. Teoría Básica del Electromagnetismo	5
	4.1. Campos eléctricos y magnéticos	. 5
	4.2. Ecuaciones de Maxwell	. 5
	4.3. Ecuación de onda y polarización de la luz	. 5
	4.4. Ondas planas en conductores y dieléctricos	. 5
5.	. Solución de la Ecuación de Schrödinger	6
	5.1. Pozo de potencial	. 6
	5.2. Efecto tunel	. 6
	5.3. Potenciales periódicos	. 6

5.4.	Ecuación de onda	6
5.5.	Estructura de bandas	7
5.6.	Definición microscópica de conductores, semiconductores y aislantes	7

Introducción

1. Nombre de la asignatura	Física Moderna
2. Competencias	Diseñar procesos de producción de materiales nano-estructurados en laboratorio y a nivel industrial, con base en la planeación, técnicas de síntesis e incorporación y normatividad aplicable, para su comercialización y contribuir a la innovación tecnológica.
3. Cuatrimestre	Noveno
4. Horas Prácticas	24
5. Horas Teóricas	36
6. Horas Totales	60
7. Horas Totales por semana cuatrimestre	4
8. Objetivo de la Asignatura	El alumno describirá el comportamiento de los materiales nanoestructurados con base en los conceptos, teorías y principios de física moderna para determinar sus características y propiedades.

Unidadas Tamáticas		Horas			
Unidades Temáticas	Prácticas	Teóricas	Totales		
I. Teoría Básica del Electromagnetismo	6	8	14		
II. Modelo Nuclear del Átomo	6	10	16		
III. Dualidad Onda-Partícula	4	6	10		
IV. Solución de la Ecuación Schröndinger	8	12	20		
	24	36	60		

UNIDAD 1

Teoría Básica del Electromagnetismo

Objetivo: El alumno determinará el comportamiento electromagnético de los materiales nanoestructurados para su caracterización.

Resultado de aprendizaje: A partir de un caso de estudio elaborará un reporte que incluya:

- La diferencia entre un campo magnético y un campo eléctrico.
- -Solución de problemas con las ecuaciones de Maxwell.
- Relacionar las propiedades magnéticas con las eléctricas.
- -Identificar materiales dieléctricos, semiconductores y conductores.

1.1. Campos eléctricos y magnéticos.

Saber: Explicar las magnitudes electromagnéticas. Definir los campos eléctricos y magnéticos, y su efecto en las propiedades de los materiales nanoestructurados.

1.2. Ecuaciones de Maxwell.

Saber: Explicar las ecuaciones de Maxwell. Relacionar los campos y los desplazamientos de una onda electromagnética.

1.3. Ecuación de onda y polarización de la luz.

Saber: Identificar la ecuación de onda y su relación con la polarización de la luz.

1.4. Ondas planas en conductores y dieléctricos

Saber: Describir el concepto de ecuación de onda. Explicar la aplicación de la mecánica cuántica a los materiales nanoestructurados.

1

Modelo Nuclear del Átomo

Objetivo: El alumno determinará la presencia de partículas de elementos para cuantificar su estado energético.

Resultado de aprendizaje: Elaborará un ensayo representando la evolución de los modelos atómicos que incluya:

- El modelo atómico de Rutherford.
- El modelo atómico actual.
- Definición de los niveles de energía.
- El experimento de Franck Hertz

2.1. El descubrimiento del núcleo atómico.

Saber: Explicar el origen de las teorías atómicas que dieron lugar al modelo actual del átomo.

2.2. Experimento de Rutherford

Saber: Reconocer el modelo atómico de Rutherford y su importancia en la física moderna. Identificar el experimento de Rutherford.

Dualidad Onda-Partícula

Objetivo: El alumno interpretará el comportamiento dual onda-partícula de los fenómenos para caracterizar materiales nanoestructurados

Resultado de aprendizaje: A partir de un caso de estudio elaborará un reporte integrado de por lo menos tres prácticas que contenga:

- -La diferencia entre un electrón, fotón y fonón.
- Resolver ejemplos de la dualidad onda-partícula.
- -Análisis de la interacción Radiación-Materia.
- -Cálculos de la energía emitida por un cuerpo aplicando la ley de cuerpo negro de Plank-Boltzman.

3.1. Efecto Fotoeléctrico

Saber: Describir la diferencia entre electrones, fonones y fotones. Describir el efecto fotoeléctrico.

3.2. Hipótesis de De Broglie

Saber: Describir el comportamiento de dual de la materia onda-partícula.

3.3. Interacción Radiación-Materia.

Saber: Identificar los elementos de un espectro de Rayos-X. Describir la interacción Radiación-Materia. Reconocer la Interacción de partículas cargadas con la materia a través de colisiones elásticas e inelásticas con los núcleos atómicos.

3

3.4. Postulado de Planck y Radiación de cuerpo negro

Saber: Reconocer el postulado de Plank y la ley de Steffan-Boltzman de radiación de cuerpo negro.

Solución de la Ecuación de Schrödinger

Objetivo: El alumno determinará el comportamiento cuántico y electrónico de los materiales nanoestructurados para su aplicación.

Resultado de aprendizaje: A partir de un caso de estudio elaborará un reporte que incluya:

- -Descripción del caso de estudio.
- -Solución la ecuación de Schröendinger, en el átomo Hidrogeno.
- -Definición de los estados cuánticos que determinen la diferencia entre material cristalino y uno no cristalino de acuerdo a la teoría de bandas.

4.1. Pozo de potencial

Saber: Definir los conceptos de Pozo de potencial y Barreras de potencial.

4.2. Efecto tunel

Saber: Explicar el comportamiento de una partícula en un pozo de potencial. Definir la zona prohibida para el electrón.

4.3. Potenciales periódicos

Saber: Explicar la distribución de cargas propuesto por Kroning-Penny de un cristal unidimensional. Explicar la diferencia entre cristal perfecto y real

4.4. Ecuación de onda.

Saber: Explicar la solución de la ecuación de Schrödinger para el átomo de Hidrógeno. Reconocer los niveles de energía. Describir la paradoja del gato de Schrödinger.

5

4.5. Estructura de bandas

Saber: Reconocer los sólidos cristalinos, no cristalinos y cuasi cristalinos de acuerdo a la teoría de bandas en modelos de amarre fuerte.

4.6. Definición microscópica de conductores, semiconductores y aislantes

Saber: Reconocer los materiales conductores, semiconductores y aislante de acuerdo a la teoría de bandas.