

SUPPLEMENTARY INFORMATION

DOI: 10.1038/s41559-017-0257-9

In the format provided by the authors and unedited.

Mapping the global potential for marine aquaculture

Rebecca R. Gentry^{1*}, Halley E. Froehlich², Dietmar Grimm³, Peter Kareiva⁴, Michael Parke⁵, Michael Rust⁶, Steven D. Gaines¹ and Benjamin S. Halpern^{1,2,7}

¹Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA 93106, USA. ²National Center for Ecological Analysis and Synthesis, University of California, 735 State Street Suite 300, Santa Barbara, CA 93101, USA. ³The Nature Conservancy, B4-2 Qijiayuan Diplomatic Compound, 9 Jianwai Dajie, Chaoyang District, Beijing 100600, China. ⁴Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095, USA. ⁵Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, 1845 Wasp Boulevard, Building 176, Honolulu, HI 96818, USA. ⁶Office of Aquaculture, National Oceanic and Atmospheric Administration, 1315 East-West Highway, Silver Spring, MD 20910, USA. ⁷Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. *e-mail: rgentry@bren.ucsb.edu

Supplementary Information:

Mapping the Global Potential for Marine Aquaculture

Authors: Rebecca R. Gentry, Halley E. Froehlich, Dietmar Grimm, Peter Kareiva, Michael Parke, Michael Rust, Steven D. Gaines, and Benjamin S. Halpern

Supplementary Figure 1. The mean number of species that can be grown (due to temperature tolerance) across all aquatic environments. Panel a shows the results for fish and b for bivalves

Supplementary Figure 2. Mean Growth Performance Index across all aquatic environments. Panel a shows the results for fish and b for bivalves. The Growth Performance Index values have been exponentially transformed in order to more clearly show the variation in values near the top end of the scale.

Supplementary Figure 3. Standard Deviation of Growth Performance over the period from 1982-2011. Panel a shows the results for fish and b for bivalves.

b.

Supplementary Figure 4. The average difference of GPI between the complete model and the 10 alternative reduced species scenarios. Panel a shows the results for fish and b for bivalves. Warmer colour areas indicate regions where our phi prime measurements are likely to be most sensitive to the species chosen in the analysis.

Supplementary Figure 5. Excluded areas for each constraint listed in Extended Data Table 1 (except for oil rigs, for which excluded areas were not easily visible on the global map). For depth and Chlorophyll-a concentration, the suitable areas are shown in green. For the other constraints, the excluded areas are shown in purple. Unless specified, each constraint map applies to both finfish and bivalve aquaculture.

b.

Supplementary Figure 6. The estimated amount of time to reach harvestable size as a function of GPI. Panel a shows the relationship for fish and b for bivalve species used in this analysis.

Supplementary Figure 7. Potential growing area for bivalves by country. The percentage of each country's Exclusive Economic Zone (EEZ) that has potentially suitable growing conditions for bivalves and no known conflicting uses. Each bar represents a single country, grouped by continent. This figure is an expanded version of Fig. 2 in the main text.

Supplementary Figure 8. Percent of each country's EEZ required for finfish aquaculture to supply its current seafood consumption. Each bar represents a single country, grouped by continent. This figure is an expanded version of Fig. 3 in the main text.

Supplementary Table 1. Environmental and conflict constraints that excluded aquaculture development.

Constraint Layer	Source	Resolution of input data	Area exclusion threshold for fish aquaculture	Area exclusion threshold for bivalve aquaculture	Additional area within 200m depth area excluded
Depth	Satellite geodesy data	.0083 degrees (30 arc seconds)	>200 meters depth	> 200 meters depth	N/A
Dissolved Oxygen	World Ocean Atlas ²	1 degree	<4.41 mg/L	N/A	1,041,975 km ²
Chlorophyll-A Concentration	Vertically generalized production model (VGPM) chlorophyll-based primary production estimate ³	0.083 degree	N/A	Chlorophyll – required an annual average equal to 2 mg/m³ and no more than 2 months below 1 mg/m³	23,932,076 km ²
Shipping traffic	Halpern <i>et al</i> . 4	934.5 m	The top 5% of ocean area with the highest shipping density was excluded	The top 5% of ocean area with the highest shipping density was excluded	6,755,497 km ²
Oil rigs	Halpern et al.	934.5 m	Excluded if oil rig present	Excluded if oil rig present	680,126 km ²
Marine protected areas	2010 World Database of protected Areas ⁵	Originally as a shapefile	excluded in categories Ia, Ib, II, III, and IV	excluded in categories Ia, Ib, II, III, and IV	30,980 km ²

Supplementary Table 2. Results from robustness testing. This analysis showed that locations with the highest production potential are relatively robust to species selection for fish, but that species selection has more impact on the locations of highest productivity for bivalves.

	Percent of 10% highest pro	oduction cells from complete		
	model that are also in the top 20% most productive cells in			
	the alterna	ntive models		
Alternative Scenario	FISH	BIVALVES		
1	98.9	98.4		
2	80.8	57.4		
3	91.5	1.4		
4	98.8	10.7		
5	91.0	96.5		
6	92.4	71.8		
7	75.8	6.7		
8	83.3	74.8		
9	91.8	84.2		
10	99.9	98.6		
Mean	90.4	60.0		

Supplementary Table 3. Phi prime values and potential productive area for each country / territory included in the analysis

Country/Territory	Total Area for Fish (km2)	Total Area for Bivalves(km2)	Fish GPI Average	Bivalve GPI Average	
Albania	2013	0	3.24	NA	
Algeria	2358	0	3.22	NA	
Angola	40271	17245	3.41		1.88
Antarctica	68	0	2.71	NA	
Antigua and Barbuda	2288	0	3.45	NA	
Argentina	779603	107769	3.33		1.79
Australia	1891412	90867	3.39		1.83
Australian Southern					
Ocean Territories	4674	0	2.99	NA	
Australian Tropical					
Territories	4102	0	3.30	NA	
Bahamas	77441	7434	3.49		1.94
Bahrain	1595	135	3.50		1.31
Bangladesh	60980	15548	3.49		1.99
Belize	9641	1364	3.46		2.04
Benin	1942	0	3.47	NA	
Brazil	517115	111718	3.41		2.02
British Caribbean					
Territories	8141	0	3.48	NA	
British Indian Ocean					
Territory	21243	0	3.50	NA	
British Pacific Territories (Pitcairn)	92	0	3.32	NA	
British Southern					
Ocean Territories	171621	0	3.43	NA	
Cambodia	34968	2109	3.46		2.14
Cameroon	8625	0	3.49	NA	
Canada	136533	42706	3.12		1.67
Cape Verde	4180	0	3.31	NA	

Chile	161312	59747	3.32	1.83
China	71442	4864	3.48	1.90
Colombia	35742	12459	3.46	2.16
Comoros	1123	0	3.49 NA	
Costa Rica	10194	1490	3.49	2.21
Croatia	1781	0	3.25 NA	
Cuba	50476	15602	3.45	1.85
Cyprus	728	0	3.36 NA	
Democratic Republic				
of the Congo	128	0	3.48 NA	
Denmark	24618	0	3.16 NA	
Disputed	68755	3707	3.45	1.77
Djibouti	1641	0	3.43 NA	
Dominica	335	0	3.45 NA	
Dominican Republic	7237	527	3.49	2.14
East Timor	1972	0	3.44 NA	
Ecuador	26716	4620	3.35	2.01
Egypt	14476	2424	3.39	1.89
El Salvador	13252	1203	3.43	2.06
Equatorial Guinea	9361	315	3.49	2.12
Eritrea	41002	879	3.48	1.66
Estonia	810	0	2.47 NA	
Fiji	40055	591	3.49	2.15
Finland	170	0	2.18 NA	
France	7560	3005	3.27	1.87
French Caribbean				
Territories	2074	0	3.46 NA	
French Guiana	43197	23168	3.48	2.14
French Indian Ocean				
Territories	4747	0	3.49 NA	
French Polynesia	26061	0	3.47 NA	
French Southern Ocean Territories	67085	0	3.43 NA	

Gabon	31617	3047	3.46	2.00
Gambia	3237	2259	3.47	1.96
Georgia	1636	74	3.37	1.48
Germany	934	0	3.21 NA	
Ghana	7928	0	3.44 NA	
Greece	5231	163	3.24	1.78
Grenada	971	0	3.48 NA	
Guatemala	10696	442	3.42	1.93
Guinea	42376	18494	3.50	2.11
Guinea-Bissau	21143	17608	3.50	2.05
Guyana	49658	19640	3.49	2.16
Haiti	3566	0	3.48 NA	
Honduras	47133	2104	3.50	2.12
Iceland	48863	0	3.19 NA	
India	316124	51791	3.48	2.06
Indian	487	0	2.63 NA	
Indian	42031	0	3.51 NA	
Indonesia	1601956	169103	3.46	2.11
Iran	11127	1466	3.43	1.46
Iraq	153	0	3.33 NA	
Ireland	55432	353	3.27	1.83
Israel	780	0	3.40 NA	
Italy	7297	329	3.24	1.26
Ivory Coast	10728	428	3.44	2.06
Jamaica	10532	0	3.50 NA	
Japan	111186	6209	3.34	1.80
Kenya	7752	873	3.50	2.14
Kiribati	5771	0	3.48 NA	
Kuwait	3440	515	3.32	1.12
Latvia	277	0	2.60 NA	
Lebanon	309	0	3.37 NA	

Liberia	17125	852	3.47	2.12
Libya	56319	145	3.29	1.58
Lithuania	789	0	2.74 NA	
Madagascar	114940	12034	3.44	1.99
Malaysia	267886	22987	3.43	2.08
Maldives	27133	0	3.50 NA	
Malta	416	0	3.29 NA	
Marshall Islands	19279	0	3.51 NA	
Mauritania	19248	14566	3.31	1.92
Mauritius	39094	0	3.47 NA	
Mexico	343827	43421	3.45	1.93
Micronesia	22926	0	3.51 NA	
Morocco	32006	13163	3.24	1.88
Mozambique	82357	13091	3.48	2.03
Myanmar	212762	35551	3.45	2.11
Namibia	91055	79330	3.24	1.78
New Caledonia	49912	157	3.37	2.04
New Zealand	251162	14251	3.25	1.82
Nicaragua	62497	2579	3.49	2.11
Nigeria	18644	0	3.48 NA	
North Korea	17840	8017	3.31	1.63
Norway	14844	0	3.08 NA	
Oman	33865	20004	3.38	1.96
Pakistan	16182	11838	3.45	1.95
Palau	2963	0	3.50 NA	
Panama	29974	3442	3.48	2.13
Papua New Guinea	163089	18678	3.47	2.02
Peru	45494	69431	3.24	1.84
Philippines	213333	2733	3.47	2.13
Poland	970	0	3.04 NA	
Portugal	2599	464	3.24	1.78

Qatar	3553	317	3.52	1.64
Republic of the Congo	4448	2083	3.47	1.89
Romania	602	0	3.45 NA	
Russia	80467	2969	2.86	1.58
Saint Lucia	341	0	3.46 NA	
Saint Vincent and the				
Grenadines	1705	0	3.47 NA	
Samoa	1759	0	3.51 NA	
Sao Tome and				
Principe	1661	0	3.45 NA	
Saudi Arabia	57084	1366	3.45	1.32
Senegal	14266	7627	3.44	1.96
Serbia and				
Montenegro	2260	0	3.23 NA	
Seychelles	50222	146	3.49	2.12
Sierra Leone	22802	9094	3.49	2.12
Solomon Islands	26625	0	3.48 NA	
Somalia	45922	236	3.48	1.98
South Africa	90053	49231	3.24	1.81
South Korea	8798	1297	3.38	1.46
Spain	2333	468	3.24	1.59
Sri Lanka	23621	4818	3.45	2.05
Sudan	10967	0	3.44 NA	
Suriname	53973	17159	3.46	2.12
Sweden	422	0	2.77 NA	
Syria	291	0	3.38 NA	
Taiwan	595	0	3.50 NA	
Tanzania	17407	988	3.49	2.07
Thailand	157310	11056	3.44	2.05
Togo	970	0	3.45 NA	
Tonga	7915	0	3.39 NA	
Trinidad and Tobago	9634	3658	3.49	2.16

Tunisia	31665	5809	3.24	1.32
Turkey	5314	359	3.35	1.42
Tuvalu	4161	0	3.50 NA	
Ukraine	32211	2864	3.16	1.24
United Arab Emirates	14272	236	3.54	1.27
United Kingdom	56028	560	3.31	1.89
United States	643610	51933	3.36	1.69
Uruguay	48377	34784	3.25	1.62
USA Caribbean				
Territories	1443	0	3.50 NA	
USA Pacific Inhabited				
Territories	1345	0	3.51 NA	
USA Pacific				
Uninhabited				
Territories	449	0	3.43 NA	
Vanuatu	5401	0	3.47 NA	
Venezuela	72232	34644	3.46	2.12
Vietnam	251378	25429	3.48	2.05
Western Sahara	12333	10763	3.23	1.88
Yemen	35000	803	3.48	1.83

Supplementary Table 4. All species included in the analysis, along with key attribute information. Attribute information were initially extracted from the FishBase⁶, SeaLifeBase⁷, and/or Encyclopedia of Life (EOL)⁸ online databases; additional references used to check initial values and fill in missing information are noted.

Scientific Name	Common Name	Minimum Temperatur e	Maximum Temperatu re	\mathbf{L}_{∞}	K	Additional References
FISH						
Acanthopagrus berda	Goldsilk seabream	14.6	25.7	56	0.29	
Acanthopagrus latus	Yellowfin seabream	4.9	38.2	35.2	0.17	
Acanthopagrus schlegeli schlegelii	Blackhead seabream	10.4	26.3	50	0.22	
Acipenser gueldenstaedtii	Danube (diamond) sturgeon	10	20	236	0.04	www.orchardfisheries. co.uk/
Acipenser nudiventris	Fringebarbel sturgeon	10	20	200	0.07	
Acipenser stellatus	Starry sturgeon	10	20	218.7	0.08	www.sturgeon- web.co.uk/
Acipenser transmontanus	White sturgeon	10	23.3	610	0.04	Crocker & Cech 9, Conte ¹⁰
Anarhichas lupus	Atlantic wolffish	0	13	152	0.09	O'Dea et al. ¹¹
Anarhichas minor	Spotted wolffish	4	12	190	0.1	Imsland <i>et al</i> . ¹² ; Foss <i>et al</i> . ¹³
Anguilla anguilla	European eel	4	33	152.8	0.24	Sadler 14
Anguilla rostrata	American eel	4	25	120	0.33	
Anoplopoma fimbria	Sablefish	1.8	14.6	120	0.25	
Argyrosomus japonicus	Japanese meagre	12	28	200	0.14	
Argyrosomus regius	Meagre	11.9	23	185.5	0.14	

Atherina boyeri	Big-scale sand smelt	6	25	10.9	0.62	
Bolbometopon muricatum	Green humphead parrotfish	26.3	29	125	0.12	
Carangoides malabaricus	Malabar trevally	19.9	28.4	37.3	0.82	
Caranx hippos	Crevalle jack	9.6	27.8	80	0.65	
Caranx sexfasciatus	Bigeye trevally	21	30	74.1	0.24	Gilbey ¹⁵
Centropomus undecimalis	Common snook	25	31	140	0.4	
Chaetodipterus faber	Atlantic spadefish	2.5	28	50.4	0.34	
Chanos chanos	Milkfish	15	42.5	180	1.03	https://www.spc.int/aq uaculture/; http://www.fao.org/fis hery/culturedspecies/s earch
Chelon macrolepis	Largescale mullet	20	28.9	23	0.1	http://www.fao.org/fis hery/culturedspecies/s earch
Coregonus lavaretus	European whitefish	4	29.8	59.7	0.38	Vielma et al. 16
Coryphaena hippurus	Common dolphinfish	21	30	157.9	1.67	
Cromileptes altivelis	Humpback grouper	26.5	29	65.4	0.35	
Dentex dentex	Common dentex	9.7	17.6	100	0.09	
Dentex tumifrons	Yellowback seabream	10.4	26.3	35	0.25	
Dicentrarchus labrax	European seabass	8	24	77	0.2	
Dicentrarchus punctatus	Spotted seabass	10.5	23.5	70	0.11	
Diplodus puntazzo	Sharpsnout seabream	24.3	24.3	60	0.47	García et al ¹⁷

Diplodus sargus sargus	White seabream	14.7	18	42.3	0.16	
Diplodus vulgaris	Common two- banded seabream	14.7	19.7	40.8	0.26	
Dormitator latifrons	Pacific fat sleeper	24.6	33	41	0.57	
Eleutheronema tetradactylum	Fourfinger threadfin	27.6	27.7	128.7	0.37	
Epinephelus akaara	Hong Kong (redspotted) grouper	19	30.2	54.5	0.36	
Epinephelus areolatus	Areolate grouper	18.5	28.6	40.6	0.31	http://library.enaca.or /Grouper/Research/B eeding/2000/0803.htm
Epinephelus coioides	Orange-spotted grouper	17	35	108	0.15	Lin et al. 18
Epinephelus fuscoguttatus	Brown-marbled grouper	10	36.5	113.3	0.18	Cheng et al. 19
Epinephelus lanceolatus	Giant grouper	26.3	26.3	270	0.36	Hseu et al. ²⁰
Epinephelus malabaricus	Malabar grouper	19	30.2	163.6	0.8	
Epinephelus tauvina	Greasy grouper	17	29.2	115.4	0.13	http://library.enaca.or/Grouper/Research/Beeding/2000/0803.htm
Evynnis japonica	Crimson seabream	10.4	26.3		0.22	
Gadus morhua	Atlantic cod	0	15	115	0.19	Schurmann and Steffensen ²¹ ;
Gnathanodon speciosus	Golden trevally	23	29.3	108.2	0.39	saltwater.aqua- fish.net/?gold-trevall
Hippoglossus hippoglossus	Atlantic halibut	0.9	18	470	0.08	Stuart et al. ²²
Huso huso	Beluga	10	20	800	0.04	
Konosirus punctatus	Dotted gizzard shad	8.5	27.2	19.7	0.27	
Larimichthys crocea	Large yellow croaker	9	30	80	0.32	

Lateolabrax japonicus	Japanese seabass	13	23	25	0.18	
Lates calcarifer	Barramundi	15	38	176	0.39	
Lethrinus miniatus	Trumpet emperor	21	29.3	80	0.3	
Liza aurata	Golden grey mullet	10.8	18.8	56	0.25	
Liza ramada	Thinlip grey mullet	8	24	62.5	0.26	
Liza saliens	Leaping mullet	9	32	30.5	0.25	Katselis et al. ²³
Lutjanus argentimaculat us	Mangrove red snapper	16	30	119.5	0.19	
Lutjanus goldiei	Papuan black snapper	18.3	27.2	100	0.28	
Lutjanus johnii	John's snapper	20.8	26.8	70	0.21	
Lutjanus russelli	Russell's snapper	23.3	26.4	45	0.56	
Megalops atlanticus	Tarpon	4.3	27.5	189.5	0.09	
Melanogramm us aeglefinus	Haddock	2	15.5	74.5	0.27	
Miichthys miiuy	Mi-iuy (brown) croaker	6	25	70	0.32	
Morone saxatilis	Striped bass	6.4	25	200	0.19	Breitburg et al. ²⁴
Mugil cephalus	Flathead grey mullet	8	24	71.2	0.29	
Mugil curema	White mullet	10	29.3	28	0.57	txstate.fishesoftexas.o
Muraenesox cinereus	Daggertooth pike conger	10	27.9	111.2	0.37	Golani and Ben-Tuvia
Mycteroperca bonaci	Black grouper	16	28	133.3	0.15	www.sms.si.edu/irlsp c/Mycter_bonaci.htm
Oncorhynchus gorbuscha	Pink salmon	0.3	21	76	0.54	Raleigh ²⁶
Oncorhynchus keta	Chum salmon	0	23.7	95	0.35	

Oncorhynchus kisutch	Coho salmon	0	24.8	98	0.98	Carter ²⁷
Oncorhynchus mykiss	Rainbow trout	0	29	89.5	0.54	Molony ²⁸ ; Elloitt ²⁹
Oncorhynchus nerka	Sockeye salmon	0	24.9	84	0.48	
Oncorhynchus tshawytscha	Chinook salmon	0	24.9	120.8	0.54	
Pagellus bogaraveo	Blackspot seabream	9.8	19.7	35.3	0.14	
Pagellus erythrinus	Common pandora	7.1	20.2	37.6	0.2	
Pagrus auratus	Silver seabream	9.2	29.3	130	0.13	
Pagrus major	Red (Japanese) seabream	7.7	22	100	0.15	Foscarini ³⁰ ; Ishibashi <i>et al.</i> ³¹ ; Woo and Fung ³²
Pagrus pagrus	Red porgy	8.3	25.4	62.9	0.18	
Paralichthys olivaceus	Bastard halibut	14	23	103	0.15	
Platax orbicularis	Orbicular batfish	22	28	53.3	0.56	
Platichthys flesus	European flounder	5	25	43.3	0.37	
Plectropomus maculatus	Spotted coralgrouper	22	28.9	100.3	0.21	
Pleurogrammus azonus	Okhotsk atka mackerel	10	29	50	0.35	
Pleuronectes platessa	European plaice	2	25	100	0.15	Freitas et al. ³³
Pollachius pollachius	Pollack	6.5	12.3	130	0.19	
Polydactylus sexfilis	Sixfinger threadfin (moi)	25.3	40	60.7	0.56	Halwart and Gupta ³⁴
Pomatomus saltatrix	Bluefish	6.1	27.4	103	0.17	
Psetta maxima	Turbot	8	20	60.3	0.29	Imsland <i>et al.</i> ³⁵ ; Burel <i>et al.</i> ³⁶

Pseudocaranx dentex	White trevally	13.3	26.3	89.3	0.22	
Pseudopleuron ectes americanus	Winter flounder	0.8	23.9	39.7	0.38	
Rachycentron canadum	Cobia	26	32	152.8	0.33	Kaiser & Holt ³⁷
Rhabdosargus sarba	Goldlined seabream	21.1	26.9	63.1	1.36	
Salmo salar	Atlantic salmon	2	28	128.6	0.37	Elliott & Elliott ³⁸ ; http://www.fao.org/fis hery/culturedspecies/s earch
Salmo trutta	Sea (brown) trout	0	24	69.2	0.29	Elliott ³⁹ ; Molony; Elliott & Elliott ³⁸ ; Elliott ²⁹
Salvelinus alpinus alpinus	Arctic char	4	22	92.5	0.04	Elliott & Elliott ³⁸
Salvelinus fontinalis	Brook trout	0	25	67.5	0.32	Raleigh ⁴⁰ ; Elliott ²⁹
Sciaenops ocellatus	Red drum	9.6	26	104.5	0.4	
Sebastes schlegelii	Korean (Schlegel's) rockfish	15	24	65	0.27	
Seriola dumerili	Greater amberjack	3.2	26.8	144	0.23	
Seriola quinqueradiata	Japanese amberjack	18	29	150	0.44	
Seriola rivoliana	Longfin yellowtail (Almaco jack)	18	26.9	114.7	0.56	
Siganus canaliculatus	White-spotted spinefoot	21	34	27.7	1.87	Grandcourt et al. 41
Siganus guttatus	Goldlined spinefoot	24	28	39	1.66	
Siganus javus	Streaked spinefoot	25	28	44.6	0.56	
Siganus rivulatus	Marbled spinefoot	15	28.7	40	0.46	Galil ⁴²

Solea senegalensis	Senegalese sole	15	21	60	0.18	Campos et al. ⁴³
Solea solea	Common sole	5.7	27	50.3	0.35	Pörtner et al. ⁴⁴
Sparidentex hasta	Sobaity seabream	17.8	26.3	66.5	0.35	
Sparus aurata	Gilthead seabream	11.5	22.7	70	0.3	
Takifugu rubripes	Tiger pufferfish	10	29	80	0.52	
Thunnus albacares	Yellowfin tuna	15	31	180.6	0.38	NOAA Fisheries 45
Thunnus maccoyii	Southern bluefin tuna	5	30	212.7	0.14	Patterson <i>et al.</i> 46; http://www.fao.org/fi hery/topic/16082/en
Thunnus orientalis	Pacific bluefin tuna	13.6	29	50	0.16	
Thunnus thynnus	Atlantic bluefin tuna	2.8	31	298	0.12	www.newworldencyo opedia.org/entry/Blud in_tuna
Tilapia guineensis	Guinean tilapia	14	33	30	2.13	http://www.fao.org/fi hery/culturedspecies/ earch
Trachinotus blochii	Snubnose (silver) pompano	20	31	96.7	0.56	Kalidas <i>et al.</i> ⁴⁷ ; Wei
Trachinotus carolinus	Florida pompano	13.2	25.9	64	0.27	
Trachinotus goodei	Great pompano	12	34	150	0.29	Jory et al. 49
Trachurus japonicus	Japanese jack mackerel	10	29	31.7	0.35	
Umbrina cirrosa	Shi drum	9.6	26	73	0.63	
BIVALVES						
Aequipecten opercularis	Queen scallop	4.9	19.2	11	0.74	

Anadara grandis (tuberculosa)	Grand ark	26	37.5	63.2	0.14	Broom ⁵⁰ ; Stern-Pirlot and Wolff ⁵¹
Anadara granosa	Blood cockle	25	32.8	9	1.8	Brom ⁵² ; Yurimoto <i>et</i> al. ⁵³
Anadara tuberculosa	Black ark	22	31	63.2	0.71	Nieves-Soto <i>et al.</i> ⁵⁴ ; Stern-Pirlot & Wolff ⁵¹
Argopecten purpuratus	Peruvian calico scallop	16	20	12	2.32	Navarro et al. 55
Argopecten ventricosus	Pacific calico scallop	20	29	17.5	0.6	Maeda-Martínez <i>et al</i> .
Aulacomya ater	Cholga mussel	0	25.6	6.3	0.35	Urban 57
Cerastoderma edule	Common edible cockle	6.8	12	5.6	0.58	
Chamelea gallina	Striped venus	6.5	13.1	5	0.43	
Chlamys varia	Variegated scallop	3.5	19.2	9	0.57	
Choromytilus chorus	Choro mussel	20	26.3	5	0.35	Urban ⁵⁷
Crassostrea gasar	Gasar cupped oyster	18	26	15.4	1.58	Ramos et al. 58
Crassostrea gigas	Pacific cupped oyster	15	30	45	1.15	
Crassostrea iredalei	Slipper cupped oyster	14	34	9	1.58	
Crassostrea madrasensis	Indian backwater oyster	30	45	11.6	1.44	Rajagopal <i>et al.</i> ⁵⁹ ; Alam & Das ⁶⁰
Crassostrea rhizophorae	Mangrove cupped oyster	24.8	24.8	12	2.79	
Crassostrea virginica	American cupped oyster	-1.6	24.3	30	0.88	
Cyclina sinensis	Oriental cyclina	20	35	5	0.87	Ying-Jie 61
Hippopus hippopus	Bear paw clam	24.7	29.2	40	0.15	

Lyropecten subnodosus	Pacific lion's paw	15.5	25.1	17.8	0.55	Arellano-Martinez <i>et al.</i> ⁶²
Mactra glabrata	Smooth mactra	10	30	27.6	0.02	
Mactra veneriformis	Globose clam	10	30	27.6	0.02	Yu et al. ⁶³ ; Nakano et al. ⁶⁴
Mercenaria mercenaria	Northern quahog (Hard clam)	9.2	24.4	13	0.33	
Meretrix lusoria	Japanese hard clam	5.5	15.9	5	0.47	
Mya arenaria	Sand gaper	4.7	23.6	10	0.29	
Mytilus chilensis	Chilean mussel	12	16	10.2	0.5	Duarte et al. 65; Gray et al. 66
Mytilus coruscus	Korean mussel	2.9	20	10	0.21	Wang et al. 67
Mytilus edulis	Blue mussel	-1.4	23.4	11	0.31	
Mytilus galloprovinciali s	Mediterranean mussel	7.6	9	15	0.58	
Mytilus planulatus	Australian mussel	12.3	21.3	6	0.46	Allen ⁶⁸
Mytilus platensis	River Plata mussel	13.7	20.9	9	0.73	
Ostrea chilensis	Chilean flat oyster	14	14	10	1.01	
Ostrea conchaphila	Olympia oyster	6	20	12.5	0.47	
Ostrea edulis	European flat oyster	8.4	11.9	12	1.01	
Panopea generosa (abrupta)	Pacific geoduck	8.5	10.2	12.5	0.47	Hidalgo-De-La-Toba et al. ⁶⁹
Paphia gallus	Rooster venus	21.8	28.3	7.5	0.87	
Patinopecten yessoensis	Yesso scallop	5	23	25	0.93	Gosling ⁷⁰
Pecten fumatus	Southern Australia scallop	12	21	8.6	1.6	Heasman <i>et al.</i> ⁷¹ ; Gwyther and McShane ⁷²

Danton	Great Atlantic	.	 .	 -		
Pecten maximus	scallop	7.9	15.9	17	0.56	
Perna canaliculus	New Zealand mussel	18.2	18.2	15	0.6	
Perna perna	South American rock mussel	10	30	17	0.38	http://www.biosecurit y.govt.nz/pests/perna- perna
Perna viridis	Green mussel	23.6	23.6	16.5	1.24	
Protothaca staminea	Pacific littleneck clam	9.2	10.2	7.5	0.17	
Ruditapes decussatus	Grooved carpet shell	11.8	11.8	6	0.87	
Ruditapes philippinarum	Japanese carpet shell	10.2	24.7	8	0.56	
Saccostrea commercialis	Sydney cupped oyster	10.8	19.7	22.4	0.93	http://www.fao.org/fis hery/culturedspecies/s earch
Saccostrea cuccullata	Hooded oyster	18.7	25.6	20	1.58	
Saxidomus giganteus	Butter clam	9	11.8	13	0.47	
Scapharca broughtonii	Inflated ark	22	25	17.8	0.26	
Scrobicularia plana	Peppery furrow	9.6	12.3	17.8	0.55	
Sinonovacula constricta	Constricted tagelus	15	20	25.6	0.87	http://www.fao.org/fis hery/culturedspecies/s earch
Soletellina diphos	Diphos sanguin	21.8	28.3	12	0.87	
Tresus nuttallii	Pacific horse clam	2	20	22.5	0.47	Lauzier et al. ⁷³
Tridacna crocea	Crocus giant clam	26.8	28.4	15	0.17	
Tridacna derasa	Smooth giant clam	28.5	28.5	60	0.11	

Tridacna	Fluted giant					
squamosa	clam	24.5	28.9	45	0.22	
Venerupis aurea	Golden carpet shell	7.2	10	4.5	0.55	
Venerupis pullastra	Pullet carpet shell	10.3	12.3	5	0.47	
Venerupis rhomboides	Banded carpet shell	7.2	10	4.5	0.55	
Venus verrucosa	Warty venus	9.6	15.9	17.8	0.25	

Supplementary References

- 1. Sandwell, D. T., Olson, C., Jackson, A., Becker, J. J. & Munday, R. SRTM30_PLUS: Data fusion of SRTM land topography with measured and estimated seafloor topography. (2014). at <topex.ucsd.edu/WWW html/srtm30 plus.html>
- 2. Garcia, H. E. et al. World Ocean Atlas 2009, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. (U.S. Government Printing Office, 2010).
- 3. NASA Goddard Space Flight Center. MODIS-Aqua Data 9 km monthly chlorophyl Data. *Ocean Ecology Laboratory, Ocean Biology Processing Group* (2014).
- 4. Halpern, B. S. *et al.* Spatial and temporal changes in cumulative human impacts on the world's ocean. *Nat. Commun.* **6,** 7615 (2015).
- 5. UNEP-WCMC IUCN and. The World Database on Protected Areas (WDPA). (2010). at <www.wdpa.org>
- 6. Froese, R. & Pauly, D. FishBase. (2016). at <www.fishbase.org>
- 7. Palomares, M. L. D. & Pauly, D. SeaLifeBase. (2016). at <www.sealifebase.org>
- 8. Encyclopedia of Life. at <www.eol.org>
- 9. Crocker, C. E. & Chech, J. J. Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. *Environmental Biol.* **50**, 383–389 (1997).
- 10. Conte, F. S., Doroshov, S. I., Lutes, P. B. & Strange, E. M. *Hatchery manual for the white sturgeon Acipenser transmontanus Richardson with application to other North American Acipenseridae*. (UCANR Publications, 1988).
- 11. O'Dea, N. R. & Haedrich, R. L. A review of the status of the Atlantic Wolffish, Anarhichas lupus, in Canada. *Can. Field-Naturalist* **116**, 423–432 (2003).
- 12. Imsland, A. K., Foss, A., Soarboe, L. O. & Sigursson, S. The effect of temperature and fish size on growth and feed efficiency ratio of juvenile spotted wolffish Anarhichas minor. *J. Fish Biol.* **68**, 1107–1122 (2006).
- 13. Foss, A., Imsland, A. K., Falk-Petersen, I. B. & Øiestad, V. A review of the culture potential of spotted wolffish Anarhichas minor Olafsen. *Rev. Fish Biol. Fish.* **14,** 277–294 (2004).
- 14. Sadler, K. Effects of temperature on the growth and survival of the European eel, Anguilla anguilla L. *J. Fish Biol.* **15**, 499–507 (1979).
- 15. Gilbey, H. The Complete Fishing Manual. (DK, 2011).
- 16. Vielma, J., Koskela, J. & Ruohonen, K. Growth, bone mineralization, and heat and low oxygen tolerance in European whitefish (Coregonus lavaretus L.) fed with graded levels of phosphorus. *Aquaculture* **212**, 321–333 (2002).
- 17. Garcia, B. G., Valverde, J. C., Aguado-Gimenez, F., Garcia, J. G. & Hernandez, M. D. Effect of the interaction between body weight and temperature on growth and maximum daily food intake in sharpsnout sea bream (Diplodus puntazzo). *Aquac. Int.* 19, 131–141 (2011).

- 18. Lin, X., Xie, S., Su, Y. & Cui, Y. Optimum temperature for the growth performance of juvenile orange-spotted grouper (Epinephelus coioides H.). *Chinese J. Oceanol. Limnol.* **26**, 69–75 (2008).
- 19. Cheng, S. Y., Chen, C. S. & Chen, J. C. Salinity and temperature tolerance of brown-marbled grouper Epinephelus fuscoguttatus. *Fish Physiol. Biochem.* **39**, 277–286 (2013).
- 20. Hseu, J. R., Shen, P. S., Huang, W. Bin & Hwang, P. P. Logistic regression analysis applied to cannibalism in the giant grouper Epinephelus lanceolatus fry: Short paper. *Fish. Sci.* **73**, 472–474 (2007).
- 21. Schurmann, H. & Steffensen, J. F. Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod, Gadus morhua L. *Journal of Fish Biology* **41**, 927–934 (1992).
- 22. Stuart, K. R., Keller, M. & Drawbridge, M. Efficacy of formalin and povidone-iodine disinfection techniques on the eggs of three marine finfish species. *Aquac. Res.* **41**, e838–e843 (2010).
- 23. Katselis, G., Koutsikopoulos, C. & Kaspiris, P. Age determination and growth of leaping mullet, (Liza saliens R.1810) from the Messolonghi Etoliko lagoon (western Greece). *Mediterr. Mar. Sci.* **3**, 147–158 (2002).
- 24. Breitburg, D. L. *et al.* The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. *Estuaries* **26**, 280–297 (2003).
- Golani, D. & Ben-Tuvia, A. First records of the Indo-Pacific daggertooth pike-conger, Muraenesox cinereus, in the eastern Mediterranean and in the Gulf of Elat (Gulf of 'Aqaba). Isr. J. Zool. 31, 54–57 (1982).
- 26. Raleigh, R. F. & Nelson, P. Habitat Suitability Index Models and Instream Flow Suitability Curves: Pink Salmon. (1985).
- 27. Carter, K. The Effects of Dissolved Oxygen on Steelhead Trout, Coho Salmon, and Chinook Salmon Biology and Function by Life Stage. (California Water Quality Review Board, 2005).
- 28. Molony, B. Environmental requirements and tolerances of Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta) with special reference to Western Australia: A review. *Fish. Res. Rep.* 1–32 (2001).
- 29. Elliott, J. M. The effects of temperature and ration size on the growth and energetics of salmonids in captivity. *Comp. Biochem. Physiol. Part B Comp. Biochem.* **73**, 81–91 (1982).
- 30. Foscarini, R. A review: Intensive farming procedure for red sea bream (Pagrus major) in Japan. *Aquaculture* **72**, 191–246 (1988).
- 31. Ishibashi, Y. *et al.* Ontogeny of tolerance to hypoxia and oxygen consumption of larval and juvenile red sea bream, Pagrus major. *Aquaculture* **244**, 331–340 (2005).
- 32. Woo, N. Y. S. & Fung, A. C. Y. Studies on the Biology of the Red Sea Bream, Chrysophrys major. I., Temperature Tolerance. *Mar. Ecol. Prog. Ser.* **3**, 121–124 (1980).
- 33. Freitas, V., Campos, J., Skreslet, S. & van der Veer, H. W. Habitat quality of a subarctic nursery ground for 0-group plaice (Pleuronectes platessa L.). *J. Sea Res.* **64**, 26–33 (2010).
- 34. in *Culture of Fish in Rice Fields* (eds. Halwart, M. & Gupta, M.) 23–31 (FAO and the World Fish Center, 2004).
- 35. Imsland, A. K., Sunde, L. M., Folkvord, A. & Stefansson, S. O. The interaction of temperature and fish size on growth of juvenile halibut. *J. Fish Biol.* **49**, 926–940 (1996).
- 36. Burel, C. *et al.* Effects of temperature on growth and metabolism in juvenile turbot. *J. Fish Biol.* **49**, 678–692 (1996).
- 37. Kaiser, J. B. & Holt, G. J. *Species profile cobia*. **7202**, (Southern Regional Aquaculture Center, 2005).
- 38. Elliott, J. M. & Elliott, J. A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. *J. Fish Biol.* 77, 1793–1817 (2010).
- 39. Elliott, J. M. the Energetics of Feeding, Metabolism and Growth of Brown Trout (Salmo Trutta L.) in Relation To Body Weight, Water Temperature and Ration Size. *J. Anim. Ecol.* **45**, 923–948 (1976).
- 40. Raleigh, R. F. Habitat Suitability Index Models: Brook Trout. Fws/Obs-82/10.24 (1982).
- 41. Grandcourt, E., Al Abdessalaam, T., Francis, F. & Al Shamsi, A. Population biology and

- assessment of the white-spotted spinefoot, Siganus canaliculatus (Park, 1797), in the southern Arabian Gulf. *J. Appl. Ichthyol.* **23**, 53–59 (2007).
- 42. Galil, B. S. Siganus rivulatus. (2006).
- 43. Campos, C., Valente, L. M. P., Conceição, L. E. C., Engrola, S. & Fernandes, J. M. O. Molecular regulation of muscle development and growth in Senegalese sole larvae exposed to temperature fluctuations. *Aquaculture* **432**, 418–425 (2014).
- 44. Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. *J. Fish Biol.* **77**, 1745–1779 (2010).
- 45. NOAA Fisheries. in *Fishery Management Plan for Atlantic Tunas, Swordfish, and Sharks* 302 (National Marine Fisheries Service, 1999).
- 46. Patterson, T. A., Evans, K., Carter, T. I. & Gunn, J. S. Movement and behaviour of large southern bluefin tuna (Thunnus maccoyii) in the Australian region determined using pop-up satellite archival tags. *Fish. Oceanogr.* 17, 352–367 (2008).
- 47. Kalidas, C. *et al.* Survival and growth of juvenile silver pompano. *Indian J. Fish.* **59**, 95–98 (2012).
- 48. Wen, C. M., Ku, C. C. & Wang, C. S. Viral susceptibility, transfection and growth of SPB a fish neural progenitor cell line from the brain of snubnose pompano, Trachinotus blochii (Lacépède). *J. Fish Dis.* **36**, 657–667 (2013).
- 49. Jory, D., Iversen, E. & Lewis, R. Culture of fishes of the genus Trachinotus (Carangidae) in the western Atlantic: prospects and problems. *J. World Maric. Soc.* **16**, 87–94 (1985).
- 50. Broom, M. J. The Biology and Culture of Marine Bivalve Molluscs of the Genus Anadara. *ICLARM Stud. Rev.* **12**, 37 (1985).
- 51. Stern-Pirlot, A. & Wolff, M. Population dynamics and fisheries potential of Anadara tuberculosa (Bivalvia: Arcidae) along the Pacific coast of Costa Rica. *Rev. Biol. Trop.* **54,** 87–99 (2006).
- 52. The Biology and Culture of Marine Bivalve Molluscs of the Genus Andara. (International Center for Living Aquatic Resources Management, 1985).
- 53. Yurimoto, T., Mohd Kassim, F., Fuseya, R. & Man, A. Mass mortality event of the blood cockle, Anadara granosa, in aquaculture ground along Selangor coast, Peninsular Malaysia. *Int. Aquat. Res.* **6**, 177–186 (2014).
- 54. Nieves-Soto, M. *et al.* Combined effect of temperature and food concentration on the filtration and clarification rates and assimilation efficiency of Atrina Tuberculosa sowerby, 1835 (Mollusca: Bivalvia) under laboratory conditions. *Arch. Biol. Sci.* **65**, 99–106 (2013).
- 55. Navarro, J. M., Leiva, G. E., Martinez, G. & Aguilera, C. Interactive effects of diet and temperature on the scope for growth of the scallop Argopecten purpuratus during conditioning. *J. Exp. Mar. Bio. Ecol.* **247**, 67–83 (2000).
- 56. Maeda-martinez, A. N. *et al.* Suspension culture of catarina scallop Argopecten Bahia Magdalena, Mexico, at different densities. *Aquaculture* **158**, 235–246 (1997).
- 57. Urban, H. J. Upper temperature tolerance of 10 bivalve species off Peru and Chile related to El Nino. *Mar. Ecol. Prog. Ser.* **107**, 139–146 (1994).
- 58. Ramos, C. D. O., Gomes, C. H. A. D. M., Magalhães, A. R. M., Santos, A. I. Dos & Melo, C. M. R. De. Maturation of the Mangrove Oyster Crassostrea gasar at Different Temperatures in the Laboratory. *J. Shellfish Res.* **33**, 187–194 (2014).
- 59. Rajagopal, S., Venugopalan, V. P., van der Velde, G. & Jenner, H. a. Comparative chlorine and temperature tolerance of the oyster Crassostrea madrasensis: implications for cooling system fouling. *Biofouling* **19**, 115–24 (2003).
- 60. Alam, M. D. & Das, N. G. Growth and age determination of an intertidal cupped oyster Crassostrea madrasensis (Preston) (Bivalvia: Ostreidae) around Moheshkhali Channel, Bay of Bengal. *Indian J. Mar. Sci.* **28**, 329–331 (1999).
- 61. Ying-Jie, L., Shen, M., Xiang-Li, T. & Yan-Huai, W. Energy Budget at Different Temperatures in Cyclina sinensis. *Period. Ocean Univ. China* S2 (2006).
- 62. Arellano-Martínez, M. *et al.* Growth and reproduction of the lion's paw scallop Nodipecten subnodosus in a suspended culture system at Guerrero Negro lagoon, Baja California Sur, Mexico. *Aquac. Res.* **42**, 571–582 (2011).
- 63. Yu, J. H., Song, J. H., Choi, M. C. & Park, S. W. Effects of water temperature change on

- immune function in surf clams, Mactra veneriformis (Bivalvia: Mactridae). *J. Invertebr. Pathol.* **102,** 30–35 (2009).
- 64. Nakano, T. *et al.* Life history and population dynamics of the surf clam, Mactra veneriformis (Bivalvia: Mactridae), on an estuarine intertidal sandflat in western Kyushu, Japan. *Molluscan Reseach* **32**, 159–176 (2012).
- 65. Duarte, C. *et al.* Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. *J. Sea Res.* **85,** 308–314 (2014).
- 66. Gray, A., Seed, R. & Richardson, C. Reproduction and growth of Mytilus edulis chilensis from the Falkland Islands. *Sci. Mar.* **61,** 39–48 (1997).
- 67. Wang, Y., Li, L., Hu, M. & Lu, W. Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia. *Mar. Environ. Res.* **109**, 159–167 (2015).
- 68. Allen, F. E. Identity of Breeding Temperatures in Southern and Northern Hemisphere Species of Mytilus (Lamellibranchia). *Pacific Sci.* **9**, 107–109 (1955).
- 69. Hidalgo-De-La-Toba, J. A., González-peláez, S. S., Morales-Bojórquez, E., Bautista-Romero, J. J. & Lluch-Cota, D. B. Geoduck *Panopea generosa* Growth at Its Southern Distribution Limit in North America using a Multimodel Inference Approach. *J. Shellfish Res.* **34**, 91–99 (2015).
- 70. Gosling, E. Bivalve Molluscs: Biology, Ecology and Culture. (Fishing News Books, 2003).
- 71. Heasman, M. P., O'Connor, W. A. & Frazer, A. W. Temperature and nutrition as factors in conditioning broodstock of the commercial scallop Pecten fumatus Reeve. *Aquaculture* **143**, 75–90 (1996).
- 72. Gwyther, D. & Mcshane, P. Growth rate and natural mortality of the scallop Pecten alba tate in Port Phillip Bay, Australia, and evidence for changes in growth rate after a 20-year period. *Fish. Res.* **6**, 347–361 (1988).
- 73. Lauzier, R. B., Hand, C. M., A., C. & Heizer, S. A Review of the Biology and Fisheries of Horse Clams (Tresus capax and Tresus nuttallii). (Canadian Stock Fisheries and Oceans Canada, Assessment Secretariat Research Document 98/88, 1998).