

Nhập môn An Toàn Thông Tin Nhắc lại một số thuật toán trong lý thuyết số

Nội dung

1 Thuật toán Euclid

2 Thuật toán tính luỹ thừa

3 Nhóm vòng và phần tử sinh

Định nghĩa

• Ước chung của hai số nguyên a và b là số nguyên d thỏa mãn:

$$d \mid a \quad \text{và} \quad d \mid b$$
.

• Ta ký hiệu gcd(a, b) là ước chung lớn nhất của a và b.

Định nghĩa

• Ước chung của hai số nguyên a và b là số nguyên d thỏa mãn:

$$d \mid a \quad \text{và} \quad d \mid b$$
.

• Ta ký hiệu gcd(a, b) là ước chung lớn nhất của a và b.

Ví dụ

- gcd(12, 18) = 6 vì 6 | 12 và 6 | 18 và không có số nào lớn hơn có tính chất này.
- gcd(748, 2014) = 44 vi

các ước của
$$748 = \{1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748\}$$
, các ước của $2024 = \{1, 2, 4, 8, 11, 22, 23, 44, 46, 88, 92, 184, 253, 506, 1012, 2024\}$.

gcd(21, 15) = gcd(15, 6) = gcd(6, 3)

Định lý (Thuật toán Euclid)

Xét a, b là hai số nguyên dương với $a \ge b$. Thuật toán sau đây tính gcd(a, b) sau một số hữu hạn bước.

- 2 Dăt i = 1.
- **3** Chia r_{i-1} cho r_i , ta được

$$r_{i-1} = r_i \cdot q_i + r_{i+1} \qquad \textit{v\'oi} \qquad 0 \leq r_{i+1} < r_i.$$

4 Nếu $r_{i+1} = 0$, vậy thì

$$r_i = \gcd(a, b)$$

và thuật toán kết thúc.

5 Ngược lại, $r_{i+1} > 0$, vậy thì đặt i = i + 1 và quay lại Bước 3.

Định lý

Phép chia (Bước 3) của Thuật toán Euclid thực hiện nhiều nhất

 $\log_2(b) + 2$ $l\hat{a}n$.


```
Thuật toán Euclid (dạng đệ quy)

EUCLID(a, b)

if b == 0

return a

else

return EUCLID(b, a \mod b)
```


Thuật toán Euclid mở rộng

- Thuật toán Euclid có thể mở rộng để tìm thêm một số thông tin.
- Cụ thể, chúng ta mở rộng thuật toán để tính thêm hệ số x, y thỏa mãn

$$d = \gcd(a, b) = ax + by.$$

• Các hệ số x, y có thể âm hoặc bằng 0. Các hệ số này sẽ có ích sau này khi tích phần tử nghịch đảo trong số học modun.

Thuật toán Euclid mở rộng

- Input : Cặp số nguyên dương (a, b)
- Output: Bộ ba (d, x, y) thỏa mãn

$$d = \gcd(a, b) = ax + by.$$

```
EXTENDED-EUCLID(a, b)

if b == 0

return (a, 1, 0)

else

(d', x', y') = \text{EXTENDED-EUCLID}(b, a \mod b)

(d, x, y) = (d', y', x' - \lfloor a/b \rfloor y')

return (d, x, y)
```


Tính đúng đắn của thuật toán

• Thuật toán tìm (d, x, y) thỏa mãn

$$d = \gcd(a, b) = ax + by$$

• Nếu b = 0, vậy thì

$$d = a = a \cdot 1 + b \cdot 0.$$

• Nếu $b \neq 0$, thuật toán EXTENDED-EUCLID sẽ tính (d', x', y') thỏa mãn

$$d' = d = \gcd(b, a \mod b)$$
$$= bx' + (a \mod b)y'$$

Và vậy thì

$$d = b'x' + (a - b\lfloor a/b\rfloor)y'$$

= $ay' + b(x' - \lfloor a/b\rfloor y')$

Ví dụ

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính [a/b], và giá trị trả về d,x,y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$

$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	y
99	78	1			
78	21	3			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào a và b, giá trị tính [a/b], và giá trị trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$

$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	y	
99	78	1				_
78	21	3				
21	15	1				

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	у	
99	78	1				
78	21	3				
21	15	1				
15	6	2				

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$

$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	у
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$

$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_			

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	у
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2			
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2			
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3			
21	15	1			
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	у
99	78	1			
78	21	3			
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	x	y
99	78	1			
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

а	b	$\lfloor a/b \rfloor$	d	X	у
99	78	1	3	-11	14
78	21	3	3	3	-11
21	15	1	3	-2	3
15	6	2	3	1	-2
6	3	2	3	0	1
3	0	_	3	1	0

- Mỗi dòng của bảng mô tả một mức đệ quy: các giá trị đầu vào
 a và b, giá tri tính | a/b |, và giá tri trả về d, x, y.
- Bộ ba d, x, y được trả về trở thành bộ ba d', x', y' của mức tiếp theo từ công thức

$$x = y'$$
$$y = x' - \lfloor a/b \rfloor y'$$

Bài tập Hãy tính giá trị

(d, x, y) = EXTENDED-EUCLID(899, 493).

Tính nghịch đảo

• Xét n > 1, nếu gcd(a, n) = 1 thì ta có

$$\gcd(a,n) = 1 = ax + ny$$

• Vậy $ax = 1 \pmod{n}$. Tức là

$$x = a^{-1} \pmod{n}$$

Tính nghịch đảo theo modun

- Input : Số n > 0 và số $a \in \mathbb{Z}_n$ sao cho $\gcd(a, n) = 1$
- Output: Số b thoả mãn $a \cdot b = 1 \mod n$.

```
MOD-INV (a, n)

(d, x, y) = \text{EXTENDED-EUCLID } (a, n)

b = x \mod n

return b
```


а	b	$\lfloor a/b \rfloor$	d	X	y
5	12	0			
12	5	2			

а	b	$\lfloor a/b \rfloor$	d	X	у
5	12	0			
12	5	2			
5	2	2			

а	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	у
5	12	0			
12	5	2			
5	2	2			
2	1	2			

а	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	y
5	12	0			
12	5	2			
5	2	2			
2	1	2			
1	0	_			

а	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	у
5	12	0			
12	5	2			
5	2	2			
2	1	2			
1	0	_	1	1	0

а	b	$\lfloor a/b \rfloor$	d	x	y
5	12	0			
12	5	2			
5	2	2			
2	1	2	1	0	1
1	0	_	1	1	0

а	b	$\lfloor a/b \rfloor$	d	x	У
5	12	0			
12	5	2			
5	2	2	1	1	-2
2	1	2	1	0	1
1	0	_	1	1	0

а	b	$\lfloor a/b \rfloor$	d	\boldsymbol{x}	y
5	12	0			
12	5	2	1	-2	5
5	2	2	1	1	-2
2	1	2	1	0	1
1	0	_	1	1	0

а	b	$\lfloor a/b \rfloor$	d	x	y
5	12	0	1	5	-2
12	5	2	1	-2	5
5	2	2	1	1	-2
2	1	2	1	0	1
1	0	_	1	1	0

Nội dung

1 Thuật toán Euclid

2 Thuật toán tính luỹ thừa

3 Nhóm vòng và phần tử sinh

Tính lũy thừa nhanh

Ví dụ Giả sử ta muốn tính

Đầu tiên, ta viết 218 ở dạng cơ số 2:

$$218 = 2 + 2^3 + 2^4 + 2^6 + 2^7.$$

Vậy thì 3²¹⁸ trở thành

$$3^{218} = 3^{2+2^3+2^4+2^6+2^7} = 3^2 \cdot 3^{2^3} \cdot 3^{2^4} \cdot 3^{2^6} \cdot 3^{2^7}.$$

Để ý rằng, dễ tính các mũ

$$3, 3^2, 3^{2^2}, 3^{2^3}, 3^{2^4}, \dots$$

Ví dụ (tiếp) Ta lập bảng

	i	0	1	2	3	4	5	6	7
$3^{2^{i}}$	(mod 1000)	3	9	81	561	721	841	281	961

rồi tính

$$3^{218} = 3^2 \cdot 3^{2^3} \cdot 3^{2^4} \cdot 3^{2^6} \cdot 3^{2^7}$$

$$\equiv 9 \cdot 561 \cdot 721 \cdot 281 \cdot 961 \pmod{1000}$$

$$\equiv 489 \pmod{1000}.$$

Thuật toán tính nhanh $a^b \pmod{n}$

```
Modular-Exponentiation (a, b, n)
     c = 0
     d = 1
     Biểu diễn b = \langle b_k, b_{k-1}, \dots, b_0 \rangle_2
     for i = k downto 0
          c = 2c
          d = (d \cdot d) \mod n
          if b_i == 1 then
               c = c + 1
               d = (d \cdot a) \mod n
     return d
```


Thuật toán tính nhanh $a^b \pmod{n}$

```
Modular-Exponentiation (a, b, n)
     c = 0
     d = 1
     Biểu diễn b = \langle b_k, b_{k-1}, \dots, b_0 \rangle_2
     for i = k downto 0
          c = 2c
          d = (d \cdot d) \mod n
          if b_i == 1 then
               c = c + 1
               d = (d \cdot a) \mod n
     return d
```

• Giá trị của c bằng $\langle b_k, b_{k-1}, \dots, b_{i+1} \rangle_2$

Thuật toán tính nhanh $a^b \pmod{n}$

```
Modular-Exponentiation (a, b, n)
     c = 0
     d = 1
     Biểu diễn b = \langle b_k, b_{k-1}, \dots, b_0 \rangle_2
     for i = k downto 0
           c = 2c
           d = (d \cdot d) \mod n
           if b_i == 1 then
                 c = c + 1
                 d = (d \cdot a) \mod n
     return d
   • Giá trị của c bằng \langle b_k, b_{k-1}, \ldots, b_{i+1} \rangle_2
   • và d = a^c \mod n.
```


Ví dụTính 7⁵⁶⁰ mod 561

i	9	8	7	6	5	4	3	2	1	0
$\overline{b_i}$	1	0	0	0	1	1	0	0	0	0
c	1	2	4	8	17	35	70	140	280	560
d	7	49	157	526	160	241	0 70 298	166	67	1

• Kết quả tính $a^b \pmod{n}$ với

$$a = 7$$
, $b = 560 = \langle 1000110000 \rangle_2$, và $n = 561$

• Kết quả cuối cùng bằng 1

Thuật toán đệ quy tính $a^b \mod n$

```
Modular-Exponentiation(a, b, n)

if b == 0 then return 1

if b == 1 then return a

r = \text{Modular-Exponentiation}(a, b/2, n)

r = r * r

if b \mod 2 == 1 then r = r * a

return r
```


Bài tập

Giả sử bạn biết $\varphi(n)$, hãy chỉ ra cách tính $a^{-1} \mod n$ cho mọi $a \in \mathbb{Z}_n^*$ dùng thuật toán Modular-Exponentiation.

Gợi ý: Nhắc lại rằng $a^{\varphi(n)} = 1 \mod n$.

Nội dung

1 Thuật toán Euclid

2 Thuật toán tính luỹ thừa

3 Nhóm vòng và phần tử sinh

Nhóm con

Định nghĩa

Xét nhóm G và $S\subseteq G$. Khi đó S được gọi là nhóm con của G nếu S là một nhóm dưới phép toán của G.

Ví dụ

Xét $G = \mathbb{Z}_{11}^*$ và $S = \{1, 2, 3\}$. Khi đó S không phải là nhóm con vì

- $2 \cdot 3 \mod 11 = 6 \notin S$, vi phạm tính chất đóng.
- $3^{-1} \mod 11 = 4 \notin S$, vi phạm tính khả nghịch.

Tuy nhiên {1,3,4,5,9} là một nhóm con. Bạn có thể kiểm tra!

Cấp của một phần tử

Xét *G* là một nhóm (hữu hạn) với phần tử đơn vị 1.

Định nghĩa

Cấp của phần tử $g \in G$, ký hiệu o(g), là số nguyên $n \ge 1$ nhỏ nhất thoả mãn $g^n = 1$.

Xác định cấp của phần tử

Xét
$$G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
2 ⁱ mod 11	1	2	4	8	5	10	9	7	3	6	1
5 ⁱ mod 11	1	5	3	4	9	1	5	3	4	9	1

Cấp o(a) của phần tử a là số $n \ge 1$ nhỏ nhất sao cho $a^n = 1$. Bởi vậy

- o(2) = 10
- o(5) = 5.

Nhóm con sinh bởi $g \in G$

Định nghĩa Cho phần tử $g \in G$ có cấp n, ta đặt

$$\langle g \rangle = \{g^0, g^1, \dots, g^{n-1}\}.$$

Đây là một nhóm con của g và cấp của nó chính là o(g) = n.

Cấp của nhóm con

Mệnh đề

 $C\hat{ap} |S|$ của nhóm con $S \subseteq G$ luôn là ước của cấp |G| của nhóm G.

Mênh đề

 $C\hat{a}p \ o(g)$ của g luôn là ước của |G|.

Ví dụ

Nếu $G = \mathbb{Z}_{11}^*$ thì

- |G| = 10
- o(2) = 10 là ước của 10
- o(5) = 5 là ước của 10

Nhóm con sinh bởi một phần tử

Xét
$$G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
$2^i \mod 11$	1	2	4	8	5	10	9	7	3	6	1
5 ⁱ mod 11	1	5	3	4	9	1	5	3	4	9	1

Khi đó

$$\langle 2 \rangle = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$\langle 5 \rangle = \{1, 3, 4, 5, 9\}.$$

Phần tử sinh

Định nghĩa

Phần tử $g \in G$ là một phần tử sinh (hoặc phần tử nguyên thuỷ) nếu $\langle g \rangle = G$.

Mệnh đề

g là phần tử sinh nếu và chỉ nếu o(g) = G.

Định nghĩa

G là nhóm vòng nếu nó có phần tử sinh.

Phần tử sinh

Xét
$$G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$$

i	0	1	2	3	4	5	6	7	8	9	10
2 ⁱ mod 11	1	2	4	8	5	10	9	7	3	6	1
5 ⁱ mod 11	1	5	3	4	9	1	5	3	4	9	1

Khi đó

$$\langle 2 \rangle = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

 $\langle 5 \rangle = \{1, 3, 4, 5, 9\}.$

- Liệu 2 có phải phần tử sinh?
- Liệu 5 có phải phần tử sinh?
- Nhóm Z₁₁* có phải nhóm vòng?

Logarit rời rạc

Nếu $G=\langle g\rangle$ là nhóm vòng thì với mọi phần tử $a\in G$ có duy nhất số mũ $i\in\{0,...,|G|-1\}$ thoả mãn $g^i=a$. Ta gọi i là logarit rời rạc cơ sở g của a và ký hiệu

$$\mathsf{DLog}_{G,g}(a)$$

Logarit rời rạc là hàm ngược của hàm mũ.

Logarit rời rạc

Xét $G = \mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Ta biết rằng 2 là một phần tử sinh.

i	0	1	2	3	4	5	6	7	8	9	10
2 ⁱ mod 11	1	2	4	8	5	10	9	7	3	6	1

а	1	2	3	4	5	6	7	8	9	10
$DLog_{\mathbb{Z}_{11}^*,2}(a)$	0	1	8	2	4	9	7	3	6	5

VIÊN CÔNG NGHÊ THÔNG TIN VÀ TRUYỀN THÔNG

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

