

Data Science Methods in Finance – Group Exam

Group 2:

Freek Linssen

Willem van der Meiden

Sven Meijers

Zeger Vugts

- SNR: 2015267 - ANR: U471688 - f.c.w.linssen@tilburguniversity.edu

- SNR: 2014236 - ANR: U800370 - w.f.m.vdrmeiden@tilburguniversity.edu

- SNR: 2002736 - ANR: U407995 - s.j.p.meijers@tilburguniversity.edu

- SNR: 2008041 - ANR: U671613 - z.f.vugts@tilburguniversity.edu

Question 1

Number of stocks with NA return values per year

- Tables of summary statistics of either per month or per year.
- Returns are in percentage points
- Market Capitalization as a log-function
- FULL being the summary statistics of the complete sample

Month	Mean return (% points)	Standard Deviation (% points)	Mean log Market Cap	Standard Deviation Log Market cap
1	3.400	24.677	12.766	2.159
2	0.367	19.949	12.780	2.164
3	0.862	19.625	12.775	2.160
4	2.432	20.206	12.802	2.160
5	1.049	19.313	12.802	2.154
6	1.112	18.648	12.819	2.151
7	-0.190	17.116	12.820	2.162
8	0.371	17.801	12.808	2.163
9	-1.053	17.293	12.803	2.165
10	0.227	18.951	12.810	2.179
11	2.144	21.511	12.810	2.191
12	1.784	18.452	12.834	2.192

Year	Mean return (% points)	Standard Deviation (% points)	Mean log Market Cap	Standard Deviation Log Market cap
2000	-0.824	26.622	12.025	2.112
2001	2.559	27.541	11.917	2.166
2002	-0.824	21.354	11.958	2.166
2003	4.994	18.948	12.234	2.072
2004	1.788	15.214	12.659	1.958
2005	0.411	13.464	12.789	1.953
2006	1.373	13.038	12.935	1.933
2007	-0.486	13.415	12.988	1.961
2008	-4.416	20.015	12.616	2.076
2009	4.793	27.109	12.407	2.120
2010	2.337	15.997	12.809	2.050
2011	-0.611	14.905	12.970	2.096
2012	1.633	14.613	13.027	2.100
2013	3.232	13.340	13.293	2.091
2014	0.396	13.921	13.440	2.063
2015	-0.446	17.972	13.417	2.128
2016	1.581	17.406	13.349	2.159
2017	1.366	15.384	13.506	2.174
2018	-1.280	16.268	13.549	2.204
2019	1.800	20.978	13.476	2.260
2020	3.427	28.618	13.473	2.250
FULL	1.042	19.598	12.802	2.167

Cumulative Value weighted Portfolio and Equally weighted Portfolio return against Market Factor

NOTES:

Value Weighted portfolio

 Weighted relative to the market capitalization of the firm → same as market return!

Equally Weighted portfolio

 Each stock same weight → Proves smaller firms have bigger returns

Security Market Line of 100 CAPM Beta portfolios (without winsorizing)

- 100 portfolios
 - Sorted from lowest to highest Beta
- Small Positive Slope of Security Market Line
 - The higher the Beta, the riskier the portfolio (higher distance between portfolios!)
- Some extreme observations!

Security Market Line of 100 CAPM Beta portfolios (with winsorizing)

- 100 portfolios
 - Sorted from lowest to highest Beta
- Winsorized at 5%-level
 - Eliminate extreme observations
 - More reliable sample
- CAPM does not hold!
 - Higher Beta means riskier
 - Higher distance between highest25 portfolios
 - Does not translate into higher return!

NOTES:

- T-statistic Oil Beta = 0.7606
 - Highly statistically insignificant
- Using a 60-month rolling forward Oil Beta, resulting in a sample period of 2005 2012, and a Fama MacBeth Two stage regression model, we can conclude that the Oil Beta does not predict stock returns!

Two stage Fama-McBeth regression

Dependent variable:

	Firm Excess Return		
Oil Beta	0.013		
	(0.018)		
Constant	-0.001		
	(0.005)		
Observations	145,824		
R ²	0.215		
Note:	*p<0.1; **p<0.05; ***p<0.01		

Cumulative Value Weighted return – Top 10% and Bottom 10% Oil Beta Portfolios against Oil Index

- Higher Oil Beta's result in higher, but riskier, returns depending on the oil price movement
- Lower Oil Beta's experience lower returns and less co-movement with oil prices!

Predicting Oil Beta's using a Regression Tree

NOTES:

- If the Firm-Specific Volatility of a firm is lower than 4.127
 percentage points (monthly basis), oil beta is 0.0804 (1
 percentage point change in il return changes firm return by 0.08
 percentage points
- If the Firm-Specific Volatility is higher than 4.127 percentage points and the Firm is in an oil-related sector, oil beta is 0.5070
- If Firm-Specific Volatility is higher than 4.127 percentage points, the Firm is not in an oil-related sector, and leverage lower than 0.637, oil beta is 0.1626
- If Firm-Specific Volatility is higher than 4.127 percentage points, the Firm is not in an oil-related sector, and leverage higher than 0.637, oil beta is 0.2097 if the Firm-Specific Volatility lower than 7.83 percentage points and 0.3583 if the Firm-Specific Volatility is higher than 7.83 percentage points.

Regression tree predicting Oil Beta

Legend:

- Idiovol: Firm-specific volatility (Firm-specific riskiness)
- Oil-sector: Sectors directly related to oil (1 if in the oil & gas industry, air transport, and consumer goods)
- Lev = Leverage Ratio (Debt/Equity)
- n = amount of sample predicted to have that value

Predict if a stock is in the least or most sensitive Oil Beta portfolio using a Classical Tree, Bagging, Random Forest, and Lasso

Model	Classical Tree	Bagging	Random Forest	Lasso
Error Rate	28,39%	26,86%	24,91%	30,05%
Assumptions	Pruned to 5 terminal nodes (lowest CV error rate)	Number of bags leading to lowest error rate = 200	Number of trees leading to lowest error rate = 200	Alpha = 0.1, Lambda = 0.00396

How is the error distributed?
Let's look at the Confusion Matrix on the next slide.

Variable Importance Measures per model

Predict if a stock is in the least or most sensitive Oil Beta portfolio using a Classical Tree, Bagging, Random Forest, and Lasso

NOTES:

- YES
 - Stock is in the least sensitive to oil prices portfolio (i.e. lowest oil beta)
- NO
 - Stock is in the most sensitive to oil prices portfolio (i.e. highest oil beta)

Interpretation:

The models have more false "Yes" than false "No"! In other words, the models are more biased towards predicting a stock to be in the least sensitive to oil price portfolio.

2

Predicted Class

Classical Tree = Bagging =	10.862 9.721	(42.47%) (38.01%)
Random Forest = Lasso =	10.029 11.410	(39.21%) (44.62%)

Yes

True Class

Classical Tree =	5.286	(20.67%)
Bagging =	3.795	(14.84%)
Random Forest =	3.730	(14.59%)
Lasso =	6.374	(24.92%)

No

Classical Tree =	1.974	(7.72%)
Bagging =	3.115	(12.18%)
Random Forest =	2.807	(10.98%)
Lasso =	1.426	(5.58%)

Classical Tree = 7.451 (29.14%)Bagging = 8.942 (34.97%)Random Forest = 9.007 (35.22%)6.363 (24.88%)Lasso =

Sample = 25573 observations (test data 2012 – 2020) Total True No = 12737 observations (49,8%) Total True Yes = 12836 observations (50,2%) (%) behind number of observations = % of total observations

Performance Hedge Portfolios based on different models

- All models used to create the hedge portfolios are trained using two large drops in oil prices during the period 2008-06 until 2009-01 and 2014-06 until 2015-01
- All hedge portfolios do pretty well when tested on the oil price drop in the period of 2015-06 until 2016-02

Summary Statistics Hedge Portfolio post 2016 (4 portfolios selected using 4 different models)

Model	Lasso	Ridge	Elastic Net	Random Forest	Oil Return
Mean Return	0.667	0.805	0.645	0.210	-4.309
Standard Deviation Return	3.036	3.273	3.037	3.598	13.088
Min.	-5.081	-5.102	-5.092	-5.882	-15.776
Max.	4.760	6.096	4.775	5.620	5.620
Mean Beta	0.470	0.479	0.475	0.641	-
Mean Oil Beta	-0.058	-0.055	-0.057	-0.067	-

Numbers are in percentage points Returns are monthly returns

Cumulative Return Oil Hedge Portfolio and Bottom 10% Oil Beta against Market

- Method used for hedged portfolio = Elastic Net Regression
- Machine learning does help at identifying stocks that have certain exposure to oil price shocks. As seen here, the hedged portfolio trained on various oil price shocks does not move with oil prices, and slightly outperforms the bottom 10% oil beta portfolio.

Optimal Portfolio for sovereign wealth funds with large oil reserves

- Two large oil price drops are included in the graph
- As shown, when oil price and market price drop during these shocks, the optimal hedged portfolio remains stable or even increases, suggesting it is a working hedge.

