Representation type of cyclotomic guiver Hecke algebras in affine type A¹

Maximal weights

Qi WANG

Yau Mathematical Sciences Center Tsinghua University

The 16th National Conference on Algebra @Quanzhou, November 17, 2023.

¹This is joint work with Susumu Ariki and Linliang Song.

Outline

Introduction

KLR algebras

Maximal weights

References

Introduction

Introduction

Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all morphisms between them, up to isomorphism.

Maximal weights

Any (basic, connected) algebra A over an algebraically closed field K is isomorphic to a **bound quiver algebra** KQ/I.

e.g.,
$$\alpha \bigcirc \circ \stackrel{\mu}{\rightleftharpoons} \circ \bigcirc \beta$$

• paths: $(\alpha\mu\beta\nu)^m, (\mu\nu)^n\alpha^k, (\alpha\mu\nu)^k(\mu\beta\nu)^m, ...$

Representaion type of algebra

Theorem (Drozd 1977)

The representation type of any algebra (over K) is exactly one of rep-finite, tame and wild.

An algebra A is said to be

- rep-finite if the number of indecomposable modules is finite.
- tame if it is not rep-finite, but all indecomposable modules can be organized in a one-parameter family in each dimension.

Otherwise, A is called wild.

"The representation type of symmetric algebras is preserved under derived equivalence."

Introduction

Main result

Main Theorem (Ariki-Song-W. 2023)

Suppose $|\Lambda| \geq 3$. The cyclotomic quiver Hecke algebra $R^{\Lambda}(\beta)$ of type $A_{\ell}^{(1)}$ is rep-finite if $\beta \in \mathcal{F}(\Lambda)$, tame if one of the following holds:

- $\beta = \delta$, $\Lambda = k\Lambda_i$, $\ell = 1$ with $t \neq \pm 2$,
- $\beta = \delta$, $\Lambda = k\Lambda_i$, $\ell \ge 2$ with $t \ne (-1)^{\ell+1}$,
- $\beta \in \mathfrak{T}(\Lambda)$.

Otherwise, it is wild.

Introduction

More on Hecke algebras

In the last fifty years, the representation theory of symmetric groups had a close connection with Lie theory via categorification.

- Hecke algebras of Coxeter groups, i.e., of type A, B, D, etc.
- Cyclotomic Hecke algebras (a.k.a. Ariki-Koike algebras). See [Ariki-Koike, 1994], [Broue-Malle, 1993], [Cherednik 1987].
- Cyclotomic quiver Hecke algebras (a.k.a. Cyclotomic KLR algebras). See [Khovanov-Lauda, 2009], [Rouquier, 2008].

Many classes of algebras arise in this process, whose representation type is completely determined, in particular, for

- (1) Hecke alg's in type A, B (Erdmann-Nakano 2001, Ariki-Mathas 2004);
- (2) Cyclotomic quiver Hecke alg's of level 1 in affine type A, C, D (Ariki-lijima-Park 2014, 2015); of level 2 in affine type A (Ariki 2017);
- (3) Schur/q-Schur/Borel-Schur/infinitesimal-Schur alg's (Xi 1993, Erdmann 1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc);
- (4) block alg's of category \mathcal{O} ; (Futorny-Nakano-Pollack 1999, Boe-Nakano 2005, etc)

Many classes of algebras arise in this process, whose representation type is completely determined, in particular, for

- (1) Hecke alg's in type A, B (Erdmann-Nakano 2001, Ariki-Mathas 2004);
- (2) Cyclotomic quiver Hecke alg's of level 1 in affine type A, C, D (Ariki-lijima-Park 2014, 2015); of level 2 in affine type A (Ariki 2017); of level k in affine type A (Ariki-Song-W. 2023);
- (3) Schur/q-Schur/Borel-Schur/infinitesimal-Schur alg's (Xi 1993, Erdmann 1993, Doty-Erdmann-Martin 1999, Erdmann-Nakano 2001, etc);
- (4) block alg's of category \mathcal{O} ; (Futorny-Nakano-Pollack 1999, Boe-Nakano 2005, etc)

Lie theoretic data

Maximal weights

Let $I = \{0, 1, ..., \ell\}$ be an index set. Recall that

Lie theoretic data

Maximal weights

Let $I = \{0, 1, ..., \ell\}$ be an index set. Recall that

$$A_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \bullet$$

$$C_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longleftarrow \ell$$

$$+B_{\ell}^{(1)}, D_{\ell}^{(1)}, A_{2\ell}^{(2)}, A_{2\ell-1}^{(2)}, D_{\ell+1}^{(2)}, E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}, F_{4}^{(1)}, G_{2}^{(1)}, E_{6}^{(2)}, D_{4}^{(3)}.$$

$$((i, \cdot, \cdot, \cdot))$$

Set $n_{ii} := \#(i \rightarrow j)$.

Lie theoretic data

Maximal weights

Let $I = \{0, 1, ..., \ell\}$ be an index set. Recall that

$$A_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longrightarrow \bullet$$

$$C_{\ell}^{(1)}: 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow \bullet \longleftarrow \ell$$

$$+B_{\ell}^{(1)}, D_{\ell}^{(1)}, A_{2\ell}^{(2)}, A_{2\ell-1}^{(2)}, D_{\ell+1}^{(2)}, E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}, F_{4}^{(1)}, G_{2}^{(1)}, E_{6}^{(2)}, D_{4}^{(3)}.$$

Set $n_{ii} := \#(i \to j)$. We define the **Cartan matrix** $A = (a_{ii})_{i,i \in I}$ by

$$a_{ii}=2, \quad a_{ij}=\left\{ egin{array}{ll} -n_{ij} & ext{if } n_{ij}>n_{ji} \ -1 & ext{if } n_{ij}< n_{ji} \ (i
eq j). \ -n_{ij}-n_{ji} & ext{otherwise} \end{array}
ight.$$

- $P = \mathbb{Z}\Lambda_0 \oplus \mathbb{Z}\Lambda_1 \oplus \cdots \oplus \mathbb{Z}\Lambda_\ell \oplus \mathbb{Z}\delta$ is the weight lattice;
- $\Pi = \{\alpha_i \mid 0 < i < \ell\} \subset P$ is the set of simple roots;
- $P^{\vee} = \text{Hom}(P, \mathbb{Z})$ is the coweight lattice;
- $\Pi^{\vee} = \{h_i \mid 0 < i < \ell\} \subset P^{\vee}$ is the set of simple coroots.

We have

$$\langle h_i, \alpha_j \rangle = a_{ij}, \quad \langle h_i, \Lambda_j \rangle = \delta_{ij} \quad \text{for all } 0 \le i, j \le \ell.$$

The null root is δ , e.g.,

$$\delta = \begin{cases} \alpha_0 + \alpha_1 + \dots + \alpha_{\ell} & \text{if } X = A_{\ell}, \\ \alpha_0 + 2(\alpha_1 + \dots + \alpha_{\ell-1}) + \alpha_{\ell} & \text{if } X = C_{\ell}. \end{cases}$$

The quiver Hecke algebra R(n) associated with $(Q_{i,j}(u,v))_{i,j\in I}$ is the K-algebra generated by

$$\{e(\nu) \mid \nu = (\nu_1, \nu_2, \dots, \nu_n) \in I^n\}, \quad \{x_i \mid 1 \leq i \leq n\}, \quad \{\psi_j \mid 1 \leq j \leq n-1\},$$

subject to the following relations:

- (1) $e(\nu)e(\nu') = \delta_{\nu,\nu'}e(\nu), \; \sum_{\nu \in I^n} e(\nu) = 1, \; x_i x_j = x_j x_i, \; x_i e(\nu) = e(\nu)x_i.$
- (2) $\psi_i e(\nu) = e(s_i(\nu))\psi_i, \ \psi_i \psi_i = \psi_i \psi_i \text{ if } |i-j| > 1.$
- (3) $\psi_i^2 e(\nu) = Q_{\nu_i,\nu_{i+1}}(x_i,x_{i+1})e(\nu).$
- (5) $(\psi_{i+1}\psi_i\psi_{i+1} \psi_i\psi_{i+1}\psi_i)e(\nu) = \begin{cases} \frac{Q_{\nu_i,\nu_{i+1}}(x_i,x_{i+1}) Q_{\nu_i,\nu_{i+1}}(x_{i+2},x_{i+1})}{x_i x_{i+2}}e(\nu) & \text{if } \nu_i = \nu_{i+2}, \\ 0 & \text{otherwise}. \end{cases}$

A family of polynomials in affine type A

Fix $t \in K$ if $\ell = 1$ and $0 \neq t \in K$ if $\ell > 2$.

For $i, j \in I$, we take $Q_{i,j}(u, v) \in K[u, v]$ such that $Q_{i,j}(u, v) = 0$, $Q_{i,i}(u,v)=Q_{i,i}(v,u)$ and if $\ell\geq 2$,

$$Q_{i,i+1}(u,v) = u + v \text{ if } 0 \le i < \ell,$$

 $Q_{\ell,0}(u,v) = u + tv,$
 $Q_{i,j}(u,v) = 1 \text{ if } j \not\equiv_{\ell+1} i, i \pm 1.$

If $\ell = 1$, we take $Q_{0,1}(u, v) = u^2 + tuv + v^2$.

Cyclotomic quiver Hecke algebras

Set

$$\Lambda = a_0 \Lambda_0 + a_1 \Lambda_1 + \cdots + a_\ell \Lambda_\ell \in P^+, \ a_i \in \mathbb{Z}_{>0}.$$

The cyclotomic quiver Hecke algebra $R^{\Lambda}(n)$ is defined as the quotient of R(n) modulo the relation

$$x_1^{\langle h_{\nu_1},\Lambda\rangle}e(\nu)=0.$$

Cyclotomic quiver Hecke algebras

Set

$$\Lambda = a_0 \Lambda_0 + a_1 \Lambda_1 + \cdots + a_\ell \Lambda_\ell \in P^+, \ a_i \in \mathbb{Z}_{>0}.$$

The cyclotomic quiver Hecke algebra $R^{\Lambda}(n)$ is defined as the quotient of R(n) modulo the relation

$$x_1^{\langle h_{\nu_1},\Lambda\rangle}e(\nu)=0.$$

Set

$$\beta = b_0 \alpha_0 + b_1 \alpha_1 + \dots + b_\ell \alpha_\ell \in Q^+, \ b_i \in \mathbb{Z}_{\geq 0},$$

with $|\beta| = b_1 + \cdots + b_\ell = n$, we define

$$R^{\Lambda}(\beta) := e(\beta)R^{\Lambda}(n)e(\beta),$$

where
$$e(\beta) := \sum_{\nu \in I^{\beta}} e(\nu)$$
 with $I^{\beta} = \left\{ \nu = (\nu_1, \nu_2, \dots, \nu_n) \in I^n \mid \sum_{i=1}^n \alpha_{\nu_i} = \beta \right\}$.

Representation type of $R^{\Lambda}(\beta)$

• $R^{\Lambda}(\beta)$ is a symmetric algebra, see [Shan-Varagnolo-Vasserot, 2017].

- $R^{\Lambda}(\beta)$ is a symmetric algebra, see [Shan-Varagnolo-Vasserot, 2017].
- $R^{\Lambda}(\beta) \sim_{\mathsf{derived}} R^{\Lambda}(\beta')$ if both $\Lambda \beta$ and $\Lambda \beta'$ lie in

$$\{\mu - m\delta \mid \mu \in \max^+(\Lambda), m \in \mathbb{Z}_{\geq 0}\},\$$

which is the W-orbit of the set $P(\Lambda)$ of weights of $V(\Lambda)$, where W is the affine symmetric group and $V(\Lambda)$ is the integrable highest weight module of the quantum group. See: [Chuang-Rouquier, 2008].

Representation type of $R^{\Lambda}(\beta)$

- $R^{\Lambda}(\beta)$ is a symmetric algebra, see [Shan-Varagnolo-Vasserot, 2017].
- $R^{\Lambda}(\beta) \sim_{\text{derived}} R^{\Lambda}(\beta')$ if both $\Lambda \beta$ and $\Lambda \beta'$ lie in

$$\{\mu - m\delta \mid \mu \in \max^+(\Lambda), m \in \mathbb{Z}_{\geq 0}\},\$$

which is the W-orbit of the set $P(\Lambda)$ of weights of $V(\Lambda)$, where W is the affine symmetric group and $V(\Lambda)$ is the integrable highest weight module of the quantum group. See: [Chuang-Rouquier, 2008].

• A weight $\mu \in P(\Lambda)$ is maximal if $\mu + \delta \notin P(\Lambda)$. We define $\max^+(\Lambda) := \{ \mu \in P^+ \mid \mu \text{ is maximal} \}.$

Theorem (Kim-Oh-Oh 2020)

There is a bijection ϕ_{Λ} : max⁺(Λ) $\rightarrow P_{\nu}^{+}(\Lambda)$.

Set
$$\Lambda = a_{i_1}\Lambda_{i_1} + a_{i_2}\Lambda_{i_2} + \dots + a_{i_n}\Lambda_{i_n} \in P^+$$
. Then,
$$|\Lambda| := a_{i_1} + \dots + a_{i_r} \quad \text{and} \quad \text{ev}(\Lambda) := i_1 + \dots + i_n.$$

In type $A_{\ell}^{(1)}$, we have

$$P_k^+(\Lambda) := \left\{ \Lambda' \in P^+ \mid |\Lambda| = |\Lambda'| = k, \operatorname{ev}(\Lambda) \equiv_{\ell+1} \operatorname{ev}(\Lambda') \right\}.$$

In type $C_{\ell}^{(1)}$, we have

$$P_k^+(\Lambda) := \left\{ \Lambda' \in P^+ \mid |\Lambda| = |\Lambda'| = k, \operatorname{ev}(\Lambda) \equiv_2 \operatorname{ev}(\Lambda') \; \right\}.$$

Recall that $\langle h_i, \Lambda_i \rangle = \delta_{ii}$. We define $y_i := \langle h_i, \Lambda - \Lambda' \rangle$ and

$$Y_{\Lambda'}:=(y_0,y_1,\ldots,y_\ell)\in\mathbb{Z}^{\ell+1}.$$

Theorem (Ariki-Song-W. 2023)

The bijection $\phi_{\Lambda}^{-1}:P_k^+(\Lambda) o \mathsf{max}^+(\Lambda)$ is given by

$$\Lambda' \mapsto \Lambda - \sum_{i=0}^{\ell} x_i \alpha_i,$$

where $X = (x_0, x_1, \dots, x_\ell)$ is the unique solution of $AX^t = Y_{\Lambda'}^t$ satisfying

$$x_i \ge 0$$
 and $\min\{x_i\} = 0$.

e.g.,
$$P_3^+(\Lambda_0 + \Lambda_3 + \Lambda_6)$$
 in type $A_6^{(1)}$ consists of $\Lambda_0 + \Lambda_3 + \Lambda_6$, $\Lambda_1 + \Lambda_2 + \Lambda_6$, $\Lambda_1 + \Lambda_3 + \Lambda_5$, $\Lambda_0 + \Lambda_4 + \Lambda_5$, $\Lambda_2 + \Lambda_3 + \Lambda_4$, $2\Lambda_0 + \Lambda_2$, $\Lambda_4 + 2\Lambda_6$, $2\Lambda_5 + \Lambda_6$, $\Lambda_0 + 2\Lambda_1$, $2\Lambda_2 + \Lambda_5$, $\Lambda_1 + 2\Lambda_4$, $2\Lambda_0 + \Lambda_2$, $3\Lambda_3$.

We define

$$\Delta_{i,j} = \left\{ \begin{array}{ll} (0^i, 1^{j-i+1}, 0^{\ell-j}) & \text{if } i \leq j, \\ (1^{j+1}, 0^{i-j-1}, 1^{\ell-i+1}) & \text{if } i > j. \end{array} \right.$$

Maximal weights 00000000

The unique solution of $AX^t = Y_{\Lambda'}^t$ is given by $\min(X_{\Lambda'} + \Delta_{i,j}) = 0$. e.g.,

Let Δ_{fin}^+ be the set of positive roots of the root system of type X.

Then, the set $\Delta_{\text{fin}}^+ \sqcup (\delta - \Delta_{\text{fin}}^+)$ gives all arrows $\Lambda' \longrightarrow \Lambda''$.

- If $X = A_{\ell}$, $\Delta_{\text{fin}}^+ = \{ \epsilon_i \epsilon_i \mid 1 \le i < j \le \ell + 1 \}$.
- If $X = B_{\ell}$, $\Delta_{\text{fin}}^+ = \{ \epsilon_i \mid 1 \le i \le \ell \} \sqcup \{ \epsilon_i \pm \epsilon_i \mid 1 \le i < j \le \ell \}$.
- If $X = C_{\ell}$, $\Delta_{\text{fin}}^+ = \{2\epsilon_i \mid 1 \le i \le \ell\} \sqcup \{\epsilon_i \pm \epsilon_i \mid 1 \le i < j \le \ell\}$.
- If $X = D_{\ell}$, $\Delta_{6n}^+ = \{ \epsilon_i \pm \epsilon_i \mid 1 \le i < j \le \ell \}$.

Key Lemmas

Maximal weights

000000000

Lemma 1

The quiver $\vec{C}(\Lambda)$ of $P_k^+(\Lambda)$ is a finite connected quiver.

Key Lemmas

Lemma 1

The quiver $\vec{C}(\Lambda)$ of $P_k^+(\Lambda)$ is a finite connected quiver.

Lemma 2

Suppose $\Lambda = \overline{\Lambda} + \widetilde{\Lambda}$. There is a directed path

$$\Lambda^{(1)} \longrightarrow \Lambda^{(2)} \longrightarrow \dots \longrightarrow \Lambda^{(m)} \in \vec{C}(\bar{\Lambda})$$

if and only if there is a directed path

$$\Lambda^{(1)} + \tilde{\Lambda} \longrightarrow \Lambda^{(2)} + \tilde{\Lambda} \longrightarrow \cdots \longrightarrow \Lambda^{(m)} + \tilde{\Lambda} \in \vec{C}(\Lambda).$$

Lemma 3

Suppose that there is an arrow $\Lambda' \longrightarrow \Lambda''$ in $\vec{C}(\Lambda)$. If $R^{\Lambda}(\beta_{\Lambda'})$ is representation-infinite (resp. wild), then so is $R^{\Lambda}(\beta_{\Lambda''})$.

Suppose that there is an arrow $\Lambda' \longrightarrow \Lambda''$ in $\vec{C}(\Lambda)$. If $R^{\Lambda}(\beta_{\Lambda'})$ is representation-infinite (resp. wild), then so is $R^{\Lambda}(\beta_{\Lambda''})$.

Maximal weights 000000000

Lemma 4

Write $\Lambda = \bar{\Lambda} + \tilde{\Lambda}$. If $R^{\bar{\Lambda}}(\beta)$ is representation-infinite (resp. wild), then $R^{\Lambda}(\beta)$ is representation-infinite (resp. wild).

Set
$$i_0 := i_h$$
, $i_{h+1} := i_1$ and write

$$\Lambda = m_{i_1}\Lambda_{i_1} + \cdots + m_{i_i}\Lambda_{i_i} + m_{i_{i+1}}\Lambda_{i_{i+1}} + \cdots + m_{i_h}\Lambda_{i_h}$$

Rep-finite and tame sets in affine type A

Maximal weights

Set $i_0 := i_h$, $i_{h+1} := i_1$ and write

$$\Lambda = m_{i_1}\Lambda_{i_1} + \cdots + m_{i_j}\Lambda_{i_j} + m_{i_{j+1}}\Lambda_{i_{j+1}} + \cdots + m_{i_h}\Lambda_{i_h}$$

For any 1 < i < h, we define

$$\begin{split} F(\Lambda)_0 &:= \left\{ \Lambda_{i_j,i_j} \mid m_{i_j} = 2 \right\} \\ F(\Lambda)_1 &:= \left\{ \Lambda_{i_j,i_{j+1}} \mid m_{i_j} = 1, m_{i_{j+1}} = 1 \right\} \\ T(\Lambda)_1 &:= \left\{ \Lambda_{i_j,i_{j+1}} \mid m_{i_j} = 1, m_{i_{j+1}} > 1 \text{ or } m_{i_j} > 1, m_{i_{j+1}} = 1 \right\} \\ T(\Lambda)_2 &:= \left\{ (\Lambda_{i_j,i_j})_{i_j-1,i_j+1} \mid m_{i_j} = 2, i_{j-1} \not\equiv_e i_j - 1, i_{j+1} \not\equiv_e i_j + 1 \right\} \text{ if } \operatorname{char} K \neq 2 \\ T(\Lambda)_3 &:= \left\{ (\Lambda_{i_j,i_j})_{i_j,i_j+1} \operatorname{or } i_{j-1,i_j} \mid m_{i_j} = 3, i_{j+1} \not\equiv_e i_j + 1 \text{ or } i_{j-1} \not\equiv_e i_j - 1 \right\} \text{ if } \operatorname{char} K \neq 3 \\ T(\Lambda)_4 &:= \left\{ (\Lambda_{i_j,i_j})_{i_j,i_j} \mid m_{i_j} = 4 \right\} \text{ if } \operatorname{char} K \neq 2 \\ T(\Lambda)_5 &:= \left\{ (\Lambda_{i_j,i_j})_{i_j,i_p} \mid m_{i_j} = m_{i_p} = 2, i_p \not\equiv_e i_j \pm 1, j \neq p \right\} \end{split}$$

Set

$$\mathfrak{F}(\Lambda) = \{\beta_{\Lambda'} \mid \Lambda' \in \{\Lambda\} \cup F(\Lambda)_0 \cup F(\Lambda)_1\},\$$
$$\mathfrak{T}(\Lambda) = \{\beta_{\Lambda'} \mid \Lambda' \in \cup_{1 \le j \le 5} T(\Lambda)_j\}.$$

Maximal weights 000000000

Theorem (Ariki-Song-W. 2023)

Suppose le(Λ) > 3. Then, $R^{\Lambda}(\beta)$ is representation-finite if $\beta \in \mathcal{F}(\Lambda)$, tame if one of the following holds:

- $\beta = \delta$. $\Lambda = k\Lambda_i$. $\ell = 1$ with $t \neq \pm 2$.
- $\beta = \delta$, $\Lambda = k\Lambda_i$, $\ell \geq 2$ with $t \neq (-1)^{\ell+1}$.
- $\beta \in \mathfrak{T}(\Lambda)$.

Otherwise, it is wild.

00000000

References

- [A17] S. Ariki, Representation type for block algebras of Hecke algebras of classical type. *Adv. Math.* **317** (2017), 823–845.
- [AP16] S. Ariki and E. Park, Representation type of finite quiver Hecke algebras of type $D_{\ell+1}^{(2)}$. Trans. Amer. Math. Soc. 368 (2016), 3211–3242.
- [KK12] S.-J. Kang and M. Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras. *Invent. Math.* 190 (3) (2012), 699–742.
- [KOO20] Young-Hun Kim, se-jin Oh and Young-Tak Oh, Cyclic sieving phenomenon on dominant maximal weights over affine Kac-Moody algebras. Adv. Math. 374 (2020), 107336.

- [KL09] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups, I. *Represent. Theory* 13 (2009), 309–347.
- [R08] R. Rouquier, 2-Kac-Moody algebras. Preprint (2008), arXiv: 0812.5023.
- [S06] A. Skowroński, Selfinjective algebras: finite and tame type, Trends in Representation Theory of Algebras and Related Topics, 169–238, Contemp. Math. Amer. Math. Soc. 406, 2006.

Thank you! Any questions?

```
Bound quiver algebras;
Representation type: rep-finite, tame, wild.
```

```
Lie theoretic data and Cartan datum; Quiver Hecke algebras; Cyclotomic quiver Hecke algebras; Representation type of R^{\Lambda}(\beta); max<sup>+</sup>(\Lambda) and P_k^+(\Lambda); Rep-finite and tame sets in affine type \Lambda.
```