

N 88-1594 3⁸⁻³⁴

116640

1-14

10
343395

Peacekeeper Tank Slash Model

Material Presented by

Sidney H. Schwartz

Rockwell International,
Rocketdyne Division

MOTIVATION FOR ANALYZING SLOSH IN PEACEKEEPER

ALLOWABLE VEHICLE ERRORS FOR NOSE CONE EJECTION CLEARANCE

VEHICLE MANEUVER - SLOSH PROBLEM

CURRENT MODELS UNSUITABLE

- PENDULUM MODEL (MMA) NOT APPLICABLE IN
 - ZERO G
 - BAFFLED TANKS
- SOLA-VOF MODEL (MDAC) INSUFFICIENT
 - 2-D (3-D NECESSARY)
 - STAIR STEP TANK WALLS
 - NO BAFFLE/SCREEN RESISTANCE

SOLA SLOSH MODEL

- DEVELOPED BY FLOW SCIENCES INC. FOR ROCKETDYNE TO HANDLE:
 - 3-D NAVIER STOKES EQUATIONS IN FINITE DIFFERENCE FORM
 - MULTIPLE FREE SURFACES
 - VISCOUS FLUID
 - LIMITED COMPRESSIBILITY
- MODEL ACCOMMODATES:
 - GENERALIZED OBSTACLES
 - POROUS BAFFLES
 - CURVED WALL SIMULATION
 - GENERALIZED ROUTINE FOR INPUT OF MOTION FORCING FUNCTIONS
- MODEL CALCULATES TANK FORCES AND MOMENTS CAUSED BY LARGE AMPLITUDE SLOSH

SLOSH FORCE/MOMENT PREDICTION DEPENDS ON

- INITIAL FREE SURFACE CONFIGURATION
- AMOUNT OF LIQUID IN TANK (PERCENT FILL)
 - INTERNAL TANK GEOMETRY (INCLUDING BAFFLES)
 - LIQUID PROPERTIES
- PAST HISTORY OF MANEUVER (INSTANTANEOUS VELOCITY AND DISPLACEMENT FIELDS OF LIQUID)

SOLA SLOSH SURFACE SPECIFICATION

- GENERATORS PERMIT USER TO SPECIFY GEOMETRY OF TANK WALLS AND BAFFLE LOCATIONS
- WALL SURFACES ARE SMOOTH RATHER THAN STEPPED (REPRESENTED BY VOF ALGORITHM)— MUCH BETTER WALL FORCE PREDICTIONS

CODE VALIDATION

- COMPARE EXPERIMENTAL MODEL WITH COMPUTER GENERATED MODEL
- EXPERIMENTAL MODEL
 - BUILD MODEL TANK WITH BAFFLES
 - TEST APPARATUS WITH SINGLE AXIS OF ROTATION FOR SIMPLICITY
 - TEST APPARATUS IN LOW GRAVITY ENVIRONMENT USING KC-135
 - MEASURE FORCES AND MOMENTS
- COMPUTER MODEL
 - USE KC-135 TANK VELOCITY AND ACCELERATION DATA AS INPUT TO MODEL
 - MODEL OUTPUT (PREDICTED FORCES AND MOMENTS) COMPARED WITH EXPERIMENTAL DATA

PROPELLANT STORAGE ASSEMBLY

LOW-G ROTATIONAL TESTING
(VIEW LOOKING AFT IN AIRCRAFT)

ORIGINAL PAGE IS
OE POOR QUALITY

KC 135 EXPERIMENTAL MODEL COMPUTATIONAL MODEL COMPARISON

ROTATIONAL MOTION IN EXPERIMENT

3-D PK TANK MODEL (P1A3R2 DATA)

TEST
YANKEE

SOLA-SLOSH (RD)
PENDULUM (MMA)
SOLA-VOF (MDAC)

MODEL COMPUTATION OBSERVATIONS

- COARSE GRID CASE RESULTS AGREED WELL WITH SAME CASE USING A FINE GRID
- COARSE GRID CASE COST LESS THAN ONE PERCENT OF COST TO RUN FINE GRID
- PRIMARY MOTION OF LIQUID DUE TO FLUCTUATING INERTIAL AND BODY FORCES
- VISCOUS DRAG UNIMPORTANT IN THIS ANALYSIS
- MODEL RESULTS ACCURATE ENOUGH TO PINPOINT FAULTY TRANSDUCERS - SUBSEQUENTLY CONFIRMED BY EXAMINING TRANSDUCERS

SLOSH-3D RUN SPECIFICS OF KC-135

SERIES A4 RUN 3 TEST SIMULATION

- COARSE MESH (3 x 6 x 8)
- LATERAL SYMMETRY
- COSTS \$75 AT PRIORITY 3
- FINER MESH (5 x 10 x 20) BY FSI YIELDS SIMILAR RESULTS

MODEL COMPUTATION RESULTS

- SOME DISCREPANCY BETWEEN MODEL RESULTS AND DATA
 - BELIEVED TO BE DUE TO INACCURATE DISPLACEMENT AND ACCELERATION INPUTS
 - THESE INPUTS MEASURED AT CENTER OF ROTATION RATHER THAN ON TANK ITSELF - "ARM FLEXIBLE"
 - AS FREE SURFACE MOVES THROUGH CELL GET COMPUTATIONAL SINGULARITY EXAGGERATED IN COARSE MESH - SORT OF A COMPUTATIONAL "WATER HAMMER"
 - MOMENT AND FORCE SPIKES (COMPRESSIBILITY IN SOLUTION HELPS TO DEPRESS MAGNITUDE)

KC-135 PHASE I TEST

SERIES A4 RUN 3

ANALYSIS

- . EXCELLENT LOW FREQUENCY CORRELATION (≤ 0.5 Hz)
- . POOR CORRELATION NEAR TEST STRUCTURE RESONANCE (~ 3 Hz)
- . REASONABLE HIGHER FREQUENCY CORRELATION

ORIGINAL PAGE IS
OF POOR QUALITY

MODEL/EXPERIMENT COMPARISON

PHASE I, SERIES A2, RUN 2

30% FILL, NO BAFFLES

— EXPERIMENT

- - - - - MODEL

MODEL/EXPERIMENT COMPARISON

PHASE I, SERIES A4-1, RUN 1

30% FILL, RING/CONE BAFFLES

— EXPERIMENT

- - - - - MODEL

MODEL/EXPERIMENT COMPARISON
PHASE II, SERIES C2, RUN 3
40% FILL, RING/CONE BAFFLES

— EXPERIMENT
- - - - MODEL

MODEL/EXPERIMENT COMPARISON

PHASE I, SERIES A5-1, RUN 2

60% FILL, RING/CONE BAFFLES

— EXPERIMENT
- - - - MODEL

ORIGINAL PAGE IS
OF POOR QUALITY

SLOSH
SIMULATION
(SOLA-VOF)

PROPELLANT RESIDUAL MOTION ANALYSIS

FLOW CHART

- SLOSH MODEL INTEGRATED WITH AUTONETICS CONTROL MODEL TO EVALUATE BAFFLE PERFORMANCE IN A WORST CASE DUTY CYCLE
- AUTONETICS REPORT OF 15 JUNE 1984, CONCLUDED THAT BAFFLES WERE NOT NECESSARY