1. Consider the following common-emitter amplifier circuit (Figure 1). Estimate the Q-point, small signal voltage gain, input and output resistances. Given that $\beta = 65$ and $V_A = 50$ V. Assume $V_{BE ON} = 0.7$ V.

Figure 1

2. For the following amplifier circuit (shown in Fig. 2) the Si BJT has $\beta = 200$ and $V_A = 150$ V.

- (a) Calculate I_C, I_B, I_E, V_{EC}. You can ignore the Early effect in DC bias calculations.
- (b) Draw the AC equivalent circuit and determine the AC model parameters.
- (c) Calculate the voltage gain.

1 7 0 0 m

P-m-P Common emitter amplifier Assuming the BJT is in active mode: NEB = 0.7 V, fc>0 and NEc>0.7 V. Apply KVL in B-E Loop, 3 = 2.3 x 103 x IE + VEB 800 C-E 100P, 3 = 2.3×103 1E+ VEC+ :. Yec = 1.4 V (> 0.7 To = VA = 150 = 150 KSZ ; NATONEC

- 5. The parameters of the transistor in the circuit in Figure 5 are $\beta = 100$ and $V_A = 100$ V.
- (a) Find the dc voltages at the base and emitter terminals.
- (b) Find R_C such that $V_{CEQ} = 3.5 \text{ V}$.
- (c) Assuming C_C and C_E act as short circuits, determine the small-signal voltage gain $A_v = v_o/v_s$.
- (d) Repeat part (c) if the magnitude of source resistance (Rs) is changed to 500 Ω.

Figure 5

Av =
$$-g_m \times \frac{PB \times PS}{PB \times PS} \times (Pe \times PS)$$

$$= -74.9 \quad (Comment: gain reduces when Ps increases)$$

6. Find the expression of small signal voltage gain for the following circuit (Figure 6)

Figure 6

