# ECON 8854: Costly Capacity & Price Dispersion (Dana 1999)

Michael D. Grubb

Boston College

RAND Journal of Economics Vol. 30, No. 4, Winter 1999 pp. 632–660

# Equilibrium price dispersion under demand uncertainty: the roles of costly capacity and market structure

James D. Dana, Jr.\*

#### Model—Demand

- Measure  $\theta \sim F(\theta)$  consumers with  $\theta \in [0, \overline{\theta}]$ , each have unit demand with value  $v \sim^{iid} G(v)$ .
- Let D(p) = 1 G(p) be the fraction with value above p.
- Demand at a single price p is

$$D(p,\theta) = \theta D(p)$$
.



Note that  $D(\overline{p}) = 0$ .

### Model—Supply

- Marginal capacity cost  $\lambda$  and marginal production cost c.
- Before learning  $\theta$ , firms choose a quantity to sell at each price.
  - Like choosing a pdf that integrates to total capacity.
  - Each firm chooses  $q^i(p)$  which is positive on  $[\underline{p}, \bar{p}]$ , and integrates to  $Q^i(p) = \int_p^p q^i(x) dx$ . Total capacity is  $K^i = Q^{\bar{i}}(\bar{p})$ .
- Firm choices aggregate to  $q(p) = \sum_{i} q^{i}(p)$ , and  $Q(p) = \sum_{i} Q^{i}(p)$ .
- Proportional rationing.
- ullet Note: Were heta a known constant, its value would not affect price.
  - functional form assumption  $D(p, \theta) = \theta D(p)$  and constant MC.
  - ullet Variation in heta would not be enough to create price dispersion.
  - Instead, price dispersion will follow costly capacity  $\lambda > 0$  and uncertainty about  $\theta$  at the time prices and capacity are chosen.

#### Residual Demand

Residual demand at price p given a price distribution q(p) is:

$$RD(p,\theta) = D(p,\theta) - \int_{p}^{p} \frac{D(p,\theta)}{D(x,\theta)} q(x) dx.$$

This is extremely elegant!

#### Residual Demand—Intuition Part 1

Imagine sales at one price  $\tilde{p} < p$ . Then

$$RD(p, \theta) = D(p, \theta) - \frac{D(p, \theta)}{D(\tilde{p}, \theta)}q(\tilde{p})$$

- Demand would have been  $D(p,\theta)$  had no sales taken place at price  $\tilde{p}$ .
- But  $q(\tilde{p})$  units were purchased at the lower price, and hence there are  $q(\tilde{p})$  fewer consumers in the market place.
- Residual demand is not simply  $D\left(p,\theta\right)-q\left(\tilde{p}\right)$ 
  - some of those who bought at price  $\tilde{p}$  had values  $v \in [\tilde{p}, p)$  so were already excluded from  $D(p, \theta)$ .
- How many sales at price  $\tilde{p}$  went to individuals with  $v \geq p$ ?
  - Proportional sales: Individuals with  $v \geq p$  made up fraction  $\frac{D(p,\theta)}{D(\vec{p},\theta)}$  of those trying to buy  $\rightarrow$  also made up fraction  $\frac{D(p,\theta)}{D(\vec{p},\theta)}$  of the sales.
- Thus we subtract  $\frac{D(p,\theta)}{D(\tilde{p},\theta)}q(\tilde{p})$  from demand.

#### Residual Demand—Intuition Part 2

Imagine sales two lower prices  $\tilde{p}_1 < \tilde{p}_2 < p$ :

• RD at price p given sales at all prices  $\tilde{p}_1$  and lower have taken place:

$$RD(p, \theta; \tilde{p}_1) = D(p, \theta) - \frac{D(p, \theta)}{D(\tilde{p}_1, \theta)} q(\tilde{p}_1).$$

- RD at price p given sales at all prices  $\tilde{p}_2$  and lower have taken place?
- Want to subtract  $q(\tilde{p}_2)$  units discounted by the fraction of those sales that went to consumers with values  $v \geq p$ . Similar logic, fraction =

$$\frac{RD\left(p,\theta;\tilde{p}_{1}\right)}{RD\left(\tilde{p}_{2},\theta;\tilde{p}_{1}\right)} = \frac{D\left(p,\theta\right)\left(1 - \frac{1}{D\left(\tilde{p}_{1},\theta\right)}q\left(\tilde{p}_{1}\right)\right)}{D\left(\tilde{p}_{2},\theta\right)\left(1 - \frac{1}{D\left(\tilde{p}_{1},\theta\right)}q\left(\tilde{p}_{1}\right)\right)} = \frac{D\left(p,\theta\right)}{D\left(\tilde{p}_{2},\theta\right)}.$$

Simplification happily saves us from a recursive formula!

#### Residual Demand

Discrete case: 
$$RD(p_i, \theta) = D(p_i, \theta) - \sum_{j < i} \frac{D(p_i, \theta)}{D(p_j, \theta)} q(p_j)$$

Continuous Case: 
$$RD(p, \theta) = D(p, \theta) - \int_{\underline{p}}^{p} \frac{D(p, \theta)}{D(x, \theta)} q(x) dx$$
.

#### **Definitions:**

- $\rho(\theta) = \max$  sales price given  $\theta$ :  $RD(\rho(\theta), \theta) = 0$
- $\theta\left(p\right)=$  demand state at which p= max sales price:  $RD\left(p,\theta\left(p\right)\right)=0$

Re-writing: 
$$RD\left(p,\theta\right)=\theta D\left(p\right)\left(1-\int_{\underline{p}}^{p}\frac{q\left(x\right)}{\theta D\left(x\right)}dx\right)$$
  
We have:  $\theta\left(p\right)=\int_{p}^{p}\frac{q\left(x\right)}{D\left(x\right)}dx$ 

# Perfect Competition<sup>1</sup>

#### Definitions:

- $q^*(p) =$  equilibrium market price distribution
- $y^*(p) =$  equilibrium probability that items with price p are sold

$$y(p) = 1 - F(\theta(p)) = 1 - F\left(\int_{\underline{p}}^{p} \frac{q(x)}{D(x)} dx\right)$$

Competitive equilibrium condition—zero profit on each unit of capacity:

$$(p-c)y(p)-\lambda=0$$

or solving for p:

$$p = c + \frac{\lambda}{y(p)} = c + \frac{\lambda}{1 - F(\theta(p))} = c + \frac{\lambda}{1 - F\left(\int_{\underline{p}}^{p} \frac{q(x)}{D(x)} dx\right)}$$

 $\rightarrow$  Price of each unit of capacity related to probability of sale.

<sup>&</sup>quot;First described by Prescott (1975)... developed more formally by Eden (1990)"

# Perfect Competition—Equilibrium Price Distribution

- Zero-profit condition:  $(p-c)y(p) \lambda = 0$
- Rearranging terms:  $1 y(p) = 1 \frac{\lambda}{p-c}$
- Substituting  $y(p) = 1 F(\theta(p))$  and applying  $F^{-1}$ :

$$\int_{\underline{p}}^{p} \frac{q(x)}{D(x)} dx = F^{-1} \left( 1 - \frac{\lambda}{p - c} \right)$$

• Differentiating w.r.t p on both sides:

$$\frac{q(p)}{D(p)} = \frac{1}{f\left(F^{-1}\left(1 - \frac{\lambda}{p - c}\right)\right)} \frac{d}{dp} \left(1 - \frac{\lambda}{p - c}\right) = \frac{\lambda(p - c)^{-2}}{f\left(F^{-1}\left(1 - \frac{\lambda}{p - c}\right)\right)}$$

and therefore: 
$$q(p) = D(p) \frac{\lambda (p-c)^{-2}}{f(F^{-1}(1-\frac{\lambda}{p-c}))}$$

# Perfect Competition—Equilibrium Price Support $\left[c+\lambda,\overline{ar{p}} ight]$

Minimum price solves y(p) = 1.

• As 
$$y(p) = 1 - F\left(\int_{\underline{p}}^{p} \frac{q(x)}{D(x)} dx\right)$$

$$y\left(\underline{p}\right) = 1 - F\left(\int_{\underline{p}}^{\underline{p}} \frac{q(x)}{D(x)} dx\right) = 1 - F(0) = 1$$

• As  $p = c + \frac{\lambda}{V(p)}$ ,  $y(\underline{p}) = 1$  yields

$$p = c + \lambda$$

# Perfect Competition—Equilibrium Price Support $\left[c+\lambda,\overline{\overline{p}} ight]$

The maximum price is  $\overline{p}$  (the price at which  $D(\overline{p}) = 0$ )

- Why? If max price were  $p^{\max} < \overline{\overline{p}}$ , could charge  $p^{\max} + \varepsilon$  & profit.
- Sales little lower, still strictly positive in same states of  $\theta$ :

$$RD\left(p^{\max} + \varepsilon, \theta\right) = \theta D\left(p^{\max} + \varepsilon\right) \left(1 - \int_{\underline{p}}^{p^{\max}} \frac{q\left(x\right)}{D\left(x, \theta\right)} dx\right)$$
$$= \frac{D\left(p^{\max} + \varepsilon\right)}{D\left(p^{\max}\right)} RD\left(p^{\max}, \theta\right)$$

Essentially same probability of sale at higher price.

- Only when  $p^{\max} = \overline{\overline{p}}$ , does this argument not apply.
- Note, this relies on  $y(p^{\text{max}}) > 0$ , which must be true for  $p^{\text{max}}$  to be finite and equal  $c + \lambda/y(p^{\text{max}})$ .<sup>2</sup>

Michael D. Grubb (Boston College)

 $<sup>^{2}</sup>$ In fact,  $y\left(\overline{\bar{p}}
ight)=rac{\lambda}{\overline{\bar{p}}_{-c}}\in(0,1)$ . True if  $\overline{\bar{p}}>c+\lambda$ , as required for market operation.

#### Monopoly Profit Function

If a monopolist chooses q(p), then profits are:

$$\pi(q) = \int_{\underline{\theta}}^{\overline{\theta}} \left( \int_{\underline{p}}^{\rho(\theta)} (p-c) q(p) dp - \lambda \int_{\underline{p}}^{\overline{p}} q(p) dp \right) f(\theta) d\theta$$

Integrating by parts:

$$\pi(q) = \int_{p}^{\bar{p}} ((1 - F(\theta(p)))(p - c) - \lambda) q(p) dp$$

# Monopoly FOC

Equation (7):

$$(1 - F(\theta(p)))(p - c) - \lambda - \int_{\theta(p)}^{\theta(\bar{p})} (\rho(\theta) - c) \frac{D(\rho(\theta))}{D(p)} f(\theta) d\theta = 0$$

Equivalent to:

$$p = c + rac{\lambda}{1 - F(\theta(p))} + E\left[\left(\rho(\theta) - c\right) rac{D(\rho(\theta))}{D(p)}\middle| \theta \ge \theta(p)
ight]$$

#### Monopoly FOC—Intuition

Standard Monopoly FOC:

$$MR = MC \leftrightarrow P + P'Q = MC \leftrightarrow P = MC - P'Q$$

• Dana's (1999) Monopoly FOC:

$$p = c + rac{\lambda}{1 - F(\theta(p))} + E\left[\left(
ho(\theta) - c\right) rac{D(\rho(\theta))}{D(p)}\middle| heta \ge \theta(p)
ight]$$

Like standard formula with different MC and MR

- Effective MC is  $c + \lambda/(1 F(\theta(p)))$ 
  - Inflates cost of capacity by  $1/\Pr(sale)$  rather than deflating margin (p-c) by  $\Pr(sale)$ .
- MR is  $p E\left[\left(\rho\left(\theta\right) c\right) \frac{D(\rho(\theta))}{D(p)} \middle| \theta \ge \theta\left(p\right)\right]$ 
  - In state  $\theta > \theta(p)$ , the max sales price is  $\rho(\theta) > p$ . Selling one more unit at price p, means  $D(\rho(\theta))/D(p)$  units are sold to folks with value  $\rho(\theta)$ , so that many fewer units sold at price  $\rho(\theta)$ .
  - $E\left[\left(\rho\left(\theta\right)-c\right)\frac{D(\rho\left(\theta\right))}{D(\rho)}\middle|\theta\geq\theta\left(p\right)\right]$  is expected loss given  $\theta\geq\theta\left(p\right)$ .

# Derivation y(p) (eq 8) and q(p) (eq 9)

To derive (8) and (9), recall  $y(p) = 1 - F(\theta(p))$ , multiply both sides by D(p) and write FOC as

$$y(p)(p-c)D(p) = \lambda D(p) + \int_{\theta(p)}^{\theta(\bar{p})} (\rho(\theta) - c)D(\rho(\theta))f(\theta)d\theta$$

Also,  $y'(p) = -f(\theta(p))\theta'(p)$ , so we can do a change of variables andwrite FOC as

$$y(p)(p-c)D(p) = \lambda D(p) + \int_{p}^{\overline{p}} (x-c)D(x)f(\theta(x))\theta'(x) dx$$

$$y(p)(p-c)D(p) = \lambda D(p) - \int_{p}^{\bar{p}} (x-c)D(x)y'(x) dx$$

Now, differentiate both sides wrt p

$$y'(p) D(p)(p-c) + y(p) (D'(p)(p-c) + D(p))$$
  
=  $\lambda D'(p) + (p-c) D(p) y'(p)$ 

# Derivation y(p) (eq 8) and q(p) (eq 9) continued

y' terms cancel:

$$y(p)(D'(p)(p-c)+D(p))=\lambda D'(p)$$

Solve for y(p) to get eq(8):

$$y(p) = \frac{\lambda D'(p)}{D'(p)(p-c) + D(p)}$$

Now, recall that  $\theta\left(p\right) = \int_{\underline{p}}^{p} \frac{q(x)}{D(x)} dx$ , so  $\theta'\left(p\right) = \frac{q(p)}{D(p)}$  and  $q\left(p\right) = D\left(p\right)\theta'\left(p\right)$ . Moreover, from  $y'\left(p\right) = -f\left(\theta\left(p\right)\right)\theta'\left(p\right)$  we have  $\theta'\left(p\right) = -y'\left(p\right)/f\left(\theta\left(p\right)\right)$ . Therefore:

$$q(p) = D(p)\theta'(p) = -D(p)\frac{y'(p)}{f(\theta(p))}$$

Substituting in  $\theta(p) = F^{-1}(1 - y(p))$  we get eq(9).

### Monopoly Markup Equation Revisited

Now we can re-write eq (8):

$$D'(p)(p-c) + D(p) = \frac{\lambda D'(p)}{y(p)}$$
$$p = c + \frac{\lambda}{y(p)} - \frac{D(p)}{D'(p)} = c + \frac{\lambda}{y(p)} - \frac{p}{\varepsilon_d}$$

- Same as in the standard monopoly problem
  - except MC adjusted for cost of capacity, inflated by 1/ Pr(sale).
- $\lambda = 0$ : unique price charged = standard monopoly price
- $\lambda > 0$ : y(p) is determined so that this holds at all p in  $[\underline{p}, \overline{p}]$ .

#### Homework Hint

See Dana (1999) Section 3 "A two-demand-state example" for help with the homework. Under Dana's (1999) assumptions

- $P_L$  and  $Q_L$  Maximize profits in the low state
- $\bullet$   $P_H$  and  $Q_H$  Maximize expected "residual" profits from the high state

# Oligopoly

- ullet Dana (1999) extends results to oligopoly, for  $\lambda$  sufficiently large
- Monopoly and competition results are limiting cases
- Timing: Oligopoly model assumes firms choose prices and capacity at the same time given a capacity cost  $\lambda$ .
  - The results are the same as if there were a **binding** capacity constraint that led to shadow cost of capacity  $\lambda$ .
- $\bullet$  This is not the same as a sequential game where capacity is chosen at cost  $\lambda$  before price.
  - That game may be more natural, and would correspond more closely to Cournot competition.
  - Model in Dana (1999) closer to Bertrand.

#### Price Dispersion and Market Structure

Dana (1999): Price dispersion increases with competition

- Prop 5: support of prices widens with competition
- Prop 6: variance of price higher with perfect competition than monopoly given linear demand.

# Price Dispersion and Market Structure—Proposition 5

Monopoly Equilibrium Price Support: 
$$\left[c + \lambda - \frac{D(p)}{D'(\underline{p})}, \overline{\overline{p}}\right]$$

- By same logic as competitive case
  - Maximum price is  $\overline{p}=\overline{\overline{p}}$
  - Minimum price set at y(p) = 1

• So 
$$\underline{p} = c + \lambda - \frac{D(\underline{p})}{D'(\underline{p})}$$

- Prop 5: Narrower support of prices:
  - top of support is the same
  - bottom is shifted up due to monopoly markup
- This result is misleading.
  - Support of prices is not a good measure of dispersion.
     A narrow support can be consistent with a higher variance.
  - If the firm must offer a finite number *k* prices, then maximum prices can vary with market structure.
  - See homework.

### Price Dispersion and Market Structure—Proposition 6

Prop 6: variance of price higher with perfect competition than monopoly given linear demand.

- Intuition:
  - Constant MC + linear demand  $\rightarrow$  PTR<sub>monopoly</sub> =  $\frac{1}{2}$ .
  - ullet Constant MC (perfectly elastic supply) ightarrow PTR<sub>competitive</sub> = 1.
  - ullet Constant MC + linear demand o competition increases the PTR
  - Increase in PTR  $\rightarrow$  changes in  $\lambda/y$  (p) get passed through more  $\rightarrow$  more price dispersion.
- General result: price dispersion increases with PTR.
  - May or many not coincide with increasing competition.
- Glen Weyl has pointed out that in IO we often inadvertently assume our conclusions by specifying a demand system with PTR<1. See homework for an example with PTR > 1.
- Bottom line: Price dispersion likely increases with PTR, which often (but not always) increases with competition.

# Uncertain Demand but Costless Capacity

- Suppose  $\lambda = 0$ 
  - Capacity costs are sunk at the time prices are chosen
  - Always excess capacity (it is all used with probability 0)
- Dana (1999) predicts no price dispersion for monopoly or perfect competition.
- For monopoly, result relies on the assumption  $D(\theta, p) = \theta D(p)$ .
  - Relaxing this assumption can lead to price dispersion under monopoly but not perfect competition.
  - See homework.

#### References I

- Dana, James D., J. (1999). Equilibrium Price Dispersion under Demand Uncertainty: The Roles of Costly Capacity and Market Structure. *RAND Journal of Economics* 30(4), 632–660.
- Eden, B. (1990). Marginal Cost Pricing When Spot Markets Are Complete. *Journal of Political Economy 98*(6), 1293–1306. doi:10.1086/261735.
- Prescott, E. C. (1975). Efficiency of the Natural Rate. *Journal of Political Economy 83*(6), 1229–1236. doi:10.1086/260391.