L-5: Descriptive and inferential statistics

Agenda

- ➤ Quick Review of the topics covered in previous class
- ➤ Normal Distribution
- > Sampling
- Testing of Hypothesis

innovate

Example

Technicians regularly make repairs when breakdowns occur on an automated production line. Janak, who services 20% of the breakdowns, makes an incomplete repair 1 time in 20. Tarun , who services 60% of the breakdowns , makes an incomplete repair 1 time in 10 Gautham, who services 15% of the breakdowns, makes an incomplete repair 1 time in 10 and Prasad ,who services 5% of the breakdowns, makes an incomplete repair 1 time in 20. For the next problem with the production line diagnosed as being due to an initial repair that was incomplete, what is the probability that this initial repair was made by Janak?

Solution

Let A be the event that the initial repair was incomplete

B₁ that the repair was made by Janak

B₂ that it was made by Tarun,

B₃ that it was made by Gautham,

B₄ that it was made by Prasad,

$$P(B_1/A) = P(B_1)P(A/B_1) = P(B_1)P(A/B_1) + P(B_2)P(A/B_2) + P(B_3)P(A/B_3) + P(B_4)P(A/B_4)$$

_

$$\frac{(0.20)(0.05)}{(0.20)(0.05)+(0.60)(0.10)+(0.15)(0.10)+(0.05)(0.05)}$$

= 0.114

Problem

On the average, five cars arrive at a particular car wash every hour. Let X count the number of cars that arrive from 10AM to 11AM. (mean = 5). What is the probability that no car arrives during this period?

Poisson dist.
$$\lambda = 5$$

$$P(x) = \frac{-\lambda x}{x!}$$

$$= \frac{-5}{0!} = \frac{-5}{0!}$$

Problem

Suppose the car wash is in operation from 8AM to 6PM, and we let Y be the number of customers that appear in this period.(lambda = 50).

What is the probability that there are between 48 and 50 customers, inclusive?

Clusive?

$$7 = 5$$
,

 $P(48 \le 7 \le 50) = P(48) + P(49) + P(50)$
 $-5 = 548$
 $+ \frac{-5}{481} + \frac{-5}{491} + \frac{-5}{50!}$

Normal distribution

$$-\left(2 - \mu\right)^2$$

Normal Distribution

Probability density function - f(X)

$$f(X) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-1/2(X-\mu)^2}{\sigma^2}}$$

Normal Distribution

Normal Curve or Craussian

Three Common Areas Under the Curve

Three Normal distributions with different areas

How to find

$$P(2 < d < 5)$$

$$= \int f(n) dx$$

$$= \int \frac{1}{-(2-14)^2} dx$$

$$= \int \frac{1}{-\sqrt{211}} e^{-2x^2} dx$$

Note

Since the normal density cannot be integrated in between every pair of limits a and b, probabilities relating to normal distributions are usually obtained from special tables (see tables)

$$P(x_{1} \leq x \leq x_{2}) = x_{1}$$

$$Let \quad x - y = 3 \quad ie \quad dx = -d3$$

$$\begin{cases} x_{2} & -x_{3} \\ -x_{3} & -x_{3} \\ -x_{3} & -x_{3} \end{cases} = \begin{cases} \frac{1}{\sqrt{2\pi}} & \frac{$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.0028	6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

177

1) to the left of z = -1.78

- 2) to the right of z = -1.45
- 3) corresponding to $-0.80 \le z \le 1.53$
- 4) to the left of z = -2,52 and to the right of z = 1.83

- 3) corresponding to $-0.80 \le z \le 1.53$
- 4) to the left of z = -2,52 and to the right of z = 1.83

- 1) to the left of z = -1.78
- 2) to the right of z = -1.45
- 3) corresponding to $-0.80 \le z \le 1.53$
- 4) to the left of z = -2,52 and to the right of z = 1.83

- 1) to the left of z = -1.78
- to the right of z = -1.452)
- corresponding to $-0.80 \le z \le 1.53$ 3)
- to the left of z = -2,52 and to the region of z = 1.83right of z = 1.83

Calculation of probabilities using a normal distribution

Problem

The mean and standard deviation of a normal variate are 8 and 4 respectively

Find 1) P [
$$5 \le X \le 10$$
]
2)P [$X \ge 5$]

Solution

1)
$$\mu = 8$$

$$\sigma = 4$$

We know that
$$Z = \frac{X - \mu}{\sigma} = \frac{X - 8}{4}$$

When X=5
$$Z = \frac{5-8}{4} = -0.75$$

When X=10
$$Z = \frac{10-8}{4} = 0.5$$

$$-0.15$$

$$= F(0.5) - F(-0.75)$$

$$P[5 \le X \le 10] = P[-0.75 \le Z \le 0.5]$$

$$= F(0.5) - F(-0.75)$$

$$= 0.6915 - .22663 = 0.4649$$

2)
$$P[X \ge 5] = P[Z \ge -0.75] = 1 - F(-0.75)$$

Three Common Areas Under the Curve

Three Normal distributions with different areas

Example:

In a test conducted on 1000 candidates, che average scole'es 42 with a S.O of 24. Assuming normal distribution. Trind a) no of candiadates whose score exceeds 58 5) no of candidates whose Scruc lies b/w 30 and 66

a) Score exceeds 58 i P(x > 58)= 58 _ 42 = 0.667 P(3 > 0.667)1000 x 0.2527 252 Candidales 0.2524 0.667

b) P (30 5 x 2 66)
30-43
29
= -0.5
$P(-0.5 \leq 8 \leq 1)$
(-0.5 = 8 = 1) -0.5
= (1) - F (-0.5)
= 0.5328

Inferential Statistics

- Sampling
- > Sample
- ➤ Random sampling
- ➤ Central Limit theorem

Statistical Inferences

Theory of statistical inference is divided into two major areas

Estimation

> Tests of hypothesis

Hypothesis Testing

Goal:

Make statement(s) regarding unknown population parameter values based on sample data

Hypothesis Testing

- ✓ Is also called *significance testing*
- ✓ Tests a claim about a parameter using evidence (data in a sample

Example

Drug company has new drug, wishes to compare it with current standard treatment

Federal regulators tell company that they must demonstrate that new drug is better than current treatment to receive approval

Firm runs clinical trial where some patients receive new drug, and others receive standard treatment

Numeric response of therapeutic effect is obtained (higher scores are better).

Parameter of interest: m_{New} - m_{Std}

Hypothesis Testing Steps

- ➤ Null and alternative hypotheses
- > Test statistic
- > P-value and interpretation
- > Significance level (optional)

Example

Null hypothesis $H_{0:} \mu = 170$ The alternative hypothesis can be either $H_{1:} \mu > 170$ (one-sided test) or $H_{1:} \mu \neq 170$ (two-sided test)

Test Statistic

Use this statistic to test the problem:

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}}$$

where $\mu_0 \equiv$ population mean assuming H_0 is true

and
$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Example

A. Hypotheses:

 H_0 : $\mu = 100 \text{ versus}$

 H_a : $\mu > 100$ (one-sided)

 H_a : $\mu \neq 100$ (two-sided)

B. Test statistic:

$$SE_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{15}{\sqrt{9}} = 5$$

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}} = \frac{112.8 - 100}{5} = 2.56$$

C. *P*-value: $P = Pr(Z \ge 2.56) = 0.0052$

 $P = .0052 \Rightarrow$ it is unlikely the sample came from this null distribution \Rightarrow strong evidence against H_0

Hypothesis Testing

Test Result	- H ₀ True	H ₀ False
True State H ₀ True	Correct Decision	Type I Error
H ₀ False	Type II Error	Correct Decision

$$\alpha = P(Type\ I\ Error)$$
 $\beta = P(Type\ II\ Error)$

ullet Goal: Keep lpha, eta reasonably small

Problem

It is claimed that a random sample 49 tyres has a mean life of 15200 kms. This sample was drawn from a population whose mean is 15150 kms and a standard deviation of 1200kms. Test the significance at 0.05 level.

Solution:

- 1. Null hypothesis H_0 : $\mu = 15200$
- 2. Alternate hypothesis H_1 : $\mu \neq 15200$
- 3. Level of significance $\alpha = 0.05$
- 4. critical region :- This is a two tailed test (large sample). So reject H₀ if $(Z_{cal}=Z) < -Z_{\frac{\alpha}{2}}$ or $(Z=Z_{cal}) > Z_{\frac{\alpha}{2}}$ Here $\alpha = 0.05$

$$\frac{\alpha}{2} = \frac{0.05}{2}$$

$$= 0.025$$

From table we get

$$\therefore Z_{\frac{\alpha}{2}} = 1.96$$

i.e; if

 $Z_{cal}=Z < -1.96$ or $Z_{cal} > 1.96$ we reject null hypothesis.

6. Computation:

Test statistic

$$Z_{\text{cal}} = Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{15200 - 15150}{\frac{1200}{\sqrt{49}}}$$

$$=0.2916$$

7. Decesion:

Since $Z_{cal} = 0.2916 < 1.96$ we accept the mull hypothesis.

Problem

A trucking firm is suspicious of the claim that the average life time of certain tyres is at least 28,000 miles. To check the claim, the firm puts 40 of these tyres on its trucks and get a mean life of 27,463miles with a standard deviation of 1,348 miles. What can it conclude if the probability of Type I error is to be at most 0.01

Solution

1. Null hypothesis : H_0 : $\mu \ge 28,000$ miles

2. Alternate hypothesis: H₁: μ < 28,000 miles

3. Level of significance: $\alpha = 0.01$

4. Critical region

This is a left tailed test (large sample)

If $Z=Z_{cal}$ < - Z_{α} we reject null hypothesis

If $Z=Z_{cal}$ < - Z_{α} =- $Z_{0.01}$ = -2.33 we reject null hypothesis

5. Computation

Test statistic

$$Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{27,463 - 28,000}{\frac{1,348}{\sqrt{40}}} = -2.52$$

6.Conclusion

Since $Z = Z_{cal} = -2.52 < -2.33$, we reject null hypothesis at level of significance 0.01. In other words the trucking firm's suspicion that μ < 28,000 miles is confirmed.

Hypothesis concerning one mean (small sample)

Procedure

- 1. Null hypothesis $H_0: \mu = \mu_0$
- 2. Alternate Hypothesis $H_1: \mu \neq \mu_0$ (Two tailed test)

Or

 $H_1: \mu > \mu_0$ (Right tailed test)

Or

 H_1 : $\mu < \mu_0$ (left tailed test)

3. Level of significance : α

4. Critical region

For two tailed test $H_1: \mu \neq \mu_0$

Reject H_0 if $t < -t_{\frac{\alpha}{2}}$ or

 $t > t_{\frac{\alpha}{2}}$ with (n-1) degrees of freedom

For right tailed test $H_1: \mu > \mu_0$

Reject H_0 if $t > t_{\alpha}$ with (n-1) degrees of freedom

For left tailed test H_1 : $\mu < \mu_0$

Reject H_0 if $t < -t_{\alpha}$ (n-1) degrees of freedom

5. Test statistic

$$t = \frac{\bar{x} - L}{\frac{S}{\sqrt{n}}}$$
 with (n-1) degrees of freedom

- 6. Calculation
- 7. Decision

A random sample of 6 steel beams has a mean compressive strength of 58,392 p.s.i (pounds per square inch) with a standard deviation of 648 p.s.i . use this information at the level of significance $\alpha = 0.05$ to test

whether the true average compressive strength of steel from which the sample came is 58,000 p.s.i

Thanks