

Project Initialization and Planning Phase

Date	1 August 2025	
Skillwallet ID	SWUID20250194750	
Project Title	Anemia Sense: Leveraging Machine Learning For Precise Anemia	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) report

The proposal report aims to transform anemia diagnosis using machine learning, improving both efficiency and accuracy. It addresses diagnostic limitations in current practices, offering a smarter and more accessible solution. Key features include a machine learning-based classification model and near real-time prediction capabilities.

Project Overview		
Objective	The primary objective is to revolutionize anemia detection by implementing advanced supervised machine learning techniques, enabling faster, more accurate, and scalable assessments.	
Scope	The project comprehensively analyzes and enhances the diagnostic process for anemia, integrating hematological data and machine learning algorithms to create an efficient, lightweight, and interpretable diagnostic system.	
Problem Statement		
Description	Inaccuracies, delays, and inconsistencies in traditional anemia diagnostic methods negatively impact clinical decision-making and patient care, particularly in resource-constrained environments.	
Impact	Addressing these issues will lead to improved diagnostic reliability, timely medical intervention, and better patient outcomes—supporting healthcare systems and professionals in delivering quality care more effectively.	
Proposed Solution		
Approach	Applying supervised machine learning algorithms to analyze key blood parameters (such as hemoglobin levels, etc.), enabling accurate and early detection of anemia.	
Key Features	- Implementation of a machine learning-based anemia classification model.	

- Near real-time predictions to support prompt clinical decisions.
- Lightweight, interpretable system suitable for deployment in low-resource settings.
settings.

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU		
Memory	RAM specifications	8 GB		
Storage	Disk space for data, models, and logs	1 TB SSD		
Software				
Frameworks	Python frameworks	Flask		
Libraries	Additional libraries	scikit-learn, pandas, numpy, matplotlib, seaborn		
Development Environment	IDE	Jupyter Notebook, pycharm		
Data				
Data	Source, size, format	Kaggledataset,614,csv		