Metóda zlatého rezu / Priklad 1

Príklad 1

Na obrázku je bod $(x_1, x_2)^T$ projekciou bodu $(2, 2)^T$ do množiny bodov ohraničenej rovnobežnými priamkami $x_1 + 2x_2 = 0$ a

Metódou zlatého rezu určte súradnice bodu $(x_1, x_2)^T$! Napíšte model úlohy a riešte ju pre premennú z intervalu <0, 2> s presnosťou ε =0,4!

Pozn. Uvedomte si, ako je definovaná projekcia a že metóda zlatého rezu minimalizuje funkciu jednej premennej a že bod $(x_1, x_2)^T$ musí ležať na hraničnej priamke množiny, do ktorej sa

Riešenie:

min $\sqrt{(x_1-2)^2+(x_2-2)^2}$ st $x_1+2x_2=2$	
A. $x_1 = 2 - 2x_2$	B. $x_2 = 1 - \frac{x_1}{2}$
$\min(2 - 2x_2 - 2)^2 + (x_2 - 2)^2 = 4x_2^2 + (x_2 - 2)^2 =$ $= 5x_2^2 - 4x_2 + 4$ $\min 5x_2^2 - 4x_2 + 4$ $\text{st} x_2 \in \{0, 2\}$	$\min(x_1 - 2)^2 + \left(1 - \frac{x_1}{2} - 2\right)^2 = (x_1 - 2)^2 + \left(\frac{x_1}{2} + 1\right)^2 =$ $= \frac{5x_1^2}{4} - 3x_1 + 5$

Presnosť $\varepsilon = 0.4$:

Požadovanú presnosť dosiahneme pre počet iteračných krokov i:

Požadovanú presnosť dosiahneme pre počet iteračných krokov
$$i$$
 $i \ge -1 + \frac{\log(\frac{0.4}{2-0})}{\log(\frac{2}{1+\sqrt{5}})} = -1 + \frac{\log(0.2)}{\log(0.618)} = 2.344169$

T.j. požadovaná presnosť bude dosiahnutá pri počte iteračných krokov=3

1,056, t.j. projekcia bodu $\langle 2,2\rangle^T$ do množiny na obrázku je $\langle 1,056;0,472\rangle^T$. $x_1=2-2x_2=2-2*0,472=$

Riešenie B

	а	L	P	b	f(L)	f(P)			
1. krok	0	0,764	1,236	2	3,438	3,202	\		
2. krok	0,764	1,236	1,528	2	3,202	3,334	/		
3. krok	0,764	1,056	1,236	1,528	3,226	3,202	\	$1,25(x_1)^2-3x_1+5$	
	1,056	1,236		1,528				Skutočné minimum je x ₁ =1,2	
x ₁ =1,236 minimum									

 $x_2=1-x_1/2=1-1,236/2=$ **0,382**, t.j. projekcia bodu <2,2>^T do množiny na obrázku je <**1,236; 0,382**>^T.