Correction de la feuille d'exercices 5 : séries de Fourier

Exercice 1. Par linéarisation, on calcule

$$\cos^{n}(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{n} = \frac{1}{2^{n}} \sum_{n=0}^{n} \binom{n}{p} e^{i(2p-n)x}$$

ce qui correspond à une série de Fourier (certes simple). Par unicité de la décomposition en série de Fourier, et comme les entiers 2p-n pour $p \in [0,n]$ sont tous différents, on en déduit que pour tout $k \in \mathbb{Z}$, $c_k(f)$ vaut $\binom{n}{p}$ si k est de la forme 2p-n avec $p \in [0,n]$, et $c_k(f)$ vaut 0 sinon.

Exercice 2. La fonction f est C_{pm}^1 et continue sur $\mathbb R$ grâce au fait que

$$\lim_{x \to \pi^+} f(x) = \lim_{x \to -\pi^+} f(x) = |-\pi| = |\pi| = \lim_{x \to \pi^-} f(x)$$

Donc sa série de Fourier converge normalement vers f.

On calcule

$$c_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| dx = \frac{1}{\pi} \int_{0}^{\pi} x dx = \frac{\pi}{2}$$

tandis que pour tout $n \in \mathbb{Z}^*$

$$\begin{split} c_n(f) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| e^{-inx} \, \mathrm{d}x = \frac{1}{2\pi} \int_{-\pi}^{0} (-x) e^{-inx} \, \mathrm{d}x + \frac{1}{2\pi} \int_{0}^{\pi} x e^{-inx} \, \mathrm{d}x \\ &= -\frac{1}{2\pi} \Big[x \frac{e^{-inx}}{-in} \Big]_{-\pi}^{0} - \frac{1}{2\pi in} \int_{-\pi}^{0} e^{-inx} \, \mathrm{d}x + \frac{1}{2\pi} \Big[x \frac{e^{-inx}}{-in} \Big]_{0}^{\pi} + \frac{1}{2\pi in} \int_{0}^{\pi} e^{-inx} \, \mathrm{d}x \\ &= \frac{1}{2\pi in} \Big[x e^{-inx} \Big]_{-\pi}^{0} - \frac{1}{2\pi n^{2}} \Big[e^{-inx} \Big]_{-\pi}^{0} - \frac{1}{2\pi in} \Big[x e^{-inx} \Big]_{0}^{\pi} + \frac{1}{2\pi n^{2}} \Big[e^{-inx} \Big]_{0}^{\pi} \\ &= \frac{1}{2in} (-1)^{n} - \frac{1}{2\pi n^{2}} + \frac{1}{2\pi n^{2}} (-1)^{n} - \frac{1}{2in} (-1)^{n} + \frac{1}{2\pi n^{2}} (-1)^{n} - \frac{1}{2\pi n^{2}} \\ &= \frac{(-1)^{n} - 1}{\pi n^{2}}. \end{split}$$

Donc $c_n(f)$ est nul si n est pair et égal à $\frac{-2}{\pi n^2}$ si n est impair.

En écrivant que la fonction f est égale à la somme de sa série de Fourier au point 0, on obtient (car on ne tient en compte que les impairs)

$$0 = \frac{\pi}{2} + 2\sum_{k=0}^{+\infty} \frac{-2}{\pi(2k+1)^2}$$

et donc

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}.$$

Or en séparant les entiers en pairs et impairs, on a

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{k=1}^{+\infty} \frac{1}{(2k)^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{1}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

d'où

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{4}{3} \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{6}.$$

D'après le théorème de Parseval, on obtient

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 \, \mathrm{d}x = \frac{\pi^2}{4} + 2 \sum_{k=0}^{+\infty} \frac{4}{\pi^2 (2k+1)^4}$$

ce qui donne

$$\sum_{k=0}^{+\infty} \frac{1}{(2k+1)^4} = \frac{\pi^2}{8} \left(\frac{\pi^2}{3} - \frac{\pi^2}{4} \right) = \frac{\pi^4}{96}.$$

La séparation des entiers en pairs et impairs donne ici

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \sum_{p=1}^{+\infty} \frac{1}{(2p)^4} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^4} = \frac{1}{16} \sum_{n=1}^{+\infty} \frac{1}{n^4} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^4}$$

et on conclut

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{16}{15} \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{90}.$$

Exercice 3. Pour tout $x \in [-\pi, \pi[, f(x) = \cos(ax)]$. Par 2π -périodicité, $f(\pi) = f(-\pi) = \cos(-a\pi) = \cos(a\pi)$ et $f(\pi+) = f(-\pi+) = \cos(-a\pi) = \cos(a\pi) = f(\pi-)$. Ainsi, f est continue sur \mathbb{R} et C^1 par morceaux. Sa série de Fourier converge normalement.

Calculons les coefficients $(c_n(f))_{n\in\mathbb{Z}}$.

$$2\pi c_n(f) = \int_{-\pi}^{\pi} \cos(ax)e^{-inx} dx = \frac{1}{2} \int_{-\pi}^{\pi} (e^{iax}e^{-inx} + e^{-iax}e^{-inx}) dx$$
$$= \frac{1}{2} \left[\frac{e^{i(a-n)x}}{i(a-n)} + \frac{e^{i(-a-n)x}}{i(-a-n)} \right]_{-\pi}^{\pi}$$
$$= \frac{1}{2i} \left[\frac{e^{i(a-n)x}}{a-n} - \frac{e^{i(-a-n)x}}{a+n} \right]_{-\pi}^{\pi}.$$

On a pu diviser par les réels non nuls a-n et a+n grâce au fait que $a \in \mathbb{R} \setminus \mathbb{Z}$. En utilisant le fait que $e^{-in\pi} = e^{-in\pi} = (-1)^n$, on obtient

$$2\pi c_n(f) = \frac{(-1)^n}{2i} \left[\frac{e^{ia\pi} - e^{-ia\pi}}{a - n} + \frac{e^{ia\pi} - e^{-ia\pi}}{a + n} \right] = (-1)^n \sin(a\pi) \frac{2a}{a^2 - n^2}.$$

Donc

$$c_n(f) = \frac{(-1)^n \sin(a\pi)}{\pi} \frac{a}{a^2 - n^2}.$$

Autre méthode : Par parité de f, les coefficients $b_n(f)$ pour $n \ge 1$ sont nuls. Il suffit de calculer $c_0(f) = a_0(f)/2$ et $a_n(f)$ pour $n \ge 1$. Pour tout $n \in \mathbb{N}$,

$$\pi a_n(f) = \int_0^{\pi} \cos(ax) \cos(nx) dx = \frac{1}{2} \int_0^{\pi} \cos((a-n)x) + \cos((a+n)x) dx$$
$$= \frac{1}{2} \left[\frac{\sin((a-n)\pi)}{a-n} + \frac{\sin((a-n)\pi)}{a+n} \right]$$
$$= \frac{(-1)^n}{2} \sin(a\pi) \left[\frac{1}{a-n} + \frac{1}{a+n} \right]$$
$$= \frac{(-1)^n}{2} \sin(a\pi) \frac{2a}{a^2 - n^2}.$$

Donc pour tout $x \in \mathbb{R}$

$$f(x) = \frac{\sin(a\pi)}{\pi} \sum_{n \in \mathbb{Z}} (-1)^n \frac{a}{a^2 - n^2} e^{inx} = \frac{\sin(a\pi)}{\pi} \left(\frac{1}{a} + \sum_{n=1}^{+\infty} (-1)^n \frac{2a}{a^2 - n^2} \cos(nx) \right).$$

Attention : le terme constant est $c_0(f) = a_0(f)/2$ et non $a_0(f)$. Par ailleurs, l'égalité $f(x) = \cos(ax)$ n'est valable que pour $x \in [-\pi, \pi]$.

En divisant $\sin(\pi)/\pi$ et en évaluant l'égalité en 0 et en π , on obtient

$$\frac{\pi}{\sin(a\pi)} = \frac{1}{a} + \sum_{n=1}^{+\infty} (-1)^n \frac{2a}{a^2 - n^2} \text{ et } \frac{\pi}{\tan(a\pi)} = \frac{1}{a} + \sum_{n=1}^{+\infty} \frac{2a}{a^2 - n^2}.$$

Exercice 4. Pour tout $n \in \mathbb{Z}$, on écrit

$$c_n(f) = -\frac{1}{2\pi} \int_{-\pi}^0 \sin x e^{-inx} \, dx + \frac{1}{2\pi} \int_0^{\pi} \sin x e^{-inx} \, dx$$

$$= -\frac{1}{4\pi i} \int_{-\pi}^0 (e^{ix} - e^{-ix}) e^{-inx} \, dx + \frac{1}{4\pi i} \int_0^{\pi} (e^{ix} - e^{-ix}) e^{-inx} \, dx$$

$$= -\frac{1}{4\pi i} \int_{-\pi}^0 (e^{-(n-1)ix} - e^{-(n+1)ix}) \, dx + \frac{1}{4\pi i} \int_0^{\pi} (e^{-(n-1)ix} - e^{-(n+1)ix}) \, dx$$

ce qui donne pour $n \neq \pm 1$

$$c_n(f) = -\frac{1}{4\pi i} \left[\frac{e^{-(n-1)ix}}{-(n-1)i} - \frac{e^{-(n+1)ix}}{-(n+1)i} \right]_{-\pi}^0 + \frac{1}{4\pi i} \left[\frac{e^{-(n-1)ix}}{-(n-1)i} - \frac{e^{-(n+1)ix}}{-(n+1)i} \right]_0^{\pi}$$

$$= \frac{1}{4\pi (n-1)} \left(-1 + (-1)^{n-1} + (-1)^{n-1} - 1 \right) + \frac{1}{4\pi (n+1)} \left(1 - (-1)^{n+1} - (-1)^{n+1} + 1 \right)$$

$$= \left(\frac{1}{n+1} - \frac{1}{n-1} \right) \frac{1 - (-1)^{n+1}}{2\pi} = -\frac{1 + (-1)^n}{\pi (n^2 - 1)}$$

ce qui est égal 0 si n est impair et $-\frac{2}{\pi(n^2-1)}$ si n est pair.

Pour les deux derniers coefficients, on calcule

$$c_1(f) = -\frac{1}{4\pi i} \left[x - \frac{e^{-2ix}}{-2i} \right]_{-\pi}^0 + \frac{1}{4\pi i} \left[x - \frac{e^{-2ix}}{-2i} \right]_0^{\pi}$$
$$= -\frac{1}{4\pi i} \left(\pi - \frac{1-1}{-2i} \right) + \frac{1}{4\pi i} \left(\pi - \frac{1-1}{-2i} \right) = 0$$

et on trouve de même $c_{-1}(f) = 0$.

Comme la fonction est continue et C_{pm}^1 , on sait que la série de Fourier converge normalement vers f. En particulier en x=0, ceci s'écrit

$$0 = f(0) = c_0(f) + 2\sum_{p=1}^{+\infty} \frac{-2}{\pi((2p)^2 - 1)}$$

ce qui implique que

$$\sum_{p=1}^{+\infty} \frac{1}{4p^2 - 1} = \frac{\pi}{4} \frac{-2}{\pi(0-1)} = \frac{1}{2}.$$

En écrivant la formule de Parseval, on obtient

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin^2 x \, dx = \frac{4}{\pi^2} + 2 \sum_{p=1}^{+\infty} \frac{4}{\pi^2 ((2p)^2 - 1)^2}$$
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - \cos(2x)}{2} \, dx = \frac{4}{\pi^2} + \frac{8}{\pi^2} \sum_{p=1}^{+\infty} \frac{1}{(4p^2 - 1)^2}$$

ce qui donne

$$\sum_{p=1}^{+\infty} \frac{1}{(4p^2 - 1)^2} = \frac{\pi^2}{8} \left(\frac{1}{2} - \frac{4}{\pi^2} \right) = \frac{\pi^2 - 8}{16}.$$

Exercice 5. On pose $f(t) = -t + 2\pi$ sur $]0, \pi[$. Le seul moyen pour que f soit égal à une somme de sinus est que f soit impair, on pose donc f 2π -périodique telle que $f(t) = -t + 2\pi$ sur $]0, \pi[$ et $f(t) = -t - 2\pi$ sur $]-\pi, 0[$ (avec par exemple $f(0) = f(\pi) = 0$).

Par imparité, $a_n = 0$ pour tout $n \in \mathbb{N}$, alors que l'on a

$$b_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (-x + 2\pi) \sin(nx) dx$$
$$= -\frac{2}{\pi} \left[(-x + 2\pi) \frac{\cos(nx)}{n} \right]_{0}^{\pi} - \frac{2}{\pi n} \int_{0}^{\pi} \cos(nx) dx$$
$$= -\frac{2}{\pi} \frac{\pi (-1)^n - 2\pi}{n} = \frac{2((-1)^{n+1} + 2)}{n}$$

pour $n \in \mathbb{N}^*$. La fonction étant C_{pm}^1 , le théorème de Dirichlet pour tout $x \in]0, \pi[$ donne le bon résultat.

Exercice 6. L'idée est de considérer deux applications f et g continues par morceaux, 2π périodiques, l'une paire et l'autre impaire telles que $f(x) = g(x) = x(\pi - x)$ sur $]0, \pi[$, pour
pouvoir décomposer la première en somme de cosinus et la deuxième en somme de sinus. Comme $x(\pi - x)$ s'annule en 0 et en π , on peut même prendre $f(x) = g(x) = x(\pi - x)$ sur $[0, \pi]$, et alors f et g sont continues et C^1 par morceaux. La série de Fourier converge donc normalement sur \mathbb{R} .
Par parité de f et imparité de g, on a

$$a_n(f) = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \cos(nx) dx, \quad b_n(g) = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \sin(nx) dx.$$

et les autres coefficients sont nuls. Comme $a_n(f)$ et $b_n(g)$ sont réels, ils se déduisent du calcul de

$$a_n(f) + ib_n(g) = \frac{2}{\pi} \int_0^{\pi} x(\pi - x)e^{inx} dx.$$

Si $n \neq 0$, alors deux intégrations par parties fournissent

$$\frac{\pi}{2}(a_n(f) + ib_n(g)) = \left[(\pi x - x^2) \frac{e^{inx}}{in} \right]_0^{\pi} - \int_0^{\pi} (\pi - 2x) \frac{e^{inx}}{in} dx$$

$$= 0 - \left[(\pi - 2x) \frac{e^{inx}}{-n^2} \right]_0^{\pi} + \int_0^{\pi} (-2) \frac{e^{inx}}{-n^2} dx$$

$$= -\left[\frac{-\pi(-1)^n - \pi}{-n^2} \right] + \left[(-2) \frac{e^{inx}}{-in^3} \right]_0^{\pi}$$

$$= -\frac{\pi((-1)^n + 1)}{n^2} + (-2i) \frac{(-1)^n - 1}{n^3}$$

Comme $a_n(f)$ et $b_n(g)$ sont réels, on a donc

$$a_n(f) = -\frac{2((-1)^n + 1)}{n^2} = \begin{cases} -4/n^2 & \text{si } n \text{ est pair,} \\ 0 & \text{si } n \text{ est impair,} \end{cases}$$

$$b_n(f) = -\frac{4(1 - (-1)^n)}{\pi n^3} = \begin{cases} 0 \text{ si } n \text{ est pair,} \\ 8/(\pi n^3) \text{ si } n \text{ est impair.} \end{cases}$$

De même, $a_0(f)=\pi^2/3$ et $b_0(f)=0$ car $a_0(f)$ et $b_0(g)$ sont réels et

$$a_0(f) + ib_0(g) = \frac{2}{\pi} \left[\frac{\pi x^2}{2} - \frac{x^3}{3} \right]_0^{\pi} = \frac{\pi^2}{3}$$

On en déduit les formules de l'énoncé.

Exercice 7. En posant $x = \pi t$, montrer l'égalité demandée revient à montrer que ,

$$\forall x \in]0, 2\pi[, \quad \frac{x^2}{\pi^2} = \frac{4}{3} + \sum_{\substack{n = -\infty \\ n \neq 0}}^{+\infty} \frac{2 + 2i\pi n}{\pi^2 n^2} e^{inx}.$$

Il suffit donc de considérer la fonction 2π -périodique f telle que $f(x) = x^2$ sur $[0, 2\pi[$, de calculer $c_n(f)$ pour tout $n \in \mathbb{Z}$, et d'appliquer le théorème de Dirichlet appliqué à tout $x \in]0, 2\pi[$.

Exercice 8. a) Si $\forall x \in \mathbb{R}$, $f(x+\pi) = f(x)$, alors en changeant de variable $y = x - \pi$ dans la seconde intégrale, on a

$$c_n(f) = \frac{1}{2\pi} \int_0^{\pi} f(x)e^{-inx} dx + \frac{1}{2\pi} \int_{\pi}^{2\pi} f(x)e^{-inx} dx$$
$$= \frac{1}{2\pi} \int_0^{\pi} f(x)e^{-inx} dx + \frac{1}{2\pi} \int_0^{\pi} f(y+\pi)e^{-in(y+\pi)} dy$$
$$= (1 + (-1)^n) \frac{1}{2\pi} \int_0^{\pi} f(x)e^{-inx} dx$$

ce qui est nul pour tout n impair.

b) Si $\forall x \in \mathbb{R}$, $f(x+\pi) = -f(x)$, alors le même calcul qu'au a) donne

$$c_n(f) = (1 - (-1)^n) \frac{1}{2\pi} \int_0^{\pi} f(x)e^{-inx} dx$$

ce qui est nul pour tout n pair.

c) Si $\forall x \in \mathbb{R}$, $f(\pi - x) = f(x)$, on change de variable $\pi - y = x$, ce qui donne

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx = -\frac{1}{2\pi} \int_{\pi}^{-\pi} f(\pi - y)e^{-in(\pi - y)} dy$$
$$= \frac{(-1)^n}{2\pi} \int_{-\pi}^{\pi} f(y)e^{iny} dy = (-1)^n c_{-n}(f)$$

ce qui implique que $a_n(f) = 0$ si n est impair et que $b_n(f) = 0$ si n est pair.

d) Si $\forall x \in \mathbb{R}$, $f(\pi - x) = -f(x)$ alors le même calcul qu'au c) donne

$$c_n(f) = -(-1)^n c_{-n}(f)$$

ce qui implique que $a_n(f) = 0$ si n est pair et que $b_n(f) = 0$ si n est impair.

Exercice 9. Pour tout $x \in \mathbb{R}$ et $\alpha \in [0,1[$, on a $|\alpha e^{ix}| < 1$ et donc la série géométrique donne

$$\sum_{n=0}^{+\infty} \left(\alpha e^{ix} \right)^n = \frac{1}{1 - \alpha e^{ix}}.$$

En prenant la partie réelle, on a donc bien

$$\sum_{n=0}^{+\infty} \alpha^n \cos(nx) = \operatorname{Re}\left(\frac{1}{1 - \alpha e^{ix}}\right) = \operatorname{Re}\left(\frac{1 - \alpha e^{-ix}}{|1 - \alpha e^{ix}|^2}\right) = \frac{1 - \alpha \cos(x)}{1 + \alpha^2 - 2\alpha \cos(x)}.$$

Si on pose $f(x) = \frac{1-\alpha\cos(x)}{1+\alpha^2-2\alpha\cos(x)}$, nous avons donc écrit la décomposition en série de Fourier, et

$$a_0(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx = \alpha^0 = 1$$

et pour $n \in \mathbb{N}^*$

$$a_n(f) = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx = \alpha^n$$

ce qui donne les quantités demandés.

Exercice 10.

Si f est de classe C^1 , une intégration par parties donne pour tout $n \in \mathbb{Z}_*$

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \left[f(x) \frac{e^{-inx}}{-in} \right]_0^{2\pi} + \frac{1}{2\pi in} \int_0^{2\pi} f'(x)e^{-inx} dx = \frac{1}{in} c_n(f')$$

car $f(0) = f(2\pi)$. En effectuant p intégrations par parties, on obtient la relation $c_n(f) = \frac{c_n(f^{(p)})}{(in)^p}$. Or pour tout $n \in \mathbb{Z}$,

$$|c_n(f)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(x)| \, \mathrm{d}x \le \frac{1}{2\pi} \int_0^{2\pi} ||f^{(p)}||_{\infty} \, \mathrm{d}x = ||f^{(p)}||_{\infty}.$$

Donc $c_n(f) = O(|n|^{-p})$ quand $|n| \to +\infty$.

Remarque : le théorème de Riemann - Lebesgue assure que $c_n(f^{(p)}) \to 0$ quand $|n| \to +\infty$, ce qui permet d'améliorer ce résultat en $c_n(f) = o(|n|^{-p})$ quand $|n| \to +\infty$.

Exercice 11.

- 1) La fonction f:
 - a) est continue sur \mathbb{R} , car f est 2π -périodique, continue en tout point de $\mathbb{R} \setminus 2\pi\mathbb{Z}$ et

$$\lim_{x \to 2\pi^{-}} f(x) = \sin \pi = 0 = \sin 0 = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 2\pi^{+}} f(x).$$

b) n'est pas dérivable sur \mathbb{R} , à cause des points $2\pi\mathbb{Z}$, car

$$\lim_{h \to 0^{-}} \frac{f(2\pi + h) - f(2\pi)}{h} = \lim_{h \to 0^{-}} \frac{\sin(\frac{2\pi + h}{2}) - \sin(\frac{2\pi}{2})}{h} = \frac{1}{2}\cos\frac{2\pi}{2} = -\frac{1}{2}$$

$$\lim_{h \to 0^{+}} \frac{f(2\pi + h) - f(2\pi)}{h} = \lim_{h \to 0^{+}} \frac{\sin(\frac{h}{2}) - \sin(\frac{0}{2})}{h} = \frac{1}{2}\cos\frac{0}{2} = \frac{1}{2}.$$

c) est de classe C^1 par morceaux sur \mathbb{R} , car f est dérivable et de dérivée continue sur $]0, 2\pi[$, et la dérivée admet une limite quand $x \to 0^+$ (= 1/2) et quand $x \to 2\pi^-$ (= -1/2).

2) Contrairement aux apparences, la fonction 2π -périodique f est paire. En effet, l'égalité $f(x) = \sin(x/2)$ est vraie sur $[0, 2\pi]$, même pour $x = 2\pi$ puisque $f(2\pi) = f(0) = \sin(0) = 0 = \sin(\pi)$. Et pour tout $x \in [0, 2\pi]$, on a $2\pi - x \in [0, 2\pi]$, donc

$$f(-x) = f(2\pi - x) = \sin\left(\frac{x}{2}\right) = \sin\left(\frac{x}{2}\right) = f(x).$$

Par conséquent, $b_n(f) = 0$ pour tout $n \in \mathbb{N}^*$. On calcule

$$a_0(f) = \frac{1}{2\pi} \int_0^{2\pi} \sin\left(\frac{x}{2}\right) dx = \frac{1}{\pi} \left[-\cos\left(\frac{x}{2}\right)\right]_0^{2\pi} = \frac{2}{\pi}$$

et pour tout $n \in \mathbb{N}^*$, on fait deux intégrations par parties

$$\pi a_n(f) = \int_0^{2\pi} \sin\left(\frac{x}{2}\right) \cos(nx) \, dx = -\left[2\cos\left(\frac{x}{2}\right) \cos(nx)\right]_0^{2\pi} - 2n \int_0^{2\pi} \cos\left(\frac{x}{2}\right) \sin(nx) \, dx$$
$$= 4 + 4n^2 \int_0^{2\pi} \left(\frac{x}{2}\right) \cos(nx) \, dx = 4 + 4n^2 \pi a_n(f)$$

ce qui implique que $a_n(f) = -\frac{4}{\pi(4n^2-1)} = -\frac{4}{\pi(2n-1)(2n+1)}$. (Une autre façon de calculer consiste à remplacer le sinus et cosinus par les exponentielles complexes, puis on développe le produit et on intègre alors des exponentielles). La série de Fourier est donc bien celle demandée.

- 3) a) f étant C_{pm}^1 , la série de Fourier converge simplement pour tout $x \in \mathbb{R}$.
 - b) f étant de plus continue, la convergence est normale sur \mathbb{R} .
 - c) La série de Fourier converge vers f.
- 4) En écrivant que la série de Fourier pour x = 0 converge vers f(0) = 0 on a

$$\sum_{n=1}^{+\infty} \frac{1}{(2n-1)(2n+1)} = \frac{\pi}{4} \times \frac{2}{\pi} = \frac{1}{2}.$$

Une méthode plus simple est de passer à la limite quand $N \to +\infty$ dans les sommes téléscopiques

$$\sum_{n=1}^{N} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \sum_{n=1}^{N} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2N+1} \right).$$

Exercice 12. On pose $I = \int_a^b u(t)v(t) dt$.

1) On écrit

$$|I_n - I| = \left| \sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} (u(t_{k+1}) - u(t))v(t) dt \right| \le \sum_{k=0}^{n-1} (u(t_k) - u(t_{k+1})) \int_{t_k}^{t_{k+1}} |v(t)| dt$$

$$\le \frac{b-a}{n} \sum_{k=0}^{n-1} (u(t_k) - u(t_{k+1})) = \frac{b-a}{n}$$

car on a reconnu une série télescopique.

2) En posant $b_k = \int_a^{t_k} v(t) dt$, on écrit une transformation d'Abel

$$I_n = \sum_{k=0}^{n-1} u(t_{k+1})(b_{k+1} - b_k) = \sum_{k=1}^n u(t_k)b_k - \sum_{k=0}^{n-1} u(t_{k+1})b_k = \sum_{k=0}^{n-1} (u(t_k) - u(t_{k+1}))b_k$$

 $\operatorname{car} u(t_n) = u(b) = 0 \text{ et } b_0 = 0.$

3) Quel que soit $n \in \mathbb{N}^*$, on a grâce à 2) :

$$|I_n| \le \sum_{k=0}^{n-1} (u(t_k) - u(t_{k+1}))|b_k| \le \max_{x \in [a,b]} \left| \int_a^x v(t) \, \mathrm{d}t \right| \sum_{k=0}^{n-1} (u(t_k) - u(t_{k+1})) = \max_{x \in [a,b]} \left| \int_a^x v(t) \, \mathrm{d}t \right|$$

ce qui donne par inégalité triangulaire et grâce à 1):

$$|I| = |I - I_n + I_n| \le |I - I_n| + |I_n| \le \frac{b - a}{n} + \max_{x \in [a,b]} \Big| \int_a^x v(t) \, dt \Big|.$$

Comme cette inégalité est vraie pour tout $n \geq 1$, la limite n tends vers l'infini nous donne le résultat.

4) Il existe une subdivision de $[0, 2\pi]$ $0 = a_0 < a_1 < \dots < a_N = 2\pi$ telle que $f|_{a_i, a_{i+1}}$ est monotone.

Fixons $i \in \{0, ..., N-1\}$, et on pose $u(t) = (f(t) - f(a_{i+1}))/(f(a_i) - f(a_{i+1}))$ si $f|_{]a_i,a_{i+1}[}$ est décroissante et $u(t) = (f(a_{i+1}) - f(t))/(f(a_{i+1}) - f(a_i))$ si $f|_{]a_i,a_{i+1}[}$ est croissante. Dans les deux cas, et en posant $a = a_i$, $b = a_{i+1}$ et $v(t) = e^{-int}$, nous observons que toutes les hypothèses sur u et v sont vérifiées.

Ainsi, le résultat du 3) nous assure que

$$\left| \int_{a_i}^{a_{i+1}} \frac{f(t) - f(a_{i+1})}{f(a_i) - f(a_{i+1})} e^{-int} dt \right| \le \max_{x \in [a_i, a_{i+1}]} \left| \int_{a_i}^{x} e^{-int} dt \right|$$

ce qui implique

$$\frac{1}{|f(a_i) - f(a_{i+1})|} \left| \int_{a_i}^{a_{i+1}} f(t) e^{-int} dt \right| \le \frac{|f(a_{i+1})|}{|f(a_i) - f(a_{i+1})|} \left| \int_{a_i}^{a_{i+1}} e^{-int} dt \right| + \max_{x \in [a_i, a_{i+1}]} \left| \int_{a_i}^x e^{-int} dt \right|$$

Or si $n \neq 0$, on a pour tout $x \in \mathbb{R}$

$$\left| \int_{a_i}^x e^{-int} \, dt \right| = \frac{1}{|n|} |e^{-inx} - e^{-ina_i}| \le \frac{2}{|n|}$$

On a donc démontré que

$$\left| \int_{a_i}^{a_{i+1}} f(t)e^{-int} dt \right| \le |f(a_{i+1})| \frac{2}{|n|} + |f(a_i) - f(a_{i+1})| \frac{2}{|n|} \le \frac{6}{|n|} \sup |f|.$$

C'est inégalité étant vraie quel que soit $i \in \{0, ..., N-1\}$ on conclut que pour tout $n \in \mathbb{Z}^*$ on a

$$|c_n(f)| \le \frac{1}{2\pi} \sum_{i=0}^{N-1} \left| \int_{a_i}^{a_{i+1}} f(t)e^{-int} dt \right| \le \frac{6N}{2\pi |n|} \sup |f|$$

ce qui montre que les coefficients de Fourier sont en O(1/n).

5) Cette question ressemble à l'exercice 10, à un détail près : f est seulement supposée C^1_{pm} et C^0 , et non C^1 . Il existe une subdivision de $[0, 2\pi]$ $0 = a_0 < a_1 < < a_N = 2\pi$ telle que $f|_{]a_i, a_{i+1}[}$ est prolongeable en une fonction $C^1([a_i, a_{i+1}])$, on obtient alors par intégration par parties pour tout $n \in \mathbb{Z}^*$

$$c_n(f) = \frac{1}{2\pi} \sum_{i=0}^{N-1} \int_{a_i}^{a_{i+1}} f(t)e^{-int} dt = \frac{1}{2\pi} \sum_{i=0}^{N-1} \left(\left[f(t) \frac{e^{-int}}{-in} \right]_{a_i}^{a_{i+1}} + \frac{1}{in} \int_{a_i}^{a_{i+1}} f'(t)e^{-int} dt \right)$$

$$= \frac{1}{2\pi in} \sum_{i=0}^{N-1} \left(-f(a_{i+1})e^{-ina_{i+1}} + f(a_i)e^{-ina_i} \right) + \frac{c_n(f')}{in} = \frac{c_n(f')}{in}$$

car nous reconnaissons une somme téléscopique et $f(0) = f(2\pi)$. Ainsi, $|c_n(f)| \le ||f'||_{\infty}/n$.