DIG: Dynamic Invariant Generation

ThanhVu (Vu) Nguyen

University of Nebraska, Lincoln

CSE Colloquium, Sept 2017

The Problem

SOFTWARE BUGS

World of Warcraft bug

Therac-25 machines X-rays overdose

Ariane-5 rocket self-destructs

North America blackout

The Cost

handle."

Software bugs annually cost 0.6% of the U.S GDP and \$312 billion to the global economy

Average time to fix a security-critical error: 28 days

Program Analysis

Automated program analysis techniques and tools can decrease debugging time by an average of 26% and \$41 billion annually

4

Program Analysis

Check Code

Write Code

Automated program analysis techniques and tools can decrease debugging time by an average of $\frac{26\%}{100}$ and $\frac{41}{100}$ billion annually

Program Verification

Check if a program satisfies a given specification

Program Synthesis

Generate a program that meets a given specification

Invariant Generation and Template-based Synthesis

Invariant Generation

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r > y){
   int a=1; int b=y;
   while [L1] (r \ge 2*b) {
     a = 2*a: b = 2*b:
   r=r-b; q=q+a;
  [L2]
 return q;
```

- Discover invariant properties at certain program locations
- Answer the question "what does this program do?"

Invariant Generation and Template-based Synthesis

Invariant Generation

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r > y){
   int a=1; int b=y;
   while [L1] (r \geq 2*b) {
     a = 2*a; b = 2*b;
   r=r-b; q=q+a;
  [L2]
 return q;
```

- Discover invariant properties at certain program locations
- Answer the question "what does this program do?"

Template-based Synthesis

```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r [???] y){
   int a=1; int b=y;
   while [L1] (r \geq 2*b) {
     a = [???]: b = 2*b:
   r=r-b; q=q+a;
 return [???];
```

- Create code under specific templates from partially completed programs
- Can be used for program repair

How We Analyze Programs


```
File Edit Options Buffers Tools Help
 def intdiv(x, y):
     a = 0
     r = x
     while r \ge y:
          a = 1
          b = v
          while r \ge 2*b:
          q = q + a
                                                          20,
     print "x %d, y %d, q %d, r %d" %(x,y,q,r)
                                                          20,
                                                          20.
     return q,r
                                                       x 100,
                                                       x 100.
                                                       x 100, y
       intdiv.py
```

How We Analyze Programs


```
File Edit Options Buffers Tools Help

def intdiv(x, y):
    q = 0
    r = x
    while r >= y:
        a = 1
    b = y

    while r >= 2*b:
        a = 2 * b
        r = r - b
    q = q + a

    print "x %d, y %d, q %d, r %d" %(x,y,q,r)

-U:--- intdiv.py All (18,0) (Python)--5:-U:--- intdiv.traces All (21,0)
```

```
File Edit Options Buffers Tools Python Help

def intdiv(x, y):
    assert y != 0

# .. compute result ..

assert r >= 0
    assert x >= q
    return q,r
```

UDACITY – Software Testing course "GCC: 9000 assertions.

LLVM: 13,000 assertions [..]

1 assertion per 110 loc"

Program Invariants

"invariants are asserted properties, such as relations among variables, at certain locations in a program"


```
assert(x == 2*y);
assert(0 <= idx < |arr|);</pre>
```

Program Invariants

"invariants are asserted properties, such as relations among variables, at certain locations in a program"


```
assert(x == 2*y);
assert(0 <= idx < |arr|);

int getDateOfMonth(int m){
   /*pre: 1 <= m <= 12*/
   ...
   /*post: 0 <= result <= 31*/
}</pre>
```

"a loop invariant is a condition that is true on entry into a loop and is guaranteed to remain true on every iteration of the loop [..]"

Approaches to Finding Invariants

Approaches to Finding Invariants

```
int cohendiv(int x, int y){
   assert(x>0 && y>0);
   int q=0; int r=x;
   while(r \geq y){
      int a=1; int b=y;
      while(r \geq 2*b){
        a = 2*a; b = 2*b;
      }
      r=r-b; q=q+a;
   }
   [L]
   return q;
}
```

Static Analysis

- Analyze source code directly
- Pros: results guaranteed on any inputs
- Cons: computationally intensive, produce simple invariants

Approaches to Finding Invariants

```
int cohendiv(int x, int y){
   assert(x>0 && y>0);
   int q=0; int r=x;
   while(r > y){
      int a=1; int b=y;
      while(r > 2*b){
        a = 2*a; b = 2*b;
      }
      r=r-b; q=q+a;
   }
   [L]
   return q;
}
```

X	У	q	r
0	1	0	0
1	1	1	0
3 8	4	0	3
8	1	8	0
15	5	3	0
20	2	10	0
100	1	100	0
	:	:	

Static Analysis

- Analyze source code directly
- Pros: results guaranteed on any inputs
- Cons: computationally intensive, produce simple invariants

Dynamic Analysis

- Run program and analyze execution traces
- Pros: fast, source code not required
- Cons: results depend on traces, might not hold for all runs

Numerical Invariants

- Relations over numerical variables
 - x = 3.5
 - x = 2y
 - $\mathbf{x} = qy + r$
 - $x^2 > y + z^3$
 - \blacksquare $|arr| \ge idx \ge 0, \dots$
- Nonlinear polynomials: required in scientific and engineering applications, implemented in Astrée analyzer for Airbus systems

Numerical Invs: understanding programs

```
int cohendiv(int x, int y){
  assert(x>0 && y>0);
  int q=0; int r=x;
 while (r \ge y) {
    int a=1;
    int b=y;
    while [L1] (r \ge 2*b) {
     a = 2*a;
     b = 2*b;
    r=r-b;
    q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

Numerical Invs: understanding programs

```
int cohendiv(int x, int y){
  assert(x>0 && y>0);
  int q=0; int r=x;
  while(r > y){
   int a=1;
   int b=v;
   while [L1] (r > 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  ΓL27
 return q;
```

What does this program do? What properties hold at L1 and L2?

loop invariants at L1:

$$\begin{array}{ll} x = qy + r & b = ya \\ y \leq b & b \leq r \\ r \leq x & a \leq b \\ 2 \leq a + y \end{array}$$

postconditions at L2:

$$\begin{aligned} x &= qy + r \\ 1 &\leq q + r \\ 0 &\leq r \end{aligned} \quad \begin{aligned} r &\leq y - 1 \\ r &\leq x \end{aligned}$$

Describe the semantic the program (e.g., x = qy + r for integer division) and reveal useful information (e.g., remainder r is non-negative)

Numerical Invariants: analyze program complexities

```
void triple(int M, int N, int P){
 assert (0 \le M);
 assert (0 \le N);
 assert (0 \le P);
  int i = 0, j = 0, k = 0;
 int t = 0;
 while(i < N){
   i = 0; t++;
   while(j < M){</pre>
     j++; k = i; t++;
     while (k < P){
      k++; t++;
     i = k;
   i++;
  [L]
```

Complexity of this program?

Use t to count loop iterations

Numerical Invariants: analyze program complexities

```
void triple(int M, int N, int P){
  assert (0 \le M);
  assert (0 \le N);
 assert (0 <= P):
  int i = 0, j = 0, k = 0;
  int t = 0;
  while(i < N){
   i = 0; t++;
   while(j < M){
     j++; k = i; t++;
     while (k < P){
      k++; t++;
     i = k;
   i++;
  [L]
```

Complexity of this program?

- Use t to count loop iterations
- At first glance: t = O(MNP)
- A more precise complexity bound: t = O(N + NM + P)
- Both are nonlinear invariants

Numerical Invs: verify programs

```
void f(int u1, int u2) {
                                       void g(int n, int u1) {
  assert(u1 > 0 \&\& u2 > 0);
                                         assert(u1 > 0);
  int a = 1, b = 1, c = 2, d = 2;
                                         int x = 0;
  int x = 3, y = 3;
                                         int m = 0;
  int i1 = 0, i2 = 0;
  while (i1 < u1) {
                                         while (x < n) {
                                           if (u1) {
   i1++:
   x = a + c; y = b + d;
                                             m = x;
   if ((x + y) \% 2 == 0) {
   a++; d++;
                                           x = x + 1:
   } else { a--;}
   i2 = 0:
                                         [L]
   while (i2 < u2 ) {
                                         if (n > 0)
    i2++: c--: b--:
                                           assert(0 <= m && m < n);</pre>
  [L]
  assert(a + c == b + d);
```

Assertions hold if matched or implied by discovered invariants at L

DIG: Dynamic Invariant Generation

DIG: Dynamic Invariant Generation

Goal: developing efficient methods to capture precise and correct program numerical invariants

- Efficient: reformulate and solve using techniques such as equation solving and polyhedral construction
- Precise: employ expressive templates and infer invariants directly from traces
- Sound: use static analysis to verify results

Polynomial Relations

DIG discovers polynomial relations of the forms

Equalities
$$c_0 + c_1 x_1 + c_2 x_n + c_3 x_1 x_2 + \dots + c_m x_1^{d_1} \dots x_n^{d_n} = 0$$

Inequalities
$$c_0 + c_1 x_1 + c_2 x_n + c_3 x_1 x_2 + \dots + c_m x_1^{d_1} \dots x_n^{d_n} \ge 0, \quad c_i \in \mathbb{R}$$

Examples

cubic
$$z-6n=6, \ \frac{1}{12}z^2-y-\frac{1}{2}z=-1$$
 extended gcd $\gcd(a,b)=ia+jb$
$$\operatorname{sqrt} \quad x+\varepsilon \geq y^2 \geq x-\varepsilon$$

14

Polynomial Relations

DIG discovers polynomial relations of the forms

Equalities
$$c_0 + c_1 x_1 + c_2 x_n + c_3 x_1 x_2 + \dots + c_m x_1^{d_1} \dots x_n^{d_n} = 0$$

Inequalities
$$c_0 + c_1 x_1 + c_2 x_n + c_3 x_1 x_2 + \dots + c_m x_1^{d_1} \dots x_n^{d_n} \ge 0, \quad c_i \in \mathbb{R}$$

Examples

cubic
$$z-6n=6$$
, $\frac{1}{12}z^2-y-\frac{1}{2}z=-1$ extended gcd $\gcd(a,b)=ia+jb$
$$\operatorname{sqrt} \quad x+\varepsilon\geq y^2\geq x-\varepsilon$$

Method

- Equalities: solve equations
- Inequalities: construct polyhedra

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
  assert(x>0; y>0);
  int q=0; int r=x;
  while(r >= y){
    int a=1; int b=y;
    while[L1](r >= 2*b){
      a = 2*a; b = 2*b;
    }
    r=r-b; q=q+a;
}
return q;
}
```

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
  assert(x>0; y>0);
  int q=0; int r=x;
  while(r >= y){
    int a=1; int b=y;
    while[L1](r >= 2*b){
      a = 2*a; b = 2*b;
    }
    r=r-b; q=q+a;
}
return q;
```

				Tra	ces:
X	У	a	b	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
			:		
4	1	1	1	0	4
4	1	2	2	0	4
			:		

Example: Dynamic Inference using DIG

```
int cohendiv(int x, int y){
  assert(x>0; y>0);
  int q=0; int r=x;
  while(r >= y){
    int a=1; int b=y;
    while[L1](r >= 2*b){
      a = 2*a; b = 2*b;
    }
    r=r-b; q=q+a;
}
return q;
}
```

Loop invariants at L1:

```
equations: x = qy + r b = ya
inequalities: 2 \le a + y a \le b y \le b
b \le r r \le x
```

_ >	c y	,	a	b	q	r
1	5 2		1	2	0	15
1	5 2	<u>: </u>	2	4	0	15
1	5 2	2	1	2	4	7
	1	.	1	1	0	4
4	1	.	2	2	0	4

Terms and degrees

$$V = \{r, y, a\}; \ \deg = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

X	y	a	Ь	q	r
15 15	2 2	1 2	2	0	15 15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4

Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

X	y	а	b	q	r
15	2	1	2	0	15
15	2	2	4	0	15
15	2	1	2	4	7
4	1	1	1	0	4
4	1	2	2	0	4

Nonlinear equation template

$$c_1 + c_2 r + c_3 y + c_4 a + c_5 r y + c_6 r a + c_7 y a + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0$$

Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

X	y	a	Ь	q	r
15 15 15	2 2 2	1 2 1	2 4 2	0 0 4	15 15 7
4	1	1 2	1 2	0	4

Nonlinear equation template

$$c_1+c_2r+c_3y+c_4a+c_5ry+c_6ra+c_7ya+c_8r^2+c_9y^2+c_{10}a^2=0$$

System of *linear* equations

trace 1
$$\rightarrow$$
 { $r = 15, y = 2, a = 1$ } eq 1 \rightarrow $c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0$ \vdots

Terms and degrees

$$V = \{r, y, a\}; \text{ deg} = 2$$

$$\downarrow$$

$$T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\}$$

Nonlinear equation template

$$c_1+c_2r+c_3y+c_4a+c_5ry+c_6ra+c_7ya+c_8r^2+c_9y^2+c_{10}a^2=0$$

System of *linear* equations

trace 1
$$\rightarrow$$
 { $r = 15, y = 2, a = 1$ }
eq 1 \rightarrow $c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0$
 \vdots

Solve for coefficients c;

$$V = \{x, y, a, b, q, r\}; \text{ deg} = 2 \longrightarrow x = qy+r, b = ya$$

Geometric Invariant Inference

- Treat trace values as points in multi-dimensional space
- Build a convex hull (polyhedron) over the points
- Representation of a polyhedron: a set (conjunction) of inequalities

Geometric Invariant Inference

- Treat trace values as points in multi-dimensional space
- Build a convex hull (polyhedron) over the points
- Representation of a polyhedron: a set (conjunction) of inequalities

	X	У
	-2	1
	-1	-1
	1	-3
	2	0
	3	-2
	5	2
or	ogram	traces

Geometric Invariant Inference

- Treat trace values as points in multi-dimensional space
- Build a convex hull (polyhedron) over the points
- Representation of a polyhedron: a set (conjunction) of inequalities

X	У	
-2	1	
-1	-1	
1	-3	
2	0	
3	-2	
5	2	
progra	m trace	s

Support simpler shapes (decreasing precision, increasing efficiency)

Spurious Invariants

```
File Edit Options Buffers Tools Help
 def intdiv(x, y):
                                                                         10, q
10, q
1, q
4, q
7, q
       q = 0
       \dot{r} = x
      while r \ge v:
           b - y
           while r \ge 2*b:
                                                                         10,
      print "x %d, y %d, q %d, r %d" %(x,y,q,r)
                                                                         10,
       return q,r
                                                                                   100,
                                                               100,
                                                                                    20,
                                                             x 100. v
        intdiv.py
                         All (18,0)
                                           (Python)--5:-U:---
```

Valid results

- \bullet x, y, q, r are integers
- $r \ge 0$

Spurious Invariants

```
File Edit Options Buffers Tools Help
  def intdiv(x, y):
                                                                                  5, q
10, q
1, q
4, q
7, q
1, q
2, q
9, q
10, q
1, q
5, q
7, q
2, q
        r = x
       while r \ge v:
             b - y
             while r \ge 2*b:
       print "x %d, y %d, q %d, r %d" %(x,y,q,r)
                                                                                   10, q
        return a.r
                                                                     x 100,
                                                                                               20,
                                                                     x 100. v
         intdiv.py
                             All (18.0)
                                                 (Python)--5:-U:---
```

Valid results

- \bullet x, y, q, r are integers
- r > 0
- x = q * y + r

Spurious results

- $100 \ge x \ge 0$
- $10 \ge y \ge 1$
- $100 \ge q r \ge -8$

18

- Goal: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability

- **Goal**: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability
 - \blacksquare Transform program and invariant into another program consist of a special location L^\prime

- Goal: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability
 - \blacksquare Transform program and invariant into another program consist of a special location L^\prime

- L' reachable \implies inv is spurious (inputs reaching L' represent cex's)
- lacksquare L' not reachable (within a time bound) \Longrightarrow DIG accepts the invariant

- **Goal**: prove/refute candidate invariants using program code
- Approach: reduce invariant checking to reachability
 - $lue{}$ Transform program and invariant into another program consist of a special location L'

- L' reachable \implies inv is spurious (inputs reaching L' represent cex's)
- **L**' not reachable (within a time bound) \implies DIG accepts the invariant
- Use static analysis (symbolic execution) to check reachability
 - Incomplete, can timeout, but in practice is very effective in refuting bad invariants and finding cex's
 - Can use other verifiers or test-input generation techniques instead

Evaluation

Setup

- DIG is implemented in SAGE/Python (with Z3 backend solver)
- Test machine: 10-core 2.4GHZ CPU, 128GB Ram, Linux OS

Benchmark

- Program Understanding: NLA testsuite, 27 programs with nonlinear invariants
- Complexity Analysis: 19 programs collected from static complexity analysis work
- Program Verification: HOLA benchmark, 46 programs with assertions, compare against PIE

Example: Program Understanding

```
int cohendiv(int x, int y){
  assert(x>0 && y>0);
  int q=0; int r=x;
  while(r \ge y){
   int a=1;
   int b=y;
   while [L1] (r > 2*b) {
     a = 2*a;
     b = 2*b;
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

Example: Program Understanding

```
int cohendiv(int x, int y){
  assert(x>0 && y>0);
  int q=0; int r=x;
  while (r \ge y) {
   int a=1;
   int b=v;
   while [L1] (r > 2*b) {
     a = 2*a:
     b = 2*b;
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

loop invariants at L1:

$$x = qy + r$$
 $b = ya$
 $y \le b$ $b \le r$
 $r \le x$ $a \le b$
 $2 \le a + y$

postconditions at L2:

$$x = qy + r$$

$$1 \le q + r \qquad r \le y - 1$$

$$0 \le r \qquad r \le x$$

Example: Program Understanding

```
int cohendiv(int x, int y){
  assert(x>0 && y>0);
  int q=0; int r=x;
  while (r \ge y) {
    int a=1;
    int b=y;
    while [L1] (r > 2*b) {
     a = 2*a:
     b = 2*b;
   r=r-b;
   q=q+a;
  [L2]
 return q;
```

What does this program do? What properties hold at L1 and L2?

loop invariants at L1:

$$x = qy + r$$
 $b = ya$
 $y \le b$ $b \le r$
 $r \le x$ $a \le b$
 $2 \le a + y$

postconditions at L2:

$$x = qy + r$$

$$1 \le q + r \qquad r \le y - 1$$

$$0 \le r \qquad r \le x$$

Indicate the exact semantic of integer division and reveal other useful correctness information (e.g., remainder is non-negative)

Results: Program Understanding

Prog	Invs	Time (s)	Correct
cohendiv	11	24.5	✓
divbin	12	116.8	✓
manna	5	30.8	✓
hard	13	71.4	✓
sqrt1	5	19.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
dijkstra	14	89.3	✓
freire1	-	-	-
freire2	-	-	-
cohencu	5	22.5	✓
egcd1	9	284.5	✓
egcd2	-	-	-
egcd3	-	-	-
prodbin	7	45.1	✓
prod4br	11	87.3	✓
knuth	9	84.6	✓
fermat1	26	185.3	✓
fermat2	8	101.8	✓
lcm1	22	175.2	✓
lcm2	7	163.8	✓
geo1	7	24.4	✓
geo2	9	24.3	✓
geo3	7	32.3	✓
ps2	3	17.0	
ps3	4	17.8	✓
ps4	4	18.5	✓
ps5	4	19.3	✓
ps6	3	21.0	✓

Experiment

- NLA suite: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- Goal: obtain invariants and compare to ground truths

Results: Program Understanding

Prog	Invs	Time (s)	Correct
cohendiv	11	24.5	✓
divbin	12	116.8	✓
manna	5	30.8	✓
hard	13	71.4	✓
sqrt1	5	19.3	✓ ✓ ✓ ✓
dijkstra	14	89.3	✓
freire1	-	-	-
freire2	-	-	-
cohencu	5	22.5	- ✓
egcd1	9	284.5	✓
egcd2	-	-	-
egcd3	-	-	-
prodbin	7	45.1	✓
prod4br	11	87.3	✓
knuth	9	84.6	✓
fermat1	26	185.3	✓
fermat2	8	101.8	✓
lcm1	22	175.2	✓
lcm2	7	163.8	✓
geo1	7	24.4	✓
geo2	9	24.3	✓
geo3	7	32.3	✓
ps2	3	17.0	✓
ps3	4	17.8	✓
ps4	4	18.5	
ps5	4	19.3	✓
ps6	3	21.0	✓

Experiment

- NLA suite: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- Goal: obtain invariants and compare to ground truths

 $\begin{array}{ll} \textbf{Results} \colon \mathsf{DIG} \ \mathsf{found} \ \mathsf{correct} \ \mathsf{invariants} \ \mathsf{in} \\ 23/27 \ \mathsf{progs} \end{array}$

- Most results equiv to or stronger than (imply) ground truths
- Several unexpected and undocumented invariants
- Some invariants reveal "how" program works in details

Example: Complexity Analysis

```
void triple(int M, int N, int P){
 assert (0 \le M);
 assert (0 \le N);
 assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0;
 while(i < N){
   i = 0; t++;
   while(j < M){</pre>
     j++; k = i; t++;
     while (k < P){
      k++; t++;
     i = k;
   i++;
  [L]
```

Complexity of this program?

• Existing result: t = O(N + NM + P)

Example: Complexity Analysis

```
void triple(int M, int N, int P){
 assert (0 \le M);
 assert (0 \le N);
 assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0:
 while(i < N){
   i = 0; t++;
   while(j < M){</pre>
     j++; k = i; t++;
     while (k < P){
      k++; t++;
     i = k:
   i++:
  [L]
```

Complexity of this program?

- Existing result: t = O(N + NM + P)
- DIG found a very *unexpected* inv:

```
P^{2}Mt + PM^{2}t - PMNt - M^{2}Nt-PMt^{2} + MNt^{2} + PMt - PNt - 2MNt+Pt^{2} + Mt^{2} + Nt^{2} - t^{3} - Nt + t^{2} = 0
```

Example: Complexity Analysis

```
void triple(int M, int N, int P){
 assert (0 \le M);
 assert (0 \le N);
 assert (0 \le P);
  int i = 0, j = 0, k = 0;
  int t = 0:
  while(i < N){
   i = 0; t++;
   while(j < M){</pre>
     j++; k = i; t++;
     while (k < P){
      k++; t++;
     i = k:
    i++:
  [L]
```

Complexity of this program?

- Existing result: t = O(N + NM + P)
- DIG found a very *unexpected* inv:

$$P^2Mt + PM^2t - PMNt - M^2Nt$$

$$-PMt^2 + MNt^2 + PMt - PNt - 2MNt$$

$$+Pt^2 + Mt^2 + Nt^2 - t^3 - Nt + t^2 = 0$$

 Solve for t yields the most precise, unpublished bound:

```
\begin{split} t &= 0 & \text{when} & N &= 0, \\ t &= P + M + 1 & \text{when} & N &\leq P, \\ t &= N - M(P - N) & \text{when} & N > P \end{split}
```

 Nonlinear invariants can represent disjunctive properties capturing different complexity bounds

Results: Complexity Analysis

Prog	Invs	Time (s)	
cav09_fig1a	1	14.3	\
cav09_fig1d	1	14.2	✓
cav09_fig2d	3	36.0	✓
cav09_fig3a	3	14.2	✓
cav09_fig5b	5	46.8	✓
pldi09_ex6	7	54.1	✓
pldi09_fig2 (triple)	6	93.5	11
pldi09_fig4_1	3	44.2	✓
pldi09_fig4_2	5	43.7	✓
pldi09_fig4_3	3	37.5	✓
pldi09_fig4_4	4	56.6	-
pldi09_fig4_5	3	31.6	✓
popl09_fig2_1	2	211.7	V
popl09_fig2_2	2	65.1	11
popl09_fig3_4	4	54.7	✓
popl09_fig4_1	2	42.7	✓
popl09_fig4_2	2	158.3	11
popl09_fig4_3	5	39.2	✓
popl09_fig4_4	3	34.2	✓

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
- Goal: compare against results from prev work

Results: Complexity Analysis

Prog	Invs	Time (s)	
cav09_fig1a	1	14.3	\
cav09_fig1d	1	14.2	✓
cav09_fig2d	3	36.0	✓
cav09_fig3a	3	14.2	✓
cav09_fig5b	5	46.8	✓
pldi09_ex6	7	54.1	✓
pldi09_fig2 (triple)	6	93.5	11
pldi09_fig4_1	3	44.2	✓
pldi09_fig4_2	5	43.7	✓
pldi09_fig4_3	3	37.5	✓
pldi09_fig4_4	4	56.6	-
pldi09_fig4_5	3	31.6	✓
popl09_fig2_1	2	211.7	V
popl09_fig2_2	2	65.1	11
popl09_fig3_4	4	54.7	✓
popl09_fig4_1	2	42.7	✓
popl09_fig4_2	2	158.3	11
popl09_fig4_3	5	39.2	✓
popl09_fig4_4	3	34.2	✓

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
- Goal: compare against results from prev work

Results: Obtain equiv (14) or more precise bounds (4) in 18/19 progs

Example: Verification

```
void f(int u1, int u2) {
 assert(u1 > 0 \&\& u2 > 0);
 int a = 1, b = 1, c = 2, d = 2;
 int x = 3, y = 3;
 int i1 = 0, i2 = 0;
 while (i1 < u1) {
   i1++;
   x = a + c; y = b + d;
   if ((x + y) \% 2 == 0) {
   a++; d++;
   } else { a--;}
   i2 = 0;
   while (i2 < u2 ) {
     i2++: c--: b--:
  [L]
 assert(a + c == b + d);
L: b+1=c, a+1=d, a+b < 2, 2 < a
```

```
void g(int n, int u1) {
  assert(u1 > 0);
  int x = 0;
  int m = 0;
  while (x < n) {
    if (u1) {
     m = x;
    x = x + 1;
  [L]
  if (n > 0){
    assert(0 <= m && m < n);</pre>
L: m^2 = nx - m - x, mn = x^2 - x - m < x, x < x
m+1, n \leq x
```

Results: Verification

Experiment

- HOLA benchmark: 49 programs
- Various assertions (mostly postconds)
- Goal:
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE

Results: Verification

Experiment

- HOLA benchmark: 49 programs
- Various assertions (mostly postconds)
- Goal:
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE

Results:

- Found equiv (23) or stronger (13) invariants in 36/46 programs
- Time: mean 30s, median 13s
- Nonlinear invariants can prove many nontrivial and unsupported properties

Conclusion

DIG: integrate dynamic and static analyses for *numerical* invariant generation

- Dynamic Inference: compute nonlinear invariants from execution traces
- Static Checking: check candidate invariants and obtain counterexamples

Results

- Discover necessary nonlinear invariants to understand programs
- Find useful invariants capturing nontrivial runtime complexity
- Compete well with existing work
- General polynomial invariants (e.g., nonlinear properties) can *surprisingly* represent and prov nontrivial and complex program properties

https://bitbucket.org/nguyenthanhvuh/symtraces/

Analyzing Disjunctive Invariants using Max-Plus Algebra

$$L: (x < 5 \land 5 = y) \lor (x \ge 5 \land x = y), 11 \ge x$$

Disjunction of 2 cases:

- **1** if x < 5 then y = 5
- 2 if $x \ge 5$ then x = y

$$\rightarrow$$
 if $0 > x - 5$ then $0 = y - 5$ else $x - 5 = y - 5$
 $\max(0, x - 5) = y - 5$

a linear relation .. in max-plus algebra

Array Invariants in AES (Advanced Encryption Standard)

[L]: b[i][j] = S[a[i][j]]

Research

Verification

- Finding programs' space and time complexity
- Analyzing programs with pointer data structures
- Understanding programs' configuration spaces

Synthesis

- Automatic program repair
- Generating library axioms for synthesizing object-oriented programs

Acknowledgement

History of DIG's developments & Publications

- DIG: nonlinear equations, inequalities, array relationships (ICSE '12)
 ACM Distinguished Paper award
- geometric invs and complexity analyses for array invariants (TOSEM '13)
- disjunction, max-plus algebra, prove by k-induction (ICSE '14)
- DIG2: refute spurious results using symbolic exec, runtime complexity analysis (FSE '17)
- DIG3: use symbolic traces to infer and check invs (ASE '17)

Coauthors (8)

- Deepak Kapur (U. New Mexico), Wes Weimer (UMich), Stephanie Forrest (U. Arizona)
- Timos Antonopoulos (Yale), Andrew Ruef (UMD), Michael Hicks (UMD)
- Matthew Dwyer (UNL), Willem Visser (Stellenbosch U., South Africa)