第1章

Schur 多項式

1.1 Schur 多項式

1.1.1 対称多項式と交代多項式

定義 1.1.1.1. n 変数多項式 $f \in \mathbb{Z}[x_1, \cdots, x_n]$ が対称多項式であるとは、任意の置換 $\sigma \in \mathfrak{S}_n$ に対して $\sigma f := f(x_{\sigma(1)}, \cdots, x_{\sigma(n)}) = f(x_1, \cdots, x_n)$ が成り立つことをいう。対称多項式全体のなす $\mathbb{Z}[x_1, \cdots, x_n]$ の部分集合 を $\mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n}$ と書く。f が交代多項式であるとは、任意の置換 σ に対して $\sigma f := f(x_{\sigma(1)}, \cdots, x_{\sigma(n)}) = \operatorname{sgn}(\sigma) f(x_1, \cdots, x_n)$ が成り立つことをいう。ただし sgn は置換の符号である。

例 1.1.1.2. $xy, x+y, x^2+y^2$ はいずれも $\mathbb{Z}[x,y]$ の対称多項式であり、x-y は交代多項式である。 $xy^2, x+2y$ などは対称でも交代でもない

命題 1.1.1.3. $\mathbb{Z}[x_1,\cdots,x_n]^{\mathfrak{S}_n}$ は $\mathbb{Z}[x_1,\cdots,x_n]$ の部分環をなす

Proof. $f, g \in \mathbb{Z}[x_1, \cdots, x_n], \sigma \in \mathfrak{S}_n$ に対して

$$\sigma(f+g) = \sigma f + \sigma g, \qquad \sigma(f \cdot g) = \sigma f \cdot \sigma g$$

が成り立つことから従う。

例 1.1.1.4 (単項対称式). 整数 n>1 を固定する。非負整数列 $\alpha=(\alpha_1,\cdots,\alpha_n),\,\beta=(\beta_1,\cdots,\beta_n)$ に対して、ある置換 $\sigma\in\mathfrak{S}_n$ が存在して

$$\beta = \sigma \alpha = (\alpha_{\sigma^{-1}(1)}, \cdots, \alpha_{\sigma^{-1}(n)})$$

となるとき、 $\beta \sim \alpha$ と書く。広義単調減少な $\alpha = (\alpha_1, \dots, \alpha_n)$ に対して

$$m_{\alpha} = \sum_{\beta \sim \alpha} x_1^{\beta_1} \cdots x_n^{\beta_n}$$

と定めると、 m_{α} は対称式である。

$$m_{2,1}(x,y) = x^2y + xy^2$$

 $m_{2,2,0}(x,y,z) = x^2y^2 + y^2z^2 + z^2x^2$

例 1.1.1.5 (べき和対称式). 整数 n>1 を固定する。 $k=1,2,\cdots,n$ に対して $(k)=(k,0,\cdots,0)$ とする。 p_k を

$$p_k = m_{(k)} = x_1^k + \dots + x_n^k$$

によって定義する。 p_k はもちろん対称多項式である。

例 1.1.1.6 (基本対称式・完全対称式). 整数 n>1 を固定する。 $k=1,2,\cdots,n$ に対して、 $1^k=(1,1,\cdots,1,0,\cdots,0)$ を最初の k 個が 1 で、残りが 0 の数列とする。また

$$\mathcal{Y}_{k,n} = \left\{ (\alpha_1, \cdots, \alpha_n) \in \mathbb{Z}_{>0}^n \mid \alpha_1 \ge \cdots \ge \alpha_n, \quad \alpha_1 + \cdots + \alpha_n = k \right\}$$

とする。

$$e_k = m_{1^k} = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

$$h_k = \sum_{\alpha \in \mathcal{Y}_{k,n}} m_{\alpha} = \sum_{1 \le i_1 \le i_2 \le \dots \le i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

として、 e_k を k 次基本対称式, h_k を k 次完全対称式という。

$$e_1 = x_1 + \dots + x_n$$
, $e_2 = x_1 x_2 + x_1 x_3 + \dots$, $e_n = x_1 x_2 \cdots x_n$
 $h_1 = x_1 + \dots + x_n$, $h_2 = x_1^2 + x_1 x_2 + \dots$, $h_n = x_1^n + x_1^{n-1} x_2 + \dots$
 $h_{n+1} = x_1^{n+1} + x_1^n x_2 + \dots$

n変数の基本対称式は e_1, \cdots, e_n だけだが、完全対称式は無限に存在することに注意。ここで定義したさまざまな対称多項式は、対称多項式環 $\mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n}$ における良い性質をもっている。

命題 1.1.1.7. $\{m_{\alpha} \mid \alpha = (\alpha_1 \geq \cdots \geq \alpha_n), \alpha_n \geq 0\}$ は $\mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n}$ の基底をなす

Proof. $\{m_{\alpha} \mid \alpha = (\alpha_1 \geq \cdots \geq \alpha_n), \alpha_n \geq 0\}$ が一次独立であることは、 $\alpha \neq \beta$ ならば m_{α}, m_{β} は異なる単項式を含むことからわかる。よって $\mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n}$ を生成することを示す。対称多項式

$$f(x_1, \dots, x_n) = \sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} x_1^{i_1} \dots x_n^{i_n}$$

について、任意の置換 $\sigma \in \mathfrak{S}_n$ に対して

$$f(x_1, \dots, x_m) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

$$= \sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} x_{\sigma(1)}^{i_1} \dots x_{\sigma(n)}^{i_n}$$

$$= \sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} x_1^{i_{\sigma^{-1}(1)}} \dots x_n^{i_{\sigma^{-1}(n)}}$$

$$= \sum_{i_1, \dots, i_n} c_{i_{\sigma(1)}, \dots, i_{\sigma(n)}} x_1^{i_1} \dots x_n^{i_n}$$

よって

$$c_{i_1,\cdots,i_n}=c_{i_{\sigma(1)},\cdots,i_{\sigma(n)}}$$

がなりたつ。したがって

$$f = \sum_{\alpha} c_{\alpha} m_{\alpha}$$

となることがわかる。

定理 1.1.1.8 (対称式の基本定理). 任意の対称多項式は基本対称式の多項式で表される。すなわち

$$\mathbb{Z}[x_1,\cdots,x_n]^{\mathfrak{S}_n}=\mathbb{Z}[e_1,\cdots,e_n]$$

が成り立つ。

Proof. 命題 1.1.1.7 より、 m_{α} が e_1, \cdots, e_n の多項式で表されることを示せばよい。 $\mathcal{Y}_n = \bigcup_{k=1}^{\infty} \mathcal{Y}_{k,n}$ とおく。 \mathcal{Y}_n には辞書式順序による全順序を入れておく。 $\alpha \in \mathcal{Y}_n$ に関する帰納法によって示そう。 \mathcal{Y}_n の最小元は $(1,0,\cdots,0)$ であり、

$$m_{1,0,\dots,0} = e_1$$

であるからよい。 $\alpha = (\alpha_1 \ge \cdots \ge \alpha_n) \in \mathcal{Y}_n$ を $\alpha > (1,0,\cdots,0)$ であるとする。

$$g(x_1, \dots, x_n) = m_\alpha - e_n^{\alpha_n} e_{n-1}^{\alpha_{n-1} - \alpha_n} \dots e_2^{\alpha_2 - \alpha_3} e_1^{\alpha_1 - \alpha_2}$$

とおく。g は対称多項式だが、

$$g = \sum_{\beta} m_{\beta}$$

と表した時、このときすべての β は α より真に小さいことを示そう。 $h=e_n^{\alpha_n}e_{n-1}^{\alpha_{n-1}-\alpha_n}\cdots e_2^{\alpha_2-\alpha_3}e_1^{\alpha_1-\alpha_2}$ とおく。まず、

$$e_n^{\alpha_n} = x_1^{\alpha_n} \cdots x_n^{\alpha_n}$$

より h を展開したときの単項式の指数はすべて $(\alpha_n,\cdots,\alpha_n)$ 以上であることがわかる。次に

$$e_{n-1}^{\alpha_{n-1}-\alpha_n} = \left(\sum_{1 \le i_1 < \dots < i_{n-1} \le n} x_{i_1} \cdots x_{i_{n-1}}\right)^{\alpha_{n-1}-\alpha_n}$$

より h の単項式の指数で最も大きいものは

$$(\alpha_{n-1},\cdots,\alpha_{n-1},\alpha_n)$$

以上であることがわかる。このことを繰り返していけば、hの指数最大の単項式は

$$(\alpha_1, \alpha_2, \cdots, \alpha_n)$$

になることがわかる。またその係数が 1 であることも従う。よって $\beta < \alpha$ であるから、帰納法の仮定により主張が成立する。

例 1.1.1.9. 完全対称式は対称多項式なので定理 1.1.1.8 より基本対称式の多項式である。実際

$$h_1 = e_1$$

 $h_2 = e_1^2 - e_2$
 $h_3 = e_1^3 + e_3 - 2e_1e_2$

一般に

$$h_k = \begin{vmatrix} e_1 & e_2 & e_3 & \cdots & e_k \\ 1 & e_1 & e_2 & \cdots & e_{k-1} \\ 0 & 1 & e_1 & \cdots & e_{k-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & e_1 \end{vmatrix}$$

が成り立つことがわかる (第2部参照)。

次に交代多項式についてみていこう。

定義 1.1.1.10. $\alpha=(a_1,\cdots,a_n),\,a_k\in\mathbb{Z}_{\geq 0}$ に対して多項式 $A_\alpha\in\mathbb{Z}[x_1,\cdots,x_n]$ を

$$A_{\alpha} = \det((x_i^{a_j}))$$

によって定める。行列式の交代性から、 A_{α} は交代多項式である。よって、 α に重複があるなら $A_{\alpha}=0$ となる。

例 1.1.1.11. $\delta = (n-1, n-2, \cdots, 1, 0)$ のとき

$$A_{\delta} = \begin{vmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & x_1 & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_n^{n-1} & x_n^{n-2} & \cdots & x_n & 1 \end{vmatrix}$$

は Vandermonde 行列式に他ならない。したがって

$$A_{\delta} = \prod_{i < j} (x_i - x_j)$$

命題 1.1.1.12. 任意の交代多項式は A_{δ} で割り切れる

 $Proof.\ f\in \mathbb{Z}[x_1,\cdots,x_n]$ を交代多項式とする。交代性から i< j のとき f は x_i に x_j を代入すると 0 になる。よって f は x_i-x_j で割り切れる。 x_i-x_j は既約多項式であり、(i,j), (k,l) が異なるならば x_i-x_j , x_k-x_l は互いに素である。 $\mathbb{Z}[x_1,\cdots,x_n]$ は UFD であるので f は A_δ で割り切れる。

1.1.2 Schur 多項式

定義 1.1.2.1 (Schur 多項式). $\alpha = (a_1, \dots, a_n), a_1 > \dots > a_n \geq 0$ に対して

$$s_{\alpha} = \frac{A_{\alpha}}{A_{\delta}}$$

を Schur 多項式という。

命題 1.1.1.12 より、 A_{α} は A_{δ} で割り切れるので s_{α} は多項式である。また任意の置換 $\sigma \in \mathcal{G}_n$ に対して

$$\sigma s_{\alpha} = \frac{\sigma A_{\alpha}}{\sigma A_{\delta}} = \frac{\operatorname{sgn}(\sigma) A_{\alpha}}{\operatorname{sgn}(\sigma) A_{\delta}} = s_{\alpha}$$

となるから Schur 多項式は対称多項式である。

例 1.1.2.2. $\alpha = (4,2,0)$ とする。

$$s_{\alpha} = \frac{\begin{vmatrix} x_1^4 & x_1^2 & 1 \\ x_2^4 & x_2^2 & 1 \\ x_3^4 & x_3^2 & 1 \end{vmatrix}}{\begin{vmatrix} x_1^2 & x_1^1 & 1 \\ x_2^2 & x_2^1 & 1 \\ x_3^2 & x_3^1 & 1 \end{vmatrix}} = \frac{(x_1^2 - x_2^2)(x_1^2 - x_3^2)(x_2^2 - x_3^2)}{(x_1 - x_2)(x_1 - x_3)(x_2 - x_3)}$$
$$= (x_1 + x_2)(x_1 + x_3)(x_2 + x_3)$$
$$= (x_1 + x_2 + x_3)(x_1x_2 + x_2x_3 + x_1x_3) = e_1e_2$$

Schur 多項式について重要な命題が次の定理である。

定理 1.1.2.3. n>0 を整数とする。Schur 多項式の集合 $\{s_{\alpha}\mid \alpha=(a_1,\cdots,a_n),a_1>\cdots>a_n\geq 0\}$ は対称 多項式のなす環 $\mathbb{Z}[x_1,\cdots,x_n]^{\mathfrak{S}_n}$ の基底をなす

Proof. 次の補題を示す。

補題 1.1.2.4. $\mathcal{S}=\{(a_1,\cdots,a_n)\mid a_1>\cdots>a_n\geq 0\}$ とする。交代多項式全体のなす \mathbb{Z} 加群は $\{A_{\alpha}\}_{\alpha\in\mathcal{S}}$ を基底にもつ

Proof. $f(x_1, \dots, x_n)$ を交代多項式とする。

$$f(x_1, \dots, x_n) = \sum_{i_1, \dots, i_n} c_{i_1, \dots, i_n} x_1^{i_1} \dots x_n^{i_n}$$

とおく。任意の置換 $\sigma \in \mathfrak{S}_n$ に対して

$$f(x_1, \dots, x_n) = \operatorname{sgn}(\sigma) f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$

$$= \sum_{i_1, \dots, i_n} \operatorname{sgn}(\sigma) c_{i_1, \dots, i_n} x_{\sigma(1)}^{i_1} \dots x_{\sigma(n)}^{i_n}$$

$$= \sum_{i_1, \dots, i_n} \operatorname{sgn}(\sigma) c_{i_{\sigma(1)}, \dots, i_{\sigma(n)}} x_1^{i_1} \dots x_n^{i_n}$$

がなりたつ。よって

$$\operatorname{sgn}(\sigma)c_{i_{\sigma(1)},\dots,i_{\sigma(n)}} = c_{i_1,\dots,i_n} \tag{1.1}$$

これにより、 (i_1, \cdots, i_n) に重複がある場合

$$c_{i_1,\dots,i_n}=0$$

であることがわかる。よって

$$f(x_1, \cdots, x_n) = \sum_{(i_1, \cdots, i_n) \in \mathcal{S}} \sum_{\sigma \in \mathfrak{S}_n} c_{i_{\sigma(1)}, \cdots, i_{\sigma(n)}} x_1^{i_{\sigma(1)}} \cdots x_n^{i_{\sigma}(n)}$$

と書くことができる。再び(2)より

$$\begin{split} f(x_1,\cdots,x_n) &= \sum_{(i_1,\cdots,i_n)\in\mathcal{S}} \sum_{\sigma\in\mathfrak{S}_n} c_{i_{\sigma(1)},\cdots,i_{\sigma(n)}} x_1^{i_{\sigma(1)}}\cdots x_n^{i_{\sigma(n)}} \\ &= \sum_{(i_1,\cdots,i_n)\in\mathcal{S}} \sum_{\sigma\in\mathfrak{S}_n} \operatorname{sgn}(\sigma) c_{i_1,\cdots,i_n} x_1^{i_{\sigma(1)}}\cdots x_n^{i_{\sigma(n)}} \\ &= \sum_{(i_1,\cdots,i_n)\in\mathcal{S}} c_{i_1,\cdots,i_n} \sum_{\sigma\in\mathfrak{S}_n} \operatorname{sgn}(\sigma) x_1^{i_{\sigma(1)}}\cdots x_n^{i_{\sigma(n)}} \\ &= \sum_{(i_1,\cdots,i_n)\in\mathcal{S}} c_{i_1,\cdots,i_n} A_{(i_1,\cdots,i_n)} \end{split}$$

 $\{A_{\alpha}\}_{\alpha\in\mathcal{S}}$ が一次独立であることは lpha
eq eta ならば A_{lpha} と A_{eta} は異なる単項式を含むことからわかる。

定理の証明に戻る。f が対称多項式ならば fA_δ は交代多項式であるから、補題により

$$fA_{\delta} = \sum_{\alpha \in \mathcal{S}} c_{\alpha} A_{\alpha}$$

両辺を A_δ で割って

$$f = \sum_{\alpha \in \mathcal{S}} c_{\alpha} \frac{A_{\alpha}}{A_{\delta}} = \sum_{\alpha \in \mathcal{S}} c_{\alpha} s_{\alpha}$$

一意的に表せることは $\{A_{\alpha}\}_{\alpha\in\mathcal{S}}$ が一次独立であることからわかる。

定理 1.1.2.3 より、2 つの Schur 多項式の積は Schur 多項式の線形結合であることがわかる。次節ではその係数を記述する Littlewood-Richardson 規則について解説する。

1.2 Littlewood-Richardson 規則

1.2.1 Young 図形

定義 1.2.1.1. 整数列 $\lambda=(\lambda_1,\lambda_2,\cdots),\ \lambda_1\geq\lambda_2\geq\cdots\geq\lambda_k=\lambda_{k+1}=\cdots=0$ に対して、1 行目に λ_1 個の箱を書き、2 行目に λ_2 個の箱を書き… と続けてできる図形を Young 図形といい、同じく λ で表す。箱が 1 つもない Young 図形、すなわち $(0,0,\cdots)$ は Ø で表す。 $\lambda_{n+1}=0$ のときたんに $\lambda=(\lambda_1,\cdots,\lambda_n)$ と書くこともある。また $|\lambda|=\lambda_1+\lambda_2+\cdots$ とし、これを λ の大きさという。

例 1.2.1.2.

定義 1.2.1.3. 2 つの Young 図形 $\lambda = (\lambda_1, \dots, \lambda_n, \dots), \mu = (\mu_1, \dots, \mu_n, \dots)$ に対して、

$$\lambda \subset \mu \Leftrightarrow \lambda_1 < \mu_1, \cdots, \lambda_n < \mu_n, \cdots$$

と定義する。このとき λ は μ の部分 Young 図形であるという。

定義 1.2.1.4. n 行からなる Young 図形の全体を第 1 節と同じ記号 \mathcal{Y}_n で表す。すなわち

$$\mathcal{Y}_n = \{\lambda = (\lambda_1, \dots, \lambda_n) \mid \lambda_1 \ge \dots \ge \lambda_n \ge 0\}$$

である。

Young 図形と Schur 多項式との関係は次の命題で表される

命題 1.2.1.5. $S = \{(a_1, \dots, a_n) \mid a_1 > \dots > a_n \geq 0\}$ と \mathcal{Y}_n には次の全単射が存在する。

$$\mathcal{Y}_n \ni \lambda \mapsto \alpha = \lambda + \delta \in \mathcal{S}$$

ただし $\delta = (n-1, n-2, \cdots, 1, 0)$ である

Proof. $\lambda \in \mathcal{Y}_n$ は単調減少であるから、実際に $\lambda + \delta \in \mathcal{S}$ であることはわかる。逆に任意の $\alpha \in \mathcal{S}$ に対して、 δ が \mathcal{S} の辞書式順序に関する最小元であることから $\alpha - \delta \in \mathcal{Y}_n$ であることもわかり、全単射であることが 従う。

よって Young 図形 λ に対応する Schur 多項式を $s_{\lambda} = \frac{A_{\lambda+\delta}}{A_{\lambda}}$ と書くことにする。

定義 1.2.1.6. $\lambda \in \mathcal{Y}_n$ に対して、 λ の各箱に次の条件が満たされるように数字を書き入れたものを形 λ の半標準タブローという。

- 各数字は1以上n以下
- 各行は左から右に広義単調増加
- 各列は上から下に狭義単調増加

形 λ の半標準タブロー全体のなす集合を $T(\lambda)$ と書く。半標準タブロー $T \in T(\lambda)$ について、T に数字 $k \in \{1, \dots, n\}$ が t_k 個書かれているとき $\omega_k(T) = t_k$ のように書き、

$$\omega(T) = (t_1, \cdots, t_n)$$

とし、これをTのウェイトと呼ぶ。

例 1.2.1.7. 形 (2,1)= $\in \mathcal{Y}_3$ の半標準タブローは次の通りである

$$\mathcal{T}((2,1)) = \{ \begin{array}{c|cccc} \hline 1 & 1 \\ \hline 2 \\ \hline \end{array}, & \begin{array}{c|cccc} \hline 1 & 2 \\ \hline 2 \\ \hline \end{array}, & \begin{array}{c|cccc} \hline 1 & 1 \\ \hline 3 \\ \hline \end{array}, & \begin{array}{c|cccc} \hline 1 & 3 \\ \hline \hline 3 \\ \hline \end{array}, & \begin{array}{c|cccc} \hline 2 & 3 \\ \hline \hline 3 \\ \hline \end{array}, & \begin{array}{c|cccc} \hline 2 & 3 \\ \hline \hline 3 \\ \hline \end{array}, & \begin{array}{c|ccccc} \hline 2 & 3 \\ \hline \hline 3 \\ \hline \end{array} \}$$

しかし次などは半標準タブローではない

$$\begin{array}{c|c}
1 & 1 \\
1 & 3
\end{array}$$

定義 1.2.1.8. Young 図形 $\lambda \in \mathcal{Y}_n$ に対して次で定まる多項式を λ のタブロー和という。

$$T_{\lambda} = \sum_{T \in \mathcal{T}(\lambda)} x_1^{\omega_1(T)} \cdots x_n^{\omega_n(T)}$$

例 1.2.1.9. 例 1.2.1.7 より、

$$T_{(2,1)} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + x_1 x_3^2 + 2x_1 x_2 x_3 + x_2^2 x_3 + x_2 x_3^2 = e_1 e_2 = s_{(2,1)}$$

例 1.2.1.10. λ が 1 行からなる Young 図形 $\lambda = (k) \in \mathcal{Y}_n$ の場合、 $T_{\lambda} = h_k$ である。なぜなら、形 (k) の半標準タブローは左端に 1 をいくつか書き (0 個でもよい), 続けて 2 をいくつか書き,3 をいくつか書き... と続けて得られるから、

$$1 \le i_1 \le \dots \le i_k \le n$$

をみたす i_1, \dots, i_k の組み合わせと1対1に対応するからである。

例 1.2.1.11. λ が 1 列からなる Young 図形 $\lambda=1^k\in\mathcal{Y}_n\ (k\leq n)$ の場合、 $T_\lambda=e_k$ である。なぜなら、形 1^k の半標準タブローは

$$1 \le i_1 < \dots < i_k \le n$$

をみたす i_1, \dots, i_k の組み合わせと 1 対 1 に対応するからである。

1.2.2 Littlewood-Richardson 規則

定理 1.2.2.1 (Littlewood-Richardson 規則). Young 図形 $\lambda, \mu \in \mathcal{Y}_n$ について

$$s_{\lambda}s_{\mu} = \sum_{\nu \in \mathcal{Y}_n} \eta_{\lambda\mu}^{\nu} s_{\nu}$$

とおいたとき、

$$\eta_{\lambda\mu}^{\nu}=\#\left\{T\in\mathcal{T}(\mu)\mid T$$
は λ-good であり、 $\omega(T)=\nu-\lambda
ight\}$

が成り立つ。係数 $\eta^{\nu}_{\lambda\mu}$ を Littlewood-Richardson 数と呼ぶ。

ここで $T \in \mathcal{T}(\mu)$ が λ -good であるとは、次の条件を満たすことをいう。T に書かれている数字を上から下、右から左へ読んでいったときにできる数字の並びを c(T) とする。

$$T = \begin{array}{|c|c|c|c|}\hline 1 & 1 & 2 & 2 \\ \hline 3 & 3 & 3 & 4 \\ \hline 4 & 5 & \\ \hline \end{array} \qquad \rightarrow \qquad c(T) = 2423135134$$

 $c(T)_i$ を c(T) の左から j 番目までの部分列とするとき

$$\lambda + \omega(c(T)_j) \in \mathcal{Y}_n, \quad \forall j = 1, \dots, |\mu|$$

が成り立つとき、T は λ -good であるという。すなわち、「T の右上から左下へ数字を読んでいくとき、読まれた数に対応する λ の行に箱を追加する」という操作を続けて各ステップで Young 図形であることが保たれるということである。

例 1.2.2.3. Ø-good であるような形 μ の半標準タブローは 1 行目がすべて 1, 2 行目がすべて 2, ... というものただ一つである。この半標準タブローを μ^{st} と書く。

T が Ø-good であるとする。Ø に箱を 1 つ追加して Young 図形になるためには第 1 行目に追加しなければならない。よって T の一番右上には 1 が入っており、半標準タブローの行単調性から 1 行目はすべて 1 である。半標準タブローの列単調性から 2 行目の一番右は 2 以上が入っているはずであり、3 より大きければ Young 図形ができないので 2 である。よって行単調性から 2 行目はすべて 2 である。以下同様にして k 行目に入っている数字はすべて k であることがわかる。

例 1.2.2.4. $\lambda =$ $\in \mathcal{Y}_2$ とし、 s_λ^2 を Schur 多項式の線形結合として表そう。 λ -good な形 λ の半標準タブローは

$$T_1 = \begin{bmatrix} 1 & 1 \\ 2 & \end{bmatrix}, \qquad T_2 = \begin{bmatrix} 1 & 2 \\ 2 & \end{bmatrix}$$

ですべてである。それぞれのウェイトは

$$\omega(T_1) = (2,1), \quad \omega(T_2) = (1,2)$$

定理 1.2.2.1 より

$$s_{\lambda}^2 = s_{4,2} + s_{3,3}$$

である。実際、定義より

$$s_{\lambda} = \frac{\begin{vmatrix} x^3 & x \\ y^3 & y \end{vmatrix}}{\begin{vmatrix} x & 1 \\ y & 1 \end{vmatrix}} = \frac{x^3y - xy^3}{x - y} = xy(x + y), \qquad s_{\lambda}^2 = x^4y^2 + 2x^3y^3 + x^2y^4$$

$$s_{4,2} = \frac{\begin{vmatrix} x^5 & x^2 \\ y^5 & y^2 \end{vmatrix}}{\begin{vmatrix} x & 1 \\ y & 1 \end{vmatrix}} = \frac{x^5y^2 - x^2y^5}{x - y} = x^2y^2(x^2 + xy + y^2) = x^4y^2 + x^3y^3 + x^2y^4$$

$$s_{3,3} = \frac{\begin{vmatrix} x^4 & x^3 \\ y^4 & y^3 \end{vmatrix}}{\begin{vmatrix} x & 1 \\ y & 1 \end{vmatrix}} = \frac{x^4y^3 - x^3y^4}{x - y} = x^3y^3$$

で確かに正しい。

定理 1.2.2.1 の証明のあらすじを述べよう。ポイントになるのが次の等式 (補題 1.2.2.6) である:

$$A_{\lambda+\delta}T_{\mu} = \sum_{T \in \mathcal{T}(\mu)} A_{\lambda+\omega(T)+\delta}$$

この等式はタブロー和 T_{μ} が対称多項式であること (命題 1.2.2.5) から示される。右辺に関して、T が λ -good でない項たちは互いにキャンセルされることが示され (補題 1.2.2.7)、結局

$$A_{\lambda+\delta}T_{\mu} = \sum_{T:\lambda\text{-good}} A_{\lambda+\omega(T)+\delta}$$
(1.2)

ここで、 $\lambda = \emptyset$ の場合を考えると例 1.2.2.3 より

$$A_{\delta}T_{\mu} = A_{\omega(\mu^{st}) + \delta}$$

両辺を A_δ で割れば

$$T_{\mu} = \frac{A_{\omega(\mu^{st}) + \delta}}{A_{\delta}} = \frac{A_{\mu + \delta}}{A_{\delta}} = s_{\mu}$$

すなわち、タブロー和は Schur 多項式と等しいということが導かれる。再び一般の λ に対し式 (3) の両辺を A_δ で割って

$$s_{\lambda}s_{\mu} = \sum_{T: \lambda \text{-good}} s_{\lambda + \omega(T)}$$

これより主張が従う。

あらすじで用いた命題・等式を示そう。

命題 1.2.2.5. タブロー和 T_{λ} は対称多項式である。

Proof. 対称群は隣り合う数字の互換 $\sigma = (k-1,k), k=2,\dots,n$ によって生成されるから、

$$\sigma T_{\lambda} = T_{\lambda}$$

を証明すればよい。ポイントになるのは半標準タブローの集合 $T(\lambda)$ 上の対合 $^{*1}\iota$ であって

$$\omega(\iota(T)) = \sigma(\omega(T)) \tag{1.3}$$

をみたすものの存在である。ここで、

$$\sigma(\omega(T)) = (\omega_{\sigma^{-1}(1)}(T), \cdots, \omega_{\sigma^{-1}(n)}(T))$$

である。このような ι が構成できれば、

$$\begin{split} \sigma T_{\lambda} &= \sum_{T \in \mathcal{T}(\lambda)} x_{\sigma(1)}^{\omega_1(T)} \cdots x_{\sigma(n)}^{\omega_n(T)} \\ &= \sum_{T \in \mathcal{T}(\lambda)} x_1^{\omega_{\sigma^{-1}(1)}(T)} \cdots x_n^{\omega_{\sigma^{-1}(n)}(T)} \\ &= \sum_{T \in \mathcal{T}(\lambda)} x_1^{\omega_1(\iota(T))} \cdots x_n^{\omega_n(\iota(T))} \\ &= T_{\lambda} \end{split}$$

となり対称性が従う。最後の等式はしが全単射であることによる。

このような ι は次のように構成される。まず条件 (4) は、半標準タブローT と $\iota(T)$ は書かれている k-1 と k の数が逆転した関係にある、ということを意味している。最初に T が一行の Young 図形からなる場合を考えよう。半標準タブローの単調性から k-1 か k の書かれている部分はひとつながりの帯領域をなしており、その長さは $\omega_{k-1}(T)+\omega_k(T)$ である。よってこの帯領域の数字を、左 $\omega_k(T)$ 個の箱に k-1,残りの $\omega_{k-1}(T)$ 個の箱に k を入れるように変更したものを $\iota(T)$ とすれば、これは条件 (4) を満たす半標準タブローになる。

$$T = \cdots k-2 \frac{k-1}{k-1} \frac{k-1}{k} \frac{k-k}{k} \frac{k-1}{k-1} \cdots \rightarrow \iota(T) = \cdots k-2 \frac{k-1}{k-1} \frac{k-1}{k-1} \frac{k-k}{k} \frac{k-1}{k-1} \cdots$$

また、この場合に $\iota^2(T) = T$ が成立していることもわかる。

一般の半標準タブローTに対しては一行の場合の操作を拡張することで得られる。まず、Tの箱が自由であることを

- 箱にkが入っており、上の箱はk-1より真に小さい
- 箱にk-1が入っており、下の箱はkより真に大きいか下に箱がない

 $^{^{*1}}$ 集合 X 上の対合とは写像 $\iota: X \to X$ であって $\iota^2 = \operatorname{id}_X$ をみたすものをいう

のどちらかを満たしていることと定義する。例えば k=4 において

$$T = \begin{array}{|c|c|c|c|c|c|c|c|}\hline 1 & 1 & 1 & 1 & 2 & 2 \\ \hline 2 & 2 & 3 & 3 & 3 & 4 \\ \hline 3 & 3 & 4 & 5 \\ \hline 5 & & & & \\ \hline \end{array}$$

黄色の箱は自由であり、緑の箱は自由でない。不自由な箱は数字を入れ替えると単調性が崩れるので、入れ替えることができないという意味で不自由である。したがって数字の入れ替えをするには、自由な箱のみを考えればよい。重要なこととして、

自由な箱の全体はいくつかの帯領域をなし、さらに帯は各行にたかだか1つである。

実際

- k-1 が書かれている箱が自由なら、その右にある k-1 の書かれた箱はすべて自由である。なぜなら 半標準タブローの行単調性から、その下にある箱はすべて k より真に大きいからである。
- k が書かれている箱が自由なら、その左にある k の書かれた箱はすべて自由である。なぜなら半標準タブローの行単調性から、その上にある箱はすべて k-1 より真に小さいからである。

より、各行に帯領域はたかだか一つである。そこで各帯領域に対して、1 行の場合の入れ替え操作を行った半標準タブローを $\iota(T)$ と置けば、 $\iota(T)$ は条件 (4) を満たす。なぜなら、不自由な箱は k-1 が書かれているものと k が書かれているもので同数あり、1 行の場合に条件 (4) は満たされているからである。また半標準タブローの列単調性から $\iota(T)$ と T で箱の自由性は保たれるので $\iota^2(T)=T$ であることもわかる。また、もし T に自由な箱が存在しない場合は $\iota(T)=T$ とする。これで構成できた。

補題 1.2.2.6. $\lambda, \mu \in \mathcal{Y}_n$ に対して

$$A_{\lambda+\delta}T_{\mu} = \sum_{T \in \mathcal{T}(\mu)} A_{\lambda+\omega(T)+\delta}$$

が成り立つ。

Proof. $\mathrm{Alt}_n = \sum_{\sigma \in \mathfrak{S}_n} \mathrm{sgn}(\sigma) \sigma$ とおく (これは交代化作用素と呼ばれる)。 交代化作用素と対称多項式をかけ

ることは可換である。実際、 $f \in \mathbb{Z}[x_1, \cdots, x_n]^{\mathfrak{S}_n}, g \in \mathbb{Z}[x_1, \cdots, x_n]$ に対し

$$\operatorname{Alt}_{n}(fg) = \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma)\sigma(fg)$$
$$= \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma)\sigma f \cdot \sigma g$$
$$= f \cdot \sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma)\sigma g$$
$$= f \cdot \operatorname{Alt}_{n}(g)$$

である。

$$A_{\lambda+\delta} = \operatorname{Alt}_n(x_1^{\lambda_1+\delta_1} \cdots x_n^{\lambda_n+\delta_n})$$

だから命題 1.2.2.5 より

$$\begin{split} A_{\lambda+\delta}T_{\mu} &= \mathrm{Alt}_n(T_{\mu} \cdot x_1^{\lambda_1+\delta_1} \cdots x_n^{\lambda_n+\delta_n}) \\ &= \mathrm{Alt}_n\left(\sum_{T \in \mathcal{T}(\mu)} x_1^{\lambda_1+\omega_1(T)+\delta_1} \cdots x_n^{\lambda_n+\omega_n(T)+\delta_n}\right) \\ &= \sum_{\sigma \in \mathfrak{S}_n} \sum_{T \in \mathcal{T}(\mu)} \mathrm{sgn}(\sigma) x_{\sigma(1)}^{\lambda_1+\omega_1(T)+\delta_1} \cdots x_{\sigma(n)}^{\lambda_n+\omega_n(T)+\delta_n} \\ &= \sum_{T \in \mathcal{T}(\mu)} \sum_{\sigma \in (S)_n} \mathrm{sgn}(\sigma) x_{\sigma(1)}^{\lambda_1+\omega_1(T)+\delta_1} \cdots x_{\sigma(n)}^{\lambda_n+\omega_n(T)+\delta_n} \\ &= \sum_{T \in \mathcal{T}(\mu)} A_{\lambda+\omega(T)+\delta} \end{split}$$

補題 1.2.2.7. $\lambda, \mu \in \mathcal{Y}_n$ に対して、形 μ の半標準タブローで λ -good でないものを λ -bad と呼び、その全体 を $\mathcal{T}(\mu)^{\lambda-bad}$ とおく。このとき

$$\sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} A_{\lambda + \omega(T) + \delta} = 0$$

が成り立つ。

Proof. この証明においてもポイントになるのが $\mathcal{T}(\mu)^{\lambda-bad}$ 上の対合 ι であって各 $T \in \mathcal{T}(\mu)^{\lambda-bad}$ に対してある k が存在して $\sigma = (k-1,k)$ に対して

$$\lambda + \omega(\iota(T)) + \delta = \sigma(\lambda + \omega(T) + \delta) \tag{1.4}$$

をみたすものの存在である。このような ι が構成されれば、 $A_{\lambda+\omega(T)+\delta}$ たちはペアごとに打ち消される。実際、

$$\sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} A_{\lambda + \omega(T) + \delta} = \frac{1}{2} \sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} (A_{\lambda + \omega(T) + \delta} + A_{\lambda + \omega(\iota(T)) + \delta})$$

$$= \frac{1}{2} \sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} (A_{\lambda + \omega(T) + \delta} + A_{\sigma(\lambda + \omega(T) + \delta)})$$

$$= \frac{1}{2} \sum_{T \in \mathcal{T}(\mu)^{\lambda - bad}} (A_{\lambda + \omega(T) + \delta} - A_{\lambda + \omega(T) + \delta})$$

$$= 0$$

(5) をみたす ι を構成するために、条件 (5) が成り立つための必要条件から考察していく。(5) が成り立つ には

$$\lambda_k + \omega_k(\iota(T)) + \delta_k = \lambda_{k-1} + \omega_{k-1}(T) + \delta_{k-1}$$

したがって

$$\omega_k(\iota(T)) = \omega_{k-1}(T) + (\lambda_{k-1} - \lambda_k) + 1 \tag{1.5}$$

となることが必要である。この右辺の値は、 λ の k 行目にいくつ箱を追加すると Young 図形でなくなるか、ということを表していることに注意する。このような k と $\iota(T)$ をみつけたいのである。 そこで、

$$\lambda + \omega(c(T)_i) \notin \mathcal{Y}_n$$

を満たす最小の j をとってこよう。これは λ -bad の定義から必ず存在する。そして j に対応する箱に入っている数字を k とおく。すなわち、j ステップ目で k 行目に箱を追加すると初めて Young 図形でなくなるとする。またこの箱を悪い箱と呼ぶことにする。このとき

$$\omega_k(c(T)_j) = \omega_{k-1}(c(T)_j) + (\lambda_{k-1} - \lambda_k) + 1 \tag{1.6}$$

が成り立つ。ここで、T を悪い箱よりも左側にある部分 T_1 と悪い箱を含む右側の部分 T_2 に分割する。例えば

$$T = \begin{array}{|c|c|c|c|c|c|c|c|}\hline 1 & 1 & 1 & 2 & 2 \\ \hline 2 & 2 & 2 & 3 \\ \hline 3 & 3 & 4 & 4 \\ \hline 4 & 5 & 5 \\ \hline \end{array} \quad \text{-bad}$$

においては、黄色い箱が悪い箱で

である。すると、半標準タブローの列単調性から悪い箱の下にある箱にはk+1以上しか存在しないから、

$$\omega_k(c(T)_i) = \omega_k(T_2), \quad \omega_{k-1}(c(T)_i) = \omega_{k-1}(T_2)$$

よって (7) は

$$\omega_k(T_2) = \omega_{k-1}(T_2) + (\lambda_{k-1} - \lambda_k) + 1$$

と書き換えることができる。 $\iota(T)$ の満たすべき必要条件(6) は

$$\omega_k(\iota(T)) = \omega_{k-1}(T) + (\lambda_{k-1} + \lambda_k) + 1$$

$$\omega_k(\iota(T_1)) + \omega_k(\iota(T_2)) = \omega_{k-1}(T_1) + \omega_{k-1}(T_2) + (\lambda_{k-1} + \lambda_k) + 1$$

となるが、 $\iota(T_2) = T_2$ であると仮定すれば

$$\omega_k(\iota(T_1)) + \omega_k(T_2) = \omega_{k-1}(T_1) + \omega_{k-1}(T_2) + (\lambda_{k-1} + \lambda_k) + 1$$
$$\omega_k(\iota(T_1)) = \omega_{k-1}(T_1)$$

結局、 $\iota(T)$ は次のように定義すればよいであろうことがわかる。

 $\iota(T)$ は T_1 に命題 1.2.2.5 で定義した対合を施し、 T_2 には何もしない

示すべきことは

- (i) 実際に $\iota(T)$ が λ -bad な半標準タブローであること
- (ii) $\iota(T)$ が (5) をみたすこと

である。

(i) ι が T_2 には何もしないことから、 λ -bad であることは直ちに従う。よって $\iota(T)$ が半標準タブローであることさえ示せばよい。 $\iota(T_1)$ は命題 1.2.2.5 から半標準タブローであり、 T_2 も半標準タブローだから、問題になるのは $\iota(T_1)$ と T_2 の境界部分である。悪い箱は命題 1.2.2.5 の証明中の意味で自由である。すなわちその上にある箱は k-1 より真に小さい。

なぜならもし悪い箱の上に k-1 があったとすると、j-1 ステップ目で k-1 行目に箱を追加しても Young 図形であることは保たれている。よってそのとき k 行目の箱の数は k-1 行目の箱の数と同じかそれ以下である。もし同じなら j-2 ステップの時点では k-1 行目の箱の数が k 行目の箱の数より小さいこととなり、これは Young 図形になっていない。k-1 行目の箱の数以下であるなら j ステップ目に k 行目に箱を追加しても Young 図形であることは保たれるから、悪い箱であることに矛盾する。

よってTの悪い箱よりも上部分は考えなくてよい。悪い箱の下部分は半標準タブローの列単調性からkより真に大きいのでここも考えなくてよい。したがって問題になるのは悪い箱の左に入っている数が ι によってどうなるかということだけであるが、 ι はk-1とkを適当に入れ替える操作なので単調性は崩れない。

(ii) ι は結局のところ k-1 と k を (6) が成り立つように入れ替える操作であるから、

$$\lambda_k + \omega_k(\iota(T)) + \delta_k = \lambda_{k-1} + \omega_{k-1}(T) + \delta_{k-1}$$

$$l \neq k, \ k-1 \implies \lambda_l + \omega_l(\iota(T)) + \delta_l = \lambda_l + \omega_l(T) + \delta_l$$

が成り立つ。命題 1.2.2.5 の対合を用いているので ι もまた対合であるから

$$\lambda_{k-1} + \omega_{k-1}(\iota(T)) + \delta_{k-1} = \lambda_k + \omega_k(\iota^2(T)) + \delta_k$$
$$= \lambda_k + \omega_k(T) + \delta_k$$

よって $\sigma = (k, k-1)$ として

$$\lambda + \omega(\iota(T)) + \delta = \sigma(\lambda + \omega(T) + \delta)$$

が成り立つ。

Littlewood-Richardson 規則の特別な場合として、 λ が一行の Young 図形の場合は Pieri の規則と呼ばれ、比較的簡単に計算できる。

定義 1.2.2.8. Young 図形 $\mu \le \nu$, $|\nu| = |\mu| + k$ に対して、 ν/μ が水平帯であるとは

 ν に含まれ、 μ に含まれない箱が各列にたかだか一つ

を満たすことをいう。このことは

$$\nu_l \leq \mu_{l-1}$$

がすべての $l=2,3,\cdots$ について成り立つことと同値である。

定理 1.2.2.9 (Pieri の規則). $\lambda = (k), \mu \in \mathcal{Y}_n$ に対して

$$s_{\lambda}s_{\mu} = \sum_{\substack{|\nu| = |\mu| + k \\
u/\mu$$
战水平带

が成り立つ

Proof. 定理 1.2.2.1 より、 μ -good な形 λ の半標準タブローを考える。T が形 λ の μ -good な半標準タブロー であるとする。いま λ は一行の Young 図形だから、T が μ -good であることは

$$\omega_l(T) + \mu_l \leq \mu_{l-1}$$

がすべての $l=2,3,\cdots,n$ に対して成り立つことと同値である。 $\nu=\mu+\omega(T)$ とすれば、これは ν/μ が水平帯であることに他ならない。

例 1.2.2.10. $\lambda=$ $\lambda=$ ξ $\lambda=$ ξ

Young 図形で水平帯となっているものを探せばよい。それらは

だから

$$s_{\lambda}s_{\mu} = s_{\nu_1} + s_{\nu_2} + s_{\nu_3} + s_{\nu_4}$$

例 1.2.1.10 より、Pieri の規則は

$$h_k s_\mu = \sum_{\substack{|\nu| = |\mu| + k \\
u \mid \mu \text{ is } x = \#}} s_
u$$

と書くこともできる。

系 1.2.2.11 (Young の規則). $\lambda \in \mathcal{Y}_n$ に対して

$$h_{\lambda} = h_{\lambda_1} \cdots h_{\lambda_n} = s_{(\lambda_1)} \cdots s_{(\lambda_n)}$$

とおく。 h_{λ} は対称多項式であるが、その Schur 多項式への分解について次が成り立つ:

$$h_{\lambda} = s_{\lambda} + \sum_{\mu > \lambda} k_{\lambda\mu} s_{\mu}$$

係数 $k_{\lambda\mu}$ を Kostka 数という。

Proof. λ の行数 n に関する帰納法で示す。n=1 のときは $h_{\lambda}=s_{\lambda}$ ゆえに明らか。n>1 とする。 $\lambda'=(\lambda_2,\cdots,\lambda_n)$ として帰納法の仮定より

$$h_{\lambda_2} \cdots h_{\lambda_n} = s_{\lambda'} + \sum_{\mu > \lambda'} k_{\lambda'\mu} s_{\mu}$$

と書けるから

$$h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_n} = s_{(\lambda_1)} \left(s_{\lambda'} + \sum_{\mu > \lambda'} k_{\lambda'\mu} s_{\mu} \right)$$

となる。 $s_{(\lambda_1)}s_{\lambda'}$ について考えると、Pieri の規則 (系 1.2.2.9) より、

$$s_{(\lambda_1)}s_{\lambda'}=\sum_{\substack{|
u|=|\lambda'|+\lambda_1\

u/\lambda'}$$
は水平帯

となるが、 $l=2,3,\cdots$ に対して

$$\lambda_l = \lambda'_{l-1}$$

だから λ/λ' は水平帯である。また、 ν/λ' が水平帯であるような $|\nu|=|\lambda'|+\lambda_1$ をみたす任意の ν について、

$$\nu_l \le \lambda'_{l-1} = \lambda_l, \qquad l = 2, 3, \cdots, n$$

だから、

$$\nu_1 = |\nu| - (\nu_2 + \dots + \nu_n) \ge |\lambda| - (\lambda_2 + \dots + \lambda_n) = \lambda_1$$

よって $\lambda \le \nu$ である。したがって

$$s_{(\lambda_1)}s_{\lambda'} = s_{\lambda} + \sum_{\mu > \lambda} a_{\lambda\mu}s_{\mu}$$

と書くことができる。