PROJECT REPORT

DATE	18 November 2022
TEAM ID	PNT2022TMID43363
PROJECT NAME	Project - Hazardous Area Monitoring for Industrial Plant powered by IoT

ABSTRACT:

The proper operation of the industrial process depends in large part on the core area of industrial safety. To ensure that the goods are safe and effective, it is critical to evaluate the status of the sector. An IoT-based industrial monitoring system with intelligent sensors is what this study aims to build. There may be a benefit to the industrial industry from this endeavour. Any manufacturing business that incorporates technology will guarantee the public's safety and well-being and prevent accidents.

INTRODUCTION:

The Industrial Monitoring System project uses the Internet of Things (IoT) as its foundation. Arduino is utilised to control a variety of sensors (using smoke and temperature sensors), giving the industry total control. This project uses the Internet of Things (IoT) to give users access to data. The Internet of Things (IoT) is a system of interconnected "things" that enables physical objects to exchange data via sensors, electronics, software, and networking. These autonomous systems can function without human interaction. The continuous monitoring sensors alert the in charge of the area by sending an alert message as well as with an alarm. The sensors continuously monitor the temperature, leakage of gases and humidity and take necessary measures to ensure the safety of the workers in the industry.

LITERATURE SURVEY:

1. IoT Based Industrial Pollution Monitoring System

Doma Harsha Vardhan Reddy, Arun Gowda K, V Kalyan Kumar, Dr Jeevan K M Journal of Xi'an University of Architecture & Technology, Volume XII, Issue V, 2020

This study proposes a remote embedded enrollment structure for an IoT-based system to monitor pollution levels in mechanical condition or a specific region of interest. The system uses an interface between the transmitter and recipient made of an Arduino Uno and a Blynk server.

2. IoT- Based Air Pollution Monitoring and Forecasting System

Chen Xiaojun published a paper "IoT- Based Air Pollution Monitoring and Forecasting System" in the year 2015.

An IoT-based system for tracking and predicting air pollution In their article titled "Urban Air Pollution Monitoring System With Forecasting Models," Khaled Bashir Shaban et al. made a recommendation for a low-cost air pollution monitoring system. The data could be received, stored, and preprocessed by the system. It has the ability to transform the data into insightful knowledge.

3. IoT Based industrial Monitoring system

Hemlata Yadav, Naomi oyiza, sarfaraz hassan, Dr.sumam lata,K. Jaya chitra

This proposes the idea to reduce industrial risks in prominent factories, monitor power plant yield, guarantee security in quickly developing industries, and access nuclear safety levels.

4. Wireless gas sensor network for detection and Monitoring of harmful gases in utility areas and industries

Dr.p.c.jain,Rajesh Kushwaha

This proposal to control manufacturing processes, or outdoor Monitoring the environment due to WSN's simplicity, wireless connectivity, and low power consumption. The WGSN detects not only the presence of gas but the amount of leakages in the air, and accordingly raises an appropriate audiovisual alarm.

5. FPGA-GSM based Gas Leakage Detection System

Arpitha .T, Divya Kiran, V. S.N. Sitaram Gupta, and Punithavathi Duraiswamy

This proposal based on FPGA – GSM gas leakage detector with a warning call initiating feature to the first response team is presented. The FPGA detects the leakage and initiates a warning call through a GSM module.

IDEATION AND PROPOSED SOLUTION:

1. Empathy Map

2. Proposed Solution Fit:

Project Design Phase – I Problem Solution Fit

Team Id: PNT2022TMID43363

Project Title: Hazardous Area Monitoring for Industrial Plant powered by IoT

CS Industry manager workers	Network connection Harder installation steps	AVAILABLE SOLUTIONS Upgrading to a premium network plan. Availing network connection from a reliable Service provider.	AS
2. JOBS-TO-BE-DONE / PROBLEMS - Has to measure conditions even under harsh environment - SMS service mayn't be available due to network. - Cloud service has to be available all the time.	PROBLEM ROOT CAUSE Quality of the sensors used in the measurement plays a major role. Location of the device installed and the network plan used by the user are the cause of Network issue.	7. BEHAVIOUR - Harsh environment is prevailing only on certain industry; thus, the frequency of the said problem is low. In such a case the customer complaints multiple times to get the attention. - Network issue is very common as most of the industries are located at the country side. Here the contact both the developers and the service providers	BE
3. TRIGGERS Other industries are using the device. Device helped to reduce manual labour power. 4. EMOTIONS: EEFORE / AFTER Before using, users may feel that machines are replacing humans. Later, they feel that a burden was lifted off	Network strength must be boosted in the device Device can be manufactured in multiple standards based on the environment.	8. CHANNELS of BEHAVIOUR 8.1 Online - E-Mail to developers - Online Community 8.2 Offline	СН
Before using, users may feel that machines are replacing humans. Later, they feel that a burden was lifted off their shoulders.		Complaint Letters	

3. Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Hazardous Area Monitoring for Industrial Plant Powered by IoT
2.	Idea / Solution description	 Using sensors to read the required parameters such as temperature, and humidity that can be monitored If the sensor readings exceed the safety threshold, the alert message is sent to users via SMS using services. These sensor values are stored in the cloud and can be viewed from a mobile device.
3.	Novelty / Uniqueness	 If a parameter is violated, the system sends an immediate notification to a set of preset list of users on their smartphones and continues logging and monitoring data for further analysis to suggest improvements in the safety regulations of the industry. The sensors used in this model can be modified with industry requirements whenever the need arises.

4.	Social Impact / Customer Satisfaction	 The system requires just minimum components to run and runs with minimal space and resource requirements. It is configured in such a way that it recovers and reconnects itself after a crash and can resume working immediately Notification parameters and user access control can be adjusted to suit your requirements. Cost-effective model
5.	Business Model (Revenue	Device has day-to-day applications where it is used in domestic to industrial and this yields more attraction among the industry people.

5.	Business Model (Revenue Model)	 Device has day-to-day applications where it is used in domestic to industrial and this yields more attraction among the industry people. The device can be obtained by paying for the IBM cloud/Watson subscription. It can be yearly or monthly.
6.	Scalability of the Solution	The project scope can be expanded such that emissions, radiation and weather conditions can also be monitored.

SOLUTION ARCHITECTURE:

Solution Architecture:

Solution architecture includes sensors, cloud services, apps, databases and hardware modules.

These components include a Temperature and humidity sensor, IBM Watson platform, Rasberry pi, Cloudant DB, Web Browser, SMS services and mobile applications.

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)		
No.	(Epic)			
FR-1	Data Gathering	The smart beacon must be able to detect the		
		temperature of a particular area in rea		
FR-2	Location Detection	The smart beacon must be able to detect when a		
		wearable device has entered an area near it		
FR-3	Beacon Data Syncing	The smart beacon must be able to share its stored		
		data with both the wearable device and admin		
		dashboard through the cloud.		
FR-4	Wearable Device Display	The wearable device must be able to display the		
		temperature of the area where the worker is		
		currently present.		
FR-5	SMS Notification	If the temperature of the area is found to reach		
		dangerous levels, the workers should be informed		
		via SMS to their phone instructing them to leave		
		the area.		
FR-6	Admin Dashboard	If the temperature of the area is found to reach		
		dangerous levels the admin is informed via the		
		dashboard and must take the necessary		
		precautions.		

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional Requirement	Description			
No.					
NFR-1	Usability	The wearable device should be slim and not			
		annoy or disturb the workers who are wearing			
		them. They should also reliably display the			
		temperature without large delays and			
		notifications should be clear in cases of			
		detected danger.			
NFR-2	Security	The connection of the beacons to the cloud and			
		wearable devices should be secure. The			
		security of the database housing all the			
		temperature data shouldalso be bolstered			
NFR-3	Reliability	The wearable device should be able to function			
		without any faults even at dangerous temperatures. If a fault is detected it should			
		notify the user and the admin to be			
		immediately repaired and replaced. The			
		beacons should also be regularly maintained to			
		ensure reliability.			
NFR-4	Performance	The device should update temperature			
		readings in real time and requires high-end			
		sensors and processors to do so. The time to			
		send data to the cloud and other devices			
		should also be made as small as possible.			
NFR-5	Availability	The user should be able to check the			
		temperature of the area no matter where or at			
		what time they are in the plant. The dashboard			
		should be constantly active so as to ensure			
		safety precautions can be executed whenever			

		danger is detected.
NFR-6	Scalability	If the area that needs to be monitored needs to be increased all one has to do is install new smart beacon devices and connect them to the same system as the previous beacons. It can also be replicated in different plants with different factors to be monitored giving it high scalability.

Dataflow Diagram:

TECHNOLOGY (Stack and Architecture):

Table-1: Components & Technologies:

S.No	Component	Description	Technology			
1.	User Interface	Web UI, Mobile App	HTML, CSS, JavaScript /			
			Angular Js / React Js etc.			
2.	Application Logic-1	Logic for a process in the	Java / Python			
		application				
3.	Application Logic-2	Logic for a process in the	IBM Watson STT service			
		application				
4.	Application Logic-3	Logic for a process in the	IBM Watson Assistant			
		application				
5.	Database	Data Type	MySQL, NoSQL			
6.	Cloud Database	Database Service on Cloud	IBM Cloudant etc.			

7.	File Storage	File storage requirements	IBM Block Storage
8.	Machine Learning	Purpose of Machine Learning	Object Recognition Model,
	Model	Model	etc.
9.	Infrastructure	Application Deployment on	Local, Cloud Foundry,
	(Server / Cloud)	Local System / Cloud	Kubernetes, etc.
		Local Server Configuration:	
		Cloud Server Configuration :	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	The open-source frameworks	Chrome
	Frameworks	used	
2.	Security	The security / access	IBM cloud Encryptions
	Implementations	controls implemented, use	
		of firewalls etc.	
3.	Scalable	The scalability of architecture	IBM cloud architecture
	Architecture	(3 – tier, Micro-services)	
4.	Availability	The availability of	Web application can even
		application (e.g. use of	be used by the workers in
		load balancers, distributed	the industry
		servers etc.)	
5.	Performance	The performance of the	Since the web application is
		application (number of	high efficient, it can be used
		requests per sec, use of	by the workers irrespective
		Cache, use of CDN's) etc.	of time.

User Stories

User Type	Functional Requireme nt (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priori ty	Relea se
Technician	Installation	USN-1	As a user, I must install the smart beacons at points to ensure the entire area of the plant is covered.	A beacon can be found in every area of the plant.	High	Sprint-1
	Data Gathering	USN-2	The beacons obtain the temperature of their respective area using sensors.	The temperature of areas within the plant is obtained.	High	Sprint-1
	Data Sync	USN-3	The beacons send their data to the cloud in the real-time which is in turn sent to nearby wearable devices and the administrator 's dashboard	Data is sent to the cloud successfully and synced with and other devices.	High	Sprint-1

Mobile User	Registration	USN-4	As a user, I	I can access my	High	Sprint-1
MIODITE OSEI	1.Cgistiation	0311-4	can register account/		Ingn	Spriiit-1
			for the	dashboard.		
			application dashboard.			
			by entering			
			my email,			
			and			
			password			
			and			
			confirming my			
			password.			
		USN-5	As a User, I will	I can receive a	High	Sprint-1
			receive a	confirmation		
			confirmation	email & click		
			email	confirm		
			once I have			
			registered for the			
			application.			
	Login	USN-6	As a User, I can	I can register and	High	Sprint-1
			login to the	access		
			application by	my account		
			entering email &			
			password			
	Dashboard	USN-7	As a User, I can	I can access the	Medi	Sprint-2
			monitor the	account	um	
			temperature	for		
			and humidity.	monitori		
				ng the		
				hazardous		
T. 177	A1 11	*****		area	*** *	
End User	Alerting	USN-8	I can receive	I can detect the	High	Sprint-1
	through		message in the	hazard		
	message		form of visual and receive			
			notification and notification			
			voice message.			
	SMS	USN-9	I can get the alert	I can be alerted	Medi	Sprint-2
	Notification		message if the through		um	
			area has	the SMS		
			any Hazards.	notification		
<u> </u>	l .	1	1		1	1

Web User	Monitoring	USN-10	As a Web	I can monitor the	High	Sprint-1
			User, I	hazards like		
			can temperature,			
			detect humidity, toxic			
			the gases.			
			hazard			
			through			
			the			
			website.			
Customer	Maintenance	USN-11	As an executive, I	I need a team of	Low	Sprint-3
care			manage a team	workers		
executive			of	to manage the		
			representatives	data.		
			offering			
			customer			
			support.			
Administrat	Admin	USN-12	As an	I can access the	High	Sprint-2
or	Dashboard		Administrator, I	data sent		
			can able to	by the beacon		
			access the	sensor		
			data through the			
			cloud.			
	Dashboard	USN-13	As an	The admin can	Medi	Sprint-2
	Customization		Administrator, I	customize the UI	um	
			can customize	for their dashboard.		
			the dashboard to			
			suit their			
			personal			
			requirements and priorities.			
			and priorities.			

SPRINT PLAN SCHEDULE:

Sprint	Functional Requirement (Epic)	User Story Numb er	User Story / Task	Story Points	Priori ty	Team Members
Sprint- 1	Cloud Setup (Cloud Sevices)	USN-1	The smart beacons are connect with IBM cloud services for real-time data transfer	2 0	High	Dharanithar an S Harinandhan R Jaganaath A Mukil S
Sprint- 2	Admin Dasboard Setup/ Web UI (Cloud Services)	USN-2	The web UI is developed and deployed for connecting the user to the cloud	2 0	High	Dharanithar an S Harinandhan R Jaganaath A Mukil S
Sprint-3	Mobile and wearable device setup (Users)	USN-3	Mobile applications are created using fast SMS API to send alert SMS message and also the watch display mechanism is developed	2 0	High	Dharanithar an S Harinandhan R Jaganaath A Mukil S
Sprint-4	Installation of Beacons(Externa I)	USN-4	The technician should install the smart beacon devices at vital points to increase the data sensing range	2 0	High	Dharanithar an S Harinandhan R Jaganaath A Mukil S

Project Tracker:

Sprint	Total Story Poin ts	Durati on	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5 Days	2 Nov 2022	6 Nov 2022	20	6 Nov 2022
Sprint-2	20	4 Days	7 Nov 2022	10 Nov 2022	20	10 Nov 2022
Sprint-3	20	5 Days	11 Nov 2022	15 Nov 2022	20	15 Nov 2022
Sprint-4	20	4 Days	16 Nov 2022	19 Nov 2022	20	19 Nov 2022

CODING AND RESULTS:

Hazardous Area Monitoring for Industrial Plant powered by IoT

SMS alert

ADVANTAGES:

- IoT technology provides the most economic and budgeted solutions for the users.
- IoT is a fostering innovation.
- IoT powered level will be an improved supply chain.

- IoT provides a smart level monitoring end-to-end solutions.
- It ensures the industrial productivity and improved strategies through advanced analytics.
- The risk prevention must be teach to the staffs. o IoT is a real-time supervision.

DISADVANTAGES:

- Misuse of privacy and data.
- Expense.
- Communication channel disconnection occurs oftern.
- Complex uses.

CONCLUSION:

IoT is currently prevalent and gaining ground in many industries, with industrial applications being one of the most significant. The Internet of Things (IoT) offers a plethora of opportunities for enterprises to enhance productivity, lower costs, and boost sector growth. However, in industrial regions, danger monitoring and mitigation are frequently disregarded.

Therefore, the purpose of this project is to use IoT to actively monitor and analyse different aspects of a typical heavy industrial zone, such as temperature and levels of environmental gases. If the aforementioned parameters are more than the advised safe values. The system is able to monitor repeated issue alerts. Additionally, the data produced in real-time can offer crucial information about how well the work is progressing in various

zones.

This system can be used in a variety of industrial settings, including heavy part production lines, underground factories, metal refineries, automatic welding factories, and mining. It will assist in creating a secure and effective working environment in these locations while also opening up new avenues for enhancing their security measures.

FUTURE SCOPE:

There are the top applications of IIoT that aid the future Scope of Industrial Monitoring:

- 1. Firstly, providing service engineers and manage remote access to industrial machines.
- 2. Secondly, allowing web-based virtual network connection to manage and observe HMI

functions on the IOT platform.

3. In addition, it offers predictive analytics for maintaining machines and identifying potential

Problems.

4. Most importantly, it controls, monitors, and manages data from multiple systems in various

locations. Simultaneously storing the collected data at a central cloud application. Hence, realtime machine data and analysis are easily accessible using industrial communication networks.

APPENDIX

Source code

```
- o ×
 Rython Script IOT.py - C:\Users\91934\Downloads\Python Script IOT.py (3.7.0)
   File Edit Format Run Options Window Help
   import sys
import ibmiotf.application
import ibmiotf.device
import random
 #Provide your IBM Watson Device Credentials
organization = "4sy]omx"
deviceType ="NodeMCU"
deviceId = "1c700]"
authMethod = "tcken"
authMethod = "1234567890"
 f Initialize GPIO
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
    status==emotoroom":
        print("motor in on")
    else:
   else:
    print ("motor is off")
try:
                    deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method": authMethod, "auth-token": authToken) deviceCli = ibmiotf.device.Client(deviceOptions)
   except Exception as e:
    print("Caught exception connecting device: %s" % str(e))
    sys.exit()
  # Connect and send a datapoint "hello" with value "world" into the cloud as an event of type "greeting" 10 times deviceCli.connect()
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0, on publish=myOnPublishCallback)
                     if not success:
    print("Not connected to IoTF")
time.sleep(1)]
deviceCli.commandCallback = myCommandCallback
  # Disconnect the device and application from the cloud
deviceCli.disconnect()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  In: 46 Col: 21
Published Temperature = 94 C Humidity: 10
Published Temperature = 96 C Humidity: 71
Published Temperature = 60 C Humidity: 11
Published Temperature = 69 C Humidity: 12
Published Temperature = 69 C Humidity: 13
Published Temperature = 64 C Humidity: 11
Published Temperature = 64 C Humidity: 12
Published Temperature = 94 C Humidity: 10
Published Temperature = 94 C Humidity: 10
Published Temperature = 51 C Humidity: 10
Published Temperature = 98 C Humidity: 27
Published Temperature = 98 C Humidity: 27
Published Temperature = 93 C Humidity: 52
Published Temperature = 95 C Humidity: 63
Published Temperature = 85 C Humidity: 44
Published Temperature = 36 C Humidity: 76
Published Temperature = 36 C Humidity: 34
Published Temperature = 35 C Humidity: 34
Published Temperature = 35 C Humidity: 14
Published Temperature = 60 C Humidity: 18
Published Temperature = 69 C Humidity: 18
Published Temperature = 70 C Humidity: 18
   ====== RESTART: C:\Users\91934\Downloads\Python Script IOT.py =======
                                                                                                                                                                                                                Connected successfully: d:4wj0mx:NodeMCU:IoT001
```


TEAM ID: PNT2022TMID43363

Github link: https://github.com/IBM-EPBL/IBM-Project-42639-1660672536