Susta circuitos digitais (3) 1) a) A - 100-NOT AB AB+F+C 2)1. 4 -F=(AB+A+C). (A+C) 0) A+c b) (AB+A+C) (A+C) = (AB+A+C) (AC) (A+B+C)(AE) = (TA + AB+AC) = ABE + AEE = AEE c) com NAND: c-IDac AB C - X = (AB (C) (T + E) II, a) D+E b) (ABOC) (D+E) = (ABC + ABC) (D+E) = ABCD + ABCE + (A+B)CD+ (A+B)CE ABOT + ABOE + ACT + BCT + ACE - BCE C) COM NAND : AGCT + ABCE + ATO CD + ABCE ABCDE ABCD + ABCE ABCE ASC D ABCE b) AB + CD(A+B) 3) a) AB+CDA+CDB ABCD

$$= AB\overline{C} + \overline{C}D + C\overline{D}$$

3h)
$$X = (A+B)(C\oplus (A+D))$$

 $(\overline{AB})[\overline{C}(A+D) + C(\overline{A}+D)]$
 $(\overline{AB})[\overline{C}A + \overline{C}\overline{D} + C(\overline{A}D)]$
 $\overline{AB}(\overline{C}A + \overline{C}\overline{D} + C\overline{A}D)$
 $\overline{AB}(\overline{C}A + \overline{AB}\overline{C}\overline{D} + \overline{AB}\overline{C}D)$
 $\overline{AB}(\overline{C}\overline{D} + CD) = \overline{AB}(\overline{C}\overline{D}D)$
(vide circuite 3h)
forma minima: $\overline{AB}\overline{CD} + \overline{AB}\overline{CD}$

37)
$$X = ((A + BBD)(C + A) + B)A + B$$

$$= ((A + BD + BD)(C + A) + B)A B$$

$$= ((A + (B + D)(B + D)(C + A) + B)A B$$

$$= ((A + BB + BD + DB + DD)(C + A) + B)A B$$

$$= ((A + BB + BD + DB + DD)(C + A) + B)A B$$

$$= ((AC + AA + BDC + BDA + DBC + DBA + B)A B$$

$$= ((AC + BCD + ABD + BCD + ABD)A B$$

$$= ((AC + BCD + ABD + BCD + ABD)A B$$

$$= ((AC + BCD + ABCD + ABD)A B$$

$$= ((AC + ABCD + ABCD + ABD)B$$

$$= ((AC + BCD + ABD)B$$

$$= ((AC + ABD$$

	CD	SD	CD	CD
AB [00	(1)	0	0
AB	0	$\tilde{\circ}$	0	0
AB	0	O	0	0
AB	0	0	0	0

4) Circuito montado com dogisim

- Com carry in: somador completo (FA)

Cin ao bo	So	Cour	S= ABBBC
0 0 0	0	0	Cout = AB + BC + AC
0 0 1	1	0	
0 1 0	1	0	AB AB AB AB
0 ' '	0	1	Cin O O O O COUR S
1 0 0	4	0	Cirlo (1)
1 1 0	0	1	
1 1 1	0	1	3 portas AND de a entradas
T T T T T T T T T T T T T T T T T T T	1	1	1 porta xor de 3 entradas 1 porta OR de 3 entradas

9) 8 somadores completos de 4 bits em cascata (carry in do somador i receive covery out do somador i-1, $0 < i \le m-1$)

Cout C_{in} C_{out} C_{out}

10) Subtrator complete de n bits: lémbrar que a subtração pode ser feita com complemento de 2: B-A = B + A+1 Colocar carry in = 1 para o LSB

b_1...bo

\$\frac{1}{2} \quad \frac{1}{2} \quad \qua Sn-1 ... 50 11) Fito no slogisim 12) Valaura X= ren-12,... 2, reo em complemento de 2 F2:= /c<0 F2 = Xn-1 F1 = 7-1 (70-2+70-3+...+20) F1 := fre = 0 Fo = /x>0 F2= Xn-1 (xn-2+ xn-3+ ... + xo) Ideia: MSB (xn.1) define o sinal da palavoa: $7C_{n-1} = 1$ é negative $\begin{cases} F_2 = 1 \\ F_4 = 0 \end{cases}$ $\begin{cases} F_0 = 0 \end{cases}$ Mn-1=0 é não negativo ==0 Para decidir se s' positivo ou zero: $x_{n-1}=0$ = todal as demais bits $(x_{n-2},...,x_0)=0$ if $x_0=0$ $x_0=0$ curacito interno F0=1

n-1 entradas

14) Overfeon (v) para números sem sinal: covery out = 1 V para números con sinal em complemento de 2:

- se os números tem simais sportos, nunca œvere overfece - se os números tem o mesmo sinal e o MSB da somo tem sinal diferente, œvereu overfece.

Vma manura mais simples; observer covery in a carry out do

Cin Cout V
0 0 0
0 1 1
1 0 1

Cin @ Cout

equando carry : n = 0 e ocorre carry sut = 1 significa que \times_{n-1} gr-1 sas ambes negatives (1) e mso da soma é $0 \Rightarrow$ overflow

equando carry in=1 e ocorre
carry out=0 significa que xn-1 e yn-1
pais armhas positivos (0) e mso da soma
ind the 1 => overflow.

(xn-1, xn-2, ... xo, y)

saídas: no

(zm1, zn-2, ... zo)

para

n=1	
The state of the s	
1 74	1
Y	
30	

y xo	30
四0	0
1 1	0
1 0	0
" [1]	1

3: 10 se y=0 12; se y=1

\ri , 0≤; ≤n-1

Ŋ	rc ₁	χo	131	30
101	0	0	0	0
6	0	1	0	0
0	4	0	0	0
লি	1	1	0	O
1	ol	101	0	0
1	0	1	0	\mathcal{O}
A	可	0	①	0
1	Ī		1	1
		, 1		

Seletor de n+ entradas:

17) a, a0 b, bo

Cour Sn-1 ... So

Para n hits

an-1 an-2 ... an ao Dn-1 bn-2 ... b1 b0

2n produtos canônicos de intrada no somador completo

19) a) mux 16x 4 com mux 4x1: 6) Mux 16x2 com mux 2x1:

20) a) Demuze usanche decodificadores:

DEMUX

b) 1x4 Demure wands decoder 2x4

13 12 y. yo

Y2= 11 00 73= DI DO

(minuter ma) c) 1 x 8 Demux wands Decedur 3×8

d) 1×16 Demux wlando Decoder 4x16

=> 8 saidas de decoder (y+ ··· jo) AND E forneam saidas de Demure D.7... Do

=> 16 saidas de deceder (yrs... yo) AND E formecem jaidas do Dernux Pis... Do

25) le somarmos ou subtravimos números com ninais contrativos nunca ocorrera overflou ou underflow. Isto porque operandos con sinais contrativos nunca podem ser maiores do que qualque dos operandos. O overflow ocorre quando somamos dois operandos positivos e obternos um resultado negativo, e via-versa dos positivos e obternos um resultado negativo, e via-versa

