2.8 General loss functions and random design

Goal: To quantify $L(\hat{\theta}) - L(\theta^*)$ for a general $L(\theta)$.

For an example z=(x,y), $L(z,\theta)$ is the loss function and DEIRd.

Denote \mathbb{Z} as the set of all examples. Let $p^* = \Delta(\mathbb{Z})$. Let 0* EIR4 be the minimal of expected risk:

Let $\hat{\theta} \in \mathbb{R}^d$ be the minimizer of the empirical tisk: $\hat{\theta} := \underset{\theta \in \mathbb{R}^d}{\operatorname{argmax}} \hat{\mathbb{L}}(\theta) , \quad \hat{\mathbb{L}}(\theta) := \frac{1}{N} \sum_{i=1}^{N} \mathbb{L}(\mathbf{z}^{(i)}, \theta)$

where Z(i) i.i.d. drawn from P*.

Assumptions on L(Z,0):

- (i) L(z,0) is twice differentiable in 0.
- (ii) $\nabla L(z,\theta) \in \mathbb{R}^d$ means the gradient at θ .
- (iii) $\nabla^2 L(z,\theta) \in \mathbb{R}^{d\times d}$ means the Hessian at θ .
- (iv) $E_{3\sim p^*}[\nabla^2 L(3,0)] > 0$ is positive definite for all 0.

[Definition 3] Well-specified model

- (i) $l(x,y;\theta) := -\log P_{\theta}(y|x)$
- (ii) {po: DEIRd } is conditionally well-specified if $P^{+}(x,y) = P^{+}(x)P_{\theta^{+}}(y|x)$ for some $\theta^{+} \in \mathbb{R}^{d}$.
- (iii) Suppose each o specifies a Po(x,y). & Po: O EIRd) is jointly well-specified if $P^*(x,y) = P_{\theta^*}(x,y)$ for some $\theta^* \in \mathbb{R}^d$.

[Theorem 3] Bartlett identity.
In the well-specified case (conditionally, thus jointly), the

Tollowing Nolds:

$$\nabla^2 L(\theta^*) = \text{Cov} [\nabla L(z, \theta^*)]$$

Pf:
$$1 = \int p^{*}(z) dz = \int p^{*}(x) P_{6*}(y|x) dz$$

 $\Rightarrow \int p^{*}(x) e^{-\int (z, e^{*})} dz = 1$

differentiate w.r.t. θ^* : $\int P^*(x)e^{-\int (z,\theta^*)} (-\nabla J(z,\theta^*)) dz = 0$

which implies $E[\nabla l(z,\theta^*)] = 0$. Differentiate again: $D = \int p^*(x) \left[-e^{-l(z,\theta^*)} \nabla^2 l(z,\theta^*) + e^{-l(z,\theta^*)} \nabla l(z,\theta^*) \nabla l(z,\theta^*)^T \right] dz$ $= -E[\nabla^2 l(z,\theta^*)] + E[\nabla l(z,\theta^*) \nabla l(z,\theta^*)^T]$ $= -E[\nabla^2 l(z,\theta^*)] + Cov[\nabla l(z,\theta^*)]$ Since $E[\nabla l(z,\theta^*)] = 0$.

 $\Rightarrow \quad \Delta_{\sigma} \Gamma(\theta_*) = E[\Delta_{\sigma} \Gamma(\mathcal{S}^{1}\theta_*)] = Con[\Delta \Gamma(\mathcal{S}^{1}\theta_*)] \qquad \Box$

[Example 2] well-specified random design linear regression.

Model:

(i)
$$x \sim p^*(x)$$
 for some arbitrary $p^*(x)$

(ii)
$$y = 0^{*} \cdot x + 2$$
 Where $\xi \sim N(0,1)$

Loss function: L(x,y;o) := \pu(0.x-y)^2

Property 1: $\nabla^2 L(\theta) = Cov [\nabla L(z, \theta^*)]$

(i)
$$\overrightarrow{\nabla} L(\theta) = \overrightarrow{\nabla}^2 E_{X \sim P^*, q \sim N(0, 1)} \left[\frac{1}{2} (\theta \cdot x - \theta^* \cdot x - \epsilon)^2 \right]$$

= $E[xx^T]$

Now we study $\hat{\theta} - \theta^*$:

Step 1: perform a Taylor expansion of VL around 04: $\nabla \hat{\mathcal{L}}(\hat{\theta}) = \nabla \hat{\mathcal{L}}(\theta^*) + \nabla^2 \hat{\mathcal{L}}(\theta^*)(\hat{\theta} - \theta^*) + O_P(\|\hat{\theta} - \theta^*\|_{\mathcal{L}}^2)$ Using the fact $\nabla \hat{L}(\hat{\theta}) = 0$ Since $\hat{\theta}$ is optimal: $\hat{\theta} - \theta^* = - \nabla^2 \hat{L}(\theta^*)^{-1} \left(\nabla \hat{L}(\theta^*) + O_P(II \hat{\theta} - \theta^* II_2^2) \right)$ (I) As n-oo, by the weak law of large numbers: $\nabla^2 \hat{L}(\theta^*) \xrightarrow{P} \nabla^2 L(\theta^*)$ Since $\nabla^2 L(\theta^*) > 0$, $\nabla^2 L(\cdot)^{-1}$ is smooth around θ^* : $\nabla^2 \hat{L}(\theta^*)^{-1} \xrightarrow{P} \nabla^2 L(\theta^*)^{-1}$ (TM)By central limit theorem: $\sqrt{n} \nabla \hat{L}(\theta^*) \stackrel{d}{\rightarrow} N(0, Cov[\nabla L(z, \theta^*)])$ Suppose $\hat{\theta} - \theta = Op(f(n))$, then by (I), f(n) decays at a rate of $O(\frac{1}{3\pi})$ or $f(\tilde{n})$, which implies $f(\tilde{n}) = \frac{1}{3\pi}$. Thus: In. Op (11ê-0*112) P 0. By Slutsky's theorem, with (I):

 $\sqrt{n} \cdot (\hat{\theta} - \theta^*) \stackrel{d}{\longrightarrow} N(0, \nabla^2 L(\theta^*)^{-1} Cov [\nabla J(z, \theta^*)] \nabla^2 L(\theta^*)^{-1}) \cdots (I)$ Due to Property 1: $\sqrt{n} (\hat{\theta} - \theta^*) \stackrel{d}{\rightarrow} N(0, E[xx^T]^{-1})$

Step 2: analysis of excess risk: By Taylor expansion $L(\hat{\theta}) = L(\theta^*) + \nabla L(\theta^*)^{\mathsf{T}} (\hat{\theta} - \theta^*) + \frac{1}{2} [|\hat{\theta} - \theta^*||_{\nabla^2 L(\hat{\theta}^*)}^2 + O_p(||\hat{\theta} - \theta^*||_2^2)$ Since θ^* is the optimal, $\nabla L(\theta^*) = 0$. Multiply by n for both sides: Define $\chi_n = \sqrt{n} \left(\nabla^2 L(\theta^*) \right)^{\frac{1}{2}} (\hat{\theta} - \theta^*)$, by (II), we have $x_n \sim \mathcal{N}(0, \nabla^2 L(\theta^*)^{-\frac{1}{2}} \operatorname{Cov}[\nabla L(z,\theta^*)] \nabla^2 L(\theta^*)^{-\frac{1}{2}})$ Let $\sum = \nabla^2 \lfloor (0^*)^{-\frac{1}{2}} \operatorname{Cov} [\nabla J(z, 0^*)] \nabla^2 \lfloor (0^*)^{-\frac{1}{2}}$, then

 $x_n x_n^{\mathsf{T}} \stackrel{d}{\longrightarrow} W(\Sigma, I)$, where W is the Wishart distribution.

Furthermore, $\chi_n^T \chi_n = \text{tr}(\chi_n \chi_n^T) \stackrel{d}{\Rightarrow} \text{tr}(W(\Sigma, I)).$

Therefore, by (II), we have: $n(L(\hat{\theta})-L(\theta^*)) \xrightarrow{d} \frac{1}{2}tr(W(\Sigma,1))$

In the well-specified models, by Theorem 3: $Cov[\nabla l(z,0^*)] = \nabla^2 l(0^*)$,

then we have $\Sigma = I_{dxd}$, resulting in $n(L(\hat{\theta}) - L(\theta^*)) \xrightarrow{d} \frac{1}{2} tr(W(I_{dxd}, 1))$

RHS shows a distribution of the sum of d chi-squared r.v., whose distribution is the same as $\frac{1}{2}\sum_{j=1}^{d}V_{j}^{2}$, where $V_{j}\sim N(0,1)$. Then $E[n(L(\hat{\theta})-L(0^{*}))] \rightarrow \frac{d}{2}$ $Var[n(L(\hat{\theta})-L(0^{*}))] \rightarrow d$

which implies

$$L(\theta) - L(\theta^*) \sim d/2n$$

Д