Name:	

MASTERY QUIZ DAY 24

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

A1. Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and \mathbb{R}^2 .

Solution:

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$

A2. Determine if the map $T: \mathcal{P} \to \mathcal{P}$ given by T(f) = f' - f'' is a linear transformation or not.

M1. Let

$$C = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad \qquad D = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad \qquad E = \begin{bmatrix} 2 & 0 \\ 0 & -1 \\ 1 & -1 \end{bmatrix}$$

Determine which of the six products CD, CE, DC, DE, EC, ED can be computed, and compute them.

Solution:

$$EC = \begin{bmatrix} 4 & 6 \\ 0 & -1 \\ 2 & 2 \end{bmatrix}$$

$$DE = \begin{bmatrix} 6 & -1 \end{bmatrix}$$

M2. Determine if the matrix $\begin{bmatrix} 1 & 3 & 3 & 7 \\ 1 & 3 & -1 & -1 \\ 2 & 6 & 3 & 8 \\ 1 & 3 & -2 & -3 \end{bmatrix}$ is invertible.

Solution: The second column is a multiple of the first, so it is not invertible.

M3. Find the inverse of the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}.$

Solution:

$$\operatorname{RREF}\left(\begin{bmatrix} 8 & 5 & 3 & 0 & 1 & 0 & 0 & 0 \\ 3 & 2 & 1 & 1 & 0 & 1 & 0 & 0 \\ 5 & -3 & 1 & -2 & 0 & 0 & 1 & 0 \\ -1 & 2 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 2 & -5 & 12 \\ 0 & 1 & 0 & 0 & 1 & 1 & -4 & -9 \\ 0 & 0 & 1 & 0 & -4 & -7 & 20 & 47 \\ 0 & 0 & 0 & 1 & -1 & 0 & 3 & 7 \end{bmatrix}$$

So the inverse is
$$\begin{bmatrix} 1 & 2 & -5 & 12 \\ 1 & 1 & -4 & -9 \\ -4 & -7 & 20 & 47 \\ -1 & 0 & 3 & 7 \end{bmatrix}.$$

A1: M1: M2: M3: