Chapter 8

Many-Body Systems

8.1 The Many-Body Problem

11/1: • Announcements.

- Exam room locations are on Canvas.
- Notice that we skipped Kibble and Berkshire (2004), Chapter 6.
- Recap: 2-body systems.
 - In such a system, we have two particles: m_1, \vec{r}_1 and m_2, \vec{r}_2 . Their mass sum is $M = m_1 + m_2$, their center of mass is at $\vec{R} = (m_1 \vec{r}_1 + m_2 \vec{r}_2)/(m_1 + m_2)$, their reduced mass is $\mu = m_1 m_2/(m_1 + m_2)$, and their relative position is $\vec{r} = \vec{r}_1 \vec{r}_2$.
 - Under a constant external force, their EOMs uncouple into $M\ddot{R}_i = Mg_i$ and $\mu \ddot{r}_i = -\partial V_{\rm int}/\partial r_i$ where $V_{\rm int}(\vec{r})$ is the interaction potential energy.
 - Jerison will now give a better answer to last time's question, "what is the reduced mass?"
 - Let's look at two important cases to start.
 - 1. If $m_1 = m_2$, $\mu = m_1/2 = m_2/2$ and the particles are maximally affecting each other.
 - 2. If $m_1 \ll m_2$, then

$$\mu = \frac{m_1 m_2}{m_2 (1 + m_1/m_2)} \approx m_1 \left(1 - \frac{m_1}{m_2}\right) + \text{H.O.T.} \rightarrow m_1$$

where H.O.T. stands for "higher order terms."

- Additionally, as $m_1/m_2 \to 0$, we have $M \to m_2$, $\vec{R} \to \vec{r_2}$, $\vec{r_2}^* \to 0$, $\mu \to m_1$, and $\vec{r} \to \vec{r_1}^*$.
 - > Essentially, we approach the limit of 1 body orbiting a fixed object.
 - ➤ This justifies the approximation made in earlier chapters of the Earth orbiting a fixed sum or a satellite orbiting the fixed Earth or more.
 - ightharpoonup Additional consideration of $\vec{r}_2^* = -m_2/M \cdot \vec{r}$??
- Today: Many-body systems.
 - Lagrangian, CM frame.
 - Rockets.
- Call our particle indices $\alpha = 1, \dots, N$.
 - Kibble and Berkshire (2004) uses a different notation! They just say \vec{r}_i .
 - The mass sum in this case is

$$M = \sum_{\alpha} m_{\alpha}$$

- The center of mass in this case is

$$\vec{R} = \frac{1}{M} \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}$$

- The linear momentum in this case is

$$\vec{P} = \sum_{\alpha} m_{\alpha} \dot{\vec{r}}_{\alpha} = M \dot{\vec{R}}$$

• In the CM frame (still denoted *), we have

$$\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}^*$$

- Moreover, within the frame, we still have $\dot{\vec{R}}^* = 0$ and hence $\vec{P}^* = 0$.
- Using the above, we may define the kinetic energy for the system

$$T = \frac{1}{2} \sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{2}$$

$$= \frac{1}{2} \sum_{\alpha} m_{\alpha} (\dot{\vec{R}} + \dot{\vec{r}_{\alpha}}^{*})^{2}$$

$$= \frac{1}{2} \left(\dot{\vec{R}}^{2} \sum_{\alpha} m_{\alpha} + 2 \dot{\vec{R}} \cdot \sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{*} + \sum_{\alpha} m_{\alpha} (\dot{\vec{r}_{\alpha}}^{*})^{2} \right)$$

$$= \frac{1}{2} M \dot{\vec{R}}^{2} + \frac{1}{2} \sum_{\alpha} m_{\alpha} (\dot{\vec{r}_{\alpha}}^{*})^{2}$$

$$= T_{\text{CM}} + T^{*}$$

- We may now define the Lagrangian for the system.
 - Note that

$$\begin{split} V &= -\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \cdot \vec{g} + V_{\text{int}}(\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}) \\ &= -M \vec{g} \cdot \vec{R} + V_{\text{int}}(\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}) \end{split}$$

where $\{\vec{r}_{\alpha} - \vec{r}_{\beta}\}$ denotes the vector with all pairwise differences.

- Combining this result with the above, we obtain

$$egin{aligned} L &= T - V \ &= rac{1}{2} M \dot{ec{R}}^2 + M ec{g} \cdot ec{R} + rac{1}{2} \sum_{lpha} m_lpha (\dot{ec{r}_lpha}^*)^2 - V_{
m int} (\{ec{r}_lpha - ec{r}_eta\}) \end{aligned}$$

• Thus, the EOMs separate into

$$M\ddot{\vec{R}} = M\vec{g} \qquad m_{\alpha}\ddot{r}_{\alpha_{i}}^{*} = -\frac{\partial V_{\rm int}}{\partial r_{\alpha_{i}}^{*}}$$

where we have three of these, one for each $i = q_1, q_2, q_3$ component of particle α .

• Moreover, we get two conservation laws.

$$\frac{1}{2}M\dot{\vec{R}}^2 - M\vec{g} \cdot \vec{R} = E \qquad \qquad T^* + V_{\rm int} = E_{\rm int}$$

• In the more general case wherein other forces act on the system, we have

$$m_{lpha}\ddot{\vec{r}}_{lpha} = \sum_{eta} \vec{F}_{lphaeta} + \vec{F}_{lpha}$$

- The $\vec{F}_{\alpha\beta}$ are internal pairwise forces.
- The singular \vec{F}_{α} represents an external force.
- Linear momentum in this case.

$$\begin{split} \dot{\vec{P}} &= \sum_{\alpha} m_{\alpha} \ddot{\vec{r}}_{\alpha} \\ &= \sum_{\alpha} \sum_{\beta} \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{F}_{\alpha} \end{split}$$

– Since $\vec{F}_{\alpha\beta} = -\vec{F}_{\beta\alpha}$, the left term above cancels, leaving us with

$$\dot{\vec{P}} = \sum_{\alpha} \vec{F}_{\alpha} = M\ddot{\vec{R}}$$

- Recall that if there are no external forces, \vec{P} is constant.
- Angular momentum in this case.

$$\vec{J} = \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \times \dot{\vec{r}}_{\alpha}$$

- It follows that

$$\begin{split} \dot{\vec{J}} &= \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha} \times \ddot{\vec{r}}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha} \times \sum_{\beta} \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} \\ &= \sum_{\alpha} \sum_{\beta} \vec{r}_{\alpha} \times \vec{F}_{\alpha\beta} + \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} \end{split}$$

- If $\vec{F}_{\alpha\beta}$ are central (i.e., parallel to $\vec{r}_{\alpha} \vec{r}_{\beta}$), then the left term above is zero.
- This leaves us with

$$\dot{\vec{J}} = \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha}$$

i.e., \vec{J} is only affected by external forces in the central $\vec{F}_{\alpha\beta}$ case.

- Thus, if $\vec{F}_{\alpha} = 0$, \vec{J} is constant.
- Additionally, if \vec{F}_{α} are central, then \vec{J} is constant because the cross product cancels.
- In the CM frame...
 - Recall that $\vec{r}_{\alpha} = \vec{R} + \vec{r}_{\alpha}^*$.
 - Thus,

$$\begin{split} \vec{J} &= \sum_{\alpha} m_{\alpha} (\vec{R} + \vec{r}_{\alpha}) \times (\dot{\vec{R}} + \dot{\vec{r}_{\alpha}}) \\ &= \left(\sum_{\alpha} m_{\alpha} \right) \vec{R} \times \dot{\vec{R}} + \underbrace{\left(\sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{*} \right)}_{0 = \vec{R}^{*}} \times \dot{\vec{R}} + \vec{R} \times \underbrace{\left(\sum_{\alpha} m_{\alpha} \dot{\vec{r}_{\alpha}}^{*} \right)}_{0 = \vec{P}^{*}} + \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^{*} \times \dot{\vec{r}_{\alpha}}^{*} \\ &= M \vec{R} \times \dot{\vec{R}} + \vec{J}^{*} \end{split}$$

where

$$\vec{J}^* = \sum_{\alpha} m_{\alpha} \vec{r}_{\alpha}^* \times \dot{\vec{r}}_{\alpha}^*$$

- It follows that

$$\begin{split} \dot{\vec{J}}^* &= \dot{\vec{J}} - \frac{\mathrm{d}}{\mathrm{d}t} \Big(M \vec{R} \times \dot{\vec{R}} \Big) \\ &= \dot{\vec{J}} - M \vec{R} \times \ddot{\vec{R}} \\ &= \dot{\vec{J}} - \vec{R} \times \sum_{\alpha} \vec{F}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha} \times \vec{F}_{\alpha} - \vec{R} \times \sum_{\alpha} \vec{F}_{\alpha} \\ &= \sum_{\alpha} \vec{r}_{\alpha}^* \times \vec{F}_{\alpha} \end{split}$$

- An application of these multi-body systems: Rockets!
 - Consider a rocket traveling forward at velocity v.
 - To propel itself forward, it ejects mass dm at a constant speed u relative to the rocket.
 - After the ejection, the mass dm travels backwards at speed v-u and the remaining rocket M-dm travels forward at velocity v+dv.
 - We have conservation of momentum in this "explosion," so

$$(M - dm)(V + dv) + dm (v - u) = Mv$$

$$Mv + M dv - v dm - u dm + v dm = Mv$$

$$M dv = u dm$$

$$= -u dM$$

$$\frac{dv}{u} = -\frac{dM}{M}$$

$$\frac{v}{u} = -\ln \frac{M}{M_0}$$

$$M = M_0 e^{-v/u}$$

```
Midtern 1 Equation sheet.
                                                                                                                                                                                                                                                                                                                                                                                                                                                Jerisan
                                                                 Relative coordinates: \vec{v}_{ij} = \vec{v}_i - \vec{v}_j

SHO! m\ddot{x} + kx^2 = 0, k < 0 = 7 x(t) = \frac{1}{2} A e^{pt} + \frac{1}{2} B e^{-pt} for y = \sqrt{-k/m}
  1×
                                                                             V(x) \approx \frac{2}{l} V''(0) x^{2}, \quad x \ll \frac{V''(0)}{V''(0)}, \quad E = \frac{2}{l} k \alpha^{2} \left(\alpha^{2} \text{ amplifulf}\right)
 (n) k
                                                                                       · k > 0 = 7 x (t) = c cos (wt) + d sin(wt) for w= \( \text{k/m} \) and c=x(0)=x0, d=\( \frac{\sqrt{0}}{w} = \frac{\ddx(0)}{w} 
  111 40
  \geq_{*}
                                                                                                                                                                           = a cos (wt-0), c= a cos 0, d= a sino
                                                                                       M = \frac{\lambda}{5 \, \mu} \lambda = \frac{\Lambda}{5 \, \mu} t = \frac{\lambda}{1}
                                                                                       = x(t)= \frac{1}{2}Aeiwt + \frac{1}{2}Be^{-iwt} = \frac{1}{2}ae^{-i\theta}e^{iwt} + \frac{1}{2}ae^{i\theta}e^{-iwt} = a cos(wb-\theta) = Re(Aeiwt) = Re(ae^{-i\theta}e^{iwt})
                                                            & Sanita checki Unids!
  X X
                                                                           P= T= Fx
                                                                     Damped SHO! mx + 2 x + kx = 0; &= \frac{2}{2m}, \omega_0 = \sqrt{\frac{1}{2m}} = ) \times + 2 x \times + \omega x \times 0
                                                                                  · p = - 1 = 1 82 - mg
                                      Userdomping ( \delta > \omega_0): \delta_{\pm} = \delta \pm \sqrt{\delta^2 - \omega_0^2}; \chi(t) = \frac{1}{2}Ae^{-\delta_1 t} + \frac{1}{2}Be^{-\delta_2 t}; \frac{1}{\delta_2} > \frac{1}{\delta_1}, so \delta_- dominates as t \neq \infty.

Underdomping (\delta < \omega_0): \omega = \sqrt{\omega_0^2 - \delta^2} \neq \omega_0, \chi(t) = \frac{1}{2}Ae^{-i\omega t} - \delta t + \frac{1}{2}Be^{-i\omega t} - \delta t = \alpha e^{-\delta t} (as (\omega t - \theta))
                                              (+: fiel . (8 = Wo): x(t) = (+ bt) e - 8t
                                                                        Forced, damped SMO: x + 2 \frac{1}{2} \frac{1}{x} + w_0^2 x = \frac{F_1}{m} \cos(w, t)
\times x(t) = a_1 \cos(w, t - \theta_1) + transient, \quad tan \theta_1 = \frac{2 \frac{\pi}{2} w_1}{m_0^2 - w_1^2}, \quad a_1 = \frac{F_1/m}{\sqrt{(w_0^2 - w_1^2)^2 + 4 \frac{\pi}{2} w_1^2}}.
                                                                                                                                                                                                                                                                                                                                                                                                                                                        Half width ailma, wet ) = 1
                                                                                          · Resonance: dymax at wres = \( \int_{w_0}^2 - \text{2} \text{ 2 \int_{w_0}} \ \ \int_{w_0} \ \i
in j<sub>k</sub>
                                                                                                   Resonance amplitude: a. (w., w.) = Fi a. (wo, wres) = Fi where w= \( \sigma_i - \frac{7}{2} \), a. (w., 0) = \( \frac{F_1}{mw_i^2} \)
                                                                  Conservative force condition \hat{F} = -\vec{\nabla} V \vec{\nabla} \times \vec{F} = 0 = \left(\frac{\partial F_0}{\partial y} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial y} - \frac{\partial F_0}{\partial y}\right) (VI) \xrightarrow{x=resido} z=z Sphi z=resido V <math>\vec{\nabla} \times \vec{F} = 0 = \left(\frac{\partial F_0}{\partial y} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial z} - \frac{\partial F_0}{\partial y}\right) (VI) \xrightarrow{x=resido} z=z Sphi z=resido V <math>\vec{F}_0 = 0 \vec{F}_0 = 0 \vec{F}_0
                                                                         Polen coords! F=Fcos0 +fsino, 6 ==fsino+fcos0, x=rcos0, y=rsin0, x=rcos0 -resino, y=rsin0+recos0
                                                                       Torque! \vec{b} = \vec{r} \times \vec{F} = \vec{J}, Angular trumenton \vec{J} = \vec{r} \times \vec{p} (entral force; \vec{J} = mr^2 \hat{\theta} \ge \frac{1}{2m})

Kepler's 2nd law: \frac{dA}{db} = \frac{1}{2}n^2 \hat{\theta} = \frac{J}{2m}

Spherical Forces: \vec{F}_r = \frac{JV}{dr}, \vec{F}_0 = -\frac{1}{2m}
                                                                                                                                                                                                                                                                                                                                                                Spherical Fores: Fr= 30 Fo= - 10 Fo= - 1 30 Fo= - 1 30
                                                                        Lugrangian michanis, LoT-V, dt ( ) ai) = dt / L+ dt f(qi,t) = L+ Z df i; + dt
                                                                       Lagrange undetermined multipliers \frac{\partial L}{\partial a_i} - \frac{\partial l}{\partial b} \left( \frac{\partial L}{\partial a_i} \right) + \sum_{j=1}^{n} \lambda_j(t) \frac{\partial f_j}{\partial a_j} = 0, f_j(a_i, t) = 0
                                                                        Central conservative forcis ?
                                                                           2 conservation laws 1 2 m (+2+ +2 02) + V(r)= E J=mr2 0
                                                                          Radial energy equationi & mr2 + 32 + V(v) = E, Effective Potential Energy; V(r)= 3mr2 + V(r)
                                                                          Orbit eq untion; In (du)2 + 32 42 + V(m) = E, 42 1/2
                                                                         Inverse square law! k>0=7 repulsive, leco = altractive.
                                                                                    · Length scale: l = \frac{\sqrt{3}}{m|\Omega|} |V(r)|^2 |k| \left(\frac{4}{2r^2} - \frac{1}{r}\right) |V(\frac{1}{2})|^2 = 0, |V_{min}|^2 |V(\frac{1}{2})|^2 - \frac{1kl}{24}
                                                                                    · 4 passible trajectories based on E! (E=Umin) T= 111 V= VINT N=Q; (Umin CE<0) Ellipse bounded (E=0) peroble
```

```
· Examples; 18 = 6 Mm 18 4480 } (1-al) = 17 = 18 = 18 1 = 18 1 = 3 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 1 = 18 
 \frac{1}{(k>0)} \text{ repulsion, } r\left(e\cos(\theta-\theta_0)-1\right)=1, \ e^2=\frac{2EI}{16I}+1 
 \frac{1}{(k<0)} \text{ otherwise, } r\left(e\cos(\theta-\theta_0)+1\right)=1, \ \frac{(x+at)^2}{a^2}+\frac{y^2}{b^2}=1, \ a^2=\frac{1}{1-e^2}, \ b=\frac{1}{\sqrt{1-e^2}}=\frac{1}{2}\frac{1}{2}\frac{1}{16I}=\sqrt{0.1} 
 \frac{1}{(2\pi)^2}=\frac{1}{16I}=\sqrt{0.1} 
 \frac{1}{(2\pi)^2}=\frac{1}{16I}=\sqrt{0.1} 
 \frac{1}{(2\pi)^2}=\frac{1}{16I}=\sqrt{0.1} 
         · b= q cot ( + 0)
```

Scuttering

5 Alsolute es, relative velocity: df=++wxr, w=wf=wcos0+wsin0A

·mr=mdt-2mwxr-mwx(wxr), r=-9+2wsin0r,+wRsin00 moif "= - Zwoodig-wi Raindrad, is = Zwoodin - Zwaindin

Magnetini Frank B, w= - 1 B, r= mv, w= aB Larmor! " = - 1 P ; ellipses in rotating fram!, w= 2m

8.3 Chapter 8: Many-Body Systems

From Kibble and Berkshire (2004).

11/2:

- Motivation: Studying material objects that can be regarded as "composed of a large number of small particles, small enough to be treated as essentially point-like but still large enough to obey the laws of classical rather than quantum mechanics. These particle interact in complicated ways with each other and with the environment. However, as we shall see, if we are interested only in the motion of the object as a whole, many of these details are irrelevant" (Kibble & Berkshire, 2004, p. 177).
- \bullet We covered, line-for-line, Sections 8.1-8.2, and a good bit of 8.4-8.5.