

# 深圳市一众显示科技有限公司

# SHEN ZHEN TEAM SOURCE DISPLAY TECH. CO, LTD.

# n

| FT-         | LCD         | Modu         | ıle         | Specification       |
|-------------|-------------|--------------|-------------|---------------------|
| N           | Module      | NO.: T       | <b>ST05</b> | 55HDBS-04           |
|             |             | Version: V   | 71.0        |                     |
| □ APPF      | ROVAL FOR   | SPECIFICATIO | N 🗆         | APPROVAL FOR SAMPLE |
|             |             |              | 10          |                     |
| For Custo   | omer's Acc  | eptance:     |             |                     |
|             | Approved l  | by           |             | Comment             |
|             |             | 97           |             |                     |
|             | · CY        |              |             |                     |
| Team Sou    | rce Display | ;            |             |                     |
| Prese       | nted by     | Review       | ved by      | Organized by        |
| 7           |             |              |             |                     |
| Version No. | Date        | Conten       | <u> </u>    | Remark              |
| V1.0        | 2020-04-21  | Initial Rele |             |                     |

- 1 -



#### **CONTENTS**

| 1 GENERAL CHARACTERISTICS            | 3 -   |
|--------------------------------------|-------|
| 2 PRODUCT DRAWINGS                   | 4 -   |
| 3 INTERFACE DESCRIPTION              | 5 -   |
| 4 LCM INTERFACE TIMING               | 6 -   |
| 4.1 RESET TIMING                     | - 6 - |
| 4.2 DSI TIMING CHARACTERISTICS       | - 8 - |
| 4.3 PACKET DATA                      | 11 -  |
|                                      | 14 -  |
|                                      | 14 -  |
| 7 BACKLIGHT CHARACTERISTICS          | 14 -  |
| 8 LCD OPTICAL SPECIFICATIONS         | 15 -  |
| 9 RELIABILITY TEST                   | 17 -  |
| 10 SUGGESTIONS FOR USING LCD MODULES | 17 -  |
|                                      | 17 -  |
| 10.2 STORAGE                         | 10    |



## **General Characteristics**

| ITEM                           | Specification                            | Unit  |
|--------------------------------|------------------------------------------|-------|
| LCD Type                       | a-si TFT,Transmissive,Normally black,IPS | -     |
| LCD Size                       | 5.5                                      | inch  |
| Resolution (W x H)             | 720 x (RGB) × 1280                       | pixel |
| $LCM(W \times H \times D)$     | 71.04(W) x 129.57(H) x 1.62(D)           | mm    |
| Active Area (W × H)            | 67.93 (W) x 120.77(H)                    | mm    |
| Pixel Pitch                    | 0.09435 x 0.09435                        | mm    |
| Viewing Direction              | ALL o'clock                              | - \   |
| Gray Scale Inversion Direction | ALL o'clock                              |       |
| Viewing Angle                  | Top:80,Bottom:80; Left/ Right:80         | deg.  |
| Color Depth                    | 16.7M                                    | -     |
| Pixel Arrangement              | RGB-stripe                               | -     |
| Backlight Type                 | 14 LEDs                                  | -     |
| Surface Luminance              | 370                                      | cd/m2 |
| Surface Treatment              | -                                        | -     |
| Polarizer                      | <u> </u>                                 | -     |
| Driver IC                      | ST7703                                   | -     |
| Interface Type                 | MIPI                                     | -     |
| Input Voltage                  | 2.8                                      | V     |
| With/Without TP                | without                                  | -     |
| Weight                         | TBD                                      | g     |

Note 1: RoHS compliant

Note 2: LCM weight tolerance:  $\pm$  5%.

# 2 Product drawings





# 3 Interface description

| Pin<br>No. | Symbol  | I/O | Description                                       | Note      |
|------------|---------|-----|---------------------------------------------------|-----------|
| 1          | GND     | Р   | Ground                                            |           |
| 2          | TP_1V8  | Р   | CTP Power supply 1.8V                             |           |
| 3          | TP_2V85 | Р   | CTP Power supply 2.85V                            |           |
| 4          | GND     | Р   | Ground                                            |           |
| 5          | TP_SCL  |     | CTP I <sup>2</sup> C clock input                  |           |
| 6          | TP_SDA  | I/O | CTP I <sup>2</sup> C data input/output            |           |
| 7          | GND     | Р   | Ground                                            |           |
| 8          | TP_INT  | 0   | CTP interrupt signal output pin                   |           |
| 9          | TP_RST  |     | CTP reset signal input pin                        |           |
| 10         | C4B     | -   | Not connect                                       |           |
| 11         | C5A     | -   | Not connect                                       |           |
| 12         | C5B     | -   | Not connect                                       |           |
| 13         | C4B_A   | -   | Not connect                                       |           |
| 14         | GND     | Р   | Ground                                            |           |
| 15         | 2V85    | Р   | Power supply 2.85V                                | 2.8V      |
| 16         | 1V8     | Р   | Power supply for I/O interface, 1.8V              | 1.8V/2.8V |
| 17         | GND     | Р   | Ground                                            |           |
| 18         | ID      | Р   | LCD Identification pin                            |           |
| 19         | RST     | P   | Reset signal                                      |           |
| 20         | TE      | 0   | Frame Sync signal                                 |           |
| 21         | GND     | Р   | Ground                                            |           |
| 22         | D1P     | I/O | Data differential signal input pins.(Data lane 1) |           |
| 23         | D1N     | I/O | Data differential signal input pins.(Data lane 1) |           |
| 24         | GND     | Р   | Ground                                            |           |
| 25         | CLKP    | I/O | Clock differential signal input pins              |           |
| 26         | CLKN    | I/O | Clock differential signal input pins              |           |
| 27         | GND     | Р   | Ground                                            |           |
| 28         | D0P     | I/O | Data differential signal input pins.(Data lane 0) |           |
| 29         | D0N     | I/O | Data differential signal input pins.(Data lane 0) |           |
| 30         | GND     | Р   | Ground                                            |           |
| 31         | D2P     | I/O | Data differential signal input pins.(Data lane 2) |           |
| 32         | D2N     | I/O | Data differential signal input pins.(Data lane 2) |           |
| 33         | GND     | Р   | Ground                                            |           |
| 34         | D3P     | I/O | Data differential signal input pins.(Data lane 3) |           |
| 35         | D3N     | I/O | Data differential signal input pins.(Data lane 3) |           |

-5-Website: www.tslcd.com/www.lcdlcm.com

| 36 | GND  | Р | Ground             |  |
|----|------|---|--------------------|--|
| 37 | LEDK | Р | Back-light Cathode |  |
| 38 | LEDA | Р | Back-light Anode   |  |
| 39 | GND  | Р | Ground             |  |

## 4 LCM Interface Timing

## 4.1 Reset Timing



Figure 7.8: Reset input timing

| Cumbal | Devemeter                          | Related | Spec. |      |      | Note                                  | Hait |
|--------|------------------------------------|---------|-------|------|------|---------------------------------------|------|
| Symbol | Parameter                          | Pins    | Min.  | Тур. | Max. | Note                                  | Unit |
| tRESW  | Reset low pulse width(1)           | NRESET  | 10    | - /  | 2    | 11/2 -                                | μs   |
| tREST  | Beset semplete time(2)             |         | 15    | - (  | 3    | When reset applied during SLPIN mode  | ms   |
| IKEST  | Reset complete time <sup>(2)</sup> | 20/00   | 120   | S.   | )-   | When reset applied during SLPOUT mode | ms   |

Table 7.8: Reset Input Timing

Note: (1) Spike due to an electrostatic discharge on NRESET line does not cause irregular system reset according to the following table.

| alla a                 |                |
|------------------------|----------------|
| NRESET Pulse           | Action         |
| Shorter than 5 µs      | Reset Rejected |
| Longer than 10 µs      | Reset          |
| Between 5 µs and 10 µs | Reset Start    |

- (2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which Maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset.
- (3) During Reset Complete Time, ID and VCOM value in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 15ms after a rising edge of NRESET.
- (4) Spike Rejection also applies during a valid reset pulse as shown as below:



(5) It is necessary to wait 15msec after releasing NRESET before sending commands. Also Sleep Out command cannot be sent for 120msec.

### 4.2 DSI Timing Characteristics



Figure 7.5: Rising and falling time on clock and data channel

(VSSA=0V, IOVCC=1.65V to 3.3V, VCI=2.5V to 3.3V, T<sub>A</sub> = -30 to 70°C)

| Signal            | Item                             | Symbol              |         | Unit |       |      |  |
|-------------------|----------------------------------|---------------------|---------|------|-------|------|--|
| Signal            | item                             | Symbol              | Min.    | Тур. | Max.  | Unit |  |
| DSI CD/           | Double UI instantaneous          | 2xU <sub>INST</sub> | TBD     | -    | 25    | ns   |  |
| DSI_CP/<br>DSI_CN | UI instantaneous                 | UINSTA<br>UINSTB    | TBD     | -    | 12.5  | ns   |  |
| DP/DN             | Data to clock setup time         | T <sub>DS</sub>     | 0.15xUI | -    |       | ps   |  |
| DP/DIN            | Data to clock hold time          | T <sub>DH</sub>     | 0.15xUI | -    | -     | ps   |  |
| DSI_CP/           | Differential rise time for clock | TDRTCLK             | 150     | 3-7  | 0.3UI | ps   |  |
| DSI_CN            | Differential fall time for clock | TDFTCLK             | 150     | -    | 0.3UI | ps   |  |
| DP/DN             | Differential rise time for data  | TDRTDATA            | 150     | -    | 0.3UI | ps   |  |
| DP/DIN            | Differential fall time for data  | TDFTDATA            | 150     | -    | 0.3UI | ps   |  |

Table 7.3: DSI High Speed Mode Characteristics

#### Low Power Mode



Figure 7.6: BTA from HOST to Display Module Timing



Figure 7.7: BTA from Display Module Timing to HOST

(VSSA=0V, IOVCC=1.65V to 3.3V, VCI=2.3V to 3.3V, TA = -30 to 70°C)

| Signal   | Item                                                   | Symbol               |         | Unit |         |       |  |
|----------|--------------------------------------------------------|----------------------|---------|------|---------|-------|--|
| Signal   | item                                                   | Symbol               | Min.    | Тур. | Max.    | Offic |  |
|          | Length of LP-00/LP01/LP10/LP11<br>Host→ Display module | TLPXM                | 50      | -    | -       | ns    |  |
| DSI_D0P/ | Length of LP-00/LP01/LP10/LP11 Display module →Host    | TLPXD                | 50      | 1-1  | -       | ns    |  |
| DSI_D0P  | Time-out before the MPU start driver                   | T <sub>TA-SURE</sub> | TLPXD   | 1.   | 2xTLPXD | ns    |  |
|          | Time to drive LP-00 by display module                  | T <sub>TA-GET</sub>  | 5xTLPXD | -    | -       | ns    |  |
|          | Time to drive LP-00 after turnaround request Host      | TTAGO                | 4xTLPXD | -    | -       | ns    |  |

Table 7.4: DSI Low Power Mode Characteristics

#### **DSI BURSTS**



| Signal | Item                                                 | Cumbal              |         | Unit |         |      |
|--------|------------------------------------------------------|---------------------|---------|------|---------|------|
|        | item                                                 | Symbol              | Min.    | Тур. | Max.    | Unit |
|        | Length of LP-00/LP01/LP10/LP11                       | TLPX                | 50      | -    | -       | ns   |
|        | Time to Driver LP-00 to prepare for HS transmission  | THS-PREPARE         | 40+4UI  | -    | 85+6UI  | ns   |
|        | Time to enable data receiver line termination        | THS-TERM-EN         | -       | -    | 35+4xUI | ns   |
|        | Time to drive LP-00 by display module                | T <sub>TA-GET</sub> | 5xTLPXD | -    | -       | ns   |
|        | Time to drive LP-00 after turnaround request<br>Host | Ттадо               | 4xTLPXD | -    | -       | ns   |

Table 7.5: DSI Low Power Mode to High Speed Mode Timing



If the last bit is HS-0, the transmitter changes from HS-0 to HS-1 If the last bit is HS-0, the transmitter changes from HS-1 to HS-0

| Signal              | Item                                                             | Symbol   | Spec. |      |         | Unit |
|---------------------|------------------------------------------------------------------|----------|-------|------|---------|------|
|                     |                                                                  |          | Min.  | Тур. | Max.    | Unit |
| DSI_D0P/<br>DSI_D0P | Time-Out at Display Module to Ignore<br>Transition Period of EoT | THS-SKIP | 40    | -    | 55+4xUI | ns   |
| DSI_DOP             | Time to Driver LP-11 after HS Burst                              | THS-EXIT | 100   |      | -       | ns   |

Table 7.6: DSI Low Power Mode to High Speed Mode Timing



| Cianal            | Itom                                                                                                                       | Combal                      |          | Hait |      |      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|------|------|------|
| Signal            | Item                                                                                                                       | Symbol                      | Min.     | Тур. | Max. | Unit |
|                   | Time that the MCU shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode          |                             | 60+52xUI | -    | -    | ns   |
|                   | Time to drive HS differential state after last payload clock bit of a HS transmission burst                                | TCLK-TRAIL                  | 60       | -    | -    | ns   |
|                   | Time to drive LP-11 after HS burst                                                                                         | Тнѕ-єхіт                    | 100      | -    | -    | ns   |
| DSI_CP/<br>DSI_CN | Time to drive LP-00 to prepare for HS transmission                                                                         | TCLK-PREPARE                | 38       | -    | 95   | ns   |
| DSI_CN            | Time-out at Clock Lane Display Module to enable HS Termination                                                             | TCLK-TERM-EN                | -        | -    | 38   | ns   |
|                   | Minimum lead HS-0 drive period before starting Clock                                                                       | TCLK-PREPARE<br>+ TCLK-ZERO | 300      | -    | -    | ns   |
|                   | Time that the HS clock shall be driven prior to<br>any associated data Lane beginning the<br>transition from LP to HS mode |                             | 8xUI     |      |      |      |

Table 7.7: Clock Lanes High Speed Mode to/from Low Power Mode Timing

# 4.3 Packet data

### **DSI Packet Level Communication**

The DSI protocol permits multiple packets which is useful for events such as peripheral initialization, where many registers may be loaded separate write commands at system startup. Below figure illustrates multiple HS Transmission packets.



LPS: Low power state SOT: Start of Transmission

SP : Short Packet LP : Long Packet

EOT: End of Transmission

Figure 5.22: DSI multiple HS transmission packets

The packet includes two types which are Long packet and short packet. The first byte of the packet, the Data Identifier (DI), includes information specifying the length of the packet. Command Mode systems send commands and an associated set of parameters, with the number of parameters depending on the command type.

### **General Packet Structure**

#### Short packets

Specify the payload length using the Data Type field and are from two to nine bytes in length. Short packet is used for most Command Mode commands and associated parameters. Where short packets format include an 8-bit Data ID followed by zero to seven bytes and an 8-bit ECC. Below figure shows the structure of the Short packet.



SOT: Start of Transmission

DI(Data ID): 8-bit Contain Virtual Channel Identifier and Data Type.

Data 0 and Data 1: Packet Data (8+8bit)

ECC(Error Correction Code): The Error Correction Code allows single-bit errors to be corrected and

2-bit errors to be detected in the Packet Header.

Figure 5.23: Structure of the short packet

#### Long packets

Specify the payload length using a two-byte Word Count field and then the payload maybe from 0 to 65,541 bytes in length. Long packets permit transmission of large blocks of pixel or other data. Below figure shows the structure of the Long packet. Long Packet Header composed of three elements: an 8-bit Data Identifier, a 16-bit Word Count, and 8-bit ECC. The Packet Footer has one element, a 16-bit checksum. Long packets can be from 6 to 65,541 bytes in length. Where 65,541 bytes = (216-1) + 4 bytes PH + 2 bytes PF



DI (Data ID): Contain Virtual Channel Identifier and Data Type.

WC (Word Count): 8+8 bits The receiver use WC to define packet end.

**ECC (Error Correction Code)**: The Error Correction Code allows single-bit errors to be corrected and 2-bit errors to be detected in the Packet Header.

PF(Packet Footer): Mean 16-bit Checksum.

Figure 5.24: Structure of the long packet

### 5 Absolute Maximum Ratings

| PARAMETER                 | SYMBOL    | MIN  | MAX            | UNIT |
|---------------------------|-----------|------|----------------|------|
| Supply Voltage (Analog)   | VCC~GND   | -0.3 | 4.6            | V    |
| Logic signal voltage(I/O) | IOVCC~GND | -0.3 | 4.6            | V    |
| Operating Temperature     | TOP       | -20  | 70             | ° C  |
| Storage Temperature       | TST       | -30  | 80             | ° C  |
| Humidity                  | RH        | -    | 90%(Max 60° C) | RH   |

### 6 Electrical Characteristics

| PARAMETER                  | SYMBOL | MIN      | TYP | MAX      | UNIT |  |
|----------------------------|--------|----------|-----|----------|------|--|
| Analog operating voltage   | VCC    | 2.5      | 2.8 | 3.3      | V    |  |
| Logic operating voltage    | IOVCC  | 1.65     | 1.8 | 3.3      | V    |  |
| Input Current              | IDD    | -        | TBD | -        | mA   |  |
| Input Voltage ' H ' level  | VIH    | 0.7IOVCC |     | IOVCC    |      |  |
| Input Voltage ' L ' level  | VIL    | GND      | -   | 0.3IOVCC | V    |  |
| Output Voltage ' H ' level | VOH    | 0.8IOVCC | -   | IOVCC    |      |  |
| Output Voltage ' L ' level | VOL    | GND      | -   | 0.2IOVCC |      |  |

# 7 Backlight Characteristics

| ITEM                      | SYMBOL           | MIN   | TYP   | MAX | UNIT |
|---------------------------|------------------|-------|-------|-----|------|
| Voltage for LED backlight | $V_{\rm f}$      | - (   | 21    | -   | V    |
| Current for LED backlight | $I_{\mathrm{f}}$ |       | 40    | -   | mA   |
| Power consumption         | Wbl              | -     | 840   | -   | mW   |
| Uniformity                | Avg              | 80    | -     | -   | %    |
| LED Life Time             |                  | 30000 | 40000 | -   | Hrs  |

#### Note:

- 1. The LED life time is defined as the module brightness decrease to 50% original brightness at Ta=25°C, 60%RH  $\pm 5$  %.
- 2. The life time of LED will be reduced if LED is driven by high current, high ambient temperature and humidity conditions.
- 3. Typical operating life time is an estimated data.
- 4. Permanent damage to the device may occur if maximum values are exceeded or reverse voltage is loaded .Functional operation should be restricted to the conditions described under normal operating conditions.

Website: www.tslcd.com/www.lcdlcm.com

### 8 LCD Optical specifications

| Item Symbol                       |                | Conditio       | 5     | Specificati | pecification |                   | Remark     |
|-----------------------------------|----------------|----------------|-------|-------------|--------------|-------------------|------------|
| Item                              | Symbol         | n              | Min   | Тур         | Max          | Unit              | Kemark     |
| Response time (By Quick)          | Tr+Tf          | $\theta = 0$ ° | -     | 20          | 30           | ms                | Note 5     |
| Contrast ratio                    | CR             | $\theta = 0$ ° | -     | 800         | -            |                   | Note 2,6   |
| Luminance of white (Center point) | L <sub>w</sub> | B/L on         | -     | 310         | -            | cd/m <sup>2</sup> | BM-7       |
|                                   | Тор            | CR ≥ 10        | -     | 80          | -            |                   |            |
| Vigying angle                     | Bottom         | CR ≥ 10        | -     | 80          | -            |                   | Note 2,6,7 |
| Viewing angle                     | Left           | CR ≥ 10        | -     | 80          | -            | Deg.              |            |
|                                   | Right          | CR ≥ 10        | -     | 80          | -            |                   |            |
|                                   | Wx             |                |       | 0.3030      |              |                   |            |
|                                   | Wy             |                |       | 0.3277      |              |                   |            |
| Color chromaticity                | Rx             |                |       | 0.6514      |              |                   |            |
| ( CF only with ITO,               | Ry             |                | -0.03 | 0.3262      | +0.03        |                   | Note 3     |
| light source is C                 | Gx             |                | -0.03 | 0.3134      | +0.03        |                   | Note 3     |
| light, CIE 1931)                  | Gy             | heta=0°        |       | 0.6185      |              |                   |            |
|                                   | Bx             | 0 - 0          | 10    | 0.1502      |              |                   |            |
|                                   | By             |                |       | 0.0636      |              |                   |            |
| NTSC                              |                |                | 57%   | 60%         | -            |                   | Note 3     |
| Cross talk                        | Ct             |                | -     | _           | 2%           |                   | Note 9     |
| Transmittance                     | Trans          |                | -     | 3.43%       | -            |                   | Note 4     |

Note 1: Ambient temperature =  $25^{\circ}$ C.

Note 2: To be measured with a viewing cone of 2°by Topcon luminance meter BM-5A.

Note 3: To be measured with Otsuta chromaticity meter LCF-2100M, CF only measure under C light simulation.

Note 4: CTC shipping status is cell without polarizer. Transmittance of Specification is cell with polarizer. The tolerance of Transmittance is  $\pm 10\%$ .

Note 5: Definition of response time:

The output signals of TRD-100 are measured when the input signals are changed to "White" (falling time) and from "White" to "Black" (rising time), respectively. The interval is between the 10% and 90% of amplitudes. Refer to figure as below.



Note 6: Definition of contrast ratio:

Contrast ratio is calculated by the following formula.

# Contrast ratio (CR)= $\frac{\text{Brightness on the "white" state}}{\text{Brightness on the "black" state}}$

Note 7: Definition of viewing angle



Note 8: Optical characteristic measurement setup.



Note 9:



1 LA-LA' 1 / LA x 100% = 2% max., LA and LA' are brightness at location A and A'.

1 LB-LB'1 / LB x 100%= 2% max., LB and LB' are brightness at location B and B'.

#### 9 RELIABILITY TEST

| NO. | TEST ITEM                    | TEST CONDITION                                                                                                    | INSPECTION AFTER TEST                                                                                                                         |  |  |  |
|-----|------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1   | High Temperature<br>Storage  | 70±2°C/96 hours                                                                                                   |                                                                                                                                               |  |  |  |
| 2   | Low Temperature<br>Storage   | -20±2°C/96 hours                                                                                                  |                                                                                                                                               |  |  |  |
| 3   | High Temperature Operating   | 60±2°C/96 hours                                                                                                   |                                                                                                                                               |  |  |  |
| 4   | Low Temperature Operating    | -10±2°C/96 hours                                                                                                  | Inspection after 2~4 hours storage at room temperature and humidity. The condensation is not accepted. The sample shall be free from defects: |  |  |  |
| 5   | Temperature Cycle            | $-30\pm2^{\circ}\text{C} \sim 25\sim 70\pm 2^{\circ}\text{C} \times 10 \text{ cycles}$ (30 min.) (5min.) (30min.) |                                                                                                                                               |  |  |  |
| 6   | Damp Proof Test              | $60^{\circ}\text{C} \pm 5^{\circ}\text{C} \times 90\%\text{RH}/96 \text{ hours}$                                  | 1. Air bubble in the LCD                                                                                                                      |  |  |  |
| 7   | Vibration Test               | Frequency 10Hz~55Hz Stroke: 1.5mm Sweep: 10Hz~150 Hz~10Hz 2 hours For each direction of X, Y, Z                   | <ol> <li>All bubble in the LCD</li> <li>Seal leak</li> <li>Non-display</li> <li>Missing segments</li> <li>Glass crack</li> </ol>              |  |  |  |
| 8   | Shock Test                   | Half-sine, wave, 300m/s                                                                                           | J. Glass clack                                                                                                                                |  |  |  |
| 9   | Packing Drop Test            | Height: 80 cm<br>1 corner, concrete floor                                                                         |                                                                                                                                               |  |  |  |
| 10  | Electrostatic Discharge Test | C=150pF, R=330 $\Omega$<br>Air: $\pm 8$ KV 150pF/330 $\Omega$ 30 times<br>Contact: $\pm 4$ KV,20 times            |                                                                                                                                               |  |  |  |

### 10 Suggestions for using LCD modules

### 10.1 Handling of LCM

- 1. The LCD screen is made of glass. Don't give excessive external shock, or drop from a high place.
- 2. If the LCD screen is damaged and the liquid crystal leaks out, do not lick and swallow. When the liquid is attach to your hand, skin, cloth etc, wash it off by using soap and water thoroughly and immediately.
- 3. Don't apply excessive force on the surface of the LCM.
- 4. If the surface is contaminated, clean it with soft cloth. If the LCM is severely contaminated, use Isopropyl alcohol/Ethyl alcohol to clean. Other solvents may damage the polarizer. The following solvents is especially prohibited: water, ketone Aromatic solvents etc.
- 5. Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.

- 6. Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
- 7. Don't disassemble the LCM.
- 8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- Be sure to ground the body when handling the LCD modules.
- Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 9. Do not alter, modify or change the the shape of the tab on the metal frame.
- 10. Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
- 11. Do not damage or modify the pattern writing on the printed circuit board.
- 12. Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector
- 13. Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
- 14. Do not drop, bend or twist LCM.

### 10.2 Storage

- 1. Store in an ambient temperature of 5 to 45 C, and in a relative humidity of 40% to 60%. Don't expose to sunlight or fluorescent light.
- 2. Storage in a clean environment, free from dust, active gas, and solvent.
- 3. Store in antistatic container.

