****** 作业电子版发送到指定邮箱 ********

题目1: 假设 L_1, L_2, \ldots, L_k 是定义在字符集 Σ 上的语言集合,并且

(1) 对于任意 $i \neq j$, 我们有 $L_i \cap L_i = \emptyset$; (2) $L_1 \cup L_2 \cup \ldots \cup L_k = \Sigma^*$;

(3) 每个 L_i 都是递归可枚举的。证明:每个 L_i 都是递归的。

题目2:证明 $L = \{\langle M \rangle | M$ 是图灵机, $L(M) = \{ww^R | w$ 是 0、1 字符串}} 是不可判定的, w^R 是 w 的逆序字符串。

题目 3: 证明 $L = \{\langle M \rangle | M$ 是图灵机, $L(M) = (L(M))^R$,即若 $w \in L(M)$ 有 $w^R \in L(M)$ } 不可判定,进一步证明是非递归可枚举的。

题目 4: 证明 $L = \{\langle M \rangle | M$ 是图灵机, $L(M) = \Sigma^* \}$ 不可判定。

题目5: 证明 $L = \{\langle M \rangle | M$ 是图灵机,L(M) 是无穷的 $\}$ 不可判定。

题目 6: 令问题集合 $L = \{\langle M \rangle | M$ 在所有输入上均停机}。(1) 利用 Rice 定理证明 L 不可判定; (2) 证明 L 非递归可枚举(提示: 利用 归约技术);(3) 证明 \overline{L} 非递归可枚举(提示: 利用归约技术)。

题目7: 如果波斯特对应问题的字母表只包含一个字符,如 $\Sigma = \{1\}$,该问题是否可判定,如不可判定给出证明,否则给出算法。