Requisitos de Software

Introdução a Engenharia de Requisitos

Introdução

- ▶ Dentro da Engenharia de Software vários modelos de processos e ciclos de vida de desenvolvimento de software, definem as etapas (disciplinas) necessárias para se construir software.
- ▶ Todos possuem algo em comum: uma disciplina dedicada a compreensão dos problemas a serem solucionados e a definição de "o quê" será feito.
- Essa disciplina, recebe o nome de Engenharia de Requisitos (ER).

Quando surgiu a ER?

- Em 1993, a partir da realização da primeira conferência IEEE International Symposium on Requirements Engineering, foi criada uma nova área de pesquisa denominada Engenharia de Requisitos (ER)
- ► Em 1994, foi realizada a primeira *IEEE International Conference on Requirements Engineering (RE)* focada, exclusivamente, nos processos, práticas, ferramentas, conceitos, etc., vinculados a ER.

O que é ER?

Engenharia de requisitos é uma área interdisciplinar da Engenharia de Software que visa realizar a mediação (ponte) entre os domínios do adquirente e do fornecedor ou desenvolvedor, para estabelecer e manter os requisitos a serem atendidos pelo sistema, software ou serviço de interesse.

Fonte: ISO-IEC-IEEE 29148 - Systems and software engineering - Life Cicle Process - Requirements Engineering

Outras conceituações complementares

"Uma área multidisciplinar, centrada no ser humano e em seus problemas.

Deve, portanto, investigar como as pessoas percebem e entendem o mundo ao seu redor, como elas interagem e como a sociologia dos locais de trabalho afeta suas ações. A ER deve se utilizar, portanto, das ciências sociais e cognitivas, tais como a filosofia, a psicologia cognitiva, a sociologia e a linguística, dentre outras, para fornecer fundamentos teóricos e técnicas para elicitar e modelar requisitos". (NUSEIBEH, 2000)

Outras conceituações complementares (cont.)

"Um processo iterativo, incremental, cognitivo, social, comunicativo e criativo, cujos objetivos são conhecer, entender, estruturar, representar, comunicar e transcrever as informações relevantes de um sistema, extraídas a partir de diferentes segmentos de informação: ambiente da organização; a organização; a gerência; e o desenvolvimento". (CARVALHO, 2003)

Outras conceituações complementares (cont.)

"Um conjunto de atividades utilizadas para **identificar** e **comunicar** a finalidade de um sistema de software, e o **contexto** no qual será usado. Assim, **a ER atua como a ponte** entre as necessidades reais dos usuários, clientes, e outros grupos afetados por um sistema de software, e as **potencialidades** e **oportunidades** oferecidas pela tecnologia". (EASTERBROOK, 2004)

Outras conceituações complementares (cont.)

Área interdisciplinar da Engenharia de Software

Área multidisciplinar, centrada no ser humano e em seus problemas

Ponte entre as necessidades reais dos usuários

Utilizar das **ciências sociais e cognitivas** (filosofia, psicologia cognitiva, sociologia e linguística)

Processo iterativo, incremental, cognitivo, social, comunicativo e criativo

Qual o Foco da ER?

A engenharia de requisitos está focada em descobrir, desenvolver, rastrear, analisar, qualificar, verificar, validar, comunicar, documentar e gerenciar os requisitos de um software.

Fonte: ISO-IECE 29148 - Systems and software engineering - Life Cicle Process - Requirements Engineering
DICK, Jeremy; HULL, Elizabeth; JACKSON, Ken. Management Aspects of Requirements Engineering. In: Requirements Engineering. Springer, Cham, 2017. p. 207-230.

Quais são os Resultados da ER?

- O <u>principal</u> resultado da ER são <u>conjuntos de requisitos</u>, onde cada conjunto deve:
 - <u>Ser referência</u> para um sistema, software ou serviço definido;
 - ► Possibilitar um <u>entendimento acordado</u> entre as partes interessadas (por exemplo, adquirentes, usuários, clientes, operadoras, fornecedores);
 - <u>Ser validado</u> em relação às necessidades do mundo real;
 - Ser implementável; e
 - Fornecer uma referência para a <u>verificação</u> de projetos e soluções.

Fonte: ISO-IEC-IEEE 29148 - Systems and software engineering - Life Cicle Process - Requirements Engineering

O que faz?

De uma maneira geral a Engenharia de Requisitos executa as mesmas atividades em processos Orientados a Plano e Ágeis

Contudo, a filosofia (Orientados a Plano e Ágeis) que sustenta essa execução, faz com que tais atividades sejam realizadas de maneira singular

O que faz?

- Estabelece uma visão comum entre o cliente e a equipe de projeto em relação aos requisitos que serão atendidos pelo software
- Documenta e controla os requisitos alocados para uso gerencial e da engenharia de software
- Mantém artefatos e atividades de software consistentes com os requisitos alocados
- Perpassa todo o processo de desenvolvimento

Para quê ER?

- Para capturar os requisitos necessários a construção de software de qualidade
- Se não são capturados bons requisitos
 - ▶ Pode ser construído um excelente software para resolver o problema errado
 - ► Perda de tempo e dinheiro
 - ► Frustração pessoal
 - Usuários infelizes
 - ...

O que pode afetar os processos de ER?

- Os processos da ER variam amplamente dependendo do(a)...
 - ▶ Domínio da aplicação
 - ► Pessoas envolvidas e seu comprometimento
 - Organização que irá desenvolver os requisitos
 - ► Abordagem de desenvolvimento de software
 - **...**

Onde os processos de ER podem Afetar?

Processo de ER

Processo de ER

Atividades de um processo "genérico" da Engenharia de Requisitos

Fonte: Wiegers, K. E. 2003. Software requirements, 2nd Edition.

Quais são as Atividades de ER?

Elicitação de requisitos

▶ Por meio do uso de técnicas sistemáticas, como entrevistas, questionários, prototipação, grupos focais, workshops de requisitos, etc., visando identificar e registar as necessidades dos clientes e do usuários finais

► Análise de Requisitos

▶ Por de uma avaliação sobre, por exemplo, o quão implementável, são os requisitos identificados.

Quais são as Atividades de ER? (cont.)

- Documentação dos Requisitos de Software (RFs e RNFs)
 - Por meio de técnicas de registro e organização de requisitos e outros documentos, como, backlog de requisitos, user story mapping, histórias de usuários, casos de uso, cenários, documentos de especificação de requisitos.

Quais são as Atividades de ER? (cont.)

▶ Validação de requisitos

Por meio da confirmação de que os requisitos (individualmente e, em conjunto) definem a solução correta, conforme combinado com as partes interessadas (patrocinadores, áreas de negócio, usuários finais, etc.).

Verificação de requisitos

▶ Por meio da confirmação de que os requisitos (individualmente e em conjunto) forem bem identificados e registrados.

Quais são as Atividades de ER? (cont.)

Gerenciamento de requisitos

- Por meio da realização de atividades que visam identificar, manter/atualizar, rastrear, comunicar/dar visibilidade dos requisitos ao longo do ciclo de vida de uma solução de software.
- ▶ Deve-se utilizar ferramentas adequadas, principalmente, no que diz respeito a manutenção da rastreabilidade dos requisitos.

O que é um artefato da ER?

- Local que onde os requisitos são registrados, em maior ou menor nível de detalhe, podendo ser RFs ou RNFs
- Um artefato auxilia no registro e organização dos requisitos.
- Os requisitos de software (RFs e RNFs) podem ser registrados, por exemplo, em:

backlog de requisitos	cenários
user story mapping	documentos de especificação de requisitos
histórias de usuários	Especificações Suplementares
casos de uso	Código fonte

Em que contexto a ER está inserida?

► A ER, assim como a Engenharia de Software podem ser realizadas para gerar resultados a diversos contextos, por exemplo, contexto de negócio

Organization Environment policies & procedures **External Environment** standards & specifications market trends **Business Operation** guidelines laws & regulations business operational domain technologies legal liabilities **System Operation** processes local culture social responsibilities constraints technology base System policies & rules labor pool modes **System Element** competing products quality standards & specifications Software business structure **Business Requirement** public culture Requirement Software (business management level) Physical/natural environment System Stakeholder **System Element** Requirement Requirement business operational Level)

Fonte: ISO-IEC-IEEE 29148 - Systems and software engineering - Life Cicle Process - Requirements Engineering

A Influência de Requisitos em Projetos

A Influência de Requisitos em Projetos

Table 1.1 Reasons for project failure (Standish Group (1995))

**	Incomplete requirements	13.1%
**	Lack of user involvement	12.4%
	Lack of resources	10.6%
*	Unrealistic expectations	9.9%
	Lack of executive support	9.3%
**	Changing requirements/specifications	8.7%
	Lack of planning	8.1%
**	Didn't need it any longer	7.5%

 Table 1.2
 Project success factors (Standish Group (1995))

**	User involvement	15.9%
	Management support	13.9%
**	Clear statement of requirements	13.0%
	Proper planning	9.6%
*	Realistic expectations	8.2%
	Smaller milestones	7.7%
	Competent staff	7.2%
*	Ownership	5.3%

Fonte: Raja Gupta. Fundamentals of Software Engineering. Engineering Handbook. 2019.

A Influência de Requisitos em Projetos (cont.)

Table 5.1 A History of Project Failures Due to Poor Requirements Practices

System Name	Year	Requirements Process Failure	
HMS Titanic	1912	Poor requirements design	
Apollo-13	1970	Insufficient requirements verification	
IBM PCjr	1983	Poor requirements design	
Space Shuttle Challenger	1986	Insufficient requirements verification	
Mars Climate Orbiter	1999	Poor requirements design	
Space Shuttle Columbia	2002	Insufficient requirements verification	

Source: Adapted from Bahill, T.A. & Henderson, S.J., Syst. Eng., 8, 1-14, 2005.

A Influência de Requisitos em Projetos

(cont.)

Desafios na relação entre equipe de desenvolvimento de software e seus clientes.

Fonte: HOFFMANN, Marco et al. The human side of Software Engineering Teams: an investigation of contemporary challenges. **IEEE Transactions on Software Engineering**, 2022.

TABLE 3: Client Challenges

No.	Client Challenge
C1	Lack of communication
C2	Client does not know what they want
C3	Lack of interest in the project by the client
C4	Missing IT project experience at client side
C5	Missing technical knowledge at client side
C6	Exaggerated quality expectation of the client
C7	Conflicts of interests at client side
C8	Client unable to specify functional requirements
C9	Client unable to specify non-functional reqs
C10	Unclear roles and responsibilities at client side
C11	Lack of prioritization by client
C12	Weak management at client side
C13	Insufficient collaboration
C14	Insufficient analysis at the beginning of the project
C15	No direct communication with client
C16	Communication plan is neglected
C17	Subjective interpretations of tasks
C18	Work is not solution-oriented
C19	Language barriers
C20	Misinterpretations
C21	Missing respect towards the client from the team
C22	Missing respect towards the team from the client
C23	Delays due to dependencies to client's third parties
C24	People not reporting problems in time
C25	Over-Confidence
C26	Communication of problems to client restricted
C27	Exaggerated seeking of project problems

A Influência de Requisitos em Projetos

(cont.)

Table 1.3 Project success factors (Standish Group (2015).)

*	Executive management support	20%
**	User involvement	15%
	Optimization	15%
	Skilled resources	13%
	Project management expertise	12%
*	Agile process	10%
**	Clear business objectives	6%
*	Emotional maturity	5%
	Execution	3%
	Tools and infrastructure	1%

Requisitos de Software

Introdução a Engenharia de Requisitos

