SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Prof. dr. sc. Damir Bakić

	1.	, predsjednik
	2.	, član
	3.	, član
ovjerenstvo	je rad ocijenilo ocjenom	
Povjerenstvo	je rad ocijenilo ocjenom	Potpisi članova povjerenstva:
Povjerenstvo	je rad ocijenilo ocjenom	Potpisi članova povjerenstva: 1.

Sadržaj

adržaj	i	V
vod		1
Rijetka rješenja 1.1 Rijetsko i sažetost vektora		3 3
ibliografija	1	1

$\mathbf{U}\mathbf{vod}$

...

Poglavlje 1

Rijetka rješenja

1.1 Rijetsko i sažetost vektora

Uvedimo potrebnu notaciju. Neka je [N] oznaka za skup $\{1, 2, ..., N\}$ gdje je $N \in \mathbb{N}$. Sa card(S) označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N], tj. $\bar{S} = [N] \backslash S$.

Definicija 1.1.1. Nosač vektora $\mathbf{x} \in \mathbb{C}^N$ je skup indeksa njegovih ne-nul elemenata, tj.

$$\operatorname{supp}(\mathbf{x}) := \{ j \in [N] : x_j \neq 0 \}$$

Za vektor $\mathbf{x} \in \mathbb{C}^N$ kažemo da je s-rijedak ako vrijedi

$$\|\mathbf{x}\|_0 := \operatorname{card}(\operatorname{supp}(\mathbf{x})) \le s$$

Primjetimo,

$$\|\mathbf{x}\|_p^p := \sum_{j=1}^N |x_j|^p \xrightarrow{p \to 0} \sum_{j=1}^N \mathbf{1}_{\{x_j \neq 0\}} = \operatorname{card}(\{j \in [N] : x_j \neq 0\}) = \|\mathbf{x}\|_0$$

Gdje smo koristili da je $\mathbf{1}_{\{x_j\neq 0\}}=1$ ako je $x_j\neq 0$ te $\mathbf{1}_{\{x_j\neq 0\}}=0$ ako je $x_j=0$. Drugim riječima, $\|\mathbf{x}\|_0$ je limes p-te potencije ℓ_p -kvazinorme vektora \mathbf{x} kada p teži k nuli. Kvazinorma definira se jednako kao standardna ℓ_p -norma, jedino što nejednakost trokuta oslabimo, tj.

$$\|\mathbf{x} + \mathbf{y}\| \le C(\|\mathbf{x}\| + \|\mathbf{y}\|)$$

za neku konstantu $C \ge 1$. Funkciju $\|\cdot\|_0$ često nazivamo ℓ_0 -norma vektora x, iako ona nije niti norma niti kvazinorma. U samoj praksi, teško je tražiti rijetkost vektora,

pa je stoga prirodno zahtjevati slabiji uvjet kompresibilnosti.

Definicija 1.1.2. ℓ_p -grešku najbolje s-rijetke aproksimacije vektora $\mathbf{x} \in \mathbb{C}^N$ definiramo sa

$$\sigma_s(\mathbf{x})_p := \inf \left\{ \|\mathbf{x} - \mathbf{z}\|_p, \ \mathbf{z} \in \mathbb{C}^N \ je \ s\text{-rijedak} \right\}$$

Primjetimo da se infimum postiže za svaki s-rijedak vektor $\mathbf{z} \in \mathbb{C}^N$ koji ima nenul elemente koji su jednaki sa s najvećih komponenti vektora \mathbf{x} . Iako takav $\mathbf{z} \in \mathbb{C}^N$ nije jedinstven, on postiže infimum za svaki p > 0. Neformalno, mogli bi reći da je vektor $\mathbf{x} \in \mathbb{C}^N$ kompresibilan ako greška njegove najbolje s-rijetke aproksimacije brzo konvergira u s. Da bi to formalno iskazali, od koristi će biti ocjena na $\sigma_s(\cdot)_p$. Pošto nam za to neće biti važan poredak elemenata vektora \mathbf{x} , uvodimo sljedeću definiciju koja će nam olaksati račun.

Definicija 1.1.3. Nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ je vektor $\mathbf{x}^* \in \mathbb{R}^{\mathbb{N}}$ takav da

$$x_1^* \ge x_2^* \ge x_3^* \ge \dots \ge 0$$

te postoji permutacije $\pi: [N] \to [N]$ takva da $x_i^* = |x_{\pi(i)}|$ za sve $i \in [N]$.

Propozicija 1.1.4. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{1}{s^{1/p-1/q}} \|\mathbf{x}\|_p.$$

Dokaz. Neka je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$. Tada slijedi,

$$\sigma_{s}(\mathbf{x})_{q}^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{p} (x_{j}^{*})^{q-p} \le (x_{s}^{*})^{q-p} \sum_{j=s+1}^{N} (x_{j}^{*})^{p} \le \left(\frac{1}{s} \sum_{j=1}^{s} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \left(\sum_{j=s+1}^{N} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \le \left(\frac{1}{s} \|\mathbf{x}\|_{p}^{p}\right)^{\frac{q-p}{p}} \|\mathbf{x}\|_{p}^{p} = \frac{1}{s^{q/p-1}} \|\mathbf{x}\|_{p}^{q}$$

Prva nejednakost slijedi iz činjenice da je $x_j^* \le x_s^*$ za svaki $j \ge s+1$. Druga nejednakost je također posljedica nerasta komponenti od \mathbf{x}^* . Potenciranjem obje strane s 1/q slijedi tvrdnja.

Primjetimo da ako je \mathbf{x} iz jedinične ℓ_p -kugle za neki mali p > 0, onda prethodna propozicija garantira kovergenciju od $\sigma_s(\mathbf{x})_q$ u s, gdje ℓ_p -kuglu definiramo kao

$$B_p^N := \left\{ \mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_p \le 1 \right\}$$

Vratimo se sada ocjeni iz propozicije 1.1.4. Sljedeći teorem daje najmanju konstantu $c_{p,q}$ takvu da vrijedi $\sigma_s(\mathbf{x})_q \leq c_{p,q} s^{-1/p+1/q} \|\mathbf{x}\|_p$ te zapravo predstavlja jaču tvrdnju.

Teorem 1.1.5. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{c_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_p$$

gdje je

$$c_{p,q} := \left[\left(\frac{p}{q} \right)^{p/q} \left(1 - \frac{p^{1-p/q}}{q} \right) \right]^{1/p} \le 1.$$

Istaknimo za česti odabir p = 1 i q = 2

$$\sigma_s(\mathbf{x})_2 \le \frac{1}{2\sqrt{s}} \|\mathbf{x}\|_1$$

Dokaz. Neka je \mathbf{x}^* nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ i $\alpha_j := (x_j^*)^p$. Dokazati ćemo ekvivaltenu tvrdnju

$$\left.\begin{array}{l}
\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0 \\
\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1
\end{array}\right\} \implies \alpha_{s+1}^{q/p} + \alpha_{s+2}^{q/p} + \dots + \alpha_{s+N}^{q/p} \le \frac{c_q^q}{s^{q/p-1}} \tag{1.1}$$

Stoga, za r := q/p > 1, problem se svodi na maksimizaciju konveksne funkcije

$$f(\alpha_1, \alpha_2, \dots, \alpha_N) := \alpha_{s+1}^r + \alpha_{s+2}^r + \dots + \alpha_N^r$$

na konveksnom mnogokutu

$$\mathcal{C} := \left\{ (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N : \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0 \\ i\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1 \right\}$$

Prema teoremu (todo) f postiže maksimum na nekom od vrhova mnogokuta \mathcal{C} , a vrhovi od \mathcal{C} su dani kao sjecišta N hiperplohi koje dobijemo tako da u (1.1) N nejednakosti pretvorimo u jednakosti. Mogučnosti su:

1.
$$\alpha_1 = \cdots = \alpha_N \implies f(\alpha_1, \alpha_2, \ldots, \alpha_N) = 0.$$

2.
$$\alpha_1+\cdots+\alpha_N=1$$
 i $\alpha_1=\cdots=\alpha_k>\alpha_{k+1}=\cdots=\alpha_N=0$ za neki $1\leq k\leq s\implies f(\alpha_1,\alpha_2,\ldots,\alpha_N)=0$

3.
$$\alpha_1 + \dots + \alpha_N = 1$$
 i $\alpha_1 = \dots = \alpha_k > \alpha_{k+1} = \dots = \alpha_N = 0$ za neki $s+1 \le k \le N \implies \alpha_1 = \dots = \alpha_k = 1/k$ te $f(\alpha_1, \alpha_2, \dots, \alpha_N) = (k-s)/k^r$

Dakle, slijedi da

$$\max_{(\alpha_1,\dots,\alpha_N)\in\mathcal{C}} f(\alpha_1,\alpha_2,\dots,\alpha_N) = \max_{s+1\leq k\leq N} \frac{k-s}{k^r}$$

Shvatimo sada k kao realnu varijablu i zamjetimo da $g(k) := (k - s)/k^r$ raste do kritične točke $k^* = (r/(r-1))s$ nakon koje opada.

$$\max_{(\alpha_1, \dots, \alpha_N) \in \mathcal{C}} f(\alpha_1, \alpha_2, \dots, \alpha_N) \le g(k^*) = \frac{1}{r} \left(1 - \frac{1}{r} \right)^{r-1} \frac{1}{s^r - 1} = c_{p,q}^q \frac{1}{s^{q/p} - 1}$$

Alternativni način na koji bi mogli definirati pojam kompresibilnosti za vektor $\mathbf{x} \in \mathbb{C}^N$ je da zahtjevamo da je broj

$$\operatorname{card}(\{j \in [N] : |x_j| \ge t\})$$

tj. broj njegovih značajnih ne-nul komponenti dovoljno mali. Ovaj pristup vodi na definiciju slabih ℓ_p -prostora.

Definicija 1.1.6. Za p > 0, slabi ℓ_p -prostor s oznakom $w\ell_p^N$ definiramo kao prostor \mathbb{C}^N sa kvazinormom

$$\|\mathbf{x}\|_{p,\infty} := \inf \left\{ M \ge 0 : \operatorname{card}(\{j \in [N] : |x_j| \ge t\}) \le \frac{M^P}{t^p}, \ \forall t > 0 \right\}$$
 (1.2)

Da bi pokazali da je (1.2) zapravo kvazinorma, potreban nam je sljedeći rezultat.

Propozicija 1.1.7. Neka su $\mathbf{x}^1, \dots \mathbf{x}^k \in \mathbb{C}^N$. Tada za svaki p > 0 vrijedi

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k^{\max\{1,1/p\}} (\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty})$$

Dokaz. Neka je t>0. Ako je $|x_j^1+\cdots+x_j^k|\geq t$ za neki $j\in[N],$ tada imamo da je $|x_j^i|\geq t/k$ za neki $i\in[k].$ Dakle, vrijedi

$$\left\{j \in [N]: |x_j^1 + \dots + x_j^k| \geq t\right\} \subset \bigcup_{i \in [k]} \left\{j \in [N]: |x_j^i| \geq t/k\right\}$$

pa je stoga

$$\operatorname{card}\left(\left\{j \in [N] : |x_j^1 + \dots + k_j^k| \ge t\right\}\right) \le \sum_{i \in [k]} \frac{\|\mathbf{x}^i\|_{p,\infty}^p}{(t/k)^p}$$
$$= \frac{k^p(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p)}{t^p}$$

Prema definiciji slabe ℓ_p -kvazinorme (1.2) vektora $\mathbf{x}^1 + \cdots + \mathbf{x}^k$ dobivamo

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k \left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p \right)$$

Ako je $p \leq 1,$ uspoređujući ℓ_p i ℓ_1 norme na \mathbb{R}^k slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le k^{1/p-1} \left(\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}\right)$$

te ako je $p \ge 1$ slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le \|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}.$$

Tvrdnja slijedi kombiniranjem dobivenih ocjena.

Uzmimo $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$ i neka je $\lambda \in \mathbb{C}$ proizvoljan.

- 1. Neka je $\|\mathbf{x}\|_{p,\infty} = 0$. Iz (1.2) slijedi card $(\{j \in [N] : |x_j| \ge t\}) = 0$ za svaki t > 0 pa je stoga broj ne-nul komponenti on \mathbf{x} jednak nuli, tj. $\mathbf{x} = 0$
- 2. Ako je λ nula, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ vrijedi trivijalno. Za $\lambda \neq 0$, imamo $\operatorname{card}(\{j \in [N] : |\alpha x_j| \geq t\}) = \operatorname{card}(\{j \in [N] : |x_j| \geq t/|\alpha|\}) \leq (\alpha M)^p/t^p$ za svaki t > 0. Dakle, opet $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$.
- 3. $\|\mathbf{x} + \mathbf{y}\| \le C(\|\mathbf{x}\| + \|\mathbf{y}\|)$ je sada direktna posljedica prethodne propozicije.

Sljedeća propozicija daje alternativni izraz za slabu ℓ_p -kvazinormu.

Propozicija 1.1.8. Za p > 0, vrijedi

$$\|\mathbf{x}\|_{p,\infty} = \max_{k \in [N]} k^{1/p} x_k^*$$

gdje je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$.

Dokaz. Primjetimo prvo da iz (1.2) slijedi da je $\|\mathbf{x}\|_{p,\infty} = \|\mathbf{x}^*\|_{p,\infty}$, pa zapravo pokazujemo da je $\|\mathbf{x}\| := \max_{k \in [N]} k^{1/p} x_k^* = \|\mathbf{x}^*\|$. Nadalje, za t > 0 vrijedi da je $\{j \in [N] : x_j^* \ge t\} = [k]$ za neki $k \in [N]$ ili je $\{j \in [N] : x_j^* \ge t\} = \emptyset$. U prvom slučaju $t \le x_k^* \le \|\mathbf{x}\|/k^{1/p}$ pa je card $(\{j \in [N] : x_j^* \ge t\}) = k \le \|\mathbf{x}\|/k^{1/p}$. U drugom slučaju ista nejednakost vrijedi trivijalno. Iz definicije slabe ℓ_p -kvazinorme (1.2) sada dobivamo $\|\mathbf{x}^*\|_{p,\infty} \le \|\mathbf{x}\|$. Pretpostavimo da je $\|\mathbf{x}^*\|_{p,\infty} < \|\mathbf{x}\|$. Tada postoji $\varepsilon > 0$ takav da $(1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty} \le \|\mathbf{x}\|$. Slijedi da je $(1+\varepsilon)\|\mathbf{x}^*\| \le k^{1/p} x_k^*$ za neki $k \in [N]$ pa stoga

$$[k] \subseteq \left\{ j \in [N] : (1+\varepsilon) \|\mathbf{x}^*\|_{p,\infty} / k^{1/p} \le x_j^* \right\}$$

Ponovo iz (1.2) imamo

$$k \le \frac{\|\mathbf{x}^*\|_{p,\infty}^p}{\left((1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty}k^{1/p}\right)^p} = \frac{k}{(1+\varepsilon)^p}$$

Kontradikcija, dakle mora vrijediti $\|\mathbf{x}\| = \|\mathbf{x}^*\|_{p,\infty}$.

Sada lagano možemo usporediti slabi i jaku ℓ_p normu,

Propozicija 1.1.9. Za svaki p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$,

$$\|\mathbf{x}\|_{p,\infty} \le \|\mathbf{x}\|_p$$

Dokaz. Neka je $k \in [N]$,

$$\|\mathbf{x}\|_p^p = \sum_{j=1}^N (x_j^*)^p \ge \sum_{j=1}^k (x_j^*)^p \ge k(x_k^*)^p$$

Tvrdnja slijedi potenciranjem na 1/p i uzimajući maksimum po k i primjenom prethodne propozicije.

Koristeći propoziciju (1.1.8) možemo dobiti verziju ocjene iz propozicije (1.1.4) sa slabom ℓ_p normom.

Propozicija 1.1.10. Za svaki q > p > 0 i $\mathbf{x} \in \mathbb{C}^N$, vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{d_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_{p,\infty}$$

gdje je

$$d_{p,q} := \left(\frac{p}{q-p}\right)^{1/q}.$$

Dokaz. Bez smanjenja opčenitosti možemo pretpostaviti da je $\|\mathbf{x}\|_{p,\infty} \leq 1,$ pa je $x_k^* \leq 1/k^{1/p}$ za svaki $k \in [N].$ Tada vrijedi,

$$\sigma_s(\mathbf{x})_q^q = \sum_{k=s+1}^N (x_k^*)^q \le \sum_{k=s+1}^N \frac{1}{k^{q/p}} \le \int_s^N \frac{1}{t^{q/p}} dt = -\frac{1}{q/p-1} \frac{1}{t^{q/p-1}} \bigg|_{t=s}^{t=N} \le \frac{p}{q-p} \frac{1}{s^{q/p-1}}.$$

Potenciranjem sa 1/q slijedi tvrdnja.

Prethodna propozicija daje da su vektori $\mathbf{x} \in \mathbb{C}^N$ koji su kompresibilni u smislu $\|\mathbf{x}\|_{p,\infty} \leq 1$ za mali p > 0, također kompresibilni u smislu da greška njihove najbolje s-rijetke aproksimacije brzo konvergira sa s. Iskažimo još jedan tehnički rezultat,

Lema 1.1.11. Neka su $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$. Tada vrijedi,

$$\|\mathbf{x}^* - \mathbf{y}^*\|_{\infty} \le \|\mathbf{x} - \mathbf{y}\|_{\infty} \tag{1.3}$$

Nadalje, za $s \in [N]$,

$$|\sigma_s(\mathbf{x})_1 - \sigma(\mathbf{y})_1| \le ||\mathbf{x} - \mathbf{y}||_1 \tag{1.4}$$

 $i \ za \ k > s$,

$$(k-s)x_k^* \le \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1 \tag{1.5}$$

Dokaz. Za $j \in [N]$, skup indeksa j najvećih komponenti vektora \mathbf{x} ima ne-trivijalni presjek sa skupom od N-j+1 najmanjih komponenti vektora \mathbf{y} . Izaberimo indeks l iz tog presjeka. Tada vrijedi,

$$x_i^* \le |x_l| \le |y_l| + \|\mathbf{x} - \mathbf{y}\|_{\infty} \le z_i^* + \|\mathbf{x} - \mathbf{y}\|_{\infty}$$

Zamjenom uloga od \mathbf{x} i \mathbf{y} slijedi (1.3). Neka je $\mathbf{v} \in \mathbb{C}^N$ najbolja s-rijetka aproksimacija vektora \mathbf{y} . Tada

$$\sigma_s(\mathbf{x})_1 \le \|\mathbf{x} - \mathbf{v}\|_1 \le \|\mathbf{x} - \mathbf{y}\|_1 + \|\mathbf{y} - \mathbf{v}\|_1 = \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1$$

Ponovno, zbog simetrije slijedi (1.4). Napokon, ocjena (1.5) slijedi iz (1.4) te iz činjenice

$$(k-s)x_k^* \le \sum_{j=s+1}^k x_j^* \le \sum_{j\ge s+1} x_j^* = \sigma_s(\mathbf{x})_1.$$

1.2 Minimalni broj mijerenja

Problem sažetog uzorkovanja sastoji se od rekonstrukcije s-rijetkog vektora $\mathbf{x} \in \mathbb{C}^N$ iz sustava

$$y = Ax$$

Matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ nazivamo matrica mijerenja. Ako je m < N, za ovakav sustav linearnih jednadžbi kažemo da je neodređen. Iako iz klasične teorije linearne algebre ovakvi sustavi imaju beskonačno mnogo riješenja, pokazati će se da je dodatna pretpostavka rijetkosti vektora x dovoljno za jedinstvenost rješenja. U ovom poglavlju istražiti ćemo koji je minimalni broj mijerenja, tj. m broj redaka matrice \mathbf{A} , koji garantira rekonstrukciju s-rijetkog vektora \mathbf{x} . Zapravo, postoje dva pristupa ovom problemu. Možemo zahtjevati da problem mijerenja rekonstruira sve s-rijetke vektore $\mathbf{x} \in \mathbb{C}^N$ istodobno ili možemo tražiti rekonstrukciju specifičnog, tj. predodređenog

vektora $\mathbf{x} \in \mathbb{C}^N$. Taj pristup čini se neprirodan, no pokazuje se da je on važan u proučavanju problema gdje matricu \mathbf{A} biramo nasumično.

Pokažimo da su za danu rijetkost s, matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i s-rijedak vektor $\mathbf{x} \in \mathbb{C}^{N}$, naredne tvrdnje ekvivaltentne:

- 1. Vektor \mathbf{x} je jedinstveno s-rijetko rješenje sustava $\mathbf{A}\mathbf{z} = \mathbf{y}$ gdje je $\mathbf{y} = \mathbf{A}\mathbf{x}$, tj. $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}$
- 2. Vektor \mathbf{x} je jedinstveno rješenje problema minimizacije

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}$$
 (1.6)

Ako je $\mathbf{x} \in \mathbb{C}^N$ jedinstveno s-rijetko rješenje od $\mathbf{A}\mathbf{z} = \mathbf{y}$ takvo da je $\mathbf{y} = \mathbf{A}\mathbf{x}$, onda rješenje x^{\sharp} od (1.6) je s-rijetko i zadovoljava $\mathbf{A}\mathbf{x} = \mathbf{y}$ pa je $\mathbf{x}^{\sharp} = \mathbf{x}$. Drugi smjer slijedi trivijalno.

Rekonstrukcija svih rijetkih vektora

Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $S \subset [N]$, sa \mathbf{A}_S označujemo matricu formiranu od stupaca od \mathbf{A} indeksiranih sa S. Analogno, sa kl'w

Bibliografija

Sažetak

Ukratko ...

Summary

In this \dots

Životopis

Dana ...