Contrôle continu 1

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. (Question de cours) Rappeler la définition d'un produit scalaire puis la définition d'espace euclidien.

Exercice 2. (Une norme sur \mathbb{R}^2) Soit $N(x,y) = \max\left\{\sqrt{x^2+y^2}, |x-y|\right\}$ définie pour tout $(x,y) \in \mathbb{R}^2$.

1. Montrer que N est une norme sur \mathbb{R}^2 .

2. Calculer la norme N des points suivants : $(-\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, -\frac{1}{2}), (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ et $(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$.

3. Dessiner (en justifiant) la boule unité de N :

Exercice 3. (Géométrie vectorielle) Dans \mathbb{R}^3 muni du repère canonique (O,i,j,k), on considère les points A=(6,2,4), B=(2,1,1) et $C=(\alpha,3,7)$ où $\alpha\in\mathbb{R}$

- 1. Déterminer l'ensemble des $\alpha \in \mathbb{R}$ pour lesquelles :
 - (a) les points A, B et C sont alignés.

(b) le vecteur \overrightarrow{OC} est unitaire.

2. Déterminer une base orthonormale dont le premier vecteur est colinéaire à \overrightarrow{OA} .

3. Quelle est la distance entre le point de coordonnées (6,3,7) et la droite contenant les points A et B.

- Exercice 4. (Une fonction de plusieurs variable) Soit la fonction définie par $f(x,y) = \sqrt{1 + \frac{x}{y}}$. 1. Déterminer le domaine de définition \mathcal{D} de f. Ce domaine est-il ouvert? est-il fermé?

2. Déterminer les ensembles de niveau de f.

3. Représenter le domaine $\mathcal D$ et les ensembles de niveau $\lambda=0,\,\lambda=1$ et $\lambda=2.$

