Spotify Audio Feature Analysis

Elizabeth Brooks

Objectives

- Discover relationship between audio features and popularity
- Identify most influential track attributes
- Determine audience preferences for tracks and artists

Workflow

- 1. Get a List of Browse Categories -> Category IDs
- 2. Get a Category's playlists -> playlist IDs
- 3. Get a Playlist's Tracks -> artist IDs
- 4. Get an Artist's Related Artists -> related artist IDs
- 5. Get an Artist's Top Tracks -> track IDs
- 6. Get an Artist's Albums -> track IDs
- Get Several Tracks -> track popularity
- 8. Get Audio Features for Several Tracks -> audio features

Audio Features

Key	Type	Description
acousticness	float	Measures whether the track is acoustic
danceability	float	Suitability for dancing
duration_ms	int	Track duration
energy	float	Perceptual measure of intensity and activity
instrumentalness	float	Presence of vocals
key	int	Musical key
liveness	float	Presence of an audience
loudness	float	Overall loudness
mode	int	Indicates modality
speechiness	float	Presence of spoken word
tempo	float	Overall estimated tempo
time_signature	int	Overall time signature
valence	float	Musical positiveness conveyed

Track Feature Analysis

- Visualize multidimensional data -> Python
 - Two-dimensional slices
 - Binned popularity ranges
- Feature scaling -> Python
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
- Decision trees
 - Classification -> Python and R
 - Regression -> R

Regression Tree - Gini

Classification Tree - Gini

Regression Tree for Track Popularity

Regression Tree Analysis

```
Variable importance
        Loudness
                           Energy
                                      Acousticness Instrumentalness
              31
                               21
                          Valence
                                          Duration
    Danceability
Node number 1: 515939 observations,
                                       complexity param=0.08452563
 mean=21.75331, MSE=310.9656
  left son=2 (130783 obs) right son=3 (385156 obs)
  Primary splits:
      Loudness
                       < 13.5145
                                   to the right, improve=0.08452563, (0 missing)
      Acousticness
                       < 0.8335
                                   to the right, improve=0.07047104, (0 missing)
      Energy
                                   to the left, improve=0.06770697, (0 missing)
                      < 0.2975
      Instrumentalness < 0.02945
                                   to the right, improve=0.06201646, (0 missing)
      Danceability
                                   to the left. improve=0.04075925. (0 missing)
                      < 0.4195
  Surrogate splits:
                                   to the left, agree=0.916, adj=0.670, (0 split)
      Energy
                      < 0.2805
      Acousticness
                                   to the right, agree=0.885, adj=0.545, (0 split)
                      < 0.8615
      Danceability
                                   to the left, agree=0.807, adj=0.238, (0 split)
                       < 0.3315
                                   to the left, agree=0.797, adj=0.200, (0 split)
      Valence
                       < 0.1075
      Instrumentalness < 0.8665
                                   to the right, agree=0.779, adj=0.129, (0 split)
```


Instrumentalness vs Loudness

Principal Component Analysis

Linear Discriminant Analysis

Conclusions - Future Work

- Key features:
 - Loudness
 - Instrumentalness
- Reprocess track dataset to include genres, number of followers, and related artist popularity
- Identify and remove erroneous entries

Questions?