Invariant Theory for Maximum Likelihood Estimation

Carlos Améndola & Kathlén Kohn

joint with

Philipp Reichenbach TU Berlin

Anna Seigal University of Oxford

May 6, 2020

Global picture

Invariant theory
describe null cone

progression

algorithmic null cone membership testing Statistics
algorithms to find MLE
convergence analysis

Invariant theory

Stability notions

The **orbit** of a vector v in a vector space V under an action by a group G is

$$G.v = \{g \cdot v \mid g \in G\} \subset V.$$

- v is unstable iff $0 \in \overline{G.v}$ (i.e. v can be scaled to 0 in the limit)
- v semistable iff $0 \notin \overline{G.v}$
- v polystable iff $v \neq 0$ and its orbit G.v is closed
- ◆ v is stable iff v is polystable and its stabilizer is finite

The **null cone** of the action by G is the set of unstable vectors v.

Invariant theory

Null cone membership testing

Classical and often hard question: Describe null cone (essentially equivalent to finding generators for the ring of polynomial invariants)

Modern approach: Provide a test to determine if a vector v lies in null cone

The **capacity** of v is

$$\operatorname{cap}_G(v) := \inf_{g \in G} \|g \cdot v\|_2^2.$$

Observation: $cap_G(v) = 0$ iff v lies in null cone

Hence: Testing null cone membership is a minimization problem.

→ algorithms: [series of 3 papers in 2017 – 2019 by

Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson]

Maximum likelihood estimation

Given:

- ullet \mathcal{M} : a statistical **model** = a set of probability distributions
- $Y = (Y_1, ..., Y_n)$: n samples of observed data

Goal: find a distribution in the model $\mathcal M$ that best fits the empirical data Y

Approach: maximize the likelihood function

$$L_{Y}(\rho) := \rho(Y_1) \cdots \rho(Y_n), \text{ where } \rho \in \mathcal{M}.$$

A maximum likelihood estimate (MLE) is a distribution in the model \mathcal{M} that maximizes the likelihood L_Y .

Maximum likelihood estimation

Gaussian models

The density function of an m-dimensional Gaussian with mean zero and covariance matrix $\Sigma \in \mathbb{R}^{m \times m}$ is

$$ho_{\Sigma}(y) = rac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-rac{1}{2}y^T\Sigma^{-1}y
ight), \quad ext{ where } y \in \mathbb{R}^m.$$

The **concentration matrix** $\Psi = \Sigma^{-1}$ is positive definite.

A Gaussian model \mathcal{M} is a set of concentration matrices, i.e. a subset of the cone of $m \times m$ positive definite matrices. Given data $Y = (Y_1, \dots, Y_n)$, the likelihood is

$$L_Y(\Psi) = \rho_{\Psi^{-1}}(Y_1) \cdots \rho_{\Psi^{-1}}(Y_n), \quad \text{where } \Psi \in \mathcal{M}.$$

The Gaussian group model of a group G with a representation $G \stackrel{\varphi}{ o} \mathrm{GL}_m$ on \mathbb{R}^m is

$$\mathcal{M}_{\textit{G}} := \left\{ \Psi_{\textit{g}} = \varphi(\textit{g})^{\mathsf{T}} \varphi(\textit{g}) \mid \textit{g} \in \textit{G} \right\}.$$

We want to find an MLE, i.e. a maximizer of

$$\log L_Y(\Psi_g) = \frac{1}{2} \underbrace{\left(n \log \det \Psi_g - \|g \cdot Y\|_2^2 \right)}_{\ell_Y(\Psi_g)} - \frac{nm}{2} \log(2\pi) \quad \text{for } g \in G.$$

Combining both worlds

Invariant theory classically over $\mathbb C$ – can also define Gaussian (group) models over $\mathbb C$

Proposition (Améndola, Kohn, Reichenbach, Seigal)

For $Y=(Y_1,\ldots,Y_n)$ with $Y_i\in\mathbb{C}^m$ and a group $G\subset\mathrm{GL}_m(\mathbb{C})$ closed under non-zero scalar multiples (i.e., $g\in G,\lambda\in\mathbb{C},\lambda\neq 0\Rightarrow \lambda g\in G$),

$$\sup_{g \in G} \ell_Y \big(\Psi_g \big) = -\inf_{\tau \in \mathbb{R}_{>0}} \left(\tau \left(\inf_{h \in G \cap \operatorname{SL}_m} \|h \cdot Y\|_2^2 \right) - nm \log \tau \right).$$

The MLEs for the Gaussian group model \mathcal{M}_G , if they exist, are the matrices $\tau h^* h$, where $h \in G \cap \mathrm{SL}_m(\mathbb{C})$ s.t. $\|h \cdot Y\|_2^2 = \mathrm{cap}_{G \cap \mathrm{SL}}(Y)$, and

 $au \in \mathbb{R}_{>0}$ is the unique value minimizing $au \operatorname{cap}_{G \cap \operatorname{SL}}(Y) - \operatorname{nm} \log au$.

Theorem (Améndola, Kohn, Reichenbach, Seigal)

Let Y and G as above. If G is linearly reductive,

ML estimation for \mathcal{M}_G relates to the action by $G \cap \mathrm{SL}_m(\mathbb{C})$ as follows:

- (a) Y unstable $\Leftrightarrow \ell_Y$ not bounded from above
- (b) Y semistable \Leftrightarrow ℓ_Y bounded from above
- (c) Y polystable \Leftrightarrow MLE exists
- (d) Y stable \Leftrightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Combining both worlds

Real examples

```
Theorem (Améndola, Kohn, Reichenbach, Seigal)
```

Let $Y=(Y_1,\ldots,Y_n)$ with $Y_i\in\mathbb{R}^m$, and let $G\subset\mathrm{GL}_m(\mathbb{R})$ be a linearly reductive group which is closed under non-zero scalar multiples.

ML estimation for \mathcal{M}_G relates to the action by $G \cap \mathrm{SL}_m(\mathbb{R})$ as follows:

- (a) Y unstable \Leftrightarrow ℓ_Y not bounded from above
- (b) Y semistable \Leftrightarrow ℓ_Y bounded from above
- (c) Y polystable \Leftrightarrow MLE exists
- (d) Y stable \Rightarrow finitely many MLEs exist \Leftrightarrow unique MLE

Examples: full Gaussian model, independence model, matrix normal model

```
Theorem (Améndola, Kohn, Reichenbach, Seigal)
```

Let $Y=(Y_1,\ldots,Y_n)$ with $Y_i\in\mathbb{R}^m$, and let $G\subset\mathrm{GL}_m(\mathbb{R})$ be a group which is closed under non-zero scalar multiples, but not necessarily linearly reductive.

ML estimation for \mathcal{M}_G relates to the action by $G \cap \mathrm{SL}_m^{\pm}(\mathbb{R})$ as follows:

- (a) Y unstable \Leftrightarrow ℓ_Y not bounded from above
- (b) Y semistable \Leftrightarrow ℓ_Y bounded from above
- (c) Y polystable \Rightarrow MLE exists

Example: Gaussian graphical model defined by transitive DAG

Gaussian graphical models

Directed acyclic graphs

Important family of statistical models that represent interaction structures between several random variables.

- Consider a directed acyclic graph (DAG) \mathcal{G} with m nodes.
- lacktriangle Each node j represents a random variable X_j (e.g., Gaussian).
- ♦ Each edge $j \rightarrow i$ encodes (conditional) dependence: X_j 'causes' X_i .
- The parents of i are $pa(i) = \{j \mid j \to i\}$.

The model is defined by the recursive linear equation:

$$X_i = \sum_{j \in pa(i)} \lambda_{ij} X_j + \varepsilon_i$$

where λ_{ij} is the edge coefficient and ε_i is Gaussian error.

 λ_{21} λ_{31} λ_{31} λ_{42} λ_{43} λ_{43}

It can be written as $X = \Lambda X + \varepsilon$ where $\Lambda \in \mathbb{R}^{m \times m}$ satisfies $\lambda_{ij} = 0$ for $j \not\to i$ in \mathcal{G} and $\varepsilon \sim N(0,\Omega)$ with Ω diagonal, positive definite.

Gaussian graphical models

coming from groups

From $X = \Lambda X + \varepsilon$, we rewrite

$$X = (I - \Lambda)^{-1} \varepsilon$$

so that $X \sim N(0, \Sigma)$ with

$$\Sigma = (I - \Lambda)^{-1} \Omega (I - \Lambda)^{-T}$$
 & $\Psi = (I - \Lambda)^T \Omega^{-1} (I - \Lambda)$.

The Gaussian graphical model $\mathcal{M}_{\mathcal{G}}^{\rightarrow}$ consists of concentration matrices Ψ of this form. Consider the set

$$G(\mathcal{G}) = \{g \in \operatorname{GL}_m \mid g_{ij} = 0 \text{ for } i \neq j \text{ with } j \not\to i \text{ in } \mathcal{G}\}.$$

Proposition

The set of matrices $G(\mathcal{G})$ is a group if and only if \mathcal{G} is a **transitive** directed acyclic graph (TDAG), i.e., $k \to j$ and $j \to i$ in \mathcal{G} imply $k \to i$. In this case,

$$\mathcal{M}_{\mathcal{G}}^{\rightarrow}=\mathcal{M}_{\mathcal{G}(\mathcal{G})}.$$

TDAG group models

Example

Let \mathcal{G} be the TDAG

The corresponding group $\mathcal{G}(\mathcal{G})\subseteq \mathrm{GL}_3$ consists of invertible matrices g of the form

$$g = \begin{bmatrix} * & 0 & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix}.$$

The Gaussian graphical model $\mathcal{M}_{\mathcal{G}}^{\rightarrow}$ is a 5-dimensional linear subspace of the cone of symmetric positive definite 3 \times 3 matrices:

$$\mathcal{M}_{\mathcal{G}}^{\rightarrow} = \{ \textbf{g}^{\mathsf{T}} \textbf{g} \mid \textbf{g} \in \textbf{G}(\mathcal{G}) \} = \{ \Psi \in \operatorname{PD}_3 \mid \psi_{12} = \psi_{21} = 0 \}.$$

Note that G(G) is **not** reductive!

The MLE is known to be unique if it exists. So when does it exist?

Null cone of TDAGs

Theorem (Améndola, Kohn, Reichenbach, Seigal)

Let $Y \in \mathbb{R}^{m \times n}$ be a tuple of n samples. If some row of Y corresponding to vertex i is in the linear span of the rows corresponding to the parents of i,

- then Y is unstable under the action by G(G) ∩ SL_m,
 i.e. the likelihood is unbounded;
- ◆ otherwise, Y is polystable, i.e. the MLE exists.

(by our main theorem in the real non-reductive case)

1 2

Example Let n=2 in

and consider three different pairs of samples:

$$Y^1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y^2 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 4 \end{pmatrix}, \quad Y^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3 & 2 \end{pmatrix}.$$

Using the theorem, we see that Y^1 and Y^2 are unstable and Y^3 is polystable.

The null cone has two components: $\langle y_{11}y_{32} - y_{12}y_{31} \rangle \cap \langle y_{21}y_{32} - y_{22}y_{31} \rangle$.

XI - XIV

Null cones of TDAGs

Corollary Let \mathcal{G} be a TDAG with m nodes and n samples.

Each irreducible component of the Zariski closure of the null cone under the action of $G(\mathcal{G}) \cap \operatorname{SL}_m$ on $\mathbb{R}^{m \times n}$ is defined by the maximal minors of the submatrix whose rows are a childless node and its parents.

Example

Let \mathcal{G} be the TDAG

- The null cone is **not** Zariski closed for n ≥ 2.
 Its Zariski closure is the variety of matrices of rank at most two.
- For n=2, Y is not in the null cone but in its Zariski closure $(=\mathbb{R}^{3\times 2})$:

$$Y=egin{pmatrix}1&0\1&0\0&1\end{pmatrix}.$$

Hence, the MLE given Y exists. What is it?

Y is of minimal norm in its orbit, so the MLE given Y is λI_3 , where λ minimizes $\frac{3}{2}\lambda - 3\log(\lambda)$. Hence $\lambda = 2$.

Undirected Graphical Models

Which TDAGs have Zariski closed null cones?

Corollary Let \mathcal{G} be a TDAG with m nodes. The null cone under the action of $G(\mathcal{G}) \cap \operatorname{SL}_m$ on $\mathbb{R}^{m \times n}$ is Zariski closed for every n iff \mathcal{G} has no unshielded colliders.

An unshielded collider of \mathcal{G} is a subgraph $j \to i \leftarrow k$ with no edge between j and k.

This is a very interesting condition in statistics! \mathcal{G} has no unshielded colliders if and only if it has the same graphical model as its underlying undirected graph.

Summary

Invariant Theory and Scaling Algorithms for Maximum Likelihood Estimation arXiv:2003.13662

historical progression

Invariant theory describe null cone

algorithmic null cone membership testing **Statistics** algorithms to find MLE

convergence analysis