Table of Contents

```
| Load Data | 1 | | Compute Derivative | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | | 1 | |
```

```
clear all, close all, clc
% for each part, uncomment and run entire code
```

Load Data

```
load('SYS1.mat')
%load('SYS2.mat')
dt = 0.01; % sample time for data
n=3;
```

Compute Derivative

part a

```
% Beta = [10; 28; 8/3]; % Lorenz's parameters (chaotic) % for i=1:length(x) % dx(i,:) = lorenz(0,x(i,:),Beta); % end
```

part b

part c

part d

lets add noise for fun:) noise for SYS1

```
noise = normrnd(0.1, 0.2, size(x, 1), size(x, 2));
%noise for SYS2
noise = normrnd(0.1, 0.2, size(x, 1), size(x, 2))/100;
x = x + noise;
for i=1:3
    dx(:,i) = diff(x(:,i))/dt;
end
dx = [dx; dx(end,:)];
% storage for filtered data
dx filter = zeros(size(dx,1), size(dx,2));
xyz_str = ['x', 'y', 'z'];
% plot data
for i = 1:size(dx, 2)
    % plot Original data
    figure
    plot(dx(:,i)); hold on
    % filter data using Savitzky Golay
    rd = 2; % polynomial order (use 2 for SYS2.mat)
    fl = 21; % length of data frames (USE 21 FOR SYS2.mat)
    dx_filter(:,i) = sgolayfilt(dx(:,i),rd,fl);
    % plot filtered data
    plot(dx filter(:,i)); hold off
    title str = sprintf('Filter d%1$s', xyz str(i));
    title(title_str)
    grid
    xlim([1000 2000]) % Add for SYS1.MAT TO BETTER SEE NOISE
    legend({'Original', 'Filtered'},'Location','southeast')
end
```


Build library and compute sparse regression

```
polyorder = 3; % up to third order polynomials
Theta = poolData(x,n,polyorder);
lambda = 0.4; % lambda is our sparsification knob.
Xi = sparsifyDynamics(Theta,dx_filter,lambda,n)
poolDataLIST({'x','y','z'},Xi,n,polyorder);
```

Xi =

0	-0.46644	9.937
-9.9163	27.895	0
9.7879	-1.5375	0
0	0	-2.9991
0	0	0
0	0	0.97436
0	-0.97825	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

newout =

21×4 cell array

{0×0 cha	ar}	{'xdo	t' }	{ 'ydot	; ' }	{ 'zdo	t' }
{ ' 1 '	}	{[0]}	{[-0.4	16644]}	{[9	.937]}
{ 'x '	}	{[-9.	9163]}	{[27	7.895]}	{[0]}
{ 'y '	}	{[9.	7879]}	{[-1.	5375]}	{[0]}
{ 'z '	}	{[0]}	{[0]}	{ [-2.	9991]}
{ 'xx '	}	{[0]}	{[0]}	{[0]}
{ 'xy '	}	{[0]}	{[0]}	{[0.9	7436]}
{ 'XZ '	}	{[0]}	{[-0.9	97825]}	{[0]}
{ 'yy '	}	{[0]}	{[0]}	{[0]}
{ 'yz '	}	{[0]}	{[0]}	{[0]}
{ 'zz '	}	{[0]}	{[0]}	{[0]}
{ 'xxx'	}	{[0]}	{[0]}	{[0]}
{ 'xxy '	}	{[0]}	{[0]}	{[0]}
{ 'xxz '	}	{[0]}	{[0]}	{[0]}
{ 'xyy '	}	{[0]}	{[0]}	{[0]}
{ 'xyz '	}	{[0]}	{[0]}	{[0]}
{ 'xzz '	}	{[0]}	{[0]}	{[0]}
{ ' <i>yyy</i> '	}	{[0]}	{[0]}	{[0]}
{ 'yyz '	}	{[0]}	{[0]}	{[0]}
{ 'yzz'	}	{[0]}	{[0]}	{[0]}
{ 'zzz'	}	{[0]}	{[0]}	{[0]}

Published with MATLAB® R2023b