Model answers

11.1 General codes

From the 2013 Coding Theory exam paper — medium difficulty:

A4. Consider the following binary code of length 6: $C = \{000111, 110001, 011100\}$.

- (a) Is C a linear code? Give a reason for your answer.
- (b) Find d(C).
- (c) Show that there does not exist a vector $\underline{y} \in \mathbb{F}_2^6$ such that $d(\underline{y},\underline{c}) = 1$ for all $\underline{c} \in C$.

Solution.

- (a) C is not linear, e.g. because C does not contain 000000. (There are other reasons.)
- (b) All pairwise distances between codewords are 4 so d(C) = 4.
- (c) By the Triangle Inequality, $d(000111, 110001) \le d(000111, \underline{y}) + d(\underline{y}, 110001)$. The left-hand side of this inequality is 4 so the right-hand side cannot be 1 + 1.

11.2 Bounds

From the 2013 Coding Theory exam paper, question A3 — medium difficulty:

- (e) Prove:
 - 1. The sphere $S_{10}(\underline{0})$ in \mathbb{F}_3^{2013} consists of an odd number of elements.
 - 2. Any perfect code in \mathbb{F}_3^{2013} consists of an odd number of codewords.

Solution.

- 1. The formula for the number of elements in a Hamming sphere $S_r(\underline{y})$ tells us that $\#S_{10}(\underline{0}) = {2013 \choose 0} + {2013 \choose 1} 2^1 + \cdots + {2013 \choose 10} 2^{10}$. The first summand ${2013 \choose 0} = 1$ is odd, the rest contain powers of 2 so are even. Therefore, the sum is odd.
- 2. A perfect code C attains the Hamming bound, which can be written in the form $M(\#S_t(\underline{0})) = 3^{2013}$. So M = #C is a divisor of the odd integer 3^{2013} , so M is odd.

Challenging: A3g from the 2015 Coding Theory exam paper, also used in coursework in later years:

(g) You are given that $C \subseteq D \subseteq \mathbb{F}_q^n$ where |C| < |D| and C is a perfect code. d(C) > 2d(D). You may quote any result from the course without proof.

Solution.

The assumptions mean that $D \not\subset C$, so there is a codeword \underline{x} of D such that $\underline{x} \notin C$. Since C is perfect, by a result from the course, \underline{x} has a unique nearest neighbour \underline{c} in C with $d(\underline{x},\underline{c}) \leq t$, where t = [(d(C) - 1)/2]. Note that t < d(C)/2. Both \underline{x} and \underline{c} are in D, and $\underline{x} \neq \underline{c}$ (one word is not in C, the other is in C). So $d(D) \leq d(\underline{x},\underline{c}) < d(C)/2$, and so 2d(D) < d(C) as claimed.

11.3 Linear codes I

From 2019/20 coursework: fairly difficult

D. An interesting weight enumerator [20 marks] Show that there is no linear code over \mathbb{F}_8 with weight enumerator $x^9 + 16x^5y^4 + 16x^4y^5 + 256y^9$. Does a linear code with such weight enumerator exist over any other field? Justify your answer.

Solution.

Suppose a linear code has weight enumerator $x^9 + 16x^5y^4 + 16x^4y^5 + 256y^9$. This means that the code contains one codevector of weight 0, sixteen codevectors of weight 4, sixteen codevectors of weight 5 and 256 codevectors of weight 9. The total number of codevectors is then 1 + 16 + 16 + 256 = 289. Since 289 is not a power of 8, the code cannot be a linear code over \mathbb{F}_8 : such codes always contain 8^k elements where $k = \dim C$ is an integer.

Since $289 = 17^2$, such a code could in principle exist over \mathbb{F}_{17} or over \mathbb{F}_{289} . But saying that a code *could* exist is not a proof that it exists — we need to construct the code.

Consider the 17-ary code generated by $G = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$. It has 16

codevectors of weight 4 and of the form $\lambda\lambda\lambda\lambda00000$ with $\lambda \in \mathbb{F}_{17}\setminus\{0\}$; 16 codevectors of weight 5 of the form $0000\mu\mu\mu\mu\mu$ with $\mu \in \mathbb{F}_{17}\setminus\{0\}$; and the rest of its 289 codevectors are of the form $\lambda\lambda\lambda\lambda\mu\mu\mu\mu\mu\mu$, of weight 9. Hence the code has the required weight enumerator.

11.4 Linear codes II: encoding and decoding

11.5 Dual codes

From the 2020/21 exam: medium difficulty

A1. Let C be the linear code over the field $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ generated by the matrix

$$G = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 & 1 \\ 0 & 1 & 3 & 1 & 0 & 2 \\ 2 & 0 & 4 & 0 & 0 & 4 \end{bmatrix}.$$

For each of the statements about the code C, given below, determine if the statement is true and justify your answer. Marks will not be given for true/false answers without any justification.

- (c) $d(C^{\perp}) = 2$.
- (e) $\sum_{\underline{c} \in C} w(\underline{c}) = 600.$

Solution.

False: since the fifth column of G is zero, the dual code C^{\perp} contains the vector 000010 of weight 1, so $d(C^{\perp}) = w(C^{\perp}) = 1$.

False: by the Average Weight Equation, the average weight of a codevector of C is $(n-z)(1-q^{-1})$ where n-z is the number of non-zero columns of G and q=5. This gives $5\times (1-1/5)=4$. The number of codevectors is $5^3=125$ so the sum of weights is $125\times 4=500\neq 600$.

11.6 Hamming codes and simplex codes

From the 2013 exam, question B6 — medium difficulty:

- (e) Let q be given. Describe all values of s such that Ham(s,q) is an MDS code. You may quote any result from the course without proof.
- (f) Write down a generator matrix for $\operatorname{Ham}(3,2)$ in standard form.
- (g) Find $\max\{d(\underline{x},\underline{y}):\underline{x},\underline{y}\in \operatorname{Ham}(3,2)\}$, that is, the *maximum* distance between two codewords in $\operatorname{Ham}(3,2)$. Justify your answer.

Solution.

- (e) $k = \dim \operatorname{Ham}(s, q) = n s$, and the code is MDS iff k = n d + 1. Since d = 3 for Hamming codes, the MDS condition rewrites as n s = n 3 + 1. Therefore, the answer is: s = 2.
- (f) Start with a check matrix for Ham(3,2), writing the three identity columns on the right: for example,

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} A \mid I_3 \end{bmatrix}$$
. No need to do any row operations! Then a generator matrix in

standard form is
$$G = \begin{bmatrix} I_4 \mid -A^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
. The answer is not unique, but all possible answers are obtained from this one by permuting the 3-bit rows of the rightmost 4×3 block
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$
.

(g) $d(\underline{x},\underline{y})$ is the weight $w(\underline{x}-\underline{y})$ of the vector $\underline{x}-\underline{y}$ which is a codevector (because the Hamming code is linear). We do have the codevector 1111111 of weight 7, for example the sum of the rows of G above. Alternatively, $11111111H^T=0$ so the vector is in the code, no matter the order of columns of H. Hence the answer is 7, e.g., by taking $\underline{x}=11111111$, $\underline{y}=\underline{0}$.

11.7 Cyclic codes

From the 2011 exam, question B7 — medium difficulty:

Given that, over \mathbb{F}_3 ,

$$x^{8} - 1 = (x^{5} + x^{4} + x^{3} - x^{2} + 1)(x^{3} - x^{2} - 1)$$
:

- 4. Write down a generator polynomial and a check polynomial for a ternary cyclic code of length 8 and dimension 5.
- 5. Write down a generator matrix and a parity check matrix for this code.
- 6. Find the minimum distance of this code.
- 7. Are either of the vectors 11000000 or 11102000 in this code?
- 8. The repetition code in $\mathbb{F}_p^{(n)}$ is always a cyclic code. Write down a generator matrix and a check polynomial for the repetition code.

Solution.

4. Since dim $C = n - \deg g(x)$, we have $\deg g(x) = 8 - 5 = 3$. An obvious choice is $g(x) = x^3 - x^2 - 1$.

5.
$$G = \begin{bmatrix} 2 & 0 & 2 & 1 & & & \\ & 2 & 0 & 2 & 1 & & \\ & & 2 & 0 & 2 & 1 & \\ & & & 2 & 0 & 2 & 1 \\ & & & & 2 & 0 & 2 & 1 \end{bmatrix}$$
, $H = \begin{bmatrix} 1 & 1 & 1 & 2 & 0 & 1 & \\ & 1 & 1 & 1 & 2 & 0 & 1 \\ & & 1 & 1 & 1 & 2 & 0 & 1 \end{bmatrix}$. Blanks mean zeros (and are used for

emphasis), and it is acceptable to write -1 instead of 2 in \mathbb{F}_3 . Note the order in which the coefficients of $g(x) = 2 + 0x + 2x^2 + 1x^3$ are used in the rows of G, and the order in which the coefficients of $h(x) = x^5 + x^4 + x^3 + 2x^2 + 0x + 1$ are used in H.

- 6. Note that $d(C) = w(C) \le 3$ because $\underline{g} = 2021000 \in C$ is a vector of weight 3. On the other hand, H has no zero columns so by the distance theorem $d(C) \ge 2$, and no two columns of H are proportional so by the distance theorem $d(C) \ge 3$. Hence d(C) = 3.
- 7. 11000000 is of weight 2 so is not in the code the minimum weight in the code is 3.

 $11102000H^T = 000$ so 11110200 is in the code. Alternatively, $2x^4 + x^2 + x + 1 = (2x + 2)(x^3 + 2x^2 + 2) = (2x + 2)g(x)$, e.g., by long division, so $2x^4 + x^2 + x + 1$ is a code polynomial.

8. $G = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \end{bmatrix}$ and so the generator polynomial is $g(x) = x^{n-1} + x^{n-2} + \dots + x + 1$. The check polynomial is h(x) = x - 1 since $(x - 1)g(x) = x^n - 1$.

11.8 Classification of perfect codes

From the 2016 exam, question B4 — difficult:

(f) Given that C is a perfect linear $[n, k, d]_q$ -code with weight enumerator $W_C(x, y) = Ax^n + Bx^{n-2}y^2 + nx^{n-3}y^3 + nx^{n-4}y^4 + y^n$, find n, k, d, q, A and B.

Solution.

- -A = 1, because there is exactly 1 vector of weight 0 in a linear code.
- If $B \neq 0$, then d(C) = 2 (even) which is impossible for a perfect code. So B = 0.
- The term y^n shows that there is exactly one vector of weight n in C, say \underline{v} . Yet if $\lambda \in \mathbb{F}_q$, $\lambda \neq 0, 1$, then $\lambda \underline{v}$ would be another vector of weight n. Hence \mathbb{F}_q contains only 0 and 1, and q = 2.
- If $\underline{a} \in C$ is of weight 3, then $\underline{v} \underline{a} = 111...1 \underline{a}$ has weight n 3. So C must contain n vectors of weight n 3, and (similarly) n vectors of weight n 4. From the weight enumerator, $\{n 4, n 3\}$ must be $\{3, 4\}$, and so n = 7.
- Thus $W_C(x,y) = x^7 + 7x^4y^3 + 7x^3y^4 + y^7$. One has #C = 1 + 7 + 7 + 1 = 16 and so $k = \log_2 16 = 4$.

We discover that C is parameter equivalent to Ham(3,2). There are alternative ways to solve this problem which use classification of perfect codes.

11.9 Reed-Muller codes