Introduction To Mel Frequency Cepstral coefficients (MFCC)

Dr. Aparna P.
Dept of EC Engineering
NITK, Surathkal

Source-Filter model of speech production

glottal vibration

vocal tract

speech wave

$$s(n) = e(n) * h(n)$$

$$S(k) = E(k)H(k)$$

$$log(|S(k)| **2) = log(|E(k)| **2) + log(|H(k)| **2)$$

1/28/2020

Source-Filter model of speech production

vocal tract: vowel /a/

time waveform

Glottal air flow

Frequency (Hz)

log(|S(k)| **2) = log(|E(k)| **2) + log(|H(k)| **2)

Basilar membrane: Bark/mel scale

Figure A simplified unrolled representation of the cochlea showing the auditory nerve fibres, the tonotopic organization of these nerve fibres and an intracochlear electrode array in the scala tympani.

1/28/2020

MFCC

$$B(m) = \sum_{k=lo(m)}^{hi(m)} |X(k)|^2$$

$$cep(q) = IFFT\{log(|B(m)|^2)\}$$
 $q = 0, 1, ...N$

MFCC-Contd

• Acknowledgement: Prof. Samudra Vijaya K., IIT Guwahati.	
1/28/2020	15