Section 2

Probability

Review of probability

- The crux of Bayesian statistics is to compute the posterior distribution, i.e., the uncertainty distribution of the parameters (θ) after observing the data (Y)
- ▶ This is the conditional distribution of θ given **Y**
- Therefore, we need to review the probability concepts that lead to the conditional distribution of one variable conditioned on another
- We will cover Chapters 1.1-1.2:
 - 1. Probability mass (PMF) and density (PDF) functions
 - 2. Joint distributions
 - Marginal and conditional distributions
 - 4. Bayes Rule

Random variables

- ► X (capital) is a random variable
- ▶ We want to compute the probability that X takes on a specific value x (lowercase)
- ▶ This is denoted Prob(X = x)
- We also might want to compute the probability of X being in a set A
- ▶ This is denoted $Prob(X \in A)$
- The set of possible value that X can take on is called its support, S

Random variables - example

Example 1: X is the roll of a die

- ▶ The support is $S = \{1, 2, 3, 4, 5, 6\}$
- ▶ Prob(X = 1) = 1/6

Example 2: X is a newborn baby's weight

- ▶ The support is $S = (0, \infty)$
- ▶ $Prob(X \in [0, \infty]) = 1$

What is probability?

Objective (associated with frequentist)

- ▶ Prob(X = x) as a purely mathematical statement
- If we repeatedly sampled X, the value that the proportion of draws equal to x converges to defined as Prob(X = x)

Subjective (associated with Bayesian)

- ▶ Prob(X = x) represents an individual's degree of belief
- Often quantified as the amount an individual would be willing to wager that X will be x

A Bayesian analysis makes use of both of these concepts

What is uncertainty?

Aleatoric uncertainty (likelihood)

- Uncontrollable randomness in the experiment
- For example, the results of a fair coin flip can never be predicted with certainty

Epistemic uncertainty (prior/posterior)

- Uncertainty about a quantity that could theoretically be known
- For example, if we flipped a coin infinitely-many times we could know the true probability of a head

A Bayesian analysis makes use of both of these concepts

Probability versus statistics

Probability is the forward problem

- We assume we know how the data are being generated and compute the probability of events
- ► For example, what is the probability of flipping 5 straight heads if the coin is fair?

Statistics is the inverse problem

- We use data to learn about the data-generating mechanism
- For example, if we flipped five straight head, can we conclude the coin is biased?

Any statistical analysis obviously relies on probability

Univariate distributions

 We often distinguish between discrete and continuous random variables

► The random variable X is discrete if its support S is countable

- Examples:
 - $X \in \{0, 1, 2, 3\}$ is the number of successes in 3 trials
 - $X \in \{0, 1, 2, ...\}$ is the number users that visit a website

Univariate distributions

 We often distinguish between discrete and continuous random variables

► The random variable *X* is continuous if its support *S* is uncountable

- Examples with $S = (0, \infty)$:
 - X > 0 is weight of a baby
 - X > 0 is the wind speed

Discrete univariate distributions

- ▶ If *X* is discrete we describe its distribution with its **probability mass function** (PMF)
- ▶ The PMF is f(x) = Prob(X = x)
- ▶ The domain of X is the set of x with f(x) > 0
- ▶ We must have $f(x) \ge 0$ and $\sum_x f(x) = 1$
- ▶ The mean is $E(X) = \sum_{x} xf(x)$
- ► The variance is $V(X) = \sum_{x} [x E(X)]^2 f(x)$
- The last three sums are over X's domain

Parametric families of distributions

- A statistical analysis typically proceeds by selecting a PMF that seems to match the distribution of a sample
- We rarely know the PMF exactly, but we assume it is from a parametric family of distributions
- For example, Binomial(10,0.5) and Binomial(4,0.1) are different but both from the normal family
- ▶ A family of distributions have the same equation for the PMF but differ by some unknown parameters θ
- We must estimate these parameters

Example: $X \sim \text{Bernoulli}(\theta)$

- ► Example: *X* is a success (1) or failure (0)
- ▶ Domain: $X \in \{0, 1\}$ (i.e., X is binary)
- ▶ PMF: $P(X = 0) = 1 \theta$ and $P(X = 1) = \theta$
- ▶ Parameter: $\theta \in [0, 1]$ is the success probability
- Mean: $E(X) = \sum_{x} x f(x) = 0(1 \theta) + 1\theta = \theta$
- Variance:

$$V(X) = \sum_{x} (x - \theta)^2 f(x) = (0 - \theta)^2 (1 - \theta) + (1 - \theta)^2 \theta = \theta (1 - \theta)$$

Example: $X \sim \text{Binomial}(N, \theta)$

- Example: X is a number of successes in N trials
- ▶ Domain: $X \in \{0, 1, ..., N\}$
- $PMF: P(X = x) = \binom{N}{x} \theta^{x} (1 \theta)^{N-x}$
- ▶ Parameter: $\theta \in [0, 1]$ is the success probability of each trial
- Mean: $E(X) = \sum_{x=0}^{N} x f(x) = n\theta$
- ▶ Variance: $V(X) = n\theta(1 \theta)$

Example: $X \sim \text{Poisson}(N\theta)$

- Example: X is the number events that occur in N units of time
- Often the distribution is presented with N = 1
- ▶ Domain: $X \in \{0, 1, 2, ...\}$
- $PMF: P(X = x) = \frac{\exp(-N\theta)(N\theta)^x}{x!}$
- ▶ Parameter: θ is the expected number of events per unit of time
- ▶ Mean: $E(X) = N\theta$
- ▶ Variance: $V(X) = N\theta$

Continuous univariate distributions

- If X is continuous we describe its distribution with the probability density function (PDF) $f(x) \ge 0$
- ► Since there are uncountably many possible values, the probability of any one value must be zero

► Therefore, P(X = x) = 0 for all x, and so the PMF is meaningless

Continuous univariate distributions

Probabilities are computed as areas under the PDF curve

▶ Therefore, f(x) must satisfy $f(x) \ge 0$ and

$$\mathsf{Prob}(-\infty < X < \infty) = \int_{-\infty}^{\infty} f(x) dx = 1$$

Continuous univariate distributions

- ▶ The domain is the set of x values with f(x) > 0
- ► The mean and the variance are defined similarly to the discrete case but with the sums replaced by integrals
- The mean is

$$\mathsf{E}(X) = \int x f(x) dx$$

The variance is

$$V(X) = \int [x - E(X)]^2 f(x) dx$$

Example: $X \sim \text{Normal}(\mu, \sigma^2)$

- ► Example: X is an IQ score
- ▶ Domain: $X \in (-\infty, \infty)$
- ► PDF: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$
- ▶ Parameters: μ is the mean, $\sigma^2 > 0$ is the variance
- Mean: E(X) = μ
- ▶ Variance: $V(X) = \sigma^2$

Example: $X \sim \text{Gamma}(a, b)$

- ► Example: X is a height
- ▶ Domain: $X \in (0, \infty)$
- PDF: $f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx)$
- ▶ Parameters: a > 0 is the shape, b > 0 is the rate
- Mean: $E(X) = \frac{a}{b}$
- ▶ Variance: $V(X) = \frac{a}{b^2}$
- Be careful: Sometimes the PDF is given as

$$f(x) = \frac{1}{\Gamma(a)b^a} x^{a-1} \exp(-x/b)$$

Example: $X \sim \text{InverseGamma}(a, b)$

- ▶ If $Y \sim \text{Gamma}(a, b)$ and X = 1/Y, then $X \sim \text{InverseGamma}(a, b)$
- ▶ Domain: $X \in (0, \infty)$
- ► PDF: $f(x) = \frac{b^a}{\Gamma(a)} x^{-a-1} \exp(-b/x)$
- ▶ Parameters: a > 0 is the shape, b > 0 is the rate
- Mean: $E(X) = \frac{b}{a-1}$ if a > 1
- ► Variance: $V(X) = \frac{b^2}{(a-1)^2(a-2)}$ if a > 2
- Be careful: Sometimes the PDF is given as

$$f(x) = \propto x^{-a-1} \exp[-1/(bx)]$$

Example: $X \sim \text{Beta}(a, b)$

- Example: X is a probability
- ▶ Domain: $X \in [0, 1]$
- ► PDF: $f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$
- ▶ Parameters: a > 0 and b > 0
- Mean: $E(X) = \frac{a}{a+b}$
- ► Variance: $V(X) = \frac{ab}{(a+b)^2(a+b+1)}$

Joint distributions

- ▶ $\mathbf{X} = (X_1, ..., X_p)$ is a random vector (vectors and matrices should be in bold).
- For notational convenience, let's consider only p = 2 random variables X and Y.
- (X, Y) is discrete if it can take on a countable number of values, such as
 - X = number of hearts and Y = number of face cards.
- ► (X, Y) is continuous if it can take on an uncountable number of values, such as
 - X =birthweight and Y =gestational age.

The joint PMF is

$$f(x, y) = \text{Prob}(X = x, Y = y)$$

Example: patients are randomly assigned a dose and followed to determine whether they develop a tumor.

Discrete random variables
$$P(Y=0|X=1) = \frac{0.469}{0.700} = \frac{0.469}{0.700}$$

► The marginal PMF for X is

$$f_X(x) = \operatorname{Prob}(X = x) = \sum_{y} f(x, y)$$

The **marginal PMF** for Y is

$$f_Y(y) = \operatorname{Prob}(Y = y) = \sum_x f(x, y)$$

The marginal distribution is the same as univariate distribution as if we ignored the other variable

- Example: X = dose and Y = tumor status
- Find the marginal PMFs of X and Y

See "dose marginal" in the online derivations

▶ The Conditional PMF of Y given X is

$$f(y|x) = \operatorname{Prob}(Y = y|X = x) = \frac{\operatorname{Prob}(X = x, Y = y)}{\operatorname{Prob}(X = x)} = \frac{\widetilde{f}(x, y)}{f_X(x)}.$$

- ► Here x is treated as a fixed number, and so f(y, x) is only a function of y.
- ► However, we can't use f(x, y) as the PMF for Y because SUMS

$$\sum_{y} f(x,y) = f_X(x) \neq 1$$

▶ Dividing by $f_X(x)$ makes f(y|x) valid

$$\sum_{y} f(y|x) = \sum_{y} \frac{f(y,x)}{f_X(x)} = \frac{\sum_{y} f(y,x)}{f_X(x)} = \frac{f_X(x)}{f_X(x)} = 1$$

- Example: X = dose and Y = tumor status
- Find the f(x|y) and f(y|x) $f(x=5|y=1) = \frac{f(5,1)}{f(1)} = \frac{0.23}{6.358}$ = 6.645

See "dose conditional" in the online derivations

Monte Hall problem

- http:
 //en.wikipedia.org/wiki/Monty_Hall_problem
- Suppose you're on a game show, and you're given the choice of three doors.
- Behind one door is a car; behind the others, goats.
- You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat.
- He then says to you, "Do you want to pick door No. 2?"
- Is it to your advantage to switch your choice?

X and Y are independent if

$$f(x,y)=f_X(x)f_Y(y)$$

for all x and y

- Variables are dependent if they are not independent
- Equivalently, X and Y are independent if

$$f(x|y) = f_X(x)$$

for all x and y

Prove these two definitions are equivalent

Notation: $X_1, ..., X_n \stackrel{iid}{\sim} f(x)$ means that $X_1, ..., X_n$ are independent and identically distributed

This implies the joint PMF is

Prob
$$(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n f(x_i)$$

► The same notation and definitions of independence apply to continuous random variables

Hurricane proportions by landfall (X) and category (Y)

Problem: Prove X and Y are dependent

- Manipulating joint PDFs is similar to joint PMFs but sums are replaced by integrals
- ▶ The joint PDF is denoted f(x, y)
- Probabilities are computed as volume under the PDF:

- Example: X=birthweight, Y=gestational age

If (X,Y,Z) are 3 variables, -{xQ}=((f(x)//2)dydz ► The Marginal PDF of X is

$$f_X(x) = \int f(x,y) dy$$

- f_X is the univariate PDF for X as if we never considered Y
- Find: $f_X(x)$ for the birthweight example - fx(x) = f f(x) dy fx(x) = f f x) dy = 150,26 e dy Sèe "BW marginal" in the online derivations

► The Conditional PDF of Y given X is

$$f(y|x) = \frac{f(x,y)}{f_X(x)}$$

- ► Proper: $\int f(y|x)dy = \int \frac{f(x,y)}{f_X(x)}dy = \frac{\int f(x,y)dy}{f_X(x)} = 1$
- Find: f(y|x) for the birthweight example

See "BW conditional" in the online derivations

Bivariate normal distribution

- The bivariate normal distribution is the most common multivariate family
- ► There are 5 parameters:
 - ▶ The marginal means of X and Y are μ_X and μ_Y
 - ▶ The marginal variances of X and Y are $\sigma_X^2 > 0$ and $\sigma_Y^2 > 0$
 - ▶ The correlation between X and Y is $\rho \in (-1, 1)$
- ▶ The joint PDF is f(x, y) =

$$\frac{1}{2\pi\sigma_{X}\sigma_{Y}\sqrt{1-\rho^{2}}}\exp\left\{-\frac{\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}-2\rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)}{2(1-\rho^{2})}\right\}$$

ľ

Bivariate normal distribution

Assume $\mu_X = \mu_Y = 0$ and $\sigma_X = \sigma_Y = 1$, find the marginal distribution of X.

See "MVN marginal" in the online derivations

Bivariate normal distribution

Assume $\mu_X = \mu_Y = 0$ and $\sigma_X = \sigma_Y = 1$, find the conditional distribution of Y given X.

See "MVN conditional" in the online derivations

Defining joint distributions conditionally

- Specifying joint distributions is hard
- Every joint distribution can be written

$$f(y|x)$$

$$f(y|x)$$

$$f(y|x)$$

$$f(x,y)$$

$$f(x,y) = f(y|x)f(x)$$

- Therefore, any joint distribution can be defined by

 - 2. The conditional distribution of Y|X
- The joint problem reduces to two univariate problems
- This idea forms the basis of hierarchical modeling

Defining joint distributions conditionally

- Let Y be the number of robins in the forest
- Let X be the number of robins we observe $\{0, \dots, Y\}$

ى

- Model Prob(Y = y) = 1/20 for $y \in \{0, ..., 19\}$ and $X|Y \sim \text{Binomial}(Y, 0.2)$
- What is the support of (X, Y)?
- What is Prob(X = 1, Y = 10)?
- ▶ What is Prob(X = 0)?

Bayes' theorem

- ▶ In Bayesian statistics, we select the prior, $p(\theta)$, and the likelihood, $p(y|\theta)$
- ▶ Based on these two pieces of information, we must compute the posterior $p(\theta|y)$
- Bayes' theorem is the mathematical formula to convert the likelihood and prior to the posterior
- Bayes theorem:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

► This holds for discrete (PMF) and continuous (PDF) cases

Bayes' theorem

Bayes theorem in math:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

Bayes theorem in words:

$$p(\theta|y) = \frac{\text{Likelihood} * \text{Prior}}{\text{marginal distribution of Y}}$$

- ▶ As in the formula for a conditional distribution, p(y) is just the normalizing constant required so that $\int p(\theta|y)d\theta = 1$
- Most of the time p(y) can be ignored because it doesn't depend on θ and the objective is to study the posterior of θ

Derivation of Bayes' theorem

$$P(Q|Y) = \beta(Q, Y)$$

$$P(Y|Q) = \beta(Q|Y) P(Y)$$

$$= P(Y|Q|X|Q)$$

$$= P(Y|Q|X|Q)$$

Football example D(witt=0)= 0.4

A team plays half its games at home, wins 70% of its home games, and 40% of its road games. Given that the team wins a game, what's the probability it was a home game?

$$W = \begin{cases} 1 & win \\ 0 & lose \end{cases} \qquad H = \begin{cases} 1 & home \\ 0 & rock \end{cases}$$

$$P(H=||w=1) = P(w=||H=1)P(H=1) p(w=1)$$

$$= 0.7 \cdot 0.5 / p(w=1)$$

$$= 0.7 \cdot 5 = \frac{7}{11} > 0.5$$

$$\rho(\omega=1) = \rho(\omega=1, \psi) = \rho(\omega=1,$$

HIV example

Let θ be the parameter of interest with

$$\theta = \left\{ \begin{array}{ll} \mathbf{0} & \text{patient does not have HIV} \\ \mathbf{1} & \text{patient has HIV} \end{array} \right.$$

▶ The data is Y, defined as

$$Y = \begin{cases} 0 & \text{test is negative} \\ 1 & \text{test is positive} \end{cases}$$

- Objective: Derive the probability that the patient has HIV given the test results
- ▶ That is, we want $p(\theta|y)$

HIV example - Likelihood

- The likelihood describes the distribution of the data as if we knew the parameters
- This is a statistical model for the data
- ► Since Y is binary, we use a Bernoulli PMF for the likelihood
- ▶ We must specify the likelihood for both $\theta = 0$ and $\theta = 1$
- ▶ Prob($Y = 1 | \theta = 0$) = q_0 is the false positive rate
- ▶ Prob($Y = 1 | \theta = 1$) = q_1 is the true positive rate
- ▶ How might we select q_0 and q_1 ?

HIV example - Prior

The prior represents our uncertainty about the parameters before we observe the data

• Since θ is binary, we use a Bernoulli PMF for the prior

▶ $Prob(\theta = 1) = p$ is the population prevalence of HIV

How might we select p?

HIV example - Posterior

- Derive the posterior probability that the patient has HIV given a positive test
- ▶ That is $Prob(\theta = 1|Y = 1)$

► See "HIV" in the online derivations

HIV example - Posterior

- Derive the posterior probability that the patient has HIV given a negative test
- ▶ That is $Prob(\theta = 1|Y = 0)$

► See "HIV" in the online derivations

Robins example

- Let Y be the number of robins in the forest
- ▶ Let *X* be the number of robins we observe
- ▶ Model Prob(Y = y) = 1/20 for $y \in \{0, ..., 19\}$ and $X|Y \sim \text{Binomial}(Y, 0.2)$
- Given that we do not observe any birds, what is the probability that no birds are in the forest?
- Intuitively, how would this change if Y could be as large as 100?
- Intuitively, how would this change if the detection probability increased from 0.2 to 0.9?

