Biochemie 1

Les 3

25 september: aminozuurtoets

Indeling staat op Blackboard in het mapje 'informatie over de aminozuurtoets'.

Sta je niet in de lijst? Neem dan zo snel mogelijk contact met mij op (j.de.keyzer@pl.hanze.nl)

Aminozuren zijn zwitterionen

Figure 3.2

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Lading van de zijketen is Ph afhankelijk

- 7 van de 20 aminozuren zijn ioniseerbaar: ze kunnen protonen opnemen of afstaan en hun lading is afhankelijk van de pH
- Belangrijk in structuurvorming van eiwitten (ionbruggen) en bij enzymreacties
- Zuur-base katalyse

Zuur-base aminozuren

Table 3.1 Typical pK values of ionizable groups in proteins

Group	Acid	Base	Typical pK_a
Terminal α-carboxyl group	, c 0, H		3.1
Aspartic acid Glutamic acid	_c_0_H		4.1
Histidine	H-N-H	\longrightarrow $\sqrt{N_N}$	6.0
Terminal α-amino group	-\rangle H -\rangle H H	— −N ^H	8.0

Note: Values of pK depend on temperature, ionic strength, and the microenvironment of the ionizable group.

Biochemistry: A Short Course, Third Edition © 2015 Macmillan Education

Table 2.1 Typical n/ values of ionizable groups in proteins

The second secon	(a values of ionizable gro		
Group	Acid	Base	Typical pK _a
Cysteine	_s ^{∕H}	≐ -s -	8.3
Tyrosine	~	= -{	10.9
Lysine	-N	→ -N, H	10.8
Arginine	H + N~H N==C	⇒ H N N N N N N N N N N N N N N N N N N	12.5

Note: Values of pK₂ depend on temperature, ionic strength, and the microenvironment of the ionizable group.

Table 3.1 part 2

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Henderson-Hasselbalch vergelijking

$$pH = pK_a + log \frac{[A^-]}{[HA]}$$

pK_a is de pH waarbij de helft van het zuur gedissocieerd is

$$pH > pKa \rightarrow [A-] > [HA]$$

$$pH < pKa \rightarrow [A-] < [HA]$$

pK _a Values o	of Common Amino Acid	s	
Acid	lpha-COOH	$lpha$ -NH $_{ extsf{3}}^{+}$	RH or RH ⁺
Gly	2.34	9.60	
Ala	2.34	9.69	
Val	2.32	9.62	
Leu	2.36	9.68	
Ile	2.36	9.68	p K_a van COOF p K_a van NH ₃ +
Ser	2.21	9.15	-
Thr	2.63	10.43	pK_a van NH_3^+
Met	2.28	9.21	- u
Phe	1.83	9.13	
Trp	2.38	9.39	
Asn	2.02	8.80	
Gln	2.17	9.13	
Pro	1.99	10.6	
Asp	2.09	9.82	3.86*
Glu	2.19	9.67	4.25*
His	1.82	9.17	6.0*
Cys	1.71	10.78	8.33*
Tyr	2.20	9.11	10.07
Lys	2.18	8.95	10.53
Arg	2.17	9.04	12.48

Oefening

Teken:

- a) valine bij pH = 4
- b) leucine bij pH = 7
- c) glycine bij pH = 10

pK _a Values of	f Common Amino Acid	ds	
Acid	lpha-COOH	$lpha$ -NH $_{_3}^{^+}$	RH or RH ⁺
Gly	2.34	9.60	
Ala	2.34	9.69	
Val	2.32	9.62	
Leu	2.36	9.68	
Ile	2.36	9.68	
Ser	2.21	9.15	
Thr	2.63	10.43	
Met	2.28	9.21	
Phe	1.83	9.13	
Trp	2.38	9.39	
Asn	2.02	8.80	
Gln	2.17	9.13	
Pro	1.99	10.6	
Asp	2.09	9.82	3.86*
Glu	2.19	9.67	4.25*
His	1.82	9.17	6.0*
Cys	1.71	10.78	8.33*
Tyr	2.20	9.11	10.07
Lys	2.18	8.95	10.53
Arg	2.17	9.04	12.48

^{*} For these amino acids, the R-group ionization occurs before the α -NH₃⁺ ionization

$$COO$$
HSN+-C-H

CHS CHS

pK_a van COOH ~ 2 pK_a van $NH_3^+ \sim 9$

 $pH > pKa \rightarrow [A-] > [HA]$

 $pH < pKa \rightarrow [A-] < [HA]$

Oefening

TABLE 3.2

pK _a Values of Common Amino Acids			
Acid	lpha-COOH	$lpha$ -NH $_{\scriptscriptstyle 3}^{+}$	RH or RH⁺
Gly	2.34	9.60	
Ala	2.34	9.69	
Val	2.32	9.62	
Leu	2.36	9.68	
Ile	2.36	9.68	
Ser	2.21	9.15	
Thr	2.63	10.43	
Met	2.28	9.21	
Phe	1.83	9.13	
Trp	2.38	9.39	
Asn	2.02	8.80	
Gln	2.17	9.13	
Pro	1.99	10.6	
Asp	2.09	9.82	3.86*
Glu	2.19	9.67	4.25*
His	1.82	9.17	6.0*
Cys	1.71	10.78	8.33*
Tyr	2.20	9.11	10.07
Lys	2.18	8.95	10.53
Arg	2.17	9.04	12.48

Teken:

- a) aspartaat bij pH = 1
- b) lysine bij pH = 1

^{*} For these amino acids, the R-group ionization occurs before the α -NH $_3^+$ ionization

$$pK_a$$
 van COOH ~ 2
 pK_a van NH_3^+ ~ 9

$$pH < pKa \rightarrow [A-] < [HA]$$

Isoelectrisch punt (pI)

De pH waarbij een molecuul geen netto lading heeft.

$$pI = \frac{pK_{a1} + pK_{a2}}{2}$$

Voorbeeld: glycine

pK _a Values of Common Amino Acids		
Acid	lpha-COOH	$lpha$ -NH $_{3}^{+}$
Gly	2.34	9.60

$$pI = \frac{pKa_1 + pKa_2}{2} = 5.97$$

Isoelectrisch punt (pI)

Sommige aminozuren hebben drie pKa's. Hoe bereken je dan de pI?

Voorbeeld: aspartaat

pK _a Values of Common Amino Acids			
Acid	α-СООН	$lpha$ -NH $_3^+$	RH or RH⁺
Asp	2.09	9.82	3.86*

Zuur medium

(lage pH)

Neutrale vorm

______(hoge pH)

Basisch medium

$$pI = \frac{pKa_1 + pKa_3}{2} = 2.98$$

Histidine

pK _a Values of	of Common Amino Acid	s	
Acid	lpha-COOH	$lpha$ -NH $_3^+$	RH or RH ⁺
His	1.82	9.17	6.0*

Zuur medium (lage pH)

Neutrale vorm

Basisch medium (hoge pH)

$$pI = \frac{pKa_2 + pKa_3}{2} = 7.59$$

Oefening

Bereken de pl van arginine (pKa zijketen = 12,5)

pK _a Values of Common Amino Acids			
Acid	lpha-COOH	$lpha$ -NH $_{_3}{}^+$	RH or RH⁺
Gly	2.34	9.60	
Ala	2.34	9.69	
Val	2.32	9.62	
Leu	2.36	9.68	
Ile	2.36	9.68	
Ser	2.21	9.15	
Thr	2.63	10.43	
Met	2.28	9.21	
Phe	1.83	9.13	
Trp	2.38	9.39	
Asn	2.02	8.80	
Gln	2.17	9.13	
Pro	1.99	10.6	
Asp	2.09	9.82	3.86*
Glu	2.19	9.67	4.25*
His	1.82	9.17	6.0*
Cys	1.71	10.78	8.33*
Tyr	2.20	9.11	10.07
Lys	2.18	8.95	10.53
Arg	2.17	9.04	12.48

Structurele kenmerken van aminozuren

De in de natuur meest voorkomende vorm is de L-vorm

2. Met uitzondering van proline is de α -amino groep van een aminozuur primair. Bij proline is deze groep secundair.

Primary (1°) amine	Secondary (2°) amine	Tertiary (3°) amine
, N	NH	
R1 \ ''	R ¹ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Structurele kenmerken van aminozuren

- 3. Met uitzondering van glycine, is de α -carbon van elke aminozuur een chiraal koolstofatoom
- 4. Isoleucine en threonine bevatten een tweede chiraal centrum

Ile Thr

Structurele kenmerken van aminozuren

5. De sulfhydryl groep (p K_a 8.3) van cysteine, the imidazole groep (p K_a 6.0) van histidine and de phenolic hydroxyl (p K_a 10.1) van tyrosine zijn deels geïnonizeerd bij pH 7.0, maar de geïoniseerde vorm is niet de meest voorkomende vorm bij deze pH (Henderson-Hasselbalch!)

6. Gemodificeerde aminozuren:

- hydroxyproline en hydroxylysine (collageen)
- thyroxine (hormoon)

Peptidebinding

→ Binding van de C van de carboxyl groep van het 1^{ste} aminozuur met de N van de amino groep van het 2^{de} aminozuur

© 2014 Pearson Education, Inc.

Peptiden hebben richting

Notatie

Peptiden worden altijd vanaf de linkerkant getekend, beginnend met de vrije -NH₃⁺ groep en eindigend met de vrije -COO⁻ group

Het zich herhalende patroon (started bij de de N-terminale methionine) is: N $\rightarrow \alpha$ -carbon \rightarrow carbonyl carbon etc.

Polypeptideketen

Repeterende gedeelte → backbone (main chain)

The peptide bond is essentially planar

Elke binding geeft een "plat" vlak

The peptide bond has a double bond character

- · Binding is vlak, mede door "dubbele" binding
- Elektronen resoneren van C=O naar C=N
- Hierdoor draait C-N binding niet

Peptide-bond resonance structures

Cis- en transpeptiden

• De meeste peptidebindingen zijn trans: de 2 C α atomen aan weerszijden van de peptidebinding

steric clash

Torsie hoeken *phi* en *psi*

De twee andere bindingen in backbone kunnen wel vrij draaien.

- N-C α = phi ϕ
- $CO-C\alpha = psi \psi$
- Dihedrale hoeken

(A) $\begin{array}{c|ccccc}
H & R & H & O & H & R \\
\hline
N & C & O & V & C & V & C & C \\
N & O & H & R & H & O
\end{array}$

View down the N–C_n bond

View down

the CO-C_o bond

Combinaties van dihedrale hoeken zijn beperkt

- Niet alle combinaties van phi en psi zijn mogelijk
- Ramachandran plot
- Combinaties buiten de groene vlekken komen niet (of zelden) voor in eiwitten en kunnen duiden op sterische hindering

Uitleg Ramachandran plot

Op basis van de plaatjes in het boek is het misschien lastig om je voor te stellen wat er precies met dihedrale hoeken bedoeld wordt.

Deze video legt op een rustige en duidelijke manier uit wat phi en psi hoeken zijn en hoe je een Ramachandran plot moet interpreteren.

https://www.youtube.com/watch?v=Q1ftYq13XKk

Nog een video: https://www.youtube.com/watch?v=Kewhg5spUjs