19AIE303 - Signal and Image Processing

Assignment 4

- Q1. Estimate the transformation function required for transforming the image 'inputq1.jpeg' to match the image 'transformed.jpeg'.
 - a) Plot/Draw the transformation function
 - b) Apply the transformation function and store the resulting image as 'outputq1.jpeg'
- Q2. Consider the input image: 'logndlinear.jpg'
 - a) The general form of the log transformation is s = c log(1 + r). Apply this transformation to the input image such that
 C = 255/(log (1 + m)), where m is the maximum pixel value in the image Store the result as 'logq2.jpg'
 - b) Apply the following transformation function to the input image

Set the values of r1, s1, r2 and s2 as:

$$r1 = 70$$

$$s1 = 0$$

$$r2 = 140$$

$$s2 = 255$$

Q3. Suppose that a 3-bit image (L = 8) of size 64 x 64 pixels (MN = 4096) has the following intensity distribution. Compute the intensity probabilities in the equalised histogram.

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

- Q4. Consider the input image: 'lowContrast.png'
 - a) Plot its histogram and save the plot
 - b) Perform histogram equalisation and save the equalised image
 - c) Plot the equalised histogram and save the plot
- Q5. Blur the input image 'building.png' to three very distinct levels to result in images that look like images 'blurred_1.jpg', 'blurred_2.jpg' and 'blurred_3.jpg'.
- Q6. Estimate the shading pattern in the image 'ChessBoardGrad.png'. Store the estimate of shading error as 'shading.png' and use this for shading correction. Store the corrected image as 'corrected.png'
- Q7. Consider the input image: 1200px-Monarch_In_May.jpg. Convert this image to grayscale and apply the following transformations:
 - a) Laplacian
 - b) Laplacian of Gaussian (gaussian filter of size 3x3)

Save and compare the resulting images. Comment on the differences

Q8. Consider the input image: 'ChessBoardGrad.png'.

Apply the following to the image:

- a) Laplacian kernel
- b) Sobel kernel in x direction
- c) Sobel kernel in y direction
- d) Canny edge detection

Save and compare the resulting images. Comment on the differences

Q9. Compute the convolution of image I with the Laplacian kernel. Use border values to extend the image

	0	0	0	0	10
	0	0	0	10	10
	0	0	10	10	10
	0	10	10	10	10
y	10	10	10	10	10
,	Х		I		

Apply both these kernels:

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

What to submit:

- 1. **A single python file** containing **code and comments** for all the questions. Demarcate both questions using comments
- 2. **Output images and snapshot for Q3 and 9 answers** pasted in a document (word or pdf)

Pls avoid submitting .zip, .tar.gz formats etc