PATENT ABSTRACTS OF JAPAN

1

(11)Publication number:

11-112434

(43) Date of publication of application: 23.04.1999

(51)Int.Cl.

H04B 10/17 H04B 10/16 H01S 3/10

(21)Application number: 09-268431

(71)Applicant: NIPPON TELEGR & TELEPH CORP

<NTT>

(22)Date of filing:

01.10.1997

(72)Inventor: SAKAMOTO TADASHI

FUKUTOKU KOUSHI

(54) OPTICAL FIBER AMPLIFIER

(57) Abstract:

PROBLEM TO BE SOLVED: To precisely execute gain fixing control by making a value, which is shown by a specific formula including a constant value corresponding to a naturally emitted light (ASE) power a light amplifier part generates at the time of operating, the detection gain of the light amplifier part. SOLUTION: An optical detector 3-1 detects an input signal optical power Pin and an optical detector 3-2 detects an output signal optical power Pout. The light amplifier 1A is provided with a rare earth added fiber 11 and an exciting light source 12 executing front excitation. A gain detecting part 4A inputs the input signal optical power Pin, the output signal optical power Pout and an ASE power PASE to make (Pout-PASE)/Pin a gain A. PASE is made a fixed constant and this value is set by an electrical circuit. An error signal extracting part 5 extracts the error signal of the gain A and a gain control part 6A varies exciting light power outputted from the light source 12 so as to make the error signal zero.

LEGAL STATUS

[Date of request for examination]

24.04.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3527627

[Date of registration]

27.02.2004

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

㈱エムテック関東

T

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-112434

(43)公開日 平成11年(1999) 4月23日

51) Int. Cl. ⁶	識別記号	FI
H04B 10/17		H04B 9/00 J
10/16		H01S 3/10 Z
H01S 3/10		·
· 		審査請求 未請求 請求項の数8 OL (全14頁)
21)出願番号	特願平9-268431	(71)出願人 000004226
		日本電信電話株式会社

(72)発明者 福徳 光師

(72)発明者

東京都新宿区西新宿三丁目19番2号 日本

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

電信電話株式会社内

(74)代理人 弁理士 古谷 史旺

阪本 囯

(54)【発明の名称】光ファイバ増幅器

(57)【要約】

【課題】 簡単な制御によりASEの影響を取り除き、 精度よく利得一定制御を行う。

【解決手段】 希土類添加ファイバに対して前方励起とし、入力信号光パワーPinおよび出力信号光パワーPout から利得を検出する際に、希土類添加ファイバで発生する自然放出光パワーに対応する定数値 ($\neq 0$) としてPase を入力し、(Pout-Pase)/Pinを利得とし、この利得が一定になるように前方励起光パワーを制御する。

本発明の光ファイバ増幅器の第1の実施形態

【特許請求の範囲】

【請求項1】 増幅媒体として用いる希土類添加ファイバと、この希土類添加ファイバの入力端から前方励起光を入力する励起手段を含む光増幅部と、

前記光増幅部の入力信号光パワーPinおよび出力信号光パワーPout を検出する光検出手段と、

前記光検出手段の検出値から前記光増幅部における利得 を検出する利得検出部と、

前記利得検出部で検出された利得と予め設定した所定の 利得との誤差信号を抽出する誤差信号抽出部と、

前記誤差信号に応じて前記前方励起光パワーを変動させ、前記光増幅部における利得が一定になるように制御する利得制御部とを備えた光ファイバ増幅器において、前記利得検出部は、あらかじめ設定した所定の利得で前記光増幅部が動作時に発生する自然放出光パワーに対応する定数値(≠0)としてPaseを入力し、(Pout-Pase)/Pinを前記光増幅部の検出利得として前記誤差信号抽出部に出力する構成であることを特徴とする光ファイバ増幅器。

【請求項2】 増幅媒体として用いる希土類添加ファイバと、この希土類添加ファイバの入力端と出力端の双方から前方励起光および後方励起光を入力する励起手段を含む光増幅部と、

前記光増幅部の入力信号光パワーPinおよび出力信号光パワーPout を検出する光検出手段と、

前記光検出手段の検出値から前記光増幅部における利得を検出する利得検出部と、

前記利得検出部で検出された利得と予め設定した所定の 利得との誤差信号を抽出する誤差信号抽出部と、

前記誤差信号に応じて前記前方励起光パワーPf および 前記後方励起光パワーPb を変動させ、前記光増幅部に おける利得が一定になるように制御する利得制御部とを 備えた光ファイバ増幅器において、

前記利得検出部は、あらかじめ設定した所定の利得で前記光増幅部が動作時に発生する自然放出光パワーに対応する定数値(≠0)としてP_{ASE}を入力し、(Pout-P_{ASE})/Pinを前記光増幅部の検出利得として前記誤差信号抽出部に出力する構成であり、

前記利得制御部は、常にPf > Pb となるように前記励 起手段を制御する構成であることを特徴とする光ファイ 40 パ増幅器。

【請求項3】 請求項2に記載の光ファイバ増幅器において、

利得制御部は、入力信号光パワーの変動に対する前方励起光パワー変動 Δ Pf と後方励起光パワー変動 Δ Pb が、常に $|\Delta$ Pf $|<|\Delta$ Pb | となるように励起手段を制御する構成であることを特徴とする光ファイバ増幅器。

【請求項4】 請求項3に記載の光ファイバ増幅器において、

利得制御部は、ΔPf = 0とすることを特徴とする光ファイバ増幅器。

【請求項5】 請求項3に記載の光ファイバ増幅器において、

利得制御部は、 $| \Delta Pf | = \alpha | \Delta Pb |$ (ただし、 α < 1) となるように励起手段を制御する構成であることを特徴とする光ファイバ増幅器。

【請求項6】 請求項2に記載の光ファイバ増幅器において

10 利得制御部は、入力信号光パワーの変動に対して、後方励起光パワーPb が 0 を含む所定の最小値でなければ前方励起光パワーPf を所定値に固定した上で後方励起光パワーPb を制御し、後方励起光パワーPb が 0 を含む所定の最小値になった場合に後方励起光パワーPb を固定した上で前方励起光パワーPf を制御する構成であることを特徴とする光ファイバ増幅器。

【請求項7】 請求項1または請求項2に記載の複数の 光増幅部と、損失が変動しない少なくとも1つの光部品 とを縦続に接続した光ファイバ増幅器において、

) 前記複数の光増幅部全体の入力信号光パワー Pinおよび 出力信号光パワー Pout を検出する光検出手段と、

前記光検出手段の検出値と、あらかじめ設定した所定の 利得で前記各光増幅部が動作時に発生する自然放出光パワーに対応する定数値(≠0)としてPass を入力し、

(Pout-Pase) / Pinを前記複数の光増幅部全体における検出利得として出力する利得検出部と、

前記利得検出部で検出された利得と予め設定した所定の利得との誤差信号を抽出する誤差信号抽出部と、

前記誤差信号に応じて、前記各光増幅部の前記前方励起 光パワーPf および前記後方励起光パワーPb を請求項 2から請求項6のいずれかに記載の制御法に基づいて変 動させ、前記複数の光増幅部全体の利得が一定になるよ うに制御する利得制御部とを備えたことを特徴とする光 ファイバ増幅器。

【請求項8】 請求項1,2,7のいずれかに記載の光ファイバ増幅器において、

利得検出部は、光検出手段で検出される入力信号光パワーPinおよび出力信号光パワーPout を電気信号として入力し、所定の自然放出光パワーPass に対応する固定の回路定数が設定された電気回路により構成されたことを特徴とする光ファイバ増幅器。

【発明の詳細な説明】

[0001]

(発明の属する技術分野) 本発明は、光ファイバ通信システムにおいて線形中継器として用いられる光ファイバ 増幅器に関する。

[0002]

【従来の技術】 光ファイバ通信システムでは、適当な伝送距離ごとに線形中継器として光ファイバ増幅器を挿入し、光ファイバ中を伝送して減衰した光信号を増幅する

10

ことにより、長距離の伝送を可能にしている。誘導放出を利用した光ファイバ増幅器は、増幅帯域内で波長の異なる複数の信号光を同時一括増幅できることから、これを用いた波長多重光伝送方式(WDM伝送方式)が近年盛んに開発、研究されている。また、複数の信号の異なる周波数を経路識別に用いる光波ネットワーク(WDM伝達方式)も盛んに研究されている。

【0003】一般にエルビウム・イオン(Er'')のような3準位レーザ遷移を用いた光ファイバ増幅器は、入力信号光強度によって利得スペクトルが変化する。WDM伝送・伝達システムのように複数の周波数の異なる信号を増幅する場合には、ある入力信号光強度に対して利得が平坦になるように最適化しても、入力信号光強度が変化すると利得偏差が生じ、その結果、各信号光の出力強度がばらつくことになる。

【0004】このチャンネル間のばらつきは、光ファイバ増幅器間の伝送可能スパンを縮める結果となる。一般に、光ファイバ通信における光ファイバ伝送路への入力信号光強度は、四光波混合、相互位相変調、自己位相変調、誘導ブリリアン散乱、チャンネル間ラマンクロスト 20一クなどの非線形現象による信号劣化が起こらないように上限が設定される。また伝送距離は、各光ファイバ増幅器への信号光が小さくなって信号/雑音比(SN比)が悪くならないように設定される。

【0005】ここで、チャンネル間強度にばらつきがある場合には、光ファイバ伝送路への入力信号光強度は1番強度の強い信号光が入力上限を越えないように決定され、光ファイバ増幅器入力は、最小強度のチャンネルが光ファイバ増幅器入力の下限を下回らないように設定される。伝送可能スパンは、光ファイバ伝送路入力強度/光ファイバ増幅器入力強度で決定されるが、上記のように信号光強度を設定する場合、最大チャンネルと最小チャンネルの出力強度偏差分だけ、伝送可能スパンが縮まることになる。たとえば、最大チャンネルと最小チャンネルの出力偏差が10dBある場合には、伝送可能スパンが10dB分(約40km)短くなることになる。そのため入力信号光強度の変化を原因とする利得偏差は、極力抑える必要がある。

【0006】これを抑える方法として、光ファイバ増幅器の利得を一定に制御する方法がある。利得を一定に制御することにより、入力強度の変動に対しても、チャンネル間の出力偏差を一定とすることができる。利得一定制御の方法としては、(1)任意の1チャンネルを光フィルタで切り出し、入力と出力の強度比をモニタして励起源(励起光強度、半導体レーザ用バイアス電流など)にフィードバックする方法、(2)全チャンネルの入力と出力の強度比をモニタして、励起源にフィードバックする方法、(3)増幅媒体内でレーザ発振をおこしたり、制御用の信号光源を用いて入力総強度を一定に保つなどにより光学的に利得を一定にする方法、などが一般的であ50

る。この中では、制御の簡便さおよびコストの面などから(1)や(2)の方法が有利である。しかし(1) については、WDM伝達ネットワークのように、光ファイバ増幅器に入力される信号波長が任意に変動する可能性があるネットワークでは、特定の一波をモニタすることは困難である。したがって、WDM伝達ネットワークへも適用できるという点で、上記手法の中で(2) の適用範囲が最も広く、利得一定制御を精度よく行うことができる。本発明は(2) の方法に対して適用されるものである。

【0007】図8は、(2)の方法に対応する従来の光ファイバ増幅器の構成を示す。図において、入力信号光は光分岐器2-1でその一部が分岐されて光検出器3-1に入力され、入力信号光強度Pinが検出される。一方、入力信号光は光ファイバ増幅器1を介して増幅される。その出力信号光は光分岐器2-2でその一部が分岐されて光検出器3-2に入力され、出力信号光強度Poutが検出される。光ファイバ増幅器1は、希土類添加ファイバ11と、前方励起を行う励起光源12-1と、後方励起を行う励起光源12-1と、後方励起を行う励起光源12-1と、後方励起を行う励起光源12-2と、励起光を希土類添加ファイバ11に入力するWDMカプラ13-1、13-2と、入出力端に配置される光アイソレータ14-1、14-2とにより構成される。

【0008】利得検出部4は、入力信号光強度Pinと出力信号光強度Poutの比Pout/Pinを利得Aとしてモニタする。誤差信号抽出部5は、所定値に対する利得Aの誤差信号を抽出し、利得制御部6はその誤差信号が0になるように励起光源12-1,12-2から出力される励起光強度を制御する。

[0009]

発明が解決しようとする課題」ところで、図8に示す 従来の光ファイバ増幅器における利得一定制御では、入 力信号光強度Pinと出力信号光強度Pout の比Pout / Pin (利得A)をモニタし、それが一定となるように制 御する。しかし、誘導放出を利用する光ファイバ増幅器 の出力光には、増幅された信号光に、必ず増幅された自 然放出光 (ASE: Amplified Spontaneous Emission) が加わる。このとき、図8のような制御を行うと、Pout tには出力信号光強度とASEが加わったものとなるの で、Pout/Pinは正確な信号利得ではなくなり、Pout /Pinを一定に制御しても正確な利得一定制御を行う ことができない。入力信号光強度が小さく、出力光強度 にしめるASEの割合が大きい場合ほど、その制御の誤 差は大きくなる。

【0010】そこでASEの影響を除く必要があるが、一般にASEパワーは利得と1:1には対応しない。そこで、ASE強度をモニタし、Pout から引算してその影響を取り除く必要があるが、その制御は煩雑なものとなる。

【0011】本発明は、簡単な制御によりASEの影響を取り除き、精度よく利得一定制御を行うことができる

10

光ファイバ増幅器を提供することを目的とする。 【0012】

課題を解決するための手段。本発明の光ファイバ増幅器は、希土類添加ファイバに対して前方励起とする。そして、入力信号光パワーPinおよび出力信号光パワーPoutから利得を検出する際に、希土類添加ファイバで発生する自然放出光パワーに対応する定数値(≠0)としてPaseを入力し、(Pout-Pase)/Pinを利得とし、この利得が一定になるように前方励起光パワーを制御する(請求項1)。

【0013】また、本発明の光ファイバ増幅器は、希土類添加ファイバに対して前方励起および後方励起とする。そして、入力信号光パワーPinおよび出力信号光パワーPout から利得を検出する際に、同様に(PoutーPase)/Pinを利得とし、この利得が一定になるように前方励起光パワーPf および後方励起光パワーPb を制御する。ただし、常にPf > Pb となるように制御する(請求項2)。

【0014】また、常にPf > Pb になるように制御する際に、入力信号光パワーの変動に対する前方励起光パ 20 ワー変動 Δ Pf と後方励起光パワー変動 Δ Pb が、常に Δ Pf Δ Pb Δ Pb Δ Pb Δ Pb Δ Pb Δ Pb Δ Pf Δ Pb Δ Pb Δ Pf Δ Pb Δ Pf Δ Pb Δ Pf Δ Pf Δ Pf Δ Pb Δ Pb Δ Pf Δ Pf Δ Pb Δ Pb Δ Pf Δ

【0015】また、常にPf > Pb となるように制御する際に、入力信号光パワーの変動に対して、後方励起光パワーPb が0を含む所定の最小値でなければ前方励起光パワーPf を所定値に固定した上で後方励起光パワーPb を制御し、後方励起光パワーPb が0を含む所定の最小値になった場合に後方励起光パワーPb を固定した上で前方励起光パワーPf を制御する(請求項6)。

【0016】また、本発明の光ファイバ増幅器は、複数の光増幅部と、損失が変動しない少なくとも1つの光部品とを縦続に接続した光ファイバ増幅器において、全体の入力信号光パワーPinおよび出力信号光パワーPoutから利得を検出する際に、同様に(Pout-Pase)/Pinを利得とし、この利得が一定になるように各光増幅部の励起光パワーを制御する(請求項7)。

【0017】なお、利得検出部は、入力信号光パワーPinおよび出力信号光パワーPout を電気信号として入力し、所定の自然放出光パワーPass に対応する固定の回路定数が設定された電気回路により構成する(請求項8)。

【0018】このように、本発明の光ファイバ増幅器では、定数として与えられるASEパワーPASE を用いる。ただし、実際にはASEの影響を定数とみなすことはできない。すなわち、ASEと利得の値は必ずしも1対1には対応しない。光ファイバ増幅器の場合には、増幅媒質中の信号光パワーI、とASEパワーIASE の伝 50

搬の式は、

d I./d z = $(\sigma. N_2 - \sigma. N_1)$ I. d I_{ASE}/d z = $(\sigma. N_2 - \sigma. N_1)$ I_{ASE} + h v $\sigma. N_2$

となる。ここで、z は増幅媒体の光の進行方向の位置、N, N, はそれぞれ増幅準位の上準位,下準位の密度、 σ , σ , はそれぞれ信号光およびASE光の波長における増幅媒体の誘導放出断面積と誘導吸収断面積、vと Δ vはそれぞれASEの中心周波数広がりを示す(参考文献:「光増幅器とその応用」石尾、中川、他オーム社、第5章)。

【0019】この式に示すように、I_{ASE} はI_A と同様の増幅を表す式に、自然放出光を示す h ν σ_a N₂ Δ ν の項が加わっている。この式は、I_a の強度(利得)は、上準位密度、下準位密度の増幅媒体中における分布に関わらず、増幅媒体全体の上準位密度、下準位密度の積分値で決定されるのに対し、I_{ASE} は上準位密度、下準位密度の増幅媒体中における分布にも依存することを示している。すなわち、増幅器の利得と、出力ASEパワーは独立に決定されるわけではなく、出力ASEパワーを定数として扱うことはできない。そのため、通常はASEパワーをモニタしてその影響を除くなどの煩雑な制御が必要となる。

【0020】ところが、増幅媒体の信号入力側の励起光パワーを強く保つことにより、利得が一定ならばASEパワーをほぼ定数として扱うことができる。それは、信号入力端近傍の増幅媒質中の利得が高い場合、出力されるASEパワーの大半は、増幅媒体の信号光入力端付近で発生したASEが増幅媒体を通り増幅される成分で占められるためである。

【0021】本発明はこの知見に基づき、0前方励起する(請求項1)、2前方励起光パワーPf を後方励起光パワーPb に比べて極力高く設定する(請求項2)、3Pf>Pb の下で、前方励起光パワー変動 Δ Pf を後方励起光パワー変動 Δ Pf を後方励起光パワー変動 Δ Pb に比べて小さく設定する(請求項 $3\sim5$)、4Pf >Pb の下で、入力が小さくて後方励起パワーを10にしても制御しきれないときに前方励起光パワーにより制御する手順を有する(請求項16)、などの励起光の変動のさせ方を制限する。これにより、18 SEパワーを定数として扱うことが可能となる。

【0022】従来PinとPoutをモニタして利得一定制御をする場合に問題となるASEの影響は、Poutのモニタ値からあらかじめ設定されたPaseを定数として電気回路上で引き算することにより取り除く。すなわち、A= (Pout-Pase)/Pinが一定となるように光増幅部(希土類添加ファイバ)を制御することにより、ASEの影響を排除した良好な利得一定制御が可能となる。また、光ファイバ増幅器を多段接続して、入力信号に累積したASEが含まれるような状況に対してもそのまま適用できる。

[0023]

【発明の実施の形態】

(第1の実施形態:請求項1) 図1は、本発明の第1の 実施形態を示す。本実施形態は、前方励起型の光増幅部 1Aを用いる。

【0024】図において、入力信号光は光分岐器2-1でその一部が分岐されて光検出器3-1に入力され、入力信号光パワーPinが検出される。一方、入力信号光は光増幅部1Aを介して増幅される。その出力信号光は光分岐器2-2でその一部が分岐されて光検出器3-2に 10入力され、出力信号光パワーPoutが検出される。光増幅部1Aは、希土類添加ファイバ11と、前方励起を行う励起光源12と、励起光を希土類添加ファイバ11に入力するWDMカプラ13と、入出力端に配置される光アイソレータ14-1,14-2とにより構成される。

【0025】利得検出部4Aは、入力信号光パワーPinと、出力信号光パワーPoutと、ASEパワーPaseを入力し、(PoutーPase)/Pinを利得Aとしてモニタする。なお、Paseは入力によらず一定の定数とし、この値は電気回路により設定する。誤差信号抽出部5は、所定値に対する利得Aの誤差信号を抽出し、利得制御部6Aはその誤差信号が0になるように励起光源12から出力される励起光パワーを変化させ、利得を制御する。

【0026】このように、前方励起構成をとることにより、希土類添加ファイバ11の信号光入力端近傍で高い励起状態が得られるため、ASEパワー P_{ASE} は利得とほぼ1:1の対応がとれた定数として扱うことができる。そこで、 $(Pout-P_{ASE})$ /Pinを利得検出値とすることにより、モニタする際に誤差要因となるASEの影響を取り除くことができ、良好な利得一定制御が実現30できる。 $(Pout-P_{ASE})$ /Pinの計算は電気回路を用いて実現できるため、時定数1ms以内の高速な制御が可能となる。

【0027】なお、ASEパワーP_{ASE} は初期設定する必要があるが、次のように求めることができる。P_{ASE} は、実際に増幅された自然放出光のパワーを測定しても良いが、次のような手順でフィッティングパラメータとして求めることができる。

【0028】まず、制御ループを閉として制御を行わせる。そして、想定される最大入力信号パワーにおける所 40 望の増幅スペクトルを達成する励起光条件を決定し、その際の信号光利得スペクトル(増幅帯域内の2つ以上の互いに離れた波長における信号利得)を測定する。次に想定される最小入力信号光パワーにおける信号光利得スペクトルが、最大入力信号光パワー時に測定した信号光利得スペクトルに一致するように P_{ASE} の入力値を調整する。 P_{ASE} の最終値が所定の P_{ASE} となる。所定の P_{ASE} は定数として用いることができ、入力変動に対しても良好な利得一定制御が可能となる。なお、ASEパワー P_{ASE} の初期設定については以下に示す実施形態にお 50

いても同様である。

【0029】 (第2の実施形態:請求項2, 3) 図2 は、本発明の第2の実施形態を示す。本実施形態は、前 方励起および後方励起型の光増幅部1Bを用いる。

【0030】図において、入力信号光は光分岐器2-1でその一部が分岐されて光検出器3-1に入力され、入力信号光パワーPinが検出される。一方、入力信号光は光増幅部1Bを介して増幅される。その出力信号光は光分岐器2-2でその一部が分岐されて光検出器3-2に入力され、出力信号光パワーPoutが検出される。光増幅部1Bは、希土類添加ファイバ11と、前方励起を行う励起光源12-1と、後方励起を行う励起光源12-2と、励起光を希土類添加ファイバ11に入力するWDMカプラ13-1、13-2と、入出力端に配置される光アイソレータ14-1、14-2とにより構成される。

【0031】利得検出部4Aは、入力信号光パワーPinと、出力信号光パワーPoutと、ASEパワーPaseを入力し、(PoutーPase)/Pinを利得Aとしてモニタする。なお、Paseは入力によらず一定の定数とし、この値は電気回路により設定する。誤差信号抽出部5は、所定値に対する利得Aの誤差信号を抽出し、利得制御部6Bはその誤差信号が0になるように励起光源12ー1、12-2から出力される励起光パワーを変化させ、利得を制御する。

【0032】本実施形態の特徴は、希土類添加ファイバ11の両端から励起光を入力する場合に、前方励起光および後方励起光の両方のパワーを同時に変化させる。変化方法として、前方励起光パワーPfと後方励起光パワーPbをPf>Pbとし、前方励起光パワーを比較的高くした状態で、前方励起光パワー変動 Δ Pfと後方励起光パワー変動 Δ Pfと後方励起光パワー変動 Δ Pfとなるように制御する。図2(b)には、抽出誤差信号に対する前方励起光および後方励起光のパワー変動の様子を示す。

【0033】このように前方励起光パワーと後方励起光パワーを不均一に変動させ、希土類添加ファイバ11の信号光入力端付近の反転分布を高く保った上で、定数として扱うことができるASEパワーPaseを用いて利得(PoutーPase)/Pinを求めることにより、精度よく利得一定制御が可能となる。また、この励起光の制御法は、雑音指数を増加させないためにも有効である。

【0034】 (第3の実施形態:請求項4) 図3は、本発明の第3の実施形態を示す。本実施形態は、第2の実施形態と同様の前方励起および後方励起型の光増幅部1 Bを用いる。

【0035】本実施形態の特徴は、希土類添加ファイバ 11の両端から励起光を入力する場合に、利得制御部6 Cにおいて前方励起光パワーPfを高く一定に保ったま まとし、後方励起光パワーPbを変化させて利得を制御 する点にある。図3(b)には、抽出誤差信号に対する前

Ser.

方励起光および後方励起光のパワー変動を示す。

【0036】これにより、希土類添加ファイバ11の信号光入力端付近の反転分布は高く保たれ、出力端からのASEは入力端付近で発生したASEが増幅されたものが主に出力されることになる。よって、ASEパワーは利得を強く反映したものとなり、利得一定制御下でPaseを定数とみなすことができる。この結果、(PoutーPase)/Pinという制御により、Paseを定数としても精度よく利得一定制御が可能となる。また、この励起光の制御法は、雑音指数を増加させないためにも有効で10ある。

【0037】 (第4の実施形態: 請求項5) 図4は、本発明の第4の実施形態を示す。本実施形態は、第2の実施形態と同様の前方励起および後方励起型の光増幅部1 Bを用いる。

$$Pf = (Pf_{ain} - Pf_{ain}) \times Pb/Pb_{ain} + Pf_{ain} \qquad (Pf_{ain} > 0)$$
$$= \alpha \times Pb + \beta \quad (\alpha < 1)$$

という関係式に応じて変化させる。図4(b)には、抽出 誤差信号に対する前方励起光および後方励起光のパワー 変動を示す。ここで、Pf....およびPb...をそれぞれ前 20 方励起光と後方励起光の最大励起光パワーとする。この 場合、信号光の入力が許容入力レベルの最小値のとき前 方励起光パワーがPf...となり、後方励起光パワーが 0 となり入力端付近の励起光パワーが高くなっている。また、入力光が変化した場合にも、必ず前方励起光パワー が後方励起光パワーに比べて大きくなる。

【0040】このように、前方励起光および後方励起光の両方のパワーを動かす場合にも、それぞれの動かし方の割合を上記のようにすることにより、希土類添加ファイバ11の信号光入力端付近の反転分布は高く保たれ、(Pout-Pase)/Pinという制御により、精度よく利得一定制御が可能となる。この制御法は、両方の励起光パワーを変動させるため、大きな入力変動に対応できる上、制御も簡便である。また、この励起光の制御法は、雑音指数を増加させないためにも有効である。

【0041】 (第5の実施形態:請求項6) 図5ば、本発明の第5の実施形態を示す。本実施形態は、第2の実施形態と同様の前方励起および後方励起型の光増幅部1 Bを用いる。

【0042】本実施形態の特徴は、利得制御部6Eにお 40 いて、前方励起光パワーPf と後方励起光パワーPb を Pf > Pb とし、希土類添加ファイバ11の両端から励起光を入力する場合に、後方励起光パワーPb が0を含む所定の最小値でなければ、前方励起光パワーPf を固定して後方励起光パワーPb を制御する。後方励起光パワーPb が0を含む所定の最小値になった場合には、前方励起光パワーPf を制御する。すなわち、励起光パワーの変化のさせ方に優先順位をつけるものである。図5(b),(c) には、抽出誤差信号に対する前方励起光および後方励起光のパワー変動を示す。 50

【0038】本実施形態の特徴は、希土類添加ファイバ 11の両端から励起光を入力する場合に、前方励起光お よび後方励起光の両方のパワーを同時に変化させる。変 化方法として、前方励起光パワーPf と後方励起光パワーPb をPf > Pb とし、前方励起光パワーを比較的高くした状態で、前方励起光パワー変動 Δ Pf と後方励起光パワー変動 Δ Pf と後方励起光パワー変動 Δ Pf となるように制御する。ここまでは第2の実施形態と同様であるが、本実 施形態では Δ Pf と Δ Pb の関係について、利得制御部 Δ Dにおいて、

 $| \Delta Pf | = \alpha | \Delta Pb | (ただし、 \alpha < 1)$ となるように制御する。

【0039】たとえば、後方励起光パワーPbを0からPb...まで変化させた場合に、前方励起光パワーPfを

【0043】これにより、希土類添加ファイバ11の信号光入力端付近の反転分布は高く保たれ、(Pout-P ASE)/Pinという制御により、精度よく利得一定制御が可能となる。また、この励起光の制御法は、雑音指数を増加させないためにも有効である。

【0044】(第6の実施形態:請求項7)図6は、本発明の第6の実施形態を示す。本実施形態は、複数の光増幅部を縦続に接続した構成に適用される。

【0045】本実施形態の特徴は、複数の光増幅部1B(または1A)および光アイソレータ等の損失が変動しない光部品8を縦続に接続し、増幅器全体の入力端と出力端に、PinモニタおよびPout モニタを1対設置し、その検出値に応じて利得一定制御を行うところにある。本実施形態のように、損失が変動しない光部品8が挿入されている場合には、第1の実施形態から第5の実施形態に示した方法により、(PoutーPase)/Rinが一定となる制御を行うことにより、利得一定制御が可能となる。この場合にも、各光増幅部において希土類添加ファイバ11の信号光入力端付近の励起光パワーを高くしておくことにより制御精度を高めることができる。また、これは雑音指数を増加させないためにも有効である。

【0046】 (第7の実施形態) 図7は、本発明の第7の実施形態を示す。本実施形態は、複数の光増幅部を縦続に接続した構成に適用される。

【0047】本実施形態の特徴は、複数の光増幅部1B (または1A) および損失が変動する光部品9を縦続に 接続した場合に、第1の実施形態から第5の実施形態に 示した方法により、各光増幅部ごとに利得一定制御を行 うところにある。

【0048】すなわち、各光増幅部間に損失が変動する 光部品9が挿入されている場合には、それぞれの光増幅 部において、 $(Pout-P_{Ast})$ / Pinが一定となる制御を行うことにより、増幅器全体の利得一定制御が可能と 11

なる。この場合にも、第1の実施形態から第5の実施形態に示した方法で、希土類添加ファイバ11の信号光入力端付近の励起光パワーを高くしておくことにより制御精度を高めることができる。また、これは雑音指数を増加させないためにも有効である。

【0049】第7の実施形態では、各光ファイバ増幅器間に、損失が変動する光部品9として光アッテネータが挿入されることがよくある。光アッテネータを挿入することにより、各光ファイバ増幅器への入力光強度が高い場合にも、後段の光ファイバ増幅器の入力が高くなりす 10ぎて利得一定制御がかからなくなることを防ぐことができる。すなわち、光ファイバ増幅器の入力ダイナミックレンジを上げることができる。このような場合には、光ファイバ増幅器のPin, Pout をモニタして利得一定制御をかけることはできないが、それぞれの光ファイバ増幅器について第1の実施形態から第5の実施形態に示した方法で利得一定制御を行えば、良好に利得偏差を抑えた制御が可能となる。

[0050]

発明の効果」以上説明したように、本発明の光ファイ 20 パ増幅器は、前方励起をとることにより、または前方励起および後方励起をとる場合でも前方励起光パワーを大きくすることにより、希土類添加ファイバの信号光入力端近傍で高い励起状態が得られ、ASEパワーPASE を利得に対応がとれた定数として扱うことができる。したがって、利得は(PoutーPASE)/Pinにより検出することができ、ASEの影響を取り除いた良好な利得一定制御を実現することができる。

【図面の簡単な説明】

【図1】本発明の光ファイバ増幅器の第1の実施形態を

示す図。

【図2】本発明の光ファイバ増幅器の第2の実施形態を 示す図。

【図3】本発明の光ファイバ増幅器の第3の実施形態を 示す図。

【図4】本発明の光ファイバ増幅器の第4の実施形態を 示す図。

【図5】本発明の光ファイバ増幅器の第5の実施形態を 示す図。

) 【図6】本発明の光ファイバ増幅器の第6の実施形態を 示す図。

【図7】本発明の光ファイバ増幅器の第7の実施形態を示す図。

【図8】従来の光ファイバ増幅器の利得一定制御回路の構成を示す図。

【符号の説明】

- 1 A 前方励起型の光増幅部
- 1 B 前方励起および後方励起型の光増幅部
- 2 光分岐器
- 3 光検出器
- 4, 4A 利得検出部
- 5 誤差信号抽出部
- 6, 6A, 6B, 6C, 6D, 6E 利得制御部
- 8 損失が変動しない光部品
- 9 損失が変動する光部品
- 11 希土類添加ファイバ
- 12 励起光源
- 13 WDMカプラ
- 14 光アイソレータ

【図1】 本発明の光ファイバ増幅器の第1の実施形態

【図8】 従来の光ファイバ増幅器の構成

【図2】 本発明の光ファイバ増幅器の第2の実施形態

[図3]

本発明の光ファイバ増幅器の第3の実施形態

【図4】

本発明の光ファイバ増幅器の第4の実施形態

【図5】

本発明の光ファイバ増幅器の第5の実施形態。

[図6]

Pout 光検出器 2-2 14-2 BAE光源 Pb, △Pb 本発明の光ファイバ増幅器の第6の実施形態 光 響 題 14-1 Û $A = (Pout - P_{ASE}) / Pin$ 誤差信号抽出部 利得制御部 利得檢出部 PASE AA~6 E 第品 米 14-2 Û BMES光源 ob, APb BMC光源 of, △Pf 14-1 13-1 光增幅部 Pf Pin 光検出器 3-1

【図7】

關號 光検田器 Pout. 2-2 712-1 14-2 bie光源 Pb, △Pb A= (Pouta-Pasea)/Pina 誤差信号抽出部 £6A~6E 利得檢出部 利得制御部 PASEn **助起光原** Pf,∆Pf 13-1 光纖顯 本発明の光ファイバ増幅器の第7の実施形態 14-1 Û 光検出器 2-1 P in. 部品 Pout, 米 光検出器 2-5 $A = (Pout_1 - P_{ASB1}) / Pin_1$ bac Pb. △Pb 觀差信号抽出部 AA~6E 利得檢出部 和學師 PASEI bht2化原 Pf,∆Pf 光極電影 14-1 Û 光検出器 **科力** 信号光 2-1 Pinı 3-1>