Compression II

--- CS355: Digital Forensics---

Dr. Yu Guan,
Department of Computer Science
University of Warwick
Yu.Guan@warwick.ac.uk

JPEG compression steps

Division into subimages

Spatial redundancy: neighboring pixels have similar values

DCT

DCT coefficients:
$$F(u,v)$$

$$F(u,v) = \begin{bmatrix} 1352 & 58 & -30 & -14 & -2 & 1 & -2 & 2 \\ -28 & -43 & 4 & 19 & -2 & -1 & 6 & 2 \\ -10 & 4 & 5 & -6 & 0 & -2 & -2 & 2 \\ -8 & 0 & -1 & -1 & 1 & -6 & 1 & -7 \\ -4 & 4 & 1 & -1 & 5 & 3 & 1 & -1 \\ 2 & 2 & 0 & -1 & 3 & 3 & -1 & 6 \\ -1 & 1 & 1 & 0 & 3 & 0 & 5 & 1 \\ -1 & -1 & -1 & -2 & -2 & 2 & -2 & 1 & -1 \end{bmatrix}$$

Removes spatial redundancy

Only a few DCT basis can represent most of the information!

Quantization (Quality level 90)

Quantization (Quality level 50)

JPEG compression steps

Quantized DCT coefficients

Quantized DCT coefficients

85	5	-3	-1	0	0	0	0
-2	-4	0	1	0	0	0	0
-1	0	0	0	0	0	0	0
-1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

 $DC, AC_{01}, AC_{10}, AC_{20}, AC_{11}, \underbrace{AC_{02}}, AC_{03}, AC_{12}, AC_{21}, AC_{30},, AC_{77}$

$$F_Q(u=0, v=2)$$

$$85, 5, -2, -1, -4, -3, -1, 0, 0, -1, 0, ..., ...0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0$$

with 56/64=87.5% of the entries 0s, store them direction?

Image storage (uncompressed example)

TIFF (uncompressed) ~786KB

lena512color.tiff Available in Moodle (lab 2)

Resolution: 512×512 pixels

8-bit, RGB

Total entry number (pixels here):

 $512 \times 512 \times 3 \geqslant 786 K$ Bytes

(1 Byte = 8bits) Or

 $786K \times 8bits$

Each grayscale pixel is 8-bit here, with the values ranging from [0, 255], i.e.,

00000000

• • •

11111111

Toy example

$$\mathbf{I} = \begin{bmatrix} 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ \end{bmatrix}$$

If we use 8-bit to code all the entries with the values range from [0, 255]: 00000000

• • •

The size will be: 11111111

Total entry number: $4 \times 5 \times 8 \mathrm{bits}$

Toy example

$$\mathbf{I} = \begin{bmatrix} 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ \end{bmatrix}$$

Since there are only 4 different values (symbols), we may use 2-bit instead

Codewords: **00** (for 21), **01** (for 95), **10** (for 169) and **11** (for 243)

The codewords have to be communicated to the decoder.

The size will be:

Total entry number:

 $4 \times 5 \times 2$ bits

Fixed length code

Can we do better?

$$\mathbf{I} = \begin{bmatrix} 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ \end{bmatrix}$$

Basic idea:

Assign short (binary) codeword to numbers (symbols) with higher probability, and longer codeword to the ones with lower probability.

pixel value	frequency of occurrence	probability
21	10	0.5
95	2	0.1
169	4	0.2
243	4	0.2
I		

1. Ranking probabilities

21	а	0.5		а	0.5
95	b	0.1	reorder	C	0.2
169	С	0.2		d	0.2
243	d	0.2		b	0.1

2. Binary Codeword assignment

pixel value	frequency of occurrence	probability
21	10	0.5
95	2	0.1
169	4	0.2
243	4	0.2

Basic idea:

Assign short (binary) codeword to numbers (symbols) with higher probability, and longer codeword to the ones with lower probability.

Given a code, it is easy to encode the message by replacing the symbols by the codewords

Fixed length code:
$$C_1\{a=00,\ b=01,\ c=10,\ d=11\}$$
Variable length codes $C_2=\{a=0,\ b=110,\ c=10,\ d=111\}$
 $C_3=\{a=1,\ b=110,\ c=10,\ d=111\}$

Code the word: bad

- using C_1 **010011**
- using C_2 1100111
- using C_3 1101111

Are these codes uniquely decodable?

Given a code, it is easy to encode the message by replacing the symbols by the **codewords**

	$\Gamma = \{a, b, c, d\}$
Fixed length code:	$C_1\{a = 00, b = 01, c = 10, d = 11\}$
Variable langth and as	$C_2 = \{a = 0, b = 110, c = 10, d = 111\}$
Variable length codes	$C_3 = \{a = 1, b = 110, c = 10, d = 111\}$

Are these codes uniquely decodable?

- Decode **1100111** using C_2
- Decode **1101111** using C_3

Given a code, it is easy to encode the message by replacing the symbols by the codewords

Fixed length code:
$$C_1\{a=00,\ b=01,\ c=10,\ d=11\}$$
Variable length codes $C_2=\{a=0,\ b=110,\ c=10,\ d=111\}$
 $C_3=\{a=1,\ b=110,\ c=10,\ d=111\}$

Are these codes uniquely decodable?

- Decode **010011** using C_1
- Decode **1100111** using C_2
- Decode 1100111 using C_3 No, it can be decoded as bad or acda 01001110 or acad

Given a code, it is easy to encode the message by replacing the symbols by the codewords

Fixed length code:
$$C_1\{a=00,\ b=01,\ c=10,\ d=11\}$$
Variable length codes $C_2=\{a=0,\ b=110,\ c=10,\ d=111\}$
 $C_3=\{a=1,\ b=110,\ c=10,\ d=111\}$

Are these codes uniquely decodable?

Huffman code is prefix-free, and it is uniquely decodable.

- Decode **010011** using C_1
- Decode 1100111 using C_2 Yes, no code is a prefix to another code (prefix-free code)
- Decode **1101111** using C_3

Fixed length coding

Variable length coding (Huffman coding)

			_	_ co	dewo	ords		0	0	10	110
21	а	0.5	1		10		Įυ	U	U		110
95	b	0.1	000		111		0	0	0	10	110
169	С	0.2	01	or	10		0	0	111	10	110
243	d	0.2	001		110		0	0	111	10	110

$$\begin{array}{r}
 10x1 + 2x3 + 4x2 + 4x3 \\
 = 36 \text{bits}
 \end{array}$$

 $4 \times 5 \times 8$ bits

= 160bits

Fixed length coding

Variable length coding (Huffman coding)

Assign short (binary) codeword to numbers (symbols) with higher probability, and longer codeword to the ones with lower probability.

	Codewords						Total bits	Average code length
	00 (for 21), 01 (for 95), 10 (for 169) and 11 (for 243)						$4 imes 5 imes 2 ext{bits}$ = $40 ext{bits}$ (20 symbols)	2bits/symbol
	21 95 169 243	a b c	0.5 0.1 0.2 0.2	1 000 01 001	or	0 111 10 110	10x1 + 2x3 + 4x2 + 4x3 = 36bits	1.8bits/symbol
r							(20 symbols)	

Question: is Huffman coding the optimal solution?

Entropy coding

- Entropy coding is a lossless compression technique applicable to **any** data.
- Entropy is a fundamental concept in **information theory.**
- **Entropy** is a measure of **information**.

Entropy

Shannon (1948) proposed to measure information in terms of uncertainty or randomness in data

• **Entropy** is a measure of uncertainty in data.

A source **z** generates two symbols: a_1, a_2

Probabilities: $Prob(a_1) = p, Prob(a_2) = 1 - p$

Entropy is defined as

$$H(\mathbf{z}) = p\log\frac{1}{p} + (1-p)\log\frac{1}{(1-p)}$$

Higher the entropy, higher is the uncertainty in data.

Entropy

Shannon (1948) proposed to measure information in terms of uncertainty or randomness in data

• **Entropy** is a measure of uncertainty in data.

$$H(\mathbf{z}) = p \log \frac{1}{p} + (1-p) \log \frac{1}{(1-p)}$$

For example, toss a normal coin, with P(head)=P(tail)=0.5

$$H(\mathbf{z}) = -0.5 \times \log_2 0.5 - 0.5 \times \log_2 0.5 = 0.5 + 0.5 = 1$$

Toss a double-headed coin, with P(head)=1, P(tail)=0

$$H(\mathbf{z}) = -1 \times \log_2 1 - 0 \times \log_2 0 = 0 + 0 = 0$$

Higher the entropy, higher is the uncertainty in data.

Largest uncertainty

No uncertainty

Entropy coding

- Fundamental to **any** data compression. Entropy coding is a lossless compression technique.
- **Entropy** is a measure of uncertainty in data.

A source **z** generates

$$a_1, a_2, ... a_n$$

$$Prob(a_1) = p_1, Prob(a_2) = p_2,$$
 such that $\sum_{j=1}^{n} p_j = 1$

Entropy is defined as

$$H(\mathbf{z}) = -\sum_{j=1}^{n} p_i \log p_i$$

Shannon's source coding theorem

 In any (uniquely decodable) coding scheme, the average codeword length of a source (of symbols) can at best be equal to the source entropy, and can not be less than it.

Entropy is the **bound** on maximum compression that can be achieved using <u>entropy coding</u>.

$$I = \begin{bmatrix} 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 21 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \\ 21 & 21 & 95 & 169 & 243 \end{bmatrix}$$

Fixed length coding

Variable length coding (Huffman coding)

Entropy of the source:

$$H(\mathbf{z}) = -\sum_{j=1}^{n} p_i \log p_i \quad \blacksquare$$

 $= -0.5 \log 0.5 - 0.1 \log 0.1 - 0.2 \log 0.2 - 0.2 \log 0.2 = 1.76 (bits/symbol)$

Huffman coding can be deemed as the optimal solution

Back to Lena Example

Huffman coding

Huffman coding (Quality level 50)

Quantized DCT coefficients

value	Freq.	Huffman code
0	56	1
-1	2	000
85	1	0010
5	1	0011
1	1	0100
-2	1	0101
-3	1	0110
-4	1	0111

Total bits: $1 \times 56 + 3 \times 2 + (4 \times 1) \times 6 = 86 \text{bits}$

Average code length: $86/64 = 1.34 \ bits/symbol$

Entropy: $H(\mathbf{z}) = -\sum_{j=1}^n p_i \log p_i = 0.89 \text{ bits/symbol}$ (theoretical bound)

Question: if we use fixed length coding, how many bits are required (for the 8*8 block)?

Huffman coding (Quality level 90)

Quantized DCT coefficients

451	29	-15	-5	0	0	0	0
-14	-21	1	5	0	0	1	0
-3	1	2	-1	0	0	0	0
-3	0	0	0	0	0	0	-1
-1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Huffman coding:

value	Freq.	Huffman code	
0	47	1	
1	4	000	
-1	3	0111	
-3	2	0010	
29	1	00110	
5	1	00111	
2	1	01000	
451	1	01001	
-5	1	01010	
-14	1	01011	
-15	1	01100	
-21	1	01101	

Total bits: $1 \times 47 + 3 \times 4 + 4 \times 3 + 4 \times 2 + (5 \times 1) \times 8 = 119 bits$

Average code length: $119/64 = 1.86 \ bits/symbol$

Entropy:
$$H(\mathbf{z}) = -\sum_{j=1}^n p_i \log p_i = 1.69 \text{ bits/symbol}$$

Question: if we use fixed length coding, how many bits are required (for the 8*8 block)?

JPEG compression steps

JPEG de-compression steps

De-quantized DCT coefficients

Next, we will take advantage of this quantization error for **forensic applications**

	1360	55	-30	-16	0	0	0	0
	-24	-48	0	19	0	0	0	0
	-14	0	0	0	0	0	0	0
	-14	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
Ų	1							

De-Quantization Q_{50}

Further reading

Digital Image processing By Gonzalez and Woods.

Chapter 8 Image Compression and Watermarking

- 8.1 Fundamentals
- 8.2 Huffman coding

