

GÉNIE INFORMATIQUE S1 / ALGÈBRE 1 Année: 2020-2021

Fractions rationnelles **Espaces vectoriels**

Exercice 1:

Décomposer en éléments simples les fractions rationnelles suivantes :

1.
$$\frac{1}{X^3 - X}$$

$$2. \quad \frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$

5.
$$\frac{X^2 - 3X + 1}{X^3 + 1}$$

1.
$$\frac{1}{X^3 - X}$$
 2. $\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$ 3. $\frac{X^3}{(X - 1)(X - 2)(X - 3)}$ 4. $\frac{2X^2 + 1}{(X^2 - 1)^2}$ 5. $\frac{X^3 + 1}{(X - 1)^3}$ 6. $\frac{X^4 + 1}{(X + 1)^2(X^2 + 1)}$

6.
$$\frac{X^4+1}{(X+1)^2(X^2+1)}$$

Exercice 2:

- 1. Décomposer en éléments simples la fraction rationnelle $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$.
- 2. En déduire la limite de la suite $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$.

Exercice 3:

Soient dans \mathbb{R}^3 les vecteurs $v_1 = (1, 1, 0)$, $v_2 = (4, 1, 4)$ et $v_3 = (2, -1, 4)$. La famille (v_1, v_2, v_3) est-elle libre?

Exercice 4:

Soient dans \mathbb{R}^4 les vecteurs $u_1 = (1, 2, 3, 4)$ et $u_2 = (1, -2, 3, -4)$. Peut-on déterminer x et y pour que $(x, 1, y, 1) \in$ Vect (u_1, u_2) ? Et pour que $(x, 1, 1, y) \in \text{Vect}(u_1, u_2)$.

Exercice 5:

On considère les vecteurs $v_1 = (1,0,0,1)$, $v_2 = (0,0,1,0)$, $v_3 = (0,1,0,0)$, $v_4 = (0,0,0,1)$ et $v_5 = (0,1,0,1)$ dans \mathbb{R}^4 .

- 1. $Vect(v_1, v_2)$ et $Vect(v_3)$ sont-ils supplémentaires dans \mathbb{R}^4 ?
- 2. Même question pour $Vect(v_1, v_3, v_4)$ et $Vect(v_2, v_5)$.
- 3. Même question pour $Vect(v_1, v_2)$ et $Vect(v_3, v_4, v_5)$

Exercice 6:

Soient $u_1 = (1, -1, 2)$, $u_2 = (1, 1, -1)$ et $u_3 = (-1, -5, -7)$ Soit $E = \text{Vect}(u_1, u_2, u_3)$ Soit $F = \{(x, y, z) \in \mathbb{R}^3, x + y + z = 0\}$.

- 1. Donner une base de *E*.
- 2. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- 3. Donner une base de F.
- 4. Donner une base de $E \cap F$.

Exercice 7:

Soient $P_0 = \frac{1}{2}(X-1)(X-2)$, $P_1 = -X(X-2)$ $P_2 = \frac{1}{2}X(X-1)$ trois polynômes de $\mathbb{R}_2[X]$.

- 1. Montrer que (P_0, P_1, P_2) est une base de $\mathbb{R}_2[X]$.
- 2. Soit $P = aX^2 + bX + c \in \mathbb{R}_2[X]$, exprimer P dans la base (P_0, P_1, P_2) .
- 3. Soit $P = \alpha P_0 + \beta P_1 + \gamma P_3 \in \mathbb{R}_2[X]$, exprimer Q dans la base $(1, X, X^2)$.
- 4. Pour tout a, b et c réels montrer qu'il existe un unique polynôme de $R \in \mathbb{R}_2[X]$, tel que : R(0) = a, R(1) = bet R(2) = c.