

EQUIPO 4 | Máquinas de chambeo

INICIO DE CÓDIGO

- Importamos las bibliotecas esenciales para el análisis
- Realizamos la carga de los datos por el archivo csv
- Realizamos la exploración de datos, y la búsqueda de valores nulos por columna

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib.pyplot as plt
```

```
#Cargamos los datos
data = pd.read_csv('DataAnalytics.csv')
```

NULOS Y OUTLIERS

valores_nulos = data.isnull().sum()
print(valores_nulos)

Administrador	0
Usuario	0
botón correcto	762
tiempo de interacción	762
mini juego	156
número de interacción	762
color presionado	762
dificultad	0
fecha	0
Juego	0
auto push	762
tiempo de lección	177
tiempo de sesión	606
dtype: int64	

RESULTADO:

Varias columnas tienen **valores nulos**, especialmente:

"botón correcto", "tiempo de interacción", "número de interacción", "color presionado" y "auto push" con 762 valores nulos cada una.

SOLUCIÓN:

- Se **verifican** los tipos de **datos** de cada columna
- Separamos las variables por numéricas y cuantitativas:
 - Cuantitativas ('int64' & 'float64'): media
 - Cualitativas ('object'): "Sin dato"

```
numericas = data.select_dtypes(include=['int64', 'float64'])
cualitativas = data.select_dtypes(include=['object'])
```


Valores Atípicos del DataFrame

Valores Atípicos de DataFrame

Variables: auto push, número de interacción, tiempo de interacción y botón correcto

Método: rango intercuartílico (IQR)

Variables: tiempo de lección y tiempo de sesión (por la gran cantidad de registros "O")

Método: percentil 1 y 99

CONVERSIÓN DE VARIABLES

categóricas — numéricas

```
método
   cat1 = data_final.groupby(['Administrador'])['Administrador'].count().sort_values(ascending=False)
   cat1
                                                                                                            Frecuencia
 ✓ 0.0s
Administrador
ALEIDA
                 3260
                                          data_final.Administrador = data_final.Administrador.replace({'ALEIDA':'1'}, regex=False)
nicolas
                  440
                                          data_final.Administrador = data_final.Administrador.replace({'nicolas':'2'}, regex=False)
LEONARDO
                  371
                                          data_final.Administrador = data_final.Administrador.replace({'LEONARDO':'3'}, regex=False)
DENISSE
                  302
                                          data_final.Administrador = data_final.Administrador.replace({'DENISSE':'4'}, regex=False)
SERGIO ANGEL
                  243
                                          data_final.Administrador = data_final.Administrador.replace({'SERGIO ANGEL':'5'}, regex=False)
CARLOS ENRIQUE
                  228
YAEL DAVID
                  224
                                          data_final.Administrador = data_final.Administrador.replace({'CARLOS ENRIQUE':'6'}, regex=False)
AUSTIN
                  199
                                          data_final.Administrador = data_final.Administrador.replace({'YAEL DAVID':'7'}, regex=False)
VALENTIN
                  163
                                          data_final.Administrador = data_final.Administrador.replace({'AUSTIN':'8'}, regex=False)
erick
                  158
                                          data_final.Administrador = data_final.Administrador.replace({'VALENTIN':'9'}, regex=False)
IKER BENJAMIN
                  128
                                          data_final.Administrador = data_final.Administrador.replace({'erick':'10'}, regex=False)
                  98
KYTZIA
                                          data_final.Administrador = data_final.Administrador.replace({'IKER BENJAMIN':'11'}, regex=False)
                  51
BENJAMIN
                                          data_final.Administrador = data_final.Administrador.replace({'KYTZIA':'12'}, regex=False)
Name: Administrador, dtype: int64
                                          data_final.Administrador = data_final.Administrador.replace({'BENJAMIN':'13'}, regex=False)
```


Primer heatmap

analizamos los coeficientes de la variable "Usuario" con las demás variables

Aplicamos un modelo de regresión linear múltiple

- 1) Identificamos variable dependiente (usuario) e independientes (las demás)
- 2) Generamos el modelo
- 3) Calculamos el coeficiente de determinacion
- 4) Calculamos coeficiente de correlación múltiple

COEFICIENTES

REGRESIÓN LINEAR SIMPLE REGRESIÓN LINEAR MÚLTIPLE

0.32

0.44

RESULTADOS POR USUARIO

Benjamín

Variable: tiempo de sesión

0.8

- 0.6

- 0.2

- 0.0

-0.2

Carlos Abel

Variable: tiempo de sesión

Carlos Enrique

Variable: tiempo de interacción

Concepción

Variable: tiempo de lección

Denisse

Variable: tiempo de lección

Comparativo

Usuario	Variable seleccionada (dependiente)	Coeficiente correlación linear	Coeficiente correlación linear múltiple
Benjamín	tiempo de sesión	0.87	0.94
Carlos Abel	tiempo de sesión	0.76	0.92
Carlos Enrique	tiempo de interacción	0.80	0.85
Concepción	tiempo de lección	0.86	0.88
Denisse	tiempo de lección	0.49	0.59

Conclusiones

- Correlaciones variables por usuario: Los coeficientes de correlación lineal y múltiple varían notablemente entre usuarios, destacando que variables como "tiempo de sesión" y "tiempo de interacción" tienen impactos diferenciados en cada caso.
- Mejora en modelos múltiples: En todos los usuarios analizados, el coeficiente de correlación lineal múltiple supera al lineal simple, lo que sugiere que incluir más variables en el modelo mejora la precisión de las predicciones.

Gracias