IETF Hackathon: Measurement and Analysis for Protocols (MAP) - Live

IETF 104 23-24 March, 2019 Prague

Hackathon Plan (Project 1)

- Analysis tool development and measurement results for Internet Draft on Privacy & Security Issues in IPv6 Deployment
 - Preparing I-D to share anonymized, aggregate results
 - Goal is to inform v6 address assignment in engineering and operations and inform measurement practice
- Compare, and contrast, results of independent (TU-Munich & Akamai), worldwide IPv6 traceroute surveys January 2019 having shared analysis tools: be sure we're comparing apples to apples

What got done

- Consider best current practice for privacy & security in "hitlists" and repositories, e.g., Passive DNS databases
- Public measurements: https://ipv6hitlist.github.io/
- Shared analysis tools: <u>http://www.cs.wisc.edu/~plonka/ipv6toolkit/</u>, http://www.cs.wisc.edu/~plonka/mac2vendor/
- We analyzed and compared the largest public and "private"
 IPv6 traceroute survey results known

What we learned

- >1 million EUI-64 IPv6 router addresses found in traceroute surveys and campaigns performed by industry and academia
 - This discovery was accidental; a side-effect of reachability and topology studies
 - Public and "private" results are complementary, each revealing unique details in different parts of the active IPv6 address space
- Surprisingly, older "hitlists" (seed addresses used to synthesize traceroute targets) can sometimes yield more results!
- There is likely some follow-on BCP work for 6man and/or v6ops working groups
- Hackathon results will be reported in MAPRG meeting this week with a new draft to be proposed as work for the research group

IP Network Performance and Capacity Measurement Method Comparisons (Project 2)

What we did & learned:

- Collected Interesting Test Conditions for Evaluation <doc>
- Calibrated Lab Setup (tc shaper) & Performed tests on 3 methods

	CHOOL					
				Hack-104	Deletine Conseite Masser Celibrated Dete	
-Rate, MI	Target	UDP (iPerf	3xTCP(iPe	udpst(IP-la	Relative Capacity Meas vs. Calibrated Rate	
100	1	0.973	0.945	0.99	1.01	
200	1	0.97	0.95	0.9892		
300	1	0.973	0.95	0.9899		
500	1	0.972	0.944	0.99	9 0.98 	
1000	1	0.972	0.917	0.99	O.97 Target	
		2-Jan			© 0.96 → 0.95 □ 0.94 □ 0.93 □ 0.92 ■ 0.92 ■ 0.92 ■ 0.92 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91 ■ 0.92 ■ 0.91	

Quick measurement study with PATHspider

- See pathlspider.net
- Measured ECN support of 4294 web servers (IPv6 only)
 - Negotiated successfully: 4007
 - Did not negotiate ECN: 287
 - Seems to work without ECN but not with: 2 (may be transient errors)
 - 0 CE markings observed (but no high load scenario)
 - 1 host used only ECT(1); 2 used both ECT(0) and ECT(1)
- Come help measure the Internet and share some data at MAPRG!

Wrap Up

Team members:

MAPRG meets 10:50 Thursday morning:

Dave Plonka Mirja Kühlewind Oliver Gasser Al Morton Iain Learmonth

Alexander Isavnin

https://datatracker.ietf.org/rg/maprg/about/

https://trac.ietf.org/trac/irtf/wiki/map

maprg-chairs@ietf.org

First timers @ IETF/Hackathon: Oliver Gasser lan Learmonth