## Ranking linked data

Class 3: PageRank, topic-specific PageRank and HITS

Web Search

#### Overview



# Ranking Web data (part 2)

- 1. Text pre-processing and Boolean retrieval
- 2. Terms weighting
- 3. Ranking text data
- 4. Ranking linked data
  - 1. Links and anchors
  - 2. PageRank
  - 3. Topic-specific PageRank
  - 4. Hubs and Authorities

# 5. Ranking linked data

- Links are inserted by humans.
- They are one of the most valuable judgments of a page's importance.

• A link is inserted to denote an association. The anchor text describes the type of association.



### The Web as a Directed Graph



**Assumption 1:** A hyperlink between pages denotes author perceived relevance (quality signal)

**Assumption 2:** The anchor of the hyperlink describes the target page (textual context)

#### Anchor text

 When indexing a document D, include anchor text from links pointing to D.



# Indexing anchor text

- Can sometimes have unexpected side effects e.g., evil empire.
- Can boost anchor text with weight depending on the authority of the anchor page's website
  - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust the anchor text from them

### Citation Analysis

- Citation frequency
- Co-citation coupling frequency
  - Co-citations with a given author measures "impact"
  - Co-citation analysis [Mcca90]
- Bibliographic coupling frequency
  - Articles that co-cite the same articles are related
- Citation indexing
  - Who is author cited by? [Garf72]
- PageRank preview: Pinsker and Narin '60s

# Incoming and outgoing links

- The popularity of a page is related to the number of incoming links
  - Positively popular
  - Negatively popular
- The popularity of a page is related to the popularity of pages pointing to them



# Query-independent ordering

- First generation: using link counts as simple measures of popularity.
- Two basic suggestions:
  - Undirected popularity:
    - Each page gets a score = the number of in-links plus the number of out-links (3+2=5).
  - Directed popularity:
    - Score of a page = number of its in-links (3).



# PageRank scoring

- Imagine a browser doing a random walk on web pages:
  - Start at a random page
  - At each step, go out of the current page along one of the links on that page, equiprobably



• "In the steady state" each page has a long-term visit rate - use this as the page's score.

# Not quite enough

- The web is full of dead-ends.
  - Random walk can get stuck in dead-ends.
  - Makes no sense to talk about long-term visit rates.



# Teleporting

- At a dead end, jump to a random web page.
- At any non-dead end, with probability 10%, jump to a random web page.
  - With remaining probability (90%), go out on a random link.
  - 10% a parameter.

- Result of teleporting:
  - Now cannot get stuck locally.
  - There is a long-term rate at which any page is visited.
  - How do we compute this visit rate?

#### The random surfer

- The PageRank of a page is the probability that a given random "Web surfer" is currently visiting that page.
  - This probability is related to the incoming links and to a certain degree of browsing randomness (e.g. reaching a page through a search engine).



#### Markov chains

- A Markov chain consists of *n* states, plus an  $n \times n$  transition probability matrix **P**.
- At each step, we are in exactly one of the states.
- For  $1 \le i,j \le n$ , the matrix entry  $P_{ij}$  tells us the probability of j being the next state, given we are currently in state i.



# Transitions probability matrix



|   | А | В | С | D |
|---|---|---|---|---|
| Α | 0 | 1 | 1 | 1 |
| В | 1 | 0 | 0 | 0 |
| С | 0 | 1 | 0 | 1 |
| D | 0 | 1 | 0 | 0 |

|   | Α        | В        | С        | D        |
|---|----------|----------|----------|----------|
| Α | 0        | $P_{ab}$ | $P_{ac}$ | $P_{ad}$ |
| В | $P_{ba}$ | 0        | 0        | 0        |
| С | 0        | $P_{cb}$ | 0        | $P_{cd}$ |
| D | 0        | $P_{db}$ | 0        | 0        |

# Ergodic Markov chains

- A Markov chain is <u>ergodic</u> if
  - you have a path from any state to any other
  - For any start state, after a finite transient time  $T_0$ , the probability of being in any state at a fixed time  $T > T_0$  is nonzero.



#### Ergodic Markov chains

- For any ergodic Markov chain, there is a unique long-term visit rate for each state.
  - Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

The PageRank of Web page *i* corresponds to the probability of being at page *i* after an infinite random walk across all pages (i.e., the stationary distribution).

# PageRank

• The rank of a page is related to the number of incoming links of that page and the rank of the pages linking to it.



$$PR(A) = (1 - d) + d \cdot \left[ \frac{PR(B)}{OL(B)} + \frac{PR(C)}{OL(C)} \right]$$

### PageRank: Formalization

 The RandomSurfer model assumes that the pages with more inlinks are visited more often



• The rank of a page is computed as:

$$p_i = (1 - d) + d \sum_{j=1}^{N} \left(\frac{L_{ij}}{c_j}\right) p_j$$

where  $L_{ij}$  is the link matrix ,  $c_j$  is the number of links of page and  $p_j$  is the PageRank of that page

# Transitions probability matrix



|   | Α | В | С | D |
|---|---|---|---|---|
| Α | 0 | 1 | 1 | 1 |
| В | 1 | 0 | 0 | 0 |
| С | 0 | 0 | 1 | 1 |
| D | 0 | 1 | 0 | 0 |



|   | А        | В        | С        | D        |
|---|----------|----------|----------|----------|
| Α | 0        | $P_{ab}$ | $P_{ac}$ | $P_{ad}$ |
| В | $P_{ba}$ | 0        | 0        | 0        |
| С | 0        | 0        | $P_{cc}$ | $P_{cd}$ |
| D | 0        | $P_{db}$ | 0        | 0        |

# Example

Consider thre



$$p_{i} = (1 - d) + d \sum_{j=1}^{N} \left(\frac{L_{ij}}{c_{j}}\right) p_{j}$$

• The transition matrix  $\frac{L_{ij}}{c_j}$  is:

$$\left(\begin{array}{ccc}
0 & 0.5 & 0.5 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)$$

### PageRank: Issues and Variants

- How realistic is the random surfer model?
  - What if we modeled the back button? [Fagi00]
  - Surfer behavior sharply skewed towards short paths [Hube98]
  - Search engines, bookmarks & directories make jumps non-random.
- Biased Surfer Models
  - Weight edge traversal probabilities based on match with topic/query (non-uniform edge selection)
  - Bias jumps to pages on topic (e.g., based on personal bookmarks & categories of interest)

# Topic Specific Pagerank [Have02]

- Conceptually, we use a random surfer who teleports, with ~10% probability, using the following rule:
  - Selects a category (say, one of the 16 top level categories) based on a query & user -specific distribution over the categories
  - Teleport to a page uniformly at random within the chosen category
- Sounds hard to implement: can't compute PageRank at query time!

# Topic Specific PageRank - Implementation

- offline: Compute pagerank distributions wrt individual categories
  - Query independent model as before
  - Each page has multiple pagerank scores one for each category, with teleportation only to that category
- **online**: Distribution of weights over categories computed by query context classification
  - Generate a dynamic pagerank score for each page weighted sum of category-specific pageranks

# Non-uniform Teleportation



10% Sports teleportation

# Interpretation



10% Health teleportation

# Interpretation



 $pr = (0.9 PR_{sports} + 0.1 PR_{health})$  gives you: 9% sports teleportation, 1% health teleportation

# Hyperlink-Induced Topic Search (HITS) - Klei98

- In response to a query, instead of an ordered list of pages each meeting the query, find two sets of inter-related pages:
  - Hub pages are good lists of links on a subject.
    - e.g., "Bob's list of cancer-related links."
  - Authority pages occur recurrently on good hubs for the subject.
- Best suited for "broad topic" queries rather than for page-finding queries.
- Gets at a broader slice of common opinion.

# The hope



Long distance telephone companies

### High-level scheme

- Extract from the web a <u>base set</u> of pages that could be good hubs or authorities.
- From these, identify a small set of top hub and authority pages;
  - iterative algorithm.

#### Base set and root set

- Given text query (say *browser*), use a text index to get all pages containing *browser*.
  - Call this the root set of pages.
- Add in any page that either
  - points to a page in the root set, or
  - is pointed to by a page in the root set.
- Call this the base set.



### Distilling hubs and authorities

• Compute, for each page x in the base set, a <u>hub score</u> h(x) and an <u>authority score</u> a(x).

• Initialize: for all x,  $h(x) \leftarrow 1$ ;  $a(x) \leftarrow 1$ ;



- Iteratively update all h(x), a(x);
- After iterations
  - output pages with highest h() scores as top hubs
  - highest a() scores as top authorities.

#### Iterative update

Repeat the following updates, for all x:

$$h(x) \leftarrow \sum_{x \mapsto y} a(y)$$

$$a(x) \leftarrow \sum_{y \mapsto x} h(y)$$



# How many iterations?

- Claim: relative values of scores will converge after a few iterations:
  - in fact, suitably scaled, h() and a() scores settle into a steady state!

 We only require the <u>relative orders</u> of the h() and a() scores - not their absolute values.

• In practice, ~5 iterations get you close to stability.

# Summary

- 1. Text pre-processing
- 2. Terms weighting
- 3. Ranking text data
- 4. Ranking linked data
  - 1. Links and anchors
  - 2. PageRank
  - 3. Topic-specific PageRank
  - 4. HITS: Hubs and Authorities



Chapter 21