### Gliederung



- 1. Die Bedeutung des Datenmanagements
- Datenbank-Architektur
- 3. Modellierung und Entwurf von DB-Systemen
- 4. Relationale Algebra und Normalisierung
- 5. Definition und Abfrage von Datenbank-Systemen
- 6. Dateiorganisation und Zugriffsstrukturen
- 7. Optimierung von Anfragen
- Transaktionen

### 4. Relationale Algebra und Normalisierung



#### 1. Die Relationale Algebra

- 1. Übersicht
- 2. Mengenorientierte Operatoren
- 3. Relationenorientierte Operatoren
- 4. Änderungsoperationen

#### 2. Die Normalisierung relationaler Datenbanken

- 1. Einführung
- 2. Mutationsanomalien
- 3. Was ist Normalisierung?
- 4. Gründe für die Normalisierung
- 5. Übersicht über die Normalformen
- 6. Nullte Normalform (0 NF)

### 4. Relationale Algebra und Normalisierung



- 7. Erste Normalform (1 NF)
- 8. Klassifizierung der Attribute nach Abhängigkeiten
- 9. Zweite Normalform (2 NF)
- 10. Dritte Normalform (3 NF)
- 11. Zusammenfassung
- 12. Beurteilung der Normalisierung

### 4.1 Relationale Algebra



•TODO: Erst Normalisierung, dann rel. Algebra

#### 4.1.1 Übersicht



## Die Relationale Algebra (Relationenalgebra)

- bildet den formalen Rahmen für relationale Datenbanksprachen
- definiert einen Satz von algebraischen Operationen, die auf Tabellen wirken
- wird eingeteilt in:
  - Mengenoperationen (Mengenorientierte Operatoren)
  - Relationsoperationen (Relationenorientierte Operatoren)
  - Änderungsoperationen (kein echter Bestandteil der RA)

#### 4.1.1 Übersicht



- Relationale Datenbanksprachen, die die Operationen der Relationenalgebra sinngemäß umsetzen, heißen relational vollständige Sprachen.
- Die relationale Algebra (Relationenalgebra) setzt Relationen (Tabellen) in der ersten Normalform voraus (nur atomare Werte für Attribute, siehe später).



Vereinigung R ∪ S

• Durchschnitt  $R \cap S$ 

• Differenz R\S (oder auch R-S)

Kartesisches Produkt R x S



### Voraussetzungen:

- Jede Tabelle entspricht einer Menge von Datensätzen, somit sind mengentheoretische Verknüpfungen von Tabellen möglich.
- Bedingung für Verknüpfungen ist das Verträglichkeitskriterium, d.h. Tabellen müssen die gleiche Anzahl von Attributen aufweisen und die Datenformate der korrespondierenden Merkmalskategorien müssen identisch sein.
- Die Ergebnistabelle hat dann auch die gleiche Anzahl Attribute mit den gleichen Domänen.











Kartesisches Produkt

 $\{(x,y): R(x) \wedge S(y)\}$ 



## Vereinigung (R $\cup$ S):

- Die Vereinigungstabelle enthält alle Datensätze, die in R oder in S enthalten sind.
- Da es sich um die mengentheoretische Vereinigung handelt, werden Duplikate dabei eliminiert.
- Zur Anwendung der Vereinigung müssen R und S gleiche Stelligkeit und verträgliche Domänen haben.



### Durchschnitt ( $R \cap S$ ):

- Die Durchschnittstabelle von R und S enthält alle Datensätze (Tupel), die in R und in S enthalten sind.
- Alle Datensätze (Tupel) sind nur einmal enthalten.
- Zur Anwendung des Durchschnitts müssen R und S gleiche Stelligkeit und verträgliche Domänen haben.



## Differenz (R \ S):

- Die Ergebnistabelle der Differenzoperation zwischen R und S enthält alle Datensätze (Tupel), die in R und nicht in S enthalten sind.
- Zur Anwendung des Durchschnitts müssen R und S gleiche Stelligkeit und verträgliche Domänen haben.



#### Tab. Fußball

| MNr | Name   | Ort |
|-----|--------|-----|
| 1   | Meier  | WÜ  |
| 2   | Müller | N   |
| 3   | Huber  | В   |

### Tab. Volleyball

| MNr | Name  | Ort |
|-----|-------|-----|
| 8   | Amsel | М   |
| 9   | Wicht | нн  |
| 3   | Huber | В   |

Ausgangstabellen

### Vereinigung F U V

| MNr | Name   | Ort |
|-----|--------|-----|
| 1   | Meier  | WÜ  |
| 2   | Müller | N   |
| 3   | Huber  | В   |
| 8   | Amsel  | М   |
| 9   | Wicht  | нн  |

### Mengendifferenz F - V

| MNr | Name   | Ort |
|-----|--------|-----|
| 1   | Meier  | WÜ  |
| 2   | Müller | N   |



### Kartesisches Produkt ( $R \times S$ ):

- Das Kartesische Produkt R × S zwischen R und S ist die Menge aller möglichen Kombinationen (x,y), die sich aus den Tupeln x aus R und y aus S bilden lassen.
- Zur Anwendung des Kartesischen Produktes muss das Verträglichkeitskriterium <u>nicht</u> gelten, d.h. die Attribute der beteiligten Relationen müssen <u>nicht</u> gleiche Stelligkeit und verträgliche Domänen haben.



#### Kartesisches Produkt: RxS

#### Beispiel:

Gegeben seien die Relationen

 $\mathbf{R} = \{(1, Miriam), (2, Michael), (3, Katrin)\}$ 

und

$$S = \{(1,Julia), (3,Toni)\}$$



Sportclub

| MNr | Name      | Straße      | Ort     |
|-----|-----------|-------------|---------|
| M1  | Meier     | Lindstraße  | Liestal |
| М7  | Huber     | Mattenweg   | Basel   |
| M19 | Schweizer | Hauptstraße | Zürich  |

Fotoclub

| MNr | Mitglied | Straße    | Ort     |
|-----|----------|-----------|---------|
| M4  | Becker   | Wasserweg | Liestal |
| M7  | Huber    | Mattenweg | Basel   |



## • Clubmitglieder = Sportclub ∪ Fotoclub

| MNr | Name      | Straße      | Ort     |
|-----|-----------|-------------|---------|
| M1  | Meier     | Lindstraße  | Liestal |
| M7  | Huber     | Mattenweg   | Basel   |
| M19 | Schweizer | Hauptstraße | Zürich  |
| M4  | Becker    | Wasserweg   | Liestal |



## 

| MNr | Name  | Straße    | Ort   |
|-----|-------|-----------|-------|
| M7  | Huber | Mattenweg | Basel |



## Clubmitglieder = Sportclub \ Fotoclub

| MNr | Name      | Straße      | Ort     |
|-----|-----------|-------------|---------|
| M1  | Meier     | Lindstraße  | Liestal |
| M19 | Schweizer | Hauptstraße | Zürich  |



- Kartesisches Produkt:
- Wettkampfpaarungen: (Sportclub \ Fotoclub) x
   Fotoclub

| MNr | Name      | Straße      | Ort     | MNr | Mitglied | Straße    | Ort     |
|-----|-----------|-------------|---------|-----|----------|-----------|---------|
| M1  | Meier     | Lindstraße  | Liestal | M4  | Becker   | Wasserweg | Liestal |
| M1  | Meier     | Lindstraße  | Liestal | M7  | Huber    | Mattenweg | Basel   |
| M19 | Schweizer | Hauptstraße | Zürich  | M4  | Becker   | Wasserweg | Liestal |
| M19 | Schweizer | Hauptstraße | Zürich  | M7  | Huber    | Mattenweg | Basel   |

### Übung zu Mengenoperationen



# Führen Sie folgende Mengenoperation durch: (STUDENT ∩ INSTRUCTOR) x (INSTRUCTOR – STUDENT)

| STUDENT | FN      | LN      |
|---------|---------|---------|
|         | Susan   | Yao     |
|         | Ramesh  | Shah    |
|         | Johnny  | Kohler  |
|         | Barbara | Jones   |
|         | Amy     | Ford    |
|         | Jimmy   | Wang    |
|         | Ernest  | Gilbert |

| INSTRUCTOR | FNAME   | LNAME   |
|------------|---------|---------|
|            | John    | Smith   |
|            | Ricardo | Browne  |
|            | Susan   | Yao     |
|            | Francis | Johnson |
|            | Ramesh  | Shah    |



- Selektion von Zeilen aus einer Tabelle R mittels einer Formel F: σ<sub>F</sub> (R)
- Projektion der Tabelle R auf eine Menge von Merkmalen M: π<sub>M</sub> (R)
   (Ein Merkmal entspricht einem Attribute)
- Verbund zweier Tabellen R und S durch Prädikat P:
   R ⋈<sub>P</sub>S
- Division der Tabelle R durch die Teiltabelle S: R ÷ S



## **Selektion (Select):**

- Auswahl von Zeilen
- Auslesen von Datensätzen aus einer Tabelle, die bestimmten Kriterien entsprechen
- Extrahiert aufgrund einer Bedingung Tupel aus einer Relation.



### **Selektion (Select):**

Es sollen nur die Verkäufer angezeigt werden, deren Umsatz größer als 300 ist.

Tab. Verkäufer



Select VNr, Name, Umsatz from Verkäufer where Umsatz > 300



## Selektion (Select): Beispiele

 $\sigma_{\text{(Umsatz < 1000 AND Umsatz > 200)}}(\text{Verkäufer})$ 

 $\sigma_{\text{(Umsatz >= 100 OR Name="Meier")}} (Verkäufer)$ 



### **Projektion:**

- Selektion von Spalten
- Auswahl bestimmter Spalten aus der Originaltabelle zur Bildung einer neuen Tabelle
- Extrahiert Attribute aus einer Relation



### **Projektion:**

Es sollen nur die Verkäufernummer und der Name angezeigt werden.

|            |        |        | <u> </u>   | 1      |
|------------|--------|--------|------------|--------|
| <u>VNr</u> | Name   | Umsatz | <u>VNr</u> | Name   |
| 1          | Meier  | 210    | 1          | Meier  |
| 2          | Müller | 310    | 2          | Müller |
| 3          | Huber  | 180    | 3          | Huber  |
| 8          | Amsel  | 100    | 8          | Amsel  |
| 9          | Wicht  | 350    | 9          | Wicht  |

Tab. Verkäufer

Select VNr, Name from Verkäufer



## **Beispiel: Projektion**

### Mitarbeiter

| MNr | Name      | Strasse      | Ort     | ANr-Unt |
|-----|-----------|--------------|---------|---------|
| M1  | Meier     | Lindstrasse  | Liestal | A3      |
| M7  | Huber     | Mattenweg    | Basel   | A5      |
| M19 | Schweizer | Hauptstrasse | Zürich  | A6      |
| M4  | Becker    | Wasserweg    | Liestal | A6      |



## **Beispiel: Projektion**

 $\pi_{Ort}$  (Mitarbeiter)

| Ort     |
|---------|
| Liestal |
| Basel   |
| Zürich  |
| Liestal |



### **Beispiel: Projektion**

 $\pi_{Ort, ANr-Unt}$  (Mitarbeiter)

| Ort     | ANr-Unt   |  |
|---------|-----------|--|
| Liestal | A3        |  |
| Basel   | A5        |  |
| Zürich  | <b>A6</b> |  |
| Liestal | A6        |  |



## Verbund (Join):

- Verknüpfung verschiedener Tabellen, die ein gleiches oder ähnliches Attribut besitzen
- Hier werden zwei Relationen anhand von Vergleichen zwischen Attributwerten der Tupel miteinander verknüpft.
   Dabei ist einzige Bedingung, dass die JOIN-Attribute aus dem selben Wertebereich sein müssen.



### Natural Join (Natürlicher Verbund):

#### Tab. Mitarbeiter

| MNr | Name   | ProjNr |
|-----|--------|--------|
| 1   | Meier  | 1      |
| 2   | Müller | 1      |
| 3   | Huber  | 2      |
| 8   | Amsel  | 3      |
| 9   | Wicht  | 2      |

Tab. Projekte

| <u>PNr</u> | PName   |
|------------|---------|
| 1          | Planung |
| 2          | Kurs    |
| 3          | Fete    |

| MNr | Name   | PNr | PName   |
|-----|--------|-----|---------|
| 1   | Meier  | 1   | Planung |
| 2   | Müller | 1   | Planung |
| 3   | Huber  | 2   | Kurs    |
| 8   | Amsel  | 3   | Fete    |
| 9   | Wicht  | 2   | Kurs    |

Select MNr, Name, PNr, PName from Mitarbeier
Join Projekte on ProjNr=PNr;

Es sind auch beliebige Kombinationen aus Selektion, Projektion und Join möglich.



## Beispiel-Daten für allgemeinen Verbund:

### **Mitarbeiter**

| MNr | Name      | Straße      | Ort     | Unt |
|-----|-----------|-------------|---------|-----|
| M19 | Schweizer | Hauptstraße | Zürich  | A6  |
| M1  | Meier     | Lindstraße  | Liestal | A3  |
| M7  | Huber     | Mattenweg   | Basel   | A5  |
| M4  | Becker    | Wasserweg   | Liestal | A6  |

## **Abteilung**

| <u>ANr</u> | Bezeichnung |
|------------|-------------|
| A3         | Informatik  |
| A5         | Personal    |
| A6         | Finanz      |



### **Verbund (Join):**

## Mitarbeiter ⋈<sub>Unt=ANr</sub> Abteilung

| MNr | Name      | Straße      | Ort     | Unt | <u>ANr</u> | Bezeichnung |
|-----|-----------|-------------|---------|-----|------------|-------------|
| M19 | Schweizer | Hauptstraße | Zürich  | A6  | A6         | Finanz      |
| M1  | Meier     | Lindstraße  | Liestal | A3  | A3         | Informatik  |
| M7  | Huber     | Mattenweg   | Basel   | A5  | A5         | Personal    |
| M4  | Becker    | Wasserweg   | Liestal | A6  | A6         | Finanz      |

Eine Join-Operation mit dem Gleichheitsoperator (=) wird als *Equijoin* bezeichnet.



## **Equijoin (Verbund mit Gleichheitsoperator):**





### **Verbund (Join)**

Es gilt folgende Formel:

$$R \bowtie_P S = \sigma_P (R \times S)$$

Dies bedeutet, dass der Verbund von R und S mittels P durch das Kartesische Produkt von R und S plus anschließender Selektion mittels P definiert werden kann.



## Beispiel-Daten für natürlichen Verbund:

#### **Mitarbeiter**

| MNr | Name      | Straße      | Ort     | <u>ANr</u> |
|-----|-----------|-------------|---------|------------|
| M19 | Schweizer | Hauptstraße | Zürich  | A6         |
| M1  | Meier     | Lindstraße  | Liestal | <b>A</b> 3 |
| M7  | Huber     | Mattenweg   | Basel   | <b>A</b> 5 |
| M4  | Becker    | Wasserweg   | Liestal | A6         |

Unt wurde in ANr umbenannt!

## **Abteilung**

| <u>ANr</u> | Bezeichnung |
|------------|-------------|
| <b>A</b> 3 | Informatik  |
| A5         | Personal    |
| <b>A6</b>  | Finanz      |



## Natürlicher Verbund (Natural Join):

## Mitarbeiter \* Abteilung

| MNr | Name      | Straße      | Ort     | <u>ANr</u> | Bezeichnung |
|-----|-----------|-------------|---------|------------|-------------|
| M19 | Schweizer | Hauptstraße | Zürich  | A6         | Finanz      |
| M1  | Meier     | Lindstraße  | Liestal | A3         | Informatik  |
| M7  | Huber     | Mattenweg   | Basel   | A5         | Personal    |
| M4  | Becker    | Wasserweg   | Liestal | A6         | Finanz      |

Der natürliche Verbund verknüpft die Tabellen über gleiche Werte in gleich benannten Spalten und entfernt doppelte Spalten in der Ergebnisrelation.



## **Drei-Wege-Join:**

| Studenten |              |    |  |
|-----------|--------------|----|--|
| MatrNr    | Semester     |    |  |
| 24002     | Xenokrates   | 18 |  |
| 25403     | Jonas        | 12 |  |
| 26120     | Fichte       | 10 |  |
| 26830     | Aristoxenos  | 8  |  |
| 27550     | Schopenhauer | 6  |  |
| 28106     | Carnap       | 3  |  |
| 29120     | Theophrastos | 2  |  |
| 29555     | Feuerbach    | 2  |  |

| hören  |        |  |  |
|--------|--------|--|--|
| MatrNr | VorINr |  |  |
| 26120  | 5001   |  |  |
| 27550  | 5001   |  |  |
| 27550  | 4052   |  |  |
| 28106  | 5041   |  |  |
| 28106  | 5052   |  |  |
| 28106  | 5216   |  |  |
| 28106  | 5259   |  |  |
| 29120  | 5001   |  |  |
| 29120  | 5041   |  |  |
| 29120  | 5049   |  |  |
| 29555  | 5022   |  |  |
| 25403  | 5022   |  |  |

| Vorlesungen |                      |     |            |  |
|-------------|----------------------|-----|------------|--|
| VorINr      | Titel                | sws | gelesenVon |  |
| 5001        | Grundzüge            | 4   | 2137       |  |
| 5041        | Ethik                | 4   | 2125       |  |
| 5043        | Erkenntnistheorie    | 3   | 2126       |  |
| 5049        | Mäeutik              | 2   | 2125       |  |
| 4052        | Logik                | 4   | 2125       |  |
| 5052        | Wissenschaftstheorie | 3   | 2126       |  |
| 5216        | Bioethik             | 2   | 2126       |  |
| 5259        | Der Wiener Kreis     | 2   | 2133       |  |
| 5022        | Glaube und Wissen    | 2   | 2134       |  |
| 4630        | Die 3 Kritiken       | 4   | 2137       |  |



## Drei-Wege-Join (hier mit natural joins):

|        | (Studenten * hören) * Vorlesungen |          |        |                     |     |            |
|--------|-----------------------------------|----------|--------|---------------------|-----|------------|
| MatrNr | Name                              | Semester | VorlNr | Titel               | sws | gelesenVon |
| 26120  | Fichte                            | 10       | 5001   | Grundzüge           | 4   | 2137       |
| 25403  | Jonas                             | 12       | 5022   | Glaube und Wissen   | 2   | 2134       |
| 28106  | Carnap                            | 3        | 5052   | Wissenschftstheorie | 3   | 2126       |
|        |                                   |          |        |                     |     |            |



## Theta Join (Allgemeiner Verbund):

 Im Gegensatz zum natürlichen Verbund, bei dem die Werte gleicher Attribute übereinstimmen, werden beim Theta Join >, <, <>, >=, <= als Operatoren eingesetzt.</li>



## Theta Join (Allgemeiner Verbund):





## Theta Join (Allgemeiner Verbund):

Tabelle T1

| Р  | Q | R |
|----|---|---|
| 10 | A | 5 |
| 15 | В | 8 |
| 25 | A | 6 |

Tabelle T2

| Α  | В | С |
|----|---|---|
| 10 | В | 6 |
| 25 | С | 3 |
| 10 | В | 5 |

Lösen Sie folgende Operationen, d.h. geben Sie die resultierende Relation basierend auf obigen Daten an.

- T1  $\bowtie_{(T1.P = T2.A \text{ and } T1.R = T2.C)}$  T2
- T1 ⋈<sub>(T1.R < T2.C)</sub> T2



## **Inner Join (Innerer Verbund):**

- Alle bisher genannten Join-Operatoren werden auch Inner Joins genannt.
- Bei ihnen gehen die Tupel der Relation verloren, die keinen Join-Partner gefunden haben.

## Outer Join (Äußerer Verbund):

 Bei den äußeren Join-Operatoren bleiben auch partnerlose Tupel erhalten und werden mit Null-Werten "aufgefüllt".



## Left Outer Join (Linker äußerer Verbund):

Die Tupel der linken Relation bleiben erhalten.

## Right Outer Join (Rechter äußerer Verbund):

Die Tupel der rechten Relation bleiben erhalten.

## Full Outer Join (Vollständiger äußerer Verbund):

Die Tupel beider Relationen bleiben erhalten.



|                | L              |                |
|----------------|----------------|----------------|
| Α              | В              | С              |
| a <sub>1</sub> | b <sub>1</sub> | C <sub>1</sub> |
| $a_2$          | $b_2$          | $C_2$          |

|                | R              |                |
|----------------|----------------|----------------|
| C              | D              | Е              |
| C <sub>1</sub> | d <sub>1</sub> | e <sub>1</sub> |
| $c_3$          | $d_2$          | $e_2$          |

| Inner Join                    |   |   |   |   |  |  |
|-------------------------------|---|---|---|---|--|--|
| Α                             | В | С | D | Е |  |  |
| $a_1$ $b_1$ $c_1$ $d_1$ $e_1$ |   |   |   |   |  |  |

| Left Outer Join |                |                |                |                |  |  |  |
|-----------------|----------------|----------------|----------------|----------------|--|--|--|
| Α               | A B C D E      |                |                |                |  |  |  |
| a <sub>1</sub>  | b <sub>1</sub> | C <sub>1</sub> | d <sub>1</sub> | e <sub>1</sub> |  |  |  |
| $a_2$           | b <sub>2</sub> | $C_2$          | ı              | -              |  |  |  |

| Full Outer Join |                |                |                |                |  |
|-----------------|----------------|----------------|----------------|----------------|--|
| Α               | В              | С              | D              | Е              |  |
| a <sub>1</sub>  | b <sub>1</sub> | C <sub>1</sub> | d <sub>1</sub> | e <sub>1</sub> |  |
| $a_2$           | $b_2$          | $C_2$          | -              | -              |  |
| ı               | -              | $c_3$          | $d_2$          | $e_2$          |  |

| Right Outer Join                               |                |                |                |                |  |  |  |
|------------------------------------------------|----------------|----------------|----------------|----------------|--|--|--|
| Α                                              | A B C D E      |                |                |                |  |  |  |
| a <sub>1</sub>                                 | b <sub>1</sub> | C <sub>1</sub> | d <sub>1</sub> | e <sub>1</sub> |  |  |  |
| - c <sub>3</sub> d <sub>2</sub> e <sub>2</sub> |                |                |                |                |  |  |  |

(basierend auf einem natural Join)



#### **Division:**

- Werden zwei Relationen miteinander dividiert, ergibt die Ergebnisrelation alle Tupel, für die es eine dazugehörige Wertmenge in der anderen Relation gibt.
- Es treten alle Attribute im Ergebnis auf, außer dem Attribut durch das geteilt wurde.



## **Division:**

| R     |                |  |  |  |
|-------|----------------|--|--|--|
| М     | V              |  |  |  |
| $m_1$ | V <sub>1</sub> |  |  |  |
| $m_1$ | $V_2$          |  |  |  |
| $m_1$ | $V_3$          |  |  |  |
| $m_2$ | $V_2$          |  |  |  |
| $m_2$ | $V_3$          |  |  |  |



Gibt es die Möglichkeit, das in deutscher Sprache zu lesen?



#### **Division:**

| R     |                       |  |  |  |
|-------|-----------------------|--|--|--|
| М     | V                     |  |  |  |
| $m_1$ | V <sub>1</sub>        |  |  |  |
| $m_1$ | $V_2$                 |  |  |  |
| $m_1$ | <b>V</b> <sub>3</sub> |  |  |  |
| $m_2$ | $V_2$                 |  |  |  |
| $m_2$ | V <sub>3</sub>        |  |  |  |



Frage: "Für welches M (in R) existiert als V (in S)  $v_1$  und  $v_2$ ?"

Antwort: "Das existiert für m<sub>1</sub> und für kein anderes M."



#### **Division:**

| MNr | PNr |
|-----|-----|
| M1  | P1  |
| M1  | P2  |
| M1  | P4  |
| M2  | P1  |
| M2  | P2  |
| M4  | P2  |
| M4  | P4  |

R

Tabelle der den Projekten zugeordneten Mitarbeiter.



S

| MNr |
|-----|
| M1  |
| M4  |

PNr P2 P4

Mitarbeiter, die gleichzeitig an Projekten P2 und P4 arbeiten.



#### Abbildung 5.6: Ein möglicher relationaler Datenbankzustand entsprechend dem Schema FIRMA.

| ANGESTELLTER | VNAME    | INITIAL | NNAME   | SSN       | GDATUM     | ADRESSE                  | GESCHLECHT | GEHALT | SUPERSSN  | ABT |
|--------------|----------|---------|---------|-----------|------------|--------------------------|------------|--------|-----------|-----|
|              | John     | В       | Smith   | 123456789 | 1965-01-09 | 731 Fondren, Houston, TX | M          | 30000  | 333445555 | 5   |
|              | Franklin | T       | Wong    | 333445555 | 1955-12-08 | 638 Voss, Houston, TX    | M          | 40000  | 888665555 | 5   |
|              | Alicia   | J       | Zelaya  | 999887777 | 1968-07-19 | 3321 Castle, Spring, TX  | F          | 25000  | 987654321 | 4   |
|              | Jennifer | S       | Wallace | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX  | F          | 43000  | 888665555 | 4   |
|              | Ramesh   | K       | Narayan | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX | M          | 38000  | 333445555 | 5   |
|              | Joyce    | Α       | English | 453453453 | 1972-07-31 | 5631 Rice, Houston, TX   | F          | 25000  | 333445555 | 5   |
|              | Ahmad    | ٧       | Jabbar  | 987987987 | 1969-03-29 | 980 Dallas, Houston, TX  | M          | 25000  | 987654321 | 4   |
|              | James    | E       | Borg    | 888665555 | 1937-11-10 | 450 Stone, Houston, TX   | M          | 55000  | null      | 1   |

|           |                |           |           | ABT_STANDORT     | <b>ABTNUMMER</b> | ASTANDORT |
|-----------|----------------|-----------|-----------|------------------|------------------|-----------|
|           |                |           |           |                  | 1                | Houston   |
|           |                |           |           |                  | 4                | Stafford  |
| ABTEILUNG | ANAME          | ABTNUMMER | MGRSSN    | MGR_ANFANGSDATUM | 5                | Bellaire  |
|           | Research       | 5         | 333445555 | 1988-05-22       | 5                | Sugarland |
| İ         | Administration | 4         | 987654321 | 1995-01-01       | 5                | Houston   |
| ı         | Hoodovartore   | 1         | 000000000 | 1001 00 10       | 5.5              | 501       |

| ARBEITET_AN | ESSN      | PNR | STUNDEN |
|-------------|-----------|-----|---------|
|             | 123456789 | 1   | 32.5    |
|             | 123456789 | 2   | 7.5     |
|             | 666884444 | 3   | 40.0    |
|             | 453453453 | 1   | 20.0    |
|             | 453453453 | 2   | 20.0    |
|             | 333445555 | 2   | 10.0    |
|             | 333445555 | 3   | 10.0    |
|             | 333445555 | 10  | 10.0    |
|             | 333445555 | 20  | 10.0    |
|             | 999887777 | 30  | 30.0    |
|             | 999887777 | 10  | 10.0    |
|             | 987987987 | 10  | 35.0    |
|             | 987987987 | 30  | 5.0     |
|             | 987654321 | 30  | 20.0    |
|             | 987654321 | 20  | 15.0    |
|             | 888665555 | 20  | null    |

| PROJEKT | PNAME           | PNUMMER | PSTANDORT | ABTNR |
|---------|-----------------|---------|-----------|-------|
|         | ProductX        | 1       | Bellaire  | 5     |
|         | ProductY        | 2       | Sugarland | 5     |
|         | ProductZ        | 3       | Houston   | 5     |
|         | Computerization | 10      | Stafford  | 4     |
|         | Reorganization  | 20      | Houston   | 1     |
|         | Newbenefits     | 30      | Stafford  | 4     |

| ANGEHÖRIGER | ESSN      | ANGEHÖRIGER_NAME | GESCHLECHT | GDATUM     | GRAD     |
|-------------|-----------|------------------|------------|------------|----------|
|             | 333445555 | Alice            | F          | 1986-04-05 | DAUGHTER |
|             | 333445555 | Theodore         | М          | 1983-10-25 | SON      |
|             | 333445555 | Joy              | F          | 1958-05-03 | SPOUSE   |
|             | 987654321 | Abner            | M          | 1942-02-28 | SPOUSE   |
|             | 123456789 | Michael          | M          | 1988-01-04 | SON      |
|             | 123456789 | Alice            | F          | 1988-12-30 | DAUGHTER |
|             | 123456789 | Elizabeth        | F          | 1967-05-05 | SPOUSE   |

# Beispieldaten für die Division

Siehe Elmasri, Navathe (S. 144)



Wie heißen die Angestellten, die an *allen* Projekten arbeiten, an denen John Smith arbeitet?

(wird gemeinsam am Whiteboard entwickelt)

(siehe Elmasri, Navathe (S. 162))

#### 4.1.4 Änderungsoperationen



- Sind keine echten Bestandteile der Relationenalgebra.
- Bei echter RA werden durch die Kombination neue Relationen erstellt aber keine bestehenden verändert.
- Änderungsoperationen sind erfolgreich, um Werte in Tabellen zu ändern.



## Allgemein (unabhängig vom Datenmodell):

- Hinzufügen (Insert)
- Löschen (Delete)

## Weitere Möglichkeiten der Datenmanipulation:

Aktualisieren (Update)

Von allen genannten Operationen wird verlangt, dass ihre Ausführung die Integritätsbedingungen nicht verletzt!

## 4.2 Die Normalisierung relationaler Datenbanken



## Normalisierung



#### **Gute Datenbankschemata**

- ermöglichen die Herleitung aller benötigten Daten aus den Basisrelationen
- schränken die Möglichkeit inkonsistente Daten darzustellen weitgehend ein
- stellen die Daten möglichst redundanzfrei dar
- ermöglichen gute Performance bei Zugriffen
- verhindern Mutationsanomalien

#### 4.2.2 Mutationsanomalien



• Einfügeanomalien (Insert-Anomalie)

• Änderungsanomalien (Update-Anomalie)

Löschanomalien (Delete-Anomalie)



## Mutationsanomalien (Beispiel):

## Abteilungsmitarbeiter

| MNr | Name      | Straße      | Ort     | AbtNr | Bezeichnung |
|-----|-----------|-------------|---------|-------|-------------|
| M19 | Schweizer | Hauptstraße | Zürich  | A6    | Finanz      |
| M1  | Meier     | Lindstraße  | Liestal | A3    | Informatik  |
| M7  | Huber     | Mattenweg   | Basel   | A5    | Personal    |
| M4  | Becker    | Wasserweg   | Liestal | A6    | Finanz      |



## Einfügeanomalie:

- Falls man eine neue Abteilung z.B. A9 mit dem Namen "Marketing" definieren will, ist dies nur möglich, wenn man auch einen Mitarbeiter dafür erfasst, auch wenn es noch keinen gibt.
- Ein NULL-Wert für Mitarbeiter ist nicht möglich, da MNr Teil des Schlüssels ist.



## Änderungsanomalie:

 Soll z.B. die Bezeichnung der Abteilung A6 von "Finanz" in "Finance" geändert werden, muss die Änderung bei sämtlichen Mitarbeitertupeln der Abteilung vollzogen werden, obwohl sich nur ein einziger Sachverhalt ändert.



#### Löschanomalie:

- Eine Löschanomalie liegt vor, wenn eine Information ungewollt verloren geht.
- Wenn man z.B: in der Tabelle "Abteilungsmitarbeiter"
   Mitarbeiter "M1" löscht, geht die Abteilung "Informatik" mit der Abteilungsnummer "A3" verloren.

#### 4.2.3 Was ist Normalisierung?



- Grundlage ist das Konzept der Normalformen: Eine Relation befindet sich in einer Normalform, wenn es jeweils gewissen Bedingungen genügt.
- Streng genommen bedeutet "normalisiert", dass sich eine Relation in der ersten Normalform (1NF) befindet. Allerdings wird mit diesem Begriff oft auch (ungenau) eines der höheren Levels bezeichnet (insbesondere die dritte Normalform bzw. 3NF).
- Der Prozess der Normalisierung kann beschrieben werden als die schrittweise Reduktion (Zerlegung) einer Menge komplexer Relationen in einfachere Beziehungen durch Aufteilung der Attribute einer Tabelle auf mehreren Tabellen.
- Normalisierung ist stets umkehrbar, d.h. durch Normalisierung gehen keine Informationen verloren.

#### 4.2.4 Gründe für die Normalisierung



- Die Eliminierung von Redundanzen
- Das Verhindern von Anomalien, d.h. Modifikationen der Daten, die zur Inkonsistenz führen
- Integritätssicherung
- Generierung von "lesbaren Relationen", d.h. stabile und flexible Datenstrukturen, die bei Erweiterungen möglichst wenig geändert werden müssen
- Verringerung der Notwendigkeit zur Umstrukturierung, dadurch müssen die Anwendungsprogramme nicht so oft geändert werden
- verständliches Datenmodell für Benutzer und Programmierer
- Datenbankdesigner könnten auf Relationen in der "höchstmöglichen"
   Normalform abzielen. Aber oft genügt die dritte Normalform (oder weniger).

#### 4.2.5 Übersicht über die Normalformen



Gesamtheit aller Relationen



## 4.2.6 Nullte Normalform (0 NF)



| <u>PerNr</u> | Name | Wohnort | AbtNr | AbtName | ProjNr     | ProjName | Zeit       |
|--------------|------|---------|-------|---------|------------|----------|------------|
| 101          | Hans | Zürich  | 1     | Physik  | 11, 12     | A, B     | 60, 40     |
| 102          | Rolf | Basel   | 2     | Chemie  | 13         | С        | 100        |
| 103          | Urs  | Genf    | 2     | Chemie  | 11, 12, 13 | A, B, C  | 20, 50, 30 |
| 104          | Paul | Zürich  | 1     | Physik  | 11, 13     | A, C     | 80, 20     |

#### 4.2.6 Nullte Normalform (0 NF)



- Die Attributwerte sind nicht atomar, sondern zusammengesetzt oder ein Feld enthält mehrere verschiedene Werte eines Attribut-Typs.
- Die Relation lässt Anomalien zu.
- Abhilfe: Attribute mit nicht-atomaren Attributwerten werden in mehrere Attribute aufgeteilt, d.h. alle Wiederholungsgruppen werden entfernt und in eigenen Zeilen untergebracht.

#### 4.2.7 Erste Normalform (1NF)



## **Erste Normalform (1NF)**

#### 4.2.7 Erste Normalform (1NF)



Eine Relation ist in der **ersten Normalform (1NF)**, wenn alle ihre Attribute nur atomare Attributwerte besitzen.

(Streng betrachtet wird dies eigentlich bereits durch das relationale Modell erzwungen.)

## 4.2.7 Erste Normalform (1NF)



| <u>PerNr</u> | Name | Wohnort | AbtNr | AbtName | <u>ProjNr</u> | ProjName | Zeit |
|--------------|------|---------|-------|---------|---------------|----------|------|
| 101          | Hans | Zürich  | 1     | Physik  | 11            | Α        | 60   |
| 101          | Hans | Zürich  | 1     | Physik  | 12            | В        | 40   |
| 102          | Rolf | Basel   | 2     | Chemie  | 13            | С        | 100  |
| 103          | Urs  | Genf    | 2     | Chemie  | 11            | Α        | 20   |
| 103          | Urs  | Genf    | 2     | Chemie  | 12            | В        | 50   |
| 103          | Urs  | Genf    | 2     | Chemie  | 13            | С        | 30   |
| 104          | Paul | Zürich  | 1     | Physik  | 11            | Α        | 80   |
| 104          | Paul | Zürich  | 1     | Physik  | 13            | С        | 20   |



- Funktionale Abhängigkeit
- Voll funktionale Abhängigkeit
- Transitive Abhängigkeit



## Funktionale Abhängigkeit

(functional dependency, abgekürzt als "FD")

- In einer Relation R (A, B) ist das Attribut B von dem Attribut A funktional abhängig, falls zu jedem möglichen Wert des Attributs A genau ein Wert des Attributs B gehört, d.h. gleiche Attributwerte für A erzwingen gleiche Attributwerte für B.
- Bezeichnung:  $A \rightarrow B$

#### 4.2.8 Klassifizierung der Attribute nach Abhängigkeiten



#### Beispiel: Projekte haben einen Ansprechpartner

| PersNr | Name  | Wohnort     | <u>ProjektNr</u> | ProjektName  | Priorität |
|--------|-------|-------------|------------------|--------------|-----------|
| 4      | John  | Boston      | 2                | TopSecret    | 1         |
| 3      | Bob   | Los Angeles | 5                | Innovation   | 3         |
| 3      | Bob   | Los Angeles | 8                | Cobra        | 5         |
| 3      | Bob   | Los Angeles | 4                | Expansion    | 8         |
| 2      | Alice | Portland    | 1                | Optimization | 2         |
| 2      | Alice | Portland    | 3                | Firewall     | 4         |

- Funktionale Abhängigkeit: PersNr → Name ...gilt auch: Name → PersNr?
- Weitere Beispiele für FDs: PersNr → Name, Wohnort
   ProjektNr → ProjektName, Priorität
   ProjektNr → PersNr, Name, Wohnort



### Funktionale Abhängigkeiten

- beziehen sich auf die Semantik von Attributen für alle möglichen Instanzen (Datenbelegungen) einer Relation
- sie können also nur vom Datenbankdesigner aus dem Wissen über den Anwendungsbereich abgeleitet werden!
- Beispiel:

Eine weitere Person namens "John" ist Ansprechpartner für ein neues Projekt, das später eingefügt wird.



### Schlüssel als Spezialfall

Funktionale Abhängigkeit:

```
ProjektNr →
PersNr, Name, Wohnort, ProjektNr, ProjektName, Priorität
```

- X ist Schlüssel, wenn für ein Relationenschema R die funktionale Abhängigkeit X → R gilt und X minimal ist
- Ziel: alle gegebenen funktionalen Abhängigkeiten sollen in diese "Schlüsselabhängigkeiten" umgeformt werden, ohne dabei semantische Information zu verlieren.



## Vollständige funktionale Abhängigkeit

- Vollständig funktional abhängig bedeutet, dass das Nicht-Schlüsselattribut nicht nur von einem Teil der Attribute eines zusammengesetzten Schlüsselkandidaten funktional abhängig ist, sondern von allen Teilen.
- In einer Relation R (S1 / S2, A) ist das Attribut A von den Attributen (Schlüsseln) S1, S2 voll funktional abhängig, wenn A von den zusammengesetzten Attributen (S1, S2) funktional abhängig ist, nicht aber von einem einzelnen Attribut S1 oder S2.



## **Transitive Abhängigkeit**

- Transitive Abhängigkeit ist die funktionale Abhängigkeit eines Nicht-Schlüsselattributes einer Relation R von einem anderen Nicht-Schlüsselattribut in R.
- In einer Relation R (S, A, B) ist das Attribut B vom Attribut (Schlüssel) S (der auch ein zusammengesetzter Schlüssel sein kann) transitiv abhängig, wenn A von S funktional abhängig ist, S jedoch nicht von A, und B von A funktional abhängig ist.

### 4.2.9 Zweite Normalform (2NF)



### **Zweite Normalform (2NF)**

#### 4.2.9 Zweite Normalform (2NF)



- Eine Relation befindet sich in der Zweiten Normalform, wenn sie sich in der Ersten Normalform befindet und jedes Nicht-Schlüsselattribut vom gesamten Primärschlüssel (und nicht nur von Teilen des Schlüssels) voll funktional abhängig ist.
- Ein Attribut ist voll funktional abhängig von einem zusammengesetzten Schlüssel, falls es nicht funktional abhängig ist von einem Teil des Schlüssel (partielle Abhängigkeit).
- Hinweis: die 2NF ist nur dann zu verletzen, wenn eine Relation einen zusammengesetzten Schlüssel hat und mindestens ein Attribut besitzt, das nicht zum Gesamt-Schlüssel gehört.



# Partielle Abhängigkeit und ihre Elimination





### Ausgangssituation: Relation in der ersten Normalform

| <u>PerNr</u> | Name | Wohnort | AbtNr | AbtName | <u>ProjNr</u> | ProjName | Zeit |
|--------------|------|---------|-------|---------|---------------|----------|------|
| 101          | Hans | Zürich  | 1     | Physik  | 11            | Α        | 60   |
| 101          | Hans | Zürich  | 1     | Physik  | 12            | В        | 40   |
| 102          | Rolf | Basel   | 2     | Chemie  | 13            | С        | 100  |
| 103          | Urs  | Genf    | 2     | Chemie  | 11            | Α        | 20   |
| 103          | Urs  | Genf    | 2     | Chemie  | 12            | В        | 50   |
| 103          | Urs  | Genf    | 2     | Chemie  | 13            | С        | 30   |
| 104          | Paul | Zürich  | 1     | Physik  | 11            | Α        | 80   |
| 104          | Paul | Zürich  | 1     | Physik  | 13            | С        | 20   |

Warum ist diese Relation nicht in zweiter Normalform?

#### 4.2.9 Zweite Normalform (2NF)



### Zerlegung der Relation führt zur zweiten Normalform.

| <u>PerNr</u> | <u>ProjNr</u> | Zeit |
|--------------|---------------|------|
| 101          | 11            | 60   |
| 101          | 12            | 40   |
| 102          | 13            | 100  |
| 103          | 11            | 20   |
| 103          | 12            | 50   |
| 103          | 13            | 30   |
| 104          | 11            | 80   |
| 104          | 13            | 20   |

| <u>PerNr</u> | Name | Wohnort | AbtNr | AbtName |
|--------------|------|---------|-------|---------|
| 101          | Hans | Zürich  | 1     | Physik  |
| 102          | Rolf | Basel   | 2     | Chemie  |
| 103          | Urs  | Genf    | 2     | Chemie  |
| 104          | Paul | Zürich  | 1     | Physik  |

ProjNr ProjName
11 A
12 B
13 C

Entstanden durch Zerlegung aufgrund der Abhängigkeit PerNr→Name

Entstanden durch Zerlegung aufgrund der Abhängigkeit ProjNr→ProjName



### **Dritte Normalform (3NF)**



- Eine Tabelle ist in der dritten Normalform, falls sie in 2NF ist und kein Nichtschlüsselattribut von irgendeinem Schlüssel transitiv abhängig ist.
- Eine Tabelle ist in der dritten Normalform, wenn sie in der zweiten Normalform ist und keine funktionalen Abhängigkeiten zwischen Attributen erlaubt, die nicht als Schlüsselkandidaten in Frage kommen.



## Transitive Abhängigkeit und ihre Elimination

Schlüssel K





## Ausgangssituation: Relation in der zweiten Normalform

| <u>PerNr</u> | <b>ProjNr</b> | Zeit |
|--------------|---------------|------|
| 101          | 11            | 60   |
| 101          | 12            | 40   |
| 102          | 13            | 100  |
| 103          | 11            | 20   |
| 103          | 12            | 50   |
| 103          | 13            | 30   |
| 104          | 11            | 80   |
| 104          | 13            | 20   |

| <u>PerNr</u> | Name | Wohnort | AbtNr | AbtName |
|--------------|------|---------|-------|---------|
| 101          | Hans | Zürich  | 1     | Physik  |
| 102          | Rolf | Basel   | 2     | Chemie  |
| 103          | Urs  | Genf    | 2     | Chemie  |
| 104          | Paul | Zürich  | 1     | Physik  |

ProjNrProjName11A12B13C

Warum ist diese Relation nicht in dritter Normalform?



### Zerlegung der Relation führt zur dritten Normalform.

| <u>PerNr</u> | <u>ProjNr</u> | Zeit |
|--------------|---------------|------|
| 101          | 11            | 60   |
| 101          | 12            | 40   |
| 102          | 13            | 100  |
| 103          | 11            | 20   |
| 103          | 12            | 50   |
| 103          | 13            | 30   |
| 104          | 11            | 80   |
| 104          | 13            | 20   |

| <u>PerNr</u> | Name | Wohnort | AbtNr |
|--------------|------|---------|-------|
| 101          | Hans | Zürich  | 1     |
| 102          | Rolf | Basel   | 2     |
| 103          | Urs  | Genf    | 2     |
| 104          | Paul | Zürich  | 1     |

ProjNrProjName11A12B13C

Entstanden durch Zerlegung aufgrund der transitiven Abhängigkeit von PerNr→AbtNr und AbtNr→AbtName

| <u>AbtNr</u> | AbtName |
|--------------|---------|
| 1            | Physik  |
| 2            | Chemie  |

#### 4.2.11 Zusammenfassung



### **Erste Normalform**

**Zweite Normalform** 

**Dritte Normalform** 

weitere Normalformen...

Keine transitiven Abhängigkeiten

Nichtschlüsselmerkmale sind voll vom Schlüssel abhängig

Keine Wiederholungsgruppen zugelassen

#### 4.2.12 Beurteilung der Normalisierung



- Durch die Zerlegung von Tabellen wird für manche Queries dadurch ein zusätzlicher Join notwendig.
- Dies beeinträchtigt die Performance!!!
- Folglich müssen bei sehr großen Datenbeständen die Gründe für eine Zerlegung genau betrachtet werden, um die potenziellen Performanceverluste aufzuwiegen.

### Folge:

 Unvermeidbarer Zielkonflikt zwischen der Forderung nach guter Performance und Redundanzfreiheit

#### 4.2.12 Beurteilung der Normalisierung



- Nachteile der Normalisierung
  - Normalisierungsaufwand
  - Schlechtere Laufzeiten bei der Zusammenfassung (Join) mehrerer Relationen
- Beim Datenbankenentwurf sind somit die Kosten und Nutzen der Normalisierung abzuwägen
- Normalisierung bis zur 3NF ist in der Regel ausreichend