13. Sea
$$\ell^2$$
 el espacio vectorial de todas las sucesiones de cuadrado sumable:

$$\ell^2 = \left\{ a = (a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \colon \sum_{n=1}^{\infty} |a_n|^2 < +\infty \right\}.$$

Para $a \in \ell^2$ definimos

$$||a||_2 = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}.$$

- (a) ¿Es compacta la bola cerrada de centro 0 y radio 1 de ℓ^2 ?
- (b) Probar que $\gamma:\ell^2\to\mathbb{R}$ dada por

$$\gamma(a) = \sum_{n=1}^{\infty} \frac{a_n}{n}$$

es una funcional lineal continua.

Sugerencia: usar la desigualdad de Cauchy-Schwarz.

6 B10	(1)= Pan Eld Naule <19
NE	ba es compata
Consa	leund
Sn	$0 = (1/\sqrt{1}, 0,, 0,) = X' \in B(0, 1)$ $(1/\sqrt{2}, 1/\sqrt{2}, 0,, 0,) = X^2 \in B(0, 1)$
	$(1/3,1/3,1/3,0,) = \times^3 \in B(0,1)$
	$(//\sqrt{N},/\sqrt{N},/\sqrt{N},0,1)=X^N \in \overline{B}(0,1)$

