14

15

parameter.

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

(Cancelled) 1 1. (Currently Amended) The method of claim [[1]] 5, wherein the components 2. 1 include a second packet-based network, the method further comprising assigning performance 2 parameters for the second packet-based network. 3 3. (Currently Amended) The method of claim [[1]] 5, wherein assigning the 1 2 performance parameters further includes assigning a packet delay parameter. 4. (Currently Amended) The method of claim [[1]] 5, wherein assigning the 1 performance parameters <u>further</u> includes assigning a packet loss parameter. 2 (Currently Amended) The method of claim 1, A method of determining 5. 1 2 performance of a communications system, comprising: storing representations of plural components of the communications system, the 3 components including a first packet-based network and at least one network device; 4 assigning performance parameters for each of the components, the performance 5 parameters comprising at least a first performance parameter and a second performance 6 7 parameter; combining the first performance parameters of respective components to derive an 8 9 overall first performance parameter; combining the second performance parameters of respective components to derive 10 11 an overall second performance parameter; and deriving a quality indication of the communications system based at least on the 12 13 overall first and second performance parameters,

wherein assigning the performance parameters includes assigning a packet jitter

1	6.	(Currently Amended) The method of claim [[1]] 5, wherein storing the
2	representation	ns includes storing models of the plural components, the models capable of being
3	linked to crea	te a representation of the communications system.
1	7.	(Original) The method of claim 6, further comprising providing a graphical user
2	interface in w	hich the models may be manipulated to create the representation of the
3	communication	ons system.
1	8.	(Currently Amended) The method of claim 1, A method of determining
2	performance	of a communications system, comprising:
3		storing representations of plural components of the communications system, the
4	components i	ncluding a first packet-based network and at least one network device;
5		assigning performance parameters for each of the components, the performance
6	parameters co	omprising at least a first performance parameter and a second performance
7	parameter;	
8		combining the first performance parameters of respective components to derive an
9	overall first p	erformance parameter;
10		combining the second performance parameters of respective components to derive
11	an overall sec	cond performance parameter; and
12		deriving a quality indication of the communications system based at least on the
13	overall first a	nd second performance parameters,
14		wherein deriving the quality indication includes calculating an E-model quality
15	rating value.	
1	9.	(Currently Amended) The method of claim [[1]] 5, further comprising combining
2	the representa	ations of the plural components to create the communications system.
1	10.	(Cancelled)
1	11.	(Currently Amended) The apparatus of claim 35, wherein the one or more second
2	performance	parameters include [[a]] packet [[delay]] delays.

- 1 12. (Original) The apparatus of claim 11, wherein the packet delay of each network component is treated as an independent variable.
- 1 13. (Currently Amended) The apparatus of claim 12, wherein the controller
 2 calculates an overall packet delay of the communications system by summing the packet delays
 3 of the plural components, the overall second performance parameter comprising the overall
 4 packet delay.
- 1 14. 15. (Cancelled)
- 1 16. (Previously Presented) The apparatus of claim 35, wherein the representation of 2 the packet-based network includes a representation of a collection of links and routers.
- 1 17. (Previously Presented) The apparatus of claim 35, wherein the representation of 2 the packet-based network includes a representation of an Internet Protocol network.
- 1 18. (Previously Presented) The apparatus of claim 35, wherein the packet-based 2 network includes a public network, and wherein the storage device further contains a 3 representation of a local network.

Appln. Serial No. 09/557,451 Amendment Dated December 21, 2004 Reply to Office Action Mailed September 28, 2004

1	19. (Currently Amended) The apparatus of claim 35, An apparatus for determining
2	performance of a communications system, comprising:
3	a storage device containing representations of plural components of the
4	communications system, the plural components including a packet-based network and at least
5	one network device, each of the components being assigned one or more performance
6	parameters; and
7	a controller to calculate a predicted quality of the communications system based
8	on the one or more performance parameters, wherein the predicted quality comprises a value that
9	is representative of a subjective perceived quality of communications in the communications
10	system by a user,
11	wherein the performance parameters comprise at least first and second
12	performance parameters;
13	the controller to combine the first performance parameters of respective
14	components to derive an overall first performance parameter, and the controller to combine the
15	second performance parameters of respective components to derive an overall second
16	performance parameter, the controller to calculate the predicted quality based at least on the
17	overall first performance parameter and the overall second performance parameter,
18	wherein the storage device further contains a representation of a circuit-switched
19	device.

Appln. Serial No. 09/557,451 Amendment Dated December 21, 2004 Reply to Office Action Mailed September 28, 2004

1	20. (Currently Amended) An article including one or more machine-readable storage
2	media containing instructions for modeling performance of a communications system, the
3	instructions when executed causing a controller to:
4	store models of plural components of the communications system, the plural
5	components including a packet-based network and at least one network device, the stored model
6	containing at least first performance parameters and second performance parameters associated
7	with respective components, wherein the first performance parameters include packet jitter
8	parameters;
9	combine the models to represent the communications system;
10	combine the first performance packet jitter parameters of respective components
11	to derive an overall first performance packet jitter parameter;
12	combine the second performance parameters of respective components to derive
13	an overall second performance parameter; and
14	determine a quality level of the communications system using at least the overall
15	first performance packet jitter parameter and overall second performance parameter.

1	21.	(Currently Amended) The article of claim 20; All article including one of more
2	machine-read	lable storage media containing instructions for modeling performance of a
3	communicati	ons system, the instructions when executed causing a controller to:
4		store models of plural components of the communications system, the plural
5	components i	ncluding a packet-based network and at least one network device, the stored models
6	containing at	least first performance parameters and second performance parameters associated
7	with respective	ve components;
8		combine the models to represent the communications system;
9		combine the first performance parameters of respective components to derive an
10	overall first p	performance parameter;
11		combine the second performance parameters of respective components to derive
12	an overall sec	cond performance parameter; and
13		determine a quality level of the communications system using at least the overall
14	first performa	ance parameter and overall second performance parameter,
15		wherein the instructions when executed cause the controller to derive an E-model
16	rating using t	he stored models.
1	22.	(Cancelled)
1	23.	(Original) The article of claim 20, wherein the performance parameters are
2	associated wi	th communications of packets through the communications system.
1	24.	(Currently Amended) The article of claim 23, wherein the second performance
2	parameters in	clude at least one of a packet delay[[,]] and packet loss, and packet jitter.
1	25.	(Cancelled)
1	26.	(Currently Amended) The article of claim 20, wherein the second performance
2	parameters in	sclude at least one of a packet delay , packet jitter, and packet loss.

Appln. Serial No. 09/557,451 Amendment Dated December 21, 2004 Reply to Office Action Mailed September 28, 2004

27. (Previously Presented) A data signal embodied in a carrier wave and including one or more code segments containing instructions for predicting performance of a communications system, the instructions when executed causing a controller to:

assign performance parameters to each of plural components in the communications system, the plural components including a packet-based network, the performance parameters comprising packet loss, packet jitter, and packet delay; and derive a quality indication based on the packet losses, packet jitters, and packet delays of the plural components.

28. (Cancelled)

1	29.	(Currently Amended) The method of claim 28, A method of determining
2	performance of	of a communications system, comprising:
3		storing representations of plural components of the communications system, the
4	components i	ncluding a first packet-based network and at least one network device;
5		assigning performance parameters for each of the components, the performance
6	parameters co	emprising at least a first performance parameter and a second performance
7	parameter;	
8		combining the first performance parameters of respective components to derive an
9	overall first p	erformance parameter;
10		combining the second performance parameters of respective components to derive
11	an overall sec	ond performance parameter; and
12		deriving a quality indication of the communications system based at least on the
13	overall first a	nd second performance parameters,
14		wherein combining the first performance parameters comprises combining packet
15	delays of resp	ective components to derive an overall packet delay, and wherein combining the
16	second perfor	mance parameters comprises combining packet losses of respective components to
17	derive an ove	rall packet loss.
18		wherein the performance parameters further comprise packet jitter, the method
19	further compr	ising combining the packet jitters of respective components to derive an overall
20	packet jitter,	
21		wherein deriving the quality indication is further based on the overall packet jitter.

1	30. (Currently Amended) the method of claim 1, further comprising A method of
2	determining performance of a communications system, comprising:
3	storing representations of plural components of the communications system, the
4	components including a first packet-based network and at least one network device;
5	assigning performance parameters for each of the components, the performance
6	parameters comprising at least a first performance parameter and a second performance
7	parameter;
8	combining the first performance parameters of respective components to derive an
9	overall first performance parameter;
10	combining the second performance parameters of respective components to derive
11	an overall second performance parameter;
12	deriving a quality indication of the communications system based at least on the
13	overall first and second performance parameters; and
14	assigning an audio CODEC type parameter to at least one of the components,
15	wherein deriving the quality indication is further based on the audio CODEC type
16	parameter.
1	31. (Original) The method of claim 1, further comprising assigning at least one of a
1 2	signal loss parameter, echo parameter, and noise parameter to at least another one of the
3	
<i>3</i>	components, wherein deriving the quality indication is further based on the at least one of the
5	signal loss parameter, echo parameter, and noise parameter.
3	signal loss parameter, echo parameter, and hoise parameter.
1	32. (Currently Amended) The method of claim [[1]] 5, wherein deriving the quality
2	indication comprises deriving a mean opinion score (MOS).
1	33. (Currently Amended) The method of claim [[1]] 5, wherein deriving the quality
2	indication comprises deriving a value that is representative of a subjective perceived quality of
3	communications in the communications system by a user.

1	34. (Currently Amended) The apparatus of claim 35, An apparatus for determining
2	performance of a communications system, comprising:
3	a storage device containing representations of plural components of the
4	communications system, the plural components including a packet-based network and at least
5	one network device, each of the components being assigned one or more performance
6	parameters; and
7	a controller to calculate a predicted quality of the communications system based
8	on the one or more performance parameters, wherein the predicted quality comprises a value that
9	is representative of a subjective perceived quality of communications in the communications
10	system by a user,
11	wherein the performance parameters comprise at least first and second
12	performance parameters;
13	the controller to combine the first performance parameters of respective
14	components to derive an overall first performance parameter, and the controller to combine the
15	second performance parameters of respective components to derive an overall second
16	performance parameter, the controller to calculate the predicted quality based at least on the
17	overall first performance parameter and the overall second performance parameter,
18	wherein the value comprises at least one of an E-model quality rating value, mean
19	opinion score (MOS), percentage of users that view a connection as good or better, percentage of
20	users that view a connection as poor or worse, and percentage of connections that users may
21	terminate early due to quality problems.

i	35. (Currently Amended) An apparatus for determining performance of a
2	communications system, comprising:
3	a storage device containing representations of plural components of the
4	communications system, the plural components including a packet-based network and at least
5	one network device, each of the components being assigned one or more performance
6	parameters; and
7	a controller to calculate a predicted quality of the communications system based
8	on the one or more performance parameters, wherein the predicted quality comprises a value that
9	is representative of a subjective perceived quality of communications in the communications
10	system by a user,
11	wherein the performance parameters comprise at least first and second
12	performance parameters;
13	the controller to combine the first performance parameters of respective
14	components to derive an overall first performance parameter, and the controller to combine the
15	second performance parameters of respective components to derive an overall second
16	performance parameter, the controller to calculate the predicted quality based at least on the
17	overall first performance parameter and the overall second performance parameter, wherein the
18	first performance parameters comprise packet jitter parameters.
1	36. (Previously Presented) The article of claim 20, wherein the quality level
2	comprises a mean opinion score (MOS).
2	comprises a mean opinion score (14105).
1	37. (Previously Presented) The data signal of claim 27, wherein deriving the quality
2	indication comprises deriving at least one of an E-model quality rating and a mean opinion score
3	(MOS).