Predicting Employees Attrition

Shereef Bankole

Background Statement

Attrition is a common problem in all businesses

HR and top executive are very much concerned about keeping their employees

It is highly imperative to unravel the factors that leads to employees' turnover and put in place a cost effect retentive plan

Here predictive model was performed and evaluated on employee attrition using openly available IBM HR Data

Procedures

Data loading

Data inspection and cleaning

Brief statistical analysis

Exploration data analysis –generating several plots

Data pre-processing-

Checking for sample imbalance

•Employing SMOTE and ADASYN
Turning categorical variables to numeric variables

Model Development and Selection

Model Evaluation

Data loading

Load Data

raw_data=pd.read_csv('IBM_HR_Employee_Attrition.csv')
raw_data.head()

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7	

5 rowe v 25 columns

Data inspection and cleaning

raw_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
                            1470 non-null int64
Age
Attrition
                             1470 non-null object
BusinessTravel
                             1470 non-null object
                             1470 non-null int64
DailyRate
                            1470 non-null object
Department
DistanceFromHome
                            1470 non-null int64
Education
                            1470 non-null int64
EducationField
                            1470 non-null object
EmployeeCount
                            1470 non-null int64
EmployeeNumber
                            1470 non-null int64
EnvironmentSatisfaction
                            1470 non-null int64
Gender
                            1470 non-null object
HourlyRate
                            1470 non-null int64
JobInvolvement
                            1470 non-null int64
JobLevel
                            1470 non-null int64
JobRole
                             1470 non-null object
JobSatisfaction
                            1470 non-null int64
MaritalStatus
                            1470 non-null object
                            1470 non-null int64
MonthlyIncome
MonthlyRate
                            1470 non-null int64
NumCompaniesWorked 11ac3c2aa2581470 non-null int64
```

Brief statistical analysis

- EDA is key to performing modelling.
- More than half of the employees live 10 miles away from the office
- Two groups are identified based on environment satisfaction
- Job satisfaction and relationship follow similar trend as environment satisfaction.
- More than half of the employees earn less than \$10000 monthly
- All the employee received good performance rating
- More than half have worked in the company for less than 10 years
- Many were promoted within the last two years

- Employees attrition is not related to job satisfaction.
- Employee who have worked in the company for less than 15 years are more likely to leave.
- Lower income earners are more susceptible to attrition

Employee attrition by travelling and department

- Employee attrition by job level and job role
- Employee in more junior role are more prone to leave for another company

Data Pre-processing

- Left: checking for data imbalance
- Right: turning categorical variables to numeric variables.

Model selection and development

Train Test Split

Oversampling using SMOTE and ADASYN

Train 3 Models

- Logistic Regression
- Random Forest
- 3. Gradientboosting
 - SMOTE method of adjusting data imbalance performed better than ADASYN with logistic model.
 - Adjusted data with SMOTE were trained further with other models

SMOTE (Synthetic Minority Over-Sampling Technique) ADASYN (Adaptive Synthetic Sampling method)

Model Evaluation

---Gradient Boosting Model---Gradient Boosting AUC = 0.64

	precision	recall	f1-score	support
0	0.88	0.98	0.93	370
1	0.75	0.30	0.42	71
accuracy			0.87	441
macro avg	0.81	0.64	0.68	441
weighted avg	0.86	0.87	0.85	441

---Logistic Regression Model---

Logistic Regression AUC = 0.76

		0.70	CDDION ACC	rogratic week
support	f1-score	recall	precision	
370	0.85	0.78	0.94	0
71	0.51	0.75	0.39	1
441	0.77			accuracy
441	0.68	0.76	0.67	macro avg
441	0.80	0.77	0.85	weighted avg

---Random Forest Model---Random Forest AUC = 0.66

kandom Fore	precision	recall	f1-score	support
(0.89	0.99	0.93	370
:	0.83	0.34	0.48	71
accuracy	y		0.88	441
macro av	g 0.86	0.66	0.71	441
weighted av	g 0.88	0.88	0.86	441

 Top left table: Gradient boosting evaluation metrics

Top left table: Random Forest metrics

Bottom left: Logistic regression

Model Evaluation

- Top table: ROC for the 3 models
- Bottom table: features importances

