רשימת שקילויות

שני פסוקים שקולים אם בכל מבנה שמפרש אותם ערך האמת יהיה זהה, אם קיים מבנה שבו ערך האמת של שניהם שונה הם לא שקולים.

<u>שקילות</u>	<u>כותרת</u>
$\neg(\neg A)\equiv A$	שלילה כפולה
$A \lor \neg A \equiv T$	חוקי ההיפוך
$A \land \neg A \equiv F$	
$A \lor A \equiv A$	חוקי הכפילות
$A \land A \equiv A$	*
$A \lor T \equiv T$	חוקי האמת
$A \wedge T \equiv A$	
$A \lor F \equiv A$	1
$A \wedge F \equiv F$	
$A \lor B \equiv B \lor A$	חוקי החילוף
$A \land B \equiv B \land A$	
$A \lor (B \lor C) \equiv (A \lor B) \lor C$	חוקי הקיבוץ
$\equiv A \lor B \lor C$	
$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$	
$\equiv A \land B \land C$	
$A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$	חוקי הפילוג
$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$	
$A \land (A \lor B) \equiv A$	חוקי הספיגה (הרוב קובע)
$A \lor (A \land B) \equiv A$	
$A \wedge (\neg A \vee B) \equiv A \wedge B$	
$A \lor (\neg A \land B) \equiv A \land B$	
$\neg (A \lor B) \equiv (\neg A \land \neg B)$	חוקי דה-מורגן
$\neg (A \land B) \equiv (\neg A \lor \neg B)$	
$A \rightarrow B \equiv \neg A \lor B \equiv \neg \beta \rightarrow \neg A$	חוקי האמוז
$\neg (A \rightarrow B) \equiv \neg (\neg A \lor B)$	
$\equiv (A \land \neg B)$	
$A \leftrightarrow B \equiv (A \to B) \land (B \to A)$	חוקי האמום
$\equiv (\neg A \lor B) \land (\neg B \lor A)$	

$\equiv (A \land B) \lor (\neg A \land \neg B)$	
$\neg (A \leftrightarrow B) \equiv \neg ((A \rightarrow B) \land (B \rightarrow A))$	
$\equiv (A \lor B) \land (\neg A \lor \neg B)$	
$\equiv (A \land \neg B) \lor (\neg A \land B)$	
$\neg \exists x(A) \equiv \forall x(\neg A)$	שלילת כמתים
$\neg \forall x(A) \equiv \exists x(\neg A)$	
$[\exists x(A)] \land B \equiv \exists x[A \land B]$	לא B-כמתים - כאשר A מכיל את x ו
$[\exists x(A)] \lor B \equiv \exists x[A \lor B]$	
$[\forall x(A)] \land B \equiv \forall x[A \land B]$	
$[\forall x(A)] \lor B \equiv \forall x[A \lor B]$	N V
$\exists x(A \lor B) \equiv \exists x(A) \lor \exists x(B)$	x מכילוּת אָת B-ו B-ו מכילוּת אָת B
$\forall x(A \land B) \equiv \forall x(A) \land \forall x(B)$	"משפט המקל והמחמיר" - משפט למקלים (E ו-∨),
	ומשפט למחמירים (∀ ו-∧).
$\exists x(A \land B) \not\equiv \exists x(A) \land \exists x(B)$	שימו לב שפסוקים הללו אינם שקולים:
$\forall x(A \lor B) \not\equiv \forall x(A) \lor \forall x(B)$	1

1975年7月日日本日日日日子書館

החלפת משתנה בכמתים:

בנוסחא (x(A) לתן להחליף את x ב-y, בהנחה ש-x מופיע ב-A רק כמשתנה חופשי ו-y לל לא מופיע ב-A (אין צׄרך לְזכֹר את ההנחה, אלא רק להבין את הרעיון ולתרגל). אותו ב-A (אין צׄרך לְזכֹר את ההנחה, אלא רק להבין את הרעיון ולתרגל). אותו דבר לגבי הכמת ∃. משפט זה יכול לעזור לנו כאשר יש לנו נוסחא עם שני פסוקים נפרדים אחד עם x והשני עם y, או שניהם עם x, נוכל לפשט את הנוסחא בכך שנחליף את אחד המשתנים ולאחד בין הנוסחאות אם מתאים לאחת מהשקילויות לעיל.

$$\forall x[s(x)] \land \forall y[r(y)] \equiv \forall x[s(x)] \land \forall x[r(x)] \equiv \forall x[s(x) \land r(x)]$$
 (1) דוגמאות: (1)

$$\forall x[S(x)] \land \exists x[R(x)] \equiv \forall x[S(x) \land \exists xR(x)] \equiv \forall x\exists y[S(x) \land R(y)] \tag{2}$$

Scanned with CamScanner