Lecture Summary: Continuity for Multivariable Functions

Source: Lec57_corrected.pdf

Key Points

- Limits for Scalar-Valued Multivariable Functions (Recap):
 - A scalar function $f: D \subset \mathbb{R}^n \to \mathbb{R}$ has a limit L at $\vec{a} \in \mathbb{R}^n$ if for all sequences $\{\vec{a}_n\} \subset D$ converging to $\vec{a}, f(\vec{a}_n) \to L$.
 - If the limit exists, it is independent of the path taken to approach \vec{a} .
- Limits for Vector-Valued Multivariable Functions:
 - A vector-valued function $f: D \subset \mathbb{R}^n \to \mathbb{R}^m$ has a limit $\vec{L} = (L_1, L_2, \dots, L_m)$ at $\vec{a} \in \mathbb{R}^n$ if:

$$\lim_{\vec{x} \to \vec{d}} f_i(\vec{x}) = L_i \quad \text{for each component } f_i.$$

- If any component's limit does not exist, the limit of f does not exist.

• Limits Along a Curve:

- Consider a scalar function $f: D \subset \mathbb{R}^n \to \mathbb{R}$ and a curve C passing through \vec{a} .
- The limit of f at \vec{a} along C exists and equals L if for every sequence $\{\vec{a}_n\} \subset C$ converging to \vec{a} , $f(\vec{a}_n) \to L$.
- If limits along different curves yield different values, the global limit at \vec{a} does not exist.

• Continuity of a Multivariable Function:

– A function $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is continuous at $\vec{a} \in D$ if:

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = f(\vec{a}).$$

- This is equivalent to saying that for every sequence $\{\vec{a}_n\} \subset D$ converging to $\vec{a}, f(\vec{a}_n) \to f(\vec{a})$.
- A function is continuous on D if it is continuous at every point $\vec{a} \in D$.

• Examples:

- **Example 1:** For $f(x,y) = x^2 + y^2$, the limit at (0,0) exists and equals 0. The function is continuous everywhere.
- **Example 2:** For $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$:
 - * Along x-axis (y = 0): $\lim_{(x,y)\to(0,0)} f(x,y) = 1$.
 - * Along y-axis (x = 0): $\lim_{(x,y)\to(0,0)} f(x,y) = -1$.

The global limit does not exist due to path dependence.

- **Example 3:** For $f(x,y) = \frac{xy}{x^2+y^2}$:
 - * Along x-axis (y = 0) and y-axis (x = 0): $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

* Along y = x: $\lim_{(x,y)\to(0,0)} f(x,y) = \frac{1}{2}$.

Since limits along different paths do not match, the global limit does not exist.

- Connection Between Curve Limits and Global Limits:
 - The global limit $\lim_{\vec{x}\to\vec{a}} f(\vec{x}) = L$ exists if and only if:

 $\lim_{\vec{x} \to \vec{a}} f(\vec{x})$ along every curve C passing through \vec{a} equals L.

- If limits along any two curves differ, the global limit does not exist.

Simplified Explanation

What Are We Studying? How to determine if a multivariable function has a limit or is continuous at a

Key Points: - A limit exists if the function approaches the same value along all paths to a point. -Continuity requires the function's limit at a point to equal its value at that point. **Example:** For $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$, limits along different axes differ, so the limit does not exist globally.

Conclusion

In this lecture, we:

- Defined limits for scalar- and vector-valued multivariable functions.
- Introduced continuity for multivariable functions.
- Explored examples to illustrate limits and continuity.

Understanding limits and continuity is foundational for analyzing multivariable functions in higherdimensional calculus.