Analýza toku dát

Ján Šturc

O čom to je?

- Počas kompilácie usudzujeme o vlastnostiach a chovaní sa programu počas behu.
- Čo nás zaujíma
 - Vlastnosti, ktoré musia platiť vždy (invarianty) napr.:
 - V príkaze x:= y + z je y vždy rovné 1.
 - Pointer p vždy ukazuje do poľa a.
 - Príkaz S sa nikdy nevykoná.
 - Vlastnosti, ktoré platia často napr.:
 - Spravidla sa príkaz S₁ vykoná častejšie ako príkaz S₂.
 - Vlastnosti, ktoré sa musia aspoň raz splniť počas vykonávania programu (intermitenty) napr.:
 - Počas vykonávania programu premenná x niekedy nadobudne hodnotu a.

Graf toku riadenia (blokový diagram)

- Uzly reprezentujú základné bloky
 - Základný blok je postupnosť inštrukcií obsahujúca najviac jeden skok ako poslednú inštrukciu.
 - Všetky vstupy do základného bloku vedú cez jeho hlavičku (prvú inštrukciu)
 - Základný blok je (má byť) maximálny.
 - Dôsledok: Ak sa základný blok začne vykonávať vykoná sa celý
- Hrany reprezentujú vlastný tok riadenia (skoky a vetvenie)
 - Vzhľadom na definované inštrukcie je možné len binárne vetvenie.
 - Pri zovšeobecnených úlohách obmedzenie na vetvenie neplatí.

Príklad grafu toku riadenia

```
into add(n, k) {
     s = 0; a = 4; i = 0;
     if (k == 0) b = 1;
     else b = 2;
     while (i < n) {
         s = s + a*b;
         i = i + 1;
     return s;
if (k == 0) return 4*n;
 else return 8*n;
```


Optimalizácia

Zaujímavé body grafu toku riadenia

- Vstup do programu n₀
- Body vetvenia (split)
 - succ(n) = množina všetkých následníkov
 - Vzhľadom na definíciu inštrukcie je stupeň týchto bodov vždy dva
- Body spájania (merge)
 - pred(n) = množina všetkých predchodcov
 - Môžu byť ľubovolného stupňa.
- Výstup z programu
 - $-n_{\mathsf{F}}$
 - Eventuálne môžeme mať aj množinu finálnych uzlov

Problémy toku dát

- V čase kompilácie usudzujeme o hodnotách premenných a výrazov v čase behu.
- Vo všetkých zaujímavých bodoch chceme vedieť
 - Z ktorého príkazu priradenia pochádza hodnota premennej v tomto bode ?
 - Ktorá premenná obsahuje hodnoty, ktoré nemajú po tomto bode použitie? (mŕtve premenné)
 - Aké sú možné hodnoty (range) premenných v tomto bode ?

Hlavná myšlienka

- Reprezentovať požadovanú informáciu hodnotami z úplného zväzu ℒ = <L, □, □, ⊤, ⊥; ⊑>.
- Popísať transformácie pri vykonávaní programu zväzovými operáciami.
 - Pre každý blok definujeme prenosovú funkciu f_B: L → L.
- Ukázať, že tieto transformácie sú monotónne.
- Simuláciou behu programu
 - Doprednou (forward), alebo
 - Reverznou (backward)
- Určiť pevný bod
 - Minimálny teoreticky sú možné aj iné pevné body.
- Pre väčšinu úloh je tento zväz priestor booleovských vektorov (hyperkocka) s operáciami a čiastočným usporiadaním po bitoch.

Prenosové funkcie

- Prenosové funkcie charakterizujú účinok bloku B na informáciu o toku dát
- Trieda prenosových funkcií F
 - Musí obsahovať identickú funkciu (efekt prázdneho príkazu)
 - Byť uzavretá vzhľadom na kompozíciu (zložený príkaz)
 ∀(f,g∈F)(h = f(g(x))∈F)
 - Všetky funkcie v F musia byť monotónne $\forall (f \in F)(f(x) \sqsubseteq x) \ v \ \forall (f \in F)(x \sqsubseteq f(x))$
 - Poslednú podmienku možno oslabiť na existenciu pevného bodu.
- Často bývajú tieto funkcie distributívne
- Distributívnosť implikuje monotónnosť

```
x \sqsubseteq y znamená x \sqcup y = y. Teda f(x \sqcup y) = f(y). Podľa distrubutívnosti f(x \sqcup y) = f(x) \sqcup f(y). Teda f(x) \sqcup f(y) = f(y), to znamená f(x) \sqsubseteq f(y).
```

Dopredná analýza toku dát

- Pre každý uzol n a jemu príslušný blok B_n je definované
 - in_n informácia vcházajúca do uzlu n.
 - out_n informácia vychádzajúca z uzlu n.
 - f_{B_n} prenosová funkcia bloku B_n.
- Riešenie musí splňovať rovnice: (rovnice toku dát)
 in_{no} = I₀ precondition

```
\forall n out<sub>n</sub> = f<sub>B<sub>n</sub></sub>(in<sub>n</sub>)

\forall n \neq n_0 in<sub>n</sub> = \coprod_{m \in pred(n)} out<sub>m</sub>
```

- Množinu rovníc iterujeme podľa (Tarského) vety o pevnom bode.
- V ďalšom uvedieme efektívnejšie metódy iterácie.

Reverzná analýza toku dát

- Pre každý uzol n a jemu príslušný blok B_n je definované
 - in_n informácia vstupe do uzlu n.
 - out_n informácia na vystupe z uzlu n.
 - rf_{B_n} revezná prenosová funkcia bloku B_n.
- Riešenie musí splňovať rovnice: (rovnice toku dát)

```
 \forall n \qquad \text{in}_n = \text{rf}_{B_n}(\text{out}_n)   \forall n \neq n_f \qquad \text{out}_n = \coprod_{m \in \text{succ}(n)} \text{in}_m   \text{out}_{n_f} = O_f \qquad \text{postcondition}
```

- Rovnice toku dát sa dajú zovšeobecniť aj pre množinu terminálnych bodov
- Vlastne pre každý smer analýzy stačí horná resp. dolná polovica zväzu. Optimalizačné polozväzy.

Rovnice toku dát

 Úlohou kompilátoru je zostaviť rovnice toku dát pre jednotlivé úlohy analýzy toku dát

Reaching definitions forward

Available expressions forward

Live variables backward

- Use-definition chain: ku každému použitiu premennej pridávame zoznam všetkých premenných, ktoré "reaches it".
- Definition-use chain: naopak ku každej definícii zoznam miest programu, kde je použitá.
- Iné atypické problémy
 - Sign analysis (znamienková analýza)
- Riešenie rovníc je delegované na samostatný program, od ktorého si optimalizátor prevezme výsledky.

Presnejšie kladie mu dotazy

Metódy riešenia rovníc toku dát

Naívna iterácia – round robin (A. Kildall. 1971)

```
Initilize: for all n do \{out_n := \bot; in_n := \bot;\}

in_{n_0} = I_0; /* alebo out_{n_f} = O_f; */
Iterate: repeat

for all equations do compute equation;

until change occured;
```

- Tento algoritmus opakuje mnohé výpočty zbytočne
- Efektívnejšiu implementáciu dosiahneme, keď si počas práce algoritmu budeme udržovať pracovný zoznam (worklist) uzlov, ktorých sa zmeny týkajú.

Worklist algoritmus pre dopredné DFE

```
for each n do out<sub>n</sub> := f_n(\bot);
in_{n_0} := I; out_{n_0} := f_{n_0}(I);
worklist := N - \{ n_0 \};
while worklist \neq \emptyset do
   { remove a node n from worklist;
     in_n = \coprod_{m \in pred(n)} out_m;
     out_n = f_{B_n}(in_n);
     if out<sub>n</sub> changed then worklist := worklist \cup succ(n);
          /* all successors of n must be added to the worklist */
```

- V programe je zamlčaná implementácia worklist. Používa sa zásobník, fronta (queue) a prioritná fronta.
- Štruktúry pre worklist musia byť implementáciou množiny!

Worklist algoritmus pre reverzné DFE

```
for each n do in<sub>n</sub> := f_n(\bot)
for each n \in N_{final} do { out<sub>n</sub>:= O; in<sub>n</sub>:= rf<sub>B<sub>n</sub></sub>(O); }
worklist := N - N_{final};
while worklist \neq \emptyset do
   { remove a node n from worklist;
     out_n = \coprod_{m \in succ(n)} in_m;
     in_n = rf_{B_n}(out_n);
     if in<sub>n</sub> changed then worklist := worklist \cup pred(n);
         /* all predecessors of n must be added to the worklist */
```

 V tomto prípadade program zohľadňuje možnosť viacerých terminálnych uzlov.

Správnosť algoritmu

- Konštrukcia algoritmu zabezpečuje, že:
 - Pre každý uzol platí vzťah medzi vstupom a výstupom (dopredne alebo spätne).
 - Ak sa pri výpočte uzlu zmenia hodnoty, sa jeho následníci (predchodcovia pri reverznom spracovaní) dostanú znova do zoznamu spracovania worklist. Pri ich vybraní zo zonamu sa prepočítajú ich hodnoty.
- Znamená to, že program môže skončiť, iba ak sú splnené rovnice toku dát.
- Skončenie:
 - Každá rovnica pre uzol je monotónna. To zaručuje, že niekedy nastane prípad, že hodnota v uzle sa už pri ďalších výpočtoch nebude meniť. Podľa Tarského vety.
 - Každy uzol sa raz stabilizuje. Keď sa stabilizujú všetky uzly, výpočet skončí.

T₁ – T₂ redukcia grafu

- Nech je daný orientovaný graf G=<N, E>, uvažujme transformácie (operácie):
- T₁: Ak hrana e∈ E je slučka, potom ju odstráň.
- T_2 : Ak vrchol n má jediného predchodcu vrchol p. Potom zlúč n a p do jedného vrcholu (np). Hranu p \rightarrow n zrušíme. Pričom succ(np) = succ(n) \cup succ(p). Zjednotenie vychádzajúcich hrán. pred(np) = pred(p).
- Opakované použitie T₁ T₂ transformácie.
- Poradie operácií: Keď je možné T₁ nerobíme T₂.
 - Ak je možných viac T₁ operácií (počiatočný graf môže mať slučky) na ich poradí nezáleží.
 - Na poradí T₂ operácií nezáleží.

Príklad

Zima 2010 18

Dva možné konce T₁ – T₂ redukcie

- Jediný vrchol redukovateľný graf
- Graf homomorfný skoku do cyklu neredukovateľný graf

Je to vlastne jediné neštruktúrovateľné použitie skoku. Dá sa opraviť opakovaním jedného z blokov cyklu.

Je to aj odpoveď na otázku:

Čo stojí štruktúrované programovanie? Najhorší prípad B₁ je jeden príkaz a B₂ a B₃ sú rovnaké. 3/2 násobné zväčšenie programu.

Riadenie výpočtu redukciou grafu

- Pri každej transformácii T₂ spojíme dva uzly. To zodpovedá približne zloženiu dvoch blokov eventuálne nejaké premenné "vypadnú".
- Pri transformácii T₁ "stabilizujeme cyklus"
- Pre redukovateľné grafy tak dostaneme efektívnejší algoritmus.
- Nevýhody tohto prístupu
 - Eliminácia závisí na na množine prenosových funkcií F.
 - Efektívnosť závisí na výbere poradia transformácií.
 - Nefunguje pre neredukovateľné grafy.
- Väčšina grafov toku riadenia je redukovateľná
- O reverzných grafoch (s obrátenou orientáciou hrán) to neplatí.

Depth-first kostra dept-first číslovanie grafu

```
procedure dfs(n);
{ mark(n); // visited
  for each successor s of n do
   if s not marked then
     { add edge n \rightarrow s to T;
       dfs(s);
  dfn[n]:=i;
  i := i - 1;
} // main program follows
\{ i := 0; 
 for each node n of G do
   { unmark(n); // unvisited
     i:=i+1;
 dfs(n_0);
```


Vlastnosti redukovateľných grafov

- Hrany grafu sú rozdelené do troch tried:
 - 1) Kostrové dopredné (zelené)
 - 2) Spätné (bordové) vedú ku svojmu predchodcovi (nemusí byť ani vlastný, ani bezprostredný).
 - 3) Priečné (modré)
- Hrana n → p spätná práve vtedy, keď dfn(p) ≤ dfn(n).
- Hĺbka grafu G depth(G) je maximálny možný počet spätných hrán v acyklickej ceste.
- Hĺbka grafu v redukovateľnom grafe nikdy nie je väčšia, ako maximálny počet vnorených cyklov v tomto grafe.
- Počet iterácií pri výpočte pevného bodu redukovateľného grafu T₁ – T₂ transformáciami je depth(G)+3.

Úlohy analýzy toku dát

- Na špecifikáciu úlohy analýzy toku riadenia treba určiť:
 - 1. Doménu (obor definície)
 - 2. Optimalizačný polozväz
 - 3. Prenosové funkcie
 - 4. Inicializáciu
- Množina rovníc je už určená grafom toku riadenia a predošlými špecifikáciami.

Platnost' priradení

- Definícia premennej x je priraďovací príkaz x:=
- Priradenie môže byť zrejmé (unambigous)
 - Priraďovací príkaz x:=
 - Načítanie do premennej x: read(x), get(x),
- Skryté (ambigous) priradenia:
 - Priradenie cez smerník *y:= ... (alebo priradenie prvku pola).
 - Volanie procedúry, ktorej argumenty sú volané referenciou.
 - Volanie procedúry používajúcej nelokálne premenné (side efect).
- Definícia d premennej x z bodu p programu môže platiť (reaches) v bode n programu. Ak existuje cesta z p do n, po ktorej sa nevyskytuje žiadné zrejmé priradenie premennej x.
 Reaching definitions.
- Definícia d premennej x z bodu p programu musí platiť (is available)
 v bode n programu. Ak na žiadnej ceste z p do n, sa nevyskytuje žiadné (ani skryté) priradenie premennej x.

 Available expressions.

Syntaxou riadeným prekladom

$$S \rightarrow id$$
 ':=' E
 $\mid S_1$ ';' S_2
 $\mid if E then S_1 else S_2$
 $\mid do S while E$

Rovnice toku dát

- V každom príkaze (bloku S):
 - Niečo vznikne (je nejaké priradenie) gen[S]
 - Eventuálne nejaké priradenie prestane platiť kill[S]
- Každý príkaz (blok) má atribúty:
 - Zdedený atribút in[S]
 - Syntetizované atribúty out[S], gen[S] a kill[S]
- Platí rovnica (prenosová funkcia) príkazu (bloku): out[S] = gen[S] ∪ (in[S] – kill[S])
 - gen[S] obsahuje len posledné priradenia premennej bloku.
 - kill[S] sa vzťahuje len na definície do bloku vchádzajúce.

gen[S] = $\{d\}$ kill[S] = $D_a - \{d\}$ out[S] = gen[S] \cup (in[S] – kill[S]) Kde D_a je množina všetkých doterajších definícií premennej a.

Zložený a podmienený príkaz


```
\begin{split} &\text{gen}[S] = \text{gen}[S_2] \cup (\text{gen}[S_1] - \text{kill}[S_2]) \\ &\text{kill}[S] = \text{kill}[S_2] \cup (\text{kill}[S_1] - \text{gen}[S_2]) \\ &\text{in}[S_1] = \text{in}[S] \\ &\text{in}[S_2] = \text{out}[S_1] \\ &\text{out}[S] = \text{out}[S_2] \end{split}
```



```
gen[S] = gen[S_1] \cup gen[S_2]
kill[S] = kill[S_1] \cap kill[S_2]
in[S_1] = in[S]
in[S_2] = in[S]
out[S] = out[S_1] \cup out[S_2]
```

Cyklus a jeho stabilizácia

$$gen[S] = gen[S_1]$$

 $kill[S] = kill[S_1]$
 $in[S_1] = in[S] \cup gen[S_1]$
 $out[S] = out[S_1]$

$$\begin{split} &\text{in}[S_1] = \text{in}[S] \cup \text{out}[S_1] \\ &\text{out}[S_1] = \text{gen}[S_1] \cup (\text{in}[S_1] - \text{kill}[S_1]) \end{split} \qquad \begin{aligned} &\text{i} = \text{j} \cup \text{o} \\ &\text{o} = \text{g} \cup (\text{i} - \text{k}) \end{aligned}$$

Predpokladáme $o_0 = \emptyset$

$$i_1 = j \cup o_0 = j$$

 $o_1 = g \cup (i_1 - k) = g \cup (j - k)$
 $i_2 = j \cup o_1 = j \cup g \cup (j - k) = j \cup g$
 $o_2 = g \cup (i_2 - k) = g \cup (j \cup g - k) = g \cup (j - k)$

Dátové štruktúry pre výpočet

- Potrebujeme reprezentovať množiny definícií.
 - Vhodnou reprezentáciou je powerset (bitový vektor)
 - Operácie ∩ a ∪ sú boolovské operácie po bitoch.
- Doména L je množina všetkých podmnožín množiny všetkých definícií v programe.
 - ⊔ je zjednotenie ∪
 - □ je prienik ∩
 - – je množinová inklúzia ⊆
 - – ⊥ je prázdna množina Ø
 - – ⊤ je množina všetkých definícii D
- Uvedená štruktúra množina všetkých podmnožín voľakej množiny je boolovský (teda aj úplný) zväz.

Reaching definitions

- L = powerset všetkých definícií v programe (množina všetkých podmnožín množiny všetkých definícií v programe)
- $\sqcup = \cup$ (order is \subseteq)
- ⊥ = Ø
- $I_0 = in_{n_0} = \bot$
- F = množina všetkých funkcií tvaru $f(x) = gen \cup (x-kill)$
 - kill je množina všetkých definícií, ktoré sú v uzle zrušené
 - gen je množina definícií, ktoré uzol generuje.
- Úloha je dopredná.

Available expressions

- L = powerset všetkých definícií v programe (množina všetkých podmnožín množiny všetkých definícií v programe)
- \sqcup = \cap (order is \supseteq)
- ⊥ = Ø
- $I_0 = in_{n_0} = \bot$
- F = množina všetkých funkcií tvaru f(x) = gen ∪ (x-kill)
 - kill je množina všetkých definícií, ktoré sú v uzle zrušené
 - gen je množina definícií, ktoré uzol generuje.
- Úloha je dopredná.

Živé premenné – live variables

- L = powerset všetkých premenných v programe (množina všetkých podmnožín množiny všetkých premenných v programe)
- □ = ∪ (order is ⊆)
- ⊥ = Ø
- $I_0 = in_{n_0} = \bot$
- F = množina všetkých funkcií tvaru $f(x) = gen \cup (x-kill)$
 - kill je množina premenných, ktorým uzol priraďuje hodnotu skôr ako ich použije
 - gen je množina premenných, ktoré uzol používa skôr ako ich definuje
- Úloha je reverzná.

Príklad

Block	DEF	USE
B1	{a,b}	{}
B2	{c,d}	{a,b}
B3	{}	{b,d}
B4	{d}	{a,b,e}
B5	{e}	{a,b,c}
B6	{a}	{b,d}

DFA úlohy z dračej knihy 1

	Reaching Definitions	Live Variables	Available Expressions
Domain	Sets of definitions	Sets of variables	Sets of expressions
Direction	Forwards	Backwards	Forwards
Transfer function	$gen_B \cup (x - kill_B)$	$use_B \cup (x - def_B)$	$e_gen_B \cup (x - e_kill_B)$
Boundary	$OUT[ENTRY] = \emptyset$	$IN[EXIT] = \emptyset$	$OUT[ENTRY] = \emptyset$
Meet (\land)	U	U	n
Equations	$OUT[B] = f_B(IN[B])$ $IN[B] = \bigwedge_{P,pred(B)} OUT[P]$	$IN[B] = f_B(OUT[B])$ OUT[B] = $\bigwedge_{S,succ(B)} IN[S]$	$OUT[B] = f_B(IN[B])$ $IN[B] = \bigwedge_{P,pred(B)} OUT[P]$
Initialize	$\text{OUT}[B] = \emptyset$	$IN[B] = \emptyset$	OUT[B] = U

Pozn: Ullman všetky úlohy formuluje pre horný polozväz a hladá minimálny pevný bod.

Duálny problém dolný polozväz a maximálny pevný bod. Úplný zväz potrebujeme len pre obojsmerné problémy.

DFA úlohy z dračej knihy 2

(a) Anticipated Expressions	(b) Available Expressions
Sets of expressions	Sets of expressions
Backwards	Forwards
$f_B(x) =$	$f_B(x) =$
$e_use_B \cup (x - e_kill_B)$	$(anticipated[B].in \cup x) - e_kill_E$
$IN[EXIT] = \emptyset$	$\text{OUT[entry]} = \emptyset$
Λ	n
$IN[B] = f_B(OUT[B])$	$OUT[B] = f_B(IN[B])$
$\mathrm{OUT}[B] = \bigwedge_{S,succ(B)} \mathrm{IN}[S]$	$\text{IN}[B] = \bigwedge_{P,pred(B)} \text{OUT}[P]$
IN[B] = U	OUT[B] = U
	Sets of expressions Backwards $f_B(x) =$ $e_use_B \cup (x - e_kill_B)$ IN[EXIT] = \emptyset \cap IN[B] = $f_B(\text{OUT}[B])$ OUT[B] = $\bigwedge_{S,succ(B)} \text{IN}[S]$

Anticipated expressions = very busy expressions

DFA úlohy z dračej knihy 3

	(c) Postponable Expressions	(d) Used Expressions
Domain	Sets of expressions	Sets of expressions
Direction	Forwards	Backwards
Transfer	$f_B(x) =$	$f_B(x) =$
function	$(earliest[B] \cup x) - e_use_B$	$(e_use_B \cup x) - latest[B])$
Boundary	$\text{OUT[ENTRY]} = \emptyset$	$IN[EXIT] = \emptyset$
Meet (\land)	Π	U
Equations	$OUT[B] = f_B(IN[B])$	$IN[B] = f_B(OUT[B])$
	$\text{IN}[B] = \bigwedge_{P,pred(B)} \text{OUT}[P]$	$\mathrm{OUT}[B] = \bigwedge_{S,succ(B)} \mathrm{IN}[S]$
Initialization	OUT[B] = U	$IN[B] = \emptyset$

```
\begin{split} \text{earliest}[B] &= \text{anticipated}[B].\text{in} - \text{available}[B].\text{in} \\ \text{latest}[B] &= (\text{earliest}[B] \cup \text{postponable}[B].\text{in}) \cap \\ (\text{e\_use}_B \cup \neg (\bigcap_{S \in \text{succ}(B)} (\text{earliest}[S] \cup \text{postponable}[S].\text{in}))) \end{split}
```

Atypické DFA úlohy – sign analysis

Zaujímame sa len o znamienká premenných a výrazov.

Výpočtový zväz

Dolný polozväz.
Dopredná úloha.

⊤ je chybová
hodnota napr.
delenie nulou.

Tabuľka násobenia

×	1	0-	-+	0+	-	0	+	Т
	Τ	L	Τ	1	1	0		Т
0-	Τ	0+	1	0-	0+	0	0-	Т
-+	1		-+		-+	0	-+	Т
0+	Τ	0-	1	0+	0-	0	0+	Т
-	Τ	0+	-+	0-	+	0	-	Т
0	0	0	0	0	0	0	0	Т
+		0-	-+	0+	-	0	+	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т

Modus operandi:

Výrazy v blokoch vyhodnocujeme podľa tabuliek operácii. Výrazy, ktoré vznikli po rôzných cestách podľa zväzových operácií.

Prenosové funkcie:

Na počiatku každá premenná má hodnotu ⊥. Príkaz v:= c priradí premennej v jednu z hodnôt { -, 0, +}, podľa hodnoty konštanty c. Priraďovací v:= a op b. Určí hodnotu premennej v z hodnôt operandov podľa tabuľky pre operáciu op.

Constant folding, constant propagation

Používa sa:

určite nie je konštanta

Skúsil by som:

Dá sa využiť, že:

$$0 \times v = 0$$

$$a / a = 1$$

Nevýhoda: Treba vzlášť sledovať aj rovnosť konštánt po cestách.

