Prova Totale di **Ottimizzazione Combinatoria** 21 Febbraio 2011

Cognome	
Nome	
Matricola	

Domanda 1

- 1. Dare la definizione di cammino aumentante su un grafo e fornire un esempio.
- 2. Dimostrare il seguente teorema:

"Sia v un vertice esposto in un matching M. Se non esiste un cammino aumentante per M che parte da v, allora esiste un matching massimo avente v esposto."

Esercizio 1

Dire se la seguente matrice è totalmente unimodulare o meno, motivando la risposta.

$$M = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ \end{pmatrix}$$

Esercizio 2

Si consideri il seguente problema di programmazione lineare intera:

$$\max 8x_1 - 2x_2 \\ -4x_1 + 4x_2 \ge -6 \\ 14x_1 - 4x_2 \le 28 \\ 2x_2 \le 6 \\ x_1, x_2 \in \mathbb{Z}^+$$

Calcolare la soluzione ottima del problema applicando il metodo del branch and bound. Calcolare il rilassamento continuo per via grafica ad ogni nodo.

Esercizio 3

Dato il seguente problema di Knapsack 0-1

max
$$6x_1 - 11x_2 + 7x_3 + 6x_4 + 8x_5 - 12x_6$$

 $2x_1 - 3x_2 + 3x_3 + 3x_4 + 2x_5 - 2x_6 \le 2$
 $x \in \{0, 1\}^6$

determinare la soluzione ottima x^* applicando l'algoritmo di programmazione dinamica.

Esercizio 4

Siano $U, A_1, ..., A_n$ insiemi finiti e $a_1, ..., a_n \in \Re^+$.

Sia
$$\Im$$
={ $X\subseteq U$: $|X \cup A_k| \ge a_k$ per ogni k =1, ..., n }.

Dire se la coppia (U, \mathfrak{I}) soddisfa la proprietà subclusiva e la proprietà di scambio (motivando la risposta) e quindi dedurre se la coppia (U, \mathfrak{I}) è un matroide.