Package 'CWDsims'

October 23, 2019

```
Type Package
Title CWDsims: An R package for simulating chronic wasting disease scenarios
Version 0.1.0
Date 2019-12-1
Maintainer Paul Cross cross@usgs.gov>
Description Collections of functions to run an interactive Shiny application
     of CWD disease models. Currently there are deterministic and stochastic
```

models that are intended to project out scenarios for a 5 to 10 year window. The models are sex and age structured with direct and indirect transmission.

License CC0

Copyright This software is in the public domain because it contains materials that originally came from the United States Geological Survey, an agency of the United States Department of Interior.

```
Depends R (>= 3.4)
Imports cowplot (>= 1.0.0),
      dplyr (>= 0.8.3),
      forcats (>= 0.4.0),
      ggplot2 (>= 3.0.0),
      ggridges (>= 0.5.0),
      knitr (>= 1.25),
      magrittr (>= 1.2),
      markdown (>= 1.0),
      plyr (>= 1.8.0),
      popbio (>= 2.0),
      reshape 2 (>= 1.4.0),
      shiny (>= 1.3.0),
      shinydashboard (>= 0.7.0),
      tidyr (>= 1.0.0),
      stringr (>= 1.4.0)
```

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

VignetteBuilder knitr

Suggests rmarkdown

2 allocate_deaths

R topics documented:

	allocate_deaths
	CWDsims
	cwd_det_model
	cwd_det_model_wiw
	cwd_stoch_model
	cwd_stoch_model_wiw
	cwd_stoch_wrapper
	est_beta_params
	launchApp
	plot_age_dist
	plot_buck_doe
	plot_compare_all_det
	plot_compare_all_stoch
	plot_compare_hunted
	plot_compare_prev
	plot_compare_tots
	plot_deaths
	plot_fawn_doe
	plot_prev_age_end
	plot_prev_time
	plot_stoch_age_dist
	plot_stoch_buck_doe
	plot_stoch_deaths
	plot_stoch_disease
	plot_stoch_fawn_doe
	plot_stoch_perc_deaths
	plot_stoch_prev
	plot_stoch_prev_age
	plot_stoch_prev_age_end
	plot_stoch_tots
	plot tots
	plot_ttd
	plot_vitals
	-
Index	27

allocate_deaths

Randomly allocates deaths in the stochastic CWD model

Description

Randomly allocates deaths in the stochastic CWD model

Usage

```
allocate_deaths(deaths, pop)
```

Arguments

deaths A vector of how many die in each age category

pop A matrix of age.categories = rows and number of I categories = columns

CWDsims 3

Value

A new matrix of the # of individuals in each I and age category

CWDsims

CWDsims: An R package for chronic wasting disease simulations

Description

Collections of functions to run an interactive Shiny application of CWD disease models. Currently there are deterministic and stochastic models that are intended to project out scenarios for a 5 to 10 year window. The models are sex and age structured with direct and indirect transmission.

Model functions

cwd_det_model runs the deterministic CWD model

cwd_stoch_model runs the stochastic CWD model

cwd_det_model_wiw similar to cwd_det_model, but allows for different male-male male-female, and female-male transmission rates.

cwd_stoch_model_wiw similar to cwd_stoch_model, but allows for different male-male male-female, and female-male transmission rates.

cwd_stoch_wrapper runs the stochastic CWD model multiple times for the same parameter set launchCWDapp launches the Shiny applications.

Helper functions

est_beta_params converts from a mean and variance to the shape and scale parameters of the Beta distribution

allocate_deaths randomly allocates deaths among the 10 infectious subcategories

Plotting functions

plot_age_dist plots the age distribution at the last timepoint

plot_buck_doe plots the adult male to female ratio over time

plot_fawn_doe plots the fawn to adult female ratio over time

plot_deaths plots how types of deaths change over time.

plot_prev_age_end plots the prevalence versus age curve at the last timepoint.

plot_prev_time plots the prevalence over time.

plot_tots plots the total population size over time

plot_ttd plots the distribution of years until disease-induced death given a rate of movement among the infectious subcategories

plot_vitals plots the distribution of survival and reproductive rates

4 cwd_det_model

Stochastic plotting functions

plot_stoch_age_dist plots the stochastic age distribution plot for the last time point plot_stoch_buck_doe plots the stochastic adult male to adult female ratio plot_stoch_deaths plots how types of deaths change in the stochastic model over time. plot_stoch_disease plots the number of positive and negative individuals over time plot_stoch_fawn_doe fawns to adult females ratio over time plot_stoch_perc_deaths plots how the stochastic model over time. plot_stoch_prev plot the prevalence over time for the stochastic model plot_stoch_prev_age plot stochastic prevalence by age over time plot_stoch_prev_age_end Prevalence versus age plot at the last time point plot_stoch_tots plot the total number of individuals over time

Comparison plotting functions

plot_compare_all_det barplot to compare the output of two different deterministic scenarios plot_compare_all_stoch density plot to compare the output of two different scenarios for the stochastic model

plot_compare_hunted density plot to look at how the number of hunted individuals compares for the stochastic model.

plot_compare_prev density plot comparing prevalence for the stochasitic model.

plot_compare_tots density plot comparing the total population size for the stochasitic model.

cwd_det_model

CWD deterministic model function

Description

Deterministic monthly age and sex structured model with constant environmental transmission and dynamic direct transmission

Usage

cwd_det_model(params)

Arguments

params

A list with the following parameters included: fawn.an.sur, juv.an.sur, ad.an.f.sur, ad.an.m.sur, fawn.repro, juv.repro, ad.repro, hunt.mort.fawn, hunt.mort.juv.f, hunt.mort.juv.m, hunt.mort.ad.f, hunt.mort.ad.m, ini.fawn.prev, ini.juv.prev, ini.ad.f.prev, ini.ad.m.prev, n.age.cats, p, env.foi, beta.f, beta.m, theta, n0, n.years = 10, rel.risk

Value

A list with 2 dataframes: 1. counts of the # of individuals in the susceptible and infectious categories by over time. 2. deaths—how individuals died over time (hunting, natural or disease).

cwd_det_model_wiw 5

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.08, beta.m = 0.08,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model(params)
plot_tots(out$counts)</pre>
```

cwd_det_model_wiw

CWD who-infects-who deterministic model

Description

Deterministic monthly age and sex structured model with constant environmental transmission and dynamic direct transmission. 2x2 matrix of transmission rates between males and females.

Usage

```
cwd_det_model_wiw(params)
```

Arguments

params

A list with the following parameters included: fawn.an.sur, juv.an.sur, ad.an.f.sur, ad.an.m.sur, fawn.repro, juv.repro, ad.repro, hunt.mort.fawn, hunt.mort.juv.f, hunt.mort.juv.m, hunt.mort.ad.f, hunt.mort.ad.m, ini.fawn.prev, ini.juv.prev, ini.ad.f.prev, ini.ad.m.prev, n.age.cats, p, env.foi, beta.ff, gamma.mm, gamma.mf, gamma.fm, theta, n0, n.years = 10, rel.risk

Value

A list with 2 dataframes: 1. counts of the # of individuals in the susceptible and infectious categories by over time. 2. deaths—how individuals died over time (hunting, natural or disease).

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.ff = 0.06,
gamma.mm = 2, gamma.mf = 2, gamma.fm = 1,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model_wiw(params)
plot_tots(out$counts)</pre>
```

cwd_stoch_model

CWD stochastic model function

Description

Stochastic monthly age and sex structured model with constant environmental transmission and dynamic direct transmission. The function conducts one run of the model.

Usage

```
cwd_stoch_model(params)
```

Arguments

params

A list with the following parameters included: fawn.an.sur, juv.an.sur, ad.an.f.sur, ad.an.m.sur, fawn.repro, juv.repro, ad.repro, hunt.mort.fawn, hunt.mort.juv.f, hunt.mort.juv.m, hunt.mort.ad.f, hunt.mort.ad.m, ini.fawn.prev, ini.juv.prev, ini.ad.f.prev, ini.ad.m.prev, n.age.cats, p, env.foi, beta.f, beta.m, theta, n0, n.years, rel.risk, repro.var, fawn.sur.var, sur.var, and hunt.var

Value

A list with 2 dataframes: 1. counts of the # of individuals in the susceptible and infectious categories by over time. 2. deaths—how individuals died over time (hunting, natural or disease).

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.08, beta.m = 0.08,
theta = 1, n0 = 1000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_model(params)
plot_tots(out$counts)</pre>
```

cwd_stoch_model_wiw

CWD who-infects-who stochastic model

Description

Stochastic monthly age and sex structured model with constant environmental transmission and dynamic direct transmission. The function conducts one run of the model. 2x2 matrix of transmission rates between males and females.

7 cwd_stoch_wrapper

Usage

```
cwd_stoch_model_wiw(params)
```

Arguments

params

A list with the following parameters included: fawn.an.sur, juv.an.sur, ad.an.f.sur, ad.an.m.sur, fawn.repro, juv.repro, ad.repro, hunt.mort.fawn, hunt.mort.juv.f, hunt.mort.juv.m, hunt.mort.ad.f, hunt.mort.ad.m, ini.fawn.prev, ini.juv.prev, ini.ad.f.prev, ini.ad.m.prev, n.age.cats, p, env.foi, beta.ff, gamma.mm, gamma.mf, gamma.fm, theta, n0, n.years, rel.risk, repro.var, fawn.sur.var, sur.var, and hunt.var

Value

A list with 2 dataframes: 1. counts of the # of individuals in the susceptible and infectious categories by over time. 2. deaths—how individuals died over time (hunting, natural or disease).

Examples

```
params \leftarrow list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.ff = 0.06,
gamma.mm = 2, gamma.mf = 2, gamma.fm = 1,
theta = 1, n0 = 1000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_model_wiw(params)</pre>
plot_tots(out$counts)
```

cwd_stoch_wrapper

CWD stochastic model wrapper

Description

Wrapper function to run the stochastic CWD model many times.

Usage

```
cwd_stoch_wrapper(params, nsims)
```

Arguments

params A list with the parameters needed for the stochastic model: fawn.an.sur, juv.an.sur,

> ad.an.f.sur, ad.an.m.sur, fawn.repro, juv.repro, ad.repro, hunt.mort.fawn, hunt.mort.juv.f, hunt.mort.juv.m, hunt.mort.ad.f, hunt.mort.ad.m, ini.fawn.prev, ini.juv.prev, ini.ad.f.prev, ini.ad.m.prev, n.age.cats, p, env.foi, beta.f, beta.m, theta, n0, n.years, rel.risk, re-

pro.var, fawn.sur.var, sur.var, and hunt.var

The number of simulations to run. nsims

8 est_beta_params

Value

A list with 2 dataframes: 1. counts of the # of individuals in the susceptible and infectious categories by over time. 2. deaths—how individuals died over time (hunting, natural or disease).

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 10)
plot_stoch_tots(out$counts, all.lines = TRUE, error.bars = c(0.05, 0.95),
by.sexage = TRUE)</pre>
```

est_beta_params

Beta distribution conversion function

Description

Converts mean and variance parameters to the shape and scale parameters of a Beta distribution

Usage

```
est_beta_params(mu, var)
```

Arguments

mu mean var variance

Value

A list of alpha and beta values

```
est_beta_params(mu = 0.9, var = 0.005)
```

launchApp 9

launchApp

launches the shinyCWDApp

Description

launches the shinyCWDApp

Usage

```
launchApp(example)
```

Arguments

example

name of the application to run

plot_age_dist

Plot the age distribution at the end

Description

Plot the age distribution at the end

Usage

```
plot_age_dist(dat)
```

Arguments

dat

counts provided as output from the CWD model functions

Value

a plot the age distribution at the end point

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model(params)
plot_age_dist(out$counts)</pre>
```

plot_compare_all_det

plot_buck_doe

Plot the buck:doe ratio

Description

Plot the buck:doe ratio

Usage

```
plot_buck_doe(dat)
```

Arguments

dat

counts provided as output from the CWD model functions

Value

a plot the buck:doe ratio

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model(params)
plot_buck_doe(out$counts)</pre>
```

Description

Deterministic Comparison plot

Usage

```
plot_compare_all_det(outa, outb)
```

Arguments

outa counts as provided as output from the CWD model functions for the first simu-

lation

outb counts as provided as output from the CWD model functions for the second

simulation

Value

a bar plot comparison

Examples

```
params.a <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
params.b <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,</pre>
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.5, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out.a <- cwd_det_model(params.a)</pre>
out.b <- cwd_det_model(params.b)</pre>
plot_compare_all_det(out.a, out.b)
```

```
plot_compare_all_stoch
```

Stochastic Comparison plot

Description

Stochastic Comparison plot

Usage

```
plot_compare_all_stoch(outa, outb)
```

Arguments

outa counts as provided as output from the CWD model functions for the first simu-

lation

outb counts as provided as output from the CWD model functions for the second

simulation

Value

a density plot comparison

12 plot_compare_hunted

Examples

```
params.a <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,</pre>
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
params.b <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,</pre>
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.05, hunt.mort.ad.m = 0.6, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out.a <- cwd_stoch_wrapper(params.a, nsims = 20)</pre>
out.b <- cwd_stoch_wrapper(params.b, nsims = 20)</pre>
plot_compare_all_stoch(out.a, out.b)
```

plot_compare_hunted

Stochastic Comparison plot of all hunted

Description

Stochastic Comparison plot of all hunted

Usage

```
plot_compare_hunted(outa, outb, end, males.only, old.only)
```

Arguments

outa	deaths data as provided as output from the CWD model functions for the first simulation
outb	deaths data as provided as output from the CWD model functions for the second simulation
end	TRUE/FALSE for whether to show just the last timepoint (end = TRUE), or the cumulative number over the whole simulation. Default = FALSE.
males.only	TRUE/FALSE for whether to show only males Default = FALSE.
old.only	TRUE/FALSE for whether to show just those hunted over 3yrs. Default = FALSE.

Value

a density plot comparison

plot_compare_prev 13

Examples

```
params.a \leftarrow list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
params.b <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.05, hunt.mort.ad.m = 0.6, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out.a <- cwd_stoch_wrapper(params.a, nsims = 20)</pre>
out.b <- cwd_stoch_wrapper(params.b, nsims = 20)</pre>
plot_compare_hunted(out.a$deaths, out.b$deaths)
```

plot_compare_prev

Stochastic Comparison plot of prevalence over time

Description

Stochastic Comparison plot of prevalence over time

Usage

```
plot_compare_prev(outa, outb)
```

Arguments

outa counts as provided as output from the CWD model functions for the first simu-

lation

outb counts as provided as output from the CWD model functions for the second

simulation

Value

a comparison plot of prevalence

```
params.a <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
```

14 plot_compare_tots

plot_compare_tots

Stochastic Comparison plot of totals over time

Description

Stochastic Comparison plot of totals over time

Usage

```
plot_compare_tots(outa, outb)
```

Arguments

outa counts as provided as output from the CWD model functions for the first simu-

lation

outb counts as provided as output from the CWD model functions for the second

simulation

Value

a density plot comparison

```
params.a <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)

params.b <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,</pre>
```

plot_deaths 15

```
hunt.mort.ad.f = 0.05, hunt.mort.ad.m = 0.6, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out.a <- cwd_stoch_wrapper(params.a, nsims = 20)
out.b <- cwd_stoch_wrapper(params.b, nsims = 20)
plot_compare_tots(out.a$counts, out.b$counts)</pre>
```

plot_deaths

Plot the deaths by category.

Description

Plot the deaths by category.

Usage

```
plot_deaths(dat, percents)
```

Arguments

dat deaths as provided as output from the CWD model functions

percents TRUE/FALSE on whether to plot the totals or the percentage absolute totals are

the default

Value

a plot deaths by category

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)

out <- cwd_det_model(params)
plot_deaths(out$deaths, percents = TRUE)
plot_deaths(out$deaths, percents = FALSE)</pre>
```

16 plot_prev_age_end

plot_fawn_doe

Plot the fawn to doe ratio over time

Description

Plot the fawn to doe ratio over time

Usage

```
plot_fawn_doe(dat)
```

Arguments

dat

counts provided as output from the CWD model functions

Value

a plot the fawn:doe ratio

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model(params)
plot_fawn_doe(out$counts)</pre>
```

plot_prev_age_end

Plot the prevalence by age at the end of the simulation

Description

Plot the prevalence by age at the end of the simulation

Usage

```
plot_prev_age_end(dat)
```

Arguments

dat

counts provided as output from the CWD model functions

Value

```
a plot of the prevalence by age
```

plot_prev_time 17

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model(params)
plot_prev_age_end(out$counts)</pre>
```

plot_prev_time

Plot the prevalence over time

Description

Plot the prevalence over time

Usage

```
plot_prev_time(dat)
```

Arguments

dat

counts provided as output from the CWD model functions

Value

a plot of the prevalence over time

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model(params)
plot_prev_time(out$counts)</pre>
```

plot_stoch_buck_doe

Description

Age distribution plot

Usage

```
plot_stoch_age_dist(dat)
```

Arguments

dat

counts as provided as output from the CWD model

Value

a plot of the percent of the population in each age class

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 10)
plot_stoch_age_dist(out$counts)</pre>
```

plot_stoch_buck_doe

Buck:doe stochastic plot

Description

Buck:doe stochastic plot

Usage

```
plot_stoch_buck_doe(dat, all.lines, error.bars)
```

Arguments

dat counts as provided as output from the CWD model

all.lines TRUE/FALSE for whether to plot a line for every simulation

error bars = vector of high and low percentiles (2 values only). If missing, no

error bars are shown.

plot_stoch_deaths 19

Value

a plot of the ratio of adult males to adult females over time

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_buck_doe(out$counts, all.lines = TRUE,
error.bars = c(0.05, 0.95))</pre>
```

plot_stoch_deaths

Death types stochastic plot

Description

Death types stochastic plot

Usage

```
plot_stoch_deaths(dat, error.bars)
```

Arguments

dat counts as provided as output from the CWD model
error.bars error bars = vector of high and low percentiles (2 values only). If missing, no
error bars are shown.

Value

a plot of death types over time.

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_deaths(out$deaths, error.bars = c(0.05, 0.95))</pre>
```

20 plot_stoch_fawn_doe

plot_stoch_disease

Plot stochastic totals of positives and negatives over time

Description

Plot stochastic totals of positives and negatives over time

Usage

```
plot_stoch_disease(dat, error.bars)
```

Arguments

dat counts as provided as output from the CWD model

error.bars error bars = vector of high and low percentiles (2 values only). If missing, no

error bars are shown.

Value

a multiple line plot of the simulation over time

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_disease(out$counts, error.bars = c(0.05, 0.95))</pre>
```

plot_stoch_fawn_doe

Fawn:doe stochastic plot

Description

Fawn:doe stochastic plot

Usage

```
plot_stoch_fawn_doe(dat, all.lines, error.bars)
```

plot_stoch_perc_deaths 21

Arguments

dat counts as provided as output from the CWD model

all.lines TRUE/FALSE for whether to plot a line for every simulation

error . bars 2 value vector for the hi and lo percentiles on the error bars. If missing, no error

bars will be shown.

Value

a plot of the percent of the population in each age class

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_fawn_doe(out$counts, error.bars = c(0.05, 0.95))</pre>
```

```
plot_stoch_perc_deaths
```

Percentage death types stochastic plot

Description

Percentage death types stochastic plot

Usage

```
plot_stoch_perc_deaths(dat, error.bars)
```

Arguments

dat counts as provided as output from the CWD model

error.bars 2 value vector for the hi and lo percentiles on the error bars. If missing, no error

bars are shown.

Value

a plot of

22 plot_stoch_prev

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_perc_deaths(out$deaths, error.bars = c(0.05, 0.95))</pre>
```

plot_stoch_prev

Plot stochastic prevalence over time

Description

Plot stochastic prevalence over time

Usage

```
plot_stoch_prev(dat, all.lines, error.bars)
```

Arguments

dat counts as provided as output from the CWD model

all.lines TRUE/FALSE for whether to plot a line for every simulation. Default = TRUE.

2 value vector for the hi and lo percentiles on the error bars. If missing, no error bars are shown

Value

a multiple line plot of the simulation over time

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_prev(out$counts, error.bars = c(0.05, 0.95))</pre>
```

plot_stoch_prev_age 23

Description

Plot stochastic prevalence by age over time

Usage

```
plot_stoch_prev_age(dat, by.sex)
```

Arguments

dat counts as provided as output from the CWD model

by . sex TRUE/FALSE on whether to facet by sex. Default = FALSE

Value

a multiple line plot of the simulation over time

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_prev_age(out$counts, by.sex = TRUE)</pre>
```

plot_stoch_prev_age_end

Prevalence versus age plot

Description

Prevalence versus age plot

Usage

```
plot_stoch_prev_age_end(dat, error.bars)
```

Arguments

dat counts as provided as output from the CWD model

error.bars vector with 2 values for the low and high percentiles. If missing, then no error

bars will be shown.

24 plot_stoch_tots

Value

a plot of prevalence versus age at the last timepoint of the simulation

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_prev_age_end(out$counts, error.bars = c(0.05, 0.95))</pre>
```

plot_stoch_tots

Plot stochastic totals over time

Description

Plot stochastic totals over time

Usage

```
plot_stoch_tots(dat, all.lines, error.bars, by.sexage)
```

Arguments

dat	counts as provided as output from the CWD model
all.lines	TRUE/FALSE for whether to plot a line for every simulation
error.bars	error bars = vector of high and low percentiles (2 values only). If missing, no error bars will be shown.
by.sexage	TRUE/FALSE for whether to facet by sex and age.

Value

a multiple line plot of the simulation over time

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.1, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)</pre>
```

plot_tots 25

```
out <- cwd_stoch_wrapper(params, nsims = 20)
plot_stoch_tots(out$counts, all.lines = TRUE, by.sexage = TRUE,
error.bars = c(0.05, 0.95))</pre>
```

plot_tots

Plot the total of S and I over time

Description

Plot the total of S and I over time

Usage

```
plot_tots(dat)
```

Arguments

dat

counts provided as output from the CWD model functions

Value

a plot of the population totals split by age.

Examples

```
params <- list(fawn.an.sur = 0.6, juv.an.sur = 0.8, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.2, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0)
out <- cwd_det_model(params)
plot_tots(out$counts)</pre>
```

plot_ttd

Plot Time to disease-induced death

Description

Creates a plot of the time (in years) to disease-induced death based on the proportion or probability of movement through the 10 infectious sub-categories. Uses 1000 draws from a Gamma distribution.

Usage

```
plot_ttd(p)
```

26 plot_vitals

Arguments

р

proportion or probability of progressing through the infections categories. Must be between 0 and 1.

Value

a density plot of time to death.

Examples

```
plot_td(p = 0.043)
```

plot_vitals

Vital rate plot

Description

Creates a plot of the survival and reproduction distributions that are defined by the CWD model parameters

Usage

```
plot_vitals(params)
```

Arguments

params

list of the parameters provided to the CWD model

Value

a plot of the vital rate distributions

```
params <- list(fawn.an.sur = 0.4, juv.an.sur = 0.6, ad.an.f.sur = 0.95,
ad.an.m.sur = 0.9, fawn.repro = 0, juv.repro = 0.6, ad.repro = 1,
hunt.mort.fawn = 0.01, hunt.mort.juv.f = 0.1, hunt.mort.juv.m = 0.1,
hunt.mort.ad.f = 0.2, hunt.mort.ad.m = 0.4, ini.fawn.prev = 0.02,
ini.juv.prev = 0.03, ini.ad.f.prev = 0.04, ini.ad.m.prev = 0.04,
n.age.cats = 12, p = 0.43, env.foi = 0, beta.f = 0.15, beta.m = 0.15,
theta = 1, n0 = 2000, n.years = 10, rel.risk = 1.0,
repro.var = 0.005, fawn.sur.var = 0.005, sur.var = 0.005, hunt.var = 0.005)
plot_vitals(params = params)</pre>
```

Index

```
allocate_deaths, 2
cwd_det_model, 4
cwd_det_model_wiw, 5
cwd_stoch_model, 6
cwd_stoch_model_wiw, 6
cwd_stoch_wrapper, 7
CWDsims, 3
CWDsims-package (CWDsims), 3
{\sf est\_beta\_params}, 8
launchApp, 9
plot_age_dist, 9
plot_buck_doe, 10
\verb|plot_compare_all_det|, 10
plot_compare_all_stoch, 11
plot_compare_hunted, 12
plot_compare_prev, 13
plot_compare_tots, 14
plot_deaths, 15
plot_fawn_doe, 16
plot_prev_age_end, 16
plot_prev_time, 17
plot_stoch_age_dist, 18
plot_stoch_buck_doe, 18
plot_stoch_deaths, 19
plot\_stoch\_disease, 20
plot_stoch_fawn_doe, 20
plot_stoch_perc_deaths, 21
plot_stoch_prev, 22
plot_stoch_prev_age, 23
plot_stoch_prev_age_end, 23
plot_stoch_tots, 24
plot_tots, 25
plot\_ttd, 25
plot_vitals, 26
```