Neural dynamics driving Audio-Visual Integration in autism

Luca Ronconi, Andrea Vitale, Alessandra Federici, Noemi Mazzoni, Luca Battaglini, Massimo Molteni

& Luca Casartelli (2022)

Hari Srinivasan Nuro 8340

Multisensory Integration

Relevance to Autism

Ronconi et al.(2012)

- Hypothesis
- Methods
- Result Highlights
- Conclusions

Wrapping up

- Limitations, Future Directions
- References
- Acknowledgements
- Discussion Questions

Multisensory Processing

- How sensory signals from different modalities are organized in our perceptual experience.
- Balancing temporal segregation & integration
 - Temporal Segregation: grouping inputs within close time periods
 - Temporal Integration: combining information over time to improve detection.

Illusion

The mind makes educated guesses /probabilistic inferences, when environmental stimuli don't align with conscious perception of the stimuli.

Stream Bounce Illusion: Example

https://youtu.be/ztXwERzKEw4 https://youtu.be/ISGnGVfxhBE

Stream (https://youtu.be/ztXwERzKEw4)

Visual (Unisensory) Input → Streaming effect
Two balls approach and seem to stream past each other

What happens if we add auditory input?

Bounce (https://youtu.be/ISGnGVfxhBE)

Audio-Visual (Multisensory) Input → Bounce effect

The balls seem to bounce off each other at midpoint.

Multisensory Integration

Ronconi et al.(2012)

- Hypothesis
- Methods
- Result Highlights
- Conclusions

Relevance to Autism

Wrapping up

- Limitations, Future Directions
- References
- Acknowledgements
- Discussion Questions

Relevance to Autism

- Temporal Binding Window thought to be wider in autism.
 - Timeframe in which different stimuli input are integrated and perceptually bound together.
- Reduced susceptibility to AV illusions
- Eg: McGurk Effect, Sound Induced Flash Illusion (Feldmanetal 2018; Zhouetal 2018), Pip-pop effect (Collignon et al., 2013).
 - > Example of McGurk effect (https://youtu.be/7uHDMc4TEU8)
- AV integration seen as playing crucial roles in social functioning and communication in autistics.

McGurk effect - Informal Poll

Autistic (me)	Neurotypical (friend)
Heard same sound	Eyes open → different sounds
When attention re-directed noticed lip movements could imply different sounds. But still heard only ba	Eyes closed → same sound

My body can feel like driving a car with a loose steering wheel; I attempt to turn the wheel one way, but am never sure which way the car will really go.

Multisensory Integration

Ronconi et al.(2012)

- Hypotheses
- Methods
- Result Highlights
- Conclusions

Relevance to Autism

Wrapping up

- Limitations, Future Directions
- References
- Acknowledgements
- Discussion Questions

Ronconi et al., 2022

Assumption: Multisensory integration-segregation balance crucial for high level social functions like speech in autism.

Purpose of this paper: Investigate mechanisms behind altered multisensory processing in autism using oscillatory framework (EEG).

Hypotheses Ronconi et al, 2022

Neural signatures could be altered in autistics. Specifically:

- 1. Weaker link between alpha rhythms and AV integration window
 - indicates poor reliance on endogenous oscillatory activity and/or more pronounced stimulus-driven multisensory processing
- 2. Absence of pre-stimulus power/ phase differences between AV integration versus segregation in low-/mid-frequency oscillations
 - marginal reliance on anticipatory signals of AV co-occurrence.
- 3. Different impact of auditory-induced phase reset
 - atypical balancing and temporal alignment of the different unisensory signals.

Sample - Ronconi et al, 2022

- TD Group (n=17, mean age = 11.5)
- ♦ AS Group (n=17, mean age 12.47)
 - Dx with clinician & ADOS
 - Normal vision/hearing
 - No gross behavior issues
 - No drug therapy
 - > No ADHD dx

Match Criteria

- age
- performance in Block Design subtest of WISC.

Parental (SCQ) social communication questionnaire (SCQ) indicated autistics having more challenges in social and communication domains

Methods - 3 Trial Conditions Ronconi et al. 2022

Stream-Bounce Illusion

1.Pre-coincidence

150 ms before dots overlap

2. Synchronous

67 ms before dots overlap

3. Post-coincidence

184 ms after dots overlap

Participants indicate if STREAM or BOUNCE

Methods: Testing Integration vs Segregation

Ronconi et al. 2022

Key aspect of testing AV integration vs segregation was the sound dependent change in visual motion.

Stream Response

Segregation of 2 modalities

Bounce Response

Integration of 2 modalities

Methods: Three Electrode Clusters for AV Task

Ronconi et al. 2022

Occipital (E33, E34, E36, E38)

EEG electrodes

Right Temporal (E46, E48, E49, E52)

• Left Temporal (E22, E24, E25, E26)

Discussion of Results Ronconi et al. 2022

Behavioral Results

- ❖ EEG Findings
 TD children reflected earlier findings in TD adults
 Differences seen in AS group.
 - Alpha Rhythms and AV integration window
 - Anticipatory Signals of AV co-occurrence
 - Impact of Auditory-Induced Phase Reset

Result 1: Behavioral Performance

Main effect of factor condition

Perception in more than ½ of trials

Result 2: Alpha Rhythms and Integration Window

- Awake-relaxed. 8–12 Hz
- Cortical inhibition. Suppression & selection (Klimesch, 2012).
 Gating of irrelevant sensory stimuli
- IAF = Individual Alpha Frequency.
- In TD:
- Resting state alpha, key for temporal sampling within/ across modalities (Keil & Senkowski, 2018; Bauer et al, 2020)
- ie: IAF determines width of cross modal binding window.
- Lower alpha peak frequency
- → more integration → higher illusory rate
 - → temporal widening of AV binding window

Result 2: Alpha Rhythms and Integration Window

TD: Negative correlation between IAF and Illusory Rate in occipital cluster

> AS: Lack of correlation → Suggests a noisier

cortical alpha sampling.

Result 3: Theta Anticipatory Mechanisms

- (4-8 Hz)
- In TD

Theta oscillations predict upcoming auditory stimulus based on visual dynamic info.

Result 3: Anticipatory mechanisms

TD: Increased occipital theta oscillations cluster around a common phase angle for bounce (integration) percept trials

→ anticipatory activity predicting AV integration

AS: absence of significant different phase concentration for bounce or stream trials.

Fig 3E-F, Ronconi et al., 2012 Black: Bounce, Red: Stream (x-axis: Time)

⇒ Not rely on anticipatory mechanisms that track dynamic visual events.

Result 4: Auditory Induced Phase Reset

Time (ms)

In TD: reset in visual cortex important for opening a temporal window where AV integration can occur.

Time (ms)

In AS: reset causes

segregation of AV stimuli,
breaking the AV integration
& Illusory outcome.

Highest phase concentration strictly dependent on auditory timing event.

Suggests stronger reactivity to auditory inputs

Conclusions Ronconi et al., 2021

AV integration-segregation present but different in AS

Distinct computations supporting multisensory processing weighed differently in AS.

Marginal reliance on anticipatory signals of AV co-occurrences counterbalanced by Greater impact of post stimulus neural dynamics.

Conclusions Ronconi et al., 2021

AV integration not predicted by speed of alpha rhythms or by amplitude

Instead, a different neural processing of the sound and a differential post-stimulus sound-induced realignment of visual cortical oscillations could explain AV integration v. segregation.

These results show how multisensory integration depends on different endogenous, anticipatory, and stimulus-driven factors, which seem selectively altered in AS.

Aligning results with my lived experience

Alpha rhythms gate sensory stimuli.

Overwhelmed with sensory stimuli.

Theta Rhythms and anticipatory mechanisms
High alert body, in constant anticipatory mode.

Autism + ADHD interaction?

"Altered AV interaction signature ... comorbid phenotype shared by ASD and ADHD, possibly due to alterations in attentional selection systems." (Norcia et al., 2021)

Auditory-Induced Phase Reset.

Auditory Induced Phase Reset

40-15 hrs/week of 1:1 therapy, ages 3 -12

Typical peers synchronous instruction following. Me just looking at therapist

A life of therapy

Multisensory Integration

Relevance to Autism

Ronconi et al.(2012)

- Hypothesis
- Methods
- Result Highlights
- Conclusions

Wrapping up

- Limitations, Future Directions
- References
- Acknowledgements
- Discussion Questions

Limitations & Future Directions

Applicability of results.

- Heterogeneity of autism.
- Co-occurring could impact sensory experience
 - ADHD: 50-70% (Hours et al., 2022)
 - Epilepsy: 10% (Liu et al., 2022)
- Drug therapy. 30-50% (Feroe et al., 2021)

Limitations & Future Directions

Two Modalities ≠ Multisensory

- Majority of studies: Audio + Visual
- Audio + Somatosensory (Russo et al., 2010)
 Lower integration in AS
- Audio+Visual, Olfactory+Visual (Stickel et al., 2019)
 No group difference. Similar neural mechanisms.
 AV integration → superior temporal activation
 Olfactory visual integration → amygdala activation

Future Direction

3 or more senses

Limitations & Future Directions

Measurements

- Current study used only EEG
 - Need many measurements (fMRI etc) in same sample
- Which produces stronger reaction?. Audio or Visual?
 - Current study: implies Auditory Dominance.
 Personal observation → Visual dominant

Future Direction

References

- Cecere, R., Rees, G., & Romei, V. (2015). Individual Differences in Alpha Frequency Drive Crossmodal Illusory Perception. *Current Biology*, *25*(2), 231–235. https://doi.org/10.1016/j.cub.2014.11.034
- Feroe, A. G., Uppal, N., Gutiérrez-Sacristán, A., Mousavi, S., Greenspun, P., Surati, R., Kohane, I. S., & Avillach, P. (2021). Medication Use in the Management of Comorbidities Among Individuals With Autism Spectrum Disorder From a Large Nationwide Insurance Database. *JAMA Pediatrics*, *175*(9), 957–965. https://doi.org/10.1001/jamapediatrics.2021.1329
- Hours C, Recasens C, Baleyte JM. ASD and ADHD Comorbidity: What Are We Talking About? Front Psychiatry. 2022 Feb 28;13:837424. doi: 10.3389/fpsyt.2022.837424. PMID: 35295773; PMCID: PMC8918663.
- Liu, X., Sun, X., Sun, C., Zou, M., Chen, Y., Huang, J., Wu, L., & Chen, W.-X. (2022). Prevalence of epilepsy in autism spectrum disorders: A systematic review and meta-analysis. *Autism*, *26*(1), 33–50. https://doi.org/10.1177/13623613211045029
- Norcia AM, Lee A, Meredith WJ, Kohler PJ, Pei F, Ghassan SA, Libove RA, Phillips JM, Hardan AY. A case-control study of visual, auditory and audio-visual sensory interactions in children with autism spectrum disorder. J Vis. 2021 Apr 1;21(4):5. doi: 10.1167/jov.21.4.5. PMID: 33830169; PMCID: PMC8039569.
- Russo, N., Foxe, J. J., Brandwein, A. B., Altschuler, T., Gomes, H., & Molholm, S. (2010). Multisensory processing in children with autism: High-density electrical mapping of auditory–somatosensory integration. *Autism Research*, 3(5), 253–267. https://doi.org/10.1002/aur.152
- Stickel, S., Weismann, P., Kellermann, T., Regenbogen, C., Habel, U., Freiherr, J., & Chechko, N. (2019). Audio–visual and olfactory–visual integration in healthy participants and subjects with autism spectrum disorder. *Human Brain Mapping*, *40*(15), 4470–4486. https://doi.org/10.1002/hbm.24715

Thank you

Thilo Womelsdorf & Leah Mann for giving me confidence and assistance.

Thank you everyone.

For your patience as I navigate my atypical mode of presenting.

I will attempt to answer any short questions. I may have to email longer responses.

PS:

Very curious about your audio-visual integration with the computer generated audio which lacks intonation/nuances of human speech.

Did you need more words or less words on screen for integration?

Will the computer voice change make a difference to your integration.

Discussion Questions

- 1. How do we address the issue of heterogeneity in autism so that research results are more meaningful.
- 2. How would we experimentally design a study that can incorporate three or more senses to truly reflect multi-modal.
- 3. More humane language to present scientific results about fellow humans.
 - "peculiar/anomaly" when dx is upto 1:44?
 - Differences, not deficits
 - Co-occurrence, not comorbid.

Progress of Science and Humanity