Key ID: 013

Name:

1. Problem

An experiment has $n_1 = 5$ plants in the treatment group and $n_2 = 3$ plants in the control group. After some time, the plants' heights (in cm) are measured, resulting in the following data:

	value1	value2	value3	value4	value5
sample 1:	9	14.7	8.3	11.4	8.5
sample 2:	18.4	17.9	15.4		

- (a) Determine degrees of freedom.
- (b) Determine t^* for a 96% confidence interval.
- (c) Determine SE.

(i) no

- (d) Determine a lower bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (e) Determine an upper bound of the 96% confidence interval of $\mu_2 \mu_1$.
- (f) Determine $|t_{\rm obs}|$ under the null hypothesis $\mu_2-\mu_1=0$.
- (g) Determine a lower bound of the two-tail *p*-value.
- (h) Determine an upper bound of two-tail p-value.
- (i) Do you reject the null hypothesis with a two-tail test using a significance level α = 0.04? (yes or no)

1.	(a)				2	-	0	0	0		
	(b)				4		8	5	0		
	(c)				1	-	5	2	7		
	(d)			-	0	.	6	0	6		
	(e)			1	4	.	2	0	6		
	(f)				4	.	4	5	2		
	(g)				0	•	0	4	0		
	(h)				0	.	0	5	0		

Key ID: 013

1. Solution

These data are unpaired. We might as well find the sample means and sample standard deviations (use a calculator's built-in function for standard deviation).

$$\overline{X_1} = 10.4$$

$$\overline{X_2} = 17.2$$

$$s_1 = 2.71$$

$$s_2 = 1.61$$

We make a conservative estimate of the degrees of freedom using the appropriate formula.

$$df = \min(n_1, n_2) - 1 = \min(5, 3) - 1 = 2$$

We use the t table to find t^* such that $P(|T| < t^*) = 0.96$

$$t^* = 4.85$$

We use the SE formula for unpaired data.

$$SE = \sqrt{\frac{(s_1)^2}{n_1} + \frac{(s_2)^2}{n_2}} = \sqrt{\frac{(2.71)^2}{5} + \frac{(1.61)^2}{3}} = 1.527$$

We find the bounds of the confidence interval.

$$CI = (\overline{x_2} - \overline{x_1}) \pm t^* SE$$

$$CI = (-0.606, 14.206)$$

We find t_{obs} .

$$t_{\text{obs}} = \frac{(\overline{x_2} - \overline{x_1}) - (\mu_2 - \mu_1)_0}{SE} = \frac{(17.2 - 10.4) - 0}{1.527} = 4.45$$

We find $|t_{obs}|$.

$$|t_{\rm obs}| = 4.45$$

We use the table to determine bounds on *p*-value. Remember, df = 2 and *p*-value = $P(|T| > |t_{\text{obs}}|)$.

$$0.04 < p$$
-value < 0.05

We should consider both comparisons to make our decision.

$$|t_{\sf obs}| < t^{\star}$$

$$p$$
-value $> \alpha$

Thus, we retain the null hypothesis. Also notice the confidence interval does contain 0.

- (a) 2
- (b) 4.85
- (c) 1.527
- (d) -0.606
- (e) 14.206
- (f) 4.452
- (g) 0.04
- (h) 0.05
- (i) no