Supplementary material for Quantifying replicability and consistency in systematic reviews

The package metarep is an extension to the package meta, which allows incorporating replicability-analysis tools to quantify consistency and replicability of treatment effect estimates in a meta-analysis. The tool was proposed by Jaljuli et. al. (submitted) for the fixed-effect and for the random-effects meta-analyses, whith or without the common-effect assumption.

Packages Instalation:

Currently, metarep can be downloaded from GitHub since is being processed by CRAN, therefore make sure that the package devtools is installed. metarep also requires the latest version of meta (>=4.11-0, available on guithub)

Run the following commands in *console* to install the packages:

```
devtools::install_github( "guido-s/meta" , force=T )
devtools::install_github( "IJaljuli/metarep", force=T )
```

Examples:

Here we demonstrate the approach implemented with metrep on several examples from the Systematic Review Cochrane Library. These examples are detailed in the paper as well, along with a demonstration of a way to incorporate our suggestions in standard meta-analysis reporting system.

We begin with an example based on fixed-effects meta-analysis from review number CD002943: the effect of mammogram invitation on attendance during the following 12 months.

1^{st} Example: Review CD002943

```
library(metarep)
data(CD002943_CMP001)
m2943 <- meta::metabin( event.e = N_EVENTS1, n.e = N_TOTAL1,
                     event.c = N_EVENTS2, n.c = N_TOTAL2,
                     studlab = STUDY, comb.fixed = T, comb.random = F,
                     method = 'Peto', sm = CD002943_CMP001$SM[1],
                     data = CD002943_CMP001)
m2943
                                 95%-CI %W(fixed)
                    ΩR.
  Sutton-1994
                1.2836 [0.9933; 1.6589]
                                              32.3
  Somkin-1997
                1.8739 [1.5372; 2.2844]
                                              54.2
  Turnbull-1991 3.5709 [1.9225; 6.6326]
                                               5.5
  Mohler-1995
              1.8764 [0.5272; 6.6788]
                                               1.3
  Bodiya-1999
               1.0758 [0.6110; 1.8941]
                                               6.6
```

```
95%-CI
                                                z p-value
  Fixed effect model 1.6564 [1.4317; 1.9164] 6.78 < 0.0001
  Quantifying heterogeneity:
  tau^2 = 0.0882 [0.0000; 1.5129]; tau = 0.2970 [0.0000; 1.2300];
  I^2 = 70.3\% [24.4%; 88.3%]; H = 1.84 [1.15; 2.93]
  Test of heterogeneity:
      Q d.f. p-value
  13.47 4 0.0092
  Details on meta-analytical method:
  - Peto method
  - DerSimonian-Laird estimator for tau^2
  - Jackson method for confidence interval of tau^2 and tau
summary(m2943)
  Number of studies combined: k = 5
                                     95%-CI z p-value
 Fixed effect model 1.6564 [1.4317; 1.9164] 6.78 < 0.0001
  Quantifying heterogeneity:
  tau^2 = 0.0882 [0.0000; 1.5129]; tau = 0.2970 [0.0000; 1.2300];
  I^2 = 70.3\% [24.4%; 88.3%]; H = 1.84 [1.15; 2.93]
  Test of heterogeneity:
      Q d.f. p-value
  13.47 4 0.0092
 Details on meta-analytical method:
  - Peto method
  - DerSimonian-Laird estimator for tau<sup>2</sup>
 - Jackson method for confidence interval of tau^2 and tau
The replicability-analysis results follow.
m2943.ra \leftarrow metarep(x = m2943 , u = 2 , common.effect = F , t = 0.05 , report.u.max = T)
m2943.ra
                    OR
                                 95%-CI %W(fixed)
  Sutton-1994 1.2836 [0.9933; 1.6589]
  Somkin-1997 1.8739 [1.5372; 2.2844]
                                             54.2
  Turnbull-1991 3.5709 [1.9225; 6.6326]
                                            5.5
 Mohler-1995 1.8764 [0.5272; 6.6788]
                                             1.3
 Bodiya-1999 1.0758 [0.6110; 1.8941]
                                              6.6
 Number of studies combined: k = 5
                                    95%-CI z p-value
                         OR.
  Fixed effect model 1.6564 [1.4317; 1.9164] 6.78 < 0.0001
  Quantifying heterogeneity:
```

Number of studies combined: k = 5

metarep allows adding replicability results to the conventional forest plots by meta. This can be done by simply applying meta::forest() on a metarep object.

```
metarep::forest(m2943.ra, layout='revman5',digits.pval = 2 , test.overall = T )
```

0. 1	Experim			ontrol		Odds Ratio		Odds Ratio Peto, Fixed, 95% CI			_
Study	Events	Iotai	Events	iotai	weignt	Peto, Fixed, 95% C		Peto, Fi	xea, 9	5% C	i
Sutton-1994	576	977	167	316	32.3%	1.28 [0.99; 1.66]			 	ı	
Somkin-1997	310	1171	187	1171	54.2%	1.87 [1.54; 2.28]			+	-	
Turnbull-1991	53	163	7	80	5.5%	3.57 [1.92; 6.63]					-
Mohler-1995	7	38	4	38	1.3%	1.88 [0.53; 6.68]		-	+	•	
Bodiya-1999	36	102	37	110	6.6%	1.08 [0.61; 1.89]		_		_	
Total (95% CI)		2451			100.0%					>	
Heterogeneity: 7			1								
Test for overall effect: $Z = 6.78 (P < 0.01)$								0.5	1	2	5
Replicability analysis (r-value = 0.0002)											

Out of 5 studies, at least: 2 with increased effect and 0 with decreased effect.

2^{nd} Example: Review CD007077

The second example is based on a fixed-effects meta analysis in review CD007077. The main objective of this review is to determine whether PBI/APBI is equivalent to or better than conventional or hypo-fractionated whole breast radiotherapy (WBRT) after breast-conservation therapy for early-stage breast cancer. The primary outcome was Cosmesis.

```
tau^2 = 1.0240; tau = 1.0119; I^2 = 88.4% [75.5%; 94.5%]; H = 2.94 [2.02; 4.26]
Test of heterogeneity:
     Q d.f. p-value
34.47
          4 < 0.0001
Details on meta-analytical method:
- Mantel-Haenszel method
- DerSimonian-Laird estimator for tau<sup>2</sup>
- Mantel-Haenszel estimator used in calculation of Q and tau^2 (like RevMan 5)
- Continuity correction of 0.5 in studies with zero cell frequencies
```

With the replicability analysis:

```
m7077.ra \leftarrow metarep(x = m7077, u = 2, t = 0.05, report.u.max = T)
metarep::forest(m7077.ra, layout='revman5',digits.pval = 2 , test.overall = T )
```

	Experim	Experimental		Control		Odds Ratio	Odds Ratio		
Study	Events	Total	Events	Total	Weight	MH, Fixed, 95% CI	MH, Fixed, 95% CI		
Livi-2015	0	246	2	260	2.5%	0.21 [0.01; 4.39] —	• !:		
Polg_x00e1_r-2007	24	125	43	116	37.4%	0.40 [0.23; 0.72]	 ;		
RAPID	140	399	61	367	42.8%	2.71 [1.92; 3.82]	; 		
Rodriguez	12	51	8	51	6.3%	1.65 [0.61; 4.47]	 •		
TARGIT	12	55	13	50	11.0%	0.79 [0.32; 1.95]	- 		
Total (95% CI)		876		844	100.0%	1.51 [1.17; 1.95]	•		
Heterogeneity: Tau ² = Test for overall effect:	0.1 0.51 2 10								
Replicability analysis (,		•				3.1. 3.0. = 10		

Out of 5 studies, at least: 1 with increased effect and 1 with decreased effect.

3^{rd} Example:

Based on a random-effects meta-analysis in review CD006823, where the meta-analysis finding was statistically significant. The authors examine the effects of wound drainage after axillary dissection for breast carcinoma on the incidence of post-operative Seroma formation.

```
data(CD006823 CMP001)
m6823 <- meta::metabin( event.e = N_EVENTS1, n.e = N_TOTAL1,
                     event.c = N_EVENTS2, n.c = N_TOTAL2,
                     studlab = STUDY, comb.fixed = F, comb.random = T,
                     method = 'MH', sm = CD006823_CMP001$SM[1],
                     data = CD006823_CMP001)
m6823
                       OR
                                    95%-CI %W(random)
  Cameron-1988
                   0.1358 [0.0247; 0.7478]
                                                  10.0
  Somers-1992
                   0.3341 [0.1633; 0.6837]
                                                  20.1
                   0.0120 [0.0006; 0.2230]
                                                   4.6
  Zavotksy-1998
  Purushotham-2002 0.9457 [0.6305; 1.4183]
                                                  23.6
                   0.4942 [0.1922; 1.2704]
  Jain-2004
                                                  17.4
  Soon-2005
                   0.6939 [0.0931; 5.1693]
                                                   8.1
              1.0446 [0.3665; 2.9774]
  Classe-2006
                                                  16.2
```

```
Number of studies combined: k = 7
                         OR
                                      95%-CI
                                                 z p-value
Random effects model 0.4576 [0.2293; 0.9130] -2.22 0.0266
Quantifying heterogeneity:
tau^2 = 0.4833; tau = 0.6952; I^2 = 67.7% [28.3%; 85.4%]; H = 1.76 [1.18; 2.62]
Test of heterogeneity:
     Q d.f. p-value
         6 0.0049
18.58
Details on meta-analytical method:
- Mantel-Haenszel method
- DerSimonian-Laird estimator for tau^2
- Mantel-Haenszel estimator used in calculation of Q and tau^2 (like RevMan 5)
- Continuity correction of 0.5 in studies with zero cell frequencies
```

With replicability-analysis:

```
m6823.ra <- metarep(x = m6823 , u = 2, t = 0.05, report.u.max = T )
metarep::forest(m6823.ra, layout='revman5',digits.pval = 2 , test.overall = T )</pre>
```

	Experim	nental	Co	ontrol		Odds Ratio		Odds R	atio	
Study	Events	Total	Events	Total	Weight	MH, Random, 95%	CI M	IH, Randon	ı, 95% (CI
Cameron-1988	2	20	9	20	10.0%	0.14 [0.02; 0.75]				
Somers-1992	79	108	106	119	20.1%	0.33 [0.16; 0.68]		-		
Zavotksy-1998	0	24	14	22	4.6%	0.01 [0.00; 0.22]		•		
Purushotham-2002	98	190	98	185	23.6%	0.95 [0.63; 1.42]				
Jain-2004	15	58	12	29	17.4%	0.49 [0.19; 1.27]		-		
Soon-2005	34	36	49	51	8.1%	0.69 [0.09; 5.17]			_	
Classe-2006	9	51	8	47	16.2%	1.04 [0.37; 2.98]		+	-	
Total (95% CI)		487			100.0%			•		
Heterogeneity: $Tau^2 = 0.4833$; $Chi^2 = 18.58$, $df = 6$ (P < 0.01); $I^2 = 68\%$										
Test for overall effect: $Z = -2.22$ (P = 0.03)								0.1 1	10	1000
Replicability analysis (r-value =	0.005	6)							

Out of 7 studies, at least: 0 with increased effect and 2 with decreased effect.

4th Example: Review CD003366

Based on a random-effects meta-analysis in review CD003366. The authors compare chemotherapy regimens on overall effect in Leukopaenia. Pooling 28 studies, the random-effects meta-analysis fails to declare any significant difference between regimens, due to the highly-significant yet contradicting results.

```
ECOG-E1193-_x0028_A_x0029_ 1.0957 [0.8799; 1.3643]
                                                            4.4
                            1.4340 [1.1970; 1.7179]
  EU_x002d_93011
                                                             4.8
  _x0033_<mark>06-</mark>Study-Group
                           1.0824 [1.0196; 1.1490]
                                                            5.7
  AGO
                            0.7525 [0.5883; 0.9625]
                                                            4.1
  Blohmer
                            1.0938 [0.9511; 1.2579]
                                                            5.2
  Bonneterre
                            1.3286 [0.8736; 2.0205]
                                                            2.6
  Bontenbal
                           1.0568 [0.9505; 1.1749]
                                                            5.4
  CECOG-BM1
                           1.1047 [1.0090; 1.2094]
                                                            5.6
  EORTC-10961
                           1.0919 [0.9882; 1.2066]
                                                            5.5
  HERNATA
                           1.9171 [1.3090; 2.8078]
                                                            2.9
  Jassem
                           1.3576 [1.1833; 1.5576]
                                                            5.2
  Lyman
                           0.9903 [0.7529; 1.3025]
                                                            3.8
                           1.1618 [1.0839; 1.2452]
  Nabholtz
                                                            5.7
  Rugo
                            1.4062 [0.3031; 6.5255]
                                                            0.3
  TRAVIOTA
                            0.1708 [0.0651; 0.4483]
                                                            0.8
  _x0033_03-Study-Group
                            1.0319 [0.9833; 1.0828]
                                                            5.8
                            0.9988 [0.9499; 1.0501]
  _x0033_04-Study-Group
                                                            5.8
                            0.4362 [0.3151; 0.6040]
  ANZ-TITG
                                                            3.3
                            4.1053 [0.9311; 18.1008]
                                                            0.4
  ECOG-E1193-_x0028_B_x0029_ 1.2183 [0.9812; 1.5125]
                                                            4.4
                            0.4719 [0.3875; 0.5747]
  EORTC-10923
                                                            4.6
  JC0G9802
                            1.6019 [1.0899; 2.3545]
                                                            2.9
 Meier
                            0.2467 [0.1314; 0.4633]
                                                            1.5
                            4.8162 [3.2206; 7.2023]
                                                            2.7
  Sjostrom
                            5.7895 [1.4441; 23.2103]
  Talbot
                                                            0.4
  TOG
                            0.6048 [0.3018; 1.2119]
                                                            1.3
  TXT
                           1.2342 [1.0326; 1.4752]
                                                            4.8
                            0.1923 [0.0233; 1.5888]
  Yardley
                                                            0.2
  Number of studies combined: k = 28
                          RR
                                       95%-CI
                                                 z p-value
  Random effects model 1.0673 [0.9747; 1.1688] 1.41 0.1596
  Quantifying heterogeneity:
  tau^2 = 0.0365; tau = 0.1911; I^2 = 89.7% [86.3%; 92.2%]; H = 3.11 [2.70; 3.59]
  Test of heterogeneity:
       Q d.f. p-value
  261.41 27 < 0.0001
 Details on meta-analytical method:
  - Mantel-Haenszel method
  - DerSimonian-Laird estimator for tau<sup>2</sup>
 - Mantel-Haenszel estimator used in calculation of Q and tau^2 (like RevMan 5)
with replicability-analysis:
```

```
m3366.ra <- metarep(x = m3366 , u = 2 , t = 0.05, report.u.max = T )
metarep::forest(m3366.ra, layout='revman5',digits.pval = 2 , test.overall = T )</pre>
```

	Experimental		Control		Risk Ratio		Risk Ratio
Study				Total	Weight	MH, Random, 95% CI	MH, Random, 95% CI
ECOG-E1193x0028_A_x0029_	126	230	56	112	4.4%	1.10 [0.88; 1.36]	
EU_x002d_93011	76	85	53	85	4.8%	1.43 [1.20; 1.72]	<u></u>
_x0033_06-Study-Group	202	213	184	210	5.7%	1.08 [1.02; 1.15]	•
AGO	69	204	89	198	4.1%		
Blohmer	101	125	82	111	5.2%	1.09 [0.95; 1.26]	<u> </u>
Bonneterre	31	70	24	72	2.6%	1.33 [0.87; 2.02]	
Bontenbal	96	108	90	107	5.4%	1.06 [0.95; 1.17]	<u>+</u>
CECOG-BM1	113	122	109	130	5.6%		<u> </u>
EORTC-10961	121	136	110	135	5.5%	1.09 [0.99; 1.21]	<u>+</u>
HERNATA	56	139	29	138	2.9%	1.92 [1.31; 2.81]	-
Jassem	119	134	87	133	5.2%	1.36 [1.18; 1.56]	-
Lyman	31	45	32	46	3.8%	0.99 [0.75; 1.30]	-
Nabholtz	224	238	192	237	5.7%	1.16 [1.08; 1.25]	<u> </u>
Rugo	3	32	3	45	0.3%	1.41 [0.30; 6.53]	
TRAVIOTA	4	40	24	41	0.8%	0.17 [0.07; 0.45]	
_x0033_03-Study-Group	154	159	153	163	5.8%	1.03 [0.98; 1.08]	•
_x0033_04-Study-Group	188	200	176	187	5.8%	1.00 [0.95; 1.05]	
ANZ-TITG	31	105	67	99	3.3%	0.44 [0.32; 0.60]	
Dieras	8	38	2	39	0.4%	4.11 [0.93; 18.10]	-
ECOG-E1193x0028_B_x0029_	_ 137	229	55	112	4.4%	1.22 [0.98; 1.51]	
EORTC-10923	66	164	139	163	4.6%	0.47 [0.39; 0.57]	
JCOG9802	50	147	31	146	2.9%	1.60 [1.09; 2.35]	-
Meier	9	58	39	62	1.5%	0.25 [0.13; 0.46]	
Sjostrom	105	136	21	131	2.7%	4.82 [3.22; 7.20]	-
Talbot	10	19	2	22	0.4%		
TOG	11	97	18	96	1.3%	0.60 [0.30; 1.21]	
TXT	65	79	60	90	4.8%	1.23 [1.03; 1.48]	—
Yardley	1	52	5	50	0.2%	0.19 [0.02; 1.59]	•
Total (95% CI)	1.07 [0.97; 1.17]						
Heterogeneity: Tau ² = 0.0365; Chi ² =		= 27 (P < 0.01)	$I^2 = 90$	0%		
Test for overall effect: $Z = 1.41$ (P = 0.	16)	,	·				0.1 0.5 1 2 10
Renlicability analysis (r_value = < 0.0	001)						

Replicability analysis (r-value = < 0.0001)

Out of 28 studies, at least: 10 with increased effect and 3 with decreased effect.