CSC10006 – Introduction to Database

Chapter 3 Relational Data Model

(Mô hình dữ liệu quan hệ)

Instructor: Vũ Thị Mỹ Hằng, Ph.D. (vtmhang@fit.hcmus.edu.vn)

Lab Assistants: Tiết Gia Hồng, M.Sc. (tghong@fit.hcmus.edu.vn)

Lương Hán Cơ, M.Sc. (lhco@fit.hcmus.edu.vn)

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Content

- Recall: Database Design Process
- Relational Data Model
- ER-to-Relational Mapping
- Practice

Content

- Recall: Database Design Process
- Relational Data Model
- ER-to-Relational Mapping
- Practice

Database Design Process

Analyze & Design

HOW to represent data structures and their characteristics, relations, constraints, etc.?

Data models

Entity Relationship Model
Relational Model
Object-oriented Model
Network Model

. . .

Implementation

Database Design Process

HOW to represent data structures and their characteristics, relations, constraints, etc.?

Content

- Recall: Database Design Process
- Relational Data Model
 - Main Concepts
 - Characteristics of Relations
 - Integrity Constraints
- ER-to-Relational Mapping

Content

- Recall: Database Design Process
- Relational Data Model
 - Main Concepts
 - Characteristics of Relations
 - Integrity Constraints
- ER-to-Relational Mapping

Relational (Data) Model

Mô hình (dữ liệu) quan hệ

- Was introduced by E. F. Codd, 1970.
- □ Represents data in the form of <u>relations</u> (tables) based on mathematical foundation (set theory).
- Used in many DBMS.
 - Commercial: Oracle, SQL Server, DB2 ...
 - Open source: MySQL, PostgreSQL, ...

Relation – Attribute – Tuple

Quan hệ – Thuộc tính – Bộ (dữ liệu)

- The relational data model represents data in the form of relations based on mathematical foundation.
- A relation is a named, two-dimensional table of data, with rows (<u>tuples</u>) and named columns (<u>attributes</u>).
 - Relation ⇔ Table.
 - Tuples in a relation ⇔ Rows of a table.
 - Attributes of a relation

 Columns of a table.

Employee

The relation **Employee** with four attributes (columns) and six tuples (rows).

staffNo	sName	position	salary
SL21 SG37	John White Ann Beech	Manager Assistant	30000 12000
SG14	David Ford	Supervisor	18000
SA9 SG5	Mary Howe Susan Brand	Assistant Manager	9000 24000
SL41	Julie Lee	Assistant	9000

Relation – Attribute – Tuple

Quan hệ – Thuộc tính – Bộ (dữ liệu)

Informal Definition

- A relation may be thought of as a <u>set of rows</u>.
- A relation may alternately be though of as a <u>set of columns</u>.
- Each <u>row</u> represents a fact that corresponds to a <u>real-world</u> <u>entity or relationship</u>.

Employee

The relation **Employee** with four attributes (columns) and six tuples (rows).

staffNo	sName	position	salary
SL21	John White	Manager	30000
SG37	Ann Beech	Assistant	12000
SG14	David Ford	Supervisor	18000
SA9	Mary Howe	Assistant	9000
SG5	Susan Brand	Manager	24000
SL41	Julie Lee	Assistant	9000

Domain of Attributes

Miền giá trị

- Domain of an attribute: Set of values that may be assigned to an attribute.
- All values appear in a column of a relation must be from the same domain.

Employee

staffNo	sName	position	salary
SL21	John White	Manager	30000
SG37 SG14	Ann Beech David Ford	Assistant Supervisor	12000 18000
SA9 SG5	Mary Howe Susan Brand	Assistant	9000 24000
SL41	Julie Lee	Manager Assistant	9000

Possible values of the attribute "Salary" is a set of positive integer.

Relational Database

Cơ sở dữ liệu quan hệ

- A relational database: A <u>set of relations</u> storing meaningful data for a particular business.
- □ E.g.,: The database Student Management consists of five relations: MonHoc, HocPhan, KetQua, DieuKien, SinhVien.

MÔNHỌC	TênMH	мамн	SốTC	Khoa
	Khoa học máy tính	CS1310	4	CNTT
	Cấu trúc dữ liệu	CS3320	4	CNTT
	Toán rời rạc	MATH2410	3	TOÁN
	Cơ sở dữ liệu	CS3380	3	CNTT

KÊTQUÁ	MSSV	MãHP	Điểm
	17	112	10
	17	119	7
	8	85	6
	8	92	9

ĐIỀUKIỆN	MãMH	MãMH_Trước
	CS3380	CS3320
	CS3380	MATH2410
	CS3320	CS1310

HỌCPHẨN	MãHP	Мамн	HọcKỳ	Năm	GiáoViên
	85	MATH2410	1	2008	Anh
	92	CS1310	1	2007	Tiên
	112	MATH2410	2	2008	Anh
	119	CS1310	2	2007	Tiên

SINHVIĒN	Tên	MSSV	Lớp	Khoa
	Trang	17	1	CNTT
	Ngọc	8	2	CNTT

Relational (Database) Schema

Lược đồ CSDL quan hệ

Relational (Database) Schema

fit@hcmus

Lược đồ CSDL quan hệ

The (relational)
database schema of
the database Student
Management

SINH VIĒN	TĒNSV	<u>MÄSV</u>	LÖP	NGÅNH
MÖN HỌC	TĒNMH	<u>MÄMH</u>	KHOA	TİNCHİ
ĐIỀU KIỆN	MÄMH TRƯỚC	<u>MÄMH</u>		
			•	
HỌC PHẨN	<u>MÄHP</u>	GIÁOVIĒN	Họckỳ	NĂM
KQ_Học	<u>MÄSV</u>	<u>MÄHP</u>	ÐiÊM	
				1

Is described by

Database Student Management

MÔNHỌC	TênMH	MãMH	SốTC	Khoa
	Khoa học máy tính	CS1310	4	CNTT
	Cấu trúc dữ liệu	CS3320	4	CNTT
	Toán rời rạc	MATH2410	3	TOÁN
	Cơ sở dữ liệu	CS3380	3	CNTT

	KÊTQUÁ	MSSV	MãHP	Điểm
ľ		17	112	10
		17	119	7
		8	85	6
		8	92	9

ĐIỀUKIỆN	MãMH	MãMH_Trước
	CS3380	CS3320
	CS3380	MATH2410
	CS3320	CS1310

HỌCPHẨN	MãHP	MãMH	HọcKỳ	Năm	GiáoViên
	85	MATH2410	1	2008	Anh
	92	CS1310	1	2007	Tiên
	112	MATH2410	2	2008	Anh
	119	CS1310	2	2007	Tiên

SINHVIÊN	Tên	MSSV	Lớp	Khoa	
	Trang	17	1	CNTT	
	Ngọc	8	2	CNTT	

Relation Schema

fit@hcmus

The (relational)
database schema
consists a set of
relation schemas.

	Lược do quan hẹ <							
-	SINH VIĒN	TĒNSV	<u>MÄSV</u>	LỚP	NGÅNH			
•	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •					
	MỘN HỌC	TĒNMH	<u>MÄMH</u>	KHOA	TİNCHİ			
							Is described by	
	ĐIỀU KIỆN	MÄMH TRƯỚC	<u>MÄMH</u>				To described by	
	HỌC PHÂN	<u>MÄHP</u>	GIÁOVIĒN	Họckỳ	NÅM			
	KQ_HọC	<u>MÄSV</u>	<u>MÄHP</u>	ĐIỂM				

Database Student Management

MÔNHỌC	TênMH	мамн	SốTC	Khoa
	Khoa học máy tính	CS1310	4	CNTT
	Cấu trúc dữ liệu	CS3320	4	CNTT
	Toán rời rạc	MATH2410	3	TOÁN
	Cơ sở dữ liệu	CS3380	3	CNTT

KÊTQUÁ	MSSV	MãHP	Điểm
	17	112	10
	17	119	7
	8	85	6
	8	92	9

ĐIỀUKIỆN	MãMH	MãMH_Trước
	CS3380	CS3320
	CS3380	MATH2410
	CS3320	CS1310

HỌCPHẨN	MãHP	MãMH	HọcKỳ	Năm	GiáoViên
	85	MATH2410	1	2008	Anh
	92	CS1310	1	2007	Tiên
	112	MATH2410	2	2008	Anh
	119	CS1310	2	2007	Tiên

SINHVIĒN	Tên	MSSV	Lớp	Khoa
	Trang	17	1	CNTT
	Ngọc	8	2	CNTT

Formal Definition & Notation

- □ A relation schema R, denoted by R(A1, A2, ..., An), is made up of a relation name R and a list of attributes, A1, A2, ..., An.
- Each attribute Ai has possible values defined in some domain D in the relation schema R. D is called the domain of Ai and is denoted by DOM(Ai).
- ☐ The degree (or arity) of a relation is the number of attributes n of its relation schema.

Formal Definition & Notation

- □ A relation of the relation schema R(A1, A2, ..., An), also denoted by r(R), is a set of n-tuples: r = {t1, t2, ..., tm}.
- □ Each t is an ordered list of n-values: t = <v1, v2, ..., vn>
 - Where each value vi, 1 ≤ i ≤ n, is an element of DOM(Ai) or is a special NULL value.
 - $r(R) \subseteq (DOM(A1) \times DOM(A2) \times ... DOM(An))$

The ith-value of t is represented by t.Ai or t[i].

KHOA (MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ..., NGÀYNHẬNCHỨC)

	MÃKHOA	TÊNKHOA	NĂMTL	PHÒNG	ĐIỆNTHOAI	TRƯỞNGKHOA	NGÀYNHẬNCHỨC
t_1	CNTT	Công nghệ thông tin	1995	B11	0838123456	002	20/02/2005
t_2	VL	Vật lý	1976	B21	0838223223	005	18/09/2003
t_3	SH	Sinh học	1980	B31	0838454545	004	11/10/2000
t_4	НН	Hóa học	1980	B41	NULL	007	15/10/2001

Summary of Notations

- The relation schema R of the degree n
 - R(A1, A2, ..., An)
- Relations
 - r, q, s
- Tuples
 - t, u, v
- Domain of the attribute A
 - DOM(A)
- The value at the attribute A of the tuple t
 - t.A hay t[A]

Example

GIÁOVIÊN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ, GVQLCM, MÃBM)

GV_ĐT (MÃGV, ĐIỆNTHOẠI)

BỘMÔN (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI, TRƯỞNGBM, MÃKHOA, NGÀYNHẬNCHỨC)

KHOA (MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ĐIỆNTHOAI, TRƯỞNGKHOA, NGÀYNHẬNCHỨC)

ĐỀTÀI (MÃĐT, TÊNĐT, KINHPHÍ, CẤPQL, NGÀYBĐ, NGÀYKT, MÃCĐ, GVCNĐT)

CHỦĐỀ (MÃCĐ, TÊNCĐ)

CÔNGVIỆC (MÃĐT, STT, TÊNCV, NGÀYBĐ, NGÀYKT)

THAMGIAÐT(MÃGV, MÃÐT, STT, PHỤCẤP, KẾTQUẢ)

- Degree of the schema KHOA is 7.
- Domain of the attribute MÃKHOA is "String".
- Domain of the attribute NĂMTL is "Integer".

Summary of Main Concepts

Relational Data Model

= Formal definitions of concepts, constraints, and operations based on mathematical foundations

Mô hình dữ liệu quan hệ

Relational DB Schema

= Set of Relation Schemas

Lược đồ CSDL quan hệ

= Tập hợp lược đồ quan hệ

Is described by

Relational Database

= Set of Relations (Tables)

(Một thể hiện của) CSDL quan hệ

= Tập hợp quan hệ (bảng dữ liệu)

Content

- Recall: Database Design Process
- Relational Data Model
 - Main Concepts
 - Characteristics of Relations
 - Integrity Constraints
- ER-to-Relational Mapping

Characteristics of Relations

Đặc trưng của quan hệ

- Allow distinguishing relations from nonrelation tables:
 - Each relation (or table) in a database has a unique name.
 - No multivalued attributes are allowed in a relation.
 - Each attribute (or column) within a table has a unique name.
 - The order of columns (left to right) is insignificant.
 - No two rows in a relation can be identical.
 - The order of rows (top to bottom) is insignificant.

Content

- Recall: Database Design Process
- Relational Data Model
 - Main Concepts
 - Characteristics of Relations
 - Integrity Constraints
- ER-to-Relational Mapping

Integrity Constraints

Ràng buộc toàn vẹn (trên dữ liệu)

- Specify (business) rules to maintain the accuracy and integrity of data stored in relations.
 - Keys Constraint: No two rows in a relation can be identical.
 - Referential Constraint. Some (attribute) values of a relation must match a (set of) value(-s) in another relation or must be null. This allows maintaining consistency among the rows of the two relations.
 - Domain Constraint: All values appear in a column of a relation must be from the same domain.

Keys (Entity Integrity)

Khoá (Đảm bảo tính toàn vẹn của dữ liệu)

(Siêu khoá)

- □ A <u>super key</u> of a relation schema R = { A_1 , A_2 , ..., A_n } is a set of attributes from R (S ⊆ R) with the property that no two tuples t_1 and t_2 in any legal relation state r of R will have t_1 [S] = t_2 [S].
 - Uniqueness: Identify each row in the relation.
- Example:

SINHVIEN (MSSV, HOTEN, PHAI, CCCD, NGSINH)

- {MSSV} is super key.
- {MSSV, HOTEN} is super key.
- All attributes of a relation constitute a super key.

Keys (Entity Integrity)

Khoá (Đảm bảo tính toàn vẹn của dữ liệu)

(Khoá) (Khoá ứng viên)

- A <u>key</u> (or <u>candidate key</u>) K <u>is a super key</u> with the additional property that removal of any attribute from K will cause K not to be a super key anymore.
 - Uniqueness: Identify each row in the relation.
 - Minimality: ¬∃X' ⊂ X such as X' is a super key.
 - Determined from the meaning of attributes.
 - A relation can have many candidate keys.
- Example:

SINHVIEN (MSSV, HOTEN, PHAI, CCCD, NGSINH)

- {MSSV} is key.
- {CCCD} is a key.
- {MSSV, HOTEN} is not a key.

Keys (Entity Integrity)

Khoá (Đảm bảo tính toàn vẹn của dữ liệu)

(Khoá chính)

- A <u>primary key</u> is the (candidate key) selected for implementation to identify uniquely the tuples in relation.
 - Should choose the key with few attributes.
 - The attributes of primary key are not null.
 - A relation has only one primary key.
 - A primary key can be a list of attributes (a composite key).
 - The primary key is <u>underlined</u>.
- Example:

SINHVIEN (MSSV, HOTEN, PHAI, CCCD, NGSINH)

- {MSSV} is the unique primary key of the relation SINHVIEN.
- CCCD could be a secondary (unique) key at the implementation level.

Referential Constraint

Ràng buộc tham chiếu

- An attribute A of a tuple in relation R receives a value from an attribute B of relation S.
 - R is called referencing relation (bảng tham chiếu).
 - S is called referenced relation (bảng được tham chiếu).

			TÊNKHOA	MÃKHOA			
		S	CNTT	5 ←			
		3	VL TOÁN	1			
	MÃBM	TÊNBM		PHÒNG	ĐiỆNTHOẠI	MÃKHOA	
	нттт	Hệ thống thông	tin	I84	838125125	5	
R	CNPM	Công nghệ phần	n mềm	I82	838126126	4	
	VLDT	Vật lý điện tử		F203	838127127	4	
	VLUD	Vật lý ứng dụng		F205	838128128	5	

Foreign Key

Khoá ngoại

- A specific referential constraint.
- Supposing two relation schemas:
 - $R_1(A_1, A_2, ..., A_n)$ and $R_2(B_1, B_2, ..., B_m)$
 - $PK \subseteq \{A_1, ..., A_n\}$ is the primary key of R_1 , $FK \subseteq \{B_1, ..., B_n\}$
- \square FK is a foreign key of R_2 if:
 - Attributes in FK have the same domains as attributes in the primary key PK: DOM(A_i) = DOM(B_i), 1 <= i <=n</p>
 - $\forall t_2 \text{ of } R_2, \exists t_1 \in R_1, t_2[FK] = t_1[PK].$

Foreign key

BỘMÔN (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI, TRƯỞNGBM, MÃKHOA, NGÀYNHẬNCHỨC)

KHOA (MÃKHOA, TÊNKHOA, NĂMTL, PHÒNG, ĐIỆN THOẠI, TRƯỞNGKHOA, NGÀYNHẬNCHỨC)

`Primary key

Foreign Key

Khoá ngoại

- An attribute can be part of a primary key and foreign key at the same time.
- A foreign key can refer to the primary key of the same relation.
- Many foreign keys can refer to the same primary key.
- Referential integrity constraint = foreign key constraint.

Domain Constraint

Ràng buộc miền dữ liệu

TABLE 4-1 Domain Definitions for INVOICE Attributes					
Attribute	Domain Name	Description	Domain		
CustomerID	Customer IDs	Set of all possible customer IDs	character: size 5		
CustomerName	Customer Names	Set of all possible customer names	character: size 25		
CustomerAddress	Customer Addresses	Set of all possible customer addresses	character: size 30		
CustomerCity	Cities	Set of all possible cities	character: size 20		
CustomerState	States	Set of all possible states	character: size 2		
CustomerPostalCode	Postal Codes	Set of all possible postal zip codes	character: size 10		
OrderID	Order IDs	Set of all possible order IDs	character: size 5		
OrderDate	Order Dates	Set of all possible order dates	date: format mm/dd/yy		
ProductID	Product IDs	Set of all possible product IDs	character: size 5		
ProductDescription	Product Descriptions	Set of all possible product descriptions	character: size 25		
ProductFinish	Product Finishes	Set of all possible product finishes	character: size 15		
ProductStandardPrice	Unit Prices	Set of all possible unit prices	monetary: 6 digits		
ProductLineID	Product Line IDs	Set of all possible product line IDs	integer: 3 digits		
OrderedQuantity	Quantities	Set of all possible ordered quantities	integer: 3 digits		

Concept Mapping to Physical Design

Khái niệm ở mức cài đặt trong HQTCSDL (DBMS)

- A relation is a named (two-dimensional) table of data, with rows (tuples) and named columns (attributes).
 - Relation ⇔ Table.
 - Tuples in a relation ⇔ Rows of a table.
 - Attributes of a relation
 Columns of a table.

The relation **Employee** with four attributes (columns) and six tuples (rows).

staffNo	sName	position	salary
SL21	John White	Manager	30000
SG37	Ann Beech	Assistant	12000
SG14	David Ford	Supervisor	18000
SA9	Mary Howe	Assistant	9000
SG5	Susan Brand	Manager	24000
SL41	Julie Lee	Assistant	9000

Content

- Recall: Database Design Process
- Relational Data Model
- ER-to-Relational Mapping
- Practice

Content

- Recall: Database Design Process
- Relational Data Model
- ER-to-Relational Mapping
- Practice

R#1: Regular Entity Set

For each Entity set (except weak entity set), create a corresponding relation:

- Same name
- Same set of attribute (except composite and multivalued attribute)

R#2: Composite Attribute

We have 2 case:

Case 1: a composite attribute is transformed into a single-valued attribute

R#2: Composite Attribute (cont.)

Case 2: a composite attribute is transformed into a set of single valued attributes

GIÁOVIÊN (MĂGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, *SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ* \S_7

R#3: Multi-valued Attribute

For each multi-valued attribute A of relation R, create a relation S with the following attribute:

- primary key of R
- attribute A (as a single-valued attribute)

Primary key of new relation S:

either A

or A + primary key of R

ĐIỆNTHOẠI (SỐĐT, MÃGV)

hoặc

ĐIỆNTHOẠI (SốĐT, MÃGV)

GIÁOVIÊN (MÃGV, HOTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ38

R#4: Weak Entity Set

For each entity set, create a corresponding relation:

- Same name
- Same set of attribute (except composite and multi valued attribute)
- Adding the key attributes of the entity sets which the weak entity set depends on
- The key of relation consists of weak key attributes key attributes of the entity sets which the weak entity set depends on

R#5: Relationship Set 1-n

Adding the key of the many-relation to the one-relation

GIÁOVIÊN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ, *MÃBM*) **BỘMÔN** (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI)

R#6: Relationship set: 1-1

Either adding the key of a relation to another relation + the attributes on the relationship

Or adding the key to both relations + the attributes on the relationship

T GIÁOVIÉN (MÃGV, HỌTÊN, LƯƠNG, PHÁI, NGÀYSINH, SỐNHÀ, ĐƯỜNG, QUẬN, THÀNHPHỐ, MÃBM)

S BỘMÔN (MÃBM, TÊNBM, PHÒNG, ĐIỆNTHOẠI, NGAYNHANCHUC, *TRƯỞNGBM*)

R#&: Relationship Set: n-n

Create a new relation

- Relation name is the name of the relationship
- Set of attribute consists of the key attributes of connected entity sets The attributes on the relationship
- Primary key consists of the key attributes of connected entity sets

Content

- Recall: Database Design Process
- Relational Data Model
- ER-to-Relational Mapping
- Practice

Practice #1

Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:

- STUDENT(SSN, Name, Major, Bdate)
- COURSE(Course#, Cname, Dept)
- Property ENROLL(SSN, Course#, Quarter, Grade)
- BOOK_ADOPTION(Course#, Quarter, Book_ISBN)
- TEXT(Book ISBN, Book_Title, Publisher, Author)

Draw a relational schema diagram specifying the foreign keys for this schema.

Practice #2

Practice #3

