PROJECT REPORT

SMART WASTE MANAGEMENT FOR METROPOLITAN CITIES

TEAM ID: PNT2022TMID20530

TEAM LEADER: VAISHNAVI H

TEAM MEMBER: ANJU JESSICA C

TEAM MEMBER: PAUL KEINS B

TEAM MEMBER: SELVA MURUGAN P

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

- 9.1 Performance Metrics
- **10. ADVANTAGES & DISADVANTAGES**
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code, GitHub & Project Demo Link

1. INTRODUCTION

1.1 Project Overview

Project Name: Smart Waste Management System For Metropolitan Cities.

Category: Internet Of Things.

Project Description:

1. Garbage level detection in bins.

- 2. Getting the weight of the garbage in the bin.
- 3. Alerts the authorized person to empty the bin whenever the bins are full.
- 4. Garbage level of the bins can be monitored through a web App.
- 5. We can view the location of every bin in the web application by sending GPS location from the device.

Skills Required:

Python, IoT Cloud Platform, IBM Cloud, Node-RED, IBM IoT Platform, IBM Node-red, IBM Cloudant DB

Technical Architecture:

1.2 Purpose

The main objective of the project is to manage the waste using iot platfrom efficiently. In the proposed system, we intimate the garbage collector about the garbage level before overflowing.

Smart city waste management technology allows workers to empty bins before they become overflowing with trash or recycling, and before infestation becomes an issue. Smart waste sensors can also alert garbage collectors when bins develop unpleasant smells which can then be treated to eliminate odors. Smart waste management control lots of problems which disturbs the society in pollution and diseases.

Main objectives:

- 1. Reduce human intervention
- 2. Using technology to automate waste management
- 3. Save time and cost
- 4. Helps to prevent diseases due to garbage dumps
- 5. Clean cities and healthy environment

2. LITERATURE SURVEY

2.1 Existing problem

The traditional way of manually monitoring the wastes in waste bins is a complex and utilizes more human effort, time and cost. Manual waste management causes missed pickups, overflowing bins. This will cause hygiene problems and in order to overcome all these problems, we are proposing the smart waste management system which helps in them anagement of waste without human interaction in order to maintain a clean environment.

2.2 References

Paper 1:

A Survey on Garbage Collection and Monitoring System for Smart cities using IOT

Publisher: Dept of Computer Engineering, Terna Engineering College, Nerul, Navi

Mumbai **Reference**: https://www.irjet.net/archives/V5/i2/IRJET-V5I2118.pdf

Paper 2:

IOT enabled solid waste management in smart cities

Publisher: S. Vishnu 1, S. R. Jino Ramson 1,2,3,*, Samson Senith 4, Theodoros Anagnostopoulos 5, Adnan M. Abu-Mahfouz 6, Xiaozhe Fan 2, S. Srinivasan 3 and A. Alfred Kirubaraj 4

Reference: https://www.mdpi.com/2624-6511/4/3/53/pdf

Paper 3:

IOT enabled intelligent solid waste management system for smart city

Publisher:

https://www.semanticscholar.org/paper/IoT-Enabled-Intelligent-Solid-Waste-Management-f or-De wangan/6fbe2679732dbcff5132ed75114137e00dcc53beisher

Reference: https://www.irjet.net/archives/V5/i2/IRJET-V5I2118.pdf

2.3 Problem Statement Definition

A reduction in the number of waste collections needed by up to 80%, resulting in less manpower, emissions, fuel use and traffic congestion. A reduction in the number of waste bins needed. Analytics data to manage collection routes and the placement of bins more effectively.

Theme: Internet of Things

Technologies: LoRa, Smart Mesh, RF, WiFi

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

3.3 Proposed Solution

S.No	Parameter	Description
1.	Problem Statement	India faces major environmental challenges associated with waste generation and lacking waste collection, transport, treatment, and disposal. conventional systems in India can't manage the volumes of waste generated, and this impacts the surroundings and public health.
2.	Idea/Solution description	A Web application is built where the location of garbage bins, their weight, and the level of the waste collected are monitored. Sensors are fitted in the garbage bins and the required data is collected and acquired from them. The real-time monitoring system indicates when the bin is full and alerts the authorized person to empty the bin.
3.	Novelty/Uniqueness	This project introduces a way to sort out problems like missed pickups and overflowing garbage bins. This prevents the wastage of labor costs, fuel costs, and time.
4.	Social Impact / Customer Satisfaction	Provides healthy Environment Improves hygiene because of timely waste collection Clean cities can be achieved Control the level of pollution and gases
5.	Business Model (Revenue Model)	The software can be offered as a Service model to the Government. The revenue can be generated by charging the customers for the provision of services from waste management to safe disposal and recycling.
6.	Scalability of the Solution	The proposed solution uses sensors where the information about garbage bins can be collected in real-time. Communication technologies enable the authorized person to check data online.

3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Download the application through online registration
FR-2	User Confirmation	Confirmation via E-mail
		Confirmation via OTP using the phone number
FR-3	Cloud	Sensor details are updated and stored in the cloud
		database.
FR-4	Notifier	Notification should send automatically to the
		registered mail or phone when bins are filled
FR-5	Sensor	Garbage bins are fitted with sensors that will monitor
		the wastage level.

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	It will stop the overflowing of dustbins along roadsides and localities as smart bins are managed in real time.
NFR-2	Reliability	Details are maintained in the cloud.
NFR-3	Performance	It provides a clean environment
NFR-4	Availability	This method is available for all urban people in smart city
NFR-5	Scalability	Maintaining garbage bin monitoring and providing guiding service based on the database.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can download the application	I can view the data sent by the hardware	High	Sprint-3
Customer (web user)	Registration	USN-1	As a user, I can view the application web page	I can view the data sent by the hardware	High	Sprint-3
Customer (Data types)	Data viewing	USN-1	As a user, I can view garbage level monitoring	Data from the hardware	High	Sprint-1
		USN-2	As a user, I can view the level of wastage	Data from the hardware	High	Sprint-1
		USN-3	As a user, I can view the level of dustbin is detected	Data from the hardware	High	Sprint-1
Customer	Actions	USN-1	As a user, I can receive notification that appears on the phone	I receive notification	Medium	Sprint-2
		USN-1	As a user, I need sensor Access which connected to mobile	Based on the sensor the level of the garbage will monitor	Medium	Sprint-2
Administrator	Storage	USN-1	As an administrator, I can store the data	All the data are stored in a cloud database	High	Sprint-4

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Title	Description	Details	
Literature Survey & Information Gathering	Literature survey on the selected project & gathering information by referring the, technical papers,research publication etc .	28 SEPTEMBER 2022	
Prepare Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem Statements.	24 SEPTEMBER 2022	
Ideation	List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	25 SEPTEMBER 2022	
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	23 SEPTEMBER 2022	
Problem Solution Fit	Prepare problem - solution fit Document.	30 SEPTEMBER 2022	
Solution Architecture	Prepare solution architecture Document.	28 SEPTEMBER 2022	
Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	20 OCTOBER 2022	
Functional Requirements	Prepare the functional requirement document.	08 OCTOBER 2022	
Data Flow Diagrams	Draw the data flow diagrams and submit for review.	09 OCTOBER 2022	

Technology Architecture	Prepare the technology architecture diagram.	10 OCTOBER 2022
Prepare Milestone & Activity List	Prepare the milestones & activity list of the project.	22 OCTOBER 2022
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it.	IN PROGRESS

6.2 Sprint Delivery Schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Login	USN-1	As an Administrator, I need to give a user id and passcode to every workers over there in the municipality	2	High	Vaishnavi Anju Jessica Paul keins Selva Murugan
Sprint-1	Login	USN-2	As a Co-Admin, I'll control the waste level by monitoring them via a real-time web portal. Once the filling happens, I'll notify the trash truck with the location of the bin with bin ID	2	High	Vaishnavi Anju Jessica Paul keins Selva Murugan
Sprint-2	Dashboard	USN-3	As a Truck Driver, I'll follow Co-Admin's Instruction to reach the filling bin in short roots and save time	2	High	Vaishnavi Anju Jessica Paul keins Selva Murugan
Sprint-3	Dashboard	USN-4	As a Local Garbage Collector, I'll gather all the waste from the garbage, load it onto a garbage truck, and deliver it to Landfills	2	High	Vaishnavi Anju Jessica Paul keins Selva Murugan
Sprint-4	Dashboard	USN-5	As a Municipality officer, I'll make sure everything is proceeding as planned and without any problems	2	High	Vaishnavi Anju Jessica Paul keins Selva Murugan

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story	Duration	Sprint Start	Sprint End Date	Story Points	Sprint Release
	Points		Date	(Planned)	Completed	Date (Actual)
					(as on Planned	
					End Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

7. CODING & SOLUTIONING

7.1 Feature 1

```
#include <cstdlib>
#include <time.h>
#include <WiFi.h>
#include < PubSubClient.h >
#define ORG "evd8ss"
#define DEVICE_TYPE "raspberrypi"
#define DEVICE ID "1234"
#define TOKEN "12345678"
#define speed 0.034
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
char publishTopic[] = "iot-
2/evt/data/fmt/json";
char authMethod[] = "use-token-auth";
char token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;
WiFiClient wifiClient;
PubSubClient client(server, 1883, wifiClient);
```

```
int weight = 0;
String location = "Coimbatore";
String status = "";
void setup() {
 Serial.begin(99900);
 wifiConnect();
mqttConnect();
void loop() {
 srand(time(0));
  //initial
variable int p;
  weight = random(0,80);
  if(weight > 0 && weight < 25){
    p = 0;
  else if(weight > 25 && weight < 50){
    p = 1;
  }
else{
p =
2;
  }
  //set a quality status
```

```
switch (p) {
case 0:
status = "Low";
break; case 1:
    status =
"Half";
break;
        case
2:
       status =
"Full";
break;
  }
//Obivously the output.It is like json format 'cause it will help us
for future sprints String payload = "{"; payload+="\"Weight
       payload+=weight; payload+=",";
payload+="\"Loaction\":"; payload+="Coimbatore";
  payload+=",";
  payload+="\"Status\":\""+status+"\"}";
  Serial.println(payload);
 if(client.publish(publishTopic, (char*) payload.c_str()))
 {
  Serial.println("Publish OK");
 }
 else{
  Serial.println("Publish failed");
 }
 delay(1000);
 if (!client.loop())
  mqttConnect();
```

```
}
void wifiConnect()
 Serial.print("Connecting to ");
 Serial.print("Wifi");
 WiFi.begin("Wokwi-GUEST", "", 6);
 while (WiFi.status() != WL_CONNECTED)
  delay(500);
  Serial.print(".");
 Serial.print("WiFi connected, IP address: ");
 Serial.println(WiFi.localIP());
}
void mqttConnect()
 if (!client.connected())
  Serial.print("Reconnecting MQTT client to ");
Serial.println(server);
  while (!client.connect(clientId, authMethod, token))
  {
   Serial.print(".");
delay(500);
  }
  Serial.println();
```


7.2 Node red

Smart Waste Management Initmation Driver Button Location Coimbatore Weight Weight 68 2 30 Message To Driver Over Weight Please Collect The Garbage

8. TESTING

8.1 Test Cases

TEST CASE 1:

WEIGHT: 0 KG

STATUS: NOT FILLED, DUSTBIN IS EMPTY

TEST CASE 2:

WEIGHT: 10KG

STATUS:20% FILLED, NOT READY TO DISPOSE

TEST CASE 3:

WEIGHT: 20KG

STATUS: 40% FILLED, NOT READY TO DISPOSE

TEST CASE 4:

WEIGHT: 30KG

STATUS: 60% FILLED, NOT READY TO DISPOSE

TEST CASE 5:

WEIGHT: 45KG

STATUS: 90% FILLED, READY TO DISPOSE

9. RESULTS

9.1 Performance Metrics

Total MSW Generated = Total tons Recycled + Total tons Recovered + Total tons Disposed MSW = Municipal Solid Waste (does not include industrial, special and demolition wastes)

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES:

A reduction in the number of waste collections needed by up to 80%, resulting in less manpower, emissions, fuel use and traffic congestion.

A reduction in the number of waste bins needed. Analytics data to manage collection routes and the placement of bins more effectively.

DISADVANTAGES:

Misunderstanding of the operations of smart sensors Non-optimized truck routes

11. CONCLUSION

Monitoring the garbage bins through sensors, it is possible to achieve a more efficient system than the manual method. The project "Smart waste management system", mainly concentrates on providing a smart technology for waste system without human intervention, reducing human time and effort and which results in healthy and waste ridden environment. The proposed idea can be implemented for smart cities where the residents would be busy enough and wouldn't have enough time for managing waste. The bins can be implemented in a city if desired where there would be a large bin that can have the capacity to accumulate the waste of solid type for a single apartment. The cost could be distributed among the residents leading to cheaper service provision.

12. FUTURE SCOPE

Waste management in future includes improvement in monitoring systems, data collection, and advancements based on new upcoming technologies.

13. APPENDIX

Source Code: https://wokwi.com/projects/348737483943445076

GitHub: https://github.com/IBM-EPBL/IBM-Project-33561-1660222837
Project Demo Link: https://github.com/IBM-EPBL/IBM-Project-33561-1660222837
1660222837/blob/main/Final%20Deliverables/Demo%20link.mp4