ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

ЧИСЛЕННОЕ ИНТЕРПОЛИРОВАНИЕ И ДИФФЕРЕНЦИРОВАНИЕ (Вариант 8)

Выполнил студент 3 курса ПМиИ Ковшов Максим

Постановка задачи:

Пусть на отрезке [a;b] заданы точки x_0, x_1, \ldots, x_n и значения функции y = f(x)в этих точках: $y_0 = f(x_0), \dots, y_n = f(x_n)$.

Интерполяционный многочлен Лагранжа:

$$L_n(x) = \sum_{i=0}^n \quad y_i \frac{(x-x_0)...(x-x_{i-1})(x-x_{i+1})...(x-x_n)}{(x_i-x_0)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_n)}.$$
 Оценка погрешности формулы Лагранжа:

$$|R_n(x)| \le \frac{M_{n+1}}{(n+1)!} |(x-x_0)(x-x_1)...(x-x_n)|,$$

где
$$M_{n+1} = \max_{[x_0, x_n]} |f^{(n+1)}(x)|$$

Если надо вычислить не общее выражение $L_n(x)$, а лишь его значение на конкретном х, то используется интерполяционная схема Эйткена:

Конкретном X, то используется интерполяционная
$$L_{i,i+1}(x) = \frac{1}{x_{i+1}-x_i} \Big|_{\substack{y_i \\ y_{i+1} \\ x_{i+1}-x_i}} \Big|_{\substack{y_i \\ y_{i+1} \\ x_{i+1}-x_i}} \Big|_{\substack{L_{i,i+1} \\ L_{i+1,i+2} \\ x_{i+2}-x_i}} \Big|_{\substack{L_{i,i+1} \\ L_{i+1,i+2} \\ x_{i+2}-x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_{i+3} - x_i}} \Big|_{\substack{L_{i,i+1,i+2} \\ L_{i+1,i+2,i+3}}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x \\ x_i - x \\ x_i - x_i}} \Big|_{\substack{x_i - x \\ x_i - x$$

Первая часть.

- 1) Известная функция y=f(x) задана таблицей, в которой приведены значения в узлах с некоторой точностью. Составить по таблице интерполяционный многочлен Лагранжа. Вычислить значение функции в заданной точке х аналитически и с помощью многочлена Лагранжа. Найти левую, правую и центральную производную в этой точке и ее точное значение. Оценить погрешность полученных результатов.
- 2) Функция y = f(x) задана таблицей (одинаковой для всех вариантов):

x_k	1,00	1,08	1,20	1,27	1,31	1,38
y_k	1,17520	1,30254	1,50946	1,21730	1,22361	1,23470

Пользуясь интерполяционной схемой Эйткена найти $f(x^*)$, заданной в точке x^* последовательно, используя все значения из таблицы.

Точность вычислений определяется числом значащих цифр в условии.

Вторая часть. Численное дифференцирование.

Во второй части задания вычислить таблицу на отрезке [a;b] на равномерной сетке (5 узлов), и в этих узлах и в точке т найти значение первой производной функции по формулам 1-го (левая и правая) и 2-го порядка точности и значение второй производной по формулам 2-го порядка точности, где это возможно.

Значение функции в точке m получить интерполированием по всем 5 точкам. Во всех точках найти точные значения производных. Оценить погрешность. Результаты свести в таблицу. Точность - 4 значащих цифры.

	Численно				Точно	
x_k , m	<i>f</i> `(<i>x</i>) слева	<i>f</i> `(<i>x</i>) справа	<i>f</i> `(<i>x</i>) центр	f``(x)	f`(x)	f``(x)

Для точности m, кроме этого, указать значение функции и интерполированное значение.

Условия.

1 часть.

1)
$$y = sinx, x = 1,6$$
.

x_k	1,5	2,0	2,5	3,5
y_k	0,99745	0,9093	0,59847	0,14112

2)
$$x^* = 1,026$$

2 часть.

$$f(x) = ln \frac{x}{2}, a = 4,5; b = 10; m = 5,03.$$

Ход выполнения

Задание 1

Дано:

1)
$$y = sin(x), x = 1.6$$

x_k	1,5	2,0	2,5	3,5
y_k	0,99745	0,9093	0,59847	0,14112

2) x*=1,026

Результаты:

1)

Значение в X по Лагранжу 1.00762 Аналитическое значение 0.999574 Ошибка метода Лагранжа 0.00877469 Левая производная -0.0291495 Правая производная -0.0292495 Средняя производная -0.0291995

2) Значение в X по Эйткену 0.966696

Задание 2

Дано:

$$f(x) = ln \frac{x}{2}$$
; $a = 4.5$; $b = 10$; $m = 5.03$;

	Численно				Точно	
x_k, m	<i>f</i> `(<i>x</i>) слева	<i>f</i> `(<i>x</i>) справа	<i>f</i> `(<i>x</i>) центр	f``(x)	<i>f</i> `(<i>x</i>)	f``(x)
4,5	-	0.22222	-	-	0.222222	-0.0493827
5,6	0.178573	0.17857	0.178571	-0.031 <mark>8</mark> 877	0.178571	-0.031 <mark>8</mark> 878
6,7	0.149255	0.149253	0.149254	-0.022 <mark>2</mark> 767	0.149254	-0.022 <mark>2</mark> 767
7,8	0.128206	0.128204	0.128205	-0.016 <mark>4</mark> 365	0.128205	-0.0164366
8,9	0.11236	0.112359	0.11236	-0.012 <mark>6</mark> 247	0.11236	-0.012 <mark>6</mark> 247
10	0.100001	0.0999995	0.1	-0.00999998	0.1	-0.01

```
x = 4.5
Левая производная 0.222225
Правая производная 0.22222
Средняя производная 0.222222
Вторая производная (численно) -0.0493827
Первая производная (аналитически) 0.222222
Вторая производная (аналитически) -0.0493827
x = 5.6
Левая производная 0.178573
Правая производная 0.17857
Средняя производная 0.178571
Вторая производная (численно) -0.0318877
Первая производная (аналитически) 0.178571
Вторая производная (аналитически) -0.0318878
x = 6.7
Левая производная 0.149255
Правая производная 0.149253
Средняя производная 0.149254
Вторая производная (численно) -0.0222767
Первая производная (аналитически) 0.149254
Вторая производная (аналитически) -0.0222767
x = 7.8
Левая производная 0.128206
Правая производная 0.128204
Средняя производная 0.128205
Вторая производная (численно) -0.0164365
Первая производная (аналитически) 0.128205
Вторая производная (аналитически) -0.0164366
x = 8.9
Левая производная 0.11236
Правая производная 0.112359
Средняя производная 0.11236
Вторая производная (численно) -0.0126247
Первая производная (аналитически) 0.11236
Вторая производная (аналитически) -0.0126247
x = 10
Левая производная 0.100001
Правая производная 0.0999995
Средняя производная 0.1
Вторая производная (численно) -0.00999998
Первая производная (аналитически) 0.1
Вторая производная (аналитически) -0.01
m = 5.03
Левая производная 0.198809
Правая производная 0.198805
Средняя производная 0.198807
Вторая производная (численно) -0.0395243
Первая производная (аналитически) 0.198807
Вторая производная (аналитически) -0.0395243
Интерполированное значение m 0.922224
Аналитическое значение m 0.922273
```

Интерполированное значение m: 0.922224 Аналитическое значение m: 0.922273

Выводы: Сопоставление численных результатов с аналитическими данными позволяет оценить точность применяемых методов. Высокая точность небольших различиях методов отражается В между полученными и Применение аналитическими значениями. интерполяции позволяет приблизительно определить значения функции в точках, которые не входят в исходную сетку. Анализ различий между интерполированными значениями и точными значениями функции дает представление о точности проведенной интерполяции.

Все исходные тексты программ приводятся в Приложении

Код программы

```
#include <iostream>
#include <vector>
 #define h 0.0001
 //Первое задание

∨double function(double x) {
     return sin(x);
vdouble derivitive_6(double x) {
     return -sin(x);
vdouble function_2(double x) {
     return log(x/2);
√double derivitive_2_1(double x) {
    return 1/x;
vdouble derivitive_2_2(double x) {
     return -1 / pow(x,2);
vdouble lagrange(std::vector<double> x_k, std::vector<double> y_k, double x) {
     double L = 0;
     for (int i = 0; i < x_k.size(); i++) {
         for (int j = 0; j < x_k.size(); j++) {</pre>
                 s *= (x - x_k[j]) / (x_k[i] - x_k[j]);
         s *= y_k[i];
         L += s;
     return L;
vdouble lagrange_2(std::vector<double> x_k, double x) {
     double L = 0;
     for (int i = 0; i < x_k.size(); i++) {
         for (int j = 0; j < x_k.size(); j++) {</pre>
                 s *= (x - x_k[j]) / (x_k[i] - x_k[j]);
```

```
s *= function_2(x_k[i]);
     return L;
1
vdouble factorial(double x) {
     double result = 1;
         result *= 1;
     return result;
3
vdouble error_lagrange(std::vector<double> x_k, double x) {
     int n = 4;
     double result = 1;
         result *= x - x_k[i];
         result *= derivitive_6(2.5) / factorial(n+1);
     return abs(result);
vdouble left_derivative(double x, double (*func)(double)) {
     return (func(x) - func(x - h)) / h;
| }
vdouble mid_derivative(double x, double (*func)(double)) {
     return (\operatorname{func}(x + h) - \operatorname{func}(x - h)) / (2 * h);
vdouble right_derivative(double x, double (*func)(double)) {
     return (func(x + h) - func(x)) / h;
vdouble second_derivative(double x, double (*func)(double)) {
     return (func(x - h) - 2 * func(x) + func(x + h)) / pow(h, 2);
vdouble eitken(std::vector<double> x_k, double x, std::vector<double> L, int k1, int k2) {
     if (k2 - k1 != 1)
         return (eitken(x_k, x, L, k1, k2 - 1) * (x_k[k2] - x) - (eitken(x_k, x, L, k1 + 1, k2) * (x_k[k1] - x))) / (x_k[k2] - x_k[k1]);
     else
         return L[k1];
```

```
vint main()
          setlocale(LC_ALL, "Russian");
          double x = 1.6;
          std::vector<double> x_k = { 1.5, 2.0, 2.5, 3.5 };
std::vector<double> y_k = { 0.99745, 0.9093, 0.59847, 0.14112 };
          std::cout << "Значение в X по Лагранжу " << lagrange(x_k, y_k, x) << std::endl; std::cout << "Аналитическое значение " << function(x) << std::endl;
          std::cout << "Ошибка метода Лагранжа " << error_lagrange(x_k, x) << std::endl;
         std::cout << "Певая производная " << left_derivative(x, function) << std::endl; std::cout << "Правая производная " << right_derivative(x, function) << std::endl; std::cout << "Средняя производная " << mid_derivative(x, function) << std::endl;
          x_k = \{ 1.00, 1.08, 1.20, 1.27, 1.31, 1.38 \};
          y_k = \{ 1.17520, 1.30254, 1.50946, 1.21730, 1.22361, 1.23470 \};
          int n = 6;
          std::vector<double> L(n - 1);
                  L[i] = (y_k[i] * (x_k[i] + 1] - x) - (y_k[i] + 1] * (x_k[i] - x))) / (x_k[i] + 1] - x_k[i]);
          std::cout << "3\mu 3\mu 3\mu 3\mu 7 = 1 (x-\mu 8 x no 3\mu 7 = 1 (x-\mu 8 x no 3\mu 7 = 1 (x-\mu 8 x no 3\mu 8 x no 3\mu 7 = 1 (x-\mu 8 x no 3\mu 9 x no 3\mu 8 x no 3\mu 9 x
          double a = 4.5;
          double b = 10;
          double m = 5.03;
          x_k = { 4.5, 5.6, 6.7, 7.8, 8.9, 10 };
          for (double i : x_k) {
                   std::cout << "\nx = " << i << std::endl;
                   std::cout << "Левая производная " << left_derivative(i, function_2) << std::endl;
                   std::cout << "Правая производная " << right_derivative(i, function_2) << std::endl;
                   std::cout << "Средняя производная " << mid_derivative(i, function_2) << std::endl;
                   std::cout << "Вторая производная (численно) " << second_derivative(i, function_2) << std::endl;
                  std::cout << "Первая производная (аналитически) " << derivitive_2_1(i) << std::endl;
                  std::cout << "Вторая производная (аналитически) " << derivitive_2_2(i) << std::endl;
          std::cout << "\nm = " << m << std::endl;
          std::cout << "Левая производная " << left_derivative(m, function_2) << std::endl; std::cout << "Правая производная " << right_derivative(m, function_2) << std::endl;
           std::cout << "Средняя производная " << mid_derivative(m, function_2) << std::endl;
           std::cout << "Вторая производная (численно) " << second_derivative(m, function_2) << std::endl;
           std::cout << "Первая производная (аналитически) " << derivitive_2_1(m) << std::endl;
           std::cout << "Вторая производная (аналитически) " << derivitive_2_2(m) << std::endl;
           std::cout << "Интерполированное значение m " << lagrange_2(x_k, m) << std::endl;
           std::cout << "Аналитическое значение m " << function_2(m) << std::endl;
 3
```