CHAPTER 12 DISCUSSIONS 2

Let relations $r_1(A, B, C)$ and $r_2(C, D, E)$ have the following properties.

- r_1 : 20,000 tuples; 25 tuples/block
- *r*₂: 45,000 tuples; 20 tuples/block
- Buffer size: 64 blocks

Estimate the number of block transfers required for $r_1 \bowtie r_2$ using block nested-loop join.

Let relations $r_1(A, B, C)$ and $r_2(C, D, E)$ have the following properties.

- r_1 : 20,000 tuples; 25 tuples/block
- *r*₂: 45,000 tuples; 20 tuples/block
- Buffer size: 64 blocks

Estimate the number of block transfers required for $r_1 \bowtie r_2$ using *hash join*.

Perform a *hash join* of r and s on the numeric attribute. Assume M = 4 and use modulo as your hash function.

3	Α
10	В
8	С
6	D
1	Е
9	F
8	G
2	Н
7	ı
2	J
4	K
5	L
3	М
6	N
9	0
4	Ъ

relation s

relation r

What would be the most efficient way to evaluate the following query? Represent your (heuristic) answer in a query evaluation tree.

SELECT i_id, c_id, title FROM teaches, course WHERE teaches.c_id = course.c_id

teaches(i_id, c_id, year, semester)

$$n_{teaches} = 20,000$$
; $b_{teaches} = 200$; $size(i_id, c_id) = 50\%$

course(c_id, title, dept, credit, level, description)

$$n_{course} = 10,000$$
; $b_{course} = 400$; $size(c_id, title) = 20\%$

■ *M*=22 (# of buffer blocks)

Suppose we chose the following evaluation plan for the previous query. Estimate the cost when we use materialization for all of the operations except for the topmost projection.

M=22 (# of buffer blocks)

Can you improve performance by *pipelining*? Which pairs of operations would you pipeline, and how much would you gain?

M=22 (# of buffer blocks)

Suppose relations *teaches* and *course* are each sorted on the join attribute *c_id*. Would you use a different join algorithm? Justify.

M=22 (# of buffer blocks)