CSCE-642 Reinforcement Learning Imitation Learning

Instructor: Guni Sharon

Based on slides by: Yisong Yue and Hoang M. Le

Imitation Learning in a Nutshell

- Given: demonstrations or a demonstrator (interactive)
- Goal: train a policy to imitate the demonstrator

Ingredients of Imitation Learning

Demonstration or demonstrator

Environment / Simulator

Policy Class

Loss function

Learning algorithm

Notation

- $P(\tau|\pi)$: distribution of trajectories induced by a policy
 - $s_0 \sim \rho_0(s_0)$, $a_t \sim \pi(a_t|s_t)$, $s_{t+1} \sim P(s_{t+1}|s_t, a_t)$
 - $\rho_0(s_0)$ is the distribution of the initial state s_0
- $P(S|\pi)$: distribution of states induced by a policy
- D (set of demonstrations) $\sim P(S|\pi^d)$
 - Rollouts using π^d

Imitation Learning Algorithms

- Behavioral Cloning
 - Learn to do exactly what the demonstrator showed you
- Direct (interactive) Imitation Learning
 - Solicit the demonstrator for new (relevant) examples as you learn
- Inverse RL
 - Learn the demonstrator's objective (its reward function)
 - Train a policy that optimizes the same objective
- Generative adversarial
 - Learn to act indistinguishably from the demonstrator

Behavioral Cloning

- Reduction to Supervised Learning
- Learning the policy is defined as an optimization problem
 - $\theta = \arg\min_{\theta} E_{s,a\sim D} [loss(a, \pi_{\theta}(s))]$
- Results in minimizing 1-step deviation error along the expert trajectories
 - What's the problem here?
- Doesn't generalize
- The learned policy is clueless when a state outside of the demonstration set is encountered
- "As soon as the learner makes a mistake, it may encounter completely different observations than those under expert demonstration, leading to a compounding of errors." [Ross et al. 2011]

Worst case analysis

Assume 0,1 loss (negative of reward)

 $loss(s, a) = \begin{cases} 0 & \text{if } a = \pi^d(s) \\ 1 & \text{else} \end{cases}$

- Assume $\forall s \in D$, $\pi_{\theta}(a \neq \pi^{d}(s)|s) \leq \epsilon$
 - Low training error

•
$$E[\sum_t l(s_t, a_t)] \le \epsilon T + (1 - \epsilon)\epsilon (T - 1) + (1 - \epsilon)^2 \epsilon (T - 2) + \cdots$$

Made a mistake on step 1 -> unknown terrain -> continue to make mistakes until the end

Made a mistake on step 2 -> unknown terrain -> continue to make mistakes until the end

• = $O(\epsilon T^2)$ Vary bad! (even for small epsilon)

Worst case analysis

- Let's consider a stronger (yet reasonable) assumption: the policy can generalize well to the demonstration distribution
- The weak assumption, $\forall s \in D, \ \pi_{\theta}(a \neq \pi^{d}(s)|s) \leq \epsilon$
- Becomes: $\forall s \sim P(s|\pi^d)$, $E[\pi_\theta(a \neq \pi^d(s)|s)] \leq \epsilon$
- Do we get a better worst case?
 - No, still $O(\epsilon T^2)$
 - See [Ross et al. 2011]

When to use Behavioral Cloning?

Advantages

- Simple
- Simple
- Efficient

Use When:

- 1-step deviations not too bad
- Learning reactive behaviors
- Expert trajectories "cover" state space

Disadvantages

- Distribution mismatch between training and testing
- No long-term planning

Don't Use When:

- 1-step deviations can lead to catastrophic error
- Optimizing long-term objective (at least not without a stronger model)

(robust) Imitation Learning

- The learned policy might encounter states that weren't visited by the demonstrator (they are not in the demonstration trajectories)
- Instead of minimizing the (chosen action) loss for states drawn from $D \sim P(s|\pi^d)$, minimize for states drawn from the learned policy: $P(s|\pi_\theta)$
- $\theta = \arg\min_{\theta} E_{s,a\sim D} [loss(a, \pi_{\theta}(s))] \rightarrow$ $\arg\min_{\theta} E_{s\sim P(s|\pi_{\theta})} [loss(\pi^{d}(s), \pi_{\theta}(s))]$

Interactive IL

- Use an interactive demonstrator to shift from $\arg\min_{\theta} E_{s,a\sim D}[loss(a,\pi_{\theta}(s))]$ to $\arg\min_{\theta} E_{s\sim P(S|\pi_{\theta})}\left[loss(\pi^{d}(s),\pi_{\theta}(s))\right]$
- Assumption: Can query expert at any state
 - $\forall s, \pi^d(s)$ is available
- **Key**: sample trajectories using $\pi_{\theta}(s)$
 - Evaluate the loss on the sampled trajectories

Alternating Optimization (Naïve Attempt)

Init θ_0

Repeat:

1.
$$P_i = P(S|\pi_{\theta_i})$$

2.
$$\theta_{i+1} = \arg\min_{\theta} E_{s \sim P_i} \left[loss \left(\pi^d(s), \pi_{\theta}(s) \right) \right]$$

Might oscillate - Not Guaranteed to Converge

Data Aggregation (DAgger) [Ross et al. 2011]

- "DAGGER proceeds by collecting a dataset at each iteration under the current policy and trains the next policy under the aggregate of all collected datasets"
- "trains a deterministic policy that achieves good performance guarantees under its induced distribution of states"
- "collecting a dataset at each iteration under the current policy and trains the next policy under the aggregate of all collected datasets"

Data Aggregation (DAgger) [Ross et al. 2011]

- "To better leverage the presence of the expert in our imitation learning setting, we optionally allow the algorithm to use a modified policy π_i that queries the expert to choose controls a fraction of the time while collecting the next dataset"
- "the first few policies, with relatively few datapoints, may make many more mistakes and visit states that are irrelevant as the policy improves"

```
Initialize \mathcal{D} \leftarrow \emptyset.

Initialize \hat{\pi}_1 to any policy in \Pi.

for i=1 to N do

Let \pi_i = \beta_i \pi^* + (1-\beta_i)\hat{\pi}_i.

Sample T-step trajectories using \pi_i.

Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\} of visited states by \pi_i and actions given by expert.

Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i.

Train classifier \hat{\pi}_{i+1} on \mathcal{D}.

end for

Return best \hat{\pi}_i on validation.
```

No-regret algorithm

- Online learning provides a policy, π_i , at every iteration
- Applying π_i result in a loss (-reward), $l_i(\pi_i)$
- The loss (gradient) is used to train π_{i+1} which, when applied, incurs $l_{i+1}(\pi_{i+1})$
- $Regret_n = \frac{1}{n} \sum_{i=1}^{n} l_i(\pi_i) \min_{\pi \in \Pi} \frac{1}{n} \sum_{i=1}^{n} l_i(\pi)$
- No-regret algorithm: $\lim_{n\to\infty} Regret_n = 0$
- DAgger is proven to be no-regret* = converges relatively quickly
 - See assumptions regarding convexity of the loss function and learning steps in [Ross et al. 2011]

Results

Inverse RL

- What if we don't have an interactive demonstrator?
 - We only have access to an offline set of demonstrated trajectories
- Behavioral cloning is not robust
 - Suffers from overfitting
 - We know what to do in observed states but can't generalize well to other states
- How can we learn to mimic the demonstrator in a general way?
 - Learn the demonstrator's objective (reward) function
 - Apply RL

Inverse RL

- Input: $D = \{\tau_1, ..., \tau_m\} \sim \pi^d$
- Learn:

reward function R^d such that $\forall \pi$, $\mathbb{E}[\sum_t \gamma^t R^d(s_t) | \pi^d] \ge \mathbb{E}[\sum_t \gamma^t R^d(s_t) | \pi]$

- Must assume that such an R^d exists (the demonstrator is optimal in some sense)
- Output: $\widehat{\pi^d}$ trained using RL with reward function R^d

Fitted reward is ambiguous

- With no knowledge of chess rules
- What reward function results in the white player policy?
- For most observations of behavior there are many fitting reward functions. The set of solutions often contains many degenerate solutions, e.g., assigning zero reward to all states

$\widehat{R^d}$ as a linear approximator

- Define $R(s) = w^{T}f(s)$, where w is a set of weights and f(s) is a vector of state features
- $\mathbb{E}\left[\sum_{t} \gamma^{t} R^{d}(s_{t}) \mid \pi\right] = \mathbb{E}\left[\sum_{t} \gamma^{t} w^{\mathsf{T}} f(s_{t}) \mid \pi\right] = w^{\mathsf{T}} \mathbb{E}\left[\sum_{t} \gamma^{t} f(s_{t}) \mid \pi\right] = w^{\mathsf{T}} \mu(\pi)$
- Where $\mu(\pi)$ is the expected cumulative discounted sum of feature values
- Now we can rewrite: $\mathbb{E}[\sum_t \gamma^t R^d(s_t) | \pi^d] \ge \mathbb{E}[\sum_t \gamma^t R^d(s_t) | \pi] \ \forall \pi$
 - As: $w^{d^{\top}}\mu(\pi^d) \ge w^{d^{\top}}\mu(\pi) \ \forall \pi$
- Solve w^d as an optimization problem

Solve w^d as a constraint optimization

Abbeel & Ng, ICML '04

 ${\rm Max}_w \delta$

S.T.

In order to discourage ambiguity, maximize the difference in accumulated reward, δ , achieved by π^d compared to any other observed policies.

$$w^{\mathsf{T}}\mu(\pi^d) \ge [w^{\mathsf{T}}\mu(\pi_j) + \delta] \quad \forall j = \{0, ..., i-1\}$$

 $||w||_2 \le 1$

When assuming that all state features are valued from the range [0,1], bounding $||w||_2 \le 1$ ensures that the rewards are bounded by 1 (Important for theoretical guarantees).

Non-linear constraint

- Can't solve as a linear program, solve as a quadratic program
- For each iteration i:
 - sample trajectory i-1 from π_{i-1} , $\widehat{R^d}(s;w)$ = solve the quadratic program
 - π_i = train RL on new $\widehat{R^d}$
 - stop once $\delta \leq \epsilon$ for some predefined ϵ

Solve w^d as a constraint optimization

Abbeel & Ng, ICML '04

$$\begin{aligned} & \text{Max}_{w} \ \delta \\ & \text{S.T.} \\ & w^{\top} \mu(\pi^{d}) \geq \min_{j=\{0,\dots,i-1\}} \left[w^{\top} \mu(\pi_{j}) + \delta \right] \\ & \|w\|_{2} \leq 1 \end{aligned}$$

- For each iteration i:
 - sample trajectory i-1 from π_{i-1} , $\widehat{R^d}(s;w)=$ solve the quadratic program, $\pi_i=$ train RL on $\widehat{R^d}$, stop once $\delta \leq \epsilon$ for some predefined ϵ
- Guaranteed to terminate after $O\left(\frac{k}{(1-\gamma)^2\epsilon^2}\log\frac{k}{(1-\gamma)\epsilon}\right)$ iterations
 - Where k is the number of state features
 - Only for linear reward approximation

MaxEnt approach

- A policy π induces a distribution over trajectories $P(\tau|\pi)$
 - $\sum_{i} p(\tau_i | \pi) = 1$
- We require that π is set such that it follows the same expected trajectory as π^d
 - $\mathbb{E}[\mu(\pi^d)] = \sum_i p(t_i|\pi) \mu(\tau)$
- Maximum entropy principle: The probability distribution which best represents the current state of knowledge is the one with largest entropy [E.T. Jaynes, 1957]

MaxEnt approach [Ziebart et al., AAAI '08]

• Find a policy π which results in a trajectory distribution that is similar in expectancy to that induced by π^d without over-committing

$$\max_{\pi} - \sum_{\tau} p(\tau|\pi) \log p(\tau|\pi)$$

s.t.
$$\sum_{\tau \in \pi} p(\tau | \pi) \mu(\tau) = \frac{1}{m} \sum_{\tau^d \in D} \mu(\tau^d)$$
 Visited states distribution in demonstrations

- [Ziebart et al., AAAI '08] considers linear approximation
- For generalization of MaxEnt to Deep IRL see: "Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization", Finn et al., ICML '16

Generative Adversarial Imitation Learning

[Ho & Ermon, NeurlPS 2016]

Discriminator is trained to output 0 if input state-action is by the demonstrator else 1

Loss = log loss

The policy (generator) is trained using the policy gradient theorem:

$$\nabla j(\pi) = q(s, a) \nabla \log \pi(s, a)$$

In IL there is no reward function and consequently, no q(s,a) value. Instead of attempting to maximize q attempt to fool the discriminator (maximize Loss of D for (s_t,a_t)).

$$\nabla j(\pi) = \sum_{t} \log D(s_t, a_t) \, \nabla \log \pi(s_t, a_t)$$

Generative Adversarial Imitation Learning

[Ho & Ermon, NeurIPS 2016]

Algorithm 1 Generative adversarial imitation learning

- 1: **Input:** Expert trajectories $\tau_E \sim \pi_E$, initial policy and discriminator parameters θ_0, w_0
- 2: **for** $i = 0, 1, 2, \dots$ **do**
- 3: Sample trajectories $\tau_i \sim \pi_{\theta_i}$
- 4: Update the discriminator parameters from w_i to w_{i+1} with the gradient

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))]$$

- (17) Training the discriminator
- 5: Take a policy step from θ_i to θ_{i+1} , using the TRPO rule with cost function $\log(D_{w_{i+1}}(s,a))$. Specifically, take a KL-constrained natural gradient step with

$$\hat{\mathbb{E}}_{\tau_i} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q(s,a) \right] - \lambda \nabla_{\theta} H(\pi_{\theta}),$$
where $Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{\tau_i} \left[\log(D_{w_{i+1}}(s,a)) \mid s_0 = \bar{s}, a_0 = \bar{a} \right]$

(18) Training the policy

6: end for

Note: the Q value is **not** the action value but the discriminator's loss

Note: H here is not for entropy. It is the Hessian matrix -- the original GAIL paper used TRPO (natural gradient).

Summary: Types of Imitation Learning

- Behavioral Cloning
 - $\pi = \arg\min_{\pi' \in \Pi} E_{s,a\sim D} [loss(a,\pi'(s))]$
 - Works well when $P(\tau|\pi) \approx D$
- Direct Policy Learning
 - Use an interactive demonstrator to shift from $\arg\min_{\theta} E_{s,a\sim D} \left[loss(a,\pi_{\theta}(s))\right]$ to $\arg\min_{\theta} E_{s\sim P(S|\pi_{\theta})} \left[loss(\pi^d(s),\pi_{\theta}(s))\right]$
 - Requires an online demonstrator

Summary: Types of Imitation Learning

- Behavioral Cloning
 - Works well when $P(\tau|\pi) \approx D$
- Direct Policy Learning
 - Requires an online demonstrator
- Inverse RL
 - Assumes learning $\widehat{R^d}$ is statistically easier than directly learning π^d
- MaxEnt
- Generative Adversarial
 - Learn to resemble the demonstrated patterns

Summary: Types of Imitation Learning

	Direct policy learning	Learn the reward function	Access to environment	Interactive demonstrator	Pre-collected demonstration
Behavioral cloning		×	×	×	
Interactive IL					Optional
Inverse RL	×			×	
Generative Adversarial	×			×	

Extra reading

- https://sites.google.com/view/icml2018-imitation-learning/
- https://arxiv.org/pdf/1011.0686.pdf
- https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
- https://people.eecs.berkeley.edu/~pabbeel/cs287fa12/slides/inverseRL.pdf
- https://arxiv.org/pdf/1606.03476.pdf
- https://arxiv.org/pdf/1710.11248.pdf

What next?

- Lecture: Transfer learning
- Assignments:
 - DDPG, by
 - A2C, by
- Quiz (on Canvas):
 - Imitation Learning, by
 - Soft Actor-Critic, by
- Project:
 - Final Report, by