ECON 210C PROBLEM SET # 4

MINKI KIM

1. Labor Supply Problem

(a) individuals with time-separable utility solve the following maximization problem:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \left(\log C_t + \log(1 - L_t) \right) + \lambda \sum_{t=0}^{\infty} \beta^t \left(C_t - w_t L_t \right)$$

Since the future wage schedule is known in advance, the problem is translated into the following form:

(b)

2. Demand shock

- (a)
- (b)
- (c)
- (d)
- (e)

3. Business cycle and external returns to scale

- (a)
- (b)
- (c)
- (d)
- (e)

2 MINKI KIM

4. Problems from Romer

4.1. **Problem 6.10.**

(a) Using the given three equations, it is easy to get the closed form solution for p, p^* , and y.

$$p = \frac{f\phi m'}{1 - f + f\phi}$$
$$p^* = \frac{\phi m'}{1 - f + f\phi}$$
$$y = \frac{m'(1 - f)}{1 - f + f\phi}$$

(b) The following figure summarizes the results

FIGURE 1. A firm's incentive to adjust its price

(c) Whether a firm adjusts its price or not depends on the size of the menu cost, Z. Suppose $\phi < 1$. To be written...

4.2. **Problem 6.11.**

- (a) If the firm does not adjust its price and stays at $r^*(y_0)$ level, its profit is $\pi(y_1, r^*(y_0))$. On the other hand, if the firm choose to adjust its price to the optimal level for y_1 , its profit is $\pi(y_1, r^*(y_1))$ The difference between these two is a potential gain from adjusting the price, so can be interpreted as the incentive to adjust its price.
- (b) Second-order Taylor approximation of $G = \pi\left(y_1, r^*(y_1)\right) \pi\left(y_1, r^*(y_0)\right)$ is:

$$G = \pi (y_1, r^*(y_1)) - \pi (y_1, r^*(y_0))$$

 \simeq

(c)

4.3. **Problem 6.12.**