Раздел 3. Векторная алгебра в координатной плоскости

3.1 Основные векторы

Три взаимно перпендикулярные оси OX, OY и OZ образуют прямоугольную систему координат (раздел 2). Отложив на этих осях в положительном направлении отрезки OA, OB и OC, равные единице масштаба, получим три вектора: \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} . Они называются основными векторами (ортами) и обозначаются соответственно \overrightarrow{i} , \overrightarrow{j} и \overrightarrow{k} .

3.2 Координаты вектора на плоскости

Если \vec{i} , \vec{j} — орты координатных осей прямоугольной системы координат Oxy, то любой вектор \vec{a} единственным образом можно представить в виде их суммы (линейной комбинации) с коэффициентами a_x и a_y : $\vec{a} = a_x \vec{i} + a_y \vec{j}$. Коэффициенты a_x , a_y линейной комбинации называют координатами вектора \vec{a} в базисе \vec{i} , \vec{j} . Координаты a_x , a_y вектора \vec{a} — это его проекции на соответствующие координатные оси. Вектор \vec{a} с координатами a_x , a_y записывают в виде $\vec{a} = (a_x; a_y)$. Длина вектора \vec{a} определяется по формуле $|\vec{a}| = \sqrt{a_x^2 + a_y^2}$.

Вектор \vec{a} образует с координатными осями Ox и Oy углы α и β соответственно. Направление вектора \vec{a} определяется с помощью направляющих косинусов: $cos\alpha$, $cos\beta$ для которых справедливы равенства $\cos\alpha = \frac{a_x}{|\vec{a}|}$, $\cos\beta = \frac{a_y}{|\vec{a}|}$.

Пусть даны два вектора $\vec{a} = (a_x; a_y)$ и $\vec{b} = (b_x; b_y)$. Тогда:

- 1) векторы \vec{a} и \vec{b} равны тогда и только тогда, когда равны их соответствующие координаты, т. е. $\vec{a} = \vec{b} \iff \begin{cases} a_x = b_x \\ a_y = b_y \end{cases}$.
- 2) векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны, т. е.: $\vec{a} \parallel \vec{b} \iff \frac{a_x}{b_x} = \frac{a_y}{b_y}$.
- 3) При сложении векторов их одноименные координаты складываются, при вычитании вычитаются, при умножении вектора на число умножаются на это число: $\vec{a} \pm \vec{b} = (a_x \pm b_x; \ a_y + b_y); \ \lambda \cdot \vec{a} = (\lambda a_x; \ \lambda a_y).$

Вектор $\vec{r} = \overrightarrow{OM}$, соединяющий начало координат с произвольной точкой M(x; y) называется радиус-вектором точки M. Координаты точки — это координаты ее радиусвектора $\vec{r} = (x; y)$ или $\vec{r} = x\vec{i} + y\vec{j}$. Если вектор $\vec{a} = \overrightarrow{AB}$ задан точками $A(x_1; y_1)$ и $B(x_2; y_2)$,

то его координаты a_x , a_y вычисляются по формулам $a_x = x_2 - x_1$, $a_y = y_2 - y_1$: $\vec{a} = \overrightarrow{AB} = (x_2 - x_1; y_2 - y_1)$.

Если векторы \vec{a} и \vec{b} заданы своими координатами $\vec{a} = (a_x; a_y)$ и $\vec{b} = (b_x; b_y)$ то их скалярное произведение находится по формуле: $\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y$.

3.3 Координаты вектора в пространстве

Если \vec{i} , \vec{j} и \vec{k} — орты координатных осей прямоугольной системы координат Oxy, то любой вектор \vec{a} единственным образом можно представить в виде их суммы (линейной комбинации) с коэффициентами a_x и a_y : $\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$. Коэффициенты a_x , a_y , a_z линейной комбинации называют координатами вектора \vec{a} в базисе \vec{i} , \vec{j} и \vec{k} . Координаты a_x , a_y , a_z вектора \vec{a} — это его проекции на соответствующие координатные оси. Вектор \vec{a} с координатами a_x , a_y , a_z записывают в виде $\vec{a} = (a_x; a_y; a_z)$. Длина вектора \vec{a} определяется по формуле: $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$ (1.1).

Вектор \vec{a} образует с координатными осями O_x , O_y и O_z углы α , β и γ соответственно. Направление вектора \vec{a} определяется с помощью направляющих косинусов: $\cos\alpha$, $\cos\beta$ и $\cos\gamma$ для которых справедливы равенства: $\cos\alpha = \frac{a_x}{|\vec{a}|}$, $\cos\beta = \frac{a_y}{|\vec{a}|}$,

$$\cos \gamma = \frac{a_z}{|\vec{a}|} \ (1.2).$$

Пусть даны два вектора $\vec{a} = (a_x; a_y; a_z), \vec{b} = (b_x; b_y; b_z)$. Тогда:

- 1) векторы \vec{a} и \vec{b} равны тогда и только тогда, когда равны их соответствующие координаты, т. е. $\vec{a} = \vec{b} \Leftrightarrow \begin{cases} a_x = b_x, \\ a_y = b_y, \\ a_z = b_z \end{cases}$
- 2) векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны, т. е. $\vec{a} \parallel \vec{b} \iff \frac{a_x}{b_y} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$ (1.3)

При сложении векторов их одноименные координаты складываются, при вычитании — вычитаются, при умножении вектора на число — умножаются на это число:

$$\vec{a} \pm \vec{b} = (a_x \pm b_x; \ a_y \pm b_y; \ a_z \pm b_z)$$
$$\lambda \cdot \vec{a} = (\lambda \cdot a_x; \ \lambda \cdot a_y; \ \lambda \cdot a_z)$$

Вектор $\vec{r} = \overrightarrow{OM}$, соединяющий начало координат с произвольной точкой M(x; y; z) называется **радиус-вектором** точки M(x; y; z) вектора $\vec{r} = (x; y; z)$ или $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

Если вектор $\vec{a} = \overrightarrow{AB}$ задан точками $A(x_1; y_1; z_1)$ и $B(x_2; y_2; z_2)$, то его координаты a_x , a_y , a_z вычисляются по формулам: $a_x = x_2 - x_1$, $a_y = y_2 - y_1$, $a_z = z_2 - z_1$: $\vec{a} = \overrightarrow{AB} = (x_2 - x_1; y_2 - y_1; z_2 - z_1)$ (1.4).

Пример 1: Даны три последовательные вершины параллелограмма: A(1; -2; 3), B(3; 2; 1), C(6; 4; 4). Найти его четвертую вершину D.

Решение:

Обозначим координаты вершины D через x, y, z, t. е. D(x; y; z). Так как ABCD — параллелограмм, то имеем: $\overrightarrow{BC} = \overrightarrow{AD}$. Находим координаты векторов \overrightarrow{BC} и \overrightarrow{AD} : $\overrightarrow{BC} = (6-3; 4-2; 4-1)$, t. е. $\overrightarrow{BC} = (3; 2; 3); \overrightarrow{AD} = (x-1; y+2; z-3)$. Из равенства векторов \overrightarrow{BC} и \overrightarrow{AD} следует, что x-1=3, y+2=2, z-3=3. Отсюда находим: x=4x, y=0, z=6. Итак, D(4; 0; 6).

Пример 2: Найти координаты вектора \vec{a} , если известно, что он направлен в противоположную сторону к вектору $\vec{b} = 5\vec{i} - 4\vec{j} + 2\sqrt{2}\vec{k}$, и его модуль равен 5.

Решение:

Можно записать, что $\vec{a} = 5 \cdot \vec{a}^0$. Так как вектор \vec{a} направлен в противоположную сторону к вектору \vec{b} , то $\vec{a}^0 = -\vec{b}^0$. Найдем орт \vec{b}^0 . Из равенства $\vec{b} = |\vec{b}| \cdot \vec{b}^0$ находим $\vec{b}^0 = \frac{\vec{b}}{|\vec{b}|}$.

Ho
$$|\vec{b}| = \sqrt{5^2 + (-4)^2 + (2\sqrt{2})^2} = 7$$
. Значит, $\vec{b}^0 = \frac{5}{7}\vec{i} - \frac{4}{7}\vec{j} + \frac{2\sqrt{2}}{7}\vec{k}$.

Следовательно, $\vec{a}^0 = -\frac{5}{7}\vec{i} + \frac{4}{7}\vec{j} - \frac{2\sqrt{2}}{7}\vec{k}$ и $\vec{a} = 5 \cdot \vec{a}^0 = 5 \cdot \left(-\frac{5}{7}\vec{i} + \frac{4}{7}\vec{j} - \frac{2\sqrt{2}}{7}\vec{k}\right)$, т.е. $\vec{a} = -\frac{25}{7}\vec{i} + \frac{20}{7}\vec{j} - \frac{10\sqrt{2}}{2}\vec{k}$.

Пример 3: Вектор \vec{a} составляет с осями Ox и Oy углы $\alpha=60^\circ$ и $\beta=120^\circ$. Найти его координаты, если $|\vec{a}|=2$.

Решение:

Пусть x, y, z — координаты вектора \overrightarrow{a} , то есть $\overrightarrow{a}=\left(x;\ y;\ z\right)$. Координаты вектора \overrightarrow{a} найдем из соотношений $\cos\alpha=\frac{x}{\left|\overrightarrow{a}\right|},\ \cos\beta=\frac{y}{\left|\overrightarrow{a}\right|},\ \cos\gamma=\frac{z}{\left|\overrightarrow{a}\right|}$. Предварительно найдем $\cos\gamma$. Так как, то $\cos^2\gamma=1-\cos^260-\cos^2120$, то есть $\cos^2\gamma=\frac{1}{2}$. Отсюда находим, что $\cos\gamma=\frac{\sqrt{2}}{2}$ или $\cos\gamma=-\frac{\sqrt{2}}{2}$. Условию задачи удовлетворяют два вектора $\overrightarrow{a_1}$ и $\overrightarrow{a_2}$: $\overrightarrow{a_1}$ с направляющими косинусами $\cos\alpha=\frac{1}{2},\ \cos\beta=-\frac{1}{2},\ \cos\gamma=\frac{\sqrt{2}}{2}$ и $\overrightarrow{a_2}$ с направляющими косинусами $\cos\alpha=\frac{1}{2},\ \cos\gamma=-\frac{\sqrt{2}}{2}$. Имеем: $\frac{1}{2}=\frac{x_1}{2},\ -\frac{1}{2}=\frac{y_1}{2},\ \frac{\sqrt{2}}{2}=\frac{z_1}{2},\ \frac{1}{2}=\frac{x_2}{2},\ -\frac{1}{2}=\frac{y_2}{2},\ -\frac{\sqrt{2}}{2}=\frac{z_2}{2}$. Отсюда находим: $x_1=1,\ y_1=-1,\ z_1=\sqrt{2}$ и $x_2=1,\ y_2=-1,\ z_2=-\sqrt{2}$. То есть $\overrightarrow{a_1}=\left(1;\ -1;\ \sqrt{2}\right)$ и $\overrightarrow{a_2}=\left(1;\ -1;\ -\sqrt{2}\right)$.

Пример 4: При каких значениях α и β векторы $\vec{a} = -2\vec{i} + 3\vec{j} + \alpha\vec{k}$ и $\vec{b} = \beta\vec{i} - 6\vec{j} + 2\vec{k}$ коллинеарны?

Решение:

Так как $\vec{a} \parallel \vec{b}$, то $\frac{-2}{\beta} = \frac{3}{-6} = \frac{\alpha}{2}$ (см. условие (1.3)). Отсюда находим, что $\alpha = -1$, $\beta = 4$.

Пример 5: Разложить вектор $\vec{c} = (9; 4)$ по векторам $\vec{a} = (1; 2)$ и $\vec{b} = (2; -3)$.

Решение:

Требуется представить вектор \vec{c} в виде $\vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b}$, где λ_1 и λ_2 — числа. Найдем их, используя определение равенства векторов. Имеем: $\vec{c} = 9\vec{i} + 4\vec{j}$, $\vec{a} = \vec{i} + 2\vec{j}$, $\vec{b} = 2\vec{i} - 3\vec{j}$ и равенство $9\vec{i} + 4\vec{j} = \lambda_1 (\vec{i} + 2\vec{j}) + \lambda_2 (2\vec{i} - 3\vec{j})$, то есть $9\vec{i} + 4\vec{j} = (\lambda_1 + 2\lambda_2)\vec{i} + (2\lambda_1 - 3\lambda_2)\vec{j}$. Отсюда следует, что $\begin{cases} \lambda_1 + 2\lambda_2 = 9, \\ 2\lambda_1 - 3\lambda_2 = 4, \end{cases}$, то есть $\lambda_1 = 5$, $\lambda_2 = 2$, следовательно, $\vec{c} = 5\vec{a} + 2\vec{b}$.

3.4 Векторное произведение векторов

Если векторы \vec{a} и \vec{b} заданы своими координатами $\vec{a} = (a_x; a_y; a_z), \vec{b} = (b_x; b_y; b_z),$ то

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
, или $\vec{a} \times \vec{b} = \begin{pmatrix} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix}$; $-\begin{vmatrix} a_z & a_x \\ b_z & b_x \end{vmatrix}$; $\begin{vmatrix} a_x & a_y \\ b_z & b_y \end{vmatrix}$) (3.2).

Для вычисления площади параллелограмма, построенного на векторах \vec{a} и \vec{b} применяется формула $S = \left| \vec{a} \times \vec{b} \right|$ (3.3).

Векторное произведение может быть выражено формулой $\vec{a} \times \vec{b} = S \cdot \vec{e}$ (3.4), где \vec{e} орт направления $\vec{a} \times \vec{b}$.

Пример 6: Найти площадь треугольника с вершинами A(1; 2; 0), B(3; 2; 1), C(-2; 1; 2).

Решение:

Площадь S треугольника \overrightarrow{ABC} равна половине площади параллелограмма, построенного на векторах \overrightarrow{AB} и \overrightarrow{AC} , то есть $S = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right|$. Имеем: $\overrightarrow{AB} = (2; 0; 1)$, $\overrightarrow{AC} = (-3; -1; 2)$. Тогда по формуле (3.2) $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}; \begin{pmatrix} 2 & 1 \\ -3 & 2 \end{pmatrix}; \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}$, то есть $\overrightarrow{AB} \times \overrightarrow{AC} = (1; -7; -2)$. Следовательно, $S = \frac{1}{2} \sqrt{1 + 49 + 4} = \frac{\sqrt{54}}{2} = \frac{3\sqrt{6}}{2}$.

3.5 Смешанное произведение векторов

Смешанным произведением трех векторов \vec{a} , \vec{b} и \vec{c} называется число, равное скалярному произведению вектора $\vec{a} \times \vec{b}$ на вектор \vec{c} .

Обозначение: \vec{abc} .

Таким образом: $\vec{a}\vec{b}\vec{c} = (\vec{a}\times\vec{b})\cdot\vec{c}$.

Геометрически смешанное произведение интерпретируется как число, равное объему параллелепипеда, построенного на векторах \vec{a} , \vec{b} и \vec{c} как на ребрах. Смешанное произведение векторов \vec{a} , \vec{b} и \vec{c} положительно, если данные векторы образуют правую тройку, и отрицательно – если левую.

Свойства смешанного произведения:

- 1. $(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$, т. е. смешанное произведение не меняется при циклической перестановке векторов;
- 2. $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$, т. е. смешанное произведение не меняется при перестановке знаков векторного и скалярного умножения;
- 3. $\vec{abc} = -\vec{acb} = -\vec{bac} = \vec{cba}$ т.е. смешанное произведение меняет знак на противоположный при перемене мест любых двух векторов-сомножителей;
- 4. $\vec{abc} = 0$, если \vec{a} , \vec{b} и \vec{c} компланарны (в частности, если любые два из перемножаемых вектора коллинеарны).

Если векторы \vec{a} , \vec{b} и \vec{c} заданы своими координатами $\vec{a} = (a_x; a_y; a_z)$, $\vec{b} = (b_x; b_y; b_z)$,

$$\vec{c} = (c_x; c_y; c_z) \text{ To } \vec{abc} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_z & c_z \end{vmatrix}$$
(4.1).

Если $\vec{abc} > 0$, то \vec{a} , \vec{b} \vec{c} – правая тройка; $\vec{abc} < 0$ – левая.

Объем V_1 параллелепипеда, построенного на векторах \vec{a} , \vec{b} и \vec{c} , и объем V_2 , построенной на них треугольной пирамиды, находятся по формулам

$$V_{1} = \left| \overrightarrow{abc} \right|, \quad (4.2)$$

$$V_{2} = \frac{1}{6} \left| \overrightarrow{abc} \right|. \quad (4.3)$$

Пример 7: Доказать, что четыре точки $A_1(3; 5; 1)$, $A_2(2; 4; 7)$, $A_2(1; 5; 3)$, $A_4(4; 4; 5)$ лежат в одной плоскости.

Решение:

Достаточно показать, что три вектора $\overrightarrow{A_1}\overrightarrow{A_2}$, $\overrightarrow{A_1}\overrightarrow{A_3}$, $\overrightarrow{A_1}\overrightarrow{A_4}$, имеющие начало в одной из данных точек, лежат в одной плоскости (то есть компланарны). Находим координаты векторов $\overrightarrow{A_1}\overrightarrow{A_2}$, $\overrightarrow{A_1}\overrightarrow{A_3}$, $\overrightarrow{A_1}\overrightarrow{A_4}$:

$$\overrightarrow{A_1 A_2} = (2-3; 4-5; 7-1) = (-1; -1; 6);$$

 $\overrightarrow{A_1 A_3} = (1-3; 5-5; 3-1) = (-2; 0; 2);$
 $\overrightarrow{A_1 A_4} = (4-3; 4-5; 5-1) = (1; -1; 4).$

Проверяем условие компланарности векторов (свойство 4 смешанного произведения векторов):

$$\overrightarrow{A_1 A_2} \cdot \overrightarrow{A_1 A_2} \cdot \overrightarrow{A_1 A_4} = \begin{vmatrix} -1 & -1 & 6 \\ -2 & 0 & 2 \\ 1 & -1 & 4 \end{vmatrix} = 0 + 12 - 2 - 0 - 8 - 2 = 0.$$

Следовательно, векторы $\overrightarrow{A_1A_2}$, $\overrightarrow{A_1A_3}$ и $\overrightarrow{A_1A_4}$ компланарны, а значит, точки A_1 , A_2 , A_3 , A_4 лежат в одной плоскости.

- 1. Дайте понятие основных векторов (ортов).
- 2. Линейная комбинация вектора на плоскости и в пространстве. Координаты вектора на плоскости и в пространстве.
- 3. Формулы для нахождения длины вектора, заданного своими координатами на плоскости и в пространстве.
- 4. Условия равенства и коллинеарности векторов на плоскости и в пространстве.
- 5. Операции над векторами, заданными своими координатами на плоскости и в пространстве (сложение, вычитание, умножение на число, скалярное произведение).
- 6. Направление вектора на плоскости и в пространстве.
- 7. Радиус-вектор точки на плоскости и в пространстве.
- 8. Координаты вектора, заданного координатами его концов на плоскости и в пространстве.
- 9. Векторное произведение векторов, заданных своими координатами. Свойства векторного произведения.
- 10.Смешанное произведение векторов. Свойства смешанного произведения.
- 11. Формула для нахождения смешанного произведения векторов, заданных своими координатами. Применение смешанного произведения векторов для нахождения объема параллелепипеда и треугольной пирамиды.
- 12. Условие компланарности векторов.