

noisyR: enhancing biological signal in sequencing datasets by characterizing random technical noise

Ilias Moutsopoulos, Lukas Maischak, Elze Lauzikaite, Sergio Vasquez Urbina, Eleanor Williams, Hajk-Georg Drost, Irina Mohorianu*

Ilias Moutsopoulos – im383@cam.ac.uk

Research Assistant – Bioinformatician

Core Bioinformatics group (Mohorianu group)

Wellcome-MRC Cambridge Stem Cell Institute

Noise is an intrinsic feature of biological systems, which is amplified by the process of sequencing

- Sequencing technologies are constantly improving and increasing in throughput
- Low-level expression variations are an intrinsic characteristic of next generation sequencing
- At low abundance, read localisation will inevitably vary

The *noisyR* paper presents a newly developed noise filter for next generation sequencing data

- Consistent reduction of random background noise is still challenging
- Meaningful biological signal can be masked by the presence of noise
- Different downstream analysis methods often lead to incompatible results and conclusions

Nucleic Acids Research

noisyR: enhancing biological signal in sequencing datasets by characterizing random technical noise

Ilias Moutsopoulos, Lukas Maischak, Elze Lauzikaite, Sergio A Vasquez Urbina, Eleanor C Williams, Hajk-Georg Drost, Irina I Mohorianu ▼

Nucleic Acids Research, gkab433, https://doi.org/10.1093/nar/gkab433

Published: 02 June 2021 Article history ▼

Two approaches depending on the input data

- The transcript approach uses the alignment (BAM) files
 - High computation resources
 - Significantly slower (usually hours)
 - More precise results

- The count matrix approach only uses the total expression
 - Low computation resources
 - Very fast (a few seconds/minutes)
 - Rough results

The software is available as an R package and structured so that little expertise is required to use it

- The noisyR package is conceptually broken down into 3 main steps:
 - Noise Identification (2 approaches)
 - Noise Quantification
 - Noise Removal
- The "black-box" function noisyr can be used to run the pipeline end-to-end
- Parameters can be defaults, user-defined, or optimised at each step, even when running the full pipeline

CRAN: https://cran.r-project.org/package=noisyr

Github: https://github.com/Core-Bioinformatics/noisyR

A relationship between abundance and correlation is used to infer a noise threshold

Both approaches produce the same output

- Both use a similarity metric
- They evaluate sample consistency
- Transcript approach calculates per gene, count matrix uses windows

In bulk mRNA-Seq data, noise removal increases the convergence between analysis methods

- The number of DE genes is reduced
- Potential false positives are greatly reduced

In bulk mRNA-Seq data, noise removal increases the convergence between analysis methods

Analysis methods converge

 Interpretation is closer to the biological truth

edgeR: McCarthy et al (2012) https://doi.org/10.1093/nar/gks042

DESeq2: Love et al (2014) https://doi.org/10.1186/s13059-014-0550-8

noisyR is a universal approach that can be applied to other types of sequencing data

- On single-cell (SmartSeq2) data
 - Used pseudo-samples to increase consistency
 - Grouping according to experimental design

- Working on a similar approach for 10x data
- Have illustrated the approach to improve the prediction of micro-RNA targets in plants (Degradome data)
- Will adapt the approach for epigenetic data

Thank you for your attention!

Irina Mohorianu

Elze Lauzikaite

Eleanor Williams

Hajk-Georg Drost

Lukas Maischak Sergio Vasquez Urbina

Alex Calderwood
Yu Zhang
Arash Shahsavari
Andi Munteanu

This work was funded by the Wellcome-MRC Cambridge Stem Cell Institute

Window le	ength optimiza	ation
-----------	----------------	-------

- Calculate similarity matrix for a range of windows
- Average correlation of each window across samples
- Jensen-Shannon divergence with uniform distribution
- T-test to determine stability

				. 7		
approach	method	similarity.thresh	abn.thresh.min	abn.thresh.mean	abn.thresh.coef.var	abn.thresh.max
Density_based_ fixed_threshold	No_ normalisation	N/A	299.00	299.00	0.00	299.00
Density_based_ fixed_threshold	RPM_ normalisation	N/A	298.00	298.00	0.00	298.00
Density_based_ fixed_threshold	Quantile_ normalisation	N/A	296.00	296.00	0.00	296.00
Line_plot	No_smoothing	0.25	17.10	59.06	0.58	127.25
Line_plot	loess10_smoothing	0.25	16.84	58.66	0.60	133.97
Line_plot	loess25_smoothing	0.25	16.84	58.93	0.62	137.50
Line_plot	loess50_smoothing	0.25	19.13	61.51	0.71	165.21
Boxplot	Median	0.25	18.38	60.13	0.57	128.00
Boxplot	IQR	0.25	18.38	61.41	0.57	137.19
Boxplot	Quant5	0.25	18.38	61.41	0.57	137.19

Determining the noise threshold

- Calculate similarity matrix
- Use a range of similarity thresholds and methods
- Calculate the coefficient of variation across samples
- Pick the combination with the lowest variation