

FAST: Realizing what your neighbors are doing

Lu WANG

Computer Science and Engineering, HKUST Jun 13, 2012

Roadmap

- Introduction
- Motivation
- FAST Design
- Performance Evaluation
- Conclusion

Introduction

Hidden Terminal Problem

Hidden Terminal Problem

Exposed Terminal Problem

Exposed Terminal Problem

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

RTS/CTS handshake

RTS: Request to send

CTS: Clear to send

Provide Channel Usage Information

Carrier Sense Multiple Access with Collision Avoidance

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

Carrier Sense Multiple Access with Collision Avoidance

Carrier Sense Multiple Accesswith Collision Avoidance

CSMA/CA

Carrier Sense Multiple Accesswith Collision Avoidance

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

Costly Channel Usage Information (CUI) > Reduce the effective throughput of data traffic!

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

Costly Reduce

RTS/CTS is disabled by default in 802.11

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

Cost-effective Channel Usage Information > Avoid collision & Fully-utilize channel capacity

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

How?

Cost-effective Channel Usage Information > Avoid collision & Fully-utilize channel capacity

Roadmap

- Introduction
- Motivation
- FAST Design
- Performance Evaluation
- Conclusion

Observation 1/2

- Interference cancellation
 - ZigZag Decoding [SIGCOMM'08]
 - Using interference-free chunk of packet to decode the collided chunk in an iterative way

Observation 2/2

- Full–duplex wireless transceiver
 - Practical Real-Time Full Duplex Wireless [MOBICOM'11]
 - Utilizing self-cancellation to cancel out the TX signal at

Motivation

FAST Full-duplex Attachment coding System

Motivation

FAST

Observation 1

Full duplex Attachment coding System

Interference cancellation

To provide cost-effective Channel Usage Information

Motivation

FAST

Full-duplex Attachment coding System

Observation 2

Interference cancellation

Observation 1

To provide cost-effective Channel Usage Information

Full-duplex transceiver

To identify hidden and exposed terminal in real-time

Roadmap

- Introduction
- Motivation
- FAST Design
- Performance Evaluation
- Conclusion

FAST Architecture

FAST Architecture

Attachment Transmission

Function

Provide cost-effective CUI

Support

Attachment Sense

Function

Identify hidden & exposed terminal

Roadmap

- Introduction
- Motivation
- FAST Design
 - Attachment Transmission
 - Attachment Sense
- Performance Evaluation
- Conclusion

Attachment Transmission

- Narrower the channel width of attached signal.
- Transmit the attached signal on one particular subcarrier with higher energy.

Attachment Detection

Detect and record the energy which exceeds a certain threshold

Attachment Cancellation

- Record the attached signal on "clean" preamble
- Cancel out the attached signal in subsequent data

31

Attachment Cancellation

- Record the attached signal on "clean" preamble
- Cancel out the attached signal in subsequent data

Attachment Cancellation

- Record the attached signal on "clean" preamble
- Cancel out the attached signal in subsequent data

FAST Architecture

FAST MAC Layer PHY Layer **Attachment** Attachment transmission Sense Function **Function** Identify hidden & Support **Provide accurate CUI** exposed terminal

Roadmap

- Introduction
- Motivation
- AT-Learning Design
 - Attachment Transmission
 - Attachment Sense
- Performance Evaluation
- Conclusion

MAC Layer design

 Sender, receiver and victim encode Channel Usage Information into Attachment

To *identify* hidden & exposed terminal through *Attachment*

 Sender, receiver and victim encode Channel Usage Information into Attachment

To *identify* hidden & exposed terminal through *Attachment*

 Sender, receiver and victim encode Channel Usage Information into Attachment

To *identify* hidden & exposed terminal through *Attachment*

 Sender, receiver and victim encode Channel Usage Information into Attachment

To *identify* hidden & exposed terminal through *Attachment*

Transmission intention

 Attachment Sense: intended sender listens to Attachments on air, obtains the current Channel **Usage Information**

To *identify* hidden & exposed terminal through *Attachment*

Transmission intention

Roadmap

- Introduction
- Motivation
- FAST Design
- Performance Evaluation
- Conclusion

Simulation

NS3 simulator

Baseline topology

Transmission link:

PRR > 0.9, Signal > 90%-ile

— — In range: PRR > 0.2

• • • • • Out of range: PRR < 0.2

Practical network

Baseline Topology 1/3

Successfully identify receivers nearby Avoid collisions due to hidden terminal

Baseline Topology 2/3

(b) Interfering node

Figure out interfering transmissions Guide senders take turns to transmit

Baseline Topology 3/3

Successfully identify exposed nodes Fully utilize exposed nodes for transmission

Practical Networks

(d) Ad-hoc network

Per-sender throughput in ad-hoc networks

FAST can achieve up to 200% throughput gain over CSMA

Roadmap

- Introduction
- Motivation
- FAST Design
- Performance Evaluation
- Conclusion

Conclusion

- In wireless networks, hidden and exposed terminal problem are two key problems.
- We propose a cross-layer FAST to solve hidden and exposed terminal problems.
 - Attachment Transmission to cost-effectively transmit Channel Usage Information.
 - Attachment Sense to identify hidden and exposed terminal, and guide node to make the right access decision fast and accurate.

Thank You! Q&A

HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY wanglu@cse.ust.hk

