«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет программной инженерии и компьютерной техники
Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчет По лабораторной работе №5 Вариант 1

Студент:

Алхимовици А.

P3210

Преподаватель:

Наумова Н. А.

Цель лабораторной работы:

Решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

1 Вычислительная реализация задачи:

1. Выбрать таблицу y = f(x):

Таблица 1.1	Х	у	вариант	X1	X2
	0.25	1.2557		0.251	0.402
	0.30	2.1764	1		
	0.35	3.1218			
	0.40	4.0482			
	0.45	5.9875			
	0.50	6.9195			
	0.55	7.8359			

2. Построить таблицу конечных разностей:

Νō	х	у	Δ1	Δ2	Δ3	Δ4	Δ5	Δ6
0	0.25	1.2557	0.9207	0.0247	-0.0437	1.0756	-4.1277	10.1917
1	0.30	2.1764	0.9454	-0.0190	1.0319	-3.0521	6.0640	
2	0.35	3.1218	0.9264	1.0129	-2.0202	3.0119		
3	0.40	4.0482	1.9393	-1.0073	0.9917			
4	0.45	5.9875	0.9320	-0.0156				
5	0.50	6.9195	0.9164					
6	0.55	7.8359						

3. Вычислить значения функции для аргумента X1 используя интерполяционную формулу Ньютона

Воспользуемся формулой Ньютона для интерполирования вперед (первая формула), так как X1=0.251 лежит в левой половине отрезка

Для
$$X_1 = 0.251$$
: $t = \frac{(x-x_0)}{h} = \frac{(0.251-0.25)}{0.05} = 0.02$

$$N_6(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!} \Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!} \Delta^4 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)}{5!} \Delta^5 y_0 + \frac{t(t-1)(t-2)(t-3)(t-4)(t-5)}{6!} \Delta^6 y_0$$

$$y(0.251) \approx 1.2557 + 0.02 * 0.9207 + \frac{0.02 \cdot (-0.98)}{2} * 0.0247$$

$$+ \frac{0.02(-0.98)(-1.98)}{6} * (-0.0437)$$

$$+ \frac{0.02(-0.98)(-1.98)(-2.98)}{24} * (1.0756)$$

$$+ \frac{0.02(-0.98)(-1.98)(-2.98)(-3.98)}{120} * (-4.1277)$$

$$+ \frac{0.02(-0.98)(-1.98)(-2.98)(-3.98)(-4.98)}{720} * (10.1917)$$

$$\approx 1.2476$$

 $y(0.251) \approx 1.2476$

4. Вычислить значения функции для аргумента X_2 , используя интерполяционную формулу Гаусса:

Воспользуемся первой формулой Гауса, так как X2 = 0.402 > a = 0.4

$$t = \frac{(x - x_0)}{h} = \frac{(0.402 - 0.4)}{0.05} = 0.04$$

Nō	х	у	Δ1	Δ2	Δ3	Δ4	Δ5	Δ6
-3	0.25	1.2557	0.9207	0.0247	-0.0437	1.0756	-4.1277	10.1917
-2	0.30	2.1764	0.9454	-0.0190	1.0319	-3.0521	6.0640	
-1	0.35	3.1218	0.9264	1.0129	-2.0202	3.0119		
0	0.40	4.0482	1.9393	-1.0073	0.9917			
1	0.45	5.9875	0.9320	-0.0156				
2	0.50	6.9195	0.9164					
3	0.55	7.8359						

$$P_{6}(x) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!} \Delta^{2} y_{-1} + \frac{(t+1)t(t-1)}{3!} \Delta^{3} y_{-1}$$

$$+ \frac{(t-2)(t+1)t(t-1)}{4!} \Delta^{4} y_{-2}$$

$$+ \frac{(t+2)(t+1)t(t-1)(t-2)}{5!} \Delta^{5} y_{-2}$$

$$+ \frac{(t-3)(t+2)(t+1)t(t-1)(t-2)}{6!} \Delta^{6} y_{-3}$$

 $P_6(0.402)$ =4.0482+0.04*(1.9393)+1.0129*0.04*(-0.96)/2-2.0202*0.04*0.96*1.004/6-3.0521*1.96*0.96*1.04*0.04/24+6.0640*0.04*0.96*1.004*1.96*2.004/120-10.1917*0.04*0.96*1.004*1.96*2.004*2.96/720 \approx 4.084

2. Программная реализация

Блок схемы

Многочлен Ньютона с разделенными разностями

Бессел:

Листинг программы

https://github.com/senya-2011/Vu4Math/tree/main/lab5

```
def lagrange(xs, ys, x):
   Интерполяция Лагранжа.
   n = len(xs)
  total = 0.0
  for i in range(n):
     term = ys[i]
     for j in range(n):
if j != i:
           term *= (x - xs[j]) / (xs[i] - xs[j])
     total += term
  return total
# Многочлен Ньютона с разделёнными разностями
def newton_divided(xs, ys, x):
   Интерполяция Ньютона (разделённые разности).
  n = len(xs)
  coeff = list(ys)
  for j in range(1, n):
  for i in range(n - 1, j - 1, -1):

coeff[i] = (coeff[i] - coeff[i - 1]) / (xs[i] - xs[i - j])

result = coeff[0]
   prod = 1.0
  for i in range(1, n):
     prod *= (x - xs[i - 1])
     result += coeff[i] * prod
  return result
# Многочлен Ньютона с конечными разностями (прямая формула)
def newton_forward(xs, ys, x):
"""Формула прямых конечных разностей. Только для равноотстоящих
узлов."<sup>1</sup>
  h = xs[1] - xs[0]
  table = finite_diff_table(ys)
  t = (x - xs[0])/h
  result = ys[0]
  for k in range(1, len(xs)):
     coeff = 1.0
     for j in range(k):
     coeff *= (t - j)
result += coeff * table[k][0] / factorial(k)
  return result
# Многочлен Ньютона с конечными разностями (обратная формула)
def newton_backward(xs, ys, x):
   """Формула обратных конечных разностей. Только для равноотстоящих
   h = xs[1] - xs[0]
  table = finite diff table(ys)
  n = len(xs)
  t = (x - xs[-1]) / h
  result = ys[-1]
  for k in range(1, n):
     coeff = 1.0
     for j in range(k):
     coeff *= (t + j)
result += coeff * table[k][n - k - 1] / factorial(k)
  return result
```

```
def stirling(xs, ys, x):
  m = len(xs)
  h = xs[1] - xs[0]
  N = m - 1
  diffs = finite_diff_table(ys)
  alpha = N // 2
  x0 = xs[alpha]
  t = (x - x0) / h
  res = diffs[0][alpha]
  prod_even = 1.0
  prod_odd = t
  for k in range(1, N + 1):
     if k % 2 = 1:
        j = (k - 1) // 2
        if j > 0:
           prod_odd *= (t*t - j*j)
        idx = alpha - j
        if idx > 0:
           d_{center} = 0.5 * (diffs[k][idx] + diffs[k][idx-1])
           d_{center} = diffs[k][idx]
        term = (prod_odd * d_center) / factorial(k)
     else:
        j = k // 2
        if j > 0:
           prod_{even} *= (t*t - (j-1)*(j-1))
        idx = alpha - i
        term = (prod_even * diffs[k][idx]) / factorial(k)
     res += term
  return res
def bessel(xs, ys, x):
  m = len(xs)
  h = xs[1] - xs[0]
  N = m' - 1
  diffs = finite_diff_table(ys)
  i1 = (N // 2) + 1
  i0 = i1 - 1
  x0 = xs[i0]
  t = (x - x0) / h
  res = 0.5 * (diffs[0][i0] + diffs[0][i1])
  res += (t - 0.5) * diffs[1][i0]
  for k in range(2, N + 1):
     if k % 2 = 0:
        j = k_{.} // 2
        prod = 1.0
        for shift in range(-j, j):
        prod *= (t + shift)
idx = i0 - j + 1
        diff_avg = 0.5 * (diffs[k][idx] + diffs[k][idx-1])
```

```
term = prod * diff_avg / factorial(k)
else:
    j = (k - 1) // 2
    prod = (t - 0.5)
    for shift in range(-j, j):
        prod *= (t + shift)
        idx = i0 - j
        diff_val = diffs[k][idx]
        term = prod * diff_val / factorial(k)

res += term

return res
```

Примеры и результаты работы программы

Интерполяция для х = 0.402

Вывод:

В ходе выполнения лабораторной работы я изучил и практично применил интерполяционные методы Ньютона и Гаусса для обработки табличных данных. Эти методы позволили аппроксимировать значения функции в точках, отсутствующих в исходном наборе.

Разработанная программа обеспечила вычисление значений функции в заданных точках с использованием обоих методов. Проведённый сравнительный анализ показал совпадение

результатов, что свидетельствует о правильной реализации и работоспособности выбранных алгоритмов.