Einführung in die Computerlinguistik

Statistische Modellierung

WS 2021/2022 Vera Demberg

Statistische Verfahren

- Wir haben letzte Woche ein Verfahren für Wortbedeutungsdisambiguierung gesehen.
- Andere Arten von Ambiguitäten können auch mit statistischen Methoden beschrieben werden.
- Beispiel: Wortartambiguitäten

Der/DET Hund/NN stolzierte/V durch/PREP ...

Wortart-Mehrdeutigkeit

```
laute
```

finites Verb, Adjektiv

Laute

Gattungssubstantiv (2x), finites Verb, Adjektiv

ZU

Adverb, Präposition, Konjunktion, Verbpartikel

der

Artikel, Demonstrativpronomen, Relativpronomen

Wortart-Disambiguierung

- Einführung von Wortart-Alternativen im Lexikon (alternative lexikalische Ersetzungsregeln bzw. alternative Merkmalsstrukturen).
- Die Grammatik filtert syntaktisch unzulässige Wortartvarianten heraus.
- Wo liegt also das Problem?
- In normalen Texten (z.B. Zeitungstexten) kommen extrem viele "neue"
 Wörter vor, für die es gar keine Wortartinformation gibt.
- Für viele Sprachen/ Fach- und Sondersprachen gibt es keine Grammatiken; für viele Anwendungen sind große Grammatiken zu langsam. – Es wäre gut, trotzdem Wortartinformation zu haben.

Wortart-Tagging

- Wortartinformation lässt sich glücklicherweise auf der Grundlage "flacher" linguistischer Information (d.h., ohne syntaktische Analyse) mit großer Sicherheit bereitstellen.
- Wortartinformation wird durch "Wortart-Tagger" oder "POS-Tagger" bereitgestellt (POS für "part of speech", engl. "tag" ist die Marke / das Etikett).
- Wortart-Tagger sind heute gut funktionierende Standardwerkzeuge der Sprachverarbeitung, genau wie Morphologie-Systeme.
 Sie funktionieren allerdings grundsätzlich anders.

Beispielaufgabe: Adjektiverkennung

- Wortart-Tagger für das Deutsche müssen aus einer von ca. 50 Kategorien wählen, anders ausgedrückt: Sie müssen Textwörter einer von 50 Klassen zuweisen.
- Wir betrachten hier eine einfachere Teilaufgabe:
 Die Beantwortung der Frage, ob es sich bei einem
 Vorkommen eines Wortes in einem Text um ein
 Adjektiv handelt (also eine binäre Klassifikationsaufgabe).

Informative Merkmale

 Woran erkenne ich, dass ein Wortvorkommen ein Adjektiv ist – ohne Lexikon und volle syntaktische Analyse?

```
die laute Musik
das allutivistische Übungsblatt
```

- Beispiele:
 - Kleinschreibung des aktuellen Wortes wi
 - Großschreibung des Folgewortes w_{i+1}
 - Vorgängerwort w_{i-1} ist Artikel
 - w_i hat Komparativ- / Superlativendung
 - w_i hat adjektivspezifisches Derivations-Suffix (-ig, -lich, -isch, -sam)
 - w_{i-1} ist Gradpartikel (sehr, besonders, ziemlich)

Regelbasierte Wortartzuweisung

Ein System von wenn-dann-Regeln:

Wenn <Merkmall>, ..., <Merkmaln> vorliegen, dann weise <Wortart> zu.

Regelbasiertes Modell

w_i klein & w_{i+1} groß & w_{i-1} Artikel → ADJA

Vollständigkeitsproblem

 w_i klein & w_{i+1} groß & w_{i-1} Artikel \rightarrow ADJ

Korrigiertes Modell

w_i klein & w_{i+1} groß → ADJA

Korrektheitsproblem

w_i klein & w_{i+1} groß → ADJA

Regelbasierte und statistische Modellierung

- Regelsysteme, die die Abhängigkeit der Wortart von Merkmalsmustern korrekt und vollständig erfassen sollen, werden schnell sehr komplex und aufwändig zu formulieren.
- Alternative: Wir bauen Systeme, die den Zusammenhang von Merkmalsmustern und Wortarten aus Textkorpora lernen! (Singular: das Korpus)

Text: Vor dem kleinen Haus steht ein großer Baum

Text: Vor dem kleinen Haus steht ein großer Baum

Manuelle Annotation NADJA NADJA ADJA NADJA NADJA NADJA NADJA

Text: Vor dem kleinen Haus steht großer ein Baum

Merkmale:

w_i groß

w_{i+1} groß

w_{i-1} Artikel

Manuelle

NADJA NADJA ADJA NADJA NADJA NADJA **ADJA NADJA Annotation**

Text:	Vor	dem	kleinen	Haus	steht	ein	großer	Baum
Merkmals- extraktion:								
w _i groß	+	-	-	+	-	-	-	+
w_{i+1} groß	-	-	+	-	-	-	+	-
w _{i-1} Artikel	-	-	+	-	-	-	+	-
Manuelle Annotation	NADJA	NADJA	ADJA	NADJA	NADJA	NADJA	ADJA	NADJA

Statistische Modellierung

Manuelle Korpusannotation:

 Wir w\u00e4hlen ein Textkorpus und nehmen eine manuelle Annotation mit den Zielklassen (in unserem Fall ∈ {ADJA, NADJA}) vor.

Merkmalsspezifikation:

- Wir spezifizieren eine Menge von geeigneten Merkmalen ("features") mit zugehörigen Wertebereichen.
- In unserem Fall (bisher) 3 Merkmale mit jeweils binärem Wertbereich: {+,-}
 oder {0,1}: binäre oder Boole'sche Merkmale

Geeignete Merkmale sind

- informativ in Bezug auf die Klassifikationsaufgabe
- einfach zugänglich: direkt ablesbar oder ohne Aufwand automatisch zu ermitteln

Automatische Merkmalsextraktion:

 Wir stellen ein Verfahren bereit, das für jede Instanz (hier: für jedes Textwort) automatisch das zugehörige Merkmalsmuster bestimmt.

Statistische Modellierung

- Wir "trainieren" ein maschinelles Lernsystem auf dem Korpus ("Trainingskorpus").
- Das System "lernt" ein statistisches Modell, das neuen, nicht annotierten Instanzen (auf der Grundlage des Merkmalsmusters) die wahrscheinlichste Klasse zuweisen kann.
- Das einfachste Verfahren für das Erlernen eines Klassifikationsmodells besteht im Auszählen der Häufigkeit, mit der Klassen im Zusammenhang mit bestimmten Merkmalsmustern auftreten.

Beispiel: Adjektive im Wahrig-Korpus

Frequenzen in einem kleinen Teilkorpus:

n groß	-	-	-	-	+	+	+	+
n+1 groß	-	-	+	+	-	-	+	+
n-1 Art.	_	+	-	+	-	+	-	+
ADJA	31	12	140	84	1	1	8	2
NADJA	1827	58	738	18	730	249	98	3

Relative Frequenz als geschätzte Wahrscheinlichkeit:

Ein einfaches statistisches Modell

n groß	-	-	-	-	+	+	+	+
n+1 groß	-	-	+	+	-	-	+	+
n-1 Art.	-	+	-	+	-	+	-	+
ADJA	0,017	0,171	0,159	0,824	0,001	0,004	0,075	0,400
NADJA	0,983	0,829	0,841	0,176	0,999	0,996	0,925	0,600

Wahrscheinlichkeit und Frequenz

- Wir nehmen die relative Häufigkeit, mit der eine Klasse k im Kontext eines Merkmalsmusters e auftritt, als Schätzung der bedingten Wahrscheinlichkeit, dass k vorliegt, gegeben e.
- Beispiel: ADJA kommt mit dem Merkmalsmuster <-,+,+>, also "n klein, n+1 groß, n-1 Artikel" 738mal (von insgesamt 878) vor; die relative Frequenz ist ≈ 0,824, wir nehmen also die Wahrscheinlichkeit, dass in dieser Konstellation ein Adjektiv vorliegt, ebenfalls mit 0,824, also 82,4% an.

Etwas Terminologie zur Wahrscheinlichkeitstheorie

Beobachtung:

- Einzelvorkommen oder Instanz
- Beispiel: ein Wurf mit zwei Würfeln, ein Textwort

Ereignis:

- Klasse von Beobachtungen mit gleichen Merkmalen
- Beispiele: "eine 7 würfeln", "ein groß geschriebenes Wort"
- Die unterschiedlichen Merkmalsmuster spezifizieren "Ereignisse" im Sinne der Wahrscheinlichkeitstheorie. Die Merkmale in unserem Beispiel spannen den "Ereignisraum" auf (hier mit 2*2*2=8 Elementen).
- Wahrscheinlichkeit eines Ereignisses: P(e) ∈ [0,1]
- Gemeinsame Wahrscheinlichkeit, Wahrscheinlichkeit, dass zwei Ereignisse gleichzeitig vorliegen: P(e, e')
- Bedingte Wahrscheinlichkeit (e gegeben e'):

$$P(e \mid e') = \frac{P(e,e')}{P(e')}$$

Wahrscheinlichkeit und Frequenz

 Wir sind an der Wahrscheinlichkeit einer Klasse k, gegeben ein Merkmalsmuster f, interessiert:

$$P(k \mid f) = \frac{P(k,f)}{P(f)}$$

Wir schätzen die Wahrscheinlichkeiten über Korpusfrequenzen:

$$P(k \mid f) = \frac{P(k,f)}{P(f)} \approx \frac{Fr(k,f)}{Fr(f)}$$

Beispiel:

$$P(ADJA \mid \langle -,+,+ \rangle) \approx \frac{Fr(ADJA,\langle -,+,+ \rangle)}{Fr(\langle -,+,+ \rangle)} = \frac{84}{102} = 0.824$$

Anwendung des statistischen Modells

- Neuer Text: Merkmalsextraktion; auf der Grundlage der Merkmale Bestimmung (eigentlich "Ablesen") der geschätzten Wahrscheinlichkeit.
- Da wir an der Zuweisung der im Kontext angemessenen Wortart interessiert sind, verwenden wir das Modell als Klassifikator: Es weist die jeweils aufgrund des Merkmalsmusters wahrscheinlichste Klasse zu.

 Wir können die Wahrscheinlichkeitsinformation zusätzlich verwenden, z.B. als "Konfidenz" (Klassifikation wird nur bei einer Wahrscheinlichkeit ≥ 0,8 zugewiesen) oder zur Parsersteuerung (Bottom-Up-Parser probiert die Wortart-Alternativen in der Reihenfolge ihrer Wahrscheinlichkeit aus).

Klassifikationsfehler

- Auch statistische Modelle machen Korrektheits- und Vollständigkeitsfehler.
- Man kann die Modelle verbessern, indem man die Merkmalsinformation verfeinert, beispielsweise durch Einführung eines Merkmals "Vorgängerwort ist Gradpartikel".
- Das Verfahren stößt allerdings an Grenzen.

Größe des Merkmalsraums

- Wieso verwendet man nicht alle Merkmale, die irgendwie erfolgversprechend sind?
- Ereignisraum:
 - Wir haben im Beispiel 3 binäre Merkmale verwendet, es gibt also 2*2*2=8
 Ereignisse.
 - Wenn wir 10 binäre Merkmal verwenden, haben wir bereits über 1000 Ereignisse.
- Die Instanzen im Trainingskorpus verteilen sich auf die einzelnen Ereignisse (Merkmalsmuster).
 - Das Trainingskorpus muss deutlich größer sein als der Ereignisraum.
 Ansonsten treten viele Merkmalsmuster nur wenige Male auf, oder auch gar nicht ("ungesehene Ereignisse"): Das Modell kann im ersten Fall nur sehr unzuverlässige Schätzungen machen, im letzteren Fall gar keine.
 - Dies ist das sogenannte "Sparse-Data"-Problem.

Sparse-Data-Problem

- Je mehr Merkmale, umso besser ist grundsätzlich die Datenlage für die Entscheidung, aber:
- Je mehr Merkmale, auf desto mehr Ereignisse verteilen sich die Trainingsdaten. Die Wahrscheinlichkeitsschätzung wird ungenau oder sogar unmöglich.
- Faustregel für die Wahl einer geeigneten Merkmalsmenge:
 - Wenige gute (aussagekräftige) Merkmale sind besser als viele mittelmäßige.
 - Merkmale mit weniger möglichen Werten sind grundsätzlich vorzuziehen.

Evaluation

Evaluation

- Jedes Modell muss evaluiert werden: Stimmt es mit der Realität, die es beschreiben soll, mit der Funktion, die es ausführen soll, überein?
- Dies gilt für wissensbasierte und statistische Modelle grundsätzlich in gleicher Weise.
- Da statistische Verfahren typischerweise auf Probleme angewandt werden, die keine vollständige Korrektheit erreichen können (z.B. Desambiguierung in allen Spielarten), ist es hier besonders wichtig.

Evaluation

- Annotation eines "Goldstandard": Testkorpus mit der relevanten Zielinformation (z.B. Wortart)
 - Um subjektive Varianz auszuschließen, wird durch mehrere Personen unabhängig annotiert und die Übereinstimmung ("Inter-Annotator-Agreement": IAA) gemessen.
 - Testkorpus und Trainingskorpus müssen disjunkt sein, um Effekte aus individuellen Besonderheiten eines Korpus auszuschließen ("overfitting").
- Automatische Annotation des Testkorpus mit statistischem Modell/ Klassifikator
- Messung der Performanz durch Vergleich von automatischer Annotation mit Goldstandard

Akkuratheit

Akkuratheit (engl. accuracy) ist das einfachste Maß:

Akkuratheit = korrekt klassifizierte Instanzen/alle Instanzen

 Fehlerrate (engl. error rate) ist der Komplementärbegriff zu Akkuratheit:

Fehlerrate = 1 – Akkuratheit

 Das Akkuratheitsmaß verdeckt oft tatsächlich relevante Eigenschaften eines Modells.

- Grundlage für eine feinere Evaluation des Klassifikators ist die Konfusionsmatrix.
- Konfusionsmatrix (Verwechslungstabelle) für binäre Klassifikation:

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	ok	falsch
Klassifiziert als NADJA	falsch	ok

Fehlertypen für ADJA-Klassifikation:

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	ok	Korrektheits- fehler
Klassifiziert als NADJA	Vollständigkeits- fehler	ok

Fehlertypen für ADJA-Klassifikation:

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	true positive	false positive
Klassifiziert als NADJA	false negative	true negative

(Fiktives) Beispiel:

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	20	80
Klassifiziert als NADJA	20	880

- Von insgesamt 1000 Fällen sind 900 korrekt (Wahre Positive und wahre Negative): Akkuratheit ist also 90%, Fehlerrate 10%.
- Tatsächlich ist die Adjektiverkennung miserabel: von fünf als ADJA klassifizierten Instanzen ist nur eine korrekt.
- Wir bestimmen Recall und Precision als klassenspezifische Maße, die Vollständigkeits- und Korrektheitsfehler (für eine gegebene Klasse) separat messen.

Recall

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	True positive	False positive
Klassifiziert als NADJA	False negative	True negative

 Welcher Anteil der echten X wurde tatsächlich gefunden (als X klassifiziert)?

Recall = True positives/(True positives + False negatives)

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	20	80
Klassifiziert als NADJA	20	880

Recall für ADJA = 20/(20+20) = 0.5

Präzision

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	True positive	False positive
Klassifiziert als NADJA	False negative	True negative

 Welcher Anteil der als X klassifizierten Instanzen ist tatsächlich ein X?

Precision = True positives/(True positives + False positives)

	Echtes ADJA	Echtes NADJA
Klassifiziert als ADJA	20	80
Klassifiziert als NADJA	20	880

Precision für ADJA = 20/(20+80) = 0.2

Präzision und Recall

- Präzision und Recall sind im Allgemeinen nur zusammen aussagekräftig
 - Hohe Präzision, hoher Recall: gutes Modell
 - Niedrige Präzision, niedriger Recall: schlechtes Modell
 - Hohe Präzision, niedriger Recall: "Vorsichtiges" Modell
 - Findet nicht alle Instanzen von X
 - Klassifiziert kaum Nicht-Xe als X
 - Niedrige Präzision, hoher Recall: "Mutiges" Modell
 - Findet fast alle Instanzen von X
 - Klassifiziert viele nicht-Xe fehlerhaft als X
 - Extremfälle
 - Modell klassifiziert alles als X: Recall 100%, Precision niedrig
 - Modell klassifiziert nichts als X: Recall 0%, Precision nicht definiert

F-Score

 Der "F-Score" ist ein Maß für die "Gesamtgüte" der Klassifikation, in das Precision und Recall eingehen.

$$F = \frac{2PR}{P + R}$$

• F-Score für die Klasse ADJA im Beispiel:

$$F = \frac{2*0,2*0,5}{0,2+0,5} = 0,29$$

Zusammenfassung Wortart-Tagging

- Standard Wortart-Tagger arbeiten mit ca. 50 Klassen und haben dabei eine Akkuratheit von deutlich über 99%.
- Sie gehen dabei natürlich etwas anders vor, als hier demonstriert: Sie verwenden maschinelle Lernverfahren, die nicht nur die besten POS-Tags für die einzelnen Wörter im Satz, sondern die beste POS-Kette für einen ganzen Satz zu bestimmen versuchen.
- Beispiel: Auch wenn in "I made her duck" die wahrscheinlichste Wortart für her Personalpronomen und für duck Gattungssubstantiv ist, ist die Kombination der Wortarten sehr unwahrscheinlich.
- Die Methode, Wahrscheinlichkeiten für Sequenzen zu bestimmen, ist auch in der Verarbeitung gesprochener Sprache wichtig (HMMs: "Hidden Markov Models")