W271 Lab 3

April 17, 2016

Part 1

Load data and display some basic statistics:

```
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
##
## Loading required package: survival
## Loading required package: splines
## Loading required package: timeDate
## Loading required package: timeSeries
## Attaching package: 'timeSeries'
## The following object is masked from 'package:zoo':
##
##
       time<-
##
## Loading required package: fBasics
##
##
## Rmetrics Package fBasics
## Analysing Markets and calculating Basic Statistics
## Copyright (C) 2005-2014 Rmetrics Association Zurich
## Educational Software for Financial Engineering and Computational Science
## Rmetrics is free software and comes with ABSOLUTELY NO WARRANTY.
## https://www.rmetrics.org --- Mail to: info@rmetrics.org
##
## Attaching package: 'fBasics'
##
## The following object is masked from 'package:car':
##
##
       densityPlot
##
## Please cite as:
##
## Hlavac, Marek (2015). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2. http://CRAN.R-project.org/package=stargazer
                    400 obs. of 11 variables:
## 'data.frame':
## $ crimeRate_pc
                       : num 37.6619 0.5783 0.0429 22.5971 0.0664 ...
## $ nonRetailBusiness: num 0.181 0.0397 0.1504 0.181 0.0405 ...
```

```
##
   $ ageHouse
                             78.7 67 77.3 89.5 74.4 71.3 68.2 97.3 92.2 96.2 ...
                       : num
   $ distanceToCity
##
                       : num
                              2.71 4.12 7.82 1.95 5.54 ...
   $ distanceToHighway: int
                              24 5 4 24 5 5 5 5 3 5 ...
   $ pupilTeacherRatio: num
                              23.2 16 21.2 23.2 19.6 23.9 22.2 17.7 20.8 17.7 ...
##
   $ pctLowIncome
                              18 9 13 41 8 9 12 18 5 4 ...
                       : int
   $ homeValue
                              245250 1125000 463500 166500 672750 596250 425250 483750 852750 1125000 .
                       : int
                              52.9 42.5 31.4 55 36 37 34.9 72.1 33.8 45.5 ...
   $ pollutionIndex
##
                       : num
    $ nBedRooms
                       : num
                             4.2 6.3 4.25 3 4.86 ...
##
     crimeRate_pc
                       nonRetailBusiness
                                                             ageHouse
                                           withWater
          : 0.00632
##
   Min.
                      Min.
                              :0.0074
                                         Min.
                                                :0.0000
                                                          Min. : 2.90
##
   1st Qu.: 0.08260
                       1st Qu.:0.0513
                                         1st Qu.:0.0000
                                                          1st Qu.: 45.67
   Median : 0.26600
                      Median :0.0969
                                         Median :0.0000
                                                          Median: 77.95
   Mean : 3.76256
                       Mean
                              :0.1115
                                         Mean
                                               :0.0675
                                                          Mean : 68.93
##
##
   3rd Qu.: 3.67481
                       3rd Qu.:0.1810
                                         3rd Qu.:0.0000
                                                          3rd Qu.: 94.15
          :88.97620
                       Max.
                              :0.2774
                                         Max.
                                               :1.0000
##
   Max.
                                                          Max.
                                                                :100.00
   distanceToCity
                     distanceToHighway pupilTeacherRatio pctLowIncome
##
##
   Min.
          : 1.228
                     Min.
                           : 1.000
                                       Min.
                                            :15.60
                                                         Min. : 2.00
                     1st Qu.: 4.000
##
   1st Qu.: 3.240
                                       1st Qu.:19.90
                                                         1st Qu.: 8.00
   Median : 6.115
                     Median : 5.000
                                       Median :21.90
                                                         Median :14.00
   Mean : 9.638
                          : 9.582
                                              :21.39
                                                               :15.79
##
                     Mean
                                       Mean
                                                         Mean
##
   3rd Qu.:13.628
                     3rd Qu.:24.000
                                       3rd Qu.:23.20
                                                         3rd Qu.:21.00
##
   Max.
          :54.197
                     Max.
                            :24.000
                                       Max.
                                              :25.00
                                                         Max. :49.00
##
      homeValue
                     pollutionIndex
                                        nBedRooms
         : 112500
                            :23.50
                                             :1.561
##
   Min.
                     Min.
                                      Min.
   1st Qu.: 384188
                      1st Qu.:29.88
                                      1st Qu.:3.883
##
                     Median :38.80
                                      Median :4.193
   Median: 477000
   Mean
         : 499584
                     Mean
                            :40.61
                                      Mean
                                            :4.266
##
   3rd Qu.: 558000
                      3rd Qu.:47.58
                                      3rd Qu.:4.582
   Max.
          :1125000
                     Max.
                           :72.10
                                      Max.
                                             :6.780
```

: int 0000000000...

We first generate the matrix plot to have an overview of all variables.

##

\$ withWater

Home Value Factors Overview 0.40 0.52 0.41 0.38 0.65 0.36 0.66 0.72 0.24 0.33 0.40 0.64 0.58 0.47 0.44 22 0.49 0.50 0.74 0.46 0.61 0.60 0.46 0.49 0.40 0.63 0.71 0.39 0.18 0.20 0.76 0.73 0.71 0.60 0.44 0.41 0.57 0.15 0.00 0.10 0.20

Upon first galance, two things stands out: no highly-correlated pair of variables, thus collinearity won't be a concern of our analysis, in addition, the majority of the distributions are skewed and non-normal. More specifically:

- crime rate, distance to city, low income percentage, and pollution index are negatively skewed.
- age of house, pupil teacher ratio are positively skewed
- non retail business, and distance to highway have bi-modal distribution
- home value, number of bedroom are approximately normal

we then do some transformation on the variables:

- take log of the negatively skewed variables
- convert distance to highway to a binary variable, farFromHighway, if it's bigger than 10
- for positive skewness, we "reverse" the variable first then take log, and the interpretation of coefficients in the model need to adjust accordingly. Specifically:
- a. take the reciprocal of pupilTeacherRatio, it becomes teacherPupilRatio
- b. take 100 ageHouse, it becomes proportion of house built after 1950

Let's evaluate matrix plot again with the transformed variables:

Based on correlation coefficients, we propose a hypothesis of house value:

House value is significantly affected by factors from crime rate, education quality (represented by teacher pupil ratio), low income percentage, bedroom nuber, and pollution index.

We build a linear model first with those variables:

```
##
## Call:
##
  lm(formula = homeValue ~ logCrimeRate + logTeacherPupilRatio +
       logLowIncomePct + nBedRooms + logPollutionIndex, data = data)
##
##
  Residuals:
##
##
       Min
                10
                    Median
                                 30
                                        Max
                    -10894
                              46801
                                     636599
##
   -317589
            -64311
##
##
  Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
   (Intercept)
                         1554893.2
                                     234001.9
                                                 6.645 1.01e-10 ***
##
  logCrimeRate
                             961.9
                                       4320.6
                                                 0.223
                                                          0.824
  logTeacherPupilRatio
                          314867.8
                                                 5.691 2.46e-08 ***
                                      55323.6
## logLowIncomePct
                         -173745.0
                                      13708.0 -12.675
                                                        < 2e-16 ***
## nBedRooms
                           78593.6
                                       9713.1
                                                 8.092 7.38e-15 ***
  logPollutionIndex
                            5615.7
                                      32473.7
                                                 0.173
                                                          0.863
                      '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 101100 on 394 degrees of freedom
## Multiple R-squared: 0.7374, Adjusted R-squared: 0.7341
## F-statistic: 221.3 on 5 and 394 DF, p-value: < 2.2e-16
```

We can see that education quality, low income percentage, and number of bedrooms have significant impact on house value. On average, one more bedroom will increase the value by \$78.6k, one percent increase in the low income percentage will reduce house value by \$173.7k, and one percent increase in teacher pupil ratio will increase house value by \$314.9k. Surprisingly here crime rate is not a significant factor.

Next, we do model diagnostics:

Im(homeValue ~ logCrimeRate + logTeacherPupilRatio + logLowIncomePct + nBed .

Theoretical Quantiles
Im(homeValue ~ logCrimeRate + logTeacherPupilRatio + logLowIncomePct + nBed .
Scale-Location

Fitted values
Im(homeValue ~ logCrimeRate + logTeacherPupilRatio + logLowIncomePct + nBed .

Im(homeValue ~ logCrimeRate + logTeacherPupilRatio + logLowIncomePct + nBed .

From the chart we can see, the model doesn't violate homoscedasticity assumption, and there is no concern of outliers in the data. However, the normality and zero-conditional mean assumptions are questionable towards the high value house.

We now add the omitted variables to our model and compare the results:

We can see that in model 3 pollution index becomes significant. In addition, distance to city and water proximity are also significantly affecting house value. Finally, we build the linear model with the significant predictors identified above:

```
##
## Call:
##
  lm(formula = homeValue ~ logTeacherPupilRatio + logLowIncomePct +
       nBedRooms + logPollutionIndex + withWater + logDistToCity,
##
       data = data)
##
##
##
  Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                         Max
##
   -346067
            -53036
                      -4417
                              46708
                                     555679
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
                                               11.616
                                                      < 2e-16 ***
##
  (Intercept)
                          2517544
                                      216732
  logTeacherPupilRatio
                           318860
                                        49288
                                                6.469 2.93e-10 ***
## logLowIncomePct
                          -178453
                                        12737 -14.011
                                                       < 2e-16 ***
## nBedRooms
                            73823
                                         9028
                                                8.177 4.06e-15
## logPollutionIndex
                          -204869
                                       35696
                                               -5.739 1.90e-08 ***
## withWater
                            52940
                                        19262
                                                2.749
                                                      0.00626 **
## logDistToCity
                           -79854
                                       11138
                                              -7.169 3.77e-12 ***
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

Table 1: House Value Model Summary

	$Dependent\ variable:$	
House Value		
(1)	(2)	(3)
$961.901 \\ (-7,506.387, 9,430.188)$	$8,156.263 \\ (-3,607.645, 19,920.170)$	$1,666.250 \\ (-9,613.651, 12,946.150)$
314,867.800*** (206,435.600, 423,300.000)	$276,554.600^{***} $ $(163,014.900, 390,094.300)$	274,726.300*** (165,000.700, 384,451.900)
$-173,745.000^{***} (-200,612.200, -146,877.800)$	$-172,090.700^{***} (-198,877.200, -145,304.200)$	$-181,403.400^{***} \\ (-208,434.500, -154,372.300)$
78,593.580*** (59,556.310, 97,630.850)	78,980.880*** (60,093.840, 97,867.920)	69,215.170*** (50,660.260, 87,770.080)
$5,615.722 \\ (-58,031.470, 69,262.920)$	$ \begin{array}{c} -14,073.550 \\ (-78,298.340, 50,151.240) \end{array} $	$-182,025.200^{***} (-264,518.800, -99,531.650)$
	-37,459.410 (-82,239.580, 7,320.766)	$ \begin{array}{c} -14,017.560 \\ (-57,147.040, 29,111.930) \end{array} $
	53,643.820*** (13,550.510, 93,737.120)	54,161.730*** (16,438.880, 91,884.590)
		$-297,234.800^{**} (-540,375.300, -54,094.240)$
		$393.526 \\ (-237.781, 1,024.833)$
		$-81,172.700^{***} \\ (-105,548.500, -56,796.860)$
$1,554,893.000^{***}$ (1,096,258.000, 2,013,528.000)	1,515,577.000*** (1,056,843.000, 1,974,311.000)	2,339,513.000*** (1,827,152.000, 2,851,874.000)
400 0.737 0.734 101,125.200 221.330***	400 0.744 0.739 100,125.200 162.682***	400 0.777 0.771 93,770.050 135.630***
	$961.901 \\ (-7,506.387, 9,430.188) \\ 314,867.800^{***} \\ (206,435.600, 423,300.000) \\ -173,745.000^{***} \\ (-200,612.200, -146,877.800) \\ 78,593.580^{***} \\ (59,556.310, 97,630.850) \\ 5,615.722 \\ (-58,031.470, 69,262.920) \\ \\ 1,554,893.000^{***} \\ (1,096,258.000, 2,013,528.000) \\ 400 \\ 0.737 \\ 0.734 \\ 101,125.200$	$(1) \qquad \qquad (2) \\ 961.901 \qquad \qquad (3) \\ (-7,506.387, 9,430.188) \qquad (-3,607.645, 19,920.170) \\ 314,867.800^{***} \qquad \qquad 276,554.600^{***} \\ (206,435.600, 423,300.000) \qquad (163,014.900, 390,094.300) \\ -173,745.000^{***} \qquad \qquad -172,090.700^{***} \\ (-200,612.200, -146,877.800) \qquad (-198,877.200, -145,304.200) \\ 78,593.580^{***} \qquad \qquad 78,980.880^{***} \\ (59,556.310, 97,630.850) \qquad (60,093.840, 97,867.920) \\ 5,615.722 \qquad \qquad -14,073.550 \\ (-78,298.340, 50,151.240) \\ \qquad \qquad \qquad -37,459.410 \\ (-82,239.580, 7,320.766) \\ \qquad \qquad \qquad 53,643.820^{***} \\ (13,550.510, 93,737.120) \\ \end{cases} \\ 1,554,893.000^{***} \qquad \qquad 1,515,577.000^{***} \\ (1,096,258.000, 2,013,528.000) \qquad (1,056,843.000, 1,974,311.000) \\ 400 \qquad \qquad 400 \\ 0.737 \qquad 0.744 \\ 0.734 \qquad 0.739 \\ 101,125.200 \qquad 100,125.200 \\ \end{cases}$

```
##
## Residual standard error: 94370 on 393 degrees of freedom
## Multiple R-squared: 0.7719, Adjusted R-squared: 0.7685
## F-statistic: 221.7 on 6 and 393 DF, p-value: < 2.2e-16</pre>
```

we see that being further away from city will reduce house value, while having a body of water closeby will increase the value. Finally we diagnose this model

Im(homeValue ~ logTeacherPupilRatio + logLowIncomePct + nBedRooms + logPoll .

Im(homeValue ~ logTeacherPupilRatio + logLowIncomePct + nBedRooms + logPoll .

Fitted values
Im(homeValue ~ logTeacherPupilRatio + logLowIncomePct + nBedRooms + logPoll .

Im(homeValue ~ logTeacherPupilRatio + logLowIncomePct + nBedRooms + logPoll .

Similarly, the normality and zero-conditional mean assumption are questionable as price increases. Therefore we will use robust error to compensate:

```
##
## Call:
  lm(formula = homeValue ~ logTeacherPupilRatio + logLowIncomePct +
       nBedRooms + logPollutionIndex + withWater + logDistToCity,
##
       data = data)
##
##
##
  Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
   -346067
            -53036
                      -4417
                              46708
                                     555679
##
##
##
  Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                          2517544
                                      216732
                                              11.616 < 2e-16 ***
## logTeacherPupilRatio
                           318860
                                       49288
                                               6.469 2.93e-10 ***
## logLowIncomePct
                                       12737 -14.011
                          -178453
                                                      < 2e-16 ***
## nBedRooms
                           73823
                                        9028
                                               8.177 4.06e-15 ***
## logPollutionIndex
                                              -5.739 1.90e-08 ***
                          -204869
                                       35696
## withWater
                           52940
                                       19262
                                               2.749
                                                     0.00626 **
  logDistToCity
                           -79854
                                       11138
                                              -7.169 3.77e-12 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 94370 on 393 degrees of freedom
## Multiple R-squared: 0.7719, Adjusted R-squared: 0.7685
## F-statistic: 221.7 on 6 and 393 DF, p-value: < 2.2e-16
## [1] "Robust Standard Errors"
```

##	(Intercept)	logTeacherPupilRatio	${ t logLowIncomePct}$
##	231450.28	55184.01	18941.97
##	nBedRooms	${\tt logPollutionIndex}$	withWater
##	15365.45	36594.87	23188.05
##	logDistToCity		
##	14596.04		

Part 2

Load data, package, and show descriptive statistics:

```
## 'data.frame': 2332 obs. of 2 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ DXCM.Close: num 9.88 9.79 9.68 9.64 9.42 9.47 9.16 8.99 8.6 8.81 ...
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.390 8.188 12.360 23.210 32.560 101.900
```

Let's evaluate the time series plot, histogram, ACF and PACF of the data:

DXCM Closing Price Series

ACF: DXCM Closing Price

Χ

Histogram DXCM Closing Price

PACF: DXCM Closing Price


```
##
## Box-Ljung test
##
## data: x
## X-squared = 2327.388, df = 1, p-value < 2.2e-16</pre>
```

The Box test indicates that our original series x is **not** a stationary series, and we can observe a upward trend, thus simple ARMA model won't be adequate and we further evaluate the difference of the x, x_d :

Box test now indicates x_d is stationary, however we can see that the variance of x_d is time-varying, as such, we **cannot** apply ARIMA alone. To address that, let's obtain the return series of our original series $y_t = \frac{x_t - x_{t-1}}{x_{t-1}}$, and apply GARCH model on the return series:

DXCM Return

PACF: DXCM Return

Lag

ACF: DXCM Return


```
##
## Box-Ljung test
##
## data: y
## X-squared = 1.3156, df = 1, p-value = 0.2514
```

Part 3

```
## 'data.frame': 630 obs. of 2 variables:
## $ Date : Factor w/ 630 levels "1/1/06","1/1/12",..: 47 5 18 33 215 260 226 239 251 311 ...
## $ data.science: num -0.44 -0.474 -0.423 -0.551 -0.486 -0.551 -0.453 -0.462 -0.551 -0.551 ...
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.551000 -0.506000 -0.485000 0.000038 -0.200000 4.104000
```

