EN.601.414/614 Computer Networks

Basic

Xin Jin

Spring 2019 (MW 3:00-4:15pm in Shaffer 301)

Agenda

Overview of the basics

- ➤ How is the network shared?
- ➤ How do we evaluate a network?
- ➤ What is a network made of?

But wait...

Why is the network shared?

Switched networks

 End-systems and networks connected by switches instead of directly connecting them

· Why?

- > Allows us to scale
- For example, directly connecting N nodes to each other would require N² links!

When do we need to share the network?

Two ways to share switched networks

Circuit switching

- > Resource reserved per connection
- ➤ Admission control: per connection

Packet switching via statistical multiplexing

- > Packets treated independently, on-demand
- ➤ Admission control: per packet

Hybrid: virtual circuits

Emulating circuit switching with packets (see text)

Circuit switching

- src sends reservation request to dst
- 2. Switches create circuit *after* admission control
- 3. src sends data
- src sends teardown request

Circuit switching

Reservation establishes a "circuit" within a switch

Many kinds of circuits

Time division multiplexing

- > divide time in time slots
- > separate time slot per circuit

Frequency division multiplexing

- divide frequency spectrum in frequency bands
- > separate frequency band per circuit

Why the delays?

Circuit switching

Pros

- ➤ Predictable performance
- ➤ Simple/fast switching (once circuit established)

Cons

- ➤ Complexity of circuit setup/teardown
- ➤ Inefficient when traffic is bursty
- ➤ Circuit setup adds delay
- ➤ Switch fails → its circuit(s) fails

Packet switching

- Each packet contains destination (dst)
- Each packet treated independently

Packet switching

- Each packet contains destination (dst)
- Each packet treated independently
- With buffers to absolve transient overloads

Packet switching

Pros

- > Efficient use of network resources
- ➤ Simpler to implement
- ➤ Robust: can "route around trouble"

Cons

- ➤ Unpredictable performance
- > Requires buffer management and congestion control

Statistical multiplexing

- Allowing more demands than the network can handle
 - ➤ Hoping that not all demands are required at the same time
 - > Results in unpredictability
 - ➤ Works well except for the extreme cases

How do we evaluate a network?

Performance metrics

- Delay
- Loss
- Throughput

Delay

 How long does it take to send a packet from its source to destination?

Delay

Consists of four components

A network link

- Link bandwidth
 - Number of bits sent/received per unit time (bits/sec or bps)
- Propagation delay
 - Time for one bit to move through the link (seconds)
- Bandwidth-Delay Product (BDP)
 - Number of bits "in flight" at any time
- BDP = bandwidth × propagation delay

Examples

Same city over a slow link:

- ➤ Bandwidth: ~100Mbps
- ➤ Propagation delay: ~0.1msec
- ➤BDP: 10,000bits (1.25KBytes)

Cross-country over fast link:

- ➤ Bandwidth: ~10Gbps
- ➤ Propagation delay: ~10msec
- ➤BDP: 108bits (12.5MBytes)

1. Transmission delay

- How long does it take to push all the bits of a packet into a link?
- Packet size / Transmission rate of the link

 \triangleright e.g., 1000 bits / 100 Mbits per sec = 10^{-5} sec

2. Propagation delay

- How long does it take to move one bit from one end of a link to the other?
- Link length / Propagation speed of link

 \geq E.g., 30 kilometers / $3*10^8$ meters per sec = 10^{-4} sec

Packet delay Sending a 100-byte packet

Packet delay Sending a 100-byte packet

Sending a large file using 100-byte packets

Pipe view of a link

Transmission delay decreases as bandwidth increases

3. Queuing delay

 How long does a packet have to sit in a buffer before it is processed?

Persistent overload leads to packet loss

Queueing delay

 How long does a packet have to sit in a buffer before it is processed?

- Depends on traffic pattern
 - ➤ Arrival rate at the queue
 - ➤ Nature of arriving traffic (bursty or not?)
 - ➤ Transmission rate of outgoing link

Queueing delay

 How long does a packet have to sit in a buffer before it is processed?

- Characterized with statistical measures
 - ➤ Average queuing delay
 - ➤ Variance of queuing delay
 - > Probability delay exceeds a threshold value

Queueing delay

- The packet size is 1500 bytes. The link bandwidth is 10Gb/s. Assume the buffer size in the router is 10 packets. What is the maximum queueing delay?
 - Transmission delay for one packet: 1500 x 8 / (10 x 10⁹) = 1.2 ms
 - \triangleright Queueing delay: 9 x 1.2 = 10.8 ms

Basic queueing theory terminology

- Arrival process: how packets arrive
 - ➤ Average rate A
 - ➤ Peak rate P
- W: average time packets wait in the queue
 - ➤W for "waiting time"

- L: average number of packets waiting in the queue
 - ➤ L for "length of queue"

Little's Law (1961)

• L = A x W

- Compute L: count packets in queue every second
 - ➤ How often does a single packet get counted? W times
- Why do you care?
 - Easy to compute L, harder to compute W

4. Processing Delay

 How long does the switch take to process a packet?

≻Negligible

End-to-end delay

```
transmission
propagation
        queueing
         processing
              transmission
                      propagation
                                 queueing
                                 processing
                                      transmission
                                             propagation
```

Loss

 What fraction of the packets sent to a destination are dropped?

Throughput

 At what rate is the destination receiving data from the source

Throughput

Transmission rate R bits/sec

File of size F bits

Packets of size L bits

Transfer time (T) = F/R + propagation delay

Average throughput = $F/T \approx R$

End-to-end throughput

Average throughput = $min\{R, R'\} = R$

Summary

- How is it shared?
 - ➤On-demand or via reservation
- How do we evaluate a network?
 - ➤ Bandwidth, delay, loss, BDP, ...
- What is a network made of?
 - ➤ Whatever physical infrastructure exist
 - ➤ See backup slides

Thanks! Q&A

What is the network made of?

What is a network made of?

What is a network made of?

What is a network made of?

The last hop

How do we connect?

Digital Subscriber Line (DSL)

- Twisted pair copper
- 3 separate channels
 - downstream data channel
 - >upstream data channel
 - ►2-way phone channel
- up to 25 Mbps downstream
- up to 2.5 Mbps upstream

How about an cable provider as an ISP?

Connecting via cable

Cable

- Coaxial copper & fiber
- Up to 42.8 Mbps downstream
- Up to 30.7 Mbps upstream
- Shared broadcast medium

Any other means?

Ethernet

Ethernet

- Twisted pair copper
- 100 Mbps, 1 Gbps, 10 Gbps (each direction)

Many other ways

- Cellular (smart phones)
- Satellite (remote areas)
- Fiber to the Home (home)
- Optical carrier (Internet backbone)

Where is WiFi?

