1286 - Space Shuttle Experiments

Professor Spook is consulting for NASA, which is planning a series of space shuttle flights and must decide which commercial experiments to perform and which instruments to have on board each flight. For each flight NASA considers a set $\mathbf{E} = \{\mathbf{E_1}, \mathbf{E_2}, ..., \mathbf{E_m}\}$ of instruments experiments and the commercial sponsor of $\mathbf{E_i}$ has agreed to pay NASA $\mathbf{p_i}$ dollars for the results of the experiments.

The experiments use a set $I = \{I_1, I_2, ..., I_n\}$ of instruments; each experiment E_j requires some of the instruments from the set. The cost of carrying instruments I_k is c_k dollars. And an instrument can be used for multiple experiments.

The professor's job is to determine which experiments to perform and which instruments to carry for a given flight in order to maximize the net revenue, which is the total income from the experiments performed minus the total cost of the instruments carried. Since he is not a programmer, he asked your help.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing two integers m ($1 \le m \le 100$) and n ($1 \le n \le 100$), where m denotes the number of experiments and n denotes the number of instruments. The next line contains m space separated integers, where the j^{th} integer denotes the commercial sponsor of E_j paying NASA p_j ($1 \le p_j \le 10000$) dollars for the result of the experiment. The next line contains n space separated integers, where the k^{th} integer denotes the cost of carrying the k^{th} instrument, c_k ($1 \le c_k \le 10000$). Each of the next m lines contains an integer q_i ($1 \le q_i \le n$) followed by q_i distinct integers each between 1 and n, separated by spaces. These q_i integers denote the required instruments for the i^{th} experiment.

Output

For each case, print the case number and the maximum revenue NASA can make using the experiments.

Sample Input	Output for Sample Input
2	Case 1: 0
1 1	Case 2: 13
10	
20	
1 1	
3 5	
20 30 40	
1 2 30 4 50	
3 1 2 3	
3 2 3 4	
1 5	