WH[®]

CH32L103 数据手册

V1.7

概述

CH32L103 是基于青稞 RISC-V 内核设计的工业级低功耗通用微控制器。CH32L103 内置 USB 和 PD PHY, 支持 PDUSB,包括 USB Host 主机和 USB Device 设备功能、USB PD 及 Type-C 快充功能,内置低功耗定时器,提供了 1 组 OPA 运放、3 组 CMP 电压比较器、4 组 USART 串口、2 个 I2C 接口、2 个 SPI接口、1 组 CAN 接口、多组定时器、12 位 ADC、10 路 Touchkey 等丰富外设资源。

产品特性

● 内核 Core:

- 青稞 32 位 RISC-V4C 内核
- 支持 RV321MAC 指令集和自扩展指令
- 快速可编程中断控制器+硬件中断堆栈
- 分支预测、冲突处理机制
- 单周期乘法、硬件除法
- 系统主频 96MHz

● 存储器:

- 20KB 易失数据存储区 SRAM
- 64KB 程序存储区 CodeFlash
- 3328B 系统引导程序存储区 BootLoader
- 256B 系统非易失配置信息存储区
- 256B 用户自定义信息存储区

● 电源管理和低功耗:

- 系统供电 V_D 额定: 3.3V
- 低功耗模式: 睡眠、停止、待机
- VBAT 电源独立为 RTC 和后备寄存器供电

● 系统时钟和复位:

- 内置出厂调校的 8MHz 的 RC 振荡器
- 内置约 40KHz 的 RC 振荡器
- 内置 PLL, 可选 CPU 时钟达 96MHz
- 外部支持 3~25MHz 高速振荡器
- 外部支持 32. 768KHz 低速振荡器
- 上/下电复位、可编程电压监测器
- 实时时钟 RTC: 32 位独立定时器
- 8路通用 DMA 控制器:
- 8 个通道。支持环形缓冲区管理
- 支持 TIMx/ADC/USART/I2C/SPI
- 3组模拟电压比较器 CMP:
- 各 2 路输入通道, 可选公用参考电压引脚
- 输出到 I/0 或者内部直接触发 TIM2

● 1 组运放 OPA/PGA/电压比较器:

- 多路输入通道, 可选多档增益
- 多路输出通道, 可选 ADC 引脚
- 12 位模数转换 ADC:
- 模拟输入范围: V_{SSA}~V_{DDA}
- 10 路外部信号通道+3 路内部信号通道
- 片上温度传感器
- 10 路 TouchKey 通道检测
- 16 位低功耗定时器
- 多组定时器:
- 1 个 16 位高级定时器,提供死区控制和紧急 刹车,提供用于电机控制的 PWM 互补输出
- -2个16位通用定时器,提供输入捕获/输出比较/PWM/脉冲计数及增量编码器输入
- 1 个 32 位通用定时器
- 2 个看门狗定时器: 独立和窗口型
- 系统时基定时器: 64 位计数器
- 4组 USART 串口: 支持 LIN 和 IS07816
- 2个 I2C接口:支持 SMBus/PMBus
- 2个 SPI 接口
- 1组 CAN 接口(2.0B 主动):
- 支持 CAN FD 协议
- USB 2.0 全速控制器及 PHY:
- 支持 USB 主机或 USB 设备
- USB PD 和 Type-C 控制器及 PHY:
- 支持 DRP、Sink 和 Source 应用
- 支持 PDUSB
- 快速 GPI0 端口:
- 37 个 I/0 口,支持 16 个外部中断
- 安全特性:芯片唯一 ID
- 调试模式:串行2线调试接口 SDI
- 封装形式: LQFP、QFN、QSOP、TSSOP

一 资》	原	型号	C8T6	K8U6	G8R6	F8U6	F8P6			
	芯片引展	脚数	48	32	28	20	20			
	闪存(字	2节)	64K	64K	64K	64K	64K			
	SRAM(字	2节)	20K	20K	20K	20K	20K			
	GP10 端	口数	37	31	26	19	16			
	高级 TIM1	(16位)	1	1	1	1	1			
	通用 TIM2、	TIM3(16位)	2	2	2	2	2			
定时	通用 TIM4	(32位)	1	1	1	1	1			
器	低功耗定时	器(LPTIM)	√	√	√	√	√			
i fif	看i]狗		2 (WWDG + IWDG)				
	系统时基	(64位)			√					
	RTC				√					
	ADC		10+3	10+3	10+3	10+3	9+3			
	Tkey	<i>'</i>	10 路	10 路	10 路	10 路	9路			
	OPA		1	1	1	1 1				
	CMP		3	3	3	3	CMP1 CMP2			
	USA	ART	4	4	4	4	4			
	SI	PI	2	SPI1	2	2	SPI1			
	13	2C	2	1201	2	2	1201			
通	C	AN	1	1	1	1	1			
信		USB Host	Host	Host	Host	Host	Device			
接		Device	Device	Device	Device	Device	Device			
	PDUSB	USB PD Type-C	DRP Source Sink	DRP Source Sink 内置 Rd ^⑴	DRP Source Sink	DRP Source Sink 内置 Rd ^⑴	DRP Source Sink			
	CPU 主	频			Max: 96MHz					
	额定电	.压			3. 3V					
	工作温	l度		工业	级: -40°C~8	5°C				
	封装形		LQFP48	QFN32	QSOP28	QFN20	TSS0P20			
	主要应用。	及特点	通用, 引脚兼容	通用, 引脚优化	通用, 电机主控	电机主控 引脚优化	通用,引脚兼容			

注: 1. CH32L103K8U6 和 F8U6 内置 Type-C 规范定义的可控 Rd 下拉电阻,约 5. 1k Ω。

第1章 规格信息

1.1 系统架构

微控制器基于 RISC-V 指令集设计,其架构中将青稞微处理器内核、仲裁单元、DMA 模块、SRAM 存储等部件通过多组总线实现交互。集成通用 DMA 控制器以减轻 CPU 负担、提高访问效率,应用多级时钟管理机制降低了外设的运行功耗,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是系列芯片内部总体架构框图。

图 1-1 系统框图

1.2 存储器映射表

图 1-2 存储器地址映射

1.3 时钟树

系统中引入 4 组时钟源:内部高频 RC 振荡器 (HSI)、内部低频 RC 振荡器 (LSI)、外接高频振荡器 (HSE)、外接低频振荡器 (LSE)。其中,低频时钟源为 RTC 和独立看门狗提供了时钟基准。高频时钟源直接或者间接通过 PLL 倍频后输出为系统总线时钟 (SYSCLK),系统时钟再由各预分频器提供了 HB 域、PB1 域、PB2 域外设控制时钟及采样或接口输出时钟,部分模块工作需要由 PLL 时钟直接提供。

图 1-3 时钟树框图

1.4 功能概述

1.4.1 RISC-V4C 处理器

RISC-V4C 支持 RISC-V 指令集 IMAC 子集。处理器内部以模块化管理,包含快速可编程中断控制器 (PFIC)、内存保护、分支预测模式、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。

处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景微控制器 设计,例如小面积低功耗嵌入式场景、高性能应用操作系统场景等。

- 支持机器和用户特权模式
- 快速可编程中断控制器 (PFIC)
- 多级硬件中断堆栈
- 串行2线调试接口
- 标准内存保护设计
- 静态或动态分支预测、高效跳转、冲突检测机制
- 自定义扩展指令

1.4.2 片上存储器

内置 20K 字节 SRAM 区,用于存放数据、掉电后数据丢失。具体容量要对应芯片型号。

内置 64K 字节程序闪存存储区(Code FLASH),即用户区,用于用户的应用程序和常量数据存储。 区域具体大小对应芯片型号。

内置 3328 字节系统存储区(System FLASH), 即 B00T 区, 用于系统引导程序存储, 内置自举加载程序。

内置 256 字节系统非易失配置信息存储区,用于厂商配置字存储,出厂前固化,用户不可修改。 内置 256 字节用户自定义信息存储区,用于用户选择字存储。

在启动时,通过自举引脚(B00T0和B00T1)可以选择三种自举模式中的一种:

- 从程序闪存存储器自举
- 从系统存储器自举
- 从内部 SRAM 自举

自举加载程序存放于系统存储区,可以通过USART2和USB接口对程序闪存存储区的内容重新编程。

1.4.3 供电方案

- V_D = 1.8~3.6V: 为部分 I/O 引脚和内部调压器供电。
- V_{DDA} = 2.0~3.6V: 为高频 RC 振荡器、ADC、温度传感器及 PLL 的模拟部分供电。正常工作时, V_{DDA} 电压不能高于 V_{DD} 电压; 使用 ADC 时, V_{DDA} 不得小于 2.4V。
- V_{BAT} = 1.8~3.6V:可选的备用电源,当关闭 V_{DD} 时,(通过内部电源切换器)单独为 RTC、外部低频振荡器和后备寄存器供电。

1.4.4 供电监控器

芯片内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电不低于 1.8V 时工作;当 Voo 低于设定的阈值(Vpor/pox)时,置器件于复位状态,而不必使用外部复位电路。

另外系统设有一个可编程的电压监测器(PVD),需要通过软件开启,用于比较 V_{10} 供电与设定的阈值 V_{PVD} 的电压大小。打开 PVD 相应边沿中断,可在 V_{10} 下降到 PVD 阈值或上升到 PVD 阈值时,收到中断通知。关于 $V_{POR/PDR}$ 和 V_{PVD} 的值参考第 3 章。

1.4.5 系统电压调节器 LDO

复位后, 调节器自动开启, 根据应用方式有三个操作模式

- 开启模式:正常的运行操作,提供稳定的内核电源:
- 低功耗模式: 当 CPU 进入停止模式后, 可选择调节器低功耗运行;
- 关断模式: 当 CPU 进入待机模式后自动切换调节器到此模式,调压器输出为高阻状态,内核电路的供电切断,调压器处于零消耗状态。

该调压器在复位后始终处于开启模式,在待机模式下被关闭处于关断模式,此时是高阻输出。

1.4.6 低功耗模式

系统支持三种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳 的平衡。

● 睡眠模式.(SLEEP)

在睡眠模式下,只有 CPU 时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最 浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 停止模式(STOP)

此模式 FLASH 进入低功耗模式或者断电状态, PLL、HSI 的 RC 振荡器和 HSE 晶体振荡器被关闭。 在保持 SRAM 和寄存器内容不丢失的情况下,停止模式可以达到最低的电能消耗。

停止模式分为四种情况:停止模式 1、停止模式 2、停止模式 3 和停止模式 4,详细信息请参考 CH32L103RM 手册的低功耗模式相关章节。

退出条件:任意外部中断/事件(EXTI信号)、NRST上的外部复位信号、IWDG复位,其中EXTI信号包括37个外部I/0口之一、PVD的输出,RTC闹钟,USB的唤醒信号,USBPD唤醒信号,CMP唤醒信号,LPTIM唤醒信号等。

● 待机模式 (STANDBY)

此模式下,系统主 LDO 关闭,由低功耗 LDO 给唤醒电路供电,其他数字电路全部断电,且 FLASH 处于断电状态。从待机模式唤醒系统会产生复位,同时 SBF (PWR_CSR)会置位。唤醒后,查询 SBF 状态可知唤醒前的低功耗模式,SBF 由 CSBF (PWR_CR)位清除。在待机模式下,20KB 的 SRAM 的内容可以保持(取决于睡前的规划配置),后备寄存器内容保留。

退出条件: EXTIO~EXTI17 任一外部事件(不包括中断)、NRST 上的外部复位信号、IWDG 复位, 其中 EXTI 信号包括 37 个外部 I/O 口之一、PVD 的输出,RTC 闹钟等。

1.4.7 CRC(循环冗余校验)计算单元

CRC (循环冗余校验) 计算单元使用一个固定的多项式发生器,从一个 32 位的数据字产生一个 CRC 码。在众多的应用中,基于 CRC 的技术被用于验证数据传输或存储的一致性。在 EN/IEC 60335-1 标准的范围内,提供了一种检测闪存存储器错误的手段, CRC 计算单元可以用于实时地计算软件的签名,并与在链接和生成该软件时产生的签名对比。

1.4.8 快速可编程中断控制器 (PFIC)

芯片内置快速可编程中断控制器 (PFIC),最多支持 255 个中断向量,以最小的中断延迟提供了灵活的中断管理功能。当前芯片管理了 4 个内核私有中断和 52 个外设中断管理,其他中断源保留。PFIC的寄存器均可以在用户和机器特权模式下访问。

- 2个可单独屏蔽中断
- 提供一个不可屏蔽中断 NM I
- 支持硬件中断堆栈(HPE), 无需指令开销
- 提供 4 路免表中断 (VTF), 更快进入中断服务程序
- 向量表支持地址或指令模式
- 中断嵌套深度可配置最高2级

● 支持中断尾部链接功能

1.4.9 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含 22 个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。多达 37 个通用 I/0 口都可选择连接到 16 个外部中断线。

1.4.10 通用 DMA 控制器

系统内置了通用 DMA 控制器,管理 8 个通道,灵活处理存储器到存储器、外设到存储器和存储器 到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件 DMA 请求逻辑,支持一个 或多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA 用于主要的外设包括:通用/高级定时器 TIMx、ADC、USART、I2C、SPI。

USB 和 USB PD 另有专用的独立 DMA 通道。

注: DMA 和 CPU 经过仲裁器仲裁之后对系统 SRAM 进行访问。

1.4.11 时钟和启动

系统时钟源 HSI 默认开启,在没有配置时钟或者复位后,内部 8MHz 的 RC 振荡器作为默认的 CPU 时钟,随后可以另外选择外部 3~25MHz 时钟或 PLL 时钟。当打开时钟安全模式后,如果 HSE 用作系统时钟(直接或间接),此时检测到外部时钟失效,系统时钟将自动切换到内部 RC 振荡器,同时 HSE 和 PLL 自动关闭;对于关闭时钟的低功耗模式,唤醒后系统也将自动地切换到内部的 RC 振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

多个预分频器用于配置 HB 的频率、高速 PB (PB2) 和低速 PB (PB1) 区域提供各外设时钟,最高频率 96MHz,参考图 1-3 的时钟树框图。

1.4.12 RTC (实时时钟) 和后备寄存器

RTC 和后备寄存器在系统内部处于后备供电区域,在 V₁₀ 有效时由 V₁₀ 供电,在 V₁₀ 无效时内部自动 切换到由 V₈₄ 引脚供电。

RTC 实时时钟是一组 32 位可编程计数器,时基支持 20 位预分频,用于较长时间段的测量。时钟基准来源高速的外部时钟 128 分频(HSE/128)、外部晶体低频振荡器(LSE)或内部低功耗 RC 振荡器(LSI)。其中 LSE 也存在后备供电区域,所以,当选择 LSE 做 RTC 时基下,系统复位或从待机模式唤醒后,RTC 的设置和时间能够保持不变。

后备寄存器包含 10 个 16 位寄存器,可以用来存储 20 字节的用户应用数据。此数据在待机唤醒后,或系统复位或电源复位时,都能继续保持。在侵入检测功能开启下,一旦侵入检测信号有效,将被清除后备寄存器中所有内容。

1.4.13 ADC (模拟/数字转换器) 和触摸按键电容检测 (TKey)

芯片内置 12 位的模拟/数字转换器 (ADC),提供多达 10 个外部通道和 3 个内部通道采样,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门狗功能允许非常精准地监控一路或多路选中的通道,用于监测通道信号电压,提供可配置的模拟看门狗复位功能,可在监测到电压超出阈值时复位系统。支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用 DMA 操作。

ADC 内部通道为 ADC_IN16~ADC_IN18。温度传感器在内部被连接到 IN16 输入通道上, 用于将传感器的输出转换到数字数值; 内部参考电压被连接到 IN17 输入通道上; Vook/2 被连接到 IN18 输入通道上。

触摸按键电容检测单元,提供了多达 10 个检测通道,复用 ADC 模块的外部通道。检测结果通过

ADC 模块转换输出结果,通过用户软件识别触模按键状态。

1.4.14 定时器及看门狗

● 高级控制定时器(TIM1)

高级控制定时器是一个 16 位的自动装载递加/递减计数器, 具有 16 位可编程的预分频器。除了完整的通用定时器功能外, 可以被看成是分配到 6 个通道的三相 PWM 发生器, 具有带死区插入的互补 PWM 输出功能, 允许在指定数目的计数器周期之后更新定时器进行重复计数周期, 刹车功能等。高级控制定时器的很多功能都与通用定时器相同, 内部结构也相同, 因此高级控制定时器可以通过定时器链接功能与其他 TIM 定时器协同操作, 提供同步或事件链接功能。

● 通用定时器(TIM2、TIM3、TIM4)

通用定时器是 2 个 16 位(TIM2、TIM3)和 1 个 32 位(TIM4)的自动装载递加/递减计数器,具有一个可编程的 16 位预分频器以及 4 个独立的通道,每个通道都支持输入捕获、输出比较、PWM 生成和单脉冲模式输出。还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。任意通用定时器都能用于产生 PWM 输出。每个定时器都有独立的 DMA 请求机制。这些定时器还能够处理增量编码器的信号,也能处理 1 至 3 个霍尔传感器的数字输出。

● 独立看门狗

独立看门狗是一个自由运行的 12 位递减计数器,支持 7 种分频系数。由一个内部独立的约 40KHz 的 RC 振荡器(LSI)提供时钟。IWDG 在主程序之外,可以完全独立工作,因此,用于在发生问题时复位整个系统,或作为一个自由定时器为应用程序提供超时管理。通过选项字节可以配置成是软件或硬件启动看门狗。在调试模式下,计数器可以被冻结。

● 窗口看门狗

窗口看门狗是一个7位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器

青稞微处理器内核自带了一个 64 位可选递增或递减的计数器,用于产生 SYSTICK 异常(异常号: 12),可专用于实时操作系统,为系统提供"心跳"节律,也可当成一个标准的 64 位计数器。具有自动重加载功能及可编程的时钟源。

1.4.15 低功耗定时器(LPTIM)

低功耗定时器是一个 16 位的自动装载递加计数器, 具有 3 位可编程的预分频器。可选择软件或者硬件输入触发, 支持 PWM 输出。低功耗定时器可将系统从低功耗模式唤醒, 以极低的功耗实现"超时功能"。

1.4.16 通用同步/异步收发器(USART)

芯片提供了 4 组通用同步/异步收发器。支持全双工异步串口通信、同步单向通信以及半双工单线通信,也支持 LIN(局部互连网),兼容 ISO7816 的智能卡协议和 IrDA SIR ENDEC 传输编解码规范,以及调制解调器 (CTS/RTS 硬件流控)操作,还支持多处理器通信。其采用分数波特率发生器系统,并支持 DMA 操作连续通讯。

1.4.17 串行外设接口(SPI)

芯片提供 2 个串行外设 SPI 接口,支持主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的 SD 卡和 MMC 模式。可编程的时钟极性和相位,数据位宽提供 8 或 16 位选择,可靠通信的硬件 CRC 产生/校验,支持 DMA 操作连续通讯。

1.4.18 I2C 总线

芯片提供 2 个 I2C 总线接口, 能够工作于多主机模式或从模式, 完成所有 I2C 总线特定的时序、协议、仲裁等。支持标准和快速两种通讯速度, 同时与 SMBus 2. 0 兼容。

I2C 接口提供 7 位或 10 位寻址, 并且在 7 位从模式时支持双从地址寻址。内置了硬件 CRC 发生器/校验器。可以使用 DMA 操作并支持 SMBus 总线 2.0 版/PMBus 总线。

1.4.19 控制器区域网络(CAN)

芯片提供 1 组 CAN 接口,兼容规范 2.0A 和 2.0B(主动),波特率高达 1Mbits/s,支持时间触发通信功能,支持 CAN FD 协议,和传统 CAN 最大区别是速率可变,数据 bit 率最高 8Mbps。可以接收和发送 11 位标识符的标准帧,也可以接收和发送 29 位标识符的扩展帧。具有 3 个发送邮箱和 2 个 3 级深度接收 FIFO。

1.4.20 通用串行总线 USB2.0 全速主机/设备控制器(USBFS)

USB2.0 全速主机控制器和设备控制器(USBFS),遵循 USB2.0 Full speed 标准,支持 BC 充电协议。提供 8 个可配置的 USB 设备端点及一组主机端点。支持控制/批量/同步/中断传输,双缓冲区机制,USB 总线挂起/恢复操作,并提供待机/唤醒功能。USBFS 模块专用的 48MHz 时钟由内部主 PLL 分频直接产生(PLL 必须为 96MHz 或 72MHz 或 48MHz)。

1.4.21 USB PD及 Type-C 控制器(USB PD)

内置 USB Power Delivery 控制器和 PD 收发器 PHY,支持 USB Type-C 主从检测,自动 BMC 编解码和 CRC,硬件边沿控制,支持 USB PD2.0 和 PD3.0 电力传输控制,支持快充,支持 UFP/PD 受电端 Sink和 DFP/PD 供电端 Source 应用、DRP 应用以及动态切换,部分型号内置可控 Rd 下拉电阻,支持 PDUSB。

外加 Type-C/PD 高压接口芯片 CH211 可实现 28V 直接供电、CC 引脚 28V 耐压以及内置 Type-C 规范定义的可控 Rd 下拉电阻 5K1。

1.4.22 通用输入输出接口(GPIO)

系统提供了 4 组 GPI0 端口,共 37 个 GPI0 引脚。每个引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉和下拉)或复用的外设功能端口。多数 GPI0 引脚都与数字或模拟的复用外设共用。除了具有模拟输入功能的端口,所有 GPI0 引脚都有较大电流驱动能力。提供锁定机制冻结 I0 配置,以避免意外的写入 I/0 寄存器。

系统中大部分 10 引脚电源由 V_{10} 提供,通过改变 V_{10} 供电将改变 10 引脚输出电平高值来适配外部通讯接口电平。具体引脚请参考引脚描述。

1.4.23 运放/比较器(OPA)

芯片内置 1 组运放(OPA),也可用作电压比较器,其输入可通过更改配置对多个通道进行选择,支持多通道自动轮询,包括可编程增益运放(PGA)的放大倍数选择,其输出可通过更改配置对 5 个通道进行选择,内部关联到 ADC 通道。支持将外部模拟小信号放大送入 ADC 以实现小信号 ADC 转换。

1.4.24 电压比较器 (CMP)

芯片内置 3 组轨到轨模拟电压比较器,支持两通道自动轮询,可选迟滞特性,电压比较结果由 GP10

输出或者内部直接接入 TIM2 的 CH1~CH3 的输入通道实现触发。

1.4.25 串行 2 线调试接口(2-wire SDI Serial Debug Interface)

内核自带一个串行 2 线调试的接口(SDI),包括 SWDIO 和 SWCLK 引脚。系统上电或复位后默认调试接口引脚功能开启,主程序运行后可以根据需要关闭 SDI。

第2章 引脚信息

2.1 引脚排列

注: 引脚图中复用功能为缩写。

示例: ADC:ADC_ (ADCO:ADC_INO)

T:TIME_ (T1CH3:TIM1_CH3, T1CH1N:TIM1_CH1N, T1BK:TIM1_BKIN)

OPA:OPA_ (OPAP4:OPA_P4, OPAN4:OPA_N4, OPAO2:OPA_02)

UDP: USBDP UDM: USBDM

2.2 引脚描述

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差 异,查看前请先根据产品型号资源表确认是否有此功能。

表 2-1 QFN20/QS0P28/QFN32/LQFP48 引脚定义

Ē	脚	编号							
QFN20	QS0P28	QFN32	LQFP48	引脚 名称	引脚 类型 ^⑴	I/0 电平	主功能(复位后)	默认复用功能	重映射功能 ^{⑴)}
_	_	_	1	V_{BAT}	Р	_	V_{BAT}		
_	ı	-	2	PC13- TAMPER-RTC ⁽²⁾	1/0	-	PC13 ⁽³⁾	TAMPER RTC	
_	_	2	3	PC14- OSC32_IN ⁽²⁾	1/0/A	_	PC14 ⁽³⁾	0SC32_IN	
_	_	3	4	PC15- OSC32_OUT (2)	1/0/A		PC15 ⁽³⁾	0SC32_0UT	
_	8	4	5	OSC_IN	I/0/A	_	OSC_IN		PDO ⁽⁴⁾ USART3_TX_3 USART3_RX_2 CAN_RX_3
_	ı	5	6	OSC_OUT	1/0/A	_	OSC_OUT		PD1 (4) USART3_TX_2 USART3_RX_3 CAN_TX_3
_	_	-	7	NRST	I	_	NRST		
_	-	_	8	V_{SSA}	Р	_	V_{SSA}		
_		_	9	$V_{ exttt{DDA}}$	Р	_	V_{DDA}		
1	9	6	10	PAO-WKUP	1/0/A	ı	PAO	WKUP ADC_INO TIM2_CH1_ETR USART2_CTS OPA_P4	TIM2_CH1_ETR_2 USART2_CTS_2 USART2_CTS_3
2	10	7	11	PA1	1/0/A		PA1	ADC_IN1 TIM2_CH2 USART2_RTS OPA_N4	TIM1_CH1_2 TIM1_CH1_3 TIM2_CH2_2 TIM1_CH2N_5 USART2_RTS_2 USART2_RTS_3
3	11	8	12	PA2	I/0/A	-	PA2	ADC_IN2 CMP1_P0 OPA_02 TIM2_CH3 USART2_TX	TIM1_CH4_4 TIM2_CH2_4 TIM2_CH2_5 TIM2_CH3_1 USART1_CTS_2
4	12	9	13	PA3	I/0/A	-	PA3	ADC_IN3 OPA_00 TIM2_CH4	TIM1_ETR_3 TIM1_CH4_5 TIM2_CH1_ETR_4

QFN20	脚 8ZdOSD	编号 ZENJO	LQFP48	引脚 名称	引脚 类型 ^⑴	I/0 电平	主功能(复位后)	默认复用功能	重映射功能 ^{⑴)}
								USART2_RX	TIM2_CH4_1 USART1_CK_2
5	13	10	14	PA4	I/0/A	-	PA4	ADC_IN4 OPA_03 USART2_CK SPI1_NSS	TIM2_CH4_7 USART1_TX_2 USART1_RX_3 USART2_CK_2 USART2_CK_3
6	14	11	15	PA5	1/0/A	-	PA5	ADC_IN5 SPI1_SCK OPA_N3	TIM2_CH3_7 USART1_TX_3 USART1_RX_2 USART4_TX_1
20	15	12	16	PA6	I/O/A	_	PA6	ADC_IN6 TIM3_CH1 SPI1_MISO OPA_N1 OPA_P5	TIM1_BKIN_1 TIM2_CH4_4 TIM2_CH4_5 USART1_CK_3 USART1_CK_4 USART4_CK_1
7	17	13	17	PA7	I/0/A	-	PA7	SPI1_MOSI ADC_IN7 TIM3_CH2 OPA_N5 OPA_P3	TIM1_CH1N_1 TIM1_CH2_2 TIM1_CH2_3 USART4_CTS_1
8	16	14	18	PB0	I/0/A	-	PB0	ADC_IN8 TIM3_CH3 USART4_TX CMP1_OUTO OPA_P1 OPA_O4	TIM1_CH2N_1 TIM1_CH2N_2 TIM1_CH2N_3 TIM3_CH3_1
9	18	15	19	PB1 ^{(7) (8)}	1/0/A	ı	PB1	ADC_IN9 TIM3_CH4 USART4_RX CMP1_NO OPA_O1	TIM1_CH1_5 TIM1_CH4_2 TIM1_CH4_3 TIM1_CH2N_4 TIM1_CH3N_1 TIM3_CH4_1
-	-	16	20	PB2 ⁽⁵⁾	1/0/A	FT	PB2 B00T1 ⁽⁵⁾	USART4_CK CMP1_P1	LPT_OUT_1
9	18	-	21	PB10 ^{(7) (8)}	I/0/A	FT	PB10	USART3_TX I2C2_SCL CMP1_OUT1 CMP3_P1 OPA_N2	TIM4_CH1_1 TIM2_CH3_2 TIM2_CH3_3

QFN20	m	编号 ZENJO	LQFP48	引脚 名称	· · · · · · · · · · · · · · · · · · ·	I/0 电平	主功能	默认复用功能	重映射功能(10)
QFI	080	QF)	LOF	台	安全	电平 	(复位后)		
								OPA_N6	
10	19	-	22	PB11	1/0/A	FT	PB11	CMP2_OUT1 CMP3_N1 OPA_NO USART3_RX I2C2_SDA	TIM1_CH1N_2 TIM1_CH1N_3 TIM2_CH4_2 TIM2_CH4_3 TIM4_CH2_1 USART1_TX_4 I2C1_SDA_3
0	7	0	23	V_{SS}	Р	_	V_{ss}		
19	6	1	24	$V_{ extsf{DD}}$	Р	-	$V_{ exttt{DD}}$		
_	20	_	25	PB12	I/0/A	FT	PB12	CMP3_OUT1 TIM1_BKIN LPT_IN1 USART3_CK I2C2_SMBA SPI2_NSS	TIM1_CH3_4 TIM2_CH3_4 TIM2_CH3_5 USART1_TX_5 USART3_CK_2 USART3_CK_3 SPI1_NSS_3
11	21	_	26	PB13 ⁽⁸⁾	1/0	FT	PB13	TIM1_CH1N LPT_IN2 USART3_CTS SPI2_SCK	USART3_CTS_2 USART3_CTS_3
12	22	-	27	PB14	I/0/A	FT	PB14	TIM1_CH2N LPT_ETR USART3_RTS SPI2_MISO OPA_P2	USART3_RTS_2 USART3_RTS_3
13	23	17	28	PB15	1/0/A	FT	PB15	TIM1_CH3N LPT_OUT SPI2_MOSI OPA_PO	
14	24	18	29	PA8	1/0	FT	PA8	MCO TIM1_CH1 USART1_CK	TIM1_CH1_1 USART1_CK_1
15	25	19	30	PA9	1/0	FT	PA9	TIM1_CH2 USART1_TX	T I M1_CH2_1
18	26	20	31	PA10 ⁽⁸⁾	1/0	FT	PA10	TIM1_CH3 USART1_RX	T I M1_CH3_1
17	27	21	32	PA11 ⁽⁸⁾	1/0/A	FT	PA11	TIM1_CH4	T I M1_CH4_1

QFN20	脚 8ZdOSD	编号 ZENJO	LQFP48	引脚名称	引脚 类型 ^⑴	I/0 电平	主功能(复位后)	默认复用功能	重映射功能 ^{⑴)}
								USART1_CTS USBDM CAN_RX	USART1_CTS_1 USART2_TX_2 USART2_RX_3
16	28	22	33	PA12 ^{(7) (8)}	I/0/A	FT	PA12	USART1_RTS USBDP CAN_TX TIM1_ETR	USART1_RTS_1 TIM1_ETR_1 TIM1_BKIN_4 TIM1_BKIN_5 TIM2_CH1_ETR_5 TIM2_CH1_ETR_7 USART1_RX_5 USART2_TX_3 USART2_RX_2 I2C1_SDA_2 SPI1_NSS_2
17		23	34	PA13 ^{(7) (8)}	1/0	FT	SWDIO		TIM1_ETR_5 TIM1_BKIN_2 TIM1_BKIN_3 USART1_RTS_2 USART1_RTS_4 I2C1_SCL_2
_	_		35	V _{ss}	Р	_	Vss		
-	_		36	V _{DD}	Р	_	$V_{ extsf{DD}}$		
16	1	24	37	PA14 ^{(7) (8)}	1/0	FT	SWCLK		TIM1_CH3_2 TIM1_CH3_3 TIM1_CH1N_4 TIM1_CH1N_5 USART1_CTS_4
_	ı	25	38	PA15	1/0	FT	PA15		TIM2_CH1_ETR_1 TIM2_CH1_ETR_3 USART4_RTS_1 SPI1_NSS_1
_	4	26	39	PB3	1/0/A	FT	PB3	CMP1_N1 CMP2_N0 CMP3_N0 USART4_CTS	TIM2_CH2_1 TIM2_CH2_3 SPI1_SCK_1
_	_	27	40	PB4	1/0/A	FT	PB4	CMP3_OUTO USART4_RTS	TIM3_CH1_1 SPI1_MISO_1
-	1	28	41	PB5 ⁽⁷⁾	1/0/A	FT	PB5	I 2C1_SMBA CMP2_OUTO CMP3_PO	LPT_IN1_1 TIM3_CH2_1 USART4_RX_1 I2C1_SMBA_2

5	脚	编号							
QFN20	QS0P28	QFN32	LQFP48	引脚 名称	引脚 类型 ^⑴	电平	主功能(复位后)	默认复用功能	重映射功能(10)
									12C1_SMBA_3
									SPI1_MOSI_1
									LPT_ETR_1
									USART1_TX_1
								TIM4_CH1	USART1_CK_5
11	2	29	42	PB6 ⁽⁸⁾	I/0/A	FT	PB6	I 2C1_SCL	SPI1_SCK_2
								CC1	SPI1_SCK_3
								CMP2_P1	TIM1_ETR_2
									TIM1_ETR_4
									TIM1_CH3_5
									LPT_IN2_1
									USART1_RX_1
								TIM4_CH2	USART1_CTS_3
18	3	30	43	PB7 ⁽⁸⁾	I/0/A	FT	PB7	I 2C1_SDA	USART1_CTS_5
								CC2	SPI1_MOSI_2
								CMP2_N1	SPI1_MOSI_3
									TIM1_CH1_4
									TIM1_CH3N_5
_	_	31	44	B00T0 ⁽⁶⁾	I	_	ВООТО		
									T1M4_CH3_1
									USART1_RTS_3
									USART1_RTS_5
								TIM4_CH3	SPI1_MISO_2
-	5	32	45	PB8	I/0/A	FT	PB8	CMP2_P0	SPI1_MISO_3
								0 m 2_1 0	CAN_RX_2
									TIM1_CH2_4
									TIM1_CH2_5
									T1M2_CH2_7
									TIM4_CH4_1
									USART1_RX_4
									I2C1_SCL_3
-	-	31	46	PB9 ⁽⁶⁾	I/0/A	FT	PB9	TIM4_CH4	CAN_TX_2
									T1M1_CH3N_2
									TIM1_CH3N_3
									TIM1_CH3N_4
_	_	_	47	Vss	Р	_	Vss		
_	_	_	48	$V_{ extsf{DD}}$	Р	_	$V_{ exttt{DD}}$		

表 2-2 TSSOP20 引脚定义

引脚 编 ⁰ OZdOSS1	引脚 名称	引脚 类型 ^⑴	I/0 电平	主功能(复位后)	默认复用功能	重映射功能 ⁽¹⁰⁾
2	OSC_IN	I/0/A	-	OSC_IN		PDO ⁽⁴⁾ USART3_TX_3 USART3_RX_2 CAN_RX_3
3	OSC_OUT	1/0/A	_	OSC_OUT		PD1 ⁽⁴⁾ USART3_TX_2 USART3_RX_3 CAN_TX_3
4	NRST	I	_	NRST		
5	V_{DDA}	Р	_	$V_{ extsf{DDA}}$		
6	PAO-WKUP	1/0/A	_	PAO	WKUP ADC_INO TIM2_CH1_ETR USART2_CTS OPA_P4	TIM2_CH1_ETR_2 USART2_CTS_2 USART2_CTS_3
7	PA1	1/0/A	-	PA1	ADC_IN1 TIM2_CH2 USART2_RTS OPA_N4	TIM1_CH1_2 TIM1_CH1_3 TIM2_CH2_2 TIM1_CH2N_5 USART2_RTS_2 USART2_RTS_3
8	PA2	1/0/A	-	PA2	ADC_IN2 CMP1_P0 OPA_02 TIM2_CH3 USART2_TX	TIM1_CH4_4 TIM2_CH2_4 TIM2_CH2_5 TIM2_CH3_1 USART1_CTS_2
9	PA3	1/0/A	-	PA3	ADC_IN3 OPA_00 TIM2_CH4 USART2_RX	TIM1_ETR_3 TIM1_CH4_5 TIM2_CH1_ETR_4 TIM2_CH4_1 USART1_CK_2
10	PA4	1/0/A	-	PA4	ADC_IN4 OPA_03 USART2_CK SPI1_NSS	TIM2_CH4_7 USART1_TX_2 USART1_RX_3 USART2_CK_2 USART2_CK_3

引脚 编号 0ZdOSS1	引脚 名称	引脚 类型 ^⑴	I/0 电平	主功能(复位后)	默认复用功能	重映射功能 ^{⑴)}
11	PA5	1/0/A	_	PA5	ADC_IN5 SPI1_SCK OPA_N3	TIM2_CH3_7 USART1_TX_3 USART1_RX_2 USART4_TX_1
12	PA6	1/0/A	_	PA6	ADC_IN6 TIM3_CH1 SPI1_MISO OPA_N1 OPA_P5	TIM1_BKIN_1 TIM2_CH4_4 TIM2_CH4_5 USART1_CK_3 USART1_CK_4 USART4_CK_1
13	PA7	1/0/A	_	PA7	SPI1_MOSI ADC_IN7 TIM3_CH2 OPA_N5 OPA_P3	TIM1_CH1N_1 TIM1_CH2_2 TIM1_CH2_3 USART4_CTS_1
14	PB1	1/0/A	-	PB1	ADC_IN9 TIM3_CH4 USART4_RX CMP1_N0 OPA_01	TIM1_CH1_5 TIM1_CH4_2 TIM1_CH4_3 TIM1_CH2N_4 TIM1_CH3N_1 TIM3_CH4_1
15	V _{ss}	Р	_	Vss		
16	V _{DD}	Р	_	V _{DD}		
17	PA11	1/0/A	FT	PA11	TIM1_CH4 USART1_CTS USBDM CAN_RX	TIM1_CH4_1 USART1_CTS_1 USART2_TX_2 USART2_RX_3
18	PA12	1/0/A	FT	PA12	USART1_RTS USBDP CAN_TX TIM1_ETR	USART1_RTS_1 TIM1_ETR_1 TIM1_BKIN_4 TIM1_BKIN_5 TIM2_CH1_ETR_5 TIM2_CH1_ETR_7 USART1_RX_5 USART2_TX_3 USART2_RX_2 I2C1_SDA_2 SPI1_NSS_2

引脚 编号 0ZdoSS1	引脚 名称	引脚 类型 ^⑴	I/0 电平	主功能(复位后)	默认复用功能	重映射功能 ^{⑴)}
19	PA13 ⁽⁹⁾	1/0	FT	SWDIO		TIM1_ETR_5 TIM1_BKIN_2 TIM1_BKIN_3 USART1_RTS_2 USART1_RTS_4 I2C1_SCL_2
20	PA14 ⁽⁹⁾	1/0	FT	SWCLK		TIM1_CH3_2 TIM1_CH3_3 TIM1_CH1N_4 TIM1_CH1N_5 USART1_CTS_4
19	PB6 ⁽⁹⁾	1/0/A	FT	PB6	TIM4_CH1 I2C1_SCL CC1 CMP2_P1	LPT_ETR_1 USART1_TX_1 USART1_CK_5 SPI1_SCK_2 SPI1_SCK_3 TIM1_ETR_2 TIM1_ETR_4 TIM1_CH3_5
20	PB7 ⁽⁹⁾	1/0/A	FT	PB7	TIM4_CH2 I2C1_SDA CC2 CMP2_N1	LPT_IN2_1 USART1_RX_1 USART1_CTS_3 USART1_CTS_5 SPI1_MOSI_2 SPI1_MOSI_3 TIM1_CH1_4 TIM1_CH3N_5
	B00T0 ⁽⁶⁾	ı	_	В00Т0		
1	PB8 ⁽⁶⁾	1/0/A	FT	PB8	TIM4_CH3 CMP2_P0	TIM4_CH3_1 USART1_RTS_3 USART1_RTS_5 SPI1_MISO_2 SPI1_MISO_3 CAN_RX_2 TIM1_CH2_4 TIM1_CH2_5 TIM2_CH2_7

注1:表格缩写解释

I = TTL/CMOS 电平斯密特输入; 0 = CMOS 电平三态输出;

- A = 模拟信号输入或输出; P = 电源; FT = 耐受5V;
- 注2: Voo和Vbar均可连接内部模拟开关为备份区域以及PC13、PC14和PC15引脚供电,这个模拟开关只能够通过有限的电流(3mA)。当由Voo供电时: PC14和PC15可用于GP10或LSE引脚、PC13可作为通用I/0口、TAMPER引脚、RTC校准时钟、RTC闹钟或秒输出; PC13、PC14和PC15作为GP10输出脚时只能工作在2MHz模式下,最大驱动负载为30pF,并且不能作为电流源(如驱动LED)。而当由Vbar供电时: PC14和PC15只能用于LSE引脚、PC13可作为TAMPER引脚、RTC闹钟或秒输出。
- 注3: 这些引脚在备份区域第一次上电时处于主功能状态下,之后即使复位,这些引脚的状态由备份区域寄存器控制(这些寄存器不会被主复位系统所复位)。关于如何控制这些10口的具体信息,请参考CH32L103RM手册的电池备份区域和BKP寄存器的相关章节。
- 注4: 对于CH32L103C8T6芯片,引脚5和引脚6在芯片复位后默认配置为0SC_IN和0SC_OUT功能脚,软件可以重新设置这两个引脚为PD0和PD1功能;对于CH32L103K8U6芯片,引脚4和引脚5在芯片复位后默认配置为0SC_IN和0SC_OUT功能脚,软件可以重新设置这两个引脚为PD0和PD1功能;对于CH32L103G8R6芯片,引脚8在芯片复位后默认配置为0SC_IN功能脚,软件可以重新设置这两个引脚为PD0功能;对于CH32L103F8P6芯片,引脚2和引脚3在芯片复位后默认配置为0SC_IN和0SC_OUT功能脚,软件可以重新设置这两个引脚为PD0和PD1功能。更多详细信息请参考CH32L103RM手册的复用功能I/0章节和调试设置章节。
- 注5: B00T0引脚未引出的芯片,在内部将下拉到GND。B00T0引脚引出,但B00T1/PB2引脚未引出的芯片, 内部B00T1/PB2引脚将下拉到GND。此时如果进入低功耗模式配置10口状态时,建议B00T1/PB2引脚 使用输入下拉模式防止产生额外电流。
- 注6: 对于CH32L103K8U6芯片,B00T0和PB9引脚在芯片内部短接合封,此时PB9引脚不再支持耐压5V;对于CH32L103F8P6芯片,B00T0和PB8引脚在芯片内部短接合封,此时PB8引脚不再支持耐压5V。建议外接4.7K下拉电阻,确保上电期间B00T0为低电平,以便进入程序闪存存储器自举模式,正常工作后PB9、PB3和PB8引脚根据需要可以用于输出。
- 注7: 对于CH32L103G8R6芯片, PA14和PB5引脚在芯片内部短接合封, 禁止将两个I0均配置为输出功能; PB1和PB10引脚在芯片内部短接合封, 此时PB10引脚不再支持耐压5V, 禁止将两个I0均配置为输出功能: PA12和PA13引脚在芯片内部短接合封, 禁止将两个I0均配置为输出功能。
- 注8: 对于CH32L103F8U6芯片,PB1和PB10引脚在芯片内部短接合封,此时PB10引脚不再支持耐压5V,禁止将两个I0均配置为输出功能;PB6和PB13引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能;PA12和PA14引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能;PA10和PB7引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能;PA10和PB7引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能。
- 注9:对于CH32L103F8P6芯片,PA13和PB6引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能; PA14和PB7引脚在芯片内部短接合封,禁止将两个I0均配置为输出功能。
- 注10: 重映射功能下划线后的数值表示AFIO寄存器中相对应位的配置值。例如: CAN_RX_2表示AFIO寄存器相应位配置为10b。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号产品。不同型号之间外设资源有差异,查看前请先根据产品型号资源表确认是否有此功能。 表 2−3 引脚复用和重映射功能

复用 引脚	ADC	TIM1	T1M2/3/4	USART	CMP	SYS	120	SPI	CAN	USB	OPA	LPTIM
PA0	ADC_INO		TIM2_CH1_ETR TIM2_CH1_ETR_2	USART2_CTS USART2_CTS_2 USART2_CTS_3		WKUP					OPA_P4	
PA1	ADC_IN1	TIM1_CH1_2 TIM1_CH1_3 TIM1_CH2N_5	TIM2_CH2 TIM2_CH2_2	USART2_RTS USART2_RTS_2 USART2_RTS_3							OPA_N4	
PA2	ADC_IN2	TIM1_CH4_4	TIM2_CH2_4 TIM2_CH2_5 TIM2_CH3 TIM2_CH3_1	USART1_CTS_2 USART2_TX	CMP1_P0						0PA_02	
PA3	ADC_IN3	TIM1_ETR_3 TIM1_CH4_5	TIM2_CH1_ETR_4 TIM2_CH4 TIM2_CH4_1	USART1_CK_2 USART2_RX							0PA_00	
PA4	ADC_IN4		T1M2_CH4_7	USART1_TX_2 USART1_RX_3 USART2_CK USART2_CK_2 USART2_CK_3				SPI1_NSS			0PA_03	
PA5	ADC_IN5		T1M2_CH3_7	USART1_TX_3 USART1_RX_2 USART4_TX_1				SPI1_SCK			OPA_N3	
PA6	ADC_IN6	TIM1_BKIN_1	TIM2_CH4_4 TIM2_CH4_5 TIM3_CH1	USART1_CK_3 USART1_CK_4 USART4_CK_1				SPI1_MISO			0PA_N1 0PA_P5	
PA7	ADC_IN7	TIM1_CH2_2 TIM1_CH2_3 TIM1_CH1N_1	TIM3_CH2	USART4_CTS_1				SPI1_MOSI			OPA_N5 OPA_P3	
PA8		TIM1_CH1 TIM1_CH1_1		USART1_CK USART1_CK_1		MCO						
PA9		TIM1_CH2 TIM1_CH2_1		USART1_TX								
PA10		TIM1_CH3 TIM1_CH3_1		USART1_RX								
PA11		TIM1_CH4 TIM1_CH4_1		USART1_CTS USART1_CTS_1 USART2_TX_2					CAN_RX	USBDM		

复用 引脚	ADC	TIM1	T1M2/3/4	USART	CMP	SYS	120	SPI	CAN	USB	OPA	LPTIM
				USART2_RX_3								
PA12		TIM1_BKIN_4 TIM1_BKIN_5 TIM1_ETR TIM1_ETR_1	TIM2_CH1_ETR_5 TIM2_CH1_ETR_7	USART1_RX_5 USART1_RTS USART1_RTS_1 USART2_TX_3 USART2_RX_2			12C1_SDA_2	SPI1_NSS_2	CAN_TX	USBDP		
PA13		TIM1_ETR_5 TIM1_BKIN_2 TIM1_BKIN_3		USART1_RTS_2 USART1_RTS_4		SWDIO	12C1_SCL_2					
PA14		TIM1_CH3_2 TIM1_CH3_3 TIM1_CH1N_4 TIM1_CH1N_5		USART1_CTS_4		SWCLK						
PA15			TIM2_CH1_ETR_1 TIM2_CH1_ETR_3	USART4_RTS_1				SPI1_NSS_1				
PB0	ADC_IN8	TIM1_CH2N_1 TIM1_CH2N_2 TIM1_CH2N_3	TIM3_CH3 TIM3_CH3_1	USART4_TX	CMP1_OUTO						0PA_P1 0PA_04	
PB1	ADC_IN9	TIM1_CH1_5 TIM1_CH4_2 TIM1_CH4_3 TIM1_CH2N_4 TIM1_CH3N_1	TIM3_CH4 TIM3_CH4_1	USART4_RX	CMP1_NO						0PA_01	
PB2				USART4_CK	CMP1_P1		B00T1					LPT_0UT_1
PB3			TIM2_CH2_1 TIM2_CH2_3	USART4_CTS	CMP1_N1 CMP2_N0 CMP3_N0			SPI1_SCK_1				
PB4			T I M3_CH1_1	USART4_RTS	CMP3_OUTO			SPI1_MISO_1				
PB5			T1M3_CH2_1	USART4_RX_1	CMP2_OUTO CMP3_P0		12C1_SMBA 12C1_SMBA_2 12C1_SMBA_3	SPI1_MOSI_1				LPT_IN1_1
PB6		TIM1_ETR_2 TIM1_ETR_4 TIM1_CH3_5	TIM4_CH1	USART1_TX_1 USART1_CK_5	CMP2_P1		1201_SCL	SPI1_SCK_2 SPI1_SCK_3		CC1		LPT_ETR_1
PB7		TIM1_CH1_4 TIM1_CH3N_5	TIM4_CH2	USART1_RX_1 USART1_CTS_3 USART1_CTS_5	CMP2_N1		I 2C1_SDA	SPI1_MOSI_2 SPI1_MOSI_3		CC2		LPT_IN2_1
PB8		TIM1_CH2_4 TIM1_CH2_5	TIM4_CH3 TIM4_CH3_1 TIM2_CH2_7	USART1_RTS_3 USART1_RTS_5	CMP2_P0			SPI1_MISO_2 SPI1_MISO_3	CAN_RX_2			

复用 引脚	ADC	TIM1	T1M2/3/4	USART	CMP	SYS	120	SPI	CAN	USB	OPA	LPTIM
PB9		TIM1_CH3N_2 TIM1_CH3N_3 TIM1_CH3N_4	TIM4_CH4 TIM4_CH4_1	USART1_RX_4			12C1_SCL_3		CAN_TX_2			
PB10			TIM4_CH1_1 TIM2_CH3_2 TIM2_CH3_3	USART3_TX	CMP1_OUT1 CMP3_P1		1202_SCL				OPA_N2 OPA_N6	
PB11		TIM1_CH1N_2 TIM1_CH1N_3	TIM2_CH4_2 TIM2_CH4_3 TIM4_CH2_1	USART1_TX_4 USART3_RX	CMP2_OUT1 CMP3_N1		12C1_SDA_3 12C2_SDA				OPA_NO	
PB12		TIM1_CH3_4 TIM1_BKIN	TIM2_CH3_4 TIM2_CH3_5	USART1_TX_5 USART3_CK USART3_CK_2 USART3_CK_3	CMP3_OUT1		12C2_SMBA	SPI1_NSS_3 SPI2_NSS				LPT_IN1
PB13		TIM1_CH1N		USART3_CTS USART3_CTS_2 USART3_CTS_3				SP12_SCK				LPT_IN2
PB14		TIM1_CH2N		USART3_RTS USART3_RTS_2 USART3_RTS_3				SPI2_MISO			OPA_P2	LPT_ETR
PB15		TIM1_CH3N						SPI2_MOSI			OPA_P0	LPT_OUT
PC13						RTC TAMPER						
PC14						0SC32_IN						
PC15						0SC32_0UT						
PD0				USART3_TX_3 USART3_RX_2		OSC_IN			CAN_RX_3			
PD1				USART3_TX_2 USART3_RX_3		OSC_OUT			CAN_TX_3			

第3章 电气特性

3.1 测试条件

除非特殊说明和标注, 所有电压都以 Vss 为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值是基于常温 25° C和 $V_{DD} = 3.3V$ 环境下用于设计指导。

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估或设计保证。

供电方案:

 V_{SSA}

图 3-1 常规供电典型电路

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表 3-1 绝对最大值参数表

符号	描述	最小值	最大值	单位
T _A	工作时的环境温度	-40	85	°C
Ts	存储时的环境温度	-40	125	°C
V _{DD} -V _{SS}	外部主供电电压(包含 Vooa和 Voo)	-0. 3	4. 0	٧
V _{IN}	FT(耐受 5V)引脚上的输入电压	V _{ss} -0. 3	5. 5	٧
VIN	其他引脚上的电压	V _{ss} -0. 3	V _{DD} +0. 3	V
$ \triangle V_{DD_x} $	主供电引脚各 V∞之间的电压差		50	mV
$ \triangle V_{ss_{-x}} $	不同接地引脚之间的电压差		50	mV
V	普通 I/O 引脚的 ESD 静电放电电压(HBM)	4K		V
V _{ESD} (HBM)	USB 引脚的 ESD 静电放电电压(HBM)	4K		٧
I _{VDD}	经过 VDD/VDDA电源线的总电流(供应电流)		150	mA

I _{Vss}	经过 Vss 地线的总电流(流出电流)	150	mA
I 10	任意 1/0 和控制引脚上的灌电流	25	mA
	任意 1/0 和控制引脚上的源电流	-25	mA
	NRST 引脚注入电流	+/-5	mA
INJ(PIN)	HSE 的 OSC_IN 引脚和 LSE 的 OSC_IN 引脚注入电流	+/-5	mA
	其他引脚的注入电流	+/-5	mA
Σ I INJ (PIN)	所有 I0 和控制引脚的总注入电流	+/-25	mA

3.3 电气参数

3.3.1 工作条件

表 3-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
F _{HCLK}	内部 HB 时钟频率			96	MHz
F _{PCLK1}	内部 PB1 时钟频率			96	MHz
F _{PCLK2}	内部 PB2 时钟频率			96	MHz
V_{DD}	标准工作电压		1.8	3. 6	V
V _{DD}		使用 USB	3. 0	3. 6	'
l v	模拟部分工作电压(未使用 ADC)		2. 0	3. 6	V
V_{DDA}	模拟部分工作电压(使用 ADC)		2. 4	3. 6	\ \ \
V _{BAT} ⁽¹⁾	备份单元工作电压	不能大于 V₪	1.8	3. 6	V
T _A	环境温度		-40	85	°C
Τ _J	结温度范围		-40	105	°C

注: 1. 电池到 VBAT 连线要尽可能的短。

表 3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
t _{VDD}	V∞上升速率		0	8	ue/V
	Vm下降速率		70	∞	us/V

注: 电池到 VBAT 连线要尽可能的短。

3.3.2 内置复位和电源控制模块特性

表 3-4 复位及电压监测 (PDR 选择高阈值档位)

符号	参数	条件	最小值	典型值	最大值	单位
		PLS[2:0] = 000(上升沿)		1. 75		٧
		PLS[2:0] = 000(下降沿)		1. 70		٧
		PLS[2:0] = 001(上升沿)		1. 93		V
	可编程电压检测器的电 平选择	PLS[2:0] = 001(下降沿)		1. 87		V
V _{PVD} (1)		PLS[2:0] = 010(上升沿)		2. 14		٧
V PVD		PLS[2:0] = 010(下降沿)		2. 08		V
		PLS[2:0] = 011(上升沿)		2. 35		V
		PLS[2:0] = 011(下降沿)		2. 28		V
		PLS[2:0] = 100(上升沿)		2. 54		٧
		PLS[2:0] = 100(下降沿)		2. 46		٧

		PLS[2:0] = 101(上升沿)		2. 72		٧
		PLS[2:0] = 101(下降沿)		2. 63		٧
		PLS[2:0] = 110(上升沿)		2. 92		٧
		PLS[2:0] = 110(下降沿)		2. 83		٧
		PLS[2:0] = 111(上升沿)		3. 1		V
		PLS[2:0] = 111(下降沿)		3. 01		V
$V_{PVDhyst}^{(1)}$	PVD 迟滞		0. 05	0. 08	0. 1	V
V _{POR/PDR} (2)	 - 上电/掉电复位阈值	上升沿	1. 62	1. 73	1. 80	V
V POR/PDR	工吧/ 挥电复似则阻 	下降沿	1. 45 (3)	1. 55	1. 65	٧
$V_{PDRhyst}^{(2)}$	PDR 迟滞			180	600	mV
t _{RSTTEMPO}	复位持续时间		6	6. 5	30	ms

注: 1. 设计参数;

- 2. 常温测试值。
- 3. 当处于 STOP 停止模式 3、停止模式 4 或 STANDBY 待机模式时, Veoc. Pook 在下降沿时的最小值为 1. 2V。

3.3.3 内置的参考电压

表 3-5 内置参考电压

符号	参数	条件	最小值	典型值	最大值	单位
V _{REFINT}	内置参考电压	$T_A = -40^{\circ}C \sim 85^{\circ}C$	1. 17	1. 2	1. 23	٧
$T_{S_vrefint}$	当读出内部参考电压时, ADC 的采样时间	建议慢速采样			20	us

3.3.4 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0 引脚的负载、产品的软件配置、工作频率、I/0 脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图 3-2 电流消耗测量

微控制器处于下列条件:

常温 V_{DD} = 3. 3V 情况下,测试时: R16_PORT_CC1 的位 CC1_PD 和 R16_PORT_CC2 的位 CC2_PD 均 = 0, 所有 I/0 引脚配置为下拉输入,运行于高速内部 RC 振荡器 HSI,HSI=8M, $F_{PLCKI}=F_{HCLK}/2$, $F_{PLCKZ}=F_{HCLK}$,使能或关闭所有外设时钟的功耗。

表 3-6 数据处理代码从 FLASH 中运行,设置 LDOTR IM [1:0] = 10、LD0_EC=0

<i>55</i> □	* **		条件		典型	<u>!</u> 值	兴 / ÷
符号	参数	HSILP	PLLON	F _{HCLK}	使能所有外设	关闭所有外设	单位
		0	1	96MHz	7. 46	4. 70	
		0	1	48MHz	5. 13	3. 77	
	ᅩ ᅩ ᅩ	0	1	8MHz	2. 23	1. 95	
	运行模式 下的供应	0	1	1MHz	1. 46	1. 43	,
	电流	1	1	1MHz	1. 27	1. 24	mA
	电测	0	0	8MHz	2. 14	1. 87	
		0	0	1MHz	1. 37	1. 34]
I _{DD} (1) (2)		1	0	1MHz	1. 19	1. 17	
I DD		0	1	96MHz	5. 58	2. 82	
	睡眠模式	0	1	48MHz	3. 52	2. 14	
	下的供应	0	1	8MHz	1. 74	1. 47	
	电流(此	0	1	1MHz	1. 40	1. 37	
	时外设供	1	1	1MHz	1. 21	1. 18	mA
	电和时钟	0	0	8MHz	1. 65	1. 38	
	保持)	0	0	1MHz	1. 31	1. 28	
		1	0	1MHz	1. 13	1. 10	

注: 1. 以上为实测参数。

表 3-7-1 数据处理代码从 SRAM 中运行、FLASH 进入低功耗模式 ⁽¹⁾、设置 LDOTR IM [1:0]=10

		, ,,,, 010, 1111	<u> </u>	227 (180-737)	快八 , 反且 LDC	型值 型值	V/ //
符号	参数	HSILP	PLLON	F _{HCLK} (3)	使能所有外设	关闭所有外设	单位
		0	1	96MHz	7. 08	4. 29	
		0	1	48MHz	3. 77	2. 37	
		0	1	8MHz	0. 91	0. 63	
		0	1	1MHz	0. 40	0. 37	
	运行模式	1	1	8MHz	0. 68	0. 46	
	下的供应	1	1	1MHz	0. 21	0. 17	mA
	电流	0	0	8MHz	0. 83	0. 56	
		0	0	1MHz	0. 31	0. 28	
I DD (2) (4)		1	0	1MHz	0. 13	0. 10	
		1	0	500KHz	0. 10	0. 08	
		1	0	125KHz	0. 07	0. 07	
	睡眠模式	0	1	96MHz	4. 60	1. 81	
	下的供应	0	1	48MHz	2. 52	1. 13	
	电流(此	0	1	8MHz	0. 72	0. 44	A
	时外设供	0	1	1MHz	0. 38	0. 34	mA
	电和时钟 保持) ⁽⁴⁾	1	1	8MHz	0. 48	0. 25	
		1	1	1MHz	0. 18	0. 15	

^{2.} 当配置 CC1_PD 和 CC2_PD = 1 时, CH32L103K8U6 和 F8U6 芯片的电流消耗将在上述表格的基础上另加约 5uA; 其他 CH32L103 芯片配置 CC1_PD 和 CC2_PD = 1 且 PB6/CC1 和 PB7/CC2 引脚为下拉输入时, 其电流消耗将在上述表格的基础上另加约 5uA。

0	0	8MHz	0. 63	0. 35	
0	0	1MHz	0. 28	0. 26	
1	0	1MHz	0. 11	0. 07	
1	0	500KHz	0. 08	0. 07	
1	0	125KHz	0. 07	0. 06	

- 注: 1. 当 FLASH_LP_REG=1 且 FLASH_LP=1 时, FLASH 进入低功耗模式。
 - 2. 以上为实测参数。
 - 3. 当 FHOLK 超过 16MHz 时,设置 LDO_EC=0,否则默认设置 LDO_EC=1。
- 4. 当配置 CC1_PD 和 CC2_PD = 1 时,CH32L103K8U6 和 F8U6 芯片的电流消耗将在上述表格的基础上另加约 5uA;其他 CH32L103 芯片配置 CC1_PD 和 CC2_PD = 1 且 PB6/CC1 和 PB7/CC2 引脚为下拉输入时,其电流消耗将在上述表格的基础上另加约 5uA。

表 3-7-2 数据处理代码从 SRAM 中运行, FLASH 不进入低功耗模式 (1), 设置 LDOTR IM [1:0]=10

<i>የተ</i> 🗆	公 米h		条件		典	单位	
符号	参数	HSILP	PLLON	F _{HCLK} (3)	使能所有外设	关闭所有外设	早12
		0	1	96MHz	7. 87	5. 09	
		0	1	48MHz	4. 68	3. 28	
		0	1	8MHz	1. 97	1. 69	
	运行模式	0	1	1MHz	1. 44	1. 40	
	下的供应	1	1	8MHz	1. 71	1. 47	mA
	电流	1	1	1MHz	1. 23	1. 20	
		0	0	8MHz	1. 85	1. 57	
		0	0	1MHz	1. 34	1. 31	
DD (2) (4)		1	0	1MHz	1. 16	1. 13	
I DD		0	1	96MHz	5. 64	2. 84	
	ᅲᅃᄷᅷ	0	1	48MHz	3. 56	2. 16	
	睡眠模式	0	1	8MHz	1. 75	1. 48	
	下的供应	0	1	1MHz	1. 41	1. 38	
	电流(此	1	1	8MHz	1. 51	1. 28	mA
	时外设供 电和时钟	1	1	1MHz	1. 21	1. 18	
	保持)(4)	0	0	8MHz	1. 66	1. 39	
	一本が	0	0	1MHz	1. 32	1. 29	
		1	0	1MHz	1. 14	1. 11	

- 注: 1. 当 FLASH LP REG=0 时, FLASH 不进入低功耗模式
 - 2. 以上为实测参数。
 - 3. 当 FHOLK 超过 16MHz 时,设置 LDO_EC=0,否则默认设置 LDO_EC=1。

当配置 CC1_PD 和 CC2_PD = 1 时,CH32L103K8U6 和 F8U6 芯片的电流消耗将在上述表格的基础上 另加约 5uA; 其他 CH32L103 芯片配置 CC1_PD 和 CC2_PD = 1 且 PB6/CC1 和 PB7/CC2 引脚为下拉输入时, 其电流消耗将在上述表格的基础上另加约 5uA。

表 3-7-3 数据处理代码从 SRAM 中运行, FLASH 进入低功耗模式 (1), 设置 LD0TR IM [1:0] = 01

ケケロ	会粉		条件		典	型值	单位
符号	参数	HSILP	PLLON	F _{HCLK} (3)	使能所有外设	关闭所有外设	半江
I _{DD} (2)	运行模式	0	1	96MHz	6. 32	3. 78	mA

mA

注: 1. 当 FLASH_LP_REG=1 且 FLASH_LP=1 时, FLASH 进入低功耗模式。

- 2. 以上为实测参数。
- 3. 当 F_{HCLK} 超过 16MHz 时,设置 LDO_EC=0,否则默认设置 LDO_EC=1。
- 4. 当配置 CC1_PD 和 CC2_PD = 1 时, CH32L103K8U6 和 F8U6 芯片的电流消耗将在上述表格的基础上另加约 5uA; 其他 CH32L103 芯片配置 CC1_PD 和 CC2_PD = 1 且 PB6/CC1 和 PB7/CC2 引脚为下拉输入时, 其电流消耗将在上述表格的基础上另加约 5uA。

表 3-8-1 数据处理代码从 FLASH 中运行, 停止和待机模式下典型的电流消耗

					条件						Ж
符号	参数	HSI, HSE LSI, LSE	RAMLV	R18KSTY	R2KSTY	LDO_EC	LPDS	PDDS	LD0	典型值	单 位
	STOP 停止模式 1 下的供应电流 ^②	均关闭	无效	无效	无效	0	0	0	10	34. 63	
	STOP 停止模式 2 下的供应电流 ^②	均关闭	无效	无效	无效	1	0	0	10	23. 88	- uA
(1)	STOP 停止模式 3 下的供应电流 ^②	均关闭	0	无效	无效	Х	1	0	10	4. 55	
100	STOP 停止模式 4 下的供应电流 ^②	均关闭	1	无效	无效	Х	1	0	10	4. 08	
	STANDBY 待机模 式下的供应电流	只开启 LSI	0	1	1	无效	无效	1	10	2. 97	uA
	(3)	均关闭	0	1	1	无效	无效	1	10	2. 82	an

		均关闭	1	1	1	无效	无效	1	10	1. 89	
		只开启 LSI	1	0	1	无效	无效	1	10	0. 74	
		均关闭	1	0	1	无效	无效	1	10	0. 59	
		只开启 LSI	无效	0	0	无效	无效	1	10	0. 51	
		均关闭	无效	0	0	无效	无效	1	10	0. 37	
I DD_VBAT	备份区域的供应 电流(移除 V₀₀	只开启 LSE	无效	0	0	无效	无效	1	10	0. 75	
(1)	和 V _{DDA} ,只使用 V _{BAT} 供电)	均关闭	无效	0	0	无效	无效	1	10	0. 37	uA :

注: 1. 以上为实测参数。

- 2. 当配置 CC1_PD 和 CC2_PD = 1 时,CH32L103K8U6 和 F8U6 芯片停止模式下的电流消耗将在上述 表格的基础上另加约 5uA; 其他 CH32L103 芯片配置 CC1_PD 和 CC2_PD = 1 且 PB6/CC1 和 PB7/CC2 引脚 为下拉输入时,其停止模式下的电流消耗将在上述表格的基础上另加约 5uA。
- 3. CH32L103K8U6 和 F8U6 内置 5. 1k Ω 下拉电阻,仅对于批号倒数第五位为 1 的产品,由于在待机模式下 5. 1k Ω 下拉电阻的功能强制开启,因此无需注释 2 中的配置,CH32L103K8U6 和 F8U6 芯片待机模式下的电流消耗将在上述表格的基础上另加约 5uA。

表 3-8-2 数据处理代码从 SRAM 中运行, 停止模式下典型的电流消耗

符号	参数	条件									单
		HSI, HSE LSI, LSE	RAMLV	R18KSTY	R2KSTY	LDO_EC	LPDS	PDDS	LD0	典型值	位
l _{DD} ⁽¹⁾	STOP 停止模式 1 下的供应电流 ^②	均关闭	无效	无效	无效	0	0	0	01	30. 94	
	STOP 停止模式 2 下的供应电流 ^②	均关闭	无效	无效	无效	1	0	0	01	20. 22	uA

注: 1. 以上为实测参数。

2. 当配置 CC1_PD 和 CC2_PD = 1 时, CH32L103K8U6 和 F8U6 芯片停止模式下的电流消耗将在上述 表格的基础上另加约 5uA; 其他 CH32L103 芯片配置 CC1_PD 和 CC2_PD = 1 且 PB6/CC1 和 PB7/CC2 引脚 为下拉输入时,其停止模式下的电流消耗将在上述表格的基础上另加约 5uA。

3.3.5 外部时钟源特性

表 3-9 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{HSE_ext}	外部时钟频率		3	8	25	MHz
V _{HSEH} ⁽¹⁾	OSC_IN 输入引脚高电平电压		0. 8V _{DD}		V _{DD}	٧
V _{HSEL} ⁽¹⁾	OSC_IN 输入引脚低电平电压		0		0. 2V _{DD}	٧
C _{in (HSE)}	OSC_IN 输入电容			5		рF
DuCy _{HSE}	占空比(Duty cycle)			50		%
١ _L	OSC_IN 输入漏电流				±1	uA

注1:不满足此条件可能会引起电平识别错误。

图 3-3 外部提供高频时钟源电路

表 3-10 来自外部低速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F_{LSE_ext}	用户外部时钟频率			32. 768	1000	KHz
V_{LSEH}	0SC32_IN 输入引脚高电平电压		0. 8V _{DD}		V _{DD}	V
V_{LSEL}	0SC32_IN 输入引脚低电平电压		0		0. 2V _{DD}	V
C _{in(LSE)}	0SC32_IN 输入电容			5		рF
DuCy _{LSE}	占空比(Duty cycle)			50		%
۱L	0SC32_IN 输入漏电流				±1	uA

图 3-4 外部提供低频时钟源电路

表 3-11 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{osc_in}	谐振器频率		3	8	25	MHz
$R_{\scriptscriptstyle{F}}$	反馈电阻			250		kΩ
С	建议的负载电容与对应晶 体串行阻抗 R _s	R_s =60 Ω ⁽¹⁾		20		pF
		V _{DD} = 3.3V, 20p 负载		1		mA
1 ₂ ⁽¹⁾	HSE 驱动电流	低功耗模式, V _∞ = 3.3V, 20p 负载		0. 55		mA
g _m ⁽¹⁾	振荡器的跨导	启动		21		mA/V
t _{SU (HSE)}	启动时间	Vտ稳定		1. 5 (2)	4. 5	ms

注: 1.25M 晶体 ESR 建议不超过 60 欧,低于 25M 可适当放宽。

^{2.} 启动时间指从 HSEON 开启到 HSERDY 被置位的时间差。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 CL1=CL2。

图 3-5 外接 8M 晶体典型电路

表 3-12 使用一个晶体/陶瓷谐振器产生的低速外部时钟(flse=32.768KHz)

符号	参数	条件	最小值	典型值	最大值	单位
$R_{\scriptscriptstyle F}$	反馈电阻			5		MΩ
C _{L1} /C _{L2}	建议的负载电容与对应晶体串 行阻抗 R _s	$R_s = 70K \Omega$			15	pF
i ₂ ⁽¹⁾	LSE 驱动电流	$V_{DD} = 3.3V$		0. 36		uA
g _m ⁽¹⁾	振荡器的跨导	启动		26		uA/V
t _{SU(LSE)}	启动时间	V₀ 是稳定的		1000(1)		ms

注 1: 启动时间指从 LSEON 开启到 LSERDY 被置位的时间差。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况 C11 = C12,可选 12pF 左右。

图 3-6 外接 32.768K 晶体典型电路

注: 负载电容 C_L 由下式计算: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, 其中 C_{stray} 是引脚的电容和 PCB 板或 PCB 相关的电容,它的典型值是介于 2pF 至 7pF 之间。

3.3.6 内部时钟源特性

表 3-13 内部高速(HSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
_	此五元 /上亡\从 广\			8		MHz
F _{HS1}	频率(校准后)	低功耗模式		1		MHz
DuCy _{HS1}	占空比(Duty cycle)		45	50	55	%
100	1101 振英器的结束(松连后)	$T_A = 0^{\circ}C \sim 70^{\circ}C$	-1.8		1.8	%
ACC _{HS1}	HSI 振荡器的精度(校准后)	$T_A = -40^{\circ}C \sim 85^{\circ}C$	-3		2. 5	%

t _{su(HSI)}	HSI 振荡器启动稳定时间			8	us
DD (HS1)	HSI 振荡器功耗		200		uA
		低功耗模式	24		uA

表 3-14 内部低速(LSI)RC 振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{LS1}	频率		27	37	47	KHz
DuCy _{LSI}	占空比(Duty cycle)		45	50	55	%
t _{SU(LSI)}	LSI 振荡器启动稳定时间			400		us
I DD (LSI)	LSI 振荡器功耗			150		nA

3.3.7 PLL 特性

表 3-15 PLL 特性

符号	参数	条件	最小值	典型值	最大值	单位
_	PLL 输入时钟		3	8	25	MHz
$F_{PLL_{IN}}$	PLL 输入时钟占空比		40		60	%
F _{PLL_OUT}	PLL 倍频输出时钟		18		96 ⁽¹⁾	MHz
t _{LOCK}	PLL 锁定时间			80	200	us
I _{DD (PLL)}	PLL 功耗	输入频率 8M, 输出频率 96M		0. 15		mA

注1: 须选择合适倍频,满足PLL输出频率范围。

3.3.8 从低功耗模式唤醒的时间

表 3-16 低功耗模式唤醒的时间 (1)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用 HSI RC 时钟唤醒	0. 2	us
twustop	从停止模式唤醒	使用 HSI RC 时钟唤醒	7	us
twustdby	从待机模式唤醒	使用 HSI RC 时钟唤醒	72	us

注:以上为实测参数。

3.3.9 存储器特性

表 3-17 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{prog_page}	页(256 字节)编程时间			2. 0	2. 5	ms
t _{erase_page}	页(256 字节)擦除时间			6. 2	7. 5	ms
t _{erase_sec}	扇区(1K 字节)擦除时间			6. 2	7. 5	ms

表 3-18 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N _{END}	擦写次数	$T_A = 25^{\circ}C$	300K			次
		$T_A = 70^{\circ}C$	100K			次
t _{ret}	数据保存期限	$T_A = 25^{\circ}C$	20			年
		$T_A = 70^{\circ}C$	10			年

3.3.10 I/0 端口特性

表 3-19 通用 1/0 静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IH}	标准 I/0 引脚,输入高电平电压		0. 41*(V _{DD} -1. 8)+1. 3		V _{DD} +0. 3	٧
	FT I/0 引脚,输入高电平电压		0. 42* (V _{DD} -1. 8) +1. 2		5. 5	V
	B00T0 引脚,输入高电平电压		0. 85*V₪		V _{DD} +0. 3	V
	大块 1/0 引脚 检入低中亚中国		-0.3		0. 28* (V _{DD} -	v
V _{IL}	标准 I/0 引脚,输入低电平电压 		-0. 3		1. 8) +0. 6	٧
	FT I/0 引脚,输入低电平电压		-0.3		0. 32* (V _{DD} -	V
					1. 8) +0. 55	
V_{hys}	标准 I/0 施密特触发器电压迟滞		150			mV
V hys	FT I/0 施密特触发器电压迟滞		90			mV
,	标准 I/0 引脚输入漏电流				1	u A
l _{lkg}	FT I/O 引脚输入漏电流				3	u A
R_{PU}	上拉等效电阻		30	40	50	kΩ
R_{PD}	下拉等效电组		30	40	50	kΩ
Cıo	1/0 引脚电容	·		5		pF

注: 以上均为设计参数保证。

输出驱动电流特性

GP10(通用输入/输出端口)可以吸收或输出多达 $\pm 8mA$ 电流,并且吸收或输出 $\pm 20mA$ 电流(不严格达到 V_{ol}/V_{ol})。在用户应用中,所有 10 引脚驱动总电流不能超过 3.2 节给出的绝对最大额定值:

表 3-20 输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{oL}	输出低电平,8个引脚吸收电流	TTL端口, I₁₀= +8mA		0. 4	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -0. 4		V
V_{oL}	输出低电平,8个引脚吸收电流	CMOS端口, I₁₀= +8mA		0. 4	٧
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -0. 4		V
V_{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +20mA		0.8	V
V_{OH}	输出高电平,8个引脚输出电流	2. 7V< V _{DD} <3. 6V	V _{DD} -1. 2		V
V _{oL}	输出低电平,8个引脚吸收电流	I ₁₀ = +6mA		0.8	V
V_{OH}	输出高电平,8个引脚输出电流	2. 4V< V _{DD} <2. 7V	V _{DD} -1. 2		V

注:以上条件中如果多个 10 引脚同时驱动,电流总和不能超过 3.2 节给出的绝对最大额定值。另外多个 10 引脚同时驱动时,电源/地线点上的电流很大,会导致压降使内部 10 的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表 3-21 输入输出交流特性

MODEx[1:0] 配置	符号	参数	条件	最小值	最大值	单位
10 (2MHz)	F _{max(10) out}	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		2	MHz
	t _{f(I0)out}	输出高至低电平的下降时间	CL=50pF, V _{DD} =2. 7-3. 6V		125	ns
	t _{r (10) out}	输出低至高电平的上升时间	UL-3Upr, V _{DD} -2. 7-3. 0V		125	ns
01	F _{max(10)out}	最大频率	CL=50pF, V _{DD} =2. 7-3. 6V		10	MHz

(10MHz)	$t_{f(10) out}$	输出高至低电平的下降时间	01 -50-5 V -2 7 2 4V		25	ns
	t _{r(10) out}	输出低至高电平的上升时间	CL=50pF, V _{DD} =2. 7-3. 6V		25	ns
	_	˙̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣	CL=30pF, V _{DD} =2. 7-3. 6V		50	MHz
	Fmax(I0)out		CL=50pF, V _{DD} =2. 7-3. 6V		30	MHz
11		输出高至低电平的下降时间	CL=30pF, V _{DD} =2. 7-3. 6V		5	ns
(50MHz)	t _{f(I0)out}		CL=50pF, V _{DD} =2. 7-3. 6V		8	ns
	+	输出低至高电平的上升时间	CL=30pF, V _{DD} =2. 7-3. 6V		5	ns
	t _{r (10) out}		CL=50pF, V _{DD} =2. 7-3. 6V		8	ns
	t _{EXTIPW}	EXTI 控制器检测到外部信号 的脉冲宽度		10		ns

3.3.11 NRST 引脚特性

表 3-22 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL (NRST)}	NRST 输入低电平电压		-0. 3		0. 28*(V _{DD} -1. 8)+0. 6	٧
V _{IH (NRST)}	NRST 输入高电平电压		0. 41*(V _{DD} -1. 8)+1. 3		V _{DD} +0. 3	٧
$V_{hys(NRST)}$	NRST 施密特触发器电压 迟滞		150			mV
R _{PU} ⁽¹⁾	上拉等效电阻		30	40	50	kΩ
V _{F (NRST)}	NRST 输入可被滤波脉宽				100	ns
V _{NF (NRST)}	NRST 输入无法滤波脉宽		300			ns

注: 1. 上拉电阻是一个真正的电阻串联一个可开关的 PMOS 实现。这个 PMOS/NMOS 开关的电阻很小(约占 10%)。

电路参考设计及要求:

图 3-7 外部复位引脚典型电路

注:图中的电容是可选的,可以用于滤除按键抖动。

3. 3. 12 USB PD 接口特性

表 3-23-1 PD 接口 I/0 特性

符号	参数	条件	最小值	典型值	最大值	単位
t_{Rise}	上升时间	幅度 10%到 90%之间的时间, 最小值为无负载条件下的时间。	240	400		ns

t _{Fall}	下降时间	幅度 10%到 90%之间的时间, 最小值为无负载条件下的时间。	240	400		ns
V _{Swing}	输出电压摆幅 (峰-峰值)		1. 04	1. 12	1. 20	٧
Z _{Driver}	输出阻抗		26		90	Ω

表 3-23-2 Type-C I/O 端口特性

符号	· 参数	条件	最小值	典型值	最大值	单位
				80		uA
l pu	上拉电流	PAD < V _{DD} -0. 6V		180		uA
				330		uA
Rd	下拉电阻	Vɒ ≥ 1.6V 或外部上拉 330uA	4. 08	5. 1	6. 12	kΩ

3.3.13 TIM 定时器特性

表 3-24 TIMx 特性

符号	参数	条件	最小值	最大值	单位
+ 字时哭其准时纳	定时器基准时钟		1		t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 48MHz	20. 8		ns
F _{EXT} CH1 至 CH4 的定时器外部时钟频≥		0	f _{TIMxCLK} /2	MHz	
	001 主 004 的处的钻外的附单	f _{TIMxCLK} = 48MHz	0	24	MHz
R _{esTIM}	定时器分辨率			16	位
_	当选择了内部时钟时, 16 位计数		1	65536	t _{TIMxCLK}
t _{counter}	器时钟周期	f _{TIMxCLK} = 48MHz	0. 02	1363	us
t _{MAX_COUNT} 最大可能的计数			65535	t _{TIMxCLK}	
	取入り 肥切り 奴	f _{TIMxCLK} = 48MHz		1363	us

3.3.14 I2C 接口特性

图 3-8 12C 总线时序图

表 3-25 120 接口特性

符号	参数	标准 120		快速	单位	
	多 奴	最小值	最大值	最小值	最大值	十二 十二
t _{w(SCKL)}	SCL 时钟低电平时间	4. 7		1. 2		us
t _{w (SCKH)}	SCL 时钟高电平时间	4. 0		0. 6		us
t _{SU(SDA)}	SDA 数据建立时间	250		100		ns

t _{h (SDA)}	SDA 数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA 和 SCL 上升时间		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA 和 SCL 下降时间		300			ns
t _{h (STA)}	开始条件保持时间	4. 0		0. 6		us
t _{su(sta)}	重复的开始条件建立时间	4. 7		0. 6		us
t _{SU(STO)}	停止条件建立时间	4. 0		0. 6		us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	pF

3.3.15 SPI 接口特性

图 3-9 SPI 主模式时序图

图 3-10-1 SPI 从模式时序图 (CPHA=0, CPOL=0)

图 3-10-2 SPI 从模式时序图(CPHA=0, CPOL=1)

图 3-11-1 SPI 从模式时序图(CPHA=1, CPOL=0)

图 3-11-2 SPI 从模式时序图(CPHA=1, CPOL=1)

表 3-26 SPI 接口特性

符号	参数	条	·件	最小值	最大值	单位
£ /+	CD I B+4+hts 立	主模式			32	MHz
f _{sck} /t _{sck}	SPI 时钟频率	从模式			32	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI 时钟上升和下降时间	负载电容: C	= 30pF		8	ns
t _{su (NSS)}	NSS 建立时间	从模式		2t _{HCLK}		ns
t _{h (NSS)}	NSS 保持时间	从模式		2t _{HCLK}		ns
	COV 享由亚和低中亚时间	主模式, fнсы	= 24MHz,预	70	97	
$t_{w(SCKH)}/t_{w(SCKL)}$	/tw/scki. SCK 高电平和低电平时间 分频系数=4			70	71	ns
_		主模式	HSRXEN = 0	15		
t _{su(MI)}	数据输入建立时间	主模式	HSRXEN = 1	15-0. 5t _{sck}		ns
t _{su(s1)}		从模式		4		ns
		主模式	HSRXEN = 0	-4		
t _{h(MI)}	数据输入保持时间	主模式	HSRXEN = 1	0.5t _{sck} -4		ns
t _{h(SI)}		从模式		4		ns
t _{a (S0)}	数据输出访问时间	从模式, fнсь	= 20MHz	0	1t _{HCLK}	ns
t _{dis(SO)}	数据输出禁止时间	从模式		0	10	ns
t _{V(S0)}	*************************************	从模式(使能边沿之后)			15	ns
t _{V(MO)}	数据输出有效时间	主模式(使能边沿之后)			5	ns
t _{h(S0)}	*b+B t> U (B+t B+ i)	从模式(使制	 能边沿之后)	8		ns
t _{h (MO)}	数据输出保持时间 	主模式(使能	 能边沿之后)	0		ns

3.3.16 USB 接口特性

表 3-27 USB I/O 端口特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	USB 工作电压	根据 V∞电压选择 USB 参数	3. 0		3. 6	٧
V _{SE}	单端接收器阈值	额定电压	1. 2		1. 9	٧
V _{oL}	静态输出低电平				0. 3	٧
V _{OH}	静态输出高电平		2. 8			٧
V_{BC_REF}	BC 比较器参考电压			0. 4		٧
V_{BC_SRC}	BC 协议输出电压			0.6		٧

3. 3. 17 12 位 ADC 特性

表 3-28 ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	供电电压	fs < 200KHz	1. 8		3. 6	٧
VDDA K电电压	洪电电压	$f_s = 2.4MHz$	3		3. 6	٧
	I _{DDA} 供电电流	f _s = 2. 4MHz Buffer off		1. 2		mA
l ,		$f_s = 2.4MHz$ Buffer on		1. 96		mA
l _{DDA}	供电电流 	$f_s = 1MHz$ Buffer off		0. 45		mA
		$f_s = 1MHz$ Buffer on		1. 21		mA
f _{ADC}	ADC 时钟频率			14	48	MHz
fs	采样速率		0. 05		2. 4	MHz
f _{TRIG}	外部触发频率	$f_{ADC} = 14MHz$			875	KHz

					16	1/f _{ADC}
		f _{ADC} = 48MHz			2. 2	MHz
		TADO — 40MMZ			22	1/f _{ADC}
V_{AIN}	转换电压范围		0		V_{DDA}	V
R _{AIN}	外部输入阻抗				50	kΩ
R _{ADC}	采样开关电阻			0. 6	1. 5	kΩ
C _{ADC}	内部采样和保持电容			4		pF
_	校准时间	f _{ADC} = 14MHz			7. 14	us
t _{CAL}	↑X/庄中门□J				100	1/f _{ADC}
	注入触发转换时延	f _{ADC} = 14MHz			0. 143	us
t _{lat}		f _{ADC} = 48MHz			0. 042	us
					2	1/f _{ADC}
	常规触发转换时延	f _{ADC} = 14MHz			0. 143	us
t _{latr}		f _{ADC} = 48MHz			0. 042	us
					2	1/f _{ADC}
		$f_{ADC} = 14MHz$	0. 107		17. 1	us
t _s	采样时间		1. 5		239. 5	1/f _{ADC}
L _s	木件印间	$f_{ADC} = 48MHz$		0. 156		us
				7. 5		1/f _{ADC}
t _{STAB}	上电时间				1	us
		f _{ADC} = 14MHz	1		18	us
_	总的转换时间(包括采样时		14		252	1/f _{ADC}
t _{conv}	间)	$f_{ADC} = 48MHz$		0. 417		us
				20		1/f _{ADC}

注: 以上均为设计参数保证。

公式:最大 RAIN

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗,使得误差可以小于 1/4 LSB。其中 N=12(表示 12 位分辨率)。

表 3-29 f_{ADC} = 14MHz 时的最大 R_{AIN}

T _s (周期)	ts (us)	最大 R _{AIN} (kΩ)
1. 5	0. 11	1. 2
7. 5	0. 54	12. 3
13. 5	0. 96	23. 3
28. 5	2. 04	50
41.5	2. 96	75
55. 5	3. 96	无限制
71. 5	5. 11	无限制
239. 5	17. 1	无限制

表 3-30 ADC 误差

符号	参数	条件	最小值	典型值	最大值	单位
ET	整体误差	$f_{ADC} = 14MHz$,		±3	±8	
ED	微分非线性误差	$R_{AIN} < 10k \Omega,$ $V_{DD} = 3.3V,$		±2	±5	LSB
EL	积分非线性误差	15mV < V _{AIN} < (V _{DD} −15mV) 测量结果经过校准		±3	±5	

注: 以上均为设计参数保证。

图 3-12 ADC 典型连接图

C_p表示 PCB 与焊盘上的寄生电容(大约 5pF),可能与焊盘和 PCB 布局质量有关。较大的 C_p数值将降低转换精度,解决办法是降低 face值。

图 3-13 模拟电源及退耦电路参考

3.3.18 温度传感器特性

表 3-31 温度传感器特性

符号	参数	条件	最小值	典型值	最大值	单位
R _{TS}	温度传感器测量范围		-40		85	°C
A _{TSC}	温度传感器的测量误差			±12		°C
Avg_Slope	平均斜率(负温度系数)		3. 7	4. 2	4. 7	mV/°C
V_{25}	在 25°C时的电压		1. 4	1. 45	1.5	٧
T_{S_temp}	当读取温度时,ADC 采样时间	f _{ADC} = 14MHz			20	us

3.3.19 OPA 特性

表 3-32-1 OPA 运放特性

符号参数	条件	最小值	典型值	最大值	单位
------	----	-----	-----	-----	----

V_{DDA}	供电电压	建议不低于 2. 4V	1.8	3. 3	3. 6	٧
V _{CM}	共模输入电压		0		V_{DDA}	٧
V _{IOFFSETO}	输入失调电压	校准前		±2	±8	mV
V _{IOFFSET}	输入失调电压	校准后		±0.2	±0.8	mV
I _{LOAD}	驱动电流	$R_{LOAD} = 4k \Omega$			900	uA
I LOAD_PGA	PGA 模式驱动电流				500	uA
DDOPAMP	消耗电流	无负载,静态模式		220		uA
CMRR ⁽¹⁾	共模抑制比	@1kHz		96		dB
PSRR ⁽¹⁾	电源抑制比	@1kHz		82		dB
Av ⁽¹⁾	开环增益	$C_{LOAD} = 5pF$		115		dB
G _{BW} ⁽¹⁾	单位增益带宽	C _{LOAD} = 5pF		9		MHz
P _M ⁽¹⁾	相位裕度	C _{LOAD} = 5pF		75		0
S _R ⁽¹⁾	压摆率	C _{LOAD} = 5pF		5		V/us
1 (1)	关 闭 到 唤 醒 时	输入 V _{DDA} /2, C _{LOAD} = 50pF,			0.0	
t _{WAKUP} (1)	间, 0. 1%	$R_{LOAD} = 4k \Omega$			0. 8	us
R _{LOAD}	阻性负载		4			kΩ
C _{LOAD}	容性负载				40	pF
V _{OHSAT} (2)	克 拉 和泰山市厅	$R_{LOAD} = 4k \Omega$	V _{DDA} -250	V _{DDA} -150		\/
V OHSAT	高饱和输出电压	$R_{LOAD} = 20k \Omega$	V _{DDA} -50	V _{DDA} -30		mV
V _{OLSAT} (2)	低饱和输出电压	$R_{LOAD} = 4k \Omega$		3	10	\/
V OLSAT	似地加加山电压	$R_{LOAD} = 20k \Omega$		3	10	mV
	NSEL=0110 模式同相	Gain = 32, PB10 = GND	-3		3	%
		Gain = 8,	-1		1	%
		$V_{INP} < (V_{DDA}/7)$	-1		1	70
PGA		Gain = 16,	-1		1	%
Gain ⁽¹⁾	内部同相 PGA	$V_{INP} < (V_{DDA}/15)$	'		'	/0
ua i ii	IN THE LAW	Gain = 32,	-1		1	%
		$V_{INP} < (V_{DDA}/31)$	'		'	/0
		Gain = 64,	-1		1	%
		$V_{INP} < (V_{DDA}/63)$	'		'	/0
Delta R	电阻绝对值变化		-15		15	%
eN ⁽¹⁾	 等效输入噪声	$R_{LOAD} = 4k \Omega@1kHz$		100		nV/
GI 1	マス / 川ノ \ 「木 / 一	$R_{LOAD} = 20k \Omega@1KHz$		60		sqrt(Hz)

注: 1. 设计参数保证;

2. 负载电流会限制饱和输出电压。

表 3-32-2 OPA 特性(低功耗模式)

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	供电电压	建议不低于 2. 4V	1.8	3. 3	3. 6	٧
V _{CM}	共模输入电压		0		V_{DDA}	٧
VIOFFSET	输入失调电压			±2	±12	mV
I _{LOAD}	驱动电流	$R_{LOAD} = 10k \Omega$			360	uA
LOAD_PGA	PGA 模式驱动电流				500	uA
DDOPAMP	消耗电流	无负载,静态模式		40		uA

CMRR ⁽¹⁾	共模抑制比	@1kHz		90		dB
PSRR ⁽¹⁾	电源抑制比	@1kHz		78		dB
Av ⁽¹⁾	开环增益	$C_{LOAD} = 5pF$		115		dB
G _{BW} ⁽¹⁾	单位增益带宽	C _{LOAD} = 5pF		4		MHz
P _M ⁽¹⁾	相位裕度	$C_{LOAD} = 5pF$		76		0
S _R ⁽¹⁾	压摆率	C _{LOAD} = 5pF		2. 2		V/us
t _{WAKUP} (1)	关闭到唤醒时 间,0.1%	输入 V _{DDA} /2, C _{LOAD} = 30pF, R _{LOAD} = 4kΩ			1. 1	us
R _{LOAD}	阻性负载		10			kΩ
C_{LOAD}	容性负载				30	pF
V _{OHSAT} (2)	高饱和输出电压	$R_{LOAD} = 10k \Omega$	V _{DDA} -300	V _{DDA} -180		\/
V OHSAT	同地州制山电压 	$R_{LOAD} = 20k \Omega$	V _{DDA} -60	V _{DDA} -35		mV
V _{OLSAT} (2)	低饱和输出电压	$R_{LOAD} = 10k \Omega$		4	15	\/
V OLSAT	10000111111111111111111111111111111111	$R_{LOAD} = 20k \Omega$		4	15	mV
	NSEL = 0110 模式同相	Gain = 32, PB10 = GND	-3		3	%
		Gain = 32, V _{INP} < (V _{DDA} /31)	-1		1	%
PGA	+ 2 75 = 1 75 - 2 0 - 2	Gain = 8, V _{INP} < (V _{DDA} /7)	-1		1	%
Gain ⁽¹⁾	内部同相 PGA	Gain = 16, V _{INP} < (V _{DDA} /15)	-1		1	%
		Gain = 32, V _{INP} < (V _{DDA} /31)	-1		1	%
Delta R	电阻绝对值变化		-15		15	%
eN ⁽¹⁾	空	$R_{LOAD} = 10k \Omega@1kHz$		100		nV/
en	等效输入噪声	$R_{LOAD} = 20k \Omega@1KHz$		80		sqrt(Hz)

注: 1. 设计参数保证;

2. 负载电流会限制饱和输出电压。

3. 3. 20 CMP 特性

表 3-33-1 CMP 电压比较器特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	供电电压		1.8	3. 3	3. 6	٧
V_{CM}	共模输入电压		0		V_{DDA}	٧
V _{IOFFSET}	输入失调电压			±2.8	±10	mV
DDOPAMP	消耗电流			43		uA
V_{hys}	迟滞电压			±15		mV
	比较器延时,					
t _D ⁽¹⁾	V _{INP} 从(V _{INN} -100mV)	$0 \leqslant V_{INN} \leqslant V_{DDA}$		16	40	ns
	到(V _{INN} +100mV)变化					

注: 1. 设计参数保证。

表 3-33-2 CMP 电压比较器特性(低功耗模式)

符号	参数	条件	最小值	典型值	最大值	单位

V_{DDA}	供电电压		1.8	3. 3	3. 6	٧
V _{CM}	共模输入电压		0		V_{DDA}	V
V _{IOFFSET}	输入失调电压			±4		mV
I DDOPAMP	消耗电流			3. 5		uA
t _D ⁽¹⁾	比较器延时, V _{INP} 从(V _{INN} -100mV) 到(V _{INN} +100mV)变化	O≤ V _{INN} ≤V _{DDA}		251	400	ns

注: 1. 设计参数保证。

第4章 封装及订货信息

芯片封装

订货型号	封装形式	塑体尺寸	引脚节距	封装说明	出货料盘	
CH32L103C8T6	LQFP48	7*7mm	0. 5mm	标准 LQFP48 贴片	托盘	
CH32L103K8U6	QFN32	4*4mm	0. 4mm	四边无引线 32 脚	托盘	
CH32L103G8R6	QSOP28	3. 9*9. 9mm	0. 635mm	1/4 尺寸 28 脚贴片	塑管	
CH32L103F8U6	QFN20	3*3mm	0. 4mm	四边无引线 20 脚	卷带	
CH32L103F8P6	TSS0P20	4. 4*6. 5mm	0. 65mm	薄小型的 20 脚贴片	塑管、卷带	

说明: 1. QFP/QFN 一般默认为托盘。

2. 托盘尺寸: 托盘大小一般为统一尺寸, 322. 6*135. 9*7. 62, 不同封装类型限位孔尺寸有区别, 塑管不同封装厂有区别, 具体与厂家确认。

说明:尺寸标注的单位是 mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图 4-1 LQFP48 封装

图 4-2 QFN32 封装

图 4-3 QSOP28 封装

图 4-4 QFN20 封装

系列产品命名规则

产品系列

F = 基于 ARM 内核,通用 MCU

V = 基于青稞 RISC-V 内核, 通用 MCU

L = 基于青稞 RISC-V 内核, 低功耗 MCU

X = 基于青稞 RISC-V 内核, 专用架构或特殊 10

CH32

产品类型

举例:

0 = 青稞 V2/V4 内核, 主频@48M

1 = M3/青稞 V3/V4 内核, 主频@72M

2 = M3/青稞 V4 非浮点内核, 主频@144M

3 = 青稞 V4F 浮点内核, 主频@144M

产品子系列

03 = 通用型

05 = 连接型(USB 高速、SDIO、双 CAN)

07 = 互联型(USB 高速、双 CAN、以太网、SDIO、FSMC)

08 = 无线型(蓝牙 BLE5. X、CAN、USB、以太网)

35 = 连接型(USB、USB PD)

引脚数目

J = 8 脚 A = 16 脚 F = 20 脚

G = 28 脚 K = 32 脚 T = 36 脚

C = 48 脚 R = 64 脚 W = 68 脚

V = 100 脚 Z = 144 脚

闪存存储容量

4 = 16K 闪存存储器

6 = 32K 闪存存储器

7 = 48K 闪存存储器

8 = 64K 闪存存储器

B = 128K 闪存存储器

C = 256K 闪存存储器

封装

T = LQFP U = QFN R = QSOP P = TSSOP M = SOP

温度范围

6 = -40°C~85°C (工业级)

7 = -40℃~105℃ (汽车2级)

3 = -40℃~125℃ (汽车1级)

D = -40°C~150°C (汽车0级)