$\Xi(2370)$

$$I(J^P) = \frac{1}{2}(?^?)$$
 Status: **

J, P need confirmation.

OMITTED FROM SUMMARY TABLE

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
≈ 2370 OUR ESTIMA	TE					
2356 ± 10		JENKINS	83	MPS	_	$K^- p \rightarrow K^+ MM$
2370	50	HASSALL	81	HBC	-0	$K^- p 6.5 \; \text{GeV}/c$
2373± 8	94	AMIRZADEH	80	HBC	-0	$K^- p 8.25 \text{ GeV}/c$
2392 ± 27		DIBIANCA	75	DBC		$\Xi 2\pi$

Ξ(2370) WIDTH

VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	CHG	COMMENT
80	50	HASSALL	81	HBC	-0	K^-p 6.5 GeV/ c
$80\!\pm\!25$	94	AMIRZADEH	80	HBC	-0	$K^- p 8.25 \text{ GeV}/c$
75 ± 69		DIBIANCA	75	DBC		$\equiv 2\pi$

Ξ (2370) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\Lambda \overline{K} \pi$ Includes $\Gamma_4 + \Gamma_6$.	seen
Γ_2	$\Sigma \overline{K} \pi$ Includes $\Gamma_5 + \Gamma_6$.	seen
Γ_3	Ω^- K	
Γ_4	$\Omega^- K$ $\Lambda \overline{K}^*(892)$	
Γ_5	$\Sigma \overline{K}^*$ (892)	
Γ_6	$\Sigma(1385)\overline{K}$	

≡(2370) BRANCHING RATIOS

$\Gamma(\Lambda \overline{K}\pi)/\Gamma_{total}$			Γ ₁ /Γ
VALUE	DOCUMENT ID	TECN CHG	COMMENT
seen	AMIRZADEH 80	HBC −0	$K^- p \ 8.25 \ { m GeV}/c$
$\Gamma(oldsymbol{\Sigma}\overline{K}\pi)/\Gamma_{total}$			Γ_2/Γ
VALUE	DOCUMENT ID	TECN CHG	COMMENT
seen	AMIRZADEH 80	HBC −0	$K^- p 8.25 \text{ GeV}/c$
$\left[\Gamma(\Lambda \overline{K}\pi) + \Gamma(\Sigma \overline{K}\pi)\right]$	/Γ _{total}		$(\Gamma_1 + \Gamma_2)/\Gamma$
VALUE EV	<u>DOCUMENT ID</u>	<u>TECN</u> <u>CHG</u>	<u>COMMENT</u>
seen 5	60 HASSALL 8:	L HBC −0	K^-p 6.5 GeV/ c

$\Gamma(\Omega^- K)/\Gamma_{\text{total}}$					Γ_3/Γ
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.09 ± 0.04	$^{ m 1}$ KINSON	80	HBC	_	K^-p 8.25 GeV/ c
$\Gamma(\Lambda \overline{K}^*(892)) + \Gamma(\Sigma \overline{K}^*$	(892))]/Γ _{total}				$(\Gamma_4 + \Gamma_5)/\Gamma$
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.22 ± 0.13	$^{ m 1}$ KINSON	80	HBC	_	K^-p 8.25 GeV/ c
$\Gamma(\Sigma(1385)\overline{K})/\Gamma_{\text{total}}$					Γ ₆ /Γ
VALUE	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT
0.12±0.08	¹ KINSON	80	НВС	_	K [−] p 8.25 GeV/c

Ξ(2370) FOOTNOTES

≡(2370) REFERENCES

JENKINS	83	PRL 51 951	C.M. Jenkins et al.	(FSU, BRAN, LBL+)
HASSALL	81	NP B189 397	J.K. Hassall <i>et al.</i>	(CAVE, MSU)
AMIRZADEH	80	PL 90B 324	J. Amirzadeh <i>et al.</i>	(BIRM, CÈRN, GLAS+) I
KINSON	80	Toronto Conf. 263	J.B. Kinson <i>et al.</i>	(BIRM, CERN, GLAS+) I
DIBIANCA	75	NP B98 137	F.A. Dibianca, R.J. Endorf	(CMU)

Created: 5/30/2017 17:20

 $^{^{1}\,\}mbox{KINSON}$ 80 is a reanalysis of AMIRZADEH 80 with 50% more events.