WS 2019/20 8. Januar 2020

Übungsblatt 10

Abgabe der schriftlichen Lösungen bis 22. Januar 2020

Aufgabe 43 mündlich

Eine NP-Sprache $A \subseteq \Sigma^*$ hat selfcomputable witnesses $(A \in \mathsf{SCW})$, falls eine (k,p)-balancierte Sprache $B \in \mathsf{P}$, ein Alphabet Γ der Größe k und ein polynomiell zeitbeschränkter Orakeltransducer M existieren mit

- $A = \exists B, \text{ d.h. } \forall x \in \Sigma^* : x \in A \Leftrightarrow \exists y \in \Gamma^{p(|x|)} : x \# y \in B,$
- für jede Eingabe $x \in A$ erzeugt M^A eine Ausgabe $M^A(x)$ der Länge p(|x|) mit $x \# M^A(x) \in B$.

Wir sagen auch, M^A berechnet eine witness-Funktion für A (bzgl. B). Zeigen Sie:

- (a) Sat \in SCW.
- (b) Jede NP-vollständige Sprache besitzt selfcomputable witnesses.
- (c) Jede Sprache $A \in \mathsf{PSK} \cap \mathsf{SCW}$ hat eine witness-Funktion in PSK , d.h. es existieren ein Polynom p, eine p-balancierte Sprache $B \in \mathsf{P}$ und eine Folge c_n von booleschen Schaltkreisen polynomieller Größe mit p(n) Ausgängen, so dass $A = \exists B$ ist und für alle n und alle $x \in A$ der Länge n gilt: $x \# c_n(bin(x)) \in B$.
- (d) Für jede Sprache $A = \exists B \in \mathsf{PSK} \cap \mathsf{SCW}$ ist die Korrektheit eines Schaltkreises c für eine geg. Eingabelänge n in co-NP entscheidbar, d.h. $\{0^n \# bin(c) \mid \forall x \in A \cap \Sigma^n : x \# c(bin(x)) \in B\} \in \mathsf{co-NP}$.
- (e) $NP(NP(PSK \cap SCW)) = NP(NP)$,
- (f) SAT ist nicht in PSK enthalten, außer wenn PH auf Σ_2^p kollabiert.

Aufgabe 44 mündlich

Eine Offline-Orakelturingmaschine (kurz Offline-OTM) ist eine Offline-TM mit einem zusätzlichen write-only Orakelband. Der Platzverbrauch einer Offline-OTM M ist genauso definiert wie bei einer Offline-TM, wobei das Orakelband unberücksichtigt bleibt. Sei $L = L(M^A)$ die von einer s(n)-platzbeschränkten Offline-OTM M mit Orakel A erkannte Sprache.

- Wir sagen, M stellt ihre Fragen deterministisch und schreiben $L = L(M^{det(A)})$, wenn jede Teilrechnung von M beginnend mit der Ausgabe des jeweils ersten Zeichens auf dem Orakelband bis zum Übergang in den Fragezustand deterministisch ist.
- Falls M auch unter Berücksichtigung des Orakelbandes s(n)-platzbeschränkt ist, nennen wir M streng s(n)-platzbeschränkt und schreiben $L = L(M^{strong(A)})$.

Entsprechend erhalten wir die relativierten Klassen $\mathsf{DSPACE}^A(s(n)),$ $\mathsf{DSPACE}^{det(A)}(s(n))$ und $\mathsf{DSPACE}^{strong(A)}(s(n)),$ sowie $\mathsf{NSPACE}^A(s(n)),$ $\mathsf{NSPACE}^{det(A)}(s(n))$ und $\mathsf{NSPACE}^{strong(A)}(s(n)).$ Zeigen Sie:

- (a) $\mathsf{DSPACE}^{strong(A)}(s(n)) \subseteq \mathsf{DSPACE}^{det(A)}(s(n)) = \mathsf{DSPACE}^A(s(n)).$
- (b) $\mathsf{NSPACE}^{strong(A)}(s(n)) \subseteq \mathsf{NSPACE}^{det(A)}(s(n)) \subseteq \mathsf{NSPACE}^A(s(n))$.
- (c) Für jedes Orakel A gilt $L^A \subseteq NL^{det(A)} \subseteq P^A$ und $NL^A \subseteq NP^A$.
- (d) Es gibt ein Orakel A mit $NL^A \not\subset P^A$.
- (e) Es gibt ein Orakel B mit $NL^B \nsubseteq DSPACE^B(\log^2(n))$.

Aufgabe 45 10 Punkte

Für $L\subseteq \Sigma^*$ sei $perm(L)=\{y\in \Sigma^*\mid y \text{ ist Permutation eines }x\in L\}.$ Zeigen Sie:

- (a) Für jedes L existiert ein $T_L \in \mathsf{TALLY}$, sodass $perm(L) \leq_m^{log} T_L$.
- (b) Ist P unter *perm* abgeschlossen, so gibt es für jedes $T \in \mathsf{TALLY} \cap \mathsf{NP}$ eine Sprache $B \in \mathsf{P}$, auf die T disjunktiv reduzierbar ist.
- (c) P ist genau dann unter perm abgeschlossen, falls E = NE.

Hinweis: Nutzen Sie Aufgabe 16 und $NP = \exists^p P$.