인공지능의 이해

0. 교수소개

전주대학교 SW융합대학 인공지능학과

- ❖ KAIST(한국과학기술원) 산업공학 박사
- ❖ KAIST(한국과학기술원) 산업공학 석사
- ❖ 고려대학교 산업공학 학사
- 전주대학교 대학혁신지원사업 단장(2022.3-현재)
- 전주대학교 기획처장(2018.10-2020.9)
- 전주대학교 문화융합대학 학장 (2015.2-2017.1)
- 전주대학교 문화산업대학 학장 (2013.2-2015.1)
- 캐나다 토론토대학교 교환교수(2017.9-2018.8)
- 말레이시아 UTM 대학교 교환교수(2012]
- 미국 위스콘신 대학교 교환교수(2000.9-2001.8)
- 전북 디지털진흥원 이사(2010.3-2015.12)
- 전북 정보화위원회 위원(2010.12-)
- 전주문화방송(MBC) 시청자위원회 위원(2007-2012)
- 전주대학교 전통문화콘텐츠X-edu 부단장(2004.7-2009.6)

권수태

주인공 3명 중 하나

□가치결정의 요인

모습에 의해서 결정되는 것이 아니고 그 안에 들어가는 내용물이 무엇이냐에 따라 결정됨

□가치결정의 요인

기업이 가지고 있는 지식의 양과 품질

어떤 지식을 ~ 소유할 것인가 ?

머릿속에 가지고 있는 지식의 양과 품질

어떻게 지식을 축적할 것인가 ?

□지식과 정보 그리고 데이터

데이터가 가공되어 정보가 되고 그 정보가 인과조건을 가질때 지식이 됨

일반화된 지식

모든 사람이 공유하고 있는 지식 인과조건들이 이미 알려져 있는 지식

체화된 지식

자기만의 고유하고 독특한 지식 KnowHow

□지식

무엇을 알고 있는가? 얼마만큼을 모르고 있는가? 현재 알고 있는 지식의 양과 품질?

자기자신을 돌아보는 것 내가 갖고 있는 지식에 대한 반성 자신의 부족한 점을 아는 것 내가 가지고 있는 것을 다른 사람도 갖게 되는 것 공유가 많이 되면 지식의 양이 배가가 됨

공유

지식연결의 효과 지식재생산 낭비제거 지식 재활용

창조

지식활성화

평가

없는 것을 새로 만드는 것 내가 없는 것을 어떻게 만드느냐의 문제 다른 사람이 만들어 놓은 것을 가공

새로운 지식의 창조 새로운 지식의 원천발굴

□지식

JEONJU UNIVERSITY

- □ 수만년전 금이 그어진 뼈조각
- □ 조약돌 계산기
- □ 메소포타미아 숫자
 - ▶ 진흙으로 만든 판자위에 쐐기모양의 문자를 새겨 사용
- □ 이집트 숫자
 - ▶ 파피루스라는 갈대로 만든 종이위에 쓰여짐
 - 1: 막대모양 10: 막대를 구부려 표기
 - 100 : 측량에 쓰이는 새끼줄 모양
 - 1000 : 연꽃모양의 숫자
 - 10000 : 파피루스의 싹으로 표시
 - 100000 : 올챙이 모양의 그림
 - 1000000 : 사람이 놀라 손을 번쩍 든 모양
 - 10000000 : 신을 뜻한다고 하며 무한대의 뜻.

- □ 중국의 숫자
- □ 아라비아의 숫자
 - 사람의 손가락이 열개였다는 이유로 10진법 사용
- □ 팔괘의 이진법
 - 음양사상이 유럽에 전해져 라이프니쯔에 의해 2진법 발명
- □ 주판의 기원
 - 기원전 3000년 경 그리스와 중국에서 각각 따로 발명
 - 로마시대의 애버커스라는 돌주판
 - 5진법을 근거로
 - 현재의 주판은 일본에서 고안한 것

- □ 1620년 윌리엄 오트레드의 계산자
- □ 파스칼의 덧셈기 (파스칼린)
 - 세금징수원인 아버지를 위해 고안 (19세)
 - 톱니바퀴, 연동바퀴, 축으로 가감계산이 가능
 - 수도 계량기, 택시요금 계산기등으로 응용
- □ 라이프니츠의 가감승제 계산기
 - 파스칼의 계산기를 개량하여 1673년 (27세) 발명
 - 10진법 사용

□ 찰스 배비지의 분석엔진

- ▶ 현대적인 컴퓨터의 모습을 머릿속에 그렸던 최초의 인물
 - 마를린의 자동인형이 계기
 - 오늘날의 컴퓨터인 해석기관 구상(메모리, 중앙처리장치, 소프트웨어)
 - 물위를 걸어다니는 신발, 종모양의 잠수기, 높은 기둥을 이용한 소포배달, 등대의 명멸등, 검안경등을 개발
 - 기술력 부족으로 정부지원의 미분기 실패
 - 타인의 시기로 정부예산 소비 소문
 - 인정을 받지 못하고 80세의 나이로 운명
 - 20년후 해석기관의 일부분인 천공카드와 카드 판독기가 실제 업무에 이용
 - 18세에 배비지의 구상에 매료된 어거스터 에이다 (시인 바이런의 딸, 최초 의 프로그래머) 에 의해 아이디어가 알려짐)

□ 허만 흘러리스의 Census Machine

- ▶ 1780년대에 미국 의회를 인구비례로 구성하는 헌법마련
- ▶ 10년마다 인구 조사
- ▶ 1870년 인구조사국의 허만 홀러리스가 철도 검표에서 영감얻고, 조셉 자카드의 자동문직기(무늬를 수놓는 기계)의 아이디어를 이용
- ▶ 10년동안 연구하여 천공카드와 태뷸레이터(천공카드를 읽어 통계산출) 개 발 성공
- 태불레이팅 머신 컴퍼니 창업 (아이비엠의 모태)
- ▶ 아이비엠의 창업자인 토마스 왓슨은 이회사의 영업사원

□ 앨런 튜런

- ▶ 울트라 프로젝트
 - 1939년 영국의 극비작전
 - 독일의 암호해독이 임무

The "Bombe" (1940)

- 폴란드 첩보부에서 에그니마를 만드는데 참여한 기술자 레빈스키를 탈출시킴
- 독일에서는 게하임슈라이버 장치로 대체
- ▶ 릴레이를 사용하는 암호기계 만듬
- ▶ 1943년 후에 마크1이라 명명된 암호해독기(콜러서스) 만듬
- ▶ 인공지능에 대한 연구 (튜링테스트)
- ▶ 무인도 게임 (복잡한 장치를 이용하여 수수께끼를 풀지 못하면 독약이 입속으로) 으로 사망

□ 콘라드 추제

- 배비지의 학생
- 1941년경 독일의 무인로켓에 관여
- Z1, Z2, 개발후 Z3를 계획했으나 전쟁이 곧 끝난다는 생각으로 지원되지 않음

z3구조1

편칭테이프 리더기

메모리

(Memory

64words)

(Control Unit)

(Floating Point

Processor)

(레지스터)

클록 주파수(Clock Frequencer 5,33Hertz)

출력

• 1944년 베를린 폭격으로 잿더미

□ 최초의 전자식 범용 디지털 컴퓨터

- 미국 메릴랜드주 에버딘의 육군 탄도연구소에서 탄도표 필요
- 존 모클리(과학자)와 프레스터 에커트(엔지니어)가 1946년 진공관을 이용한 에니악 개발
- 18,000개의 진공관, 1천 5백개의 릴레이, 6천개의 스위치, 30톤, 시간당 174kw 사용, 탄도계산에 30초, 10진수 사용

□ 폰노이만의 에드박

- 헝가리출신의 수학자
- 6살에 고전 그리스어, 8살에 미적분, 놀라운 기억력의 소유자
- 맨허턴 프로젝트(원자폭탄 개발계획)와 에니악 제작에 고문으로 참여
- 프로그램 내장방식을 제안
- 이 방식은 현재의 컴퓨터의 기본원리
- 2진수 사용

- □ 2진수의 연구는 전기가 중요한 역할
 - ▶ 기원전 6세기경 그리스아테네의 귀부인들의 호박(electron) 목걸이에 먼지 가 묻음
 - 이탈리아의 해부학자 갈바니가 전선을 흐르는 전류를 처음 발견 (쇠창살에 있는 개구리다리의 경련)
 - ▶ 볼타와 에디슨을 거쳐 찬란한 문명을 이룸
- □ 조지 부울이 2진수를 현실적인 원리로 발전
- □ 1930년 배너버 부시가 미분 해석기 만듬
 - ▶ 해석기관을 모델로 한것으로 톱니바퀴를 준비하는데 어려움
- □ 클로드 새넌(대학원생)이 부울대수 이용 생각
- □ 그레이스 머리 호퍼 (버그, 서브루틴 개념 고안)

- □ 1948년 벨연구소에서 트랜지스터 개발 발표
 - 전기를 반만 통하는 반도체 (교류처럼 양쪽방향으로 흐르는 전류를 한쪽 방향으로만 으르는 직류로 바꿀수 있음)
 - ▶ 월터 브래튼, 존바딘, 쇼클리
- □ 1959년 킬비 직접회로 발견
 - 트랜지스터의 납땜을 해결하기 위해
 - 영국의 듀머에게서 착상을 얻어 트랜지스터와 저항, 콘덴서등을 하나의 회로로
 - ▶ 비싼 가격으로 개발지연
 - 케네디의 아폴로 우주계획으로 위기에서 벗어나 전자 산업의 중심으로
- □ 쇼클리가 수은지연관이라는 기억장치 개발 (1940년)
- □ 1960년대 인텔(쇼클리의 제자들이 세움)에서 메모리칩을 처음 개발

- □ MIT 철도클럽: 헤커(농담을 퍼트리는 사람)의 탄생
- □ 스탠포드대학의 홈브루 컴퓨터 클럽
- □ 로버츠가 인텔의 칩하나로 컴퓨터를 만들수 있다고 생각
 - ▶ 포플러 일렉트로닉스 잡지에 기사를 실으면서 인기 (1975년)
 - ▶ 스티븐 워즈니악, 홈브루 모임의 도움으로 애플을 만듬
 - ▶ 모토롤러의 6502 마이크로 프로세서 사용
 - ▶ 워즈의 친구인 스티브 잡스와 마이크 마큘라의 도움으로 애플사 창립
 - ▶ 1977년 애플2 발표
- □ 1981년 아이비엠에서 아콘이라는 개인용 컴퓨터 발표

□ 시스템의 정의

- > 여러개의 구성요소가 모여서
- ▶ 상호작용을 함으로써
- ▶ 주어진 목적을 달성하고자 하는
- ▶ 구성요소들의 집합체
- ▶ 범위가 중요

'페이턴트 모터카' 메르세데스-벤츠의 창업자 중 한 명인 칼 벤츠가 제작한 세계 최초의 자동차 1886년 1월29일 특허를 등록

□ 컴퓨터시스템의 정의

- ▶ 유용한 정보를 산출하기위해,
- ▶ 컴퓨터의 본질적인 입력, 출력, 산술활동을 수행하도록 해 주는,
- > 여러 구성요소로 이루어진 유기적인 전자장치

에니악(ENIAC) 세계 최초의 컴퓨터 1946년 미국 에커트와모클리 발명 18,000여 개의 전자관과 7,000여 개의 저항기 무게 약 30톤

□ 컴퓨터시스템의 정의

- □ 메모리단위
 - > 비트 (bit: binary digit)
 - ✔ 정보를 기억하는 최소의 단위로 0과 1로 구성
 - ➤ 바이트 (byte)
 - ✔ 메모리를 표현하는 가장 작은 단위
 - ✓ 1 byte = 8 bit
 - ➤ 킬로바이트 (KB): 1,000 바이트
 - ➤ 메가바이트 (MB): 1,000,000 바이트
 - ➤ 기가바이트 (GB): 1,000,000,000 바이트
 - ➤ 테라바이트 (TB): 1,000,000,000,000 바이트

- □ 중앙처리장치: CPU(Central Processing Unit)
 - ➤ IBM 컴퓨터
 - ✓ intel 에서 공급 (80계열)
 - √ 8088 (XT-eXtra Technology)
 - √ 80286 (AT-Advandced Technology) : MS-Dos
 - **✓** 80386, 80486
 - ✔ 80586 (Pentium) : 윈도우 95
 - ▶ 매킨토시 컴퓨터
 - √ 68계열 (68000, 68020, 68030, 68040)
 - ✔ PowerPC (모토롤라, IBM, Apple 공동개발)

□입력장치

- □출력장치
 - ▶ 모니터
 - ✓ CRT(cathode ray tube) 모니터
 - CRT 모니터의 전자총에서 스크린의 형광 도트(dot)로 전자가 발사
 - 몇 개의 형광 도트는 화소(pixel)를 형성, 화소는 전자와 충돌하여 빛을 발함
 - ✔ 평판 디스플레이(flat-panel display)
 - 대부분의 평판 모니터는 액정 디스플레이 (liquid crystal display: LCD) 기술을 사용

□ 출력장치

- ▶ 비디오콘트롤러
 - ✔ CPU와 모니터 사이에 위치한 장치
 - ✔ 모니터의 이미지 품질을 결정
 - ✔ 모니터로 보내어지는 정보를 저장하는 비디오 전용 메모리와 기타 회로들을 포함

- □ 출력장치
 - ▶ 사운드카드
 - ✔ 끊임없이 변하는 전류를 자석으로 전달하여 스피커 떨림판을 앞뒤로 움직임
 - ✔ 떨림판(공명판)이 고속으로 움직이면 공기가 진동하여 소리가 만들어짐

- □출력장치
 - ▶ 프린터
 - ✔ 충격식 : 핀이나 해머를 사용하여 잉크가 묻은 리본을 종이에 눌러 이미지를 생성
 - ✔ 비충격식 : 종이에 잉크를 묻히기 위해 다른 방법 또는 다른 재료를 사용

□ 출력장치

▶ 프린터

■출력장치

▶ 프린터

- □ 처리속도에 영향을 미치는 요인
 - ➤ 레지스터(register)
 - ▶ 메모리와 컴퓨팅 능력
 - ▶ 시스템 클럭
 - ➤ 버스(bus)
 - ➤ 캐시(cache) 메모리

□ 저장장치

- ▶ 자기 저장: 디스켓, 하드디스크, 플로피디스크, 자기테이프
- ▶ 광학 저장 : CD(Compact Disk), DVD(Digital Video Disk)

포맷된 디스크의 구성 요소

- 디스크 한 면은 동심원인 트랙(Track)들의 집합
- 한 트랙은 섹터(sector)들의 집합
- 섹터들의 묶음인 클러스터(cluster)

□ 저장장치

마스터 부트 레코드 (master boot record)

화일 할당 테이블 (file allocation table)

루트 폴더 (root folder)

데이타 영역 (data area)

□ 운영체제

- ▶ 시스템의 하드웨어를 제어하고, 사용자 및 응용 소프트웨어와 상호 작용하는 시스템 소프트웨어. 즉, 중앙제어프로그램
- ▶ 기능
 - ✓ 상호작용 할 수 있는 여러 화면상의 요소들을 보여주는 기능 제공(이러한 요소들의 집합: 사용자 인터페이스)
 - ✔ 워드프로세서나 스프레드시트와 같은 프로그램을 사용하기 위해 그들을 주기 억장치에 적재하는 기능을 제공
 - ✓ 프로그램이 CPU, RAM, 키보드, 마우스, 프린터, 하드웨어, 그리고 다른 소프 트웨어와 함께 원할히 동작되도록 조정 기능을 제공
 - ✔ 디스크에 정보를 저장하고 검색하는 방식을 관리

□ 운영체제 종류

- ▶ 유닉스: 1970년대, 벨 연구소에서 처음 개발
- ▶ 도스: 1980년대-1990년대 초, 명령어 기반 인터페이스
- ▶ 매킨토시: 1980년대 중반에 최초로 그래픽 사용자 인터페이스를 제공
- ▶ 윈도우즈: 1980년대 중반 마이크로소프트에서 발표한 최초의 GUI
- ▶ OS/2 Warp : 1982년 IBM과 MS가 Intel 마이크로프로세서를 위해 공동으로 개발
- ▶ 윈도우즈 NT: 1993년-2001년
- ▶ 윈도우즈 9x : 1995년, 2000년(윈도우즈 ME)
- ▶ 리눅스: 1990년대, UNIX의 새 버전
- ▶ 윈도우즈 2000 : 2000년, 윈도우즈 98과 윈도우즈 NT의 특징들을 합친 제품
- ▶ 윈도우 XP: 2001년
- ▶ 윈도우즈 .Net : 서버 기반의 윈도우즈 운영체제 제품군 중 가장 최신의 제품
- ▶ 내장형 운영체제 : 전자 장치의 회로에 내장됨

1. 서론_창의성

창의성의 정의

●구성요소

-유창성: 문제상황에서 가능한 많은 아이디어나 반응을 산출하는 능력

-융통성 : 다양한 해결책을 찾아내는 능력

-독창성: 새롭고 독특한 아이디어를 찾아내는 능력

-정교성: 아이디어에 유용한 사항을 추가하여 보다 가치로운 것으로 발전시키는 능력

● 상상과 창의력의 차이 : 목적의 유무

-창의력은 공상에서 그칠 것을 목적을 두어 가치를 부여 하는 힘

한양대 교육공학과 유영만교수의 '상상력 키우기 십계명'

- Watch 눈여겨봐라
- Ouestion 마음으로 물어라
- Tolerate 안보여도 참아라
- Visualize 이미지로 그려라
- Reverse 뒤집고 엎어라
- Respect 차이를 존중해라
- Embrace 모순을 끌어안아라
- Combine 이것저것 엮어라
- Challenge 좌우지간 저질러라
- Play 신나게 놀아라

http://blog.naver.com/songohsu/10033087437

□ 상상력과 창의력

You just bought a new refrigerator.

- 1. How do you put a giraffe into your refrigerator?
- 2. How do you put an elephant into your refrigerator?
- 3. The Lion King is having an animal convention, and he wants all the animals to be there. Which animal definitely will NOT be there?
- 4. You have to cross a river. The river is shallow enough to walk across, but this river is known to have a lot of crocodiles in it or near it.

 How can you cross the river safely?

고정관념의 타파

- ●콜롬버스의 달걀
- ●토끼와 거북이
- ●반도사관에서 탈피

물음 느낌표

인터러뱅:

남들이 보지 못하는 것을 들여다 볼 줄 아는 사람만이 쓸수 있는 창조마크

- 1962년 마틴스펙터(미국광고 에이전시 사장)
- 의구심과 놀라움이 공존하는 대단히 역설적인 부호
- 두가지 감각이 창조하는 경이로운 작용을 표현한 기가막힌 발상의 전환을 가르킴
- 놀라움의 창조마크
 - 무엇이든 물음표를 던져라
 - 물음표를 해결하는 느낌표를 찾아라
- ◆ 수없이 많은 질문과 실패가 모이고 모여…물음표의 빈곳을 채우다보면 어느덧 물음표가 느낌표로 변해 있을 것

블루오션전략

- 김위찬 교수와 르네마보안교수(<u>프랑스</u> <u>유럽경영대학원</u> 인 시아드)
- 1990년대 중반 <u>가치혁신</u>(value innovation) 이론과 함께 제창한 기업 경영전략론
- 블루오션이란 수많은 경쟁자들로 우글거리는 레드오션과 상반되는 개념으로, 경쟁자들이 없는 무경쟁시장을 의미
- 기업이 더 많은 가치를 창출하기 위해서는 경쟁시장이 아 니라, 경쟁이 없는 새로운 시장을 창출해야 한다는 내용
- 즉, 블루오션전략은 산업혁명 이래로 기업들이 끊임없이 거듭해 온 경쟁의 원리에서 벗어나, 발상의 전환을 통해 고 객이 모르던 전혀 새로운 시장을 창출해야 한다는 전략

블루오션 성공사례

- ●만도위니아의 김치냉장고
- ●태양의 서커스단
- ●클럽메드
- ●문화콘텐츠산업

태양의 서커스

JEONJU

반지의 제왕

소설→영상→게임→캐릭터상품→테마파크(관광지)'로 이어지면서 뉴질랜드의 〈프로도경제〉(Frodo Economy)를 창출 국가브랜드 광고효과 4,800만불(NZD) 추정, 관광객 연평균 5.6% 증가, 영상산업 164% 성장, 약 2만명 고용창출 효과

다보스포럼 매년 스위스의 다보스에서 개최되는 '세계경제포럼' 연차총회의 통칭

1971년 스위스 제네바 대학 클라우스 슈바프교수가 설립

1981년부터 다보스에서 진행

저명한 기업인 · 경제학자 · 저널리스트 · 정치인 등이 모여 세계 경제를 주제로 토론 및 연구

독립적 비영리재단 2015년 국제기구로 인정받음

다보스포럼

2017년 소통과 책임의 리더십

2016년 4차 산업혁명의 이해

기술혁명이 우리 삶과 미래 세대에게 어떤 변화를 가져올지에 대해 논의

이전 다보스 포럼 주제들이 글로벌 저성장, 지역간 갈등, 불평등, 지속 가능성 등 경제위기'관리'에 초점을 맞춘 반면, 4차 산업혁명은 경제 위기 상황을 타개할 수 있는'대안'으로 제시되었으며, 이로 인한 사회구조의 혁명적 변화에 주목함

인간과 기계의 잠재력을 획기적으로 향상시키는 '사이버-물리 시스템'으로 정의

인공지능과 기계학습, 로봇공학, 나노기술, 3D 프린팅, 유전학, 생명공학기술과 같이 이전에는 서로 단절되어 있던 분야들이 경계를 넘어 분야간 융복합을 통해 발전해나가는 '기술혁신'의 패러다임

산업혁명의 인문사회학적 의미

4차 산업혁명의 핵심 기술

센서 · 임베디드 **SW**, 사물인터넷, 인공지능 · 빅데이터 등

실생활 데이터 수집 ↓ 디지털 정보로 전환

포착된 디지털 정보를 무선통신으로 전달

집계된 대량정보를 실시간으로 분석

출처: 한국개발연구원(2016)

정보통신기술(ICT)이 제조업 등 다양한 산업들과 결합하며 지금까지는 볼수없던 새로운 형태의 제품과 서비스, 비즈니스를 만들어내는 것

- ➤ 속도(Velocity): 현재 획기적인 기술 진보는 인류가 전혀 경험하지 못한 속도로 빠르게 진화되고 있음
- ➤ 범위(Scope): 각국 전 산업 분야에서 파괴적 기술(Disruptive Technology)에 의해 대대적으로 재편이 예상
- ➤ 시스템의 영향(System Impact): 이러한 기술 혁신은 생산, 관리, 지배구조 등을 포함한 전체 시스템의 큰 변화가 예상

특징: 초연결성, 초지능성, 예측가능성

핵심 기술들을 ICT뿐만 아니라 의료, 금융, 제조업, 에너지, 물류, 자동차 등 다양한 분야에 융합하여 활용하는 것이 4차 산업혁명

▶ 금융 : 핀테크

▶ 의료: 디지털 헬스, 바이오 공학

▶ 에너지:스마트 그리드

▶ 물류・교통망: 철도・해운 스마트 시스템, 스마트 시티, 드론

▶ 제조업 : 스마트 제조설비

➤ 자동차: 자율주행차

4차 산업혁명은'초연결성(Hyper-Connected)'과'초지능화(Hyper Intelligent'의 특성을 가지고 있어 모든 것이 상호 연결되고 지능화된 사회로 변화될 전망

슈밥의 핵심내용

- ▶ 미래는 변화를 거부하는 사람과 포용하는 자로 나뉠 것
- ▶ 긍정적 대응 중요, 열린 자세로 4차 산업혁명을 포용하라, 두려워한다면 패배자로 전락할 것
- ▶ 자본에서 재능이 중요한 시대로 변화, 생각, 소프트웨어, 아이디어가 경쟁력이 되는 사회
- ▶ 협력의 자세 필요, 폐쇄적 구조에서 탈피, 광범위한 협업이 성공의 열쇠
- ▶ 혁신의 기회가 충분할 때 새로운 일자리 창출 가능
- ▶ 기술이 발전할 수록 인간만이 할 수 있는 고유영역이 더욱 커질 것
- ▶ 직업에 대한 태도와 의식의 변화 필요
- ▶ 개별적 지식이 아닌 맥락적 이해 능력 중요, 융합적 포괄적 이해능력이 성공의 전제조건
- ▶ 4차 산업혁명의 힘은 창의성, 창의력을 펼칠수 있는 환경 필요
- ▶ 향후 민첩하게 대처하는 책임감 있는 리더십, 방향성 제시, 유연함, 균형감
- ▶ 국가 경쟁력 강화, 건강하고 풍요로운 삶의 기회

4차 산업혁명 시대에 요구되는 역량 교육

- ▶ 지식보다는 지혜를 갖도록 교육
 - ✓ 지식은 언제든지 검색가능하고 유효기간이 짧으며 인공지능의 능력을 인간이 따라할 수 없음
 - ✓ 창의력과 관련 있는 인지능력, 문제해결능력 중요
 - ✓ 신체능력, 기술적 능력 중요성 감소
- ▶ 직업훈련보다 직업을 갖기 전의 교육이 더욱 중요
- ▶ 자신들이 직접 프로젝트를 통해 무언가를 직접 실행해보고 그 경험을 통해 문제해결 능력을 길러가는 것
- ▶ 융합교육
 - ✓ 단일 ICT 교육보다 융합교육 필요
 - ✓ 소프트웨어 소양 갖춰야 함

□디지털기술 인공지능 혁신공유대학 사업

6년간(2021~2026년) 국가 수준의 신기술분야 핵심인재 10만 명 양성

인공자능, 빅데이터, 차세대 반도체, 미래자동차, 바이오헬스, 실감미디어, 자능형로봇, 에너지신산업

인공지능혁신공유대학사업단 대학별 역할분담 및 차별화

□디지털 신기술 인공지능 혁신공유대학 사업

교육 프로그램 관련 공유 협력 체계

□디지털기술 인공지능 혁신공유대학 사업

□전주대학교 인공지능학과

타대학/타전공

