Do not write in the boxes immediately below

DO HOU	WIICC III OI	ic boxes	mmcarao	ory berett	•					
problem	1	2	3	4	5	6	7	8	9	total
points										

Calculus 3, Final Exam April 24, 2014

Instructor's name	Your name

Show all your work in the space provided. Use the back page if necessary. No credit for unjustified answers. You may use a calculator to check your answers but must do all calculations by hand. Formula sheet is allowed.

- (1) (10 points) Suppose that the temperature measured in degrees Celsius at each point of a metal plate is given by $T(x,y) = e^x \cos y + e^y \cos x$, where x and y are given in meters.
 - a) (4 points) In what direction does the temperature increase most rapidly at the point (0,0)?

$$\nabla T(xy) = (e^{x}\cos y - e^{y}\sin x), e(-\sin y) + e^{y}\cos x)$$

 $\nabla T(0,0) = (1,1)$
 $||\nabla T(0,0)|| = \sqrt{2}$

The direction in which the temperature increases most rapiolity at (0,0) is.

 $\frac{\nabla T(0,0)}{\|\nabla T(0,0)\|} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ ANSWER: _

b) (3 points) What is the rate of increase in that direction?

ANSWER: _

c) (3 points) In what direction does the temperature decrease most rapidly at the point (0,0)?

The direction in which the tompenessive obscreates most capidly is the opposite of the gradient

 $-\frac{\nabla T(0,0)}{\|\nabla T(0,0)\|} = -\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$

(2) (10 points) Find the critical points of the function

$$f(x,y) = 2xy^2 - 8y^2 - x^2$$

and classify them as local maxima, minima or saddle points.

$$\Phi f_x(x,y) = 2y^2 - 2x = 0$$

(a)
$$f_{y}(x,y) = 4xy - 16y = 4(x - 4)y = 0$$
 => $x = 4$ or $y = 0$ in (a) $y = 0$ in (b) $y = 0$ in (c) $y = 0$ in (d) $y = 0$ in (e) $y = 0$ in (f) $y = 0$

critical points: (0,0), (4,2), (4,-2).

2nd derivative test:

$$D(0,0) = 32 > 0 \rightarrow \text{max or min.}$$

 $f_{xx}(0,0) = -2 < 0 = 0 (0,0) \text{ is } \frac{\log a}{\max}.$

$$D(4,2) = -32+32-16.4 = -64.0 \rightarrow saddle$$

 $D(4,-2) = -3.2+32-16.4 = -64.0 \rightarrow saddle$

ANSWER: .

(3) (12 points) Use Lagrange multipliers to find the critical points of the restriction of

$$f(x, y, z) = x + 2y + 3z - 12$$

to the surface given by $x^2 + 2y^2 + 3z^2 = 1$.

By Lagrange multipliers, PJ(x, 4, 21=) Pg(x, 4, 2)

$$\Rightarrow \begin{cases} 1 = 2\lambda X \\ 2 = 4\lambda 4 \end{cases} \Rightarrow \lambda X = \lambda 4 = \lambda 2 = \frac{1}{2}$$

$$3 = 6\lambda 2$$

Since
$$\lambda \neq 0 \Rightarrow x = \emptyset = \emptyset$$
 (*)

Plug (*) into the constraint,
$$\chi^2+2g^2+3z^2=6\chi^2=1 \Rightarrow \chi=\pm \frac{1}{16}$$
. Hence the critical points are $(\frac{1}{16},\frac{1}{16},\frac{1}{16})$ and $(-\frac{1}{16},-\frac{1}{16},-\frac{1}{16})$.

土(赤,赤,赤

(4) (10 points) Calculate the volume below the graph of $z = 12 + x^2 - y^2$ and above the filled-in triangle in the xy-plane which has vertices (0,0,0), (1,0,0), and (1,2,0).

$$= \int_{0}^{1} \int_{0}^{2x} \int_{0}^{1z+x-y} dz dy dx$$

$$= \int_{0}^{1} \int_{0}^{2x} (1z+x^{2}-y^{2}) dy dx$$

$$= \int_{0}^{1} (1zy+x^{2}y-\frac{1}{3}y^{2}) dx$$

$$= \int_{0}^{1} (24x+2x^{3}-\frac{8}{3}x^{3}) dx$$

$$= \int_{0}^{1} (24x-\frac{2}{3}x^{3}) dx$$

$$= 12x^{2}-\frac{1}{6}x^{4} \Big|_{0}^{1}$$

71

(5) (10 points) A solid occupies the region which is in the 1-st octant (where $x \ge 0$, $y \ge 0$, $z \ge 0$), inside the half-cone given by $z = \sqrt{x^2 + y^2}$, and between the spheres of radius 3 and 5 centered at the origin. Suppose that x, y, and z are measured in meters, and that the density function is $\delta(x, y, z) = \frac{1}{x^2 + y^2 + z^2} \text{ kg/m}^3$. Calculate the mass of

ANSWER:
$$(1-\frac{\sqrt{2}}{2})$$

use Green's theorem

(6) (12 points) Given $\vec{F}(x,y) = (\sin(x)e^{x^2} - 8y^3, 8x^3 - y^4 \ln(1+y^2))$, find the line integral of \vec{F} along C, if C is the oriented curve that starts at (-1,0) goes along the semi-circle of radius 1 centered at the origin with $y \ge 0$, and then goes back along the x-axis to (-1,0).

 $\int_{C} \vec{F} \cdot d\vec{r} = -\iint_{C} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$

R ... region bounded by C

 $\frac{\partial Q}{\partial x} = 24x^2$, $\frac{\partial P}{\partial y} = -24y^2$

- polar coordinates:

So $\frac{\partial x}{\partial x} - \frac{\partial P}{\partial y} = 24x^2 + 24y^2 = 24x^2$

Cociented clockwise = negative orientation, so

05r 5 1 72A20

SF.dr = - SS 242 dA = - SS 242 rdrd8

= - T. 24 = 6 = - 6T ANSWER: - 6T

(7) (12 points) Given $\vec{F}(x,y) = (1 + ye^x + y, x + e^x)$, using the Fundamental Theorem of Line Integrals, find the line integral of \vec{F} along C, if C is the oriented curve that consists of the line segment from (0,0) to (13,1), followed by the line segment from (13,1) to (1,1).

$$P(x.d) = 1+de^{x}+d$$
, $Q(x,y) = x+e^{x}$
 $Qx = 1+e^{x} = Pd$. $\Rightarrow F(x,y)$ is conservative.
If $\vec{F} = \vec{\nabla} f$, then $f_{x} = 1+de^{x}+d \Rightarrow f = \int (1+de^{x}+d)dx = x+de^{x}+xd+d(d)$
Now $x+e^{x}=f_{d}=e^{x}+x+d(d)\Rightarrow d'(d)=0\Rightarrow d(d)=c$.
So one potential of $\vec{F}(x,y)$ is $f(x,y)=x+de^{x}+xd$
By Fundamental Theorem of Line Integrals,
 $\int_{C} \vec{F} \cdot dr = f(1,1)-f(0,0)=(1+e^{x}+1)-(0+0+0)=e+2$.

ANSWER: 6+2

- (8) (12 points) Let C be the curve that is the intersection of the plane given by z = x with the cylinder given by $x^2 + y^2 = 4$, oriented clockwise as viewed from above.
 - a) (5 points) Parametrize the surface of the plane z = x that is bounded by the curve C.

parameterization:

$$\vec{r}(u,v) = (u \cos v, u \sin v, u \cos v)$$

b) (7 points) Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F}(x,y,z) = (2z,x,3)$.

$$\vec{\beta} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3\vec{i} & 3\vec{j} & 3\vec{k} \\ 2z \times 3 \end{vmatrix} = \vec{i}(0) - \vec{j}(-2) + \vec{k}(1) = (0, -2, 1)$$

$$\vec{r}_{u}(u,v) = (\cos v, \sin v, \cos v)$$
 $\vec{r}_{v}(u,v) = (-u\sin v, u\cos v, -u\sin v)$

$$\vec{r}_u \times \vec{r}_v = \begin{vmatrix} \vec{i} \\ \cos \vec{v} & \sin \vec{v} & \cos \vec{v} \end{vmatrix} = \vec{i} (-u) - \vec{j} (0) + \vec{k} (u) = (-u, 0, u)$$

M oriented such that normal has negative of component of choose (u, 0, -u) in integral

ANSWER: _____

$$\iint_{M} (\vec{\partial} \times \vec{F}) \cdot \vec{n} \, dS = \iint_{D} (\vec{\partial} \times \vec{F} (\vec{F}(u,v))) \cdot (\vec{r}_{v} \times \vec{r}_{u}) \, du \, dv$$

$$= \iint_{0}^{2\pi} (0, \Box 2, 1) \cdot (u, 0, -u) \, du \, dv = - \iint_{0}^{2\pi} u \, du \, dv = - \iint_{0}^{2\pi} |u|^{2} \, dv$$

(9) (12 points) Evaluate the flux integral
$$\iint_S \vec{F} \cdot \vec{n} \, dS$$
 where
$$\vec{F} = (z^2 + xy^2, yx^2, y + z)$$

and S is the surface given by $z = x^2 + y^2$ that is above the disk of radius 1 in the xy-plane centered at the origin. The surface is oriented by the upward normal

One $\vec{r}_u = (\cos v, \sin v, 2u)$, $\vec{r}_v = (-u\sin v, u\cos v, 0)$ method: $\vec{r}_u = (\cos v, \sin v, 2u)$, $\vec{r}_v = (-u\sin v, u\cos v, 0)$ $\vec{r}_u \times \vec{r}_v = \begin{vmatrix} i & j & k \\ -\cos v & \sin v & 2u \\ -u\sin v & u\cos v & 0 \end{vmatrix}$ Since $u \ge 0$, $\vec{r}_u \times \vec{r}_v = (-2u^2\cos v, -2u^2\sin v, u)$ $\vec{r}_u \times \vec{r}_v = (-2u^2\cos v,$ Paramotrize S as F(u, v) = (uasv, ushv, u2), uE[0,1], v ∈ [0,2π]

 $=\int_{0}^{2\pi}\int_{0}^{\pi}\left(u^{4}+u^{3}\cos v\sin^{2}v,u^{3}\sin v\cos^{2}v,u\sin v+u^{2}\right)\cdot\left(-2u^{2}\cos v,-2u^{2}\sin v,u\right)du\,dv$ $= \int_{0}^{2\pi} \int_{0}^{1} \left(-2 u^{6} \cos v - 2 u^{5} \sin^{2} v \cos^{2} v - 2 u^{5} \sin^{2} v \cos^{2} v + u^{2} \sin v + u^{3}\right) du dv$ $= \int_{0}^{2\pi} \int_{0}^{1} \left(-2u^{6} \cos v^{2} - 4u^{5} \sin^{2} v \cos^{2} v + u^{2} \sinh v + u^{3}\right) du dv$ $= \int_{0}^{2\pi} \left(-\frac{2}{7} u^{7} \cos v - \frac{2}{5} u^{6} \sin^{2} v \cos^{2} v + \frac{1}{5} u^{3} \sin v + \frac{1}{4} u^{4} \Big|_{u=0}^{u=1} \right) dv$

 $= \int_{0}^{2\pi} \left(-\frac{2}{7} \cos v - \frac{2}{3} \sin^{2} v \cos^{2} v + \frac{1}{3} \sin v + 4 \right) dv$ $= \int_{0}^{2\pi} \left(-\frac{2}{7} \cos v - \frac{1}{12} (1 - \cos 4v) + \frac{1}{3} \sin v + \frac{1}{4} \right) dv$

 $= -\frac{2}{7} \sin v + \frac{1}{48} \sin 4v - \frac{1}{3} \cos v + \frac{1}{6} v \Big|_{0}^{2\pi}$ $=\frac{\pi}{2}$

(9) (12 points) Evaluate the flux integral $\iint \vec{F} \cdot \vec{n} \, dS$ where

$$\vec{F} = \left(z^2 + xy^2, yx^2, y + z\right)$$

and S is the surface given by $z = x^2 + y^2$ that is above the disk of radius 1 in the xy-plane centered at the origin. The surface is oriented by the upward normal

Let M be the closed surface formed by S and the disk S'= {(x. 4.1) | x + 4 = 1} with downward orientation By divergence theorem. - Ilan F. rds = IIIn (++x+1) dV = \int_0 \int_0 \int_1 (r2+1) rd\dadrd0 = \int_0 \int_0 \tag{(Hr2)(+r2)} drd0 = $\int_{0}^{2\pi} \int_{0}^{1} (r-r^{5}) dr d\theta = \int_{0}^{2\pi} \frac{r^{2}}{2} - \frac{r^{6}}{6} \Big|_{r=0}^{1} d\theta = \int_{0}^{2\pi} \frac{1}{3} d\theta = \frac{2\pi}{3}$ S' can be parametrized us Flu, vi= (nosv, vshv, 1), velo, i, velo, i, velo, i) $\vec{r}_{n} = (\cos v, \sin v, 0)$ $\Rightarrow \vec{r}_{u} \times \vec{r}_{v} = (0, 0, u)$ upward Po = (-21 ANV, 21 FOSV. 0) Mattiply by -1 11s' F. nds = 12 [F. (nx F.) dudu = 12 [-u(ushv+1) dudu $= \int_{0}^{2\pi} - \frac{u^{3}}{3} s M v - \frac{u^{3}}{2} \Big|_{u=0}^{2\pi} dv = \int_{0}^{2\pi} (-\frac{1}{3} s M v - \frac{1}{2}) dv = \frac{1}{3} cos v - \frac{1}{2} v \Big|_{0}^{2\pi} = -\pi.$ Then $\iint_{S} \vec{F} \cdot \vec{n} \, dS = \iint_{SM} \vec{F} \cdot \vec{n} \, dS - \iint_{S'} \vec{F} \cdot \vec{n} \, dS = -\frac{37}{2} - (-\pi) = \frac{3}{2}$