MATH 8510, Abstract Algebra I

Fall 2016

Exercises 3-2

Due date Thu 08 Sep 4:00PM

Exercise 1 (2.3.18–19 +5 ϵ). Let G be a group, and let $g \in G$.

(a) Prove that there exists a unique group homomorphism $f_q \colon \mathbb{Z} \to G$ such that $f_q(1) = g$.

Proof. Define

$$f_g: \mathbb{Z} \to G$$

 $n \mapsto q^n$

Then f_g is a homomorphism since $\forall m, n \in \mathbb{Z}, f_g(m+n) = g^{m+n} = g^m g^n =$ $f_g(m)f_g(n)$ and satisfies $f_g(1) = g$.

So there exists a group homomorphism $f_q: \mathbb{Z} \to G$ such that $f_q(1) = g$.

Next we show it is unique.

Assume there exists another homomGorphism h_q differing from f_q such that $h_g(1) = g$.

- (a) If n > 0, $h_g(n) = h_g(\sum_{i=1}^n 1) = \prod_{i=1}^n h_g(1) = \prod_{i=1}^n g = g^n$ since f_g is homomorphism.
- (b) If n < 0, then -n > 0 and $h_q(n) = h_q(-(-n)) = (h_q(-n))^{-1} = (g^{-n})^{-1} = (g^{-n})^{-1}$
- (c) If n = 0, then $h_g(0) = h_g(n n) = h_g(n)h_g(-n) = g^ng^{-n} = g^{n-n} = g^0$. So $h_q(n) = g^n = f_q(n), \forall n \in \mathbb{Z}.$

Thus, $f_g = h_g$, which is contradicted by the assumption.

Hence, such group homomorphism is unique.

(b) Prove that $Im(f_q) = \langle g \rangle$.

Proof.

 $Im(f_g) = \{g^n | n \in \mathbb{Z}\} \subset G.$ So $g^n \in G, \forall n \in \mathbb{Z}.$

Thus, $\langle g \rangle = \{ g^n \in G | n \in \mathbb{Z} \} = \{ g^n | n \in \mathbb{Z} \} = Im(f_g).$

(c) Prove that f_g is a monomorphism if and only if $|g| = \infty$.

Proof.

- (a) Assume f_g is a monomorphism, then f_g is 1-1 since f_g is homomorphism. Then $\infty = |\mathbb{Z}| = |Im(f_g)| = |\langle g \rangle| = |g|$. So $|g| = \infty$.
- (b) Assume $|g| = \infty$.

Suppose f_q is not a homomorphism, then f_q is not 1-1.

So \exists different $m, n(m > n) \in \mathbb{Z}$ such that $f_g(m) = g^m = g^n = f_g(n)$.

Then $q^{m-n} = e_G$.

So $|g| = |\langle g \rangle| \le m - n < \infty$ since $0 < m - n < \infty$.

It is a contradion since $|g| = \infty$ by assumption.

So f_g is a homomorphism.

- (d) Assume that $|g| = n < \infty$.
 - (1) Prove that $Ker(f_g) = n\mathbb{Z} := \{nm \in \mathbb{Z} \mid m \in \mathbb{Z}\}.$

Proof. $Ker(f_g)=m\in Z|f_g(m)=g^m=e_G.$ Since |g|=n, $g^n=e_G$ and $g^{mn}=(g^n)^m=(e_G)^m=e_G, \forall m\in\mathbb{Z}.$

Then $mn \in Ker(f_q), \forall m \in \mathbb{Z}.$

Moreover, for k = 1, 2, ...n - 1, $g^k \neq e_G$. Otherwise, it is contradicted by |g| = n. So $g^{mk} \neq e_G, \forall m \in \mathbb{Z}$ and $m \neq 0$.

Thus, $Ker(f_q) = n\mathbb{Z}$.

(2) Prove that there is a unique group monomorphism $\phi_q \colon \mathbb{Z}/n\mathbb{Z} \to G$ such that $\phi_q(\overline{1}) = g$.

Proof.

Define

$$\phi_g: \mathbb{Z}/n\mathbb{Z} \to G$$
$$\bar{m} \mapsto g^m$$

Then $\phi_q(\bar{1}) = g^1 = g$.

Let $m, k \in \mathbb{Z}$ and $0 \le m \le k \le n-1$, and $\phi(\bar{m}) = g^m = g^k = f(\bar{k})$.

Then $g^{k-m} = e_G$.

So k - m = 0 since $0 \le k - m \le n - 1$.

Thus, k = m.

So $\bar{m} = \bar{k}$.

Hence, ϕ_g is 1-1 and so it is a group monomorphism.

Suppose there exists another group monomorphism $h_q \colon \mathbb{Z}/n\mathbb{Z} \to G$ such that $h_q(\bar{1}) = g$.

Then when $1 < k \le n-1, h_g(\bar{k}) = h_g(\sum_{i=1}^k \bar{1}) = \prod_{i=1}^k h_g(1) = g^k$ since h_g is a monomorphism.

Besides, $h_q(\bar{0}) = h_q(\bar{n}) = (h_q(1))^n = g^n = e_G = \phi_q$.

So $\phi_g(\bar{k}) = h_g(\bar{k})$ for all $0 \le k \le n - 1$.

Therefore, $\phi_q = h_q$.

We conclude that such a group monomorphism is unique.

- (3) Prove that $\operatorname{Im}(\phi_q) = \langle g \rangle$.
- (4) We say that a diagram of group homomorphisms

"commutes" when $\beta \circ \alpha = \alpha'$. Let $\pi \colon \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be the canonical epimorphism, and prove that the following diagram commutes.

Exercise 2. In your free time, read the statements of the exercises from Section 2.3.