APM 2013

The Advanced Process Modeling Forum

5 - 6 June 2013, New York

Optimising compression train design for flexible operation

Alfredo Ramos – Head of CCS & Power Business

Authors

Mario Calado, Elton Dias, Javier Rodríguez,

Alfredo Ramos, Costas Pantelides

Overview

Overview

Model development

gCCS Compression-Liquefacion

Component models

Main specifications

- Detailed compressor modelling
 - know-how & expertise supplied by Rolls-Royce
- Different types of performance map

Performance maps

- Performance map based on flow/head and flow/efficiency curves
- Design point corresponds to the maximum efficiency
- Compressor has a flow operating range
 - **Surge margin**: distance from minimum flow
- Choke margin: distance from maximum flow
- Both need to be controlled in order to maintain operability

Performance maps

 $\psi = H_p / v^2$

1D maps

- Efficiency/flow curve
- Head/Flow curve
- Uses affinity laws to extrapolate for different speeds

2D maps

- Same curves as 1D maps
- One curve for each speed
- Interpolates between the curves to determine operation for different speeds

Dimensionless maps

- Curve based on dimensionless flow (ϕ) and head (ψ)
- Contains same information as 2D maps

Compressor design

Design heuristics

With the diameter, calculate efficiency penalty (eta_d)

Calculate design eta

Calculate design psi

 Using the design point and the normalised map, establish performance map

Performance vs Design mode

Design

- Inlet conditions
- Speed
- Design discharge pressure

Performance

- Inlet conditions
- Speed
- Design parameters
- Performance maps (1D or 2D)

Design

- Outlet conditions
- Power requirement
- Design parameters
- Performance maps

Performance

- Outlet conditions
- Power requirement

Overview

Model development

Model verification

IEAGHG Case A0

Model verification

Ref: "International Energy Agency Greenhouse Gas" (IEA GHG) report (August, 2010)

Compressor	Discharge temperature (°C)			Discharge pressure (bar)			
	Report	gCCS	Deviation (%)	Report	gCCS	Deviation (%)	
K100 ₁	83.6	83.7	0.05	3.65	3.64	0.3	
K100 ₂	45.7	45.7	0.1	5.00	4.98	0.4	
K101 ₁	69.1	70.1	1.5	10.5	10.4	1.1	
K101 ₂	68.3	68.5	0.4	18.8	18.5	1.4	
K102	69.1	69.5	0.6	34.0	33.3	1.9	
K103	90.1	88.4	1.9	70.0	69.9	0.2	
K104	79.2	79.4	0.3	111.2	110.7	0.4	

- Deviation between simulation results and data is lower than 2%.
- Good accuracy from all the compression system models.
- Accuracy condition needed for optimisation is satisfied.

Overview

Compressor train – control strategies

IEAGHG Case B0

Overview

Compressor train design

Design methodology

For a given train configuration,

- First, design the compressor for a specified discharge pressure, where the inlet conditions come from upstream equipment.
- Then, run a simulation in performance mode introducing the diameter and design point calculated in the previous design.
- The user can skip the first step by using design/performance mode by giving the design conditions while operating at off-design.

Compressor train design - conventional

Design methodology

Concept

Focus on optimising the "first half" of the train (before dehydration)

Problem description (Based on Case A0 from the IEA GHG report)

Objective: Minimize total cost

- CAPEX (Peters & Timmerhaus)
 - Compressors
 - Coolers
 - Electric Drive
 - Instrumentation and control
 - Project
 - Spare parts

OPEX

- Electricity
- Cooling water
- Maintenance
- Interest

Degrees of freedom

- Number of compressor sections
- Pressure ratio of each compressor

Constraints

 Final discharge pressure specification

Superstructure

- Binary "flip variables" Z_k
 - Z_k determines whether compressor k is included or bypassed
 - e.g. $Z_5 = 1 \rightarrow 5$ compressors in train
- Number of coolers = Number of compressors
- By-passed compressors and coolers have zero cost

Total cost, CAPEX and OPEX

Operating cost, efficiency

New formulation

Overview

Design flexibility

OPEX stability

- Compressor efficiency greatly decreases when operating in "off-design" conditions
- Major increment of OPEX
- Important if the compression train operates in "off-design" conditions for a significant amount of time

Safety limits

- Discharge temperature limit determined by materials of construction
- Electric drive can only operate within a certain range of speeds
 - range may not be sufficient to maintain desired discharge pressure
- Above issues are already known at the design stage
 - → Avoid relying on control system or safety procedures for resolving them
- Design system to operate over set of anticipated scenarios
 - Scenario probabilities taken into account in determining expected value of OPEX in objective function

Scenarios

*U.S. Energy Information Administration (EIA)

Total cost = CAPEX_{100%} + $0.5*OPEX_{100%}$ + $0.5*OPEX_{75%}$

- Power plant load changes during the year
 - Electricity demand fluctuations
 - Optimising design for only 100% load might not be the best approach
- Two scenarios (100% load and 75% load) with equal probability were taken into account in the multi-period design optimisation

Formulation

Decision variables

- Number of compressors
- Pressure ratio of each individual compressor
- Speed of drive in "off-design" scenario

Safety limits (for both scenarios)

- Maximum discharge temperature
- Minimum surge margin
- Final discharge pressure specification

	Previous train	New train	Δ (%)
Load	100%	75%	-
N _{compressor}	5	5	-
Nu _{100%} (Hz)	80	80	-
Nu _{75%} (Hz)	76.6	76.2	-0.5%
C _{cap} (M\$/yr)	0.85	0.86	0.5%
Cope (M\$/yr)	1.78	1.80	1.3%
C _{tot} (M\$/yr)	2.63	2.66	1.0%

	Pressure ratio				
Compressor	1	2	3	4	5
Previous train	3.33	1.88	1.56	1.53	1.87
New train	4.05	1.89	1.61	1.33	1.75

	Surge (%)				
Compressor	1	2	3	4	5
Previous traip	8.1	8.3	8.4	8.3	8.4
New train	10	10.3	10.7	11.4	12

- New train design is 1% more expensive than previous design
 - due to the surge lower limit constraint (10% minimum)
- HOWEVER, previous train design doesn't satisfy all operational constraints for the "off-design" scenario
- The train work balance changed, compressing more in the first 3 compressor due to the efficiency penalty in the "off-design" scenario
- Significant increase in process flexibility with a small cost penalty

Full train optimisation

Results – IEA GHG Case AO

9 compressor sections

Conclusions

Summary

- Validated process model of compressor sections/systems
 - Performance maps (1D, 2D and dimensionless)
 - Design heuristics
- Compression train simulation
 - Model verification (steady state)
 - Control system implementation
- Rigorous multi-period mixed-integer optimisation
 - Design the train considering a set of anticipated scenarios
 - Minimises total cost (CAPEX + OPEX)
 - Ensures all operational constraints are met under all scenarios
- Techno-economical decisions based on a model-based design tool
- Applicable to any range of conditions and gases (CO₂, LNG, etc.)

Acknowledgements

CCS System Modelling Tool-kit Project

This work was carried out within the context of a £3m project led by PSE and commissioned and co-funded by the Energy Technologies Institute (ETI) and project participants E.ON, EDF, Rolls-Royce, Petrofac (via its subsidiary CO2DeepStore), PSE and E4tech.

Thank you!

API/2013

The Advanced Process Modeling Forum