Confusion Matrix for NOAA, CCI, GCM and Coral Core predictability of Coral Bleaching

Vanessa Hui Fen Neo

2021-12-22

	•	١
`		,

		Table 1: 0	Confusi	ion Matrix	for predic	ctability	of bleachi	ng using	Degree E	Heating W	leek value	s from C	CI data		
Reef	Balanced	Accuracy	F1	Sensitivit	Specificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.90	0.81	0.22	1.00	0.80	0.12	1.00	0.90	0.85	0.95	0.18	0.32	0.03	0.22	0.03
_Island															
Cocos	0.84	0.92	0.67	0.75	0.94	0.60	0.97	0.84	0.68	1.00	0.62	0.62	0.08	0.14	0.11
(Keel-															
ing)															
Is-															
lands															
Houtman	0.88	0.76	0.19	1.00	0.76	0.11	1.00	0.88	0.83	0.93	0.15	0.28	0.03	0.26	0.03
Abrol-															
_hos															
Ningaloo	0.60	0.79	0.17	0.38	0.82	0.11	0.96	0.60	0.41	0.78	0.09	0.11	0.02	0.19	0.06
Reef															
Scott	0.80	0.85	0.52	0.75	0.86	0.40	0.96	0.80	0.73	0.88	0.44	0.47	0.08	0.21	0.11
Reef															

•	. •
_	\sim

	,	Table 2: Co	onfusio	n Matrix fo	or predict	ability o	f bleachin	g using I	Degree He	ating We	ek values	from NO	AA data		
Reef	Balanced	Accuracy	F1	Sensitivit	Specificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.82	0.66	0.15	1.00	0.65	0.08	1.00	0.82	0.76	0.88	0.10	0.23	0.03	0.38	0.03
_Island															
Cocos	0.62	0.91	0.40	0.25	1.00	1.00	0.90	0.62	0.46	0.79	0.37	0.48	0.03	0.03	0.12
(Keel-															
ing)															
Is-															
lands															
Houtmai	0.85	0.72	0.18	1.00	0.71	0.10	1.00	0.85	0.80	0.91	0.13	0.27	0.03	0.31	0.03
Abrol-															
hos															
Ningaloo	0.65	0.77	0.22	0.50	0.79	0.14	0.96	0.65	0.46	0.83	0.13	0.17	0.03	0.23	0.06
Reef															
Scott	0.70	0.67	0.36	0.75	0.65	0.24	0.95	0.70	0.62	0.78	0.21	0.27	0.09	0.40	0.12
$_{ m Reef}$															

١	_

		Table 3: C	Confusio	on Matrix i	for predict	ability of	of bleachir	ig using l	Degree H	eating We	eek values	from GO	CM data		
Reef	Balancec	lAccuracy	F1	Sensitivit	Specificity	Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.44	0.86	NaN	0.00	0.89	0.00	0.97	0.44	0.41	0.48	-0.05	-0.06	0.00	0.11	0.03
$_{ m Island}$															
Cocos	0.50	0.89	NaN	0.00	1.00	NaN	0.89	0.50	0.50	0.50	0.00	0.00	0.00	0.00	0.11
(Keel-															
ing)															
Is-															
lands															
Houtman	0.43	0.84	NaN	0.00	0.86	0.00	0.97	0.43	0.39	0.47	-0.05	-0.07	0.00	0.14	0.03
Abrol-															
_hos															
Ningaloo	0.50	0.94	NaN	0.00	0.99	0.00	0.95	0.50	0.49	0.50	-0.01	-0.02	0.00	0.01	0.05
Reef															
Scott	0.67	0.83	0.37	0.47	0.87	0.31	0.93	0.67	0.59	0.76	0.28	0.29	0.05	0.17	0.11
Reef															

c	۳	7
•	-	,

		Table 4: C	onfusio	on Matrix f	or predict	ability o	of bleachin	g using I	Degree He	eating Mo	onths valu	es from (CCI data		
Reef	Balanced	Accuracy	F1	Sensitivit	Specificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	n <u>Prevalence</u>
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.83	0.67	0.14	1.00	0.66	0.08	1.00	0.83	0.77	0.88	0.10	0.22	0.03	0.36	0.03
Island															
Cocos	0.86	0.75	0.47	1.00	0.72	0.31	1.00	0.86	0.80	0.91	0.36	0.47	0.11	0.36	0.11
(Keel-															
ing)															
Is-															
lands															
Houtman	0.86	0.72	0.17	1.00	0.71	0.09	1.00	0.86	0.80	0.91	0.12	0.25	0.03	0.31	0.03
Abrol-															
hos															
Ningaloc	0.72	0.69	0.21	0.75	0.69	0.12	0.98	0.72	0.47	0.97	0.13	0.21	0.04	0.33	0.06
Reef															
Scott	0.73	0.71	0.36	0.75	0.70	0.24	0.96	0.73	0.65	0.80	0.23	0.30	0.08	0.35	0.11
Reef															

	-	•		
•		•	P	

	Τ	able 5: Co	nfusion	Matrix for	r predictal	oility of	bleaching	using De	egree Hea	ting Mor	ths values	s from No	OAA data	l	
Reef	Balanced	Accuracy	F1	Sensitivit	Specificity	Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.74	0.50	0.11	1.00	0.48	0.06	1.00	0.74	0.68	0.80	0.06	0.17	0.03	0.53	0.03
Island															
Cocos	0.80	0.84	0.55	0.75	0.86	0.43	0.96	0.80	0.64	0.97	0.46	0.49	0.09	0.22	0.12
(Keel-															
ing)															
Is-															
lands															
Houtman	n = 0.90	0.81	0.25	1.00	0.81	0.14	1.00	0.90	0.85	0.95	0.21	0.34	0.03	0.22	0.03
Abrol-															
_hos															
Ningaloo	0.62	0.72	0.18	0.50	0.73	0.11	0.96	0.62	0.33	0.91	0.09	0.13	0.03	0.28	0.06
Reef															
Scott	0.63	0.54	0.29	0.75	0.51	0.18	0.93	0.63	0.55	0.71	0.11	0.17	0.09	0.52	0.12
Reef															

		,	Table 6: Co	onfusio	n Matrix fo	or predicts	ability of	f bleaching	g using I	egree He	ating Mo	nths value	s from G	CM data		
	Reef	Balancec	lAccuracy	F1	Sensitivit	Specificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetectio	nPrevalence
		Accu-					Pred	Pred		CI	CI			Rate	Preva-	
		racy					Value	Value							lence	
	Browse	0.82	0.65	0.13	1.00	0.64	0.07	1.00	0.82	0.76	0.88	0.09	0.21	0.03	0.38	0.03
	$_{ m Island}$															
	Cocos	0.55	0.59	0.21	0.50	0.61	0.13	0.91	0.55	0.36	0.75	0.05	0.07	0.05	0.41	0.11
	(Keel-															
7	ing)															
	Is-															
	$_lands$															
	Houtmar	0.88	0.76	0.18	1.00	0.75	0.10	1.00	0.88	0.82	0.93	0.14	0.27	0.03	0.27	0.03
	Abrol-															
	_hos	0.11														
	Ningaloc	0.41	0.78	NaN	0.00	0.83	0.00	0.94	0.41	0.37	0.46	-0.09	-0.11	0.00	0.16	0.05
	Reef	0.00	0.77	0.44	0.02	0.76	0.20	0.07	0.00	0.72	0.07	0.24	0.40	0.00	0.20	0.11
	Scott	0.80	0.77	0.44	0.83	0.76	0.30	0.97	0.80	0.73	0.87	0.34	0.40	0.09	0.30	0.11
	$_{ m Reef}$															

	Table	7: Confus	ion Ma	trix for pred	dictability	of blea	ching usir	ng Degree	Heating	Months	values froi	n Coral (Core CCI	data	
Reef	Balanced	Accuracy	F1	Sensitivit	pecificity	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	on Detectio	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Cocos	0.5	0.92	NaN	0.0	1.0	NaN	0.92	0.5	0.50	0.5	0.00	0.00	0.00	0.00	0.08
(Keel-															
ing)															
Is-															
lands															
Ningalo	0.7	0.88	0.29	0.5	0.9	0.2	0.97	0.7	0.21	1.0	0.23	0.26	0.02	0.12	0.05
Reef															

,	-	_
`	۷	J

	Table 8	3: Confusio	n Matr	ix for pred	ictability	of bleacl	hing using	g Degree	Heating 1	Months va	alues from	Coral C	ore NOA	A data	
Reef	Balancec	lAccuracy	F1	Sensitivit	Specifici	ty Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetectio	onPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Cocos	0.50	0.92	NaN	0	1.00	NaN	0.92	0.50	0.50	0.50	0.00	0.00	0	0.00	0.08
(Keel-															
ing)															
Is-															
lands															
Ningalo	o 0.49	0.93	NaN	0	0.98	0	0.95	0.49	0.46	0.51	-0.03	-0.03	0	0.02	0.05
Reef															

L		4
г		
-	_	-

				Table 9	e: Degree H	eating Week	Confusion M	Iatrix				
		CCI D	HW			NOAA	DHW			$GCM_{_}$	DHW	
Reef	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC
	Accu-				Accu-				Accu-			
	racy				racy				racy			
Browse	0.90	1.00	0.80	0.90	0.82	1.00	0.65	0.82	0.44	0.00	0.89	0.44
Island												
Cocos	0.84	0.75	0.94	0.84	0.62	0.25	1.00	0.62	0.50	0.00	1.00	0.50
(Keel-												
ing)												
$_{ m Islands}$												
Houtman	0.88	1.00	0.76	0.88	0.85	1.00	0.71	0.85	0.43	0.00	0.86	0.43
Abrol-												
$_{ m hos}$												
Ningaloo	0.60	0.38	0.82	0.60	0.65	0.50	0.79	0.65	0.50	0.00	0.99	0.50
_Reef												
Scott	0.80	0.75	0.86	0.80	0.70	0.75	0.65	0.70	0.67	0.47	0.87	0.67
Reef												

_	_
г	
_	_

					Table 10	: Degree He	eating Mont	h Confusion I	Matrix				
			CCI I	OHM			NOAA	DHM			GCM_{-}	DHM	
	Reef	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC
		Accu-				Accu-				Accu-			
		racy				racy				racy			
	Browse	0.83	1.00	0.66	0.83	0.74	1.00	0.48	0.74	0.82	1.00	0.64	0.82
	Island												
	Cocos	0.86	1.00	0.72	0.86	0.80	0.75	0.86	0.80	0.55	0.50	0.61	0.55
11	(Keel-												
	ing)												
	Islands												
	Houtman	0.86	1.00	0.71	0.86	0.90	1.00	0.81	0.90	0.88	1.00	0.75	0.88
	Abrol-												
	hos												
	Ningaloo	0.72	0.75	0.69	0.72	0.62	0.50	0.73	0.62	0.41	0.00	0.83	0.41
	Reef												
	Scott	0.73	0.75	0.70	0.73	0.63	0.75	0.51	0.63	0.80	0.83	0.76	0.80
	Reef												

L			
г			
	ı	4	

		Table 11:	Degree Heating Me	onth Confusion	Matrix for Cor	al Core		
		CCore CC	I DHM		CCore NOA	AA DHM		
Reef	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC
	Accuracy				Accuracy			
Cocos	0.5	0.0	1.0	0.5	0.50	0	1.00	0.50
(Keeling)								
Islands								
Ningaloo	0.7	0.5	0.9	0.7	0.49	0	0.98	0.49
Reef								