Aualysis 1, Tutonium 5

Konvergent
(an) nEM, E C No. Folge houplexes Zablen luist konvegert gegen a € C YE>O JNEN, YN>N: |an-a|< E odes an mon a in Symbolen: a = live an az $\mathcal{U}_{\varepsilon}(a)$ a_o \dot{a}_1 (= offener Kreis com Radices E run a) Egal we blein & glwallt, fast alle Edy 3 liegen in Uc(a) (alle bis out endlich wele) {2EC | 12-a| < E} ⇒ ∀E>OJNEN, Jn>N: an ∈ UE(a)

|an-a|< E

Aufgabe 2 (Sandwichsatz). Es seien $(a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ konvergente Folgen mit gemeinsamem Grenzwert $x := \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$. Sei $(c_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ eine weitere Folge. Angenommen,

 $\forall n \in \mathbb{N} : a_n \le c_n \le b_n.$

Zeige: $c_n \xrightarrow{n \to \infty} x$.

YE>O JNEN HU>N: |an-x| <€ (*)
YE>O JNEN HU>N: |bn-x| <€ (**)

₹ 2.:

TESO JUEN YNON: /cn-x/-E

Sei $\varepsilon > 0$. Dende (*) auf $\widetilde{\varepsilon} = \frac{\varepsilon}{2}$, run en $N_{\star} \in \mathbb{N}$ mit $\forall n > N_{\star} : |a_n - \times| < \frac{\varepsilon}{2}$ en finden.

Wende (***) auf E_2 an, m N_{**} E_1 N

 $\forall n \ni N_{\forall x \neq x}$: $\left| b_n - a_n \right| < \frac{\xi}{2}$.

Sei $N := \max \left\{ N_{x}, N_{x \neq x} \right\}$.

$$= |C_{n} - a_{n} + a_{n} - x|$$

$$\leq |C_{n} - a_{n}| + |a_{n} - x|$$

$$= |C_{n} - a_{n}| + |a_{n} - x|$$

 $(a_n)_{n\in\mathbb{N}}:\mathbb{N}\longrightarrow\mathbb{R}$

Fruhhon

Es gilt
$$a_n \xrightarrow{n \to \infty} \times \Rightarrow -a_n \xrightarrow{n \to \infty} - \times$$

Grenswerkett $\Rightarrow \emptyset \leftarrow \text{die}$

landlike

 $\exists n \forall n \xrightarrow{n \to \infty} \exists y$
 $\exists n \forall n \xrightarrow{n \to \infty} \exists y$
 $\exists n \forall n \xrightarrow{n \to \infty} \exists y$
 $\exists n \forall n \xrightarrow{n \to \infty} \exists y$
 $\exists n \Rightarrow 2$
 $\exists n \Rightarrow 2$

Si
$$n > N$$
. Pour git:

 $|c_n - x| = |(c_n - a_n) + (a_n - x)|$
 $= |c_n - a_n| + |a_n - x|$
 $= |b_n -$

$$R^{N} = \{Fuhhouen N \rightarrow R \}$$

$$= \{Folgen (a_n)_{n \in N} \text{ wit } \}$$
Wester $a_n \in R$

Aufgabe 3. Aus der GOP des Wintersemesters 2012/2013: (a) Definiere für $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ und $b\in\mathbb{C}$ die Aussage

$$a_n \stackrel{\kappa \to \infty}{=}$$

für $n \in \mathbb{N}$ und b = 1. Beweise hierfür die Aussage $a_n \xrightarrow{n \to \infty} b$ direkt mit der Definition aus (a).

 $a_n = \frac{\sqrt{n-i}}{\sqrt{n-i}}$

(a)
$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n > \mathbb{N} : |a_n - b| < \varepsilon$$

$$NR: \left| \left| \alpha_n - b \right| = \left| \frac{\left| \sqrt{n-i} \right|}{\sqrt{n+i}} - 1 \right| =$$

$$= \left| \frac{\sqrt{n-i} - (\sqrt{n+i})}{\sqrt{n+i}} \right| = \left| \frac{-2i}{\sqrt{n+i}} \right|$$

$$\frac{1}{\sqrt{n^2+1^2}} = \frac{1}{\sqrt{n+1}} = \sqrt{n}$$

$$\frac{1}{\sqrt{n^2+1^2}} = \frac{1}{\sqrt{n+1}} = \sqrt{n}$$

$$\frac{1}{\sqrt{n^2+1^2}} = \frac{1}{\sqrt{n+1}} = \sqrt{n}$$

L: (x) YNOO INEN YNON: | [m+il> M

Beweis von (4): Se- U>0. Setze (ZB.) N=[H2]+1 > H2. Se u>N. Danu gilt: [[n+i]] In > [N] [\mu^2 = M. [](x) Uno tonie de F. - Fut. Bel: VESO JUEN VN>N: |an-6| < E Si E>0. Setze M:= = 70, $\frac{2}{\mu} = \epsilon$ und neude (4) au, $\int_{H=\frac{2}{\varepsilon}>0}$ um en NEN unt

zu finden.

Sei num
$$n > N_0$$
 Dunn gilt:
 $|a_n - b| = \frac{2}{|N_n + i|} < \frac{2}{H} = \frac{2}{\left(\frac{2}{\epsilon}\right)} = \epsilon.$

 $\left|\frac{\ln t}{\ln -i}\right| \xrightarrow{n\to\infty} 1$

llar:

$$\sum_{k=1}^{\infty} b_k = \lim_{n \to \infty} \sum_{k=1}^{n} b_k$$

$$a_n$$

Teilfolge van
$$\left(\sum_{n=1}^{m} \frac{1}{n}\right)_{m \in \mathbb{N}}$$

wave 2.B.

$$\left(1, 1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}, \dots\right)$$
 $m=1$
 $m=2$
 $m=4$

Aufgabe 4. (a) Zeige, dass die Folge $((-1)^n)_{n\in\mathbb{N}}$ divergiert. When we were the constraint of t

m=3 augelesse

Se
$$\alpha \in \mathbb{R}$$
. Argenoumen $(-1)^n \xrightarrow{n \to \infty} \alpha$.
Setze $E = 1$ and nable NEN soclars $\forall n > N$:
 $|(-1)^n - \alpha| < E = 1$

lan-aleE)

Sei N>N. Dann:

$$2 = \left| (-1)^n - (-1)^{n+1} \right| = \left| ((-1)^n - \alpha) + (\alpha - (-1)^{n+1}) \right|$$

des ist ein Widespruch. (2<2 => vs)

(b) Fallentesscheider Talle:
$$x = 1$$
, $|x| > 1$, $|x| < 1$,

 $\leq |(-1)^{n} - \alpha| + |\alpha - (-1)^{n+1}|$

D-≠ ~ € €

Thursaufgabe: Nouvegenk Folgen sind kextrault.

Lunua => (xn) new ist unterdrailet => (xn), div.