RADIACION Y ONDAS GUIADAS 2 de abril de 2008

Nombre:

Apellidos:

1) Un pulso de tensión V_1^+ =20 V incide sobre la discontinuidad de la figura (Z_0 =50 Ω). Las tensiones e intensidades de las ondas reflejada y transmitida valen

- a) $V_1^-=18 \text{ V}$; $I_1^-=360 \text{ mA}$; $V_2^+=2 \text{ V}$; $I_2^+=40 \text{ mA}$
- b) $V_1^-=6$ V; $I_1^-=120$ mA; $V_2^+=14$ V; $I_2^+=140$ mA
- c) $V_1^-=12 \text{ V}$; $I_1^-=-240 \text{ mA}$; $V_2^+=8 \text{ V}$; $I_2^+=80 \text{ mA}$
- d) $V_1^- = 10 \text{ V}$; $I_1^- = -200 \text{ mA}$; $V_2^+ = 10 \text{ V}$; $I_2^+ = 100 \text{ mA}$

2) La línea de transmisión de la figura es ideal. La potencia disipada en la carga P_L y la tensión eficaz en la carga $|V_L|$ valen

- a) $P_L = 0.5 \text{ W y } |V_L| = 4.2 \text{ V}$
- b) $P_L = 48 \text{ dBm y } |V_L| = 5 \text{ V}$
- c) $P_L = 250 \text{ mW y } |V_L| = 10 \text{ V}$
- d) $P_L = 24 \text{ dBm y } |V_L| = 7.9 \text{ V}$

3) El circuito de la figura consiste de un tramo de línea de bajas pérdidas, longitud L=4.41 cm e impedancia característica Z_0 =75 Ω , acabada en un circuito abierto. La línea se excita con un generador de frecuencia variable, tensión en circuito abierto V_g =5 V e impedancia interna R_g =75 Ω . Al aumentar la frecuencia del generador desde continua, se mide un primer mínimo de tensión en la entrada de la línea de valor V_{en} =0.1 V a la frecuencia de 850 MHz. La atenuación (α) de la línea es:

- a) α =8 dB/m.
- b) $\alpha=4$ dB/m.
- c) $\alpha=1$ dB/m.
- d) $\alpha=2$ dB/m.

4) La línea de transmisión de la figura, acabada en un cortocircuito, es una línea de bajas pérdidas. De las siguientes afirmaciones, solamente una es posible. ¿Cuál es?

- a) Impedancia de entrada: Z_{en} =70 Ω
- b) Coeficiente de reflexión en la entrada: ρ_{en}=0.6j
- c) Impedancia de entrada: Z_{en} =40 Ω
- d) Coeficiente de reflexión en la entrada: ρ_{en}=0.8

5) Una carga resistiva $R_L = 200 \Omega$ está conectada a una línea de transmisión sin pérdidas de impedancia característica $Z_0 = 50 \Omega$. El generador, que está adaptado a la línea, tiene una potencia disponible de $P_{dis}=10$ W. La carga se adapta con una línea sin pérdidas de longitud $\lambda/4$, permitividad relativa $\varepsilon_r=1$ e impedancia característica Z_0 . La frecuencia de trabajo es f=100 MHz ¿Cuánto valen la impedancia característica Z_0 , la longitud de la línea de adaptación (L) y la potencia disipada en la carga (P_L)?

- a) $Z_0 = 50 \Omega$, L=300 cm y P_L=5 W
- b) $Z_0'=100 \Omega$, L=150 cm y P_L=10 W
- c) $Z'_0 = 50 \Omega$, L=150 cm y P_L=5 W
- d) $Z_0'=100 \Omega$, L=75 cm y $P_L=10 W$

a) P₁=8 W, P₂=8 W y P₃=8 W b) P₁=8 W, P₂=6 W y P₃=8 W c) P₁=6 W, P₂=8 W y P₃=6 W

d) $P_1=8$ W, $P_2=6$ W y $P_3=6$ W

7) Se quiere determinar la impedancia característica (Z_0) y la permitividad relativa (ε_r) de una línea de transmisión ideal desconocida. Para ello, se conecta la línea incógnita de longitud L= 20 cm a una carga de valor Z_L =75 Ω por un lado, y por el otro, a una línea de impedancia característica Z_0 =75 Ω . El generador, de frecuencia variable, está adaptado a la línea. Se mide el coeficiente de reflexión en el generador en función de la frecuencia, lo que se representa en la figura adjunta. Se puede decir que

- a) $\varepsilon_r = 2.25 \text{ y } Z_0 = 53 \Omega$
- b) $\varepsilon_r = 2.25 \text{ y } Z_0 = 150 \Omega$
- c) $\epsilon_r = 1.5 \text{ y } Z_0 = 150 \Omega$
- d) $\varepsilon_r = 2.0 \text{ y } Z_0 = 75 \Omega$

8) El circuito de la figura une dos líneas de transmisión de impedancia característica Z_0 =50 Ω . Una señal incide sobre el circuito con una potencia P_1^+ =0.9 W. La potencia reflejada (P_1^-) , la potencia transmitida (P_2^+) , y la potencia disipada (P_D) en la resistencia R_1 valen

- a) $P_1 = 0.3 \text{ W}, P_2 = 0.3 \text{ W}, \text{ y } P_D = 0.3 \text{ W}$
- b) P₁=0.1W, P₂+=0.4 W, y P_D=0.4 W
- c) $P_1 = 0.1 \text{ W}, P_2^+ = 0.6 \text{ W}, \text{ y } P_D = 0.2 \text{ W}$
- d) P₁=0.2 W, P₂⁺=0.1 W, y P_D=0.6 W

9) La impedancia de una antena es $Z_A=75+j50~\Omega$ a una frecuencia de f=1 GHz. Se quiere cancelar la parte imaginaria de la impedancia de la antena utilizando un "stub" en serie colocado a una distancia de $L_1=1.2~m$ de la antena. El stub está acabado en un cortocircuito. Todas las líneas son ideales, con $\varepsilon_r=1~y~Z_0=50~\Omega$. La longitud L_2 del "stub" es

- a) $L_2 = 15$ cm
- b) $L_2 = 30 \text{ cm}$
- c) $L_2 = 7.5$ cm
- d) $L_2 = 11.25$ cm

10) Un generador de tensión V_g =4 V y resistencia interna Z_g =50 Ω genera un pulso de duración T_0 =50 μ s. Se conecta a una línea de transmisión ideal, que tiene una impedancia característica Z_0 =50 Ω . La duración del pulso es T_0 <2L/ v_p , siendo L la longitud de la línea y v_p la velocidad de propagación de la señal. La carga tiene una impedancia desconocida. Se mide la tensión a la entrada y se obtiene lo que se representa en la figura. La impedancia incógnita es:

- 1. c
- 2. d
- 3. b
- 4. c 5. d
- 6. b
- 7. a

- 8. b 9. d 10. d