<u>I²C/TWI (Two-Wire Interface) Communication Protocol Notes</u>

Connections:

SDA (Serial Data) - Bi-directional data-transmission bus

SCL (Serial Clock) - Bi-directional clock bus

R₁/R₂ - Pull-up resistors

- Bus drivers of all TWI-compliant devices are open-collector (BJT) or open-drain (CMOS)
 - Buses are pulled high when transistors/FETs are opened, making buses wired-AND (all transistors/FETs need to be open for bus to drive logic high)

Data Transfer:

- Besides during START, REPEATED START, and STOP conditions, data must be stable while *SCL* is high.

START and STOP Conditions:

- START, REPEATED START, and STOP conditions are only issued by a Master.
- Between transmission start and stop, the bus is busy, and no other Master should try to seize control.

Condition Table [SCL = 1 to issue conditions]

Condition	Description	SDA
START	Condition to start transmission.	$1 \rightarrow 0$
REPEATED START	Condition to repeat a transmission without releasing bus	1 → 0
	control	
STOP	Condition to end transmission	0 → 1

Address Packet Format:

- Address Packet consists of 9 bits
 - o First 7 bits indicates slave address, chosen by slave device designer
 - 8th bit is R/W (Read/Write) bit
 - R/W = 1 \rightarrow Read from Slave
 - R/W = $0 \rightarrow$ Write to Slave
 - FIRST 8 bits known as SLA+R/W
 - o 9th bit is ACK (Acknowledge) bit
 - ACK = 1 → Indicates Slave has not acknowledged transmission
 - ACK = 0 → Indicates Slave has acknowledged transmission

Data Packet Format:

- Data Packet consists of 9 bits
 - First 8 bits indicates data to be transmitted/received
 - o 9th bit is ACK (Acknowledge) bit
 - ACK = 1 → Indicates Slave has not acknowledged transmission
 - ACK = 0 → Indicates Slave has acknowledged transmission

Transmission:

- Transmission consists of a START condition, a SLA+R/W, one or more Data Packets and a STOP condition
- A START followed by a STOP condition is illegal

TWI Module:

- SCL (Serial Clock) [PC0] / SDA (Serial Data) [PC1] Interfaces the TWI module with the rest of the MCU system
 - Slew-rate Control Utilized for TWI specification conformity
 - Spike Filter Suppresses spikes shorter than 50 ns
- Bit Rate Generator Unit Controls SCL period when operating in Master Mode
 - Prescaler Controlled by TWPS (Prescaler bits) in TWSR (Status Register)
 - Bit Rate Register (TWBR) Controls SCL period by following formula:

$$SCL\ frequency = \frac{CPU\ Clock\ frequency}{16 + 2(TWBR) * 4^{TWPS}}$$

- Bus Interface Unit Interfaces with buses
 - Address/Data Shift Register (TWDR) Address/Data byte to be sent or received. Contains an extra register for (N)ACK bit.
 - (N)ACK bit Can be manipulated by TWCR (Control Register) when being received and by TWSR (Status Register) when being transmitted
 - START/STOP Control Detects START/STOP conditions. If MCU is in sleep mode, the MCU is awaken and initiates Master Mode.
 - Arbitration detection Continuously monitors transmission for false positives.
 Control unit is informed when an arbitration is lost
- Address Match Unit Checks if received addresses match 7-bit address in TWAR (Address Register)
 - Address Register (TWAR) Contains 7-bit address of MCU and the TWGCE (General Call Enable) bit
 - TWGCE bit If set, will also compare addresses to general address
 - Address Comparator Compares addresses

- Control Unit Monitors the TWI bus and generates responses according to settings in TWCR
 - Control Register (TWCR) Contains settings (explained later)
 - Status Register (TWSR) Contains status flags (explained later)
 - When an event occurs requiring the attention of the application, the Interrupt Flag (TWINT) is asserted. A possible event is:
 - After the TWI has transmitted a START/REPEATED START
 - After the TWI has transmitted a SLA+R/W
 - After the TWI has transmitted an address byte
 - After the TWI has lost arbitration
 - After the TWI has been addressed by own address/general call
 - After the TWI has received a data byte
 - After a STOP/REPEATED START is received when slave
 - When an illegal START or STOP condition occurs

Register Description

TWCR - TWI Control Register

Bit	7	6	5	4	3	2	1	0	_
	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	TWCR
Read/Write	R/W	R/W	R/W	R/W	R	R/W	R	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Bit #	Name	Description	Initial	R/W?
7	TWINT	TWI Interrupt Flag	0	R/W
		Set by hardware when TWI has finished current job and expects		
		application response		
		 If TWIE and the I-bit in SREG are both set, the MCU will 		
		jump to the TWI Interrupt Vector		
		- While set, SCL remains low		
		 Cleared by writing a logic one to it (NOT automatically 		
		when interrupt is completed)		
6	TWEA	TWI Enable Acknowledge Bit	0	R/W
		Controls generation of Acknowledge pulse		
		When written to one, the ACK pulse is generated:		
		- Own slave address is received		
		- General call is received (TWGCE = 1 in TWAR)		
		- A data byte is received		
		When written to zero, the device is virtually disconnected		
5	TWSTA	TWI START Condition Bit	0	R/W
		Controls START condition generation		
		When written to one, this device sends a START condition when		
		the bus is idle. If not idle, the device waits until a STOP condition		
		occurs, then claims the line.		
		MUST BE CLEARED AFTER START CONDITION GENERATED		
4	TWSTO	TWI STOP Condition Bit	0	R/W
		Controls STOP condition generation		
		When written to one, this device sends a STOP condition. This bit		
		is cleared automatically when the STOP condition is generated.		
3	TWWC	TWI Write Collision Flag	0	R/W
		Signals a data write error		_
		Set when attempting to write to TWDR when TWINT is low		
		Cleared when writing to TWDR when TWINT is high		
2	TWEN	TWI Enable Bit	0	R/W
		Controls TWI operation		_
		When written to one, activates TWI interface, which takes control		
		of SCL and SDA pins		
		When written to zero, terminates all TWI transmissions		
1	-	Reserved (Always read at 0)	0	R
0	TWIE	TWI Interrupt Enable	0	R/W
•	' ' ' ' '	Controls TWI Interrupt Capability		'', ''
		When written to one (I-bit = 1 in SREG), enables <i>TWI</i> interrupt		

TWSR - TWI Status Register

Bit	7	6	5	4	3	2	1	0	
	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	TWSR
Read/Write	R	R	R	R	R	R	R/W	R/W	
Initial Value	1	1	1	1	1	0	0	0	

TWSR[7:3] - Status Codes (see next page)

TWSR[1:0] - Prescaler for Bit Rate Generator (see next page)

TSBR - TWI Bit Rate Register

Bit	7	6	5	4	3	2	1	0	
	TWBR7	TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0	TWBR
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

TSBR[7:0] - Bit Rate Division Factor Selection for Bit Rate Generator

TWDR - TWI Data Register

Bit	7	6	5	4	3	2	1	0	_
	TWD7	TWD6	TWD5	TWD4	TWD3	TWD2	TWD1	TWD0	TWDR
Read/Write	R/W	•							
Initial Value	1	1	1	1	1	1	1	1	

TWDR[7:0] — Next byte to be transmitted or last byte that was received. Writable only when TWINT is set by hardware.

TWAR - TWI (Slave) Address Register

Bit	7	6	5	4	3	2	1	0	
	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	TWAR
Read/Write	R/W								
Initial Value	1	1	1	1	1	1	1	0	

TWAR[7:1] - Slave address of device to be master of this device.

TWAR[0] - Enable recognition of general call address (\$00)

- Generates interrupt for address match

Useful Resources

TWPS Bits (TWSR[1:0]) to Prescaler Values

TWPS1	TWPS0	Prescaler Value
0	0	1
0	1	4
1	0	16
1	1	64

Bit Rate Frequency Formula

$$SCL\ frequency = \frac{CPU\ Clock\ frequency}{16 + 2(TWBR)*4^{TWPS}}$$

Status Codes

Master Transmitter Mode:

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8154-8-bit-AVR-ATmega16A_Datasheet.pdf#page=178

Master Receiver Mode

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8154-8-bit-AVR-ATmega16A_Datasheet.pdf#page=181

Slave Receiver Mode

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8154-8-bit-AVR-ATmega16A_Datasheet.pdf#page=183

Slave Transmitter Mode

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8154-8-bit-AVR-ATmega16A_Datasheet.pdf#page=186

Typical Data Transmission Example

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8154-8-bit-AVR-ATmega16A_Datasheet.pdf#page=174