Københavns Universitet. Økonomisk Institut

2. årsprøve 2017 S-2DM ex ret

Rettevejledning til skriftlig eksamen i Dynamiske Modeller

Tirsdag den 15. august 2017

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 + 5z^3 + 13z^2 + 19z + 10.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 13\frac{d^2x}{dt^2} + 19\frac{dx}{dt} + 10x = 0,$$

og

$$(**) \qquad \frac{d^4x}{dt^4} + 5\frac{d^3x}{dt^3} + 13\frac{d^2x}{dt^2} + 19\frac{dx}{dt} + 10x = 96e^t.$$

(1) Vis, at tallene z = -1 og z = -2 er rødder i polynomiet P. Bestem dernæst samtlige rødder i polynomiet P.

Løsning. Ved udregning ser vi, at P(-1) = P(-2) = 0. Ved polynomiers division opnår vi, at

$$P(z) = (z+1)(z+2)(z^2+2z+5),$$

og da

$$z^{2} + 2z + 5 = 0 \Leftrightarrow z = -1 + 2i \lor z = -1 - 2i,$$

ser vi, at polynomiet P har rødderne z=-1, z=-2, z=-1+2i og z=-1-2i.

(2) Bestem den fuldstændige løsning til differentialligningen (*), og påvis, at (*) er globalt asymptotisk stabil.

Løsning. På baggrund af svaret i ovenstående spørgsmål, ser vi, at differentialligningen (*) har den fuldstændige løsning

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 e^{-t} \cos(2t) + c_4 e^{-t} \sin(2t),$$

hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$. Da alle rødderne i polynomiet P har negativ realdel, er differentialligningen (*) globalt asymptotisk stabil.

(3) Bestem den fuldstændige løsning til differentialligningen (**).

Løsning. Vi gætter på en løsning af formen $\hat{x} = Ae^t$. Vi finder, at $\hat{x}' = Ae^t$, $\hat{x}'' = Ae^t$, $\hat{x}''' = Ae^t$ og $\hat{x}'''' = Ae^t$. Indsættes dette i differentialligningen (**), ser vi, at 48A = 96, så A = 2. Den fuldstændige løsning til (**) er derfor

$$x = c_1 e^{-t} + c_2 e^{-2t} + c_3 e^{-t} \cos(2t) + c_4 e^{-t} \sin(2t) + 2e^t,$$

hvor $c_1, c_2, c_3, c_4 \in \mathbf{R}$.

For ethvert $\alpha \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + \alpha \frac{d^2x}{dt^2} - 2\alpha \frac{dx}{dt} + \alpha x = 0,$$

(4) Opstil Routh-Hurwitz matricen $A_4(\alpha)$ for differentialligningen (* * *), og påvis, at (* * *) ikke er globalt asymptotisk stabil for noget $\alpha \in \mathbf{R}$.

Løsning. Vi ser, at

$$A_4(\alpha) = \begin{pmatrix} 1 & -2\alpha & 0 & 0 \\ 1 & \alpha & \alpha & 0 \\ 0 & 1 & -2\alpha & 0 \\ 0 & 1 & \alpha & \alpha \end{pmatrix}.$$

De fire ledende hovedunderdeterminanter for matricen $A_4(\alpha)$ er $D_1=1, D_2=3\alpha, D_3=-6\alpha^2-\alpha=\alpha(-6\alpha-1)$ og $D_4=\alpha^2(-6\alpha-1)$. Hvis differentialligningen (***) havde været globalt asymptotisk stabil, skulle alle determinanterne D_1, D_2, D_3 og D_4 have været positive. Men vi ser, at så skal $\alpha>0$ og $\alpha<-\frac{1}{6}$, hvilket giver en modstrid.

(5) Kunne man have afgjort, at differentialligningen (***) ikke er globalt asymptotisk stabil for nogen værdi af parameteren $\alpha \in \mathbf{R}$ uden at have opstillet Routh-Hurwitz matricen $A_4(\alpha)$?

Løsning. Ja, idet ikke alle koefficienterne i differentialligningen (***) er positive.

Opgave 2. Vi betragter korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som har forskriften

$$\forall x \in \mathbf{R} : F(x) = \begin{cases} [0, -2x], & \text{for } x < 0 \\ [-5, 5], & \text{for } x = 0, \\ [-2x, 0], & \text{for } x > 0 \end{cases}$$

og funktionen $f: \mathbf{R}^2 \to \mathbf{R}$, som har forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + yx.$$

Desuden betragter vi korrespondancen $G:]0, 10] \rightarrow \mathbf{R}$, som er defineret ved forskriften

$$\forall x \in]0, 10] : G(x) = \begin{cases} [0, 1], & \text{for } 0 < x < 5 \\ \mathbf{R}, & \text{for } x = 5 \\ [-1, 0], & \text{for } 5 < x \le 10 \end{cases}.$$

(1) Vis, at korrespondancen F har afsluttet graf egenskaben.

Løsning. Da grafen for korrespondancen F er afsluttet i \mathbf{R}^2 , har F afsluttet graf egenskaben.

(2) Vis, at korrespondancen F ikke er nedad hemikontinuert.

Løsning. Vi betragter en konvergent følge (x_k) , der har 0 som grænsepunkt. Der findes da ingen konvergent følge (y_k) med grænsepunkt $1 \in F(0)$, så $y_k \in F(x_k)$ for ethvert $k \in \mathbb{N}$. Dette viser, at F ikke er nedad hemikontinuert.

(3) Vis, at korrespondencen F er opad hemikontinuert.

Løsning. Der er kun grund til at overveje hemikontinuiteten i x = 0. Lad U være en åben omegn af mængden F(0) = [-5, 5]. Vi ser da, at der findes et $\delta > 0$, så $F(x) \subseteq U$ for ethvert $x \in]-\delta, \delta[$. Man kunne fx vælge $\delta = 1$. Hermed er påstanden vist.

(4) Bestem en forskrift for den maksimale værdifunktion $v_u : \mathbf{R} \to \mathbf{R}$, idet udsagnet

$$\forall x \in \mathbf{R} : v_u(x) = \max\{f(x, y) \mid y \in F(x)\}\$$

er opfyldt.

Løsning. Vi finder, at

$$v_u(x) = \begin{cases} x^2, & \text{for } x < 0, \text{ idet } y = 0\\ 0, & \text{for } x = 0, \text{ idet } y \in [-5, 5] \\ x^2, & \text{for } x > 0, \text{ idet } y = 0 \end{cases}$$

(5) Bestem en forskrift for maksimumskorrespondancen $M_u: \mathbf{R} \to \mathbf{R}$, idet udsagnet

$$\forall x \in \mathbf{R} : M_u(x) = \{ y \in F(x) \mid f(x,y) = v_u(x) \}$$

er opfyldt.

Løsning. På baggrund af svaret i det foregående spørgsmål opnår vi, at

$$M_u(x) = \begin{cases} \{0\}, & \text{for } x < 0 \\ [-5, 5], & \text{for } x = 0 \\ \{0\}, & \text{for } x > 0 \end{cases}$$

(6) Vis, at korrespondancen G har afsluttet graf egenskaben.

Løsning. Grafen for korrespondancen G er afsluttet relativt til $M = [0, 10] \times \mathbf{R}$. Derfor har G afsluttet graf egenskaben.

(7) Vis, at korrespondancen G ikke er nedad hemikontinuert.

Løsning. Vi betragter en konvergent følge (x_k) fra mængden]0, 10], som har 5 som grænsepunkt. Der findes da ingen konvergent følge (y_k) med grænsepunkt $7 \in G(0)$, så $y_k \in G(x_k)$ for ethvert $k \in \mathbb{N}$. Dette viser, at G ikke er nedad hemikontinuert.

(8) Vis, at korrespondancen G er op
ad hemikontinuert.

Løsning. Der er kun grund til at overveje hemikontinuiteten i x = 5. Da $G(x) \subseteq \mathbf{R}$ for ethvert $x \in]0, 10]$, er påstanden sand.

Opgave 3. Vi betragter den funktion $f: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : f(z) = z^2 + 2iz - 1.$$

(1) Bestem funktionsværdierne f(i) og f(-i).

Løsning. Vi ser, at f(i) = -4 og f(-i) = 0.

(2) Løs ligningen f(z) = 0.

Løsning. Vi finder, at

$$f(z) = 0 \Leftrightarrow z^2 + 2iz - 1 = 0 \Leftrightarrow z = -i.$$

(3) Løs ligningen f(z) = -z.

Løsning. Vi opnår, at

$$f(z) = -z \Leftrightarrow z^2 + 2iz - 1 = -z \Leftrightarrow z^2 + (1+2i)z - 1 = 0 \Leftrightarrow$$

$$z = \frac{-1 - 2i \pm \sqrt{(1+2i)^2 + 4}}{2} \Leftrightarrow z = \frac{-1 - 2i \pm \sqrt{1+4i}}{2} \Leftrightarrow$$

$$z = \frac{-1 - 2i \pm w}{2}, \text{ hvor } w^2 = 1 + 4i.$$

Nu finder vi, at

$$w = \pm \left(\sqrt{\frac{\sqrt{17} + 1}{2}} + i\sqrt{\frac{\sqrt{17} - 1}{2}}\right),$$

og dermed finder vi, at

$$z = -\frac{1}{2} + \frac{1}{2}\sqrt{\frac{\sqrt{17} + 1}{2}} + i\left(\frac{1}{2}\sqrt{\frac{\sqrt{17} - 1}{2}} - 1\right) \quad \lor$$
$$z = -\frac{1}{2} - \frac{1}{2}\sqrt{\frac{\sqrt{17} + 1}{2}} - i\left(\frac{1}{2}\sqrt{\frac{\sqrt{17} - 1}{2}} + 1\right).$$

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 \left(4u - u^2 + x - 4x^2\right) dt.$$

Vi skal løse det optimale kontrolproblem at maksimere I(x), idet $\dot{x} = f(t, x, u) = 2u$, $x(0) = \frac{1}{8}$ og $x(1) = \frac{25}{8}$.

(1) Opskriv Hamilton funktionen H=H(t,x,u,p) for dette optimale kontrol problem.

Løsning. Vi ser, at

$$H(t, x, u, p) = 4u - u^{2} + x - 4x^{2} + 2pu.$$

(2) Vis, at dette optimale kontrolproblem er et maksimumsproblem.

Løsning. Vi får, at

$$\frac{\partial H}{\partial x} = 1 - 8x = -\dot{p} \text{ og } \frac{\partial H}{\partial u} = 4 - 2u + 2p = 0,$$

så -p=2-u og $-\dot{p}=-\dot{u}=1-8x=-\frac{1}{2}\ddot{x}.$ Desuden ser vi, at

$$H''(x,u) = \left(\begin{array}{cc} -8 & 0\\ 0 & -2 \end{array}\right).$$

Det er nu klart, at matricen H''(x, u) er negativ definit, så funktionen H = H(x, u) er strengt konkav, og dermed er det forelagte kontrolproblem et maksimumsproblem.

(3) Bestem det optimale par (x^*, u^*) , som løser problemet.

Løsning. Da $-\dot{u}=1-8x$, og da $\dot{x}=2u$, ser vi, at $\dot{u}=\frac{1}{2}\ddot{x}$, så

(§)
$$-\frac{1}{2}\ddot{x} = 1 - 8x \Leftrightarrow \ddot{x} - 16x = -2.$$

Det karakteristiske polynomium for den tilhørende homogene differentialligning, altså differentialligningen $\ddot{x}-16x=0$, er $P(\lambda)=\lambda^2-16$. De karakteristiske rødder er derfor $\lambda=\pm 4$. Desuden er $\hat{x}=\frac{1}{8}$ en løsning

til differentialligningen (\S), så den fuldstændige løsning til denne differentialligning er derfor

$$x = Ae^{4t} + Be^{-4t} + \frac{1}{8}$$
, hvor $A, B \in \mathbf{R}$.

Da $x(0) = \frac{1}{8}$, er B = -A, så

$$x = A(e^{4t} - e^{-4t}) + \frac{1}{8}$$
, hvor $A \in \mathbf{R}$,

og da $x(1)=\frac{25}{8}$, får vi, at $A=\frac{3}{e^4-e^{-4}}=\frac{3e^4}{e^8-1}$. Den søgte løsning er da

$$x^* = \frac{3e^4}{e^8 - 1} \left(e^{4t} - e^{-4t} \right) + \frac{1}{8}.$$

Nu er

$$\dot{x}^* = \frac{12e^4}{e^8 - 1} \left(e^{4t} + e^{-4t} \right),$$

hvoraf vi ser, at

$$u^* = \frac{6e^4}{e^8 - 1} \left(e^{4t} + e^{-4t} \right).$$