

Using Satellite Remote Sensing and Modelling for Insights into NO₂ Air Pollution and NO_x Emissions.

L.N. Lamsal (1), R.V. Martin (2), N.A. Krotkov (3), E.J. Bucsela (4), E.A. Celarier (1), A. van Donkelaar (2), and D. Parrish (5)

(1) USRA/NASA Goddard Space Flight Center, Atmospheric Chemistry and Dynamics, United States (lok.lamsal@nasa.gov),
(2) Dalhousie University, Halifax, Canada, (3) NASA Goddard Space Flight Center, United States, (4) SRI International, Menlo Park, CA, United States, (5) NOAA Earth System Research Laboratory, CO, United States

Nitrogen oxides (NO_x) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO₂ has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO₂ columns from Ozone Monitoring Instrument. Column observations of tropospheric NO₂ from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO₂ in the boundary layer. We infer ground-level NO₂ concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO₂ columns measured by satellite, ground-level NO₂ derived from satellite, and NO_x emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO₂ measurements from OMI to estimate "top-down" surface NO_x emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO₂ column observations from OMI and the relationship between NO₂ columns and NO_x emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO_x emissions. The emission updates offer an improved estimate of NO_x that are critical to our understanding of air quality, acid deposition, and climate change.