Laziness

Lecture 8 of CSE 3100 Functional Programming

Jesper Cockx

Q3 2023-2024

Technical University Delft

[TODO: insert joke about laziness.]

Lecture plan

- Lazy evaluation
- Forcing strictness
- Infinite data structures
- Case study: computing primes

Lazy evaluation

Evaluation strategies

An evaluation strategy gives a general way to pick a which subexpression to evaluate next.

- Call-by-value reduction: evaluate arguments before unfolding the definition of a function
- Call-by-name reduction: unfold function definition without evaluating arguments

Note. There are many other evaluation strategies 'in between' these two extremes.

Side note: innermost and outermost reduction

In Haskell, a lambda expression is a black box: its body will never be evaluated before it is applied.

Evaluation strategies that do evaluate under lambdas:

- Innermost reduction is call-by-value with evaluation under lambdas.
- Outermost reduction is call-by-name with evaluation under lambdas.

Evaluating map

Question. How is

```
head (map (1+) [1,2,3]) evaluated under call-by-value and call-by-name?
```

Evaluating map

Call-by-value

```
head (map (1+) (1:2:3:[1))
--> head ((1+1):map (+1) (2:3:[]))
--> head (2:map (+1) (2:3:[]))
--> head (2:(2+1):map (+1) (3:[]))
--> head (2:3:map (+1) (3:[]))
--> head (2:3:(3+1):map (+1) ([]))
--> head (2:3:4:map (+1) ([]))
--> head (2:3:4:[])
--> 2
```

Evaluating map

Call-by-name

```
head (map (1+) (1:2:3:[]))
--> head ((1+1):map (1+) (2:3:[]))
--> 1+1
--> 2
```

Two definitions of **fac**

```
fac 0 = 1
fac n = n * fac (n - 1)

fac' n = acc 1 n
    where
    acc x 0 = x
    acc x y = acc (x*y) (y-1)
```

Question. How are fac 3 and fac' 3 evaluated under call-by-name and call-by-value? Which one is more efficient?

Non-terminating programs

Some programs will go into an infinite loop with any evaluation strategy.

```
inf :: Integer
inf = 1 + inf
    inf
--> 1 + inf
--> 1 + 1 + inf
--> 1 + 1 + 1 + inf
-->
```

Non-terminating programs

Other programs will go into an infinite loop with call-by-value, but not with call-by-name:

```
-- with call-by-value
    fst(0, inf)
--> fst (0, 1 + inf)
--> fst (0, 1 + 1 + inf)
-->
-- with call-by-name
    fst(0, inf)
-->
```

Avoiding useless work

For functions that don't (always) use their arguments, call-by-value will do useless work:

For functions that use their arguments more than once, *call-by-name* will do useless work:

Can we get the best of both worlds? Yes!

Lazy evaluation

Lazy evaluation (aka *call-by-need*) is a variant of call-by-name that avoids double evaluation.

Each function argument is turned into a thunk:

- The first time the argument is used, the thunk is evaluated and the result is stored in the thunk.
- The next time the value stored in the thunk is used.

Lazy evaluation in a nutshell

Under lazy evaluation, programs are evaluated at most once and only as far as needed.

Lazy evaluation in other languages

Haskell is a lazy language: all evaluation is lazy by default.

Most other languages are eager (aka *strict*), but still have some form of lazy evaluation:

- Lazy 'and'/'or' (almost all languages): False && b evaluates to False without evaluating b.
- Iterators (e.g. Java) can produce values on-demand.
- Generator functions (e.g. Python) can use yield to lazily return values.
- lazy val (in Scala) declares a value that is computed lazily.

Advantages of lazy evaluation

- It never evaluates unused arguments.
- It always terminates if possible.
- It takes the smallest number of steps of all strategies.
- It enables use of infinite data structures.

Pitfalls of lazy evaluation

- Creation and management of thunks has some runtime overhead.
- It is hard to predict the order of evaluation.¹
- Big intermediate expressions sometimes lead to a drastic increase in memory usage.

¹Usually not a problem, unless you use unsafePerformIO.

Forcing strict evaluation

Performance drawbacks of lazy evaluation

The number of steps is not the only thing that matters for performance: the size of intermediate terms is also important:

 For small expressions that evaluate to a large data structure, call-by-need is better (replicate 100000000 "spam") !! 5

 For big expressions that evaluate to a small value, call-by-value is better

```
foldl (+) 0 [1..100000000]
```

Summing a long list

Let's take a closer look:

What happens if you try to evaluate

```
fold1 (+) 0 [1..100000000] in GHCi?
```

The problem with large intermediate expressions

Recursive functions (like <u>foldl</u>) can create large intermediate expressions during evaluation, which is bad for performance:

- Each intermediate expression requires a new thunk to be allocated.
- Too large intermediate expressions cause stack overflows.

Maybe being a *little* less lazy would help?

Forcing strict evaluation

Haskell provides a built-in function seq:

```
seq :: a -> b -> b
```

The expression seq u v will evaluate u before returning v.

```
(1+2) `seq` 5 --> 3 `seq` 5 --> 5

replicate 5 'c' `seq` 42

--> 'c':(replicate 4 'c') `seq` 42

--> 42
```

Strict application

Using seq, we can define strict application:

```
(\$!) :: (a \rightarrow b) \rightarrow a \rightarrow b
f \$! x = x `seq` f x
```

"Please evaluate x before applying f!"

Forcing evaluation of multiple arguments

```
-- force evaluation of x:
(f $! x) y
-- force evaluation of y:
(f x) \$! v
-- force evaluation of x and v:
(f $! x) $! v
```

A strict version of **fold1**

We can define a version of **fold1** that is **strict** in its second argument:

```
foldl' :: (b -> a -> b) -> b -> [a] -> b
foldl' (#) v [] = v
foldl' (#) v (x:xs) =
  (foldl' (#) $! (v # x)) xs
```

Now we can evaluate

```
foldl' (+) 0 [1..100000000] without running out of memory!
```

Infinite data structures

An infinite list

```
ones :: [Int]
ones = 1 : ones
ones --> 1 : ones
     --> 1 : (1 : ones)
     --> 1 : (1 : (1 : ones))
     --> ...
head ones --> head (1 : ones)
          --> 1
```

Infinite data structures

An infinite data structure is an expression that would contain an infinite number of constructors if it is fully evaluated.

Intuition. An infinite list is a stream of data that produces as much elements as required by its context.

Quiz question

Question. Which of the following defines the infinite list evens = 0:2:4:6:...?

```
    evens = 0 : 2 : tail evens
    evens = 0 : map (+2) (tail evens)
    evens = 0 : map (+2) evens
    evens = map (+2) [0..]
```

Syntactic sugar for (infinite) lists

```
[m..] denotes the list of all integers starting from m:
  > [1..]
  [1,2,3,4,5,6,7,{Interrupted}]
  > zip [1..] "hallo"
  [(1, 'h'), (2, 'a'), (3, 'l'), (4, 'l'), (5, 'o')]
In fact, [m..] is syntactic sugar for enumFrom m:
  enumFrom :: (Enum a) => a -> [a]
```

Infinite list of prime numbers

```
sieve(x:xs) =
  let xs' = [ y | y <- xs, y `mod` x /= 0 ]</pre>
  in x : sieve xs'
primes :: [Int]
primes = sieve [2..]
> take 10 primes
[2,3,5,7,11,13,17,19,23,29]
> primes !! 10000
104743
> head (dropWhile (<2023) primes)</pre>
2027
```

Separating data and control

With infinite data structures, we can separately define:

- what we want to compute (the data)
- how it will be used (the control flow)

We can get the data we need for each situation by applying the right function to the infinite list: take, !!, takeWhile, dropWhile,...

Functions for constructing infinite lists

```
repeat :: a -> [a]
repeat x = xs
    where xs = x : xs
cycle :: [a] -> [a]
cycle xs = xs'
    where xs' = xs ++ xs'
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
```

Filtering infinite lists

Warning. Filtering an infinite list will loop forever, even if the result is finite:

```
> filter (<5) [1..]
[1,2,3,4,<loop>
```

Instead, use takeWhile to get an initial fragment of an infinite list:

```
> takeWhile (<5) [1..]
[1,2,3,4]</pre>
```

The tree labeling problem

Remember the datatype of labeled trees:

```
data Tree a =
  Leaf | Node (Tree a) a (Tree a)
```

Exercise. Given a tree and an infinite list of labels
xs :: [Int] , define a function
label :: [Int] -> Tree a -> Tree (Int, a)
that labels the tree with xs, using each label at most once.

Other infinite data structures

Any (recursive) datatype in Haskell can have infinite structures, not just lists:

```
data Tree a =
  Leaf | Node (Tree a) a (Tree a)

infTree :: Int -> Tree Int
infTree n = Node subTree n subTree
  where subTree = infTree (n+1)
```

See exercises on WebLab!

Case study: computing fast

primes

Working with infinite ascending lists

Exercise 1. Define a function

```
merge :: Ord a => [a] -> [a] -> [a] that merges two ascending infinite lists into one (removing duplicate entries).
```

```
> take 10 (merge [2,4..] [3,6..])
[2,3,4,6,8,9,10,12,14,15]
```

Exercise 2. Define a function

```
(\\) :: Ord a => [a] -> [a] -> [a]
that takes two ascending infinite lists and
returns the list of elements that are in the first
but not in the second list.
```

A faster way to calculate primes (1/5)

We could define the infinite list of prime numbers is to first define the infinite list composites of non-prime numbers:

```
primesV2 :: [Integer]
primesV2 = [2..] \\ composites
```

Question. How to compute composites?

A faster way to calculate primes (2/5)

```
multiples = [ map (*n) [n..] | n <- [
mergeAll (xs:xss) = merge xs (mergeAl
composites = mergeAll multiples</pre>
```

This loops forever!

A faster way to calculate primes (3/5)

We can fix the loop by using the fact that the smallest element is always in the first list:

```
multiples = [ map (*n) [n..] | n <- [2..] ]
xmerge (x:xs) ys = x : merge xs ys
mergeAll (xs:xss) = xmerge xs (mergeAll xss)
composites = mergeAll multiples</pre>
```

primesV2 is faster than primes!

A faster way to calculate primes (4/5)

We can avoid a lot of work by only considering multiples of prime numbers in the calculation of composites:

Oh no, it's looping again!

A faster way to calculate primes (5/5)

To get the recursion started, we need to specify that 2 is the first prime number:

```
primesV3 = 2 : ([3..] \\ composites)
  where
     composites = mergeAll primeMultiples
     primeMultiples =
        [ map (p*) [p..] | p <- primesV3 ]

> take 10 primesV3
[2,3,5,7,11,13,17,19,23,29]
```

This one is much faster than V1!

What's next?

Next lecture: Getting started with Agda

To do:

- Read the book:
 - This lecture: sections 15.1-15.5, 15.7
 - Next lecture: section 1 of Agda lecture notes
- Finish week 4 exercises on Weblab
- Install Agda on your PC (see instructions on Brightspace)