Pairs of theories satisfying a Mordell-Lang condition

Block Gorman

Pairs of theories satisfying a Mordell-Lang condition

Alexi Block Gorman

Joint with Philipp Hieronymi and Elliot Kaplan

arXiv:1806.00030

October 3, 2018

Dense Pairs and Lovely Pairs

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Definition

Let \mathcal{B} be an o-minimal \mathcal{L} -structure, and $\mathcal{A} \preccurlyeq \mathcal{B}$ a submodel such that $A \subsetneq B$ is dense. Then we call $(\mathcal{B}, \mathcal{A})$ a **dense pair**.

In [van den Dries,1998], there is a partial Q.E. result for dense pairs; namely, that for $T^d := Th(\mathcal{B}, \mathcal{A})$ in the language $\mathcal{L}^2 := \mathcal{L} \cup \{U\}$ (where A = U(B)) the following holds:

Theorem 1 (van den Dries)

Each \mathcal{L}^2 -formula $\psi(\vec{y})$ is equivalent in T^d to a boolean combination of formulas of the form

$$\exists \vec{x} U(\vec{x}) \land \phi(\vec{x}, \vec{y})$$

where $\phi(\vec{x}, \vec{y})$ is an \mathcal{L} -formula.

Lovely Pairs

Pairs of theories satisfying a Mordell-Lang condition

Block Gormai

This work inspired Alex Bernstein and Yevgeniy Vasilyev to define the following in [Berenstein and Vassilev, 2010]:

Definition

We say (M, P(M)) is a **lovely pair of geometric structures** if $M \models T$ where T is a geometric theory, P(M) is an algebraically closed subset of M, and the following properties are satisfied:

- (Coheir/density) non-algebraic unary types over finite dimensional acl-closed parameter sets are realized in the predicate
- (Extension/codensity) non-alg. unary types over fin.dim. acl-closed A are realized outside of $acl(P(M) \cup A)$

Pairs of theories satisfying a Mordell-Lang condition

Block Gorman

Let $K \subseteq \mathbb{R}$ be a subfield with $\mathbb{Q} \subsetneq K$. Consider the structure $(\mathbb{R}, \mathcal{Q}, <, 0, +, (\lambda_k)_{k \in K})$ where \mathcal{Q} is a unary predicate that picks out \mathbb{Q} , and λ_k is a function symbol that abbreviates $x \mapsto kx$ for each $k \in K$.

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Let $K \subseteq \mathbb{R}$ be a subfield with $\mathbb{Q} \subsetneq K$. Consider the structure $(\mathbb{R}, \mathcal{Q}, <, 0, +, (\lambda_k)_{k \in K})$ where \mathcal{Q} is a unary predicate that picks out \mathbb{Q} , and λ_k is a function symbol that abbreviates $x \mapsto kx$ for each $k \in K$.

Obs. 1: We can't use the dense pairs, lovely pairs, or H-structure frameworks, since $\mathcal Q$ is not a K-vector space and not acl-closed, nor is it acl-independent.

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Let $K \subseteq \mathbb{R}$ be a subfield with $\mathbb{Q} \subsetneq K$. Consider the structure $(\mathbb{R}, \mathcal{Q}, <, 0, +, (\lambda_k)_{k \in K})$ where \mathcal{Q} is a unary predicate that picks out \mathbb{Q} , and λ_k is a function symbol that abbreviates $x \mapsto kx$ for each $k \in K$.

Obs. 1: We can't use the dense pairs, lovely pairs, or H-structure frameworks, since $\mathcal Q$ is not a K-vector space and not acl-closed, nor is it acl-independent.

Obs. 2: We can treat $\mathcal Q$ as a $\mathbb Q$ -vector space, i.e. a model of a different theory in a sublanguage.

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Let $K \subseteq \mathbb{R}$ be a subfield with $\mathbb{Q} \subsetneq K$. Consider the structure $(\mathbb{R}, \mathcal{Q}, <, 0, +, (\lambda_k)_{k \in K})$ where \mathcal{Q} is a unary predicate that picks out \mathbb{Q} , and λ_k is a function symbol that abbreviates $x \mapsto kx$ for each $k \in K$.

Obs. 1: We can't use the dense pairs, lovely pairs, or H-structure frameworks, since \mathcal{Q} is not a K-vector space and not acl-closed, nor is it acl-independent.

Obs. 2: We can treat Q as a \mathbb{Q} -vector space, i.e. a model of a different theory in a sublanguage.

Theorem 2 (B. G. - Hieronymi - Kaplan)

The theory of pairs $(\mathcal{R},\mathcal{Q})$ with \mathcal{R} an ordered K-v.s. and \mathcal{Q} and ordered \mathbb{Q} -v.s. is near-model complete, and decidable when $\dim(K|\mathbb{Q}) = \infty$ and K has a computable presentation and basis over \mathbb{Q} .

Pairs of theories satisfying a Mordell-Lang condition

Block Gorman

Let T_{β} be a consistent geometric \mathcal{L}_{β} -theory and T_{α} a consistent \mathcal{L}_{α} -theory. Let $\mathcal{L} := \mathcal{L}_{\beta} \cap \mathcal{L}_{\alpha}$, $\mathcal{L}^2 = \mathcal{L}_{\beta} \cup \mathcal{L}_{\alpha} \cup \{U\}$. An ML-theory is a \mathcal{L}^2 -theory T with models $(\mathcal{B}, \mathcal{A})$ where $\mathcal{B} \models T_{\beta}$, $\mathcal{A} \models T_{\alpha}$, $\mathcal{A} = U(\mathcal{B})$, and:

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Let T_{β} be a consistent geometric \mathcal{L}_{β} -theory and T_{α} a consistent \mathcal{L}_{α} -theory. Let $\mathcal{L}:=\mathcal{L}_{\beta}\cap\mathcal{L}_{\alpha}, \mathcal{L}^{2}=\mathcal{L}_{\beta}\cup\mathcal{L}_{\alpha}\cup\{U\}$. An ML-theory is a \mathcal{L}^{2} -theory T with models $(\mathcal{B},\mathcal{A})$ where $\mathcal{B}\models T_{\beta}, \mathcal{A}\models T_{\alpha}, \mathcal{A}=U(\mathcal{B})$, and:

• (ML condition) For every algebraic \mathcal{L}_{β} -formula $\varphi(\vec{y}, x)$ and every $\vec{a} \in A^{|\vec{y}|}$, there is an \mathcal{L}_{α} -formula $\psi(\vec{y}, x)$ such that $T \models U(x) \to (\varphi(\vec{a}, x) \leftrightarrow \psi(\vec{a}, x))$.

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Let T_{β} be a consistent geometric \mathcal{L}_{β} -theory and T_{α} a consistent \mathcal{L}_{α} -theory. Let $\mathcal{L}:=\mathcal{L}_{\beta}\cap\mathcal{L}_{\alpha}, \mathcal{L}^{2}=\mathcal{L}_{\beta}\cup\mathcal{L}_{\alpha}\cup\{U\}$. An ML-theory is a \mathcal{L}^{2} -theory T with models $(\mathcal{B},\mathcal{A})$ where $\mathcal{B}\models T_{\beta}, \mathcal{A}\models T_{\alpha}, \mathcal{A}=U(\mathcal{B})$, and:

- (ML condition) For every algebraic \mathcal{L}_{β} -formula $\varphi(\vec{y}, x)$ and every $\vec{a} \in A^{|\vec{y}|}$, there is an \mathcal{L}_{α} -formula $\psi(\vec{y}, x)$ such that $T \models U(x) \to (\varphi(\vec{a}, x) \leftrightarrow \psi(\vec{a}, x))$.
- (Algebraic Extension) technical condition, holds e.g. if $A = \operatorname{acl}_{\mathcal{B}}(A)$, A is $\operatorname{acl}_{\mathcal{B}}$ -independent, or $\operatorname{acl}_{\mathcal{B}} = \operatorname{dcl}_{\mathcal{B}}$.

Pairs of theories satisfying a Mordell-Lang condition

Block Gormai

Let T_{β} be a consistent geometric \mathcal{L}_{β} -theory and T_{α} a consistent \mathcal{L}_{α} -theory. Let $\mathcal{L}:=\mathcal{L}_{\beta}\cap\mathcal{L}_{\alpha}, \mathcal{L}^{2}=\mathcal{L}_{\beta}\cup\mathcal{L}_{\alpha}\cup\{U\}$. An ML-theory is a \mathcal{L}^{2} -theory T with models $(\mathcal{B},\mathcal{A})$ where $\mathcal{B}\models T_{\beta}, \mathcal{A}\models T_{\alpha}, \mathcal{A}=U(\mathcal{B})$, and:

- (ML condition) For every algebraic \mathcal{L}_{β} -formula $\varphi(\vec{y}, x)$ and every $\vec{a} \in A^{|\vec{y}|}$, there is an \mathcal{L}_{α} -formula $\psi(\vec{y}, x)$ such that $T \models U(x) \to (\varphi(\vec{a}, x) \leftrightarrow \psi(\vec{a}, x))$.
- (Algebraic Extension) technical condition, holds e.g. if $A = \operatorname{acl}_{\mathcal{B}}(A)$, A is $\operatorname{acl}_{\mathcal{B}}$ -independent, or $\operatorname{acl}_{\mathcal{B}} = \operatorname{dcl}_{\mathcal{B}}$.
- For any κ -saturated $(\mathcal{B}, \mathcal{A}) \models T$, any small $C \subseteq B$, and any non-algebraic $\mathcal{L}_{\beta}(C)$ -type q(x):
 - (Density) if p(x) is a $\mathcal{L}_{\alpha}(U(C))$ -type s.t. $\operatorname{qf}(q|_{\mathcal{L}(U(C))}) = \operatorname{qf}(p|_{\mathcal{L}(U(C))})$, then $p(x) \cup q(x)$ is realized in A
 - (Codensity) there is $b \in B \setminus \operatorname{acl}_{\mathcal{B}}(A \cup C)$ realizing q(x).

Algebraic Extension

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Since we're among friends, here is the precise statement of the Algebraic Extension condition:

Definition

Let C be a finite subset of B with $C \bigcup_{U(C)} A$, and let $a \in \operatorname{acl}(C) \cap A$.

Set $q = \operatorname{tp}_{\mathcal{L}_{\beta}}(C)$ and set $p = \operatorname{tp}_{\mathcal{L}_{\alpha}}(U(C))$. Let $\varphi(x)$ isolate $\operatorname{tp}_{\mathcal{L}_{\beta}}(a|C)$ and let $\psi(x)$ isolate $\operatorname{tp}_{\mathcal{L}_{\alpha}}(a|U(C))$.

We say that T satisfies the **Algebraic Extension condition** if for all models of T and for all C and a as above:

$$T \cup q \cup p_U \models \exists x (U(x) \land \varphi(x) \land \psi_U(x)).$$

Again, this is immediate if A is $acl_{\mathcal{B}}$ -independent, if $A = acl_{\mathcal{B}}(A)$, or $acl_{\mathcal{B}} = dcl_{\mathcal{B}}$.

Known Examples

Pairs of theories satisfying a Mordell-Lang condition

Block Gormai

To justify our choice of definitions, here are some of the known examples that are also ML-theories:

- dense pairs
- lovely pairs
- H-structures
- (K, G) where $K \models ACF$ or RCF, $G \le K^{\times}$ is a Mann Group

Known Examples

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

To justify our choice of definitions, here are some of the known examples that are also ML-theories:

- dense pairs
- lovely pairs
- H-structures
- (K, G) where $K \models ACF$ or RCF, $G \le K^{\times}$ is a Mann Group

The name "ML-theory" comes from this last example, as Ayhan Günaydin and Lou van den Dries showed that the Mann property is equivalent to the Mordell-Lang property for such pairs.

Main Theorem

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

These conditions hit the right level of generality to obtain:

Theorem 3 (B. G. - Hieronymi - Kaplan)

If T is an ML-theory, then each \mathcal{L}^2 -formula $\theta(\vec{x})$ is equivalent in T to a boolean combination of formulas of the form

$$\exists \vec{y} U(\vec{y}) \land \psi(\vec{y}) \land \phi(\vec{x}, \vec{y})$$

where $\psi(\vec{y})$ is an \mathcal{L}_{α} -formula and $\phi(\vec{x}, \vec{y})$ is an \mathcal{L}_{β} -formula.

Theorem 4 (B. G. - Hieronymi - Kaplan)

An ML-theory T is complete precisely if T_{α} and T_{β} are complete.

Open Core

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

For a structure \mathcal{M} with a definable topology, we define the **open core of** \mathcal{M} to be the structure $\mathcal{M}^{\circ} := (M; U \in \mathcal{U})$, where \mathcal{U} is the collection of definable open subsets of M^n for all $n \in \mathbb{N}$.

Assume that every open set in the definable topology is empty or infinite, and that Assumption (I) from [Boxall and Hieronymi, 2012] is satisfied.

Theorem 5 (B. G. - Hieronymi - Kaplan)

If T_{β} is equipped with a definable topology satisfying the above assumptions, then $(\mathcal{B}, \mathcal{A})^{\circ} = \mathcal{B}^{\circ}$ for any $(\mathcal{B}, \mathcal{A}) \models T$.

PRC Fields

Pairs of theories satisfying a Mordell-Lang condition

Block Gorman

Let $\mathcal{L}_{\alpha} := \{0, 1, +, \cdot, -, <_1, <_2, \dots, <_n\}$. An *n*-ordered field is an \mathcal{L}_{α} -structure $\mathcal{K} = (K, \dots)$ such that $(K, 0, 1, +, \cdot, -, <_i)$ is an ordered field for $i = 1, \dots, n$.

PRC Fields

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

Let $\mathcal{L}_{\alpha} := \{0, 1, +, \cdot, -, <_1, <_2, \dots, <_n\}$. An *n*-ordered field is an \mathcal{L}_{α} -structure $\mathcal{K} = (K, \dots)$ such that $(K, 0, 1, +, \cdot, -, <_i)$ is an ordered field for $i = 1, \dots, n$.

Say that $\mathcal K$ is a **pseudo real closed field** (PRCF) if $\mathcal K$ is an existentially closed *n*-ordered field. PRC fields form an elementary class, due to van den Dries. Let $\mathcal T_\alpha$ be the theory of PRCF in the language $\mathcal L_\alpha$.

Let $\mathcal{L}_{\beta} = \{0, 1, +, \cdot, -, <_1\}$ and let \mathcal{T}_{β} be the \mathcal{L}_{β} -theory of real closed fields. We let \mathcal{T}_n^d be the \mathcal{L}^2 -theory whose models $(\mathcal{R}, \mathcal{K})$ are such that $\mathcal{R} \models \mathcal{T}_{\beta}$, \mathcal{K} is dense in \mathcal{R} , and $\mathcal{K} \models \mathcal{T}_{\alpha}$.

RC-PRC Pairs

Pairs of theories satisfying a Mordell-Lang condition

Block Gormai

As any model $\mathcal{K} \models \mathcal{T}_{\alpha}$ is dense in its $<_1$ -real closure $\overline{\mathcal{K}}$, the pair $(\overline{\mathcal{K}}, \mathcal{K})$ is a model of \mathcal{T}_n^d .

Theorem 6 (B. G. - Hieronymi - Kaplan)

 T_n^d is an ML-theory, hence near model complete.

Corollary

Every open set definable in $(\mathcal{R}, \mathcal{K}) \models T_n^d$ is semialgebraic over \mathcal{R} .

As far as we know, this is the "smallest" example of a pair of fields which is known to be near model complete.

p-Adics with a Dense Independent Set

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

The following adapts the work of Philipp Hieronymi, Travis Nell, and Erik Walsberg from o-minimal to *p*-adic setting:

Let $\mathcal{L}_{\beta} = \{0, 1, +, \cdot, \mathcal{O}, P_2, P_3, \ldots\}$ and let T_{β} be the \mathcal{L}_{β} -theory $\mathsf{Th}(\mathbb{Q}_p)$ of p-adically closed fields.

For an arbitrary theory T'_{α} in a relational language \mathcal{L}'_{α} , we define the theory T_{α} in the language $\mathcal{L}_{\alpha} := \mathcal{L}'_{\alpha} \cup \{E\}$ as follows:

- for any $A \models T_{\alpha}$, E is an equivalence relation on A^2 with infinite classes
- the \mathcal{L}'_{α} -structure on A is such that each relation $R \in \mathcal{L}'_{\alpha}$ is E-invarient, and $\mathcal{A}/E \models T'_{\alpha}$.

p-Adics with a Dense Independent Set

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

We consider the \mathcal{L}^2 -theory T_e whose models $(\mathcal{Q}_p, \mathcal{A})$ satisfy:

- lacksquare $\mathcal{Q}_{p}\models T_{\beta}$ and $\mathcal{A}\models T_{\alpha}$.
- A is dense and $acl_{\mathcal{Q}_p}$ -independent.
- Each equivalence class of E on A is dense in Q_p .

Theorem 7 (B. G. - Hieronymi - Kaplan)

T_e is an ML-theory, hence near model complete.

Corollary

The p-adic open core of $(\mathcal{Q}_p, \mathcal{A}) \models T_e$ is \mathcal{Q}_p° .

Neostability Theory and Future Work

Pairs of theories satisfying a Mordell-Lang condition

Block Gormai

We would like to be able to say more about the ML-theory T in the case that T_{α} and T_{β} are strongly dependent, NTP₂, and so on.

We have already shown that NIP is preserved using machinery adapted from [Chernikov and Simon, 2013]:

Theorem 8 (B. G. - Hieronymi - Kaplan)

If T_{α} and T_{β} are both NIP, then T is NIP.

Neostability Theory and Future Work

Pairs of theories satisfying a Mordell-Lang condition

Block Gormar

We would like to be able to say more about the ML-theory T in the case that T_{α} and T_{β} are strongly dependent, NTP₂, and so on.

We have already shown that NIP is preserved using machinery adapted from [Chernikov and Simon, 2013]:

Theorem 8 (B. G. - Hieronymi - Kaplan)

If T_{α} and T_{β} are both NIP, then T is NIP.

Thank you!

arXiv:1806.00030

References I

Pairs of theories satisfying a Mordell-Lang condition

Block Gorma

- Alexander Berenstein and Evgueni Vassilev (2010) On lovely pairs of geometric structures Ann. Pure Appl. Logic 161(7), 866 – 878.
- Gareth Boxall and Philipp Hieronymi (2012) Expansions which introduce no new open sets Journal of Symbolic Logic 77(1), 111 – 121.
- Artem Chernikov and Pierre Simon (2013)
 Externally definable sets and dependent pairs
 Israel Journal of Mathematics 194(1), 409 425.
- Lou van den Dries (1998)

 Dense pairs of o-minimal structures

 Fundamenta Mathematicae 157(1), 61 78.