UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142 PRACTICA 13.

Problema 1. Considere las matrices:

[En práctica 1.2d]

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}; \qquad B = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad D = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

- 1.1. Calcule $AB, BA, (BD-C)(AC^2-I)$
- 1.2. Resuelva las ecuaciones matriciales:

a)
$$-2X + C = D$$
 b) $(A - \frac{2}{3}X)^t = 2D$

c)
$$BXA = C$$
 d) $(2C + XA)^{-1} = B$

Problema 2. Considere las matrices:

[En práctica 2.2, 2.3]

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 5 \\ -3 & 5 & 10 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 6 & 4 \\ -1 & 4 & -6 \end{pmatrix}, \qquad C = \begin{pmatrix} 4 & 2 & 4 \\ 2 & 10 & -1 \\ 4 & -1 & 21 \end{pmatrix}$$

- 2.1 Factorice, si es posible la matriz A en forma A = LU, donde L es matriz triangular inferior con unos en su diagonal principal y U es matriz triangular superior.
- 2.2 Calcule la inversa B^{-1} de B.
- 2.3 Factorice, si es posible, la matriz C en la forma $C = LL^t$ donde L es matriz triangular inferior.

1

Problema 3. Algunas definiciones

- a) A real es simétrica ssi $A^t = A$
- b) A real es antisimétrica ssi $A = -A^t$
- c) A real es ortogonal ssi $A \cdot A^t = A^t A = I$

- d) A compleja, $\bar{A} = (\bar{a}_{ij})$ es su compleja conjugada donde \bar{a}_{ij} es el complejo conjugado de a_{ij} .
- e) A compleja, $A^H = \bar{A}^t$ es su conjugada traspuesta.
- f) A es hermiteana ssi $A^H = A$
- g) Aes unitaria ssi $A^H \cdot A = A \cdot A^H = I$
- h) B es similar con A si existe P inversible tal que $B = P^{-1}AP$.

Pruebe las siguientes proposiciones:

[En práctica 3.1, 3.2 y 3.11d]

- 3.1) Si A es cuadrada, entonces $A + A^t$ es simétrica y $A A^t$ es antisimétrica.
- 3.2) Toda matriz cuadrada es suma de una matriz simétrica y otra antisimétrica.
- 3.3) Las matrices $A \cdot A^t$ y $A^t A$ son simétricas.
- 3.4) Si A y B son simétricas entonces no necesariamente AB es simétrica.
- 3.5) Si A es ortogonal entonces $A^{-1} = A^t$
- 3.6) $(A^t)^{-1} = (A^{-1})^t$ y si A es simétrica entonces A^{-1} es simétrica.
- 3.7) Si A es simétrica y H es ortogonal entonces $H^{-1}AH$ es simétrica.
- 3.8) Si A y B son ortogonales entonces AB es ortogonal.
- 3.9) Si A es ortogonal entonces A^{-1} es ortogonal.
- 3.10) Encuentre la forma de las matrices ortogonales de 2×2
- 3.11) Si A y B son complejas:

a)
$$(A^H)^H = A$$
 b) $(A + B)^H = A^H + B^H$ c) $(AB)^H = B^H \cdot A^H$ d) $(A^H)^{-1} = (A^{-1})^H$.

Observación: Note la analogía con la traspuesta de matrices reales.

2

3.12) a) Muestre que
$$A = \begin{pmatrix} 1 & 2+i & 3-2i \\ 2-i & 2 & -1+3i \\ 3+2i & -1-3i & -4 \end{pmatrix}$$
 es hermitiana.

b) Calcule la forma de las matrices hermitianas de $2\times 2~$ y de $3\times 3.$

3.13) a) Muestre que $A = \frac{1}{2} \begin{pmatrix} 1+i & -1+i \\ 1+i & 1-i \end{pmatrix}$ es unitaria.

- b) Calcule la forma de las matrices unitarias de 2×2 .
- 3.14) Si P y Q son unitarias entonces PQ es unitaria.
- 3.15) Pruebe que la similaridad de matrices es una relación de equivalencia, es decir es reflexiva, simétrica y transitiva.
- 3.16) a) Si B es similar con A entonces $B^n = P^{-1}A^nP \quad \forall n \in \mathbb{N}$ b) Si A y B son no singulares entonces $B^{-1} = P^{-1}A^{-1}P$.

Problema 4. [En práctica 4,2]

4.1) Calcule matrices reales X de 2×2 tales que $X^2 = I$.

Observación: Note la diferencia con una ecuación escalar $x^2=1$

- 4.2) Sea $M = \begin{pmatrix} A & u \\ v^t & a \end{pmatrix}$ y $M^{-1} = \begin{pmatrix} B & p \\ q^t & b \end{pmatrix}$ donde $a, b \in \mathbb{R}$ u, v, p, q son matrices columnas y A es inversible.
 - a) Pruebe que $B = A^{-1} + bA^{-1}uv^t A^{-1}$, $b = (a v^tA^{-1}u)^{-1}$, $p = -bA^{-1}u$, $q^t = -bv^tA^{-1}$
 - b) Sea $M = \begin{pmatrix} 4 & 1 & 2 \\ 3 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}$ Calcule M^{-1} si $A^{-1} = \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 \\ -3 & 4 \end{pmatrix}$

23.06.2003

JLS/cln