

Electronic Engineering COM 121

Assist. Prof. Basma M. Yousef

Introduction

Main differences between the FET and BJT:

- The BJT transistor is a current-controlled device, while the FET transistor is a voltage-controlled device.
- ✓ The current I_{C} in Figure is a direct function of the level of I_{B} .
- ✓ For the FET the current I_D will be a function of the voltage V_{GS} applied to the input circuit.

Introduction

- The BJT transistor is a bipolar device, the prefix (bi) revealing that the conduction level is a function of two charge carriers, electrons and holes.
- The FET is a unipolar device depending solely on either electron (n-channel) or hole (p-channel) conduction.
- > There are two types of FETs transistors.
- ➤ The types are JFET and MOSFET.
- ➤ .MOSFET type can be broken down into depletion MOSFET and Enhancement MOSFET.

Introduction

Graphic symbols for the N channel and P-channel FETs

JFET Type

- The basic construction of the n-channel JFET is shown in Figure.
- Note that the major part of the structure is the n-type material that forms the channel between the embedded layers of p-type material.

Operation mechanism of JFET

- Case 1: $V_{GS} = 0V$, and $V_{DS} > 0V$
- The result is a gate and source terminal at the same potential and a depletion region in the low end of each p-material similar to the distribution of the no-bias condition.
- The instant the voltage $V_{DD} = V_{DS}$ is applied, the electrons will be drawn to the drain terminal current I_D with the defined direction.

Operation mechanism of JFET

- \succ I_{DSS} is the maximum drain current for a JFET and is defined by the conditions $V_{GS} = 0 \ V \ and \ V_{DS} > |VP|$.
- > Case 2: $V_{GS} < 0V$:
- The gate terminal will be set at lower and lower potential levels as compared to the source.
- \triangleright The resulting saturation level for I_{D-} has been reduced.
- when $V_{GS} = -V_p$, the current saturation level reaches 0 mA, and the device has been "turned off".

Characteristics Curve for N-Channel JFET

Transfer Curve for N-Channel JFET

• The relationship between I_D and V_{GS} is defined by Shockley's equation:

$$> I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$> V_{GS} = V_P \left(1 - \sqrt{\frac{I_D}{I_{DSS}}} \right)$$

Principal of Operation: P-Channel JFET

- The VGS is positive for P-Channel JFET.
- ➤ The below figure the characteristic curve of P-Channel JFET.

Depletion-Type MOSFET.

- The gate current (I_G) is essentially zero amperes for dc-biased configurations.
- The drain and source are connected by a narrow channel adjacent to the insulated gate.
- ➤ D-MOSFET can be operated in either of two modes the depletion mode or enhancement mode and is sometimes called a depletion/enhancement MOSFET.

Structure of N-channel MOSFET

Operation of D-MOSFET

- The gate-to-source voltage is set to zero volts by the direct connection from one terminal to the other.
- The voltage V_{DS} is applied across the drain-to-source terminals.
- So an attraction for the positive $v_{Gs}=0v$ potential at the drain by the free electrons of the n-channel and a current similar to that established through the channel of the JFET.

nics Operation Mechanism of D-MOSFET

- The negative potential at the gate will tend to pressure electrons toward the p-type substrate.
- Depending on the magnitude of the negative bias established by V_{GS} , a level of recombination between electrons and holes will occur that will reduce the number of free electrons in the n-channel available for conduction.

Characteristics Curve for N-Channel D-MOSFET

Operation of D-MOSFET

- For positive values of V_{GS} , , the positive gate will draw additional electrons (free carriers) from the p-type substrate due to the reverse leakage current and establish new carriers so the drain current will increase at a rapid rate for these reasons.
- The application of a positive gate-to-source voltage has "enhanced" the level of free carriers in the channel compared to that encountered with $V_{GS} = 0 V$.
- The n-channel MOSFET operates in the depletion mode when a negative *GS* voltage is applied and in the enhancement mode when a positive *GS* voltage is applied.
- > The drain current

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

P- Channel D-MOSFET

- The construction of a p-channel depletion-type MOSFET is exactly the reverse of N-Channel D-MOSFET.
- The terminals remain as identified, but all the voltage polarities and the current directions are reversed.

Characteristics Curve for P-Channel D-MOSFET

p-Channel depletion-type MOSFET with $I_{DSS} = 6$ mA and $V_P = +6$ V.

Enhancement-type MOSFET.

The absence of a channel between the two n or p doped regions.

n-Channel enhancement-type MOSFET.

P-Channel enhancement-type MOSFET.

nics Operation Mechanism of E-MOSFET

- At $V_{GS} = 0 V$ a voltage applied between the drain and the source of the device of the absence of an n -channel will result in a current.
- It is not sufficient to have a large accumulation of carriers $v_{GS} = 0 \text{ V}$ (electrons) at the drain and the source (due to the n -doped regions).
- $V_{GS} < 0 V$ (Negative Voltage) Same as when $V_{GS} = 0 V$.

Operation mechanism of E-MOSFET

- > V_{GS} > 0 V(Positive Voltage),the positive potential at the gate will pressure the holes in the p substrate.
- The electrons in the p-substrate will be attracted to the positive gate and accumulate in the region near the surface of the SiO_2 layer.

Operation mechanism of E-MOSFET

- As V_{GS} increases in magnitude, the concentration of electrons near the SiO_2 surface increases until the induced n-type region can support a measurable flow between drain and source.
- The level of V_{GS} that results which increases in drain current or minimum voltage to create channel between drain and source is called the threshold voltage V_T .

Page ·

Characteristics Curve for N-Channel E-MOSFET

 $Sketching\ the\ transfer\ characteristics\ for\ an\ n\text{-}channel\ enhancement-type\ MOSFET\ from\ the\ drain\ characteristics.$

nics Operation mechanism of E-MOSFET

> Saturation level for V_{DS} is related to the level of applied V_{GS} by

$$\mathbf{V}_{DS(sat)} = \mathbf{V}_{GS} - \mathbf{V}_{T}$$

- For values of V_{GS} less than the threshold level, the drain current of an enhancement type MOSFET is 0mA.
- For levels of $V_{GS} > V_T$, the drain current is related to the applied gate-to-source voltage by the following nonlinear relationship:

$$I_D = k(V_{GS} - V_T)^2$$

- > The *k* term is a constant that is a function of the construction of the device.
- > The value of k can be determined from the following equation:

$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_T)^2}$$

where $I_{D(on)}$ and $V_{GS(on)}$ are the values for each at a particular point on the characteristics of the device.

Differences between JFETs and MOSFETs

JFET	MOSFET
Operate only in depletion mode	Operate in both depletion and enhancement mode
 Low input resistance (> 10⁹Ω) 	• High input resistance (around $10^{13}\Omega$)
High drain resistance	Low drain resistance
Large Leakage current	Small Leakage current
Not easy Construction	Easy Construction

Example

For a *n* -channel JFET with $V_p = -8$

V, $I_{Dss} = 10 \text{ mA}$. Determine:

- a. The transfer characteristic curve.
- b. I_{DQ} .

Solution

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$I_{DQ} = 5.6 mA$$

Page • 28

Example

Using the data provided on the specification VGS(on) 10 V, ID(on)

- = 3mA and an average threshold voltage of $V_{GS}(Th) = 3V$, determine:
- (a) The resulting value of k for the MOSFET.
- (b) The transfer characteristics.

$$k = \frac{I_{D(\text{on})}}{(V_{GS(\text{on})} - V_{GS(\text{Th})})^2}$$

$$= \frac{3 \text{ mA}}{(10 \text{ V} - 3 \text{ V})^2} = \frac{3 \text{ mA}}{(7 \text{ V})^2} = \frac{3 \times 10^{-3}}{49} \text{ A/V}^2$$

$$= \mathbf{0.061 \times 10^{-3} \text{ A/V}^2}$$

$$I_D = k(V_{GS} - V_T)^2$$

$$= 0.061 \times 10^{-3} (V_{GS} - 3 \text{ V})^2$$
For $V_{GS} = 5 \text{ V}$,
$$I_D = 0.061 \times 10^{-3} (5 \text{ V} - 3 \text{ V})^2 = 0.061 \times 10^{-3} (2)^2$$

 $= 0.061 \times 10^{-3} (4) = 0.244 \text{ mA}$

Example

For $V_{GS} = 8$, 10, 12, and 14 V, I_D will be 1.525, 3 (as defined), 4.94, and 7.38 mA, respectively.

The transfer characteristics are sketched in Fig.

