Naturwissenschaftliche Grundlagen der Medizin Physik für Mediziner

Physik für Mediziner
Prof. Jürg Osterwalder
HS 2011

Michal Sudwoj michal.sudwoj@uzh.ch

Geschrieben in XelaTEX

Inhaltsverzeichnis

I	vor	iesung	snouzen	3	
0	k für Mediziner?	4			
1	Mec	hanik		6	
	1.1	Kinem	atik	6	
		1.1.1	Weg-Zeit-Diagramm	6	
		1.1.2	Geschwindigkeit	7	
		1.1.3	Geschwindigkeits-Zeit Diagramm	7	
		1.1.4	Nicht-gleichförmige Bewegungen	7 8	
		1.1.5	Bewegungen in der Ebene	11	
			Ortsvektor $\vec{r}(t)$	11	
			Schnelligkeit	12	
			Momentanbeschleunigung	12	
		1.1.6	Wann ist eine Bewegung beschleunigt?	12	
		1.1.7	Bewegungen im 3D-Raum	13	
	1.2	Dynan		13	
		1.2.1	Kraft/Masse	14	
		1.2.2	Die Newtonschen Prinzipien (1686)	14	
			1. Newtonsches Prinzip (Trägheitsprinzip)	15	
			Newtonsches Prinzip (Reaktionsprinzip)	15	
		1.2.3	Arten von Kräften	17	
			Gravitationskraft	17	
			Elektromagnetische Kräfte	17	
			starke Kraft	17	
			schwache Kraft	17	
		1.2.4	Coulombkraft und ihre Erscheinungsformen	17	
			Coulombgesetz	18	
			Kraftgesetz zwischen zwei Atomen	18	
			Kraftkurve	19	
		1.2.5	Reibungskräfte	19	

@**(1)**

INHALTSVERZEICHNIS

			INHALTSVERZEICH	NIS											
	1.2.6 1.2.7	Haftreibung $$ Gleitreibung $ec{F_R}$ $$ Kraftstösse $$		19 19 20											
II	Anhäng	ge		21											
Α	Vorlesung	s vorlagen eilung der Normalkräfte hängt von de	r Belastung ah Bei-	22 ung ab. Bei-											
		Schuh	•	23											
Ind	dex			24											
То	Do			25											

Teil I Vorlesungsnotizen

Kapitel o

Wozu Physik für Mediziner?

Physik = Lehre der Naturgesetze

1. Mensch & Tier: Teil der Natur \rightarrow Verständnis des Organismus

Bsp.:

- Hüftgelenk \rightarrow Mechanik, Festigkeitslehre
- Auge → Optik
- Reizübertragung (Nerven) → Elekrizität
- Blutzirkulation → Strömungslehre
- 2. Diagnostik-/Theraoiewerkzeuge \rightarrow physikalische Apparate

Bsp.:

- Röntgenapparatur, CT, MRI \rightarrow Verstehen der Resultate \rightarrow Schutz von Patient + Personal
- 3. Besondere Berufsbilder

KAPITEL O. WOZU PHYSIK FÜR MEDIZINER?

- Gerichtsmediziner
- Sicherheit, Unfallverhütung
- Strahlenschutz
- 4. Analytisches Denken! Probleme lösen: (Diagnose, Entscheidungen treffen)

Michal Sudwoj 5 Stand: 30. September 2011

Kapitel 1

Mechanik

1.1 Kinematik

Beschreibung von Bewegungen einfachster Fall:

- geradlinige Bahn (1D)
- gleichförmige Bewegung

1.1.1 Weg-Zeit-Diagramm

$$\tan \alpha = \frac{\Delta s}{\Delta t} \stackrel{!}{=} v$$

konst. Steigung von $s(t) \implies \mathsf{konst.}\,v$

6

Michal Sudwoj Stand: 30. September 2011

1.1.2 Geschwindigkeit

Def.: Geschwindigkeit:

$$v = \frac{\Delta s}{\Delta t}$$
$$[v] = \frac{m}{s}$$

1.1.3 Geschwindigkeits-Zeit Diagramm

$$v(t) = \frac{\Delta s}{\Delta t}$$

Fläche $= v \cdot \Delta t = \Delta s\,!\,=\,{\rm zur\ddot{u}ckgelegter\,Weg}$

1.1.4 Nicht-gleichförmige Bewegungen

Geschwindigkeit v(t)

 $\overline{v} = rac{\Delta s}{\Delta t} = ext{ mittlere Geschwindigkeit zw. } t_1 ext{ und } t_2$

$$v(t_1) = \lim_{t_1 \to t_2} \frac{\Delta s}{\Delta t} \underset{\text{Math.}}{=} s'(t)$$

$$v(t) = s'(t)$$

Schreibweise

$$\Delta t \leadsto \mathrm{d}t$$

$$v(t) = s'(t) =: \frac{\mathrm{d}s}{\mathrm{d}t}$$

- 1. Ableitung
- v(t): Momentangeschwindigkeit

Bsp.: v nimmt gleichmässig zu:

Fläche
$$\stackrel{?}{\underset{\text{Math.}}{=}} \int_{t_1}^{t_2} v(t) \, \mathrm{d}t$$

Undefinënderung der Geschwindigkeit mit der Zeit: seq.

Def.: Beschleunigung:

$$a = \frac{\Delta v}{\Delta t}$$
$$[a] = \frac{m}{2}$$

Fall:

- gleichförmige Beschleunigung: a = konst.
- beliebige Funktion $\boldsymbol{a}(t)$

$$a(t) = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$a(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}s}{\mathrm{d}t}\right) = s''(t) =: \frac{\mathrm{d}^2 s}{\mathrm{d}t^2}$$

Bsp.: Der freie Fall:

auf der Erdoberfläche

$$a(t) = a_{\mathrm{Fall}} = g = 9.81 \frac{\mathrm{m}}{\mathrm{s}^2}$$

Fläche $= g(t - t_0)$

$$v(t) = v_0 + g(t - t_0)$$

$$\Delta v = g(t-t_0)$$
 Fläche $= v_0(t-t_0) + \frac{1}{2}g(t-t_0)^2 = \Delta S$

Michal Sudwoj $= s_0 + v_0(t - t_0) + \frac{1}{2}g(t - t_0)$

Stand: 30. September 2011

Bewegungen in der Ebene

Ortsvektor $\vec{r}(t)$

- → Länge (Betrag)
- → Richtung

Geschwindigkeit: $\frac{\text{Weg}}{\text{Zeit}}$ Weg: $\Delta \vec{r} = \vec{r}(t) - \vec{r}(t_0)$ $\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$ mittlere Geschwindigkeit

Momentangeschwindigkeit: $\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} \stackrel{\text{Math.}}{=} \frac{\mathrm{d} \vec{r}}{\mathrm{d} t}$

$$\vec{r}(t) = \vec{x}(t) + \vec{y}(t)$$

 $\implies {\sf Komponentenschreibweise}$

$$\vec{r}(t) = (x(t), y(t))$$

$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \left(\frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}y}{\mathrm{d}t}\right)$$

v(t):

- Betrag (Schnelligkeit)
- Richtung! (tangential zu Bahn)

Schnelligkeit

$$|\vec{v}(t)| = v(t) = \sqrt{v_1^2(t) + v_2^2(t)}$$

Momentanbeschleunigung

$$\vec{a}(t) = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}^2 \vec{s}}{\mathrm{d}t^2}$$

1.1.6 Wann ist eine Bewegung beschleunigt?

Wenn \vec{v} sich ändert!

- \rightarrow Betrag
- $\rightarrow \ \text{Richtung!}$

Bsp.: Kreisbewegung mit konstante Umlaufgeschwindigkeit:

 $\implies v = \text{konst.}, \vec{v} \text{ dreht } \implies \text{Zentripetalbeschleunigung}$

$$a = \frac{v^2}{r}$$

1.1.7 Bewegungen im 3D-Raum

nicht Neues!

$$\vec{r}(t) = (x(t), y(t), z(t))$$

1.2 Dynamik

 \implies Ursache der Bewegung

1.2.1 Kraft/Masse

Def.: Kraft: ...Wirkung!

Bsp.:

- Gewicht heben
- Deformation (Messung!)
- Bewegung

Def.: Masse:

"Trägheit" ("...schwieriger in Bewegung zu setzen")

Kraft: Vektor!

Länge, Richtung, Angriffspunkt

1.2.2 Die Newtonschen Prinzipien (1686)

$$\underbrace{\vec{F}}_{\text{Ursache}} = \underbrace{m \cdot \vec{a}}_{\text{Wirkung}}$$

$$[F] = \text{kg} \frac{\text{m}}{\text{s}^2} = \text{N} \quad (\text{Newton})$$

⇒ 2. Newtonsche Prinzip (Axiom) (Aktionsprinzip) Anwendung:

- Mann kennt Kraft ⇒ Beschleunigung + Bahn berechnen
- Ich sehe Beschleunigung ⇒ Was für Kräfte wirken

1. Newtonsches Prinzip (Trägheitsprinzip)

kräftefreie Körper ($\vec{F} = \vec{0}$, $\sum_i \vec{F}_i = \vec{0}$)

- → Körper in Ruhe (ist + bleibt)
- \rightarrow bewegt sich mit konst. Geschwindigkeit $\vec{v} =$ konst.
- ⇒ Bewegungszustände

Newtonsches Prinzip (Reaktionsprinzip)

(action = reactio) Kräfte rühren immer von Wechselwirkungen (WW)

Bsp.: Feder:

$$\vec{F_{21}} = -\vec{F_{12}}$$

Reaktionspartner \rightarrow greifen immer an verschiedenen Körper an

Repetition: Dynamik:

Kraft: erzeugt Bewegung

Masse: Trägheit

Newtonsche Prinzipier

- 1. kräftefreier Körper: $\vec{v} = \text{konst.}$ (z.B. $\vec{v} = \vec{0}$)
- 2. $\vec{F} = m\vec{a}$ Ursache & Wirkung
- 3. Kräfte rühren immer von WW her

 $\vec{F_{21}} = -\vec{F_{1}}$ 2

Bsp.: Hammer & Nagel:

- 2. $\vec{F_{NH}} = M\vec{a_H}$
- 3. $\vec{F_H N} = -\vec{NH}$

1.2.3 Arten von Kräften

Gravitationskraft

(Anziehung von Massen) auf Erdoberfläche Gewichtskraft $ec{G}$

Betrag: mg

Richtung: zum Erdmittelpunkt

Angriffspunkt: Schwerpunkt

Reaktionspartner:

Elektromagnetische Kräfte

(Anziehung / Abstossung von Ladungen)

- → Coulombkraft (elektrische Kraft; verschiedene Erscheingungsformen)
- → magnetische Kraft
- → Lorentzkraft

starke Kraft

→ Stabilität der Atomkeime

schwache Kraft

→ Radioaktivität

1.2.4 Coulombkraft und ihre Erscheinungsformen

- elastische Kräfte im festen Körpern (Kohäsion)
- Berührungskräfte Die Normalkraft

Coulombgesetz

$$F_{21} = F_{12} = \frac{1}{4\pi\varepsilon_0} \frac{Q_1 Q_2}{r^2}$$

elektirsche Feldkonstante $\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{As}{Vm}$

Kraftgesetz zwischen zwei Atomen

18

Kraftkurve

GGW-Abstand (chemische Bindung)

1.2.5 Reibungskräfte

(parallel zur Berührungsfläche)

Haftreibung

Quader unbewegt

$$\vec{F_H} = -\vec{F_F}$$

maximale Haftreibung:

$$F_H \leq \underbrace{\mu_H}_{\text{Haftreibungszahl}} F_N$$

1.2.6 Gleitreibung $\vec{F_R}$

• Richtung: versucht immer Relativbewegung zu bremsen.

 $\bullet \ \ {\rm unabh\"{a}ngig} \ {\rm von} \ v$

$$F_R = \mu_G \cdot F_N$$

1.2.7 Kraftstösse

Teil II Anhänge

Anhang A Vorlesungsvorlagen

SCHUH

Index

Beschleunigung, **8**

Geschwindigkeit, **7**

Kraft, 14

Masse, 14

24

Todo list

Undefined sec	1 .																		8