P = (x, y)

$$P = (r, \theta)$$

$$\theta$$
 = directed angle r = directed distance

Example Plot in polar coordinates:

a)
$$P_1 = (3, \frac{\pi}{6})$$

b)
$$P_2 = (3, -\frac{\pi}{6})$$

c)
$$P_3 = (-3, \frac{\pi}{6})$$

d)
$$P_4 = \left(3, -\frac{11\pi}{6}\right)$$

e)
$$P_5 = \left(-3, \frac{7\pi}{6}\right)$$

Every point has infinitely many pole-coordinate representations:

$$(r,\theta) = (r,\theta + 2n\pi) = (-r,\theta + \pi) = (-r,\theta + (2n+1)\pi)$$

e.g.
$$P_2 = (3, \frac{11\pi}{6}) = (-3, \frac{5\pi}{6}) = (-3, -\frac{7\pi}{6})$$

Coordinate Conversion

The polar coordinates (r, θ) and the rectangular coordinates (x, y)are related as follows:

$$x = r\cos\theta$$
$$y = r\sin\theta$$

$$r^2 = x^2 + y^2$$

$$\tan \theta - y$$

Example Convert to rectangular coordinates:

a)
$$(3, \frac{\pi}{6})$$

a)
$$\left(3, \frac{\pi}{6}\right)$$
 $x = 3\cos\frac{\pi}{6} = \frac{3\sqrt{3}}{2}$ $y = 3\sin\frac{\pi}{6} = \frac{3}{2}$

$$y = 3\sin\frac{\pi}{6} = \frac{3}{2}$$

b)
$$(5,-\pi)$$

b)
$$(5,-\pi)$$
 $x = 5\cos \pi = -5$ $y = 5\sin \pi = 0$

$$y = 5\sin \pi = 0$$

Example Convert to polar coordinates: (x, y) = (1, -1)

$$r^2 = 1^2 + (-1)^2 = 2$$
 $r = \pm \sqrt{2}$

$$\tan \theta = \frac{-1}{1} = -1$$
 \Rightarrow $\theta = -\frac{\pi}{4} + n\pi$

quadrant IV : $\left[-\frac{\pi}{4} + 2k\pi\right]$ $\left(\sqrt{2}, -\frac{\pi}{4} + 2k\pi\right)$ or $\left(-\sqrt{2}, \frac{3\pi}{4} + 2k\pi\right)$ quadrant II: $\frac{3\pi}{4} + 2k\pi$ $\left(-\frac{\pi}{4} + 2k\pi + \pi\right)$

Converting Equations

Example Convert 2x-3y=7 to a polar equation. Solve for r.

$$2r\cos\theta - 3r\sin\theta = 7$$

$$r(2\cos\theta - 3\sin\theta) = 7$$

$$x = r\cos\theta$$
$$v = r\sin\theta$$

$$r = \frac{7}{2\cos\theta - 3\sin\theta}$$

Example Convert each polar equation to a rectangular equation.

a)
$$r =$$

$$r^2 = 49$$

a)
$$r = 7$$
 $r^2 = 49$ $x^2 + y^2 = 49$

$$r^2 = x^2 + y^2$$

b)
$$\theta = \frac{\pi}{3}$$

b)
$$\theta = \frac{\pi}{3}$$
 $\tan \theta = \tan \frac{\pi}{3} = \sqrt{3}$

$$\frac{y}{x} = \sqrt{3}$$
 $y = \sqrt{3}x$

c)
$$\theta = \frac{3\pi}{2}$$

 $\tan \theta$ is undefined.

$$\frac{y}{x}$$
 is undefined. $\Leftrightarrow x = 0$

 $x = r \cos \theta$ $v = r \sin \theta$

d)
$$r = 8 \sec \theta$$

$$r = \frac{8}{\cos \theta}$$

$$r = \frac{8}{\cos \theta} \qquad r \cos \theta = 8$$

e) $r = -2\cos\theta$ (multiply by r)

$$r^2 = -2r\cos\theta$$

$$r^2 = -2r\cos\theta \qquad \qquad \boxed{x^2 + y^2 = -2x}$$

$$r^2 = x^2 + y^2$$

$$\tan \theta - \frac{y}{2}$$

 $2\sin\theta\cos\theta$

f)
$$5\sin 2\theta = 1$$
 $10\sin\theta\cos\theta = 1$ (multiply by r^2)

$$10 \frac{r \sin \theta r \cos \theta}{10xy} = r^2 \qquad 10xy = x^2 + y^2$$

$$10xy = x^2 + y^2$$

 $x = r \cos \theta$ $v = r \sin \theta$

Graphing in Polar Coordinates Example Graph all points (r,θ) that satisfy the given condition: a) r = 5b) $4 \le r < 5$ c) $\theta = 1$ $\left(\frac{\pi}{3}\right)$ $\left(r \ge 0\right)$ $\left(r \le 0\right)$

i) $r = 2\sqrt{3}$, ii) the pole (r = 0)

a) the slopes of the lines tangent to the curve at the indicated points:

b) the points on the curve where the tangent line is: i) horizontal, ii) vertical

$$\frac{dy}{dx} = \frac{\cancel{8}\cos 2\theta \sin \theta + \cancel{4}\sin 2\theta \cos \theta}{\cancel{8}\cos 2\theta \cos \theta - \cancel{4}\sin 2\theta \sin \theta}$$

$$= \frac{2(\cos^2 \theta - \sin^2 \theta)\sin \theta + \cancel{2}\sin \theta \cos^2 \theta}{2(\cos^2 \theta - \sin^2 \theta)\cos \theta - \cancel{2}\sin^2 \theta \cos \theta}$$

$$= \frac{\sin \theta}{\cos \theta} \cdot \frac{2\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta - 2\sin^2 \theta} = \boxed{\tan \theta \cdot \frac{2 - \tan^2 \theta}{1 - 2\tan^2 \theta}} = m(\theta)$$
a)
i) $r = 4\sin 2\theta = 2\sqrt{3} \Leftrightarrow \sin 2\theta = \sqrt{3}/2 \Leftrightarrow 2\theta = \frac{\pi}{3}, \frac{2\pi}{3} \Leftrightarrow \theta = \frac{\pi}{6}, \frac{\pi}{3}$

$$m(\frac{\pi}{6}) = \frac{\sqrt{3}}{3} \cdot \frac{2 - \frac{1}{3}}{1 - \frac{2}{3}} = \frac{5\sqrt{3}}{3} \qquad m(\frac{\pi}{3}) = \sqrt{3} \cdot \frac{2 - 3}{1 - 6} = \frac{\sqrt{3}}{5}$$
ii) $r = 4\sin 2\theta = 0 \Leftrightarrow \theta = 0, \frac{\pi}{2}$ (one point visited twice) (two tangent lines)
$$m(0) = 0 \quad \text{(horizontal tangent)} \qquad m(\frac{\pi}{2}) = \text{undefined} \quad \text{(vertical tangent)}$$

b) the points on the curve where the tangent line is

Tangents at the Pole

Suppose the curve $r = f(\theta)$ passes through the pole when $\theta = \theta_0$; i.e. $f(\theta_0) = 0$.

$$m(\theta_0) = \frac{f'(\theta_0)\sin\theta_0 + f(\theta_0)\cos\theta_0}{f'(\theta_0)\cos\theta_0 - f(\theta_0)\sin\theta_0} = \tan\theta_0 \qquad \text{(if } f'(\theta_0) \neq 0\text{)}$$

Therefore the polar line $\theta = \theta_0$ is tangent to the curve at the point $(r, \theta) = (0, \theta_0)$

Example

Find all the lines tangent to the polar curve $r = f(\theta) = 2\cos 3\theta$, $0 \le \theta \le 2\pi$ at the pole.

Hint: Find the zeros of $f(\theta)$ that are not zeros of $f'(\theta)$

$$f(\theta) = 2\cos 3\theta = 0$$
 iff $\theta = \frac{\pi}{6}, \frac{\pi}{2}$ (not zeros of $f'(\theta) = -6\sin 3\theta$)

The tangent lines in polar form: $\theta = \frac{\pi}{6}$, $\theta = \frac{\pi}{2}$

(cartesian form: $y = \frac{\sqrt{3}}{3}x$, x = 0)

Example

Find the area inclosed in one loop of the polar curve $r = a \cos 3\theta (a > 0)$.

Let A_1 be the area of the top half of the right-hand loop. Then

$$A_{1} = \frac{1}{2} \int_{0}^{\pi/6} (a\cos 3\theta)^{2} d\theta = \frac{a^{2}}{2} \int_{0}^{\pi/6} \cos^{2} 3\theta d\theta = \frac{a^{2}}{4} (\theta + \frac{1}{6}\sin 6\theta) \Big|_{0}^{\pi/6} = \frac{\pi a^{2}}{24}$$

$$\int \cos^{2} 3\theta d\theta = \frac{1}{2} \int (1 + \cos 6\theta) d\theta = \frac{1}{2} (\theta + \frac{1}{6}\sin 6\theta)$$

And so the area inclosed in one loop is

$$A = 2A_1 = \boxed{\frac{\pi a^2}{12}}$$

Areas and Lengths in Polar Coordinates

The area of the region bounded by the polar curve $r = r(\theta) \ge 0$ and the rays $\theta = \alpha$, $\theta = \beta$ can be calculated by the formula

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r(\theta)^2 d\theta$$

The area of the region bounded by the polar curves $r = r_2(\theta)$, $r = r_1(\theta)$, where $r_2(\theta) \ge r_1(\theta) \ge 0$, and the rays $\theta = \alpha$, $\theta = \beta$ can be calculated by the formula

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \left[r_2(\theta)^2 - r_1(\theta)^2 \right] d\theta$$

