Πανεπιστήμιο Μακεδονίας Τμ. Εφαρμοσμένης Πληροφορικής

Τελεστές (Operators)

Δομή

- Τελεστές
- Ορισμός
 - □ Προτεραιότητα
 - Προσεταιριστικότητα
- Παράδειγμα

Σημειογραφία της Prolog

- Σε αρκετές περιπτώσεις η συνηθισμένη σημειογραφία (notation) της Prolog μπορεί να αποδειχθεί λίγο αδόκιμη/δυσνόητη.
- Συνηθισμένη αναπαράσταση μαθηματικών εκφράσεων:

- Μεταφρασμένη σε μορφή όρων στην Prolog:
 (+(*(32,X),*(44,Y)),12)
- Ορθή, συνεπής αλλά όχι πρόσφορη.

Τελεστές

- Η σημειογραφία της Prolog επεκτείνεται ώστε να υποστηρίζει τη συνήθη ενθεματική μορφή μέσω του ορισμού τελεστών.
- Η Prolog έχει ήδη ένα πλήθος τελεστών που ορίζονται.
 - □ "Βέλος" (':-'), το κόμα (',') και αριθμητικούθς τελεστές.

Τελεστές (cont)

- Οι τελεστές δεν μεταβάλλουν την λειτουργική σημασιολογία της γλώσσας.
 - Syntactic sugar
 - Εσωτερικά τα πάντα μεταφράζονται στην συνηθισμένη μορφή όρων της Prolog.

?- X is 3+4.

$$X = 7$$

?-X is +(3,4)
 $X = 7$

Ενθεματική μορφή

- Η σαφής μετάφραση μιας παράστασης η οποία περιέχει ενθεματικούς τελεστές απαιτεί τον ορισμό δύο πραγμάτων:
 - □ Προτεραιότητα (Precedence)
 - □ Προσεταιριστικότητα (Associativity)

Προτεραιότητα

Στη έκφραση32*X+Y

ποια η σωστή μετάφραση;

Constraint Logic Programming

Προτεραιότητα Τελεστών

- Αριθμητική τιμή από 0 to 1200
 - □ (στις περισσότερες υλοποιήσεις της Prolog)
 - □ Εκφράζει **σειρά (order)**
- Καθορίζει ποιος τελεστής είναι το κύριο συναρτησιακό σύμβολο (functor) μιας έκφρασης.
- Μεγάλη τιμή, μικρή προτεραιότητα. Άρα ο τελεστής με την μεγαλύτερη τιμή αποτελεί το κύριο συναρτησιακό σύμβολο (root).

Μετάφραση με βάση την προτεραιότητα

- Αν ο τελεστής "*" έχει μεγαλύτερη τιμή σειράς
 σε σχέση με το "+" τότε το σωστό είναι το (a);
- Σε αντίθετη περίπτωση το (b)

Προσεταιριστικότητα

- Τι γίνεται σε περίπτωση που υπάρχουν δύο τελεστές ίσης προτεραιότητας?
- Για παράδειγμα:

9/3/3

Αριστερά προσεταιριστικοί τελεστές

 Στα αριστερά του τελεστή υπάρχει μια έκφραση ίδιας ή μικρότερης τιμής σειράς.

Left-Associative /(/(9,3),3)

Constraint Logic Programming

Δεξιά προσεταιριστικοί τελεστές

 Στα δεξιά του τελεστή υπάρχει μια έκφραση ίδιας ή μικρότερης τιμής σειράς.

Right Associative /(9,/(3,3))

Θέση τελεστών

- Ενθεματικοί Τελεστές
 - Εμφανίζονται ανάμεσα στα ορίσματά τους
 - □ πχ. αριθμητικοί τελεστές
- Προθεματικοί Τελεστές
 - Μπροστά από τα ορίσματα
 - □ Ο τελεστής not .
- Επιθεματικοί Τελεστές
 - Εμφανίζονται μετά τα ορίσματα
 - □ πχ παραγοντικό (23!).

Ορισμός τελεστών στην Prolog

- Xρήση directives
 - Κανόνες χωρίς κεφαλή (head) οι οποίοι βρίσκονται συνήθως στην αρχή του αρχείου.
- Ο ορισμός γίνεται με την χρήση του ορ/3 built-in κατηγορήματος:

:-op(<Precedence>,<Type>,<operatorName>).

Κατηγόρημα Ορ/3

- fx, fxx or fy fxy για προθεματικούς τελεστές
- xfx, yfx and xfy για ενθεματικούς τελεστές
- xf, yf για επιθεματικούς τελεστές

Operator Type

- Τγρε είναι ένα από τα
 - □ xfx, xfy, yfx, yf, xf, fy, fx, fxx, fxy
- f αναπαριστά τον τελεστή και x και y τα ορίσματα.
- x σημαίνει ότι η έκφραση στη συγκεκριμένη θέση πρέπει να έχει αυστηρά μικρότερη τιμή προτεραιότητας,
- y σημαίνει ότι ο τελεστής θα πρέπει να έχει μικρότερη ή το πολύ ίση τιμή προτεραιότητας.
- Για παράδειγμα:
 - yfx αριστερά προσεταιριστικός ενθεματικός τελεστής,
 - xfy δεξιά προσεταιριστικός ενθεματικός τελεστής.

Παραδείγματα και εσωτερική αναπαράσταση

- :- op(500,xfx,in).
- :- op(500,xfy,in).
- :- op(500,yfx,in).
- :- op(500,fx ,pre).
- op(500,fy,pre).
- :- op(500, xf,post).
- :- op(500, yf,post).
- :- op(500,fxx,bin).
- :- op(500,fxy,bin).

- A in B
- A in B in C
- A in B in C
- pre A
- pre pre A
- A post
- A post post
- bin AB
- bin A bin B C

- in(A,B)
- in(A,in(B,C))
- in(in(A,B),C)
- pre(A)
- pre(pre(A))
- post(A)
- post(post(A))
- bin(A,B)
- bin(A,bin(B,C))

Έλεγχος ορισμού Τελεστών

 current_op/3 επιτρέπει να "δούμε" τους ορισμούς τελεστών.

```
current_op(<Prec>,<Type>,<OpName>).
```

- write_canonical/1 εμφανίζει την εσωτερική μορφή των τελεστών.
- Κώδικας που εμφανίζει όλους τους ορισμένους τελεστές στη Prolog current_op(Prec, Type, OpName), write(Prec), write(Type), write(OpName), nl, fail.

Constraint Logic Programming

Εκφράσεις Προτασιακής Λογικής

Αναπτύξτε ένα πρόγραμμα το οποίο πετυχαίνει αν η έκφραση της προτασιακής λογικής που δίνεται σαν ερώτηση στην Prolog είναι αληθής. Το πρόγραμμα θα πρέπει να αποτιμά εκφράσεις της μορφής:

?- t and f or f or t. yes

Ο Ορισμός των Τελεστών

- Δύο τελεστές απαιτούνται
 - □ "and" και "or".
- Ενθεματικοί, αριστερά προσεταιριστικοί με προτεραιτότητα στη σύζευξη.

```
:-op(450,yfx,and).
```

:-op(500,yfx,or).

Ορίζοντας τη σχέση and/2

```
and(Arg1,Arg2):-
Arg1,Arg2.
```

Ή εφόσον έχουμε ορίσει τους τελεστές:

```
Arg1 and Arg2 :- Arg1, Arg2.
```

Πλήρης Κώδικας (1/2)

%%% operator definitions.

:-op(450,yfx,and).

:-op(500,yfx,or).

%%% and operator definition

Arg1 and Arg2 :- Arg1, Arg2.

Πλήρης Κώδικας (2/2)

```
%%% or operator definition
Arg1 or Arg2 :-
  Arg1.
Arg1 or Arg2 :-
  Arg2.
%%% truth values
f:-!,fail.
```