Bayes' rule simply

March 24, 2019

Bayes' rule is usually written

$$P(\theta|x) = P(x|\theta) \frac{P(\theta)}{P(x)}$$

In practice we're trying to learn about some model parameter θ given some observation x. The model $P(x|\theta)$ tells us how observations are influenced by the model parameter. This seems simple enough, but a small change in notation reveals how simple Bayes' rule is. Let us call $P(\theta)$ the prior on θ and $P'(\theta)$ the posterior on theta. Then Bayes' rule says:

$$P'(\theta) \propto P(x|\theta)P(\theta)$$

We got rid of the denominator P(x) because it's just a normalisation to make the total probability sum to 1, and instead say that $P'(\theta)$ is proportional to $P(x|\theta)P(\theta)$. The value $P(x|\theta)P(\theta) = P(x,\theta)$ is the joint probability of seeing a given pair (x,θ) , so we can also write Bayes' rule as:

$$P'(\theta) \propto P(x,\theta)$$

So up to normalisation, the posterior is just substituting the actual observation X=x into the joint distribution. How can we interpret this? Imagine that we have a robot whose current state of belief is given by $P(x,\theta)$ and that x,θ only have a finite number of possible values, so that the robot has stored a finite number of probabilities $P(x,\theta)$, one for each pair (x,θ) . Suppose that the robot now learns X=x by observation. What does it do to compute its posterior belief? It first sets $P(y,\theta)=0$ for all $y\neq x$ because the actual observed value is x. Then it renormalises the probabilities to make $P(x,\theta)$ sum to 1 again. That's all Bayes' rule is: simply delete the possibilities that are incompatible with the observation, and renormalise the remainder.