Congratulations! You passed!

TO PASS 75% or higher

Keep Learning

GRADE 100%

Module 3: Graded Quiz

LATEST SUBMISSION GRADE

100%

1.	Which of these statements are true? Select any/all that apply:	1/1 point
	Every unit quaternion has an associated 3x3 rotation matrix.	
	Correct! Every quaternion corresponds to a 3x3 rotation matrix.	
	Every 3x3 matrix represents a 3D rotation.	
	Every set of Euler angles corresponds to a unit quaternion.	
	Correct Correct! Any set of Euler angles represents a rotation which can also be represented by a unit quaternion.	

Which of these are valid rotation matrices? Select any/all that apply:

2/2 points

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$C_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

~

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$C_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

Correct

Correct! $C_2C_2^T = \mathbf{I}$ holds and $\det C_2 = 1$.

~

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

✓ Correct

Correct! Since C_1 is an identity matrix, it is equivalent to performing "zero" rotation.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$C_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$

3. Localization can be performed on board a vehicle by integrating the rotational velocities and linear accelerations measured by an IMU. Assuming that the IMU measurement noise is drawn from a normal distribution, what will the pose estimation error look like?

1 / 1 point

- The vehicle pose estimation error will grow with time.
- The vehicle pose estimate error will remain within a bounded interval.
- The vehicle pose estimate error will decrease with time.

Correct! Since we are integrating noisy measurements, the error will build up over time.

4. Each GPS satellite transmits a signal that encodes:

1/1 point

- The receiver's position and time of signal transmission
- The satellite's position and time of signal transmission.

✓ Correct

Correct! This information can be used to calculate the vehicle's position.

5. Which of these systems provides the most accurate positioning measurement?

1 / 1 point

	RTK GPS	
	GPS GPS	
	DGPS	
	Correct Correct! RTK uses phase of the GPS carrier signal to provide centimetre-level accuracy.	
6.	What is the minimum number of GPS satellites required to estimate the 3D position of a vehicle through trilateration?	2/2 points
	Correct Correct! A minimum of four satellites is required to unambiguously calculate the vehicle's 3D position.	