Vnořování stromů

Václav Rozhoň

¹Karlova univerzita

SVOČ, 2018

• Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.
- Ukazuje se, že problematické je vnořování bipartitních grafů.

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.
- Ukazuje se, že problematické je vnořování bipartitních grafů.
- Vnořování stromů je důležitým speciálním případem.

- Extremální teorie grafů: kolik hran v grafu vynutí určitou strukturu?
- Mantelova věta: obsahuje-li graf na n vrcholech více než $n^2/4$ hran, nalezneme v něm trojúhelník.
- Ukazuje se, že problematické je vnořování bipartitních grafů.
- Vnořování stromů je důležitým speciálním případem.

Hypotéza (Erdős, Sósová, 1963)

Každý graf s průměrným stupněm větším než k-1 obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Částečné výsledky:

• pro speciální stromy (cesty - Erdős, Gallai, 1959)

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)
- liší-li se velikost grafu a stromu pouze o konstantu (Görlich, Zak 2016)

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)
- liší-li se velikost grafu a stromu pouze o konstantu (Görlich, Żak 2016)

Věta (Ajtai, Komlós, Simonovits, Szemerédi, 2018+)

Existuje k_0 takové, že hypotéza Erdős-Sósové platí pro všechna $k > k_0$.

Částečné výsledky:

- pro speciální stromy (cesty Erdős, Gallai, 1959)
- pro grafy neobsahující daný podgraf (C₄ Saclé, Wozniak 1997)
- liší-li se velikost grafu a stromu pouze o konstantu (Görlich, Žak 2016)

Věta (Ajtai, Komlós, Simonovits, Szemerédi, 2018+)

Existuje k_0 takové, že hypotéza Erdős-Sósové platí pro všechna $k>k_0$.

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Věta (Rozhoň, 2018+)

Hypotéza platí asymptoticky pro husté grafy a stromy se sublineárním maximálním stupněm.

Věta (Rozhoň, 2018+)

Pro každé $\eta>0$ existuje n_0 a $\gamma>0$ takové, že všechny grafy na $n>n_0$ vrcholech s průměrným stupněm $\deg(G)\geq k+\eta n$ obsahují libovolný strom na k vrcholech s maximálním stupněm $\Delta(T)\leq \gamma k$.

Horká novinka: Besomi, Pavez-Signé, Stein nezávisle dokázali velice podobný výsledek.

Obecnější výsledek zohledňující, že některé stromy lze vnořit snáze.

Obecnější výsledek zohledňující, že některé stromy lze vnořit snáze.

Věta (Rozhoň, 2018+)

Nechť $0 \le r \le 1/2$. Pro husté grafy platí asymptoticky následující. Je-li jejich minimální stupeň alespoň přibližně rk a obsahují-li alespoň konstantní proporci vrcholů stupně alespoň k, vnoříme libovolný strom na k vrcholech se sublineárním maximálním stupněm a jednou partitou velikosti maximálně rk.

Obecnější výsledek zohledňující, že některé stromy lze vnořit snáze.

Věta (Rozhoň, 2018+)

Nechť $0 \le r \le 1/2$. Pro husté grafy platí asymptoticky následující. Je-li jejich minimální stupeň alespoň přibližně rk a obsahují-li alespoň konstantní proporci vrcholů stupně alespoň k, vnoříme libovolný strom na k vrcholech se sublineárním maximálním stupněm a jednou partitou velikosti maximálně rk.

Předchozí tvrzení je důsledkem pro r = 1/2.

Obecnější výsledek zohledňující, že některé stromy lze vnořit snáze.

Věta (Rozhoň, 2018+)

Nechť $0 \le r \le 1/2$. Pro husté grafy platí asymptoticky následující. Je-li jejich minimální stupeň alespoň přibližně rk a obsahují-li alespoň konstantní proporci vrcholů stupně alespoň k, vnoříme libovolný strom na k vrcholech se sublineárním maximálním stupněm a jednou partitou velikosti maximálně rk.

Předchozí tvrzení je důsledkem pro r = 1/2.

Věta (Rozhoň, 2018+)

Pro libovolné $0 < r \le 1/2$ a $\eta > 0$ existuje n_0 a $\gamma > 0$ takové, že platí následující. Nechť G je graf na $n > n_0$ vrcholech s minimálním stupněm $\delta(G) \ge rk + \eta n$ takový, že alespoň ηn vrcholů má stupeň alespoň $k + \eta n$. Nechť T je strom na k vrcholech s maximálním stupněm $\Delta(T) \le \gamma k$ a jednou partitou velikosti nejvýše rk. Pak G obsahuje T.

Hypotéza Loebl-Komlós-Sósové

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza Loebl-Komlós-Sósové

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Věta (Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi, 2017)

Pro každé $\eta>0$ existuje k_0 takové, že pro každé $k>k_0$ platí, že libovolný graf G na n vrcholech s alespoň $(\frac{1}{2}+\eta)n$ vrcholy stupně alespoň $(1+\eta)k$ obsahuje libovolný strom na k vrcholech.

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza (Simonovits, personal communication)

Nechť $0 \le r \le 1/2$. Jestliže graf G obsahuje alespoň rn vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech s jednou partitou velikosti nejvýše rk jako podgraf.

Hypotéza (Loebl, Komlós, Sósová, 1995)

Jestliže graf G obsahuje alespoň polovinu vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech jako podgraf.

Hypotéza (Simonovits, personal communication)

Nechť $0 \le r \le 1/2$. Jestliže graf G obsahuje alespoň rn vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech s jednou partitou velikosti nejvýše rk jako podgraf.

Věta (Klimošová, Piguet, Rozhoň, 2018+)

Hypotéza Simonovitse platí asymptoticky pro husté grafy.

Hypotéza (Simonovits, personal communication)

Nechť $0 \le r \le 1/2$. Jestliže graf G obsahuje alespoň rn vrcholů stupně alespoň k, pak obsahuje libovolný strom na k+1 vrcholech s jednou partitou velikosti nejvýše rk jako podgraf.

Věta (Klimošová, Piguet, Rozhoň, 2018+)

Nechť $0 \le r \le 1/2$. Pro každé $\eta > 0$ existuje n_0 takové, že libovolný graf na $n > n_0$ vrcholech s alespoň rn vrcholy stupně alespoň $k + \eta n$ obsahuje libovolný strom na nejvýše k vrcholech s jednou partitou velikosti nejvýše rk.

Myšlenky důkazů

2) Clusterizace na mikrostromy

Myšlenky důkazů

1) Regularity lemma

na mikrostromy

