Modello di programmazione lineare intera per la pianificazione di turni ospedalieri

Candidato

Giulia Forasassi

Relatore

Prof. Fabio Schoen

Correlatore

Dott. Matteo Lapucci

Università degli Studi di Firenze

Scuola di Ingegneria - Dipartimento di Ingegneria dell'Informazione Corso di Laurea triennale in Ingegneria Informatica

27 Febbraio 2020

Piano della presentazione

1 Definizione del problema

2 Vincoli

3 Risultati ed esperimenti

Programmazione dei turni

- Attività fondamentale in ogni settore lavorativo
- Obbiettivo: ottimizzare pianificazione dei turni
- Problema di programmazione lineare intera

Competizione internazionale

- Fissati *N* infermieri e *M* settimane
- Output: orario lavorativo
- Soddisfare la maggior parte dei vincoli imposti

000

Dati del problema

Informazioni Generali

- Tipi turni: Mattino, Pomeriggio, Tardo pomeriggio, Notte
- Competenze: Caposala, Infermiere, Tirocinante...
- Tipi contratto: Full time. Part time. A chiamata

■ Informazioni Giornaliere

- Requisiti: numero minimo e ottimo di infermieri necessari
- Richieste infermiere: non lavorare in un turno di un dato giorno

Informazioni Storiche

- Numero di giorni lavorativi consecutivi
- Numero di giorni liberi consecutivi

Vincoli presi dal problema considerato nella competizione

- Limite turni giornalieri
- Livelli minimi di personale
- Successioni di turni valide
- Personale per copertura ottimale
- Assegnamenti/Giorni liberi consecutivi
- Intero week-end lavorato
- Giorni/Week-end totali lavorati

Hard: devono essere soddisfatti

Soft: se violati \rightarrow penalità

Vincoli Hard

Variabile d'assegnamento

$$a_{i,t,g} = \begin{cases} 1, & \text{se l'infermiere i è assegnato al turno t il giorno g,} \\ 0, & \text{altrimenti.} \end{cases}$$

Massimo un turno al giorno:

$$\sum_{t \in \mathcal{T}} a_{i,t,g} \le 1 \qquad \forall i \in I \qquad \forall g \in G$$

Livelli minimi di personale:

$$\sum_{i \in I_c} a_{i,t,g} \geq \textit{min}_{t,c,g} ~~ \forall t \in \mathcal{T} ~~ \forall c \in C ~~ \forall g \in G$$

3 Successioni di turni proibite:

$$a_{i,t_A,g} + a_{i,t_B,g+1} \le 1$$

 $\forall i \in I \quad \forall g \in G \quad \forall \ t_A, t_B \in T \quad tale \ che \ (t_A, t_B) \in Successioni \ Proibite$

Vincoli Soft: Personale per una copertura ottimale

Idea: confrontare il numero di assegnamenti fatti con il valore ottimale:

$$\begin{split} \sum_{i \in I_c} a_{i,t,g} &\geq opt_{t,c,g} &\implies \quad penalit \grave{a}_{t,c,g} = 0 \\ \sum_{i \in I_c} a_{i,t,g} &< opt_{t,c,g} &\implies \quad penalit \grave{a}_{t,c,g} = opt_{t,c,g} - \sum_{i \in I_c} a_{i,t,g} \end{split}$$

Si impone

$$\begin{split} \textit{penalit} \grave{a}_{t,c,g} \geq 0 & \forall t \in \textit{T} \quad \forall c \in \textit{C} \quad \forall g \in \textit{G} \\ \textit{penalit} \grave{a}_{t,c,g} \geq \textit{opt}_{t,c,g} - \sum_{i \in \textit{L}} \textit{a}_{i,t,g} & \forall t \in \textit{T} \quad \forall c \in \textit{C} \quad \forall g \in \textit{G} \end{split}$$

■ La penalità complessiva è data:

$$P = \sum_{t \in T} \sum_{c \in C} \sum_{g \in G} penalit \grave{a}_{t,c,g}$$

Giulia Forașa

Vincoli Soft

Assegnamenti totali

■ Devono stare entro il limite minimo e massimo previsti nel contratto

$$penalit \grave{a}_i \geq minTotLav_i - \sum_{g \in G} L_{i,g}$$

Week-end totali lavorati

■ Devono stare entro il limite massimo previsto nel contratto

$$\textit{penalit} \grave{a}_i \geq (\sum_{g \in \textit{GS}} \textit{L}^w_{i,g}) - \textit{maxTotWknd}_i \quad \forall i \in \textit{I}$$

In entrambi i casi la penalità complessiva è data da:

$$P = \sum_{i \in I} penalit \grave{\mathsf{a}}_i$$

Giulia Forașas

Vincoli Soft: Assegnamenti consecutivi minimi - Parte I

- Supponiamo un infermiere lavori il giorno 2 e il giorno 4
- Ma assegnamenti consecutivi minimi = 4
- Idea: una volta che inizia a lavorare, dovrebbe continuare fino a raggiungere il valore minimo di assegnamenti
- Confronto giorni in cui ha effettivamente lavorato con quelli che avrebbe dovuto lavorare per non violare il vincolo

Giorno 1	Giorno 2	Giorno 3	Giorno 4	Giorno 5	Giorno 6	Giorno 7
	X		X			
	×	×	X	X		

$$L_{i,g-1}^R = 0 \land L_{i,g}^R = 1 \Longrightarrow L_{i,j}^R = 1$$

Si impone

$$L_{i,g+n}^R \geq L_{i,g}^R - L_{i,g-1}^R$$

Vincoli Soft: Assegnamenti consecutivi minimi - Parte II

Considerando anche la storia:

- L'infermiere ha lavorato 2 giorni precedenti al periodo
- Quindi dovrebbe lavorare i 2 giorni del nuovo periodo

Storia	Storia	Giorno 1	Giorno 2	Giorno 3
×	X			
		X	×	

■ La penalità complessiva è data da:

$$P = \sum_{i \in I} \sum_{g \in G} L_{i,g}^R - L_{i,g}$$

Vincoli Soft

Intero week-end lavorato

■ Si penalizza i casi in cui si lavora uno solo dei due giorni:

$$P = \sum_{i \in I_{DW}} \sum_{g \in G_S} L_{i,g}^{ISAB} + L_{i,g}^{IDOM}$$

Preferenze infermieri

- Ciascun infermiere può chiedere un permesso
- Si penalizza le assegnazioni indesiderate:

$$P = \sum_{(i,g,t) \in \textit{Richieste}} a_{i,t,g}$$

Funzione obbiettivo

Funzione obbiettivo

Somma penalità vincoli **Soft**, moltiplicate dai corrispettivi pesi w_j

$$Obj = \sum_{j=1}^{Numero\ Vincoli} w_j P_j$$

- Scopo: soddisfare il numero maggiore di vincoli Soft
- Si vuole minimizzare la funzione obbiettivo.

Esempio: 1 Settimana - 20 Infermieri

Infermiere	Giorno 1	Giorno 2	Giorno 3	Giorno 4	Giorno 5	Giorno 6	Giorno 7
Michael	N				Р	Р	Р
Erma		Р	Р	M	M	N	
John	N				M	M	Р
Jewell	Р	Р	M	M	N		
Adrian			Р	N			M
Richard					M	Р	N
David	N				M		
Nella	M	N		N		P	M
Horacio		Р	N				N
Stanley				Р	Р		
Jimmie				M	N		
Becky	Р	М	M	Р	N		N
Anthony		N		Р	N		
Nicole	M	М	N				
Robert		М	M	N		M	M
John	Р	М				M	M
Angela	Р		N		M	Р	N
Elias	M	Р	Р	M	P	N	
Patricia	N		N		Р	M	Р
Julie	Р	Р	М	N			Р

Esperimenti

Basati sui dati della Competizione

■ Settimane: 4, 8

■ Infermieri: 30, 40, 50, 60, 80, 100, 120

■ Misurati: Gap e Tempo di calcolo della soluzione

Risultati con tempo massimo 1h

4 Settimane:

problema più semplice

■ il gap non supera il 20%

8 Settimane:

problema più difficile

■ il gap non supera l'80%

Si riesce sempre a trovare una soluzione ammissibile

Interfaccia

Interfaccia

Interfaccia

Tools

■ Linguaggio di programmazione: Python

- Software di ottimizzazione: Gurobi
- Framework interfaccia: *Django*

Fine

Vi ringrazio per la vostra attenzione. Ci sono domande?

Approfondimento Interfaccia

Approfondimento Interfaccia

Approfondimento Interfaccia

Approfondimento esperimenti

Tempo di calcolo della soluzione con tempo massimo 1h

Approfondimento esperimenti

Gap con tempo massimo 1h

