Deep Learning for Network Traffic Data

https://github.com/manish-marwah/KDD2022Tutorial

Manish Marwah, Martin Arlitt

Network traffic data

- Network traffic data is an extremely rich source of information
- It is highly voluminous and complex
- It has a lot of applications, particularly in areas of computer security, e.g., intrusion detection malware detection and network management, e.g., device identification

application identification

These can be cast as ML problems, but there are lots of challenges

Outline

Part 1: Network traffic background and challenges

Part 2: Representation learning for network traffic data

Part 3: Synthetic data generation for network traffic data

Part 1: Network Traffic Data

Outline

- Network traffic data
- Applications
- Data sets
- Challenges

Background: the Internet Protocol stack

- Application: supports end-user services and network applications
 - HTTP, SMTP, DNS, FTP, NTP
- Transport: end to end data transfer
 - o TCP, UDP
- Network: routing of datagrams from source to destination
 - ∘ <u>IPv4</u>, IPv6, BGP, RIP
- Data Link: channel access, framing, flow/error control, hop by hop basis
 - PPP, Ethernet, IEEE 802.11b WiFi
- Physical: transmission of bits

What is Network traffic Data?

- Traffic packets captured on the network
- Contain protocols headers and data
- Different types of traffic text, video, audio, ...

www.istockphoto.com

Where is Network Traffic Data Collected?

- Usually at an intranet edge where it can capture ingress / egress data
 - This simplifies collection
 - It may however not observe all traffic
 - Internal traffic that doesn't pass the collection point
 - Packets that are dropped due to capacity limits of the collection infrastructure

https://www.researchgate.net/figure/The-topology-of-network-traffic-captured-environment_fig2_275415518

How is network traffic data collected?

- Either <u>hardware</u> or <u>software</u> measurement tools
- Hardware: specialized equipment
 - Examples: HP 4972 LAN Analyzer, DataGeneral Network Sniffer, NavTel InterWatch 95000, Endace DAG, others...
 - These are faster, but more expensive (\$\$\$)
- Software: special software tools
 - Examples: tcpdump, wireshark, others...
 - These are cheaper (free!), but also slower (miss packets)

Tools for packet capture / parsing

- tcpdump
 https://www.tcpdump.org
 - Unix-based tool from mid-to-late 1980's
 - Distributed with BSD Unix (Berkeley Software Distribution)
 - Command-line interface; must be root to run it
 - Uses the Berkeley Packet Filter (BPF) in operating system
 - Writes to a PCAP file format; uses libpcap library
- Wireshark https://www.wireshark.org
 - PC-based tool from the early 2000's
 - Formerly called Ethereal (name change in May 2006)
 - Free and open-source tool
 - Multi-layer visualization and analysis of packet traces
 - Also supports PCAP file format

Collection format

- pcap ("packet capture")
 - Defines format and API for capturing network packets
 - Libpcap available from tcpdump.org

Wireshark example

Packet headers vs Deep Packet Inspection

Sometimes it makes sense to only examine a packet's headers rather than its payload

Flow-based traffic data

Netflow

- Introduced on Cisco routers in 1996
- Multiplexes one or more packets into a "flow"
- Each record summarizes a unidirectional flow

https://cylab.be/blog/42/collecting-and-processing-netflow-on-ubuntu

Main Fields

- Connection 5-tuple
 - Src IP
 - Src Port
 - Dst IP
 - Dst Port
 - Transport protocol

- Start timestamp
- Duration
- Number of bytes
- Number of packets
- TCP flags

Netflow example

🔞 🖨 🕕 Ter	minal File Edit	View Search Termin	nal Help					
S nfdump -R	/var/cache/n	fdump/						
Date first		Duration Proto	Src IP Addr:Port		Dst IP Addr:Port	Packets	Bytes	Flows
	18:51:06.726	0.013 TCP	193.190.205.209:443	->	192.168.0.14:42438	3	187	1
	18:51:06.726	0.002 TCP	192.168.0.14:42438		193.190.205.209:443	2	104	1
	18:51:15.843	0.000 UDP	192.168.0.100:5353	->	224.0.0.251:5353	1	155	1
2019-10-01	18:51:08.044	7.730 UDP	192.168.0.14:5353	->	224.0.0.251:5353	2	162	1
2019-10-01	18:51:30.381	6.389 TCP	192.168.0.14:42504	->	193.190.205.209:443	20	6279	1
2019-10-01	18:51:30.392	6.389 TCP	193.190.205.209:443	->	192.168.0.14:42504	21	7486	1
2019-10-01	18:51:49.061	0.043 TCP	192.168.0.100:6690	->	192.168.0.14:59660	31	9971	1
2019-10-01	18:51:49.059	0.045 TCP	192.168.0.14:59660	->	192.168.0.100:6690	17	5497	1
2019-10-01	18:51:45.465	7.238 TCP	192.168.0.14:38968	->	10.67.1.60:3128	4	240	1
2019-10-01	18:51:49.659	3.001 UDP	192.168.0.14:59044	->	239.255.255.250:1900	4	800	1
2019-10-01	18:51:32.223	24.580 TCP	192.168.0.14:38112	->	67.202.110.12:443	3	120	1
2019-10-01	18:51:55.528	3.031 TCP	192.168.0.14:38992	->	10.67.1.60:3128	3	180	1
2019-10-01	18:51:32.327	24.576 TCP	67.202.110.12:443	->	192.168.0.14:38112	4	206	1
2019-10-01	18:52:01.399	6.168 TCP	193.190.205.209:443	->	192.168.0.14:42574	22	7538	1
2019-10-01	18:52:01.391	6.166 TCP	192.168.0.14:42574	->	193.190.205.209:443	19	6227	1
2019-10-01	18:51:19.919	62.567 UDP	192.168.0.14:45062	->	109.88.203.3:53	3	186	1
2019-10-01	18:51:19.935	62.568 UDP	109.88.203.3:53	->	192.168.0.14:45062	3	618	1
2019-10-01	18:51:19.919	62.567 UDP	192.168.0.14:45062	->	62.197.111.140:53	3	186	1
2019-10-01	18:51:19.919	62.567 UDP	192.168.0.14:45062	->	8.8.8.8:53	3	186	1
2019-10-01	18:51:19.939	62.564 UDP	8.8.8.8:53	->	192.168.0.14:45062	3	282	1
2019-10-01	18:51:54.333	28.169 UDP	62.197.111.140:53	->	192.168.0.14:45062	2	412	1
2019-10-01	18:51:28.128	60.395 TCP	192.168.0.14:47118	->	54.154.86.41:443	13	556	1
2019-10-01	18:52:28.442	0.000 UDP	192.168.0.14:46582	->	239.255.255.250:1900	1	154	1
2019-10-01	18:51:28.162	60.361 TCP	54.154.86.41:443	->	192.168.0.14:47118	12	887	1
2019-10-01	18:52:31.383	8.121 TCP	192.168.0.14:42636	->	193.190.205.209:443	20	7115	1

Comparing a packet trace to a flow record

```
0.000000 192.168.1.201 -> 192.168.1.200
                                        60 TCP
                                                 4105 80 1315338075 : 1315338075 0 win: 5840 S
0.003362 192.168.1.200 -> 192.168.1.201
                                        60 TCP
                                                   80 4105 1417888236 : 1417888236 1315338076 win: 5792 SA
0.009183 192.168.1.201 -> 192.168.1.200
                                                 4105 80 1315338076 : 1315338076 1417888237 win: 5840 A
                                                           315338076 : 1315338151 1417888237 WIN: 5840 PA
0.014309 192.168.1.200 -> 192.168.1.201
                                                   80 4105 1417888237 : 1417888237 1315338151 win: 5792 A
                                                   80 4105 141/888237 : 141/889685 1315338151 win: 5/92 A
0.049848 192.168.1.200 -> 192.168.1.201
0.056902 192.168.1.200 -> 192.168.1.201 1500 TCP
                                                  80 4105 1417889685 : 1417891133 1315338151 win: 5792 A
                                                       80 1315338151 : 1315338151 1417889685 win: 8688 A
0.057284 192.168.1.201 -> 192.168.1.200
0.060120 192.168.1.201 -> 192.168.1.200
                                        52 TCP
                                                 4105 80 1315338151 : 1315338151 1417891133 win: 11584 A
0.068579 192.168.1.200 -> 192.168.1.201 1500 TCP
                                                   80 4105 1417891133 : 1417892581 1315338151 win: 5792 PA
0.075673 192 168 1 200 -> 192 168 1 201 1500 TCP
                                                   80 4105 1417892581 : 1417894029 1315338151 win: 5792 A
0.076055 192.168.1.201 -> 192.168.1.200
                                                 4105 80 1315338151 : 1315338151 1417892581 win: 14480 A
0.083233 192.168.1.200 -> 192.168.1.201 1500 TCP
                                                  80 4105 1417894029 : 1417895477 1315338151 win: 5792 A
0.096728 192.168.1.200 -> 192.168.1.201 1500 TCP
                                                  80 4105 1417896925 : 1417898373 1315338151 win: 5792 A
0.103439 192.168.1.200 -> 192.168.1.201 1500 TCP
                                                  80 4105 1417898373 : 1417899821 1315338151 win: 5792 A
0.103780 192.168.1.201 -> 192.168.1.200
                                        52 TCP
                                                 4105 80 1315338151 : 1315338151 1417894029 win: 17376 A
                                                       80 1315338151 : 1315338151 1417898373 win: 21720 A
0.106534 192.168.1.201 -> 192.168.1.200
0 133408 192 168 1 200 -> 192 168 1 201
                                                  80 4105 1417904165 1417904889 1315338151 win 5792 FP.
                                       776 TCP
0.139200 192.168.1.201 -> 192.168.1.200
                                                       80 1315338151 : 1315338151 1417904165 win: 21720 A
0.140447 192.168.1.201 -> 192.168.1.200
                                                       80 1315338151 : 1315338151 1417904890 win: 21720 F/
0.144254 192.168.1.200 -> 192.168.1.201
                                        52 TCP
                                                  80 4105 1417904890 : 1417904890 1315338152 win: 5792 A
```

Flow summary (e.g., NetFlow record or Bro connection log entry): 0.000000 192.168.1.201 4105 192.168.1.200 80 0.144254 10 77 11 16654 SF

Flow data in the cloud

- Cloud computing infrastructure (e.g., AWS) allows collection of flow logs
- AWX VPC Flow logs provide flow summaries similar to Netflow
 - A key distinction is the VPC Flow logs summarize network activity for a specific "virtual private cloud"
 - Activity from multiple VPCs could potentially traverse the same Netflow enabled device
 - In other words, VPC Flow logs are similar to network logs that have been demultiplexed

Encrypted vs Unencrypted

- Use of TLS for encrypting network data has been increasing
- TLS encrypts transport layer packet payload
- However, application layer protocols are encrypted
- Netflow is unaffected

Network Traffic Data Formats

- Packets (e.g., pcap)
- Flows
 - Unidirectional (e.g., netflow)
 - Bidirectional (e.g., IDS (zeek), firewall (check point))
- Sampled flows (e.g., s-flow)

Data Sets

How to create a network traffic data set with attacks?

Real

- + it is real
- privacy issues
- very few attacks
- no labeling

Emulated

- + attacks
- + labels
- not real

Hybrid

- + attacks
- ± partial labels
- ± partially real
- very few attacks

Synthetic

- + attacks
- + labels
- + no privacy issues
- not real

How to label a data set?

- Through emulation
- Use rules
- Use a ML model
- Synthetic
- Automated labeling

Other data set considerations

- Duration and size
- Packets vs Flows
- Meta information
- Anonymized fields
- Unidirectional vs bidirectional flows
- Class imbalance

Examples of publicly available network traffic data sets

- University of New Brunswick [CICIDS]
- Australian Centre for Cyber Security [UNSW-NB]
- University of Coburg [CIDDS-001]
- CTU-13
- UGR-16

Applications

Why is network traffic data collected?

- Network Management perspective
 - To understand the traffic on existing networks
 - For workload characterization and modeling
 - To guide the design of future networks
 - For performance evaluation of network protocols and applications
 - For debugging network protocols and applications
- Security perspective
 - For network security monitoring
 - For threat hunts and investigations

A lot of these can be cast as ML problems

- Intrusion detection and prevention
- Malware detection and prevention
- Other attack detection, e.g., DOS
- Search, e.g., find similar attacks
- Device Identification
- Traffic classification
- Application identification
- Website fingerprinting

Challenges

Challenges

- Lack of data sets that are
 - publicly available
 - representative
 - Labeled requires both effort and expertise

Privacy and security

- High volume
 - granularity

Challenges

- Complex
 - Difficult to understand
 - Due to encryption, virtualization, containerization, NAT's, etc.
 - Heterogeneous
 - Temporal and within-row dependencies
 - Long-tailed
 - Non-stationarity
- Adversary
- Validation

References

- Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine learning for network intrusion detection." *2010 IEEE symposium on security and privacy.* IEEE, 2010.
- Anderson, Blake, and David McGrew. "Machine learning for encrypted malware traffic classification:
 accounting for noisy labels and non-stationarity." Proceedings of the 23rd ACM SIGKDD International
 Conference on knowledge discovery and data mining. 2017.
- Nguyen, Thuy TT, and Grenville Armitage. "A survey of techniques for internet traffic classification using machine learning." IEEE communications surveys & tutorials 10.4 (2008): 56-76.
- Benoît Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC 3954.
- Jordan Holland, Paul Schmitt, Nick Feamster, and Prateek Mittal. 2021. New directions in automated traffic analysis. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. 3366–3383.
- Kim, Hyunchul, et al. "Internet traffic classification demystified: myths, caveats, and the best practices."
 Proceedings of the 2008 ACM CoNEXT conference. 2008.
- TCAP

Part 2: Network Data Representation Learning

Outline

- Feature engineering
- Representation Learning
- Representation learning for IP address, port number
- Traffic as an image
- Traffic as a sequence
- Traffic as a graph

Typical Approach

Bronzino et al 21

Basic Features: Header Fields of Protocols

Protocol Fields	Fields used as Basic Features	
802.11 headers	version, type, subtype, ToDS, FromDS, More Fragments, Retry, Power Mgmt, More Data,	
	WEP, Order, Duration, RA, TA, MA, FCS	
802.11 Calculated	isWepValid: flag indicating if WEP ICV check was successful	
	DurationRange: discretize numerical duration to values low, average or high	
	CastingType: unicast, multicast or broadcast destination address	
Ethernet headers	size, dest hi, dest lo, src hi, src lo, protocol	
IP headers	header length, TOS, Frag ID, Frag Ptr, TTL, Protocol, Checksum, Src ip, Dest ip	
TCP headers	Src Port, Dest Port, Seq, Ack, Header Len, Flag UAPRSF, Window Sz, Checksum, URG Ptr,	
	Option	
UDP headers	Src Port, Dest Port, Len, Checksum	
ICMP headers	Type, Code Checksum	

Davis et al 2011

Examples of Features derived from a single flow / connection

Feature	Description			
Contextual	Quad: combination of src ip, src port, dst ip, dst port define a single connection			
	Service type (TCP, UDP or ICMP) and application protocol (HTTP, SMTP, SSH or FTP etc.)			
	group similar traffic			
Duration	Start time, end time, and the duration of the connection			
Status	Normal or error status of connection e.g. valid TCP 3-way handshake, and FIN to end session			
SCD timing	Number of questions per second			
_	Average size of questions			
	Average size of answers			
	Question answer idle time			
	Answer question idle time			
RTT	The round trip time (RTT) of a TCP packet sent through a connection chain is calculated			
	from timestamps of TCP send and echo packets			
Fingerprint	Percentage of packets with each of the TCP flags set			
	Mean packet inter-arrival time			
	Mean packet length			
	Number of bytes and number of packets in connection			
	Union of TCP flags			
HTTPS session	For HTTPS traffic, a feature vector is created as a set of data sizes transferred during the			
	session. The 10 largest values of request size and response size in the HTTPS session are used			
TCP Flags	Each TCP flag combination is quantized as a symbol. A TCP session is then represented as a			
	sequence of symbols, one symbol per packet transferred			
TCP states	Create a feature vector listing the frequency of each TCP state transition			
land	1 if src ip and port matches dest ip and port. 0 otherwise			
wrong_fragment	Number of wrong fragments			
urgent	Number of urgent packets			

Examples of features derived from a multiple flows / connections

Feature	Description				
Joint Probability	P(srcip, srcport, dstip, dstport), P(srcip, dstip, dstport), P(dstip, dstport)				
Conditional	P(srcIP dstIP), P(srcIP dstIP, dstport), P(TCPflags destport), and P(keyword destport)				
Probability					
Entropy Measures	Entropy of basic features over dataset: src ip, src port, dst ip, dst port				
Association Rules	Mine rules from connection records containing: start time, quad, and connection status				
Flow concentration	Count of TCP flows with same src ip, dst ip and dst port in this time slice				
Data points per cluster	A cluster is a frequently occurring value for a feature, e.g. a common IP address				
%Control, %Data	percentage of control/data packets				
Av Duration	Average flow duration over all flows				
Av Duration Dest	Average flow duration per destination				
Max Flows	Maximum number of flows to a particular service				
%_same_service_host	Percent of traffic from a particular src port to a particular dst ip				
%_same_host_service	Percent of traffic from a particular src ip to a particular dst port				
Count Variance	Variance measure for the count of packets for each src-dest pair				
Wrong resent rate	Count of bytes sent event after being acknowledged				
Duplicate ACK rate	Count of duplicate acknowledgment packets				
Data bytes	Count of data bytes exchanged per flow				
sdp statistics	Source-destination pairs (sdps) are unique combinations of src ip, dest ip and dest port				
	Number of unique sdps in collection interval				
	Number of new sdps in this data collection interval				
	Number of new sdps which were not seen in last month				
	Number of well known ports used in interval				
	Variance of the count of packets seen against sdps				
	Count of sdps which include hosts outside local network domain				
	Number of successfully established TCP connections in time interval				
	Total packets observed in collection interval				
av_size	Average packet size over time window				
av_packets	Average packets per flow over time window				
count_single	Number of single packet flows over time window				
ratio	Ratio of Number of flows to bytes per packet (TCP) over time window				

Examples of volume / count features

Volume-based Feature	Description			
count-dest	Flow count to unique dest IP in the last T seconds from the same src			
count-src	Flow count from unique src IP in the last T seconds to the same dest			
count-serv-src	Flow count from the src IP to the same dest port in the last T seconds			
count-serv-dest	Flow count to the dest IP using same src port in the last T seconds			
count-dest-conn	Flow count to unique dest IP in the last N flows from the same src IP			
count-src-conn	Flow count from unique src IP in the last N flows to the same dest IP			
count-serv-src-conn	Flow count from the src IP to the same dest port in the last N flows			
count-serv-dest-conn	Flow count to the dest IP using same source port in the last N flows			
num_packets_src_dst/dst_src	Count of packets flowing in each direction			
num_acks_src_dst/dst_src	Count of acknowledgment packets flowing in each direction			
num_bytes_src_dst/dst_src	Count of data bytes flowing in each direction			
num_retransmit_src_dst/dst_src	Count of retransmitted packets flowing in each direction			
num_pushed_src_dst/dst_src	Count of pushed packets flowing in each direction			
num_SYNs(FINs)_src_dst/dst_src	Count of SYN/FYN packets flowing in each direction			
connection_status	Status of the connection (0 Completed; 1 - Not completed; 2 Reset)			
count_src'	Connection count from same source as the current record			
count_serv_src	Count of different services from the same source as the current record			
count_serv_dest	Count of different services to the same destination IP as the current record			
count_src_conn	Connection count from this src IP in the last 100 connections			
count_dest_conn	Connection count to this dest IP in the last 100 connections			
count_serv_src_conn	Connection count with same dst port and src IP in the last 100 connections			
count_serv_dst_conn	Connection count with same dst port and dst IP in the last 100 connections			

Feature engineering is difficult

- Manual and laborious
- Requires deep domain knowledge
- Based on extensive trial and error
- Subjective (introduces bias of the domain expert could be good or bad)

Feature Learning in Computer Vision

Traditional approach to image classification

Deep learning approach to image classification

Is domain information necessary?

Tabula Rasa

Domain Expert Rules

Where does the sweet spot lie?

How to use an IP address as a feature?

- Ignore it
- Indirect features
- binarize, extract 32 features (IPv4)
- convert to geo locations and use longitude, latitude
- define a hierarchy of IP addresses, compute distance based on this tree [26]

Can we learn features with minimal domain knowledge?

Learning Representation of IP addresses

word2vec Recap

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

#	Source IP Addr.	Dest. IP Addr.	Dest. Port	Proto.
1	192.168.100.5	192.168.220.9	51479	TCP
2	192.168.220.9	192.168.100.5	445	TCP
3	216.58.210.19	192.168.200.8	44444	TCP
4	192.168.200.8	216.58.210.19	80	TCP
5	192.168.220.14	53.53.53.53	53	UDP

IP2Vec

Differences from work2vec

- Only a subset of inputs are used
- And on a subset of features are used as context
- Non-stationarity

t-sne of embedding of IP addresses on CTU-13 data set

Packet-based traffic data

- Direct application of word2vec to payload data [packet2vec, Goodman et al. 2020]
- TLS2vec [Ferriyan, 2022]

Traffic as an Image

Traffic as an image

- Several researchers have proposed converting network traffic to images
- Uses raw packet or flow data or extracted features
- Mostly supervised, assuming availability of labeled data
- CNN-based architectures are used
- Temporal dependency is typically ignored

Malware Traffic Classification Using CNN for Representation Learning [Wang et al. 2017]

- Detect known malware from network packet data
- Created labeled data set with 10 types of malware traffic and 10 types of normal traffic

CNN-based network intrusion detection against denial-of-service attacks [Kim et al. 2020]

Traffic as a Sequence

Traffic as a sequence

- Flow data can be considered as a multivariate, temporal sequence
- Several researchers have used LSTM / Transformer based architectures
- Unsupervised / self-supervised anomaly detection

Attention-based self-supervised feature learning for security data [Lee et al. 2020]

- Flows are extracted for users (IP's) over time windows and clustered
- Sequence to sequence encoder-decoder with attention

Traffic as a Graph

Traffic as a graph

- Network traffic data intrinsically exhibits a graph structure
- With machines/users as nodes and traffic between them as edges
- Lot of work on extracting graph-based features from network traffic data (e.g., graph-based anomaly detection [Akoglu et al. 2015])
 - Node level features
 - Link (edge) level features
 - Graph level features
- Can we learn graph-based features instead?

Graph Neural Networks

- Replace graph feature engineering with learning embeddings
- Learn embeddings for nodes, graphs, edges

Advantages

- Embedding encode semantics
- Similarity in embeddings of two nodes imply their similarity in the graph
- Can be used for any downstream ML task

References

- [Davis et al, 2011] Davis, Jonathan J., and Andrew J. Clark. "Data preprocessing for anomaly based network intrusion detection: A review." computers & security 30.6-7 (2011): 353-375.
- Ring, Markus, et al. "Ip2vec: Learning similarities between ip addresses." 2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2017.
- Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Hyojoon Kim, Renata Teixeira, Nick Feamster (2022).
 Traffic Refinery: Cost-Aware Data Representation for Machine Learning on Network Traffic. In ACM SIGMETRICS, pp. 1–12, Mumbai, India.
- Jordan Holland, Paul Schmitt, Nick Feamster, Prateek Mittal (2021). New Directions in Automated Traffic Analysis. In ACM Conference on Computer and Communications Security (CCS), pp. 1–14, Seoul, Korea
- Wu, Kehe, Zuge Chen, and Wei Li. "A novel intrusion detection model for a massive network using convolutional neural networks." leee Access 6 (2018): 50850-50859.
- Kim, Jiyeon, et al. "CNN-based network intrusion detection against denial-of-service attacks." Electronics 9.6 (2020): 916

Part 3: Synthetic Network Traffic Generation

Generative Models

https://thispersondoesnotexist.com/image

API Beta

DOCUMENTATION

Playground (i)

These are cool ideas to try out with GPT-3:

- 1. write a German fairy-tale
- 2. create a short story in style of Kafka
- 3. generate a new art movement
- 4. invent a new kind of music
- 5. write a dialogue for a text-based video game
- 6. generate a Turing-system for generating melodies
- 7. create a region of synthetic poetry
- 8. write a book of poems
- 9. generate an original work of art
- 10. create a new movement in painting

https://towardsdatascience.com/20-creative-things-to-try-out-with-gpt-3-2aacee3e2abf

Generative methods

- Learn P(x, y) instead of just P(x | y)
- Kernel density estimation
- Probabilistic Graphical models
 - Bayesian networks
- ...
- Generative adversarial network (GAN)
- Autoregressive neural model
- Variational autoencoder
- ...

Evaluation

Once you generate synthetic data, how can it be validated?

Compare with real data:

- Marginal distributions
- Conditional distributions
- Pairwise correlations
- Mutual information

Use it for tasks that real data is used

- Train ML models
- Compare performance on real data

How do you learn to generate, say, netflow data?

😣 🖨 🗈 Terminal File Edi	t View Search Termir	nal Help								
nfdump -R /var/cache/nfdump/										
Date first seen	Duration Proto	Src IP Addr:Port		Dst IP Addr:Port	Packets	Bytes	Flows			
2019-10-01 18:51:06.726	6 0.013 TCP	193.190.205.209:443	->	192.168.0.14:42438	3	187	1			
2019-10-01 18:51:06.726	6 0.002 TCP	192.168.0.14:42438	->	193.190.205.209:443	2	104	1			
2019-10-01 18:51:15.843	3 0.000 UDP	192.168.0.100:5353	->	224.0.0.251:5353	1	155	1			
2019-10-01 18:51:08.044	4 7.730 UDP	192.168.0.14:5353	->	224.0.0.251:5353	2	162	1			
2019-10-01 18:51:30.381	1 6.389 TCP	192.168.0.14:42504	->	193.190.205.209:443	20	6279	1			
2019-10-01 18:51:30.392	2 6.389 TCP	193.190.205.209:443	->	192.168.0.14:42504	21	7486	1			
2019-10-01 18:51:49.061	1 0.043 TCP	192.168.0.100:6690	->	192.168.0.14:59660	31	9971	1			
2019-10-01 18:51:49.059	9 0.045 TCP	192.168.0.14:59660	->	192.168.0.100:6690	17	5497	1			
2019-10-01 18:51:45.465	5 7.238 TCP	192.168.0.14:38968	->	10.67.1.60:3128	4	240	1			
2019-10-01 18:51:49.659	9 3.001 UDP	192.168.0.14:59044	->	239.255.255.250:1900	4	800	1			
2019-10-01 18:51:32.223	3 24.580 TCP	192.168.0.14:38112	->	67.202.110.12:443	3	120	1			
2019-10-01 18:51:55.528	3.031 TCP	192.168.0.14:38992	->	10.67.1.60:3128	3	180	1			
2019-10-01 18:51:32.327	7 24.576 TCP	67.202.110.12:443	->	192.168.0.14:38112	4	206	1			
2019-10-01 18:52:01.399	9 6.168 TCP	193.190.205.209:443	->	192.168.0.14:42574	22	7538	1			
2019-10-01 18:52:01.391	1 6.166 TCP	192.168.0.14:42574	->	193.190.205.209:443	19	6227	1			
2019-10-01 18:51:19.919	9 62.567 UDP	192.168.0.14:45062	->	109.88.203.3:53	3	186	1			
2019-10-01 18:51:19.935	5 62.568 UDP	109.88.203.3:53	->	192.168.0.14:45062	3	618	1			
2019-10-01 18:51:19.919	9 62.567 UDP	192.168.0.14:45062	->	62.197.111.140:53	3	186	1			
2019-10-01 18:51:19.919	9 62.567 UDP	192.168.0.14:45062	->	8.8.8.8:53	3	186	1			
2019-10-01 18:51:19.939	9 62.564 UDP	8.8.8.8:53	->	192.168.0.14:45062	3	282	1			
2019-10-01 18:51:54.333	3 28.169 UDP	62.197.111.140:53	->	192.168.0.14:45062	2	412	1			
2019-10-01 18:51:28.128	8 60.395 TCP	192.168.0.14:47118	->	54.154.86.41:443	13	556	1			
2019-10-01 18:52:28.442	2 0.000 UDP	192.168.0.14:46582	->	239.255.255.250:1900	1	154	1			
2019-10-01 18:51:28.162	2 60.361 TCP	54.154.86.41:443	->	192.168.0.14:47118	12	887	1			
2019-10-01 18:52:31.383	3 8.121 TCP	192.168.0.14:42636	->	193.190.205.209:443	20	7115	1			

Generative Adversarial Network (GAN)

https://developers.google.com/machine-learning/gan/gan_structure

Modeling Tabular Data using Conditional GAN [Xu et al. 2019]

- Tabular data is difficult to model using regular GANs
 - Mixed data types continuous and discrete
 - Non-Gaussian, multimodal continuous distributions
 - Imbalanced categorical columns can cause mode collapse
- CTGAN addresses these issues
 - Mode-specific normalization for multimodal distributions
 - The generator is made conditional to solve the imbalance problem

Does not capture temporal dependence

Flow-based Network Traffic Generation using Generative Adversarial Networks [Ring et al. 2019]

- Synthesize netflow data
- Use Wasserstein GAN
- Derive embeddings for netflow fields

Evaluation

- Distributions
- Domain tests

STAN: Synthetic Network Traffic Generation with Generative Neural Models [Xu et al. 2021]

- Uses neural autoregressive model, similar to pixelCNN
- CNN-based architecture to estimate conditional probability density
- Captures temporal dependence as well

$$\mathbb{P}(\mathbf{x}) = \prod_{i=1}^{n} \prod_{j=1}^{m} \mathbb{P}(x_{i,j}|x_{i-k}, ..., x_{i-1})$$

STAN: performance on ML tasks

Summary

- Unique Challenges
 - Data
 - privacy
 - representative
 - no labels
 - no true benchmarks
 - Moving target
 - non-stationarity
 - adversary
- Feature Learning
 - Network traffic
 - as image
 - as multivariate sequence
 - as graph
- Synthetic data Generation
 - GANs
 - Autoregressive NN
 - Validation