Ridge(12)_Lasso(11)_ ElasticNet(11+12) Regression model

Standardized Evaluation Metrics Table

Model	Alpha	l1_ratio	MSE	RMSE	MAE	R²
Ridge	0.0001	-	8337.40	91.31	46.01	0.9713
Lasso	0.5964	-	8367.80	91.48	45.35	0.9712
Ridge (CV Tuned)	0.0001	-	8013.62	89.52	45.31	0.9724
Lasso (CV Tuned)	0.5964	-	8360.85	91.44	45.48	0.9712
ElasticNet (CV Tuned)	0.0054	0.9	8350.80	91.38	46.07	0.9712

Model Comparison Summary

Best Overall Model:

Ridge (CV Tuned) achieved the lowest MSE (8013.62) and the highest R² (0.9724), indicating the best fit and generalization performance on your test data.

Lasso vs ElasticNet:

Both models perform similarly, with Lasso having a slightly lower MAE and ElasticNet a slightly lower MSE, but neither surpasses Ridge.

• Base Ridge vs Tuned Ridge:

Ridge performance greatly improves after tuning, demonstrating the importance of cross-validation.

Hyperparameter Summary

- Ridge α = 0.0001 \rightarrow Small regularization strength, indicating a low-bias model performs well.
- Lasso $\alpha = 0.5964 \rightarrow$ Stronger regularization; selects fewer features.
- **ElasticNet** α = 0.0054, **I1_ratio** = 0.9 \rightarrow Mostly Lasso-like behavior.