

Objectifs

- Comprendre la notion et les spécificités du Big Data
- Connaître les technologies de l'écosystème Hadoop
- Connaître le langage python et utiliser les librairies de machine learning
- Savoir utiliser les outils de visualisation des données (Dataviz)

Intelligence artificielle

L'intelligence artificielle (IA) est « l'ensemble des théories et des techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence »

Machine Learning et intelligence artificielle

Artificial Intelligence

Algorithms that mimic the intelligence of humans, able to resolve problems in ways we consider "smart". From the simplest to most complex of the algorithms.

Machine Learning

Algorithms that parse data, learn from it, and then apply what they've learned to make informed decisions. They use human extracted features from data and improve with experience.

Deep Learning

Neural Network algorithms that learn the important features in data by themselves. Able to adapt themselves through repetitive training to uncover hidden patterns and insights.

Intelligence artificielle

L'intelligence artificielle (IA) est « l'ensemble des théories et des techniques mises en œuvre en vue de réaliser des machines capables de simuler l'intelligence »

Exemple de problématique de machine learning

- ☐ Prédire les ventes
- ☐ Identification des objets (image,)
- Segmenter les utilisateurs d'un site en plusieurs groupes en fonction de leur comportement sur le site, catégoriser un produit
- ☐ Recommandation de produit

Le cycle de travail d'un data science

Récupération des données

- ☐ Les bases de données existantes
- ☐ Les données brutes alternatives (image, son, document, pages web, etc.)
- ☐ Les réseaux sociaux
- ☐ Internet des Objets
- ☐ Création de nouveaux canaux d'acquisition de données

■ Exemple : Les CAPTCHAs pour la digitalisation automatique de livres

The Norwich line steamboat train, from New-London for Boston, this morning ran off the track seven miles north of New-London.

https://user.oc-static.com/upload/2016/09/17/14741229513738_img-2.png

Nettoyage des données

- ☐Suppression des données aberrantes et incohérentes
- ☐ Agrégation si nécessaire

☐ Les batchs ou job map-reduce, spark

Exploration des données

- ☐ Comprendre les différents comportements
- ☐ Détecter les schémas
- ☐ Tâche destinée au Data Analyst

- ☐ Proposer plusieurs hypothèses sur les causes sous-jacentes à la génération du dataset
- ☐ Proposer plusieurs pistes de modélisation statistique des données, qui vont permettre de résoudre la problématique de départ considérée.
- Proposer si nécessaire de nouvelles sources de données qui aideraient à mieux comprendre le phénomène.

Modélisation

- ☐ C'est l'étape du machine learning ou apprentissage
- ☐ Application des algorithmes de d'apprentissage
 - ☐ la régression linéaire
 - ☐ K-nn
 - ☐ les Support Vector Machine (SVM)
 - ☐ les réseaux de neurones
 - les random forests.
 - Clustering
 - ☐ Collaborive filtering

https://user.oc-static.com/upload/2016/09/17/14741406902223_download-2.png

Evaluation du modèle

- ☐ Le modèle représente t-il avec exactitude le phénomène ?
- ☐ Le modèle résout t-il le problème ?
- ☐ Quelle est la marge d'erreur ?
- Quelle est la performance du modèle

☐ Le quartet d'Anscombe

 $https://user.oc\text{-}static.com/upload/2016/09/17/14741418471714_640px\text{-}Anscombe.svg.png$

Mise en production

- ☐ Déploiement du modèle en production
- ☐ Mise en place des supports de production
- ☐ Infrastrusture big data (Hadoop, AWS, Azure)

- ☐ Apprentissage « supervisé » : supervised learning
- ☐ Données sont annotées ou labélisées
- ☐ Problème : comment labéliser ?

https://user.oc-static.com/upload/2016/10/24/14773158929787_cifar_preview.png

- ☐ Apprentissage « non supervisé » : unsupervised learning
- Les données ne sont pas annotées
- ☐ L'algorithme determine lui même les similarités dans le dataset

https://markdown.data-ensta.fr/uploads/upload_87ef9ad65f9163ff5a92e1691eb4d1bd.png

☐ le semi-supervised learning : combine supervised et unsupervised

- ☐ le reinforcement learning : qui se base sur un cycle d'expérience / récompense et améliore les performances à chaque itération
 - ☐ Jeu de go, damier, échec

- ☐ Régression
 - ☐ Recherche t-on un nombre ?
 - □ Valeur continue

- ☐ Classification
 - ☐ Recherche t-on une catégorie ?
 - ☐ Valeur discrète

Source: https://user.oc-static.com/upload/2016/09/18/14742103795655_ml.png

Segmentation des datasets

- ☐ Training set:
 - □ sous-ensemble destiné à l'apprentissage d'un modèle.
 - ☐ Exemple : Proportion 80% du dataset

- □ Validation set/ Test set
 - sous-ensemble destiné à l'évaluation du modèle.
 - ☐ Exemple : Proportion 20% du dataset

☐ N'effectuez jamais l'apprentissage sur des données d'évaluation

Les réseaux de neurones artificiels

☐ Inspiré des réseaux de neurones humains

http://ressources.unisciel.fr/DAEU-biologie/P2/res/chap4_im05.png

Métaphore biologique

☐ Fonctionnement du cerveau Transmission de l'information et apprentissage

☐ Un perceptron !!!!

- Les neurones reçoivent des signaux (impulsions électriques) par les dendrites et envoient l'information par les axones.
- Les contacts entre deux neurones (entre axone et dendrite) se font par l'intermédiaire des synapses.

Neurone biologique	Neurone artificiel
Axones	Signal de sortie
Dendrites	Signal d'entrée
Synapses	Poids de la connexion

- ☐ Frank Rosenblatt en 1956
- ☐ Algorithme d'apprentissage supervisé de classifieurs binaires
- ☐ Inconvénient : linéarité

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53

Un perceptron à n entrées (x_1,\ldots,x_n) et à une seule sortie o est défini par la donnée de n poids (ou coefficients synaptiques) (w_1,\ldots,w_n) et un biais (ou seuil) θ par 2 :

$$o = f(z) = egin{cases} 1 & ext{si} & \sum_{i=1}^n w_i x_i > heta \ 0 & ext{sinon} \end{cases}$$

- ☐ La règle de Hebb
- ☐ Correction du modèle (loi de Widrow-Hoff)
- ☐ Inconvénient : linéarité

$$W_i' = W_i + \alpha (Y_t - Y) X_i$$

 W_i' = le poids i corrigé

 Y_t = sortie attendue

Y = sortie observée

 α = le taux d'apprentissage

 X_i = l'entrée du poids i pour la sortie attendue Y_t

 W_i = le poids i actuel

- ☐ La règle de Hebb
- ☐ Correction du modèle (loi de Widrow-Hoff)
- ☐ Inconvénient : linéarité

$$W_i' = W_i + \alpha (Y_t - Y) X_i$$

 W_i' = le poids i corrigé

 Y_t = sortie attendue

Y = sortie observée

 α = le taux d'apprentissage

 X_i = l'entrée du poids i pour la sortie attendue Y_t

 W_i = le poids i actuel

- ☐ Exemple : reconstruction d'image
- \square Reconnaitre les chiffres 0, 1, 2

http://master-ivi.univ-lille1.fr/fichiers/Cours/rdf-semaine-8-neurones.pdf

Les réseaux de neurones : deep learning

☐ Réseau multi-couche

https://cdn.futura-sciences.com/buildsv6/images/mediumoriginal/d/c/d/dcdc8d74ca_125717_deep-learning.jpg

Les réseaux de neurones : deep learning

- ☐ La rétropropagation du gradient (backpropagation)
- ☐ Généraliser la règle de Widrow-Hoff – Rétropropagation

Propagation (en arrière) des corrections dans les couches intermédiaires

Les réseaux de neurones : deep learning

- ☐ Inception v3 sur Cloud TPU
- ☐ modèle de reconnaissance d'images
- Atteint une justesse remarquable

https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png

TP: Python

Merci

