$Solutions \ Exercices \ MP/MP^*$

Table des matières

1	Algèbre Générale	2
2	Séries numériques et familles sommables	3
3	Probabilités sur un univers dénombrable	4
4	Calcul matriciel	5
5	Réduction des endomorphismes	6
6	Espaces vectoriels normés	7
7	Fonction d'une variable réelle	12
8	Suites et séries de fonctions	13
9	Séries entières	14
10	Intégration	15
11	Espaces préhilbertiens	16
12	Espaces euclidiens	17
13	Calcul différentiel	18
14	Équation différentielles linéaires	19

1 Algèbre Générale

2 Séries numériques et familles sommables

3 Probabilités sur un univers dénombrable

4 Calcul matriciel

5 Réduction des endomorphismes

Solution 5.1. Pour le sens indirect, soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)$. Pour tout $p \in \mathbb{N}$, $\lambda \in \operatorname{Sp}_{\mathbb{C}}(M_p)$ donc $\det(M_p - \lambda I_n) = 0$. Par continuité du déterminant, on a $0 = \det(M_p - \lambda I_n) \xrightarrow[p \to +\infty]{} \det(-\lambda I_n)$. Donc $\lambda = 0$ et $\operatorname{Sp}_{\mathbb{C}}(M) = \{0\}$ donc M est nilpotente.

Pour le sens direct, soit $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M. On trigonalise u sur une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ avec $u(\varepsilon_1) = 0, u(\varepsilon_2) = a_{1,2}\varepsilon_1, \dots, u(\varepsilon_n) = a_{1,n}\varepsilon_1 + \dots + a_{n-1,n}\varepsilon_{n-1}$. Posons pour $i \in \{1, \dots, n\}$, $\varepsilon_{i,p} = \frac{\varepsilon_i}{p^{i-1}}$. On pose $\mathcal{B}_p = (\varepsilon_{1,p}, \dots, \varepsilon_{n,p})$ et $M_p = \operatorname{mat}_{B_p}(u)$, semblable à M et $M_p \xrightarrow[p \to +\infty]{} 0$ car $\|M_p\| \leqslant \frac{1}{p} \|M_1\|$.

Solution 5.2. On pose $u \in \mathcal{L}(\mathbb{C}^n)$ canoniquement associée à M.

Pour le sens indirect, si M n'est pas diagonalisable, il existe une base $B = (\varepsilon_1, \dots, \varepsilon_n)$ de \mathbb{C}^n telle que

$$\operatorname{mat}_{\mathcal{B}}(u) = D + N$$

où D est diagonale et N est nilpotente (décomposition de Dunford). En reprenant les bases \mathcal{B}_p définies à l'exercice précédent, on a

$$\operatorname{mat}_{\mathcal{B}_p}(u) = D + N_p \xrightarrow[p \to +\infty]{} D$$

Si $D \in S_M$, alors M est diagonalisable ce qui est exclu par hypothèse. Donc S_M n'est pas fermé. Pour le sens direct, si M est diagonalisable, soit $(M_p)_{p \in \mathbb{N}} \in (S_M)^{\mathbb{N}}$ avec $M_p \xrightarrow[p \to +\infty]{} M'$. Soit $\lambda \in \mathbb{C}$. On a $\chi_{M_p}(\lambda) = \det(\lambda I_n - M_p) = \chi_M(\lambda)$ car M et M_p sont semblables. Par continuité du déterminant, on a $\chi_{M'}(\lambda) = \chi_M(\lambda)$, donc $\chi_{M'} = \chi_M$. De plus, $A \mapsto \Pi_M(A)$ (polynôme minimal) est continue sur $\mathcal{M}_n(\mathbb{C})$ et pour tout $p \in \mathbb{N}$, on a $\Pi_M(M_p) = 0$ donc $\Pi_M(M') = 0$. M' est donc annulée par Π_M , donc M' est diagonalisable et comme $\chi_M = \chi_{M'}$, M et M' ont les mêmes valeurs propres avec les mêmes multiplicités. Donc $M' \in S_M$.

Remarque 1. Le polynôme caractéristique est une fonction continue de la matrice, mais c'est faux pour le polynôme minimal, par exemple pour

$$M_p = \begin{pmatrix} \frac{1}{p} & 0\\ 0 & \frac{2}{p} \end{pmatrix}$$

On a $M_p \xrightarrow[p \to +\infty]{} 0$ et $\Pi_{M_p} = (X - \frac{1}{p})(X - \frac{2}{p}) \xrightarrow[p \to +\infty]{} X^2 \neq X = \Pi_{M_\infty} \text{ donc } \lim_{p \to +\infty} \Pi_{M_p} \neq \prod_{\substack{\lim \\ p \to +\infty}} M_p.$

6 Espaces vectoriels normés

Solution 6.1.

1. $A(x,y) \in \mathbb{R}^2$ fixé, la fonction

$$\varphi: \ \mathbb{R} \ \to \ \mathbb{R}$$

$$t \ \mapsto \ x\cos(t) + y\sin(2t)$$

est bornée, donc le sup sur $\mathbb R$ existe. Pour la séparation, prendre t=0 et $t=\frac{\pi}{4}$. Pour l'inégalité triangulaire, montrer l'inégalité à t fixé puis passer au sup sur $\mathbb R$.

2. Si $|x| + |y| \le 1$, alors $N(x, y) \le 1$ donc on a la première inclusion. Si $N(x, y) \le 1$, utiliser t = 0 pour avoir $|x| \le 1$ et $t = \frac{\pi}{4}$ puis $t = -\frac{\pi}{4}$ pour pouvoir justifier

$$|2y| \leqslant \left| x \frac{\sqrt{2}}{2} + y \right| + \left| y - x \frac{\sqrt{2}}{2} \right| \leqslant 2$$

et donc $|y| \leq 1$. D'où la deuxième inclusion.

3. On fixe $(x,y) \in S_N(0,1) \cap (\mathbb{R}_+)^2$. φ est 2π -périodique, $\varphi(\pi-t) = \varphi(t)$ et $\sup_{t \in \mathbb{R}} |\varphi(t)| = 1$. On peut donc se limite à un intervalle de longueur 2π pour l'étude de φ .

On note que si $t \in [-\pi, 0]$, $\cos(t)$ et $\sin(2t)$ sont de signes opposés. Donc

$$|\varphi(t)| \le x|\cos(t)| + y|\sin(2t)| = |\varphi(-t)|$$

 $et -t \in [0, \pi]$. Donc le sup est atteint sur $[0, \pi]$.

On note maintenant, comme $|\varphi(\pi - t)| = |\varphi(t)| \ sur \left[0, \frac{\pi}{2}\right]$, que si $t \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$,

$$0\leqslant \varphi(t)=x\underbrace{\cos(t)}_{\in [0,\frac{\sqrt{2}}{2}]}+y\sin(2t)\leqslant x\underbrace{\cos(\frac{\pi}{2}-t)}_{\in [\frac{\sqrt{2}}{2},1]}+y\sin(2\times(\frac{\pi}{2}-t))=\varphi(\frac{\pi}{2}-t)$$

Donc le sup est atteint sur $[0, \frac{\pi}{4}]$. Soit maintenant $t_0 \in [0, \frac{\pi}{4}]$ tel que $\varphi(t_0)$ réalise le sup (existe car φ est continue sur un compact). Comme c'est aussi le sup sur \mathbb{R} qui est ouvert, on a la condition d'Euler du premier ordre : $\varphi'(t_0) = 0$.

On a donc $x\cos(t_0) + y\sin(2t_0) = 1$ et $-x\sin(t_0) + 2y\cos(2t_0) = 0$. On en déduit les valeurs de x et y en fonction de t_0 , en faisant attention que $\cos(t_0) \neq 0$ sinon $\sin(t_0) = 0$ aussi ce qui n'est pas le cas, et au cas où $t_0 = 0$.

Réciproquement, s'il existe $t_0 \in [0, \frac{\pi}{4}]$ tel que x et y s'écrivent de la façon demandée, alors t_0 est l'unique point satisfaisant $\varphi(t_0) = 1$ et $\varphi'(t_0) = 0$. Mais alors le sup de φ sur $[0, \frac{\pi}{4}]$ est atteint en un point t_1 qui vérifie les mêmes choses, donc $t_1 = t_0$ d'où N(x, y) = 1.

Solution 6.2.

1. Pour l'inégalité triangulaire, introduire la forme bilinéaire symétrique positive sur E

7

$$\varphi: E \times E \rightarrow \mathbb{R}$$

 $(f,g) \mapsto f(0)g(0) + \int_0^1 f'(t)g'(t)dt$

Alors $N(f) = \sqrt{\varphi(f, f)}$ et on utilise l'inégalité de Minkowski.

- 2. Pour $x \in [0,1]$, écrire |f(x)| = |f(0) + f(x) f(0)|, $f(x) f(0) = \int_0^x f'(t)dt$, utiliser Cauchy-Schwarz avec f' et 1 puis que $\sqrt{a} + \sqrt{b} \leqslant \sqrt{2}\sqrt{a+b}$, pour enfin passer au sup sur x.
- 3. Utiliser, pour $n \in \mathbb{N}^*$, la fonction

$$f_n: [0,1] \rightarrow \mathbb{R}$$
 $t \mapsto t^n$

Solution 6.3. Si f est ouverte, $f(\mathbb{R}^n)$ est un sous-espace vectoriel ouvert de \mathbb{R}^p . Donc f est surjective.

Si f est surjective, on prend F un supplémentaire de $\ker(f)$ dans \mathbb{R}^n avec $\dim(\ker(f)) = n - p$ et $\dim(F) = p$. Soit (e_1, \ldots, e_p) une base de F et (e_{p+1}, \ldots, e_n) une base de $\ker(f)$. On vérifie que $(f(e_1, \ldots, f(e_p)))$ est une base de \mathbb{R}^p . On définit

$$N_1: \quad \mathbb{R}^n \quad \to \quad \mathbb{R}$$

$$\sum_{i=1}^n x_i e_i \quad \mapsto \quad \max_{1 \leqslant i \leqslant n} |x_i|$$

norme sur \mathbb{R}^n et

$$N_2: \mathbb{R}^p \to \mathbb{R}$$

 $\sum_{i=1}^p y_i f(e_i) \mapsto \max_{1 \leq i \leq p} |y_i|$

norme sur \mathbb{R}^p .

Soit Θ un ouvert de \mathbb{R}^n , soit $y_0 \in f(\Theta)$, il existe $x_0 \in \Theta$: $y_0 = f(x_0)$. Si $x_0 = \sum_{i=1}^n \alpha_i e_i$, alors $y_0 = \sum_{i=1}^p \alpha_i f(e_i)$. Comme Θ est un ouvert, il existe $r_0 > 0$ tel que

$$B_{N_1}(x_0,r_0)\subset\Theta$$

Soit $y = \sum_{i=1}^{p} \beta_i f(e_i) \in \mathbb{R}^p$, si $N_2(y - y_0) < r_0$, pour tout $i \in \{1, ..., p\}, |\beta_i - \alpha_i| < r_0$ et

$$y = f\left(\sum_{i=1}^{p} \beta_i e_i + \sum_{i=p+1}^{n} \alpha_i e_i\right) \stackrel{def}{=} f(x)$$

avec $N_1(x - x_0) = \max_{1 \leq i \leq p} |\beta_i - \alpha_i| < r_0$. Ainsi $x \in \Theta$ et $y \in f(\Theta)$, donc $B_{N_2}(y_0, r_0) \subset f(\Theta)$ et $f(\Theta)$ est un ouvert.

Solution 6.4.

1. Classique.

2.

$$|f(x)| \le |f(0)| + |f(x) - f(0)| \le |f(0)| + \kappa(f)x \le N(f)$$

 $car \ x \leq 1$, $donc \ N_{\infty} \leq N$. Pour la non-équivalence, prendre

$$f_n: [0,1] \rightarrow \mathbb{R}$$
 $t \mapsto t^n$

3. On a $|f(0)| \leq N_{\infty}(f)$ donc $N(f) \leq N'(f)$. Ensuite, $N_{\infty} \leq N$ donne $N' \leq N + \kappa \leq 2N$. Donc N est N' sont équivalentes.

Remarque 2. Exemple de normes qui, en dimension infinie, ne se dominent pas mutuellement. On prend $(e_i)_{i\in I}$ une base (de Hamel), $J=(i_n)_{n\in\mathbb{N}}\subset I$ dénombrable. Si $x=\sum_{i\in I}x_ie_i$, on peut vérifier que

$$N_1(x) = \sum_{n \in \mathbb{N}} |x_{i_n}| + \sum_{i \in I \setminus J} |x_i|$$

et

$$N_2(x) = \sum_{n \in \mathbb{N}} n|x_{i_{2n}}| + \sum_{n \in \mathbb{N}} \frac{1}{n+1} |x_{i_{2n+1}}| + \sum_{i \in I \setminus J} |x_i|$$

ne se dominent pas.

Solution 6.5. Il existe $\alpha > 0$ tel que $B_{\|\cdot\|_{\infty}}(I_n, \alpha) \subset G$. Soient $i \neq j$ et $\lambda \in \mathbb{C}$. Il existe $p \in \mathbb{N}^*$ tel que $\frac{|\lambda|}{p} < \alpha$. Alors

$$\left\| T_{i,j} \left(\frac{\lambda}{p} \right) - I_n \right\|_{\infty} = \left| \frac{\lambda}{p} \right| < \alpha$$

donc $T_{i,j}(\lambda) \in G$ ($T_{i,j}$ est la matrice de transvection : $T_{i,j}(\lambda) = I_n + \lambda E_{i,j}$). Ainsi,

$$T_{i,j}(\lambda) = \left(T_{i,j}\left(\frac{\lambda}{p}\right)\right)^p \in G$$

Soit $\delta = \rho e^{\mathrm{i}\theta} \in \mathbb{C}^*$. On $a \lim_{n \to +\infty} \rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} = 1$ donc il existe $p \in \mathbb{N}^*$ tel que $|\rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} - 1| < \alpha$. On a alors

$$\left\| D_n \left(\rho^{\frac{1}{p}} e^{\mathrm{i}\frac{\theta}{p}} \right) - I_n \right\|_{\infty} < \alpha$$

donc $D_n(\delta) = D_n(\rho^{\frac{1}{p}}e^{i\frac{\theta}{p}})^p \in G$ (matrice de dilatation).

Comme les matrices de transvection et de dilatation engendrent $GL_n(\mathbb{C})$, on a bien $G = GL_n(\mathbb{C})$.

Remarque 3. C'est faux sur \mathbb{R} . Contre-exemple : matrices de déterminant positif.

Solution 6.6. Si f n'est pas continue en 0, il existe $\varepsilon_0 > 0$ tel que pour tout $\alpha > 0$, il existe $h \in E$ avec $||h|| \le \alpha$ et $||f(h)|| > \varepsilon_0$. On prends $\alpha_n = \frac{1}{n+1}$, d'où $||nh_n|| \le 1$ mais $\underbrace{||f(nh_n)||}_{\le M} > n\varepsilon_0 \xrightarrow[n \to +\infty]{} +\infty$.

Donc f est continue en 0. Comme f est linéaire, pour tout $x \in E$,

$$\lim_{\|h\| \to 0} f(x+h) = \lim_{\|h\| \to 0} f(x) + f(h) = f(x)$$

 $donc\ f\ est\ continue.$

On a f(px) = p(fx) pour tout $p \in \mathbb{Z}$ puis $qf(\frac{p}{q}x) = f(px) = pf(x)$ pour tout $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$ donc pour tout $r \in \mathbb{Q}$, f(rx) = rf(x). Soit $\lambda \in \mathbb{E}$, il existe une suite de rationnels telle que $\lim_{n \to +\infty} r_n = \lambda$. Comme f est continue, on a

$$f(\lambda x) = \lim_{n \to +\infty} f(r_n x)$$
$$= \lim_{n \to +\infty} r_n f(x)$$
$$= \lambda f(x)$$

Donc f est linéaire.

Remarque 4. Soit $e_0 = 1$ et $e_1 = \sqrt{2}$ et $(e_i)_{i \in I}$ une \mathbb{Q} -base de \mathbb{R} $(0 \in I)$. On définie

$$f\left(\sum_{i\in I} \lambda_i e_i\right) = \lambda_0 e_0 + \sqrt{2} \sum_{i\in I\setminus\{0\}} \lambda_i e_i$$

f vérifie f(x+y)=f(x)+f(y), mais si $(r_n)_{n\in\mathbb{N}}$ est une suite de rationnels tendant vers $\sqrt{2}$, $f(r_n)=r_n\to\sqrt{2}\neq f(\sqrt{2})=2$.

Solution 6.7.

- 1. On a $\alpha(A) \subset \overline{A}$ donc $\overset{\circ}{A} \subset \overline{A}$ donc $\alpha(\alpha(A)) \subset \alpha(A)$. Comme $\alpha(A)$ est un ouvert inclus dans $\overset{\circ}{\overline{A}} \subset \overline{A}$ donc $\alpha(A) \subset \alpha(\alpha(A))$.
- 2. Si $\beta(A) = \overline{\mathring{A}}$, on montre aussi que $\beta(\beta(A)) = \beta(A)$. On a donc $A, \overline{A}, \mathring{A}, \overline{\mathring{A}}, \overline{\mathring{A}}, \overline{\mathring{A}}$ et $\overline{\mathring{A}}$ et $\overline{$

Solution 6.8.

1. $Si \ d_A = d_B$,

$$\overline{A} = \{x \in E \mid d_A(x) = 0\} = \{x \in E \mid d_B(x) = 0\} = \overline{B}$$

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a_1 \in \overline{A}$, $||x - a_i|| \le d_{\overline{A}}(x) + \frac{\varepsilon}{2}$ (par définition de l'inf). Il existe $a_2 \in A$, $||a_1 - a_2|| \le \frac{\varepsilon}{2}$ (par définition de la fermeture). Ainsi,

$$d_A(x) \le ||x - a_2|| \le ||x - a_1|| + ||a_1 - a_2|| \le d_{\overline{A}}(x) + \varepsilon$$

Ceci valant pour tout $\varepsilon > 0$, $d_A(x) \leqslant d_{\overline{A}}(x)$. Comme $A \subset \overline{A}$, $d_{\overline{A}} \leqslant d_A$, on $a d_A = d_{\overline{A}} = d_{\overline{B}} = d_B$.

2. Soit $x \in A$, on a $d_B(x) = |d_B(x) - d_A(x)| \le \rho(A, B)$ donc $\sup_{x \in A} d_B(x) \le \rho(A, B)$, de même pour $\sup_{y \in B} d_A(y)$ donc on on a un première inégalité.

Réciproquement, soit $x \in E$ et $\varepsilon > 0$, il existe $a \in A$ et $b \in B$ tel que $||x - a|| \le d_A(x) + \varepsilon$ et $||x - b|| \le d_B(x) + \varepsilon$. On a alors

$$d_A(x) \le ||x - a|| \le ||a - b|| + ||x - b|| \le d_B(x) + \varepsilon + \alpha(A, B)$$

Ceci vaut pour tout $\varepsilon > 0$, donc $d_A(x) \leq d_B(x) + \alpha(A, B)$. De même, $d_B(x) \leq d_A(x) + \alpha(A, B)$ donc $\rho(A, B) \leq \alpha(A, B)$.

Solution 6.9.

1. Soit $(y_n)_{n\in\mathbb{N}}\in P(F)^{\mathbb{N}}$ qui converge vers $y\in\mathbb{C}$ donc il existe $(x_n)\in F^{\mathbb{N}}$ telle que l'on ait pour tout $n\in\mathbb{N}$, $P(x_n)=y_n$. $(x_n)_{n\in\mathbb{N}}$ est bornée car $\lim_{z\to+\infty}|P(z)|=+\infty$ (car P est non constant), donc on peut extraire (Bolzano-Weierstrass) $x_{\sigma(n)}\to x$ et $x\in F$ car F est fermé. Par continuité de $z\mapsto P(z)$ sur \mathbb{C} , on a $y=P(x)\in P(F)$.

2. Soit Θ un ouvert de \mathbb{C} , soit $y \in P(\Theta)$, $\exists x \in \Theta$ tel que P(x) = y et il existe r > 0, $B(x,r) \subset \Theta$. Soit $y' \in \mathbb{C}$, supposons que pour tout $x' \in \mathbb{C}$ tel que P(x') = y', on a |x-x'| > r. Soit $Q(X) = P(X) - y' = a \prod_{i=1}^{n} (X-x_i)$ non constant où a est le coefficient dominatrice de P. Par hypothèse, pour tout $i \in \{1, \ldots, n\}$: $|x_i - x| > r$ (car $P(x_i) = y'$), ainsi

$$|Q(x)| = |y - y'| \geqslant |a|r^n$$

Par contraposée, si $|y-y'| \leqslant \frac{|a|r^n}{2}$, alors il existe $x' \in \mathbb{C}$ tel que P(x') = y' et |x'-x| < r. Ainsi, $x' \in B(x,r) \subset \Theta$ et $y' \in P(\Theta)$. Donc $B(y,|a|r^n) \subset P(\Theta)$ et $P(\Theta)$ est un ouvert.

7 Fonction d'une variable réelle

Solution 7.1. On note $A_h = \{ |\varphi(x) - \varphi(y)| \mid (x, y) \in I^2 \text{ et } |x - y| \leq h \}.$

- 1. ω_{φ} est bien défini car $|\varphi(x) \varphi(y)| \leq 2||\varphi||_{\infty}$). Si $0 < h \leq h'$, alors $A_h \subset A_{h'}$ donc $\sup(A_h) \leq \sup(A_{h'})$ donc $\omega_{\varphi}(h) \leq \omega_{\varphi}(h')$.
- 2. Soit $(h,h') \in (\mathbb{R}_+^*)^2$, soit $(x,y) \in I^2$ tel que $|x-y| \leqslant h+h'$ (où on peut supposer que $x \leqslant y$).
 - $Si \ y \in [x, x+h], \ alors \ |x-y| \leqslant h \ donc \ |\varphi(x)-\varphi(y)| \leqslant \omega_{\varphi}(h) \leqslant \omega_{\varphi}(h) + \omega_{\varphi}(h')$
 - $-Si y \in [x+h, x+h+h'], |\varphi(x)-\varphi(y)| \leq |\varphi(x)-\varphi(x+h)|+|\varphi(x+h)-\varphi(y)| \leq \omega_{\varphi}(h)+\omega_{\varphi}(h')$ $car |x-(x+h)| \leq h \ et \ |x+h-y| \leq h'.$

Donc $\omega_{\varphi}(h+h') \leq \omega_{\varphi}(h) + \omega_{\varphi}(h')$.

3. Par récurrence sur $n \in \mathbb{N}$, on a $\omega_{\varphi}(nh) = n\omega_{\varphi}(h)$. Si $\lambda \in \mathbb{R}_{+}^{*}$, on a $\lambda h \leq (\lfloor \lambda \rfloor + 1)h$ et par croissance et ce qui précède, on a

$$\omega_{\varphi}(\lambda h) \leqslant (\lfloor \lambda \rfloor + 1)\omega_{\varphi}(h) \leqslant (\lambda + 1)\omega_{\varphi}(h)$$

4. Soit $\varepsilon > 0$. φ étant uniformément continue, il existe $\alpha > 0$ tel que pour tout $(x,y) \in I^2$, si $|x - y|\alpha$ on a $|\varphi(x) - \varphi(y)| \leqslant \varepsilon$ et on a pour $h \leqslant \alpha$, $\omega_{\varphi}(h) \leqslant \varepsilon$ d'où $\lim_{h \to 0} \omega_{\varphi}(h) = 0$.

Soit alors $h_0 > 0$ fixé et h > 0,

- $si h_0 \leqslant h$, on $a 0 \leqslant \omega_{\varphi}(h) \omega_{\varphi}(h_0) \leqslant \omega_{\varphi}(h h_0)$.
- $si h \leqslant h_0$, on $a 0 \leqslant \omega_{\varphi}(h_0) \omega_{\varphi}(h) \leqslant \omega_{\varphi}(h_0 h)$.

Dans tous les cas, on a $|\omega_{\varphi}(h) - \omega_{\varphi}(h_0)| \leq \omega_{\varphi}(|h_0 - h|)$. Donc on a bien $\lim_{h \to h_0} \omega_{\varphi}(h) = \omega_{\varphi}(h_0)$.

Donc ω_{φ} est continue (et même uniformément).

8 Suites et séries de fonctions

9 Séries entières

10 Intégration

11 Espaces préhilbertiens

12 Espaces euclidiens

13 Calcul différentiel

14 Équation différentielles linéaires