Stochastik

Übungsblatt 10

Patrick Gustav Blaneck

Letzte Änderung: 14. Dezember 2021

- 1. Die zugrundeliegenden Zufallsvariablen X_1, \ldots, X_n seien unabhängig und identisch verteilt. Berechnen Sie nach der Maximum-Likelihood-Methode Schätzer für die angegebenen Parameter der folgenden Funktionen:
 - (a) Für b > -1 der Dichtefunktion:

$$f(x) = \begin{cases} \frac{b+1}{2^{b+1}} \cdot x^b & \text{für } 0 \le x \le 2\\ 0 & \text{sonst} \end{cases}$$

Lösung:

(b) Für T > 0 der Weibull-Verteilung (Spezialfall mit b = 1 und c = 0):

$$f(x) = \begin{cases} \frac{1}{T} \cdot e^{-x/T} & \text{für } x \ge 0\\ 0 & \text{sonst} \end{cases}$$

Lösung:

2.	Um die Qualität eines Zielfernrohres zu bewerten, lässt man 20 Schützen auf eine Zielscheibe schießen
	und registiert die Anzahl der Schüsse, bei denen ein Schütze das erste Mal die Mitte der Zielscheibe
	trifft. Die Anzahl der Schüsse bis zum ersten Erfolg kann für alle Schützen als Zufallsvariable X
	angesehen werden.

	(a)	Welche	Verteilung	liegt der	Qualitätsüber	prüfung	zugrunde?
--	-----	--------	------------	-----------	---------------	---------	-----------

Lösung:		

(b) Bestimmen Sie auf Basis der folgenden Stichprobenergebnisse den Maximum-Likelihood-Schätzwert für den Parameter der Verteilung.

X = Anzahl der Fehlschüsse vor dem 1. Volltreffer $\begin{vmatrix} 1 & 2 & 3 & 4 \\ & & 2 & 7 & 10 & 1 \end{vmatrix}$

	Anzahl der Schützen	2 7 10 1	
Lösung:			
(c) Lösung:			

3. Die Zufallsvariablen X_1, \ldots, X_n seien unabhängig und identisch verteilt mit der Dichte

$$f_{\theta}(x) = \begin{cases} e^{-(x-\theta)} & \text{für } x \ge \theta - 1 \\ 0 & \text{sonst} \end{cases} \quad (\theta > 0)$$

(a) Berechnen Sie einen Maximum-Likelihood-Schätzer für θ .

Hinweis: Nicht alle Extremwerte findet man durch Differentiation ...

Lösung:

(b) Gemessen wurden die folgenden 10 Werte:

Berechnen Sie den Maximum-Likelihood-Schätzwert θ aus dieser Messreihe.

Lösung:		

4. Zur Erforschung der Erdkruste sollen Bohrungen in mehreren tausend Metern Tiefe durchgeführt werden. Die tägliche Bohrleistung in [m] eines dafür entwickelten Bohrgeräts wird als Zufallsvariable X angesehen, wobei X als gleichverteilt in einem Intervall [0;b] mit unbekanntem b angenommen wird. Die bei Probebohrungen gemessenen täglichen Bohrleistungen werden als Realisierungen einer einfachen Stichprobe X_1, \ldots, X_n aufgefasst.

Zur Schätzung des Erwartungswerts $\mu = E(X)$ wird die Schätzfunktion

$$\hat{\Theta}_1 = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

vorgeschlagen. Ist die Schätzfunktion

(a) erwartungstreu?

Lösung:			

(b) konsistent?

Lösung:	

Zusatzaufgaben

5. Die Zufallsvariable X sei poissonverteilt mit unbekanntem Parameter λ . Es liegt folgende Stichprobe vor:

Leiten Sie den Maximum-Likelihood-Schätzer für λ her.

Lösung:			

6. Zur Schätzung des Erwartungswerts $\mu = \mathrm{E}(X)$ aus Aufgabe 4. wird nun die Schätzfunktion

$$\hat{\Theta}_2 = \frac{1}{2} \max X_1, \dots, X_n$$

verwendet. Ist diese Schätzfunktion ebenfalls erwartungstreu?

Lösung:			