En lo que sigue $\mathcal M$ será la σ -álgebra de los conjuntos medibles Lebesgue de $\mathbb R$ y μ la medida de Lebesgue.

7. Probar que todo conjunto acotado de \mathcal{M} tiene medida finita. Mostrar un conjunto de \mathcal{M} que tenga medida de Lebesgue finita pero que no sea acotado.

Uso que puedo cubrir cualquier conjunto acotado con un intervalo abierto, pues todos los abiertos están en M, y como este abierto tiene medida finita, cualquier subconjunto de este abierto tendrá medida finita menor o igual a la del abierto que lo cubre.

No me nir ve 5 "

$$\bullet \quad \mathcal{M}\left(\left(0,+\infty\right)\cap \mathbb{Q}\right)=0$$

$$\bullet \quad \mathcal{U} \left(\begin{bmatrix} -4,0 \end{bmatrix} \cup \left((0,+\infty) \cap \mathbb{Q} \right) \right) = 4$$

8. (a) Si
$$A, B \in \mathcal{M}, A \subseteq B \text{ y } \mu(A) < \infty \text{ entonces } \mu(B \setminus A) = \mu(B) - \mu(A).$$

(b) Si
$$A, B \in \mathcal{M}$$
 entonces $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.

$$\alpha$$
)

$$\mathcal{L}(B \setminus A) + \mathcal{L}(A) = \mathcal{L}(A \cup B)$$

$$\mathcal{M}(\mathcal{B} \setminus A) + \mathcal{M}(A) = \mathcal{M}(\mathcal{B})$$

$$\mathcal{M}(B \setminus A) = \mathcal{M}(B) - \mathcal{M}(A)$$

b)
$$M(A \cup B) + M(A \cap B) =$$

$$= \mu(A \setminus B) + \mu(B) + \mu(A \cap B)$$

$$= \mu(A \cap B) + \mu(B) + \mu(A \cap B) = \phi$$

$$= \mu(A) + \mu(B) \Rightarrow = \mu(A)$$

9. Para cada $\lambda > 0$ y cada conjunto $A \subseteq \mathbb{R}$ notamos λA al conjunto $\lambda A = \{\lambda x : x \in A\}.$

Probar que si $A \in \mathcal{M}$ entonces $\lambda A \in \mathcal{M}$ y $\mu(\lambda A) = \lambda \mu(A)$.

Den :

Ses
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 2.x$$
Como $2 > 0$

$$f \in S \text{ biyective}$$

$$con $f'(y) = \frac{1}{2} \cdot b$$$

$$\Rightarrow f(A) = \lambda \cdot A = B$$

$$f'(B) = \Delta B = A$$

$$\operatorname{con} f'(y) = \frac{1}{\lambda} \cdot y$$

$$\int_{a}^{b} f(A) = B$$

$$\Rightarrow f(M) = \left\{ \mathcal{B} \subseteq \right\} : f^{-1}(\mathcal{B}) = \frac{1}{\lambda} \mathcal{A}$$

$$\forall \mathcal{B} \in \mathcal{B}$$

(b) Sea $f:X\to Y$ una función. Probar que $\mathcal{B}=\{B\subseteq Y:f^{-1}(B)\in\mathcal{A}\}$ es una σ -álgebra de conjuntos de Y.

Como
$$f(A) = B$$

$$= \begin{cases} f(A) : A \in \mathcal{M} \end{cases}$$
es una σ -algebra.

. A
$$\in$$
 M ex nulo \iff $f(A)$ er nulo \iff $f(A)$ er nulo

Enfoncer

$$A = f(f'(A)) \in f(M)$$

and

only of intervals observed.

$$\Rightarrow M \subseteq f(M)$$

$$\Rightarrow f(M) \in f(M) \in M$$

$$f(M) \in M$$

omo

$$M \subseteq f(M)$$

$$\Rightarrow M = f(M)$$

$$\mu(\lambda A) = \lambda \mu(A).$$
 \iff $\mu(A) = \mu(\lambda A)$

Teorema (existencia de la medida de Lebesgue)

Existe una única función μ de \mathcal{M} en $[0, +\infty]$ tal que

• Si
$$A = (a, b)$$
, entonces $\mu(A) = b - a$.

Si $A_n \in \mathcal{M}$ para todo $n \in \mathbb{N}$, entonces

$$\mu\big(\bigcup_{n\in\mathbb{N}}A_n\big)\leq \sum_{n\in\mathbb{N}}\mu(A_n).$$

Si los A_n son disjuntos dos a dos, entonces

Si $A \in \mathcal{M}$, entonces

Importante
$$\mu(A) = \inf\{\mu(U) : A \subset U, U \text{ abierto}\}.$$
 Regularidad "

Llamo
$$\tilde{\mu}(A) = \mu(x.A)$$

$$\subseteq$$
 Si $A = (a, b)$

$$\mathcal{A}(A) = \mu((\lambda a, \lambda b)) \cdot \frac{1}{\lambda}$$

$$= (\lambda b - \lambda a) \cdot \frac{1}{\lambda}$$

$$= \lambda(b - a)$$

$$= \mu((a,b))$$

$$\mu \left(\bigcup_{n} A_{n} \right) = \frac{1}{\lambda} \cdot \mu \left(\lambda \cdot \bigcup_{n} A_{n} \right)$$

$$= \frac{1}{\lambda} \cdot \mu \left(\bigcup_{n} \lambda \cdot A_{n} \right)$$

$$\leq \frac{1}{\lambda} \sum_{n} \mu \left(\lambda \cdot A_{n} \right)$$

$$= \sum_{n} \mu \left(\lambda \cdot A_{n} \right)$$

$$\tilde{\mu}\left(\bigcup_{n}A_{n}\right) \leqslant \sum_{n} \tilde{\mu}\left(A_{n}\right) / Sigo junto$$

$$\mu(A) = \inf \left\{ \mu(U) : A \subset U \text{ birto} \right\}$$

$$\mu(A) = \mu(A)$$

$$= \frac{1}{2} \cdot \inf \left\{ \mu(U) : (A) \subset U \text{ birto} \right\}$$

$$\lim_{n \to \infty} \frac{1}{n} \cdot \inf \left\{ \mu(A) : A \subset V \text{ birto} \right\}$$

$$= \inf \left\{ \frac{\mu(\pi \vee)}{\pi} : Ac \vee abierto \right\}$$

$$\tilde{\mathcal{M}}(A) = \inf \left[\tilde{\mathcal{M}}(V) : AcV \text{ absorts} \right]$$

Mortré que la medida $\tilde{\mu}(A)$ comple [1], [3] y [3] pero por Teorema de la Existencia de la medida de Lebergue, esta medida er unica ~ L = L $\Rightarrow \tilde{\mu}(A) = \mu(\lambda A) = \mu(A)$ $\mu(\lambda A) = \mu(A)$ $\mu(\lambda A) = \lambda \cdot \mu(A)$

10. Probar que un conjunto acotado $A\subseteq\mathbb{R}$ es medible Lebesgue si y sólo si $\forall \varepsilon>0$ existen conjuntos G abierto y F cerrado tales que $F\subseteq A\subseteq G$ y $\mu(G\setminus F)<\varepsilon$.

Por regularidad de A er mínimo? por so soutato
$$\mu(A) = \inf \left\{ \mu(G) : A \subseteq G \text{ shirto} \right\}$$

$$\mu(A) = \sup \left\{ \mu(F) : A \supseteq F \text{ corrado} \right\}$$

$$= > \mu(G) < \mu(A) + \varepsilon \qquad \forall G \text{ so into}/A \subseteq G$$

$$\forall \varepsilon > 0$$

$$\forall \mu(A) < \mu(\mp) + \varepsilon \qquad \forall F \text{ so into}/F \subseteq A$$

$$\forall \varepsilon > 0$$

Para Regentar.

•
$$\mu(G \setminus F) \stackrel{?}{\sim} \varepsilon \qquad \forall \varepsilon > 6$$

Cono FCG:

$$\mu(G \setminus F) = \mu(G) - \mu(F)$$

Si tomo infimo de los G y supre mo de los F (sé que existen puer A acotado)

$$= \mu(A) - \mu(A)$$

$$=$$
 0 $<$ ε $\forall \varepsilon$ >0

$$\mu(G \setminus F) = \mu(G) - \mu(F) \geq 0$$

$$\mu(G) \geq \mu(F)$$

$$\mu(G) \geq \mu(F)$$

$$\mu(G \setminus F) < \varepsilon$$
 $\forall \varepsilon > 0$

$$\mu(G) - \mu(F) < \varepsilon$$

$$\Rightarrow \mu(G) - \mu(F) = 0$$

$$\Rightarrow \mu(G) = \mu(F)$$

$$\Rightarrow \mu(F) > \mu(A) > \mu(G) \text{ medible todavial}$$

$$\mu(G) = \mu(F)$$

$$\Rightarrow \mu(F) = \mu(A) = \mu(G)$$

Me gustaría llegar a que A es acotado y medible.

Tal vez solo llegando a que es medible puedo encontrar un caso NO-acotado donde NO existen F y G (que existan supremo e infimos en el límite, pero no existan tales conjuntos).

Pero me faltaría llegar a que A es medible, y no estoy seguro de cómo probar eso en este caso.

11. Sea
$$A \in \mathcal{M}$$
. Probar que si $\mu(A) = 0$ entonces $A^{\circ} = \emptyset$. ¿Vale la vuelta?

que:

Siempre habré un
$$\mathcal{E} = \frac{\alpha}{2} \langle \alpha \rangle$$

$$\sum_{i \in N} long(Xi) < \mathcal{E} < \infty$$

$$^{\circ}$$
 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$

W

• Si
$$A^{\circ} = \phi$$
 \longrightarrow $\mathcal{M}(A) \stackrel{?}{=} 0$?

Si
$$A = [O(1) \cap Q^c \in M]$$

$$\Rightarrow A^\circ = \phi$$

Dumerable = Des mulo = De medible (PM) = D. .

- De es medible (E B)

Alemos [OIT] es medible (lo probamo al ppo)
en ejeració s).

- A es medible (n on 2 medibles).

$$L[a]] = L[a] + L[a] +$$

 $1 = \mu(A)$

Rta: No

12. Sea $A \subseteq [0,1]$ un conjunto medible Lebesgue tal que $\mu(A) = 1$. Probar que A es denso en [0,1].

$$\overline{A} = X = [0, 1]$$

· pro tembien:

$$\Leftrightarrow$$
 An(a,b) $\neq \phi$

$$A^{c} \cap \mathcal{B}(a,r) = \phi \quad \forall a \in [0,1],$$

Sipongo que

$$\exists a \in A$$
, $\exists r > 0$

A le folto un intervatito

An $B(a,r) = \phi$

An $(a-r, a+r) = \phi$

y lego a un about do.

$$\Rightarrow \mathcal{M}(A_{n}B(a_{n}r)) = \mathcal{M}(\phi) = 0$$

=>
$$A^{c} \cap B(a,r) \neq \emptyset$$

intervalito de radio r
 $a-r \quad a \quad a+r = (a-r, a+r)$

b
$$\partial S'$$
 como $A U A^c = [0,1]$

es lo mismo que $(A \cap [0,1]) U (A^c \cap [0,1]) = [0,1]$

$$(a \cdot r, a + r) U (A^c \cap B(a_1 r)) = B(a_1 r)$$

mide O

mide O

debe medir 2r

$$\mu(A) + \mu(A^{c}) = \mu([0,1])$$

$$1 + 2r = 1$$

$$70$$

 $A \cap B(a,r) \neq \phi$

HaeAy Vr>o

=> A es denso.

Cus les que den hors de
$$P(D, T) \setminus M(T)$$
?

$$\lim_{n \to \infty} \mu(A_n \land B) = 0$$

$$= (A_n \lor B) \cdot (A_n \land B)$$

$$= (A_n \lor B) \lor (A_n \land B)$$

$$= (A_n \lor B) \lor (A_n \land B)$$

$$= (A_n \lor B) \lor (A_n \land B)$$

$$= \lim_{n \to \infty} \mu(A_n \lor (A_n \land B)) + \mu(B \lor (A_n \land B)) = 0$$

$$\lim_{n \to \infty} \mu(A_n) - \mu(A_n \land B) = 0$$

$$\lim_{n \to \infty} \mu(A_n) - \mu(A_n \land B) = 0$$

$$\lim_{n \to \infty} \mu(B) - \mu(A_n \land B) = 0$$

$$\lim_{n \to \infty} \mu(B) - \mu(A_n \land B) = 0$$

$$\lim_{n \to \infty} \mu(B) - \mu(A_n \land B) = 0$$

$$\lim_{n \to \infty} \mu(B) - \mu(A_n \land B) = 0$$

E lin $\mu(An nB) = \mu(B)$ puer B no depende de n

$$\lim_{n\to\infty} \mu(A_n) - \mu(A_n \cap B) = 0$$

$$=\lim_{n \to \infty} \mu(A_n) - \mu(B) = 0$$

$$\Rightarrow \lim_{n\to\infty} \mu(A_n) = \mu(B)$$