Chapitre 5

Régulation Numérique

I. Principe

- □ L'ensemble CNA+BOZ+Procédé+CAN est interprété comme un procédé discrétisé.
- □ Le procédé discrétisé possède une entrée générée par le calculateur et une sortie fournie par .
- □ Ce procédé est caractérisé par un modèle dynamique échantillonné qui est relié au modèle continu du procédé.

II. Choix de la période d'échantillonnage

Pour pouvoir reconstituer un signal continu à partir de la séquence discrétisée, il faut que la fréquence d'échantillonnage vérifie la condition de Shannon :

$$f_e > 2f_{max}$$

où f_{max} est la fréquence maximum à transmettre.

Le choix de la fréquence d'échantillonnage pour les systèmes de commande se fait en fonction de la bande passante désirée en boucle fermée.

La bande passante est définie par la pulsation à partir de laquelle le gain à la fréquence nulle est atténué de plus de 3dB.

La règle utilisée pour le choix de la fréquence d'échantillonnage en automatique est la suivante :

$$f_e = (6\dot{a}\,25) f_{BP}^{BF}$$

 $f_{\it BP}^{\it BF}$ désigne la fréquence de la bande passante en boucle fermée.

Exemple

■ Pour un système de premier ordre

$$H(p) = \frac{k}{1 + Tp}$$
$$f_{BF}^{BP} = \frac{1}{2\pi T}$$

D'après la règle $f_e = (6 \dot{a} 25) f_{BP}^{BF}$, on obtient :

$$\frac{T}{4} \le T_e \le T$$

Pour un système de deuxième ordre

$$H(p) = \frac{k \,\omega_0^2}{p^2 + 2\xi \omega_0 \, p + \omega_0^2}$$

Pour $\xi \in [0.7 \ 1]; \ 0.25 \le \omega_0 Te \le 1.5$

III. Système échantillonné en boucle fermée

III.1. Fonction de transfert en boucle fermée

■ La fonction de transfert *H*(*z*-¹) est donnée par :

$$H(z^{-1}) = \frac{B(z^{-1})}{A(z^{-1})} = \frac{b_1 z^{-1} + b_2 z^{-2} + \dots + b_{nb} z^{-nb}}{I + a_1 z^{-1} + a_2 z^{-2} + \dots + a_{na} z^{-na}}$$

■ La fonction de transfert en boucle fermée s'écrit v(k)=0:

$$H(z^{-1}) = \frac{H(z^{-1})}{1 + H(z^{-1})} = \frac{B(z^{-1})}{A(z^{-1}) + B(z^{-1})}$$

III.2. Structure des régulateurs numériques

 \square On considère un régulateur PI analogique défini par la fonction de transfert suivante :

La loi de commande est donnée par :

• On peut discrétiser cette loi de commande en utilisant l'approximation

survante:
$$\frac{1}{p} \Rightarrow \frac{T_{e}}{1-z^{-1}}$$

$$d'où: \qquad u(k) = kp \left(1 + \frac{1}{T_{i}} - \frac{T_{e}}{1 - 2^{-1}}\right) \left(y_{c}(k) - y_{i}(k)\right)$$

$$d'e = kp \left(\frac{kp \left(1 - 2^{-1}\right) + \frac{kp T_{e}}{T_{i}}}{1 - 2^{-1}}\right) \left(y_{c}(k) - y_{i}(k)\right).$$

$$\left(1 - 2^{-1}\right) u(k) = \left(kp \left(1 - 2^{-1}\right) + \frac{kp T_{e}}{T_{i}}\right) \left(y_{c}(k) - y_{i}(k)\right).$$

$$S(2^{-1}) \cup (k) = T(2^{-1}) y_c(k) - R(2^{-1}) y(k)$$
avec:
$$S(2^{-1}) = 1 - 2^{-1}$$

$$T(2^{-1}) = R(2^{-1}) = kp \left(1 + \frac{7e}{7i}\right) - kp 2^{-1}.$$

$$T(2^{-1}) = R(2^{-1}) = n_0 + n_4 2^{-1}$$

□ Ceci conduit à la structure canonique des régulateurs numériques

$$U(k) = \frac{R(2^{-1})}{S(2^{-1})} y(k) + \frac{T(2^{-1})}{S(2^{-1})} y_c(k).$$

□ Si la fonction de transfert de {CNA+BOZ+Procédé+CAN} est donnée par :

$$H(z^{-1}) = \frac{B(z^{-1})}{A(z^{-1})}$$

Alors la fonction de transfert en boucle ouverte s'écrit alors comme suit :

$$H_{BO}(z^{-1}) = \frac{B(z^{-1})R(z^{-1})}{A(z^{-1})S(z^{-1})}$$

La fonction de transfert en boucle fermé s'écrit :

$$H_{BF}(z^{-1}) = \frac{B(z^{-1})T(z^{-1})}{A(z^{-1})S(z^{-1}) + B(z^{-1})R(z^{-1})}$$

$$H_{BF}(z^{-1}) = \frac{B(z^{-1})T(z^{-1})}{P(z^{-1})}$$

$$avec \ P(z^{-1}) = 1 + p_1 z^{-1} + p_2 z^{-2} + \dots$$

définit les pôles du système en boucle fermée.

 $T(z^{-l})$ introduit un degré de liberté supplémentaire permettent de dissocier les spécifications en poursuite et en régulation.

III.3. Synthèse d'un régulateur numérique

La synthèse du régulateur se traduit par la détermination de *R*, *S* et *T* afin d'obtenir des fonctions de transfert en boucle fermée vis-à-vis de la consigne et de la perturbation qui permettent de satisfaire les performances imposées.

Exemple: PI numérique

■ On présente le calcul des coefficients d'un régulateur PI numérique pour la fonction de transfert :

$$H(z^{-1}) = \frac{b_1 z^{-1}}{1 + a_1 z^{-1}}$$

■ Le régulateur PI numérique est donné par :

$$S(z^{-1}) = I - z^{-1}$$

$$T(z^{-1}) = R(z^{-1}) = r_0 + r_1 z^{-1}$$

$$H_{BF}(z^{-1}) = \frac{B(z^{-1})T(z^{-1})}{P(z^{-1})}$$

 $P(z^{-1}) = 1 + p_1 z^{-1} + p_2 z^{-2}$: définit les performances désirées en boucle fermée.

 $P(z^{-1})$ est choisi comme un polynôme de deuxième ordre. Ceci revient à discrétiser un système continu du deuxième ordre caractérisé par ω_0 et ξ

- 1. Déterminer les paramètres r_n et r_1 de régulateur.
- 2. Déduire les paramètres de PI continu k_{ρ} et T_{r}

$$A(2^{-1}) \cdot S(2^{-1}) + B(2^{-1})R(2^{-1}) = P(2^{-1})$$

$$= (1 + Q_1 2^{-1}) (1 - 2^{-1}) + b_1 2^{-1} (7_0 + Q_2^{-1}) + c_1 2^{-1}$$

$$= 1 + (Q_1 - 1 + 7_0 d_1) 2^{-1} + (7_1 b_1 - Q_1) 2^{-2}$$

$$= 1 + P_1 2^{-1} + P_2 2^{-2}$$

ďoù

$$n_0 = \frac{p_1 - q_1 + 1}{b_1}$$

$$n_0 = \frac{p_1 - q_2 + 1}{b_1}$$

$$n_1 = \frac{p_2 + q_1}{b_1}$$

Les paramètres de PI continu équivalent sont :

III.4. PID numérique

La version de base du régulateur *PID* numérique résulte de la discrétisation du *PID* continu donné par :

$$C(p) = K_p \left(1 + \frac{1}{T_i p} + \frac{T_d p}{1 + \frac{T_d p}{N}} \right)$$

La discrétisation est assurée en utilisant les approximations suivantes :

$$p \Rightarrow \frac{1-z^{-1}}{T_e} \qquad \qquad \frac{1}{p} \Rightarrow \frac{T_e}{1-z^{-1}}$$

Exercice

On considere un système défini par le fit de tronsfert discret nuvonte

$$H(2^{-1}) = 2^{-1} \frac{Q_1 8 + Q_2 1 2^{-1}}{1 - Q_6 Q_6 2^{-1}} = \frac{B(2^{-1})}{A(2^{-1})}$$

On définit le performances dérivées en BF par le polynome P(2') = 1-1,62'+0,672'2

$$\frac{y_{c}(k)}{T(z'')} \xrightarrow{\xi(k)} \frac{1}{S(z-1)} \frac{y(k)}{S(z-1)} \frac{y(k)}{A(z-1)}$$

A(2-1) S(2-1) + B(2-1) R(2-1) = (1-0,606 2-1)(1-2-1)+(0,182-1+0,212-1)(20+2-1) = 1-21-0,6062-1+0,6062-2+0,18 n, 2-1+0,18 n,2-2+0,21 noz-2+0,21 noz-2+0,21 r,z-3. = 1+ (-1,606 +0,18 ro) 3-1+ (9606 +0,18 r, +0,2120) 3-4 921 213

$$\Rightarrow 1.6 = 1.606 - 0.18 \, n_0 \Rightarrow n_0 = \frac{1.6 - 1.606}{-0.18}$$

$$T(2^{-1}) = R(2^{-1}) = 0.03 \, .$$

[Suite exercise cours Aups]
$$U(k) = \frac{1}{S(2^{-1})} E(k)$$

$$U(k) = \frac{T(3^{-1})y_c(k) - R(3^{-1})y_c(k)}{S(2^{-1})}.$$

$$S(2^{-1}) U(k) = T(2^{-1}) y_c(k) - R(2^{-1})y_c(k).$$

$$(1 - 3^{-1}) U(k) = 0.03 y_c(k) - 0.03 y_c(k).$$

$$U(k) = U(k-1) + 0.03 y_c(k) - 0.03 y_c(k).$$