Corso di Algebra per Informatica

Lezione 16: Esercizi

- (1) Elencare tutti gli elementi di $[0]_{Kerf}$ dove f è una delle seguenti funzioni
 - (i) $f: n \in \mathbb{Z} \mapsto n+1 \in \mathbb{Z}$;
 - (ii) $f: n \in \mathbb{Z} \mapsto 2n \in \mathbb{Z}$;

(iii)

$$f: n \in \mathbb{Z} \mapsto \begin{cases} 1, & \text{se } n \text{ è pari} \\ -1, & \text{se } n \text{ è dispari} \end{cases} \in \mathbb{Z}$$

- (2) Scrivere esplicitamente $\mathbb{Z}/Kerf$ dove f è una delle funzioni definite all'esercizio 1.
- (3) Detta $f: x \in P(\mathbb{Z}) \mapsto x \cap \mathbb{N} \in P(\mathbb{N})$, descrivere $[\{-1\}]_{Kerf}$, $[\{0\}]_{Kerf}$ e $[\emptyset]_{Kerf}$.
- (4) Data $f : n \in \mathbb{N} \mapsto \{n\} \in P(\mathbb{N})$, descrivere *Ker f*.
- (5) Data $f : n \in \mathbb{Z} \mapsto (-1)^n \in \mathbb{Z}$, descrivere *Ker f*.
- (6) Sia G un gruppo abeliano con elemento neutro u e sia $f: x \in G \mapsto x^{-1} \in G$. Mostrare che Kerf è la relazione di uguaglianza su G.
- (7) Utilizzando il teorema fondamentale di omomorfismo per insiemi scrivere la funzione $f: n \in \mathbb{Z} \mapsto n^2 \in \mathbb{Z}$ come composizione di una funzione iniettiva e di una suriettiva.
- (8) Trovare, se possibile, un insieme a e una relazione di equivalenza su a tale che a/\sim non sia una partizione di a.
- (9) Scrivere tutte le partizioni dell'insieme $\{0, 1, 2\}$.
- (10) Scriviamo $\mathbb{Z} = p \cup d$ dove p è l'insieme dei numeri interi pari e d è quello dei numeri interi dispari. Trovare una funzione f tale che $\mathbb{Z}/Kerf = \{p,d\}$.
- (11) Trovare, se possibile, due diverse relazioni di equivalenza \sim_1 e \sim_2 tali che $\mathbb{Z}/\sim_1=\{p,d\}=\mathbb{Z}/\sim_2$ con le notazioni dell'esercizio precedente.
- (12) Quante relazioni di equivalenza è possibile definire su $P(\emptyset)$?
- (13) Siano a,b,c,d insiemi a due a due distinti. Determinare tutte le relazioni di equivalenza \sim dell'insieme $\{a,b,c,d\}$ tali che $[a]_{\sim}=[b]_{\sim}=[c]_{\sim}$ e tutte quelle tali che $[a]_{\sim}=[b]_{\sim}$.
- (14) Sia $a=\{n\in\mathbb{N}\mid n\leq 7\}$. Determinare tutte le relazioni di equivalenza $\rho=(a\times a,g)$ tali che $0\rho 7, (1,4)\in g, \{3,4,5,7\}\subseteq [2]_{\rho}$ e $0\rho 6.$