BATMAN: Bilateral Attention Transformer in Motion-Appearance Neighboring Space for Video Object Segmentation

Ye Yu¹, Jialin Yuan², Gaurav Mittal¹, Li Fuxin², and Mei Chen¹

```
1 Microsoft
{yu.ye,gaurav.mittal,mei.chen}@microsoft.com
2 Oregon State University
{yuanjial,lif}@oregonstate.edu
```

Overall Pipeline

- 1. Extract frame-level feature
- 2. Compute optical flow
- 3. Optical flow calibration

- 4. Encode the optical flow and query
- 5. Bilateral transformer
- 6. Decode the final feature

Bilateral space encoding

F = optical flow $F' = Flow \ encoder(F)$ $E = Conv_{1\times 1}(Concate(F', Q))$

Bilateral attention

$$BiAttn(Q, K, V) = softmax\left(\frac{QK^TM}{\sqrt{C}}\right)V, M \in [0,1]^{HW \times HW}, Q \in \mathbb{R}^{HW \times C},$$

$$M_{h,w}(i,j,E) = \begin{cases} 1 & \text{if } |i-h| \leqslant W_d \text{ and } |j-w| \leqslant W_d \\ & \text{and } |argsort_{W_d}(E_{h,w}) - argsort_{W_d}(E_{i,j})| \leqslant W_b \\ 0 & \text{otherwise} \end{cases}$$

Optical flow calibration

(a) Comparison of the initial optical flow (middle) and the calibrated optical flow (bottom). The calibrated optical flow is smoother within the same object, and sharper at object boundary

Optical flow calibration

Use MSE between the initial optical flow and the output

Results

Table 1: Results on Youtube-VOS 2019/2018 validation split. Subscript s and u denote scores in seen and unseen categories, respectively. BATMAN outperforms all state-of-the-art methods on both benchmarks

Method		Youtul	oe-VOS	5 2019			Youtuk	oe-VOS	S 2018	
	$\mathcal{J}\&\mathcal{F}$	\mathcal{J}_s	\mathcal{J}_u	\mathcal{F}_s	\mathcal{F}_u	$\int \& \mathcal{F}$	\mathcal{J}_s	\mathcal{J}_u	\mathcal{F}_s	\mathcal{F}_u
$\overline{\mathrm{STM}[27]}$	-	-	_	-	_	79.4	79.7	72.8	84.2	80.9
AFB-URR[18]	-	-	-	-	-	79.6	78.8	74.1	83.1	82.6
KMN[34]	-	-	-	-	-	81.4	81.4	75.3	85.6	83.3
CFBI[49]	81.0	80.6	75.2	85.1	83.0	81.4	81.1	75.3	85.8	83.4
$\mathrm{LWL}[2]$	-	_	_	_	-	81.5	80.4	76.4	84.9	84.4
RMN[45]	-	-	-	-	-	81.5	82.1	75.7	85.7	82.4
SST[11]	81.8	80.9	76.6	-	-	81.7	81.2	76.0	-	-
TransVOS[25]	-	-	_	-	-	81.8	82.0	75.0	86.7	83.4
LCM[15]	-	-	-	-	-	82.0	82.2	75.7	86.7	83.4
CFBI+[51]	82.6	81.7	77.1	86.2	85.2	82.8	81.8	77.1	86.6	85.6
STCN[7]	82.7	81.1	78.2	85.4	85.9	83.0	81.9	77.9	86.5	85.7
RPCMVOS[47]	83.9	82.6	79.1	86.9	87.1	84.0	83.1	78.5	87.7	86.7
AOT[50]	84.1	83.5	78.4	88.1	86.3	84.1	83.7	78.1	88.5	86.1
BATMAN	85.0	84.5	79.0	89.3	87.2	85.3	84.7	79.2	89.8	87.4

Results

Table 2: Comparisons to the state-of-the-art methods on DAVIS benchmarks. (Y) indicates including Youtube-VOS dataset in training. BATMAN outperforms all state-of-the-art methods on all three DAVIS benchmarks

Method	DAV	IS 2017	7 val	DAVIS	3 2017 t	est-dev	DAVIS 2017 test-dev DAVIS 2016				
Meniod	$\mathcal{J}\&\mathcal{F}$	${\cal J}$	${\cal F}$	$\int \& \mathcal{F}$	${\cal J}$	${\cal F}$	$\int \& \mathcal{F}$	${\cal J}$	${\cal F}$		
AFB-URR[18]	74.6	73.0	76.1	-	-	-	-	-	_		
$\mathrm{LWL}[2]$	81.6	79.1	84.1	_	-	-	_	-	-		
$\mathrm{STM}[27](\mathbf{Y})$	-	79.2	84.3	_	-	-	_	88.7	89.9		
$\text{CFBI}[49](\mathbf{Y})$	81.9	79.3	84.5	75.0	71.4	78.7	89.4	88.3	90.5		
$\mathrm{SST}[11](\mathbf{Y})$	82.5	79.9	85.1	_	-	-	_	-	-		
$KMN[34](\mathbf{Y})$	82.8	80.0	85.6	77.2	74.1	80.3	90.5	89.5	91.5		
$CFBI+[51](\mathbf{Y})$	82.9	80.1	85.7	75.6	71.6	79.6	89.9	88.7	91.1		
$\mathrm{RMN}[45](\mathbf{Y})$	83.5	81.0	86.0	75.0	71.9	78.1	88.8	88.9	88.7		
$LCM[15](\mathbf{Y})$	83.5	80.5	86.5	78.1	74.4	81.8	90.7	89.9	91.4		
$RPCMVOS[47](\mathbf{Y})$	83.7	81.3	86.0	79.2	75.8	82.6	90.6	87.1	94.0		
$TransVOS[25](\mathbf{Y})$	83.9	81.4	86.4	76.9	73.0	80.9	90.5	89.8	91.2		
$AOT[50](\mathbf{Y})$	84.9	82.3	87.5	79.6	75.9	83.3	91.1	90.1	92.1		
$\mathrm{STCN}[7](\mathbf{Y})$	85.4	82.2	88.6	76.1	72.7	79.6	91.6	90.8	92.5		
$\overline{\mathbf{BATMAN}(\mathbf{Y})}$	86.2	83.2	89.3	82.2	78.4	86.1	92.5	90.7	94.2		

Ablation study

Table 3: Ablation on bilateral attention. The model with bilateral attention outperforms that with spatial local attention on all benchmarks

Attention	DAVIS	DAVIS 2017	DAVIS	Youtube-	Youtube-
type	2017 val	$\operatorname{test-dev}$	2016 val	VOS 2019	VOS 2018
Spatial local	84.9	77.5	91.6	84.1	83.8
Bilateral	86.2	$\bf 82.2$	$\bf 92.5$	$\bf 85.0$	$\bf 85.3$

Table 4: Comparisons of bilateral attention w/ and w/o optical flow calibration. Calibrating the optical flow leads to higher accuracy on all benchmarks

Optical	DAVIS	DAVIS 2017	DAVIS	Youtube-	Youtube-
flow type	2017 val	$\operatorname{test-dev}$	2016 val	VOS 2019	VOS 2018
w/o calibration	86.0	81.7	92.4	84.6	84.8
w/ calibration	$\bf 86.2$	$\bf 82.2$	$\bf 92.5$	$\bf 85.0$	85.3

