Reykjavik University		1
	5.8. Modular Exponentiation	15
	5.9. Chinese Remainder Theorem	15
	5.10. Linear Congruence Solver	15
DanceParty	5.11. Numeric Integration	15
Team Reference Document	5.12. Fast Fourier Transform	15
Team Reference Document	5.13. Formulas	16
	6. Geometry	16
	6.1. Primitives	16
	6.2. Polygon	17
	6.3. Convex Hull	17
Contents	6.4. Line Segment Intersection	17
	6.5. Great-Circle Distance	17
1. Code Templates	1 6.6. Formulas	18
1.1. Basic Configuration	1 7. Other Algorithms	18
1.2. C++ Header	7.1. Binary Search	18
1.3. Java Template	1 7.2. Ternary Search	18
2. Data Structures	$\frac{2}{2}$ 7.3. 2SAT	18
2.1. Union-Find	2 7.4. Stable Marriage	18
2.2. Segment Tree	2 7.5. Algorithm X	18
2.3. Fenwick Tree	2 7.6. <i>n</i> th Permutation	19
2.4. Matrix	2 7.7. Cycle-Finding	19
2.5. AVL Tree	3 7.8. Dates	20
2.6. Heap	4 8. Useful Information	20
2.7. Skiplist	5 8.1. Tips & Tricks	20
2.8. Dancing Links 2.9. Misof Tree	5 8.2. Fast Input Reading	20
	6 8.3. 128-bit Integer	20
3. Graphs 3.1. Breadth-First Search	6 8.4. Worst Time Complexity	20
3.2. Single-Source Shortest Paths	6 8.5. Bit Hacks 6	20
3.3. All-Pairs Shortest Paths	7	
3.4. Strongly Connected Components	7	
3.5. Minimum Spanning Tree	7	
3.6. Topological Sort	7	
3.7. Euler Path	8	
3.8. Bipartite Matching	8	
3.9. Hopcroft-Karp algorithm	8	
3.10. Maximum Flow	9	
3.11. Minimum Cost Maximum Flow	10	
3.12. All Pairs Maximum Flow	10	
4. Strings	11	
4.1. Trie	11	
4.2. Suffix Array	11	
4.3. Aho-Corasick Algorithm	12	
4.4. The Z algorithm	12	
5. Mathematics	12	
5.1. Fraction	12	
5.2. Big Integer	13	
5.3. Binomial Coefficients	14	
5.4. Euclidean algorithm	14	
5.5. Trial Division Primality Testing	15	
5.6. Sieve of Eratosthenes	15	
5.7. Modular Multiplicative Inverse	15	

```
Reykjavik University
----void update(int at, int by) {------------------------// 76 ------matrix<T> res(cols, rows);------------------// b5
-------while (at < n) data[at] += by, at |= at + 1; }-------// fb -------for (int i = 0; i < rows; i++)-------// 9c
------int res = 0;-------// c3 -----return res; }------// c3
------while (at >= 0) res += data[at], at = (at & (at + 1)) - 1;-------// 37 ----matrix<T> pow(int p) {---------// 68
-----return res; }------// e4 -----matrix<T> res(rows, cols), sq(*this);-------// 4d
};------// 57 -----while (p) {------// cb
-----x0(fenwick_tree(n)) { }------// 7c -----} return res; }-------
----// insert f(y) = my + c if x <= y-------// 17 ----matrix<T> rref(T &det) {-------// 89
void range_update(fenwick_tree_sq &s, int a, int b, int k) {-------// 89 -------while (k < rows && eq<T>(mat(k, c), T(0))) k++;-----// f9
------for (int i = 0; i < cols; i++)-----// ab
2.4. Matrix. A Matrix class.
                      -----swap(mat.at(k, i), mat.at(r, i));-----// 8d
public:-----T m = mat(i, c);------// e8
-----data.assign(cnt, T(0)); }-----// d0
                      ----matrix(const matrix& other) : rows(other.rows), cols(other.cols),------// fe -----} return mat; }-----
-----cnt(other.cnt), data(other.data) { }-----// ed
                      private:----// e0
----T& operator()(int i, int j) { return at(i, j); }------// e0
                      ----int cnt:-----// 6a
----void operator +=(const matrix& other) {------// c9
                      ----vector<T> data;------// 41
------for (int i = 0; i < cnt; i++) data[i] += other.data[i]; }------// e5
                      ----inline T& at(int i, int j) { return data[i * cols + j]; }------// 74
----void operator -=(const matrix& other) {------// 68
                      }:-----// b8
------for (int i = 0; i < cnt; i++) data[i] -= other.data[i]; }------// 88
----void operator *=(T other) {------// ba
                      2.5. AVL Tree. A fast, easily augmentable, balanced binary search tree.
------for (int i = 0; i < cnt; i++) data[i] *= other; }------// 40 #define AVL_MULTISET 0------// b5
------matrix<T> res(*this); res += other; return res; }------// 5d template <class T>-------// 22
------matrix<T> res(*this); res -= other; return res; }------// cf public:------// f6
------matrix<T> res(rows, other.cols);-------// 57 ------node(const T &item, node *p = NULL) : item(item), p(p),------// c5
```

```
Reykjavik University
-----node *cur = root;-------// cf ------if (!cur) cur = root;------// 0a
------if (cur->item < item) cur = cur->r;-------// eb ------if (n < sz(cur->l)) cur = cur->l;------// 25
------else if (item < cur->item) cur = cur->l;------// de ------else if (n > sz(cur->l)) n -= sz(cur->l) + 1, cur = cur->r;-----// 8b
------else break: }-------// 05 ------else break:-------// 4c
-------node *prev = NULL, **cur = &root;----------// 60 ----inline int sz(node *n) const { return n ? n->size : 0; }------// 69
-----prev = *cur;------// 31 ----inline bool left_heavy(node *n) const {-------// d7
-------if ((*cur)->item < item) cur = &((*cur)->r);------// 39 -----return n && height(n->l) > height(n->r); }-----// 9d
#if AVL_MULTISET-----// d1 ----inline bool right_heavy(node *n) const {-------// 91
------else cur = \&((*cur)->l); ------// 3b -----return n \&\& height(n->r) > height(n->l); }-----// 77
#else-----// dc ----inline bool too_heavy(node *n) const {--------// 18
------else if (item < (*cur)->item) cur = &((*cur)->l);------// e5 -----return n && abs(height(n->l) - height(n->r)) > 1; }-----// fb
------else return *cur;------// 19 ----void delete_tree(node *n) {-------// 48
#endif-------if (n) { delete_tree(n->l), delete_tree(n->r); delete n; } }------// ea
------node *n = new node(item, prev);-------// 5b -----if (!n->p) return root;-------// af
-----*cur = n, fix(n); return n; }-------// 86 ------if (n->p->l == n) return n->p->l;-------// 95
----void erase(node *n, bool free = true) {-------// 89 ------assert(false); }------
------else if (n->l) && !n->r) parent_leg(n) = n->l, n->l->p = n->p;------// 3d ------n->size = 1 + sz(n->l) + sz(n->r);-------// 14
-----node *s = successor(n);------// 16 ----#define rotate(l, r) N------// b7
------erase(s, false);-------// 17 -----node *l = n->l; \[\bar{N}\]
-----if (n->l) n->l->p = s;------// 88
                            -----parent_leg(n) = l; \(\bar{\gamma}\)------// 02
-----if (n->r) n->r->p = s;------// 42
                            -----n->l = l->r; \\ \| ------// 08
-----parent_leg(n) = s, fix(s);-----// 87
------if (free) delete n; }------// 99 ----void left_rotate(node *n) { rotate(r, l); }------// 43
-----if (!n) return NULL;------// b3 ----void fix(node *n) {-------// 42
------if (too_heavy(n)) {------// 39
------return p: }--------| 03 ------------| 65e if (right_heavy(n) && left_heavy(n->r))-------// 09
-----node *p = n->p;------node *p = n->p; }-------// af
------while (p && p->l == n) n = p, p = p->p;-------// 03 -----n = n->p; } } };-------// 85
-----return p; }-----// 83
                             Also a very simple wrapper over the AVL tree that implements a map interface.
----inline int size() const { return sz(root); }-----// e2
                            #include "avl_tree.cpp"-----// 01
----void clear() { delete_tree(root), root = NULL; }-----// d4
                             -----// ba
----node* nth(int n, node *cur = NULL) const {------// f4
                            template <class K, class V>-----// da
```

```
Reykjavik University
class avl_map {------// 3f ------memset(newloc + len, 255, (newlen - len) << 2);------// 18
public:-----delete[] q, delete[] loc;------// 74
---avl_tree<node> tree;------// b1 -----}-----// b1 -----}
------typename avl_tree<node>::node *n = tree.find(node(key, V(0)));------// ba ------loc[n] = count, q[count++] = n;------// 6b
------if (!n) n = tree.insert(node(key, V(0)));-------// cb -----if (fix) swim(count-1); }------// bf
----}-----assert(count > 0);-------// eb
------if (fix) sink(0);------// 80
2.6. Heap. An implementation of a binary heap.
                                #define RESIZE-----// d0
                               ----int top() { assert(count > 0); return q[0]; }------// ab
#define SWP(x, v) tmp = x, x = v, v = tmp-----// fb
                               ----void heapify() { for (int i = count - 1; i > 0; i--)------// 39
struct default_int_cmp {------// 8d
                               -----if (cmp(i, (i-1)/2)) swp(i, (i-1)/2); }------// \theta b
----default_int_cmp() { }------// 35
                               ----void update_key(int n) {------// 26
----bool operator ()(const int &a, const int &b) { return a < b; } };-----// e9
                               -----assert(loc[n] != -1), swim(loc[n]), sink(loc[n]); }------// 7d
template <class Compare = default_int_cmp>------// 30
                               ----bool empty() { return count == 0; }------// f8
class heap {-----// 05
                               ----int size() { return count; }------// 86
private:----// 39
                               ----void clear() { count = 0, memset(loc, 255, len << 2); } };-----// 58
----int len, count, *q, *loc, tmp;-----// 0a
----Compare _cmp;-----// 98
                                2.7. Skiplist. An implementation of a skiplist.
----inline bool cmp(int i, int j) { return _cmp(q[i], q[j]); }------// a0
----inline void swp(int i, int j) {-------// 1c #define BP 0.20------// aa
------SWP(q[i], q[j]), SWP(loc[q[i]], loc[q[j]]); }------// 67 #define MAX_LEVEL 10--------------------------// 56
----void swim(int i) {------// 33 unsigned int bernoulli(unsigned int MAX) {------// 7b
------while (i > 0) {-------// 1a ----unsigned int cnt = 0;------// 28
------int p = (i - 1) / 2;------// 77 ----while(((float) rand() / RAND_MAX) < BP && cnt < MAX) cnt++;-----// d1
----void sink(int i) {------// ce ----struct node {------// 53
------int l = 2*i + 1, r = l + 1;-------// b4 ------int *lens;-------// 07
-----<mark>int</mark> m = r >= count || cmp(l, r) ? l : r;------// cc ------#define CA(v, t) v((t*)calloc(level+1, sizeof(t)))------// 25
public:-----// cd ----int current_level, _size;------// 61
-----q = new int[len], loc = new int[len];-------// f8 ----skiplist() : current_level(0), _size(0), head(new node(MAX_LEVEL, 0)) { };-// 7a
------memset(loc, 255, len << 2); }------// f7 -----skiplist() { clear(); delete head; head = NULL; }-----// aa
----~heap() { delete[] q; delete[] loc; }-------// 09 ----#define FIND_UPDATE(cmp, target) \[ \sqrt{\colored}\]-------// c3
-----if (len == count || n >= len) {------// 0f
                                -----memset(pos, 0, sizeof(pos)); \[\sigma_-----// f2\]
#ifdef RESIZE-----// a9
                                -----node *x = head; \[\sqrt{------// 0f}\]
------int newlen = 2 * len;-----// 22
                                -----node *update[MAX_LEVEL + 1]; \[\scrip_------// 01
------while (n >= newlen) newlen *= 2;-----// 2f
                               -----/ 38
------int *newq = new int[newlen], *newloc = new int[newlen];------// e3
```

```
Reykjavik University
-----pos[i] += x->lens[i]; x = x->next[i]; } \[ \] \[ \] \]
                                                ----node *front, *back;------// 23
-----update[i] = x; \\ \[ \] -----// dd
                                                ----dancing_links() { front = back = NULL; }------// 8c
-----} x = x->next[0];-----// fc
                                                ----node *push_back(const T &item) {------// d7
----int size() const { return _size; }------// 9a
                                                -----back = new node(item, back, NULL);------// 5d
----void clear() { while(head->next && head->next[0])------// 91
                                                -----if (!front) front = back:-----// a2
-----erase(head->next[0]->item); }------// e6
                                                -----return back;-----// b4
----node *find(T target) { FIND_UPDATE(x->next[i]->item, target);------// 36
-----return x && x->item == target ? x : NULL; }-----// 50
                                                ----node *push_front(const T &item) {------// ea
----node *nth(int k) { FIND_UPDATE(pos[i] + x->lens[i], k+1); return x; }-----// b8
                                                -----front = new node(item, NULL, front);------// 75
----int count_less(T target) { FIND_UPDATE(x->next[i]->item, target);------// 80
                                                -----if (!back) back = front;------// d6
-----return pos[0]; }-----// 19
                                                -----return front;------// ef
----node* insert(T target) {------// 80
                                                ------FIND_UPDATE(x->next[i]->item, target);------// 3a
                                                ----void erase(node *n) {------// 88
-----if(x && x->item == target) return x; // SET------// 07
                                                -----if (!n->l) front = n->r; else n->l->r = n->r;------// d5
------int lvl = bernoulli(MAX_LEVEL);------// 7a
                                                ------if (!n->r) back = n->l; else n->r->l = n->l;-----------------------------// 96
-----if(lvl > current_level) current_level = lvl;------// 8a
                                                ----}------------// ae
----x = new node(lvl, target);-----// 36
                                                ----void restore(node *n) {-------// 6d
------for(int i = 0; i <= lvl; i++) {------// 49
                                                ------if (!n->l) front = n; else n->l->r = n;-------// ab
-----x->next[i] = update[i]->next[i];------// 46
                                                ------if (!n->r) back = n; else n->r->l = n;-------// 8d
-----x->lens[i] = pos[i] + update[i]->lens[i] - pos[0];-----// bc
                                                -----update[i]->next[i] = x;------// 20
                                                 -----// 4f
-----update[i]->lens[i] = pos[0] + 1 - pos[i];------// 42
-----}-----// fc
                                                2.9. Misof Tree. A simple tree data structure for inserting, erasing, and querying the nth largest
-----for(int i = lvl + 1; i <= MAX_LEVEL; i++) update[i]->lens[i]++;-----// 07
                                                element.
-----size++;------// 19
                                                #define BITS 15-----// 7b
-----return x; }-----// c9
                                                struct misof_tree {-----// fe
----void erase(T target) {------// 4d
                                                ----int cnt[BITS][1<<BITS];------// aa
------FIND_UPDATE(x->next[i]->item, target);------// 6b
                                                ----misof_tree() { memset(cnt, 0, sizeof(cnt)); }-----// b0
-----if(x && x->item == target) {------// 76
                                                ----void insert(int x) { for (int i = 0; i < BITS; cnt[i++][x]++, x >>= 1); }--//5a
------for(int i = 0; i <= current_level; i++) {-------// 97
                                                ----void erase(int x) { for (int i = 0; i < BITS; cnt[i++][x]--, x >>= 1); }---// 49
------if(update[i]->next[i] == x) {------// b1
                                                ----int nth(int n) {-------// 8a
-----update[i]->next[i] = x->next[i];-----// 59
                                                -----int res = 0;------// a4
-----update[i]->lens[i] = update[i]->lens[i] + x->lens[i] - 1;--// b1
                                                ------for (int i = BITS-1; i >= 0; i--)------// 99
-----} else update[i]->lens[i] = update[i]->lens[i] - 1;-----// 88
                                                ------if (cnt[i][res <<= 1] <= n) n -= cnt[i][res], res |= 1;------// f4
-----return res;------// 3a
-----delete x; _size--;------// 81
                                                ------while(current_level > 0 && head->next[current_level] == NULL)-----// 7f
-----current_level--; } } };-----// 59
                                                                     3. Graphs
2.8. Dancing Links. An implementation of Donald Knuth's Dancing Links data structure. A linked
list supporting deletion and restoration of elements.
                                                3.1. Breadth-First Search. An implementation of a breadth-first search that counts the number of
                                                edges on the shortest path from the starting vertex to the ending vertex in the specified unweighted
template <class T>------// 82
                                                graph (which is represented with an adjacency list). Note that it assumes that the two vertices are
struct dancing_links {------// 9e
                                                connected. It runs in O(|V| + |E|) time.
----struct node {------// 62
```

-----node *l, *r;-----// 32

-----node(const T &item, node *l = NULL, node *r = NULL)-----// 88

int bfs(int start, int end, vvi& adj_list) {------// d7

----queue<ii>> 0;------// 75

----Q.push(ii(start, 0));------// 49

```
Reykjavik University
-----/<sub>int</sub> nxt = adj[cur][i].first,----------// b8
------if (cur.first == end)-------// 6f ------ndist = dist[cur] + adj[cur][i].second;-------// 0c
-----return cur.second:------// 8a ------if (ndist < dist[nxt]) pq.erase(nxt),------// e4
------dist[nxt] = ndist, dad[nxt] = cur, pq.insert(nxt);-------// \theta f
-----Q.push(ii(*it, cur.second + 1));-------// b7 ----return pair<int*, int*>(dist, dad);-------------------// cc
}-----// 7d
                                          3.2.2. Bellman-Ford algorithm. The Bellman-Ford algorithm solves the single-source shortest paths
 Another implementation that doesn't assume the two vertices are connected. If there is no path
                                          problem in O(|V||E|) time. It is slower than Dijkstra's algorithm, but it works on graphs with
from the starting vertex to the ending vertex, a-1 is returned.
                                          negative edges and has the ability to detect negative cycles, neither of which Dijkstra's algorithm can
int bfs(int start, int end, vvi& adj_list) {------// d7
----set<<u>int</u>> visited;-----// b3
                                          int* bellman_ford(int n. int s. vii* adi. bool& has_negative_cvcle) {------// cf
----queue<ii>> Q;-----// bb
                                          ----has_negative_cycle = false;------// 47
----Q.push(ii(start, 0));-----// 3a
                                          ----int* dist = new int[n]:-----// 7f
----visited.insert(start);------// b2
                                          ----for (int i = 0; i < n; i++) dist[i] = i == s ? 0 : INF;------// 10
-----// db
                                          ----for (int i = 0; i < n - 1; i++)-----// a1
----while (!0.empty()) {------// f7
                                          ------for (int j = 0; j < n; j++)-----// c4
-----ii cur = Q.front(); Q.pop();-----// 03
                                          -----if (dist[j] != INF)-----// 4e
-----// 9c
                                          -----for (int k = 0; k < size(adj[j]); k++)-----// 3f
------if (cur.first == end)------// 22
                                          -----dist[adi[i][k].first] = min(dist[adi[i][k].first].-----// 61
-----return cur.second:-----// b9
                                          -----dist[j] + adj[j][k].second);------// 47
-----// ba
                                          ----for (int j = 0; j < n; j++)-----// 13
-----vi& adj = adj_list[cur.first];-----// f9
                                          ------for (int k = 0; k < size(adj[j]); k++)------// a0
------for (vi::iterator it = adj.beqin(); it != adj.end(); it++)------// 44
                                          -----if (dist[j] + adj[j][k].second < dist[adj[j][k].first])-----// ef
-----if (visited.find(*it) == visited.end()) {------// 8d
                                          -----has_negative_cycle = true;-------------------// 2a
-----Q.push(ii(*it, cur.second + 1));-----// ab
                                          ----return dist;------// 2e
-----visited.insert(*it);-----// cb
                                          -----// c2
------}------------------------// a1
                                          3.3. All-Pairs Shortest Paths.
····// 63
                                          3.3.1. Floyd-Warshall algorithm. The Floyd-Warshall algorithm solves the all-pairs shortest paths
----return -1:-----// f5
                                          problem in O(|V|^3) time.
}-----// 03
                                          void floyd_warshall(int** arr, int n) {------// 21
3.2. Single-Source Shortest Paths.
                                          ----for (int k = 0; k < n; k++)-----// 49
                                          ------for (int i = 0; i < n; i++)------// 21
3.2.1. Dijkstra's algorithm. An implementation of Dijkstra's algorithm. It runs in \Theta(|E|\log|V|)
                                          -----for (int j = 0; j < n; j++)-----// 77
time.
                                          -----if (arr[i][k] != INF && arr[k][j] != INF)-----// b1
int *dist. *dad:-----// 46
                                          -----/arr[i][j] = min(arr[i][j], arr[i][k] + arr[k][j]);------// e1
struct cmp {------// a5
                                          -----// 86
----bool operator()(int a, int b) {-----// bb
-----return dist[a] != dist[b] ? dist[a] < dist[b] : a < b; }------// e6
                                          3.4. Strongly Connected Components.
};-----// 41
                                          3.4.1. Kosaraju's algorithm. Kosarajus's algorithm finds strongly connected components of a directed
pair<int*, int*> dijkstra(int n, int s, vii *adj) {-----// 53
                                          graph in O(|V| + |E|) time.
----dist = new int[n];-----// 84
----dad = new int[n];-----// 05
                                          #include "../data-structures/union_find.cpp"-----// 5e
----for (int i = 0; i < n; i++) dist[i] = INF, dad[i] = -1;------// d6
                                          -----// 11
------int cur = *pq.begin(); pq.erase(pq.begin());-------// 7d void scc_dfs(const vvi &adj, int u) {-------------------// a1
```

```
Reykjavik University
----int v; visited[u] = true;------// e3
                                           3.6.1. Modified Depth-First Search.
----for (int i = 0; i < size(adj[u]); i++)-----// c5
                                           void tsort_dfs(int cur, char* color, const vvi& adj, stack<int>& res,-----// ca
------if (!visited[v = adj[u][i]]) scc_dfs(adj, v);------// 6e
                                           ------bool& has_cycle) {------// a8
----order.push_back(u);-----// 19
                                           ----color[cur] = 1;-----// 5b
                                           ----for (int i = 0; i < size(adj[cur]); i++) {-------// 96
-----// 96
                                           ------int nxt = adi[cur][i];------// 53
pair<union_find, vi> scc(const vvi &adj) {------// 3e
                                           -----if (color[nxt] == 0)------// 00
----int n = size(adi). u. v:-----// bd
                                           -----tsort_dfs(nxt, color, adj, res, has_cycle);------// 5b
----order.clear();-----// 22
                                           ------else if (color[nxt] == 1)------// 53
----union_find uf(n);-----// 6d
                                           -----has_cvcle = true:-----// c8
----vi dag;-----// ae
                                           -----if (has_cycle) return;-----// 7e
----vvi rev(n);------// 20
                                           ----}-------// 3d
----for (int i = 0; i < n; i++) for (int j = 0; j < size(adj[i]); j++)------// b9
                                           ----color[cur] = 2;-----// 16
-----rev[adj[i][j]].push_back(i);-----// 77
                                           ----res.push(cur):-----// cb
----visited.resize(n), fill(visited.begin(), visited.end(), false);------// 04
                                           }-----/<sub>------</sub>
----for (int i = 0; i < n; i++) if (!visited[i]) scc_dfs(rev, i);------// e4
                                           .
-----// ae
----fill(visited.begin(), visited.end(), false);------// c2
                                           vi tsort(int n, vvi adj, bool& has_cycle) {-----// 37
----stack<<u>int</u>> S;-----// 04
                                           ----has_cycle = false;-----// 37
----for (int i = n-1; i >= 0; i--) {------// 3f
                                           ----stack<int> S;-----// 54
-----if (visited[order[i]]) continue;-----// 94
                                           ----vi res:-----// d1
-----S.push(order[i]), dag.push_back(order[i]);------// 40
                                           ----char* color = new char[n];-----// b1
------while (!S.empty()) {------// 03
                                           ----memset(color, 0, n);-----// ce
-----visited[u = S.top()] = true, S.pop(), uf.unite(u, order[i]);-----// 1b
                                           ----for (int i = 0; i < n; i++) {------// 96
-----for (int i = 0; i < size(adj[u]); i++)-----// 90
                                           ------if (!color[i]) {------// d5
-----if (!visited[v = adj[u][i]]) S.push(v);------// 43
                                           -----tsort_dfs(i, color, adj, S, has_cycle);-----// 40
------}------------// da
                                           -----if (has_cycle) return res;-----// 6c
----}-----// 7c
                                           ----return pair<union_find, vi>(uf, dag);-----// 94
                                           ----}------// df
}-----// 97
                                           ----while (!S.empty()) res.push_back(S.top()), S.pop();------// 94
                                           ----return res;------// 07
3.5. Minimum Spanning Tree.
                                           }-----// 1f
3.5.1. Kruskal's algorithm.
                                           3.7. Euler Path. Finds an euler path (or circuit) in a directed graph, or reports that none exist.
#include "../data-structures/union_find.cpp"-----------------------// 5e
                                           #define MAXV 1000-----// 2f
-----// 11
                                           #define MAXE 5000-----// 87
// n is the number of vertices-----// 18
                                           vi adj[MAXV];-----// ff
// edges is a list of edges of the form (weight, (a, b))-----// c6
                                           // the edges in the minimum spanning tree are returned on the same form-----// 4d
                                           ii start_end() {-----// 30
vector<pair<int, ii> > mst(int n, vector<pair<int, ii> > edges) {------// a7
                                           ----int start = -1, end = -1, any = 0, c = 0;-----// 74
----union_find uf(n);-----// 04
                                           ----for (int i = 0; i < n; i++) {------// 96
----sort(edges.begin(), edges.end());-----//
                                           ------if (outdeg[i] > 0) any = i;-----// f2
----vector<pair<int, ii> > res;------// 71
                                           ------if (indeg[i] + 1 == outdeg[i]) start = i, c++;-----// 98
----for (int i = 0; i < size(edges); i++)-----// ce
-----if (uf.find(edges[i].second.first) !=-----// d5
                                           -----else if (indeg[i] == outdeg[i] + 1) end = i, c++;------// 4f
-----uf.find(edges[i].second.second)) {------// 8c
                                           ------else if (indeg[i] != outdeg[i]) return ii(-1,-1);------// fa
-----res.push_back(edges[i]);-----// d1
                                           ----}-----// ef
                                           ----if ((start == -1) != (end == -1) || (c != 2 && c != 0)) return ii(-1,-1);--// 6e
-----uf.unite(edges[i].second.first, edges[i].second.second);-----// a2
----if (start == -1) start = end = any;-----// db
                                           ----return ii(start, end);------// 9e
----return res;------// 46
                                            -----// 35
}-----// 88
                                           bool euler_path() {-----// d7
                                           ----ii se = start_end();-----// 45
3.6. Topological Sort.
```

```
Reykjavik University
------cur = s.top(); s.pop():-------// d7 --------return true:----------// d7
----return at == 0:------// c8 ------return false;------// de
-----return true:------// 7b
3.8. Bipartite Matching.
                          ----void add_edge(int i, int j) { adj[i].push_back(j); }------// 87
3.8.1. Bipartite Matching. The alternating paths algorithm solves bipartite matching in O(mn^2) time,
                          ----int maximum_matching() {------// ae
where m, n are the number of vertices on the left and right side of the bipartite graph, respectively.
                          ------int matching = 0;------// 7d
vi* adi:-----// cc
                          -----memset(L, -1, sizeof(int) * N);------// 16
bool* done;-----// b1
                          -----memset(R, -1, sizeof(int) * M);------// e4
int* owner;------// 26
                          ------while(bfs()) for(int i = 0; i < N; ++i)------// f6
int alternating_path(int left) {------// da
                          -----matching += L[i] == -1 && dfs(i):-----// c9
----if (done[left]) return 0;-------// 08
                          -----return matching:-----// 82
----done[left] = true;-----// f2
                          ----}------// 86
----for (int i = 0; i < size(adj[left]); i++) {-------// 34 }:
------int right = adj[left][i];------// b6
-----if (owner[right] == -1 || alternating_path(owner[right])) {------// d2
                          3.10. Maximum Flow.
-----owner[right] = left; return 1;------// 26
-----} }-----// 7a
                          3.10.1. Dinic's algorithm. An implementation of Dinic's algorithm that runs in O(|V|^2|E|). It com-
----return 0; }-----// 83
                          putes the maximum flow of a flow network.
                          #define MAXV 2000----// ba
3.9. Hopcroft-Karp algorithm. An implementation of Hopcroft-Karp algorithm.
                          int q[MAXV], d[MAXV];-----// e6
#define dist(v) dist[v == -1 ? MAXN : v]------------// 0f ------int v, cap, nxt;---------------------------// ab
struct bipartite_graph {------// 2b -----edge() { }-----// 38
----int N, M, *L, *R; vi *adj;-------// fc ------edge(int v, int cap, int nxt) : v(v), cap(cap), nxt(nxt) { }-----// f7
----~bipartite_graph() { delete[] adj; delete[] L; delete[] R; }-------// b9 ----vector<edge> e, e_store;------------// d0
------int l = 0, r = 0; -------// a4 ------e.reserve(2 * (m == -1 ? n : m)); -------// 5d
-----else dist(v) = INF;-------// c4 -----memset(head, -1, n * sizeof(int));------// f6
-------while(l < r) {-------// 3f ----void destroy() { delete[] head; delete[] curh; }-------// 21
-----foreach(u, adj[v]) if(dist(R[*u]) == INF)------// 63 -----e.push_back(edge(v, uv, head[u])); head[u] = ecnt++;------// 7a
-----dist(R[*u]) = dist(v) + 1, q[r++] = R[*u];-------// f8 -----e.push_back(edge(u, vu, head[v])); head[v] = ecnt++;-----// b2
```

```
Reykjavik University
                                                     10
------for (int &i = curh[v], ret; i != -1; i = e[i].nxt)------// 1d -----memset(d, -1, n << 2);--------// 73
-----return 0;------for (int u = q[l++], i = head[u]; i != -1; i = e[i].nxt)-----// 39
-----if(s == t) return 0;-------// bd -----if (p[t] == -1) break;------// 84
-----e_store = e;------// 6c ------int x = INF, at = p[t];------// 43
------int f = 0, x, l, r;-------while (at !=-1) x = min(x, e[at].cap), at = p[e[at^1].v];------// 70
------while (true) {--------// d9 -----at = p[t], f += x;-------// 3c
------memset(d, -1, n * sizeof(int));-------// 66 -------while (at != -1)---------// 58
-----while (l < r)------// b8
------if (e[i^1].cap > 0 && d[e[i].v] == -1)-------------// 3c -----return f;------
-----memcpy(curh, head, n * sizeof(int));-----// b6
                           3.11. Minimum Cost Maximum Flow. An implementation of Edmonds Karp's algorithm, modi-
-----while ((x = dfs(s, t, INF)) != 0) f += x;------// 03
                           fied to find shortest path to augment each time (instead of just any path). It computes the maximum
flow of a flow network, and when there are multiple maximum flows, finds the maximum flow with
-----if (res) reset();------// 08
                           minimum cost. Running time is O(|V|^2|E|\log|V|).
-----return f:-----// bc
                           #define MAXV 2000-----// ba
----}------// f6
                           int d[MAXV], p[MAXV], pi[MAXV];-----// dd
}:-----// cf
                           struct cmp {-----// 1a
3.10.2. Edmonds Karp's algorithm. An implementation of Edmonds Karp's algorithm that runs in
                           ----bool operator ()(int i, int j) {------// e8
O(|V||E|^2). It computes the maximum flow of a flow network.
                           -----return d[i] == d[j] ? i < j : d[i] < d[j];------// a5
#define MAXV 2000------// ba ---}-----// ba
struct flow_network {-------// 5e struct flow_network {-------// 4d
----struct edge {-------// fc ----struct edge {------// ba
------edge(int v, int cap, int nxt): v(v), cap(cap), nxt(nxt) { }------// al -----edge(int v, int cap, int nxt)-------// bb
----};------: v(v), cap(cap), cost(cost), nxt(nxt) { }------// 27
----<mark>int</mark> n, ecnt, *head;------// 00 ----};-------// 73
----flow_network(int n, int m = -1) : n(n), ecnt(0) {-------// 0d ----vector<edge> e, e_store;-------------// 3b
-----e.reserve(2 * (m == -1 ? n : m));-------// \theta d ----flow_network(int n, int m = -1) : n(n), ecnt(\theta) {--------// \theta d
------memset(head = new int[n], -1, n << 2);--------// bc -----e.reserve(2 * (m == -1 ? n : m));-------// 68
-----e.push_back(edge(u, vu, head[v])); head[v] = ecnt++;-------// 9b ------e.push_back(edge(v, uv, cost, head[u])); head[u] = ecnt++;------// 77
----}-----e.push_back(edge(u, vu, -cost, head[v])); head[v] = ecnt++;------// 56
------if (s == t) return 0;-------// bb ----ii min_cost_max_flow(int s, int t, bool res = true) {-------// eb
```

```
Reykjavik University
                                                                          11
------int f = 0, c = 0, v;-------------------------// ad -------for (int i = g.head[v]; i != -1; i = g.e[i].nxt)-------// 33
-----memset(p, -1, n << 2);-------// b5
-----q.insert(s); d[s] = 0; d[s] = 0;
-----q.erase(q.beqin());-------// eb ----for (int i = 0; i < n; i++) {-------// 2a
------for (int i = head[u]; i != -1; i = e[i].nxt) {-------// 10 -----int mn = INF, cur = i;------------------// 19
-----at = p[t], f += x;------// 0b -----cur = min(cur, gh.first[at].second), at = gh.first[at].first;-----// bd
------while (at != -1)-------// cb ----return min(cur, gh.second[at][t]);------// 6d
-----c += x * (d[t] + pi[t] - pi[s]);
-----for (int i = 0; i < n; i++) if (p[i] != -1) pi[i] += d[i];------// 65
                                                      4. Strings
4.1. Trie. A Trie class.
-----if (res) reset();------// 8b
                                      template <class T>-----// 82
-----return ii(f, c);-----// f0
                                      class trie {-----// 9a
----}------// 3b
                                      private:----// f4
}:-----// 21
                                      ----struct node {------// ae
                                      -----map<T, node*> children;-----// a0
3.12. All Pairs Maximum Flow.
                                      -----int prefixes, words:-----// e2
3.12.1. Gomory-Hu Tree. An implementation of the Gomory-Hu Tree. The spanning tree is con-
                                      -----node() { prefixes = words = 0; } };------// 42
structed using Gusfield's algorithm in O(|V|^2) plus |V|-1 times the time it takes to calculate the max-
                                      public:----// 88
imum flow. If Dinic's algorithm is used to calculate the max flow, the running time is O(|V|^3|E|).
                                      ----node* root;-----// a9
                                     ----trie() : root(new node()) { }-----// 8f
#include "dinic.cpp"-----// 58
-----// 25 ----template <class I>-------// 89
----vii par(n, ii(0, 0)); vvi cap(n, vi(n, -1));-------// 49 ------cur->prefixes++;-------// f1
------memset(d, 0, n * sizeof(int));-------// 79 ------typename map<T, node*>::const_iterator it;------// 01
------it = cur->children.find(head);-------// 77
------while (l < r) {-------// 45 --------pair<T, node*> nw(head, new node()):------// cd
-----same[v = q[l++]] = true;------// c8 ------it = cur->children.insert(nw).first;------// ae
```

```
Reykjavik University
----int countMatches(I begin, I end) {-----// 7f
                                4.3. Aho-Corasick Algorithm. An implementation of the Aho-Corasick algorithm. Constructs a
-----node* cur = root;------// 32
                                state machine from a set of keywords which can be used to search a string for any of the keywords.
                                struct aho_corasick {-----// 78
-----if (begin == end) return cur->words;-----// a4
                                ----struct out_node {------// 3e
-----else {------// 1e
                                -----string keyword; out_node *next;-----// f0
-----T head = *begin;-----// 5c
                                -----out_node(string k, out_node *n) : keyword(k), next(n) { }------// 26
-----typename map<T, node*>::const_iterator it;------// 25
-----it = cur->children.find(head);-----// d9
                                ----}:-------------// b9
-----if (it == cur->children.end()) return 0;-----// 14
                                ----struct go_node {------// 40
                                ------map<char, go_node*> next;------// 6b
-----begin++, cur = it->second; } } }-----// 7c
                                -----out_node *out; go_node *fail;-----// 3e
----template<class I>-----// 9c
                                -----go_node() { out = NULL; fail = NULL; }-----// 0f
----int countPrefixes(I begin, I end) {------// 85
                                ----};------// c0
-----node* cur = root;-----// 95
                                ----qo_node *qo;------// b8
------while (true) {------// 3e
                                ----aho_corasick(vector<string> keywords) {------// 4b
-----if (begin == end) return cur->prefixes;-----// f5
                                -----go = new go_node();-----// 77
-----else {------// 66
                                ------foreach(k, keywords) {------// e4
-----T head = *begin;-----// 43
                                -----go_node *cur = go;-----// 9d
-----typename map<T, node*>::const_iterator it;------// 7a
                                -----foreach(c, *k)-----// 38
-----it = cur->children.find(head);-----// 43
                               -----cur = cur->next.find(*c) != cur->next.end() ? cur->next[*c] :--// 3d
-----if (it == cur->children.end()) return 0;-----// 71
-----begin++, cur = it->second; } } };-----// 26
                                -----(cur->next[*c] = new qo_node());------// 75
                                -----cur->out = new out_node(*k, cur->out);------// 6e
                                4.2. Suffix Array. An O(n \log n) construction of a Suffix Tree.
                                -----queue<qo_node*> q;------// 8a
struct entry { ii nr; int p; };-------// f9 -------foreach(a, qo->next) q.push(a->second);------// a3
bool operator <(const entry &a, const entry &b) { return a.nr < b.nr; }------// 77 ------while (!q.empty()) {-----------------------------// 43
----string s; int n; vvi P; vector<entry> L; vi idx;------// b6 ------foreach(a, r->next) {-----------------------// 25
-----L = vector<entry>(n), P.push_back(vi(n)), idx = vi(n);-------// 96 ------go_node *st = r->fail;-------// fa
------for (int stp = 1, cnt = 1; cnt >> 1 < n; stp++, cnt <<= 1) {-------// bb -------st = st->fail;-------------------------// 3f
-----P.push_back(vi(n));-------// e9 ------if (!st) st = go;-------// e7
------L[L[i].p = i].nr = ii(P[stp - 1][i],-------// 0e -------if (s->fail) {--------------------// 3b
------i + cnt < n ? P[stp - 1][i + cnt] : -1);-------// 18 -------if (!s->out) s->out = s->fail->out;-------// 80
-----sort(L.beqin(), L.end());-------// 29 ------else {------------------------// ed
------for (int i = 0; i < n; i++)-------// 38 -------out_node* out = s->out;------// bf
------L[i].nr == L[i - 1].nr ? P[stp][L[i - 1].p] : i;------// 61 ------out->next = s->fail->out;------// 65
```

```
Reykjavik University
                                                                                                     13
------while (cur \&\& cur->next.find(*c) == cur->next.end())------// 1f ----fraction(const fraction<T>\& other) : n(other.n), d(other.d) { }------// 01
-----cur = cur->fail;-------// 9e ----fraction<T> operator +(const fraction<T>& other) const {------// b6
-----cur = cur->next[*c];--------// 58 ----fraction<T> operator -(const fraction<T>& other) const {-------// 26
-----if (!cur) cur = q_0; -------// 3f -----return fraction<T>(n * other.d - other.d * oth
-----for (out_node *out = cur->out; out; out = out->next)------// e0 ----fraction<T> operator *(const fraction<T>& other) const {-------// 38
-----res.push_back(out->keyword);------// 0d -----return fraction<T>(n * other.n, d * other.d); }------// c5
-----return res:------, c1 ------return fraction<T>(n * other.n); }------// 35
};------return n * other.d < other.n * d; }------// 8c
                                                    ----bool operator <=(const fraction<T>& other) const {-------// 48
4.4. The Z algorithm. Given a string S, Z_i(S) is the longest substring of S starting at i that is
                                                   -----return !(other < *this); }------// 86
also a prefix of S. The Z algorithm computes these Z values in O(n) time, where n = |S|. Z values
                                                   ----bool operator >(const fraction<T>& other) const {-------// c9
can, for example, be used to find all occurrences of a pattern P in a string T in linear time. This is
                                                   -----return other < *this; }------// 6e
accomplished by computing Z values of S = TP, and looking for all i such that Z_i \geq |T|.
                                                    ----bool operator >=(const fraction<T>& other) const {-------// 4b
-----z[i] = 0:-----// c9
                                                   5.2. Big Integer. A big integer class.
-----if (i > r) {------// 26
                                                   struct intx {-----// cf
-----l = r = i;-----// a7
                                                   ----intx() { normalize(1); }------// 6c
----intx(string n) { init(n); }------// b9
-----z[i] = r - l; r--;------// fc
                                                    ----intx(int n) { stringstream ss; ss << n; init(ss.str()); }------// 36
------} else if (z[i - l] < r - i + 1) z[i] = z[i - l];-----// bf
                                                   ----intx(const intx& other) : sign(other.sign), data(other.data) { }------// 3b
-----else {------// b5
                                                   ----int sign:-----// 26
-----l = i:-----// 02
                                                    ----vector<unsigned int> data;-----// 19
-----z[i] = r - l; r--; } }-----// 8d
                                                    ----static const int dcnt = 9;-----// 12
                                                    ----static const unsigned int radix = 1000000000U;-----// f0
----return z;------// 53
                                                   ----int size() const { return data.size(); }-----// 29
}-----// db
                                                    ----void init(string n) {------// 13
                                                    -----intx res; res.data.clear();-----// 4e
                    5. Mathematics
                                                    -----if (n.empty()) n = "0";------// 99
5.1. Fraction. A fraction (rational number) class. Note that numbers are stored in lowest common
                                                   -----if (n[0] == '-') res.sign = -1, n = n.substr(1);------// 3b
terms.
                                                    ------for (int i = n.size() - 1; i >= 0; i -= intx::dcnt) {-------// e7
class fraction {-------// cf ------for (int j = intx::dcnt - 1; j >= 0; j--) {------// 72
public:-----digit = digit * 10 + (n[idx] - '0');------// 1f
-----assert(d_ != 0);-----// 3d ----}----// fb
-----n = n_, d = d_;-------// 06 ------data = res.data;-------// 7d
-----T q = gcd(abs(n), abs(d));--------// fc ---}------// fc
```

```
Reykjavik University
                                                        14
------for (int i = data.size() - 1; i > 0 && data[i] == 0; i--)-------// 27 ------intx c; c.data.clear();------------// 6b
-----data.erase(data.begin() + i);-------// 67 ------long long borrow = 0;-------// 67
-----sign = data.size() == 1 && data[0] == 0 ? 1 : nsign;------// ff -------for (int i = 0; i < size(); i++) {-------// a7
------borrow = data[i] - borrow - (i < b.size() ? b.data[i] : 0ULL);----// a9
----}------c.data.push_back(borrow < 0 ? intx::radix + borrow : borrow);-----// ed
------if (first) outs << n.data[i], first = false;------// 33 ----intx operator *(const intx& b) const {------// bd
------else {-------// 1f ------intx c; c.data.assign(size() + b.size() + 1, 0);------// d0
-----stringstream ss; ss << cur;------// 8c ------long long carry = 0;------------// 20
-----string s = ss.str();------// 64 ------for (int j = 0; j < b.size() || carry; j++) {------// c0
------int len = s.size();------// 0d ------if (j < b.size()) carry += (long long)data[i] * b.data[j];----// af
-----while (len < intx::dcnt) outs << '0', len++;-------// 0a ------carry += c.data[i + j];-----------// 18
------outs << s;------// 97 ------c.data[i + j] = carry % intx::radix;------// 86
----}-----return c.normalize(sign * b.sign);-------// de
-----if (sign != b.sign) return sign < b.sign;-------// cf -----assert(!(d.size() == 1 && d.data[0] == 0));------// e9
------if (size() != b.size())-------// 4d ------intx q, r; q.data.assign(n.size(), 0);-----// ca
-----return sign == 1 ? size() < b.size() : size() > b.size();------// 4d ------for (int i = n.size() - 1; i >= 0; i--) {--------// 1a
------for (int i = size() - 1; i >= 0; i--) if (data[i] != b.data[i])------// 35 ------r.data.insert(r.data.begin(), 0);----------// c7
--------long long k = 0;---------// cc
------unsigned long long carry = 0; -------// 5c ------return pair<intx, intx>(q.normalize(n.sign * d.sign), r); ------// a1
-----carry += (i < size() ? data[i] : OULL) +------// 91 ----intx operator /(const intx& d) const {-------// a2
-----c.data.push_back(carry % intx::radix):------// 86 ---intx operator %(const intx& d) const {-------// 07
-----carry /= intx::radix;------// fd -----return divmod(*this,d).second * sign; }-----// 5a
-----return c.normalize(sign);-----// 20
                             5.2.1. Fast Multiplication. Fast multiplication for the big integer using Fast Fourier Transform.
----}--------// 70
                            #include "intx.cpp"-----// 83
----intx operator -(const intx& b) const {------// 53
                            #include "fft.cpp"-----// 13
-----if (sign > 0 && b.sign < 0) return *this + (-b);-----// 8f
                             -----// e0
------if (sign < 0 && b.sign > 0) return -(-*this + b);-----// 1b
                            intx fastmul(const intx &an, const intx &bn) {-----// ab
------if (sign < 0 && b.sign < 0) return (-b) - (-*this);-----// a1
                             ----string as = an.to_string(), bs = bn.to_string();------// 32
-----if (*this < b) return -(b - *this);------// 36
                             ----int n = size(as), m = size(bs), l = 1,-----// dc
```

```
Reykjavik University
----memset(b, 0, m << 2);------// \theta 1 ------x = a / b * y;------// 4a
----for (int i = n - 1; i >= 0; i -= len, alen++)-------// 6e ------swap(x, y);-------------------------------// 26
------for (int j = min(len - 1, i); j >= 0; j--)--------// 43 -----return d;-----------------------------// db
----for (int i = m - 1; i >= 0; i -= len, blen++)-----// b6
------for (int j = min(len - 1, i); j >= 0; j--)------// ae
                                              5.5. Trial Division Primality Testing. An optimized trial division to check whether an integer is
-----b[blen] = b[blen] * 10 + bs[i - j] - '0';------// 9b
----while (l < 2*max(alen,blen)) l <<= 1;------// 51
                                              bool is_prime(int n) {------// 6c
----cpx *A = new cpx[l], *B = new cpx[l];-----// 0d
                                              ----if (n < 2) return false;-----// c9
----for (int i = 0; i < l; i++) A[i] = cpx(i < alen ? a[i] : 0, 0);------// 35
                                              ----if (n < 4) return true:-----// d9
----for (int i = 0; i < l; i++) B[i] = cpx(i < blen ? <math>b[i] : 0, 0);-----// 66
                                              ----if (n % 2 == 0 || n % 3 == 0) return false;-----// Of
----fft(A, l); fft(B, l);-----//
                                              ----if (n < 25) return true;-----// ef
----for (int i = 0; i < l; i++) A[i] *= B[i];------// e7
                                              ----int s = static_cast<int>(sqrt(static_cast<double>(n)));------// 64
----fft(A, l, true):-----// d3
                                              ----for (int i = 5; i <= s; i += 6)------// 6c
----ull *data = new ull[l];-----// e7
                                              ----for (int i = 0; i < l; i++) data[i] = (ull)(round(real(A[i])));------// 06
                                              ----return true; }------// 43
----for (int i = 0; i < l - 1; i++)-----// 90
-----if (data[i] >= (unsigned int)(radix)) {-------// 44
                                              5.6. Sieve of Eratosthenes. An optimized implementation of Eratosthenes' Sieve.
-----data[i+1] += data[i] / radix;-----// e4
                                              vi prime_sieve(int n) {------// 40
-----data[i] %= radix;-----// bd
                                              ----int mx = (n - 3) >> 1, sq, v, i = -1;------// 27
----vi primes;------// 8f
                                              ----bool* prime = new bool[mx + 1];-----// ef
----while (stop > 0 && data[stop] == 0) stop--;------// 97
                                              ----memset(prime, 1, mx + 1);-----// 28
----stringstream ss;-----// 42
                                              ----if (n >= 2) primes.push_back(2);-----// f4
----ss << data[stop];-----// 96
                                              ----while (++i <= mx) if (prime[i]) {------// 73
----for (int i = stop - 1; i >= 0; i--)-----// bd
                                              ------primes.push_back(v = (i << 1) + 3);------// be
-----ss << setfil('0') << setw(len) << data[i];------// b6
                                              -----if ((sq = i * ((i << 1) + 6) + 3) > mx) break;------// 2d
----delete[] A; delete[] B;-----// f7
                                              ------for (int j = sq; j <= mx; j += v) prime[j] = false; }------// 2e
----delete[] a; delete[] b;-----// 7e
                                              ----while (++i <= mx) if (prime[i]) primes.push_back((i << 1) + 3);------// 29
----delete[] data:-----// 6a
                                              ----delete[] prime; // can be used for O(1) lookup-----// 36
----return intx(ss.str());-----// 38
                                              ----return primes; }-----// 72
                                              5.7. Modular Multiplicative Inverse. A function to find a modular multiplicative inverse.
5.3. Binomial Coefficients. The binomial coefficient \binom{n}{k} = \frac{n!}{k!(n-k)!} is the number of ways to choose
                                              #include "egcd.cpp"-----// 55
k items out of a total of n items.
                                              int mod_inv(int a, int m) {------// 49
int nck(int n, int k) {-----// f6
                                              ----int x, y, d = egcd(a, m, x, y);-----// 3e
----if (n - k < k) k = n - k;------// 18
                                              ----if (d != 1) return -1;------// 20
----int res = 1;-----// cb
                                              ----return x < 0 ? x + m : x;------// 3c
----for (int i = 1; i <= k; i++) res = res * (n - (k - i)) / i;-----// bd
----return res;------// e4
                                              5.8. Modular Exponentiation. A function to perform fast modular exponentiation.
                                              template <class T>-----// 82
5.4. Euclidean algorithm. The Euclidean algorithm computes the greatest common divisor of two
                                              T mod_pow(T b, T e, T m) {-----// aa
integers a, b.
                                              ----T res = T(1);------// 85
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }-----// d9
                                              ----while (e) {------// b7
                                              -----if (e & T(1)) res = mod(res * b, m);------// 41
 The extended Euclidean algorithm computes the greatest common divisor d of two integers a, b
                                              -----b = mod(b * b, m), e >>= T(1); }-----// b3
and also finds two integers x, y such that a \times x + b \times y = d.
```

```
Reykjavik University
}------// c5 -----}-----// c2
5.9. Chinese Remainder Theorem. An implementation of the Chinese Remainder Theorem.
#include "egcd.cpp"------// 55
int crt(const vi& as, const vi& ns) {------// c3
----int cnt = size(as), N = 1, x = 0, r, s, l;------// 55
----for (int i = 0; i < cnt; i++) N *= ns[i]; ------// 88
----for (int i = 0: i < cnt: i++)-----// f9
-----egcd(ns[i], l = N/ns[i], r, s), x += as[i] * s * l;-----// b\theta
----return mod(x, N); }-----// 9e
5.10. Linear Congruence Solver. A function that returns all solutions to ax \equiv b \pmod{n}, modulo
#include "egcd.cpp"-----// 55
vi linear_congruence(int a, int b, int n) {------// c8
----int x, y, d = egcd(a, n, x, y);------// 7a
----vi res:-----// f5
----if (b % d != 0) return res;------// 30
----int x0 = mod(b / d * x, n);------// 48
----for (int k = 0; k < d; k++) res.push_back(mod(x0 + k * n / d, n));------// 21
----return res:------// 03
}-----// 1c
5.11. Numeric Integration. Numeric integration using Simpson's rule.
double integrate(double (*f)(double), double a, double b,-----// 76
------double delta = 1e-6) {------// c0
----if (abs(a - b) < delta)------// 38
-----return (b-a)/8 *-----// 56
-----(f(a) + 3*f((2*a+b)/3) + 3*f((a+2*b)/3) + f(b));-----// e1
----return integrate(f, a,-----// 64
-----(a+b)/2, delta) + integrate(f, (a+b)/2, b, delta);-----// 0c
}-----// 4b
5.12. Fast Fourier Transform. The Cooley-Tukey algorithm for quickly computing the discrete
Fourier transform. Note that this implementation only handles powers of two, make sure to pad with
zeros.
#include <complex>-----// 8e
typedef complex<long double> cpx;------// 25
void fft(cpx *x, int n, bool inv=false) {------// 23
----for (int i = 0, j = 0; i < n; i++) {------// f2
------if (i < j) swap(x[i], x[j]);-----// 5c
-----int m = n>>1:-----// e5
------while (1 <= m && m <= j) j -= m, m >>= 1;------// fe
-----j += m;-----// ab
----for (int mx = 1; mx < n; mx <<= 1) {------// 9d
-----cpx wp = \exp(\text{cpx}(0, (\text{inv }? -1 : 1) * \text{pi }/\text{mx})), \text{ w} = 1;
-----for (int m = 0; m < mx; m++, w *= wp) {------// 4\theta
-----for (int i = m; i < n; i += mx << 1) {-----// 33
-----cpx t = x[i + mx] * w;------// f5
-----x[i + mx] = x[i] - t;-----// ac
-----x[i] += t:-----// c7
```

```
----if (inv) for (int i = 0; i < n; i++) x[i] /= cpx(n);-----// 3e
```

5.13. Formulas.

- Number of ways to choose k objects from a total of n objects where order matters and each item can only be chosen once: $P_k^n = \frac{n!}{(n-k)!}$
- Number of ways to choose k objects from a total of n objects where order matters and each item can be chosen multiple times: n^k
- Number of permutations of n objects, where there are n_1 objects of type 1, n_2 objects of type 2, ..., n_k objects of type k: $\binom{n}{n_1, n_2, ..., n_k} = \frac{n!}{n_1! \times n_2! \times \cdots \times n_k!}$
- Number of ways to choose k objects from a total of n objects where order does not matter and each item can only be chosen once:
- $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{n-k} = \prod_{i=1}^k \frac{n-(k-i)}{i} = \frac{n!}{k!(n-k)!}, \binom{n}{0} = 1, \binom{0}{k} = 0$
- Number of ways to choose k objects from a total of n objects where order does not matter and each item can be chosen multiple times: $f_k^n = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}$
- Number of integer solutions to $x_1 + x_2 + \cdots + x_n = k$ where $x_i > 0$: f_k^*
- Number of subsets of a set with n elements: 2^n
- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- Number of ways to walk from the lower-left corner to the upper-right corner of an $n \times m$ grid by walking only up and to the right: $\binom{n+m}{m}$
- ullet Number of strings with n sets of brackets such that the brackets are balanced: $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} {2n \choose n}$
- \bullet Number of triangulations of a convex polygon with n points, number of rooted binary trees with n+1 vertices, number of paths across an $n \times n$ lattice which do not rise above the main diagonal: C_n
- Number of permutations of n objects with exactly k ascending sequences or runs:

$$\left\langle {n\atop k}\right\rangle = \left\langle {n\atop n-k-1}\right\rangle = k\left\langle {n-1\atop k}\right\rangle + (n-k+1)\left\langle {n-1\atop k-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i} (k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = 1$$

- Number of permutations of n objects with exactly k cycles: $\binom{n}{k} = \binom{n-1}{k-1} + (n-1) \binom{n-1}{k}$
- Number of ways to partition n objects into k sets: $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}, \binom{n}{0} = \binom{n}{n} = 1$
- Heron's formula: A triangle with side lengths a, b, c has area $\sqrt{s(s-a)(s-b)(s-c)}$ where
- Pick's theorem: A polygon on an integer grid containing i lattice points and having b lattice points on the boundary has area $i + \frac{b}{2} - 1$.
- Divisor sigma: The sum of divisors of n to the xth power is $\sigma_x(n) = \prod_{i=0}^r \frac{p_i^{(a_i+1)x}-1}{p_i^x-1}$ where $n = \prod_{i=0}^{r} p_i^{a_i}$ is the prime factorization.
- **Divisor count:** A special case of the above is $\sigma_0(n) = \prod_{i=0}^r (a_i + 1)$.
- Euler's totient: The number of integers less than n that are comprime to n are $n \prod_{p|n} \left(1 \frac{1}{n}\right)$ where each p is a distinct prime factor of n.
- König's theorem: In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.
- The number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set.

```
Reykjavik University
                                        ----else {------// 38
                6. Geometry
                                        -----x = min(x, abs(a - closest_point(c,d, a, true)));------// f3
6.1. Primitives. Geometry primitives.
                                       -----x = min(x, abs(b - closest_point(c,d, b, true)));-----// ec
#include <complex>-----// 8e
                                       -----x = min(x, abs(c - closest_point(a,b, c, true)));------// 36
#define P(p) const point &p-----// b8
                                       -----x = min(x, abs(d - closest_point(a,b, d, true)));
#define L(p0, p1) P(p0), P(p1)-----// 30
                                       ----}------// 72
typedef complex<double> point;-----// e1 ---return x;------// 0d
double dot(P(a), P(b)) { return real(conj(a) * b); }-----// a9
                                       1.....// b3
double cross(P(a), P(b)) { return imag(conj(a) * b); }-----// ff
----return (p - about) * exp(point(0, radians)) + about; }-----// cb #include "primitives.cpp"------// e0
point reflect(P(p), L(about1, about2)) {------// c0 typedef vector<point> polygon;-----// b3
----point z = p - about1, w = about2 - about1;------// 39 double polygon_area_signed(polygon p) {------// 31
----return conj(z / w) * w + about1; }------// 03 ----double area = 0; int cnt = size(p);------// a2
point proj(P(u), P(v)) { return dot(u, v) / dot(u, u) * u; }------// fc ----for (int i = 1; i + 1 < cnt; i++)-----// d2
bool parallel(L(a, b), L(p, q)) { return abs(cross(b - a, q - p)) < EPS; }-----// 6d ------area += cross(p[i] - p[0], p[i + 1] - p[0]);-------// 7e
double ccw(P(a), P(b), P(c)) { return cross(b - a, c - b); }------// ca ----return area / 2; }------------------------// e1
bool collinear(P(a), P(b), P(c)) { return abs(ccw(a, b, c)) < EPS; }------// 75 double polygon_area(polygon p) { return abs(polygon_area_signed(p)); }-----// 25
bool collinear(L(a, b), L(p, q)) {------// 66 #define CHK(f,a,b,c) (f(a) < f(b) \&\& f(b) <= f(c) \&\& ccw(a,c,b) < 0)-----// b2
----return abs(ccw(a, b, p)) < EPS && abs(ccw(a, b, q)) < EPS; }------// d6 int point_in_polygon(polygon p, point q) {-------// 58
----return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b)); }------// cc ----for (int i = 0, j = n - 1; i < n; j = i++)------// 77
double signed_angle(P(a), P(b), P(c)) {------// fe -----if (collinear(p[i], q, p[j]) &&-----// a5
double progress(P(p), L(a, b)) {------// d2 -----return 0;-----
------return (imag(p) - imag(a)) / (imag(b) - imag(a));-------// 35 ------if (CHK(real, p[i], q, p[j]) || CHK(real, p[j], q, p[i]))------// 1f
bool intersect(L(a, b), L(p, q), point &res, bool segment = false) {-------// d6 ----return in ? -1 : 1; }-----
----// NOTE: check for parallel/collinear lines before calling this function---// 02 // pair<polygon, polygon> cut_polygon(const polygon &poly, point a, point b) {-// 7b
----point r = b - a, s = q - p;------// 79 //---- polygon left, right;-----// 6b
----if (segment && (t < 0-EPS || t > 1+EPS || u < 0-EPS || u > 1+EPS))------// ae //---- for (int i = 0, cnt = poly.size(); i < cnt; i++) {---------// 28
------return false;------// a3 //------ int j = i == cnt-1 ? 0 : i + 1;------// 8e
----res = a + t * r;-------// ca //------ point p = poly[i], q = poly[j];------// 19
}------if (ccw(a, b, p) >= 0) right.push_back(p);------// e3
point closest_point(L(a, b), P(c), bool segment = false) {------// a1 //-----// myintersect = intersect where-----// 24
-----if (dot(b - a, c - b) > 0) return b;------// b5 //----- if (myintersect(a, b, p, q, it))------// f0
------if (dot(a - b, c - a) > 0) return a;------// cf //-------left.push_back(it), right.push_back(it);------// 21
----double t = dot(c - a, b - a) / norm(b - a);------// aa //---- return pair<polygon, polygon>(left, right);------// 1d
----return a + t * (b - a);------// 7a // }-----// 37
}-----// e5
----double x = INFINITY;------// 83 #include "polygon.cpp"-----// 58
----else if (abs(a - b) < EPS) x = abs(a - closest_point(c, d, a, true));-----// da point hull[MAXN];------
----else if ((ccw(a, b, c) < 0) != (ccw(a, b, d) < 0) &&-----// ee ----return abs(real(a) - real(b)) > EPS ?-----// 44
```

```
----sort(p.begin(), p.end(), cmp);-----// 3d
                                               6.6. Formulas. Let a = (a_x, a_y) and b = (b_x, b_y) be two-dimensional vectors.
• a \cdot b = |a||b|\cos\theta, where \theta is the angle between a and b.
-----if (i > 0 && p[i] == p[i - 1]) continue;------// b2
                                                  • a \times b = |a||b|\sin\theta, where \theta is the signed angle between a and b.
------while (l >= 2 \& ccw(hull[l - 2], hull[l - 1], p[i]) >= 0) l--;------// 20
                                                  • a \times b is equal to the area of the parallelogram with two of its sides formed by a and b. Half
-----hull[l++] = p[i];-----// f7
                                                   of that is the area of the triangle formed by a and b.
----int r = l:------// 59
                                                                 7. Other Algorithms
----for (int i = n - 2; i >= 0; i--) {------// 16
-----if (p[i] == p[i + 1]) continue; -----// c7
                                               7.1. Binary Search. An implementation of binary search that finds a real valued root of the continuous
                                               function f on the interval [a, b], with a maximum error of \varepsilon.
------while (r - l >= 1 \& ccw(hull[r - 2], hull[r - 1], p[i]) >= 0) r--;----// 9f
-----hull[r++] = p[i]:-----// 6d
                                                double binary_search_continuous(double low, double high,-----// 8e
----}-----// 74
                                                -----double eps, double (*f)(double)) {------// cθ
----return l == 1 ? 1 : r - 1:-----// 6d
                                                ----while (true) {------// 3a
}-----// 79
                                               ------double mid = (low + high) / 2, cur = f(mid);------// 75
                                                -----if (abs(cur) < eps) return mid;-----// 76
6.4. Line Segment Intersection. Computes the intersection between two line segments.
                                                -----else if (0 < cur) high = mid;------// e5
#include "primitives.cpp"-----// e0
                                               -----else low = mid:-----// a7
bool line_segment_intersect(L(a, b), L(c, d), point &A, point &B) {------// 6c
                                               ----}-----// b5
----if (abs(a - b) < EPS &\& abs(c - d) < EPS) {-------// db
                                               }-----// cb
------A = B = a; return abs(a - d) < EPS; }------// ee
                                                 Another implementation that takes a binary predicate f, and finds an integer value x on the integer
----else if (abs(a - b) < EPS) {------// 03
                                               interval [a, b] such that f(x) \wedge \neg f(x-1).
------A = B = a; double p = progress(a, c,d);------// c9
                                               int binary_search_discrete(int low, int high, bool (*f)(int)) {------// 51
-----return 0.0 <= p && p <= 1.0-----// 8a
                                                ----assert(low <= high);-----// 19
----while (low < high) {------// a3
----else if (abs(c - d) < EPS) {------// 26
                                                ------int mid = low + (high - low) / 2;---------------------------// 04
------A = B = c; double p = progress(c, a,b);------// d9
                                                ------if (f(mid)) high = mid;-----// ca
-----return 0.0 <= p && p <= 1.0-----// 8e
                                                -----else low = mid + 1:-----// 03
----}-------// 9b
----else if (collinear(a,b, c,d)) {------// bc
                                                ----assert(f(low));------// 42
------double ap = progress(a, c,d), bp = progress(b, c,d);------// a7
                                                ----return low:-----// a6
-----if (ap > bp) swap(ap, bp);-----// b1
                                                }-----// d3
-----if (bp < 0.0 || ap > 1.0) return false;------// 0c
-----A = c + max(ap, 0.0) * (d - c);------// f6
                                               7.2. Ternary Search. Given a function f that is first monotonically increasing and then monotonically
-----B = c + min(bp, 1.0) * (d - c);------// 5c
                                               cally decreasing, ternary search finds the x such that f(x) is maximized.
-----return true; }-----// ab
                                               template <class F>-----// d1
----else if (parallel(a,b, c,d)) return false;------// ca
                                                double ternary_search_continuous(double lo, double hi, double eps, F f) {-----// e7
----else if (intersect(a,b, c,d, A, true)) {------// 10
                                                ----while (hi - lo > eps) {------// 3e
-----B = A; return true; }------// bf
                                                ------double m1 = lo + (hi - lo) / 3, m2 = hi - (hi - lo) / 3;-----// e8
----return false:-----// b7
                                               -----if (f(m1) < f(m2)) lo = m1:-----// 1d
}------// 8b
                                               -----else hi = m2;-----// b3
  -----// e6
                                               ----}-----// bb
                                                ----return hi:-----// fa
6.5. Great-Circle Distance. Computes the distance between two points (given as latitude/longitude
                                                }-----// 66
coordinates) on a sphere of radius r.
double gc_distance(double pLat, double pLong,-----// 7b 7.3. 2SAT. A fast 2SAT solver.
-----/ double qLat, double qLong, double r) {------// a4 #include "../graph/scc.cpp"------// c3
----pLat *= pi / 180; pLong *= pi / 180;------// ee ------// ee
----qLat *= pi / 180; qLong *= pi / 180;------// 75 bool two_sat(int n, const vii& clauses, vi& all_truthy) {-------// f4
----return r * acos(cos(pLat) * cos(qLat) * cos(pLong - qLong) +------// e3 ----all_truthy.clear();-------// 31
-----sin(pLat) * sin(qLat));------// 1e ----vvi adj(2*n+1);--------------------// 7b
```

Reykjavik University

```
Reykjavik University
------if (clauses[i].first != clauses[i].second)--------// 87 ----node *head;--------------------------------// c2
-----adj[-clauses[i].second + n].push_back(clauses[i].first + n);-----// 93 ----exact_cover(int rows, int cols) : rows(rows), cols(cols), head(NULL) {-----// ce
----pair<union_find, vi> res = scc(adj);------// 9f -----sol = new int[rows];------// 69
----union_find scc = res.first;-------// 42 ------for (int i = 0; i < rows; i++)------// c7
----vi dag = res.second:-------// 58 ------arr[i] = new bool(cols), memset(arr[i], 0, cols):------// 68
---vi truth(2*n+1, -1);------// 8b
------if (cur == 0) continue;--------// 26 ------node ***ptr = new node**[rows + 1];-------// da
------if (truth[p] == -1) truth[p] = 1;-------// c3 ------ptr[i] = new node*[cols];------// cc
-----truth[cur + n] = truth[p];-------// b3 -------for (int j = 0; j < cols; j++)------// 56
------if (truth[p] == 1) all_truthy.push_back(cur);-------// 5c -----else ptr[i][j] = NULL;-------------// 40
-----if (!ptr[i][j]) continue;-----// 76
7.4. Stable Marriage. The Gale-Shapley algorithm for solving the stable marriage problem.
                           -----int ni = i + 1, nj = j + 1;-----// 34
vi stable_marriage(int n, int** m, int** w) {------// e4 ------while (true) {-----------// 7f
----queue<int> q;------// f6 ------// f6 ------// 54
----vi at(n, 0), eng(n, -1), res(n, -1); vvi inv(n, vi(n));-------// c3 -------if (ni == rows || arr[ni][j]) break;------// 77
----for (int i = 0; i < n; i++) q.push(i);------// fe ------ptr[i][j]->d = ptr[ni][j];-----// a9
----while (!q.empty()) {------// 55 ------ptr[ni][j]->u = ptr[i][j];------// c0
------int curm = q.front(); q.pop();------// ab --------while (true) {-------// 0d
------int curw = m[curm][i];-------// cf ------if (i == rows || arr[i][nj]) break;-----// e9
-----q.push(enq[curw]);------// 8c -----ptr[i][j]->r = ptr[i][nj];-----// b3
-----else continue;-----// b4 ------ptr[i][nj]->l = ptr[i][j];------// 46
----}------head = new node(rows, -1);-------// 80
----return res;------head->r = ptr[rows][0];-------// b9
}------ptr[rows][0]->l = head;------// c1
                           ------head->l = ptr[rows][cols - 1];------// 28
7.5. Algorithm X. An implementation of Knuth's Algorithm X, using dancing links. Solves the
                           -----ptr[rows][cols - 1]->r = head;------// 83
Exact Cover problem.
                           ------for (int j = 0; j < cols; j++) {------// 02
----struct node {-------// 7e -------if (ptr[i][j]) cnt++, ptr[i][j]->p = ptr[rows][j];------// 05
------ptr[rows][j]->size = cnt;-------// d4
------<mark>int</mark> row, col, size;------// ae _______// 8f
------node(int row, int col) : row(row), col(col) {-------// 68 ------for (int i = 0; i <= rows; i++) delete[] ptr[i];------// cd
----}:-------// 9e
```

```
----#define COVER(c, i, j) N------------------------// 23 ----while (t != h) h = f(h), lam++;-----------------// 5e
------for (node *i = c->d; i != c; i = i->d) \sqrt{\phantom{a}}
7.8. Dates. Functions to simplify date calculations.
-----j->d->u = j->u, j->u->d = j->d, j->p->size--;-----// 5a
                                                int intToDay(int jd) { return jd % 7; }-----// 89
----#define UNCOVER(c, i, j) N-----// 17
                                                int dateToInt(int y, int m, int d) {------// 96
----return 1461 * (y + 4800 + (m - 14) / 12) / 4 +-----// a8
-----j->p->size++, j->d->u = j->u->d = j; N------// be -----3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +-----// be
-----c->r->l = c->l->r = c;------// bb -----d - 32075;------// e0
----bool search(int k = 0) {------// 4f }-----// fa
------if (head == head->r) {--------// a7 void intToDate(int jd, int &y, int &m, int &d) {------// a1
------for (int i = 0; i < k; i++) res[i] = sol[i];------// c0 ----x = jd + 68569;-------// 11
-----sort(res.begin(), res.end());------// 3e ---n = 4 * x / 146097;-----// 2f
-----return handle_solution(res);------// dc ----x -= (146097 * n + 3) / 4;------// 58
------/ode *c = head->r, *tmp = head->r;------// a6 ----x -= 1461 * i / 4 - 31;------// 09
------for ( ; tmp != head; tmp = tmp->r) if (tmp->size < c->size) c = tmp;---// 1e ----j = 80 * x / 2447;-----------// 3d
------if (c == c->d) return false;------// 17 ----d = x - 2447 * j / 80;------// eb
------COVER(c, i, i);------// 61 ----x = i / 11;------// b7
------bool found = false;------// 6e ----m = j + 2 - 12 * x;-----// 82
------for (node *j = r->r; j != r; j = j->r) { COVER(j->p, a, b); }-----// 3a
-----found = search(k + 1);------// f4
                                                                  8. Useful Information
8.1. Tips & Tricks.
------}------// a1
------UNCOVER(c, i, j);------// 64
                                                   • How fast does our algorithm have to be? Can we use brute-force?
                                                   • Does order matter?
• Is it better to look at the problem in another way? Maybe backwards?
                                                   • Are there subproblems that are recomputed? Can we cache them?
                                                   • Do we need to remember everything we compute, or just the last few iterations of computation?
7.6. nth Permutation. A very fast algorithm for computing the nth permutation of the list \{0, 1, \dots, k-1\}
                                                   • Does it help to sort the data?
1}.
                                                   • Can we speed up lookup by using a map (tree or hash) or an array?
vector<int> nth_permutation(int cnt, int n) {------// 78
                                                   • Can we binary search the answer?
----vector<int> idx(cnt), per(cnt), fac(cnt);-----// 9e
                                                   • Can we add vertices/edges to the graph to make the problem easier? Can we turn the graph
----for (int i = 0; i < cnt; i++) idx[i] = i;------// 80
                                                    into some other kind of a graph (perhaps a DAG, or a flow network)?
----for (int i = 1; i <= cnt; i++) fac[i - 1] = n % i, n /= i;------// 04
                                                   • Make sure integers are not overflowing.
----for (int i = cnt - 1; i >= 0; i--)-----// 52
                                                   • Is it better to compute the answer modulo n? Perhaps we can compute the answer modulo
-----per[cnt - i - 1] = idx[fac[i]], idx.erase(idx.begin() + fac[i]);-----// 41
                                                    m_1, m_2, \ldots, m_k, where m_1, m_2, \ldots, m_k are pairwise coprime integers, and find the real answer
----return per;-----// 84
                                                    using CRT?
}-----// 97
                                                   • Are there any edge cases? When n = 0, n = -1, n = 1, n = 2^{31} - 1 or n = -2^{31}? When
                                                    the list is empty, or contains a single element? When the graph is empty, or contains a single
7.7. Cycle-Finding. An implementation of Floyd's Cycle-Finding algorithm.
                                                    vertex? When the graph contains self-loops? When the polygon is concave or non-simple?
ii find_cycle(int x0, int (*f)(int)) {------// a5
                                                   • Can we use exponentiation by squaring?
----int t = f(x0), h = f(t), mu = 0, lam = 1;------// 8d
----while (t != h) t = f(t), h = f(f(h));-----// 79
                                                8.2. Fast Input Reading. If input or output is huge, sometimes it is beneficial to optimize the input
----h = x0:------// 04
                                                reading/output writing. This can be achieved by reading all input in at once (using fread), and then
----while (t != h) t = f(t), h = f(h), mu++;--------// 9d parsing it manually. Output can also be stored in an output buffer and then dumped once in the end
```

Reykjavik University

Reykjavik University 21

(using fwrite). A simpler, but still effective, way to achieve speed is to use the following input reading method.

8.3. **128-bit Integer.** GCC has a 128-bit integer data type named __int128. Useful if doing multiplication of 64-bit integers, or something needing a little more than 64-bits to represent.

8.4. Worst Time Complexity.

n	Worst AC Algorithm	Comment	
≤ 10	$O(n!), O(n^6)$	e.g. Enumerating a permutation	
≤ 15	$O(2^n \times n^2)$	e.g. DP TSP	
≤ 20	$O(2^n), O(n^5)$	e.g. $DP + bitmask technique$	
≤ 50	$O(n^4)$	e.g. DP with 3 dimensions $+ O(n)$ loop, choosing ${}_{n}C_{k} = 4$	
$\leq 10^{2}$	$O(n^3)$	e.g. Floyd Warshall's	
$\leq 10^{3}$	$O(n^2)$	$O(n^2)$ e.g. Bubble/Selection/Insertion sort	
$\le 10^5$	$O(n \log_2 n)$	$(x_2 n)$ e.g. Merge sort, building a Segment tree	
$\leq 10^{6}$	$O(n), O(\log_2 n), O(1)$	Usually, contest problems have $n \le 10^6$ (e.g. to read input)	

8.5. Bit Hacks.

- n & -n returns the first set bit in n.
- n & (n 1) is 0 only if n is a power of two.
- snoob(x) returns the next integer that has the same amount of bits set as x. Useful for iterating through subsets of some specified size.