Лабораторная работа 1.1.1 Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Михаил Колтаков

21 сентября 2020 г.

Цель работы

Измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока

Оборудование

Линейка, штангенциркуль, микрометр, отрезок проволоки из нихрома, амперметр, вольтметр, источник ЭДС, мост постоянного тока, реостат

Теория к работе

На протяжении всей работы

 ρ — удельное сопротивление нихрома

d — диаметр проволоки

l — длина измеряемого участка проволоки

 $R_{\rm np}$ — сопротивление проволоки

 R_A — сопротивление амперметра

 R_V — сопротивление вольтметра

R — сопротивление реостата

 $\mathscr{E} - ЭДС источника$

V — показание вольтметра

I — показание амперметра

Удельное сопротивление нихрома можно вычислить по формуле

$$\rho = \frac{R_{\rm np}\pi d^2}{4l}$$

В работе мы использовали схему установки а), так как она даёт нам меньшую погрешность при измерении сопротивления проволоки $(1,25\cdot 10^{-3}$ против 0,24)

В этом случае сопротивление проволоки с поправкой на сопротивление приборов можно рассчитывать по формуле

$$R_{\rm np} = \frac{R_V}{R_V - R_{\rm np}^{\rm u}}$$

 $R_{\mathrm{np}}^{\scriptscriptstyle{\mathsf{H}}}$ — измеренное сопротивление проволоки

Необходимо также произвести расчёт систематической и случайной погрешности измерений толщины проволоки и показаний амперметра с вольтметром. Опыт будем проводить для трёх длин проволоки(20 см, 30 см и 50 см)

Строим ВАХи для всех отрезков проволоки, после этого оцениваем погрешности измерения среднего сопротивления проволоки с помощью МНК.

Ход работы

- 1. Точность измерения с помощью штангенциркуля $0,1\,$ мм. Точность измерения с помощью микрометра $0,01\,$ мм.
- 2. Измеряем толщину проволоки штангенциркулем (d_1) и микрометром (d_2) на 10 различных участках.

	1	2	3	4	5	6	7	8	9	10
d_1 , mm	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
d_2 , mm	0,36	0,36	0,35	0,35	0,35	0,34	0,35	0,35	0,35	0,35
	$\overline{d_1}=0,4$ mm $\overline{d_2}=0,35$ mm									

При измерении диаметра проволоки штангенциркулем случайная погрешность отсутствует, значит, можно учитывать только систематическую, которая является точностью штангенциркуля

$$d_1 = (0, 4 \pm 0, 1)$$
 mm

Измерения с помощью микрометра содержат как систематическую, так и случайную погрешности:

$$\sigma_{\text{сист}} = 0,01 \text{ мм}, \qquad \sigma_{\text{сл}} = \frac{1}{N} \sqrt{\sum_{i=1}^{n} (d_i - \overline{d})^2} = \frac{1}{10} \sqrt{2,9 \cdot 10^{-4}} \approx 1,7 \cdot 10^{-3} \text{мм}$$

$$\sigma_d = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{сл}}^2} \approx 0,01 \text{мм}$$

Поскольку $\sigma_{\rm cn}^2 \ll \sigma_{\rm cuct}^2$, то можно считать проволоку однородной по диаметру, а погрешность диаметра σ_d определяется только $\sigma_{\rm cuct}$ микрометра.

$$d_2=\overline{d_2}\pm\sigma_d=(0,35\pm0,01)$$
 мм

3. Определим площадь поперечного мечения проволоки:

$$S = \frac{\pi d_2^2}{4} = \frac{3,14 \cdot (0,35)^2}{4} \approx 9,62 \cdot 10^{-2} \text{ mm}^2$$

Величину погрешности измерения площади σ_S найдём по формуле

$$\sigma_S = 2 \frac{\sigma_d}{d} S = 2 \frac{0.01}{0.35} \cdot 9,62 \cdot 10^{-2} = 5 \cdot 10^{-4} \text{ mm}$$

Итак, $S=(9,62\pm0,04)\cdot10^{-2}$ мм², т. е. площадь поперечного сечения проволоки определена с точностью 0,4%

4. Сведём характеристики приборов в таблицу

	Вольтметр	Миллиамперметр	Мост
Система	Магнитоэлектрическая	Электромагнитная	_
Класс точности	0,2	$0,\!2$	0,1
Предел измерений x_Π	0,6 B	0.5 A	
Число делений шкалы n	150	_	_
Цена делений x_Π/n	4 мВ/дел	_	
Чувствительность x_{Π}/n	250 дел/В	_	_
Абсолютная погрешность Δx_{M}	2 мВ	$0,62 { m mA}$	
Внутреннее сопротивление прибора	4000 Ом	1,6 Ом	_

- 6. Собираем схему 1а).
- 7. Опыт проводим для $l_1=(20,0\pm0,1)$ см; $l_2=(30,0\pm0,1)$ см; $l_3=(50,0\pm0,1)$ см Результаты измерений заносим в таблицу

l=20	СМ		$l = 30 \mathrm{cm}$			$l = 50 \mathrm{cm}$		
V, дел 4 мВ/дел	V, мВ	І, мА	V, дел 4 мВ/дел	V, мВ	І, мА	V, дел 4 мВ/дел	V, мВ	І, мА
150	600	292	150	600	192	151	604	115
131	524	255	142	568	182	142	568	108
120	480	233	118	472	151	130	520	99
115	460	224	106	424	136	124	496	95
110	440	215	93	372	118	109	436	83
100	400	194	80	320	102	101	404	77
90	360	175	69	276	89	99	396	75
85	340	165	62	248	80	89	356	68
80	320	155	56	224	72	77	308	59
70	280	136	50	200	64	70	280	53
60	240	117	44	176	57	61	244	47
55	220	108	39	156	50	41	164	31
50	200	99	26	104	34	38	152	29
40	160	77	22	88	28	32	128	24

- 8. Построим графики по таблице(В конце документа).
- 9. Для каждой длины l проводим расчёт методом наименьших квадратов и вычислим погрешность по формулам

$$R_{
m cp} = rac{\langle VI
angle}{\langle I^2
angle}$$

$$\sigma_{R_{
m cp}}^{
m cnyq} = rac{1}{\sqrt{14}} \sqrt{rac{\langle V^2
angle}{\langle I^2
angle}} - R_{
m cp}^2$$

Возможную систематическую погрешность $R_{\rm cp}$ оцениваем по формуле

$$\frac{\sigma_{R_{\rm cp}}^{\rm cmct}}{R_{\rm cp}} = \sqrt{(\frac{\sigma_V}{V})^2 + (\frac{\sigma_I}{I})^2}$$

I и V - максимальные значения тока и напряжения в ходе измерений(), σ_V и σ_I - ошибки измерения вольтметром и амперметром: $\sigma_V=1$ мВ, $\sigma_I=0,31$ мА. Делаем поправку для нашей схемы.

l=20 cm	l = 30 cm	l = 50 cm
$R_0 = 2,155 \mathrm{Om}$	$R_0 = 3,222 \mathrm{Om}$	$R_0 = 5,346 \mathrm{Om}$
$R_{\rm cp} = 2,055 { m Om}$	$R_{\rm cp} = 3,123 {\rm Om}$	$R_{\rm cp} = 5,249 {\rm Om}$
$R_{\rm np} = 2,056 {\rm Om}$	$R_{\rm np} = 3,125 {\rm Om}$	$R_{\rm np} = 5,256~{ m Om}$
$\sigma_R^{\text{случ}} = 0,002 \text{Om}$	$\sigma_R^{\text{случ}} = 0,004 \text{Om}$	$\sigma_R^{\text{случ}} = 0,006 \text{Ом}$
$\sigma_R^{\text{сист}} = 0,004 \text{Om}$	$\sigma_R^{\text{chct}} = 0,007 \text{Om}$	$\sigma_R^{\text{сист}} = 0,017 \text{Om}$
$\sigma_R = 0,005 \mathrm{Om}$	$\sigma_R = 0,008 {\rm Om}$	$\sigma_R = 0,018 \mathrm{Om}$

Более сокращённый вариант таблицы

l, см	20	30	50	
$R_{\rm np},~{\rm Om}$	2,056	3,125	5,256	
σ_R , Om	0,005	0,008	0,018	

10. Сравниваем полученные результаты $R_{\rm np}$ с R_0 , полученными на мосте. Результаты попадают в предел погрешностей. 11. Определяем удельное сопротивление проволоки по формуле и погрешность. σ_{ρ}

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

Занесём полученные результаты в таблицу

l, cm	ρ , 10^{-5} Om · cm	$\sigma_{\rho}, 10^{-6} \mathrm{Om} \cdot \mathrm{cm}$
20	9.9	6
30	10.0	6
50	10.1	6

Окончательно: $\rho = (10, 0 \pm 0, 6) \cdot 10^{-5} \,\mathrm{Om} \cdot \mathrm{cm}$

Вывод

Основной вклад в ошибку сносит погрешность при измерении диаметра проволоки, составляющая примерно 2,9%, однако, так как результат измерений удваивается, погрешность тоже умножается на 2, а значит, составляет примерно 5,7%. Поэтому при измерении сопротивления проволоки достаточна точность 3-4%.

Полученное значение удельного сопротивления входит в допустимые значения для нихрома.

