Analyse I – Corrigé de la Série 1

Partie I: Algèbre.

1. a) 81 b)
$$-81$$
 c) $\frac{1}{81}$ d) 25 e) $\frac{9}{4}$ f) $\frac{1}{8}$

2. a)
$$6\sqrt{2}$$
 b) $48a^5b^7$ c) $\frac{x}{9y^7}$

3. a)
$$11x - 2$$
 b) $4x^2 + 7x - 15$ c) $a - b$ d) $4x^2 + 12x + 9$ e) $x^3 + 6x^2 + 12x + 8$ f) $a^2 + 1$

4. a)
$$(2x-5)(2x+5)$$
 b) $(2x-3)(x+4)$ c) $(x-3)(x-2)(x+2)$
d) $x(x+27)$ e) $3x^{-1/2}(x-1)(x-2)$ f) $xy(x-2)(x+2)$

5. a)
$$\frac{x+2}{x-2}$$
 b) $\frac{x-1}{x-3}$ c) $\frac{1}{x-2}$ d) $-(x+y)$

6. a)
$$5\sqrt{2} + 2\sqrt{10}$$
 b) $\sqrt{9+h} - 3$

8. a) $(x+\frac{1}{2})^2+\frac{3}{4}$ b) $2(x-3)^2-7$

7. La réponse est $a^p b^q$ dans tous les cas.

9. a)
$$x = 6$$
 b) $x = 1$ c) $x_1 = -3$ et $x_2 = 4$ d) $x_{1,2} = -1 \pm \frac{\sqrt{2}}{2}$ e) $x_{1,2} = \pm 1$ et $x_{3,4} = \pm \sqrt{2}$ f) $x_1 = \frac{22}{3}$, $x_2 = \frac{2}{3}$ g) $x = \frac{12}{5}$

10. a)
$$x \in [-4, 3[$$
 b) $x \in]-2, 4[$ c) $x \in]-2, 0[\cup]1, \infty[$ d) $x \in]1, 7[$ e) $x \in]-1, 4[$

11.
$$a$$
) Faux. b) Vrai. c) Faux. d) Faux. e) Vrai. f) Faux. g) Vrai. h) Vrai.

12. Les indications ci-après ne sont bien sûr pas les seules manières de vérifier les identités.

- a) Commencer par la partie droite.
- b) Pour la partie gauche, ne pas développer la somme parce qu'elle devient télescopique après la multiplication. Pour la partie droite, utiliser la troisième identité remarquable. Le résultat est $1-a^8$.
- 13. On trouve $A=b^{2m(2m-1)}$. Pour b=2, on obtient à partir de $2^{2m(2m-1)}=16^5$ que m(2m-1)=10. Comme m doit être entier, la seule possibilité est m=-2.

Partie II : Trigonométrie.

1.
$$a) \quad \frac{5\pi}{3}$$
 $b) \quad -\frac{\pi}{10}$

2. a)
$$150^{\circ}$$
 b) $\frac{360^{\circ}}{\pi} \approx 114.6^{\circ}$

- 3. $2\pi \text{ cm}$
- **4.** a) $-\frac{1}{2}$

- **5.** $a = 24\sin(\theta), b = 24\cos(\theta)$
- **6.** $\frac{1}{15}(4+6\sqrt{2})$
- 7. Développer les parties gauches en utilisant la définition de la fonction tg.
- 8. $x \in \{0, \pi, \frac{\pi}{3}, \frac{5\pi}{3}, 2\pi\}$

9.

Partie III : Fonctions réelles.

- 1. a) -2[-2, 3]
- b) 2.8

- c) -3, 1 d) -2.5, 0.3 e) Domaine [-3, 3], image
- 2. $12 + 6h + h^2$
- **3.** a) $]-\infty, -2[\cup]-2, 1[\cup]1, \infty[$ b) $]0, \infty[^1$ c) $]-\infty, -1] \cup [1, 4]$

- **4.** a) Réflexion par rapport à l'axe Ox.
 - b) Étirement vertical d'un facteur 2, suivi d'une translation d'une unité vers le bas.
 - c) Translation de trois unités vers la droite, puis de deux unités vers le haut.

5. *a*)

d)

e)

f)

^{1.} Dans ce cours, les puissances avec exposants non-entiers sont définies seulement pour les nombres strictement positifs.

g)

h)

6. *b*)

6. a) f(-2) = -3, f(1) = 3

b) Ci-dessus (à la fin de l'Ex. 5).

7. a) $4x^2 - 8x + 2$

b) $2x^2 + 4x - 5$ c) 8x - 21

8. La réponse est $a^p b^q$ dans tous les cas.

9. Remarques générales (ou plutôt rappel) :

— Le domaine $D(f^{-1})$ de la fonction réciproque f^{-1} est l'image de f. En effet, I a été choisi pour que f soit injective (cf. énoncé), et donc f est bijective entre I et son

— Une fois qu'on a tracé le graphe de f, on peut trouver le graphe de f^{-1} géométriquement en faisant une réflexion par rapport à la droite y = x.

 $a)\ D(f^{-1})=[-1,1]$

b) $D(f^{-1}) = [-1, 1]$

 $^{1}(x) = Arccos(x)$

Tourner la page pour les exercices restants...

c)
$$f(x) = tg(x)$$

$$\frac{1}{4}$$

$$\frac{\pi}{2}$$

$$-\frac{\pi}{2}$$

$$-1$$

$$-2$$

$$-3$$

$$-4$$

$$D(f^{-1}) = \mathbb{R}$$

$$d) \ D(f^{-1}) =]0, \infty[$$

e) $D(f^{-1}) =]0, \infty[$

$f) \ D(f^{-1}) =]0, \infty[$

Partie IV: Calcul propositionnel.

Une "proposition (logique)" est un énoncé qui peut être vrai ou faux (mais pas les deux à la fois). Soit p et q des propositions. Par les tableaux de vérité suivants, on introduit les opérations \neg ("non" logique), \land ("et" logique), \lor ("ou" logique), \Leftrightarrow (l'équivalence logique) et \Rightarrow (l'implication logique), où V := vrai, et F := faux.

p	$\neg p$
V	F
F	V

ſ	p	q	$p \wedge q$
	V	V	V
	V	F	F
	F	V	F
	F	F	F

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

p	q	$p \Leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

p	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

1. (Equivalences logiques)

Tous les propositions de cet exercice se montrent par la construction des tableaux de vérité à partir des tableaux de vérité des définitions :

(a)
$$\begin{array}{c|c|c|c}
p & \neg p & \neg (\neg p) \\
\hline
\mathbf{V} & F & \mathbf{V} \\
\mathbf{F} & V & \mathbf{F}
\end{array}$$

(b)
$$\begin{array}{|c|c|c|c|c|c|} \hline p & p & p \wedge p \\ \hline \mathbf{V} & V & \mathbf{V} \\ \mathbf{F} & F & \mathbf{F} \\ \hline \end{array}$$

	p	p	$p \lor p$
et	\mathbf{V}	V	\mathbf{V}
	\mathbf{F}	F	${f F}$

	p	q	$p \wedge q$	$q \wedge p$
	V	V	\mathbf{V}	\mathbf{V}
(c)	V	F	\mathbf{F}	\mathbf{F}
	F	V	\mathbf{F}	\mathbf{F}
	F	F	\mathbf{F}	\mathbf{F}

	p	q	$p \lor q$	$\mid q \lor p \mid$
	V	V	\mathbf{V}	\mathbf{V}
et	V	F	\mathbf{V}	$\mid \mathbf{V} \mid$
	F	V	\mathbf{V}	$\mid \mathbf{V} \mid$
	F	F	\mathbf{F}	\mathbf{F}

	p	q	$p \wedge q$	$\neg (p \land q)$	$\neg p$	$\neg q$	$(\neg p) \lor (\neg q)$	
	V	V	V	\mathbf{F}	F	F	${f F}$	
(d)	V	F	F	\mathbf{V}	F	V	\mathbf{V}	et
	F	V	F	\mathbf{V}	V	F	\mathbf{V}	
	F	F	F	\mathbf{V}	V	V	\mathbf{V}	

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$(\neg p) \wedge (\neg q)$
V	V	V	\mathbf{F}	F	F	${f F}$
V	F	V	${f F}$	F	V	${f F}$
$\mid F \mid$	V	V	${f F}$	V	F	${f F}$
F	F	F	\mathbf{V}	V	V	\mathbf{V}

	p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$	
	V	V	V	V	V	V	V	
	V	V	F	V	\mathbf{F}	F	${f F}$	
	V	F	V	F	${f F}$	F	${f F}$	
(e)	V	F	F	F	${f F}$	F	${f F}$	et
	F	$\mid V \mid$	V	F	${f F}$	V	${f F}$	
	F	V	F	F	${f F}$	F	${f F}$	
	F	F	V	F	${f F}$	F	${f F}$	
	F	F	F	F	${f F}$	F	${f F}$	

p	q	r	$p \lor q$	$(p \lor q) \lor r$	$q \vee r$	$p \lor (q \lor r)$
V	V	V	V	V	V	\mathbf{V}
V	V	F	V	\mathbf{V}	V	\mathbf{V}
V	$\mid F \mid$	V	V	\mathbf{V}	V	\mathbf{V}
V	$\mid F \mid$	F	V	\mathbf{V}	F	\mathbf{V}
$\mid F \mid$	V	V	V	\mathbf{V}	V	\mathbf{V}
$\mid F \mid$	V	F	V	\mathbf{V}	V	\mathbf{V}
$\mid F \mid$	$\mid F \mid$	V	F	\mathbf{V}	V	\mathbf{V}
F	F	F	F	\mathbf{F}	F	\mathbf{F}

	p	q	$p \wedge q$	r	$(p \land q) \lor r$	$p \lor r$	$q \vee r$	$(p \vee r) \wedge (q \vee r)$	
	V	V	V	V	V	V	V	\mathbf{V}	
	V	V	V	F	\mathbf{V}	V	V	\mathbf{V}	
	V	F	F	V	\mathbf{V}	V	V	\mathbf{V}	
(f)	V	F	F	F	\mathbf{F}	V	F	${f F}$	et
	F	V	F	V	\mathbf{V}	V	V	\mathbf{V}	
	F	V	F	F	${f F}$	F	V	${f F}$	
	F	F	F	V	\mathbf{V}	V	V	\mathbf{V}	
	F	F	F	F	\mathbf{F}	F	F	${f F}$	

p	q	$p \lor q$	r	$(p \lor q) \land r$	$p \wedge r$	$q \wedge r$	$(p \wedge r) \vee (q \wedge r)$
V	V	V	V	\mathbf{V}	V	V	V
$\mid V \mid$	V	V	F	${f F}$	F	F	\mathbf{F}
V	F	V	V	\mathbf{V}	V	F	\mathbf{V}
V	F	V	F	${f F}$	F	F	\mathbf{F}
$\mid F \mid$	V	V	V	\mathbf{V}	F	V	\mathbf{V}
$\mid F \mid$	V	V	F	${f F}$	F	F	${f F}$
$\mid F \mid$	F	F	V	${f F}$	F	F	${f F}$
F	F	F	F	${f F}$	F	F	${f F}$

	p	q	$p \Rightarrow q$	$\neg p$	$(\neg p) \lor q$
	V	V	\mathbf{V}	F	V
(g)	V	F	${f F}$	F	${f F}$
	F	$\mid V \mid$	\mathbf{V}	V	\mathbf{V}
	F	F	\mathbf{V}	V	\mathbf{V}

	p	q	$p \Rightarrow q$	$\neg (p \Rightarrow q)$	$\neg q$	$p \wedge (\neg q)$
	V	V	V	${f F}$	F	${f F}$
(h)	V	F	F	\mathbf{V}	V	${f V}$
	F	V	V	${f F}$	F	${f F}$
	F	$\mid F \mid$	V	${f F}$	V	${f F}$

	p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$(p \Rightarrow q) \land (q \Rightarrow r)$	$p \Rightarrow r$	$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
	V	V	V	V	V	V	V	V
	V	V	F	V	F	F	F	${f V}$
	V	F	V	F	V	F	V	\mathbf{V}
(i)	V	F	F	F	V	F	F	\mathbf{V}
. ,	F	V	V	V	V	V	V	\mathbf{V}
	F	V	F	V	F	F	V	\mathbf{V}
	F	F	V	V	V	V	V	\mathbf{V}
	F	F	F	V	V	V	V	\mathbf{V}

	p	q	$p \Leftrightarrow q$	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \land (q \Rightarrow p)$
	V	V	\mathbf{V}	V	V	V
	V	$\mid V \mid$	\mathbf{V}	V	V	\mathbf{V}
	V	F	\mathbf{F}	F	V	\mathbf{F}
(j)	V	F	\mathbf{F}	F	V	${f F}$
	F	$\mid V \mid$	\mathbf{F}	V	F	\mathbf{F}
	F	V	\mathbf{F}	V	F	${f F}$
	F	F	\mathbf{V}	V	V	\mathbf{V}
	F	F	\mathbf{V}	V	V	V
						()

	p	q	$\neg q$	$\neg p$	$p \Rightarrow q$	$(\neg q) \Rightarrow (\neg p)$
	V	V	F	F	\mathbf{V}	\mathbf{V}
	V	$\mid V \mid$	F	F	\mathbf{V}	\mathbf{V}
	V	F	V	F	${f F}$	${f F}$
(k)	V	F	V	F	${f F}$	${f F}$
	F	V	F	V	\mathbf{V}	\mathbf{V}
	F	V	F	V	\mathbf{V}	\mathbf{V}
	F	F	V	V	\mathbf{V}	\mathbf{V}
	F	F	V	V	\mathbf{V}	V

- **2.** (Les quantificateurs \forall et \exists , une variable)
 - (e) Soit $E=\{1,2\}$ et p(x) et q(x) telles que p(1) et q(2) sont vraies et p(2) et q(1) sont fausses. Alors, on a

p(1)	p(2)	q(1)	q(2)	$p(1) \vee q(1)$	$p(2) \vee q(2)$
V	F	F	V	V	V

et par conséquence

$\forall x \in E, p(x)$	$\forall x \in E, q(x)$	$\forall x \in E \\ p(x) \lor q(x)$	$\forall x \in E, \ p(x)$ $\forall x \in E, \ q(x)$
F	F	V	F

et donc en effet

(f) Similairement on a

p(1)	p(2)	q(1)	q(2)	$p(1) \wedge q(1)$	$p(2) \wedge q(2)$
V	F	F	V	F	F

et par conséquence

$\exists x \in E, p(x)$	$\exists x \in E, q(x)$	$\exists x \in E \\ p(x) \land q(x)$	$\exists x \in E, \ p(x)$ \land $\exists x \in E, \ q(x)$
\overline{V}	\overline{V}	\overline{F}	\overline{V}

et donc en effet

$ \exists x \in E \\ p(x) \land q(x) \implies $	$\exists x \in E, \ p(x)$ \land $\exists x \in E, \ q(x)$	$\exists x \in E \\ p(x) \land q(x) \iff$	$\exists x \in E, \ p(x)$ $= \land \land$
V			F

- 3. (Les quantificateurs \forall et $\exists,$ deux variables)
 - (c) Soit $E=\{1,2\}$ et $F=\{1,2\}$ et p(x,y) telle que p(1,1) et p(2,2) sont vraies et p(1,2) et p(2,1) sont fausses. Alors

p(1,1)	p(1,2)	p(2,1)	p(2,2)	$\exists x \in E, \ \forall y \in F$ $p(x,y)$	$\forall y \in F, \ \exists x \in E$ $p(x,y)$
V	F	F	V	F	V

et donc en effet

$\exists x \in E, \ \forall y \in F \implies$	$\forall y \in F, \ \exists x \in E$	$\exists x \in E, \ \forall y \in F$	$y \in F, \exists x \in E$
p(x,y)	p(x,y)	p(x,y)	p(x,y)
V			F