Hausarbeit

System Modellierung

Sommersemester 2022

Tim Quell - 1210340

Inhaltsverzeichnis

Aufgabe 1: Simulink – Modellbildung hybrider Systeme	2
Aufgabe 1.1: Simulink-Modell	
Aufgabe 1.2: Extrahieren von Simulink in Matlab	
Aufgabe 2: Simscape-Modellbildung	
Aufgabe 2.1: Simscape-Blöcke	7
Aufgabe 2.2: Simscape-Modell	7
Aufgabe 3: Mathematische Modellbildung	9
Aufgabe 4: Matlab-Modellbildung	10

Aufgabe 1: Simulink - Modellbildung hybrider Systeme

Ausgangssituation:

Mathematisches Modell eines DC-Motors:

$$J\ddot{\theta} + b\dot{\theta} = KI$$

$$L\frac{dI}{dt} + RI = U - K\dot{\theta}$$

Physikalische Parameter:

Trägheit	J = 0.01 kg·m²
Konstante der viskosen Reibung – Motor	b = 0.1 N·m·s
Konstante der elektromotorischen Kraft	$K_e = 0.01 \text{ V/rad/s}, K_e = K$
Drehmomentkonstante	$K_t = 0.01 \text{ N} \cdot \text{m/A}, K_t = K$
Elektrischer Widerstand	R = 1 Ohm
Elektrische Induktivität	L = 0.5 H

- ⇒ Input: Spannung (V)
- ⇒ Output: Drehgeschwindigkeit Motorschaft (dθ/dt) (Der Soll-Wert ist 0.1rad/s)
- ⇒ Umstellung nach Newtons Gesetz:

$$\circ \quad \ddot{\Theta} = \frac{1}{J}(K_t I - b\dot{\Theta}) \text{ oder } \frac{d^2\Theta}{dt^2} = \frac{1}{J}(K_t I - b\frac{d\Theta}{dt})$$

⇒ Umstellung nach Kirchhoff'schen Gesetzen:

$$\circ \quad \frac{dI}{dt} = \frac{1}{L}(-RI + U - K_e\dot{\Theta}) \quad \text{oder} \quad \frac{dI}{dt} = \frac{1}{L}(-RI + U - K_e\frac{d\Theta}{dt})$$

Aufgabe 1.1: Simulink-Modell

init.m Datei:

```
init.m × +
 % Tim Quell 1210340
 3
 4
        % Trägheit
 5
        J=0.01;
 6
 7
        % Konstante der viskosen Reibung - Motor
 8
 9
        % Konstante der elektromotorischen Kraft
 10
        Ke=0.01;
 11
 12
 13
        % Drehmomentkonstante
 14
        Kt=0.01;
 15
        % Elektrischer Widerstand
 16
 17
 18
        % Elektrische Induktivität
 19
 20
        L=0.5;
 21
```

Parameterfenster:

Simulink-Modell:

Ergebnis der Simulation:

Aufgabe 1.2: Extrahieren von Simulink in Matlab

Modifiziertes Simulink-Modell:

Matlab Code:

>> plot(DC_Motor.Time, DC_Motor.Data);

>> grid on;

Ergebnis der Visualisierung:

Aufgabe 2: Simscape-Modellbildung

Aufgabe 2.1: Simscape-Blöcke

Element	Schematische Darstellung	Analytische Darstellung	▶Simscape Block
Trägheit		$T_J = J \frac{d^2 \theta}{dt^2}$	Inertia / Trägheit
Rotatorische Feder	T_k T_k T_k T_k	$T_K = K(\theta_1 - \theta_2)$	Rotational Spring / Rotatorische Feder
Rotatorischer Dämpfer	θ_1 T_B θ_2 B B B B B	$T_{B} = B(\frac{d\theta_{1}}{dt} - \frac{d\theta_{2}}{dt})$	Rotational Damper / Rotatorischer Dämpfer

Aufgabe 2.2: Simscape-Modell

Arr Input: T(t); T_L(t) ArrOutput: Θ₁(t); Θ₂(t)

Allgemeine Form:

$$T = T_J + T_B + T_K = J \frac{d^2 \Theta}{dt^2} + B \left(\frac{d\Theta_1}{dt} - \frac{d\Theta_2}{dt} \right) + K(\Theta_1 - \Theta_2)$$

Simscape Modell:

Rotatorische Feder

Aufgabe 3: Mathematische Modellbildung

Modell Maschensatz:

$$U(t) = U_R + U_L + U_c$$

$$U(t) = (R_1 + R_2) * i(t) + Li'(t) + \frac{1}{C} \int i(t)dt + C$$

Umgestellt nach größter Ableitung:

$$i'(t) = \frac{1}{L} + \frac{1}{C} \int i(t)dt * (u(t) - (R_1 + R_2) * i(t) - C) + R_1$$

Aufgabe 4: Matlab-Modellbildung

Parameter:

Masse (m)	1 kg
Federsteifigkeit (k)	100 N/m
Dämpfungskonstante (d)	a=10, b=15, c=20, d=25, e=30

Mathematisches Modell:

$$m * \ddot{x} + d * \dot{x} + k * x = 0$$

D-Operator Form:

$$m * D^2 + d * D^1 + k * D^0 = 0$$

a) Charakteristische Gleichung:

$$r^2 + 10 * r + 100 = 0$$

pq-Formel:

$$r_{1/2} = -\frac{10}{2} \pm \sqrt{\left(\frac{10}{2}\right)^2 - 100}$$

$$r_{1/2} = -5 \pm \sqrt{-75}$$

$$r_{1/2} \approx -5 \pm (-8,66)$$

$$r_1 = 3,66 \quad r_2 = -13,66$$

Allgemeine Lösung:

$$x(t) = Ae^{3,66*t} + Be^{-13,66*t}$$

Anfangsbedingung:

$$x(t_0) = 0$$

$$x'(t_0) = 0.1$$

$$A \approx 0,006 \ B \approx -0,006$$

Partielle Lösung:

$$x(t) = 0.006 * e^{3.66 * t} + (-0.006 * e^{-13.66 * t})$$

```
>>
% Parameter:
a=0.006;
b=-0.006;
wa=3.66;
wb=-13.66;
% Darstellungsvariablen:
t=0:0.01:2;
% Gleichung:
x=a*exp(wa*t)+b*exp(wb*t);
% Darstellen:
plot(t,x);
grid on
fx >>
```


b) Charakteristische Gleichung:

$$r^2 + 15 * r + 100 = 0$$

pq-Formel:

$$r_{1/2} = -\frac{15}{2} \pm \sqrt{\left(\frac{15}{2}\right)^2 - 100}$$

$$r_{1/2} = -7.5 \pm \sqrt{-43.75}$$

$$r_{1/2} \approx -7.5 \pm (-6.61)$$

$$r_1 = -0.89$$
 $r_2 = -14,11$

Allgemeine Lösung:

$$x(t) = Ae^{-0.89*t} + Be^{-14.11*t}$$

Anfangsbedingung:

$$x(t_0) = 0$$

$$x'(t_0) = 0.1$$

$$A \approx 0,006 \ B \approx -0,006$$

Partielle Lösung:

$$x(t) = 0.006 * e^{-0.89*t} + (-0.006 * e^{-14.11*t})$$

d) Charakteristische Gleichung:

$$r^2 + 25 * r + 100 = 0$$

pq-Formel:

$$r_{1/2} = -\frac{25}{2} \pm \sqrt{\left(\frac{25}{2}\right)^2 - 100}$$

$$r_{1/2} = -12.5 \pm \sqrt{\frac{225}{4}}$$

$$r_1 = -20$$
 $r_2 = -5$

Allgemeine Lösung:

$$x(t) = Ae^{-20*t} + Be^{-5*t}$$

Anfangsbedingung:

$$x(t_0) = 0$$

$$x'(t_0) = 0.1$$

$$A \approx -0.006 \ B \approx 0.006$$

Partielle Lösung:

$$x(t) = -0.006 * e^{-20*t} + 0.006 * e^{-5*t}$$

e) Charakteristische Gleichung:

$$r^2 + 30 * r + 100 = 0$$

pq-Formel:

$$r_{1/2} = -\frac{30}{2} \pm \sqrt{\left(\frac{30}{2}\right)^2 - 100}$$

$$r_{1/2} = -12,5 \pm \sqrt{125}$$

$$r_1 = -26,18$$
 $r_2 = -3,82$

Allgemeine Lösung:

$$x(t) = Ae^{-26,18*t} + Be^{-3,82*t}$$

Anfangsbedingung:

$$x(t_0) = 0$$

$$x'(t_0) = 0.1$$

$$A \approx -0.004 \ B \approx 0.004$$

Partielle Lösung:

$$x(t) = -0.004 * e^{-26.18*t} + 0.004 * e^{-3.82*t}$$

