Chương 4: Giới thiệu phần cứng 8051

TS Nguyễn Hồng Quang

Electrical Engineering

1

4. Tổng quan

- 4.1 Giới thiệu về 8051
- 4.2 Kiến trúc hệ thống
- 4.3 Cấu trúc cổng I/O
- 4.5 Tổ chức bộ nhớ và giải mã địa chỉ

8

Electrical Engineering

4.1.1 Vi điều khiển 8051(microcontroller)

- 8031 do hãng Intel chế tạo
- 8051 có 4kbyte Flash Ram
- 89C51, 52 do hãng Intel chế tạo
- 87C51 do hãng Philip chế tạo
- 80515, 535 do hãng Siemens chế tạo

Electrical Engineering

3

4.1.2Vi điều khiển 89C51

8

Electrical Engineering

4.1.2Hình ảnh họ 89 WOB7C51FB/B W31610B 9316 C MOB7C51FB/B 9316 C MOB

4.2.1 Làm việc với 89C51

- Bộ nạp Flash RAM
 - -8051 programmer
- · Chương trình dịch
 - Assembler AS5
 - Chương trình C: Keil, Read 51
- Phần mềm mô phỏng Proteus

Electrical Engineering

4.3 Khối xử lý trung tâm CPU

CPU -Central Processing Unit

- Thanh ghi tích luỹ (ký hiệu là A);
- Thanh ghi tích luỹ phụ (ký hiệu là B) thường được dùng cho phép nhân và phép chia;
- Khối logic số học (ALU=Arithmetic Logical Unit);
- Từ trạng thái chương trình (PSW= Program Status Word);
- Bốn băng thanh ghi (R0-R7).
- Con trỏ ngăn xếp (SP=Stack Point) cũng như con trỏ dữ liệu để định địa chỉ cho bộ nhớ dữ liệu ở bên ngoài;
- Thanh ghi đếm chương trình (PC= Progam Counter);

Electrical Engineering

4.3.1 Các chân chính trong 8051

- 40 chân
- Vcc Chân cung cấp điện, 5V DC, 40
- **GND** Chân nối đất, 0V, 20
- Chân thạch anh:18, 19, dùng đồng hồ thạnh anh với tần số lớn nhất là 24 Mhz

Electrical Engineering

Electrical Engineering

4.3.2 Các cổng vào ra(tiếp)

- Port 0 (chân 32-39) có 2 công dụng.
 - Dùng như nhiệm vụ xuất nhập
 - Khi ghép nối với thiết bị nhớ, port 0 trở thành bus địa chỉ và bus dữ liệu đa hợp
- byte thấp của bus địa chỉ nếu dùng địa chỉ

Electrical Engineering

17

4.3.2 Các cổng vào ra (tiếp)

- Port 2 (chân 21-28) có 2 công dụng.
 - Dùng như nhiệm vụ xuất nhập
 - Khi ghép nối với thiết bị nhớ, port 2 trở thành bus địa chỉ
- byte cao của bus địa chỉ nếu dùng địa chỉ

Electrical Engineering

4.3.2 Các cổng vào ra (tiếp)

- Port 3 (chân 10 17)
 - Có thể làm các chân vào ra trực tiếp
 - Tùy theo phần mềm có thể làm chức năng riêng

Electrical Engineering

19

4.3.2 Port 3

- P3.0 RxD (ngõ vào cổng nối tiếp)
- P3.1 TxD (Ngõ ra của port nối tiếp)
- P3.2 (Ngõ vào ngắt ngoài 0)
- P3.3 (Ngõ vào ngắt ngoài 1)
- P3.4 T0 (Ngõ vào bên ngoài của bộ định thời)
- P3.5 T1 (Ngõ vào bên ngoài của bộ định thời 1)
- P3.6 (WR Điều khiển ghi bộ nhớ dư liệu ngoài)
- P3.7 (RD Điều khiển đọc ghi bộ nhớ dư liệu ngoài)

Electrical Engineering

4.3.3 Các chân điều khiển

- PSEN
- ALE
- EA
- RESET

Electrical Engineering

2

4.3.3 RESET

- Khởi động lại hệ thống
- Tích cực ở mức 1

REGISTER	RESET VALUE
PC	000H
ACC	00H
В	00H
PSW	00H
SP	07H
DPTR	0000H
P0-P3	FFH
IP	XXX00000B
IE	0XX00000B
TMOD	00H
TCON	00H
TH0	00H
TL0	00H
TH1	00H
TL1	00H
SCON	00H
SBUF	Indeterminate
PCON (NMOS)	0XXXXXXXB
PCON (CMOS)	0XXX0000B

8

Electrical Engineering

4.3.3 EA

- Chân 31, <u>cần</u> điều khiển bằng người thiết kế
- EA = 1, thực hiện chương trình trong ROM nội
- EA = 0, thực hiện chương trình ROM ngoài

Electrical Engineering

4.4.2 Ghép nối bộ nhớ (vào ra) ngoài

- Ghép nối thiết bị vào ra ngoài
 - Khi giới hạn bởi sổ cổng vào ra
 - Khi dung lương nhớ bổ xung thêm
- Về lý thuyết, 8051 có thể có
 - 64k bộ nhớ chương trình (code memory)
 - 64K bộ nhớ dữ liệu
- Việc ghép nối bộ nhớ liên quan tới việc sử dụng tín hiệu địa chỉ để tạo ra tín hiệu chọn chip CE
- Chân PSEN sử dụng cho vùng nhớ chương trình
- Đường RD, WR cho vùng nhớ dữ liệu
- EA = Vcc dùng cho on chip code rom
- EA = GND dùng vùng nhớ ngoài

Electrical Engineering

4.4.2 Ví dụ ghép nối bộ nhớ RAM

Electrical Engineering

2

4.4.2 PSEN (program store enable)

- Điều khiển bởi 8051
- Cho phép truy xuất bộ nhớ chương trình ngoài
- Thường nối với chân OE (output enable) của EPROM
- Bình thường PSEN ở mức 1

Electrical Engineering

4.4.3Nguyên tắc chung giải mã địa chỉ

- Bộ nhớ và các thiết bị ngoại vi đều có đường điều khiển ghép nối với vi xử lý
 - CS, CE: chip select or chip enable
- Đường này kết hợp với tín hiệu giải mã từ vi điều khiển
- Thường là tích cực thấp
- Thương thì tín hiệu đọc RD được nối với chân OE: output enable
- Trong bộ nhớ RAM thì thêm tín hiệu
 - WR: write enable
- Tín hiệu RD, WD đều được điều khiển bằng Vi xử lý

Electrical Engineering

20

4.4.3ALE (address latch enable)

- Chân 30, cung cấp bởi 8051
- Cho phép chốt địa chỉ và dữ liệu, giải mã bus địa chỉ và bus dữ liệu
- ALE = 1, dữ liệu
- ALE = 0, địa chỉ thấp

Electrical Engineering

4.4.4 Ví dụ 4K Rom ngoài tại địa chỉ 1000

- 1000H = 0001 0000 0000 0000b
- 4 đường địa chỉ liên qua chính là
 A15, A14, A13, A12
- Mục tiêu
- Thiết kế mạch lô gic tạo ra tin hiệu tích cực thấp khi [A15:A12] = 0001 and PSEN=0
- Địa chỉ là 1000H to 1FFFH

Electrical Engineering

Giải mó từ 3-8

Trong trường hợp dựng làm mạch giải mó địa chỉ bộ nhớ, vựng bộ nhỡ sẽ chia làm 8 phần bằng nhau

Electrical Engineering

Bài tập 1: Ghép nối mạch thực tế có Rom, RAm

Bộ nhớ chương trình 8K ROM chia làm hai vùng:

- ROM trong (On-chip) có địa chỉ vật lý: 0000H ÷ 0FFFH.
- ROM ngoài (2732) có địa chỉ vật lý: 1000H ÷ 1FFFH.
- Bộ nhớ dữ liệu được mở rộng thêm 32K RAM ngoài có địa chỉ vật lý: 2000H ÷ 9FFFH.
- Mạch ghép nối vào/ ra sử dụng IC 8255 với địa chỉ của từng cấu hình như sau:
- Địa chỉ cổng PA: A000H
- Địa chỉ cổng PB: A001H
- Địa chỉ cổng PC: A002H
- Địa chỉ của từ điều khiển PSW: A003H

Electrical Engineering

4

Bài tập 2

Sử dụng 1 vi mạch 74138 và các cổng cần thiết để thiết kế mạch giải mã địa chỉ tạo ra các tín hiệu chọn chip tương ứng các vùng địa chỉ sau:

Tín hiệu chọn chip	Vùng địa chỉ	Đặc tính truy xuất
CS0	0000H - 3FFFH	PSEN
CS1	4000H - 7FFFH	PSEN
CS2	6000 Н - 7 FFFH	$\overline{RD}, \overline{WR}$
CS3	8000H - 87FFH	\overline{RD}
CS4	8800H - 8FFFH	\overline{WR}

Electrical Engineering