Отчет по лабораторной работе №1

по дисциплине: Операционные системы

Ким Михаил Алексеевич

Содержание

1	Цель работы	3
2	Выполнение лабораторной работы	4
3	Вывод	14
4	Контрольные вопросы	15

1. Цель работы

Приобрести практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2. Выполнение лабораторной работы

1. Устанавливаем виртуальную машину (рис. 2.1, 2.2):

Рис. 2.1: Установка виртуальной машины

Рис. 2.2: Установка виртуальной машины

2. Создаём новую виртуальную машину. Указываем в имени виртуальной машины логин в дисплейном классе, тип операционной системы — Linux, RedHat. Указываем размер оперативной памяти виртуальной машины — 1024 МБ (рис. 2.3):

Рис. 2.3: Создание виртуальной машины

3. Задаём конфигурацию жёсткого диска— загрузочный, VD (BirtualBox Disk Image), динамический виртуальный диск, размер— 40 ГБ (рис. 2.4):

Рис. 2.4: Конфигурация жесткого диска

4. Выбираем в VirtualBox /Свойства — Носители/ Вашей виртуальной машины. Добавляем новый привод оптических дисков и выбираем скачанный образ CentOS-7-x86_64-DVD.iso (рис. 2.5):

Рис. 2.5: Подключение образа

5. Запускаем виртуальную машину (рис. 2.6):

Рис. 2.6: Запуск виртуальной машины

6. Настраиваем операционную систему (рис. 2.7):

Рис. 2.7: Настройка ОС

7. Входим в ОС под заданной при установке учётной записью (рис. 2.8):

Рис. 2.8: Вход в систему

8. В меню Устройства виртуальной машины подключаем образ диска дополнений гостевой ОС. При необходимости вводим пароль пользователя гоот вашей виртуальной ОС (рис. 2.9, 2.10):

Рис. 2.9: Подключение дополнений гостевой ОС

Рис. 2.10: Подключение дополнений гостевой ОС

3. Вывод

Мы приобрели практические навыки по установки ОС, в частности Linux, на виртуальную машину. Научились производить минимальные настройки для дальнейшей работы на ОС. В дополнение к этому, усовершенстовали навыки работы в Терминале, а также разобрали базовые понятия.

4. Контрольные вопросы

1. Какую информацию содержит учётная запись пользователя?

Ответ:

- 1. Учетная запись пользователя это необходимая для системы информация о пользователе, хранящаяся в специальных файлах. Информация используется Linux для аутентификации пользователя и назначения ему прав доступа.
- 2. Вся информация о пользователе обычно хранится в файлах /etc/passwd и /etc/group.
- 3. /etc/passwd этот файл содержит информацию о пользователях.
 В нём содержится следующая информация: имя пользователя,
 зашифрованный пароль, UID, GID, Настоящее имя пользователя,
 Домашний каталог, Оболочка.
- /etc/group этот файл содержит информацию о группах, к которым принадлежат пользователи. В нём содержится следующая информация: Имя группы, Шифрованный пароль, GID, Пользователи, включенные в несколько групп.
- 2. Укажите команды терминала.

Ответ:

1. Получение справки:

help

2. Перемещение по файловой системе:

3. просмотр содержимого каталога:

ls

cd /<каталог>

- 4. определение объёма каталога:
- 5. создание / удаление каталогов / файлов:

```
touch <uмя файла>
mkdir <uмя каталога>
rm <uмя файла>
rmdir <uмя каталога>
```

6. задание определённых прав на файл / каталог:

chmod personsOperatorRights имя_файла_или_имя_директории

7. просмотр истории команд:

history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Ответ:

Файловая система – часть операционной системы, обеспечивающая выполнение операций над файлами.

Файловые системы в Linux используются не только для работы с файлами на диске, но и для хранения данных в оперативной памяти или доступа к

конфигурации ядра во время работы системы. Все они включены в ядро и могут использоваться в качестве корневой файловой системы.

Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.

4. Как посмотреть, какие файловые системы подмонтированы в ОС?

Ответ:

В графическом интерфейсе можно определить файловую систему с помощью утилиты Gnome Диски. Программа Gparted тоже предоставляет такую информацию. а также с помощью одной из команд: df -Th | grep "^/dev" fsck -N /dev/nvme0n1p6 lsblk -f mount | grep "^/dev" sudo file -sL /dev/nvme0n1p6

5. Как удалить зависший процесс?

Ответ:

PID процесса — это команда pidof, которая принимает в качестве параметра название процесса и выводит его PID. Пример выполнения команды pidof: pidof <имя процесса> Пример PID: 25609 Когда известен PID процесса, мы можем убить его командой kill. Команда kill принимает в качестве параметра PID процесса. Например, убъем процесс с номером 25609: kill 25609 Команда killall в Linux предназначена для «убийства» всех процессов, имеющих одно и то же имя. Это удобно, так как нам не нужно знать PID процесса. killall <имя процесса>