Thermal shot noise in top-gated single carbon nanotube field effect transistors

J. Chaste, ¹ E. Pallecchi, ¹ P. Morfin, ¹ G. Fève, ¹ T. Kontos, ¹ J.-M. Berroir, ¹ P. Hakonen, ² and B. Plaçais ¹, *

¹Laboratoire Pierre Aigrain, ENS-CNRS-UMR8551,

24 rue Lhomond, 75005 Paris, France

² Low Temperature Laboratory, Aalto University,

Puumiehenkuja 2 B, FI-00076 Aalto, Finland

(Dated: November 21, 2018)

Abstract

The high-frequency transconductance and current noise of top-gated single carbon nanotube transistors have been measured and used to investigate hot electron effects in one-dimensional transistors. Results are in good agreement with a theory of 1-dimensional nano-transistor. In particular the prediction of a large transconductance correction to the Johnson-Nyquist thermal noise formula is confirmed experimentally. Experiment shows that nanotube transistors can be used as fast charge detectors for quantum coherent electronics with a resolution of $13\mu e/\sqrt{\text{Hz}}$ in the 0.2–0.8 GHz band.

PACS numbers: 73.63.Fg, 72.10.Di, 73.22.f

^{*}Electronic address: Bernard.Placais@lpa.ens.fr