Tema 6 - Espacios vectoriales

Ramon Ceballos

11/3/2021

Cambio de base

1. Introducción

Sabemos que las coordenadas de un vector son únicas en cada base, pero distintas cuando cambian de base.

Partiendo de este punto, el problema que se nos plantea es el de calcular las coordenadas de un vector en cierta base B' dadas las coordenadas del mismo en otra base B.

Se necesitará pues conocer la relación entre ambas bases.

Dadas las bases $B_u = \{\vec{u}_1, \dots, \vec{u}_n\}$ y $B_v = \{\vec{v}_1, \dots, \vec{v}_n\}$ de un espacio vectorial E, si queremos calcular las coordenadas de los vectores de B_u en la base B_v , se han de expresar los vectores \vec{u}_i como combinación lineal de los vectores de \vec{v}_i

Ejemplo 13

Dado el vector $\vec{u} \in \mathbb{R}^3$ de coordenadas $(-2,3,5)_B$ en la base:

$$B = \{(2,4,0), (1,0,1), (-1,2,0)\}$$

Calculemos sus coordenadas en la base canónica C.

En primer lugar, tenemos que expresar los vectores de la base $B = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ en la base canónica $C = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$:

$$(2,4,0) = 2(1,0,0) + 4(0,1,0) + 0(0,0,1)$$
$$(1,0,1) = 1(1,0,0) + 0(0,1,0) + 1(0,0,1)$$
$$(-1,2,0) = -1(1,0,0) + 2(0,1,0) + 0(0,0,1)$$

A continuación, lo que buscamos son 3 escalares $\alpha, \beta, \gamma \in \mathbb{R}$ tales que:

$$\vec{u} = (\alpha, \beta, \gamma)_C = \alpha \vec{e}_1 + \beta \vec{e}_2 + \gamma \vec{e}_3$$

Pero lo que nosotros sabemos es que:

$$\vec{u} = (-2, 3, 5)_B = -2\vec{u}_1 + 3\vec{u}_2 + 5\vec{u}_3$$

$$= -2(2\vec{e}_1 + 4\vec{e}_2) + 3(\vec{e}_1 + \vec{e}_3) + 5(-\vec{e}_1 + 2\vec{e}_2) = (-4 + 3 - 5)\vec{e}_1 + (-8 + 10)\vec{e}_2 + 3\vec{e}_3 = -6\vec{e}_1 + 2\vec{e}_2 + 3\vec{e}_3$$

Así pues, $\vec{u} = (-6, 2, 3)_C$

Ejercicio 26

Dadas las bases $B_u = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ y $B_v = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ de un espacio vectorial de dimensión 3 y sabiéndose que

$$\begin{cases} \vec{v}_1 & = & 2\vec{u}_1 & - & \vec{u}_2 & + & \vec{u}_3 \\ \vec{v}_2 & = & - & \vec{u}_2 & + & 2\vec{u}_3 \\ \vec{v}_3 & = & -\vec{u}_1 & + & \vec{u}_2 & - & 3\vec{u}_3 \end{cases}$$

Considerad el vector $\vec{u} = (2, 0, -1)_{B_u}$ y calculad sus coordenadas en la base B_v

2. Proceso de cambio de base

Veamos de dónde sale la relación anterior.

Sea E un \mathbb{K} -espacio vectorial de dimensión finita n y sean $B_u = \{u_1, \dots, u_n\}$ y $B_v = \{v_1, \dots, v_n\}$ dos bases de E.

Considremos un vector $x \in E$ y sean $(\alpha_1, \ldots, \alpha_n)_{B_u}$ y $(\beta_1, \ldots, \beta_n)_{B_v}$ las coordenadas del vector x en las bases B_u y B_v respectivamente.

Entonces:

$$x = \sum_{i=1}^{n} \alpha_i \cdot u_i \qquad x = \sum_{j=1}^{n} \beta_j \cdot v_j$$

Ahora bien, los elementos de la base B_v tienen también unas coordenadas en la base inicial B_u .

Digamos que $v_j = \sum_{i=1}^n a_{ij} \cdot u_i$ j = 1, ..., n; y si sustituimos los v_j por sus expresiones, obtenemos:

$$x = \sum_{j=1}^{n} \beta_j \cdot v_j = x = \sum_{j=1}^{n} \beta_j \cdot \left(\sum_{i=1}^{n} a_{ij} \cdot u_i\right)$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} (\beta_{j} a_{ij}) \cdot u_{i} = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \beta_{j} a_{ij} \right) \cdot u_{i}$$

Ahora como que las coordenadas de x en la base B son únicas, se debe verificar que:

$$\alpha_i = \sum_{j=1}^n \beta_j a_{ij}$$
 para todo $i = 1, \dots, n$

Esta expresión la podemos escribir de forma matricial como $PX_v = X_u$ donde X_u es la matriz columna formada por las coordenadas de x en la base B_u (los α_i), X_v es la matriz columna de las coordenadas de x en la base B_v y P es la matriz de las a_{ij}

Observación. La columna j-ésima de P está formada por las coordenadas, en la base B_u , del correspondiente vector v_j de la base B_j .

De esta manera tenemos la ecuación en forma matricial:

$$PB_{v} = B_{u} \Leftrightarrow \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{pmatrix} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

Esto nos da las coordenadas de x en la base B_u en función de las coordenadas del propio x en la base B_v .

2.1 Matriz de cambio de base

Matriz de cambio de base (P). La matriz P anterior es la matriz del cambio de la base B_v a la base B_u y se obtiene escribiendo los vectores de la base B_v en columna como combinación lineal de la base B_u .

Además, las coordenadas de un vector x en la base B_u se obtienen multiplicando las coordenadas de x en la base B_v por la matriz P del cambio de base.

Ejemplo 14

Dadas las bases $B_u = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ y $B_v = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ de un espacio vectorial de dimensión 3 y sabiéndose que:

$$\begin{cases} \vec{v}_1 &= 2\vec{u}_1 - \vec{u}_2 + \vec{u}_3 \\ \vec{v}_2 &= -\vec{u}_2 + 2\vec{u}_3 \\ \vec{v}_3 &= -\vec{u}_1 + \vec{u}_2 - 3\vec{u}_3 \end{cases}$$

Considerad el vector $\vec{u} = (2, 0, -1)_{B_u}$ y calculad sus coordenadas en la base B_v haciendo uso de matrices. Expresando el anterior sistema en su forma matricial, de la siguiente manera:

$$\begin{pmatrix} 2 & -1 & 1 \\ 0 & -1 & 2 \\ -1 & 1 & -3 \end{pmatrix} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix} = \begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \end{pmatrix}$$

O bien:

$$(\vec{u}_1 \quad \vec{u}_2 \quad \vec{u}_3) \begin{pmatrix} 2 & 0 & -1 \\ -1 & -1 & 1 \\ 1 & 2 & -3 \end{pmatrix} = (\vec{v}_1 \quad \vec{v}_2 \quad \vec{v}_3)$$

En la primera forma, las filas de la matriz son las coordenadas de los vectores $\vec{v}_1, \vec{v}_2, \vec{v}_3$ mientras que en el segundo caso, las columnas son las coordenadas de dichos vectores en la base B_u .

Por otro lado, se puede expresar el vector \vec{u} en ambas bases de la siguiente manera:

$$\vec{u} = 2\vec{u}_1 - \vec{u}_3 = \begin{pmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -1 \end{pmatrix} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix}$$

$$\vec{u} = \alpha \vec{v}_1 + \beta \vec{v}_2 + \gamma \vec{v}_3 = \begin{pmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \end{pmatrix}$$

Con lo cual, tenemos la siguiente igualdad:

$$\begin{pmatrix} 2 & 0 & -1 \end{pmatrix}_{B_u} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix} = \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix}_{B_v} \begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \end{pmatrix}$$

Si ahora sustituimos en la igualdad anterior, nos queda:

$$\begin{pmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vec{v}_3 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ 0 & -1 & 2 \\ -1 & 1 & -3 \end{pmatrix} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix}$$

Lo que tenemos es:

$$\begin{aligned} \left(2 \quad 0 \quad -1\right)_{B_u} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix} &= \begin{pmatrix} \alpha \quad \beta \quad \gamma \end{pmatrix}_{B_v} \begin{pmatrix} 2 & -1 & 1 \\ 0 & -1 & 2 \\ -1 & 1 & -3 \end{pmatrix} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix} \\ &= \begin{pmatrix} 2\alpha - \gamma \quad -\alpha - \beta + \gamma \quad \alpha + 2\beta - 3\gamma \end{pmatrix} \begin{pmatrix} \vec{u}_1 \\ \vec{u}_2 \\ \vec{u}_3 \end{pmatrix}$$

Ahora ya solo falta resolver el sistema:

$$\begin{cases} 2\alpha & -\gamma = 2\\ -\alpha - \beta + \gamma = 0\\ \alpha + 2\beta - 3\gamma = -1 \end{cases}$$

Cuya única solución es (1, -1, 0).

Así pues:

$$\begin{pmatrix} 2 & 0 & -1 \\ -1 & -1 & 1 \\ 1 & 2 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}_{B_v} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}_{B_u}$$

3. Proposiciones

Proposición. Las matrices de cambio de base son siempre invertibles y, si P es la matriz del cambio de base de B_u a B_v , entonces P^{-1} es la matriz del cambio de base de B_v a B_u .

Ejercicio 27. Demostrar formalmente esta Proposición.

Proposición. Sea E un \mathbb{K} -espacio vectorial de dimensión n y sean B, B', B'' bases de E. Si P es la matriz de cambio de base de B a B' y Q es la matriz de cambio de base de B a B'', entonces la matriz de cambio de base de B a B'' es $Q \cdot P$