# Projeto Lauro

### Lauro

11 de outubro de 2017

## ESPECIFICAÇÃO DO PROBLEMA

O Magazine Luiza figura atualmente entre os maiores varejistas do país e por consequência também enfrenta o desafio de fazer uma predição adequada a sua demanda. Pensando nisso, você determinará quantas unidades de cada produto devemos comprar do fornecedor, lembrando que excessos significam estoque parado e escassez significa cliente perdido.

Abaixo no tópico "Dados", você encontrará as informações de como acessar o arquivo csv com os dados históricos de venda de produtos. Os dados que seguem possuem a quantidade vendida e o valor de venda.

- a) Faça uma separação em grupos de produtos, usando um algoritmo de agrupamento não supervisionado. Isso será muito importante para o próximo ítem, pois como já exposto antes, existem produtos com características particulares. Avalie a qualidade do agrupamento, assim como as características que definem cada grupo.
- b) Faça a previsão de venda para cada um dos produtos para os meses de junho, julho e agosto de 2017. Imagine que você tem que fazer a compra para reposição desses três meses e que os estoques estão zerados, quantas peças de cada tipo você compraria? Também demonstre as métricas de qualidade do modelo gerado, discorrendo sobre os parâmetros escolhidos para a execução do algoritmo.
- c) Faça uma análise dos resultados que encontrou, discorra sobre o problema e exponha suas percepções e descobertas. Tem algum dado que seria relevante e que não foi fornecido?

#### TRATAMENTO E PREPARACAO DOS DADOS

A linguagem de programação R foi escolhida por ser uma linguagem estatística robusta e significativamente utilizada para análise de dados nas diversas comunidades de cientistas de dados espalhadas pelo mundo. Poderia ter sido utilizada a linguagem Python para esse mesmo propósito. Porém, como eu estou atualmente praticando a linguagem R no curso Formação Cientista de Dados, da Data Science Academy, optei por utilizar tal linguagem. Todas as linhas de código estão devidamente comentadas visando uma explicação simples para quem é leigo na linguagem R. Os comentário em R são feitos utilizando o caractere '#'. Portanto, tudo que aparece após o símbolo '#' é tratado como comentário.

```
#inclusao dos pacotes necessarios
#install.packages('dplyr') #Pacote para a transformacao dos dados
suppressMessages(library(dplyr))

## Warning: package 'dplyr' was built under R version 3.4.2

#troque pelo seu diretorio de trabalho
#faz a leitura do arquivo
arquivo = read.csv("C:/Users/Lauro Martins/Desktop/desafio.csv")

#obtem apenas os produtos que foram vendidos de fato
produtosVendidos = filter(arquivo, process_status == 'processado')
```

## Warning: package 'bindrcpp' was built under R version 3.4.1

```
#mostra as 6 primeiras linhas do conjunto de dados obtido pela linha acima
#Obs.: algumas colunas foram ocultadas
head(produtosVendidos[, c(2, 3, 4, 8)])
##
                                 code quantity price
## 1 e6762ba2ffbca07ab6cee7551caeaad5
                                             1 978.90
## 2 e6762ba2ffbca07ab6cee7551caeaad5
                                             1 1036.29
## 3 e6762ba2ffbca07ab6cee7551caeaad5
                                             1 978.90
## 4 e6762ba2ffbca07ab6cee7551caeaad5
                                             1 976.05
## 5 e6762ba2ffbca07ab6cee7551caeaad5
                                             1 1089.10
## 6 e6762ba2ffbca07ab6cee7551caeaad5
                                             1 949.00
##
                             category
## 1 4ece547755cba9e7fc14125bc895f31b
## 2 4ece547755cba9e7fc14125bc895f31b
## 3 4ece547755cba9e7fc14125bc895f31b
## 4 4ece547755cba9e7fc14125bc895f31b
## 5 4ece547755cba9e7fc14125bc895f31b
## 6 4ece547755cba9e7fc14125bc895f31b
#Para facilitar a compreensão, o código (code) e a categoria de cada produto foram
#transformados em um número inteiro
produtosVendidos[, 'code'] = as.numeric(produtosVendidos$code)
produtosVendidos[, 'category'] = as.numeric(produtosVendidos$category)
#mostra as 6 primeiras linhas do conjunto de dados após a conversão acima
#Obs.: algumas colunas foram ocultadas
head(produtosVendidos[, c(2, 3, 4, 8)])
##
     code quantity price category
## 1 125
               1 978.90
## 2 125
                                  2
                1 1036.29
## 3 125
                1 978.90
                                  2
## 4 125
                1 976.05
## 5 125
                1 1089.10
## 6 125
                 1 949.00
#retira a coluna order_id por não ser necessária na análise
produtosVendidos['order_id'] = NULL
#obtem a quantidade de vendas de cada produto em ordem decrescente
qtdVendasCadaProduto = count(produtosVendidos, code, sort = TRUE)
#mostra os 6 primeiros produtos com suas respectivas quantidades (n)
#Por exemplo, o produto 25 foi vendido 18943 vezes
head(qtdVendasCadaProduto)
## # A tibble: 6 x 2
##
      code
              n
##
     <dbl> <int>
## 1
       25 18943
## 2
        46 14899
## 3
       28 7990
```

```
27 7864
## 4
## 5
       63 5402
## 6
       18 5370
#obtem a quantidade de produtos diferentes (131 produtos)
qtdProdutos = nrow(qtdVendasCadaProduto)
#obtem a quantidade de vendas em cada categoria em ordem decrescente
qtdVendasCadaCategoria = count(produtosVendidos, category, sort = TRUE)
#mostra as 6 primeiras categorias com suas respectivas quantidade de vendas
#Por exemplo a categoria 1 foi a mais vendida, com 133046 vendas
head(qtdVendasCadaCategoria)
## # A tibble: 6 x 2
##
   category
##
       <dbl> <int>
## 1
          1 133046
## 2
           7 15449
          5 4255
## 3
## 4
         10 853
## 5
           6
                272
## 6
                200
#obtem a quantidade de categorias diferentes (11 categorias)
qtdCategorias = nrow(qtdVendasCadaCategoria)
```

## ANÁLISE DOS DADOS - agrupamento

```
#obtem apenas as colunas numericas que interessam para o agrupamento
analise1 = select(produtosVendidos, code, quantity, price, pis_cofins, icms, tax_substitution,
                  category, liquid_cost)
#ordena as linhas pelo codigo do produto
analise1 = arrange(analise1, code)
#agrupa pela categoria do produto
#obtem a quantidade de cada produto vendido
#obtem o preco total das vendas de cada produto
#obtem o valor total do custo liquido de cada produto
#ordena em ordem decrescente pelo preco total das vendas de cada produto
x = analise1 \%
  group_by(category) %>%
  summarise(qtd produtos = sum(quantity),
            total_venda = sum(price),
           custo_liq = sum(liquid_cost)) %>%
  arrange(desc(total_venda))
#Seque abaixo uma tabela que mostra a relação de cada categoria com os seus respectivos valores
#Por exemplo, a categoria 1 foi a mais vendida
print(x)
```

## # A tibble: 11 x 4

```
##
      category qtd_produtos total_venda
                                          custo liq
##
        <dbl>
                     <int>
                                 <dbl>
                                              <dbl>
## 1
                    139471 30026635.14 17307181.097
##
  2
            7
                     16914 3456917.71 2091054.593
                      4728 2293140.51 1362891.759
##
            5
##
  4
           10
                      1172
                            268772.40
                                          77164.446
## 5
            3
                        56
                              47695.48
                                          26900.718
                              43960.44
                                          25011.718
## 6
            2
                        53
##
   7
            6
                       304
                              43437.44
                                          19403.014
                                           2572.440
## 8
            4
                       203
                               5278.71
## 9
            8
                        58
                               3945.08
                                           2231.268
## 10
                        69
                               2757.27
                                           1049.588
           11
## 11
                       140
                               1074.91
                                            575.974
```

```
#k-means é um algoritmo de agrupamento não supervisionado
km = kmeans(x, 3)

#plota um grafico que mostra 6 comparações:
#categoria de cada produto vs. quantidade de cada produto vendido
#categoria de cada produto vs. preco total das vendas de cada produto
#categoria de cada produto vs. valor total do custo liquido de cada produto
#quantidade cada produto vendido vs. preco total das vendas de cada produto
#quantidade cada produto vendido vs. valor total do custo liquido de cada produto
#preco total das vendas de cada produto vs. valor total do custo liquido de cada produto
```

plot(x, col = km\$cluster+1, main = 'Resultado agrupamento com 3 clusters', pch = 20, cex = 3)

#utiliza o algoritmo k-means da função padrão em R com 3 clusters (grupos)

## Resultado agrupamento com 3 clusters



É possível perceber que a categoria 1 (ponto vermelho no gráfico) é disparadamente a categoria mais vendida. Consequentemente, essa categoria fornece o maior valor de venda e o maior lucro. Além disso, nota-se que as categorias 7 e 5 (pontos verdes no gráfico) são a segunda e terceira categorias mais vendidas, respectivamente. Por fim, as demais categorias foram agrupadas (pontos azul no gráfico) em um mesmo cluster por terem valores totais de vendas relativamente próximos.

# ANÁLISE DOS DADOS - previsão

```
#pacotes para análise de séries temporais
#install.packages("forecast")
suppressMessages(library(xts))

## Warning: package 'xts' was built under R version 3.4.2

## Warning: package 'zoo' was built under R version 3.4.2

suppressMessages(library(forecast))

## Warning: package 'forecast' was built under R version 3.4.2

#obtem os dados ordenados pela data de processamento (process_date)
analise2 = arrange(produtosVendidos, process_date)

#retira as duas primeiras linhas da tabela porque as datas sao invalidas: 0000-00-00
analise2 = analise2[-c(1, 2), ]
```

```
#obtem um subconjunto para a categoria 1
#para cada dia, mostra:
#a quantidade de produtos vendidos,
#o valor total de vendas,
#o valor total do custo líquido de cada produto,
#o lucro obtido no dia
y = analise2 %>%
  filter(category == 1) %>%
  group_by(process_date) %>%
  summarise(qtd_produtos = sum(quantity),
            total_venda = sum(price),
            custo_liq = sum(liquid_cost),
            lucro = total_venda - custo_liq) #%> arrange(desc(lucro))
#mostra as 6 primeiras linhas do subconjunto obtido acima
head(y)
## # A tibble: 6 x 5
    process_date qtd_produtos total_venda custo_liq
                                                          lucro
##
                                                <dbl>
                                                          <dbl>
           <fctr>
                         <int>
                                      <dbl>
## 1
       2016-06-01
                            140
                                   36345.78 19540.65 16805.13
## 2
       2016-06-02
                            181
                                   49164.53 27142.53 22022.00
## 3
       2016-06-03
                            249
                                   59977.31 33492.85 26484.46
## 4
       2016-06-04
                            231
                                   57202.15 30233.34 26968.81
## 5
       2016-06-05
                            164
                                   43591.65
                                             24715.46 18876.19
## 6
       2016-06-06
                            233
                                   60280.80 34124.94 26155.86
#mostra as 6 últimas linhas do mesmo subconjunto
tail(y)
## # A tibble: 6 x 5
     process_date qtd_produtos total_venda
                                             custo_liq
                                                             lucro
##
           <fctr>
                         <int>
                                      <dbl>
                                                 <dbl>
                                                             <dbl>
## 1
       2017-06-01
                            476
                                   91875.80 46145.5545 45730.2455
## 2
       2017-06-02
                            108
                                   23023.75 11907.9070 11115.8430
## 3
       2017-06-03
                             41
                                    8993.37
                                            4880.1967 4113.1733
                             8
## 4
       2017-06-06
                                    1277.12
                                              751.4686
                                                          525.6514
                              6
## 5
       2017-06-07
                                     211.46
                                               57.5133
                                                          153.9467
## 6
       2017-07-11
                                      83.36
                                               68.9802
                                                           14.3798
                              1
Na tabela acima, nota-se que a primeira linha refere-se a data em que completa exatamente 1 ano da data
```

Na tabela acima, nota-se que a primeira linha refere-se a data em que completa exatamente 1 ano da data de início do período analisado (01 de junho de 2016). Portanto, todas essas 6 linhas mostradas acima serão ignoradas para que a análise de série temporal seja realizada dentro do período de 1 ano.

```
#retira as 6 últimas linhas do subconjunto
#mostra que a última data agora é 31 de maio de 2017
y = y[-c((nrow(y)-5):nrow(y)), ]
tail(y)
## # A tibble: 6 x 5
## process_date qtd_produtos total_venda custo_liq lucro
```

```
## 4
       2017-05-29
                           452
                                  96817.81
                                            51657.23 45160.58
## 5
       2017-05-30
                           588
                                 119291.53
                                            63651.38 55640.15
## 6
       2017-05-31
                           513
                                 107530.48
                                            57410.51 50119.97
#mostra uma serie temporal para o lucro da categoria 1
serie_lucro1 = xts(y$lucro, as.Date(y$process_date), frequency = 12)
plot(serie_lucro1, type = 'l', xlab = 'Data', ylab = 'Lucro',
     main = 'Série Temporal para o Lucro da Categoria 1', col = 'blue')
```



Analisando o gráfico acima, percebe-se que o maior lucro obtido na categoria 1 foi no dia 25 de novembro de 2016, obtendo o valor de R\$178.691,01. Ao fazer uma pesquisa rápida, foi possível constatar que o black friday aconteceu nesse dia. Portanto, isso nos fornece uma forte evidência de que a categoria 1, além de ser a mais vendida durante todo o período analisado, tende a ser a categoria mais vendida no black friday. Consequentemente, a categoria 1 fornece o maior lucro dentre todas as categorias de produtos.

A tabela abaixo mostra (em ordem decrescente) os 6 dias em que a categoria 1 forneceu os maiores lucros (lucro = total\_venda - custo\_liq). Pelos valores obtidos, nota-se que os últimos dias de novembro e os primeiros dias de janeiro tendem a ser os dias em que mais vende-se os produtos da categoria 1. Em consequência disso, obtem-se os maiores lucros.

```
## # A tibble: 6 x 5
##
     process_date qtd_produtos total_venda custo_liq
                                                            lucro
##
           <fctr>
                          <int>
                                       <dbl>
                                                 <dbl>
                                                            <dbl>
## 1
       2016-11-25
                           2880
                                   554991.9
                                              376300.9 178691.01
       2017-01-06
                           3007
                                   453438.7
                                              282874.6 170564.13
##
  2
##
  3
       2016-11-26
                           2216
                                   425208.7
                                              278730.2 146478.51
                                              179376.7 109443.32
## 4
       2017-01-07
                           1839
                                   288820.0
## 5
       2017-01-10
                           1299
                                   220498.7
                                              134762.2 85736.47
```

Para determinar essa possível sazonalidade (tendência), torna-se necessário uma análise por parte de um especialista da área de negócios ou especialista em vendas da empresa. Entretanto, acredita-se que, devido a black friday acontecer na última sexta-feira do mês de novembro e ser o dia em que mais se vende produtos, os dias subsequentes a black friday possivelmente atraem clientes desejando realizar troca de produtos. Com isso, alguns clientes acabam trocando seus produtos por produtos mais caros e pagando a diferença.

Nesse sentido, considera-se que essa mesma possibilidade de tendência aplica-se aos primeiros dias de janeiro devido a alguns clientes aproveitarem o término das festividades de natal e réveillon para efetuar a troca de seus produtos. Além disso, ao fazer uma rápida pesquisa, foi possível constatar que o Magazine Luiza realiza há 24 anos uma promoção chamada "Liquidação Fantástica". Essa promoção acontece nos primeiros dias do mês de janeiro. Logo, essa pode ser uma possível explicação para o caso em que o dia 06 de janeiro de 2017 ter sido o dia que forneceu o segundo maior lucro.

O trecho de código abaixo calcula e gera um gráfico com uma previsão (forecast) da média do total de vendas de produtos da categoria 1 para os próximos 90 dias (junho, julho e agosto de 2017).

```
#install.packages("ggfortify")
suppressMessages(library(ggfortify)) #pacote para recursos avançados de gráfico
```

## Warning: package 'ggplot2' was built under R version 3.4.2

```
#a média do total de vendas para cada mês foi calculada separadamente
#devido ao período das datas abranger dois anos diferentes (2016 e 2017)
mes = c('2016-06-30', '2016-07-31', '2016-08-31', '2016-09-30', '2016-10-31',
        '2016-11-30', '2016-12-31', '2017-01-31', '2017-02-28', '2017-03-31',
        '2017-04-30', '2017-05-31')
media_totalVenda = c(54043.64, 72910.23, 51237.94, 70816.98, 68800.35, 115493,
                     77868.55, 111107.1, 68578.55, 91426.53, 80651.83, 118593.3)
#obtem uma tabela com a média do total de vendas para cada mês
df = data.frame(mes, media totalVenda)
#obtem uma série temporal
ts_datas = ts(df$media_totalVenda, start = c(2016, 6), frequency = 12)
#plot(ts datas)
ets_datas = ets(ts_datas)
f_ets = forecast(ets_datas, h = 3)
#plot(f_ets)
#plota um gráfico da série temporal com a previsão
autoplot(f ets, ts.colour = 'blue', predict.colour = 'red', predict.linetype = 'dashed',
         conf.int = TRUE, conf.int.fill = 'yellow') +
         ggtitle('Projeção da média de vendas para os próximos 90 dias') +
         labs(x = 'Mês', y = 'Média total vendas')
```





O gráfico acima foi gerado utilizando o modelo ETS do R, que implementa o modelo estatístico "Exponential Smoothing". Este modelo gera no gráfico os valores médio, máximo e mínimo do intervalo de predição. É possível verificar no gráfico que a previsão da média do total de vendas na categoria 1 para os próximos 90 dias é de R\$78.234,50. Isso representa um ganho de aproximadamente 35% em comparação ao mesmo período do ano anterior, cuja a média do total de vendas de produtos da categoria 1 para os meses de junho, julho e agosto de 2016 foi de R 59.397,27.

Considerando que a categoria 1 é disparadamente a categoria mais vendida, conclui-se que a escassez de produtos dessa categoria no estoque implica diretamente na redução significativa do total de vendas e, consequentemente, do lucro da empresa. Portanto, devido a essa discrepância (diferença) considerável entre a categoria 1 e as categorias 2, 3, 4, ..., e 11, as demais categorias não serão analisadas neste relatório.

O trecho de código abaixo obtém e mostra (apenas) os 6 primeiros produtos mais vendidos da categoria 1.

```
#obtem a quantidade de vendas para cada produto da categoria 1 em ordem decrescente
w1 = produtosVendidos %>%
    filter(category == 1) %>%
    group_by(code) %>%
    summarise(qtd_itensVendidos = sum(quantity)) %>%
    arrange(desc(qtd_itensVendidos))
```

```
## # A tibble: 6 x 2
## code qtd_itensVendidos
## <dbl> <int>
## 1 25 19654
## 2 28 8483
```

| ## | 3 | 27  | 8020 |
|----|---|-----|------|
| ## | 4 | 63  | 5550 |
| ## | 5 | 118 | 5521 |
| ## | 6 | 18  | 5501 |

Com isso, é possível observar que o produto cujo o código é igual a 25 (ou 2e35421c34fb588ba40a0c57b3971d24 no arquivo original) é o mais vendido. Logo, a existência desse produto em estoque é essencial para manter a média do total de vendas da categoria 1 e, consequentemente, a média do lucro da empresa.

#### CONCLUSÕES

Esse projeto, em forma de um relatório técnico-científico, visou realizar uma análise descritiva e preditiva de um conjunto de dados que representa quase 180000 vendas de um dos maiores varejistas do Brasil. Foi possível concluir que, dentre as 11 categorias de produtos existentes, a categoria 1 é consideravelmente a categoria que contém os produtos mais vendidos. Em consequência disso, essa categoria é capaz de fornecer os maiores lucros para a empresa.

Poderia ter sido feito também uma análise individual das outras categorias. No entanto, a discrepância entre a categoria 1 e as demais categorias, em termos de total de vendas e lucro, é enorme. Com isso, espera-se que as análises dessas categorias poderá fornecer resultados muito próximos entre si. Então, devido a esses detalhes e ao elevado número de páginas desse relatório, tais análises poderão ser realizadas em um próximo projeto.

Como o autor desse relatório não é um especialista em vendas de produtos e nem um especialista na área de negócios da empresa, não considera-se possível afirmar um número exato da quantidade de peças de cada tipo que poderiam ser compradas. Por outro lado, de forma empírica e baseando-se nos insights obtidos por meio das análises, é possível apenas concluir que o produto mais vendido da categoria 1 não deve faltar em estoque.

Segue abaixo um trecho de código capaz de obter a quantidade de vendas de todos os produtos em todas as categorias. Baseando-se nesses números, o profissional responsável pela gestão do controle de estoque poderá tomar decisões mais facilmente.

```
#obtem a quantidade de vendas para todos os produtos
w2 = produtosVendidos %>%
    group_by(code) %>%
    summarise(qtd_itensVendidos = sum(quantity)) %>%
    arrange(desc(qtd_itensVendidos))

#mostra somente as 6 primeiras linhas da tabela obtida acima
head(w2)
```

```
## # A tibble: 6 x 2
##
      code qtd_itensVendidos
##
     <dbl>
                         <int>
## 1
        25
                         19654
## 2
        46
                         16361
## 3
        28
                          8483
## 4
        27
                          8020
## 5
        63
                          5550
## 6
       118
                          5521
```

Para fins de comparação, a tabela abaixo mostra o mesmo resultado da tabela acima, porém com o código original de cada produto.

```
## # A tibble: 6 x 2
## code qtd_itensVendidos
## <fctr> <int>
```

| ## | 1 | 2e35421c34fb588ba40a0c57b3971d24 | 19654 |
|----|---|----------------------------------|-------|
| ## | 2 | 4534ea61b50410b3b6243e02b40c8cd1 | 16361 |
| ## | 3 | 3454ea52396a4cfd3fc37414d30c7b9c | 8483  |
| ## | 4 | 32ceebf3efea1d04ace4183d20d4da5b | 8020  |
| ## | 5 | 5b7a30a9e6a43b170ad4d9e00d8d9359 | 5550  |
| ## | 6 | d57911cca4b08f7b46417d952c0ca1dc | 5521  |