<u>Proposition</u> 3.4. Take the operators A , B and Φ as above. For every λ \in \mathbb{C} the following equivalence holds:

(3.4)
$$\lambda \in \sigma(A)$$
 if and only if $\lambda \in \sigma(B + \Phi_{\lambda})$.

<u>Proof.</u> By definition, $\lambda \in \rho(A)$ if and only if for every $g \in E$ there exists a unique $f \in D(A)$ such that $\lambda f - f' = g$. This equality is satisfied if and only if there exists $x \in F$ such that

 $f(t) = \int_{t}^{O} e^{\lambda(t-s)} g(s) ds + e^{\lambda t} \cdot x \text{ for } -1 \leq t \leq 0 \text{ .}$ On the other hand $f \in D(A)$ if and only if $x \in D(B)$ and $\lambda x - g(0) = Bx + \Phi H_{\lambda} g + \Phi_{\lambda} x$ where $H_{\lambda} g(t) := \int_{t}^{O} e^{\lambda(t-s)} g(s) ds$. Thus $\lambda \in \rho(A)$ if and only if for every $g \in E$ there exists a unique $x \in D(B)$ such that $(\lambda - B - \Phi_{\lambda})x = g(0) + \Phi H_{\lambda} g$. Notice that the map $x + x + \Phi H_{\lambda}(\epsilon_{\mu} \Theta x)$ $(x \in F)$ is surjective on F if μ is chosen so

large that $\|\phi_H\|_{\lambda}(\epsilon_{\mu}\otimes x)\| \le 1/2 \cdot \|x\|$ for all $x \in F$. Hence the map $g + g(0) + \phi_H|_{\lambda}g$ is surjective from E onto F and this shows that $\lambda \in \rho(A)$ if and only if $\lambda - B - \phi_{\lambda}$ is invertible.

An immediate consequence of the proof is the following corollary.

<u>Corollary</u>. With the notations of the above proposition and A_{O} as in the proof of Thm.3.1 we have:

- (a) $R(\lambda,A)g = \varepsilon_{\lambda} \Theta R(\lambda,B+\Phi_{\lambda}) (g(0)+\Phi H_{\lambda}g) + H_{\lambda}g$ for $\lambda \in \rho(A)$, $g \in E$.
- (b) $R(\lambda, A_0)g = \varepsilon_{\lambda} \otimes R(\lambda, B)g(0) + H_{\lambda}g$ for $\lambda \in \rho(A_0)$, $g \in E$.

We now turn to the aspect of positivity in (RCP) and its impact on the asymptotic behavior of the solution semigroup $(T(t))_{t\geq 0}$. To this end we let F be a Banach lattice which makes E = C([-1,0],F) into a Banach lattice as well. Furthermore, let $(S(t))_{t\geq 0}$ be a positive semigroup with generator B and let $\Phi \in L(E,F)$ be a positive operator. As before we restrict our attention to the case that B - w generates a positive contraction semigroup for some $w \in \mathbb{R}$. Indeed, if B generates a bounded positive semigroup $(S(t))_{t\geq 0}$ on F, then $\|x\| := \sup_{t\geq 0} \|S(t)\|_{x}\|$ for $x \in F$ defines an equivalent lattice norm on F, for which $(S(t))_{t\geq 0}$ is contractive.

<u>Proposition</u> 3.5. If $\phi \in L(E,F)$ is a positive operator and if B generates a positive semigroup on F, then the semigroup $(T(t))_{t\geq 0}$ on E generated by Af := f' with domain D(A) := {f \in C^1 : f(0) \in D(B), f'(0) = Bf(0) + \phi f} is positive.