## Plots\_and\_analysis

February 18, 2019

## 1 1. Chris's original plot

```
In [1]: import numpy as np
        import matplotlib.pyplot as plt
        import pandas
        chris_table = np.loadtxt('output_chris.txt',skiprows=0)
        #print chris_table
        #set the upper and lower bound for reading table
        lower bound = 1
        upper_bound = 1524
In [2]: j = chris_table[lower_bound:upper_bound,0]
        j5DNHI = chris_table [lower_bound:upper_bound,1]
        y1H = chris_table[lower_bound:upper_bound,2]
        y1He = chris_table[lower_bound:upper_bound,3]
        EH = chris_table[lower_bound:upper_bound,4]
        Te = chris_table[lower_bound:upper_bound,5]
        j5DNHI = j5DNHI/1e+18
        Te = Te/10000
In [3]: fig, ax1 = plt.subplots()
        #get the plot
        list1, = ax1.plot(j5DNHI, Te, 'b-', label='Temperature')
        ax1.set_xlabel("\$\mathbf{N_H[10^{18}cm^{-2}]}\$")
        ax1.set_ylabel("$\mathregular{Temperature[10^4K]}$")
        plt.grid(linestyle = '--')
        #align ticks
        major_tickx = np.arange(22, 39, 2)
        major_ticky = np.arange(0, 3.2, 0.4)
        ax1.set xticks(major tickx)
        ax1.set_yticks(major_ticky)
```

```
#twinx to create multiple y axis
ax2 = ax1.twinx()
list2, = ax2.plot(j5DNHI, y1H, 'r-', label='H neutral frac')
ax2.set_ylabel("Neutral fraction")
minor_ticky = np.arange(0, 1.6, 0.2)
ax2.set_yticks(minor_ticky)
ax3 = ax1.twinx()
list3, = ax3.plot(j5DNHI, y1He, 'g-', label = 'He neutral frac')
ax3.set_yticks(minor_ticky)
# #add top tick
\# ax4 = ax3.twiny()
# ax4.plot(j5DNHI, y1He)
# ax4.set_xticks(major_tickx)
# ax4.set_yticks(minor_ticky)
# ax4.cla()
#change tick direction
axs = [ax1, ax2, ax3]
for ax in axs:
    ax.tick_params(direction = 'in')
#add legend
lists = [list1, list2, list3]
ax1.legend(lists, [list.get_label() for list in lists], loc='upper right')
fig.tight_layout()
plt.savefig("chris.pdf")
plt.show()
```



## 2 2. NaN bug

2.1 The NaN bug comes from negative temperature when subtracting a temperature constant.

### 3 dEH inconsistent issue

5.56287144e-34 5.54824158e-34]

3.0.1 For dEH[3], we track the difference between the one with cooling function and the one without.

# 3.0.2 For dEH[1245], we track the difference between the one with cooling function and the one without.

```
In [5]: dEH1245_cool_file = '../output/grid1245/020419_1/2y_0_dEH50_dEHgrid1245.txt'
        dEH1245_cool = np.genfromtxt(dEH1245_cool_file, dtype = 'f16', skip_header = 1, usecole
        print(dEH1245_cool)
        dEH1245_no_cool_file = '../output/grid1245/020419_2/2y_0_dEH50_dEHgrid1245_no_cool.txt
        dEH1245_no_cool = np.genfromtxt(dEH1245_no_cool_file, dtype = 'f16', skip_header=1, use
        print(dEH1245_no_cool)
[1.36621218e-25 1.36715173e-25 1.36809211e-25 ... 8.43112538e-21
8.44738860e-21 8.46368973e-21]
[1.36621218e-25 1.36715173e-25 1.36809211e-25 ... 8.43112538e-21
8.44738860e-21 8.46368973e-21]
In [6]: \#dEH1245\_cool = [x - 1e-38 \text{ for } x \text{ in } dEH1245\_cool]
        fig_cool, ax_cool = plt.subplots()
        ax_cool.set_yscale('log')
        ax_cool.set_xscale('log')
        list_dEH3, = ax_cool.plot(dEH3_no_cool[0:] - dEH3_cool[0:], 'b-', label='\Delta dEH3_o
        list_dEH1245 = ax_cool.plot(dEH1245_no_cool[0:] - dEH1245_cool[0:],'r-',label='$\Delta
        ax_cool.set_xlabel("Time step")
        ax_cool.set_ylabel("$\Delta\ dEH$")
        ax_cool.legend(["$\Delta\ dEH3_{cool}$","$\Delta\ dEH1245_{cool}$"])
        plt.grid(linestyle = '--')
        plt.show()
```



#### 3.0.3 Cooling function comparison for all grids at time step 12000

```
In [7]: Te_cool = np.genfromtxt(dEH3_cool_file, dtype = 'f16', skip_header = 12008, usecols =
        Te_no_cool = np.genfromtxt(dEH3_no_cool_file, dtype = 'f16', skip_header = 12008, usec
       NH = chris_table[: , 1]/1e+18
       print(Te_cool[:20])
       print(Te_no_cool[:20])
       print(NH[:20])
[14467.4 14676.9 14881.1 15080. 15273.5 15461.5 15643.9 15820.7 15991.9
 16157.4 16317.5 16472. 16621.1 16764.9 16903.5 17036.9 17165.3 17288.9
17407.8 17522. ]
[14497.2 14711.9 14922.1 15127.7 15328.4 15524.3 15715.4 15901.5 16082.7
 16258.9 16430.3 16596.8 16758.4 16915.3 17067.6 17215.2 17358.3 17497.
 17631.3 17761.4]
[0.0125 0.0375 0.0625 0.0875 0.1125 0.1375 0.1625 0.1875 0.2125 0.2375
0.2625 0.2875 0.3125 0.3375 0.3625 0.3875 0.4125 0.4375 0.4625 0.4875]
In [8]: fig_cool_Te, ax_cool_Te = plt.subplots()
        ax_cool_Te.set_yscale('linear')
        ax_cool_Te.plot(NH[:], abs(Te_cool[:] - Te_no_cool[:]), 'b-')
        ax_cool_Te.set_xlabel("$\mathregular{N_H[10^{18}cm^{-2}]]}$")
        ax_cool_Te.set_ylabel("$\Delta Te\mathregular{[10^4K]}$")
       plt.grid(linestyle = '--')
       plt.show()
```



### 4 3. Plot tauHIIe

### 4.1 At timestep 12000

```
In [9]: dEH_cool = np.genfromtxt(dEH3_cool_file, dtype = 'f16', skip_header = 12008, usecols =
        tauHIIe_cool = np.genfromtxt('../output/tauHIIe/tau_1_time_12000.txt', dtype = 'f16',
        print(dEH_cool[:])
        print(tauHIIe_cool[:])
        print(len(NH))
        print(len(tauHIIe_cool))
[5.23168547e-34 5.33405851e-34 5.43954697e-34 ... 2.34918980e-24
2.33024405e-24 2.31145651e-24]
[-4.73545359 \\ e^{-30} \quad -4.66637009 \\ e^{-30} \quad -4.60069139 \\ e^{-30} \quad \dots \quad -3.19991373 \\ e^{-20}
-5.13054954e-20 -7.07959026e-20]
2000
2000
In [10]: fig_tauHIIe_cool, ax_tauHIIe_cool = plt.subplots()
         list_tauHIIe_cool, = ax_tauHIIe_cool.plot(NH[:], abs(tauHIIe_cool[:]),'b-', label='HI
         list_dEH_cool, = ax_tauHIIe_cool.plot(NH[1:], dEH_cool[1:],'r-', label='d EH_no_energ
         ax_tauHIIe_cool.set_xlabel("$\mathregular{N_H[10^{18}cm^{-2}]}$")
```

```
ax_tauHIIe_cool.set_ylabel("energy_change_rate")

lists=[list_tauHIIe_cool, list_dEH_cool]
ax_tauHIIe_cool.legend(lists, [list.get_label() for list in lists], loc='lower right'
plt.grid(linestyle = '--')
ax_tauHIIe_cool.set_yscale('log')
plt.show()

10-17
10-19
10-23
10-23
10-25
10-27
10-29
```

### 4.2 Compare Temperature evolution when including tauHIIe

10

20

 $10^{-31}$ 

 $10^{-33}$ 

0

start\_index = 800

30

 $N_{H}[10^{18} cm^{-2}]$ 

Hlle\_energy\_transfer\_rate

d EH\_no\_energy\_transfer

40

50

```
ax_T_HIIe.set_xlabel("$\mathregular{N_H[10^{18}cm^{-2}]}$")
ax_T_HIIe.set_ylabel("$\mathregular{Temperature[10^4K]}$")

lists=[list_original_Te, list_Te, list_THII]
ax_T_HIIe.legend(lists,[list.get_label() for list in lists], loc='upper right')

plt.grid(linestyle='--')
ax_T_HIIe.set_yscale('log')
plt.show()
```

