Neural decision trees

Team 12

ML, Skoltech

2019

Decision Trees & Random Forests

- original idea by Tim Kam, Ho to implement stochastic discrimination (1995)
- Ensemble of decision trees:
 Wait! Decision trees are deterministic though!
- Main oracle: Bagging
- Extra trees
- Widely used in practice

DTs: Training and testing

For each tree in ensemble we:

- Select a subset of samples and subset of features
- Create a tree with only 1 node
- Until stopping condition is achieved:
 - Make a split according to the criterion
- For each leaf node
 - Discrete: p(c|v) arg max p(c|v)
 - Continuous: mean or predefined func

Still, there is no use of differentiability. How can we convert DT learning to a differentiable one?

Pros and cons

	Decision trees	Neural Networks	
Easily interpretable	✓	Х	
Model functions di-	Only axis parallel	Arbitrary functions,	
versity	splits	Complex structures	
Time complexity	Reasonably fast	Comparably slow, long	
		training	
Online learning	Х	✓	
Model parameters	0 1 6	Up to millions (hidden	
Model parameters	Only a few	Up to millions (hidden	
woder parameters	Only a few	Up to millions (hidden layers, number of units)	
Layout	Determinstic splits	'	
	,	layers, number of units)	

Neural Decision trees

 Instead of using weak learners as base classifiers, we can make use of the features learned by neural network

Neural Decision trees

- The input data is fed to the neural network
- The outputs of FC layer represent routing probabilities in each of the trees of the ensemble
- The assignment is random

$$d_i(x) = g(f_j(x)), \quad p(x, \pi_i) = \prod_{n \in \{d_1, \dots, \pi_i\}} p_{route}(n)$$

Neural Decision trees

$$\mathbb{P}_T[y|\boldsymbol{x},\Theta,\boldsymbol{\pi}] = \sum_{\ell \in \mathcal{L}} \pi_{\ell y} \mu_{\ell}(\boldsymbol{x}|\Theta)$$

$$\mu_{\ell}(\boldsymbol{x}|\Theta) = \prod_{n \in \mathcal{N}} d_n(\boldsymbol{x};\Theta)^{\mathbb{1}_{\ell \swarrow n}} \bar{d}_n(\boldsymbol{x};\Theta)^{\mathbb{1}_{n \searrow \ell}}$$

$$d_n(\boldsymbol{x};\Theta) = \sigma(f_n(\boldsymbol{x};\Theta))$$

$$\mathbb{P}_{\mathcal{F}}[y|oldsymbol{x}] = rac{1}{\mathsf{k}} \sum_{h=1}^{\mathsf{k}} \mathbb{P}_{T_h}[y|oldsymbol{x}] \, ,$$

Loss function and node output

 he loss over decision nodes should be converted to a differentiable one

$$L(\Theta, \pi, x, y) = -\log (\mathbb{P}_{T}(y|x, \Theta, \pi))$$

Leaf nodes outputs are

$$\pi_{l_{y}}^{(t+1)} = \frac{1}{Z_{l}^{t}} \sum_{x,y' \in \mathcal{T}} \frac{\mathbb{1}_{y=y'} \pi_{l_{y}}^{(t)} \mu_{l}(x|\Theta)}{\mathbb{P}_{T}(y|x,\Theta,\pi^{(t)})}$$

Trainig algorithm

Require: \mathcal{T} : training set, nEpochs

- 1. Initialize Θ randomly
- 2. for all $i \in \{1, ..., nEpochs\}$ do
- 3. Compute π using formula above
- 4. Break \mathcal{T} into a set of mini-batches
- 5. **for all** \mathcal{B} : mini-batch from \mathcal{T} **do**
- 6. Update Θ by SGD step
- 7. end for
- 8. end for

Models comparison

	Decision Forest	Neural Network	Neural Decision
			Tree
Ability to	✓	Х	Х
parallelize			
Feature	X	✓	1
learning			
Gradient	Х	✓	✓
Descent			
applicable			
Loss	NP hard to	Non convex	Non convex
	build optimal		
	tree		

Results

References

- 1. R. Balestriero (2017). Neural Decision Trees, https://arxiv.org/abs/1702.07360
- P. Kontschieder, M. Fiterau, A. Criminisi, S.R. Bulo (2015).
 Deep Neural Decision Forests, https://www.ijcai.org/Proceedings/16/Papers/628.pdf
- 3. N. Frosst, G. Hinton (2017). Distilling a Neural Network Into a Soft Decision Tree, https://arxiv.org/abs/1711.09784

