Parameter Initialization

Dr. Alireza Aghamohammadi

May 5, 2024

Problem Statement

▶ How should we initialize parameters (weights and biases) in deep neural networks?

$$f_i = \beta_i + \Omega_i \cdot \mathtt{ReLU}[f_{i-1}]$$

- ▶ Suppose biases (β_i) are initialized to zero and weights (Ω_i) follow a normal distribution with mean zero and variance σ^2 .
- ▶ If the variance σ^2 is very small (e.g., 10^{-5}),
 - ▶ The output range of ReLU[f_{i-1}] is less than f_{i-1} .
 - As a result, the output range of f_i is reduced.
 - This reduction also affects the backward pass during parameter updates.
 - **Each** gradient update involves multiplication by Ω_i^T .
 - ► This leads to the vanishing gradient problem.
- ▶ If the variance σ^2 is very large (e.g., 10^5),
 - The output range of f_i increases.
 - This leads to the exploding gradient problem.

Mathematical Analysis (Part 1)

Let's consider f and f with dimensions $D_{h'}$ and D_h respectively. We have:

$$h = \text{ReLU}[f]$$

 $f' = \beta_i + \Omega_i \cdot h$

- Now, suppose we initialize all the biases (β_i) to zero and the elements of the weight (Ω_{ij}) to a normal distribution with a mean of zero and a variance of σ_0^2 .
- ► The expected value of f can be calculated as follows:

$$\mathbb{E}[f_i'] = \mathbb{E}[\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} \cdot h_j]$$

$$= \mathbb{E}[\beta_i] + \sum_{j=1}^{D_h} \mathbb{E}[\Omega_{ij} \cdot h_j]$$

$$= \mathbb{E}[\beta_i] + \sum_{j=1}^{D_h} \mathbb{E}[\Omega_{ij}] \mathbb{E}[h_j]$$

$$= 0 + \sum_{j=1}^{D_h} 0 \cdot \mathbb{E}[h_j] = 0$$

Mathematical Analysis (Part 2)

▶ Using the previous results, we can calculate the variance σ_f^2 of f as follows:

$$\sigma_{f'}^{2} = \mathbb{E}[f_{i}^{2}] - \mathbb{E}[f_{i}^{2}]^{2}$$

$$= \mathbb{E}[(\beta_{i} + \sum_{j=1}^{D_{h}} \Omega_{ij} \cdot h_{j})^{2}] - 0$$

$$= \mathbb{E}[(\sum_{j=1}^{D_{h}} \Omega_{ij} \cdot h_{j})^{2}]$$

$$= \sum_{j=1}^{D_{h}} \mathbb{E}[\Omega_{ij}^{2}] \mathbb{E}[h_{j}^{2}]$$

$$= \sigma_{\Omega}^{2} \sum_{j=1}^{D_{h}} \mathbb{E}[h_{j}^{2}]$$

$$= \sigma_{\Omega}^{2} \sum_{j=1}^{D_{h}} \frac{\sigma_{f}^{2}}{2} = \frac{1}{2} D_{h} \sigma_{\Omega}^{2} \sigma_{f}^{2}$$

He Initialization

• We would like the variances σ_f^2 and σ_f^2 to be the same. This can be expressed as:

$$\sigma_{f'}^2 = rac{1}{2} D_h \sigma_\Omega^2 \sigma_f^2$$

▶ Therefore, the optimal variance for the weights (σ_{Ω}^2) should be:

$$\sigma_{\Omega}^2 = \frac{2}{D_h}$$

Effect of He Initialization

Figure: The effect of He Initialization.¹

¹Adopted from the book, Understanding Deep Learning