Stata FAQ NJC Stata Plots

This page presents examples of graphics programs written by Nicholas J. Cox (Durham University). You can obtain these programs by typing, findit *command_name*, into the Stata command line and following the instructions (see How can I use the findit command to search for programs and get additional help? for more information about using findit). This page is not an exhaustive list of all of the graphics commands written by Nick Cox but merely a collection of the ones that we use most frequently. The command <a href="section-

This page contains only the commands and the plots themselves, there is no further explanation. We envision that users will look through the plots and when they find one that appears to do what they want, they will download the program and carefully read the help files.

Most of these examples use the **hsb2** dataset which can be downloaded from within Stata using the following command:

use http://www.ats.ucla.edu/stat/stata/notes3/hsb2, clear

Note: Most of the graphs were produced using the scheme lean1. Whenever a different scheme is used, it is given in the command.

asciiplot-- graph ASCII character set in current graph font

asciiplot

anovaplot-- plot cell means following anova

anova write female prog female*prog anovaplot prog female

anovaplot prog female, scatter(msym(i))

beamplot -- horizontal dotplots using beams

beamplot write

beamplotplot write, over(female)

binsm -- bin smoothing and summary on scatter plots

binsm write read, width(5) scatter(jitter(2))

catplot -- plots of categorical data

catplot prog race

catplot prog race, by(female)

ciplot -- plots of confidence intervals

ciplot write science, by (female)

corrtable -- correlation matrix as graphical table

corrtable read write math science

reading score	0.597	0.662	0.630
0.597	writing score	0.617	0.570
0.662	0.617	math score	0.631
0.630	0.570	0.631	science score

cpyxplot -- two way plots for each y vs each ${\bf x}$

cpyxplot write read \ math science

diagsm -- diagonal smoothing

diagsm write math

distplot -- distribution function plots

distplot write

distplot write, over(female)

doublesm -- double smoothing

doublesm write math

dpplot -- density probability plots

dpplot write

eqprhistogram -- equal probability histograms

eqprhistogram write, mean

fractileplot -- smoothing with distribution function predictors

fractileplot write read math science socst

$indexplot -- index \ plots \ following \ estimation$

regress write read
indexplot, show(cooksd) hi(3)

indexplot, show(rstandard) base(0)

kaplansky -- graph examples of distributions of varying kurtosis

kaplansky

Irving Kaplansky. 1945. A common error concerning kurtosis Journal, American Statistical Association 40: 259

mlowess -- lowess smoothing with multiple predictors

mlowess write read math science socst

mrunning -- running line smoother (multivariable version)

mrunning write read math

ovfplot

regress write read ovfplot

regress write read female ovfplot, by(female)

pairplot -- plots of paired observations

pairplot write science in 1/30

pairplot write science in 1/30, diff

parplot -- parallel coordinates plots

parplot female write science

pdplot -- Pareto dot plots

pdplot prog

polarsm -- polar smoothing

polarsm write read, over(female) by(female)

ppplot -- P-P plots

ppplot connected write, by(female) ref(0)

ppplot connected write math

qplot -- **quantile plots**

qplot write

respline -- restricted cubic spline smoothing

rcspline write read

rdplot

regress write read rdplot, g(3)

regplot

regress write read regplot

generate write2 = write^2
regress math write write2
regplot

regress write read female regplot, by(female) scheme(s2mono)

rhetplot

regress write read rhetplot, by(prog female)

running -- symmetric nearest neighbour smoothing

running write read, scatter(jitter(2))

rvfplot2

regress write read female
rvfplot2, rstandard yline(0)

rvpplot2

regress write read female
rvpplot2 read, rstandard yline(0)

skewplot -- skewness plots

skewplot math

slideplot -- sliding bar plots

slideplot bar female, pos(1) neg(0) by (prog)

spineplot -- spine plots for two-way categorical data

 $spineplot\ ses\ femalespineplot\ ses\ female,\ bar1(color(gs14))\ bar2(color(gs10))\ bar3(color(gs6))$

spineplot race ses

stemplotplot -- stem-and-leaf plots

stemplot ses female

stemplot write, d(2) by(female) back scheme(s2mono)

stripplot -- strip plots

```
generate pipe = "|"
stripplot write, over(prog) mlabel(pipe) mlabpos(0) msymbol(i)
```


tableplot -- graphical display in two-way table format

use http://www.ats.ucla.edu/stat/stata/notes/lahigh
egen mabs = mean(daysabs), by(school gender)
tableplot rbar mabs school gender

tabplot -- two-way table shown as table of bars

tabplot ses female, showval percent (female)

How to cite this page

Report an error on this page

UCLA Researchers are invited to our <u>Statistical Consulting Services</u>
We recommend others to our list of <u>Other Resources for Statistical Computing Help</u>
These pages are <u>Copyrighted</u> (c) by <u>UCLA Academic Technology Services</u>

The content of this web site should not be construed as an endorsement of any particular web site, book, or software product by the University of California.