Self-Route: Automatic Mode Switching via Capability Estimation for Efficient Reasoning

Yang He, Xiao Ding, Bibo Cai, Yufei Zhang, Kai Xiong Zhouhao Sun, Bing Qin, Ting Liu

Research Center for Social Computing and Interactive Robotics
Harbin Institute of Technology, China
{yhe, xding, bbcai, yfzhang, kxiong, zhsun, qinb, tliu}@ir.hit.edu.cn

Abstract

While reasoning-augmented large language models (RLLMs) significantly enhance complex task performance through extended reasoning chains, they inevitably introduce substantial unnecessary token consumption—particularly for simpler problems where Short Chain-of-Thought (Short CoT) suffices. This "overthinking" phenomenon leads to inefficient resource usage without proportional accuracy gains. To address this issue, we propose Self-Route, a dynamic reasoning framework that automatically selects between general and reasoning modes based on model capability estimation. Our approach introduces a lightweight preinference stage to extract capability-aware embeddings from hidden layer representations, enabling real-time evaluation of the model's ability to solve problems. We further construct Gradient-10K, a model difficulty estimationbased dataset with dense complexity sampling, to train the router for precise capability boundary detection. Extensive experiments demonstrate that Self-Route achieves comparable accuracy to reasoning models while reducing token consumption by 30-55% across diverse benchmarks. The proposed framework demonstrates consistent effectiveness across models with different parameter scales and reasoning paradigms, highlighting its general applicability and practical value.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language tasks. They have achieved excellent performance in open-ended conversations, text summarization, code generation, and mathematical reasoning (Achiam et al., 2023; Bubeck et al., 2023). Recently, a new category of models—reasoning large language models (RLLMs), such as OpenAI's O1 (Jaech et al., 2024) and DeepSeek's R1 (Guo et al., 2025), has emerged and

Figure 1: Illustration of the problem scenario addressed by our method, highlighting the trade-offs between Long CoT Reasoning, Short CoT, and the Self-Route approach in balancing efficiency and accuracy.

significantly improved performance on complex tasks like mathematical reasoning, programming, and interdisciplinary knowledge reasoning (Team et al., 2025; Chen et al., 2025a). These models leverage Long Chain-of-Thought (Long CoT) through test-time scaling techniques, generating more detailed intermediate steps during inference, including multi-step thinking, iterative exploration, and reflection (Chen et al., 2025b). This approach greatly enhances the System-2 reasoning capabilities of LLMs (Li et al.).

However, Long CoT also comes with certain drawbacks. While they improve accuracy on complex tasks, the multi-step iterative nature of such reasoning often results in extensive outputs, increasing computational costs and inference time. More importantly, for simple problems, Short CoT are usually sufficient to achieve correct and efficient solutions. In such cases, using Long CoT reasoning may lead to "overthinking" (Chen et al., 2024b), a phenomenon where the model generates thousands of tokens unnecessarily, performing overly complex reasoning that is not proportionate to the problem's difficulty, as shown in Figure 1.

To address the issue of excessive and unnecessary token consumption caused by reasoning models, as well as the limited reasoning capabilities of general models, we propose the *Self-Route* framework. The core objective of this framework is to utilize the Router to select the most efficient reasoning strategy while ensuring correctness. Our approach introduces a lightweight *pre-inference* stage prior to formal reasoning. By collecting hidden layer representations of the general model during this phase, we construct a capability-aware embedding that reflects the model's capacity to solve the given question. This representation serves as the foundation for the subsequent router.

In order for the router to accurately perceive the boundary of a model's reasoning capability during inference, we further construct a model difficulty estimation-based gradient dataset named *Gradient-10K* to train the router, which contains densely sampled question instances across a continuous spectrum of complexity. The rationale behind this approach stems from our experimental observation that datasets lacking a difficulty gradient lead to the router's inability to accurately detect the model's capability boundaries, resulting in a significant drop in accuracy. Training on *Gradient-10K* enables the routing module to make reliable decisions by precisely capturing the interplay between question difficulty and model competence.

We conduct extensive experiments across models of varying scales and architectures to evaluate the effectiveness of our Self-Route framework. The results demonstrate that our method significantly reduces token consumption by an average of 30% to 55% across all evaluated datasets compared to reasoning models. Meanwhile, Self-Route maintains a strong accuracy level, with less than a 2% accuracy loss compared to reasoning models, while achieving significantly higher accuracy than general models. Overall, our method achieves satisfactory performance in estimating model reasoning capability while greatly improving inference efficiency.

Moreover, our approach is not limited to routing across distinct models, it also works well within hybrid reasoning models where Short- and Long-CoT capabilities coexist. This versatility underscores its broad applicability and practical potential in real-world settings.

2 Methods

2.1 Overview

Existing approaches rely on either manually selecting a Short CoT or Long CoT strategy for question answering, as shown in Figure 1. Short CoT is efficient but struggles with complex questions, while Long CoT reasoning is more accurate but consumes more tokens. In this work, we propose our Self-Route framework, which introduces a routing module to automatically select the most efficient reasoning strategy while ensuring correctness.

Specifically, the Self-Route framework consists of three components: the **Router** R, the **general model** \mathcal{M}_s , and the **reasoning model** \mathcal{M}_{ℓ} . For a given query q, the Self-Route framework first performs a pre-inference step: the model reasons about the query q to extract intermediate hidden representations from various layers. Based on these representations, the trained router estimates the probability that the general model (i.e., \mathcal{M}_s) will generate a correct answer for q, denoted as P(q). The routing function then dynamically selects strategies as follows: when $P(q) \ge \tau$ (indicating the model predicts the Short CoT strategy can solve the query correctly), \mathcal{M}_s is invoked; otherwise, the system falls back to the Long CoT reasoning strategy \mathcal{M}_{ℓ} , thereby ensuring the correctness of the output.

To effectively train a router that could accurately detect the capability boundaries of different models, we carefully constructed a densely graded difficulty dataset, Gradient-10K, based on model difficulty estimation from multiple data sources. Subsequent experiments demonstrate that the dense difficulty gradient plays a crucial role in maintaining high accuracy in capability detection within the Self-Route framework. Training the router on data without the difficulty gradient characteristic leads to a significant drop in inference accuracy due to incorrect capability boundary detection, demonstrating the effectiveness of the constructed Gradient-10K dataset with its dense difficulty gradient. The following sections provide a detailed introduction to each component of the method.

Figure 2: Workflow from Gradient-10K dataset construction to Self-Route Inference. During capability boundary detection, the pre-inference module collects the hidden layer vector of the last token as the capability representation. The dense difficulty gradient of Gradient-10K ensures accurate reasoning mode selection, balancing correctness and efficiency in Self-Route Inference.

2.2 Dense Difficulty Gradient Dataset Construction

To enable the model to fully understand the boundaries of its own capabilities with internal state (Chen et al., 2024a; Li et al., 2024), specifically to distinguish between problems it can solve within its ability range and those that require deep reasoning through multiple intermediate steps, it is essential to test the model using a dataset with a well-structured difficulty gradient.

A difficulty-gradient dataset refers to a collection of problems that span various difficulty levels, from the simplest to the most challenging. The denser and more fine-grained the gradient is, the more effectively the model can explore and understand the limits of its capabilities. In contrast, data lacking a difficulty gradient can lead to issues such as incorrect detection of the model's capability boundaries, causing a significant drop in inference accuracy.

To construct such a dataset, we collected questions of varying difficulty from multiple sources. To quantify the difficulty level of each question, we employed the accuracy of a general Model on that question as an empirical proxy. Specifically, we define the following scoring function:

$$\mathcal{D}_m(q) = 1 - \mathcal{A}_m(q) \tag{1}$$

where $A_m(q) \in [0,1]$ denotes the accuracy of model m on question q, and $\mathcal{D}_m(q) \in [0,1]$ rep-

Level	$\mathcal{D}_{\mathbf{Q-7B}}(q)$	$\mathcal{D}_{\mathbf{Q-32B}}(q)$	$\mathcal{D}_{\mathbf{Q3-8B}}(q)$
1	0.06	0.04	0.05
2	0.20	0.14	0.15
3	0.40	0.30	0.27
4	0.58	0.46	0.40
5	0.90	0.86	0.79

Table 1: Estimated average difficulty scores $\mathcal{D}_m(q)$ in the Gradient-10K dataset across multiple models. Each score is computed as $\mathcal{D}_m(q)=1-\mathcal{A}_m(q)$, where $\mathcal{A}_m(q)$ denotes the accuracy of model m on question q. Q-7B and Q-32B refer to models from the Qwen2.5 series, while Q3-8B corresponds to Qwen3-8B with no_think mode.

resents the corresponding difficulty score for that model-question pair. A higher value indicates a more challenging question with respect to model m's reasoning capability. This formulation allows us to categorize questions into different difficulty levels in a principled manner, facilitating balanced dataset construction across sources and complexities. We divided the difficulty range into five levels, from easiest to hardest, and constructed the final dataset, Gradient-10K, as presented in Table 1.

2.3 Capability Representation Acquisition through Pre-inference

Language models can estimate both the difficulty of a question and their own ability to answer it during the generation process (Ashok and May, 2025). This pre-inference stage enables the model to perform such an assessment using only a small number of tokens, allowing for an efficient capability estimation before committing to a full reasoning path.

For clarity, we provide an example to illustrate the question and pre-inference process as follows:

Example

Let x, y and z be positive real numbers that satisfy:

$$\log_2\left(\frac{x}{yz}\right) = \frac{1}{2}, \log_2\left(\frac{y}{xz}\right) = \frac{1}{3},$$

$$\log_2\left(\frac{z}{xy}\right) = \frac{1}{4}.$$

Find $\left|\log_2(x^4y^3z^2)\right| = \frac{m}{n}$ where m and n are coprime positive integers. Compute m+n.

Pre-inference: Convert logarithmic equations to exponential form to express x,y, and z in terms of each other. Solve the system of equations to find ratios of x,y,z. Calculate $\log_2(x^4y^3z^2)$, simplify the expression, take absolute value. Express result as $\frac{m}{n}$ in simplest form and find m+n.

Through the *Pre-inference* process, the model attempts to solve the problem from a global perspective, adopting an abstract and generalized reasoning approach. This process essentially aligns the problem's actual difficulty with the model's internal problem-solving capability, with the hidden representations serving as a compact and informative capability-aware embedding.

Formally, given a question q, we first generate a Short CoT trajectory r under a limited token budget τ , using the general model $m = \mathcal{M}_s$. The generation is defined as:

$$r = G_{\mathcal{M}_s}(q; \tau) \tag{2}$$

 $G_{\mathcal{M}_s}(\cdot;\tau)$ denotes the generation function of the general model; τ is the maximum number of tokens allowed in the pre-inference step.

Based on this generated response r, we collect the hidden representations from all intermediate transformer layers at the final decoding timestep T. Let L denote the number of layers. Under the condition that r has been generated from q, the capability-aware representation is defined as:

$$\mathbf{H}_{\text{cap}}(q) = \left\{ \mathbf{h}_{T}^{(1)}(q \mid r), \dots, \mathbf{h}_{T}^{(L)}(q \mid r) \right\}$$
 (3)

where $\mathbf{h}_T^{(l)}(q \mid r) \in \mathbb{R}^d$ denotes the hidden state at layer l, conditioned on the input question q and derived under the context of the generated response r, at the final timestep T. This representation captures the model's internal assessment of its own capability to address the problem.

2.4 Router Training

The role of the router is to decide whether to use a reasoning model or a general model for the current problem. The key is to enable the model to fully assess whether it can solve the problem within its Short CoT reasoning capability. Using linear functions can effectively determine the model's future output behavior (Ashok and May, 2025). The task of exploring the model's capability boundaries is made possible through the pre-inference vector representations collected on the Gradient-10K difficulty gradient dataset.

We utilize the hidden layer vector representation of the final output token from the *Pre-inference* module to train the router, which estimates the model's ability to solve a given problem. The router uses a linear function as follows:

$$\hat{y}_i = \mathbf{w}^\top \mathbf{h}_T^{(l)} + b \tag{4}$$

where $\mathbf{h}_{T}^{(l)}$ is the hidden vector of the last token at layer l, \mathbf{w} is the weight vector, b is the bias term, \hat{y}_{i} is the predicted label for problem i.

The model is trained by minimizing the crossentropy loss:

$$\mathcal{L} = -\sum_{i=1}^{N} \left[y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right]$$
 (5)

where y_i is the true solution correctness label, and \hat{y}_i is the predicted label.

3 Experiments

3.1 Experimental Setup

We evaluate the effectiveness of the Self-Route method on models with various parameter configurations and inference modes. The general models include Qwen2.5-7B-Instruct, Qwen2.5-32B-Instruct (Yang et al., 2024), and the latest Qwen3-8B model. For Long CoT reasoning, we select R1-Distill-Qwen-7B, OpenR1-Qwen-7B (Guo et al.,

Model	GSM8K		Math500		GPQA Diamond		AIME-2024		ARC Challenge		AVG		
	Acc	Token	Acc	Token	Acc	Token	Acc Token		Acc	Token	Acc	Token	
Reasoning Model Comparison													
Marco-O1	88.9	622.1	72.0	1405.5	26.3	1580.8	10.0	7229.1	88.1	516.5	57.1	825.9	
OpenO1-Qwen-7B	90.0	575.2	71.8	1157.4	27.3	1149.6	6.7	2046.7	88.4	513.0	56.8	692.0	
Skywork-O1	91.1	323.2	78.4	850.5	23.7	1682.3	16.7	2607.5	71.3	452.7	56.2	56.2 557.1	
Bespoke-Stratos-7B	93.1	1075.0	85.4	4169.1	38.9	4405.3	13.3	13176.7	91.3	928.0	64.4	1819.7	
				Self-R	oute on	Qwen2.5-	7B						
Genaral Model													
Qwen2.5-7B-Instruct	92.3	308.4	77.8	626.4	31.8	1470.6	13.3	1219.9	90.9	361.2	61.2	457.0	
Reasoning Model													
R1-Distill-Qwen-7B	91.2	1225.8	95.0	3922.9	40.4	17654.0	56.7	20021.4	83.1	1328.8	73.3	2867.8	
OpenR1-Qwen-7B	96.1	1282.6	93.4	3704.1	41.4	8759.7	53.3	53.3 11664.1		1862.7	73.0	2426.6	
Gradient-7B	91.0	1196.9	83.2	5410.9	35.9	16004.8	56.3	17683.6	90.5	1833.5	62.8	62.8 2815.6	
Self-Route Method	Self-Route Method												
R1-Distill-Qwen-7B _{Self-Route}	92.3	324.3	87.8	2513.8	37.4	17225.5	56.7	19622.2	89.2	648.2	72.7	2001.8 (\130\%)	
OpenR1-Qwen-7B _{Self-Route}	92.6	319.3	87.2	2294.3	39.9	3207.4	53.3	11356.8	88.7	691.6	72.3	1353.8 (\44%)	
Gradient-7B _{Self-Route}	92.3	326.8	80.8	3360.8	36.5	9642.1	56.3	17377.1	90.4	726.8	62.3	1669.5 (\41%)	
Self-Route on Qwen2.5-32B													
Genaral Model													
Qwen2.5-32B-Instruct	96.3	312.4	84.4	583.2	50.5	1080.4	23.3	1020.8	95.3	337.5	70.0	417.4	
Reasoning Model													
R1-Distill-Qwen-32B	95.7	637.3	96.0	3344.3	63.1	6490.9	73.3	8770.6	96.1	599.3	84.8	1478.2	
Self-Route Method													
R1-Distill-Qwen-32B _{Self-Route}	96.4	316.6	93.6	1859.8	61.1	6242.4	73.3	8523.6	95.6	376.0	84.0	1018.9 (\131%)	
Self-Route on Qwen3-8B													
Genaral Model													
Qwen3-8B _{no_think}	94.0	278.2	85.6	1072.9	49.5	1775.7	23.3	5058.9	94.4	394.5	69.4	580.7	
Reasoning Model													
Qwen3-8B _{think}	96.5	2049.5	97.0	5152.3	56.6	9473.6	76.7	14848.5	95.7	1346.4	84.5	2851.4	
Self-Route Method													
Qwen3-8B _{Self-Route}	94.3	332.8	91.4	2376.4	53.6	8430.8	76.7	13857.7	94.4	427.8	82.6	1309.0 (\$\dagger454\%)	

Table 2: Accuracy and token consumption performance of reasoning models, general models, and Self-Route across various problem types and difficulty levels, along with a comparison of reasoning model effects.

2025), and Gradient-7B as the reasoning models for Qwen2.5-7B-Instruct routing; R1-Distill-Qwen-32B as the reasoning model for Qwen2.5-32B-Instruct routing; and Qwen3-8B (think mode) as the reasoning model for Qwen3-8B (no_think mode) routing. This experimental setup thoroughly explores routing strategies across models with different parameter scales and reasoning mechanisms, as well as the feasibility and robustness of the Self-Route method when using hybrid reasoning models (Qwen3-8B). Gradient-7B is based on Qwen2.5-7B-Instruct and trained on the Gradient-10K dataset by distilling reasoning trajectories from DeepSeek-R1.

Training Dataset. In this experiment, all model training—including all size of routers, was conducted on our constructed Gradient-10K dataset. Based on the principle of difficulty grading across multiple data sources, we integrated a variety of datasets with different levels of complexity, including Orca Math (Mitra et al., 2024), AMC AIME, Olympiads, GSM8K (Cobbe et al., 2021), and s1k (Muennighoff et al., 2025).

Evaluation Dataset. For the test datasets, we selected a variety of commonly used mathematical test datasets with different difficulty levels, domainspecific knowledge QA datasets, and science question-answering datasets. (1) GPQA (Rein et al., 2024) is a PhD-level science multiple-choice QA dataset. The questions are authored by domain experts in physics, chemistry, and biology. In our main experiments, we use the highest quality diamond set containing 198 questions. (2) Math benchmarks include GSM8K (Cobbe et al., 2021), MATH500 (Lightman et al., 2023), AIME-2024. MATH500 consists of 500 questions from the MATH test set. AIME-2024 are middle school math competitions covering arithmetic, algebra, geometry, etc., containing 30 questions. (3) ARC-Challenge (Clark et al., 2018) is a subset of the AI2-ARC dataset, featuring difficult science questions designed to challenge advanced questionanswering systems. In this paper, we test the ARC dataset by treating the multiple-choice options as part of the question, following the multiple-choice question format (Borchmann, 2024).

3.2 Main Results

The results in Table 2 provide a comprehensive comparison between our Self-Route method and various reasoning and baseline models. By analyzing datasets of different difficulty levels, we observe a consistent pattern across models with varying parameter scales and architectures:

- (i) For relatively simple tasks where the general model already performs well, such as on GSM8K or ARC-Challenge, the routing mechanism tends to favor Short CoT reasoning paths. As a result, Self-Route solves the majority of such questions by routing them to the general model for reasoning, thereby achieving strong answer performance while significantly reducing token consumption compared to Long CoT reasoning approaches.
- (ii) In contrast, for more complex tasks where the general model struggles, such as GPQA Diamond or AIME-2024, Self-Route predominantly selects the Long CoT reasoning path. This leads to a notable improvement in accuracy compared to the general model, despite the increased token consumption associated with extended reasoning processes.

To provide an overall assessment across all datasets, we compute the average accuracy and a weighted average of token consumption based on dataset size. As shown in the Table 2, Self-Route consistently achieves performance on par with various Long CoT reasoning methods, suffering less than 1% drop in average accuracy on Qwen2.5-7B and Qwen2.5-32B, while reducing token consumption by 30% to 55% across Qwen2.5-7B, Qwen2.5-32B, and Qwen3-8B. These results demonstrate that Self-Route can achieve substantial efficiency gains at only a marginal cost to accuracy.

Furthermore, the applicability of Self-Route extends beyond cross-model routing (e.g., between general and reasoning models). It also proves effective within a single hybrid reason model, such as Qwen3, for dynamically switching between internal reasoning modes. This adaptability highlights the potential of Self-Route for future deployment in unified model architectures, enabling intelligent and automated inference routing based on the problem complexity.

3.3 Exploring the Necessity of a Dense Difficulty Gradient

In this section, we investigate the necessity of constructing a densely annotated difficulty gradient

Model	Acc.	Prec.	F1
Router on G	radient		
Qwen2.5-7B _{Gradient-Router}	0.81	0.83	0.86
Qwen2.5-32B _{Gradient-Router}	0.84	0.89	0.89
$Qwen 3-8 B_{Gradient\text{-}Router}$	0.83	0.88	0.89
Router on G	SM8K		
Qwen2.5-7B _{GSM8K-Router}	0.70	0.70	0.80
Qwen2.5-32B _{GSM8K-Router}	0.77	0.81	0.85
Qwen3-8B _{GSM8K-Router}	0.78	0.79	0.87

Table 3: Comparison of evaluation metrics on the Gradient Test set between the router trained with a dense difficulty gradient and the router trained on the gradient-free GSM8K dataset.

dataset. We compare two approaches for characterizing model capabilities and training routers: one using our constructed Model Difficulty Estimation-Based Gradient Dataset—Gradient-10K—and the other relying on the GSM8K training set without an explicit difficulty gradient. The overall performance is summarized in Table 4. As shown, the router trained on Gradient-10K achieves significantly better accuracy across the majority of test sets compared to its GSM8K-based counterpart. The router trained on GSM8K may cause up to an approximately 11% decrease in accuracy. This indicates that the lack of a dense difficulty gradient leads to inaccurate estimation of the model's capability boundary, which in turn results in a substantial drop in routing accuracy.

Furthermore, by comparing the two routers on the Gradient test set (as shown in the Table 3), we observe that the Gradient-Router consistently outperforms the GSM8K-Router in key evaluation metrics. This result corroborates the findings from Table 4, reinforcing the reliability of our experimental outcomes and highlighting the importance of a dense difficulty gradient in achieving accurate model capability estimation.

3.4 Pre-inference Analysis

3.4.1 Token Consumption in Pre-inference

In this section, we explore whether the *Pre-inference* module introduces unnecessary additional token consumption. The inference processes tested here include pre-inference, Short CoT and Long CoT reasoning. We quantitatively analyze the additional computational cost introduced by the pre-inference module by comparing its token con-

Model	GSM8K		Math500		GPQA Diamond		AIME 2024		ARC Challenge		AVG	
	Acc	Token	Acc	Token	Acc	Token	Acc	Token	Acc	Token	Acc	Token
				Router	on Grad	lient						
R1-Distill-Qwen-7B _{Gradient-Router}	92.3	324.3	87.8	2513.8	37.4	17225.5	56.7	19622.2	89.2	648.2	72.7	2001.8
R1-Distill-Qwen-32B _{Gradient-Router}	96.4	316.6	93.6	1859.8	61.1	6242.4	73.3	8523.6	95.6	376.0	84.0	1018.9
Qwen3-8B _{Gradient-Router}	94.3	332.8	91.4	2376.4	53.6	8430.8	76.7	13857.7	94.4	427.8	82.6	1309.0
Router on GSM8K												
R1-Distill-Qwen-7B _{GSM8K-Router}	91.8	358.4	82.4	1746.5	36.4	8036.5	30.0	7923.9	90.8	362.6	66.28	1118.3
R1-Distill-Qwen-32B _{GSM8K-Router}	96.3	325.9	90.8	1625.0	52.0	3227.9	53.3	5447.9	95.2	342.3	77.52	759.9
Qwen3-8B _{GSM8K-Router}	94.1	312.2	87.4	1550.8	50.0	6816.9	33.3	6887.3	94.5	492.2	71.86	1031.5

Table 4: Routing methods trained on the Gradient-10K dataset with a dense difficulty gradient versus routers trained on GSM8K without an explicit difficulty gradient: accuracy and token consumption across various test sets..

Dataset	Short	Long	Pre	Ratio (%)
ARC	361	1329	106	7.9
GSM8K	308	1226	67	5.5
Math500	626	3923	120	3.0
GPQA	1471	17654	172	1.0
AIME	1220	20021	136	0.7

Table 5: Token consumption analysis of the preinference module on Qwen2.5-7B across reasoning paradigms. "Short" and "Long" refer to the number of tokens used in Short and Long CoT reasoning, respectively. "Pre" indicates the number of tokens consumed by the pre-inference module, and "Ratio" denotes the percentage of Pre over Long.

sumption across datasets of varying difficulty levels and domains, as well as the ratio of pre-inference token usage relative to that of the reasoning model. This analysis helps determine if pre-inference can achieve good performance without causing excessive token consumption for the system.

As shown in Table 5, the token consumption of pre-inference is significantly lower compared to that of formal reasoning. With most cases, the pre-inference token consumption is less than 5% of that of Long CoT reasoning. This demonstrates that pre-inference is a highly cost-effective strategy, enabling efficient routing decisions with minimal resource overhead.

3.4.2 Analysis of Routing Effectiveness

This section investigates whether intermediate hidden layer vectors from the Pre-inference module can effectively represent a model's problem-solving capability. We evaluate which layer provides the best features for routing by training routers on all hidden layers of Qwen2.5-7B and Qwen2.5-32B.

From the results depicted in Figure 3, we observe

Figure 3: Routing accuracy of pre-inference vector representations from different hidden layers for Qwen2.5-7B and Qwen2.5-32B.

two key patterns:

- (i) Utilizing vector representations from appropriate intermediate hidden layers as indicators of the model's problem-solving capability achieves strong performance, enabling an accurate assessment of whether the general model can effectively address the given problem.
- (ii) Lower layers tend to capture more concrete semantic features, while higher layers encode increasingly abstract semantic information, such as the model's ability to solve the problem. Our experiments show that hidden layers around the 60% 80% position in the network typically yield the most effective estimation of model capability.

3.5 Analysis of the Impact of Self-Route

This section compares the performance of Qwen2.5, R1-Distill-Qwen-7B, and the proposed Self-Route method in terms of accuracy across datasets of varying difficulty levels.

In addition to efficiency improvements, the radar

Figure 4: Radar chart comparing the accuracy of Qwen2.5-7B, R1-Distill-Qwen-7B, and Self-Route across multiple datasets. Self-Route maintains high accuracy while significantly reducing computational cost.

chart presented in Figure 4 offers a comprehensive comparison of the accuracy achieved by three reasoning approaches across a diverse set of datasets. The results clearly demonstrate that the Self-Route method not only significantly enhances the performance of the Short Chain-of-Thought (Short CoT) reasoning approach but also effectively compensates for the limitations of reasoning models. On the ARC-Challenge dataset, the general model outperforms the reasoning model, whereas in complex mathematical reasoning tasks such as those found in AIME or GPQA, the reasoning model achieves superior performance compared to general models. The Self-Route approach dynamically selects the most appropriate reasoning mode for each question type, thereby optimizing overall performance.

Moreover, as illustrated by both Figure 4 and Figure 6, Self-Route achieves a balance between accuracy and efficiency by significantly reducing token consumption without compromising answer quality. The approach strategically avoids redundant reasoning steps and excess token usage, resulting in substantial computational savings.

4 Related Work

Recent studies on Model-based Efficient Reasoning have primarily focused on fine-tuning large language models (LLMs) to improve their intrinsic ability to reason concisely and efficiently. Existing works leverage traditional RL optimization techniques combined with explicit length-based reward to control the length of CoT reasoning (Arora and Zanette, 2025; Yeo et al., 2025; Aggarwal and Welleck, 2025). In contrast, supervised fine-

tuning (SFT) strategies aim to improve reasoning efficiency by constructing variable-length CoT reasoning datasets. This includes techniques such as post-reasoning CoT compression (Yu et al., 2024; Kang et al., 2025; Xia et al., 2025) and obtaining compressed CoT data during reasoning (Liu et al., 2024; Munkhbat et al., 2025; Han et al., 2024).

Works center on estimating knowledge boundaries from internal model signals, aim to teach LLMs to recognize and express their own knowledge limits (Chen et al., 2024a). Closely related efforts include more accurate knowledge perception (Liang et al., 2024), aligning response quality with confidence through model calibration (Tao et al., 2024), identifying the causes of hallucination while balancing factual alignment and instruction following (Lin et al., 2024), and leveraging diverse methods for factuality alignment through internal perception mechanisms (Tian et al., 2023).

Regarding the trade-off between model performance and reasoning efficiency, recent studies have proposed efficient routers that dynamically select between stronger or weaker LLMs during inference (Ong et al., 2024). However, these methods have not yet succeeded in utilizing the model's own internal signals to estimate task difficulty or its capability boundaries during reasoning.

5 Conclusion

We propose Self-Route, a pre-inference paradigm that leverages models' internal capability representations to optimize reasoning efficiency while ensuring correctness. By constructing Gradient-10K, a Model Difficulty Estimation-Based Gradient Dataset, we enable precise detection of model capability boundaries. Experiments demonstrate that Self-Route reduces token consumption by 30-55% compared to reasoning models with <2% accuracy loss, while outperforming general model baselines. Remarkably, the framework works effectively both for routing between distinct models and within unified hybrid reasoning architectures (e.g., Qwen3), demonstrating broad practical applicability. Our approach provides a lightweight, generalizable solution for deploying efficient yet accurate reasoning LLMs.

Limitations

While Self-Route demonstrates promising results, some constraints remain and deserve additional study. First, our current routing mechanism relies on linear functions to map hidden representations to capability estimates. While this ensures computational efficiency, more sophisticated non-linear or attention-based routing modules could better capture nuanced relationships between model states and problem-solving competence. The framework currently operates in a binary mode (Short CoT vs. Long CoT). Future work could extend this to *multi-expert routing*, dynamically selecting from specialized models (e.g., math-focused, code-generation, or logical-reasoning experts) to achieve finer-grained optimization. These expansions would better align with real-world scenarios requiring cross-domain problem-solving while further improving efficiency-accuracy trade-offs.

References

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, and 1 others. 2023. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*.
- Pranjal Aggarwal and Sean Welleck. 2025. L1: Controlling how long a reasoning model thinks with reinforcement learning. arXiv preprint arXiv:2503.04697.
- Daman Arora and Andrea Zanette. 2025. Training language models to reason efficiently. *arXiv preprint arXiv:2502.04463*.
- Dhananjay Ashok and Jonathan May. 2025. Language models can predict their own behavior. *arXiv* preprint arXiv:2502.13329.
- Łukasz Borchmann. 2024. In case you missed it: Arc'challenge'is not that challenging. *arXiv preprint arXiv:2412.17758*.
- Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, and 1 others. 2023. Sparks of artificial general intelligence: Early experiments with gpt-4.
- Andong Chen, Yuchen Song, Wenxin Zhu, Kehai Chen, Muyun Yang, Tiejun Zhao, and 1 others. 2025a. Evaluating o1-like llms: Unlocking reasoning for translation through comprehensive analysis. *arXiv preprint arXiv:2502.11544*.
- Lida Chen, Zujie Liang, Xintao Wang, Jiaqing Liang, Yanghua Xiao, Feng Wei, Jinglei Chen, Zhenghong Hao, Bing Han, and Wei Wang. 2024a. Teaching large language models to express knowledge boundary from their own signals. *arXiv preprint* arXiv:2406.10881.

- Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang Zhou, Te Gao, and Wanxiang Che. 2025b. Towards reasoning era: A survey of long chain-of-thought for reasoning large language models. *arXiv* preprint *arXiv*:2503.09567.
- Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, and 1 others. 2024b. Do not think that much for 2+ 3=? on the overthinking of o1-like llms. *arXiv preprint arXiv:2412.21187*.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv* preprint arXiv:1803.05457.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, and 1 others. 2021. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*.
- Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. 2024. Token-budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*.
- Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, and 1 others. 2024. Openai o1 system card. *arXiv preprint arXiv:2412.16720*.
- Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. 2025. C3ot: Generating shorter chain-of-thought without compromising effectiveness. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 24312–24320.
- Moxin Li, Yong Zhao, Yang Deng, Wenxuan Zhang, Shuaiyi Li, Wenya Xie, See-Kiong Ng, and Tat-Seng Chua. 2024. Knowledge boundary of large language models: A survey. *arXiv preprint arXiv:2412.12472*.
- Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, and 1 others. From system 1 to system 2: A survey of reasoning large language models, 2025. *URL https://arxiv.org/abs/2502.17419*.
- Yuxin Liang, Zhuoyang Song, Hao Wang, and Jiaxing Zhang. 2024. Learning to trust your feelings: Leveraging self-awareness in llms for hallucination mitigation. *arXiv preprint arXiv:2401.15449*.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let's verify step by step. In *The Twelfth International Conference on Learning Representations*.

Sheng-Chieh Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Wen-tau Yih, and Xilun Chen. 2024. Flame: Factuality-aware alignment for large language models. *arXiv preprint arXiv:2405.01525*.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang. 2024. Can language models learn to skip steps? *arXiv preprint arXiv:2411.01855*.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. 2024. Orca-math: Unlocking the potential of slms in grade school math. *arXiv* preprint arXiv:2402.14830.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. 2025. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*.

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. 2025. Self-training elicits concise reasoning in large language models. *arXiv preprint arXiv:2502.20122*.

I Ong, A Almahairi, V Wu, W Chiang, T Wu, JE Gonzalez, MW Kadous, and I Stoica. 2024. Routellm: Learning to route llms with preference data. arxiv. org.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. 2024. Gpqa: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*.

Shuchang Tao, Liuyi Yao, Hanxing Ding, Yuexiang Xie, Qi Cao, Fei Sun, Jinyang Gao, Huawei Shen, and Bolin Ding. 2024. When to trust llms: Aligning confidence with response quality. *arXiv preprint arXiv:2404.17287*.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, and 1 others. 2025. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D Manning, and Chelsea Finn. 2023. Finetuning language models for factuality. In *The Twelfth International Conference on Learning Representations*.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. 2025. Tokenskip: Controllable chain-of-thought compression in llms. *arXiv* preprint arXiv:2502.12067.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. 2025. Demystifying long chain-of-thought reasoning in llms. *arXiv preprint arXiv*:2502.03373.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. 2024. Distilling system 2 into system 1. *arXiv preprint arXiv:2407.06023*.

A Appendix

A.1 Model Capability Estimation

Figure 5: Model capability estimation across models at different difficulty levels of the dataset

As shown in Figure 5, it reveals that models with stronger reasoning capabilities exhibit distinct behavior in estimating their own problem-solving capacity. When applied to data of the same difficulty level, larger models (e.g., Qwen2.5-32B) tend to classify a greater number of questions as within their solvable range, compared to smaller models such as Qwen2.5-7B. This suggests that more powerful models possess a more confident self-assessment mechanism, leading them to make routing decisions that favor Short CoT or direct answering over costly Long CoT reasoning paths.

A.2 Token Usage Analysis

As shown in Figure 6, Self-Route demonstrates a more efficient inference strategy by adaptively choosing between Short and Long CoT reasoning paths based on problem complexity. In contrast, Long CoT reasoning models such as R1-Distill-Qwen-7B consistently consume more tokens across all difficulty levels, even when simpler questions could be resolved with minimal computation.

Figure 6: Comparison of average token consumption across different reasoning methods (Qwen2.5, R1-Distill-Qwen-7B, and Self-Route) on data with varying difficulty levels. The plot highlights that Self-Route achieves significantly lower token usage compared to reasoning models while maintaining competitive problem-solving capability.

A.3 Pre-inference Prompt

The following prompt is used for pre-inference reasoning path elicitation:

Please give a very brief primary plan about how to solve the problem. Just give a very very brief plan, no need for details, calculations or final answer. Just a very brief analysis. Less than 200 words.

A.4 Router Training Parameters

The router used in this work is a linear function, with its dimension set to the intermediate hidden layer vector dimension of the model. To identify the most representative hidden layer for model capability characterization, we train the router on all layers of the model. The training parameters for each layer are as follows:

- Number of epochs: 5

- Batch size: 32

- Learning rate: 1×10^{-4}