Lab09-Recursively Enumerable Set(2)

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

* Please upload your assignment to FTP or submit a paper version on the next class

* If there is any problem, please contact: steinsgate@sjtu.edu.cn

* Name:______ StudentId: _____ Email: _____

- 1. Suppose A is an r.e. set. Prove the following statements.
 - (a) Show that the sets $\bigcup_{x \in A} W_x$ and $\bigcup_{x \in A} E_x$ are both r.e.
 - (b) Show that $\bigcap_{x \in A} W_x$ is not necessarily r.e..

Solution.

(a) We know that:

$$y \in \bigcup_{x \in A} W_x \Leftrightarrow \exists x (x \in A \land y \in W_x)$$

Since " $x \in A \land y \in W_x$ " is partial decidable, the right part should also be partial decidable. Hence the set $\bigcup_{x \in A} W_x$ is r.e..

Similarly, we have:

$$y \in \bigcup_{x \in A} E_x \Leftrightarrow \exists x (x \in A \land y \in E_x)$$

Thus the set $\bigcup_{x \in A} E_x$ is also r.e..

(b) Let $K_t = \{x : P_x(x) \downarrow \text{ in t steps}\}$. Obviously, K_t is recursive. Then we define a function:

$$f(t,x) = \begin{cases} \uparrow, & \text{if } P_x(x) \downarrow \text{ in t steps }, \\ 1, & \text{otherwise }. \end{cases}$$
 (0.1)

Based on s-m-n theorem, there exists a total computable function m(t) that $W_{m(t)} = \overline{K_t}$. Additionally, according to the **List Theorem** range(m) is an r.e. set. Then we have $\bigcap_{x \in range(m)} W_x = \bigcap_{m(t) \in range(m)} W_{m(t)} = \bigcap_{t \in \mathbb{N}} W_{m(t)} = \bigcap_{t \in \mathbb{N}} \overline{K_t} = \overline{K}$ which is not r.e., hence we find a counterexample that $\bigcap_{x \in A} W_x$ is not r.e..

2. Prove that $A \subseteq \mathbb{N}^n$ is r.e. iff $A = \emptyset$ or there is a total computable function $f : \mathbb{N} \to \mathbb{N}^n$ such that $A = Ran(\mathbf{f})$. (A computable function \mathbf{f} from \mathbb{N} to \mathbb{N}^n is an n-tuple $\mathbf{f} = (f_1, \ldots, f_n)$ where each f_i is a unary computable function and $\mathbf{f}(x) = (f_1(x), \ldots, f_n(x))$.)

Solution. In the homework last week, we have proved that:

$$A \subseteq \mathbb{N}^n$$
 is r.e. $\Leftrightarrow B = \{2^{x_1}3^{x_2}\dots p_n^{x_n} : (x_1,\dots,x_n) \in A\}$ is r.e.

By Listing Theorem,

B is r.e. \Leftrightarrow either $B = \emptyset$ or B is the range of a unary total computable function. $\Leftrightarrow B = \emptyset$ or there exists a total computable function g, B = Ran(g) $\Leftrightarrow A = \emptyset$ or $A = Ran(\mathbf{f})$ where $\mathbf{f} = ((g)_1, (g)_2, \dots, (g)_n)$ and it is a total computable function. Therefore, $A \subseteq \mathbb{N}^n$ is r.e. iff $A = \emptyset$ or there is a total computable function $\mathbf{f} : \mathbb{N} \to \mathbb{N}^n$ such that $A = Ran(\mathbf{f})$.

3. Suppose that f is a total computable function, A is a recursive set and B is an r.e.set. Show that $f^{-1}(A)$ is recursive and that f(A), f(B) and $f^{-1}(B)$ are r.e. but not necessarily recursive. What extra information about these sets can be obtained if f is a bijection?

Solution. We have:

$$x \in f(A) \Leftrightarrow \exists y(y \in A \land x = f(y))$$

 $x \in f^{-1}(A) \Leftrightarrow f(x) \in A$

Since f(x) is a total computable function, it is obvious that f(A) is r.e. and $f^{-1}(A)$ is recursive. Similarly, we can get that f(B) is r.e. and $f^{-1}(B)$ is also r.e..

According to the **Equivalence Theorem**, for any r.e. set A, there exists a total computable function whose range is exactly A. Thus there exists a total computable function g_1 whose range is K. Additionally, we can define another total computable function $g_2(x) = x$. Then let $A = \mathbb{N}, B = K$, we can see that $g_1(A) = K$ and $g_2(B) = K, g_2^{-1}(B) = K$ are all not recursive. If f is a bijection, then f^{-1} is also a total computable function. Therefore:

$$x \in f(A) \Leftrightarrow f^{-1}(x) \in A$$

Thus f(A) is recursive.

- 4. A set D is the difference of r.e. sets (d.r.e.) iff D = A B where A, B are both r.e..
 - (a) Show that the set of all d.r.e. sets is closed under the formation of intersection.
 - (b) Show that if $C_n = \{x \mid |W_x| = n\}$, then C_n is d.r.e. for all $n \geq 0$.

Solution.

(a) Assume any two d.r.e. sets $D_1 = A_1 - B_1$, $D_2 = A_2 - B_2$ where A_1, A_2, B_1, B_2 are all r.e. sets.

$$D_1 \cap D_2 = (A_1 - B_1) \cap (A_2 - B_2)$$

$$= (A_1 \cap \overline{B_1}) \cap (A_2 \cap \overline{B_2})$$

$$= (A_1 \cap A_2) \cap (\overline{B_1} \cap \overline{B_2})$$

$$= (A_1 \cap A_2) - (\overline{B_1} \cap \overline{B_2})$$

$$= (A_1 \cap A_2) - (B_1 \cup B_2)$$

Thus $D_1 \cap D_2$ is also an r.e. set.

(b) Let $T_n = \{x \mid |W_x| \ge n\}$. Since " $x \in T_n$ " \Leftrightarrow " $\exists x_1 \exists x_2 \dots \exists x_n (x_i \in W_x \text{ for any } i \le n \land x_i \ne x_j \text{ for any } i \ne j$)", T_n is an r.e. set. Since $C_n = T_n - T_{n+1}$, according to the definition, C_n is a d.r.e set.