



(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets



(11)

EP 0 837 052 A1

(12)

**EUROPEAN PATENT APPLICATION**

published in accordance with Art. 158(3) EPC

(43) Date of publication:

22.04.1998 Bulletin 1998/17

(21) Application number: 96918841.6

(22) Date of filing: 19.06.1996

(51) Int. Cl.<sup>6</sup>: **C07C 233/52, C07C 233/84,  
C07C 271/24, C07C 311/06,  
C07C 311/11, C07C 311/13,  
C07C 311/19, C07D 493/08,  
C07D 495/08, A61K 31/16**

(86) International application number:  
**PCT/JP96/01685**

(87) International publication number:  
**WO 97/00853 (09.01.1997 Gazette 1997/03)**

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC  
NL PT SE

Designated Extension States:

AL LT LV SI

(30) Priority: 21.06.1995 JP 154575/95

(71) Applicant: SHIONOGI & CO., LTD.  
Osaka-shi, Osaka-fu 541 (JP)

(72) Inventors:

- OHTANI, Mitsuaki  
Nara 630 (JP)

- ARIMURA, Akinori  
Osaka-shi Osaka 558 (JP)
- TSURI, Tatsuo  
Kobe-shi Hyogo 651-11 (JP)
- KISHINO, Junji  
Hyogo 654-01 (JP)
- HONMA, Tsunetoshi  
Nara 630-02 (JP)

(74) Representative:

Baverstock, Michael George Douglas et al  
BOULT WADE TENNANT,  
27 Furnival Street  
London EC4A 1PQ (GB)

(54) BICYCLIC AMINO DERIVATIVES AND PGD 2 ANTAGONIST CONTAINING THE SAME

(57) A compound of the formula (I):



wherein



is



or



for example, a compound below:



wherein

R<sub>1</sub> is CH<sub>3</sub>, H or Na; and X<sub>1</sub>-X<sub>2</sub>-X<sub>3</sub> is



or a salt or a hydrate thereof is useful as a PGD<sub>2</sub> antagonist and can be used as a drug for treating diseases in which mast cell dysfunction is involved, for example, systemic mastocytosis and disorder of systemic mast cell activation, and also tracheal contraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, injury due to ischemic reperfusion, and as an anti-inflammatory agent. It is particularly useful in the treatment of nasal occlusion.

**Description****FIELD OF THE INVENTION**

5      The present invention relates to bicyclic amino derivatives and prostaglandin D<sub>2</sub> (hereinafter, referred to as PGD<sub>2</sub>) antagonist containing them.

**BACKGROUND OF THE INVENTION**

10     Some bicyclic amino derivatives of the present invention are known to be useful as thromboxane A<sub>2</sub> (TXA<sub>2</sub>) antagonists (Japanese Patent Publication (KOKOKU) No. 79060/1993). However, Japanese Patent Publication (KOKOKU) No. 79060/1993 only describes the compounds as useful as TXA<sub>2</sub> antagonists, and does not suggest usefulness thereof as PGD<sub>2</sub> antagonists as disclosed by the present invention.

15     Namely, TXA<sub>2</sub> is known to have activities such as action against platelet agglutination, thrombogenesis, etc. The TXA<sub>2</sub> antagonist has therefore been considered to be useful as an anti-thrombotic agent, and also in the treatment of myocardial infarction or asthma by antagonizing against TXA<sub>2</sub>.

20     On the other hand, the PGD<sub>2</sub> antagonist of the present invention is useful in the improvement of conditions due to excessive production of PGD<sub>2</sub>. Specifically, it is useful as a drug for treating diseases in which mast cell dysfunction is involved, for example, systemic mastocytosis and disorder of systemic mast cell activation, and also tracheal contraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, injury due to ischemic reperfusion, and inflammation.

As is apparent from the above, the TXA<sub>2</sub> antagonist and the PGD<sub>2</sub> antagonist are completely different from each other in terms of the active site, mechanism of action, and application, and have quite different characteristics. Accordingly, it has never been expected that any compound could possess these activities simultaneously.

25     PGD<sub>2</sub> is produced through PGG<sub>2</sub> and PGH<sub>2</sub> from arachidonic acid by the action of cyclooxygenase activated by immunological or unimmunological stimulation and is the major prostanoid that is produced and released from mast cells. PGD<sub>2</sub> has various potent physiological and pathological activities. For example, PGD<sub>2</sub> can cause strong tracheal contraction, which leads to bronchial asthma, and, in a systemic allergic state, it can dilate the peripheral vessels, which leads to an anaphylactic shock. Especially, much attention has been paid to the idea that PGD<sub>2</sub> is one of the causal substances responsible for the onset of nasal occlusion in the allergic rhinitis. Therefore, it has been proposed to 30 develop an inhibitor against the biosynthesis of PGD<sub>2</sub> or an antagonist of PGD<sub>2</sub> receptor as a drug for the reduction of nasal occlusion. However, the inhibitor of PGD<sub>2</sub> biosynthesis possibly affects greatly the synthesis of prostaglandins in other organisms, and therefore, it is desirable to develop an antagonist (blocker) specific to PGD<sub>2</sub> receptor.

**DISCLOSURE OF THE INVENTION**

35     The present inventors have studied intensively to develop PGD<sub>2</sub> receptor antagonists (blockers) specific to PGD<sub>2</sub> receptor, and found that compounds of the formula (I) below or its salt possess a potent activity as PGD<sub>2</sub> receptor antagonists and are chemically and biochemically stable.

40     Accordingly, the present invention provides a PGD<sub>2</sub> antagonist which comprises a compound of the general formula (I) below or its salt or a hydrate thereof as an active ingredient:



wherein

5

is

10



OR



;

15

A is alkylene which optionally is intervened by a hetero atom or phenylene, contains oxo group, and/or has an unsaturated bond;

B is hydrogen, alkyl, aralkyl or acyl;

R is COOR<sub>1</sub>, CH<sub>2</sub>OR<sub>2</sub> or CON(R<sub>3</sub>)R<sub>4</sub>;

R<sub>1</sub> is hydrogen or alkyl;

R<sub>2</sub> is hydrogen or alkyl;

25 R<sub>3</sub> and R<sub>4</sub> each are independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

X<sub>1</sub> is a single bond, phenylene, naphthylene, thiophenediyl, indolediyl, or oxazolediyl;

X<sub>2</sub> is a single bond, -N=N-, -N=CH-, -CH=N-, -CH=N-N-, -CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(Cl)=C(Cl)-, -(CH<sub>2</sub>)<sub>n</sub>- ethynylene, -N(R<sub>5</sub>)-, -N(R<sub>51</sub>)CO-, -N(R<sub>52</sub>)SO<sub>2</sub>-, -N(R<sub>53</sub>)CON(R<sub>54</sub>)-, -CON(R<sub>55</sub>)-, -SO<sub>2</sub>N(R<sub>56</sub>)-, -O-, -S-, -SO-, -SO<sub>2</sub>-, -CO-, oxadiazolediyl, thiadiazolediyl or tetrazolediyl;

30 X<sub>3</sub> is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group, cycloalkyl, cycloalkenyl, thiazolinylidenemethyl, thiazo-lidinylidenemethyl, -CH=NR<sub>6</sub> or -N=C(R<sub>7</sub>)R<sub>8</sub>;

R<sub>5</sub>, R<sub>51</sub>, R<sub>52</sub>, R<sub>53</sub>, R<sub>54</sub>, R<sub>55</sub> and R<sub>56</sub> each are hydrogen or alkyl;

R<sub>6</sub> is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy, thiocarbamoyloxy, ureido or thioureido;

R<sub>7</sub> and R<sub>8</sub> each are independently alkyl, alkoxy or aryl;

35 n is 1 or 2;

Z is -SO<sub>2</sub>- or -CO-; and

m is 0 or 1;

wherein a cyclic substituent may have one to three substituents selected from the group consisting of nitro, alkoxy, sul-famoyl, substituted- or unsubstituted-amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxy carbonyl, aralkoxy carbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxyalkyl, trifluoromethyl, alkylthio, -N=PPh<sub>3</sub>, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy.

#### THE BEST EMBODIMENT FOR PRACTICING THE INVENTION

45

Specific examples of compounds usable as a PGD<sub>2</sub> antagonist above include a compound of the formula (I) wherein

50



is

5



m is 0; and when Z is SO<sub>2</sub>, both X<sub>1</sub> and X<sub>2</sub> are a single bond; X<sub>3</sub> is alkyl, phenyl, naphthyl, styryl, quinolyl or thienyl; and a cyclic substituent among these substituents optionally has one to three substituents selected from the group consisting of nitro, alkoxy, substituted- or unsubstituted-amino, halogen, alkyl and hydroxyalkyl, or a salt or hydrate thereof.

Similarly, specific examples include a compound of the formula (I) wherein

15



20

is

25



;

when m is 1, both X<sub>1</sub> and X<sub>2</sub> are a single bond; and X<sub>3</sub> is phenyl optionally substituted with halogen, or a salt or hydrate thereof.

Similarly, specific examples include a compound of the formula (I) wherein

35



is

40



;

45

when m is 1, X<sub>1</sub> is phenyl, X<sub>2</sub> is -CH<sub>2</sub>- or -N=N- and X<sub>3</sub> is phenyl, or a salt or hydrate thereof.

50        Similarly, examples of compounds of the formula (I) include those of the formula (Ia):

55



wherein A, B, R, X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> are as defined above, or its salt or hydrate thereof, provided that those wherein (1) X<sub>1</sub> and X<sub>2</sub> are a single bond, and X<sub>3</sub> is substituted- or unsubstituted-phenyl, or naphthyl; and (2) A is 5-heptenylene, R is COOR<sub>1</sub> (R<sub>1</sub> is hydrogen or methyl), X<sub>1</sub> is 1,4-phenylene, X<sub>2</sub> is a single bond, and X<sub>3</sub> is phenyl are excluded.

15

Similarly, examples of compounds of the formula (I) include those of the formula (Ib):



wherein

30



is

40



A, B, R, X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> are as defined above, or a salt or hydrate thereof, provided that those wherein X<sub>1</sub> and X<sub>2</sub> are a single bond, and X<sub>3</sub> is phenyl, and wherein X<sub>1</sub> is a single bond, X<sub>2</sub> is -O-, and X<sub>3</sub> is benzyl are excluded.

More specifically, examples of compounds of the formula (I) include those of the formula (Ia) wherein X<sub>1</sub> and X<sub>2</sub> are a single bond, X<sub>3</sub> is isoxazolyl, thiadiazolyl, isothiazolyl, morpholyl, indolyl, benzofuryl, dibenzofuryl, dibenzodioxinyl, benzothienyl, dibenzothienyl, carbazolyl, xanthenyl, phenanthridinyl, dibenzoepinyl, dibenzothiepinyl, cinnolyl, chromenyl, benzimidazolyl or dihydrobenzothiepinyl, or its salt or hydrate thereof.

Similarly, examples of compounds of the formula (I) include those of the formula (Ia) wherein X<sub>1</sub> is a single bond, X<sub>2</sub> is phenylene, X<sub>3</sub> is alkenyl, alkynyl, -CH=NR<sub>6</sub> or -N=C(R<sub>7</sub>)R<sub>8</sub>, or a salt or hydrate thereof.

55 Similarly, examples of compounds of the formula (I) include those of the formula (Ia) wherein R is COOR<sub>1</sub>, X<sub>1</sub> is phenylene or thiophenediyl, X<sub>2</sub> is a single bond, -N=H-, -CH=CH-, -CONH-, -NHCO- or ethynylene and X<sub>3</sub> is phenyl, thiazolinylidenemethyl, thiazolidinylidenemethyl or thienyl, or a salt or hydrate thereof.

More specifically, examples of the compound (I) of the present invention include those of the formula (Ib) wherein

5



is

10

15



;

20 or a salt or hydrate thereof. Examples of more preferred compounds include those of the formula (lb) wherein R is COOR<sub>1</sub> (R<sub>1</sub> is as defined above) or a salt or hydrate thereof.

Similarly, examples of compound (l) include those of the formula (lb) wherein X<sub>1</sub> is phenylene or thiophenediyl, X<sub>2</sub> is a single bond, -N=H-, -CH=CH-, ethynylene, -O-, -S-, -CO-, -CON(R<sub>55</sub>)- (R<sub>55</sub> is as defined above), -N(R<sub>51</sub>)CO- (R<sub>51</sub> is as defined above) and X<sub>3</sub> is phenyl, or a salt or hydrate thereof.

25 More specifically, examples of compound (l) include those of the formula (lb) wherein

30



is

35



40

or a salt or hydrate thereof. Examples of more preferred embodiments include those wherein B is hydrogen, both X<sub>1</sub> and X<sub>2</sub> are a single bond, X<sub>3</sub> is thienyl, thiazolyl, thiadiazolyl, isothiazolyl, pyrrolyl, pyridyl, benzofuryl, benzimidazolyl, benzothienyl, dibenzofuryl, dibenzothienyl, quinolyl or indolyl or a salt or hydrate thereof. Similarly, examples include 45 those wherein X<sub>1</sub> is phenylene, thiophenediyl, indolediyl or oxazolediyl, X<sub>2</sub> is a single bond, -N=H-, -CH=CH-, ethynylene, -S- or -O-, and X<sub>3</sub> is aryl or heterocyclic group, or a salt or hydrate thereof.

The compounds of the general formula (la) and (lb) are novel compounds synthesized by the present inventors.

The terms used throughout the present specification are as defined below.

The term "alkylene" means C<sub>1</sub> - C<sub>9</sub> straight or branched chain alkylene, for example, methylene, methyl/methylene, 50 dimethylmethylene, methylethyl/methylene, ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, nonamethylene, or the like. The alkylene above can be intervened by a hetero atom(s) (oxygen, sulfur, nitrogen atom, or the like) or phenylene (e.g., 1,4-phenylene, 1,3-phenylene, 1,2-phenylene, or the like), contain an oxo group, and/or have one or more double- or triple-bonds at any positions on the chain. Examples include -(CH<sub>2</sub>)<sub>2</sub>O-CH<sub>2</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-(CH<sub>2</sub>)<sub>2</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-(CH<sub>2</sub>)<sub>3</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-(CH<sub>2</sub>)<sub>4</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-(CH<sub>2</sub>)<sub>5</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-(CH<sub>2</sub>)<sub>6</sub>-, -(CH<sub>2</sub>)<sub>2</sub>S-(CH<sub>2</sub>)<sub>2</sub>-, -(CH<sub>2</sub>)<sub>3</sub>S-(CH<sub>2</sub>)<sub>2</sub>-, -CH<sub>2</sub>S-CH<sub>2</sub>-, -CH<sub>2</sub>S-(CH<sub>2</sub>)<sub>4</sub>-, -CH<sub>2</sub>N(CH<sub>3</sub>)-CH<sub>2</sub>-, -CH<sub>2</sub>-NH-(CH<sub>2</sub>)<sub>2</sub>-, -(CH<sub>2</sub>)<sub>2</sub>N(CH<sub>2</sub>CH<sub>3</sub>)-(CH<sub>2</sub>)<sub>3</sub>-, -(CH<sub>2</sub>)<sub>2</sub>1,4-phenylene-CH<sub>2</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-1,3-phenylene-CH<sub>2</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-1,2-phenylene-CH<sub>2</sub>-, -(CH<sub>2</sub>)<sub>2</sub>O-1,4-phenylene-CH<sub>2</sub>-, -CH=CH-S-CH<sub>2</sub>-1,4-phenylene-CH<sub>2</sub>-, -CH=CH-S-1,3-phenylene-(CH<sub>2</sub>)<sub>2</sub>-, 2-oxopropylene, 3-oxopentylene, 5-oxohexylene, vinylene, 1-propenylene, 2-propenylene, 1-but enylene, 2-but enylene, 3-but e-

nylene, 1,2-butadienylene, 1,3-butadienylene, 1-pentenylene, 2-pentenylene, 3-pentenylene, 4-pentenylene, 1,2-pentadienylene, 1,3-pentadienylene, 1,4-pentadienylene, 2,3-pentadienylene, 2,4-pentadienylene, 1-hexenylene, 2-hexenylene, 3-hexenylene, 4-hexenylene, 5-hexenylene, 1,2-hexadienylene, 1,3-hexadienylene, 1,4-hexadienylene, 1,5-hexadienylene, 2,3-hexadienylene, 2,4-hexadienylene, 2,5-hexadienylene, 3,4-hexadienylene, 3,5-hexadienylene,  
 5 4,5-hexadienylene, 1,1-dimethyl-4-hexenylene, 1-heptenylene, 2-heptenylene, 3-heptenylene, 4-heptenylene, 5-heptenylene, 2,2-dimethyl-5-heptenylene, 6-heptenylene, 1,2-heptadienylene, 1,3-heptadienylene, 1,4-heptadienylene, 1,5-heptadienylene, 1,6-heptadienylene, 2,3-heptadienylene, 2,4-heptadienylene, 2,5-heptadienylene, 2,6-heptadienylene, 3,4-heptadienylene, 3,5-heptadienylene, 3,6-heptadienylene, 4,5-heptadienylene, 4,6-heptadienylene or 5,6-heptadienylene, 1-propynylene, 3-butynylene, 2-pentyne, 5-hexynylene, 6-heptyne, -(CH<sub>2</sub>)-CH=CH-O-(CH<sub>2</sub>)<sub>2</sub>, -CH<sub>2</sub>-S-(CH<sub>2</sub>)<sub>3</sub>, -CH<sub>2</sub>-cis-CH=CH-1,2-phenylene-CH<sub>2</sub>-, -CH=CH-1,4-phenylene-(CH<sub>2</sub>)<sub>2</sub>, -4-oxo-4,5-hexenylene-, and the like.

The term "alkyl" means C<sub>1</sub> - C<sub>20</sub> straight or branched chain alkyl, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, i-pentyl, neopentyl, t-pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl, and the like.

15 The term "aryl" means C<sub>6</sub> - C<sub>14</sub> monocyclic or condensed ring, for example, phenyl, naphthyl (e.g., 1-naphthyl, 2-naphthyl), anthryl (e.g., 1-anthryl, 2-anthryl, 9-anthryl), phenanthryl (e.g., 2-phenanthryl, 3-phenanthryl, 9-phenanthryl), fluorenyl (e.g., 2-fluorenyl), and the like. Phenyl is especially preferred.

20 The term "aralkyl" means a group formed by substituting an alkyl as defined above with an aryl above at any substitutable positions on the alkyl. Examples include benzyl, phenethyl, phenylpropyl (e.g., 3-phenylpropyl), naphthylmethyl (e.g., α-naphthylmethyl), anthrylmethyl (e.g., 9-anthrylmethyl), phenanthrylmethyl (e.g., 3-phenanthrylmethyl), and the like.

The term "acyl" means C<sub>1</sub> - C<sub>9</sub> acyl derived from aliphatic carboxylic acid, for example, formyl, acetyl, propionyl, butyryl, valeryl, and the like.

25 The term "alkylsulfonyl" means a group formed by substituting a sulfonyl with an alkyl above, for example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, and the like.

The term "alkenyl" is C<sub>2</sub> - C<sub>20</sub> straight or branched chain alkenyl, which corresponds to an alkyl above containing one or more double bonds. Examples include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,2-butadienyl, 1-pentenyl, 1,2-pentadienyl, 2-hexenyl, 1,2-hexadienyl, 3-heptenyl, 1,5-heptadienyl, and the like.

30 The term "alkynyl" is C<sub>2</sub> - C<sub>20</sub> straight or branched chain, alkynyl, which corresponds to an alkyl above containing one or more triple bonds. Examples include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, and the like.

The term "heterocyclic group" means 5 - 7 membered cyclic group containing one or more hetero atoms selected independently from the group consisting of oxygen, sulfur and/or nitrogen atom on the ring, and is optionally condensed with a carbon ring or other heterocyclic group at any substitutable positions. Examples include pyrrolyl (e.g., 1-pyrrolyl, 3-pyrrolyl), indolyl (e.g., 2-indolyl, 3-indolyl, 6-indolyl), carbazolyl (e.g., 2-carbazolyl, 3-carbazolyl), imidazolyl (e.g., 1-imidazolyl, 4-imidazolyl), pyrazolyl (e.g., 1-pyrazolyl, 3-pyrazolyl), benzimidazolyl (e.g., 2-benzimidazolyl, 5-benzimidazolyl), indazolyl (e.g., 3-indazolyl), indolizinyl (e.g., 6-indolizinyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), quinolyl (e.g., 8-quinolyl), isoquinolyl (e.g., 3-isoquinolyl), acridyl (e.g., 1-acridyl), phenanthrydiny (e.g., 2-phenanthrydiny, 3-phenanthrydiny), pyridazinyl (e.g., 3-pyridazinyl), pyrimidinyl (e.g., 4-pyrimidinyl), pyrazinyl (e.g., 2-pyrazinyl), cinnolinyl (e.g., 3-cinnolinyl), phthaladinyl (e.g., 5-phthaladiny), quinazolinyl (e.g., 2-quinazolinyl), isoazolyl (e.g., 3-isoazolyl, 4-isoazolyl), benzisoxazolyl (e.g., 1,2-benzisoxazol-4-yl, 2,1-benzisoxazol-3-yl), oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), benzoxazolyl (e.g., 2-benzoxazolyl), benzoxadiazolyl (e.g., 4-benzoxadiazolyl), isothiazolyl (e.g., 3-isothiazolyl, 4-isothiazolyl) benzisothiazolyl (e.g., 1,2-benzisothiazol-3-yl, 2,1-benzisothiazol-5-yl), thiazolyl (e.g., 2-thiazolyl), benzothiazolyl (e.g., 2-benzothiazolyl), thiadiazolyl (e.g., 1,2,3-thiadiazol-4-yl), oxadiazolyl (e.g., 1,3,4-oxadiazol-2-yl), dihydroxadiazolyl (e.g., 4,5-dihydro-1,2,4-oxadiazol-3-yl), furyl (e.g., 2-furyl, 3-furyl), benzofuryl (e.g., 3-benzofuryl), isobenzofuryl (e.g., 1-isobenzofuryl), thiienyl (e.g., 2-thienyl, 3-thienyl), benzothienyl (1-benzothiophen-2-yl, 2-benzothiophen-1-yl), tetrazolyl (e.g., 5-tetrazolyl), benzodioxolyl (e.g., 1,3-benzodioxol-5-yl), dibenzofuryl (e.g., 2-dibenzofuryl, 3-dibenzofuryl), dibenzoxepinyl (e.g., dibenz[b,f]oxepin-2-yl), dihydronbenzoxepinyl (e.g., dihydronbenz[b,f]oxepin-2-yl), chromenyl (e.g., 2H-chromen-3-yl, 4H-chromen-2-yl), dibenzothiepinyl (e.g., dibenzo[b,f]thiepin-3-yl, dihydronbenzo[b,f]thiepin-3-yl), morpholinyl (e.g., 1,4-morpholin-4-yl), phenothiadiny (2-phenothiadiny),  
 45 50 cyclopentathienyl (e.g., cyclopenta[b]thiophen-3-yl), cyclohexathienyl (e.g., cyclohexa[b]thiophen-3-yl), and the like.

The term "cycloalkyl" means C<sub>3</sub> - C<sub>8</sub> cyclic alkyl, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.

The term "cycloalkenyl" means C<sub>3</sub> - C<sub>8</sub> cyclic alkenyl, for example, cyclopropenyl (e.g., 1-cyclopropenyl), cyclobutenyl (e.g., 2-cyclobuten-1-yl), cyclopentenyl (1-cyclopenten-1-yl), cyclohexenyl (1-cyclohexen-1-yl), and the like.

The term "alkoxy" means C<sub>1</sub> - C<sub>6</sub> alkoxy, for example, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, and the like.

55 Examples of the substituted amino in the definition of "substituted- or un-substituted-amino" include mono- or di-substituted amino such as methylamino, ethylamino, dimethylamino, cyclohexylamino, phenylamino, diphenylamino, or

cyclic amino such as piperidino, piperadino or morpholino.

The term "acyloxy" means an acyloxy derived from the "acyl" above, for example, acetoxy, propionyloxy, butyryloxy, valeryloxy, and the like.

The term "halogen" means fluorine, chlorine, bromine and iodine.

5 The term "alkoxycarbonyl" means an alkoxycarbonyl group derived from the "alkoxy" above, for example, methoxycarbonyl, ethoxycarbonyl, phenyloxycarbonyl, and the like.

The term "aralkyloxycarbonyl" means an aralkyloxycarbonyl group derived from the "aralkyl" above, for example, benzoyloxycarbonyl, phenethyloxycarbonyl, and the like.

10 The term "aryloxycarbonyl" means an aryloxycarbonyl group derived from the "aryl" above, for example, phenyloxycarbonyl, naphthyoxy carbonyl, and the like.

The term "alkenyloxy" means an alkenyloxy group derived from the "alkenyl" above, for example, vinyloxy, 1-propenoxy, 2-butenoxy, and the like.

The term "hydroxalkyl" means a hydroxalkyl group derived from the "alkyl" above, for example, hydroxymethyl, hydroxyethyl, hydroxypropyl, and the like.

15 The term "alkylthio" means an alkylthio group derived from the "alkyl" above, for example, methylthio, ethylthio, propylthio, and the like.

The term "alkylenedioxy" means C<sub>1</sub> - C<sub>3</sub> alkylenedioxy, for example, methylenedioxy, ethylenedioxy, propylenedioxy, and the like.

20 In the case of "phenylene", "naphthylene", "thiophenediyl", "indolediyl", "oxazolediyl", "oxadiazolediyl" and tetrazolediyl", the said group can bind to the neighboring groups at any two substitutable sites.

In the definitions above, when a substituent(s) is cyclic, it may be substituted by one to three substituents selected from nitro, alkoxy, sulfamoyl, substituted- or un-substituted-amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxy carbonyl, aralkyloxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxalkyl, trifluoromethyl, alkylthio, -N=PPh<sub>3</sub>, oxo, thioxo, hydroxyimino, alkoxyimino, phenyl and alkylenedioxy. The substituent(s) may bind to any substitutable positions on the ring.

25 Examples of salts of the compound (I) include those formed with an alkali metal (e.g., lithium, sodium or potassium), an alkaline earth metal (e.g., calcium), an organic base (e.g., tromethamine, trimethylamine, triethylamine, 2-aminobutane, t-butylamine, diisopropylethylamine, n-butylmethylamine, cyclohexylamine, dicyclohexylamine, N-isopropylcyclohexylamine, furfurylamine, benzylamine, methylbenzylamine, dibenzylamine, N,N-dimethylbenzylamine, 2-chlorobenzylamine, 4-methoxybenzylamine, 1-naphthylmethyamine, diphenylbenzylamine, triphenylamine, 1-naphthylamine, 1-aminoanthracene, 2-aminoanthracene, dehydroabiethylamine, N-methylmorpholine or pyridine), an amino acid (e.g., lysine, or arginine), and the like.

The term "hydrate" means a hydrate of the compound of the formula (I) or its salt. Examples include mono- and dihydrates.

30 35 The present compounds are shown by the formula (I) and are inclusive of the form of any types of stereoisomers (e.g., diastereomer, epimer, enantiomer) and racemic compounds.

Among the compounds of the general formula (I), those wherein m=1, especially, those shown in Tables 3b and 3c below are known compounds described in Japanese Patent Publication (KOKAI) No. 180862/1990.

40 Among the compounds of the general formula (I), those wherein m=0, [i.e., those shown by the general formula (I')], can be prepared by reacting an amino compound of the general formula (II) with a reactive derivative of sulfonic acid or carboxylic acid corresponding to the partial structure: Z-X<sub>1</sub>-X<sub>2</sub>-X<sub>3</sub> as shown below.



55 Wherein A, B, R, X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, Y and Z are as defined above.

A sulfonic acid corresponding to the partial structure: Z-X<sub>1</sub>-X<sub>2</sub>-X<sub>3</sub> is a compound of the general formula X<sub>3</sub>-X<sub>2</sub>-X<sub>1</sub>-SO<sub>3</sub>OH and a carboxylic acid corresponding to the said partial structure is a compound of the general formula X<sub>3</sub>-X<sub>2</sub>-X<sub>1</sub>-COOH. Reactive derivative of these sulfonic or carboxylic acids means a corresponding halide (e.g., chloride, bro-

mide, iodide), acid anhydride (e.g., mixed acid anhydride with formic acid or acetic acid), active ester (e.g., succinimidyl ester), and examples thereof generally include acylating agents used for the acylation of amino group. The carboxylic acid  $X_3\text{-}X_2\text{-}X_1\text{-COOH}$  can be used in the reaction as it is without converting into a reactive derivative, in the presence of a condensing agent (e.g., dicyclohexylcarbodiimide (DCC), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N'-carbonyldiimidazole) which are used in the condensing reaction between amine and carboxylic acid.

The reaction can be conducted under the conditions generally used for the acylation of amino groups. For example, in the case of condensation using an acid halide, the reaction is carried out using a solvent such as an ether solvent (e.g., diethylether, tetrahydrofuran, dioxane), benzene solvent (e.g., benzene, toluene, xylene), halogenated hydrocarbon solvent (e.g., dichloromethane, dichloroethane, chloroform), ethyl acetate, dimethylformamide, dimethyl sulfoxide, acetonitrile, or the like, if necessary, in the presence of a base (e.g., organic base such as triethylamine, pyridine, N,N-dimethylaminopyridine, N-methylmorpholine; inorganic base such as sodium hydroxide, potassium hydroxide, potassium carbonate, or the like) under cooling, at room temperature or under heating, preferably at temperature ranging from -20°C to a temperature under cooling, or from room temperature to a refluxing temperature of the reaction system, for several min to several hr, preferably for 0.5 hr to 24 hr, more preferably, for 1 hr to 12 hr.

15 The reaction conditions for the reaction between other reactive derivative or a free acid and an amine (II) can be determined in a conventional manner depending on the characteristics of the respective reactive derivative or free acid.

The reaction product can be purified by conventional purification methods, for example, the extraction with a solvent, chromatography, recrystallization, or the like.

Specific examples of the compound (II) as a starting material for the present method are as follows. Examples of 3-amino[2.2.1]bicyclic compound include 7-(3-aminobicyclo[2.2.1]hept-2-yl)-5-heptenoic acid, 7-(3-aminobicyclo[2.2.1]hept-2-yl)-2,2-dimethyl-5-heptenoic acid, 7-(N-methyl-3-aminobicyclo[2.2.1]hept-2-yl)-5-heptenoic acid, 6-(3-aminobicyclo[2.2.1]hept-2-yl)-5-hexenoic acid. Specific examples of 2-amino-6,6-dimethyl[3.1.1]bicyclic compound include 7-(2-amino-6,6-dimethylbicyclo[3.1.1]hept-3-yl)-5-heptenoic acid. In these starting compounds, the heptenoic acid chain may be saturated to form heptanoic acid chain, intervened by a hetero atom(s) or a hetero group(s) such as -O-, -S-, -NH-, or a phenylene(s), or substituted with an oxo group. Examples of such compounds include 7-(3-aminobicyclo[2.2.1]hept-2-yl)heptanoic acid, 4-[2-(2-aminobicyclo[3.1.1]hept-3-yl)ethoxyphenylacetic acid, 7-(3-aminobicyclo[2.2.1]hept-2-yl)-6-oxo-heptanoic acid. These starting compounds are either described in the Japanese Patent Publication (KOKOKU) No. 79060/1993 or 23170/1991, or can be prepared according to the method described therein.

Sulfonic acid  $X_3\text{-}X_2\text{-}X_1\text{-SO}_2\text{OH}$  and carboxylic acid  $X_3\text{-X}_2\text{-X}_1\text{-COOH}$  corresponding to the partial structure  $Z\text{-X}_1\text{-X}_2\text{-X}_3$  mean a sulfonic acid or carboxylic acid having substituents corresponding to the Xs above. That is, examples include alkane-sulfonic acid or -carboxylic acid, alkene-sulfonic acid or -carboxylic acid, alkyne-sulfonic acid or -carboxylic acid, cycloalkane-sulfonic acid or -carboxylic acid, cycloalkene-sulfonic acid or -carboxylic acid, aryl-sulfonic acid or -carboxylic acid, aralkyloxy-sulfonic acid or -carboxylic acid, heterocyclic-substituted-sulfonic acid or -carboxylic acid, heteroarylalkyl-sulfonic acid or -carboxylic acid, and substituted-amino-sulfonic acid or -carboxylic acid. Each of sulfonic and carboxylic acids may have a substituent(s) above. These sulfonic acids and carboxylic acids are commercially available or can be easily synthesized from a known compound(s) in accordance with a known method. Upon reaction, the sulfonic or carboxylic acid can be converted into the corresponding reactive derivative above, if necessary. For example, when an acid halide is needed, the compound is reacted with thionyl halide (e.g., thionyl chloride), phosphorous halide (e.g., phosphorous trichloride, phosphorous pentachloride) or oxalyl halide (e.g., oxalyl chloride) in accordance with a known method such as those described in the literature (e.g., Shin-Jikken-Kagaku-Koza, vol. 14, pp. 1787 (1978); Synthesis, 852-854 (1986); Shin-Jikken-Kagaku-Koza, vol. 22, pp. 115 (1992)). The other reactive derivatives can also be prepared in accordance with known methods.

Among the objective compounds (I), those wherein the side chain A contains an unsaturated bond, especially a double bond, can also be prepared by reacting an aldehyde derivative of the general formula (III) below with an ylide compound corresponding to the rest of the side chain A-R under the conditions of the Wittig reaction:



wherein A, B, R, X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, Y and Z are as defined above.

The starting compound (III) can be prepared in accordance with a method described in, for example, Japanese Patent Publication (KOKAI) No. 256650/1990. Further, an ylide compound corresponding to the rest of the side chain A-R can be synthesized by reacting triphenylphosphine with a corresponding halogenated alcanoic acid, or an ester derivative, ether derivative or amide derivative thereof in the presence of a base according to a known method.

Among the objective compounds (I), those wherein R is COOH can be converted into a corresponding ester derivative, alcohol derivative, ether derivative, amide derivative, if desired. For example, ester derivatives can be prepared by esterifying a carboxylic acid in a conventional manner. An ester derivative, when reduced, gives an alcohol derivative, and amidated, gives an amide derivative. An ether derivative can be obtained by O-alkylating an alcohol derivative.

The compound (I) of the present invention shows antagonistic effect against PGD<sub>2</sub> in vitro through the binding to PGD<sub>2</sub> receptor, and is useful as a drug for treating diseases in which mast cell dysfunction due to excessive production of PGD<sub>2</sub> is involved. For example, the compound (I) is useful as a drug for treating diseases, such as systemic mastocytosis and disorder of systemic mast cell activation, and also tracheal contraction, asthma, allergic rhinitis, allergic conjunctivitis, urticaria, injury due to ischemic reperfusion, and inflammation. The compound (I) shows preventive effect on nasal occlusion in vivo, and therefore is especially useful as a drug for treating that.

When using a compound (I) of the present invention in treatment, it can be formulated into ordinary formulations for oral and parenteral administration. A pharmaceutical composition containing a compound (I) of the present invention can be in the form for oral and parenteral administration. Specifically, it can be formulated into formulations for oral administration such as tablets, capsules, granules, powders, syrup, and the like; those for parenteral administration such as injectable solutions or suspensions for intravenous, intramuscular or subcutaneous injection, inhalant, eye drops, nasal drops, suppositories, or percutaneous formulations such as ointments.

In preparing the formulations, carriers, excipients, solvents, and bases known to one ordinary skilled in the art may be used. In case of tablets, they are prepared by compressing or formulating an active ingredient together with auxiliary components. Examples of usable auxiliary components include pharmaceutically acceptable excipients such as binders (e.g., cornstarch), fillers (e.g., lactose, microcrystalline cellulose), disintegrants (e.g., starch sodium glycolate) or lubricants (e.g., magnesium stearate). Tablets may be coated appropriately. In the case of liquid formulations such as syrups, solutions, or suspensions, they may contain suspending agents (e.g., methyl cellulose), emulsifiers (e.g., lecithin), preservatives, and the like. In the case of injectable formulations, it may be in the form of solution or suspension, or oily or aqueous emulsion, which may contain suspension-stabilizing agent or dispensing agent, and the like. In the case of an inhalant, it is formulated into a liquid formulation applicable to an inhaler. In the case of eye drops, it is formulated into a solution or a suspension. Especially, in the case of nasal drug for treating nasal occlusion, it can be used as a solution or suspension prepared by a conventional formulating method, or as a powder formulated using a powdering agent (e.g., hydroxypropyl cellulose, carbopore), which are administered into the nasal cavity. Alternatively, it can be used as an aerosol after filling into a special container together with a solvent of low boiling point.

Although an appropriate dosage of the compound (I) varies depending on the administration route, age, body weight, sex, or condition of the patient, and the kind of drug(s) used together, if any, and should be determined by the physician in the end, in the case of oral administration, the daily dosage can generally be between about 0.01 - 100 mg, preferably about 0.01 - 10 mg, more preferably about 0.1 - 10 mg, per kg body weight. In the case of parenteral administration, the daily dosage can generally be between about 0.001 - 100 mg, preferably about 0.001 - 1 mg, more preferably about 0.01 - 1 mg, per kg body weight. The daily dosage can be administered in 1 - 4 divisions.

The following Examples are provided to further illustrate the present invention and are not to be construed as limiting the scope thereof.

Example 1

(Z)-7-[(1S,2R,3R,4R)-3-(2-Dibenzofuryl)sulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (1a-2) (453 mg, 0.97 mmol) was dissolved in methanol (5 ml). After addition of 1 N sodium methoxide/methanol (1.034 N, 0.937 ml, 0.97 mmol), the mixture was allowed to warm up to room temperature and to react for 1 hr. The solvent was removed by distillation to yield the sodium salt (1a-3) (457 mg, 0.933 mmol). Yield 96 %. Amorphous powder.

5

10

| Elemental analysis (C <sub>26</sub> H <sub>28</sub> NO <sub>5</sub> SnA 0.6H <sub>2</sub> O) |          |         |         |         |         |
|----------------------------------------------------------------------------------------------|----------|---------|---------|---------|---------|
| Calcd.(%) :                                                                                  | C,62.41; | H,5.88; | N,2.80; | S,6.41; | Na,4.59 |
| Found (%) :                                                                                  | C,62.45; | H,5.92; | N,2.99; | S,6.49; | Na,4.46 |

15

IR (KBr) : 434, 3280, 3074, 3007, 2952, 2873, 1566, 1467, 1444, 1417, 1344, 1315, 1270, 1248, 1200, 1189, 1154, 1124, 1107, 1075, 1058, 895, 842, 818 /cm.  
<sup>1</sup>H NMR(CD<sub>3</sub>OD): 1.02-2.05(16H, m), 2.16-2.23(1H, m), 2.94-3.00(1H, m), 4.98-5.05(2H, m), 7.41-7.48(1H, m), 7.53-7.62(1H, m), 7.66(1H, d, J=8.4Hz), 7.77(1H, d, J=8.4Hz), 8.57(1H, d, J=2.1Hz).  
[α]<sub>D</sub>=-15.2° (CH<sub>3</sub>OH, c=1.07%, 22°C).

20

Example 2

25



30

35

Methyl (Z)-7-[(1S,2R,3R,4R)-3-aminobicyclo[2.2.1]hept-2-yl]-5-heptenoate trifluoroacetate (II-2) (232 mg, 0.636 mmol), which was prepared by the method described in Reference Example 4 of the Japanese Patent Publication (KOKOKU) No. 79060/1993, was dissolved in methylene chloride (5 ml). To the solution were added triethylamine (0.279 ml, 2.00 mmol) and 4-biphenylcarbonyl chloride under ice-cooling and stirred for 7 hr at the same temperature. The reaction mixture was purified by column chromatography on silica gel (ethyl acetate/n-hexane (1:4)) to yield methyl (Z)-7-[(1S,2R,3R,4R)-3-(4-biphenyl)carbonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1k-11) (221 mg, 0.512 mmol). The compound (1k-11) (190 mg, 0.440 mmol) was dissolved in methanol (6 ml). To the solution was added 1 N KOH (1.10 ml, 1.10 mmol) under ice-cooling and stirred for 15 hr at room temperature. The reaction mixture was concentrated in vacuo. The residue, after the addition of water (20 ml) and 1 N HCl (2 ml), was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate/hexane (1:1) containing 0.3 % acetic acid) to yield (Z)-7-[(1S,2R,3R,4R)-3-(4-biphenyl)carbonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoic acid (1k-12) (172 mg, 0.412 mmol). Yield 94 %.

The following compounds can also be prepared in the following manner.

55

Example 3

10

To a suspension of 4-carboxybutyltriphenylphosphonium bromide (14.8 g, 33.3 mmol) and tetrahydrofuran (80 ml) was added potassium t-butyrate (7.55 g, 67.3 mmol) at room temperature under a nitrogen atmosphere. After stirring for 1 hr at room temperature, the mixture was cooled to -20°C and a solution of N-[(1S,2S,3S,4R)-3-formylmethylbicyclo[2.2.1]hept-2-yl]benzenesulfonamide (III-1) (Japanese Patent Publication (KOKAI) No. 256650/1990, Reference Example 2) (3.25 g, 11.1 mmol) in tetrahydrofuran (20 ml) was added slowly. After stirring for about 1 hr at -20 °C, the ice bath was removed and the mixture was further stirred for 1 hr. To the reaction solution was added 2 N HCl and the mixture was extracted with ethyl acetate, washed with water and brine, and concentrated. After the addition of toluene and 1 N sodium hydroxide to the resultant crude product, aqueous layer was separated. The organic layer was washed with water again and the washing was combined with the previously obtained aqueous layer. After the addition of 2 N HCl, the aqueous solution was extracted with ethyl acetate. The extract was washed with water and brine, dried over sodium sulfate, and concentrated. The residue was purified by column chromatography on silica gel to obtain calcium (Z)-7-[(1R,2S,3S,4S)-3-phenylsulfonylaminobicyclo[2.2.1]hept-2-yl]-5-heptenoate (1d-1) (3.29 g, yield 79 %, mp 62°C).

25

30

| Elemental analysis (C <sub>20</sub> H <sub>27</sub> NO <sub>4</sub> S) |           |          |          |         |
|------------------------------------------------------------------------|-----------|----------|----------|---------|
| Calcd. (%) :                                                           | C, 63.63; | H, 7.21; | N, 3.71; | S, 8.49 |
| Found (%) :                                                            | C, 63.56; | H, 7.21; | N, 3.83; | S, 8.43 |

35 [α]<sub>D</sub>=+ 5.3 ± 0.5° (CHCl<sub>3</sub>, c=1.003 %, 22°C)  
[α]<sub>D</sub>=+27.1 ± 0.7° (MeOH, c=1.015 % 24 °C)  
IR(Nujol) 3282, 3260, 3300, 2400, 1708, 1268, 1248, 1202, 1162, 1153, 1095, 1076/cm.  
<sup>1</sup>H NMR δ 0.88-2.10(m, 14H), 2.14(br S, 1H), 2.34(t, J=7.2Hz, 2H), 2.95-3.07(m, 1H), 5.13-5.35(m, 3H), 7.45-7.64(m, 3H), 7.85-7.94(m, 2H), 9.52(brS, 1H).

40

Compounds prepared in accordance with a method described in Examples above are shown in Tables below.

45

50

55

Table 1a

5



10

15

20

25

30

35

40

45

50

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 1a-1  | CH <sub>3</sub> |                                                |
| 1a-2  | H               |                                                |
| 1a-3  | Na              |                                                |
| 1a-4  | CH <sub>3</sub> |                                                |
| 1a-5  | H               |                                                |
| 1a-6  | CH <sub>3</sub> |                                                |
| 1a-7  | H               |                                                |
| 1a-8  | CH <sub>3</sub> |                                                |
| 1a-9  | H               |                                                |
| 1a-10 | CH <sub>3</sub> |                                                |
| 1a-11 | H               |                                                |
| 1a-12 | CH <sub>3</sub> |                                                |
| 1a-13 | H               |                                                |
| 1a-14 | CH <sub>3</sub> |                                                |
| 1a-15 | H               |                                                |
| 1a-16 | CH <sub>3</sub> |                                                |
| 1a-17 | H               |                                                |
| 1a-18 | CH <sub>3</sub> |                                                |
| 1a-19 | H               |                                                |
| 1a-20 | CH <sub>3</sub> |                                                |
| 1a-21 | H               |                                                |
| 1a-22 | H               |                                                |
| 1a-23 | H               |                                                |

55



5

10

| No.   | R <sub>1</sub>  | X <sub>1</sub> --X <sub>2</sub> --X <sub>3</sub> |
|-------|-----------------|--------------------------------------------------|
| 1a-24 | CH <sub>3</sub> |                                                  |
| 1a-25 | H               |                                                  |
| 1a-26 | Na              |                                                  |
| 1a-27 | CH <sub>3</sub> |                                                  |
| 1a-28 | H               |                                                  |
| 1a-29 | Na              |                                                  |
| 1a-30 | CH <sub>3</sub> |                                                  |
| 1a-31 | H               |                                                  |
| 1a-32 | CH <sub>3</sub> |                                                  |
| 1a-33 | H               |                                                  |
| 1a-34 | CH <sub>3</sub> |                                                  |
| 1a-35 | CH <sub>3</sub> |                                                  |
| 1a-36 | H               |                                                  |
| 1a-37 | CH <sub>3</sub> |                                                  |
| 1a-38 | H               |                                                  |
| 1a-39 | CH <sub>3</sub> |                                                  |
| 1a-40 | H               |                                                  |
| 1a-41 | H               |                                                  |
| 1a-42 | CH <sub>3</sub> |                                                  |
| 1a-43 | H               |                                                  |
| 1a-44 | CH <sub>3</sub> |                                                  |
| 1a-45 | H               |                                                  |

50

55

5



10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 1a-46 | CH <sub>3</sub> |                                                |
| 1a-47 | H               |                                                |
| 1a-48 | Na              |                                                |
| 1a-49 | CH <sub>3</sub> |                                                |
| 1a-50 | H               |                                                |
| 1a-51 | CH <sub>3</sub> |                                                |
| 1a-52 | H               |                                                |
| 1a-53 | CH <sub>3</sub> |                                                |
| 1a-54 | H               |                                                |
| 1a-55 | CH <sub>3</sub> |                                                |
| 1a-56 | H               |                                                |
| 1a-57 | CH <sub>3</sub> |                                                |
| 1a-58 | H               |                                                |
| 1a-59 | CH <sub>3</sub> |                                                |
| 1a-60 | H               |                                                |
| 1a-61 | CH <sub>3</sub> |                                                |
| 1a-62 | H               |                                                |
| 1a-63 | CH <sub>3</sub> |                                                |
| 1a-64 | H               |                                                |
| 1a-65 | CH <sub>3</sub> |                                                |
| 1a-66 | H               |                                                |
| 1a-67 | CH <sub>3</sub> |                                                |
| 1a-68 | H               |                                                |



|    | No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|-------|-----------------|------------------------------------------------|
| 10 | 1a-69 | CH <sub>3</sub> |                                                |
|    | 1a-70 | H               |                                                |
| 15 | 1a-71 | CH <sub>3</sub> |                                                |
|    | 1a-72 | H               |                                                |
| 20 | 1a-73 | CH <sub>3</sub> |                                                |
|    | 1a-74 | H               |                                                |
| 25 | 1a-75 | CH <sub>3</sub> |                                                |
|    | 1a-76 | H               |                                                |
| 30 | 1a-77 | CH <sub>3</sub> |                                                |
|    | 1a-78 | H               |                                                |
| 35 | 1a-79 | H               |                                                |
|    | 1a-80 | CH <sub>3</sub> |                                                |
| 40 | 1a-81 | H               |                                                |
|    | 1a-82 | CH <sub>3</sub> |                                                |
| 45 | 1a-83 | H               |                                                |
|    | 1a-84 | H               |                                                |
| 50 | 1a-85 | H               |                                                |
|    | 1a-86 | H               |                                                |
| 55 | 1a-87 | H               |                                                |



|    | No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|-------|-----------------|------------------------------------------------|
| 10 | Ia-88 | CH <sub>3</sub> |                                                |
|    | Ia-89 | H               |                                                |
| 15 | Ia-90 | CH <sub>3</sub> |                                                |
|    | Ia-91 | H               |                                                |
| 20 | Ia-92 | CH <sub>3</sub> |                                                |
|    | Ia-93 | H               |                                                |
| 25 | Ia-94 | H               |                                                |
|    | Ia-95 | H               |                                                |
| 30 | Ia-96 | H               |                                                |
|    | Ia-97 | H               |                                                |
| 35 | Ia-98 | H               |                                                |
|    | Ia-99 | Na              |                                                |

40

45

50

55



| No.    | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|-----------------|------------------------------------------------|
| 10     |                 |                                                |
| la-100 | CH <sub>3</sub> |                                                |
| la-101 | H               |                                                |
| 15     |                 |                                                |
| la-102 | CH <sub>3</sub> |                                                |
| 20     |                 |                                                |
| la-103 | CH <sub>3</sub> |                                                |
| la-104 | H               |                                                |
| 25     |                 |                                                |
| la-105 | CH <sub>3</sub> |                                                |
| la-106 | H               |                                                |
| 30     |                 |                                                |
| la-107 | CH <sub>3</sub> |                                                |
| la-108 | H               |                                                |
| 35     |                 |                                                |
| la-109 | CH <sub>3</sub> |                                                |
| la-110 | H               |                                                |
| 40     |                 |                                                |
| la-111 | CH <sub>3</sub> |                                                |
| la-112 | H               |                                                |
| 45     |                 |                                                |
| la-113 | CH <sub>3</sub> |                                                |
| la-114 | H               |                                                |

50

55

5



10

15

20

25

30

35

40

45

50

| No.    | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|-----------------|------------------------------------------------|
| 1a-115 | CH <sub>3</sub> |                                                |
| 1a-116 | H               |                                                |
| 1a-117 | Na              |                                                |
| 1a-118 | i-Pr            |                                                |
| 1a-119 | CH <sub>3</sub> |                                                |
| 1a-120 | Na              |                                                |
| 1a-121 | H               |                                                |
| 1a-122 | CH <sub>3</sub> |                                                |
| 1a-123 | H               |                                                |
| 1a-124 | CH <sub>3</sub> |                                                |
| 1a-125 | CH <sub>3</sub> |                                                |
| 1a-126 | H               |                                                |
| 1a-127 | CH <sub>3</sub> |                                                |
| 1a-128 | H               |                                                |
| 1a-129 | CH <sub>3</sub> |                                                |
| 1a-130 | CH <sub>3</sub> |                                                |
| 1a-131 | H               |                                                |
| 1a-132 | CH <sub>3</sub> |                                                |
| 1a-133 | H               |                                                |
| 1a-134 | H               |                                                |
| 1a-135 | CH <sub>3</sub> |                                                |
| 1a-136 | H               |                                                |
| 1a-137 | CH <sub>3</sub> |                                                |
| 1a-138 | H               |                                                |
| 1a-139 | CH <sub>3</sub> |                                                |
| 1a-140 | H               |                                                |

55

5



10

No.

R<sub>1</sub>X<sub>1</sub>—X<sub>2</sub>—X<sub>3</sub>

15

1a-141  
1a-142CH<sub>3</sub>  
H

20

1a-143

H



1a-144

H



1a-145

H



25

1a-146

H



30

1a-147

H



35

1a-148

H



40

1a-149

H



45

1a-150

H



50

1a-151

H



55



| No.    | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|----------------|------------------------------------------------|
| 10     |                |                                                |
| 1a-152 | H              |                                                |
| 15     |                |                                                |
| 1a-153 | H              |                                                |
| 20     |                |                                                |
| 1a-154 | H              |                                                |
| 25     |                |                                                |
| 1a-155 | H              |                                                |
| 30     |                |                                                |
| 1a-156 | H              |                                                |
| 35     |                |                                                |
| 1a-157 | H              |                                                |
| 40     |                |                                                |
| 1a-158 | H              |                                                |
| 45     |                |                                                |
| 1a-159 | H              |                                                |
| 50     |                |                                                |
|        |                |                                                |

5



10

**1a-161****R<sub>1</sub>****X<sub>1</sub>-X<sub>2</sub>-X<sub>3</sub>**

15

**1a-162****H**

20

**1a-163****H**

25

**1a-164****H**

30

**1a-165****H**

35

**1a-166****H**

40

**1a-167****H**

45

**1a-168****H**

50

**1a-169****H****1a-170****H****1a-171****CH<sub>3</sub>****1a-172****H**

55



|    | No.    | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|--------|-----------------|------------------------------------------------|
| 10 | 1a-173 | H               |                                                |
| 15 | 1a-174 | H               |                                                |
| 20 | 1a-175 | CH <sub>3</sub> |                                                |
|    | 1a-176 | H               |                                                |
| 25 | 1a-177 | CH <sub>3</sub> |                                                |
|    | 1a-178 | H               |                                                |
| 30 | 1a-179 | CH <sub>3</sub> |                                                |
|    | 1a-180 | H               |                                                |
| 35 | 1a-181 | H               |                                                |
|    | 1a-182 | CH <sub>3</sub> |                                                |
|    | 1a-183 | H               |                                                |

40

45

50

55



|    | No.              | R <sub>1</sub>       | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|------------------|----------------------|------------------------------------------------|
| 10 | la-184           | H                    |                                                |
| 15 | la-185           | H                    |                                                |
| 20 | la-186<br>la-187 | CH <sub>3</sub><br>H |                                                |
| 25 | la-188<br>la-189 | CH <sub>3</sub><br>H |                                                |
| 30 | la-190<br>la-191 | CH <sub>3</sub><br>H |                                                |
| 35 | la-192<br>la-193 | CH <sub>3</sub><br>H |                                                |

40

45

50

55



| No.     | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|---------|------------------------------------------------|
| 10      |                                                |
| 1a-194  |                                                |
| 15      |                                                |
| 1a-195  |                                                |
| 20      |                                                |
| 1a-196  |                                                |
| 25      |                                                |
| 1a-197  |                                                |
| 30      |                                                |
| 1a-198  |                                                |
| 35      |                                                |
| 1a-199  |                                                |
| 40      |                                                |
| 1a-200  |                                                |
| 45      |                                                |
| 1a-0201 |                                                |
| 1a-202  |                                                |
| 1a-203  |                                                |

50

55

5



10

No.  
1a-204

15

1a-205



20

1a-206



25

1a-207



30

1a-208



35

1a-210



40

1a-211



45

1a-212



50

1a-213



55

5



10

**1a-214**

15

**1a-215**

20

**1a-216**

25

**1a-217**

30

**1a-218**

35

**1a-219**

40

**1a-220**

45

**1a-221**

50

**1a-222**

55

5

 $X_1-X_2-X_3$ 

10

**1a-224**

15

**1a-225**

20

**1a-226****1a-227**

25

**1a-228****1a-229**

30

**1a-230**

35

**1a-231**

40

**1a-232****1a-233**

45

**1a-234**

50

**1a-235**

55

5



10



15



20



25



30



35



40



45



50



55

5

 $X_1\text{-}X_2\text{-}X_3$ 

10

1a-247



15

1a-248



20

1a-249



25

1a-250



30

1a-251



35

1a-252



40

1a-253



45

1a-254



50

1a-255



1a-256



1a-257



55

5



10

No.

 $X_1 \cdot X_2 \cdot X_3$ 

15

1a-258



20

1a-259



25

1a-260



30

1a-261



35

1a-262



40

1a-263



45

1a-264



1a-265



50

1a-266



1a-267



1a-268



1a-269



1a-270



55

1a-271



5



10



15



20



25



30



35



40



45



50



55

5



10

No.

 $X_1 \cdot X_2 \cdot X_3$ 

15

1a-284



20

1a-285



1a-286



1a-287



25

1a-288



30

1a-289



35

1a-290



1a-291



40

1a-292



45

1a-293



50

1a-294



55

5



10

| No.    | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|------------------------------------------------|
| 1a-295 |                                                |
| 1a-296 |                                                |
| 1a-297 |                                                |
| 1a-298 |                                                |
| 1a-299 |                                                |
| 1a-300 |                                                |
| 1a-301 |                                                |
| 1a-302 |                                                |
| 1a-303 |                                                |
| 1a-304 |                                                |
| 1a-305 |                                                |

20

25

30

35

40

45

50

55

Table 1b

5



10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 1b-1  | CH <sub>3</sub> |                                                |
| 1b-2  | CH <sub>3</sub> |                                                |
| 1b-3  | H               |                                                |
| 1b-4  | H               |                                                |
| 1b-5  | H               |                                                |
| 1b-6  | H               |                                                |
| 1b-7  | H               |                                                |
| 1b-8  | H               |                                                |
| 1b-9  | H               |                                                |
| 1b-10 | H               |                                                |

5



10

| No.   | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|----------------|------------------------------------------------|
| 1b-11 | H              |                                                |
| 1b-12 | H              |                                                |
| 1b-13 | H              |                                                |
| 1b-14 | H              |                                                |
| 1b-15 | H              |                                                |

15

20

25

30

35

40

45

50

55

Table 1c



5

10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 1c-1  | CH <sub>3</sub> |                                                |
| 1c-2  | CH <sub>3</sub> |                                                |
| 1c-3  | K               |                                                |
| 1c-4  | H               |                                                |
| 1c-5  | H               |                                                |
| 1c-6  | H               |                                                |
| 1c-7  | H               |                                                |
| 1c-8  | H               |                                                |
| 1c-9  | H               |                                                |
| 1c-10 | H               |                                                |
| 1c-11 | H               |                                                |
| 1c-12 | H               |                                                |

Table 1d



5

10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>3</sub> | R <sub>4</sub>                  | X <sub>1</sub> ·X <sub>2</sub> ·X <sub>3</sub> |
|-------|----------------|---------------------------------|------------------------------------------------|
| 1d-1  | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 1d-2  | H              | H                               |                                                |
| 1d-3  | H              | OH                              |                                                |
| 1d-4  | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 1d-5  | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 1d-6  | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 1d-7  | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 1d-8  | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 1d-9  | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 1d-10 | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |



| No.   | R <sub>3</sub> | R <sub>4</sub>                  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|----------------|---------------------------------|------------------------------------------------|
| 10    |                |                                 |                                                |
| 1d-11 | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 15    |                |                                 |                                                |
| 1d-12 | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 20    |                |                                 |                                                |
| 1d-13 | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 25    |                |                                 |                                                |
| 1d-14 | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |
| 30    |                |                                 |                                                |
| 1d-15 | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |

35

40

45

50

55

Table 1e



5

10

15

20

25

30

35

40

45

50

| No.   | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|----------------|------------------------------------------------|
| 1e-1  | H              |                                                |
| 1e-2  | H              |                                                |
| 1e-3  | H              |                                                |
| 1e-4  | H              |                                                |
| 1e-5  | H              |                                                |
| 1e-6  | H              |                                                |
| 1e-7  | H              |                                                |
| 1e-8  | H              |                                                |
| 1e-9  | H              |                                                |
| 1e-10 | H              |                                                |

55

Table If

5



10

| No. | $\text{R}_2$ | $\text{X}_1-\text{X}_2-\text{X}_3$ |
|-----|--------------|------------------------------------|
| 15  | 1f-1         | H                                  |
| 20  | 1f-2         | H                                  |
| 25  | 1f-3         | H                                  |
| 30  | 1f-4         | H                                  |
| 35  | 1f-5         | H                                  |
| 40  | 1f-6         | H                                  |
| 45  | 1f-7         | H                                  |
| 50  | 1f-8         | H                                  |
| 55  | 1f-9         | H                                  |
|     | 1f-10        | H                                  |

Table 1g

5



10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|----------------|------------------------------------------------|
| 1g-1  | H              |                                                |
| 1g-2  | H              |                                                |
| 1g-3  | H              |                                                |
| 1g-4  | H              |                                                |
| 1g-5  | H              |                                                |
| 1g-6  | H              |                                                |
| 1g-7  | H              |                                                |
| 1g-8  | H              |                                                |
| 1g-9  | H              |                                                |
| 1g-10 | H              |                                                |
| 1g-11 | H              |                                                |

Table 1b



5

10

15

20

25

30

35

40

45

50

55

|  | No.   | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--|-------|----------------|------------------------------------------------|
|  | 1b-1  | H              |                                                |
|  | 1b-2  | H              |                                                |
|  | 1b-3  | H              |                                                |
|  | 1b-4  | H              |                                                |
|  | 1b-5  | H              |                                                |
|  | 1b-6  | H              |                                                |
|  | 1b-7  | H              |                                                |
|  | 1b-8  | H              |                                                |
|  | 1b-9  | H              |                                                |
|  | 1b-10 | H              |                                                |

Table 1i



5

10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>2</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|----------------|------------------------------------------------|
| 1i-1  | H              |                                                |
| 1i-2  | H              |                                                |
| 1i-3  | H              |                                                |
| 1i-4  | H              |                                                |
| 1i-5  | H              |                                                |
| 1i-6  | H              |                                                |
| 1i-7  | H              |                                                |
| 1i-8  | H              |                                                |
| 1i-9  | H              |                                                |
| 1i-10 | H              |                                                |
| 1i-11 | H              |                                                |
| 1i-12 | H              |                                                |

Table 1j

5



10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub>                                   |
|-------|-----------------|----------------------------------------------------------------------------------|
| 1j-1  | CH <sub>3</sub> |                                                                                  |
| 1j-2  | H               | —C <sub>6</sub> H <sub>4</sub> —CH <sub>2</sub> —C <sub>6</sub> H <sub>4</sub> — |
| 1j-3  | Na              |                                                                                  |
| 1j-4  | H               | —C <sub>6</sub> H <sub>4</sub> —N=N—C <sub>6</sub> H <sub>4</sub> —              |
| 1j-5  | CH <sub>3</sub> |                                                                                  |
| 1j-6  | CH <sub>3</sub> | —C <sub>6</sub> H <sub>4</sub> —O—C <sub>6</sub> H <sub>4</sub> —                |
| 1j-7  | H               |                                                                                  |
| 1j-8  | CH <sub>3</sub> | —C <sub>6</sub> H <sub>4</sub> —O—C <sub>6</sub> H <sub>4</sub> —                |
| 1j-9  | CH <sub>3</sub> | —C <sub>6</sub> H <sub>4</sub> —C(=O)—C <sub>6</sub> H <sub>4</sub> —            |
| 1j-10 | H               |                                                                                  |
| 1j-11 | CH <sub>3</sub> | —C <sub>6</sub> H <sub>4</sub> —C(=O)—C <sub>6</sub> H <sub>4</sub> —            |
| 1j-12 | H               |                                                                                  |
| 1j-13 | CH <sub>3</sub> | —C <sub>6</sub> H <sub>4</sub> —C(=O)—C <sub>6</sub> H <sub>4</sub> —            |
| 1j-14 | H               |                                                                                  |
| 1j-15 | CH <sub>3</sub> | —C <sub>6</sub> H <sub>4</sub> —C≡C—C <sub>6</sub> H <sub>4</sub> —              |
| 1j-16 | H               |                                                                                  |

5



10

| No.   | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|----------------|------------------------------------------------|
| 1j-17 | H              |                                                |

15

|       |                 |  |
|-------|-----------------|--|
| 1j-18 | CH <sub>3</sub> |  |
| 1j-19 | H               |  |

20

|       |                 |  |
|-------|-----------------|--|
| 1j-20 | CH <sub>3</sub> |  |
| 1j-21 | H               |  |

25

|       |   |  |
|-------|---|--|
| 1j-22 | H |  |
|-------|---|--|

30

|       |                 |  |
|-------|-----------------|--|
| 1j-23 | CH <sub>3</sub> |  |
| 1j-24 | H               |  |

35

|       |                 |  |
|-------|-----------------|--|
| 1j-25 | CH <sub>3</sub> |  |
| 1j-26 | H               |  |

40

|       |                 |  |
|-------|-----------------|--|
| 1j-27 | H               |  |
| 1j-28 | CH <sub>3</sub> |  |

45

50

55

5



10



15



20



25



30



35



40



45



50



55

Table 1k

5



10

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 15    |                 |                                                |
| 1k-1  | H               |                                                |
| 1k-2  | CH <sub>3</sub> |                                                |
| 1k-3  | H               |                                                |
| 20    |                 |                                                |
| 1k-4  | H               |                                                |
| 1k-5  | H               |                                                |
| 25    |                 |                                                |
| 1k-6  | H               |                                                |
| 1k-7  | H               |                                                |
| 30    |                 |                                                |
| 1k-8  | H               |                                                |
| 1k-9  | H               |                                                |
| 35    |                 |                                                |
| 1k-10 | H               |                                                |
| 40    |                 |                                                |
| 1k-11 | CH <sub>3</sub> |                                                |
| 1k-12 | H               |                                                |

45

50

55



|    | No.   | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|-------|----------------|------------------------------------------------|
| 10 | 1k-13 | H              |                                                |
| 15 | 1k-14 | H              |                                                |
| 20 | 1k-15 | H              |                                                |
| 25 | 1k-16 | H              |                                                |
| 30 | 1k-17 | H              |                                                |
| 35 | 1k-18 | H              |                                                |
| 40 | 1k-19 | H              |                                                |
| 45 | 1k-20 | H              |                                                |

50

55

Table 1m



5

10

15

20

25

30

35

40

45

50

55

|    | No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|-------|-----------------|------------------------------------------------|
|    | 1m-1  | CH <sub>3</sub> |                                                |
|    | 1m-2  | H               |                                                |
| 15 | 1m-3  | CH <sub>3</sub> |                                                |
|    | 1m-4  | H               |                                                |
| 20 | 1m-5  | CH <sub>3</sub> |                                                |
|    | 1m-6  | H               |                                                |
| 25 | 1m-7  | CH <sub>3</sub> |                                                |
|    | 1m-8  | H               |                                                |
| 30 | 1m-9  | CH <sub>3</sub> |                                                |
|    | 1m-10 | H               |                                                |
| 35 | 1m-11 | CH <sub>3</sub> |                                                |
|    | 1m-12 | H               |                                                |
| 40 | 1m-13 | CH <sub>3</sub> |                                                |
|    | 1m-14 | H               |                                                |
| 45 | 1m-15 | CH <sub>3</sub> |                                                |
|    | 1m-16 | H               |                                                |
| 50 | 1m-17 | CH <sub>3</sub> |                                                |
|    | 1m-18 | H               |                                                |



|  |                |                                                |
|-----------------------------------------------------------------------------------|----------------|------------------------------------------------|
| No.                                                                               | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
| 10                                                                                | 1m-19          | CH <sub>3</sub>                                |
|                                                                                   | 1m-20          | H                                              |
| 15                                                                                | 1m-21          | H                                              |
|                                                                                   | 1m-22          | H                                              |
| 20                                                                                | 1m-23          | CH <sub>3</sub>                                |
|                                                                                   | 1m-24          | H                                              |
| 25                                                                                | 1m-25          | CH <sub>3</sub>                                |
|                                                                                   | 1m-26          | H                                              |
| 30                                                                                | 1m-27          | CH <sub>3</sub>                                |
|                                                                                   | 1m-28          | H                                              |
| 35                                                                                | 1m-29          | CH <sub>3</sub>                                |
|                                                                                   | 1m-30          | H                                              |
| 40                                                                                | 1m-31          | H                                              |
|                                                                                   | 1m-32          | H                                              |
| 45                                                                                | 1m-33          | H                                              |

45

50

55

5



10

| No. | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-----|----------------|------------------------------------------------|
|-----|----------------|------------------------------------------------|

1m-34

H



15

1m-35

H



20

1m-36

H



25

1m-37

H



30

1m-38

H



35

1m-39

H



40

1m-40

H



45

50

55

Table 2a

5



10

15

20

25

30

35

40

45

50

|  | No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--|-------|-----------------|------------------------------------------------|
|  | 2a-1  | CH <sub>3</sub> |                                                |
|  | 2a-2  | H               |                                                |
|  | 2a-3  | CH <sub>3</sub> |                                                |
|  | 2a-4  | H               |                                                |
|  | 2a-5  | Na              |                                                |
|  | 2a-6  | CH <sub>3</sub> |                                                |
|  | 2a-7  | H               |                                                |
|  | 2a-8  | CH <sub>3</sub> |                                                |
|  | 2a-9  | H               |                                                |
|  | 2a-10 | CH <sub>3</sub> |                                                |
|  | 2a-11 | H               |                                                |
|  | 2a-12 | CH <sub>3</sub> |                                                |
|  | 2a-13 | H               |                                                |
|  | 2a-14 | CH <sub>3</sub> |                                                |
|  | 2a-15 | H               |                                                |
|  | 2a-16 | CH <sub>3</sub> |                                                |
|  | 2a-17 | H               |                                                |
|  | 2a-18 | CH <sub>3</sub> |                                                |
|  | 2a-19 | H               |                                                |
|  | 2a-20 | CH <sub>3</sub> |                                                |
|  | 2a-21 | H               |                                                |
|  | 2a-22 | Na              |                                                |
|  | 2a-23 | CH <sub>3</sub> |                                                |
|  | 2a-24 | H               |                                                |

55

5



|    | No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|-------|-----------------|------------------------------------------------|
| 10 | 2a-25 | CH <sub>3</sub> |                                                |
|    | 2a-26 | H               |                                                |
| 15 | 2a-27 | CH <sub>3</sub> |                                                |
|    | 2a-28 | H               |                                                |
| 20 | 2a-29 | CH <sub>3</sub> |                                                |
|    | 2a-30 | H               |                                                |
| 25 | 2a-31 | CH <sub>3</sub> |                                                |
|    | 2a-32 | CH <sub>3</sub> |                                                |
| 30 | 2a-33 | H               |                                                |
|    | 2a-34 | CH <sub>3</sub> |                                                |
| 35 | 2a-35 | H               |                                                |
|    | 2a-36 | CH <sub>3</sub> |                                                |
| 40 | 2a-37 | H               |                                                |
|    | 2a-38 | CH <sub>3</sub> |                                                |
| 45 | 2a-39 | H               |                                                |
|    | 2a-40 | CH <sub>3</sub> |                                                |
| 50 | 2a-41 | H               |                                                |
|    | 2a-42 | CH <sub>3</sub> |                                                |
| 55 | 2a-43 | H               |                                                |
|    | 2a-44 | CH <sub>3</sub> |                                                |
| 56 | 2a-45 | H               |                                                |
|    | 2a-46 | CH <sub>3</sub> |                                                |
| 57 | 2a-47 | H               |                                                |

5



10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 2a-48 | CH <sub>3</sub> |                                                |
| 2a-49 | H               |                                                |
| 2a-50 | CH <sub>3</sub> |                                                |
| 2a-51 | H               |                                                |
| 2a-52 | CH <sub>3</sub> |                                                |
| 2a-53 | H               |                                                |
| 2a-54 | CH <sub>3</sub> |                                                |
| 2a-55 | H               |                                                |
| 2a-56 | CH <sub>3</sub> |                                                |
| 2a-57 | H               |                                                |
| 2a-58 | CH <sub>3</sub> |                                                |
| 2a-59 | H               |                                                |
| 2a-60 | CH <sub>3</sub> |                                                |
| 2a-61 | H               |                                                |
| 2a-62 | CH <sub>3</sub> |                                                |
| 2a-63 | H               |                                                |
| 2a-64 | CH <sub>3</sub> |                                                |
| 2a-65 | H               |                                                |
| 2a-66 | CH <sub>3</sub> |                                                |
| 2a-67 | H               |                                                |

5



10

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 2a-68 | CH <sub>3</sub> |                                                |
| 2a-69 | H               |                                                |

15

|       |                 |  |
|-------|-----------------|--|
| 2a-70 | CH <sub>3</sub> |  |
| 2a-71 | H               |  |

20

|       |                 |  |
|-------|-----------------|--|
| 2a-72 | CH <sub>3</sub> |  |
| 2a-73 | H               |  |

25

|       |                 |  |
|-------|-----------------|--|
| 2a-74 | CH <sub>3</sub> |  |
| 2a-75 | H               |  |

30

|       |                 |  |
|-------|-----------------|--|
| 2a-76 | CH <sub>3</sub> |  |
| 2a-77 | H               |  |

35

|       |                 |  |
|-------|-----------------|--|
| 2a-78 | CH <sub>3</sub> |  |
| 2a-79 | H               |  |

40

|       |                 |  |
|-------|-----------------|--|
| 2a-80 | CH <sub>3</sub> |  |
| 2a-81 | H               |  |

45

|       |                 |  |
|-------|-----------------|--|
| 2a-82 | CH <sub>3</sub> |  |
| 2a-83 | H               |  |

50

55

5



10

15

20

25

30

35

40

45

50

| No.    | R <sub>1</sub>    | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|-------------------|------------------------------------------------|
| 2a-88  | CH <sub>3</sub>   |                                                |
| 2a-89  | H                 |                                                |
| 2a-90  | CH <sub>3</sub>   |                                                |
| 2a-91  | H                 |                                                |
| 2a-92  | CH <sub>3</sub>   |                                                |
| 2a-93  | H                 |                                                |
| 2a-94  | CH <sub>3</sub>   |                                                |
| 2a-95  | H                 |                                                |
| 2a-96  | Na                |                                                |
| 2a-97  | Ca <sup>1/2</sup> |                                                |
| 2a-98  | CH <sub>3</sub>   |                                                |
| 2a-99  | H                 |                                                |
| 2a-100 | CH <sub>3</sub>   |                                                |
| 2a-101 | H                 |                                                |
| 2a-102 | CH <sub>3</sub>   |                                                |
| 2a-103 | H                 |                                                |
| 2a-104 | CH <sub>3</sub>   |                                                |
| 2a-105 | H                 |                                                |
| 2a-106 | CH <sub>3</sub>   |                                                |
| 2a-107 | H                 |                                                |
| 2a-108 | CH <sub>3</sub>   |                                                |
| 2a-109 | H                 |                                                |
| 2a-110 | Na                |                                                |
| 2a-111 | CH <sub>3</sub>   |                                                |
| 2a-112 | H                 |                                                |

55

5



10

| No.    | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub>  |
|--------|-----------------|-------------------------------------------------|
| 2a-113 | CH <sub>3</sub> |                                                 |
| 2a-114 | H               | -C <sub>6</sub> H <sub>4</sub> -CF <sub>3</sub> |

15

|        |                 |                                                 |
|--------|-----------------|-------------------------------------------------|
| 2a-115 | CH <sub>3</sub> |                                                 |
| 2a-116 | H               | -C <sub>6</sub> H <sub>4</sub> -CH <sub>3</sub> |

20

|        |                 |                                                                      |
|--------|-----------------|----------------------------------------------------------------------|
| 2a-117 | CH <sub>3</sub> |                                                                      |
| 2a-118 | H               | -C <sub>6</sub> H <sub>2</sub> (O)-C <sub>6</sub> H <sub>4</sub> -O- |

25

|        |   |                                     |
|--------|---|-------------------------------------|
| 2a-119 | H |                                     |
| 2a-120 | H | -C <sub>6</sub> H <sub>4</sub> -OAc |

30

|        |   |                                    |
|--------|---|------------------------------------|
| 2a-121 | H |                                    |
| 2a-122 | H | -C <sub>6</sub> H <sub>4</sub> -OH |

35

|        |   |                                                     |
|--------|---|-----------------------------------------------------|
| 2a-123 | H |                                                     |
| 2a-124 | H | -CH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> -O- |

40

|        |   |                                                     |
|--------|---|-----------------------------------------------------|
| 2a-125 | H |                                                     |
| 2a-126 | H | -CH <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> -OH |

50

55

5



10

15

20

25

30

35

40

45

50

55

| No.    | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|----------------|------------------------------------------------|
| 2a-126 | H              |                                                |
| 2a-127 | H              |                                                |
| 2a-128 | H              |                                                |
| 2a-129 | H              |                                                |
| 2a-130 | H              |                                                |
| 2a-131 | H              |                                                |
| 2a-132 | H              |                                                |
| 2a-133 | H              |                                                |
| 2a-134 | H              |                                                |
| 2a-135 | H              |                                                |
| 2a-136 | H              |                                                |

5



10



15



20



25



30



35



40



45



50



55

5



10

15

20

25

30

35

40

45

50

55

| No.    | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|----------------|------------------------------------------------|
| 2a-148 | H              |                                                |
| 2a-149 | H              |                                                |
| 2a-150 | H              |                                                |
| 2a-151 | H              |                                                |
| 2a-152 | H              |                                                |
| 2a-153 | H              |                                                |
| 2a-154 | H              |                                                |
| 2a-155 | H              |                                                |
| 2a-156 | H              |                                                |
| 2a-157 | H              |                                                |
| 2a-158 | H              |                                                |
| 2a-159 | H              |                                                |

5



10

15

20

25

30

35

40

45

50

55

| No.    | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|----------------|------------------------------------------------|
| 2a-160 | H              |                                                |
| 2a-161 | H              |                                                |
| 2a-162 | H              |                                                |
| 2a-163 | H              |                                                |
| 2a-164 | H              |                                                |
| 2a-165 | H              |                                                |
| 2a-166 | H              |                                                |
| 2a-167 | H              |                                                |
| 2a-168 | H              |                                                |
| 2a-169 | H              |                                                |
| 2a-170 | H              |                                                |



| No.    | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|----------------|------------------------------------------------|
| 10     |                |                                                |
| 2a-171 | H              |                                                |
| 15     |                |                                                |
| 2a-172 | H              |                                                |
| 20     |                |                                                |
| 2a-173 | H              |                                                |
| 25     |                |                                                |
| 2a-174 | H              |                                                |
| 30     |                |                                                |
| 2a-175 | H              |                                                |
| 35     |                |                                                |
| 2a-176 | H              |                                                |
| 40     |                |                                                |
| 2a-177 | H              |                                                |
| 45     |                |                                                |
| 2a-178 | H              |                                                |
| 50     |                |                                                |
| 2a-179 | H              |                                                |
|        |                |                                                |
| 2a-180 | H              |                                                |
|        |                |                                                |
| 2a-181 | H              |                                                |
|        |                |                                                |
| 2a-182 | H              |                                                |

5



10

15

20

25

30

35

40

45

50

| No.    | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|----------------|------------------------------------------------|
| 2a-183 | H              |                                                |
| 2a-184 | H              |                                                |
| 2a-185 | H              |                                                |
| 2a-186 | H              |                                                |
| 2a-187 | H              |                                                |
| 2a-188 | H              |                                                |
| 2a-189 | H              |                                                |
| 2a-190 | H              |                                                |
| 2a-191 | H              |                                                |
| 2a-192 | H              |                                                |
| 2a-193 | H              |                                                |

55

5



10

| No.    | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|----------------|------------------------------------------------|
| 2a-194 | H              |                                                |
| 2a-195 | H              |                                                |
| 2a-196 | H              |                                                |
| 2a-197 | H              |                                                |
| 2a-198 | H              |                                                |
| 2a-199 | H              |                                                |
| 2a-200 | H              |                                                |
| 2a-201 | H              |                                                |
| 2a-202 | H              |                                                |
| 2a-203 | H              |                                                |

55

5



10

2a-204



15

2a-205



20

2a-206



25

2a-207



30

2a-208



35

2a-209



40

2a-210



45

2a-211



2a-212



50

2a-213



55

5



10

**2a-214**

15

**2a-215**

20

**2a-216**

25

**2a-217**

30

**2a-218**

35

**2a-219**

40

**2a-220**

45

**2a-221**

50

**2a-222**

55



| No.    | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|------------------------------------------------|
| 10     |                                                |
| 2a-224 |                                                |
| 15     |                                                |
| 2a-225 |                                                |
| 20     |                                                |
| 2a-226 |                                                |
| 25     |                                                |
| 2a-227 |                                                |
| 30     |                                                |
| 2a-228 |                                                |
| 35     |                                                |
| 2a-229 |                                                |
| 40     |                                                |
| 2a-230 |                                                |
| 45     |                                                |
| 2a-231 |                                                |
| 50     |                                                |
| 55     |                                                |
| 2a-232 |                                                |
| 2a-233 |                                                |

5



10

| No.    | $X_1-X_2-X_3$ |
|--------|---------------|
| 2a-234 |               |
| 2a-235 |               |
| 2a-236 |               |
| 2a-237 |               |
| 2a-238 |               |
| 2a-239 |               |
| 2a-240 |               |
| 2a-241 |               |
| 2a-242 |               |
| 2a-243 |               |

15

20

25

30

35

40

45

50

55



| No. | $X_1$ - $X_2$ - $X_3$ |
|-----|-----------------------|
| 10  |                       |
|     | 2a-244                |
| 15  |                       |
|     | 2a-245                |
| 20  |                       |
|     | 2a-246                |
| 25  |                       |
|     | 2a-247                |
| 30  |                       |
|     | 2a-248                |
| 35  |                       |
|     | 2a-249                |
| 40  |                       |
|     | 2a-250                |
| 45  |                       |
|     | 2a-251                |

50

55

5



10

**2a-252**

15

**2a-253**

20

**2a-254**

25

**2a-255**

30

**2a-256**

35

**2a-257**

40

45

50

55

5



10

**2a-258**

15

**2a-259**

20

**2a-260**

25

**2a-261**

30

**2a-262**

35

**2a-263**

40

**2a-264**

45

**2a-265**

55

**2a-267**

5



10

**2a-268**

15

**2a-269**

20

**2a-270**

25

**2a-271**

30

**2a-273**

35

**2a-274**

40

**2a-275**

45

**2a-276**

50

**2a-277**

55

5



10

**2a-278**

15

**2a-279**

20

**2a-280**

25

**2a-281**

30

**2a-282**

35

**2a-283**

40

**2a-284**

50

**2a-285****2a-286****2a-287**

55



| No.    | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|--------|------------------------------------------------|
| 10     |                                                |
| 2a-288 |                                                |
| 15     |                                                |
| 2a-289 |                                                |
| 20     |                                                |
| 2a-290 |                                                |
| 25     |                                                |
| 2a-291 |                                                |
| 30     |                                                |
| 2a-292 |                                                |
| 35     |                                                |
| 2a-293 |                                                |
| 40     |                                                |
| 2a-294 |                                                |
| 45     |                                                |
| 2a-295 |                                                |
| 50     |                                                |
| 2a-296 |                                                |

5



10



15



20



25



30



35



40



45



50



55

5



10

15

20

25

30

35

40

45

50

| No.    | $X_1\text{-}X_2\text{-}X_3$ |
|--------|-----------------------------|
| 2a-307 |                             |
| 2a-308 |                             |
| 2a-309 |                             |
| 2a-310 |                             |
| 2a-311 |                             |
| 2a-312 |                             |
| 2a-313 |                             |
| 2a-314 |                             |
| 2a-315 |                             |

55

Table 2b



| No.        | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|------------|----------------|------------------------------------------------|
| 10<br>2b-1 | H              | -C <sub>6</sub> H <sub>5</sub> -               |
| 15<br>2b-2 | H              | -C <sub>6</sub> H <sub>4</sub> -S-             |

Table 2c



| No.        | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub>                    |
|------------|----------------|-------------------------------------------------------------------|
| 25<br>2c-1 | H              | -C <sub>6</sub> H <sub>5</sub> -                                  |
| 30<br>2c-2 | H              | -C <sub>6</sub> H <sub>11</sub> -                                 |
| 35<br>2c-3 | H              | -C <sub>6</sub> H <sub>4</sub> -O-C <sub>6</sub> H <sub>5</sub> - |

Table 2d



| No.        | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub>                    |
|------------|----------------|-------------------------------------------------------------------|
| 45<br>2d-1 | H              | -C <sub>6</sub> H <sub>4</sub> -O-C <sub>6</sub> H <sub>5</sub> - |
| 50<br>2d-2 | H              | -C <sub>6</sub> H <sub>5</sub> -                                  |
| 55<br>2d-3 | H              | -C <sub>6</sub> H <sub>4</sub> -S-                                |

Table 2e



5

10

| No.  | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|------|----------------|------------------------------------------------|
| 2e-1 | H              |                                                |
| 15   | H              |                                                |
| 2e-3 | H              |                                                |

20

Table 2f



25

30

| No.  | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|------|----------------|------------------------------------------------|
| 2f-1 | H              |                                                |
| 2f-2 | H              |                                                |
| 35   | H              |                                                |

35

Table 2g



45

50

| No.  | R <sub>3</sub> | R <sub>4</sub>                  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|------|----------------|---------------------------------|------------------------------------------------|
| 2g-1 | H              | SO <sub>2</sub> CH <sub>3</sub> |                                                |

55

Table 2h



5

10

15

20

25

No.

X<sub>1</sub>-X<sub>2</sub>-X<sub>3</sub>

Table 2i



30

35

40

45

50

No.

X<sub>1</sub>-X<sub>2</sub>-X<sub>3</sub>

55

Table 2j



5

10

15

20

25

No.

 $X_1-X_2-X_3$ 

2j-1



2j-2

2j-3

2j-4

2j-5

2j-6

Table 2k



30

35

40

45

50

No.

 $X_1-X_2-X_3$ 

2k-1



2k-2

2k-3

2k-4

2k-5

2k-6

55

Table 3a



5

10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub>                                                   | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|------------------------------------------------------------------|------------------------------------------------|
| 3a-1  | CH <sub>3</sub>                                                  |                                                |
| 3a-2  | H                                                                |                                                |
| 3a-3  | CH <sub>3</sub>                                                  |                                                |
| 3a-4  | H                                                                |                                                |
| 3a-5  | H <sub>3</sub> N <sup>+</sup> C(CH <sub>2</sub> OH) <sub>3</sub> |                                                |
| 3a-6  | Na                                                               |                                                |
| 3a-7  | 1/2 Ca                                                           |                                                |
| 3a-8  | H                                                                |                                                |
| 3a-9  | H                                                                |                                                |
| 3a-10 | CH <sub>3</sub>                                                  |                                                |
| 3a-11 | H                                                                |                                                |
| 3a-12 | CH <sub>3</sub>                                                  |                                                |
| 3a-13 | H                                                                |                                                |
| 3a-14 | CH <sub>3</sub>                                                  |                                                |
| 3a-15 | CH <sub>3</sub>                                                  |                                                |
| 3a-16 | H                                                                |                                                |
| 3a-17 | CH <sub>3</sub>                                                  |                                                |
| 3a-18 | H                                                                |                                                |



|    | No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|----|-------|-----------------|------------------------------------------------|
| 10 | 3a-19 | CH <sub>3</sub> |                                                |
|    | 3a-20 | H               |                                                |
| 15 | 3a-21 | CH <sub>3</sub> |                                                |
|    | 3a-22 | H               |                                                |
| 20 | 3a-23 | CH <sub>3</sub> |                                                |
|    | 3a-24 | H               |                                                |
| 25 | 3a-25 | H               |                                                |
|    | 3a-26 | CH <sub>3</sub> |                                                |
| 30 | 3a-27 | H               |                                                |
|    | 3a-28 | CH <sub>3</sub> |                                                |
| 35 | 3a-29 | H               |                                                |
|    | 3a-30 | CH <sub>3</sub> |                                                |
| 40 | 3a-31 | CH <sub>3</sub> |                                                |
|    | 3a-32 | H               |                                                |
| 45 | 3a-33 | Na              |                                                |
|    | 3a-34 | H               |                                                |
|    | 3a-35 | Na              |                                                |

50

55

**Table 3b**



| No. | $R_1$       | $X_1-X_2-X_3$                                                                            |
|-----|-------------|------------------------------------------------------------------------------------------|
| 10  |             |                                                                                          |
| 15  | <b>3b-1</b> | $CH_3$  |
| 20  | <b>3b-2</b> | H       |
|     | <b>3b-3</b> | H       |
|     | <b>3b-4</b> | H       |

Table 3c



| No. | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-----|----------------|------------------------------------------------|
| 35  | 3c-1           | H                                              |

Table 3d

5



10

15

20

25

30

35

40

45

50

55

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub> |
|-------|-----------------|------------------------------------------------|
| 3d-1  | 1/2 Ca          |                                                |
| 3d-2  | Na              |                                                |
| 3d-3  | Na              |                                                |
| 3d-4  | Na              |                                                |
| 3d-5  | CH <sub>3</sub> |                                                |
| 3d-6  | H               |                                                |
| 3d-7  | CH <sub>3</sub> |                                                |
| 3d-8  | H               |                                                |
| 3d-9  | Na              |                                                |
| 3d-10 | CH <sub>3</sub> |                                                |
| 3d-11 | H               |                                                |
| 3d-12 | Na              |                                                |
| 3d-13 | 1/2 Ca          |                                                |
| 3d-14 | H               |                                                |
| 3d-15 | Na              |                                                |

5



10

15

20

25

30

35

40

| No.   | R <sub>1</sub>  | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub>                                  |                  |
|-------|-----------------|---------------------------------------------------------------------------------|------------------|
| 3d-16 | H               | -C <sub>6</sub> H <sub>4</sub> -I                                               |                  |
| 3d-17 | H               | -C <sub>6</sub> H <sub>4</sub> -(CH <sub>2</sub> ) <sub>4</sub> CH <sub>3</sub> |                  |
| 3d-18 | H               | -C <sub>6</sub> H <sub>4</sub> -(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> |                  |
| 3d-19 | CH <sub>3</sub> |                                                                                 |                  |
| 3d-20 | H               | -NHCH <sub>3</sub>                                                              |                  |
| 3d-21 | CH <sub>3</sub> | -C <sub>6</sub> H <sub>4</sub> -C <sub>6</sub> H <sub>5</sub>                   |                  |
| 3d-22 | H               | -C <sub>6</sub> H <sub>4</sub> -C <sub>6</sub> H <sub>4</sub> N                 |                  |
| 3d-23 | H               | -C <sub>6</sub> H <sub>4</sub> -Br                                              |                  |
| 3d-24 | H               | -C <sub>6</sub> H <sub>4</sub> -C <sub>6</sub> H <sub>4</sub> -N                |                  |
| 3d-25 | H               | -C <sub>6</sub> H <sub>4</sub> -C <sub>6</sub> H <sub>5</sub>                   | racemic compound |
| 3d-26 | Na              | -C <sub>6</sub> H <sub>4</sub> -C <sub>6</sub> H <sub>5</sub>                   | racemic compound |
| 3d-27 | H               | -C <sub>6</sub> H <sub>4</sub> -C <sub>6</sub> H <sub>5</sub>                   | racemic compound |
| 3d-28 | Na              | -C <sub>6</sub> H <sub>4</sub> -C <sub>6</sub> H <sub>5</sub>                   | racemic compound |
| 3d-29 | H               | -C <sub>6</sub> H <sub>4</sub> -Br                                              | racemic compound |
| 3d-30 | Na              | -C <sub>6</sub> H <sub>4</sub> -Br                                              | racemic compound |

Table 3e



45

55

Physicochemical properties of compounds above are shown below. The compound number below corresponds to that described in Tables above.

| No.  | R <sub>1</sub> | X <sub>1</sub> -X <sub>2</sub> -X <sub>3</sub>  |
|------|----------------|-------------------------------------------------|
| 3e-1 | 1/2Ca          | -C <sub>6</sub> H <sub>4</sub> -CH <sub>3</sub> |

No.1a — 4

 $[\alpha]_D = -11.5^\circ$  (CHCl<sub>3</sub>, c=1.01, 23.5°C).

5 No.1a — 5

 $[\alpha]_D = -10.0^\circ$  (CHCl<sub>3</sub>, c=1.01, 25.0°C).

No.1a — 6

10

CDCl<sub>3</sub> 300MHz  
 0.93-1.96(14H,m), 2.20-2.26(3H,m), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz)  
 7.51(3H,m), 7.54-7.64(3H,m), 7.76-7.88(2H,m), 8.11(1H,m).  
 IR (CHCl<sub>3</sub>): 3384, 3278, 3026, 2952, 2874, 1727, 1436, 1411, 1324, 1155, 1097 /cm.  
 [α]<sub>D</sub> = -9.0° (CHCl<sub>3</sub>, c=1.04, 22.0°C).

15

No.1a — 7

CDCl<sub>3</sub> 300MHz  
 20 0.93-2.00(14H,m), 2.18(1H,m), 2.28(2H,t,J=7.2Hz), 3.04(1H,m), 5.15-5.25(2H,m),  
 7.50(3H,m), 7.54-7.63(3H,m), 7.76-7.89(2H,m), 8.12(1H,m).  
 IR(CHCl<sub>3</sub>): 3268, 3028, 2952, 2872, 1708, 1452, 1410, 1324, 1155, 1097 /cm.  
 [α]<sub>D</sub> = -9.1° (CHCl<sub>3</sub>, c=1.01, 24.0°C).

25

No.1a — 8

CDCl<sub>3</sub> 300MHz  
 0.94-1.99(14H,m), 2.21-2.29(3H,m), 3.05(1H,m), 3.67(3H,s), 4.92(1H,d,J=6.3Hz),  
 7.78(6H,m), 7.96-8.01(2H,m).  
 30 IR(CHCl<sub>3</sub>): 3376, 3272, 3018, 2946, 2868, 1727, 1616, 1435, 1388, 1324, 1162, 1130, 1069 /cm.  
 [α]<sub>D</sub> = +1.6° (CHCl<sub>3</sub>, c=1.01, 24.0°C). mp. 117-119°C.

No.1a — 9

35 CDCl<sub>3</sub> 300MHz  
 0.95-2.08(14H,m), 2.19(1H,m), 2.32(2H,t,J=7.2Hz), 3.06(1H,m), 5.20-5.30(2H,  
 7.78(6H,m), 7.96-8.03(2H,m).  
 IR(CHCl<sub>3</sub>): 3260, 3020, 2950, 2868, 1708, 1389, 1324, 1162, 1130, 1069 /cm.  
 [α]<sub>D</sub> = +13.3° (CHCl<sub>3</sub>, c=1.05, 24.0°C).  
 40 mp. 118-120°C

No.1a — 10

CDCl<sub>3</sub> 300MHz  
 45 0.96-1.98(14H,m), 2.15-2.32(3H,m), 3.04(1H,m), 3.66(3H,s), 5.12-5.26(5H,m), 7.67-7.78(4H,m), 7.93-8.07(4H,m).  
 IR(CHCl<sub>3</sub>): 3276, 3018, 2946, 2868, 1726, 1595, 1435, 1341, 1162, 1095 /cm.  
 [α]<sub>D</sub> = -1.5° (CHCl<sub>3</sub>, c=1.01, 25.0°C).  
 mp. 133-139°C.

50

No.1a — 11

CD<sub>3</sub>OD 300MHz  
 1.05-1.98(14H,m), 2.13-2.22(3H,m), 2.97(1H,m), 5.09-5.22(2H,m), 7.85-7.92(4H,m), 7.95-8.05(4H,m).  
 55 IR(KBr): 3385, 3261, 3069, 3003, 2954, 2872, 1708, 1596, 1428, 1413, 1378, 1343, 1326, 1236, 1186, 1160, 1096 /cm.  
 mp. 144-146°C.

No.1a — 12

5  $\text{CDCl}_3$  300MHz  
 0.96-1.96(14H,m),2.22-2.27(3H,m),3.03(1H,m),3.66(3H,s),3.87(3H,s),4.86(1 H,d,J=6.9Hz),5.18-5.24(2H,m),6.99-  
 7.02(2H,m),7.55-7.66(2H,m),7.66-7.69(2 H,m),7.89-7.92(2H,m).  
 IR( $\text{CHCl}_3$ ):3374,3270,3016,2948,2870,1726,1608,1518,1487,1458,1437,1248, 1157,1037.  
 $[\alpha]_D=+4.2^\circ$  ( $\text{CHCl}_3$ ,c=1.01,24°C).  
 mp.85-87°C.

10 No.1a — 13

15 CDCl<sub>3</sub> 300MHz  
0.97-1.99(1H,m),2.18(1H,m),2.30(2H,t,J=7.2Hz),3.04(1H,m),3.86(3H,s),5.1 8(1H,d,J=5.7Hz),5.23-  
5.26(2H,m),6.99-7.02(2H,m),7.55-7.58(2H,m),7.66-7.68(2H,m),7.89-7.92(2H,m).  
IR(CHCl<sub>3</sub>):3380,3260,3020,2948,2868,1708,1608,1519,1487,1458,1306,1293, 1248,1156 /cm.  
[α]<sub>D</sub>=+18.3° (CHCl<sub>3</sub>,c=1.00,25.5°C) .

No.1a — 14

20 CDCl<sub>3</sub> 300MHz  
 0.98-2.00(14H,m),2.20(1H,m),2.25(2H,t,J=7.2Hz),3.02(1H,m),3.67(3H,s),4.8 5(1H,d,J=6.3Hz),5.19-  
 5.25(2H,m),7.13(1H,dd,J=4.8,3.6Hz),7.39(1H,d,J=4.8 Hz),7.40(1H,d,J=3.6Hz),7.71-7.74(2H,m),7.86-7.89(2H,m).  
 IR(CHCl<sub>3</sub>):3374,3270,3018,2946,2868,1727,1593,1434,1322/cm.  
 [α]<sub>D</sub>= +5.6° (CHCl<sub>3</sub>,c=1.01,24°C).  
 mp.69-71°C.

25

No.1a — 15

30 CDCl<sub>3</sub> 300MHz  
0.95-2.00(14H,m),2.17(1H,m),2.32(2H,t,J=7.2Hz),3.03(1H,m),5.20(1H,d,J=6.9Hz),5.24-  
5.28(2H,m),7.13(1H,dd,J=4.8,3.3Hz),7.38(1H,d,J=4.8Hz),7.43(1H,d,J=3.3Hz),7.73(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz).  
IR(CHCl<sub>3</sub>):3260,3022,2948,2868,1709,1593,1404,1321,1154/cm.  
[α]<sub>D</sub>= +20.8° (CHCl<sub>3</sub>,c= 1.07,23°C).  
35 mp.71-73°C.

No.1a — 16

40 CDCl<sub>3</sub> 300MHz  
 0.98-2.00(14H,m),2.27(2H,t,J=7.5Hz),2.28(1H,m),3.13(1H,m),3.66(3H,s),4.9  
 5.29(2H,m),7.40-7.65(6H,m),7.76(1H,d,J=8.4Hz),7.90-8.02(4H,m).  
 IR(CHCl<sub>3</sub>):3376,3276,3018,2946,2868,1726,1593,1435,1394,1322,1159/cm.  
 [α]<sub>D</sub>= +7.0° (CHCl<sub>3</sub>,c=1.07,24°C).

45 No.1a — 17

CDCl<sub>3</sub> 300MHz  
 1.02-2.07(14H,m),2.25(1H,m),2.34(2H,t,J=6.6Hz),3.14(1H,m),5.28-5.33(3H,  
 m),7.39-7.57(4H,m),7.62-  
 7.65(2H,m),7.76(1H,d,J=8.1Hz),7.89-8.02(4H,m).  
 IR(CHCl<sub>3</sub>):3260,2948,2868,1709,1593,1394,1324,1157/cm.  
 [α]<sub>D</sub>=+20.2° (CHCl<sub>3</sub>,c=1.02,24°C).

No.1a — 18

55 CDCl<sub>3</sub> 300MHz  
 1.05-1.97(14H,m),2.25(2H,t,J=7.2Hz),2.33(1H,m),3.12(1H,m),3.67(3H,s),4.9 1(1H,d,J=6.6Hz),5.24-  
 5.29(2H,m),7.24(1H,d,J=3.9Hz),7.39-7.45(3H,m),7.56( 1H,d,J=3.9Hz),7.59-7.62(2H,m).  
 IR(CHCl<sub>3</sub>):3372,3272,,3018,2946,2868,1727,1433,1331,1152/cm.

$[\alpha]_D = -5.7^\circ$  ( $\text{CHCl}_3, c=1.01, 23^\circ\text{C}$ ).

No.1a — 19

5       $\text{CDCl}_3$  300MHz  
 1.05-2.05(14H,m), 2.28-2.33(3H,m), 3.13(1H,m), 5.18(1H,d,J=6.3Hz), 5.27-5.31 (2H,m), 7.24(1H,d,J=4.2Hz), 7.39-  
 7.42(3H,m), 7.56(1H,d,J=4.2Hz), 7.58-7.62(2 H,m).  
 IR( $\text{CHCl}_3$ ): 3372, 3254, 3018, 2948, 2868, 1707, 1431, 1328, 1151/cm.  
 $[\alpha]_D = +4.5^\circ$  ( $\text{CHCl}_3, c=1.01, 21.5^\circ\text{C}$ ).

10     No.1a — 20

15      $\text{CDCl}_3$  300MHz  
 1.05-2.00(14H,m), 2.26(2H,t,J=7.5Hz), 2.33(1H,m), 3.11(1H,m), 3.68(3H,s), 4.9  
 2(1H,d,J=6.0Hz), 5.27(2H,m), 7.05(1H,m), 7.10(1H,d,J=3.6Hz), 7.25(1H,m), 7.3 2(1H,m), 7.49(1H,d,J=3.6Hz).  
 IR( $\text{CHCl}_3$ ): 3372, 3272, 3018, 2946, 2686, 1727, 1438, 1417, 1333, 1151/cm.  
 $[\alpha]_D = -9.2^\circ$  ( $\text{CHCl}_3, c=1.01, 25^\circ\text{C}$ ).

No.1a — 21

20      $\text{CDCl}_3$  300MHz  
 1.02-2.01(14H,m), 2.28-2.34(3H,m), 3.13(1H,m), 5.12(1H,d,J=6.9Hz), 5.28-5.32  
 (2H,m), 7.06(1H,m), 7.10(1H,d,J=3.9Hz), 7.25(1H,m), 7.32(1H,m), 7.50(1H,d,J =3.9Hz).  
 IR( $\text{CHCl}_3$ ): 3350, 3250, 2948, 1709, 1440, 1420, 1330, 1151.  
 $[\alpha]_D = +2.5^\circ$  ( $\text{CHCl}_3, c=1.00, 25^\circ\text{C}$ ).

No.1a — 22

30      $\text{CDCl}_3$  300MHz  
 0.96-2.05(14H,m), 2.25(1H,m), 2.35(2H,t,J=7.0Hz), 3.11(1H,m), 5.20-5.34(2H, m), 5.41(1H,d,J=6.6Hz), 7.31-  
 7.49(5H,m)7.62(1H,d,J=7.8Hz)8.11(1H,d,d,J= 1.8 and 7.8Hz),8.35(1H,d,J=1.8Hz).  
 IR( $\text{CHCl}_3$ ): 3384, 3271, 3025, 2958, 1708, 1608, 1559, 1537, 1357, 1168/cm.  
 $[\alpha]_D = +18.3^\circ$  ( $\text{CHCl}_3, c=0.31, 22^\circ\text{C}$ ).

35     No.1a — 23

40      $\text{CDCl}_3$  300MHz  
 0.97-2.07(14H,m), 2.24(1H,m), 2.35(2H,t,J=6.9Hz), 3.09(1H,m), 3.86(3H,s), 5.2  
 4-  
 5.35(2H,m), 5.44(1H,d,J=6.3Hz), 6.97-7.00(2H,m), 7.26-7.28(2H,m), 7.59(1H, d,J=8.1Hz), 8.06(1H,d,d,J=2.1 and  
 8.1Hz), 8.29(1H,d,J=2.1Hz).  
 IR( $\text{CHCl}_3$ ): 3384, 3270, 2959, 1709, 1609, 1535, 1519, 1357, 1302, 1255, 1226, 1169/cm.  
 $[\alpha]_D = +17.0^\circ$  ( $\text{CHCl}_3, c=1.00, 21^\circ\text{C}$ ).

No.1No.1a — 24

45      $\text{CDCl}_3$  300MHz  
 0.95-2.00(14H,m), 2.20-2.25(1H,m), 2.26(2H,t,J=7.2Hz), 3.02-3.10(1H,m), 3.66(3H,s), 4.92(1H,d,J=6.6Hz), 5.16-  
 5.31(2H,m), 7.52-7.60(3H,m), 7.94-8.06(6H,m).  
 IR( $\text{CHCl}_3$ ): 3376, 3202, 2946, 2868, 1726, 1436, 1366, 1298, 1164, 1090, 890/cm.  
 $[\alpha]_D = +11.2 \pm 0.5^\circ$  ( $\text{CHCl}_3, c=1.04, 23.5^\circ\text{C}$ )  
 mp. 101-103°C

No.1a — 25

55      $\text{CDCl}_3$  300MHz  
 0.95-2.08(14H,m), 2.15-2.22(1H,m), 2.33(2H,t,J=6.9Hz), 3.02-3.10(1H,m), 5.21-  
 5.31(2H,m), 5.34(1H,d,J=6.3Hz), 7.51-7.59(3H,m), 7.92-8.07(6H,m).  
 IR( $\text{CHCl}_3$ ): 3258, 3022, 2948, 2868, 1707, 1399, 1328, 1298, 1163, 1089, 1051, 892/cm.

$[\alpha]_D = +29.8 \pm 0.7^\circ$  (CHCl<sub>3</sub>, c=1.05, 25°C)  
mp. 158-160°C

## No.1a — 26

Anal. Calcd for C<sub>26</sub>H<sub>30</sub>N<sub>3</sub>O<sub>4</sub>SNa 0.8H<sub>2</sub>O: C, 60.29; H, 6.15; N, 8.11; S, 6.19; Na, 4.44; Found:  
C, 60.15; H, 6.19; N, 8.15; S, 6.03; Na, 4.98.  
 $[\alpha]_D = -16.6^\circ$  (CHCl<sub>3</sub>, c=1.04, 25.0°C).

## No.1a — 27

CDCl<sub>3</sub> 300MHz  
0.92-1.98(14H,m), 2.20(1H,m), 2.26(2H,t,J=7.5Hz), 3.03(1H,m), 3.12(6H,s), 3.6-6(3H,s), 4.87(1H,d,J=6.6Hz), 5.16-5.32(2H,m), 6.73-6.80(2H,m), 7.88-8.00(6H, m).  
IR(CHCl<sub>3</sub>): 3376, 3020, 2946, 1726, 1601, 1518, 1442, 1419, 1362, 1312, 1163, 1133, 1088 /cm.  
 $[\alpha]_D = +55.3^\circ$  (CHCl<sub>3</sub>, c=0.53, 24.0°C).  
mp. 158-168°C

## No.1a — 28

CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz  
0.99-2.14(14H,m), 2.21(1H,m), 2.31(2H,t,J=7.2Hz), 2.94(1H,m), 3.12(6H,s), 5.22-5.38(2H,m), 6.73-6.81(2H,m), 7.87-8.00(6H, m).  
IR(KBr): 3434, 3309, 2946, 1708, 1604, 1520, 1442, 1416, 1366, 1312, 1252, 1164, 1 155, 1134, 1091 /cm.  
 $[\alpha]_D$  not measurable (colored, insufficient energy)  
mp. 193-196°C

## No.1a — 29

CD<sub>3</sub>OD 300MHz  
1.02-1.96(14H,m), 2.10(2H,t,J=7.8Hz), 2.16(1H,m), 2.98(1H,m), 3.11(6H,s), 5.07-5.27(2H,m), 6.80-6.87(2H,m), 7.84-8.00(6H, m).  
IR(KBr): 3433, 3087, 3004, 2949, 2871, 1604, 1565, 1520, 1444, 1420, 1364, 1312, 1 253, 11638, 1136, 1090 /cm.  
 $[\alpha]_D$  not measurable

## No.1a — 30

CDCl<sub>3</sub> 300MHz  
0.95-1.99(14H,m), 2.22(1H,m), 2.26(2H,t,J=7.2Hz), 2.35(3H,s), 3.06(1H,m), 3.6-6(3H,s), 4.95(1H,d,J=6.9Hz), 5.15-5.30(2H,m), 7.26-7.32(2H,m), 7.97-8.06(6H, m).  
IR(CHCl<sub>3</sub>): 3374, 2996, 2946, 2868, 1763, 1728, 1591, 1495, 1435, 1368, 1299, 1228, 1192, 1163, 1139 /cm.  
 $[\alpha]_D = +12.9^\circ$  (CHCl<sub>3</sub>, c=1.04, 26.0°C).

## No.1a — 31

CDCl<sub>3</sub> 300MHz  
0.93-2.01(14H,m), 2.19(1H,m), 2.31(2H,t,J=7.2Hz), 2.35(3H,s), 3.06(1H,m), 5.17-5.32(2H,m), 7.25-7.32(2H,m), 7.96-8.07(6H, m).  
IR(CHCl<sub>3</sub>): 3267, 3028, 2952, 2874, 1759, 1708, 1592, 1495, 1368, 1328, 1299, 1163, 1138, 1088, 1050, 1008/cm.  
 $[\alpha]_D = +21.7^\circ$  (CHCl<sub>3</sub>, c=0.51, 22°C).

## No.1a — 32

CDCl<sub>3</sub> 300MHz  
0.93-1.99(14H,m), 2.21(1H,m), 2.27(2H,t,J=7.2Hz), 3.05(1H,m), 3.67(3H,s), 4.9 2(1H,d,J=6.6Hz)5.15-5.30(2H,m), 6.72(1H,s), 6.96-7.00(2H,m), 7.86-8.04(6H, m).  
IR(CHCl<sub>3</sub>): 3374, 3276, 3018, 2946, 2686, 1725, 1605, 1589, 1502, 1433, 1396, 1330, 1271, 1164, 1135, 1089 /cm.  $[\alpha]_D = +18.6^\circ$  (CHCl<sub>3</sub>, c=1.00, 26.0°C).

No.1a — 33

5                    $\text{CDCl}_3 + \text{CD}_3\text{OD}$  300MHz  
                 0.98-2.08(14H,m), 2.20(1H,m), 2.28(2H,t,J=7.2Hz), 2.98(1H,m), 5.18-5.32(2H,  
                 8.02(6H,m).  
                 IR(KBr): 3385, 3248, 2948, 2876, 1717, 1601, 1505, 1430, 1399, 1296, 1280, 1219, 1 165, 1136, 1092 /cm.  
                  $[\alpha]_D = -16.0^\circ$  ( $\text{CH}_3\text{OH}$ , c=1.08, 26.0°C).  
                 mp.208-210°C

10       No.1a — 34

mp.82-83°C  $[\alpha]_D = +10.6^\circ$  ( $\text{CHCl}_3$ , c=1.01, 23.5°C).

15       No.1a — 35

mp.80-82°C  $[\alpha]_D = -1.8^\circ$  ( $\text{CHCl}_3$ , c=1.07, 22.0°C).

No.1a — 36

20       TLC Rf=0.25 (ethyl acetate/n-hexane = 1:1 (0.3% acetic acid))

No.1a — 37

25                    $\text{CDCl}_3$  300MHz  
                 0.92-1.96(14H,m), 2.21(1H,m), 2.27(2H,t,J=7.4Hz), 3.01(1H,m), 3.66(3H,s), 4.7  
                 5.29(2H,m), 7.12(1H,d,J=16.2Hz), 7.24(1H,d,J=16.2Hz),  
                 7.56(2H,m), 7.62(2H,d,J=8.7Hz), 7.85(2H,d,J=8.7Hz).  
                 IR( $\text{CHCl}_3$ ): 3384, 3283, 3023, 2954, 2876, 1730, 1595, 1494, 1317, 1163, 1147 /cm.  
                  $[\alpha]_D = +10.5^\circ$  ( $\text{CHCl}_3$ , c=1.01, 24°C).  
                 mp 116-117 °C.

No.1a — 38

35                    $\text{CDCl}_3$  300MHz  
                 0.92-1.99(14H,m), 2.17(1H,m), 2.32(2H,t,J=7.2Hz), 3.02(1H,m), 5.23-5.29(3H,  
                 m), 7.11(1H,d,J=16.2Hz), 7.23(1H,d,J=16.2Hz), 7.28-7.41(3H,m), 7.52-7.55(2H,  
                 m), 7.61(2H,d,J=8.7Hz), 7.86(2H,d,J=8.7Hz).  
                 IR( $\text{CHCl}_3$ ): 3515, 3384, 3270, 3022, 3015, 2957, 2876, 2669, 1708, 1595, 1496, 1320, 1157 /cm.  
                  $[\alpha]_D = +27.1^\circ$  ( $\text{CHCl}_3$ , c=1.02, 24°C).

40       No.1a — 39

45                    $\text{CDCl}_3$  300MHz  
                 0.92-1.99(14H,m), 2.15(1H,m), 2.28(2H,t,J=7.4Hz), 3.01(1H,m), 3.68(3H,s), 4.9  
                 5.32(2H,m), 6.60(1H,d,J=12.0Hz), 6.74(1H,d,J=12.0Hz), 7.16-7.23(5H,m), 7.35(2H,d,J=8.4Hz), 7.72(2H,d,J=8.4Hz).  
                 IR( $\text{CHCl}_3$ ): 3384, 3283, 3023, 3015, 2954, 2876, 1730, 1595, 1493, 1324, 1163, 1147 /cm.  
                  $[\alpha]_D = +13.7^\circ$  ( $\text{CHCl}_3$ , c=1.00, 24°C).

No.1a — 40

50                    $\text{CDCl}_3$  300MHz  
                 0.90-2.16(14H,m), 2.12(1H,m), 2.34(2H,t,J=7.2Hz), 3.02(1H,m), 5.16(1H,d,J=6.  
                 5.34(2H,m), 6.60(1H,d,J=12.3Hz), 6.74(1H,d,J=12.3Hz), 7.14-7.24(5H,m), 7.35(2H,d,J=8.1Hz), 7.72(2H,d,J=8.1Hz).  
                 IR( $\text{CHCl}_3$ ): 3515, 3384, 3269, 3025, 3021, 3014, 2957, 2876, 2668, 1709, 1595, 1322, 1162, 1147 /cm.  
                  $[\alpha]_D = +26.4^\circ$  ( $\text{CHCl}_3$ , c=1.00, 24°C).

No.1a — 41

5       $\text{CDCl}_3$  300MHz  
 0.98-1.99(14H,m),2.17(1H,m),2.32(2H,t,J=7.2Hz),3.00(1H,m),3.84(3H,s),  
 6.95(2H,m),6.98(1H,d,J=16.2Hz),7.17(1H,d,J= 16.2Hz),7.46-7.49(2H,m),7.58(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz).  
 IR( $\text{CHCl}_3$ ):3258,3018,3002,2950,1709,1590,1509,1457,1404,1302,1250,1153 /cm.  
 $[\alpha]_D = +30.2^\circ$  ( $\text{CHCl}_3$ ,c=1.00,23°C).  
 mp.99-100 °C

10     No.1a — 42

10      $\text{CDCl}_3$  300MHz  
 1.01-1.99(14H,m),2.28(2H,t,J=7.2Hz),2.30(1H,m),3.10(1H,m),3.66(3H,s),5.0  
 7.04(2H,m),7.16(1H,d,J=16.2Hz),7.28-7.37(3 H,m),7.47-7.50(3H,m).  
 15    IR( $\text{CHCl}_3$ ):3372,3276,3020,2946,2870,1727,1491,1433,1331,1152 /cm.  
 $[\alpha]_D = -11.5^\circ$  ( $\text{CHCl}_3$ ,c=1.07,21.5°C).

No.1a — 43

20      $\text{CDCl}_3$  300MHz  
 0.98-2.00(14H,m),2.11-2.36(3H,m),3.12(1H,m),5.10(1H,d,J=6.6Hz),5.29-5.32(2H,m),6.99-  
 7.04(2H,m),7.23(1H,d,J=21.6Hz),7.32-7.49(6H,m).  
 IR( $\text{CHCl}_3$ ):3380,3248,3020,2948,2868,1709,1491,1430,1329,1151/cm.  
 $[\alpha]_D = +3.4^\circ$  ( $\text{CHCl}_3$ ,c=1.03,25°C).

25     No.1a — 44

30      $\text{CDCl}_3$  300MHz  
 1.00-2.00(14H,m),2.13(1H,m),2.29(2H,t,J=7.4Hz),2.90-3.13(5H,m),3.68(3H,s)  
 5.30(2H,m),7.18-7.29(7H,m),7.76(2H,d,J=8.1Hz).  
 IR( $\text{CHCl}_3$ ):3384,3282,3063,3028,3023,3016,2953,2876,1730,1599,1496,1319, 1157 /cm.  
 $[\alpha]_D = +2.3^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C).  
 mp.85.0-86.0°C

35     No.1a — 45

35      $\text{CDCl}_3$  300MHz  
 0.90-2.05(14H,m),2.09(1H,m),2.35(2H,t,J=6.9Hz),2.90-3.13(5H,m),5.18(1H,  
 d,J=6.6Hz),5.24-5.34(2H,m),7.10-  
 7.27(7H,m),7.76(2H,d,J=8.4Hz).  
 40    IR( $\text{CHCl}_3$ ):3510,3384,3270,3087,3063,3026,3018,3014,2955,2876,2670,1708, 1599,1496,1318,1157/cm.  
 $[\alpha]_D = +8.5^\circ$  ( $\text{CHCl}_3$ ,c=1.01,25°C).

No.1a — 46

45      $[\alpha]_D = +6.8^\circ$  ( $\text{CHCl}_3$ ,c=1.05,25°C). mp.99-100°C.

No.1a — 47

50      $\text{CDCl}_3$  300MHz  
 0.97-2.01(14H,m),2.14(1H,m),2.36(2H,t,J=7.2Hz),3.02(1H,m),5.23(1H,d,J=5.  
 7.39(3H,m),7.54-7.58(2H,m),7.63-7.66(2H,m),7.8 5-7.88(2H,m).  
 IR( $\text{CHCl}_3$ ):3375,3260,3022,2948,2212,1707,1596,1497,1396,1322,1160/cm.  
 $[\alpha]_D = +25.0^\circ$  ( $\text{CHCl}_3$ ,c=1.02,24°C). mp.117-118°C.

55     No.1a — 48

55      $\text{CD}_3\text{OD}$  300MHz  
 1.05-1.93(14H,m),2.10-2.15(3H,m),2.96(1H,m),5.08-5.28(2H,m),7.38-7.40(3  
 H,m),7.554-

7.56(2H,m), 7.69(1H,d,J=8.4Hz), 7.87(1H,d,J=8.4Hz).

No.1a — 49

<sup>5</sup> CDCl<sub>3</sub> 300MHz  
0.96-1.97(14H,m),2.24(1H,m),2.31(2H,t,J=6.9Hz),3.05(1H,m),3.69(3H,s),5.1 5(1H,d,J=6.6Hz),5.25-5.27(2H,m),7.40-7.43(3H,m),7.61-7.64(2H,m),7.85(1H, d,J=8.1Hz),8.07(1H,dd,J=8.1,1.8Hz),8.58(1H,d,J=1.8Hz).  
IR(CHCl<sub>3</sub>):3374,3020,2948,2870,2212,1726,1606,1530,1493,1437,1345,1167/cm.  
[ $\alpha$ ]<sub>D</sub>=+2.4° (CHCl<sub>3</sub>,c=1.03,25°C). mp.77-79°C.

No. 1a — 50

15 CDCl<sub>3</sub> 300MHz  
 1.00-2.02(14H,m),2.20(1H,m),2.34(2H,t,J=6.6Hz),3.08(1H,m),5.26-5.29(2H, m),5.41(1H,d,J=6.9Hz),7.40-7.43(3H,m),7.61-7.64(2H,m),7.84(1H,d,J=8.1Hz),8.07(1H,dd,J=8.4,1.8Hz),8.57(1H,dd,J=1.8Hz).  
 IR(CHCl<sub>3</sub>):3380,3254,2952,2880,2212,1707,1606,1531,1493,1409,1344,1166.  
 [α]<sub>D</sub>=+23.4° (CHCl<sub>3</sub>,c=1.00,25°C).

No.1a — 51

**CDCl<sub>3</sub> 300MHz**  
 0.95-1.98(14H,m),2.23(1H,m),2.30(2H,t,J=7.2Hz),3.00(1H,m),3.66(3H,s),4.5-6(2H,br),4.70(1H,d,J=6.9Hz),5.20-5.29(2H,m),7.15(1H,dd,J=7.8,1.8Hz),7.23 (1H,d,J=1.8Hz),7.36-7.39(3H,m),7.46(1H,d,J=7.8Hz),7.53-7.56(2H,m).  
 IR(CHCl<sub>3</sub>):3494,3386,3028,2952,2874,1725,1611,1559,1497,1422,1317,1162/cm.

No.1a — 52

CDCl<sub>3</sub> 300MHz  
 0.96-2.04(16H,m),2.20(1H,m),2.36(2H,t,J=6.9Hz),2.99(1H,m),5.17(1H,d,J=6. 3Hz),5.28-  
 5.31(2H,m),7.18(1H,dd,J=9.6,1.8Hz),7.25(1H,m),7.36-7.39(3H,m). 7.46(1H,d,J=7.8Hz),7.52-7.56(2H,m).  
 IR(CHCl<sub>3</sub>):3482,3378,3260,3022,2948,2868,1708,1612,1495, 1422, 1317/cm.  
 [α]<sub>D</sub>=+15.0° (CHCl<sub>3</sub>,c=1.00,24°C).

No.1a — 53

35 CDCl<sub>3</sub> 300MHz  
 1.01-2.05(15H,m),2.31(2H,t,J=7.2Hz),3.10(1H,m),3.67(3H,s),5.02(1H,br),5.2  
 5.33(2H,m),7.18(1H,d,J=4.2Hz),7.36-7.39(3H,m),7.48(1H,d,J=4.2Hz),7.51-7.55(2H,m).  
 40 IR(CHCl<sub>3</sub>):3372,3270,3018,3004,2946,2868,2202,1726,1486,1433,1336,1115 4/cm.  
 [α]<sub>D</sub>=+0.6° (CHCl<sub>3</sub>,c=1.11,25°C), [α]<sub>D25</sub>+17.8° (CHCl<sub>3</sub>,c=1.11,25°C).

No 1a — 54

45  $\text{CDCl}_3$  300MHz  
 0.99-2.11(14H,m),2.27(1H,m),2.37(2H,t,J=7.5Hz),3.13(1H,m),5.16(1H,d,J=6.  
 5.35(2H,m),7.18(1H,d,J=3.6Hz),7.37-7.39(3H,m),7.50(1H,d,J=3.6 Hz),7.52-7.55(2H,m).  
 IR( $\text{CHCl}_3$ ):3484,3370,3246,2948,2868,2202,1708,1486,1429,1335,1153/cm.  
 $[\alpha]_D=-17.8^\circ$  ( $\text{CHCl}_3$ ,c=1.00,24°C). mp, 95-96°C

50 No 1a - 55

**CDCl<sub>3</sub> 300MHz**  
 0.95-1.92(14H,m),2.15(1H,m),2.24(2H,t,J=7.5Hz),3.00(1H,m),3.66(3H,s),5.1  
 7.60(7H,m),7.70(1H,d,J=7.8Hz),8.08(1H,d,J=8.1Hz).  
 (CHCl<sub>3</sub>):3356,3020,2948,2868,2210,1727,1490,1458,1437,1341,1165/cm. [α]<sub>D</sub>=-58.4° (CHCl<sub>3</sub>,c=1.00,26°C).  
 mp.84-85°C.

No.1a — 56

5       $\text{CDCl}_3$  300MHz  
       0.95-1.95(14H,m),2.10(1H,m),2.27(2H,t,J=6.9Hz),3.00(1H,m),5.17-5.21(2H,  
       m),5.38(1H,d,J=6.9Hz),7.39-  
       7.60(7H,m),7.70(1H,dd,J=7.8,1.5Hz),8.07(1H,J =6.6,1.5Hz).  
       IR( $\text{CHCl}_3$ ):3364,3026,2952,2874,2212,1707,1597,1491,1458,1411,1341,1164/cm.  
        $[\alpha]_D=-43.1^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C).

No.1a — 57

10      $\text{CDCl}_3$  300MHz  
       0.99-1.97(14H,m),2.23-2.30(3H,m),3.01(1H,m),3.67(3H,s),5.17-5.26(3H,m),7.  
       7.56(3H,m),7.60(1H,m),7.83(1H,m),8.05(1H,m).  
       IR( $\text{CHCl}_3$ ):3376,3020,2946,2870,1727,1598,1491,1437,1412,1330,1245,1163/cm.  
        $[\alpha]_D=-12.7^\circ$  ( $\text{CHCl}_3$ ,c=1.00,24°C).

No.1a — 58

20      $\text{CDCl}_3$  300MHz  
       0.97-1.98(14H,m),2.20(1H,m),2.33(2H,t,J=6.9Hz),3.02(1H,m),5.19-5.28(3H,  
       m),7.36-7.38(3H,m),7.47-  
       7.55(3H,m),7.69(1H,m),7.83(1H,m),8.04(1H,m).  
       IR( $\text{CHCl}_3$ ):3376,3260,3022,3002,2948,2868,2220,1708,1598,1490,1455,1412,1327,1162/cm.  
        $[\alpha]_D=-8.6^\circ$  ( $\text{CHCl}_3$ ,c=1.01,24°C).

No.1a — 59

25      $\text{CDCl}_3$  300MHz  
       0.95-1.99(24H,m),2.20(1H,m),2.28(2H,t,J=7.8Hz),2.53(1H,s),2.96(1H,m),3.6  
       9(3H,s),4.99(1H,d,J=6.6Hz),5.18-  
       5.20(2H,m),7.53(2H,d,J=8.4Hz),7.82(2H,d, J=8.4Hz).  
       IR( $\text{CHCl}_3$ ):3583,3376,3002,2936,2852,1725,1591,1490,1437,1393,1325,1160/cm.  
        $[\alpha]_D=-8.8^\circ$  ( $\text{CHCl}_3$ ,c=1.00,24°C).

No.1a — 60

35      $\text{CDCl}_3$  300MHz  
       0.96-2.05(24H,m),2.22(1H,m),2.33(2H,m),2.88(1H,m),5.22-5.26(2H,m),5.30(  
       1H,d,J=5.7Hz),7.50(2H,d,J=8.7Hz),7.80(2H,d,J=8.7Hz).  
       IR( $\text{CHCl}_3$ ):3376,3260,3022,2936,2852,1710,1592,1491,1452,1395,1325,1159/cm.  
        $[\alpha]_D=-8.9^\circ$  ( $\text{CHCl}_3$ ,c=1.06,24°C).  
       mp.88-91°C

No.1a — 61

45      $\text{CDCl}_3$  300MHz  
       0.95-2.24(23H,m),2.29(2H,m),2.99(1H,m),3.69(3H,s),4.76(1H,d,J=6.3Hz),5.2  
       7.53(2H,m),7.77-7.80(2H,m).  
       IR( $\text{CHCl}_3$ ):3374,3270,3018,2942,2868,2196,1726,1589,1490,1435,1324,1158/cm.  
        $[\alpha]_D=+7.7^\circ$  ( $\text{CHCl}_3$ ,c=1.02,24°C), mp.93-95°C

No.1a — 62

50      $\text{CDCl}_3$  300MHz  
       0.96-2.45(23H,m),2.36(2H,d,J=6.9Hz),2.99(1H,m),5.24(1H,d,J=6.3Hz),5.24-5.32(2H,m),6.28(1H,m),7.50-  
       7.53(2H,m),7.78-7.81(2H,m).  
       IR( $\text{CHCl}_3$ ):3468,3  
       374,3260,3020,2942,2868,2196,1598,1490,1455,1398,1322,1157/cm.  
        $[\alpha]_D=+19.4^\circ$  ( $\text{CHCl}_3$ ,c=1.03,24°C).

No.1a — 63

5       $\text{CDCl}_3$  300MHz  
 0.93-1.95(25H,m),2.16(1H,m),2.29(2H,t,J=7.2Hz),2.43(2H,t,J=6.9Hz),2.94(1H,m),3.69(3H,s),4.95(1H,d,J=6.9Hz),5.21-5.24(2H,m),7.49(2H,d,J=8.7Hz),7.79(2H,J=8.7Hz).  
 IR( $\text{CHCl}_3$ ):3376,3018,2946,2866,2222,1727,1592,1456,1435,1325,1158/cm.  
 $[\alpha]_D=+3.7^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C).

No.1a — 64

10      $\text{CDCl}_3$  300MHz  
 0.93-1.97(26H,m),2.35(2H,t,J=7.2Hz),2.43(2H,t,J=7.2Hz),3.00(1H,m),5.08(1H,m),7.49(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz).  
 IR( $\text{CHCl}_3$ ):3260,3020,2948,2864,2222,1708,1592,1489,1456,1397,1324,1156/cm.  
 15      $[\alpha]_D=+14.4^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C) mp.70-71°C.

No.1a — 65

20      $\text{CDCl}_3$  300MHz  
 0.95-1.98(14H,m),2.18(1H,m),2.30(2H,t,J=7.2Hz),3.00(1H,m),3.67(3H,s),4.85(2H,m),5.25(2H,m),5.54(1H,br),6.82-6.85(2H,m),7.42-7.45(2H,m),7.59-7.62(2H,m),7.82-7.85(2H,m).  
 IR( $\text{CHCl}_3$ ):3576,3374,3018,2946,2868,2208,1725,1607,1587,1514,1435,1325,1270,1162,1133/cm.  
 $[\alpha]_D=+9.1^\circ$  ( $\text{CHCl}_3$ ,c=1.03,24°C), mp.111-112°C

No.1a — 66

25      $\text{CDCl}_3$  300MHz  
 0.97-2.03(14H,m),2.15(1H,m),2.35(2H,t,J=7.5Hz),3.00(1H,m),5.17(1H,d,J=6.6Hz),5.26-5.30(2H,m),6.82-6.85(2H,m),7.42-7.45(2H,m),7.59-7.62(2H,m),7.82-7.85(2H,m).  
 30     IR( $\text{CHCl}_3$ ):3260,2948,2870,2208,1709,1607,1587,1514,1396,1325,1270,1162,1133/cm.  
 $[\alpha]_D=-21.0^\circ$  ( $\text{CHCl}_3$ ,c=1.00,23°C), mp.161-162°C

No.1a — 67

35      $\text{CDCl}_3$  300MHz  
 0.95-1.98(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.01(1H,m),3.67(3H,s),4.85(2H,m),7.05-7.10(2H,m),7.51-7.56(2H,m),7.61-7.64(2H,m),7.84-7.87(2H,m).  
 IR( $\text{CHCl}_3$ ):3374,3280,3020,2946,2868,2214,1727,1589,1509,1435,1327,1233,1161,1134/cm.  
 $[\alpha]_D=+6.7^\circ$  ( $\text{CHCl}_3$ ,c=1.01,24°C), mp.84-85°C

No.1a — 68

40      $\text{CDCl}_3$  300MHz  
 0.96-2.01(14H,m),2.15(1H,m),2.34(2H,t,J=6.9Hz),3.02(1H,m),5.23-5.27(3H,m),7.04-7.10(2H,m),7.51-7.56(2H,m),7.61-7.64(2H,m),7.85-7.88(2H,m).  
 45     IR( $\text{CHCl}_3$ ):3374,3258,3020,2948,2868,2214,1708,1589,1509,1455,1398,1322,1156/cm.  
 $[\alpha]_D=+22.6^\circ$  ( $\text{CHCl}_3$ ,c=1.02,24°C), mp.135-136°C

No.1a — 69

50      $\text{CDCl}_3$  300MHz  
 0.95-1.98(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),2.39(3H,s),3.01(1H,m),3.69(3H,s),4.80(1H,d,J=6.6Hz),5.20-5.29(2H,m),7.18(2H,d,J=8.1Hz),7.44(2H,d,J=8.1Hz),7.62(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz).  
 IR( $\text{CHCl}_3$ ):3374,3022,2946,2868,2210,1727,1589,1511,1436,1323,1161,1133/cm.  
 55      $[\alpha]_D=+9.2^\circ$  ( $\text{CHCl}_3$ ,c=1.02,24°C).  
 mp.116-118°C

No.1a — 70

5       $\text{CDCl}_3$  300MHz  
       1.15-2.00(14H,m),2.13(1H,m),2.33-2.38(5H,m),3.04(1H,m),5.14(1H,d,J=6.6Hz),5.25-  
       5.30(2H,m),7.17(2H,d,J=7.8Hz),7.44(2H,d,J=7.8Hz),7.62(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz).  
       IR(CHCl<sub>3</sub>):3380,3260,3020,2948,2868,2210,1708,1590,1511,1396,1324,1160, 1133/cm.  
        $[\alpha]_D=+24.6^\circ$  (CHCl<sub>3</sub>,c=1.00,24°C).

No.1a — 71

10      $\text{CDCl}_3$  300MHz  
       0.95-1.96(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),3.00(1H,m),3.20(1H,s),3.6 5(3H,s),4.81(1H,d,J=6.6Hz),5.20-  
       5.27(2H,m),7.46-7.54(4H,m),7.62-7.65(2H, m),7.85-7.88(2H,m).  
       IR(CHCl<sub>3</sub>):3374,3290,3018,3002,2946,2868,2212,2110,1726,1591,1507,1435, 1401,1324,1161/cm.  
        $[\alpha]_D=+9.6^\circ$  (CHCl<sub>3</sub>,c=1.01,24°C), mp.136-138°C,

No.1a — 72

20      $\text{CDCl}_3$  300MHz  
       0.96-2.01(14H,m),2.14(1H,m),2.35(2H,t,J=7.2Hz),3.05(1H,m),3.20(1H,s),5.1 6(1H,d,J=7.2Hz),5.26-  
       5.29(2H,m),7.45-7.53(4H,m),7.63(2H,d,J=8.4Hz),7.87( 2H,d,J=8.4Hz).  
       IR(CHCl<sub>3</sub>):3462,3374,3290,3024,2948,2868,2212,2110,1708,1591,1508,1455, 1401,1321,1274,1160,1132/cm.  
        $[\alpha]_D=+24.3^\circ$  (CHCl<sub>3</sub>,c=1.03,24°C), mp.96-99°C

25    No.1a — 73

25      $\text{CDCl}_3$  300MHz  
       0.95-1.98(14H,m),2.19(1H,m),2.27-2.32(5H,m),3.01(1H,m),3.67(3H,s),4.80(1 H,d,J=6.6Hz),5.20-  
       5.27(2H,m),7.12(2H,m),7.56(2H,m),7.63(2H,m),7.84(2H, m).  
       IR(CHCl<sub>3</sub>):3374,3276,3018,2946,2868,2214,1762,1730,1589,1506,1435,1368, 1161/cm.  
        $[\alpha]_D=+7.8^\circ$  (CHCl<sub>3</sub>,c=1.02,24°C), mp.102-104°C

No.1a — 74

35      $\text{CDCl}_3$  300MHz  
       0.95-2.05(14H,m),2.15(1H,m),2.32-2.37(5H,m),3.02(1H,m),5.14(1H,d,J=6.6Hz),5.26-5.30(2H,m),7.10-  
       7.13(2H,m),7.54-7.57(2H,m),7.62-7.64(2H,m),7.84 -7.87(2H,m).  
       IR(CHCl<sub>3</sub>):3482,3250,3022,2946,2868,2214,1716,1709,1589,1507,1454,1396, 1368,1322,1195,1161/cm.  
        $[\alpha]_D=+15.0^\circ$  (CHCl<sub>3</sub>,c=1.00,24°C) mp.129-131°C

40    No.1a — 75

40      $\text{CDCl}_3$  300MHz  
       0.95-1.99(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),3.02(1H,m),3.67(3H,s),3.9 4(3H,s),4.79(1H,d,J=6.6Hz),5.19-  
       5.29(2H,m),7.60-7.63(2H,m),7.65-7.67(2H, m),7.86-7.89(2H,m),8.04-8.06(2H,m).  
       IR(CHCl<sub>3</sub>):3378,3018,2946,2880,1720,1604,1435,1307,1276,1161,1106 /cm.  
        $[\alpha]_D=+7.3^\circ$  (CHCl<sub>3</sub>,c=1.01,25°C), mp.132-133°C

No.1a — 76

50      $\text{CDCl}_3+\text{CD}_3\text{OD}$  300MHz  
       1.04-2.05(14H,m),2.19(1H,m),2.32(2H,t,J=6.9Hz),2.93(1H,m)5.27-5.31(2H, m),7.60-7.63(2H,m),7.65-  
       7.68(2H,m),7.86-7.89(2H,m),8.05-8.07(2H,m).  
       IR(CHCl<sub>3</sub>):3402,3299,2955,2876,2665,2549,1455,1422,1313,1281,1164 /cm.  
        $[\alpha]_D=-21.1^\circ$  (CH<sub>3</sub>OH,c=1.03,23°C), mp.227-229(dec.)

No.1a — 77

5       $\text{CDCl}_3$  300MHz  
       0.96-1.99(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),3.02(1H,m),3.68(3H,s),4.8                  8(1H,d,J=6.3Hz),5.19-  
       5.29(2H,m),7.67-7.72(4H,m),7.89-7.91(2H,m),8.24-8.27(2H,m).  
       IR( $\text{CHCl}_3$ ):3376,3276,3020,2946,2870,2214,1726,1594,1519,1455,1435,1389,1344,1161/cm.  
        $[\alpha]_D=+7.7^\circ$  ( $\text{CHCl}_3$ ,c=1.02), mp.87-89°C

No.1a — 78

10      $\text{CDCl}_3$  300MHz  
       0.98-2.00(14H,m),2.18(1H,m),2.34(2H,t,J=7.2Hz),3.02(1H,m),5.24-5.28(2H,                  m),5.32(1H,d,J=5.7Hz),7.67-  
       7.72(4H,m),7.89-7.92(2H,m),8.23-8.26(2H,m).  
       IR( $\text{CHCl}_3$ ):3374,3260,2948,2214,1708,1595,1344,1160/cm.  
        $[\alpha]_D=+23.3^\circ$  ( $\text{CHCl}_3$ ,c=1.00), mp.102-103°C.

15     No.1a — 79  $\text{CDCl}_3$  300MHz  
       0.93-2.02(14H,m),2.13(1H,m),2.36(2H,t,J=7.1Hz),3.05(1H,m),3.84(3H,s),5.1                  8(1H,br),5.27-5.31(2H,m),6.88-  
       6.91(2H,m),7.48-7.50(2H,m),7.60-7.63(2H,m) 7.83-7.85(2H,m).  
       IR( $\text{CHCl}_3$ ):3380,3252,3020,2950,2868,2208,1708,1589,1511,1457,1396,1321, 1286,1160/cm.  
        $[\alpha]_D=+26.7^\circ$  ( $\text{CHCl}_3$ ,c=1.00). mp.75-77°C

No.1a — 80

20      $\text{CDCl}_3$  300MHz  
       0.96-1.99(14H,m),2.21(1H,m),2.30(2H,t,J=7.8Hz),3.02(1H,m),3.68(3H,s),4.8                  0(1H,d,J=6.6Hz),5.19-  
       5.28(2H,m),7.51-7.77(5H,m),7.87-7.90(2H,m),8.13(1H, m).  
       IR( $\text{CHCl}_3$ ):3374,3270,3018,2946,2868,2216,1726,1607,1567,1527,1495,1456, 1436,1344,1296,1161/cm.  
        $[\alpha]_D=+7.4^\circ$  ( $\text{CHCl}_3$ ,c=1.00,22°C), mp.68-70°C

25     No.1a — 81

30      $\text{CDCl}_3$  300MHz  
       0.97-2.01(14H,m),2.16(1H,m),2.34(2H,t,J=7.2Hz),3.01(1H,m),5.22-5.28(3H,                  m),7.51(1H,m),7.65(1H,m)7.70-  
       7.76(3H,m),7.88-7.91(2H,m),8.12(1H,dd,J=6. 9Hz,1.5Hz).  
       IR( $\text{CHCl}_3$ ):3480,3382,3262,3026,2952,2872,2218,1708,1607,1567,1526,1396, 1343,1225,1160/cm.  
        $[\alpha]_D=+22.0^\circ$  ( $\text{CHCl}_3$ ,c=1.00), mp.92-94°C

No.1a — 82

35      $\text{CDCl}_3$  300MHz  
       0.95-1.98(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.01(1H,m),3.67(3H,s),4.3                  0(2H,br),4.79(1H,d,J=6.9Hz),5.20-  
       5.29(2H,m),6.71-6.76(2H,m),7.18(1H,m),7. 37(1H,dd,J=7.8,1.2Hz),7.61-7.65(2H,m),7.83-7.87(2H,m).  
       IR( $\text{CHCl}_3$ ):3376,3020,2946,2868,2202,1725,1613,1589,1484,1454,1315,1253, 1161/cm.  
        $[\alpha]_D=+8.9^\circ$  ( $\text{CHCl}_3$ ,c=1.00,22°C). mp.68-70°C

No.1a — 83

40      $\text{CDCl}_3$  300MHz  
       0.97-1.99(14H,m),2.17(1H,m),2.33(2H,t,J=6.9Hz),2.99(1H,m),5.20-5.28(2H,  
       m),5.37(1H,d,J=6.9Hz),6.45(2H,br),6.71-6.76(2H,m),7.19(1H,dd,J=7.8,6.6Hz  
       ),7.37(1H,m),7.62(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz).  
       IR( $\text{CHCl}_3$ ):3478,3378,3260,3022,2950,2868,2204,1708,1613,1589,1484,1454, 1396,1316,1160/cm.  
        $[\alpha]_D=+17.1^\circ$  ( $\text{CHCl}_3$ ,c=1.01).

45     No.1a — 84

50      $\text{CDCl}_3$  300MHz

**EP 0 837 052 A1**

9-

1.00-2.08(14H,m),2.21(1H,m),2.37(2H,t,J=6.9Hz),3.06(1H,m),3.86(3H,s),5.2  
5.33(2H,m),5.45(1H,d,J=6.6Hz),6.91-6.94(2H,m),7.56-7.59(2H,m),7.81(1H,  
d,t,J=8.1Hz),8.04(1H,d,d,J=8.1&1.8Hz),8.57(1H,d,J=2.1Hz).

IR(CHCl<sub>3</sub>):3492,3254,3028,2954,2202,1708,1597,1512,1344,1291,1250/cm.  
[α]<sub>D</sub>=+27.4° (CHCl<sub>3</sub>,c=0.53,23°C).

5

No.1a — 85

CDCl<sub>3</sub> 300MHz

10 0.96-2.05(14H,m),2.20(1H,m),2.35(2H,t,J=6.9Hz),2.99(1H,m),3.84(3H,s),5.2  
5.31(3H,m),6.89(2H,d,J=8.7Hz),7.19(1H,brs),7.29(1H,brs),7.45-7.50(3H,m)

IR(CHCl<sub>3</sub>):3478,3378,3020,2950,2868,2202,1708,1606,1511,1421,1311,1287,1248,1155/cm.  
[α]<sub>D</sub>=+17.1° (CHCl<sub>3</sub>,c=1.00,23°C).

15 No.1a — 86

CDCl<sub>3</sub> 300MHz

1.03-2.05(14H,m),2.21(1H,m),2.37(2H,t,J=6.9Hz),3.04(1H,m),5.29-5.33(2H,  
6.87(2H,m)7.50-7.53(2H,m),7.79(1H,d,J=8.1Hz),8.03(1H,d,d,J=1.5and8.1Hz),8.57(1H,d,J=1.5Hz).

20 IR(CHCl<sub>3</sub>):3250,3024,2950,2868,2200,1707,1515,1344,1271,1166,1143/cm.  
[α]<sub>D</sub>=+21.2° (CHCl<sub>3</sub>,c=0.26,22°C).

No.1a — 87

CD<sub>3</sub>OD 300MHz

1.04-2.00(14H,m),2.18(1H,m),2.26(2H,t,J=5.4Hz),2.93(1H,m),5.19-5.24(2H,  
6.80(2H,m),7.05(1H,d,d,J=2.1and8.1Hz),7.22(1H,d,J=2.1Hz),7.38-7.42(3H,m).  
IR(CHCl<sub>3</sub>):3377,2952,2873,2204,1705,1607,1515,1425,1312,1267,1222,1153/cm.  
[α]<sub>D</sub>=-15.6° (CH<sub>3</sub>OH,c=1.02,22°C).

30 No.1a — 88

CDCl<sub>3</sub> 300MHz

0.90-1.96(14H,m),2.22-2.31(3H,m),2.95(1H,m),3.65(3H,s),4.87(1H,d,J=6.6H  
7.62(3H,m),7.82-7.89(4H,m),7.90-7.96(2H,m),8.42(1H,brs).  
IR(CHCl<sub>3</sub>):3376,3016,2946,2868,1720,1677,1592,1514,1498,1429,1376,1314,1241,1156,1094 /cm.  
[α]<sub>D</sub>= -10.7° (CHCl<sub>3</sub>,c=1.04,22.0°C) mp.134-136°C

No.1a — 89

CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz

0.96-2.08(14H,m),2.23(1H,m),2.28(2H,t,J=7.2Hz),2.89(1H,m),5.20-5.32(2H,  
7.97(6H,m).  
IR(KBr):3272,3007,2952,2874,1708,1660,1592,1527,1498,1433,1400,1317,1260,1152,1094 /cm.  
[α]<sub>D</sub>= -24.4° (CH<sub>3</sub>OH,c=1.02,25.0°C).

No.1a — 90

CDCl<sub>3</sub> 300MHz

50 0.89-1.96(14H,m),2.23-2.33(3H,m),2.92(1H,m),3.67(3H,s),4.85(1H,d,J=6.3H  
7.90(4H,m),8.10-8.18(2H,m),8.31-8.40(2H,m),8.77(1H,s).  
IR(CHCl<sub>3</sub>):3372,3018,2946,2868,1718,1685,1592,1527,1436,1397,1346,1318,1256,1154,1099 /cm.  
[α]<sub>D</sub>= -16.1° (CHCl<sub>3</sub>,c=1.00,23.0°C).

55 No.1a — 91

CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz

0.94-2.02(14H,m),2.18-2.36(3H,m),2.87(1H,m),5.15-5.30(2H,m),7.82-7.92(4

H,m),8.09-8.16(2H,m),8.30-

8.37(2H,m).

IR(KBr):3284,3112,3006,2952,2874,1707,1593,1528,1498,1399,1348,1320,1 259,1153,1093 /cm.  
 $[\alpha]_D = -26.3^\circ$  (CH<sub>3</sub>OH,c=1.01,22°C).

5 No.1a — 92

CDCl<sub>3</sub> 300MHz

0.93-1.95(14H,m),2.22-2.31(3H,m),2.98(1H,m),3.68(3H,s),5.07(1H,d,J=6.9H  
 5.24(2H,m),7.18(1H,m),7.35-7.43(2H,m),7.70(2H,d,J=7.8Hz),7.88-8. 05(4H,m),8.50(1H,brs),  
 10 IR(CHCl<sub>3</sub>):3382,3008,2952,1720,1675,1599,1525,1499,1438,1321,1253,1161, 1087 /cm.  
 $[\alpha]_D = -16.6^\circ$  (CHCl<sub>3</sub>,c=1.03,24.0°C) mp.100-101°C

No.1a — 93

15 CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz

0.96-2.00(14H,m),2.18-2.35(3H,m),2.90(1H,m),5.15-5.30(2H,m),7.18(1H,m),  
 7.74(2H,m),7.90-8.08(4H,m).  
 IR(KBr):3347,3194,3011,2955,2875,1706,1650,1602,1544,1499,1443,1325, 1265,1165,1091 /cm.  
 $[\alpha]_D = -19.4^\circ$  (CH<sub>3</sub>OH,c=1.00,24.0°C) mp.158-159°C

20 No.1a — 94

CD<sub>3</sub>OD 300MHz

1.05-2.00(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.98(1H,m),3.80(3H,s),5.1 3-5.27(2H,m),6.88-6.98(2H,m),7.54-  
 25 7.64(2H,m),7.94-8.12(4H,m).  
 IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,1  
 302,1248,1162,1107,1090,1032/cm.  
 $[\alpha]_D = -19.1^\circ$  (CH<sub>3</sub>OH,c=1.01,24°C).

30 No.1a — 95

CD<sub>3</sub>OD 300MHz

1.04-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.93-3.02(7H,m),5.13-5.27  
 7.59(2H,m),7.95-8.02(2H,m),8.04-8.11(2H,m).  
 35 IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,1  
 302,1248,1162,1107,1090,1032/cm.  
 $[\alpha]_D = -17.6^\circ$  (CH<sub>3</sub>OH,c=1.01,24°C).

No.1a — 96

40 CD<sub>3</sub>OD 300MHz

1.05-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.98(1H,m),5.13-5.27(2H,  
 7.52(2H,m),7.94-8.12(4H,m).  
 IR(KBr):3339,3197,2953,2875,1707,1644,1606,1541,1514,1446,1325,1293,1 259,1240,1225,1161,1091/cm.  
 45  $[\alpha]_D = -18.7^\circ$  (CH<sub>3</sub>OH,c=1.00,24°C). mp.193-196°C

No.1a — 97

d<sub>6</sub>-DMSO 300MHz

50 1.05-2.08(15H,m),2.15(2H,t,J=7.5Hz),2.89(1H,m),5.18-5.28(2H,m),6.78-7.12  
 (3H,m),7.73(1H,d,d,J=1.4and7.8Hz),7.91-7.95(3H,m),8.14(2H,d,J=8.4Hz),9. 71(1H,s).  
 IR(KBr):3407,3191,2953,1711,1646,1614,1603,1537,1457,1326,1162,1151/cm.  
 $[\alpha]_D = -20.7^\circ$  (CH<sub>3</sub>OH,c=1.01,21°C).

55 No.1a — 98

CDCl<sub>3</sub> 300MHz

0.93-2.00(14H,m),2.21(1H,m),2.31(2H,t,J=7.2Hz),2.93(1H,m),3.84(3H,s),3.8  
 5(6H,s),5.15-

**EP 0 837 052 A1**

5.30(2H,m),5.45(1H,d,J=6.3Hz),7.04(2H,s),7.78-7.86(2H,m),7.9 0-7.98(2H,m),8.58(1H,s).  
IR(CHCl<sub>3</sub>):3264,3008,2954,2874,1707,1670,1607,1537,1506,1451,1421,1308, 1158,1129,1086/cm.  
[α]<sub>D</sub>= -7.2° (CHCl<sub>3</sub>,c=1.01,23.5°C). mp.147-149°C.

5 No.1a — 99

CD<sub>3</sub>OD 300MHz  
1.04-1.98(14H,m),2.21(1H,m),2.10(2H,t,J=7.2Hz),2.95(1H,m),3.76(3H,s),3.8 6(6H,s),5.07-  
5.24(2H,m),7.19(2H,s),7.99(2H,d,J=8.7Hz),8.13(1H,d,J=8.7Hz).  
10 IR(KBr):3354,3002,2950,2874,1656,1607,1570,1508,1452,1413,1314,1233,1 185,1157,1127,1092/cm.  
[α]<sub>D</sub>= -20.3° (CH<sub>3</sub>OH,c=1.00,23.5°C).

No.1a — 100

15 CDCl<sub>3</sub> 300MHz  
1.14-1.97(14H,m),2.19(1H,m),2.28(2H,t,J=7.4Hz),3.04(1H,m),3.69(3H,s),5.0 3(1H,d,J=6.9Hz),5.15-  
5.29(2H,m)7.65(2H,d,J=8.4Hz),7.87(1H,s),7.98(2H,d, J=8.4Hz).  
IR(CHCl<sub>3</sub>):3386,3271,3025,3015,2955,2877,1755,1712,1608,1331,1162/cm.  
[α]<sub>D</sub>= -29.4° (CH<sub>3</sub>OH,c=1.01,25°C).

20 No.1a — 101

d<sub>6</sub>-DMSO  
1.00-2.20(17H,m),2.84(1H,m),5.00-5.20(2H,m),7.78(2H,d,J=8.2Hz),7.84(1H, s),7.89-7.95(3H,m).  
25 IR(KBr):3269,3065,3008,2952,2874,2763,1746,1707,1607,1322,1157 /cm.  
[α]<sub>D</sub>= -26.2° (CH<sub>3</sub>OH,c=1.01,25°C).

No.1a — 102

30 CD<sub>3</sub>OD  
1.00-2.25(17H,m),2.92(1H,s),3.64(3H,s),5.07-5.21(2H,m),7.53(1H,s),7.77(2H, d,J=8.6Hz),7.90(2H,d,J=8.6).  
IR(KBr):3430,3277,3006,2952,2873,1720,1687,1620,1571,1438,1312,1156 /cm.  
[α]<sub>D</sub>= -27.3° (CH<sub>3</sub>OH,c=0.51,26°C), mp 230-232°C.

35 No.1a — 103

CDCl<sub>3</sub> 300MHz  
0.94-1.96(14H,m),2.19(1H,m),2.28(2H,t,J=7.2Hz),3.04(1H,m),3.69(3H,s),5.1 1(1H,d,J=6.6Hz),5.15-  
5.28(2H,m),7.60(2H,d,J=8.4Hz),7.67(1H,s),7.98(2H,d, J=8.4Hz).  
40 IR(CHCl<sub>3</sub>):3381,3021,2955,2876,1735,1605,1437,1411,1325,1231,1177 /cm.  
[α]<sub>D</sub>= +8.6° (CHCl<sub>3</sub>,c=1.00,23°C).

No.1a — 104

45 CDCl<sub>3</sub> 300MHz  
0.94-1.96(14H,m),2.21(1H,m),2.31(2H,t,J=6.8Hz),2.99(1H,m),5.18-5.28(2H,  
m),5.45(1H,d,J=6.6Hz),7.61(2H,d,J=8.7Hz),7.67(1H,s),7.99(2H,d,J=8.7Hz).  
IR(CHCl<sub>3</sub>):3382,3222,3028,3019,2957,2876,1736,1709,1604,1412,1322,1301, 1286,1179,1162 /cm.  
[α]<sub>D</sub>= +10.4° (CHCl<sub>3</sub>,c=1.00,23°C).

50 No.1a — 105

CDCl<sub>3</sub> 300MHz  
0.92-1.98(14H,m),2.17(1H,m),2.26(2H,d,J=7.5Hz),3.01(1H,m),3.69(3H,s),4.0 1(3H,s),4.84(1H,d,J=6.3Hz),5.14-  
5.30(2H,m),7.71(2H,d,J=8.7Hz),7.87(2H,d, J=8.7Hz),8.09(1H,s).  
55 IR(CHCl<sub>3</sub>):3385,3284,3025,3015,2954,2877,2821,1730,1598,1459,1438,1403, 1341,1160,1052 /cm.  
[α]<sub>D</sub>= +3.6° (CHCl<sub>3</sub>,c=1.00,26°C).

No.1a — 106

5       $\text{CDCl}_3$  300MHz  
       0.92-2.08(14H,m),2.14(1H,m),2.34(2H,d,J=7.2Hz),3.02(1H,m),4.01(3H,s),5.1  
       5.32(2H,m),7.71(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),8.09(1H,s).  
       IR( $\text{CHCl}_3$ ):3510,3384,3268,3028,3021,3014,2957,2877,2821,2667,2821,2666,  
       1707,1598,1459,1404,1341,1324,1160,1052 /cm.  
        $[\alpha]_D = +11.8^\circ$  ( $\text{CHCl}_3$ ,c=1.01,25°C). mp 95-96°C

10     No.1a — 107

15       $\text{CDCl}_3$  300MHz  
       0.92-1.97(14H,m),1.34(3H,t,J=7.2Hz),2.18(1H,m),2.28(2H,d,J=7.4Hz),3.01(1H,m),3.68(3H,s),4.26(2H,q,J=7.2Hz),4.86(1H,d,J=6.6Hz),5.15-5.29(2H,m),7.71(2H,d,J=8.7Hz),7.87(2H,d,J=8.7Hz),8.09(1H,s).  
       IR( $\text{CHCl}_3$ ):3385,3282,3025,3026,3015,2954,2877,1729,1599,1480,1458,1438,1403,1338,1161 /cm.  
        $[\alpha]_D = +4.4^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C).

20     No.1a — 108

25       $\text{CDCl}_3$  300MHz  
       0.90-2.04(14H,m),1.34(3H,t,J=7.2Hz),2.14(1H,m),2.34(2H,d,J=7.1Hz),3.01(1H,m),4.27(2H,q,J=7.2Hz),5.20(1H,d,J=6.6Hz),5.21-5.35(2H,m),7.71(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),8.10(1H,s).  
       IR( $\text{CHCl}_3$ ):3514,3384,3270,3025,3015,3015,2957,2877,1708,1599,1458,1403,1324,1324,1160,1050 /cm.  
        $[\alpha]_D = +12.7^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C).

No.1a — 109

30       $[\alpha]_D = +8.5^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C).mp109.0-111.0°C

No.1a — 110

35       $\text{CDCl}_3:\text{CD}_3\text{OD}(95:5)$   
       0.92-2.06(14H,m),2.20(1H,m),2.30(2H,d,J=7.2Hz),2.99(1H,m),5.22-5.33(2H,m),7.66(3H,m),8.07(2H,d,J=9.0Hz),8.12-8.20(2H,m),8.29(2H,d,J=9.0Hz)  
       IR(Nujol):3270,2956,2924,2854,1716,1548,1485,1319,1167/cm.  
        $[\alpha]_D = +17.0^\circ$  ( $\text{CHCl}_3$ ,c=1.00,25°C). mp.166.5-168°C

40     No.1a — 111

45       $[\alpha]_D = +2.6^\circ$  ( $\text{CHCl}_3$ ,c=1.00,24°C).mp120.0-121.0°C

No.1a — 112

45       $\text{CDCl}_3$  300MHz  
       0.96-2.04(14H,m),2.19(1H,m),2.33(2H,d,J=7.1Hz),3.07(1H,m),5.28-5.31(2H,m),5.33(1H,d,J=6.6Hz),7.54-7.63(3H,m),8.05(2H,d,J=8.4Hz),8.18-8.23(2H,m),8.41(2H,d,J=8.4Hz).  
       IR( $\text{CHCl}_3$ ):3384,3269,3025,3015,2957,2877,1708,1598,1496,1457,1417,1326,1164 /cm.  
        $[\alpha]_D = +12.2^\circ$  ( $\text{CHCl}_3$ ,c=1.00,24°C). mp.163-164°C

No.1a — 113

55       $[\alpha]_D = +22.1^\circ$  ( $\text{CHCl}_3$ ,c=1.05,25°C). mp.90-92°C

No.1a — 114

55       $[\alpha]_D = +2.2^\circ$  ( $\text{CHCl}_3$ ,c=1.02,25°C).

No.1a — 115

CDCl<sub>3</sub> 300MHz

0.90-1.98(14H,m),2.15-2.22(1H,m),2.27(2H,t,J=7.2Hz),2.95-3.04(1H,m),  
 5 3.68(3H,s),4.04(2H,s),4.85(1H,d,J=6.6Hz),5.10-5.27(2H,m),7.12-7.34(7H,m),7.76-7.82(2H,m).  
 IR(CHCl<sub>3</sub>):3384,3026,2952,1727,1595,1493,1436,1318,1155,1091,890/cm.  
 [α]<sub>D</sub>=0°  
 [α]<sub>436</sub>=+4.9±0.4 ° (CHCl<sub>3</sub>,c=1.05,23°C)

No.1a — 116

CDCl<sub>3</sub> 300MHz

0.90-2.10(14H,m),2.10-2.18(1H,m),2.32(2H,t,J=7.2Hz),2.96-3.04(1H,m), 4.04(2H,s),5.14(1H,d,J=6.6Hz),5.16-  
 15 5.28(2H,m),7.12-7.34(7H,m),7.76-7.82(2H,m).  
 IR(CHCl<sub>3</sub>):3260,3020,2950,1709,1407,1318,1154,1091,892/cm.  
 [α]<sub>D</sub>=+9.1±0.5 ° (CHCl<sub>3</sub>,c=1.04,23°C)

No.1a — 117

CD<sub>3</sub>OD 300MHz

0.96-2.18(17H,m),2.89-2.92(1H,m),4.05(2H,s),4.95-5.22(2H,m),7.15-7.42(7H,m),7.75-7.81(2H,m).  
 IR(KBr):3429,3279,2951,2872,1563,1494,1453,1408,1313,1155,1093,1057/cm.  
 [α]<sub>D</sub>=-16.3±0.5 ° (CH<sub>3</sub>OH,c=1.06,25°C)

No.1a — 118

CDCl<sub>3</sub> 300MHz

0.98-1.70(15H,m),1.80-2.00(5H,m),2.20-2.40(3H,m),2.98(1H,m),4.06(2H,s),4. 72(1H,d,J=6.3Hz),5.00-  
 5.23(3H,m),7.16(2H,d,J=8.4Hz),7.26-7.33(5H,m),7.7 9(2H,d,J=8.1Hz).  
 30 IR(CHCl<sub>3</sub>):3376,3020,2948,2868,1716,1596,1492,1453,1407,1318,1155,1105/cm.  
 [α]<sub>D</sub>=+2.4° (CHCl<sub>3</sub>,c=1.08,24°C).

No.1a — 119

CDCl<sub>3</sub> 300MHz

0.90-2.02(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.00(1H,m),3.68(3H,s),4.8 6(1H,d,J=6.9Hz),5.13-  
 5.34(2H,m),7.00-7.09(4H,m),7.22(1H,m),7.37-7.45(2H, m),7.79-7.86(2H,m).  
 IR(CHCl<sub>3</sub>):3376,3018,2946,2868,1727,1582,1486,1321,1243,1151,1093 /cm.  
 [α]<sub>D</sub>= +4.5° (CHCl<sub>3</sub>,c=1.05,23.5°C).

No.1a — 120

CD<sub>3</sub>OD 300MHz

1.00-2.00(14H,m),2.13(2H,t,J=7.5Hz),2.16(1H,m),2.91(1H,m),5.05-5.33(2H, m),7.04-7.11(4H,m),7.18-  
 45 7.25(1H,m),7.38-7.48(2H,m),7.80-7.87(2H,m).  
 IR(KBr):3430,3278,3006,2952,2873,1583,1487,1410,1322,1298,1245,1152,1 095 /cm.  
 [α]<sub>D</sub>= -8.8° (CH<sub>3</sub>OH,c=1.05,25.0°C).

No.1a — 121

CDCl<sub>3</sub> 300MHz

0.90-2.10(14H,m),2.15(1H,m),2.35(2H,t,J=7.2Hz),3.01(1H,m),5.20(1H,d,J=6. 9Hz),5.22-5.35(2H,m),7.00-  
 50 7.09(4H,m),7.18-7.25(1H,m),7.37-7.45(2H,m),7.7 9-7.86(2H,m).  
 IR(CHCl<sub>3</sub>):3260,3020,2948,2868,1708,1582,1486,1409,1321,1296,1243,1151, 1093 /cm.  
 [α]<sub>D</sub>= +13.1° (CHCl<sub>3</sub>,c=1.04,24.0°C).

No.1a — 122

5       $\text{CDCl}_3$  300MHz  
       0.90-2.00(14H,m),2.23(1H,m),2.28(2H,t,J=7.5Hz),2.96(1H,m),3.67(3H,s),4.6      9(1H,d,J=6.6Hz),5.15-  
       5.32(2H,m),6.22(1H,s),6.98-7.40(5H,m),7.30-7.38(2H, m),7.68-7.74(2H,m).  
       IR( $\text{CHCl}_3$ ):3416,3370,3018,2946,2868,1725,1587,1508,1437,1400,1320,1149, 1094 /cm.  
        $[\alpha]_D = +6.2^\circ$  ( $\text{CHCl}_3$ ,c=1.04,25.0°C).

No.1a — 123

10      $\text{CDCl}_3$  300MHz  
       0.90-2.04(14H,m),2.18(1H,m),2.33(2H,t,J=7.2Hz),2.96(1H,m),5.04-5.35(3H,      m),6.98-7.12(3H,m),7.12-  
       7.20(2H,m),7.28-7.38(2H,m)7.66-7.74(2H,m).  
       IR( $\text{CHCl}_3$ ):3424,3270,3028,2952,2872,1708,1587,1508,1445,1399,1320,1148, 1092 /cm.  
        $[\alpha]_D = +20.9^\circ$  ( $\text{CHCl}_3$ ,c=1.06,23.0°C).

No.1a — 124

20      $\text{CDCl}_3$  300MHz  
       0.90-2.00(14H,m),2.18(1H,m),2.28(2H,t,J=7.2Hz),3.00(1H,m),3.14(3H,s),3.6      8(3H,s),4.56(2H,s),4.84(1H,d,J=6.3Hz),5.10-5.29(2H,m),7.16-7.26(4H,m),7.2 6-7.34(2H,m),7.78-7.84(2H,m).  
       IR( $\text{CHCl}_3$ ):3384,3028,2952,2874,1727,1598,1501,1435,1410,1370,1329,1172, 1148,1091 /cm.  
        $[\alpha]_D = +2.7^\circ$  ( $\text{CHCl}_3$ ,c=1.09,23.0°C).

25     No.1a — 125

25      $\text{CDCl}_3$  300MHz  
       0.90-2.00(14H,m),2.18(1H,m),2.28(2H,t,J=7.2Hz),2.29(3H,s)3.00(1H,m),3.6      8(3H,s),4.04(2H,s),4.80(1H,d,J=6.6Hz),5.11-5.29(2H,m),6.99-7.06(2H,m),7.1  
       7.19(2H,m),7.31(2H,d,J=8.1Hz),7.79(2H,d,J=8.1Hz).  
       IR( $\text{CHCl}_3$ ):3382,3280,3024,2950,2874,1730,1596,1504,1435,1407,1367,1318 1196,1155,1091 /cm.  
        $[\alpha]_D = +2.9^\circ$  ( $\text{CHCl}_3$ ,c=1.06,23.0°C).

No.1a — 126

35      $\text{CDCl}_3$  300MHz  
       0.90-2.02(14H,m),2.14(1H,m),2.29(3H,s),2.32(2H,t,J=7.2Hz),3.01(1H,m),4.0      3(2H,s),5.10(1H,d,J=6.6Hz),5.15-  
       5.30(2H,m)6.98-7.06(2H,m)7.11-7.18(2H, m),7.30(2H,d,J=8. 1Hz),7.79(2H,d,J=8.1Hz).  
       IR( $\text{CHCl}_3$ ):3374,3260,3020,2948,2868,1749,1708,1596,1504,1407,1369,1317, 1195,1155,1091 /cm.  
        $[\alpha]_D = +10.0^\circ$  ( $\text{CHCl}_3$ ,c=1.09,23.0°C).

No.1a — 127

45      $\text{CDCl}_3$  300MHz  
       0.87-1.95(14H,m),2.18-2.32(3H,m),2.95(1H,m),3.69(3H,s),3.96(2H,s),4.79(1      H,d,J=6.6Hz),4.97-  
       5.17(2H,m),5.54(1H,s),6.75-6.82(2H,m),6.97-7.05(2H,m), 7.25-7.33(2H,m),7.75-7.81(2H,m).  
       IR( $\text{CHCl}_3$ ):3382,3026,2950,2874,1722,1595,1511,1436,1407,1317,1257,1154, 1090 /cm.  
        $[\alpha]_D = -2.1^\circ$  ( $\text{CHCl}_3$ ,c=1.00,21.5°C).

50     No.1a — 128

50      $\text{CDCl}_3$  300MHz  
       0.85-2.02(14H,m),2.18(1H,m),2.31(2H,t,J=7.2Hz),2.96(1H,m),3.95(2H,s),5.0 5-5.27(3H,m),6.73-6.82(2H,m),6.96-  
       7.04(2H,m),7.25-7.32(2H,m),7.74-7.81(2 H,m).  
       IR( $\text{CHCl}_3$ ):3262,3020,2948,2868,1708,1596,1511,1407,1315,1242,1154,1091 /cm.  
        $[\alpha]_D = +4.8^\circ$  ( $\text{CHCl}_3$ ,c=1.04,22°C).

No.1a — 129

5       $\text{CDCl}_3$  300MHz  
 0.89-1.98(14H,m),2.18(1H,m),2.27(2H,t,J=7.2Hz),2.99(1H,m),3.68(3H,s),3.7  
 9(3H,s),3.98(2H,s),4.81(1H,d,J=6.6Hz),5.10-5.27(2H,m),6.81-6.87(2H,m),7.0  
 3-7.10(2H,m),7.25-  
 7.32(2H,m),7.75-7.82(2H,m).  
 IR( $\text{CHCl}_3$ ):3382,3276,3006,2950,2874,1726,1609,1509,1457,1436,1407,1315, 1244,1154,1091,1033/cm.  
 $[\alpha]_D=+19.3^\circ$  ( $\text{CHCl}_3$ ,c=1.05,23°C).

10     No.1a — 130

15      $\text{CDCl}_3$  300MHz  
 0.90-2.00(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),2.98(1H,m),3.69(3H,s),4.8  
 5.32(2H,m),5.46(1H,brs),6.84-7.01(6H,m),7.76-7.83(2 H,m)  
 IR( $\text{CHCl}_3$ ):3380,3284,3024,2952,2874,1724,1588,1504,1488,1436,1321,1296, 1149,1091/cm.  
 $[\alpha]_D=+28.9^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C).

No.1a — 131

20      $\text{CDCl}_3$  300MHz  
 0.92-2.10(14H,m),2.18(1H,m),2.34(2H,t,J=6.9Hz),2.96(1H,m),5.18-5.35(3H,  
 m),6.84-7.01(6H,m),7.75-  
 7.83(2H,m).  
 IR( $\text{CHCl}_3$ ):3270,3028,2952,2874,1708,1589,1505,1489,1456,1322,1297,1238, 1148,1091/cm.  
 $[\alpha]_D=+7.7^\circ$  ( $\text{CHCl}_3$ ,c=1.09,24°C).

25     No.1a — 132

30      $\text{CDCl}_3$  300MHz  
 0.91-2.02(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),2.99(1H,m),3.68(3H,s),3.8  
 5.33(2H,m),6.90-7.04(6H,m),7.76-7.83(2H, m).  
 IR( $\text{CHCl}_3$ ):3384,3006,2952,2874,1727,1589,1502,1488,1459,1438,1321,1295, 1231,1150,1092,1033/cm.  
 $[\alpha]_D=+3.1^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C).

No.1a — 133

35     TLC Rf=0.21 (ethyl acetate/n-hexane = 1:1 (0.3% acetic acid))

No.1a — 134

40      $\text{CDCl}_3$  300MHz  
 0.97-2.10(14H,m),2.20(1H,m),2.36(2H,t,J=6.9Hz),3.04(1H,m),5.22-5.33(2H,  
 m),5.41(1H,d,J=6.6Hz),7.02(1H,d,J=9.0Hz),7.09-7.13(2H,m),7.26-7.32(1H,m  
 7.49(2H,m),7.93(1H,d,d,J=2.4and9.0Hz),8.46(1H,d,J=2.4Hz).  
 IR( $\text{CHCl}_3$ ):3384,3270,3020,2958,1709,1610,1587,1537,1479,1352,1271,1252, 1167/cm.  
 45      $[\alpha]_D=+20.9^\circ$  ( $\text{CHCl}_3$ ,c=0.51,22°C).

No.1a — 135

50      $\text{CDCl}_3$  300MHz  
 0.96-2.02(14H,m),2.21(1H,m),2.29(2H,t,J=7.2Hz),3.07(1H,m),3.68(3H,s),5.0  
 5.33(2H,m),7.48-7.55(2H,m),7.64(1H,m),7.76-7.82(2H, m),7.88-7.94(2H,m),7.98-8.04(2H,m).  
 IR( $\text{CHCl}_3$ ):3384,3282,3026,2952,2874,1727,1663,1596,1446,1396,1316,1274, 1163,1090 /cm.  
 $[\alpha]_D= +3.1^\circ$  ( $\text{CHCl}_3$ ,c=1.03,22.0°C).

55     No.1a — 136

$\text{CDCl}_3$  300MHz  
 0.95-2.05(14H,m),2.19(1H,m),2.34(2H,t,J=7.2Hz),3.08(1H,m),5.10-5.40(2H,  
 m),5.35(1H,d,J=6.8Hz),7.45-

7.58(2H,m), 7.64(1H,m), 7.74-7.84(2H,m), 7.84-7.95(2H,m), 7.95-8.06(2H,m).  
 IR(CHCl<sub>3</sub>):3260,3018,2950,2870,1708,1662,1595,1446,1395,1316,1274,1162, 1090 /cm.  
 [α]<sub>D</sub>= +12.9° (CHCl<sub>3</sub>,c=1.05,21.5°C).

5 No.1a — 137

CDCl<sub>3</sub> 300MHz  
 0.97-2.04(14H,m), 2.27(1H,m), 2.31(2H,t,J=7.2Hz), 3.07(1H,m), 3.70(3H,s), 5.15-5.30(3H,m), 7.48-7.68(5H,m), 7.96-8.02(2H,m).  
 10 IR(CHCl<sub>3</sub>):3382,3030,2952,2878,1725,1446,1329,1154,1098 /cm.  
 [α]<sub>D</sub>= -12.1° (CHCl<sub>3</sub>,c=1.03,22.0°C).

No.1a — 138

15 CDCl<sub>3</sub> 300MHz  
 0.95-2.04(14H,m), 2.25(1H,m), 2.35(2H,t,J=7.2Hz), 3.08(1H,m), 5.15-5.34(2H,m), 5.41(1H,d,J=6.6Hz), 7.48-7.68(5H,m), 7.98-8.03(2H,m).  
 IR(CHCl<sub>3</sub>):3370,3242,3022,2950,2870,1707,1445,1408,1329,1154,1099 /cm.  
 [α]<sub>D</sub>= -0.6° (CHCl<sub>3</sub>,c=1.06,21.5°C) [α]<sub>365</sub>= +30.7° (CHCl<sub>3</sub>,c=1.06,21.5°C).

20 No.1a — 139

CDCl<sub>3</sub> 300MHz  
 0.92-2.19(14H,m), 2.27-2.34(3H,m), 3.26(1H,m), 3.65(3H,s), 4.28(2H,s), 4.37(1H,d,J=7.4Hz), 5.34-5.50(2H,m), 7.37-7.62(9H,m).  
 IR(CHCl<sub>3</sub>):3389,3294,3028,3015,2954,2877,1730,1600,1488,1325,1151,1129 /cm.  
 [α]<sub>D</sub>= -24.8° (CHCl<sub>3</sub>,c=1.01,24°C).

No.1a — 140

30 CDCl<sub>3</sub> 300MHz  
 0.92-2.22(15H,m), 2.34(2H,t,J=7.1Hz), 3.24(1H,m), 4.29(2H,s), 4.81(1H,d,J=7.4Hz), 5.32-5.52(2H,m), 7.36-7.62(9H,m).  
 IR(CHCl<sub>3</sub>):3510,3388,3251,3031,3015,2956,2877,2668,1708,1601,1488,1318, 1151,1129 /cm.  
 [α]<sub>D</sub>= -24.6° (CHCl<sub>3</sub>,c=1.02,25°C).

No.1a — 141

CDCl<sub>3</sub> 300MHz  
 40 0.92-2.19(15H,m), 2.32(2H,t,J=7.2Hz), 3.26(1H,m), 3.65(3H,s), 4.31(2H,s), 4.48(1H,d,J=7.4Hz), 5.33-5.49(2H,m), 7.42-7.80(8H,m).  
 IR(CHCl<sub>3</sub>):3388,3285,3018,2955,2877,2225,1730,1597,1479,1320,1152,1129 /cm.  
 [α]<sub>D</sub>= -20.1° (CHCl<sub>3</sub>,c=0.96,25°C).

45 No.1a — 142

CDCl<sub>3</sub> 300MHz  
 0.92-2.22(15H,m), 2.35(2H,t,J=6.8Hz), 3.25(1H,m), 4.32(2H,s), 4.86(1H,d,J=7.4Hz), 5.33-5.53(2H,m), 7.43-7.80(8H,m).  
 50 IR(CHCl<sub>3</sub>):3512,3388,3258,3031,3023,3014,2956,2877,2225,1708,1597,1479,1319,1151,1128 /cm.  
 [α]<sub>D</sub>= -19.3° (CHCl<sub>3</sub>,c=1.09,23°C).

No.1a — 143

55 CDCl<sub>3</sub> 300MHz  
 1.00-1.93(14H,m), 2.17(1H,m), 2.27(2H,t,J=7.2Hz), 3.07(1H,m), 5.17-5.22(2H,m), 5.36(1H,d,J=6.9Hz), 7.77(1H,d,J=9.0Hz), 8.11-8.17(2H,m), 8.36(1H,d,d,J=2.1and9.0Hz), 8.51(1H,d,J=1.8Hz), 8.65(1H,d,J=2.1Hz).

**EP 0 837 052 A1**

IR(CHCl<sub>3</sub>):3382,3266,3026,2954,2874,1708,1632,1585,1528,1458,1419,1345, 1153/cm.  
 [α]<sub>D</sub>=+7.6° (CHCl<sub>3</sub>,c=1.04,22°C).

No.1a — 144

5      CDCl<sub>3</sub> 300MHz  
 0.95-1.90(14H,m),2.17(1H,m),2.25(2H,t,J=7.5Hz),3.02(1H,m),5.09(1H,d,J=6. 6Hz),5.15-  
 5.21(2H,m),6.72(1H,d,J=8.4Hz),6.85(1H,s),7.54(1H,d,J=8.4Hz),7.  
 72(1H,d,J=9.0Hz),7.83(1H,d,d,J=1.8and9.0Hz),8.32(1H,d,J=1.8Hz).  
 10     IR(CHCl<sub>3</sub>):3380,3260,3022,2948,2868,2352,1709,1636,1460,1425,1313,1291, 1265,1148,1130/cm.  
 [α]<sub>D</sub>=+12.9° (CHCl<sub>3</sub>,c=1.02,22.5°C).

No.1a — 145

15     CDCl<sub>3</sub> 300MHz  
 0.97-1.90(14H,m),2.15(1H,m),2.27(2H,t,J=6.9Hz),3.02(1H,m),3.08(6H,s),5.1 2(1H,d,J=6.3Hz),5.19-  
 5.25(2H,m),6.78-6.84(2H,m),7.53(1H,d,J=8.7Hz),7.76-7.83(2H,m),8.30(1H,d,J=1.8Hz).  
 IR(CHCl<sub>3</sub>):3272,3030,2950,2874,1708,1635,1601,1511,1457,1425,1357,1328, 1151,1124/cm.  
 [α]<sub>D</sub>=+6.3° (CHCl<sub>3</sub>,c=1.04,23°C).

20     No.1a — 146

CDCl<sub>3</sub> 300MHz  
 0.95-2.00(14H,m),2.16(1H,m),2.29(2H,t,J=7.2Hz),3.05(1H,m),4.10(3H,s),5.1 3-  
 5.28(2H,m),5.38(1H,d,J=6.9Hz),7.67-7.74(2H,m),8.08(1H,d,d,J=1.8and9.0 Hz),8.11(1H,s),8.61(1H,d,J=1.8Hz).  
 IR(CHCl<sub>3</sub>):3260,3020,2948,2868,1708,1639,1606,1528,1470,1455,1424,1349,  
 1311,1238,1174,1149,1120,1079,1060,1022/cm.  
 [α]<sub>D</sub>=+7.8° (CHCl<sub>3</sub>,c=1.00,23°C).

30     No.1a — 147

CDCl<sub>3</sub> 300MHz  
 0.92-1.92(14H,m),2.17(1H,m),2.25(2H,t,J=7.2Hz),3.01(1H,m),3.97(3H,s),5.1 0-  
 5.27(5H,m),6.92(1H,s),7.29(1H,s),7.52(1H,d,J=8.7Hz),7.82(1H,d,d,J=2.1a nd8.7Hz),8.33(1H,d,J=2.1Hz).  
 35     IR(CHCl<sub>3</sub>):3380,3264,3002,2950,2868,1708,1634,1476,1452,1426,1317,1264,  
 1218,1169,1147,1115,1068,1031/cm.  
 [α]<sub>D</sub>=+5.6° (CHCl<sub>3</sub>,c=1.02,23°C).

No.1a — 148

40     CDCl<sub>3</sub> 300MHz  
 0.90-1.98(14H,m),2.15(1H,m),2.28(2H,t,J=6.9Hz),2.91(6Hs),3.03(1H,m),4.01 (3H,s),5.15-  
 5.26(3H,m),7.18(1H,s),7.38(1H,s),7.59(1H,d,J=8.7Hz),7.87(1H,d, d,J=2.1and8.7Hz),8.40(1H,d,J=2.1Hz).  
 IR(CHCl<sub>3</sub>):3384,3266,2956,1709,1632,1602,1495,1473,1458,1430,1317,1231, 1148,1121/cm.  
 45     [α]<sub>D</sub>=+11.2° (CHCl<sub>3</sub>,c=1.01,23°C).

No.1a — 149

CDCl<sub>3</sub> 300MHz  
 50     0.99-1.90(14H,m),2.17(1H,m),2.28(2H,t,J=7.2Hz),3.00(1H,m),5.13-5.19(2H, m),5.43(1H,d,J=6.0Hz),7.02(1H,d,d,J=2.4and9.0Hz),7.38-7.41(2H,m),7.58(1 H,d,J=8.7Hz),7.96(1H,d,d,J=1.8and8.7Hz),8.45(1H,d,J=1.8Hz).  
 IR(CHCl<sub>3</sub>):3270,3020,2948,2868,1709,1601,1478,1448,1419,1315,1147,1120/cm.  
 [α]<sub>D</sub>=-11.4° (CHCl<sub>3</sub>,c=1.01,23°C).

55     No.1a — 150

CDCl<sub>3</sub> 300MHz

**EP 0 837 052 A1**

0.97-1.88(14H,m),2.12-2.31(3H,m),2.38(3H,s),3.01(1H,m),5.14-5.19(2H,m),5.  
36(1H,d,J=6.6Hz),7.24(1H,d,d,J=2.4and9.0Hz),7.59(1H,d,J=6.3Hz),7.66(1H,  
d,J=8.7Hz),7.72(1H,d,J=2.4Hz),8.01(1H,d,d,J=1.8and8.7Hz),8.49(1H,d,J=1.8Hz).  
IR(CHCl<sub>3</sub>):3470,3374,3260,3018,2950,2868,1709,1474,1444,1412,1370,1319, 1266,1162,1145,1118/cm.  
[α]<sub>D</sub>=+4.9° (CHCl<sub>3</sub>,c=1.00,24°C).

5

No.1a — 151

CDCl<sub>3</sub> 300MHz  
10 0.97-1.89(14H,m),2.17(1H,m),2.25(2H,t,J=7.2Hz),3.03(1H,m),3.92(3H,s),5.1  
5.20(2H,m),5.32(1H,d,J=6.6Hz),7.11(1H,d,d,J=2.4and9.3Hz),7.45(1H,d,J=2.4Hz),7.50(1H,d,J=9.3Hz),7.62(1H,d,J=8.7Hz),7.97(1H,d,d,J=2.1and8.7Hz), 8.50(1H,d,J=2.1Hz).  
IR(CHCl<sub>3</sub>):3260,3018,2948,1708,1483,1454,1432,1314,1287,1268,1188,1169, 1147/cm.  
[α]<sub>D</sub>=+4.9° (CHCl<sub>3</sub>,c=1.01,23.5°C).

15

No.1a — 152

CDCl<sub>3</sub> 300MHz  
20 0.98-2.04(14H,m),2.15(1H,m),2.30(2H,t,J=6.6Hz),3.04(1H,m),5.17-5.29(3H,  
m),7.41(1H,d,d,J=1.5and8.1Hz),7.64-7.68(2H,m),7.92(1H,d,J=8.4Hz),8.00(1  
H,d,d,J=1.8and8.4Hz),8.49(1H,d,J=1.8Hz).  
IR(CHCl<sub>3</sub>):3266,3028,2952,2872,1707,1629,1591,1456,1416,1318,1275,1150/cm.  
[α]<sub>D</sub>=+3.2° (CHCl<sub>3</sub>,c=1.04,23°C).

25

No.1a — 153

CDCl<sub>3</sub> 300MHz  
0.97-1.88(14H,m),2.16(1H,m),2.26(2H,t,J=7.2Hz),3.03(1H,m),4.64-4.65(2H,  
5.50(5H,m),6.13(1H,m),7.14(1H,d,d,J=2.7and9.0Hz),7.46-7.52(2H,  
30 m),7.63(1H,d,J=8.7Hz),7.97(1H,d,d,J=1.8and8.7Hz),8.49(1H,d,J=1.8Hz).  
IR(CHCl<sub>3</sub>):3374,3260,3020,2948,2868,1708,1599,1478,1446,1414,1314,1284, 1268,1184,1148,1120/cm.  
[α]<sub>D</sub>=+5.3° (CHCl<sub>3</sub>,c=1.00,23°C).

35

No.1a — 154

CDCl<sub>3</sub> 300MHz  
0.99-2.00(15H,m),2.26(2H,t,J=7.2Hz),3.03(1H,m),4.07(3H,s),5.23-5.27(2H,m)  
( ),5.36(1H,d,J=7.2Hz),7.20(1H,s),7.36-7.48(2H,m),7.55-7.58(1H,m),7.91-7.93 (1H,m),8.52(1H,s).  
IR(CHCl<sub>3</sub>):3362,3257,3020,2948,2868,1708,1637,1602,1579,1488,1457,1437,  
40 1413,1345,1318,1301,1276,1182,1104/cm.  
[α]<sub>D</sub>= +19.4° (CHCl<sub>3</sub>,c=1.01,25°C).  
mp.88-90°C

45

No.1a — 155

CDCl<sub>3</sub> 300MHz  
0.92-2.02(14H,m),2.15(1H,m),2.31(2H,t,J=7.2Hz),3.01(1H,m),4.10(2H,s),5.1  
5.35(2H,m),7.04-7.26(5H,m),7.67-7.76(2H,m).  
IR(CHCl<sub>3</sub>):3266,3028,2952,2952,2872,1708,1599,1574,1478,1457,1418,1301, 1258,1147,1124,1101,1080/cm.  
50 [α]<sub>365</sub> +33.4° (CHCl<sub>3</sub>,c=1.00,23°C).

No.1a — 156

CDCl<sub>3</sub> 300MHz  
55 0.91-2.21(15H,m),2.33(2H,t,J=6.9Hz),3.01(1H,m)5.11(1H,d,J=6.6Hz),5.27-5.  
6.96(5H,m),7.35(1H,d,J=2.1Hz),7.42(1H,d,d,J=2.1and8.7Hz).  
IR(CHCl<sub>3</sub>):3384,3263,2957,1708,1587,1489,1462,1416,1290,1222,1151,1123/cm.  
[α]<sub>D</sub>=+6.4° (CHCl<sub>3</sub>,c=1.00,23°C).

No.1a — 157

5            $\text{CDCl}_3$  300MHz  
 0.97-1.91(14H,m),2.18(1H,m),2.26(2H,t,J=6.9Hz),3.04(1H,m),5.18-5.26(3H,  
 8.00(3H,m),8.25(1H,m),8.69(1H,m).  
 IR( $\text{CHCl}_3$ ):3382,3268,2952,2874,1707,1457,1425,1409,1318,1152/cm.  
 $[\alpha]_D=+4.4^\circ$  ( $\text{CHCl}_3$ ,c=1.02,22°C).

No.1a — 158

10            $\text{CDCl}_3$  300MHz  
 1.02-1.97(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.06(1H,m),5.19-5.24(2H,  
 m),5.58(1H,d,J=6.6Hz),7.62(1H,m),7.72(1H,m),7.86-7.91(2H,m),7.96(1H,d,J  
 =7.8Hz),8.04(1H,d,d,J=1.5and8.1Hz),8.34(1H,d,J=1.2Hz).  
 15           IR( $\text{CHCl}_3$ ):3490,3260,3020,2950,2870,1707,1456,1399,1312,1165/cm.  
 $[\alpha]_D=-8.3^\circ$  ( $\text{CHCl}_3$ ,c=1.00,23°C).

No.1a — 159

20            $\text{CDCl}_3$  300MHz  
 0.92-1.88(14H,m),2.13(1H,m),2.24(2H,m),3.02(1H,m),3.90(3H,s),5.12-5.26(3  
 H,m),7.58(4H,m),7.97(1H,d,d,J=1.8and7.5Hz),8.13(1H,d,J=7.5Hz),8.64 (1H,d,J=1.8Hz).  
 IR( $\text{CHCl}_3$ ):3382,3266,3018,2956,1708,1629,1594,1476,1467,1325,1245,1227, 1158,1146/cm.  
 $[\alpha]_D=+14.6^\circ$  ( $\text{CHCl}_3$ ,c=1.00,22°C).

25           No.1a — 160

30            $\text{CDCl}_3$  300MHz  
 0.93-1.88(14H,m),2.18-2.24(3H,m),3.00(1H,m),5.08-5.21(3H,m),7.28-7.33(1  
 H,m),7.51(3H,m),7.90(1H,d,d,J=1.5and7.8Hz),8.10(1H,d,J=7.8Hz),8.63 -8.64(2H,m).  
 IR( $\text{CHCl}_3$ ):3465,3380,3275,3020,2957,2876,1708,1627,1604,1495,1473,1457, 1328,1240,1222,1156,1149/cm.  
 $[\alpha]_D=+8.2^\circ$  ( $\text{CHCl}_3$ ,c=1.01,22°C).

No.1a — 161

35            $\text{CDCl}_3$  300MHz  
 0.98-1.88(14H,m),2.17(1H,m),2.24(2H,t,J=7.2Hz),3.05(1H,m),5.16-5.20(2H,  
 m),5.35(1H,d,J=6.6Hz),7.40(1H,m),7.55(1H,m),7.63(1H,d,J=8.1Hz),7.89(1H,  
 d,d,J=1.5and8.1Hz),8.01(1H,m),8.06(1H,d,J=8.1Hz),8.12(1H,d,J=1.5Hz).  
 40           IR( $\text{CHCl}_3$ ):3478,3266,3028,2952,2874,1708,1454,1417,1323,1196,1148/cm.  
 $[\alpha]_D=+21.9^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C).

No.1a — 162

45            $\text{CDCl}_3$  300MHz  
 0.96-1.98(14H,m),2.02(1H,m),2.25(2H,t,J=7.2Hz),3.05(1H,m),4.10(3H,s),5.1  
 5.25(2H,m),5.41(1H,d,J=7.2Hz),7.35-7.42(1H,m),7.51-7.64(3H,m),7.94-8.0 0(1H,m),8.16(1H,s).  
 IR( $\text{CHCl}_3$ ):3368,3274,3028,2952,2874,1708,1633,1583,1465,1452,1438,1413, 1315,1151,1103,1053,1024/cm.  
 $[\alpha]_D= +15.1^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C). mp.108-110°C

No.1a — 163

50            $d_6\text{-DMSO}$  300MHz  
 0.97-1.84(14H,m),1.92(1H,m),2.04(2H,t,J=7.5Hz),2.90(1H,m),5.08-5.23(2H,  
 7.61(2H,m),7.62(1H,s)7.68-7.71(1H,m),7.92(1H,s),8.14-8. 17(1H,m),10.7(1H,s),11.9(1H,s).  
 IR( $\text{KBr}$ ):3350,3295,2952,2874,1707,1636,1601,1466,1431,1389,1315,1251,1 174,1146,1106/cm.  
 $[\alpha]_D= -25.3^\circ$  ( $\text{CH}_3\text{OH}$ ,c=1.01,25°C). mp.159-162°C

No.1a — 164

5       $\text{CDCl}_3$  300MHz  
       0.98-1.96(17H,m),2.05(1H,m),2.25(2H,t,J=7.2Hz)3.07(1H,m)4.32(2H,q,J=7.  
       5.23(2H,m),5.31(1H,d,J=7.8Hz),7.38(1H,m)7.41-7.62(3H,m),7.95( 1H,m),8.15(1H,s).  
       IR( $\text{CHCl}_3$ ):3360,3018,2946,2870,1709,1633,1457,1445,1425,1394,1314,1176, 1152,1105/cm.  
        $[\alpha]_D = +12.7^\circ$  ( $\text{CHCl}_3$ ,c=1.02,25°C). mp.108-109°C  
       2Hz),5.19-

10     No.1a — 165  
        $\text{CDCl}_3$  300MHz  
       0.95-1.98(15H,m),2.26(2H,t,J=7.5Hz),3.04(1H,m),4.15(3H,s)5.20-5.26(2H,m)  
       7.47(1H,m),7.65-7.68(2H,m)7.89-7.92(1H,m),8.3 2(1H,s).  
       IR( $\text{CHCl}_3$ ):3366,3087,3022,2957,1708,1632,1538,1463,1408,1364,1346,1308, 1227,1212,1205,1167/cm.  
       15     $[\alpha]_D = +19.6^\circ$  ( $\text{CHCl}_3$ ,c=1.01,25°C).

15     No.1a — 166  
        $\text{CDCl}_3$  300MHz  
       20    0.97-2.02(15H,m),2.27(2H,t,J=6.9Hz),3.07(1H,m),4.14(3H,s)5.21-5.27(2H,m)  
       ),5.47(1H,d,J=6.9Hz),7.64(1H,s),7.72(1H,d,d,J=0.6and9.0Hz)8.25(1H,s)8.4  
       7(1H,d,d,J=2.4and9.0Hz),8.94(1H,d,d,J=0.6and2.4Hz).  
       IR( $\text{CHCl}_3$ ):3373,2957,1708,1639,1587,1528,1467,1428,1415,1345,1221,1184, 1155/cm.  
        $[\alpha]_D = +14.4^\circ$  ( $\text{CHCl}_3$ ,c=0.50,25°C)

25     No.1a — 167  
        $\text{CDCl}_3$  300MHz  
       30    0.92-2.00(14H,m),2.15(1H,m),2.27(2H,t,J=7.2Hz),3.04(1H,m),3.97(2H,s),5.1 5-5.30(3H,m),7.35-7.47(2H,m),7.55-  
       7.63(1H,m),7.80-7.96(3H,m),8.05(1H,d,J =0.3Hz).  
       IR( $\text{CHCl}_3$ ):3260,3020,2948,2868,1707,1451,1413,1319,1172,1144,1101,1071/cm.  
        $[\alpha]_D = +18.2^\circ$  ( $\text{CHCl}_3$ ,c=1.04,22°C).

35     No.1a — 168  
        $\text{CDCl}_3$  300MHz  
       40    0.90-1.88(14H,m),2.16(1H,m),2.25(2H,t,J=6.9Hz),3.00(1H,m),5.00-5.19(2H,  
       m),5.35(1H,d,J=6.6Hz),7.25-  
       7.30(1H,m),7.48-7.50(2H,m),7.73(1H,d,d,J=1.5 and8.1Hz),8.08-8.14(3H,m),8.93(1H,s).  
       IR( $\text{CHCl}_3$ ):3466,3380,3276,3016,2957,1708,1630,1495,1458,1324,1241,1150/cm.  
        $[\alpha]_D = +18.0^\circ$  ( $\text{CHCl}_3$ ,c=1.00,22°C).

45     No.1a — 169  
        $\text{CDCl}_3$  300MHz  
       50    0.87-1.86(14H,m),2.15(1H,m),2.25(2H,t,J=6.9Hz),2.98(1H,m),3.89(3H,s),5.0  
       5.22(2H,m),5.27(1H,d,J=6.9Hz),6.88(1H,d,d,J=2.1and8.4Hz),6.94(1H,d,J=2.1Hz),7.69(1H,d,d,J=1.5and7.8Hz),7.92-8.01(3H,m),8.83(1H,s).  
       IR( $\text{CHCl}_3$ ):3465,3378,3276,3022,2957,1708,1630,1609,1569,1459,1433,1314, 1281,1229,1151/cm.  
        $[\alpha]_D = +19.3^\circ$  ( $\text{CHCl}_3$ ,c=1.01,21°C).  
       55    0-

50     No.1a — 170  
        $\text{CDCl}_3$  300MHz  
       55    0.88-2.25(17H,m),3.04(1H,m),3.84(3H,s),3.95(3H,s),5.06-5.26(3H,m),6.87-6.  
       93(2H,m),7.69(1H,d,d,J=1.6and8.2Hz),7.93-9.05(3H,m).  
       IR( $\text{CHCl}_3$ ):3026,2957,1708,1630,1601,1460,1331,1243,1224,1152/cm.  
        $[\alpha]_D = +17.2^\circ$  ( $\text{CHCl}_3$ ,c=1.00,22°C).

No.1a — 171

5       $\text{CDCl}_3$  300MHz  
       0.95-2.00(14H,m),2.16-2.32(3H,m),2.66(3H,s),3.14(1H,m),3.68(3H,s),5.09(1  
       5.28(2H,m),7.45(1H,d,d,J=1.8&8.6Hz),7.75-7.84(2H,m).  
       IR( $\text{CHCl}_3$ ):3374,3018,2946,2868,1725,1585,1513,1436,1340,1278,1153,1112 /cm.  
        $[\alpha]_D = -14.7^\circ$  ( $\text{CHCl}_3$ ,c=1.07,25.0°C).

No.1a — 172

10      $\text{CDCl}_3$  300MHz  
       0.97-2.02(14H,m),2.23(1H,m),2.28(2H,t,J=7.2Hz),2.66(3H,s),3.14(1H,m),5.1  
       5.22(2H,m),5.41(1H,d,J=7.2Hz),7.45(1H,d,d,J=2.1&8.7Hz),7.76(1H,d,J=8.7Hz),7.78(1H,d,J=2.1Hz).  
       IR( $\text{CHCl}_3$ ):3372,3250,3022,2950,2868,1707,1514,1419,1336,1279,1154,1112 /cm.  
        $[\alpha]_D = -4.1^\circ$  ( $\text{CHCl}_3$ ,c=1.08,26.0°C) m.p.141-143°C

No.1a — 173

20      $\text{CDCl}_3$  300MHz  
       1.15-2.42(17H,m),2.91(1H,m),5.15(1H,d,J=4.2Hz),5.25-5.40(2H,m),7.85(1H, t,J=7.2Hz),8.00(1H,t,J=8.1Hz),8.15-  
       8.20(2H,m),8.67(1H,d,J=8.1Hz),8.73(1H, d,J=8.1Hz),8.83(1H,s),9.43(1H,s).  
       IR(KBr):3422,3269,3046,2952,2871,1711,1617,1447,1333,1243,1161,1146/cm.  
        $[\alpha]_D = -41.0^\circ$  ( $\text{CH}_3\text{OH}$ ,c=1.01,23°C).

25     No.1a — 174

25      $\text{CDCl}_3+\text{d}_6\text{-DMSO}$  300MHz  
       1.00-1.92(14H,m),2.20(2H,t,J=6.6Hz),2.35(1H,m),2.92(1H,m),5.05-5.22(2H,  
       7.92(3H,m),8.31(1H,d,d,J=1.8and8.7Hz),8.59(1  
       H,d,J=8.7Hz),8.73(1H,d,J=8.7Hz),9.01(1H,s),9.55(1H,d,J=1.8Hz).  
       IR(KBr):3433,3252,2952,2871,1696,1578,1423,1335,1308,1219,1185,1160,1 106/cm.  
        $[\alpha]_D = -19.3^\circ$  (DMSO,c=0.50,23°C).

35     No.1a — 175

35      $\text{CDCl}_3$  300MHz  
       0.96-1.87(14H,m),2.20-2.25(3H,m),2.95(1H,m),3.66(3H,s),4.74(1H,d,J=6.6H  
       5.12(2H,m),6.88(1H,d,J=1.2Hz),7.37-7.50(3H,m),7.56(1H,dd,J=8.7,1.  
       7.77(3H,m),8.06(1H,s),9.44(1H,dd,J=1.2Hz).  
       IR( $\text{CHCl}_3$ ):3462,3374,3026,3006,2952,2872,1724,1610,1580,1484,1452,1358, 1309,1147.  
        $[\alpha]_D = +16.4^\circ$  ( $\text{CHCl}_3$ ,c=1.05,26°C). mp.130-132°C.

40     No.1a — 176

45      $\text{CDCl}_3+\text{CD}_3\text{OD}$  300MHz  
       1.00-2.02(14H,m)2.22(1H,m),2.29(2H,t,J=6.9Hz),2.88(1H,m),5.16-5.26(2H,  
       7.57(4H,m),7.69(1H,d,J=8.4Hz),7.75-7.78(2H,m),7.99(1H, s).  
       IR(KBr):3254,2944,1704,1484,1453,1358,1305,1147.  
        $[\alpha]_D = +13.0^\circ$  ( $\text{CH}_3\text{OH}$ ,c=1.02,24°C), mp.160-161°C

50     No.1a — 177

50      $\text{CDCl}_3$  300MHz  
       0.96-1.88(14H,m),1.88-2.26(3H,m),2.94(1H,m),3.67(3H,s),3.87(3H,s),4.67(1  
       5.14(2H,m),6.77(1H,d,J=1.5Hz),6.99-7.02(2H,m),7.53-7.57(1H, m),7.65-7.70(3H,m),8.00(1H,s),9.27(1H,brs).  
       IR( $\text{CHCl}_3$ ):3426,3376,3006,2952,1724,1610,1495,1438,1357,1308,1282,1249, 1177,1147/cm.  
        $[\alpha]_D = +18.1^\circ$  ( $\text{CHCl}_3$ ,c=1.02,22°C).

No.1a — 178

5  $\text{CDCl}_3 + \text{CD}_3\text{OD}$  300MHz  
 0.96-1.91(14H,m), 2.19(1H,m), 2.27(2H,t,J=6.0Hz), 2.85(1H,m), 3.87(3H,s), 5.1 6-5.23(2H,m), 6.99-  
 7.02(2H,m), 7.41(1H,m), 7.64-7.73(3H,m), 7.92(1H,m).  
 IR( $\text{CHCl}_3$ ): 3366, 3261, 3004, 2954, 2873, 1705, 1611, 1496, 1458, 1438, 1304, 1286, 1253, 1180, 1149, 1128/cm.  
 $[\alpha]_D = +14.6^\circ$  ( $\text{CHCl}_3$ ,  $c=1.02, 22^\circ\text{C}$ ).

No.1a — 179  
 10 CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz  
 0.96-1.87(14H,m),2.15-2.23(3H,m),2.93(1H,m),3.85(3H,s),5.10-5.16(2H,m),6. 90-6.93(2H,m),7.50(1H,m),7.60-  
 7.65(3H,m),7.91(1H,d,J=0.9Hz).  
 15 IR(CHCl<sub>3</sub>):3369,3270,2950,2873,1719,1612,1498,1456,1440,1359,1306,1269, 1219,1146,1127/cm.  
 [α]<sub>D</sub>=+18.1° (CH<sub>3</sub>OH,c=1.00,22°C).

No. 1a — 180

**20** CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz  
 1.03-1.86(14H,m), 2.08-2.17(3H,m), 2.91(1H,m), 5.06-5.10(2H,m), 6.76(1H,m), 6.86-6.90(2H,m), 7.48(1H,m), 7.61-7.69(3H,m), 7.89(1H,m).  
 IR(CHCl<sub>3</sub>):3360,3259,2954,2873,1706,1612,1497,1457,1360,1306,1272,1230,1176,1148,1126/cm.  
 [α]<sub>D</sub>=+20.3° (CH<sub>3</sub>OH, c=1.00, 22°C).

25 No.1a — 181

CDCl<sub>3</sub> 300MHz  
 0.97-1.96(14H,m),2.15(1H,m),2.29(2H,t,J=6.9Hz),3.05(1H,m),3.81(3H,s)5.0  
 5.25(2H,m),6.62(1H,s),7.47-7.54(5H,m),7.59(1H,m),7.70(1H,m),7.97(1H,m).  
 IR(CHCl<sub>3</sub>):3380,3260,3020,2946,2868,1708,1466,1388,1328,1149/cm.  
 [α]<sub>D</sub>=+32.9° (CHCl<sub>3</sub>,c=1.07,22°C).

No.1a — 182

35 CDCl<sub>3</sub> 300MHz  
 0.94-1.90(14H,m),2.25(2H,t,J=7.5Hz)2.30(1H,m),2.98(1H,m),3.70(3H,s)4.8 3(1H,d,J=6.6Hz),5.13-  
 5.16(2H,m),6.95(1H,d,J=1.5Hz),7.11-7.23(2H,m),7.43( 1H,d,J=8.1Hz),7.65(1H,d,J=8.1Hz),7.79-  
 7.93(4H,m),9.08(1H,br).  
 IR(CHCl<sub>3</sub>):3458,3372,3020,3002,2946,2868,1719,1598,1452,1422,1321,1300, 1157/cm.  
 40 [α]<sub>D</sub>=-6.6° (CHCl<sub>3</sub>,c=1.00), mp 150-151°C

No.1a — 183

45 CDCl<sub>3</sub> 300MHz  
 0.95-1.94(1H,m),2.26(1H,m),2.28(2H,t,J=7.5Hz),3.00(1H,m),5.16-5.19(2H,  
 m),5.32(1H,d,J=7.2Hz),6.93(1H,d,J=1.2Hz),7.13(1H,m),7.22(1H,dd,J=7.8,6.  
 6Hz),7.42(1H,d,J=7.8Hz),7.63(1H,d,J=7.8Hz),7.76(2H,d,J=8.4Hz),7.90(2H,d, J=8.4Hz),8.95(1H,br).  
 IR(CHCl<sub>3</sub>):3458,3374,3260,3020,3002,2948,2868,1708,1598,1452,1422,130 1,1156/cm.  
 [α]<sub>D</sub>=+17.9° (CHCl<sub>3</sub>,c=1.01,22°C).

No.1a — 184

CDCl<sub>3</sub> 200MHz  
 0.92-2.00(14H,m),2.20(1H,m),2.34(2H,t,J=6.8Hz),3.05(1H,m),5.20-5.36(3H,  
 m),7.39-7.44(2H,m),7.61-  
 7.66(1H,m),7.80-7.84(1H,m),8.05(2H,d,J=8.6Hz),8.40(2H,d,J=8.6Hz).  
 IR(CHCl<sub>3</sub>):3384,3271,3019,2958,1709,1615,1599,1551,1453,1405,1344,1326, 1243,1163/cm.  
 [α]<sub>D</sub>=+18.5° (CHCl<sub>3</sub>,c=1.00,21°C).

No.1a — 185

5       $\text{CDCl}_3$  300MHz  
       0.89-2.20(15H,m),2.26(2H,d,t,J=2.1 and 7.2Hz),2.99(1H,m),5.08(1H,d,J=6.3Hz)      z),5.09-  
       5.24(2H,m),6.90(1H,d,J=1.2Hz),7.32-7.48(4H,m),7.64-7.72(3H,m),8.20(1H,d,J=1.2Hz),9.00(1H,s).  
       IR( $\text{CHCl}_3$ ):3464,3375,3275,3022,2956,1707,1605,1490,1449,1356,1322,1219,1147,1131/cm.  
        $[\alpha]_D=+21.6^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C).

No.1a — 186

10      $\text{CDCl}_3$ :300MHz  
       1.36-2.24(14H,m),2.31(2H,t,J=7.4Hz),2.49(1H,brs),3.37(1H,m),3.67(3H,s),5.38-5.50(2H,m),7.40-7.68(9H,m).  
       IR( $\text{CHCl}_3$ ):3375,1727,1602,1435,1362,1221,1207,1168,1045/cm.

15     No.1a — 187

20      $\text{CDCl}_3$ :300MHz  
       1.10-2.25(14H,m),2.36(2H,t,J=7.2Hz),2.47(1H,m),3.37(1H,m),5.35-5.54(2H,m),5.62(1H,d,J=7.2Hz),7.39-  
       7.70(9H,m).  
       IR( $\text{CHCl}_3$ ):3674,3496,3376,3234,3012,2952,2880,2650,1725(sh),1709,1602,1485,1420,1360,1167/cm.  
        $[\alpha]_D=+32^\circ$  ( $\text{CHCl}_3$ ,c=1.69).

No.1a — 188

25      $\text{CDCl}_3$  200MHz  
       0.86-1.92(14H,m),2.22(3H,m),2.36(3H,s),2.95(1H,m),3.67(3H,s),3.93(3H,s),4.81(1H,d,J=6.2Hz),5.04-  
       5.20(2H,m),7.02-7.05(2H,m),7.31(1H,d,J=8.6Hz),7.39(1H,d,J=7.8Hz),7.79-7.89(3H,m).  
       IR( $\text{CHCl}_3$ ):3385,3286,3029,3019,3015,2954,2877,1718,1617,1598,1567,1507,1311,1269,1153 /cm.  
        $[\alpha]_D= -29.4^\circ$  ( $\text{CHCl}_3$ ,c=1.01,25°C).

30     No.1a — 189

$[\alpha]_D=-7.7^\circ$  ( $\text{CHCl}_3$ ,c=1.00,24°C).

35     No.1a — 190

$[\alpha]_D=-17.3^\circ$  ( $\text{CHCl}_3$ ,c=1.00,24°C).

40     No.1a — 191

45      $\text{CDCl}_3$  300MHz  
       0.95-2.20(14H,m),2.30(1H,m),2.36(2H,d,J=6.9Hz),3.21(1H,m),4.25(2H,s),5.07(1H,d,J=7.8Hz),5.35-  
       5.48(2H,m),7.25(1H,dd,J=1.8 and 8.1Hz),7.32-7.35(2H,m),7.59(1H,d,J=8.1Hz),7.94(1H,s),8.14(1H,d,J=2.7Hz),8.23(1H,d,d,J=2.7 and 8.7Hz).  
       IR( $\text{CHCl}_3$ ):3386,3026,3015,2957,2877,2633,1702,1617,1573,1530,1348,1123 /cm.  
        $[\alpha]_D= -6.1^\circ$  ( $\text{CHCl}_3$ ,c=1.01,25°C).

50     No.1a — 192

55      $\text{CDCl}_3$  300MHz  
       0.92-2.20(14H,m),2.13(3H,m),3.23(1H,m),3.64(3H,s),3.94(3H,s),4.22(2H,s),4.54(2H,m),7.16-7.42(6H,m),7.53(1H,d,J=8.4Hz),7.94(1H,s).  
       IR( $\text{CHCl}_3$ ):3389,3022,3013,2953,2877,1716,1616,1560,1485,1340,1326,1124 /cm.  
        $[\alpha]_D= -15.2^\circ$  ( $\text{CHCl}_3$ ,c=1.01,25°C).

55     No.1a — 193

$\text{CDCl}_3$  300MHz

**EP 0 837 052 A1**

0.92-2.20(14H,m),2.25(1H,m),2.35(2H,t,J=7.2Hz),3.17(1H,m),4.22(2H,s),4.9  
5.42(2H,m),7.13-7.43(6H,m),7.60(1H,d,J=8.1Hz),8.05(1H,s).  
IR(CHCl<sub>3</sub>):3511,3387,3029,3020,3011,2957,2877,2651,1698,1614,1560,1505, 1320,1280,1252,1126 /cm.  
[α]<sub>D</sub>= -0.9° (CHCl<sub>3</sub>,c=1.00,25°C).

5

No.1b — 1

CDCl<sub>3</sub> 300MHz  
0.98-1.56(15H,m),1.85-1.90(5H,m),2.23(1H,m),3.05(1H,m),3.66(3H,s),4.77(1  
10 H,d,J=6.0Hz),5.08-  
5.28(2H,m),7.46(3H,m),7.38-7.54(2H,d,J=7.5Hz),7.72(2H, d,J=8.4Hz),7.93(2H,d,J=8.4Hz).  
IR(CHCl<sub>3</sub>):3384,3028,2952,2876,1719,1595,1391,1322,1155/cm.  
[α]<sub>D</sub>= +4.0~+6.0(CHCl<sub>3</sub>,c=1.00,23°C).  
mp.96-98°C

15

No.1b — 2

CDCl<sub>3</sub> 300MHz  
0.98-1.52(15H,m),1.85-1.90(5H,m),2.17(1H,m),3.00(1H,m),3.67(3H,s),4.05(2  
10 H,s),4.83(1H,d,J=6.0Hz),5.05-  
5.23(2H,m),7.14(2H,d,J=7.2Hz),7.17-7.32(5H, m),7.78(2H,d,J=8.4Hz).  
20 IR(CHCl<sub>3</sub>):3384,3026,2952,2874,1719,1595,1453,1407,1320,1180/cm.  
[α]<sub>D</sub>=+2.5° (CHCl<sub>3</sub>,c=1.02,24°C).

No.1b — 3

25

CDCl<sub>3</sub> 300MHz  
0.96-2.05(20H,m),2.07(1H,m),3.07(1H,m),4.04(2H,s),5.21-5.35(2H,m),5.55(1  
H,d,J=6.9Hz),7.14(2H,d,J=6.6Hz),7.20-7.32(5H,m),7.78(2H,d,J=8.1H).  
IR(CHCl<sub>3</sub>):3250,3022,2950,1699,1596,1495,1453,1405,1318,1153/cm.  
[α]<sub>D</sub>= +17.1° (CHCl<sub>3</sub>,c=1.01,25°C).  
30 mp.129-131°C.

No.1b — 4

35

CDCl<sub>3</sub> 200MHz  
0.90-2.10(15H,m),1.19(3H,s),1.20(3H,s),3.11(1H,m),5.24-5.32(2H,m),5.70(1 H,d,J=6.6Hz),7.38-7.68(4H,m),7.96-  
8.04(2H,m),8.53(1H,d,J=1.4Hz).  
IR(CHCl<sub>3</sub>):3384,3246,2958,1701,1632,1595,1468,1445,1322,1216,1202,1190, 1155,1122/cm.  
[α]<sub>D</sub>=+10.8° (CHCl<sub>3</sub>,c=0.51,23°C).

40

No.1b — 5

1.02-2.10(15H,m),1.16(6H,s),3.02(1H,m),4.09(3H,s),5.23-5.28(2H,m),5.76(1  
7.63(4H,m),7.97(1H,d,J=7.8Hz),8.16(1H,s).  
IR(CHCl<sub>3</sub>):3369,2959,1702,1635,1585,1468,1454,1441,1415,1318,1222,1189, 1170,1154/cm.  
45 [α]<sub>D</sub>=+9.9° (CHCl<sub>3</sub>,c=1.00,23°C).

No.1c — 1

50

CDCl<sub>3</sub> 300MHz  
1.10-2.02(14H,m),2.27(2H,t,J=7.5Hz),2.50(1H,m),2.89(3H,s),3.31(1H,m),3.6  
7.42(3H,m),7.50-7.59(2H,m),7.62-7.68(2H,m), 7.76-7.82(2H,m).  
IR(CHCl<sub>3</sub>):3020,2946,2868,2212,1727,1596,1495,1437,1339,1156,1135,1084 /cm.  
[α]<sub>D</sub>=-16.1° (CHCl<sub>3</sub>,c=1.05,25.0°C).  
55 mp.100-102°C

No.1c — 2

CDCl<sub>3</sub> 300MHz

**EP 0 837 052 A1**

1.10-2.05(14H,m),2.23(2H,t,J=7.5Hz),2.53(1H,m),2.91(3H,s),3.35(1H,m),3.6  
7.60(3H,m),7.90-8.08(6H,m).  
IR(CHCl<sub>3</sub>):3016,2946,2868,1728,1437,1398,1340,1160,1086 /cm.  
[α]<sub>D</sub>=-32.5° (CHCl<sub>3</sub>,c=1.00,25.0°C).

5

No.1c — 3

CD<sub>3</sub>OD 300MHz  
1.15-2.05(14H,m),2.13(2H,t,J=7.2Hz),2.47(1H,m),2.91(3H,s),3.27(1H,m),4.9 0-5.30(2H,m),7.37-7.44(3H,m),7.53-  
7.61(2H,m),7.71-7.77(2H,m),7.81-7.87(2 H,m).  
IR(KBr):3412,2999,2951,2871,2217,1560,1399,1243,1159,1137,1103,1084.  
[α]<sub>D</sub>=-8.6° (CH<sub>3</sub>OH,c=1.03,23°C).

10

No.1d — 1

CDCl<sub>3</sub> 300MHz  
1.00-2.16(15H,m),2.36(2H,t,J=7.2Hz),3.17(1H,m),3.33(3H,s),5.23-5.43(3H,m)  
8.10(6H,m),9.02(1H,brs).  
IR(CHCl<sub>3</sub>):3382,3268,3028,2954,2874,1715,1442,1400,1337,1162,1120,1089/cm.  
[α]<sub>D</sub>=+40.0° (CHCl<sub>3</sub>,c=0.53,22°C).

15

No.1d — 2

CDCl<sub>3</sub> 300MHz  
1.03-2.30(17H,m),3.03(1H,m) 4.03(2H,s),5.26(2H,m),5.84(1H,br),5.25-5.29(1  
H,d,J=6.6Hz),6.03(1H,br),7.14(2H,d,J=8.1Hz),7.26-7.31(5H,m),7.80(2H,d,J= 8.1Hz).  
IR(CHCl<sub>3</sub>):3376,3002,2946,1669,1595,1492,1454,1406,1318,1154/cm.  
[α]<sub>D</sub>=+4.3° (CHCl<sub>3</sub>,c=1.00,23°C).

20

No.1d — 3

CDCl<sub>3</sub> 300MHz  
0.96-2.17(17H,m),2.33(2H,t,J=6.9Hz),3.01(1H,m),4.04(2H,s),5.10(1H,d,J=6.  
5.26(2H,m),7.14(2H,d,J=8.7Hz),7.16-7.32(5H,m),7.78(2H,d,J=8.4 Hz).  
IR(CHCl<sub>3</sub>):3260,3020,2946,1711,1596,1492,1457,1407,1318,1154/cm.  
[α]<sub>D</sub>=+9.3° (CHCl<sub>3</sub>,c=1.09,25°C).

25

No.1d — 4

CDCl<sub>3</sub> 300MHz  
0.95-2.14(15H,m),2.34(2H,t,J=7.2Hz),3.09(1H,m),3.30(3H,s),4.04(2H,s),5.19  
5.39(2H,m),7.10-7.35(7H,m),7.81(2H,d,J=8.1Hz),9.10(1 H,brs).  
IR(CHCl<sub>3</sub>):3382,3260,3028,2952,2874,2670,1713,1595,1492,1450,1405,1338, 1160,1120,1092/cm.  
[α]<sub>D</sub>=+22.2° (CHCl<sub>3</sub>,c=1.07,22°C).

30

No.1d — 5

CDCl<sub>3</sub> 300MHz  
1.00-2.10(14H,m),2.30-2.39(3H,m),3.15(1H,m),3.35(3H,s),5.18-5.40(3H,m),7.  
7.69(3H,m),7.88-8.15(2H,m),8.60(1H,d,J=1. 5Hz),9.06(1H,s).  
IR(CHCl<sub>3</sub>):3382,3268,3028,2954,2874,1714,1442,1402,1338,1188,1155,1 121,1072/cm.  
[α]<sub>D</sub>=+15.3° (CHCl<sub>3</sub>,c=1.00,22°C).

35

No.1e — 1

40

CDCl<sub>3</sub> 300MHz  
1.19-2.45(19H,m),2.58(1H,m),5.63(1H,d,J=3.0Hz),7.42-7.65(4H,m),7.94-8.03 (2H,m),8.49-8.50(1H,m).  
IR(CHCl<sub>3</sub>):3293,3024,1710,1595,1584,1467,1445,1410,1324,1222,1213,1206, 1190,1160/cm.

$[\alpha]_D = -41.1^\circ$  ( $\text{CHCl}_3, c=1.01, 23^\circ\text{C}$ ).

## No.1e — 2

5       $\text{CDCl}_3$  300MHz  
 1.10-2.25(19H,m), 2.94(1H,m), 4.12(3H,s), 5.53(1H,d,J=7.2Hz), 7.39(1H,m), 7.5  
 7.62(3H,m), 7.96(1H,d,J=7.5Hz), 8.13(1H,s).  
 IR( $\text{CHCl}_3$ ): 3367, 3025, 2955, 1711, 1634, 1600, 1584, 1468, 1454, 1440, 1415, 1342, 1317, 1222, 1189, 1157/cm.  
 $[\alpha]_D = +1.2^\circ$  ( $\text{CHCl}_3, c=1.00, 25^\circ\text{C}$ ).  
 0-

10     No.1f — 1  
 $\text{CDCl}_3$  300MHz  
 1.08-2.47(19H,m), 2.56(1H,m), 3.52(2H,t,J=6.6Hz), 5.59(1H,d,J=2.4Hz), 7.40-7.  
 8.04(2H,m), 8.50(1H,d,J=1.8Hz).  
 IR( $\text{CHCl}_3$ ): 3624, 3383, 3295, 2950, 2877, 1705, 1595, 1584, 1468, 1445, 1405, 1347, 1337, 1324, 1224, 1190, 1160/cm.  
 $[\alpha]_D = -54.1^\circ$  ( $\text{CHCl}_3, c=1.01, 23^\circ\text{C}$ ).  
 66(4H,m), 7.95-

20     No.1f — 2  
 $\text{CDCl}_3$  300MHz  
 1.08-2.24(19H,m), 2.94(1H,m), 3.53(2H,t,J=6.3Hz), 4.13(3H,s), 5.47(1H,d,J=6.  
 7.63(4H,m), 7.96(1H,d,J=6.3Hz), 8.14(1H,s).  
 IR( $\text{CHCl}_3$ ): 3625, 3368, 3025, 3013, 2949, 2877, 1710, 1634, 1600, 1584, 1468, 1454,  
 1440, 1415, 1342, 1317, 1232, 1220, 1189, 1157/cm.  
 $[\alpha]_D = -5.6^\circ$  ( $\text{CHCl}_3, c=1.00, 25^\circ\text{C}$ ).  
 6Hz), 7.36-

30     No.1g — 1  
 $\text{CDCl}_3$  200MHz  
 1.17-2.34(15H,m), 3.22(1H,m), 5.10-5.16(2H,m), 5.45(1H,d,J=7.0Hz), 7.35-7.66  
 8.01(2H,m), 8.51(1H,d,J=2.0Hz).  
 IR( $\text{CHCl}_3$ ): 3383, 3275, 2959, 1707, 1595, 1584, 1468, 1445, 1425, 1319, 1269, 1248, 1190, 1149, 1123/cm.  
 $[\alpha]_D = +64.3^\circ$  ( $\text{CHCl}_3, c=1.01, 23^\circ\text{C}$ ).  
 (4H,m), 7.95-

35     No.1g — 2  
 $\text{CDCl}_3$  300MHz  
 1.10-2.15(13H,m), 2.36(2H,t,J=7.2Hz), 3.21(1H,m), 4.09(3H,s), 5.10-5.22(2H,m)  
 7.62(4H,m), 7.96(1H,d,J=7.8Hz), 8.12(1H,s).  
 IR( $\text{CHCl}_3$ ): 3366, 2959, 1708, 1635, 1600, 1585, 1467, 1454, 1440, 1415, 1345, 1318, 1233, 1189, 1152/cm.  
 $[\alpha]_D = +103.1^\circ$  ( $\text{CHCl}_3, c=1.01, 23^\circ\text{C}$ ).  
 ), 5.43(1H,d,J=7.8Hz), 7.36-

40     No.1h — 1  
 $\text{CDCl}_3$  300MHz  
 0.90-1.60(17H,m), 1.83(1H,m), 2.11(1H,m), 2.22(2H,t,J=7.2Hz), 3.07(1H,m), 5.  
 7.47(1H,m), 7.50-7.60(1H,m), 7.60-7.72(2H,m), 7.88-8.12(2H,m), 8.54(1H,d,J=0.9Hz).  
 IR( $\text{CHCl}_3$ ): 3382, 3274, 2926, 1707, 1464, 1442, 1318, 1266, 1188, 1153, 1121, 1105, 1071, 1019/cm.  
 $[\alpha]_D = -2.8^\circ$  ( $\text{CHCl}_3, c=1.01, 23^\circ\text{C}$ ).  
 11(1H,d,J=7.2Hz), 7.38-

45     No.1i — 1  
 $[\alpha]_{365} +50.9^\circ$  ( $\text{CHCl}_3, c=1.01, 24^\circ\text{C}$ ).  
 55     No.1i — 2  
 $\text{CDCl}_3$  300MHz

0.98-1.70(11H,m),1.80-2.00(5H,m),2.19(1H,m),3.03(1H,m),3.64(2H,t,J=6.6Hz),4.05(2H,s),4.69(1H,d,J=6.6Hz),5.15(1H,m),5.25(1H,m),7.16(2H,d,J=7.2Hz)  
7.32(5H,m),7.77(2H,d,J=8.4Hz).

),7.27-

IR(CHCl<sub>3</sub>):3376,3004,2946,2316,1596,1492,1453,1407,1318,1154/cm.

5 [α]<sub>D</sub>= +3.5° (CHCl<sub>3</sub>,c=1.00,22°C).  
mp.80.5-82.0°C

No.1j — 1

10 [α]<sub>436</sub>=-7.5±0.5 ° (CHCl<sub>3</sub>,c=1.05,22°C).

No.1j — 2

15 [α]<sub>D</sub>=-9.7±0.5 ° (CHCl<sub>3</sub>,c=1.06,22°C).

No.1j — 3

20 [α]<sub>D</sub>=+15.0±0.5 ° (CH<sub>3</sub>OH,c=1.06,24.5°C).  
mp.101-108°C

No.1j — 4

25 [α]<sub>D</sub>=-28.0±0.6 ° (CHCl<sub>3</sub>,c=1.06,24°C).  
mp.159-161°C

1j — 5

30 [α]<sub>D</sub>=-12.5±0.5 ° (CHCl<sub>3</sub>,c=1.04,23°C).  
mp.99-101°C

No.1j — 6

35 CDCl<sub>3</sub> 300MHz  
0.90-2.03(14H,m),2.20(1H,m),2.30(2H,t,J=7.3Hz),3.00(1H,m)3.68(3H,s),4.76 (1H,d,J=6.8Hz),5.13-  
5.35(2H,m),7.01-7.08(4H,m),7.19-7.26(1H,m),7.37-7.46 (2H,m),7.80-7.84(2H,m).  
IR(CHCl<sub>3</sub>):3382,3280,3080,3016,2952,2900,1727,1582,1486,1432,1322,1150/cm.  
[α]<sub>D</sub>= -31.0° (CHCl<sub>3</sub>,c=1.05,26°C).

No.1j — 7

40 CDCl<sub>3</sub> 300MHz  
0.91-2.09(14H,m),2.15(1H,m),2.35(2H,t,J=7.5Hz),3.01(1H,m),5.17(1H,d,J=6. 8Hz),5.21-5.34(2H,m),7.01-  
7.08(4H,m),7.15-7.27(1H,m),7.37-7.43(2H,m),7.80-7.85(2H,m).  
IR(CHCl<sub>3</sub>):3474,3386,3270,3024,2958,2900,2675,1711,1584,1488,1420,1323, 1298,1150/cm.  
45 [α]<sub>D</sub>= -13.4° (CHCl<sub>3</sub>,c=1.01,26°C).

No.1j — 8

50 CDCl<sub>3</sub> 300MHz  
0.95-2.14(13H,m),2.30(2H,t,J=7.5Hz),2.36(1H,m),2.84(1H,m),2.91(1J=4.8Hz ),3.66(3H,s),5.33-5.52(2H,m),6.82-  
6.87(1H,m),6.93-7.00(2H,m),7.09-7.15(4H, m),7.28-7.36(2H,m),7.54-7.59(1H,m).  
IR(CHCl<sub>3</sub>):3350,3010,2950,2880,1728,1603,1582,1489,1461,1438,1360,1160 /cm.  
[α]<sub>D</sub>= +75.1° (CHCl<sub>3</sub>,c=1.13,26°C).

55 No.1j — 9

CDCl<sub>3</sub> 300MHz  
0.95-2.03(14H,m),2.20(1H,m),2.29(2H,t,J=7.5Hz),3.06(1H,m),3.68(3H,s),4.9 8(1H,d,J=7.4Hz),5.14-

5.34(2H,m), 7.46-7.54(2H,m), 7.60-7.68(1H,m), 7.75-7.8 0(2H,m), 7.88-7.92(2H,m), 7.99-8.03(2H,m).  
 IR(CHCl<sub>3</sub>):3384,3280,3020,2960,2888,1727,1662,1600,1316,1273,1163/cm.  
 [α]<sub>D</sub>= -41.0° (CHCl<sub>3</sub>,c=1.17,26°C).

## 5 No.1j — 10

CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz  
 0.94-2.08(14H,m), 2.21(1H,m), 2.34(2H,t,J=6.2Hz), 3.04(1H,m), 5.21-5.35(2H,  
 7.58(2H,m), 7.64-7.68(1H,m), 7.79-8.06(6H,m).  
 10 IR(CHCl<sub>3</sub>):3475,3370,3250,3018,2956,2976,2650,1709,1662,1595,1445,1420, 1395,1317,1274,1163/cm.  
 [α]<sub>D</sub>= -17.1° (CHCl<sub>3</sub>,c=1.13,25°C).

## No.1j — 11

15 CDCl<sub>3</sub> 300MHz  
 1.06-1.98(14H,m), 2.24-2.29(3H,m), 3.13(1H,m), 3.66(3H,s), 5.10-5.24(2H,m), 5.  
 7.49(3H,m), 7.59-7.64(3H,m), 7.80-7.83(2H,m), 8.08-8. 11(1H,m).  
 IR(CHCl<sub>3</sub>):3302,3012,2948,2905,1727,1661,1593,1435,1332,1312,1287,1271, 1165/cm.  
 [α]<sub>D</sub>= +15.6° (CHCl<sub>3</sub>,c=1.03,26°C).

## 20 No.1j — 12

25 CDCl<sub>3</sub> 300MHz  
 1.08-1.98(14H,m), 2.23(1H,m), 2.33(2H,t,J=7.5Hz), 3.16(1H,m), 5.18-5.26(2H,  
 7.49(3H,m), 7.60-7.64(3H,m), 7.80-7.83(2H,m), 8.09-8.12(1H,m).  
 IR(CHCl<sub>3</sub>):3325,3022,2956,2872,2680,1708,1662,1603,1598,1425,1340,1316, 1288,1271,1165/cm.  
 [α]<sub>D</sub>= +9.7° (CHCl<sub>3</sub>,c=0.52,25°C).

## No.1j — 13

30 CDCl<sub>3</sub> 300MHz  
 0.95-2.00(14H,m), 2.20(1H,m), 2.27(2H,t,J=6.3Hz), 3.03(1H,m), 3.67(3H,s), 4.9  
 5.31(2H,m), 7.47-7.55(2H,m), 7.60-7.69(2H,m), 7.76-7.8 1(2H,m), 7.96-8.05(1H,m), 8.08-8.14(1H,m), 8.27-  
 8.28(1H,m).  
 35 IR(CHCl<sub>3</sub>):3674,3538,3376,3276,3012,2948,2860,1726,1662,1595,1440,1335, 1317,1297,1274,1166,1150/cm.  
 [α]<sub>D</sub>=+10.2° (CHCl<sub>3</sub>,c=1.00,25°C).

## No.1j — 14

40 CDCl<sub>3</sub> 300MHz  
 0.93-2.08(14H,m), 2.21(1H,m), 2.32(2H,t,J=6.3Hz), 3.00(1H,m), 5.20-5.36(2H,  
 7.55(2H,m), 7.63-7.71(2H,m), 7.77-7.81(2H,m), 7. 99-8.04(1H,m), 8.10-8.18(1H,m), 8.32-8.36(1H,m).  
 IR(CHCl<sub>3</sub>):3674,3480,3374,3258,3012,2950,2875,2650,1709,1662,1598,1418, 1335,1317,1274,1143/cm.  
 [α]<sub>D</sub>=+61.0° (CHCl<sub>3</sub>,c=1.19,25°C).

## 45 No.1j — 15

CDCl<sub>3</sub> 300MHz  
 0.90-2.00(14H,m)2.19(1H,m)2.30(2H,t,J=7.3Hz), 3.01(1H,m), 3.67(3H,s), 4.8  
 5.34(2H,m), 7.36-7.39(3H,m), 7.53-7.57(2H,m), 7.62-7.6 6(2H,m), 7.83-7.88(2H,m).  
 IR(CHCl<sub>3</sub>):3376,3276,3010,2948,2868,2212,1727,1597,1500,1437,1325,1161/cm.  
 [α]<sub>D</sub>=-7.2° (CHCl<sub>3</sub>,c=1.00,26°C).

## No.1j — 16

55 CDCl<sub>3</sub> 300MHz  
 0.93-2.03(14H,m), 2.15(1H,m), 2.36(2H,t,J=7.5Hz), 3.05(1H,m), 5.20-5.40(3H,  
 7.66(4H,m), 7.84-7.88(2H,m). m), 7.36-7.39(3H,m), 7.55-

**EP 0 837 052 A1**

IR(CHCl<sub>3</sub>):3470,3376,3260,3012,2950,2868,2675,2212,1708,1596,1503,1416, 1396,1322,1160.

[α]<sub>D</sub>=-22.4° (CHCl<sub>3</sub>,c=1.00,26°C).

No.1j — 17

5 CDCl<sub>3</sub> 300MHz  
1.00-1.60(9H,m)1.79-1.89(5H,m)2.17(1H,brs),2.23(2H,t,J=7.2Hz),3.03(1H,  
5.23(2H,m),5.49(1H,d,J=6.6Hz),7.40(1H,t,J=7.4Hz),7.53(1H,t,J=7.2Hz),7.60-7.68(2H,m),7.98-  
8.03(2H,m),8.55(1H,d,J=1.5Hz).  
10 IR(CHCl<sub>3</sub>):3516,3384,3270,2666,1708,1632,1595,1584,1467,1445,1425,1374, 1345,1321,1269,1248,1218/cm.  
[α]<sub>D</sub>= -7.8°(CHCl<sub>3</sub>,c=1.01,22°C).

No.1j — 18

15 CDCl<sub>3</sub> 300MHz  
0.90-2.03(14H,m),2.19(1H,m),2.30(2H,t,J=7.5Hz),3.00(1H,m),3.67(3H,s),4.8  
5.35(2H,m),6.99-7.04(2H,m),7.16-7.22(2H,m),7.34-7.49(4H,m),7.57-7.61(1H,m).  
IR(CHCl<sub>3</sub>):3376,3276,3012,2948,2875,1727,1583,1488,1471,1432,1330,1311, 1150/cm.  
[α]<sub>D</sub>=+54.0° (CHCl<sub>3</sub>,c=0.99,25°C).

20 No.1j — 19

CDCl<sub>3</sub> 300MHz  
0.91-2.09(14H,m),2.15(1H,m),2.34(2H,t,J=7.5Hz),3.01(1H,m),5.16(1H,d,J=6.  
7.08(2H,m),7.15-7.25(2H,m),7.35-7.53(4H,m),7.59-7.65(1H,m).  
IR(CHCl<sub>3</sub>):3470,3376,3260,3012,2950,2875,2640,1708,1583,1488,1471,1430, 1335,1305,1149/cm.  
[α]<sub>D</sub>= -21.0° (CHCl<sub>3</sub>,c=1.30,25°C).

No.1j — 20

30 CDCl<sub>3</sub> 300MHz  
1.17(1H,m),1.26-1.34(2H,m),1.54-2.24(11H,m),2.31(2H,t,J=7.4Hz),2.48(1H,  
5.50(2H,m),7.39-7.68(9H,m).  
IR(CHCl<sub>3</sub>):3377,1727,1601,1435,1362,1168/cm.

35 No. 1j — 21

CDCl<sub>3</sub> 300MHz  
1.10-2.25(14H,m),2.36(2H,t,J=7.2Hz),2.47(1H,m),2.89(1H,m),5.35-5.53(2H,  
7.71(9H,m).  
IR(CHCl<sub>3</sub>):3674,3496,3374,3234,3010,2952,2870,2640,1730(sh),1710,1605,1485,1425,1360,1167/cm.  
[α]<sub>D</sub>=-43.0° (CHCl<sub>3</sub>,c=1.01,25°C).

No.1j — 22

45 CDCl<sub>3</sub> 300MHz  
0.98-1.95(14H,m),2.25-2.31(3H,m),2.95(1H,m),5.19-5.30(2H,m),5.33(1H,d,J  
=3.9Hz),6.58(1H,d,J=7.5Hz),6.80(1H,t,J=7.5Hz),6.99-7.05(1H,m),7.44-7.53(6H,m),7.60-7.73(9H,m),7.94-  
7.73(3H,m),8.23-8.26(2H,m),10.66(1H,s).  
50 IR(CHCl<sub>3</sub>):3475,3372,3260,3008,2952,2868,2722,1725,1710(sh),1663,1590,1  
571,1525,1448,1437,1345,1314,1161,1112/cm.  
[α]<sub>D</sub>=+12.9° (CHCl<sub>3</sub>,c=0.12,23°C).

No.1j — 23

55 CDCl<sub>3</sub> 300MHz  
0.94-1.94(14H,m),2.23-2.30(3H,m),2.98(1H,m),3.68(3H,s),5.09(1H,d,J=6.2H  
7.22(1H,m),7.34-7.42(2H,m),7.68-7.73(2H,m),7.89-8.03(4H,m),8.51(1H,s).  
z),5.15-5.28(2H,m),7.14-

IR(CHCl<sub>3</sub>):3372,3275,1724,1673,1599,1438,1320,1161/cm.

[α]<sub>D</sub>= +17.0° (CHCl<sub>3</sub>,c=1.38,25°C).

No.1j — 24

5

CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz

0.96-2.05(14H,m),2.25-2.34(3H,m),2.92(1H,m),5.16-5.34(2H,m),7.14-7.22(1  
7.42(2H,m),7.70(2H,d,J=7.6Hz),7.92-8.05(4H,m).

10

IR(CHCl<sub>3</sub>):3616,3426,3375,3010,2950,2828,2645,1708,1672,1599,1439,1323, 1161/cm.

[α]<sub>D</sub>=+21.0° (CH<sub>3</sub>OH,c=1.00,22°C).

No.1j — 25

15

CDCl<sub>3</sub> 300MHz

1.03(1H,m),1.18-2.01(13H,m),2.20(1H,brs),2.27(2H,t,J=7.4Hz),3.08(1H,m),3.  
66(3H,s),5.11(1H,d,J=6.6Hz),5.14-

5.34(2H,m),7.54-7.62(3H,m),8.04-8.32(6H, m).

IR(CHCl<sub>3</sub>):3384,3278,1726,1605,1484,1448,1331,1161/cm.

No.1j — 26

20

CDCl<sub>3</sub>+CD<sub>3</sub>OD 300MHz

1.03-2.10(14H,m),2.22(1H,m),2.31(2H,t,J=7.5Hz),2.98(1H,m),5.23-5.38(2H,  
8.08(2H,m),8.14-8.18(2H,m),8.28-8.31(2H,m).

25

IR(Nujol):3260,2720,2660,1711,1545,1460,1317,1163/cm.

[α]<sub>D</sub>=+15.8° (CH<sub>3</sub>OH,c=1.01,22°C).

No.1j — 27

30

[α]<sub>D</sub>= +16.7° (CHCl<sub>3</sub>,c=1.00,23°C).

No.1j — 28

35

CDCl<sub>3</sub> 300MHz

1.01(1H,m),1.14-1.29(2H,m),1.46-2.19(11H,m),2.33(2H,t,J=7.2Hz),2.41(1H,  
3.21(5H,m),3.68(3H,s),3.73-3.76(4H,m),4.37(1H,d,J=7.2Hz),5.35-5. 45(2H,m).

IR(CHCl<sub>3</sub>):3392,1727,1435,1335,1148/cm.

[α]<sub>D</sub>= +10.7°(CHCl<sub>3</sub>,c=1.39,26°C).

brs),3.18-

No.1j — 29

40

CDCl<sub>3</sub> 300MHz

1.00(1H,m),1.20-1.29(2H,m),1.48-2.25(12H,m),2.37(2H,t,J=7.2Hz),,3.17-3.2  
3.79(4H,m),4.79(1H,d,J=7.8Hz),5.34-5.54(2H,m).

IR(CHCl<sub>3</sub>):3470,3390,3270,2675,1709,1455,1420,1315,1147/cm.

45

[α]<sub>D</sub>= +16.8°(CHCl<sub>3</sub>,c=1.42,26°C).

2(5H,m),3.74-

No.1k — 1

50

[α]<sub>D</sub>= -25.4° (CHCl<sub>3</sub>,c=1.08,23°C).

No.1k — 2

55

CDCl<sub>3</sub> 200MHz

1.07-2.28(14H,m),2.32(2H,t,J=7.4Hz),2.63(1H,m),3.63(3H,s),3.93(1H,m),5.3  
5.52(2H,m),6.35(1H,d,J=7.0Hz),7.48-7.60(3H,m),7.88-8.02(6H,m).

IR(CHCl<sub>3</sub>):3438,3002,2946,2868,1727,1652,1514,1485,1363,1310,1245,1154 /cm.

[α]<sub>D</sub>=-80.4° (CHCl<sub>3</sub>,c=1.01,24.0°C).

0-

## No.1k — 3

5       $\text{CDCl}_3$  200MHz  
       1.10-2.26(14H,m),2.37(2H,t,J=7.2Hz),2.60(1H,m),3.93(1H,m),5.30-5.50(2H,  
       7.58(3H,m),7.88-7.99(6H,m).  
       IR( $\text{CHCl}_3$ ):3446,3004,2952,2874,1709,1652,1515,1485,1305,1153 /cm.  
        $[\alpha]_D=-96.4^\circ$  ( $\text{CHCl}_3$ ,c=1.05,23.0°C).

## No.1k — 4

10      $\text{CDCl}_3$  300MHz  
       1.05-2.17(14H,m),2.38(2H,t,J=7.2Hz),2.52(1H,m),3.81(1H,m),5.33-5.50(2H,  
       7.53(3H,m),7.57-7.62(6H,m).  
       IR( $\text{CHCl}_3$ ):3420,3250,3008,2948,2870,2660,2208,1735(sh),1705,1640,1500/cm.  
        $[\alpha]_D=-21.9\pm0.6^\circ$  ( $\text{CHCl}_3$ ,c=1.02,22°C).

## No.1k — 5

20      $\text{CDCl}_3$  300MHz  
       1.05-2.14(14H,m),2.38(2H,t,J=7.2Hz),2.51(1H,m),3.81(1H,m),5.34-5.46(2H,  
       7.56(5H,m).  
       IR( $\text{CHCl}_3$ ):3422,3250,3010,2950,2876,2664,2558,2210,1735(sh),1705,1645,1502,1441,1410,1307,1276/cm.  
        $[\alpha]_D=-63.6\pm1.9^\circ$  ( $\text{CHCl}_3$ ,c=0.56,22°C).

## 25    No.1k — 6

30      $\text{CDCl}_3$  300MHz  
       1.04-2.24(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.30-5.43(2H,  
       7.49(3H,m),7.73-7.77(2H,m).  
       IR( $\text{CHCl}_3$ ):3447,3011,2955,1708,1653,1603,1578,1515,1486,1457,1312,1211,1164/cm.  
        $[\alpha]_D=-60.3^\circ$  ( $\text{CHCl}_3$ ,c=1.00,23°C).

## No.1k — 7

35      $\text{CDCl}_3$  300MHz  
       1.04-2.22(14H,m),2.36(2H,t,J=7.2Hz),2.57(1H,m),3.87(1H,m),5.30-5.44(2H,  
       7.40(7H,m),7.73(2H,d,J=7.5Hz).  
       IR( $\text{CHCl}_3$ ):3449,3013,2955,1739,1708,1651,1609,1588,1522,1487,1243,1227,1169/cm.  
        $[\alpha]_D=-60.2^\circ$  ( $\text{CHCl}_3$ ,c=0.92,23°C).

## 40    No.1k — 8

45      $\text{CDCl}_3$  300MHz  
       1.04-2.25(14H,m),2.34(2H,t,J=7.5Hz),2.56(1H,m),3.87(1H,m),5.30-5.44(2H,  
       6.94(6H,m),7.69(2H,d,J=8.7Hz).  
       IR( $\text{CHCl}_3$ ):3599,3455,3012,2955,1711,1644,1604,1577,1524,1507,1492,1290,1236,1197,1170/cm.  
        $[\alpha]_D=-47.7^\circ$  ( $\text{CHCl}_3$ ,c=1.01,22°C).

## 50    No.1k — 9

55      $\text{CDCl}_3$  300MHz  
       1.04-2.20(14H,m),2.31(3H,s),2.36(2H,t,J=7.2Hz),2.56(1H,m),3.86(1H,m),5.3  
       5.43(2H,m),6.16(1H,d,J=7.2Hz),7.00-7.11(6H,m),7.74(2H,d,J=8.7Hz).  
       IR( $\text{CHCl}_3$ ):3450,3010,2955,1750,1709,1651,1609,1596,1523,1489,1370,1247,1227,1183/cm.  
        $[\alpha]_D=-54.7^\circ$  ( $\text{CHCl}_3$ ,c=1.01,22°C).

0-

No.1k — 10

5       $\text{CDCl}_3$  300MHz  
       1.04-2.22(14H,m),2.35(2H,t,J=7.2Hz),2.56(1H,m),3.82(3H,s),3.86(1H,m),5.3  
       43(2H,m),6.17(1H,d,J=6.9Hz),6.89-7.01(6H,m),7.70(2H,d,J=8.7Hz).  
       IR( $\text{CHCl}_3$ ):3023,2955,1742,1708,1649,1613,1602,1577,1522,1507,1490,1227, 1210,1170/cm.  
        $[\alpha]_D=-58.1^\circ$  ( $\text{CHCl}_3$ ,c=1.01,22°C).

0.5-

10     No.1m — 1  
        $\text{CDCl}_3$  300MHz  
       1.06-2.25(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.91(1H,m),5.3  
       5.47(2H,m),6.24(1H,d,J=6.9Hz),7.35-7.38(3H,m),7.53-7.60(4H,m),7.75-7.7 8(2H,m).  
       IR( $\text{CHCl}_3$ ):3438,3008,2946,2875,2212,1732,1650,1605,1519,1496/cm.  
        $[\alpha]_D=+76^\circ$  ( $\text{CHCl}_3$ ,c=1.39,24°C)

3-

15     No.1m — 2  
        $\text{CDCl}_3$  300MHz  
       20    1.05-2.20(14H,m),2.36(2H,t,J=6.2Hz),2.59(1H,m),3.89(1H,m),5.29-5.48(2H,  
             7.38(3H,m),7.52-7.60(4H,m),7.73-7.77(2H,m).  
       IR( $\text{CHCl}_3$ ):3444,3012,2952,2874,2664,2214,1718(sh),1708,1649,1605,1520,1 498/cm.  
        $[\alpha]_D=+81.4^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C)

25     No.1m — 3  
        $\text{CDCl}_3$  300MHz  
       20    1.06-2.23(14H,m),2.32(2H,t,J=7.0Hz),2.62(1H,m),3.63(3H,s),3.93(1H,m),5.3  
       5.50(2H,m),6.28(1H,d,J=7.0Hz),7.38-7.51(3H,m),7.58-7.67(4H,m),7.83-7.8 8(2H,m).  
       IR( $\text{CHCl}_3$ ):3438,3008,2948,2875,1783(w),1727,1650,1608,1580(w),1523,150 1,1482/cm.  
        $[\alpha]_D=+59^\circ$  ( $\text{CHCl}_3$ ,c=1.49,25°C)

0-

35     No.1m — 4  
        $\text{CDCl}_3$  300MHz  
       35    1.08-2.25(14H,m),2.36(2H,t,J=7.4Hz),2.59(1H,m),3.91(1H,m),5.28-5.48(3H,  
             7.50(3H,m),7.61-7.67(4H,m),7.81-7.86(2H,m).  
       IR( $\text{CHCl}_3$ ):3436,3010,2948,2868,1727,1715(sh),1649,,1615(w),1524,1502,14 82,1372/cm.  
        $[\alpha]_D=+72^\circ$  ( $\text{CHCl}_3$ ,c=0.98,25°C)

-1

40     No.1m — 5  
        $\text{CDCl}_3$  300MHz  
       45    1.09-2.20(14H,m),2.32(2H,t,J=7.2Hz),2.63(1H,m),3.63(3H,s),3.92(1H,m),5.3  
       5.51(2H,m),6.35(1H,d,J=7.0Hz),7.51-7.60(3H,m),7.92-7.97(6H,m).  
       IR( $\text{CHCl}_3$ ):3436,3008,2946,2875,1727,1652,1608(w),1515,1484/cm.  
        $[\alpha]_D=+82^\circ$  ( $\text{CHCl}_3$ ,c=0.99,25°C)

1-

50     No.1m — 6  
        $\text{CDCl}_3$  300MHz  
       50    1.09-2.23(14H,m),2.37(2H,t,J=7.2Hz),2.60(1H,m),3.92(1H,m),5.30-5.49(2H,  
             7.55(3H,m),7.85-7.98(6H,m).  
       IR( $\text{CHCl}_3$ ):3436,3010,2950,2875,2670,1727,1715(sh),1650,1605(w),1515,148 4/cm.  
        $[\alpha]_D=+84^\circ$  ( $\text{CHCl}_3$ ,c=1.54,25°C)

No.1m — 7

5  $\text{CDCl}_3$  300MHz  
 1.03-2.18(14H,m),2.32(2H,t,J=7.4Hz),2.59(1H,m),3.64(3H,s),3.89(1H,m),5.2  
 5.49(2H,m),6.16(1H,d,J=7.8Hz),6.98-7.06(4H,m),7.14-7.20(1H,m),7.34-7.4 1(2H,m),7.73-7.78(2H,m).  
 IR( $\text{CHCl}_3$ ):3438,3008,2946,2868,1727,1648,1610,1586,1519,1485/cm.  
 $[\alpha]_D = +54^\circ$  ( $\text{CHCl}_3, c=1.29, 25^\circ\text{C}$ ).

No. 1m — 8

10  $\text{CDCl}_3$  300MHz  
 1.06-2.21(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.31-5.46(2H,  
 m),6.17(1H,d,J=6.9Hz),6.99-  
 7.05(4H,m),7.15-7.21(1H,m),7.36-7.41(2H,m),7.72-7.75(2H,m).  
 IR( $\text{CHCl}_3$ ):3436,3010,2948,2868,2675,1730(sh),1709,1647,1608,1586,1520,1485/cm.  
 15  $[\alpha]_D = +56^\circ$  ( $\text{CHCl}_3, c=0.97, 25^\circ\text{C}$ )

No.1m — 9

CDCl<sub>3</sub> 300MHz  
 20 1.05-2.18(14H,m),2.29-2.34(5H,m),2.59(1H,m),3.64(3H,s),3.89(1H,m),5.32-5.  
 46(2H,m),6.16(1H,d,J=7.5Hz),7.00-7.11(6H,m),7.74-7.77(2H,m).  
 IR(CHCl<sub>3</sub>):3440,3010,2946,2868,1729,1649,1595,1519,1488/cm.  
 [α]<sub>D</sub>= +47° (CHCl<sub>3</sub>,c=0.82,25°C).

25 No.1m — 10

CDCl<sub>3</sub> 300MHz  
 1.04-2.20(14H,m), 2.31-2.39(5H,m), 2.57(1H,m), 3.87(1H,m), 5.28-5.47(2H,m), 6.17(1H,d,J=7.0Hz), 6.99-7.12(6H,m), 7.72-7.76(2H,m).  
 IR(CHCl<sub>3</sub>): 3674, 3572, 3438, 3010, 2948, 2868, 2626, 1748, 1710, 1648, 1615, 1595, 1520, 1489/cm.  
 [α]<sub>D</sub>= +51° (CHCl<sub>3</sub>, c=0.91, 25°C)

No.1m — 11

35 CDCl<sub>3</sub> 300MHz  
 1.04-2.16(14H,m),2.31(2H,t,J=7.2Hz),2.59(1H,m),3.63(3H,s),3.89(1H,m),5.2  
 5.49(2H,m),6.24(1H,d,J=7.4Hz),6.54(1H,s),6.83-6.93(6H,m),7.69-7.73(2H, m).  
 IR(CHCl<sub>3</sub>):3674,3588,3438,3296,3010,2946,2868,1725,1646,1603,1520,1504, 1489/cm.  
 [α]<sub>D</sub>= +51° (CHCl<sub>3</sub>,c=0.91,25°C)

40 No.1m — 12  
 45  $\text{CDCl}_3$  300MHz  
 1.04-2.21(14H,m),2.33(2H,t,J=8.0Hz),2.56(1H,m),3.87(1H,m),5.28-5.48(2H,  
 m),6.23(1H,d,J=8.0Hz),6.75(1H,m),6.87-6.94(6H,m),7.66-7.71(2H,m),9.63(1 H,brs).  
 IR( $\text{CHCl}_3$ ):3674,3582,3436,3275,3010,2950,2868,2675,1727,1710(sh),1643,1603,1522,1504,1490/cm.  
 [ $\alpha$ ]<sub>D</sub>= +30° ( $\text{CHCl}_3$ ,c=0.97,25°C)

No.1m — 13

50 **CDCl<sub>3</sub> 300MHz**  
 1.01-2.18(14H,m),2.31(2H,t,J=7.4Hz),2.58(1H,m),3.63(3H,s),3.82(3H,s),3.89  
 (1H,m),5.29-  
 5.48(2H,m),6.14(1H,d,J=7.0Hz),6.88-7.02(6H,m),7.70-7.74(2H, m).  
 IR(CHCl<sub>3</sub>):3442,3402,3004,2946,2868,1727,1648,1600,1518,1499/cm.  
 55 [α]<sub>D</sub>=+42° (CHCl<sub>3</sub>,c=1.82,26°C)

No.1m — 14

5       $\text{CDCl}_3$  300MHz  
       1.05-2.21(14H,m),2.35(2H,t,J=7.2Hz),2.55(1H,m),3.82(3H,s),3.88(1H,m),5.2  
       5.46(2H,m),6.16(1H,d,J=7.2Hz),6.88-7.02(6H,m),7.68-7.73(2H,m).  
       IR( $\text{CHCl}_3$ ):3438,3012,2948,2870,2650,1730(sh),1709,1647,1615(sh),1601,15 19,1492/cm.  
        $[\alpha]_D=+64^\circ$  ( $\text{CHCl}_3$ ,c=0.70,25°C)

7-

10     No.1m — 15  
        $\text{CDCl}_3$  300MHz  
       1.05-2.20(14H,m),2.29-2.36(5H,m),2.62(1H,m),3.63(3H,s),3.92(1H,m),5.30-5.  
       50(2H,m),6.25(1H,d,J=7.2Hz),7.16-7.21(2H,m),7.59-7.64(4H,m),7.83-7.87(2 H,m).  
       IR( $\text{CHCl}_3$ ):3446,3010,2946,2868,1745(sh),1728,1650,1615,1525,1507,1486/cm.  
        $[\alpha]_D=+65.0^\circ$  ( $\text{CHCl}_3$ ,c=1.02,23°C)

15     No.1m — 16  
        $\text{CDCl}_3$  300MHz  
       20    1.08-2.21(14H,m),2.34-2.40(5H,m),2.59(1H,m),3.90(1H,m),5.29-5.48(2H,m),  
          6.29(1H,d,J=7.0Hz),7.18(2H,d,J=8.6Hz),7.58-7.64(4H,m),7.83(2H,d,J=8.2Hz)  
          IR( $\text{CHCl}_3$ ):3438,3012,2948,2870,2622,1749,1710,1649,1610,1526,1508,1487/cm.  
       25     $[\alpha]_D=+66^\circ$  ( $\text{CHCl}_3$ ,c=1.21,24°C)

20     No.1m — 17  
       30     $\text{CDCl}_3$  300MHz  
       1.06-2.19(14H,m),2.32(2H,t,J=7.2Hz),2.62(1H,m),3.63(3H,s),3.93(1H,m),5.3  
       5.50(2H,m),6.32(1H,d,J=7.6Hz),6.41(1H,s),6.94(2H,d,J=9.0Hz),7.47(2H,d,  
       J=9.0Hz),7.58(2H,d,J=8.6Hz),7.81(2H,d,J=8.6Hz).  
       IR( $\text{CHCl}_3$ ):3580,3434,3284,3010,2946,2868,1726,1646,1606,1528,1490/cm.  
       35     $[\alpha]_D=+62.4^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C)

0-

25     No.1m — 18  
       40     $\text{CDCl}_3+\text{CD}_3\text{OD}$  300MHz  
       1.11-2.18(14H,m),2.32(2H,t,J=7.4Hz),2.59(1H,m),3.88(1H,m),5.30-5.49(2H,  
       m),6.55(1H,d,J=7.0Hz),6.92(2H,d,J=8.6Hz),7.47(2H,d,J=8.6Hz),7.59(2H,d,J =8.6Hz),7.79(2H,d,J=8.2Hz).  
       IR(Nujol):3398,3175,2725,1696,1635,1601,1531,1510/cm.  
        $[\alpha]_D=+99.5^\circ$  ( $\text{CH}_3\text{OH}$ ,c=1.011,25°C)

45     No.1m — 19  
       50     $\text{CDCl}_3$  300MHz  
       1.05-2.20(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.86(3H,s),3.94  
       5.50(2H,m),6.24(1H,d,J=7.0Hz),6.99(2H,d,J=8.6Hz),7.53-7.63(4 H,m),7.82(2H,d,J=8.6Hz).  
       IR( $\text{CHCl}_3$ ):3440,3006,2946,2875,1726,1649,1606,1527,1510,1489/cm.  
        $[\alpha]_D=+68^\circ$  ( $\text{CHCl}_3$ ,c=0.88,26°C)

No.1m — 20

55      $\text{CDCl}_3$  300MHz  
       1.09-2.20(14H,m),2.35(2H,t,J=7.3Hz),2.58(1H,m),3.85(3H,s),3.89(1H,m),5.2  
       5.48(2H,m),6.35(1H,d,J=7.2Hz),6.98(2H,d,J=8.8Hz),7.51-7.61(4H,m),7.81( 2H,d,J=8.4Hz),8.34(1H,brs).  
       IR( $\text{CHCl}_3$ ):3446,3012,2952,2881,2640,1730(sh),1707,1647,1606,1527,1510,1 489/cm.

8-

$[\alpha]_D = +83^\circ$  ( $\text{CHCl}_3, c=1.00, 25^\circ\text{C}$ ).

No.1m — 21

5       $\text{CDCl}_3$  300MHz  
 1.05-2.14(14H,m), 2.37(2H,t,J=7.2Hz), 2.51(1H,m), 3.81(1H,m), 5.34-5.46(2H,  
 7.48(3H,m), 7.53-7.55(2H,m).  
 IR( $\text{CHCl}_3$ ): 3420, 3250, 3008, 2948, 2870, 2660, 2210, 1735(sh), 1705, 1645, 1503, 1441, 1409/cm.  
 $[\alpha]_D = +59.2 \pm 1.0^\circ$  ( $\text{CHCl}_3, c=1.023, 22^\circ\text{C}$ ).

10     No.1m — 22  
 15      $\text{CDCl}_3$  300MHz  
 1.05-2.17(14H,m), 2.37(2H,t,J=7.2Hz), 2.52(1H,m), 3.82(1H,m), 5.32-5.47(2H,  
 7.53(3H,m), 7.58-7.61(6H,m), 9.11(1H,brs).  
 IR( $\text{CHCl}_3$ ): 3420, 3250, 3010, 2984, 2870, 2675, 2208, 1730(sh), 1705, 1640, 1500, 1406/cm.  
 $[\alpha]_D = +57.4^\circ$  ( $\text{CHCl}_3, c=1.83, 23^\circ\text{C}$ ).

No.1m — 23

20      $\text{CDCl}_3$  300MHz  
 1.05-2.18(14H,m), 2.31(2H,t,J=7.5Hz), 2.60(1H,m), 3.63(3H,s), 3.90(1H,m), 5.3  
 5.47(2H,m), 6.22(1H,d,J=6.9Hz), 7.40-7.49(3H,m), 7.76-7.79(2H,m).  
 IR( $\text{CHCl}_3$ ): 3438, 3008, 2946, 2868, 1727, 1651, 1603, 1585, 1512, 1484/cm.  
 $[\alpha]_D = +52^\circ$  ( $\text{CHCl}_3, c=1.49, 25^\circ\text{C}$ ).

No.1m — 24

30      $\text{CDCl}_3$  300MHz  
 1.05-2.21(14H,m), 2.36(2H,t,J=7.2Hz), 2.57(1H,m), 3.89(1H,m), 5.28-5.47(2H,  
 7.55(3H,m), 7.73-7.79(2H,m).  
 IR( $\text{CHCl}_3$ ): 3676, 3572, 3436, 3010, 2948, 2875, 1730(sh), 1709, 1650, 1600, 1580, 1514, 1484/cm.  
 $[\alpha]_D = +57^\circ$  ( $\text{CHCl}_3, c=0.97, 26^\circ\text{C}$ ).

35     No.1m — 25

40      $\text{CDCl}_3$  300MHz  
 1.04-2.18(14H,m), 2.28-2.35(5H,m), 2.59(1H,m), 3.62(3H,s), 3.88(1H,m), 5.29-5.  
 49(2H,m), 6.20(1H,d,J=7.2Hz), 7.15(2H,d,J=9.0Hz), 7.80(2H,d,J=8.8Hz).  
 IR( $\text{CHCl}_3$ ): 3436, 3010, 2946, 2868, 1752, 1727, 1653, 1602, 1519, 1491/cm.  
 $[\alpha]_D = +53^\circ$  ( $\text{CHCl}_3, c=1.63, 25^\circ\text{C}$ ).

No.1m — 26

45      $\text{CDCl}_3$  300MHz  
 1.05-2.19(14H,m), 2.32-2.38(5H,m), 2.56(1H,m), 3.88(1H,m), 5.29-5.47(2H,m),  
 6.25(1H,d,J=7.4Hz), 7.15(2H,d,J=9.0Hz), 7.78(2H,d,J=8.6Hz).  
 IR( $\text{CHCl}_3$ ): 3434, 3016, 3006, 2948, 2880, 2622, 1752, 1730(sh), 1710, 1651, 1605, 1520, 1492/cm.  
 $[\alpha]_D = +58^\circ$  ( $\text{CHCl}_3, c=3.68, 24^\circ\text{C}$ )

50     No.1m — 27

55      $\text{CDCl}_3$  300MHz  
 1.05-2.16(14H,m), 2.30(2H,t,J=7.5Hz), 2.57(1H,m), 3.62(3H,s), 3.87(1H,m), 5.2  
 5.47(2H,m), 6.32(1H,d,J=7.4Hz), 6.85(2H,d,J=8.6Hz), 7.62(2H,d,J=8.6Hz), 8.35(1H,s).  
 IR( $\text{CHCl}_3$ ): 3580, 3450, 3216, 3010, 2946, 2868, 1726, 1640, 1608, 1584, 1528, 1496/cm.  
 $[\alpha]_D = +56.2^\circ$  ( $\text{CHCl}_3, c=0.713, 23^\circ\text{C}$ )

No.1m — 28

5       $\text{CDCl}_3$  200MHz  
       1.10-2.25(14H,m),2.32(2H,t,J=7.2Hz),2.55(1H,brs),3.82-3.93(1H,m),5.27-5.4  
       7(2H,m),6.25(1H,d,J=7.4Hz),6.86(2H,d,J=8.6Hz),7.62(2H,d,J=8.6Hz).  
       IR( $\text{CHCl}_3$ ):3438,3242,2675,1730(sh),1708,1639,1607,1585/cm.

No.1m — 29

10      $\text{CDCl}_3$  300MHz  
       1.05-2.18(14H,m),2.31(2H,t,J=7.4Hz),2.58(1H,m),3.64(3H,s),3.85(3H,s),3.89  
       5.48(2H,m),6.14(1H,d,J=6.6Hz),6.92(2H,d,J=9.0Hz),7.74(2H,d,J=9.0Hz).  
       IR( $\text{CHCl}_3$ ):3445,3008,2946,2868,1727,1646,1606,1578,1523,1493/cm.  
        $[\alpha]_D = +53^\circ$  ( $\text{CHCl}_3$ ,c=2.03,24°C)

15     No.1m — 30  
        $\text{CDCl}_3$  300MHz  
       1.04-2.21(14H,m),2.36(2H,t,J=7.3Hz),2.56(1H,m),3.85(3H,s),3.88(1H,m),5.  
       20     5.46(2H,m),6.15(1H,d,J=7.2Hz),6.92(2H,d,J=8.6Hz),7.73(2H,d,J=8.6Hz)  
       IR( $\text{CHCl}_3$ ):3440,3010,2950,2870,2645,1727,1710(sh),1646,1606,1575,1524,1494/cm.  
        $[\alpha]_D = +62^\circ$  ( $\text{CHCl}_3$ ,c=1.10,24°C).

25     No.1m — 31  
        $\text{CDCl}_3+\text{CD}_3\text{OD}$  300MHz  
       1.16-2.20(14H,m),2.31(2H,t,J=7.2Hz),2.59(1H,m),3.85(1H,m),5.31-5.51(2H,  
       7.42(2H,m),7.68-7.93(6H,m).  
       IR(Nujol):3344,3175,2715,2675,1699,1631,1566/cm.  
       30      $[\alpha]_D = +67^\circ$  ( $\text{CH}_3\text{OH}$ ,c=1.01,24°C).

No.1m — 32

35      $\text{CDCl}_3$  200MHz  
       1.09-2.23(14H,m),2.33(2H,t,J=7.1Hz),2.57(1H,brs),3.40-3.93(9H,m),4.41(1H,  
       5.48(2H,m),6.44(1H,d,J=7.4Hz),7.43(2H,d,J=8.2Hz),7.80(2H,d,J=7.8Hz).  
       IR( $\text{CHCl}_3$ ):3434,3354,1726,1720(sh),1660(sh),1626/cm.

40     No.1m — 33  
        $\text{CDCl}_3$  200MHz  
       1.14-2.25(14H,m),2.37(2H,t,J=7.3Hz),2.64(1H,brs),3.93-4.01(1H,m),5.30-5.51(2H,m),6.47(1H,d,J=7.4Hz),7.63-  
       7.74(2H,m),7.79(2H,s),7.89-7.93(1H,m),8.00(1H,dd,J=2.3,1.0Hz),8.30(1H,d,J=1.0Hz),8.65-8.73(2H,m).  
       IR( $\text{CHCl}_3$ ):3450,2675,1728,1707,1649,1528,1509/cm.  
       45      $[\alpha]_D = +82.8 \pm 1.2^\circ$  ( $\text{CHCl}_3$ ,c=1.01,23°C).

No.2a-1

50      $[\alpha]_D = +69.0^\circ$  ( $\text{MeOH}$ ,c=1.01,25°C)

55     No.2a-2  
        $\text{CDCl}_3$  300MHz  
       0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.30(1H,m),5.35-  
       5.52(2H,m),6.32(1H,d,J=8.7Hz),7.36-7.49(3H,m),7.58-7.62(2H,m),7.66 and 7.80(each 2H,each d,J=8.7Hz).  
       IR( $\text{CHCl}_3$ ):3116,3014,2925,2870,2663,1708,1651,1610,1524,1504,1484,1472/cm.  
        $[\alpha]_D = +64.1^\circ$  ( $\text{MeOH}$ ,c=1.02,25°C).

No.2a-3

 $[\alpha]_D = +76.6^\circ$  (MeOH, c=1.18, 26°C).

5 No.2a-4

$\text{CDCl}_3$  300MHz  
 0.99(1H,d,J=10.2Hz),1.15 and 1.25(each 3H,each s),1.64-2.51(14H,m),4.3 1(1H,m),5.36-  
 5.53(2H,m),6.33(1H,d,J=8.4z),7.50-7.56(3H,m),7.85-7.98(6H, m).  
 10 IR( $\text{CHCl}_3$ ):3515,3452,3014,2925,2870,1740,1708,1654,1517,1486,1470 /cm.  
 $[\alpha]_D = +79.5^\circ$  (MeOH, c=1.18, 22°C).

No.2a-5

15  $\text{CD}_3\text{OD}$  300MHz  
 0.98(1H,d,J=9.9Hz),1.18 and 1.25(each 3H,each s),1.56-1.71(3H,m),1.98-2. 40(11H,m),4.17(1H,m),5.41-  
 5.52(2H,m),7.52-7.61(3H,m),7.91-8.01(6H,m).  
 IR(KBr):3416,3063,2983,2921,2869,1704,1643,1566,1518,1488,1408 /cm.  
 $[\alpha]_D = +62.0^\circ$  (MeOH, c=1.00, 25°C).

20 No.2a-6

 $[\alpha]_D = +64.1^\circ$  (MeOH, c=1.01, 25°C).

25 No.2a-7

 $[\alpha]_D = +65.3^\circ$  (MeOH, c=0.99, 25°C).

No.2a-8

30  $[\alpha]_D = +74.0^\circ$  (MeOH, c=1.01, 25°C).

No.2a-9

35  $[\alpha]_D = +71.0^\circ$  (MeOH, c=1.10, 25°C).

No.2a-10

40  $[\alpha]_D = +74.7^\circ$  (MeOH, c=1.00, 25°C).  
 40 No.2a-11

 $[\alpha]_D = +72.1^\circ$  (MeOH, c=1.00, 25°C).

45 No.2a-12

$[\alpha]_D = +53.1^\circ$  ( $\text{CHCl}_3$ , c=1.01, 26°C).  
 m.p. 155.0-156.0°C

50 No.2a-13

$\text{CDCl}_3$  300MHz  
 0.98(1H,d,J=10.2Hz),1.18 and 1.25(each 3H,each s),1.63-2.40(14H,m),4.3 0(1H,m),5.46-  
 5.58(2H,m),6.44(1H,d,J=8.4Hz),7.49 and 7.77(each 2H,each d,J=8.7Hz),7.54(1H,s).  
 55 IR( $\text{CHCl}_3$ ):3689,3378,3028,3014,2924,1713,1652,1602,1522,1496 /cm.  
 $[\alpha]_D = +78.3^\circ$  (MeOH, c=0.84, 25°C).  
 m.p. 205.0-206.0°C

No.2a-14

$[\alpha]_D = +72.5^\circ$  (MeOH, c=1.07, 25°C).

5 No.2a-15

CDCl<sub>3</sub> 300MHz  
 0.99(1H,d,J=9.9Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),4.27(1H,m),5.30-  
 5.50(2H,m),6.29(1H,d,J=9.0Hz),7.11 and 7.20(each 1H,each d, J=16.2Hz),7.29-7.55(5H,m),7.57 and 7.72(each  
 10 2H,each d,J=8.7Hz).  
 IR(CHCl<sub>3</sub>):3453,3083,3022,3013,2925,2870,1708,1650,1607,1560,1522,1496 /cm.  
 [α]<sub>D</sub>= +72.3° (MeOH, c=1.00, 27°C).  
 m.p.115.0-117.0°C

15 No.2a-16

CDCl<sub>3</sub> 300MHz  
 0.92(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.48(14H,m),3.6 2(3H,s),4.29(1H,m),5.30-  
 5.50(2H,m),6.20(1H,d,J=8.7Hz),6.59 and 6.68 ( each 1H,each d,J=12.3Hz),7.23(5H,s),7.29 and 7.59(each  
 20 2H,each d,J=8. 1Hz).  
 IR(CHCl<sub>3</sub>):3453,3024,3016,2924,2870,1730,1651,1607,1520,1495 /cm.  
 [α]<sub>D</sub>= +56.8° (MeOH, c=1.04, 24°C).

No.2a-17

25 CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.38(14H,m),4.2 6(1H,m),5.30-  
 5.50(2H,m),6.23(1H,d,J=8.4Hz),6.59 and 6.70(each 1H,each d,J=12.3Hz),7.23(5H,s),7.30 and 7.57(each 2H,each  
 d,J=8.7Hz).  
 30 IR(CHCl<sub>3</sub>):3452,3081,3019,3014,2925,2870,2665,1708,1650,1607,1521,1495 /cm.  
 [α]<sub>D</sub>= +61.6° (MeOH, c=1.00, 27°C).

No.2a-18

35 CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each,s),1.50-2.50(14H,m),3.61 (3H,s),4.31(1H,m),5.35-  
 5.51(2H,m),6.33(1H,d,J=8.4Hz),7.48-7.64(4H,m),7.7 9-7.83(2H,m),7.91(1H,dt,J=1.5 and 7.8Hz),8.01(1H,dt,J=1.5  
 and 7.8Hz),8. 13(1H,t,J=1.5Hz).  
 IR(CHCl<sub>3</sub>):3450,3026,3013,2925,2870,1730,1659,1600,1510 /cm.  
 40 [α]<sub>D</sub>= +56.0° (MeOH, c=1.01, 25°C).

No.2a-19

45 CDCl<sub>3</sub> 300MHz  
 0.95(1H,d,J=9.9Hz),1.14 and 1.21(each 3H,each s),1.53-2.60(14H,m),4.25( 1H,m),5.35-  
 5.64(2H,m),7.21(1H,d,J=7.8Hz),7.49-7.68(4H,m),7.76-7.84(3H,m) ,8.25(1H,m),8.43(1H,m).  
 IR(CHCl<sub>3</sub>):3382,3196,3025,3015,2925,2870,1725,1652,1599,1577,1521 /cm.  
 [α]<sub>D</sub>= +55.9° (MeOH, c=1.00, 25°C).

50 No.2a-20

CDCl<sub>3</sub> 300MHz  
 0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.6 2(3H,s),4.31(1H,m),5.35-  
 5.51(2H,m),6.24(1H,d,J=8.4Hz),7.40-7.52(3H,m),7. 71-7.76(2H,m).  
 55 IR(CHCl<sub>3</sub>):3453,3025,3013,2925,2870,1730,1753,1579,1514,1486 /cm.  
 [α]<sub>D</sub>= +61.2° (MeOH, c=1.04, 25°C).

No.2a-21

5       $\text{CDCl}_3$  300MHz  
       0.98(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 8(1H,m),5.34-  
       5.51(2H,m),6.27(1H,d,J=8.7Hz),7.41-7.53(3H,m),7.71-7.74(2H, m).  
       IR(CHCl<sub>3</sub>):3452,3063,3027,3014,2925,2871,1708,1652,1578,1515,1486 /cm.  
        $[\alpha]_D = +62.0^\circ$  (MeOH,c=1.01,27°C).

No.2a-22

10      $d_6\text{-DMSO}$  300MHz  
       0.86(1H,d,J=9.9Hz),1.10 and 1.16(each 3H,each s),1.42-1.52(3H,m),1.85-2. 46(11H,m),3.98(1H,m),5.32-  
       5.43(2H,m),7.41(3H,m),7.88(2H,d,J=6.6Hz),8.19 (1H,d,J=6.6Hz).  
       IR(KBr):3367,3060,2984,2922,2868,1634,1563,1529,1487/cm.  
        $[\alpha]_D = +47.7^\circ$  (MeOH,c=1.00,25°C).

No.2a-23

20      $[\alpha]_D = +62.7^\circ$  (MeOH,c=1.01,27°C).

No.2a-24

25      $\text{CDCl}_3$  300MHz  
       0.99(1H,d,J=10.2Hz),1.14 and 1.25(each 3H,each s),1.52-2.50(14H,m),4.3 1(1H,m),5.36-  
       5.52(2H,m),6.34(1H,d,J=8.4Hz),7.47-7.52(2H,m),7.59-7.64(1H, m),7.78-7.83(6H,m).  
       IR(CHCl<sub>3</sub>):3449,3027,3013,2925,2869,1708,1656,1599,1518,1493 /cm.  
        $[\alpha]_D = +63.1^\circ$  (MeOH,c=1.00,25°C).

No.2a-25

30      $[\alpha]_D = +35.1^\circ$  (MeOH,c=1.00,25°C).

No.2a-26

35      $[\alpha]_D = +35.5^\circ$  (MeOH,c=1.02,25°C).

No.2a-27

40      $\text{CDCl}_3$  300MHz  
       0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.50(14H,m),3.6 3(3H,s),4.29(1H,m),5.36-  
       5.51(2H,m),6.18(1H,d,J=8.4Hz),7.01 and 7.71 ( each 2H,each d,J=8.7Hz,),6.98-  
       7.05(2H,m),7.16(1H,t,J=7.5Hz),7.34-7.41(2 H,m).  
       IR(CHCl<sub>3</sub>):3455,3024,3016,2924,2870,1730,1651,1588,1520,1487 /cm.  
        $[\alpha]_D = +56.4^\circ$  (MeOH,c=1.01,25°C).

45     No.2a-28

50      $\text{CDCl}_3$  300MHz  
       0.98(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 6(1H,m),5.34-  
       5.51(2H,m),6.20(1H,d,J=9.0Hz),7.01 and 7.70(each 2H,each d,J=9.0Hz,),6.98-  
       7.15(2H,m),7.17(1H,t,J=7.5Hz),7.34-7.40(2H,m).  
       IR(CHCl<sub>3</sub>):3454,3031,3018,2925,2870,1708,1650,1588,1523,1487/cm.  
        $[\alpha]_D = +56.2^\circ$  (MeOH,c=1.00,25°C).

55     No.2a-29

$[\alpha]_D = +53.0^\circ$  (MeOH,c=1.03,25°C).

No.2a-30

5       $\text{CDCl}_3$  300MHz  
 0.97(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 5(1H,m),5.30-  
 5.50(2H,m),6.23(1H,d,J=8.7Hz),6.36(1H,s),7.26-7.39(10H,m),7.60 and 7.68(each 2H,each d,J=8.4Hz,).  
 IR( $\text{CHCl}_3$ ):3451,3088,3064,3029,3014,2925,2869,1707,1652,1522,1495 /cm.  
 $[\alpha]_D=+54.2^\circ$  (MeOH,c=1.00,25°C).

No.2a-31

10      $\text{CDCl}_3$  300MHz  
 0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.6 3(3H,s),4.31(1H,m),5.30-  
 5.50(2H,m),6.26(1H,d,J=8.4Hz),6.90(1H,t,J=7.4Hz), 7.13(1H,d,J=8.7Hz),7.29(2H,t,J=8.0Hz),7.67-  
 7.75(5H,m),7.82(1H,s).  
 15     IR(Nujol):3380,3244,1723,1638,1601,1578,1535,1495 /cm.  
 $[\alpha]_D=+73.6^\circ$  (MeOH,c=0.50,26°C).  
 m.p.133.0-134.0°C

No.2a-32

20      $[\alpha]_D=+56.1^\circ$  (MeOH,c=1.02,26°C).

No.2a-33

25      $\text{CDCl}_3$  300MHz  
 0.95(1H,d,J=10.2Hz),1.10 and 1.21(each,3H,each s),1.50-2.50(14H,m),4.25 (1H,m),5.13(2H,s),5.30-  
 5.70(3H,m),6.41(1H,d,J=8.2Hz),6.89(1H,s),7.09(1H, s),7.17 and 7.72(each 2H,each d,J=8.2Hz),7.62(1H,s).  
 IR( $\text{CHCl}_3$ ):3450,3125,3031,3013,2925,2870,2467,1917,1708,1654,1615,1575, 1523,1497 /cm.  
 $[\alpha]_D=+55.2^\circ$  (MeOH,c=1.01,26°C).

30     No.2a-34  
 $[\alpha]_D=+72.9^\circ$  (MeOH,c=1.03,25°C).

No.2a-35

35      $\text{CDCl}_3$  300MHz  
 0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.2 8(1H,m),5.35-  
 5.51(2H,m),6.28(1H,d,J=8.7Hz),7.34-7.37(3H,m),7.52-7.55(2H, m),7.58 and 7.71(each 2H,each d,J=8.7Hz).  
 40     IR( $\text{CHCl}_3$ ):3515,3452,3030,3012,2925,2870,1739,1708,1652,1607,1555,1521, 1497 /cm.  
 $[\alpha]_D=+74.3^\circ$  (MeOH,c=1.01,25°C).

No.2a-36

45      $[\alpha]_D=+23.4^\circ$  (MeOH,c=1.07,25°C).

No.2a-37

50      $\text{CDCl}_3$  300MHz  
 0.83(1H,d,J=10.5Hz),0.95 and 1.18(each 3H,each s),1.44-2.46(14H,m),3.9 2(1H,m),5.34-5.52(3H,m),7.26-  
 7.54(9H,m),7.62(1H,s).  
 IR( $\text{CHCl}_3$ ):3432,3310,3189,3023,3014,2924,2870,1704,1610,1594,1523,1487 /cm.  
 $[\alpha]_D=+25.3^\circ$  (MeOH,c=1.00,26°C).

No.2a-38

55      $[\alpha]_D=+70.9^\circ$  (MeOH,c=1.02,25°C).

No.2a-39

 $[\alpha]_D = +70.6^\circ$  (MeOH, c=1.01, 25°C).

5 No.2a-40

 $[\alpha]_D = +74.7^\circ$  (MeOH, c=1.00, 25°C).

No.2a-41

10  $[\alpha]_D = +72.1^\circ$  (MeOH, c=1.01, 24°C).

No.2a-42

15  $[\alpha]_D = +69.2^\circ$  (MeOH, c=1.00, 25°C).

No.2a-43

20  $[\alpha]_D = +70.8^\circ$  (MeOH, c=1.00, 25°C).

No.2a-44

 $[\alpha]_D = +60.4^\circ$  (MeOH, c=1.00, 26°C).

25 No.2a-45

$\text{CDCl}_3$  300MHz  
 0.97(1H,d,J=9.9Hz), 1.13 and 1.23(each 3H,each s), 1.55-2.52(14H,m), 4.29(1H,m), 5.34-  
 5.54(2H,m), 6.33(1H,d,J=9.0Hz), 7.10(1H,t,J=7.4Hz), 7.34(2H,t,J=7.4Hz), 7.52(2H,m), 7.68 and 7.75(each 2H,each  
 d,J=8.4Hz), 7.80(1H,s), 8.10(1H,s), 10.09(1H,s).  
 IR( $\text{CHCl}_3$ ): 3393, 3195, 3093, 3033, 3013, 2925, 2870, 1698, 1656, 1598, 1537, 1498 /cm.  
 $[\alpha]_D = +59.4^\circ$  (MeOH, c=1.01, 24°C).

No.2a-46

35  $[\alpha]_D = +63.5^\circ$  (MeOH, c=1.00, 25°C).

No.2a-47

40  $\text{CDCl}_3$  300MHz  
 0.97(1H,d,J=9.9Hz), 1.12 and 1.23(each 3H,each s), 1.54-2.48(14H,m), 4.29(1H,m), 5.35-  
 5.52(2H,m), 6.32(1H,d,J=8.7Hz), 7.26(1H,m), 7.41(2H,t,J=7.8Hz), 7.64(2H,d,J=7.5Hz), 7.73 and 7.77(each 2H,each  
 d,J=8.4Hz), 7.95(1H,s), 9.20(1H,s), 10.38(1H,s).  
 IR( $\text{CHCl}_3$ ): 3450, 3339, 3003, 2992, 2925, 2870, 1706, 1653, 1596, 1523, 1495/cm.  
 45  $[\alpha]_D = +63.3^\circ$  (MeOH, c=1.00, 25°C).

No.2a-48

 $[\alpha]_D = +63.8^\circ$  (MeOH, c=1.00, 24°C).

50 No.2a-49

$\text{CDCl}_3$  300MHz  
 1.00(1H,d,J=10.5Hz), 1.17 and 1.26(each 3H,each s), 1.55-2.52(14H,m), 4.3-4(1H,m), 5.36-  
 5.54(2H,m), 6.35(1H,d,J=9.0Hz), 7.50-7.62(3H,m), 7.90 and 8.33 (each 2H,each d,J=8.4Hz), 8.21(2H,m).  
 IR( $\text{CHCl}_3$ ): 3451, 3029, 3022, 3016, 2925, 2870, 1708, 1655, 1542, 1508, 1498, 1471, 1459 /cm.  
 $[\alpha]_D = +63.5^\circ$  (MeOH, c=1.02, 25°C);  
 m.p. 135.0-137.0°C

No.2a-50

$[\alpha]_D = +68.9^\circ$  (MeOH, c=1.01, 24°C).

5 No.2a-51

$d_6$ -DMSO 300MHz

0.87(1H,d,J=9.9Hz), 1.10 and 1.17(each 3H, each s), 1.40-1.60(3H,m), 1.90-2.40(11H,m), 3.98(1H,m), 5.35-

5.46(2H,m), 7.64(1H,s), 7.65 and 7.91(each 2H, each d,J=8.7Hz), 8.06(1H,d,J=6.0Hz), 9.32(1H,brs).

10 IR(KBr): 3385, 2962, 1734, 1707, 1632, 1529, 1498 /cm.

$[\alpha]_D = +68.4^\circ$  (MeOH, c=1.01, 24°C).

No.2a-52

15  $[\alpha]_D = +76.2^\circ$  (MeOH, c=1.01, 24°C).

No.2a-53

$[\alpha]_D = +73.9^\circ$  (MeOH, c=1.02, 24°C).

20

No.2a-54

$[\alpha]_D = +68.1^\circ$  (MeOH, c=1.00, 24°C).

25 No.2a-55

$[\alpha]_D = +67.8^\circ$  (MeOH, c=1.00, 24°C).

No.2a-56

30

$[\alpha]_D = +65.4^\circ$  (MeOH, c=1.03, 25°C).

No.2a-57

35  $[\alpha]_D = +63.4^\circ$  (MeOH, c=1.01, 24°C).

No.2a-58

$[\alpha]_D = +66.6^\circ$  (MeOH, c=1.01, 24°C).

40

No.2a-59

$[\alpha]_D = +65.5^\circ$  (MeOH, c=1.00, 24°C).

45 No.2a-60

$[\alpha]_D = +60.9^\circ$  (MeOH, c=1.02, 25°C).

No.2a-61

50

$CDCl_3$  300MHz

0.97(1H,d,J=10.0Hz), 1.10 and 1.22(each 3H, each s), 1.50-2.50(14H,m), 4.2-6(1H,m), 5.30-5.54(2H,m), 6.28(1H,d,J=8.6Hz), 6.60 and 6.82(each 1H, each d,J=12.4Hz,), 7.12(2H,d,J=6.0Hz), 7.25 and 7.62(each 2H, each d,J=8.6Hz), 8.47(2H,d,J=6.0Hz).

55

IR( $CHCl_3$ ): 3452, 3027, 3019, 3013, 2925, 2870, 2480, 1708, 1651, 1606, 1520, 1494 /cm.

$[\alpha]_D = +61.6^\circ$  (MeOH, c=1.01, 25°C).

No.2a-62

 $[\alpha]_D = +72.0^\circ$  (MeOH, c=0.93, 25°C).

5 No.2a-63

CDCl<sub>3</sub> 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.2 9(1H,m),5.36-  
 5.55(2H,m),6.35(1H,d,J=9.1Hz),7.04 and 7.27(each 1H,each d,J=16.5Hz),7.37(2H,d,J=6.6Hz),7.56 and  
 7.76(each 2H,each d,J=8.4Hz), 8.57(2H,d,J=6.6Hz).

10 IR(CHCl<sub>3</sub>):3452,3024,3018,3014,2925,2870,2470,1933,1708,1652,1605,1521, 1496 /cm. $[\alpha]_D = +69.2^\circ$  (MeOH, c=1.01, 25°C).

No.2a-64

15

 $[\alpha]_D = +56.9^\circ$  (MeOH, c=1.24, 25°C).

No.2a-65

20 CDCl<sub>3</sub> 300MHz

0.98(1H,d,J=10.5Hz),1.12 and 1.23(each 3H,each s),1.54-2.46(14H,m),4.2 7(1H,m),5.23(2H,s),5.34-  
 5.52(2H,m),6.26(1H,d,J=8.4Hz),7.32-7.45(5H,m),7. 64 and 7.71 (each 2H,each d,J=8.4Hz),8.15(1H,s).

IR(CHCl<sub>3</sub>):3452,3088,3065,3032,3013,2925,2870,1708,1653,1611,1559,1522, 1496 /cm. $[\alpha]_D = +61.0^\circ$  (MeOH, c=0.91, 25°C).

25

No.2a-66

 $[\alpha]_D = +76.0^\circ$  (MeOH, c=1.01, 25°C).

30 No.2a-67

CDCl<sub>3</sub> 300MHz

0.98(1H,d,J=10.4Hz),1.14 and 1.24(each 3H,each s),1.54-2.46(14H,m),4.2 8(1H,m),5.32-  
 5.53(2H,m),6.27(1H,d,J=8.6Hz),6.92-7.31(each 1H,each d,J= 16.4Hz),7.02(1H,dd,J=5.8 and  
 3.6Hz),7.12(1H,d,J=3.6Hz),7.24(1H,d,J=5.8 Hz),7.51 and 7.70(each 2H,each d,J=8.4Hz).

35 IR(CHCl<sub>3</sub>):3453,3029,3013,2925,2870,1739,1650,1604,1524,1515,1494 /cm. $[\alpha]_D = +76.2^\circ$  (MeOH, c=1.00, 24°C).

m.p.104.0-106.0°C

40 No.2a-68

 $[\alpha]_D = +57.7^\circ$  (MeOH, c=1.01, 25°C).

No.2a-69

45

CDCl<sub>3</sub> 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.54-2.48(14H,m),4.2 8(1H,m),5.34-  
 5.53(2H,m),6.29(1H,d,J=9.0Hz),6.54-6.74(each 1H,each d,J= 12.0Hz),7.02(1H,dd,J=4.8 and  
 3.3Hz),6.97(1H,dd,J=3.3 and 1.2Hz),7.13(1 H,dd,J=4.8 and 1.2Hz),7.44 and 7.70(each 2H,each d,J=8.7Hz).

50 IR(CHCl<sub>3</sub>):3453,3025,3010,2925,2870,1708,1650,1607,1559,1523,1493 /cm. $[\alpha]_D = +58.4^\circ$  (MeOH, c=1.00, 25°C).

No.2a-70

55

 $[\alpha]_D = +48.6^\circ$  (MeOH, c= 1.00, 25°C).

No.2a-71

5           CDCl<sub>3</sub> 300MHz  
 0.98(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.3 1(3H,s),4.26(1H,m),5.33-  
 5.52(2H,m),6.20(1H,d,J=9.3Hz),7.02-7.11(6H,m),7.70(2H,d,J=9.0Hz).  
 IR(CHCl<sub>3</sub>):3460,3031,3022,3011,2925,2870,1750,1708,1650,1608,1597,1523, 1490 /cm.  
 [α]<sub>D</sub>=+48.9° (MeOH,c=1.01,25°C).

No.2a-72

10           [α]<sub>D</sub>=+51.2° (MeOH,c=1.02,25°C).

No.2a-73

15           CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=9.9Hz), 1.11 and 1.23(each 3H,each s), 1.54-2.48(14H,m),4.27( 1H,m),5.32-  
 5.52(2H,m),6.24(1H,d,J=9.0Hz),6.83-6.94(6H,m),7.65(2H,d,J=9. 0Hz).  
 IR(CHCl<sub>3</sub>):3598,3451,3199,3033,3012,2925,2870,1708,1642,1604,1524,1507, 1491 /cm.  
 [α]<sub>D</sub>=+52.2° (MeOH,c=1.01,25°C).

20           No.2a-74  
 [α]<sub>D</sub>=+51.5° (MeOH,c=0.92,25°C).

No.2a-75

25           CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.46(14H,m),3.8 2(3H,s),4.25(1H,m),5.32-  
 5.52(2H,m),6.19(1H,d,J=8.7Hz),6.89-7.01(6H,m),7.65-7.68(2H,m).  
 30           IR(CHCl<sub>3</sub>):3450,3025,3008,2925,2870,2837,1741,1649,1612,1521,1505,1490 /cm.  
 [α]<sub>D</sub>=+51.1° (MeOH,c=1.00,25°C).

No.2a-76

35           [α]<sub>D</sub>=+60.4° (MeOH,c=0.98,25°C).

No.2a-77

40           CDCl<sub>3</sub> 300MHz  
 0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),2.3 4(3H,s),4.29(1H,m),5.32-  
 5.54(2H,m),6.32(1H,d,J=8.4Hz),7.19 and 7.60 ( each 2H,each d,J=8.4Hz),7.63 and 7.79(each 2H,each  
 d,J=8.4Hz).  
 IR(CHCl<sub>3</sub>):3452,3027,3012,2925,2870,1751,1709,1651,1611,1560,1527,1509, 1489 /cm.  
 [α]<sub>D</sub>=+61.2° (MeOH,c=1.00,25°C).

45           No.2a-78  
 [α]<sub>D</sub>=+67.4° (MeOH,c=1.01,25°C).

No.2a-79

50           CDCl<sub>3</sub> 300MHz  
 0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.54-2.54(14H,m),4.3 1(1H,m),5.32-  
 5.54(2H,m),6.36(1H,d,J=8.2Hz),6.93 and 7.48(each 2H,each d,J=8.6Hz),7.59 and 7.75(each 2H,each d,J=8.4Hz).  
 55           IR(CHCl<sub>3</sub>):3593,3448,3192,3030,3010,2925,2870,1708,1644,1608,1591,1559, 1530,1516,1491 /cm.  
 [α]<sub>D</sub>=+65.8° (MeOH,c=1.01,25°C).

No.2a-80

 $[\alpha]_D = +66.9^\circ$  (MeOH, c=1.01, 25°C).

5 No.2a-81

CDCl<sub>3</sub> 300MHz0.99(1H,d,J=10.5Hz), 1.15 and 1.24(each 3H,each s), 1.54-2.48(14H,m), 3.8 6(3H,s), 4.29(1H,m), 5.34-  
5.52(2H,m), 6.20(1H,d,J=8.7Hz), 6.99 and 7.55 ( each 2H,each d,J=9.0Hz), 7.61 and 7.77(each 2H,each  
d,J=8.7Hz).10 IR(CHCl<sub>3</sub>): 3450, 3009, 2925, 2870, 2838, 1740, 1708, 1650, 1608, 1557, 1528, 1512, 1491 /cm. $[\alpha]_D = +66.2^\circ$  (MeOH, c=1.01, 25°C).

No.2a-82

15

 $[\alpha]_D = +57.7^\circ$  (MeOH, c=1.02, 24°C).

No.2a-83

20 CDCl<sub>3</sub> 300MHz0.97(1H,d,J=10.2Hz), 1.12 and 1.23(each 3H,each s), 1.54-2.48(14H,m), 2.3 3(3H,s), 4.26(1H,m), 5.32-  
5.52(2H,m), 6.25(1H,d,J=8.7Hz), 7.16 and 7.75 ( each 2H,each d,J=8.7Hz).IR(CHCl<sub>3</sub>): 3452, 3030, 3022, 3012, 2925, 2870, 1754, 1709, 1654, 1604, 1585, 1522, 1493 /cm. $[\alpha]_D = +57.4^\circ$  (MeOH, c=1.01, 24°C).

25

No.2a-84

 $[\alpha]_D = +57.8^\circ$  (MeOH, c=1.01, 24°C).

30 No.2a-85

CDCl<sub>3</sub> 300MHz0.95(1H,d,J=10.2Hz), 1.12 and 1.22(each 3H,each s), 1.54-2.48(14H,m), 4.2 5(1H,m), 5.32-  
5.52(2H,m), 6.28(1H,d,J=8.7Hz), 6.87 and 7.57(each 2H,each d,J=9.0Hz).35 IR(CHCl<sub>3</sub>): 3590, 3450, 3166, 3019, 3012, 2925, 2871, 1708, 1637, 1608, 1583, 1531, 1498 /cm. $[\alpha]_D = +56.0^\circ$  (MeOH, c=1.01, 24°C).

No.2a-86

40

 $[\alpha]_D = +59.3^\circ$  (MeOH, c=1.01, 22°C).

No.2a-87

CDCl<sub>3</sub> 300MHz45 0.98(1H,d,J=10.0Hz), 1.13 and 1.23(each 3H,each s), 1.54-2.48(14H,m), 3.8 5(3H,s), 4.25(1H,m), 5.32-  
5.53(2H,m), 6.19(1H,d,J=8.8Hz), 6.93 and 7.69 ( each 2H,each d,J=9.0Hz).IR(CHCl<sub>3</sub>): 3450, 3030, 3017, 3012, 2925, 2870, 2840, 1740, 1708, 1647, 1606, 1575, 1525, 1496 /cm. $[\alpha]_D = +58.2^\circ$  (MeOH, c=0.99, 22°C).

50 No.2a-88

 $[\alpha]_D = +50.9^\circ$  (MeOH, c=1.02, 25°C).

No.2a-89

55

CDCl<sub>3</sub> 300MHz0.99(1H,d,J=10.2Hz), 1.18 and 1.26(each 3H,each s), 1.56-2.48(14H,m), 4.2 9(1H,m), 5.36-  
5.54(2H,m), 7.03(1H,d,J=8.7Hz), 7.21(1H,s), 7.43(2H,m), 7.74(1 H,ddd,J=1.8,6.9 and 8.7Hz), 8.22(1H,dd,J=1.8 and

8.1Hz).

IR(CHCl<sub>3</sub>):3443,3087,3023,3014,2925,2870,1708,1685,1658,1630,1517,1466 /cm.  
 $[\alpha]_D=+57.1^\circ$  (MeOH,c=1.01,22°C).  
 m.p.117.0-118.0°C

5

No.2a-90

$[\alpha]_D=+54.1^\circ$  (MeOH,c=1.01,22°C).

10 No.2a-91

CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.2 4(1H,m),5.34-5.52(2H,m),6.49-6.53(2H,m),7.11(1H,dd,J=0.9 and 3.6Hz),7.4 4(1H,dd,J=0.9 and 1.8Hz).  
 IR(CHCl<sub>3</sub>):3437,3033,3022,3014,2925,2870,1739,1708,1655,1595,1520,1472 /cm.  
 $[\alpha]_D=+55.0^\circ$  (MeOH,c=1.00,22°C).

No.2a-92

20  $[\alpha]_D=+50.3^\circ$  (MeOH,c=1.00,22°C).

No.2a-93

CDCl<sub>3</sub> 300MHz  
 0.95(1H,d,J=10.5Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.2 5(1H,m),5.34-5.52(2H,m),6.12(1H,d,J=8.7Hz),7.07(1H,dd,J=3.9 and 5.1Hz),7.45-7.48(2H,m).  
 IR(CHCl<sub>3</sub>):3450,3023,3011,2925,2870,1739,1708,1645,1531,1501,1471 /cm.  
 $[\alpha]_D=+49.1^\circ$  (MeOH,c=1.02,24°C).

30 No.2a-94

$[\alpha]_D=+51.5^\circ$  (MeOH,c=1.00,24°C).

No.2a-95

35 CDCl<sub>3</sub> 300MHz  
 0.96(1H,d,J=10.5Hz),1.11 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.2 5(1H,m),5.34-5.56(2H,m),6.14(1H,d,J=8.7Hz),7.34(2H,d,J=2.0Hz),7.85(1H,t, J=2.0Hz).  
 IR(CHCl<sub>3</sub>):3452,3114,3030,3013,2925,2870,1708,1649,1535,1498,1471/cm.  
 40  $[\alpha]_D=+55.5^\circ$  (MeOH,c=1.00,25°C).  
 m.p.87.0-88.0°C

No.2a-96

45 CD<sub>3</sub>OD 300MHz  
 0.94(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.50-1.76(3H,m),1.94-2.39(11H,m),4.11(1H,m),5.39-5.49(2H,m),7.43-7.51(2H,m),8.05(1H,m).  
 IR(KBr):3369,3084,2985,2921,2868,1630,1566,1538,1503 /cm.  
 $[\alpha]_D=+38.8^\circ$  (MeOH,c=1.01,22°C).

50

No.2a-97

CD<sub>3</sub>OD 300MHz  
 0.93(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.48-1.58(3H,m),1.96-2. 36(11H,m),4.10(1H,m),5.35-5.50(2H,m),7.42-7.51(2H,m),8.06(1H,m).  
 IR(KBr):3447,3087,2987,2922,2868,1629,1545,1501 /cm.  
 $[\alpha]_D=+52.9^\circ$  (MeOH,c=1.01,24°C).

No.2a-98

 $[\alpha]_D = +53.2^\circ$  (MeOH, c=1.02, 23°C).

5 No.2a-99

CDCl<sub>3</sub> 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.26-2.45(24H,m),4.2 5(2H,m),5.34-

5.52(2H,m),6.18(1H,d,J=8.7Hz),6.91 and 7.66(each 2H,each d,J=9.0Hz).

10 IR(CHCl<sub>3</sub>):3455,3029,3019,2939,2862,1738,1709,1645,1605,1523,1494 /cm. $[\alpha]_D = +51.4^\circ$  (MeOH, c=1.00, 23°C).

No.2a-100

15  $[\alpha]_D = +49.3^\circ$  (MeOH, c=1.00, 24°C).

No.2a-101

 $[\alpha]_D = +51.3^\circ$  (MeOH, c=1.00, 24°C).

20 No.2a-102

 $[\alpha]_D = +48.8^\circ$  (MeOH, c=1.01, 23°C).

25 No.2a-103

CDCl<sub>3</sub> 300MHz

0.94(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.4 8(3H,d,J=0.3Hz),4.20(1H,m),5.32-

5.54(2H,m),6.46(1H,brs),7.12(1H,d,J=9.0 Hz).

30 IR(CHCl<sub>3</sub>):3415,3144,3029,3011,2926,2871,1708,1671,1598,1538,14564 /cm $[\alpha]_D = +49.6^\circ$  (MeOH, c=1.01, 23°C).

No.2a-104

35  $[\alpha]_D = +77.0^\circ$  (MeOH, c=1.02, 23°C).

No.2a-105

CDCl<sub>3</sub> 300MHz

40 9.3(1H,d,J=9.9Hz),1.09 and 1.21(each 3H,each s),1.51-2.44(14H,m),3.90(6 H,s),4.20(1H,m),5.38-

5.50(2H,m),5.87(1H,d,J=9.0Hz),6.25 and 7.54 (each 1H,each d,J=15.6Hz),6.84(1H,d,J=8.1Hz),7.03(1H,d,J=1.8Hz),7.09(1 H,dd,J=1.8 and 8.1Hz).

IR(CHCl<sub>3</sub>):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 /cm. $[\alpha]_D = +77.3^\circ$  (MeOH, c=1.01, 23°C).

45 No.2a-106

 $[\alpha]_D = +67.0^\circ$  (MeOH, c=1.00, 25°C).

50 No.2a-107

 $[\alpha]_D = +66.6^\circ$  (MeOH, c=1.01, 24°C).

m.p. 168.0-170.0°C

55 No.2a-108

 $[\alpha]_D = +61.8^\circ$  (MeOH, c=1.00, 22°C).

No.2a-109

5       $\text{CDCl}_3$  300MHz  
       0.96(1H,d,J=10.2Hz),1.10 and 1.22(each 3H,each s),1.51-2.45(14H,m),4.2      5(1H,m),5.33-  
       5.49(2H,m),6.21(1H,d,J=8.7Hz),7.25 and 7.60(each 2H,each d,J=8.7Hz),7.33-7.41(5H,s).  
       IR( $\text{CHCl}_3$ ):3453,3062,3028,3014,2925,2870,1739,1708,1651,1594,1557,1515, 1481 /cm.  
        $[\alpha]_D=+61.0^\circ$  (MeOH,c=1.01,22°C).

No.2a-110

10      $\text{CD}_3\text{OD}$  300MHz  
       0.94(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.54-2.37(14H,m),4.12( 1H,m),5.38-5.49(2H,m),7.25 and  
       7.68(each 2H,each d,J=8.7Hz),7.41(5H,s)  
       15    IR(KBr):3435,3058,2986,2920,2866,1635,1595,1562,1521,1482,1439,1411 /cm.  
        $[\alpha]_D=+47.3^\circ$  (MeOH,c=1.01,23°C).

20     No.2a-111

$[\alpha]_D=+65.6^\circ$  (MeOH,c=1.01,24°C).

No.2a-112

25      $\text{CDCl}_3$  300MHz  
       0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.2      7(1H,m),5.35-  
       5.50(2H,m),6.22(1H,d,J=8.4Hz),7.40 and 7.66(each 2H,each d,J=9.0Hz).  
       IR( $\text{CHCl}_3$ ):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 /cm.  
       30     $[\alpha]_D=+65.6^\circ$  (MeOH,c=1.01,22°C).

No.2a-113

35      $[\alpha]_D=+59.6^\circ$  (MeOH,c=1.00,24°C).  
       No.2a-114  
        $\text{CDCl}_3$  300MHz  
       0.98(1H,d,J=10.2Hz),1.12 and 1.24(each 3H,each s),1.52-2.46(14H,m),4.2      9(1H,m),5.35-  
       40    5.51(2H,m),6.28(1H,d,J=8.4Hz),7.70 and 7.83(each 2H,each d,J=8.4Hz).  
       IR( $\text{CHCl}_3$ ):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 /cm.  
        $[\alpha]_D=+60.6^\circ$  (MeOH,c=1.01,22°C).

No.2a-115

45      $[\alpha]_D=+59.7^\circ$  (MeOH,c=0.99,24°C).  
       No.2a-116

50      $\text{CDCl}_3$  300MHz  
       0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.3      9(3H,s),4.27(1H,m),5.33-  
       5.51(2H,m),6.24(1H,d,J=9.0Hz),7.23 and 7.62 (each 2H,each d,J=8.4Hz).  
       IR( $\text{CHCl}_3$ ):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513/cm.  
       55     $[\alpha]_D=+59.7^\circ$  (MeOH,c=0.99,24°C).

No.2a-117

$[\alpha]_D=+56.7^\circ$  (MeOH,c=1.00,23°C).

No.2a-118

5            $\text{CDCl}_3$  300MHz  
 0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.44(14H,m),4.2 3(1H,m),5.34-  
 5.51(2H,m),6.02(2H,s),6.13(1H,d,J=8.7Hz),6.83(1H,dd,J=1.2 and 7.8Hz),7.22-7.25(2H,m).  
 IR( $\text{CHCl}_3$ ):3453,3031,3020,3012,2924,2870,1740,1708,1650,1619,1605,1519, 1504,1480 /cm.  
 $[\alpha]_D=+57.2^\circ$  (MeOH,c=1.02,23°C).

No.2a-119

10            $\text{CDCl}_3$  300MHz  
 0.96(1H,d,J=10.5Hz),1.07 and 1.23(each 3H,each s),1.51-2.44(14H,m),2.3 2(3H,s),4.26(1H,m),5.37-  
 5.52(2H,m),6.40(1H,d,J=9.0Hz),7.09(1H,m),7.30(1 H,m),7.46(1H,m),7.66(1H,m).  
 IR( $\text{CHCl}_3$ ):3443,3028,3012,2925,2870,1766,1747,1709,1657,1607,1516,1479 /cm.  
 $[\alpha]_D=+53.2^\circ$  (MeOH,c=0.99,21°C).

No.2a-120

20            $\text{CDCl}_3$  300MHz  
 0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.53-2.44(14H,m),4.3 0(1H,m),5.35-  
 5.52(2H,m),6.42(1H,d,J=8.7Hz),6.85(1H,m),6.99(1H,dd,J=1.2 and 8.4Hz),7.27(1H,m),7.39(1H,m).  
 IR( $\text{CHCl}_3$ ):3463,3033,3021,3014,2992,2924,2870,1708,1643,1597,1523,1488 /cm.  
 $[\alpha]_D=+46.3^\circ$  (MeOH,c=1.01,21°C).

25           No.2a-121

30            $\text{CDCl}_3$  300MHz  
 0.98(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.47-2.47(14H,m),3.9 5(3H,s),4.31(1H,m),5.32-  
 5.50(2H,m),6.98(1H,ddd,J=0.9 and 8.4Hz),7.09(1H, ddd,J=0.9,7.7 and 8.4Hz),7.45(1H,m),8.19(1H,dd,J=2.1 and  
 8.1Hz),8.32(1 H,d,J=9.0Hz).  
 IR( $\text{CHCl}_3$ ):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600, 1536,1483,1470 /cm.  
 $[\alpha]_D=+38.1^\circ$  (MeOH,c=1.02,23°C).

No.2a-122

35            $[\alpha]_D=+42.3^\circ$  (MeOH,c=0.99,23°C).

No.2a-123

40            $[\alpha]_D=+38.7^\circ$  (MeOH,c=1.00,21°C).

No.2a-124

45            $[\alpha]_D=+45.0^\circ$  (MeOH,c=1.01,21°C).  
 m.p.119.0-120.0°C

No.2a-125

50            $[\alpha]_D=+49.8^\circ$  (MeOH,c=1.01,22°C).

No.2a-126

55            $\text{CDCl}_3$  300MHz  
 0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.47(14H,m),4.2 6(1H,m),5.34-  
 5.50(2H,m),6.22(1H,d,J=8.7Hz),7.55-7.61(4H,m).  
 IR( $\text{CHCl}_3$ ):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600, 1536,1483,1470 /cm.  
 $[\alpha]_D=+63.0^\circ$  (MeOH,c=1.01,23°C).

No.2a-127

5       $\text{CDCl}_3$  300MHz  
 0.91(1H,d,J=10.2Hz),1.10 and 1.20(each 3H,each s),1.50-2.42(14H,m),4.2 3(1H,m),5.31-  
 5.51(2H,m),6.45(1H,d,J=8.4Hz),7.01(1H,t,J=7.4Hz),7.22-7.27( 2H,m),7.33-7.40(4H,m),7.53(2H,d,J=9.0Hz),8.30  
 and 8.48(each 1H,each s)  
 IR( $\text{CHCl}_3$ ):3452,3028,3015,2925,2870,1708,1654,1590,1514,1478 /cm.  
 $[\alpha]_D=+59.5^\circ$  (MeOH,c=1.01,23°C).

10     No.2a-128

10      $d_6\text{-DMSO}$  300MHz  
 0.84(1H,d,J=9.9Hz),1.06 and 1.19(each 3H,each s),1.37-2.37(14H,m),3.79( 1H,m),5.35-  
 5.51(2H,m),6.08(1H,d,J=8.7Hz),6.85-6.90(1H,m),7.18-7.23(2H,m ),7.35-7.38(2H,m),8.42(1H,s),12.00(1H,s).  
 15    IR(Nujol):3395,3345,2925,2866,2623,2506,1697,1658,1638,1597,1557 /cm.  
 $[\alpha]_D=+26.0^\circ$  (MeOH,c=1.01,23°C).  
 m.p.164.0-166.0°C

No.2a-129

20      $\text{CDCl}_3$  300MHz  
 1.01(1H,d,J=10.0Hz),1.17 and 1.25(each 3H,each s),1.54-2.52(14H,m),4.3 4(1H,m),5.36-  
 5.57(2H,m),6.42(1H,d,J=8.6Hz),7.51-7.60(2H,m)7.77(1H,dd,J =1.8 and 8.6Hz),7.85-7.96(3H,m),8.24(1H,brs).  
 IR( $\text{CHCl}_3$ ):3451,3060,3028,3010,2925,2870,1708,1652,1629,1600,1517,1502 /cm.  
 25     $[\alpha]_D=+68.6^\circ$  (MeOH,c=1.00,22°C).

No.2a-130

30      $\text{CDCl}_3$  300MHz  
 1.02(1H,d,J=10.2Hz),1.04 and 1.26(each 3H,each s),1.54-2.52(14H,m),4.4 1(1H,m),5.41-  
 5.58(2H,m),6.14(1H,d,J=9.0Hz),7.43-7.59(4H,m),7.85-7.92(2H, m),8.27(1H,dd,J=1.8 and 7.2Hz).  
 IR( $\text{CHCl}_3$ ):3436,3032,3010,2924,2870,2664,1708,1652,1512,1498 /cm.  
 $[\alpha]_D=+93.9^\circ$  (MeOH,c=1.00,22°C)  
 m.p.94.0-96.0°C

35     No.2a-131

$[\alpha]_D=+50.2^\circ$  (MeOH,c=0.95,21°C).

40     No.2a-132

$[\alpha]_D=+10.9^\circ$  (MeOH,c=0.92,21°C).

No.2a-133

45     $[\alpha]_D=+60.4^\circ$  (MeOH,c=1.00,21°C).

No.2a-134

50     $[\alpha]_D=+38.5^\circ$  (MeOH,c=1.01,23°C).

No.2a-135

55     $[\alpha]_D=+52.5^\circ$  (MeOH,c=1.01,23°C).  
 m.p.180.0-182.0°C

No.2a-136

[ $\alpha$ ]<sub>D</sub>=+35.3° (MeOH,c=1.02,23°C).  
m.p.79.0-80.0°C

5

No.2a-137

CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.43(3H,t,J=6.9Hz),1. 52-  
 10 2.44(14H,m),4.03(2H,q,J=6.9Hz),4.26(1H,m),5.33-5.50(2H,m),6.19(1H,d, J=8.7Hz),6.88-7.00(6H,m),7.65-  
 7.68(2H,m).  
 IR(CHCl<sub>3</sub>):3455,3031,3024,3014,2988,2925,2870,1741,1708,1649,1602,1521, 1504,1490 /cm.  
 [ $\alpha$ ]<sub>D</sub>=+52.0° (MeOH,c=1.01,23°C).

15 No.2a-138

CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.35(6H,d,J=6.0Hz),1. 53-  
 2.46(14H,m),4.25(1H,m),4.51(1H,m),5.33-5.50(2H,m),6.12(1H,d,J=9.0Hz ),6.87-6.99(6H,m),7.65-7.68(2H,m).  
 20 IR(CHCl<sub>3</sub>):3454,3031,3014,2980,2925,2870,1741,1708,1649,1602,1522,1490 /cm.  
 [ $\alpha$ ]<sub>D</sub>=+50.0° (MeOH,c=1.05,22°C).

No.2a-139

25 CDCl<sub>3</sub> 300MHz  
 1.00(1H,d,J=10.2Hz),1.16 and 1.24(each 3H,each s),1.59-2.52(14H,m),4.3 1(1H,m),5.40-  
 5.53(2H,m),6.36(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.12(1H, m),7.30(1H,m),7.47(1H,dd,J=0.6 and  
 8.1Hz),7.61(1H,d,J=8.4Hz).  
 IR(CHCl<sub>3</sub>):3449,3243,3029,3022,3013,2925,2871,1707,1631,1542,1505 /cm.  
 30 [ $\alpha$ ]<sub>D</sub>=+63.4° (MeOH,c=1.00,23°C).  
 m.p.178.0-179.0°C

No.2a-140

35 CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.18 and 1.23(each 3H,each s),1.57-2.50(14H,m),4.3 5(1H,m),5.32-  
 5.55(2H,m),6.42(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.21-7.24( 2H m),7.46(1H,m),7.76(1H,m),7.86(1H,d,J=3.0Hz),10.20(1H,s).  
 IR(CHCl<sub>3</sub>):3465,3010,2924,1739,1604,1546,1504 /cm.  
 40 [ $\alpha$ ]<sub>D</sub>=+39.4° (MeOH,c=1.01,22°C).  
 m.p.167.0-168.0°C

No.2a-141

45 CDCl<sub>3</sub> 300MHz  
 0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),3.8 4(3H,s),4.27(1H,m),5.34-  
 5.52(2H,m),6.28(1H,d,J=9.0Hz),6.91 and 7.47 (each 2H,each d,J=9.0Hz),6.98 and 7.14(each 1H,each  
 d,J=16.5Hz),7.54 and 7.70(each 2H,eachd,J=8.7Hz).  
 IR(CHCl<sub>3</sub>):3453,3025,3015,2925,2870,2839,1740,1708,1649,1602,1510,1493, 1470 /cm.  
 50 [ $\alpha$ ]<sub>D</sub>=+73.4° (MeOH,c=1.02,22°C).  
 m.p.155.0-157.0°C

No.2a-142

55 CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.7 9(3H,s),4.27(1H,m),5.34-  
 5.50(2H,m),6.24(1H,d,J=9.0Hz),6.49 and 6.62 (each 1H each d,J=12.3Hz),6.77 and 7.16(each 2H,each  
 d,J=8.7Hz),7.32 and 7.59(each 2H,eachd,J=8.1Hz).

IR(CHCl<sub>3</sub>):3453,3025,3014,2925,2870,2839,1739,1708,1649,1606,1510, 1494 /cm.  
 $[\alpha]_D=+60.7^\circ$  (MeOH,c=0.99,22°C).

## No.2a-143

5

$[\alpha]_D=+57.3^\circ$  (MeOH,c=1.01,23°C).

## No.2a-144

10

$[\alpha]_D=+12.2^\circ$  (MeOH,c=1.00,23°C).  
 m.p.114.0-116.0°C

## No.2a-145

15

CDCl<sub>3</sub> 300MHz  
 0.95(1H,d,J=10.2Hz),1.10 and 1.21(each 3H,each s),1.52-2.44(14H,m),4.2 5(1H,m),5.33-5.49(2H,m),6.37(1H,d,J=8.7Hz),7.45-7.47(3H,m),7.62-7.66(2H, m),7.69 and 7.80(each 2H,each d,J=7.5Hz,).  
 IR(CHCl<sub>3</sub>):3449,3058,3027,3012,2925,2870,1708,1655,1513,1481,1043 /cm.  
 $[\alpha]_D=+61.0^\circ$  (MeOH,c=1.01,23°C).

20

## No.2a-146

25

CDCl<sub>3</sub> 300MHz  
 0.95(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.41(14H,m),4.2 5(1H,m),5.33-5.49(2H,m),6.33(1H,d,J=8.4Hz),7.49-7.61(3H,m),7.91-7.92(2H, m),7.82 and 7.97(each 2H,each d,J=8.7Hz,).  
 IR(CHCl<sub>3</sub>):3447,3029,3023,3015,2925,2870,1708,1660,1514,1484,1321,1161 /cm.  
 $[\alpha]_D=+62.0^\circ$  (MeOH,c=1.00,22°C).

## No.2a-147

30

CDCl<sub>3</sub> 300MHz  
 0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.5 1(3H,s),4.26(1H,m),5.34-5.51(2H,m),6.23(1H,d,J=8.4Hz),7.26 and 7.64 (each 2H,each d,J=8.4Hz).  
 IR(CHCl<sub>3</sub>):3453,3027,3015,2925,2870,2665,1708,1648,1596,1516,1484 /cm.  
 $[\alpha]_D=+67.7^\circ$  (MeOH,c=0.82,22°C).

## No.2a-148

40

$[\alpha]_D=+72.5^\circ$  (MeOH,c=1.01,25°C).

## No.2a-149

$[\alpha]_D=+67.8^\circ$  (MeOH,c=0.98,25°C).

45

## No.2a-150

CDCl<sub>3</sub> 300MHz  
 0.94(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 2(1H,m),5.36-5.55(2H,m),6.48(1H,d,J=8.4Hz),8.35(1H,s),8.90(1H,s).  
 IR(CHCl<sub>3</sub>):3443,3374,3091,3024,3012,2925,2871,1709,1652,1525,1494 /cm.  
 $[\alpha]_D=+58.1^\circ$  (MeOH,c=1.01,23°C).  
 m.p.120.0-122.0°C

## No.2a-151

55

$[\alpha]_D=+40.6^\circ$  (MeOH,c=1.01,23°C).

No.2a-152

5            $\text{CDCl}_3$  300MHz  
 0.96(1H,d,J=10.5Hz),1.10 and 1.24(each 3H,each s),1.50-2.50(14H,m),2.7 1(3H,s),4.26(1H,m),5.37-  
 5.51(2H,m),6.02(1H,d,J=9.0Hz),8.731(1H,s).  
 IR( $\text{CHCl}_3$ ):3463,3435,3087,3025,3014,2925,2870,1708,1649,1523,1503 /cm.  
 $[\alpha]_D=+54.1^\circ$  (MeOH,c=1.02,22°C).

No.2a-153

10            $\text{CDCl}_3$  300MHz  
 0.95(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.50(14H,m),2.50( 3H,s),4.26(1H,m),5.36-  
 5.51(2H,m),6.01(1H,d,J=8.4Hz),6.88(1H,d,J=5.1Hz), 7.26(1H,d,J=5.1Hz).  
 IR( $\text{CHCl}_3$ ):3469,3431,3025,3013,2925,2871,2664,1708,1639,1544,1505 /cm.  
 15            $[\alpha]_D=+35.8^\circ$  (MeOH,c=1.03,22°C).

No.2a-154

20            $\text{CDCl}_3$  300MHz  
 0.95(1H,d,J=9.9Hz),1.10 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.51( 3H,d,J=1.2Hz),4.26(1H,m),5.34-  
 5.50(2H,m),6.00(1H,d,J=8.4Hz),6.73(1H,dd, J=5.1 and 3.6Hz),7.29(1H,d,J=3.6Hz).  
 IR( $\text{CHCl}_3$ ):3450,3431,3026,3011,2925,2869,1739,1708,1639,1547,1508 /cm.  
 $[\alpha]_D=+50.5^\circ$  (MeOH,c=1.01,22°C).

No.2a-155

25            $\text{CDCl}_3$  300MHz  
 0.99(1H,d,J=10.2Hz),1.19 and 1.25(each 3H,each s),1.53-2.48(14H,m),4.3 1(1H,m),5.36-  
 5.51(2H,m),6.79(1H,d,J=9.3Hz),7.29(1H,m),7.41(1H,m),7.48(1 H,s),7.51(1H,m),7.66(1H,d,J=8.1Hz).  
 30           IR( $\text{CHCl}_3$ ):3436,3029,3024,3015,2925,2871,2670,1708,1659,1598,1510 /cm.  
 $[\alpha]_D=+69.1^\circ$  (MeOH,c=1.01,22°C).

No.2a-156

35            $\text{CDCl}_3:\text{CD}_3\text{O}_D=10.1$  300MHz  
 0.99(1H,d,J=9.9Hz),1.11 and 1.21(each 3H,each s),1.56-2.58(14H,m),4.22( 1H,m),5.35-  
 5.59(2H,m),6.83(1H,d,J=8.4Hz),7.48(1H,d,J=8.4Hz),7.61(1H,dd,  
 8.4Hz),8.09(1H,d,J=1.5Hz),8.12(1H,s).  
 IR(KBr):3422,3115,2985,2922,2869,2609,1708,1636,1578,1529,1470 /cm.  
 40            $[\alpha]_D=+62.8^\circ$  (MeOH,c=1.01,22°C).

No.2a-157

45            $[\alpha]_D=+40.0^\circ$  (MeOH,c=0.95,22°C).

No.2a-158

50            $\text{CDCl}_3$  300MHz  
 1.00(1H,d,J=10.5Hz),1.17 and 1.24(each 3H,each s),1.54-2.50(14H,m),4.3 4(1H,m),5.36-  
 5.52(2H,m),7.80(1H,d,J=9.0Hz),9.30(1H,s).  
 IR( $\text{CHCl}_3$ ):3410,3122,3030,3012,2925,2871,2668,1709,1667,1538,1466 /cm.  
 $[\alpha]_D=+44.9^\circ$  (MeOH,c=0.99,22°C).

No.2a-159

55            $\text{CDCl}_3$  300MHz  
 0.97(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.55-2.43(14H,m),3.0 3(6H,s),4.23(1H,m),5.32-  
 5.51(2H,m),6.16(1H,d,J=8.7Hz),6.87 and 7.63 (each 2H,each d,J=8.7Hz).

**EP 0 837 052 A1**

IR(CHCl<sub>3</sub>):3457,3028,3006,2924,2870,2654,1739,1709,1637,1608,1608,1534, 1501 /cm.  
[α]<sub>D</sub>=+64.8° (MeOH,c=1.01,22°C).

No.2a-160

5      d<sub>6</sub>-DMSO 300MHz  
0.83(1H,d,J=9.9Hz),1.02 and 1.19(each 3H,each s),1.38-1.61(3H,m),1.90-2. 32(11H,m),3.90(1H,m),5.41-  
5.44(2H,m),7.32(1H,dd,J=0.9 and 7.2Hz),7.45-7.60(2H,m),7.77(1H,dd,J=0.9 and  
7.8Hz),8.03(1H,d,J=6.9Hz),12.40(1H,s).  
10     IR(Nujol):3315,2924,2856,2656,2535,1737,1703,1637,1598,1581,1541 /cm.  
[α]<sub>D</sub>=+78.5° (MeOH,c=1.01,24°C).  
m.p.161.0-162.0°C

No.2a-161

15     [α]<sub>D</sub>=+65.3° (MeOH,c=1.00,22°C).

No.2a-162

20     CDCl<sub>3</sub> 300MHz  
0.99(1H,d,J=10.2Hz),1.13 and 1.25(each 3H,each s),1.53-2.45(14H,m),4.3 0(1H,m),5.36-  
5.51(2H,m),6.32(1H,d,J=8.4Hz),7.88 and 8.28(each 2H,each d,J=9.0Hz).  
IR(CHCl<sub>3</sub>):3448,3029,3016,2925,2870,1708,1664,1602,1527,1484,1347 /cm.  
[α]<sub>D</sub>=+72.7° (MeOH,c=1.02,22°C).

25     No.2a-163

CDCl<sub>3</sub> 300MHz  
0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.51(14H,m),4.2 6(1H,m),5.36-  
5.57(2H,m),6.68(1H,d,J=7.8Hz),7.41(1H,dd,J=4.8 and 8.1Hz),  
8.20(1H,d,J=8.1Hz),8.66(1H,d,J=4.8Hz),9.00(1H,s).  
IR(CHCl<sub>3</sub>):3448,3026,3013,2925,2870,2534,1709,1658,1590,1515,1471 /cm.  
[α]<sub>D</sub>=+71.3° (MeOH,c=1.01,22°C).

35     No.2a-164

[α]<sub>D</sub>=+40.8° (MeOH,c=0.98,22°C).

No.2a-165

40     CDCl<sub>3</sub> 300MHz  
0.96(1H,d,J=10.5Hz),1.11 and 1.24(each 3H,each s),1.55-2.52(14H,m),4.2 4(1H,m),5.37-  
5.57(2H,m),6.63(1H,d,J=7.8Hz),7.59 and 8.63(each 2H each d,J=6.0Hz).  
IR(CHCl<sub>3</sub>):3447,3346,3028,3016,2925,2870,2538,1941,1708,1662,1556,1516 /cm.  
[α]<sub>D</sub>=+75.4° (MeOH,c=1.01,22°C).

No.2a-166

50     CDCl<sub>3</sub> 300MHz  
0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.44(14H,m),2.9 5(6H,s),4.25(1H,m),5.33-  
5.50(2H,m),6.19(1H,d,J=8.7Hz),6.77 and 6.97 (each 2H,each d,J=8.4Hz),6.94 and 7.65(each 2H,each  
d,J=9.0Hz).  
IR(CHCl<sub>3</sub>):3453,3024,3016,2924,2871,2806,1739,1708,1647,1612,1604,1515, 1490 /cm.  
[α]<sub>D</sub>=+53.1° (MeOH,c=1.02,23°C).  
55     m.p.104.0-105.5°C

No.2a-167

5      CDCl<sub>3</sub> 300MHz  
 1.01(1H,d,J=9.9Hz),1.19 and 1.26(each 3H,each s),1.56-2.53(14H,m),4.37(1H,m),5.35-  
 5.55(2H,m),6.47(1H,d,J=8.4Hz),7.61-7.71(2H,m),7.79(2H,s),7.89 -7.97(2H,m),8.27(1H,d,J=2.1Hz),8.66-  
 8.73(2H,m).  
 IR(CHCl<sub>3</sub>):3450,3024,3014,2925,2870,2667,1707,1650,1531,1509 /cm.  
 [α]<sub>D</sub>=+70.5° (MeOH,c=1.00,22°C).

10     No.2a-168

10     CDCl<sub>3</sub> 300MHz  
 1.02(1H,d,J=10.2Hz),1.20 and 1.26(each 3H,each s),1.56-2.50(14H,m),4.3 8(1H,m),5.36-  
 5.56(2H,m),6.51(1H,d,J=8.4Hz),7.61-7.93(7H,m),8.74(1H,d,J= 8.4Hz),9.15(1H,s).  
 15     IR(CHCl<sub>3</sub>):3517,3451,3060,3028,3011,2925,2870,2664,1709,1651,1519,1498/cm.  
 [α]<sub>D</sub>=+54.4° (MeOH,c=1.00,23°C).

No.2a-169

20     CDCl<sub>3</sub> 300MHz  
 0.96(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.44(14H,m),3.8 5(3H,s),4.24(1H,m),5.32-  
 5.48(2H,m),6.19(1H,d,J=8.4Hz),6.94 and 7.45 ( each 2H,each d,J=9.0Hz),7.11 and 7.45(each 2H,each  
 d,J=8.7Hz).  
 IR(CHCl<sub>3</sub>):3516,3453,3029,3009,2925,2870,2840,2665,1708,1650,1593,1515, 1493,1482 /cm.  
 25     [α]<sub>D</sub>=+57.8° (MeOH,c= 1.00,23°C).

No.2a-170

30     CDCl<sub>3</sub> 300MHz 0.98(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.52-2.50(14H,m),4.2 8(1H,m),5.33-  
 5.54(2H,m),6.25(1H,d,J=8.2Hz),7.38-7.44(2H,m),7.74(1H,s),7. 81-7.86(2H,m).  
 IR(CHCl<sub>3</sub>):3517,3448,3427,3024,3013,2925,2870,2669,1708,1650,1562,1535, 1500 /cm.  
 [α]<sub>D</sub>=+61.6° (MeOH,c=1.00,23°C).

No.2a-171

35     CDCl<sub>3</sub> 300MHz  
 0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.52-2.42(14H,m),2.48 (3H,s),4.21(1H,m),5.31-  
 5.52(2H,m),6.06(1H,d,J=8.2Hz),6.97 and 7.59 ( e ach 1H,each d,J=1.2Hz).  
 IR(CHCl<sub>3</sub>):3452,3113,3028,3007,2925,2870,2669,1708,1645,1554,1509 /cm.  
 40     [α]<sub>D</sub>=+52.4° (MeOH,c=1.00,23°C).

No.2a-172

45     CDCl<sub>3</sub> 300MHz  
 0.96(1H,d,J=10.2Hz),1.09 and 1.28(each 3H,each s),1.50-2.40(14H,m),2.6 9(3H,s),4.24(1H,m),5.35-  
 5.51(2H,m),5.96(1H,d,J=8.7Hz),7.03 and 7.07 ( each 1H,each d,J=5.4Hz).  
 IR(CHCl<sub>3</sub>):3451,3031,3013,2925,2870,2666,1708,1647,1542,1497 /cm.  
 [α]<sub>D</sub>=+51.2° (MeOH,c=1.00,23°C).

50     No.2a-173

CDCl<sub>3</sub> 300MHz  
 0.95(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.50-2.45(14H,m),4.2 2(1H,m),5.35-  
 5.49(2H,m),6.05(1H,d,J=8.4Hz),7.26 and 7.75(each 1H,each d,J=1.5Hz).  
 55     IR(CHCl<sub>3</sub>):3451,3011,3029,3011,2925,2870,1708,1652,1538,1500 /cm.  
 [α]<sub>D</sub>=+50.6° (MeOH,c=1.01,23°C).

No.2a-174

5       $\text{CDCl}_3$  300MHz  
       0.96(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.2 9(1H,m),5.35-  
       5.51(2H,m),7.02(1H,d,J=8.4Hz),7.32 and 8.16(each 1H,each d,J=3.9Hz).  
       IR( $\text{CHCl}_3$ ):3417,3115,3023,3014,2925,2870,1708,1645,1530 /cm.  
        $[\alpha]_D=+48.8^\circ$  (MeOH,c=1.02,23°C).

No.2a-175

10      $\text{CDCl}_3$  300MHz  
       0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.50-2.52(14H,m),2.5 2(3H,s),4.29(1H,m),5.34-  
       5.51(2H,m),7.78(1H,d,J=9.0Hz),7.24 and 7.52 ( each 1H,each d,J=5.4Hz).  
       IR( $\text{CHCl}_3$ ):3329,3093,3023,3015,2924,2871,1708,1640,1526 /cm.  
        $[\alpha]_D=+45.0^\circ$  (MeOH,c=1.01,23°C).

No.2a-176

20      $\text{CDCl}_3$  300MHz  
       0.95(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.4 0(3H,d,J=0.9Hz),4.24(1H,m),5.35-  
       5.51(2H,m),6.05(1H,d,J=8.7Hz),6.95(1H, m),7.57(1H,d,J=3.3Hz).  
       IR( $\text{CHCl}_3$ ):3517,3444,3103,3024,3013,2926,2870,1739,1708,1649,1636,1507/cm.  
        $[\alpha]_D=+54.8^\circ$  (MeOH,c=1.01,23°C).  
       m.p.97.0-99.0°C

25     No.2a-177

30      $\text{CDCl}_3$  300MHz  
       0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.9 3(3H,s),4.27(1H,m),5.34-  
       5.50(2H,m),6.35(1H,d,J=3.3Hz),7.80(1H,d,J=8.7Hz ),8.10(1H,d,J=3.3Hz).  
       IR( $\text{CHCl}_3$ ):3395,3121,3031,3019,3012,2925,2871,1739,1709,1640,1557,1533 /cm.  
        $[\alpha]_D=+22.8^\circ$  (MeOH,c=1.01,23°C).  
       m.p.109.0-112.0°C

35     No.2a-178

35      $\text{CDCl}_3$  300MHz  
       0.96(1H,d,J=10.5Hz),1.10 and 1.23(each 3H,each s),1.51-2.45(14H,m),4.2 4(1H,m),5.35-  
       5.50(2H,m),6.09(1H,d,J=8.4Hz),7.17-7.31(6H,m),7.95(1H,d,J= 1.5Hz).  
       IR( $\text{CHCl}_3$ ):3510,3451,3062,3031,3022,3011,2925,2870,2662,1708,1651,1582, 1535,1497,1477/cm.  
        $[\alpha]_D=+47.9^\circ$  (MeOH,c=1.01,25°C).

No.2a-179

45      $\text{CDCl}_3$  300MHz  
       0.96(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.3 0(1H,m),5.36-  
       5.52(2H,m),6.73(1H,d,J=9.0Hz),6.26 and 7.37(each 1H,each d,J=6.0Hz).  
       IR( $\text{CHCl}_3$ ):3509,3429,3115,3094,3025,3014,2925,2871,2666,1708,1649,1529, 1510 /cm.  
        $[\alpha]_D=+51.0^\circ$  (MeOH,c=1.02,25°C).

50     No.2a-180

55      $\text{CDCl}_3$  300MHz  
       0.95(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.46(14H,m),3.8 9(3H,s),4.21(1H,m),5.35-  
       5.50(2H,m),6.05(1H,d,J=8.4Hz),6.46 and 7.04 ( each 1H,each d,J=1.8Hz).  
       IR( $\text{CHCl}_3$ ):3516,3450,3114,3031,3010,2925,2871,1708,1648,1546,1511,1477 /cm.  
        $[\alpha]_D=+49.1^\circ$  (MeOH,c=1.01,25°C).

## No.2a-181

CDCl<sub>3</sub> 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.52-2.48(14H,m),2.4 2(3H,s),4.31(1H,m),5.34-5.52(2H,m),8.07(1H,d,J=9.3Hz),7.27 and 8.17 ( each 1H,each d,J=3.3Hz).

IR(CHCl<sub>3</sub>):3510,3301,3112,3023,3007,2924,2871,2663,1708,1636,1534 /cm.[α]<sub>D</sub>=+41.0° (MeOH,c=0.96,25°C).

## No.2a-182

CDCl<sub>3</sub> 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.46(14H,m),2.5 1(3H,s),4.21(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.1Hz),7.26 and 7.78 ( each 1H,each d,J=1.8Hz).

IR(CHCl<sub>3</sub>):3509,3450,3109,3024,3012,2925,2870,2666,1708,1650,1535,1498,1471 /cm.[α]<sub>D</sub>=+52.9° (MeOH,c=0.95,25°C).

## No.2a-183

CDCl<sub>3</sub> 300MHz

0.96(1H,d,J=10.5Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),4.2 5(1H,m),5.33-5.51(2H,m),6.17(1H,d,J=8.7Hz),7.01-7.05(3H,m),7.14 and 7.6 2(each 2H,each d,J=8.7Hz),7.27-7.34(2H,m).

IR(CHCl<sub>3</sub>):3428,3026,3015,2925,2870,2666,1739,1708,1643,1613,1594,1526, 1499 /cm.[α]<sub>D</sub>=+64.8° (MeOH,c=1.02,23°C).

## No.2a-184

CDCl<sub>3</sub> 300MHz

1.01(1H,d,J=10.2Hz),1.18 and 1.26(each 3H,each s),1.55-2.50(14H,m),4.3 5(1H,m),5.35-5.55(2H,m),6.42(1H,d,J=8.7Hz),7.46-7.52(2H,m),7.73(1H,dd,J =1.8 and 8.4Hz),7.83-

7.89(2H,m),8.21(1H,m),8.59(1H,d,J=1.5Hz).

IR(CHCl<sub>3</sub>):3451,3031,3014,2925,2870,2660,1739,1708,1650,1604,1513,1463 /cm.[α]<sub>D</sub>=+58.3° (MeOH,c=1.00,23°C).

## No.2a-185

CDCl<sub>3</sub> 300MHz

1.00(1H,d,J=10.2Hz),1.18 and 1.25(each 3H,each s),1.55-2.50(14H,m),4.3 4(1H,m),5.35-5.54(2H,m),6.36(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.50(1H,m ),7.57-7.59(2H,m),7.79(1H,dd,J=1.8 and 8.1Hz),7.99(1H,d,J=7.8Hz),8.39(1 H,d,J=1.8Hz).

IR(CHCl<sub>3</sub>):3451,3030,3020,2870,2665,1708,1652,1632,1603,1586,1514,1469, 1448 /cm.[α]<sub>D</sub>=+59.4° (MeOH,c=1.01,24°C).

## No.2a-186

CDCl<sub>3</sub> 300MHz

1.00(1H,d,J=10.5Hz),1.17 and 1.25(each 3H,each s),1.54-2.50(14H,m),4.3 3(1H,m),5.35-5.54(2H,m),6.37(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.51(1H,t, J=7.8Hz),7.56(1H,m), 7.70(1H,dd,J=1.2 and 8.4Hz),7.97(3H,m).

IR(CHCl<sub>3</sub>):3451,3030,3014,2924,2870,2671,1739,1708,1652,1577,1517,1488, 1471 /cm.[α]<sub>D</sub>=+72.2° (MeOH,c=1.00,24°C).

## No.2a-187

CDCl<sub>3</sub> 300MHz

1.00(1H,d,J=9.8Hz),1.18 and 1.25(each 3H,each s),1.54-2.53(14H,m),4.07( 3H,s),4.37(1H,m),5.30-5.54(2H,m),7.34(1H,m),7.47(1H,s),7.47-7.60(2H,m),7. 93(1H,d,J=7.8Hz),8.43(1H,s),8.49(1H,d,J=9.0Hz).

IR(CHCl<sub>3</sub>):3397,3074,3027,3020,3009,2924,1738,1708,1647,1633,1534,1465, 1453 /cm.[α]<sub>D</sub>=+43.7° (MeOH,c=1.01,25°C).

No.2a-188

5            $\text{CDCl}_3$  300MHz  
           0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.50(14H,m),4.2 3(1H,m),5.37-  
           5.50(2H,m),6.10(1H,d,J=9.0Hz),6.20(1H,m),6.51(1H,m),6.97(1H,m),10.81(1H,brs).  
           IR( $\text{CHCl}_3$ ):3450,3236,3112,3029,3015,2925,2871,2645,1701,1616,1558,1516 /cm.  
            $[\alpha]_D=+50.6^\circ$  (MeOH,c=1.01,24°C).

No.2a-189

10            $\text{CDCl}_3$  300MHz  
           0.94(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.46(14H,m),3.93( 3H,s),4.18(1H,m),5.35-  
           5.52(2H,m),6.03(1H,d,J=9.3Hz),6.09(1H,m),6.48(1H, m),6.73(1H,m).  
           IR( $\text{CHCl}_3$ ):3452,3102,3028,3007,2925,2871,2666,1739,1708,1650,1536,1499, 1471 /cm.  
            $[\alpha]_D=+49.8^\circ$  (MeOH,c=1.01,23°C).  
           m.p.101.5-103.5°C

No.2a-190

20            $\text{CDCl}_3$  300MHz  
           0.94(1H,d,J=10.2Hz),1.11 and 1.21(each 3H,each s),1.54-2.47(14H,m),4.2 3(1H,m),5.33-  
           5.52(2H,m),6.06(1H,d,J=9.0Hz),6.34(1H,m),6.75(1H,m),6.36(1 H,m),9.71(1H,brs).  
           IR( $\text{CHCl}_3$ ):3470,3215,3030,3020,3010,2925,2871,2664,1709,1613,1564,1510 /cm.  
            $[\alpha]_D=+43.3^\circ$  (MeOH,c=1.01,24°C).

25           No.2a-191

30            $\text{CDCl}_3$  300MHz  
           0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.55-2.44(14H,m),3.6 6(3H,s),4.20(1H,m),5.35-  
           5.51(2H,m),5.93(1H,d,J=8.4Hz),6.27(1H,dd,J=1.8 and 2.7Hz),6.56(1H,t,J=2.7Hz),7.19(1H,t,J=1.8Hz).  
           IR( $\text{CHCl}_3$ ):3452,3031,3018,3006,2925,2871,2662,1736,1710,1634,1609,1556, 1498 /cm.  
            $[\alpha]_D=+43.1^\circ$  (MeOH,c=1.01,23°C).

No.2a-192

35            $\text{CDCl}_3$  300MHz  
           0.96(1H,d,J=10.5Hz),1.11 and 1.21(each 3H,each s),1.43(3H,t,J=7.5Hz),1. 54-  
           2.44(14H,m),3.93(2H,q,J=7.5Hz),4.21(1H,m),5.33-5.51(2H,m),5.94(1H,d, J=8.4Hz),6.27(1H,dd,J=1.8 and  
           2.7Hz),6.62(1H,t,J=2.7Hz),7.26(1H,t,J=1.8 Hz).  
           IR( $\text{CHCl}_3$ ):3630,3452,3032,3018,3006,2925,2871,2661,1735,1710,1633,1610, 1555,1497 /cm.  
            $[\alpha]_D=+40.1^\circ$  (MeOH,c=1.00,23°C).

No.2a-193

45            $\text{CDCl}_3$  300MHz  
           0.95(1H,d,J=10.2Hz),1.10 and 1.22(each 3H,each s),1.53-2.49(14H,m),2.5 8(3H,s),4.21(1H,m),5.35-  
           5.54(2H,m),6.15(1H,d,J=8.1Hz),6.52(1H,dd,J=1.8 and 3.6Hz),7.29(1H,t,J=3.6Hz),7.94(1H,t,J=1.8Hz).  
           IR( $\text{CHCl}_3$ ):3516,3450,3410,3152,3027,3015,2925,2871,2670,1732,1648,1574, 1509 /cm.  
            $[\alpha]_D=+45.0^\circ$  (MeOH,c=1.01,25°C).

50           No.2a-194

55            $\text{CDCl}_3$  300MHz  
           0.99(1H,d,J=10.2Hz),1.11 and 1.24(each 3H,each s),1.52-2.53(14H,m),4.3 4(1H,m),5.33-  
           5.57(2H,m),6.21(1H,d,J=8.6Hz),7.35-7.50(2H,m),7.83(1H,s),7. 86(1H,m),8.31(1H,m).  
           IR( $\text{CHCl}_3$ ):3443,3067,3013,2925,2870,2665,1708,1651,1515,1493 /cm.  
            $[\alpha]_D=+55.7^\circ$  (MeOH,c=1.01,23°C).

No.2a-195

5       $\text{CDCl}_3$  300MHz  
       1.01(1H,d,J=10.0Hz),1.06 and 1.26(each 3H,each s),1.50-2.64(14H,m),2.6 8(3H,s),4.40(1H,m),5.36-  
       5.61(2H,m),6.02(1H,d,J=9.4Hz),7.30-7.42(2H,m),7. 73-7.86(2H,m).  
       IR( $\text{CHCl}_3$ ):3510,3434,3062,3029,3014,2924,2871,2669,1708,1650,1563,1539, 1500 /cm.  
        $[\alpha]_D=+72.4^\circ$  (MeOH,c=1.00,23°C).  
       m.p.111.0-112.0°C

10 No.2a-196

10      $\text{CDCl}_3$  300MHz  
       0.42 and 1.04(each 3H,each s),0.80(1H,d,J=10.0Hz),1.11-2.48(14H,m),2.2 4(3H,s),4.02(1H,m),5.23-  
       5.44(2H,m),5.53(1H,d,J=8.8Hz),7.27-7.31(2H,m),7. 42-7.48(3H,m),7.93(1H,s).  
       15    IR( $\text{CHCl}_3$ ):3419,3114,3025,3006,2924,2871,2662,1737,1709,1636,1540,1519 /cm.  
        $[\alpha]_D=+43.7^\circ$  (MeOH,c=1.01,23°C).

No.2a-197

20      $\text{CDCl}_3$  300MHz  
       0.95(1H,d,J=10.0Hz),1.09 and 1.23(each 3H,each s),1.54-2.46(18H,m),2.7 7(4H,brs),4.21(1H,m),5.32-  
       5.54(2H,m),6.02(1H,d,J=8.6Hz),7.43(1H,s).  
       IR( $\text{CHCl}_3$ ):3445,3101,3024,3014,2928,2865,2661,1739,1708,1646,1550,1507 /cm.  
        $[\alpha]_D=+51.9^\circ$  (MeOH,c=1.01,23°C).

25 No.2a-198

30      $\text{CDCl}_3$  300MHz  
       0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.50-2.44(14H,m),4.2 4(1H,m),4.42(2H,s),5.35-  
       5.49(2H,m),6.25(1H,d,J=8.1Hz),7.33(1H,m),7.43(1 H,dd,J=1.5 and 7.5Hz),7.49(1H,d,J=8.1Hz),7.60-  
       7.63(1H,m),7.68(1H,dd,J=1. 8 and 7.8Hz),8.02(1H,d,J=1.8Hz),8.19(1H,dd,J=1.5 and 8.1Hz).  
       IR( $\text{CHCl}_3$ ):3448,3030,3012,2925,2870,1739,1708,1671,1588,1559,1514,1472 /cm.  
        $[\alpha]_D=+56.9^\circ$  (MeOH,c=1.01,24°C).

35 No.2a-199

35      $\text{CDCl}_3$  300MHz  
       0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.46(14H,m),3.4 0(1H,m),3.76(1H,m),4.24(1H,m),5.33-  
       5.51(3H,m),6.25(1H,m),7.16(1H,m),7.2 4-7.33(2H,m),7.46(1H,d,J=7.5Hz),7.52-7.60(2H,m),7.85(1H,dd,J=1.8 and  
       4. 5Hz).  
       IR( $\text{CHCl}_3$ ):3583,3447,3062,3028,3013,2924,2871,2663,1708,1651,1600,1557, 1514,1471 /cm.  
        $[\alpha]_D=+54.8^\circ$  (MeOH,c=1.00,23°C).

40 No.2a-200

45      $\text{CDCl}_3$  300MHz  
       0.96(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.2 5(1H,m),5.34-  
       5.51(2H,m),6.25(1H,d,J=8.4Hz),7.02 and 7.10(each,1H,each d,J=12.3Hz),7.23-  
       7.33(4H,m),7.50(1H,m),7.64(1H,dd,J=1.8 and 7.8Hz),7.8 2(1H,d,J=1.8Hz).  
       50    IR( $\text{CHCl}_3$ ):3450,3060,3025,3014,2925,2871,2662,1708,1653,1596,1542,1513, 1473 /cm.  
        $[\alpha]_D=+62.5^\circ$  (MeOH,c=1.00,24°C).

No.2a-201

55      $\text{CDCl}_3$  300MHz  
       0.95(1H,d,J=9.9Hz),1.15 and 1.22(each 3H,each s),1.55-2.60(14H,m),4.26( 1H,m),5.35-  
       5.63(2H,m),7.14(1H,d,J=9.9Hz),7.34 and 7.40(each,1H,each d, J=12.9Hz),7.62-7.73(4H,m),8.25-  
       8.30(2H,m),8.72(1H,d,J=1.5Hz).

IR(CHCl<sub>3</sub>):3443,3389,3297,3061,3030,3016,2925,2870,1726,1708,1652,160 3,1521,1483,1472,1309 /cm.  
 $[\alpha]_D=+61.1^\circ$  (MeOH,c=1.01,23°C).

## No.2a-202

5      CDCl<sub>3</sub> 300MHz  
 0.96(1H,d,J=10.2Hz),1.09 and 1.22(each 3H,each s),1.52-2.43(14H,m),2.6 3(3H,s),4.25(1H,m),5.33-  
 5.49(2H,m),6.19(1H,d,J=8.4Hz),7.10 and 7.58 ( each,2H,each d,J=9.0Hz),7.21(1H,m),7.30-  
 7.32(2H,m),7.46(1H,d,J=7.5Hz)  
 10     IR(CHCl<sub>3</sub>):3511,3453,3062,3032,3014,2925 2870,1739,1708,1650,1595,1556, 1516,1482,1471 /cm.  
 $[\alpha]_D=+60.2^\circ$  (MeOH,c=1.01,25°C).

## No.2a-203

15      CDCl<sub>3</sub> 300MHz  
 0.96(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.43(14H,m),4.2 3(1H,m),5.35-  
 5.51(2H,m),5.93(1H,d,J=8.7Hz),6.56(1H,dd,J=0.9 and 1.8Hz), 7.43(1H,t,J=1.8Hz),7.92(1H,dd,J=0.9 and 1.8Hz).  
 IR(CHCl<sub>3</sub>):3517,3450,3134,3031,3008,2925,2870,2667,1708,1656,1588,1570, 1514 /cm.  
 $[\alpha]_D=+46.7^\circ$  (MeOH,c=0.92,25°C).

20      No.2b-1  
 $[\alpha]_D= +25.6^\circ$  (MeOH,c=1.01,23°C).

25      No.2b-2  
 $[\alpha]_D= +38.9^\circ$  (MeOH,c=1.01,24°C).

No2c-1  
 30     [math>[\alpha]\_D= +60.5^\circ (MeOH,c=1.01,22°C).

No.2c-2  
 35     [math>[\alpha]\_D= +55.8^\circ (MeOH,c=0.92,22°C).

No.2c-3  
 40     [math>[\alpha]\_D= +54.7^\circ (MeOH,c=1.01,22°C).

No.2d-1  
 45     [math>[\alpha]\_D= -6.2^\circ (MeOH,c=1.00,21°C).

No.2d-2  
 50     [math>[\alpha]\_D=+15.8^\circ (MeOH,c=0.34,22°C).

No.2d-3  
 55     [math>[\alpha]\_D=+31.6^\circ (MeOH,c=1.01,22°C).

No.2e-1  
 55     [math>[\alpha]\_D= -9.4^\circ (MeOH,c=1.00,22°C).

No.2e-2

 $[\alpha]_D = -1.8^\circ$  (MeOH, c=1.02, 23°C).

5 No.2e-3

 $[\alpha]_D = -6.7^\circ$  (MeOH, c=1.01, 23°C).

No.2f-1

10

 $[\alpha]_D = +6.8^\circ$  (MeOH, c=1.01, 23°C).

No.2f-2

15

 $[\alpha]_D = -2.6^\circ$  (MeOH, c=1.00, 22°C).

No.2f-3

20

 $[\alpha]_D = -3.5^\circ$  (MeOH, c=1.01, 22°C).

No.2g-1

 $[\alpha]_D = +54.6^\circ$  (MeOH, c=1.01, 24°C).

25 No.3a-2

$\text{CDCl}_3$  300MHz  
 0.98-2.15(14H,m), 2.31(2H,t,J=7.2Hz), 2.35-2.40(1H,m), 3.10-3.20(1H,m), 5.00(1H,d,J=6.9Hz), 5.30-5.48(2H,m), 6.75(1H,d,J=10.2Hz), 7.38-7.52(6H,m).  
 IR( $\text{CDCl}_3$ ): 3266, 3028, 2954, 2874, 1709, 1620, 1448, 1412, 1318, 1141, 970, 892/cm.  
 $[\alpha]_D = +20.3 \pm 0.6^\circ$  ( $\text{CHCl}_3$ , c=1.05, 24°C).

No.3a-3

35  $\text{CDCl}_3$  300MHz  
 0.95-2.00(14H,m), 2.20-2.29(3H,m), 3.00-3.08(1H,m), 3.66(3H,s), 5.00(1H,d,J=6.6Hz), 5.13-5.29(2H,m), 7.38-7.52(3H,m), 7.59-7.65(2H,m), 7.69-7.75(2H,m), 7.92-7.98(2H,m).  
 IR( $\text{CHCl}_3$ ): 3376, 3018, 2946, 2868, 1727, 1594, 1436, 1395, 1322, 1157, 1095, 890 /cm.  
 $[\alpha]_D = +2.3 \pm 0.4^\circ$  ( $\text{CHCl}_3$ , c=1.03, 22°C).  
 40 mp.65-66.5°C

No.3a-4

45  $\text{CDCl}_3$  300MHz  
 0.93-2.05(14H,m), 2.15-2.22(1H,m), 2.31(2H,t,J=7.2Hz), 3.01-3.10(1H,m), 5.18-5.31(3H,m), 7.38-7.52(3H,m), 7.58-7.66(2H,m), 7.69-7.76(2H,m), 7.92-7.98(2H,m).  
 IR( $\text{CHCl}_3$ ): 3374, 3260, 3020, 2948, 2868, 1708, 1594, 1479, 1396, 1319, 1156, 1095, 1052, 891/cm.  
 $[\alpha]_D = +13.1 \pm 0.5^\circ$  ( $\text{CHCl}_3$ , c=1.16, 24°C).

50 No.3a-6

55  $\text{CD}_3\text{OD}$  300MHz  
 1.04-1.95(14H,m), 2.07(2H,t,J=7.8Hz), 2.14-2.22(1H,m), 2.94-3.00(1H,m), 5.04-5.25(2H,m), 7.36-7.52(3H,m), 7.66-7.71(2H,m), 7.78-7.85(2H,m), 7.91-7.97(2H,m).  
 IR(KBr): 3421, 3278, 2951, 2872, 1562, 1481, 1409, 1317, 1156, 1097, 1057, 895/cm.  
 $[\alpha]_D = -15.3 \pm 0.5^\circ$  ( $\text{CHCl}_3$ , c=1.06, 23°C).  
 mp.105-112°C

## No.3a-11

5       $\text{CDCl}_3$  300MHz  
       0.90-2.04(14H,m),2.08-2.19(1H,m),2.35(2H,t,J=7.2Hz),2.95-3.04(1H,m), 5.17-5.32(3H,m),7.56-7.63(2H,m),7.83-  
       7.95(2H,m).  
       IR( $\text{CHCl}_3$ ):3260,3020,2948,2868,1707,1569,1456,1383,1325,1268,1160,1088, 1053,1006,892/cm.  
        $[\alpha]_D=+8.3\pm 0.5^\circ$  ( $\text{CHCl}_3$ ,c=1.00,22°C).

## No.3a-16

10      $\text{CDCl}_3$  300MHz  
       0.80-1.90(14H,m),1.98-2.04(1H,m),2.27(2H,t,J=7.2Hz),2.88(6H,s),2.90-2.98(1H,m),4.88-  
       5.00(2H,m),5.13(1H,d,J=7.2Hz),7.18(1H,d,J=7.5Hz),7.48-7.60(2H,m),8.25-8.33(2H,m),8.53(1H,d,J=8.7Hz).  
       IR( $\text{CHCl}_3$ ):3272,3020,2946,2866,2782,1708,1573,1455,1407,1311,1229,1160, 1142,1070,942,891/cm.  
        $[\alpha]_D=-19.7\pm 0.6^\circ$  ( $\text{CHCl}_3$ ,c=1.08,23.5°C).

## No.3a-31

20      $\text{CDCl}_3$  300MHz  
       0.80-1.85(14H,m),2.02-2.08(1H,m),2.20(2H,t,J=7.2Hz),2.85-2.95(1H,m), 3.68(3H,s),4.80-  
       4.92(2H,m),4.96(1H,d,J=6.9Hz),7.50-7.70(3H,m),7.92-  
       7.98(1H,m),8.07(1H,d,J=8.4Hz),8.29(1H,dd,J=1.5&7.5Hz),8.65(1H,LI);3374,3016,2946,2868,1727,1506,1435,13  
       18,1160,1133,1105,1051, 984,890/cm.  
        $[\alpha]_D=-39.3\pm 0.8^\circ$  ( $\text{CHCl}_3$ ,c=1.07,22°C).

## No.3a-32

25      $\text{CDCl}_3$  300MHz  
       0.80-1.90(14H,m),1.95-2.05(1H,m),2.27(2H,t,J=7.2Hz),2.90-2.96(1H,m), 4.85-  
       5.00(2H,m),5.23(1H,d,J=6.6Hz),7.50-7.72(3H,m),7.95(1H,d,J=8.1Hz),  
       8.07(1H,d,J=8.4Hz),8.29(1H,dd,J=1.2&7.5Hz),8.66(1H,d,J=9.0Hz).  
       IR( $\text{CHCl}_3$ ):3270,3020,2948,2868,1708,1455,1412,1317,1159,1132,1104,1079, 1051,983,891/cm.  
        $[\alpha]_D=-29.2\pm 0.6^\circ$  ( $\text{CHCl}_3$ ,c=1.08,22°C).

## No.3a-33

35      $\text{CD}_3\text{OD}$  300MHz  
       0.94-1.84(14H,m),1.96-2.08(3H,m),2.77-2.84(1H,m),4.67-4.84(2H,m),7.55-7.75(3H,m),8.02(1H,d,J=7.8Hz),8.12-  
       8.26(2H,m),8.74(1H,d,J=8.7Hz).  
       IR(KBr):3432,3298,2951,2872,1564,1412,1315,1159,1134,1107,1082,1058, 986/cm.  
        $[\alpha]_D=-79.9\pm 1.2^\circ$  ( $\text{CH}_3\text{OH}$ ,c=1.00,23°C).

## No.3a-34

45      $\text{CDCl}_3$  300MHz  
       0.97-1.91(14H,m),2.13-2.20(1H,m),2.42(2H,t,J=7.2Hz),3.00-3.07(1H,m), 5.06-  
       5.24(2H,m),5.33(1H,d,J=6.9Hz),7.57-7.68(2H,m),7.82-8.00(4H,m), 8.45(1H,d,J=1.2Hz)  
       IR( $\text{CHCl}_3$ ):3260,3020,2948,1708,1408,1319,1154,1129,1073,953,893/cm.  
        $[\alpha]_D=+20.7\pm 0.6^\circ$  ( $\text{CHCl}_3$ ,c=1.07,22°C).

## No.3a-35

50      $\text{CD}_3\text{OD}$  300MHz  
       1.03-2.20(m,17H),2.97(m,1H),5.02(m,2H),7.64(m,2H),8.00(m,4H),8.43 (S,1H).  
       IR(KBr):3360,3285,1562,1407,1316,1153,1130,1075/cm.  
        $[\alpha]_D=0$   
        $[\alpha]_{365}=+20.9\pm 0.6^\circ$  ( $\text{CH}_3\text{OH}$ ,c=1.04,23°C).

No.3d-1

CDCl<sub>3</sub> 300MHz  
 0.93-2.55(m,17H),3.02(m,1H),5.24(m,2H),6.48(m,1H),7.35-7.60(m,3H),7.85-8.00(m,2H)  
 5 IR(Nujol): 3275,1548,1160,1094,758,719,689,591,557/cm.  
 [α]<sub>D</sub>=+19.0±0.6° (CH<sub>3</sub>OH,c=1.010,26.5°C).

| Elemental analysis (C <sub>20</sub> H <sub>26</sub> NO <sub>4</sub> S 1/2Ca 1.0 H <sub>2</sub> O) |           |          |          |           |                        |  |
|---------------------------------------------------------------------------------------------------|-----------|----------|----------|-----------|------------------------|--|
| Calcd.:                                                                                           | C, 57.94; | H, 6.82; | N, 3.38; | Ca, 4.83; | H <sub>2</sub> O, 4.35 |  |
| Found:                                                                                            | C, 57.80; | H, 6.68; | N, 3.68; | Ca, 5.06; | H <sub>2</sub> O, 4.50 |  |

15 No.3d-6

[α]<sub>D</sub>=-20.7±0.6 ° (CHCl<sub>3</sub>,c=1.00,24°C).

No.3d-7

20 [α]<sub>D</sub>=-3.2±0.4 ° (CHCl<sub>3</sub>,c=1.03,22°C).  
 mp.65-67°C

No.3d-8

25 [α]<sub>D</sub>=-14.5±0.5 ° (CHCl<sub>3</sub>,c=1.07,24°C).

No.3d-9

30 [α]<sub>D</sub>=+12.2±0.5 ° (CH<sub>3</sub>OH,c=1.00,23°C).  
 mp.119-125°C

No.3d-10

35 [α]<sub>D</sub>=+39.7±0.8 ° (CHCl<sub>3</sub>,c=1.07,22°C).

No.3d-11

40 [α]<sub>D</sub>=+29.2±0.7 ° (CHCl<sub>3</sub>,c=1.06,22°C).

No.3d-12

[α]<sub>D</sub>=+76.4±1.1 ° (CH<sub>3</sub>OH,c=1.03,24°C).

45 No.3d-14

[α]<sub>D</sub>=-20.6±0.6 ° (CHCl<sub>3</sub>,c=1.07,22°C).

No.3d-15

50 [α]<sub>365</sub>=-28.0±0.7 ° (CH<sub>3</sub>OH,c=1.03,24.5°C).

No.3d-16

55 [α]<sub>D</sub>=-8.7±0.5 ° (CHCl<sub>3</sub>,c=1.06,22°C).

No.3d-17

CDCl<sub>3</sub> 300MHz  
 5 0.80-2.15(m,24H),2.32(t,J=7Hz,2H),2.68(t,J=7Hz,2H),3.02(m,1H),2.15  
 (m,24H),2.32(t,J=7Hz,2H),2.68(t,J=7Hz,2H),3.02(m,1H),5.22(m,2H),5.38(d,  
 Apart,J=8Hz,2H),7.81(A2B2qBpart,J=8Hz,2H), 9.86 (brs,1H).  
 [α]<sub>D</sub>=0  
 [α]<sub>365</sub>=-9.7±0.5° (CHCl<sub>3</sub>,c=1.03,22°C).

10 No.3d-24

[α]<sub>D</sub>=+19.2±0.6 ° (CHCl<sub>3</sub>,c=1.05,23°C).

No.3d-26

15 CD<sub>3</sub>OD 300MHz  
 0.90-2.20(20H,m),2.88(1H,m),3.07(2H,q,J=7.0Hz),5.00-5.40(2H,m),7.20-7.60(4H,m),7.95(1H,m).  
 IR(KBr):3415,3254,1698,1564,1314,1154/cm.

20 No.3d-28

CD<sub>3</sub>OD 300MHz  
 0.90-2.20(20H,m),2.73(2H,q,J=7.0Hz),2.93(1H,m),5.00-5.30(2H,m),7.40-7.50(2H,m),7.60-7.77(2H,m).  
 IR(KBr):3435,3280,1562,1323,1304,1151/cm.

25 No.3d-30

| Elemental analysis (C <sub>20</sub> H <sub>25</sub> BrNO <sub>4</sub> Na) |         |        |          |        |        |        |
|---------------------------------------------------------------------------|---------|--------|----------|--------|--------|--------|
| Calcd.:                                                                   | C50.21; | H5.27; | Br16.70; | N2.93; | S6.70; | Na4.81 |
| Found:                                                                    | C50.22; | H5.40; | Br15.57; | N2.88; | S6.41; | Na5.10 |

35 IR(KBr):3425,3280,3085,1697,1570,1410,1321,1165,1155/cm.

No.3e-1

CD<sub>3</sub>OD 300MHz  
 40 0.71(1H,d,J=10.2Hz),1.04(3H,s),1.12(3H,s),1.35-2.28(14H,m),  
 5.39(2H,m),7.37(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz).  
 IR(CHCl<sub>3</sub>):3400,3289,2986,2924,2870,1559,1424,1322,1305,1160,1095,1075, 1030/cm.  
 [α]<sub>D</sub>=+25.9±0.7 ° (CH<sub>3</sub>OH,c=1.00,23°C).

45 Compounds prepared in Examples above were tested for in vivo and in vitro activity according to the method shown in Experimental examples below.

#### Experiment 1 Binding to PGD<sub>2</sub> Receptor

50 Material and Method

##### (1) Preparation of Human Platelet Membrane Fraction

A Blood sample was obtained using a plastic syringe containing 3.8 % sodium citrate from veins of healthy volunteers (adult male and female), put into a plastic test tube and mixed gently by inversion. The sample was then centrifuged at 1800 rpm, 10 min at room temperature, and supernatant containing PRP (platelet rich plasma) was collected. The PRP was re-centrifuged at 2300 rpm, 22 min at room temperature to obtain platelets. The platelets were homogenized using a homogenizer (Ultra-Turrax) followed by centrifugation 3 times at 20,000 rpm, 10 min at 4°C to obtain a

platelet membrane fraction. After protein determination, the membrane fraction was adjusted to 2 mg/ml and preserved in a refrigerator at -80°C until use.

5 (2) Binding to PGD<sub>2</sub> Receptor

To a binding-reaction solution (50 mM Tris/HCl, pH 7.4, 5 mM MgCl<sub>2</sub>) (0.2 ml) were added human platelet membrane fraction (0.1 mg) and 5 nM [<sup>3</sup>H]PGD<sub>2</sub> (115Ci/mmol), and reacted at 4°C for 90 min. After the reaction finished, the reaction mixture was filtered through a glass fiber filter paper, washed several times with cooled saline, and measurement made of radioactivity retained on the filter paper. The specific binding was calculated by subtracting the non-specific binding (the binding in the presence of 10 μM PGD<sub>2</sub>) from the total binding. The binding-inhibitory activity of each compound was expressed as concentration required for 50 % inhibition (IC<sub>50</sub>), which was determined by depicting a substitution curve by plotting the binding ratio (%) in the presence of each compound, where the binding ratio in the absence of a test compound is 100 %. The results are shown in Table below.

15

| Compound number | Activity (μM) | compound number | activity (μM) |
|-----------------|---------------|-----------------|---------------|
| 3a-4            | 0.6           | 2a-4            | 0.54          |
| 1a-115          | 8.6           | 2a-17           | 0.12          |
| 1a-28           | 0.045         | 2a-21           | 5.2           |
| 1a-47           | 0.0086        | 2a-28           | 0.046         |
| 1a-100          | 0.56          | 2a-95           | 1.6           |
| 1a-176          | 0.047         | 2a-109          | 0.003         |
| 1a-2            | 0.13          | 1a-162          | 0.027         |

20 Experiment 2 Evaluation of Antagonistic Activity Against PGD<sub>2</sub> Receptor Using Human Platelet

25 Peripheral blood was obtained from a healthy volunteer using a syringe in which 1/9 volume of citric acid/dextrose solution had been previously added. The syringe was subjected to centrifugation at 180 g for 10 min to obtain the supernatant (PRP: platelet rich plasma). The resultant RRP was washed 3 times with a washing buffer and the number of platelets was counted with a micro cell counter. A suspension adjusted to contain platelets at a final concentration of 5 x 10<sup>8</sup>/ml was warmed at 37°C, and then subjected to the pretreatment with 3-isobutyl-1-methylxanthine (0.5mM) for 5 min. To the suspension was added a test compound diluted at various concentrations. Ten-minutes later, the reaction was induced by the addition of 0.1-2.0 μM PGD<sub>2</sub> and, 15-minutes later, stopped by the addition of HCl. The platelets were destroyed with an ultrasonic homogenizer. After centrifugation, the cAMP in the supernatant was determined by radioassay. PGD<sub>2</sub> receptor antagonism of a drug was evaluated as follows. The inhibition rate regarding cAMP increased by the addition of PGD<sub>2</sub> was determined at individual concentration, and then the concentration of the drug required for 50 % inhibition (IC<sub>50</sub>) was calculated. The results are shown in the Table below.

30

| Compound number | Inhibition of Increase of Human Platelet cAMP (IC <sub>50</sub> ) (μM) |
|-----------------|------------------------------------------------------------------------|
| 3a-16           | 0.37                                                                   |
| 1a-12           | 12.11                                                                  |
| 1a-28           | 0.30                                                                   |
| 1a-47           | 2.09                                                                   |
| 2a-2            | 0.77                                                                   |
| 2a-4            | 0.94                                                                   |
| 2a-35           | 1.52                                                                   |
| 2a-75           | 0.71                                                                   |

Experiment 3 Experiment Using Nasal Occlusion Model

The method used for measuring the nasal cavity resistance and evaluating the anti-nasal occlusion using a guinea pig are described below.

5      A 1% ovalbumin (OVA) solution was treated with an ultrasonic nebulizer to obtain an aerosol. A Hartley male guinea pig was sensitized by inhaling twice the aerosol for 10 min at one-week intervals. Seven-days after the sensitization, the guinea pig was exposed to an antigen to initiate the reaction. Then the trachea was incised under anesthesia with pentobarbital (30 mg/kg, i.p.) and cannulas were inserted into the trachea at the pulmonary and nasal cavity sides. The canal inserted at the pulmonary side was connected with an artificial respirator that provides 4 ml air 60 times/min. After 10     arresting the spontaneous respiration of a guinea pig with Garamin (2 mg/kg, i.v.), air was supplied to the snout side with an artificial respirator at the frequency of 70 times/min, and the flow rate of 4 ml air/time, and the atmospheric pressure required for the aeration was measured by the use of a transducer fitted at the branch. The measurement was used as a parameter of the nasal cavity resistance. The exposure of an antigen was carried out by generating aerosol of 3 % OVA solution for 3 min between the respirator and nasal cavity cannula. The test drug was injected intravenously 15     10 min before the antigen exposure. The nasal resistance between 0 to 30 min was measured continuously and the effect was expressed as inhibition rate to that obtained for vehicle using the AUC for 30 min (on the vertical axis, nasal cavity resistance (cm H<sub>2</sub>O), and on the horizontal axis, time (0 - 30 min)) as an indication. The result is shown below.

| 20 | Compound number | Inhibition Rate (%) 1 mg/kg (i.v.) | Remarks       |
|----|-----------------|------------------------------------|---------------|
| 25 | 1a-28           | 44                                 |               |
|    | 1a-98           | 69                                 |               |
|    | 1a-100          | 50                                 |               |
|    | 1a-115          | 66                                 |               |
| 30 | 1a-116          | 48                                 |               |
|    | 1a-120          | 58                                 | 3mg/kg (i.v.) |
|    | 1a-2            | 82                                 |               |
|    | 1a-162          | 80                                 |               |
| 35 | 1a-176          | 60                                 |               |
|    | 1a-267          | 62                                 |               |
|    | 2a-4            | 60                                 |               |
| 40 | 2a-21           | 52                                 |               |
|    | 2a-28           | 54                                 |               |
|    | 2a-95           | 77                                 |               |
|    | 2a-96           | 77                                 | 10mg/kg(p.o.) |
| 45 | 2a-109          | 73                                 |               |
|    | 2a-110          | 66                                 | 10mg/kg(p.o.) |
|    | 22a-194         | 79                                 |               |

50    Formulation 1 Preparation of Tablets

Tablets each containing 40 mg of active ingredient were prepared in a conventional manner. The ingredients for 40 mg tablet are as follows:

|    |                                                                                                      |                |
|----|------------------------------------------------------------------------------------------------------|----------------|
| 5  | Calcium (+)-(Z)-7-[(1R,2S,3S,4S)-3-benzenesulfonamidobicyclo[2.2.1]hept-2-yl]-5-heptenoate dihydrate | 40.0 mg        |
| 10 | Hydroxypropyl cellulose                                                                              | 3.6 mg         |
|    | Magnesium stearate                                                                                   | 0.4mg          |
|    | Cornstarch                                                                                           | 18.0 mg        |
|    | Lactose                                                                                              | 58.0 mg        |
|    |                                                                                                      | Total 120.0 mg |

Formulation 2 Preparation of Granules

## 15 Ingredients:

|    |                                                                                                      |                 |
|----|------------------------------------------------------------------------------------------------------|-----------------|
| 20 | Calcium (+)-(Z)-7-[(1R,2S,3S,4S)-3-benzenesulfonamidobicyclo[2.2.1]hept-2-yl]-5-heptenoate dihydrate | 100.0 mg        |
|    | Hydroxypropyl cellulose                                                                              | 30.0 mg         |
|    | Carmellose Calcium                                                                                   | 30.0 mg         |
| 25 | Talc                                                                                                 | 10.0 mg         |
|    | Poloxamer 188                                                                                        | 20.0 mg         |
|    | Crystalline cellulose                                                                                | 70.0 mg         |
|    | Cornstarch                                                                                           | 300.0 mg        |
| 30 | Lactose                                                                                              | 440.0 mg        |
|    |                                                                                                      | Total 1000.0 mg |

## Claims

35 1. A PGD<sub>2</sub> antagonist comprising a compound of the general formula (I) below or a salt or a hydrate thereof as an active ingredient:



50 wherein

5



is

10



or



15

A is alkylene which optionally is intervened by a hetero atom or phenylene, contains oxo group, and/or has an unsaturated bond;

B is hydrogen, alkyl, aralkyl or acyl;

R is COOR<sub>1</sub>, CH<sub>2</sub>OR<sub>2</sub> or CON(R<sub>3</sub>)R<sub>4</sub>;

R<sub>1</sub> is hydrogen or alkyl;

R<sub>2</sub> is hydrogen or alkyl;

R<sub>3</sub> and R<sub>4</sub> each are independently hydrogen, alkyl, hydroxy or alkylsulfonyl;

X<sub>1</sub> is a single bond, phenylene, naphthylene, thiophenediyl, indolediyl, or oxazolediyl;

X<sub>2</sub> is a single bond, -N=N-, -N=CH-, -CH=N-, -CH=N-N-, -CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-, -CH=CH-, -CH(OH)-, -C(Cl)=C(Cl)-, -(CH<sub>2</sub>)<sub>n</sub>-, ethynylene, -N(R<sub>5</sub>)-, -N(R<sub>51</sub>)CO-, -N(R<sub>52</sub>)SO<sub>2</sub>-, -N(R<sub>53</sub>)CON(R<sub>54</sub>)-, -CON(R<sub>55</sub>)-, -SO<sub>2</sub>N(R<sub>56</sub>)-, -O-, -S-, -SO-, -SO<sub>2</sub>-, -CO-, oxadiazolediyl, thiadiazolediyl or tetrazolediyl;

X<sub>3</sub> is alkyl, alkenyl, alkynyl, aryl, aralkyl, heterocyclic group, cycloalkyl, cycloalkenyl, thiazolinylidenemethyl, thiazolidinylidenemethyl, -CH=NR<sub>6</sub> or -N=C(R<sub>7</sub>)R<sub>8</sub>;

R<sub>5</sub>, R<sub>51</sub>, R<sub>52</sub>, R<sub>53</sub>, R<sub>54</sub>, R<sub>55</sub> and R<sub>56</sub> each are hydrogen or alkyl;

R<sub>6</sub> is hydrogen, alkyl, hydroxy, alkoxy, carbamoyloxy, thiocabamoyloxy, ureido or thioureido;

R<sub>7</sub> and R<sub>8</sub> each are independently alkyl, alkoxy, or aryl;

n is 1 or 2;

Z is -SO<sub>2</sub>- or -CO-; and

m is 0 or 1;

wherein a cyclic substituent may have one to three substituents selected from the group consisting of nitro, alkoxy, sulfamoyl, substituted- or unsubstituted-amino, acyl, acyloxy, hydroxy, halogen, alkyl, alkynyl, carboxy, alkoxy carbonyl, aralkoxycarbonyl, aryloxycarbonyl, mesyloxy, cyano, alkenyloxy, hydroxylalkyl, trifluoromethyl, alkylthio, -N=PPh<sub>3</sub>, oxo, thioxo, hydroximino, alkoxyimino, phenyl and alkylenedioxy.

45 2. The PGD<sub>2</sub> antagonist of claim 1 wherein the active ingredient is a compound of the formula (I) wherein

50



55

is

5



;

10

$m$  is 0; and when  $Z$  is  $\text{SO}_2$ , both  $X_1$  and  $X_2$  are a single bond;  $X_3$  is alkyl, phenyl, naphthyl, styryl, quinolyl or thienyl; and a cyclic substituent among these substituents optionally has one to three substituents selected from the group consisting of nitro, alkoxy, substituted- or unsubstituted-amino, halogen, alkyl and hydroxyalkyl, or a salt or hydrate thereof.

15

3. The  $\text{PGD}_2$  antagonist of claim 1 wherein the active ingredient is a compound of the formula (I) wherein

20



is

25



;

30

when  $m$  is 1, both  $X_1$  and  $X_2$  are a single bond; and  $X_3$  is phenyl optionally substituted with halogen, or a salt or hydrate thereof.

35

4. The  $\text{PGD}_2$  antagonist of claim 1 wherein the active ingredient is a compound of the formula (I) wherein

40



is

45



;

50

when  $m$  is 1,  $X_1$  is phenyl,  $X_2$  is  $-\text{CH}_2-$  or  $-\text{N}=\text{N}-$  and  $X_3$  is phenyl, or a salt or hydrate thereof.

5. The  $\text{PGD}_2$  antagonist of claim 1 which is a drug for treating nasal occlusion.

6. A compound of the formula (Ia):



15 wherein A, B, R, X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> are as defined above, or a salt or hydrate thereof, provided that those wherein (1) X<sub>1</sub> and X<sub>2</sub> are a single bond, and X<sub>3</sub> is substituted- or unsubstituted-phenyl, or naphthyl; and (2) A is 5-heptenylene, R is COOR<sub>1</sub> (R<sub>1</sub> is hydrogen or methyl), X<sub>1</sub> is 1,4-phenylene, X<sub>2</sub> is a single bond, and X<sub>3</sub> is phenyl are excluded.

20 7. The compound of claim 6, a salt or hydrate thereof, wherein X<sub>1</sub> and X<sub>2</sub> are a single bond, X<sub>3</sub> is isoxazolyl, thiadiazolyl, isothiazolyl, morpholyl, indolyl, benzofuryl, dibenzofuryl, dibenzodioxinyl, benzothienyl, dibenzothienyl, carbazolyl, xanthenyl, phenanthridinyl, dibenzoxepinyl, dibenzothiepinyl, cinnolyl, chromenyl, benzimidazolyl or dihydrobenzothiepinyl, and A, B and R are as defined above.

25 8. The compound of claim 6, a salt or hydrate thereof, wherein X<sub>1</sub> is a single bond, X<sub>2</sub> is phenylene, X<sub>3</sub> is alkenyl, alkynyl, -CH=NR<sub>6</sub> or -N=C(R<sub>7</sub>)R<sub>8</sub>, and A, B, R, R<sub>6</sub>, R<sub>7</sub>, and R<sub>8</sub> are as defined above.

9. The compound of claim 6, a salt or hydrate thereof, wherein R is COOR<sub>1</sub>, X<sub>1</sub> is phenylene or thiophenediyl, X<sub>2</sub> is a single bond, -N=N-, -CH=CH-, -CONH-, -NHCO- or ethynylene and X<sub>3</sub> is phenyl, thiazolinylidenemethyl, thiazolidinylidenemethyl or thienyl, and A, B, R<sub>1</sub>, R<sub>6</sub>, R<sub>7</sub>, and R<sub>8</sub> are as defined above.

30 10. A compound of the formula (Ib):



wherein



50 is



A, B, R, X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> are as defined above, or a salt or hydrate thereof, provided that those wherein X<sub>1</sub> and X<sub>2</sub> are a single bond, and X<sub>3</sub> is phenyl, and wherein X<sub>1</sub> is a single bond, X<sub>2</sub> is -O-, and X<sub>3</sub> is benzyl are excluded.

11. The compound of claim 10, a salt or hydrate thereof, wherein

5



10

is



15

;

20

and A, B, R, X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> are as defined above.

12. The compound of claim 11, a salt or hydrate thereof, wherein R is COOR<sub>1</sub> (R<sub>1</sub> is as defined above).

25 13. The compound of claim 11, a salt or hydrate thereof, wherein X<sub>1</sub> is phenylene or thiophenediyl, X<sub>2</sub> is a single bond, -N=H-, -CH=CH-, ethynylene, -O-, -S-, -CO-, -CON(R<sub>55</sub>)- (R<sub>55</sub> is as defined above), -N(R<sub>51</sub>)CO- (R<sub>51</sub> is as defined above) and X<sub>3</sub> is phenyl or thiienyl.

14. The compound of claim 10, a salt or hydrate thereof, wherein

30



35

is



40

;

45

and A, B, R, X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> and Z are as defined above.

15. The compound of claim 14, a salt or hydrate thereof, wherein B is hydrogen, both X<sub>1</sub> and X<sub>2</sub> are a single bond, X<sub>3</sub> is thiienyl, thiazolyl, thiadiazolyl, isothiazolyl, pyrrolyl, pyridyl, benzofuryl, benzimidazolyl, benzothienyl, dibenzofuryl, dibenzothienyl, quinolyl or indolyl.

50 16. The compound of claim 15, a salt or hydrate thereof, wherein X<sub>1</sub> is phenylene, thiophenediyl, indolediyl or oxazolediyl, X<sub>2</sub> is a single bond, -N=H-, -CH=CH-, ethynylene, -S- or -O-, and X<sub>3</sub> is aryl or heterocyclic group.

55

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/01685

**A. CLASSIFICATION OF SUBJECT MATTER** Int. Cl<sup>6</sup> C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38  
According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols) Int. Cl<sup>6</sup> C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                    | Relevant to claim No. |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | JP, 6-279395, A (Ono Pharmaceutical Co., Ltd.), October 4, 1994 (04. 10. 94)<br>& EP, 608847, A                                                                                                       | 1 - 16                |
| X         | JP, 2-180862, A (Ono Pharmaceutical Co., Ltd.), July 13, 1990 (13. 07. 90)<br>& EP, 312906, A & US, 5168101, A                                                                                        | 1 - 16                |
| X         | JP, 63-139161, A (Shionogi & Co., Ltd.), June 10, 1988 (10. 06. 88)<br>& EP, 226346, A & US, 4861913, A<br>& US, 4960909, A & US, 4976891, A<br>& US, 5041635, A & US, 5043451, A<br>& US, 5043456, A | 1 - 16                |
| X         | JP, 60-178876, A (E.R. Squibb & Sons, Inc.), September 12, 1985 (12. 09. 85)<br>& EP, 150709, A & US, 4526901, A                                                                                      | 1 - 16                |

Further documents are listed in the continuation of Box C.  See patent family annex.

|                                          |                                                                                                                                                                                                                                              |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents: |                                                                                                                                                                                                                                              |
| "A"                                      | document defining the general state of the art which is not considered to be of particular relevance                                                                                                                                         |
| "E"                                      | earlier document but published on or after the international filing date                                                                                                                                                                     |
| "L"                                      | document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)                                                                         |
| "O"                                      | document referring to an oral disclosure, use, exhibition or other means                                                                                                                                                                     |
| "P"                                      | document published prior to the international filing date but later than the priority date claimed                                                                                                                                           |
| "T"                                      | later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "X"                                      | document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "Y"                                      | document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "A"                                      | document member of the same patent family                                                                                                                                                                                                    |

|                                                                                              |                                                                                       |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Date of the actual completion of the international search<br>September 13, 1996 (13. 09. 96) | Date of mailing of the international search report<br>September 24, 1996 (24. 09. 96) |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|

|                                                                                 |                                     |
|---------------------------------------------------------------------------------|-------------------------------------|
| Name and mailing address of the ISA/<br>Japanese Patent Office<br>Facsimile No. | Authorized officer<br>Telephone No. |
|---------------------------------------------------------------------------------|-------------------------------------|

**(THIS PAGE BLANK (USPTO)**