Burden and Faires - Capítulo 3 - Sección 3.2 - Ejercicios 1 a 15

$$f(x) = 3xe^{x} - 2e^{x}$$

$$x_{0} = 1, \quad x_{1} = 1.05, \quad x_{2} = 1.07$$

$$L(x) = 1.93566 - 9.2914x + 10.074x^{2}$$

$$E(x) = \frac{f^{(n+1)}(\xi_{x})}{(n+1)!} \prod_{i=0}^{n} (x - x_{i})$$

El error real es E = 0.000114168 y una cota para el mismo es E' = 0.000119064

 $3xe^x - 2e^x$ 



Gráfico de f y L

**Definición**. Una sucesión en R es una función  $\varphi : \mathbb{N} \to \mathbb{R}$ . Si  $n \in \mathbb{N}$  con  $s_n$  denotaremos el valor de la sucesión  $\varphi$  en n, esto es,  $s_n = \varphi(n)$ . La manera habitual de denotar una sucesión cuyos valores son  $s_n$  es  $\{s_n\}$ . Los valores  $s_n$  se denominan términos de la sucesión.

**Ejemplo**.  $s_n = \frac{1}{2^n}$ 

$$\left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots\right\}$$

Si  $\{s_n\}$  es una sucesión y  $\lim_{n\to\infty} s_n = L$  se dice que la sucesión es convergente o que  $\{s_n\}$  converge a L.

**Definición**. Una sucesión  $\{s_n\}$  en R es una sucesión de Cauchy si  $\lim_{n,m\to\infty} |s_n - s_m| = 0$ .

**Definición**. Sea  $A \subset R$ . Diremos que A es completo si toda sucesión de Cauchy en A converge en A.

**Ejemplo**. Sea la sucesión  $s_n = \frac{1}{n}$  en A = (0, 1].

$$\lim_{n,m\to\infty} |s_n - s_m| = \lim_{n,m\to\infty} \left| \frac{1}{n} - \frac{1}{m} \right| = 0$$

por lo tanto,  $\{s_n\}$  es una sucesión de Cauchy en A.

Por otro lado  $\lim_{n\to\infty} \frac{1}{n} = 0 \notin A$ , por lo tanto, A no es completo.

**Teorema**. Sea  $\{s_n\}$  una sucesión en R. Entonces  $\{s_n\}$  es convergente si y sólo si es una sucesión de Cauchy.

Sea la sucesión  $\{a_k\}$ . Construyamos a partir de ella la sucesión  $\{s_n\}$  de la manera siguiente:

$$s_0 = a_0$$
  
 $s_1 = a_0 + a_1$   
 $s_2 = a_0 + a_1 + a_2$ 

y en general

$$s_n = \sum_{k=0}^n a_k$$

La sucesión  $\{s_n\}$  de sumas parciales  $s_n = \sum_{k=0}^n a_k$  se denomina serie de términos  $a_k$  y se la denota  $\sum a_k$ . Si el límite de la sucesión  $\{s_n\}$  existe, se dice que la serie es convergente y al valor de dicho límite se lo denomina suma de la serie.

**Observación**. Si la serie  $\sum a_k$  es convergente, existe  $\lim_{n\to\infty}\sum_{k=0}^n a_k$  y por simplicidad en la notación lo escribimos

$$\lim_{n\to\infty}\sum_{k=0}^n a_k = \sum_{k=0}^\infty a_k$$

## Serie Geométrica

Sea la sucesión  $\{x^k\}$  para  $x \in \mathbb{R}$ . La correpondiente serie de términos  $x^k$  es  $\sum x^k$ . Queremos analizar la convergencia de esta serie.

$$s_n = \sum_{k=0}^n x^k = 1 + x + x^2 + \dots + x^n$$

$$xs_n = x + x^2 + x^3 + \dots + x^n + x^{n+1}$$

Restando miembro a miembro tenemos

$$(1-x)s_n = 1-x^{n+1}$$

Si x = 1,  $s_n = n + 1 \to \infty$  cuando  $n \to \infty$ , por lo tanto  $\sum x^k$  no es convergente para x = 1.

 $Si x \neq 1$ 

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

y

$$s_n = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x^{n+1}}{1 - x}$$

Para estudiar el límite de  $s_n$  cuando  $n \to \infty$ , basta ver el límite de  $x^{n+1}$  cuando  $n \to \infty$ . Si |x| < 1,  $\lim_{n \to \infty} x^{n+1} = 0$  y si  $|x| \ge 1$  el límte de  $x^{n+1}$  no existe.

Concluimos entonces que la serie  $\sum x^k$  converge si |x| < 1 y no converge si  $|x| \ge 1$ . Para |x| < 1, la suma de la serie es

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Esta serie recibe el nombre de serie geométrica.

0.9999999999...=1

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \text{ para } x \neq 1$$

 $=9\left[\frac{10}{9}-1\right]=10-9=1$