分	数	
评卷人		

1、(10分)

电路如图 1 所示,假设所有运算放大器均为理想的,所有二极管采用恒压降模型,导通压降为 0.7V, $\nu_{II}=1V$, $\nu_{I2}=3V$,求 ν_{OI} 、

 ν_{02} 、 ν_{03} 、 ν_{04} 以及 ν_{0} 。

第1页,共13页

分 数	
评卷人	

2、(26分)

电路如图 2 所示,设 MOSFET 管参数为: $V_{TN} = 0.8V$, $K_n=1$ mA/ V^2 , $\lambda=0$;输入信号为 ν_i ,输出信号为 ν_o ,信号源内阻

$R_{si}=35k\Omega$, 请计算:

- (1) 静态工作点 Q(VGSQ, IDQ, VDSQ);
- (2) 画出交流小信号等效电路图(注意标明电压极性和电流方向);
- (3) 放大电路增益 A_{ν} , 输入电阻 R_{i} 和输出电阻 R_{o} ;
- (4) 计算由耦合电容 C_C 和 C_D 决定的截止频率,并指出是上限截止频率还是下限截止频率:
- (5) 若电路中电阻 $R_S = 0$,试判断电路的上限频率 f_H 和下限频率 f_L 如何变化? (变大、变小或不变);
- (6) 假如将负载 R_L 切换到 v'_o ,同时保持 $R_S=0.5$ k Ω ,则此时放大电路中频增益 A'_o 为多少?

分数 评卷人

3、(15 分)

假设某电路的信号源是某款超低功耗(电流极小)的传感器, 它能将微小压力转换为电压信号 vs, 负载是需要稳定的电流驱动

(可以认为当 R_L 阻值发生变化时,输出电流 i_o 需要几乎保持不变)。为此,某同学选用了一个运算放大器 A 与四个三极管 $T1\sim T4$ 连接而成一个多级放大器,如图 3 所示。假设运放 A 为理想运放, $T1\sim T4$ 管的厄利电压 $V_A=\infty$,且运放 A 与 $T1\sim T4$ 管的直流偏置设置均正常,其他参数见电路标注。

- (1) **通过连线补全电路,使得放大电路能够满足设计任务要求,**并说明补全后 的放大电路的反馈组态;
- (2) 假设电路满足深度负反馈条件,试计算放大电路闭环增益 Ay以及闭环电压增益 Ayi
- (3) 若将 R_L 的阻值改为 $10k\Omega$,请再次计算放大电路闭环增益 A_f 以及闭环电压增益 A_{ff}

分 數	
评卷人	

4、(10分)

电路如图 4 所示,假设 T_3 管的直流偏置正常,且由 T_3 管组成的放大电路的电压增益 $A_{\nu 3}=-9$,由 T_1 、 T_2 、 D_1 和 D_2 构成甲乙类

功放电路, 电源电压 $V_{CC}=12V$, $R_L=8\Omega$, 输入电压 v_i 的幅值为 1V。

- (1) 将 D₁ 和 D₂ 正确接入到电路中,并说明其作用;
- (2) 计算甲乙类功放电路的输出功率 P_o 、电源供给的功率 P_V 、两管的总管耗 P_T 以及效率 η 。

分 数 评卷人

5、(15分)

某差分放大电路如图 5 所示, $M_1 \sim M_2$ 管 $\lambda_1 = \lambda_2 = 0$,

 $K_{n1} = K_{n2} = 0.1 \text{ mA/V}^2$; $M_3 \sim M_4$ $\Upsilon \lambda_3 = \lambda_4 = 0.01 \text{ V}^{-1}$, $K_{n3} = K_{n4} = 0.01 \text{ V}^{-1}$

 0.2mA/V^2 。四个管子 V_{TN} 都相等且 $V_{\text{TN}} = 1\text{V}$, $V^{+} = 5\text{V}$, $V^{-} = -5\text{V}$, 静态电流设计值为 $I_O = 0.8\text{mA}$,请计算:

- (1) R₁ 电阻值
- (2) 当 $\nu_{11} = \nu_{12} = 0$ V 时, V_{DS1} 、 V_{DS3} 以及 V_{DS4} 电压值;
- (3) 单端输出时的差模增益 Avd2、共模增益 Acm,以及换算为 dB 值的共模抑制 比 CMRR_{IR}:
- (4) 若单端输出改为双端输出,会对差放电路的差模增益 A_d、共模增益 A_{cm},以及共模抑制比 CMRR 带来何种影响?

分 数	
评卷人	

6、(15分)

电路如图 6.1 所示为 1kHz 方波产生电路, A_1 、 A_2 为双电源供电的理想运放,且直流偏置正常,虚线框中电路为 RC 桥式振荡电

路,输出电压 voi 峰值为 5V。

- (1) 在虚线框内完成 RC 桥式振荡电路的连线,并求出电阻 R 与 R_f 的阻值;
- (2) 为了顺利起振和维持振荡,图 6.1 的 RC 桥式振荡电路用了一颗具有正温度系数(温度越高电阻值越大)的热敏电阻,请指出是哪个电阻;
 - (3) 说明一下 R_2 的作用(或者说如果短接掉 R_2 ,会对电路造成什么后果);
- (4) 在图 6.2 中画出 v_{01} 及 v_{0} 的波形(假设 v_{01} 是初始相位为 0 的正弦波, A_2 初始输入电压为 0),标注需要体现波形主要参数。

图 6.1

分 數	
评卷人	

7、(9分)

图示电路为输出负电压的稳压电源。已知稳压管 Dz 的稳定电压 Vz = 5.3V,三极管的 $|V_{BE}| = 0.7V$,电阻 $R_3 = R_4 = 1k\Omega$ 。

- (1) 图中有两个错误,指出并在原图中改正;
- (2) 若 R_P 的滑动端在最下端时 $V_O = -15V$,求 R_P 的值,此时若将虚线框用一集成芯片代替,试给出其型号。

