2024 年上海市高等学校信息技术水平考试试卷

二三级 物联网技术及应用(A场)

(本试卷考试时间 150 分钟)

一、单选题 (本大题 25 道小题 ,每小题 1 分,共 25 分),从下面题目给出的 A、B、
C、D 四个可供选择的答案中选择一个正确答案。
1属于物联网安全领域涉及的问题。
A. 商业模式
B. 隐私问题
C. 标准体系
D. 方案选型
2. 物联网中常提到的"M2M"概念不包括。
A. 人到人
B. 机器到人
C. 机器到机器
D. 人到机器
3. 随着物联网设备的增加,的需求将会大大增加。
A. 降低安全要求
B. 处理和分析更多数据
C. 限制数据搜集
D. 减少数据分析方法
.7W1 AV1
4. 在物联网系统中,"全面感知"特征主要是指系统能够。
A. 选择性地感知某些类型的数据
B. 实现对环境的多维度监测和数据采集
C. 只通过触摸进行感知
D. 限制其 感知范围至 某一单一领域
5. 物联网万物互联特点中的"物",通常指的是。
A. 仅限于电子设备
B. 任何可以连接到网络的设备或对象
C. 仅限于家用电器
D. 仅限于移动设备
6
A. 窃听数据
B. 破环数据完整性
C. 拒绝服务
D. 物理安全威胁
7. 在森林环境监控中,红外摄像头属于物联网体系结构中 的设备。
·····································

A. 物理层 B. 感知层 C. 网络层 D. 应用层
8. 共享单车通过模块可以实现对车辆使用状况的实时获取。 A. GPS B. NB-IOT C. 5G D. Wi-Fi
9. 汽车各电子控制系统和仪表之间广泛采用进行数据传输。 A. CAN 总线 B. RS-485 C. Zigbee D. Wi-Fi
10
11. 在物联网的体系结构中,负责数据呈现和客户交互的是。 A. 平台层 B. 感知层 C. 网络层 D. 应用层
12. 关于传感器技术的研究内容, 不包括。 A. 信息获取 B. 信息转换 C. 信息处理 D. 信息传输
13. 一阶传感器输出达到稳态值的 50%所需的时间是。 A. 延迟时间 B. 上升时间 C. 峰值时间 D. 响应时间
14. 无线传感网中的传感器节点通常具备功能。 A. 数据采集、数据处理、数据传输 B. 数据采集、数据存储、数据加密

C. 数据采集、数据传输、数据存储
D. 数据处理、数据传输、数据加密
15. 无线传感器网络中的路由协议不需要考虑。 A. 能量消耗 B. 数据传输延迟 C. 网络带宽 D. 网络安全性
16. RFID 技术最早被提出是在年。
A. 1960
B. 1980
C. 1999
D. 2005
17
A. 存储数据
B. 发送和接收射频信号
C. 加密数据
D. 控制标签的电源
18
A. 激光
B. Wi-Fi
C. 射频识别
D. 可见光
\sim
19不是物联网通信技术。
A. 5G
B. Wi-Fi C. GPS
D. 蓝牙
20. Zigbee 通信协议属于典型的
A. 宽带无线网
B. 长距离
C. 局域网
D. 低速无线网
21. Wi-Fi 的通信距离约为。
A. 1 米
B. 100 米
C. 1 公里
D. 10 公里

22. 物联网操作系统区别于传统操作系统的特点是。
A. 实时性强 B. 轻量化
C. 安全性高
D. 兼容性强
5. 飛行区层
23. Navicat 是一套的数据库管理工具。
A. 仅限于 Oracle
B. 仅限于 SQL Server
C. 仅限于 MySQL
D. 可用于多种数据库
24不是物联网隐私保护技术的优势。
A. 保护用户隐私
B. 提高数据传输速度
C. 减少数据泄露风险
D. 增强数据安全性
25. 不属于传感器网络的安全需求。
A. 通信安全
B. 可视化安全
C. 信息安全
D. 传输安全
二、填空题 (本大题 5 道小题 , 每空 1 分, 共 5 分)。
1. 中国第一个提出建设物联网的城市是。
2. 物联网是在基础上延伸和扩展的网络。
- (<i>7-</i>)
3
4.在无线传感器网络中,节点的供电主要通过供给,因此能耗管理成为关键问
题。
5. 云计算可以助力物联网海量数据的存储和分析,属于物联网的 层技术。
三、操作题
在中国式现代化的大背景下,物联网在智慧交通领域的应用越来越广泛。为提高道路管
理信息化水平,拟利用物联网技术监测某路段车辆通行流量,实现对大、中、小型车全天各
时段的车辆通行流量数据统计,现需进行智能网关和移动应用两部分开发。在智能网关开发

部分,需要在PyCharm环境中按要求实现网关和数据源之间的信息交互。在移动应用开发部分,需要在Android Studio环境中按要求实现移动端的用户登录、分时段车辆流量监测数据

第 4 页, 共 11 页

获取、大流量提醒及图表可视化呈现等功能。

35 (模拟卷)

保存注意:

- 1.智能网关开发完成后请将下列文件复制到C:\KS\python文件夹中:
- (1) 工程文件结构1. png
- (2) 登录成功. png
- (3) C:\Test\IOTGW\venv\ITS\gateway.py
- (4) C:\Test\IOTGW\venv\ITS\config.data
- 2.移动应用开发完成后请将下列文件复制到C:\KS\android文件夹中:
- (1) 工程文件结构2. png
- (2) C:\Test\IOTClient\app\src\main\res\layout\activity_login.xml
- (3)

C:\Test\IOTClient\app\src\main\java\com.example.iotclient\LoginActivity.java

- (4) C:\Test\IOTClient\app\src\main\java\com.example.iotclient\MainActivity.java
- (5) C:\素材\demo\config.data

1. 智能网关开发(本大题5道小题,共60分)

(1)使用PyCharm在C:\Test文件夹中创建新工程IOTGW,在venv中新建ITS文件夹,在ITS文件夹下新建config.data文件,内容如图1所示,其中用户名为ITS,密码为2024iot,IP地址为本机实际IP地址。(10分)

图1 config. data文件示例

(2) 将C:\素材\python files文件夹中的gateway.py文件复制到ITS文件夹中,将 PyCharm左侧的工程文件结构截图保存为"工程文件结构1.png",截图如图2所示。(6分)

图2 工程文件结构1截图示例

(3)运行C:\素材\server\Server.exe文件,启动数据源服务器。打开gateway.py文件, 完善getConfig()函数,实现从config.data文件获取IP地址存储到全局变量ip中,获取用户 名、密码存储到全局变量allowedUser中;完善getData()函数,实现从数据源服务器获取数 据存储到全局变量dataFromSource中,程序每隔7秒向数据源服务器发送find指令,网关与数据源服务器通信端口为10068,网关与客户端通信端口为10067。程序运行结果如图3所示。(16分)

🎐 gateway 🔀

C:\Test\IOTGW\venv\Scripts\python.exe C:/TEST/IOTGW/venv/ITS/gateway.py 登录信息[IP地址: 192.168.25.128, 用户名: ITS, 密码: 2024iot]

Process finished with exit code 0

图3 程序运行结果

(4) 完善clientComm()函数,建立网关与安卓客户端的通信,通信端口为10067,监听客户端连接,可接受最大连接数为1000。客户端回传的数据包含用户填写的IP地址、端口号、用户名和密码等信息,其中用户名的变量名为"account",密码的变量名为"password"。

【开发结果验证】启动安卓模拟器,安装C:\素材\apk\app.apk文件并运行,界面如图4 所示。输入IP地址、端口号、用户名、密码后进行验证,验证失败则程序运行结果如图5所示,验证成功则程序运行结果如图6所示。

截图保存登录成功的运行结果为"登录成功. png"(可参考图6)。(12分)

图4 安卓程序启动界面

💄 gateway 🛚 🗡

C:\Test\IOTGW\venv\Scripts\python.exe C:/TEST/IOTGW/venv/ITS/gateway.py 登录信息[IP地址: 192.168.25.128, 用户名: ITS, 密码: 2024iot] 用户 ITS 正在从IP地址为 ('192.168.25.128', 63392) 的主机登录。 用户 ITS 登录失败!

图5 登录失败的提示语

图6 登录成功的提示语

(5)完善getFromClient()和sendToClient()函数,实现网关每隔10秒向客户端推送数 据,使安卓客户端程序登录成功,效果如图7所示;网关程序能接收从客户端经分析后传回 的2个数据,分别输出显示为"车流量最大的时段是:"及"数量最多的车型是:",两个回传 数据中间使用逗号分隔,运行结果如图8所示。(16分)

图7 登录成功的安卓程序界面

gateway 🗵 C:\Test\IOTGW\venv\Scripts\python.exe C:/TEST/IOTGW/venv/ITS/gateway.py 登录信息[IP地址: 192.168.25.128, 用户名: ITS, 密码: 2024iot] 用户 ITS 正在从IP地址为 ('192.168.25.128', 64142) 的主机登录。 用户 ITS 登录成功! 已为用户 ITS 建立数据发送连接。 已将数据 {"0002":"32","0001":"24","0000":"25","0102":"80","0101":"145","0100":"92","0202":"99","0201":"118", "0200":"135","0302":"89","0301":"120","0300":"122"} 发送给用户 ITS 已为用户 ITS 建立数据接收连接。 已将数据 {"0002":"26", "0001":"26", "0000":"38", "0102":"99", "0101":"133", "0100":"123", "0202":"112", "0201":"94", "0200":"94","0302":"140","0301":"135","0300":"82"} 发送给用户 ITS 车流量最大的时段是: 18点-24点。 数量最多的车型是:中型车。 已将数据 {"0002":"18","0001":"26","0000":"15","0102":"131","0101":"91","0100":"115","0202":"117","0201":"103", "0200":"115","0302":"164","0301":"150","0300":"128"} 发送给用户 ITS 车流量最大的时段是: 18点-24点。 数量最多的车型是: 大型车。 已将数据{"0002":"38","0001":"16","0000":"19","0102":"192","0101":"186","0100":"107","0202":"139","0201":"112", "0200":"84","0302":"151","0301":"199","0300":"109"} 发送给用户 ITS 车流量最大的时段是: 6点-12点。 数量最多的车型是: 大型车。

图8 程序运行结果

2. 移动应用开发(本大题5道小题, 共60分)

(1) 使用Android Studio在C:\Test文件夹中创建新工程IOTClient, 切换到Project 视图,如图9所示,将C:\素材\android files文件夹中的所有文件复制到相应位置,截图 保存为"工程文件结构2.png"文件。(12分)

- (2) 完善activity_login.xml文件,制作如图11所示的登录界面,其中密码框的输入类型设置为"密码",即输入任何字符均显示为星号或点号。(16分)
 - (3) 完善LoginActivity. java文件,实现以下功能: (14分)
 - IP地址、端口号、用户名、密码任意一项输入为空时提示"信息不完整!";
 - ₹ 当输入的用户名长度小于3时提示"用户名应大于2个字符!";
 - ≥ 用户名或密码错误时提示"登录失败!";
 - ≤ 登录成功时跳转到如图12所示登录成功界面。
- (4) 完善MainActivity. java文件,实现以下功能:通过布局文件activity_main. xml显示每个监测数据的值,每隔5秒自动刷新,分别统计显示车流量最高的时段和通行数量最多的车型,并以折线图呈现分时段车流量,以柱形图呈现不同车型流量。显示的监测内容及其在数据源服务器的对应编号如表1所示。(12分)

表1 数据源监测内容及对应编号表

		车型		
		小型车	中型车	大型车
时	0点-6点	0000	0001	0002
	6点-12点	0100	0101	0102
间点	12点-18点	0200	0201	0202
段	18点-24点	0300	0301	0302

- (5) 在C:\素材\demo文件夹下新建config.data文件,使用记事本打开该文件,内容如图10所示,其中用户名为ITS,密码为2024iot,IP地址为本机实际IP地址。(6分)
- 【开发结果验证】运行C:\素材\server\Server.exe文件,启动服务器(如己启动,请不要重复启动)。运行C:\素材\demo\gateway.exe文件,启动智能网关。运行本工程,在如图11 所示登录界面中填入IP地址、端口号、用户名、密码,其中端口号为10067,单击登录按钮,登录成功后界面如图12所示,网关数据显示如图13所示。

图10 config. data文件示例

图11 登录界面

图12 登录成功界面

第 10 页, 共 11 页

35 (模拟卷)

```
- - X
                                                         素材\demo\gateway.exe
录信息[IP地址: 192.168.25.128, 用户名: ITS, 密码: 2024iot]
户 ITS 正在从IP地址为('192.168.25.128', 50313)的主机登录。
户 ITS 登录成功!
为用户 ITS 建立数据发送连接。
将数据("0002":"36","0001":"16","0000":"25","0102":"159","0101":"122","0100":"1","0202":"70","0201":"113","0200":"64","0302":"112","0301":"91","0300":"98"}送给用户 ITS
为用户 ITS
为用户 ITS
为用户 ITS 建立数据接收连接。
将数据("0002":"33","0001":"28","0000":"22","0102":"136","0101":"103","0100":"7","0202":"148","0201":"148","0302":"149","0301":"128","0300":"135
                                                                                                                                                                                          E
```

图13 gateway. exe验证提示语