

Application

- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- DC/DC converters
- DC/AC Inverters

V _{DSS}	40V
R _{DS(on) typ.}	0.95m $Ω$
max	1.25mΩ
I _D	265A

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free, RoHS Compliant

Paga part number	Backago Type	Standard P	ack	Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRFH7084PbF	PQFN 5mm x 6mm	Tape and Reel	4000	IRFH7084TRPbF

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximium Rating

Symbol	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	40	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V①	265	Α
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V①	170	
I _{DM}	Pulsed Drain Current ②	1060	Α
	Linear Derating Factor	1.25	W/°C
P _D @T _C = 25°C	Max Power Dissipation	156	
V_{GS}	Gate-to-Source Voltage	± 20	V
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 150	°C

Avalanche Characteristics

E _{AS} (Thermally limited)	Single Pulse Avalanche Energy ③	185	m l
E _{AS} (Thermally limited)	Single Pulse Avalanche Energy 9	431	mJ
I _{AR}	Avalanche Current ②	See Fig 14, 15, 23a,	Α
E _{AR}	Repetitive Avalanche Energy ②	23b	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case ®	0.5	8.0	
R _{0JC} (Top)	Junction-to-Case ®		21	°CAM
$R_{ heta JA}$	Junction-to-Ambient ®		35	°C/W
R _{0JA} (<10s)	Junction-to-Ambient		20	

Static @ T₁ = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.034		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.95	1.25	mΩ	$V_{GS} = 10V, I_D = 100A$
$V_{GS(th)}$	Gate Threshold Voltage	2.2		3.9	V	$V_{DS} = V_{GS}, I_{D} = 150 \mu A$
	Drain-to-Source Leakage Current			1.0	uА	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{V}$
IDSS	Dialii-to-Source Leakage Current			150	μΑ	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
ı	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	шА	$V_{GS} = -20V$
R_G	Gate Resistance		1.4		Ω	

Notes:

- ① Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C. For higher case temperature please refer to Diagram 2. De-rating will be required based on the actual environmental conditions.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- \odot Limited by T_{Jmax}, starting T_J = 25°C, L = 0.037mH, R_G = 50 Ω , I_{AS} = 100A, V_{GS} =10V.
- ⑤ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- © C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- ® R_{θ} is measured at T_J approximately 90°C.
- 9 Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 29A$, $V_{GS} = 10V$.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.infineon.com/technical-info/appnotes/an-994.pdf

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	120			S	$V_{DS} = 10V, I_{D} = 100A$
Q_g	Total Gate Charge		127	190		I _D = 100A
Q_{gs}	Gate-to-Source Charge		35		nC	V _{DS} = 20V
Q_{gd}	Gate-to-Drain Charge		41		110	V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg- Qgd)		195			
$t_{d(on)}$	Turn-On Delay Time		16			$V_{DD} = 20V$
t _r	Rise Time		31			I _D = 30A
$t_{d(off)}$	Turn-Off Delay Time		64		ns	$R_G = 2.7\Omega$
t _f	Fall Time		34			V _{GS} = 10V⑤
C _{iss}	Input Capacitance		6560			$V_{GS} = 0V$
Coss	Output Capacitance		940			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		650		pF	f = 1.0MHz, See Fig.5
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		1120			V _{GS} = 0V, VDS = 0V to 32V⑦ See Fig.11
Coss eff.(TR)	Output Capacitance (Time Related)		1300			$V_{GS} = 0V$, VDS = 0V to 32V ®

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			120		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ②			1060		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage®			1.3	V	$T_J = 25^{\circ}C, I_S = 100A, V_{GS} = 0V$
dv/dt	Peak Diode Recovery dv/dt ④		4.5		V/ns	$T_J = 150^{\circ}C, I_S = 100A, V_{DS} = 40V$
t _{rr}	Reverse Recovery Time		36 37		ns	$\frac{T_J = 25^{\circ}C}{T_J = 125^{\circ}C}$ $V_{DD} = 34V$ $V_{DD} = 1000$
Q _{rr}	Reverse Recovery Charge		38 40		nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s $\$ $T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		1.7		Α	T _J = 25°C

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

10000 VGS 15V TOP 10V ID, Drain-to-Source Current (A) 7.0V 6.0V 1000 4.5V 4.3V 100 10 ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 10 100 V_{DS}, Drain-to-Source Voltage (V)

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

4

Fig 9. Typical Source-Drain Diode Forward Voltage

Fig 11. Drain-to-Source Breakdown Voltage

Fig 10. Maximum Safe Operating Area

Fig 12. Typical Coss Stored Energy

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 15. Typical Avalanche Current vs. Pulse width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

1. Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long as T_{imax} is not
- 3. Equation below based on circuit and waveforms shown in Figures
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 14, 15).

t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ($1.3 \cdot BV \cdot I_{av}$) = $\Delta T / Z_{thJC}$

 $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

 $E_{AS (AR)} = P_{D (ave)} t_{av}$

Fig 17. Threshold Voltage vs. Temperature

Fig 19. Typical Recovery Current vs. dif/dt

Fig 18. Typical Recovery Current vs. dif/dt

Fig 20. Typical Stored Charge vs. dif/dt

Fig 21. Typical Stored Charge vs. dif/dt

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 23a. Unclamped Inductive Test Circuit

Fig 23b. Unclamped Inductive Waveforms

Fig 24a. Switching Time Test Circuit

Fig 25a. Gate Charge Test Circuit

Fig 24b. Switching Time Waveforms

Fig 25b. Gate Charge Waveform

۶

PQFN 5x6 Outline "B" Package Details

DIM	MILLIM	IITERS	IN.	ICH	
SYMBOL	MIN	MAX	MIN	MAX	
Α	0.800	0.900	0.0315	0.0543	
A1	0.000	0.050	0.0000	0.0020	
А3	0.20	0 REF	0.007	9 REF	
b	0.350	0.470	0.0138	0.0185	
b1	0.025	0.125	0.0010	0.0049	
b2	0.210	0.410	0.0083	0.0161	
b3	0.150	0.450	0.0059	0.0177	
D	5.00	0 BSC	0.196	9 BSC	
D1	4.75	0 BSC	0.1870 BSC		
D2	4.100	4.300	0.1614	0.1693	
E	6.00	0 BSC	0.2362 BSC		
E1	5.75	0 BSC	0.2264 BSC		
E2	3.380	3.780	0.1331	0.1488	
е	1.27	70 REF	0.05	00 REF	
e1	2.80	00 REF	0.11	02 REF	
K	1.200	1.420	0.0472	0.0559	
L	0.710	0.900	0.0280	0.0354	
Р	0*	12°	0,	12°	
R	0.200	REF	0.007	9 REF	
R2	0.150	0.200	0.0059	0.0079	

Note:

- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- 3. Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

PQFN 5x6 Outline "G" Package Details

DIM	MILLIMETERS		[]	NCH	
SYMBOL	MIN.	MAX.	MIN.	MAX.	
Α	0.950	1.050	0.0374	0.0413	
A1	0.000	0.050	0.0000	0.0020	
А3	0.254	REF	0.0100	REF	
b	0.310	0.510	0.0122	0.0201	
b1	0.025	0.125	0.0010	0.0049	
b2	0.210	0.410	0.0083	0.0161	
b3	0.180	0.450	0.0071	0.0177	
D	5.150 BSC		0.2028 BSC		
D1	5.000	BSC	0.1969	BSC	
D2	3.700	3.900	0.1457	0.1535	
E	6.150	BSC	0.2421	BSC	
E1	6.000	BSC	0.2362	BSC	
E2	3.560	3.760	0.1402	0.1488	
E3	2.270	2.470	0.0894	0.0972	
е	1.27 REF		0.050) REF	
K	0.830	1.400	0.0327	0.0551	
L	0.510	0.710	0.0201	0.0280	
L1	0.510	0.710	0.0201	0.0280	
Р	10 deg	12 deg	0 deg	12 deg	

Note:

- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.infineon.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:

For more information on package inspection techniques, please refer to application note AN-1154 http://www.infineon.com/technical-info/appnotes/an-1154.pdf

Note: For the most current drawing please refer to IR website at http://www.infineon.com/package/

PQFN 5x6 Part Marking

PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

	Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5	X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.infineon.com/package/

Qualification information[†]

Ovelification level	Industrial ^{††}			
Qualification level	(per JEDEC JESD47F ^{††} guidelines)			
Moisture Sensitivity Level	PQFN 5mmx 6mm	MSL1 (per JEDEC J-STD-020D ^{††})		
RoHS compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.infineon.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Rev.	Comments
10/16/2014	2.1	Add Pd at tc=25C on Absolute Max Rating table on page 2
03/05/2015	2.2	 Updated E_{AS (L=1mH)} = 431mJ on page 2 Updated note 8 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 29A, V_{GS} =10V" on page 2
03/19/2015	2.3	Updated package outline on page 9.
01/24/2017	2.4	 Changed datasheet with Infineon logo - all pages Added package outline for "option G" on page 9. Added disclaimer on last page
4/14/2020	2.5	 Updated datasheet based on IFX template. Updated Datasheet based on new current rating and application note :App-AN_1912_PL51_2001_180356

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2020 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.