1	Dlasca	fill our	tha	correct	ancware	in	tha	brackets	
	Please	1111 ()(1	i ine i	COFFECT	answers	111	me	DIACKEIS	

- (1) Given the function F=A'B'+BC'(A+B+C'), its inverse function F'=().
- (2) Given the function F=(X+Y)(Y+Z')'(Y+XZ'), its dual function $F^D=($).
- (3) Given V_{OHmin}=3.5V and V_{IHmin}=2.1V, the high state direct current noise margin is ()V.
- (4) Given I_{0L} =4.2mA and I_{1L} =0.02mA, the low state fanout is ().
- (5) Given the decimal number (110)₁₀, its equivalent octal number is ()₈.

2. True or false. Please write "√" or "×" in the brackets.

- (1) Given the binary numbers $A=(-1001\ 1011)_2$ and $B=(+1110\ 0001)_2$, the 9-bit sum is $A+B=(\ 0\ 0100\ 0110\)_{2's\ complement}$.
- (2) Given the function F=AB'C+ACD+A'C, it is not equivalent to F=AB'C+ACD+A'C+B'C.
- (3) Given the function F=A'BC+AC'D', it has a hazard. (
- (4) Given the decimal number $(908)_{10}$, its equivalent 8421 BCD code is 1001 000 1000.
- (5) Given the function F=(A'+BC)'(A+C), its sum of minterms is $F=\sum m(4,5,6)$. () **Note**: A is the most significant bit (the highest bit).

3. Write the true table of the function.

- (1) F = ABC + A'C + BC'
- (2) F=(A'+B+C)(B'+C)(A+C)
- 4. Draw the K-map and K-circles of the function. Write the expression by NAND gates only. Write the expression by NOR gates only.

$$F = AB' + C'D + AC(B' + D) + B'(A' + C + D')$$

5. Use the 3-8 decoder and NAND gate to implement the function. Write the truth table and expression. Draw the circuit diagram.

F=AB+A'C+BC

6. Use the 4-to-1 line data selector to implement the function. Write the truth table and expression. Draw the circuit diagram.

F=AB'C+A'C'+B'C'

7. Simplify the function by formulas.

F=AB'+(AB')'CD'+BC+AC+AB'C+ACD'

8. Calculate the open voltage U_{oc} , the short-circuited current I_{sc} , and the equivalent resistance R_{eq} of the circuit.

