Econometrics I - TA section

Eric Schulman

The University of Texas at Austin

November 20, 2020

8.2 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

- (8.3) $\hat{\beta} = \operatorname{argmin} SSE(\beta)$ subject to $R'\beta = c$
- What are the dimensions of R?

8.2 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

- (8.3) $\hat{\beta} = \operatorname{argmin} SSE(\beta)$ subject to $R'\beta = c$
- What are the dimensions of R? $k \times q$

8.2 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

- (8.3) $\hat{\beta} = \operatorname{argmin} SSE(\beta)$ subject to $R'\beta = c$
- What are the dimensions of R? $k \times q$
- What about c?

8.2 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

- (8.3) $\hat{\beta} = \operatorname{argmin} SSE(\beta)$ subject to $R'\beta = c$
- What are the dimensions of R? $k \times q$
- What about c? $q \times 1$

8.2 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

- (8.3) $\hat{\beta} = \operatorname{argmin} SSE(\beta)$ subject to $R'\beta = c$
- What are the dimensions of R? $k \times q$
- What about c? $q \times 1$
- what is rank(R)?

8.2 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

- (8.3) $\hat{\beta} = \operatorname{argmin} SSE(\beta)$ subject to $R'\beta = c$
- What are the dimensions of R? $k \times q$
- What about c? $q \times 1$
- what is rank(R)? How does it relate to k?

8.2 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

- (8.3) $\hat{\beta} = \operatorname{argmin} SSE(\beta)$ subject to $R'\beta = c$
- What are the dimensions of R? $k \times q$
- What about $c? q \times 1$
- what is rank(R)? How does it relate to k? $rank(R) \le q \le k$. There can be redundant constraints. The important thing is the constraints don't contradict each other.

8.2

• What is the objective function?

$$\sum_{i=1}^{n} (y_i - x'_{i1}\beta_1 - x'_{i2}\beta_2)'(y_i - x'_{i1}\beta_1 - x'_{i2}\beta_2)$$

subject to $\beta_1 = c$

Simplifies to

$$\sum_{i=1}^{n} (y_i - x'_{i1}c - x'_{i2}\beta_2)'(y_i - x'_{i1}c - x'_{i2}\beta_2)$$

• Can redefine $\tilde{y}_i = y_i - x'_{i1}c$

8.3 In the model

$$y = X_1\beta_1 + X_2\beta_2 + e$$

with X_1 and X_2 each $n \times k$, find the CLS estimate of $\beta = (\beta_1, \beta_2)$, subject to the constraint that $\beta_1 = -\beta_2$.

• The objective is

$$\hat{\beta} = \operatorname{argmin} \sum_{i=1}^{n} (y_i - x'_{i1}\beta_1 - x'_{i2}\beta_2)'(y_i - x'_{i1}\beta_1 - x'_{i2}\beta_2)$$

subject to $\beta_1 = -\beta_2$

$$\hat{\beta} = \operatorname{argmin} \sum_{i=1}^{n} (y_i - (x'_{i1} - x'_{i2})\beta_1)'(y_i - (x'_{i1} - x'_{i2})\beta_1)$$

• It's just OLS

$$\hat{\beta}_1 = \left(\sum_{i=1}^n (x_{i1} - x_{i2})'(x_{i1} - x_{i2})\right)^{-1} \left(\sum_{i=1}^n (x_{i1} - x_{i2})'y_i\right)$$

Hypothesis testing. What if we want to infer something about the population using data?

Hypothesis testing. What if we want to infer something about the population using data?

 Step 1 pick a distribution to evaluate the probability of your estimator.

Hypothesis testing. What if we want to infer something about the population using data?

- Step 1 pick a distribution to evaluate the probability of your estimator.
- Step 2, if your estimator is not very likely. Then you probably picked the wrong distribution. Pick a different one.

Step 1 pick a distribution (e.g. $\beta_0=0$) to evaluate your estimator $\hat{\beta}_{obs}$.

- Our goal is to calculate $Pr(\hat{\beta} \leq \hat{\beta}_{obs})$ and see if it's low.
- Remember $\hat{\beta}$ is a random variable. $\hat{\beta}_{obs}$ is data, which is fixed.

Step 1 pick a distribution (e.g. $\beta_0=0$) to evaluate your estimator $\hat{\beta}_{obs}$.

- Our goal is to calculate $Pr(\hat{\beta} \leq \hat{\beta}_{obs})$ and see if it's low.
- Remember $\hat{\beta}$ is a random variable. $\hat{\beta}_{obs}$ is data, which is fixed.
- Pick a distribution. Amounts to picking population parameters $\beta_0 = 0$. This is called the "null" hypothesis.

$$\sqrt{n}\frac{\hat{\beta}-\beta_0}{se(\hat{\beta})} \xrightarrow{d} \mathcal{N}(0,1)$$

• As a result, we know the cdf of $\hat{\beta}$ i.e. $\Phi\left(\frac{\hat{\beta}-\beta_0}{se(\hat{\beta})}\right)$

Step 2, if your estimator is not very likely. Then you probably picked the wrong distribution. Pick a different one.

- For example if $Pr(\hat{\beta} \leq \hat{\beta}_{obs})$ is really small i.e. less than say 5 percent.
- If $Pr(\hat{\beta} \leq \hat{\beta}_{obs}) \leq 5$ that means you had 100 samples generated using β_0 , then you would only expect 5 of them to have $\hat{\beta} \leq \hat{\beta}_{obs}$

9.2 You have two independent samples (y_1, X_1) and (y_2, X_2) which satisfy $y_1 = X_1\beta_1 + e_1$ and $y_2 = X_2\beta_2 + e_2$, where $E(x_{1i}e_{1i}) = 0$ and $E(x_{2i}e_{2i}) = 0$, and both X_1 and X_2 have k columns. Let $\hat{\beta}_1$ and $\hat{\beta}_2$ be the OLS estimates of β_1 and β_2 . For simplicity, you may assume that both samples have the same number of observations n.

9.2 Find the asymptotic distribution of $\sqrt{n}((\hat{\beta}_2 - \hat{\beta}_1) - (\beta_2 - \beta_1))$ as $n \to \infty$.

- **9.2** Find the asymptotic distribution of $\sqrt{n}((\hat{\beta}_2 \hat{\beta}_1) (\beta_2 \beta_1))$ as $n \to \infty$.
 - Apply Lindeberg-Levy CLT. Both statistics are independent from each other. $\mathcal{N}(0, V_{\beta_1} + V_{\beta_2})$
 - Also, notice how picking β_1 and β_2 would result in different asymptotic distributions i.e. $\beta_1=1$ would be a different distribution for $\hat{\beta}_1$ than $\beta_1=3$

9.2

- Find an appropriate test statistic for H_0 : $\beta_2 = \beta_1$.
- Find the asymptotic distribution of this statistic under H_0

- **9.2** For k=1 use $\hat{eta}_2/se(\hat{eta}_2)-\hat{eta}_1/se(\hat{eta}_1)$
 - From part 1 we know the distribution of

$$\sqrt{n}((\hat{\beta}_2-\hat{\beta}_1)-(\beta_2-\beta_1))$$

Under the null, this expression simplifies to

$$\sqrt{n}((\hat{\beta}_2-\hat{\beta}_1)$$

• As a result, $\sqrt{n} \frac{\hat{\beta}_2 - \hat{\beta}_1}{se(\hat{\beta}_2) + se(\hat{\beta}_1)} \xrightarrow{d} \mathcal{N}(0, 1)$

The more general version of this would involve a Wald statistic.

Rejecting is very important, or not i.e. was your choice of β_0 good enough? What can go wrong?

Rejecting is very important, or not i.e. was your choice of β_0 good enough? What can go wrong?

- False positives Your null hypothesis was actually pretty good, but you reject β_0 anyway. Just a weird sample. The test is too aggressive.
- False negatives Your null hypothesis is bad, but you don't reject β₀. Not aggressive enough at rejecting.

False positives a.k.a. Type I error

- Calculate the probability of falsely rejecting a true null. This
 is called size.
- This is what you calculate when you derive p-values. The "null" is true.

False positives a.k.a. Type I error

- Calculate the probability of falsely rejecting a true null. This
 is called size.
- This is what you calculate when you derive p-values. The "null" is true.
- What is a simple way to minimize size?

False positives a.k.a. Type I error

- Calculate the probability of falsely rejecting a true null. This
 is called size.
- This is what you calculate when you derive p-values. The "null" is true.
- What is a simple way to minimize size? Never reject!

False positives a.k.a. Type I error

- Calculate the probability of falsely rejecting a true null. This
 is called size.
- This is what you calculate when you derive p-values. The "null" is true.
- What is a simple way to minimize size? Never reject!

- What's the probability of accepting the null, when it's wrong?
 This is called power.
- Harder to calculate this one, because there are more options for the probability of $\hat{\beta}$ i.e. any DGP except β_0 .
- In most cases, consistency of the test is enough i.e. with enough data, you're sure to reject a false null, regardless of what the true parameters are.

False positives a.k.a. Type I error

- Calculate the probability of falsely rejecting a true null. This
 is called size.
- This is what you calculate when you derive p-values. The "null" is true.
- What is a simple way to minimize size? Never reject!

- What's the probability of accepting the null, when it's wrong?
 This is called power.
- Harder to calculate this one, because there are more options for the probability of $\hat{\beta}$ i.e. any DGP except β_0 .
- In most cases, consistency of the test is enough i.e. with enough data, you're sure to reject a false null, regardless of what the true parameters are.
- What's a simple way to minimize power?

False positives a.k.a. Type I error

- Calculate the probability of falsely rejecting a true null. This
 is called size.
- This is what you calculate when you derive p-values. The "null" is true.
- What is a simple way to minimize size? Never reject!

- What's the probability of accepting the null, when it's wrong?
 This is called power.
- Harder to calculate this one, because there are more options for the probability of $\hat{\beta}$ i.e. any DGP except β_0 .
- In most cases, consistency of the test is enough i.e. with enough data, you're sure to reject a false null, regardless of what the true parameters are.
- What's a simple way to minimize power? Always reject!

False positives a.k.a. Type I error

- Calculate the probability of falsely rejecting a true null. This
 is called size.
- This is what you calculate when you derive p-values. The "null" is true.
- What is a simple way to minimize size? Never reject!

- What's the probability of accepting the null, when it's wrong?
 This is called power.
- Harder to calculate this one, because there are more options for the probability of $\hat{\beta}$ i.e. any DGP except β_0 .
- In most cases, consistency of the test is enough i.e. with enough data, you're sure to reject a false null, regardless of what the true parameters are.
- What's a simple way to minimize power? Always reject!

9.4 Let W be a Wald statistic for $H_0: \theta=0$ versus $H_1: \theta\neq 0$, where θ is $q\times 1$. Since $W\to_d \chi_q^2$ under H_0 , someone suggests the test "Reject H_0 if $W< c_1$ or $W> c_2$, where c_1 is the $\alpha/2$ quantile of χ_q^2 and c_2 is the $1-\alpha/2$ quantile of χ_q^2

9.4 Show that the asymptotic size of the test is α .

- **9.4** Show that the asymptotic size of the test is α .
 - Apply theorem 9.3 $W \to d\chi_q^2$ under H_0
 - Size is the probability of a False rejection i.e.

$$Pr(W \geq c_1) + Pr(W \leq c_2)$$

As a result the assymptotic size is

$$\lim_{n\to\infty} \Pr(W\leq c_1) + \Pr(W\geq c_2)$$

$$\lim_{n \to \infty} \Pr(W \le c_1) + 1 - \Pr(W < c_2)$$

• Since W has a χ_q^2 distribution as $n \to \infty$

$$\lim_{n \to \infty} \Pr(W \le c_1) + 1 - \Pr(W > c_2) = \alpha/2 + 1 - (1 - \alpha/2) = \alpha$$

9.4 Is this a good test of H_0 versus H_1 ? Why or why not?

- **9.4** Is this a good test of H_0 versus H_1 ? Why or why not?
 - Note quite. The test is consistent Theorem 9.9. For $\theta \neq 0$, then $W \rightarrow \infty$

- **9.4** Is this a good test of H_0 versus H_1 ? Why or why not?
 - Note quite. The test is consistent Theorem 9.9. For $\theta \neq 0$, then $W \rightarrow \infty$
 - Pick c_1' as the α quantile.
 - The test is still consistent and has size α , but local rejection probability is higher for any n

$$Pr_n(W \leq c_1') > Pr_n(W \leq c_1)$$

9.1 Prove that if an additional regressor X_{k+1} is added to X, Theil's adjusted \bar{R}^2 increases if and only if $|T_{k+1}| > 1$ where $T_{k+1} = \hat{\beta}_{k+1}/s(\beta_{k+1})$ is the t-ratio for $\hat{\beta}_{k+1}$ and

$$s(\hat{\beta}_{k+1}) = (s^2[(X'X)^{-1}]_{k+1,k+1})^{1/2}$$

is the homoskedasticity-formula standard error

9.1 Prove that if an additional regressor X_{k+1} is added to X, Theil's adjusted \bar{R}^2 increases if and only if $|T_{k+1}| > 1$ where $T_{k+1} = \hat{\beta}_{k+1}/s(\beta_{k+1})$ is the t-ratio for $\hat{\beta}_{k+1}$ and

$$s(\hat{\beta}_{k+1}) = (s^2[(X'X)^{-1}]_{k+1,k+1})^{1/2}$$

is the homoskedasticity-formula standard error

• Theil's \bar{R}^2 is

$$\bar{R}^2 = 1 - \frac{(n-1)\sum_{i=1}^n \hat{e}_i^2}{(n-k)\sum_{i=1}^n (y_i - \bar{y})^2}$$

Let SST be $S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$

$$(1 - \bar{R}^2) = \frac{n-1}{n-k} \left(1 - 1 + \frac{\sum_{i=1}^n \hat{e}_i^2}{S_{yy}} \right) = \frac{n-1}{S_{yy}} \frac{\sum_{i=1}^n \hat{e}_i^2}{n-k}$$

9.1

Note that $s^2 = \frac{\sum_{i=1}^n \hat{e}_i^2}{n-k}$ for homoskedastic standard errors.

$$(1-\bar{R}^2)=\frac{n-1}{S_{yy}}s^2$$

$$T_{k+1} = \frac{\hat{\beta}_{k+1}}{\left(s^2[(X'X)^{-1}]_{k+1,k+1}\right)^{1/2}}$$

9.1

Note that $s^2 = \frac{\sum_{i=1}^n \hat{e}_i^2}{n-k}$ for homoskedastic standard errors.

$$(1 - \bar{R}^2) = \frac{n-1}{S_{yy}} s^2$$

$$T_{k+1} = \frac{\hat{\beta}_{k+1}}{(s^2[(X'X)^{-1}]_{k+1,k+1})^{1/2}}$$

- \bar{R}^2 is inversely related with s^2 . First equation.
- s^2 is inversely related with T_{k+1} . Second equation.
- \bar{R}^2 is positively related with T_{k+1} .