DIGITAL ELECTRONICS

(EC-262)

PROJECT TOPIC - DIGITAL CLOCK WITH 7-SEGMENT DISPLAY USING ARDUINO.

<u>MADE BY</u> – Ishaan Jaggi

<u>ROLL NO. – 2K19/IT/062</u>

BRANCH - I.T.

FACULTY - Mr. Anurag Chauhan

DESCRIPTION OF PROJECT & CONCEPT USED :-

- MICRO-CONTROLLER concept of Digital Electronics is used in this project.
- This clock is formed in a manner that it shows time digitally in hours and minutes.
 The user can also be able to change the time as per required.
- ARDUINO UNO is used to make this project which uses the Programming language to start the clock and perform actions which are encoded in the code.

MOTIVATION FOR THIS PROJECT :-

Digital Clock is very common and useful device for daily use. So, by using the components of digital electronics we can easily make the clock in a very cheap cost. This shows the use of components to produce a fruitful output. We can fix these clocks in public so that every person can see time for eg: we see digital clocks on metro station platforms etc. This motivated me to make this project.

CONTENTS:-

- ABSTRACT
- INTRODUCTION TO DIGITAL CLOCK (USING ARDUINO)
- MATERIALS REQUIRED & HARDWARE DESCRIPTION
- CONCEPT OF ARDUINO (MICRO-CONTROLLER)
- ABOUT ATmega328: PIN CONFIGURATION & SPECS.
- CIRCUIT DIAGRAM
- PROCEDURE FOR MAKING PROJECT
- PROGRAM CODE
- RESULTS & OUTPUTS OF REAL-MODEL WITH VIDEO DEMO
- PRO'S & CON'S OF ARDUINO BASED DIGITAL CLOCK
- FUTURE SCOPE
- BIBLIOGRAPHY

ABSTRACT

- ✓ **Digital clock** is a most common device which is used by the entire world in their daily life. The *Aim* of the project is to design a 24-hour Digital Clock that displays the time digitally, in contrast to an Analog clock, where the time is indicated by the positions of rotating hands.
- ✓ With the help of Arduino-UNO, a digital clock to display time in hours & minutes can be constructed.

 Micro-Controller concept of Digital Electronics is used to build this project.
- ✓ **Seven-segment** display is a very common and efficient option for displaying a decimal value. This clock works on a **Programming based** element.

INTRODUCTION

- Digital Clock is very common and useful device for daily use. So, by using the <u>components of digital electronics</u> we can easily make the clock in a very cheap cost. This shows the use of components to produce a fruitful output. We can fix these clocks in public so that every person can see time for eg: we see digital clocks on metro station platforms etc. This motivated me to make this project.
- Because digital clocks can be <u>very small and inexpensive</u> devices that enhance the popularity of product designs, they
 are often incorporated into all kinds of devices such as cars, radios, Televisions, Microwave Ovens standard ovens,
 computers and cell phones.
- In this Project we build a Digital Clock which shows time in hours & minutes only. <u>Arduino-UNO</u> is used to program the clock & showing the functioning of the digital clock. There will be <u>Buttons</u> which will help to change time (in hours & minutes) according to our convenience.
- **INVENTION** Digital Alarm clock was invented by **D.E. Protzmann**.

MATERIALS REQUIRED

- O BREADBOARD It is a solderless device which is used to test circuit designs for a temporary time.
- O 4-DIGIT 7-SEGMENT DISPLAY A 4-digit 7-segment LED display has 12 pins. 8 of the pins are for the 8 LEDs on each of the 7 segment displays, which includes A-G and DP (decimal point). The other 4 pins represent each of the 4 digits from D1-D4.
- O ARDUINO UNO It is a microcontroller board based on the ATmega328P.
- O JUMPER WIRES These are the wires which are used for connecting the components.
- TINY PUSH-BUTTONS (12mm) These buttons are used to change time in the project. One click of button change time to one unit respectively.
- O 1 K-OHM RESISTORS A resistor reduces (or resists) the flow of current. ... So, a 1k Ω resistor has a value of 1,000 ohms and the number we will code is 1,000.

CONCEPT OF ARDUINO (MICRO-CONTROLLER)

- Arduino is an electronic circuit board which is used to build program-based projects. It is an open source platform to which works upon computer codes & functions upon the code commands. Unlike most previous programmable circuit boards, the Arduino does not need a separate piece of hardware (called a programmer) in order to load new code onto the board, we can simply use a USB cable.
- Additionally, the Arduino IDE uses a simplified version of <u>C++</u>, making it easier to learn to program. Finally, Arduino provides a standard form factor that breaks out the functions of the micro-controller into a more accessible package.
- A *Microcontroller*, the primary chip, which allows us to program the Arduino in order for it to be able to execute commands and make decisions based on various input.
- <u>Arduino used in our Project</u> In this Project, we are using <u>Arduino-UNO</u> having *ATmega328* Chip.

ABOUT ATmega328 CHIP

- The **ATmega328** is a single-chip Micro-Controller created by Atmel in the megaAVR family. It has a Modified Harvard Architecture (8-Bit RISC) processor core.
- ATmega328 is commonly used in many projects and autonomous systems where a simple, low-powered, low-cost micro-controller is needed.
 Perhaps the most common implementation of this chip is on the popular Arduino development platform, namely the Arduino UNO models.
- When converting design from an Arduino Uno to a raw ATmega328 chip it is helpful to be able to relate the pinouts on the ATmega328 to the connections on an Arduino Uno.

PIN DIAGRAM & SPECIFICATIONS

Atmega328			
(PCINT14/RESET) PC6	1 28	☐ PC5 (ADC5/SCL/PCINT13)	
(PCINT16/RXD) PD0 2	2 27	☐ PC4 (ADC4/SDA/PCINT12)	
(PCINT17/TXD) PD1 🗆 3	3 26	☐ PC3 (ADC3/PCINT11)	
(PCINT18/INT0) PD2 4	4 25	☐ PC2 (ADC2/PCINT10)	
(PCINT19/OC2B/INT1) PD3 = 5	5 24	□ PC1 (ADC1/PCINT9)	
(PCINT20/XCK/T0) PD4 □ 6	6 23	□ PC0 (ADC0/PCINT8)	
VCC 🗆 7	7 22	□GND	
GND 🗆 8	8 21	AREF	
(PCINT6/XTAL1/TOSC1) PB6 🗆	9 20	□ AVCC	
(PCINT7/XTAL2/TOSC2) PB7 🗆 1	10 19	☐ PB5 (SCK/PCINT5)	
(PCINT21/OC0B/T1) PD5 [1	11 18	□ PB4 (MISO/PCINT4)	
(PCINT22/OC0A/AIN0) PD6 🗆 1	12 17	☐ PB3 (MOSI/OC2A/PCINT3)	
(PCINT23/AIN1) PD7 🗆 1	13 16	☐ PB2 (SS/OC1B/PCINT2)	
(PCINTO/CLKO/ICP1) PB0 [1	14 15	☐ PB1 (OC1A/PCINT1)	
	1111		

Parameter	Value
CPU type	8-bit AVR
Performance	20 MIPS at 20 MHz ^[2]
Flash memory	32 KB
SRAM	2 KB
EEPROM	1 KB
Pin count	28 or 32 pin:
Maximum operating frequency	20 MHz
Number of touch channels	16
Hardware QTouch Acquisition	No
Maximum I/O pins	23
External interrupts	2
USB Interface	No
USB Speed	_

(PIN DIAGRAM) (SPECIFICATIONS)

CIRCUIT DIAGRAM

- These 3 button switches are used to change hour or minute i.e. to change time. While changing the time we have to hold one button to change time by 2 other buttons, one button is for hour & other is for minute.
- NOTE: The circuit connections will be understood in the programming code itself.

PROCEDURE FOR MAKING PROJECT

- We should always connect Resistors with the Display (7-Segment display).
- When connecting to Arduino, we will connect :-
 - 1. DISPLAY 1 TO PIN 10.
 - 2. DISPLAY 2 TO PIN 11.
 - 3. DISPLAY 3 TO PIN 12.
 - 4. DISPLAY 4 TO PIN 13.
- Further connections we get to know in the Program code.
- When the connection is complete, we *upload* the program code in the Arduino. Then the functioning of the clock starts and we can set time according to our convenience.
- We have to hold one button to use other buttons to change time of hours and minutes.
- In Program code, we use a function hourformat12() which will make our watch to run in 12 hour format.
- The **Time library** by default follows the 24 hour format.
- Finally, the **Project model is complete** and further I will show you the results.

PROGRAM CODE

https://drive.google.com/file/d/1WGpJeSSC-98fUhNuaeoV-DpDDUnFFKvB/view?usp=sharing

NOTE: In this *Link*, Program Code of *Arduino upon which the Project works*, i.e. Digital clock works is present.

RESULTS & OUTPUTS OF REAL-MODEL

1. CIRCUIT DESIGN.

2. BUTTONS TO CHANGE TIME.

3. PROGRAM CODE BY WHICH CLOCK IS WORKING.

4. TOP VIEW.

NOTE: As we can see in clock there was **5:15** & after one minute it automatically turns to 5:16.

VIDEO DEMO

FULL DEMO WITH PRESENTATION (WITH AUDIO) :-

 $\underline{https://drive.google.com/file/d/1ap1IWgPqCJBNqntRyrZSSZ0pJfudxBQf/view?usp=sharing}$

CIRCUIT OVERVIEW:-

https://drive.google.com/file/d/1AeN_yWMKwvH5tSht2MNejtYNCUggtv6C/view?usp=sharing

PRO'S & CON'S OF ARDUINO BASED DIGI-CLOCK

PRO'S :-

- ✓ Micro-Controllers are small in size So, we can design Digital Clock of compatible size which can be portable.
- ✓ Nowadays, micro-controllers are *cheaper* in price with embedded LCD segment Display.
- ✓ Arduino based Digital Clock has less complex connections & work smoothly &can be made in a very short time.

CON'S :-

- ✓ Digital clocks uses batteries which goes dead very fast, i.e. more power consumption.
- ✓ LCD segment displays are customised by manufacturers So, these displays are not cheaper in price.
- ✓ These clocks need high maintenance as these are electronic devices.

FUTURE SCOPE

- 1) This Project was done successfully but some features I was thinking should also be there. I will definitely try to implement this feature in my Project. The feature I would add in the future is a <u>Snooze Alarm</u>.
- 2) This could be done by generating a high or low edge over a certain amount of clock cycles and then using **edge detection** to trigger an **interrupt** for the alarm. The width of this pulse could be generated using a formula that would get increasingly shorter until it is perpetually on, and the user would have to turn the alarm off.

BIBLIOGRAPHY

- ✓ https://www.quora.com/What-are-the-advantage-and-disadvantages-of-a-digital-countdown-timer-using-a-microcontroller
- √ https://www.instructables.com/How-to-make-a-Arduino-Digital-Clock/
- √ https://dronebotworkshop.com/arduino-uno-atmega328/
- ✓ https://www.researchgate.net/publication/335830518 digital clock final report Repaired
- √ https://opensource.com/resources/what-arduino
- https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
- √ https://www.theengineeringprojects.com/2017/08/introduction-to-atmega328.html