Mint Classic Project

 $\bullet \bullet \bullet$

Junkai Zheng

Data provided by Coursera:
Analyze Data in a Model Car Database with MySQL Workbench

Problems and Analytical Goals

- Where are items stored and if they were rearranged, could a warehouse be eliminated?

- How are inventory numbers related to sales figures? Do the inventory counts seem appropriate for each item?

 Are we storing items that are not moving? Are any items candidates for being dropped from the product line?

Storage of each warehouse

wareh	ouseCode wareho	useName total_in_stock
b	East	219183
a	North	131688
С	West	124880
d	South	79380

- The South warehouse had the **lowest** stock among all the warehouses.
- The East warehouse had the **highest** stock out of all the warehouses.

Total orders of each warehouse

	warehouseCode	warehouseName	total_orders
	b	East	1010
	a	North	695
	c	West	657
ľ	d	South	634

- The South warehouse had the **least** sales among all the warehouses.
- The East warehouse had the **most** sales out of all the warehouses.

How efficiently each storage facility is managing its inventory (Utilization Rate).

warehouseName	warehousePctCap	total_quantity	utilization_rate_pct
East	67	219183	32.71
West	50	124880	24.98
 North	72	131688	18.29
South	75	79380	10.58

- South warehouse has the **lowest** utilization rate, which means that this warehouse is not used efficiently.

Top 5 products with the highest sales figures

productCode	productName	total_quantity	total_orders	sales_rate
S24_2000	1960 BSA Gold Star DBD34	15	1015	98.54
S12_1099	1968 Ford Mustang	68	909	93.04
S32_4289	1928 Ford Phaeton Deluxe	136	846	86.15
S32_1374	1997 BMW F650 ST	178	920	83.79
S72_3212	Pont Yacht	414	770	65.03

Top 5 products with the lowest sales figures

productCode	productName	total_quantity	total_orders	sales_rate
S18_3233	1985 Toyota Supra	7733	HULL	NULL
S18_1984	1995 Honda Civic	9772	836	7.88
S700_2466	America West Airlines B757-200	9653	829	7.91
S18_1589	1965 Aston Martin DB5	9042	782	7.96
S24_3432	2002 Chevy Corvette	9446	825	8.03

Conclusion

- 1. Shut down warehouse D (South) because it has the lowest stock (79,380), minimal sales (634), and the lowest utilization rate (10.58%).
 - a. The remaining stocks can be evenly redistributed to warehouses A (North) and C (West).
- 2. The product "1985 Toyota Supra" can be dropped because Mint has 7,733 in stock, and there have been no sales for this item.

Thank You!