Linear Regression Normal Equation – Additional Results

Pawel Wocjan

January 14th, 2019

Abstract

We derive the normal equation for linear regression.

1 Notation

Let $(\boldsymbol{x}^{(1)}, y^{(1)}), \dots, (\boldsymbol{x}^{(m)}, y^{(m)}) \in \mathbb{R}^n \times \mathbb{R}$ denote the collection of training examples. The *i*th training example consists of the feature vector $\boldsymbol{x}^{(i)} = (x_1^{(i)}, \dots, x_n^{(i)})^T \in \mathbb{R}^n$ and the label $y^{(i)} \in \mathbb{R}$.

Set

$$\boldsymbol{X} = \begin{pmatrix} x_1^{(1)} & \dots & x_n^{(1)} \\ x^{(2)} & \dots & x_n^{(2)} \\ \vdots & \ddots & \vdots \\ x^{(m)} & \dots & x_n^{(m)} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

and

$$oldsymbol{y} = \left(egin{array}{c} y^{(1)} \ y^{(2)} \ dots \ y^{(m)} \end{array}
ight) \in \mathbb{R}^m.$$

 \boldsymbol{X} is called the design matrix. Its rows correspond to the feature vectors of the training examples.

2 Normal equation

To simplify the discussion, consider first the case that the bias of the linear regression model is set to 0, that is, only the weight vector $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n$ needs to be determined.

Theorem 1 (Normal equation). The optimal weight vector $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n$, that is, the one that minimizes the mean squared error is given by the formula

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

This is proved in 5.1.4 Example: Linear Regression in [1]. I have included this proof with additional results so you can understand every step of the proof.

3 Additional results

We introduce some abbreviations. Let $[n] = \{1, \ldots, n\}$. Let ∂w_r denote the partial derivative operator

 $\frac{\partial}{\partial w_r}$.

Lemma 1 (Gradient of quadratic form). Let $\mathbf{A} = (a_{rs}) \in \mathbb{R}^{n \times n}$ be an arbitrary symmetric matrix and $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n$ an arbitrary column vector. Define the quadratic form $f(\mathbf{w}) = \mathbf{w}^T \mathbf{A} \mathbf{w}$. Its gradient is given by

$$\nabla_{\boldsymbol{w}} f(\boldsymbol{w}) = 2\boldsymbol{A}\boldsymbol{w}$$
.

Proof. The right hand side is the column vector whose entries are given by

$$2\sum_{s=1}^{n}a_{rs}w_{s}.$$

for $r \in [n]$. This follows simply by carrying out the matrix-vector-multiplication.

The left hand side of the above equation is the column vector whose entries are the partial derivatives

$$\partial w_r f(\boldsymbol{w})$$

for $r \in [n]$. This follows from the definition of the nable operator

$$\nabla_{\boldsymbol{w}} = \left(\begin{array}{c} \partial w_1 \\ \vdots \\ \partial w_n \end{array}\right) .$$

We have

$$\partial w_r f(\boldsymbol{w}) = \partial w_r \left(\sum_{t,s=1} w_t a_{ts} w_s \right)$$

$$= \partial w_r \left(w_r^2 a_{rr} + 2 \sum_{s \neq r} w_r a_{rs} w_s \right)$$

$$= 2 w_r a_{rr} + 2 \sum_{s \neq r} a_{rs} w_s$$

$$= 2 \sum_{s=1}^n a_{rs} w_s.$$

We use that either t = r and s = r or t = r and $s \neq r$. Otherwise the partial derivative $\partial w_r(w_t a_{ts} w_s)$ is equal to 0. We also use that \mathbf{A} is symmetric, that is, $a_{rs} = a_{sr}$.

Lemma 2. Let $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n$ and $\mathbf{v} = (v_1, \dots, v_n)^T \in \mathbb{R}^n$ be an arbitrary column vectors. Define the function $g(\mathbf{w}) = \mathbf{w}^T \mathbf{v}$. Its gradient is given by

$$\nabla_{\boldsymbol{w}}g(\boldsymbol{w}) = \boldsymbol{v}$$
 .

Proof. This is easy. Prove it yourself.

4 Proof of normal equation

Let $y^{(i)} = \boldsymbol{w}^T \boldsymbol{x}^{(i)}$ denote the prediction of the linear regression model with weight vector \boldsymbol{w} when given the *i*th feature vector $\boldsymbol{x}^{(i)}$. Define

$$\hat{m{y}} = \left(egin{array}{c} \hat{y}^{(1)} \ dots \ \hat{y}^{(n)} \end{array}
ight)$$

The mean squared error (MSE) is given by

MSE =
$$\frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

= $\frac{1}{m} ||\hat{\boldsymbol{y}} - \boldsymbol{y}||_2^2$,

so the error increases whenever the Euclidean distance between the predictions and the targets (labels) increases.

To minimize MSE, we can simply solve for where its gradient is 0:

$$\nabla_{\boldsymbol{w}} MSE = \boldsymbol{0} \tag{1}$$

$$\Rightarrow \nabla_{\boldsymbol{w}} \frac{1}{m} \|\hat{\boldsymbol{y}} - \boldsymbol{y}\|_{2}^{2} = \mathbf{0}$$
 (2)

$$\Rightarrow \frac{1}{m} \nabla_{\boldsymbol{w}} \| \boldsymbol{X} \boldsymbol{w} - \hat{\boldsymbol{y}} \|_{2}^{2} = \boldsymbol{0}$$
 (3)

$$\Rightarrow \frac{1}{m} \nabla_{\boldsymbol{w}} (\boldsymbol{X} \boldsymbol{w} - \hat{\boldsymbol{y}})^T (\boldsymbol{X} \boldsymbol{w} - \hat{\boldsymbol{y}}) = \boldsymbol{0}$$
 (4)

$$\Rightarrow \frac{1}{m} \nabla_{\boldsymbol{w}} (\boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - 2 \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y}) = \boldsymbol{0}$$
 (5)

$$\Rightarrow 2\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{w} - 2\boldsymbol{X}^{T}\boldsymbol{y} = \boldsymbol{0} \tag{6}$$

$$\Rightarrow \boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w})^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{7}$$

Note that $\hat{y}^{(i)}$ is the inner product between the weight vector \boldsymbol{w} and the feature vector $\boldsymbol{x}^{(i)}$. We also have $\hat{y}^{(i)} = (\boldsymbol{x}^{(i)})^T \boldsymbol{w}$ because the inner product is symmetric.

In eq. (5), we can use Lemma 1 with $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ and Lemma 2 with $\mathbf{v} = \mathbf{X}^T \mathbf{y}$ to compute the gradient. The system of equations whose solutions is given by eq. 7 is known as normal equations.

The general case of linear regression with non-zero bias b can also be solved with the help of the normal equation. Define the augmented weight vector $\boldsymbol{w}_b = (b, w_1, \dots, w_n)^T \in \mathbb{R}^{n+1}$ and the augmented feature vectors $\boldsymbol{x}_b^{(i)} = (1, x_1^{(i)}, \dots, x_n^{(i)})^T \in \mathbb{R}^{n+1}$. We have

$$\hat{y}^{(i)} = \boldsymbol{w}_b^T \boldsymbol{y}_b^{(i)} = \boldsymbol{w}^T \boldsymbol{y}^{(i)} + b.$$

References

[1] I. Goodfellow, Y. Bengio, and A. Courville, *Deep learning*, MIT Press, 2006, http://www.deeplearningbook.org