

MEASURING ENERGY CONSUMPTION USING AI

INTRODUCTION

Energy consumption is a critical aspect of modern life, impacting everything from our daily routines to global environmental sustainability. This concept encompasses the utilization of various forms of energy, such as electricity, fuel, and renewable sources, to power our homes, industries, and transportation systems. Understanding energy consumption is pivotal in addressing climate change, optimizing resource utilization, and shaping the future of energy efficiency and sustainability. In this discussion, we will delve into the dynamics of energy consumption, its significance, and ways to manage it more responsibly.

Dataset for energy consumption

	Crop straw	Grass	Wood	Animal dung	Coal	Electricity	Bio-gas	Solar energy	LPG	Total
Mountainous village										
Cooking	452.45	0.00	16.64	0.00	245.08	2.24	41.43	75.03	0.81	833.68
Boiling tea	0.00	0.00	10.18	0.00	0.00	0.55	0.00	0.00	0.00	10.73
Lighting	0.00	0.00	0.00	0.00	0.00	4.98	0.00	0.00	0.00	4.98
Heating kang	380.73	240.4	0.00	125.77	31	0.97	0.00	0.00	0.00	778.87
Stove	0.00	0.00	15.17	0.00	379.15	0.00	0.00	0.00	0.00	394.32
Home appliance	0.00	0.00	0.00	0.00	0.00	7.94	0.00	0.00	0.00	7.94
Total	833.18	240.4	41.99	125.77	655.23	16.68	41.43	75.03	0.81	2030.52
Semi-mountainous vil	lage									
Cooking	184.21	75.43	44.64	0.00	457.79	1.37	0.00	97.22	0.00	860.66
Boiling tea	0.00	0.00	5.02	0.00	0.00	2.04	0.00	0.00	0.00	7.06
Lighting	0.00	0.00	0.00	0.00	0.00	7.21	0.00	0.00	0.00	7.21
Heating kang	154.48	311.15	0.00	0.00	57.72	0.00	0.00	0.00	0.00	523.35
Stove	0.00	0.00	19.65	0.00	491.9	0.00	0.00	0.00	0.00	511.55
Home appliance	0.00	0.00	0.00	0.00	0.00	11.71	0.00	0.00	0.00	11.71
Total	338.69	386.58	69.31	0.00	1007.41	22.33	0.00	97.22	0.00	1921.54
Plains village										
Cooking	64.85	87.34	35.94	0.00	583.26	1.48	0.00	114.78	5.45	893.1
Boiling tea	0.00	0.00	0.00	0.00	0.00	4.24	0.00	0.00	0.00	4.24
Lighting	0.00	0.00	0.00	0.00	0.00	9.31	0.00	0.00	0.00	9.31
Heating kang	97.63	352.28	0.00	0.00	95.95	0.15	0.00	0.00	0.00	546.01
Stove	0.00	0.00	26.98	0.00	675.39	0.00	0.00	0.00	0.00	702.37
Home appliance	0.00	0.00	0.00	0.00	0.00	11.45	0.00	0.00	0.00	11.45
Total	162.48	439.62	62.92	0.00	1354.6	26.63	0.00	114.78	5.45	2166.48

Product name	Pow er W	Energy loss in Feeder kWh/yr	Recti fier kWh/ yr	Standb y energy kWh/y r	On energy kWh/y r	Loss of enery kWh/ yr	Total energy consumpti on kWh/yi	
Light	60	7727525	11520	1979			0.000	
bulb	100	0.63	00	00	700	0.63	700	
Microwav e oven	800	10.11	2.30	23.50	292	12.41	315.5	
Induction Stove	2000	5.69	8.61	00	1095	14.30	1095	
Rice cooker	500	0.30	00	00	136.88	0.30	136.88	
Coffee maker	990	0.77	00	00	180.68	0.77	180.68	
Refrigerat or	125	0.30	4.29	43.80	547.50	4.59	591.3	
Dishwash er	500	0.22	0.79	10.27	100.34	1.01	110.60	
Washing machine	500	0.37	1.36	16.83	173.38	1.73	190.21	
Iron	1000	0.674			156	0.674	156	
Window unit AC	900	15.32	30.97	26.28	3942	41.6	3968.28	
Laptop	50	0	1.00	11.50	127.75	1.00	139.25	
Personal computer	270	0.60	3.86	24.27	492.75	4.46	517.00	
External Modem	7.2	00	00	7.00	13.14	00	20.14	
32" LCD television	156	0.50	2.23	31.20	284.7	2.73	315.90	
Total		35.48	55.41	194.65	8242.1 2	86.20 kWh	8436.74 kWh	

Sample code

import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression

```
# Load your data (replace
'your_data.csv' with your dataset)
data = pd.read_csv('your_data.csv')
```

Assuming your data has columns
'temperature' and
'energy_consumption'
X =
datal'temperature'l.values.reshape(-1,
1)
y = datal'energy_consumption'l.values

Create and train a Linear Regression model model = LinearRegression().fit(X, y)

Predict energy consumption for a new temperature value new_temperature = 25.0 predicted_energy = model.predict(((Inew_temperature))) print(f"Predicted Energy Consumption: {predicted_energy[0]}")

Steps for creating energy consumption model

Step 1: normality testing of dataset. In this research data analysis, a normality testing of the dataset for each tenant was conducted to determine the dataset distribution

Step 2: data pre-processing

Step 3: model development (training)

Step 4: model evaluation (test)

Measuring Energy consumption project

Import necessary libraries import pandas as pd import numpy as no from sklearn.model selection import train test split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean squared error from datetime import datetime import requests import time **# Data Collection # Simulated data for this example** data = pd.read csv('energy data.csv') **# Data Preprocessing** #- Handle missing values **# - Convert timestamps to datetime objects #-Create relevant features # Split data into features (X) and target (v)** X = data.drop('EnergyConsumption', axis=1) y = datal'EnergyConsumption'l **# Split data into training and testing sets** X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)

Create and train a machine learning model (Random Forest Regressor)
model = RandomForestRegressor(n_estimators=100,
random_state=42)
model.fit(X_train, y_train)

```
# Real-time Monitoring and Prediction
while True:
 # Simulate data collection from sensors (replace with actual
data source)
 current data = pd.read csv('current energy data.csv')
 # Data preprocessing for real-time data
 #-Handle missing values
 # - Convert timestamps to datetime objects
 # - Create relevant features
 # Make predictions on real-time data
 prediction = model.predict(current data)
 # Store prediction and timestamp in a database or log file
 timestamp = datetime.now()
 log entry = {'Timestamp': timestamp,
'EnergyConsumptionPrediction': prediction[0]
 # Store log entry in a database or log file
 # Send the prediction to a control system or dashboard (e.g.,
via API)
 api url = 'https://your-control-system-api.com'
 payload = {'Timestamp': timestamp, 'Prediction': prediction[0]}
 response = requests.post(api url. json=payload)
 # Sleep for a specified interval (e.g., 15 minutes)
 time.sleep(900) #15 minutes in seconds
```

In a real-world project, you would need to integrate this code with your data sources, implement robust error handling, scalability, and security measures, and deploy it on appropriate hardware and cloud platforms. Additionally, consider implementing feedback loops and advanced Al models for more accurate predictions.

Flow chart

Conclusion

Measuring energy consumption is a critical endeavor with farreaching implications for both individuals and society as a whole. It enables us to understand and ontimize the use of valuable resources while contributing to environmental sustainability.

