NAME: SOLUTIONS

1	/16	2	/16	3	/16	4	/16
5	/12	6	/12	7	/12	${ m T}$	/100

MATH 2415 (Fall 2012) Exam I, Oct 5

No calculators, books or notes! Show all work and give complete explanations. Don't spend too much time on any one problem. This 2 hour exam is worth 100 points.

(1) [16 pts] \cite{P} (a) Is the line through the points (-4, -6, 1) and (-2, 0, -3) parallel to the line through the points (1) [16 pts]

Lot
$$\vec{V} = (-2, 0, -3) - (-4, -6, 1) = (2, 6, -4) = 7(1, 3, -2)$$

 $\vec{V} = (5, 3, 14) - (10, 18, 4) = (-5, -15, 10) = -5(1, 3, -2)$

So $\vec{v} = -\frac{2}{5} \vec{J}$. The vectors \vec{v} , \vec{w} are parallel

So the two lives are parallel

(b) Find parametric equations for the line through the point (5, 1, 0) that is perpendicular to the plane

The vector i along the

live com be chosen to be the normal vector in to

the plane (since line I plane)

V= n= (2,-11) from egr of plane

え(七)=(5,1,0)++(2,-1,1) = (5+2t, 1-t, t)

- (2) [16 pts] (For Dr. Zweck's class: When we refer to the equation of a plane we mean a level set equation.)
- (a) Find the equation of the plane that passes through the point (6,0,-2) and contains the line x=4-2t, y=3+5t, and z=7+4t.

Let
$$\vec{r}(t) = (4-2t, 3+st, 7+4t)$$
 parametrize line
Here are 3 prints in plane
 $P = (6, 0, -2)$
 $Q = \vec{r}(0) = (4, 3, 7)$

$$R = \vec{r}(1) = (2, 8, 11)$$

Here are 2 vectors in plane

$$\vec{\nabla} = PQ = Q - P = (-7, 3, 9), \vec{u} = PR = R - P = (-4, 8, 13)$$

So normal is
$$\vec{x} = \vec{1} \times \vec{w} = \begin{vmatrix} \vec{1} & \vec{1} & \vec{1} \\ -2 & 3 \end{vmatrix} = (-33, -10, -4)$$

So seques
$$(52-p)$$
. $=0$ gives $[-33(x-6)-10/y-0)-4(2+2)=0$

(b) Write down a general equation of a plane that involves the normal vector to the plane. Draw a picture that explains why this equation holds. Be sure to carefully label your picture.

$$(\vec{x} - \vec{p}) \cdot \vec{n} = 0$$
 $\vec{p} = \text{print in plane}$
 $\vec{n} = \text{normal vector to plane}$
 $\vec{x} = \text{arbitrary pt in plane}$
 $\vec{x} = \vec{p}$ is a rector in plane. So $\vec{x} \cdot \vec{p} \perp \vec{n}$

So $(\vec{x} \cdot \vec{p}) \cdot \vec{n} = 20$

(a) Find the vector projection of b onto a where
$$a = (3, 6, -2)$$
 and $b = (1, 2, 3)$.

$$PROT_{a}(\frac{1}{b}) = \frac{\vec{a} \cdot \vec{b}}{(\vec{a})} = \frac{\vec{a} \cdot \vec{b}}{(\vec{a})} = \frac{\vec{a} \cdot \vec{b}}{(\vec{a})^{2}} = \frac{\vec{b}}{(\vec{a})^{2}} = \frac{\vec{a} \cdot \vec{b}}{(\vec{a})^{2}} = \frac{\vec{a} \cdot$$

(b) Use vector algebra to show that the vector $\mathbf{b} - \operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to \mathbf{a} . (Here $\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is the projection of \mathbf{b} onto \mathbf{a} .) [Note: you need to show this in general not for the specific vectors given in part (a).]

Let
$$\vec{v} = \vec{b} - \frac{2a \cdot b}{|\vec{a}|^2} \vec{a}$$
.

NTE $\vec{v} \cdot \vec{a} = 0$.

Well $\vec{v} \cdot \vec{a} = (\vec{b} - \frac{1a \cdot b}{|\vec{a}|^2} \frac{1a}{|\vec{a}|^2} \frac{1a}{$

(4) [16 pts] Make a labelled sketch of the traces of the surface

$$y^2 - x^2 + 4z^2 = 1$$

in the planes y=0, z=0, and x=k for $k=0,\pm 1$. Then sketch the surface.

19=0 47- 2= 1

Asymptotes 422-22=0

Coes the x=0, 2= ± 2

(2=0) y2-x2=1

Asymptotic y2-x2=0

600 thu 5(=0, y=1)

k=0 y2+4+2=1 Ellipse Intercepto (±1,0), (0,±2)

R==== 2

Interests $(\pm 12,0)$, $(0,\pm \frac{12}{2})$

大型 学母子

- (5) [12 pts]
- (a) Sketch the surface whose equation in cylindrical coordinates is z = r 2.

Rotate r ans start 7 ans to get core vertex (0,0,-2)

(c) What are the rectangular coordinates of the point whose spherical coordinates are $(\rho, \theta, \phi) = (2, \pi, 3\pi/4)$?

$$x = p \sin q \cos \theta = 2 \sin \frac{\pi}{4} \cos \pi = 2 \frac{1}{2} (-1) = -\frac{2}{12}$$

$$2 = \rho \cos \phi = 2 \cos 3\pi \psi = 2. (-\frac{1}{2}) = -\frac{7}{2}$$

つ(

(7) [12 pts]

(a) Calculate a parametrization of the tangent line to the curve $\mathbf{r}(t) = (2\sin t, 3\cos t)$ at $t = \pi/3$

(b) Suppose that r is a parametrized curve in space with r'(0) = (1, 2, 3) and r''(0) = (4, 5, 6). Could the parametization r have constant speed? Explain!

If i has constart speed the from exture VODCIM I ACCELER ATION for all t 7 (0) . 7 (0) = (123) . (458) = 4+10+18 So VER X ARC AT 1=0. So con't fe

Please sign the following honor statement:

On my honor, I pledge that I have neither given nor received any aid on this exam

Signature: