کلاس مستطیل های تراز محور را با H_d نشان دهید. از آنجایی که H_5 زیر مجموعه H_2 ، خطای تقریبی کلاس H_5 کلاس H_5 کلاس تاین حال، پیچیدگی H_5 بیشتر است، بنابراین ما انتظار داریم که خطای تخمینی آن بزرگتر باشد. بنابراین، اگر تعداد محدودی از نمونه های آموزشی داشته باشیم، ترجیح می دهیم کلاس کوچکتر را یاد بگیریم.

6.2

در نظر میگیرم که $VCdim(H=k) = min\{k, |X| - k\}$ ابتدا نشان می دهیم که $VCdim(H=k) = min\{k, |X| - k\}$ فرض کنید VCdim(H=k) باشد. سپس، VCdim(H=k) ابرای تمام VCdim(H=k) مجموعه ای به اندازه VCdim(H=k) است، هیچ VCdim(H=k) است، هیچ VCdim(H=k) است، هیچ VCdim(H=k) VCdim(H=k) است، VCdim(H=k) VCdim(H=k) ابرای همه VCdim(H=k) VCdim(H=k) ابرای اندازه VCdim(H=k) ابرای VCdim(H=k) ابرای VCdim(H=k) ابرای اندازه VCdim(H=k) ابرای VCdim(H=k) ابرای اندازه VCdim(H=k) ابرای VCdim(H=k) ابرا

را نشان با $\sum_{i=1}^m yi$

یک زیرمجموعه دلخواه $X \setminus C$ از عناصر x - s را انتخاب کنید، و اجازه دهید $x \in X \setminus C$ فرضیه ای $x \in X \setminus C$ را برآورده می کند. هر $x \in X \setminus C$ نتیجه می گیریم $x \in X \setminus C$ و $x \in X \setminus C$ و $x \in X \setminus C$ توسط $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ توسط $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که $x \in X \setminus C$ نتیجه می گیریم که از رسید $x \in X \setminus C$ نتیجه می گیریم که از رسید $x \in X \setminus C$ نتیجه می گیریم که از رسید $x \in X \setminus C$ نتیجه می گیریم که از رسید $x \in X \setminus C$ نتیجه می گیریم که از رسید $x \in X \setminus C$ نتیجه می شود.

ادعا می کنیم که .k = k VCdim $(H \le k) = k$ ابتدا نشان می دهیم که $k \ge k$ VCdim $(H \le k) = k$ وجود ندارد که k = k را برای $k \ne k$ اندازه $k \ne k$ باشد. سپس، $k \ne k$ وجود ندارد که $k \ne k$ را برای $k \ne k$ تمام $k \ne k$ ورده کند.

6.4

فرض کنید $X = R^d$ ما نشان میدهیم که تمام ترکیبات این ۴ کلاس H رو 1 , 0 تعریف میشوند . میدانیم که کلاس تهی شتر میشود فرض کنید d>2 بنابراین کلاس d>2 : $r \geq 0$ نبابراین کلاس d>2 بنابراین کلاس d>2 : $r \geq 0$ نباشد بنابراین d>2 شتر میشود میشود مقادیر d>2 نباشد بنابراین d>2 شتر میشود

م، اگر ,2||x2|| ≥ 2||x1||، پس برچسب گذاری x1 = 0,y2 = 1 است

با هیچ فرضیه ای در H به دست نمی آید. فرض کنید A = {e1,e2} ، که در آن

e2 ،e1 دو بردار یکه استاندارد Rd هستند. سپس،

 $H_A = \{(0,0),(1,1)\}, \{B \subseteq A : H \text{ shatters B}\} = \{\emptyset,\{e_1\},\{e_2\}\}, \sum_{i=0}^{d} (|A|,i) = 3\}$

فرض کنید H کلاس مستطیل های تراز محور در R² باشد. ما

دیدیم که بعد VC مجموعه H برابر 4 است فرض کنید , A = {x1, x2, x3} , که در آن

 $x_1 = (0, 0), x_2 = (1, 0), x_3 = (2, 0)$

تمام برچسب ها به جز (1، 0، 1) به دست می آیند. بنابراین، $H_A = 7$

 $|\{B \subseteq A : H \text{ shatters B}\}| = 7$

 $\sum_{i=0}^{d} (|A|, i) = 8$

d ≥ 3 را در نظر بگیرید و کلاس $H = \{sign\langle w, x \rangle : w \in Rd\}$ نیمه فاصله های همگن را در نظر بگیرید d ≥ 3 که VC این کلاس d است. $E = \{sign\langle w, x \rangle : w \in Rd\}$ شده است، فرض که VC این کلاس d است. $E = \{sign\langle w, x \rangle : w \in Rd\}$ شده است، فرض کنید $E = \{sign\langle w, x \rangle : w \in Rd\}$ در آن

 $x_1 = e_1$, $x_2 = e_2$, and $x_3 = (1,1,0,...,0)$

. توجه داشته باشید که تمام برچسب ها به جز (1،1،-1) و (-1،1-1) به دست می آیند. نتیجه می شود $|\mathsf{H}_\mathtt{A}|=6$, $|\{\mathsf{B}\subseteq\mathsf{A}:\mathsf{H}\ \mathsf{shatters}\ \mathsf{B}\}|=7\sum_{i=0}^d(|\mathsf{A}|\ ,i)=8$

6.6

هر h در کنار همه h های منفی با هر x_i تخمین زده میشود هر x_i or none در رابطه ظاهر شود را در بر میگیرد بنابراین

 $|H_c^d_{on}| = 3^d + 1.$

 $VCdim(H^d) \le [log(|H^d|)] \le 3 log d$

فرض کنید $J\subseteq [d]$ یک زیر مجموعه از ایندکس ها باشد . نشان دادیم که لیبل گذاری هر جز e_i مثبت میباشند . اگر J=[d] ما همه فرضیات مثبت را انتخاب میکنیم . اگر J=[d] همه فرضیات منفی را

انتخاب میکنیم .. فرض کنید \emptyset زیر مجموعه j و زیر مجموعه j نباشد فرض کنید \emptyset کلاس مربوط به ضرب بولین ها باشد بنابران

 $h(e_j) = 1$ if $j \in J$, and $h(e_j) = 0$ otherwise.

بر اساس تضاد فرض کنید که یک مجموعه $C = \{c1,...cd\}$ وجود داردکه برای آن $H_c| = 2^d + 1$. h1,...,hd+1, h1, h

 $VCdim(H^{'}) \leq \lfloor \log(|H|) \rfloor = d$. ابتدا مشاهده می کنیم که $1+2^d+2^d+1$ بنابراین، $1+2^d+2^d+1$ بنابراین، که ورض کنید مجموعه شترشده با اندازه $1+2^d+2^d+1$ کامل می کنیم. فرض کنید $1+2^d+2^d+2^d+1$ $1+2^d+2^d+1$ $1+2^d+1$ $1+2^d+1$ 1

فرض کنید $J \subseteq [d] \supseteq J$ زیر مجموعه ای از ایندکس ها باشد. نشان خواهیم داد که برچسب گذاری دقیقاً در $J \subseteq [d] \supseteq J \subseteq J$ منفی است. برای لحظه $J = \emptyset$ فرض کنید. سپس برچسب گذاری با ضرب بولین ها به دست می آید. در نهایت، اگر $J = \emptyset$ ، فرضیه همه مثبت $J \subseteq J$ را انتخاب کنید.

6.9

 $C = \{1, 2, 3\}$ ما ثابت می کنیم که $C = \{1, 2, 3\}$. را انتخاب کنید. فرض کنید $C = \{1, 2, 3\}$ ما ثابت می دهد که $C = \{1, 2, 3\}$ متر شده است.

1	2	3	a	b	s
-	-	-	0.5	3.5	-1
-	-	+	2.5	3.5	1
-	+	-	1.5	2.5	1
-	+	+	1.5	3.5	1
+	_	-	0.5	1.5	1
+	-	+	1.5	2.5	-1
+	+	-	0.5	2.5	1
+	+	+	0.5	3.5	1

فرض میکنیم که m < d ، زیرا در غیر این صورت گزاره بی معنی است. فرض کنید C یک مجموعه shatter به اندازه C باشد. C یک از توزیعهایی انتخاب میکنیم که روی C متمرکز هستند. توجه داشته باشید که C شامل تمام توابع از C به C است. با فرض اینکه برای هر الگوریتم، یک توزیع C وجود دارد که برای آنC C C به C C سامل C

$$\mathbb{E}[L_{\mathcal{D}}(A(S))] \ge \frac{k-1}{2k} \underbrace{=}_{k=\frac{d}{m}} \frac{d-m}{2d}$$

b.

فرض کنید که . $\infty = 0$ VCdim(H) فرض کنید A یک الگوریتم یادگیری باشد. نشان می دهیم که A نمی تواند H را یاد بگیرد $\delta = 1/14$. $\epsilon = 1/16$ را انتخاب کنید. $\delta = 1/14$ ، $\epsilon = 1/16$ ، یک مجموعه shatter شده به اندازه $\delta = 0$ وجود دارد. با اعمال موارد فوق، دریافتیم که توزیعی D وجود دارد که برای آن $\delta = 0$ $\delta = 0$ است. بنابراین با احتمال $\delta = 0$:

 $LD(A(S)) - minh \in H LD(h) = LD(A(S) \ge 1/8 > \varepsilon$.

6.11

а

فرض کنید که برای هر VCdim(Hi) = d \geq 3. ، $i \in [r]$ فرض کنید:

$$\mathcal{H} = \bigcup_{i=1}^r \mathcal{H}_i$$

فرض كنيد [d] k ≤ 4d log(2d) + 2 log r با تعريف تابع رشد داريم

$$au_{\mathcal{H}}(k) \leq \sum_{i=1}^{r} au_{\mathcal{H}_i}(k)$$

از آنجایی که $d \ge 3$ ، با اعمال لم سائر در مورد هر یک از عبارت τH_i ، به دست می آوریم τH_i

نتیجه این است که k <d log m + log r. لم A.2 نشان میدهد که k <d log(2d) + 2 log r نتیجه این است

فرض کنیم که .A = H1 U H2 فرض کنید ،VCdim(H1) = VCdim(H2) = d فرض کنید ،k فرض کنید مثبت باشد به طوری که

: داشت على دهيم كه $\tau_{H}(k) < 2^{k}$. با لم سائر خواهيم داشت . $k \geq 2d+2$

$$\begin{split} \tau_{\mathcal{H}}(k) & \leq \tau_{\mathcal{H}_{1}}(k) + \tau_{\mathcal{H}_{2}}(k) \\ & \leq \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=0}^{d} \binom{k}{i} \\ & = \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=k-d}^{d} \binom{k}{k-i} \\ & = \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=k-d}^{k} \binom{k}{i} \\ & \leq \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=d+2}^{k} \binom{k}{i} \\ & \leq \sum_{i=0}^{d} \binom{k}{i} + \sum_{i=d+1}^{k} \binom{k}{i} \\ & = \sum_{i=0}^{k} \binom{k}{i} \\ & = 2^{k} . \end{split}$$

9.1

بردار متغیرهای کمکی $s = (s1, \dots, sm)$ و را تعریف کنید. به دنبال راهنمایی، به حداقل رساندن خطای $\sum_{i=1}^m si$ تحت محدودیت زیر میباشد :

 $(\forall i \in [m]) w^T x_i - s_i \le y_i, -w^T x_i - s_i \le -y_i$

A = [X - Im; -X - Im] ماتریس مقدار فوق را به ماتریس تبدیل کنیم فرض کنید $X_i \rightarrow = X_i$ ماتریس $X_i \rightarrow X_i$ ماتریکه برای هر $X_i \rightarrow X_i$ داشته باشیم $X_i \rightarrow X_i$

 $(w_1,...,w_d,s_1,...,s_m)$ بردار مقادیر باشد $v \in \mathbb{R}^{d+m}$ محنین فرض کنید بردار

و $b = (y_1,...,y_m, -y_1,..., -y_m)^T$ تعریف میکنیم $b \in R^{2m}$

و $c \in \mathbb{R}^{d+m}$ و $c \in \mathbb{R}^{d+m}$ را به صورت $c \in \mathbb{R}^{d+m}$

نتیجه می شود که مسئله بهینه سازی به حداقل رساندن ریسک تجربی را می توان به صورت LP زیر بیان

min $c^T v$ s.t. $Av \le b$.

9.3

فرض کنید d=m و برای هر $x_i=e_i$, $i\in[m]$. فرض میکنیم i=m و برای هر $w^{(t)}$ برای $y_i=1$ اجازه دهید $y_i=1$ برچسب $y_i=1$ باشد. بردار وزنی پرسپترون حفظ می شود را با $w^{(t)}$ نشان دهید. یک آرگومان استقرایی ساده نشان می دهد که برای هر i=1 داریم:

$$\mathbf{w}_i = \sum_{j < i} \mathbf{e}_j$$

بنابراین، برای هر xi (xi) = 0 ، xi (xi) از این رو، تمام موارد xi xi به خطا کلسیفای میشوند (و سپس بردار xi) = xi را بدست می آوریم که با xi,...,xi سازگار است). همچنین توجه می کنیم که بردار (xi,...,xi) = xi الزامات ذکر شده در سوال را برآورده می کند.

9.4

تمام نمونههای مثبت شکل $(\alpha,\beta,1)$ را در نظر بگیرید که $R^2+1 \le R^2$ و $(0,0,1)=w^*$ را در نظر بگیرید یه طوریکه برای هر x, داشته باشیم x داشته باشیم x داشته باشیم x در آنها x در آنها x خطا را انجام می دهد.

 $\alpha_1 = V(R^2 - 1)$ که $(\alpha_1, 0.1)$ که با مثال ها شروع شود $(\alpha_1, 0.1)$ که $(\alpha_1, 0.1)$ که حالا، در دور t نمونه جدید چنین باشد :

$$\alpha^2 + \beta^2 + 1 = R^2$$
 (a)

$$\langle w_t, (\alpha, \beta, 1) \rangle = 0$$
 (b)

تا زمانی که بتوانیم هر دو شرط را برآورده کنیم، پرسپترون به خطا خود ادامه خواهد داد. ما نشان خواهیم داد که تا زمانی که $t \leq R^2$ بتوانیم این شرایط را برآورده کنیم.

مشاهده کنید که با استقرا، برای برخی از اعداد a, b (a, b, t - 1) همچنین مشاهده کنید که با استقرا، برای برخی از اعداد b (a, b, t - 1) $\|\mathbf{w}_{t-1}\|^2 = (t-1)\mathbf{R}^2$ که $\|\mathbf{w}_{t-1}\|^2 = (t-1)\mathbf{R}^2$ (این از اثبات کران خطا پرسپترون، جایی که نابرابریها با تساوی برقرار $\mathbf{a}^2 + \mathbf{b}^2 + (t-1)\mathbf{R}^2 = (t-1)\mathbf{R}^2$ هیشوند، به دست می آید). یعنی $\mathbf{a}^2 + \mathbf{b}^2 + (t-1)^2 = (t-1)\mathbf{R}^2$

فرض کنید $w^{(t-1)}$ را حول محور Z بچرخانیم z به گونه ای که به شکل $w^{(t-1)}$ و خواهیم داشت :

$$a = \sqrt{(t-1)R^2 - (t-1)^2}$$
$$\alpha = -\frac{t-1}{a} .$$

 $\alpha^2+1 < R^2$: و در اینصورت فقط باید ثابت کنیم (a, 0, t - 1), $(\alpha, \beta, 1)$ = 0 : β و در اینصورت فقط باید ثابت کنیم زیرا اگر این رابطه برقرار باشد

$$\alpha^{2} + 1 = \frac{(t-1)^{2}}{a^{2}} + 1 = \frac{(t-1)^{2}}{(t-1)R^{2} - (t-1)^{2}} + 1 = \frac{(t-1)R^{2}}{(t-1)R^{2} - (t-1)^{2}}$$
$$= R^{2} \frac{1}{R^{2} - (t-1)}$$
$$\leq R^{2}$$

 $R^2 \ge t$ که این نشان میدهد

9.6

در این سوال کلاس نیم فاصله ها در R^{d+1} را با L^{d+1} نشان می دهیم (a) .فرض کنید که $A = \{x1,...,xm\} \subseteq \mathbb{R}^d$

 $B_{\mu,r}(x_i) = y_i$ برای هر $B_{\mu,r} \in B$ s.t. وجود دارد یک $\forall y = (y_1,...,y_d) \in \{-1,1\}^d$ بنابراین، برای μ و μ بالا، عبارت زیر برای هر μ بنابراین، برای μ

$$sign ((2\mu; -1)^T (\mathbf{x}_i; ||\mathbf{x}_i||^2) - ||\mu||^2 + r^2) = y_i$$

هر جا که نشان دهنده الحاق برداری است. برای هر [m] ، فرض کنید ($[x_i]$ $[x_i]$ $[x_i]$ هاف $[x_i]$ هاف برای $[x_i]$ $[x_i]$ $[x_i]$ $[x_i]$ هاف برای هر $[x_i]$ $[x_i]$ $[x_i]$ $[x_i]$ هاف برای هر $[x_i]$ $[x_i]$ هاف برای هر $[x_i]$ هاف برای هر الحاق بردای الحاق برداری الحاق بردای بردای الحاق بردای الحاق بردای الحاق بردای الحاق بردای الحاق بردای الح

 $h(x_i) = y_i$ داريم $i \in [m]$

در مجموع، اگر $\{x_1,...,x_m\}$ = Aتوسط $\{x_1,...,x_m\}$ شود، $\{x_1,...,x_m\}$ =: $\{x_1,...,x_m\}$ توسط $\{x_1,...,x_m\}$ shatter می شود. نتیجه می گیریم که:

 $d + 2 = VCdim(L_{d+1}) \ge VC(B_d)$.

مجموعه C را متشکل از بردارهای یکه e1, . . . , ed در نظر بگیرید. فرض کنید \subseteq . . نشان می دهیم که یک نقطه وجود دارد به طوری که همه بردارها در \cong برچسب مثبت دارند، در حالی که بردارها در \cong C \ A برچسب منفی دارند. مرکز را به صورت زیر تعریف می کنیم:

$\mu = \sum_{e \in A}$

توجه داشته باشید که برای هر بردار واحد در A ، فاصله آن تا مرکز (1-|A|). همچنین، برای هر بردار واحد خارج V(|A|) آن تا مرکز V(|A|+|A|) و در نهایت فاصله اصلی V(|A|) میباشد. بنابراین اگر V(|A|) V(|A|) V(|A|) و در نهایت فاصله اصلی V(|A|) میباشد. بنابراین اگر V(|A|) و در نهایت فاصله اصلی V(|A|) میباشد. بنابراین اگر و در نهایت فاصله V(|A|) میباشد. بنابراین اگر فقط نشان دادیم که نتیجه می گیریم که مجموعه V(|A|) توسط V(|A|) شده است. در مجموع، ما فقط نشان دادیم که V(|A|)