

EECS Lecturer Pierce Vollucci

The Beauty and Joy of Computing

Lecture #8 Concurrency

MEDICAL INVESTIGATION USING DNA SEQUENCING

The NIH is funding more medical research for undiagnosed diseases made possible by parallel computing.

FACEBOOK CALLED OUT FOR MANIPULATIVE STUDY

The Electronic Privacy Information Center and others are asking questions and a large part of DNA sequencing is about Facebook's studies. Facebook apologizes but says it's allowed and standard practice for companies as

http://www.latimes.com/science/sciencenow/la -sci-sn-medical-sleuths-mystery-diseases-offer-20140701-story.html#page=1 | Study/?ref=technology

Concurrency: A Definition

Concurrency: A property of computer systems in which several computations are executing simultaneously, and potentially interacting with each other.

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (2)

Concurrency is Everywhere!

Examples:

- Mouse cursor movement while Snap! calculates.
- Screen clock advances while typing in a text.
- Busy cursor spins while browser connects to server, waiting for response
- Walking while chewing gum

Concurrency & Parallelism

Intra-computer

- Todav's lecture
- Multiple computing "helpers" are cores within one machine
- Aka "multi-core"
 - Although GPU parallism is also "intracomputer"

"helpers" are different machines

Inter-computer

- Aka "distributed computing"
 - Grid & cluster computing

@000

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (3)

What causes the most headaches for SW and HW designers with multi-core computing?

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (5)

Output

But what is INSIDE a Processor?

en.wikipedia.org/wiki/Amdahl's_law Speedup Issues: Amdahl's Law Applications can almost <u>never</u> be completely parallelized; some serial code remains

· s is serial fraction of program, P is # of cores (was processors)

· Amdahl's law: normal run time Speedup(P) = Time(1) / Time(P) $\leq 1/(s + [(1-s)/P)]$ $serial\ portion\ (fraction)\ + \frac{parallel\ portion\ (fraction)}{max}$ as P ⊠ ∞ ≤1/s

Even if the parallel portion of your application speeds up perfectly, your performance may be limited by the sequential portion

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (13)

Speedup Issues : Overhead

- Even assuming no sequential portion. there's...
 - Time to think how to divide the problem up
 - Time to hand out small "work units" to workers
 - All workers may not work equally fast
 - Some workers may fail
 - There may be contention for shared resources
 - Workers could overwriting each others' answers
 - You may have to wait until the last worker returns to proceed (the slowest / weakest link problem)
 - There's time to put the data back together in a way that looks as if it were done by one

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (14)

en.wikipedia.org/wiki/Concurrent_computing But parallel programming is hard!

- What if two people were calling withdraw at the same time?
 - E.g., balance=100 and two withdraw 75 each
 - Can anyone see what the problem could be?
 - This is a race condition
- In most languages, this is a problem.
 - In Scratch, the system doesn't let two of these run at once.

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (16)

<u>@090</u>

en.wikipedia.org/wiki/Deadlock Another concurrency problem ... deadlock!

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (15)

- Two people need to draw a graph but there is only one pencil and one ruler.
 - One grabs the pencil
 - One grabs the ruler
 - Neither release what they hold, waiting for the other to release
- Livelock also possible
 - Movement. no progress

- "Sea change" of computing because of inability to cool CPUs means we're now in multi-core world
- This brave new world offers lots of potential for innovation by computing professionals, but challenges persist

@090

UC Berkeley "The Beauty and Joy of Computing" : Concurrency (18)