Facility Layout

- Two levels of layout problems:
 - Machine: determine assignment of machines to sites
 - Departmental: determine space requirements of each department (or room) and its shape and relation of other departments

Machine Layout

- A routing is the sequence of W/S (or M/C) that work visits during its production
 - Dedicated M/C ⇒ single routing ⇒ single flow of material ⇒ layout only involves choice of straight-line or U-shaped layout
 - Shared M/C ⇒ multiple routings ⇒ multiple flows of material ⇒
 layout involves complex problem of finding assignment of M/C to Sites
 corresponding to the dominate flow

From/To Chart

From	1	2	3	4
1		1+2+3		
2		_	1+2	2+3
3			_	1+3
4	2+3			_

From	1	2	3	4
1	_	6		
2		_	3	5
3			_	4
4	5			_

Example: Kitchen Layout

Example: Kitchen Layout

Table 1. Site-to-Site Distances

Site	1	2	3	4	5	6	7
1	0.0	2.5	5.0	10.3	10.4	8.6	7.1
2	2.5	0.0	2.5	8.7	9.2	9.4	8.7
3	5.0	2.5	0.0	7.6	8.6	10.7	10.6
			7.6				
5	10.4	9.2	8.6	1.8	0.0	7.5	10.1
6	8.6	9.4	10.7	8.8	7.5	0.0	3.4
7	7.1	8.7	10.6	11.1	10.1	3.4	0.0

Table 2. Distance from Location (0,0) to Sites

Site							
(0,0)	3.8	6.3	8.8	13.2	12.9	8.8	6.0

Table 3. Meals Prepared During Each Week

Meal	Freq.	Sequence
Snack	25	R-M (4-3)
Drink	10	C-R-W-T (7-4-5-1)
Breakfast	7	C-T-C-R-C-K (7-1-7-4-7-1)
Lunch	2	R-W-M-W-R-S-T (4-5-3-5-4-2-1)
Dinner	6	P-W-R-K-W-S-M-W-T (6-5-4-1-5-2-3-5-1)
Cleanup	8	K-D-K-R-K-D (1-5-1-4-1-5)

Total Cost of Material Flow

Equivalent Flow Volume:
$$w_{ij} = \sum_{k=1}^{P} f_{ijk} h_{ijk}$$
 (machine-to-machine)

where f_{ijk} = moves between machines i and j for item k

 h_{ijk} = equivalence factor for moves between machines i and j for item k

Total Cost of Material Flow:
$$TC_{MF} = \sum_{i=1}^{M} \sum_{j=1}^{M} w_{a_i a_j} d_{ij}$$

where $a_i = \text{machine assigned to site } i$

 d_{ij} = distance between sites i and j (site-to-site)

M = number of sites and machines

Equivalent Factors

- Problem: Cost of move of item k from site i to j (h_{ijk}) usually depends on layout
 - equivalent factor used to represent likely "cost" differences due to,
 e.g., item volume

All
$$h_{ijk} = 1 \Rightarrow \begin{bmatrix} w_{ij} \end{bmatrix} = \begin{bmatrix} 0 & 6 & 0 & 0 \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & 4 \\ 5 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} f_{ijk} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} f_{ijk} \end{bmatrix} = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} f_{ijc} \end{bmatrix} = \begin{bmatrix} 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 3 \\ 3 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} h_{ijk} \end{bmatrix} = 3 \qquad \begin{bmatrix} h_{ijk} \end{bmatrix} = 2 \qquad \begin{bmatrix} h_{ijc} \end{bmatrix} = 1$$

$$\begin{bmatrix} w_{ij} \end{bmatrix} = \begin{bmatrix} 0 & 10 & 0 & 0 \\ 0 & 0 & 7 & 7 \\ 0 & 0 & 0 & 6 \\ 7 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A \qquad B \qquad C \qquad C \qquad C \qquad C$$

SDPI Heuristic

Layout Distances: Metric

Layout Distances: Network

(c) Circulating conveyor.

(d) General network.

Dijkstra Shortest Path Procedure

Path: $1 \leftarrow 3 \leftarrow 2 \leftarrow 4 \leftarrow 5 \leftarrow 6$: 13

General Network Distances

General Network Distances

 Only need 10 × 10 distances between site locations, can throw away distances between intersection nodes

											1							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	13	26	33	29	27	31	40	43	55	7	13	22	31	40	15	24	39
2	13	0	13	46	28	26	35	44	54	44	6	12	21	30	39	28	37	26
3	26	13	0	53	26	29	38	47	57	31	19	15	24	33	42	35	44	13
4	33	46	53	0	37	25	16	7	10	40	40	38	30	21	25	18	9	50
5	29	28	26	37	0	12	21	30	40	31	22	16	7	16	25	36	28	13
6	27	26	29	25	12	0	9	28	35	38	20	14	5	14	23	25	16	25
7	31	35	38	16	21	9	0	23	26	47	29	23	14	23	32	16	7	34
8	40	44	47	7	30	28	23	0	17	38	38	32	23	14	23	25	16	43
9	43	54	57	10	40	35	26	17	0	30	48	42	33	24	15	28	19	48
10	55	44	31	40	31	38	47	38	30	0	48	42	33	24	15	58	49	18
11	7	6	19	40	22	20	29	38	48	48	0	6	15	24	33	22	31	32
12	13	12	15	38	16	14	23	32	42	42	6	0	9	18	27	20	29	28
13	22	21	24	30	7	5	14	23	33	33	15	9	0	9	18	29	21	20
14	31	30	33	21	16	14	23	14	24	24	24	18	9	0	9	38	30	29
15	40	39	42	25	25	23	32	23	15	15	33	27	18	9	0	43	34	33
16	15	28	35	18	36	25	16	25	28	58	22	20	29	38	43	0	9	48
17	24	37	44	9	28	16	7	16	19	49	31	29	21	30	34	9	0	41
18	39	26	13	50	13	25	34	43	48	18	32	28	20	29	33	48	41	0

Layout Justification

- Medical staff in a clinic (DAN 407) perform 5 procedures using equipment at 10 sites
 - Use savings in staff travel time to justifying changing layout
 - Initial investment cost is the labor to relocate equipment
 - 10.62 month payback

	Current	TD (ft/hr)	2476
	New	TD (ft/hr)	2154
	1	Net (ft/hr)	322
	Annual Operating Ho	urs (H, hr/yr)	2000
	Labor Co	ost (\$/hr)	60
	Walking speed (2 m	ph) (ft/min)	176
		(ft/hr)	10560
	TD Savir	ngs (ft/yr)	644000
	Hourly Savir	ngs (hr/yr)	60.9848
	Savir	ngs (<i>OP</i> , \$/yr)	3659.09
	Number M/C Relocat	ted	(
	Hours per M/C Relocat	ion (hr)	9
Total R	elocation Cost (only labor cos	sts) (/V, \$)	324
	Payback Per	iod (yr)	0.88546
		(month)	10.6255

Routing: 1	1	2	3	4	5	6	7	8	9	10	
2	2	4	6	8	10		,	Ů		10	
3	1	3	5	7	9						
4	3	6	9								
5	4	8									
Item :	1	2	3	4	5	6	7	8	9	10	
Flow:	5	4	3	8	12						
Handling Cost :	1	1	1	1	1						
				•	,			,			
	1	2	3	4	5	6	7	8	9	10	TD
Current Layout:		2	3	4	5	6	7	8	9	10	2476
New Layout:	3	2	1	6	5	4	8	7	9	10	2154