UNIVERSIDAD DE LOS ANDES, VENEZUELA FACULTAD DE CIENCIAS.
DEPARTAMENTO DE FÍSICA.

Interferometría en Películas Delgadas

Experimento

Javier A Salcedo Castañeda

Laboratorio 3 de Física.

Julio, 2025

Fig. 1. Thomas Young. [7]

Fig. 2. Patrón de interferencia en una pompa de jabón.

Objetivos:

- Analizar los patrones de interferencia en diferentes películas delgadas
- Calcular el radio de curvatura de lentes a partir del patrón de interferencia que generan.

Medición:

 $20.0 + 0.43 = 20.43 \ mm$

Error:

 $\pm 0.01~mm$

Fig. 3. Micrómetro del microscopio.

Procedimiento Experimental:

- Montaje experimental.
- Experimentos con películas delgadas de espesor variable:
 - Observación de franjas de interferencia.
 - Experimentos con pompas de jabón.
- Determinación del radio de curvatura de lentes:
 - Generación de anillos de Newton.
 - Calcular el radio de curvatura de la lente.

Montaje experimental

Películas delgadas de espesor variable.

Fig. 5. Diagrama de rayos para obtener el espesor según el patrón de interferencia. **[2]**

$$2d = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_2}$$
 (1) $2d = m \frac{\lambda}{n_2}$ (2) $m = 0, 1, 2, \dots$

Experimentos con películas delgadas de espesor variable:

$$\Delta x = \frac{L\lambda}{2d} \quad (3)$$

Observación de franjas de interferencia:

Fig. 7. Patrón de interferencia observado.

TABLA I

DATOS DE LA SEPARACIÓN CON DOS HOJAS DE PAPEL JUNTAS.

m	x~(mm)	d~(mm)
0	20.29	0.24
1	20.27	0.24
2	20.22	0.24
3	20.17	0.24
4	20.13	0.30
5	20.08	0.24
6	20.04	0.30
7	20.00	0.30
8	19.96	0.30
9	19.90	0.20
10	19.86	0.30
11	19.82	0.30
12	19.77	0.24
13	19.73	0.30
14	19.68	0.24
15	19.64	0.30
16	19.59	0.24
17	19.55	0.30
18	19.50	0.24
19	19.46	0.30
20	19.42	0.30
21	19.37	0.24
22	19.32	0.24
23	19.28	0.30
24	19.24	0.30
25	19.19	0.24
26	19.14	0.24
27	19.09	0.24
28	19.05	0.30
29	19.01	0.30
30	18.97	0.30
Incertidumbre	$\Delta x = 0.01$	$\Delta d = 0.01$

Resulto experimentalmente con dos hojas de papel:

$$d = (0.270 \pm 0.010) \ mm$$

$$\alpha = 0.00657 \, rad \, (0.377^{\circ})$$

Discrepancias:

Tabulado 0.28~mm 3.40%

Medido $(0.21 \pm 0.01) \, mm$ 28.80%

TABLA II Datos de la separación con cabello.

DATOS DE LA SEPARACIÓN CON CABELLO.		
m	x (mm)	d~(mm)
0	12.42	0.09
1	12.29	0.09
2	12.16	0.09
3	12.04	0.10
4	11.91	0.09
5	11.78	0.09
6	11.64	0.09
7	11.50	0.09
8	11.37	0.09
9	11.24	0.09
10	11.10	0.09
11	10.98	0.10
12	10.84	0.09
13	10.70	0.09
14	10.56	0.09
15	10.42	0.09
16	10.28	0.09
17	10.14	0.09
18	10.02	0.10
19	9.88	0.09
20	9.74	0.09
21	9.60	0.09
22	9.48	0.10
23	9.32	0.08
24	9.19	0.09
25	9.06	0.09
26	8.91	0.08
27	8.79	0.10
28	8.66	0.09
29	8.52	0.09
30	8.38	0.09
Incertidumbre	$\Delta x = 0.01$	$\Delta d = 0.01$

Resulto experimentalmente con cabello:

$$d = (0.093 \pm 0.010) mm$$

$$\alpha = 0.00219 \ rad \ (0.125^{\circ})$$

Discrepancias:

Tabulado $0.09 \ mm$ 3.69%

Medido $(0.07 \pm 0.01) \, mm$ 33.31%

Experimentos con pompas de jabón bajo lampara de sodio:

$$d = \frac{\lambda}{4n} \tag{5}$$

$$d=rac{589\ nm}{4(1.33)}=1.107 imes 10^{-7}\ m$$

Fig. 8. Patrón de interferencias de pompa de jabón bajo lampara de sodio.

Experimentos con pompas de jabón bajo luz blanca:

$$d = rac{600 \ nm}{4(1.33)} = 1.128 imes 10^{-7} \ m$$

Fig. 9. Patrón de interferencias de pompa de jabón bajo luz blanca, "vertical" y "horizontal".

Generación de anillos de Newton:

$$r_m^2 = \left(m + \frac{1}{2}\right)\lambda R \tag{6}$$

Fig. 10. Diagrama de rayos para obtener el espesor según el patrón de interferencia en un lente curvo sobre un espejo plano. [1]

Observación de franjas de interferencia:

Fig. 14. Lentes a usar.

Fig. 11. Patrón de interferencia observado. (Anillos de Newton)

TABLA III
DATOS DE ANILLOS DE NEWTON PARA EL LENTE 1.

Anillo	$R_{Izquierdo} \ (mm)$	$R_{Derecho}$ (mm)
1	7.38	6.74
2	7.59	6.51
3	7.76	6.37
4	7.89	6.25
5	7.98	6.16
6	8.08	6.05
7	8.17	5.96
8	8.23	5.89
9	8.28	5.81
10	8.35	5.75
Incertidumbre	$\Delta x = 0.01$	$\Delta d = 0.01$

Fig. 14. Grafico de los datos de la lente 1.

$$R = +300.32 \ mm$$

TABLA IV
DATOS DE ANILLOS DE NEWTON PARA EL LENTE 2.

Anillo	$R_{Izquierdo} \ (mm)$	$R_{Derecho}$ (mm)
1	8.83	8.07
2	9.11	7.77
3	9.30	7.57
4	9.46	7.42
5	9.61	7.25
6	9.74	7.14
7	9.84	7.02
8	9.96	6.91
9	10.05	6.80
10	10.17	6.71
Incertidumbre	$\Delta x = 0.01$	$\Delta d = 0.01$

Fig. 14. Grafico de los datos de la lente 2.

$$R = +534.85 \ mm$$

TABLA V
DATOS DE ANILLOS DE NEWTON PARA EL LENTE 3.

Anillo	$R_{Izquierdo} \ (mm)$	$R_{Derecho} \ (mm)$
1	10.56	9.96
2	10.67	9.79
3	10.81	9.66
4	10.90	9.55
5	10.99	9.49
6	11.05	9.40
7	11.13	9.33
8	11.20	9.27
9	11.25	9.21
10	11.31	9.16
Incertidumbre	$\Delta x = 0.01$	$\Delta d = 0.01$

Fig. 14. Grafico de los datos de la lente 3.

$$R = +202.63 \ mm$$

Conclusiones:

- Se observaron claramente los efectos interferométricos esperados en las películas delgadas
- Resultaron algunas diferencias entre los resultados obtenidos ópticamente y las mediciones directas con micrómetro en los experimentos de espesor variable esto se puede deber a fallas en la toma de las medidas o en la falta de calibración de los dispositivos.

Referencias

- [1] F. W. Sears, M. W. Zemansky, H. D. Young, and R. A. Freedman, Física Universitaria con Física Moderna, 12th ed. México: Pearson Educación, 2009, vol. 2.
- [2] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 10th ed. United States of America: Wiley, 2014, vol. Extended.
- [3] R. A. Serway and J. W. Jewett, Física para ciencias e ingeniería con Física Moderna, 7th ed. México: Cengage Learning, 2009, vol. 2.
- [4] J. Martín and F. Dugarte, Guías de laboratorio (Laboratorio III), Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela, (Material no publicado).
- [6] E. Hecht, Optics, 4th ed. USA: Addison-Wesley, 2002.
- [7] Wikipedia, "Thomas Young," Wikipedia, la enciclopedia libre, [En línea]. Disponible en: https://es.wikipedia.org/wiki/Thomas_Young. [Consultado: 25 de junio de 2025].