Digital Image Processing (CSE/ECE 478)

Lecture 5: Introduction to Spatial Filters

Ravi Kiran Rajvi Shah

Recap...

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

▶ Point to Point

Neighborhood to Point

Global Attribute to Point

Histogram Processing

Histogram Stretching/ Contrast Stretching

Histogram Equalization

Histogram Specification

Local Histogram Equalization

Histogram Equalization

1 through 4: top to bottom

Image Courtesy: Gonzalez and Woods

Histogram Equalization

Histogram Equalization

Histogram Specification / Matching

What point operations can't do?

Image Sharpening

What point operations can't do?

Noise removal

Spatial Domain Processing

Manipulating Pixels Directly in Spatial Domain

▶ Point to Point

Neighborhood to Point

Global Attribute to Point

Neighborhood Operation

Smoothing Operation

$$I(u, v) \bigcup N_8(p) = \{ I(u-1, v-1), I(u-1, v), I(u-1, v+1), I'(u, v) = ?$$

$$I(u, v-1), I(u, v), I(u-1, v+1),$$

$$I'(u, v) = ?$$

Smoothing Operation

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

Continued ...

Smoothing as Averaging

$$I'(u,v) \leftarrow \frac{1}{9} \cdot \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$

$$I'(u,v) \leftarrow \sum_{j=-1}^{1} \sum_{i=-1}^{1} I(u+i,v+j)$$
 • $H(i,j)$

Smoothing Operation

Output size is smaller

Effect of Repeated Smoothing

Before

After

After repeated averaging

>

Effect of Mask Size

Original Image

[3x3]

[5x5]

[7x7]

Weighted Averaging

$$-I'(u,v) = \frac{\sum_{(j=-a)}^{a} \sum_{(i=-b)}^{b} I(u+i,v+j) \cdot H(i,j)}{\sum_{(i=-b)}^{a} \sum_{(i=-b)}^{b} H(i,j)}$$

	I	I	I		I	2
$\frac{1}{9}$ ×	I	I	I	$\frac{1}{16}$ ×	2	4
)		ļ	[I	2

I	2	I
2	4	2
I	2	ı

Standard average

Weighted average

Gaussian Smoothing

Mask weights are samples of a Gaussian Function

I	4	6	4	1
4	16	26	16	4
6	26	43	26	6
4	16	26	16	4
I	4	6	4	I

 5×5 Gaussian filter, $\sigma = 1$

Relation between σ and smoothing?

Spatial Domain Filtering

What is a filter?

Notion of Frequency and Filtering

Slowly varying intensities vs. Rapidly varying intensities

What is filtering operation?

Sharpening Filter

Dbjective of sharpening is to highlight fine detail in an image or to enhance detail that has been blurred.

▶ Smoothing → Averaging → Summation → Integration

▶ Sharpening → Difference

1-D Derivatives

First Derivative

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

- Zero in flat segments
- Nonzero at the onset of a step or ramp
- Nonzero along ramps

Second Derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x).$$

- Zero in flat areas;
- Nonzero at the onset and end of a gray-level step or ramp;
- Zero along ramps of constant slope

Image Derivatives

$$f(x-1,y) \qquad f(x,y) \qquad f(x+1,y)$$

$$f(x,y-1)$$

$$f(x,y)$$

$$f(x,y)$$

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

Laplacian Filter

$$\nabla^2 f = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

0	1	0	
1	-4	1	
0	1	0	

Laplacian Filter

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

a b c d

FIGURE 3.37

(a) Filter mask used to implement Eq. (3.6-6). (b) Mask used to implement an extension of this equation that includes the diagonal terms. (c) and (d) Two other implementations of the Laplacian found frequently in practice.

Implementation

$$I'(u,v) = \begin{cases} I(u,v) - \nabla^2 I(u,v) \\ I(u,v) + \nabla^2 I(u,v) \end{cases}$$

If the center coefficient is negative
If the center coefficient is positive

Where I(u,v) is the original image

 $\nabla^2 I(u,v)$ is Laplacian filtered image

I'(u,v) is the sharpened image

sharpened = range_normalize(input + filtered)

Sharpening with Laplacian Filters

I(u,v)

 $\nabla^2 I(u,v)$

 $\nabla^2 I(u,v) + 128$

(For Visualization)

Laplacian Filters $\nabla^2 I(u,v)$

I(u,v)

 $\nabla^2 I(u,v) + 128$ (For Visualization)

I'(u,v)

Sharpening with Laplacian Filters

$$g_{mask}(x,y) = f(x,y) - \bar{f}(x,y), \quad g(x,y) = f(x,y) + k * g_{mask}(x,y).$$

▶ **High boost filter**: amplify input image, then subtract a lowpass image

$$Highboost = A \ Original - Lowpass$$

= $(A-1) \ Original + Original - Lowpass$
= $(A-1) \ Original + Highpass$

$$A>=1$$
 $W = 9A-1$
 -1
 -1
 w
 -1
 -1
 w
 -1

$$A=2$$
 $W = 17$
 -1
 -1
 -1
 -1
 -1

- If **A=I**, we get unsharp masking.
- If A>I, part of the original image is added back to the high pass filtered image.

Other Spatial Filters (non linear)

max filter

Other Spatial Filters (non linear)

min filter

Other Spatial Filters (median filter – non linear)

max, min, median → also known as order statistic filters

Other Spatial Filters

- Geometric mean
- ▶ Harmonic mean
- Contra harmonic mean
- Mid Point filter
- Alpha trimmed mean filter
-

Bilateral Filtering

Bilateral Filtering

Bilateral Filtering

References

▶ GW Chapter – 3.4.1, 3.5, 3.6