Задания

Continue Course

7/7 points earned (100%)

Back to Week 4

Quiz passed!

1/1 points

1.

Шестая строчка треугольника Паскаля выглядит следующим образом:

- 1612151261
- 0 1615201561

Correct Response

Верно!

По определению, шестая строчка треугольника Паскаля получается из пятой 1 5 10 10 5 1 суммированием чисел стоящих слева сверху и справа сверху. Получаем следующую строчку: 1 6 15 20 15 6 1.

- 0 15101051
- 15121251

1/1 points

2.

На дереве висит 10 разных яблок. Сколькими способами можно сорвать нечётное количество яблок?

Preview

512

512

Correct Response

Верно!

Из задачи **Наборы из чётного числа символов** мы знаем, что чётное количество яблок можно сорвать $2^{10-1}=2^9=512$ способами. Так как общее количество способов сорвать яблоки равно 2^{10} , то нечётное количество яблок можно сорвать также 512 способами.

Your answer, 512, is equivalent to the instructor's answer 512.

1/1 points

3. Сумма
$$C_{10}^1 + C_{10}^2 + \dots + C_{10}^{10}$$
 равна

- **O** 512
- O 511
- 0 1024
- 0 1023

Correct Response

Верно!

Мы знаем, что $C_n^0+C_n^1+\ldots+C_n^n=2^n$. Подставляя n=10, получаем, что $C_{10}^0+C_{10}^1+C_{10}^2+\ldots+C_{10}^{10}=2^{10}=1024$. Наша сумма получается из данной вычитанием $C_{10}^0=1$. Следовательно, ответ равен 1023.

4.

Коэффициент при x^7 в разложении $(1+x)^{11}$ равен (отметьте все подходящие варианты)

 C_{11}^{4}

Correct Response

Верно!

По формуле бинома Ньютона коэффициент при x^7 равен $C_{11}^7 = C_{11}^4$.

 C_{11}^{6}

Correct Response

 C_{11}^{7}

Correct Response

Верно!

По формуле бинома Ньютона коэффициент при $x^7\,$ равен $C_{11}^7\,=\,C_{11}^4\,.$

 C_{11}^{5}

Correct Response

1/1 points

5.

В наборе из 12 сосудов имеется 5 неразличимых стаканов и 7 различных чашек. Сколькими способами можно выбрать 6 сосудов из 12?

Preview

126

Correct Response

Верно!

Для каждого фиксированного k существует только один способ выбрать k неразличимых стаканов. Отсюда искомое количество способов равно количеству способов выбрать от 1 до 6 чашек. Искомая сумма равна $C_7^1+\ldots+C_7^6=C_7^0+C_7^1+\ldots+C_7^6+C_7^7-(C_7^0+C_7^7)=2^7-2=128-2=126$.

Your answer, 126, is equivalent to the instructor's answer 126.

1/1 points

6. Сумма $C_{n+m-1}^m + C_{n+m-2}^m + \ldots + C_m^m$ при всех $m \geq 1$, $n \geq 1$ равна (укажите все возможные варианты):

 C_n^m

Correct Response

 C_{n+m}^{n-1}

Correct Response

Верно!

Эта в сумма в точности равна сумме чисел в треугольнике Паскаля, расположенных на одной диагонали, начиная с числа C^m_{n+m-1} и выше. Эта задача разобрана на видео, и ответ — число, стоящее под C^m_{n+m-1} справа, то есть $C^{m+1}_{n+m}=C^{n-1}_{n+m}$.

 C_{n+n}^n

Correct Response

 C_{n+m}^m

Correct Response

$$C_{n+m}^{m+1}$$

Correct Response

Верно!

Эта в сумма в точности равна сумме чисел в треугольнике Паскаля, расположенных на одной диагонали, начиная с числа C^m_{n+m-1} и выше. Эта задача разобрана на видео, и ответ — число, стоящее под C_{n+m-1}^m справа, то есть $C_{n+m}^{m+1}=C_{n+m}^{n-1}$.

$$C_{n+m}^{m-1}$$

Correct Response

7.

Отметьте тождества, выполненные при всех $n \ge k \ge 0$:

$$2^n = C_n^0 + \ldots + C_n^n$$

Correct Response

Correct Response

$$C_{n-k}^k = C_{n-k}^{n-k}$$

Correct Response

Correct	Response	
---------	----------	--