Homotopy Perturbation Neural Networks

Preprint · July 2024		
DOI: 10.13140/RG.2.2.16035.46885/1		
CITATIONS		READS
0		7
1 author:		
	Gary Nan Tie	
	Mu Risk LLC	
	77 PUBLICATIONS 26 CITATIONS	
	SEE PROFILE	

Homotopy Perturbation Neural Networks Gary Nan Tie, July 15th 2024

Abstract: Inspired by He's homotopy perturbation method, we introduce a new deep learning technique to parsimoniously solve regression problems. Essentially, a homotopy is constructed that deforms a linear problem to our desired non-linear regression problem.

For reference, we recall the homotopy perturbation method [He, 1999] for solving general non-linear differential equations of the form:

(1)
$$A(u) + f(r) = 0$$
, $r \in \Omega$

with boundary conditions

$$B(u, \frac{\partial u}{\partial n}) = 0, r \in \Gamma$$

where A is a general differential operator,

B is a boundary operator, for is a known analytic function, T is the boundary of the domain D.

Suppose A = L+N, where L is linear and N is non-linear.

So (1) becomes: (2)
$$L(u)+N(u)-f(v)=0$$

We construct a homotopy v(r,p): $\Sigma \times [0,1] \longrightarrow \mathbb{R}$

which satisfies: (3) H(v,p) := (1-p)[L(v)-L(u,)]

where $p \in [0,1]$, $r \in \mathbb{N}$ and u_0 is an initial approximation of (2), which satisfies the boundary conditions.

Note that, $H(v, 0) = L(v) - L(u_0) = 0$

and H(V,1) = A(V) - f(1) = 0.

Now use the embedding parameter p as a 'small parameter' and assume that the solution of (3) can be written as a power series in p: $v = \sum_{i=0}^{M} p^i v_i$

Setting P=1 results in an approximate solution of (2):

$$(4) \quad u = \sum_{i=0}^{\infty} V_i$$

The series in (4) is convergent in most cases, and the rate of convergence depends on A(V).

The homotopy perturbation method motivates the following: given training data pairs (x_i, y_i) i=0,1,...,n we want to learn a regression function A(x)=y.

Let L_{φ} be a linear L-layer FFN (feedforward network) with parameters φ and identity activation function, and let N_{φ} be a non-linear M-layer FFN with

Suppose $X = \{x_1, x_2, ..., x_n\} \subset X \subseteq \mathbb{R}^m$ define homotopy by: For j = 0, 1, ..., k $H_j: X \longrightarrow IR$

parameters & and activation function of + identity.

 $\begin{array}{c} x_i \longmapsto (1-p_i) \left[L_{\varphi}(x_i) - L_{\varphi}(x_0) \right] \\ + p_i \left[L_{\varphi}(x_i) + N_{\varphi}(x_i) - y_i \right] \end{array}$

where $P_{ij} \triangleq \frac{j}{12}$, $k \geqslant 2$; a discrete deformation From $L(x_{i}) - L(x_{i})$ to $L(x_{i}) + N(x_{i}) - y_{i}$. On average we want H; (x;) = 0 with small dispersion.

 $S_0 \mid_{e} \uparrow \quad \bigvee_{j} \triangleq \sum_{i=1}^{n} |H_{j}(x_i)|^2$

and $L(\varphi, \chi) \triangleq \sum_{i=0}^{k} V_i + \lambda \left[L(\chi_0) + N(\chi_0) - y_0\right]^2, \lambda > 0$

and $L(\hat{\varphi}, \hat{\gamma}) \triangleq \min_{\varphi, \gamma} L(\varphi, \gamma)$.

Then $L_{\zeta}(\alpha_i) + N_{\chi}(\alpha_i) \approx y_i$, i = 1, 2, ..., n

since H_k (x;) ≈ 0.

Define regression function A(x) = L(x) + N(x), $x \in X$.

Summery: We learn & and 2 so that deformation

H; From L(xi) - L(xo) to A(xi) - yi

satisfies H; (x;) ~ O for j=0,1,..., k.

In particular, $H_k(x_i) \approx 0$, ie $L_k(x_i) + N_k(x_i) \approx y_i$, i=1,...,n

so define our regression function to be

 $A(x) \triangleq L_{\varphi}(x) + N_{\chi}(x)$ for $x \in \chi \supset \chi$.

Refining the initial guess xo

Let
$$X = \{x_0, x_1, \dots, x_n\}$$
 and $Y = \{y_0, y_1, \dots, y_n\}$

let
$$H_{j}(\alpha_{i}) \triangleq (1-P_{j}) \left[L_{\varphi}(\alpha_{i}) - L_{\varphi}(\alpha_{o}) \right]$$

where
$$p_i \stackrel{\triangle}{=} \frac{J}{R}$$
 and $\chi_i \in X \setminus \{\chi_o\}$,

and let
$$\bigvee_{j} \triangleq \sum_{\chi_{i} \in X \setminus \{\chi_{i}\}} |H_{j}(\chi_{i})|^{2}$$

$$l(x_0, \varphi, \chi, \lambda) \triangleq \sum_{j=0}^{k} V_j + \lambda [L(x_0) + N(x_0) - y_0]^2, \lambda > 0$$

$$L(n_0, \hat{\varphi}, \hat{\gamma}, \lambda) \stackrel{d}{=} \min_{\varphi, \gamma} L(n_0, \varphi, \gamma, \lambda)$$

$$A[\eta_0, \hat{\zeta}, \hat{\chi}, \lambda](x) \triangleq L_{\hat{\zeta}}(x) + N_{\hat{\chi}}(x), \quad \chi \in \mathcal{X} \supset X$$

$$x_i \triangleq x_i \in X$$
 that minimizes $|A[x_0, \hat{\varphi}, \hat{\psi}, \lambda](x_i) - y_i|$

L(xo, \$\hat{\phi}, \hat{\phi}, \lambda) learns \$\hat{\phi}\$ and \$\hat{\phi}\$ over X and Y with initial guess No. L(n, G, n, x) learns & and n over X and Y with initial guass xx. If $L(x, \hat{\varphi}, \hat{\varphi}, \hat{\chi}, \lambda) < L(x, \hat{\varphi}, \hat{\psi}, \lambda)$ upolate initial guess xo to xx and repeat this refinement until L(x, G, T, X) is sufficiently small for purpose or stops. On the final iteration, use A[x, p, i, i,]

as the predictor function.

References

Ji-Huan He, 'Homotopy perturbation technique' Comput. Methods Appl. Mech. Engrg., 178 (1999), pp. 257-262

Ji-Huan He, 'A coupling method of a homotopy technique and a perturbation technique for non-linear problems' International Journal of Non-Linear Mechanics 35 (2000) 37-43