Математический анализ-3 семестр

Лекция 14

Тема 5. Изолированные особые точки

- 5.1. Нули аналитической функции
- 5.2. Классификация изолированных особых точек на основе поведения функции в окрестности особой точки
- 5.3. Классификация изолированных особых точек по виду главной части ряда Лорана

Определение 1. Точка z_0 называется *изолированной особой точкой* функции f(z), если f(z) аналитична в некоторой окрестности этой точки, за исключением самой точки z_0 , а в точке z_0 функция не определена или не дифференцируема.

Рассмотрим точку z_0 и разложим f(z) в ряд в окрестности точки z_0 , т.е. по степеням $(z-z_0)$.

Если точка z_0 – правильная, т.е. f(z) аналитична в т. z_0 , то существует окрестность (круг радиуса R) $|z-z_0| < R$, внутри которого f(z) аналитична и функция раскладывается в степенной ряд Тейлора:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
; $c_n = \frac{f^{(n)}(z_0)}{n!}$.

Если точка z_0 – изолированная особая точка (ИОТ), то f(z) аналитична в кольце $0 < |z - z_0| < R$ и функция раскладывается в степенной ряд Лорана:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$
; $c_n = \frac{f^{(n)}(z_0)}{n!}$.

5.1. Нули аналитической функции

Определение 2. Точка z_0 называется *нулем n-го порядка* аналитической функции f(z), если n – порядок первой не равной нулю производной: $f(z_0) = 0, f'^{(z_0)} = 0, \ldots, f^{(n-1)}(z_0) = 0, f^{(n)}(z_0) \neq 0$. Если n = 1, то точка z_0 называется *простым нулем*.

Теорема 1. Точка z_0 является нулем n-го порядка функции f(z), аналитической в точке z_0 , тогда и только тогда, когда имеет место равенство $f(z) = (z - z_0)^n \varphi(z)$, где $\varphi(z)$ аналитична в точке z_0 и $\varphi(z_0) \neq 0$.

Пример 1. Найти нули функции, определить порядок нуля:

$$f(z) = cosz - 1$$
.

 $\frac{Peшeниe:}{z_n=2\pi n}$ приравняем f(z) нулю, получим cosz=1, откуда $z_n=2\pi n$ $(n=0,\pm 1,\dots)$ – нули данной функции.

Найдем

$$f'(z)|_{z=z_n} = -\sin z|_{z=2\pi n} = 0,$$

 $f''(z)|_{z=z_n} = -\cos z|_{z=2\pi n} = -1 \neq 0.$

Согласно определению, $z_n = 2\pi n$ являются нулями второго порядка.

Пример 2. Найти нули функции, определить порядок нуля:

$$f(z) = z^8 - 9z^7.$$

<u>Решение:</u> приравняем f(z) нулю, получим $z^7(z-9)=0$, $z_1=0$, $z_2=9$. Можно воспользоваться определением, однако проще использовать теорему 1. Функция f(z) представима в виде $f(z)=z^7(z-9)$, но тогда z=0 является нулем порядка 7, функцией $\varphi(z)$ является сомножитель $\varphi(z)=z-9$, $\varphi(0)=-9\neq 0$; z=9 является нулем порядка 1, функцией $\varphi(z)$ в данном случае является $\varphi(z)=z^7$, $\varphi(9)=9^7\neq 0$.

 $\underline{\mathit{Пример}\ 3.}$ Найти нули функции, определить порядок нуля: $f(z) = 1 - e^z.$

Приравняем f(z) нулю, получим

$$e^z = 1, z = Ln1 = ln1 + i(0 + 2\pi k),$$

откуда $z_k = 2\pi k i \; (k = 0, \pm 1, \dots)$ – нули данной функции.

Найдем

$$f'(z)|_{z=z_n} = -e^z|_{z=2\pi ki} = -(\cos 2\pi k + i\sin 2\pi k) = -1$$

Согласно определению, $z_k = 2\pi ki$ являются простыми нулями функции $f(z) = 1 - e^z$.

Пример 4.

Найти нули функции и определить порядок нуля:

$$f(z) = (z^2 + 1)^3 e^z.$$

$$f(z)=0,\ z^2+1=0,\ z_1=i,\ z_2=-i.$$
 Функция $f(z)$ представима в виде $f(z)=(z+i)^3(z-i)^3e^z.$

$$z_1=i$$
: $f(z)=(z-i)^3\varphi(z), \varphi(z)=(z+i)^3e^z, \varphi(i)\neq 0$, следовательно, по теор. 1 $z_1=i$ является нулем порядка 3.

$$z_2 = -i$$
: $f(z) = (z+i)^3 \varphi(z)$, $\varphi(z) = (z-i)^3 e^z$, $\varphi(-i) \neq 0$, следовательно, по теореме 1 $z_2 = -i$ является нулем порядка 3.

Пример 5.

Найти нули функции и определить их порядки:

$$f(z) = (z^2 - 1)(z^5 + 8z^3).$$

$$f(z) = (z - 1)(z + 1)z^{3}(z + \sqrt{8}i)(z - \sqrt{8}i),$$

$$\left\{egin{aligned} z_{1,2} = \pm 1 \ z_{3,4} = \pm \sqrt{8}i \end{aligned}
ight. -$$
 простые нули, $z_5 = 0$ — ноль третьего порядка.

5.2. Классификация изолированных особых точек на основе поведения функции в окрестности особой точки

Определение 3. Точка z_0 называется *устранимой* особой точкой функции f(z), если существует конечный предел функции f(z) в точке z_0

$$\lim_{z\to z_0}f(z)=C.$$

<u>Пример 1.</u> Найти особые точки функции $f(z) = \frac{1-e^{3z}}{z}$ и установить их тип.

 $\underline{Peшeнue}$: особая точка функции f(z) есть $z_0=0$. Вычислим

$$\lim_{z \to 0} \frac{1 - e^{3z}}{z} = \left[\frac{0}{0}\right] = \lim_{z \to 0} \frac{-3z}{z} = -3.$$

т.е. $z_0 = 0$ – устранимая особая точка.

<u>Пример 2.</u> Найти особые точки функции $f(z) = \frac{cosz-1}{z^2}$.

Особая точка функции f(z) есть $z_0 = 0$. Вычислим

$$\lim_{z \to 0} \frac{\cos z - 1}{z^2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{z \to 0} \frac{-(1 - \cos z)}{z^2} = \lim_{z \to 0} -\frac{z^2}{2z^2} = -\frac{1}{2}.$$

т.е. $z_0 = 0$ – устранимая особая точка.

- *Определение 4.* Точка z_0 называется *полюсом* функции f(z), если $\lim_{z \to z_0} f(z) = \infty$.
- **Теорема 2.** Для того чтобы точка z_0 была полюсом функции f(z), необходимо и достаточно, чтобы эта точка была нулем для функции $\varphi(z) = \frac{1}{f(z)}$.
- **Теорема 3.** Пусть f(z) является аналитической в окрестности точки z_0 . Если точка z_0 нуль порядка n для f(z), то точка z_0 полюс порядка n для функции $\varphi(z) = \frac{1}{f(z)}$.
- Замечание. Если точка z_0 полюс порядка n для функции f(z), то точка z_0 нуль порядка n для функции $\varphi(z) = \frac{1}{f(z)}$ при условии $\frac{1}{f(z_0)} = 0$. Отметим, что без последнего условия $\frac{1}{f(z_0)} = 0$ утверждение становится неверным. В самом деле, если $f(z) = \frac{\sin z}{z^2}$, то z = 0 полюс первого порядка. Однако функция $\varphi(z) = \frac{1}{f(z)} = \frac{z^2}{\sin z}$ не определена при z = 0.
- **Теорема 4.** Для того чтобы точка z_0 являлась полюсом порядка n функции f(z), необходимо и достаточно, чтобы функцию f(z) можно было представить в виде $f(z) = \frac{\varphi(z)}{(z-z_0)^n}$, где $\varphi(z)$ аналитична в точке z_0 и $\varphi(z_0) \neq 0$.

Замечание. Теорема остается справедливой, если z_0 — устранимая особая точка функции $\varphi(z)$ и существует $\lim_{z \to z_0} \varphi(z) \neq 0$.

Например, если $\varphi(z) = \frac{\sin z}{z}$, а $f(z) = \frac{\varphi(z)}{z} = \frac{\frac{\sin z}{z}}{z}$, то $z_0 = 0$ — полюс первого порядка для функции f(z).

Пример 1.

Найти особые точки функции f(z) и установить их тип:

$$f(z) = \frac{2z+1}{z^4 - 2z^3}.$$

 $\underline{Peшeнue}$: найдем нули функции $\frac{1}{f(z)} = \frac{z^4 - 2z^3}{2z + 1}$,

так как $z^4 - 2z^3 = z^3(z-2)$, то функция $\frac{1}{f(z)}$ имеет два нуля.

 $z_1=0$ — это нуль третьего порядка, поэтому f(z) можно представить в виде $\frac{\varphi(z)}{z^3}$, где $\varphi(z)=\frac{2z+1}{z-2}$, $\varphi(0)=-\frac{1}{2}\neq 0$.

По теореме 4 f(z) в точке z = 0 имеет полюс третьего порядка.

 $z_2=2$ — нуль первого порядка, f(z) можно представить в виде $\frac{\psi(z)}{z-2}$, где $\psi(z)=\frac{2z+1}{z^3},\ \psi(2)=\frac{5}{8}\neq 0.$ По теореме 4 f(z) в точке z=2 имеет полюс первого порядка.

Пример 2.

Найти особые точки функции f(z) и установить их тип:

$$f(z) = \frac{z+3}{(z^2+2z)(z-1)^2}.$$

Нули функции $\frac{1}{f(z)} = \frac{(z^2+2z)(z-1)^2}{z+3} = \frac{z(z+2)(z-1)^2}{z+3}$,

$$z_1 = 0, z_2 = -2, z_3 = 1.$$

$$f(z)=rac{1}{z}arphi(z), arphi(z)=rac{z+3}{(z+2)(z-1)^2}$$
, $arphi(z)$ аналитична в точке

 $z_1 = 0$, $\varphi(0) \neq 0$, следовательно, $z_1 = 0$ — простой полюс.

$$z_2=-2$$
, $f(z)=\frac{1}{z+2}\varphi(z)$, $\varphi(z)=\frac{z+3}{z(z-1)^2}$, $\varphi(z)$ аналитична в точке $z_2=-2$, $\varphi(-2)\neq 0$, следовательно, $z_2=-2$ — простой полюс.

$$z_3=1.$$
 $f(z)=rac{1}{(z-1)^2} arphi(z), arphi(z)=rac{z+3}{z(z+2)}, arphi(z)$ аналитична в точке $z_3=1, arphi(1)\neq 0,$ следовательно, $z_3=1$ — полюс 2-го порядка.

- **Теорема 5.** Если функция f(z) представима в виде $f(z) = \frac{P(z)}{Q(z)}$ и точка z_0 является нулем порядка m для функции P(z) ($z_0 = H(m)$) и нулем порядка l для функции Q(z) ($z_0 = H(l)$), то есть $z_0 = \frac{H(m)}{H(l)}$, то:
 - l. если m>l, то n=m-l есть порядок нуля функции f(z) в точке z_0 ,
 - 2. если m < l, то n = l m есть порядок полюса функции f(z) в точке z_0 ,
 - 3. если m=l, то z_0 устранимая особая точка.

Пример 1.

Найти особые точки функции f(z) и установить их тип: $f(z) = \frac{\sin z}{z^2(z-5)^3}.$

Особыми точками функции f(z) являются $z_1=0$ и $z_2=5$.

 $z_1 = 0$. Числитель и знаменатель f(z) обращаются в ноль.

Для числителя P(z)=sinz число z=0 является нулем 1 порядка, так как $P'(z)\mid_{z=0}=\cos z\mid_{z=0}=1\neq 0,$ то по определению 2 z=0 – простой ноль.

Знаменатель $Q(z) = z^2(z-5)^3$ по теореме 1 в точке z=0 имеет ноль 2-го порядка.

Следовательно, $z_0 = \frac{H(1)}{H(2)} = \Pi(1)$ – полюс первого порядка (по теореме 5).

В точке z=5 перепишем функцию в виде $f(z)=\frac{\varphi(z)}{(z-5)^3}$, где

$$\varphi(z)=\frac{\sin z}{z^2},\, \varphi(5)=\frac{\sin 5}{25}\neq 0,\, \varphi(z)$$
 аналитична, т.е. $z_2=\frac{\mathrm{H}(0)}{\mathrm{H}(3)}=\Pi(3)$ – полюс

3-го порядка.

Пример 2.

Найти тип особой точки $z_0 = 0$ функции $f(z) = \frac{z}{2+z^2-2chz}$.

$$P(z) = z, P(0) = 0, P'(0) = 1 \neq 0, z_0 = H(1).$$

$$Q(z) = 2 + z^2 - 2chz$$
, $Q(0) = 0$, $Q'(z) = 2z - 2shz$, $Q'(0) = 0$,

$$Q''(z) = 2 - 2chz, Q''(0) = 0, Q'''(z) = -2shz, Q'''(0) = 0,$$

$$Q^{(4)}(z) = -2chz, Q^{(4)}(0) = -2 \neq 0, z_0 = H(4).$$

Итак,
$$z_0 = \frac{H(1)}{H(4)} = \Pi(3)$$
 – полюс 3-го порядка.

Пример 3.

Найти особые точки функции f(z) и установить их тип:

$$f(z) = \frac{1 - e^{z+1}}{z(z+1)^3}.$$

Особыми точками функции f(z) являются $z_1 = 0$ и $z_2 = -1$.

$$z_1 = \frac{H(0)}{H(1)} = \Pi(1) -$$
простой полюс.

$$z_2 = \frac{H(1)}{H(3)} = \Pi(2)$$
 — полюс 2-го порядка.

Определение 5. Точка z_0 называется *существенно особой* точкой, если не существует ни конечного, ни бесконечного предела f(z): $\nexists \lim_{z \to z_0} f(z)$.

Например, для функции $f(z) = \sin \frac{1}{z}$ точка z = 0 является существенно особой точкой, т.к. $\nexists \lim_{z \to 0} \sin \frac{1}{z}$.

5.3. Классификация изолированных особых точек по виду главной части ряда Лорана

Теорема 6. Точка z_0 является устранимой особой точкой, если в разложении f(z) в ряд Лорана в окрестности точки z_0 отсутствует главная часть, т.е.

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n.$$

Теорема 7. Точка z_0 является *полюсом функции* f(z), если главная часть разложения в ряд Лорана f(z) в окрестности точки z_0 содержит конечное число слагаемых, т.е. $f(z) = \frac{c_{-n}}{c_{-n}} + \frac{c_{-1}}{c_{-1}} + \sum_{i=0}^{\infty} c_i (z_i - z_i)^k$

 $f(z) = \frac{c_{-n}}{(z-z_0)^n} + \dots + \frac{c_{-1}}{z-z_0} + \sum_{k=0}^{\infty} c_k (z-z_0)^k \qquad (c_{-n} \neq 0),$ наибольшая степень у разности (z – z₀) стоящей в знаменателях

наибольшая степень у разности $(z-z_0)$, стоящей в знаменателях членов главной части ряда Лорана, равна порядку полюса.

Теорема 8. Точка z_0 является существенно особой точкой для функции f(z), если главная часть разложения f(z) в ряд Лорана в окрестности z_0 содержит бесконечно много членов.

В следующих примерах найти все особые точки данных функций и установить их тип.

Пример 1.
$$f(z) = \frac{1-e^{-z}}{z}$$
.

Особая точка f(z): $z_0 = 0$, в этой точке функция не определена. Разложим f(z) в окрестности точки $z_0 = 0$, т.е. по степеням z в ряд Лорана:

$$f(z) = \frac{1}{z} \left[1 - (1 - z + \frac{z^2}{2!} - \frac{z^3}{3!} + \dots + (-1)^n \frac{z^n}{n!} + \dots \right] =$$

$$= 1 - \frac{z}{2!} + \frac{z^2}{3!} + \dots + (-1)^n \frac{z^n}{(n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(n+1)!}$$

Это разложение не содержит главной части. Поэтому точка $z_0 = 0$ является устранимой особой точкой.

Пример 2.
$$f(z) = \frac{1-\cos z}{z^7}$$
.

Особая точка f(z): $z_0 = 0$. Используя разложение в ряд Тейлора для функции cosz в окрестности точки $z_0 = 0$, получим лорановское разложение функции f(z) в окрестности нуля:

$$f(z) = \frac{1}{z^7} \left[1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots \right) \right] =$$
$$= \frac{1}{2! z^5} - \frac{1}{4! z^3} + \frac{1}{6! z} - \frac{z}{8!} + \dots$$

Разложение в ряд Лорана функции f(z) в окрестности точки z_0 содержит конечное число членов с отрицательными степенями z. Следовательно, точка $z_0=0$ является полюсом пятого порядка, т. к. наибольший показатель отрицательной степени z равен 5.

Пример 3.
$$f(z) = (z+3)^3 e^{\frac{1}{z+3}}$$
.

Используем разложение

$$e^t = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots$$

Сделаем замену t = z + 3, получим лорановское разложение функции f(z) в окрестности $z_0 = -3$:

$$f(t) = t^{3} \cdot e^{\frac{1}{t}} = t^{3} \cdot \sum_{n=0}^{\infty} \frac{1}{n! \, t^{n}} = t^{3} \left(1 + \frac{1}{t} + \frac{1}{2! \, t^{2}} + \frac{1}{3! \, t^{3}} + \cdots \right)$$

$$f(z) = (z+3)^{3} \left[1 + \frac{1}{z+3} + \frac{1}{2! \, (z+3)^{2}} + \frac{1}{3! \, (z+3)^{3}} + \frac{1}{4! \, (z+3)^{4}} + \ldots \right] =$$

$$= (z+3)^{3} + (z+3)^{2} + \frac{z+3}{2!} + \frac{1}{3!} + \frac{1}{4! \, (z+3)} + \ldots$$

Это разложение содержит бесконечное множество членов с отрицательными степенями (z+3). Следовательно, точка $z_0=-3$ является существенно особой точкой функции f(z).

Таблица классификации изолированных особых точек функции

Типы ИОТ	
По пределу	По ряду Лорана в окрестности ИОТ

Устранимая особая точка $\mathbf{z_0}$:	
$\lim_{z\to z_0}f(z)=c_0$	Ряд Лорана не содержит главной части, т.е. $f(z) = c_0 + c_1(z - z_0) + \dots$
Полюс порядка n:	
$\lim_{\mathbf{z}\to\mathbf{z}_0}f(\mathbf{z})=\infty$	Главная часть ряда Лорана конечна, $n-$ старшая степень $(z-z_0)$ в знаменателе
Существенно особая точка $\mathbf{z_0}$	
$\lim_{z \to z_0} f(z)$ не существует	Главная часть ряда Лорана содержит бесконечное число слагаемых