Exponentialfunktion und trigonometrische Funktionen

Bekannt aus §5: $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ konvergiert absolut in jedem $z \in \mathbb{C}$

$$e^z := \exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!} (z \in \mathbb{C})$$

klar: $e^0 = 1, e^1 = e$

Satz 6.1

- (1) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ konvergiert auf \mathbb{C} lokal gleichmäßig.
- (2) $\exp \in H(\mathbb{C})$ und $\exp'(z) = \exp(z) \forall z \in \mathbb{C}$
- (3) Additionstheorem: $e^{z+w} = e^z e^w \forall z, w \in \mathbb{C}$
- (4) $e^z \cdot e^{-z} = 1$, insbesondere $e^z \neq 0$
- (5) Für $z = x + iy(x, y \in \mathbb{R}) : e^z = e^x e^{iy}, |e^{iy}| = 1, |e^z| = e^x$

Beweis

- (1) folgt aus 5.2
- (2) 5.4 $\Longrightarrow \exp \in H(\mathbb{C}) \text{ und } \exp'(z) = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = \exp(z) (z \in \mathbb{C})$
- (3) Sei $c \in \mathbb{C}$ zunächst fest.

$$f(z) := e^z e^{c-z} (z \in \mathbb{C}),$$

$$f \in H(\mathbb{C}) \text{ und } f'(z) = e^z e^{c-z} + e^z e^{c-z} (-1) = 0 \quad \forall z \in \mathbb{C}$$

 \mathbb{C} ist ein Gebiet $\stackrel{4.2}{\Longrightarrow}$ f ist auf \mathbb{C} konstant.

$$f(0) = e^c$$
. Also: $e^z e^{c-z} = e^c \quad \forall z \in \mathbb{C} \forall c \in \mathbb{C}$

Setze c := z + w

- (4) folgt aus (3)
- (5) Nur zu zeigen: $|e^{iy}| = 1 (y \in \mathbb{R})$

$$\overline{e^{iy}} = \sum_{n=0}^{\infty} \frac{(iy)^n}{n!} = \sum_{n=0}^{\infty} \frac{(\overline{iy})^n}{n!} = \sum_{n=0}^{\infty} \frac{(-iy)^n}{n!} = e^{-iy}$$

$$\implies |e^{iy}|^2 = e^{iy}\overline{e^{iy}} = e^{iy}e^{-iy} \stackrel{(4)}{=} 1$$

Definition

Für $z \in \mathbb{C}$

$$\cos z := \frac{1}{2}(e^{iz} + e^{-iz})$$
 Cosinus $\sin z := \frac{1}{2i}(e^{iz} - e^{-iz})$ Sinus

Satz 6.2

(1)

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \quad \forall z \in \mathbb{C}$$

- (2) $\cos, \sin \in H(\mathbb{C})$ $\cos' z = -\sin z, \sin' z = \cos z \ \forall z \in \mathbb{C}$
- (3) $e^{iz} = \cos z + i \sin z \ \forall z \in \mathbb{C}$. Insbesondere: $e^{i\varphi} = \cos \varphi + i \sin \varphi \ \forall \varphi \in \mathbb{R}$. Damit lautet für $z \in \mathbb{C} \setminus \{0\}$ die Darstellung in Polarkoordinaten: $z = |z|e^{i \arg z}$.
- (4) Additions theorem:

$$\cos(z+w) = \cos z \cos w - \sin z \sin w$$

$$\sin(z+w) = \sin z \cos w + \sin w \cos z \quad \forall z, w \in \mathbb{C}$$

(5)
$$\cos^2 z + \sin^2 z = 1 \ \forall z \in \mathbb{C}$$

Beweis

(1) nur für cos: $\forall z \in \mathbb{C}$:

$$\cos z = \frac{1}{2} \sum_{n=0}^{\infty} \underbrace{\frac{i^n + (-i)^n}{n!}}_{\text{0, n ungerade}} z^n$$

$$\begin{cases} 0, & n \text{ ungerade} \\ 2(-1)^n, & n = 2k \end{cases}$$

$$\implies \cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!}$$

- (2) Aus der Definition folgt: $\cos \in H(\mathbb{C})$ und $\cos' z = \frac{1}{2}(ie^{iz}-ie^{-iz}) = \frac{i}{2}(e^{iz}-e^{-iz}) = \frac{-1}{2i}(e^{iz}-e^{-iz}) = -\sin z$ Analog für den Sinus.
- (3), (4), (5) folgen aus der Definition.

Folgerung 6.3

- (1) $e^{2k\pi i} = 1 \ \forall k \in \mathbb{Z}$; insbesondere: $e^{2\pi i} = 1$
- (2) $e^{i\pi} + 1 = 0$
- (3) Für $z \in \mathbb{C} : e^z = 1 \iff \exists k \in \mathbb{Z} : z = 2k\pi i$
- (4) $e^{z+2\pi i} = e^z \ \forall z \in \mathbb{C}$ (Die Exponentialfkt. hat die Periode 2π)
- (5) Für $z \in \mathbb{C}$: $\sin z = 0 \implies \exists k \in \mathbb{Z} : z = k\pi$ $\cos z = 0 \implies \exists k \in \mathbb{Z} : z = \frac{2k+1}{2}\pi$

Beweis

(1) 6.2 (3)
$$\implies e^{2k\pi i} = \cos(2k\pi) + i\sin(2k\pi) = 1(k \in \mathbb{Z})$$

(2)
$$e^{i\pi} \stackrel{6.2(3)}{=} \cos \pi + i \sin \pi = -1$$

(3) "
$$\Longrightarrow$$
 " Sei $z = x + iy \in \mathbb{C}(x, y \in \mathbb{R})$ und $e^z = 1$
 $\Longrightarrow e^x e^{iy} = e^x (\cos y + i \sin y) = 1$
 $\Longrightarrow e^x \cos y = 1, e^x \sin y = 0 \Longrightarrow \sin y = 0 \Longrightarrow \exists k \in \mathbb{Z} : y = k\pi$
 $1 = |e^z| = e^x \Longrightarrow x = 0 \Longrightarrow \cos y = 1 \Longrightarrow k = 2j(j \in \mathbb{Z}) \Longrightarrow z = i2j\pi$

(4)
$$e^{z+2\pi i} = e^z e^{2\pi i} = e^z$$

(5) Nur für sin. Sei
$$z \in \mathbb{C}$$
:
 $\sin z = 0 \iff e^i z = e^{-iz} \iff e^{2iz} = 1 \iff \exists k \in \mathbb{Z} : 2iz = 2k\pi i$
 $\iff \exists k \in \mathbb{Z} : z = k\pi$.

Definition

Für $z \in \mathbb{C}$:

$$\tan z := \frac{\sin z}{\cos z}, \quad z \in \mathbb{C} \setminus \{\frac{2k+1}{2}\pi : k \in \mathbb{Z}\}$$
 Tangens $\cot z := \frac{\cos z}{\sin z}, \quad z \in \mathbb{C} \setminus \{k\pi : k \in \mathbb{Z}\}$ Cotangens

tan und cot sind auf ihrem Definitionsbereichen holomorph.