SURE-LET Image Denoising with Multiple Directional LOTs

部部馬大學

Shogo MURAMATSU

May 8, 2012, PCS2012, Kraków, Poland

Dept. of Electrical and Electronic Eng., Niigata University, Japan

ABSTRACT

- A novel non-iterative image denoising technique is proposed by using directional lapped orthogonal transforms (DirLOTs).
- A redundant transform is constructed with multiple DirLOTs and applied to the SURE-LET image denoising.
- The denoising performance is evaluated for several images and compared with the traditional single orthonormal wavelet approach.

Key words- DirLOT, Wavelet shrinkage, SURE-LET image denoising

Introduction

- A common problem of image denoising, i.e. removal of additive white Gaussian noise (AWGN) from an observed image is dealt with.
- Purpose is to find a good candidate image $\hat{\mathbf{x}}$ of \mathbf{x} only from \mathbf{v} .

- Popular denoising approaches include wavelet shrinkage techniques [e.g., Donoho and Johnstone, 1994].
- Luisier et al. proposed a linear optimization technique to determine the shape of shrinkage function [Luisier et al., 2007].
- Referred to as the SURE-LET approach, which minimizes the Stein's unbiased risk estimator (SURE) with linear expansion of thresholds (LET).
- Main issue of the SURE-LET approach is to improve the quality for diagonal edges and textures.
- In this work, we suggest to introduce a redundant transform:

Union of Directional Symmetric Orthonormal DWTs

Review of SURE-LET Image Denoising [Luisier et al., IEEE TIP 2007]

Figure: Principal of orthonormal wavelet denoising, where **w** is an AWGN.

- The denoising quality depends on the choice of the orthonormal transform Φ and the shrinkage function $\Theta(\cdot)$, where $\hat{\mathbf{x}} = \Phi^T \Theta(\Phi \mathbf{v})$.
- The SURE-LET approach is a technique to realize function $\Theta(\cdot)$, which avoids any a priori hypotheses on the noiseless picture **x**.
- Function $\Theta(\cdot)$ is point-wisely defined and completely characterized by a set of parameters a_k and b_k :

$$\theta(y, y_p; \mathbf{a}, \mathbf{b}) = e^{-\frac{y_p^2}{12\sigma^2}} \sum_{k=1}^K a_k y e^{-(k-1)\frac{y^2}{12\sigma^2}} + \left(1 - e^{-\frac{y_p^2}{12\sigma^2}}\right) \sum_{k=1}^K b_k y e^{-(k-1)\frac{y^2}{12\sigma^2}},$$

where y and y_p are a wavelet coefficient and interscale prediction of y obtained from the wavelet parent-child relationship, respectively. $(K = 2 \text{ and } T = \sqrt{6}\sigma \text{ are suggested.})$

The parameters a_k and b_k are linearly solved for minimizing SURE.

Review of DirLOTs [Muramatsu et al., IEEE TIP 2012]

(a) $|H_0(e^{j\omega_y}, e^{j\omega_x})|$ (b) Basis images

Figure: A design example of 2 × 2-Ch. DirLOT with the 2-order trend vanishing moments (TVMs) of $\phi = \frac{\pi}{6}$, where $[N_y, N_x]^T = [4, 4]^T$, i.e. the basis size is 10 × 10.

- DirLOTs are 2-D non-separable lapped orthogonal transforms with directional characteristics.
- Bases are symmetric and real-valued, and have compact-support.
- DirLOTs were shown to improve the performance of SURE-LET image denoising for diagonal edges and textures when the direction is KNOWN and FIXED [Muramatsu *et al.*, APSIPA 2011].

Image Denoising with Multiple DirLOTs

- For pictures with rich amount of geometrical structures, a single DirLOT does not work well.
- To improve the performance, we propose to introduce a redundant transform:

Figure: DWT decomposition

- $\blacksquare \Phi_{0\cup\frac{\pi}{2}}$: Nondirectional SOWT.
- $lackbox{\bullet}_{\phi}$: Directional SOWT for TVM direction ϕ .
- **T**^T constitutes a normalized tight frame and satisfies

$$\mathbf{T}^T\mathbf{T} = \sum_{k=0}^{R-1} \mathbf{\Phi}_k^T \mathbf{\Phi}_k = R\mathbf{I}$$

where *R* is the redundancy.

■ Heuristic shrinkage is available and simply realized by

$$\hat{\mathbf{x}} = \frac{1}{R} \mathbf{T}^T \Theta \left(\mathbf{T} \mathbf{v} \right) = \frac{1}{R} \sum_{k=0}^{R-1} \mathbf{\Phi}_k^T \Theta \left(\mathbf{\Phi}_k \mathbf{v} \right)$$

Experimental Results

- Denoising results for 8-bit grayscale pictures with AWGN ($\sigma = 30$).
- Sym5 and SON4 denote Symlets of index 5 and symmetric orthonormal WT with the classical two-order VMs, respectively.
- UDN4 denotes a union of DirLOTs with the two-order TVMs, where the TVM angles are set to $\phi_k \in \{-\frac{\pi}{6}, 0, \frac{\pi}{6}, \frac{2\pi}{6}, \frac{3\pi}{6}, \frac{4\pi}{6}\}$ (R = 1 + 6 = 7).
- The number of hierarchical levels is set to five for all transforms.

■ Comparison of PSNRs and SSIM indexes among three transforms.

•								
Test pictures		PSNR			SSIM			
of size 512×512	σ	SYM5	SON4	UDN4	SYM5	SON4	UDN4	
goldhill	20	29.40	29.33	29.58	0.760	0.758	0.767	
	30	27.84	27.79	27.99	0.699	0.696	0.707	
	40	26.74	26.71	26.86	0.653	0.651	0.662	
	20	31.26	31.26	31.69	0.835	0.832	0.844	
	30	29.48	29.48	29.83	0.794	0.790	0.804	
lena	40	28.17	28.16	28.43	0.759	0.754	0.770	
	20	27.76	27.53	28.00	0.794	0.786	0.808	
	30	25.75	25.63	25.92	0.714	0.707	0.733	
barbara	40	24.45	24.39	24.58	0.652	0.646	0.674	
	20	25.49	25.40	25.44	0.743	0.742	0.734	
	30	23.68	23.61	23.66	0.654	0.651	0.647	
baboon	40	22.54	22.48	22.49	0.577	0.573	0.569	

Conclusions

- Proposed to apply multiple DirLOTs to SURE-LET image denoising
- Performance is improved from the single transform approach.
- Further improvement is required for fine textures.
- Future works include the extention to color image denoising.

Acknowledgment

This work was supported by JSPS KAKENHI (23560443).