NAME: SRILAKSHMI NAGA SAI JYOTHI BHAMIDIPATI

EMAIL: lakshmibhamidipati943@gmail.com

Sr.	Title of Paper	Name of	Published	Remarks
1	Stress detection using deep neural networks	Authors Russell Li and Zhandong Liu	2020	Stress is detected using physiological signals from chest worn and wrist worn devices. Then the signals are analysed by using two deep neural networks: 1. 1D convolutional neural network. 2. A deep multilayer perceptron neural network. These two performed better than the
2	Automatic Stress Detection Using Wearable Sensors and Machine Learning: A Review	Shruti Gedam Sanchita Paul	2020	traditional machine learning algorithms. It is found that features extracted using Heart rate, Heart rate variability and skin conductance are more useful in prediction of stress level of an individual while Support vector machine, Random Forest and K-Nearest Neighbour are the most effective classification algorithms. This shows that physiological signals can be used to detect stress of an individual with the help of wearable sensors and machine learning algorithms are effective and affordable
3	Stress Detection with Machine Learning and Deep Learning using Multimodal Physiological Data	Pramod Bobade Vani M	2020	results show that generalization is possible as the LOSO evaluation scheme is used. It has been observed the machine learning algorithm used peak performance when the dataset contains more and valid parameters for identifying stress gives the better accuracy.
4	Machine Learning and IoT for Prediction and Detection of Stress	Mr. Purnendu Shekhar Pandey	2017	While using IoTs for stress detection the tested four algorithms. They are VF15, New bayes, Logistic regression, SVM. Out of this accuracy of Logistic regression and SVM are high when compared to other two. These gives better performance.
5	A Decision Tree Optimised SVM Model for Stress Detection using Bio signals	Alana Paul Cruz, Aravind Pradeep, Kavali Riya Sivasankar and Krishnaveni K.S	2020	Our model with Tree optimised Cubic SVM shows more accuracy in identifying stress when compared to already existing models. With our accurate model we can take remedial measures to reduce health risks.