

Department of Computer Science & Engineering

Course Title: Artificial Intelligence and Expert Systems Lab

Course Code: CSE 404

Lab Report: 03

Submission Date: 24.04.25

Submitted To: Submitted By:

Noor Mairukh Khan Arnob Susmita Roy

Lecturer, Reg: 21201199

Department of CSE, UAP Sec: B2

Problem Title:

Diabetes Prediction Using Machine Learning.

Problem Description:

Diabetes is a serious health problem that needs early detection to avoid complications. This project aims to build a machine learning model that can predict whether a person has diabetes or not using health information like age, glucose level, blood pressure, BMI, and more.

The dataset used in this project is the "Pima Indians Diabetes Dataset", which contains physiological data from female patients of at least 21 years old.

Using this dataset, the aim is to train a machine learning model, specifically-Logistic Regression, that can accurately predict the possibility of diabetes in a patient.

Tools and Languages Used:

• Programming Language: Python

• Tools: Colab Notebook

Source Code:

```
# Import necessary libraries
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
# Load Pima Indians Diabetes dataset from URL
df = pd.read_csv('https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv', header=None)
# Assign column names based on dataset documentation
df.columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
              'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']
# Display basic information about the dataset
print("Dataset Overview:")
print(df.head())
# Display basic information about the dataset
print("\nDataset Info:")
print(df.info())
# Split dataset into features (X) and target (y)
X = df.drop('Outcome', axis=1)
y = df['Outcome']
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(
    Χ,
    у,
    test size=0.2, # 80% training, 20% testing
    random_state=42 # For reproducibility
print("\nData Split Summary:")
print(f"Training features shape: {X_train.shape}")
print(f"Test features shape: {X test.shape}")
# Standardize the feature values
scaler = StandardScaler()
X train scaled = scaler.fit transform(X train)
X test scaled = scaler.transform(X test)
```

```
# Create and train logistic regression model
model = LogisticRegression(random_state=42, max_iter=1000)
model.fit(X_train_scaled, y_train)
# Make predictions on test set
y pred = model.predict(X test scaled)
# Calculate and display performance metrics
accuracy = accuracy_score(y_test, y_pred)
print("\nModel Performance Metrics:")
print(f"Accuracy: {accuracy:.3f}")
# Display detailed classification report
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
# Create confusion matrix visualization
plt.figure(figsize=(10, 6))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt='d',
           xticklabels=['No Diabetes', 'Diabetes'],
           yticklabels=['No Diabetes', 'Diabetes'],
           cmap='Blues')
plt.title('Confusion Matrix - Diabetes Prediction')
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.show()
```

Output:

Dataset Overview:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

Dataset Info:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

Column	Non-Null Count	Dtype
Pregnancies	768 non-null	int64
Glucose	768 non-null	int64
BloodPressure	768 non-null	int64
SkinThickness	768 non-null	int64
Insulin	768 non-null	int64
BMI	768 non-null	float64
DiabetesPedigreeFunction	768 non-null	float64
Age	768 non-null	int64
Outcome	768 non-null	int64
	Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age	Pregnancies 768 non-null Glucose 768 non-null BloodPressure 768 non-null SkinThickness 768 non-null Insulin 768 non-null BMI 768 non-null DiabetesPedigreeFunction 768 non-null Age 768 non-null

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

None

Data Split Summary:

Training features shape: (614, 8)

Test features shape: (154, 8)

Model Performance Metrics:

Accuracy: 0.753

Classification Report:

	precision	recall	f1-score	support
0	0.81	0.80	0.81	99
1	0.65	0.67	0.66	55
accuracy			0.75	154
macro avg	0.73	0.74	0.73	154
weighted avg	0.76	0.75	0.75	154

Conclusion:

This project's logistic regression model does a good job of predicting diabetes using basic health information. Even though it's a simple model, it works well when the data is properly prepared. It can help doctors find people who might have diabetes, so they can get help earlier and manage the disease better.