

Universidad Nacional Autónoma de México Facultad de Ciencias Geometria Moderna

Tarea 1

Elías López Rivera Emmanuel Sánchez Guzmán 2 { elias.lopezr, emmanuelsg}@ciencias.unam.mx Fecha: 01/09/2024

Problema 1

En los triángulos de la siguiente figura se tiene que: AC = C'A', AH es bisectriz del ángulo < DAC, DC = D'C', A'H' es bisectriz del ángulo < D'A'C', $AH \perp DC$, $A'H' \perp D'C'$ y < BAC = < B'A'C'. Demuestra que el triángulo $\triangle ADC \cong \triangle A'D'C'$

Figura 1: Construcción

Demostración. Como $AH \perp DC$ se tiene que < DHA = < AHC, luego como AH es bisectriz de < DAC se tiene que < HAC = < HAD, como AH = AH, por criterio ángulo-lado-ángulo $\Delta HAC \cong \Delta HAD$, por tanto $AC = AD \cdots 1$)

Como $A'H' \perp D'C'$ se tiene que < D'H'A = < A'H'C', luego como A'H' es bisectriz de < D'A'C' se tiene que < H'A'C' = < H'A'D', como A'H' = A'H', por criterio ángulo-lado-ángulo $\Delta H'A'C' \cong \Delta H'A'D'$, por tanto $A'C' = A'D' \cdots 2$)

De 1) y 2) se tiene que AD = AC = A'C' = A'D', por hipótesis AC = A'C' y DC = D'C', por criterio lado-lado $\Delta ADC \cong \Delta A'D'C'$

¿Cuáles de los siguientes enunciados son verdaderos y cuáles falsos

- i) Algunos tríangulos obtusángulos son isósceles
- ii) Todo triángulo equilatero es equiángulo
- iii) Algunos triángulos rectángulos son obtusángulos

Demostración.

- i) Tomemos $\triangle ABC$ es un triángulo tal que sus ángulos midan < BAC = 30 = < CBA y < ABC = 120, este es obtusángulo e isósceles al mismo tiempo por construcción , luego tomemos $\triangle EFG$ tal que < EFG = 140, < FEG = 30, FGE = 10, es claro que este triángulo es obtusángulo pero no isósceles, por tanto la proposición es verdadera
- ii) Sea $\triangle ABC$ un triángulo equilatero, en partícular cumple que AB = AC, por tanto $\triangle ABC$ es isósceles y por proposición 1.5 se tiene que < ABC = < ACB, podemos aplicar un razonamiento análogo ya que BC = AB, por tanto $\triangle ABC$ sigue siendo isósceles ademas de que < BCA = < BAC, por nociones comunes se tiene que < BCA = < BAC = < ACB, por tanto la proposición es verdadera
- iii) Sea ΔABC , un triángulo rectangulo con < ABC = 90, si este triángulo fuera a su vez obtusángulo se tiene que necesariamente < CAB o < BCA son mayores que un ángulo recto, sin embargo la suma de < ABC con cualquiera de estos dos debe ser menor a dos ángulos rectos (proposición 1.16), suponemos sin perdida de generalidad que < CAB > 90, entonces < ABC + < CAB > 180, por tanto es imposible que el triángulo ΔABC sea obtusángulo.

El triángulo que se forma al unir los puntos medios de los lados de un triángulo equilatero , también es equilátero

Figura 2: Construcción

Demostración.

 ΔABC es equilatero se tiene que AB=BC=AC, como todo triángulo equilatero es equiángulo [Problema 2 ii)], entonces < BAC = < ACB = < CBA, notemos los triángulos ΔEFA , ΔEGB y ΔFGC , probaremos que $\Delta EGB \cong \Delta FGC$

- i) EB=FC pues AB=ACademas que E Y F bisecan AB y AC respectivamente
- ii)BG = GC pues G biseca BC
- iii) < GBE = < FCG pues G, B y C son colineales, a su vez A, F y C también son colineales

Por criterio lado-ángulo -lado, se concluye que $\Delta EGB \cong \Delta FGC \cdots 1$)

Ahora probaremos que $\Delta EGB \cong \Delta EFA$

- i)EB = EA pues E biseca a AB
- ii) AF = BG, pues AC = BC, ademas FG, bisecan a $AC \times BG$ respectivamente
- iii) < EAF =< GBE pues A, E Y B son colineales, de la misma manera B, G Y C son colineales

Por tanto $\Delta EGB \cong \Delta EFA \cdots 2$)

De 1) se sigue que FG = GE, de 2) se sigue que GE = EF, por nociones comunes se tiene que FG = GE = EF, por tanto ΔGEF es equilátero

Problema 4

En un poblado situado junto a un río, cuyo borde es totalmente recto, hay un inciendo en un lugar que llamaremos A. Cerca del borde del río, y del mismo lado, está la casa del bombero del pueblo, en un lugar al que llamaremos B. Para apagar el incendio el bombero llena con agua del río una cubeta y corre a vaciarla al fuego. ¿Cuál de los puntos en el borde del río hariá que la longitud de la trayectoria que debe recorrer el bombero sea la mínima posible?

Demostración.

Reflejamos el punto A a un punto C del otro lado del rio, sea el segmeno AC tal que interseca a la recta que representa el rio en un punto E, tenemos que AE = CE, de la misma manera reflejamos el punto B en un punto D al otro lado del rio, sea el punto E donde el segmento BD interseca a la recta que representa al rio, tenemos que la distancia más corta entre el punto C y el B es el segmento CB, por tanto para minimizar el recorrido del bombero tenemos que encontrar un recorrido que recorra la misma distancia que el segmento CB, para esto tracemos el segmento AD, y llamemos G al punto donde se intersecan CB, AD y la recta que representa al rio, a su vez notemos que CB = GB + CG, notemos que AEG = CEC = 90, ya que la recta del rio y el segmento AE son perpéndiculares, luego tenemos que AE = CE, y que ademas EG = EG, por criterio lado-ángulo-lado se tiene que $\Delta AEG \cong \Delta CEG$, de donde se obtiene que AG = CG, por tanto CG + GB = CB, es decir el punto G es el que minimiza la distancia recorrida por el bombero

Figura 3: Construcción

Página 4 de 7

¿Cuáles de los siguientes enunciados son verdaderos y cuáles falsos

- i) Si dos ángulos son congruentes, entonces son suplementarios
- ii) Un ángulo cualquiera de puede dividir en 4 partes iguales

Demostración.

- i) Si α , β son ángulos congruentes entonces $\alpha = \beta$, si estos mismo fueran suplementarios $\alpha + \beta = 180$, es claro que $\alpha = 30 = \beta$, son congruentes sin embargo $\alpha + \beta = 60$, por tanto la proposición es falsa.
- ii) Sea el ángulo < ABC, por la proposición 1.19 se tiene que es posible bisecar este, tomemos el punto F de tal suerte que < ABC = < CBF + < FBC y < CBF = FBC, de la misma manera es posible bisecar los ángulos < CBF y < FBC, llamemos L un punto tal que < CBF = < ABL + < LBF, y < ABL = < LBF, de la misma manera tomemos el punto H tal que < FBC = < FBH + < HBC y < FBH = < HBC, se deduce que < ABC = < ABL + < LBF + < FBH + < HBC y por nociones comunes tenemos que < FBH = < HBC = ABL = LBF, por tanto hemos dividido < ABC en 4 partes iguales.

Problema 6

Demuestra que las diagonales de un paralelogramo se bisecan

Figura 4: Construcción

Demostración.

Sea ABCD un paralelogramos, trazamos el segmento AC, como AD es paralela a BC, tenemos que

< ACB = < CAD, pues son alternos internos, de la misma manera AB es paralela a DC, entonces < ACD = < CAB, pues son alternos internos, luego AC = AC, por criterior ángulo-lado-ángulo se tiene que $\Delta ADC \cong \Delta CBA$, por tanto AD = CB

Luego trazamos BD, llamamos F al punto donde se intersecan AC y BD, como AD es paralela a BC, se tiene que $\langle BDA = \langle DBC \rangle$, pues son alternos internos por tanto:

$$i) < ACB = < CAD$$

$$ii) < BDA = < DBC$$

iii)
$$AD = BC$$

Por criterio ángulo-lado-ángulo, se tiene que $\Delta FDA \cong \Delta FBC$, por tanto FA = FC Y FB = FD, por tanto F biseca tanto a AC como a BD

Sea ΔABC un triángulo isósceles con AB=AC y A' el punto medio del lado BC. Demuestra que los triángulos que se forman $\Delta ABA'$ y $\Delta ACA'$ son congruentes

Figura 5: Construcción

De mostraci'on.

- i) Por hipótesis se tiene que AB = AC
- ii) Como A' es punto medio de BC se tiene que BA' = A'C
- iii) Tenemos que AA' = AA'

Por tanto por criterio lado-lado se concluye que $\Delta A'BA \cong \Delta A'CA$