SubSpaces

A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Subspace Criteria:

If W is the subset of a vector space V, then W is called subspace if and only if the following conditions hold:

- a) (Closed under addition) If \vec{u} and \vec{v} are vectors in W, then $\vec{u} + \vec{v}$ is in W.
- b) (Closed under scalar multiplication) If k is any scalar and \vec{u} is any vector in W then $k\vec{u}$ is in W.

Or in other words, W is subspace of V if and only if it is closed under addition and scalar multiplication.

Example 1: If V is any vector space and if $W = \{\vec{0}\}$ is the subset of V that consists of the zero vector only, then W is closed under addition and scalar multiplication since

$$\vec{0} + \vec{0} = \vec{0}$$

$$k\vec{0} = \vec{0}$$
, for any scalar k

We call W the zero subspace of V.

Example 2:

$$W = \{(x, y); x \ge 0, y \ge 0\}$$

Prove and disprove W is subspace of R^2 .

Solution:

1. W is closed under addition, because

Let,
$$\vec{u} = (x, y), \vec{v} = (x', y') \in W$$
 $(x, y \ge 0 \text{ and } x', y' \ge 0)$

$$\vec{u} + \vec{v} = (x + x', y + y') \in W \qquad (x + x' \ge 0 \text{ and } y + y' \ge 0)$$

2. W is not closed under scalar multiplication, because if

$$\vec{u} = (1,1) \in W$$

But
$$-\vec{u} = (-1, -1) \notin W$$

So W is not subspace of V.

Example 3:

Which of the following subset of R^2 with usual operations of addition and scalar multiplication are subspaces?

a)
$$W_1 = \{(x, y); x \ge 0\}$$

b)
$$W_2 = \{(x, y); x \ge 0, y \ge 0\}$$

c)
$$W_3 = \{(0, y); y \in R\}$$

Solution:

a) W_1 is closed under addition but not closed under scalar multiplication, because

Let
$$\vec{u} = (2,3) \in W$$

and
$$(-2)\vec{u} = -2(2,3) = (-4,-6) \notin W$$

- b) Done in example 2.
- c) $W_3 = \{(0, y); y \in R\}$

As $W_3 = y - axis$ in R^2 . To see whether W_3 is subspace, Let

$$\vec{u} = (0, u_1), \vec{v} = (0, v_1) \in W_3$$

$$\vec{u} + \vec{v} = (0, u_1 + v_1) \in W_3$$
,

 W_3 is closed under addition.

Let $\vec{u} = (0, u_1)$, k is any scalar then

$$k\vec{u} = (0, ku_1) \in W_3$$

 W_3 is closed under scalar multiplication.

 W_3 is subspace of R^2 .

Example 4:

Which of the following subset of R^3 with usual operations of addition and scalar multiplication are subspaces?

- a) $W_1 = \text{All vectors of the form } (a, 0, 0)$
- b) W_2 = All vectors of the form (a, 1, 1)
- c) $W_3 = \text{All vectors of the form } (a, b, c) \text{ where } b = a + c.$
- d) W_4 = All vectors of the form (a, b, c) where b = a + c + 1.
- e) $W_5 = \text{All vectors of the form } (a, b, 0)$.

Solution:

- a) $W_1 = \{(a, 0, 0); a \in R\}$
 - 1. W_1 is closed under addition and scalar multiplication as:

$$\vec{u} = (a_1, 0, 0) \in W_1$$

 $\vec{v} = (a_2, 0, 0) \in W_1$
 $\vec{u} + \vec{v} = (a_1 + a_2, 0, 0) \in W_1$

2. Let $\vec{u} = (a_1, 0, 0) \in W_1$ and k is any scalar, then

$$k\vec{u} = (ka_1, 0, 0) \in W_1$$

 W_1 is subspace of \mathbb{R}^3 .

b) $W_2 = \{(a, 1, 1); a \in R\}$

Let's check the first property, i.e. W_2 is closed under addition. Let

$$\vec{u} = (a_1, 1, 1) \in W_2$$

 $\vec{v} = (a_2, 1, 1) \in W_2$
 $\vec{u} + \vec{v} = (a_1 + a_2, 2, 2) \notin W_2$

 W_2 is not subspace of R^3 .

- c) $W_3 = \{(a, b, c); b = a + c; a, b, c \in R\}$
 - 1. W_1 is closed under addition and scalar multiplication as:

$$\vec{u} = (a_1, b_1, c_1) = (a_1, a_1 + c_1, c_1) \in W_3$$

 $\vec{v} = (a_2, b_2, c_2) = (a_2, a_2 + c_2, c_2) \in W_3$

Then
$$\vec{u} + \vec{v} = (a_1 + a_2, (a_1 + c_1) + (a_2 + c_2), c_1 + c_2)$$

 $\vec{u} + \vec{v} = (a_1 + a_2, a_1 + a_2 + c_1 + c_2, c_1 + c_2) \in W_3$

So W_3 is closed under addition.

2. Let $\vec{u} = (a_1, a_1 + c_1, c_1) \in W_3$ and k is any scalar, then

$$k\vec{u} = k(a_1, a_1 + c_1, c_1) = (ka_1, k(a_1 + c_1), kc_1)$$

= $(ka_1, ka_1 + kc_1, kc_1) \in W_3$

 W_3 is closed under scalar multiplication.

So, W_3 is subspace.

d) W_4 = All vectors of the form (a, b, c) where b = a + c + 1.

$$\vec{u} = (a_1, b_1, c_1) = (a_1, a_1 + c_1 + 1, c_1) \in W_4$$

$$\vec{v} = (a_2, b_2, c_2) = (a_2, a_2 + c_2 + 1, c_2) \in W_4$$
 Then $\vec{u} + \vec{v} = (a_1 + a_2, (a_1 + c_1) + (a_2 + c_2) + 2, c_1 + c_2)$
$$\vec{u} + \vec{v} = (a_1 + a_2, a_1 + a_2 + c_1 + c_2 + 2, c_1 + c_2) \notin W_4$$

So W_4 is not closed under addition.

So W_4 is not subspace of R^2 .

e) $W_5 = \text{All vectors of the form } (a, b, 0) . (Do it yourself)$

<u>Example 5.</u>

Consider the unit square shown in the accompanying figure. Let W be the set of the form $\begin{bmatrix} x \\ y \end{bmatrix}$, where $0 \le x \le 1$, $0 \le y \le 1$. That is W is the set of all vectors whose tail is at origin and whose head is a point inside or on the square. Is W a subspace of R^2 ? Explain.

Solution:

Let
$$\vec{u} = (0,1), \vec{v} = (1,1) \in W$$
.

Then
$$\vec{u} + \vec{v} = (1,2) \notin W$$
.

W is not closed under addition.

W is not subspace of R^2 .

Example 6.

Which of the given subsets of the vector space M_{23} of all 2×3 matrices are subspace? The set of all matrices of the form?

a)
$$W_1 = \left\{ \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix}; where \ b = a + c \right\}$$

b) $W_2 = \left\{ \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix}; where \ c > 0 \right\}$

b)
$$W_2 = \left\{ \begin{bmatrix} a & b & c \\ d & 0 & 0 \end{bmatrix}; where \ c > 0 \right\}$$

c)
$$W_3 = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} ; where \ a = -2c, f = 2c + d \right\}$$

Solution:

$$\begin{array}{lll}
& & & \\ & & \\ & & \\ \end{array}
\end{array}$$

$$\begin{array}{lll}
& & \\ & \\ \end{array}$$

$$A = \begin{bmatrix} a_1 & a_1 + c_1 & c_1 \\ d_1 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} a_2 & b_2 & c_2 \\ d_2 & 0 & 0 \end{bmatrix} \in W_1$$

$$A + B = \begin{bmatrix} a_1 & a_1 + c_1 & c_1 \\ d_1 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} a_2 & 0_2 + c_2 & c_2 \\ d_2 & 0 & 0 \end{bmatrix}$$

$$A + B = \begin{bmatrix} a_1 & a_1 + c_1 + a_2 + c_2 \\ d_1 + d_2 & 0 & 0 \end{bmatrix} \in W_1$$

$$\Rightarrow W_1 \text{ is closed under } (+)^2 \cdot W_1$$

$$RA = \begin{bmatrix} a_1 & b_1 & c_1 \\ d_1 & 0 & 0 \end{bmatrix} \in W_1$$

$$RA = \begin{bmatrix} Ra_1 & R(a_1 + c_1) & Rc_1 \\ Rd_1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} Ra_1 & R(a_1 + c_1) & Rc_1 \\ Rd_1 & 0 & 0 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & R(a_1 + c_1) & Rc_1 \\ Rd_1 & 0 & 0 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_1 & Ra_1 + Ra_2 & Ra_2 \\ Ra_1 & 0 & 0 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_1 & Ra_2 & Ra_2 \\ Ra_1 & 0 & 0 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \end{bmatrix} \in W_1$$

$$= \begin{bmatrix} Ra_1 & Ra_2 & Ra_2 & Ra_2 \\ Ra_3 & Ra_2 & Ra_2 \\ Ra_4 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \\ Ra_3 & Ra_2 & Ra_2 \\ Ra_4 & Ra_2 & Ra_2 \\ Ra_2 & Ra_2 & Ra_2 \\ Ra_3 & Ra_4 & Ra_2 \\ Ra_4 & Ra_2 & Ra_2 \\ Ra_4 & Ra_4 & Ra_4 \\ Ra_5 & Ra_5 & Ra_5 \\ Ra_5 & Ra_5 \\ Ra_5 & Ra_5 &$$

C: do it your self