公式集

Toshiya Namikawa

目次

1	球面調和関数	2
1.1	Legendre 多項式	2
1.2	Legendre陪多項式	3
1.3	偏光ベクトル....................................	4
1.4	スピン演算子と微分作用	5
1.5	球面調和関数	6
2	Wigner 3j 記号	10
2.1	対称性	10
2.2	和	10
2.3	漸化式: L_1, L_2 and L_3	10
2.4	漸化式: M_1, M_2 and M_3	11
2.5	特殊な場合: $L_3=L_1+L_2$	11
2.6	特殊な場合: $L_3=L_1+L_2-1$	12
2.7	特殊な場合: $M_1=M_2=M_3=0$	12
2.8	クレプシュ・ゴルダン係数	12
2.9	近似	13
3	Wigner d function	13
3.1	Jacobi polynomial	13
3.2	Definition	13
3.3	性質	14
3.4	漸化式	14
3.5	特殊な場合	14
3.6	Wigner-3j 記号との関係	15
3.7	加法定理	15
4	特殊関数	15
4.1	エルミート多項式	15
4.2	ベッセル関数	16
4 3	球ベッセル関数	18

5	超関数	20
5.1	デルタ関数	20
6	確率統計	22
6.1	モーメントとキュムラント	22
6.2	対数正規分布	22

1 球面調和関数

1.1 Legendre 多項式

1.1.1 定義

ルジャンドル多項式は以下のように定義される:

$$P_n(x) = \frac{e^x}{n!} \left(\frac{d}{dx}\right)^n (e^{-x}x^n).$$
 (1)

ただし $n = 0, 1, 2, \ldots$, $-1 \le x \le 1$ である。

ルジャンドル多項式は

$$P_n(\cos \theta) = \sum_{m=0}^{n} c_{mn} e^{i(2m-n)\theta}, \qquad (2)$$

と書くこともできる。ここで係数は

$$c_{mn} = \frac{(2m)!(2n-2m)!}{4^n(m!)^2((n-m)!)^2} = \frac{\Gamma(m+1/2)\Gamma(n-m+1/2)}{\pi m!(n-m)!}.$$
 (3)

端点では

$$P_n(1) = 1$$
, $P_n(-1) = (-1)^n$. (4)

n=0,1,2,3のとき、

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$. (5)

 $\sin(n+1)\theta$ はルジャンドル多項式を用いて

$$\frac{\sin(n+1)\theta}{\sin\theta} = \sum_{m=0}^{n} P_m(\cos\theta) P_{n-m}(\cos\theta)$$
 (6)

と表せる。

1.1.2 直交性

直交関係は

$$\int_{-1}^{1} dx \ P_n(x) P_m(x) = \frac{2}{2n+1} \delta_{nm} \,. \tag{7}$$

これは以下から導かれる:

$$\int_{-1}^{1} dx \ P_n(x)x^m = \begin{cases}
0 & (m < n) \\
\frac{m!\Gamma(m/2 - n/2 + 1/2)}{2^n(m-n)!\Gamma(m/2 + n/2 + 3/2)} & (m - nが偶数) . \\
0 & (m - nが奇数)
\end{cases}$$
(8)

1.1.3 母関数

ルジャンドル多項式は、ニュートン力学における二点間の重力ポテンシャルの展開係数として定義できる。以下のように

$$\frac{1}{\sqrt{1 - 2tx + t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n.$$
 (9)

としたものはルジャンドル多項式の母関数である。

1.1.4 微分方程式

ルジャンドル多項式は以下の微分方程式

$$\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x}\right) + \ell(\ell+1)y = 0. \tag{10}$$

の解である。これをもとに、多項式としての解を求めると

$$P_n(x) = \sum_{n=0}^{s} \frac{(-1)^n (2n-2m)!}{2^n n! (n-2m)! (n-m)!} x^{n-2m} \,. \tag{11}$$

のように多項式表示が得られる。ただし、和の上限は、nが偶数のときs=n/2、奇数のときs=(n-1)/2である。

1.1.5 漸化式

$$(n+1)P_{n+1}(x) - nP_{n-1}(x) = (2n+1)P_n(x). (12)$$

これは以下と等価である:

$$\frac{\mathrm{d}}{\mathrm{d}x}[P_{n+1}(x) - P_{n-1}(x)] = (2n+1)P_n(x). \tag{13}$$

1.1.6 ロドリゲスの公式

以下の表式

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n.$$
 (14)

をRodrigues (ロドリゲス) の公式とよぶ。

1.2 Legendre陪多項式

1.2.1 定義

ルジャンドル陪関数は以下で定義される:

$$P_n^m(x) = \frac{x^{-m} e^x}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n \left(e^{-x} x^{n+m}\right). \tag{15}$$

あるいは

$$P_n^m(x) = (1 - x^2)^{|m|/2} \frac{\mathrm{d}^{|m|}}{\mathrm{d}x^{|m|}} P_n(x)$$
(16)

1.2.2 微分方程式

ルジャンドル陪関数は、以下の微分方程式

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(1-x^2\right)\frac{\mathrm{d}y}{\mathrm{d}x}\right] - \left[\frac{m^2}{1-x^2} - n(n+1)\right]y = 0\tag{17}$$

の解である。m=0のときはルジャンドル多項式に対する微分方程式に帰着する。

1.2.3 直交性

$$\int_{-1}^{1} dx \ P_n(x) P_m(x) = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!} \delta_{nm} \,. \tag{18}$$

これより

$$\sum_{n=0}^{\infty} \frac{2n+1}{2} P_n(x) P_n(x') = \delta(x-x').$$
 (19)

1.3 偏光ベクトル

3次元の単位基底ベクトルを以下のように定義しておく:

$$\mathbf{e}_r = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta), \tag{20}$$

$$\mathbf{e}_1 = (\cos\theta\cos\varphi, \cos\theta\sin\varphi, -\sin\theta), \tag{21}$$

$$\mathbf{e}_2 = (-\sin\varphi, \cos\varphi, 0). \tag{22}$$

基底ベクトルどうしの外積は

$$e_r \times e_1 = e_2$$
, $e_1 \times e_2 = e_r$, $e_2 \times e_r = e_1$. (23)

であり、 $e_r \cdot (e_1 \times e_2) > 0$ であるから右手系となる。

以降では、動径方向と垂直な二次元面に注目する。そこで、動径方向 e_r に対して、それに垂直な二次元面を規定する単位偏光ベクトル ϵ_+,ϵ_- を以下のように定める:

$$\boldsymbol{\epsilon}_{+} = \frac{1}{\sqrt{2}} (\boldsymbol{e}_{1} + i\boldsymbol{e}_{2}), \qquad \boldsymbol{\epsilon}_{-} = \frac{1}{\sqrt{2}} (\boldsymbol{e}_{1} - i\boldsymbol{e}_{2}), \qquad (24)$$

$$e_1 = \frac{1}{\sqrt{2}} (\epsilon_+ + \epsilon_-),$$
 $e_2 = \frac{1}{i\sqrt{2}} (\epsilon_+ - \epsilon_-).$ (25)

1.3.1 回転とスピン

上記の定義は、 e_1 と e_2 の面内での回転分だけ自由度が残っている。そこで、回転した場合に偏光ベクトルがどのように変化するか知っておく必要がある。

まず、面内で $\varphi=90^\circ$ の回転を考える(球面の内側から外側を覗き、反時計回りに 90° の回転を行う)。 三次元ベクトルに対する動径軸まわりの 90° 回転作用 \star を

$$\star \boldsymbol{e}_r = 0, \qquad \star \boldsymbol{e}_1 = \boldsymbol{e}_2, \qquad \star \boldsymbol{e}_2 = -\boldsymbol{e}_1, \qquad (26)$$

に基づいて定めると、偏光ベクトルへの作用は

$$(\star \epsilon_{+}) = -i\epsilon_{+}, \qquad (\star \epsilon_{-}) = i\epsilon_{-}. \tag{27}$$

次に、一般に ψ だけ回転した場合について考える。座標基底の変換は

$$e_1 \rightarrow e_1 \cos \psi + e_2 \sin \psi$$
, (28)

$$\mathbf{e}_2 \to -\mathbf{e}_1 \sin \psi + \mathbf{e}_2 \cos \psi \,. \tag{29}$$

によって定める。偏光ベクトル ϵ_+,ϵ_- はそれぞれ

$$\epsilon_{+} \to e^{-i\psi} \epsilon_{+}, \qquad \epsilon_{-} \to e^{i\psi} \epsilon_{-}.$$
 (30)

と変換する。

一般に、球面上で定義された関数fに対し、上記の座標基底の回転によって $f \to e^{-is\psi}f$ となる場合、fはスピンsをもつという。偏光ベクトルはスピン1,-1をもつ。

1.3.2 内積

$$\epsilon_{+} \cdot \epsilon_{+} = \epsilon_{-} \cdot \epsilon_{-} = 0, \qquad \epsilon_{+} \cdot \epsilon_{-} = 1,$$
 (31)

$$(\star \epsilon_{+}) \cdot \epsilon_{+} = (\star \epsilon_{-}) \cdot \epsilon_{-} = 0, \qquad (\star \epsilon_{+}) \cdot \epsilon_{-} = -(\star \epsilon_{-}) \cdot \epsilon_{+} = -i.$$
 (32)

1.4 スピン演算子と微分作用

1.4.1 定義

整数sを用いて、スピン昇降演算子を以下のように定義する[1]

$$\partial_{s} = -\sin^{s}\theta \left[\frac{\partial}{\partial \theta} + \frac{i}{\sin\theta} \frac{\partial}{\partial \varphi} \right] \sin^{-s}\theta,$$

$$\bar{\partial}_{s} = -\sin^{-s}\theta \left[\frac{\partial}{\partial \theta} - \frac{i}{\sin\theta} \frac{\partial}{\partial \varphi} \right] \sin^{s}\theta.$$
(33)

先に微分演算を実行しておけば、以下のように書き換えられる[1]

$$\partial_s = \frac{s}{\tan \theta} - \left(\frac{\partial}{\partial \theta} + \frac{i}{\sin \theta} \frac{\partial}{\partial \varphi}\right), \tag{34}$$

$$\bar{\phi}_s = \frac{-s}{\tan \theta} - \left(\frac{\partial}{\partial \theta} - \frac{i}{\sin \theta} \frac{\partial}{\partial \varphi}\right). \tag{35}$$

1.4.2 ベクトルへの作用とスピン演算子の性質

ここで、スピン演算子の性質について調べておく。基底ベクトルの微分は

$$\frac{\partial}{\partial \theta} \mathbf{e}_r = \mathbf{e}_1, \qquad \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \mathbf{e}_r = \mathbf{e}_2, \qquad (36)$$

$$\frac{\partial}{\partial \theta} \mathbf{e}_1 = -\mathbf{e}_r , \qquad \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \mathbf{e}_1 = \frac{1}{\tan \theta} \mathbf{e}_2 , \qquad (37)$$

$$\frac{\partial}{\partial \theta} \mathbf{e}_2 = 0, \qquad \frac{1}{\sin \theta} \frac{\partial}{\partial \varphi} \mathbf{e}_2 = -\mathbf{e}_r - \frac{1}{\tan \theta} \mathbf{e}_1.$$
 (38)

と書ける。これから、基底ベクトルに対するスピン昇降演算子の作用は

$$\partial_s \mathbf{e}_r = \frac{s}{\tan \theta} \mathbf{e}_r - \mathbf{e}_1 - i\mathbf{e}_2 = \frac{s}{\tan \theta} \mathbf{e}_r - \sqrt{2} \mathbf{\epsilon}_+, \qquad (39)$$

$$\partial_s \mathbf{e}_1 = \frac{s}{\tan \theta} \mathbf{e}_1 + \mathbf{e}_r - \frac{\mathrm{i}}{\tan \theta} \mathbf{e}_2, \qquad (40)$$

$$\partial_s \mathbf{e}_2 = \frac{s}{\tan \theta} \mathbf{e}_2 + i \left(\mathbf{e}_r + \frac{\mathbf{e}_1}{\tan \theta} \right) , \tag{41}$$

$$\bar{\partial}_s \mathbf{e}_r = \frac{-s}{\tan \theta} \mathbf{e}_r - \sqrt{2} \epsilon_- \,, \tag{42}$$

$$\bar{\partial}_s e_1 = \frac{-s}{\tan \theta} e_1 + e_r + \frac{\mathrm{i}}{\tan \theta} e_2 \,, \tag{43}$$

$$\bar{\partial}_s \mathbf{e}_2 = \frac{-s}{\tan \theta} \mathbf{e}_2 - \mathrm{i} \left(\mathbf{e}_r + \frac{\mathbf{e}_1}{\tan \theta} \right) . \tag{44}$$

また、偏光ベクトルへの作用は

$$\partial_s \epsilon_+ = \frac{s-1}{\tan \theta} \epsilon_+ \,, \tag{45}$$

$$\partial_s \epsilon_- = \frac{s+1}{\tan \theta} \epsilon_- + \sqrt{2} e_r \,, \tag{46}$$

$$\partial_s \epsilon_- = \frac{s+1}{\tan \theta} \epsilon_- + \sqrt{2} e_r ,$$

$$\bar{\partial}_s \epsilon_+ = \frac{-s+1}{\tan \theta} \epsilon_+ + \sqrt{2} e_r ,$$
(46)

$$\bar{\partial}_{s}\epsilon_{-} = \frac{-s - 1}{\tan \theta}\epsilon_{-}. \tag{48}$$

特に

$$\partial_1 \epsilon_+ = 0, \tag{49}$$

$$\partial_{-1}\epsilon_{-} = \sqrt{2}e_r \,, \tag{50}$$

$$\bar{\partial}_1 \epsilon_+ = \sqrt{2} e_r \,, \tag{51}$$

$$\bar{\partial}_{-1}\epsilon_{-} = 0. \tag{52}$$

 ∂_s 、 $\bar{\partial}_s$ はそれぞれスピンsの量をスピン+1あるいは-1だけ上下させる。

1.4.3 共変微分

球面上の共変微分は

$$\nabla = e_1 \frac{\partial}{\partial \theta} + \frac{e_2}{\sin \theta} \frac{\partial}{\partial \varphi} = \frac{\epsilon_- + \epsilon_+}{\sqrt{2}} \frac{\partial}{\partial \theta} + \frac{i}{\sin \theta} \frac{\epsilon_- - \epsilon_+}{\sqrt{2}} \frac{\partial}{\partial \varphi}$$

$$= \frac{\epsilon_-}{\sqrt{2}} \left(\frac{\partial}{\partial \theta} + \frac{i}{\sin \theta} \frac{\partial}{\partial \varphi} \right) + \frac{\epsilon_+}{\sqrt{2}} \left(\frac{\partial}{\partial \theta} - \frac{i}{\sin \theta} \frac{\partial}{\partial \varphi} \right)$$
(53)

と書ける。座標基底の回転を行うことで変化しないとすると、

$$\partial_{\pm} = \frac{\partial}{\partial \theta} \pm \frac{i}{\sin \theta} \frac{\partial}{\partial \varphi} \tag{54}$$

はそれぞれ ± 1 のスピン変換をする。したがって、s=0のスピン昇降演算子は、スピンを一つ上下させることが分かる。

球面調和関数 1.5

整数 $\ell \geq 0$ および $m = -\ell, -\ell + 1, \dots, \ell$ に対して、球面上の関数

$$Y_{\ell m}(\theta,\varphi) = e^{im\varphi} \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta).$$
 (55)

を球面調和関数とよぶ。もし $\theta = 0$ かつ $\varphi = 0$ であるとき、

$$Y_{\ell m}(0,0) = \sqrt{\frac{2\ell+1}{4\pi}} \delta_{m0} \,. \tag{56}$$

球面上の関数を球面調和関数展開すると

$$F(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} f_{\ell m} Y_{\ell m}(\hat{n}).$$
 (57)

展開係数 $f_{\ell m}$ を得るには、球面調和関数の直交性

$$\int d^2 \hat{\boldsymbol{n}} \ Y_{\ell m}^*(\hat{\boldsymbol{n}}) Y_{\ell' m'}(\hat{\boldsymbol{n}}) = \delta_{\ell \ell'} \delta_{m m'} \,. \tag{58}$$

を利用する。 $Y^*_{\ell m}(\hat{m{n}})$ をかけて球面で積分を行うと

$$f_{\ell m} = \int \mathrm{d}^2 \hat{\boldsymbol{n}} \ F(\hat{\boldsymbol{n}}) Y_{\ell m}^*(\hat{\boldsymbol{n}}). \tag{59}$$

が得られる。

1.5.1 スピン球面調和関数

球面調和関数は偏光ベクトルの回転自由度によって変化する量 (ベクトルなど)をうまく扱えない。そこで、その回転自由までを考慮した球面調和関数としてスピン球面調和関数が以下のように定義される

$$Y_{\ell m}^{s} = \left[\frac{(\ell - s)!}{(\ell + s)!}\right]^{1/2} \partial^{s} Y_{\ell m} \qquad (0 \le s \le \ell)$$

$$= \left[\frac{(\ell + s)!}{(\ell - s)!}\right]^{1/2} (-1)^{s} \bar{\partial}^{s} Y_{\ell m} \qquad (-\ell \le s \le 0). \tag{60}$$

具体的に書くと

$$Y_{\ell m}^{s}(\theta,\varphi) = (-1)^{m} \sqrt{\frac{(\ell+m)!(\ell-m)!(2\ell+1)}{4\pi(\ell+s)!(\ell-s)!}} \sin^{2\ell}\left(\frac{\theta}{2}\right)$$

$$\times \sum_{r=0}^{\ell-s} {\ell-s \choose r} {\ell+s \choose r+s-m} (-1)^{\ell-r-s} e^{im\varphi} \cot^{2r+s-m}\left(\frac{\theta}{2}\right). \tag{61}$$

一般に、Wigner d関数に対して $d_{-m,s}(0) = \delta_{m,-s}$ であるから

$$Y_{\ell m}^{s}(0,0) = (-1)^{m} \sqrt{\frac{2\ell+1}{4\pi}} \delta_{m,-s}.$$
(62)

複素共役、および空間反転は

$$(Y_{\ell m}^s)^*(\hat{\boldsymbol{n}}) = (-1)^{s+m} Y_{\ell,-m}^{-s}(\hat{\boldsymbol{n}}), \qquad Y_{\ell m}^s(-\hat{\boldsymbol{n}}) = (-1)^{\ell} Y_{\ell m}^{-s}(\hat{\boldsymbol{n}}). \tag{63}$$

ただし $-\hat{\boldsymbol{n}}$ は $\theta \to \pi - \theta$ 、 $\varphi \to \pi + \varphi$ の変換。

1.5.2 ウィグナーD行列との関係

スピン球面調和関数はウィグナーD行列を用いて

$$Y_{\ell m}^{s}(\theta,\varphi) = (-1)^{m} \sqrt{\frac{2\ell+1}{4\pi}} D_{-ms}^{\ell}(\varphi,\theta,0).$$
 (64)

ウィグナーD行列はウィグナーd関数を使って

$$D_{mm'}^{j}(\alpha,\beta,\gamma) = e^{-im\alpha} d_{mm'}^{j}(\beta) e^{-im'\gamma}.$$
(65)

ここで α , β , γ はEuler角。これから

$$Y_{\ell m}^{s}(\theta,\varphi) = (-1)^{m} \sqrt{\frac{2\ell+1}{4\pi}} e^{-im\varphi} d_{-m,s}^{\ell}(\theta).$$

$$(66)$$

1.5.3 直交性

$$\int d^2 \hat{\boldsymbol{n}} \ (Y_{\ell m}^s(\hat{\boldsymbol{n}}))^* Y_{\ell m}^s(\hat{\boldsymbol{n}}) = \delta_{\ell \ell'} \delta_{m m'} \,, \tag{67}$$

$$\sum_{\ell m} (Y_{\ell m}^{s}(\hat{\boldsymbol{n}}))^{*} Y_{\ell m}^{s}(\hat{\boldsymbol{n}}') = \delta(\cos \theta - \cos \theta') \delta(\varphi - \varphi'). \tag{68}$$

1.5.4 加法定理

$$\sum_{m} (Y_{\ell m}^{s_1})^*(\theta, \phi) Y_{\ell m}^{s_2}(\theta + \beta, \phi) = \sqrt{\frac{2\ell + 1}{4\pi}} Y_{\ell, -s_1}^{s_2}(\beta, 0) = \sqrt{\frac{2\ell + 1}{4\pi}} d_{s_2, -s_1}^{\ell}(\beta) Y_{\ell, -s_1}^{s_2}(\mathbf{0}). \tag{69}$$

1.5.5 ウィグナー3*j*記号との関係

クレプシュ・ゴルダン係数との関係:

$$Y_{\ell_1 m_1}(\hat{\boldsymbol{n}}) Y_{\ell_2 m_2}(\hat{\boldsymbol{n}}) = \sum_{LM} \sqrt{(2\ell_1 + 1)(2\ell_2 + 1)} 4\pi (2L + 1) C_{\ell_1 0 \ell_2 0}^{L0} C_{\ell_1 m_1 \ell_2 m_2}^{LM} Y_{LM}(\hat{\boldsymbol{n}}).$$
 (70)

これから

$$\int d^2 \hat{\boldsymbol{n}} \ Y_{\ell_1 m_1}(\hat{\boldsymbol{n}}) Y_{\ell_2 m_2}(\hat{\boldsymbol{n}}) Y_{\ell_3 m_3}(\hat{\boldsymbol{n}}) = \sqrt{\frac{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell_3 + 1)}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} . \tag{71}$$

ウィグナー3j記号は実数なので、 $\ell_1+\ell_2+\ell_3$ が奇数のときは左辺が消える。より一般には([2])

$$\int d^2 \hat{\boldsymbol{n}} \ Y_{\ell_1 m_1}^{-s_1}(\hat{\boldsymbol{n}}) Y_{\ell_2 m_2}^{-s_2}(\hat{\boldsymbol{n}}) Y_{\ell_3 m_3}^{-s_3}(\hat{\boldsymbol{n}}) = \sqrt{\frac{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell_3 + 1)}{4\pi}} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ s_1 & s_2 & s_3 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} . \tag{72}$$

1.5.6 微分

球面調和関数の微分は[2]

$$\nabla Y_{\ell m}^{s} = \sqrt{\frac{(\ell - s)(\ell + s + 1)}{2}} Y_{\ell m}^{s+1} \epsilon_{+} - \sqrt{\frac{(\ell + s)(\ell - s + 1)}{2}} Y_{\ell m}^{s-1} \epsilon_{-}.$$
 (73)

特に

$$\nabla Y_{\ell m} = \frac{\epsilon_{-} \partial + \epsilon_{+} \bar{\partial}}{\sqrt{2}} Y_{\ell m}$$

$$= \sqrt{\ell(\ell+1)} \frac{\epsilon_{-} Y_{\ell m}^{1} + \epsilon_{+} Y_{\ell m}^{-1}}{\sqrt{2}}.$$
(74)

式(73)にもう一度微分を作用させると、球面調和関数の発散は

$$\nabla^2 Y_{\ell m}^s = -[\ell(\ell+1) - s^2] Y_{\ell m}^s, \qquad (\star \nabla) \cdot \nabla Y_{\ell m}^s = 0. \tag{75}$$

となる。スピン演算子を作用させた場合は

$$\partial Y_{\ell m}^s = \sqrt{(\ell - s)(\ell + s + 1)} Y_{\ell m}^{s+1},$$
 (76)

$$\bar{\partial} Y_{\ell m}^{s} = -\sqrt{(\ell + s)(\ell - s + 1)} Y_{\ell m}^{s - 1} . \tag{77}$$

1.5.7 球面調和関数を含む積分

以下の積分を考える[3]

$$I_{\ell_1 \ell_2 \ell_3 m_1 m_2 m_3}^{s_1 s_2 s_3} \equiv c^{ij} \int d^2 \hat{\boldsymbol{n}} \ Y_{\ell_1 m_1}^{s_1} [\partial_i Y_{\ell_2 m_2}^{s_2}] [\partial_j Y_{\ell_3 m_3}^{s_3}] \,, \tag{78}$$

ここで c^{ij} は δ^{ij} あるいは ϵ^{ij} とする。部分積分すると

$$\begin{split} I^{s_{1}s_{2}s_{3}}_{\ell_{1}\ell_{2}\ell_{3}m_{1}m_{2}m_{3}} &= -c^{ij} \int \! \mathrm{d}^{2}\hat{\boldsymbol{n}} \, \left\{ [\partial_{j}Y^{s_{1}}_{\ell_{1}m_{1}}][\partial_{i}Y^{s_{2}}_{\ell_{2}m_{2}}]Y^{s_{3}}_{\ell_{3}m_{3}} + Y^{s_{1}}_{\ell_{1}m_{1}}[\partial_{i}\partial_{j}Y^{s_{2}}_{\ell_{2}m_{2}}]Y^{s_{3}}_{\ell_{3}m_{3}} \right\} \\ &= c^{ij} \int \! \mathrm{d}^{2}\hat{\boldsymbol{n}} \, \left\{ [\partial_{j}Y^{s_{1}}_{\ell_{1}m_{1}}]Y^{s_{2}}_{\ell_{2}m_{2}}[\partial_{i}Y^{s_{3}}_{\ell_{3}m_{3}}] + [\partial_{i}\partial_{j}Y^{s_{1}}_{\ell_{1}m_{1}}]Y^{s_{2}}_{\ell_{2}m_{2}}Y^{s_{3}}_{\ell_{3}m_{3}} - Y^{s_{1}}_{\ell_{1}m_{1}}[\partial_{i}\partial_{j}Y^{s_{2}}_{\ell_{2}m_{2}}]Y^{s_{3}}_{\ell_{3}m_{3}} \right\} \\ &= -aI^{s_{1}s_{2}s_{3}}_{\ell_{1}\ell_{2}\ell_{3}m_{1}m_{2}m_{3}} \\ &+ c^{ij} \int \! \mathrm{d}^{2}\hat{\boldsymbol{n}} \, \left\{ -Y^{s_{1}}_{\ell_{1}m_{1}}Y^{s_{2}}_{\ell_{2}m_{2}}[\partial_{j}\partial_{i}Y^{s_{3}}_{\ell_{3}m_{3}}] + [\partial_{i}\partial_{j}Y^{s_{1}}_{\ell_{1}m_{1}}]Y^{s_{2}}_{\ell_{2}m_{2}}Y^{s_{3}}_{\ell_{3}m_{3}} - Y^{s_{1}}_{\ell_{1}m_{1}}[\partial_{i}\partial_{j}Y^{s_{2}}_{\ell_{2}m_{2}}]Y^{s_{3}}_{\ell_{3}m_{3}} \right\}, \end{split} \tag{79}$$

ここで $c=\delta$ のときa=1、 $c=\epsilon$ のときa=-1とする。もし $c^{ij}=\delta^{ij}$ のとき、

$$\begin{split} I_{\ell_{1}\ell_{2}\ell_{3}m_{1}m_{2}m_{3}}^{s_{1}s_{2}s_{3}} &= \frac{\delta^{ij}}{2} \int \mathrm{d}^{2}\hat{\boldsymbol{n}} \, \left\{ -Y_{\ell_{1}m_{1}}^{s_{1}}Y_{\ell_{2}m_{2}}^{s_{2}} [\partial_{j}\partial_{i}Y_{\ell_{3}m_{3}}^{s_{3}}] + [\partial_{i}\partial_{j}Y_{\ell_{1}m_{1}}^{s_{1}}]Y_{\ell_{2}m_{2}}^{s_{2}}Y_{\ell_{3}m_{3}}^{s_{3}} - Y_{\ell_{1}m_{1}}^{s_{1}} [\partial_{i}\partial_{j}Y_{\ell_{2}m_{2}}^{s_{2}}]Y_{\ell_{3}m_{3}}^{s_{3}} \right\} \\ &= \frac{-\ell_{1}(\ell_{1}+1) + \ell_{2}(\ell_{2}+1) + \ell_{3}(\ell_{3}+1) + s_{1}^{2} - s_{2}^{2} - s_{3}^{2}}{2} \\ &\times \int \mathrm{d}^{2}\hat{\boldsymbol{n}} \, Y_{\ell_{1}m_{1}}^{s_{1}}Y_{\ell_{2}m_{2}}^{s_{2}}Y_{\ell_{3}m_{3}}^{s_{3}} \,. \end{split} \tag{80}$$

式 (72) を使うと、以下の式を得る:

$$\int d^{2}\hat{\boldsymbol{n}} Y_{\ell_{1}m_{1}}^{s_{1}} [\boldsymbol{\nabla} Y_{\ell_{2}m_{2}}^{s_{2}}] \cdot [\boldsymbol{\nabla} Y_{\ell_{3}m_{3}}^{s_{3}}] = [-\ell_{1}(\ell_{1}+1) + \ell_{2}(\ell_{2}+1) + \ell_{3}(\ell_{3}+1) + s_{1}^{2} - s_{2}^{2} - s_{3}^{2}] \times \sqrt{\frac{(2\ell_{1}+1)(2\ell_{2}+1)(2\ell_{3}+1)}{16\pi}} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} & -s_{3} \end{pmatrix} \begin{pmatrix} \ell_{1} & \ell_{2} & \ell_{3} \\ m_{1} & m_{2} & m_{3} \end{pmatrix}.$$
(81)

一方で $c^{ij} = \epsilon^{ij}$ のとき、

$$\epsilon^{ij} \int d^2 \hat{\boldsymbol{n}} \left\{ -Y_{\ell_1 m_1}^{s_1} Y_{\ell_2 m_2}^{s_2} [\partial_j \partial_i Y_{\ell_3 m_3}^{s_3}] + [\partial_i \partial_j Y_{\ell_1 m_1}^{s_1}] Y_{\ell_2 m_2}^{s_2} Y_{\ell_3 m_3}^{s_3} - Y_{\ell_1 m_1}^{s_1} [\partial_i \partial_j Y_{\ell_2 m_2}^{s_2}] Y_{\ell_3 m_3}^{s_3} \right\} = 0. \tag{82}$$

これは $(\star m
abla)\cdot m
abla = 0$ という事実と無矛盾である。 $I_{\ell_1\ell_2\ell_3m_1m_2m_3}^{s_1s_2s_3}$ とウィグナー3j記号を関連付けるため、以下のようにする:

$$\begin{split} [(\star \nabla) Y^{s_2}_{\ell_2 m_2}] [\nabla Y^{s_3}_{\ell_3 m_3}] &= \frac{1}{2} [((\star \epsilon_-) \partial + (\star \epsilon_+) \bar{\partial}) Y^{s_2}_{\ell_2 m_2}] [(\epsilon_- \partial + \epsilon_+ \bar{\partial}) Y^{s_3}_{\ell_3 m_3}] \\ &= \frac{i}{2} [(\partial Y^{s_2}_{\ell_2 m_2}) (\bar{\partial} Y^{s_3}_{\ell_3 m_3}) - (\bar{\partial} Y^{s_2}_{\ell_2 m_2}) (\partial Y^{s_3}_{\ell_3 m_3})] \\ &= \frac{-i}{2} \left[\sqrt{(\ell_2 - s_2)(\ell_2 + s_2 + 1)(\ell_3 + s_3)(\ell_3 - s_3 + 1)} Y^{s_2 + 1}_{\ell_2 m_2} Y^{s_3 - 1}_{\ell_3 m_3} \right. \\ &- \sqrt{(\ell_2 + s_2)(\ell_2 - s_2 + 1)(\ell_3 - s_3)(\ell_3 + s_3 + 1)} Y^{s_2 - 1}_{\ell_2 m_2} Y^{s_3 + 1}_{\ell_3 m_3} \right]. \end{split} \tag{83}$$

このとき

$$\int d^{2}\hat{\boldsymbol{n}} \ Y_{\ell_{1}m_{1}}^{s_{1}}[(\star\boldsymbol{\nabla})Y_{\ell_{2}m_{2}}^{s_{2}}][\boldsymbol{\nabla}Y_{\ell_{3}m_{3}}^{s_{3}}] = \frac{-i}{2} \left[\sqrt{(\ell_{2} - s_{2})(\ell_{2} + s_{2} + 1)(\ell_{3} + s_{3})(\ell_{3} - s_{3} + 1)} \int d^{2}\hat{\boldsymbol{n}} \ Y_{\ell_{1}m_{1}}^{s_{1}}Y_{\ell_{2}m_{2}}^{s_{2} + 1}Y_{\ell_{3}m_{3}}^{s_{3} - 1} \right. \\ \left. - \sqrt{(\ell_{2} + s_{2})(\ell_{2} - s_{2} + 1)(\ell_{3} - s_{3})(\ell_{3} + s_{3} + 1)} \int d^{2}\hat{\boldsymbol{n}} \ Y_{\ell_{1}m_{1}}^{s_{1}}Y_{\ell_{2}m_{2}}^{s_{2} - 1}Y_{\ell_{3}m_{3}}^{s_{3} - 1} \right] \\ = -i \left[\sqrt{(\ell_{2} - s_{2})(\ell_{2} + s_{2} + 1)(\ell_{3} + s_{3})(\ell_{3} - s_{3} + 1)} \right. \\ \left. \times \sqrt{\frac{(2\ell_{1} + 1)(2\ell_{2} + 1)(2\ell_{2} + 1)(2\ell_{3} + 1)}{16\pi}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} - 1 & -s_{3} + 1 \end{array} \right) \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ m_{1} & m_{2} & m_{3} \end{array} \right) \\ - \sqrt{(\ell_{2} + s_{2})(\ell_{2} - s_{2} + 1)(\ell_{3} - s_{3})(\ell_{3} + s_{3} + 1)}} \\ \times \sqrt{\frac{(2\ell_{1} + 1)(2\ell_{2} + 1)(2\ell_{2} + 1)(2\ell_{3} + 1)}{16\pi}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} - 1 & -s_{3} + 1 \end{array} \right) \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} - 1 & -s_{3} + 1 \end{array} \right)} \\ - \sqrt{(\ell_{2} + s_{2})(\ell_{2} - s_{2} + 1)(\ell_{3} - s_{3})(\ell_{3} + s_{3} + 1)}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} - 1 & -s_{3} + 1 \end{array} \right) \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} - 1 & -s_{3} + 1 \end{array} \right) \\ - \sqrt{(\ell_{2} + s_{2})(\ell_{2} - s_{2} + 1)(\ell_{3} - s_{3})(\ell_{3} + s_{3} + 1)}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} - 1 & -s_{3} + 1 \end{array} \right) \right] \\ \times \sqrt{\frac{(2\ell_{1} + 1)(2\ell_{2} + 1)(2\ell_{2} + 1)(2\ell_{3} + 1)}{16\pi}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} + 1 & -s_{3} - 1 \end{array} \right) \right]} \\ \times \sqrt{\frac{(2\ell_{1} + 1)(2\ell_{2} + 1)(2\ell_{2} + 1)(2\ell_{3} + 1)}{16\pi}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} + 1 & -s_{3} - 1 \end{array} \right) \right]} \\ \times \sqrt{\frac{(2\ell_{1} + 1)(2\ell_{2} + 1)(2\ell_{2} + 1)(2\ell_{3} + 1)}{16\pi}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} + 1 & -s_{3} - 1 \end{array} \right) \right]} \\ \times \sqrt{\frac{(2\ell_{1} + 1)(2\ell_{2} + 1)(2\ell_{2} + 1)(2\ell_{3} + 1)}{16\pi}} \left(\begin{array}{ccc} \ell_{1} & \ell_{2} & \ell_{3} \\ -s_{1} & -s_{2} + 1 & -s_{3} - 1 \end{array} \right) \right]} \\ \times \sqrt{\frac{(2\ell_{1} + 1)(2\ell_{2} + 1)(2\ell_{2} + 1)(2\ell_{3} + 1)}{16\pi}} \left(\begin{array}{ccc} \ell_{1} & \ell_{$$

2 Wigner 3j 記号

2.1 対称性

文献[4]より

$$\begin{pmatrix}
\ell_1 & \ell_2 & \ell_3 \\
m_1 & m_2 & m_3
\end{pmatrix} = \begin{pmatrix}
\ell_2 & \ell_3 & \ell_1 \\
m_2 & m_3 & m_1
\end{pmatrix} = \begin{pmatrix}
\ell_3 & \ell_1 & \ell_2 \\
m_3 & m_1 & m_2
\end{pmatrix} = (-1)^{\ell_1 + \ell_2 + \ell_3} \begin{pmatrix}
\ell_3 & \ell_1 & \ell_2 \\
m_3 & m_1 & m_2
\end{pmatrix},$$

$$\begin{pmatrix}
\ell_1 & \ell_2 & \ell_3 \\
m_1 & m_2 & m_3
\end{pmatrix} = (-1)^{\ell_1 + \ell_2 + \ell_3} \begin{pmatrix}
\ell_3 & \ell_1 & \ell_2 \\
-m_3 & -m_1 & -m_2
\end{pmatrix}.$$
(85)

2.2 和

文献[4]より

$$\sum_{M} (-1)^{L+M} \begin{pmatrix} \ell & L & L \\ -m & M & -M \end{pmatrix} = \delta_{\ell,0} \delta_{m,0} \sqrt{\frac{2L+1}{2\ell+1}},$$
(87)

$$\sum_{M,M'} \begin{pmatrix} \ell & L & L' \\ -m & M & M' \end{pmatrix} \begin{pmatrix} \ell' & L & L' \\ -m' & M & M' \end{pmatrix} = \frac{1}{2\ell+1} \delta_{\ell,\ell'} \delta_{m,m'}.$$
 (88)

2.3 漸化式: L_1 , L_2 and L_3

文献[4]、8.6章の式(25)より

$$a\begin{pmatrix} L_1 & \ell & L_2 \\ M_1 & M_2 & M_3 \end{pmatrix} = b\begin{pmatrix} L_1 & \ell & L_2 + 1 \\ M_1 & M_2 & M_3 \end{pmatrix} + c\begin{pmatrix} L_1 & \ell & L_2 + 2 \\ M_1 & M_2 & M_3 \end{pmatrix}$$
(89)

ただし

$$a = \{(L_2 + 1)^2 - M_3^2\}^{1/2} \alpha,$$

$$b = -M_2 \beta_1 + M_3 \beta_2,$$

$$c = -\{(L_2 + 2) - M_3^2\}^{1/2} \gamma.$$
(90)

 α, β_i, γ lt

$$\alpha = (L_2 + 2)\sqrt{(-L_2 + \ell + L_1)(L_2 - \ell + L_1 + 1)(L_2 + \ell - L_1 + 1)(L_2 + \ell + L_1 + 2)},$$

$$\beta_1 = 2(L_2 + 1)(L_2 + 2)(2L_2 + 3),$$

$$\beta_2 = (2L_2 + 3)[(L_2 + 1)(L_2 + 2) + \ell(\ell + 1) - L_1(L_1 - 1)],$$

$$\gamma = (L_2 + 1)\sqrt{(-L_2 + \ell + L_1 - 1)(L_2 - \ell + L_1 + 2)(L_2 + \ell - L_1 + 2)(L_2 + \ell + L_1 + 3)}.$$
(91)

2.4 漸化式: M_1 , M_2 and M_3

文献[4]の8.6章、式(4)より

$$-\sqrt{(L_3 \pm M_3)(L_3 \mp M_3 + 1)} \begin{pmatrix} L_1 & L_2 & L_3 \\ M_1 & M_2 & -M_3 \pm 1 \end{pmatrix} = \sqrt{(L_1 \mp M_1)(L_1 \pm M_1 + 1)} \begin{pmatrix} L_1 & L_2 & L_3 \\ M_1 \pm 1 & M_2 & -M_3 \end{pmatrix} + \sqrt{(L_2 \mp M_2)(L_2 \pm M_2 + 1)} \begin{pmatrix} L_1 & L_2 & L_3 \\ M_1 & M_2 \pm 1 & -M_3 \end{pmatrix}.$$
(92)

いくつかの場合について書き下しておく。 $M_1=M_2=0$ 、 $M_3=-1$ の場合

$$-\sqrt{(L_3+1)L_3} \begin{pmatrix} L_1 & L_2 & L_3 \\ 0 & 0 & 0 \end{pmatrix} = \sqrt{L_1(L_1+1)} \begin{pmatrix} L_1 & L_2 & L_3 \\ 1 & 0 & -1 \end{pmatrix} + \sqrt{L_2(L_2+1)} \begin{pmatrix} L_1 & L_2 & L_3 \\ 0 & 1 & -1 \end{pmatrix}.$$
(93)

 $M_1 = M_2 = M_3 = -1$ の場合

$$-\sqrt{(L_3 - 1)(L_3 + 2)} \begin{pmatrix} L_1 & L_2 & L_3 \\ -1 & -1 & 2 \end{pmatrix} = \sqrt{(L_1 + 1)L_1} \begin{pmatrix} L_1 & L_2 & L_3 \\ 0 & -1 & 1 \end{pmatrix} + \sqrt{(L_2 + 1)L_2} \begin{pmatrix} L_1 & L_2 & L_3 \\ -1 & 0 & 1 \end{pmatrix}.$$
(94)

 $M_1=2$ 、 $M_2=-1$ 、 $M_3=0$ の場合

$$-\sqrt{L_3(L_3+1)} \begin{pmatrix} L_1 & L_2 & L_3 \\ 2 & -1 & -1 \end{pmatrix} = \sqrt{(L_1+2)(L_1-1)} \begin{pmatrix} L_1 & L_2 & L_3 \\ 1 & -1 & 0 \end{pmatrix} + \sqrt{(L_2-1)(L_2+2)} \begin{pmatrix} L_1 & L_2 & L_3 \\ 2 & -2 & 0 \end{pmatrix}.$$
(95)

2.5 特殊な場合: $L_3 = L_1 + L_2$

文献[4]の8.5章、式(3)より

$$\begin{pmatrix} L_1 & L_2 & L_1 + L_2 \\ -M_1 & -M_2 & M_1 + M_2 \end{pmatrix} = \frac{(-1)^{L_1 + L_2 + M_1 + M_2}}{\sqrt{2L_1 + 2L_2 + 1}} \left[\frac{(2L_1)!(2L_2)!(L_1 + L_2 + M_1 + M_2)!(L_1 + L_2 - M_1 - M_2)!}{(2L_1 + 2L_2)!(L_1 + M_1)!(L_1 - M_1)!(L_2 + M_2)!(L_2 - M_2)!} \right]^{1/2} .$$

$$(96)$$

これは以下の対称性をもつ

$$\begin{pmatrix} L_1 & L_2 & L_1 + L_2 \\ -M_1 & -M_2 & M_1 + M_2 \end{pmatrix} = \begin{pmatrix} L_1 & L_2 & L_1 + L_2 \\ M_1 & M_2 & -M_1 - M_2 \end{pmatrix}. \tag{97}$$

 $M_1 = M_2 = M_3 = 0$ の場合、式(96)は

$$\begin{pmatrix}
L_1 & L_2 & L_1 + L_2 \\
0 & 0 & 0
\end{pmatrix} = \frac{(-1)^{L_1 + L_2}}{\sqrt{2L_1 + 2L_2 + 1}} \left[\frac{(2L_1)!(2L_2)!(L_1 + L_2)!(L_1 + L_2)!}{(2L_1 + 2L_2)!(L_1)!(L_1)!(L_2)!(L_2)!} \right]^{1/2} \\
= \frac{(-1)^{L_1 + L_2}}{\sqrt{2L_1 + 2L_2 + 1}} \prod_{i=1}^{L_2} \left[\frac{(i - 1/2)(i + L_1)}{i(i + L_1 - 1/2)} \right]^{1/2} .$$
(98)

式(96)を式(98)で割ると

$$\begin{pmatrix}
L_1 & L_2 & L_1 + L_2 \\
M_1 & M_2 & -M_1 - M_2
\end{pmatrix} = (-1)^{M_1 + M_2} \begin{pmatrix}
L_1 & L_2 & L_1 + L_2 \\
0 & 0 & 0
\end{pmatrix} \left[\frac{(L_1 + L_2 + M_1 + M_2)!}{(L_1 + L_2)!} \frac{(L_1 + L_2 - M_1 - M_2)!}{(L_1 + L_2)!} \right] \times \frac{(L_1)!}{(L_1 + M_1)!} \frac{(L_1)!}{(L_1 - M_1)!} \frac{(L_2)!}{(L_2 + M_2)!} \frac{(L_2)!}{(L_2 - M_2)!} \right]^{1/2}.$$
(99)

2.6 特殊な場合: $L_3 = L_1 + L_2 - 1$

文献[4]の8.5章、式(8)より (something wrong?),

$$\begin{pmatrix}
L_1 & L_2 & L_1 + L_2 - 1 \\
-M_1 & -M_2 & M_1 + M_2
\end{pmatrix} = \frac{(-1)^{L_1 - L_2 + M_1 + M_2}}{\sqrt{2L_1 + 2L_2 + 1}} 2(L_2 M_1 - L_1 M_2) \\
\times \left[\frac{(2L_1 - 1)!(2L_2 - 1)!(L_1 + L_2 + M_1 + M_2 - 1)!(L_1 + L_2 - M_1 - M_2 - 1)!}{(2L_1 + 2L_2)!(L_1 + M_1)!(L_1 - M_1)!(L_2 + M_2)!(L_2 - M_2)!} \right]^{1/2}$$
(100)

これは以下のように書き直せる (the following formula seems correct)

$$\begin{pmatrix}
L_1 & L_2 & L_1 + L_2 - 1 \\
-M_1 & -M_2 & M_1 + M_2
\end{pmatrix} = (L_2 M_1 - L_1 M_2) \left[\frac{(2L_1 + 2L_2 + 1)}{L_1 L_2 (L_1 + L_2 + M_1 + M_2) (L_1 + L_2 - M_1 - M_2)} \right]^{1/2} \times \begin{pmatrix}
L_1 & L_2 & L_1 + L_2 \\
-M_1 & -M_2 & M_1 + M_2
\end{pmatrix}.$$
(101)

2.7 特殊な場合: $M_1 = M_2 = M_3 = 0$

 $L = \ell_1 + \ell_2 + \ell_3$ が偶数のとき

$$\begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ 0 & 0 & 0 \end{pmatrix} = (-1)^{L/2} \frac{(L/2)!}{(L/2 - \ell_1)!(L/2 - \ell_2)!(L/2 - \ell_3)!} \left[\frac{(L - 2\ell_1)!(L - 2\ell_2)!(L - 2\ell_3)!}{(L + 1)!} \right]^{1/2}$$
(102)

奇数であれば0となる。

2.8 クレプシュ・ゴルダン係数

Clebsch-Gordan (クレプシュ・ゴルダン) 係数はウィグナー3j記号と以下のように関係している (文献[4]の8.1章、式(12)より) :

$$C_{\ell_1, m_1, \ell_2, m_2}^{\ell_3, m_3} = (-1)^{\ell_1 - \ell_2 + m_3} \sqrt{2\ell_3 + 1} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & -m_3 \end{pmatrix}.$$
 (103)

2.9 近似

文献[2]より、 $\ell\gg 1$ のとき、 $L=\ell_1+\ell_2+\ell_3$ が偶数であれば

$$\begin{pmatrix}
\ell_1 & \ell_2 & \ell_3 \\
2 & 0 & -2
\end{pmatrix} \simeq \frac{(-1)^{L/2}}{2} \begin{bmatrix} \ell_2^2 - \ell_1^2 - \ell_3^2 \\
\ell_1^2 \ell_3^2 \end{bmatrix} - 1 \end{bmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\
0 & 0 & 0
\end{pmatrix}$$

$$\simeq \frac{(-1)^{L/2}}{2} \begin{bmatrix} \ell_2^2 - \ell_1^2 - \ell_3^2 \\
\ell_1^2 \ell_3^2 \end{bmatrix} - 1 \end{bmatrix} \frac{(L/2)!}{(L/2 - \ell_1)!(L/2 - \ell_2)!(L/2 - \ell_3)!} \left[\frac{(L - 2\ell_1)!(L - 2\ell_2)!(L - 2\ell_3)!}{(L + 1)!} \right]^{1/2}$$
(105)

Lが奇数であれば

$$\begin{pmatrix}
\ell_1 & \ell_2 & \ell_3 \\
2 & 0 & -2
\end{pmatrix} \simeq \frac{(-1)^{(L-1)/2}}{2} [L(L-2\ell_1)(L-2\ell_2)(L-2\ell_3)]^{1/2} \frac{\ell_2^2 - \ell_1^2 - \ell_3^2}{\ell_1^2 \ell_3^2} \times \frac{(L/2)!}{(L/2 - \ell_1)!(L/2 - \ell_2)!(L/2 - \ell_3)!} \left[\frac{(L-2\ell_1)!(L-2\ell_2)!(L-2\ell_3)!}{(L+1)!} \right]^{1/2}$$
(106)

3 Wigner d function

3.1 Jacobi polynomial

$$P_n^{(\mu,\nu)} = \frac{(-1)^n}{2^n n!} (1-x)^{-\mu} (1+x)^{\nu} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n (1-x)^{n+\mu} (1+x)^{n+\nu} \,. \tag{107}$$

特に

$$P_0^{(\mu,\nu)}(x) = 1$$
, $P_1^{(\mu,\nu)}(x) = \frac{1}{2}[(\mu + \nu + 2)x + (\mu - \nu)]$. (108)

3.2 Definition

$$d_{mm'}^{\ell}(\beta) = \zeta_{mm'} \sqrt{\frac{s!(s+\mu+\nu)!}{(s+\mu)!(s+\nu)!}} \left(\sin\frac{\beta}{2}\right)^{\mu} \left(\cos\frac{\beta}{2}\right)^{\nu} P_s^{(\mu,\nu)}(\cos\beta),$$
 (109)

ここで

$$\mu = |m - m'|, \qquad \nu = |m + m'|, \qquad s = \ell - \frac{\mu + \nu}{2},$$
 (110)

および

$$\zeta_{mm'} = \begin{cases} 1 & (m' \ge m) \\ (-1)^{m'-m} & (m' < m) \end{cases} , \tag{111}$$

であり、 $P_s^{(\mu,\nu)}$ は Jacobi 多項式を表す。 Wigner d関数は、 $\ell<\max(|m|,|m|')$ のときゼロとなる。 これから $d^0_{mm'}=\delta_{m,0}\delta_{m',0}$ である。

Wignerによって以下の公式が得られている:

$$d_{m'm}^{j}(\beta) = [(j+m')!(j-m')!(j+m)!(j-m)!]^{1/2} \times \sum_{s} \left[\frac{(-1)^{m'-m+s}}{(j+m-s)!s!(m'-m+s)!(j-m'-s)!} \left(\cos\frac{\beta}{2}\right)^{2j+m-m'-2s} \left(\sin\frac{\beta}{2}\right)^{m'-m+2s} \right].$$
(112)

3.3 性質

直交性

$$\int_0^{\pi} d\beta \ d_{mm'}^{\ell}(\beta) d_{mm'}^{\ell'}(\beta) \sin \beta = \int_{-1}^1 d\mu \ d_{mm'}^{\ell}(\mu) d_{mm'}^{\ell'}(\mu) = \frac{2}{2\ell + 1} \delta_{\ell\ell'}, \tag{113}$$

 $\zeta \zeta \tau \mu = \cos \beta_{\circ}$

対称性

$$d_{mm'}^{\ell}(\beta) = (-1)^{m-m'} d_{-m,-m'}^{\ell}(\beta) = (-1)^{m-m'} d_{m'm}^{\ell}(\beta), \qquad (114)$$

$$d_{mm'}^{\ell}(\beta) = (-1)^{\ell+m} d_{m,-m'}^{\ell}(\pi - \beta). \tag{115}$$

3.4 漸化式

$$0 = \frac{\sqrt{[(\ell+1)^2 - m^2][(\ell+1)^2 - m'^2]}}{(\ell+1)(2\ell+1)} d_{mm'}^{\ell+1}(\mu) + \left(\frac{mm'}{\ell(\ell+1)} - \mu\right) d_{mm'}^{\ell}(\mu) + \frac{\sqrt{(\ell^2 - m^2)(\ell^2 - m'^2)}}{\ell(2\ell+1)} d_{mm'}^{\ell-1}(\mu). \quad (116)$$

あるいは ℓ → ℓ – 1として

$$0 = \frac{\sqrt{[\ell^2 - m^2][\ell^2 - m'^2]}}{\ell(2\ell - 1)} d_{mm'}^{\ell}(\mu) + \left(\frac{mm'}{\ell(\ell - 1)} - \mu\right) d_{mm'}^{\ell - 1}(\mu) + \frac{\sqrt{((\ell - 1)^2 - m^2)((\ell - 1)^2 - m'^2)}}{(\ell - 1)(2\ell - 1)} d_{mm'}^{\ell - 2}(\mu). \quad (117)$$

m=m'=0のとき

$$0 = \ell d_{mm'}^{\ell}(\mu) - \mu(2\ell - 1)d_{mm'}^{\ell-1}(\mu) + (\ell - 1)d_{mm'}^{\ell-2}(\mu).$$
(118)

3.5 特殊な場合

 β あるいは μ の関数として

$$d_{00}^{1}(\mu) = \mu, \qquad \qquad d_{01}^{1}(\mu) = \frac{1}{\sqrt{2}}\sin\beta, \qquad \qquad d_{11}^{1}(\mu) = \cos^{2}\frac{\beta}{2} = \frac{1+\mu}{2}. \tag{119}$$

$$d_{01}^{\ell}(\beta) = -d_{0,-1}^{\ell}(\beta), \qquad \qquad d_{11}^{\ell}(\beta) = -d_{-1,-1}^{\ell}(\beta) = (-1)^{\ell+1}d_{1,-1}^{\ell}(\pi-\beta). \tag{120}$$

J=mの場合

$$d_{\ell m}^{\ell} = \sqrt{\frac{(2\ell)!}{(\ell+m)!(\ell-m)!}} \left(\cos\frac{\beta}{2}\right)^{\ell+m} \left(-\sin\frac{\beta}{2}\right)^{\ell-m} . \tag{121}$$

 $\beta = 0$ での値を求める。もし $m \neq m'$ であれば、

$$d_{mm'}^{\ell}(\beta) \propto \left[\sin(\beta/2)\right]^{|m-m'|},\tag{122}$$

なので、

$$d_{mm'}^{\ell}(0) = 0, (123)$$

となる。一方でm=m'のとき、漸化式から

$$0 = \frac{[(\ell+1)^2 - m^2]}{(\ell+1)(2\ell+1)} d_{mm}^{\ell+1}(0) + \left(\frac{m^2}{\ell(\ell+1)} - 1\right) d_{mm}^{\ell}(0) + \frac{\ell^2 - m^2}{\ell(2\ell+1)} d_{mm}^{\ell-1}(0),$$
(124)

であり、 $d_{mm}^{\ell}(0) = 1$ は解である。

3.6 Wigner-3j 記号との関係

$$\int_{-1}^{1} d\mu \ d_{s_1,s_1'}^{\ell_1} d_{s_2,s_2'}^{\ell_2} d_{s_3,s_3'}^{\ell_3} = 2 \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ s_1 & s_2 & s_3 \end{pmatrix} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ s_1' & s_2' & s_3' \end{pmatrix}, \tag{125}$$

ただし $s_1 + s_2 + s_3 = s_1' + s_2' + s_3' = 0.$

3.7 加法定理

文献[4]より

$$\sum_{m''=-\ell}^{\ell} d_{mm''}^{\ell}(\beta_1) d_{m''m'}^{\ell}(\beta_2) e^{-im''\varphi} = e^{-im\alpha} d_{mm'}^{\ell}(\beta) e^{-im'\gamma}, \qquad (126)$$

ここで

$$\cot \alpha = \cos \beta_1 \cot \varphi + \cot \beta_2 \frac{\sin \beta_1}{\sin \varphi} , \qquad (127)$$

$$\cos \beta = \cos \beta_1 \cos \beta_2 - \sin \beta_1 \sin \beta_2 \cos \varphi \,, \tag{128}$$

$$\cot \gamma = \cos \beta_2 \cot \varphi + \cot \beta_1 \frac{\sin \beta_2}{\sin \varphi} \,. \tag{129}$$

特に $\varphi = 0$ のとき、

$$\sum_{m''=-\ell}^{\ell} d_{mm''}^{\ell}(\beta_1) d_{m''m'}^{\ell}(\beta_2) = \begin{cases} d_{mm'}^{\ell}(\beta_1 + \beta_2) & (\beta_1 + \beta_2 \le \pi) \\ (-1)^{m+m'} d_{mm'}^{\ell}(2\pi - \beta_1 - \beta_2) & (\beta_1 + \beta_2 \ge \pi) \end{cases} .$$
 (130)

4 特殊関数

4.1 エルミート多項式

4.1.1 定義

確率の分野でよく使われる定義は

$$h_n(x) = e^{x^2/2} \left(-\frac{d}{dx}\right)^n e^{x^2/2}$$
 (131)

$$h_{-1}(x) = e^{x^2/2} \int_x^{\infty} dt \ e^{t^2/2} = \sqrt{\frac{\pi}{2}} e^{x^2/2} \operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right).$$
 (132)

特に

$$h_0(x) = 1$$
, $h_1(x) = x$, $h_2(x) = x^2 - 1$, $h_3(x) = x^3 - 3x$, $h_4(x) = x^4 - 6x^2 + 3$, $h_5(x) = x^5 - 10x^3 + 15x$. (133)

別の定義として

$$H_n(x) = e^{x^2} \left(-\frac{\mathrm{d}}{\mathrm{d}x} \right)^n e^{-x^2} = e^{x^2/2} \left(x - \frac{\mathrm{d}}{\mathrm{d}x} \right)^n e^{-x^2/2}.$$
 (134)

これらは以下で結びつく:

$$H_n(x) = 2^{n/2} h_n(\sqrt{2}x). (135)$$

4.1.2 性質

エルミート多項式の直交関係は

$$\int_{-\infty}^{\infty} \mathrm{d}x \ h_n(x) h_m(x) \,\mathrm{e}^{-x^2} = \sqrt{\pi} \,n! \delta_{mn} \tag{136}$$

$$\int_{-\infty}^{\infty} dx \ H_n(x) H_m(x) e^{-x^2} = \sqrt{2\pi} \, 2^n n! \delta_{mn} \,. \tag{137}$$

漸化式:

$$h_{n+1}(x) = xh_n(x) - \frac{dh_n(x)}{dx}, \qquad \frac{dh_n(x)}{dx} = nh_{n-1}(x)$$

$$H_{n+1}(x) = 2xH_n(x) - \frac{dH_n(x)}{dx}, \qquad \frac{dH_n(x)}{dx} = 2nH_{n-1}(x).$$
(138)

$$H_{n+1}(x) = 2xH_n(x) - \frac{dH_n(x)}{dx},$$
 $\frac{dH_n(x)}{dx} = 2nH_{n-1}(x).$ (139)

多項式表示:

$$H_n(x) = \begin{cases} n! \sum_{m=0}^{n/2} \frac{(-1)^{n/2-m}}{(2m)!(n/2-m)!} (2x)^{2m} & (n = \text{even}) \\ & . \\ n! \sum_{m=0}^{(n-1)/2} \frac{(-1)^{(n-1)/2-m}}{(2m+1)!((n-1)/2-m)!} (2x)^{2m+1} & (n = \text{odd}) \end{cases}$$
(140)

生成関数:

$$\exp(xt - t^2/2) = \sum_{n=0}^{\infty} h_n(t) \frac{t^n}{n!}, \qquad \exp(2xt - t^2) = \sum_{n=0}^{\infty} H_n(t) \frac{t^n}{n!}.$$
 (141)

ルジャンドル多項式との関係:

$$H_{2n}(x) = (-4)^n n! L_n^{-1/2}(x^2) = 4^n n! \sum_{i=0}^n (-1)^{n-i} \binom{n-1/2}{n-i} \frac{x^{2i}}{i!},$$
(142)

$$H_{2n+1}(x) = 2(-4)^n n! x L_n^{-1/2}(x^2) = 2 \times 4^n n! \sum_{i=0}^n (-1)^{n-i} \binom{n+1/2}{n-i} \frac{x^{2i+1}}{i!}.$$
 (143)

4.2 ベッセル関数

ベッセル関数、ノイマン関数は以下の二階微分方程式の解である:

$$\frac{\mathrm{d}^2 f}{\mathrm{d} dz^2} + \frac{1}{z} \frac{\mathrm{d} f}{\mathrm{d} z} + \left(1 - \frac{\nu^2}{z^2}\right) f = 0.$$
 (144)

ベッセル関数の表式は

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(\nu+m+1)} \left(\frac{z}{2}\right)^{2m} . \tag{145}$$

ノイマン関数は

$$Y_{\nu}(z) = \frac{J_{\nu}(z)\cos\nu\pi - J_{-\nu}(z)}{\sin\nu\pi} \,. \tag{146}$$

4.2.1 性質

$$J_{-n}(x) = (-1)^n J_n(x), Y_{-n}(x) = (-1)^n Y_n(x). (147)$$

$$J_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(\nu+1)} \,_{0}F_{1}(\nu+1; -z^{2}/4) \,. \tag{148}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}x^n J_n = x^n J_{n-1}(x). \tag{149}$$

4.2.2 漸化式

$$J_{\nu-1}(z) + J_{\nu+1}(z) = \frac{2\nu}{z} J_{\nu}(z), \qquad (150)$$

$$J_{\nu-1}(z) - J_{\nu+1}(z) = 2\frac{\mathrm{d}J_{\nu}(z)}{\mathrm{d}z}$$
 (151)

4.2.3 漸近形

$$J_n(x \sim 0) = \frac{1}{n!} \left(\frac{x}{2}\right)^n \tag{152}$$

$$J_{\nu}(x \to \infty) = \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{2\nu + 1}{4}\pi\right) \tag{153}$$

$$Y_n(x \sim 0) = \begin{cases} \frac{2}{\pi} \ln \frac{x}{2} \\ -\frac{(n-1)!}{\pi} \left(\frac{x}{2}\right)^{-n} \end{cases}$$
 (154)

および

$$Y_{\nu}(x \to \infty) = \sqrt{\frac{2}{\pi x}} \sin\left(x - \frac{2\nu + 1}{4}\pi\right) \tag{155}$$

4.2.4 積分

以下の積分は収束する:

$$\int_0^\infty \mathrm{d}x \ J(x) \,. \tag{156}$$

以下は証明である。まず、

$$\lim_{\gamma \to \infty} \int_{\gamma}^{\infty} dx \ J_{\nu}(x) \sim \lim_{\gamma \to \infty} \int_{\gamma}^{\infty} dx \ \frac{1}{\sqrt{x}} \cos(x - \alpha_{\nu}). \tag{157}$$

このとき

$$\int_{\gamma}^{\infty} dx \, \frac{1}{\sqrt{x}} \cos(x - \alpha_{\nu}) = \left[\frac{1}{\sqrt{x}} \sin(x - \alpha_{\nu}) \right]_{\gamma}^{\infty} + \int_{\gamma}^{\infty} dx \, \frac{1}{2\sqrt{x^{3}}} \sin(x - \alpha_{\nu}). \tag{158}$$

したがって

$$\left| \int_{\gamma}^{\infty} dx \, \frac{1}{2\sqrt{x^3}} \sin(x - \alpha_{\nu}) \right| \le \int_{\gamma}^{\infty} dx \, \frac{1}{2\sqrt{x^3}} \le \frac{1}{\gamma} \,. \tag{159}$$

一方で、 $x \to 0$ のとき

$$J_{\nu}(x) \sim x^{\nu} \,. \tag{160}$$

4.2.5 他の公式

Hanseの公式

$$J_n(z) = \int_{-\pi}^{\pi} \frac{\mathrm{d}\theta}{2\pi} \,\mathrm{e}^{\mathrm{i}z\cos\theta} \,\mathrm{e}^{\mathrm{i}n(\theta - \pi/2)}\,,\tag{161}$$

ここで $n \ge 0$ 。

4.3 球ベッセル関数

球ベッセル関数は以下の微分方程式の解として定義される:

$$\frac{d^2f}{dx^2} + \frac{2}{x}\frac{df}{dx} + \left(1 - \frac{n(n+1)}{x}\right)f = 0.$$
 (162)

 $x\to 0$ で、解を x^m の形で表せるとすると、m(m+1)=n(n+1)が成り立つ。これから、m=nあるいはm=-n-1 の二つの解があることが分かる。m=nの解はx=0で正則であるが、m=-n-1の解は発散する。以下の関数は上の微分方程式を満たす:

$$h_n^{(1)}(x) = -\frac{(x/2)^n}{n!} \int_1^{\infty} dt \, e^{ixt} (1 - t^2)^n , \qquad (163)$$

$$h_n^{(2)}(x) = \frac{(x/2)^n}{n!} \int_{-1}^{\infty} dt \, e^{ixt} (1 - t^2)^n \,. \tag{164}$$

これから

$$j_n(x) = \frac{h_n^{(1)} + h_n^{(2)}}{2},$$
 $n_n(x) = \frac{h_n^{(1)} - h_n^{(2)}}{2i},$ (165)

を定義する。ここで

$$j_n(x) = -\frac{(x/2)^n}{2n!} \int_{-1}^1 dt \ e^{ixt} (1 - t^2)^n , \qquad (166)$$

である。

ベッセル関数を用いると

$$j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+1/2}(x), \qquad n_n(x) = \sqrt{\frac{\pi}{2x}} Y_{n+1/2}(x) = (-1)^{n+1} \sqrt{\frac{\pi}{2x}} J_{-n-1/2}(x).$$
 (167)

で表される。

微分を用いると

$$j_n(x) = (-1)^n x^n \left(\frac{1}{x} \frac{\mathrm{d}}{\mathrm{d}x}\right)^n \frac{\sin x}{x},\tag{168}$$

$$n_n(x) = -(-x)^n \left(\frac{1}{x}\frac{\partial}{\partial x}\right)^n \frac{\cos x}{x}.$$
 (169)

特に

$$j_0(x) = \frac{\sin x}{x}, \qquad j_1(x) = \frac{\sin x - x \cos x}{x^2}, \qquad j_2(x) = \frac{(3 - x^2)\sin x - 3x \cos x}{x^3}, \qquad (170)$$

$$n_0(x) = -\frac{\cos x}{x}, \qquad n_1(x) = -\frac{\cos x + x \sin x}{x^2}, \qquad n_2(x) = -\frac{(3 - x^2)\cos x + 3x \sin x}{x^3}.$$
 (171)

反転公式

$$j_n(-x) = (-1)^n j_n(x),$$
 $n_n(-x) = (-1)^{n+1} n_n(x).$ (172)

4.3.1 級数表示

級数で表すと[5]

$$j_n(x) = (2x)^n \sum_{k=0}^{\infty} \frac{(-1)^k (k+n)!}{k! (2k+2n+1)!} x^{2k}$$
(173)

$$=x^{n}\sum_{k}^{\infty}\frac{(-1)^{k}}{k!(2k+2n+1)!!}\left(\frac{x^{2}}{2}\right)^{k},$$
(174)

$$n_n(x) = \frac{(-1)^{n+1}}{2^n x^{n+1}} \sum_{k=0}^{\infty} \frac{(-1)^k (k-n)!}{k! (2k-2n)!} x^{2k}$$
(175)

$$= \frac{(-1)^{n+1}\sqrt{\pi}}{2^n x^{n+1}} \sum_{k=0}^{\infty} \frac{(-1)^k 4^k (n-k)}{\Gamma(k+1)\Gamma(1/2-n+k)} x^{2k}$$
(176)

$$= \frac{(-1)^n}{x^{n+1}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(2k-2n+1)!!} \left(\frac{x^2}{2}\right)^k.$$
 (177)

4.3.2 漸近形

 $x \to 0$ においては

$$j_n(x \sim 0) = \frac{x^n}{(2n+1)!} \tag{178}$$

$$n_n(x \sim 0) = -\frac{(2n-1)!!}{x^n} \tag{179}$$

一方で $x \to \infty$ では

$$j_n(x \to \infty) = \frac{1}{x}\cos\left(x - \frac{n+1}{2}\pi\right) \qquad \qquad n_n(x \to \infty) = \frac{1}{x}\sin\left(x - \frac{n+1}{2}\pi\right)$$
 (180)

4.3.3 漸化式

 $j_n(x)$ の積分表示を微分し、余った積分項を部分積分することで、球ベッセルの微分は

$$j'_n(x) = j_{n-1}(x) - (n+1)\frac{j_n(x)}{x}.$$
(181)

で与えられることが分かる。あるいは

$$\frac{\mathrm{d}}{\mathrm{d}x}x^{n+1}j_n(x) = x^{n+1}j_{n-1}(x). \tag{182}$$

とも書ける。さらに球ベッセル関数が満たす微分方程式を使うことで、漸化式

$$j_{n-1}(x) + j_{n+1}(x) = \frac{2n+1}{x} j_n(x), \qquad (183)$$

が得られる。

4.3.4 部分波展開

部分波展開とは

$$e^{ikx\cos\theta} = \sum_{n=0}^{\infty} (2n+1)i^n j_n(kx) P_n(\cos\theta)$$
(184)

これは以下のようにして導かれる。まず、 $j_n(x)$ の積分表示をn回部分積分すれば

$$j_n(x) = -\frac{(x/2)^n}{2n!} \int_{-1}^1 dt \ e^{ixt} \frac{(-1)^n}{(ix)^n} \left(\frac{d}{dt}\right)^n (1 - t^2)^n,$$
(185)

となるので、ルジャンドル多項式の微分表示を使うことで

$$j_n(x) = -\frac{1}{2i^n} \int_{-1}^{1} dt \ e^{ixt} P_n(t)$$
 (186)

が得られる。これから、部分波展開の右辺は

$$\sum_{n=0}^{\infty} 2i^n \frac{2n+1}{2} P_n(t') j_n(x) = \int_{-1}^1 dt \, e^{ixt} \sum_{n=0}^{\infty} \frac{2n+1}{2} P_n(t') P_n(t) = e^{ixt'}$$
(187)

となる。

一般の部分波展開は

$$e^{i\mathbf{k}\cdot\mathbf{x}} = \sum_{n=0}^{\infty} 4\pi i^n j_n(kx) \sum_{m=-n}^n Y_{nm}^*(\widehat{\mathbf{k}}) Y_{nm}(\widehat{\mathbf{x}})$$
(188)

4.3.5 直交性

三次元デルタ関数のフーリエ表示を使うことで

$$\delta_D^{(3)}(\boldsymbol{k} - \boldsymbol{k}') = \int d^3 \boldsymbol{x} e^{i\boldsymbol{k}\cdot\boldsymbol{x}} e^{-i\boldsymbol{k}'\cdot\boldsymbol{x}}$$
(189)

$$= (4\pi)^2 \sum_{nm} \int_0^\infty dx \ x^2 j_n(kx) j_n(kx') Y_{nm}^*(\widehat{k}) Y_{nm}(\widehat{k}')$$
 (190)

$$= (2\pi)^3 \delta_D^{(2)}(\hat{k} - \hat{x}) \frac{2}{\pi} \int_0^\infty dx \ x^2 j_n(kx) j_n(kx')$$
 (191)

ただし球面調和関数の直交性を用いた。これより

$$\frac{1}{k^2} \delta_D^{(1)}(k - k') = \frac{2}{\pi} \int_0^\infty dx \ x^2 j_n(kx) j_n(k'x)$$
(192)

が得られる。

5 超関数

5.1 デルタ関数

5.1.1 一般の場合

任意の関数に対するフーリエ変換を考える。 フーリエ変換は以下で定義する:

$$\tilde{f}(\boldsymbol{\ell}) = \frac{1}{B} \int d^2 \boldsymbol{x} \, e^{-i\boldsymbol{x}\cdot\boldsymbol{\ell}} f(\boldsymbol{x})$$
(193)

$$f(\boldsymbol{x}) = \frac{1}{A} \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{(2\pi)^2} \,\mathrm{e}^{\mathrm{i}\boldsymbol{\ell}\cdot\boldsymbol{x}} \,\tilde{f}(\boldsymbol{\ell}) \,. \tag{194}$$

これより

$$f(\boldsymbol{x}) = \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{A} \int \frac{\mathrm{d}^2 \boldsymbol{x}'}{B} \,\mathrm{e}^{\mathrm{i}(\boldsymbol{x} - \boldsymbol{x}') \cdot \boldsymbol{\ell}} f(\boldsymbol{x}') \equiv \int \frac{\mathrm{d}^2 \boldsymbol{x}'}{A} \,\Delta(\boldsymbol{x} - \boldsymbol{x}') f(\boldsymbol{x}') \,. \tag{195}$$

ここで $\Delta(x)$ はS上のデルタ関数で

$$\Delta(\boldsymbol{x}) = \frac{1}{B} \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{(2\pi)^2} \,\mathrm{e}^{\mathrm{i}\boldsymbol{\ell} \cdot \boldsymbol{x}} \ . \tag{196}$$

である。 デルタ関数は $f(\boldsymbol{\ell})=1$ を逆フーリエ変換して得たものである。 S上の任意の関数に対し、デルタ関数は以下を満たす:

$$\int \frac{\mathrm{d}^2 \mathbf{x}'}{A} f(\mathbf{x}') \Delta(\mathbf{x} - \mathbf{x}') = f(\mathbf{x}). \tag{197}$$

同様に、 ℓ を変数としたデルタ関数をf(x) = 1のフーリエ変換として定義する:

$$\Delta(\boldsymbol{\ell}) = \frac{1}{A} \int d^2 \boldsymbol{x} e^{-i\boldsymbol{x}\cdot\boldsymbol{\ell}} . \tag{198}$$

これより

$$\int \frac{\mathrm{d}^2 \boldsymbol{\ell}'}{B} f(\boldsymbol{\ell}') \Delta(\boldsymbol{\ell} - \boldsymbol{\ell}') = f(\boldsymbol{\ell}). \tag{199}$$

 $\Delta(x)$ と $\Delta(\ell)$ は以下で関連付けられる:

$$\int \frac{\mathrm{d}^2 \boldsymbol{x}}{A} \, \Delta(\boldsymbol{x}) = \int \frac{\mathrm{d}^2 \boldsymbol{x}}{B} \, \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{A} \, e^{i \boldsymbol{x} \cdot \boldsymbol{\ell}} = \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{B} \, \Delta(-\boldsymbol{\ell}) \,. \tag{200}$$

5.1.2 単位球面の場合

単位球面から二次元面へのフーリエ変換を考える。このとき、 Δ_ℓ は1のフーリエ変換として与えられる。

$$\Delta_{\ell} = \int d^2 \hat{\boldsymbol{n}} e^{-i\hat{\boldsymbol{n}} \cdot \ell} . \tag{201}$$

以下を満たす:

$$\Delta_{\ell} = \begin{cases} 1/\pi & (\ell = \mathbf{0}) \\ 0 & (\ell \neq \mathbf{0}) \end{cases} . \tag{202}$$

球面上のデルタ関数を以下のように定める:

$$\Delta(\hat{\boldsymbol{n}}) = \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{(2\pi)^2} \,\mathrm{e}^{\mathrm{i}\boldsymbol{\ell} \cdot \hat{\boldsymbol{n}}} \ . \tag{203}$$

球面では $|\hat{n}| = 1$ であり、 $\Delta(\hat{n}) \neq \Delta(\hat{n} = 0)$ である。また

$$0 = \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{(2\pi)^2} \, \Delta_{\boldsymbol{\ell}} = \int \frac{\mathrm{d}^2 \boldsymbol{\ell}}{(2\pi)^2} \int \mathrm{d}^2 \hat{\boldsymbol{n}} \, e^{-\mathrm{i}\hat{\boldsymbol{n}} \cdot \boldsymbol{\ell}} = \int \mathrm{d}^2 \hat{\boldsymbol{n}} \, \Delta(\hat{\boldsymbol{n}}) \,. \tag{204}$$

 $\Delta(\hat{m{n}})$ の性質から

$$\int d^2 \boldsymbol{\ell}' \ F_{\boldsymbol{\ell}'} \Delta_{\boldsymbol{\ell}'-\boldsymbol{\ell}} = \int d^2 \boldsymbol{\ell}' \int d^2 \hat{\boldsymbol{n}}' \ e^{-i\hat{\boldsymbol{n}}'\cdot\boldsymbol{\ell}'} f(\hat{\boldsymbol{n}}') \int d^2 \hat{\boldsymbol{n}} \ e^{-i\hat{\boldsymbol{n}}\cdot(\boldsymbol{\ell}'-\boldsymbol{\ell})}$$
(205)

$$= \int d^2 \hat{\boldsymbol{n}} \int d^2 \hat{\boldsymbol{n}}' e^{-i\hat{\boldsymbol{n}}' \cdot \boldsymbol{\ell}} f(\hat{\boldsymbol{n}}) \Delta(\hat{\boldsymbol{n}}' - \hat{\boldsymbol{n}})$$
(206)

$$= \int d^2 \hat{\boldsymbol{n}} e^{-i\hat{\boldsymbol{n}}\cdot\boldsymbol{\ell}} f(\hat{\boldsymbol{n}}) = F_{\boldsymbol{\ell}}.$$
 (207)

6 確率統計

6.1 モーメントとキュムラント

以下の二つの生成関数 $M_x(t)$ および $K_x(t)$ を考える:

$$M_x(t) \equiv \langle e^{tx} \rangle \qquad K_x(t) \equiv \ln M_x(t) \,.$$
 (208)

n次のモーメント $\mu_n = \langle x^n \rangle$ とキュムラントは以下のように定義される:

$$\mu_n = \frac{\partial^n}{\partial t^n} M_x \bigg|_{t=0}, \qquad \kappa_n \equiv \frac{\partial^n}{\partial t^n} K_x \bigg|_{t=0}.$$
 (209)

6.2 対数正規分布

対数正規分布は以下で定義される:

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right], \qquad N(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y - \mu)^2}{2\sigma^2}\right]. \tag{210}$$

任意の $n \in \mathbf{R}$ に対し

$$I_n \equiv \int_0^\infty dx x^n P(x) dx = \int_{-\infty}^\infty dy \, e^{ny} N(y) dy$$

$$= \exp\left[n\mu + n^2 \frac{\sigma^2}{2}\right] \int_{-\infty}^\infty dy \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y - \mu - \sigma^2 n)}{2\sigma^2}\right] dy = \exp\left[n\mu + n^2 \frac{\sigma^2}{2}\right]$$
(211)

特に

$$E(x) \equiv \langle x \rangle = I_1 = e^{\mu + \frac{\sigma^2}{2}}, \qquad (212)$$

$$V(x) \equiv \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \sqrt{I_2 - I_1^2} = e^{\mu + \frac{\sigma^2}{2}} \sqrt{e^{\sigma^2} - 1}.$$
 (213)

xが正規分布に従う確率変数の場合、1/xの分散を定義できない。一方で、対数正規分布であれば、平均、分散は

$$E(x^{-1}) = I_{-1} = (I_1)^{-1} e^{\sigma^2} = [E(x)]^{-1} e^{\sigma^2},$$
(214)

$$V(x^{-1}) = \sqrt{I_{-2} - I_{-1}^2} = e^{-\mu + \frac{\sigma^2}{2}} \sqrt{e^{\sigma^2} - 1} = [E(x)]^{-2} V(x) e^{-\sigma^2}.$$
(215)

もし σ^2 が小さい場合、上式は期待される式となる。すなわち、 $x=\langle x \rangle + \delta x$ および $\delta x \ll 1$ がランダムな確率変数とすると、逆数は

$$\frac{1}{x} \simeq \frac{1}{\langle x \rangle} - \frac{\delta x}{x^2} \,. \tag{216}$$

歪度は

$$\langle (x - \langle x \rangle)^3 \rangle = \exp(3\mu) \left[\exp \frac{9\sigma^2}{2} - 3 \exp \frac{5\sigma^2}{2} + 2 \exp \frac{3\sigma^2}{2} \right]$$
 (217)

平均 μ と分散 σ が1より十分小さいとき、 $\langle (x-\langle x \rangle)^3 \rangle$ は正規分布の場合と同じになる。

参考文献

- [1] J. N. Goldberg et al. Spin-s spherical harmonics and d. Journal of Mathematical Physics, 1967. View Online.
- [2] Wayne Hu. Weak lensing of the cmb: A harmonic approach. Phys. Rev., D62:043007, 2000.
- [3] Toshiya Namikawa, Daisuke Yamauchi, and Atsushi Taruya. Full-sky lensing reconstruction of gradient and curl modes from cmb maps. *JCAP*, 1201:007, 2012.
- [4] D.A. Varshalovich, A.N. Moskalev, and V.K. Kersonskii. Quantum Theory of Angular Momentum. World Scientific, 1989.
- [5] Eric W. Weisstein. Spherical bessel function of the first kind. MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html.