Satellite Remote Sensing

Bouteiller Lisa, Paco Lardy-Nugues, Hugo Feidt, Pauline Boudy

May 2023

Contents

- Presentation of our project
- 2 Download satellite data
- RGB band : Application of a mask
- 4 RGB band : Gradient
- 5 Chlorophyll: Threshold and Gradient
- 6 Conclusion and future objectives

Presentation of our project

Quantification of deforestation in the *Amazon* Rainforest as a first step by comparing images from different years.

Causes of this deforestation:

- Logging (forestry company)
- Intensive agriculture and livestock farming
- 8 Road construction and urban expansion

Source: zero-deforestation.org

Download satellite data

Website Copernicus

Download satellite data

Website EarthExplorer - American satellites

This allows us to have data before 2019.

Application of a mask

The goal: count the number of the pixels of the forest.

Results

From 2014 to 2022, we can count the number of the black pixels that we divide by the total number of pixels. We obtain this graph:

Realization of the Gradient

To quantify the evolution of the deforestation between two years, we calculate a time gradient : it is the difference between each pixels of these images.

Images for 2020 and 2022.

Realization of the Gradient

Obtained images with a pre-treatment :

We have kept the most intense pixel and removed the clouds.

Results

Then, we applied the time gradient :

The yellow areas are the extension of the logging. This represents 3.7% of the deforestation between 2020 and 2022.

Chlorophyll

Sources: researchgate.net and datasheet Sentinel-2

2 absorption bands in the visible range for chlorophyll : detectable by *Sentinel 2*.

Images for the chlorophyll

These images are those of the satellite *Sentinel 2*.

Chlorophyll data exploitation: Threshold

We applied a thresholding on this image to distinguish the two areas :

Chlorophyll data exploitation : Mask

We obtained this evolution of the forest:

Chlorophyll data exploitation: Gradient

Then, we can apply a gradient to compare:

The evolution of the deforestation is around 6.3% between 2020 and 2022.

Conclusion on our results

With the images in RGB and those with the chlorophyll, we obtained some similar results.

	RGB Image	Image of the Chlorophyll
between 2020 and 2022:	increase in deforestation by 3.7%	6.3%

In 2020, the forest rate increases

Otherwise between 2014 and 2022, the forest rate decreases

Accuracy between the two methods: the gradient method threshold depends of each image so the method of the gradient is more precise.

1

Future objectives

- Average over the pixels for the threshold.
- 2 Program to remove the clouds regardless of the image used.
- Extend to the entire Amazon and then to all the forests the quantification of the forest.
- Maybe programs to count the number of the trees.