2. Datenbankmodelle für die

Realisierung

2. Datenbankmodelle für die Realisierung

- Netzwerkmodell
- · Hierarchisches Modell
- Relationenmodell

2.1. Netzwerkmodell

Netzwerkmodell: 1971 vom Normungsausschuss CODASYL-DBTG definiert

ER-Modell	Relationenmodell	Netzwerkmodell
Entity	Tupel	logical record
Entity-Typ	Relationenschema	Record-Typ
Attribut	Attribut	Feld
binärer 1:n-	Relation	Link oder auch
Beziehungstyp		Set-Typ

Schema im Netzwerkmodell

- Netzwerkschema: gerichteter Graph
 - Menge der Record-Typen als Knoten
 - Set-Typen als Kanten ((E_1, E_2) Kante, falls E_1 und E_2 in n: 1-Relationship)
- konkrete Set-Ausprägung: Besitzer (Owner) und Teilnehmer (Members)
- Netzwerkmodell entspricht ER-Modell mit Einschränkungen
 - · alle Relationships binär
 - · nur many-to-one Relationships erlaubt
 - · Relationships haben keine Attribute
- Grund: leichtere Graphendarstellung, günstigere Implementierung

2.2. Hierarchisches Datenmodell

wie Netzwerkmodell, aber nur Hierarchien

Einführung: IBM 1969 mit System IMS

- Eine Hierarchie ist ein Netzwerkschema, das ein Wald ist ("Menge von Bäumen").
- Eine reine Hierarchie kann keine allgemeinen Beziehungen darstellen, so dass so genannte virtual records ("Zeiger") eingeführt werden, um die Baumstruktur zu durchbrechen.

2.3. Das Relationenmodell

das dominierende Datenbankmodell für die Realisierung

- Codd im Jahre 1970
- · Veranschaulichung eines Relationenschemas und einer Relation

Beispiele für Relationen

Personen

PANr	Vorname	Nachname	PLZ	Ort	GebDatum
4711	Andreas	Heuer	18209	DBR	31.10.1958
5588	Gunter	Saake	39106	MD	05.10.1960
6834	Michael	Korn	39104	MD	24.09.1974
8832	Tamara	Jagellovsk	38106	BS	11.11.1973
9999	Christa	Loeser	69121	HD	10.05.1969

Pers_Telefon

PANr	Telefon
4711	038203-12230
4711	0381-498-3401
5588	0391-345677
5588	0391-5592-3800
9999	06221-400177

Begriffe des Relationenmodells i

Begriff	Informale Bedeutung
Attribut	Spalte einer Tabelle
Wertebereich	mögliche Werte eines Attributs (auch Domäne)
Attributwert	Element eines Wertebereichs
Relationenschema	Menge von Attributen
Relation	Menge von Zeilen einer Tabelle
Tupel	Zeile einer Tabelle
Datenbankschema	Menge von Relationenschemata
Datenbank	Menge von Relationen (Basisrelationen)

Begriffe des Relationenmodells ii

Begriff	informale Bedeutung
Schlüssel	minimale Menge von Attributen, deren Werte ein Tu-
	pel einer Tabelle eindeutig identifizieren
Primärschlüssel	ein beim Datenbankentwurf ausgezeichneter Schlüs-
	sel
Fremdschlüssel	Attributmenge, die in einer anderen Relation Schlüs-
	sel ist
Fremdschlüsselbedingung	alle Attributwerte des Fremdschlüssels tauchen in
	der anderen Relation als Werte des Schlüssels auf

Formalisierung Relationenmodell i

Attribute und Wertebereiche

- \bullet $\mathcal U$ nichtleere, endliche Menge: Universum
- $A \in \mathcal{U}$: Attribut
- $\mathcal{D} = \{D_1, \dots, D_m\}$ Menge endlicher, nichtleerer Mengen: jedes D_i : Wertebereich oder Domäne
- total definierte Funktion dom : $\mathcal{U} \longrightarrow \mathcal{D}$
- dom(A): Domäne von A
 w ∈ dom(A): Attributwert für A

Formalisierung Relationenmodell ii

Relationenschemata und Relationen

- $R \subseteq \mathcal{U}$: Relationenschema
- Relation r über $R = \{A_1, ..., A_n\}$ (kurz: r(R)) ist endliche Menge von Abbildungen $t: R \longrightarrow \bigcup_{i=1}^m D_i$, Tupel genannt
- Es gilt $t(A) \in dom(A)$ (t(A) Restriktion von t auf $A \in R$)
- für $X \subseteq R$ analog: t(X) X-Wert von t
- Menge aller Relationen über R:

$$\mathbf{REL}(R) := \{r \mid r(R)\}$$

Formalisierung Relationenmodell iii

Datenbankschema und Datenbank

- Menge von Relationenschemata $S := \{R_1, \dots, R_p\}$: Datenbankschema
- Datenbank über S: Menge von Relationen $d:=\{r_1,\ldots,r_p\}$, wobei $r_i(R_i)$
- Datenbank d über S: d(S)
- Relation $r \in d$: Basis relation

Unterschied zur klassischen Definition i

- "klassische" Definition einer Relation: Teilmenge des kartesischen Produktes
- bei Definition mittels kartesischem Produkt sind

$$r_1 \subseteq \text{dom}(\textit{PANr}) \times \text{dom}(\textit{Vorname}) \times \text{dom}(\textit{Nachname})$$

und

$$r_2 \subseteq \text{dom}(\textit{PANr}) \times \text{dom}(\textit{Nachname}) \times \text{dom}(\textit{Vorname})$$

verschieden!

Unterschied zur klassischen Definition ii

r_1	PANr	Vorname Nachnan	
	4711	Andreas	Heuer
	5588	Gunter	Saake
	6834	Michael	Korn

PANr Nachname Vorname
4711 Heuer Andreas
5588 Saake Gunter
6834 Korn Michael

Relationen r_1 und r_2 bestehen aus Tupeln t_1, t_2, t_3 mit

$$t_1(PANr)=4711,\ t_1(Vorname)=`Andreas',\ t_1(Nachname)=`Heuer'\\t_2(PANr)=5588,\ t_2(Vorname)=`Gunter',\ t_2(Nachname)=`Saake'\\t_3(PANr)=6834,\ t_3(Vorname)=`Michael',\ t_3(Nachname)=`Korn'$$

Integritätsbedingungen

identifizierende Attributmenge $K := \{B_1, \dots, B_k\} \subseteq R$:

$$\forall t_1, t_2 \in r \ [\ t_1 \neq t_2 \quad \Longrightarrow \quad \exists B \in K : t_1(B) \neq t_2(B) \].$$

- Schlüssel: ist minimale identifizierende Attributmenge {Vorname, Nachname, PLZ, Geburtsdatum} und {PANr} für Personen {PANr, Telefon} für Pers_Telefon
- Primattribut: Element eines Schlüssels
- Primärschlüssel: ausgezeichneter Schlüssel
- Fremdschlüssel: $X(R_1) \rightarrow Y(R_2)$

$$\{t(X)|t\in r_1\}\subseteq \{t(Y)|t\in r_2\}$$