EXAMEN FINAL

Apellidos y Nombre			
D.N.I	Grupo	Firma	

- 1. Hay, al menos, tres pruebas distintas de que $\forall n \in \mathbb{N}, n^3 + 5n$ es múltiplo de 6.
 - a) Usar inducción.
 - b) Usar aritmética modular.
 - c) Expresar $n^3 + 5n$ en términos de coeficientes binómicos (números combinatorios). Se pide escribir con todos los detalles, al menos, dos de las tres demostraciones mencionadas.
- **2.** a) Calcular las raíces racionales del polinomio $P(X) = 2X^3 + X^2 + X + 2$.
 - b) Escribir P como producto de factores irreducibles primero en $\mathbb{Q}[X]$ y luego en $\mathbb{R}[X]$ y en $\mathbb{C}[X]$.
 - c) Dibujar una gráfica aproximada de la función polinómica $f: \mathbb{R} \to \mathbb{R}$ determinada por P y explicar con algún detalle como la gráfica y la factorización real son compatibles.
 - d) Discutir, razonadamente, si f es inyectiva o sobreyectiva.
- 3. a) Encontrar todos los números complejos z que satisfacen la ecuación:

$$z^{10} = i \ \overline{z}^{10} \ . \tag{1}$$

b) Si llamamos S al conjunto de los números complejos que satisfacen la ecuación (1) del punto anterior y definimos

$$S_0 = \{ z \in S : |z| = 1 \} \ y S_1 = \{ z \in S_0 : \operatorname{Re}(z) > 0 \},$$

determinar razonadamente los cardinales de S, S_0 y S_1 .

4. En el conjunto $X=\{(x,y)\in\mathbb{R}^2\ :\ x>0,\ y>0\}$ se define la siguiente relación binaria:

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow (x \cdot y < x' \cdot y') \vee ((x \cdot y = x' \cdot y') \wedge (x \leq x')).$$

- a) Demostrar que \mathcal{R} es una relación de orden.
- b) Es \mathcal{R} un orden total?
- c) Sea $S = \{(x, y) \in X : x + y = 1\}$. Determinar, si existen, el máximo, mínimo, elementos maximales y minimales, cotas superiores e inferiores, supremo e ínfimo de S.