Adapted from https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html

V1: 17th Nov 2021

V2: 19th Nov 2021 (changes in yellow)

Make a new directory for analysis

Give your analysis directory a meaningful name, e.g.. analysis/run_name mkdir analysis cd analysis mkdir run_name cd run name

Activate the ARTIC environment:

All steps should be performed in the artic-raby conda environment:

source activate artic-rabv

Basecalling with Guppy

If you did basecalling with MinKNOW, you can skip this step and go to Demultiplexing.

Run the Guppy basecaller on the new MinION run folder:

For fast mode basecalling:

```
guppy_basecaller -c dna_r9.4.1_450bps_fast.cfg -i /path/to/reads -s
run_name -x auto -r
```

You need to substitute /path/to/reads to the folder where the FAST5 files from your run are.

Common locations are:

Mac: /Library/MinKNOW/data/run_name Linux: /var/lib/MinKNOW/data/run name

Windows c:/data/reads

This will create a folder called run name with the base-called reads in it.

Demultiplexing

For the current version of the ARTIC protocol it is essential to demultiplex using strict Parameters to ensure barcodes are present at each end of the fragment.

```
guppy_barcoder --require_barcodes_both_ends -i run_name -s
output_directory --arrangements_files "barcode_arrs_nb12.cfg
barcode_arrs_nb24.cfg"
```

The following steps must be done for every barcode

Read filtering

This step is performed for each barcode in the run.

We first collect all the FASTQ files (typically stored in files each containing 4000 reads) into a single file.

To collect and filter the reads for barcode03, we would run:

```
artic guppyplex --skip-quality-check --min-length 350 --directory
output_directory/barcode03 --prefix run_name
You will now have a files called: run_name_barcode03.fastq
```

Run the MinION pipeline: medaka

For each barcode you wish to process (e.g. run this command 12 times for 12 barcodes), replacing the file name and sample name as appropriate:

```
E.g. for barcode03
```

```
artic minion --medaka --medaka-model r941_min_fast_g303 --normalise 200 --threads 4 --scheme-directory ~/Github/artic-
```

rabv_ea/primer_schemes --read-file run_name_barcode02.fastq
rabv ea/V1 samplename

Replace samplename as appropriate.

Double check the filepath to the artic-raby folder. If this does not match the location on *your* laptop, modify as necessary.

Output files

samplename.rg.primertrimmed.bam - BAM file for visualisation after primer-binding site trimming

samplename.trimmed.bam - BAM file with the primers left on (used in variant calling) samplename.merged.vcf - all detected variants in VCF format samplename.pass.vcf - detected variants in VCF format passing quality filter samplename.fail.vcf - detected variants in VCF format failing quality filter samplename.primers.vcf - detected variants falling in primer-binding regions samplename.consensus.fasta - consensus sequence

To put all the consensus sequences in one file called my_consensus_genomes.fasta , run cat *.consensus.fasta > my consensus genomes.fasta

To visualise genomes in Tablet

Open a new Terminal window:

tablet

Go to "Open Assembly"

Load the BAM (binary alignment file) as the first file.

Load the reference file (in artic/artic-rabv/primer_schemes/rabv_ea/V1/rabv_ea_reference.fasta) as the second file.

Select Variants mode in Color Schemes for ease of viewing variants.