1. Category Theory

- (1) Definition of Category Theory
- (2) homomorphism, monomorphism, epimorphism, isomorphism, automorphism?
- (3) Category of Sets
- (4) Category of Rings

2. Linear Algebra

- (5) Category of Vector Spaces
- (6) Direct sum on V.S. definition
- (7) Complentary Definition
- (8) Tensor product on V.S. definition

3. Topology

- (9) Category of Toplogical Spaces (1)
- (10) Hausdorff and Normal definitions [???]
- (11) Tietze Extension Theorem [???]
- (12) Homotopy things
 - (a) Homotopic functions
 - (b) Homotopy equivalence of spaces
 - (c) Retraction definition
 - (d) Contractible definition
- (13) Operations on topological spaces:
 - (a) Topological quotient
 - (b) Wedge Sum
 - (c) Smash Product
 - (d) Cone and Suspension

4. Vector Bundles

- (14) Category of vector bundles
- (15) Definition of V.B.
- (16) Definitions of $\Gamma(E)$, homomorphism, isomorphism.
- (17) Restriction and pullback of bundles
- (18) Applying functor T on vector spaces to functor on vector bundles [make less abstract?] [Need \oplus , \otimes , anything else?].
 - Do concretely for one and introduce others as an exercise?
 - (a) Definition of T on bundles
 - (b) Verify T(E) has natural topology and $T(\varphi)$ is continuous.
- (19) Sub-bundle definition [???]
- (20) Quotient bundle definition (13) [???]
- (21) Hermetian bundle and metric on bundle definition [???]
- (22) Bundle form of Tietze Extension Theorem (11) [???]
- (23) Collapsing Operation (Lemma 1.4.7) (16, 13, 12)
- (24) Gluing/Clutching Construction (16, 13)

5. Definition of K-Theory (and reduced K-Theory?)

- (25) Definition of Vect(X) (16)
- (26) $\operatorname{Vect}(X)$ equipped with \oplus and \otimes .

- (27) Stably isomorphic definition. (26)
- (28) Group/Ring Completion through Universal Property
- (29) Definition of K(X) [and $\tilde{K}(X)$?] (25, 28, 27).
 - Verify relevant equivalence relations.
 - Computation of K(X) and $\tilde{K}(X)$ for contractible bundles?
 - Proof of equivalence of multiple definitions. (Present one way and introduce another as an exercise).

6. K-Theory as a cohomomology theory

- (30) $f_t: Y \to X$ homotopy then $f_0^*E \cong f_1^*E$. (12)
- (31) If $f: X \to Y$ is a homotopy equivalence, $f^*: \operatorname{Vect}(X) \to \operatorname{Vect}(Y)$ is bijective. (Lemma 1.4.4 in Atiyah) (30)
- (32) Contractible Y and $f: X \to X/Y$ induces bijection $f^*: \operatorname{Vect}(X/Y) \to \operatorname{Vect}(X)$ (Lemma 1.4.8 in Atiyah, Lemma 2.10 in Hatcher) (12d, 25)
- (33) Exact sequences
 - (a) Definition of exact sequence of vector spaces
 - (b) Definition of exact sequence of vector bundles
 - (c) (?) If short exact sequence $0 \to E' \to E \to E'' \to 0$ then $E \cong E' \oplus E''$
- (34) Bott Periodicity Theorem

7. Division Algebra Application

8. Other

- V.B. homomorphism is isomorphism iff bijective
- Strict homomorphism definition
- $\Gamma(E)$ is a V.S.
- Prop 1.3.2 (Ker, Im, Coker and sub bundles)
- Natural isomorphism $f^*T(E) \cong Tf^*(E)$
- Projection operator definition
- Fundamental Product Theorem in Hatcher

9. Notes/Questions on Outline

- How much time should I spend on vector bundles?
- Try to talk about vector bundles with manifolds?
- Category of sets as example?
- Should I lean to abstract or to concrete? I'm thinking concrete.

10. Questions on Material

- Stably isomorphic classes vs. group completion of Vect(X).
- Wedge Sum, smash product, cone, suspension.