

Neural Network Verification with Vehicle Chapter 2: Robustness

VeTTS - Summer School

Luca Arnaboldi ¹ Ekaterina Komandantskaya ²

¹University of Birmingham ²University of Southampton

The elephant ... panda... gibbon? in the room

This is what a simple Neural Network Property Looks like

Let \mathbf{f} be the neural network Let $\mathbf{\hat{x}}$ be an input in the training data set Let $| | \cdot - \cdot | |$ be some notion of distance.

Then:

$$\forall x: ||x - \hat{x}|| \le \varepsilon \Rightarrow ||f(x) - f(\hat{x})|| \le \delta$$

In Practice - Robustness of MNIST

Let us take as an example the famous MNIST data set by LeCun etal. The images look like this:

In Practice - Robustness of MNIST

Small perturbation

Predicted "5" 94%

0

Formal Verification of NN (more details)

Definition of Verification for a Black Box Model

For a neural network $N: \overline{X} \to \overline{y}$, the input property $P(\overline{X})$ and the output property $Q(\overline{y})$, does there exist an input $\overline{X_0}$ which satisfies $P(\overline{X_0})$ such that its corresponding output $\overline{y_0}$ satisfies $Q(\overline{y_0})$?

- $ightharpoonup P(\overline{x})$ characterises inputs checked
- $ightharpoonup Q(\overline{y})$ characterises the behaviour we DO NOT wish for
- if satisfied, counterexample is returned, else property holds
- the P for robustness is $\|\overline{x} \overline{x_0}\| L_{\infty} \le \delta$ (more on this later)
- ▶ the Q is, $\bigvee_i (\overline{y}[i_0] \leq \overline{y}[i])$, where $\overline{y}[i_0]$ is the desired label

Or More Simply: Robustness

ϵ -ball robustness**

Formally, we define an ϵ -ball around an image $\hat{\mathbf{x}}$ as:

$$\mathbb{B}(\hat{\mathbf{x}}, \epsilon) = [\mathbf{x} \in \mathbb{R}^n : |\hat{\mathbf{x}} - \mathbf{x}| \le \epsilon]$$

where |...| is a distance function (or L-norm) in \mathbb{R}^n , such as Euclidean distance or L_{∞} -norm.

so as above $\mathbb{B}(\hat{\mathbf{x}}, \epsilon) =$:

$$\|\overline{x} - \overline{x_0}\| L_{\infty} \le \epsilon$$

**There are various types of these

Luca Arnaboldi, Ekaterina Komandantskaya Neural Network Verification with Vehicle August 18 2023

ϵ -ball Visualised

For every image in the dataset, we assume we can "draw" a small ϵ -ball around it, and guarantee that within that ϵ -ball classification of the network does not change

How to Specify this in Vehicle?

Formalising ϵ -ball robustness for MNIST networks in Vehicle

- ► We will see how Vehicle can be used to handle properties that refer directly to the data sets.
- ► How to specify images (represented as 2D arrays)
- User defined parameters in Vehicle
- Verification of properties

Reminder - Language Overview

The Vehicle language contains the following basic types:

- ▶ Bool booleans
 - ▶ Operations: and, or, =>, not, if ... then ... else ..., ==, !=
- Index n natural numbers between o (inclusive) and n (exclusive).
 - Used for safe indexing into tensors. For example, only the values 0 and 1 have type Index 2.
 - Operations: ==, !=, <=, >=, <, >
- Nat natural numbers
 - ▶ Operations: ==, !=, <=, >=, <, >, +, *
- ► Int integer numbers
 - Operations: ==, !=, <=, >=, <, >, +, *, -
- **Rat** rational numbers
 - ▶ Operations: ==, !=, <=, >=, <, >, +, *, -, /

Reminder - Language Overview (continued)

Next there are two container types:

- ► List A a list of elements of type A
 - Used for sequences of data for which one either doesn't care about or don't know the length of.
 - ► Operations: ==, !=, map, fold
- ▶ Tensor A [d1, ..., dn] a tensor of elements of type A with dimensions $d1 \times ... \times d_n$.
 - Used for data for which it is important to know the size of. Due to the dependently typed-nature of the language, the dimensions can themselves be arbitrary expressions.
 - ► Operations: ==, !=, map, fold, !

Reminder - Special Mentions: Functions, Networks and Datasets

► The function type is written A -> B where A is the input type and B is the output type e.g.

```
add2 : Nat \rightarrow Nat add2 x = x + 2
```

▶ The language models neural networks as black box functions between tensors

```
network myNetwork : Tensor Rat [28, 28] -> Tensor Rat [10]
```

▶ Datasets may be introduced using the dataset keyword:

```
dataset myDataset: Tensor Rat [10, 784]
```


Reminder - Special Mentions: Parameters, Quantifiers and Type Synonyms

Sometimes the user may not want to hard-code a specific value but rather provide a compile time variable:

```
parameter myParameter : Rat
```

universal (forall) and existential (exists) quantifiers e.g.

```
property1 : Bool
property1 = forall x . lastOutputPositive x
```

can declare synonym for types e.g.:

```
type Image = Tensor Rat [28, 28]
```

```
network classify : Image -> Tensor Rat [10]
```


Case Study: Initialisation - 2D Arrays and Labels

```
Declare input as 2d array (with a label)

type Image = Tensor Rat [28, 28]

type Label = Index 10

type LabelDistribution = Tensor Rat [10]
```

Define what a valid input is (images are within 0 and 1)

```
valid : Image -> Bool
valid x = forall i j . 0 <= x ! i ! j <= 1</pre>
```


Case Study: Classifier - Network and Prediction

The output of the network is a score for each of the digits 0 to 9.

```
@network
classifier : Image -> LabelDistribution
```

The classifier advises that input image x has label i if the score for label i is greater than the score of any other label j:

Case Study: Robustness - User Parameters and Bounds

define the parameter** epsilon that will represent the radius of the balls that we verify.

```
@parameter
```

```
epsilon : Rat
```

we define what it means for an image x to be in a ball of size epsilon

```
boundedByEpsilon : Image -> Bool
boundedByEpsilon x = forall i j .
   -epsilon <= x ! i ! j <= epsilon</pre>
```

^{**}N.B @parameter will mean it is specified at runtime

Case Study: Robustness - Robust Around a Point

We now define what it means for the network to be robust around an image x that should be classified as y

```
robustAround : Image -> Label -> Bool
robustAround image label = forall pertubation .
 let perturbedImage = image - pertubation in
 boundedByEpsilon pertubation and validImage perturbedImage =>
    advises perturbedImage label
```


Case Study: Robustness - Robust Image Classification

Size of input automatically inferred by tool at runtime

```
@parameter(infer=True)
```

n: Nat

We next declare two dataset (parameter ensures same size)

@dataset

trainingImages : Vector Image n

@dataset

trainingLabels : Vector Label n

Case Study: Robustness - Robust Image Classification (continued)

We then say that the network is robust for this data set if it is robust around every pair of input images and output labels.

```
@property
robust : Vector Bool n
robust = foreach i .
  robustAround (trainingImages ! i)(trainingLabels ! i)
```


Case Study: Robustness - Verification

In order to run Vehicle, we need to provide:

- ► the specification file,
- the network in ONNX format,
- the data in idx format,
- \triangleright and the desired ϵ value.

Case Study: Robustness - Verification (continued)

Putting it all together

```
vehicle verify \
 --specification examples/mnist-robustness/mnist-robustness.vcl
 --network classifier:examples/mnist-robustness/mnist-classifier.onnx
  --parameter epsilon:0.005 \
 --dataset trainingImages:examples/mnist-robustness/images.idx \
 --dataset trainingLabels:examples/mnist-robustness/labels.idx
  --verifier Marabou
```


Conclusions

- Robustness is currently the most verified property in AI
- You should now be familiar with how to specify this and verify networks in vehicle
- Coming Next after the break:
 - 1. Hands-on session, get your hands dirty with some excercises
 - 2. Property driven training in Vehicle
 - 3. Demo of training for robustness
 - 4. Practical applications of AI verification

Thats all for Chapter 2 folks!

Extra Material

Further Robustness definitions

 $\forall \mathbf{x} \in \mathbb{B}(\mathbf{\hat{x}}, \epsilon)$. $\mathsf{robust}(f(\mathbf{x}))$

Property	Definition of Robust
CR (Classification Robustness)	$argmax \ f(\mathbf{x}) = c$
SCR (Strong Classification Robustness)	$f(\mathbf{x})_c \geq \eta$
SR (Standard Robustness)	$ f(\mathbf{x}) - f(\hat{\mathbf{x}}) \leq \delta$
LR (Lipschitz Robustness)	$ f(\mathbf{x}) - f(\hat{\mathbf{x}}) \le L \mathbf{x} - \hat{\mathbf{x}} $

Casadio, Marco, Matthew L. Daggitt, Ekaterina Komendantskaya, Wen Kokke, Daniel Kienitz, and Rob Stewart. 2021. "Property-Driven Training: All You (n) Ever Wanted to Know About."

Properties comparisons

Strength: one property is stronger than another if, when a networks satisfies it, the other one is satisfied also.

Comparison of properties:

- ► LR is stronger than SR
- ► SCR is stronger than CR
- No relation between the LR/SR and SCR/CR groups

More Comparisons

Definition	Standard robustness	Lipschitz robustness	Classification robustness	Strong class. robustness
Problem domain	General	General	Classification	Classification
Interpretability	Medium	Low	High	Medium
Globally desirable	✓	✓	X	×
Has loss functions	✓	✓	×	\checkmark
Adversarial training	✓	×	Х	×
Data augmentation	×	X	✓	X
Logical-constraint training	✓	✓	X	✓ \

End Extra Material

