BIOL 450 / IBS 534 HW2 Population Coding

Name: Ruorong Qi Date: Feb 2025

For this homework set, we will use study the coding properties of populations of neuronsthat are arrayed to encode a periodic stimulus (e.g., head-direction cells in the hippocampus). Specifically, we will use receptive fields that can be described via the von Mises distribution ($f(s) = r_{max}e^{kcos(2-\mu_i)}$), which is essentially a gaussian that has periodic boundary conditions on the circle. To make this process a little easier, the code will take the receptive field width (σ) as an input and will numerically calculate the appropriate value of k needed to create the appropriate distribution (or, in some cases, it will use N and assume that $\sigma = \pi/N$.

Add the code from Canvas to your path and use drawReceptiveFields(N) to draw N evenly- space receptive fields. Try performing this for $N=5,\,10,\,15,\,$ and 20 to get a sense of the receptive fields.

Figure 1: Evenly-spaced Receptive Fields

- 1. If $y = Ax^m$, show that $logy \propto mlogx$. given $y = Ax^m$, by applying log on both side we get $logy = log(Ax^m)$, which can be written as logy = logA + mlogx, therefore, logy is proportional to logx.
- 2. Use $[outputValues \sim] = histogramMLEstimates(s, N, rMax, deltaT)$ to plot the distribution of maximum likelihood estimates using the population code for s=1 given N=10 neurons, a maximum firing rate (r_{max}) of 20, and a measurement time (Δt) of 2. Report the mean $(<\hat{s}>)$ and standard deviation $(\sigma_{est}(\hat{s}))$ of the distribution. Does the distribution look gaussian? (Note: outputValues is an array of all simulated estimated values. This will come in handy in a moment.) mean $(\mu)=1.0022$ and standard deviation $\sigma=0.0545$.

Figure 2: Maximum Likelihood Estimates Distribution

- 3. What is the estimate's normalized error $(\frac{\langle \widehat{s} \rangle s}{\sigma_{est}(\widehat{s})})$ for your results in the previous problem. Are these results consistent with those of an unbiased estimator? the estimate normalized error is $\frac{\langle \widehat{s} \rangle s}{\sigma_{est}(\widehat{s})} = \frac{1.0022 1}{0.0545} = 0.0404$. The result of an unbiased estimator (0) is close to the normalized error.
- 4. The Cramer-Rao bound for this system is given by $\sigma_{est}^2(s) \geq \frac{\sqrt{2\pi\sigma^2}}{N^2 r_{max} \Delta t}$, where σ is the width of a single tuning curve. Using this information, estimate the smallest possible Δt you would need to have $\sigma_{est}(S) \leq 10^{-4}$ (all other parameters remaining the same). Confirm this finding by plugging this value into the above function (note that $\sigma = \frac{\pi}{N}$. The smallest $\Delta(t)$ value is 3.9374 where the $\sigma = 0.0001$.

5. Calculate and plot $(<\hat{s}>-s)$ and $\sigma_{est}^2(\hat{S})$ as a function of N for N = 5, 10, 15, ..., 50 (using [outputValues,] = histogramMLEstimates(s, N, rMax, deltaT, [], [], false) to suppress plots). Again, use s = 1, $\Delta t = 2$, and $r_{max} = 20$.

Figure 3: (top) Bias $((<\hat{s}>-s))$ v.s. Number of neuron (N); (bottom) Variance $(\sigma_{est}^2(\hat{S}))$ v.s. Number of neuron (N)

6. Plot $log\sigma_{est}^2(\hat{s})$ vs. logN from the previous question and calculate the slope of the resulting line. Do these results agree with your intuition from the Cramer-Rao bound? Explain your reasoning.

The slope is -2.001, which align with my intuition. The Cramer-Rao bound for this system is given by $\sigma_{est}^2(s) \geq \frac{\sqrt{2\pi\sigma^2}}{N^2r_{max}\Delta t}$, treating $\frac{\sqrt{2\pi\sigma^2}}{r_{max}\Delta t}$ as constant C, we know that $\sigma_{est}^2(s) \geq \frac{C}{N^2}$. By applying log to both size, we got $\log \sigma_{est}^2(s) \geq \log C - 2\log N$. Therefore, the slope of plot displaying $\log \sigma_{est}^2(\widehat{s})$ vs. $\log N$ should have slope of -2.

Figure 4: $log\sigma_{est}^2(\widehat{s})$ vs. logN

7. Now we will probe how altering σ , the tuning curve width, affects σ_{est}^2 . Use [outputValues,] = histogramMLEstimates(s, N, rMax, deltaT, [], sigma, false) to find σ_{est}^2 for $\sigma = 0.08$, 0.10, 0.12, ..., 0.98, 1.00. Once more, use s = 1, $\Delta t = 2$, and $r_{max} = 20$. Plot σ_{est}^2 vs. σ on a semi-log axis (semilogy in Matlab). You should find that the curve is non-monotonic. At what value of σ is the function minimized? When $\sigma = 0.08$, the function is minimized.

Figure 5: σ_{est}^2 vs. σ

8. Use drawReceptiveFields(N, rMax, sigma) to draw the receptive fields for the value of σ that you found in the previous question.

Figure 6: σ_{est}^2 vs. σ

9. Give an intuitive explanation (no equations allowed) as to why there should be an optimal value for σ , rather than the optimal value being infinitely large or infinitesimally small

An optimal value for σ , the receptive field width, because when receptive field is infinitely large or infinitely small the coding could be over-complicated (neuron wouldn't fire for different angles) or too find-tuned, in both way are not energetically efficient way for population coding.