# Classificazione di immagini utilizzando tecniche di transfer learning sul dataset Fruit-360

Mattia Beolchi, 844911 Tommaso Redaelli, 830442

Corso di Advanced Machine Learning Università Milano Bicocca - A.A. 2022/20223

### **Dataset**

Fruit 360 | Un dataset di immagini contenente frutti e vegetali

Version: 2020.05.18.0

Numero di classi: 131

**Dimensioni immagini:** 100 x 100

**Struttura immagini:** Frutto segmentato su sfondo bianco **Più sottocategorie per frutto:** [e.g. "Apple red", "Apple Golden" ... ]

Partizione di train: 67692 immagini Partizione di test: 22688 immagini Partizione frutti multipli: 131 immagini







Avocado



Pear

# **Approccio metodologico** - Single label



# Risultati ottenuti - Single label - ResNet50



|                | Loss  | Accuracy | Precision | Recall | F1-score |
|----------------|-------|----------|-----------|--------|----------|
| Train set      | 0.067 | 99.8%    |           |        |          |
| Validation set | 0.044 | 99.8%    |           |        |          |
| Test set       | 0.085 | 97.9%    | 98%       | 98%    | 98%      |

# **Risultati ottenuti** - Single label - MobileNetV2



|                | Loss  | Accuracy | Precision | Recall | F1-score |
|----------------|-------|----------|-----------|--------|----------|
| Train set      | 0.102 | 99.7%    |           |        |          |
| Validation set | 0.157 | 99.4%    |           |        |          |
| Test set       | 0.126 | 96.8%    | 97%       | 97%    | 97%      |

# **Risultati ottenuti** - Single label - EfficientNetV2B3



|                | Loss  | Accuracy | Precision | Recall | F1-score |
|----------------|-------|----------|-----------|--------|----------|
| Train set      | 0.049 | 99.8%    |           |        |          |
| Validation set | 0.083 | 99.7%    |           |        |          |
| Test set       | 0.120 | 97.4%    | 98%       | 97%    | 97%      |

## **Approccio metodologico** - Multi-label image preprocessing



# **Approccio metodologico** - Multi-label network



## Risultati ottenuti - Multi-label - MobileNetV2



|                | Loss  | Accuracy | Precision | Recall | F1-score |
|----------------|-------|----------|-----------|--------|----------|
| Train set      | 0.139 | 1.01%    |           |        |          |
| Validation set | 0.141 | 0.54%    |           |        |          |
| Test set       | 0.0   | 0%       | 0%        | 0%     | 0%       |

## **Approccio metodologico** - Segmentazione + classificazione



# **Risultati ottenuti** - Multi-label - Segmentation + Classification



|                | Loss | Accuracy | Precision | Recall | F1-Score |
|----------------|------|----------|-----------|--------|----------|
| Train set      | 0.85 | 82%      |           |        |          |
| Validation set | 1.50 | 71%      |           |        |          |
| Test set       |      |          | 17.9%     | 22.1%  | 15.8%    |









# Conclusioni e miglioramenti futuri

#### Classificazione single label

- Approccio transfer learning si rivela efficace
- Necessario test anche su immagini reali
- Leggere criticità su specifiche classi

#### **Improvements**

- Ensemble modelling

#### Classificazione multi-fruit

- Composizione immagini necessaria
- Approccio multi-label non efficace
- Approccio U-Net è buona base di partenza

#### **Improvements**

- Utilizzo dataset reale per training
- Complessità U-Net
- Morfologia matematica per refining della segmentazione