

NORTHWEST UNIVERSITY

2.3 稠密集

实数空间

回顾

全体有理数 ℚ 在 ℝ 中稠密. 即

对任意 $a, b \in \mathbb{R}$, a < b, 存在 $c \in \mathbb{Q}$, 使得 a < c < b.

任意两个实数之间处有有理数

 \iff 对任意的 $a \in \mathbb{R}, \ \varepsilon > 0$, 存在 $c \in \mathbb{Q}$, 使得 $a - \varepsilon < c < a + \varepsilon$.

 \iff 对任意的 $a \in \mathbb{R}$, 则 $a \in \overline{\mathbb{Q}}$.

 $\iff \mathbb{R} \subset \overline{\mathbb{Q}}. \qquad \forall \mathcal{E}, \quad B(\alpha, \mathcal{E}) \cap \mathbb{Q} \neq \emptyset$ $\notin \text{Bising the proof of the$

稠密性的定义

设A = B 是距离空间X的子集. 若 $\overline{B} \supset A$, 则称B 在A 中**稠密**. 特别地,若 $\overline{B} \supset X$, 则称B 为X 的**稠密子集**.

注 记 \mathbb{Q}^c 为全体无理数,则 \mathbb{Q} 在 \mathbb{Q}^c 中稠密. \mathbb{Q} \mathbb{Q} \cap $\mathbb{Q}^c = \emptyset$

QDR, QDQ°

接触点

回顾

 $x \in \overline{B}$, 即 $x \in B$ 的接触点

闭包

 \iff 对任意的 $\varepsilon > 0$, 有 $B(x, \varepsilon) \cap B \neq \emptyset$.

(1

 \iff 对任意的 $\varepsilon > 0$, 存在 $y \in B$, 使得 $d(x,y) < \varepsilon$.

y & B(x, E)

 \iff 存在 $\{x_n\} \subset B$, 使得 $x_n \to x \ (n \to \infty)$.

稠密性的等价刻画

定理

以下三个命题等价:

- 1) B在A中稠密. BOA
- 2) 对任意的 $x \in A$, $\varepsilon > 0$, 存在 $y \in B$, 使得 $d(x,y) < \varepsilon$.

 A中任意点、約 そ 到域 中存在点、 $y \in B$ 3) 对任意的 $x \in A$, 存在 $\{x_n\} \subset B$, 使得 $x_n \to x$ $(n \to \infty)$.

稠密子集的例

例 1

记 $\mathcal{P}[a,b]$ 为[a,b]上的实系数多项式全体,则 $\mathcal{P}[a,b]$ 在 $\mathcal{C}[a,b]$ 中稠密.

连续函数空间

回顾

Weierstrass 逼近定理

设x(t) 是[a,b] 上的连续函数,则对任意的 $\varepsilon > 0$,存在多项式p(t),使得对任意的 $t \in [a,b]$,

$$|x(t) - p(t)| < \varepsilon.$$

XH)的 2全时中存在 PH)

稠密子集的例

例 2

记Q[a,b]为[a,b]上的有理系数多项式全体,则Q[a,b]在P[a,b]中稠密.

证

任取 $p(t) \in \mathcal{P}[a,b]$,不妨设 $p(t) = a_0 + a_1 t + \dots + a_n t^n \ (a_i \in \mathbb{R})$.

由于 \mathbb{Q} 在 \mathbb{R} 中稠密,则对任意 $\varepsilon > 0$,存在 $r_i \in \mathbb{Q}$,使得

$$|a_i - r_i| < \varepsilon$$
.

稠密子集的例

例 2

记Q[a,b]为[a,b]上的有理系数多项式全体,则Q[a,b]在P[a,b]中稠密.

证

任取
$$p(t) \in \mathcal{P}[a,b]$$
,不妨设 $p(t) = a_0 + a_1 t + \dots + a_n t^n \ (a_i \in \mathbb{R})$.

由于 \mathbb{Q} 在 \mathbb{R} 中稠密,则对任意 $\varepsilon > 0$,存在 $r_i \in \mathbb{Q}$,使得

$$|a_i - r_i| < \frac{\varepsilon}{1 + M + \dots + M^n}.$$

 $\Rightarrow q(t) = r_0 + r_1 t + \dots + r_n t^n$. $i \supseteq M = \max\{|a|, |b|\}$. \mathbb{N}

$$d(p,q) = \max_{t \in [a,b]} |p(t) - q(t)| < \varepsilon.$$

小结

- 稠密性的定义
- 稠密性的等价刻画
- 稠密子集的例