Bipartite Perfect Matching is in Quasi-NC

Alon Gurny

January 19, 2025

Outline

Abstract

This is a summary of "Bipartite Perfect Matching is in Quasi-NC" by Fenner, Gurjar, and Thierauf.

- Introduction
- 2 Combinatorics and Probability
- Isolation
- 4 Cycles and Circulation
- The Theorem

Notation

Notation

Throughout this presentation, *ALL* the graphs are:

- undirected
- bipartite
- balanced
- labeled

Usually we call our graph G and the set of edges E.

The set of edges can be regarded as a relation $E \subseteq [n] \times [n]$.

Definition

- We define \mathcal{NC}^k to be the class of problems that can be solved by a polynomial-time uniform family of circuits of polynomial size and depth $\mathcal{O}(\log^k n)$.
- Equivalently, \mathcal{NC}^k is the class of problems that can be solved by a polynomial number of processors in $\mathcal{O}(\log^k n)$ time.

•

$$\mathcal{NC} = \bigcup_{k \geq 0} \mathcal{NC}^k$$

Fact

Introduction

DET, the problem of computing the determinant of an $n \times n$ matrix with poly(n)-bounded entries, is in \mathcal{NC}^2 .

Theorem (Chinese Remainder Theorem)

Let m_1, \ldots, m_k be pairwise coprime integers.

Let a_1, \ldots, a_k be integers.

Then the system of congruences $x \equiv a_i \mod m_i$ has a unique solution modulo $m_1 \cdot \ldots \cdot m_k$.

Fact

The Chinese Remainder Theorem can be solved in \mathcal{NC}^1 . That is, given fixed p_1, \ldots, p_n such that $p_1 \cdot \ldots \cdot p_n \leq n^2$, the system of congruences $x \equiv a_i \mod p_i$ can be solved in \mathcal{NC}^1 .

Perfect Matching

Definition

- A *perfect matching* of a graph *G* is a set of edges such that every vertex is incident to exactly one edge.
- The perfect matching problem is to determine whether a graph has a perfect matching, or to find one.
- The *decision version* of the perfect matching problem is denoted PM.
- The search version of the perfect matching problem is denoted SearchPM.

State of the Art

It has already been known that perfect matching (whether decision or search) can be solved in randomized \mathcal{NC} .

Open Problem

Can perfect matching be solved in \mathcal{NC} ?

Today

There exist algorithms in:

- Quasi $-\mathcal{NC}^2$ for PM (that is, with $\mathcal{O}(n^{\log n})$ processors and $\mathcal{O}(\log^2 n)$ depth)
- randomized \mathcal{NC}^2 for PM with only $\mathcal{O}(\log^2 n)$ random bits.
- (We will not see this) Quasi $-\mathcal{NC}^2$ for PM (that is, with $\mathcal{O}(n^{\log n})$ processors and $\mathcal{O}(\log^2 n)$ depth)
- (We will not see this) \mathcal{NC}^3 for SearchPM with only $\mathcal{O}(\log^2 n)$ random bits.

- The bi-adjacency matrix: $\mathbf{A}_G = \mathbf{A}_E = A$ of G (or E) is an $n \times n$ matrix where $A_{ij} = 1_{(i,j) \in E}$
- We write $B \leq C$ iff $\forall i, j.B_{ij} \leq C_{ij}$
- A permutation matrix is a matrix \mathbf{A}_{Γ} where $\Gamma = \{(i, \sigma i) : i \in [n]\}$ for some permutation $\sigma \in \mathcal{S}_n$

Exercise

For which $E \subseteq [n] \times [n]$ is \mathbf{A}_E a permutation matrix?

Exercise

For which $B \in \mathbb{R}_{>0}^{n \times n}$ and E does $B \leq \mathbf{A}_E$ hold?

Definitions (Weight Functions)

- A weight function is a function $w : E \to \mathbb{N}$.
- We extend it naturally to a function $w: 2^E \to \mathbb{N}$ by setting $w(S) = \sum_{e \in S} w(e)$ for all $S \subseteq E$.
- Even more generally (why?), we extend it to a *linear function* $w: \mathbb{R}^{n \times n} \to \mathbb{R}$ by setting $w(A) = \sum_{ij \in E} w(ij)A_{ij}$ for all $A \in \mathbb{R}^{n \times n}$.

Definitions (Perfect Matching)

- A *perfect matching* is a set of edges *M* such that every vertex is incident to exactly one edge in *M*.
- Equivalently, M is a perfect matching iff \mathbf{A}_M is a permutation matrix.

Birkhoff's Theorem I

Definition (Doubly Stochastic Matrix)

- A matrix $M \in \mathbb{R}_{\geq 0}^{n \times n}$ is *doubly stochastic* if the sum of the entries in each row and column is 1.
- Equivalently, M is doubly stochastic if $M\mathbf{1} = M^T\mathbf{1} = \mathbf{1}$.

Definition (Convex Hull)

The *convex hull* of a set S is the smallest convex set containing S, denoted $\mathbf{CH}(S)$.

It is precisely the set of all convex combinations of elements of S,

i.e.,
$$\mathbf{CH}(S) = \left\{ \sum_{i=1}^{k} \lambda_i x_i : x_i \in S, \lambda_i \geq 0, \sum_{i=1}^{k} \lambda_i = 1 \right\}.$$

Birkhoff's Theorem II

Theorem (Birkhoff, 1946)

The set of doubly stochastic matrices, denoted \mathcal{B}_n , is the convex hull of the permutation matrices.

Hint

Use Hall's marriage theorem.

Perfect Matching Polytope

Theorem (Birkhoff, 1946)

The set of doubly stochastic matrices is the convex hull of the permutation matrices.

Definition (Perfect Matching Polytope)

The perfect matching polytope \mathcal{P}_G is the convex hull of the bi-adjacency matrices of all the perfect matchings of G.

Corollary

The perfect matching polytope P_G is exactly the matrices B in the Birkhoff polytope B_n such that $B \leq \mathbf{A}_G$:

$$\mathcal{P}_G = \{B : B \in \mathcal{B}_n \land B \leq \mathbf{A}_G\}$$

Definition

Let M be a perfect matching. We define its $sign \operatorname{sgn} M = \operatorname{sgn} \sigma$ where σ is the permutation given by M.

Definition

Let $\{w_i : E \to \mathbb{N}\}_{i \in [k]}$ be weight functions.

We define the weighted Edmonds matrix $D^{E,w}$ as follows:

$$\left(D^{E,w}\right)_{ij} = \begin{cases} x_{ij}^{(k)^{w_k(ij)}} & \text{if } (i,j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Let $a \in \mathbb{N}^k$ be a vector of variables. We also denote $D_a^{E,w} = D^{E,w}(x_{ii}^{(k)} := a_k)$

Definitions

- A weight function $w: E \to \mathbb{N}$ is called *isolating* for E if the existence of a perfect matching in E implies that E has a unique minimum weight perfect matching, which is then called *isolated*.
- Similarly, a sequence of weight functions $w = (w_i)_{i \in [k]}$ is called isolating for E if the existence of a perfect matching in E implies that E has a unique minimum weight perfect matching with respect to $w = (w_0, \ldots, w_k)$, ordered lexicographically.

Corollary

- If E has no perfect matchings, then $\det D^{E,w} = 0$.
- If w is isolating for E, then $\det D^{E,w} \neq 0 \iff$ there is a perfect matching.

Introduction

Let $E = \{e_k\}_k$ be an enumeration of the edges. Let $w : E \to \mathbb{N}$ be defined by $w(e_k) = 2^k$. Every subset of E has a unique weight. In particular, w is isolating for E. Is this enough?

Isolation Lemma

Lemma (Mulmuley, Vazirani & Vazirani 1987)

Let B be a finite set.

Let k be a positive integer.

Let $\mathcal{F} \subseteq 2^B$ be a nonempty family of subsets of B.

Let $w : B \to k$ be a be chosen uniformly at random among all functions from B to [k].

Then, with probability at least 1 - |B|/k, there exists a unique set $S \in \mathcal{F}$ with a minimum weight among all sets in \mathcal{F} .

Corollary

Let $w: E \to [n^3]$ be a random weight function.

Then with probability at least 1 - 1/n, w is isolating for G.

Proof.

Take \mathcal{F} as the family of perfect matchings of G.

As, $|E| \le n^2$, by the isolation lemma, with probability at least

$$(1-|E|/n^3) \ge 1-n^2/n^3 = 1-1/n$$

w is isolating for G.

Corollary

There exists an RNC algorithm that can solve PM, which uses poly(n) random bits.

Circulation

Definition

Let $w: E \to \mathbb{N}$ be a weight function. The *w-circulation* of a cycle $C = e_1, \ldots, e_{2k}$ is defined as

$$c_w(C) = |w(e_1) - w(e_2) + \ldots + w(e_{2k-1}) - w(e_{2k})|$$

This is well defined because we take the absolute value.

Remark

Let M_1 and M_2 be two perfect matchings of G, and suppose $C \subseteq M_1 \triangle M_2$.

Then $c_w(C) = |w(C \cap M_1) - w(C \cap M_2)|$.

Claim

The symmetric difference of two perfect matchings is a union of disjoint cycles.

Each cycle consists of interleaved edges from the two matchings.

Proof.

The degree of each vertex is 1 in a perfect matching.

Thus, in the symmetric difference of two perfect matchings, each vertex has degree 0 or 2.

Therefore it is a union of disjoint cycles. The rest is easy to see.

Lemma

Let $w : E \to \mathbb{N}$ be a weight function. If every cycle in G has a nonzero circulation, then w is isolating for

G.

Proof.

On the contrary, suppose that M_1 and M_2 are two minimum perfect matchings of G. Choose some cycle $C \subseteq M_1 \triangle M_2$. Since $c_w(C) > 0$, we have $w(C \cap M_1) \neq w(C \cap M_2)$. WLOG, assume that $w(C \cap M_1) < w(C \cap M_2)$. Then $M_2 \triangle C$ is a perfect matching with weight less than $w(M_2) = w(M_1)$, contradicting minimality.

Definition

Suppose G has a perfect matching. Let $w: E \to \mathbb{N}$ be a weight function.

Then $G_{w} \subseteq G$ is the union of all minimum weight perfect matchings of G, relatively to w.

Theorem

Let $G^0 = G$ be and $G^{i+1} = (G^i)_{w_i}$.

Let $k \ge \log n - 2$ and let $w_0, \ldots, w_k : E \to \mathbb{N}$ be weight functions such that w; gives nonzero circulation to all the cycles of size at most $4 \cdot 2^i$ in G_i .

Then the joint weight function $w = (w_0, \ldots, w_k)$ is isolating.

Lemma

Let $r \ge 2$ be even. Suppose G has no cycles of size at most 2r. Then G has at most n^4 cycles of size at most 4r.

Proof.

- Equivalently, there is at most one path of length $\leq r$ between any two vertices.
- Let v_0, v_1, v_2, v_3 be vertices in V_1 , such that the distance between v_i and $v_{i+1 \mod 4}$ is $\leq r$.
- There exists a partial function from V_1^4 to cycles in G that maps (v_0, v_1, v_2, v_3) to the cycle composed of the unique paths of length $\leq r$ between v_i and $v_{i+1 \mod 4}$.
- Let C be a cycle of size ≤ 4r.
 We can choose arbitrarily v₀, v₁, v₂, v₃ ∈ C such that the distance between v_i and v_{i+1 mod 4} is ≤ r.
- This function is onto the set of cycles of size $\leq 4r$. Thus, there are at most $|V_1|^4 = n^4$ cycles of size $\leq 4r$.

Lemma

Suppose G has a perfect matching and let $w : E \to \mathbb{N}$ be a weight function.

Then every perfect matching in G_w has the same weight as every minimum weight matching in G.

Proof.

If w is isolating, G_w is just a single perfect matching.

Otherwise, suppose the minimum weight for perfect matchings in G is m. Suppose there exist t such matchings and let X be their average. Then, w(X) = m.

Let N be a perfect matching in G_w . Every edge is contained in some minimum weight perfect matching, so $X-\frac{1}{t}N\geq 0$. It can easily be seen that the sum of every row and column is (t-1)/t and thus the matrix $\frac{t}{t-1}X-\frac{1}{t-1}N$ is doubly stochastic. Therefore, it lies in \mathcal{P}_G and thus has weight at least m. That is.

$$m \leq w\left(\frac{t}{t-1}X - \frac{1}{t-1}N\right) = m \cdot \frac{t}{t-1} - w(N) \cdot \frac{1}{t-1}$$

From that it follows that $w(N) \leq m$.

Lemma

Suppose G has a perfect matching and let $w : E \to \mathbb{N}$ be a weight function.

Then the w-circulation of every cycle in G_w is zero.

Proof.

Let X be the average of all perfect matchings in G_w . Let t be the number of perfect matchings, $\varepsilon=1/t$, and let M_1,\ldots,M_t be the perfect matchings. Then $X=\varepsilon\sum_{i=1}^t M_i$. Since each edge is contained in some perfect matching, we have $X_{ij}\geq \varepsilon$ for all i,j such that $(i,j)\in E$. Let $C=e_1,\ldots,e_{2p}$ be a cycle in H. Define Y by

$$Y_{ij} = \begin{cases} X_{ij} + (-1)^k \varepsilon & \text{if } (i,j) = e_k \in C, \\ X_{ij} & \text{otherwise.} \end{cases}$$

Then clearly $Y \ge 0$ and $Y\mathbf{1} = Y^T\mathbf{1} = \mathbf{1}$. Therefore, Y lies in the perfect matching polytope.

Since all the perfect matchings have the same weight, w(Y) = w(X) and thus w(Y - X) = 0. But $c_w(C) = \varepsilon w(Y - X)$, and thus $c_w(C) = 0$.

Lemma

Using $\mathcal{O}(\log n)$ random bits we can generate a weight assignment $w: E \to \mathbb{N}$ with $w \leq \operatorname{poly}(n)$ such that for every set of n^4 cycles, w gives nonzero circulation to all of them with probability at least 1-1/n.

Proof.

Let $w(e_k) = 2^k$. Let the cycles be C_1, \ldots, C_s . Then, $c_w(C_i) \neq 0$ for all i is equivalent to $\prod_{i=1}^{n^4} c_w(C_i) \neq 0$. This product is bounded by $poly(n)^{n^4} = 2^{poly(n)}$.

Thus, it has at most poly(n) prime factors, say k prime factors. Choose t = kn.

Then if we choose a random prime amongst the first t primes $[p_1, \ldots, p_t]$, then if the product is nonzero, with probability at least 1 - 1/n it is still true modulo the chosen prime.

Lemma

Suppose M_1 is a matching that appears in G^i but not in G^{i+1} and M_2 is a matching that appears in G_{i+1} . Then $w_i(M_2) < w_i(M_1)$.

Proof.

Since M_2 appears in G_{i+1} , it has the same weight as any w_i -minimum weight matching in G_i . That is $w_i(M_2) \leq w_i(M_1)$. But if $w_i(M_1) = w_i(M_2)$ held, then M_1 would have been in G^{i+1} by its definition.

Theorem

Let $k \ge \log n - 2$ and let $w_0, \ldots, w_k : E \to \mathbb{N}$ be weight functions.

Let $G^0 = G$ be and $G^{i+1} = (G^i)_{w_i}$. Suppose that for every set of w_i gives nonzero circulation to all the cycles of size at most $4 \cdot 2^i$ in G_i .

Then the joint weight function $w = (w_0, \ldots, w_k)$ is isolating.

Proof.

Since w_i gives nonzero circulation to all the cycles in G^i , all those cycles do not appear in G^{i+1} .

In particular, G^k has no cycles of size at most $4 \cdot 2^k \ge n$.

That is, G^k has a unique perfect matching, and it is isolated in Gby the previous lemma.

Deciding PM in randomized $\mathcal{N}\mathcal{C}^2$

The following algorithm solves PM in randomized \mathcal{NC}^2 with $\mathcal{O}(\log^2 n)$ random bits. We fix some $\mathcal{O}(n^2)$ primes p_i . Let $k = \log n - 2$.

Algorithm 1 Decide PM (randomized)

```
Generate random weight functions w_0, \ldots, w_k.
Generate random numbers r_0, \ldots, r_k.
```

```
Create w_0, \ldots, w_k.
Combine w = (w_0, \ldots, w_k).
```

Calculate
$$\det D_r^{G,w} \mod p_i$$

return $\forall i$. det $D_r^{G,w} \not\equiv 0 \mod p_i$

Deciding PM in Quasi- \mathcal{NC}^2

Introduction

The following algorithm solves PM in Quasi- \mathcal{NC}^2 . Let $k = \log n - 2$.

Algorithm 2 Decide PM (deterministic)

```
for all Possible weight functions w_0, \ldots, w_k and r, simultaneously do

Calculate \det D_r^{G,w}.

if \det D_r^{G,w} \neq 0 then

return True

end if

end for

return False
```

Questions?

