

Overfitting and Cross validation

Cesar Acosta Ph.D.

Department of Industrial and Systems Engineering University of Southern California

How good is the regression model?

How good is the regression model?

How well the model fits the data?

How well the model predicts the data?

How good is the regression model?

How well the model fits the data?

How well the model predicts new data?

How good is the regression model?

How well the model fits the data?

SSE R²

How well the model predicts new data?

How good is the regression model?

How well the model fits the data?

SSE R²

How well the model predicts new data?
 MSPE

Regression assumption:

Expected values of Y follow a regression function

Best model:

Closest model to the regression function

Overfitting:

Model too close to data points

Overfitting - Example

What is overfitting?

What is overfitting?

Building a model that follows the data too closely resulting in poor predictions

How to avoid overfitting?

How to avoid overfitting?

Validation Set approach Cross validation

Training

set

Test

set

Training

Set

Test

set

 $MSPE = \frac{\overline{i=1}}{}$

fit model

test model

Training

Set

Test

set

$$MSPE = \frac{\sum_{i=1}^{m} (y_i - \hat{y}_i)^2}{m}$$

fit model

train MSE

test model

test MSE

Prediction performance

The model prediction performance can be estimated by

- Validation Set approach
- Cross Validation
 - LOOCV (Leave-One-Out Cross-validation)
 - k-Fold Cross Validation

Prediction performance

Compare models based on MSPE

Model with the smallest MSPE is best in terms of prediction performance

k folds

dataset

dataset

		k folds		
test	test	test	test	test

dataset

		k folds		
test	test	test	test	test

test		train		
train	test	train		
	train	test		train
		train		test

MSPE (average)

k=5 folds

$$Data \ set \ \begin{cases} training \ set \ n \left(1 - \frac{1}{k}\right) \ obs \\ test \ set \ n \left(\frac{1}{k}\right) \ obs \end{cases}$$

$$Data \ set \qquad \begin{cases} training \ set \qquad n\left(1-\frac{1}{k}\right) \ obs \qquad \qquad 80\% \\ test \ set \qquad n\left(\frac{1}{k}\right) \quad obs \qquad \qquad 20\% \end{cases}$$

We want a balance between model bias and variability

We want a balance between model bias and variability

