16 Introduzione analisi in più variabili

Fin'ora abbiamo visto: insiemi $\subset \mathbb{R}$, funzioni da $\mathbb{R} \to \mathbb{R}$ con i imiti di funzioni ed il calcolo differenziale, teoria dell'integrazione per funzioni di una variabile, successioni e serie numeriche. L'ultima parte del corso l'obbiettivo è lavorare con più variabili in particolare con \mathbb{R}^n , vorremmo definire l'insieme nel piano (nello spazio), derivare delle curve e studiare funzioni in più variabili $f: \mathbb{R}^n \to \mathbb{R}$ quindi definire un limine la continuità, le derivare e studiare la funzione individuando massimi e minimi.

16.1 Struttura euclidea di \mathbb{R}^n

Definizione 16.1.1. Possiamo definire \mathbb{R}^n come uno spazio vettoriale dove possiamo fare somma, prodotto per un numero, combinazioni lineare indipendenza lineare, la base ed i sottospazi. Se $x \in \mathbb{R}^n \to x = (x_1, x_2, ..., x_n)$.

Per esempio $x=(x_1,x_2)\in\mathbb{R}^2$, mentre $x=(x_1,x_2,x_3)\in\mathbb{R}^3$. Alle livello di notazioni si può scrivere $\mathbb{R}^2=(x,y)\in\mathbb{R}^2$.

 \mathbb{R}^2 sarà un piano mentre \mathbb{R}^3 sarà uno spazio dove possiamo definire.

- Somma di 2 vettori: $x = (x_1, ..., x_n), y = (y_1, ..., y_n), e x + y = (x_1 + y_1, ..., x_n + y_n).$
- Prodotto per un numero $\lambda \in \mathbb{R}$: $\lambda \cdot x = (\lambda \cdot x_1, \lambda \cdot x_2, ..., \lambda \cdot x_n)$.

16.2 Operazioni sullo spazio

Definiamo una la struttura di questo spazio, e lo facciamo definendo delle operazioni.

Definizione 16.2.1 (Prodotto scalare). Il **prodotto scalare** è un operazione che ha come input 2 vettori, dato $x, y \in \mathbb{R}^n$ definiti come $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$ il prodotto scalare è:

$$\langle x, y \rangle = x \cdot y = (x, y) = x_1 y_2 + x_2 y_2 + x_3 y_3 + \dots + x_n y_n = \sum_{i=1}^{n} x_i y_i$$

Definizione 16.2.2 (Norma). La **norma** è un operazioni che ah come input un solo vettore e come risultato un numero maggiore o uguale a 0. Dato $x \in \mathbb{R}^n$, $x = (x_1, x_2, ..., x_n)$ la norma è:

$$||x|| = |x| = \sqrt{\langle x, x \rangle} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

La norma di x è la lunghezza del vettore x.

Definizione 16.2.3 (Distanza). La distanza è un'operazione che ha come input due vettori e come risultato un numero maggiore o uguale a 0. Dato un $x, y \in \mathbb{R}^n$ definiamo la distanza come:

$$dist(x,y) = d(x,y) = ||x-y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Notare che con queste operazioni abbiamo definito in \mathbb{R}^n :

(misurare gli angoli)<, $> \xrightarrow{\text{induce}}$ (lunghezza di un vettore) ||.|| $\xrightarrow{\text{induce}}$ (distanza tra due elementi) d Il prodotto scalare serve a misurare gli angoli perché geometricamente $< x, y >= ||x|| \cdot ||y|| \cdot \cos \Theta$ dove Θ è l'angolo compreso fra i vettori x, y.

Note 16.2.1. Una piccola digressione per dire che possiamo dire sia punti (x_1, x_2) oppure il punto x è uguale dove in \mathbb{R}^2 se scrivo (x_1, x_2) questo rappresenta sia il punto che il vettore applicato nell'origine come punto della freccia in (x_1, x_2) .

In questa rappresentazione la differenza tra i due vettori P, Q dove $P \leftrightarrow x = (x_1, x_2)$ e $Q \leftrightarrow y = (y_1, y_2)$, è $x - y = (x_1 - y_1, x_2 - y_2) = \vec{P} - \vec{Q}$ (penso il vettore differenza come applicato un Q con punta della freccia in P). Quindi d(x, y) = d(P, Q) = ||x - y||.

16.3 Insiemi nello spazio \mathbb{R}^n

Data la nozione di distanza possiamo definire gli insiemi in uno spazio \mathbb{R}^n .

Definizione 16.3.1 (Palla). Dato $x \in \mathbb{R}^n$ e dato $r > 0, r \in \mathbb{R}$ si dice palla di centro x e raggio r:

$$B(x,r) = B_r(x) = \{ y \in \mathbb{R}^n : d(x,y) < r \}$$

La palla di centro x e raggio r può essere chiamato anche intorno sferico di x di raggio r.

Per esempio in caso di \mathbb{R}^2 , $B(x,r) = B_r(x) = \{y \in \mathbb{R}^2 : d(x,y) < r\}$, sarà una circonferenza escluso il bordo. Nel caso di \mathbb{R}^3 invece sarà una sfera piena privata del bordo.

Se torniamo al caso \mathbb{R} la $B_r(x) = \{ \in \mathbb{R} : d(x,y) < r \}$ dove d(x,y) = |x-y|, quindi come il caso \mathbb{R}^n solo che nel caso di \mathbb{R} abbiamo un valore assoluto mentre nel caso \mathbb{R}^n abbiamo una norma.

Definizione 16.3.2 (Sfera). Dato $x \in \mathbb{R}^n$. e dato $r > 0, r \in \mathbb{R}$ si dice **sfera** di centro x e raggio r l'insieme:

$$S(x,r) = S_r(x) = \{ y \in \mathbb{R}^n : d(x,y) = r \}$$

Nel caso vedessimo la sfera in \mathbb{R} avremmo $S_r(x) = \{x - r\} \cup \{x + r\}$.

Figure 49: Esempi sfera

16.4 Proprietà di \mathbb{R}^n

Ricordiamo come notazione che se E è un insieme $E \subseteq \mathbb{R}^n$ allora indichiamo ocn $E^c = \mathbb{R}^n \setminus E =$ complementare di E rispetto a tutto \mathbb{R}^n .

Definizione 16.4.1 (Punto interno, esterno, di frontiera). Sia $E \subseteq \mathbb{R}^n$ un punto $x_0 \in \mathbb{R}^n$ si dice:

- Punto interno ad E se esiste una palla di centro x_0 e raggio r > 0 contenuta in E, cioè se esiste r > 0 tale che $B_r(x_0) \subset E$, si dice che x_0 è un punto interno ad E.
- **Punto esterno ad E** se esiste una palla di centro x_0 e raggio r tutta contenuta in E^x cioè se $\exists r > 0$ tale che $B_r(x_0) \subset E^c = R^n \setminus E$.
- Punto di frontiera per E se non è ne interno ne esterno. $\forall r > 0 \ V_r(x_0) \cap E \neq \emptyset$ e $B_r(x_0) \cap E^c \neq \emptyset$.

Osservazione 16.4.1. Alcune osservazioni su queste proprietà:

- Se x_0 è un punto interno ad $E \Longrightarrow x_0 \in E$.
- Se x_0 è punto esterno ad $E \Longrightarrow x_0 \notin E$.
- Se x_0 è punto di frontiera $\Longrightarrow x_0 \in E$ oppure $x_0 \notin E$.

A livello di notazione si indica \dot{E} l'insieme dei punti interni, e con δE . l'insieme dei punti di frontiera

Esempio 16.4.1. Dato $E = \{x \in \mathbb{R}^2 : x = (x_1, x_2) : x_2 > 0\}$. Ci chiediamo quali siano $\mathring{E}, \delta E$ e l'insieme dei punti esterni.

- L'insieme dei punti interni $\dot{E} = E$. Per dimostrare prendo $(x_1, x_2) \in E$ appartenendo ad E ho che $x_2 > 0$ quindi scelgo $r < \frac{x_2}{2} \Longrightarrow B_r(x_0) \subset E \to Ex_0 \in E$ quindi ho dimostrato che $E \subset \mathbb{E}$ e quindi E = E. In questo caso tutti i punti di E sono punti interni ad E (il viceversa è sempre vero).
- $\delta E = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 0\}$ questo è vero perché qualsiasi punto i prenda fra i punti di frontiera andrò ad intersecare sia E che il suo complementare.
- A questo punto l'insieme dei punti esterni $=A=\{(x_1,x_2)\in\mathbb{R}^2:x_2<0\}$. Per verificare di chiediamo se i punti esterni $\in E^c$, voglio dimostrare che se $A \subset \text{punti esterni allora } (x_1, x_2) \in A$, $x_2 < 0 \rightarrow \text{scelgo } r < \frac{|x_2|}{2}$, quindi $B_r(x_1, x_2) \subset E^c$ ed allora ho dimostrato che (x_1, x_2) è punto esterno.

Esempio 16.4.2. Prendo $E = \{(x_1, x_2) \in \mathbb{R}^2 : 1 < x_1^2 + x_2^2 \le 4\}$. L'esercizio consiste nel calcolare \check{E} , δE e l'insieme dei punti esterni di E.

Punto di accumulazione 16.5

Definizione 16.5.1 (Punto di accumulazione).

Dato $E \subset \mathbb{R}^n$ un punto $x \in \mathbb{R}^n$ si dice **punto di accumulazione** per E se de a di **g**entro x esiste un punto di E diverso da x. Questo è vero se e solo se $\forall r > 0, B_r(x) \cap E$

Osservazione 16.5.1. Osserviamo che se un punto è interno \implies è punto di accumulazione.

Definizione 16.5.2 (Punto isolato). Se un punto di E non di accumulazione per E allora si dice punto isolato.

Definizione 16.5.3 (Insieme aperto e chiuso). Possiamo definire dato un insieme $E \subseteq \mathbb{R}^n$ che

- Questo insieme si dice **aperto** se ogni $x \in E$ è punto interno ad E cioè $E = \dot{E}$.
- Questo insieme si dice **chiuso** se E^c è aperto.

Esempio 16.5.1. Alcuni esempi di insiemi aperti e chiusi.

- $E = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0\}$ è aperto.
- $E = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0\}$ è chiuso.

Teorema 16.5.1. Se E contiene tutto $\delta E \iff E$ è chiuso. Quindi diciamo che $\delta E \subset E \Longrightarrow E$ chiuso.

Esempio 16.5.2. Qualche altro esempio.

- $E = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1\}$ è aperto. La frontiera è $\gamma E = \{(x_1, x_2) : x_1^2 + x_2^2 = 1\}.$
- è una retta quindi $E = \gamma E$ ed è chiuso.

16.6 Proprietà insiemi aperti e chiusi

Alcune proprietà degli insiemi aperti di \mathbb{R}^n :

- Sia Ø che \mathbb{R}^n sono considerati insiemi aperti.
- L'unione (anche numerabile) è aperta. Quindi se prendo $E_1, ..., E_n, ...$ aperti $\cup_{n \in \mathbb{N}} E_n = E$ è aperta.
- L'intersezione (finita) di insiemi aperti è un insieme aperto.

Alcune proprietà degli insiemi chiusi di \mathbb{R}^n :

- Sia \emptyset che \mathbb{R}^n sono considerati anche chiusi.
- L'unione finita di insiemi chiusi è un insieme chiuso.
- L'intersezione (anche numerabile) di un insiemi chiusi è chiusa.

16.7 Insieme limitato

Definizione 16.7.1 (Insieme limitato). Un insieme $E \subseteq \mathbb{R}^n$ si dice **limitato** se esiste un palla di centro l'origine che contiene tutto E. Ovvero se $\exists r > 0$ tale che $E \subset B_r(0)$.

Esempio 16.7.1. Ad esempio se prendiamo un quadrato $\subseteq \mathbb{R}^2$ è limitato. Mentre invece una retta $\subseteq \mathbb{R}^2$ non è limitata.

Definizione 16.7.2 (Intorno). Un intorno di raggio r sferico di ∞ (o la palla di centro ∞ e raggio r) è il complementare della palla chiusa di \mathbb{R}^n con centro l'origine e raggio r.

Esempio 16.7.2. Prendiamo per esempio \mathbb{R}^2 , si ha $B_r(x) = \{y \in \mathbb{R}^n : d(x,y) < r\}$.

Se prendo invece centro $x = \infty$, si ha $B_r(\infty) = \mathbb{R}^n \setminus \overline{B_r(0)}$. $\forall \overline{B_r(0)}$ trovo un intorno sferico di ∞ definito come $\mathbb{R}^n \setminus B_r(0)$.

Osservazione 16.7.1. Avendo introdotto \mathbb{R}^n e ricordando la definizione di punto di accumulazione cioè $E \subseteq \mathbb{R}^n$, x si dice di accumulazione per E se in ogni palla di centro x esiste un punto E diverso da x. Un insieme non è limitato se e solo se ∞ è punto di accumulazione.

Questo perché ∞ è punto di accumulazione \iff comunque grande io prenda la palla di centro 0 quando vado a prendere il suo complementare continuo a trovare punti che si intersecano con E. Vuol dire che E non può essere chiuso in una palla di centro 0.

16.8 Oggetti su un piano \mathbb{R}^2

Ricordiamo ora che se prendiamo un piano \mathbb{R}^2 , e due vettori $P_1 = x = (x_1, x_2), P_2 = y = (y_1, y_2)$, la distanza $d(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$, e questo viene dal teorema di Pitagora dove $(P_1P_2)^2 = (P_1H)^2 + (P_2H)$.

16.8.1 Retta per 2 punti

Prendiamo un piano con $P_1 = (x_1, y_1) = v$, $P_2 = (x_2, y_2) = w$. Noi vogliamo scrivere l'equazione di una retta che passa per due punti del piano. Per descrivere questa retta chiamiamo u = w - v, la retta è l'insieme dei punti che ottengo partendo da P_1 e spostandomi in direzioni di u. Analiticamente:

$$Retta = \{P_{t \in \mathbb{R}} = v + tu\} \text{ dove t è un paramento} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_1 \\ y_y \end{pmatrix} + t \begin{pmatrix} x_2 - x_1 \\ y_2 - y_y \end{pmatrix} \right\}$$

Questa forma in cui ho descritto la retta si chiama forma parametrica della retta passante per P_1 e P_2 , perché usiamo un parametrica p. Da qui possiamo scrivere la forma cartesiana:

$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \end{cases} = \begin{cases} t = \frac{x - x_1}{x_2 - x_1} \\ t = \frac{y - y_1}{y_2 - y_1} \end{cases} = \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

Questa ultima forma senza t si chiama appunto forma cartesiana della retta passante per P_1 e P_2 .

$$x - x_1 = \frac{(y - y_1)(x_2 - x_1)}{y_2 - y_1} = y \frac{(x_2 - x_1)}{y_2 - y_1} - \frac{y_1(x_2 - x_1)}{y_2 - y_1}$$

$$x - y \frac{x_2 - x_1}{y_2 - y_1} + \frac{y_1(x_2 - x_1)}{y_2 - y_1} - x_1 = 0 \rightarrow ax + by + c = 0 \quad \text{almeno uno tra a e b deve} \neq 0$$

Osservazione 16.8.1. Nella forma ax + by + c = 0 due equazioni rappresentato la setta retta \iff sono l'una multipla dell'altra.

16.8.2 Retta perpendicolare a v passante per l'origine

Quindi siamo sempre nel piano ed abbiamo un vettore v=(a,b), (in questo caso al posto di x_1, x_2 uso a,b). Individuo il vettore $w \perp v$ passante per l'origine e descrivo $r: \{P=t \cdot w, t \in \mathbb{R}\}$.

Per trovare w partiamo dal fatto che abbiamo visto che $v \perp w \iff v, w >= 0$ se do' a w due componenti $w = (w_1, w_2)$ sto cercando w_1 e w_2 tali che $w \perp v$, a questo punto posso imporre la condizione $<(a,b),(w_1,w_2)>=0$ che è $a\cdot w_1+b\cdot w_2=0$, mi accorgo che posso scegliere $w_1=-b$ e $w_2=a$ ed in questo modo ho $< v, w >= a\cdot (-b)+b\cdot a=0$ quindi ricapitolando w è determinato da v ed è w=(-b,a) tale che $w \perp v$ (anche $-w=(a,-b) \perp v$) quindi adesso:

$$r = \{P = t \cdot w = \{ \begin{pmatrix} x \\ t \end{pmatrix} \in \mathbb{R}^2 : \begin{pmatrix} x \\ y \end{pmatrix} = t \cdot \begin{pmatrix} -b \\ a \end{pmatrix} \}$$

Questa è detta forma parametrica perché abbiamo appunto un parametro t. Da questa forma possiamo ricavare la forma cartesiana.

$$\begin{cases} x = -tb \\ y = ta \end{cases} = \begin{cases} t = \frac{y}{a} \\ y = -\frac{y}{a} \cdot b \end{cases} = ax + by = 0$$

Osservazione 16.8.2. Vediamo una serie di osservazioni.

- 1. ab + by = 0 è una forma cartesiana della retta passante per l'origine $\iff c = 0, e \perp a, v = (a, b)$.
- 2. Data una retta $ax + by + c = 0 \rightarrow v = (a, b)$ è $\perp r$.

16.8.3 Retta tangente ad un grafico

Siamo sempre in \mathbb{R}^2 e supponiamo di avere una funzione $f:\mathbb{R}\to\mathbb{R}$ continua, derivabile e con derivate continue in tutto \mathbb{R} .

Il suo grafico $graf(f) \subset \mathbb{R}^2$. dato un $x_0 \in \mathbb{R}$ chiamo $y_0 = f(x_0)$ possiamo fare lo sviluppo di Taylor di f in x_0 di primo ordine, l'obbiettivo qui è scrivere l'equazione della retta che passa per x_0, y_0 tangente a f. Lo sviluppo è: $f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$.

Sappiamo che y = f(x) ci da il grafico di f, quindi ci chiediamo $y = f(x_0) + f'(x_0)(x - x_0)$ che grafico sia. Possiamo vedere che:

- 1. Come prima cosa si tratta di una retta perché $f'(x_0)x + y f'(x_0)x_0 + f(x_0) = 0$.
- 2. Poi osservo che questa retta passa per (x_0, y_0) , perché se sostituisco $x = x_0$ ho $y = f(x_0) = y_0$ che sta sul grafico di f.
- 3. Inoltre grazie allo sviluppo di Taylor posso concludere che la differenza fra i due grafici $f(x) f(x_0) f'(x_0)(x x_0) = o(x x_0)$.

Date tutte queste considerazioni possono concludere che $y = f(x_0) + f'(x_0)(x - x_0)$ è la retta tangente al grafico y = f(x) in (x_0, y_0) . Proviamo ora a riscriverla nella forma ax + by + c = 0.

$$y - f(x_0) - f'(x_0) \cdot (x - x_0) = 0 \to y - f(x_0)f'(x_0)x + f'(x_0)x_0 = 0 \to -f'(x_0)x + y + f'(x_0)x_0 - f(x_0) = 0$$

Questa è la forma cartesiana della retta r dove $a = -f'(x_0)$ e b = 1. $v = (a, b) = (-f'(x_0), 1)$ è perpendicolare a r $\Longrightarrow w = (1, f'(x_0))$ è vettore tangente ad r tale che < v, w >= 0. Abbiamo quindi il vettore $w = (1, f'(x_0))$ che è tangente alla retta, posso allora dimostrare che questa retta è tangente. Prima di tutto sappiamo che la retta tange al grafico di f(x) in (x_0, y_0) per definizione è la retta passante per il punto (x_0, y_0) che ha coefficiente angolare $f'(x_0)$. La retta r di equazione $y - f'(x_0)x + f'(x_0)x_0 - f(x_0) = 0$ che ha come vettore tangente w ha come coefficiente angolare $f'(x_0)$. Ora metto insieme tutte le informazione:

- La retta r passa per (x_0, y_0) .
- La retta r ha come coefficiente angolare $f'(x_0)$

Quindi possiamo vedere che r è la retta tangente a y = f(x) nel punto (x_0, y_0) . Possiamo riscriverla nella seguente forma cartesiana:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Mentre la forma parametrica è la seguente.

$$r: \left\{ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + t \begin{pmatrix} 1 \\ f'(x_0) \end{pmatrix} \right\}$$

In \mathbb{R}^2 una retta è descritta da una sola equazione perché in \mathbb{R}^2 ho due gradi di liberta che sono le due variabili mentre su una retta posso solo muovermi sulla retta.

16.9 Spazio cartesiano in \mathbb{R}^3

Nel caso ci trovassimo in un \mathbb{R}^3 abbiamo un vettore scritto come $v=(x_1,y_1,z_1)$. \mathbb{R}^3 ha 3 gradi di liberà (x,y,z) mentre la retta ha 1 grado di libertà quindi ci aspettiamo che per descrivere una retta in uno spazio sarà descritta in 2 equazioni perché dai 3 gradi ne devo vincolare 2.

16.9.1 Retta passante per due punti

Una retta passante per 2 punti in \mathbb{R}^3 possiamo prendere due punti con i vettori associati $P_1 = (x_1, y_1, z_1)$ e $P_2 = (x_2, y_2, z_2) = w$, noi vogliamo scrivere l'equazione della retta che passa per P_1, P_2 .

Chiamiamo $u = w - v = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$, ottengo la forma parametrica di r scrivendo r come:

$$r = \{P = v + tu : t \in \mathbb{R}\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = t \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix} \right\}$$

La forma cartesiana di r invece la possiamo scrivere ricavando il paramento:

$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \\ z = z_1 + t(z_2 - z_1) \end{cases} = \begin{cases} t = \frac{x - x_1}{x_2 - x_1} \\ t = \frac{y - y_1}{y_2 - y_1} \\ t = \frac{z - z_1}{z_2 - z_1} \end{cases} = \begin{cases} \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \\ \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z - z_2} \end{cases}$$

16.9.2 Piano in \mathbb{R}^3 passante per 3 punti

La prima cosa è scrivere l'equazione su \mathbb{R}^3 passante per 3 punti. Prendo innanzitutto 3 punti $P_1=(x_1,y_1,z_1), P_2=(x_2,y_2z_2), P_3=(x_3y_3,z_3)$. Vediamo poi che in un piano ci sono 3 gradi di libertà, mentre nello spazio abbiamo 3 gradi di liberà, quindi ci aspettiamo 1 equazione lineare per definire un piano dello spazio.

Chiamiamo i vettori per i 3 punti $u=P_1, v=P_1, w=P_3$. Poi definiamo il piano per questi 3 punti che chiamiamo π , scriviamo poi:

Partition of the different ways of the properties
$$P_2 - P_1 = v - u = (x_1 - x_1, y_2 - y_1, z_2 - z_1)$$
 $P_3 - P_1 = w - u = (x_3 - x_1, y_3 - y_1, z_3 - z_1)$ La forma parametrica di π può essere scritta come:

$$\pi = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : \begin{pmatrix} x \\ y \\ z \end{pmatrix} = P_1 + t(v - u) + s(w - v) : t, s \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + t \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix} + s \begin{pmatrix} x_3 - x_1 \\ y_3 - y_1 \\ z_3 - z_1 \end{pmatrix} \right\}$$

Se passo alla forma cartesiana vedo che l'equazione lineare che ottengo è una sola.

$$\begin{cases} x = x_1 + t(x_2 - x_1) + s(x_3 - x_1) \\ y = y_1 + t(y_2 - x_1) + s(y_3 - y_1) \\ z = z_1 + t(z_2 - z_1) + s(z_3 - z_1) \end{cases} = \begin{cases} \frac{x - x_1}{x_2 - x_1} = t + s \frac{x_3 - x_1}{x_2 - x_1} \\ \frac{y - y_1}{y_2 - y_1} = t + s \frac{y_3 - y_1}{y_2 - y_1} \\ \frac{z - z_1}{z_2 - z_1} = t + s \frac{z_3 - z_1}{z_2 - z_1} \end{cases} = 1^\circ \text{eq} - 2^\circ \text{eq} - 2^\circ \text{eq} = 1^\circ \text{eq$$

$$= \begin{cases} \frac{x - x_1}{x_2 - x_1} - \frac{y - y_1}{y_2 - y_1} = s(\frac{x_3 - x_1}{x_2 - x_1} - \frac{y_3 - y_1}{y_2 - y_1}) \\ \frac{x - x_1}{x_2 - x_1} - \frac{z - z_1}{z_2 - z_1} = s(\frac{x_3 - x_1}{x_2 - x_1} - \frac{z_3 - z_1}{z_2 - z_1}) \end{cases} = \begin{cases} s = \frac{(\frac{x - x_1}{x_2 - x_1} - \frac{y - y_1}{y_2 - y_1})}{(\frac{x_3 - x_1}{x_2 - x_1} - \frac{y_2 - y_1}{y_2 - y_1})} \\ s = \frac{(\frac{x - x_1}{x_2 - x_1} - \frac{y - y_1}{y_2 - y_1})}{(\frac{x_3 - x_1}{x_2 - x_1} - \frac{z_2 - z_1}{y_2 - z_1})} \\ s = \frac{(\frac{x - x_1}{x_2 - x_1} - \frac{y - y_1}{y_2 - y_1})}{(\frac{x_3 - x_1}{x_2 - x_1} - \frac{z_3 - z_1}{y_2 - z_1})} \end{cases}$$

Questa è 1 equazione linerare che è l'equazione cartesiana di π piano passante per P_1, P_2, P_3 .

16.10 Disegno di insiemi nel piano

Il primo obbiettivo e dunque quello di disegnare insiemi di \mathbb{R}^2 descritti da equazioni e o disequazioni. Per farlo vediamo alcuni esempi per vedere come visualizzare nel piano.

Esempio 16.10.1. Prendiamo $x, y \in \mathbb{R}$, e disegnammo $\{(x, y) \in \mathbb{R}^2 : (x + y) \ge 10\}$. Sappiamo che $x + y \ge 0 \iff y \ge -x$ e questa è una retta della forma y + y = 0 ma noi prendiamo solo i punti sopra visto che usiamo un maggiore uguale.

Esempio 16.10.2. Disegnammo $\{(x,y) \in \mathbb{R}^2 : x-y \leq 0\}$, quindi abbiamo y=x e visto che abbiamo il minore uguale prendiamo tutti i punti sotto.

Esempio 16.10.3. Ora prendiamo $\{(x,y) \in \mathbb{R}^2 \mid 3 \le x + y \le 5\}$, in questo caso però ci sono due condizioni che devono essere verificate contemporaneamente quindi mettiamo tutto come un sistema:

$$\begin{cases} x+y \geq 3 \\ x+y \leq 5 \end{cases} = \begin{cases} y \geq 3-x & \text{Si in individua una retta della forma } y=3-x \\ y \leq 5-x & \text{Si in individua una retta della forma } y=5-x \end{cases}$$

Disegniamo queste due rette e poi prendiamo i punti compresi fra entrambe. La soluzione è dunque l'intersezione fra i due insiemi.

Esempio 16.10.4. Consideriamo $\{(x,y) \in \mathbb{R}^2 : x \cdot y \geq 0\}$ affinché il prodotto di x,y si maggiore e uguale di zero dobbiamo vedere i due casi mettendoli a sistema:

 $\begin{cases} x \geq 0 \\ y \geq 0 \end{cases}$ e $\begin{cases} x \leq 0 \\ y \leq 0 \end{cases}$ Infatti affinché $x \cdot y \geq 0$ x ed y devono essere concordi. Quindi prendiamo le parti del piano che soddisfano la proprietà di avere x ed y concordi.

Esempio 16.10.5. Dato $\{(x,y) \in \mathbb{R}^2 : x^2 - x \ge 0\}$. Sappiamo che $x^2 - x \ge 0$ è uguale a $x(x-0) \ge 0$ e questa equazione perché sia maggiore o uguale a 0: $\begin{cases} x \ge 0 \\ x \ge 1 \end{cases}$ o $\begin{cases} x \le 0 \\ x \le 1 \end{cases}$ quindi $x \ge 0$ o $x \le 0$.

Esempio 16.10.6. Consideriamo $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 8\}$. Se abbiamo un punto (x,y) e consideriamo $x^2 + y^2$ sappiamo che $d((x,y),(0,0)) = |(x+y) - (0,0)| = |(x,y)| = \sqrt{x^2 + y^2}$. Quindi abbiamo che se $x^2 + y$? $^2 \ge 8 \iff$ distanza di (x,y) dall'origine maggiore o uguale a $\sqrt{8}$.

Esempio 16.10.7. In modo analogo all'esempio prima se consideriamo $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 8\}$ abbiamo tutti i punti interni alla circonferenza con la circonferenza inclusa.

Esempio 16.10.8. Consideriamo l'insieme dei punti $\{(x,y) \in \mathbb{R}^{\nvDash} : y \leq x^2 - x\}$. Sappiamo che $y = x^2 - x$ descrive una parabola con concavità verso l'alto e toccando l'asse x in 0 e 1. Questa equazione individua tutti i punti che stanno sotto la parabola inclusa appunto la parabola.

Esempio 16.10.9. Se andassi a considerare invece $\{(x,y) \in \mathbb{R}^{\bowtie} : x^2 - x \leq y \leq 0\}$ come nell'esempio di prima si crea un parabola concava verso l'alto ma in questo caso dobbiamo mettere a sistema due condizioni:

$$\begin{cases} y \ge x^2 - x & \text{sopra la parabola} \\ y \le 0 & \text{sotto l'asse x} \end{cases}$$

Esempio 16.10.10. Se andiamo a considerare $\{(x,y) \in \mathbb{R}^2 : |x| \leq 5\}$. Abbiamo che, essendo un valore assoluto, $-5 \leq x \leq 5$. Quindi andiamo a considerare che abbiamo la parte compreso fra le rette x = -5 e x = 5 comprese.

Mq in generale $\{|x| \leq A\}$ con A un generico numero, ha come soluzioni:

- Insieme vuoto se A < 0.
- Abbiamo poi x = 0 se A = 0.
- Ed in fine $-A \le x \le A$ se A > 0

Analogamente la disequazione $|x| \geq A$ (con $x \in \mathbb{R}$, i valore assoluto) ha come soluzioni:

- Tutto \mathbb{R} se $A \leq 0$.
- Invece abbiamo x < -A e x > A se A > 0.

Esempio 16.10.11. Se ci troviamo allora a descrivere $\{(x,y) \in \mathbb{R}^2 : |x| \leq 5, |y| \leq 3\}$. Siccome sono nel caso in cui abbiamo due numeri positivi abbiamo:

Primo caso $|x| \le 5 \iff -5 \le x \le 5$ e nel secondo caso $|y| \le 3 \iff -3 \le y \le 3$, quindi combinando tutti questi casti risulta un area specifica.

16.11 Curva nel piano e nello spazio

Noi conosciamo come disegnare parabole, iperbole rette ma volgiamo poter definire anche un oggetto più generico.

Definizione 16.11.1 (Curva nel piano). Una curva nel piano è una funzione $\gamma: I \to \mathbb{R}^2$ con $I \subseteq \mathbb{R}$.

Per noi possiamo avere sia I=(a,b) intervallo aperto che I=[a,b] intervallo chiuso. Se I=[a,b] quindi intervallo chiuso allora possiamo definire una curva chiusa.

Definizione 16.11.2 (Curva chiusa). Dato un I = [a, b], una $\gamma : I \to \mathbb{R}^2$ si dice **curva chiusa** se $\gamma(a) = \gamma(b)$ (per farlo sostituisco gli estremi nella funzione γ).

Note 16.11.1. Notare che la funzione che abbiamo a valori in \mathbb{R}^2 , $\gamma:I\to\mathbb{R}^2$, indico utilizzando la seguente notazioni, chiamo $t\in I$ e $\gamma(t)=(x(t),y(t))\in\mathbb{R}^2$.

Esempio 16.11.1. $\gamma(t)=(t^2+1,3t-2)$, con $t\in[0,3]$ è una curva che ha come intervallo [a,]b=[0,3] e le componenti sono $x(t)=t^2+1,y(t)=3t-2$ che sono due funzioni in t. Per ogni punto $t\subseteq[0,3]$ la curva γ . individua un punto del piano. Per esempio $t=0\to\gamma(0)=(1,-2)$ mentre $t=3\to\gamma(3)=(10,7)$.

Con una curva sto rappresentano un punto che si muove nel piano, perché il paramento t lo posso interpretarlo come tempo quindi $\gamma(t)$ mi dice in che punto si trova la mia curva al tempo t.

Definizione 16.11.3 (Curva nello spazio). *Una curva nello spazio* posso definirla come una funzione $\gamma: I \to \mathbb{R}^3$ con $I \subset \mathbb{R}$

Esempio 16.11.2. Se prendiamo $\gamma(t)=(t^2,\sin t,e^t),\,t\in[-1,1]$ è un curva nello spazio. Vediamo che questa funzione prende 3 variabili che saranno 3 funzioni, $\gamma(t)=(x(t),y(t),z(t)),\,x:I\to\mathbb{R},y:I\to\mathbb{R},<:I\to\mathbb{R}.$

Definizione 16.11.4 (Curva semplice). Una curva si dice **semplice** se "non ritorna mai su se stessa" (tranne al massimo $\gamma(a) = \gamma(b)$ cioè agli estremi può tornare su se stessa ma non in altri punti).

(d) Esempio 16.10.7

Definizione 16.11.5 (Sostegno di una curva). Si dice **sostegno** di una curva l'immagine della curva stessa, cioè la traiettoria percorsa dal punto.

Per esempio possiamo avere $\gamma:[a,b]\to\mathbb{R}^2$, l'immagine $\gamma([a,b])\subseteq\mathbb{R}^2$, ci darà quini un sottoinsieme. Se poi t lo consideriamo come il tempo allora $\gamma(t)$ punto in \mathbb{R}^2 dove si trova la curva al punto t.

Definizione 16.11.6 (Vettore tangente alla curva). Sia $\gamma: I \to \mathbb{R}^2$ (o \mathbb{R}^2) con I intervallo $\subset \mathbb{R}$. Si dice **vettore tangente** alla curva il vettore $\gamma'(t) = (x'(t), y'(t))$, assumendo che x'(t), y'(t) esistano.

Osservazione 16.11.1. $x : \mathbb{R} \to \mathbb{R}, y : \mathbb{R} \to \mathbb{R}$, abbiamo che x'(t), y'(t) le sappiamo calcolare, quindi possiamo definire il vettore tangente.

Definizione 16.11.7 (Retta tangente ad una curva). La **retta tangente** ad una curva in un punto è la retta che passa per quel punto ed ha come direzione il vettore tangente alla curva in quel punto stesso.

Esempio 16.11.3. Prendiamo la curva $\gamma(t) = (\sin t, \cos t) \operatorname{con} t \in [0, 2\pi], \ \gamma : [0, 2\pi] \to \mathbb{R}^2 \ \operatorname{e} \ \gamma(t) = (x(t), y(t)) \operatorname{con} x(t) = \cos t \ \operatorname{e} \ y(t) = \sin(t).$

Se facciamo $x^2(t)+y^2(t)=\cos t^2+\sin t^2=1 \forall t\in [0,2\pi]$ e quindi $x^2(t)+y^2(t)=1$. Il sostegno di γ è la circonferenza (di \mathbb{R}^2) di equazioni $x^2+y^2=1$ perché $\forall\,t\in [0,2\pi]\gamma(t)\in\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$.

Il vettore tangente invece sarà $\check{E}(t)=(\mathring{x}(t),\mathring{y}(t))=(-\sin t,\cos t)$, se per esempio guardiamo il punto iniziale $\gamma(0)=(\cos 0,\sin 0)=(1,0)$ con $\gamma:[0,2\pi]$, mente se prendo il punto finale della traiettoria $\gamma(2\pi)=(\cos 2\pi,\sin 2\pi)=(1,0)$ e quindi ho $\gamma(0)=\gamma(2\pi)$ e quindi ho una curva chiusa.

La retta tangente nel punto
t a $\gamma(t)$ la scrivo come: $r:\gamma(t)+s\gamma(t)$ che è la forma parametrica.

Esempio 16.11.4. Prendiamo la curva $\gamma(t) = (t, t^2 + t)$ con $t \in [-1, 2]$, abbiamo dunque che x(t) = t e $y(t) = t^2 + t$. La curva percorre il tratto della parabole $y = x^2 + x$ però con $x \in [-1, 2]$.

Se prendiamo per esempio $\gamma(-1)=(1,0)$, mentre $\gamma(2)=(2,6)$. Proviamo a calcolare la retta tangente nel punto corrispondente a $t=1,\ \gamma(1)=(1,2)$ e $\gamma'(t)=(1,2t+1)$ quindi $\gamma'(1)=(1,3)$, la retta tangente nel punto $\gamma(1)=$ la retta che passa per $\gamma(1)=(1,2)$ con direzione (1,3), al forma parametrica e dunque (1,2)+s(1,3) con $s\in\mathbb{R}$. Vediamo che la curva è semplice ma non è chiusa.

16.12 Funzioni di più variabili

Fin ora abbiamo visto funzioni $f: \mathbb{R} \to \mathbb{R}$ o $f: A \to \mathbb{R}$ con $A \subseteq \mathbb{R}$. Mentre nell'analisi in più variabili avremo funzioni del tipo $f: \mathbb{R}^2 \to \mathbb{R}$, $f: \mathbb{R}^2 \to \mathbb{R}$ o più genericamente $f: \mathbb{R}^n \to \mathbb{R}$, queste funzioni posso anche essere $f: \Omega \to \mathbb{R}$, $\Omega \subseteq \mathbb{R}^n$.

Definizione 16.12.1 (Funzione, dominio, codominio). Una **funzione** è una terna di oggetti che chiamiamo Ω, B, f dove Ω, B sono insieme e dove:

- Ω si dice **dominio**, con $\Omega \subseteq \mathbb{R}^n$.
- B si dice **codominio**, $B \subseteq \mathbb{R}$.
- $f \ \dot{e} \ una \ legge \ che \ lega \ gli \ elementi \ di \ \Omega \ a \ quelli \ di \ B. \ f: \Omega \to B \ mette \ in \ corrispondenza \ ogni \ elemento \ di \ \Omega \ con \ un \ solo \ elemento \ di \ B.$

Esempio 16.12.1. Una funzione in più variabili si può presentare come $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 - y + xy$ con $x, y \in \mathbb{R}$ e $(x, y) \in \mathbb{R}^2$ oppure come $f: \mathbb{R}^3 \to \mathbb{R}$ e quindi nella forma f(x, y, z) = x + y con $z \in \mathbb{R}$.

Ricordiamo che nell'analisi finora se $f:A\to\mathbb{R}$ con $A\subseteq\mathbb{R}$ chiamavamo il grafico di $f=\{(x,y)\in\mathbb{R}^2:x\in A,y=f(x)\}$ quindi abbiamo una linea nel piano \mathbb{R}^2 . Nell'analisi in 2 variabili abbiamo $f:\Omega\to\mathbb{R}$ con $\Omega\subseteq\mathbb{R}^2$ in questo caso per definire il grafico di $f=\{(x,y,z)\in\mathbb{R}^3:(x,y)\in\Omega,z=f(x,y)\}$.

Quindi il **grafico di f** è una superficie nello spazio dove $(x, y) \in \omega$ sa nel piano xy mentre z = f(x, y) è la quota (altezza) del punto della superficie che sta sopra a (x, y).

Osservazione 16.12.1. Il dominio di $f: \mathbb{R}^n \to \mathbb{R}$ è uguale al il più grande sottoinsieme di \mathbb{R}^n dove è definita (ha senso scriverla) la funzione.

Possiamo anche prendere una funzione $f:\Omega\to\mathbb{R}$ con $\Omega\subseteq\mathbb{R}^n$ il grafico può essere generalizzato come $f=\{(x,y)\in\mathbb{R}^{n+1}\,:\,x\in\Omega,y=f(x)\}$ dove $x\in\mathbb{R}^n$ è un vettore mentre $y\in\mathbb{R}$ è un numero.

16.13 Insiemi di livello

Per rappresentare meglio funzioni in n variabili si introduce il concetto di insiemi di livello (che nel caso di n = 2 si dicono linee di livello).

Definizione 16.13.1. Sia $f: \mathbb{R}^2 \to \mathbb{R}$, e dato $\lambda \in \mathbb{R}$ (pensato come quota) **l'insieme di livello** corrispondente a λ è il seguente insieme $\{(x,y) \in \mathbb{R}^2 : f(x,y) = \lambda\}$, è l'insieme quindi dei punti in \mathbb{R}^2 tale che la quota di f in questi punti è uguale a λ

Possiamo vedere che $\{(x,y) \in \mathbb{R}^2 : f(x,y) = \lambda\}$ (che viene chiamato anche insieme di livello λ per f) è un sottoinsieme dello spazio di partenza tale che in questo sottoinsieme la funzione vale sempre λ .

Esempio 16.13.1. Prendiamo un $f(x,y) = x^2 + y^2$ con $f: \mathbb{R}^2 \to \mathbb{R}$, quindi con $(x,y) \to x^2 + y^2$ (quadrato della distanza di (x,y) dall'origine). Gli insiemi di livello per questa funzione sono $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = \lambda\}$ per trovare questo insieme devo intersecare il grafico di f con il pinao $z = \lambda$ e poi proietto sul piano xy.

- Se $\lambda < 0 \rightarrow \emptyset$.
- Se $\lambda = 0 \to (0,0)$.
- Se $\lambda > 0 \to \text{trovo la circonferenza con centro in } (0,0)$ e raggio $\sqrt{\lambda}$.

Se scegliesti $\lambda=1$ allora $\{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$ avrei la circonferenza di raggio 1, mentre se scelgo $\lambda=2$ allora $\{(x,y)\in\mathbb{R}^2: x^2+y^2=2\}$ avrei la circonferenza di raggio 2 in entrambi i casi con centro in (0,0), questi sono quindi sottoinsiemi di \mathbb{R}^2 .

L'insieme di livello $\lambda = \{ \text{ punti di } \mathbb{R}^{\nvDash} \text{ tali che in questi punti la funzione vale } \lambda \}.$

Esempio 16.13.2. Prendiamo $f(x,y)=x\cdot y$. dato $\lambda\in\mathbb{R}$, l'insieme di livello λ abbiamo che gli insiemi di livello sono $\{(x,y)\in\mathbb{R}^2: xy=\lambda\}\subseteq\mathbb{R}^2$, vediamo dunque di che insieme stiamo parlando:

- Se $\lambda = 0$: xy = 0 questi punti sono quelli che stanno sugli assi (x = 0 o y = 0) allora $\{(x,y) \in \mathbb{R}^2 : xy = \lambda\}$ =asse y \cup asse x.
- Se $\lambda > 0$ vuol dire che stiamo guardando $\{(x,y) \in \mathbb{R}^2 : xy = \lambda\}$ con $y = \frac{\lambda}{x}$ e con λ numero positivo, queste curve sono iperbole equilatere che sono nel 1° e nel 3° quadrante.
- Se $\lambda < 0$ abbiamo sempre $\{(x,y) \in \mathbb{R}^2 : xy = \lambda\}$ ma questa volta con $y = \frac{\lambda}{x}$ con $\lambda < 0$ quindi saranno iperbole nel 2° e 3° quadrante.

Esempio 16.13.3. Prendiamo f(x,y) = |x+y|. Gli insiemi di livello di λ con $\lambda \in \mathbb{R}$ in questo caso saranno $\{(x,y) \in \mathbb{R}^2 : f(x,y) = \lambda\} \subseteq \mathbb{R}^2 = \{(x,y) \in \mathbb{R}^2 : |x+y| = \lambda\}.$

- Se $\lambda < 0$ allora il valore assoluto non può essere mai uguale a λ perché il valore assoluto e sempre positivo quindi $\to \emptyset$.
- Se $\lambda = 0$ sto guardando $\{(x,y) \in \mathbb{R}^2 : |x+y| = 0\}$ e questo è vero se $x+y=0 \iff y=-x$ quindi abbiamo la bisettrice del 2° e 4° quadrante.
- Se invece prendo $\lambda>0$ sto cercando $\{(x,y)\in\mathbb{R}^2:|x+y|=\lambda\}$ ed in questo caso ci sono due possibilità, se $x+y>0\to y=\lambda-x$ mentre se $x+y<0\to -y=-\lambda-x$, quindi $\{(x,y)\in\mathbb{R}^2:|x+y|=\lambda\}$ con $\lambda>0$ sarà $\{(x,y)\in\mathbb{R}^2:y=\lambda-x,y>-x\}\cup\{(x,y)\in\mathbb{R}^2:y=-x-\lambda,y<-x\}$. Dunque se per esempio $\lambda=1\to y=1-x$ e y=-1-x quindi ho l'unione di 2 rette.

16.13 Insiemi di livello 100