

ROYAUME DU MAROC
HAUT COMMISSARIAT AU PLAN
INSTITUT NATIONAL DE STATISTIQUE
ET D'ÉCONOMIE APPLIQUÉE

INSEA

Sujet:

OPTIMISATION DE RATIO RENDEMENT/VARIANCE

Réalisé par :

EL YOUSEFI Ahmed AF DHAIOUIR Youssef AF OUKHOUYA Loubna AF

Encadré par :

Mr. KHIARA Oualid

Chapitre 1

INTRODUCTION

La gestion de portefeuille constitue un aspect fondamental de la gestion financière et revêt une importance capitale pour les investisseurs et les gestionnaires d'actifs. Elle se réfère à l'ensemble des décisions et des actions entreprises pour sélectionner, allouer et surveiller un portefeuille d'investissements afin de maximiser les rendements tout en maîtrisant les risques. La gestion de portefeuille revêt une importance cruciale dans un contexte financier où les marchés sont de plus en plus complexes et volatils. Les investisseurs, qu'ils soient particuliers ou institutionnels, cherchent à faire fructifier leur capital en maximisant les rendements tout en préservant le capital investi. Cependant, cette tâche n'est pas sans défis, car elle nécessite une compréhension approfondie des différents actifs financiers, des marchés et des facteurs économiques qui les influencent. L'objectif ultime de la gestion de portefeuille est de créer un équilibre entre le rendement attendu et le niveau de risque acceptable pour chaque investisseur. Cela implique une analyse minutieuse des différentes classes d'actifs, telles que les actions, les obligations, les produits dérivés, les matières premières, l'immobilier, etc. Chaque classe d'actifs présente ses propres caractéristiques et risques spécifiques, ce qui nécessite une approche prudente et diversifiée pour la construction d'un portefeuille optimal. La gestion de portefeuille ne se limite pas seulement à la sélection des actifs, mais comprend également des décisions stratégiques telles que la répartition des actifs, la gestion du risque, la gestion des liquidités et le suivi continu des performances. Les gestionnaires de portefeuille utilisent des techniques d'analyse et des modèles mathématiques sophistiqués pour évaluer les rendements potentiels, mesurer les risques et prendre des décisions éclairées sur la composition du portefeuille. L'importance de la gestion de portefeuille réside dans sa capacité à aider les investisseurs à atteindre leurs objectifs financiers à long terme. Une gestion efficace permet de diversifier les risques, d'optimiser les rendements, de minimiser les pertes potentielles et de s'adapter aux fluctuations du marché. Elle permet également de surveiller et d'ajuster régulièrement le portefeuille en fonction des changements économiques, des conditions de marché et des objectifs spécifiques de chaque investisseur. En somme, la gestion de portefeuille joue un rôle essentiel dans la gestion prudente des investissements, offrant aux investisseurs une approche structurée et disciplinée pour maximiser les rendements tout en gérant les risques. Elle représente un outil puissant pour ceux qui cherchent à bâtir et à préserver leur patrimoine à long terme dans un environnement financier complexe et changeant.

Chapitre 2

VOCABULAIRE

1 Décomposition de marché

Le marché boursier : est un lieu organisé où se rencontrent les investisseurs qui demandent et offrent des capitaux, et où sont négociés les titres de capital et les obligations.

1. Marché primaire: Un espace où de nouveaux épargnants rencontrent directement les agents économiques pour investir, que ce soit de manière directe ou via des véhicules d'investissement. On y observe une présence significative des investisseurs institutionnels également appelés « zinzins ».

2. Marché secondaire:

Il permet de faciliter la circulation du capital des sociétés cotées entre les différents actionnaires. Il favorise également les opérations de fusions-acquisitions (M&A) telles que les offres publiques d'achat (OPA) et les offres publiques d'échange (OPE). De plus, il offre la possibilité de privatiser rapidement les entreprises publiques cotées.

2 Indicateurs de risque

Figure 2.1 – Principaux indicateur de risque

3 Diversification de portefeuille

3.1 Définition :

Diversification : consiste à répartir les investissements sur différents types d'actifs, secteurs... afin de réduire le risque spécifique lié à chaque investissement individuel. Un adage bien connu est souvent répété : "Ne mettez jamais tous vos œufs dans le même panier". Cette expression illustre l'importance de la diversification d'un portefeuille.

3.2 Outils :

- 1. Le coefficient de corrélation est un outil essentiel dans l'analyse de la diversification d'un portefeuille. Il permet de mesurer la relation entre les variables et de guider les décisions d'allocation d'actifs en visant à obtenir une diversification optimale et à réduire les risques liés à la concentration excessive dans un seul actif ou une seule classe d'actifs.
- 2. La mesure couramment utilisée pour évaluer le risque du portefeuille est **l'écart-type**, qui indique la dispersion des rendements par rapport à la moyenne. Plus l'écart-type est élevé, plus le portefeuille est considéré comme risqué.

Chapitre 3

ASPECT PRATIQUES

1 Définitions et généralitées :

Soit une portefeuille constitué par n actifs A_1, \dots, A_n , une portefeuille est modélisé par une vecteur $x \in \mathbb{R}^n$ qui contient les proportion de capital alloué à chaque actif. On suppose que le rendement de chaque actif est une variable àléatoire R_i dont note le vecteur des rendement R, cette vecteur a un éspérance $r = \mathbb{E}(R)$ et a une variance $\Sigma_R = Var(R)$. Ces deux facteurs sont estimé à partir d'un historique des données des prix des actifs :

Implementation en R:

Soit notre base donnée contitué des actifs suivante (c'est juste une partie des données):

GAZ	BCP	CDM	CGI	HOL	LYD	SAM	SID	WAA
1110	114,95	970	2430	2550	310	803	2980	2460
1397	121,25	950	2421	2740	333,6	833	3200	2799
1409	131	980	2378	2750	344	822	3451	2820
1420	116	938	2246	2735	310	770	4156	2650
1437	112	910	2263	2650	281	718	4200	2640

Table 1.1 – Historiques des prix

On calcul d'abord les rendements par la formules suivante :

$$R_i = \frac{P_i}{P_{i-1}} - 1$$

On estime ensuite les rendement moyennes, le code R nous donnes les résultats suivantes :

Asset	mean_return	perf_return
GAZ	0.090	0.476
BCP	0.114	0.670
CDM	-0.0696	-0.402
CGI	-0.241	-0.770
HOL	-0.0501	-0.373
LYD	0.0295	0.0195
SAM	-0.158	-0.664
SID	-0.240	-0.804
WAA	0.0556	0.189

Table 1.2 – Moyenne des rendements

Finalement on estime la matrice de variance covariance, et on trouve le résultat suivante exprimé en (%):

CDM CGI SID WAA GAZ BCP HOL LYD SAM GAZ0.00320.0009 0.00020.0013 0.0020 0.00060.0010 0.00150.0009BCP 0.00090.00320.00090.00120.00220.00050.0008 0.00170.0008CDM0.00020.00090.00420.0013 0.00160.00100.0003 0.0009 0.0013CGI 0.00130.00120.00130.00470.00230.00120.00170.00180.0011HOL 0.00200.00220.00160.00230.00600.00150.00150.00220.0025LYD 0.0006 0.0005 0.0010 0.0012 0.0016 0.00150.00440.00180.0012SAM0.0010 0.0008 0.00030.00170.00150.0071 0.00390.00200.0018SID 0.0015 0.00080.00090.00180.0022 0.00120.00390.00920.0014WAA 0.00090.0017 0.0013 0.0011 0.0025 0.00160.00200.00140.0040

Table 1.3 – Matrice de variance covariance

2 Programme d'Optimisation :

Le MEDAF propose de maximiser le ratio suivante :

$$f(Portefeuille) = \frac{\mathbb{E}(Portefeuille)}{\mathbb{V}(Portefeuille)}$$

Le rendement de portefeuille n'est autre que :

$$R_p = \sum_{i=1}^n x_i R_i$$

Donc on remplace dans la formule de f(x) on trouve le programme suivante :

$$\max f(x) = \frac{r^T x}{x^T \Sigma_R x}$$

Cependante on est régissé par les contraintes suivantes :

- 1. Pas de portefeuille initial : cela propose que les x_i ne peuvent pas être négatifs.
- 2. On investit la totalité de capitale sans crédit et sans qu'il nous reste d'argent. cela propose que la somme des x_i est égale à 1.

Ce qui nous donnne la formulation avec contraints suivante :

$$\begin{cases} \max & \frac{r^T x}{x^T \Sigma x} \\ s.c. & x \ge 0 \\ & \sum_{i=1}^n x_i = 1 \end{cases}$$

3 Algorithmes d'optimisation :

On va faire deux algorithmes manuelles d'optimisation que sont :

- 1. Méthode de gradient projeté.
- 2. Méthode de pénalisation.

Cepandant ces méthodes ne garantient pas d'aboutir au point optimale, alors qu'on peut se servire d'une solveur déja définit en R.

3.1 Méthode de gradient projeté :

La méthode, principe, ne differe pas de méthode de descent de gradient, cependant il faut assuré que la suite itéré x_k soit toujours admissible, pour ce faire on utilise une fonction projecteurs qui à chaque fois que x_k sort de l'ensemble des contraint, il le retourne à cette région.

Pour l'appliquer sur notre programme on doit d'abord calculer le gradient de la fonction :

$$\frac{\partial f}{\partial x}(x) = \frac{x^T S x r - 2r^T x \cdot (Sx)}{(x^T S x)^2}$$

Puis on propose la fonction projecteur suivante :

$$\Pi_c : x \in \mathbb{R} \mapsto \Pi_c(x) = \frac{(|x_1|, \dots, |x_n|)^T}{\sum_{i=1}^n |x_i|}$$

Pour l'algorithme on rappelle les principaux étapes :

Implementation en R:

Avant l'implementation on doit choisir une valeur initiale avec laquelle l'algorithme commence les itérations, cette valeur reflète notre intuition autour de solution optimale,

```
Initialisation k=0\;;\; \text{choix de } \mathbf{x}_0\; \text{et } g_0>0 Iteration k Tant que le critere d'arret est non satisfait \widehat{\mathbf{x}}^{(k+1)}=\mathbf{x}^{(k)}-\rho^{(k)}\nabla J\left(\mathbf{x}^{(k)}\right)\\ \mathbf{x}^{(k+1)}=\Pi_C\widehat{\mathbf{x}}^{(k+1)}\\ k=k+1 fin
```

FIGURE 3.1 – Algorithme du gradient projeté.

pour ce cas de figure on est choisit :

$$x_0 = \begin{pmatrix} 38\% \\ 00\% \\ 23\% \\ 23\% \\ 00\% \\ 00\% \\ 16\% \end{pmatrix}$$

	GAZ	BCP	CDM	CGI	HOL	LYD	SAM	SID	WAA
poids (%)	26.9%	33.8%	2.0%	2.2%	9.6%	6.3%	3.5%	3.5%	12.2%
GAZ	234.11	86.38	1.05	7.77	51.94	9.78	9.77	13.81	29.83
BCP	86.38	365.86	6.13	8.72	70.28	11.12	9.91	9.33	69.41
CDM	1.05	6.13	1.65	0.54	2.96	1.23	0.20	0.60	3.09
CGI	7.77	8.72	0.54	2.26	4.76	1.64	1.34	1.35	3.05
HOL	51.94	70.28	2.96	4.76	55.09	9.11	5.08	7.23	29.48
LYD	9.78	11.12	1.23	1.64	9.11	17.77	3.94	2.74	12.18
SAM	9.77	9.91	0.20	1.34	5.08	3.94	8.96	4.85	8.47
SID	13.81	9.33	0.60	1.35	7.23	2.74	4.85	11.18	6.09
WAA	29.83	69.41	3.09	3.05	29.48	12.18	8.47	6.09	59.06

Table 3.1 – Matrice de variance pondérée (en 10^{-6})

rendement optimale	Total variance	Total std	Annuelle std	Ratio
0.04604359	0.0017663	0.0420273	0.1455869	0.3162619

Table 3.2 – Table des principales mesures

3.2 Méthode de pénalisation :

Les méthodes de pénalisation sont très utilisées en pratique car elles sont très simples. Elles partent du principe suivant : on remplace le problème avec contraintes.

$$\begin{cases} \min & J(x) \\ & x \in C \end{cases}$$

par un problème sans contraintes :

$$\begin{cases} \min & J(x) + \frac{1}{\epsilon}\alpha(x) \\ & x \in \mathbb{R}^n \end{cases}$$

où α est une fonction de pénalisation des contraintes et $\epsilon > 0$.

On propose la fonction pénalisation suivante :

$$\alpha: x \in \mathbb{R} \mapsto \alpha(x) = ||x^-||^2 + ||\sum_{i=1}^n x_i - 1||^2$$

Pour l'algorithme on rappelle les principaux étapes :

FIGURE 3.2 – Algorithme de pénalisation.

Implementation en R:

Avant l'implementation on doit choisir une valeur initiale avec laquelle l'algorithme commence les itérations, cette valeur reflète notre intuition autour de solution optimale, pour ce cas de figure on est choisit :

$$x_0 = \begin{pmatrix} 38\% \\ 00\% \\ 23\% \\ 23\% \\ 00\% \\ 00\% \\ 16\% \end{pmatrix}$$

	GAZ	BCP	CDM	CGI	HOL	LYD	SAM	SID	WAA
Poids (%)	21.2%	50.5%	-0.1%	0.1%	3.3%	9.2%	0.8%	0%	14.9%
GAZ	146.237	101.940	-0.023	0.156	14.207	11.246	1.846	0.008	28.731
BCP	101.940	815.651	-0.255	0.332	36.315	24.156	3.540	0.011	126.315
CDM	-0.023	-0.255	0.001	0.000	-0.029	-0.050	-0.001	0.000	-0.105
CGI	0.156	0.332	0.000	0.001	0.042	0.061	0.008	0.000	0.095
HOL	14.207	36.315	-0.029	0.042	6.597	4.585	0.420	0.002	12.434
LYD	11.246	24.156	-0.050	0.061	4.585	37.571	1.370	0.003	21.586
SAM	1.846	3.540	-0.001	0.008	0.420	1.370	0.513	0.001	2.469
SID	0.008	0.011	0.000	0.000	0.002	0.003	0.001	0.000	0.006
WAA	28.731	126.315	-0.105	0.095	12.434	21.586	2.469	0.006	87.726

TABLE 3.3 – Matrice de variance pondérée (en 10^{-6})

rendement optimale	Total variance	Total std	Annuelle std	Ratio
0.08453358	0.0018771	0.043326	0.1500855	0.5632361

Table 3.4 – Table des principales mesures

3.3 Conclusion des méthodes

On peut remarquer que la méthode de pénalisation nous a permet d'atteindre un ratio de risque plus elevé que celle de la méthode de gradient projeté, cela nous pousse à poser la question suivante : est ce qu'on a aboutir au maximum possible ou bien on reste dans son voisinage.

Pour répondre à ce question, on va utiliser une bibliothèque prédéfinit en R qu'on suppose atteind le maximum possible de la fonction. Voici les résultats trouvées :

	GAZ	BCP	CDM	CGI	HOL	LYD	SAM	SID	WAA
Poids (%)	37%	47%	0%	0%	0%	15%	0%	0%	1%
GAZ	443.522	165.107	0	0	0	31.922	0	0	3.368
BCP	165.107	705.482	0	0	0	36.618	0	0	7.909
CDM	0.000	0.000	0	0	0	0.000	0	0	0.000
CGI	0.000	0.000	0	0	0	0.000	0	0	0.000
HOL	0.000	0.000	0	0	0	0.000	0	0	0.000
LYD	31.922	36.618	0	0	0	99.818	0	0	2.369
SAM	0.000	0.000	0	0	0	0.000	0	0	0.000
SID	0.000	0.000	0	0	0	0.000	0	0	0.000
WAA	3.368	7.909	0	0	0	2.369	0	0	0.398

Table 3.5 – Matrice de variance pondérée (en 10^{-6})

rendement optimale	Total variance	Total std	Annuelle std	Ratio
0.09189738	0.0017438	0.0417589	0.144657	0.6352777

Table 3.6 – Table des principales mesures

Ainsi on voit que les méthodes par main n'atteind pas l'optimum trouvé par R, car celui se base sur des méthodes plus sophistiqué et plus complexes.