Algorithms and Data Structures 2 Recap Lectures 15-16

Dr Michele Sevegnani

School of Computing Science University of Glasgow

michele.sevegnani@glasgow.ac.uk

Topics we covered so far

•Red-black trees

- Definition
- Properties
- Insertion

B-trees

- Definition
- Motivation
- Properties
- Search
- Insertion

•Variants

Question 1

How many different BSTs are there containing the elements 1,2,3,4?

 How many different BSTs are there containing the elements 1,2,3,4,5, for which the root contains 5?

- There are at most 4! = 24 (one per order of insertion)
- Not all of these will be unique
 - There are 14 unique BSTs (1-6)

$$2,1,4,3 \rightarrow 2,4,1,3$$
 $2,4,3,1$

- There are at most 4! (one per order of insertion)
- Not all of these will be unique
 - There are 14 unique BSTs (7-12)

$$2,1,3,4 \rightarrow$$
 $2,3,1,4$
 $2,3,4,1$
 3
 4

$$3,2,1,4 \rightarrow$$
 $3,2,4,1$
 $3,4,2,1$

$$4,2,1,3 \rightarrow$$
 $4,2,3,1$

$$3,1,2,4 \rightarrow 3,4,1,2$$
 $3,1,4,2$
 3

- There are at most 4! (one per order of insertion)
- Not all of these will be unique
 - There are 14 unique BSTs (13-14)

• Every BST on 1,2,3,4,5 with root 5 must result from some permutation of 1,...,5 in which 5 is the first element

 All these trees have 5 as root and a left subtree formed by the different permutations on 1..4

From the above there are 14 possible left subtrees, so again the answer is 14

Question 2

- What is a red-black tree?
- Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

Question 2 (cont.)

• Show that, by further inserting the numbers 50,46,53,52,68,62 the redblack tree becomes

A red-black tree is a binary search tree with an extra attribute colour,
 which can be either RED or BLACK and satisfies the red-black properties

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

55

Restore root

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

Right rotation

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

Push down blackness

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

Right rotation

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

Push down blackness

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

Uncle is red, push down blackness Left rotation on 20 Right rotation on 40

• Show that the red-black tree formed by inserting the numbers 55,40,31,20,7,22,35, 33,36 in order is

• Show that, by further inserting the numbers 50,46,53,52,68,62 the redblack tree becomes

• Show that, by further inserting the numbers 50,46,53,52,68,62 the redblack tree becomes

• Show that, by further inserting the numbers 50,46,53,52,68,62 the redblack tree becomes

• Show that, by further inserting the numbers 50,46,53,52,68,62 the redblack tree becomes

• Show that, by further inserting the numbers 50,46,53,52,68,62 the redblack tree becomes

• Show that, by further inserting the numbers 50,46,53,52,68,62 the redblack tree becomes

Question 3

- Add the sequence of keys given below to an empty B-tree with t = 2
 - 7,12,4,3,5,8,10,6,9,2
 - Each node can store at most 2t 1 = 3 keys

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

7

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

7 12

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

4 7 12

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

- Add the sequence of keys given below to an empty B-tree with t = 2
 - **7,12,4,3,5,8,10,6,9,2**

