This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEQUENCE LISTING

```
YOKOYAMA, Keiichi
      ONO, Kunio
      EJIMA, Daisuke
√120>
       PROCES FOR PRODUCING TRANSGLUTAMINASE
      209524USQCONT
130>
      PCT/JP99/07250
 萬50>
万
(151> 1999-12-24
[1]
万
李50> JP 10-373131
第51>
第
第
第
第
      1998-12-28
       58
<170>
      PatentIn version 3.1
<210>
      1
<211>
      1519
<212>
      DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
```

HAK	220)>															
	221	\	CDS														
<2	22	/ <	(87).	(1(1821												
		\		(_ \	, ,												
<2	23	3>															
< 4	00	> 1	L \	\													
tt	cc	ccto	gtt c	gacaa	attaa	at ca	atcga	aacta	a gtt	caact	tagt	acgo	caagt	tc a	acgta	aaaag	60
g	ta	tcga	att a	agta	aggag	gg tt	taaa									cca	113
-				`				Met 1	. Asp	o Sei	c Asp	o Asp 5	o Arg	y val	L Thi	r Pro	
č		act	aaa	cca	CTA	gat	cat	ato	cca	gat	cca	tat	cat	cca	tct	tat	161
Pa	£þ.					Asp					Pro					Tyr	
1,0						1/5					20					25	
q						gtt											209
GE GE	i X	Arg	Ата	Glu	30	Val	Val	Asn	Asn	Tyr 35	iie	Arg	гàг	Trp	40	GIN	
ű	1	tat	tot	cat	cat	gat	aat	cat	222	C22	C22	ata	act	~ = =	~ ==	Caa	257
ڳ ^ڙ ِ ڏيو				His		Asp			Lys					Glu			237
:! {				45					50					55			
ď	₫t					tat											305
A'i		Glu	Trp 60	Leu	Ser	Tyr	GIY	Cys 65	Val	GLY	vai	Thr	70	vaı	Asn	ser	
7		G2G	+ - +	666	act	aac	cat	cta	ac 2	+++ c	act	tcc	++c	ast	a = =	ast	353
		Gln				Asn	Arg					Ser					333
		75					80	٠		\		85					
						ctg											401
9(- 1	Pne	гÀг	Asn	GIU	Leu 95	гàг	Asn	GIÀ	Arg	100	Arg \	ser	GIÀ	GIU	105	
<u> </u>		act	~ 2 2	ttc	~ ~ ~ ~	ggt	cat	at t	act	220	a a a	+ \	++~	ast	a a a	asa	449
					Glu	Gly				Lys					Glu		113
					110					115					120		
aa	aa	ggc	ttc	cag	cgt	gct	cgt	gaa	gtt	gct	tct	gtt	adg	aac	cgt	gct	497
τŽ	/S	σтλ	rne	125	Arg	Ala	Arg	GIU	val 130	нта	ser	val	мет/	Asn 135	Arg	ATG	
C+	۾ ـ	nan	220	ac+	ca+	gat	ra =	tct	act	tac	cta	aa+	aac	Cka	aan	aad	545
			Asn			Asp		Ser					Asn				3.3
			140					145					150	`			

_																	
					aac Asn											593	
Geg APro 170	ttc Phe				ctg Leu 175											641	
					ccg Pro											689	
					cag Gln											737	
Tyr •					gca Ala											785	
gec Also	_		_	_	cgt Arg		•	_	_		_			_		833	
g a a	ggc	ttc Phe	gtt Val	aac Asn	ttc Phe 255	gat Asp	tac Tyr	ggt Gly	tgg Trp	ttc Phe 260	ggt Gly	gct Ala	cag Gln	act Thr	gaa Glu 265	881	
					act Thr											929	
qeg					ggt Gly											977	
					tac Tyr											1025	
					tct Ser											1073	
	tgg Trp	_	taat	gaaa	agc t	tgga	tcto	ct aa	ittac	ctgga	a ctt	daca	acag			1122	
acta	aaat	ag a	acata	atctt	a ta	ttat	gtga	a ttt	tgtg	gaca	tttc	cctaç	at o	gtgag	ggtgga	1182	
ggto	atgt	at a	aaggt	agat	g at	gato	cctct	acç	lccdö	gacg	cato	cgtg	acg d	ggcat	caccg	1242	

gegecacage teggettet egegectata tegeogacat cacegatege gaagatege 1302 ctegecactt egegeteate agegettet teggegtege tategetege geceetege 1362 ceggeged etteette atgeaceatt eettegege gegetee 1422 aeggeeteaa eetactage geeteetee taatgeagga gtegeataag gegageete 1482 gagageeege etaatgage geettett teagete 1519

- <210> 2
- <211> 332
- <212> PRT
- <213> Artificial Sequence
- ☐ ☐ <**2**20>

ŧΩ

Ш

- <223> Synthetic DNA
- (**1**) <**4**00> 2
- Met Asp Ser Asp Asp Arg Val Thr Pro Pro Ala Glu Pro Leu Asp Arg
 10 15
- Met Pro Asp Pro Tyr Arg Pro Ser Tyr Gly Arg Ala Glu Thr Val Val 20 25 30
- Asn Asn Tyr Ile Arg Lys Trp Gln Gln Val Tyr Ser His Arg Asp Gly 35 40
- Arg Lys Gln Gln Met Thr Glu Glu Gln Arg Glu Tro Leu Ser Tyr Gly 50 55 60
- Cys Val Gly Val Thr Trp Val Asn Ser Gly Gln Tyr Pro Thr Asn Arg
 65 70 75 80
- Leu Ala Phe Ala Ser Phe Asp Glu Asp Arg Phe Lys Asn Glu Leu Lys 85 90 95
- Asn Gly Arg Pro Arg Ser Gly Glu Thr Arg Ala Glu Phe Glu Gly Arg

100 105 110

Val Ala Lys Glu Ser Phe Asp Glu Glu Lys Gly Phe Gln Arg Ala Arg
115 120 125

Glu Val Ala Ser Val Met Asn Arg Ala Leu Glu Asn Ala His Asp Glu 130 135 140

Ser Ala Tyr Leu Asp Asn Leu Lys Lys Glu Leu Ala Asn Gly Asn Asp 145 150 155 160

Ala Leu Arg Asn Glu Asp Ala Arg Ser Pro Phe Tyr Ser Ala Leu Arg 165 170 175

Agn Thr Pro Ser Phe Lys Glu Arg Asn Gly Gly Asn His Asp Pro Ser 180 185 190

印 Alg Met Lys Ala Val Ile Tyr Ser Lys His Phe Trp Ser Gly Gln Asp 195 200 205 万 に

Arg Ser Ser Ser Ala Asp Lys Arg Lys Tyr Gly Asp Pro Asp Ala Phe 210 220

Arg Pro Ala Pro Gly Thr Gly Leu Val Asp Met Ser Arg Asp Arg Asn 235 230 240

N

Ile Pro Arg Ser Pro Thr Ser Pro Gly Glu Gly Phe Val Asn Phe Asp 245 250 255

Tyr Gly Trp Phe Gly Ala Gln Thr Glu Ala Asp Ala Asp Lys Thr Val 260 265 270

Trp Thr His Gly Asn His Tyr His Ala Pro Asn Gly Ser Leu Gly Ala 275 280 285

Met His Val Tyr Glu Ser Lys Phe Arg Asn Trp Ser Glu Gly Tyr Ser 290 295 300

Asp Phe Asp Arg Gly Ala Tyr Val Ile Thr Phe Ile Pro Lys Ser Trp

30⁵ 310 315 320

Asn Thr Ala Pro Asp Lys Val Lys Gln Gly Trp Pro 325 330

<210> 3

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 3

auttcatcga ttagtaagga ggtttaaaat ggattctga

10 (D) <210> 4 (F)

<<u>2</u>11> 41

<212> DNA

213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 4

cgatcgtcag aatccatttt aaacctcctt actaatcgat g

<210> 5

<211> 41

<212> DNA

<213> Artificial Sequence

39

41

```
<220>
  <223>
                                              Synthetic DNA
  <400>
  cgatcgtgtt actccaccag ctgaaccact ggatcgtatg c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 41
  <210>
  <211>
                                              41
  <212>
                                             DNA
  <213> Artificial Sequence
  <-220>
 口
<223>
                                        Synthetic DNA
 ₫00>
gatectage a general action and a general actions of the second act
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 41
                                        7
                                              41
                                              DNA
                                              Artificial Sequence
<220>
<223>
                                             Synthetic DNA
<400>
                                              7
cagatccata tcgtccatct tatggtcgtg ctgaaactgt t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                41
<210>
<211>
                                             41
<212>
                                             DNA
<213>
                                        Artificial Sequence
```

```
<220>
<223>
         Synthetic DNA
<400>
attaacaaca gtttcagcac gaccataaga tggacgatat g
                                                                                            41
<210>
         9
<211>
         41
<212>
         DNA
<213>
        Artificial Sequence
<220>
$\frac{1}{2}20>$\frac{1}{2}23>$ Synthetic DNA$
$\frac{1}{2}00>$ 9
$\frac{1}{2}10>$ 10
$\frac{1}{2}11>$ 41
$\frac{1}{2}12>$ DNA$
                                                                                            41
         Artificial Sequence
<220>
<223>
         Synthetic DNA
<400>
tcacgatgag aataaacttg ttgccattta cgaatataat t
                                                                                            41
<210>
         11
<211>
         41
<212>
         DNA
<213>
         Artificial Sequence
```



```
<220>
<223>
         Synthetic DNA
<400>
         11
                                                                                      41
tcgtgatggt cgtaaacaac aaatgactga agaacaacgt g
<210>
         12
<211>
         41
<212>
        DNA
<213>
        Artificial Sequence
220>
223> Synthetic DNA
200> 12
3ccattcacg ttgttcttca gtcatttgtt gtttacgacc a
210> 13
211> 42
                                                                                      41
        DNA
<213>
        Artificial Sequence
<220>
<223>
        Synthetic DNA
<400>
        13
aatggctgtc ttatggttgc gttggtgtta cttgggttaa ca
                                                                                      42
<210>
        14
<211>
        40
<212>
        DNA
```

<220>		
<223>	Synthetic DNA	
<400> agcttg	14 ttaa cccaagtaac accaacgcaa ccataagaca	40
<210>	15	
<211>	38	
<212>	DNA	
<213> 口 口 口 口 口 口 口 口 口	Artificial Sequence	
算 23>	Synthetic DNA	
400>	15	
	taa ctctggtcag tatccgacta accgtctg	38
ກ ປ ຊ210>	16	
<u>.</u> ≤211>	41	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400> cgaatgo	16 ccag acggttagtc ggatactgac cagagttaac g	41
<210>	17	

<213> Artificial Sequence

<211> 49

```
DNA
<213>
       Attificial Sequence
<22b>
       Synthet\ic DNA
<22$>
<400>
                                                                           49
gcattcgctt ccttcdatga agatcgtttc aagaacgaac tgaagaacg
<21d>
       18
<211>
       49
DNA
       Artificial Sequence
       Synthetic DNA
18 ggacgaccgt tcttcagttc gttcttgaaa cgatcttcat cgaaggaag
                                                                           49
2210>
       19
<211>
       35
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223
       Synthetic DNA
<400$
gtcgtccgcg ttctggtgaa actcgtgctg aattc
                                                                          35
<210>
       20
                                       -11-
```

```
35
<21/2>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Synthetic DNA
<400>
       20
gacttcgaa ttcagcacga gtttcaccag aacgc
                                                                          35
<210>
       21
48
       DNA
       Artificial Sequence
       Synthetic DNA
gaaggtcgtg ttgctaagga atccttcgat gaagagaaag gcttccag
                                                                         48
<210>
       22
<211>
       48
<2|12>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Synthetic DNA
<400>
gagcacgctg gaagcctttc tcttcatcga aggattcctt agcaacac
                                                                         48
```

```
<210>
        23
<211>
        42
<212>
        DNA
        Artificial Sequence
<213>
<220>
<223>
        Synthetic DNA
<400>
        23
cgtgctcgtg aagttgcttc tgttatgaac cgtgctctag aa
                                                                                   42
<210>
11>
11>
12>
13>
「「「「「「」」」」
20>
「「」」
223>
        24
        39
        DNA
        Artificial Sequence
        Synthetic DNA
☐
|⊈400>
        24
                                                                                   39
agctttctag agcacggttc ataacagaag caacttcac
<210>
        25
<211>
        45
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        Synthetic DNA
<400>
        25
                                                                                   45
aattctctag agaacgctca tgatgaatct gcttacctgg ataac
```

```
<210>
       26
<211>
       50
<212>
       DNA
<213>
       Artificial Sequence
<220>
<223>
       Synthetic DNA
<400>
cttcttcagg ttatccaggt aagcagattc atcatgagcg ttctctagag
                                                                         50
27
       49
       DNA
       Artificial Sequence
       Synthetic DNA
       27
ctgaagaagg aactggctaa cggtaacgat gctctgcgta acgaagatg
                                                                         49
<210>
       28
<211>
       49
<212>
       DNA
<213>
       Artificial Sequence
<220>
```

<223>

<400>

28

Synthetic DNA

gagaac	gagc atcttcgtta cgcagagcat cgttaccgtt agccagttc	49
<210>	29	
<211>	40	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400>	29	
ctcgttd 口 市	30 39 DNA	40
图10>	30	
₩ 11>	39	
第12>	DNA	
#213> 万 【D	Artificial Sequence	
► <223>	Synthetic DNA	
· <400>		
	30 agga cggagtgtta cgcagagcag agtagaacg	39
<210>	31	
<211>	47	
<212>	DNA	
<213>	Artificial Sequence	
<220>		

<223> Synthetic DNA

<400> cttcaa	31 agaa cgtaacggtg gtaaccatga teegtetegt atgaaag	47
<210>	32	
<211>	47	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400> dataac	32 agct ttcatacgag acggatcatg gttaccaccg ttacgtt 33 45	47
党 10>	33	
1 211>	45	
2 212>	DNA	
[] [] [] [] [] [] [] [] [] [] [] [] [] [Artificial Sequence	
<223>	Synthetic DNA	
<400> ctgtta	33 tcta ctctaaacat ttctggtctg gtcaggatag atcta	45
<210>	34	
<211>	41	
<212>	DNA	
<213>	Artificial Sequence	
<220>		

<223>	Synthetic DNA	
<400> agctta	34 gatc tatcctgacc agaccagaaa tgtttagagt a	41
<210>	35	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223> □ •400>	Synthetic DNA	
(100) (100)	35 gatc ttcttctgct gataaacgta aatacggtga tc 36	42
N 費10>	36	
<211>	44	
1 2>	DNA	
(2) 12> (2) 13> (3)	Artificial Sequence	
< <u>2</u> 220>		
<223>	Synthetic DNA	
<400> catccgg	36 gatc accgtattta cgtttatcag cagaagaaga tctg	44
<210>	37	
<211>	48	
<212>	DNA	
<213>	Artificial Sequence	

<2́20>		
<223>	Synthetic DNA	
<400> cggatg	37 catt ccgtccggct ccgggtactg gtctggtaga catgtctc	48
<210>	38	
<211>	48	
<212>	DNA	
<213>	Artificial Sequence	
- -220>		
(220) (D)	Synthetic DNA 38 gaga catgtctacc agaccagtac ccggagccgg acggaatg	
₩232 ₩ ₩	Synthetic DNA	
gatcac	38 gaga catgtetace agaceagtae eeggageegg aeggaatg	48
万 之 210>		
<210>	39	
11>	35	
12>	DNA	
<u>{</u> 213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400> gtgatc	39 gtaa catcccgcgt tctccgactt ctccg	35
<210>	40	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	

```
<220>
<223>
      Synthetic DNA
<400>
      40
                                                                  36
cttcacccgg agaagtcgga gaacgcggga tgttac
<210>
      41
<211>
      40
<212>
      DNA
<213>
     Artificial Sequence
<220>
< 223>
      Synthetic DNA
۱Ô
<4400>
40
      Artificial Sequence
<220>
<223>
      Synthetic DNA
<400>
      42
                                                                  40
gtctgagcac cgaaccaacc gtaatcgaag ttaacgaagc
<210>
      43
<211>
      44
<212>
      DNA
<213>
      Artificial Sequence
```

```
<220>
<223>
        Synthetic DNA
<400>
        43
ctcagactga agctgatgct gataagactg tatggaccca tgga
                                                                              44
<210>
        44
<211>
        41
<212>
        DNA
<213>
       Artificial Sequence
(2)
<220>
(0)
<223>
       Synthetic DNA
ΙŪ
<400>
       44
adcttccatg ggtccataca gtcttatcag catcagcttc a
                                                                              41
       45
       DNA
<213>
       Artificial Sequence
<220>
<223>
      Synthetic DNA
<400>
       45
                                                                              39
aattcccatg gtaaccatta ccatgctccg aacggttct
<210>
       46
<211>
       42
<212>
       DNA
```

<213> Artificial Sequence

<211>

37

<220> <223> Synthetic DNA <400> cacccagaga accgttcgga gcatggtaat ggttaccatg gg 42 <210> 47 <211> 41 <212> DNA <213> Artificial Sequence Synthetic DNA <400> 47 cigggtgcta tgcatgtata cgaatctaaa ttccgtaact g 41 <210> 48 Ø <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> cttcagacca gttacggaat ttagattcgt atacatgcat ag 42 <210> 49

```
<212>
       DNA
<213
       Artificial Sequence
<220/>
<22$>
       Synthetic DNA
<400>
gtdtgaaggt tactctgact tcgatcgtgg tgcttac
                                                                           37
<210>
       50
<2/11>
       37
<412>
       DNA
< 213>
      Artificial Sequence
√220>
42723>
       Synthetic DNA
₹Æ00>
       50
degataacgt aagcaccacg atcgaagtca\gagtaac
                                                                           37
20>
       51
211>
       38
∤212>
       DNA
4213>
       Artificial Sequence
<2|20>
<223>
       Synthetic DNA
<400>
       51
gttatcacct tcattccgaa atcttggaac actgctcc
                                                                           38
<210>
       52
```

<211>	38	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400> ctttgt	52 ccgg agcagtgttc caagatttcg gaatgaag	38
<210>	53	
<211>	38	
(<u>1</u> 2)	DNA	
(213> (213> (10 (17) (220>	DNA Artificial Sequence	
" 〈 辽 23> (万	Synthetic DNA	
<400>	53	
g g acaaa 13 14	agtt aaacagggtt ggccgtaatg aaagctta	38
<210>	54	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400> agcttaa	54 agct ttcattacgg ccaaccctgt ttaa	34

Δ
, <u> </u>

```
<210>
       55
<211>
       20
<212>
       DNA
<213> Artificial Sequence
<220>
<223>
       Synthetic DNA
<400>
       55
                                                                            20
ttttcccagt cacgacgttg
<210>
       56
       21
页
<212>
       DNA
|TJ
<2313>
       Artificial Sequence
 (T
 F
<220>
 (T
<223>
       Synthetic DNA
Ħ
<400>
       56
caggaaacag ctatgaccat g
                                                                            21
<210>
       57
<211>
       36
<212>
       DNA
      Artificial Sequence
<213>
<220>
<223>
       Synthetic DNA
<400>
       57
taaggaggtt taaaatgtct gacgatcgtg ttactc
                                                                            36
```

<210> 58 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Synthetic DNA <400> 58 tacgccaagg ttgttaaccc a

21

1