Substance	State	$\Delta H_f^{\circ} \ (rac{\mathrm{kJ}}{\mathrm{mol}})$	$S^{\circ} \atop \left(\frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\right)$	Subst	ance State	$\Delta H_f^\circ \over (rac{\mathrm{kJ}}{\mathrm{mol}})$	$S^{\circ} \atop \left(\frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\right)$
Ag	S	0	42.6	Cl_2	g	0	223.0
Ag^+	aq	105.79	72.7	Cl^-	aq	-167.080	56.5
AgCl	\mathbf{S}	-127.01	96.2	ClO_4	aq	-128.10	182.0
AgBr	\mathbf{S}	-100.4	107.1	Cr	\mathbf{S}	0	23.8
$AgNO_3$	\mathbf{S}	-124.4	140.9	$\mathrm{Cr_2O_3}$	3 g	-1139.7	81.2
Al	\mathbf{S}	0	28.3	Cu	\mathbf{S}	0	33.2
Al^{+3}	aq	-538.4	-321.7	Cu^+	aq	+71.7	40.6
$AlCl_3$	\mathbf{S}	-704	110.7	Cu^{+2}	aq	+64.8	-99.6
Al_2O_3	\mathbf{S}	-1675.7	50.9	CuO	\mathbf{S}	-157.3	42.6
Ba	\mathbf{S}	0	62.8	Cu_2O	S	-168.6	93.1
$BaCl_2$	\mathbf{S}	-858.6	123.7	CuS	\mathbf{S}	-53.1	66.5
$BaCO_3$	\mathbf{S}	-1216.3	112.1	Cu_2S	\mathbf{S}	-79.5	120.9
$Ba(NO_3)_2$	\mathbf{S}	-992	214	CuSO	\mathbf{b}_4 s	-771.4	107.6
BaO	\mathbf{S}	-553.5	70.4	F^-	aq	-335.35	-13.8
$Ba(OH)_2$	\mathbf{S}	-998.2	112	F_2	g	0	202.7
BaSO_4	\mathbf{S}	-1473.2	132.2	Fe	\mathbf{S}	0	27.3
Br_2	ℓ	0	152.2	Fe(OI	$H)_3$ s	-823.0	106.7
\mathbf{C}	\mathbf{S}	0	5.7	Fe_2O_3	$_{\rm S}$	-824.2	87.4
CCl_4	ℓ	-135.4	216.4	Fe_3O_4	$_{1}$ S	-1118.4	146.4
CHCl_3	ℓ	-134.5	201.7	H_2	g	0	130.6
CH_4	g	-74.8	186.2	H^{+}	aq	0	0.0^{*}
C_2H_2	g	+226.7	200.8	HBr	g	-36.29	198.6
C_2H_4	g	+52.3	219.5	HCO ₅	aq aq	-689.93	91.2
C_2H_6	g	-84.7	229.5	HCl	g	-92.31	186.8
C_3H_8	g	-103.8	269.9	$_{ m HF}$	g	-273.30	173.7
$\mathrm{CH_{3}OH}$	ℓ	-238.7	126.8	HI	g	26.50	206.5
C_2H_5OH	ℓ	-277.7	160.7	HNO ₃	$_3$ ℓ	-174.1	155.6
CO	g	-110.53	197.6	HPO_4		-1299.0	-33.5
CO_2	g	-393.51	213.6	HSO_4	- aq	-886.9	131.8
$\mathrm{CO_3}^{-2}$	aq	-675.23	-56.9	$\mathrm{H_{2}O}$	ℓ	-285.830	69.9
Ca	\mathbf{S}	0	41.4	$\mathrm{H_{2}O}$	g	-241.826	188.7
Ca^{+2}	aq	-543.0	-53.1	$\mathrm{H}_{2}\mathrm{PC}$	a_4 aq	-1302.6	90.4
$CaCl_2$	\mathbf{S}	-795.8	104.6	H_2S	g	-20.6	205.7
$CaCO_3$	\mathbf{S}	-1206.9	92.9	Hg	ℓ	0	76.0
CaO	\mathbf{S}	-634.92	39.8	Hg^{+2}	aq	170.21	-32.2
$Ca(OH)_2$	\mathbf{S}	-986.1	83.4	$_{ m HgO}$	$_{ m cr,red}$	-90.79	70.3
$CaSO_4$	\mathbf{S}	-1434.1	106.7				
Cd	\mathbf{S}	0	51.8				
Cd^{+2}	aq	-75.92	-73.2				
CdCl_2	\mathbf{S}	-391.5	115.3				
CdO	\mathbf{S}	-258.35	54.8				

^{*}The standard entropy of the $H^+(aq)$ ion is defined to be 0.

Substance	State	ΔH_f°	S°
		$\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$	$\left(\frac{\mathrm{J}}{\mathrm{mol}\cdot\mathrm{K}}\right)$
<u>I</u> -	aq	-56.78	111.3
I_2	\mathbf{S}	0	116.1
K	\mathbf{S}	0	64.2
K^{+}	aq	-252.14	102.5
KBr	\mathbf{S}	-393.8	95.9
KCl	\mathbf{S}	-436.7	82.6
$KClO_3$	\mathbf{s}	-397.7	143.1
$KClO_4$	\mathbf{s}	-432.8	151.0
KNO_3	\mathbf{s}	-494.6	133.0
Mg	\mathbf{s}	0	32.7
Mg^{+2}	aq	-467.0	-138.1
MgCl_2	\mathbf{s}	-641.3	89.6
$MgCO_3$	\mathbf{s}	-1095.8	65.7
MgO	\mathbf{s}	-601.60	26.9
$Mg(OH)_2$	\mathbf{S}	-924.5	63.2
MgSO_4	\mathbf{S}	-1284.9	91.6
Mn	\mathbf{S}	0	32.0
Mn^{+2}	aq	-220.8	-73.6
MnO	\mathbf{S}	-385.2	59.7
MnO_2	\mathbf{S}	-520.0	53.0
N_2	g	0	191.5
$\mathrm{NH_{3}}$	g	-45.94	192.3
$\mathrm{NH_4}^+$	aq	-133.26	113.4
$\mathrm{NO_2}^-$	aq	-104.6	123.0
NO_3^-	aq	-206.85	146.4
$\mathrm{N_2H_4}$	ℓ	+50.6	121.2
$\mathrm{NH_4Cl}$	\mathbf{S}	-314.4	94.6
NH_4NO_3	\mathbf{S}	-365.6	151.1
NO	g	+90.2	210.7
NO_2	g	+33.2	240.0
N_2O_4	g	+9.2	304.2
Na	\mathbf{S}	0	51.2
Na ⁺	aq	-240.34	59.0
NaCl	\mathbf{S}	-411.2	72.1
NaF	\mathbf{S}	-573.6	51.5
NaOH	\mathbf{S}	425.6	64.5

S°	Substance	State	ΔH_f°	S°	
$\left(\frac{J}{\mathrm{mol} \cdot K}\right)$			$\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$	$\frac{J}{\text{mol K}}$	
111.3	Ni	S	0	29.9	•
116.1	NiO	\mathbf{S}	-239.7	38.0	
64.2	OH^-	aq	-230.015	-10.8	
102.5	O_2	g	0	205.0	
95.9	P_4	\mathbf{S}	0	164.4	
82.6	PCl_3	g	-287.0	311.7	
143.1	PCl_5	g	-374.9	364.5	
151.0	PO_4^{-3}	aq	-1277.4	-222	
133.0	Pb	\mathbf{S}	0	64.8	
32.7	Pb^{+2}	aq	0.92	10.5	
-138.1	PbBr_2	\mathbf{S}	-278.7	161.5	
89.6	$PbCl_2$	\mathbf{S}	-359.4	136.0	
65.7	PbO	\mathbf{S}	-219.0	66.5	
26.9	PbO_2	\mathbf{S}	-277.4	68.6	
63.2	S	\mathbf{S}	0	31.8	
91.6	SO_2	g	-296.81	248.1	
32.0	SO_3	g	-395.7	256.7	
-73.6	$\mathrm{SO_4}^{-2}$	aq	-909.34	20.1	
59.7	$\mathrm{S_2}^-$	aq	+33.1	-14.6	
53.0	Si	\mathbf{S}	0	18.8	
191.5	SiO_2	\mathbf{S}	-910.7	41.8	
192.3	Sn	\mathbf{S}	0	51.6	
113.4	Sn^{+2}	aq	-8.9	-17.4	
123.0	SnO_2	\mathbf{S}	-577.63	52.3	
146.4	Zn	\mathbf{S}	0	41.6	
121.2	Zn^{+2}	aq	-153.39	-112.1	
94.6	ZnI_2	\mathbf{S}	-208.0	161.1	
151.1	ZnO	\mathbf{s}	-350.46	43.6	
210.7	ZnS	\mathbf{S}	-206.0	57.7	
0.40.0					

TABLE 9.3 Average Bond Energies

Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)	Bond	Bond Energy (kJ/mol)
н—н	436	N-N	163	Br—F	237
H-C	414	N=N	418	Br—Cl	218
H-N	389	N = N	946	Br—Br	193
н-о	464	N-O	222	ı—cı	208
H-S	368	N=0	590	I—Br	175
H—F	565	N—F	272	1—1	151
H—CI	431	N—CI	200	Si—H	323
H—Br	364	N—Br	243	Si—Si	226
н—і	297	N—I	159	Si—C	301
c-c	347	0-0	142	s-0	265
c=c	611	0=0	498	Si=0	368
C≡C	837	0—F	190	s=0	523
c-N	305	o—cı	203	Si-Cl	464
c=N	615	0—I	234	s=s	418
C≡N	891	F—F	159	S-F	327
c-o	360	CI—F	253	s—cı	253
c=o	736*	сі—сі	243	S—Br	218
C≡O	1072			s-s	266
C—CI	339				

^{*799} in CO₂

TABLE 10.4 Van der Waals Constants for Common Gases

Gas	$a (\mathbf{L}^2 \cdot \mathbf{atm/mol}^2)$	b (L/mol)
He	0.0342	0.02370
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H ₂	0.244	0.0266
N ₂	1.39	0.0391
O ₂	1.36	0.0318
CI ₂	6.49	0.0562
H ₂ O	5.46	0.0305
CH ₄	2.25	0.0428
CO ₂	3.59	0.0427
CCI ₄	20.4	0.1383

Values of Grubbs Statistic (G)

	Confidence Level (%)								
Number of Observations n	99.9	99.5	99	97.5	95	90			
3	1.155	1.155	1.155	1.155	1.153	1.148			
4	1.499	1.496	1.492	1.481	1.463	1.425			
5	1.780	1.764	1.749	1.715	1.672	1.602			
6	2.011	1.973	1.944	1.887	1.822	1.729			
7	2.201	2.139	2.097	2.020	1.938	1.828			
8	2.358	2.274	2.221	2.126	2.032	1.909			
9	2.492	2.387	2.323	2.215	2.110	1.977			
10	2.606	2.482	2.410	2.290	2.176	2.036			
11	2.705	2.564	2.485	2.355	2.234	2.088			
12	2.791	2.636	2.550	2.412	2.285	2.134			
13	2.867	2.699	2.607	2.462	2.331	2.175			
14	2.935	2.755	2.659	2.507	2.371	2.213			
15	2.997	2.806	2.705	2.549	2.409	2.247			
16	3.052	2.852	2.747	2.585	2.443	2.279			
17	3.103	2.894	2.785	2.620	2.475	2.309			
18	3.149	2.932	2.821	2.651	2.504	2.335			
19	3.191	2.968	2.854	2.681	2.532	2.361			
20	3.230	3.001	2.884	2.709	2.557	2.385			
30	3.507	3.236	3.103	2.908	2.745	2.563			
40	3.673	3.381	3.240	3.036	2.866	2.682			
50	3.789	3.483	3.336	3.128	2.956	2.768			
60	3.874	3.560	3.411	3.199	3.025	2.837			
70	3.942	3.622	3.471	3.257	3.082	2.893			
80	3.998	3.673	3.521	3.305	3.130	2.940			
90	4.044	3.716	3.563	3.347	3.171	2.981			
100	4.084	3.754	3.600	3.383	3.207	3.017			

Source: ASTM E178-00, "Standard Practice for Dealing with Outlying Observations"

Values of Student's t

	Confidence Level (%)									
Degrees of Freedom	50	90	95	97.5	99	99.5	99.9			
1	1.000	6.314	12.706	25.452	63.657	127.321	636.619			
2	0.816	2.920	4.303	6.205	9.925	14.089	31.599			
3	0.765	2.353	3.182	4.177	5.841	7.453	12.924			
4	0.741	2.132	2.776	3.495	4.604	5.598	8.610			
5	0.727	2.015	2.571	3.163	4.032	4.773	6.869			
6	0.718	1.943	2.447	2.969	3.707	4.317	5.959			
7	0.711	1.895	2.365	2.841	3.499	4.029	5.408			
8	0.706	1.860	2.306	2.752	3.355	3.833	5.041			
9	0.703	1.833	2.262	2.685	3.250	3.690	4.781			
10	0.700	1.812	2.228	2.634	3.169	3.581	4.587			
11	0.697	1.796	2.201	2.593	3.106	3.497	4.437			
12	0.695	1.782	2.179	2.560	3.055	3.428	4.318			
13	0.694	1.771	2.160	2.533	3.012	3.372	4.221			
14	0.692	1.761	2.145	2.510	2.977	3.326	4.140			
15	0.691	1.753	2.131	2.490	2.947	3.286	4.073			
16	0.690	1.746	2.120	2.473	2.921	3.252	4.015			
17	0.689	1.740	2.110	2.458	2.898	3.222	3.965			
18	0.688	1.734	2.101	2.445	2.878	3.197	3.922			
19	0.688	1.729	2.093	2.433	2.861	3.174	3.883			
20	0.687	1.725	2.086	2.423	2.845	3.153	3.850			
30	0.683	1.697	2.042	2.360	2.750	3.030	3.646			
40	0.681	1.684	2.021	2.329	2.704	2.971	3.551			
50	0.679	1.676	2.009	2.311	2.678	2.937	3.496			
60	0.679	1.671	2.000	2.299	2.660	2.915	3.460			
70	0.678	1.667	1.994	2.291	2.648	2.899	3.435			
80	0.678	1.664	1.990	2.284	2.639	2.887	3.416			
90	0.677	1.662	1.987	2.280	2.632	2.878	3.402			
100	0.677	1.660	1.984	2.276	2.626	2.871	3.390			
	0.674	1.645	1.960	2.241	2.576	2.807	3.291			

Values for the F Statistic at the 95% Confidence Level

	Degrees of Freedom (numerator)										
Degrees of Freedom (denominator)	2	3	4	5	6	7	8	9	10	20	%
2	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.45	19.50
3	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.66	8.53
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.80	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.56	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.87	3.67
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.44	3.23
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.15	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	2.94	2.71
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.77	2.54
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.12	1.84
	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.57	1.00

Values for the F Statistic at the 90% Confidence Level

	Degrees of Freedom (numerator)										
Degrees of Freedom (denominator)	2	3	4	5	6	7	8	9	10	20	∞
2	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.44	9.49
3	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23	5.18	5.13
4	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92	3.84	3.76
5	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.21	3.10
6	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94	2.84	2.72
7	3.26	3.07	2.96	2.88	2.83	2.78	2.75	2.72	2.70	2.59	2.47
8	3.11	2.92	2.81	2.73	2.67	2.62	2.59	2.56	2.54	2.42	2.29
9	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42	2.30	2.16
10	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32	2.20	2.06
20	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.79	1.61
	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60	1.42	1.00