Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

Example 2.

n(0) = -50 n-intercept.

 $k_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the k-intercepts of multiplicity 1.

Given a quadratic $n(k) = a k^2 + b k + c$ compute its discriminant \triangle :

$$n(0) = c$$
 computes the single n-intercept.
Example 1.
$$n(k) = -k^2 - 2k + 48$$
 compute its discriminant \triangle :

△=196>0 $k_{1,2}=6,-8$

$$n(0) = 48$$
 $n-intercept.$

 $k_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single k-intercept of multiplicity 2.

$$\triangle=0$$
 $k_{1,2}=5,5$

 $n(k) = -2 k^2 + 20 k - 50$ compute its discriminant \triangle :

Example 3. $n(k) = -9 k^2 + 180 k - 1000$ compute its discriminant \triangle :

-4000

-5

n(0) = -1000 n-intercept.

However there is a n-intercept.

no k-intercepts.

 $\triangle = -3600 < 0$

-10