

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5:

C07K 7/06, 7/08, 7/10 A61K 37/02

(11) International Publication Number:

(43) International Publication Date:

WO 93/01211

A1

21 January 1993 (21.01.93)

(21) International Application Number:

PCT/AU92/00332

(22) International Filing Date:

3 July 1992 (03.07.92)

(30) Priority data:

PK 7097 PK 7924 5 July 1991 (05.07.91)

22 August 1991 (22.08.91)

ΑU AU

(71) Applicant (for all designated States except US): PEPTIDE TECHNOLOGY LIMITED [AU/AU]; 4-10 Inman Road, Dee Why, NSW 2099 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RATHJEN, Deborah, Ann [AU/AU]; 4 Eddy Street, Thornleigh, NSW 2120 (AU). WIDMER, Fred [CH/AU]; 35 Anzac Avenue, Ryde, NSW 2112 (AU). GRIGG, Geoffrey, Walter [AU/AU]; 352 Burls Bay Road, Lane Cove, NSW 2016 (AU). MACK, Philip, On-Lok [CN/AU]; 22 Ethel Street, Hornsby, NSW 2077 (AU).

(74) Agent: F.B. RICE & CO; 28A Montague Street, Balmain, NSW 2041 (AU).

CI, CM, GA, GN, ML, MR, SN, TD, TG).

Published

With international search report.

(54) Title: PEPTIDE WHICH ABROGATES TNF AND/OR LPS TOXICITY

VRSSSRTPSD10KPVAHVVANP20QAEGQLQWLN30RRA

NALLANG40VELRDNQLVV50PSEGLYLIYS60QVLFKGQGCP70STHVLL THTI80SRIAVSYQTK90VNLLSAIKSP100CQRETREGAE110AKPWYEPI YL120GGVFQLEKGD130RLSAEINRPD140YLDFAESGQV150YFGIIAL157

(57) Abstract

The present invention provides peptides which have the ability to abrogate TNF toxicity and/or LPS toxicity. The present invention further relates to compositions including these peptides as the active ingredient and methods of anti-inflammatory treatment involving the administration of this composition. The peptides of the present invention are based primarily on residue 1 to 26 of human TNF.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT:	Austria	FI	Hinland	MI	Muli
ĀU	Australia	FR	France	MN	Mongolia
	Barbados	GA	(juhon	MR	Mauritania ,
BB		GB	United Kingdom	MW	Malawi
8E	Belgium	GN	Guinca	NL.	Netherlands
BF	Burkina Faso	GR	Girece	NO	Norway
BC	Bulgaria	_		PL	Poland
BJ	Benin	HU	Hungary	RO	Romania
BR	Brazil	ΙĒ	Ircland	RU	Russian Federation
CA	Canada	ΙŤ	Italy	SD	Sudan
CF	Central African Republic	ĄĮ	Japan	SE	Sweden
CC	Congo	KP	Democratic People's Republic	-	
CH	Switzerland		of korea	SN	Senegal
CI.	Cote d'ivone	KR	Republic of Korea	SU	Soviet Union
	Cameroon	Li	Liechtenstein	TD	Chad
СМ		LK	Sri Lanka	TG	Togo
C?	Czechoslovakia	LU	Luxembourg	US	United States of America
DE	Cocmany		Monaco		
DK	Denmark	MC			
ES	Spain	MC	Madagascar		

ES

Spain

PEPTIDE WHICH ABROGATES THE AND/OR LPS TOXICITY Field of the Invention

The present invention relates to a group of peptides which have the ability to abrogate TNF toxicity and/or LPS toxicity. The present invention further relates to compositions including this peptide as the active ingredient and methods of anti-inflammatory treatment involving the administration of this composition.

Background of the Invention

Many of the clinical features of septicemic shock 10 induced by Gram-negative bacteria which have lipopolysaccharide (LPS) in their cell walls may be reproduced in animals by the administration of LPS. induces prompt severe metabolic and physiological changes 15 which can lead to death. Associated with the injection of LPS is the extensive production of tumour necrosis factor alpha (TNF). Many of the effects of LPS injection or indeed of Gram-negative bacteria can be reproduced by Thus, mice injected with recombinant human TNF 20 develop piloerection of the hair (ruffling), diarrhoea, a withdrawn, unkempt appearance and die if sufficient Rats treated with TNF become amounts are given. hypotensive, tachypneic and die of sudden respiratory arrest (Tracey et al., 1986 Science 234, 470). 25 acidosis, marked haemoconcentration and biphasic changes in blood glucose concentration were also observed. Histopathology revealed severe leukostatsis in the lungs, haemorraghic necrosis in the adrenals, pancreas and other organs and tubular necrosis of the kidneys. All these 30 changes were prevented if the animals were pretreated with a neutralizing monoclonal antibody against TNF.

The massive accumulation of neutrophils in the lungs of TNF-tr ated animals reflects the activation of neutrophils by TNF. TNF causes neutrophil degranulation, respiratory burst, enhanced antimicrobiocidal and

anti-tumour activity (Klebanoff et al., 1986 J. Immunol. 136, 4220; Tsujimoto et al., 1986 Biochem Biophys Res Commun 137, 1094). Endothelial cells are also an important target for the expression of TNF toxicity. TNF diminishes the anticoagulant potential of the endothelium, inducing procoagulant activity and down regulation of the expression of thrombomodulin (Stern and Nawroth, 1986 J Exp Med 163, 740).

TNF, a product of activated macrophages produced in 10 response to infection and malignancy, was first identified as a serum factor in LPS treated mice which caused the haemorraghic necrosis of transplantable tumours in murine models and was cytoxoic for tumour cells in culture (Carswell et al., 1975 PNAS 72, 3666; Helson et al., 1975 Nature 258, 731). Cachexia is a common symptom of advanced malignancy and severe infection. characterised by abnormal lipid metabolism with hypertriglyceridemia, abnormal protein and glucose metabolism and body wasting. Chronic administration of TNF (also known as cachectin in the early literature) to mice causes anorexia, weight loss and depletion of body lipid and protein within 7 to 10 days (Cerami et al., 1985 Immunol Lett 11, 173, Fong et al., 1989 J Exp Med 170, 1627). These effects were reduced by concurrent administration of antibodies against TNF. Although TNF has been measured in the serum of patients with cancer and chronic disease associated with cachexia the results are inconclusive since large differences in TNF levels have been reported. These may be due to the short half-life of TNF (6 minutes), differences in TNF serum binding protein, 30 or true differences in TNF levels in chronic disease states.

TNFα, as a mediator of inflammation, has been implicated in the pathology of other diseases apart from toxic shock and cancer-related cachexia. TNF has been

measured in synovial fluid in patients with both rheumatoid and reactive arthritis and in the serum of patients with rheumatoid arthritis (Saxne et al., 1988 Arthrit. Rheumat. 31, 1041). Raised levels of TNF have been detected in renal transplant patients during acute rejection episodes (Maury and Teppo 1987 J. Exp Med 166, 1132). In animals TNF has been shown to be involved in the pathogenesis of graft versus host disease in skin and gut following allogeneic marrow transplantation.

Administration of a rabbit anti-murine TNF was demonstrated to prevent the histological changes associated with graft versus host disease and reduced mortality (Piquet et al., 1987 J Exp Med 166, 1280).

TNF has also been shown to contribute significantly
to the pathology of malaria (Clark et al., 1987; Am. J.
Pathol. 129: 192-199). Further, elevated serum levels of
TNF have been reported in malaria patients (Scuderi
et al., 1986; Lancet 2: 1364-1365). TNF may also
contribute to the brain pathology and consequent dementia
observed in late stage HIV infections (Grimaldi et al Ann
Nevrol 29: 21)

The peptides encompassed in the present invention do not necessarily interfere directly with the bio-synthetic mechanisms of the disease-causing component. As will be described below in the experimental data the mechanism behind the alleviating effect of the peptides is to be found in the modulation of the different cytokines produced by activated cells belonging to the cell-lines encompassing the immune defence. This modulation of cytokines is not limited to TNF but may also be valid for the whole range of interleukins, from interleukin-1 to interleukin 10. LPS, a known component of bacteria important in inducing major inflammatory response was used as a model. LPS binds to receptors on neutrophils,

consequently become activated and start production of IL-1 and TNF and other cytokines, thus starting the inflammatory cascade. One parameter used to measure the effect of LPS is the concentration of blood glucose, which will normally decrease on exposure to TNF or LPS.

LPS normally combines with LPS-Binding-Protein (LBP) and exerts its dramatic effect through the CD14 receptor. The activation of the CD14 molecule by LPS results in TNF production by leucocytes. It is believed that the peptides of the present invention which abrogate LPS toxicity may exert their effect by interacting with the CD14 molecule and thus inhibit LPS binding.

The peptides identified by the present inventors which have the ability to abrogate TNF and/or LPS toxicity resemble peptide sequences found in the amino terminal of TNF α . Other investigators have also considered this area of the TNF α molecule but with little success in obtaining biologically active peptides.

In this regard attention is drawn to Canadian patent application Nos 2005052 and 2005056 in the name of BASF 20 AG. Both these applications claim a wide range of peptide sequences and, by selecting appropriate alternatives it can be seen that application No 2005052 is directed toward the peptide sequence 7-42 of TNF α whilst application No 2005056 is directed toward amino acid sequence 1 to 24 of 25 ${\tt TNF}{\alpha}$. Whilst each of these applications claim a broad range of peptide sequences it is noted that there is no indication as to what, if any, biological activity the claimed peptides may possess. Indeed there is no 30 demonstration that any of the produced peptide have any biological activity. In contrast, the present inventors have produced a range of peptides which have specific activities in that they abrogate TNF and/or LPS toxicity. Summary of the Invention

35 In a first aspect the present invention consists in a linear or cyclic peptide of the general formula:-

 $x_1 - x_2 - x_3 - x_4 - x_5 - x_6 - x_7 - x_8 - x_9$ in which X_1 is null, Cys or R_1 X_2 is null, Cys, R_1 or $A_1-A_2-A_3-A_4-A_5$ in which A, is Val or Ile or Leu or Met or His 5 A, is Arg or Cys or His A, is Ser or Thr or Ala A_A is Ser or Thr or Ala A_5 is Ser or Thr or Ala X_3 is Cys, R_1 or A_6-A_7 10 As is Arg or Cys or His or Absent in which A_7 is Thr or Ser or Ala X_4 is Cys, R_1 or A_8-A_9 A_8 is Pro or an Na-alkylamino acid in which Ao is Ser or Thr or Ala 15 X_5 is Cys, R_1 or A_{10} A₁₀ is Asp or Ala or Cys or Glu or Gly in which or Arg or His X_6 is Cys, R_2 or A_{11} - A_{12} - A_{13} ${\tt A}_{11}$ is absent or Cys or Arg or His or 20 in which Asp or Glu A_{12} is Pro or an N α -alkylamino acid A₁₃ is Val or Ile or Phe or Tyr or Trp or His or Leu or His or Met X_7 is null, Cys, R_2 or $A_{14}-A_{15}$ 25 A₁₄ is Ala or Val or Gly or Ile or Phe in which or Trp or Tyr or Leu or His or Met ${\tt A}_{15}$ is absent or His or Arg or Glu or Asa or Ala or Lys or Asp or Phe or Tyr or 30 Trp or Glu or Gln or Ser or Thr or Gly X_8 is null, Cys, R_2 , A_{16} A₁₆-A₁₇-A₁₈-A₁₉-A₂₀-A₂₁-A₂₂-A₂₃-A₂₄-A₂₅-A₂₆ A₁₆ is Val or Ile or Leu or Met or His in which A_{17} is Val or Ile or Leu or Met or His A_{18} is Ala or Gly 35

	A ₁₉ is Asp or Glu
~~	A ₂₀ is Pro or an Nα-alkylamino acid
	A ₂₁ is Gln or Asn
	A ₂₂ is Ala or Gly
5	A ₂₃ is Glu or Asp
	A ₂₄ is Gly or Ala
	Apr is Gln or Asn
•	$\frac{A_{26}}{A_{26}}$ is Leu or Ile or Val or Met or His
	Xo is null, Cys or Ro
10	R, is R-CO, where R is H, straight, branched or
	cyclic alkyl up to C20, optionally containing double
	bonds and/or substituted with halogen, nitro, amino,
	hydroxy, sulfo, phospho or carboxyl groups (which may
	be substituted themselves), or aralkyl or aryl
15	optionally substituted as listed for the alkyl and
	further including alkyl, or R ₁ is glycosyl,
	nucleosyl, lipoyl or R ₁ is an L- or D-α amino acid
	or an oligomer thereof consisting of up to 5 residues
	R ₁ is absent when the amino acid adjacent
20	is a desamino-derivative.
	R ₂ is
	-NR ₁₂ R ₁₃ , wherein R ₁₂ and R ₁₃ are
	independently H, straight, branched or cyclic alkyl,
	aralkyl or aryl optionally substituted as defined for
25	R ₁ or N-glycosyl or N-lipoyl
	-OR ₁₄ , where R ₁₄ is H, straight, branched or
	cyclic alkyl, aralkyl or aryl, optionally substituted
	as defined for R ₁
	-O-glycosyl, -O-lipoyl or
30	- an L- or D-α-amino acid or an oligomer thereof
	consisting of up to 5 residues
	or R ₂ is absent, when the adjacent amino acid is a
	decarboxy derivative of cysteine or a homologue
	thereof or the peptide is in a N-C cyclic form.
35	with the proviso that:

when X_6 is Cys or R_2 then X_5 is A_{10} , X_4 is A_8-A_9 , X_3 is $A_6 - A_7$ and X_2 is $A_1 - A_2 - A_3 - A_4 - A_5$ when X_5 is Cys or R_1 then X_6 is $A_{11}-A_{12}-A_{13}$, X_7 is $^{\rm A}_{14}$ $^{\rm -A}_{15}$, $^{\rm X}_{8}$ is $^{\rm A}_{16}$ $^{\rm -A}_{17}$ $^{\rm -A}_{18}$ and $^{\rm A}_{11}$ is absent 5 when X_4 is Cys or R_1 then X_5 is A_{10} , X_6 is $A_{11}-A_{12}-A_{13}$, X_7 is $A_{14}-A_{15}$ and X_8 is A₁₆-A₁₇-A₁₈ when x_2 is $x_1-x_2-x_3-x_4-x_5$ then x_8 is not x_{16} when X_1 is null, X_2 is Cys or R_1 , X_3 is A_6-A_7 , X_4 is $A_8 - A_9$, X_5 is A_{10} , X_6 is $A_{11} - A_{12} - A_{13}$, X_7 is 10 $A_{14}-A_{15}$ and X_8 is A_{16} then A_{16} is not D-His. X_1 is always and only null when X_2 is R_1 , Lys or Null X_2 is always and only null when X_3 is Cys or R_1 x_3 is always and only null when x_6 is Cys or R_2 X_7 is always and only null when X_7 is Cys, R_2 or Null X_{R} is always and only null when X_{R} is Cys, R_{2} or Null x_q is always and only null when x_8 is Cys, R_2 or Null when X_1 and R_2 are null, X_3 is R_1 , X_4 is 20 $A_8 - A_9$, X_5 is A_{10} , X_6 is $A_{11} - A_{12} - A_{13}$, X_7 is $A_{14}-A_{15}$, X_8 is R_2 and A_{14} is Ala and A_{15} is absent then R_1 is acetyl and R_2 is NH_2 . The amino acids may be D or L isomers, however generally the peptide will primarily consist of L-amino 25

In a second aspect the present invention consists in a pharmaceutical composition for use in treating subjects suffering from toxic effects of TNF and/or LPS, the composition comprising a therapeutically effective amount of a peptide of the first aspect of the present invention and a pharmaceutically acceptable sterile carrier.

In a third aspect the present invention consists in a method of treating a subject suffering from the toxic effects of TNF and/or LPS, the method comprising administering to the subject a therapeutically effective amount of the composition of the second aspect of the present invention.

```
In a preferred embodiment of the present invention
- x_1 is H, x_2 is A_1-A_2-A_3-A_4-A_5, x_3 is
    A_6-A_7, X_4 is A_8-A_9, X_5 is A_{10}, X_6 is
    A_{11}-A_{12}-A_{13}, X_7 is A_{14}-A_{15}, X_8 is
 5 A_{16}^{-A}_{17}^{-A}_{18} and X_9 is OH.
         In a further preferred embodiment of the present
    invention X_1 is null, X_2 is H or Ac, X_3 is
    A_6 - A_7, X_4 is A_8 - A_9, X_5 is A_{10}, X_6 is
    A_{11}-A_{12}-A_{13}, X_7 is A_{14}-A_{15}, X_8 is
10 A_{16}^{-A}_{17}^{-A}_{18} and X_9 is OH or NH<sub>2</sub>.
         In a further preferred embodiment of the present
    invention X_1 is H, X_2 is A_1-A_2-A_3-A_4-A_5,
    x_3 is A_6 - A_7, x_4 is A_8 - A_9, x_5 is A_{10}, x_6
    is OH and X_6, X_7 and X_8 are null.
          In a further preferred embodiment of the present
15
    invention the peptide is selected from the group
    consisting of:-
          Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala
          -His-Val-Val-Ala;
          Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala;
20
          Arg-Thr-Pro-Ser-Ala-Lys-Pro-Val-Ala-His-Val-Val-Ala;
          Arg-Thr-Pro-Ser-Lys-Asp-Pro-Val-Ala-His-Val-Val-Ala;
          Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala
          -Arg-Val-Val-Ala;
          Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala
25
          -Gln-Val-Val-Ala;
          Ac-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-NH2;
          Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Ala-Val;
          Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Lys-Val;
          Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val;
30
          Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val;
          Pro-Ser-Asp-Lys-Pro-Val-Ala-His;
          Pro-Ser-Asp-Lys-Pro-Val;
          Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-
          Val-His-Val-Val-Ala;
35
```

Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala-Asn -Pro-Gln-Ala-Glu-Gly-Gln-Leu; Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp; Ac-Pro-Ser-Asp-Lys-Pro-Val-Ala-NH2; Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Asp-Val; 5 Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala-Asn-Pro-Gln-Ala-Glu-Gly-Gln-Leu; Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala; Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val; Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala; 10 Pro-Sir-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala; Pro-Val-Ala-His-Val-Val-Ala; and Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Val-His-Val. The composition and method of the present invention 15 would be expected to be useful as an anti-inflammatory agent in a wide range of disease states including toxic shock, adult respiratory distress syndrome, hypersensitivity pneumonitis, systemic lupus erythromatosis, cystic fibrosis, asthma, bronchitis, drug 20 withdrawal, schistosomiasis, sepsis, rheumatoid arthritis, acquired immuno-deficiency syndrome, multiple sclerosis, leperosy, malaria, systemic vasculitis, bacterial meningitis, cachexia, dermatitis, psoriasis, diabetes, neuropathy associated with infection or autoimmune disease, ischemia/reperfusion injury, encephalitis, Guillame Barre Syndrome, atherosclerosis, chronic fatigue syndrome, TB, other viral and parasitic diseases, OKT3 therapy, and would be expected to be useful in conjunction with radiation therapy, chemotherapy and transplantation, 30 to ameliorate the toxic effects of such treatments or procedures.

As the peptide of the present invention suppresses activation of neutrophils the composition and method of the present invention may also be useful in the treatment of diseases with an underlying element of local, systemic, acute or chronic inflammation. In gen ral, it is believed

the composition and method of the present invention will be useful in treatment of any systemic or local infection leading to inflammation.

The peptides of the present invention may also be
administered in cancer therapy in conjunction with
cytotoxic drugs which may potentiate the toxic effects of
TNFα (Watanabe et al., 1988; Immunopharmacol.
Immunotoxicol. 10: 117-127) such as vinblastin, acyclovir,
interferon alpha, cyclosporin A, IL-2, actinomycin D,
adriamycin, mitomycin C, AZT, cytosine arabinoside,
daunororubin, cis-platin, vincristine, 5-flurouracil and
bleomycin; in cancer patients undergoing radiation
therapy; and in AIDS patients (or others suffering from
viral infection such as viral meningitis, hepatitis,
herpes, green monkey virus etc.) and in patients receiving
immunostimulants such as thymopentin and muramyl peptides
or cytokines such as IL-2 and GM-CSF. In this use
peptides of the present invention will serve to abrogate

20 It will be appreciated by those skilled in the art that a number of modifications may be made to the peptide of the present invention without deleteriously effecting the biological activity of the peptide. This may be achieved by various changes, such as insertions, deletions and substitutions (e.g., sulfation, phosphorylation, nitration, halogenation), either conservative or non-conservative (e.g., W-amino acids, desamino acids) in the peptide sequence where such changes do not substantially altering the overall biological activity of the peptide. By conservative substitutions the intended combinations are:-

G, A; V, I, L, M; D, E; N, Q; S, T; K, R, H; F, Y, W, H; and P, N α -alkylamino acids.

It may also be possible to add various groups to the peptide of the present invention to confer advantages such as increased potency or extended half-life in vivo,

without substantially altering the overall biological activity of the peptide.

The term peptide is to be understood to embrace peptide bond replacements and/or peptide mimetics, i.e. 5 pseudopeptides, as recognised in the art (see for example: Proceedings of the 20th European Peptide Symposium, edt. G. Jung. E. Bayer, pp. 289-336, and references therein), as well as salts and pharmaceutical preparations and/or formulations which render the bioactive peptide(s) particularly suitable for oral, topical, nasal spray, ocular pulmonary, I.V., subcutaneous, as the case may be, delivery. Such salts, formulations, amino acid replacements and pseudopeptide structures may be necessary and desirable to enhance the stability, formulation, deliverability (e.g., slow release, prodrugs), or to 15 improve the economy of production, and they are acceptable, provided they do not negatively affect the required biological activity of the peptide.

Apart from substitutions, three particular forms of peptide mimetic and/or analogue structures of particular 20 relevance when designating bioactive peptides, which have to bind to a receptor while risking the degradation by proteinases and peptidases in the blood, tissues and elsewhere, may be mentioned specifically, illustrated by 25 the following examples: Firstly, the inversion of backbone chiral centres leading to D-amino acid residue structures may, particularly at the N-terminus, lead to enhanced stability for proteolytical degradation while not impairing activity. An example is given in the paper "Tritriated D-ala -Peptide T Binding", Smith, C.S. et 30 al, Drug Development Res. 15, pp. 371-379 (1988). Secondly, cyclic structure for stability, such as N to C interchain imides and lactames (Ede et al in Smith and Rivier (Eds) "Peptides: Chemistry and Biology", Escom, 35 Leiden (1991), p268-270), and sometimes also receptor binding may be enhanced by forming cyclic analogues. An

example of this is given in "Confirmationally restricted

thymopentin-like compounds", U.S. pat. 4,457,489 (1985),
Goldstein, G. et al. Finally, the introduction of
ketomethylene, methylsulfide or retroinverse bonds to

replace peptide bonds, i.e. the interchange of the CO and
NH moieties may both greatly enhance stability and
potency. An example of the latter type is given in the
paper "Biologically active retroinverso analogues of
thymopentin", Sisto A. et al in Rivier, J.E. and Marshall,
G.R. (eds.) "Peptides, Chemistry, Structure and Biology",
Escom, Leiden (1990), p.722-773.

The peptides of the invention can be synthesized by various methods which are known in principle, namely by chemical coupling methods (cf. Wunsch, E.: "Methoden der 15 organischen Chemie", Volume 15, Band 1 + 2, Synthese von Peptiden, Thieme Verlag, Stuttgart (1974), and Barrany, G.; Merrifield, R.B: "The Peptides", eds. E. Gross, J. Meienhofer., Volume 2, Chapter 1, pp. 1-284, Academic Press (1980)), or by enzymatic coupling methods (cf. Widmer, F., Johansen, J.T., Carlsberg Res. Commun., 20 Volume 44, pp. 37-46 (1979), and Kullmann, W.: "Enzymatic Peptide Synthesis", CRC Press Inc., Boca Raton, Florida (1987), and Widmer, F., Johansen, J.T. in "Synthetic Peptides in Biology and Medicine:, eds., Alitalo, K., Partanen, P., Vatieri, A., pp. 79-86, Elsevier, Amsterdam (1985)), or by a combination of chemical and enzymatic methods if this is advantageous for the process design and economy.

It will be seen that one of the alternatives embraced in the general formula set out above is for a cysteine residue to be positioned at both the amino and carboxy terminals of the peptide. This will enable the cylisation of the peptide by the formation of di-sulphide bond.

It is intended that such modifications to the peptide of the present invention which do not result in a decrease in biological activity are within the scope of the present invention.

25

As would be recognized by those skilled in the art

there are numerous examples to illustrate the ability of
anti-idiotypic (anti-Ids) antibodies to an antigen to
function like that antigen in its interaction with animal

cells and components of cells. Thus, anti-Ids to a
peptide hormone antigen can have hormone-like activity and
interact specifically with the receptors to the hormone.
Conversely, anti-Ids to a receptor can interact
specifically with a mediator in the same way as the

receptor does. (For a review of these properties see:
Gaulton, G.N. and Greane, M.I. 1986. Idiotypic mimicry of
biological receptors, Ann. Rev. Immunol. 4, 253-280;
Sege, K and Peterson, P.A., 1978. Use of anti-iodiotypic
antibodies as cell surface receptor probes. Proc. Natl.

Acad. Sci. U.S.A. 25, 2443-2447).

As might be expected from this functional similarity of anti-Id and antigen, anti-Ids bearing the internal image of an antigen can induce immunity to such an antigen. (This nexus is reviewed in Hiernaux, J.R. 1988. Idiotypic vaccines and infectious diseases. Infect. Immun. 56, 1407-1413.)

As will be appreciated by persons skilled in the art from the disclosure of this application it will be possible to produce anti-idiotypic antibodies to the peptide of the present invention which will have similar biological activity. It is intended that such anti-idiotypic antibodies are included within the scope of the present invention.

Accordingly, in a fourth aspect the present invention 30 consists in an anti-idiotypic antibody to the peptide of the first aspect of the present invention, the anti-idiotypic antibody being capable of abrogating TNF and/or LPS toxicity.

The individual specificity of antibodies resides in

35 the structures of the peptide loops making up the

Complementary Determining Regions (CDRs) of the variable

domains of the antibodies. Since in general, the amino

acid sequences of the CDR peptide loops of an anti-Id are
not identical to or even similar to the amino acid
sequence of the peptide antigen from which it was

5 originally derived, it follows that peptides whose amino
acid sequence is quite dissimilar, in certain contexts can
take up a very similar three-dimensional structure. The
concept of this type of peptide, termed a "functionally
equivalent sequence" or mimotope by Geyson is familiar to

10 those expert in the field. (Geyson, H.M. et al 1987.
Strategies for epitope analysis using peptide synthesis.

J. Immun. Methods. 102, 259-274).

Moreover, the three-dimensional structure and function of the biologically active peptides can be simulated by other compounds, some not even peptidic in nature, but which mimic the activity of such peptides. This field of science is summarised in a review by Goodman, M. (1990). (Synthesis, spectroscopy and computer simulations in peptide research. Proc. 11th American Peptide Symposium published in Peptides-Chemistry. Structure and Biology pp 3-29. Ed Rivier, J.E. and Marshall, G.R. Publisher ESCOM.)

As will be recognized by those skilled in the art, armed with the disclosure of this application, it will be possible to produce peptide and non-peptide compounds having the same three-dimensional structure as the peptide of the present invention. These "functionally equivalent structures" or "peptide mimics" will react with antibodies raised against the peptide of the present invention and may also be capable of abrogating TNF toxicity. It is intended that such "peptide mimics" are included within the scope of the present invention.

Accordingly, in a fifth aspect the present invention consists in a compound the three-dimensional structure of which is similar as a pharmacophore to the three-dimensional structure of the peptide of the first aspect

35

of the present invention, the compound being characterized in that it reacts with antibodies raised against the peptide of the first aspect of the present invention and that the compound is capable of abrogating TNF and/or LPS toxicity.

More detail regarding pharmacophores can be found in Bolin et al. p 150, Polinsky et al. p 287, and Smith et al. p 485 in Smith and Rivier (Eds) "Peptides: Chemistry and Biology", Escom, Leiden (1991).

10 Detailed Description of the Invention

In order that the nature of the present invention may be more clearly understood, the preferred forms thereof will now be described with reference to the following example and accompanying Figures and Tables in which:

Fig. 1 shows the amino acid sequence of human TNFα;
Fig. 2: Effect of TNF (□) and TNF+ Peptide 1 (♠) on
blood glucose levels in malaria primed mice-Peptide 1
abrogates TNF induced hypoglycaemia in malaria primed mice.

Fig. 3: Effect of Peptide 1 on TNF-induced tumour 20 regression.

Fig. 4: Effect of Peptide 1 (♠), peptide 308 (♥), peptide 309 (♠), peptide 305 (♠) and peptide 302 (♠) on binding of radiolabelled TNF to TNF receptors on WEH1-164 tumour cells - Peptide 1 does not inhibit binding of TNF to tumour cells.

Fig. 5: Plasma reactive nitrogen intermediate levels in TNF+ Peptide 1 treated malaria primed mice - this shows that induction of RNI by TNF is inhibited by treatment with Peptide 1.

Fig. 6 shows the effect on blood glucose levels in mice treated with PBS (5); TNF alone (4);
TNF + Peptide 1 (6) and TNF + Peptide 2 (6).

Fig. 7 shows the effect of Peptide 1 on TNF-induced decrease in blood glucose levels in mice administered with 200 μg TNF.

- Fig. 8 shows the effect of Peptide 1 on TNF-induced decrease in blood glucose levels in ascites tumour-bearing mice.
- Fig. 9 shows the effect of Peptide 1 on TNF-induced 5 weight loss in ascites tumour-bearing mice.
 - Fig. 10 shows the effect of peptides on LPS toxicity in Meth A ascites tumour-bearing mice (10 animals per group scored positive if 7 or more survive);
- Fig. 11 shows the effect of peptides on LPS toxicity

 10 in Meth A ascites tumour-bearing mice (10 animals per
 group scored positive if 7 or more survive);
 - Fig. 12 shows the effect of peptides on TNF toxicity in Meth A ascites tumour-bearing mice (each group contains 20 animals: scored positive if 7 or more survived);
- 15 Fig. 13 shows the effect of peptides on TNF toxicity in Meth A ascites tumour-bearing mice (each group contains 20 animals: scored positive if 10 or more survived);
- Fig. 14 shows effect of peptides on TNF toxicity in D-galactosamine sensitized mice (each group contains 10 animals: scored positive if 6 or more survive).
 - Fig. 15 shows the effect of peptides on direct induction of chemiluminescence by TNF on human neutrophils;
 - Fig. 16 shows inhibition of TNF priming of human neutrophils by Peptide 21;
- 25 Fig. 17 shows inhibition of TNF priming of human neutrophils by Peptide 19;
 - Fig. 18 shows inhibition of LPS stimulation of neutrophils by Peptide 19;
- Fig. 19 shows dose-dependent effects of Peptide 9 on 30 TNF-induced chemiluminescence;
 - Fig. 20 shows effect of peptide 2 on human TNF priming of human neutrophils;
 - Fig. 21 shows inhibition of LPS-induced chemiluminescence response of human neutrophils by Peptide 21; and
 - Fig. 22 shows inhibition of TNF priming of human neutrophils by Peptide 21.

Production of Peptides

Synthesis of Peptides Using the FMOC-Strategy
Peptides (1-6, 9-18, 22-25, 27-29, 35, 36, 39, 40
Table 3) were synthesized on the continuous flow system as provided by the Milligen synthesizer Model 9050 using the standard Fmoc-polyamide method of solid phase peptide synthesis (Atherton et al, 1978, J.Chem. Soc. Chem. Commun., 13, 537-539).

For peptides with free carboxyl at the C-terminus,

the solid resin used was PepSyn KA which is a

polydimethylacrylamide gel on Kieselguhr support with

4-hydroxymethylphenoxyacetic acid as the functionalised

linker (Atherton et al., 1975, J.Am.Chem.Soc 97,

6584-6585). The carboxy terminal amino acid was attached

to the solid support by a DCC/DMAP-mediated

symmetrical-anhydride esterification.

For peptides with carboxamides at the C-terminus, the solid resin used was Fmoc-PepSyn L Am which is analogous polyamides resin with a Rink linker,

p-[(R,S)-α[1-(9H-fluoren-9-yl)-methoxyformamido]-2,
 4-dimethoxybenzyl]-phenoxyacetic acid (Bernatowicz et al,
 1989, Tet.Lett. 30, 4645). The synthesis starts by
 removing the Fmoc-group with an initial piperidine wash
 and incorporation of the first amino acid is carried out
 by the usual peptide coupling procedure.

The Fmoc strategy was also carried out in the stirred cell system in synthesis of peptides (33,34,37,38) where the Wang resin replaced the Pepsyn KA.

All Fmoc-groups during synthesis were removed by 20% 30 piperidine/DMF and peptide bonds were formed either of the following methods except as indicated in Table 1:

- 1. Pentafluorophenyl active esters. The starting materials are already in the active ester form.
- Hydroxybenzotriazol esters. These are formed in situ
 either using Castro's reagent, BOP/NMM/HOBt (Fournier et al, 1989, Int.J.Peptide Protein Res., 33, 133-139) or

using Knorr's reagent, HBTU/NMM/HOBt (Knorr et al, 1989, Tet.Lett., 30, 1927).

Side chain protection chosen for the amino acids was removed concomitantly during cleavage with the exception of Acm on cysteine which was left on after synthesis.

Intramolecular disulphide bridges where needed are then formed by treating the Acm protected peptide with iodine/methanol at high dilution.

TABLE 1

	TABLE I		Coupling Method
10	Amino Acid	Protecting Group	-
	Arg	Pmc	HOBt or OPfp
	Asp	OBut	HOBt or OPfp
	- .	Acm	HOBt or OPfp
	Cys		HOBt or OPfp
15	Glu	OBut	HOBt or OPfp
	His	Boc or Trt	
	Lys	But	HOBt or OPfp
	Ser	But	HOBt only
		But	HOBt only
	Thr	_	HOBt or OPfp
	Tyr	But	,
20	Asn	none	OPfp only
	Gln	none	OPfp only
		•	

Cleavage Conditions

Peptides were cleaved from the PepSyn KA and PepSyn K

25 Am using 5% water and 95% TFA where Arg(Pmc) is not
present. Where Arg(Pmc) is present a mixture of 5%
thioanisole in TFA is used. The cleavage typically took
3 h at room temperature with stirring. Thioanisole was
removed by washing with ether or ethyl acetate and the
30 peptide was extracted into an aqueous fraction. Up to 30%
acetonitrile was used in some cases to aid dissolution.
Lyophilization of the aqueous/acetonitrile extract gave
the crude peptide.

Peptides from the Wang resin were cleaved using 5% phenol, 5% ethanedithiol and 90% TFA for 16 h at ambient temperature with stirring. Thioanisole was removed by

washing with ether or ethyl acetate and the peptide was

extracted into an aqueous fraction. Up to 30%

acetonitrile was used in some cases to aid dissolution.

Lyophilization of the aqueous/acetonitrile extract gave

the crude peptide.

Peptides from the Wang resin were cleaved using 5% phenol, 5% ethanedithiol and 90% TFA for 16 h at ambient temperature with stirring.

Purification

Crude peptide is purified by reverse phase chromatography using either a C4 or C18 column and the Buffer system: Buffer A - 0.1% aqueous TFA, Buffer B - 80% Acetonitrile and 20% A.

N-Terminal Acetylation

The peptide resin obtained after the synthesis (with Fmoc removed in the usual manner was) placed in a 0.3 MDMF solution of 10 equivalents of Ac-OHSu for 60 minutes. The resin was filtered, washed with DMF, CH2C12, ether and used in the next step.

20 Cyclization

25

The purified and lyophilized bis-S-(acetamidomethyl) cysteine peptide (100-400 mg) was dissolved in 5 mls of methanol containing 1 ml of acetic acid. This was added dropwise to a 1 litre methanol solution containing 1 g of iodine.

After 2 h reaction, the excess iodine was removed by addition of a dilute sodium thiosulfate solution until the colour turns to a pale yellow, methanol was removed in vacuo at room temperature and the concentrated solution was finally completely decolourised with dropwise addition of sodium thiosulfate and applied immediately onto a preparatively reverse phase chromatography column.

Synthesis of Peptides using the Boc-Strategy

Syntheses of these peptides were carried out on the 35 ABI 430A instrument using polystyrene based resins. For peptide with C-terminal acids, the appropriate Merrified

resin Boc-amino acid-O-resin or the 100-200 mesh PAM resin is used (7, 8, 19-21, 26, 31). Peptides with C-terminal amides are synthesized on MBHA resins (32, 33).

Couplings of Boc-amino acids (Table 2) were carried out either using symmetrical anhydride method or a HOBt ester method mediated by DCC or HTBU.

TABLE 2

	<u> </u>		
	Amino Acid	Protecting Group	Coupling Method
	Arg	Tos	HOBt or S.A.
10	Asp	Cxl,OBzl	HOBt or S.A.
	Cys	4-MeBzl	HOBt or S.A.
	Glu	Cxl	HOBt or S.A.
	His	Dnp, Bom	HOBt or S.A.
	Lys	2-C1Z	HOBt or S.A.
15	Ser	Bzl	HOBt or S.A.
	Thr	Bzl	HOBt or S.A.
	Tyr	Br-Z	HOBt or S.A.
	Asn	Xan	HOBt or S.A.
	Gln	none	HOBt only
	· ·		

20

Cleavage

Peptides were cleaved in HF with p-cresol or anisole as scavenger for up to 90 min. For His with Dnp protection, the resin required pre-treatment with

25 mercaptoethanol:DIPEA:DMF (2:1:7), for 30 min. After removal of scavengers by ether wash, the crude peptide is extracted into 30% acetonitrile in water.

N-Terminal Acetylation

Acetylation was achieved by treating the deblocked 30 resin with acetic anhydride in DMF solution.

TABLE 3

	No	hTNF	Segn									
	1	1-18	VAL	ARG	SER	SER	SER	ARG	THR	PRO	SER	ASP
			LYS	PRO	VAL	ALA	HIS	VAL	VAL	ALA		
35	2	6-18	ARG	THR	PRO	SER	ASP	LYS	PRO	VAL	ALA	HIS
			VAL	VAL	ALA	•						

			ART SE		a=5	CED	NDC	mup	ΩQQ	SER	ASP	LYS
	3	2-15					ANG	THK	FRO			
			PRO V				CER	NDC	wrid	DPO.	GED	ASD
	4	1-26	VAL A									
		,	LYS P						VAL	ALIA	MON	PRO .
5			GLN A									. ,
,	5	10-18	ASP L								ALA	
	6	15-22	HIS V									
	7	6-16	ARG T	HR	PRO	SER	ASP	LYS	PRO	VAL	ALA	HIS
		•	VAL									
10	8	6-17	ARG T	HR	PRO	SER	ASP	LYS	PRO	VAL	ALA	HIS
			VAL V	AL								
	9	8-16	PRO S	ER	ASP	LYS	PRO	VAL	ALA	HIS	VAL	
	10	8-15	PRO S	ER	ASP	LYS	PRO	VAL	ALA	HIS		
	11	8-15	PRO S	ER	ASP	LYS	PRO	VAL	ALA			
15	12	8-13	PRO S	ER	ASP	LYS	PRO	VAL				
		7-18	THR P	RO	SER	ASP	LYS	PRO	VAL	ALA	HIS	VAL
			VAL A	LA				•				
	14	8-18	PRO S	ER	ASP	LYS	PRO	VAL	ALA	HIS	VAL	VAL
		•	ALA									
20	15	9-18	SER A	SP	LYS	PRO	VAL	ALA	HIS	VAL	VAL	ALA
	16	11-18	LYS P	RO	VAL	ALA	HIS	VAL	VAL	ALA	,	
	17	12-18	PRO V	'AL	ALA	HIS	VAL	VAL	ALA			
	18	12-18	Ac PR	o v	/AL .	ALA	HIS	VAL	VAL	ALA	NH2	·
	19	6-18	ARG I	HR	PRO	SER	ALA	LYS	PRO	VAL	ALA	HIS
25			VAL V									
		Ala(10)							•			
	20	6-18	ARG I	HR	PRO	SER	ASP	ALA	PRO	VAL	ALA	HIS
			VAL V	/AL	ALA						-	
		Ala(11)					•		٠			
30	21	6-18	ARG T	THR	PRO	SER	LYS	ASE	PRC	VAI	ALA	HIS
			VAL V									
		Lys(10)										
		Asp(11)									٠.	
	22	1-18	VAL A	ARG	SER	SEF	SEF	ARC	THF	RPRO	SEF	ASP
35	e. e		LYS I									
زر		λrα/15\										
		Arg(15)										

	23	1-18	VAL ARG SER SER SER ARG THR PRO SER ASP
٠	23	GLN(15)	THE STATE OF A VALUE AT A T.A
	24	1-18	VAL ARG SER SER SER ARG THR PRO SER ASP
		Leu(14)	TIRT ATA
5	25	1-18	VAL ARG SER SER SER ARG THR PRO SER ASP
۲	23	2 20	LYS PRO VAL <u>VAL</u> HIS VAL VAL ALA
		Val(14)	
	26	6-26	ARG THR PRO SER ASP LYS PRO VAL ALA HIS
		•	VAL VAL ALA ASN PRO GLN ALA GLU GLY GLN
10			LEU
	27	1-16	VAL ARG SER SER SER ARG THR PRO SER ASP
		•	LYS PRO VAL ALA HIS VAL
	28	1-10	VAL ARG SER SER SER ARG THR PRO SER ASP
	29	8-14	AC PRO SER ASP LYS PRO VAL ALA NH2
15	30	6-16	AC ARG THR PRO SER ASP LYS PRO VAL ALA
			HIS VAL NH2
	31	6-16	ARG THR PRO SER ASP LYS PRO VAL VAL HIS
			VAL
		Val(14)	
20	32	6-16	ARG THR PRO SER ASP LYS PRO VAL ALA HIS
			ALA
		ALA(16)	
	33	6-16	ARG THR PRO SER ASP LYS PRO VAL ALA ALA
			VAL
25		ALA(15)	PRO WAT ATA TWO
	34	6-16	ART THR PRO SER ASP LYS PRO VAL ALA LYS
		•	VAL
		LYS(15)	THE SER LED THE DRO WAT ALA ASP
	35	6-16	ARG THR PRO SER ASP LYS PRO VAL ALA ASP
30			VAL
		ASP(15)	CER ACR INC PRO VAL ALA D-HTS
	36	6-16	ARG THR PRO SER ASP LYS PRO VAL ALA D-HIS
			VAL
		D-HIS(15)	THE THE THE THE THE THE THE
35	275	111-120	ALA LYS PRO TRP TYR GLU PRO ILE TYR LEU

	302	43-48	LEU	ARG	ASP	ASN	GLN	LEU	VAL	VAL	PRO	SER
			SLU	GLY	LEU	TYR	LEU	ILE			•	
	303	94-109	LEU	SER	ALA	ILE	LYS	SER	PRO	LYS	GLN	ARG
			GLU	THR	PRO	GLU	GĻY	ALA				
5	304	63-83	LEU	PHE	LYS	GLY	GLN	GLY.	CYS	PRO	SER	THR
			HIS	VAL	LEU	LEU	THR	HIS	THR	ILE	SER	ARG
			ILE									
	305	132-150	LEU	SER	ALA	GLU	ILE	ASN	ARG	PRO	ASP	TYR
			LEU	ASP	PHE	ALA	GLU	SER	GLY	GLN	VAL	
10	306	13-26	VAL	ALA	HIS	VAL	VAL	ALA	ASN	PRO	GLN	ALA
			GLU	GLY	GLN	LEU					•	
	307	22-40	ALA	GLU	GLY	GLN	LEU	GLN	TRP	LEU	ASN	ARG
	-		ARG	ALA	ASN	ALA	LEU	LEU	ALA	ASN	GLY	
	308	54-68	GLY	LEU	TYR	LEU	ILE	TYR	SER	SLN	VAL	LEU
15			PHE	LYS	GLY	GLN	GLY					
	309	73-94	HIS	VAL	LEU	LEU	THR	HIS	THR	ILE	SER	ARG
			ILE	ALA	VAL	SER	TYR	GLN	THR	LYS	VAL	ASN
				LEU								
	323	79-89	THR	ILE	SER	ARG	ILE	ALA	VAL	SER	TYR	GLN
20												
	347	132-157	-					-		PRO		
			LEU	ASP	PHE	ALA	GLU	SER	GLY	GLN	VAL	TYR
		·	PHE	GLY	ILE	ILE	ALA	LEU				

Endothelial Cell Clotting Assays

25 Endothelial cell procoagulant activity (PCA) induction by TNFα was determined using bovine aortic endothelial cells (BAE) according to the procedure of Bevilacqua et al., 1986 PNAS 83, 4522 with the following modifications: BAE cells were propagated in McCoys 5A 30 medium supplemented with 10% FCS, penicillin, streptomycin and L-gutamine in standard tissue culture flasks and 24-well dishes. TNFα treatment of culture (3μg/ml) was for 4 hours at 37°C in the presence of growth medium after which the cells were washed and scrape-harvested 35 before being frozen, thawed and sonicated. Total cellular PCA was determined in a standard one-stage clotting assay

using normal donor platelet poor plasma to which 100µl of CaCl₂ and 100µl of cell lystate was added. Statistical significance was determined by unpaired t-test.

Neutrophil Activation Studies

Neutrophil Activation Studies In these experiments, neutrophils were prepared from 5 blood of healthy volunteers by the rapid single step method (Kowanko and Ferrante 1987 Immunol 62, 149). 100 μ l of 5 x 10⁶ neutrophils/ml was added 100 μ l of either 0, 10, 100 μ g of peptide/ml and 800 μ l of 10 lucigenin (100 μ g). The tubes were immediately placed into a light proof chamber (with a 37°C water jacket incubator) of a luminometer (model 1250; LKB Instruments, Wallac, Turku, Finaldn). The resultant light output (in millivolts was recorded). The results are recorded as the 15 maximal rate of chemiluminescence production. Effects of peptides on neutrophil chemiluminescence induced by either TNF or LPS: Neutrophils of 96-99% purity and >99% viability were prepared from blood of normal healthy volunteers by centrifugation (400g for 30 20 min) through Hypaque-Ficoll medium of density 1.114. Following centrifugation the neutrophils formed a single band above the erythrocytes and 1 cm below the mononuclear

band above the erythrocytes and 1 cm below the mononuclear leukocyte band. These were carefully recovered and washed in medium 199. To assess the lucigenin-dependent chemiluminescence response 100ul of 5 x 10⁶

neutrophils/ml was added 100ul of either 0,1,10,100ug of peptide/ml and TNF or LPS and 800ul of lucigenin (100ug). The tubes were immediately placed into a light proof chamber with a 37°C water jacket incubator of a

luminometer. The resultant light output (in millivolts) was recorded. The results are recorded as the maximal of chemiluminescence production. In experiments which examined the ability of the peptides to prime for the response to fMLP, 100ul of 5 x 10⁵ neutrophils /ml

35 preincubated in peptide and LPS or TNF for 20 mins was

added to 100ul of diluent or fMLP (5 x 10⁻⁶M) before the addition of 700ul of lucigenin (100ug). The chemiluminescence was measured as above. Neutrophils from at least three individuals were used in triplicate determinations of anti-TNF or LPS activity. Results were deemed positive if at least 50% inhibition of chemiluminescence was obtained in at least two thirds of cases.

WEH1-164 Cytoxicity

Bioassay of recombinant TNF activity was performed according to the method described by Espevik and Nissen-Meyer. (Espevik and Nissen-Meyer 1986 J. Immunol. Methods 95 99-105)

Tumour Regression Experiments

Subcutaneous tumours were induced by the injection of approximately 5 x 10⁵ WEH1-164 cells. This produced tumours of diameters of 10 to 15mm approximately 14 days later. Mice were injected i.p. with recombinant human TNF (10µg and 20µg) and peptide (lmg) for four consecutive days. Control groups received injections of PBS. Tumour size was measured daily throughout the course of the experiment. Statistical significance of the results was determined by unpaired Student T-test.

Radioreceptor assays

25 WEH1-164 cells grown to confluency were scrape harvested and washed once with 1% bovine serum albumin in Hanks balanced salt solution (HBSS, Gibco) and used at 2 x 10⁶ cells pre assay sample. For the radioreceptor assay, the cells were incubated with varying amounts of either unlabelled TNFα(1-10⁴ ng per assay sample) or peptide (0-10⁵ ng per assay sample) and ¹²⁵I-TNF (50,000cpm) for 3 hours at 37^oC in a shaking water bath. At the completion of the incubation lml of HBSS/BSA was added to the WEH1-164 cells, the cells spun and the bound ¹²⁵I in the cell pellet counted. Specific binding

was calculated from total binding minus non-specific → binding of triplicate assay tubes. 100% specific binding corresponded to 1500 cpm.

In Vivo Studies of TNF Toxicity

Mice were administered with either TNF (200µg), Peptide 1 (10mg) and TNF (200 μ g)+Peptide 1 (10mg) via intravenous injection. Blood glucose levels and appearance of the animals was evaluated at 15, 30, 60, 120, 180 minutes after injection. Appearance parameters 10 which were evaluated included ruffling of fur, touch sensitivity, presence of eye exudate, light sensitivity and diarrhoea.

Infection of mice with malaria parasites and treatment with TNF+ Peptide 1

All the mice used were male, CBA/CaH stain and 6-8 15 weeks old. P. vinkei vinkei (Strain V52, from F.E.G. Cox, London) has undergone several serial passages in CBA mice, after storage in liquid nitrogen, before use in these experiments. Infections were initiated by intraperitoneal injection of 10⁶ parasitized erythrocytes. Mice were treated with TNF($7\mu g$) \pm peptide (8.3 mg) administered iv. Assays for blood glucose

Nonfasting blood glucose levels were determined on a Beckman Glucose Analyzer 2 (Beckman Instruments) or on a Exectech blood glucose sensor (Clifford Hallam Pty. Ltd). 25 Reactive Nitrogen Intermediates (RNI)

RNI levels in blood were determined by the method of Rockett et al (1991) in-vivo induction of TNF, LT and IL-1 implies a role for nitric oxide in cytokine-induced 30 malarial cell-mediated immunity and pathology. J. Immunol. in press.

TNF and LPS Lethality Experiments: balb/C or balbC x swiss Fl mice carrying Meth A ascites tumours elicited by prior I.P. inoculation of 0.5µl pristane 7 days before 35 I.P. injection of tumour cells. Nine to ten days after

inoculation with the tumour cells 25 ug of human recombinant TNF was subcutaneously administered and a short time later lmg of either test peptide, bovine serum albumen, phosphate buffered saline or neutralizing anti-TNF MAb 47 was administered at a separate The number of surviving animals was subcutaneous site. then observed at 18 hours and 24 hours post TNF In experiments which assessed the effects of treatment. 1-related peptides on on LPS lethality the mice were 10 administered 500ug E.coli LPS and peptide or other treatment in a similar manner. In LPS experiments polymyxin B, an LPS inhibitor, replaced MAb 47 as a positive control. The number of animals surviving was assessed at intervals up to 64 hours after LPS challenge. 15 Experiments in D-galactosamine sensitized mice: Bablb/C mice were co-injected intraperitoneally with 16 mg D-galactosamine and 2ug human recombinant TNF. were then injected subcutaneously with either test peptide, phosphate buffered saline or neutralizing 20 anti-TNF monoclonal antibody 47. The number of surviving animals was assessed at intervals up to 48 hours after TNF challenge.

RESULTS

The results obtained with each of the peptides are summarised in Table 4. A single * indicates heightened activity in that test whilst a double ** indicates activity at low concentrations of peptide but not high concentrations.

TABLE 4

		IN VI	.vo			O NEUTROP	HIL
	TNF TOXI		LPS TOXICITY	, .	TNF		LPS
PEPTIDE	METH A	D-GAL	METH A	DIRECT	PRIMING		PRIMING +
	+	+	+	+	+	+	Ŧ
1	+*	+	+	+*			
2 8		·	_	+			
. 8 9	_		-	+**			
	+*	. =	· -	+			
. 10	-	•		-			
11	<u>.</u>			-	•		
12	_			-			
16	_		+	-			
17	_		_	+			
13 14	_		+	+			
14 15	_	•	-	-			
18	_	_				•	
	<u>-</u>		+	+	+	+	+
19			-	- '			
20	+*		+	+	+	+	+
21	Τ"	+	+	+	+		
22 23	_	+	+	+	•		
23 24	-	·	-	-			
25	+/-		-	+			.**
			_	+	•		
26	_			+			
4	_		· •	÷			
5 6	_			-			
3	· <u>-</u>		•				
3 28	_	-	+				
28 29	_	_	+				•
	+*	+	+				
30	. 4	+	•	•			
31	_	•	-				
32	-		+*				
33	-		+*		•		•
34	-		•				
36 3.5	_		· +				
35	т -		-		•		
27 7	-		+	+*	•		
,	-						

TNF administered at a dose of 200µg was found to be toxic in mice according to the parameters studied. In particular, blood glucose levels had fallen by 120 minutes (Fig 7) Peptide 1 alone in 2 of the 3 mice studied did not reduce blood glucose levels. Mouse 1 in this group recovered normal blood glucose levels within by 180 minutes. Mice in the group treated with a combination of TNF and Peptide 1 showed no reduction in blood glucose levels at 120 min and a small decrease at 180 min.

As shown in Fig. 6, 10µg of Peptide 2 given to mice treated with 200µg of recombinant human TNF abrogated TNF toxicity as indicated by the inhibition of blood glucose changes evident in mice treated with TNF alone.

When general appearance of treated mice was

considered it was noted that all 3 TNF only treated mice
had ruffled fur, touch sensitivity and light sensitivity.

One mouse in this group also had diarrhoea. Mice treated
with Peptide 1 alone showed only slight touch sensitivity
with one mouse showing slight ruffling of the fur at 180

mins. Mice treated with a combination of TNF and Peptide
1 showed ruffling of the fur and slight touch sensitivity
at 180 mins but failed to show either light sensitivity or
onset of diarrhoea. In addition, Peptide 1 and related
peptides prevented death in acute models of TNF tethality

(Figs. 12 & 13).

Peptide 1 failed to either activate the respiratory burst of human neutrophils (Table 5) or to induce procoagulant activity on bovine aortic endothelial cells, and hence is free of these negative aspects of TNF activity in acute or chronic inflammation. However, Peptide 1 and related peptides inhibited both the TNF and LPS-induced respiratory burst of human neutrophils (Figs. 15, 19, 18, 21). Further, several peptides inhibited priming of the neutrophil response to a

35 bacterially-derived peptide EMLP (Figs. 16, 17, 20, 22).

ጥል	RT.E	5
תו	ינעט	

Peptide	Conce	ntration	<u>ug/10⁶</u>	cells)	
	0	1	10	100	500
275	1.02	0.99	0.69	0.43	0.80
1	0.34	0.93	0.74	0.55	1.10
302	0.37	0.15	0.18	0.29	•
303	0.37	0.22	0.17	0.22	
304	0.37	0.18	0.43	2.56	2.76
305	0.37	0.27	0.36	0.24	
306	0.37	0.27	0.35	0.23	
307	0.37	0.35	0.37	0.42	
323	0.37	0.23	0.17	0.47	
308	0.37	0.91	1.80	49.52	
309	0.37	0.38	0.98	13.44	

Results are expressed as mV of lucigenin dependent

chemiluminescence and represent peak of response i.e. the
maximal cell activity attained.

The results shown in Fig. 3 clearly show one of the desirable effects of TNFα, i.e. tumour regression, is unaffected by Peptide 1. Further, Peptide 1 does not inhibit binding of TNF to tumour cell receptors (Fig 4). Table 6 indicates that Peptide 1 is devoid of intrinsic anti-tumour activity. The ability of Peptide 1 to prevent high plasma RNI levels in TNFα treated malaria primed mice is also strongly indicative of the therapeutic usefulness of this peptide (Fig 5). Peptide 1 also inhibits the TNF-induced decrease in blood glucose levels evident in mice treated with TNF alone (Fig 2). Further in the experiments involving mice infected with malaria parasites; of the three mice treated with TNFα alone one died and the other two were moribund. In contrast in the

group of three mice treated with TNFα and Peptide 1 all survived and none were moribund. This very marked result also strongly indicates the potential usefulness of this peptide as a therapeutic.

Peptide 1 inhibits not only the TNF-induced hypoglycaemia in sensitized mice but also in ascites tumour-bearing mice (Fig 8). Further, tumour-bearing mice treated with TNF + Peptide 1 fail to develop the cachexia or weight loss associated with TNF treatment (Fig 9).

As will be seen from the above information the peptide of the present invention are capable of abrogating TNF and/or LPS toxicity in vivo and neutrophil activation by LPS or TNF in vitro. This peptide has utility in the treatment of numerous disease states which are due to the deleterious effects of TNF and/or LPS.

TABLE 6

In vitro cytotoxicity of TNF and synthetic TNF peptides on WEHI 164 fibrosarcoma cells

	TNF/PEPTIDE	% VIABLE CELLS*
20	TNF#	26.6
	275+	100
	. 1	100
	302	48.7
	304	100
25	305	72.7
	306	· 100
	307	100
	308	42.2
	309	92.8
30		

^{* %}Viability was determined by comparison with untreated control cells. Results shown are the means of quadruplicate determinations.

^{35 #} TNF was at 50 units per culture which is equivalent to 3ug (12ug/ml)

⁺ Each peptide was tested at 50ug/culture (200ug/ml)

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

```
CLAIMS: -
```

A linear or cyclic peptide of the general formula: $x_1 - x_2 - x_3 - x_4 - x_5 - x_6 - x_7 - x_8 - x_9$ in which X, is null, Cys or R, 5 X_2 is null, Cys, R_1 or $A_1-A_2-A_3-A_4-A_5$ A, is Val or Ile or Leu or Met or His in which A2 is Arg or Cys or His A, is Ser or Thr or Ala A_4 is Ser or Thr or Ala 10 A₅ is Ser or Thr or Ala X_3 is Cys, R_1 or $A_6 - A_7$ A₆ is Arg or Cys or His or Absent in which A, is Thr or Ser or Ala X_4 is Cys, R_1 or A_8-A_9 15 A_g is Pro or an Nα-alkylamino acid in which Ao is Ser or Thr or Ala X_5 is Cys, R_1 or A_{10} A_{10} is Asp or Ala or Cys or Glu or Gly in which or Arg or His 20 X_6 is Cys, R_2 or A_{11} - A_{12} - A_{13} A₁₁ is absent or Cys or Arg or His or in which Asp or Glu A_{12} is Pro or an N α -alkylamino acid A_{13} is Val or Ile or Phe or Tyr or Trp 25 or His or Leu or His or Met X_7 is null, Cys, R_2 or $A_{14}-A_{15}$ A_{14} is Ala or Val or Gly or Ile or Phe in which or Trp or Tyr or Leu or His or Met A_{15} is absent or His or Arg or Glu or 30 Asn or Ala or Lys or Asp or Phe or Tyr or Tap or Glu or Gln or Ser or Thr or Gly x_8 is null, Cys, R_2 , A_{16} $A_{16} - A_{17} - A_{18} - A_{19} - A_{20} - A_{21} - A_{22} - A_{23} - A_{24} - A_{25} - A_{26}$

~.	in which A ₁₆ is Val or Ile or Leu or Met or His A ₁₇ is Val or Ile or Leu or Met or His
	A ₁₈ is Ala or Gly
	A ₁₉ is Asp or Glu
-	A_{20} is Pro or an N α -alkylamino acid
5	A ₂₁ is Gln or Asn
	A ₂₂ is Ala or Gly
	A ₂₃ is Glu or Asp
	A ₂₄ is Gly or Aln
10	Ang is Gln or Asn
	A ₂₆ is Leu or Ile or Val or Met or His
	X ₂ is null, Cys or R ₂
	R. is R-CO, where R is H, straight, branched or
	cyclic alkyl up to C20, optionally containing double
15	bonds and/or substituted with halogen, nitro, amino,
	hydroxy, sulfo, phospho or carboxyl groups (which may
	be substituted themselves), or aralkyl or aryl
	optionally substituted as listed for the alkyl and
	further including alkyl, or R ₁ is glycosyl,
20	nucleosyl, lipoyl or R ₁ is an L- or D-α amino acid
	or oligomers thereof consisting of up to 5 residues
	R ₁ is absent when the amino acid adjacent is an unsubstituted desamino-derivative.
0.5	R ₂ is -NR ₁₂ R ₁₃ , wherein R ₁₂ and R ₁₃ are
25	independently H, straight, branched or cyclic alkyl,
	aralkyl or aryl optionally substituted as defined for
	R ₁ or N-glycosyl or N-lipoyl
	-OR ₁₄ , where R ₁₄ is H, straight, branched or
30	cyclic alkyl, aralkyl or aryl, optionally substituted
	as defined for R ₁
	-O-glycosyl, -O-lipoyl or
•	- an L- or D- α -amino acid or a oligamu thereof
	consisting of up to 5 residues
35	or R_2 is absent, when the adjacent amino acid is a
	decarboxy derivative of cysteine or a homologue
	thereof or the peptide in a N-C cyclic form.

with the proviso that:

when X_6 is Cys or R_2 then X_5 is A_{10} , X_4 is $A_8 - A_9$, X_3 is $A_6 - A_7$ and X_2 is $A_1 - A_2 - A_3 - A_4 - A_5$ when X_5 is Cys or R_1 then X_6 is $A_{11} - A_{12} - A_{13}$, X_7 is $A_{14} - A_{15}$, X_8 is $A_{16} - A_{17} - A_{18}$ and A_{11} is absent when X_4 is Cys or R_1 then X_5 is A_{10} , X_6 is

when X_4 is Cys or R_1 then X_5 is A_{10} , X_6 is A_{11} , A_{12} , A_{13} , A_{14} , A_{15} and A_{15} is A_{14} , A_{15} ,

A₁₆-A₁₇-A₁₈

when X_2 is $A_1 - A_2 - A_3 - A_4 - A_5$ then X_8 is not A_{16}

when X_1 is null, X_2 is Cys or R_1 , X_3 is A_6-A_7 , X_4 is A_8-A_9 , X_5 is A_{10} , X_6 is $A_{11}-A_{12}-A_{13}$, X_7 is $A_{14}-A_{15}$ and X_8 is A_{16} then A_{16} is not D-His.

 X_1 is always and only null when X_2 is R_1 , Lys or Null

 X_2 is always and only null when X_3 is Cys or R_1

15 X_3 is always and only null when X_6 is Cys or R_2 X_7 is always and only null when X_7 is Cys, R_2 or Null X_8 is always and only null when X_8 is Cys, R_2 or Null X_9 is always and only null when X_8 is Cys, R_2 or Null when X_1 and R_2 are null, X_3 is R_1 , X_4 is

20 A_8-A_9 , X_5 is A_{10} , X_6 is $A_{11}-A_{12}-A_{13}$, X_7 is $A_{14}-A_{15}$, X_8 is R_2 and A_{14} is Ala and A_{15} is absent then R_1 is acetyl and R_2 is NH_2 .

2. A linear or cyclic peptide as claimed in claim 1 in which:-

25 X_1 is H, X_2 is $A_1 - A_2 - A_3 - A_4 - A_5$, X_3 is $A_6 - A_7$, X_4 is $A_8 - A_9$, X_5 is A_{10} , X_6 is $A_{11} - A_{12} - A_{13}$, X_7 is $A_{14} - A_{15}$, X_8 is $A_{16} - A_{17} - A_{18}$ and X_9 is OH.

3. A linear or cyclic peptide as claimed in claim 1 in

30 which:-

 X_1 is null, X_2 is H or Ac, X_3 is A_6-A_7 , X_4 is A_8-A_9 , X_5 is A_{10} , X_6 is $A_{11}-A_{12}-A_{13}$, X_7 is $A_{14}-A_{15}$, X_8 is $A_{16}-A_{17}-A_{18}$ and X_9 is OH or NH₂.

35

```
A linear or cyclic peptide as claimed in claim 1 in
   which:-
         x_1 is H, x_2 is x_1-x_2-x_3-x_4-x_5, x_3 is
        A<sub>6</sub>-A<sub>7</sub>, X<sub>4</sub> is A<sub>8</sub>-A<sub>9</sub>, X<sub>5</sub> is A<sub>10</sub>, X<sub>6</sub> is
         OH and X_6, X_7 and X_8 are null.
5
         A linear or cyclic peptide as claimed in claim 1 in
    5.
   which the peptide is selected from the group consisting
    of:-
         Val-Arg-Ser-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-
         Ala-His-Val-Val-Ala;
10
         Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala;
         Arg-Thr-Pro-Ser-Ala-Lys-Pro-Val-Ala-His-Val-Val-Ala;
         Arg-Thr-Pro-Ser-Lys-Asp-Pro-Val-Ala-His-Val-Val-Ala;
         Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-
         Ala-Arg-Val-Val-Ala;
15
         Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala
         -Gln-Val-Val-Ala;
         Ac-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-NH2;
         Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Ala-Val;
         Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Lys-Val;
20
         Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val;
         Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val;
         Pro-Ser-Asp-Lys-Pro-Val-Ala-His;
          Pro-Ser-Asp-Lys-Pro-Val;
         Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Val
25
          -His-Val-Val-Ala;
          Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala-Asn
          -Pro-Gln-Ala-Glu-Gly-Gln-Leu;
          Val-Arg-Ser-Ser-Ser-Arg-Thr-Pro-Ser-Asp;
          Ac-Pro-Ser-Asp-Lys-Pro-Val-Ala-NH2;
30
          Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Asp-Val;
          Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-
          Ala-His-Val-Val-Ala-Asn-Pro-Gln-Ala-Glu-Gly-Gln-Leu;
          Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala;
          Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val;
```

Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala; Pro-Sir-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala; Pro-Val-Ala-His-Val-Val-Ala; and Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Val-His-Val.

- 5 6. A peptide as claimed in claim 5 in which the peptide is
 - Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala;

Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-His-Val-Val-Ala;

- Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp;
 Arg-Thr-Pro-Ser-Ala-Lys-Pro-Val-Ala-His-Fal-Val-Ala;
 Arg-Thr-Pro-Ser-Lys-Asp-Pro-Val-Ala-His-Val-Val-Ala;
 Val-Arg-Ser-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Arg-Val-Val-Ala;
- Val-Arg-Ser-Ser-Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Gln-Val-Val-Ala; or
 Arg-Thr-Pro-Ser-Asp-Lys-Pro-Val-Ala-Asp-Val.
- 7. A pharmaceutical composition for use in treating subjects suffering from acute or chronic inflammation, the composition comprising a therapeutically effective amount of a peptide as claimed in any one of claims 1 to 6 and a pharmaceutically acceptable sterile carrier.
 - 8. A composition as claimed in claim 7 in which the composition is for administration topically, as a nasal
- 25 spray, ocularly, intraveneously, intraperitoneally, intramuscularly, subcutaneously or for oral delivery.
 - 9. A composition as claimed in claims 7 or 8 in which the composition provides slow release of the active peptide.
- 30 10. A method of treating a subject suffering from acute or chronic inflammation, the method comprising administering to the subject the composition as claimed in any one of claims 7 to 9.
- 11. A method as claimed in claim 10 in which the subject is suffering from toxic shock, adult respiratory distress

- syndrome, hypersensitivity pneumonitis, systemic lupus
 erythromatosis, cystic fibrosis, asthma, bronchitis, drug
 withdrawal, schistosomiasis, sepsis, rheumatoid arthritis,
 acquired immuno-deficiency syndrome, multiple sclerosis,
- leperosy, malaria, systemic vasculitis, bacterial meningitis, cachexia, dermatitis, psoriasis, diabetes, neuropathy associated with infection or autoimmune disease, ischemia/reperfusion injury, encephalitis, Guillame Barre Syndrome, atherosclerosis, chronic fatigue syndrome, TB, other viral and parasitic diseases and OKT3
- therapy.

 12. A method of ameliorating or reducing the adverse side effects in a subject receiving cytotoxic drugs, cytokines, immunopotentiating agents, radiation therapy and/or
- 15 chemotherapy comprising administering to the subject the composition as claimed in any one of claims 7 to 9.
 - 13. An anti-idiotypic antibody to the peptide as claimed in any one of claims 1 to 6, the anti-idiotypic antibody being characterised in that it is capable of abrogating
- 20 TNF and/or LPS toxicity.

 14. A compound the three dimensional structure of which is similar as a pharmacophore to the three dimensional structure of the peptide as claimed in any one of claims 1 to 6, the compound being characterised in that it binds to
- one or more antibodies raised against the peptides as claimed in any one of claims 1 to 6 and that the compound is capable of abrogating TNF and/or LPS toxicity.

FIG. 1

VRSSRTPSD₁₀KPVAHVVANP20QAEGQLQWLN30RRA
NALLANG40VELRDNQLVV50PSEGLYLIYS60QVLFKGQGCP70STHVLL
THTIB0SRIAVSYQTK90VNLLSAIKSP100CQRETREGAE110AKPWYEPI
YL120GGVFQLEKGD130RLSAEINRPD140YLDFAESGQV150YFGIIAL157

Fig 2

Fig 3

 \log_{10} ng Peptide per tube

Fig 5

Figb

Fig 7

OHRS

Fig 8

Fig 9

10/22 Fig 10

Fig 11

F16 12

13/22 Fig 13

F16 14

15/22 Fig 15

FIG 16 16/22

F16 17

FIG 18

Fig. 19

FIG 20

21/22 Fig 21

Fig. 22

	HUNAL SEARCH NATURI					
	ATTER (If several classification symbols apply, indicate	all) ⁶				
According to International Patent classification (IPC Int. Cl. CO7K 7/06, 7/08, 7/10, A61K 3	c) or to both National Classification and IPC 17/02					
II. FIELDS SEARCHED	•					
	Minimum Documentation Searched 7					
Classification System	Classification Symbols					
Chem Ahs online Keywords:	7/08, 7/10, C07C 103/52. Tumo(u)r Necrosis Factor <u>OR</u> TNF					
Documentation to the Extent that	on Searched other than Minimum Documentation such Documents are included in the Fields Searched					
AU: IPC As Above						
III. DOCUMENTS CONSIDERED TO BI	E REI EVANT *					
	ation, where appropriate of the relevant passages 12	Relevant to Claim No 13				
A Derwent Abstract Accession JP,A, 02-088598 (SOMA G)	no. 90-143138/19, Classes B04 and D16, 28 March 1990 (28.03.90)	1-14				
Derwent Abstract Accession JP,A, 03-087196 (TEIJIN K	Derwent Abstract Accession no. 91-152432/21, Classes B04 and D16, JP,A, 03-087196 (TEIJIN K K) 11 April 1991 (11.04.91) Derwent Abstract Accession no. 91-145993/20, Classes B04 and D16, JP,A, 03-083587 (TEIJIN K K) 9 April 1991 (09.04.91)					
A Derwent Abstract Accession JP,A, 03-083587 (TEIJIN K						
A Derwent Abstract Accession JP,A, 03-083586 (TEIJIN K	no. 91-145992/20, Classes B04 and D16, K) 9 April 1991 (09.04.91)	1-14				
* Special categories of cited documents: 10 "A" Document defining the general state of the not considered to be of particular relevance earlier document but published on or after	filing date or priority beart which is with the application is principle or theory us the "X" document of particul	Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed				
"L" document which may throw doubts on pri or which is cited to establish the publication another citation or other special reason (and document referring to an oral disclosure, to	ority claim(s) considered to involve on date of "Y" document of particul invention cannot be inventive step when with one or more other.	invention cannot be considered novel or cannot be considered to involve an inventive step document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in				
"P" document published prior t the internation but later than the priority date claimed	the art					
IV. CERTIFICATION						
Date of the Actual Completion of the Internationa 28 August 1992 (28.08.92)	Date of Mailing of this Interns - 7 SEP 1992 (O	tional Search Report 7 · 0 9 · 92)				
International Searching Authority	Signature of Authorized Office					
AUSTRALIAN PATENT OFFICE	A BESTOW (U.)	A BESTOW Classic				

FU	RTI	HER	INFORMATION CONT	NUED FROM THE SI	ECOND SHEE	T Y			
					•				
				·					
		·					ļ		
• .	~ ~								
;							.		
,									
				•				٠,	
•			,						
	·								
		İ	·	,			. 1		
		,							
				·					
٧.			OBSERVATIONS WH					_	
Th	is in	terna	stional search report has not t	peen established in respec	et of certain clain	ns under Arti	cle 17(2)(a)	for the following	g reasons:
1.			stional search report has not to Claim numbers, because	they relate to subject mat	tter not required	10 De search	on na mae v		-
	,	_	Claim numbers, because requirements to such an exte	they relate to parts of the	international ap	plication that	do not com	ply with the pre	scribed
2.		Ц	requirements to such an exte	ant that no meaningful int	emational search	Can be carr	ed out, spec		
			Claim numbers hecause 1	they are dependent claims	end are not dra	fted in accor	dance with t	he second and t	third
3.		L	Claim numbers because t sentences of PCT Rule 6.4e						
-			ORSERVATIONS WE	HERE UNITY OF INVI	ENTION IS LA	CKING 2			•
V		L					es follows:		<u>.</u>
TI	nis li	ntern	stional Searching Authority fo	ound multiple inventions in	II Gas III(GII			·	
						.*		•	
				•					•
1			As all required additional seall searchable claims of the	arch fees were timely paid international application.	d by the applican	t, this interne	ntional searc	h report covers	
2	•		all searchable claims of the As only some of the require covers only those claims of	d additional search fees y the international applicati	vere timely paid t on for which fee:	s were paid,	ent, this inte specifically (mational search :laims:	report
3			No required additional searcestricted to the invention fi	h fees were timely paid b rst mentioned in the clain	y the applicant, ns; it is covered t	Consequenti by claim num	y, this intern bers:	ational search re	sport is
					•			• • •	
4		П	As all searchable claims cot did not invite payment of an	ald be searched without e	ffort justifying ar		a the inter		A
1 '		u		y additional fee.		n edditional to	, uio iii.cii	isnoust searcim	ng Authority
- 1		erko	n Protest			n additional to	e, ule mien		ng Authority
- 1		The		accompanied by applicant	's protest.	n additional to	, uiu ii.ioii		ng Authority