What do we know?

► How to mine a social network

- ► How to mine a social network
- Main features of social and information network

- How to mine a social network
- Main features of social and information network
 - Which are the factors leading to these features
 - ▶ We used tools from both Graph and Game Theory

- ► How to mine a social network
- Main features of social and information network
 - Which are the factors leading to these features
 - We used tools from both Graph and Game Theory
 - How to replicate these features

- How to mine a social network
- Main features of social and information network
 - Which are the factors leading to these features
 - We used tools from both Graph and Game Theory
 - How to replicate these features
- How the information spread over these networks

What can we do?

What can we do?
To intervene in the social network

What can we do?

To intervene in the social network

- By designing protocols robust to selfish behavior
 - Mechanism Design tools serve to this aim

What can we do?

To intervene in the social network

- By designing protocols robust to selfish behavior
 - ► Mechanism Design tools serve to this aim
- By manipulating the information spread over networks
 - Viral Marketing

What can we do?

To intervene in the social network

- By designing protocols robust to selfish behavior
 - Mechanism Design tools serve to this aim
- By manipulating the information spread over networks
 - Viral Marketing
 - Electoral Campaign on Social Media
 - ► The role of fake news

Description of the problem

- Spend your budget to choose a set of influencers
- that are able to influence as many nodes as possible

Description of the problem

- Spend your budget to choose a set of influencers
- that are able to influence as many nodes as possible
 - Not only direct influence
 - but also influence by
 - people influenced by influencers
 - people influenced by people influenced by influencers
 - and so on...

Some results

Hardness

It is provably **hard** to design an **efficient** algorithm that computes the **best** set of influencers

Some results

Hardness

It is provably **hard** to design an **efficient** algorithm that computes the **best** set of influencers

- the one that maximizes the influence
- among sets of nodes whose cost does not exceed the budget

Some results

Hardness

It is provably **hard** to design an **efficient** algorithm that computes the **best** set of influencers

- the one that maximizes the influence
- among sets of nodes whose cost does not exceed the budget

Monotone and Submodular Diffusion Processes

- ► The greedy algorithm
 - returns a set of influencers whose influence is **provably**
 - a constant approximation of the optimal influence

Some results

Hardness

It is provably **hard** to design an **efficient** algorithm that computes the **best** set of influencers

- the one that maximizes the influence
- among sets of nodes whose cost does not exceed the budget

Monotone and Submodular Diffusion Processes

- The greedy algorithm
 - returns a set of influencers whose influence is provably
 - a constant approximation of the optimal influence
- Heuristics based on centrality measures
 - They have been experimentally showed to work in practice
 - No guarantee on approximation
 - Usually faster than greedy algorithm

Some results

Some results

Majority Dynamics and manipulation of the order of updates

► It is possible to efficiently compute a sequence of updates leading a minority to become a majority

Some results

- It is possible to efficiently compute a sequence of updates leading a minority to become a majority
- ► It is possible to efficiently compute a sequence of updates leading a bare majority to become consensus

Some results

- It is possible to efficiently compute a sequence of updates leading a minority to become a majority
- It is possible to efficiently compute a sequence of updates leading a bare majority to become consensus
 - For essentially any network topology

Some results

- ► It is possible to efficiently compute a sequence of updates leading a minority to become a majority
- It is possible to efficiently compute a sequence of updates leading a bare majority to become consensus
 - For essentially any network topology
- When the new product enters in a network on which there are already two (or more) competing products, above results do not hold

- ▶ 2016 US presidential election
 - ▶ 92% of Americans remembered pro-Trump false news
 - ▶ 23% of them remembered the pro-Clinton fake news

- 2016 US presidential election
 - ▶ 92% of Americans remembered pro-Trump false news
 - ▶ 23% of them remembered the pro-Clinton fake news
- 2017 French elections
 - automated accounts on Twitter spread considerable amount of political news

- ▶ 2016 US presidential election
 - ▶ 92% of Americans remembered pro-Trump false news
 - 23% of them remembered the pro-Clinton fake news
- 2017 French elections
 - automated accounts on Twitter spread considerable amount of political news
- 2018 Italian political election
 - fake news are linked with the content of populist parties that won

- \triangleright Voters $1, 2, \ldots, n$
- ightharpoonup Alternatives X, Y, \dots
- ▶ Preference $X \succ_i Y$

- ▶ Voters 1, 2, . . . , *n*
- ightharpoonup Alternatives X, Y, \dots
- ▶ Preference $X \succ_i Y$

Complete: either $X \succ_i Y$ or $Y \succ_i X$

Transitive: $X \succ_i Y$ and $Y \succ_i Z$ implies $X \succ_i Z$

- ▶ Voters 1, 2, . . . , *n*
- ightharpoonup Alternatives X, Y, \dots
- ▶ Preference $X \succ_i Y$

Complete: either $X \succ_i Y$ or $Y \succ_i X$ Transitive: $X \succ_i Y$ and $Y \succ_i Z$ implies $X \succ_i Z$

▶ Ranked List $X \succ_i Y \succ_i Z \succ_i W \succ_i \cdots$

- ▶ Voters 1, 2, . . . , *n*
- ightharpoonup Alternatives X, Y, \dots
- ▶ Preference $X \succ_i Y$

Complete: either $X \succ_i Y$ or $Y \succ_i X$ Transitive: $X \succ_i Y$ and $Y \succ_i Z$ implies $X \succ_i Z$

- ▶ Ranked List $X \succ_i Y \succ_i Z \succ_i W \succ_i \cdots$
 - ▶ Ranked list exists iff preferences are complete and transitive

Voting systems

Voting systems

A function that takes the individual rankings of voters and produces a single group ranking

Voting systems

Voting systems

A function that takes the individual rankings of voters and produces a single group ranking

Example: Majority Rule

► For two alternatives: the winner is the alternative that is ranked first by the majority of voters

Voting systems

Voting systems

A function that takes the individual rankings of voters and produces a single group ranking

Example: Majority Rule

- ► For two alternatives: the winner is the alternative that is ranked first by the majority of voters
- For more than two alternatives:
 - ▶ for any pair of alternative X and Y...
 - the majority rule ranks X before Y...
 - if X is preferred to Y by the majority of voters

- \triangleright $X \succ_1 Y \succ_1 Z$
- \triangleright $Y \succ_2 Z \succ_2 X$
- $ightharpoonup Z \succ_3 X \succ_3 Y$

- \triangleright $X \succ_1 Y \succ_1 Z$
- \triangleright $Y \succ_2 Z \succ_2 X$
- $ightharpoonup Z \succ_3 X \succ_3 Y$
- X must be placed before Y
- Y must be placed before Z

- \triangleright $X \succ_1 Y \succ_1 Z$
- \triangleright $Y \succ_2 Z \succ_2 X$
- \triangleright $Z \succ_3 X \succ_3 Y$
- X must be placed before Y
- Y must be placed before Z
- Z must be placed before X

- \triangleright $X \succ_1 Y \succ_1 Z$
- \triangleright $Y \succ_2 Z \succ_2 X$
- \triangleright $Z \succ_3 X \succ_3 Y$
- X must be placed before Y
- Y must be placed before Z
- Z must be placed before X
- ► The group preferences are not transitive

Majority Rule and Condorcet Paradox

Example

- \triangleright $X \succ_1 Y \succ_1 Z$
- $ightharpoonup Y \succ_2 Z \succ_2 X$
- \triangleright $Z \succ_3 X \succ_3 Y$
- X must be placed before Y
- Y must be placed before Z
- Z must be placed before X
- ► The group preferences are not transitive

Condorcet Paradox

Non transitive group preferences can arise from transitive individual preferences

Tournaments

- Arrange alternatives in some elimination tournament
- Compare pairs accordingly until one alternative is left

Tournaments

- Arrange alternatives in some elimination tournament
- Compare pairs accordingly until one alternative is left

Tournaments

- Arrange alternatives in some elimination tournament
- Compare pairs accordingly until one alternative is left

Tournaments

- Arrange alternatives in some elimination tournament
- Compare pairs accordingly until one alternative is left

$$\blacktriangleright X \succ_1 Y \succ_1 Z, Y \succ_2 Z \succ_2 X, Z \succ_3 X \succ_3 Y$$

Tournaments

- Arrange alternatives in some elimination tournament
- Compare pairs accordingly until one alternative is left

- \blacktriangleright $X \succ_1 Y \succ_1 Z$, $Y \succ_2 Z \succ_2 X$, $Z \succ_3 X \succ_3 Y$
- ▶ There is a tournament in which *X* wins
- ► There is a tournament in which Y wins

Tournaments

- Arrange alternatives in some elimination tournament
- Compare pairs accordingly until one alternative is left

- \blacktriangleright $X \succ_1 Y \succ_1 Z$, $Y \succ_2 Z \succ_2 X$, $Z \succ_3 X \succ_3 Y$
- ▶ There is a tournament in which *X* wins
- ► There is a tournament in which Y wins
- ▶ Preference between X and Y depends on how Z is handled

Tournaments

- Arrange alternatives in some elimination tournament
- Compare pairs accordingly until one alternative is left

- \blacktriangleright $X \succ_1 Y \succ_1 Z$, $Y \succ_2 Z \succ_2 X$, $Z \succ_3 X \succ_3 Y$
- There is a tournament in which X wins
- ▶ There is a tournament in which Y wins
- Preference between X and Y depends on how Z is handled
- Strategic misreporting of preferences

- ► Assigns a weight to each position in voters' ranked list
- ▶ Ranks alternatives according to the sum of weights

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$ Plurality voting: weights $1, 0, \ldots, 0$

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$ Plurality voting: weights $1, 0, \ldots, 0$
- Always produces a complete transitive ranking

Description

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$ Plurality voting: weights $1, 0, \ldots, 0$
- Always produces a complete transitive ranking

- Preference between alternatives can depend on an irrelevant alternative
 - $ightharpoonup X \succ_{1,2,3} Y \succ_{1,2,3} Z, Y \succ_{4,5} X \succ_{4,5} Z$

Description

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$ Plurality voting: weights $1, 0, \ldots, 0$
- Always produces a complete transitive ranking

- Preference between alternatives can depend on an irrelevant alternative
 - \triangleright $X \succ_{1,2,3} Y \succ_{1,2,3} Z, Y \succ_{4,5} X \succ_{4,5} Z$
 - ▶ Group preferences: $X \succ Y \succ Z$

Description

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$ Plurality voting: weights $1, 0, \ldots, 0$
- Always produces a complete transitive ranking

- Preference between alternatives can depend on an irrelevant alternative
 - \blacktriangleright $X \succ_{1,2,3} Y \succ_{1,2,3} Z$, $Y \succ_{4,5} X \succ_{4,5} Z$
 - ▶ Group preferences: $X \succ Y \succ Z$
 - \blacktriangleright $X \succ_{1,2,3} Y \succ_{1,2,3} Z, Y \succ_{4,5} Z \succ_{4,5} X$

Description

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$ Plurality voting: weights $1, 0, \ldots, 0$
- Always produces a complete transitive ranking

- Preference between alternatives can depend on an irrelevant alternative
 - \blacktriangleright $X \succ_{1,2,3} Y \succ_{1,2,3} Z$, $Y \succ_{4,5} X \succ_{4,5} Z$
 - ▶ Group preferences: $X \succ Y \succ Z$
 - \blacktriangleright $X \succ_{1,2,3} Y \succ_{1,2,3} Z$, $Y \succ_{4,5} Z \succ_{4,5} X$
 - ▶ Group preferences: $Y \succ X \succ Z$

Description

- Assigns a weight to each position in voters' ranked list
- Ranks alternatives according to the sum of weights Borda voting: weights $k-1, k-2, \ldots, 0$ Plurality voting: weights $1, 0, \ldots, 0$
- Always produces a complete transitive ranking

- Preference between alternatives can depend on an irrelevant alternative
 - \blacktriangleright $X \succ_{1,2,3} Y \succ_{1,2,3} Z$, $Y \succ_{4,5} X \succ_{4,5} Z$
 - ▶ Group preferences: $X \succ Y \succ Z$
 - $ightharpoonup X \succ_{1,2,3} Y \succ_{1,2,3} Z, Y \succ_{4,5} Z \succ_{4,5} X$
 - ▶ Group preferences: $Y \succ X \succ Z$
 - Strategic misreporting of preferences

Arrow's Impossibility Theorem

```
Desiderata
```

Unanimity: if $X \succ_i Y$ for any i, then $X \succ Y$

Independence of Irrelevant Alternatives (IIA): Preference between X and Y do not depend on Z

X and Y do not depend on Z

No-Dictatorship: Group preference is not always equal to *i*'s preference

Arrow's Impossibility Theorem

Desiderata

Unanimity: if $X \succ_i Y$ for any i, then $X \succ Y$

Independence of Irrelevant Alternatives (IIA): Preference between

X and Y do not depend on Z

No-Dictatorship: Group preference is not always equal to *i*'s preference

Arrow's Impossibility Theorem

If there are at least three alternatives, then there is no voting system that satisfies Unanimity, IIA and No-Dictatorship

- ▶ Alternative are ordered $X_1, X_2, ..., X_k$
- No voter has an alternative X_s such that...
- ▶ both X_{s-1} and X_{s+1} are ranked above X_s

- ▶ Alternative are ordered $X_1, X_2, ..., X_k$
- No voter has an alternative X_s such that...
- ▶ both X_{s-1} and X_{s+1} are ranked above X_s

$$X_1 \succ_i X_2 \succ_i X_3 \succ_i X_4 \succ_i X_5$$

- ▶ Alternative are ordered $X_1, X_2, ..., X_k$
- ▶ No voter has an alternative X_s such that...
- ▶ both X_{s-1} and X_{s+1} are ranked above X_s

 $X_2 \succ_i X_3 \succ_i X_4 \succ_i X_1 \succ_i X_5$

- ▶ Alternative are ordered $X_1, X_2, ..., X_k$
- ▶ No voter has an alternative X_s such that...
- ▶ both X_{s-1} and X_{s+1} are ranked above X_s

$$X_1 \succ_i X_2 \succ_i X_3 \succ_i X_4 \succ_i X_5$$

 $X_2 \succ_i X_3 \succ_i X_4 \succ_i X_1 \succ_i X_5$

$$X_3 \succ_i X_2 \succ_i X_1 \succ_i X_4 \succ_i X_5$$

Single-Peaked Preferences

- ▶ Alternative are ordered $X_1, X_2, ..., X_k$
- No voter has an alternative X_s such that...
- ▶ both X_{s-1} and X_{s+1} are ranked above X_s

Theorem

With single-peaked preferences, the majority rule always produces a group ranking that is complete and transitive

- ► There are *m* candidates
- Social Network nodes are voters

- ► There are *m* candidates
- Social Network nodes are voters
 - ► They keep a ranking of candidates

- ► There are *m* candidates
- Social Network nodes are voters
 - ► They keep a ranking of candidates
- Spend your budget to choose a set of influencers
- that are able to alter the ranking of as many nodes as possible

- ► There are *m* candidates
- Social Network nodes are voters
 - They keep a ranking of candidates
- Spend your budget to choose a set of influencers
- that are able to alter the ranking of as many nodes as possible
- so that a given candidate c increases its margin of victory as much as possible

- ► There are *m* candidates
- Social Network nodes are voters
 - ► They keep a ranking of candidates
- Spend your budget to choose a set of influencers
- that are able to alter the ranking of as many nodes as possible
- so that a given candidate c increases its margin of victory as much as possible
 - ▶ The gap between *c*'s votes and votes of the best alternative

- ► There are *m* candidates
- Social Network nodes are voters
 - ► They keep a ranking of candidates
- Spend your budget to choose a set of influencers
- that are able to alter the ranking of as many nodes as possible
- so that a given candidate c increases its margin of victory as much as possible
 - ▶ The gap between c's votes and votes of the best alternative
 - It depends on the voting rule

Description of the problem

- ► There are *m* candidates
- Social Network nodes are voters
 - They keep a ranking of candidates
- Spend your budget to choose a set of influencers
- that are able to alter the ranking of as many nodes as possible
- so that a given candidate c increases its margin of victory as much as possible
 - ▶ The gap between c's votes and votes of the best alternative
 - It depends on the voting rule

Election Manipulation vs. Viral Marketing

- ▶ Being influenced is not sufficient
 - need to alter rankings

Description of the problem

- ► There are *m* candidates
- Social Network nodes are voters
 - They keep a ranking of candidates
- Spend your budget to choose a set of influencers
- that are able to alter the ranking of as many nodes as possible
- so that a given candidate c increases its margin of victory as much as possible
 - ▶ The gap between c's votes and votes of the best alternative
 - It depends on the voting rule

Election Manipulation vs. Viral Marketing

- ▶ Being influenced is not sufficient
 - need to alter rankings
- Promote candidate c may be insufficient
 - need to reduce votes of strong candidates

A first setting

The setting

- Plurality Voting Rule
- Independent Cascade Model Diffusion Process
- ▶ Ranking update: each message increases the rank by one

A first setting

The setting

- Plurality Voting Rule
- Independent Cascade Model Diffusion Process
- Ranking update: each message increases the rank by one

The result

The problem is monotone and submodular

A first setting

The setting

- Plurality Voting Rule
- Independent Cascade Model Diffusion Process
- Ranking update: each message increases the rank by one

The result

The problem is monotone and submodular

- Greedy algorithm returns a constant approximation
- Heuristics based on centrality measures work in practice

A second setting

The setting

- ► Any scoring Based Voting Rule
- ► Linear Threshold Model Diffusion Process
- Ranking update: improves of more than one position if influence is much larger than the threshold

A second setting

The setting

- ► Any scoring Based Voting Rule
- Linear Threshold Model Diffusion Process
- Ranking update: improves of more than one position if influence is much larger than the threshold

The result

The problem is monotone and submodular

- Greedy algorithm returns a constant approximation
- ▶ Heuristics based on centrality measures work in practice

A limitation in previous results

Only one message may be spread over the network

A limitation in previous results

Only one message may be spread over the network

A third setting

The setting

- ► Plurality Voting Rule
- ► Independent Cascade Model Diffusion Process

A third setting

The setting

- Plurality Voting Rule
- Independent Cascade Model Diffusion Process
- Different messages may be sent over the networks
 - Number of sent messages limited by budget
- Ranking update: ranking may improve of more positions

A third setting

The setting

- Plurality Voting Rule
- Independent Cascade Model Diffusion Process
- Different messages may be sent over the networks
 - Number of sent messages limited by budget
- Ranking update: ranking may improve of more positions

The result

Computing efficiently the optimal choice of messages is hard

A third setting

The setting

- Plurality Voting Rule
- ► Independent Cascade Model Diffusion Process
- Different messages may be sent over the networks
 - Number of sent messages limited by budget
- Ranking update: ranking may improve of more positions

The result

Computing efficiently the optimal choice of messages is hard

- ▶ Even efficiently computing a good approximation is hard
 - Unless budget is very high

A third setting

The setting

- Plurality Voting Rule
- Independent Cascade Model Diffusion Process
- Different messages may be sent over the networks
 - Number of sent messages limited by budget
- Ranking update: ranking may improve of more positions

The result

Computing efficiently the optimal choice of messages is hard

- Even efficiently computing a good approximation is hard
 - Unless budget is very high
- Greedy algorithms and Centrality based heuristics may fail
 - even in simple networks

Future directions

- Understanding when manipulation is feasible
 - How it depends on network topology
 - How it depends on assumption on rankings
 - ▶ How it depends on assumption of network diffusion

Future directions

- Understanding when manipulation is feasible
 - How it depends on network topology
 - How it depends on assumption on rankings
 - How it depends on assumption of network diffusion
- Understanding how to limit manipulation
 - Budget limitations
 - Forcing a network topology
 - Blocking fake news diffusion