

CMSE 202 Final Project Sports 2 Group 15

Nick Mouaikel, Zane Shango, Tony Tedesco

Question

• Is it possible to predict a college basketball team's number of wins on a season, based on their statistics?

TEAM	CONF	G	W	ADJOE	ADJDE	BARTHAG	EFG_O	EFG_D	TOR	••••	FTRD	2P_0	2P_D	3P_O	3P_D	ADJ_T	WAB	POSTSEASON	SEED	YEAR
Michigan St.	B10	39	27	116.3	92.6	0.9327	53.2	44.9	17.5		39.0	50.8	43.8	38.5	31.5	63.9	3.0	F4	7.0	2015
Michigan St.	B10	35	29	122.5	96.0	0.9428	56.3	43.3	17.6		34.1	51.4	41.7	43.4	31.0	67.6	7.2	R64	2.0	2016
Michigan St.	B10	35	20	111.6	94.9	0.8661	54.0	46.7	20.5		34.7	52.9	44.1	37.3	34.6	68.1	0.4	R32	9.0	2017
Michigan St.	B10	35	30	118.9	94.3	0.9347	56.9	42.7	19.2		30.7	55.2	38.4	40.1	33.7	68.0	8.0	R32	3.0	2018
Michigan St.	B10	39	32	119.9	91.0	0.9597	55.2	43.9	18.5		27.5	54.3	41.9	37.8	31.6	68.6	10.7	F4	2.0	2019

Goal

 To use machine learning to predict the total amount of wins for each team and conference in men's division 1 college basketball based on team statistics gathered over the last 6 years.

Data

- Our data is a spreadsheet that contains team statistics of all division 1 men's basketball teams over the past six years
- Data comes from the free data site kaggle.com

	TEAM	CONF	G	w	ADJOE	ADJDE	BARTHAG	EFG_O	EFG_D	TOR	 FTRD	2P_0	2P_D	3P_0	3P_D	ADJ_T	WAB
0	North Carolina	ACC	40	33	123.3	94.9	0.9531	52.6	48.1	15.4	 30.4	53.9	44.6	32.7	36.2	71.7	8.6
1	Wisconsin	B10	40	36	129.1	93.6	0.9758	54.8	47.7	12.4	 22.4	54.8	44.7	36.5	37.5	59.3	11.3
2	Michigan	B10	40	33	114.4	90.4	0.9375	53.9	47.7	14.0	 30.0	54.7	46.8	35.2	33.2	65.9	6.9
3	Texas Tech	B12	38	31	115.2	85.2	0.9696	53.5	43.0	17.7	 36.6	52.8	41.9	36.5	29.7	67.5	7.0
4	Gonzaga	WCC	39	37	117.8	86.3	0.9728	56.6	41.1	16.2	 26.9	56.3	40.0	38.2	29.0	71.5	7.7
1752	Texas A&M	SEC	35	22	111.2	94.7	0.8640	51.4	46.9	19.2	 27.6	52.5	45.7	32.9	32.6	70.3	1.9
1753	LSU	SEC	35	28	117.9	96.6	0.9081	51.2	49.9	17.9	 33.1	52.9	49.4	31.9	33.7	71.2	7.3
1754	Tennessee	SEC	36	31	122.8	95.2	0.9488	55.3	48.1	15.8	 34.9	55.4	44.7	36.7	35.4	68.8	9.9
1755	Gonzaga	wcc	35	27	117.4	94.5	0.9238	55.2	44.8	17.1	 28.1	54.3	44.4	37.8	30.3	68.2	2.1
1756	Gonzaga	WCC	37	32	117.2	94.9	0.9192	57.0	47.1	16.1	 29.1	58.2	44.1	36.8	35.0	70.5	4.9

Data (Variables used)

- The data is individual team statistics, here is an explanation for each statistic or variable
- 'G': Games Played
- 'W': Wins
- 'ADJOE': Adjusted Offensive Efficiency (An estimate of the offensive efficiency (points scored per 100 possessions) a team
- 'ADJDE': Adjusted Defensive Efficiency (An estimate of the defensive efficiency (points allowed per 100 possessions) a team
- 'BARTHAG': Power Rating (Chance of beating an average Division I team)
- 'EFG_O': Effective Field Goal Percentage Shot
- 'EFG_D': Effective Field Goal Percentage Allowed
- 'TOR': Turnover Percentage Allowed (Turnover Rate)
- 'TORD': Turnover Percentage Committed (Steal Rate)
- 'ORB': Offensive Rebound Percentage
- 'DRB': Defensive Rebound Percentage
- 'FTR': Free Throw Rate (How often the given team shoots Free Throws)
- 'FTRD': Free Throw Rate Allowed
- '2P O': Two-Point Shooting Percentage
- '2P D': Two-Point Shooting Percentage Allowed
- '3P O': Three-Point Shooting Percentage
- '3P_D': Three-Point Shooting Percentage Allowed
- 'ADJ_T': Adjusted Tempo (An estimate of the tempo (possessions per 40 minutes) a team would have against the team
- 'WAB': Wins above bubble

Methodology

 Using machine learning based on the aforementioned variables use the data from 2015-2019 as our train data to predict the wins for each team in 2020 and compare our accuracy to the actual total number of wins

Model

 We conducted a linear regression of wins on the team stats to see which stats are most associated with wins

	Variable	Coefficient
0	ADJOE	-0.184692
1	ADJDE	0.349388
2	BARTHAG	-2.871174
3	EFG_O	1.107144
4	EFG_D	-0.995670
5	TOR	-0.488813
6	TORD	0.760188
7	ORB	0.212232
8	DRB	-0.422526
9	FTR	0.023990
10	FTRD	-0.105644
11	2P_O	-0.364252
12	2P_D	0.177252
13	3P_O	-0.284535
14	3P_D	0.059212
15	ADJ_T	0.081056
16	WAB	0.818737

Model

```
# function for predicting team wins in each conference
    def total win predict(past data, pred data):
        confs = pred data.CONF.unique()
        accuracy scores = []
        for i in confs:
            conf past = past data.loc[past data['CONF'] == i]
            conf pred = pred data.loc[pred data['CONF'] == i]
            teams = list(conf pred.TEAM)
 9
10
            actual wins = list(conf pred.W)
11
            features train = conf past[['ADJOE','ADJDE','BARTHAG','EFG O','EFG D','TOR','TORD','ORB','DRB','FTR','FTRD
12
13
            target train = conf past[['W']]
            features test = conf pred[['ADJOE', 'ADJDE', 'BARTHAG', 'EFG O', 'EFG D', 'TOR', 'TORD', 'ORB', 'DRB', 'FTR', 'FTRD'
14
15
            target test = conf pred[['W']]
16
17
            log reg = LogisticRegression().fit(features train, target train)
18
            wins pred = log reg.predict(features test)
19
            accuracy = accuracy score(target test, wins pred)
20
            accuracy scores.append(accuracy)
21
22
            data = {'TEAM': teams, 'Predicted Wins': wins pred, 'Actual Wins': actual wins}
23
            conf summary = pd.DataFrame.from dict(data)
24
25
            print(i)
26
            print(conf_summary)
27
            print("Accuracy: \n", accuracy)
28
29
        accuracy_data = {'CONF': confs, 'Prediction Accuracy': accuracy_scores}
        accuracy summary = pd.DataFrame.from dict(accuracy data)
30
31
        print(accuracy summary)
32
33
```

B10			
	TEAM	Predicted Wins	Actual Wins
0	Michigan St.	26	22
1	Ohio St.	27	21
2	Michigan	26	19
3	Penn St.	24	21
4	Wisconsin	15	21
5	Purdue	15	16
6	Maryland	19	24
7	Minnesota	26	15
8	Illinois	19	21
9	Rutgers	19	20
10	Iowa	23	20
11	Indiana	14	20
12	Northwestern	15	8
13	Nebraska	19	7
Acc	uracy:		
0.	0		

			020000000000000
•	CONF	Prediction	Accuracy
0	B12		0.100000
1	WCC		0.200000
2	A10		0.142857
3	B10		0.000000
4	ACC		0.200000
5	BE		0.100000
6	MWC		0.090909
7	Amer		0.000000
8	P12		0.083333
9	SEC		0.071429
10	MVC		0.100000
11	CUSA		0.071429
12	Ivy		0.000000
13	SC		0.000000
14	ASun		0.000000
15	SB		0.000000
16	MAC		0.166667
17	WAC		0.000000
18	AE		0.111111
19	BSky		0.000000
20	OVC		0.000000
21	Slnd		0.076923
22	CAA		0.100000
23	BW		0.000000
24	Horz		0.100000
25	Sum		0.000000
26	Pat		0.100000
27	MAAC		0.181818
28	BSth		0.000000
29	NEC		0.090909
30	SWAC		0.100000
31	MEAC		0.000000

ACC			
1100	TEAM	Predicted Wins	Actual Wins
0	Duke	23	25
1	Louisville	22	24
2	Florida St.	26	26
3	Virginia	21	23
4	Syracuse	14	18
5	North Carolina St.	24	20
6	Georgia Tech	14	17
7	Notre Dame	14	20
8	Clemson	14	16
9	North Carolina	14	14
10	Wake Forest	13	13
11	Miami FL	14	15
12	Virginia Tech	24	16
13	Pittsburgh	18	16
14	Boston College	14	13
Accı	racy:		
0.2	2		

This graph shows the average Wins above bubble (Cutoff between making the NCAA tournament and not making it). This graph shows that some conferences have a better chance at making the tournament than other conferences.

This graph is the predicted wins it takes to make the NCAA tournament. The cutoff is zero but is not limited to zero. By this graph the estimated wins it takes to make the tournament is about 23 wins.

These graphs show the Power Ratings by power conference (left) and by team in those conferences (right).

Power rating just in the BIG 10.

Predicted wins for BIG 10 teams.

Power rating for teams who have made the Elite 8 or further in the past 6 years.

Conclusion

 There are many factors in sports that are difficult to calculate that will affect wins and losses such as: luck, coaching ability, a team's ability to handle pressure, individual player injuries, and players or teams simply having "off nights".

