Data Analysis Tools and Practice(Using R)

图形复习

Huiping Sun(孙惠平) sunhp@ss.pku.edu.cn

课堂测试时间

- I、某银行三个分行随机抽取7个VIP客户的账户余额数据如下表:
 - * 检验样本在A因素的三个水平下,均值是否存在差异,输出结果并作出 箱线图验证你的结论。

分行	账户余	额(万元)	À.		lacor		
A_1	103	101	98	110	105	100	106
A_2	113	107	108	116	114	110	115
A_3	82	92	84	86	84	90	88

- 2、城市道路交通管理部门为了研究不同路段、不同时段的拥堵情况,分别在三个路段和高峰期、非高峰期进行试验,每一个水平下测量5次,共获得30个行车时间的数据,如下表所示:
 - 米根据表中信息构造数据集traffic,并作出两个因子下各水平的箱线图
 - 米绘制两个因素的交互效应图
 - 米假设两个因素有相互作用进行双因素方差分析并输出结果

课堂测试10

	路段I	路段II	路段III
高峰期	25 24 27 25 25	19 20 23 22 21	29 28 31 28 30
非高峰期	20 17 22 21 17	18 17 13 16 12	22 18 24 21 22

3、为研究三种肥料对苹果树产量的影响有无差异,每种肥料各施用于8棵树,测得每棵树的初始产量和增量,利用协方差分析三种肥料的效果是否相同

	肥料	观察值
初始产量	A	15 13 11 12 12 16 14 17
	В	17 16 18 18 21 22 19 18
	C	22 24 20 23 25 27 30 32
产量增量	A	85 83 65 76 80 91 84 90
	В	97 90 100 95 103 106 99 94
	C	89 91 83 95 100 102 105 110

上次课程内容回顾

- 方差分析定义和概念
- aov()函数
- 单因素方差分析
- 多重比较
- 单因素协方差分析
- 双因素方差分析
- 重复测量方差分析

参考图书

O'REILLY®

[美] Winston Chang 著 肖楠 邓一碩 魏太云 译 邱怡轩 审校


```
library(gcookbook) # For the data set
library(ggplot2)
```

```
csub <- subset(climate, Source=="Berkeley" & Year >= 1900)
csub$pos <- csub$Anomaly10y >= 0
```

csub

Source	Year	Anomaly1y	Anomaly5y	Anomaly10y	Unc10y	
Berkeley	1900	NA	NA	-0.171	0.108	FALSE
Berkeley	1901	NA	NA	-0.162	0.109	FALSE
Berkeley	1902	NA	NA	-0.177	0.108	FALSE
Berkeley	2002	NA	NA	0.856	0.028	TRUE
Berkeley	2003	NA	NA	0.869	0.028	TRUE
Berkeley	2004	NA	NA	0.884	0.029	TRUE

```
ggplot(csub, aes(x=Year, y=Anomaly10y, fill=pos)) +
  geom_bar(stat="identity", position="identity")
```



```
ggplot(csub, aes(x=Year, y=Anomaly10y, fill=pos)) +
    geom_bar(stat="identity", position="identity", colour="black", size=0.25) +
    scale_fill_manual(values=c("#CCEEFF", "#FFDDDD"), guide=FALSE)
```


克利夫兰(Cleveland)点图

3.10 P37

```
library(gcookbook) # For the data set
tophit <- tophitters2001[1:25, ] # Take the top 25
ggplot(tophit, aes(x=avg, y=name)) + geom_point()</pre>
```



```
tophit[, c("name", "lg", "avg")]

name lg avg
Larry Walker NL 0.3501
Ichiro Suzuki AL 0.3497
Jason Giambi AL 0.3423
...
Jeff Conine AL 0.3111
Derek Jeter AL 0.3111
```


Graphics Warp-Up

```
# Get the names, sorted first by lg, then by avg
nameorder <- tophit$name[order(tophit$lg, tophit$avg)]

# Turn name into a factor, with levels in the order of nameorder
tophit$name <- factor(tophit$name, levels=nameorder)

ggplot(tophit, aes(x=avg, y=name)) +
    geom_segment(aes(yend=name), xend=0, colour="grey50") +
    geom_point(size=3, aes(colour=lg)) +
    scale_colour_brewer(palette="Set1", limits=c("NL","AL")) +
    theme_bw() +
    theme(panel.grid.major.y = element_blank(),  # No horizontal grid
        legend.position=c(1, 0.55),  # Put legend inside pagend.justification=c(1, 0.5))</pre>
```


Graphics Warp-Up

```
ggplot(tophit, aes(x=avg, y=name)) +
                                                                                 Suzuki
    geom_segment(aes(yend=name), xend=0, colour="grey50") +
                                                                                 Giambi 

    geom_point(size=3, aes(colour=lg)) +
                                                                                 Vlomar ·
    scale_colour_brewer(palette="Set1", limits=c("NL","AL"), guide=FALSE) +
                                                                                Boone -
    theme_bw() +
                                                                                anotto
    theme(panel.grid.major.y = element_blank()) +
                                                                                nzalez
    facet_grid(lg ~ ., scales="free_y", space="free_y")
                                                                                riguez :
                                                                      Shannon Stewart
                                                                           Derek Jeter -
                                                                            Jeff Conine
                                                                          Larry Walker
                                                                           Todd Helton
                                                                           Moises Alou
                                                                        Lance Berkman ·
                                                                         Chipper Jones ·
                                                                           Albert Pujols
                                                                           Barry Bonds
                                                                          Sammy Sosa
                                                                            Juan Pierre ·
                                                                         Luis Gonzalez ·
                                                                            Rich Aurilia
                                                                          Paul Lo Duca
                                                                             Jose Vidro
                                                                             Cliff Floyd
                                                                             Jeff Cirillo ·
                                                                                      0.310.320.330.340.35
                                                                                              avg
```

cdat

Name	Code	Year	GDP	laborrate	healthexp	infmortality
Canada	CAN	2009	39599.04	67.8	4379.761	5.2
Iceland	ISL	2009	37972.24	77.5	3130.391	1.7
Ireland	IRL	2009	49737.93	63.6	4951.845	3.4
Japan	JPN	2009	39456.44	59.5	3321.466	2.4
Luxembourg	LUX	2009	106252.24	55.5	8182.855	2.2
Netherlands	NLD	2009	48068.35	66.1	5163.740	3.8
New Zealand	NZL	2009	29352.45	68.6	2633.625	4.9
Switzerland	CHE	2009	63524.65	66.9	7140.729	4.1
United Kingdom	GBR	2009	35163.41	62.2	3285.050	4.7
United States	USA	2009	45744.56	65.0	7410.163	6.6

绘制气泡图

p <- ggplot(cdat, aes(x=healthexp, y=infmortality, size=GDP)) +
 geom_point(shape=21, colour="black", fill="cornsilk")</pre>

p <- ggplot(faithful, aes(x=eruptions, y=waiting))</pre>

p + geom_point() + stat_density2d()

eruptions

p + stat_density2d(aes(colour=..level..))

library(gcookbook) # For the data set

wind

TimeUTC	Temp	WindAvg	${\tt WindMax}$	WindDir	${\sf SpeedCat}$	DirCat
0	3.54	9.52	10.39	89	10-15	90
5	3.52	9.10	9.90	92	5-10	90
10	3.53	8.73	9.51	92	5-10	90
2335	6.74	18.98	23.81	250	>20	255
2340	6.62	17.68	22.05	252	>20	255
	6.22	18.54	23.91	259	>20	255

5-10

10-15

15-20

>20

```
ggplot(wind, aes(x=DirCat, fill=SpeedCat)) +
  geom_histogram(binwidth=15, origin=-7.5) +
  coord_polar() +
  scale_x_continuous(limits=c(0,360))
```

绘制相关矩阵图

13.1 P221

mcor <- cor(mtcars)
Print mcor and round to 2 digits
round(mcor, digits=2)</pre>

```
cyl disp
                        hp drat
                                    wt
                                       gsec
          -0.85 -0.85 -0.78
                            0.68 -0.87 0.42 0.66
                                                   0.60
                0.90
                      0.83 - 0.70
                                  0.78 -0.59 -0.81 -0.52 -0.49
disp -0.85 0.90 1.00 0.79 -0.71
                                 0.89 -0.43 -0.71 -0.59 -0.56
                                 0.66 -0.71 -0.72 -0.24 -0.13
    -0.78 0.83 0.79 1.00 -0.45
    0.68 -0.70 -0.71 -0.45
                            1.00 -0.71 0.09
                                             0.44
    -0.87 0.78 0.89 0.66 -0.71 1.00 -0.17 -0.55 -0.69 -0.58
asec 0.42 -0.59 -0.43 -0.71 0.09 -0.17
                                       1.00
                                             0.74 -0.23 -0.21 -0.66
     0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74
                                            1.00
     0.60 -0.52 -0.59 -0.24 0.71 -0.69 -0.23 0.17
                                                   1.00
gear 0.48 -0.49 -0.56 -0.13 0.70 -0.58 -0.21 0.21
                                                   0.79
carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57 0.06
```

```
cyl disp
                        hp drat
      mpg
                                    wt
                                      qsec
                                                         gear carb
                                               ٧S
     1.00 -0.85 -0.85 -0.78 0.68 -0.87 0.42
                                             0.66
                                                   0.60 0.48 -0.55
mpg
    -0.85 1.00 0.90
                      0.83 -0.70 0.78 -0.59 -0.81 -0.52 -0.49 0.53
disp -0.85 0.90
                1.00
                      0.79 -0.71 0.89 -0.43 -0.71 -0.59 -0.56
           0.83 0.79
                      1.00 -0.45 0.66 -0.71 -0.72 -0.24 -0.13
hp
    0.68 -0.70 -0.71 -0.45
                            1.00 -0.71 0.09
                                             0.44 0.71
           0.78 0.89
                      0.66 -0.71 1.00 -0.17 -0.55 -0.69 -0.58 0.43
wt
qsec 0.42 -0.59 -0.43 -0.71
                            0.09 - 0.17
                                       1.00
                                             0.74 -0.23 -0.21 -0.66
     0.66 -0.81 -0.71 -0.72
                            0.44 -0.55 0.74
                                             1.00
                                                   0.17
٧S
     0.60 -0.52 -0.59 -0.24 0.71 -0.69 -0.23
                                             0.17
                                                   1.00
am
gear 0.48 -0.49 -0.56 -0.13 0.70 -0.58 -0.21
                                             0.21
                                                   0.79
carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57
                                                   0.06
```

绘制相关矩阵图

corrplot(mcor)

corrplot(mcor, method="shade", shade.col=NA, tl.col="black", tl.srt=45)

绘制相关矩阵图

```
col <-
colorRampPalette(c("#BB
4444", "#EE9988",
"#FFFFFF", "#77AADD",
"#4477AA"))
```

corrplot(mcor, method="shade", shade.col=NA, tl.col="black", tl.srt=45, col=col(200), addCoef.col="black", addcolorlabel="no", order="AOE")


```
p <- ggplot(data.frame(x=c(-3,3)), aes(x=x))
p + stat_function(fun = dnorm)</pre>
```



```
myfun <- function(xvar) {
    1/(1 + exp(-xvar + 10))
}
```

ggplot(data.frame(x=c(0, 20)), aes(x=x)) + stat_function(fun=myfun)

```
# Return dnorm(x) for 0 < x < 2, and NA for all other x
dnorm_limit <- function(x) {
   y <- dnorm(x)
   y[x < 0 | x > 2] <- NA  # ggplot() with dummy
   return(y) data</pre>
```


data
p <ggplot() with daminy
data
p <ggplot(data.frame(x=c(3, 3)), aes(x=x))

p +
stat_function(fun=dnor
m_limit, geom="area",
fill="blue", alpha=0.2) +

stat_function(fun=dnor
m)

library(igraph)
Specify edges for a directed graph
gd <- graph(c(1,2, 2,3, 2,4, 1,4, 5,5, 3,6))
plot(gd)

For an undirected graph gu <- graph(c(1,2, 2,3, 2,4, 1,4, 5,5, 3,6), directed=FALSE) # No labels plot(gu, vertex.label=NA)

Graphics Warp-Up

绘制网络图

library(gcookbook)

g <- graph.data.frame(madmen2, directed=TRUE)

par(mar=c(0,0,0,0))

plot(g, layout=layout.fruchterman.reingold, vertex.size=8, edge.arrow.size=0.5, vertex.label=NA)

Name1 Abe Drexler Allison Arthur Case

Name2 Peggy Olson Don Draper Betty Draper

g <- graph.data.frame(madmen,
directed=FALSE)
par(mar=c(0,0,0,0))
Remove unnecessary margins
plot(g, layout=layout.circle, vertex.size=8,
vertex.label=NA)</pre>

练习

练习 - 0046

O'REILLY®

[美] Winston Chang 著 肖楠 邓一碩 魏太云 译 邱怡轩 审校

阅读所有章节, 运行所有代码

注解 小提琴图

坐标系 热图

图例 三维图

分面 谱系图

颜色 向量图

输出 马赛克图

... ...

确定分组和包

谢谢!

孙惠平 sunhp@ss.pku.edu.cn