Lecture 3 Numerical Measures

BIO210 Biostatistics

Xi Chen

Spring, 2023

School of Life Sciences
Southern University of Science and Technology

Summarise data using numbers

- Central tendency (mean, median, mode)
- Extremes (smallest, largest)
- Range
- Interquartile range (IQR)
- Dispersion (variance, standard deviation)

$$\bullet \ \ \text{Arithmetic mean:} \ \ \bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_{n-1} + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

• Median: the 50th percentile

• Mode: the most frequent values

	Mean	Median	Mode
1, 2, 3, 4, 5, 6, 7, 8, 9	5	5	Χ
2, 3, 5, 7, 7, 7, 11, 13	6.89	7	7
2, 3, 5, 7, 7, 7, 11, 13, 100	16.2	7	7
2, 2, 2, 5, 6, 100, 100, 100, 103, 104	52.4	53	2, 100
2, 3, 4, 5, 6, 100, 101, 102, 103, 104	53	53	X

Geometric mean:
$$GM = \sqrt[n]{x_1 x_2 x_3 \cdots x_{n-1} x_n} = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$$

$$\bar{\log}x = \frac{1}{n} \sum_{i=1}^{n} \log x_i$$

Log scale in biology

Dispersion

Dispersion

• Variance:
$$\mathbb{V}\mathrm{ar}=\frac{1}{N}\sum\limits_{i=1}^{N}(x_i-\mu)^2$$
 or $\frac{1}{n-1}\sum\limits_{i=1}^{n}(x_i-\bar{x})^2$

• Standard deviation: $\sqrt{\mathbb{V}ar}$

Grouped data

Transcription factor binding motif length (bp):

Mean:

Grouped data

Motif length (bp) Absolute frequency		Relative frequency
11	10	0.5
13	7	0.35
16	2	0.1
17	1	0.05
Total	20	1

Weighted average

Value	Absolute frequency	
x_1	f_1	
x_2	f_2	
x_3	f_2	
:	:	
:	:	
x_{n-1}	f_{n-1}	
x_{n-1} x_n	f_n	

$$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_{n-1} f_{n-1} + x_n f_n}{f_1 + f_2 + \dots + f_{n-1} + f_n}$$

$$= \frac{x_1 f_1 + x_2 f_2 + \dots + x_{n-1} f_{n-1} + x_n f_n}{\sum_{i=1}^n f_i}$$

$$= \frac{f_1}{\sum_{i=1}^n f_i} x_1 + \frac{f_2}{\sum_{i=1}^n f_i} x_2 + \dots + \frac{f_n}{\sum_{i=1}^n f_i} x_n$$

$$= w_1 x_1 + w_2 x_2 + \dots + w_n x_n = \sum_{i=1}^n w_i x_i$$

Weighted average

Grading system:

Attendance	Assignments	Mid-term exam	Final exam
10%	15%	30%	45%

Pixel luminance:

$$0.2126 \times R + 0.7152 \times G + 0.0722 \times B$$

$$0.299 \times R + 0.587 \times G + 0.114 \times B$$

Weighted average

A badly manufactured dodecahedron die

Values	Relative frequency
1	8%
2	5%
3	5%
4	5%
5	5%
6	10%
7	10%
8	10%
9	10%
10	12%
11	10%
12	10%

We roll the die repeadly for a large number of times. What will be the average number?

Summary of descriptive statistics

```
Tables (absolute/relative frequency table)

Graphs (Bar chart, pie chart, histogram, box plot, line graph, scatter plot)

Data presentation

Numerical measures

Dispersion (variance, standard deviation)

Others (range, IQR)
```

New way of calculating mean: weighted average $\bar{x} = \sum_{i=1}^n w_i x_i$