PW Institute Of Innovation

Project Report

Introduction to AI

Name – Hitendra Kumar Dewangan Roll no - 2301010048 Topic – Unsupervised Learning

TABLE OF CONTENT

1.	Introduction	2
	a. Problem Statement and Objectives	
2.	Data Ingestion and Initial Checks	3
3.	Exploratory Data Analysis (EDA)	5
4.	Data Preprocessing	6
5.	Dimensionality Reduction	8
6.	Clustering Implementation	9
	a. Hierarchical Clustering	
	b. K-Means Clustering	
	c. DBSCAN	
	d. Gaussian Mixture	
	e. Spectral Clustering Model	
7.	Cluster Analysis & Profiling	13
8.	Business Strategy Development	14

1.Introduction

1.1 Problem Statement

In the modern banking sector, understanding customer behavior is crucial for personalized marketing and customer retention. A leading bank wants to develop a **customer segmentation report** to offer targeted promotional campaigns to its customers.

To achieve this, the bank has collected a dataset summarizing user activities over the past few months, primarily focusing on **credit card usage patterns**. However, with a large and diverse customer base, manually segmenting customers is inefficient and impractical.

Thus, the challenge is to **identify distinct customer segments** based on spending behavior and usage patterns using **unsupervised machine learning techniques**. By clustering customers effectively, the bank can design **customized marketing strategies** that improve engagement and business performance.

1.2 Project Objectives

This project aims to leverage **clustering algorithms** to segment bank customers based on their transaction patterns.

2.Data Ingestion and Initial Checks

```
df = pd.read_csv('./Dataset/bank_marketing.csv')
```

- Columns and Data Types:
 - o There are **7 columns** in total.
 - Each column has 210 non-null entries, meaning there are no missing values in any of the columns.
 - All columns have the data type float64, which indicates that they contain floating-point numbers.
- Columns Overview:
 - 1. spending
 - 2. advance_payments
 - 3. probability_of_full_payment
 - 4. current_balance
 - 5. credit_limit
 - 6. min_payment_amt
 - 7. max_spent_in_single_shopping
- Implications:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):
# Column
                              Non-Null Count Dtype
                              -----
                                          float64
0 spending
                              210 non-null
                                          float64
float64
1 advance_payments
                              210 non-null
   probability of full payment 210 non-null
                             210 non-null float64
3 current_balance
                            210 non-null float64
4 credit_limit
                            210 non-null float64
5 min payment amt
6 max_spent_in_single_shopping 210 non-null float64
dtypes: float64(7)
memory usage: 11.6 KB
```

```
df.isnull().sum()

spending 0
advance_payments 0
probability_of_full_payment 0
current_balance 0
credit_limit 0
min_payment_amt 0
max_spent_in_single_shopping 0
dtype: int64

no null values
```

- Since all columns are non-null, you do not need to worry about handling missing data at this stage.
- The uniform data type (float64) suggests that all columns are suitable for numerical operations, which is beneficial for clustering analysis.

Decision:

- we will proceed with exploratory data analysis (EDA) to understand the distributions and relationships within these features.
- We will scale them in order to use distance-based clustering algorithms like K-means, as they are sensitive to the scale of the data.

Reasons for Scaling:

Varying Scales:

- Observe the ranges of the columns:
 - current_balance and credit_limit have significantly larger values compared to probability_of_full_payment.
 - min_payment_amt and max_spent_in_single_shopping also have a wide range of values.
- Clustering algorithms that rely on distance calculations (like Euclidean distance in K-means) will be heavily influenced by features with larger scales. Features with smaller scales will have a negligible impact on the distance calculations.

Preventing Bias:

 Without scaling, features with larger scales will dominate the clustering process, potentially leading to biased results.

Improved Convergence:

Scaling can often improve the convergence speed of clustering algorithms.

3. Exploratory Data Analysis (EDA)

Analysis of Variable Distributions

1. Spending Distribution

• **Shape:** The spending distribution appears to be multi-modal, with at least two distinct peaks. This suggests that there may be two or more groups of customers with different spending behaviors.

Possible Insights:

- o One group of customers spends relatively less, clustering around the 12-14 range.
- o Another group of customers spends more, clustering around the 18-20 range.
- This could indicate different spending habits based on income, lifestyle, or credit card usage patterns.

2. Current Balance Distribution

• **Shape:** The current balance distribution seems to be approximately normal with a slight positive skew.

• Possible Insights:

- Most customers have a current balance in the 5.0 to 6.0 range.
- The positive skew suggests that there are some customers with significantly higher balances.

3. Credit Utilization Ratio Distribution

- **Shape:** The credit utilization ratio appears to be approximately normally distributed.
- Possible Insights:
 - The majority of customers have a credit utilization ratio between 1.6 and 1.8.
 - o There are a few customers with much lower or higher ratios.

4.Data Preprocessing

1. Scaling Data

Given the multi-modal distribution of "spending" and approximate normal distribution of "credit utilization ratio", scaling is crucial before applying clustering algorithms.

2. Outlier Check and Treatment

We can see some outliers in columns:

- probability_of_full_payment
- min_payment_amt

So we will treat the outlier.

```
cols_have_outlier = ['probability_of_full_payment', 'min_payment_amt']

def remove_outliers_iqr(df, column):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper_bound = Q3 + 1.5 * IQR
    df = df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]
    return df

# Example: Removing outliers from 'spending' column
for col in cols_have_outlier:
    df = remove_outliers_iqr(df, col)</pre>
```

5.Dimensionality Reduction

- It generates a plot showing the cumulative explained variance as a function of the number of principal components.
- The plot helps determine the number of components needed to capture a desired amount of variance (e.g., 90%).

Since at no. of cluster = 2, we can get 90% of the variance so we will be taking 2 clusters.

6.Clustering Implementation

Hierarchical Clustering

	PC1	PC2
0	4.118919	1.049561
1	0.551561	-1.352736
2	3.127651	0.400743
3	2.391835	-1.000901
4	-2.040791	0.658883

K-Means Clustering

Optimal number of clusters: 2

. DBSCAN

DBSCAN is not performing well as we can see the clusterings are not good.

Gaussian Mixture Model

Spectral Clustering

7. Cluster Analysis and Profiling

Silhouette Scores:

Score of 0.464

K-Means: 0.4638505436516679

DBSCAN: -0.20993944209206925 GMM: 0.44034299935844456

Spectral: 0.46417904743633365

Agglomerative: 0.4457724430785156

```
Best Performing Model: Spectral with Silhouette Score: 0.46417904743633365
 cluster_profiles = df.groupby('cluster')[columns_to_scale].mean()
 print(cluster_profiles)
          spending advance_payments probability_of_full_payment \
 cluster
         1.179843
                           1.191724
                                                        0.513648
 1
         -0.616923
                          -0.626983
                                                       -0.234863
          current_balance credit_limit min_payment_amt \
 cluster
                1.181133
                              1.090864
                                              -0.067724
 0
 1
                -0.625648
                             -0.564961
                                              -0.026462
          max_spent_in_single_shopping
 cluster
                             1.229831
 1
                            -0.660521
```

So, we can see that the Spectral Clustering is the best model with a Silhouette

8. Business Development Strategy

Cluster 0: "Value-Driven Customers"

Characteristics:

- These customers tend to have lower balances
- These customers have a moderate credit utilization ratio, indicating responsible usage of their credit lines.

Business Development Strategies:

1. Personalized Rewards:

Strategy:

Offer personalized rewards tailored to customer preferences. The data suggests an openness to engagement, so tailor personalized experiences to them

2. Customer Education:

Strategy:

Provide insights on financial management and responsibility and suggest how they can achieve higher risk ratings, and better scores to get better offers and credit limit increases.

Cluster 1: "High Credit User"

Characteristics:

- These customers tend to have High credit utilization
- Tend to have low max spending

Business Development Strategies:

1. Credit Limit Increase:

Strategy:

Given their responsible credit behavior, consider offering modest credit limit increases and tailor promotions that will benefit the credit score and allow for better performance.

2. Credit Card Upgrade Programs:

Strategy:

In many banking environments, clients are eligible for premium cards and benefits that may not be available in their current plan. Incentivizing these opportunities may provide a better experience.

Strategy:
 Encourage the use of services offered for greater client management

Conclusion

By implementing these targeted business development strategies, the bank can effectively cater to the unique needs and preferences of each customer segment. This data-driven approach will not only enhance customer satisfaction and loyalty but also drive sustainable growth and profitability for the organization.