

NEAT Based Al For Flappy Bird

M. Osama Asif l174295@lhr.nu.edu.pk

M. Ibraheem Waheed 1174315@lhr.nu.edu.pk

Waleed Iqbal l174032@lhr.nu.edu.pk M. Husnain Maqsood l174032@lhr.nu.edu.pk

CS-401 (Fall 2020) AI Final Project Instructor: Mubashir Baig

Introduction

OVERVIEW:

Neuro-Evolution of Augmenting Topologies is a genetic algorithm based NN.

Flappy Bird is a 2013 2D side scrolling mobile game, famous for a single control, that is difficult for a human to be consistent at for long time.

NEAT is a very fast and efficient approach to making an Al for games such as Flappy Bird.

AIM:

Make a very basic AI using NEAT-Python library, that is capable of mastering the game in the as early a generation possible, e.g. within 1 or 2 generations.

NEAT

Mutation is done by changing or replacing connections, weights assigned either randomly or a combo of 1 and old weight.

Direct Encoding used, means nodes etc are well defined.

Speciation and Historical markings make It possible to produce a "healthy" offspring, by limiting competition within species (done with markings).

Flappy Bird

A 2013 mobile based **2D side scroller** made by a Vietnamese developer and artist.

Pipes parallel to each other with **random length**, with a gap in between move from right to left and the **bird (player) has to** pass through the gaps.

The pipes move after a defined time. The collision with pipes or ground leads to death.

The control are simply to press space to jump, and not doing so leads to bird falling.

Setup and Evaluation

SETUP:

NEAT-Python we use requires a **configuration file** that has some basic requirements for genetic algorithm and NN in it.

Fitness_criterion was set to max which is used to select the best genome in each generation.

Pop_size was set to 50, and activation function to tanh.

fitness_criterion = max fitness_threshold = 100 pop_size = 50 reset_on_extinction = False [DefaultGenome] # node activation options activation_default = tanh activation_mutate_rate = 0.0 activation_options = tanh # node aggregation options aggregation_default = sum aggregation_mutate_rate = 0.0 aggregation_mutate_rate = 0.0 aggregation_mutate_rate = 0.0 bias_init_mean = 0.0 bias_init_stdey = 1.0 bias_max_value = 30.0 bias_min_value = -30.0 bias_mutate_power = 0.5 bias_mutate_rate = 0.7 bias_replace_rate = 0.1 # genome compatibility options compatibility_disjoint_coefficient = 1.0 compatibility_weight_coefficient = 0.5

EVALUATION FUNCTION:

Add a score of 0.1 each frame as an incentive for just moving, add 5 for crossing a gap.

If a collision with either of the closest pipe is detected a score of **1** is deducted.

Results

The results are of three different experiments, with different population sizes, while rest was kept constant.

The max generation count was kept at 50. The population sizes used were; 10, 20, 30, 40, 50 and 60, and score goals used are; 100, 200 and 300.

Conclusion

Given the tests, and the values chosen after experimentation, we can see that NEAT AI is perfect to be used as a player for Flappy Bird, being able to learn the overall game within 2-3 generations, and the best genome can easily outperform a human player.

REFERENCES:

[1] H. Heidenreich, "NEAT:AnAwesomeApproachtoNeuroEvolution", towardsdatasciene.com, Jan.4,2019. [Online]. Available:https://towardsdatascience.com/neat-an-awesome-approach-to-neuroevolution-3eca5cc7930f.[Accessed June 12, 2020]

[2] K. O. Stanley, R. Miikkulainen, "Evolving Neural Networks throughAugmenting Topologies", Department of Computer Science, University of Texas, 2002. Available: http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf. [Accessed June 12,