Unit 2, Lesson 4

The Chain Rule

Objectives:

The lesson focuses on using the chain rule to differentiate three types of functions: a function raised to a power, exponential functions, and logarithmic functions. Students will be able to:

- Break down a composition of two functions into basic functions
- Apply the chain rule to find derivatives of a function raised to a power, exponential functions, and logarithmic functions

SEPTEMBER2016

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SAT/SUN
26	27	28	29	30	
Quiz IV					
U2L4		U2L5			

OCTOBER2016

MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SAT/SUN
3 Quiz V	4	5 Test II Group A	6 Test II Groups A and B	7 Test II Group B	8/9 PCA U3L1 (10/9)
Review For Test II		Review For Test II			

Choose the 3 conditions that must be satisfied for a function to be continuous at a point:

- A. lim f(x) ≠ f(a) x→a
- B. $\lim_{x\to a} f(x) = f(a)$
- C. lim f(x) exists. x→a
- D. f(a) is defined.

- B.A,B,D
- C.A,C,D
- D.B,C,D

Composite Function

Let f and g be functions. The **composite function**, or **composition**, of g and f is the function whose values are given by g[f(x)] for all x in the domain of f such that f(x) is in the domain of g. (Read g[f(x)] as "g of f of x".)

Chain Rule

If y is a function of u, say y = f(u), and if u is a function of x, say u = g(x), then y = f(u) = f[g(x)], and

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$

If
$$f(x) = (3x^2 - 7)^{2/3}$$
, then find $f'(x)$.

Let
$$f(x) = (6x^4 - 9x^2 + 6)^4$$
. Find $f'(x)$.

A.
$$f'(x) = (24x^3 - 18x)^3 (4x)^3$$

B.
$$f'(x) = 4(6x^4 - 9x^2 + 6)^3(24x^3 - 18x)$$

$$C. f'(x)$$
 does not exist

Let
$$g(x) = 4\sqrt{4x^2 + 3}$$
. Find $g'(x)$.

$$A.g'(x) = \frac{16x}{\sqrt{4x^2+3}}$$
 $B.g'(x) = 0$

C.
$$g'(x) = 16x(4x^2 + 3)^{\frac{1}{2}}$$

O. $g'(x) = 24x$

Consider the following table of values of the functions f and g and their derivatives at various points.

X	1	2	3	4
f(x)	1	3	4	2
f'(x)	-2	-4	-6	-9
g(x)	3	4	2	1
g'(x)	1/9	7/9	5/9	2/9

Use the table to find $D_x(f[g(x)])$ at x = 3.

Derivative of e^x

$$\frac{d}{dx}\left(e^{x}\right)=e^{x}$$

Derivative of a^x

For any positive constant $a \neq 1$,

$$\frac{d}{dx}(a^x) = (\ln a)a^x.$$

Derivative of $a^{g(x)}$ and $e^{g(x)}$

$$\frac{d}{dx}(a^{g(x)}) = (\ln a)a^{g(x)}g'(x)$$

and

$$\frac{d}{dx}(e^{g(x)}) = e^{g(x)}g'(x)$$

Let $f(x) = e^{-8x}$. Find f'(x).

Let $f(x) = e^{x^3}$. Find f'(x).

Let
$$f(x) = 2e^{5x+1}$$
. Find $f'(x)$.

$$A.f'(x) = 10x(lnx) + e^5$$

 $B.f'(x) = (5x + 1)(2)e^{5x}$
 $C.f'(x) = 10(e^{5x+1})$
 $D.f'(x) = (5x)(2)e^{5x}$

Derivative of ln x

$$\frac{d}{dx}[\ln x] = \frac{1}{x}$$

Derivative of $\log_a x$

$$\frac{d}{dx}[\log_a x] = \frac{1}{(\ln a)x}$$

(The derivative of a logarithmic function is the reciprocal of the product of the variable and the natural logarithm of the base.)

Let $f(x) = \ln(4 - 3x)$. Find f'(x).

Let $f(x) = ln\sqrt{x+7}$. Find f'(x).

$$A.f'(x) = \frac{1}{2(x+7)}$$

$$B.f'(x) = \frac{1}{\sqrt{x+7}}$$

$$C.f'(x) = \frac{1}{2}x^{1/2} + \ln(7)$$

QUESTION:

• A friend concludes that because $y = \ln(6x)$ and $y = \ln(x)$ both have the same derivative, namely $\frac{dy}{dx} = \frac{1}{x'}$, then these two functions must be the same.

Is your friend correct? Why or why not?

QUESTION:

• If f(t) give the number of units of a certain product sold by a company after t days and g(x) gives the revenue (in dollars) from the sale of x units of the company's products, what does $(g \circ f)'(t)$ describe?