Problem set 2

due Monday, September 16, 2025 at 11:59am (noon!)

Instructions Upload your .ipynb notebook to gradescope by 11:59am on the due date. Please include your name, Problem set number, and any collaborators you worked with in a text cell at the top of your notebook. Please also number your problems in some way and include comments in your code to indicate what part of a problem you are working

Get help! If you need support working on your pset, see our week at a glance schedule for office hours and pset support times!

⚠ Warning: Avoid redundant loading

You will need the tidyverse library. Recall that Colab comes with this library already installed, and tidyverse includes tibble, readr, and ggplot. Avoid redundant loading.

Problem 1

Create the following tibble with the tribble() function (not tibble()). Use the map() function from the purr package to calculate the median of each column, and store it as col_means. Use the pipe operator (%>% or |>) to pipe that list into tibble(), so the output is formatted as tibble. Finally, use rename() to rename the columns of your new tibble to mean_height, mean_weight, and mean_age. Return or print the resulting tibble.

#	A tibb	le: 8 x	3
	height	weight	age
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	150	45	18
2	160	54	21
3	165	60	25
4	170	68	30
5	175	72	34
6	180	79	40

7	185	85	50
8	190	90	60

Problem 2

Create a spreadsheet in Google sheets with data from the following table. Download your spreadsheet as a CSV file and upload it into Colab. Then, use the appropriate function from the **readr** package to import your CSV file into R. Return or print your imported data to confirm it was read in correctly.

trial id	target word	sentence_congruency	word frequency	N400 uV	RT_ms
iiaiid	target_word	sentence_congruency	word_irequency		
1	apple	congruent	high	-2.1	520
2	violin	incongruent	low	-7.3	760
3	doctor	congruent	high	-2.4	535
4	cactus	incongruent	low	-6.8	740
5	butter	congruent	low	-3.6	590
6	galaxy	incongruent	high	-5.1	690
7	window	congruent	high	-2.7	545
8	anchor	incongruent	low	-7.0	755
9	garden	congruent	low	-3.4	600
10	banana	incongruent	high	-5.4	700

Problem 3

Sometimes the best way to learn a new package or function is to explore the documentation. The googlesheets4 package allows you to work with Google Sheets directly from R. Read the documentation for this package and figure out how to connect to a sheet, read its contents, and bring the data into R. Use googlesheets4 to import the Europe tab of the gapminder sheet, available here. Return or print the imported sheet to confirm it was read in correctly. You should see the following output.

```
v Reading from "gapminder".
v Range ''Europe''.
# A tibble: 360 x 6
   country continent
                       year lifeExp
                                         pop gdpPercap
   <chr>
           <chr>
                      <dbl>
                               <dbl>
                                                  <dbl>
                                       <dbl>
                       1952
                                55.2 1282697
 1 Albania Europe
                                                  1601.
```

2	${\tt Albania}$	Europe	1957	59.3	1476505	1942.
3	Albania	Europe	1962	64.8	1728137	2313.
4	${\tt Albania}$	Europe	1967	66.2	1984060	2760.
5	Albania	Europe	1972	67.7	2263554	3313.
6	Albania	Europe	1977	68.9	2509048	3533.
7	${\tt Albania}$	Europe	1982	70.4	2780097	3631.
8	${\tt Albania}$	Europe	1987	72	3075321	3739.
9	${\tt Albania}$	Europe	1992	71.6	3326498	2497.
10	${\tt Albania}$	Europe	1997	73.0	3428038	3193.
# i 350 more rows						

Problem 4

With ggplot2 and the europe data you imported in problem 3, recreate (as faithfully as possible), the following histogram of life expectancy for countries in Europe. Make sure the bars of the histogram are light blue, the border around the bars are black, and you edit the x-axis label to match. Also make sure you have approximately the same number of bins in your histogram.

• More coming soon!

Problems pertaining to Thursdays lecture will be added soon.