

Analysis of RBFS

Optimal if h(n) is admissible.

Space is O(bm)

Potentially exponential time in cost of solution

Keeps more information than IDA*, but may benefit from storing even more information

SMA* (Simplified Memory A*)

- MA* and SMA* are restricted memory best first search algorithms that utilize all the memory available.
- The algorithm executes best first search while memory is available.
- When the memory is full the worst node is dropped but the value of the forgotten node is backed up at the parent.

SMA*

- Expand deepest lowest f-cost leaf-node
- Best first search on f-cost
- Update f-cost of nodes whose successors have higher f-cost than it as:
- F(node)=min(f(child1), f(child2),.....f(childn))
- Drop shallowest & highest f-cost leaf node
- Remember best forgotten descendant
- Node at the maximum depth get ∞ cost if its not a goal node.

SMA*

Analysis of SMA*

Optimal if solution fits in memory.

Constant memory requirements

Path vs. State Optimization

Previous lecture: path to goal is solution to problem

systematic exploration of search space.

This lecture: a state is solution to problem

- for some problems path is irrelevant.
- E.g., 8-queens

Different algorithms can be used

- Depth First Branch and Bound
- Local search

Local search and optimization

- Local search
 - Keep track of single current state
 - Move only to neighboring states
 - Ignore paths
- Advantages:
 - Use very little memory
 - Can often find reasonable solutions in large or infinite (continuous) state spaces.
- "Pure optimization" problems
 - All states have an objective function
 - Goal is to find state with max (or min) objective value
 - Does not quite fit into path-cost/goal-state formulation
 - Local search can do quite well on these problems.

Example: *n*-queens

 Put n queens on an n x n board with no two queens on the same row, column, or diagonal

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
			13		_		14
15	14	14	₩	13	16	13	16
₩	14	17	15	₩	14	16	16
17	₩	16	18	15	₩	15	₩
18			15				
14	14	13	17	12	14	12	18

- Need to convert to an optimization problem
- h = number of pairs of queens that are attacking each other
- h = 17 for the above state

Search Space

- State
 - All 8 queens on the board in some configuration
- Successor function
 - move a single queen to another square in the same column.
- Example of a heuristic function h(n):
 - the number of pairs of queens that are attacking each other
 - (so we want to minimize this)

Hill-climbing (Greedy Local Search) max version

function HILL-CLIMBING(problem) return a state that is a local maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do

neighbor ← a highest valued successor of current
if VALUE [neighbor] ≤ VALUE[current] then return STATE[current]
current ← neighbor

Hill-climbing search

- "a loop that continuously moves towards increasing value"
 - terminates when a peak is reached
 - Aka greedy local search
- Value can be either
 - Objective function value
 - Heuristic function value (minimized)
- Hill climbing does not look ahead of the immediate neighbors
- Can randomly choose among the set of best successors
 - if multiple have the best value

"Landscape" of search

Hill-climbing on 8-queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it get stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 - (for a state space with 8^8 =~17 million states)

Hill Climbing Drawbacks

Local maxima

Plateaus

Escaping Shoulders: Sideways Move

- If no downhill (uphill) moves, allow sideways moves in hope that algorithm can escape
 - Need to place a limit on the possible number of sideways moves to avoid infinite loops
- For 8-queens
 - Now allow sideways moves with a limit of 100
 - Raises percentage of problem instances solved from 14 to 94%

- However....
 - 21 steps for every successful solution
 - 64 for each failure

Trivial Algorithms

- Random Sampling
 - Generate a state randomly

- Random Walk
 - Randomly pick a neighbor of the current state

Both algorithms asymptotically complete.

Hill-climbing: stochastic variations

- Stochastic hill-climbing
 - Random selection among the uphill moves.
 - The selection probability can vary with the steepness of the uphill move.

- To avoid getting stuck in local minima
 - Random-walk hill-climbing
 - Random-restart hill-climbing
 - Hill-climbing with both

Hill Climbing with random walk

- →When the state-space landscape has local minima, any search that moves only in the greedy direction cannot be complete
- Random walk, on the other hand, is asymptotically complete

Idea: Put random walk into greedy hill-climbin

- At each step do one of the two
 - Greedy: With prob p move to the neighbor with largest
 - Random: With prob 1-p move to a random neighbor

Hill-climbing with random restarts

- If at first you don't succeed, try, try again!
- Different variations
 - For each restart: run until termination vs. run for a fixed time
 - Run a fixed number of restarts or run indefinitely
- Analysis
 - Say each search has probability p of success
 - E.g., for 8-queens, p = 0.14 with no sideways moves
 - Expected number of restarts?
 - Expected number of steps taken?

Simulated Annealing

Simulated Annealing = physics inspired twist on random wa Basic ideas:

- like hill-climbing identify the quality of the local improvements
- instead of picking the best move, pick one randomly
- say the change in objective function is \delta
- if δ is positive, then move to that state
- otherwise:
 - move to this state with probability proportional to δ
 - thus: worse moves (very large negative δ) are executed less often
- however, there is always a chance of escaping from local maxima
- over time, make it less likely to accept locally bad moves

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state input: problem, a problem schedule, a mapping from time to temperature local variables: current, a node.

next, a node.

T, a "temperature" controlling the prob. of downward steps

current \leftarrow MAKE-NODE(INITIAL-STATE[problem])

for $\mathbf{t} \leftarrow \mathbf{1}$ to ∞ do $T \leftarrow$ schedule[t]

if T = 0 then return current $next \leftarrow$ a randomly selected successor of current $\Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]$ if $\Delta E > 0$ then current \leftarrow next

else current \leftarrow next only with probability $e^{\Delta E}$

Physical Interpretation of Simulated Annealing

- A Physical Analogy:
 - imagine letting a ball roll downhill on the function surface
 - this is like hill-climbing (for minimization)
 - now imagine shaking the surface, while the ball rolls, gradually reducing the amount of shaking
 - this is like simulated annealing
- Annealing = physical process of cooling a liquid or metal
 until particles achieve a certain frozen crystal state
 simulated annealing:
 - free variables are like particles
 - seek "low energy" (high quality) configuration
 - slowly reducing temp. T with particles moving ; around randomly

Simulated Annealing

Simulated Annealing = physics inspired twist on random wa Basic ideas:

- like hill-climbing identify the quality of the local improvements
- instead of picking the best move, pick one randomly
- say the change in objective function is \delta
- if δ is positive, then move to that state
- otherwise:
 - move to this state with probability proportional to δ
 - thus: worse moves (very large negative δ) are executed less often
- however, there is always a chance of escaping from local maxima
- over time, make it less likely to accept locally bad moves

Simulated Annealing in Practice

- method proposed in 1983 by IBM researchers for solving VLSI layout problems (Kirkpatrick et al, Science, 220:671-680, 1983).
 - theoretically will always find the global optimum
- Other applications: Traveling salesman, Graph partitioning, Graph coloring, Scheduling, Facility Layout, Image Processing, ...
- useful for some problems, but can be very slow
 - slowness comes about because T must be decreased very gradually to retain optimality