Proyecto ML de principio a fin Alfredo Cuesta

Alfredo Cuesta Infante

Preparar los dato

Ingeniería de

Selección del método de entrenamiento y ejecución

Proyecto ML de principio a fin

Alfredo Cuesta Infante

E. T. S. Ingeniería Informática Universidad Rey Juan Carlos

Master Univ. en Visión Artificial Reconocimiento de Patrones

Proyecto ML de principio a fin

Alfredo Cuesta Infante

proyecto ML

Preparar los datos

Ingeniería de características

Selección del método de entrenamiento y eiecución

Secuencia de un proyecto ML

Preparar los datos

Ingeniería de características

Proyecto ML de principio a fin

Alfredo Cuesta Infante

Secuencia de un proyecto ML

Preparar los datos

Ingeniería de características

Selección del método de entrenamiento y eiecución

Secuencia de un proyecto ML

Preparar los datos

Ingeniería de característica

eniería de acterísticas

de entrenamiento y ejecución

Figura: Diagrama de trabajo para la construcción de un clasificador [Fuente: Original de A. Cuesta]

- 1. Recoger conjunto de ejemplos (en color blanco)
- 2. Reservar un subconjunto de datos para *Test* (en color verde).
- 3. Separar el resto de los datos en dos:
 - Entrenamiento (en color azul)
 - Validación (en color rojo)
- 4. Casi siempre es necesario preprocesar los datos de entrenamiento.
 - Normalización de los datos (cambio de escala)
 - Importante: guardar tanto el método empleado como los parámetros que se utilizaron ya que será necesario para procesar los datos de validación y test del mismo modo.
- 5. Realizar *ingeniería de características* para lograr una representación de los datos con mayor potencial discriminante.
 - Recomendación: reducir la dimensionalidad a 2, que puede ser representado en un gráfico.
 - Resultado: conjunto de datos sobre el que se puede aplicar el algoritmo de aprendizaje.
 - Formato: tabla donde las filas son ejemplos y las columnas son características
- 6. Realizar varias iteraciones del entrenamiento con diferentes conjuntos de entrenamiento y validación
- 7. **Resultado**: clasificador con el que ya podemos probar los datos del conjunto de test, que serán los que den la medida del verdadero rendimiento.

Proyecto ML de principio a fin Alfredo Cuesta Infante

Secuencia de u proyecto ML

Preparar los datos

Ingeniería de características

Selección del método de entrenamiento y eiecución

Secuencia de un proyecto ML

Preparar los datos

Ingeniería de característica

Figura: Conjunto de '0' (izq.) y '1' (der.) proporcionado [Fuente: Original de A. Cuesta]

Figura: Fila #1 reordenada como matriz 28×28 del conjunto '0' (izq.) y del conjunto '1' (der.) [Fuente: Original de A. Cuesta]

Datos erróneos

- Alguna característica del vector de características en uno o varios ejemplos es incorrecta
- Hay que corregirlo de algún modo
- Ningún método funcionará bien con datos erróneos

Datos perdidos

- Falta alguna característica en el vector de características de uno o varios ejemplos
- ▶ Un dato perdido no es necesariamente un error
- Se puede corregir, pero también se puede dejar así (hay algoritmos que toleran conjuntos con datos perdidos)

Datos anómalos

- Alguna característica del vector de características en uno o varios ejemplos es anómala
- Esto no significa necesariamente que sea incorrecta
- No se debe corregir ni indicar.

de entrenamiento y ejecución

Validación cruzada

Figura: Ejemplo de 5-fold [Fuente: Anónimo @ internet]

principio a fin Alfredo Cuesta

Escalado lineal

$$Z_i = m \cdot (X_i - \overline{X}_i) + U_i \;, \quad \text{o bien} \quad Z_i = m \cdot (X_i - \underline{X}_i) + L_i,$$

Estandarización

$$Z_i = (X_i - \mu_i)/\sigma_i,$$

Ejemplo

Marca tiempo	Datos medidos				Datos e	scalados e	n [-1,+1]	Datos estandarizados		
	Sensor 1	Sensor 2	Sensor 3		Sensor 1	Sensor 2	Sensor 3	Sensor 1	Sensor 2	Sensor 3
0	3.200	17,5	2,25		-0,25	0,13	0,68	-1,45	0,28	1,00
250	4.050	14	2,18		0,57	-0,20	0,59	0,93	-0,74	0,74
500	4.050	11.33	1.83		0.57	-0.45	0.22	0.93	1.52	0,47
119500	3.700	19	2,20	-	0,23	0,27	0,62	-0,05	0,72	0,00
119750	3.875	16,75	2,10		0,40	0,06	0,51	0,44	0,06	0,48
Media =	3.718	16,53	1,96					0,00 🗸	0,00	0,00
Desv.=	358	3,43	0,29					1,00 🗸	1,00 🗸	1,00 🗸
Máx=	4.500	26,75	2,55		1,00 🗸	1,00 🗸	1,00 🗸			
Min=	2.425	5,50	0,70		-1,00 🗸	-1,00 🗸	-1,00			

Figura: Datos medidos, escalados a [-1,+1] y normalizados. [Fuente: Original de A. Cuesta]

Proyecto ML de principio a fin

Alfredo Cuesta Infante

proyecto ML

Preparar ios datos

Ingeniería de características

Selección del método de entrenamiento y ejecución

Secuencia de un proyecto ML

Preparar los datos

Ingeniería de características

Ingeniería de características

de entrenamiento y ejecución

Extracción de características

Figura: Proyección horizontal y vertical de un '0' y un '1'. [Fuente: Original de A. Cuesta]

Visualización de características seleccionadas

(c) W_1 vs. H_1 con fitter

(d) W vs. w_1 con jitter

Figura: Conjunto de entrenamiento seleccionando 2 características. [Fuente: Original de A. Cuestal

Visualización de características extraídas

Figura: Conjunto de entrenamiento extrayendo 2 características. [Fuente: Original de A. Cuesta]

Proyecto ML de principio a fin

Alfredo Cuesta Infante

Secuencia de u proyecto ML

Preparar los datos

Ingeniería de características

Selección del método de entrenamiento y ejecución

Secuencia de un proyecto ML

Preparar los datos

Ingeniería de característica

Expresividad de los clasificadores

Figura: Expresividad de diferentes métodos de clasificación. [Fuente: SciKit-Learn.org]

eiecución

Notación

- ▶ Cada ejemplo tiene un par de coordenadas (x, y)
- ▶ El clasificador se define por el vector de parámetros (w_0, w_1, w_2)

Superficie de decisión

- ▶ Es una recta que divide en dos el plano XY
- ▶ **Ec. implícita**: $w_0 + w_x x + w_y y = 0$.
- **Ec. explícita**: Despejando y obtenemos,

$$y=-\frac{w_x}{w_y}x-\frac{w_0}{w_y}.$$

Método de clasificación

- ► Descenso del gradiente estocástico (SGD)
- Clasificador basado en Vectores Soporte (SVC)

Selección del método de entrenamiento y

eiecución

Figura: Superficie de decisión lineal con dos métodos de clasificación ejecutado dos veces (arriba y abajo). (a) Descenso de gradiente estocástico (SGD) (b) Clasificador basado en vectores soporte (SVC). Se puede apreciar que SGD varía más que SVC. [Fuente: Original de A. Cuesta]

Mean: 0.92125

Standard deviation: 0.028118054698

Test: Hits = 371 (92.75%), Fails = 29 (7.25%)