091M4041H - Assignment Four Linear programming

张 帅 201828018670119 网络空间安全学院, UCAS

December 20, 2018

1 Linear-inequality feasibility

1.1 Problem Description

Given a set of m linear inequalities on n variables x_1, x_2, x_n , the linear inequality feasibility problem asks if there is a setting of the variables that simultaneously satisfies each of the inequalities.

Show that if we have an algorithm for linear programming, we can use it to solve the linear-inequality feasibility problem. The number of variables and constraints that you use in the linear-programming problem should be polynomial in n and m.

1.2 Solution

为了确定是否有可行解,可以设计一个辅助线性规划。设L是一个标准型的线性规划,引入一个新的变量 x_0 来构造如下面所示带有(n+1)个变量的辅助线性规划 L_{aux} 。

$$min -x_0$$

$$s.t \sum_{j=1}^{n} a_{ij}x_j - x_0 \le b_i for all i = 1, 2, ..., m$$

$$s_i \ge 0 for all i = 0, 1, 2, ..., n$$

当且仅当 L_{aux} 的最优解为0,即 x_0 为0时,原线性规划L有可行解。

证明:假设L有一个可行解 $\hat{x}=(\hat{x_1},\hat{x_2},\ldots,\hat{x_n})$,设解 $\hat{x_0}=0$,则 $\hat{x_0}$ 并上 \hat{x} 是 L_{aux} 的一个可行解,目标值为0;因为 $\hat{x}\geq 0$ 是 L_{aux} 的一个约束,又因为目标函数是最大化 $-x_0$,所以这个解对于 L_{aux} 肯定是最优的。

同理,假设于 L_{aux} 的最优解为0,也就是 $\hat{x_0} = 0$,同时,其他变量 \hat{x} 的值满足L的约束。 伪代码如下所示:

InitializeSimplex(A, b, c)

- 1: let l be the index of the minimum b_i ;
- 2: set B_I to include the indices of slack variables;
- 3: if $b_l \geq 0$ then
- 4: **return** $(B_I, A, b, c, 0)$;
- 5: end if
- 6: construct L_{aux} by adding $-x_0$ to each constraint, and using x_0 as the objective function;
- 7: let (A, b, c) be the resulting slack form for L_{aux} ;
- 8: //perform one step of pivot to make all b_i positive; ;
- 9: $(B_I, A, b, c, z) = \text{PIVOT}(B_I, A, b, c, z, l, 0);$
- 10: iterate the WHILE loop of SIMPLEX algorithm until an optimal solution to L_{aux} is found;
- 11: if the optimal objective value to L_{aux} is 0 then
- 12: return the final slack form with x_0 removed, and the original objective function of L restored;
- 13: else
- 14: return "infeasible";
- 15: end if

Figure 1: Linear-inequality feasibility

2 Interval Scheduling Problem

2.1 Problem Description

A teaching building has m classrooms in total, and n courses are trying to use them. Each course i(i=1,2,n) only uses one classroom during time interval $[S_i,F_i)(F_i>S_i>0)$. Considering any two courses can not be carried on in a same classroom at any time, you have to select as many courses as possible and arrange them without any time collision. For simplicity, suppose 2n elements in the set S_1, F_1, S_n, F_n are all different.

2.2 Solution

由题意可知,所给的2n个时间都是不同的,所以我们可以有2n个时间点,又因为题目要求每个时间段都最多只能有m门课同时上课,我们可以转化为每个时间点最多只有m门课在上课。比如在时间区间 $[S_k,F_k]$ 中,假设有如下的时间点 S_k,S_i,S_j,F_i,F_j,F_k ,若第k门课在上课,又因为第k门课的时间区间为 $[S_k,F_k)$,那么我们可以将第k门课的这些时间点设为(1,1,1,1,1,0),其中1表示第k门课目前正在上课,0表示不在上课。

首先,我们定义一些参数:

m, the maximum number of courses

$$c_i, i \in [1, n]$$

 $x_{ij}, i \in [1, n], j \in [1, 2n]$

$$c_i = \begin{cases} 1, & if \ course \ i \ is \ choosed \\ 0, & otherwise \end{cases}$$

$$x_{ij} = \begin{cases} 1, & course \ i \ occupy \ time \ point \ j \\ 0, & course \ i \ don't \ occupy \ time \ point \ j \end{cases}$$

因此问题可表达为:

$$\begin{array}{ll}
max & \sum_{i=1}^{n} c_{i} \\
s.t & \sum_{i=1}^{n} x_{ij} \leq m, for \ all \ j = 1, 2, \dots, 2n \\
c_{i}, x_{ij} & \in \{0, 1\}, i \in [1, n], j \in [1, 2n]
\end{array}$$

上面的公式也是标准型,不需要转换

2.3 Demo

设共有10门课,2个教室,每门课的时间如下所示:时间范围是[8,20],总计20个时间节点。

各课程的时间如下: ((14.5 18.5) (8.5 11.) (15.5 16.5) (11.5 18.) (10.5 15.) (12.5 16.) (10.14.) (12.19.) (13.13.5) (9.19.5)) 时间节点排序如下:

8.5 9. 10. 10.5 11. 11.5 12. 12.5 13. 13.5 14. 14.5 15. 15.5 16. 16.5 18. 18.5 19. 19.5 计算出每个课程占用的时间点如下所示:维度大小为2n*n:

0 1 2 3 4 5 6 7 8 9 10

 $2\; 0\; 1\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1$

 $3\ 0\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 1$

 $4\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 1$

 $5\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 1$

 $6\ 0\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1$

 $7\;0\;0\;0\;1\;1\;0\;1\;1\;0\;1$

```
17 1 0 0 0 0 0 0 1 0 1
  18 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1
  19\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 0\; 1
  20 0 0 0 0 0 0 0 0 0 0
  代码间附录A,运行结果如下,可见课程1、2、3、7、9被选中:
Solving LP relaxation...
GLPK Simplex Optimizer, v4.52
15 rows, 10 columns, 72 non-zeros
      0: obj = 0.000000000e+00
                                     infeas = 0.000e+00 (0)
      7: obj = 5.000000000e+00
                                    infeas = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
Integer optimization begins...
     7: mip =
                    not found yet <=
                                                     +inf
     10: >>>>
                  5.000000000e+00 <= 5.000000000e+00
                                                            0.0%
     10: mip = 5.000000000e+00 <=
                                           tree is empty
                                                            0.0%
INTEGER OPTIMAL SOLUTION FOUND
Time used:
             0.0 secs
Memory used: 0.2 Mb (183270 bytes)
Display statement at line 26
choose[1].val = 1
choose[2].val = 1
choose[3].val = 1
choose[7].val = 1
choose[9].val = 1
Model has been successfully processed
```

4

Figure 2: Interval Scheduling Problem

3 Gas Station Placement

3.1 Problem Description

Let's consider a long, quiet country road with towns scattered very sparsely along it. Sinopec, largest oil refiner in China, wants to place gas stations along the road. Each gas station is assigned to a nearby town, and the distance between any two gas stations being as small as possible. Suppose there are n towns with distances from one endpoint of the road being d_1, d_2, d_n . n gas stations are to be placed along the road, one station for one town. Besides, each station is at most r far away from its correspond town. d_1, d_2, d_n and r have been given and satisfied d_1, d_2, d_n , $0 < r < d_1$ and $d_i + r < d_{i+1}$ r for all i. The objective is to find the optimal placement such that the maximal distance between two successive gas stations is minimized.

Please formulate this problem as an LP.

3.2 Solution

由题意知,每个村镇都需要放置一个气站才能满足条件。首先定义参数:m,要求的最大最小距离 s_i ,表示第i个村镇放置的气站的位置 d_i ,表示第i个村镇的位置r,表示气站距离村镇的最大位置然后可以将问题表述成如下形式:

$$min \qquad m$$

$$s.t \qquad s_{i+1} - s_i \le m \qquad \qquad for \ all \ i = 1, 2, \dots, n-1$$

$$d_i - r \le s_i \le d_i + r \qquad \qquad for \ all \ i = 1, 2, \dots, n$$

$$s_i, m \ge 0 \qquad \qquad for \ all \ i = 1, 2, \dots, n$$

转换为标准型:

min m

$$s.t$$
 $s_{i+1} - s_i \le m$ for all $i = 1, 2, ..., n - 1$
 $-s_i \le r - d_i$ for all $i = 1, 2, ..., n$
 $s_i \le d_i + r$ for all $i = 1, 2, ..., n$
 $s_i, m \ge 0$ for all $i = 1, 2, ..., n$

3.3 Demo

设有10个村镇,它们与原点的距离为: [1] 10.0 [2] 25.89 [3] 39.48 [4] 58.42 [5] 69.72 [6] 82.82 [7] 99.6 [8] 116.77 [9] 128.52 [10] 147.85。

参数r设为5.0

代码在附录B,结果如下所示,可见,气站间的最大距离为14.21,气站的具体位置如图所示:

```
Problem data seem to be well scaled
Constructing initial basis...
Size of triangular part is 9
     0: obj = 0.000000000e+00
                                  infeas = 1.378e + 02
                                  infeas =
     9: obj =
                1.933000000e+01
                                            0.000e+00
     18: obj = 1.420555556e+01
                                  infeas =
                                            0.000e+00
OPTIMAL LP SOLUTION FOUND
Time used:
           0.0 secs
Memory used: 0.1 Mb (130040 bytes)
Display statement at line 20
m.val = 14.2055555555556
Display statement at line 21
station[1].val = 15
station[2].val = 29.2055555555556
station[3].val = 43.4111111111111
station[4].val = 57.6166666666667
station[5].val = 71.822222222222
station[6].val = 86.027777777778
station[7].val = 100.2333333333333
station[8].val = 114.4388888888889
station[9].val = 128.6444444444444
station[10].val = 142.85
Model has been successfully processed
zhangshuai@iZ25ir7xw0iZ zhangshuail$
```

Figure 3: Gas Station Placement

```
附录 A:
```

```
schedule.mod:
      #/ * Parameters * /
      param n>0 integer; #/ * the number of course * /
      param t>0 integer; #/ * the number of time point * /
      param m>0 integer; #/ * the maximum number of choosed course * /
      #/ * Sets * /
      set courses:=1..n;
      set timepoints:=1..t;
      #/* parametry */
      param occupy{timepoints,courses}>=0;
      #/* Decision variables * /
      #/ * variable * /
      var choose{courses} >=0 binary;
      #/* Objective function * /
      maximize Value: sum{j in courses} choose[j];
      #/ * Constraints * /
      s.t. ResourceConstraints{i in timepoints}: sum{j in courses} occupy[i,j] * choose[j] <=
      m;
      solve;
      display{j in courses: choose[j]=1} choose[j];
schedule.dat:
      param n:= 10;# / * the number of course * /
      param t:= 20;# / * the number of time point * /
      param m:= 2;# / * the maximum number of choosed course * /
      param occupy: 1 2 3 4 5 6 7 8 9 10:=
       10100000000
       20100000001
       3 0 1 0 0 0 0 1 0 0 1
       4010010101
       50000101001
       6000110101
       70001101101
       8 0 0 0 1 1 1 1 1 0 1
       90001111111
       10 0 0 0 1 1 1 1 1 0 1
       11 0 0 0 1 1 1 0 1 0 1
```

```
12 1 0 0 1 1 1 0 1 0 1
        13 1 0 0 1 0 1 0 1 0 1
        14 1 0 1 1 0 1 0 1 0 1
        15 1 0 1 1 0 0 0 1 0 1
        16 1 0 0 1 0 0 0 1 0 1
        17 1 0 0 0 0 0 0 1 0 1
        18 0 0 0 0 0 0 0 1 0 1
       19 0 0 0 0 0 0 0 0 1
       20 0 0 0 0 0 0 0 0 0 0;
       end;
附录 B:
gas.mod:
       param n>0 integer;
       param r>=0;
       set D:=1..n;
       set D1:=2..n;
       param distance{D} >=0;
       var m \ge 0;
       var station{D}>=0;
       minimize Value: m;
       s.t. stationConstraints{j in D1}:station[j]-station[j-1] <= m;</pre>
       s.t. distance1Constraints{i in D}:distance[i]-station[i] <= r;</pre>
       s.t. distance2Constraints{i in D}:station[i]-distance[i] <= r;</pre>
       solve;
       display:m;
       display{j in D}: station[j];
gas.dat:
       data;
```

param distance:= [1] 10.0 [2] 25.89 [3] 39.48 [4] 58.42 [5] 69.72 [6] 82.82 [7] 99.6 [8]

param n:=10; param r:=5.0;

116.77 [9] 128.52 [10] 147.85;end;