- Predator phylogenetic diversity decreases predation rate
 via antagonistic interactions
- A. Andrew M. MacDonald, Diane S. Srivastava, Gustavo Q. Romero

4 Introduction

- $_{\tt 5}$ We test three related hypotheses:
- 1. species co-occurance: closely-related predators occur together more frequently than less-related predators, due to their similar habitat requirements. Additionally, very closely related species never co-occur because they are too similar.
- 2. diet similarity: similarity in diet (as measured by feeding trials) decreases with phylogenetic distance.
- 3. ecosystem-level effects: similarity in the effect of predators on whole ecosystems declines with phylogenetic distance. Additionally, the non-additive effect of predators will have a greater absolute value when their phylogenetic diversity is larger.

14 Methods

15 Results

metabolic capacity and phylogenetic distance

17 Predators which are closer in the phylogeny are not more likely to occur in the same bromeliads

18 $(F_{1,89}=0.7031, P=0.404)$.

19 diet similarity and phylogenetic distance

²⁰ All predators showed a very generalist diet breadth. However, more phylogenetically distinct

21 predators preferred slightly more distant prey, as measured by euclidian distance between

feeding trial outcomes $(F_{1,19}=4.6038,P=0.045)$ Regression was weighted by the number of

23 trials conducted.

²⁴ Ecosystem-level effects and phylogenetic distance

²⁵ All increases in predator phylogenetic diversity beyond damselflies resulted in a reduction of

26 prey mortality.

27 Figures

28 Discussion

²⁹ Works Cited

Figure 1: FALSE

Figure 2: FALSE

Figure 3: FALSE

Figure 4: FALSE