Utility and Privacy in Object Tracking from Video Stream using Kalman Filter

Niladri Das & Dr. Raktim Bhattacharya

Dept. of Aerospace Engineering, Intelligent Systems Research Laboratory, Texas A&M University, College Station, Texas, USA

June 27, 2020

Table of Contents

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

Introduction

We consider the problem of maintaining privacy and utility while tracking an object in a video stream using Kalman filtering.

- ► Privacy: localization accuracy of an object will not improve beyond a certain level.
- ► Utility: localization accuracy of the same object will always remain under a certain threshold.

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

Contributions

- ► We are not aware of any prior works related to privacy and utility in object tracking using filtering from a video stream.
- ► We proposed two techniques:
 - ► Method 1: Privacy ensuring
 - ► Method 2: Utility ensuring

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

We model the object detection process from a video frame using a linear discrete time stochastic systems $\bar{\mathcal{S}}$ described by the model of the form

$$\boldsymbol{x}_{k+1} = \boldsymbol{F}\boldsymbol{x}_k + \boldsymbol{w}_k, \tag{1a}$$

$$oldsymbol{y}_k = oldsymbol{H} oldsymbol{x}_k + oldsymbol{n}_k,$$
 (1b)

- \triangleright k = 0, 1, 2, ... represents the frame index
- $m{v}_k \in \mathbb{R}^{n_w}$ and $m{n}_k \in \mathbb{R}^{n_y}$ are the process and measurement noise
- $lackbox \{w_k\}$ and $\{n_k\}$ are zero-mean, Gaussian, independent white random processes
- \blacktriangleright $\boldsymbol{w}_k \sim \mathcal{N}(0, \boldsymbol{Q}), \boldsymbol{n}_k \sim \mathcal{N}(0, \boldsymbol{R})$
- $lackbox{ }R$ is a diagonal matrix. Inverse of R is the precision matrix

Kalman Filtering

The optimal state estimator for the stochastic system $\bar{\mathcal{S}}$ is the Kalman filter, defined by

$$\begin{split} \boldsymbol{K}_k &= \boldsymbol{\Sigma}_k^- \boldsymbol{H}^T \Big[\boldsymbol{H} \boldsymbol{\Sigma}_k^- \boldsymbol{H}^T + \boldsymbol{R} \Big]^{-1}, & \text{(Kalman Gain)} \\ \boldsymbol{\mu}_k^- &= \boldsymbol{F} \boldsymbol{\mu}_{k-1}^+, & \text{(Mean Propagation)} \\ \boldsymbol{\Sigma}_k^- &= \boldsymbol{F} \boldsymbol{\Sigma}_{k-1}^+ \boldsymbol{F}^T + \boldsymbol{Q}, & \text{(Covariance Propagation)} \\ \boldsymbol{\mu}_k^+ &= \boldsymbol{F} \boldsymbol{\mu}_{k-1}^+ + \boldsymbol{K}_k (\boldsymbol{y}_k - \boldsymbol{H} \boldsymbol{\mu}_k^-), & \text{(Mean Update)} \\ \boldsymbol{\Sigma}_k^+ &= (\boldsymbol{I}_{n_x} - \boldsymbol{K}_k \boldsymbol{H}) \boldsymbol{\Sigma}_k^-, & \text{(Covariance Update)} \\ \boldsymbol{\Sigma}_0^+ &= \boldsymbol{\Sigma}_0, & \text{(Initial State Covariance)} \end{split}$$

- $\Sigma_k^-, \Sigma_k^+ \in \mathbb{R}^{n_x \times n_x}$: the prior and posterior error covariance in frame k.
- $m{\mu}_k^-, m{\mu}_k^+ \in \mathbb{R}^{n_x}$: the prior and posterior mean estimate of the true state $m{x}_k$.

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

Utility Problem

- ► Utility of the object detection system can be specified by an upper bound on the steady-state estimation error due to filtering.
- We are interested in the measurement noise R that ensures the steady state prior covariance matrix to be upper-bounded by a prescribed positive definite matrix Σ^d_{∞} for the detection system modeled in eqn. 1.
- ightharpoonup The parameter R is a measure of maximum inaccuracies allowed in the detection system.

Privacy Problem

- Privacy requirement is centered around a particular frame (say $k+1^{\rm th}$). It is specified by a lower bound on the estimation error Σ_{k+1}^+ after the Kalman update, for that particular frame.
- Privacy scenario differs from the utility case, where we focus on the steady-state error.
- We are interested in calculating R such that the posterior error covariance matrix Σ_{k+1}^+ is lower-bounded by a prescribed positive definite matrix Σ_{k+1}^d .
- The parameter R is a measure of minimal noise that needs to be artificially added to the $k+1^{\text{th}}$ image frame to ensure privacy with respect to accurate localization.

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

Theorem

Given Σ^d_{∞} , the desired steady-state error variance, the optimal algorithmic precision $\Upsilon:=R^{-1}$ that satisfies $\Sigma_{\infty} \preceq \Sigma^d_{\infty}$ is given by the following optimization problem,

$$\min_{\mathbf{\Upsilon}} \operatorname{tr} \left[\mathbf{W} \mathbf{\Upsilon} \mathbf{W}^{T} \right] \\
s.t. \quad \begin{bmatrix} \mathbf{M}_{11} & \mathbf{F} \mathbf{\Sigma}_{\infty}^{d} \mathbf{H}^{T} \\ \mathbf{H} \mathbf{\Sigma}_{\infty}^{d} \mathbf{F}^{T} & \mathbf{L} + \mathbf{L} \mathbf{\Upsilon} \mathbf{L} \end{bmatrix} \succeq 0,$$
(2)

where

$$\begin{split} \boldsymbol{\Upsilon} \succeq 0, \ \boldsymbol{L} := \boldsymbol{H} \boldsymbol{\Sigma}_{\infty}^{d} \boldsymbol{H}^{T}, \\ \boldsymbol{M}_{11} := \boldsymbol{\Sigma}_{\infty}^{d} - \boldsymbol{F} \boldsymbol{\Sigma}_{\infty}^{d} \boldsymbol{F}^{T} - \boldsymbol{Q} + \boldsymbol{F} \boldsymbol{\Sigma}_{\infty}^{d} \boldsymbol{H}^{T} \boldsymbol{L}^{-1} \boldsymbol{H} \boldsymbol{\Sigma}_{\infty}^{d} \boldsymbol{F}^{T}, \end{split}$$

with $\mathbf{\Upsilon} \in \mathbb{R}^{n_y \times n_y}$ and $\mathbf{W} \in \mathbb{R}^{n_y \times n_y}$, is user defined.

Optimal R for Utility II

- ▶ We assume complete detectability of (F, H) and stabilizability of $(F, Q^{1/2})^1$ for eqn. 1.
- ▶ This ensure existence and uniqueness of the steady state prior covariance matrix Σ_{∞} (for a fixed R) for the corresponding DARE.
- ▶ The linear matrix inequality (LMI) in eqn. 2 gives the feasible set of $R := \Upsilon^{-1}$.
- We introduced the convex cost function $\operatorname{tr}\left[\boldsymbol{W}\boldsymbol{\Upsilon}\boldsymbol{W}^{T}\right]$ to calculate the most economical choice of \boldsymbol{R} .

¹Brian DO Anderson and John B Moore. "Optimal filtering". In: *Englewood Cliffs* 21 (1979), pp. 22–95.

The minimal steady-state covariance of the estimate that any object detection setup can achieve modeled as in eqn. 1, is the solution to the following DARE

$$\Sigma_{\infty} = F \Sigma_{\infty} F^{T} + Q - F \Sigma_{\infty} H^{T} (H \Sigma_{\infty} H^{T})^{-1} H \Sigma_{\infty} F^{T}$$
(3)

This provides a theoretical lower bound on the prescribed Σ^d_∞ that we can achieve.

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

Theorem

Given Σ_{k+1}^d , the desired predicted error variance at time k+1, the optimal measurement noise R_p that satisfies $\Sigma_{k+1}^- \succeq \Sigma_{k+1}^d$ for a known Σ_k^- , is given by the following optimization problem,

$$\left. \begin{array}{ll} \min_{\boldsymbol{R}_{p}} \operatorname{tr} \left[\boldsymbol{W} \boldsymbol{R}_{p} \boldsymbol{W}^{T} \right] \text{ subject to} \\ \left[\boldsymbol{M}_{11} \quad \boldsymbol{L} \\ \boldsymbol{L}^{T} \quad \boldsymbol{L}_{2} + \boldsymbol{R}_{p} \right] \succeq 0, \end{array} \right\} \tag{4}$$

$$m{R}_{m{p}}\succeq 0, \; m{L}_1:=m{F}m{\Sigma}_k^-m{H}^T, \; m{L}_2:=m{H}m{\Sigma}_k^-m{H}^T+m{R}_{m{s}} \; ext{and} \ m{M}_{11}:=-m{\Sigma}_{k+1}^d+m{F}m{\Sigma}_k^-m{F}^T+m{Q},$$

with $R_p \in \mathbb{R}^{n_y \times n_y}$. The variable $W \in \mathbb{R}^{n_y \times n_y}$, is user defined .

- ▶ The LMI in eqn. 4 gives the convex feasible set for R_p that ensures lower bound on the posterior covariance in the k+1th frame.
- $lackbox{lack}$ We impose a cost convex cost function ${f tr}\left[{m W}{m R}_p{m W}^T
 ight]$ to calculate an optimal ${m R}_p$.

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

Figure 1: Time evolution of an object with darker shades representing more recent location.

Dynamics in Pixels

The dynamics in the pixel frame from frame k to k+1

$$\underbrace{\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ \delta x_{k+1} \\ \delta y_{k+1} \end{bmatrix}}_{\boldsymbol{x}_{k+1}^p} = \underbrace{\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\boldsymbol{F}} \underbrace{\begin{bmatrix} x_k \\ y_k \\ \delta x_k \\ \delta y_k \end{bmatrix}}_{\boldsymbol{x}_k^p} + \boldsymbol{w}_k, \tag{5}$$

$$\boldsymbol{y}_{k} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}}_{\boldsymbol{H}} \underbrace{\begin{bmatrix} x_{k} \\ y_{k} \\ \delta x_{k} \\ \delta y_{k} \end{bmatrix}}_{\boldsymbol{h} + \boldsymbol{n}_{k}, \tag{6}$$

where $oldsymbol{x}_k^p$ is the pixel coordinates of the moving object in the k^{th} frame

- ► Total of 500 frames in this video with 425 rows and 570 columns in each frame.
- ▶ The pair (F, H) is completely detectable and $(F, Q^{1/2})$ is completely stabilizable, which ensures existence and uniqueness of positive solution to the induced DARE due to Kalman filtering.

A homography exists between the pixel coordinates (x^p) and the spatial coordinates (x). The homography in this numerical problem is represented as an affine map

$$x^\mathsf{p} = \underbrace{egin{bmatrix} 0 & rac{n_r}{4} \ -rac{n_c}{4} & 0 \end{bmatrix}}_{U} x + egin{bmatrix} rac{n_r}{2} \ rac{n_c}{2} \end{bmatrix}.$$

The affine map induces a covariance relation $\Sigma_{x^px^p} = U\Sigma_{xx}U^T$ from the pixel to the spatial coordinates.

- The theoretical lower bound on utility in the pixel coordinates for $Q = \operatorname{diag}([0.1 \ 0.1 \ 50 \ 50])$ is $\Sigma_{xp,xp}^{\text{lb}} = \operatorname{diag}([54.891 \ 54.891])$
- ▶ If we allow for less precise filtering in pixel coordinates which can ensure a error covariance in the estimate of $1.5 \Sigma_{xx}^{\text{lb}}$, the convex optimization problem yields an optimal precision requirement of

$$\Upsilon^* = diag([0.660 \ 0.660])$$

with $oldsymbol{W}$ chosen to be identity.

Figure 2: Error covariance averaged over 500 MC runs

Privacy Results I

- ightharpoonup We assume that the measurement model has inherent sensor and/or object detection zero mean Gaussian noise (n_s) .
- ightharpoonup We add a synthetic zero mean Gaussian noise (n_p) to the image to ensure privacy.
- ▶ The noise intensity $\mathbb{E}[\boldsymbol{n}_s \boldsymbol{n}_s^T] = \boldsymbol{R}_s$ is known and $\mathbb{E}[\boldsymbol{n}_p \boldsymbol{n}_p^T] = \boldsymbol{R}_p$ is our design parameter.

Figure 3: Image frames with privacy in the region A

When the tracked red object is in **A** in the $t+1^{\text{th}}$ frame, we want the location estimation error $\Sigma_{t+1}^- \succeq \Sigma_{t+1}^d$.

Privacy Results III

- ▶ We choose Σ_{t+1}^d to be $\mathbf{diag}([54.891\ 54.891])$ in the pixel frame.
- $lackbox{With } \Sigma_t^-$, our proposed privacy theorem yields $R_p = \mathbf{I}_2$, with W chosen to be identity. (assuming $R_s = \mathbf{0}$)
- From a data sharing perspective, we would share the image frame at time point t+1 with added noise of intensity \mathbf{R}_p .

- 1. Introduction to the problem
- 2. Contributions
- 3. System model
- 4. Utility and Privacy Problems
- 5. Optimal R for Utility
- 6. Optimal R for Privacy
- 7. Numerical Results
- 8. Conclusion

Conclusion

- We addressed two questions related to privacy and utility for moving object detection from a video stream using the Kalman filter.
- We modeled them as convex optimization problems based on LMIs.
- ► The proposed framework was implemented on a numerical problem for two scenarios.
 - First, the purpose was to track an object with an upper bound on estimation error while ensuring utility.
 - Second, we calculated the minimal noise that needs to be injected to a frame to ensure desired privacy prescribed by a lower bound on the localization error of the object.

Thank You