THE ROLE OF STRESS-INDUCED MUTATION IN THE EMERGENCE OF COMPLEX ADAPTATIONS

Yoav Ram & Lilach Hadany Tel-Aviv University

SIDEER Symposium 2013 Sede Boqer, Israel

Acknowledgments

Dr. Lilach Hadany
https://sites.google.com/site/hadanylab

The George S.
Wise Faculty of Life
Sciences

The Department of Molecular Biology and Ecology in Plants

Amalia Biron-Zigle Foundation

Tel-Aviv University

Presentation & code available online at: http://sideer2013.yoavram.com

Mutation

"Mutations ... supply the raw materials for evolution" Dobzhansky, Genetics and Origin of Species 1937

"Mutation is the ultimate source of variation on which natural selection acts"

Lynch, 2007

Variation in mutation rates

Between species

"Noticeable" mutations per genome per generation

Bacteria (*E. coli*): 0.003 (Drake 1991)

Flies (*D. melanogaster*): 0.455 (Keightley et al. 2009)

Mammals (H. sapiens): 41 (Lynch PNAS 2010)

Variation in mutation rates

Between populations

Mutation rate of 69 natural isolates of E. coli -

Variation in mutation rates

Within individuals

Stress-induced mutation

E. coli:

Error prone DNA polymerases are induced by stress responses:

- SOS response
- Carbon starvation
- DNA damage

Evidence

Bacteria

Escherichia coli

Bacillus subtilis

Pseudomonas putida

Pseudomonas aeruginosa

Listeria monocytogenes

Staphylococcus aureus

Mycobacterium tuberculosis

Bjedov et al. 2003

Sung & Yasbin 2002

Kivisaar 2010

Weigand & Sundin 2012

van der Veen et al. 2010

Cirz et al. 2007

Boshoff et al. 2003

Eukaryote

Chlamydomonas reinhardtii

Saccharomyces cerevisiae

Caenorhabditis elegans & briggsae

Drosophila melanogaster

Human cancer cells

Goho & Bell 2000

Hall 1992; Heidenreich 2007

Matsuba et al. 2012

Sharp & Agrawal 2012

Hara et al. 2005; Bristow & Hill 2008

Evolution of stress-induced mutation

- Null Hypothesis: mutation is a by-product of stress
- Alternative, non-adaptive hypotheses:
 - Cost of DNA replication fidelity (Dawson 1998)
 - Drift barrier hypothesis (Lynch 2010, 2011)
- Adaptive hypothesis:
 - "...the evolutionary consequence of SIM is that bacteria are able to adapt rapidly to stressful environments..."

MacLean et al. 2013

Research overview

- Evolution of stress-induced mutation
 - Deterministic model for a constant environment
 - Stochastic model for a changing environment

- Consequences of stress-induced mutation
 - Emergence of complex adaptations

Constant environment, steady state

x - number of deleterious mutations

 f_x - frequency

 ω_{x} - fitness

 m_x - mutation probability

 δ - deleterious mutation β - beneficial mutation

Model predictions: The unfit should hypermutate

$$sign\frac{\partial \overline{\omega}}{\partial m_{\chi}} = sign\left(\overline{\omega} - \omega_{\chi}\right)$$

Increasing the mutation rate of individuals with below average fitness increases the population mean fitness

Advantage to SIM

- NM Non-mutators
 - constant <u>low</u> rate of mutation
- CM Constitutive mutators
 - Constant <u>high</u> rate of mutation
- SIM Stress-induced mutators
 - Low mutation rate when well-adapted
 - High mutation rate when <u>stressed</u>

Changing environment, competitions

SIM wins all competitions

Evolution of stress-Induced mutation

Part I Summary

- Stress-induced mutation rate favored by selection over constant mutation rate
- Both in changing and constant environments
- Due to its effect on evolvability

Smooth fitness landscape

Fitness: ab (1-s)² Ab 1-s aB 1-s AB 1

Rugged fitness landscape

Fitness: ab 1

Ab 1-s

aB 1-s

AB 1+s

Rugged landscape examples

Criteria

- Two traits must change for adaptation
- Changing a single trait leads to decreased fitness

Wings and bones

- Flying with heavy bones is wasteful
- Walking and climbing with light bones is risky

New carbon source

- Two new proteins required, but each is costly on its own:
 - Pump to transport new sugar into cell
 - Enzyme to metabolize sugar

Signaling and language

- Broadcasting exposes you to predation
- Building receivers is costly and noisy

Xiao et al. 2011

Shifting to a higher fitness peak

Fitness:

ab 1

Ab 1-s

aB 1-s

AB 1+s

Adaptation on fitness landscapes

Stress-induced mutation on rugged landscapes

Mutation rate increased in individuals below the peaks

Appearance of a double mutant

The probability of the appearance of a double mutant

Non-mutator:

$$e^{-U}\frac{\mu^2}{s}(2+s-U)$$

Stress-induced mutator:

$$e^{-U}\frac{\mu^2}{s}(2\tau e^{-U(\tau-1)}+s-U)$$

SIM > NM

Fixation of a double mutant

The probability of the fixation of a double mutant

Non-mutator:

 $\approx 2s$

Stress-induced mutator:

$$\approx 2 - 2 \frac{1 - \frac{U^2}{s} (\tau - 1)(1 - s)}{1 + s}$$

SIM > NM

Stress-induced mutation reduces adaptation time

Total adaptation time = Waiting time / fixation probability

Evolutionary advantages of stressinduced mutation

Part I – Evolution of stress-induced mutations:

- Stress-induced mutation rate favored by selection over constant mutation rate
- Both in changing and constant environments
- Due to its effect on evolvability

Part II – Evolution with stress-induced mutation

- Stress-induced mutation accelerates adaptation on rugged fitness landscapes
- The higher rate of hypermutation, the faster the adaptation

 - **y** @yoavram
 - ♠ http://www.yoavram.com

Additional slides

2013SIDEER Yoav Ram 28

Total adaptation time

Competition before fixation

The time before a double mutant starts fixation is long

SIM outcompetes CM

- During this time stress-induced mutators outcompete constitutive mutators
- Stress-induced mutators co-exist with non-mutators

