## עבודה מסכמת במתמטיקה בדידה 2

שחר פרץ

## 2024 באוקטובר 5

## Combinatorics

...... (1) ......

(א) **שאלה:** כמה סידורים של חבילה מלאה של 52 קלפים יש שבהן ארבעת האסים, אינם מופיעים ברצף אחד אחרי השני? **תשובה:** ראשית כל, נתבונן ב־52 הסידורים האפשריים של החפיסה כולה. עתה נתבונן בקבוצת המשלים – כמות האפשרויות לחפיסות בהן ישנם 4 אסים רצופים. נתייחס לרצף כמו קלף גדול יחודי בפני עצמו, ולכן, מכיוון שארבעת האסים יחשבו כאחד, יהיו לחפיסות בקבוצת לסדר חלק זה. לסדר הפנימי של האסים עצמם יהיה 4 אפשרויות. סה"כ מכלל הכפל  $48 \cdot 8 \cdot 8$  אפשרויות בקבוצת המשלים. סה"כ:

$$\mathscr{A}nswer = 52 - 49!4!$$

(ב) **שאלה:** כמה סידורים של חבילה מלאה של 52 קלפים יש בהן כל 4 קלפים מאותו הסוג (13 סוגים שונים) אינם מופיעים ברצף אחד אחרי השני?

תשובה: נגדיר  $a_i$  כמות האפשרויות לסידור בו i רצפים של 4 תווים. מובן כי  $i \leq i \leq \frac{52}{4} = 13$  (לא ייתכנו רצפים בסדר גודל הארוך יותר מהחפיסה כולה).

כדי למצוא את  $a_i$ , נבחר את הרצף הראשון מבין 13 האפשרויות. ואת השני מבין 12 האפשרויות שנותרו, ונמשיך הלאה. באופן דומה מדי למצוא את  $a_i$  לסעיף הקודם, לכל אחד מהסדרות האלו נתייחס קקלף "גדול" יחודי אחד, לכל אחת מ־i הסדרות סדר פנימי של  $a_i$ , וסה"כ סדר כולל של ! $a_i$  לכל אחד מהסדרויות ( $a_i$ ). על הקלפים שנוציא החוצה, ו־ $a_i$  ל"קלף גדול" כמוהו לסדרה עצמה). סה"כ:

$$a_i = i(52 - 3i)! 4!$$

בכלליות:

ומעקרון ההכלה וההדחה, אם  $A_i$  קבוצת כל הרצפים באורך 4 מסוג נתון, ומשום שאין הגבלה על הכלליות בבחירת קלף מסויים, ומעקרון ההכלה וההדחה, אם I=[n] כך ש־I=[n] קבוע בגודל I=[n] זהה בערכו לכל I=[n] כך ש־I=[n] קבוע בגודל I=[n] נקבל:

...... (2) ......

 $x \in \mathbb{N}$  לכל  $\langle x+1,y+r \rangle$  ננוע אך ורק לנקודה  $\langle x,y \rangle$ לכל אמ"מ בכל צעד מי

 $\langle n,k \rangle$ ל־ $\langle 0,0 \rangle$ ל מימים מימים מסלולים מסלולים אאלה: כמה מסלולים חוקיים קיימים מ

תשובה: יהי מסלול  $\forall i \in [n]. \exists x,y \in \mathbb{N}. a_i = \langle x,y \rangle$  כאשר כאשר מר(0,0) מ־(0,0) מ־(0,0) מ־(0,0) מ־(0,0) מ־(0,0)

$$\forall i \in [n-1].\pi_1(a_i) - \pi_1(a_{i+1}) = 1 \land \exists r \in \mathbb{N}.\pi_2(a_{i+1}) - \pi_2(a_i) = r$$

ולכן נוכל להגדיר מיפוי:

$$\forall i \in [n-1]. a_k \mapsto \pi_2(a_{i+1}) - \pi_2(a_i) =: r_i \in \mathbb{N}$$

ולכן:  $a_n = \langle n, k \rangle$ , מהגדרת המסלול, מהגדרת המיפוי תמונת המיפוי תמונת המיפוי ועל לקבוצת המסלול,

$$\sum_{i=1}^{n-1} r_i = \sum_{i=1}^{n-1} \pi_2(a_i) - \pi_2(a_{i+1})$$

$$= \pi_2(a_1) - \pi_2(a_2) + \pi_2(a_2) - \pi_2(a_3) + \pi_2(a_3) - \dots + \pi_2(a_i) - \pi_2(a_i) + \dots + \pi_2(a_n)$$

$$= \pi_2(a_1) + \pi_2(a_n) = 0 + k = k$$

 $\pi_2(a_n)=$ בכך, התייחסנו לכל ההגבלות – חוקיות המסלול באורך n (מובעת בהיותה חח"ע ועל לקבוצה המאפשרת זאת), והיותו נגמר ב־ $\sum r_i=k$  (הכרחי ומספיק להיות סכום i). נקבע את גודל הסדרות התמונה המקיימות זאת. ידוע שכמות האפשרויות לסכום מספרים יהיה i0, ולכן סה"כ זהו פתרון הבעיה. נסכם:

$$\mathscr{A}nswer = S(k, n-1)$$

(ב) **שאלה:** כמה מסלולים חוקיים קיימים מ־ $\langle n,k \rangle \to \langle 0,0 \rangle \to \langle 0,0 \rangle$ , כך שאף צעד בהם אינו מסתיים בנקודה  $\langle n,k \rangle$ ? **תשובה:** באופן דומה לסעיף הקודם, כמות הצעדים מ־ $\langle 0,0 \rangle \to \langle 2n,2k \rangle$  תהיה  $\langle 2n,2k \rangle = S(2k,2n-1)$ . נחפש את קבוצת המשלים. בהינתן מסלול שעובר בין הראשית ל־ $\langle 2n,2k \rangle = S(k,n) = S(k,n)$  הוא יכלל בקבוצת המשלים אמ"מ הוא עבור ב־ $\langle n,k \rangle \to \langle 2n,2k \rangle = S(k,n)$  ואז עוד מסלול  $\langle x,y \rangle \to \langle 2n,2k \rangle = S(k,n-1)$ . המסלול האחרון שקול לבעיה הראשונה בעבור טרנספורמציה איזומטרית של קבוצת המשלים אלמעשה תבהיר כי פתרון שתי הבעיות הוא  $\langle n,k \rangle = S(k,n-1)$ , וכאשר נחבר אותם יחדיו, מכלל הכפל, גודל קבוצת המשלים הוא סה"כ  $\langle x,y \rangle \to S(k,n-1)$ ?

 $y_1+2\leq y_2$  מקיים  $\langle x_1,y_1
angle o \langle x_2,y_2
angle$  בעד צעד  $\langle x_2,y_2
angle$  כך שכל אינים מכולים קיימים מכולים מכולים מכולים אינים:

$$y_1 + 2 \le y_2 \iff \pi_2(a_i) - \pi_2(a_{i+1}) \le -2 \iff \underbrace{\pi_2(a_{i+1}) - \pi_2(a_i)}_{=r_i} \ge 2$$

ואכן ננסה למצוא את כמות הסדרות  $\{r_i\}_{i=1}^{n-1}$  כך ש־i=1, כך ש־i=1, לפי השקילות שהוכחה בסעיף (א). לבעיה זו קיימת הכן ננסה למצוא את כמות הסדרות i=1, עדיה על בשים עני כדורים בעיה שקולה ידועה, היא חלוקת i=1 כדורים לידורים בשכל תא לפחות 2 כדורים. אזי, ניאלץ להתחיל מלשים שני כדורים בכל תא, וסה"כ, קיבלנו: i=1 בעיה את בידורים את i=1 בעיה מחלק בין התאים. סה"כ, קיבלנו:

$$\mathscr{A}nswer = S(k-2n-2,n-1)$$

...... (3) .....

יהיו n כדורים ממוספרים. יש לסדרם ב־n תאים ממוספרים, כאשר בכל תא יימצא בדיוק כדור אחד. לכל  $i \leq n-1$  עסור להכניס את הכדור ה־i, בעוד אין מגבלה על הכדור ה־i. כמות האפשרויות לסידורים כאלו תהיה i, בעוד אין מגבלה על הכדור ה-i. כמות האפשרויות לסידורים כאלו תהיה

 $D_m$  בעזרת F(n) אם אלה: הביעו (א)

תשובה: נפלג למקרים.

- . אם הכדור ה־i נמצא בתא הרi, אז יש עוד n-1 תאים נותרים בהם אי־אפשר שכדור יהיה בתא המתאים לו מבחינת מספר.  $D_{n-1}$  אפשרויות.
  - . אפשרויות הכדור ה-i לא נמצא בתא הרi, אז כל n הכדורים לא נמצאים בתא המתאים להם, כלומר יש n אפשרויות. סה"כ מכלל החיבור:

$$\mathscr{A}nswer = D_n + D_{n-1}$$

(ロ)

......(4) ......

(א) הוכיחו באופן קומבינרטורי:

$$\sum_{i=0}^{n-1} (-1)^i \binom{n}{i} \binom{n+r-i-1}{r} = \binom{r-1}{n-1}$$

אין לי מושג...

| של המשוואה: | שמאל | לאגף | סכימה | ללא | ביטוי | מצאו | (D) |
|-------------|------|------|-------|-----|-------|------|-----|
|-------------|------|------|-------|-----|-------|------|-----|

$$\sum_{k=2}^{n} k(k-1) \binom{n}{k} = n(n-1) \cdot 2^{n-2}$$

**סיפור:** מתוך n-1 איברים, קבוצה של לפחות שני איברים, ומתוכה נבחר שניים שונים ונסמנם בכחול ובירוק. כמה אפשרויות יש לכך?

אגף ימין: נבחר כדור כחול (n אופציות) ולאחריו ירוק (n-1 אופציות). עתה, בעבור n-2 האיברים הנותרים, נשייך להם את המספר אגף ימין: נבחר כדור כחול (n אופציות) ולאחריו ירוק לכך, יהיו n-1 אפשרויות. סה"כ מכלל הכפל  $n(n-1)2^{n-2}$  אפשרויות.  $n(n-1)2^{n-2}$  אפשרויות.

אגף שמאל: נניח שגודל הקבוצה הוא  $2 \le k \le n$  (בהכרח גודל הקבוצה גדול מ־2 כי קיים מה כדור כחול וירוק) – לבחירה מתוך קבוצה שמאל: מאילו, נבחר אחד כחול k אפשרויות) ואחד קבוצה  $\binom{n}{k}$  אופציות. לכן, מתוך k המיברים שיש לנו, נבחר k איברים לשים בקבוצה. מאילו, נבחר אחד כחול k אפשרויות) וסה"כ מכלל הכפל k הכפל k בעבור k נתון, ומכלל החיבור k אפשרויות) וסה"כ מכלל הכפל k ומני במרויות (k בעבור k נניח שמאר במרויות (k בעבור k ומכלל החיבור (k בעבור k בעבור k נניח שמאר בחירה מתוך (k בעבור k בעבור k נניח שמאר בחירה מתוך (k בעבור k בעבור k נניח שמאר בחירה מתוך (k בעבור k בעבור k נניח שמאר בחירה מתוך (k בעבור k בעבור k נניח שמאר בחירה מתוך (k בעבור k בעבור

| $\dots \dots $ |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Graph Theory                                                                                                         |  |  |  |  |  |  |  |
| (1)                                                                                                                  |  |  |  |  |  |  |  |

## נוכיח או נפריך קיום גרף מתאים:

- $(1,3\times3,5)$  נניח מדרגות 2,3,3,3,4,5 צמתים מדרגות 1,3,3,3,4,5 נניח בשלילה שקיים גרף כזה, אזי קיים גרף בעל 5 צמתים מדרגה זוגית (ובפרט אינו 5) של צמתים בעלי דרגה אי זוגית.
- 2. 6 צמתים מדרגות 5,3,3,5,5. נפריך קיום. נניח בשלילה קיום גרף כזה. אזי, קיים שני קודודים מדרגה 5, היא פחותה ב־1 מכמות הצמתים בגרף כולו ומשום זה לא יכול להכיל קשת בינו צומת לבין עצמה, הם יפנו לכל שאר הצמתים. אזי, הצומת v שקיים הצמתים בגרף כולו ומשום זה לא יכול (שדרגתן v), וסה"כ v1 וזו סתירה.
  - . 3 צמתים מדרגות 1,3,3,3,4,4 נוכיח קיום.

