

به نام خدا

یادگیری ماشین

آرش عبدی هجراندوست arash.abdi.hejrandoost@gmail.com

> دانشگاه علی و صنعت دانشکده مهندسی کامپیوتر نی<u>ی سال اول ۱۴۰۱–۲۰۹۲</u>

مدل های بدون پارامتر

Nonparametric Models

🗙 مدلهای با یارامتر ملاصه سازی داده ها در فرمی ساده

درخت تصمیه

رگرسون خطی (لمِستیک–پرسیترون) 🔾

🗙 حجم داده بالا

🗙 مرده خود نظر بدهند! نماینده نداشته باشند!

Instance based – یادگیری مبتنی بر نمونه

Memory based – یادگیری مبتنی بر مافظه ×

تزدیک نرین همساده(ا) **Nearest-Neighbor**

Lookup Table X

نزدیک ترین همسایه K 🔀

🗙 دسته پندی:

نظر اکثریت (ترمیم) تعداد فرد)

🗙 تقریب تابع:

میانگین 🔾

دانشگاه، علی صنعت

میانه Ο

(مزیت؟)

○ تقریب تابع فطی یا ...

piecewise linear function

معيار فاصله

(Minkowski فاصله) عنرم های X

$$L^{p}(\mathbf{x}_{j},\mathbf{x}_{q}) = (\sum |x_{j,i} - x_{q,i}|^{p})^{1/p}.$$

P=2 **×** فاصله اقلیدسی

مقادیر بولین: فاصله همینگ (تعداد درایه های متفاوت)

نرمال سازی

معیاری مستقل از مقیاس ویژگی ها

دانشگاه، علی صنعت

- اگر بازه ویژگی ها در یک بردار ویژگی متفاوت باشد؟
 - ود برمست متر
 - وزن برمست گره
 - فاصله دو نقطه از هم؟

 - نرمالسازی در هر بعد:

 $(x_{i,i}-\mu_i)/\sigma_i$

- Mahalanobis فاصله
- $\times \sqrt{(x-y)^T S^{-1}(x-y)}$, S = covariance matrix
- معادل تغییر مقیاس دادن بردارها برای داشتن واریانس واحد و سیس محاسبه فاصله اقلیدسی در فضای جدید

curse of dimensionality – نفرين البعاد

× داده های مجیه با ابتعاد که ← کارآمدی NN

🗙 ابعاد بالاتر 🛨 فاصله همسایه ها از هی دور میشود! همسایه ها از آنچه فکر میکنید از شما دورترند!

n مکعبی با طول واحد و ابعاد X

تعداد N نمونه با توزیع یکنواخت

🗙 تعریف همسایگی: کومکترین مکعبی دور نقطه مد نظر که شامل k نقطه باشد. (مجم کل محمب با N نمونه ۱ محمه کل محمب با L^n طول محمب با L^n نمونه Φ

$$k = 10, N = 1,000,000 \times l = 0.003 \leftarrow n = 2 \circ l = 0.02 \leftarrow n = 3 \circ$$

$$l = 0.5 \leftarrow n = 17$$

$$l = 0.94 \leftarrow n = 200$$

$$L = \sqrt[\frac{1}{n}]{\frac{k}{N}} \leftarrow L^n = \frac{k}{N} \times$$

🗙 در مکعب مذکور، لایه بیرونی با قطر ۱ ٪ را در نظر بگیرید. ادده های حاشیه ای و دشوار (برون یابی به جای درون یابی) 🗶 🗶 در فضای یک بعدی: مجم لایه بیرونی: ۲ 🗴

(0.98²⁰⁰ = 0.0176) ٪ ۹۸ بعدی: ۹۸ ×

11

زمان اجرای NN

X داده های مجیم؟

نیاز به سرعت بیشتر

 $O(N) \times$

دانشگاه، عام صنعت!

دانشگاه، علی صنعت

K-d tree

× برای انتماب ویژگی در هر گره (از n ویژگی): $i \mod n$ در سطم i از درخت: ویژگی

انتخاب ویژگی با بیشترین واریانس

دانشگاه، علی صنعت

K-d tree

- X مستموی دقیق: OK
- جستجوی همسایه نزدیک؟
 وقتی به برگ میرسیه لزوما نزدیک ترین همسایه نیست!
- شاید در یکی از گرهها که به چب پیچیدیه، اندکی راست تر، نزدیک ترین همسایه باشد!
- میتوان تصمیمات لب مرزی را یادداشت کرد و در برگ ها چک کرد اگر لازه است طرف دیگر تصمیمات لب مرزی هم چک شود!
 - اگر k همسایه که فاصله شان از آن لب مرز کمتر نبود، پیدا نشد ...
 - کرکٹیف کاری! 🏵

K-d tree

امان اجرا؟ 🗙

درهم سازی مبتنی بر موقعیت locality-sensitive hashing-LSH

- 🗙 درهم سازی برای تطبیق دقیق است.
- \times ما به دنبال تقریب و همسایه هستیه. \times درهه سازی، ورودی ها را تصادفا در \times درهه سازی، ورودی ها را تصادفا در
- - میخواهیم نقاط نزدیک به هم در bin های یکسان قرار گیرند X
- الگوریتمی تقریبی برای استفاده از درهم سازی در مساله NN کی الگوریتمی تقریبی برای استفاده از درهم سازی نزدیکترین همسایه ها به طور دقیق قابل یافتن نیستند.

درهم سازی مبتنی بر موقعیت locality-sensitive hashing-LSH

× صورت مساله:

- با داشتن مجموعه ای از نقاط و ورودی x_q با احتمال بالا نقطه یا نقاطی نزدیک به x_q را بیاب.
 - اگر دو نقطه در فضای n بعدی نزدیک به هه باشند، وقتی به فضای یک بعدی (یک فط) نگاشت شوند نیز نزدیک به هم فواهند بود.
 - 🗙 خط مذکور را به چند bin تقسیم میکنیم.
 - 🗙 یا احتمال بالا نقاط همسایه در یک bin قرار میگیرند.
 - برخی نقاط دور هم اشتباها در bin نقطه فعلی خواهند بود.

درهم سازی مبتنی بر موقعیت locality-sensitive hashing-LSH

SLH X

در نظر گرفتن چند نگاشت تصادفی و ترکیب آنها
 تبدیل داده ها به bit string

نگاشت تصادفی lacktriangledown جدول درهم سازی l

خرار دادن تمام نمونه ها در جداول

برای داده ورودی x_q تماه نقاطی که هه bin نقطه ورودی در هر یک از پرای داده میشوند. میداول هستند به عنوان مجموعه کاندید در نظر گرفته میشوند.

🗙 مماسبه فاصله واقعی نقاط کاندید با نقطه ورودی

دانشگاه در نظر گرفتن k نزدیک همسایه به عنوان خروجی

خ تعداد نگاشت ؟خ تعداد نگاشت ؟

Soloj X

دانشگاه، علی صنعت!

خ در مجموعه ای از ۱۳ میلیون تصویر ۵۱۷ بعدی، SLH فقط با تست چند هزار تصویر نزدیک ترین همسایه ها را میباید.

- × اتصال نقاط (a):
- مند بعدی: قبل ؟ بعد؟
 - برخورد با نویز؟ 🔾
- اطراف نویز، تقریب غلط خواهد بود
- به جای یک نقطه قبل و بعد: چند همسایه نزدیک (هر طرف که باشند) ممسایه های بیشتر: خروجی تقریب نره تر 🔾

تقریب با k نزدیک ترین همسایه 🗶

مقدار k ؟

- متوسط گیری (b)
- (c) تقریب فطی k نزدیک ترین همسایه (C
 - دانشگاه، علی صنعت

دانشگاه، علی صنعت

تقريب نابع بدون پارامتر

نقریب وزن دار محلی – Locally Weighted Regression

خ نمودارهای c تا c پرش و تغییر ناگهانی دارند. به همسایه نزدیک تر وزن بیشتر بدهیه!

تابع kernel (هسته) تعیین کننده میزان اهمیت (وزن) است.

ورودی: فاصله بین نقطه ورودی و نقطه دیگر

نقریب وزن دار محلی

$$k(d) = \max(0,1 - \left(\frac{2|d|}{w}\right)^2)$$
 درجه $k(d) = \max(0,1 - \left(\frac{2|d|}{w}\right)^2)$

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{j} \mathcal{K}(Distance(\mathbf{x}_q, \mathbf{x}_j)) (y_j - \mathbf{w} \cdot \mathbf{x}_j)^2$$
 نموه تقریب:

$$h(x_q) = w^*.x_q$$

(d)

