The group G is isomorphic to the group labelled by [28, 4] in the Small Groups library. Ordinary character table of $G\cong C14$ x C2:

	1a	7a	7b	7c	7d	7e	7 <i>f</i>	2a	14a	14b	14c	14d	14e	14f	2b	14g	14h	14i	14j	14k	14l	2c	14m	14n	140	14p	14q	14r
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1
χ_3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_4	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1
χ_5	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^6$
χ_6	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	-1	-E(7)	$-E(7)^2$	$-E(7)^{3}$	$-E(7)^4$	$-E(7)^{5}$	$-E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	-1	-E(7)	$-E(7)^2$	$-E(7)^{3}$	$-E(7)^4$	$-E(7)^{5}$	$-E(7)^{6}$
χ_7	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	-1	-E(7)	$-E(7)^2$	$-E(7)^{3}$	$-E(7)^4$	$-E(7)^{5}$	$-E(7)^{6}$	-1	-E(7)	$-E(7)^2$	$-E(7)^{3}$	$-E(7)^4$	$-E(7)^{5}$	$-E(7)^{6}$
χ_8	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^{6}$	-1	-E(7)	$-E(7)^2$	$-E(7)^3$	$-E(7)^4$	$-E(7)^{5}$	$-E(7)^{6}$	-1	-E(7)	$-E(7)^2$	$-E(7)^{3}$	$-E(7)^4$	$-E(7)^5$	$-E(7)^6$	1	E(7)	$E(7)^{2}$	$E(7)^{3}$	$E(7)^{4}$	$E(7)^{5}$	$E(7)^6$
χ_9	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^5$
χ_{10}	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	-1	$-E(7)^2$	$-E(7)^4$	$-E(7)^6$	-E(7)	$-E(7)^{3}$	$-E(7)^5$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	-1	$-E(7)^2$	$-E(7)^4$	$-E(7)^{6}$	-E(7)	$-E(7)^{3}$	$-E(7)^{5}$
χ_{11}	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$		$-E(7)^2$	$-E(7)^4$	$-E(7)^{6}$	-E(7)	$-E(7)^{3}$	$-E(7)^5$	-1	$-E(7)^2$	$-E(7)^4$	$-E(7)^{6}$	-E(7)	$-E(7)^{3}$	$-E(7)^{5}$
χ_{12}	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^{5}$	-1	$-E(7)^2$	$-E(7)^4$	$-E(7)^{6}$	-E(7)	$-E(7)^{3}$	$-E(7)^{5}$	-1	$-E(7)^2$	$-E(7)^4$	$-E(7)^{6}$	-E(7)	$-E(7)^{3}$	$-E(7)^5$	1	$E(7)^{2}$	$E(7)^{4}$	$E(7)^{6}$	E(7)	$E(7)^{3}$	$E(7)^5$
χ_{13}	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$
χ_{14}	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	-1	$-E(7)^3$	$-E(7)^{6}$	$-E(7)^2$	$-E(7)^5$	-E(7)	$-E(7)^4$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$	-1	$-E(7)^{3}$	$-E(7)^{6}$	$-E(7)^2$	$-E(7)^{5}$	-E(7)	$-E(7)^4$
χ_{15}	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	-1	$-E(7)^{3}$	$-E(7)^{6}$	$-E(7)^2$	$-E(7)^5$	-E(7)	$-E(7)^4$	-1	$-E(7)^{3}$	$-E(7)^{6}$	$-E(7)^2$	$-E(7)^5$	-E(7)	$-E(7)^4$
χ_{16}	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^{4}$	-1	$-E(7)^{3}$	$-E(7)^{6}$	$-E(7)^2$	$-E(7)^{5}$	-E(7)	$-E(7)^4$	-1	$-E(7)^{3}$	$-E(7)^{6}$	$-E(7)^2$	$-E(7)^{5}$	-E(7)	$-E(7)^4$	1	$E(7)^{3}$	$E(7)^{6}$	$E(7)^{2}$	$E(7)^{5}$	E(7)	$E(7)^4$
χ_{17}	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^3$
χ_{18}	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	-1	$-E(7)^4$	-E(7)	$-E(7)^5$	$-E(7)^2$	$-E(7)^{6}$	$-E(7)^{3}$	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	-1	$-E(7)^4$	-E(7)	$-E(7)^{5}$	$-E(7)^2$	$-E(7)^{6}$	$-E(7)^{3}$
χ_{19}	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	1	$E(7)^4$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	-1	$-E(7)^4$	-E(7)	$-E(7)^{5}$	$-E(7)^2$	$-E(7)^{6}$	$-E(7)^{3}$	-1	$-E(7)^4$	-E(7)	$-E(7)^{5}$	$-E(7)^2$	$-E(7)^{6}$	$-E(7)^{3}$
χ_{20}	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^{3}$	-1	$-E(7)^4$	-E(7)	$-E(7)^5$	$-E(7)^2$	$-E(7)^{6}$	$-E(7)^3$	-1	$-E(7)^4$	-E(7)	$-E(7)^5$	$-E(7)^2$	$-E(7)^{6}$	$-E(7)^{3}$	1	$E(7)^{4}$	E(7)	$E(7)^{5}$	$E(7)^{2}$	$E(7)^{6}$	$E(7)^3$
χ_{21}	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^{4}$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^2$
χ_{22}	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	-1	$-E(7)^{5}$	$-E(7)^{3}$	-E(7)	$-E(7)^{6}$	$-E(7)^4$	$-E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	-1	$-E(7)^{5}$	$-E(7)^{3}$	-E(7)	$-E(7)^{6}$	$-E(7)^4$	$-E(7)^{2}$
χ_{23}	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	-1	$-E(7)^{5}$	$-E(7)^{3}$	-E(7)	$-E(7)^{6}$	$-E(7)^4$	$-E(7)^{2}$	-1	$-E(7)^{5}$	$-E(7)^{3}$	-E(7)	$-E(7)^{6}$	$-E(7)^4$	$-E(7)^{2}$
χ_{24}	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^{2}$	-1	$-E(7)^{5}$	$-E(7)^{3}$	-E(7)	$-E(7)^{6}$	$-E(7)^4$	$-E(7)^2$	-1	$-E(7)^{5}$	$-E(7)^{3}$	-E(7)	$-E(7)^{6}$	$-E(7)^4$	$-E(7)^2$	1	$E(7)^{5}$	$E(7)^{3}$	E(7)	$E(7)^{6}$	$E(7)^4$	$E(7)^2$
χ_{25}	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)
χ_{26}	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^{4}$	$E(7)^{3}$	$E(7)^{2}$	E(7)	-1	$-E(7)^{6}$	$-E(7)^{5}$	$-E(7)^4$	$-E(7)^{3}$	$-E(7)^{2}$	-E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	-1	$-E(7)^{6}$	$-E(7)^{5}$	$-E(7)^4$	$-E(7)^{3}$	$-E(7)^2$	-E(7)
χ_{27}	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^{4}$	$E(7)^{3}$	$E(7)^{2}$	E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^{2}$	E(7)	-1	$-E(7)^{6}$	$-E(7)^{5}$	$-E(7)^4$	$-E(7)^{3}$	$-E(7)^2$	-E(7)	-1	$-E(7)^{6}$	$-E(7)^{5}$	$-E(7)^4$	$-E(7)^{3}$	$-E(7)^{2}$	-E(7)
χ_{28}	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^2$	E(7)	-1	$-E(7)^6$	$-E(7)^5$	$-E(7)^4$	$-E(7)^{3}$	$-E(7)^2$	-E(7)	-1	$-E(7)^{6}$	$-E(7)^5$	$-E(7)^4$	$-E(7)^{3}$	$-E(7)^2$	-E(7)	1	$E(7)^{6}$	$E(7)^{5}$	$E(7)^4$	$E(7)^{3}$	$E(7)^2$	E(7)

Trivial source character table of $G \cong C14 \times C2$ at p = 7:

Trivial source character table of $G \cong C14 \times C2$ at $p = 7$:		
Normalisers N_i	N_1	N_2
p-subgroups of G up to conjugacy in G	P_1	P_2
Representatives $n_j \in N_i$	1a $2a$ $2b$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 1 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28}$		7 0 0 0 0
$ \left \ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} \right $	7 -7 7	$-7 \mid 0 0 0 0 \mid$
$ \left \ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{28} \right $	7 7 7 -7	$7 - 7 \mid 0 0 0 0 \mid$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 $	7 -7 -7	7 7 0 0 0 0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 $	1 1 1	1 1 1 1 1
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + $	1 1 -1	$\begin{bmatrix} 1 & -1 & 1 & 1 & -1 & -1 \end{bmatrix}$
$\boxed{0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 $	1 -1 -1	$\begin{bmatrix} 1 & 1 & 1 & -1 & -1 & 1 \end{bmatrix}$

```
P_1 = Group([()]) \cong 1

P_2 = Group([(5, 6, 7, 8, 9, 10, 11)]) \cong C7
```

 $N_1 = Group([(1,2), (3,4), (5,6,7,8,9,10,11)]) \cong C14 \times C2$ $N_2 = Group([(1,2), (3,4), (5,6,7,8,9,10,11)]) \cong C14 \times C2$