1. Importing libraries

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_curve, roc_auc_score
    warnings.filterwarnings('ignore')
```

2. Loading the dataset

```
In [2]: df = pd.read_csv('heart.csv')
```

3. Exploratory Data Analysis

```
Variable definitions in the Dataset
Age: Age of the patient
Sex: Sex of the patient
exang: exercise induced angina (1 = yes; 0 = no)
ca: number of major vessels (0-3)
cp: Chest Pain type chest pain type
Value 1: typical angina
Value 2: atypical angina
Value 3: non-anginal pain
Value 4: asymptomatic
trtbps: resting blood pressure (in mm Hg)
chol: cholestoral in mg/dl fetched via BMI sensor
fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
_restecg: resting electrocardiographic results
Value 0: normal
Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05
Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
```

thalach: maximum heart rate achieved target: 0= less chance of heart attack 1= more chance of heart attack

In [3]: df.head()

Out[3]:

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [5]: df.columns = new_columns

In [6]: df.head()

Out[6]:

	age	sex	ср	trtbps	chol	fbs	rest_ecg	thalach	exang	oldpeak	slope	са	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

In [7]: df.shape

Out[7]: (303, 14)

In [8]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
               Non-Null Count Dtype
     Column
               303 non-null
 0
                               int64
     age
               303 non-null
                               int64
 1
     sex
               303 non-null
                               int64
 2
     ср
               303 non-null
                               int64
     trtbps
     chol
               303 non-null
                               int64
     fbs
               303 non-null
                               int64
               303 non-null
                               int64
 6
     rest_ecg
     thalach
               303 non-null
                               int64
               303 non-null
                               int64
 8
     exang
 9
     oldpeak
               303 non-null
                               float64
    slope
               303 non-null
                               int64
 10
    ca
               303 non-null
                               int64
 11
12 thal
               303 non-null
                               int64
13 target
               303 non-null
                               int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
```

3.1 Checking for null values

```
In [9]: df.isnull().sum()
Out[9]: age
                     0
                     0
        sex
                     0
        ср
        trtbps
                     0
        chol
                     0
        fbs
                     0
        rest_ecg
                     0
        thalach
                     0
        exang
                     0
        oldpeak
                     0
        slope
                     0
                     0
        ca
        thal
                     0
        target
        dtype: int64
```

3.2 Checking for unique values

```
In [10]: unique_number = []

for i in df.columns:
    x = df[i].value_counts().count()
    unique_number.append(x)

pd.DataFrame(unique_number, index = df.columns, columns=['Unique Values'])
```

Out[10]:

	Unique Values
age	41
sex	2
ср	4
trtbps	49
chol	152
fbs	2
rest_ecg	3
thalach	91
exang	2
oldpeak	40
slope	3
ca	5
thal	4
target	2

- According to the result from the unique value dataframe;
- We determined the variables with few unique values as categorical variables, and the variables with high unique values as numeric variables.
- In this context, Numeric Variables: "age", "trtbps", "chol", "thalach" and "oldpeak"

• Categorical Variables: "sex", "cp", "fbs", "rest_ecg", "exang", "slope", "ca", "thal", "target"

3.3 Outliers


```
In [12]: numeric_var = ["age", "trtbps", "chol", "thalach", "oldpeak"]
    categoric_var = ["sex", "cp", "fbs", "rest_ecg", "exang", "slope", "ca", "thal", "target"]
```

3.4 Examining Statistics of Variables

In [13]: df.describe()

Out[13]:

	age	sex	ср	trtbps	chol	fbs	rest_ecg	thalach	exang	oldpeak	slc
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.039604	1.399
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.161075	0.616
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.0000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	0.800000	1.0000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.600000	2.000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	2.000

In [14]: sns.heatmap(df.corr())

Out[14]: <Axes: >

3.5 Let's Check the skewness of Numeric Features

In [17]: sns.distplot(df["trtbps"], bins = 5);

In [18]: sns.distplot(df["chol"], bins = 5);

In [19]: sns.distplot(df["thalach"], bins = 5);

In [20]: sns.distplot(df["oldpeak"], bins = 5);

3.6 Column age, chol, trtbps, thalach, oldpeak are skewed hence we will take log of these columns

```
In [21]: df['age'] = np.log(df['age'])
In [22]: df['chol'] = np.log(df['chol'])
In [23]: df['trtbps'] = np.log(df['trtbps'])
```

```
In [24]: df['thalach'] = np.log(df['thalach'])
In [25]: categoric_axis_name = ["Gender", "Chest Pain Type", "Fasting Blood sugar", "Resting Electrocardiograp "Exercise Induced Angina", "The Slope of ST Segment", "Number of Major Vessels"
In [26]: # Define colors colors_sex = ['#FFC0CB', '#808080'] # Light pink, grey colors_cp = ['#FFC0CB', '#D3D3D3', '#808080', '#A9A9A9'] # Light pink, light grey, grey, dark grey
```

```
In [27]: # Calculate counts for 'sex' column
    sex_counts = df['sex'].value_counts()
    plt.pie(sex_counts, labels=['Male', 'Female'], autopct='%1.1f%%', startangle=90, colors=colors_sex)
    plt.title('Sex Distribution')
```

Out[27]: Text(0.5, 1.0, 'Sex Distribution')

Sex Distribution


```
In [28]: # Calculate counts for 'cp' column
cp_counts = df['cp'].value_counts()
```

```
In [29]: # Map chest pain types to their descriptions
cp_mapping = {
     0: 'Asymptomatic',
     1: 'Typical Angina',
     2: 'Atypical Angina',
     3: 'Non-Anginal Pain'
}
```

```
In [30]: cp_labels = [f'{cp_mapping[key]} ({key})' for key in cp_counts.index]
    plt.pie(cp_counts, labels=cp_labels, autopct='%1.1f%%', startangle=90, colors=colors_cp)
    plt.title('Chest Pain Type Distribution')
```

Out[30]: Text(0.5, 1.0, 'Chest Pain Type Distribution')

Chest Pain Type Distribution


```
In [31]: numeric_var
Out[31]: ['age', 'trtbps', 'chol', 'thalach', 'oldpeak']
In [32]: numeric_var.append("target")
In [33]: g = sns.FacetGrid(df, hue="target")
    g.map(sns.kdeplot, "age", shade = True)
    g.add_legend()
    # Show the plot
    plt.show()
```


In [34]: df.head()

Out[34]:

	age	sex	ср	trtbps	chol	fbs	rest_ecg	thalach	exang	oldpeak	slope	са	thal	target
0	4.143135	1	3	4.976734	5.451038	1	0	5.010635	0	2.3	0	0	1	1
1	3.610918	1	2	4.867534	5.521461	0	1	5.231109	0	3.5	0	0	2	1
2	3.713572	0	1	4.867534	5.318120	0	0	5.147494	0	1.4	2	0	2	1
3	4.025352	1	1	4.787492	5.463832	0	1	5.181784	0	0.8	2	0	2	1
4	4.043051	0	0	4.787492	5.869297	0	1	5.093750	1	0.6	2	0	2	1

```
In [35]: sns.countplot(x="cp", data=df, hue="target", palette=['lightgrey', 'lightpink'])
```

Out[35]: <Axes: xlabel='cp', ylabel='count'>

3.6 Extracting features and target

4. Training and testing dataset

```
In [37]: from sklearn.model_selection import train_test_split
In [38]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
In [39]: X train.head()
Out[39]:
                   age sex cp
                                  trtbps
                                            chol fbs rest_ecg
                                                              thalach exang oldpeak slope ca thal
           124 3.663562
                                                           1 5.187386
                                                                                               2
                             2 4.543295 5.293305
                                                  0
                                                                         0
                                                                                0.0
                                                                                       2
                                                                                          0
            72 3.367296
                             1 4.867534 5.318120
                                                  0
                                                           0 5.308268
                                                                         0
                                                                                0.0
                                                                                          0
                                                                                               2
            15 3.912023
                             2 4.787492 5.389072
                                                           1 5.062595
                                                                         0
                                                                                1.6
                                                                                          0
            10 3.988984
                                                           1 5.075174
                                                                                1.2
                                                                                               2
                             0 4.941642 5.476464
                                                                         0
                                                                                          0
           163 3.637586
                             2 4.927254 5.164786
                                                           1 5.153292
                                                                         0
                                                                                0.0
                                                                                       2
                                                                                               2
                                                                                          4
In [40]: y_train.head()
Out[40]: 124
                  1
          72
                  1
          15
                  1
                  1
          10
                  1
          163
          Name: target, dtype: int64
```

4.1 Standardizing the features

```
In [41]: from sklearn.preprocessing import StandardScaler
In [42]: scaler = StandardScaler()
In [43]: X_train = scaler.fit_transform(X_train)
In [44]: X_test = scaler.transform(X_test)
```

5. Model building

5.1 building logistics-regression model

```
In [45]: from sklearn.linear_model import LogisticRegression
In [46]: | lr = LogisticRegression()
In [47]: lr.fit(X_train, y_train)
Out [47]:
          ▼ LogisticRegression
         LogisticRegression()
In [48]: y_pred_lr = lr.predict(X_test)
         5.1.1 checking the accuracy of the model
In [49]: from sklearn.metrics import accuracy_score
In [50]: print(round(accuracy_score(y_test, y_pred_lr)*100,2),'%')
         80.22 %
         5.1.2 Fine tuning model
In [51]: from sklearn.model_selection import GridSearchCV
```

```
In [52]: parameters = {
                         "penalty":["l1","l2"],
                         "solver" : ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
                      }
In [53]: log_reg_grid = GridSearchCV(lr, param_grid = parameters)
In [54]:
         log reg grid.fit(X train, y train)
Out[54]:
                    GridSearchCV
          ▶ estimator: LogisticRegression
                ▶ LogisticRegression
In [55]: print("Best Parameters: ", log_reg_grid.best_params_)
         Best Parameters: {'penalty': 'l1', 'solver': 'saga'}
In [56]: | lr_best = LogisticRegression(penalty = "l1", solver = "saga")
         lr best
Out[56]:
                         LogisticRegression
         LogisticRegression(penalty='l1', solver='saga')
In [57]: lr best.fit(X train, y train)
Out[57]:
                         LogisticRegression
         LogisticRegression(penalty='l1', solver='saga')
In [58]: y_pred_lr_best = lr_best.predict(X_test)
```

5.2 Building decision tree classifier

5.2.1 Checking the accuracy

```
In [66]: print(round(accuracy_score(y_test, y_pred_dt)*100,2),'%')
73.63 %
```

5.2.2 Fine tuning model

```
In [67]: | param_grid = {
             'max_depth': [None, 5, 6, 7, 8, 9, 10],
             'min_samples_split': [2, 5, 10],
             'min_samples_leaf': [1, 2, 4],
             'criterion': ['gini', 'entropy']
In [68]: | dec_tree_ft = GridSearchCV(dec_tree, param_grid=param_grid, cv=5, verbose=1, scoring='accuracy')
In [69]: dec tree ft.fit(X train, y train)
         Fitting 5 folds for each of 126 candidates, totalling 630 fits
Out[69]:
                      GridSearchCV
          ▶ estimator: DecisionTreeClassifier
                ▶ DecisionTreeClassifier
In [85]: print('Best Parameters: ',dec tree ft.best params )
         Best Parameters: {'criterion': 'gini', 'max_depth': None, 'min_samples_leaf': 4, 'min_samples_spli
         t': 2}
In [86]: dec tree best = DecisionTreeClassifier(criterion='gini', max depth=None, min samples leaf=4, min samp
In [87]: dec tree best.fit(X train, y train)
Out[87]:
                    DecisionTreeClassifier
         DecisionTreeClassifier(min_samples_leaf=4)
```

5.3 Building Random Forest model

5.3.1 Checking the accuracy

```
In [96]: print(round(accuracy_score(y_test, y_pred_rf)*100,2),'%')
          80.22 %
          5.3.2 Fine tuning
 In [97]: parameters = {"n_estimators" : [50, 100, 150, 200],
                        "criterion" : ["gini", "entropy"],
                        'max features': ['auto', 'sqrt', 'log2'],
                        'bootstrap': [True, False]}
 In [98]: random_forest_grid = GridSearchCV(random_forest, param_grid = parameters)
 In [99]:
          random_forest_grid.fit(X_train, y_train)
 Out[99]:
                       GridSearchCV
            ▶ estimator: RandomForestClassifier
                 ▶ RandomForestClassifier
In [100]: print("Best Parameters:", random forest grid.best params )
          Best Parameters: {'bootstrap': True, 'criterion': 'entropy', 'max features': 'sqrt', 'n estimators':
          50}
In [101]: random_forest_best = RandomForestClassifier(bootstrap = True, criterion = "entropy", max_features = "
In [102]: random forest best.fit(X train, y train)
Out [102]:
                                      RandomForestClassifier
          RandomForestClassifier(criterion='entropy', n_estimators=50, random_state=5)
```

6. Model Comparision

6.1 Comparing accuracy

```
In [108]: # Accuracy comparison
    plt.bar(models, accuracy_scores, color=['lightpink', 'lightyellow', 'lightblue'])
    plt.title('Accuracy Comparison')
    plt.ylim([0, 1])
```

Out[108]: (0.0, 1.0)


```
In [109]: # Accuracy comparison
plt.plot(models, accuracy_scores, marker='o', label='Accuracy')
```

Out[109]: [<matplotlib.lines.Line2D at 0x15f33a310>]

6.2 Comparing precision score

```
In [112]: # Precision comparison
plt.plot(models, precision_scores, marker='o', label='Precision')
```

Out[112]: [<matplotlib.lines.Line2D at 0x15f8ffa10>]

6.3 Comparing recall score

```
In [114]: # Recall comparison
plt.plot(models, recall_scores, marker='o', label='Recall')
```

Out[114]: [<matplotlib.lines.Line2D at 0x15fb315d0>]

6.4 ROC curve

6.4.1 ROC for Logistics Regression

```
In [115]: ## Probability for positive class

y_prob_lr = lr_best.predict_proba(X_test)[:,1]

In [116]: # Compute ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob_lr)
```

```
In [117]: # Plot ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc_score(y_test,
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Example')
plt.legend(loc="lower right")
plt.show()
```

Receiver Operating Characteristic Example

6.4.2 ROC for Decision Tree

```
In [118]: ## Probability for positive class
y_prob_dt = dec_tree_best.predict_proba(X_test)[:,1]
In [119]: # Compute ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_prob_dt)
```

```
In [120]: # Plot ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc_score(y_test,
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Example')
plt.legend(loc="lower right")
plt.show()
```

Receiver Operating Characteristic Example

6.4.3 ROC for Random Forest

```
In [121]: ## Probability for positive class

y_prob_rf = random_forest_best.predict_proba(X_test)[:,1]
```

```
In [122]: # Plot ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc_score(y_test,
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Example')
plt.legend(loc="lower right")
plt.show()
```

Receiver Operating Characteristic Example

In []: