Claims

- 1. Method for testing the time delay error ratio ER of a device against a maximal allowable time delay error ratio ER_{limit} with an early pass criterion, whereby the early pass criterion is allowed to be wrong only by a small probability D_1 , with the following steps
- measuring ns time delays (TD) of the device, thereby detecting ne bad time delays, which exceed a certain time limit, of these ns time delays (TD),
- assuming that the likelihood distribution giving the distribution of the number ni of bad time delays in a
 fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time delays, obtaining PDhigh from

$$D_1 = \int_0^{ne} PD_{high}(ni, NE_{high}) dni$$

20

35

- wherein PD_{high} is the worst possible likelihood distribution containing the measured ne bad time delays with the probability D_1 ,
- obtaining the average number NE_{high} of bad time delays 25 for the worst possible likelihood distribution PD_{high} ,
 - comparing NE_{high} with NE_{limit} = ER_{limit} · ns,
 - if NE_{limit} is higher than NE_{high} stopping the test and deciding that the device has early passed the test and
- if NE_{limit} is smaller than NE_{high} continuing the test 30 whereby increasing ns.
 - 2. Method for testing the time delay error ratio ER of a device against a maximal allowable time delay error ratio ER_{limit} with an early pass criterion, whereby the early pass criterion is allowed to be wrong only by a small probability F_1 for the entire test, with the following steps
 - measuring ns time delays (TD) of the device, thereby

detecting ne bad time delays, which exceed a certain time limit, of these ns time delays (TD)

- assuming that the likelihood distribution giving the distribution of the number ni of bad time delays in a fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time delays, obtaining PD_{high} from

$$D_1 = \int_0^{ne} PD_{high}(ni, NE_{high}) dni$$

- wherein PD_{high} is the worst possible likelihood distribution containing the measured ne bad time delays with a single step wrong decision probability D_1 for a preliminary error ratio ER stage, whereby using a single step wrong decision probability D_1 smaller than the probability F_1 for the entire test,
 - obtaining the average number of $NE_{\mbox{\scriptsize high}}$ of bad time delays for the worst possible likelihood distribution $\mbox{\scriptsize PD}_{\mbox{\scriptsize high}},$
 - comparing NE_{high} with NE_{limit} = ER_{limit} ns,
- if NE_{limit} is higher than NE_{high} stopping the test and deciding that the device has early passed the test and
 if NE_{limit} is smaller than NE_{high} continuing the test whereby increasing ns.
- 25 3. Method according to claim 1, characterized in that the single step wrong decision probability D_1 is in the range of

30
$$F_1 > D_1 \ge 1 - (1 - F_1)^{1/ne}$$
.

4. Method according to any of claims 1 to 3, characterized in that

the likelihood distribution $PD_{high}(ni,NE)$ is the Poisson distribution.

5. Method according to any of claims 1 to 3, characterized in that

the likelihood distribution $PD_{\rm high}({\rm ni,NE})$ is the binomial distribution.

6. Method according to any of claims 1 to 5,

characterized in that

for avoiding an undefined situation for ne=0 starting the test with an artificial bad time delay ne=1, not incrementing ne then a first error occurs.

- 7. Method for testing the time delay error ratio ER of a device against a maximal allowable time delay error ratio ER_{limit} with an early fail criterion, whereby the early fail criterion is allowed to be wrong only by a small probability D₂, with the following steps
- measuring ns time delays (TD) of the device, thereby detecting ne bad time delays, which exceed a certain time limit, of these ns time delays (TD),
- assuming that the likelihood distribution giving the distribution of the number ni of bad time delays in a 20 fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time delays, obtaining PD_{low} from the

$$D_2 = \int_{-\infty}^{\infty} PD_{low}(m, NE_{low}) dmi$$

25

wherein PD_{low} is the best possible likelihood distribution containing the measured ne bad time delays with the probability $\text{D}_2\,,$

- obtaining the average number ${\rm NE}_{\rm low}$ bad time delays for 30 the best possible likelihood distribution ${\rm PD}_{\rm low}$,
 - comparing NE_{low} with NE_{limit} = ER_{limit} · ns,
 - if $\mathrm{NE}_{\mbox{limit}}$ is smaller than $\mathrm{NE}_{\mbox{low}}$ stopping the test and deciding that the device has early failed the test and
- if NE_{limit} is higher than NE_{low} continuing the test 35 whereby increasing ns.
 - 8. Method for testing the time delay error ratio ER of a device against a maximal allowable time delay error ratio

10

 ER_{limit} with an early fail criterion, whereby the early fail criterion is allowed to be wrong only by a small probability F_2 for the entire test, with the following steps

- 5 measuring ns time delays (TD) of the device, thereby detecting ne bad time delays, which exceed a certain time limit, of these ns time delays (TD),
 - assuming that the likelihood distribution giving the distribution of the number ni of bad time delays in a fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time delays, obtaining PDlow from

$$D_2 = \int_{ne}^{\infty} PD_{low}(ni, NE_{low}) dni$$

- wherein PD_{low} is the best possible likelihood distribution containing the measured ne bad time delays with a single step wrong decision probability D_2 for a preliminary error ratio ER stage, whereby using a single step wrong decision probability D_2 smaller than the probability F_2 for the entire test,
 - obtaining the average number NE_{low} bad time delays for the best possible likelihood distribution PD_{low} ,
 - comparing NE_{low} with NE_{limit} = ER_{limit} · ns,
- if ${\rm NE}_{
 m limit}$ is smaller than ${\rm NE}_{
 m low}$ stopping the test and 25 deciding that the device has early failed the test and
 - if NE_{limit} is higher than NE_{low} continuing the test whereby increasing ns.
 - 9. Method according to claim 8,
- 30 characterized in that

the single step wrong decision probability \textbf{D}_{2} is in the range of

$$F_2 > D_2 \ge 1 - (1 - F_2)^{1/ne}$$

35

10. Method according to any of claims 7 to 9, characterized in that

the likelihood distribution PD_{low}(ni,NE) is the Poisson

distribution.

- 11. Method according to any of claims 7 to 9, characterized in that
- 5 the likelihood distribution $PD_{low}(ni, NE)$ is the binomial distribution.
 - 12. Method according to any of claims 7 to 11, characterized in that
- 10 for avoiding a undefined situation for ne<k, wherein k is a small number of bad time delays, not stopping the test as long as ne is smaller than k.
 - 13. Method according to any of claims 7 to 12,
- 15 characterized by

an additional early pass criterion, whereby the early pass criterion is allowed to be wrong only by a small probability D_1 , with the following additional steps

assuming that the likelihood distribution giving the
 distribution of the number of bad time delays ni in a fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time delays, obtaining PDhigh from

$$D_1 = \int_0^{nc} PD_{high}(ni, NE_{high}) dni$$

wherein PD_{high} is the worst possible likelihood distribution containing the measured ne bad time delays with the probability D_1 ,

- 30 obtaining the average number ${\rm NE}_{\rm high}$ of bad time delays for the worst possible likelihood distribution ${\rm PD}_{\rm high}$,
 - comparing NE_{high} with NE_{limit} = ER_{limit} · ns,
 - if $\text{NE}_{\mbox{limit}}$ is higher than $\text{NE}_{\mbox{high}}$ stopping the test and deciding that the device has early passed the test and
- 35 if NE_{limit} is smaller than NE_{high} continuing the test, whereby increasing ns.
 - 14. Method according to any of claims 7 to 12,

characterized by

an additional early pass criterion, whereby the early pass criterion is allowed to be wrong only by a small probability D_1 , with the following additional steps

- assuming that the likelihood distribution giving the distribution of the number of bad time delays ni in a fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time delays, obtaining PDhigh from

10

$$D_1 = \int_0^{ne} PD_{high}(ni, NE_{high}) dni$$

wherein PD_{high} is the worst possible likelihood distribution containing the measured ne bad time delays with the probability D_1 ,

- obtaining the average number $NE_{\rm high}$ of bad time delays for the worst possible likelihood distribution $PD_{\rm high}$,
- comparing NE_{high} with $NE_{limit,M} = ER_{limit} \cdot M \cdot ns$, with M > 1,
- 20 if $NE_{limit,M}$ is higher than NE_{high} stopping the test and deciding that the device has early passed the test and if $NE_{limit,M}$ is smaller than NE_{high} continuing the test, whereby increasing ns.
- 25 15. Method according to claim 13 or 14, characterized in that

the probability D_1 for the wrong early pass criterion and the probability D_2 for the wrong early fail criterion are equal $(D_1=D_2)$.

30

35

16. Method according to any of claims 7 to 12, characterized by

an additional early pass criterion, whereby the early pass criterion is allowed to be wrong only by a small probability F_1 for the entire test, with the following additional steps

- assuming that the likelihood distribution giving the distribution of the number ni of bad time delays in a

fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time delays, obtaining PD_{high} from

$$D_1 = \int_0^{ne} PD_{high}(ni, NE_{high}) dni$$

wherein PD_{high} is the worst possible likelihood distribution containing the measured ne bad time delays with the single step wrong decision probability D_1 for a preliminary error ratio ER stage, whereby using a single step wrong decision probability D_1 smaller than the probability F_1 for the entire test,

- obtaining the average number of NE_{high} bad time delays for the worst possible likelihood distribution PD_{high} ,
- 15 comparing NE_{high} with NE_{limit} = ER_{limit} · ns,
 - if $\mathrm{NE}_{\mbox{limit}}$ is higher than $\mathrm{NE}_{\mbox{high}}$ stopping the test and deciding that the device has early passed the test and
 - if $\mathrm{NE}_{\mathrm{limit}}$ is smaller than $\mathrm{NE}_{\mathrm{high}}$ continuing the test, whereby increasing ns.

20

25

30

10

17. Method according to any of claims 7 to 12, characterized by

an additional early pass criterion, whereby the early pass criterion is allowed to be wrong only by a small probability F_1 for the entire test, with the following additional steps

- assuming that the likelihood distribution giving the distribution of the number ni of bad time delays in a fixed number of samples of time delays (TD) is PD(ni,NE), wherein NE is the average number of bad time limits, obtaining PD $_{\rm high}$ from

$$D_1 = \int_0^{ne} PD_{high}(ni, NE_{high}) dni$$

35 wherein ${
m PD}_{
m high}$ is the worst possible likelihood distribution containing the measured ne bad time delays with the single step wrong decision probability ${
m D}_1$ for a

preliminary error ratio ER stage, whereby using a single step wrong decision probability D_1 smaller than the probability F_1 for the entire test,

- obtaining the average number ${\tt NE}_{\tt high}$ of bad time delays
- for the worst possible likelihood distribution PDhigh,
 - comparing NE_{high} with $NE_{limit,M} = ER_{limit} \cdot M \cdot ns$, with M > 1
 - if $\text{NE}_{\text{limit},M}$ is higher than NE_{high} stopping the test and deciding that the device has early passed the test and
- 10 if $NE_{\mbox{limit},M}$ is smaller than $NE_{\mbox{high}}$ continuing the test, whereby increasing ns.
 - 18. Method according to claim 16 or 17, characterized in that
- the probability F_1 for the wrong early pass criterion and the probability F_2 for the wrong early fail criterion are equal $(F_1=F_2)$.
 - 19. Method according to any of claims 7 to 18,
- 20 characterized in that

30

35

for avoiding a undefined situation for ne=0 starting the test with an artificial bad time delay ne=1 not incrementing ne then a first error occurs.

- 25 20. Digital storage medium with control signals electronically readable from the digital storage medium, which interact with a programmable computer or digital signal processor in a manner that all steps of the method according to any of claims 1 to 19 can be performed.
 - 21. Computer-program-product with program-code-means stored on a machinereadable data carrier to perform all steps of any of claims 1 to 19, when the program is performed on a programmable computer or a digital signal processor.
 - 22. Computer program with program-code-means to perform all steps of any of claims 1 to 19, when the program is performed on a programmable computer or a digital signal

processor.

23. Computer program with program-code-means to perform all steps of any of claims 1 to 19 when the program is stored on a machinereadable data carrier.