What is claimed is:

1	1.	An apparatus comprising:	
2		an embossing tool substrate made of a first metal, a first major surface of the	
3	substrate having an embossing profile;		
4		a first coating over the first major surface of the substrate, the first coating	
5	providing an adherable surface; and		
6		a second coating over the first coating, the second coating providing a non-	
7	adhesive outer surface.		
1	2.	The apparatus of claim 1, wherein the first coating further comprises:	
2		a layer of a second metal deposited over the embossing tool substrate;	
3		a layer of metal oxide deposited over the layer of the second metal; and	
4		a layer of metal nitride deposited over the layer of metal nitride.	
1	3.	The apparatus of claim 1, wherein the first coating further comprises:	
2		a layer of zirconium deposited over the embossing tool substrate;	
3		a layer of zirconium oxide deposited over the layer of zirconium; and	
4		a layer of zirconium nitride deposited over the layer of zirconium oxide.	
1	4.	The apparatus of claim 1, wherein the second coating comprises poly-para-	
2	xylylene.		
1	5.	The apparatus of claim 2 subscript the singular large in 1 and 5	
2		The apparatus of claim 3, wherein the zirconium layer is about 0.5 microns	
	thick, the zirconium oxide layer is about 0.5 microns thick, the zirconium nitride		
3	layer is about 0.5 microns thick, and the second coating comprises poly-para-		
4	xyıyıeı	ne and is between about 2 microns and about 9 microns thick.	
1	6.	The annaratus of claim 5, wherein the girannium lover is 0.5 minutes 1.	
2		The apparatus of claim 5, wherein the zirconium layer is 0.5 microns thick,	
_	are zire	conium oxide layer is 0.5 microns thick, the zirconium nitride layer is 0.5	

3 microns thick, and the second coating is between 2 microns and 9 microns thick. 7. 1 The apparatus of claim 3, wherein the second coating comprises Parylene 2 Nova HT. 8. 1 The apparatus of claim 2, wherein the second coating comprises 2 poly-para-xylylene. 9. 1 The apparatus of claim 2, wherein the second coating comprises 2 Parylene Nova HT. 10. 1 The apparatus of claim 1, wherein the second coating comprises 2 Parylene Nova HT. 11. The apparatus of claim 1, further comprising: 1 2 a heater apparatus to provide heat during an embossing operation; and a pressure apparatus to apply pressure during the embossing operation. 3 12. The apparatus of claim 1, wherein the first coating further comprises a layer 1 of zirconium deposited over the embossing tool substrate, and wherein the second 2 coating comprises zirconium nitride deposited over the layer of zirconium. 3 1 13. A method comprising: 2 providing an embossed tool substrate; 3 depositing a first coating over the first major surface of the substrate, the 4 first coating providing an adherable surface; and

providing a non-adhesive outer surface.

5

6

depositing a second coating over the first coating, the second coating

1	14.	The method of claim 13, wherein the depositing of the first coating further			
2	comp	comprises:			
3		depositing a layer of metal over the embossing tool substrate;			
4		depositing a layer of metal oxide deposited over the layer of the metal; and			
5		depositing a layer of metal nitride deposited over the layer of metal oxide.			
1	15.	The method of claim 13, wherein the depositing of the first coating further			
2	comp	comprises:			
3		depositing a layer of zirconium deposited over the embossing tool substrate;			
4		depositing a layer of zirconium oxide deposited over the layer of zirconium;			
5	and				
6		depositing a layer of zirconium nitride deposited over the layer of zirconium			
7	oxide	•			
1	16.	The method of claim 13, wherein the depositing of the first coating further			
2	comp	comprises:			
3		depositing a layer of zirconium over the embossing tool substrate; and			
4		wherein the depositing of the second coating further comprises depositing a			
5	layer	of zirconium nitride over the layer of zirconium.			
1	17.	The method of claim 13, wherein the depositing of the second coating			
2	furthe	r comprises depositing poly-para-xylylene.			
1	18.	The method of claim 15, wherein the zirconium layer is deposited to about			
2	0.5 mi	0.5 microns thick, the zirconium oxide layer is deposited to about 0.5 microns thick			
3		the zirconium nitride layer is deposited to about 0.5 microns thick, and the			
1		depositing of the second coating further comprises depositing poly-para-xylylene to			
5		between about 2 microns and about 9 microns thick.			

1	19.	The method of claim 18, wherein the zirconium layer is deposited to 0.5		
2	micro	microns thick, the zirconium oxide layer is deposited to 0.5 microns thick, the		
3	zirco	zirconium nitride layer is deposited to 0.5 microns thick, and the depositing of the		
4	secon	second coating comprises depositing the poly-para-xylylene to between 2 microns		
5	and 9	and 9 microns thick.		
1	20.	The method of claim 13, wherein the depositing of the second coating		
2	furth	further comprises depositing Parylene Nova HT.		
1	21.	The method of claim 13, further comprising:		
2		heating an embossable substrate during an embossing operation; and		
3		applying pressure during the embossing operation.		
1	22.	The method of claim 13, wherein the first and second coatings provide an		
2	embo	embossable substrate and further comprising:		
3		embossing the embossable substrate by applying heat and pressing the		
4	embo	ssing tool substrate into the embossable substrate.		
1	23.	An apparatus comprising:		
2		an embossing tool that includes:		
3		a tool substrate base; and		
4		means attached to the tool substrate base for providing a hardened		
5		embossing surface with reduced adherence properties to an embossable		
6		substrate.		
1	24.	The apparatus of claim 23, further comprising:		
2		means for providing an embossable surface including a polymer film having		
3	attacl	attached thereto means for releasing the embossing tool, mixed with an enoxy resin		

- The apparatus of claim 23, wherein the means for providing a hardened embossing surface with reduced adherence properties includes a layer of zirconium on the tool substrate base and a layer of zirconium nitride on the layer of zirconium.
- The apparatus of claim 25, wherein the means for providing a hardened embossing surface with reduced adherence properties further includes a layer of zirconium oxide on the layer of zirconium nitride, and a layer of poly-para-xylylene on the layer of zirconium oxide.