Luke Palmer MATH 5000 2006-10-25

200	6-10-25
(1)	If $\mathcal{A}, \mathcal{B} \prec \mathcal{C}$ and $\mathcal{A} \leq \mathcal{B}$, then $\mathcal{A} \prec \mathcal{B}$.
	<i>Proof.</i> Given a vector \bar{a} of elements of A and a formula $\varphi(\bar{a})$. We have that $\mathcal{A} \models \varphi(\bar{a})$ iff $\mathcal{C} \models \varphi(\bar{a})$, since $\mathcal{A} \prec \mathcal{C}$. However, since $A \subseteq B$ and $\mathcal{B} \prec \mathcal{C}$, $\mathcal{B} \models \varphi(\bar{a})$ iff $\mathcal{C} \models \varphi(\bar{a})$. Therefore $\mathcal{A} \models \varphi(\bar{a})$ iff $\mathcal{B} \models \varphi(\bar{a})$; i.e. $\mathcal{A} \prec \mathcal{B}$.
(3)	A set of setences Γ is complete iff any two models of Γ are elementarily equivalent.
	<i>Proof.</i> (\Rightarrow) Suppose \mathcal{A} and \mathcal{B} are models of Γ and $\mathcal{A} \not\equiv \mathcal{B}$. Then there must be some sentence φ such that $\mathcal{A} \models \varphi$ and $\mathcal{B} \not\models \varphi$. But if $\Gamma \models \varphi$, then $\mathcal{B} \not\models \Gamma$, and similarly if $\Gamma \not\models \varphi$ then $\mathcal{A} \not\models \Gamma$, so Γ must not be complete.
	(\Leftarrow) Suppose Γ is not complete. Then there is some φ such that neither Γ $\models \varphi$ nor Γ $\models \neg \varphi$. Thus there must be a model $\mathcal{A} \models \Gamma \cup \{\varphi\}$ and a model $\mathcal{B} \models \Gamma \cup \{\neg \varphi\}$. Clearly $\mathcal{A} \not\equiv \mathcal{B}$.
(4a) A set of sentences $\Sigma \models \varphi$ iff $\Sigma \cup \{\neg \varphi\}$ is inconsistent.
	<i>Proof.</i> (\Leftarrow) Suppose $\Sigma \cup \{\neg \varphi\}$ has no models. Then either Σ has no models or it has a model \mathcal{A} . If it has none, then we're done. It must be the case that $\mathcal{A} \models \varphi$ because of our assumption.
	(\Rightarrow) Suppose a structure $\mathcal{A} \models \Sigma$ and $\Sigma \models \varphi$. By definition $\mathcal{A} \models \varphi$, so it is impossible that $\mathcal{A} \models \neg \varphi$.
(5)	If \mathcal{U} is an ultrafilter, $Y \in \mathcal{U}$, and $Y = \bigcup_{i < n} Y_i$, then $Y_i \in \mathcal{U}$ for some i .
	<i>Proof.</i> Suppose not. Then $Y \in \mathcal{U}$ and $\bar{Y}_i \in \mathcal{U}$ for every $i < n$. Then the intersection $Y \cap \bigcap_{i \le n} \bar{Y}_i$ would be empty.