РОЗМІРНІСТЬ ХАУСДОРФА ГРАНИЧНОЇ МНОЖИНИ НАПІВГРУПИ СТИСКАЮЧИХ ВІДОБРАЖЕНЬ

Д.І. МОРОЗОВ

Нехай $S = \{p_1, p_2...p_n\}$ - множина точок комплексної площини \mathbb{C} , а функція $f : \mathbb{C} \to \mathbb{C}$ - стискаюча функція комплексної площини з нерухомою точкою 0 (f(0) = 0).

Означення 1. Комплексом на множині S, породженим функцією f назвемо множину функцій $S_f = \{f_k(x) = f(x - p_k) + p_k | p_k \in S\}$. Якщо f(x) = ax, |a| < 1, то будемо називати комплекс S_f лінійним.

Легко бачити, що точки з множини S є нерухомими точками функцій з множини S_f .

Означення 2. Очевидно, що множина функцій з множини S_f з операцією суперпозиції породжує напівгрупу стискаючих функцій, яку позначимо, як $\langle S_f \rangle$.

За теоремою Банаха про нерухому точку стискаю чого відображення кожна функція з множини $\langle S_f \rangle$ має єдину нерухому точку.

Означення 3. Множину нерухомих точок функцій з напівгрупи $\langle S_f \rangle$ позначимо, як $\mathfrak{S}\langle S_f \rangle$.

Означення 4. Назвемо множину точок $\mathfrak{L}\langle b \rangle$ граничною множиною послідовності $b = \{b_k | b_k \in \mathbb{C}\}$ якщо:

$$(\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N, \exists z \in S(\rho_{\mathbb{C}}(z, b_n) < \varepsilon)) \cap \\ \cap (\forall \varepsilon > 0, \forall z \in S, \exists n \in \mathbb{N}(\rho_{\mathbb{C}}(z, b_n) < \varepsilon))$$

де $\rho_{\mathbb{C}}$ - метрика на комплексній площині.

Означення 5. Нехай B - множина послідовностей. Означимо $\mathfrak{L}\langle B\rangle$, як:

$$\mathfrak{L}\langle B\rangle = \bigcup_{b\in B}\mathfrak{L}\langle b\rangle$$

Означення 6. Для комплексу S_f , числа $x \in \mathbb{C}$ та функції $i : \mathbb{N} \to 1, 2, ..., |S|$ розглянемо множину послідовностей $c_k[S_f](x,i)$, визначених наступним чином:

$$c_0[S_f](x,i) = x, c_n[S_f](x,i) = f_{i(n)}(c_{n-1}[s_f](x,i))$$

Теорема 1. Для комплексу S_f та довільної функції $i: \mathbb{N} \to \{1, 2, ..., |S|\}$ має місце рівнісь:

$$\forall x_1, x_2 \in \mathbb{C} \ \mathfrak{L}\langle c_n[S_f](x_1, i)\rangle = \mathfrak{L}\langle c_n(x_2, i)[S_f]\rangle$$

Означення 7. Нехай S_f - комплекс, I - множина всіх функцій $i: \mathbb{N} \to 1, 2, ..., |S|$. Означимо $\mathfrak{L}\langle c_n[S_f](*,*)\rangle$, як:

$$\mathfrak{L}\langle c_n[S_f](*,*)\rangle = \bigcup_{i \in I} \mathfrak{L}\langle c_n[S_f](x,i)\rangle$$

Теорема 2. Для комплексу S_f мае місце рівнісь:

$$\mathfrak{S}\langle S_f \rangle = \mathfrak{L}\langle c_n[S_f](*,*)\rangle$$

Означення 8. Будемо казати, що множина M самоподібна відносно комплексу S_f , якщо

$$M = \bigcup_{k \in D_S} f_k(M)$$

Теорема 3. Множина $\mathfrak{S}\langle S_f \rangle$ самоподібна відносно комплексу S_f .

Позначимо розмірність Хаусдорфа множини K, як $\mathbf{H}_{\mathbb{C}}(K)$.

Теорема 4.
$$\mathbf{H}_{\mathbb{C}}(\mathfrak{S}\langle S_{ax}\rangle) \leqslant -log_{|a|}|S|$$

Приклад 1. Розглянемо комплекс $S_{0.383x}$, де S сладається з коренів 5-го степеня з 1 та точки 0. Згідно доведених теорем гранична множина комплексу $S_{0.383x}$ є самоподібною і її розмірність Хаусдорфа дорівнює $-log_{0.383}6 \approx 1.866966$.

Рис. 1. Гранична множина лінійного комплексу $S_{0.383x}$, |S| = 6.

Національний університет "Києво-Могилянська Академія", Київ, Україна

E-mail address: denis.morozov178@gmail.com