Conditional Probability and Independence

Independent Events [Ross S3.4]

Definition 7.1: Events E and F are called **independent** if

$$P[EF] = P[E]P[F]$$

From previous examples, P[E|F] is not necessarily the same as P[E].

Two events that are not independent are said to be **dependent**.

But, if E and F are independent (and P[F] > 0):

 $P[E|F] = \frac{P[EF]}{P[F]} = \frac{P[E]P[F]}{P[F]} = P[E]$

 $E_1 = \{\text{sum is 6}\}$

 $E_2 = \{\text{sum is } 7\}$ $F = \{\text{1st die is } 4\}$ $G = \{\text{2nd die is } 3\}$ Then:

 $P[E_1F] = P[(4,2)] = 1/36, \quad P[E_1]P[F] = 5/36 \times 1/6 \neq 1/36$ $P[E_2F] = P[(4,3)] = 1/36, \quad P[E_2]P[F] = 1/6 \times 1/6 = 1/36$

So
$$E_1$$
 and F are not independent, but E_2 and F are independent.
Similarly, E_2 and G are independent.

Example 7.2: Say $EF = \emptyset$ with P[E] > 0 and P[F] > 0. Are E and F independent?

Solution:

 $P[E] = P[EF \cup EF^c]$

 $= P[EF] + P[EF^c]$ $= P[E]P[F] + P[EF^c]$

Proposition 7.1 If E and F are independent, then E and F^c are independent

Solution:

G when

What does this mean?

Why?

$$\Rightarrow$$
 $P[EF^c] = P[E] - P[E]P[F] = P[E](1 - P[F]) = P[E]P[F^c]$
Example 7.3: If E is independent of F and E is independent of G , is E independent of FG ?

Definition 7.2: Events E and F are called conditionally independent given

P[EF|G] = P[E|G]P[F|G].

P[E|G]P[F|G] = P[EF|G]

$$= \frac{P[EFG]}{P[G]}$$

$$= \frac{P[E|FG] \times P[F|G] \times P[G]}{P[G]}$$

So, this is equivalent to P[E|FG] = P[E|G].

In words: If
$$G$$
 is known to have occured, the additional information that F occured does not change the probability of E .

Definition 7.3: The 3 events E , F and G are said to be independent if
$$P[EFG] = P[E]P[F]P[G]$$

P[EF] = P[E]P[F] P[EG] = P[E]P[G] P[FG] = P[F]P[G]

Now, E is independent of any event formed from F and G.

 $P[E(F \cup G)] = P[EF \cup EG]$

Definition 7.4: Events E_1, E_2, \dots, E_n are said to be independent if

for every $A \subset \{1, ..., n\}$.

finite subset is independent.

bility that the system functions?

What is the prob. of

Solution:

Example 7.4:

$$= P[EF] + P[EG] - P[EF \cap EG]$$

$$= P[E]P[F] + P[E]P[G] - P[E]P[FG]$$

$$= P[E](P[F] + P[G] - P[FG])$$

$$= P[E]P[F \cup G]$$

 $P\left[\bigcap_{i\in A} E_i\right] = \prod_{i\in A} P[E_i]$

Definition 7.5: An infinite set of events E_1, E_2, \ldots is independent if every

(7.1)

Example 7.5: A system has n components. Each component functions/fails independently of any other. Component i has probability p_i of functioning. If at least one component functions, the system functions. What is the proba-

Solution:

Sometimes each E_i is the outcome of one instance of a sequence of repeated sub-experiments, e.g., $E_i = \{i\text{-th coin toss is heads}\}$.

These sub-experiments are often called **trials** (or **repeated trials**).

Example 7.6: Independent trials that consist of repeatedly rolling a pair of

 $F = \{$ an outcome of 5 eventually occurs, and there was no 7 before this $\}$?

fair dice are performed. The outcome of a roll is the sum of the dice.