<u>Corollary</u> 1.4. Let $(T(t))_{t \geq 0}$ be a positive semigroup on a (real or complex) Banach lattice with generator A . Each of the following conditions implies that the solutions of the abstract Cauchy problem are exponentially stable, i.e., there is $\delta > 0$ such that $\lim_{t \to \infty} e^{\delta t} T(t) f = 0$ for every $f \in D(A)$.

- (a) λ A is invertible for every $\lambda \ge 0$;
- (b) A is invertible and $A^{-1} \le 0$.

<u>Proof.</u> In case of a real Banach lattice we consider the complexification (see Sec.7 of C-I). Note that both, the hypotheses and the satement remain preserved.

Since $s(A) \in \sigma(A)$ assertion (a) implies s(A) < 0. If (b) is satisfied then $R(0,A) \ge 0$, hence s(A) < 0 by C-III,Thm.1.1(b). It follows from Thm.1.3 that $\sup\{\omega(f): f \in D(A)\} = \omega_1(A) < 0$.

In the following we give a spectral characterization of stability for eventually norm-continuous positive semigroups. An important tool in the proof is the following result on power bounded operators due to Katznelson-Tzafriri (1984):

Let R be a linear operator on a Banach space

(1.4) such that $\sup_{n\in\mathbb{N}}\|R^n\|<\infty$. Then one has $\sigma(R)\cap\Gamma\subseteq\{1\} \text{ if and only if }\lim_{n\to\infty}\|R^n-R^{n+1}\|=0\text{ .}$

Theorem 1.5. Let $(T(t))_{t \ge 0}$ be a positive semigroup on a Banach lattice E which is bounded and eventually norm-continuous. The following two assertions are equivalent:

- (i) (T(t))_{t>0} is uniformly stable;
- (ii) $0 \notin R_{\sigma}(A)$ (i.e., ker A' = $\{0\}$).

In case E is reflexive (i) and (ii) are equivalent to

(iii) $0 \notin P_{\sigma}(A)$ (i.e., ker $A = \{0\}$).

<u>Proof.</u> (i) \rightarrow (ii) was proven in A-IV, Thm. 1.12 in a more general setting.

(ii) \rightarrow (i) In case $_{\omega}(A)$ < 0 one trivially has (i). Therefore we can assume $_{\omega}(A)$ = 0 . By Cor.2.13 and Prop.2.9 of C-III we have $_{\sigma}(A) \cap i\mathbb{R}$ = {0} . Since the spectral mapping theorem holds (cf. Thm.6.6