Why do Sums of Squares in ANOVA depend on the order you fit the model but the fitted model is the same?

Because they are Sequential Sums of Squares:

The model or regression sum of squares can be partioned as follows:

$$SSR = SSR(\beta_{1}, \beta_{2}, ..., \beta_{k} | \beta_{0})$$

$$= SSR(\beta_{1} | \beta_{0}) + SSR(\beta_{2} | \beta_{1}, \beta_{0}) + SSR(\beta_{3} | \beta_{2}, \beta_{1}, \beta_{0}) + ...$$

$$+ SSR(\beta_{k} | \beta_{0}, \beta_{1}, \beta_{2}, ..., \beta_{k-2}, \beta_{k-1})$$

For example, the sequential $SSR(\beta_2|\beta_1,\beta_0)$ is the amount of unexplained variability from a simple linear regession on x_1 which is subsequently explained by x_2 , so it represents the increase in the regression sum of squares obtained by adding the predictor x_2 to a model that already contains x_1 .

Diagram from the top of page 8 of the chapter 2 of the lecture notes

Sums of squares – the undiscovered island (whoever gets there first, gets first claim!)

Sums of squares – explanatory variables are like explorers – who gets there first matters!

