Some Topics in Elementary Mathematics/Grade 11

Nguyễn Quản Bá Hồng 1

Ngày 4 tháng 8 năm 2022

Mục lục

Ι	Đại Sô & Giải Tích – Algebra & Analysis	1
1	Hàm Số Lượng Giác & Phương Trình Lượng Giác – Trigonometric Function & Trigonometric Equation1.1Các Hàm Số Lượng Giác – Trigonometric Functions1.1.1Các hàm số $y = \sin x$ & $y = \cos x$ 1.1.1.1Khái niệm1.1.1.2Tính chất tuần hoàn của các hàm số $y = \sin x$ & $y = \cos x$	2 2 2 2 2
	1.1.1.3 Sự biến thiên & đồ thị của hàm số $y = \sin x$	3
	1.1.1.4 Sự biến thiên & đồ thị của hàm số $y = \cos x$	4
	1.1.2 Các hàm số $y = \tan x \& y = \cot x$	4
	1.1.2.1 Định nghĩa	$\frac{4}{5}$
	1.1.2.3 Sự biến thiên & đồ thị của hàm số $y = \tan x$	5
	1.1.2.4 Sự biến thiên & đồ thị của hàm số $y = \cot x$	6
	1.1.3 Về khái niệm hàm số tuần hoàn	7
	1.1.4 Dao động điều hòa	7
	1.1.5 Âm thanh	7
	1.2 Phương Trình Lượng Giác Cơ Bản – Basic Trigonometric Equation	8
	1.2.1 Phương trình $\sin x = m$	8
	1.2.2 Phương trình $\cos x = m$	8 9
	1.2.3 Phương trình $\cot x = m$	10
	1.2.5 1 số điều cần lưu ý	10
	1.2.6 Dùng máy tính bổ túi để tìm 1 góc khi biết 1 giá trị lượng giác của nó	10
	1.3 1 Số Dạng Phương Trình Lượng Giác Cơ Bản	11
2	Tổ Hợp & Xác Suất	12
4	2.1 2 Quy Tắc Đếm Cơ Bản	12
	2.2 Hoán Vị, Chỉnh Hợp & Tổ Hợp	12
	2.3 Nhị Thức Newton	12
	2.4 Biến Cố & Xác Suất của Biến Cố	12
	2.5 Các Quy Tắc Tính Xác Suất	12
	2.6 Biến Ngẫu Nhiên Rời Rạc	12
3	Dãy Số. Cấp Số Công & Cấp Số Nhân	13
Ŭ	3.1 Phương Pháp Quy Nạp Toán Học	13
	3.2 Dãy Số	13
	3.3 Cấp Số Cộng	13
	3.4 Cấp Số Nhân	13
1	Giới Hạn	14
4	4.1 Dãy Số Có Giới Hạn 0	14
	4.2 Dãy Số Có Giới Hạn Hữu Hạn	14
	4.3 Dãy Số Có Giới Hạn Vô Cực	14
	4.4 Định Nghĩa & 1 Số Định Lý về Giới Hạn của Hàm Số	14
	4.5 Giới Hạn 1 Bên	14
	4.6 1 Vài Quy Tắc Tìm Giới Hạn Vô Cực	14
	4.7 Các Dạng Vô Hình	14
	4.8 Hàm Số Liên Tục	14

Sect. 0.0 Mục lục

5	Đạo Hàm 5.1 Khái Niệm Đạo Hàm . 5.2 Các Quy Tắc Tính Đạo Hàm 5.3 Đạo Hàm của Các Hàm Số Lượng Giác 5.4 Vi Phân . 5.5 Đạo Hàm Cấp Cao .	15 15 15 15 15 15
II	Hình Học – Geometry	16
6	Phép Dời Hình & Phép Đồng Dạng Trong Mặt Phẳng 6.1 Mở Đầu về Phép Biến Hình 6.2 Phép Tịnh Tiến & Phép Dời Hình 6.3 Phép Đối Xứng Trục 6.4 Phép Quay & Phép Đối Xứng Tâm 6.5 2 Hình bằng Nhau 6.6 Phép Vị Tự 6.7 Phép Đồng Dạng 6.8 Hình Tự Đồng Dạng & Hình Học Fractal	17 17 17 17 17 17 17 17
7	Đường Thẳng & Mặt Phẳng Trong Không Gian7.1Đại Cương về Đường Thẳng & Mặt Phẳng7.22 Đường Thẳng Song Song7.3Đường Thẳng Song Song với Mặt Phẳng7.42 Mặt Phẳng Song Song7.5Phép Chiếu Song Song7.6Phương Pháp Tiên Đề Trong Hình Học	18 18 18 18 18 18
8	Vector Trong Không Gian. Quan Hệ Vuông Góc8.1Vector Trong Không Gian. Sự Đồng Phẳng của Các Vector8.22 Đường Thẳng Vuông Góc8.3Đường Thẳng Vuông Góc với Mặt Phẳng8.42 Mặt Phẳng Vuông Góc8.5Khoảng Cách	19 19 19 19 19
	Phụ Lục – Appendices A.1 Hàm Số Chẵn & Hàm Số Lẻ – Even & Odd Functions A.1.1 Hàm số chẵn – Even function	20 20 20 20 20 20 20 21 21 21

Phần I

Đại Số & Giải Tích – Algebra & Analysis

Hàm Số Lượng Giác & Phương Trình Lượng Giác – Trigonometric Function & Trigonometric Equation

"Nhiều hiện tượng tuần hoàn đơn giản trong thực tế được mô tả bởi những hàm số lượng giác. Chương này cung cấp những kiến thức cơ bản về các hàm số lượng giác & cách giải các phương trình lượng giác đơn giản." – Quỳnh et al., 2020, p. 3

Nội dung. Tính chất tuần hoàn của các hàm số lượng giác & phương pháp sử dụng đường tròn lượng giác để tìm nghiệm của các phương trình lượng giác cơ bản, kỹ năng biến đổi lượng giác & kỹ năng giải các dạng phương trình lượng giác.

1.1 Các Hàm Số Lượng Giác – Trigonometric Functions

"Các hàm số lượng giác/trigonometric 1 2 functions thường được dùng để mô tả những hiện tượng thay đổi 1 cách tuần hoàn hay gặp trong thực tiễn, khoa học & kỹ thuật." – Quỳnh et al., 2020, p. 4

1.1.1 Các hàm số $y = \sin x \& y = \cos x$

1.1.1.1 Khái niệm

Định nghĩa 1.1.1 (Hàm số sin, cos). Quy tắc đặt tương ứng mỗi số thực $x \in \mathbb{R}$ với sin của góc lượng giác có số đo radian bằng x được gọi là hàm số sin, ký hiệu là $y = \sin x$. Quy tắc đặt tương ứng mỗi số thực $x \in \mathbb{R}$ với côsin của góc lượng giác có số đo radian bằng x được gọi là hàm số côsin, ký hiệu là $y = \cos x$.

"Tập xác định của các hàm số $y=\sin x,\,y=\cos x$ là $\mathbb R.$ Do đó các hàm số sin & côsin được viết là:

$$\sin: \mathbb{R} \to \mathbb{R}$$
 $\cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto \sin x$, $x \mapsto \cos x$

Hàm số $y = \sin x$ là 1 hàm số lễ vì $\sin(-x) = -\sin(x)$, $\forall x \in \mathbb{R}$, trong khi hàm số $y = \cos x$ là 1 hàm số $\cosh x$ vì $\cos(-x) = \cos x$, $\forall x \in \mathbb{R}$." – Quỳnh et al., 2020, p. 4. Về định nghĩa & tính chất của hàm số chẵn & hàm số lễ, xem Sect. A.1. Có thể xem thêm Wikipedia/hàm số chẵn & lễ & Wikipedia/even & odd functions.

1.1.1.2 Tính chất tuần hoàn của các hàm số $y = \sin x \& y = \cos x$

"Với mỗi $k \in \mathbb{Z}$, số $k2\pi$ thỏa mãn: $\sin(x+k2\pi) = \sin x$, $\forall x \in \mathbb{R}$, $\forall k \in \mathbb{Z}$. Ngược lại, có thể chứng minh rằng số T sao cho $\sin(x+T) = \sin x$, $\forall x \in \mathbb{R}$ phải có dạng $T = k2\pi$, với $k \in \mathbb{Z}$. Rỗ ràng, trong các số dạng $k2\pi$ ($k \in \mathbb{Z}$), số dương nhỏ nhất là 2π . Vậy đối với hàm số $y = \sin x$, số $T = 2\pi$ là số dương nhỏ nhất thỏa mãn $\sin(x+T) = \sin x$, $\forall x \in \mathbb{R}$. Hàm số $y = \cos x$ cũng có tinh chất tương tự. Ta nói 2 hàm số đó là những hàm số tuần hoàn với chu kỳ 2π .

Từ tính chất tuần hoàn với chu kỳ 2π , ta thấy khi biết giá trị các hàm số $y = \sin x \ \& \ y = \cos x$ trên 1 đoạn có độ dài 2π (e.g., đoạn $[0; 2\pi]$ hay đoạn $[-\pi; \pi]$) thì ta tính được giá trị của chúng tại mọi $x \in \mathbb{R}$. (Cứ mỗi khi biến số được cộng thêm 2π thì giá trị của các hàm số đó lai trở về như cũ; điều này giải thích từ "tuần hoàn")." – Quỳnh et al., 2020, p. 4–5

 $^{^{1}}$ trigonometric [a] (also trigonometrical) (mathematics) connected with the types of mathematics that deals with the relationship between the sides & angles of triangles.

²trigonometry [n] [uncountable] the type of mathematics that deals with the relationship between the sides & angles of triangles.

1.1.1.3 Sự biến thiên & đồ thị của hàm số $y = \sin x$

"Do hàm số $y = \sin x$ là hàm số tuần hoàn với chu kỳ 2π nên ta chỉ cần khảo sát hàm số đó trên 1 đoạn có độ dài 2π , e.g., trên đoạn $[-\pi;\pi]$."

• Chiều biến thiên. Bảng biến thiên của hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$:

Hình 1.1: Bảng biến thiên của hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$.

• Đồ thị. "Khi vẽ đồ thị của hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$, ta nên để ý rằng: Hàm số $y = \sin x$ là 1 hàm số lẻ, do đó đồ thị của nó nhận gốc tọa độ làm tâm đối xứng. Vì vậy, đầu tiên ta vẽ đồ thị của hàm số $y = \sin x$ trên đoạn $[0; \pi]$.

Hình 1.2: Đồ thị của hàm số $y = \sin x$ trên đoạn $[0, \pi]$.

Trên đoạn $[0; \pi]$, đồ thị của hàm số $y = \sin x$ (Fig. 1.2) đi qua các điểm có tọa độ (x; y) trong bảng sau:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$y = \sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Bảng 1.1: Các giá trị của hàm $y = \sin x$ tại 1 số điểm $\in [0; \pi]$.

Phần đồ thị của hàm số $y = \sin x$ trên đoạn $[0; \pi]$ cùng với hình đối xứng của nó qua gốc O lập thành đồ thị của hàm số $y = \sin x$ trên đoạn $[-\pi, \pi]$ (Fig. 1.3).

Hình 1.3: Đồ thi của hàm số $y = \sin x$ trên $\mathbb{R} - duờng hình sin$.

Tịnh tiến phần đồ thị vừa vẽ sang trái, sang phải những đoạn có độ dài $2\pi, 4\pi, 6\pi, \ldots$ thì được toàn bộ đồ thị hàm số $y = \sin x$. Đồ thị đó được gọi là 1 đường hình sin (Fig. 1.3)." – Quỳnh et al., 2020, pp. 6–7

Nhận xét 1.1.1. 1. "Khi x thay đổi, hàm số $y = \sin x$ nhận mọi giá trị thuộc đoạn [-1;1]. Ta nói tập giá trị của hàm số $y = \sin x$ là đoạn [-1;1].

2. Hàm số $y = \sin x$ đồng biến trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Từ đó, do tính chất tuần hoàn với chu kỳ 2π , hàm số $y = \sin x$ đồng biến trên mỗi khoảng $\left(-\frac{\pi}{2} + k2\pi; \frac{\pi}{2} + k2\pi\right)$, $k \in \mathbb{Z}$." – Quỳnh et al., 2020, p. 7

1.1.1.4 Sự biến thiên & đồ thị của hàm số $y = \cos x$

"Ta có thể tiến hành khảo sát sự biến thiên & vẽ đồ thị của hàm số $y = \cos x$ tương tự như đã làm đối với hàm số $y = \sin x$ trên đây. Tuy nhiên, ta nhận thấy $\cos x = \sin \left(x + \frac{\pi}{2}\right)$, $\forall x \in \mathbb{R}$, nên bằng cách tịnh tiến đồ thị hàm số $y = \sin x$ sang trái 1 đoạn có độ dài $\frac{\pi}{2}$, ta được đồ thị hàm số $y = \cos x$ (nó cùng được gọi là 1 đường hình \sin) (Fig. 1.4).

Hình 1.4: Đồ thị của hàm số $y = \cos x$ trên \mathbb{R} .

Căn cứ vào đồ thị của hàm số $y = \cos x$, ta lập được bảng biến thiên của hàm số đó trên đoạn $[-\pi; \pi]$ (Fig. 1.5):

Hình 1.5: Bảng biến thiên của hàm số $y = \cos x$ trên đoạn $[-\pi; \pi]$.

Nhận xét 1.1.2. 1. Khi x thay đổi, hàm số $y = \cos x$ nhận mọi giá trị thuộc đoạn [-1;1]. Ta nói tập giá trị của hàm số $y = \cos x$ là đoạn [-1;1].

- 2. Do hàm số $y = \cos x$ là hàm số chẵn nên đồ thị của hàm số $y = \cos x$ nhận trực tung làm trực đối xứng.
- 3. Hàm số $y = \cos x$ đồng biến trên khoảng $(-\pi; 0)$. Từ đó do tính chất tuần hoàn với chu kỳ 2π , hàm số $y = \cos x$ đồng biến trên mỗi khoảng $(-\pi + k2\pi; k2\pi)$, $k \in \mathbb{Z}$." Quỳnh et al., 2020, pp. 8–9

Hàm số $y = \sin x$	Hàm số $y = \cos x$
Có tập xác định là \mathbb{R}	Có tập xác định là \mathbb{R}
Có tập giá trị là [-1;1]	Có tập giá trị là $[-1;1]$
Là hàm số lẻ	Là hàm số chẵn
Là hàm số tuần hoàn với chu kỳ 2π	Là hàm số tuần hoàn với chu kỳ 2π
Đồng biến trên mỗi khoảng $\left(-\frac{\pi}{2}+k2\pi;\frac{\pi}{2}+k2\pi\right)$ & nghịch	Đồng biến trên mỗi khoảng $(-\pi + k2\pi; k2\pi)$ & nghịch biến
biến trên mỗi khoảng $\left(\frac{\pi}{2} + k2\pi; \frac{3\pi}{2} + k2\pi\right), k \in \mathbb{Z}$	trên mỗi khoảng $(k2\pi; \pi + k2\pi), k \in \mathbb{Z}$
Có đồ thị là 1 đường hình sin	Có đồ thị là 1 đường hình sin

Bảng 1.2: So sánh tính chất của 2 hàm số $y = \sin x \, \& \, y = \cos x$.

1.1.2 Các hàm số $y = \tan x \& y = \cot x$

1.1.2.1 Định nghĩa

• "Với mỗi số thực $x \in \mathbb{R}$ mà $\cos x \neq 0$, i.e., $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$, ta xác định được số thực $\tan x = \frac{\sin x}{\cos x}$. Đặt $\mathcal{D}_1 := \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi | k \in \mathbb{Z} \right\}$.

Định nghĩa 1.1.2 (Hàm số tan). Quy tắc đặt tương ứng mỗi số $x \in \mathcal{D}_1$ với số thực tan $x = \frac{\sin x}{\cos x}$ được gọi là hàm số tang, ký hiệu là $y = \tan x$.

Vậy hàm số $y = \tan x$ có tập xác định \mathcal{D}_1 ; ta viết

$$\tan: \mathcal{D}_1 \to \mathbb{R}$$
$$x \mapsto \tan x.$$

• Với mỗi số thực $x \in \mathbb{R}$ mà $\sin x \neq 0$, i.e., $x \neq k\pi \tan (k \in \mathbb{Z})$, ta xác định được số thực $\cot x = \frac{\cos x}{\sin x}$. Đặt $\mathcal{D}_2 \coloneqq \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$.

Định nghĩa 1.1.3 (Hàm số cot). Quy tắc đặt tương ứng mỗi số $x \in \mathcal{D}_2$ với số thực cot $x = \frac{\cos x}{\sin x}$ được gọi là hàm số côtang, ký hiệu là $y = \cot x$.

Vậy hàm số $y = \cot x$ có tập xác định là \mathcal{D}_2 ; ta viết

$$\cot: \mathcal{D}_2 \to \mathbb{R}$$
$$x \mapsto \cot x.$$

Hình 1.6: Trục tang & trục côtang.

Trên hình 1.6, ta có (OA, OM) = x, $\tan x = \overline{AT}$, $\cot x = \overline{BS}$.

Nhận xét 1.1.3. 1. Hàm số $y = \tan x$ là 1 hàm số lẻ vì nếu $x \in \mathcal{D}_1$ thì $-x \in \mathcal{D}_1$ & $\tan(-x) = -\tan x$.

2. Hàm số $y = \cot x$ cũng là 1 hàm số lẻ vì nếu $x \in \mathcal{D}_2$ thì $-x \in \mathcal{D}_2$ & $\cot(-x) = -\cot x$." – Quỳnh et al., 2020, pp. 9–10

1.1.2.2 Tính chất tuần hoàn

"Có thể chứng minh rằng $T = \pi$ là số dương nhỏ nhất thỏa mãn $\tan(x+T) = \tan x$, $\forall x \in \mathcal{D}_1$, & $T = \pi$ cũng là số dương nhỏ nhất thỏa mãn $\cot(x+T) = \cot x$, $\forall x \in \mathcal{D}_2$. Ta nói các hàm số $y = \tan x$ & $y = \cot x$ là những hàm số tuần hoàn với chu kỳ π ." – Quỳnh et al., 2020, p. 10

1.1.2.3 Sự biến thiên & đồ thị của hàm số $y = \tan x$

"Do tính chất tuần hoanf với chu kỳ π của hàm số $y = \tan x$, ta chỉ cần khảo sát sự biến thiên & vẽ đồ thị của nó trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right) \subset \mathcal{D}_1$, rồi tịnh tiến phần đồ thị vừa vẽ sang trái, sang phải các đoạn của độ dài $\pi, 2\pi, 3\pi, \ldots$ thì được toàn bộ đồ thị của hàm số $y = \tan x$.

• Chiều biến thiên:

Hình 1.7: Chiều biến thiên của hàm $y = \tan x$.

Khi cho x=(OA,OM) tăng từ $-\frac{\pi}{2}$ đến $\frac{\pi}{2}$ (không kể $\pm \frac{\pi}{2}$) thì điểm M chạy trên đường tròn lượng giác theo chiều dương từ B' đến B (không kể B' & B). Khi đó điểm T thuộc trục tang At sao cho $\overline{AT}=\tan x$ chạy dọc theo At suốt từ dưới lên trên, nên tan x tăng từ $-\infty$ đến $+\infty$ (qua quá trị 0 khi x=0)."

• $D\hat{o}$ thị: "Đồ thị của hàm số $y = \tan x$ có dạng như ở hình 1.8.

Hình 1.8: Đồ thị của hàm $y = \tan x$.

Nhận xét 1.1.4. 1. Khi x thay đổi, hàm số $y = \tan x$ nhận mọi giá trị thực. Ta nói tập giá trị của hàm số $y = \tan x$ là \mathbb{R} .

- 2. Vì hàm số $y = \tan x$ là hàm số lẻ nên đồ thị của nó nhận gốc tọa độ làm tâm đối xứng.
- 3. Hàm số y = tan x không xác định tại x = π/2 + kπ (k ∈ Z). Với mỗi k ∈ Z, đường thẳng vuông góc với trục hành, đi qua điểm (π/2 + kπ;0) gọi là 1 đường tiệm cận của đồ thị hàm số y = tan x. (Từ "tiệm cận" có nghĩa là ngày càng gần. E.g., nói đường thẳng x = π/2 là 1 đường tiệm cận của đồ thị hàm số y = tan x nhằm diễn tả tính chất: điểm M trên đồ thị có hoành độ càng gần π/2 thì M càng gần đường thẳng x = π/2)." Quỳnh et al., 2020, pp. 11-12

1.1.2.4 Sự biến thiên & đồ thị của hàm số $y = \cot x$

"Hàm số $y = \cot x$ xác định trên $\mathcal{D}_2 = \mathbb{R} \setminus \{k\pi | k \in \mathbb{Z}\}$ là 1 hàm số tuần hoàn với chu kỳ π . Ta có thể khảo sát sự biến thiên & vẽ đồ thị của nó tương tự như đã làm đối với hàm số $y = \tan x$. Đồ thị của hàm số $y = \cot x$ có dạng như hình 1.9.

Hình 1.9: Đồ thị của hàm $y = \cot x$.

Nó nhận mỗi đường thẳng vuông góc với trục hoành, đi qua điểm $(k\pi;0)$, $k \in \mathbb{Z}$ làm 1 đường tiệm cận." – Quỳnh et al., 2020, p. 12

$\mathbf{H\grave{a}m\ s\^{o}}\ y = \tan x$	$\mathbf{H\grave{a}m}\ \mathbf{s\acute{o}}\ y = \cot x$
Có tập xác định là $\mathcal{D}_1 = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi k \in \mathbb{Z} \right\}$	Có tập xác định là $\mathcal{D}_2 = \mathbb{R} \setminus \{k\pi k \in \mathbb{Z}\}$
Có tập giá trị là \mathbb{R}	Có tập giá trị là \mathbb{R}
Là hàm số lẻ	Là hàm số lẻ
Là hàm số tuần hoàn với chu kỳ π	Là hàm số tuần hoàn với chu kỳ π
Dồng biến trên mỗi khoảng $\left(-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right), k \in \mathbb{Z}$	Nghịch biến trên mỗi khoảng $(k\pi; \pi + k\pi), k \in \mathbb{Z}$
Có đồ thị nhận mỗi đường thẳng $x = \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z})$ làm	Có đồ thị nhận mỗi đường thẳng $x=k\pi$ $(k\in\mathbb{Z})$ làm 1
1 đường tiệm cận	đường tiệm cận

Bảng 1.3: So sánh tính chất của 2 hàm số $y = \tan x \, \& \, y = \cot x$.

1.1.3 Về khái niệm hàm số tuần hoàn

"Các hàm số $y = \sin x$, $y = \cos x$ là những hàm số tuần hoàn với chu kỳ 2π ; các hàm số $y = \tan x$, $y = \cot x$ là những hàm số tuần hoàn với chu kỳ π . 1 cách tổng quát:

Định nghĩa 1.1.4 (Hàm số tuần hoàn). Hàm số y = f(x) xác định trên tập hợp \mathcal{D} được gọi là hàm số tuần hoàn nếu có số $T \neq 0$ sao cho với mọi $x \in \mathcal{D}$ ta có $x + T \in \mathcal{D}$, $x - T \in \mathcal{D}$ & f(x + T) = f(x). Nếu có số T dương nhỏ nhất thỏa mãn các điều kiện trên thì hàm số đó được gọi là 1 hàm số tuần hoàn với chu kỳ T." – Quỳnh et al., 2020, p. 13

Ví dụ 1.1.1. Các hàm số có dạng $y = a \sin bx$, với $a, b \in \mathbb{R}^* := \mathbb{R} \setminus \{0\}$ là những hàm số tuần hoàn.

1.1.4 Dao động điều hòa

"Nhiều hiện tượng tự nhiên thay đổi có tính chất tuần hoàn (lặp đi lặp lại sau khoảng thời gian xác định) như: Chuyển động của các hành tinh trong hệ mặt trời, chuyển động của guồng nước quay, chuyển động của quả lắc đồng hồ, sự biến thiên của cường độ dòng điện xoay chiều, Hiện tượng tuần hoàn đơn giản nhất là dao động điều hòa được mô tả bởi hàm số $y = A\sin(\omega x + \alpha) + B$, trong đó $A, B, \omega \& \alpha$ là những hằng số; $A \& \omega$ khác 0. Đó là hàm số tuần hoàn với chu kỳ $\frac{2\pi}{|\omega|}$; |A| gọi là biên độ. Đồ thị của nó là 1 đường hình sin có được từ đồ thị của hàm số $y = A\sin\omega x$ bằng cách tịnh tiến thích hợp (theo vector $-\frac{\alpha}{\omega}\vec{i}$ rồi theo vector $B\vec{j}$, i.e., tịnh tiến theo vector $-\frac{\alpha}{\omega}\vec{i} + B\vec{j}$)." – Quỳnh et al., 2020, pp. 15–16

1.1.5 Âm thanh

"Âm thanh được tạo nên bởi sự thay đổi áp suất của môi trường vật chất (chất khí, chất lỏng, chất rắn) 1 cách tuần hoàn theo thời gian (dao động tuần hoàn) & được lan truyền trong môi trường đó (sóng âm thanh).

Nếu dao động tuần hoàn ấy có chu kỳ T (đo bằng đơn vị thời gian là giây) thì $\frac{1}{T}$ gọi là t a n s o của dao động (i.e., số chu kỳ trong 1 giây); đơn vị của tần số là Hertz (abbr., Hz). Âm thanh tai người nghe được là dao động có tần số trong khoảng từ 17–20 Hz đến 20000 Hz. Dao động có tần số cao hơn 20000 Hz được gọi là $sieu \ am$.

Trong âm nhạc (nghệ thuật phối hợp các âm thanh) người ta thường dùng những nốt nhạc để ghi những âm có tần số xác định. Tần số dao động càng lớn thì âm càng cao. Khi tăng tần số 1 âm lên gấp đôi thì ta nói cao độ của âm đó được tăng thêm 1 quãng 8. Người ta thường chia quãng 8 đó thành 12 quãng bằng nhau, mỗi quãng gọi là 1 bán cung để đo chênh lệch cao độ giữa các âm (xem SGK Âm nhạc & Mỹ thuật lớp 7). Với 2 âm cách nhau 1 bán cung, tỷ số các tần số của chúng bằng $\sqrt[12]{2}$; với 2 âm cách nhau 1 cung (i.e., 2 bán cung), tỷ số các tần số của chúng bằng ($\sqrt[12]{2}$) $\sqrt[2]{2}$. Ở khuông nhạc dưới đây có ghi các nốt nhạc của 1 "âm giai" (quãng 8) cùng khoảng cách cao độ giữa 2 âm ứng với 2 nốt kề nhau. Âm la của âm giai đó có tần số 440 Hz (do đó, e.g., âm si kế đó có tần số 440 $\sqrt[6]{2}$ Hz).

Hình 1.10: Khuông nhạc.

Trong âm nhạc, ngoài các âm riêng lẻ còn có hợp âm (kết hợp các âm thanh). Nhà toán học Pháp Joseph Fourier (1768–1830) đã chứng minh rằng 1 hàm số tuần hoàn với chu kỳ T có thể phân tích thành "tổng" của 1 hằng số với những hàm số tuần hoàn có đồ thị là những đường hình sin với chu kỳ $\frac{T}{n}$ $(n \in \mathbb{N}^*)$. Điều đó giúp ta hiểu sâu hơn về hợp âm, hòa âm, âm bội & âm sắc." – Quỳnh et al., 2020, p. 18

1.2 Phương Trình Lượng Giác Cơ Bản – Basic Trigonometric Equation

"Trên thực tế, có nhiều bài toán dẫn đến việc giải các phương trình có 1 trong các dạng $\sin x = m$, $\cos x = m$, $\tan x = m$, & $\cot x = m$, trong đó x là ẩn số $(x \in \mathbb{R})$ & m là 1 số cho trước. Đó là các phương trình lượng giác cơ bản." – Quỳnh et al., 2020, p. 19

1.2.1 Phương trình $\sin x = m$

"Giả sử m là 1 số đã cho. Xét phương trình

$$\sin x = m. \tag{sin}$$

Hiển nhiên phương trình (sin) xác định với mọi $x \in \mathbb{R}$. Ta đã biết $|\sin x| \le 1$ với mọi $x \in \mathbb{R}$. Do đó phương trình (sin) vô nghiệm khi |m| > 1. Mặt khác, khi x thay đổi, $\sin x$ nhận mọi giá trị từ -1 đến 1 nên phương trình (sin) luôn có nghiệm khi $|m| \le 1$." - Quỳnh et al., 2020, p. 20

Nếu α là 1 nghiệm của phương trình (sin), i.e., $\sin \alpha = m$ thì

$$\sin x = m \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi \\ x = \pi - \alpha + k2\pi \end{bmatrix} \quad (k \in \mathbb{Z}). \tag{1.2.1}$$

"Ta nói rằng $x = \alpha + k2\pi$ & $x = \pi - \alpha + k2\pi$ là 2 họ nghiệm của phương trình (sin).

Kể từ đây, để cho gọn ta quy ước rằng nếu trong 1 biểu thức nghiệm của phương trình lượng giác có chứa k mà không giải thích gì thêm thì ta hiểu rằng k nhận mọi giá trị thuộc \mathbb{Z} . E.g., $x = \alpha + k2\pi$ có nghĩa là x lấy mọi giá trị thuộc tập hợp $\{\alpha, \alpha \pm 2\pi, \alpha \pm 4\pi, \alpha \pm 6\pi, \ldots\}$." – Quỳnh et al., 2020, p. 21

"Trong mặt phẳng tọa độ, nếu vẽ đồ thị (G) của hàm số $y = \sin x$ & đường thẳng (d): y = m thì hoành độ mỗi giao điểm của (d) & (G) (nếu có) là 1 nghiệm của phương trình $\sin x = m$." – Quỳnh et al., 2020, p. 22

Lưu ý 1.2.1. 1. "Khi $m \in \{0; \pm 1\}$, công thức (1.2.1) có thể viết gọn như sau:

$$\sin x = 1 \Leftrightarrow x = \frac{\pi}{2} + k2\pi, \ \sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi, \ \sin x = 0 \Leftrightarrow x = k\pi.$$

2. Dễ thấy rằng với m cho trước mà $|m| \le 1$, phương trình $\sin x = m$ có đúng 1 nghiệm nằm trong đoạn $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. Người ta thường ký hiệu đó là $\arcsin m$. Khi đó

$$\sin x = m \Leftrightarrow \begin{bmatrix} x = \arcsin m + k2\pi, \\ x = \pi - \arcsin m + k2\pi. \end{bmatrix}$$

3. Từ (1.2.1) ta thấy rằng: Nếu α & β là 2 số thực thì $\sin \beta = \sin \alpha$ khi & chỉ khi có số nguyên k để $\beta = \alpha + k2\pi$ hoặc $\beta = \pi - \alpha + k2\pi$, $k \in \mathbb{Z}$." – Quỳnh et al., 2020, pp. 22–23

1.2.2 Phương trình $\cos x = m$

"Xét phương trình

$$\cos x = m, \tag{cos}$$

trong đó m là 1 số cho trước. Hiển nhiên phương trình (cos) xác định với mọi $x \in \mathbb{R}$. Dễ thấy rằng: Khi |m| > 1, phương trình (cos) vô nghiệm. Khi $|m| \le 1$, phương trình (II) luôn có nghiệm. Để tìm tất cả các nghiệm của (II), trên trực côsin ta lấy điểm H sao cho $\overline{OH} = m$. Gọi (l) là đường thẳng đi qua H & vuông góc với trực côsin (Fig. 1.11).

Hình 1.11: Truc côsin.

Do $|m| \leq 1$ nên đường thẳng (l) cắt đường tròn lượng giác tại 2 điểm M_1 & M_2 . 2 điểm này đối xứng với nhau qua trục côsin (chúng trùng nhau nếu $m=\pm 1$). Ta thấy số đo của các góc lượng giác (OA,OM_1) & (OA,OM_2) là tất cả các nghiệm của (\cos) . Nếu α là số đo của 1 góc trong chúng, nói cách khác, nếu α là 1 nghiệm của (\cos) thì các góc đó có các số đo là $\pm \alpha + k2\pi$. Vậy ta có

Nếu α là 1 nghiệm của phương trình (cos), i.e., $\cos \alpha = m$ thì

$$\cos x = m \Leftrightarrow \begin{bmatrix} x = \alpha + k2\pi, \\ x = -\alpha + k2\pi. \end{bmatrix}$$
 (1.2.2)

Lưu ý 1.2.2. 1. Đặc biệt, khi $m \in \{0; \pm 1\}$, công thức (1.2.2) có thể viết gọn như sau:

$$\cos x = 1 \Leftrightarrow x = k2\pi, \ \cos x = -1 \Leftrightarrow x = \pi + k2\pi, \ \cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi.$$

2. Dễ thấy rằng với mọi số m cho trước mà $|m| \leq 1$, phương trình $\cos x = m$ có đúng 1 nghiệm nằm trong đoạn $[0;\pi]$. Người ta thường ký hiệu nghiệm đó là $\arccos m$. Khi đó

$$\cos x = m \Leftrightarrow \begin{bmatrix} x = \arccos m + k2\pi, \\ x = -\arccos m + k2\pi, \end{bmatrix}$$

mà cũng thường được viết là $x = \pm \arccos m + k2\pi$.

3. Từ (1.2.2) ta thấy rằng: Nếu α & β là 2 số thực thì $\cos \beta = \cos \alpha$ khi & chỉ khi có số nguyên k để $\beta = \alpha + k2\pi$ hoặc $\beta = -\alpha + k2\pi$, $k \in \mathbb{Z}$." – Quỳnh et al., 2020, pp. 23–24

1.2.3 Phương trình $\tan x = m$

"Cho m là 1 số tùy ý. Xét phương trình

$$\tan x = m. \tag{tan}$$

Điều kiện xác định (ĐKXĐ) của phương trình (tan) là $\cos x \neq 0$. Ta đã biết, khi x thay đổi, $\tan x$ nhận mọi giá trị từ $-\infty$ đến $+\infty$. Do đó phương trình (tan) luôn có nghiệm. Để tìm tất cả các nghiệm của (tan), trên tục tang, ta lấy điểm T sao cho $\overline{AT} = m$. Đường thẳng OT cắt đường tròn lượng giác tại 2 điểm M_1 & M_2 (Fig. 1.12).

Hình 1.12: Trục tang.

Ta có: $\tan(OA,OM_1) = \tan(OA,OM_2) = \overline{AT} = m$. Gọi số đo của 1 trong các góc lượng giác (OA,OM_1) & (OA,OM_2) là α ; i.e., α là 1 nghiệm nào đó của phương trình (tan). Khi đó, các góc lượng giác (OA,OM_1) & (OA,OM_2) . Khi đó, các góc lượng giác (OA,OM_1) & (OA,OM_2) có các số đo là $\alpha + k\pi$. Đó là tất cả các nghiệm của phương trình (tan) (hiển nhiên chúng thỏa mãn ĐKXĐ của (tan)). Vậy ta có:

Nếu α là 1 nghiệm của phương trình (tan), i.e., $\tan\alpha=m$ thì $\tan x=m \Leftrightarrow x=\alpha+k\pi. \tag{1.2.3}$

Lưu ý 1.2.3. 1. Dễ thấy rằng với mọi số $m \in \mathbb{R}$ cho trước, phương trình $\tan x = m$ có đúng 1 nghiệm nằm trong khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Người ta thường ký hiệu nghiệm đó là arctan m. Khi đó

$$\tan x = m \Leftrightarrow x = \arctan m + k\pi.$$

2. Từ (1.2.3) ta thấy rằng: Nếu α & β là 2 số thực mà $\tan \alpha$, $\tan \beta$ xác định thì $\tan \beta = \tan \alpha$ khi & chỉ khi có số nguyên k để $\beta = \alpha + k\pi$." – Quỳnh et al., 2020, pp. 25–26

1.2.4 Phương trình $\cot x = m$

"Cho $m \in \mathbb{R}$ là 1 số tùy ý, xét phương trình

$$\cot x = m. \tag{cot}$$

ĐKXĐ của phương trình (cot) là $\sin x \neq 0$. Tương tự như đối với phương trình tan x = m, ta có

Nếu α là 1 nghiệm của phương trình (cot), i.e., $\cot \alpha = m$ thì

$$\cot x = m \Leftrightarrow x = \alpha + k\pi. \tag{1.2.4}$$

" – Quỳnh et al., 2020, pp. 26-27

Lưu ý 1.2.4. $D\tilde{e}$ thấy rằng với mọi số $m \in \mathbb{R}$ cho trước, phương trình $\cot x = m$ có đúng 1 nghiệm nằm trong khoảng $(0; \pi)$. Người ta thường ký hiệu nghiệm đó là $\operatorname{arccot} m$. Khi đó:

$$|\cot x = m \Leftrightarrow x = \operatorname{arccot} m + k\pi.$$

1.2.5 1 số điều cần lưu ý

- 1. Khi đã cho số m, ta có thể tính được các giá trị $\arcsin m$, $\arccos m$ (với $|m| \le 1$), $\arctan m$ bằng máy tính bỏ túi với các phím $\sin^{-1}, \cos^{-1} \& \tan^{-1}$.
- 2. $\arcsin m$, $\arccos m$ (với $|m| \le 1$), $\arctan m$ & $\arccot m$ có giá trị là những số thực. Do đó ta viết, e.g., $\arctan 1 = \frac{\pi}{4}$ mà không viết $\arctan 1 = 45^{\circ}$.
- 3. Khi xét các phương trình lượng giác ta đã coi ẩn số x là số đo radian của các góc lượng giác. Trên thực tế, ta còn gặp những bài toán yêu cầu tìm số đo độ của các góc (cung) lượng giác sao cho sin (côsin, tang hoặc côtang) của chúng bằng số $m \in \mathbb{R}$ cho trước e.g. $\sin(x+20^\circ) = \frac{\sqrt{3}}{2}$. Khi giải các phương trình này (mà làm dụng ngôn ngữ, ta vẫn gọi là giải các phương trình lượng giác), ta có thể áp dụng các công thức nêu trên & lưu ý sử dụng ký hiệu số đo độ trong "công thức nghiệm" cho thống nhất, e.g., viết $x=30^\circ+k360^\circ$ chứ không viết $x=30^\circ+k2\pi$.

Tuy nhiên, ta quy ước rằng nếu không có giải thích gì thêm hoặc trong phương trình lượng giác không sử dụng đơn vị đo góc là độ thì mặc nhiên ẩn số là số đo radian của góc lượng giác." – Quỳnh et al., 2020, p. 27

1.2.6 Dùng máy tính bỏ túi để tìm 1 góc khi biết 1 giá trị lượng giác của nó

"Các phím \sin^{-1} , \cos^{-1} & \tan^{-1} của máy tính bỏ túi CASIO fx-500MS được dùng để tìm số đo (độ hoặc radian) của 1 góc khi biết 1 trong các giá trị lượng giác của nó. Muốn thế đối với máy tính CASIO fx-500MS ta thực hiện 2 bước sau:

1. \hat{An} định đơn vị đo góc (độ hoặc radian). Muốn tìm số đo độ, ta ấn $\boxed{\text{MODE}}$ $\boxed{\text{MODE}}$ $\boxed{\text{MODE}}$ $\boxed{\text{1}}$. Lúc này dòng trên cùng của màn hình xuất hiện chữ nhỏ $\boxed{\text{D}}$. Muốn tìm số đo radian, ta ấn $\boxed{\text{MODE}}$ $\boxed{\text{MODE}}$ $\boxed{\text{MODE}}$ $\boxed{\text{2}}$. Lúc này dòng trên cùng của màn hình xuất hiện chữ nhỏ $\boxed{\text{R}}$.

2. Tìm số đo góc. Khi biết sin, cô
sin hay tang của góc α cần tìm bằng m, ta lần lượt ấn phím
 $\boxed{\mathrm{SHIFT}}$, & 1 trong các phím $\boxed{\sin^{-1}$, $\boxed{\cos^{-1}}$, $\boxed{\tan^{-1}}$

1.3 1 Số Dạng Phương Trình Lượng Giác Cơ Bản

Tổ Hợp & Xác Suất

- 2.1 2 Quy Tắc Đếm Cơ Bản
- 2.2 Hoán Vị, Chỉnh Hợp & Tổ Hợp
- 2.3 Nhị Thức Newton
- 2.4 Biến Cố & Xác Suất của Biến Cố
- 2.5 Các Quy Tắc Tính Xác Suất
- 2.6 Biến Ngẫu Nhiên Rời Rạc

Đãy Số. Cấp Số Cộng & Cấp Số Nhân

- 3.1 Phương Pháp Quy Nạp Toán Học
- 3.2 Dãy Số
- 3.3 Cấp Số Cộng
- 3.4 Cấp Số Nhân

Giới Hạn

- 4.1 Dãy Số Có Giới Hạn 0
- 4.2 Dãy Số Có Giới Hạn Hữu Hạn
- 4.3~ Dãy Số Có Giới Hạn Vô Cực
- 4.4~ Định Nghĩa & 1 Số Định Lý về Giới Hạn của Hàm Số
- 4.5 Giới Hạn 1 Bên
- 4.6 1 Vài Quy Tắc Tìm Giới Hạn Vô Cực
- 4.7 Các Dạng Vô Hình
- 4.8 Hàm Số Liên Tục

Đạo Hàm

- 5.1 Khái Niệm Đạo Hàm
- 5.2 Các Quy Tắc Tính Đạo Hàm
- 5.3 Đạo Hàm của Các Hàm Số Lượng Giác
- 5.4 Vi Phân
- 5.5 Đạo Hàm Cấp Cao

$\begin{array}{c} {\rm Ph \grave{a} n} \; {\rm II} \\ \\ {\rm H\grave{n} h} \; {\rm H\acute{o} c} - {\rm Geometry} \end{array}$

Phép Dời Hình & Phép Đồng Dạng Trong Mặt Phẳng

- 6.1 Mở Đầu về Phép Biến Hình
- 6.2 Phép Tịnh Tiến & Phép Dời Hình
- 6.3 Phép Đối Xứng Trục
- 6.4 Phép Quay & Phép Đối Xứng Tâm
- 6.5 2 Hình bằng Nhau
- 6.6 Phép Vị Tự
- 6.7 Phép Đồng Dạng
- 6.8 Hình Tự Đồng Dạng & Hình Học Fractal

Đường Thẳng & Mặt Phẳng Trong Không Gian

- 7.1 Đại Cương về Đường Thẳng & Mặt Phẳng
- 7.2 2 Đường Thẳng Song Song
- 7.3 Đường Thẳng Song Song với Mặt Phẳng
- 7.4 2 Mặt Phẳng Song Song
- 7.5 Phép Chiếu Song Song
- 7.6 Phương Pháp Tiên Đề Trong Hình Học

Vector Trong Không Gian. Quan Hệ Vuông Góc

- 8.1 Vector Trong Không Gian. Sự Đồng Phẳng của Các Vector
- 8.2 2 Đường Thẳng Vuông Góc
- 8.3 Đường Thẳng Vuông Góc với Mặt Phẳng
- 8.4 2 Mặt Phẳng Vuông Góc
- 8.5 Khoảng Cách

Phu luc A

Phụ Lục – Appendices

A.1 Hàm Số Chẵn & Hàm Số Lẻ – Even & Odd Functions

"Trong toán học, hàm số chẵn & hàm số lẻ là các hàm số thỏa mãn các quan hệ đối xứng nhất định khi lấy nghịch đảo phép cộng. Chúng rất quan trọng trong nhiều lĩnh vực của giải tích toán, đặc biệt trong lý thuyết chuỗi lũy thừa & chuỗi Fourier. Chúng được đặt tên theo tính chẵn lẻ của số mũ lũy thừa của hàm lũy thừa thỏa mãn từng điều kiện: hàm số $f(x) = x^n$ là 1 hàm chẵn nếu n là 1 số nguyên chẵn, & nó là hàm lẻ nếu n là 1 số nguyên lẻ." – Wikipedia/hàm số chẵn & lẻ

A.1.1 Hàm số chẵn – Even function

Định nghĩa A.1.1 (Hàm số chẵn). "Cho f là 1 hàm số giá trị thực của 1 đối số thực, f là hàm số chẵn nếu điều kiện sau được thỏa mãn với mọi x sao cho cả x \mathscr{E} -x đều thuộc miền xác định của f: f(x) = f(-x), $\forall x \in \text{dom}(f)$, với dom(f) ký hiệu miền xác định của f, hoặc phát biểu 1 cách tương đương, nếu phương trình sau thỏa mãn f(x) - f(-x) = 0, $\forall x \in \text{dom}(f)$.

Về mặt hình học, đồ thị của 1 hàm số chẵn đối xứng qua trục y, nghĩa là đồ thị của nó giữ không đổi sau phép lấy đối xứng qua trục y." – Wikipedia/hàm số chẵn & lẻ

Ví dụ A.1.1 (Hàm chẵn). Hàm trị tuyệt đối $x \mapsto |x|$, các hàm đơn thức dạng $x \mapsto x^{2n}$, hàm cosin cos, hàm cosin hyperbolic cosh.

A.1.2 Hàm số chẵn – Odd function

Định nghĩa A.1.2 (Hàm số lẻ). Cho f là 1 hàm số giá trị thực của 1 đối số (biến) thực, f là hàm số lẻ nếu điều kiện sau được thỏa mãn với mọi x sao cho cả x \mathcal{E} -x đều thuộc miền xác định của f: f(-x) = -f(x), $\forall x \in \text{dom}(f)$, với dom(f) ký hiệu miền xác định của f, hoặc phát biểu 1 cách tương đương, nếu phương trình sau thỏa mãn f(x)+f(-x)=0, $\forall x \in \text{dom}(f)$.

"Về mặt hình học, đồ thị của 1 hàm lẻ có tính đối xứng tâm quay qua gốc tọa độ, i.e., đồ thị của nó không đổi sau khi thực hiện phép quay 180° quanh điểm gốc." – Wikipedia/hàm số chẵn & lẻ

Ví dụ A.1.2 (Hàm số lẻ). Hàm đồng nhất $x \mapsto x$, các hàm đơn thức dạng $x \mapsto x^{2n+1}$, hàm sin sin, hàm sin hyperbol sinh, hàm lỗi erf.

A.1.3 Các tính chất cơ bản

A.1.3.1 Tính duy nhất

- "Nếu 1 hàm số vừa chẵn & vừa lẻ, nó bằng 0 ở mọi điểm mà nó được xác định.
- Nếu 1 hàm là lẻ thì giá trị tuyệt đối của hàm đó là 1 hàm chẵn." Wikipedia/hàm số chẵn & lẻ

A.1.3.2 Công & trừ hàm số chẵn lẻ

- Tổng & hiệu của 2 hàm số chẵn là 2 hàm số chẵn.
- Tổng & hiệu của 2 hàm lẻ là 2 hàm lẻ.
- Tổng của 1 hàm chắn & 1 hàm lẻ thì không chẵn cũng không lẻ, trừ khi 1 trong các hàm ấy bằng 0 trên miền đã cho.

A.1.3.3 Nhân & chia hàm số chẵn lẻ

- Tích & thương của 2 hàm chẵn là 2 hàm chẵn.
- Tích & thương của 2 hàm lẻ là 2 hàm chẵn.
- Tích & thương của 1 hàm chẵn với 1 hàm lẻ là 2 hàm lẻ.

A.1.3.4 Hàm hợp (tích ánh xạ)

- Hàm hợp của 2 hàm chẵn là hàm chẵn.
- Hàm hợp của 2 hàm lẻ là hàm lẻ.
- 1 hàm chẵn hợp với 1 hàm lẻ là hàm chẵn.
- Hàm hợp của bất kỳ hàm số nào với 1 hàm chẵn là hàm chẵn (nhưng điều ngược lại không đúng).

A.1.4 Phân tích chẵn-lẻ

"Mọi hàm có thể được phân tích duy nhất thành tổng của 1 hàm chẵn & 1 hàm lẻ, được gọi tương ứng là *phần chẵn* & *phần* lẻ của 1 hàm số, nếu ta đặt như sau:

$$f_{e}(x) := \frac{f(x) + f(-x)}{2}, \ f_{o}(x) := \frac{f(x) - f(-x)}{2},$$

sau đó f_e là hàm chẵn, f_o là hàm lẻ, & $f(x) = f_e(x) + f_o(x)$. Ngược lại nếu f(x) = g(x) + h(x), trong đó g là chẵn & h là lẻ, thì $g = f_e$ & $h = f_o$, bởi vì

$$2f_{e}(x) = f(x) + f(-x) = g(x) + g(-x) + h(x) + h(-x) = 2g(x),$$

$$2f_{o}(x) = f(x) - f(-x) = g(x) - g(-x) + h(x) - h(-x) = 2h(x).$$

Ví dụ A.1.3. Hàm cosin hyperbolic & sin hyperbolic có thể được coi là các phần chẵn & phần lẻ của hàm số lũy thừa tự nhiên, bởi vì hàm thứ nhất là chẵn, hàm thứ 2 là lẻ, & $e^x = \sinh x + \cosh x$." – Wikipedia/hàm số chẵn & lẻ

Tài liệu tham khảo

[NQBH/elementary math] Nguyễn Quản Bá Hồng. Some Topics in Elementary Mathematics: Problems, Theories, Applications, & Bridges to Advanced Mathematics. Mar 2022—now.

Tài liệu tham khảo

Quỳnh, Đoàn et al. (2020). Đại Số & Giải Tích 11 nâng cao. Tái bản lần thứ 13. Nhà Xuất Bản Giáo Dục Việt Nam, p. 241.