Całkowanie numeryczne:

przykład 1

$$\int_{0}^{\infty} \sin\left(\frac{1+\sqrt{x}}{1+x^2}\right) e^{-x} dx$$

Przedział całkowania to [0,17], gdyż w przedziale [17, ∞] wartość całki jest mniejsza niż żądana dokładność tj. 10^{-7} .

metoda trapezów:

~> ./trapez.exe N = 2^22 = 4194304, pole = 0.80102586269413

metoda Romberga:

~> ./romberg.exe
N = 2^18 = 262144, Pole = 0.80102586286141

przykład 2

$$F(x) = \int_{-\infty}^{x} \cos\left(\frac{1+t}{t^2 + 0.04}\right) e^{-t^2} dt$$

Przedział całkowania to [-4,4], gdyż funkcja podcałkowa jest niewiększa niż e^{-x^2} , a $e^{-16}=0,112535175\times 10^{-8}$ tj. mniej niż żądana dokładność. Zatem granicą F(x) jest:

 $\int_{-4}^{0} f(t)dt = 0.2789016083643$ $\int_{0}^{4} f(t)dt = -0.05928968596948$ $\int_{-4}^{4} f(t)dt = 0.21961192516299$

Wykres F(x) - metoda trapezów, początkowa liczba podziałów n=1000, krok 0.01

