

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Информатика и системы управления
КАФЕДРА _	Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ "ТИПЫ И СТРУКТУРЫ ДАННЫХ" ЛАБОРАТОРНАЯ РАБОТА №7

Студент	<u>Ляпина Наталья Викторовна</u> фамилия, имя, отчество
Группа ИУ7-32Б	
Вариант <u>9</u>	
Студент	<u>Ляпина Н.В.</u> фамилия, и.о.
Преподаватель	силантьева А.В. фамилия, и.о.

Оглавление

1)	Условие задачи	3
2)	Схема программы	4
3)	Описание программы	11
4)	Текст программы	15
5)	Заключение	18
6)	Список литературы	18

Задание

1. Общее задание

Обработать графовую структуру в соответствии с заданным вариантом. Обосновать выбор необходимого алгоритма и выбор структуры для представления графов. Ввод данных осуществить на усмотрение программиста. Результат выдать в графической форме.

2. Задание по варианту

Задана система двусторонних дорог, где для любой пары городов есть соединяющий их путь. Найти город с минимальной суммой расстояний до остальных городов.

3. Входные данные

- Команда для выбора действия (от 0 до 5)
 - 1. Ввести граф вручную
 - 2. Ввести граф из файла
 - 3. Вывести граф
 - 4. Найти вершину с наименьшей суммой тупей до всех остальных вершин
 - 0. Выход из программы
- Количество вершин
- Вес ребер
- Имя файла

• Требования к входным данным

- 1) Валиндая команда
- 2) Количество вершин натуральное число
- 3) Вес ребер не отрицательное число

4. Выходные данные

- Файл с графом dot
- Вершина с наименьшей суммой путей

5. Действие программы

Программа выполняет обработку графа

5. Обращение к программе

Программа может быть вызвана через консоль компилятора с помощью команды "./app.exe"

6. Аварийные ситуации

В случае аварийной ситуации выводится сообщение об определенной ошибке.

Неверный ввод:

- Ошибка при вводе команды
- Ошибка при вводе количества вершин
- Ошибка при вводе веса ребер

Структура данных

```
Графtypedef struct{int matrix[MAX_SIZE][MAX_SIZE];<br/>int size;} graph_t;<br/>MAX_SIZE = 500<br/>size - количество вершин графаСтруктура для алгоритма Дейкстры<br/>typedef struct<br/>{<br/>int min_len[MAX_SIZE];<br/>int ver [MAX_SIZE];<br/>int ver [MAX_SIZE];} dextra_t;min_len - минимальное расстояние до каждой вершины<br/>ver - посещенные вершины
```

Интерфейс модулей

Для обработки muna grahp_t используются функции:

```
int read_graph(graph_t *table)
// Функция чтения графа с клавиатуры
// table - граф

int read_graph_by_file(graph_t *table, char *file_name)
// Функция чтения графа из файла
// table - граф, file_name - имя файла

int print_graph(graph_t table, char *file_name, int min_versh)
// Функция печати графа
// table - граф, file_name - имя файла , min_versh - вершина с мин. суммой
int dextra_alg(graph_t *table, dextra_t *argv, int versh)
// Алгоритм Дейкстры
// table - граф , argv - аргументы, versh - вершина относительно которой происходят вычисления
```

Описание алгоритма

- 1. Вводится команда для выполнения определенной функции программы.
- 2. Выполняется введенная функция
 - Ввод графа с клавиатуры
 - Ввод графа из файла
 - Печать графа
 - Поиск вершины с минимальной суммой путей
 - Для поиска вершины с минимальной суммой путей используется алгоритм Дейкстры для каждой вершины графа

- Результат работы алгоритма сравнивается с минимумом и находится новый минимум.
- 3. При ошибке выполнения функции выводится сообщение об ошибке и программа завершается с ненулевым кодом возврата.

Тесты

Негативные тесты

No	Описание	Вводимая структура	Результат
1	Недопустимый символ команде меню	a2	Ошибка
2	Несуществующая команда меню	10	Ошибка
3	Недопустимое количество вершин	-2	Ошибка
4	Несуществующий файл	123.ttt	Ошибка
5	Недопустимое значение веса ребра	1.3	Ошибка

Позитивные тесты

№	Описание	Входные данные	Результат
1	Правильный пункт меню	comand = 1	Выбор действия
2	Правильный файл	test.txt	Успешное чтение файла
3	Правильное количество вершин	2	Успешное чтение
4	Правильный вес ребра	3	Успешное чтение

5	Ввод графа из файла	6 1 - 2 = 7 1 - 3 = 9 1 - 6 = 14 2 - 3 = 10 2 - 4 = 15 3 - 4 = 11 3 - 6 = 2 4 - 5 = 6 5 - 6 = 9	3
		5 - 6 = 9	6

Вывод

Для хранения данных графа была выбрана матрица смежностей. Так как в данном графе система двухсторонних дорог. Следовательно, наиболее удобная структура данных - матрица.

Для поиска вершины с наименьшей суммой путей был выбран алгоритм Дейкстры, поскольку выбранная структура данных подходит для этого алгоритма, а также он наиболее простой и понятный. Также алгоритм Дейкстры удобен тем, что решает задачу полностью, без использования других алгоритмов.

Ответы на контрольные вопросы

1. 1. Что такое граф?

Граф — конечное множество вершин и ребер, соединяющих их: $G = \langle V, E \rangle$, где V - конечное непустое множество вершин; E - множество рёбер (пар вершин).

2. Как представляются графы в памяти?

Графы в памяти могут представляться различным способом. Один из видов представления графов — это матрица смежности В (n*n); В этой матрице элемент b[i,j] = 1, если ребро, связывающее вершины Vi и Vj существует и b[i,j] = 0, если ребра нет. У неориентированных графов матрица смежности всегда симметрична. Во многих случаях удобнее представлять граф в виде так называемого списка смежностей. Список смежностей содержит для каждой вершины из множества вершин V список тех вершин, которые непосредственно связаны с этой вершиной. Каждый элемент (ZAP[u]) списка смежностей является записью, содержащей данную вершину и указатель на следующую запись в списке (для последней записи в списке этот

указатель – пустой). Входы в списки смежностей для каждой вершины графа хранятся в таблице (массиве) (BEG [u])

3. Какие операции возможны над графами?

- поиск кратчайшего пути от одной вершины к другой (если он есть);
- поиск кратчайшего пути от одной вершины ко всем другим;
- поиск кратчайших путей между всеми вершинами;
- поиск эйлерова пути (если он есть);
- поиск гамильтонова пути (если он есть);
- исключение/включение вершины/ребра

4. Какие способы обхода графов существуют?

Обходы в глубину, в ширину.

5. Где используются графовые структуры?

Графы нашли применение практически во всех отраслях научных знаний: физике, биологии, химии, математике, истории, лингвистике, социальных науках, технике и т.п. Наибольшей популярностью теоретико-графовые модели используются при исследовании коммуникационных сетей, систем информатики, химических и генетических структур, электрических цепей и других систем сетевой структуры.

6. Какие пути в графе Вы знаете?

- Эйлеров путь (произвольный путь в графе, проходящий через каждое ребро графа точно один раз)
- Простой путь (путь в графе, проходящий через каждую вершину однократно)
- Гамильтонов путь (путь в графе, проходящий в точности один раз через каждую вершину графа (а не каждое ребро))

7. Что такое каркасы графа?

Остовое дерево или каркас графа - это подграф графа, который содержит все вершины графа и является деревом