

On the Parameterized Complexity of SEMITOTAL DOMINATING SET On Graph Classes

Lukas Retschmeier

Theoretical Foundations of Artificial Intelligence School of Computation Technical University of Munich

February 28th, 2023

Creative Introduction

Mativatio

wotivatio

Theory

.....

 ω_2 hardne

Kern

....

Definition

Definitio

Rule 1

Rule 2

....

Kernel S

Reference

Retschmeier

Our Plan for Today

- Motivation
- 2 Theory Intractability ω_2 hardness
- Kernel **Definitions** Rule 1 Rule 2 Rule 3 Kernel Size

4 Conclusions

Motivation

Theory
Intractabilit ω_2 hardne

Kernel

Definition
Rule 1

Rule 2

Rule 3 Kernel Si

Conclusion

References

DOMINATING SET

Motivation

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that N[D] = V?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- Observation: In connected G every $v \in D$ has another $z \in D$ with $d(v,z) \leq 3$.

Lukas Retschmeier

Motivation

Intractabilit

ω_a hardner

Kernel

Definition Rule 1 Rule 2

Rule 3 Kernel Siz

Conclusion

References

Motivation

DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that N[D] = V?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- **Observation:** In connected G every $v \in D$ has another $z \in D$ with $d(v, z) \leq 3$.

Lukas Retschmeier

Motivation

Theory
Intractability ω_2 hardnes

Kernel

Rule 1
Rule 2
Rule 3

Rule 3 Kernel Size

Conclusion

References

Motivation

DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that N[D] = V?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- Observation: In connected G every $v \in D$ has another $z \in D$ with $d(v, z) \leq 3$.

Lukas Retschmeier

Motivation

Theory
Intractability

Kernel

Rule 1

Rule 2

Rule 3 Kernel S

Kernel Si

Conclusion

References

Motivation

Question

TOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists $D\subseteq V$ with $|D|\leq k$ such that

 $\forall d_1 \in X : \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 1$?

- The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory
Intractability

Kernel

Rule 1
Rule 2

Rule 3

Kernel Si

Conclusion

References

Motivation

Question

TOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists $D\subseteq V$ with $|D|\leq k$ such that

 $\forall d_1 \in X : \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 1$?

- The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory
Intractability

Kerne

Rule 1 Rule 2

Rule 3 Kernel Si

Conclue

References

Motivation

Question

TOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Exists $D \subseteq V$ with $|D| \le k$ such that

 $\forall d_1 \in X: \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 1$?

- The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory
Intractability

Kernel

Definition Rule 1 Rule 2

Rule 3 Kernel Si

Conclusion

References

Motivation

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that

 $\forall d_1 \in X: \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1,d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{2t}(G)$.
- Observation: $\gamma(G) \leq \gamma_{2t}(\mathbf{G}) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory
Intractability
ω_σ hardnes

Kernel

Puls 2

Rule 3 Kernel Siz

Conclusion

References

Motivation

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that

 $\forall d_1 \in X : \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{2t}(G)$.
- Observation: $\gamma(G) \leq \gamma_{2t}(\mathbf{G}) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory Intractability ω_2 hardness

Kernel

Rule 1
Rule 2

Rule 3 Kernel Siz

Conclusion

References

Motivation

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that

 $\forall d_1 \in X : \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{2t}(G)$.
- Observation: $\gamma(G) \leq \gamma_{2t}(G) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Lukas Retschmeier

Motivation

Theory Intractabilit ω_2 hardness

Kernel

Definition Rule 1 Rule 2 Rule 3

Rule 3 Kernel Size

Conclusion

References

Motivation

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that

 $\forall d_1 \in X : \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 2$?

- The semitotal domination number is the minimum cardinality of an sds of G, denoted as $\gamma_{2t}(G)$.
- Observation: $\gamma(G) \leq \gamma_{2t}(G) \leq \gamma t(G)$
- We say d_1 witnesses d_2 (and vice versa)

Retschmeier

Motivation

DOMINATING SET

SEMITOTAL DOMINATING SET

TOTAL DOMINATING SET

Lukas Retschmeier

Parameterized Complexity

Bantingti

Theory

Intractabili ω_2 hardne

Kerne

Definition

Rule 2

Kernel Si

Conclusion

Reference

NP-hard? We expect problem to be at least exponential

Idea: Limit combinatorial explosion to some aspect of the problem

• Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k

In this work: by solution size

• Techniques: Kernelization, Bounded Search Trees, ...

If possible, the problem is fixed-parameter tractable

Lukas Retschmeier

Parameterized Complexity

Theory

Intractability ω_2 hardness

Kerne

Definition Rule 1

Rule 3

Reference

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ...

it possible, the problem is **fixed-parameter tractable**

Lukas Retschmeier

wotiva

Theory Intractability

ω₂ hardne

Kerne

Rule 1

Rule 3

Conclusio

Reference

Parameterized Complexity

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ... If possible, the problem is **fixed-parameter tractable**.

Lukas Retschmeier

Motiv

Theory

 ω_2 hardnes

Kerne

Definition

Rule 2 Rule 3

Conclusi

References

Parameterized Complexity

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ... If possible, the problem is **fixed-parameter tractable**.

Lukas Retschmeier

Motiva

Theory

Intractabilit ω_2 hardnes

Kerne

Rule 1

Rule 3 Kernel Si

Conclusion

Reference

Parameterized Complexity

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- Techniques: Kernelization, Bounded Search Trees, ...
 If possible, the problem is fixed-parameter tractable.

Lukas Retschmeier

Motiva

Theory Intractability

Kernel

Rule 1
Rule 2

Rule 3 Kernel Siz

Conclusion

Reference:

Parameterized Complexity

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ...

If possible, the problem is **fixed-parameter tractable**.

Lukas Retschmeier

Motivatio

Intractability

ω_n hardness

Kerne

-

Rule 1

Rule 2

Rule 3 Kernel Si

Canalua

001101001011

References

- Class NP corresponds to whole hierarchy W[i] in parameterized setting.
- ullet Problems at least W[1]-hard considered **fixed-parameter intractable**
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Motivatio

Theory Intractability ω_2 hardness

Kerne

Rule 1 Rule 2 Rule 3

Kernel Siz

Conclusion

References

- Class NP corresponds to whole hierarchy W[i] in parameterized setting.
- Problems at least W[1]-hard considered fixed-parameter intractable
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Motivation

Theory Intractability ω_2 hardness

Kerne

Rule 1 Rule 2 Rule 3

Conclusio

001101001011

References

- Class NP corresponds to whole hierarchy W[i] in parameterized setting.
- ullet Problems at least W[1]-hard considered **fixed-parameter intractable**
- DOMINATING SET is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Motivation

Theory Intractability ω_2 hardness

Kerne

Rule 1 Rule 2 Rule 3

Rule 3 Kernel Size

Conclusion

References

- Class NP corresponds to whole hierarchy W[i] in parameterized setting.
- Problems at least W[1]-hard considered **fixed-parameter intractable**
- Dominating Set is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas Retschmeier

Motivation

Theory Intractability ω_2 hardness

Kerne

Definiti

Rule 2
Rule 3
Kernel Size

Conclusion

References

- Class NP corresponds to whole hierarchy W[i] in parameterized setting.
- Problems at least W[1]-hard considered fixed-parameter intractable
- Dominating Set is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Lukas

Motivation

Theory

Kerne

Definition

Rule 1

Rule 3 Kernel S

Conclusion

References

Complexity Comparison

Graph Class	DOMINATING SET		SEMITOTAL DOMINATING SET		TOTAL DOMINATING SET	
	classical	Parameterized	classical	Parameterized	classical	Parameterized
bipartite	NPc [4]	W[2] [39]	NPc [25]	W[2] (this)	NPc [32]	W[2] (cite!)
line graph of bipartite	NPc [28]	?	NPc [19]	? (?)	NPc [35]	?
circle	NPc [26]	W[1][7]	NPc [27]	? (?)	NPc [35]	W[1][7]
chordal	NPc [6]	W[2] [39]	NPc [25]	W[2] (this)	NPc [37]	W[1] [11] by split
s-chordal , $s>3$	NPc [33]	W[2] [33]	? (?)	? (?)	NPc [33]	W[1] [33]
split	NPc [4]	W[2] [39]	NPc [25]	W[2] this	NPc [37]	W[1] [11]
3-claw-free	NPc [14]	FPT [14]	Prob. Unk	Prob. Unk	NPc [35]	Unknown
t-claw-free, $t > 3$	NPc [14]	W[2] [14]	Prob. Unknown	Unknown	NPc [35]	Prob. Unknown
chordal bipartite	NPc [36]	? (?)	NPc [25]	?		P [15]
planar	NPc (Sources!)	FPT [2]	NPc	FPT (this)	NPc	FPT [20]
undirected path	NPc [6]	FPT [18]	NPc [24]	?	NPc [31]	?
dually chordal	P [8]		? (attempted [19])			P [30]
strongly chordal	P [17]		P [40]		NPc [17]	
AT-free	P (29) P (22) P (17) P (12)		P [27] ? P [24] P [38]			P [29]
tolerance						?
block						P [10]
interval					P [5]	
bounded clique-width	P [13]		P [13]		P [13]	
bounded mim-width	P [3, 9]		P [19]		P [3, 9]	

Lukas Retschmeier

Motivat

Theory Intractability

Kornol

Kerne

Definition

Rule 2

Rule 3

Conclusio

References

Status SEMITOTAL DOMINATING SET

Lukas Retschmeier

Motivation

Intractability ω_2 hardness

Kernel

Definitio

Rule 2

Rule 3

Conclusion

Reference:

Warmup: Intractability Results

 ω_2 hard on split, chordal and bipartite graphs

• Split Graph: G = Clique + IndependentSet

Lukas Retschmeier

Motivation

Theory
Intractability

Kerne

Rule 1 Rule 2

Rule 3 Kernel S

Conclusion

References

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is ω_2 -hard

- **1** Construct G^* by adding v with pendant z to clique. G^* split
- 2 If ds D in G, $D' = D \cup \{v\}$ is sds D'.
- 3 If sds D' in G', $D \setminus \{v\}$ is D in G
- Parameter k only changed by constan

Lukas Retschmeier

Motivation

Theory
Intractability
ω_a hardness

Kerne

Rule 1 Rule 2

Rule 3 Kernel Si

Conclusion

References

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is ω_2 -hard

Proof by fpt-reduction from PLANAR DOMINATING SET on split graphs:

- **1** Construct G^* by adding v with pendant z to clique. G^* split
- 2 If ds D in G, $D' = D \cup \{v\}$ is sds D'.
- 3 If sds D' in G', $D \setminus \{v\}$ is D in G
- Parameter k only changed by constan

Lukas Retschmeier

Motivation

Theory
Intractability
ω₂ hardness

Kerne

Rule 1

Rule 3 Kernel Si

Conclusion

References

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is ω_2 -hard

- **1 Construct** G^* by adding v with pendant z to clique. G^* split
- 2 If ds D in G, $D' = D \cup \{v\}$ is sds D'.
- 3 If sds D' in G', $D \setminus \{v\}$ is D in G
- Parameter k only changed by constan

Lukas Retschmeier

Motivation

Theory
Intractability
ω_a hardness

Kerne

Rule 1 Rule 2 Rule 3

Conclusio

References

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is ω_2 -hard

- **1 Construct** G^* by adding v with pendant z to clique. G^* split
- 2 If ds D in G, $D' = D \cup \{v\}$ is sds D'.
- 3 If sds D' in G', $D \setminus \{v\}$ is D in G
- Parameter k only changed by constan

Lukas Retschmeier

Motivation

Theory
Intractability
ω_a hardness

Kerne

Rule 1 Rule 2 Rule 3

Conclusion

References

Split Graphs

Semitotal Dominating Set on split and $\mathit{chordal}$ graphs is ω_2 -hard

- **1 Construct** G^* by adding v with pendant z to clique. G^* split
- 2 If ds D in G, $D' = D \cup \{v\}$ is sds D'.
- 3 If sds D' in G', $D \setminus \{v\}$ is D in G
- 4 Parameter k only changed by constant

Lukas Retschmeier

Motivation

Theory
Intractability

\[\omega_2 \]
hardness

Kerne

Rule 1

Rule 3

Conclusion

References

Bipartite Graphs

Semitotal Dominating Set on *bipartite* graphs is ω_2 -hard

- **1** Construct Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- ② If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivation

Theory
Intractability
ω_a hardness

Kerne

Definition Rule 1

Rule 3

Conclusion

References

Bipartite Graphs

Semitotal Dominating Set on *bipartite* graphs is ω_2 -hard

- **1 Construct** Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- ② If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivation

Theory
Intractability
ω_a hardness

Kerne

Definition Rule 1 Rule 2

Rule 3
Kernel Si

Conclusion

References

Bipartite Graphs

Semitotal Dominating Set on *bipartite* graphs is ω_2 -hard

- **1 Construct** Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- 2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivation

Theory
Intractability
ω_a hardness

Kerne

Rule 1 Rule 2 Rule 3

Conclusion

Reference:

Bipartite Graphs

Semitotal Dominating Set on bipartite graphs is ω_2 -hard

Proof by fpt-reduction from PLANAR DOMINATING SET on bipart. graphs:

- **1 Construct** Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- 2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- 3 Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

Lukas Retschmeier

Motivatio

Intractability

 ω_2 hardne

Kernel

Defini

Rule 1

Rule 2

Rule 3

0----

References

A Linear Kernel for Planar Semitotal Dominating Set

Another Explicit kernel for a Dominating Problem

Kernelization

Motivatio

Intractability

Kernel

.....

Definition

- - -

Kernel Si

Conclusion

References

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Lukas Retschmeier

Motivation

Theory
Intractability

 ω_2 hardnes

Kernel

Dofiniti

Rule 1

Rule 2

nule 3

Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Lukas Retschmeier

Motivation

Theory Intractability

Kernel

....

Definit

Rule 2

nule 3

References

Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Related Works

ТШП

Motivation

Theory
Intractability

Kernel

TCTTIC

Rule 1

Rule 3 Kernel Siz

Conclusion

References

Problem PLANAR DOMINATING SET PLANAR TOTAL DOMINATING SET PLANAR SEMITOTAL DOMINATING SET	$\begin{array}{c} \textbf{Size} \\ 67k \\ 410k \\ 359k \end{array}$	Source [16] [20] This work
PLANAR EDGE DOMINATING SET PLANAR EFFICIENT DOMINATING SET PLANAR RED-BLUE DOMINATING SET PLANAR CONNECTED DOMINATING SET	14k $84k$ $43k$ $130k$	[23] [23] [21] [34]
PLANAR CONNECTED DOMINATING SET	Linear	[34] [1]

Lukas Retschmeier

Motivation

Theory

Kernel

Rule 1 Rule 2 Rule 3

Kernel Siz

Conclusion

References

Main Theorem

The Main Theorem

PLANAR SEMITOTAL DOMINATING SET parameterized by solution size admits a linear kernel. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| \leq 359 \cdot k$.

Lukas Retschmeier

Motivatio

Intractability

 ω_2 nardnes

Kernel

Rule 1

Rule 3 Kernel Si

Conclusion

References

The Big Picture

- Split the neighborhoods of the graph;
- 2 Define reduction Rules
- 3 Use the region decomposition to analyze the size of each region

Lukas Retschmeier

Motivatio

Intractability

Kernel

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

Reference:

The Big Picture

- 1 Split the neighborhoods of the graph;
- 2 Define reduction Rules
- 3 Use the region decomposition to analyze the size of each region

Lukas Retschmeier

Motivatio

Intractability

Kernel

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

The Big Picture

- 1 Split the neighborhoods of the graph;
- 2 Define reduction Rules
- 3 Use the region decomposition to analyze the size of each region

Lukas Retschmeie

Motivation

Intractability

Kernel

Rule 1 Rule 2 Rule 3 Kernel Size

Conclusion

References

The Big Picture

- 1 Split the neighborhoods of the graph;
- 2 Define reduction Rules
- 3 Use the region decomposition to analyze the size of each region

Lukas Retschmeier

Motivatio

Intractabili

 ω_2 hardnes

Definitions

Definitions Rule 1

Rule 3

Kernel Siz

Conclusion

References

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)

Retschmeier

Definitions

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)

Retschmeier

Definitions

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v, w)

Lukas Retschmeier

Motivatio

Intractabilit

Kernel

Definitions

Rule 2 Rule 3 Kernel Size

Conclusion

References

D-region decomposition

D-region decomposition [2]

Given G=(V,W) and $D\subseteq V$, a D-region decomposition is a set $\mathfrak R$ with poles in D such that:

- for any vw-region $R \in \mathfrak{R}$: $D \cap V(R) = \{v, w\}$
- Regions are disjunct, but can share border vertices

A region is **maximal**, if no $R \in \Re$ such that $\Re' = \Re \cup \{R\}$ is a *D-region decomposition* with $V(\Re) \subsetneq V(\Re')$.

Lukas Retschmeier

Definitions

D-region decomposition

D-region decomposition [2]

Given G = (V, W) and $D \subseteq V$, a *D-region decomposition* is a set \Re with poles in D such that:

- for any vw-region $R \in \mathfrak{R}$: $D \cap V(R) = \{v, w\}$
- Regions are disjunct, but can share border vertices

A region is **maximal**, if no $R \in \mathfrak{R}$ such that $\mathfrak{R}' = \mathfrak{R} \cup \{R\}$ is a *D-region* decomposition with $V(\mathfrak{R}) \subseteq V(\mathfrak{R}')$.

Maximal *D*-region decomposition

Motivation

Intractabilit

ω₂ hardne

Definitions

Definition

Dule 0

Rule 2

Kernel S

Conclusion

References

Splitting Up N(v)

Definitions

Retschmeier

Splitting Up N(v)

Motivation

Intractability

Kernel

Definitions

Rule 1

Rule 2

Rule 3

Canalusi

References

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$
(1)

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$
 (2)

$$N_3(v) = N(v) \setminus (N_1(v) \cup N_2(v)) \tag{3}$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

Retschmeier

Splitting Up N(v)

Motivation

Intractability

Definitions

Definition

Rule 1

Rule 3

Kernel Siz

Conclusior

Reference:

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$
(1)

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$
 (2)

$$N_2(v) = N(v) \setminus (N_1(v) \cup N_2(v)) \tag{3}$$

For
$$i, j \in [1, 3]$$
, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

Retschmeier

Splitting Up N(v)

Motivatio

.....

Intractabilit

Kernel

Definitions

Rule 1

Rule 2

Rule 3 Kernel Si

Conclusio

Reference:

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$
(1)

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$

$$V_3(v) = N(v) \setminus (N_1(v) \cup N_2(v)) \tag{3}$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$

(2)

Splitting Up N(v)

Motivation

Theory
Intractability

Kernel

Definitions

Rule 1

Rule 3

Kernel Size

Conclusion

References

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$
(1)

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$

$$N_3(v) = N(v) \setminus (N_1(v) \cup N_2(v))$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$.

(2)

(3)

Lukas Retschmeier

Motivat

Theory Intractability

Kernel

Definitio

Rule 1

Rule 2 Rule 3

Rule 3 Kernel S

Conclusion

References

Rule 1: Shrinking $N_3(v)$

Let G = (V, E) be a graph and let $v \in V$. If $|N_3(v)| \ge 1$:

- remove $N_{2,3}(v)$ from G,
- add a vertex v' and an edge $\{v, v'\}$.

• Idea: v better choice than $N_{2,3}$

Splitting up N(v, w)

Motivation

Theory Intractabilit

ω₂ hardne

Rernei

Definition

Rule 1

Rule

Kernel S

Conclusion

References

Lukas Retschmeier

Splitting up $N(\boldsymbol{v},\boldsymbol{w})$

Motivati

I neory Intractabilit

 ω_2 hardne

Kerne

Dofiniti

Definiti

Rule 1

Rule

Kernel

Conclus

001101001011

Reference

$$N_1(v, w) = \{ u \in N(v, w) \mid N(u) \setminus (N(v, w) \cup \{v, w\}) \neq \emptyset \}$$

$$\tag{4}$$

$$N_2(v, w) = \{ u \in N(v, w) \setminus N_1(v, w) \mid N(u) \cap N_1(v, w) \neq \emptyset \}$$

$$N_3(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w))$$

For $i, j \in [1, 3]$, we denote $N_{i, j}(v, w) = N_i(v, w) \cup N_j(v, w)$

Retschmeier

Splitting up $N(\boldsymbol{v},\boldsymbol{w})$

Motivation

Theory Intractability

 ω_2 hardne

Kerne

Definition

Rule 1

Ruk

Rule 3

Kernel S

Conclusio

нетегепсе

$$N_1(v, w) = \{ u \in N(v, w) \mid N(u) \setminus (N(v, w) \cup \{v, w\}) \neq \emptyset \}$$

$$\tag{4}$$

$$V_2(v, w) = \{ u \in N(v, w) \setminus N_1(v, w) \mid N(u) \cap N_1(v, w) \neq \emptyset \}$$

$$(5)$$

$$N_3(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w))$$

For $i,j \in [1,3]$, we denote $N_{i,j}(v,w) = N_i(v,w) \cup N_j(v,w)$.

Retschmeier

Splitting up N(v,w)

Motivation

Intractabilit

Kerne

Definitio

Definition

Rule 1

Rule 2

Kernel S

Conclusion

Reference

$$N_1(v,w) = \{ u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset \}$$
(4)

$$N_2(v,w) = \{ u \in N(v,w) \setminus N_1(v,w) \mid N(u) \cap N_1(v,w) \neq \emptyset \}$$

$$N_3(v, w) = N(v, w) \setminus (N_1(v, w) \cup N_2(v, w))$$

For
$$i, j \in [1, 3]$$
, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$.

(5)

Splitting up N(v,w)

Motivation

Intractabilit

Kerne

Doffmille

Definiti

Rule 1

Rule 3

Kernel Siz

Conclusion

Reference

$$N_1(v,w) = \{ u \in N(v,w) \mid N(u) \setminus (N(v,w) \cup \{v,w\}) \neq \emptyset \}$$
(4)

$$N_2(v,w) = \{ u \in N(v,w) \setminus N_1(v,w) \mid N(u) \cap N_1(v,w) \neq \emptyset \}$$

$$N_3(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w))$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$.

(5)

(6)

Retschmeier

Rule 2: Setting Up Our Weapons

Rule 1

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices.

$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \mid N_3(v,w) \subseteq \bigcup_{\tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$
 (7)

$$\mathcal{D}_v = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$

$$D_v = \{D \subseteq N_{2,3}(v, w) \cup \{v\} \mid N_3(v, w) \subseteq \bigcup_{v \in \tilde{D}} N(v), |D| \le 3, v \in D\}$$
 (8)

$$\mathcal{D}_{w} = \{ \tilde{D} \subseteq N_{2,3}(v, w) \cup \{w\} \mid N_{3}(v, w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$$
 (9)

Retschmeier

Rule 2: Setting Up Our Weapons

Rule 1

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices.

$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$
 (7)

$$\mathcal{D}_v = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$
 (8)

$$\mathcal{D}_{w} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{w\} \mid N_{3}(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$$
 (9)

30 / 52

Rule 2

If $\mathcal{D} = \emptyset$ we apply the following:

Case 1: if $\mathcal{D}_v = \emptyset$ and $D_w = \emptyset$

- Remove $N_{2,3}(v,w)$
- Add vertices v' and w' and two edges $\{v,v'\}$ and $\{w,w'\}$
- Preserve d(v, w)

Case 2: if $\mathcal{D}_v \neq \emptyset$ and $\mathcal{D}_w = \emptyset$

- Remove $N_{2,3}(v)$
- Add $\{v, v'\}$

Case 3: if $\mathcal{D}_v = \emptyset$ and $D_w \neq \emptyset$ Symmetric If $\mathcal{D} = \emptyset$ we apply the following:

Case 1: if $\mathcal{D}_v = \emptyset$ and $D_w = \emptyset$

- Remove $N_{2,3}(v,w)$
- Add vertices v' and w' and two edges $\{v, v'\}$ and $\{w, w'\}$
- Preserve d(v, w)

Case 2: if $\mathcal{D}_v \neq \emptyset$ and $D_w = \emptyset$

- Remove $N_{2,3}(v)$
- Add $\{v, v'\}$

Case 3: if $\mathcal{D}_v = \emptyset$ and $D_w \neq \emptyset$ Symmetric

If $\mathcal{D} = \emptyset$ we apply the following:

Case 1: if $\mathcal{D}_v = \emptyset$ and $D_w = \emptyset$

- Remove $N_{2,3}(v,w)$
- Add vertices v' and w' and two edges $\{v, v'\}$ and $\{w, w'\}$
- Preserve d(v, w)

Case 2: if $\mathcal{D}_v \neq \emptyset$ and $D_w = \emptyset$

- Remove $N_{2,3}(v)$
- Add $\{v, v'\}$

Case 3: if $\mathcal{D}_v = \emptyset$ and $D_w \neq \emptyset$ Symmetric

Rule 2: Case 1

Wollvallo

Intractability

 ω_2 hardnes

Definition

Definitio

Rule 2

Rule 3

Conclusio

References

Rule 2: Case 2

Motivation

Intractability

Kerne

Definitio

Rule 1

Rule 2

Kernel Si

Conclusion

References

Simple Regions

Lukas Retschmeier

Motivati

Theren

Intractabilit

Kernel

Definition

Rule 2

Rule 3

References

The Main Theorem

A simple vw-region is a vw-region such that:

- 1 its boundary paths have length at most 2, and
- (2) $V(R) \setminus \{v, w\} \subseteq N(v) \cap N(w).$

Simple Regions

Retschmeier

The Main Theorem

A simple vw-region is a vw-region such that:

1 its boundary paths have length at most 2, and

(2) $V(R) \setminus \{v, w\} \subseteq N(v) \cap N(w)$.

N(v, w)

Rule 2

34 / 52

Retschmeier

Rule 3: Shrinking the Size of Simple Regions

Motivation

Theory
Intractability

Kernel
Definitions
Rule 1

Rule 1
Rule 2
Rule 3
Kernel Size

Conclusion

Reference

Let G = (V, E) be a plane graph, $v, w \in V$ and R be a simple region between v and w. If $|V(R) \setminus \{v, w\}| \ge 5$ apply the following:

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v,y\}$ and $\{y,w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v, y\}, \{v, y'\}, \{y, w\}$ and $\{y', w\}$

Lukas Retschmeier

Motivation

Theory
Intractability

Kerne

Definition

Rule 3

Rule 3 Kernel Si

Conclusion

Reference:

Rule 3: Shrinking the Size of Simple Regions

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v, y\}$ and $\{y, w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v, y\}, \{v, y'\}, \{y, w\}$ and $\{y', w\}$

Lukas Retschmeier

Motivation

Theory
Intractability

Kernel

Definition

Rule 3

Kernel Si

Conclusion

Reference:

Rule 3: Shrinking the Size of Simple Regions

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v,y\}$ and $\{y,w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v,y\}$, $\{v,y'\}$, $\{y,w\}$ and $\{y',w\}$

Retschmeier

ion Notes

Theory

 ω_2 hardnes

Kerne

Dofiniti

Dellille

Rule

Rule 3

Conclusion

Reference:

- We proved that all these rules are sound,
- change the solution size by only a constant factor
- and can be applied in poly-time.

Lukas Retschmeier

Motivatio

Intractability

ω_o hardne

Kerne

Definiti

Rula

Rule 3

Kernel Si

Conclusion

References

Notes

- We proved that all these rules are sound,
- change the solution size by only a constant factor
- and can be applied in poly-time.

Retschmeier

Notes

Motivatio

Intractabilit

ω₂ nardne

Definition

Definitio

Rule 2

Rule 3

References

- We proved that all these rules are sound,
- change the solution size by only a constant factor
- and can be applied in poly-time

Retschmeier

Notes

Motivatio

Intractability

Kernel

Definition Rule 1

Rule 2

Kernel Siz

Conclusion

References

- We proved that all these rules are sound,
- change the solution size by only a constant factor
- and can be applied in poly-time.

Lukas Retschmeier

Motivation

Intractabilit

Kerne

Definit

Rule 1

Rule 2

Rule 3

Kernel Size

Conclusion

References

Bounding the Kernel: Vertices Outside any Region

- $|N_1(v) \setminus V(\mathfrak{R})| = 0$ [2], On Border
- $|N_2(v) \setminus V(\mathfrak{R})| = 96$ [2]: TODO Reasoning
- **3** $|N_3(v) \setminus V(\mathfrak{R})| = 1$, by Rule 1

Retschmeier

Kernel Size

Bounding the Kernel: Vertices Outside any Region

Lukas Retschmeier

Motivatio

Intractabilit

Kerne

Definit

Rule 1

Rule 2

Kernel Size

Conclusion

Reference

Bounding the Kernel: Vertices Outside any Region

- 1 $|N_1(v) \setminus V(\mathfrak{R})| = 0$ [2], On Border
- $|N_2(v) \setminus V(\mathfrak{R})| = 96$ [2]: TODO Reasoning
- 3 $|N_3(v) \setminus V(\mathfrak{R})| = 1$, by Rule 1

Lukas Retschmeier

Motivation

Intractability

Kerne

Definit

Rule 1

Rule 2

Kernel Size

Conclusion

Reference

Bounding the Kernel: Vertices Outside any Region

- $|N_1(v) \setminus V(\mathfrak{R})| = 0$ [2], On Border
- 2 $|N_2(v) \setminus V(\mathfrak{R})| = 96$ [2]: TODO Reasoning

Retschmeier

Kernel Size

Bounding the Kernel: Vertices Outside any Region

- $|N_1(v) \setminus V(\mathfrak{R})| = 0$ [2], On Border
- $|N_2(v) \setminus V(\mathfrak{R})| = 96$ [2]: TODO Reasoning
- **3** $|N_3(v) \setminus V(\mathfrak{R})| = 1$, by Rule 1

Retschmeier

Kernel Size

Bounding the Kernel: Inside a region

For each vw-region, we have

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| < 87$

Lukas Retschmeier

Motivation

Intractabilit

Kerne

Definiti

Rule 1

Rule 2

Kernel Size

References

Bounding the Kernel: Inside a region

For each vw-region, we have

- $|N_1(v,w)| \le 4$ [2] (vertices on border)
- $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)
- 3 $|N_3(v,w)| \le \max(27,44,4,57) \cdot 4$ (proof omitted depending on Rule 2) **Total:** $|V(R)| = |\{v,w\} \cup (N_1(v,w) \cup N_2(v,w) \cup N_3(v,w))| \le 87$

Retschmeier

Kernel Size

Bounding the Kernel: Inside a region

For each vw-region, we have

- $|N_1(v,w)| \leq 4$ [2] (vertices on border)
- $|N_2(v,w)| \leq 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)
- **Total:** $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| < 87$

Lukas Retschmeier

Motivation

Theory
Intractability

Kerne

Definitio

Rule 2

Kernel Size

Conclusion

Reference:

Bounding the Kernel: Inside a region

For each vw-region, we have

- 1 $|N_1(v,w)| \le 4$ [2] (vertices on border)
- $|N_2(v,w)| \le 6 \cdot 4$ (simple regions to $N_1(v,w)$, Rule 3)
- 3 $|N_3(v,w)| \le \max(27,44,4,57) \cdot 4$ (proof omitted depending on Rule 2)

Total: $|V(R)| = |\{v, w\} \cup (N_1(v, w) \cup N_2(v, w) \cup N_3(v, w))| \le 87$

Lukas Retschmeier

Motivatio

Intractabilit

Karnal

Kerne

Definition

Rule 1

Rule 2

Kernel Size

Conclusion

References

Bounding the Kernel: Number of Regions

Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with $|D| \geq 3$. There is a maximal D-region decomposition of G such that $|\mathfrak{R}| \leq 3 \cdot |D| - 6$.

Lukas Retschmeier

Motivatio

Intractability

Kerne

Defini

Rule 1

Rule 2

Kernel Size

Conclusion

References

Bounding the Kernel: Number of Regions

Number of Regions [2]

Let G be a plane graph and let D be a SEMITOTAL DOMINATING SET with $|D| \geq 3$. There is a maximal D-region decomposition of G such that $|\mathfrak{R}| \leq 3 \cdot |D| - 6$.

Lukas Retschmeier

Summary: Bounding Kernel Size

Motivatio

Theory Intractability ω_2 hardness

Kerne

Definition

Rule

Kernel Size

Conclusion

References

Let D be sds of size k. There exists a maximal D-region decomposition \mathfrak{R} such that:

- **1** \mathfrak{R} has only at most 3k-6 regions ([2]);
- 2 There are at most $97 \cdot k$ vertices outside of any region;
- **3** Each region $R \in \Re$ contains at most 87 vertices.

Hence:
$$|V| = \bigcup_{v \in D} N(v) = 87 \cdot (3k - 6) + 97 \cdot k + k < 359 \cdot k$$

Lukas Retschmeier

Motivation

Theory Intractability ω_2 hardness

Kerne

Rule 1

Kernel Size

Canalusia

Main Theorem

All reduction rules can be applied in poly/time, hence:

The Main Theorem

The Semitotal Dominating Set problem parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| \leq 359 \cdot k$.

Proof: Add Proof here.

Lukas Retschmeier

Motivat

Intractability

 ω_2 hardne

Kerne

Rule 2
Rule 3

Kernel Size

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- Semitotal Dominating Set is W[1] for chordal, split and bipartite graphs
- exists linear kernel of size $359 \cdot k$ when parameterized by solution size

- Improve kernel size and do empirical evaluation
- Solve parameterized complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivat

Theory Intractabilit ω_2 hardness

Kerne

Definition

Rule 1 Rule 2 Rule 3

Rule 3 Kernel Siz

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- Semitotal Dominating Set is W[1] for chordal, split and bipartite graphs
- exists linear kernel of size $359 \cdot k$ when parameterized by solution size

- Improve kernel size and do empirical evaluation
- Solve parameterized complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Intractabilit

Kerne

Rule 1 Rule 2

Rule 3 Kernel Siz

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- ullet Semitotal Dominating Set is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $359 \cdot k$ when parameterized by solution size

- Improve kernel size and do empirical evaluation
- Solve parameterized complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory Intractabilit

ω₂ nardne

Kerne

Rule 1 Rule 2 Rule 3

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- ullet Semitotal Dominating Set is W[1] for *chordal, split* and *bipartite* graphs
- ullet exists linear kernel of size $359 \cdot k$ when parameterized by solution size

- Improve kernel size and do empirical evaluation
- Solve parameterized complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory Intractabilit

ω₂ nardne

Kerne

Rule 1 Rule 2 Rule 3

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- ullet Semitotal Dominating Set is W[1] for *chordal, split* and *bipartite* graphs
- exists linear kernel of size $359 \cdot k$ when parameterized by solution size

- Improve kernel size and do empirical evaluation
- Solve parameterized complexities for Circle, chordal bipartite and undirected path graphs

Lukas Retschmeier

Motivation

Theory
Intractability

Kerne

Rule 1
Rule 2
Rule 3

Conclusions

References

Conclusions

Results:

- Given an overview over the status
- ullet Semitotal Dominating Set is W[1] for chordal, split and bipartite graphs
- exists linear kernel of size $359 \cdot k$ when parameterized by solution size

- Improve kernel size and do empirical evaluation
- Solve parameterized complexities for Circle, chordal bipartite and undirected path graphs

Retschmeier

Conclusions

? Any Questions?

... And Thank You For Your Attention ...

References I

Jochen Alber, Britta Dorn, and Rolf Niedermeier. "A General Data Reduction Scheme for Domination in Graphs". In: SOFSEM 2006: Theory and Practice of Computer Science, 32nd Conference on Current Trends in Theory and Practice of Computer Science, Merin, Czech Republic, January 21-27, 2006, Proceedings. Ed. by Jiri Wiedermann et al. Vol. 3831. Lecture Notes in Computer Science. Springer, 2006, pp. 137–147.

Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. "Polynomial-time data reduction for dominating set". In: (May 2004), pp. 363–384.

Rémy Belmonte and Martin Vatshelle. "Graph Classes with Structured Neighborhoods and Algorithmic Applications". In: *Proceedings of the 37th International Conference on Graph-Theoretic Concepts in Computer Science*. WG'11. Teplá Monastery, Czech Republic: Springer-Verlag, 2011, pp. 47–58.

Alan A. Bertossi. "Dominating sets for split and bipartite graphs". English. In: *Information Processing Letters* 19 (1984), pp. 37–40.

Alan A. Bertossi. "Total domination in interval graphs". In: *Information Processing Letters* 23.3 (1986), pp. 131–134.

References II

Kellogg S. Booth and J. Howard Johnson. "Dominating Sets in Chordal Graphs". In: *SIAM J. Comput.* 11.1 (Feb. 1982), pp. 191–199.

Nicolas Bousquet et al. "Parameterized Domination in Circle Graphs". In: *Proceedings of the 38th International Conference on Graph-Theoretic Concepts in Computer Science*. WG'12. Jerusalem, Israel: Springer-Verlag, 2012, pp. 308–319.

Andreas Brandstädt, Victor D. Chepoi, and Feodor F. Dragan. "The Algorithmic Use of Hypertree Structure and Maximum Neighbourhood Orderings". In: *Discrete Appl. Math.* 82.1–3 (Mar. 1998), pp. 43–77.

Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. "Fast Dynamic Programming for Locally Checkable Vertex Subset and Vertex Partitioning Problems". In: *Theor. Comput. Sci.* 511 (Nov. 2013), pp. 66–76.

Gerard J Chang. "Total domination in block graphs". In: *Operations Research Letters* 8.1 (1989), pp. 53–57.

Gerard J. Chang. "Algorithmic Aspects of Domination in Graphs". In: *Handbook of Combinatorial Optimization: Volume1–3.* Ed. by Ding-Zhu Du and Panos M. Pardalos. Boston, MA: Springer US, 1998, pp. 1811–1877.

References III

Maw-Shang Chang. "Efficient Algorithms for the Domination Problems on Interval and Circular-Arc Graphs". In: *SIAM Journal on Computing* 27.6 (1998), pp. 1671–1694. eprint: https://doi.org/10.1137/S0097539792238431.

Bruno Courcelle. "The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs". In: *Inf. Comput.* 85.1 (Mar. 1990), pp. 12–75.

Marek Cygan et al. "Dominating set is fixed parameter tractable in claw-free graphs". In: *Theoretical Computer Science* 412.50 (2011), pp. 6982–7000.

Peter Damaschke, Haiko Müller, and Dieter Kratsch. "Domination in Convex and Chordal Bipartite Graphs". In: *Inf. Process. Lett.* 36.5 (Dec. 1990), pp. 231–236.

Volker Diekert and Bruno Durand, eds. STACS 2005, 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26, 2005, Proceedings. Vol. 3404. Lecture Notes in Computer Science. Springer, 2005.

Martin Farber. "Domination, independent domination, and duality in strongly chordal graphs". In: *Discrete Applied Mathematics* 7.2 (1984), pp. 115–130.

References IV

Celina M. H. de Figueiredo et al. "Parameterized Algorithms for Steiner Tree and Dominating Set: Bounding the Leafage by the Vertex Leafage". In: WALCOM: Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022, Jember, Indonesia, March 24–26, 2022, Proceedings. Jember. Indonesia: Springer-Verlag, 2022, pp. 251–262.

Esther Galby, Andrea Munaro, and Bernard Ries. "Semitotal Domination: New Hardness Results and a Polynomial-Time Algorithm for Graphs of Bounded Mim-Width". In: *Theor. Comput. Sci.* 814.C (Apr. 2020), pp. 28–48.

Valentin Garnero and Ignasi Sau. "A Linear Kernel for Planar Total Dominating Set". In: Discrete Mathematics & Theoretical Computer Science Vol. 20 no. 1 (May 2018). Sometimes we explicitly refer to the arXiv preprint version: https://doi.org/10.48550/arXiv.1211.0978. eprint: 1211.0978.

Valentin Garnero, Ignasi Sau, and Dimitrios M. Thillikos. "A linear kernel for planar red-blue dominating set". In: *Discret. Appl. Math.* 217 (2017), pp. 536–547.

Archontia C. Giannopoulou and George B. Mertzios. "New Geometric Representations and Domination Problems on Tolerance and Multitolerance Graphs". In: *SIAM Journal on Discrete Mathematics* 30.3 (2016), pp. 1685–1725. eprint: https://doi.org/10.1137/15M1039468.

References V

Jiong Guo and Rolf Niedermeier. "Linear Problem Kernels for NP-Hard Problems on Planar Graphs". In: *Automata, Languages and Programming.* Ed. by Lars Arge et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 375–386.

Michael A. Henning, Saikat Pal, and D. Pradhan. "The semitotal domination problem in block graphs". English. In: *Discussiones Mathematicae. Graph Theory* 42.1 (2022), pp. 231–248.

Michael A. Henning and Arti Pandey. "Algorithmic aspects of semitotal domination in graphs". In: *Theoretical Computer Science* 766 (2019), pp. 46–57.

J. Mark Keil. "The Complexity of Domination Problems in Circle Graphs". In: *Discrete Appl. Math.* 42.1 (Feb. 1993), pp. 51–63.

Ton Kloks and Arti Pandey. "Semitotal Domination on AT-Free Graphs and Circle Graphs". In: Algorithms and Discrete Applied Mathematics: 7th International Conference, CALDAM 2021, Rupnagar, India, February 11–13, 2021, Proceedings. Rupnagar, India: Springer-Verlag, 2021, pp. 55–65.

D. V. Korobitsin. "On the complexity of domination number determination in monogenic classes of graphs". In: 2.2 (1992), pp. 191–200.

References VI

Dieter Kratsch. "Domination and Total Domination on Asteroidal Triple-Free Graphs". In: *Proceedings of the 5th Twente Workshop on on Graphs and Combinatorial Optimization.* Enschede, The Netherlands: Elsevier Science Publishers B. V., 2000, pp. 111–123.

Dieter Kratsch and Lorna Stewart. "Total domination and transformation". In: *Information Processing Letters* 63.3 (1997), pp. 167–170.

James K. Lan and Gerard Jennhwa Chang. "On the algorithmic complexity of k-tuple total domination". In: Discrete Applied Mathematics 174 (2014), pp. 81–91.

J. Pfaff; R. Laskar and S.T. Hedetniemi. *NP-completeness of Total and Connected Domination, and Irredundance for bipartite graphs*. Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.

Chunmei Liu and Yinglei Song. "Parameterized Complexity and Inapproximability of Dominating Set Problem in Chordal and near Chordal Graphs". In: *J. Comb. Optim.* 22.4 (Nov. 2011), pp. 684–698.

Weizhong Luo et al. "Improved linear problem kernel for planar connected dominating set". In: *Theor. Comput. Sci.* 511 (2013), pp. 2–12.

References VII

Alice Anne McRae. "Generalizing NP-Completeness Proofs for Bipartite Graphs and Chordal Graphs". UMI Order No. GAX95-18192, PhD thesis, USA, 1995.

Haiko Müller and Andreas Brandstädt. "The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs". In: *Theor. Comput. Sci.* 53.2 (June 1987), pp. 257–265.

R. Laskar; J. Pfaff. *Domination and irredundance in split graphs*. Technical Report 428. Department of Mathematical Sciences: Clemson University, 1983.

D. Pradhan and Saikat Pal. "An \$\$O(n+m)\$\$time algorithm for computing a minimum semitotal dominating set in an interval graph". In: *Journal of Applied Mathematics and Computing* 66.1 (June 2021), pp. 733–747.

Venkatesh Raman and Saket Saurabh. "Short Cycles Make W-hard Problems Hard: FPT Algorithms for W-hard Problems in Graphs with no Short Cycles". In: *Algorithmica* 52.2 (2008), pp. 203–225.

Vikash Tripathi, Arti Pandey, and Anil Maheshwari. A linear-time algorithm for semitotal domination in strongly chordal graphs. 2021.