COURSE PLAN

Department Computer science and Engineering

Course Name & code Formal Languages and Automata Theory & CSE-2201

Semester & branch IV & CSE

Name of the faculty Giridhar N S, Shanthi P.B, Govardhan Hegde. Praveen Pai

No of contact hours/week:

3104

ASSESSMENT PLAN

Course Outcomes (COs)

	At the end of this course, the student should be able to:	No. of Contact Hours	Marks
CO1:	Use automata as a tool to describe computing	8	16
CO2:	Analyze grammars and languages as they are applied to computer languages.	16	33
CO3:	Exposed to context free languages and pushdown automata .	8	17
CO4:	Design turing machine for a given computation and the languages.	8	17
CO5:	To understand the hierarchy of formal languages.	8	17
	Total	48	100

(Page 1 of 5) MIT/GEN/F-01/R1

Components	Surprise Quizzes	Sessional Tests	End Semester/ Make-up Examination
Duration	20 to 30 minutes	60 minutes	180 minutes
Weightage	20 % (4 X 5 marks)	30 % (2 X 15 Marks)	50 % (1 X 50 Marks)
Typology of Questions	Understanding/ Comprehension; Application; Analysis; Synthesis; Evaluation	Knowledge/ Recall; Understanding/ Comprehension; Application	Understanding/ Comprehension; Application; Analysis; Synthesis; Evaluation
Pattern	Answer one randomly selected question from the problem sheet (Students can refer their class notes)	MCQ: 10 questions (0.5 marks) Short Answers: 5 questions (2 marks)	Answer all 5 full questions of 10 marks each. Each question may have 2 to 3 parts of 3/4/5/6/7 marks
Schedule	4, 7, 10, and 13 th week of academic calendar	Calendared activity	Calendared activity
Topics Covered	Quiz 1 (L L1-9 & T 1-3) (CO 1) Quiz 2 (L 10-18 & T 4-6) (CO 2 & 3) Quiz 3 (L 19-27 & T 7-9) (CO 3 & 4) Quiz 4 (L 28-33 & T 10-11) (CO 5)	Test 1 (L 1-15 & T 1-5) (CO 1&2) Test 2 (L 16-30 & T 6-T9) (CO 3&4)	Comprehensive examination covering full syllabus. Students are expected to answer all questions (CO 1-5)

Course Plan

L. No.	Topics	Course Outcome Addressed
L0	Introduction to Formal Languages and Automata	СО
L1	Mathematical Preliminaries and Notation	CO1
L2	Three basic concepts, Some Applications	CO1
L3	Finite Automata (FA)	CO1
T1	Tutorial on FA	CO1
L4	Deterministic Finite Accepters (DFA) and Nondeterministic Finite Accepters (NFA)	CO1
L5	Equivalence of Deterministic and Nondeterministic Finite Accepters	CO1
L6	Reduction of the number of states in finite automata	CO1
T2	Tutorial on DFA and NFA	CO1
L7	Regular Expressions (RE)	CO2

(Page 2 of 5)

MIT/GEN/F-01/R1

L8	Regular Languages (RL)	CO2		
L9	Connection between Regular Expressions and Regular Languages	CO2		
Т3	Tutorial on RE, RL	CO2		
L10	Regular Grammars, Closure Properties of Regular Languages			
L11	Elementary Questions about Regular Languages			
L12	Identifying Non-regular Languages Pumping Lemma	CO2		
T4	Tutorial on Pumping Lemma	CO2		
L13	Context-free languages (CFL), Context-Free grammars	CO2		
L14	Parsing and Ambiguity	CO2		
L15	Context-Free Grammars and Programming Languages	CO2		
T5	Tutorial on CFL	CO2		
L16	Implification of context-free grammars	CO2		
L17	Simplification of context-free grammars (Contd.)	CO2		
L18	Two important Normal Forms: CNF and GNF	CO2		
T6	Tutorial on Normal forms	CO2		
L19	Pushdown Automata (PDA), NPDA	CO3		
L20	Pushdown Automata and CFL	CO3		
L21	Deterministic Pushdown Automata (DPDA) and Deterministic Context-Free Languages	CO3		
T7	Tutorial on NPDA and CFL	CO3		
L22	Two Pumping Lemmas	CO3		
L23	Properties of context-free languages	CO3		
L24	Closure Properties and Decision Algorithms for Context-Free Languages	CO3		
Т8	Tutorial on TM	CO3		
L25	Minor Variation on the Turing machine	CO4		
L26	Turing Machine with more Complex Storage, NTM	CO4		
L27	A Universal Turing Machine, Linear Bounded Automata (LBA)	CO4		
Т9	Tutorial on LBA	CO4		
L28	Minor Variation on the Turing machine	CO4		
L29	Turing Machine with more Complex Storage, NTM	CO4		

L30	A Universal Turing Machine, Linear Bounded Automata (LBA)	CO4
T10	Tutorial on LBA	CO4
L31	Recursive and Recursively Enumerable Languages, Unrestricted Grammars	CO5
L32	Context Sensitive grammars and Languages The Chomsky Hierarchy, Some Problems that cannot be Solved By Turing Machines	CO5
L33	The Chomsky Hierarchy, Some Problems that cannot be Solved By Turing Machines	CO5
T11	Tutorial on Unrestricted Grammars and Context Sensitive grammars	CO5
L34	Undecidable Problems for recursively Enumerable Languages	CO5
L35	The Post Correspondence Problem (PCP)	CO5
L36	Undecidable Problems for Context-Free Languages	CO5
T12	Tutorial on undecidable problems	CO5
L/T		

References:

- eter Linz, "An Introduction To Formal Languages and Automata", Fifth Edition, Jones & Bartlett
 Learning, 2011
- 2. John C Martin, "Introduction to Languages and the Theory of Computation", McGraw Hill, India,
 Third Edition, 2007
- 3. J E Hopcroft, Rajeev Motwani & Jeffrey D Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education, 3rd Edn. 2006
- 4. K.L.P. Mishra, N.Chandrashekharan "Theory of Computer Science", PHI publications, 3rd Edn., 2007
- 5. Michael Sipser, "Theory of Computation", Cengage Learning, 2007
- **6.** Click or tap here to enter text.
- **7.** Click or tap here to enter text.

(Page 4 of 5) MIT/GEN/F-01/R1

Submitted by:		GIRIDHAR N	S		
(Signat	ure of the	e faculty)			
Date:	12-01-2	.019			
	ved by: ure of HO	DR ASHALAT	HA NAYAK		
(Signat	ure or ric	, , , , , , , , , , , , , , , , , , ,			
Date:	12-01-2	019			
FACUL	ГҮ МЕМВІ	ERS TEACHING	THE COURSE (IF MUL	TIPLE SECTIONS EXIST)	:
		CIII TV	CECTION	EACHITY	CECTION

FACULTY	SECTION	FACULTY	SECTION
Govardhan Hegde.	Α		
Praveen Pai	В		
Giridhar N S	С		
Shanthi P.B	D		

(Page 5 of 5)

MIT/GEN/F-01/R1