TTIC 31010, CMSC 37000-1

Lecture 1: Greedy Algorithms

Yury Makarychev

Administrative

- Lectures: on Tuesdays and Thursdays, 9:30-10:50am
- Tutorials: on Wednesdays, 4:30-5:20pm
- TA: Theodoros Papamakarios
- Grader: Francisco Mendes
- Textbook: Algorithm Design by Kleinberg and Tardos
- Please make sure that you have access to the Canvas webpage for the course!

Assignments

4 homework assignments (60%) + 1 final exam (40%)

Each HW will have 3 problems + 1 programming assignment Please submit your text solutions via Gradescope and programming assignment solutions on Canvas.

• First HW will be posted next Thursday.

Assignments

Programming assignment:

- Need to design and implement an algorithm in C++.
- Use replit.com. You will need to implement only one function.

```
✓ Publish project
C student_code_2.h 🗉 × +
                                                        ··· >_ Console ⋒ × Ŵ Shell × +
C student code 2.h > ...
                                                            Results of your code will appear here when you Run the
 24 // This function should return your name.
     // The name should match your name in Canvas
 26
 27 void GetStudentName(std::string& your_name)
 28 , {
        //replace the placeholders "Firstname" and
        //with you first name and last name
 31
        your_name.assign("Firstname Lastname");
 32
 33
     int FindLCLS(const std::string& s, const
      std::string& t)
 35 , {
 36
 37
        /* implement your algorithm here */
 38
 39
       return 0 /* your answer */;
 40
 41
```

Questions?

Syllabus

- Greedy Algorithms
- Dynamic Programming
- Max Flow, Min Cut, and Their Applications
- Linear Programming
- Classes P and NP. NP-hardness.
- Approximation Algorithms
- Multiplicative Weight Updates
- (if we have any time left) more advanced topics

Greedy Algorithms

Job (Interval) Scheduling Problem

 \triangleright Given a set of intervals $I_1=(s_1,t_1),\ldots,I_n=(s_n,t_n)$ on the real line.

- \succ Interval I_i represents a job that starts at s_i and finishes at t_i
- ➤ Need to schedule a subset of jobs on a machine/computer that can execute only one job at a time
- From Two jobs I_i and I_j are compatible if they don't overlapse either $t_i \leq s_j$ or $t_j \leq s_i$

Job Scheduling Problem: Examples

A feasible solution/schedule is a subset of jobs $S \subseteq \{I_1, ..., I_n\}$ such that every two jobs in S are compatible.

 $\{I_1, I_2, I_3\}$ is a feasible solution:

 $\{I_1, I_3, I_4\}$ is not a feasible solution, because I_1 and I_4 overlap:

$$I_1$$
 I_2
 I_3

Job Scheduling Problem

- > Given a set of jobs $I_1 = (s_1, t_1), ..., I_n = (s_n, t_n).$
- \triangleright Find a feasible solution S of maximal size.

I.e., find the largest number of intervals no two of which overlap.

Greedy Algorithm

We will design a greedy algorithm.

A greedy algorithm constructs an optimal solution step-by-step. At each step, it makes a choice that is "locally optimal".

Greedy Algorithm

We will design a greedy algorithm.

A greedy algorithm constructs an optimal solution step-by-step. At each step, it makes a choice that is "locally optimal".

- $S = \emptyset$
- ullet while there is a job that starts after all jobs in S finish
 - among all such jobs, find a job I_i with the least value of t_i (that finishes first)
 - add I_i to S

TO DO items

- Prove that the algorithm finds a feasible solution.
- Prove that the algorithm finds an optimal solution:

$$|S| \ge |S'|$$
 for every feasible solution S'

• Discuss how to implement the algorithm efficiently and find its running time.

Feasibility

- $S = \emptyset$
- ullet while there is a job that starts after all jobs in S finish
 - among all such jobs, find a job I_i with the least value of t_i (that finishes first)
 - add I_i to S

Why is the set of jobs S returned by the algorithm a feasible solution?

Proof: Consider two jobs I_i and I_j in S.

Assume that I_i was added to S before I_j .

When we added I_j , it was compatible with all jobs in S, including I_i .

Consider an optimal solution S^* . Prove that $|S| = |S^*|$.

Proof:

Sort jobs in S and S^* from left to right. Let

$$S = \{I_{i_1}, \dots, I_{i_k}\} \text{ and } S^* = \{I_{j_1}, \dots, I_{j_{k^*}}\}$$

Note $k \leq k^*$, since S^* is an optimal solution. Want: $k \geq k^*$.

Prove by induction on ℓ that $t_{i_{\ell}} \leq t_{j_{\ell}}$ for $\ell \in \{1, \dots, k\}$.

Base case: $t_{i_1} \leq t_{j_1}$. Why?

Prove by induction on ℓ that $t_{i_{\ell}} \leq t_{j_{\ell}}$ for $\ell \in \{1, \dots, k\}$.

Induction step: Assume that $t_{i_{\ell-1}} \leq t_{j_{\ell-1}}$.

- I_{j_ℓ} lies to the right of $I_{i_{\ell-1}}: s_{j_\ell} \geq t_{j_{\ell-1}} \geq t_{i_{\ell-1}}$.
- When we added $I_{i_{\ell}}$ to S, $I_{j_{\ell}}$ was to the right of $I_{i_{\ell-1}}$. We could have added $I_{j_{\ell}}$ but instead added $I_{i_{\ell}}$. Why?

Prove by induction on ℓ that $t_{i_{\ell}} \leq t_{j_{\ell}}$ for $\ell \in \{1, ..., k\}$.

Induction step: Assume that $t_{i_{\ell-1}} \leq t_{j_{\ell-1}}$.

- I_{j_ℓ} lies to the right of $I_{i_{\ell-1}}$: $s_{j_\ell} \geq t_{j_{\ell-1}} \geq t_{i_{\ell-1}}$.
- When we added $I_{i_{\ell}}$ to S, $I_{j_{\ell}}$ was to the right of $I_{i_{\ell-1}}$. We could have added $I_{j_{\ell}}$ but instead added $I_{i_{\ell}}$. Why?
- It had to be the case that: $t_{i_{\ell}} \leq t_{j_{\ell}}$.
- We proved $t_{i_{\ell}} \leq t_{j_{\ell}}$ for $\ell \in \{1, ..., k\}$.

Proved by induction that $t_{i_{\ell}} \leq t_{j_{\ell}}$ for $\ell \in \{1, ..., k\}$.

Remains to show that $k \geq k^*$. Assume to the contrary that $k < k^*$.

- $S = \emptyset$
- ullet while there is a job that starts after all jobs in S finish
 - •

The algorithm terminates after adding $I_{i\nu}$ to S.

Thus, there is no job to the right of I_{i_k} in S. However, $s_{j_{k+1}} \ge t_{j_k} \ge t_{i_k}$.

Contradiction. We proved that S is an optimal solution.

Implementation

• Sort all jobs by their stop time t_i :

$$t_1 \le t_2 \le \dots \le t_n$$

- Add I_1 to S
- $T = t_1$ (the termination time of the last currently scheduled job)
- i = 2 (the first unprocessed job)
- while $i \leq n$ do
 - if $s_i \geq T$, then
 - add I_i to our schedule S
 - $T = t_i$
 - i = i + 1

Implementation

Running time

• Sort all jobs by their stop time t_i :

$$t_1 \le t_2 \le \dots \le t_n$$

 $O(n \log n)$

- Add I_1 to S
- $T = t_1$ (the termination time of the last currently scheduled job)
- i = 2 (the first unprocessed job)
- while $i \leq n$ do
 - if $s_i \geq T$, then
 - add I_i to our schedule S
 - $T = t_i$
 - i = i + 1

O(n)

Combinatorial Optimization

Job Scheduling is a combinatorial optimization problem.

In a combinatorial optimization problem:

- > We are given an instance of the problem, which defines the set of feasible solutions and an objective function.
- > The goal is to find an optimal solution, a feasible solution whose objective is
 - greater than or equal to (for a maximization problem), or
 - 1 value smaller than or equal to (for a minimization problem) ↓ cost

than the value of any other feasible solution.

Combinatorial Optimization

Job Scheduling is an example of a large class of scheduling problem. It's also known as Maximum Independent Set in Interval Graphs.

In this class, we will mostly study various approaches – such as Greedy Algorithms, Dynamic Programming, and Linear Programming – for solving combinatorial optimization problems.

Today, we designed a greedy algorithm for Job Scheduling. We used a "stay ahead" type argument: our solution always "stays ahead" of an optimal solution ($t_{i\rho} \leq t_{j\rho}$).

Greedy Algorithms: Pros and Cons

- + Very efficient
- + Easy to implement and analyze
- + If there is a greedy algorithm for a problem, use it!
- There are no greedy algorithms for many problems
- Even if there is a greedy algorithm for a problem, there may be no algorithm for its variant (e.g. for Weighted Job Scheduling).

Minimum Weighted Completion Time

 \triangleright Given n jobs.

Each job i has duration t_i and weight w_i .

Jobs don't have fixed start and stop times.

 \triangleright We want to run all n jobs one after another:

It's up to us to decide the order in which we run the jobs.

Minimum Weighted Completion Time

Given an order i_1, \dots, i_n , we schedule the jobs as follows:

- completion ullet job i_1 starts at time 0 and completes at t_{i_1} times
- job i_2 starts at time t_{i_1} and completes at $t_{i_1} + t_{i_2}$

Completion time of job i_{ℓ} is

$$c(i_{\ell}) = \sum_{a=1}^{\ell} t_{i_a}$$

Objective

$$c(i_{\ell}) = \sum_{a=1}^{\ell} t_{i_a}$$

Note that c(i) depends on the ordering $i_1, ..., i_\ell$.

Find an ordering i_1, \dots, i_n that minimizes the weighted sum of completion times:

$$\sum_{i=1}^{n} w_i c(i)$$

Warm Up

$$c(i_{\ell}) = \sum_{a=1}^{\ell} t_{i_a}$$

Consider a couple of examples. Let n=2.

1. Assume that $t_1=t_2=1$. There are two solutions:

Their costs are

$$w_1 + 2w_2 \qquad \text{and} \qquad w_2 + 2w_1$$

It's better to put heavier jobs first.

Warm Up

$$c(i_{\ell}) = \sum_{a=1}^{\ell} t_{i_a}$$

Consider a couple of examples. Let n=2.

2. Assume that $w_1 = w_2 = 1$. There are two solutions:

Their costs are

$$2t_1 + t_2 \qquad \text{and} \qquad t_1 + 2t_2$$

It's better to put shorter jobs first.

Guess: sort all jobs according to t_i/w_i :

$$\frac{t_{i_1}}{w_{i_1}} \le \frac{t_{i_2}}{w_{i_2}} \le \dots \le \frac{t_{i_n}}{w_{i_n}}$$

We prove that i_1, \dots, i_n is an optimal solution.

Consider two solutions:

$$j_1,\ldots,j_a,j_{a+1},\ldots,j_n$$
 and $j_1,\ldots,j_{a+1},j_a,\ldots,j_n$

that differ only by the ordering of two jobs, j_a and j_{a+1} .

Denote $x = j_a$ and $y = j_{a+1}$

$$I_{x} \qquad I_{y}$$

$$I_{y} \qquad I_{x}$$

$$c(b) = c'(b) \text{ for all } b \notin \{x, y\}$$

$$c(x) = T + t_x \qquad c'(x) = T + t_x + t_y \qquad c(x) - c'(x) = -t_y$$

$$c(y) = T + t_x + t_y \qquad c'(y) = T + t_y \qquad c(y) - c'(y) = t_x$$

$$cost - cost' = \sum_b w_b c(b) - \sum_b w_b c'(b) = \sum_b w_b c'$$

 $cost - cost' = -w_x t_y + w_y t_x \le 0 \text{ if and only if } \frac{t_x}{w_x} \le \frac{t_y}{w_y}.$

The first solution is better if and only $\frac{t_{\chi}}{w_{\chi}} < \frac{t_{y}}{w_{y}}$.

Consider an optimal solution $i_1^*, ..., i_n^*$.

Is it possible that
$$\frac{t_{i_a^*}}{w_{i_a^*}} > \frac{t_{i_{a+1}^*}}{w_{i_{a+1}^*}}$$
 for some a ?

No! Then i_1^*, \dots, i_n^* would not be an optimal solution!

Consider an optimal solution $i_1^*, ..., i_n^*$.

We conclude that

$$\frac{t_{i_1^*}}{w_{i_1^*}} \le \frac{t_{i_2^*}}{w_{i_2^*}} \le \dots \le \frac{t_{i_n^*}}{w_{i_n^*}}$$

as required.

Are we done?

Running time?

Summary

- Discussed greedy algorithms
- Designed algorithms for Interval/Job Scheduling and Minimum Weighted Completion Time