444 Lecture 26

Network Epistemology

Brian Weatherson

4/13/23

Day Plan

Density Functions

Potted History

Sullivan et a

Networks

Wisdom of Crowds

Methods

PDF

Probability density functions are ways of expressing probabilities over continuous values.

- Example: Probability that we will get precipitation in such-and-such interval over the next 12 months.
- For any given number, probability that precipitation is exactly that is zero.
- But probability that we get between 30 and 36 inches of precipitation is an interesting number.

Example

Question

What is the arithmetic mean of two PDFS?

• Answer: Just take the arithmetic mean of the value at each point.

Question

What is the geometric mean of two PDFS?

- Possible answer: Take the geometric means of the value at each point and renormalise.
- Does that preserve the cool features of discrete geometric means? Not sure - hard question.

How PDFs get used

- Step 1: Come up with the 'shape' of the density function, either by armchair reasoning or background knowledge.
- Step 2: Observe the target phenomena to set the parameter values.

Normal Distribution

A common answer to step 1 is that the 'shape' should be the normal distribution. (Not going to go over what that is - it's in early stats classes.)

- Two parameters.
- First is mean which is obvious.
- Second is standard deviation, which is very roughly half the distance between the mean and values that would be weird.

Cauchy distribution

Larger Tails

Problems

Sometimes the differences between shapes only show up in very rare cases.

- But those cases, like a pandemic, or a stock market crash, or a massive snow storm, are really practically important.
- If you see people talking about 'fat tails', that's what they mean.

Day Plan

Density Functions

Potted History

Sullivan et a

Networks

Wisdom of Crowds

Methods

A Puzzle

Assume some people have non-probabilistic yes/no judgments on a bunch of propositions.

• Question: How do you get a group judgment?

Obvious Answer

Majority Rule.

• The group believes p iff a majority of members believe p.

Problem 1

What to do with ties.

• Maybe that's ok, just neither belief nor disbelief.

Problem 2

Leads to inconsistency.

• E.g., we each agree that precisely one team will win the playoffs, and the three of us disagree about which it is.

Practical Consequence

This matters a lot in jurisprudence.

• When do judges decide on a question point by point, and when all at once.

Philosophical History

Lots of detailed approaches, none of them particularly attractive.

- General thought (through 2000s), should just get people to state probabilities, those are easy to merge.
- Implicit thought: the merger is by arithmetic means.

Day Plan

Density Functions

Potted History

Sullivan et al

Networks

Wisdom of Crowds

Methods

Methods and Conclusions

- The conclusions of the Sullivan et al paper aren't very surprising.
- The 'wisdom of crowds' isn't very wise on politically charged matters, even when you measure it very carefully.
- But the methods are really interesting, and point to very interesting kinds of research.
- This includes both conceptual and empirical research.

Methods

- Look at networks not just individuals.
- Focus on the asymmetric links in these networks.
- Use computer science tools to both analyse and investigate these networks.

Day Plan

Density Functions

Potted History

Sullivan et a

Networks

Wisdom of Crowds

Methods

lensity Functions Potted History Sullivan et al Networks Wisdom of Crowds Methods 00000000 0000 000 00000 00000 000000

A Brief History of Western Epistemology

- Dawn-of-time to 1990s: Epistemology is primarily about sense perception and inference.
- 1990s-2010s: Testimony is really important too.
- 2020s: And testimony isn't just a one-one relationship; it happens in networks.

I'm stressing western here because the relationship between testimony and other forms of knowledge is a very big deal in plenty of other philosophical traditions.

Simple Testimony

- One speaker; one hearer.
- Two big questions.
- First, what prior knowledge does hearer have to have to get knowledge from speaker?
- Second, is there is something special about being spoken to, as opposed to overhearing?

Network Testimony

- Breaks down the recipient/eavesdropper distinction.
- Is the TV news anchor talking to you?

Network Testimony

- Cross-topic connections can start to matter.
- Is who you trust on vaccines related to what they say on climate change?

Network Testimony

• If the network is a huge part of your contact with the world, what happens when the network 'chooses' to prioritise some information over others.

Some Empirical/Philosophical Questions

- Are networks with strong centers better or worse at getting/distributing/filtering information than networks with weak centers?
- What makes someone become central to a network?
- What happens when people use views on one topic to choose a network to trust on other topics?

Day Plan

Density Functions

Potted History

Sullivan et a

Networks

Wisdom of Crowds

Methods

Condorcet

Marquis de Condorcet (1743-1794)

Jury Theorem

If you have a large bunch of people who make a judgment on a question, then the majority answer will almost certainly be right given the following constraints:

- 1. Each has a success probability greater than 0.5.
- 2. Each makes their judgment independently.

Jury Theorem

- The first constraint doesn't always hold in real world cases.
- The second never does.
- Some work on how much it can be weakened, but it's a challenge to get much out of it.

Real World Data

There are some impressive cases where this works though, especially on things that are not politically charged.

Day Plan

Density Functions

Potted History

Sullivan et a

Networks

Wisdom of Crowds

Methods

Real World Case

Sullivan et al use a real world case: Twitter posts about vaccines.

- Upside: Gotta say something about the actual world eventually.
- Downside: So much noise

Asymmetric Networks

This adds a surprising amount to the computational complexity.

But it does make for more realistic models.

PageRank

- As you might know, PageRank was initially developed to power the Google search engine.
- But it's a very general mathematical construction, that can be used in any case where there are inbound and outbound links.
- And it makes sense in any case that the existence of those links indicates (sort of) trust.

PageRank

- Most statistical programs these days have an implementation of PageRank built in to them.
- The math behind it isn't very sophisticated, but because of the iterative nature of it, actually doing the calculations can be time-consuming.
- But again, that's been optimised a lot in readily available software.

Sentiment Analysis

- They use something called latent Dirichlet allocation to do this.
- I could talk all day about this if you want (quite literally I wrote a book using this tool).
- It's a weird tool for this purpose.

Sentiment Analysis circa 2023

- GPT rules everything.
- This is a remarkably good use case for it.
- It's less good than expert analysis, but better than non-expert analysis.
- And in studies I've seen, it's much closer to experts than non-experts.