目录

第1暈i	emann 度量	1
1.1	Riemann 流形	1
	1.1.1 度量的局部表示	3
	1.1.2 拉回度量	6
	1.1.3 法丛	8
1.2	Riemann 距离函数	8
1.3	切-余切同构	l 1
1.4	张量的内积	13
1.5	构造 Riemann 流形的方法	15
	1.5.1 Riemann 子流形	15
	1.5.2 乘积	19

第1章 Riemann度量

1.1 Riemann 流形

定义 1.1 (Riemann 度量和 Riemann 流形)

设 M 是一个光滑 (带边) 流形,M 上的一个 Riemann 度量是指,在每一点处正定的 M 上的一个光滑对称共变 2-张量.

一个(带边)Riemann 流形是指一对 (M,g), 其中 M 是光滑(带边)流形,g 是 M 上的一个 Riemann 度量.

Remark

- 1. Riemann 度量不是度量. 后续的"度量"都指 Riemann 度量, 作为代替, 我们用"距离函数"来称一个真正的度量.
- 2. 设 g 是 M 上的一个 Riemann 度量,则 g_p 是 T_pM 上的一个内积. 因此经常用 $\langle v,w\rangle_p$ 表示 $g_p(v,w)$, 其中 $v,w\in T_pM$.
- 3. 在每个光滑坐标 (x^i) 上, Riemann 度量有基表示

$$g = g_{ij} dx^i \otimes dx^j$$

由对称性, 也可写作对称积的形式

$$g = g_{ij} dx^i dx^j$$

Example 1.1 (欧式度量). Riemann 度量最常见的一个例子是 \mathbb{R}^n 上的欧式度量 \overline{g} ,

$$\overline{q} := \delta_{ij} \, \mathrm{d} x^i \, \mathrm{d} x^j$$

其中 δ_{ij} 是 Kronecker 积. 通常将张量 lpha 与自身的对称积写作 $lpha^2$, 那么欧式度量也可以写作

$$\overline{g} = (dx^1)^2 + \dots + (dx^n)^2$$

将它作用到向量 $v, w \in T_p\mathbb{R}^n$ 上, 得到

$$\overline{g}_p(v, w) = \delta_{ij} v^i w^j = \sum_{i=1}^n v^i w^i = v \cdot w$$

换言之, 欧式度量在每一点处的值就是欧式内积.

Example 1.2 (乘积度量). 若 (M,g) 和 $\left(\tilde{M},\tilde{g}\right)$ 是 Riemann 流形, 可以定义积流形 $M \times \tilde{M}$

上的度量 $\hat{g} := g \oplus \tilde{g}$, 称为是乘积度量:

$$\hat{g}\left(\left(v,\tilde{v}\right),\left(w,\tilde{w}\right)\right):=g\left(v,w\right)+\tilde{g}\left(\tilde{v},\tilde{w}\right)$$

其中 (v, \tilde{v}) , $(w, \tilde{w}) \in T_p M \oplus T_q \tilde{M} \simeq T_{(p,q)} \left(M \times \tilde{M} \right)$. 给定任意 M 的局部坐标 (x^1, \cdots, x^n) 种 \tilde{M} 的局部坐标 (y^1, \cdots, y^m) , 得到 $M \times \tilde{M}$ 的局部坐标 $(x^1, \cdots, x^n, y^1, \cdots, y^m)$, 乘积 度量的 (作为二次型) 局部表示可以写成对角矩阵

$$(\hat{g}_{ij}) = \begin{pmatrix} g_{ij} & 0\\ 0 & \tilde{g}_{ij} \end{pmatrix}$$

命题 1.1 (Riemann 度量的存在性)

每个光滑 (带边) 流形都容许一个 Riemann 度量.

Proof 设 M 是光滑 (带边) 流形, 取 M 的一个坐标开覆盖 $(U_{\alpha}, \varphi_{\alpha})$. 在每个坐标开集上, 存在 Reimann 度量 $g_{\alpha} := \varphi_{\alpha}^* \overline{g}$, 它有坐标表示 $\delta_{ij} \, \mathrm{d} x^i \, \mathrm{d} x^j$, 其中 \overline{g} 是 $\varphi_{\alpha}(U_{\alpha})$ 上的欧式度量, 取从属于 $\{U_{\alpha}\}$ 的 M 的一个单位分解 $\{\psi_{\alpha}\}$, 定义

$$g:=\sum_{\alpha}\psi_{\alpha}g_{\alpha}$$

则 g 是 M 上的光滑 2-张量场, 又显然 g 是对称的, 故只需要说明正定性. 任取非零的 $v \in T_pM$, 则

$$g_p(v,v) = \sum_{\alpha} \psi_{\alpha} g_{\alpha}|_p(v,v)$$

是一个有限和, 又每个有定义的 $g_{\alpha}|_{p}\left(v,v\right)$ 均为正, 因此 $g\left(v,v\right)>0$, 又显然 g_{p} 非负, 故而正定.

定义 1.2 (Riemann 流形上的几何)

• 切向量 $v \in T_pM$ 的长度或模长被定义为

$$|v|_g := \langle v, w \rangle_g^{\frac{1}{2}} = g_p (v, v)^{\frac{1}{2}}$$

。两个切向量 $v,w\in T_pM$ 之间的角度被定义为唯一的 $\theta\in[0,\pi]$, 满足

$$\cos \theta = \frac{\langle v, w \rangle_g}{|v|_g |w|_g}$$

• 称切向量 $v,w\in T_pM$ 是正交的, 若 $\langle v,w
angle_g=0.$

1.1.1 度量的局部表示

命题 1.2 (坐标表示)

设 (M,g) 是 (带边) -Riemann 流形. 若 (x^1,\cdots,x^n) 是一个开集 $U\subseteq M$ 上的任意 光滑坐标卡, 则 g 可以在 U 上被局部地写作

$$g = g_{ij} \, \mathrm{d} x^i \otimes \, \mathrm{d} x^j = g_{ij} \, \mathrm{d} x^i \, \mathrm{d} x^j$$

其中 $g_{ij}, i, j = 1, \cdots, n$ 是 n^2 个光滑函数,由 $g_{ij}(p) = \left\langle \left. \partial_i \right|_p, \left. \partial_j \right|_p \right\rangle$ 给出. 以上张量场的分量函数构成一个非奇异的对称矩阵函数 (g_{ij}) .

Proof

1. 由于坐标张量场 $\{dx^i\otimes dx^j\}_{i,j}$ 构成 2-反变张量空间 $T^2(U)$ 的一组基, 因此存在 光滑函数 $g_{ij}, i,j=1,\cdots,n$, 使得 $g=g_{ij}\,dx^i\otimes dx^j$ 对 $g=g_{ij}\,dx^i\otimes dx^j$ 两边作用 在 $\langle\partial_i,\partial_j\rangle$ 上, 得到

$$\langle \partial_i, \partial_i \rangle = q_{ij}$$

由g 的对称性,

$$g_{ij} = \langle \partial_i, \partial_j \rangle = \langle \partial_j, \partial_i \rangle = g_{ji}$$

于是 g 可以写成对称积的形式

$$g = g_{ij} dx^{i} \otimes dx^{j}$$

$$= \frac{1}{2} (g_{ij} dx^{i} \otimes dx^{j} + g_{ji} dx^{i} \otimes dx^{j})$$

$$= \frac{1}{2} (g_{ij} dx^{i} \otimes dx^{j} + g_{ij} dx^{j} \otimes dx^{i})$$

$$= g_{ij} dx^{i} dx^{j}$$

2. 上面 $g_{ij}=g_{ji}$ 已经表明了 (g_{ij}) 是一个对称矩阵函数. 为了看出非奇异性, 考虑 $v=v^i\partial_i|_p$ 是 T_pM 上的一个向量, 使得 $g_{ij}\left(p\right)v^j=0$, 则 $\langle v,v\rangle=g_{ij}\left(p\right)v^iv^j=0$, 表明 v=0. 因此

$$(g_{ij})(v_1, \dots, v_n)^{\mathsf{T}} = 0 \iff (v_1, \dots, v_n) = 0$$

 (g_{ij}) 是非奇异的.

命题 1.3 (标架表示)

设 (M,g) 是 (带边) Riemann 流形, E_1,\cdots,E_n 是开集 $U\subseteq M$ 上的 TM 的一个局部光滑标架, $(\varepsilon^1,\cdots,\varepsilon^n)$ 是相应的对偶余标架, 则 g 在 U 上可以局部表示为

$$g = g_{ij}\varepsilon^i\varepsilon^j$$

其中 $g_{ij}\left(p\right)=\left\langle \left.E_{i}\right|_{p},\left.E_{j}\right|_{p}\right\rangle$,且矩阵值函数 $\left(g_{ij}\right)$ 是对称且光滑的.

Proof 类似上一个命题的证明, 不加赘述.

命题 1.4

设 g 是 M 上的一个 Riemann 度量, $X,Y\in\mathfrak{X}(M)$ 是光滑向量场. 则 g 在 X,Y 上的作用给出一个光滑函数 $\langle X,Y\rangle$,

$$\langle X, Y \rangle (p) = \langle X_p, Y_p \rangle_q$$

设在某个局部标架和对偶余标架下, $g=g_{ij}\varepsilon^i\varepsilon^j$, $X=X^iE_i,Y=Y^jE_j$, 则函数 $\langle X,Y\rangle$ 局部表示为

$$\langle X, Y \rangle = g_{ij} X^i Y^j$$

从而是光滑的.

特别地, 我们有一个非负实值函数

$$|X| := \langle X, X \rangle^{\frac{1}{2}}$$

它是处处连续, 且在 $X \neq 0$ 的开集上是光滑的.

Proof 我们有

$$\langle X, Y \rangle = g_{kl} \varepsilon^k \varepsilon^l \left(X^i E_i, Y^j E_j \right)$$
$$= g_{kl} X^i Y^j \varepsilon^k \left(E_i \right) \varepsilon^l \left(E_j \right)$$
$$= g_{ij} X^i Y^j$$

$$\left(\langle X, X \rangle^{\frac{1}{2}}\right)' = \frac{g'_{ij}X^{i}X^{j} + g_{ij}\left(X^{i}\right)'X^{j} + g_{ij}X^{i}\left(X^{j}\right)'}{2\sqrt{\langle X, X \rangle}}$$

当 $X \neq 0$ 时, $\langle X, X \rangle > 0$, 此时可以继续求导, 任意阶的分子分母均光滑, 且当 $\langle X, X \rangle \neq 0$ 时, 分母也非零.

定义 1.3 (正交标价)

设 (M,g) 是 n-维(带边)Riemann 流形. 称 M 的定义在开子集 $U\subseteq M$ 上的一个局部标价 (E_1,E_2,\cdots,E_n) 是一个正交标价, 若对于每个 $p\in U$, $(E_1|_p,\cdots,E_n|_p)$ 构成 T_pM 的一个正交基, 或等价地说 $\langle E_i,E_j\rangle_q=\delta_{ij}$.

Remark

1. 此时度量 g 有局部坐标表示

$$g = \left(\varepsilon^{1}\right)^{2} + \dots + \left(\varepsilon^{n}\right)^{2}$$

其中 $(\varepsilon^i)^2$ 表示对称积 $\varepsilon^i \varepsilon^i = \varepsilon^i \otimes \varepsilon^i$

命题 1.5 (正交化)

设 (M,g) 是(带边)Riemann 流形, (X_j) 是 M 的定义在开子集 $U\subseteq M$ 上的一个光滑局部标价. 那么存在 U 上的光滑正交标价 (E_i) , 使得

$$\operatorname{span}(E_1|_p, \dots, E_j|_p) = \operatorname{span}(X_1|_p, \dots, X_j|_p), \quad j = 1, 2, \dots, n, \quad p \in U$$

Proof 对于每一点 $p \in U$, 对 $(X_i|_p)$ 应用 Gram-Schimidt 正交化, 可以通过

$$E_j := \frac{X_j - \sum_{i=1}^{j-1} \langle X_j, E_i \rangle_g E_i}{\left| X_j - \sum_{i=1}^{j-1} \langle X_j, E_i \rangle_g E_i \right|_a}$$

旧纳地得到粗张量场的 n 元组 (E_1,\dots,E_n) . 对于每个 $j=1,\dots,n$ 和 $p\in U$, 由于 $X_j|_p\not\in \mathrm{span}\,(E_1|_p,\dots,E_{j-1}|_p)$, 故分母在 U 上无处退化, 因此 (E_j) 是光滑的正交标架.

推论 1.1 (局部正交标价的存在性)

设 (M,g) 是 Riemann 流形, 则对于每个 $p\in M$, 存在 p 附近的光滑局部正交标架. $_{0}$

定义 1.4 (单位切丛)

对于 (带边) Riemann 流形 (M,g), 定义它的单位切丛, 为由以下单位向量组成的 子集 $UTM\subseteq TM$:

$$UTM := \left\{ (p, v) \in TM : |v|_g = 1 \right\}$$

命题 1.6

设 (M,g) 是 (带边) Riemann 流形, 则它的单位切丛 UTM 是一个光滑的, 真嵌入到 TM 的余维数为 1 的带边子流形, 使得 $\partial (UTM) = \pi^{-1}(\partial M)$ (其中 $\pi: UTM \to M$ 是典范投影). 单位是连通的, 当且仅当 M 是连通的 (当 n>1); 并且单位切

丛是紧的, 当且仅当 M 是紧的.

1.1.2 拉回度量

定义 1.5

设 M,N 是光滑 (带边) 流形,g 是 N 上的一个 Riemann 度量, $F:M\to N$ 是光滑 映射. 则拉回 F^*g 是 M 上的一个光滑 2-张量场. 此外若它是正定的, 则为 M 上的一个度量, 称为是由 F 决定的拉回度量.

命题 1.7 (拉回度量判据)

设 $F:M\to N$ 是一个光滑映射, g 是 N 上的一个 Riemann 度量. 那么 F^*g 是 M 上的一个 Riemann 度量当且仅当 F 是一个光滑浸入.

Proof 只需要考察正定性. 任取 $v \in T_p M$, $(F^*g)_p(v,v) = 0$ 当且仅当 $g_{F(p)}(F_{*,p}v,F_{*,p}v) = 0$, 当且仅当 $F_{*,p}v = 0$, 因此 F^*g 正定当且仅当 $F_{*,p}$ 是单射对于每一点 $p \in M$ 成立, 即 F 是 M 上的光滑浸入.

Example 1.3 考虑光滑映射 $F: \mathbb{R}^2 \to \mathbb{R}^3$,

$$F(u, v) = (u\cos v, u\sin v, v)$$

是一个常态、单的光滑浸入,因此是一个嵌入. 它的像被称为是螺旋面. 拉回度量为

$$F^* \overline{g} = d(u \cos v)^2 + d(u \sin v)^2 + d(v)^2$$

$$= (\cos v du - u \sin v dv)^2 + (\sin v du + u \cos v dv)^2 + dv^2$$

$$= \cos^2 v du^2 - 2u \sin v \cos v du dv + u^2 \sin^2 v dv^2$$

$$+ \sin^2 v du^2 + 2u \sin v \cos v du dv + u^2 \cos^2 v dv^2 + dv^2$$

$$= du^2 + (u^2 + 1) dv^2.$$

Remark 当 u 为是实值函数时, 约定记号 $\mathrm{d}u^2$ 表示对称积 $\mathrm{d}u\,\mathrm{d}u$.

定义 1.6 (等距浸入、嵌入)

设 (M,g) 和 $\left(\tilde{M},>ld\right)$ 是两个 (带边) Riemann 流形. 一个满足 $F^*\tilde{g}=g$ 的光滑 浸入或嵌入 $F:M\to \tilde{M}$, 分别被称为是一个 等距浸入或 等距嵌入.

定义 1.7 (等距同构)

- 设 (M,g) 和 $\left(\tilde{M},\tilde{g}\right)$ 是 Riemann 流形. 称光滑映射 $F:M\to N$ 是一个等距 同构, 若它是一个微分同胚, 并且满足 $F^*\tilde{g}=g$.
- 更一般地, 称 F 是一个局部等距同构, 若对于每个 $p\in M$, 都存在 p 的邻域 U ,使得 $F|_U$ 是 U 到 \tilde{M} 上一个开集的等距同构;等价地说,F 是满足 $F^*\tilde{g}=g$ 的局部微分同胚.
- ullet 称 (M,g) 和 $\left(ilde{M}, ilde{g}
 ight)$ 是等距同构的,若存在 Riemann 流形之间的等距同构.
- 称 (M,g) 局部等距同构于 $\left(\tilde{M},\tilde{g}\right)$, 若 M 的每一点上都有等距同构于 $\left(\tilde{M},\tilde{g}\right)$ 上一个开集的邻域.

定义 1.8 (平坦性)

称 Riemann n-流形 (M,g) 是平坦的,且 g 是平坦度量,若 (M,g) 局部等距同构于 $(\mathbb{R}^n,\overline{g})$

Remark

1. 设 (M,g) 和 $\left(\tilde{M},\tilde{g}\right)$ 是等距同构的 Riemann 流形, 那么 g 是平坦的当且仅当 \tilde{g} 亦然.

Proof 由对称性,只需证明一边. 任取 $q\in \tilde{M}$,设 F 是 (M,g) 到 $\left(\tilde{M},\tilde{g}\right)$ 的等距 同构,那么存在 $p\in M$ 使得 F(p)=q. 若 (M,g) 是平坦的,那么存在 p 的邻域 U, 种等距同构 φ ,使得 $\varphi: (U,g|_U)\simeq (\mathbb{R}^n,\overline{g})$. 又注意到 $F^{-1}|_{F(U)}: \left(F\left(U\right),\tilde{g}|_{F(U)}\right)\simeq (U,g|_U)$,因此 $\varphi\circ F^{-1}|_{F(U)}: \left(F\left(U\right),\tilde{g}|_{F(U)}\right)\simeq (\mathbb{R}^n,\overline{g})$. 其中 $F\left(U\right)$ 是 p 的开邻域,因此 $\left(\tilde{M},\tilde{g}\right)$ 是平坦的.

定义 1.9

对于 Riemann 流形 (M,g), 以下等价

- 1. q 是平坦的;
- 2. M 上的每一点都含于某个坐标开集上, 在其上 g 有坐标表示 $g = \delta_{ij} dx^i dx^j$;
- 3. M 上的每一点都含于某个坐标开集上, 使得其上的坐标标架是正交的;

1.1.3 法丛

定义 1.10

设 (M,g) 是 n -维 (带边) Riemann 流形, $S\subseteq M$ 是 k-维 Riemann 子流形.

- 对于每个 $p\in S$, 称 $v\in T_pM$ 是 S 的一个法向, 若 v 通过内积 $\langle\cdot,\cdot\rangle_g$ 与 T_pS 中的每个向量垂直.
- ullet S 在 p 处的法空间, 是指由全体 p 的法向向量组成的子空间 $N_pS\subseteq T_pM$.
- ullet S 的法丛是指 S 在所有点的法空间的无交并 $NS \subseteq TM$.
- 投影映射 $\pi_{NS}:NS\hookrightarrow S$ 被定义为 $\pi:TM\to M$ 在 NS 上的限制.

命题 1.8 (子流形的法丛)

令 (M,g) 是 (带边) Riemann n-流形. 对于任意 k-维浸入子流形 $S\subseteq M$, 法丛 NS 是 $TM|_S$ 的光滑 rank-(n-k) 子流形. 对于每个 $p\in S$, 存在 p 的邻域上的 NS 的关于 g 的正交标架.

1.2 Riemann 距离函数

定义 1.11 (曲线长度)

设 (M,g) 是 (带边) Riemann 流形. 若 $\gamma:[a,b]\to M$ 是逐段光滑曲线, 则 γ 的长度为

$$L_{g}(\gamma) = \int_{a}^{b} |\gamma'(t)|_{g} dt$$

命题 1.9 (等距同构不变性)

曲线的长度在 Riemann 流形的等距同构下不变. 更确切地说, 设 (M,g) 和 $\left(\tilde{M},\tilde{g}\right)$ 是两个 Riemann(带边) 流形, $F:M\to \tilde{M}$ 是局部等距同构. 则 $L_{\tilde{g}}\left(F\circ\gamma\right)=L_{g}\left(\gamma\right)$ 对每个 M 上的逐段光滑曲线 γ 成立.

Proof 由 [a,b] 的紧性,它可以分为有限个充分小的区间,使得曲线的在区间上的像包

含在某个等距同构的开邻域上, 于是

$$L_{\tilde{g}}(F \circ \gamma) = \int_{a}^{b} \left(\langle F_* \gamma'(t), F_* \gamma'(t) \rangle_{\tilde{g}} \right)^{\frac{1}{2}} dt$$

$$= \int_{a}^{b} \left(\langle \gamma'(t), \gamma'(t) \rangle_{F^* \tilde{g}} \right)^{\frac{1}{2}} dt$$

$$= \int_{a}^{b} \left(\langle \gamma'(t), \gamma'(t) \rangle_{g} \right)^{\frac{1}{2}} dt$$

$$= L_{g}(\gamma)$$

命题 1.10 (长度的参数无关性)

设 (M,g) 是 (带边) Riemann 流形, $\gamma:[a,b]\to M$ 是逐段光滑曲线. 若 $\tilde{\gamma}$ 是 γ 的重参数化, 那么 $L_q(\tilde{\gamma})=L_q(\gamma)$.

Proof

1. 首先设 γ 光滑, $\varphi:[c,d]\to[a,b]$ 是微分同胚使得 $\tilde{\gamma}=\gamma\circ\varphi$, 并且 $\varphi'>0$. 我们有

$$L_{g}(\tilde{\gamma}) = \int_{c}^{d} |\tilde{\gamma}'(t)|_{g} dt = \int_{c}^{d} \left| \frac{d}{dt} (\gamma \circ \varphi)(t) \right|_{g} dt$$

$$= \int_{c}^{d} |\varphi'(t) \gamma'(\varphi(t))|_{g} dt = \int_{c}^{d} |\gamma'(\varphi(t))|_{t} \varphi'(t) dt$$

$$= \int_{a}^{b} |\gamma'(s)|_{g} ds$$

$$= L_{g}(\gamma)$$

- 2. 当 $\varphi'<0$ 时, 积分方向调换的符号改变和 $\varphi'(t)$ 移出绝对值的符号改变相抵消, 结果不变.
- 3. 若 γ 逐段光滑,只需在每一段上重复上述过程后相加即可。 以下设 $\partial M=\varnothing$

定义 1.12 (Riemann 距离)

设 (M,g) 是连通的 Riemann 流形. 对于每个 $p,q\in M$, 定义 p 到 q 的 (Riemann) 距离为全体 $L_g(\gamma)$ 的下确界, 其中 γ 是 p 到 q 的逐段光滑曲线. 记 p 到 q 的距离为 $d_q(p,q)$.

命题 1.11 (等距同构不变)

设 (M,g) 种 $\left(\tilde{M},\tilde{g}\right)$ 是两个连通的 Riemann 流形, $F:M\to \tilde{M}$ 是 Riemann 等距同构. 则对于所有的 $p,q\in M$, $d_{\tilde{g}}\left(F\left(p\right),F\left(q\right)\right)=d_{g}\left(p,q\right)$

Proof 注意到每个连接 p,q 的逐段光滑曲线都给出长度相同的连接 $F\left(p\right)$ 与 $F\left(q\right)$ 的 逐段光滑曲线,因此由定义

$$d_{\tilde{g}}\left(F\left(p\right), F\left(q\right)\right) \leq d_{g}\left(p, q\right)$$

相同的讨论应用与 $F^{-1}: \tilde{M} \to M$, 得到另一个方向的不等式.

引理 1.1

设 g 是开子集 $U\subseteq\mathbb{R}^n$ 上的一个 Riemann 度量. 给定紧子集 $K\subseteq U$, 存在正常数 c,C, 使得对于所有的 $x\in K$ 和 $v\in T_x\mathbb{R}^n$,

$$c \, |v|_{\overline{g}} \le |v|_g \le C \, |v|_{\overline{g}}$$

 \Diamond

Idea 范数的齐次性保证了,范数可以被一个包含原点的简单闭合曲面所决定。据此,考察 $|v|_{\overline{g}}=1$ 的点构成的闭合曲面,它在里面可以装下一个以原点为中心的小球,从外面被一个以原点为中心的大球包住。

Proof \diamondsuit $L \subseteq T\mathbb{R}^n$ 为

$$L:=\left\{(x,v)\in TR^n:x\in K,|v|_{\tilde{g}}=1\right\}$$

将 $T\mathbb{R}^n$ 与 $\mathbb{R}^n imes \mathbb{R}^n$ 等同,L 无非是 $K imes \mathbb{S}^{n-1}$, 从而是紧集. 因为模长 $|v|_g$ 是 L 上正定的连续函数, 因此存在 c,C, 使得 $c \leq |v|_g \leq C$ 对于任意 $(x,v) \in L$ 成立. 若 $x \in K$, 且 v 是非零向量, 那么令 $\lambda = |v|_{\overline{g}}$, 则 $(x,\lambda^{-1}v) \in L$, 由范数的齐次性

$$|v|_q = \lambda \left| \lambda^{-1} v \right|_q \le \lambda C = C \left| v \right|_{\overline{q}}$$

类似地有 $|v|_a \ge c |v|_{\overline{a}}$. 当 v=0 时不等式显然成立. 综上命题得证.

定理 1.1 (Riemann 流形作为度量空间)

设 (M,g) 是连通的 Riemann 流形. 在 Riemann 距离函数下,M 是一个度量空间,且它的度量拓扑与原本的拓扑相同.

Remark 由此, 可以在连通 Riemann 流形上谈论—切度量空间的性质.

Idea

- 非负性和三角不等式不难说明, 对于正定性, 利用引理1.1在正则坐标球上将连接p,q 的曲线的 Riemann 距离与坐标欧氏距离相比较, 给出下界, 由此说明: p,q 因为隔了一段欧氏距离, 所以隔了一段 Riemann 距离, 从而说明正定性.
- 说明度量拓扑开集的每一点都含于某个坐标球里: 在 p 附近的坐标球里, 利用度量 开集的性质取度量半径充分小的度量球, 利用1.1, 取欧式直线段(长度是 Riemann 距离的上界)说明它包在坐标球里.

坐标开球中的点都含于某个 Riemann 距离球: 坐标球的中心点与坐标球外的点隔了一段固定的 Riemann 距离, 因此 Riemann 意义下与中心点近的点, 一定在坐标开球里.

推论 1.2 (可度量性)

每个光滑(带边)流形都是可度量的.

ldea

- 连通的流形可度量1.1. 对于不连通的流形,在两两连通分支之间建立长度为1的"桥",这样就得到了整体的度量.
- 若要考察拓扑, 只需要在每一点附近取 (充分小的) 连通的 (度量或坐标) 开球.

1.3 切-余切同构

定义 1.13 (度量诱导的丛同构)

设 (M,g) 是 (带边) Riemann 流形. 按以下方式定义 $\hat{g}:TM\to T^*M$: 对于每个 $p\in M$ 和 $v\in T_pM$, 令 $\hat{g}(v)\in T_p^*M$

$$\hat{g}(v)(w) = g_p(v, w), \quad w \in T_p M^{\mathbf{a}}$$

则 \hat{g} 是一个丛同构.

^a通过度量配对的方式, 将向量视为余向量

igcep Idea 由于我们拿到手的就是一个逐点的定义,因此利用 $C^\infty\left(M
ight)$ -线性的刻画引理来说明是最方便的.

Proof 考虑 \hat{q} 在向量场上的作用:

$$\hat{g}(X)(Y) = g(X,Y), \quad X,Y \in \mathfrak{X}(M)$$

因为对于每个 $X\in\mathfrak{X}(M)$, 关于 Y 的函数 $\hat{g}(X)(\cdot)$ 是 $C^{\infty}(M)$ -线性的, 由张量场的刻画引理 (??), $\hat{g}(X)$ 是光滑的余向量场. 又 $\hat{g}(X)$ 视为 X 的函数是 $C^{\infty}(M)$ -线性的, 故由丛同态的刻画引理, \hat{g} 定义出光滑的丛同态.

若
$$\hat{g}(v) = 0$$
 对某个 $v \in T_pM$ 成立,则

$$0 = \hat{g}(v, v) = \langle v, v \rangle_{q}$$

正定性立即给出 v=0, 这表明 g 在每一点出都给出线性空间的单射, 维数关系又表明这是一个双射, 进而给出丛同构.

命题 1.12 (矩阵表示)

在任意光滑坐标 (x^i) 上, 设 $g=g_{ij}\,\mathrm{d} x^i\,\mathrm{d} x^j$. 若 X,Y 是光滑向量场, 我们有

$$\hat{g}(X,Y) = g_{ij}X^iY^j$$

这表明余向量场 $\hat{g}(X)$ 有坐标表示

$$\hat{g}(X) = g_{ij}X^i \, \mathrm{d}x^j$$

换言之, \hat{g} 作为丛同态的关于 TM 和 T^*M 坐标标架的矩阵表示, 与 g 本身的矩阵相同 $^{f a}$.

°将 $X=X^i\frac{\partial}{\partial x^i}$ 写成行向量 $\left(X^1,\cdots,X^n\right)$, 则右指标列标固定, $\hat{g}\left(X\right)=\left(X^1,\cdots,X^n\right)\left(g_{ij}\right)$ 的第 j 列就是 $g_{ij}X^i$

Proof 利用

$$Y^{j} = \mathrm{d}x^{j}(Y)$$

定义 1.14

通常记向量场 $\hat{g}(X)$ 的分量, 按

$$\hat{g}(X) = X_j \, \mathrm{d}x^j, \quad X_j = g_{ij} X^{i\mathbf{a}}$$

可以说 $\hat{q}(X)$ 是通过 X 降低指标得到的. 经常记 $\hat{q}(X)$ 为 X^{\flat} .

 lpha 对于欧式度量, $X_j=X^j$, 相应的降低指标无非就是把列向量写成行向量

*

Remark b 在音乐中表示降调.

定义 1.15

 $\hat{g}^{-1}:T_p^*M o T_pM$ 的矩阵是矩阵 (g_{ij}) 的逆, 记作 (g^{ij}) , 也是对称矩阵.

对于余向量场 $\omega \in \mathfrak{X}^*(M)$, 向量场 $\hat{g}^{-1}(\omega)$ 有坐标表示

$$\hat{g}^{-1}(\omega) = \omega^i \frac{\partial}{\partial x^i}, \quad \omega^i = g^{ij}\omega_j^{\mathbf{a}}$$

可以说 $\hat{g}^{-1}\left(\omega\right)$ 是通过 ω 提升指标得到的, 经常记 $\hat{g}^{-1}\left(\omega\right)$ 为 ω^{\sharp}

°把 ω 写成列向量 $(\omega_1,\cdots,\omega_n)$,则左指标行标固定, $\hat{g}^{-1}(\omega)=\left(g^{ij}\right)(\omega_1,\cdots,\omega_n)$ 的第 i 行就是 $\omega^i=g^{ij}\omega_j$

Remark 符号 b 和 ± 是一对互逆同构, 称为是音乐同构.

定义 1.16 (梯度)

对于 Reimann 流形 (M,g) 上的光滑函数 f, 定义 f 的梯度为一个向量场

$$\operatorname{grad} f := (df)^{\sharp} = \hat{g}^{-1} (df)$$

Remark

• 对于每个 $X \in \mathfrak{X}(M)$,

$$\langle \operatorname{grad} f, X \rangle_q = \hat{g} (\operatorname{grad} f) (X) = \operatorname{d} f (X) = X f$$

即

$$\langle \operatorname{grad} f, \cdot \rangle_q = \operatorname{d} f$$

• grad f 有坐标表示

$$\operatorname{grad} f = g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j}$$

特别地,在欧式度量下

$$\operatorname{grad} f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \frac{\partial}{\partial x^{i}}$$

1.4 张量的內积

定义 1.17 (余向量的內积)

设 g 是 M 上的 Riemann 度量, $x \in M$, 定义 T_X^*M 上的内积为

$$\langle \omega, \eta \rangle_g := \langle \omega^{\sharp}, \eta^{\sharp} \rangle_g$$

Remark

1. 利用 $g_{kl}g^{ki} = g_{lk}g^{ki} = \delta_l^i$, 得到

$$\langle \omega, \eta \rangle = g_{kl} \left(g^{ki} \omega_i \right) \left(g^{lj} n \eta_j \right)$$
$$= \delta_l^i g^{lj} \omega_i \eta_j$$
$$= g^{ij} \omega_i \eta_i^{1}$$

2. 利用升降指标的记号, 可以写成

$$\langle \omega, \eta \rangle = \omega_i \eta^i = \omega^j \eta_j$$

命题 1.13

设 (M,g) 是 (带边)(伪)Riemann 流形, 令 (E_i) 是 M 的一个局部标架, (ε^i) 是对偶的 余标架, 则以下等价

- 1. (E_i) 正交.
- 2. (ε^i) 正交.
- 3. $(\varepsilon^i)^{\sharp} = E_i, \forall i$.

Proof

$$\left\langle \varepsilon^{i}, \varepsilon^{j} \right\rangle = \left\langle \left(\varepsilon^{i} \right)^{\sharp}, \left(\varepsilon^{j} \right)^{\sharp} \right\rangle$$
$$= g^{ij}$$

而 (E_i) 正交,当且汉当 $g_{ij}=\delta_i^j$,当且汉当 $g^{ij}=\delta_i^i$,当且汉当 (ε^i) 正交.

$$\left(\varepsilon^{i}\right)^{\sharp} = g^{kj}\omega_{j}E_{k} = g^{ki}E_{i}$$

故

$$\left(\varepsilon^{i}\right)^{\sharp}=E_{i},\forall i\iff g^{ki}=\delta_{k}^{i},\forall k,i\iff\left(E_{i}\right)$$
 E

定义 1.18 (光滑纤维度量)

设 $E \to M$ 是一个光滑向量丛. E 上的一个光滑纤维度量,是指在每个纤维 E_p 上的内积,且是光滑变化地,即使得对于任意的 E 的 (局部) 光滑向量场 $\sigma,\tau,\langle\sigma,\tau\rangle$ 是光滑函数.

命题 1.14 (张量的內积)

设 (M,g) 是 n 维 (带边)Riemann 流形. 则存在唯一的定义在每个张量丛 $T^{(k,l)}TM$ 的光滑纤维度量, 使得若 $\alpha_1,\cdots,\alpha_{k+l}$ 和 $\beta_1,\cdots,\beta_{k+l}$ 是合适的向量场或余向量场,都有

$$\langle \alpha_1 \otimes \cdots \otimes \alpha_{k+l}, \beta_1 \otimes \cdots \otimes \beta_{k+l} \rangle = \langle \alpha_1, \beta_1 \rangle \cdots \langle \alpha_{k+l}, \beta_{k+l} \rangle$$

在此内积下,若 (E_1,\cdots,E_n) 是 TM 的一个局部正交标架, $(\varepsilon^1,\cdots,\varepsilon^n)$ 是对应的对偶余标架,则形如 $E_{i_1}\otimes\cdots\otimes E_{i_k}\otimes \varepsilon^{j_1}\otimes\cdots\otimes \varepsilon^{j_l}$ 构成 $T^{(k,l)}(T_pM)$ 的一个正交标架,并且在任意一组标架(不必正交)下,纤维度量满足

$$\langle F, G \rangle = g_{i_1 r_1} \cdots g_{i_k r_k} g^{j_1 s_1} \cdots g^{j_l s_l} F_{j_1, \dots, j_l}^{i_1, \dots, i_k} G_{s_1, \dots, s_l}^{r_1, \dots, r_k}$$

若 F,G 均为协变张量,则写作

$$\langle F, G \rangle = F_{j_1, \dots, j_l} G^{j_1, \dots, j_l}$$

 G^{j^1,\cdots,j^l} 表为提升指标:

$$G^{j_1,\dots,j_l} = g^{j_1s_1} \dots g^{j_ls_l} G_{s_1,\dots,s_l}$$

1.5 构造 Riemann 流形的方法

1.5.1 Riemann 子流形

定义 1.19 (诱导度量)

设 (M,g) 是一个 Riemann 流形, 每个子流形 $S\subseteq M$ (带边、浸入、嵌入) 上都继承了自然的拉回度量 ι^*g , 其中 $\iota:S\hookrightarrow M$ 是含入映射. 此拉回度量也称为是 S 上的诱导度量. 具体地, 对于 $v,w\in T_nS$

$$(\iota^* g)(v, w) = g(\operatorname{d}\iota_p(v), d\iota_p(w)) = g(v, w)$$

Remark

1. 将 T_pS 与它在 $d\iota_p$, 位于 T_pM 中的像等同,则 $(\iota^*g)(v,w)=g(v,w),v,w\in T_pS$,因此 (ι^*g) 无非就是 g 与 S 相切的向量上的限制.

定义 1.20 (Riemann 子流形)

(M,g),S 同前. 称 (S,ι^*g) 为 M 的 Riemann(带边) 子流形.

设 $U\subseteq\mathbb{R}^n$ 是开集, $S\subseteq\mathbb{R}^{n+1}$ 是光滑函数 $f:U\to\mathbb{R}$ 的图像. 映射 $X:U\to\mathbb{R}^{n+1}$, $X(u^1,\cdots,u^n)=(u^1,\cdots,u^n,f(u))$ 是 S 的光滑全局参数表示. X 上的诱导度量由以下给出

$$X^* \overline{g} = X^* \left(\left(dx^1 \right)^2 + \dots + \left(dx^{n+1} \right)^2 \right) = \left(du^1 \right)^2 + \dots + \left(du^n \right)^2 + df^2$$

Example 1.6 (旋转曲面上的诱导度量).

设 C 是半平面 $\{(r,z):r>0\}$ 的 1-维嵌入子流形, S_C 是由 C 生成的旋转曲面. 为了计算 S_C 上的诱导度量, 选择 C 的光滑局部参数表示 $\gamma(t)=(a(t),b(t))$. 映射 $X(t,\theta):=(a(t)\cos\theta,a(t)\sin\theta,b(t))$ 给出 S_C 的光滑局部参数表示, 设 (t,θ) 限制在平

面的充分小的开集上. 可以计算

$$X^* \overline{g} = d(a(t) \cos \theta)^2 + d(a(t) \sin \theta)^2 + d(b(t))^2$$

$$= (a'(t) \cos \theta dt - a(t) \sin \theta dt)^2$$

$$+ (a'(t) \sin \theta dt + a(t) \cos \theta dt)^2 + (b'(t) dt)^2$$

$$= (a'(t)^2 + b'(t)^2) dt^2 + a(t)^2 d\theta^2$$

特别地, 若 γ 是单位速度曲线(以时间为参数的速度为 1 的曲线的), 即 $|\gamma'(t)|^2=a'(t)^2+b'(t)^2=1$,则有最简单的形式 $\mathrm{d}t^2+a(t)^2~\mathrm{d}\theta^2$

定义 1.21

设 $\left(\tilde{M},\tilde{g}\right)$ 是 m-维光滑 Riemann (带边) 流形, $M\subseteq\tilde{M}$ 是 n-为光滑 (带边) 子流形, \tilde{M} 的在一个开子集 $\tilde{U}\subseteq\tilde{M}$ 上的一个局部标架 (E_1,\cdots,E_n) 被称为是与 M 适配的, 若前 n 个向量场 (E_1,\cdots,E_n) 与 M 相切.

命题 1.15

令 $\left(\tilde{M},\tilde{g}\right)$ 是一个 Riemann 流形 (无边), $M\subseteq\tilde{M}$ 是 (带边) 嵌入子流形 . 给定 $p\in M$, 存在 p 在 \tilde{M} 上的邻域 \tilde{U} , 和一个 \tilde{M} 在 \tilde{U} 上的光滑正交标架, 与 M 适配.

"这里要求嵌入子流形, 主要是为了利用切片判据, 将切空间做"光滑的分离", 以确保正交化的施行不会让向量跑到空间外面去. 由于标架的适配性是标架在局部上的行为, 对于 M 的开子集 U, U 上与 M 适配和与 U 适配是一回事. 因此利用浸入子流形的局部嵌入性, 可以将条件放宽为浸入子流形.

Proof 由 M 是嵌入子流形, 任给 $p\in M$, 存在 p 在 \tilde{M} 上的坐标卡 $(U,(x^1,\cdots,x^n))$, 使得 $U\cap M$ 是 U 的一个 k-切片, 通过坐标的平移, 可以设 $U\cap M$ 上点的坐标为

$$(x^1,\cdots,x^k,0,\cdots,0)$$

U 上的前 k 个坐标向量场 x^1,\cdots,x^k 与 M 相切, 对 x^1,\cdots,x^n 施行 Schmidt 正交化, 得 到 $(\tilde{x}^1,\cdots,\tilde{x}^n)$, 则 $\tilde{x}^1,\cdots,\tilde{x}^k$ 仍与 M 相切, 因此 $(\tilde{x}^1,\cdots,\tilde{x}^n)$ 构成一个 \tilde{M} 在 U 上的与 M 适配的光滑正交标架.

定义 1.22 (法空间)

设 $\left(\tilde{M}, \tilde{g}\right)$ 是一个黎曼流形, $M \subseteq \tilde{M}$ 是 \tilde{M} 的光滑 (带边) 子流形. 给定 $p \in M$ 种向量 $v \in T_p \tilde{M}$.

- 1. 称 v 与 M 是正交的, 若 $\langle v, w \rangle = 0$ 对于所有的 $w \in T_p M$ 成立.
- 2. 全体在 p 处与 M 正交的向量构成 $T_p \tilde{M}$ 的一个子空间, 被称为是 p 处的法

空间, 记作 $N_pM = (T_pM)^{\perp}$.

- 3. 正有交分解 $T_p \tilde{M} = T_p M \oplus N_p M$;
- 4. 称 $T\tilde{M}|_M$ 的一个截面为沿 M 的法向量场, 若 $N_p \in N_p M$ 对于任意的 $p \in M$ 成立;
- 5. 称集合

$$NM := \prod_{\pi \in M} N_p M$$

为 M 的法丛.

*

命题 1.16

设 \tilde{M} 是 Riemann m-流形, $M\subseteq \tilde{M}$ 是 n-维浸入或嵌入(带边)子流形, 则 NM 是 $T\tilde{M}|_M$ 的光滑 rank- (m-n) 子丛. 存在光滑丛同态

$$\pi^{\top}: T\tilde{M}|_m \to TM, \quad \pi^{\perp}: T\tilde{M}|_M \to NM$$

称为是切投影和法投影,对于每一点 $p\in M$,它们在 $T_p\tilde{M}$ 的限制分别表现为到 T_pM 和 N_pM 的正交投影.

按要求逐点地定义 π^{\top} 和 π^{\perp} 为局部的正交投影, 那么它们可以分别表示为

$$\pi^{\top} \left(X^{1} E_{1} + \dots + X^{m} E_{m} \right) := X^{1} E_{1} + \dots + X^{n} E_{n}$$
$$\pi^{\perp} \left(X^{1} E_{1} + \dots + X^{m} E_{m} \right) := X^{n+1} E_{n+1} + \dots + X^{m} E_{m}$$

这表明 π^{T} 和 π^{\perp} 是光滑的.

子流形 $M\subseteq M$ 上的计算通常由 光滑局部参数化的形式给出: 即一个光滑映射 $X:U\to \tilde{M}$, 其中 U 是 \mathbb{R}^n 上的一个开集 (当 M 有边时, 或为 \mathbb{R}^n_+ 上的), 使得 X(U) 是 M 上的一个开集, 且 X 视作 U 到 M 上的映射时, 成为映到像集的微分同胚. 用 X 同时表示它视为映到 M 和映到 \tilde{M} 的映射.

若令 $V=X\left(U\right)\subseteq M$, $\varphi=X^{-1}:V\to U$, 则 $\left(V,\varphi\right)$ 是 M 上的一个光滑坐标卡. 设 $\left(M,g\right)$ 是 $\left(\tilde{M}\right),\tilde{g}$ 的 Riemann 子流形, $X:U\to \tilde{M}$ 是 M 的一个光滑局部参数化.

则 g 的坐标表示由以下 U 上的 2-张量场给出:

$$(\varphi^{-1})^* g = X^* g = X^* \iota^* \tilde{g} = (\iota \circ X)^* \tilde{g}$$

由于 $\iota \circ X$ 无非就是 X 子集 (视作到 \tilde{M} 的映射), 于是上面的拉回度量就是 $X^* \tilde{g}$.

一旦 \tilde{g} 的坐标表示给出,可以轻松地计算得到拉回张量场. 例如,若 M 是 \mathbb{R}^m 的 n-Riemann 浸入子流形, $X:U\to\mathbb{R}^m$ 是 M 的一个光滑局部参数化,U 上的诱导度量就是

$$g = X^* \bar{g} = \sum_{i=1}^m \left(dX^i \right)^2 = \sum_{i=1}^m \left(\sum_{j=1}^n \frac{\partial X^j}{\partial u^j} du^j \right)^2 = \sum_{i=1}^m \sum_{j,k=1}^n \frac{\partial X^i}{\partial u^j} \frac{\partial X^i}{\partial u^k} du^j du^k$$

Example 1.7 图像坐标系上的诱导度量 设 $U\subseteq\mathbb{R}^n$ 是一个开集, $f:U\to\mathbb{R}$ 是光滑函数, 则 f 的图像 是子集 $\Gamma(f)=\{(x,f(x)):x\in U\}\subseteq\mathbb{R}^{n+1}$ 是一个 n 维嵌入子流形. 他有全局参数化 $X:U\to\mathbb{R}^{n+1}$, 称为是图像参数化, 由 X(u)=(u,f(u)) 给出. 相应的 M 上的坐标 u^1,\cdots,u^n 称为是图像坐标. 在图像坐标下, $\Gamma(f)$ 的诱导度量是

$$X^*\bar{g} = X^* \left(\left(dx^1 \right)^2 + \dots + \left(dx^{n+1} \right)^2 \right) = \left(du^1 \right)^2 + \dots + \left(du^n \right)^2 + \left(df \right)^2$$

应用到 \mathbb{S}^2 的上半平面上, 在参数化 $X: \mathbb{B}^2 \to \mathbb{R}^3$

$$X(u,v) = \left(u, v, \sqrt{1 - u^2 - v^2}\right)$$

下, 可以看到 S2 上的圆度量可以局部地写作

$$\mathring{g} = X^* \bar{g} = du^2 + dv^2 + \left(\frac{u \, du + v \, dv}{\sqrt{1 - u^2 - v^2}}\right)^2$$
$$= \frac{(1 - v^2) \, du^2 + (1 - u^2) \, dv^2 + 2uv \, du \, dv}{1 - u^2 - v^2}$$

Example 1.8 旋转曲面 设 H 是半平面 $\{(r,z):r>0\}$, $C\subseteq H$ 是 1-维嵌入子流形. 由 C 决定的 旋转曲面, 是指子集 $S_C\subseteq\mathbb{R}^3$,

$$S_C = \left\{ (x, y, z) : \left(\sqrt{x^2 + y^2}, z \right) \in C \right\}$$

称 C 为它的生成曲线. 每个 C 的光滑局部参数化 $\gamma(t)=(a(t),b(t))$, 都给出 S_C 的一个光滑局部参数化

$$X(t, \theta) = (a(t)\cos\theta, a(t)\sin\theta, b(t))$$

设 (t,θ) 限制在坐标平面上充分小的坐标开集上. 则 t-坐标曲线 $t\mapsto X(t,\theta_0)$ 被称为是 子午线. θ -坐标曲线 $\theta\mapsto X(t_0,\theta)$ 被称为是纬圆.

S_C 上的诱导度量是

$$X^* \bar{g} = d(a(t)\cos\theta)^2 + d(a(t)\sin\theta)^2 + d(b(t))^2$$

$$= (a'(t)\cos\theta dt - a(t)\sin\theta d\theta)^2$$

$$+ (a'(t)\sin\theta dt + a(t)\cos\theta d\theta)^2$$

$$+ (b'(t)dt)^2$$

$$= (a'(t)^2 + b'(t)^2) dt^2 + a(t)^2 d\theta^2$$

特别地, 若 γ 是单位速度曲线, $|\gamma'(t)|^2=a'(t)^2+b'(t)^2\equiv 1$),则上述化为 $\mathrm{d}t^2+a(t)^2\,\mathrm{d}\theta^2$

1.5.2 乘积

定义 1.23 (warped 积)

设 (M_1,g_1) 和 (M_2,g_2) 是两个 Riemann 流形, $f:M_1\to\mathbb{R}^+$ 是严格正的光滑函数, 定义 warped 积 $M_1\times_f M_2$ 为配备了度量 $g=g_1\oplus f^2g_2$ 的积流形 $M_1\times M_2$, 其中 g 被定义为

$$g_{(p_1,p_2)}((v_1,v_2),(w_1,w_2)) = g_1|_{p_1}(v_1,w_1) + f(p_1)^2 g_2|_{p_2}(v_2,w_2)$$

Example 1.9

- 1. 设 H 是半平面 $\{(r,z):r>0\}$, $C\subseteq H$ 是 1-嵌入子流形, 令 $S_C\subseteq\mathbb{R}^3$ 是对应的旋转曲面. 令 C 配备在 H 上诱导的度量, \mathbb{S}^1 配备标准度量 $f:C\to\mathbb{R}$ 是到 z-轴的 距离函数: f(r,z)=r, 则 S_c 等距同构于 warped 积 $C\times_f\mathbb{S}^1$
- 2. 令 ρ 表示 $\mathbb{R}^+\subseteq\mathbb{R}$ 上的标准坐标函数, 则映射 $\Phi(\rho,\omega)=\rho\omega$ 给出 warped 积 $\mathbb{R}^+\times_{\rho}\mathbb{S}^{n-1}$ 到 $\mathbb{R}^n\setminus\{0\}$ 的等距同构, 其中后者配备了欧式度量.

Proof

1. 设 C 有一个单位速度参数化 $\gamma:I\to H, \gamma(t)=(a(t),b(t))$. 则旋转的一个参数化为

$$(\theta, t) \mapsto (a(t)\cos\theta, a(t)\sin\theta, b(t))$$

因此在 $(a(t)\cos\theta, a(t)\sin\theta, b(t))$ 处,有

$$\tilde{g} = a^2(t) d\theta^2 + dt^2$$

另一方面, 考虑 S1 的参数化

$$\theta \mapsto (\cos \theta, \sin \theta)$$

以及 C 的参数化 γ , $C \times \mathbb{S}^1$ 有参数化

$$(t,\theta)\mapsto\left(\left(a\left(t\right),b\left(t\right)\right),\left(\cos\theta,\sin\theta\right)\right)$$

在 $((a(t),b(t),(\cos\theta,\sin\theta)))$ 处,

$$g_1 = (da(t))^2 + (db(t))^2 = dt^2$$

 $g_2 = (d\cos\theta)^2 + (d\sin\theta)^2 = d\theta^2$

于是此处

$$g = dt^2 + f((a(t), b(t))) d\theta^2 = dt^2 + a(t) d\theta^2$$

则考虑映射

$$\varphi: (a(t)\cos\theta, a(t)\sin\theta, b(t)) \mapsto ((a(t), b(t)), (\cos\theta, \sin\theta))$$

则

$$\varphi^* q = \tilde{q}$$

这表明 φ 是等距同构.

2. 设 $V_{\rho}=\partial_{\rho}$ 是 \mathbb{R}^{+} 的坐标向量场, $V_{\omega}\in T_{p}\mathbb{S}^{n-1}$. 则

$$(\Phi^* \bar{g}) (V_p, V_\omega) = \bar{g} ((d\Phi) V_\rho, (d\Phi) V_\omega)$$

通过将嵌入到 \mathbb{R}^{n+1} 上, 可以计算得到

$$d\Phi (\partial_{\rho}) = \omega \in T_{\rho\omega} \mathbb{R}^{n}$$
$$d\Phi (V_{\omega}) = \rho V_{\omega} \in T_{\rho\omega} \mathbb{R}^{n}$$

于是

$$(\Phi^* \bar{g}) (V_{\rho}, V_{\rho}) = \bar{g} (\omega, \omega) = |\omega|^2 = 1$$

$$(\Phi^* \bar{g}) (V_{\omega}, V_{\omega}) = \bar{g} (\rho V_{\omega}, \rho V_{\omega}) = \rho^2 \bar{g} (V_{\omega}, V_{\omega})$$

$$(\Phi^* \bar{q}) (V_{\rho}, V_{\omega}) = \bar{q} (\omega, \rho V_{\omega}) = \rho \bar{q} (\omega, V_{\omega}) = 0$$

另一方面

$$g(V_{\rho}, V_{\omega}) = 0$$
$$g(V_{\rho}, V_{\rho}) = \bar{g}(V_{\rho}, V_{\rho})$$
$$g(V_{\omega}, V_{\omega}) = \rho^{2} \bar{g}(V_{\omega}, V_{\omega})$$

这结合对称正定 2-张量由对角元所决定, 足以说明 $g=(\Phi^*ar{g})$