

Vadhiraj K P P

Department of Electrical & Electronics Engineering



Lectures 2 & 3 - Concept of Ideal Sources, Kirchhoff's Laws, Numerical Examples on Basic Laws

Vadhiraj K P P

Department of Electrical & Electronics Engineering



## **Ideal Voltage Source**

Its terminal voltage is independent of current flowing through it.



The current delivered by it depends on the circuit to which it is connected.



When R = 
$$10\Omega$$
,  $I_S = 1.2A$   
When R =  $1\Omega$ ,  $I_S = 12A$ 



#### **Ideal Current Source**

Its current is independent of the voltage across it.



The voltage across it depends on the circuit to which it is connected.





# **Kirchhoff's Current Law (KCL)**

- KCL States "At every node in an electric network, the algebraic sum of currents is Zero (or) sum of incoming currents is equal to the sum of outgoing currents".
- A point at which two or more elements are interconnected is a node.
- KCL signifies the conservation of charge.



By KCL at node A, 
$$I_1 + I_4 = I_2 + I_3$$

# PES UNIVERSITY

# Kirchhoff's Voltage Law (KVL)

- KVL States "Around every closed path in an electric network, the algebraic sum of voltages is Zero".
- A path in an electrical network which starts and ends at the same terminal is called a closed path.





# Kirchhoff's Voltage Law (KVL)

Conventionally, Voltage drop is considered negative and voltage rise as positive.



• KVL in the path ABDA:

$$-V_1 - V_3 + V_a = 0$$

KVL in the path BCDB:

$$V_2 - V_b + V_3 = 0$$

• KVL in the path ABCDA:

$$-V_1 + V_2 - V_b + V_a = 0$$

KVL signifies conservation of energy.



# **Numerical Example on KVL**

# Example 1:

Find the current through  $8\Omega$  resistor in the network given.





# **Numerical Example on KVL**

## **Solution:**



KVL: 
$$+10-8I-6-8+12=0$$



# **Numerical Example on KVL**

# Example 2:

Find the voltage  $V_{AB}$  in the network shown:





### **Numerical Example on KVL**

#### **Solution:**



KVL (AXYCA):  $+20-5I_1-3I_1-2I_1 = 0$ ; Hence,  $I_1 = 2A$ 

KVL (BZEB):  $+40-5I_2-5I_2 = 0$ ; Hence,  $I_2 = 4A$ 

KVL (ACDEBA):  $+2I_1-10-5I_2+V_{AB}=0$ ; Hence,  $V_{AB}=26V$ ; In path CDE, there is no closed path for the current to flow. Hence, Current through CD is 0 and voltage across is 0

# PES

# **Numerical Example on KVL**

Q3. Find the current in all the branches in the network shown.



#### **Text Book & References**

#### **Text Book:**

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11<sup>th</sup> Edition, Pearson Education, 2012.

#### **Reference Books:**

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8<sup>th</sup> Edition, McGraw-Hill, 2012.



# **THANK YOU**

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu