D3_Exercises

Kwon do yun

2021-01-18

차례

Exercise 1	 •										•											2
Exercise 3	 																					2
Exercise 4	 																					2

Exercise 1

How would you genalize this game with arbitrary value of m_1 (minimum increment), m_2 (maximum increment), and N (the winning number)?

if $m_1=1$ $m_2=2$ N=31 You have to be in 28, 25, \cdots states to win the game.

if $m_1=2\,m_2=5\,N=50$ You have to be in 43, 36, \cdots states to win the game.

If you generalize the expression,

$$\pi^*(S) = N - k(m_1 + m_2) - S, \ where \ \ N - k(m1 + m2) - s \in [m1, m2]$$

Exercise 3

There is only finite number of $deterministic\ stationary$ policy. How many is it?

There is a fixed state for each action.

So,
$$|A|^{|S|}$$

Exercise 4

Formulate the first example in this lecture note using the terminology including state, action, reward, policy, transition. Describe the optimal policy using the terminology as well.

State

$$S = \{1, 2, ..., 31\}$$

Action

$$A=\{a_1,a_2\}$$

Reward

$$R(30,a_1)=R(29,a_2)=1$$
 all ohter $R(s,a)$ = 0 $\,$

Transition

$$\begin{split} P^a_{ss'} &= P(S_{t+1} = S' | S_t = s, A_t = a) = 1 \\ s' &= s+1, \ if(a=a1) \\ s' &= s+2, \ if(a=a2) \end{split}$$

otherwise 0.

Optimal Policy

$$\pi^* = argmax_\pi V_t(s)^\pi$$

$$S(3n)=a_1$$

"D3_Exercises"