Machine Learning & Intelligence for Electrical Engineers

Neural Network Optimization

Korea University

Error/Loss Function

• Given a dataset \mathcal{D} and a neural network f, the objective of the learning/training procedure is to *minimize* the **error/loss** function

$$w^* = \underset{w}{\operatorname{argmin}} \mathcal{L}(x, o; w)$$

What is Error/Loss Function?

Ground Truth			Prediction				
x	o *	0					
		w = 1	w = 2	w = 3	w = 4	w = 5	
1	4	2	3	4	5	6	
2	7	3	5	7	9	11	
3	10	4	7	10	13	16	
4	13	5	9	13	17	21	
5	16	6	11	16	21	26	

x	o *	Error					
		w = 1	w = 2	w = 3	w = 4	w = 5	
1	4	2	0.5	0	0.5	2	
2	7	8	2	0	2	8	
3	10	18	4.5	0	4.5	18	
4	13	32	8	0	8	32	
5	16	50	12.5	0	12.5	50	
MSE		110	27.5	0	27.5	110	

Learning Neural Network

- How can we find the best values of the parameters **w**?
 - Exhaustive search
 - Random search

Error/Loss Function & Derivatives

- How to decrease the error function \mathcal{L} ?
 - If $\mathcal{L}'(w) > 0$: Move to the left
 - If $\mathcal{L}'(w) < 0$: Move to the right

$$w^{new} = w^{old} - \frac{\partial \mathcal{L}}{\partial w}$$

Gradient Descent

$$\mathcal{L}(\mathbf{w}) = \mathcal{L}(w_1, w_2, \dots, w_d)$$

- To minimize $\mathcal{L}(w)$, take and use partial derivatives of $\mathcal{L}(w)$
- Gradient $\nabla \mathcal{L}(\mathbf{w})$ points in direction of steepest *increase* of $\mathcal{L}(\mathbf{w})$
- $-\nabla \mathcal{L}(\mathbf{w})$ points in direction of steepest *decrease* of $\mathcal{L}(\mathbf{w})$

Gradient $\nabla \mathcal{L} = \begin{bmatrix} \frac{\partial \mathcal{L}}{\partial w_1} \\ \frac{\partial \mathcal{L}}{\partial w_2} \\ \vdots \\ \frac{\partial \mathcal{L}}{\partial w_d} \end{bmatrix}$

Gradient Descent: Update Rule

• Gradient descent update rule:

$$\mathbf{w}^{new} = \mathbf{w}^{old} - \eta \nabla \mathcal{L}(\mathbf{w})$$
 $w_i^{new} = w_i^{old} - \eta \frac{\partial \mathcal{L}}{\partial w_i}$

 $-\eta$ (learning rate): a hyperparameter that determines the step size in adjusting the weights

Gradient Descent: Algorithm

- Initialization: $\mathbf{w}^{(0)}$ with some initial guess, k=0
- While $|\nabla \mathcal{L}(w)| > \varepsilon$
 - 1. Choose a learning rate: $\eta^{(k)}$
 - 2. Update weights: $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} \eta^{(k)} \nabla \mathcal{L}(\mathbf{w})$
 - 3. k = k + 1

Gradient Descent: Update

$$o = f(x) = \sum_{i=1}^{2} w_i \cdot x_i$$

$$\frac{\partial o}{\partial w_i} = \frac{\partial}{\partial w_i} f(x) = x_i$$

What about the weights in the hidden layers?

Computational Graph

Compute derivatives

$$\frac{\partial y}{\partial z_1} = z_2 \qquad \qquad \frac{\partial y}{\partial x_1} = \frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial x_1} = z_2 \cdot 1$$

$$\frac{\partial y}{\partial z_2} = z_1 \qquad \qquad \frac{\partial y}{\partial z_2} = \frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial x_2} = z_2 \cdot 1$$

Backpropagation: Computing Gradients

• Forward step: Produce the output and compute the loss Compute and save local gradients

Backpropagation: Computing Gradients

• Backward step: Gradients from the last layer flows backward through the network, i.e., complete the calculation of the gradients

Training Procedure

- 1. Compute the actual output (prediction): **o**
- 2. Compare to the desired output (ground truth): o^*
- 3. Compute the error/loss: $\mathcal{L}(\boldsymbol{o}, \boldsymbol{o}^*; \boldsymbol{w})$
- 4. Determine the effect of each weight on the error/loss: $\nabla \mathcal{L}$
- 5. Adjust the weights **w** using gradient descent update rule

Network Training: Multi-Layer

$$\mathcal{L} = \frac{1}{2} \sum_k (o_k - o_k^*)^2$$

$$\frac{\partial \mathcal{L}}{\partial w_{kj}} = \frac{\partial \mathcal{L}}{\partial o_k} \frac{\partial o_k}{\partial z_k} \frac{\partial z_k}{\partial w_{kj}} = \delta_k^z h_j$$

$$h_j = \frac{\partial z_k}{\partial w_{kj}} \qquad \text{Output}$$
 Layer

$$\delta_k^z = \frac{\partial \mathcal{L}}{\partial o_k} \frac{\partial o_k}{\partial z_k}$$

Gradients on hidden weights:

$$\frac{\partial \mathcal{L}}{\partial v_{ji}} = \frac{\partial \mathcal{L}}{\partial h_j} \frac{\partial h_j}{\partial v_{ji}} = \frac{\partial \mathcal{L}}{\partial h_j} \frac{\partial h_j}{\partial u_j} \frac{\partial u_j}{\partial v_{ji}} = \frac{\partial \mathcal{L}}{\partial h_j} \frac{\partial h_j}{\partial u_j} x_i$$

$$x_i = \frac{\partial u_j}{\partial v_{ji}}$$

Hidden Layer

Input Layer

Softmax Activation

 Represent the outputs of the network as probabilities that the input belongs to each class

$$o_{k} = \frac{e^{z_{k}}}{\sum_{i} e^{z_{i}}} = p(y = k \mid x) \qquad \mathbf{z} = [z_{1} \ z_{2} \ z_{3}] = [2.8 \ 1.1 \ -0.5]$$

$$e^{\mathbf{z}} = [e^{z_{1}} \ e^{z_{2}} \ e^{z_{3}}] = [e^{2.8} \ e^{1.1} \ e^{-0.5}]$$

$$\mathbf{o} = [o_{1} \ o_{2} \ o_{3}] = [0.82 \ 0.15 \ 0.03]$$

Cross-Entropy Loss

- Cross-entropy loss is one of the most popular loss functions for classification problems
 - Binary classification: $o^* = 1 \text{ or } 0$

$$\mathcal{L} = -\sum_{n=1}^{\infty} [o^{n*} \log o^n + (1 - o^{n*}) \log(1 - o^n)]$$

- Multi-class classification

$$\mathcal{L} = -\sum_{n} \sum_{k} o_k^{n*} \log o_k^n$$

Cross-Entropy Loss: Example

$$\mathbf{z} = [z_1 \ z_2 \ z_3] = [2.8 \ 1.1 \ -0.5]$$

$$o = [o_1 \ o_2 \ o_3] = [0.82 \ 0.15 \ 0.03]$$

$$\mathcal{L} = -\sum_{n} \sum_{k} o_{k}^{n*} \log o_{k}^{n}$$

$$\mathcal{L} = -(1 \cdot \log 0.82 + 0 \cdot \log 0.15 + 0 \cdot \log 0.03) = 0.1985$$

$$\mathbf{z} = [z_1 \ z_2 \ z_3] = [-0.5 \ 1.1 \ 2.8]$$

$$o = [o_1 \ o_2 \ o_3] = [0.03 \ 0.15 \ 0.82]$$

$$\mathcal{L} = -(1 \cdot \log 0.03 + 0 \cdot \log 0.15 + 0 \cdot \log 0.82) = 3.5066$$

Optimization Algorithm

Training Procedure: Monitor Error (Loss)

Nice & smooth error/loss functions

• Are the actual error/loss functions are usually nice?

- At plateau, training can be too slow
- In deep learning (lots of parameters), local minimum tends to be not much worse than the global minimum

- Saddle Point
 - A point where the slopes (derivates) in orthogonal directions are all zero, but not a local extreme of a

Gradient Descent: Large Dataset

- Gradient descent
 - Use the entire training data to compute the error and update parameters

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}^{i}(x^{i}, y^{i}, \mathbf{w})$$

– When N is large, the full sum become too expensive and slow!

Stochastic Gradient Descent

- Stochastic gradient descent (SGD)
 - Select one (or a subset) of the training data at random to compute the error and update parameters
 - Mini-batch SGD: Select and use a subset of the training data

Gradient Descent (SGD): Issues

• Gradient Descent (SGD) "almost surely" converges to a global/local minimum

- However,
 - It uses a gradient, estimated on a simple or small batch
 - The estimated gradient may be noisy and oscillate substantially
 - It can be too slow at plateaus and get stuck at saddle points

Gradient Descent with Momentum

- Continue move in the general direction as the previous iterations
 - Maintain a running average of all gradients until the current step

Gradient Descent with Momentum

• Gradient descent:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta^{(k)} \nabla \mathcal{L}(\mathbf{w})$$

• Gradient descent with momentum:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \nabla \mathbf{w}^{(k+1)}$$
$$\nabla \mathbf{w}^{(k+1)} = \beta \nabla \mathbf{w}^{(k)} + \eta^k \nabla \mathcal{L}(\mathbf{w})$$

 $-\nabla w^{(k+1)}$ is called momentum

Gradient Descent with Momentum

• Gradient descent with momentum:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \nabla \mathbf{w}^{(k+1)}$$
$$\nabla \mathbf{w}^{(k+1)} = \beta \nabla \mathbf{w}^{(k)} + \eta^k \nabla \mathcal{L}(\mathbf{w})$$

- $-\nabla w^{(k+1)}$ is called momentum
 - Accumulate the gradients from the past
 - Similar to the momentum of a ball rolling down the hill
- $-\beta$ is a momentum coefficient, typically set to 0.9
- Update the weights in the direction of the weighted average of the past gradients

Adaptive Optimizers

- Gradient descent algorithms and learning rate schedulers thus far, by and large, rely on manual selection of the associated hyperparameters
- Adaptive gradient descent algorithms or adaptive learning rate methods seek to adaptively adjust learning rates (or gradients) during training

Root Mean Square Propagation (RMSprop)

Root Mean Square Propagation (RMSprop)
 maintains a <u>running average of the mean</u>
 <u>squared gradients</u> and
 rescales the learning rates using an <u>inverse of</u>
 <u>the root mean squared gradients</u>

Root Mean Square Propagation (RMSprop)

Update the weights

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \widehat{\mathbf{V}}^{(k+1)}$$

Scale the weighted values

$$\widehat{\mathbf{V}}^{(k+1)} = \frac{\eta^{(k)}}{\sqrt{\mathbf{V}^{(k+1)}} + \epsilon} \nabla \mathcal{L}(\mathbf{w})$$

• Compute a weighted average of the past squared gradients

$$\mathbf{V}^{(k+1)} = \alpha \mathbf{V}^{(k)} + (1 - \alpha) (\nabla \mathcal{L}(\mathbf{w}))^{2}$$

Gradient descent with momentum:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \nabla \mathbf{w}^{(k+1)}$$

$$\nabla \mathbf{w}^{(k+1)} = \beta \nabla \mathbf{w}^{(k)} + \eta^k \nabla \mathcal{L}(\mathbf{w})$$

Root Mean Square Propagation (RMSprop)

• RMSprop:

- Scale the learning rate by the inverse of the root mean squared gradients
 - Scale down the learning rates with large mean squared gradients (prevent the gradients from being too large)
 - Scale up the learning rates with small mean squared gradients (prevent the gradients from being too small)

Momentum & RMSprop

• Gradient descent with momentum smooths the gradient

Gradient descent with momentum:

Gradient descent with momentum:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \nabla \mathbf{w}^{(k+1)}$$

$$\nabla \mathbf{w}^{(k+1)} = \beta \nabla \mathbf{w}^{(k)} + \eta^k \nabla \mathcal{L}(\mathbf{w})$$

RMSprop adjust the learning rate

RMSprop:

$$\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} - \widehat{\boldsymbol{V}}^{(k+1)}$$

$$\widehat{\boldsymbol{V}}^{(k+1)} = \frac{\eta^{(k)}}{\sqrt{\boldsymbol{V}^{(k+1)}} + \epsilon} \nabla \mathcal{L}(\boldsymbol{w})$$

$$\boldsymbol{V}^{(k+1)} = \alpha \boldsymbol{V}^{(k)} + (1 - \alpha) (\nabla \mathcal{L}(\boldsymbol{w}))^2$$

• Can we do both?

Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam)
 maintains a running average of the mean
 gradients,
 maintains a running average of the mean
 squared gradients and
 rescales the learning rates using an inverse of
 the root mean squared gradients

Adaptive Moment Estimation (Adam)

Update the weights

$$\boldsymbol{w}^{k+1} = \boldsymbol{w}^k - \frac{\boldsymbol{\eta}^k}{\sqrt{\widehat{\boldsymbol{V}}^{k+1}} + \epsilon} \widehat{\boldsymbol{U}}^{k+1}$$

Scale the weighted values

$$\widehat{\pmb{U}}^{k+1} = \frac{\pmb{U}^{k+1}}{1-\beta_1}, \qquad \widehat{\pmb{V}}^{k+1} = \frac{\pmb{V}^{k+1}}{1-\beta_2}$$

Compute a weighted average of the past gradients and past squared gradients

$$\mathbf{U}^{k+1} = \beta_1 \nabla \mathbf{U}^k + (1 - \beta_1) \nabla \mathcal{L}(\mathbf{w})$$
$$\mathbf{V}^{k+1} = \beta_2 \mathbf{V}^k + (1 - \beta_2) (\nabla \mathcal{L}(\mathbf{w}))^2$$

Adaptive Moment Estimation (Adam)

• Adam:

$$\mathbf{w}^{k+1} = \mathbf{w}^{k} - \frac{\eta^{k}}{\sqrt{\hat{V}^{k+1}} + \epsilon} \hat{\mathbf{U}}^{k+1} \qquad \begin{array}{l} \beta_{1} = 0.9 \\ \beta_{2} = 0.999 \\ \epsilon = 10^{-8} \end{array}$$

$$\hat{\mathbf{U}}^{k+1} = \frac{\mathbf{U}^{k+1}}{1 - \beta_{1}}, \qquad \hat{\mathbf{V}}^{k+1} = \frac{\mathbf{V}^{k+1}}{1 - \beta_{2}}$$

$$\mathbf{U}^{k+1} = \beta_{1}\mathbf{U}^{k} + (1 - \beta_{1})\nabla\mathcal{L}(\mathbf{w})$$

$$\mathbf{V}^{k+1} = \beta_{2}\mathbf{V}^{k} + (1 - \beta_{2})(\nabla\mathcal{L}(\mathbf{w}))^{2}$$

RMSprop:
$$\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} - \widehat{\boldsymbol{V}}^{(k+1)}$$
$$\widehat{\boldsymbol{V}}^{(k+1)} = \frac{\eta^{(k)}}{\sqrt{\boldsymbol{V}^{(k+1)}} + \epsilon} \nabla \mathcal{L}(\boldsymbol{w})$$
$$\boldsymbol{V}^{(k+1)} = \alpha \boldsymbol{V}^{(k)} + (1 - \alpha) (\nabla \mathcal{L}(\boldsymbol{w}))^2$$

Generalization & Regularization

Regularization: Weight Decay

$$\mathcal{L}_{reg}(\mathbf{w}) = \mathcal{L}(\mathbf{w}) + \frac{\lambda}{2} \sum_{i} w_i^2$$

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \eta^{(k)} \nabla \mathcal{L}(\mathbf{w}) - \eta^{(k)} \lambda \mathbf{w}^{(k)}$$

- Regularization term penalizes large weights
- During gradient descent update, weights are decayed linearly toward zero
 - $-\lambda$ determines how dominant the regularization is