Kapitel 7

Formale Spezifikation von Hardware:

- 1 Boolesche Ausdrücke
- 2. Binäre Entscheidungsdiagramme (BDDs)
- 3. Anwendung: Formale Verifikation

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Motivation

- Der Entwurf von ReTI hat (hoffentlich) gezeigt, dass Hardware-Synthese komplex und fehleranfällig ist.
- Es gibt automatische Methoden, um Fehler zu finden oder ihre Abwesenheit nachweisen zu können.
- Für ihre Anwendbarkeit muss ein Schaltkreis formal vollständig spezifiziert werden.
- Wir schauen uns daher boolesche Funktionen nochmals (und genauer) an und lernen effiziente Algorithmen und Datenstrukturen zu ihrer Handhabung.

Motivation

- Der Entwurf von ReTI hat (hoffentlich) gezeigt, dass Hardware-Synthese komplex und fehleranfällig ist.
- Es gibt automatische Methoden, um Fehler zu finden oder ihre Abwesenheit nachweisen zu können.
- Für ihre Anwendbarkeit muss ein Schaltkreis formal vollständig spezifiziert werden.
- Wir schauen uns daher boolesche Funktionen nochmals (und genauer) an und lernen effiziente Algorithmen und Datenstrukturen zu ihrer Handhabung.

Boolesche Algebren - allgemein

- Es sei M eine Menge auf der zwei binäre Operationen \cdot und + und eine unäre Option \sim definiert sind.
- Das Tupel $(M, \cdot, +, \sim)$ heißt boolesche Algebra, falls M eine nichtleere Menge ist und für alle $x, y, z \in M$ die folgenden Axiome gelten:

Kommutativität
$$x+y=y+x$$
 $x\cdot y=y\cdot x$ Assoziativität $x+(y+z)=(x+y)+z$ $x\cdot (y\cdot z)=(x\cdot y)\cdot z$ Absorption $x+(x\cdot y)=x$ $x\cdot (x+y)=x$ Distributivität $x+(y\cdot z)=(x+y)\cdot (x+z)$ $x\cdot (y+z)=(x\cdot y)+(x\cdot z)$ Komplement $x+(y\cdot \sim y)=x$ $x\cdot (y+\sim y)=x$

Beispiele boolescher Algebren

- \blacksquare ($\mathbb{B}, \wedge, \vee, \neg$)
- Boolesche Algebra der Teilmengen einer Menge $S: (Pot(S), \cap, \cup, ^C)$
- Boolesche Algebra der booleschen Funktionen in n Variablen: $(\mathbb{B}_n, \cdot, +, \sim)$
- → Allgemein: Lässt sich eine Aussage direkt aus den Axiomen herleiten, dann gilt sie in allen booleschen Algebren!
 - Man darf beim Beweis der Aussage aber auch wirklich nur die Axiome verwenden und keine Eigenschaften der konkreten booleschen Algebra.

Boolesche Algebra der Teilmengen von $S(Pot(S), \cap, \cup, ^{C})$

- Menge: Potenzmenge von S
- $\quad \blacksquare \ : Pot(S) \times Pot(S) \rightarrow Pot(S); \ (M_1, M_2) \mapsto M_1 \cap M_2$
- $\quad \blacksquare \ +: Pot(S) \times Pot(S) \rightarrow Pot(S); \ (M_1, M_2) \mapsto M_1 \cup M_2$
- \blacksquare C : $Pot(S) \rightarrow Pot(S)$; $M \mapsto M^{C} := S \setminus M$

Satz

 $(Pot(S), \cap, \cup, ^{C})$ ist eine boolesche Algebra.

■ Beweis: Nachrechnen, dass alle Axiome gelten.

Beispiel: Absorption

- Seien $M_1, M_2 \in Pot(S)$.
- Dann ist $(M_1 + (M_1 \cdot M_2)) = (M_1 \cup (M_1 \cap M_2)) = M_1$ und $(M_1 \cdot (M_1 + M_2)) = (M_1 \cap (M_1 \cup M_2)) = M_1$.

Boolesche Algebra der Funktionen in n Variablen $(\mathbb{B}_n, \cdot, +, \sim)$

- Menge: \mathbb{B}_n (Menge der booleschen Funktionen in n Variablen)
- $\blacksquare : \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n; \ (f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha) \ \text{für alle } \alpha \in \mathbb{B}^n$
- $\blacksquare \ +: \mathbb{B}_n \times \mathbb{B}_n \to \mathbb{B}_n; \ (f+g)(\alpha) = f(\alpha) + g(\alpha) \ \text{für alle } \alpha \in \mathbb{B}^n$
- \blacksquare \sim : $\mathbb{B}_n \to \mathbb{B}_n$; $(\sim f)(\alpha) = 1 \Leftrightarrow f(\alpha) = 0$ für alle $\alpha \in \mathbb{B}^n$

Satz

 $(\mathbb{B}_n,\cdot,+,\sim)$ ist eine boolesche Algebra.

- Beweis: Nachrechnen, dass alle Axiome gelten.
 - Beispiel: Kommutativität
 - Seien $f,g \in \mathbb{B}_n$.

Für alle
$$\alpha \in \mathbb{B}^n$$
 gilt: $(f+g)(\alpha) = \underbrace{f(\alpha) + g(\alpha)}_{+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}} = g(\alpha) + f(\alpha) = \underbrace{(g+f)(\alpha)}_{+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}}.$

Also
$$f + g = g + f$$
.

NI REIBURG

TS/RW - Kapitel 7

Weitere, aus den Axiomen ableitbare Regeln:

Existenz neutraler Elemente:

$$\exists \mathbf{0}: x + \mathbf{0} = x, \ x \cdot \mathbf{0} = \mathbf{0} \quad \exists \mathbf{1}: x \cdot \mathbf{1} = x, \ x + \mathbf{1} = \mathbf{1}$$

■ Doppeltes Komplement:

$$(\sim (\sim x)) = x$$

■ Eindeutigkeit des Komplements:

$$(x \cdot y = \mathbf{0} \text{ und } x + y = \mathbf{1}) \Rightarrow y = (\sim x)$$

Idempotenz:

$$X + X = X$$
 $X \cdot X = X$

de Morgan-Regel:

$$\sim (x+y) = (\sim x) \cdot (\sim y) \qquad \sim (x \cdot y) = (\sim x) + (\sim y)$$

■ Consensus-Regel:

$$(x \cdot y) + ((\sim x) \cdot z) = (x \cdot y) + ((\sim x) \cdot z) + (y \cdot z) (x + y) \cdot ((\sim x) + z) = (x + y) \cdot ((\sim x) + z) \cdot (y + z)$$

■ Diese Regeln gelten in allen booleschen Algebren!

Dualitätsprinzip bei booleschen Algebren

Prinzip der Dualität

Gilt eine aus den Gesetzen der booleschen Algebra abgeleitete Gleichung p, so gilt auch die zu p duale Gleichung, die aus p hervorgeht durch gleichzeitiges Vertauschen von + und \cdot , sowie $\mathbf{0}$ und $\mathbf{1}$.

■ Beispiel:

$$(x \cdot y) + ((\sim x) \cdot z) + (y \cdot z) = (x \cdot y) + ((\sim x) \cdot z)$$

$$(x+y)\cdot ((\sim x)+z)\cdot (y+z)=(x+y)\cdot ((\sim x)+z)$$

Boolesche Ausdrücke - allgemein

- Formal vollständige Definition boolescher Ausdrücke
 - Syntax (korrekte Schreibweise) \rightarrow Def. boolescher Ausdrücke $BE(X_n)$
 - Semantik (Bedeutung) \rightarrow Interpretationsfunktion Ψ von $BE(X_n)$
- Zweck: Einem Rechner unzweifelhaft "beibringen", was und was nicht ein boolescher Ausdruck ist und was seine Funktion bezüglich einer booleschen Algebra ist.
- → Zum Beispiel: Unterschied zwischen dem Ausdruck " $(x_1 \cdot (\sim x_2))$ " und der Funktion $f = x_1 \land \neg x_2$.

Syntax boolescher Ausdrücke

- Sei $X_n = \{x_1, ..., x_n\}$ eine endliche Menge von Symbolen/Variablen.
- Sei $A = X_n \cup \{0, 1, +, \cdot, \sim, (,)\}$ ein Alphabet.

Definition

Die Menge $BE(X_n)$ der vollständig geklammerten booleschen Ausdrücke über X_n ist eine Teilmenge von A^* , die folgendermaßen induktiv definiert ist:

- **0**,1 und $x_i \in X_n$ i = 1,...,n sind boolesche Ausdrücke
- Sind g und h boolesche Ausdrücke, so auch
 - \blacksquare die Disjunktion (g+h),
 - \blacksquare die Konjunktion $(g \cdot h)$,
 - die Negation ($\sim g$).

EIBURG

Schreibweise von $BE(X_n)$

- Konvention: Negation \sim bindet stärker als Konjunktion \cdot , Konjunktion \cdot bindet stärker als Disjunktion +.
 - Klammern können weggelassen werden, ohne dass Mehrdeutigkeiten entstehen.
- Je nach Kontext (betrachtete boolesche Algebra) schreibt man auch
 - statt 0,1: Die entsprechenden neutralen Elemente,
 - \blacksquare statt \cdot : \wedge , \cap ,
 - \blacksquare statt $+: \lor, \cup$,
 - statt $\sim x$: $\neg x, x^C, x', \overline{x}$.
- So "vereinfachte" Ausdrücke entsprechen zwar nicht genau der obigen Definition, es gibt aber für jeden solchen Ausdruck einen äquivalenten vollständig geklammerten Ausdruck im Sinne der Definition.
- **Beispiel**: Der äquivalente vollständige geklammerte Ausdruck für $_{x_1} \wedge \neg x_2$ " wäre $_{x_1} (x_1 \cdot (\sim x_2))$ ".

WS 2016/17 TS/RW – Kapitel 7 11 /

Semantik boolescher Ausdrücke

- Sei $M = (M, \cdot, +, \sim)$ eine beliebige boolesche Algebra.
- Seien $0, 1 \in M$ die neutralen Elemente von B.

Definition

Jedem booleschen Ausdruck $BE(X_n)$ kann durch eine Interpretationsfunktion $\Psi: BE(X_n) \to M_n$ eine boolesche Funktion $M_n: M^n \to M$ zugeordnet werden.

Ψ wird folgendermaßen induktiv definiert:

$$\Psi(0) = \mathbf{0}; \ \Psi(1) = \mathbf{1};$$

$$\Psi(x_i)(\alpha_1, \dots, \alpha_n) = \alpha_i \text{ für alle } \alpha \in M^n$$

(Projektion)

$$\Psi((g+h)) = \Psi(g) + \Psi(h)$$

(Disjunktion)

$$\Psi((g\cdot h))=\Psi(g)\cdot\Psi(h)$$

(Konjunktion)

$$\Psi((\sim g)) = \sim (\Psi(g))$$

(Negation)

Interpretation boolescher Ausdrücke

- Sei e ein boolescher Ausdruck.
 - $\Psi(e)(\alpha)$ für ein $\alpha \in M^n$ ergibt sich durch Ersetzen von x_i durch α_i in e, für alle i und Rechnen in der booleschen Algebra \widetilde{M} .
 - Gilt $\Psi(e) = f$ für eine boolesche Funktion $f \in M_n$, so sagen wir, dass e ein boolescher Ausdruck für f ist, bzw. dass e die boolesche Funktion f beschreibt.
 - Zwei boolesche Ausdrücke e_1 und e_2 heißen äquivalent $(e_1 \equiv e_2)$ genau dann, wenn $\Psi(e_1) = \Psi(e_2)$. Sie sind gleich, wenn $e_1 = e_2$.
- Wir betrachten folgend nur noch die Interpretation in $B = (\mathbb{B}, \wedge, \vee, \neg)$.

Boolesche Ausdrücke ↔ boolesche Funktionen

Lemma 1

Zu jedem booleschen Ausdruck $e \in BE(X_n)$ existiert eine boolesche Funktion f, die durch e beschrieben wird.

■ Beweis: $f := \Psi(e)$

Lemma 2

Zu jeder booleschen Funktion f existiert ein boolescher Ausdruck, der f beschreibt.

■ **Beweis**: Es gilt: $f = \Psi(\sum_{\alpha \in ON(f)} m(\alpha))$. m.a.W. Die DNF ist ein Boolescher Ausdruck.

Zusammenhang mit Schaltkreisen

Lemma 3

Zu jedem booleschen Ausdruck $e \in BE(X_n)$ gibt es einen kombinatorischen Schaltkreis, der e implementiert.

- Beweis: Übung
- Zu jeder booleschen Funktion gibt es einen kombinatorischen Schaltkreis, der sie implementiert (zum Beispiel zweistufige Umsetzung der DNF/KDNF).
- Zu jedem kombinatorischen Schaltkreis gibt es sowohl eine boolesche Funktion, als auch einen boolescher Ausdruck.

WS 2016/17 TS/RW – Kapitel 7 15 /