Moduli Spaces

D. Zack Garza

$March\ 15,\ 2020$

Contents

1 2	Thursday January 9th 1.1 Representability	1 2 6 8
Li	st of Definitions	
	1.1 Definition 1.2 Definition 2.1 Definition – Equalizer 2.2 Definition 2.3 Definition – Zariski Sheaf 2.4 Definition – Subfunctors, Open/Closed Functors 2.5 Definition – coverings	2 3 11 12 14 14 16
Li	st of Theorems 1.1 Theorem – Yoneda 1.1 Proposition 2.1 Proposition	2 6 17
	me references:	
	 Course Notes Hilbert schemes/functors of points: Notes by Stromme Slightly more detailed: Nitsure, Hilbert schemes, Fundamentals of Algebraic Geome Mumford, Curves on Surfaces 	try

• Harris-Harrison, Moduli of Curves (chatty and less rigorous)

1.1 Representability

Last time: Fix an S-scheme, i.e. a scheme over S.

Then there is a map

$$\operatorname{Sch}/S \longrightarrow \operatorname{Fun}(\operatorname{Sch}/S^{\operatorname{op}}, \operatorname{Set})$$

 $x \mapsto h_x(T) = \operatorname{hom}_{\operatorname{Sch}/S}(T, x).$

where $T' \xrightarrow{f} T$ is given by

$$h_x(f): h_x(T) \longrightarrow h_x(T')$$

 $T \mapsto x \longrightarrow \text{triangles}$

of the form

Theorem 1.1(Yoneda).

$$hom_{Fun}(h_x, F) = F(x).$$

Corollary 1.1.

$$hom_{Sch/S}(x, y) \cong hom_{Fun}(h_x, h_y).$$

Definition 1.1.

A moduli functor is a map

$$F: (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set}$$

$$F(x) = \text{ "Families of something over } x\text{"}$$

$$F(f) = \text{ "Pullback"}.$$

Definition 1.2.

A moduli space for that "something" appearing above is an $M \in \text{Obj}(\text{Sch}/S)$ such that $F \cong h_M$.

Now fix S = Spec (k).

 h_m is the functor of points over M.

Remark (1) $h_m(\operatorname{Spec}(k)) = M(\operatorname{Spec}(k)) \cong \text{"families over Spec } k" = F(\operatorname{Spec}(k)).$

Remark (2) $h_M(M) \cong F(M)$ are families over M, and $\mathrm{id}_M \in \mathrm{Mor}_{\mathrm{Sch}/S}(M,M) = \xi_{Univ}$ is the universal family

Every family is uniquely the pullback of ξ_{Univ} This makes it much like a classifying space.

For $T \in \operatorname{Sch}/S$,

$$\begin{split} h_M &\xrightarrow{\cong} F \\ f \in h_M(T) &\xrightarrow{\cong} F(T) \ni \xi = F(f)(\xi_{\text{Univ}}). \end{split}$$

where $T \xrightarrow{f} M$ and $f = h_M(f)(\mathrm{id}_M)$.

Remark (3) If M and M' both represent F then $M \cong M'$ up to unique isomorphism.

$$\xi_M \qquad \qquad \xi_{M'}$$

$$M \longrightarrow f \qquad M'$$

$$M' \xrightarrow{g} M$$

$$\xi_{M'}$$
 ξ_{M}

which shows that f, g must be mutually inverse by using universal properties.

Example 1.1.

A length 2 subscheme of \mathbb{A}^1_k then $F(S) = \{V(x^2 + bx + c)\} \subset \mathbb{A}'_5$ where $b, c \in \mathcal{O}_s(s)$, which is functorially bijective with $\{b, c \in \mathcal{O}_s(s)\}$ and F(f) is pullback.

Then F is representable by $\mathbb{A}_k^2(b,c)$ and the universal object is given by

$$V(x^2 + bx + c) \subset \mathbb{A}^1(?) \times \mathbb{A}^2(b, c)$$

where $b, c \in k[b, c]$.

Moreover, F'(S) is the set of effective Cartier divisors in \mathbb{A}_5' which are length 2 for every geometric fiber. F''(S) is the set of subschemes of \mathbb{A}_5' which are length 2 on all geometric fibers. In both cases, F(f) is always given by pullback.

Problem: F'' is not a good moduli functor, as it is not representable. Consider Spec $k[\varepsilon]$.

We think of $T_p F'^{,"}$ as the tangent space at p.

If F is representable, then it is actually the Zariski tangent space.

Moreover, $T_pM = (m_p/m_p^2)^{\vee}$, and in particular this is a k-vector space. To see the scaling structure, take $\lambda \in k$.

$$\lambda: k[\varepsilon] \longrightarrow k[\varepsilon]$$

$$\varepsilon \mapsto \lambda \varepsilon$$

$$\lambda^*: \operatorname{Spec} (k[\varepsilon]) \longrightarrow \operatorname{Spec} (k[\varepsilon])$$

$$\lambda: M(\operatorname{Spec} (k[\varepsilon])) \longrightarrow M(\operatorname{Spec} (k[\varepsilon]))$$

$$\cup \qquad \cup$$

$$T_pM \longrightarrow T_pM.$$

Conclusion: If F is representable, for each $p \in F(\operatorname{Spec} k)$ there exists a unique point of T_pF that are invariant under scaling.

1. If $F, F', G \in \text{Fun}((\text{Sch}/S)^{\text{op}}, \text{Set})$, there exists a fiber product

where

$$(F \times_G F')(T) = F(T) \times_{G(T)} F'(T).$$

2. This works with the functor of points over a fiber product of schemes $X \times_T Y$ for $X, Y \longrightarrow T$,

where

$$h_{X \times_T Y} = h_X \times_{h_t} h_Y.$$

- 3. If F, F', G are representable, then so is the fiber product $F \times_G F'$.
- 4. For any functor

$$F: (\operatorname{Sch}/S)^{\operatorname{op}} \longrightarrow \operatorname{Set},$$

for any $T \xrightarrow{f} S$ there is an induced functor

$$F_T: (\operatorname{Sch}/T) \longrightarrow \operatorname{Set}$$

 $x \mapsto F(x).$

5. F is representable by M/S implies that F_T is representable by $M_T = M \times_S T/T$.

1.2 Projective Space

Consider $\mathbb{P}^n_{\mathbb{Z}}$, i.e. "rank 1 quotient of an n+1 dimensional free module".

Proposition 1.1.

 $\mathbb{P}^n_{\mathbb{Z}}$ represents the following functor

$$\begin{split} F: \operatorname{Sch}^{\operatorname{op}} &\longrightarrow \operatorname{Set} \\ F(S) &= \mathcal{O}_s^{n+1} &\longrightarrow L \longrightarrow 0/\sim. \end{split}$$

where \sim identifies diagrams of the following form:

$$\mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0$$

$$\downarrow = \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$\mathcal{O}_s^{n+1} \longrightarrow M \longrightarrow 0$$

and F(f) is given by pullbacks.

Remark \mathbb{P}^n_S represents the following functor:

$$F_S: (\mathrm{Sch}/S)^\mathrm{op} \longrightarrow \mathrm{Set}$$

$$T \mapsto F_S(T) = \left\{ \mathcal{O}_T^{n+1} \longrightarrow L \longrightarrow 0 \right\} / \sim.$$

This gives us a cleaner way of gluing affine data into a scheme.

Proof (of Theorem).

Note: $\mathcal{O}^{n+1} \longrightarrow L \longrightarrow 0$ is the same as giving n+1 sections $s_1, \dots s_n$ of L, where surjectivity ensures that they are not the zero section.

So

$$F_i(S) = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0 \right\} / \sim,$$

with the additional condition that $s_i \neq 0$ at any point.

There is a natural transformation $F_i \longrightarrow F$ by forgetting the latter condition, and is in fact a subfunctor.

$$F \leq G$$
 is a subfunctor iff $F(s) \hookrightarrow G(s)$.

Claim: It is enough to show that each F_i and each F_{ij} are representable, since we have natural transformations:

$$F_{i} \longrightarrow F$$

$$\uparrow \qquad \qquad \uparrow$$

$$F_{ij} \longrightarrow F_{i}$$

and each $F_{ij} \longrightarrow F_i$ is an open embedding (on the level of their representing schemes).

Example.

For n = 1, we can glue along open subschemes

For n=2, we get overlaps of the following form:

This claim implies that we can glue together F_i to get a scheme M. We want to show that M represents F. F(s) (LHS) is equivalent to an open cover U_i of S and sections of $F_i(U_i)$ satisfying the gluing (RHS).

Going from LHS to RHS isn't difficult, since for $\mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0$, U_i is the locus where $s_i \neq 0$ and by surjectivity, this gives a cover of S.

RHS to LHS comes from gluing.

Proof (of Claim).

$$F_i(S) = \left\{ \mathcal{O}_S^{n+1} \longrightarrow L \cong \mathcal{O}_s \longrightarrow 0, s_i \neq 0 \right\},$$

but there are no conditions on the sections other than s_i .

So specifying $F_i(S)$ is equivalent to specifying n-1 functions $f_1 \cdots \widehat{f_i} \cdots f_n \in \mathcal{O}_S(s)$ with $f_k \neq 0$. We know this is representable by \mathbb{A}^n .

We also know F_{ij} is obviously the same set of sequences, where now $s_j \neq 0$ as well, so we need to specify $f_0 \cdots \widehat{f_i} \cdots f_j \cdots f_n$ with $f_j \neq 0$. This is representable by $\mathbb{A}^{n-1} \times \mathbb{G}_m$, i.e. Spec $k[x_1, \cdots, \widehat{x_i}, \cdots, x_n, x_j^{-1}]$. Moreover, $F_{ij} \hookrightarrow F_i$ is open.

What is the compatibility we are using to glue? For any subset $I \subset \{0, \dots, n\}$, we can define

$$F_I = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0, s_i \neq 0 \text{ for } i \in I \right\} = \underset{i \in I}{\times} F_i,$$

and $F_I \longrightarrow F_J$ when $I \supset J$.

2 Tuesday January 14th

Last time: Representability of functors, and specifically projective space $\mathbb{P}^n_{\mathbb{Z}}$ constructed via a functor of points, i.e.

$$h_{\mathbb{P}^n_{\mathbb{Z}}}: \mathbb{P}^n_{\mathbb{Z}} \operatorname{Sch}^{\operatorname{op}} \longrightarrow \operatorname{Set}$$

$$s \mapsto \mathbb{P}^n_{\mathbb{Z}}(s) = \left\{ \mathcal{O}^{n+1}_s \longrightarrow L \longrightarrow 0 \right\}.$$

for L a line bundle, up to isomorphisms of diagrams:

That is, line bundles with n+1 sections that globally generate it, up to isomorphism.

The point was that for $F_i \subset \mathbb{P}^n_{\mathbb{Z}}$ where $F_i(s) = \left\{ \mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0 \mid s_i \text{invertible} \right\}$ are representable and can be glued together, and projective space represents this functor.

Remark: Because projective space represents this functor, there is a universal object:

and other functors are pullbacks of the universal one.

Example 2.1.

Show that $\mathbb{P}^n_{\mathbb{Z}}$ is proper over Spec \mathbb{Z} . Use the evaluative criterion, i.e. there is a unique lift

Definition 2.1 (Equalizer).

For a category C, we say a diagram $x \longrightarrow y \rightrightarrows z$ is an equalizer iff it is universal wrt the property:

Example 2.2.

(Here X is the universal object).

For sets, $X = \{y \mid f(y) = g(y)\}$ for $Y \xrightarrow{f,g} Z$.

Example 2.3.

Take $C=Sch/S,\,X/S$ a scheme, and $X_{\alpha}\subset X$ an open cover. We can take two fiber products, $X_{\alpha\beta},X_{\beta,\alpha}$:

These are canonically isomorphic.

In Sch/S, we have $\coprod_{\alpha\beta} X_{\alpha\beta} \xrightarrow{f_{\alpha\beta},g_{\alpha\beta}} \coprod X_{\alpha} \longrightarrow X$ where $f_{\alpha\beta}: X_{\alpha\beta} \longrightarrow X_{\alpha}$ and $g_{\alpha\beta}: X_{\alpha\beta} \longrightarrow X_{\beta}$; this is a coequalizer.

Conversely, we can glue schemes. Given $X_{\alpha} \longrightarrow X_{\alpha\beta}$ (schemes over open subschemes), we need to check triple intersections:

Then $\phi_{\alpha\beta}:X_{\alpha\beta}\xrightarrow{\cong}X_{\beta\alpha}$ must satisfy the cocycle condition:

- 1. $\phi_{\alpha\beta}^{-1}(X_{\beta\alpha}\bigcap X_{\beta\gamma}) = X_{\alpha\beta}\bigcap X_{\alpha\gamma}$, noting that the intersection is exactly the fiber product $X_{\beta\alpha} \times_{X_{\beta}} X_{\beta\gamma}$.
- 2. The following diagram commutes:

Then there exists a scheme X/S such that $\coprod_{\alpha\beta} X_{\alpha\beta} \rightrightarrows \coprod_{\alpha\beta} X_{\alpha} \to X$ is a coequalizer; this is the gluing.

Subfunctors satisfy a patching property because morphisms to schemes are locally determined. Thus representable functors (e.g. functors of points) have to be (Zariski) sheaves.

Definition 2.3 (Zariski Sheaf).

A functor $F: (\mathrm{Sch}/S)^{\mathrm{op}} \longrightarrow \mathrm{Set}$ is a Zariski sheaf iff for any scheme T/S and any open cover T_{α} , the following is an equalizer:

$$F(T) \longrightarrow \prod F(T_{\alpha}) \rightrightarrows \prod_{\alpha\beta} F(T_{\alpha\beta})$$

where the maps are given by restrictions.

Example 2.4.

Any representable functor is a Zariski sheaf precisely because the gluing is a coequalizer. Thus if you take the cover $\coprod_{\alpha\beta} T_{\alpha\beta} \longrightarrow \coprod_{\alpha} T_{\alpha} \longrightarrow T$, since giving a local map to X that agrees on intersections if enough to specify a map from $T \longrightarrow X$.

Thus any functor represented by a scheme automatically satisfies the sheaf axioms.

Definition 2.4 (Subfunctors, Open/Closed Functors).

Suppose we have a morphism $F' \longrightarrow F$ in the category Fun(Sch/S, Set).

- This is a **subfunctor** if $\iota(T)$ is injective for all T/S.
- ι is open/closed/locally closed iff for any scheme T/S and any section $\xi \in F(T)$ over

T, then there is an open/closed/locally closed set $U \subset T$ such that for all maps of schemes $T' \xrightarrow{f} T$, we can take the pullback $f^*\xi$ and $f^*\xi \in F'(T')$ iff f factors through U.

I.e. we can test if pullbacks are contained in a subfunctors by checking factorization.

Note This is the same as asking if the subfunctor F', which maps to F (noting a section is the same as a map to the functor of points), and since $T \longrightarrow F$ and $F' \longrightarrow F$, we can form the fiber product $F' \times_F T$:

and $F' \times_F T \cong U$.

Note: this is almost tautological!

Thus $F' \longrightarrow F$ is open/closed/locally closed iff

and g is open/closed/locally closed.

I.e. base change is representable, and (?).

Exercise (Tautologous)

- 1. If $F' \longrightarrow F$ is open/closed/locally closed and F is representable, then F' is representable as an open/closed/locally closed subscheme
- 2. If F is representable, then open/etc subschemes yield open/etc subfunctors

Mantra: Treat functors as spaces. We have a definition of open, so now we'll define coverings.

Definition 2.5 (coverings).

A collection of open subfunctors $F_{\alpha} \subset F$ is an open cover iff for any T/S and any section $\xi \in F(T)$, i.e. $\xi : T \longrightarrow F$, the T_{α} in the following diagram are an open cover of T:

Example 2.5.

Given $F(s) = \{\mathcal{O}_s^{n+1} \longrightarrow L \longrightarrow 0\}$ and $F_i(s)$ given by those where $s_i \neq 0$ everywhere, the $F_i \longrightarrow F$ are an open cover. Because the sections generate everything, taking the T_i yields an open cover.

Proposition 2.1.

A Zariski sheaf $F: (Sch/S)^{op} \longrightarrow Set$ with a representable open cover is representable.

Proof.

Let $F_{\alpha} \subset F$ be an open cover, say each F_{α} is representable by x_{α} . Form the fiber product $F_{\alpha\beta} = F_{\alpha} \times_F F_{\beta}$. Then x_{β} yields a section (plus some openness condition?), so $F_{\alpha\beta} = x_{\alpha\beta}$ representable. Because $F_{\alpha} \subset F$, the $F_{\alpha\beta} \longrightarrow F_{\alpha}$ have the correct gluing maps. This follows from Yoneda (schemes embed into functors), and we get maps $x_{\alpha\beta} \longrightarrow x_{\alpha}$ satisfying the gluing conditions. Call the gluing scheme x; we'll show that x represents F.

First produce a map $x \longrightarrow F$ from the sheaf axioms. We have a map $\xi \in \prod_{\alpha} F(x_{\alpha})$, and

because we can pullback, we get a unique element $\xi \in F(X)$ coming from the diagram

$$F(x) \longrightarrow \prod F(x_{\alpha}) \rightrightarrows \prod_{\alpha\beta} F(x_{\alpha\beta}).$$

Lemma 2.1.

If $E \longrightarrow F$ is a map of functors and E, F are zariski sheaves, where there are open covers $E_{\alpha} \longrightarrow E, F_{\alpha} \longrightarrow F$ with commutative diagrams

(i.e. these are isomorphisms locally) then the map is an isomorphism.

With the following diagram, we're done by the lemma:

Example 2.6.

For S and E a locally free coherent \mathcal{O}_s module,

$$\mathbb{P}E(T) = \{f^*E \longrightarrow L \longrightarrow 0\} / \sim$$

is a generalization of projectivization, then S admits a cover U_i trivializing E.

Then the restriction $F_i \longrightarrow \mathbb{P}E$ were $F_i(T)$ is the above set if f factors through U_i and empty otherwise. On U_i , $E \cong \mathcal{O}_{U_i}^{n_i}$, so F_i is representable by $\mathbb{P}_{U_i}^{n_i-1}$ by the proposition. (Note that this is clearly a sheaf.)

Example 2.7.

For E locally free over S of rank n, take r < n and consider the functor $Gr(k, E)(T) = \{f^*E \longrightarrow Q \longrightarrow 0\} / \sim$ (a Grassmannian) where Q is locally free of rank k.

Exercise

- a. Show that this is representable
- b. For the plucker embedding $Gr(k,E) \longrightarrow \mathbb{P} \wedge^k E$, then a section over T is given by $f^*E \longrightarrow Q \longrightarrow 0$ corresponding to $\wedge^k f^*E \longrightarrow \wedge^k Q \longrightarrow 0$, noting that the left-most term is $f^* \wedge^k E$.

Show that this is a closed subfunctor. (That it's a functor is clear, that it's closed is not.)

Take $S = \operatorname{Spec} k$, then E is a k-vector space V, then sections of the Grassmannian are quotients of $V \otimes \mathcal{O}$ that are free of rank n.

Take the subfunctor $G_w \subset \operatorname{Gr}(k, V)$ where

$$G_w(T) = \{ \mathcal{O}_T \otimes V \longrightarrow Q \longrightarrow 0 \} \text{ with } Q \cong \mathcal{O}_t \otimes W \subset \mathcal{O}_t \otimes V.$$

If we have a splitting $V = W \oplus U$, then $G_W = \mathbb{A}(\text{hom}(U, W))$. If you show it's closed, it follows that it's proper by the exercise at the beginning.

Thursday: Define the Hilbert functor, show it's representable. The Hilbert scheme functor gives e.g. for \mathbb{P}^n of all flat families of subschemes.