Programación Avanzada 10 de Mayo 2021

Ajuste de Curvas: Interpolación de Lagrange

Bruno M. Breggia UNER - Facultad de Ingeniería

Interpolación

Interpolación en química

Interpolación de Lagrange

Interpolamos con... polinomios

Lagrange propone ünir los puntosçon un polinomio, dando mayor sensación de continuidad en toda la curva (derivadas continuas).

2 puntos → recta 3 puntos → parábola 4 puntos → cúbica

...

Fundamento matemático

Para un conjunto de n puntos en el plano (de abscisas distintas), existe un y sólo un polinomio de grado n-1 que pase por todos esos puntos.

Forma polinómica

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_{n-1} x^{n-1}$$
 (1)

$$f(x) = \sum_{i=0}^{n-1} a_i x^i$$
 (2)

Lagrange nos propone construir un polinomio de grado n-1 no a partir de sus coeficientes $\{a_0, a_1, ..., a_{n-1}\}$, sino a partir de n puntos que pasan por él. ¿Cómo lo hace?

Supóngase que tenemos 3 puntos:

Υ	
y ₀	
<i>y</i> ₁	
<i>y</i> ₂	
	<i>y</i> ₁

Queremos una función continua f(x) que tome los valores y_i correspondientes a cada valor x_i . Necesitamos algo de la forma:

$$f(x) = L_0(x) y_0 + L_1(x) y_1 + L_2(x) y_2$$

Los coeficientes variables $L_i(x)$ son funciones que valen 1 sólo si $x = x_i$. Valen 0 si x es igual a cualquier otro valor de abscisa de la tabla.

Los coeficientes $L_i(x)$ son polinomios, y se denominan **Polinomios interpoladores de Lagrange**. Tenemos un L(x) por cada punto conocido. Para el punto (x_0, y_0) del ejemplo anterior, tenemos:

$$L_0(x) = \begin{cases} 1, & \text{si } x = x_0 \\ 0, & \text{si } x = x_1, x_2 \end{cases}$$

Los coeficientes L_1 , L_2 siguen el mismo patrón. Si evaluamos f(x) en x_0 , tendremos...

$$f(x_0) = L_0(x_0) y_0 + L_1(x_0) y_1 + L_2(x_0) y_2$$

$$f(x_0) = 1 y_0 + 0 y_1 + 0 y_2$$

Comprobamos que el punto (x_0, y_0) pertenece a la función. Lo mismo ocurriá para los demás puntos.

¿Cómo se implementa $L_0(x)$?

Consideramos todos los valores x_i (excepto x_0) como raíces de un polinomio en forma factorizada.

$$(x-x_1)(x-x_2) \rightarrow \text{vale 0 si } x = x_1, x_2$$

Si $x = x_0$, queremos que nos dé la unidad, sin embargo, esta expresión no resultará necesariamente en uno:

$$(x_0-x_1)(x_0-x_2)$$

Para que nos dé la unidad, deberemos normalizarlo (dividir el polinomio por el valor anterior, el cual es una *constante*).

$$\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$$

Este polinomio vale 1 para x_0 , y vale 0 para x_1 , x_2 . iHemos construido el polinomio interpolador de Lagrange para el primer término de nuestra función interpolante!

Para finalizar, nuestra función interpolante es de la forma:

$$f(x) = L_0(x) y_0 + L_1(x) y_1 + L_2(x) y_2$$

Donde:

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \quad L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$
$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

Como los polinomios de Lagrange $L_i(x)$ son todos de 2do orden, la función interpolante f(x) también lo será.

La forma de Lagrange

Un polinomio de grado n-1 puede expresarse como:

$$f(x) = \sum_{i=0}^{n-1} y_i L_i(x)$$

Donde $L_i(x)$ es el polinomio interpolador de Lagrange, y está dado por:

$$L_i(x) = \prod_{\substack{j=0\\j\neq i}}^{n-1} \frac{x - x_j}{x_i - x_j}$$

De forma compacta, un polinomio en **forma de Lagrange** se expresa como:

$$f(x) = \sum_{i=0}^{n-1} y_i \prod_{\substack{j=0 \ j \neq i}}^{n-1} \frac{x - x_j}{x_i - x_j}$$

Desventajas

Demasiado tiempo de cómputo (complejidad $O(n^2)$): por cada punto a calcular se incurre en una doble iteración (una sumatoria y una productoria).

Fenómeno de Runge: oscilaciones en los extremos de intervalos discretos equiespaciados.

