Dealing with Data: Overfitting and model selection

Day 2

Labatt Impact Lab Bootcamp

Regression

Data points (x,t) generated by adding noise to $sin(2\pi x)$

Errors in Regression

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2$$

Error as a function of degree of polynomial

Degree of polynomial

Dealing with Overfitting: (1) more data!

Dealing with Overfitting: (2) regularization

minimize:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \frac{\lambda}{2} ||w||^2$$

Model's squared error

Penalty on parameters

Regularization in Classification

- Decision Trees
 - Limit the depth of the tree
 - Prune subtrees after training
- Support Vector Machines
 - Built-in, tunable regularization term
- Logistic Regression
 - Can add a tunable regularization term to MLE objective

Penalize large parameter values!

Underfitting: model is too simplistic!

Dealing with Overfitting: (2) regularization

minimize:
$$E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) - t_n\}^2 + \frac{\lambda}{2} ||w||^2$$

Parameters vs Hyper-parameters

Example hyper-parameters

- Decision tree: maximum depth of the tree
- $E(w) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, w) t_n\}^2 + \frac{\lambda}{2} ||w||^2$
- Polynomial regression: regularization coefficient
- Hyper-parameters are determined through trial-and-error / cross validation

Example parameters: directly optimized, "learned"!

- Decision tree: attributes you split on
- Logistic regression: weights β

$$p(x; \beta) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d)}}$$

- Bias

- Error from assumptions model makes about data
- Linear model assumes data is linear, bad for data that isn't

- Bias

- Error from assumptions model makes about data
- Linear model assumes data is linear, bad for data that isn't

Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!

Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!

Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!
- High variance hurts generalization, overfitting

Linear regression

- $f^*(x) = ax + b$
- **High bias**: linear assumption
- Low variance
- Benefits:
 - Closed form solution
 - Fast to compute for new data
- Weaknesses:
 - Not very powerful, assumes linear
 - Underfit more interesting data

Nearest neighbor regression

- $f^*(x) = f(x')$ for nearest x' in training set
- Low bias: no assumptions about data
- **High variance**: very sensitive to training set
- Benefits:
 - Super easy to implement
 - Easy to understand
 - Arbitrarily powerful, esp
 with lots of data
- Weaknesses:
 - Hard to scale
 - Prone to **overfitting** to noise

Model Combination

Any single model may have high variance in its predictions

 Decision tree: predictions can be brittle, small perturbation in data can lead to misclassification

Creating more stable models:

- Come up with a completely new model
- Combine (unstable) models intelligently!

Bootstrap Sampling

Data:

$$S = \{(x_i, y_i)\}_{i=1,...,n}$$

Bootstrap Sample: subsample of S, drawn with replacement

Bootstrap Aggregating (Bagging)

Bagging

Aggregation:

Majority vote!

Benefits:

 Even if single model overfits, on average they will not

Bagging with Decision Trees

Predicting with bagged decision trees

Consensus: proportion of trees that predict a given class

Probability:

- For b-th tree, look at the leaf corresponding to test sample
- What proportion of the training data had the same label as test sample?
- Average those proportions out

Prediction: in both cases, predict class with highest score

When should use Bagging?

High-variance classifiers, e.g., decision trees.

Bagging reduces variance by providing an alternative approach to regularization.

Even if each of the learned classifiers are individually overfit, they are likely to overfit to different things.

Through voting, we can overcome a significant portion of this overfitting.

In practice, bagging tends to reduce variance and increase bias.

Final words on Bagging

Advantages

- Reduces model variance
- Trivial to implement and use

Caveats

- Destroys any interpretability in the base model
- May not capture simple patterns

Random Forest

Similar to Bagging Decision Trees except:

Random Forest

One of the most popular models!

- Usually more effective than Bagging Decision Trees
- Typically, use 100s of trees (hyper-parameter to be tuned!)
- For data with *d* features, num. random features used for splitting:
 - Classification: \sqrt{d}
 - Regression: d/3

Final words on RF

Advantages

- Feed it data as is without preprocessing
- Fast training because of feature sampling!
- Easy parallel training and prediction

Caveats

Not suitable for sparse data (why?)

Recap

- Ensemble methods are a must-try
- Bagging: average models trained on bootstrap samples
- Good bagging: Random Forests