MATH378 - Nonlinear Optimization

Based on lectures from Fall 2025 by Prof. Tim Hoheisel. Notes by Louis Meunier

Contents

I	Preliminaries	2
	I.1 Terminology	2
	I.2 Convex Sets and Functions	3
II	Unconstrained Optimization	4
	II.1 Theoretical Foundations	4
	II.1.1 Quadratic Approximation	6
	II.2 Differentiable Convex Functions	7
	II.3 Matrix Norms	9
	II.4 Descent Methods	11
	II.4.1 A General Line-Search Method	11
	II.4.1.1 Global Convergence of Algorithm 2.1	12
	II.4.2 The Gradient Method	13
	II.4.3 Newton-Type Methods	15
	II.4.3.1 Convergence Rates and Landau Notation	15
	II.4.3.2 Newton's Method for Nonlinear Equations	16
	II.4.3.3 Newton's Method for Optimization Problem	18
	II.4.4 Quasi-Newton Methods	21
	II.4.4.1 Direct Methods	21
	II.4.4.2 Inexact Methods	26
	II.4.5 Conjugate Gradient Methods for Nonlinear Optimization	27
	II.4.5.1 Prelude: Linear Systems	27
	II.4.6 The Fletcher-Reeves Method	30
	II.5 Least-Squares Problems	33
	II.5.1 Linear Least-Squares	33
	II.5.2 Gauss-Newton for Nonlinear Least-Squares	33
III	Constrained Optimization	34
	III.1 Optimality Conditions for Constrained Problems	34
	III.1.1 First-Order Optimality Conditions	35
	III 1.2 Forker' Lemma	36

§I Preliminaries

§I.1 Terminology

We consider problems of the form

minimize
$$f(x)$$
 subject to $x \in X$, (†)

with $X \subset \mathbb{R}^n$ the feasible region with x a feasible point, and $f: X \to \mathbb{R}$ the objective (function); more concisely we simply write

$$\min_{x \in X} f(x)$$
.

When $X = \mathbb{R}^n$, we say the problem (†) is *unconstrained*, and conversely *constrained* when $X \subseteq \mathbb{R}^n$.

⊗ Example 1.1 (Polynomial Fit): Given $y_1, ..., y_m \in \mathbb{R}$ measurements taken at m distinct points $x_1, ..., x_m \in \mathbb{R}$, the goal is to find a degree $\leq n$ polynomial $q : \mathbb{R} \to \mathbb{R}$, of the form

$$q(x) = \sum_{k=0}^{n} \beta_k x^k,$$

"fitting" the data $\{(x_i, y_i)\}_i$, in the sense that $q(x_i) \approx y_i$ for each i. In the form of (†), we can write this precisely as

$$\min_{\beta \in \mathbb{R}^{n+1}} \frac{1}{2} \sum_{i=0}^{n} \left(\underbrace{\beta_n x_i^n + \dots + \beta_1 x_i + \beta_0}_{q(x_i)} - y_i \right)^2;$$

namely, we seek to minimize the ℓ^2 -distance between $(q(x_i))$ and (y_i) . If we write

$$X \coloneqq \begin{pmatrix} 1 & x_1 & \dots & x_1^n \\ \vdots & \dots & \dots & \vdots \\ 1 & x_m & \dots & x_m^n \end{pmatrix} \in \mathbb{R}^{m \times (n+1)}, \qquad y \coloneqq \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m,$$

then concisely this problem is equivalent to

$$\min_{\beta \in \mathbb{R}^{n+1}} \frac{1}{2} \|X \cdot \beta - y\|_2^2,$$

a so-called *least-squares* problem.

We have two related tasks:

- 1. Find the optimal value asked for by (†), that is what $\inf_X f$ is;
- 2. Find a specific point \overline{x} such that $f(\overline{x}) = \inf_X f$, i.e. the value of a point

$$\overline{x} \in \operatorname{argmin}_X f := \left\{ x \in X \mid f(x) = \inf_X f \right\}.$$

(noting that argmin should be viewed as a set-valued function, as there may be multiple admissible minimizers) Notice that if we can accomplish 2., we've accomplished 1. by computing $f(\bar{x})$.

I.1 Terminology

Note that $\overline{x} \in \operatorname{argmin}_X f \Rightarrow f(\overline{x}) = \inf_X f$, but $\inf_X f \in \mathbb{R}$ does not necessarily imply $\operatorname{argmin}_X f \neq \emptyset$, that is, there needn't be a feasible minimimum; for instance $\inf_{x \in \mathbb{R}} e^x = 0$, but $\operatorname{argmin}_{\mathbb{R}} f = \emptyset$ (there is no x for which $e^x = 0$).

- \hookrightarrow **Definition 1.1** (Minimizers): Let $X \subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$. Then $\overline{x} \in X$ is called a
- *global minimizer* (of f over X) if $f(\overline{x}) \le f(x) \forall x \in X$, or equivalently if $\overline{x} \in \operatorname{argmin}_X f$;
- *local minimizer (of f over X)* if $f(\overline{x}) \le f(x) \forall x \in X \cap B_{\varepsilon}(\overline{x})$ for some $\varepsilon > 0$.

In addition, we have *strict* versions of each by replacing " \leq " with "<".

```
\hookrightarrow Definition 1.2 (Some Geometric Tools): Let f: \mathbb{R}^n \to \mathbb{R}.
```

- gph $f := \{(x, f(x)) \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^n \times \mathbb{R}$
- $f^{-1}(\{c\}) := \{x \mid f(x) = c\} \equiv contour/level set at c$
- $\operatorname{lev}_c f := f^{-1}((-\infty, c]) = \{x \mid f(x) \le c\} \equiv lower \ level/sublevel \ set \ at \ c$

Remark 1.1:

- $lev_{inf} f = argmin f$
- assume *f* continuous; then all (sub)level sets are closed (possibly empty)

We recall the following result from calculus/analysis:

```
→Theorem 1.1 (Weierstrass): Let f : \mathbb{R}^n \to \mathbb{R} be continuous and X \subset \mathbb{R}^n compact. Then, \operatorname{argmin}_X f \neq \emptyset.
```

From, we immediately have the following:

Proposition 1.1: Let $f : \mathbb{R}^n \to \mathbb{R}$ continuous. If there exists a $c \in \mathbb{R}$ such that lev_cf is nonempty and bounded, then $\operatorname{argmin}_{\mathbb{R}^n} f \neq \emptyset$.

PROOF. Since f continuous, $\operatorname{lev}_c f$ is closed (being the inverse image of a closed set), thus $\operatorname{lev}_c f$ is compact (and in particular nonempty). By Weierstrass, f takes a minimum over $\operatorname{lev}_c f$, namely there is $\overline{x} \in \operatorname{lev}_c f$ with $f(\overline{x}) \leq f(x) \leq c$ for each $x \in \operatorname{lev}_c f$. Also, f(x) > c for each $x \notin \operatorname{lev}_c f$ (by virtue of being a level set), and thus $f(\overline{x}) \leq f(x)$ for each $x \in \mathbb{R}^n$. Thus, \overline{x} is a global minimizer and so the theorem follows.

§I.2 Convex Sets and Functions

Definition 1.3 (Convex Sets): $C \subset \mathbb{R}^n$ is *convex* if for any $x, y \in C$ and $\lambda \in (0, 1)$, $\lambda x + (1 - \lambda)y \in C$; that is, the entire line between x and y remains in C.

I.2 Convex Sets and Functions

 \hookrightarrow **Definition 1.4** (Convex Functions): Let $C \subset \mathbb{R}^n$ be convex. Then, $f: C \to \mathbb{R}$ is called

1. convex (on C) if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

for every $x, y \in C$ and $\lambda \in (0, 1)$;

- 2. strictly convex (on C) if the inequality \leq is replaced with <;
- 3. *strongly convex* (on *C*) if there exists a $\mu > 0$ such that

$$f(\lambda x + (1 - \lambda)y) + \mu \lambda (1 - \lambda) ||x - y||^2 \le \lambda f(x) + (1 - \lambda)f(y),$$

for every $x, y \in C$ and $\lambda \in (0,1)$; we call μ the *modulus of strong convexity*.

Remark 1.2: $3. \Rightarrow 2. \Rightarrow 1.$

Remark 1.3: A function is convex iff its epigraph is a convex set.

⊗ Example 1.2: exp : $\mathbb{R} \to \mathbb{R}$, log : $(0, \infty) \to \mathbb{R}$ are convex. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ of the form f(x) = Ax - b for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ is called *affine linear*. For m = 1, every affine linear function is convex. All norms on \mathbb{R}^n are convex.

\hookrightarrow Proposition 1.2:

- 1. (Positive combinations) Let f_i be convex on \mathbb{R}^n and $\lambda_i > 0$ scalars for i = 1, ..., m, then $\sum_{i=1}^m \lambda_i f_i$ is convex; as long as one is strictly (resp. strongly) convex, the sum is strictly (resp. strongly) convex as well.
- 2. (Composition with affine mappings) Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and $G : \mathbb{R}^m \to \mathbb{R}^n$ be affine. Then, $f \circ G$ is convex on \mathbb{R}^m .

§II Unconstrained Optimization

§II.1 Theoretical Foundations

We focus on the problem

$$\min_{x\in\mathbb{R}^n} f(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

Definition 2.1 (Directional derivative): Let $D \subset \mathbb{R}^n$ be open and $f : D \to \mathbb{R}$. We say f directionally differentiable at $\overline{x} \in D$ in the direction $d \in \mathbb{R}^n$ if

$$\lim_{t \to 0^+} \frac{f(\overline{x} + td) - f(\overline{x})}{t}$$

exists, in which case we denote the limit by $f'(\bar{x}; d)$.

II.1 Theoretical Foundations

Lemma 2.1: Let $D \subset \mathbb{R}^n$ be open and $f : D \to \mathbb{R}$ differentiable at $x \in D$. Then, f is directionally differentiable at x in every direction d, with

$$f'(x;d) = \nabla f(x)^T d = \langle \nabla f(x), d \rangle.$$

Example 2.1 (Directional derivatives of the Euclidean norm): Let $f : \mathbb{R}^n \to \mathbb{R}$ by f(x) = ||x|| the usual Euclidean norm. Then, we claim

$$f'(x;d) = \begin{cases} \frac{x^T d}{\|x\|} & x \neq 0 \\ \|d\| & x = 0 \end{cases}$$

For $x \neq 0$, this follows from the previous lemma and the calculation $\nabla f(x) = \frac{x}{\|x\|}$. For x = 0, we look at the limit

$$\lim_{t \to 0^+} \frac{f(0+td) - f(0)}{t} = \lim_{t \to 0^+} \frac{t||d|| - 0}{t} = ||d||,$$

using homogeneity of the norm.

Lemma 2.2 (Basic Optimality Condition): Let $X \subset \mathbb{R}^n$ be open and $f: X \to \mathbb{R}$. If \overline{x} is a *local minimizer* of f over X and f is directionally differentiable at \overline{x} , then $f'(\overline{x};d) \ge 0$ for all $d \in \mathbb{R}^n$.

PROOF. Assume otherwise, that there is a direction $d \in \mathbb{R}^n$ for which the $f'(\overline{x};d) < 0$, i.e.

$$\lim_{t \to 0^+} \frac{f(\overline{x} + td) - f(\overline{x})}{t} < 0.$$

Then, for all sufficiently small t > 0, we must have

$$f(\overline{x} + td) < f(\overline{x}).$$

Moreover, since X open, then for t even smaller (if necessary), $\overline{x} + td$ remains in X, thus \overline{x} cannot be a local minimizer.

→Theorem 2.1 (Fermat's Rule): In addition to the assumptions of the previous lemma, assume further that f is differentiable at \overline{x} . Then, $\nabla f(\overline{x}) = 0$.

PROOF. From the previous, we know $0 \le f'(\overline{x}; d)$ for any d. Take $d = -\nabla f(\overline{x})$, then using the representation of a directional derivative for a differentiable function, and the fact that norms are nonnegative,

$$0 \le -\|\nabla f(\overline{x})\|^2 \le 0,$$

which can only hold if $\|\nabla f(\overline{x})\| = 0$ hence $\nabla f(\overline{x}) = 0$

We recall the following from Calculus:

II.1 Theoretical Foundations

5

Theorem 2.2 (Taylor's, Second Order): Let $f : D \subset \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable, then for each $x, y \in D$, there is an η lying on the line between x and y such that

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(\eta) (y - x).$$

Theorem 2.3 (2nd-order Optimality Conditions): Let $X \subseteq \mathbb{R}^n$ open and $f: X \to \mathbb{R}$ twice continuously differentiable. Then, if x a local minimizer of f over X, then the Hessian matrix $\nabla^2 f(x)$ is positive semi-definite.

PROOF. Suppose not, then there exists a d such that $d^T \nabla^2 f(x) d < 0$. By Taylor's, for every t > 0, there is an η_t on the line between x and x + td such that

$$f(x+td) = f(x) + t \underbrace{\nabla f(x)^T}_{=0} d + \frac{1}{2} t^2 d^T \nabla^2 f(\eta_t) d$$
$$= f(x) + \frac{t^2}{d^T} \nabla^2 f(\eta_t) d.$$

As $t \to 0^+$, $\nabla^2 f(\eta_t) \to \nabla^2 f(x) < 0$. By continuity, for t sufficiently small, $\frac{t^2}{2} d^T \nabla^2 f(\eta_t) d < 0$ for t sufficiently small, whence we find

$$f(x+td) < f(x),$$

for sufficiently small t, a contradiction.

Lemma 2.3: Let $X \subset \mathbb{R}^n$ open, $f: X \to \mathbb{R}$ in C^2 . If $\overline{x} \in \mathbb{R}^n$ is such that $\nabla^2 f(\overline{x}) > 0$ (i.e. is positive definite), then there exists $\varepsilon, \mu > 0$ such that $B_\varepsilon(\overline{x}) \subset X$ and

$$d^T \nabla^2 f(x) d \geq \mu \|d\|^2, \qquad \forall d \in \mathbb{R}^n, x \in B_\varepsilon(\overline{x}).$$

Combining this and Taylor's Theorem, we can deduce the following (our first "sufficient" result of this section):

Theorem 2.4 (Sufficient Optimality Condition): Let $X \subset \mathbb{R}^n$ open and $f \in C^2(X)$. Let \overline{x} be a stationary point of f such that $\nabla^2 f(\overline{x}) > 0$. Then, \overline{x} is a *strict* local minimizer of f.

II.1.1 Quadratic Approximation

Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^2 and $\overline{x} \in \mathbb{R}^n$. By Taylor's, we can approximate

$$f(y) \approx g(y) \coloneqq f(\overline{x}) + \nabla f(\overline{x})^T (y - \overline{x}) + \frac{1}{2} (y - \overline{x})^T \nabla^2 f(\overline{x}) (y - \overline{x}).$$

Example 2.2 (Quadratic Functions): For $Q \in \mathbb{R}^{n \times n}$ symmetric, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$, let

$$f: \mathbb{R}^n \to \mathbb{R}, \quad f(x) = \frac{1}{2} x^T Q x + c^T x + \gamma,$$

a typical quadratic function. Then,

$$\nabla f(x) = \frac{1}{2} \big(Q + Q^T \big) x + c = Qx + c, \qquad \nabla^2 f(x) = Q.$$

We find that f has no minimizer if $c \notin \operatorname{rge}(Q)$ or Q is not positive semi-definite, combining our previous two results. In turn, if Q is positive definite (and thus invertible), there is a unique local minimizer $\overline{x} = -Q^{-1}c$ (and global minimizer, as we'll see).

§II.2 Differentiable Convex Functions

 \hookrightarrow Theorem 2.5: Let $C \subset \mathbb{R}^n$ be open and convex and $f: C \to \mathbb{R}$ differentiable on C. Then:

1. *f* is convex (on *C*) iff

$$f(x) \ge f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x})$$
 *1

for every $x, \overline{x} \in C$;

- 2. *f* is *strictly* convex iff same inequality as 1. with strict inequality;
- 3. f is *strongly* convex with modulus $\sigma > 0$ iff

$$f(x) \geq f(\overline{x}) + \nabla f(\overline{x})^T (x - \overline{x}) + \frac{\sigma}{2} \|x - \overline{x}\|^2 \qquad \star_2$$

for every $x, \overline{x} \in C$.

PROOF. $(1., \Rightarrow)$ Let $x, \overline{x} \in C$ and $\lambda \in (0, 1)$. Then,

$$f(\lambda x + (1 - \lambda)\overline{x}) - f(\overline{x}) \le \lambda (f(x) - f(\overline{x})),$$

which implies

$$\frac{f(\overline{x}+\lambda(x-\overline{x}))-f(\overline{x})}{\lambda}\leq f(x)-f(\overline{x}).$$

Letting $\lambda \to 0^+$, the LHS \to the directional derivative of f at \overline{x} in the direction $x - \overline{x}$, which is equal to, by differentiability of f, $\nabla f(\overline{x})^T(x - \overline{x})$, thus the result.

$$(1., \Leftarrow)$$
 Let $x_1, x_2 \in C$ and $\lambda \in (0, 1)$. Let $\overline{x} := \lambda x_1 + (1 - \lambda)x_2$. \star_1 implies

$$f(x_i) \ge f(\overline{x}) + \nabla f(\overline{x})^T (x_i - \overline{x}),$$

for each of i=1,2. Taking "a convex combination of these inequalities", i.e. multiplying them by λ , $1-\lambda$ resp. and adding, we find

$$\lambda f(x_1) + (1-\lambda)f(x_2) \geq f(\overline{x}) + \nabla f(\overline{x})^T \big(\lambda x_1 + (1-\lambda)x_2 - \overline{x}\big) = f\big(\lambda x_1 + (1-\lambda)x_2\big),$$

thus proving convexity.

 $(2., \Rightarrow)$ Let $x \neq \overline{x} \in C$ and $\lambda \in (0, 1)$. Then, by 1., as we've just proven,

$$\lambda \nabla f(\overline{x})^T(x-\overline{x}) \leq f(\overline{x} + \lambda(x-\overline{x})) - f(\overline{x}).$$

But $f(\overline{x} + \lambda(x - \overline{x})) < \lambda f(x) + (1 - \lambda)f(\overline{x})$ by strict convexity, so we have

$$\lambda \nabla f(\overline{x})^T (x - \overline{x}) < \lambda \big(f(x) - f(\overline{x}) \big),$$

and the result follows by dividing both sides by λ .

- $(2., \Leftarrow)$ Same as $(1., \Leftarrow)$ replacing " \leq " with "<".
- (3.) Apply 1. to $f \frac{\sigma}{2} \|\cdot\|^2$, which is still convex if f σ -strongly convex, as one can check.
- \hookrightarrow Corollary 2.1: Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Then,
- a) there exists an *affine function* $g : \mathbb{R}^n \to \mathbb{R}$ such that $g(x) \le f(x)$ everywhere;
- b) if f strongly convex, then it is coercive, i.e. $\lim_{\|x\|\to\infty} f(x) = \infty$.
- \hookrightarrow Corollary 2.2: Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable, then TFAE:
- 1. \bar{x} is a global minimizer of f;
- 2. \bar{x} is a local minimizer of f;
- 3. \overline{x} is a stationary point of f.

PROOF. 1. \Rightarrow 2. is trivial and 2. \Rightarrow 3. was already proven and 3. \Rightarrow 1. follows from the fact that differentiability gives

$$f(x) \ge f(\overline{x}) + \underline{\nabla(f)(\overline{x})^T(x-\overline{x})}$$

for any $x \in \mathbb{R}^n$.

Corollary 2.3: (2.2.4)

- **→Theorem 2.6** (Twice Differentiable Convex Functions): Let $Ω ⊂ \mathbb{R}^n$ open and convex and $f ∈ C^2(Ω)$. Then,
- 1. f is convex on Ω iff $\nabla^2 f \ge 0$;
- 2. f is strictly convex on $\Omega \leftarrow \nabla^2 f > 0$;
- 2. f is σ -strongly convex on $\Omega \Leftrightarrow \sigma \leq \lambda_{\min}(\nabla^2 f(x))$ for all $x \in \Omega$.
- **Corollary 2.4**: Let $A \in \mathbb{R}^{n \times n}$ be symmetric, $b \in \mathbb{R}^n$ and $f(x) := \frac{1}{2}x^TAx + b^Tx$. Then,
- 1. f convex $\Leftrightarrow A \ge 0$;
- 2. f strongly convex $\Leftrightarrow A > 0$.

Theorem 2.7 (Convex Optimization): Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex and continuous, $X \subset \mathbb{R}^n$ convex (and nonempty), and consider the optimization problem

$$\min f(x)$$
 s.t. $x \in X$ (*).

Then, the following hold:

- 1. \overline{x} is a global minimizer of $(\star) \Leftrightarrow \overline{x}$ is a local minimizer of (\star)
- 2. $\operatorname{argmin}_X f$ is convex (possibly empty)
- 3. f is strictly convex \Rightarrow argmin_Xf has at *most* one element
- 4. f is strongly convex and differentiable, and X closed, \Rightarrow argmin_Xf has exactly one element

PROOF. $(1., \Rightarrow)$ Trivial. $(1., \Leftarrow)$ Let \overline{x} be a local minimizer of f over X, and suppose towards a contradiction that there exists some $\hat{x} \in X$ such that $f(\hat{x}) < f(\overline{x})$. By convexity of f, X, we know for $\lambda \in (0,1)$, $\lambda \overline{x} + (1-\lambda)\hat{x} \in X$ and

$$f(\lambda \overline{x} + (1 - \lambda)\hat{x}) \le \lambda f(\overline{x}) + (1 - \lambda)f(\hat{x}) < f(\overline{x}).$$

Letting $\lambda \to 1^-$, we see that $\lambda \overline{x} + (1 - \lambda)\hat{x} \to \overline{x}$; in particular, for any neighborhood of \overline{x} we can construct a point which strictly lower bounds $f(\overline{x})$, which contradicts the assumption that \overline{x} a local minimizer.

- (2.) and (3.) are left as an exercise.
- (4.) We know that f is strictly convex and level-bounded. By (3.) we know there is at most one minimizer, so we just need to show there exists one. Take $c \in \mathbb{R}$ such that $\text{lev}_c(f) \cap X \neq \emptyset$ (which certainly exists by taking, say, f(x) for some $x \in X$). Then, notice that (\star) and

$$\min_{x \in \text{lev}_c f \cap X} f(x) \qquad (\star \star)$$

have the same solutions i.e. the same set of global minimizers (noting that this remains a convex problem). Since f continuous and $\text{lev}_c f \cap X$ compact and nonempty, f attains a minimum on $\text{lev}_c f \cap X$, as we needed to show.

Remark 2.1: Note that level sets of convex functions are convex, this is left as an exercise.

§II.3 Matrix Norms

We denote by $\mathbb{R}^{m \times n}$ the space of real-valued $m \times n$ matrices (i.e. of linear operators from $\mathbb{R}^n \to \mathbb{R}^m$).

 \hookrightarrow Proposition 2.1 (Operator Norms): Let $\|\cdot\|_*$ be a norm on \mathbb{R}^m and \mathbb{R}^n , resp. Then, the map

$$\mathbb{R}^{m \times n} \ni A \mapsto \|A\|_* \coloneqq \sup_{\substack{x \in \mathbb{R}^n, \\ \|x\|_* \neq 0}} \frac{\|Ax\|_*}{\|x\|_*} \in \mathbb{R}$$

is a norm on $R^{m \times n}$. In addition,

$$||A||_* = \sup_{||x||_*=1} ||Ax||_* = \sup_{||x||_* \le 1} ||Ax||_*.$$

II.3 Matrix Norms 9

Proof. We first note that all of these sup's are truly max's since they are maximizing continuous functions over compact sets.

Let $A \in \mathbb{R}^{m \times n}$. The first "In addition" equality follows from positive homogeneity, since $\frac{x}{\|x\|_*}$ a unit vector. For the second, note that " \leq " is trivial, since we are supping over a larger (super)set. For " \geq ", we have for any x with $\|x\|_* \leq 1$,

$$||Ax||_* = ||x||_* ||A\frac{x}{||x||_*}||_* \le ||A\frac{x}{||x||_*}||.$$

Supping both sides over all such *x* gives the result.

We now check that $\|\cdot\|_*$ actually a norm on $\mathbb{R}^{m\times n}$.

- $1. \ \|A\|_* = 0 \Leftrightarrow \sup_{\|x\|_* = 1} \|Ax\|_* = 0 \Leftrightarrow \|Ax\|_* = 0 \forall \|x\|_* = 1 \Leftrightarrow Ax = 0 \forall \|x\|_* = 1 \Leftrightarrow A = 0$
- 2. For $\lambda \in \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$, $\|\lambda A\|_* = \sup \|\lambda Ax\|_* = |\lambda| \cdot \sup \|Ax\|_* = |\lambda| \|A\|_*$
- 3. For $A, B \in \mathbb{R}^{m \times n}$, $||A + B||_* \le ||A||_* + ||B||_*$ using properties of sups of sums

Proposition 2.2: Let $A = (a_{ij})_{i=1,...,m} \in \mathbb{R}^{m \times n}$, then: j=1,...,n

- 1. $||A||_1 = \max_{j=1}^n \sum_{i=1}^m |a_{ij}|$
- 2. $||A||_2 = \sqrt{\lambda_{\max}(A^T A)} = \sigma_{\max}(A)$
- 3. $||A||_{\infty} = \max_{i=1}^{m} \sum_{i=1}^{n} |a_{ij}|$

 \hookrightarrow Proposition 2.3: Let $\|\cdot\|_*$ be a norm on \mathbb{R}^n , \mathbb{R}^m , and \mathbb{R}^p . For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$,

- 1. $||Ax||_* \le ||A||_* \cdot ||x||_*$
- 2. $||AB||_{\star} \leq ||A||_{\star} \cdot ||B||_{\star}$

→Proposition 2.4 (Banach Lemma): Let $C \in \mathbb{R}^{n \times n}$ with ||C|| < 1, where $||\cdot||$ submultiplicative. Then, I + C is invertible, and

$$\|(1+C)^{-1}\| \le \frac{1}{1-\|C\|}.$$

Proof. We have for any m,

$$\left\| \sum_{i=1}^{m} (-C)^{i} \right\| \leq \sum_{i=1}^{m} \|C\|^{i} \underset{m \to \infty}{\longrightarrow} \frac{1}{1 - \|C\|}.$$

Hence, $A_m := \sum_{i=1}^m (-C)^i$ a sequence of matrices with bounded norm uniformly in m, and thus has a converging subsequence, so wlog $A_m \to A \in \mathbb{R}^{n \times n}$ (by relabelling). Moreover, observe that

$$A_m \cdot (I+C) = \sum_{i=0}^m (-C)^i (I+C) = \sum_{i=0}^m \left[(-C)^i - (-C)^{i+1} \right] = (-C)^0 - (-C)^{m+1} = I - (-C)^{m+1}.$$

Now, $||C^{m+1}|| \le ||C||^{m+1} \to 0$, since ||C|| < 1, thus $C \to 0$. Hence, taking limits in the line above implies

II.3 Matrix Norms 10

$$A(I+C) = \lim_{m \to \infty} A_m(I+C) = I,$$

implying A the inverse of (I + C), proving the proposition.

Corollary 2.5: Let $A, B \in \mathbb{R}^{n \times n}$ with ||I - BA|| < 1 for $||\cdot||$ submultiplicative. Then, A and B are invertible, and $||B^{-1}|| \le \frac{||A||}{1 - ||I - BA||}$.

§II.4 Descent Methods

II.4.1 A General Line-Search Method

We deal with the unconstrained problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad (\star).$$

Definition 2.2 (Descent Direction): Let $f : \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{R}^n$. $d \in \mathbb{R}^n$ is a *descent direction* of f at x if there exists a $\bar{t} > 0$ such that f(x + td) < f(x) for all $t \in (0, \bar{t})$.

Proposition 2.5: If $f : \mathbb{R}^n \to \mathbb{R}$ is directionally differentiable at $x \in \mathbb{R}^n$ in the direction d with f'(x;d) < 0, then d a descent direction of f at x; in particular if f differentiable at x, then true for d if $\nabla f(x)^T d < 0$.

Corollary 2.6: Let $f : \mathbb{R}^n \to \mathbb{R}$ differentiable, $B \in \mathbb{R}^{n \times n}$ positive definite, and $x \in \mathbb{R}^n$. Then $\nabla f(x) \neq 0 \Rightarrow -B\nabla f(x)$ is a descent direction of f at x.

PROOF.
$$\nabla f(x)^T (-B\nabla f(x)) = -\nabla f(x)^T B\nabla f(x) < 0.$$

A generic method/strategy for solving (\star):

- S1. (Initialization) Choose $x^0 \in \mathbb{R}^n$ and set k := 0
- S2. (Termination) If x^k satisfies a "termination criterion", STOP
- S3. (Search direction) Determine d^k such that $\nabla f(x^k)^T d^k < 0$
- S4. (Step-size) Determine $t_k > 0$ such that $f(x^k + t_k d^k) < f(x^k)$
- S5. (Update) Set $x^{k+1} := x^k + t_k d^k$, iterate k, and go back to step 2.

Remark 2.2: a) The generic choice for d^k in 3. is just $d^k := -B_k \nabla f(x^k)$ for some $B_k > 0$. We focus on:

- $B_k = I$ (gradient-descent)
- $B_k = \nabla^2 f(x^k)^{-1}$ (Newton's method) $B_k \approx \nabla^2 f(x^k)^{-1}$ (quasi Newton's method)
- b) Step 4. is called *line-search*, since $t_k > 0$ determined by looking at

$$0 < t \mapsto f(x^k + td^k),$$

i.e. along the (half)line t > 0.

- c) Executing Step 4. is a trade-off between
 - (i) decreasing f along $x^k + td^k$ as much as possible;
 - (ii) keeping computational efforts low.

For instance, the exact minimization rule $t_k = \operatorname{argmin}_{t>0} f\left(x_k + td^k\right)$ overemphasizes (i) over (ii).

 \hookrightarrow **Definition 2.3** (Step-size rule): Let $f \in C^1(\mathbb{R}^n)$ and

$$\mathcal{A}_f \coloneqq \big\{ (x,d) \mid \nabla f(x)^T d < 0 \big\}.$$

A (possible set-valued) map

$$T:(x,d)\in A_f\mapsto T(x,d)\in \mathbb{R}_+$$

is called a *step-size rule* for *f* .

If T is well-defined for all C^1 -functions, we say T well-defined.

II.4.1.1 Global Convergence of Algorithm 2.1

 \hookrightarrow **Definition 2.4** (Efficient step-size): Let $f \in C^1(\mathbb{R}^n)$. The step-size rule T is called *efficient* for *f* if there exists $\theta > 0$ such that

$$f(x+td) \le f(x) - \theta \left(\frac{\nabla f(x)^T d}{\|d\|}\right)^2, \quad \forall t \in T(x,d), (x,d) \in A_f.$$

- **Theorem 2.8**: Let $f \in C^1(\mathbb{R}^n)$. Let $\{x^k\}$, $\{d^k\}$, $\{t_k\}$ be generated by Algorithm 2.1. Assume the following:
- 1. $\exists c > 0$ such that $-\left(\nabla f(x^k)^T d^k\right) / \left(\left\|\nabla f(x^k)\right\| \cdot \left\|d^k\right\|\right) \ge c$ for all k (this is called the *angle* condition), and
- 2. there exists $\theta > 0$ such that $f(x^k + t_k d^k) \le f(x^k) \theta \cdot (\nabla f(x^k)^T d^k / ||d^k||)^2$ for all k (which is satisfied if $t_k \in T(x^k, d^k)$ for an efficient T).

Then, every cluster point of $\{x^k\}$ is a stationary point of f.

Proof. By condition 2., there is $\theta > 0$ such that

$$f(x^{k+1}) \le f(x^k) - \theta \left(\frac{\nabla f(x^k)^T d^k}{\|d^k\|}\right)^2$$

for all $k \in \mathbb{N}$. By 1., we know

$$\left(\frac{\nabla f(x^k)^T d^k}{\|d^k\|}\right)^2 \ge c^2 \|\nabla f(x^k)\|^2.$$

Put $\kappa := \theta c^2$, then these two inequalities imply

$$f(x^{k+1}) \le f(x^k) - \kappa \cdot \|\nabla f(x^k)\|^2$$
. (*)

Let \overline{x} be a cluster point of $\{x^k\}$. As $\{f(x^k)\}$ is monotonically decreasing (by construction in the algorithm), and has cluster point $f(\overline{x})$ by continuity, it follows that $f(x_k) \to f(\overline{x})$ along the whole sequence. In particular, $f(x^{k+1}) - f(x^k) \to 0$; thus, from (*),

$$0 \le \kappa \left\| \nabla f(x^k) \right\|^2 \le f(x^k) - f(x^{k+1}) \to 0,$$

and thus $\nabla f(x^k) \to \nabla f(\overline{x}) = 0$, so indeed \overline{x} a stationary point of f.

II.4.2 The Gradient Method

We specialize Algorithm 2.1 here. Specifically, we'll take

$$d^k := -\nabla f(x^k);$$

it's known that

$$\frac{-\nabla f(x^k)}{\|\nabla f(x^k)\|} = \operatorname{argmin}_{d:\|d\| \le 1} \nabla f(x^k)^T d,$$

with $\|\cdot\|$ the 2 norm.

We use a step-size rule called "Armijo rule". Choose parameters β , $\sigma \in (0,1)$. For $(x,d) \in A_f$, we define our step-size rule by

$$T_A(x,d) \coloneqq \max_{\ell \in \mathbb{N}_0} \left\{ \beta^\ell \mid \underbrace{f(x+\beta^\ell d) \leq f(x) + \beta^\ell \sigma \nabla f(x)^T d}_{\text{"Armijo condition"}} \right\}.$$

For instance, consider $f(x) = (x-1)^2 - 1$. The minimum of this function is $f^* = -1$. Choose $x^k := \frac{1}{k}$, then

$$f(x^k) = \frac{2k+1}{k^2} \to 0 \neq f^*,$$

even though $f(x^{k+1}) - f(x^k) < 0$; we don't actually reach the right stationary point with our chosen step size.

II.4.2 The Gradient Method 13

Example 2.3 (Illustration of Armijo Rule): For (x,d) ∈ A_f and f smooth on \mathbb{R}^n , defined ϕ : $\mathbb{R} \to \mathbb{R}$, $\phi(t) := f(x+td)$. The map $t \mapsto \sigma \phi'(0)t + \phi(0) = \sigma t \nabla f(x)^T d + \phi(0)$

Proposition 2.6: Let f : \mathbb{R}^n → \mathbb{R} be differentiable with β , $\sigma \in (0,1)$. Then for $(x,d) \in A_f$, there exists $\ell \in \mathbb{N}_0$ such that

$$f(x + \beta^{\ell} d) \le f(x) + \beta^{\ell} \sigma \nabla f(x)^{T} d,$$

i.e. $T_A(x,d) \neq \emptyset$.

Proof. Suppose not, i.e.

$$\frac{f(x + \beta^{\ell} d) - f(x)}{\beta^{\ell}} > \sigma \nabla f(x)^{T} d, \forall \ell \in \mathbb{N}_{0}.$$

Letting $\ell \to \infty$, the left-hand side converges to $\nabla f(x)^T d$, so

$$\nabla f(x)^T d \ge \sigma \nabla f(x)^T d.$$

But $(x, d) \in A_f$, so $\nabla f(x)^T d < 0$ so dividing both sides of this inequality by this quantity, this implies $\sigma \le 0$, which is a contradiction.

We now prove convergence of an algorithm based on the Armijo Rule:

Gradient Descent with Armijo Rule

S0. Choose $x^0 \in \mathbb{R}^n$, σ , $\beta \in (0,1)$, $\varepsilon \ge 0$, and set k := 0

S1. If $\|\nabla f(x^k)\| \le \varepsilon$, STOP

S2. Set $d^k := -\nabla f(x^k)$

S3. Determine $t_k > 0$ by

$$t_k = T_A(x, d)$$

as defined above.

S4. Set $x^{k+1} = x^k + t_k d^k$, iterate k and go to S1.

Lemma 2.4: Let $f \in C^1(\mathbb{R}^n)$, $x^k \to x$, $d^k \to d$ and $t_k \downarrow 0$. Then

$$\lim_{k \to \infty} \frac{f(x^k + t_k d^k) - f(x^k)}{t^k} = \nabla f(x)^T d.$$

Proof. Left as an exercise.

Theorem 2.9: Let $f ∈ C^1(\mathbb{R}^n)$. Then every cluster point of a sequence $\{x^k\}$ generated by Algorithm 2.2 is a stationary point of f.

PROOF. Let \overline{x} be a cluster point of $\left\{x^k\right\}$ and let $x^k \underset{k \in K}{\to} \overline{x}$, K an infinite subset of \mathbb{N} . Assume towards a contradiction $\nabla f(\overline{x}) \neq 0$. As $f\left(x^k\right)$ is monotonically decreasing with cluster point $f(\overline{x})$, it must be that $f\left(x^k\right) \to f(\overline{x})$ along the whole sequence so $f\left(x^{k+1}\right) - f\left(x^k\right) \to 0$. Thus,

II.4.2 The Gradient Method

$$0 \le t_k \|\nabla f(x^k)\|^2 \stackrel{\text{S2}}{=} -t_k \nabla f(x^k)^T d^k \stackrel{\text{S3}}{\leq} \frac{f(x^k) - f(x^{k+1})}{\sigma} \to 0.$$

Thus, $0 = \lim_{k \in K} t_k \|\nabla f(x^k)\| = \|\nabla f(\overline{x})\| \lim_{k \in K} t_k$. We assumed \overline{x} not a stationary point, so it follows that $t_k \underset{k \in K}{\longrightarrow} 0$. By S3, for $\beta^{\ell_k} = t_k$,

$$\frac{f\left(x^k+\beta^{\ell_k-1}d^k\right)-f\left(x^k\right)}{\beta^{\ell_k-1}}>\sigma\nabla f\left(x^k\right)^Td^k.$$

Letting $k \to \infty$ along *K*,the LHS converges to, by the previous lemma, to

$$\nabla f(\overline{x})^T d = -\nabla f(\overline{x})^T \nabla f(\overline{x}) = -\|\nabla f(\overline{x})\|^2,$$

and the RHS converges to $\sigma \|\nabla f(\overline{x})\|^2$, which implies

$$-\|\nabla f(\overline{x})\|^2 \geq \sigma \|\nabla f(\overline{x})\|^2,$$

which implies σ negative, a contradiction.

Remark 2.3: The proof above shows, the following: Let $\{x^k\}$ such that $x^{k+1} := x^k + t_k d^k$ for $d^k \in \mathbb{R}^n$, $t_k > 0$, and let $f(x^{k+1}) \le f(x^k)$ and $x^k \xrightarrow{K} \overline{x}$ such that $d^k = -\nabla f(x^k)$, $t_k = T_A(x^k, d^k)$ for all $k \in K$. Then $\nabla f(\overline{x}) = 0$; i.e., all of the "focus" is on the subsequence along K. The only time we needed the whole sequence was to use the fact that $f(x^k) \to f(\overline{x})$ along the whole sequence.

II.4.3 Newton-Type Methods

II.4.3.1 Convergence Rates and Landau Notation

Definition 2.5: Let $\{x^k \in \mathbb{R}^n\}$ converge to \overline{x} . Then, $\{x^k\}$ converges:

1. *linearly* to \overline{x} if there exists $c \in (0,1)$ such that

$$||x^{k+1} - \overline{x}|| \le c||x^k - \overline{x}||, \forall k;$$

2. *superlinearly* to \overline{x} if

$$\lim_{k \to \infty} \frac{\left\| x^{k+1} - \overline{x} \right\|}{\left\| x^k - \overline{x} \right\|} = 0;$$

3. *quadratically* to \bar{x} if there exists C > 0 such that

$$||x^{k+1} - \overline{x}|| \le C||x^k - \overline{x}||^2, \forall k.$$

Remark 2.4: $3. \Rightarrow 2. \Rightarrow 1.$

Remark 2.5: We needn't assume $x^k \to \overline{x}$ for the first two definitions; their statements alone imply convergence. However, the last does not; there exists sequences with this property that do not converge.

 \hookrightarrow **Definition 2.6** (Landau Notation): Let {*a_k*}, {*b_k*} be positive sequences ↓ 0. Then,

1.
$$a_k = o(b_k) \Leftrightarrow \lim_{k \to \infty} \frac{a_k}{b_k} = 0;$$

2.
$$a_k = O(b_k) \Leftrightarrow \exists C > 0 : a_k \leq Cb_k$$
 for all k (sufficiently large).

Remark 2.6: If $x^k \to \overline{x}$, then

- 1. the convergence is superlinear $\Leftrightarrow ||x^{k+1} \overline{x}|| = o(||x^k \overline{x}||);$ 2. the convergence is quadratic $\Leftrightarrow ||x^{k+1} \overline{x}|| = O(||x^k \overline{x}||^2).$

II.4.3.2 Newton's Method for Nonlinear Equations

We consider the nonlinear equation

$$F(x) = 0, \qquad (*)$$

where $F: \mathbb{R}^n \to \mathbb{R}^n$ is smooth (continuously differentiable). Our goal is to find a numerical scheme that can determine approximate zeros of F, i.e. solutions to (*). The idea of Newton's method for such a problem, is, given $x^k \in \mathbb{R}^n$, to consider the (affine) linear approximation of *F* about x^k ,

$$F_k: x \mapsto F(x^k) + F'(x^k)(x - x^k),$$

where F' the Jacobian of F. Then, we compute x^{k+1} as a solution of $F_k(x) = 0$. Namely, if $F'(x^k)$ invertible, then solving for $F_k(x^{k+1}) = 0$, we find

$$x^{k+1} = x^k - F'(x^k)^{-1}F(x^k).$$

More generally, one solves $F'(x^k)d = -F(x^k)$ and sets $x^{k+1} := x^k + d^k$.

Specifically, we have the following algorithm:

Newton's Method (Local Version)

S0. Choose $x^0 \in \mathbb{R}^n$, $\varepsilon > 0$, and set k := 0.

S1. If
$$||F(x^k)|| < \varepsilon$$
, STOP.

S2. Compute d^k as a solution of Newton's equation

$$F'(x^k)d = -F(x^k).$$

 $F'(x^k)d = -F(x^k).$ S3. Set $x^{k+1} := x^k + d^k$, increment k and go to S1.

Lemma 2.5: Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be C^1 , and $\overline{x} \in \mathbb{R}^n$ such that $F'(\overline{x})$ is invertible. Then, there exists $\varepsilon > 0$ such that F'(x) remains invertible for all $x \in B_{\varepsilon}(\overline{x})$, and there exists C > 0 such that

$$\left\|F'(x)^{-1}\right\| \leq C, \qquad \forall x \in B_{\varepsilon}(\overline{x}).$$

PROOF. Since F' continuous at \overline{x} , there exists $\varepsilon > 0$ such that $||F'(\overline{x}) - F'(x)|| \le \frac{1}{2||F'(\overline{x})^{-1}||}$ for all $x \in B_{\varepsilon}(\overline{x})$. Then, for all $x \in B_{\varepsilon}(\overline{x})$,

$$\begin{split} \left\|I-F'(x)F'(\overline{x})^{-1}\right\| &= \left\|\left(F'(\overline{x})-F'(x)\right)F'(\overline{x})^{-1}\right\| \\ &\leq \left\|F'(\overline{x})-F'(x)\right\|\left\|F'(\overline{x})^{-1}\right\| \leq \frac{1}{2} < 1. \end{split}$$

By a corollary of the Banach lemma, F'(x) invertible over $B_{\varepsilon}(\overline{x})$, and

$$\left\|F'(x)^{-1}\right\| \leq \frac{\left\|F'(\overline{x})^{-1}\right\|}{1 - \left\|I - F'(x)F'(\overline{x})^{-1}\right\|} \leq 2\left\|F'(\overline{x})^{-1}\right\| =: C.$$

Remark 2.7: Observe $F: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \overline{x} if and only if $\|F(x^k) - F(\overline{x}) - F'(\overline{x})(x^k - \overline{x})\| = o(\|x^k - \overline{x}\|)$ for every $x^k \to \overline{x}$.

This can be sharpened if F' is continuous or even locally Lipschitz.

Lemma 2.6: Let $F: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable and $x^k \to \overline{x}$, then:

1.
$$||F(x^k) - F(\overline{x}) - F'(x^k)(x^k - \overline{x})|| = o(||x^k - \overline{x}||);$$

2. if
$$F'$$
 locally Lipschitz at \overline{x} , then $\|F(x^k) - F(\overline{x}) - F'(x^k)(x^k - \overline{x})\| = O(\|x^k - \overline{x}\|^2)$.

Proof.

1. Observe that

$$\begin{aligned} & \left\| F\left(x^{k}\right) - F(\overline{x}) - F'\left(x^{k}\right)\left(x^{k} - \overline{x}\right) \right\| \\ \leq & \left\| F\left(x^{k}\right) - F(\overline{x}) - F(\overline{x})\left(x^{k} - \overline{x}\right) \right\| + \left\| F'\left(x^{k}\right)\left(x^{k} - \overline{x}\right) - F'(\overline{x})\left(x^{k} - \overline{x}\right) \right\| \\ \leq & \left\| F\left(x^{k}\right) - F(\overline{x}) - F(\overline{x})\left(x^{k} - \overline{x}\right) \right\| + \left\| F'\left(x^{k}\right) - F(\overline{x}) \right\| \left\| x^{k} - \overline{x} \right\|. \end{aligned}$$

The left-hand term is $o(\|x^k - \overline{x}\|)$ by our observations previously, and the right-hand term is as well by continuity of F', thus so is the sum.

2. Let L > 0 be a local Lipschitz constant of F' at \overline{x} . Then,

$$\begin{split} \|F(x^{k}) - F(\overline{x}) - F'(x^{k})(x^{k} - \overline{x})\| &= \left\| \int_{0}^{1} F'(\overline{x} + t(x^{k} - \overline{x})) \, dt(x^{k} - \overline{x}) - F'(x^{k})(x^{k} - \overline{x}) \right\| \\ &\leq \int_{0}^{1} \|F'(\overline{x} + t(x^{k} - \overline{x})) - F'(x^{k})\| \, dt \cdot \|x^{k} - \overline{x}\| \\ &\leq L \int_{0}^{1} |1 - t| \|x^{k} - \overline{x}\| \, dt \cdot \|x^{k} - \overline{x}\| \\ &= L \|x^{k} - \overline{x}\|^{2} \int_{0}^{1} (1 - t) \, dt = \frac{L}{2} \|x^{k} - \overline{x}\|^{2}, \end{split}$$

which implies the result.

II.4.3.2 Newton's Method for Nonlinear Equations

Theorem 2.10: Let $F : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable, $\overline{x} \in \mathbb{R}^n$ such that $F(\overline{x}) = 0$ and $F'(\overline{x})$ is invertible. Then, there exists an $\varepsilon > 0$ such that for every $x^0 \in B_{\varepsilon}(\overline{x})$, we have:

- 1. Algorithm 2.3 is well-defined and generates a sequence $\{x^k\}$ which converges to \overline{x} ;
- 2. the rate of convergence is (at least) linear;
- 3. if F' is locally Lipschitz at \overline{x} , then the rate is quadratic.

Proof.

1. By the previous lemma, we know there is $\varepsilon_1, c > 0$ such that $\|F'(x)^{-1}\| \le c$ for all $x \in B_{\varepsilon_1}(x)$. Further, there exists an $\varepsilon_2 > 0$ such that $\|F(x) - F(\overline{x}) - F'(x)(x - \overline{x})\| \le \frac{1}{2c}\|x - \overline{x}\|$ for all $x \in B_{\varepsilon_2}(\overline{x})$. Take $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$ and pick $x^0 \in B_{\varepsilon}(\overline{x})$. Then, x^1 is well-defined, since $F'(x^0)$ is invertible, and so

$$||x^{1} - \overline{x}|| = ||x^{0} - F'(x^{0})^{-1}F(x^{0}) - \overline{x}||$$

$$= ||F'(x^{0})^{-1} \left(F(x^{0}) - \underbrace{F(\overline{x})}_{=0} - F'(x^{0})(x^{0} - \overline{x}) \right) ||$$

$$\leq ||F'(x^{0})^{-1}|| ||F(x^{0}) - F(\overline{x}) - F'(x^{0})(x^{0} - \overline{x})||$$

$$\leq c \cdot \frac{1}{2c} ||x^{0} - \overline{x}||$$

$$= \frac{1}{2} ||x^{0} - \overline{x}|| < \frac{\varepsilon}{2},$$

so in particular, $x^1 \in B_{\varepsilon/2}(\overline{x}) \subset B_{\varepsilon}(\overline{x})$. Inductively,

$$\left\|x^k - \overline{x}\right\| \le \left(\frac{1}{2}\right)^k \left\|x^0 - \overline{x}\right\|,$$

for every $k \in \mathbb{N}$. Thus, x^k well-defined and converges to \overline{x} .

2., 3. Analogous to 1.,

$$\begin{aligned} \|x^{k+1} - \overline{x}\| &= \|x^k - d^k - \overline{x}\| \\ &= \|x^k - F'(x^k)^{-1} F(x^k) - \overline{x}\| \\ &\leq \|F'(x^k)^{-1}\| \|F(x^k) - F(\overline{x}) - F'(x^k)(x^k - \overline{x})\| \\ &\leq c \|F(x^k) - F(\overline{x}) - F'(x^k)(x^k - \overline{x})\|. \end{aligned}$$

This final line is little o of $||x^k - \overline{x}||$ or this quantity squared by the previous lemma, which proves the result depending on the assumptions of 2., 3..

II.4.3.3 Newton's Method for Optimization Problem

Consider

 $\min_{x \in \mathbb{R}^n} f(x),$

with $f: \mathbb{R}^n \to \mathbb{R}$ twice continuously differentiable. Recall that if \overline{x} a local minimizer of f, $\nabla f(\overline{x}) = 0$. We'll now specialize Newton's to $F := \nabla f$:

Newton's Method for Optimization (Local Version)

S0. Choose $x^0 \in \mathbb{R}^n$, $\varepsilon > 0$, and set k := 0.

S1. If $\|\nabla f(x^k)\| < \varepsilon$, STOP.

S2. Compute d^k as a solution of *Newton's equation*

$$\nabla^2 f(x^k) d = -\nabla f(x^k).$$

S3. Set $x^{k+1} := x^k + d^k$, increment k and go to S1.

We then have an analogous convergence result to the previous theorem by simply applying $F := \nabla f$; in particular, if f thrice continuously differentiable, we have quadratic convergence.

Example 2.4: Let $f(x) := \sqrt{x^2 + 1}$. Then $f'(x) = \frac{x}{\sqrt{x^2 + 1}}$, $f''(x) = \frac{1}{(x^2 + 1)^{3/2}}$. Newton's equation (i.e. Algorithm 2.4, S2) reads in this case:

$$\frac{1}{\left(x_k^2+1\right)^{3/2}}d = -\frac{x_k}{\sqrt{x_k^2+1}}.$$

This gives solution $d_k = -(x_k^2 + 1)x_k$, so $x_{k+1} = -x_k^3$. Then, notice that if:

$$|x_0| < 1 \Rightarrow x_k \rightarrow 0$$
, quadratically

$$|x_0| > 1 \Rightarrow x_k$$
 diverges

$$|x_0|=1\Rightarrow |x_k|=1\forall k,$$

so the convergence is truly local; if we start too far from 0, we'll never have convergence.

We can see from this example that this truly a local algorithm. A general globalization strategy is to:

- if Newton's equation has no solution, or doesn't provide sufficient decay, set $d^k := -\nabla f(x^k)$;
- introduce a step-size.

Newton's Method (Global Version)

S0. Choose $x^0 \in \mathbb{R}^n$, $\varepsilon > 0$, $\rho > 0$, p > 2, $\beta \in (0,1)$, $\sigma \in (0,1/2)$ and set k := 0

S1. If
$$\|\nabla f(x^k)\| < \varepsilon$$
, STOP

S2. Determine d^k as a solution of

$$\nabla^2 f(x^k) d = -\nabla f(x^k).$$

If no solution exists, or if $\nabla f(x^k)^T d^k \le -\rho \|d^k\|^p$, is violated, set $d^k := -\nabla f(x^k)$ S3. Determine $t_k > 0$ by the Armijo back-tracking rule, i.e.

$$t_k \coloneqq \max_{\ell \in \mathbb{N}_0} \Bigl\{ \beta^\ell \, | \, f\bigl(x^k + \beta^\ell d^k\bigr) \le f\bigl(x^k\bigr) + \beta^\ell \sigma \nabla f\bigl(x^k\bigr)^T d^k \Bigr\}$$

S4. Set $x^{k+1} := x^k + t_k d^k$, increment k to k+1, and go back to S1.

Remark 2.8: S3. well-defined since in either choice of d^k in S2., we will have a descent direction so the choice of t_k in S3. is valid; i.e. $(x^k, d^k) \in A_f$ for every k.

Theorem 2.11 (Global convergence of Algorithm 2.5): Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. Then every cluster point of $\{x^k\}$ generated by Algorithm 2.5 is a stationary point of f.

Remark 2.9: Note that we didn't impose any invertibility condition on the Hessian of f; indeed, if say the hessian was nowhere invertible, then Algorithm 2.5 just becomes the gradient method with Armijo back-tracking, for which have already established this result.

PROOF. Let $\{x^k\}$ be generated by Algorithm 2.5, with $\{x^k\}_K \to \overline{x}$. If $d^k := -\nabla f(x^k)$ for infinitely many $k \in K$ (i.e. along a subsubsequence of $\{x^k\}$), then we have nothing to prove by the previous remark.

Otherwise, assume wlog (by passing to a subsubsequence again if necessary) that d^k is determined by the Newton equation for all $k \in K$. Suppose towards a contradiction that $\nabla f(\overline{x}) \neq 0$. By Newton's equation,

$$\|\nabla f(x^k)\| = \|\nabla^2 f(x^k)d^k\| \le \|\nabla^2 f(x^k)\| \|d^k\|, \quad \forall k \in K.$$

By assumption $\|\nabla^2 f(x^k)\| \neq 0$; if it were, then by assumption $\nabla f(x^k) = 0$, i.e. we'd have already reached our stationary point, which we assumed doesn't happen. So, we may write $\frac{\|\nabla f(x^k)\|}{\|\nabla^2 f(x^k)\|} \leq \|d^k\|$ for all $k \in K$. We claim that there exists $c_1, c_2 > 0$ such that

$$0 < c_1 \le \left\| d^k \right\| \le c_2, \qquad \forall k \in K.$$

We have existence of c_1 since, if it didn't, we could find a subsequence of the d^k 's such that $d^k \to 0$ along this subsequence; but by our bound above and the fact that $\|\nabla^2 f(x^k)\|$ uniformly bounded (by continuity), then $\|\nabla f(x^k)\|$ would converge to zero along the subsequence too, a contradiction.

The existence of c_2 follows from the sufficient decrease condition. Indeed, suppose such a c_2 didn't exist; by the condition

$$\nabla f(x^k)^T \frac{d^k}{\|d^k\|} \le -\rho \|d^k\|^{p-1};$$

the left-hand side is bounded (since $\nabla f\left(x^k\right) \to \nabla f\left(\overline{x}\right)$ and $\frac{d^k}{\|d^k\|}$ lives on the unit sphere). Since c_2 assumed not to exist, there is a subsequence $\|d^k\| \to \infty$, but then $-\rho \|d^k\|^{p-1} \to -\infty$, contradicting the fact that the LHS is bounded. Hence, there also exists such a c_2 as claimed.

As $\{f(x^k)\}$ is monotonically decreasing (by construction in S3) and converges along a subsequence K to $f(\overline{x})$, then $f(x^k)$ converges along the whole sequence to $f(\overline{x})$. In particular, $f(x^{k+1}) - f(x^k) \to 0$. Then,

$$\frac{f(x^{k+1}) - f(x^k)}{\sigma} \le t_k \nabla f(x^k)^T d^k \le -\rho t_k \|d^k\|^p \le 0.$$

Taking $k \to \infty$ along K, we see that $t_k \|d^k\|^p \to 0$ along K as well. We show now that $\left\{t_k\right\}_K$ actually uniformly bounded away from zero. Suppose not. Then, along a sub(sub)sequence, $t_k \to 0$. By the Armijo rule, $t_k = \beta^{\ell_k}$, for $\ell_k \in \mathbb{N}_0$, uniquely determined. Since $t_k \to 0$, then $\ell_k \to \infty$. On the other hand, by S3,

$$\frac{f\left(x^k + \beta^{\ell_k - 1} d^k\right) - f\left(x^k\right)}{\beta^{\ell_k - 1}} > \sigma \nabla f\left(x^k\right)^T d^k.$$

Suppose $d^k \to \overline{d} \neq 0$ (by again passing to a subsequence if necessary), which we may assume by boundedness. Taking $k \to \infty$, the LHS converges to $\nabla f(\overline{x})^T \overline{d}$ and the RHS converges to $\sigma \nabla f(\overline{x})^T \overline{d}$ so $\nabla f(\overline{x})^T \overline{d} \geq \sigma \nabla f(\overline{x})^T \overline{d}$, which implies since $\sigma \in (0, \frac{1}{2})$ that $\nabla f(\overline{x})^T \overline{d} \ge 0$. Taking $k \to \infty$ in the sufficient decrease condition statement shows that this is a contradiction. Hence, t_k uniformly bounded away from 0. Hence, there exists a $\bar{t} > 0$ such that $t_k \ge \bar{t}$ for all $k \in K$. But we had that $t^k \nabla f(x^k)^T d^k \to 0$, so by boundedness of t_k it must be that $\nabla f(x^k)^T d^k \to 0$ along the subsequence; by the sufficient decrease condition again, it must be that $d^k \to 0$, which it can't, as we showed it was uniformly bounded away, and thus we have a contradiction.

- \hookrightarrow Theorem 2.12 (Fast local convergence of Algorithm 2.5): Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable, $\{x^k\}$ generated by Algorithm 2.5. If \overline{x} is a cluster point of $\{x^k\}$ with $\nabla^2 f(\overline{x}) > 0$. Then:
- 1. $\{x^k\} \to \overline{x}$ along the *whole* sequence, so \overline{x} is a strict local minimizer of f;
- 2. for $k \in \mathbb{N}$ sufficiently large, d^k wil be determined by the Newton equation in S2;
- 3. $\{x^k\} \to \overline{x}$ at least superlinearly;
- 4. if $\nabla^2 f$ locally Lipschitz, $\{x^k\} \to \overline{x}$ quadratically.

II.4.4 Quasi-Newton Methods

In Newton's, in general we need to find

$$d^k$$
 solving $\nabla^2 f(x^k)d = -\nabla f(x^k)$.

Advantages/disadvantages:

- (+) Global convergence with fast local convergence
- (-) Evaluating $\nabla^2 f$ can be expensive/impossible.

Dealing with the second, there are two general approaches:

- Direct Methods: replace ∇²f(x²) with some matrix H_k approximating it;
 Indirect Methods: replace ∇²f(x²) by B_k approximating it;

where H_k , B_k reasonably computational, and other convergence results are preserved.

II.4.4.1 Direct Methods

The typical conditions we put on H_{k+1} as described above are:

1. H_{k+1} symmetric

2. H_{k+1} satisfies the *Quasi-Newton equation* (QNE)

$$H_{k+1}s^k = y^k$$
, $s^k := x^{k+1} - x^k$, $y^k := \nabla f(x^{k+1}) - \nabla f(x^k)$

- 3. H_{k+1} can be achieved from H_k "efficiently"
- 4. The result method has strong local convergence properties

Remark 2.10: Suppose x^k a current iterate for an algorithm to minimize $f : \mathbb{R}^n \to \mathbb{R}$ for $f \in C^2$.

- 1. $\nabla^2 f(x^k)$ does not generally satisfy QNE;
- 2. condition 1 above is motivated by the fact that Hessians are symmetric;
- 3. the QNE is motivated by the mean-value theorem for vector-valued functions,

$$\nabla f(x^{k+1}) - \nabla f(x^k) = \int_0^1 \nabla^2 f(x^k + t(x^{k+1} - x^k)) dt \cdot (x^{k+1} - x^k);$$

we can think of the integrated term as an averaging of the Hessian along the line between x^k , x^{k+1} .

We follow a so-called *symmetric rank-2 approach*; given H_k , we update

$$H_{k+1} = H_k + \gamma u u^T + \delta v v^T, \qquad \gamma, \delta \in \mathbb{R}; u, v \in \mathbb{R}^n.$$
 (1)

Note that if we put $S := uu^T$ for $u \neq 0$, rank(S) = 1 and $S^T = S$.

So, the ansatz we take is

$$y^{k} = H_{k+1}s^{k} = H_{k}s^{k} + \gamma uu^{T}s^{k} + \delta vv^{T}s^{k}.$$
 (2)

If $H_k > 0$ and $(y^k)^T s^k \neq 0$, then taking $u := y^k$, $v := H_k s^k$, $\gamma := \frac{1}{(y^k)^T s^k}$ and $\delta := -\frac{1}{(s^k)^T H_k s^k}$ will solve (2), and gives the formula

$$H_{k+1}^{\text{BFGS}} := H_k - \frac{(H_k s^k) (H_k s^k)^T}{(s^k)^T H_k s^k} + \frac{y^k (y^k)^T}{(y^k)^T s^k}$$
(3),

the so-called "BFGS" formula. Another update formula that can be obtained that solves (2) is

$$H_{k+1}^{\mathrm{DFP}} \coloneqq H_k + \frac{\left(y^k - H_k s^k\right) \left(y^k\right)^T + y^k \left(y^k - H_k s^k\right)^T}{\left(y^k\right)^T s^k} - \frac{\left(y^k - H_k s^k\right)^T s^k}{\left[\left(h^k\right)^T s^k\right]^2} y^k \left(y^k\right)^T.$$

Note that any convex combination of formulas that satisfy (2) also satisfy (2); thus, we define the so-called *Broyden class* by the family of convex combinations of the above two formula,

$$H_{k+1}^{\lambda} \coloneqq (1-\lambda)H_{k+1}^{\mathrm{DFP}} + \lambda H_{k+1}^{\mathrm{BFGS}}, \qquad \forall \lambda \in [0,1].$$

Algorithmically, for $f \in C^1$;

Globalized BFGS Method

S0. Choose $x^0 \in \mathbb{R}^n$, $H_0 \in \mathbb{R}^{n \times n}$ symmetric positive definite, $\sigma \in (0, \frac{1}{2})$, $\rho \in (\sigma, 1)$, $\varepsilon \ge 0$ and set k := 0.

S1. If $\|\nabla f(x^k)\| \le \varepsilon$, STOP.

S2. Determine d^k as a solution to the QNE,

$$H_k d = -\nabla f(x^k).$$

S3. Determine $t_k > 0$ such that

$$f(x^k + t_k d^k) \le f(x^k) + \sigma t_k \nabla f(x^k)^T d^k$$

(this is just the Armijo condition), AND

$$\nabla f(x^k + t_k d^k)^T d^k \ge \rho \nabla f(x^k)^T d^k$$
,

call the Wolfe-Powell rule.

S4. Set

$$\begin{split} x^{k+1} &\coloneqq x^k + t_k d^k, \\ s^k &\coloneqq x^{k+1} - x^k, \\ y^k &\coloneqq \nabla f \left(x^{k+1} \right) - \nabla f \left(x^k \right), \\ H_{k+1} &\coloneqq H_{k+1}^{\mathrm{BFGS}}. \end{split}$$

S5. Increment *k* and go to S1.

We use the Wolfe-Powell rule; i.e., for $f: \mathbb{R}^n \to \mathbb{R}$ differentiable, $\sigma \in (0, \frac{1}{2}), \rho \in (\sigma, 1)$,

$$T_{\mathrm{WP}}: \mathcal{A}_f \ni (x,d) \mapsto \left\{ t > 0 \,|\, \begin{matrix} f(x+td) \leq f(x) + \sigma t \nabla f(x)^T d \\ \nabla f(x+td)^T d \geq \rho \nabla f(x)^T d \end{matrix} \right\} \subset \mathbb{R}_+.$$

Lemma 2.7: For $f \in C^1$ and $(x,d) \in A_f$, assume that f is bounded from below on $\{x + td \mid t > 0\}$. Then, $T_{WP}(x,d) \neq \emptyset$.

Remark 2.11: Note that we didn't need any boundedness restriction for the well-definedness of the Armijo rule.

⇒Lemma 2.8: For $f ∈ C^1$, bounded from below with ∇f Lipschitz continuous on $\mathcal{L} := \text{lev}_{f(x^0)}f$. Then, T_{WP} restricted to $A_f \cap (\mathcal{L} \times \mathbb{R}^n)$ is *efficient*, i.e. there exists a $\theta > 0$ such that $f(x+td) ≤ f(x) - \theta \left(\frac{\nabla f(x)^T d}{\|\nabla f(x)\|\|d\|}\right)^2$ for every $(x,d) ∈ A_f \cap (\mathcal{L} \times \mathbb{R}^n)$ and $t ∈ T_{\text{WP}}(x,d)$.

Remark 2.12: Note that, generally x^k will be in the level set at $f(x^0)$ for every $k \ge 0$ when x^k defined by a descent method. So in the context of this lemma, we will have the efficient bound at every iterate.

We turn to analyze Algorithm 2.6.

Lemma 2.9: Let y^k , $s^k ∈ \mathbb{R}^n$ such that $(y^k)^T s^k > 0$ and $H_k > 0$. Then, $H_{k+1}^{BFGS} > 0$.

PROOF. For fixed k, set $H_+ := H_{k+1}$, $H := H_k$, $s := s^k$ and $y := y^k$ for notational convenience. As H > 0, there exists a W > 0 such that $W^2 = H$. Let $d \in \mathbb{R}^n - \{0\}$ and set z := Ws, v := Wd. Then

$$\begin{split} d^{T}H_{+}d &= d^{T}\bigg(H + \frac{yy^{T}}{y^{T}s} - \frac{Hss^{T}H}{s^{T}Hs}\bigg)d\\ &= d^{T}Hd + d^{T}\frac{yy^{T}}{y^{T}s}d - d^{t}\frac{Hss^{T}H}{s^{T}Hs})d\\ &= d^{T}Hd + \frac{\left(y^{T}d\right)^{2}}{y^{T}s} - \frac{\left(d^{T}Hs\right)^{2}}{s^{T}Hs}\\ &= \|v\|^{2} + \frac{\left(y^{T}d\right)^{2}}{y^{T}s} - \frac{\left(v^{T}z\right)^{2}}{\|z\|^{2}}\\ &\geq \|v\|^{2} + \frac{\left(y^{T}d\right)^{2}}{y^{T}s} - \|v\|^{2}\\ &= \frac{\left(y^{T}d\right)^{2}}{y^{T}s} \geq 0, \end{split}$$

using Cauchy-Schwarz. In particular, equality (to zero) holds throughout iff v and z are linearly dependent and $y^Td=0$. Suppose this is the case. In particular, there is an $\alpha \in \mathbb{R}$ for which $v=\alpha z$. Then, $d=W^{-1}v=\alpha W^{-1}z=\alpha s$, thus $0=d^Ty=\alpha s^Ty$, hence α must equal zero, since we assumed $y^Ts>0$. Thus, d=0, which we also assumed wasn't the case. Thus, we can never have equality here, and thus $d^TH_+d>0$, and so $H_+>0$.

Lemma 2.10: If in the *k*th iteration of Algorithm 2.6 we have $H_k > 0$ and there exists $t_k ∈ T_{WP}(x^k, d^k)$, then $(s^k)^T y^k > 0$.

Proof. We have

$$(s^{k})^{T}y^{k} = (x^{k+1} - x^{k})^{T}(\nabla f(x^{k+1}) - \nabla f(x^{k}))$$

$$= t_{k}(d^{k})^{T}(\nabla f(x^{k+1}) - \nabla f(x^{k}))$$

$$\stackrel{\text{WP}}{\geq} t_{k}(\rho - 1)\nabla f(x^{k})^{T}d^{k}$$

$$= \underbrace{t_{k}(1 - \rho)}_{>0}\underbrace{\left(\nabla f(x^{k})\right)^{T}H_{k}^{-1}\nabla f(x^{k})}_{>0}$$

$$> 0,$$

since $H_k^{-1} > 0$ and $t_k > 0$ and $0 < \rho < 1$.

Theorem 2.13: Let f ∈ $C^1(\mathbb{R}^n)$ and bounded from below. Then, the following hold for the iterates generated by Algorithm 2.6:

- 1. $(s^k)^T y^k > 0$;
- 2. $H_k > 0$;
- 3. thus, Algorithm 2.6 is well-defined, i.e. at each iteration, each step generates a valid value.

PROOF. We prove inductively on k, with the fact that $H_0 > 0$ already establishing 2. for the base step. $H_k > 0$ implies the existence of a unique solution $d^k = -H_k^{-1} \nabla f(x^k)$ to QNE. Because $\nabla f(x^k) \neq 0$, $\nabla f(x^k)^T d^k < 0$ so $(x^k, d^k) \in A_f$. By Lem. 2.7, there exists a $t_k \in T_{\mathrm{WP}}(x^k, d^k)$. Thus, by Lem. 2.10, $(y^k)^T s^k > 0$ and so by Lem. 2.9 $H_{k+1} > 0$. Since this holds for any k this proves the result.

Theorem 2.14: Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable, and $\{x^k\}, \{d^k\}, \{t_k\}$ be generated by Algorithm 2.6. assume that ∇f is Lipschitz on $\mathcal{L} := \text{lev}_{f(x^0)} f$, and that there exists a c > 0 such that $\text{cond}(H_k) := \frac{\lambda_{\max}(H_k)}{\lambda_{\min}(H_k)} \leq \frac{1}{c}$ for all $k \in \mathbb{N}$. Then every cluster point of $\{x^k\}$ is a stationary point of f.

Proof. For all $k \in \mathbb{N}$,

$$-\nabla f(x^{k})^{T} d^{k} = (d^{k})^{T} H_{k} d^{k} \geq \lambda_{\min}(H_{k}) \|d^{k}\|^{2}$$

$$= \lambda_{\min}(H_{k}) \|H_{k}^{-1} \nabla f(x^{k})\| \|d^{k}\|$$

$$= \frac{\lambda_{\min}(H_{k})}{\|H_{k}\|} \|H_{k}\| \|H_{k}^{-1} \nabla f(x^{k})\| \|d^{k}\|$$

$$\geq \frac{\lambda_{\min}(H_{k})}{\lambda_{\max}(H_{k})} \|\nabla f(x^{k})\| \|d^{k}\|$$

$$= \frac{1}{\operatorname{cond}(H_{k})} \|\nabla f(x^{k})\| \|d^{k}\|$$

$$\geq c \|\nabla f(x^{k})\| \|d^{k}\|,$$

and thus $-\frac{\nabla f(x^k)^T d^k}{\|\nabla f(x^k)\|\|d^k\|} \ge c$ for all $k \in \mathbb{N}$ (this is the so-called "angle condition"). Moreover, under the assumptions on f, the Wolfe-Powell rule (restricted to $A_f \cap \mathcal{L} \times \mathbb{R}^n$, in which we always stay) is efficient, so by the previously established global convergence of Algorithm 2.1, we have convergence of this algorithm as well.

Remark 2.13: We cited the convergence of Algorithm 2.1, which we couldn't do when proving convergence of the gradient, since the step size in that case was *not* efficient.

Remark 2.14:

- 1. The assumption that ∇f is Lipschitz on $\text{lev}_{f(x^0)} f$ is satisfied under either of the following conditions,
 - (i) $f \in C^2$ and $\|\nabla^2 f(x)\|$ bounded on a convex superset of \mathcal{L} ;
 - (ii) $f \in C^2$ and \mathcal{L} is bounded (hence compact).

An example of a C^1 function that is not C^2 but still globally Lipschitz is $f(x) := \frac{1}{2} \operatorname{dist}_C^2(x)$ where C a convex set, and $\nabla f(x) = x - P_C(x)$ where P_C the projection onto P_C .

2. The BFGS method is regarded as one of the most robust methods for smooth, unconstrained optimization up to medium scale. For large-scale, there is a method called "limited memory BFGS". Surprisingly, BFGS can be modified to work well for nonsmooth functions with a special line search method.

II.4.4.2 Inexact Methods

The local Newton's method involves finding d^k such that $\nabla^2 f(x^k)d^k = -\nabla f(x^k)$. Quasi-Newton methods replace the Hessian with an approximation, and indirect methods further allow the flexibility to let d^k approximately solve this equation (since solving this equation exactly can be costly). The goal is to find d^k such that

$$\frac{\left\|\nabla^2 f(x^k)d + \nabla f(x^k)\right\|}{\left\|\nabla f(x^k)\right\|} \le \eta_k$$

for a prescribed tolerance η_k . This is called the *inexact Newton's equation*.

Remark 2.15: Dividing by $\|\nabla f(x^k)\|$ here enforces the idea that the closer x^k is to a stationary point, the higher accuracy we require.

Local Inexact Newton's Method

S0. Choose $x^0 \in \mathbb{R}^n$, $\varepsilon \ge 0$ and set k := 0.

S1. If $\|\nabla f(x^k)\| \le \varepsilon$, STOP.

S2. Choose $\eta_k \ge 0$ and determine d^k such that

$$\frac{\left\|\nabla^2 f(x^k)d + \nabla f(x^k)\right\|}{\left\|\nabla f(x^k)\right\|} \le \eta_k.$$

S3. Set $x^{k+1} = x^k + d^k$, increment k and go to S1.

II.4.4.2 Inexact Methods

- **Theorem 2.15**: Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^2 , let \overline{x} be a stationary point of f such that $\nabla^2 f(\overline{x})$ is invertible. Then there exists $\varepsilon > 0$ such that for all $x^0 \in B_{\varepsilon}(\overline{x})$:
- 1. If $\eta_k \leq \overline{\eta}$ for all $k \in \mathbb{N}$ for some $\overline{\eta} > 0$ sufficiently small, then Algorithm 2.7 is well-defined and generates a sequence that converges at least linearly to \overline{x} .
- 2. If $\eta_k \downarrow 0$, the rate of convergence is superlinear.
- 3. If $\nabla^2 f$ is locally Lipschitz (for instance, if $f \in C^3$) and $\eta_k = O(\|\nabla f(x^k)\|)$, then the rate is quadratic.

Remark 2.16: For $\eta_k = 0$, we just recover the local Newton's method. 2. and 3. strongly point their fingers at how to choose η_k . 1. is theoretically important, but practically useless since $\overline{\eta}$ is generally unknown.

Globalized Inexact Newton's Method

- So. Choose $x^0 \in \mathbb{R}^n$, $\varepsilon \ge 0$, $\rho > 0$, p > 2, $\beta \in (0,1)$, $\sigma \in \left(0,\frac{1}{2}\right)$ and set k := 0.
- S1. If $\|\nabla f(x^k)\| \le \varepsilon$ STOP.
- S2. Choose $\eta_k \ge 0$ and determine d^k by

$$\left\|\nabla^2 f(x^k)d + \nabla f(x^k)\right\| \le \eta_k \|\nabla f(x^k)\|.$$

If this is not possible, or not feasible, i.e. $\nabla f(x^k)^T d^k \le -\rho \|d^k\|^p$ is violated, then set $d^k := -\nabla f(x^k)$.

- S3. Determine $t_k > 0$ by Armijo, $t_k := \max_{\{\ell \in \mathbb{N}_0\}} \left\{ \beta^{\ell} \mid f\left(x^k + \beta^{\ell} d^k\right) \leq f\left(x^k\right) + \beta^{\ell} \sigma \nabla f\left(x^k\right)^T d^k \right\}$.
- S4. Set $x^{k+1} = x^k + t_k d^k$, increment k and go to S1.
- **Theorem 2.16**: Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^2 and let $\{x^k\}$ be generated by Algorithm 2.8 with $\eta_k \downarrow 0$. If \overline{x} is a cluster point of $\{x^k\}$ with $\nabla^2 f(\overline{x}) > 0$, then the following hold:
- 1. $\{x^k\}$ converges along the whole sequence to \bar{x} , which is a strict locally minimizer of f.
- 2. For all k sufficiently large, d^k will be given by the inexact Newton equation.
- 3. For all k sufficiently large, the full step-size $t_k = 1$ will be accepted.
- 4. The convergence is at least superlinear.

II.4.5 Conjugate Gradient Methods for Nonlinear Optimization

II.4.5.1 Prelude: Linear Systems

Remark that, for A > 0 and $b \in \mathbb{R}^n$,

$$Ax = b$$
 \Leftrightarrow $x \text{ minimizes } f(x) := \frac{1}{2}x^T Ax - b^T x.$

Definition 2.7 (*A*-conjugate vectors): Let A > 0 and $x, y ∈ \mathbb{R}^n \setminus \{0\}$ are called *A*-conjugate if

$$x^T A y = 0$$

(i.e. x, y are orthogonal in the inner product induced by A, denoted $\langle \cdot, \cdot \rangle_A$).

Lemma 2.11: Let A > 0, $b \in \mathbb{R}^n$, and $f(x) := \frac{1}{2}x^TAx - b^Tx$. Let $d^0, d^1, ..., d^{n-1}$ be (pairwise) A-conjugate. Let $\{x^k\}$ be generated by $x^{k+1} = x^k + t_k d^k$, $x^0 \in \mathbb{R}^n$, where $t_k := \operatorname{argmin}_{t>0} f(x^k + t_k d^k)$. Then, after at most n iterations, x^n is the (unique) global minimizer \overline{x} (= $A^{-1}b$) of f. Moreover, with $g^k := \nabla f(x^k)$ (= $Ax^k - b$), we have

$$t_k = -\frac{\left(g^k\right)^T d^k}{\left(d^k\right)^T A d^k} > 0,$$

and $(g^{k+1})^T d^j = 0$ for all j = 0, ..., k.

Proof. The formula for t_k was proven in an exercise. To prove the latter statement, note that

$$(g^{k+1})^T d^k = (Ax^{k+1} - b)^T d^k$$

$$= (Ax^k - b + t_k Ad^k)^T d^k$$

$$= (g^k)^T d^k + t_k (d^k)^T Ad^k$$

$$= (g^k)^T d^k - (g^k)^T d^k = 0.$$

Moreover, for all i, j = 0, ..., k with $i \neq j$, we have that

$$(g^{i+1} - g^i)^T d^j = (Ax^{i+1} - Ax^i)^T d^j = t_i (d^i)^T A d^j = 0,$$

hence for all j = 0, ..., k,

$$(g^{k+1})^T d^j = (g^{j+1})^T d^j + \sum_{i=j+1}^k (g^{i+1} - g^i)^T d^j = 0.$$

Thus, g^n is orthogonal to the n linearly independent vectors $\{d^0, ..., d^{n+1}\}$, which implies $g^n = 0$, thus proving the conclusion.

We want to obtain these A-conjugate vectors, while simultaneously ensuring that they are descent directions at each step, i.e. that $\nabla f(x^k)^T d^k < 0$ for all k = 0, ..., n-1. We do this algorithmically.

Assume $\nabla f(x^0) \neq 0$ (else we are done), and take $d^0 := -\nabla f(x^0)$. Suppose then we have l+1 A-conjugate vectors $d^0, ..., d^l$ with $\nabla f(x^i)^T d^i < 0$ for each i. Suppose

$$d^{l+1} := -g^{l+1} + \sum_{i=0}^{l} \beta_{il} d^{i},$$

where g^{l+1} is "valid" to be used since it is not in the span of $\{d^0,...,d^l\}$, and $\{\beta_{il}\}$ are scalars to be determined. The condition $(d^{l+1})^TAd^j=0$ readily implies that

$$\beta_{jl} := \frac{\left(g^{l+1}\right)^T A d^j}{\left(d^j\right)^T A d^j}, \quad j = 0, ..., l.$$

Then, it follows that $(g^{l+1})^T d^{l+1} = -\|g^{l+1}\|^2 < 0$, and since $g^{l+1} = \nabla f(x^{l+1})$ by definition, it follows d^{l+1} a descent direction. Thus, it must be that

$$g^{j+1} - g^j = Ax^{j+1} - Ax^j = t_i Ad^j,$$

and so with $t_i > 0$,

$$(g^{l+1})^T A d^j = \frac{1}{t_j} (g^{l+1})^T (g^{j+1} - g^j),$$

and thus

$$\beta_{jl} = \begin{cases} 0 & j = 0, ..., l - 1 \\ \frac{\|g^{j+1}\|^2}{\|g^l\|^2} j = l \end{cases},$$

and thus our update of d^{l+1} reduces to

$$d^{l+1} := -g^{l+1} + \beta_l d^l, \qquad \beta_l := \beta_{ll}.$$

In summary, this gives the following algorithm.

CG method for linear equations

S0. Choose $x^0 \in \mathbb{R}^n$ and $\varepsilon \ge 0$, set $g^0 := Ax^0 - b$, $d^0 := -g^0$ and initiate k = 0.

S1. If $||g^k|| \le \varepsilon$, STOP.

S2. Put

$$t_k \coloneqq \frac{\left\| g^k \right\|^2}{\left(d^k \right)^T A d^k}.$$

S3. Set

$$\begin{split} x^{k+1} &= x^k + t_k d^k \\ g^{k+1} &= g^k + t_k A d^k \\ \beta_k &= \frac{\left\| g^{k+1} \right\|^2}{\left\| g^k \right\|^2} \\ d^{k+1} &= -g^{k+1} + \beta_k d^k. \end{split}$$

S4. Increment k and go to S1.

Theorem 2.17 (Convergence of CG Method): Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite, $b \in \mathbb{R}^n$ and $f(x) := \frac{1}{2}x^TAx - b^Tx$. Then, Algorithm 2.9 will produce the global miniumum \overline{x} of f after at most n interations. If $m \in \{0, ..., n\}$ is the smallest number such that $x^m = \overline{x}$, then the following hold as well:

$$(d^k)^T A d^j = 0, (g^k)^T g^j = 0, (g^k)^T d^j = 0, \qquad (k = 1, ..., m, j = 0, ..., k - 1),$$

$$(g^k)^T d^k = -\|g^k\|^2 \qquad (k = 0, ..., m).$$

II.4.6 The Fletcher-Reeves Method

We want to apply the same method as the previous section for non-quadratic and non-convex functions. The isue we need to resolve, though, is that the step-size rule in S2. of Algorithm 2.9 is no longer appropriate. To resolve, we introduce the *Strong Wolfe-Powell rule*. Choose $\sigma \in$ $(0,1), \rho \in (\sigma,1)$. The strong WP rule for a differentiable $f: \mathbb{R}^n \to \mathbb{R}$ reads

$$T_{\text{SWP}}: (x,d) \in \mathcal{A}_f \mapsto \left\{ t > 0 \ \middle| \ \begin{array}{l} f(x+td) \leq f(x) + \sigma t \nabla f(x)^T d \\ |\nabla f(x+td)^T d| \leq -\rho \nabla f(x)^T d \end{array} \right\},$$

noting that clearly $T_{\text{SWP}}(x,d) \subset T_{\text{WP}}(x,d)$.

Fletcher-Reeves

S0. Choose $x^0 \in \mathbb{R}^n$, $\varepsilon \ge 0$, $0 < \sigma < \rho < \frac{1}{2}$, set $d^0 := -\nabla f(x^0)$ and k = 0.

S1. If $\|\nabla f(x^k)\| \le \varepsilon$, STOP.

S2. Determine $t_k > 0$ such that

$$f(x^k + t_k d^k) \le f(x^k) + \sigma t_k \nabla f(x^k)^T d^k,$$
$$|\nabla f(x^k + t_k d^k)^T d^k| \le -\rho \nabla f(x^k)^T d^k.$$

S3. Set

$$\begin{aligned} x^{k+1} &= x^k + t_k d^k \\ \beta_k^{\text{FR}} &= \frac{\left\| \nabla f\left(x^{k+1}\right) \right\|^2}{\left\| \nabla f\left(x^k\right) \right\|^2} \\ d^{k+1} &= -\nabla f\left(x^{k+1}\right) + \beta_k^{\text{FR}} d^k. \end{aligned}$$

S4. Increment *k* and go to S1.

 \hookrightarrow Lemma 2.12: Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^1 and bounded from below and $(x,d) \in A_f$. Then $T_{\text{SWP}}(x,d) \neq \emptyset.$

PROOF. Define $\varphi, \psi : \mathbb{R} \to \mathbb{R}$ by

$$\varphi(t) := f(x + td), \qquad \psi(t) = f(x) + \sigma t \nabla f(x)^T d,$$

noting that ψ affine linear with negative slope. We need to show, then, that $\varphi(t) \leq \psi(t)$ and $|\varphi'(t)| \le -\rho \varphi'(0)$ for some t > 0. Now, $\varphi(0) = \psi(0)$, and $\varphi'(0) < \psi'(0)$. By Taylor's theorem, $\varphi(t) < \psi(t)$ for all t > 0 sufficiently small. Define

$$t^* = \min\{t > 0 \mid \varphi(t) = \psi(t)\}.$$

This exists, since $\psi(t) \to -\infty$ as $t \to \infty$, and $\varphi(t)$ is bounded from below; for small t, $\varphi(t) < \psi(t)$, so by continuity there must exist t > 0 for which $\varphi(t) = \psi(t)$, so t^* welldefined. Moreover, we have then that $\varphi'(t^*) \geq \psi'(t^*)$, which we can see by Taylor/ graphically.

Now, we consider two cases. Suppose first that $\varphi'(t^*) < 0$. Then,

$$|\varphi'(t^*)| = -\varphi'(t^*) \le -\psi'(t^*) = -\sigma \nabla f(x)^T d.$$

We know $\sigma < \rho$, so we're done, so this is further upper bounded by $-\rho \nabla f(x)^T d = -\rho \varphi'(0)$, so we're done in this case with t^* .

Next, suppose $\varphi'(t^*) \ge 0$. t^* won't cut it in this case, but we can see that there exists $t^{**} \in (0, t^*]$, by intermediate value theorem, for which $\varphi'(t^{**}) = 0$. Since t^* the *first* time φ, ψ are equal (being the minimum) and $t^{**} \le t^*$, it follows that we have $\varphi(t^{**}) < \psi(t^{**})$. Also trivially,

$$|\varphi'(t^{**})| = 0 \le -\rho\varphi'(0),$$

since $\varphi'(0) < 0$, and thus t^{**} provides the appropriate t value for the claims, so we're done.

Remark 2.17: In particular, this immediately gives the well-definedness of Algorithm 2.10, assuming $\{x^k\} \times \{d^k\} \in A_f$.

Lemma 2.13: Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^1 and bounded from below. Let $\{x^k\}$, $\{d^k\}$ be generated by Algorithm 2.10. Then,

$$-\sum_{j=0}^{k} \rho^{j} \le \frac{\nabla f(x^{k})^{T} d^{k}}{\|\nabla f(x^{k})\|^{2}} \le -2 + \sum_{j=0}^{k} \rho^{j},$$

for all $k \in \mathbb{N}$.

PROOF. We induct on k. For k = 0, the claim reads

$$-1 \le -1 \le -2 + (1) = -1$$
,

since $d^0 = -\nabla f(x^0)$, so it holds trivially.

Suppose the claim for some fixed $k \in \mathbb{N}$. We have

$$\rho \nabla f \left(x^k \right)^T d^k \leq \nabla f \left(x^{k+1} \right)^T d^k \leq -\rho \nabla f \left(x^k \right)^T d^k$$

by (S2), which implies by a little algebraic manipulation

$$-1 + \rho \frac{\nabla f(x^k)^T d^k}{\left\|\nabla f(x^k)\right\|^2} \le -1 + \frac{\nabla f(x^{k+1})^T d^k}{\left\|\nabla f(x^k)\right\|^2} \le -1 - \rho \frac{\nabla f(x^k)^T d^k}{\left\|\nabla f(x^k)\right\|^2}. \tag{*}$$

In addition, by (S3), we know

$$\frac{\nabla f(x^{k+1})^{T} d^{k+1}}{\|\nabla f(x^{k+1})\|^{2}} = \frac{\nabla f(x^{k+1})^{T} (-\nabla f(x^{k+1}) + \beta_{k} d^{k})}{\|\nabla f(x^{k+1})\|^{2}}$$

$$= -\frac{\nabla f(x^{k+1})^{T} \nabla f(x^{k+1})}{\|\nabla f(x^{k+1})\|^{2}} + \beta_{k} \frac{\nabla f(x^{k+1})^{T} d^{k}}{\|\nabla f(x^{k+1})\|^{2}}$$

$$= -1 + \frac{\nabla f(x^{k+1})^{T} d^{k}}{\|\nabla f(x^{k})\|^{2}},$$

thus

$$\frac{\nabla f(x^{k+1})^T d^{k+1}}{\left\|\nabla f(x^{k+1})\right\|^2} = -1 + \frac{\nabla f(x^{k+1})^T d^k}{\left\|\nabla f(x^k)\right\|^2} \qquad (\star \star)$$

thus

$$-\sum_{j=0}^{k+1} \rho^{j} = -1 - \sum_{j=1}^{k+1} \rho^{j}$$

$$= -1 + \rho \left(-\sum_{j=0}^{k} \rho^{j} \right)$$
(induction hypothesis)
$$\leq -1 + \rho \frac{\nabla f \left(x^{k} \right)^{T} d^{k}}{\left\| \nabla f \left(x^{k} \right) \right\|^{2}}$$

$$(\star) \qquad \leq -1 + \frac{\nabla f \left(x^{k+1} \right)^{T} d^{k}}{\left\| \nabla f \left(x^{k} \right) \right\|^{2}} \qquad (\dagger)$$

$$(\star) \qquad \leq -1 - \rho \frac{\nabla f \left(x^{k} \right)^{T} d^{k}}{\left\| \nabla f \left(x^{k} \right) \right\|^{2}}$$
(induction hypothesis)
$$\leq -1 + \rho \sum_{j=0}^{k} \rho^{j} = -2 + \sum_{j=0}^{k+1} \rho^{j}.$$

But by (**), the line (†) = $\frac{\nabla f(x^{k+1})^T d^{k+1}}{\|\nabla f(x^{k+1})\|^2}$, so we've shown the claim.

Theorem 2.18: Let $f : \mathbb{R}^n \to \mathbb{R}$ be C^1 and bounded from below, and let $\{x^k\}, \{d^k\}$ be generated by Algorithm 2.10. Then,

- 1. Algorithm 2.10 is well-defined,
- 2. $\nabla f(x^k)^T d^k < 0$ for all $k \in \mathbb{N}$ (it is a descent method).

Proof. By the previous lemma,

$$\frac{\nabla f(x^k)^T d^k}{\|\nabla f(x^k)\|^2} \le -2 + \sum_{j=0}^k \rho^j \le -2 + \sum_{j=0}^\infty \rho^j = -2 + \frac{1}{1-\rho} = \frac{2\rho - 1}{1-\rho} < 0,$$

since $\rho < \frac{1}{2}$. Multiplying both sides by $\|\nabla f(x^k)\|^2$ gives 2. Combining 2. with the previous previous lemma and the accompanying remarks, 1. follows.

Theorem 2.19 (Al-Baali): Let $f: \mathbb{R}^n \to \mathbb{R}$ be C^1 and bounded from below, such that f is Lipschitz on lev $_{f(x_0)}f$, and let $\{x^k\}$, $\{d^k\}$ be generated by Algorithm 2.10. Then,

$$\lim_{k \to \infty} \left\| \nabla f(x^k) \right\| = 0.$$

§II.5 Least-Squares Problems

Supposing we wish to find the root of a function $F : \mathbb{R}^n \to \mathbb{R}^m$, we know that when m = n, then Newton's method is applicable. More generally, though, for $m \neq n$, such methods are not available. However, we can approach this by equivalently considering the optimization problem

$$\min_{x} \frac{1}{2} \|F(x)\|^2.$$

Such a problem, i.e. "minimizing the square of the norm", will be considered here. Naturally, since this is now a real-valued objective function, we could just apply Newton's method to it, but we'll do things a little more interesting.

II.5.1 Linear Least-Squares

Suppose F(x) = Ax - b an affine linear function for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$; the least-squares problem just becomes

$$\min_{x} \frac{1}{2} ||Ax - b||^2.$$
 (†)

→Theorem 2.20:

- 1. \overline{x} solves (†) $\Leftrightarrow \overline{x}$ solves $A^T A x = A^T b$.
- 2. (†) always has a solution.
- 3. (†) has a unique solution \Leftrightarrow rank(A) = n.

Proof.

- 1. With $f(x) := \frac{1}{2} \|Ax b\|^2$ the function of interest, one readily checks $\nabla f(x) = A^T A x A^T b$ (by chain rule, or by expanding f as a "proper" quadratic) and $\nabla^2 f(x) = A^T A$. Thus, since $A^T A \ge 0$ always, f is convex so stationary points are equivalent to minimization points, and thus we need $\nabla f(x) = 0 \Leftrightarrow A^T A x = A^T b$.
- 2. By 1., we have a solution $\Leftrightarrow A^T b$ in the image of $A^T A$; but this is equal to the image of A^T , and obviously $A^T b$ in the image of A^T .
- 3. Similarly to the previous, we will have a unique solution to $A^TAx = A^Tb$ iff A^TA has full rank $\Leftrightarrow A$ has full rank.

II.5.2 Gauss-Newton for Nonlinear Least-Squares

Suppose $F \in C^1$. Inspired by Newton's method, we will, instead of linearizing $f(x) := \frac{1}{2} ||F(x)||^2$, we will linearize F(x); plugging this linearization back into the norm squared, we

expect a quadratic function. Indeed, suppose we have an iterate $x^k \in \mathbb{R}^n$; then, the linearization of F about x^k is given by

$$F_k(x) = F(x^k) + F'(x^k)(x - x^k).$$

Then,

$$q(x) := \frac{1}{2} \|F_k(x)\|^2 = \dots = \frac{1}{2} x^T \left(F'\left(x^k\right)^T F'\left(x^k\right) \right) x + \left[F'\left(x^k\right)^T F\left(x^k\right) - F'\left(x^k\right)^T F'\left(x^k\right) x^k \right]^T x + \text{const},$$

where const independent of x. Assume $F'(x^k)$ of full rank n. Then, $F'(x^k)^T F'(x^k) > 0$, and so by the previous section,

$$x^{+} \in \operatorname{argmin}(q) \Leftrightarrow \nabla q(x^{+}) = 0$$

$$\Leftrightarrow F'(x^{k})^{T} F'(x^{k}) x^{+} + F'(x^{k})^{T} F(x^{k}) - F'(x^{k})^{T} F'(x^{k}) x^{k} = 0$$

$$\Leftrightarrow x^{+} = x^{k} \underbrace{-\left(F'(x^{k})^{T} F'(x^{k})\right)^{-1} F'(x^{k})^{T} F(x^{k})}_{:-d^{k}}.$$

Thus, this inspires the Gauss-Newton Method; supposing we can find d as a solution to the *Gauss-Newton Equations* (GNE),

$$F'(x^k)^T F(x^k) d = -F'(x^k)^T F(x^k),$$

then we update $x^{k+1} = x^k + d^k$. In particular, with this choice,

$$\nabla f(x)^T d^k = -\left(\underbrace{F'\left(x^k\right)^T F(x)^k}_{=u}\right)^T \underbrace{\left(F'\left(x^k\right)^T F'\left(x^k\right)\right)^{-1}}_{\geq 0} \left(\underbrace{F'\left(x^k\right)^T F\left(x^k\right)}_{=u}\right) < 0,$$

i.e., if $\nabla f(x^k) \neq 0$ and $F'(x^k)$ of rank n, then d^k a descent direction.

The Newton's Equation for the same function *f* would read

$$\left(F'(x^k)^T F'(x^k) + S(x^k)\right) d = -F'(x^k)^T F(x^k),$$

where

$$S(x^k) = \sum_{i=1}^m F_i(x^k) \nabla^2 F_i(x^k);$$

if *S* were zero, then this the same as the GNE (though of course, this will not hold in general).

§III CONSTRAINED OPTIMIZATION

§III.1 Optimality Conditions for Constrained Problems

Consider

$$\min f(x) \text{ s.t.} g_i(x) \le 0 \forall i = 1, ..., m,$$

 $h_j(x) = 0 \forall j = 1, ..., p'$

where we will assume f, g_i , h_j : $\mathbb{R}^n \to \mathbb{R}$ are continuously differentiable. We call such a problem a *nonlinear program*. We put as before the *feasible set*

$$X \coloneqq \big\{ x \, | \, g_i(x) \leq 0 \forall_{i=1}^m, h_i(x) = 0 \forall_{i=1}^p \big\}.$$

We'll also define the index sets

$$I := \{1, ..., m\}, \qquad J := \{1, ..., p\},$$

and the *active indices* for a point \bar{x} by

$$I(\overline{x}) := \{i \in I \mid g_i(\overline{x}) = 0\} \subset I.$$

III.1.1 First-Order Optimality Conditions

Consider the slightly more abstract problem

$$\min_{x} f(x) \text{ s.t. } x \in S \qquad (\dagger),$$

with $f: \mathbb{R}^n \to \mathbb{R}$ in C^1 and $S \subset \mathbb{R}^n$ closed and nonempty.

 \hookrightarrow **Definition 3.1** (Cones): A nonempty set $K \subset \mathbb{R}^n$ is said to be a *cone* if

$$\lambda v \in K \quad \forall v \in K, \lambda \geq 0,$$

i.e. *K* is closed under positive scalings of vectors in *K*.

Remark 3.1: We can in fact replace \mathbb{R}^n with any real vector space V, for a cone living in V.

We have that

- any vector space;
- the nonnegative reals;
- $\Lambda := \{(x,y)^T \mid x,y \in K, x^Ty = 0\}$, where K a given cone;
- and $S_+^n \coloneqq \{A \in \mathbb{R}^{n \times n} \mid A \ge 0\}$ (embedded in an appropriate space of matrices)

are all cones, for instance.

 \hookrightarrow **Definition 3.2**: Let $S \subset \mathbb{R}^n$, $\overline{x} \in S$. Then

$$T_s(\overline{x}) := \left\{ d \in \mathbb{R}^n \mid \exists \left\{ x^k \in S \right\} \to \overline{x}, \left\{ t_k \right\} \downarrow 0 \text{ s.t. } \frac{x^k - \overline{x}}{t_k} \to d \right\}$$

is called the *tangent cone of S at* \bar{x} .

 \hookrightarrow **Proposition 3.1**: Let *S* ⊂ \mathbb{R}^n , $x \in S$. Then $T_S(x)$ is a closed cone.

STHEOREM 3.1 (Basic First-Order Optimality Conditions): Let \overline{x} be a local minimizer of (†). Then,

- 1. $\nabla f(\overline{x})^T d \ge 0$ for all $d \in T_S(\overline{x})$;
- 2. if *S* is convex, then $\nabla f(\overline{x})^T (x \overline{x}) \ge 0$ for all $x \in S$.

Proof.

1. Let $d \in T_S(\overline{x})$. By definition, there exists $\{x^k\} \subset S$ and $\{t_k\} \downarrow 0$ for which $\frac{x^k - \overline{x}}{t_k} \to d$. As x^k feasible and \overline{x} a local minimizer of f over S,

$$f(x^k) - f(\overline{x}) \ge 0$$

for all k sufficiently large. By the mean value theorem, there is for each k sufficiently large a θ_k on the line between x^k and \overline{x} for which

$$f(x^k) - f(\overline{x}) = \nabla f(\theta_k)^T (x^k - \overline{x}),$$

so

$$0 \le \frac{f(x^k) - f(\overline{x})}{t_k} = \frac{\nabla f(\theta_k)^T (x^k - \overline{x})}{t_k} \xrightarrow{k} \nabla f(\overline{x})^T d.$$

2. Suppose not. Then, there exists a $\hat{x} \in S$ such that $\nabla f(\overline{x})^T(\hat{x} - \overline{x}) < 0$. By convexity, $\overline{x} + \lambda(\hat{x} - \overline{x}) \in S$ for $\lambda \in (0,1)$. By mean value theorem, for every such λ there exists a θ_{λ} on the line between $\overline{x} + \lambda(\hat{x} - \overline{x})$ and \overline{x} for which

$$f(\overline{x} + \lambda(\hat{x} - \overline{x})) - f(\overline{x}) = \lambda \nabla f(\theta_{\lambda})^{T} (\hat{x} - \overline{x}).$$

By supposition, for λ sufficiently close to 0, the right-hand side will remain negative (since $\nabla f(\theta_{\lambda}) \underset{\lambda \to 0}{\longrightarrow} \nabla f(\overline{x})$), so for sufficiently small λ ,

$$f(\overline{x} + \lambda(\hat{x} - \overline{x})) < f(\overline{x}),$$

and since $\overline{x} + \lambda(\hat{x} - \overline{x})$ remains feasible for all λ by covexity, this contradicts minimality.

Remark 3.2: Computationally, this isn't very helpful - in practice, i.e. in trying to compute local minimizers, we'd need to compute $\nabla f(\overline{x})^T d$ for every d in the tangent cone of a given S at a given point \overline{x} . In general, we don't know what this set looks like, and even if we did, this isn't a feasible condition to check for every such point, since it isn't easy to interpret computationally.

You can never tell the computer what the fucking set looks like

— Tim H

III.1.2 Farkas' Lemma

Definition 3.3 (Projection): Let $S \subset \mathbb{R}^n$ be nonempty, $x \in \mathbb{R}^n$. The *projection* of x onto S is given by

$$P_S(x) := \operatorname{argmin}_{y \in S} \frac{1}{2} ||x - y||^2.$$

Remark 3.3: This is, in general, a set-valued function; it could even be empty (for instance, if S = [0,1) and x = 2.)

III.1.2 Farkas' Lemma 36

 \hookrightarrow **Proposition 3.2**: Let $x \in \mathbb{R}^n$, $S \subset \mathbb{R}^n$ nonempty, closed and convex. Then,

- 1. $P_S(x)$ has exactly one element, so P_S can be viewed $\mathbb{R}^n \to S$;
- 2. $P_S(x) = x \Leftrightarrow x \in S$;
- 3. (The Projection Theorem) $(P_S(x) x)^T (y P_S(x)) \ge 0$ for all $y \in S$.

Proof.

- 1. This follows from the fact that $S \ni y \mapsto ||x y||_2^2$ a strongly convex function.
- 2. Clear.
- 3. Take $f(y) = \frac{1}{2}||x y||^2$ in the last theorem.

III.1.2 Farkas' Lemma 37