

① Veröffentlichungsnummer: 0 460 575 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 91109035.5

22 Anmeldetag: 03.06.91

(1) Int. Cl.5: C07C 251/60, C07C 323/56, A01N 37/36

Priorität: 05.06.90 CH 1891/90 23.04.91 CH 1208/91

43 Veröffentlichungstag der Anmeldung: 11.12.91 Patentblatt 91/50

84 Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IT LI LU NL SE 71) Anmelder: CIBA-GEIGY AG Klybeckstrasse 141 CH-4002 Basel(CH)

Erfinder: Isenring, Hans Peter, Dr. **Himmelrainweg 5** CH-4450 Sissach(CH) Erfinder: Weiss Bettina Unterdorfstrasse 8 CH-3322 Schönbühl(CH)

(4) Vertreter: Zumstein, Fritz, Dr. et al Bräuhausstrasse 4 W-8000 München 2(DE)

- 54 Aromatische Verbindungen.
- 5 Die Erfindung betrifft neue Verbindungen der Formel

I

worin R₁ C₁₋₄-Alkyl und (Y-X) CH₂, C₁₋₂-Althio-CH = oder C₁₋₂-alkly-ON = bedeuten und Z für eine Aldiminooder Ketiminogruppe steht, und deren Herstellung sowie fungizide Mittel mit solchen Verbindungen als Wirkstoffe. Die Verbindungen lassen sich zur Bekämpfung von Fungi in der Landwirtschaft, im Gartenbau und im Holzschutz verwenden.

Die vorliegende Erfindung betrifft Oximäther der allgemeinen Formel

Y-X COOR₁

Z-O-CH₂

I

worin

20

25

40

45

50

 R_1 C_{1-4} -Alkyl bedeutet,

(Y-X) $CH_2 = C_{1-2}-Alkylthio-CH = oder C_{1-2}-alkyl-ON = bedeutet$

und Z für eine Aldimino- oder Ketiminogruppe steht, und zwar insbesondere für eine

Gruppe

C=N-

worin R₂ Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl, C₃₋₆-Cycloalkyl, C₂₋₄-Alkenyl, C₂₋₄-

Alkinyl, C_{1-2} -Alkoxymethyl, C_{1-2} -Alkylthiomethyl, C_{1-4} -Alkylsulfonyl, C_{1-3} -Alkoxy,

C₁₋₃-Alkylthio oder Cyano

und R₃ C₁₋₆-Alkyl, Aryl-C₁₋₄-alkyl, Heteroaryl-C₁₋₄-alkyl, C₂₋₁₂-Alkenyl, Aryl-C₂₋₄-alkenyl,

Aryloxy-C₁₋₄-alkyl, Heteroaryloxy-C₁₋₄-alkyl, Heteroaryl-C₂₋₄-alkenyl, C₃₋₆-Cycloal-

kyl, Aryl, Heteroaryl, C₂₋₅-Alkanoyl, Aroyl oder Heteroaroyl bedeuten.

oder R2 und R3 zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenen-

falls substituierten, gegebenenfalls ein Sauerstoffatom, Schwefelatom und/oder Stickstoffatom enthaltenden vier- bis siebengliedrigen gesättigten oder ungesättigten Ring bilden, der zudem einen gegebenenfalls substituierten ankondensierten Benzolring

aufweisen kann.

Die erfindungsgemässen Verbindungen besitzen fungizide Eigenschaften und eignen sich als fungizide Wirkstoffe, insbesondere zur Verwendung in der Landwirtschaft und im Gartenbau.

Die Erfindung betrifft ferner ein Verfahren zur Herstellung der erfindungsgemässen Verbindungen, fungizide Mittel, die solche Verbindungen als Wirkstoffe enthalten, sowie die Verwendung solcher Verbindungen und Mittel zur Bekämpfung von Fungi in der Landwirtschaft und im Gartenbau.

Im engeren Sinne betrifft die vorliegende Erfindung Oximäther der Formel I worin

R₁ C₁₋₄-Alkyl bedeutet,

(Y-X) $CH_2 = C_{1-2}-Alkylthio-CH = oder C_{1-2}-alkyl-ON = bedeutet$

und Z für eine Aldimino- oder Ketiminogruppe steht, und zwar insbesondere für eine

Gruppe

R₂

worin R₂ Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl, C₃₋₅-Cycloalkyl

und R_3 C_{1-6} -Alkyl, Aryl- C_{1-4} -alkyl, Heteroaryl- C_{1-4} -alkyl, C_{2-6} -Alkenyl, Aryl- C_{2-4} -alkenyl,

Heteroaryi-C₂₋₄-alkenyi, C₃₋₆-Cycloalkyi, Aryi, Heteroaryi, C₂₋₅-Alkanoyi, Aroyi oder

55 Heteroaroyl bedeuten,

oder R₂ und R₃ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenen-

falls substituierten, gegebenenfalls ein Sauerstoff- oder Schwefelatom enthaltenden vier- bis siebengliedrigen gesättigten Ring bilden, der zudem einen gegebenenfalls

substituierten ankondensierten Benzolring aufweisen kann.

In der obigen Formel I und im folgenden können sämtliche Gruppen "Alkyl" und "Alkenyl", als solche oder als Teil grösserer Gruppen, z.B. Heteroarylalkyl, je nach Anzahl der Kohlenstoffatome geradkettig oder verzweigt sein. Zudem können die Alkenylgruppen eine oder mehrere Doppelbindungen aufweisen. Halogen als Substituent bedeutet Fluor, Chlor, Brom oder Jod, wobei Fluor, Chlor und Brom bevorzugt sind. Eine Halogenalkylgruppe kann einen oder mehrere gleiche oder verschiedene Halogensubstituenten aufweisen. Unter Aryl ist insbesondere Phenyl, Naphthyl, Phenanthryl oder Fluorenyl zu verstehen. Heteroaryl bedeutet eine heterocyclische Gruppe mit aromatischem Charakter und 1-3 Heteroatomen N, O und/oder S. Bevorzugt sind Triazol oder andere Fünfringe und Sechsringe mit 1-2 Heteroatomen, die ihrerseits zusätzlich einen oder zwei ankondensierte Benzolringe besitzen können.

Als Beispiele, die keine limitierende Bedeutung besitzen, die aber vereinfachend im folgenden als "Gruppe Het*" bezeichnet werden sollen, seien Pyrrolyl, Pyridyl, Furyl, Thienyl, Isoxazolyl, Thiazolyl, Pyrazinyl, Pyridazinyl, Imidazolyl, Pyrimidinyl oder Triazolyl, oder eine solche Gruppe mit ankondensiertem Benzol, z.B. Chinolinyl, Chinoxalinyl, Benzofuryl, Benzothienyl oder Dibenzofuryl genannt. Sinngemäss gilt dies auch für "Aryl" oder "Heteroaryl" als Teil einer grösseren Gruppe, z.B. Aralkyl bzw. Heteroarylalkyl. Die Aryl- und Heteroarylgruppen können jeweils einen oder mehrere der folgenden Substituenten aufweisen:

Halogen, C_{1-4} -Alkyl, C_{1-4} -Halogenalkyl, Aryl- C_{1-4} -alkyl, Aryloxy- C_{1-4} -alkyl, C_{2-4} -Alkenyl, Aryl- C_{2-4} -alkenyl, C_{2-4} -Alkenyl, C_{3-6} -Cycloalkyl, Aryl, C_{1-4} -Alkoxy, C_{1-4} -Halogenalkoxy, Aryl- C_{1-4} -alkoxy, C_{1-4} -Alkylthio, Aryloxy, Cyano, Nitro C_{2-4} -Halogenalkenyl, C_{2-4} -Halogenalkinyl, C_{2-4} -Alkenyloxy, C_{3-4} -Halogenalkinyloxy, Cyclopropyl (gegebenenfalls einbis dreifach substituiert durch Halogen und/oder Methyl), Cyanomethoxy (-OCH $_2$ CN), C_{1-4} -Alkoxymethyl, C_{1-4} -Alkylthiomethyl, C_{1-4} -Alkylsulfinylmethyl, C_{1-4} -Alkoxyminomethyl, C_{1-4} -Alkoxymino

sowie auch einen Heteroarylrest, einen Heteroaryl- C_{1-4} -alkylrest einen Heteroaryloxy- C_{1-4} -alkylrest, einen Heteroaryl- C_{2-4} -alkenylrest, einen Heteroaryl- C_{1-4} -alkoxyrest oder einen Heteroaryloxyrest; wobei hierin unter dem Begriff Heteroaryl ein Vertreter der obengenannten "Gruppe Het*" zu verstehen ist.

Fast alle der für Aryl- und Heteroarylgruppen vorgenannten Substituenten können ein- bis zweimal auftreten, bevorzugt einmal, mit Ausnahme von C_{1-4} -Alkyl, das bis zu vierfach als Substituent in Frage kommt, und Halogen, das bis zu dreifach, im Falle von Fluor auch bis zu fünffach vorkommen kann.

Der bevorzugte Arylest ist Phenyl, gleichgültig, ob er allein oder als Teil eines anderen Substituenten in Erscheinung tritt. Aroyl ist demgemäss bevorzugt Benzoyl.

C₂-Alkanoyl bedeutet Acetyl. Unter Halogenalkyl sind Alkylgruppen zu verstehen, die bis zu sechsfach gleich oder verschieden durch F, Cl, Br und/oder J substituiert sind. Beispiele von Halogenalkylgruppen allein oder als Teil eines anderen Substituenten (wie Halogenalkoxy) sind CH₂Cl, CHCl₂, CCl₃, CHBr₂, CH₂CH₂Cl, CHCl-CHCl₂, CF₂Cl, CH₂J, CF₃, C₂F₅, CF₂-CF₂Cl, CHF₂, CH₂F, CF₂CHFCF₃.

Bevorzugt sind Trifluormethyl, Difluormethoxy und Trifluormethoxy.

Zudem können die Arylgruppen (insbesondere Phenyl) einen ein oder zwei Sauerstoffatome aufweisenden fünf-, sechs- oder siebengliedrigen gesättigten oder ungesättigten Ring tragen, der gegebenenfalls einoder mehrfach mit Methyl, Methoxy, Phenyl, Halogen, Cyano oder Oxo (C = O) substituiert sein kann. Beispiele solcher Gruppen sind 5-Benzofuryl, 6-Benzodioxanyl und 5-(1,3-Benzodioxolyl).

Im Falle, dass R_2 und R_3 zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten Ring bilden, wie dieser oben näher beschrieben ist, kommen als Substituenten des Ringes

50

55

45

insbesondere C₁₋₆-Alkyl oder gegebenenfalls substituiertes Phenyl in Frage. Auch der allfällig vorhandene ankondensierte Benzolring kann substituiert sein. Als Substituenten der Phenylgruppe bzw. des Benzolrings selber kommen die oben im Zusammenhang mit der Arylgruppe genannten in Betracht.

Falls in den Verbindungen der Formel I asymmetrische Kohlenstoffatome vorliegen, treten die Verbindungen in optisch aktiver Form auf. Allein aufgrund des Vorhandenseins der aliphatischen bzw. Imino-Doppelbindung X=C und der Imino-Doppelbindung der Aldimino- oder Ketiminogruppe Z treten die Verbindungen auf jeden Fall in der [E]- oder [Z]-Form auf. Ferner kann Atropisomerie auftreten. Die Formel

I soll all diese möglichen isomeren Formen sowie deren Gemische, z.B. racemische Gemische und beliebige [E/Z]-Gemische, umfassen.

Bei den Verbindungen der Fomel I bedeutet R₁ vorzugsweise Methyl; und unabhängig davon (Y-X) vorzugsweise Methylen, Methylthiomethylen (CH-SCH₃) oder Methoxyimino (N-OCH₃); besonders bevorzugt sind Verbindungen, worin R₁ Methoxyimino darstellt.

In der Gruppe $(R_2)(R_3)C=N$ - ist R_2 vorzugsweise Wasserstoff, C_{1-4} -Alkyl (insbesondere Methyl oder Äthyl), C_{1-4} -Halogenalkyl (insbesondere Trifluormethyl) oder C_{3-6} -Cycloalkyl (insbesondere Cyclopropyl) und R_3 ist vorzugsweise gegebenenfalls substituiertes Phenyl, Naphthyl (insbesondere β -Naphthyl) oder Benzyl, wobei allfällige Substituenten vorzugsweise bis drei gleiche oder verschiedene Halogenatome (insbesondere Fluor, Chlor und/oder Brom), C_{1-4} -Alkylgruppen (insbesondere Methyl), C_{1-4} -Halogenalkylgruppen (insbesondere Trifluormethyl), C_{1-4} -Halogenalkoxygruppen (insbesondere Trifluormethoxy) und Alkylendioxy (insbesondere 3,4-Methylendioxy) sind, oder Heteroaryl, insbesondere gegebenenfalls mit bis zwei Methylgruppen substituiertes Furyl, gegebenenfalls mit Chlor oder Methyl substituiertes Thienyl, Pyridyl oder Benzofuryl.

Falls R₃ Heteroaryl bedeutet, ist R₂ vorzugsweise Methyl.

Weitere Vertreter von Verbindungen der Formel I sind:

diejenigen Verbindungen der Formel I, in denen R_1 Methyl, (Y-Z) CH_2 , Z eine Gruppe $(R_2)(R_3)C=N$ -, R_2 Methyl und R_3 3-Trifluormethyl-benzyl, 4-Chlor-3-trifluormethylbenzyl, 1,4,8-Trimethyl-nona-1,3,7-trienyl, Phenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Bromphenyl, 3,4-Dichlorphenyl, 3,5-Dichlorphenyl, 3-Nitrophenyl, 4-Nitrophenyl, 2-Fluor-5-methyl-phenyl, 4-Methoxyphenyl, 3,4,5-Trimethoxyphenyl, 3-Trifluormethoxyphenyl, 3,5-Di-(trifluormethyl)-phenyl, β -Naphthyl, 2-Furyl, 2-Thienyl, 2-Pyridyl, 2-Benzofuryl oder 5-Chlor-2-thienyl bedeuten:

diejenigen Verbindungen der Formel I, in denen R_1 Methyl, (Y-X) CH_2 , Z eine Gruppe $(R_2)(R_3)C = N_1$, R_3 Phenyl und R_2 Äthyl, Propyl oder Isopropyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R₁ Methyl, (Y-X) CH₂, Z eine Gruppe (R₂)(R₃)C = N-, R₂ Trifluormethyl und R₃ 2-(β-Naphthyl)-äthenyl, Phenyl, 3-Chlorphenyl, 4-Chlorphenyl, p-Tolyl, α,α,α-Trifluorm-tolyl, β-Naphthyl oder 2-Pyridyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R₁ Methyl, (Y-X) CH₂, Z eine Gruppe (R₂)(R₃)C=N-, R₂ Cyclopropyl und R₃ Phenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Bromphenyl, α,α,α -Trifluor-m-tolyl, 4-Phenox-yphenyl oder β -Naphthyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R_1 Methyl, (Y-X) Methylthiomethylen (= CH-SCH₃), Z eine Gruppe (R_2)(R_3)C=N-, R_2 Methyl und R_3 3-Trifluormethyl-benzyl, 4-Chlor-3-trifluormethyl-benzyl, 1,4,8-Trimethyl-nona-1,3,7-trienyl, Phenyl, 4-Fluorphenyl, 3-Chlorphenyl, 4-Chlorphenyl, 3-Bromphenyl, 3,5-Dichlorphenyl, 3-Nitrophenyl, 4-Nitrophenyl, 2-Fluor-5-methylphenyl, 4-Methoxyphenyl, 3,4,5-Trimethoxyphenyl, 3-Trifluormethoxy-phenyl, 3,5-Di-(trifluormethyl)-phenyl, 2-Furyl, 2-Benzofuryl oder 5-Chlor-2-thienyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R_1 Methyl, (Y-X) Methylthiomethylen, Z eine Gruppe (R_2)- $(R_3)C = N$ -, R_2 Trifluormethyl und R_3 2- $(\beta$ -Naphthyl)-äthenyl, Phenyl, 3-Chlorphenyl, 4-Chlorphenyl, p-Tolyl, α , α , α -Trifluor-m-tolyl, β -Naphthyl oder 2-Pyridyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R_1 Methyl, (Y-X) Methylthiomethylen, Z eine Gruppe $R_2R_3C=N$ -, R_2 Cyclopropyl und R_3 Phenyl, 3-Chlorphenyl, 4-Chlorphenyl,3-Bromphenyl, α,α,α -Trifluor-mtolyl, 4-Phenoxyphenyl oder β -Naphthyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R_1 Methyl, (Y-X) Methoxyimino (= N-OCH₃), Z eine Gruppe $(R_2)(R_3)C = N_1$, R_2 Methyl und R_3 4-Chlor-3-trifluormethylbenzyl,Phenyl, 3-Chlorphenyl, 3,5-Dichlorphenyl, 2-Fluor-5-methylphenyl, 3-Trifluormethoxy-phenyl oder 5-Chlor-2-thienyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R_1 Methyl, (Y-X) Methoxyimino, Z eine Gruppe $R_2R_3C=N$ -, R_2 Trifluormethyl und R_3 2-(β -Naphtyhl)-äthenyl, Phenyl, 3-Chlorphenyl, 4-Chlorphenyl, p-Tolyl, α,α,α -Trifluor-m-tolyl, β -Naphthyl oder 2-Pyridyl bedeuten;

diejenigen Verbindungen der Formel I, in denen R₁ Methyl, (Y-X) Methoxyimino, Z eine Gruppe R₂R₃C = N-, R₂ Cyclopropyl und R₃ 3-Chlorphenyl, 4-Chlorphenyl, 3-Bromphenyl, α,α,α -Trifluor-m-tolyl, 4-Phenoxyphenyl oder β -Naphthyl bedeuten;

Das erfindungsgemässe Verfahren zur Herstellung der Verbindungen der Formel 1 ist dadurch gekennzeichnet, dass man ein Oxim Z-OH, insbesondere ein Oxim der allgemeinen Formel

55

worin R_2 und R_3 die oben angegebenen Bedeutungen besitzen, mit einem Benzylalkoholderivat der allgemeinen Formel

5

20

35

worin R_1 und Y-X die oben angegebenen Bedeutungen besitzen und U eine Abgangsgruppe bedeutet, zur Reaktion bringt.

Bei dieser Reaktion handelt es sich um eine nucleophile Substitution, die unter den diesbezüglich üblichen Reaktionsbedingungen durchgeführt werden kann. Unter der im Benzylalkoholderivat der Formel III vorhandenen Abgangsgruppe U ist vorzugsweise Chlor, Brom, Jod, Mesyloxy, Benzolsulfonyloxy oder Tosyloxy zu verstehen. Die Umsetzung erfolgt zweckmässigerweise in einem inerten organischen Verdünnungsmittel, wie einem cyclischen Äther, z.B. Tetrahydrofuran oder Dioxan, Aceton, Dimethylformamid oder Dimethylsulfoxid, in Gegenwart einer Base, wie Natriumhydrid, Natrium- oder Kaliumcarbonat, eines tertiären Amins, z.B. eines Trialkylamins, insbesondere Diazabicyclononan oder Diazabicycloundecan, oder Silberoxid, bei Temperaturen zwischen -20° C und 80° C, vorzugsweise im Temperaturbereich von 0° C bis 20° C.

Als Alternative kann die Umsetzung unter Phasentransferkatalyse in einem organischen Lösungsmittel, wie beispielsweise Methylenchlorid, in Gegenwart einer wässrigen basischen Lösung, z.B. Natriumhydroxidlösung, sowie eines Phasentransferkatalysators, wie beispielsweise Tetrabutylammoniumhydrogensulfat, bei Raumtemperatur erfolgen [siehe beispielsweise W.E. Keller, "Phasen-Transfer Reactions", Fluka-Compendium Vol. I und II, Georg Thieme Verlag, Stuttgart (1986/1987), in dem insbesondere Chemistry Letters 1980, Seiten 869-870, erwähnt ist].

Die Isolierung und Reinigung der so hergestellten Verbindungen der Formel I kann nach an sich bekannten Methoden erfolgen. Ebenfalls nach an sich bekannten Methoden können allfällig erhaltene Isomerengemische, z.B. E/Z-Isomerengemische, in die reinen Isomeren aufgetrennt werden, beispielsweise durch Chromatographie oder fraktionierte Kristallisation.

Die als Ausgangsmaterialien im erfindungsgemässen Verfahren verwendeten Oxime Z-OH, z.B. der Formel II, sind entweder bekannt oder können nach an sich bekannten Methoden hergestellt werden, beispielsweise durch Umsetzung der entsprechenden Carbonylverbindung R₂R₃C = O mit Hydroxylaminhydrochlorid in Gegenwart einer Base, z.B. Natrium- oder Kaliumhydroxid oder Pyridin. Weitere Methoden finden sich in Houben-Weyl, "Methoden der Organischen Chemie", Band X/4, Seiten 3-308 (1968) ("Herstellung und Umwandlung von Oximen").

Ebenfalls sind die Ausgangsmaterialien der Formel III, d.h. die α -(2-UCH₂-phenyl)acrylsäure-alkylester der Formel IIIa, die α -(2-UCH₂-phenyl)- β -(C₁₋₂-alkylthio)-acrylsäure-alkylester der Formel IIIb sowie die 2-(2-UCH₂-phenyl)-glyoxylsäure-alkylester -O-(C₁₋₂-alkyl)oxim der Formel IIIc

entweder bekannt, oder sie können nach an sich bekannten Methoden hergestellt werden. So ist in der europäischen Patentpublikation (EP) 348,766 die Herstellung von α -(2-Brommethyl-phenyl)-acrylsäuremethylester, in der EP 310,954 und in Angew. Chem. 71, 349-365(1959) die Herstellung von α -(2-Brommethyl-phenyl)- β -methylthio-acrylsäure-methylester und in der EP 363,818 und wiederum in Angew. Chem. 71, 349-365 (1959) die Herstellung von 2-(2-Brommethyl-phenyl)-glyoxylsäure-methylester-O-methyloxim beschrieben. Die noch neuen Verbindungen der Formeln IIIa, IIIb und IIIc bilden einen weiteren Gegenstand vorliegender Erfindung.

Zur Herstellung eines α-(2-Brommethyl-phenyl)-β-methylthio-acrylsäure -C₁₋₄-alkylesters kann man auch eine von dem in der EP 310,954 beschriebenen Verfahren abweichende Synthese verwenden, die als erste Stufe die Bromierung des entsprechenden 3-(4-Brom-benzolsulfonyloxy)-2-(o-tolyl) -acrylsäure-C₋₄-alkylesters mit N-Bromsuccinimid zum 3-(4-Brom-benzolsulfonyloxy)-2-(2-brommethyl-phenyl) -acrylsäure-C₁₋₄-alkylester und als zweite Stufe die Umsetzung des letztgenannten Esters mit Natriummethanthiolat zum gewünschen Endprodukt umfasst. Das Ausgangsmaterial 3-(4-Brom-benzolsulfonyloxy)-2-(o-tolyl)-acrylsäure-methylester ist beispielsweise in der EP 310,954 beschrieben.

Die erfindungsgemässen Verbindungen besitzen fungizide Wirkung und können dementsprechend zur Bekämpfung bzw. Verhütung von Pilzbefall in der Landwirtschaft, im Gartenbau sowie im Holzschutz Verwendung finden. Sie eignen sich insbesondere zur Hemmung des Wachstums oder zur Vernichtung von phytopathogenen Pilzen auf Pflanzenteilen, z.B. Blättern, Stengeln, Wurzeln, Knollen, Früchten oder Blüten, und auf Saatgut sowie von im Erdboden auftretenden Schadpilzen. Ferner können mit den erfindungsgemässen Verbindungen holzabbauende und holzverfärbende Pilze bekämpft werden. Die erfindungsgemässen Verbindungen sind beispielsweise wirksam bei der Bekämpfung von Pilzen der Klassen Deuteromycetes, Ascomycetes, Basidiomycetes und Phycomycetes.

Besonders eignen sich die erfindungsgemässen Verbindungen zur Bekämpfüng der folgenden Schaderreger:

Echte Mehltaupilze (z.B. Erysiphe graminis, Erysiphe cichoracearum, Podosphaera leucotricha, Uncinula necator, Sphaerotheca spp.)

Rostpilze (z.B. Puccinia tritici, Puccinia recondita, Puccinia hordei, Puccinia coronata, Puccinia striiformis, Puccinia arachidis, Hemileia vastatrix, Uromyces fabae)

Schorfpilze (z.B. Venturia inaequalis)

15

30 Cercospora spp. (z.B. Cercospora arachidicola, Cercospora beticola)

Mycosphaerella spp. (z.B. Mycosphaerella fijiensis)

Alternaria spp. (z.B. Alternaria brassicae, Alternaria mali)

Septoria spp. (z.B. Septoria nodorum)

Heminthosporium spp. (z.B. Helminthosporium teres, Helminthosporium oryzea)

Plasmopara spp. (z.B. Plasmopara viticola)

Pseudoperonospora spp. (z.B. Pseudoperonospora cubensis)

Phytophthora spp. (z.B. Phytophthora infestans)

Pseudocercosporella spp. (z.B. Pseudocercosporella herpotrichoides)

Piricularia spp. (z.B. Piricularia oryzae)

Ferner wirken die Verbindungen beispielsweise gegen Pilze der Gattungen Tilletia, Ustilago, Rhizoctonia, Verticillium, Fusarium, Pythium, Gaeumannomyces, Sclerotinia, Monilia, Botrytis, Peronospora, Bremia, Gloeosporium, Cercosporidium, Penicillium, Ceratocystis, Rhynchosporium, Pyrenophora, Diaporthe, Ramularia und Leptosphaeria. Gewisse Vertreter der erfindungsgemässen Verbindungen besitzen zudem Wirkung gegen holzschädigende Pilze, wie beispielsweise der Gattungen Coniophora, Gloeophyllum, Poria, Merulius, Trametes, Aureobasidium, Sclerophoma und Trichoderma.

Die erfindungsgemässen Verbindungen der Formel I zeichnen sich durch prophylaktische und kurative, vor allem aber durch deutliche systemische Wirkung aus.

Sie wirken gegen phytopathogene Pilze unter Gewächshausbedingungen bereits bei Konzentrationen von 0,5 mg bis 500 mg Wirkstoff pro Liter Spritzbrühe. Im Freiland werden vorteilhaft Dosierungen von 20 g bis 1 kg Wirkstoff der Formel I pro Hektar und Behandlung zur Anwendung gebracht. Zur Bekämpfung von samen- oder bodenbürtigen Pilzen im Beizverfahren werden mit Vorteil Dosierungen von 0,001 g bis 1,0 g Wirkstoff der Formel I pro kg Samen verwendet.

Die erfindungsgemässen Verbindungen können zu verschiedenartigen Mitteln, z.B. Lösungen, Suspensionen, Emulsionen, emulgierbaren Konzentraten und pulverförmigen Präparaten, formuliert werden. Die erfindungsgemässen fungiziden Mittel sind dadurch gekennzeichnet, dass sie eine wirksame Menge mindestens einer Verbindung der allgemeinen Formel I, wie oben definiert, sowie Formulierungshilfsstoffe enthalten. Die Mittel enthalten zweckmässigerweise zumindest einen der folgenden Formulierungshilfsstoffe: Feste Trägerstoffe; Lösungs- bzw. Dispersionsmittel; Tenside (Netzmittel und Emulgatoren); Dispergiermittel

(ohne Tensidwirkung); und Stabilisatoren.

20

Als feste Trägerstoffe kommen im wesentlichen in Frage: natürliche Mineralstoffe, wie Kaolin, Tonerden, Kieselgur, Talkum, Bentonit, Kreide, z.B. Schlämmkreide, Magnesiumcarbonat, Kalkstein, Quarz, Dolomit, Attapulgit, Montmorillonit und Diatomeenerde; synthetische Mineralstoffe, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; organische Stoffe, wie Cellulose, Stärke, Harnstoff und Kunstharze; und Düngemittel, wie Phosphate und Nitrate, wobei solche Trägerstoffe z.B. als Granulate oder Pulver vorliegen können.

Als Lösungs- bzw. Dispersionsmittel kommen im wesentlichen in Frage: Aromaten, wie Toluol, Xylole, Benzol und Alkylnaphthaline; chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene und Methylenchlorid; aliphatische Kohlenwasserstoffe, wie Cyclohexan und Paraffine, z.B. Erdölfraktionen; Alkohole, wie Butanol und Glykol, sowie deren Ether und Ester; Ketone, wie Aceton, Methylethylketon, Methylisobutylketon und Cyclohexanon; und stark polare Lösungs- bzw. Dispersionsmittel, wie Dimethylformamid, N-Methylpyrrolidon und Dimethylsulfoxid, wobei solche Lösungs- bzw. Dispersionsmittel vorzugsweise Flammpunkte von mindestens 30°C und Siedepunkte von mindestens 50°C aufweisen, und Wasser. Unter den Lösungs- bzw. Dispersionsmitteln kommen auch in Frage sogenannte verflüssigte gasförmige Streckmittel oder Trägerstoffe, die solche Produkte sind, welche bei Raumtemperatur und unter Normaldruck gasförmig sind. Beispiele solcher Produkte sind insbesondere Aerosol-Treibgase, wie (Halogen)Kohlenwasserstoffe. Im Falle der Benutzung von Wasser als Lösungsmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden.

Die Tenside (Netzmittel und Emulgatoren) können nicht-ionische Verbindungen sein, wie Kondensationsprodukte von Fettsäuren, Fettalkoholen oder fettsubstituierten Phenolen mit Ethylenoxid; Fettsäureester und -ether von Zuckern oder mehrwertigen Alkoholen; die Produkte, die aus Zuckern oder mehrwertigen Alkoholen durch Kondensation mit Ethylenoxid erhalten werden; Blockcopolymere von Ethylenoxid und Propylenoxid; oder Alkyldimethylaminoxide.

Die Tenside können auch anionische Verbindungen darstellen, wie Seifen; Fettsulfatester, z.B. Dodecylnatriumsulfat, Octadecylnatriumsulfat und Cetylnatriumsulfat; Alkylsulfonate, Arylsulfonate und fettaromatische Sulfonate, wie Alkylbenzolsulfonate, z.B. Calcium-dodecylbenzolsulfonat, und Butylnaphthalinsulfonate; und komplexere Fettsulfonate, z.B. die Amidkondensationsprodukte von Ölsäure und N-Methyltaurin und das Natriumsulfonat von Diocrylsuccinat.

Die Tenside können schliesslich kationische Verbindungen sein, wie Alkyldimethylbenzylammoniumchloride, Dialkyldimethylammoniumchloride, Alkyltrimethylammoniumchloride und äthoxylierte quaternäre Ammoniumchloride.

Als Dispergiermittel (ohne Tensidwirkung) kommen im wesentlichen in Frage: Lignin, Natrium- und Ammoniumsalze von Ligninsulfonsäure, Natriumsalze von Maleinsäureanhydrid-Diisobutylen-Copolymeren, Natrium- und Ammoniumsalze von sulfonierten Polykondensationsprodukten aus Naphthalin und Formaldehyd, und Sulfitablaugen.

Als Dispergiermittel, die sich insbesondere als Verdickungs- bzw. Antiabsetzmittel eignen, können z.B. Methylcellulose, Carboxymethylcellulose, Hydroxyethylcellulose, Polyvinylalkohol, Alginate, Caseinate und Blutalbumin eingesetzt werden.

Beispiele von geeigneten Stabilisatoren sind säurebildende Mittel, z.B. Epichlorhydrin, Phenylglycidether und Soyaepoxide; Antioxidantien, z.B. Gallussäureester und Butylhydroxytoluol; UV-Absorber, z.B. substituierte Benzophenone, Diphenylacrylnitrilsäureester und Zimtsäureester; und Deaktivatoren, z.B. Salze der Ethylendiamintetraessigsäure und Polyglykole.

Die erfindungsgemässen fungiziden Mittel können neben den Wirkstoffen der Formel I auch andere Wirkstoffe enthalten, z.B. anderweitige fungizide Mittel, insektizide und akarizide Mittel, Bakterizide, Pflanzenswachstumsregulatoren und Düngemittel. Solche Kombinationsmittel eignen sich zur Verbreiterung des Wirkungsspektrums oder zur spezifischen Beeinflussung des Pflanzenwachstums.

Im allgemeinen enthalten die erfindungsgemässen Mittel, je nach deren Art, zwischen 0,0001 und 85 Gewichtsprozent an erfindungsgemässer Verbindung bzw. erfindungsgemässen Verbindungen als Wirkstoff(en). Sie können in einer Form vorliegen, die sich für die Lagerung und den Transport eignet. In solchen Formen, z.B. emulgierbaren Konzentraten, ist die Wirkstoffkonzentration normalerweise im höheren Bereich des obigen Konzentrationsintervalls. Diese Formen können dann mit gleichen oder verschiedenen Formulierungshilfsstoffen bis zu Wirkstoffkonzentrationen verdünnt werden, die sich für den praktischen Gebrauch eignen, und solche Konzentrationen liegen normalerweise im niedrigeren Berich des obigen Konzentrationsintervalls. Emulgierbare Konzentrate enthalten im allgemeinen 5 bis 85 Gewichtsprozent, vorzugsweise 25 bis 75 Gewichtsprozent, der erfindungsgemässen Verbindung(en). Als Anwendungsformen kommen u.a. gebrauchsfertige Lösungen, Emulsionen und Suspensionen, die sich beispielsweise als Spritzbrühen eignen, in Frage. In solchen Spritzbrühen können. z.B. Konzentrationen zwischen 0,0001 und 20 Gewichts-

prozent vorliegen. Im Ultra-Low-Volume-Verfahrenkönnen Spritzbrühen formuliert werden, in denen die Wirkstoffkonzentration vorzugsweise von 0,5 bis 20 Gewichtsprozent beträgt, während die im Low-Volume-Verfahren und im High-Volume-Verfahren formulierten Spritzbrühen vorzugsweise eine Wirkstoffkonzentration von 0,02 bis 1,0 bzw. 0,002 bis 0,1 Gewichtsprozent aufweisen.

Die erfindungsgemässen fungiziden Mittel können dadurch hergestellt werden, dass man mindestens eine erfindungsgemässe Verbindung mit Formulierungshilfsstoffen vermischt.

Die Herstellung der Mittel kann in bekannter Weise durchgeführt werden, z.B. durch Vermischen der Wirkstoffe mit festen Trägerstoffen, durch Auflösen oder Suspendieren in geeigneten Lösungs- bzw. Dispersionsmitteln, eventuell unter Verwendung von Tensiden als Netzmitteln oder Emulgatoren oder von Dispergiermitteln, durch Verdünnen bereits vorbereiteter emulgierbarer Konzentrate mit Lösungs- bzw. Dispersionsmitteln, usw.

Im Falle von pulverförmigen Mitteln kann der Wirkstoff mit einem festen Trägerstoff vermischt werden, z.B. durch Zusammenmahlen; oder man kann den festen Trägerstoff mit einer Lösung oder Suspension des Wirkstoffs imprägnieren und dann das Lösungs- bzw. Dispersionsmittel durch Abdunsten, Erhitzen oder durch Absaugen unter vermindertem Druck entfernen. Durch Zusatz von Tensiden bzw. Dispergiermitteln kann man solche pulverförmige Mittel mit Wasser leicht benetzbar machen, so dass sie in wässrige Suspensionen, die sich z.B. als Spritzmittel eignen, übergeführt werden können.

Die erfindungsgemässen Verbindungen können auch mit einem Tensid und einem festen Trägerstoff zur Bildung eines netzbaren Pulvers vermischt werden, welches in Wasser dispergierbar ist, oder sie können mit einem festen vorgranulierten Trägerstoff zur Bildung eines granulatförmigen Produktes vermischt werden.

Wenn gewünscht, kann eine erfindungsgemässe Verbindung in einem mit Wasser nicht mischbaren Lösungsmittel, wie beispielsweise einem alicyclischen Keton, gelöst werden, das zweckmässigerweise gelösten Emulgator enthält, so dass die Lösung bei Zugabe zu Wasser selbstemulgierend wirkt. Andernfalls kann der Wirkstoff mit einem Emulgator vermischt und das Gemisch dann mit Wasser auf die gewünschte Konzentration verdünnt werden. Zudem kann der Wirkstoff in einem Lösungsmittel gelöst und danach mit einem Emulgator gemischt werden. Ein solches Gemisch kann ebenfalls mit Wasser auf die gewünschte Konzentration verdünnt werden. Auf diese Weise erhält man emulgierbare Konzentrate bzw. gebrauchsfertige Emulsionen.

Die Verwendung der erfindungsgemässen Mittel kann nach den im Pflanzenschutz bzw. in der Landwirtschaft üblichen Applikationsmethoden erfolgen. Das erfindungsgemässe Verfahren zur Bekämpfung von Fungi ist dadurch gekennzeichnet, dass man den zu schützenden Ort oder das zu schützende Gut, z.B. Pflanzen, Pflanzenteile bzw. Samen, mit einer wirksamen Menge einer erfindungsgemässen Verbindung bzw. eines erfindungsgemässen Mittels behandelt.

Die nachstehenden Beispiele illustrieren die Erfindung.

I. Herstellung der Wirkstoffe der Formel I:

Laufmittel chromatographisch gereinigt.

Beispiel 1

30

35

40

Zu einer Suspension von 0,24 g Natriumhydrid (55-60 % in Öl) in 20 ml Dimethylformamid tropft man unter Argonbegasung bei 5-10° C 0,637 g 2-(2-Brommethyl-phenyl)-acrylsäure-methylester sowie 0,5 g 3-Trifluormethyl-acetophenonoxim in 2 ml Dimethylformamid zu. Man rührt das Reaktionsgemisch weitere 30 Minuten. Nach beendeter Reaktion giesst man das Gemisch auf Wasser und extrahiert das wässrige Gemisch mit drei Portionen Äthylacetat. Die vereinigten organischen Phasen werden zweimal mit Wasser gewaschen, über wasserfreiem Natriumsulfat getrocknet und unter vermindertem Druck eingedampft. Das zurückbleibende Öl wird dann an Kieselgel unter Verwendung von n-Hexan/Methylenchlorid (1:1) als

Auf diese Weise erhält man den 2-[α-{[E/Z-α-methyl-3-trifluormethyl-benzyl)imino]oxy}-o-tolyl]-acrylsäure-methylester als farbloses Öl. (MS: 377(4); 115)

Beispiel 2

1,27 g 2-(2-Brommethyl-phenyl)acrylsäure-methylester und 0,94 g 4-Phenylcyclohexanonoxim werden zu einem Zweiphasengemisch von 30 ml Methylenchlorid und 30 ml 2,2N Natronlauge, enthaltend 4,38 g Tetrabutylammoniumhydrogensulfat als Phasentransferkatalysator, gegeben. Dann wird das Gemisch 30 Minuten intensiv gerührt. Nach beendeter Reaktion wird die organische Phase abgetrennt und über wasserfreiem Natriumsulfat getrocknet, und das organische Lösungsmittel wird abdestilliert. Das zurückblei-

bende Öl wird an Kieselgel unter Verwendung von Äthylacetat/n-Hexan (1:9) als Laufmittel chromatographisch gereinigt.

Auf diese Weise erhält man den 2-[α {[(4-Phenylcyclohexyliden)amino]oxy}-o-tolyl]-acrylsäure-methylester als gelbes Öl. (MS: 363(5); 115)

Beispiel 3

5

20

1 g α -(2-Brommethyl-phenyl)- β -methylthio-acrylsäure-methylester und 0,67 g 3-Trifluormethyl-acetophenonoxim werden zu einem Zweiphasengemisch von 3 ml Methylenchlorid und 3 ml 2,2N Natriumhydroxidlösung, enthaltend 1,5 g Tetrabutylammoniumhydrogensulfat als Phasentransferkatalysator, gegeben. Das Reaktionsgemisch wird bei Raumtemperatur ca. 15 Minuten intensiv gerührt. Dann fügt man die gleichen Mengen Methylenchlorid, 2,2N Natriumhydroxidlösung und Tetrabutylammoniumhydrogensulfat hinzu und rührt weitere 15 Minuten. Nach beendeter Reaktion wird das Gemisch mit gesättigter Natriumhydrogencarbonatlösung neutralisiert und die organische Phase abgetrennt, dreimal mit Wasser gewaschen und über wasserfreiem Natriumsulfat getrocknet. Nach Abdestillieren des organischen Lösungsmittels wird das zurückbleibende Öl an Kieselgel unter Verwendung von Diäthyläther/n-Hexan (1:1) als Laufmittel chromatographisch gereinigt.

Auf diese Weise erhält man den 2- $[\alpha-\{[(\alpha-Methyl-3-trifluormethyl-benzyl)imino]oxy\}-o-tolyl]-3-methylthio-acrylsäure-methylester als gelbes Öl. (MS: 376(30); 161)$

Beispiel 4

Zu einer Suspension von 0,78 g Natriumhydrid (80 % in Öl) in 20 ml Dimethylformamid werden unter Argonbegasung bei 0°C 5 g 2-(2-Brommethyl-phenyl)-glyoxylsäure-methylester-O-methyloxim und 3,2 g β-Acetonaphthonoxim in 80 ml Dimethylformamid zugetropft, und das Reaktionsgemisch wird 4 Stunden bei 0°C nachgerührt. Nach beendeter Reaktion wird das Gemisch mit gesättigter Ammoniumchloridlösung hydrolysiert und dreimal mit Diäthyläther extrahiert. Die vereinigten organischen Phasen werden über wasserfreiem Natriumsulfat getrocknet, und das Lösungsmittel wird abdestilliert. Das zurückbleibende Öl wird an Kieselgel unter Verwendung von Diäthyläther/n-Hexan (1:1) als Laufmittel chromatographisch gereinigt, und das Produkt aus Methylenchlorid/Diäthyläther/n-Hexan kristallisiert.

Auf diese Weise erhält man das $2-[\alpha-\{[(1-[\beta-Naphthyl]-äthyl)imino]oxy\}-o-tolyl]-glyoxylsäure-methylester-O-methyloxim als weisse Kristalle, Smp. 97-98<math>^{\circ}$ C. (MS: 390(4); 116)

Beispiele 5-41

35

Analog dem in Beispiel 1 ("Methode 1"), Beispiel 2 ("Methode 2"), Beispiel 3 ("Methode 3") bzw. Beispiel 4 ("Methode 4") beschriebenen Verfahren erhält man aus dem entsprechenden o-substituierten Benzylbromid der Formel III (U = Br) und dem entsprechenden Oxim der Formel II die in der nachfolgenden Tabelle aufgeführten Verbindungen 5 bis 11 der Formel I, die als Öl erhalten werden.

Sie sind, wie auch die Verbindungen der Beispiele 1 bis 4, durch ausgewählte Werte ihres Massenspektrums charakterisiert: Der erste Wert entspricht der höchsten Massenzahl. Der zweite Wert entspricht dem Basis-peak. In Klammern erscheint die Intensität des Signals mit der höchsten Massenzahl in Prozent, bezogen auf den Basis-peak (= 100 %).

55

50

40

Tabelle 1:

5	Beispiel	Y-X	R ₂	R ₃	Physikalische Daten (MS)	Methode 1/2/3/4
	5	CH ₂	Н	4-Chlorphenyl	329(1); 115	1
10	6	CH ₂	Н	Phenyl	295(2); 115	2
	7	CH ₂		t.Butyl- ohexyliden	343(6); 115	2
15	7a	CH ₂	CH ₃	3,4-Methylen- dioxyphenyl	353(6); 115	1
	8	CH₃S-CH	CH₃	3,4-Dichlorphenyl	424(2); 161	3
20	9	CH₃S-CH	CH ₃	β-Naphthyl	405(1); 161	3
	10	CH ₃ S-CH	CH ₃	2-Thienyl	314(29); 161	3
	11	CH₃S-CH	CH ₃	2-Pyridyl	356(<0.5); 161	3

In gleicher Weise lassen sich, vorwiegend nach der Methode 4, folgende Methoximino-glyoxylsäure-Derivate der Tabelle 2 gewinnen, die als Feststoffe oder Öle erhalten und durch Schmelzpunkt und/oder MS charakterisiert werden:

Tabelle 2:

5	Beispiel	R ₂	R ₃		Physikal. Daten
	12	СН3	α , α , α -Trifluor-m-tolyl	Öl	408(<0.5); 186
	13	CH ₃	3,4-Dichlorphenyl	Ī	Smp. 103-105°C
10	14	СН3	2-Thienyl	Öl	346(2); 116
	15	CH ₃	2-Pyridyl		Smp. 82-84°C
15	16	1,2,3,4-T	etra-hydro-α-naphthyliden	Öl	366(1); 116
	17	CH ₃	4-Chlorphenyl	krist.	343(2); 116
	18	n-Propyl	Phenyl	krist.	368(<0.5); 116
20	19	CH ₃	4-Methoxyphenyl	krist.	370(10); 116
	20	CH ₃	3,4,5-Trimethoxyphenyl	Öl	430(49); 116
25	21	CH ₃	2-Furyl		Smp. 95-97°C
	22	CH ₃	3-Bromphenyl	krist.	389(0.5); 116
	23	CH ₃	1,4,8-Trimethyl-nona-1,3,7-trienyl	Ö1	426(2); 116
30	24	CH ₃	3-Trifluormethyl-benzyl	Öl	422(4); 116
	25	CH ₃	4-Nitrophenyl	krist.	354(1); 116
35	26	CH ₃	3-Nitrophenyl	krist.	354(0.5); 116
	27	CF ₃	Phenyl	krist.	222(4); 116
	28	CH₃CH₂-	Phenyl	Ö1	323(2); 116
40	29	i-Propyl	Phenyl	Ö1	368(1); 116
	30	CF ₃	3-Bromphenyl	Öl	252(2); 116

Tabelle 2: (Fortsetzung)

	Tuberio 2: (1 orisotzung)								
5	Beispiel	R ₂	R ₃		Physikal. Daten				
	31	CF ₃	4-Tolyl	krist.	222(6); 116				
	32	CH ₃	2-Benzofuryl		Smp. 110-112°C				
10	33	CH ₃	3,5-Di(trifluormethyl)-phenyl		Smp. 76-78°C				
	34	CH₃	4-Fluorphenyl		Smp. 89-90°C				
15	35	CH₃O-CH₂-	β-Naphthyl	Öl	420(4); 45				
	36	Cyclopropyl	Phenyl	Öl	355(3); 116				
	37	CH ₃	1-Phenoxy-äthyl	krist.	291(63); 116				
20	38	CH ₃	3,4-Methylendioxyphenyl	Öl	384(12); 116				
	39	CF ₃	3-Trifluormethyl-phenyl	Öl	240(3); 116				
25	40	CH ₃	3-Fluorphenyl						
	41	Cyclopropyl	3,4-Methylendioxyphenyl						
	42	Isopropyl	3,4-Methylendioxyphenyl						
30	43	CH ₃	6-(1,4-Benzodioxanyl)						
	44	Cyclopropyl	6-(1,4-Benzodioxanyl)						
35	45	CH ₃	3,4-(Difluormethylendioxy)phenyl						
	46	CH ₃	3,4-(Difluormethylendioxy)benzyl						
	47	CH ₃	3,4-Äthylendioxy-benzyl						
40	48	CH ₃	2,3-(Difluormethylendioxy)phenyl						
	49	CH ₃	4-Methoxy-3-(methylthiomethyl)-phenyl						
<i>4</i> 5	50	CH ₃	F F O						
50	51	CH₃	F ₃ C CI						

Tabelle 2: (Fortsetzung)

5	Beispiel	R ₂	R ₃	Physikal. Daten
	52	C ₆ H ₃ (m	-CF ₃ ,p-Cl)	
10	53	C ₆ H ₄ (p	-CI)	
15	54	CH ₃	3,4-Methylendioxy-benzyl	
	55	CH₃	6-Nitro-3,4-(Methylendioxy)phenyl	
20	56	Н	3,4-(Difluormethylendioxy)phenyl	
	57	CH ₃	2-(3,4-Methylendioxyphenyl)-äthenyl	
	58	CH ₃	2-(3,4-Methylendioxyphenyl)-äthyl	
25	59	CH ₃	4-Methoxy-3-(methylsulfinylmethyl)phenyl	
	60	CH ₃	4-Methoxy-3-(methylsulfonylmethyl)phenyl	
30	61	CH ₃	3,4-Propylendioxyphenyl	
	62	CH ₃	H ₃ C O C	
35	63	CH ₃	OCH ₂ -	
	64	CH ₃	3,4-Methylendioxybenzoyl	
40	65	CH₃	OCH ₃	
45	66	CH ₃	3-Allyloxyphenyl	
	67	CH ₃	3-Propargyloxyphenyl	
50	68	CH ₃	3-Cyclopropylmethoxy-phenyl Öl	410(8); 116

Tabelle 2:	(Fortsetzung)
------------	---------------

5	Beispiel	R ₂	R ₃	Physikal. Daten
	69	CH ₃	3-(2,2-Dichlorvinyloxy)phenyl	
	70	CH ₃	3-Cyanophenyl	
10	71	CH ₃	3-Thiocyanatophenyl	
	72	CH ₃	4-(2,2-Dichlorvinyl)phenyl	
	73	CH ₃	5-(2-Cyanobenzofuryl	
15	74	CH ₃	CH ₃ ON=CH	
20	75	CH ₃	CH300C	
25	76	CH ₃	Ph-O	
30	77	н	CH ₃	
	78	CH₃	4-Difluormethoxyphenyl	
35	79	CH₃	3-Acetoxyphenyl	
40	80	СН₃	H ₃ C -0	
	81	CH ₃	CH3O - C C C C C C C C C C	
45	82	CH ₃	4-Methoxy-3-nitrophenyl	
	83	CH ₃	4-Methoxy-3-(methoxymethyl)phenyl	
50	84	CH ₃	3-Allyloxy-4-methoxyphenyl	

Tabelle 2: (Fortsetzung)

5	Beispiel	R ₂	R ₃	Physikal. Daten
·	85	CH ₃	3-Äthoxy-4-methoxyphenyl	
10	86	CH ₃	CI CI CI	Öl
	87	CH ₃	3-(2,5-Dimethylthienyl)	
15	88	CH ₃	2-(5-Methylthienyl)	
	89	Cyclopropyl	4-Fluorphenyl	
20	90	CH ₃	4-Fluor-3-trifluormethylphenyl	
	91	Н	3-Nitrophenyl	
	92	CH ₃	3-Cyanomethoxy-phenyl	
25	93	CH ₃	4-Fluor-3-phenoxyphenyl	
	94	CH ₃	4-Thiocyanato-3-trifluormethylphenyl	
30	95	CH₃CH=CH	3,4-Methylendioxyphenyl	
	96	CN	3,4-Methylendioxyphenyl	
	97	CH ₃ SO ₂	3,4-Methylendioxyphenyl	
35	98	CH₃CH₂	3,4-(Difluormethylendioxy)phenyl	
	99	CH ₃ CH ₂ CH ₂	3,4-(Difluormethylendioxy)phenyl	
	100	Isopropyl	3,4-(Difluormethylendioxy)phenyl	
40	101	Cyclopropyl	3,4-(Difluormethylendioxy)phenyl	
	102	CH₃OCH₂	3,4-(Difluormethylendioxy)phenyl	
45	103	CH ₃	1-(3,4-Methylendioxyphenyl)äthyl	
	104	Н	1-Methyl-1-(3,4-Methylendioxyphenyl)äthyl	
ļ	105	Н	2-Thienoyl	
50	106	CH ₃	4-(Pentafluoräthoxy)phenyl	

Tabelle 2: (Fortsetzung)

5	Beispiel	R ₂	R ₃	Physikal. Daten
·	107	CH ₃	4-(2,2,2-Trifluoräthoxy)phenyl	Öl
	108	CH ₃	4-(1,1,2,3,3,3-Hexafluorpropoxy)phenyl	
10	109	CH ₃ SCH ₂	3,4-Methylendioxyphenyl	
	110	CH₃CH₂	2-Thienyl	
15	111	CH₃CH₂CH₂	4-Tolyl	
	112	CH ₃	4-Chlor-2-methoxyphenyl	
	113	CH₃CH=CH	3-Trifluormethylphenyl	
20	114	Н	° CH₃	
25	115	CH₃		
30	1 16	СН3		
35	117	CH ₃		
40	118	СН₃	H ₃ C O	
	119	CH₃	6-Methoxy-β-Naphthyl	
	120	CH ₃ CH ₂	β-Naphthyl	
45	121	CH ₃ CH ₂ CH ₂	β-Naphthyl	
:	122	Isopropyl	β-Naphthyl	
50	123	tert.Butyl	β-Naphthyl	

Tabelle 2: (Fortsetzung)

_	Beispiel	R ₂	R ₃		Physikal. Daten
5	124	CH ₃ S	Phenyl		Öl
	125	CH₃S	4-Chlorphenyl		
10	126	CH₃S	3-Trifluormethylphenyl		
	127	СН₃О	4-Chlorphenyl		
	128	CH₃	4-Fluorbenzoyl		
15	129	CH₃	3-Brombenzoyl		
	130	CH₃	3-Nitrobenzoyl		
20	131	CH ₃	3-Trifluormethylbenzoyl	:	
	132	CH ₃	2-Toluoyl		
	133	CH ₃	4-Chlor-3-trifluormethyl-benzyl		
25	134	CH ₃	Phenyl		
	135	CH₃	3-Chlorphenyl		
30	136	CH ₃	3,5-Dichlorphenyl		
	137	CH ₃	6-Fluor-3-tolyl		
	138	CH ₃	3-Trifluormethoxy-phenyl	Öl	425(1); 116
35	139	CH ₃	2-(5-Chlorthienyl)		
	140	CF ₃	2-(β-Naphthyl)-äthenyl		
40	141	CF ₃	3-Chlorphenyl		
40	142	CF ₃	4-Chlorphenyl		
	143	CF ₃	β-Naphthyl		
45	144	CF ₃	2-Pyridyl		
	145	Cyclopropyl	3-Chlorphenyl		
	146	Cyclopropyl	4-Chlorphenyl		

55

Tabelle 2: (Fortsetzung)

_	Beispiel	R ₂	R ₃	Physikal. Daten
5	147	Cyclopropyl	3-Bromphenyl	
	148	Cyclopropyl	3-Trifluormethyl-phenyl	
10	149	Cyclopropyl	4-Phenoxyphenyl	
	150	Cyclopropyl	β-Naphthyl	

Beispiele 151-157

15

30

Analog dem in Beispiel 1 ("Methode 1") beschriebenen Verfahren erhält man aus dem entsprechenden o-substituierten Benzylbromid der Formel III (U = Br) und dem entsprechenden Oxim der Formel II die in der nachfolgenden Tabelle 3 aufgeführten Verbindungen der Formel I als Öle:

$$P-X$$
 COOCH₂CH₃
 R_2 C=N-O-CH₂

Tabelle 3:

35	Beispiel	Y-X	R ₂	R ₃	Physikal. Daten (MS)
	151	CH ₂	CH₃	4-Fluorphenyl	341(3); 115
40	152 *)	CH ₂	CH₃	2-Thienyl	329(4); 115
	153 *)	CH ₂	CH₃	2-Thienyl	329(6); 115
	154	CH ₂	CH ₃	3,4-Dichlorphenyl	391(2); 115
45	155	CH ₂	CF ₃	Phenyl	205(0,5); 115
ı	156	CH ₂	CH ₃	4-Nitrophenyl	368(2); 115
50	157	CH ₂	CH ₃	β-Naphthyl	373(7); 115

^{*)} Verbindungen 152 and 153 sind E/Z-Isomere (nicht zugeordnet).

55 Formulierungsbeispiele

F1:

Ein emulgierbares Konzentrat hat z.B. folgende Zusammensetzung:

		g/Liter	
5	Wirkstoff der Tabellen 1 bis 3	100	
	Nonylphenol-(10)äthoxylat		
	(nicht ionischer Emulgator)	50	
10	Calcium-dodecylbenzolsulfonat		
	(anionischer Emulgator)	25	
	N-Methyl-2-pyrrolidon (Lösungsvermittler)	200	
	Gemisch von Alkylbenzolen (Lösungsmittel)	ad 1 Liter	-

Der Wirkstoff und die Emulgatoren werden im Lösungsmittel und im Lösungsvermittler gelöst. Durch Emulgieren dieses Konzentrates in Wasser kann eine gebrauchsfertige Spritzbrühe beliebiger Verdünnung hergestellt werden.

20 F2:

25

30

35

40

50

55

15

Ein Spritzpulver hat z.B. folgende Zusammensetzung:

	Gewichtsprozent
Wirkstoff der Tabellen 1 bis 3	25,0
Kieselsäure (hydratisiert; Trägerstoff)	20,0
Natrium-laurylsulfat (Netzmittel)	2,0
Natrium-lignosulfonat (Dispergiermittel)	4,0
Kaolin (Trägerstoff)	49,0

Die Komponenten werden miteinander vermischt und in einer geeigneten Mühle feingemahlen. Durch Dispergieren des Gemisches in Wasser ergibt sich eine Suspension, die sich als gebrauchsfertige Spritzbrühe eignet.

Biologische Beispiele:

Beispiel B1: Puccinia coronata (kurative Wirkung)

30-40 Haferkeimlinge der Sorte "Selma" (verteilt auf 2 Töpfe mit 7 cm Ø) werden durch Besprühen mit einer wässerigen Sporensuspension (ca. 150'000 Uredosporen/ml) mit *Puccinia coronata* infiziert. Anschliessend inkubiert man die Testpflanzen während 24 Std. bei 20-24°C und Taupunktbedingungen. Danach werden die Haferkeimlinge mit einer aus einem Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (mit 160 ppm Aktivsubstanz) allseitig gründlich besprüht. Die weitere Kultivierung erfolgt in einer Klimakabine bei 19°C und einer Photoperiode von 14 Std. Die Versuchsauswertung erfolgt 9-10 Tage nach der Infektion durch Ermittlung der von *Puccinia coronata* befallenen Blattfläche in Prozent gegenüber der infizierten, nicht behandelten Kontrolle.

Über 75 % Wirkung bei 160 ppm zeigen z.B. folgende Verbindungen: 3,8,9,11,12,17,78,90,107,128,131,133,138,148.

Unbehandelte aber infizierte Kontrollpflanzen zeigten einen Puccinia-Befall von 100 %.

Beispiel B2: Wirkung gegen Cercospora arachidicola auf Erdnusspflanzen (kurative Wirkung)

Zwei Erdnusspflanzen der Sorte "Tamnut" werden im 4-Blattstadium mit einer Konidiensuspension von Cercospora arachidicola (ca. 200'000 Konidien/ml) besprüht und anschliessend bei 25-26 °C und Taupunktbedingungen inkubiert. Nach zwei Tagen besprüht man die Planzen allseitig gründlich mit einer aus einem Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (mit 160 ppm Aktivsubstanz). Die behandelten

Pflanzen werden anschliessend in einer Klimakabine inkubiert bei folgenden Bedingungen: 25-27°C und 80 % Luftfeuchtigkeit bei Tag, 20°C und Taupunktbedingungen während der Nacht; die Photoperiode beträgt jeweils 16 Stunden. 12 Tage nach der Behandlung erfolgt die Versuchsauswertung durch Ermittlung der von Cercospora arachidicola befallenen Blattfläche in Prozent gegenüber der infizierten Kontrolle.

Im Vergleich zu unbehandelten, aber infizierten Kontrollpflanzen (Anzahl und Grösse der Flecken = 100 %), zeigen Erdnusspflanzen, die mit Wirkstoffen aus den Tabellen behandelt wurden, einen stark reduzierten Cerpospora-Befall.

Über 75 % Wirkung bei 160 ppm zeigen z.B. folgende Verbindungen:

3,8,9,10,11,12,13,14,17,19,22,24,25,26,30,32,33,34,36,38,40,41,44,49,52,66,68,71,83,90,101,129,130,133,138-10 ,145,148.

Beispiel B3: Erysiphe graminis (protektive Wirkung)

30-40 Weizenkeimlinge der Sorte "Lita" (verteilt auf 2 Töpfe mit 7 cm Ø) werden im 1-Blattstadium mit einer aus einem Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (mit 160 ppm Aktivsubstanz) gründlich besprüht und anschliessend im Gewächshaus weiterkultiviert Einen Tag nach der Behandlung bestäubt man die Pflanzen mit Konidien von Erysiphe graminis. Die Versuchsauswertung erfolgt 7 Tage nach der Infektion durch Ermittlung der von Erysiphe graminis überwachsenen Blattoberfläche in Prozent gegenüber der infizierten Kontrolle.

Über 75 % Wirkung bei 160 ppm zeigen z.B. folgende Verbindungen:

1,3,4,5,7A,8,9,10,11,13,15,16,18,23,24,25,27,29,31,33,34,37,39,40,52,53,70,86,89,105,119,120,126,127,128,1-35,137,141,149.

Unbehandelte, aber infizierte Kontrollpflanzen zeigen einen Erysiphae-Befall von 100 %.

25 Beispiel B4: Venturia inaequalis (kurative Wirkung)

Zwei Apfelsämlinge der Sorte "Golden Delicious" werden mit einer Konidiensuspension von Venturia inaequalis besprüht und anschliessend bei 18°C und Taupunktbedingungen inkubiert. Nach 24 Stunden besprüht man die Pflanzen allseitig gründlich mit einer aus einem Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (mit 50 ppm Aktivsubstanz). Die behandelten Apfelsämlinge werden anschliessend im Gewächshaus weiterkultiviert. 9-10 Tage nach der Behandlung erfolgt die Versuchsauswertung durch Ermittlung der von Venturia inaequalis überwachsenen Blattoberfläche in Prozent gegenüber der infizierten Kontrolle.

Über 75 % Wirkung bei 50 ppm zeigen z.B. folgende Verbindungen:

1,3,7A,8,9,10,12,13,14,15,17,19,20,22,24,28,29,30,31,32,33,34,36,38,44,49,54,61,64,66,78,82,83,85,105,106,1-17,124,131,134,135,139,142,147,154,157.

Beispiel B5: Alternaria brassicae (protektive Wirkung)

4 Kohlsämlinge, Sorte "Vorbote", verteilt auf 2 Töpfe, werden im 6-Blattstadium mit einer aus einem Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (mit 50 ppm Aktivsubstanz gründlich besprüht und anschliessend in einer Klimakabine bei 19°C und 16 Std. Beleuchtung pro Tag weiterkultiviert. Zwei Tage nach der Behandlung erfolgt die Infektion der Pflanzen durch Besprühen mit einer wässerigen Konidiensuspension (ca. 30'000 Konidien/ml). Danach werden die Kohlpflanzen bei 24-26°C, Taupunktbedingungen und einer Fotoperiode von 16 Std. inkubiert. Die Versuchsauswertung erfolgt 2-5 Tage nach der Infektion durch Ermittlung der von Alternaria brassicae befallenen Blattfläche in Prozent gegenüber der infizierten, nicht behandelten Kontrolle.

Über 75 % Wirkung bei 50 ppm zeigen z.B. folgende Verbindungen:

1,3,4,8,9,12,13,14,17,20,22,23,24,25,26,28,29,30,31,32,33,34,36,38,54,55,67,92,105,124,130,136,138,143,150-50 ,157.

Beispiel B6: Wirkung gegen Phytophthora infestans auf Tomaten

a) Kurative Wirkung

55

Tomatenpflanzen der Sorte "Roter Gnom" werden nach dreiwöchiger Anzucht mit einer Zoosporensuspension des Pilzes besprüht und in einer Kabine bei 18 bis 20° und gesättigter Luftfeuchtigkeit inkubiert. Unterbruch der Befeuchtung nach 24 Stunden. Nach dem Abtrocknen der Pflanzen werden diese mit einer Brühe besprüht, die die als Spritzpulver formulierte Wirksubstanz in einer Konzentration

von 200 ppm enthält. Nach dem Antrocknen des Spritzbelages werden die Pflanzen wieder in der Feuchtkabine während 4 Tagen aufgestellt. Anzahl und Grösse der nach dieser Zeit aufgetretenen typischen Blattflecken sind der Bewertungsmassstab für die Wirksamkeit der geprüften Substanzen.

b) Präventiv-Systemische Wirkung

Die als Spritzpulver formulierte Wirksubstanz wird in einer Konzentration von 60 ppm (bezogen auf das Bodenvolumen) auf die Bodenoberfläche von drei Wochen alten eingetopften Tomatenpflanzen der Sorte "Roter Gnom" gegeben. Nach dreitägiger Wartezeit wird die Blattunterseite der Pflanzen mit einer Zoosporensuspension von Phytophthora infestans besprüht. Sie wurden dann 5 Tage in einer Sprühkabine bei 18 bis 20°C und gesättigter Luftfeuchtigkeit gehalten. Nach dieser Zeit bilden sich typische Blattflecken, deren Anzahl und Grösse zur Bewertung der Wirksamkeit der geprüften Substanzen dienen. Verbindungen aus den Tabellen 1-3 erzielen eine Hemmung des Krankheitsbefalls auf unter 20 %.

Beispiel B7: Plasmopara viticola (protektive Wirkung)

2 Rebstecklinge der Sorte Riesling x Sylvaner werden jeweils im 4-5 Blattstadium mit einer aus einem Spritzpulver des Wirkstoffes hergestellten Spritzbrühe (mit 160 ppm Aktivsubstanz) allseitig gründlich besprüht und anschliessend in einer Klimakabine bei 17°C, 70-80 % rel. Luftfeuchtigkeit und einer Photoperiode von 16 Stunden weiterkultiviert. Nach 6 Tagen erfolgt die Infektion der Versuchspflanzen durch Besprühen der Blattunterseiten mit in destilliertem Wasser suspendierten Zoosporangien (ca. 300'000 Sporangien/ml) von Plasmopara viticola. Danach werden die Rebpflanzen wie folgt inkubiert: 1 Tag bei 22°C und Taupunktbedingungen im Dunkeln und anschliessend 4 Tage im Gewächshaus. Um die Fruktifikation von Plasmopara viticola zu induzieren, werden die Reben am 5. Tag nach der Infektion in eine Klimakabine mit Taupunktbedingungen und 22°C überführt.

Die Versuchsauswertung erfolgt jeweils am 6. Tag nach der Infektion durch Ermittlung der durch Plasmopara viticola befallenen Blattfläche in % gegenüber der infizierten, nicht behandelten Kontrolle.

Über 75 % Wirkung bei 160 ppm zeigen z.B. folgende Verbindungen:

3,4,8,9,11,12,17,22,24,28,29,30,31,32,36,38,41,43,45,53,61,62,82,102,107,120,125,129,135,138,147,150.

Patentansprüche

30

5

10

15

1. Verbindungen der allgemeinen Formel

45

55

worin

R₁ C₁₋₄-Alkyl bedeutet,

(Y-X) $CH_2 = C_{1-2}$ -Alkylthio-CH = oder C_{1-2} -alkyl-ON = bedeutet

und Z für eine Aldimino- oder Ketiminogruppe steht.

Verbindungen nach Anspruch 1, worin Z f
ür eine Gruppe

steht, worin R₂ Wasserstoff, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl oder C₃₋₆-Cycloalkyl und R₃ C₁₋₆-Alkyl, Aryl-C₁₋₄-alkyl, Heteroaryl-C₁₋₄-alkyl, C₂₋₆-Alkenyl, Aryl-C₂₋₄-alkenyl, Heteroaryl-C₂₋₄-alkenyl, C₃₋₆-Cycloalkyl, Aryl, Heteroaryl, C₂₋₄-Alkanoyl, Aroyl oder Heteroaroyl bedeuten, oder R₂ und R₃ zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten, gegebe-

nenfalls ein Sauerstoff- oder Schwefelatom enthaltenden vier- bis siebengliedrigen gesättigten Ring bilden, der zudem einen gegebenenfalls substituierten ankondensierten Benzolring aufweisen kann.

- 3. Verbindungen nach Anspruch 1, worin R₁ Methyl bedeutet.
- 4. Verbindungen nach einem der Ansprüche 1 bis 3, worin (Y-X) Methylen, Methylthiomethylen oder Methoxyimino bedeutet.
- 5. Verbindungen nach Anspruch 1, worin Z für eine Gruppe

 R_2 C=N- steht, in der

15

20

25

5

10

 R_2 Wasserstoff, C_{1-4} -Alkyl, C_{1-4} -Halogenalkyl, C_{3-6} -Cycloalkyl, C_{2-4} -Alkenyl, C_{2-4} -Alkinyl, C_{1-2} -Alkoxymethyl, C_{1-2} -Alkylthiomethyl, C_{1-4} -Alkylsulfonyl, C_{1-4} -Alkylsulfonyl,

1-3-Alkoxy, C1-3-Alkylthio oder Cyano

und R₃

 C_{1-6} -Alkyl, Aryl- C_{1-4} -alkyl, Heteroaryl- C_{1-4} -alkyl, C_{2-12} -Alkenyl, Aryl- C_{2-4} -alkenyl, Aryloxy- C_{1-4} -alkyl, Heteroaryloxy- C_{1-4} -alkyl, Heteroaryl- C_{2-4} -alkenyl, C_{3-6} -Cycloalkyl, Aryl, Heteroaryl, C_{2-5} -Alkanoyl, Aroyl oder Heteroaroyl bedeuten,

oder R₂ und R₃

zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen gegebenenfalls substituierten, gegebenenfalls ein Sauerstoffatom, Schwefelatom und/oder Stickstoffatom enthaltenden vier- bis siebengliedrigen gesättigten oder ungesättigten Ring bilden, der zudem einen gegebenenfalls substituierten ankondensierten Benzolring aufweisen kann.

- 30 6. Verbindungen nach Anspruch 5, worin R₁ Methyl und (Y-X) Methoxyimino bedeuten.
 - 7. Verbindungen nach einem der Ansprüche 2 bis 4, worin in der Gruppe $R_2R_3C = N$ der Substituent R_2 Wasserstoff, C_{1-4} -Alkyl, C_{1-4} -Halogenalkyl oder C_{3-6} -Cycloalkyl und der Substituent R_3 gegebenenfalls substituiertes Phenyl oder Heteroaryl bedeuten.

35

40

- 8. Eine Verbindung nach Anspruch 1, ausgewählt aus
 - $2-[\alpha-\{[(\alpha-Methyl-3-trifluormethyl-benzyl)imino]oxy\}-o-tolyl]-3-methylthio-acryls\"{a}ure-methylester,$
 - 3-Methylthio-2- $[\alpha-\{[(1-[\beta-naphthyl]-athyl)imino]oxy\}-o-tolyl]-acrylsaure-methylester,$
 - $2-[\alpha-\{[(\alpha-Methyl-2-thenyl)imino]oxy\}-o-tolyl]-3-methylthio-acrylsäure-methylester,$
- 2-[a-{[(a-Methyl-3,4-dichlorbenzyl)imino]oxy}-o-tolyl]-3-methylthio-acrylsäure-methylester,
 - $2-[\alpha{[(1-[\beta-Naphthyl]-äthyl)imino]oxy}-o-tolyl]-glyoxylsäure-methylester-O-methyloxim,$
 - $2-[\alpha-\{[(\alpha-Methyl-3-trifluormethyl-benzyl)imino]-oxy\}-o-tolyl]-glyoxyls\"{a}ure-methylester-O-methyloxim,$
 - 2-[α-{[(α-Methyl-3,4-dichlorbenzyl)imino]oxy}-o-tolyl]-glyoxylsäure-methylester-O-methyloxim,
 - 2-[\alpha-\{[(\alpha-Methyl-2-thenyl)imino]\oxy\}-o-tolyl]-glyoxyls\u00e4ure-methylester-O-methyloxim und
- 2- $[\alpha-\{[(\alpha-Methyl-3-trifluormethyl-benzyl)imino]-oxy\}-o-tolyl]-acrylsäure-methylester.$
 - 9. Eine Verbindung nach Anspruch 5, ausgewählt aus

 $2-[\alpha-\{[(\alpha-Methyl-3-brombenzyl)imino]oxy\}-o-tolyl]-glyoxyls\"{a}ure-methylester-O-methyloxim,$

- 2-[α{[(α-Methyl-m-(trifluormethyl)phenäthyl)imino]oxy}-o-tolyl]-glyoxylsäure-methylester-O-methyloxim,
- 2-[a-{[(1-[2-Benzofuryl]-äthyl)imino]oxy}-o-tolyl]-glyoxylsäure-methylester-O-methyloxim,
- $2-[\alpha-\{[(\alpha-\text{Methyl-3,5-bis-trifluormethyl-benzyl})\text{imino}] oxy\}-o-tolyl]-glyoxylsäure-methylester-O-methyloximund and the state of t$
- 2-[α-{[(α-Methyl-3,4-methylendioxybenzyl)imino]oxy}-o-tolyl]-glyoxylsäure-methylester-O-methyloxim.

55

50

10. Fungizides Mittel, dadurch gekennzeichnet, dass es als Wirkstoff eine wirksame Menge mindestens einer Verbindung der allgemeinen Formel I gemäss Anspruch 1 zusammen mit einem geeigneten Trägermaterial enthält.

- 11. Mittel gemäss Anspruch 10, dadurch gekennzeichnet, dass es als Wirkstoff eine Verbindung gemäss einem der Ansprüche 2,3,4,7 oder 8 enthält.
- 12. Mittel gemäss Anspruch 10, dadurch gekennzeichnet, dass es als Wirkstoff eine Verbindung gemäss einem der Ansprüch 5,6 oder 9 enthält.
- 13. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel

worin

5

10

15

20

25

30

35

45

50

 R_1 C_{1-4} -Alkyl bedeutet,

(Y-X) $CH_2 = C_{1-2}$ -Alkylthio-CH = oder C_{1-2} -alkyl-ON = bedeutet

und Z für eine Aldimino- oder Ketiminogruppe steht, dadurch gekennzeichnet, dass man ein Oxim Z-OH, worin Z für eine Aldimino- oder Ketiminogruppe steht, mit einem Benzylalkoholderivat der allgemeinen Formel

zur Reaktion bringt,

worin R₁ und (Y-X) die oben angegebenen Bedeutungen besitzen und U eine Abgangsgruppe bedeutet.

- **14.** Verfahren gemäss Anspruch 13, dadurch gekennzeichnet, dass die Abgangsgruppe U Chlor, Brom, Jod, Mesyloxy, Benzolsulfonyloxy oder Tosyloxy ist.
- **15.** Verwendung von Verbindungen der Formel I gemäss Anspruch 1 zur Bekämpfung bzw. Verhütung von Pilzbefall in der Landwirtschaft, im Gartenbau und im Holzschutz.

EUROPÄISCHER RECHERCHENBERICHT

EP 91 10 9035

	EINSCHLÄG			
Categorie		ts mit Angabe, soweit erforderlich, geblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CI.5)
Α	EP-A-0 370 629 (ICI) * Ansprüche 1,6 *		1,10	C 07 C 251/60 C 07 C 323/56 A 01 N 37/36
Α	EP-A-0 348 766 (BASF) * Anspruch 1 *		1	A 01 N 07/00
Α	EP-A-0 253 213 (BASF) * Ansprüche 1,3 *		1,10	
Α	EP-A-0 212 859 (ICI) * Spalte 1, Satz 1; Tabelle II,	Seiten 15,16 *	1,10	
Α	EP-A-0 178 826 (ICI) * Ansprüche 1,20 *		1,10	
-				
				RECHERCHIERTE SACHGEBIETE (Int. Cl.5)
				C 07 C 251/60 C 07 C 233/56 A 01 N 37/36
De	er vorliegende Recherchenbericht wurd	e für alle Patentansprüche erstellt		
Recherchenort		Abschlußdatum der Recherche	<u> </u>	Prüfer
	Berlin	27 August 91		KAPTEYN H G

- Y: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung

- P: Zwischenliteratur T: der Erfindung zugrunde liegende Theorien oder Grundsätze

- D: in der Anmeldung angeführtes Dokument
 L: aus anderen Gründen angeführtes Dokument
- &: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument