1. The number of available threads: 2; Array size: 2000000; Sorted 10 times

threads: 2

2. The number of available threads: 4; Array size: 2000000; Sorted 10 times

3. The number of available threads: 8; Array size: 2000000; Sorted 10 times

4. The number of available threads: 16; Array size: 2000000; Sorted 10 times

threads: 16

5. The number of available threads: 32; Array size: 2000000; Sorted 10 times

6. The number of available threads: 64; Array size: 2000000; Sorted 10 times

threads: 64

Conclusion: An ideal cutoff value is 550000 with array size 2000000. It seems that we should set the cutoff value equals to (25.5% * array size). When the size of thread pool is 16, the sorting algorithm shows the highest efficiency.