CNN Architectures

Major Architectures

1. AlexNet

- a. First deep learning based ConvNet (8 layers)
- b. At first layer (CONV1)
 - i. input image size: 227 x 227 x 3
 - ii. output volume size: 55 x 55 x 96
 - 96개의 11 x 11 filters with stride 4
 - iii. total number of parameters: 11 * 11 * 3 * 96 = 35K
- c. At second layer (POOL1)
 - i. output volume size: 27 x 27 x 96
 - 3 x 3 filters with stride 2
 - preserve the depth
 - ii. total number of parameters: 0
 - parameters are the weights we try to learn
 - but pooling just take the max value in one region

2. VGGNet

- a. Deeper networks (16-19 layers) with small filters
 - i. why use smaller filters? (3 x 3 conv)
 - Stack of three 3 x 3 conv with stride 1 layers has same effective receptive field as one 7 x 7 conv layer
 - fewer parameters per layer
 - ii. what is the *effective receptive field* of three 3 x 3 conv with stride 1 layers?
 - 크기가 큰 filter 를 작은 filter 로 factorize 하는 방식으로 3 layer 를 사용하면 3 x 3 → 5 x 5 → 7 x 7 크기의 filter 와 동일한 효과를 냄

• e.g.,

3. GoogLeNet

- a. Deeper network (22 layers) with computational efficiency
- b. Use *inception module*
 - i. design a good local network topology (network within a network) and then stack these modules on top of each other
 - ii. apply parallel filter operations on the input from previous layer
 - iii. concatenate all filter outputs together depth-wise
- c. what is the problem with this?
 - i. high computational complexity
- d. Solution: use *bottleneck layers* (1 x 1 conv) to reduce feature depth

- i. preserve spatial dimension and only reduce depth
- ii. use zero-padding to preserve spatial dimension

4. ResNet

- a. Very deep networks using residual connections
 - i. what happens when we continue stacking deeper layers on a plain convolutional neural network?
 - not able to do better than shallow model
- b. Hypothesis: the problem is an optimization problem, deeper models are harder to optimize
- c. Solution: use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping
 - i. plain layers: $x \rightarrow F(x) \rightarrow H(x)$
 - ii. residual block: $x \to F(x) \to F(x) + x (= H(x))$
- d. For deeper networks, use bottleneck layer to improve efficiency

Minor Architectures

- 1. NiN (Network in Network)
 - a. Use micronetwork within each conv layer to compute more abstract features for local patches
 - i. micronetwork uses multilayer perceptron

2. Wide ResNet

- a. Use wider residual blocks
 - i. F x k filters instead of F filters in each layer
- b. Increase width instead of depth for computational efficiency
- 3. ResNeXt

a. Increase width of residual block through multiple parallel pathways

4. Stochastic Depth

- a. Motivation: reduce vanishing gradients and training time through short networks during training
- b. Randomly drop a subset of layers during each training pass

5. FractalNet

- a. Use both shallow and deep paths to output
- b. Train with dropping out subpaths

6. DenseNet

a. Dense blocks of each layer are connected to every other layer in feedforward fashion

b. Advantages

- i. alleviate vanishing gradient
- ii. strengthen feature propagation
- iii. encourage feature reuse

7. SqueezeNet

a. Consist of a squeeze layer with 1 x 1 filters feeding an expand layer with 1 x 1 and 3 x 3 filters