Review of Lecture 11

Overfitting

Fitting the data more than is warranted

VC allows it; doesn't predict it

Fitting the noise, stochastic/deterministic

• Deterministic noise

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 12: Regularization

Outline

• Regularization - informal

• Regularization - formal

Weight decay

• Choosing a regularizer

Two approaches to regularization

Mathematical:

III-posed problems in function approximation

Heuristic:

Handicapping the minimization of $E_{
m in}$

A familiar example

without regularization

with regularization

and the winner is ...

 $\mathsf{bias} = \mathbf{0.21}$

var=1.69

with regularization

 $\mathsf{bias} = \mathbf{0.23}$

 $\mathsf{var} = \mathbf{0.33}$

The polynomial model

 $\mathcal{H}_{\mathbb{Q}}$: polynomials of order Q

linear regression in ${\mathcal Z}$ space

$$\mathbf{z} = egin{bmatrix} 1 \ L_1(x) \ dots \ L_Q(x) \end{bmatrix} \qquad \mathcal{H}_{\mathbb{Q}} = \left\{ \sum_{q=0}^{Q} \ w_q \ L_q(x)
ight\}$$

Legendre polynomials:

Unconstrained solution

Given
$$(x_1,y_1),\cdots,(x_N,y_n) \longrightarrow (\mathbf{z}_1,y_1),\cdots,(\mathbf{z}_N,y_n)$$

Minimize
$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{z}_n - y_n)^2$$

Minimize
$$\frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$

$$\mathbf{w}_{\text{lin}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

pseudo inverse

Constraining the weights

Hard constraint: \mathcal{H}_2 is constrained version of \mathcal{H}_{10} with $w_q=0$ for q>2

Softer version: $\sum_{q=0}^{Q} w_q^2 \leq C$ "soft-order" constraint

Minimize $\frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$

subject to: $\mathbf{w}^\mathsf{T}\mathbf{w} \leq C$

Solution: \mathbf{w}_{reg} instead of \mathbf{w}_{lin}

Optimization approach

Our aim is to minimise the quadratic cost between the output labels

Solving for w_{reg}

Minimize
$$E_{\mathrm{in}}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{Z} \mathbf{w} - \mathbf{y} \right)^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$

subject to:
$$\mathbf{w}^\mathsf{T}\mathbf{w} \leq C$$

$$\nabla E_{
m in}(\mathbf{w}_{
m reg}) \propto -\mathbf{w}_{
m reg}$$

$$= -2\frac{\lambda}{N}\mathbf{w}_{\text{reg}}$$

$$\nabla E_{\rm in}(\mathbf{w}_{\rm reg}) + 2\frac{\lambda}{N}\mathbf{w}_{\rm reg} = \mathbf{0}$$

Minimize
$$E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N}\mathbf{w}^{\scriptscriptstyle\mathsf{T}}\mathbf{w}$$

derive: $W^TW => W^2$; der(W^2)=2W

Math Theorem: gradients are always normal to level curves.

Paraboloid Surface with Constraint Sphere $(\theta \theta \le C)$

Augmented error

Minimizing
$$E_{\mathrm{aug}}(\mathbf{w}) = E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$= \frac{1}{N} (\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
 unconditionally

- solves -

Minimizing
$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{Z} \mathbf{w} - \mathbf{y} \right)^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y})$$

subject to:
$$\mathbf{w}^\mathsf{T}\mathbf{w} \leq C$$

← VC formulation

The solution

$$E_{\mathrm{aug}}(\mathbf{w}) = E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$

$$= \frac{1}{N} \left((\mathbf{Z} \mathbf{w} - \mathbf{y})^{\mathsf{T}} (\mathbf{Z} \mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w} \right)$$

$$\nabla E_{\rm aug}(\mathbf{w}) = \mathbf{0}$$

$$\Longrightarrow$$

$$\Longrightarrow Z^{\mathsf{T}}(Z\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w} = \mathbf{0}$$

$$zzw-zy+kw$$

 $w(zz+kl) = zy$
 $w = (zz+kl)^{-1}.zy$

$$\mathbf{w}_{\text{reg}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

(with regularization)

as opposed to

$$\mathbf{w}_{\text{lin}} = (\mathbf{Z}^{\mathsf{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{y}$$

(without regularization)

pinv

The result

Minimizing
$$E_{\mathrm{in}}(\mathbf{w}) + \frac{\lambda}{N} \, \mathbf{w}^{\mathsf{T}} \mathbf{w}$$
 for different λ 's:

12/21

Weight 'decay'

Minimizing $E_{\rm in}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$ is called weight *decay*. Why?

Gradient descent:

$$\mathbf{w}(t+1) = \mathbf{w}(t) - \eta \nabla E_{\text{in}} \left(\mathbf{w}(t) \right) - 2 \eta \frac{\lambda}{N} \mathbf{w}(t)$$

$$= \mathbf{w}(t) (1 - 2\eta \frac{\lambda}{N}) - \eta \nabla E_{\text{in}} (\mathbf{w}(t))$$

Applies in neural networks:

$$\mathbf{w}^{\mathsf{T}}\mathbf{w} = \sum_{l=1}^{L} \sum_{i=0}^{d^{(l-1)}} \sum_{j=1}^{d^{(l)}} \left(w_{ij}^{(l)}\right)^{2}$$

Variations of weight decay

Emphasis of certain weights:

$$\sum_{q=0}^{Q} \gamma_q \ w_q^2$$

Examples:

$$\gamma_q = 2^q \implies \text{low-order fit}$$

$$\gamma_q = 2^{-q} \implies \text{high-order fit}$$

Neural networks: different layers get different γ 's

Tikhonov regularizer: $\mathbf{w}^{\mathsf{T}} \mathbf{\Gamma} \mathbf{w}$

Even weight growth!

We 'constrain' the weights to be large - bad!

Practical rule:

stochastic noise is 'high-frequency'

deterministic noise is also non-smooth

⇒ constrain learning towards smoother hypotheses

© W Creator: Yaser Abu-Mostafa - LFD Lecture 12

General form of augmented error

Calling the regularizer $\Omega = \Omega(h)$, we minimize

$$E_{\text{aug}}(h) = E_{\text{in}}(h) + \frac{\lambda}{N}\Omega(h)$$

Rings a bell?

$$E_{\text{out}}(h) \leq E_{\text{in}}(h) + \Omega(\mathcal{H})$$

 $E_{
m aug}$ is better than $E_{
m in}$ as a proxy for $E_{
m out}$

Outline

Regularization - informal

Regularization - formal

Weight decay

Choosing a regularizer

The perfect regularizer Ω

Constraint in the 'direction' of the target function (going in circles

)

Guiding principle:

Direction of **smoother** or "simpler"

Chose a bad Ω ?

We still have λ !

Neural-network regularizers

Weight decay: From linear to logical

Weight elimination:

Fewer weights \Longrightarrow smaller VC dimension

Soft weight elimination:

$$\Omega(\mathbf{w}) = \sum_{i,j,l} \frac{\left(w_{ij}^{(l)}\right)^2}{\beta^2 + \left(w_{ij}^{(l)}\right)^2}$$

Early stopping as a regularizer

Regularization through the optimizer!

When to stop? validation

© A Creator: Yaser Abu-Mostafa - LFD Lecture 12

The optimal λ

0.6 $Q_f = 100$ Expected $E_{
m out}$ $Q_f = 30$ $Q_f = 15$

Stochastic noise

Deterministic noise