

实验 报告

课程名称:	数学实验
姓名:	
序号:	
班级:	
日期:	

数学学院

目 录

实	验		试利用 Matlab 的符号运算功能解决以下问题	1
实	验		Matlab 编程与作图	5
实	验	三	代数模型实验	10
实	验	四	代数变换模型	15
实	验	五.	代数方程模型实验	22
实	验	六	分形实验	35
实	验	七	插值实验	46
实	验	八	微分方程实验	53
实	验	九	蒙特卡洛模拟实验	58

实验 一 试利用 Matlab 的符号运算功能解决以下问题

问题 1 设 n=10

$$X = \begin{bmatrix} 0 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_2 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & 0 & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

其中 $a_i \neq 0$, $i = 1,2,\cdots,n$, 求 X^{-1}

实验过程:

```
n=10;

% 建立符号矩阵

syms A;

for i=1:n

   A(i)=sym (['a',num2str(i)]);

end

% 建立题目中的矩阵

for i=1:n-1

   X(i,i+1)=A(i);

end

X(n,1)=A(n);

% 对 X 矩阵求逆

result=X^-1;
```

实验结果及分析:

result =

```
[\phantom{0}0,\phantom{0}0,\phantom{0}0,\phantom{0}0,\phantom{0}0,\phantom{0}0,\phantom{0}0,\phantom{0}0,\phantom{0}1/a10]
[1/a1, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 1/a2, 0, 0, 0, 0, 0, 0, 0,
                                          0]
   0, 0, 1/a3, 0, 0, 0, 0, 0, 0,
                                         01
   0, 0, 0, 1/a4, 0, 0, 0, 0, 0,
                                         01
  0, 0, 0, 0, 1/a5, 0, 0, 0, 0,
[
                                         0]
[0, 0, 0, 0, 0, 1/a6, 0, 0, 0, 0]
                                         0]
  0, 0, 0, 0, 0, 0, 1/a7, 0, 0,
                                         01
[ 0, 0, 0, 0, 0, 0, 1/a8, 0,
                                         0]
[0, 0, 0, 0, 0, 0, 0, 0, 1/a9,
                                         0]
```

问题 2 设 m=3, n=4, A, B 分别为 $n \times m$ 和 $m \times n$ 矩阵。证明

$$\begin{vmatrix} E_m & B \\ A & E_n \end{vmatrix} = |E_n - AB| = |E_m - BA|$$

其中 E_m , E_n 分别为 m 和 n 阶单位矩阵。

实验过程:

```
m=3;
n=4;
% 建立题目中的矩阵
syms A B; % A=nxm
for i=1:m
  for j=1:n
  A(j,i)=sym (['a',num2str(j),num2str(i)]);
  B(i,j)=sym (['b',num2str(i),num2str(j)]);
  end
end
Em=eye(m);
En=eye(n);
%三个式子依次为
X1=det([Em B; A En]);
X2=det([En-A*B]);
X3=det([Em-B*A]);
% 作差
result=[X2-X1 X3-X2]
```

实验结果及分析: 如图所示

等式左边右边作差,差为零,所以左边右边相等,原式得证。

问题 3 设 n=3, A,B,C,D 都是 $n \times n$ 矩阵, 且 $|A| \neq 0$, AC = CA 证明

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - CB|$$

题目分析: 因为 $|A| \neq 0$, 所以 A 为可逆矩阵, 又因为AC = CA, 所以有C =

ACA^{-1}

将 CB 换成ACA-1B。

实验过程:

等式左边右边作差,差为零,所以左边右边相等,原式得证。

问题 4 设 n=5, A 是一个 $n \times n$ 矩阵, rank (A) =1, 证明

1)
$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 $(b_1 \quad b_2 \quad \cdots \quad b_n)$
2) $A^2 = kA$
并确定 k 的值。
实验过程:

```
n=5;

% 第一小问

syms ax ay A;

for j=1:n

    ax(1,j)=sym (['a',num2str(j)]);

    ay(j,1)=sym (['b',num2str(j)]);

end

A=ax*ay;

ra=rank(A);

% 第二小问, 建立变量 k, 通过 solve 求解

syms k;

res=solve(A*A-k*A==0,k);
```

实验结果及分析:

```
ra =

1

>> res

res =

a1*b1 + a2*b2 + a3*b3 + a4*b4 + a5*b5
```

由(1)可知k为两个向量的内积

注:每次课的课外作业作为一次实验(可包括多个问题),做完一次实验除按时上交给课代表外,自己保存。下次作业在前一次基础上接着进行(若前次为实验一,这次则为实验二,…)

实验二 Matlab 编程与作图

1、自选本专业领域中的2个计算问题,用Matlab编写函数M文件进行求解;

Q1.1 求解图中各支路电流

解:由支路电流法,列出KCL KVL则有:

$$i_{1} = i_{2} + i_{3}$$

$$i_{2} = i_{1} + i_{4}$$

$$i_{3} = i_{6} + i_{5}$$

$$i_{6} = i_{1} + i_{8}$$

$$50i_{2} + 100i_{1} = 5$$

$$40i_{5} - 20i_{4} - 50i_{2} + 100i_{3} = -10$$

$$1000i_{8} + 1000i_{6} - 40i_{5} = -5$$

$$2000i_{7} - 1000i_{8} = 15$$

用 Matlab 列出方程求解。

```
syms i;
for index = 1:8
    i(index) = sym(['i', num2str(index)]);
end
syms eq
eq(1)=i(1)==i(2)+i(3);
eq(2)=i(2)==i(1)+i(4);
eq(3)=i(3)==i(6)+i(5);
eq(4)=i(6)==i(8)+i(7);
eq(5)=50*i(2)+100*i(1)==5;
eq(6)=-50*i(2)+10*i(3)-20*i(4)+40*i(5)==-10;
eq(7)=1000*i(8)+1000*i(6)-40*i(5)==-5;
eq(8)=2000*i(7)+1000*i(8)==15;
res=solve(eq,i);
```

Q1.2 绘制互感耦合的频率响应曲线。

由《高频》相关知识可知其关系式为

$$lpha = rac{2\eta}{d(1+\eta^2)^2 + 2(1-\eta^2)\xi^2 + \xi^4}$$
取 $\eta = 3$,则

$$\alpha = \frac{6}{\sqrt{100 - 16\xi^2 + \xi^{\varphi}}}$$

编写 matlab 程序,即可画出函数曲线

```
s=-14:0.1:14
a=6./sqrt(100-16.*s.^2+s.^4)
plot(s,a,'r','LineWidth', 1.5)
axis([-15 15 0 1.1]);
line([0 0],[0 1.1],'LineWidth', 2);
line([-15 15],[0 0],'LineWidth',2);
xlabel('\xi','FontWeight','bold');
ylabel('a','FontWeight','bold');
box off;
```

函数曲线

2、用 Matlab 绘制心形线、螺旋线、双曲线、抛物线和椭圆曲线(不是椭圆) 等几何曲线

```
% 心形线
ezplot('x^2+y^2+x-sqrt(x^2+y^2)');

% 费马螺线
x=0:0.01*pi:8*pi;
y=x.^1/2;
polar(x,y,'-');

% 双曲线
ezplot('x^2/2-y^2/4-1');
grid on;
line([0 0],[-6 6],'LineWidth', 1.5);
line([-6 6],[0 0],'LineWidth', 1.5);

% 抛物线
ezplot('x*-3+y^2');

% 椭圆曲线
ezplot('y^2-x*(x-1)*(x-2)');
```

心形线

螺旋线

双曲线

抛物线

椭圆曲线

实验三 代数模型实验

1. (经济计划上的应用)某城市发展经济,主要依靠它的农业、工业及服务业,现经过调查统计,知道该市的"投入"系数如下表 5-5 所示:

	农业	工业	服务业
农业	0.2	0.3	0.2
工业	0.4	0.1	0.2
服务业	0.1	0.3	0.2

表 5-5 某市的投入系数表

现该市预算明年在农业上可有 10 亿元盈余,工业有 5 亿元盈余,服务业有 6 亿元盈余。要达到这项预算,问该市明年农业、工业和服务业的生产总值分别是多少?

题目分析:"投入系数"即可看成 W. Leontief 的投入产出数学模型中的直接消耗系数,盈余应该是"新创价值"中的"纯收入"一项,可以归入 z_i 中。若要求 z,相当于将直接消耗系数矩阵 A 转置求 y,那么即可列出程序求解。

实验过程:

```
clear all;
% "投入"系数矩阵
A=[0.2 0.3 0.2;
0.4 0.1 0.2;
0.1 0.3 0.2];
% 盈余,即相当于 z1...zn,把 A 转置之后相当于 y
profit=[10;5;6];
n = size(profit,1);
W = eye(n) - A';
x = W\profit %总投入/总产出
```

实验结果与分析:

x =

24.8958 20.1042 18.7500

即农业、工业和服务业的生产总值分别是 24.8958、20.1042、18.7500 亿元才能 达到在农业上可有 10 亿元盈余,工业有 5 亿元盈余,服务业有 6 亿元盈余的预 算这一目标。

2. (进出口贸易上的应用)假设某地区只有 A、B、C 三个经济部门,它的投入产出表如表 5-6 所示。在此表的基础上,若计划有了改变,即 A 部门要进口 30 吨产品; C 部门产品要出口 36 吨,问总产品与各部门之间的投入将发什么变化?

产出 \mathbf{C} 最终产品 总产品 В A 投入 30 20 50 150 250 A 30 В 20 35 115 200 \mathbf{C} 16 18 2 64 100

表 5-6 投入产出表

题目分析: 首先,由题目的信息,可以求出其直接消耗系数矩阵 A。又因为 A 部门要进口 30 吨产品,相当于最终产品减少 30 吨,而 C 部门产品要出口 36 吨,相当于最终产品增加 36 吨。记原来的最终产品数量为矩阵 Y,变化数量为 Δy ,则现在的最终产品数量 $current_Y$ 为 $Y + \Delta y$ 。那么由 $x = [I - A]^{-1} y$ 即可求出 $current_X$ total。在技术水平没有显著提高的条件下,可以假设直接消耗系数不变。由 $a_{ij} = \frac{x_{ij}}{x_j}$ 得 $x_{ij} = a_{ij} \cdot x_j$,那么由 $current_X$ total 和就可求出

current X_{\circ}

实验过程:

```
clear all;
%原始投入产出值
X=[30 \ 20 \ 50;
20 30 35;
16 18 2];
                           % 原始最终产品
Y=[150;115;64];
                          % 原始总产品
x_total=[250 200 100];
x_rep = repmat( x_total,3,1); % 复制3份,扩展为3x3矩阵
A=X./x_rep;
                           % 求直接消耗系数
delta_y=[-30;0;36];
                           % y 的变化量
current_Y=Y+delta_y;
                      % 现在的 Y
% 由 x=(I-A)^-1*y 得
current_x_total=(eye(3)-A)\current_Y;
current_x_rep=repmat(current_x_total',3,1);
% 在技术水平没有显著提高的条件下, 假设直接消耗系数不变
% 即可求得各产品与各部门之间的变化
current_X=current_x_rep.*A;
```

实验结果及分析:

产出投入	A	В	С	最终产品	总产品
A	28.648	21.430	68.656	120	238.735
В	19.099	32.146	48.059	115	214.304
С	15.279	19.287	2.746	100	137.313

上面表格即为变化之后总产品与各部门之间的变化。

3. 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、外部需求、初始投入等如表 5-7 所示。

表 5-7 国民经济三个部门之间的投入产出表

产出投入	农业	制造业	服务业	外部需求	总产出
农业	15	20	30	35	100
制造业	30	10	45	115	200
服务业	20	60	0	70	150
初始投入	35	110	75		
总投入	100	200	150		

根据表 5-7 回答下列问题:

- (1) 如果今年对农业、制造业和服务业的外部需求分别为 50, 150, 100 亿元, 问这三个部门的总产出分别应为多少?
- (2) 如果三个部门的外部需求分别增加1个单位,问它们的总产出应分别增加多少?

题目分析: 首先, 由题目的信息, 可以求出其直接消耗系数矩阵 A。又因为农业、制造业和服务业的外部需求分别为 50, 150, 100 亿元, 即为 $current_Y$ 。

那么由 $x = [I - A]^{-1}y$ 即可求出 $current_X_total$ 。即为总产出。因为 $\Delta x = (I - A)^{-1}\Delta y$,当农业的外部需求增加 1 个单位,而其余部门的外部需求不变时,令 $\Delta y = [1,0,0]^T$,则 3 个部门的总产出增加 Δx 等于 $(I - A)^{-1}$ 的第一列。类似,当制造业的外部需求增加 1 个单位,而其余部门的外部需求不变时,3 个部门的总产出增加等于的第二,以此类推。

实验过程:

```
clear all;
%原始投入产出值
X=[15 \ 30 \ 20]
20 10 60;
30 45 0;];
                           % 原始最终产品
Y=[35;110;75];
                           % 原始总产品
x total=[100 200 150];
x_rep = repmat(x_total,3,1); % 复制3份,扩展为3x3矩阵
                            % 求直接消耗系数
A=X./x_rep;
current_Y=[50;150;100];
                            % 现在的 Y
% 由 x=(I-A)^-1*y 得总产出
current_x_total=(eye(3)-A)\current_Y;
% 外部需求分别增加1个单位,总产出增量
delta_x=inv(eye(3)-A);
```

实验结果及分析:

current_x_total
138.758
272.561
202.954

如果今年对农业、制造业和服务业的外部需求分别为 50, 150, 100 亿元, 问这 三个部门的总产出分别应为 138.758、272.561、202.954 亿元。

	Delta_x	
1.3459	0.2817	0.2921
0.5008	1.2676	0.5738
0.5164	0.3697	1.2167

从上面表格可知,当农业的外部需求增加 1 个单位,而其余部门的外部需求不变时,三个部门总产出增加 Δx 分别为 1.3459、 0.5008、 0.5164 亿元。当制造业的外部需求增加 1 个单位,而其余部门的外部需求不变时,三个部门总产出增加 Δx 分别为 0.2817、 1.2676、 0.3697 亿元。当服务业的外部需求增加 1 个单位,而其余部门的外部需求不变时,三个部门总产出增加 Δx 分别为 0.2921、 0.5738、

实验四 代数变换模型

1. 对明文"Mr Hill made this code.", 运用不同的密钥矩阵, 实现 Hill 加密和解密过程。

实验过程: 实验过程中采用一下对应方法,不区分大小写。

а	b	С	d	e	f	g	h	i	j	k	l	m	n
1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	p	q	r	S	t	u	ν	w	x	У	Z		
15	16	17	18	19	20	21	22	23	24	25	26	27	28

那么明文对应的关系为:

m	r		h	i	l	l		m	а	d	e
13	18	27	8	9	12	12	27	13	1	4	5
	t	h	i	S		С	0	d	e		
27	20	8	9	19	27	3	15	4	5	28	27

用空格补齐,取 3×3 的密钥,那么明文可以构造的矩阵如下

密钥 K 取下列矩阵,

$$K = \begin{array}{cccc} 12 & x & y \\ 8 & 3 & 5 \\ 7 & 9 & 3 \end{array}$$

det(K) = 11x + 51y - 432,取 det(K) = -1, 经过枚举法,可以得到特解:

$$\begin{cases} x = 16 \\ v = 5 \end{cases}$$

那么,
$$K = \begin{bmatrix} 12 & 16 & 5 \\ 8 & 3 & 5 \\ 7 & 9 & 3 \end{bmatrix}$$

在 MATLAB 中输入如下代码,即可得到实验结果。

```
% 明文
M=[13,18,27,8,9,12,12,27;
13,1,4,5,27,20,8,9;
19,27,3,15,4,5,28,27;
]
% 密钥
K=[12 16 5; 8 3 5; 7 9 3];
det(K) %验证密码矩阵是否可逆

C = mod(K * M,28) %密文
INV_K = inv(K);
INV_K = round(INV_K); %以整数形式参与运算
K2 = mod(INV_K,28) %解密的钥匙
Y = mod(K2 * C,28) %恢复明文
```

实验结果与分析:

恢复明文
$$Y = \begin{pmatrix} 13 & 18 & 27 & 8 & 9 & 12 & 12 & 27 \\ 13 & 1 & 4 & 5 & 27 & 20 & 8 & 9 \\ 19 & 27 & 3 & 15 & 4 & 5 & 0 & 27 \end{pmatrix}$$

对比输入 M, 能够匹配, 说明完成加密任务功能。

翻译成字母即: kck . mtonbsnemhnmtjfj po

换另一个加密矩阵,取
$$K = \begin{bmatrix} 5 & 2 & 3 & 4 \\ x & 5 & y & 4 \\ 1 & 1 & 3 & 3 \\ 5 & 4 & 3 & 1 \end{bmatrix}$$
 $\det(K) = 15 * x + 31 * y - 276$,令 $\det(K) = -1$, 通过穷举法,可以求得特解: $\begin{cases} x = 8 \\ y = 5 \end{cases}$ $\mathbb{P}K = \begin{bmatrix} 5 & 2 & 3 & 4 \\ 8 & 5 & 5 & 4 \\ 1 & 1 & 3 & 3 \\ 5 & 4 & 3 & 1 \end{bmatrix}$ 那么,明文对应的矩阵 $M = \begin{bmatrix} 13 & 18 & 27 & 8 & 9 & 12 \\ 12 & 27 & 13 & 1 & 4 & 5 \\ 27 & 20 & 8 & 9 & 19 & 27 \\ 3 & 15 & 4 & 5 & 28 & 0 \end{bmatrix}$

对应的 MATLAB 代码为:

```
% ======== K2 =======
M=[13,18,27,8,9,12;
12,27,13,1,4,5;
27,20,8,9,19,27;
3,15,4,5,28,0;]
%密钥
K=[5,2,3,4;
8,5,5,4;
1,1,3,3;
5,4,3,1;];
det(K)%验证密码矩阵是否可逆
C = mod(K * M,28) %密文
INV_K = inv(K);
INV_K = round(INV_K); %以整数形式参与运算
K2 = mod(INV_K,28) %解密的钥匙
Y = mod(K2 * C,28) %恢复明文
```

实验结果与分析:

恢复明文
$$Y = \begin{pmatrix} 13 & 18 & 27 & 8 & 9 & 12 \\ 12 & 27 & 13 & 1 & 4 & 5 \\ 27 & 20 & 8 & 9 & 19 & 27 \\ 3 & 15 & 4 & 5 & 0 & 0 \end{pmatrix}$$

对比输入 M, 能够匹配, 说明完成加密任务功能。

翻译成字母即: nlee.kcsavsdcjtwnnaustfu

2. 甲方截获了一段密文: OJWPISWAZUXAUUISEABAUCRSIPL BHAAMMLPJJOTENH (中间没有空格)。经分析这段密文是用 Hill2 (密钥矩阵为 2 阶矩阵) 密码编译的,且这段密码的字母 UCRS 一次代表字母 TACO,问能否破译这段密文的内容?

实验过程:实验过程中采用一下对应方法,不区分大小写。

а	b	С	d	e	f	g	h	i	j	k	l	m	n
1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	p	q	r	S	t	и	ν	w	x	У	Z		
15	16	17	18	19	20	21	22	23	24	25	26		

0	J	W	P	I	S	W	A	Z	$\boldsymbol{\mathit{U}}$	X	\boldsymbol{A}	$\boldsymbol{\mathit{U}}$	$\boldsymbol{\mathit{U}}$
15	10	23	16	9	19	23	1	26	21	24	1	21	21
I	S	E	\boldsymbol{A}	В	\boldsymbol{A}	$\boldsymbol{\mathit{U}}$	C	R	S	I	P	L	В
9	19	5	1	2	1	21	3	18	19	9	16	12	2
H	\boldsymbol{A}	\boldsymbol{A}	M	M	L	P	J	J	0	T	E	N	H
8	1	1	13	13	12	16	10	10	15	20	5	14	8

因为UCRS一次代表字母TACO, 那么

$$\begin{pmatrix} 21 & 18 \\ 3 & 19 \end{pmatrix} = K \cdot \begin{pmatrix} 20 & 3 \\ 1 & 15 \end{pmatrix}$$

可以求得 K 的模 26 逆矩阵 $K_n = K^{-1} \mod 26$,再通过 $M = K_n \cdot C$ 即可求得对应的明文。

考虑到是 Hill2 加密,那么密文矩阵为

 $\binom{15}{10}\binom{23}{16}\binom{9}{19}\binom{23}{1}\binom{26}{1}\binom{24}{1}\binom{24}{1}\binom{21}{21}\binom{9}{19}\binom{5}{1}\binom{2}{1}\binom{21}{1}\binom{21}{3}\binom{18}{19}\binom{9}{16}\binom{12}{2}\binom{8}{1}\binom{1}{13}\binom{13}{12}\binom{16}{10}\binom{10}{15}\binom{20}{5}\binom{14}{8}$

MATLAB 程序如下,事先定义函数GetAn(),用于求矩阵的模 26 逆矩阵。

```
function An = GetAn(A)
%GetAn 模26逆矩阵
%
% Syntax: output = GetAn(input)
%
% 输入矩阵A, 如果其模26逆矩阵存在的话则返回其模26逆矩阵

DA=round(mod(det(A),26));
for x = 1:100
    if mod(x*DA,26)==1
        res=x;
        An=round(mod(inv(A)*det(A)*res,26));
        break;
    end
end
end
```

主程序如下

```
Clear all
C=[21 18; 3 19];
M=[20 3;1 15];
full_C=[15,10,23,16,9,19,23,1,26,21,24,1,21,21,9,19,5,1,2,1,21,3,18,19,9,16,12,2,8,1,1,13,13,12,16,10,10,15,20,5,14,8];

%由C=K*M 求 M

Kn=mod(M*GetAn(C),26);
syms Full_M
for i = 1:2:length(full_C)
    dC=[full_C(i);full_C(i+1)];
    dM=mod(Kn*dC,26);
    Full_M(i)=dM(1);
    Full_M(i+1)=dM(2);
end
```

实验结果与分析:

```
>> Q2_v
>> Full_M
Full_M =
[ 3, 12, 9, 14, 20, 15, 14, 9, 19, 7, 15, 9, 14, 7, 20, 15, 22, 9, 19, 9, 20, 1, 3, 15, 21, 14, 20, 18, 25, 9, 14, 13, 9, 4, 4, 12, 5, 5, 1, 19, 20, 20]
```

经过翻译、添加空格断句之后,则

3	12	9	14	20	15	14		9	19		7	15
С	L	Ι	N	T	О	N		I	S		G	О
9	14	7		20	15		22	9	19	9	20	
I	N	G		Т	О		V	I	S	I	Т	
1		3	15	21	14	20	18	25		9	14	
A		С	О	U	N	T	R	Y		I	N	
13	9	4	4	12	5		5	1	19	20	20	
M	I	D	D	L	Е		Е	A	S	T	Т	

那么对应的明文为: Clinton is going to visit a country in middle east.

如果是OJWP对应TACO的话,那么有 $C = \begin{pmatrix} 15 & 23 \\ 10 & 16 \end{pmatrix}$,

所以有 $\det C(mod\ 26) = 10$, 即不存在 C 的模 26 逆矩阵。所以无法解密。

实验 五 代数方程模型实验

1. 某中药厂用 9 种中草药 A-I,根据不同的比例配制成了 7 种特效药,各用量成分见表 6-3 (单位:克)。

表 6-3 7 种特效药的成分

中药	1号成药	2号成药	3号成药	4号成药	5号成药	6号成药	7号成药
A	10	2	14	12	20	38	100
В	12	0	12	25	35	60	55
С	5	3	11	0	5	14	0
D	7	9	25	5	15	47	35
Е	0	1	2	25	5	33	6
F	25	5	35	5	35	55	50
G	9	4	17	25	2	39	25
Н	6	5	16	10	10	35	10
I	8	2	12	0	2	6	20

试解答: (1) 某医院要购买这7种特效药,但药厂的第3号药和第6号药已经 卖完,请问能否用其他特效药配制出这两种脱销的药品。

(2) 现在该医院想用这7种草药配制三种新的特效药,表 6-4 给出了三种新的特效药的成分,请问能否配制?如何配制?

表 6-43 种新特效药的成分

中药	1号新药	2号新药	3号新药
A	40	162	88
В	62	141	67
С	14	27	8
D	44	102	51
Е	53	60	7
F	50	155	80
G	71	118	38
Н	41	68	21
I	14	52	30

题目分析:

由题目:

$$A = \begin{pmatrix} 10 & 2 & 14 & 12 & 20 & 38 & 100 \\ 12 & 0 & 12 & 25 & 35 & 60 & 55 \\ 5 & 3 & 11 & 0 & 5 & 14 & 0 \\ 7 & 9 & 25 & 5 & 15 & 47 & 35 \\ 0 & 1 & 2 & 25 & 5 & 33 & 6 \\ 25 & 5 & 35 & 5 & 35 & 55 & 50 \\ 9 & 4 & 17 & 25 & 2 & 39 & 25 \\ 6 & 5 & 16 & 10 & 10 & 35 & 10 \\ 8 & 2 & 12 & 0 & 2 & 6 & 20 \end{pmatrix}$$

可以求出 A 的最大无关组,进而求得其他结果。

实验过程:

① 求 A 的最大无关组和秩的 Matlab 代码:

```
      clear

      % 原始数据

      m1=[10; 12; 5; 7; 0; 25; 9; 6; 8];

      m2=[2; 0; 3; 9; 1; 5; 4; 5; 2];

      m3=[14; 12; 11; 25; 2; 35; 17; 16; 12];

      m4=[12; 25; 0; 5; 25; 5; 25; 10; 0];

      m5=[20; 35; 5; 15; 5; 35; 2; 10; 2];

      m6=[38; 60; 14; 47; 33; 55; 39; 35; 6];

      m7=[100; 55; 0; 35; 6; 50; 25; 10; 20];

      M=[m1, m2, m3, m4, m5, m6, m7];

      [M0, jb]=rref(M)

      r=Length(jb)
```

② 求成药 3 的配方的 Matlab 代码:

```
B=[m1,m2,m4,m5,m6,m7];
x3=B\m3;
```

③ 求3种新药的配方的 Matlab 代码:

```
% 三种新药
nm1=[40,62,14,44,53,50,71,41,14]';
nm2=[162,141,27,102,60,155,118,68,52]';
nm3=[88,67,8,51,7,80,38,21,30]';

B_nm1=[m1,m2,m4,m5,m6,m7,nm1];
B_nm1_0=rref(B_nm1)

B_nm2=[m1,m2,m4,m5,m6,m7,nm2];
B_nm2_0=rref(B_nm2)

B_nm3=[m1,m2,m4,m5,m6,m7,nm3];
B_nm3_0=rref(B_nm3)
```

实验结果与分析:

```
M0 =
    1
          0
               1
                     0
                          0
                                0
                                      0
          1
               2
                     0
    0
          0
               0
                     1
                                0
                                      0
                          0
          0
               0
                     0
                          1
    0
          0
               0
                     0
                          0
                                1
                                      0
    0
          0
               0
                     0
                          0
                                0
                                      1
                     0
                          0
                                0
                                      0
          0
               0
                     0
                          0
          0
               0
                     0
                         0
                                0
jb =
          2
                     5
                          6
                                7
```

对于第一题,可以看出他的秩是6,也就是说他的最大无关组内有六个,所以不能不能由另外五个完全配出3和6号药,但是又有,

也就是说由1份的1号药加2份的2号药就可以配出3号药。

综上所述, 能用其他特效药脱销的 3 号药, 但配不出 6 号药。

下面是关于三种新药的结果

B _.	B_nm1_0 =							
	1	0	0	0	0	0	1	
	0	1	0	0	0	0	3	
	0	0	1	0	0	0	2	
	0	0	0	1	0	0	0	
	0	0	0	0	1	0	0	
	0	0	0	0	0	1	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

由上述结果,可以配得出新药1,配方为1份1号成药,3份2号成药,2份4号成药,配出1份新药1。

В	B_nm2_0 =							
	1	0	0	0	0	0	3	
	0	1	0	0	0	0	4	
	0	0	1	0	0	0	2	
	0	0	0	1	0	0	0	
	0	0	0	0	1	0	0	
	0	0	0	0	0	1	1	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	

由上述结果,可以配得出新药 2,配方为 3 份 1 号成药,4 份 2 号成药,2 份 4 号成药,6 份 7 号成药,配出 1 份新药 2。

B_nm3_0 =							
1	0	0	0	0	0	0	
0	1	0	0	0	0	0	
0	0	1	0	0	0	0	
0	0	0	1	0	0	0	
0	0	0	0	1	0	0	
0	0	0	0	0	1	0	
0	0	0	0	0	0	1	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	

由上述结果,配不出新药3。

2. (营养食谱问题) 一个饮食专家计划一份膳食,提供一定量的维生素 C、钙和镁。其中用到 3 种食物,它们的质量用适当的单位计量。这些食品提供的营养以及食谱需要的营养如下表给出。

表 7-4 营养食谱问题

营养	单位食证	普所含的营养	需要的营养总量	
	食物1	食物2	食物3	(毫克)
维生素C	10	20	20	100
钙	50	40	10	300
镁	30	10	40	200

针对这个问题写出一个向量方程。说明方程中的变量表示什么,然后求解这个方程。

实验过程:

可以列出向量方程:

$$\begin{pmatrix} 10 & 20 & 20 \\ 50 & 40 & 10 \\ 30 & 10 & 40 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 100 \\ 300 \\ 200 \end{pmatrix}$$

在 Matlab 中列出方程求解:

① 求系数矩阵的秩的 Matlab 代码:

```
f1=[10; 50; 30];
f2=[20; 40; 10];
f3=[20; 10; 40];
F=[f1,f2,f3];
rank(F);
```

② 求解未知数的 Matlab 代码:

```
Need=[100; 300; 200];
x=F\Need
```

实验结果与分析:

可以求出系数矩阵的秩为3,等于未知数个数,因而方程有唯一解。解得

```
x =
4.5455
1.5152
1.2121
```

由上述结果可知,每天要摄入 4.55 个单位的食物 1、1.52 个单位的食物 2、1.21 个单位的食物 3 才能满足需要的营养总量。

- 3. 在美国黄衫森林中,斑点猫头鹰主要以鼹鼠为食。假设这两个种群的"捕食者"矩阵为 $A=0.4 0.3 \\ -p 1.2$ 。
- (1) 证明:如果捕食参数 *p=0.325*,则两个种群都会增长。估计长期增长率及 猫头鹰与鼹鼠的最终比值。
 - (2) 证明:如果捕食率为p=0.5,则猫头鹰和鼹鼠最终都将灭绝。
- (3) 试求一个 p 值, 使得猫头鹰和鼹鼠的数量都趋于稳定。此时, 对应的种群数量是多少?

实验过程:

① 证明 p=0.325 两个种群都会增长的 Matlab 代码:

② 证明 p=0.5 猫头鹰和鼹鼠最终都将灭绝的 Matlab 代码:

③ 假设捕食参数为 p, 求出矩阵的特征值, 令较大的特征值为 1, 即可求出此时的 p, 也就是令得猫头鹰和鼹鼠的数量都趋于稳定的捕食参数 p。

实现的 Matlab 代码:

实验结果与分析:

① 捕食参数 p=0.325 的时候有:

显然,这两个特征向量(即 pc 的第一列和第二列)是线性无关的,它们构成的一组基。为消除小数,我们选取

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \qquad v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

那么存在 c_1, c_2 , 使得

$$x_k = c_1 \lambda^k v_1 + c_2 u^k v_2 = c_1 \cdot 1.05^k \cdot v_1 + c_2 \cdot 0.55^k \cdot v_2$$

当 $k \to \infty$ 时, (0.55^k) 迅速趋于 0。那么有

$$x_k \approx c_1 \cdot 1.05^k \cdot \binom{1}{2}$$

即有5%的增长率,最终比值为1:2

② 捕食参数 *p=0.5* 的时候有:

显然,这两个特征向量(即 pc 的第一列和第二列)是线性无关的,它们构成的一组基。为消除小数,我们选取

$$v_1 = {51 \choose 86}, \qquad v_2 = {1 \choose 1}$$

那么存在 c_1, c_2 , 使得

$$x_k = c_1 \lambda^k v_1 + c_2 u^k v_2 = c_1 \cdot 0.9^k \cdot v_1 + c_2 \cdot 0.7^k \cdot v_2$$

当k→∞时, (0.9^k) 、 (0.7^k) 都迅速趋于 0。也就是说猫头鹰和鼹鼠最终都将灭绝。

③ 趋于平衡的时候,

```
lambda =
  (2^(1/2)*(8 - 15*p)^(1/2))/10 + 4/5
  4/5 - (2^(1/2)*(8 - 15*p)^(1/2))/10

p = 2/5

lambda =
   1
  3/5

pc =
  [ 1/2, 3/2]
  [ 1, 1]
```

可以看出,捕食参数
$$p$$
 为 0.4 ,此时对应的 $v_1 = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$

$$x_k = c_1 1^k \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix} + c_2 \cdot 0.6^k \begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix}$$

当
$$k \to \infty$$
时, (0.6^k) 迅速趋于 0 。也就是说 $x_k = c_1 \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$ 。

- 4. 杂交育种的目的是培养优良品种,以提高农作物的产量和质量。如果农作物的三种基因型分别为 AA, Aa, aa, 其中 AA 为优良品种。农场计划采用 AA型植物与每种基因型植物相结合的方案培育植物后代,已知双亲体基因型与其后代基因型的概率(见下表)。问: 经过若干年后三种基因型分布如何? 要求:
 - (1) 建立代数模型,从理论上说明最终的基因型分布。
 - (2) 用 MATLAB 求解初始分布为 0.8, 0.2, 0 时, 20 年后的基因分布, 是否已经趋于稳定?

表 8-1 基因的转移

No.	.	父体-母体基因型					
概	率	AA-AA	AA-Aa	AA-aa			
	AA	1	1/2	0			
后代的 基因型	Aa	0	1/2	1			
	aa	0	0	0			

实验过程:

① 求矩阵 A 的特征值和特征向量的 Matlab 代码:

```
clear all
clc
A=[1,1/2,0; 0,1/2,1; 0,0,0;];
[pc,lambda] = eig(A);
[Y,I] = sort(diag(abs(lambda)), 'descend');
temp = diag(lambda);
lambda = temp(I)
lambda_norm=[norm(lambda(1));norm(lambda(2));norm(lambda(3))]
pc = pc(:,I)
```

② 根据初始状态确定基因型分布模型中的常系数 c_i 的 Matlab 代码:

③ 求 20 年后基因型分布的 Matlab 代码:

```
n=20;
x_n=[0.8; 0; 0]+0.4*0.5^(n)*[-0.7071; 0.7071; 0]
```

实验结果与分析:

```
lambda =
    1.0000
    0.5000
lambda_norm =
    1.0000
    0.5000
         0
pc =
    1.0000
              -0.7071
                         0.4082
         0
              0.7071
                        -0.8165
         0
                    0
                         0.4082
```

由上述结果, 可以得知他的三个特征值

$$\lambda = 1, \quad u = 0.5, \quad w = 0$$

以及三个对应的特征向量如下

$$v_1 = (1 \quad 0 \quad 0)^T$$

$$v_2 = (-0.7071 \quad 0.7071 \quad 0)^T$$

$$v_3 = (0.4082 -0.8165 0.4082)^T$$

那么, $x_{k+1} = Ax_k$ 的通解形如

$$x_k = c_1 \lambda^k v_1 + c_2 u^k v_2 = c_1 \cdot (1 \quad 0 \quad 0)^T + c_2 \cdot 0.5^k \cdot (-0.7071 \quad 0.7071 \quad 0)^T$$

也就是说,最终的基因型分布 x_k

$$x_k = c_1 \cdot (1 \quad 0 \quad 0)^T + c_2 \cdot 0.5^k \cdot (-0.7071 \quad 0.7071 \quad 0)^T$$

之后由初始条件
$$x_0 = \begin{pmatrix} 0.8 \\ 0.2 \\ 0 \end{pmatrix}$$
,那么

c =

- 1.0000
- 0.2828

所以
$$x_k = (1 \quad 0 \quad 0)^T + 0.2828 \cdot 0.5^k \cdot (-0.7071 \quad 0.7071 \quad 0)^T$$

20年之后的结果为:

显然,20年后已经达到稳定。事实上,我们可以绘出 AA 基因型的增长曲线,由下图可知,可以认为在第八年已经达到稳定状态,种群中 AA 占比达到99.89%了。

实验 六 分形实验

1. 对一个等边三角形,每条边按照 Koch 曲线的方式进行迭代,产生的分形图 称为 Koch 雪花。编制程序绘制出它的图形,并计算 Koch 雪花的面积,以及它的分形维数。

实验过程:

定义一个名为 KochSnow 的函数, 用于绘制 Koch 雪花

```
function KochSnow(length, k)
         %KochSnow - KochSnow 分形图
         % Syntax: KochSnow(Length,k)
         % 输入参数 Length 为三角形边长, k 为迭代次数
         % 依次画三角形的三条边
         for myedge = 1:3
                  switch myedge
                            case 1% 三角形的第一条边的起点终点
                                     p = [0, 0; 0.5 * length, sqrt(3) / 2 * length];
                            case 2% 三角形的第二条边的起点终点
                                     p = [0.5 * Length, sqrt(3) / 2 * Length; Length, 0];
                            case 3% 三角形的第三条边的起点终点
                                     p = [length, 0; 0, 0];
                  end
                  n = 1; %存放线段的数量,初始值为1
                  A = [cos(pi / 3), -sin(pi / 3); sin(pi / 3), cos(pi / 3)];
                  for s = 1:k%实现迭代过程, 计算所有的结点的坐标
                            i = 0; %
                            %以下根据线段两个结点的坐标,计算迭代后它们之间增加的三个
                            %结点的坐标,并且将这些点的坐标按次序存暂时放到 r 中
                           for i = 1:n%每条边计算一次
                                     q1 = p(i, :); %目前线段的起点坐标
                                     q2 = p(i + 1, :); %目前线段的终点坐标
                                     d = (q2 - q1) / 3; %
                                     j = j + 1; r(j, :) = q1; %原起点存入 r
                                     j = j + 1; r(j, :) = q1 + d; \% \frac{\pi 1}{\pi} \frac{\pi}{2} \frac{\pi}{2}
                                     j = j + 1; r(j, :) = q1 + d + d * A'; % #32  #<math> #47  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * C  * 
                                     j = j + 1; r(j, :) = q1 + 2 * d; %新3点存入 r
                            end %原终点作为下条线段的起点,在迭代下条线段时存入 r
```

```
n = 4 * n; %全部线段迭代一次后,线段数量乘4
          clear p% 清空p ,注意:最后一个终点q2不在r 中
          p = [r; q2]; %重新装载本次迭代后的全部结点
      end
      clear r
      % 储存各边的结点数据
      switch myedge
          case 1
             myedge_1 = p;
          case 2
             myedge_2 = p;
          case 3
             myedge_3 = p;
      end
   end
   wholeEdge = [myedge_1; myedge_2; myedge_3];
   plot(wholeEdge(:, 1), wholeEdge(:, 2))%显示各结点的连线图
   axis equal%各坐标轴同比例
end
```


Koch 雪花 迭代4次

由迭代的规律可以知道,相似形个数m=6,边长的放大倍数c=3,那么:

分形维数
$$d = \frac{\ln m}{\ln c} = \frac{\ln 6}{\ln 3} \approx 1.631$$

图形的面积可以由下面的规律得到。记三角形初始边长为a, 迭代次数为n,那么:

当
$$n=0$$
 的时候, $S=\frac{\sqrt{3}}{4}a^2$;

当
$$n=1$$
 的时候, $S=\frac{\sqrt{3}}{4}a^2+\frac{\sqrt{3}}{4}\times\left(\frac{1}{3}R\right)^2\times 3$;

当
$$n = 2$$
 的时候, $S = \frac{\sqrt{3}}{4}a^2 + \frac{\sqrt{3}}{4} \times \left(\frac{1}{3}R\right)^2 \times 3 + \frac{\sqrt{3}}{4} \times \left[\left(\frac{1}{3}\right)^2 R\right]^2 \times 3^2$;

•••••

当
$$n = k$$
 的时候, $S = \frac{\sqrt{3}}{4}\alpha^2 + \frac{\sqrt{3}}{4} \times \left(\frac{1}{3}R\right)^2 \times 3 + \dots + \frac{\sqrt{3}}{4} \times \left[\left(\frac{1}{3}\right)^k R\right]^2 \times 3^n$; 那么,当 $n \to \infty$ 的时候, $S \to \infty$ 。

2. 对一条竖向线段,在其三分之一分点处,向左上方向画一条线段,在其三分之二分点处,向右上方向画一条线段,线段长度都是原来的三分之一,夹角都为30°,迭代一次后变成上图3-22。继续迭代得到分形图,可模拟树木花草。编制程序绘制出它的图形。

实验过程:

主函数:

为了使得中间逻辑更加清晰,把每次绘图的部分放在另一个函数 eachTree 中

```
function tree(height, times)
   %tree - 画树
   % Syntax: tree(初始高度,迭代次数)
   % 对一条竖向线段,在其三分之一分点处,向左上方向画一条线段,在其三分之
二分点处,向右上方向画一条线段,线段长度都是原来的三分之一,夹角都为30°
   [ori, z] = eachTree(0, height * i, times, 0);
   new_ori = [];
   new_z = [];
   for k = 1:times
       for j = 1:length(ori)
          [p, q] = eachTree(ori(j), z(j), times, k);
          new_ori = cat(2, new_ori, p);
          new_z = cat(2, new_z, q);
       end
       ori = new_ori;
       z = new_z;
   end
   ax = gca;
   ax.Title.String = ['模拟树木花草分形图 迭代',num2str(times),'次'];
   ax.Title.FontWeight = 'normal';
   ax.Title.FontSize = 12;
   ax.Title.FontName = '微软雅黑';
   ax.YAxis.Visible = 'off'; % 设置 y 轴不可见
   ax.XAxis.Visible = 'off'; % 设置x 轴不可见
end
```

定义一个函数 eachTree, 用于每次画图, 并返回新分支的起点和终点

```
function [new_origin, new_ending] = eachTree(origin, ending,times,current)
   %eachTree-eachTree
   % Syntax: eachTree(origin,ending)
   %
   % 对一条竖向线段,在其三分之一分点处,向左上方向画一条线段,在其三分之二分点
处,向右上方向画一条线段,线段长度都是原来的三分之一,夹角都为 30°
   trans_vec = ending - origin;
   n1 = ending / 3 + 2/3 * origin;
   n2 = 2/3 * ending + origin / 3;
   p1 = n1 + 1/3 * abs(trans_vec) * exp(i * (angle(trans_vec) + pi / 6));
   p2 = n2 + 1/3 * abs(trans_vec) * exp(i * (angle(trans_vec) - pi / 6));
   plot([origin, ending],'LineWidth',2-1/times*current); hold on;
   plot([n1, p1], 'LineWidth', 2-1/times*current); hold on;
   plot([n2, p2],'LineWidth',2-1/times*current); hold on;
   new origin = [n1, n2];
   new_ending = [p1, p2];
   axis equal
nd
```

实验结果与分析:

模拟树木花草分形图 迭代2次

模拟树木花草分形图 迭代4次 细节图片

由上图,可以看出程序满足题目要求,生成正确的图形。

3. 自己构造生成元 (要有创意),按照图形迭代的方式产生分形图,用计算机 编制程序绘制出它的图形,并计算其分形维数。

实验过程:

对一条长度为 l 的竖向初始虚拟线段,在其一个端点处,向左右各作一条长度为 $\frac{\sqrt{5}-1}{2}l$ (黄金比例) 的线段,每条线段与原始线段夹角记为偏转角 φ 。 如右图所示。继续迭代,则产生分形图形。

Matlab 代码如下:

先定义一个用于每个结点绘制分支的函数 eachNode

```
function [new_ori, new_ending] = eachNode(deflection_an-
gle, origin, ending, nowInex, mostWidth, iterations)
   % eachNode - 绘制每个结点的函数
   % Syntax: [ori,ending] = eachNode(偏转角,起点,中点,当前层次,最粗的
线宽, 迭代次数)
   % 绘制每个结点的函数,返回新结点的起点和终点
   trans_vec = ending - origin;
   p1 = (sqrt(5) - 1) / 2 * abs(trans_vec) * exp(i * (deflection_an-
gle + angle(trans_vec))) + origin; %新节点1的坐标
   p2 = (sqrt(5) - 1) / 2 * abs(trans_vec) * exp(i * (-deflection_an-
gle + angle(trans vec))) + origin; %新节点2的坐标
   plot([origin, p1], 'linewidth', mostWidth - nowInex * (most-
Width - 1) / iterations); hold on;
   plot([origin, p2], 'linewidth', mostWidth - nowInex * (most-
Width - 1) / iterations); hold on;
   new_ori = [p1, p2];
   new_ending = [origin, origin];
end
```

用于迭代调用 eachNode 的主函数 myGraphics

```
function myGraphics(mylength, deflection_angle, times, mostWidth)
   %myGraphics - Description
   %
   % Syntax: myGraphics(mylength,deflection_angle,times,mostWidth)
   % mylength:初始长度
   % deflection_angle: 偏转角
   % times: 迭代次数
   % mostWidth: 最粗的线宽
   input_origin = i;
   input ending = mylength * i;
   newOrigin = [];
   newEnding = [];
   origin = [input_origin];
   ending = [input_ending];
   % ==== 开始套娃 ====
   for k = 1:times
       newOrigin = [];
       newEnding = [];
       for j = 1:length(origin)
           [p, q] = eachNode(deflection_angle, origin(j), end-
ing(j), k, mostWidth, times);
           newOrigin = [newOrigin, p];
           newEnding = [newEnding, q];
       end
       origin = newOrigin;
       ending = newEnding;
   axis equal%各坐标轴同比例
   ax = gca;
   ax.Title.String = ['【我的图形】 偏转角: ',num2str(rad2deg(deflec-
tion_angle)), 'o迭代', num2str(times), '次'];
   ax.Title.FontWeight = 'normal';
   ax.Title.FontSize = 12;
   ax.Title.FontName = '微软雅黑';
   ax.YAxis.Visible = 'off'; % 设置y 轴不可见
   ax.XAxis.Visible = 'off'; % 设置x 轴不可见
end
```

【我的图形】 偏转角: 60° 迭代8次

【我的图形】 偏转角: 90° 迭代8次

【我的图形】偏转角: 135° 迭代5次

实验七 插值实验

1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量: 以由西向东方向为 x 轴,由南向北方向为 y 轴,选择方便的原点,并将从最西 边界点到最东边界点在 x 轴上的区间适当的分为若干段,在每个分点的 y 方向 测出南边界点和北边界点的 y 坐标 y1 和 y2,这样就得到下表的数据(单位: mm)。根据地图的比例,18 mm 相当于 40 km。试采用适当的方法,绘制其国 界线图形,并估算其国土面积。

表 4-5 某国上下国界线测量坐标

х	7.0	10.5	13.0	17.5	34.0	40.5	44.5	48.0	56.0
y1	44	45	47	50	50	38	30	30	34
y2	44	59	70	72	93	100	110	110	110
X	61.0	68.5	76.5	80.5	91.0	96.0	101.0	104.0	106.5
y1	36	34	41	45	46	43	37	33	28
y2	117	118	116	118	118	121	124	121	121
X	111.5	118.0	123.5	136.5	142.0	146.0	150.0	157.0	158.0
y1	32	65	55	54	52	50	66	66	68
y2	121	122	116	83	81	82	86	85	68

实验过程:

通过三次样条插值或者一维线性插值,再通过 trapz()分别对上边和下边作积分,然后求差来求面积。

Matlab 代码:

```
clear; clc;
% 原始数据
x = [7, 10.5, 13, 17.5, 34, 40.5, 44.5, 48, 56, 61, 68.5, 76.5, 80.5]
, 91, 96, 101, 104, 106.5, 111.5, 118, 123.5, 136.5, 142, 146, 150,
157, 158];
y1 = [44, 45, 47, 50, 50, 38, 30, 30, 34, 36, 34, 41, 45, 46, 43, 37]
, 33, 28, 32, 65, 55, 54, 52, 50, 66, 66, 68];
y2 = [44, 59, 70, 72, 93, 100, 110, 110, 110, 117, 118, 116, 118, 11
8, 121, 124, 121, 121, 121, 122, 116, 83, 81, 82, 86, 85, 68];
% 通过三次样条插值计算结果
xi = linspace(7, 158, 500);
y1_interp = interp1(x, y1, xi, 'spline'); %将此处的 spline 改成 lin-
ear 即可得到一维线性插值的结果
y2_interp = interp1(x, y2, xi, 'spline');
% 绘制插值结果
plot([xi, fliplr(xi)], [y1 interp, fliplr(y2 interp)], 'col-
or', '#EDB120', 'linewidth', 1.2); hold on;
% 绘制测量结果
plot([x, x], [y1, y2], 'x', 'color', '#0072BD', 'mark-
ersize', 8); hold on;
legend('三次样条插值结果','测量结果')
axis equal %各坐标轴同比例
ratio = (40/18)^2;
S = (trapz(xi, y2\_interp) - trapz(xi, y1\_interp)) * ratio;
disp(['该国家的国土面积约为: ', num2str(S), ' 平方千米'])
```

1、通过三次样条插值的结果如下

用这种插值方法可以求得,该国家的国土面积约为: 42467.3767 平方千米 2、一维线性插值的结果如下

用这种插值方法可以求得,该国家的国土面积约为: 42412.6044 平方千米 可以看出两种插值方法求出的结果差距不是很大,对于边境线这种类型,一维 线性插值可能更加准确。 2、已知飞机机翼断面轮廓线如下图,下轮廓线上部分数据如下表。根据加工需要,必须得到 x 坐标每改变 0.1 时 y 坐标的值,试选择几种适当方法完成所需数据,并画出相应的曲线,然后分析所用方法的优劣。

图 4-16 飞机机翼断面轮廓线

表 4-6 飞机机翼断面下轮廓线上部分数据

x	0	3	5	7	9	11	12	13	14	15
у	0	1.2	1.7	2.0	2.1	2.0	1.8	1.2	1.0	1.6

实验过程:

分别通过一维线性插值和三次样条插值求所需的数据。

Matlab 代码如下:

```
% 原始测量数据
x = [0, 3, 5, 7, 9, 11, 12, 13, 14, 15];
y = [0, 1.2, 1.7, 2, 2.1, 2, 1.8, 1.2, 1, 1.6];
xi = [0:0.1:15];
% 线性插值
y_linear = interp1(x, y, xi, 'linear');
figure(1)
plot(x, y, 'x', xi, y_linear)
legend('测量数据', '线性插值')
axis equal %各坐标轴同比例
% 导出 y linear 数据到"线性插值.txt"
y_linear_Data = reshape([y_linear, zeros(1, 160 - length(y_lin-
ear))], [10, 16])';
save('线性插值.txt', 'y_linear_Data', '-ascii')
% 三次样条插值
y_spline = interp1(x, y, xi, 'spline');
figure(2)
plot(x, y, 'x', xi, y_spline)
```

```
legend('测量数据','三次样条插值')
axis equal %各坐标轴同比例
% 导出 y_spline 数据到 "三次样条插值.txt"
y_spline_Data = reshape([y_linear, zeros(1, 160 - length(y_linear))], [10, 16])';
save('三次样条插值.txt', 'y_spline_Data', '-ascii')
```

实验结果与结论:

1、一维线性插值结果:

需要补充的数据如下:

0.00	0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.32	0.36
0.40	0.44	0.48	0.52	0.56	0.60	0.64	0.68	0.72	0.76
0.80	0.84	0.88	0.92	0.96	1.00	1.04	1.08	1.12	1.16
1.20	1.23	1.25	1.28	1.30	1.33	1.35	1.38	1.40	1.43
1.45	1.48	1.50	1.53	1.55	1.58	1.60	1.63	1.65	1.68
1.70	1.72	1.73	1.75	1.76	1.78	1.79	1.81	1.82	1.84
1.85	1.87	1.88	1.90	1.91	1.93	1.94	1.96	1.97	1.99
2.00	2.01	2.01	2.02	2.02	2.03	2.03	2.04	2.04	2.05
2.05	2.06	2.06	2.07	2.07	2.08	2.08	2.09	2.09	2.10
2.10	2.10	2.09	2.09	2.08	2.08	2.07	2.07	2.06	2.06
2.05	2.05	2.04	2.04	2.03	2.03	2.02	2.02	2.01	2.01
2.00	1.98	1.96	1.94	1.92	1.90	1.88	1.86	1.84	1.82
1.80	1.74	1.68	1.62	1.56	1.50	1.44	1.38	1.32	1.26
1.20	1.18	1.16	1.14	1.12	1.10	1.08	1.06	1.04	1.02
1.00	1.06	1.12	1.18	1.24	1.30	1.36	1.42	1.48	1.54
1.60									

通过一维线性插值补充数据之后的曲线图形 2、三次样条插值结果: 需要补充的数据如下:

0.00 0.05 0.10 0.15 0.20 0.24 0.29 0.33 0.38 0.42 0.47 0.51 0.55 0.59 0.63 0.67 0.71 0.75 0.79 0.83 0.86 0.90 0.94 0.97 1.01 1.04 1.07 1.11 1.14 1.17 1.20 1.23 1.26 1.29 1.32 1.35 1.37 1.40 1.43 1.45 1.48 1.50 1.53 1.55 1.57 1.59 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.79 1.81 1.83 1.84 1.86 1.87 1.89 1.90 1.92 1.93 1.94 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.09 2.09 2.09 2										
0.86 0.90 0.94 0.97 1.01 1.04 1.07 1.11 1.14 1.17 1.20 1.23 1.26 1.29 1.32 1.35 1.37 1.40 1.43 1.45 1.48 1.50 1.53 1.55 1.57 1.59 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.79 1.81 1.83 1.84 1.86 1.87 1.89 1.90 1.92 1.93 1.94 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.02	0.00	0.05	0.10	0.15	0.20	0.24	0.29	0.33	0.38	0.42
1.20 1.23 1.26 1.29 1.32 1.35 1.37 1.40 1.43 1.45 1.48 1.50 1.53 1.55 1.57 1.59 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.79 1.81 1.83 1.84 1.86 1.87 1.89 1.90 1.92 1.93 1.94 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.01	0.47	0.51	0.55	0.59	0.63	0.67	0.71	0.75	0.79	0.83
1.48 1.50 1.53 1.55 1.57 1.59 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.79 1.81 1.83 1.84 1.86 1.87 1.89 1.90 1.92 1.93 1.94 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.02 2.03 2.02 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01	0.86	0.90	0.94	0.97	1.01	1.04	1.07	1.11	1.14	1.17
1.70 1.72 1.74 1.76 1.78 1.79 1.81 1.83 1.84 1.86 1.87 1.89 1.90 1.92 1.93 1.94 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.09 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.09 2.09 2.09 2.08 2.08 2.07 2.07 2.06 2.06 2.05 2.04 2.04 2.03 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.96 1.95 1.93 1.90 1.88 1.84 1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1	1.20	1.23	1.26	1.29	1.32	1.35	1.37	1.40	1.43	1.45
1.87 1.89 1.90 1.92 1.93 1.94 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.01 2.01 2.02 2.08 2.08 2.07 2.06 2.06 2.05 2.04 2.04 2.03 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.96 1.95 1.93 1.90 1.88 1.84 1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32	1.48	1.50	1.53	1.55	1.57	1.59	1.62	1.64	1.66	1.68
2.00 2.01 2.02 2.03 2.04 2.05 2.05 2.06 2.07 2.07 2.08 2.08 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.01 2.01 2.02 2.08 2.08 2.07 2.07 2.06 2.06 2.05 2.04 2.04 2.03 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.96 1.95 1.93 1.90 1.88 1.84 1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	1.70	1.72	1.74	1.76	1.78	1.79	1.81	1.83	1.84	1.86
2.08 2.08 2.09 2.09 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.09 2.09 2.09 2.08 2.08 2.07 2.07 2.06 2.06 2.05 2.04 2.04 2.03 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.96 1.95 1.93 1.90 1.88 1.84 1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	1.87	1.89	1.90	1.92	1.93	1.94	1.96	1.97	1.98	1.99
2.10 2.10 2.10 2.09 2.09 2.09 2.08 2.08 2.07 2.07 2.06 2.06 2.05 2.04 2.04 2.03 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.96 1.95 1.93 1.90 1.88 1.84 1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	2.00	2.01	2.02	2.03	2.04	2.05	2.05	2.06	2.07	2.07
2.07 2.06 2.06 2.05 2.04 2.04 2.03 2.02 2.01 2.01 2.00 1.99 1.98 1.97 1.96 1.95 1.93 1.90 1.88 1.84 1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	2.08	2.08	2.09	2.09	2.09	2.10	2.10	2.10	2.10	2.10
2.00 1.99 1.98 1.97 1.96 1.95 1.93 1.90 1.88 1.84 1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	2.10	2.10	2.10	2.10	2.09	2.09	2.09	2.08	2.08	2.07
1.80 1.75 1.70 1.64 1.57 1.51 1.44 1.38 1.32 1.26 1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	2.07	2.06	2.06	2.05	2.04	2.04	2.03	2.02	2.01	2.01
1.20 1.15 1.11 1.07 1.04 1.01 1.00 0.99 0.98 0.99 1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	2.00	1.99	1.98	1.97	1.96	1.95	1.93	1.90	1.88	1.84
1.00 1.02 1.05 1.09 1.13 1.19 1.25 1.32 1.41 1.50	1.80	1.75	1.70	1.64	1.57	1.51	1.44	1.38	1.32	1.26
	1.20	1.15	1.11	1.07	1.04	1.01	1.00	0.99	0.98	0.99
1.60	1.00	1.02	1.05	1.09	1.13	1.19	1.25	1.32	1.41	1.50
	1.60									

通过三次样条插值补充数据之后的曲线图形

通过上面两个曲线图形对比,可以看出三次样条插值的效果更加好,曲面整体更加平滑。尽管一维线性插值的结果对于实际加工来说可能更加简单,但是平 滑度欠佳会对其效果产生一定影响。

实 验 八 微分方程实验

1.用 dsolve 函数求解下列微分方程

(1)
$$y'' - 2y' + 5y = e^x \sin 2x$$
, (2)
$$\begin{cases} y''(x) = y'(x) + 2y(x) \\ y(0) = 1, \ y'(0) = 0 \end{cases}$$

实验过程:

Matlab 代码如下

%% 第1小问
y = dsolve('D2y-2*Dy+5*y=exp(x)*sin(2*x)', 'x')
%% 第2小问
y=dsolve('D2y=Dy+2*y','y(0)=1','Dy(0)=0','x')

实验结果及分析:

(1) 运行结果为:

$$y = C1 * \cos(2 * x) * \exp(x) - \frac{\sin(6 * x) * \exp(x)}{32} - \cos(2 * x) * \exp(x)$$
$$* \left(\frac{\frac{x}{4} - \sin(4 * x)}{16}\right) - \frac{\sin(2 * x) * \exp(x)}{32} - C2 * \sin(2 * x) * \exp(x)$$

也就是下图中的表达式

$$C_1 \cos(2x) e^x - \frac{\sin(6x) e^x}{32} - \cos(2x) e^x \left(\frac{x}{4} - \frac{\sin(4x)}{16}\right) - \frac{\sin(2x) e^x}{32} - C_2 \sin(2x) e^x$$
 第 1 小问-运行结果

(2) 运行结果为:

第2小问-运行结果

2.用 ode 函数求解微分方程 $\begin{cases} x' = x(1-x-y-6z) \\ y' = y(1.5x-y-z) \end{cases}$,并讨论解的变化情况。初 z' = z(-1+3x+0.5)

值及求解区间如下:

(1)
$$x(0) = 0.12, y(0) = 0.003, z(0) = 0.01, t \in [0,30]$$

(2) $x(0) = 0.01, y(0) = 0.00001, z(0) = 0.001, t \in [0,133]$

Matlab 代码如下:

实验过程:

```
function dy = odefun_q2(t, y)
    dy = zeros(3, 1);
    dy(1) = y(1) * (1 - y(1) - y(2) - 6 * y(3));
    dy(2) = y(2) * (1.5 * y(1) - y(2) - y(3));
    dy(3) = y(3) * (-1 + 3 * y(1) + 0.5 * y(2));
end
```

```
%% 第 1 小问
[t,y]=ode15s('odefun_q2',[0,30],[0.12,0.003,0.01]);
subplot(3,1,1)
plot(t,y(:,1))
ylabel('x')
subplot(3,1,2)
plot(t,y(:,2))
ylabel('y')
subplot(3,1,3)
plot(t,y(:,3))
ylabel('z')
%% 第 2 小问
[t,y]=ode15s('odefun_q2',[0,133],[0.01,0.00001,0.001]);
subplot(3,1,1)
plot(t,y(:,1))
ylabel('x')
subplot(3,1,2)
plot(t,y(:,2))
ylabel('y')
subplot(3,1,3)
plot(t,y(:,3))
ylabel('z')
```

实验结果及分析:

第一小问结果

第二小问结果

3. 设河边点0的正对岸点为A: 河宽OA = h, 两岸为平行直线, 水流速度为0.5 米每分。有一只鸭子从A点游向O点, 设鸭子在静水中的游动速度为1米每分, 且鸭子游动方向始终朝着点O, 求鸭子游过的迹线方程。用 Matlab 求解, 并作出轨迹图。

实验过程:

如上图所示,对于任意时刻,鸭子的位置(x,y),鸭子的速度分别为 v_x 和 v_{eg} ,

将 $v_{\text{两}}$ 作正交分解,分别为 v_{max} , v_{may} 。其中:

$$v_{\text{\tiny MS}X} = v_{\text{\tiny MS}} \cdot \cos \theta = v_{\text{\tiny MS}} \cdot \frac{x}{\sqrt{x^2 + y^2}}$$

$$v_{\text{\tiny MS}Y} = v_{\text{\tiny MS}} \cdot \sin \theta = v_{\text{\tiny MS}} \cdot \frac{y}{\sqrt{x^2 + y^2}}$$

那么, 鸭子的轨迹方程为:

$$\begin{cases} x' = 0.5 - \frac{x}{\sqrt{x^2 + y^2}} \\ y' = -\frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$

求解 Matlab 代码如下: (不妨设h = 10)

```
function dy = odefun_q3(t, y)

dy = zeros(2, 1);
  dy(1) = 0.5 - y(1) / sqrt(y(1)^2 + y(2)^2);
  dy(2) = - y(2) / sqrt(y(1)^2 + y(2)^2);

end
```

% 求解路径

[t, y] = ode45('odefun_q3', [0, 15], [0, 10]);

% 绘制路径

plot(y(:, 1), y(:, 2)); hold on;

实验结果及分析:

取h = 10时的结果

取h = 5时的结果

可以看出,轨迹形状与h的取值无关。无论h取什么值,最终都能到达原点,也就是题目中的O点。

实 验 九 蒙特卡洛模拟实验

1、一袋中装有 4个白球、8个黑球, A、B、C三人蒙住眼睛依次轮流摸球。先得白球者获胜, 求三人获胜的机会比。

实验过程:

首先定义一个函数, 其返回值为获胜的频率, 可以模拟有放回与无放回的情况。返回ABC的获胜的频率

```
function [pa, pb, pc] = q1_fun(n, type)
   % type=='back' -> 有放回
   % type=='noback' -> 无放回
    maxRange = [12, 12, 12]; %默认为有放回
    if strcmp(type, 'noback')
       maxRange = [12, 11, 10]; % 修改抽球范围
    end
    pa = 0; pb = 0; pc = 0;
    fa = 0; fb = 0; fc = 0;
    total win = 0;
   for i = 1:n
       Aball = randi([1, maxRange(1)]); % 1-4 为白球,其余为黑球
       if Aball <= 4% A 抽中白球
           fa = fa + 1;
           total_win = total_win + 1;
       else
           Bball = randi([1, maxRange(2)]); % 1-4 为白球, 其余为黑球
           if Bball <= 4% B抽中白球
               fb = fb + 1;
               total_win = total_win + 1;
           else
               Cball = randi([1, maxRange(3)]); % 1-4 为白球,其余为黑球
               if Cball <= 4% C 抽中白球
                  fc = fc + 1;
                   total_win = total_win + 1;
               end
           end
       end
    end
    pa = fa / total_win; % A 抽中白球的概率
    pb = fb / total win; % B 抽中白球的概率
    pc = fc / total_win; % C 抽中白球的概率
```

之后调用上述函数进行不同次数的蒙特卡洛实验,并将结果保存到txt文件。

有放回	Monte Carlo 试验次数	10^1	10^2	10^3	10^4	10^5	10^6	10^7
	A 的胜率	50.00%	45.95%	47.69%	47.70%	47.21%	47.29%	47.36%
回	B的胜率	25.00%	25.68%	29.73%	31.58%	31.82%	31.60%	31.58%
	C的胜率	25.00%	28.38%	22.58%	20.72%	20.97%	21.12%	21.06%
	Monte Carlo 试验次数	10^1	10^2	10^3	10^4	10^5	10^6	10^7
无放回	A 的胜率	0.00%	38.89%	41.41%	44.54%	44.92%	44.78%	44.75%
回	B的胜率	57.14%	31.94%	34.24%	32.44%	32.11%	32.48%	32.50%
	C的胜率	42.86%	29.17%	24.36%	23.02%	22.96%	22.74%	22.75%

可以看出,无论是有放回还是无放回,胜率均为A最高,B次之,C最低。从直观上也能得到这样的结果,因为C要想得到抽球的机会,必须是A,B都抽不到白球。

如果是有放回的情况, 他们获胜的机会比A: B: C \approx 47.3%: 31.6%: 21.1%; 如果是无放回的情况, 他们获胜的机会比A: B: C \approx 44.75%: 32.5%: 22.75%;

2、一袋中装有 4个白球、8个黑球, 甲同乙打赌他能在摸出的7个球中含有3个白球。求两人获胜的机会比。

实验过程:

首先定义一个函数q2_fun用于模拟抽球过程。其中会在1-12中随机产生7个数字,规定1-4为白球,5-12为黑球,根据产生的数字即可模拟抽取的结果。

```
function [pa, pb, Awin, Bwin] = q2_fun(n)
    Awin = ∅;
    Bwin = ∅;
   for k = 1:n
        counter = 0;
        balls = randperm(12, 7); % 随机抽取7个球
       for i = 1:7
            if balls(i) <= 4</pre>
                counter = counter + 1; %计算白球个数
            end
        end
       %判断 A 赢还是 B 赢
        if counter >= 3
           Awin = Awin + 1;
        eLse
            Bwin = Bwin + 1;
        end
    end
    %用频率近似概率
    pa = Awin / n;
    pb = Bwin / n;
end
```

调用上述函数,模拟抽球过程

```
clear all; clc;
%进行 10^i 次的蒙特卡洛实验
for i = 1:7
    [pa(i), pb(i), Awin(i), Bwin(i)] = q2_fun(10^i);
end

% 将实验结果输出到 txt
outputData = [pa; pb; Awin; Bwin]
save('蒙特卡洛实验第二题结果.txt', 'outputData', '-ascii')
```

Monte Carlo 试验次数	10^1	10^2	10^3	10^4	10^5	10^6	10^7
A 胜利次数	6	42	420	4210	42484	424254	4243321
A 胜利频率	60.00%	42.00%	42.00%	42.10%	42.48%	42.43%	42.43%
B胜利次数	4	58	580	5790	57516	575746	5756679
B胜利频率	40.00%	58.00%	58.00%	57.90%	57.52%	57.57%	57.57%

从上述结果可以看出随之试验次数增大,甲的胜利频率趋近于42.42%,而乙的 趋近于57.57%,也就是说乙的胜利几率大一点,甲做这个赌注是不值得的,他 更容易输。

3、用Monte Carlo法求解全局最优化及约束优化问题并通过图形作出评论。求下列函数的最大值:

$$(1) f(x) = (1 - x^2) \sin(3x), -2\pi < x < 2\pi$$

实验过程:

```
function maxVal = q3_1(n)
% 通过 Monte Carlo 法求最大值
x = unifrnd(-2 * pi, 2 * pi, 1, n);
f_x = (1 - x.^2) .* sin(3 * x);
maxVal = max(f_x);
% 绘制图形
draw_x = -2 * pi:0.001:2 * pi;
draw_y = (1 - draw_x.^2) .* sin(3 * draw_x);
plot(draw_x, draw_y);
end
```

实验结果与分析:

通过10⁷次的Monte Carlo实验,得到最大值为max = 32.4006,通过下面图形可以看出,最大值为32.4,两者是比较接近的。

$$f(x) = (1 - x^2) \sin(3x), -2\pi < x < 2\pi$$
 的图形

(2)
$$\max f(x) = x_1 x_2 x_3$$

$$s. t, \begin{cases}
-x_1 + 2x_2 + 2x_3 \ge 0 \\
x_1 + x_2 + 2x_3 \le 72 \\
10 \le x_2 \le 20 \\
x_1 - x_2 = 10
\end{cases}$$

实验过程:

```
function maxVal = q3_2(n)
    % 通过 Monte Carlo 法求最大值
   fx = [];
   x2 = unifrnd(10, 20, 1, n);
    x1 = x2 + 10;
    x3 = unifrnd(-20, 20, 1, n);
    for i = 1:n
        if -x1(i) + 2 * x2(i) + 2 * x3(i) >= 0 &&
           x1(i) + x2(i) + 2 * x3(i) <= 72
           fx = [fx, x1(i) * x2(i) * x3(i)];
        end
    end
    maxVal = max(fx);
    % 通过 imagesc 绘制图形
    x2 = 10:0.001:20;
    x3 = -5:0.001:16;
```

```
[X, Y] = meshgrid(x2, x3);
err1 = X + 2 * Y < 10;
err2 = 2 * X + 2 * Y > 62;
X(err1) = nan;
Y(err2) = nan;
Z = X .* Y .* (X + 10);
colormap('jet')
imagesc(x2, x3, Z); hold on
end
```

通过 10^7 次的Monte Carlo实验,得到最大值为max = 6616.2,通过下面图形可以看出,最大值为6613,两者是比较接近的。

 $f(x) = x_1 x_2 x_3$ 满足约束条件的取值的色图,其中横轴为 x_2 ,纵轴为 x_3 (3) $f(x,y) = (x^2 + 2y^2 + xy)e^{-x^2-y^2}$,|x| < 1.5,|y| < 1.5实验过程:

```
function maxVal = q3_3(n)

% 通过 Monte Carlo 法求 f(x,y)最大值

x = unifrnd(-1.5, 1.5, 1, n);
y = unifrnd(-1.5, 1.5, 1, n);
f_xy = (x.^2 + 2 * y.^2 + x .* y) .* exp(-x.^2 - y.^2);
maxVal = max(f_xy);

% 通过 imagesc 绘制 f(x,y)的图形
all_x = -1.5:0.01:1.5;
all_y = -1.5:0.01:1.5;
[X, Y] = meshgrid(all_x, all_y);
Z = (X.^2 + 2 * Y.^2 + X .* Y) .* exp(-X.^2 - Y.^2);
```

```
% colormap('jet')
imagesc(all_x, all_y, Z); hold on
% waterfall(all_x, all_y, Z); hold on
end
```

通过 10^7 次的Monte Carlo实验,得到最大值为 $\max = 0.8119$ 通过下面图形可以看出,最大值为0.8119,两者是一致的。

 $f(x,y) = (x^2 + 2y^2 + xy)e^{-x^2-y^2}$ 的颜色图

 $f(x,y) = (x^2 + 2y^2 + xy)e^{-x^2-y^2}$ by waterfall [8]