Basic Derivatives and Integrals $(D_x \text{ denotes } \frac{d}{dx})$:

$$D_x(x^n) = nx^{n-1} \implies \int x^n dx = \frac{1}{n+1}x^{n+1} + C, \quad n \neq -1$$

$$D_x(e^x) = e^x \implies \int e^x dx = e^x + C$$

$$D_x(\ln|x|) = \frac{1}{x} \implies \int \frac{dx}{x} = \ln|x| + C$$

$$D_x(\sin x) = \cos x \implies \int \cos x dx = \sin x + C$$

$$D_x(\cos x) = -\sin x \implies \int \sin x dx = -\cos x + C$$

$$D_x(\cot x) = \sec^2 x \implies \int \sec^2 x dx = \tan x + C$$

$$D_x(\cot x) = -\csc^2 x \implies \int \csc x \tan x dx = \sec x + C$$

$$D_x(\cot x) = -\csc^2 x \implies \int \csc x \cot x dx = -\csc x + C$$

$$D_x(\cot x) = -\csc x \cot x \implies \int \csc x \cot x dx = -\csc x + C$$

$$D_x(\cot^{-1}x) = \frac{1}{\sqrt{1-x^2}} \implies \int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C$$

$$D_x(\cot^{-1}x) = \frac{1}{1+x^2} \implies \int \frac{dx}{1+x^2} = \tan^{-1}x + C$$

$$D_x(\cot^{-1}x) = \frac{1}{1+x^2} \implies \int \frac{dx}{1+x^2} = \cot^{-1}x + C = -\tan^{-1}x + C$$

$$D_x(\cot^{-1}x) = \frac{1}{1+x^2} \implies \int \frac{dx}{1+x^2} = \cot^{-1}x + C = -\tan^{-1}x + C$$

$$D_x(\cot^{-1}x) = \frac{1}{1+x^2} \implies \int \frac{dx}{1+x^2} = \cot^{-1}x + C = -\tan^{-1}x + C$$

$$D_x(\cot^{-1}x) = \frac{1}{1+x^2} \implies \int \frac{dx}{1+x^2} = \cot^{-1}x + C = -\tan^{-1}x + C$$

$$D_x(\cot^{-1}x) = \frac{1}{x\sqrt{x^2-1}} \implies \int \frac{dx}{x\sqrt{x^2-1}} = \csc^{-1}|x| + C$$

$$D_x(\cos^{-1}x) = \frac{1}{x\sqrt{x^2-1}} \implies \int \frac{dx}{x\sqrt{x^2-1}} = \csc^{-1}|x| + C = -\sec^{-1}|x| + C$$

$$D_x(\ln|\sec x|) = \tan x \implies \int \tan x dx = \ln|\sec x| + C$$

$$D_x(\ln|\sin x|) = \cot x \implies \int \cot x dx = \ln|\sec x| + C$$

$$D_x(\ln|\sec x + \tan x|) = \sec x \implies \int \sec x dx = \ln|\sec x + \tan x| + C$$

$$D_x(\ln|\sec x + \tan x|) = \sec x \implies \int \sec x dx = -\ln|\csc x + \cot x| + C$$

Trigonometric Substitutions (c > 0):

(i)
$$\sqrt{c^2 - x^2}$$
. Substitute: $x = c \sin \theta$ for $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

(ii)
$$\sqrt{x^2+c^2}$$
. Substitute: $x=c\tan\theta$ for $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.

(iii)
$$\sqrt{x^2-c^2}$$
. Substitute: $x=c\sec\theta$ for $0\leq\theta<\frac{\pi}{2}$ or $\pi\leq\theta<\frac{3\pi}{2}$.

Trigonometric identities:

TR1.
$$\sin^2 x + \cos^2 x = 1$$
.

TR2.
$$\tan^2 x + 1 = \sec^2 x$$
.

TR3.
$$\cot^2 x + 1 = \csc^2 x$$
.

TR4.
$$\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x$$
.

TR5.
$$cos(x \pm y) = cos x cos y \mp sin x sin y$$
.

TR6.
$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)].$$

TR7.
$$\sin^2 x = \frac{1}{2}[1 - \cos(2x)], \text{ since } \cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x.$$

TR8.
$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)].$$

TR9.
$$\cos^2 x = \frac{1}{2}[1 + \cos(2x)].$$

TR10.
$$\sin x \cos y = \frac{1}{2} [\sin(x-y) + \sin(x+y)].$$

TR11.
$$\sin x \cos x = \frac{1}{2} [\sin(2x)], \text{ since } \sin(2x) = \sin(x+x) = 2\sin x \cos x.$$

Classification of integrals of trigonometric functions ($\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$):

Integrand	Restriction on m	Restriction on n	Procedure
$\sin mx \sin nx$	$\neq 0$	$\neq 0$	Use TR6
$\cos mx \cos nx$	$\neq 0$	$\neq 0$	Use TR8
$\sin mx \cos nx$	$\neq 0$	$\neq 0$	Use TR10
$\sin^m x \cos^n x$	Odd in $\mathbb{Z}_{>0}$	None	$\underbrace{-\sin^{m-1}x}\cos^n x\ d(\cos x)$
			$-(1-\cos^2 x)^{\frac{m-1}{2}}$
$\sin^m x \cos^n x$	None	Odd in $\mathbb{Z}_{>0}$	$\sin^m x \cos^{n-1} x d(\sin x)$
			$(1-\sin^2 x)^{\frac{n-1}{2}}$
$\sin^m x \cos^n x$	Even in $\mathbb{Z}_{\geq 0}$	Even in $\mathbb{Z}_{\geq 0}$	Use TR7 & TR9 $\rightarrow \cos(2x)$
$\tan^m x \sec^n x$	None	Even in $\mathbb{Z}_{>0}$	Use: $\sec^n x dx =$
			$(\tan^2 x + 1)^{\frac{n-2}{2}} d(\tan x)$
$\tan^m x \sec^n x$	in $\mathbb{Z}_{\geq 2}$	=0	Reduce power using:
			$\tan^m x = \tan^{m-2}(\sec^2 x - 1)$
			$= \tan^{m-2} d(\tan x) - \tan^{m-2} x = \cdots$
$\tan^m x \sec^n x$	=0	Odd in $\mathbb{Z}_{>0}$	If $n = 1$, use foundal. If not, use
			repeated int. by parts.
$\tan^m x \sec^n x$	Odd in $\mathbb{Z}_{>0}$	Odd in $\mathbb{Z}_{>0}$	Simplify by using: $\tan^m x \sec^n x$
			$= \tan^{m-1} x \sec^{n-1} x \ d \sec x$
			$= (\sec^2 - 1)^{\frac{m-1}{2}} \sec^{n-1} x \ d(\sec x)$
$\tan^m x \sec^n x$	Even in $\mathbb{Z}_{>0}$	Odd in $\mathbb{Z}_{>0}$	Use: $\tan^m x = (\sec^2 x - 1)^{\frac{m}{2}}$
$\cot^m x \csc^n x$, ,	, ,	Use: Similar to $\tan^m x \sec^n x$