

LABORATORY #2

- Insieme di tecniche per separare in un'immagine lo sfondo dagli oggetti di interesse
- Tecnica applicata in sequenze riprese con una telecamera fissa
- Sfondo (Background)
 - Parte statica, che non cambia nel tempo
- Foreground
 - Parte dell'immagine che cambia rispetto al background

background image

Background

- Parte *quasi* statica dell'immagine
- Può subire, nel tempo, lente variazioni in colore e intensità
- Difficile da definire:
 - Cambiamenti ripetitivi
 - Onde, foglie, ombre
 - Cambiamenti a lungo termine
 - Auto che parcheggia

Foreground

- Foreground = Frame Background
- Rappresenta la parte dell'immagine che varia in una sequenza

Blob Image Foreground

- I metodi di base hanno diversi limiti:
 - Si basano sulla storia del singolo pixel.
 - Non usano informazioni spaziali.
 - Le soglie ed i parametri sono difficili da scegliere.

Previous frame

Il background stimato al passo 'n' è l'immagine analizzata al passo 'n-1

$$B_n = I_{n-1}$$

Running Average

Il background è stimato come la media degli ultimi k frame.

$$B_n = \frac{1}{k} \sum_{i=n-1-k}^{n-1} I_i$$

- Il parametro k determina quanto velocemente il background si adatta ai cambiamenti.
- L'occupazione in memoria è k*dimensione_immagine!

Exponential Running Average

Il background è stimato con la seguente formula d'aggiornamento:

$$B_n = \alpha B_{n-1} + (1 - \alpha) I_{n-1}$$

- Il parametro αlfa determina la velocità di aggiornamento del background:
 - αlfa → 1: aggiornamento lento.
 - αlfa → 0: aggiornamento veloce.
- L'utilizzo di memoria è costante.

- Vedremo alcuni metodi di base:
 - Frame Precedente
 - Media a finestra mobile
 - Media mobile esponenziale
- Una volta stimato il background B, data una nuova immagine I, il pixel (i,j) appartiene al foreground se:

$$|I(i,j) - B(i,j)| > T_F$$

Homework

- Implementate i metodi di background subtraction di base:
 - Frame precedente.
 - Media a finestra mobile.
 - Media esponenziale.
- Ho un ciclo di caricamento immagini in cui:
 - Calcolo B_n (scegliete voi la politica ad inizio sequenza)
 - Carico I_n
 - Calcolo |I_n-B_n| e lo confronto con T_n
 - Visualizzo il risultato

Homework

- Visualizzate su una finestra il background calcolato.
 - Come cambia il background al variare di k e αlfa?

- Partire dall'esempio fornito utilizzando le immagini Candela.zip:
 - simple -i Candela_m1.10_%06d.pgm -t 500