Оглавление

1	Аналитический раздел		4
	1.1	Введение	4
	1.2	Возможные прецеденты	4
	1.3	Осуществляемая деятельность	6
	1.4	Вывод	8
2	Конструкторский раздел		9
	2.1	Введение	9
	2.2	Общая структура системы	9
	2.3	Система мониторинга	9
	2.4	Фронтэнд пользователей	10
	2.5	Фронтэнд вычислительных узлов	10
	2.6	Система управления сессией	11
	2.7	Система управления	12
	2.8	Система хранения данных	13
	2.9	Система балансировки нагрузки	13
	2.10	Система вычисления	14
	2.11	Вывод	16
3	Техно	Технологический раздел	
	3.1	Введение	17
	3.2	Выбор языка программирования	17
	3.3	Выбор программных средств	17
	3.4	?необязательно? программная реализация отдельных ком-	
		понентов	17
	3.5	Тестирование	17
	3.6	Вывод	17
4	Sowan	OHOUHO	1 Q

Глоссарий

- комплекс
- cyc
- сбн
- cy
- •
- задача
- пользователь
- вычислительный узел
- •
- x?
- •
- •

Введение

1. Аналитический раздел

1.1. Введение

В данном разделе выполняется анализ предметной области. Результаты анализа представляются в виде диаграм прецедентов и деятельности.

1.2. Возможные прецеденты

Комплекс при его работе предоставляет пользователю следующие варианты использования:

- регистрация пользователя;
- авторизация пользователя;
- постановка задачи на исполнение;
- просмотр статуса задачи;
- отмена задачи.

Диаграмма этих и дополнительных служебных прецедентов приведена на рис. 1.

С учётом требований к разделению внутреннего функционала комплекса, диаграмма прецедентов на рис. 1 расщепляется на набор диаграмм, соответствующих каждой из выделенных подсистем. Соответствующие диаграммы приведены на рисунках 2,3,4.

Рис. 1: Диаграмма прецедентов всеего комплекса в целом

Рис. 2: Диаграмма прецедентов СУС Рис. 3: Диаграмма прецедентов СУ

Рис. 4: Диаграмма прецедентов СБН

1.3. Осуществляемая деятельность

Прецеденты, описанные в предыдущем пункте, отвечают определённой деятельности. Диаграмма деятельности на рис. 5 описывает полный процесс взаимодействия пользователя с комплексом.

С учётом требований к разделению внутреннего функционала комплекса, диаграмма деятельности на рис. 5 расщепляется на набор диаграмм, соответствующих определённым подсистемам из выделенных.

Диаграммы действий прецедентов подсистемы управления сессией "регистрация" и "вход в систему" приведены на рисунках 6 и 7 соответственно.

Диаграммы действий прецедентов системы балансировки нагрузки "регистрация", "запрос новой задачи" и "завершение выполнения задачи" приведены на рисунках 8, 9 и 10 соответственно.

Диаграммы действий прецедентов системы управления "постановка задачи" и "просмотр статсуа задачи" приведены на рисунках 11 и 12 соответственно.

Рис. 5: Диаграмма действий прецедента "общая деятельность" для системы в целом

Рис. 6: Диаграмма действий прецедента "регистрация" СУС

Рис. 7: Диаграмма действий прецедента "вход в систему" СУС

дента "регистрация" СБН

Рис. 8: Диаграмма действий прецедента "запрос новой задачи" СБН

Рис. 10: Диаграмма действий преце- Рис. 11: Диаграмма действий прецедента "завершение выполнения зада- дента "постановка задачи" СУ чи" СБН

Рис. 12: Диаграмма действий прецедента "просмотр статсуа задачи" СУ

1.4. Вывод

В данном разделе были приведены диаграммы, описывающие функционал основных узлов системы. Данный анализ в дальнейшем используется для более строгой формализации функционала подсистем.

2. Конструкторский раздел

2.1. Введение

В данном разделе приводятся результаты проектирования системы. С применением UML-диаграмм описывается общая структура комплекса и требуемый функционал отдельных узлов системы.

2.2. Общая структура системы

Для того, чтобы удовлетворить требованиям по предоставлению механизма деградации функциональности, а также для упрощения процесса разработки, комплекс должна быть разделена на отдельные слабосвязанные элементы.

2.3. Система мониторинга

Задача данной подсистемы – отслеживание топологии сети. Все узлы комплекса должны оповещать СМ о своём статусе работы, и любой узел может получить от комплекса список активных в данный момент узлов. Данная система является полностью пассивной.

Невозможность любой другой подсистемы связаться с системой мониторинга рассматривается как ошибка сети, нарушающая нормальное функционирование комплекса.

Пассивная часть

Исходя из требований к СМ и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /services

Метод: СЕТ

Результат: список активных сервисов

• Pecypc: /services/type

Метод: GET

Результат: список активных сервисов такого типа

• Pecypc: /services/type

Метод: POST

Параметры: port, state?

Результат: сообщение об успешной регистрации сервиса и распознан-

ный адрес сервиса

Ошибки: отсутствует параметр 'port': HTTP 422

• Pecypc: /services/type/address

Метод: GET

Результат: статусное сообщение выбранного сервиса, аннотированное

временем создания

Ошибки: сервис не найден: НТТР 404

• Pecypc: /services/type/address

Метод: PUT

 Π араметры: state?

Результат: сообщение об успешном обновлении статусного сообщения

2.4. Фронтэнд пользователей

Задача данной подсистемы – проверки безопасности и перенаправление запросов от пользователей к системе управления, а также отрисовка веб-интерфейса.

Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- \bullet ФП должен зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.
- В ходе работы $\Phi\Pi$ должен получать со стороны CM информацию о текущем адресе CУ и СУС.

Пассивная часть

Исходя из требований к $\Phi B Y$ и с учётом REST-методик, он должен предоставлять следующее API:

• Pecypc: /foo

Метод: ВАК

Параметры: lorem

Результат: ipsum

Ошибки: dolor

2.5. Фронтэнд вычислительных узлов

Задача данной подсистемы – перенаправление запросов от вычислительных узлов на балансировщик нагрузки.

Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- ФВУ должен зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.
- В ходе работы ФВУ должен получать со стороны СМ информацию о текущем адресе СБН.

Пассивная часть

Исходя из требований к $\Phi B Y$ и с учётом REST-методик, он должен предоставлять следующее API:

• Pecypc: /nodes

Метод: POST

Параметры: список черт вычислительного узла

Результат: сообщение об успешной регистрации узла и назначенный

идентификатор

• Pecypc: /nodes/nodeid

Метод: PUT

Параметры: состояние расчёта

Результат: сообщение об успешном обновлении статуса

Ошибки: узел разрегистрирован за неактивностью: НТТР 404

• Pecypc: /tasks/newtask

Метод: GET

Параметры: идентификатор вычислительного узла

Результат: пакет данных, описывающих задачу

Ошибки: подходящих задач нет: HTTP 404

• Pecypc: /tasks/taskid

Метод: POST

Параметры: идентификатор вычислительного узла, результат выпол-

нения задачи

Результат: сообщение об успешном приёме результата

2.6. Система управления сессией

Задача данной подсистемы – регистрация, авторизация и аутентификация пользователей в сети.

Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- СУС должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.

Пассивная часть

Исходя из требований к СУС и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /users

Метод: POST

Параметры: желаемая пара логин / пароль (возможно, хеширован-

ный)

Результат: сообщение об успешной регистрации пользователя

Ошибки: пользователь с таким именем уже зарегистрирован: HTTP

403

• Pecypc: /users/username

Метод: GET

Параметры: пароль (возможно, хешированный)

Результат: сгенерированный ключ доступа

Ошибки: некорректная пара логин / пароль: НТТР 403

• Pecypc: /validate

Метод: GET

Параметры: ключ доступа

Результат: сообщение об успешной проверке ключа

Ошибки: некорректный ключ: НТТР 401

2.7. Система управления

Задача данной системы – предоставление АРІ, позволяющего интерфейсной части (фронтэнду вычислительных узлов) осуществлять взаимодействие пользователя с комплексом.

Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- СУ должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.
- В ходе работы СУ должна получать со стороны СМ информацию о текущем адресе СХД.

Пассивная часть

Исходя из требований к СУ и с учётом REST-методик, она должна предоставлять следующее АРІ:

• Pecypc: /foo

Метод: ВАК

Параметры: lorem

Результат: ipsum

Ошибки: dolor

2.8. Система хранения данных

— сюда пойдёт как минимум ER, так же будет описание апишки. реализация и д.классов и иже с ними – в технологическом

Активная часть

- В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес системы мониторинга.
- СХД должна зарегистрироваться на СМ и оповещать её о своём состоянии с некоторой периодичностью.

Пассивная часть

Исходя из требований к СХД и с учётом REST-методик, она должна предоставлять следующее API:

• Pecypc: /foo

Метод: ВАR

Параметры: lorem Результат: ipsum Ошибки: dolor

2.9. Система балансировки нагрузки

— собственно отвечает за координацию задач. имеет всё апи фронтенда вычислительных узлов (который просто редиректит запросы к ней), плюс некоторое апи по которому её опрашивают другие узлы комплекса.

2.10. Система вычисления

Данная система представлена набором вычислительных узлов с установленным на них специальным ПО, осуществляющем взаимодействие с остальными сервисами системы и управление ходом выполнения задачи.

Активная часть

В ходе конфигурирования данной системы необходимо в ручном порядке указать адрес фронтэнда вычислительных узлов.

ПО, обеспечивающее функционирование системы, должно удовлетворять следующим требованиям:

• До подключения к серверу балансировки приложение должно предоставлять возможность формирования списка черт, характеризующих АО и ПО вычислительного узла

Рис. 13: Диаграмма состояний ВУ

- После подключения к балансировщику (через фронтэнд вычислительных узлов), с определённой периодичностью вычислительный узел должен опрашивать комплекс на предмет наличия доступных задач
- По получении задачи, вычислительный узел должен с определённой периодичностью оповещать балансировщик о ходе выполнения задачи
- По завершении выполнения задачи, вычислительный узел должен передать балансировщику сведения о результате выполнения задачи

Диаграмма состояний ПО вычислительного узла, иллюстрирующая приведённые выше соображения, приведена на рис. 13.

2.11. Вывод

3. Технологический раздел

3.1. Введение

В данном разделе производится выбор языка программирования и сопутствующих программных средств. Описываются основные моменты программной реализации и описывается методика тестирования.

- 3.2. Выбор языка программирования
- 3.3. Выбор программных средств
- 3.4. ?необязательно? программная реализация отдельных компонентов
- 3.5. Тестирование
- 3.6. Вывод

4. Заключение