Codificación	3
¿Qué define la Codificación?	3
Procesos	3
Terminología	3
Objetivos de la Codificación	3
¿Cómo se logra?	4
Datos Digitales a señales discretas	4
NRZ-L	4
NRZI	4
Bipolar-AMI	4
Manchester	4
Manchester Diferencial	5
Scrambling	5
Técnicas de Scrambling	5
Datos Digitales a señales análogas	5
Tecnicas de codificacion	5
ASK	6
FSK	6
PSK	7
Datos Análogos a señales digitales	8
Codec	8
Técnicas	8
Pulse code Modulation (PCM)	8
■ PAM (Pulse Amplitude Modulation):	8
■ Quantizer:	8
Ejemplo de PCM	9
Delta Modulation (DM)	9
Tx DT Serial	10
Transmisión serial y paralelo	10
Tipos De Señal	10
Transmisión en Paralelo	10
Transmisión en Serie	11
Conceptos	11
¿Qué es la Sincronización?	11
Técnicas de Sincronización	11
Serial	11
Transmisión Asincrónica	11
Transmisión Sincrónica	12
Stuffing	13
Transmisión Orientada a Bit	13
Transmisión Orientada al Carácter	13
Interfacing	13
Conexión de DTE a DCE	14

RS232C (EIA) / V.24 (UIT)	14
Funcional (Asincronico)	14
Procedural (Asíncrono) Half Duplex	15
Procedural Sincronica	15
Diagramas de Conexión	16
Ejemplos	16
Otras Interferencias	17
Multiplexación	18
Tipos	18
Multiplexación por división de frecuencia (FDM)	18
Multiplexación por división de tiempo (TDM)	19
TDM Link Control	20
TDM Standar (Sincronicos)	21
Statistical TDM (Estadísticos)	21
Multiplexores	22
Concentradores	22
Concentradores	
Teoria de Colas	
	22
Teoria de Colas	22 23
Teoria de ColasMedios Físicos	22 23
Teoria de Colas	
Teoria de Colas Medios Físicos Medios de transmisión Factores Par Trenzado Coaxial de Banda base Coaxial de banda ancha Fibras Ópticas Comparaciones	
Teoria de Colas	
Teoria de Colas Medios Físicos Medios de transmisión Factores Par Trenzado Coaxial de Banda base Coaxial de banda ancha Fibras Ópticas Comparaciones Transmisión sin Cables Medios No Guiados	
Teoria de Colas	

Codificación

- Datos digitales a señales discretas
- Datos digitales a señales análogas
- Datos análogos a señales discretas
- Datos análogos a señales análogas

¿Qué define la Codificación?

- La forma en que los datos son convertidos a señales, para pasarlos al medio de comunicación físico.
- Esta técnica debe disminuir el consumo de ancho de banda y/o minimizar errores.

Procesos

Terminología

- Los datos y las señales estan compuestos de elementos básicos. (bits)
- Señal Digital => Pulsos de V, amplitud constante.
- Señal Análoga => Frecuencia, fase y amplitud constante.
- Señal Unipolar => Todos los elementos son V + o -
- Señal Bipolar => Voltajes + y -
- Data rate => Speed en la cual los ELEMENTOS del dato son transferidos (bps).
- Modulation Rate => "" "" "" ELEMENTOS de una señal son transferidos. (baudios)

Objetivos de la Codificación

- Consumir poco ancho de banda
- Tener muchos cambios de V
- Señal no Polarizada
- Bajo promedio de V

¿Cómo se logra?

- Espectro de señal no debe tener Componentes de:
 - Alta frecuencia
 - Corriente continua
 - Señal en el extremo del espectro
- Sincronización
- Detección de errores
- Inmunidad al ruido
- Disminuir costos y complejidad

Datos Digitales a señales discretas

NRZ-L

- Asocia dos niveles de V para 0 y 1.
- El V no cambia durante todo el bit
- Pocos cambios de señal (muchos 0 o 1) => Pérdida de sincronismo.
- Alto promedio de V en: 101010101...
- Usado en la Comunicación RS232
 - Proceso de comunicación serial, se utiliza para establecer una conexión punto a punto entre el emisor y el receptor, a través de un medio físico.

NRZI

- El V no cambia durante todo el bit
- Solo se transmite señal con 1's
- Una transición en el comienzo del intervalo => un uno binario.
- Codificación diferencial.
- Señal no Polarizada.

Bipolar-AMI

- Usa más de dos niveles de tensión
- 1: representado por pulsos positivos y negativos en forma alternativa
- No pierde sincronismo en secuencia de 1's
- Menor ancho de Banda que NRZ
- Alternancia de pulsos => simplifica detección de errores.
- Hay que distinguir tres niveles de señal.

Manchester

- Transición en medio de cada periodo.
- Ancho de banda debe ser alto.
- Señal generada facilita sincronización.
- Detección de errores por ausencia de transiciones.
- Utilizada en IEEE 802.3

Manchester Diferencial

- 0 es una transición al inicio del periodo.
- Es una Codificación diferencial.
- Utiliza IEEE 802.5

Scrambling

Técnicas de Scrambling

- Bipolar con sustitución de 8 ceros (B8ZS)
 - o Basado en Bipolar AMI
 - Consisten en violar la Codificacion
 - o AMI:
 - 8 ceros y último pulso positivo => 000+-0-+
 - 8 ceros y último pulso negativo => 000-+0+-
- High-density bipolar 3 ceros (HDB3)
 - Similar a bipolar AMI
 - o String de cuatro ceros se reemplaza por un string con código de violacion.
 - Sucesivas violaciones son de polaridad opuesta.

Datos Digitales a señales análogas

Tecnicas de codificacion

- Modulación: trabaja sobre las siguientes 3 características:
 - Amplitud
 - o Frecuencia
 - Fase
- Técnicas:
 - Amplitude-shift keying (ASK)
 - Frequency-shift keying (FSK)
 - Phase-shift keying (PSK)

ASK

- Bit 0 => Amplitud 0.
- Bit 1 => Magnitud distinta.
- Relación entre Baudios (Modulation Rate) y bps (Data Rate) es de 1 a 1.
- INEFICIENTE.
- En Líneas Telefónicas: 1200 bps.
- Usado para transmitir sobre fibras ópticas.

FSK

- Valores Binarios representados por dos frecuencias distintas.
- Baudios y bps: 1 a 1
- Ineficiente

- Menos susceptible a errores que ASK
- Líneas Telefónicas: 300 a 1200 bps
- Usado para transmisión de radio (3 a 30 Mhz)

PSK

- Señal sin desplazamiento => representa 1.
- Comienza a 180* del desplazamiento => 0.
- Baudios y bps: relación 1 a 1.
- Diseño complejo del receptor.

Utilizado en redes LAN, satélite, WIFI y Bluetooth

Datos Análogos a señales digitales

Codec

Técnicas

- Pulse code Modulation (PCM)
 - o Muestreos a intervalos regulares.
 - Señal de muestreo debe ser > o = a 2 veces la frecuencia más alta posible de la señal.
 - Compuesto de varias etapas:
 - PAM (Pulse Amplitude Modulation):
 - muestras representadas como pulsos proporcionales al valor de la señal original.
 - Quantizer:
 - Amplitud de cada impulso PAM es aproximado a n bits

Ejemplo de PCM

- Señal de 4 Khz
- => Muestra a tomar debe ser de 8 Khz
- o En otras palabras, tomo 8k muestras por segundo
- o Y si utilizo 8 bits por muestra, esto generando 64000 bps, o 64kbps
- Delta Modulation (DM)
 - o Señal aproximada por una función escalera
 - \circ Sube y baja en valores constantes (δ)

Tx DT Serial

Transmisión serial y paralelo

Tipos De Señal

Transmisión en Paralelo

- Transmisión simultánea de Bits sobre un grupo de líneas.
- Usado en Cortas distancias.
 - Impresoras Paralelas
 - Interfaces SCSI
 - o Redes LAN

Transmisión en Serie

- Un bit detrás de otro
- Más confiable en larga distancia
- Ejemplos:
 - Transmisiones de video y audio
 - Conexiones seriales de computadoras
 - Comunicaciones telefónicas

Conceptos

- Intercambiar datos ⇔ dispositivos sincronizados (Timing)
- Diversas técnicas de sincronismo para Transmisiones seriales y paralelas.

¿Qué es la Sincronización?

 Es el Timing (velocidad, duración de bit) entre emisor y receptor, este debe ser similar.

Técnicas de Sincronización

Serial

- Transmisión Asincrónica
 - o Independencia entre Relojes del transmisor y receptor.
 - o Evita desincronización en secuencia corta de bits.
 - o datos transmitidos de un carácter (5-6 bits) por vez.
 - Sincronización garantizada
 - Carácter encapsulado entre un bit de comienzo y 1 o + de finalización.
 - Periodo de inactividad entre caracteres.
 - No hay control entre DTE's => no vinculados.
 - DTE: Data Terminal Equipment
 - o Tiene Bajo Rendimiento.
 - o U. de información : Carácter.
 - Comunicación orientada al carácter.

Par, impar o no usado

- IDLE: no signal, -V
- 1 Start bit y 7 u 8 bit de datos
- Bit de paridad (control de errores)
- Gap min = Stop Bit = 1, 1.5, 2 bits
- Eficiencia: bits de datos / total de bits
 - 8/(8 bit datos+1 paridad + 1 stop + 1 start) = 73%
- Framing error
 - Se produce cuando no se sincroniza el reloj de recepción con el flujo de datos entrante. Conlleva a errores de interpretación de los datos.
- No transmisión => línea ociosa

- Transmisión Sincrónica
 - Dependencia entre Relojes
 - o Transferencia de bloques delimitados por las flags
 - Patrones de bits
 - o Reloj tanto en transmisión como en receptor
 - Línea dedicada para sincronización
 - Inf de sinc embebida en una señal de datos
 - Manchester
 - o U de informacion: Frame
 - Encapsulada entre varios caracter reservados
 - El frame completo es transmitido como un continuo stream de bits sin delay entre ellos.
 - Orientado al Carácter ⇔ unidad de datos son 8 bits
 - Orientada a bits ⇔ u. de dato delimitada por flags

- Eficiencia: bits de datos / (Preámbulo + datos + Pospreambulo)
- Ejemplo: High-Level Data Link Control (HDLC)
 - 8 bits overhead para 1k bits datos

Stuffing

- En la transmisión sincrónica los campos de control pueden aparecer en los datos.
- Transmisión Orientada a Bit
 - Flag **01111110** puede **aparecer** en los Datos.
 - o Bit Stuffing: cada 5 unos se agrega 0, receptor luego de 5 unos lo remueve
- Transmisión Orientada al Carácter
 - o Carácter de sincronismo (SYS) puede aparecer en los datos.
 - Character Stuffing: Sí SYS en datos => agrega otro SYS => receptor lo remueve.

Interfacing

- Define cómo se relaciona un dispositivo de comunicación y el que genera los datos
 - o Ej: el PC
- Términos
 - o DTE: Data Terminal Equipment
 - DCE Data Communication Equipment

Conexión de DTE a DCE

- Interfaz con los sg aspectos:
 - Mecánico
 - o Eléctrico
 - Funcionales
 - Procedurales
- Ej: RS232

RS232C (EIA) / V.24 (UIT)

- Mecánico:
 - Conector DB25
 - o DTE Macho
 - o DCE Hembra
- Eléctrico:
 - \circ 0 => tensión > + 4 V
 - \circ 1 => tensión <- 3 V
- $D m\acute{a}x = 15 mts$
- V max = 20kbps

Funcional (Asincronico)

Procedural (Asincronico) Half Duplex

Procedural Sincronica

- Señales asincrónicas + Señales de Reloj.
- Señales de reloj => "ritmo" de envio y recepcion de datos
- Clock Recepción (RxCk): "ritmo" receptor (datos) del Modem.
 - Siempre provisto por el Modem
 - Si pone Reloj => Reloj interno
- Clock Transmisión (TxCk): "ritmo" modem transmite datos
- DTE Solo reloj de transmisión (Pin 24)
 - o Reloj Transmision externo

Diagramas de Conexión

Clock de transmisión interno

Clock de transmisión externo

Ejemplos

Otras Interferencias

- V.35
 - o Sincrónica solamente
 - Balanceada
 - o Distancia máxima
 - o Transporta hasta 2 Mbps
- X.21
 - o 15 pines
 - o Balanceada
 - o Soporta 2 Mbps
- RS-449
 - o Conector DB37
 - Se complementa con:
 - RS422
 - Balanceadas de hasta 2 Mbps en 60 mts
 - RS423
 - Desbalanceada de hasta 40 kbps en 60 mts

Multiplexación

Tipos

- Frequency Division Multiplexing (FDM)
- Time Division Multiplexing (TDM)
- Statistical TDM

Multiplexación por división de frecuencia (FDM)

- Señal se modula en diferentes frecuencias (canales), separa "guardia de protección".
- Ancho de banda del medio T, excede ancho de banda requerido de las señales a transmitir.
 - Señal es Análoga.
 - Ej: TV.

(a) Frequency-Division Multiplexing

(c) Spectrum of composite signal using subcarriers a 64 kHz, 68kHz, and 72 kHz

Multiplexación por división de tiempo (TDM)

- Múltiples señales digitales se intercalan en el tiempo para su transmisión.
- Velocidad del medio debe exceder la velocidad de las señales transmitidas.
- Pueden intercalarse a nivel de Bit, byte o bloques de bytes
- una señal => un slot de tiempo

Sincroniza Datos de cada una de las fuentes, estos son divididos en ranuras temporales. Se envía una ranura de cada fuente a continuación de la ranura anterior, de forma cíclica. Dando por resultado un conjunto de Bits en el canal que pertenecen a distintas comunicaciones

Se utiliza para envío de voz digitalizada (T móviles)

(b) Time-Division Multiplexing

(c) Receiver

TDM Link Control

- no requiere control de flujo
- Control de error por canal
- Sincronización de frames
 - No flags y no carácter SYN
 - Agregados 101010 (1 frame)
- Pulse stuffing (sincronización por fuente de datos)

TDM Standar (Sincronicos)

(a) North American			(b) International (CCITT)		
Digital Signal Number	Number of Voice Channels	Data Rate (Mbps)	Level Number	Number of Voice Channels	Data Rate (Mbps)
DS-1	24	1.544	1	30	2.048
DS-1C	48	3.152	2	120	8.448
DS-2	96	6.312	3	480	34.368
DS-3	672	44.736	4	1920	139.264
DS-4	4032	274.176	5	7680	565.148

Statistical TDM (Estadísticos)

- TDM asincrónico/inteligente
- Perdida en la capacidad de los canales
- Si los arribos son irregulares
- Data rate línea multiplexada puede ser menor que ∑líneas entrantes
- Buffers para cada línea que está siendo multiplexada
- No Asignación predeterminada => necesario direccionar cada subframe

Multiplexores

- Optimizan el uso del medio
- Utilizado en enlaces de larga distancia de alta capacidad
 - Fibra
 - Coaxil
 - microonda

Concentradores

- Similar a Multiplexores Estadísticos
- Muchas entradas y salidas
- No se usan todos los canales simultáneamente.
- Mensajes de corta duración
- Tienen memoria (no pérdida de info)

Teoria de Colas

- Distribución tiempos de llegada
- "Tiempos de servicio
- Cantidad de servidores)?
- Ordenamiento de colas
 - o Lifo
 - o Fifo
- Tamaño de colas
 - Finita
 - Infinita
- Notación A/B/n
- Mensajes atendidos por segundos (µ)
- Promedio llegada msg/s = V
- Estabilidad: V < μ
- Promedio clientes en curso y en cola: $N = V/(\mu V) \ V N = V * T$
- T: tiempo promedio de permanencia en sistema = > $T = 1/(\mu V)$

Ejemplo

- Tráfico de entrada
 - Hay cuatro líneas entrantes
 - v_i=2 men/seg y Long. msg = 1000 bits
- La cantidad de msg procesados por seg. es:
 - μ= 9600 bps * 1000 bit/msg= 9.6 msg/seg
- El promedio de msg por seg es:
 - V = Sum(vi) = 8 msg/seg
- □ El tiempo promedio del msg dentro del concentrador es:
 - $T= 1 / (\mu V) = 1 / (9.6-8) = 0.625 \text{ seg/msg}$
- El promedio de msg en el sistema es:
- □ N= V / (µ- V)= 5
- Entonces la memoria necesaria es: 5 * 1000 bit= 5 K

Medios Físicos

Medios de transmisión

- Transmisor ———— Receptor.
- Señales omnidireccionales y direccionales
- Medios Guiados
 - o Se establecen límites en la transmisión.
 - Par de cable trenzado.
 - Cable coaxial.
 - Fibra óptica.
- No Guiados
 - Determina característica de la transmisión.
 - Aire.
 - Vacío.

Factores

- Mayor ancho de banda => superior data rate.
- Atenuación e interferencias => Limita alcance de los medios.
- Receptores => Producen Atenuación y Distorsión.

Par Trenzado

- Dos Hilos (1 mm) de cobre, aislados y trenzados.
- Pueden envolver varios pares juntos.
- Transmisión de señales analógicas y digitales.
- Une varios Km sin amplificar
- Data rate:
 - \circ LAN => 10/100 *Mbps*
 - Larga distancia (10 km) => 4 Mbps
- Ancho de Banda: 3 Mhz
- Bajo costo
- Fácil Instalación
- Telefonía y cableado horizontal
- Amplificadores cada 5 o 6 Km
- Repetidores cada 2 o 3 Km
- Altas frecuencias => mucha atenuación
- Susceptible a interferencias
- UTP/STP
- Categoría 3,4 y 5

Coaxial de Banda base

- Compuesto de 2 Conductores concéntricos.
- Menos susceptibles a interferencias y a crosstalk
- Transmisiones digitales
- Canal único, propagación bidireccional.
- 10 Mbps < 1 Km
- Se usa en:
 - o LAN
 - Telefonía larga distancia
- Solo para Voz y Datos

Coaxial de banda ancha

- Transmision Analogica
- Gran ancho de banda
- Se divide en varios canales
- Permite transmitir a la vez:
 - o Video
 - Audio
 - Datos
- Se utiliza en CATV
- Costo elevado
- Mucho mantenimiento
- Alcance: Decenas de Km

Fibras Ópticas

- Transmisión por impulsos de luz.
- Componentes:
 - Medio
 - Fibra de vidrio.
 - silicio fundido.
 - Fuente de Luz
 - LED.
 - Diodo Láser.
 - Detector
 - Fotodiodo.
- Señal Unidireccional.
- Propagación:
 - o Multidiodo
 - Transmisión por Rebotes de Luz, LED
 - Monomodo
 - Iínea recta
 - Diodos láser
 - Mayor alcance
- Mucha distancia entre repetidores
- Mucha difusión en enlaces de Telecomunicación Larga Distancia
- Actualmente en LAN

- Instalación requiere precisión.
- Amplio ancho de banda.
- Permite Gbps.
- Baja atenuación.
- Inmune a:
 - Interferencias.
 - o Ruido.
 - o Crosstalk.
- Se utiliza para transportar
 - Voz.
 - o Datos.
 - o Imagen.
 - o Video.

Comparaciones

Medio	Data rate	Ancho de Banda	Espaciado entre repetidores
Par trenzado	4 Mbps	3 MHz	2 a 10 Km
Coaxil	500 Mbps	350 MHz	1 a 10 Km
Fibra	2 Gbps	2GHz	10 a 100 Km

Transmisión sin Cables

Medios No Guiados

- Transmisor Antena Receptor
- Transmisión Direccional => Antenas Alineadas
- Transmisión Omnidireccional => Señal se propaga en todas direcciones.
- 30 *Mhz* a 1 *Ghz*
 - o Omnidireccionales
 - o Radio
- 2 a 40 Ghz
 - Direccional
 - Microondas
 - Satelites
- 300 Ghz a 200.000 Ghz
 - o Infrarroja

Microondas Terrestre

- Antenas Parabólicas
- Visión directa entre Antenas
- Antena en mayor altura => Mayor alcance
- Se utiliza para:
 - o Comunicación Larga distancia
 - " Entre Edificios
 - Para voz y TV
- Pérdidas por:
 - Atenuación.
 - Interferencias.
- Sensible a condiciones atmosféricas.
- Permite transportar cientos de Mbps.

Microondas Satelital

- Solo actúa como Repetidor-Amplificador
- Receptores Transmisores ≥ 1
- Cubre Amplio espectro terrestre
- Ubicados a 36.000 Km en el plano del ecuador
 - Geoestacionarios
- Espaciados a 4 grados
 - Menos a dia de hoy
- Banda Base = 4 6 Ghz
- Banda Ku = 12 14 Ghz
- Banda Ka = 20 30 Ghz
- Mucho ancho de banda
- Transmite a velocidad de la luz
- T de propagación = 270 ms, para 72.000 Km
- Eclipse y lluvia => Mal funcionamiento
- Se utiliza en
 - TV.
 - o Telefonía.
 - Redes privadas.
- Existen a menor altura (LEO)

Radio

- Omnidireccional
- Inmune a Obstáculos ⇔ Bajas frecuencias
- No requiere Antenas Parabólicas
- Frecuencias: 3 KHz a 300 GHz
- Radio, TV y Datos
- Ancho de banda relativamente Bajo

Infrarrojo

- Comunicación de corto alcance.
- Direccional.
 - o (energía radiada de manera localizada, aumenta potencia emitida al receptor)
- Fácil de instalar.
- No pasa por Objetos sólidos
- Seguro y no necesita licenciarse.
- Circunscripto a un ambiente.
 - o Reducido a ciertos límites, o exigencias del ambiente.