Teoria da Computação

Prof. Maicon R. Zatelli

Aula 6 - Decidibilidade (Linguagens Decidíveis e Linguagens Indecidíveis) - Parte 2

Universidade Federal de Santa Catarina Florianópolis - Brasil

Introdução

- Linguagens decidíveis
- Método da diagonalização
- Linguagens indecidíveis

Material de apoio

- Livro Sipser, Capítulo 4
- Livro Hopcroft, Capítulo 9

Hierarquia de Chomsky

Indecidíveis - são todas as linguagens Turing-reconhecíveis mas não decidíveis e também as linguagens não Turing-reconhecíveis

São os problemas não algoritmicamente solucionáveis

São os problemas não algoritmicamente solucionáveis

Máquina de Turing Universal (MTU)

- Recebe como entrada a descrição de uma MT e a simula com determinada entrada w
- A descrição da MT é colocada na fita da MTU, assim como a palavra w

São os problemas não algoritmicamente solucionáveis

Máquina de Turing Universal (MTU)

- Recebe como entrada a descrição de uma MT e a simula com determinada entrada w
- A descrição da MT é colocada na fita da MTU, assim como a palavra w

A MTU com uma MT M de entrada e uma palavra w faz

- Aceita, se a simulação de M com a entrada w resultar em aceite
- Rejeita, se a simulação de M com a entrada w resultar em rejeite
- ullet Loop, se a simulação de M com a entrada w resultar em loop

Esquema de uma MTU

Uma MTU é como um "sistema operacional" que executa "programas" (neste caso outras MT) com determinadas entradas (neste caso a palavra w)

5

Problema 9: Testar se uma MT aceita determinada entrada w

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ < M, w > | M \text{ \'e uma MT e M aceita a} \}$

palavra w}

Teorema 9: A_{TM} é indecidível

6

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Antes de provar que A_{TM} é indecidível, vamos mostrar que A_{TM} é Turing-reconhecível

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Antes de provar que A_{TM} é indecidível, vamos mostrar que A_{TM} é Turing-reconhecível

Teorema 10: A_{TM} é Turing-reconhecível

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Antes de provar que A_{TM} é indecidível, vamos mostrar que A_{TM} é Turing-reconhecível

Teorema 10: A_{TM} é Turing-reconhecível

Prova: prova por construção. Construimos uma MT M10 que reconheça A_{TM}

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Antes de provar que A_{TM} é indecidível, vamos mostrar que A_{TM} é Turing-reconhecível

Teorema 10: A_{TM} é Turing-reconhecível

Prova: prova por construção. Construimos uma MT M10 que reconheça A_{TM}

M10 com a entrada <M,w>, onde M é uma MT e w é uma palavra, faz:

1: Simule M com a entrada w

2: Se M aceita w, aceite (M10 aceita <M,w>)

3: Se M rejeita w, rejeite (M10 rejeita <M,w>)

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Antes de provar que A_{TM} é indecidível, vamos mostrar que A_{TM} é Turing-reconhecível

Teorema 10: A_{TM} é Turing-reconhecível

Prova: prova por construção. Construimos uma MT M10 que reconheça A_{TM}

M10 com a entrada <M,w>, onde M é uma MT e w é uma palavra, faz:

1: Simule M com a entrada w

2: Se M aceita w, aceite (M10 aceita <M,w>)

3: Se M rejeita w, rejeite (M10 rejeita <M,w>)

Note que M10 ficará em loop se M não aceitar nem rejeitar w

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 10: A_{TM} é Turing-reconhecível

Prova: prova por construção. Construimos uma MT M10 que reconheça A_{TM}

Antes de mostrar que A_{TM} é indecidível, vamos aprender o método da diagonalização de Georg Cantor

Antes de mostrar que A_{TM} é indecidível, vamos aprender o método da diagonalização de Georg Cantor

- Testar se dois conjuntos infinitos possuem o mesmo tamanho
- Provas por meio de geração de paradoxos

Exemplo 1: O conjunto de números naturais pares possui o mesmo tamanho que o conjunto dos números naturais?

Dois conjuntos possuem o **mesmo tamanho** se é possível parear os elementos dos dois conjuntos por meio de uma função de correspondência

Vamos provar que o conjunto de números naturais pares $\{2,4,6,...\}$ possui o mesmo tamanho que o conjunto dos números naturais $\{1,2,3,...\}$

Vamos provar que o conjunto de números naturais pares $\{2,4,6,...\}$ possui o mesmo tamanho que o conjunto dos números naturais $\{1,2,3,...\}$

n	f(n)
1	2
2	4
3	6
4	8

9

Vamos provar que o conjunto de números naturais pares $\{2,4,6,...\}$ possui o mesmo tamanho que o conjunto dos números naturais $\{1,2,3,...\}$

f(n)
2
4
6
8

A função acima é f(n)=2n, que certamente é uma função correspondência

Vamos provar que o conjunto de números naturais pares $\{2,4,6,...\}$ possui o mesmo tamanho que o conjunto dos números naturais $\{1,2,3,...\}$

f(n)
2
4
6
8

A função acima é f(n) = 2n, que certamente é uma função correspondência

Assim, podemos afirmar que o conjunto de números naturais pares possui o mesmo tamanho que o conjunto dos números naturais

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais \mathbb{N}

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais \mathbb{N}

Seja $\mathbb Q$ o conjunto dos números racionais $\mathbb Q=\{\frac{m}{n}|m,n\in\mathbb N\}$

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Seja $\mathbb Q$ o conjunto dos números racionais $\mathbb Q=\{\frac{m}{n}|m,n\in\mathbb N\}$

 $\mathbb Q$ é contável?

n	f(n)
1	1/1
2	1/2
3	1/3
4	1/4
5	1/5

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Seja $\mathbb Q$ o conjunto dos números racionais $\mathbb Q=\{\frac{m}{n}|m,n\in\mathbb N\}$

 \mathbb{Q} é contável?

n	f(n)
1	1/1
2	1/2
3	1/3
4	1/4
5	1/5

• Quando irá chegar em 2/1?

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

	1	2	3	4	5
1	1/1	1/2	1/3	1/4	1/5
2	2/1	2/2	2/3	2/4	2/5
3	3/1	3/2	3/3	3/4	3/5
4	4/1	4/2	4/3	4/4	4/5
5	5/1	5/2	5/3	5/4	5/5

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

n	f(n)
1	1/1
2	2/1
3	1/2
4	3/1
5	1/3
6	4/1
7	3/2

Um conjunto A é dito **contável** se ele é finito ou tem o mesmo tamanho que o conjunto dos números naturais $\mathbb N$

Seja $\mathbb Q$ o conjunto dos números racionais $\mathbb Q=\{\frac{m}{n}|m,n\in\mathbb N\}$ $\mathbb Q$ é contável?

• Sim! Provamos mostrando uma forma de fazer pareamento entre os números racionais e os números naturais.

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

O conjunto dos números reais \mathbb{R} é contável?

ullet O conjunto dos números reais ${\mathbb R}$ não é contável

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

O conjunto dos números reais \mathbb{R} é contável?

- ullet O conjunto dos números reais ${\mathbb R}$ não é contável
- Mostraremos que não há uma correspondência com os números naturais $\mathbb N$

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

- ullet O conjunto dos números reais ${\mathbb R}$ não é contável
- Mostraremos que não há uma correspondência com os números naturais $\mathbb N$
- A prova é por contradição

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

- ullet O conjunto dos números reais ${\mathbb R}$ não é contável
- Mostraremos que não há uma correspondência com os números naturais $\mathbb N$
- A prova é por contradição
- ullet Suponha que ${\mathbb R}$ é contável

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

- ullet O conjunto dos números reais ${\mathbb R}$ não é contável
- Mostraremos que não há uma correspondência com os números naturais $\mathbb N$
- A prova é por contradição
- Suponha que ℝ é contável
- Agora mostramos que existe um número real x que não é pareado com nenhum número natural

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

- ullet O conjunto dos números reais ${\mathbb R}$ não é contável
- Mostraremos que não há uma correspondência com os números naturais N
- A prova é por contradição
- ullet Suponha que ${\mathbb R}$ é contável
- Agora mostramos que existe um número real x que não é pareado com nenhum número natural
- Este valor x é construído a partir de uma suposta correspondência entre \mathbb{R} e \mathbb{N}

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

O conjunto dos números reais \mathbb{R} é contável?

• Seja f a função que faz a correspondência entre qualquer natural n com algum real f(n)

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

- Seja f a função que faz a correspondência entre qualquer natural n com algum real f(n)
- O objetivo é mostrar que $x \neq f(n)$ para qualquer n

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

- Seja f a função que faz a correspondência entre qualquer natural n com algum real f(n)
- O objetivo é mostrar que $x \neq f(n)$ para qualquer n
- x é construído como sendo 0. e cada dígito decimal (após o .) é diferente de seu correspondente na mesma posição, ou seja, o i-ésimo dígito de x é diferente do i-ésimo dígito do correspondente do i-ésimo natural

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

- Seja f a função que faz a correspondência entre qualquer natural n com algum real f(n)
- O objetivo é mostrar que $x \neq f(n)$ para qualquer n
- x é construído como sendo 0. e cada dígito decimal (após o .)
 é diferente de seu correspondente na mesma posição, ou seja,
 o i-ésimo dígito de x é diferente do i-ésimo dígito do correspondente do i-ésimo natural
- Ao construir x, evitaremos também os dígitos 0 e 9, visto que no infinito 0.199999... = 0.20000...

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	\mathbb{R} f(n)	
1	1.000000000000	
2	37.3724932479	x = 0
3	8.32176413156	× = 0.
4	0.48729834771	
5	913.312837128	
6	3.31383479865	
7	5.31712878156	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mid \mathbb{R} f(n)$	
1	1. <u>0</u> 0000000000	
2	37.3724932479	x = 0.1
3	8.32176413156	$\kappa = 0.1$
4	0.48729834771	
5	913.312837128	
6	3.31383479865	
7	5.31712878156	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mid \mathbb{R} f(n)$	
1	1. <u>0</u> 0000000000	
2	37.3 <u>7</u> 24932479	x = 0.18
3	8.32176413156	Α 0.10
4	0.48729834771	
5	913.312837128	
6	3.31383479865	
7	5.31712878156	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mid \mathbb{R} f(n)$
1	1. <u>0</u> 0000000000
2	37.3 <u>7</u> 24932479
3	8.32 <u>1</u> 76413156
4	0.48729834771
5	913.312837128
6	3.31383479865
7	5.31712878156

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mid \mathbb{R} f(n)$	
1	1. <u>0</u> 0000000000	•
2	37.3 <u>7</u> 24932479	x = 0.1823
3	8.32 <u>1</u> 76413156	λ — 0.1020
4	0.487 <u>2</u> 9834771	
5	913.312837128	
6	3.31383479865	
7	5.31712878156	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mid \mathbb{R} f(n)$	
1	1. <u>0</u> 0000000000	
2	37.3 <u>7</u> 24932479	x = 0.18234
3	8.32 <u>1</u> 76413156	X 0.10201
4	0.487 <u>2</u> 9834771	
5	913.3128 <u>3</u> 7128	
6	3.31383479865	
7	5.31712878156	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mid \mathbb{R} f(n)$	
1	1. <u>0</u> 0000000000	•
2	37.3 <u>7</u> 24932479	x = 0.182345
3	8.32 <u>1</u> 76413156	х 0.1020 ю
4	0.487 <u>2</u> 9834771	
5	913.3128 <u>3</u> 7128	
6	3.31383 <u>4</u> 79865	
7	5.31712878156	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mid \mathbb{R} f(n)$	
1	1. <u>0</u> 0000000000	•
2	37.3 <u>7</u> 24932479	x = 0.1823456
3	8.32 <u>1</u> 76413156	X = 0.1023 130
4	0.487 <u>2</u> 9834771	
5	913.3128 <u>3</u> 7128	
6	3.31383 <u>4</u> 79865	
7	5.317128 7 8156	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

\mathbb{N} n	$\mathbb{R} f(n)$	$x = 0.1823456k'$, onde $k' \neq k$
1	1. <u>0</u> 0000000000	
2	37.3 <u>7</u> 24932479	
3	8.32 <u>1</u> 76413156	
4	0.487 <u>2</u> 9834771	
5	913.3128 <u>3</u> 7128	
6	3.31383 <u>4</u> 79865	
7	5.317128 <u>7</u> 8156	
k	<u>k</u>	

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

O conjunto dos números reais \mathbb{R} é contável?

\mathbb{N} n	\mathbb{R} f(n)
1	1. <u>0</u> 0000000000
2	37.3 <u>7</u> 24932479
3	8.32 <u>1</u> 76413156
4	0.487 <u>2</u> 9834771
5	913.3128 <u>3</u> 7128
6	3.31383 <u>4</u> 79865
7	5.317128 <u>7</u> 8156
k	<u>k</u>

$$x = 0.1823456...k'$$
, onde $k' \neq k$

Note que independentemente de qual natural k for escolhido como correspondente de x, x nunca será seu correspondente, pois o k-ésimo dígito de x será diferente de f(k)

Um conjunto A é dito **incontável** (ou não contável) se ele é infinito e não há uma correspondência de seus elementos com o conjunto do números naturais $\mathbb N$

O conjunto dos números reais \mathbb{R} é contável?

ET .. | ID ((..)

N n	$\mid \mathbb{K} \mid f(n)$	$\chi = 0.1025150$ χ , onde χ γ
1	1. <u>0</u> 0000000000	Note que independentemente de qual
2	37.3 <u>7</u> 24932479	natural k for escolhido como
3	8.32 <u>1</u> 76413156	correspondente de x , x nunca será seu
4	0.487 <u>2</u> 9834771	correspondente, pois o k-ésimo dígito de x
5	913.3128 <u>3</u> 7128	será diferente de $f(k)$
6	3.31383 <u>4</u> 79865	Assim, não há uma correspondência válida
7	5.317128 7 8156	para x e então não é possível criar
k	<u>k</u>	qualquer correspondência entre $\mathbb N$ e $\mathbb R$

x = 0.1823456...k', onde $k' \neq k$

Teorema: O conjunto de Máquinas de Turing é contável

Teorema: O conjunto de Máquinas de Turing é contável

Teorema: O conjunto de Máquinas de Turing é contável

Prova: por construção

• Note que o conjunto de palavras sobre algum alfabeto é sempre contável, visto que há uma correspondência entre $\mathbb N$ e Σ^*

Teorema: O conjunto de Máquinas de Turing é contável

- Note que o conjunto de palavras sobre algum alfabeto é sempre contável, visto que há uma correspondência entre $\mathbb N$ e Σ^*
- Podemos parear todas as palavras com 0 símbolos, depois 1 símbolo, depois 2, 3, 4, n símbolos, visto que há sempre um conjunto finito de palavras para cada tamanho.

Teorema: O conjunto de Máquinas de Turing é contável

- Note que o conjunto de palavras sobre algum alfabeto é sempre contável, visto que há uma correspondência entre \mathbb{N} e Σ^*
- Podemos parear todas as palavras com 0 símbolos, depois 1 símbolo, depois 2, 3, 4, n símbolos, visto que há sempre um conjunto finito de palavras para cada tamanho.
- Exemplo: $\Sigma = \{0, 1\}$

\mathbb{N} n	Σ* f(n)
1	ε
2	0
2 3 4	1
4	00
5	01
6	10
7	11

Teorema: O conjunto de Máquinas de Turing é contável

Prova: por construção

 Como uma MT pode ser descrita por meio de símbolos, então o conjunto de todas as MT também será contável, visto que até mesmo nem todas as palavras são representações válidas de MT.

Teorema: O conjunto de Máquinas de Turing é contável

Prova: por construção

 Como uma MT pode ser descrita por meio de símbolos, então o conjunto de todas as MT também será contável, visto que até mesmo nem todas as palavras são representações válidas de MT.

\mathbb{N} n	$\Sigma^* f(n)$
1	1
2	11
3	000
4	101
5	1101
6	11110
7	1110101

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

• Primeiramente, mostraremos que o conjunto de todas as sequências binárias $\mathbb B$ infinitas são incontáveis

Teorema: Algumas linguagens não são Turing-reconhecíveis

- A ideia da prova é a mesma para os números reais

Teorema: Algumas linguagens não são Turing-reconhecíveis

- A ideia da prova é a mesma para os números reais

ℕn	B f(n)	$x = 1001001k'$, onde $k' \neq k$
1	<u>0</u> 0000000000	
2	1 <u>1</u> 011101010	
3	10 <u>1</u> 00011011	
4	110 <u>0</u> 1110111	
5	0110 <u>1</u> 101001	
6	01010 <u>1</u> 10101	
7	111000 <u>0</u> 1111	
k	<u>k</u>	

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

- A ideia da prova é a mesma para os números reais

\mathbb{N} n	$\mathbb{B} f(n)$
1	<u>0</u> 00000000000
2	1 <u>1</u> 011101010
3	10 <u>1</u> 00011011
4	110 <u>0</u> 1110111
5	0110 <u>1</u> 101001
6	01010 <u>1</u> 10101
7	111000 <u>0</u> 1111
k	k

$$x = 1001001...k'$$
, onde $k' \neq k$

Note que independentemente de qual natural k for escolhido como correspondente de x, x nunca será seu correspondente, pois o k-ésimo dígito de x será diferente de f(k)

Teorema: Algumas linguagens não são Turing-reconhecíveis

- Primeiramente, mostraremos que o conjunto de todas as seguências binárias

 \mathbb{B} infinitas s\(\text{ao} \) incont\(\text{aveis} \)
- A ideia da prova é a mesma para os números reais

\mathbb{N} n	$\mid \mathbb{B} f(n)$	$x = 1001001k'$, onde $k' \neq k$
1	<u>0</u> 00000000000	Note que independentemente de qual
2	1 <u>1</u> 011101010	natural k for escolhido como
3	10 <u>1</u> 00011011	correspondente de x , x nunca será seu
4	110 0 1110111	correspondente, pois o k-ésimo dígito de x
5	0110 <u>1</u> 101001	será diferente de $f(k)$
6	01010 <u>1</u> 10101	Assim, não há uma correspondência válida
7	111000 <u>0</u> 1111	para x e então não é possível criar
k	<u>k</u>	qualquer correspondência entre $\mathbb N$ e $\mathbb B$

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

ullet Agora seja ${\mathbb L}$ o conjunto de todas as linguagens sobre Σ

Teorema: Algumas linguagens não são Turing-reconhecíveis

- ullet Agora seja ${\mathbb L}$ o conjunto de todas as linguagens sobre ${\Sigma}$
- \bullet Mostraremos que $\mathbb L$ é incontável por meio de uma correspondência com $\mathbb B$

Teorema: Algumas linguagens não são Turing-reconhecíveis

- ullet Agora seja ${\mathbb L}$ o conjunto de todas as linguagens sobre ${\Sigma}$
- Mostraremos que $\mathbb L$ é incontável por meio de uma correspondência com $\mathbb B$
- Uma linguagem pode ser dada por meio de uma sequência infinita binária na forma:

Σ^*	ε	0	1	01	10	00	11	
L		0		01		00		
B_L	0	1	0	1	0	1	0	

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

- ullet Agora seja ${\mathbb L}$ o conjunto de todas as linguagens sobre ${\Sigma}$
- Mostraremos que $\mathbb L$ é incontável por meio de uma correspondência com $\mathbb B$
- Uma linguagem pode ser dada por meio de uma sequência infinita binária na forma:

Σ^*	ε	0	1	01	10	00	11	
L		0		01		00		
B_L	0	1	0	1	0	1	0	

• Cada posição de $B_L=0101010...$ indica se a palavra pertence ou não à L

Teorema: Algumas linguagens não são Turing-reconhecíveis

- ullet Agora seja ${\mathbb L}$ o conjunto de todas as linguagens sobre ${\Sigma}$
- Mostraremos que $\mathbb L$ é incontável por meio de uma correspondência com $\mathbb B$
- Uma linguagem pode ser dada por meio de uma sequência infinita binária na forma:

Σ^*	ε	0	1	01	10	00	11	
L		0		01		00		
B_L	0	1	0	1	0	1	0	

- Cada posição de $B_L = 0101010...$ indica se a palavra pertence ou não à L
- Note que cada linguagem possui exatamente uma única sequência binária infinita

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

- ullet Agora seja ${\mathbb L}$ o conjunto de todas as linguagens sobre ${\Sigma}$
- Mostraremos que $\mathbb L$ é incontável por meio de uma correspondência com $\mathbb B$
- Uma linguagem pode ser dada por meio de uma sequência infinita binária na forma:

Σ^*	ε	0	1	01	10	00	11	
L		0		01		00		
B_L	0	1	0	1	0	1	0	

- Cada posição de $B_L = 0101010...$ indica se a palavra pertence ou não à L
- Note que cada linguagem possui exatamente uma única sequência binária infinita
- Note também que cada sequência binária infinita está associada a uma única linguagem

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

• Assim, há uma correspondência entre $\mathbb B$ e $\mathbb L$ e como $\mathbb B$ é incontável, $\mathbb L$ é incontável

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

- Assim, há uma correspondência entre $\mathbb B$ e $\mathbb L$ e como $\mathbb B$ é incontável, $\mathbb L$ é incontável
- Sabemos também que cada MT reconhece uma única linguagem e o conjunto das MT é contável, então o conjunto de linguagens reconhecidas pelas MT é contável

Teorema: Algumas linguagens não são Turing-reconhecíveis

Prova: por construção

- Assim, há uma correspondência entre $\mathbb B$ e $\mathbb L$ e como $\mathbb B$ é incontável, $\mathbb L$ é incontável
- Sabemos também que cada MT reconhece uma única linguagem e o conjunto das MT é contável, então o conjunto de linguagens reconhecidas pelas MT é contável
- Mas, se $\mathbb L$ é incontável, então certamente $\mathbb L$ apresenta linguagens não reconhecidas por nenhuma MT

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

	1	2	3	
1	1			
2		0		
3			1	

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

	1	2	3	 В
1	1			
2		0		
3			1	
В				

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

	1	2	3	 В
1	1			
2		0		
3			1	
_B	0	1	0	 ?

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

Quem barbeia o barbeiro?

	1	2	3	 В
1	1			
2		0		
3			1	
В	0	1	0	 ?

 Se ? = 1, então o barbeiro barbeia a sí próprio, mas então ? deveria ser 0.

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

	1	2	3	 В	
1	1				
2		0			
3			1		
В	0	1	0	 ?	

- Se ? = 1, então o barbeiro barbeia a sí próprio, mas então ?
 deveria ser 0.
- Se ? = 0, então o barbeiro não se barbeia e deve ir ao barbeiro para se barbear, então ? deveria ser 1.

Paradoxo do barbeiro: suponha que há uma cidade em que existe um único barbeiro

- O barbeiro só barbeia homens que não se barbeiam
- Alguns homens barbeiam a si próprios e outros vão ao barbeiro

	1	2	3	 В
1	1			
2		0		
3			1	
В	0	1	0	 ?

- Se ? = 1, então o barbeiro barbeia a sí próprio, mas então ? deveria ser 0.
- Se ? = 0, então o barbeiro não se barbeia e deve ir ao barbeiro para se barbear, então ? deveria ser 1. <u>Paradoxo</u>!

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ < M, w > | M \text{ \'e uma MT e M aceita a palavra } w \}$

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ < M, w > | M \text{ \'e uma MT e M aceita a} \}$

palavra w}

Teorema 9: A_{TM} é indecidível

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ é uma MT e M aceita a} \}$

palavra w}

Teorema 9: A_{TM} é indecidível

Prova: prova por contradição. Usamos diagonalização.

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Prova: prova por contradição. Usamos diagonalização.

Assuma que A_{TM} é decidível e H é um decisor para A_{TM}

H com a entrada <M,w>, onde M é uma MT e w uma palavra, faz:

1: Simule M com a entrada w

2: Se M aceita w, aceite (H aceita <M,w>)

3: Se M rejeita w, rejeite (H rejeita <M,w>)

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Prova: prova por contradição. Usamos diagonalização.

Assuma que A_{TM} é decidível e H é um decisor para A_{TM}

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Prova: prova por contradição. Usamos diagonalização.

 Podemos então construir uma outra MT D que usa H como subrotina

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Prova: prova por contradição. Usamos diagonalização.

- Podemos então construir uma outra MT D que usa H como subrotina
- D recebe apenas uma descrição de MT como entrada < M > e então simula a MT H passando como entrada < M, < M >>, ou seja, D quer saber se M aceita a própria descrição

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Prova: prova por contradição. Usamos diagonalização.

- Podemos então construir uma outra MT D que usa H como subrotina
- D recebe apenas uma descrição de MT como entrada < M > e então simula a MT H passando como entrada < M, < M >>, ou seja, D quer saber se M aceita a própria descrição
- Por fim, D inverte a resposta dada por H

```
D com a entrada M>, onde M é uma MT, faz:
```

- 1: Simule H com a entrada <M,<M>>
- 2: Se H aceita <M,<M>>, rejeite (D rejeita <M>)
- 3: Se H rejeita <M,<M>>, aceite (D aceita <M>)

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

D com a entrada <M>, onde M é uma MT, faz:

1: Simule H com a entrada <M,<M>>

2: Se H aceita <M,<M>>, rejeite (D rejeita <M>)

3: Se H rejeita <M,<M>>, aceite (D aceita <M>>)

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Comportamento de M_i com a entrada $< M_j >$

	$ < M_1 > $	$< M_2 >$	$< M_3 >$	$< M_4 >$	
M_1					
M_2					
M_3					
M_4					

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Comportamento de M_i com a entrada $< M_j >$

	$ < M_1 > $	$< M_2 >$	$< M_3 >$	$< M_4 >$	
M_1	а	r	а		
M_2	a		r	а	
M_3	a	r	r		
M_4	l	а		a	

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Comportamento de M_i com a entrada $< M_j >$

	$ < M_1 > $	$< M_2 >$	$< M_3 >$	$< M_4 >$	
M_1	<u>a</u>	r	a		
M_2	a	Ī	r	а	
M_3	a	r	<u>r</u>		
M_4	I	а	1	<u>a</u>	

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Comportamento de H com a entrada $< M_i, < M_j >>$

Н	$ < M_1 >$	$< M_2 >$	$< M_3 >$	$< M_4 >$	
M_1	<u>a</u>	r	а	r	
M_2	а	<u>r</u>	r	a	
M_3	a	r	<u>r</u>	r	
M_4	r	а	r	<u>a</u>	

Problema 9: Testar se uma MT aceita determinada entrada w

Teorema 9: A_{TM} é indecidível

Comportamento de H com a entrada $< M_i, < M_j >>$

Н	$< M_1 >$	$< M_2 >$	$< M_3 >$	$< M_4 >$	
M_1	<u>a</u>	r	а	r	
M_2	а	<u>r</u>	r	а	
M_3	а	r	<u>r</u>	r	
M_4	r	а	r	<u>a</u>	
D	r	а	а	r	

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ < M, w > | M \text{ \'e uma MT e M aceita a} \}$

palavra w}

Teorema 9: A_{TM} é indecidível

O que ocorre se passarmos < D > como entrada para D?

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

O que ocorre se passarmos < D > como entrada para D?

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

O que ocorre se passarmos < D > como entrada para D?

Н	$ < M_1 > $	$< M_2 >$	$< M_3 >$	$< M_4 >$	 < D >
M_1	<u>a</u>	r	а	r	
M_2	a	<u>r</u>	r	а	
M_3	a	r	<u>r</u>	r	
M_4	r	а	r	<u>a</u>	
D	r	а	а	r	 ?

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

O que ocorre se passarmos < D > como entrada para D?

Н	$ < M_1 >$	$< M_2 >$	$< M_3 >$	$< M_4 >$	 < D >
M_1	<u>a</u>	r	а	r	
M_2	a	<u>r</u>	r	а	
M_3	a	r	<u>r</u>	r	
M_4	r	a	r	<u>a</u>	
D	r	a	a	r	 <u>?</u>

Se H é uma MT decisora, ela deve decidir para a entrada D

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Note que D com a entrada < D > resulta em:

- Aceita se D não aceita < D >
- Rejeita se D aceita < D >

Problema 9: Testar se uma MT aceita determinada entrada w

Teorema 9: A_{TM} é indecidível

Note que D com a entrada < D > resulta em:

- Aceita se D não aceita < D >
- Rejeita se D aceita < D >

Temos um paradoxo!

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Note que D com a entrada < D > resulta em:

- Aceita se D não aceita < D >
- Rejeita se D aceita < D >

Temos um paradoxo! Se D aceita < D > (? = a), então significa que D rejeita < D > e então ? = r.

Problema 9: Testar se uma MT aceita determinada entrada w

Linguagem: $A_{TM} = \{ \langle M, w \rangle | M \text{ \'e uma MT e M aceita a palavra } w \}$

Teorema 9: A_{TM} é indecidível

Note que D com a entrada < D > resulta em:

- Aceita se D não aceita < D >
- Rejeita se D aceita < D >

Temos um paradoxo! Se D aceita < D > (? = a), então significa que D rejeita < D > e então ? = r.

Não há uma linha para D na tabela de H, assim D não pode existir e nem mesmo H, pois se H é decisora, a linha para D deveria estar lá

Corolário: $\overline{A_{TM}}$ não é Turing-reconhecível

Prova:

Corolário: $\overline{A_{TM}}$ não é Turing-reconhecível

Prova:

• Sabemos que A_{TM} é Turing-reconhecível e também que A_{TM} é indecidível

Corolário: $\overline{A_{TM}}$ não é Turing-reconhecível

Prova:

- Sabemos que A_{TM} é Turing-reconhecível e também que A_{TM} é indecidível
- Se $\overline{A_{TM}}$ fosse Turing-reconhecível, então A_{TM} seria decidível e isso contraria o teorema 9, provado anteriormente

Definição: Dizemos que uma linguagem é co-Turing-reconhecível se ela é o complemento de uma linguagem Turing-reconhecível

Definição: Dizemos que uma linguagem é co-Turing-reconhecível se ela é o complemento de uma linguagem Turing-reconhecível

Teorema: Uma linguagem *L* é decidível se e somente se ela é Turing-reconhecível e co-Turing-reconhecível

Definição: Dizemos que uma linguagem é co-Turing-reconhecível se ela é o complemento de uma linguagem Turing-reconhecível

Teorema: Uma linguagem L é decidível se e somente se ela é Turing-reconhecível e co-Turing-reconhecível

Prova: por ser "se somente se"devemos provar os dois sentidos

Definição: Dizemos que uma linguagem é co-Turing-reconhecível se ela é o complemento de uma linguagem Turing-reconhecível

Teorema: Uma linguagem L é decidível se e somente se ela é Turing-reconhecível e co-Turing-reconhecível

Prova: por ser "se somente se"devemos provar os dois sentidos

- Se L é uma linguagem decidível, então ela é Turing-reconhecível e co-Turing-reconhecível
- Se L é Turing-reconhecível e co-Turing-reconhecível, então L é decidível

Lemma 1: Se L é uma linguagem decidível, então ela é Turing-reconhecível e co-Turing-reconhecível

Lemma 1: Se L é uma linguagem decidível, então ela é Turing-reconhecível e co-Turing-reconhecível

Prova: por construção.

• Suponha que *L* é decidível

Lemma 1: Se L é uma linguagem decidível, então ela é Turing-reconhecível e co-Turing-reconhecível

- Suponha que L é decidível
- Então há um decisor M que a decide

Lemma 1: Se L é uma linguagem decidível, então ela é Turing-reconhecível e co-Turing-reconhecível

- Suponha que L é decidível
- Então há um decisor M que a decide
- Vamos construir reconhecedores para L e \overline{L} usando M com subrotina, sendo eles M' e M'' respectivamente

Lemma 1: Se L é uma linguagem decidível, então ela é Turing-reconhecível e co-Turing-reconhecível

- Suponha que L é decidível
- Então há um decisor M que a decide
- Vamos construir reconhecedores para L e \overline{L} usando M com subrotina, sendo eles M' e M'' respectivamente

Lemma 2: Se L é Turing-reconhecível e co-Turing-reconhecível, então L é decidível

Lemma 2: Se *L* é Turing-reconhecível e co-Turing-reconhecível, então *L* é decidível

Prova: por construção.

• Suponha que L é Turing-reconhecível e co-Turing-reconhecível

Lemma 2: Se L é Turing-reconhecível e co-Turing-reconhecível, então L é decidível

- Suponha que L é Turing-reconhecível e co-Turing-reconhecível
- Então há reconhecedores tanto para L como para \overline{L} , sendo eles M1 e M2, respectivamente

Lemma 2: Se L é Turing-reconhecível e co-Turing-reconhecível, então L é decidível

- Suponha que L é Turing-reconhecível e co-Turing-reconhecível
- Então há reconhecedores tanto para L como para \overline{L} , sendo eles M1 e M2, respectivamente
- Vamos construir um decisor M para L que utilize M1 e M2 como subrotinas

Lemma 2: Se L é Turing-reconhecível e co-Turing-reconhecível, então L é decidível

- Suponha que L é Turing-reconhecível e co-Turing-reconhecível
- Então há reconhecedores tanto para L como para \overline{L} , sendo eles M1 e M2, respectivamente
- Vamos construir um decisor M para L que utilize M1 e M2 como subrotinas

Conclusão

- Linguagens decidíveis
- Método da diagonalização
- Linguagens indecidíveis

Material de apoio

- Livro Sipser, Capítulo 4
- Livro Hopcroft, Capítulo 9