Laboratorio II, modulo 2 2016-2017

Elettronica digitale (2^a parte)

cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html

Esempio (reale) di comparatore

- quando $V_{in} < V_{ref}$, V_{out} è "pulled-up" (attraverso il resistore di "pullup", usualmente 1 k Ω o più)
 - questa configurazione è chiamata a "collettore aperto": l'uscita è il collettore di un transistor npn. In saturazione è tirata verso l'emettitore (ground), ma se non c'è corrente di base il collettore è tirato al voltaggio di pull-up
- l'uscita è una versione "digitale" del segnale
 - i valori "alto" e "basso" sono configurabili (ground e 5V, nell'esempio)
- possono essere utili anche per convertire un segnale "lento" in uno "veloce"
 - se è necessaria una maggiore precisione di "timing"

Famiglie logiche

Famiglie logiche più diffuse e usate

- CMOS (Complementary MOS)
- NMOS (MOSFET a canale n)
- TTL (Transistor-Transistor Logic)
- ECL (Emitter Coupled Logic)

transistor **FET**

transistor **BJT**

Le porte logiche possono essere fabbricate con le varie tecnologie in un singolo chip con stesse funzioni, compatibili

numero di porte

SSI small scale integration (1-10 gates)

MSI medium scale integration (10-100 gates)

LSI large scale integration (~ 10³)

VLSI very large scale integration (~ 10⁶)

ULSI ultra large scale integration (> 10⁶)

Famiglie logiche

- TTL: Transistor-Transistor Logic, basato sul BJT
 - output: '1' logico: $V_{OH} > 3.3 \text{ V}$; '0' logico: $V_{OI} < 0.35 \text{ V}$
 - input: '1' logico: $V_{IH} > 2.0 \text{ V}$; '0' logico: $V_{II} < 0.8 \text{ V}$
 - zona "morta" fra 0.8V e 2.0 V
- CMOS: Complimentary MOSFET
 - output: '1' logico: $V_{OH} > 4.7 \text{ V}$; '0' logico: $V_{OL} < 0.2 \text{ V}$
 - input: '1' logico: $V_{IH} > 3.7 \text{ V}$; '0' logico: $V_{II} < 1.3 \text{ V}$
 - zona "morta" fra 1.3V e 3.7 V

L'uscita di un CMOS è TTL-compatibile

Confronto famiglie logiche

	TTL	CMOS	ECL
tensione massima di alimentazione	5	5	-5.2
valore massimo V _{in} identificato come O	0.8	1.3	-1.4
valore minimo V _{in} identificato come 1	2.0	3.7	-1.2
valore massimo V _{out} identificato come O	0.35	0.2	-1.7
valore minimo V _{out} identificato come 1	3.3	4.7	-0.9

Invertitore (NOT)

Realizzazione: è di fatto un interruttore

logica TTL (BJT)

- quando V_s è ~ 0 il transitor è in cut-off
 → I_B~0
 → V_{out} è "pulled up"
 verso V_{CC}
- quando V_s è "grande" il transitor va in saturazione

→
$$I_C$$
 è massima
→ V_{out} ~0
(dato che V_{CC} - V_{out} = R_C * I_{C})

Interruttori MOSFET

- i MOSFET, utilizzati nei circuiti di logica, agiscono come interruttori controllati con un voltaggio
 - n-channel MOSFET è chiuso (conduce) quando è applicato un voltaggio positivo (+5V), aperto quando il voltaggio è nullo
 - p-channel MOSFET è aperto quando è applicato un voltaggio positivo (+5V), chiuso (conduce) quando il voltaggio è nullo

Invertitore (NOT)

Realizzazione: è di fatto un interruttore

logica TTL (BJT)

logica NMOS (MOSFET)

Invertitore (NOT) MOSFET:

- OV come input "apre" il FET in basso (n-channel) ma "chiude" quello in alto (p-channel) → l'output è a +5V
- 5V come input "chiude" il FET in basso (n-channel) ma "apre" quello in alto (p-channel) → l'output è a 0V
 - \rightarrow l'effetto netto è l'inversione logica: $0 \rightarrow 5$; $5 \rightarrow 0$

NAND MOSFET:

- Entrambe gli input a 0V:
 - i due FET in basso OFF, i due in alto
 ON
 - → uscita "alta"
- Entrambe gli input a 5V:
 - i due FET in basso ON, i due in alto
 OFF
 - → uscita "bassa"
- IN A a 5V, IN B a 0V:
 - alto a sinistra OFF, più basso ON
 - alto a destra ON, in mezzo OFF
 - → uscita "alta"

NAND

IN A a 0V, IN B a 5V:

AB C 0 0 1

opposto rispetto a prima

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

→ uscita "alta"

NOR MOSFET:

- Entrambe gli input a 0V:
 - i due FET in basso OFF, i due in alto
 ON
 - → output "alto"
- → Entrambe gli input a 5V:
 - i due FET in basso ON, i due in alto
 OFF
 - → output "basso"
- IN A a 5V, IN B a 0V:
 - basso a sinistra OFF, basso destra ON
 - più alto ON, in mezzo OFF
 - → output "basso"

NOR

IN A a 0V, IN B a 5V:

 A B
 C

 0 0
 1

opposto rispetto a prima

0 1

ightarrow output "basso" $_{
m A}$

C

Nomenclatura circuiti

SN74ALS245N

significa che è fatto dalla Texas Instruments (SN), è un TTL con range di temperatura commerciale (74), è della famiglia "Advanced Low-power Schottky" (ALS), ed è un buffer bi-direzionale a 8 bit, in un package plastico di tipo through-hole DIP (N).

Sottofamiglie TTL

