Syntax and Semantics Exercise Session 12

Exercise 1.

Given S_1 and S_2 defined as follows

$$x := 0$$
; while $(x \ge 0)$ do $x := x + 1$ (S_1)

$$x := 3; y := 4; \text{ while } (x \le y) \text{ do } (x := 2 * x; y := 3 * y)$$
 (S₂)

check whether S_1 and S_2 are semantically equivalent in the big-step semantics, that is $S_1 \sim_{bs} S_2$. Motivate your answer.

Exercise 2.

Given S_3 and S_4 defined as follows

$$y := n_1$$
; for $x := 1$ to n_2 do $y := y + 1$ (S₃)

$$y := n_1 + n_2 * (n_2 + 1)/2; x := n_2 + 1$$
 (S₄)

check whether S_3 and S_4 are semantically equivalent in the big-step semantics, that is $S_3 \sim_{bs} S_4$, for all $\mathbf{n_1}, \mathbf{n_2} \in \mathbb{N}$. Motivate your answer.

Exercise 3.

Consider the following extension of **Bims** which adds the following formation rule to those of **Stm**, for m > 0,

$$S ::= \cdots \mid \mathtt{foreach} \; x \; \mathtt{in} \; [n_1, \ldots, n_m] \; \mathtt{do} \; S$$
 .

Intuitively, the above construct executes the body S m-times, and at each execution of the body S, the value of the variable x is set to v_i , the value of the numeral n_i , for $i = 1 \dots m$. At the end of the execution of the foreach construct, x assumes the value v_m of the numeral n_m . Give both the big-step and the small-step semantics that formalize the above description.

Exercise 4.

Consider the following statements in **Bims**

$$y := x + 4$$
; (for $x := 1$ to 3 do $y := y * x$); $y := y + x$ (S₅)

(if
$$x < 0$$
 then $x := 2 * x$ else $x := 2 + x$); $x := x * (-1)$ (S₆)

repeat
$$S_6$$
 until $(x \ge 200)$ (S_7)

while (x
$$<$$
 200) do S_6 (S_8)

Find all the transitions (if there are any) in the SS-semantics, for each of the following cases:

(i)
$$\langle S_5, [x \mapsto -2] \rangle \Rightarrow^*$$
?

(ii)
$$\langle S_7, [x \mapsto 100] \rangle \Rightarrow^*$$
?

(iii)
$$\langle S_8, [x \mapsto 100] \rangle \Rightarrow^*$$
?

Exercise 5.

Prove or disprove that the following languages are regular or context-free.

$$L_1 = \{ww \mid w \in \{a, b\}^*\}$$

$$L_2 = \{w_1w_2 \mid w_1, w_2 \in \{a, b\}^*, |w_1| = |w_2|\}$$

$$L_3 = \{a^nwb^n \mid w \in \{a, b\}^*, |w| = n\}$$