Due Thursday, May 31 by 5:00 pm

- 1. Let $f:A\to B$ and $g:B\to C$. Prove that if $g\circ f$ is onto and g is one-to-one, then f must be onto.
- 2. Let $f: A \to A$ be a bijection. Prove that $f \circ f^{-1} = I$, where I is the identity function.
- 3. Let $f: A \to A$ be a bijection, and let $S \subseteq A$. Prove that $\overline{f(S)} = f(\overline{S})$.
- 4. Let $f: A \to B$ be one-to-one, and let $S \subseteq A$. Prove that $S = (f^{-1} \circ f)(S)$.

Hint: The direction $S \subseteq (f^{-1} \circ f)(S)$ is true even when f is not one-to-one (i.e. if one takes f^{-1} to be the inverse relation, which will not be a function). However the other direction only holds if f is one-to-one.

- 5. Define $a*b = \max(a,b) = \begin{cases} a & \text{if } a \ge b \\ b & \text{if } b > a \end{cases}$.
 - (a) Prove that * is a binary operation on \mathbb{N} .
 - (b) Is * associative? Explain.
 - (c) Does N have an identity under *? Explain.
 - (d) (If answer to (c) is yes): Does every element in N have an inverse under *?
- 6. Define $a * b = \sqrt{ab}$, and let $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x \ge 0\}$.
 - (a) Prove that * is a binary operation on \mathbb{R}^+ .
 - (b) Is * associative? Explain.
 - (c) Does N have an identity under *? Explain.
 - (d) (If answer to (c) is yes): Does every element in \mathbb{R}^+ have an inverse under *?
- 7. We saw that \cap is a binary operation on $\mathcal{P}(U)$ for any nonempty set U. Do \cap and $\mathcal{P}(U)$ form a group? Explain why or why not.