Analytical radii used in galaxy photometry

Surface-brightness models

Sérsic profile.

$$I(R) = I_e \exp \left\{ -b_n \left[\left(\frac{R}{R_e} \right)^{1/n} - 1 \right] \right\},$$

where R_e is the (circularized) half-light ("effective") radius and b_n is defined by

$$\Gamma(2n) = 2\gamma(2n, b_n),$$

with the commonly used approximation (accurate for $0.5 \lesssim n \lesssim 10$)

$$b_n \simeq 2n - \frac{1}{3} + \frac{4}{405n} + \frac{46}{25515 n^2} + \cdots$$

de Vaucouleurs ($\mathbb{R}^{1/4}$) profile (special case n=4).

$$I(R) = I_e \exp\left\{-b_4 \left[\left(\frac{R}{R_e}\right)^{1/4} - 1 \right] \right\}, \quad b_4 \simeq 7.669.$$

Exponential disc (special case n = 1). Written in scale-length form,

$$I(R) = I_0 \exp\left(-\frac{R}{h}\right), \qquad R_e = 1.678 \, h.$$

Petrosian radii (metric radii)

Let $\langle I \rangle (\langle R) \equiv \left[\pi R^2 \right]^{-1} \int_0^R I(r) \, 2\pi r \, dr$ be the mean intensity within R. The ("classical") Petrosian index is

$$\eta(R) \equiv \frac{I(R)}{\langle I \rangle (\langle R)}.$$

The Petrosian radius r_P is defined by $\eta(r_P) = \eta_0$ with a conventional choice $\eta_0 = 0.2$. Many pipelines (e.g. SDSS) use a slightly modified ratio,

$$\mathcal{R}_{P}(r) \equiv \frac{\frac{1}{\pi (1.25^{2} - 0.8^{2})r^{2}} \int_{0.8r}^{1.25r} I(r') 2\pi r' dr'}{\frac{1}{\pi r^{2}} \int_{0}^{r} I(r') 2\pi r' dr'}, \quad \mathcal{R}_{P}(r_{P}) = 0.2.$$

Given r_P , the (circular) Petrosian flux is

$$F_P \equiv \int_0^{Nr_P} I(r) \, 2\pi r \, dr,$$

with N=2 in SDSS. The Petrosian 50 and Petrosian 90 radii are then

$$r_{P50}: \int_0^{r_{P50}} I \, 2\pi r \, dr = 0.5 \, F_P, \qquad r_{P90}: \int_0^{r_{P90}} I \, 2\pi r \, dr = 0.9 \, F_P.$$

Kron radius (adaptive first-moment aperture)

Define the intensity-weighted first radial moment (computed over some domain $0 \le r \le R_{\text{max}}$ such as an isophotal region)

$$r_1 \equiv rac{\int_0^{R_{
m max}} I(r) \, r \, 2\pi r \, dr}{\int_0^{R_{
m max}} I(r) \, 2\pi r \, dr} = rac{\int_0^{R_{
m max}} I(r) \, 2\pi r^2 \, dr}{\int_0^{R_{
m max}} I(r) \, 2\pi r \, dr}.$$

The Kron aperture radius is $R_K \equiv k r_1$, with $k \simeq 2\text{-}2.5$ in practice (e.g. SExtractor uses k = 2.5 plus a minimum aperture).

Comparisons without PSF convolution (intrinsic profiles)

For a Sérsic profile, the enclosed-light fraction is

$$\frac{L(\langle R)}{L_{\text{tot}}} = \frac{\gamma \left(2n, b_n \left(\frac{R}{R_e}\right)^{1/n}\right)}{\Gamma(2n)}.$$

Thus R_f/R_e is given by solving $\gamma(2n, b_n(R_f/R_e)^{1/n}) = f\Gamma(2n)$.

Some useful numbers:

Sérsic n	R_{50}/R_e	R_{90}/R_e	comment
1 (exponential)	1.000	2.318	$R_e = 1.678 h$
2	1.000	3.310	
4 (de Vauc.)	1.000	5.549	

For "classical" Petrosian with $\eta_0 = 0.2$ (using the definition $\eta = I/\langle I \rangle$):

Sérsic n	r_P/R_e	$F(\langle 2r_P)/F_{\rm tot}$
1	2.16	0.994
2	2.20	0.948
4	1.82	0.829

(Exact values for SDSS's annular definition differ slightly but follow the same trend with n.) Kron apertures recover an n-dependent fraction of the total light. For ideal (untruncated) profiles, $2r_1$ -2.5 r_1 typically encloses $\gtrsim 90\%$ of the flux for discs and less for high-n spheroids if the moment is truncated at small $R_{\rm max}$.

Including PSF convolution

Let P be the PSF and (I * P)(R) the observed profile.

Case (i): Galaxy \gg PSF (e.g. $R_e/\text{FWHM} \gtrsim 3$)

Convolution alters sizes and concentrations only weakly:

$$R_{e,\text{obs}} \approx R_e$$
 and $(n_{\text{obs}} \text{ slightly lower than intrinsic for high } n)$.

Nonparametric sizes (e.g. r_{P50} , r_{P90}) and concentration C incur small biases; for $R_e/\text{FWHM} \gtrsim 3$ these are typically at the few-percent level.

Case (ii): Galaxy $\sim PSF$ (e.g. $R_e \sim FWHM \approx 1''$)

PSF smoothing reduces central contrast, driving *nonparametric* radii and concentrations toward those of the PSF and lowering n_{obs} . Biases become significant:

$$r_{P50,\text{obs}}\uparrow$$
, $r_{P90,\text{obs}}\downarrow$ relative to intrinsic, $C\equiv 5\log_{10}\frac{R_{80}}{R_{20}}$ is underestimated.

Sérsic fits yield $R_{e,obs} > R_e$ and $n_{obs} < n$, with the bias increasing as R_e /FWHM decreases.

Case (iii): PSF-limited (galaxy \ll PSF)

If both galaxy and PSF are well described by circular Gaussians with dispersion σ_{psf} :

Gaussian:
$$R_{e, psf} = \sqrt{2 \ln 2} \, \sigma_{psf} \simeq 0.5 \, \text{FWHM}.$$

For a Gaussian surface-brightness profile the following exact PSF-limited relations hold:

$$r_P(\eta=0.2) \simeq 0.98 \,\text{FWHM}, \quad r_{P50} \simeq 0.50 \,\text{FWHM}, \quad r_{P90} \simeq 0.91 \,\text{FWHM}.$$

For a Gaussian galaxy convolved with a Gaussian PSF,

$$R_{e,\text{obs}}^2 = R_e^2 + (0.5 \,\text{FWHM})^2$$
 (exact).

For non-Gaussian galaxies (e.g. exponential, de Vaucouleurs), a practical approximation is a quadrature-like combination

$$R_{e,\text{obs}} \simeq \left(R_e^p + \alpha(n)^p \text{ FWHM}^p\right)^{1/p},$$

with $p \approx 1.5$ -2 and $\alpha(n) \sim 0.4$ -0.6 a slowly varying function of n; the precise correction should be calibrated for the survey's PSF.

Impact of image (pixel) scale

Let s be the pixel scale (arcsec/pixel).

• Sampling. If FWHM/ $s \lesssim 2$ (undersampling), the PSF core is poorly sampled and size measurements (Petrosian/Kron and R_e) are biased; an oversampled PSF model partly mitigates this but residuals remain. Dithered imaging and finer s reduce biases.

- **Discretization.** Nonparametric indices (Petrosian, r_{P50}/r_{P90}) are computed on a radial grid; coarse $\Delta r \approx s$ introduces quantization and bias in $\eta(R)$ unless small aperture steps are used. Kron's r_1 is likewise sensitive to segmentation depth and the adopted pixel mask.
- Practical rule of thumb. Reliable radii generally require $R_e \gtrsim (2\text{-}3) s$ and FWHM/ $s \gtrsim 2\text{-}3$ (Nyquist-plus sampling). Below these, measurements trend to the PSF-limited values above, and concentration becomes PSF-dominated.

Notes on usage

- When quoting Petrosian metrics, specify the definition (η vs. SDSS annular \mathcal{R}_P) and the aperture multiplier N used for F_P (SDSS: N=2).
- Kron radii depend on R_{max} (depth/segmentation); k = 2.5 is common, with a minimum aperture to avoid pathological values for compact sources.

Survey-specific PSF & sampling assumed

We adopt typical values for each survey's working band:

SDSS r: FWHM = 1.3", s = 0.396''/pixPan-STARRS1 r_{P1} : FWHM $\simeq 1.0$ ", s = 0.258''/pixKiDS r: FWHM $\simeq 0.72$ ", s = 0.214''/pixEuclid VIS: FWHM $\simeq 0.17$ ", s = 0.101''/pix

How the numbers were computed (brief)

For each Sérsic index $n \in \{1, 2, 4\}$ and for three size regimes $R_e/\text{FWHM} \in \{0.5, 1, 3\}$:

- 1. We rendered a noiseless 2D Sérsic galaxy $(I \propto \exp\{-b_n[(R/R_e)^{1/n} 1]\})$ on a fine grid and (when applicable) convolved it with a circular Gaussian PSF of the survey's FWHM.
- 2. Circular profiles were measured in annuli with step $dr = \min(\text{fine pixel}, s/2)$ to include a realistic pixel-sampling effect.
- 3. We extracted: nonparametric half-light radius R_{50} ; classical Petrosian radius r_P at $\eta = I/\langle I \rangle = 0.2$; Petrosian50/90 within $2 r_P$; and the Kron first-moment radius r_1 with $R_K = 2.5 r_1$ and its enclosed-flux fraction.
- 4. Bias is quoted relative to the intrinsic (no-PSF) value measured on the same fine grid.

Table 1:	Half-light	radius R_5	when	$R_e =$	FWHM.	Bias =	$(R_{50 \text{ obs}} -$	$R_{50 \mathrm{intr}}$	$/R_{50 \text{ intr.}}$
			,	- ~e			(= ~00,005	- ~50,111t1 / /	/ = ~50,111t1

Survey	n	$R_{50,\text{obs}}$ [arcsec]	Bias
SDSS r	1	1.467	+14.4%
	2	1.471	+17.0%
	4	1.246	+34.0%
Pan-STARRS1 r	1	1.129	+14.4%
	2	1.131	+17.1%
	4	0.957	+33.9%
KiDS r	1	0.812	+14.3%
	2	0.814	+17.0%
	4	0.689	+33.9%
Euclid VIS	1	0.192	+14.4%
	2	0.192	+17.0%
	4	0.163	+34.0%

Table 2: Petrosian 50 (within $2r_P$) when $R_e = FWHM$.

Survey	n	$r_{P50, \text{obs}}$ [arcsec]	Bias
SDSS r	1	1.463	+14.7%
	2	1.435	+19.7%
	4	1.126	+59.2%
Pan-STARRS1 r	1	1.125	+14.7%
	2	1.104	+19.7%
	4	0.866	+59.2%
KiDS r	1	0.810	+14.6%
	2	0.794	+19.7%
	4	0.624	+59.8%
Euclid VIS	1	0.191	+14.7%
	2	0.188	+19.7%
	4	0.147	+59.2%

Key results (galaxy comparable to the PSF: $R_e = FWHM$)

Absolute "observed" radii appear smaller for sharper surveys because R_e was tied to each survey's FWHM in this regime. The bias columns are the transferable quantities.

Kron aperture fraction (with $R_K = 2.5 r_1$). For $R_e = \text{FWHM}$ the enclosed fraction is nearly survey-independent: for n = 1, 2, 4 we find $\approx 0.969, 0.937, 0.910$ of the total, with small positive biases of $\sim 1\%$, 1.6%, and 2.9% respectively (PSF makes r_1 slightly larger, so R_K grows and captures a bit more light).

Other regimes (same methodology)

• Galaxy \gg PSF ($R_e = 3$ FWHM): biases are small. For R_{50} , $\Delta \simeq +1.7\%$ (n=1) and +2.6% (n=4). For Petrosian50, +1.7% (n=1) and +4.4% (n=4).

• **PSF**-limited ($R_e = 0.5 \,\text{FWHM}$): sizes are PSF-dominated. R_{50} biases climb to $\sim +49\%$ (n=1) and $\sim +215\%$ (n=4). Petrosian50 exhibits even larger relative biases for high-n profiles (because the intrinsic r_P and enclosed fractions shrink rapidly).

Impact of pixel scale (sampling)

The annular step was tied to the pixel scale ($dr \simeq s/2$) to reflect discretization. Holding the PSF fixed ($R_e = \text{FWHM}, n=4$), measuring R_{50} with fine annuli vs. pixel—scale annuli gives:

```
SDSS r: R_{50, \text{fine}} = 1.254'', \ R_{50, \text{pix}} = 1.168'' \Rightarrow \text{sampling bias} \approx -6.9\%
Euclid VIS: R_{50, \text{fine}} = 0.164'', \ R_{50, \text{pix}} = 0.142'' \Rightarrow \text{sampling bias} \approx -13.4\%
```

Undersampling therefore adds a non-negligible discretization bias on top of PSF blurring, especially for compact/high-n sources.

Reproducibility

A full table for all surveys, $n \in \{1, 2, 4\}$, and $R_e/\text{FWHM} \in \{0.5, 1, 3\}$ (covering R_{50} , r_P , Petrosian50/90, r_1 , R_K , and $F(\langle R_K \rangle)$ is provided as CSV. A compact LATEX table for the $R_e = \text{FWHM}$ case is also provided.