«Московский физико-технический институт» Физтех-школа радитехники и компьютерных технологий

Отчёт о лабораторной работе №3.4.5 Петля гистерезиса (Динамический метод)

Выполнил:

Хмельницкий А. А., Б01-306

1 Обработка результатов

Установка:

$$R_0=0,3$$
 Ом, $R_u=20$ кОм, $C_u=20$ мк Φ

1.1 Пермаллой

Характеристики:

 $N_0=35$ Витков, $N_U=220$ Витков, $S=3,8~{\rm cm}^2,\,2\pi R=24~{\rm cm}$ Снятая зависимость при изменении I :

I, mA	X, дел	Y, дел
96,3	4	4,3
89,9	3,8	3,4
83,2	3,5	2,5
76	3,3	2
71	3,1	1,5
64	3	1
50	2,8	0,7
41,7	2,3	0,5
35	2	0,3
24,5	1,5	0,2

Петля гистерезиса для пермаллойа на ЭО:

Искомые значения:

$$H=rac{IN_0}{2\pi R}=14\ {
m A/m}, H_c=24.4\ {
m A/m}$$
 $B=rac{R_uC_uU_{
m BMX}}{SN_U}=0.27\ {
m T\pi}, B_s=1.72\ {
m T\pi}$ $I_{
m sp}=0.0963\ {
m A}, K_x=1, K_y=20$ $2x(c)=8\ {
m дел},\ 2y(c)=8.6\ {
m дел}$

График Y(X):

1.2 Кремнистое железо

Характеристики: $N_0 = 40$ Витков, $N_U = 400$ Витков, S = 1, 2 см², $2\pi R = 10$ см

Снятая зависимость при изменении I:

I, mA	X, дел	Y, дел
75	3,6	4
68	3,2	3,5
60	3	3
52,7	2,3	2,3
45	2	1,8
38,6	1,7	1,3
31,8	1,4	1
26	1	0,7
21,3	0,8	0,5
16	0,6	0,3

Петли гистерезиса для кремнистого железа на ЭО:

Искомые значения:

$$H=rac{IN_0}{2\pi R}=30\,\,\mathrm{A/m}, H_c=55\,\,\mathrm{A/m}$$
 $B=rac{R_uC_uU_{\mathrm{BMX}}}{SN_U}=0.475\,\,\mathrm{Tл}, B_s=0.12\mathrm{Tл}$ $I_{\mathrm{9\Phi}}=0.075\,\,\mathrm{A}, K_x=1, K_y=20$ $2x(c)=7.2\,\,\mathrm{дел},\ \ 2y(c)=8\,\,\mathrm{дел}$

График Y(X):

1.3 Феррит

Характеристики:

$$N_0=40$$
 Витков, $N_U=400$ Витков, $S=3,0~{
m cm}^2,\,2\pi R=25~{
m cm}$

Снятые данные при изменении I:

I, mA	X, дел	Y, дел
100	5,2	3,5
90	5	3,2
80	4,5	3
72	4	2,6
61,3	3,5	2,5
52,1	2,9	2,2
40,9	2,3	1,8
31,4	1,8	1,2
21	1,5	0,8
16	1,1	0,5

Петля гистерезиса для феррита на ЭО:

Искомые значения:

$$H=rac{IN_0}{2\pi R}=16\ {
m A/m}, H_c=8\ {
m A/m}$$
 $B=rac{R_uC_uU_{
m BMX}}{SN_U}=0.19\ {
m Tл}, B_s=0.9\ {
m Tл}$ $I_{
m s}\varphi=0.1\ {
m A}, K_x=1, K_y=20$ $2x(c)=10.4\ {
m дел},\ 2y(c)=7\ {
m дел}$

График Y(X):

1.4 Расчет постоянной времени цепи

$$\tau = RC = \frac{U_{\mbox{\tiny BK}}}{\Omega \cdot U_{\mbox{\tiny BMX}}} = 0.32 \pm 0.09 \ \mbox{c}$$

Расчитывай параметры цепи $\tau = R_u * C_u = 0.4$ с, что близко к полученному резульату.

2 Вывод

В ходе лабораторной работы для двух из трех образцов (феррит и кремнистое железо) мы получили результаты, близкие к теоретическим значениям. Отклонение от табличных данных не может быть объяснено лишь погрешностями измерений, что указывает на сложность определения момента, когда петля становится предельной. В случае третьего образца результаты значительно отклонились от теоретических, что, скорее всего, связано с ошибками в записи диапазона измерений осциллографа или в параметрах самого образца.