

Approximate Methods: Model Free Prediction

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

September 2, 2022

Overview

- Review
- 2 DP Algorithms : A Closer Look
- 3 Model Free Prediction: Monte Carlo Methods
- 4 Model Free Prediction : Temporal Difference

Review

MDP and RL setting

- ▶ MDP Setting: The agent has knowledge of the state transition matrices $\mathcal{P}^a_{ss'}$ and the reward function \mathcal{R}
- ▶ RL Setting: The agent does not have knowledge of the state transition matrices $\mathcal{P}_{ss'}^a$ and the reward function \mathcal{R}

Course Setup

DP Algorithms : A Closer Look

DP Algorithms : Terminology

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$

DP Algorithms : Terminology

One-step lookahead
$$V_{k+1}(s) \leftarrow \sum_{a} \pi(s,a) \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V_k(s')\right]$$

DP Algorithms: Terminology

DP Algorithms : Terminology

DP Algorithms: Terminology

DP Algorithms: Schematic View

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{c'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

$$V_{k+1}(s) \leftarrow \sum_{s} \pi(a|s) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$

Drawbacks of DP Algorithms

- ▶ Requires full prior knowledge of the dynamics of the environment
- ▶ Can be implemented only on small or medium sized discrete state spaces
 - \bigstar For large problems, DP suffers from Bellman's curse of dimensionality
- ▶ DP uses full width back-ups
 - * Every successor state and action is considered

Model Free Prediction: Monte Carlo Methods

Model Free Prediction : Key Idea

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t|s_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$
$$= \mathbb{E}_{\pi}\left[r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s\right]$$

How can we estimate the expectations?
Use samples!

Monte Carlo Policy Evaluation

▶ Goal : Evaluate $V^{\pi}(s)$ using experiences (or trajectories) under policy π

$$s_0, a_0, r_1, s_1, a_1, r_2, s_3, \cdots, s_T$$

▶ Recall that

$$V^{\pi}(s) = \mathbb{E}_{\pi}(G_t|s_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$

▶ The idea is to calculate **sample** mean return (G_t) starting from state s instead of expected mean return

Monte Carlo Evalution : Schematics

▶ Use G_1 to update $V^{\pi}(s_1)$

Monte Carlo Evalution : Schematics

- ▶ Use G_1 to update $V^{\pi}(s_1)$
- ▶ Use G_2 to update $V^{\pi}(s_2)$

Monte Carlo Evalution: Schematics

- ▶ Use G_1 to update $V^{\pi}(s_1)$
- ▶ Use G_2 to update $V^{\pi}(s_2)$
- ▶ Use G_3 to update $V^{\pi}(s_3)$

First-visit Monte Carlo Policy Evaluation

- ▶ To evaluate $V^{\pi}(s)$ for some given state s, repeat over several episodes
 - \star The first time t that $s_t = s$ in the episode
 - 1. Increment counter for number of visits to s: $N(s) \leftarrow N(s) + 1$
 - 2. Increment running sum of total returns with return from current episode: $S(s) \leftarrow S(s) + G_t$
- ▶ Monte Carlo estimate of value function $V(s) \leftarrow S(s)/N(s)$

By the law of large numbers $V(s) \to V^{\pi}(s)$ as number of episodes increases

Every-visit Monte Carlo Policy Evaluation

- ▶ To evaluate $V^{\pi}(s)$ for some given state s, repeat over several episodes
 - \bigstar Every time t that $s_t = s$ in the episode
 - 1. Increment counter for number of visits to s: $N(s) \leftarrow N(s) + 1$
 - 2. Increment running sum of total returns with return from current episode: $S(s) \leftarrow S(s) + G_t$
- ▶ Monte Carlo estimate of value function $V(s) \leftarrow S(s)/N(s)$

By the law of large numbers $V(s) \to V^{\pi}(s)$ as number of episodes increases

Monte Carlo Method: Example

- ▶ Consider an MDP with two states $S = \{A, B\}$ with $\gamma = 1$
- $\triangleright \mathcal{P}$ and \mathcal{R} are unknown
- \blacktriangleright Consider a policy π that gives rise to following state-reward sequence

$$\star A(+3), A(+2), B(-4), A(+4), B(-3)$$

 $\star B(-2), A(+3), B(-3)$

- \blacktriangleright What is $V^{\pi}(A)$ and $V^{\pi}(B)$ if we use first visit MC and every visit MC respectively?
- ► First visit MC: $V(A) = \frac{1}{2}(2+0) = 1$; $V(B) = \frac{1}{2}(-3-2) = -5/2$
- ► Every visit MC: $V(A) = \frac{1}{4}(2-1+1+0) = 1/2$; $V(B) = \frac{1}{4}(-3-3-3-2) = -11/4$

Monte Carlo Algorithms: A Schematic View

- ► Uses experience, rather than model
- ▶ Uses only experience; does not bootstrap
- ▶ Needs complete sequences; suitable only for episodic tasks
- ▶ Suited for off-line learning
- ▶ Time required for one estimate does not depend on total number of states
- ► Estimates for each state are independent

Model Free Prediction: Temporal Difference

Temporal Difference : Key Idea

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t|s_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$
$$= \mathbb{E}_{\pi}\left[r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s\right]$$

► Estimate expectation from experience using the recursive decomposition formulation of the value function

Incremental Calculation of Mean

$$\mu_{k+1} \stackrel{\text{def}}{=} \frac{1}{k+1} \sum_{i=1}^{k+1} x_i$$

$$= \frac{1}{k+1} \sum_{i=1}^{k} x_i + \frac{1}{k+1} x_{k+1}$$

$$= \frac{k}{k+1} \left(\frac{1}{k} \sum_{i=1}^{k} x_i \right) + \frac{1}{k+1} x_{k+1}$$

$$= \frac{k}{k+1} \mu_k + \frac{1}{k+1} x_{k+1}$$

$$= \mu_k + \frac{1}{k+1} (x_{k+1} - \mu_k)$$

 $Update = learning rate \times (Target - Previous Value)$

General Form of Update Rule

The general form for the update rule that is present in the incremental calculation is,

New Estimate \leftarrow Old Estimate + Learning Rate(Target - Old Estimate)

- ▶ The expression (Target Old Estimate) is an error of the estimate
- ➤ The error is reduced by taking steps towards the "Target"
- ▶ The target is persumed to indicate a desirable direction to move
- ▶ In the incremental calculation of mean, the term x_{k+1} is the target

One-Step TD

▶ We wish to approximate

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s \right]$$

- ▶ Approximate the expectation by a sample mean
 - \star If the transition (s_t, r_{t+1}, s_{t+1}) is observed at time t under π , then

$$V(s_t) \leftarrow V(s_t) + \alpha_t [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

- \star Samples come from different visits to the state s, either from same or different trajectories
- ★ Compute the sample mean incrementally

One-Step TD: TD(0) Algorithm

Algorithm TD(0): Algorithm

- 1: Initialize V(s) arbitrarily (say, $V(s) = 0 \quad \forall s \in \mathcal{S}$);
- 2: **for** $k = 1, 2, \dots, K$ **do**
- 3: Let s be a start state for episode k
- 4: **for** For each step in the k-th episode **do**
- 5: Take action a recommended by policy π from state s
- 6: Collect reward r and reach next state s'
- 7: Perform the following TD update

$$V(s) = V(s) + \alpha[r + \gamma V(s') - V(s)]$$

- 8: Assign $s \leftarrow s'$
- 9: end for
- 10: **end for**

TD vs MC : Example

- (1) $s_1 \xrightarrow{1} s_3 \xrightarrow{0} s_4 \xrightarrow{1} s_6$
- (2) $s_1 \xrightarrow{1} s_2 \xrightarrow{0} s_5 \xrightarrow{10} s_6$
- (3) $s_1 \xrightarrow{1} s_3 \xrightarrow{0} s_4 \xrightarrow{1} s_6$
- (4) $s_1 \xrightarrow{1} s_3 \xrightarrow{0} s_4 \xrightarrow{1} s_6$
- (5) $s_2 \xrightarrow{2} s_3 \xrightarrow{0} s_5 \xrightarrow{10} s_6$

Slide Credit: Abir Das: : IIT-KG

TD vs MC : Example

- ► True value of each state is given by $V(s_6) = 0$, $V(s_5) = 10$, $V(s_4) = 1$, $V(s_3) = 1.9$, $V(s_2) = 3.9$ and $V(s_1) = 2.9$
- \blacktriangleright Evaluate $V(s_1)$ and $V(s_2)$ using MC $V(s_1) = 4.25$ and $V(s_2) = 12$
- ightharpoonup Evaluate $V(s_1)$ and $V(s_2)$ using TD

★ First trajectory
$$(s_1 \xrightarrow{1} s_3 \xrightarrow{0} s_4 \xrightarrow{1} s_6)$$

 $V(s_1) = 1; V(s_3) = 0; V(s_4) = 1; V(s_6) = 0$

★ Second trajectory
$$(s_1 \xrightarrow{1} s_3 \xrightarrow{0} s_5 \xrightarrow{10} s_6)$$

 $V(s_1) = 1; V(s_3) = 0; V(s_5) = 10; V(s_6) = 0$

★ Third trajectory
$$(s_1 \xrightarrow{1} s_3 \xrightarrow{0} s_4 \xrightarrow{1} s_6)$$

 $V(s_1) = 1; V(s_3) = 0.33; V(s_4) = 1; V(s_6) = 0$

★ Fourth trajectory
$$(s_1 \xrightarrow{1} s_3 \xrightarrow{0} s_4 \xrightarrow{1} s_6)$$

 $V(s_1) = 1.08$; $V(s_3) = 0.5$; $V(s_4) = 1$; $V(s_6) = 0$

★ Fifth trajectory
$$(s_2 \xrightarrow{2} s_3 \xrightarrow{0} s_5 \xrightarrow{10} s_6)$$

 $V(s_2) = 2.5; V(s_3) = 2.4; V(s_5) = 10; V(s_6) = 0$

TD Algorithms: A Schematic View

- ▶ Uses experience without model like MC
- Bootstraps like DP
- ► Can work with partial sequences
- ▶ Suited for online learning

Schematic View of Various Algorithms

Figure: DP Algorithm and MC Algorithm

Convergence of TD Algorithms

▶ For any fixed policy π , the TD(0) algorithm described above converges (asymptotically) to V^{π} under some conditions on the choice of α (Robbins Monroe Condition)

$$\begin{array}{l} \bigstar \quad \sum \alpha_t = \infty \\ \bigstar \quad \sum \alpha_t^2 < \infty \end{array}$$

▶ Generally, TD methods have usually been found to converge faster than MC methods on certain class of tasks