厦门大学《 数学分析 I 》 课程期中试卷

经院 经济、金融、统计专业图际试点班

试卷类型: (A卷) 考试时间:2020年11月22日

参考答案:

1. 证明:一切有理真分数 $\frac{m}{n}$ (式中 m 及 n 为正整数,且 0 < m < n)的集合无最小及最大元素,并求此集合的上确界和下确界.

证明: 由 $\forall m, n \in N_+$,且0 < m < n,有 $\frac{m+1}{n+1} > \frac{m}{n}$, $\frac{m}{n} > \frac{m^2}{n^2}$,可见有理真分数中既没有最大数又没有最小数,因此一切有理真分数全体的集合中没有最小及最大元素.

由于(i)有理真分数 $0 < \frac{m}{n} < 1$,(ii) 对 $\forall \varepsilon > 0$,取 $n_0 = [\frac{1}{\varepsilon}] + 1$,则 $\frac{1}{n_0}$ 和 $\frac{n_0 - 1}{n_0}$ 都是有理真分数,且

 $\frac{1}{n_0}$ < $0+\varepsilon$, $\frac{n_0-1}{n_0}$ = $1-\frac{1}{n_0}$ > $1-\varepsilon$,由上、下确界定义(两条)知,有理真分数全体所构成的集合的上确界为 1.下确界为 0.

2. 用极限的定义" $\varepsilon - N$ "," $\varepsilon - \delta$ "语言验证下列极限等式成立.

(1)
$$\lim_{n\to\infty} \frac{n^2}{4^n} = 0$$
; (2) $\lim_{x\to 1} \frac{x^2 + x - 2}{x(x^2 - 3x + 2)} = -3$.

解: (1) 利用二项展开式 $(a+b)^n = a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n$

$$4^{n} = (1+3)^{n} = 1 + n \cdot 3 + \frac{n(n-1)}{2!} \cdot 3^{2} + \frac{n(n-1)(n-2)}{3!} \cdot 3^{3} + \dots + 3^{n} > \frac{n(n-1)(n-2)}{3!} \cdot 3^{3},$$

对任意给定的 $\varepsilon > 0$,且当n > 3时,有

$$\left|\frac{n^{2}}{4^{n}} - 0\right| = \left|\frac{n^{2}}{4^{n}}\right| \le \frac{n^{2}}{\frac{n(n-1)(n-2)}{3!} \cdot 3^{3}} = \frac{2n}{9(n-1)(n-2)} = \frac{2n}{9} \cdot \frac{1}{n^{2} - 3n + 2}$$
$$\le \frac{2n}{9} \cdot \frac{1}{n^{2} - 3n} = \frac{2n}{9} \cdot \frac{1}{n(n-3)} = \frac{2}{9(n-3)} < \varepsilon$$

解得
$$n>3+\frac{2}{9\varepsilon}$$
, 取 $N=4+[\frac{2}{9\varepsilon}]$, 当 $n>N$ 时,即有 $|\frac{n^2}{4^n}-0|<\varepsilon$

根据数列极限的定义知, $\lim_{n\to\infty}\frac{n^2}{4^n}=0$.

(2) 对
$$\forall \varepsilon > 0$$
, $\left| \frac{x^2 + x - 2}{x(x^2 - 3x + 2)} - (-3) \right| = \left| \frac{(x+2)(x-1)}{x(x-1)(x-2)} + 3 \right| = \left| \frac{(x+2)}{x(x-2)} + 3 \right|$
$$= \left| \frac{(3x-2)(x-1)}{x(x-2)} \right| \quad \text{为将} \left| f(x) - (-3) \right|$$
 放大成 $\beta \left| x - 1 \right|$ 形式,

所以限制
$$0 < |x-1| < \frac{1}{2}$$
,即 $\frac{1}{2} < x < \frac{3}{2}$,则 $\min_{\frac{1}{4} \le x \le \frac{3}{4}} |x(x-2)| = \frac{3}{4}$, $\max_{\frac{1}{4} \le x \le \frac{3}{4}} |3x-2| = \frac{5}{2}$

所以
$$\left| \frac{x^2 + x - 2}{x(x^2 - 3x + 2)} + 3 \right| = \left| \frac{(3x - 2)(x - 1)}{x(x - 2)} \right| \le \frac{5/2}{3/4} \left| x - 1 \right| = \frac{10}{3} \left| x - 1 \right|$$

取
$$\delta = \min\{\frac{1}{2}, \frac{3\varepsilon}{10}\}$$
,则对 $\forall \varepsilon > 0, \exists \delta > 0$, $\stackrel{\text{def}}{=} 0 < |x-1| < \delta$ 时,就有

$$\left|\frac{x^2+x-2}{x(x^2-3x+2)}-(-3)\right|<\varepsilon$$
,由函数极限定义,则 $\lim_{x\to 1}\frac{x^2+x-2}{x(x^2-3x+2)}=-3$.

3. 设数列满足 $0 < x_0 \le 1, x_1 = \frac{x_0}{2}, x_{n+1} = \frac{x_0 - x_n^2}{2}, n \in N_+$,证明: $\lim_{n \to \infty} x_n$ 存在,并求其极限值.

证明1:由递归数列的定义知,

$$\forall n \in N_+, x_{n+1} = \frac{x_0 - x_n^2}{2} \le \frac{x_0}{2} < \frac{1}{2}, \quad \exists x_{n+1} = \frac{x_0 - x_n^2}{2} \ge \frac{x_0 - \frac{x_0^2}{4}}{2} = \frac{x_0(1 - \frac{x_0}{4})}{2} > 0$$

即数列 $\{x_n\}$ 有界. 令c为满足 $x = \frac{x_0 - x^2}{2}$ 这个等式的正实数,解得 $c = \sqrt{1 + x_0} - 1 < \frac{1}{2}$.

下面我们用夹逼定理证明满足 $c = \frac{x_0 - c^2}{2}$ 这个等式的 c 值,的确是数列 $\{x_n\}$ 的极限.

事实上,
$$0 < |x_{n+1} - c| = |\frac{x_0 - x_n^2}{2} - \frac{x_0 - c^2}{2}| = |\frac{c^2 - x_n^2}{2}| = \frac{(c + x_n)}{2}|x_n - c| < \frac{1}{2}|x_n - c|$$

$$\mathbb{E}[0<|x_{n+1}-c|<\frac{1}{2}|x_n-c|\leq (\frac{1}{2})^2|x_{n-1}-c|\leq \cdots \leq (\frac{1}{2})^n|x_1-c|=(\frac{1}{2})^n|\frac{x_0}{2}-c|$$

因为
$$\lim_{n\to\infty} (\frac{1}{2})^n |\frac{x_0}{2} - c| = |\frac{x_0}{2} - c| \cdot \lim_{n\to\infty} (\frac{1}{2})^n = 0$$

由夹逼定理知, $\lim_{n\to\infty} |x_{n+1}-c|=0$, 从而 $\lim_{n\to\infty} x_n=c$ 成立。

证明 2: 利用导数判断单调性及单调有界定理来证明此数列的收敛性。

由递归数列的定义知
$$\{x_n\}$$
 \subset $(0,\frac{1}{2})$,递归函数为 $f(x)=\frac{x_0-x^2}{2}$, $x\in(0,\frac{1}{2})$ 其导数为

f'(x) = -x < 0,因此递归数列 $\{x_n\}$ 不单调,但它的偶子列 $\{x_{2n}\}$ 和奇子列 $\{x_{2n-1}\}$ 却是单调的,且具有相反的单调性,又因为 $0 < x_n < \frac{1}{2}$,数列有界,故 $\lim_{n \to \infty} x_{2n}, \lim_{n \to \infty} x_{2n-1}$ 均存在,

不妨记
$$\lim_{n\to\infty} x_{2n} = A$$
, $\lim_{n\to\infty} x_{2n-1} = B$, 由数列的递推式子 $x_{n+1} = \frac{x_0 - x_n^2}{2}$,

令
$$n=2k-1$$
,得 $x_{2k}=\frac{x_0-x_{2k-1}^2}{2}$,令 $k\to\infty$, 两边取极限得 $A=\frac{x_0-B^2}{2}$

令
$$n=2k$$
 ,得 $x_{2k+1}=\frac{x_0-x_{2k}^2}{2}$,令 $k\to\infty$,两边取极限得 $B=\frac{x_0-A^2}{2}$

联立方程
$$\begin{cases} A = \frac{x_0 - B^2}{2} \\ B = \frac{x_0 - A^2}{2} \end{cases}$$
,解得 $A = B$,从而有 $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n-1} = A$,

由此得到递归数列收敛,故 $\lim_{n\to\infty} x_{n+1} = \lim_{n\to\infty} \frac{x_0-x_n^2}{2} = \frac{x_0-\lim_{n\to\infty} x_n^2}{2} \Rightarrow A = \frac{x_0-A^2}{2}$

解得
$$A = \sqrt{1 + x_0} - 1 = c$$
.

4. 利用数列和函数的性质和定理,求下列各式的极限

(1) 因为当
$$n \ge 1$$
时,因为 $\sqrt[n]{\frac{1}{2}} \le \sqrt[n]{1 - \frac{1}{2n}} \le 1$,且 $\lim_{n \to \infty} \sqrt[n]{\frac{1}{2}} = 1$

由夹逼定理得 $\lim_{n\to\infty} \sqrt[n]{1-\frac{1}{2n}} = 1$

(2)
$$\lim_{n \to \infty} \sin^{2}(\pi \sqrt{n^{2} + n}) = \lim_{n \to \infty} \sin^{2}[n\pi + (\pi \sqrt{n^{2} + n} - n\pi)]$$
$$= \lim_{n \to \infty} (-1)^{2n} \sin^{2}(\pi \sqrt{n^{2} + n} - n\pi) = \lim_{n \to \infty} \sin^{2}[\pi (\sqrt{n^{2} + n} - n)]$$
$$= \lim_{n \to \infty} \sin^{2}(\frac{n\pi}{\sqrt{n^{2} + n} + n}) = \lim_{n \to \infty} \sin^{2}(\frac{\pi}{\sqrt{1 + \frac{1}{n} + 1}}) = \sin^{2}(\frac{\pi}{2}) = 1.$$

(3)
$$\lim_{x \to -1} \left(\frac{1}{x+1} - \frac{3}{x^3 + 1} \right) = \lim_{x \to -1} \frac{(x^3 + 1) - 3(1+x)}{(x+1)(x^3 + 1)}$$
$$= \lim_{x \to -1} \frac{(x+1)(x^2 - x + 1) - 3(1+x)}{(x+1)(x^3 + 1)} = \lim_{x \to -1} \frac{x^2 - x - 2}{x^3 + 1}$$
$$= \lim_{x \to -1} \frac{(x+1)(x-2)}{(x+1)(x^2 - x + 1)} = \lim_{x \to -1} \frac{x - 2}{x^2 - x + 1} = -1.$$

(4)
$$\lim_{x \to \infty} \frac{(3x^3 + 2)arc\sin\frac{1}{x}}{x^2 - \sin x} = \lim_{x \to \infty} \frac{(3x^3 + 2) \cdot \frac{1}{x}}{x^2 - \sin x} = \lim_{x \to \infty} \frac{3x^2 + \frac{2}{x}}{x^2 - \sin x} = \lim_{x \to \infty} \frac{3 + \frac{2}{x^3}}{1 - \frac{\sin x}{x^2}} = 3,$$

(5)
$$\lim_{x \to 0} \frac{2\sin x + x^2 \cos \frac{1}{x}}{(1 + \cos x)\ln(1 + x)} = \lim_{x \to 0} \frac{2\sin x + x^2 \cos \frac{1}{x}}{x} \cdot \lim_{x \to 0} \frac{1}{1 + \cos x} = \frac{1}{2}\lim_{x \to 0} (2\frac{\sin x}{x} + x\cos \frac{1}{x}) = 1,$$

$$(6) \quad \lim_{x \to \infty} (\sqrt{\cos \frac{1}{x}})^{x^{2}} = e^{\lim_{x \to \infty} x^{2} \ln[1 + (\sqrt{\cos \frac{1}{x}}) - 1]} = e^{\lim_{x \to \infty} x^{2} [\sqrt{\cos \frac{1}{x}} - 1]} = e^{\lim_{x \to \infty} \frac{x^{2}}{\sqrt{\cos \frac{1}{x}} + 1}} = e^{\lim_{x \to \infty} \frac{x^{2}}{$$

5. 试用柯西收敛定理证明: 下面的数列收敛

$$\{a_n\} = \{\frac{\cos(1!)}{1 \cdot 2} + \frac{\cos(2!)}{2 \cdot 3} + \dots + \frac{\cos(n!)}{n \cdot (n+1)}, n = 1, 2, \dots\}$$

证明: 对 $\forall \varepsilon > 0, n, p \in N_+$,

$$|a_{n+p} - a_n| = \frac{\cos[(n+1)!]}{(n+1)(n+2)} + \dots + \frac{\cos[(n+p)!]}{(n+p)(n+p+1)}|$$

$$\leq \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p)(n+p+1)} \leq (\frac{1}{n+1} - \frac{1}{n+2}) + \dots + (\frac{1}{n+p} - \frac{1}{n+p+1})$$

$$= \frac{1}{n+1} - \frac{1}{n+p+1} \leq \frac{1}{n+1} \to 0 (n \to \infty)$$

因为
$$\lim_{n\to\infty}\frac{1}{n+1}=0\Leftrightarrow$$
即对 $\forall \varepsilon>0,\exists N\in N_+, \exists n>N$ 时,有 $\frac{1}{n+1}|<\varepsilon$

从而对 $\forall \varepsilon > 0, \exists N \in N_+, \forall p \in N_+, \exists n > N$ 时,有 $|a_{n+p} - a_n| < \varepsilon$

即 $\{a_n\}$ 是柯西列,从而 $\{a_n\}$ 收敛.

6. 若函数 f(x) 在闭区间 [a,b] 上单调增加,且 f(a)>a,f(b)<b , 试用区间套定理证明:

至少存在一点 $x_0 \in (a,b)$ 使得 $f(x_0) = x_0$.

证明: 首先构造闭区间套 令 $g(x) = f(x) - x, x \in [a,b]$,将 [a,b] 二等分成 $[a,\frac{a+b}{2}],[\frac{a+b}{2},b]$, 考察 $g(\frac{a+b}{2})$ 的符号,若 $g(\frac{a+b}{2}) = 0$,记 $x_0 = \frac{a+b}{2}$, $g(x_0) = 0 \Rightarrow f(x_0) = x_0$, 命题得证,

若 $g(\frac{a+b}{2}) < 0$,则取 $[a, \frac{a+b}{2}] = [a_1, b_1]$,此时有 $g(a_1) > 0, g(b_1) < 0$, 若 $g(\frac{a+b}{2}) > 0$,则取 $[\frac{a+b}{2}, b] = [a_1, b_1]$,此时有 $g(a_1) > 0, g(b_1) < 0$,继续将 $[a_1, b_1]$ 二等分 $[a_1, \frac{a_1+b_1}{2}], [\frac{a_1+b_1}{2}, b_1]$,再考察 $g(\frac{a_1+b_1}{2})$ 的符号,若等于 $g(\frac{a_1+b_1}{2}) = 0$,命题得证,若不等于 $g(\frac{a_1+b_1}{2}) = 0$,命题得证,有 $g(a_1, b_2)$ 继续等分下去,从而得到闭区间套 $g(a_2, b_2)$ 使其满足 $g(a_2) > 0, g(b_2) < 0$,按照这个规则一直将区

(1)
$$[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset \cdots \supset [a_n,b_n]\supset \cdots \quad n\in N_+$$
,

(2)
$$\lim_{n\to\infty} (b_n - a_n) = \lim_{n\to\infty} \frac{b-a}{2^n} = 0;$$

(3) 对 $\forall [a_n,b_n]$, $n \in N_+$, 有 $g(a_n) > 0, g(b_n) < 0$.

由区间套定理得,存在 ξ , $a_n \le \xi \le b_n$, $\forall n \in N_+$, a_n 单调上升趋于 ξ , b_n 单调下降趋于 ξ , ,再由f(x) 在[a,b] 上是单调增加,且 $g(a_n) > 0$, $g(b_n) < 0$,则有 $a_n < f(a_n) \le f(\xi) \le f(b_n) < b_n$ 在此不等式的两端令 $n \to \infty$,即得 $f(\xi) = \xi$,即 $x_0 = \xi \in (a,b)$,命题得证。

7. 设函数 f(x) 在 (a,b) 上连续,且 $f(a+0) = f(b-0) = +\infty$,证明: f(x) 在 (a,b) 上 能取到最小值.

证明: 取定 $x_0, y_0 \in (a,b)$,且满足 $a < x_0 < \frac{a+b}{2}, \frac{a+b}{2} < y_0 < b$,因为 $f(a+0) = +\infty$,由极限的保号性知,一定存在 $x_1 \in (a, x_0)$,使得对任意的 $\forall x \in (a, x_1)$,都有 $f(x) > f(x_0)$.

同理, 因为 $f(b-0)=+\infty$,由极限的保号性知,一定存在 $x_2\in (y_0,b)$,使得对任意的 $\forall x\in (x_2,b)$,都有 $f(x)>f(x_0).$

又因为 f(x) 在 (a,b) 上连续,所以 f(x) 在 $[x_1,x_2]$ 上连续,(因为 $[x_1,x_2]$ $\subset (a,b)$),由闭区间上连续函数的最值定理知,函数 f(x) 在 $[x_1,x_2]$ 上一定存在最小值,设最小值点为 $\xi \in [x_1,x_2]$ $\subset (a,b)$,因为 $x_0 \in [x_1,x_2]$,故有 $f(x_0) \geq f(\xi)$,且在 (a,x_1) 和 (x_2,b) 上,都有 $f(x) > f(\xi)$,因此对一切的 $x \in (a,b)$,都有 $f(x) > f(\xi)$,所以 $f(\xi)$ 是函数 f(x) 在 (a,b) 上的最小值.

综上, f(x) 在(a,b) 上取到最小值.

附加题: (10 分) 设 $a_1 = 1, a_n = a_{n-1} + \frac{1}{2a_{n-1}}, n \ge 2$.

- (1)证明:数列{a_n}严格单调增加趋于正无穷大.
- (2) 利用 stolz 定理, 证明: $\lim_{n\to\infty} \frac{a_n^2 n}{\ln n} = \frac{1}{4}$

证明: (1)首先证明 $\lim_{n\to\infty} a_n = +\infty$.

这是因为对 $\forall n \in N_+$,有 $a_n > 0$,且 $a_n - a_{n-1} = \frac{1}{2a_{n-1}} > 0$,即数列 $\{a_n\}$ 严格单调增,若 $\{a_n\}$ 有界,

则 $\{a_n\}$ 有正实数的极限. 不妨设 $\lim_{n\to\infty}a_n=A\in R_+$,则有 $A=A+rac{1}{2A}$ 成立,从而 $rac{1}{A}=0$ 构成矛盾.

因此 $\{a_n\}$ 无界,因而有 $\lim_{n\to\infty} a_n = +\infty$.

(2)
$$\exists t$$
 stolz $\exists t$, $\lim_{n \to \infty} \frac{a_n^2 - n}{\ln n} = \lim_{n \to \infty} \frac{(a_n^2 - n) - (a_{n-1}^2 - (n-1))}{\ln n - \ln(n-1)} = \lim_{n \to \infty} \frac{a_n^2 - a_{n-1}^2 - 1}{\ln(1 + \frac{1}{n-1})}$

$$= \frac{1}{4} \lim_{n \to \infty} \frac{\frac{1}{a_{n-1}^2}}{\ln(1 + \frac{1}{n-1})} = \frac{1}{4} \lim_{n \to \infty} \frac{n-1}{a_{n-1}^2} \cdot \lim_{n \to \infty} \frac{1}{(n-1)\ln(1 + \frac{1}{n-1})}$$

$$= \frac{1}{4} \lim_{n \to \infty} \frac{n-1}{a_{n-1}^2} \cdot \frac{1}{\lim_{n \to \infty} \ln(1 + \frac{1}{n-1})^{n-1}} \quad (\because \frac{1}{\lim_{n \to \infty} \ln(1 + \frac{1}{n-1})^{n-1}} = \frac{1}{\ln e} = 1)$$

$$= \frac{1}{4} \lim_{n \to \infty} \frac{n-1}{a_{n-1}^2} = \frac{1}{4} \lim_{n \to \infty} \frac{(n-1) - (n-2)}{a_{n-1}^2 - a_{n-2}^2} = \frac{1}{4} \lim_{n \to \infty} \frac{1}{1 + \frac{1}{4a_{n-2}^2}} = \frac{1}{4}.$$