Analogie Translation - Rotation

#mecanique #dynamique

Grandeurs

Translation		Rotation	
Position:	x	Angle:	θ
Vitesse :	$\dot{x}=v$	Vitesse angulaire	$\dot{ heta}=\omega$
Accélération :	$\ddot{x}=a$	Accélération angulaire	$\ddot{ heta}=\dot{\omega}$
Force :	F	Moment :	M
Masse:	m	Moment d'inertie :	J_{Δ}
Quantité de mouvement :	p=mv	Moment cinétique :	$\mathcal{L}(O) = egin{cases} J_{\Delta}\dot{ heta}\ \mathrm{et}\ \overrightarrow{OM} \wedge m\overrightarrow{v} \end{cases}$

Lois

Translation		Rotation	
PFS:	$\sum \overrightarrow{F} = \overrightarrow{0}$	CMC:	$\sum \overrightarrow{M_O}(\overrightarrow{F}) = \overrightarrow{0}$
PFD:	$\sum \overrightarrow{F} = m\overrightarrow{a}$	TMC:	$\sum \overrightarrow{M_O}(\overrightarrow{F}) = \dot{\overrightarrow{\mathcal{L}}}(O)$

Energie

	Translation	Rotation
Puissance	Puissance : $\mathcal{P}(\overrightarrow{f}) = \overrightarrow{f} \cdot \overrightarrow{v}$	Puissance : $\mathcal{P}(\overrightarrow{f}) = \overrightarrow{M_{\Delta}}(\overrightarrow{f}) \cdot \overrightarrow{v}$
Travail	Travail : $\delta W = \overrightarrow{f} \cdot \overrightarrow{dl}$	Travail : $\delta W = \overrightarrow{M_\Delta}(\overrightarrow{f}) \cdot d heta$

	Translation	Rotation
Energie cinétique	E.C : $E_c=rac{1}{2}mv^2$	E.C : $E_c=rac{1}{2}J_\Delta\omega^2$
TPC	T.P.C : $\sum \mathcal{P}(\overrightarrow{f}) = rac{dE_c}{dt}$	T.P.C : $\sum \mathcal{P}(\overrightarrow{f_{ext}}) = rac{dE_c}{dt}$
TEC	T.E.C : $\Delta E_c = \sum W_{A o B}(\overrightarrow{f})$	T.E.C : $\Delta E_c = \sum W_{ heta_{k,i} o heta_{k,f}}(\overrightarrow{f_i})$