Matematiska institutionen

Vera Koponen

Lektion 6 och 7

1. Betrakta följande TM vars inputalfabetet är $\{a,b\}$ och vars tapealfabetet är $\{a,b,\#,x,y\}$. Vi påminner oss om följande: För varje tecken σ så betecknas "om inte σ avläses" med $\stackrel{\overline{\sigma}}{\longrightarrow}$. Om vänstershiftaren S_L startas i konfigurationen $\#u\sigma v\#$ (där σ är ett tecken) så stannar den i konfigurationen #uv#. Vi antar också att JA suddar tapen och sedan skriver ja, medan NEJ suddar tapen och sedan skriver nej.

- (a) Kör maskinen på abb#aaa och på ab#aaa och notera speciellt om svaret ja eller nej ges.
- (b) Vilken fråga besvarar maskinen? Med andra ord, vid start på #u#v, när ges svaret ja och när ges svaret nej?
- 2. (a) Gör en provkörning när följande TM får strängen 11111 som input (dvs startas i tape-konfigurationen #11111).
 - (b) Denna TM beräknar en funktion $f: \mathbb{N} \to \mathbb{N}$ om tal representeras unärt¹. Beskriv denna funktion, alltså säg vad f(n) är för godtyckligt $n \in \mathbb{N}$.
- 3. I kursboken: Test 4.2 och 4.3. Övning 4.4.

 $^{^1}$ I 1-systemet, som också kallas det unära systemet, så representeras ett naturligt tal n av strängen 1^n (dvs. n ettor), så specielt så representeras 0 av den tomma strängen ε .

- 4. Låt $L = \{w \in \{a, b\}^* : w \text{ innehåller lika många } a \text{ som } b\}.$
 - (a) Konstruera en TM som $avg\ddot{o}r L$.
 - (b) Konstruera en TM som accepterar L.
- 5. Konstruera en TM M som i 1-systemet avgör om ett naturligt tal är större än ett annat tal. Mer precist, givet $\#1^m\#1^n$ så ska M stanna med output #ja om m>n och i annat fall ska M stanna med output #nej.
- 6. I kursboken: Övning 4.4 4.8.
- 7. Ordna språkklasserna nedan så att om A, B, C, D, E, F betecknar dessa språkklasser i rätt ordning så $A \subset B = C \subset D \subset E = F$. Språkklasserna som ska ordnas är: TM-avgörbara, reguljära, restriktionsfria, sammanhangsfria, TM-accepterbara, PDA-accepterbara.
- 8. I kursboken: Test 7.1.
- 9. Visa med hjälp av Rices sats att det inte finns någon TM som för en godtycklig TM M avgör
 - (a) om L(M) innehåller någon sträng av längd högst 8.
 - (b) om M accepterar ε (dvs om $\varepsilon \in L(M)$).
 - (c) om M accepterar alla strängar av jämn längd.
- 10. Vart och ett av problemen i föregående uppgift motsvarar ett språk som är TM-oavgörbart³. Till exempel: om K_M är koden för en TM så motsvaras problemet i del (b) av språket

$$L = \{K_M : M \text{ är en TM som accepterar } \varepsilon\}$$

²Med $X \subset Y$ menar jag att X är en delmängd av Y och $X \neq Y$.

³Man kan också bara säga *oavgörbart*.

som i föregående uppgift har visats (om man löst den) vara TM-oavgörbar.

- (a) Förklara med hänvisning till Church-Turings tes att L (som ovan definierad) är TM-accepterbar (dvs beskriv informellt en algoritm som terminerar för exakt de strängar som tillhör L).
- (b) Är \overline{L} TM-avgörbar? Är \overline{L} TM-accepterbar? Motivera svaret.
- 11. Visa med hänvisning till Church-Turings tes att det finns en TM som för en godtycklig DFA M avgör
 - (a) om L(M) innehåller någon sträng av längd högst 8.
 - (b) om M accepterar ε .
 - (c) om M accepterar alla strängar av jämn längd. (Denna uppgift saknar lösning.)
- 12. Finns det någon TM som avgör för en godtycklig TM M och gotycklig sträng w (över M:s inputalfabet) om M någonsin skriver över ett tecken med ett annat tecken.
- 13. Finns det någon TM som avgör för en godtycklig TM M och godtycklig sträng w om M någonsin skriver # efter start på w.
- 14. I kursboken: Övningar 7.1 a) i), 7.2.