CS 302.1 - Automata Theory

Lecture 08

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

Formally, a PDA M is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set called the states.
- Σ is the set of input *alphabets*.
- Γ is the set of **Stack alphabets**
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \mapsto \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the *transition function*

 $[\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\} \text{ and } \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}]$

- $q_0 \in Q$ is the **start state**.
- $F \subseteq Q$ is the set of *accepting states*.

Pushdown Automata and CFLs are equivalent

CFLs ⇒ **Pushdown Automata**

 $(RL \equiv Regular\ Grammar \equiv Regular\ Expressions \equiv NFA \equiv DFA) \subseteq (CFL \equiv CFG \equiv PDA)$

- *L* is a context-free language.
- L is generated by a Context Free Grammar (CFG) from which any $w \in L$ can be **derived**.
- The derivation of any CFG can be represented by **parse trees**.
- Any CFG can be expressed in Chomsky Normal Form (CNF): the number of steps required to derive any $w \in L$: 2|w| 1
- There exists a Pushdown Automata P such that $\mathcal{L}(P) = L$.

- *L* is a context-free language.
- L is generated by a Context Free Grammar (CFG) from which any $w \in L$ can be **derived**.
- The derivation of any CFG can be represented by parse trees.
- Any CFG can be expressed in Chomsky Normal Form (CNF): the number of steps required to derive any $w \in L$: 2|w| 1
- There exists a Pushdown Automata P such that $\mathcal{L}(P) = L$.
- Not all languages are context free.
- Just like in the case of Regular languages, the pumping lemma helps us identify non-CFLs.
- All CFLs satisfy the conditions of the pumping lemma: If any language L fails to do so, it is not Context-Free.
- The principle of the Pumping Lemma for CFLs is similar to that of Regular Languages

- *L* is a context-free language.
- L is generated by a Context Free Grammar (CFG) from which any $w \in L$ can be **derived**.
- The derivation of any CFG can be represented by **parse trees**.
- Any CFG can be expressed in Chomsky Normal Form (CNF): the number of steps required to derive any $w \in L$: 2|w| 1
- There exists a Pushdown Automata P such that $\mathcal{L}(P) = L$.
- Not all languages are context free.
- Just like in the case of Regular languages, the pumping lemma helps us identify non-CFLs.
- All CFLs satisfy the conditions of the pumping lemma: If any language L fails to do so, it is not Context-Free.
- The principle of the Pumping Lemma for CFLs is similar to that of Regular Languages
- In order to recognize very long strings in a given CFL L, the model of computation (CFGs/parse-trees) must repeat some steps of the computation

- *L* is a context-free language.
- L is generated by a Context Free Grammar (CFG) from which any $w \in L$ can be **derived**.
- The derivation of any CFG can be represented by **parse trees**.
- Any CFG can be expressed in Chomsky Normal Form (CNF): the number of steps required to derive any $w \in L$: 2|w| 1
- There exists a Pushdown Automata P such that $\mathcal{L}(P) = L$.
- Not all languages are context free.
- Just like in the case of Regular languages, the pumping lemma helps us identify non-CFLs.
- All CFLs satisfy the conditions of the pumping lemma: If any language L fails to do so, it is not Context-Free.
- The principle of the Pumping Lemma for CFLs is similar to that of Regular Languages
- In order to recognize very long strings in a given CFL L, the model of computation (CFGs/parse-trees) must repeat some steps of the computation
- These steps can be repeated any number of times (pumped) to produce longer and longer strings all of which belong to L.
- Conversely if this does not hold, L is not CFL.

Example:

$$A \rightarrow BC|0$$

 $B \rightarrow BA|1|CC$
 $C \rightarrow AB|0$

No of variables |V| = 3. Consider a derivation of w = 11100001

Example:

 $A \rightarrow BC|0$ $B \rightarrow BA|1|CC$ $C \rightarrow AB|0$

No of variables |V| = 3.

Consider a derivation of w = 11100001

Consider the longest path in the parse tree.

Example:

$$A \rightarrow BC|0$$

 $B \rightarrow BA|1|CC$
 $C \rightarrow AB|0$

- No of variables |V| = 3
- Consider a derivation of w = 11100001
- Consider the longest path in the parse tree.
- Longest path length = 5, which is larger than |V|.
- There exists at least one variable that is repeated.
- For example: A mark it.

Example:

$$A \rightarrow BC|0$$

 $B \rightarrow BA|1|CC$
 $C \rightarrow AB|0$

- No of variables |V| = 3
- Consider a derivation of w = 11100001
- Consider the longest path in the parse tree.
- Longest path length = 5, which is larger than |V|.
- There exists at least one variable that is repeated.
- For example: A mark it.
- Replace the bottom most appearance of the variable A with the subtree in the middle rooted at A to obtain a new tree.

- No of variables |V| = 3
- Consider the longest path in the parse tree.
- Longest path length = 5, which is larger than |V|.
- There exists at least one variable that is repeated.
- For example: A mark it.
- Replace the bottom most appearance of the variable A with the subtree in the middle rooted at A to obtain a new tree.

For the tree in the left, the input string w can be split into five parts: w = uvxyz

	u	V	X	У	Z
L Tree	1	1	10	00	01

	u	vv	x	уу	Z
R Tree	1	11	10	0000	01

By the substitution mentioned in the previous slide, we can keep pumping in v and y to get new strings of the form $w = uv^i xy^i z$ $(i \ge 0)$, and any such $w \in L$ as it is a valid derivation.

Other conditions:

 $|vy| \ge 1$, v, y cannot be both ϵ $|vxy| \le p$ In fact **if** L **is a CFL**, $\exists p$ such that $\forall w \in L$ of length $|w| \geq p$, we can split w = uvxyz, such that $\forall i \geq 0$, $w = uv^ixy^iz \in L$

Properties of parse trees:

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields W. Then:

• A path from the root to a leaf is sequence of variables and ends in a terminal or ϵ .

Properties of parse trees:

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w. Then:

- A path from the root to a leaf is sequence of variables and ends in a terminal or ϵ .
- Let d be the maximum number of variables/terminals in the RHS of any rule of G.
- For example: If G is in CNF, d=2.

Properties of parse trees:

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w. Then:

- A path from the root to a leaf is sequence of variables and ends in a terminal or ϵ .
- Let d be the maximum number of variables/terminals in the RHS of any rule of G.
- For example: If G is in CNF, d=2.
- This results in a **binary parse tree**. Henceforth d=2.
- Any T_w^G has at **level** l, at most d^l **nodes**. Thus, any T_w^G of height h has at most d^h terminals.

Properties of parse trees:

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w. Then:

- A path from the root to a leaf is sequence of variables and ends in a terminal or ϵ .
- Let d be the maximum number of variables/terminals in the RHS of any rule of G.
- For example: If G is in CNF, d=2.
- This results in a **binary parse tree**. Henceforth d=2.
- Any T_w^G has at **level** l, at most d^l nodes. Thus, any T_w^G of height h has at most d^h terminals.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1} = 2^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.

Properties of parse trees:

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields W. Then:

- A path from the root to a leaf is sequence of variables and ends in a terminal or ϵ .
- Let d be the maximum number of variables /terminals in the RHS of any rule of G.
- For example: If G is in CNF, d=2.
- This results in a **binary parse tree**. Henceforth d=2.
- Any T_w^G has at **level** l, at most d^l nodes. Thus, any T_w^G of height h has at most d^h terminals.
- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1} = 2^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- The longest path from the root (S) to the lowest level, is at least |V| + 1 (containing at least |V| + 1 variables).

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1} = 2^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- The longest path from the Start Variable S to a terminal is $\geq |V| + 1$.
- Consider the lowest |V| + 1 variables in that path.
- By the pigeonhole principle, within the lowest |V| + 1 variables, at least one variable is repeated.

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar
 G.
- If $w \in L$ such that $|w| = p = d^{|V|+1} = 2^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- The longest path from the Start Variable S to a terminal is at least |V|+1.
- Consider the lowest |V| + 1 variables in that path.
- By the pigeonhole principle, within the lowest |V| + 1 variables, at least one variable is repeated.

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1} = 2^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- Consider the longest path in the parse tree.
- By the pigeonhole principle, within the lowest |V|+1 variables, at least one variable is repeated

Then any string w such that $|w| \ge p$, can be partitioned as w = uvxyz such that

• $|vxy| \le p$

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1} = 2^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- Consider the lowest |V| + 1 variables in the longest path of length $\geq |V| + 1$.

Then any string w such that $|w| \ge p$, can be partitioned as w = uvxyz such that

• $|vxy| \le p$ - the uppermost R falls within the bottom |V| + 1 variables in the longest path and so the length of the string it can generate is $\le d^{|V|+1} = 2^{|V|+1} = p$.

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1} = 2^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- Consider the lowest |V|+1 variables in the longest path of $h \ge |V|+1$.

- $|vxy| \le p$
- $uv^ixy^iz \in L$, $\forall i > 0$ Replace the subtree T_1 with the subtree T_2 .

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- $|vxy| \le p$
- $uv^ixy^iz \in L$, $\forall i > 0$ Replace the subtree T_1 with the subtree T_2 .

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- $|vxy| \le p$
- $uv^i x y^i z \in L, \forall i > 0$

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

$$uv^0xy^0z \in L$$

- $|vxy| \le p$
- $uv^ixy^iz \in L$, $\forall i \geq 0$ for the i=0 case, replace the subtree T_2 with the subtree T_1

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- $|vxy| \le p$
- $uv^ixy^iz \in L$, $\forall i \geq 0$ for the i=0 case, replace the subtree T_2 with the subtree T_1

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- The longest path from the Start Variable S to a terminal is at least |V|+1.
- Consider the lowest |V| + 1 variables in that path.
- By the pigeonhole principle, within the lowest |V|+1 variables, at least one variable is repeated

- $|vxy| \le p$
- $uv^i x y^i z \in L, \forall i \geq 0$

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider a parse tree T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- The longest path from the Start Variable S to a terminal is at least |V|+1
- Consider the lowest |V| + 1 variables in that path.
- By the pigeonhole principle, within the lowest |V|+1 variables, at least one variable is repeated

Then any string w such that $|w| \ge p$ can be partitioned as w = uvxyz such that

- $|vxy| \le p$
- $uv^i x y^i z \in L, \forall i \ge 0$

What if G is ambiguous? More than one parse tree generates w.

Pick the one with the smallest number of nodes. So T_w^G is the smallest parse tree generating w.

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider the **smallest parse tree** T_w^G of G that yields w.

- Let |V| be the total number of variables in the Grammar G.
- If $w \in L$ such that $|w| = p = d^{|V|+1}$, the underlying parse tree would have a height $\geq |V|+1$.
- The longest path from the Start Variable S to a terminal is at least |V|+1.
- Consider the lowest |V| + 1 variables in that path.
- By the pigeonhole principle, within the lowest |V|+1 variables, at least one variable is repeated

Then any string w such that $|w| \ge p$ can be partitioned as w = uvxyz such that

- $|vxy| \leq p$
- $uv^i x y^i z \in L, \forall i \geq 0$

 T_w^G is the smallest parse tree generating w.

This leads to an additional condition!

v, y cannot be both empty, i.e. $|vy| \ge 1$

Let L be a CFL and G be such that $L = \mathcal{L}(G)$ and $w \in L$. Consider the **smallest parse tree** T_w^G of G that yields w.

v,y cannot be both empty, i.e. $|vy| \ge 1$

Proof by contradiction: Let us assume that they were both empty, i.e. w=uxz. Then T_w^G would look like this.

However, if we substitute the smaller subtree rooted at R with the higher subtree, we obtain

The parse tree to the left generates w and has fewer nodes which is a **contradiction**!!

u

X

Putting things together:

Pumping Lemma for CFL: IF L is Context Free, **THEN** there exists p > 0 (pumping length), such that, for any $w \in L$ of length $|w| \ge p$, $\exists u, v, x, y, z$ such that w can be split into five parts, i.e.

$$w = uvxyz$$

satisfying the following conditions:

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^i x y^i z \in L$, $\forall i \ge 0$

We have proved this in the previous slides.

Pumping Lemma for CFL: IF L is Context Free, **THEN** there exists p > 0 (pumping length), such that, for any $w \in L$ of length $|w| \ge p$, $\exists u, v, x, y, z$ such that w can be split into five parts, i.e.

$$w = uvxyz$$

satisfying the following conditions:

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^i x y^i z \in L$, $\forall i \ge 0$

Note: $(A \Rightarrow B) \equiv (\neg B) \Rightarrow (\neg A)$

IF L is Context Free, THEN conditions of Pumping Lemma are Satisfied

IF conditions of Pumping Lemma are NOT satisfied THEN L is NOT Context Free

In order to prove that a language is not Context Free, assume that it is Context Free and obtain a contradiction.

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Proof: We shall prove this by contradiction. Let L be a CFL and so it must satisfy the conditions of the Pumping Lemma. Let p be the pumping length and so $w = 0^p 1^p 2^p \in L$.

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Proof: We shall prove this by contradiction. Let L be a CFL and so it must satisfy the conditions of the Pumping Lemma. Let p be the pumping length and so $w = 0^p 1^p 2^p \in L$.

Note that $|w| = 3p \ (\ge p)$. The pumping lemma states that w can be split into w = uvxyz such that

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^i x y^i z \in L, \forall i \geq 0$

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Proof: We shall prove this by contradiction. Let L be a CFL and so it must satisfy the conditions of the Pumping Lemma. Let p be the pumping length and so $w = 0^p 1^p 2^p \in L$.

Note that $|w| = 3p \ (\ge p)$. The pumping lemma states that w can be split into w = uvxyz such that

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^ixy^iz \in L, \forall i \geq 0$

First observe that in $w = 0^p 1^p 2^p$, the last 0 and the first 2 is separated by p 1's. As $|vxy| \le p$, the substring vxy has at most two distinct symbols. Now consider the string $w' = uv^2xy^2z$. What are the possibilities of vxy?

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Proof: We shall prove this by contradiction. Let L be a CFL and so it must satisfy the conditions of the Pumping Lemma. Let p be the pumping length and so $w = 0^p 1^p 2^p \in L$.

Note that $|w| = 3p \ (\ge p)$. The pumping lemma states that w can be split into w = uvxyz such that

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^ixy^iz \in L, \forall i \geq 0$

First observe that in $w = 0^p 1^p 2^p$, the last 0 and the first 2 is separated by p 1's. As $|vxy| \le p$, the substring vxy has at most two distinct symbols. Now consider the string $w' = uv^2xy^2z$. What are the possibilities of vxy?

• $vxy = 0^k \text{ or } 1^k \text{ or } 2^k, k \le p$: Then $w' \notin L$. (E.g. If $vxy = 0^k$, then, w' will have more 0's than 1's and 2's.)

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Proof: We shall prove this by contradiction. Let L be a CFL and so it must satisfy the conditions of the Pumping Lemma. Let p be the pumping length and so $w = 0^p 1^p 2^p \in L$.

Note that $|w| = 3p \ (\ge p)$. The pumping lemma states that w can be split into w = uvxyz such that

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^ixy^iz \in L, \forall i \geq 0$

First observe that in $w = 0^p 1^p 2^p$, the last 0 and the first 2 is separated by p 1's. As $|vxy| \le p$, the substring vxy has at most two distinct symbols. Now consider the string $w' = uv^2xy^2z$. What are the possibilities of vxy?

- $vxy = 0^k \text{ or } 1^k \text{ or } 2^k, k \le p$: Then $w' \notin L$. (E.g. If $vxy = 0^k$, then, w' will have more 0's than 1's and 2's.)
- $vxy = 0^m 1^n \text{ or } 1^m 2^n, m + n \le p$: Again, $w' \notin L$.

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Proof: We shall prove this by contradiction. Let L be a CFL and so it must satisfy the conditions of the Pumping Lemma. Let p be the pumping length and so $w = 0^p 1^p 2^p \in L$.

Note that $|w| = 3p \ (\ge p)$. The pumping lemma states that w can be split into w = uvxyz such that

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^ixy^iz \in L, \forall i \geq 0$

First observe that in $w = 0^p 1^p 2^p$, the last 0 and the first 2 is separated by p 1's. As $|vxy| \le p$, the substring vxy has at most two distinct symbols. Now consider the string $w' = uv^2xy^2z$. What are the possibilities of vxy?

- $vxy = 0^k \text{ or } 1^k \text{ or } 2^k$, $k \le p$: Then $w' \notin L$. (E.g. If $vxy = 0^k$, then, w' will have more 0's than 1's and 2's.)
- $vxy = 0^m 1^n \text{ or } 1^m 2^n, m+n \leq p$: Again, $w' \notin L$. (E.g. If $vxy = 0^m 1^n$, then w' will have less 2's than the other two symbols)

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Proof: We shall prove this by contradiction. Let L be a CFL and so it must satisfy the conditions of the Pumping Lemma. Let p be the pumping length and so $w = 0^p 1^p 2^p \in L$.

Note that $|w| = 3p \ (\ge p)$. The pumping lemma states that w can be split into w = uvxyz such that

- $|vy| \ge 1$
- $|vxy| \le p$
- $uv^ixy^iz \in L, \forall i \geq 0$

First observe that in $w = 0^p 1^p 2^p$, the last 0 and the first 2 is separated by p 1's. As $|vxy| \le p$, the substring vxy has at most two distinct symbols. Now consider the string $w' = uv^2xy^2z$. What are the possibilities of vxy?

- $vxy = 0^k \text{ or } 1^k \text{ or } 2^k, k \le p$: Then $w' \notin L$. (E.g. If $vxy = 0^k$, then, w' will have more 0's than 1's and 2's.)
- $vxy = 0^m 1^n \text{ or } 1^m 2^n, m+n \leq p$: Again, $w' \notin L$. (E.g. If $vxy = 0^m 1^n$, then w' will have less 2's than the other two symbols)

Both cases lead to a contradiction. Hence, $L \notin CFL$.

 $L = \{0^n 1^n 2^n | n \ge 0\}$ is not Context-Free.

Other examples:

- $L = \{ww | w \in \{0, 1\}^*\}$
- $L = \{a^p | p \text{ is prime}\}$
- $L = \{0^n 1^{n^2} | n \ge 0\}$

.....

Recommend you to use Pumping Lemma and check that they are indeed not Context Free

Now that we know that there are languages that are not Context Free – let us investigate the closure properties of CFLs.

Recall what we mean by the statement "CFLs are closed under some operation"

- We pick up points within the set of all CFLs (say L_1 and L_2)
- Perform *set operations* such as Union, concatenation, Star, intersection, complement etc on them.
- Observe whether the resulting language still belongs to the set of all CFLs.
- If so, we say, CFLs are **closed** under that operation otherwise we say CFLs are not closed under that operation.

Some operations: Let L_1 and L_2 be languages.

- Union: $L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\}$
- Concatenation: L_1 . $L_2 = \{xy | x \in L_1 \text{ and } y \in L_2\}$

Recall that for Regular languages: RL are closed under

- Union
- Intersection
- Star
- Complement
- Concatenation

- Intersection: $L_1 \cap L_2 = \{x | x \in L_1 \text{ and } x \in L_2\}$
- Star: $L_1^* = \{x_1x_2 \cdots x_k | k \ge 0 \text{ and each } x_i \in L\}$
- Complementation: $\bar{L} = \{x | x \notin L\}$

Set of all regular Languages

Q: Is the set of all CFLs closed under union?

Suppose L_1 and L_2 are CFLs. Is $L = L_1 \cup L_2$ also a CFL?

Proof: Suppose G_1 and G_2 be grammars such that $L(G_1) = L_1$ and $L(G_2) = L_2$.

Suppose:

Rules of $G_1: S_1 \rightarrow ...$ Rules of $G_2: S_2 \rightarrow ...$

Q: Is the set of all CFLs closed under union?

Suppose L_1 and L_2 are CFLs. Is $L = L_1 \cup L_2$ also a CFL?

Proof: Suppose G_1 and G_2 be grammars such that $L(G_1) = L_1$ and $L(G_2) = L_2$.

Suppose:

Rules of
$$G_1: S_1 \rightarrow ...$$

Rules of $G_2: S_2 \rightarrow ...$

Also suppose that the rules of G_1 and G_2 have different variables.

Then the grammar for $L_1 \cup L_2$ contains all the variables of G_1 and G_2 , all the terminals of G_1 and G_2 .

$$S \to S_1 | S_2$$

followed by rules of G_1 and rules of G_2 . So CFLs are closed under union.

Q: Is the set of all CFLs closed under Concatenation?

Suppose L_1 and L_2 are CFLs. Is $L=L_1,L_2$ also a CFL?

Proof: Suppose G_1 and G_2 be grammars such that $L(G_1) = L_1$ and $L(G_2) = L_2$.

Suppose:

Rules of $G_1: S_1 \rightarrow ...$ Rules of $G_2: S_2 \rightarrow ...$

Also suppose that the rules of G_1 and G_2 have different variables. Then define G' such that $L(G') = L_1, L_2$, as the grammar containing all the variables of G_1 and G_2 , all the terminals of G_1 and G_2 , with a new start symbol S. The new rules:

$$S \rightarrow S_1.S_2$$

followed by rules of G_1 and rules of G_2 .

So CFLs are closed under concatenation.

Q: Is the set of all CFLs closed under Concatenation?

Suppose L_1 and L_2 are CFLs. Is $L=L_1,L_2$ also a CFL?

Proof: Suppose G_1 and G_2 be grammars such that $L(G_1) = L_1$ and $L(G_2) = L_2$.

Suppose:

Rules of $G_1: S_1 \rightarrow ...$ Rules of $G_2: S_2 \rightarrow ...$

Also suppose that the rules of G_1 and G_2 have different variables. Then define G' such that $L(G') = L_1 L_2$, as the grammar containing all the variables of G_1 and G_2 , all the terminals of G_1 and G_2 , with a new start symbol S. The new rules:

$$S \rightarrow S_1.S_2$$

followed by rules of G_1 and rules of G_2 .

So CFLs are closed under concatenation.

Q: Is the set of all CFLs closed under Star?

Suppose L is a CFL. Is L^* also a CFL?

Proof: Suppose G be a grammar such that $L(G) = L_1$

Suppose:

Rules of G: $S_1 \rightarrow ...$

 L_1 L_1 L_2 L_2

Set of all CFLs

Then the grammar G' such that $L(G) = L^*$ is the same as G with a new start symbol and the additional rules

Q: Is the set of all CFLs closed under Star?

Suppose L is a CFL. Is L^* also a CFL?

Proof: Suppose G be a grammar such that $L(G) = L_1$

Suppose:

Rules of G: $S_1 \rightarrow ...$

Then the grammar G' such that $L(G) = L^*$ is the same as G with a new start symbol and the additional rules

$$S \to S_1 S | \epsilon$$

So CFLs are closed under Star.

Q: Is the set of all CFLs closed under intersection?

Suppose L_1 and L_2 are CFLs. Is $L=L_1\cap L_2$ also a CFL?

Proof: We will prove that CFLs are NOT closed under intersection by using this simple counterexample. Let

Q: Is the set of all CFLs closed under intersection?

Suppose L_1 and L_2 are CFLs. Is $L=L_1\cap L_2$ also a CFL?

Proof: We will prove that CFLs are NOT closed under intersection by using this simple counterexample. Let

$$L_1 = \{ \mathbf{0}^n \mathbf{1}^n \mathbf{2}^m | m, n \geq \mathbf{0} \}$$
 and $L_2 = \{ \mathbf{0}^m \mathbf{1}^n \mathbf{2}^n | m, n \geq \mathbf{0} \}$

Q: Is the set of all CFLs closed under intersection?

Suppose L_1 and L_2 are CFLs. Is $L=L_1\cap L_2$ also a CFL?

Proof: We will prove that CFLs are NOT closed under intersection by using this simple counterexample. Let

$$L_1 = \{ \mathbf{0}^n \mathbf{1}^n \mathbf{2}^m | m, n \geq \mathbf{0} \}$$
 and $L_2 = \{ \mathbf{0}^m \mathbf{1}^n \mathbf{2}^n | m, n \geq \mathbf{0} \}$

Note that $L_1, L_2 \in CFL$ – each of them are concatenation of two CFLs.

Q: Is the set of all CFLs closed under intersection?

Suppose L_1 and L_2 are CFLs. Is $L=L_1\cap L_2$ also a CFL?

Proof: We will prove that CFLs are NOT closed under intersection by using this simple counterexample. Let

$$L_1 = \{ \mathbf{0}^n \mathbf{1}^n \mathbf{2}^m | m, n \geq \mathbf{0} \}$$
 and $L_2 = \{ \mathbf{0}^m \mathbf{1}^n \mathbf{2}^n | m, n \geq \mathbf{0} \}$

Note that $L_1, L_2 \in CFL$ – each of them are concatenation of two CFLs.

E.g. L_1 is a concatenation of $\{0^n 1^n | n \ge 0\}$ and $\{2^m | m \ge 0\}$ and the rules of the corresponding grammar are

$$S \to AB$$

$$A \to 0A1|\epsilon$$

$$B \to 2B|\epsilon$$

What is $L_1 \cap L_2$?

Q: Is the set of all CFLs closed under intersection?

Suppose L_1 and L_2 are CFLs. Is $L=L_1\cap L_2$ also a CFL?

Proof: We will prove that CFLs are NOT closed under intersection by using this simple counterexample. Let

$$L_1 = \{ \mathbf{0}^n \mathbf{1}^n \mathbf{2}^m | m, n \geq \mathbf{0} \}$$
 and $L_2 = \{ \mathbf{0}^m \mathbf{1}^n \mathbf{2}^n | m, n \geq \mathbf{0} \}$

Note that $L_1, L_2 \in CFL$ – each of them are concatenation of two CFLs. E.g. L_1 is a concatenation of $\{0^n 1^n | n \ge 0\}$ and $\{2^m | m \ge 0\}$ and the rules of the corresponding grammar are

$$S \to AB$$

$$A \to 0A1|\epsilon$$

$$B \to 2B|\epsilon$$

 $L_1 \cap L_2 = \{\mathbf{0}^n \mathbf{1}^n \mathbf{2}^n | n \geq \mathbf{0}\}$ which is not a CFL.

Hence CFLs are NOT closed under intersection!

Q: Is the set of all CFLs closed under complementation?

Suppose L is a CFL. Is \overline{L} also a CFL?

Proof: ??????????

Q: Is the set of all CFLs closed under complementation?

Suppose L is a CFL. Is \overline{L} also a CFL?

Proof: Let us assume that CFLs are closed under complementation. Then if L_1 and L_2 are context free, then \bar{L}_1 and \bar{L}_2 are also context free. This would imply that

$$\bar{L}_1 \cup \bar{L}_2 \in \mathit{CFL}$$

Q: Is the set of all CFLs closed under complementation?

Suppose L is a CFL. Is \overline{L} also a CFL?

Proof: Let us assume that CFLs are closed under complementation. Then if L_1 and L_2 are context free, then \overline{L}_1 and \overline{L}_2 are also context free. This would imply that

$$\bar{L}_1 \cup \bar{L}_2 \in CFL$$

Finally, this would imply $\overline{\overline{L_1} \cup \overline{L_2}} \in \mathit{CFL}$. However,

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

But this would imply $L_1 \cap L_2 \in \mathit{CFL}$, which is a contradiction.

Thus CFLs are NOT closed under complementation.

Recall that for Regular languages:

RLs are closed under

- Union
- Intersection
- Star
- Complement
- Concatenation

For CFLs:

CFLs are closed under

- Union
- Star
- Concatenation

CFLs are NOT closed under

- Complementation
- Intersection

Recall that for Regular languages:

RLs are closed under

- Union
- Intersection
- Star
- Complement
- Concatenation

For CFLs:

CFLs are closed under

- Union
- Star
- Concatenation

CFLs are NOT closed under

- Complementation
- Intersection

If L is a CFL and R is a regular language then $L\cap R$ is a CFL. $L\cup R$ is a CFL.

- CFLs are closed under **Union**, **Star**, **Concatenation**
- CFLs are NOT closed under Complementation, Intersection

If L is a CFL and R is a regular language then $L\cap R$ is a CFL. $L\cup R$ is a CFL.

Proof intuition: Construct a **Product PDA**.

If the states of the PDA $P: Q = (q_1, q_2, \cdots, q_m)$ and DFA $D: Q' = (d_1, d_2, \cdots, d_n)$, then states of **Product PDA** X:

$$Q = \{(q, d), \forall q \in Q, \forall d \in Q'\}$$

Start state: (q_1, d_1)

- CFLs are closed under **Union**, **Star**, **Concatenation**
- CFLs are NOT closed under Complementation, Intersection

If L is a CFL and R is a regular language then $L\cap R$ is a CFL. $L\cup R$ is a CFL.

Proof intuition: Construct a **Product PDA**.

If the states of the PDA $P: Q = (q_1, q_2, \cdots, q_m)$ and DFA $D: Q' = (d_1, d_2, \cdots, d_n)$, then states of **Product PDA** X:

$$Q = \{(q, d), \forall q \in Q, \forall d \in Q'\}$$

Start state: (q_1, d_1)

If
$$\delta(q_i, a, b) = (q_j, c)$$
 and $\delta(d_k, a) = d_l$, then for $X: \delta((q_i, d_k), a, b) = ((q_j, d_l), c)$.

So X is a PDA.

- CFLs are closed under **Union**, **Star**, **Concatenation**
- CFLs are NOT closed under Complementation, Intersection

If L is a CFL and R is a regular language then $L\cap R$ is a CFL. $L\cup R$ is a CFL.

Proof intuition: Construct a **Product PDA**.

If the states of the PDA $P: Q = (q_1, q_2, \dots, q_m)$ and DFA $D: Q' = (d_1, d_2, \dots, d_n)$, then states of **Product PDA X**:

$$Q = \{(q, d), \forall q \in Q, \forall d \in Q'\}$$

Start state: (q_1, d_1)

If
$$\delta(q_i, a, b) = (q_j, c)$$
 and $\delta(d_k, a) = d_l$, then for $X: \delta((q_i, d_k), a, b) = ((q_j, d_l), c)$.

If
$$\delta(q_i, \epsilon, b) = (q_j, c)$$
 and $\delta(d_k, \epsilon) = \Phi$, then for $X: \delta((q_i, d_k), \epsilon, b) = ((q_j, d_k), c)$.

• $L(X) = L(P) \cap L(R)$ if the final state, say (q_r, d_s) is such that q_r and d_s are both final states of P AND D respectively.

- CFLs are closed under **Union**, **Star**, **Concatenation**
- CFLs are NOT closed under Complementation, Intersection

If L is a CFL and R is a regular language then $L\cap R$ is a CFL. $L\cup R$ is a CFL.

Proof intuition: Construct a **Product PDA**.

If the states of the PDA $P: Q = (q_1, q_2, \dots, q_m)$ and DFA $D: Q' = (d_1, d_2, \dots, d_n)$, then states of **Product PDA** X:

$$Q = \{(q, d), \forall q \in Q, \forall d \in Q'\}$$

Start state: (q_1, d_1)

If
$$\delta(q_i, a, b) = (q_j, c)$$
 and $\delta(d_k, a) = d_l$, then for X : $\delta((q_i, d_k), a, b) = ((q_j, d_l), c)$.
If $\delta(q_i, \epsilon, b) = (q_j, c)$ and $\delta(d_k, \epsilon) = \Phi$, then for X : $\delta((q_i, d_k), \epsilon, b) = ((q_j, d_k), c)$.

- $L(X) = L(P) \cap L(R)$ if the final state, say (q_r, d_s) is such that q_r and d_s are both final states of P AND D respectively.
- $L(X) = L(P) \cup L(R)$ if the final state, say (q_r, d_s) is such that EITHER q_r or d_s are final states of P OR D respectively.

Recall that for Regular languages:

RL are closed under

- Union
- Intersection
- Star
- Complement
- Concatenation

For CFLs:

CFLs are closed under

- Union
- Star
- Concatenation

CFLs are NOT closed under

- Complementation
- Intersection

If L is a CFL and R is a regular language then

 $L \cap R$ is a CFL.

 $L \cup R$ is a CFL.

Next lecture:

Turing Machine

Thank You!