Kulišić

2. Kinematika čestice

2.5. V= 40 km = 11.1 m +.6s 1=4.6s 1=1.5s S=Not _A + atia
t=4.6s
$t=1.5s$ $5=N_0t_0+\frac{at_0}{2}$
1 2 1 1
$\frac{5}{2} = \sqrt{3} + \frac{31}{2} / \cdot 2$
Not+ 2t2 = 2 Vot2 + at2
51.06+10.582=33.3+2252
$\frac{\partial = -2.13 \text{ m}}{5^2}$

2.6. t = 0 s $N_{1} = 0$ m 2 = 2 m $2 = \sqrt{1 - \sqrt{3}}$ 3 = 10 s $2 = \sqrt{1 - \sqrt{3}}$ 3 = 10 s $2 = \sqrt{1 - \sqrt{3}}$ 3 = 10 s $2 = \sqrt{1 - \sqrt{3}}$ 3 = 10 s $2 = \sqrt{1 - \sqrt{3}}$ 3 = 10 s $2 = \sqrt{1 - \sqrt{3}}$ $3 = \sqrt{1 - 20}$ 3 = 3 $3 = \sqrt{1 - 20}$ $3 = \sqrt{1 - 20}$ 3 = 3 $3 = \sqrt{1 - 20}$ $3 = \sqrt{1 - 20}$ 3 = 3 $3 = \sqrt{1 - 20}$ $3 = \sqrt{1 - 20}$ 3 = 3 $3 = \sqrt{1 - 20}$ $3 = \sqrt{1 - 20}$ 3 = 3 $3 = \sqrt{1 - 20}$ $3 = \sqrt{1 - 20}$ 3 = 3 $3 = \sqrt{1 - 20}$ $3 = \sqrt{1 - 20}$ 3 =

2.9. h = 15m $h = v_1t_0 + 3t_0$ v = 10m/s $t_0, v_1, t_2 = ?$ $t_0, v_1, t_2 = ?$ $t_0 = 10t_0 + 10t_0 - 15 = 0$ $t_0 = 10t_0 + 23t_0 - 10 = 13.85$ $t_0 = 1s$ $t_0 = 1s$

Gore V=100 m 2=9.8 m = kv2 k=0.001 m' V1, t=? V= [tg (+ lgk) / dw -- Lalcosty etll = 3543 artanh(\$.V) v= [3 tanh (+ 13h) / 3+ X = Ln(coshlapht) => t2 = = drosh(eth) V=[3 tank(tokopno3h)=70.37 = loropo=tot

2.12 358) = 1 (2 - 10) et + 2 + 62 TOURSON C2: D= \$1- No) e- Kt + \$1+ No - \$5

2,14.6 10, = 10, = +0, = +4.3 g 19, P = 10, = > P = 45° $\frac{1}{100} = 100 \text{ cm} = 100 \text{ cm} = 53^{\circ} + 100 \text{ sin} = 53^{\circ} = (60.18 + 79.86 + 79.86 + 100 \text{ sin} = 30 \text{ m/s} = (18.05 + 13.36 + 100 \text{ sin} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s} = 30 \text{ m/s} = 30 \text{ m/s} = (18.05 + 100 \text{ sin} = 30 \text{ m/s} = 30 \text{ m/s$

 $a = \frac{dw}{dt} = 30(\cos 53\hat{x} + \sin 53\hat{y})$ $dw = 30(\cos 53\hat{x} + \sin 53\hat{y}) dt / \int$ $v(t) = 30(\cos 53\hat{x} + \sin 53\hat{y}) t + 100(\cos 53\hat{x} + \sin 53\hat{y})$ $\frac{ds}{dt} = \dots / dt / \int$ $s(t) = 15(\cos 53\hat{x} + \sin 53\hat{y}) t^2 + 100(\cos 53\hat{x} + \sin 53\hat{y}) + 0$ $s(3) = 81.25\hat{x} + 104.81\hat{y} + 180.544\hat{x} + 239.6\hat{y}$ $= (161.8\hat{x} + 344.41\hat{y}) m = movi so$ $v(3) = (144.34\hat{x} + 151.34\hat{y}) m/s = movi so$

a = g $v(t) = v_0 - gt$ $\Delta(t) = \Delta_0 + v_0 t - \frac{g}{2}t^2$ $\Delta_x(t) = \Delta_x^2 + v_x^2 t$ $\Delta_x(33.07) = 261.8 + 3781.22$ = 4043 m

 $3y(t) = 3y^{2} + 3y^{2}t - \frac{2}{3}t^{2} = 0$ $\frac{2}{3}t^{2} - 3y^{2}t - 3y^{2} = 0 \quad y = 9.81$ $t^{2} - \frac{23y^{2}t}{3} - \frac{23y}{3} = 0 \quad y = 9.81$ $t^{2} - 30.93t - 70.83 = 0$ $t_{12} = \frac{30.95t}{2} = \frac{35.21}{2}$ $t_{1} = -2.14 \cdot t_{2} = 33.07.0$