Индивидуальное домашнее задание (3 модуль)

- 1. В условиях задачи 10 ИДЗ 1 (2 модуль) найдите:
 - 1) Математическое ожидание и дисперсию случайных величин ξ и η .
 - 2) Ковариацию и коэффициент корреляции случайных величин ξ и η
 - 3) Математическое ожидание и дисперсию случайной величины μ , математическое ожидание и ковариацию случайных величин μ_1 и μ_2
- 2. В условиях задачи 12 ИДЗ 1 (2 модуль) найдите
 - 1) Математическое ожидание и дисперсию случайных величин ξ и η .
 - 2) Ковариацию и коэффициент корреляции случайных величин ξ и η .
 - 3) Математическое ожидание случайной величины μ .
- 3. В условиях задачи 10 ИДЗ 1 (2 модуль) найдите:
 - 1) условное математическое ожидание с.в. ξ при условии η ;
 - 2) условное математическое ожидание с.в. η при условии ξ ;
- **4.** В условиях **задачи 12 ИДЗ 1 (2 модуль)** найдите условное математическое ожидание с.в. η при условии ξ и условное математическое ожидание с.в. ξ при условии η .
- 5. Выполните следующие задания:
 - 1) По заданным плотностям $p_{\xi}(x)$ и $p_{\eta}(y)$ найдите характеристические функции $f_{\xi}(t)$ и $f_{\eta}(t)$ случайных величин ξ и η ; характеристическую функцию $f_{\mu}(t)$ случайной величины $\mu = \xi + \eta$
 - 2) По заданной характеристической функции $f_{\xi}(t)$ вычислите математическое ожидание случайной величины ξ и дисперсию случайной величины ξ .
- **6.** Посетитель тира платит a рублей за выстрел. При попадании в девятку получает выигрыш b рублей, при попадании в десятку получает выигрыш c рублей. Если стрелок не попадает ни в девятку, ни в десятку, то деньги ему не выплачиваются. Вероятности попадания в девятку, десятку и промаха равны p_1 , p_2 и p_3 соответственно. Число посетителей равно n.

С помощью неравенства Чебышева:

- 1) найдите границы, в которых будет лежать суммарная прибыль владельца тира с вероятностью не менее α :
- 2) найдите число посетителей тира, чтобы вероятность отклонения суммарной прибыли от среднего размера суммарной прибыли на величину не меньше β % (от средней суммарной прибыли) равнялась p

С помощью центральной предельной теоремы оцените вероятность того, что

- 1) размер убытка у владельца тира будет лежать в пределах от m_1 до m_2 рублей;
- 2) что суммарная прибыль окажется в пределах от n_1 до n_2 рублей.
- **7.** По заданным выборкам $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ объема n = 50 найти и построить:
 - 1) минимальный и максимальный элементы выборки, разброс выборки, статистический ряд;
 - 2) гистограмму, полигон относительных частот, эмпирическую функцию распределения (для выборки X_1, X_2, \dots, X_n);
 - 3) выборочные характеристики: среднее, дисперсию (смещенную и несмещенную) (по выборке и по статистическому ряду), медиану.
- **8.** Известно, что выборка $X_1, X_2, ..., X_n$ подчиняется теоретическому распределению с заданною плотностью $p_{\xi}(x)$ с неизвестным параметром. Найдите оценку неизвестного параметра методом моментов
- **9.** а) Известно, что выборка X_1, X_2, \dots, X_n подчиняется теоретическому распределению с заданною плотностью

$$p(x) = \begin{cases} 2\sqrt{\frac{\overline{a}}{\pi}}e^{-\left(x\sqrt{a} - \frac{\sqrt{b}}{x}\right)^{2}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

с неизвестными параметрами (a, b).

б) Известно, что выборка Y_1, Y_2, \dots, Y_n подчиняется теоретическому распределению с заданною плотностью

$$p(x) = \begin{cases} \frac{1}{\sqrt{a\pi x^2}} e^{-\frac{(\ln x - b)^2}{2a}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

с неизвестными параметрами (a, b).

Найдите оценку максимального правдоподобия этих параметров

- 10. С помощью критерия отношения правдоподобия проверьте:
 - 1) гипотезы H_0 и H_1 о принадлежности выборки X_1, X_2, \dots, X_n дискретному распределению с заданными параметрами.
 - 2) гипотезы H_0 и H_1 о принадлежности выборки Y_1, Y_2, \dots, Y_n непрерывному распределению с заданными параметрами.
- **11.** С помощью критерия χ^2 проверьте:
 - 1) гипотезу о принадлежности выборки $X_1, X_2, ..., X_n$ к заданному дискретному распределению (с помощью метода моментов найдите параметры распределения).
 - 2) гипотезу о принадлежности выборки Y_1, Y_2, \dots, Y_n заданному непрерывному распределению (с помощью метода моментов найдите параметры распределения).

Распределение баллов (15 баллов)

Задача 1	Задача 2	Задача 3	Задача 4	Задача 5	Задача 6
1, 5 балла	1,5 балла	1 балл	1 балл	1,5 балла	1,5 балла

Задача 7	Задача 8	Задача 9	Задача 10	Задача 11
1,5 балл	1 балл	1,5 балла	1,5 балла	1,5 балла

5.	Независимые непрерывные случайные величины ξ и η имеют плотности распределения				
3.	$\left(\frac{1}{2}(x+3), x \in (-2,4)\right) \qquad \left(\frac{1}{2}x, 2 \le x \le 4\right)$				
	$p_{\xi}(x) = \begin{cases} \frac{1}{24}(x+3), & x \in (-2;4) \\ 0, & x \notin (-2;4), \end{cases} \text{if } p_{\eta}(y) = \begin{cases} \frac{1}{6}y, & 2 \le y \le 4 \\ 0, & y < 4, & y > 4 \end{cases}$				
	e^{-5-2t^2}				
	$f(t) = \frac{e^{-5-2t^2}}{e^{-5e^{it}}}$				
6.	$a = 150, b = 250, c = 500,$ $p_1 = 0.3, p_2 = 0.15, p_3 = 0.55,$ $n = 500,$				
	$\alpha = 0.8, \beta = 5, p = 0.05$				
	$m_1 = 0, \qquad m_2 = 1000, \qquad n_1 = 100, \qquad n_2 = 1500.$				
7.	Выборка X_1, \dots, X_n				
	12 5 4 4 3 4 6 4 6 5				
	8 5 4 5 5 3 4 6 4 4				
	6 8 4 4 4 8 5 11 6 13				
	12 5 4 4 3 4 6 4 6 5 8 5 4 5 5 3 4 6 4 4 6 8 4 4 4 8 5 11 6 13 5 5 9 6 6 4 3 7 14 4 7 9 9 5 5 2 6 6 11 8				
	7 9 9 5 5 2 6 6 11 8				
	Выборка $Y_1,, Y_n$				
	-2.88 -8.24 -8.66 -3.44 -5.64 -4.26 -1.50 -3.04 -5.92 -3.34				
	-6.18 -5.49 -6.92 -7.54 -5.53 -6.78 -5.63 -6.03 -7.69 -2.95				
	-3.47 -1.89 -2.13 -5.38 -5.04 -6.44 -5.63 -6.46 -6.50 -4.89				
	-3.43 -8.67 -6.25 -3.64 -4.71 -6.23 -8.95 -3.63 -1.35 -4.04				
	-6.74 -2.57 -3.98 -6.54 -1.69 -4.41 -3.21 -5.11 -2.99 -8.16				
8.	Выборка X_1, \dots, X_n – имеет плотность распределения				
	$\left(p\lambda e^{-\lambda x} + \frac{1-p}{2}, x \in (0;a)\right)$				
	$f(x) = \begin{cases} p\lambda e^{-\lambda x} + \frac{1-p}{a}, x \in (0; a) \\ p\lambda e^{-\lambda x}, x \in (a; +\infty) \end{cases}$				
	$p\lambda e^{-\lambda x}, x \in (a; +\infty)$				
	$0, x \le 0$ При заданных значениях параметров $\lambda = 0.3$ и $a = 4$ найти оценку параметра p . Таблица частот				
	интер- 0- 0.8- 1.6- 2.4- 3.2- 4- 4.8- 5.6- 6.4- 7.2-				
	валы 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8.0				
	частоты 142 136 150 149 150 14 12 10 8 7				
9.	По заданной таблице частот найти оценку ММП параметров а и в				
	интер- 1.1- 1.7- 2.3- 2.9- 3.5- 4.1- 4.7-				
	валы 1.7 2.3 2.9 3.5 4.1 4.7 5.3 частоты 18 49 58 41 22 8 4				
	частоты 18 49 58 41 22 8 4				
	По заданной таблице частот найти оценку ММП параметров a и b				
	интер- 1.0- 3.6- 6.2- 8.8- 11.4- 14.0- 16.6- 19.2- 21.8- 24.4-				
	валы 3.6 6.2 8.8 11.4 14.0 16.6 19.2 21.8 24.4 26.0				
	<u>частоты</u> 59 363 329 149 70 18 10 1 0 1				
10.	Гипотеза H_0 биномиальное распределение $Binom(k=25,p=0.4)$				
	Гипотеза H_1 биномиальное распределение $Binom(k=25,p=0.35)$, $\alpha=0.115$				
	10 8 6 11 9 10 11 6 12 7				
	11 7 10 8 7 8 7 13 7 6				
	10 9 5 14 6 10 10 10 7 9				
	6 8 7 6 9 10 5 6 8 5				
	7 6 13 9 11 10 10 8 13 9				
	Гипотеза H_0 гамма распределение $Gamma(\lambda = 0.3, \gamma = 5)$				
	Гипотеза H_1 гамма распределение $Gamma(\lambda = 0.4, \gamma = 5), \alpha = 0.135$ 17.51 14.29 28.54 11.59 13.75 10.34 27.86 20.62 22.20 17.43				
	10.44 30.52 17.97 8.05 9.54 9.66 34.41 16.24 7.13 16.47				
	11.48 13.42 13.13 15.74 14.27 10.23 8.79 24.56 15.80 2.30				
	9.32 11.87 23.14 16.39 16.41 20.83 6.34 12.62 6.14 9.78				
	24.48 24.98 15.14 24.37 16.15 27.86 12.54 24.60 28.00 19.95				
	100 100 100 100 100 100 100 100 100 100				

```
11.
      Распределение Пуассона с неизвестным параметром \lambda, \alpha = 0.05
      Выборка X_1, ..., X_n
       12 5 4 4 3 4 6
                              4
                                 6
                                     5
        8 5 4 5 5 3 4
                                 4
                                     4
                              6
        6 8 4 4 4 8 5 11
                                 6 13
        5 5 9 6 6 4 3
                             7 14
                                     4
        7 9 9 5 5 2 6 6 11
      Равномерное распределение, \alpha=0.1
      Выборка Y_1, ..., Y_n
      -2.88 -8.24 -8.66 -3.44 -5.64 -4.26 -1.50 -3.04 -5.92 -3.34
      -6.18 -5.49 -6.92 -7.54 -5.53 -6.78 -5.63 -6.03 -7.69 -2.95
      -3.47 -1.89 -2.13 -5.38 -5.04 -6.44 -5.63 -6.46 -6.50 -4.89
      -3.43 -8.67 -6.25 -3.64 -4.71 -6.23 -8.95 -3.63 -1.35 -4.04
      -6.74 -2.57 -3.98 -6.54 -1.69 -4.41 -3.21 -5.11 -2.99 -8.16
```