

G H Patel College of Engineering & Technology (A Constituent College of CVM University) Academic Year 2022-23, Semester – I

Subject Code: 102000104 Subject Name: CALCULUS

Tutorial-4 Partial Differentiation

Exercise-1: Evaluate $\frac{dw}{dt}$ at the given value of t by using chain Rule

(a)
$$w = x^2y - y^2$$
, $x = sint$, $y = e^t$, $t = 0$. Ans: -2

(b)
$$w = z - \sin xy$$
, $x = t$, $y = \ln t$, $z = e^{t-1}$, $t = 1$. Ans:0

(c)
$$w = \ln(x^2 + y^2 + z^2)$$
, $x = cost$, $y = sint$, $z = 4\sqrt{t}$, $t = 3$. Ans: $= \frac{16}{49}$

Exercise-2: Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ if

(a)
$$w = xy + yz + zx$$
, $x = u + v$, $y = u - v$, $z = uv$; at $(u, v) = (1/2, 1)$, Ans: $\frac{\partial w}{\partial u} = 3$, $\frac{\partial w}{\partial v} = -\frac{3}{2}$.

(b)
$$w = e^{xyz}$$
, $x = 3u + v$, $y = 3u - v$, $z = u^2v$; Ans: $\frac{\partial w}{\partial u} = e^{xyz}(3yz + 3xz + 2xyuv)$, $\frac{\partial w}{\partial v} = e^{xyz}(yz - xz + xyu^2)$,

Exercise-3: If
$$u = u(y - z, z - x, x - y)$$
, prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

Exercise-4: If
$$u = u\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$.

Exercise- 5: If
$$u = f(x^2 + 2yz, y^2 + 2zx)$$
 then prove that

$$(y^2 - zx) \frac{\partial u}{\partial x} + (x^2 - yz) \frac{\partial u}{\partial y} + (z^2 - xy) \frac{\partial u}{\partial z} = 0.$$

Exercise-6: Find the value of $\frac{dy}{dx}$ at the given point.

(a)
$$xe^y + \sin xy + y - \log 2 = 0$$
 at $(0,\log 2)$. Ans: - $(2+\ln 2)$.

(b)
$$y^3 + y^2 - 5y - x^2 + 4 = 0$$
, Ans: $= \frac{-2x}{3y^2 + 2y - 5}$

(c)
$$\sqrt{xy} = 1 + x^2y$$
, Ans: $\frac{4(xy)^{3/2} - y}{x - 2x^2\sqrt{xy}}$

(d)
$$x^y = y^x$$
, Ans: $=\frac{y(y-x\log y)}{x(x-y\log x)}$

Exercise- 7: Find the value of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the given point.

(a)
$$xe^y + ye^z + 2lnx - 2 - 3ln2 = 0$$
, (1, ln2, ln3), Ans: $\frac{\partial z}{\partial x} = -\frac{4}{3 \ln 2}$, $\frac{\partial z}{\partial y} = -\frac{5}{3 \ln 2}$.

(b)
$$x^2 - 3yz^2 + xyz - 2 = 0$$
, Ans: $\frac{\partial z}{\partial x} = \frac{2x + yz}{6yz - xy}$, $\frac{\partial z}{\partial y} = -\frac{xz - 3z^2}{6yz - xy}$.

(c)
$$ye^x - 5sin3z = 3z$$
, Ans: $\frac{\partial z}{\partial x} = \frac{ye^x}{15cos3z + 3}$, $\frac{\partial z}{\partial y} = \frac{e^x}{15cos3z + 3}$

G H Patel College of Engineering & Technology (A Constituent College of CVM University) Academic Year 2022-23, Semester – I Subject Code: 102000104 Subject Name: CALCULUS Tutorial-4 Partial Differentiation

