MAT – 112: Calculus I and Modeling Solution 9

Thomas R. Cameron

4/27/2018

Other Problems

Problem 1. Consider the differential equation

$$\frac{dy}{dt} = f(t, y), \qquad y(t_0) = y_0.$$

We are interested in approximating this differential equation with a step size of h. Therefore, the next point (t_1, y_1) satisfies $t_1 = t_0 + h$ and

$$y_1 - y_0 = \int_{y_0}^{y_1} dy$$
 (by the F.T.C.)
= $\int_{t_0}^{t_1} f(t, y) dt$ (since $dy = f(t, y) dt$).

It follows that we can approximate the next y-value (y_1) by using numerical integration techniques. If we employ the left-hand rule, then we have

$$y_1 \approx y_0 + h f(t_0, y_0).$$

This is Euler's method. If we use the trapezoidal method to approximate the integral, then we have

$$y_1 \approx y_0 + \frac{h}{2} (f(t_0, y_0) + f(t_1, y_1)).$$

The problem here is that we have y_1 on both sides of the equation. For this reason, we employ Euler's method to approximate y_1 on the right hand side of the equation. Thus, we have

$$y_1 \approx y_0 + \frac{h}{2} \left(f(t_0, y_0) + f(t_0 + h, y_0 + h f(t_0, y_0)) \right).$$

This is what we called the *Trapezoidal method*. In practice, this is referred to as one of the many multi-step methods. Perhaps the most famous multi-step method is the Runge-Kutta method, which can be derived from Simpson's rule.

Problem 2. See the figures below.

Differential Equation dy/dx=(6y+e^x)/2			Initial Condition y(0)=5		Step Si h=1/2		
x	0 0.5 1 1.5 2 2.5	204.614225 513.382828	246.433408 617.537204	delta y 7.75 19.5371803 49.1103409 123.216704 308.768602 773.119865	1 4 9	Exact 5 3.1166873 04.769498 71.469517 2116.1539 489.17705 2536.1692	Relative Error 0 0.448450384 0.691826526 0.827353586 0.903308438 0.945898066 0.969755088
45000 40000 35000 30000 25000 20000 15000 10000 5000		0 0.		uler's Meth	and 2	2.5	3
——Approximate ——Exact							

