$\mathbf{H}\mathbf{W}$

2015160046 오재민

Date: June 2, 2020.

1

Problem 1. $u_{xx} = (2y + 6xy)_x = 6y$ and $u_{yy} = (2x + 3x^2 - 3y^2)_y = -6y$, so given function u is harmonic. Let v be a harmonic conjugate of u. Then f = u + iv must satisfy Cauchy - Riemann equation. Therefore $v_y = u_x = 2y + 6xy$, $v = y^2 + 3xy^2 + \varphi(x)$. $v_x = 3y^2 + \varphi'(x) = 3y^2 - 3x^2 - 2x$. So $\varphi(x) = -x^3 - x^2 + C$ and $v = y^2 + 3xy^2 - x^3 - x^2 + C$ where $C \in \mathbb{R}$.

Problem 2.

(1)
$$u_x = e^x (x \sin y + y \cos y + \sin y) = v_y$$
$$u_y = e^x (x \cos y + \cos y - y \sin y) = -v_x$$

Because $\int xe^x dx = (x-1)e^x + c$ for some $c \in \mathbb{R}$, we get

(2)
$$v = -\cos y (x - 1) e^x - e^x (\cos y - y \sin y) + \varphi(y)$$

by integrating v_x with respect to x.

We can get $\varphi'(y) = 0$ by differntiating (2) and comparing with v_x in (1). Therefore,

(3)
$$v = -e^{x}(x-1)\cos y - e^{x}(\cos y - y\sin y) + c$$

for some $c \in \mathbb{R}$.

Problem 3.

(4)
$$u_x + v_x = -2e^{-x}(\cos y - \sin y) = u_x - u_y$$
$$u_y + v_y = 2e^{-x}(-\sin y - \cos y) = u_x + u_y$$

By CR equation, $u_x = v_y$ and $u_y = -v_x$. By (4) and CR equation, we can get

(5)
$$u_x = 2e^{-x} (-\cos y) = v_y$$
$$u_y = 2e^{-x} (-\sin y) = -v_x$$

So,

(6)
$$u = 2e^{-x}\cos y + c_1 \\ v = -2e^{-x}\sin y + c_2$$

Therefore, $f(x,y) = 2e^{-x}(\cos y + i\sin(-y)) + C = 2e^{-x}e^{-iy} + C = 2e^{-z} + C$ where $C \in \mathbb{C}$.

Problem 4. Let f = u + iv. zf(z) = (x + iy)(u + iv) = xu - yv + i(uy + vx).

(7)
$$(xu - yv)_{xx} = (u + xu_x - yv_x)_x = (2u_x + xu_{xx} - yv_{xx})$$
$$(xu - yv)_{yy} = (xu_y - v - yv_y)_y = (xu_{yy} - 2v_y - yv_{yy})$$

Since f and zf(z) are both harmonic, by (7), we can get $u_x = v_y$. Similar computation on imaginary part of zf(z) yields $u_y = -v_x$. Also note that each partials of f is continuous on D. Therefore, f is analytic on D.

Problem 5. We can choose $\varepsilon > 0$ such that $L + \varepsilon < 1$. Then, there exists positive integer N such that $\sup_{k \ge n} \left| \frac{a_{k+1}}{a_k} \right| < L + \varepsilon$ for all $n \ge N$. So $\left| \frac{a_{n+1}}{a_n} \right| < L + \varepsilon$ for all $n \ge N$. We can deduce $|a_{k+N}| < (L + \varepsilon)^k |a_N|$.

HW 3

Therefore,

(8)
$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{N-1} |a_n| + \sum_{n=N}^{\infty} |a_N| \\ \leq \sum_{n=1}^{N-1} |a_n| + \sum_{k=0}^{\infty} |a_N| (L + \varepsilon)^k < \infty$$

Problem 6.

(a) For $E = \{z : z \neq \pm ni, n \in \mathbb{N}\}$, given sequence converges pointwisely to zero. For $|z| \leq R \in \mathbb{R}_{\geq 0}$ and $n^2 \geq N \geq R^2 + \frac{R}{\varepsilon}$ for some small positive ε ,

(9)
$$\left| \frac{z}{z^2 + n^2} \right| \le \frac{|z|}{|n^2 - |z|^2|} \le \frac{R}{n^2 - R^2} < \varepsilon$$

Therefore, for $E \cap \{|z| \leq R\}$, given sequence converges uniformly for any $R \in \mathbb{R}_{\geq 0}$.

(b) Let z = x + iy. Then $\frac{e^{nx+iny}}{n}$ converges uniformly when $x \le 0$. If x > 0, $\frac{e^{nx}}{n} \uparrow \infty$ as $n \uparrow \infty$ which implies $\frac{e^n z}{n}$ does not converge.

Problem 7. When z = 1, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. So given series does not converge absolutely on E.

Let $E_1 = \{z : |z| \le r\}$ and $E_2 = \{z : r \le z \le 1, z \in \mathbb{R}\}$. On E_1 , given series converges uniformly because its radii of convergence is 1. For $z \in E_2$, let $\varepsilon > 0$ be given, take positive integer N such that $N\varepsilon > 1$. Then, we get $\left|\sum_{k=n}^{n+p} \frac{(-1)^k z^k}{k}\right| \le \left|\frac{(-1)^n z^n}{k}\right| \le \frac{1}{2} \le \varepsilon$ if $n \ge N$. So given series converges uniformly on E_2 .

 $\left|\frac{(-1)^nz^n}{n}\right| \leq \frac{1}{n} < \varepsilon \text{ if } n \geq N. \text{ So given series converges uniformly on } E_2.$ Finally, let ε be given. There exist positive integers N_1, N_2 such that $n \geq N_1$ implies $\left|\sum_{k=n}^{n+p}\frac{(-1)^kz^k}{k}\right| < \varepsilon$ for $z \in E_1$ and $n \geq N_2$ implies $\left|\sum_{k=n}^{n+p}\frac{(-1)^kz^k}{k}\right| < \varepsilon$ for $z \in E_2$. If we take $n \geq \max\{N_1, N_2\}$, we can see that given series is uniformly cauchy on E.

Problem 8. For $|1+z^2| > 1$, given series converges absolutely. So it converges absolutely on region $|1+z^2| \ge R > 1$ for any R. For $1 < R \le |z^2 + 1| \le R'$, we can see that

(10)
$$\left| \frac{z^2}{(1+z^2)^n} \right| \le \frac{R'+1}{R^n} = M_n$$

By M-test, we can conclude that given series uniformly converges on region $\{z: 1 < R \le |z^2 + 1| \le R'\}$.

Problem 9. On the contrary, assume $\{a_n z_0^n\}$ is bounded. Take r such that $R < r < |z_0|$. Then we get

(11)
$$|a_n r^n| = |a_n z_0^n| \frac{r^n}{|z_0|^n} \le M \left(\frac{r}{|z_0|}\right)^n$$

for some M since $\{a_n z_0^n\}$ is bounded. Then by M-test, $\sum_{n=0}^{\infty} a_n r^n$ converges. It contradicts to the condition that radii of convergence is R.

Problem 10.

(a) $\limsup_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ so radii of convergence is $\frac{1}{e}$.

(b) $\limsup_{n\to\infty} \left(\frac{2^n+3^n}{4^n+5^n}\right)^{\frac{1}{n}} = \limsup_{n\to\infty} \frac{3}{5} \left(\frac{1+\frac{2^n}{3^n}}{1+\frac{4^n}{5^n}}\right)^{\frac{1}{n}} = \frac{3}{5}$. So radii of convergence is $\frac{5}{3}$.

Problem 11. Let $w = \frac{-z^2}{8}$. Then given series is

$$(12) \sum_{n=0}^{\infty} w^n$$

This series has radii of convergence 1. So, it converges for |w|<1 which is equivalent to $|z|<2\sqrt{2}$. Also, $\sum_{n=0}^{\infty}w^n=\frac{1}{1-w}$ if |w|<1. So we get following:

(13)
$$\sum_{n=0}^{\infty} w^n = \frac{1}{1-w} = \frac{1}{1+\frac{z^2}{8}} = \frac{8}{8+z^2}$$

Problem 12. Note that for n > 10, $n^2 \le n!$ by induction. $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$. Let z-a=w and $a_n = \frac{f^{(n)}(a)}{n!}$. Then

(14)
$$\limsup_{n \to \infty} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} \le \limsup_{n \to \infty} \left| \frac{M}{n!} \right|^{\frac{1}{n}} = 0.$$

So radii of convergence is ∞ , so the given function is entire because it can be represented as series. Note that last equality of (14) follows from $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ which is entire.