หมู่ 1 เรียก หมู่ 2

หลังสงครามโลกครั้งที่ 3 โลกนี้เหลือหมู่บ้านเพียง 2 หมู่บ้านเท่านั้น โดยมีแค่ชาวหมู่ 1 เท่านั้นที่เดินทางไป หมู่ 2 (ไม่รู้ด้วยเหตุอันใด อาจเป็น...เพราะเรา คู่กัน...มาแต่...ชาติไหน จะรัก...รักเธอ...ตลอดไป เป็นลมหายใจ...ของ กันและกัน....) โดยการเดินทางนั้น ต้องเดินทางจากหมู่บ้านที่ 1 ตั้งอยู่บนจุด O(0,0) ไปริมฝั่งแม่น้ำ A โดยเดินซึ่งมี n จุด ซึ่งสามารถสร้างสะพานข้ามไปได้ ตั้งอยู่บนเส้นตรง x=a โดยมีพิกัด $Ai(a,y_i)$ สะพาน ซึ่งไปสู่ริมฝั่งแม่น้ำ B ที่มี m จุดที่รองรับสะพานได้ ตั้งอยู่ยนเส้นตรง x=a โดย มีพิกัด $Bi(b,y_j)$ แล้วเดินทางเลาะป่าลับ ซึ่ง จะต้องเดินตามทางที่ เตรียมไว้โดยหมู่ 2 เท่านั้น ซึ่ง การลงฝั่งแม่น้ำ B ที่จุด B_j ต้องเดินทางตามป่าเป็นระยะ I_j ชาวหมู่ 1 ต้อการเดินทาง ด้วยระยะทางสั้นที่สุด ดังนั้นการเดินทางระหว่าง พิกัดจุด จะเดินทางเป็นเส้นตรง กล่าวคือ การเดินจากจุด X (x_1,y_1) ไป Y (x_2,y_2) เขียนเป็น $|XY| = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$

กล่าวโดยสรุปชามหมู่ 1 ต้องเดินทางเป็นระยะ $|\mathsf{OA}_i|$ + $|\mathsf{A}_i\mathsf{B}_j|$ + l_j

ข้อมูลนำเข้า

บรรทัดแรกประกอบด้วย n, m, a, b (1 ≤ n, m ≤ 10^5 , 0 < a < b < 10^6)

บรรทัดที่ 2 ประกอบด้วยจำนวนเต็ม n จำนวน โดยจำนวนที่ i แทนจำนวน y_i แทนจุด (a,y_i) แสดงถึงจดุที่ สร้างสะพานจากริมฝั่งแม่น้ำ A โดย $-10^6 \le y_i \le 10^6$

บรรทัดที่ 3 ประกอบด้วยจำนวนเต็ม m จำนวน โดยจำนวนที่ j แทนจำนวน y_j แทนจุด (b,y_j) แสดงถึงจดุที่ สร้างสะพานจากริมฝั่งแม่น้ำ B โดย - $10^6 \le y_i \le 10^6$

บรรทัดที่ 4 ประกอบด้วยจำนวนเต็ม m จำนวน โดยจำนวนที่ j แทนจำนวน l_j แสดงระยะทางจากจุด B_j ถึง หมู่บ้านที่ 2 โดย $1 \le l_i \le 10^6$

ข้อมูลส่งออก

บรรทัดเดียว ระยะทางที่สั้นที่สุดจากหมู่ 1 ไป หมู่ 2 โดยตอบเป็นทศนิยม 4 ตำแหน่ง

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
3 2 3 5	9.7678
-2 -1 4	
-1 2	
7 3	