Übung 0

Lennart Hein Physik für Naturwissenschaftler I s6lehein@uni-bonn.de

____/? Punkte

Aufgabe 1.

- (a) x = 5
- (b) $y = 4 \land x = 33$

Aufgabe 2.

- (a) $f'(x) = 20x^3 + 6x^2 1$
- (b) $f'(x) = \frac{\partial \sin(u)}{\partial u} \frac{\partial u}{\partial x} = a \cos(ax)$ (c) $f'(x) = (x^{-0.5})' = -\frac{1}{2x\sqrt{x}}$
- (d) $f'(x) = a \exp(ax)$
- (e) $f'(x) = 0.03\cos(2.2x 3.5t + \psi)\frac{\partial 2.2x 3.5t + \psi}{\partial x} = 0.066\cos(2.2x 3.5t + \psi)$

Aufgabe 3. $f(x_0) = 0$ für $x_0 = \frac{12 \pm \sqrt{-12^2 - 35 * 4}}{2} = 6 \pm 1 \implies x_0 \in \{5, 7\}$ $f'(x) = 2x - 12; f'(5) = -2 \implies 5 \text{ ist Maximum. } f'(7) = 2 \implies 7 \text{ ist Minimum.}$ $\lim_{x\to-\infty} f(x) = -\infty \wedge \lim_{x\to\infty} f(x) = \infty \implies \text{beide sind lokal.}$

Aufgabe 4. Der dritte Winkel (β) ist $180^{\circ} - 90^{\circ} - 60^{\circ} = 30^{\circ}$ groß. Kosinussatz für $\gamma = 90^{\circ}$: $\cos(\alpha) = \frac{b}{c}$ und $\cos(\beta) = \frac{a}{c}$ $\implies a = \cos(\beta) * c = \cos(30^\circ) * 5 \text{cm} \approx 4.33 \text{cm} \text{ und } b \stackrel{\text{analog}}{=} 2.5 \text{cm}$

Aufgabe 5.

(a)
$$v = 3\frac{\text{m}}{\text{s}} = 10.8\frac{\text{km}}{\text{h}} \approx \frac{3}{3*10^8} \frac{\text{Lichtjahre}}{\text{Jahre}} = \frac{3}{3*10^8*3.26156} \frac{\text{pc}}{\text{Jahre}} \approx 3.067 \frac{\mu\text{pc}}{\text{Millenium}}$$

(b) Recherche ergibt: Die mittlere Distanz der Erde zum Mond beträgt ca. 2159559200 Bananen. Zum leichteren Rechnen überführen wir die Geschwindigkeit: $3\frac{m}{s} \approx 96067.8 \frac{bn}{shrek}$ Also dauert die Reise ca.: $\frac{2159559200~\rm{bn}}{96067.8~\frac{\rm{bn}}{\rm{shrek}}}\approx 22479.5~\rm{shrek}.$

HINWEIS:

EINE BANANE (BN) IST 0.178M LANG.[1] EIN SHREK (SHREK) DAUERT 1H35MIN.^[2]

[1]:https://goo.gl/dCvgiC

[2]:https://goo.gl/fSRoZY