

properties of metals.

present.

				 Subj	ject	Cod	<u>e: K</u>	ME	2303
Roll No:									

Printed Page: 1 of 2

3

B TECH (SEM-III) THEORY EXAMINATION 2020-21 MATERIALS ENGINEERING

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.		
Qno.	Question	Marks	CO
a.	Explain strain hardening mechanism with the aid of dislocation theory.	2	2
b.	Distinguish between Frenkel and Schottky defect.	2	1
c.	Compute the theoretical density of copper with an atomic radius of 1.28Å and an atomic weight of 63.5 g/ mol.	2	3
d.	What is critical resolved shear stress?	2	2
e.	Distinguish between low carbon, medium carbon, and high carbon steels.	2	2
f.	Why solubility of carbon is more in austenite than in ferrite?	2	4
g.	Define hardenability. Mention the factors affecting hardenability.	2	2
h.	What is Lever rule and what is its significance?	2	2
i.	Differentiate between cold working and hot working and their effect on the	2	1

SECTION B

List the classification of copper alloys. Also indicate the principal elements 2

2.	Attempt any three of the following:	3x10=30	0
Qno.	Question	Marks	CO
a.	Distinguish brittle and ductile fracture with appropriate examples. Discuss	10	3
	effect of dislocation on strength of material, particularly during deformation.		
b.	In a Lead Tin (Pb-Sn) system the following invariant reaction was observed at	10	2
	a temperature of 183° C		
	$\alpha(19\% \text{ Sn}) + \beta(97\% \text{ Sn}) -> \text{Liquid } (62\% \text{ Sn}).$		
	Melting points of Lead and Tin are 327°C and 232°C. (i) Draw the phase		
	diagram. (ii) Calculate the fraction of total α in the alloy containing 80% Sn at		
	182°C.		
c.	Explain the procedure of constructing a phase diagram in which two metals are	10	4
	soluble in liquid state but fully insoluble in solid state. Also explain the		
	solidification of hypoeutectoid alloy of your choice		
d.	Explain the principle and applications of various heat treatment processes.	10	4
	Discuss changes in microstructure in plain carbon steels during above heat		
	treatment process.		
e.	Distinguish characteristics and applications of brass, bronze and Muntz metal.	10	3
	List the various Nickel alloy steel and explain the utility of Maraging steels in		
	space applications.		

SECTION C

3. Attempt any *one* part of the following:

Qno.	Question	Marks	СО
a.	Explain the phenomenon of screw dislocation with the help of Burger's vector.	10	2
	Explain the mechanism of plastic deformation by slip.		
b.	What are different types of defects in a crystal? Sketch and explain line	10	2
	imperfections of a crystal. Explain effect of dislocation on strength of materials		
	particularly during deformation.		

Subject Code: KME303
Roll No:

Printed Page: 2 of 2

4. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Explain Griffith theory of brittle fracture. Distinguish brittle and ductile	10	3
	fracture with appropriate examples.		
b.	The load on a bolt consists of an axial thrust of 8kN, with transverse sheer	10	4
	force of 4 kN. Calculate the diameter of the bolt according to (a) maximum		
	principle shear theory, (b) maximum shear stress theory, and (c) shear energy		
	theory. Take factor of safety to be 3. Given: $\sigma_{yp} = 285 \text{ N/mm}^2$, v= 0.3.		
	Distinguish between destructive and non-destructive tests.		

5. Attempt any *one* part of the following:

J.	Attempt any one part of the following.		
Qno.	Question	Marks	CO
a.	Two metals A and B are completely soluble in liquid state and partially soluble in solid state. Draw the phase diagram from the data given below. Label the diagram completely. Melting point of A and B are 350° and 230°C Eutectic composition- 40 A – 60B. Eutectic temperature - 180°C Maximum solubility of A in B at Eutectic temperature is 5% and the maximum solubility of B in A at Eutectic temperature is 3% and the solubility at room temperature may be assumed to be zero. Find the chemical composition of phases present at 0 temperature of 200°C and for an alloy containing 30% B along with their relative amounts. Sketch the microstructure of this alloy at room temperature.	10	3
b.	Sketch and describe Iron carbon equilibrium diagram. Show all the salient points on the diagram.	10	3

6. Attempt any *one* part of the following:

Qno.	Question	Marks	CO
a.	Sketch the TTT curves for an hypoeutectoid steel, eutectoid steel and		4
	hypereutectoid steel. Write the help of this diagram explain different zones of		
	heat treatment in the case of 80% C steel.		
b.	Write short notes on Annealing and Normalizing. Discuss the various surface	10	4
	hardening techniques mentioning their principle, limitation, and specific		
	applications.		

7. Attempt any *one* part of the following:

	recempt any one part of the following.		
Qno.	Question	Marks	CO
a.	Briefly explain the production of wrought iron in Puddling Furnace. What are	10	3
	the effects of silicon and manganese on the properties of steel?		
b.	Write brief notes on the following: (i) Copper alloys. (ii) Aluminum alloys.	10	4