

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
29. September 2005 (29.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/090925 A2

(51) Internationale Patentklassifikation⁷: **G01F**

(21) Internationales Aktenzeichen: PCT/EP2005/050208

(22) Internationales Anmeldedatum: 19. Januar 2005 (19.01.2005)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität: 102004013249.6 18. März 2004 (18.03.2004) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **ROBERT BOSCH GMBH** [DE/DE]; Postfach 30 02 20, 70442 Stuttgart (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **LANG, Tobias** [DE/DE]; Elisabethenstr. 32, 70197 Stuttgart (DE).

(74) Gemeinsamer Vertreter: **ROBERT BOSCH GMBH**; Postfach 30 02 20, 70442 Stuttgart (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

[Fortsetzung auf der nächsten Seite]

(54) **Title:** DETERMINATION OF THE PROPAGATION TIME DIFFERENCE IN AN ULTRASOUND FLOW SENSOR WITH MULTIPLE ZERO CROSSING DETECTION

(54) **Bezeichnung:** BESTIMMUNG DER LAUFZEITDIFFERENZ BEI EINEM ULTRASCHALL-STRÖMUNGSSENSOR MIT MEHRFACHER NULLDURCHGANGSDETEKTION

(57) **Abstract:** The invention relates to an ultrasound flow sensor, particularly for measuring a volume or mass flow of a fluid (1), comprising two ultrasound converters (A,B), which are offset in the direction of flow (Z) and which respectively transmit a periodic ultrasound signal (S1,S2) to the other ultrasound converter (B,A), and a control and evaluation unit (4) which detects several reception moments (t_i', t_i) per ultrasound signal (S1,S2) when an ultrasound signal (S1,S2) is received by an ultrasound converter (B,A), enabling a measuring variable (S) to be determined therefrom. The accuracy of the measurement can be improved substantially if the control and evaluation unit (4) comprises at least two counters (5a,5b), whereby the first counter counts a time period ($\Delta t'$) from a first switching or reception moment (t_i') of a signal (S2,P) at least until a first reception moment (t_i') of the ultrasound signal, and the second counter determines respectively the amount of time (Δt) between a first and second moment in time (t_i', t_i), which are combined in pairs, of the signals (S1,S2,P).

[Fortsetzung auf der nächsten Seite]

WO 2005/090925 A2

EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

- *ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts*

(57) Zusammenfassung: Die Erfindung betrifft eine Kaffeemaschine mit einer Schublade zum Zuführen von Kaffeepads in eine Brühkammer der Kaffeemaschine (110). Um die Zuführung und Entsorgung von Kaffeepads möglichst einfach zu gestalten, ist vorgesehen, dass die Schublade (122, 210, 342) zum Entnehmen lösbar an der Kaffeemaschine (110) gelagert ist.

10 Beschreibung

Bestimmung der Laufzeitdifferenz bei einem Ultraschall-Strömungssensor mit mehrfacher Nulldurchgangsdetektion

15 Die Erfindung betrifft einen Ultraschall-Strömungssensor gemäß dem Oberbegriff des Patentanspruchs 1, sowie ein Verfahren zum Auswerten der Ultraschallsignale bei einem solchen Ultraschall-Strömungssensors gemäß dem Oberbegriff des Patentanspruchs 9.

20 Ultraschall-Strömungssensoren werden eingesetzt, um insbesondere den Volumen- oder Massestrom oder die Strömungsgeschwindigkeit eines gasförmigen oder flüssigen Mediums zu messen, das durch eine Rohrleitung strömt. Ein 25 bekannter Typ von Ultraschall-Strömungssensoren umfasst zwei in Strömungsrichtung versetzt angeordnete Ultraschallwandler, die jeweils Ultraschallsignale erzeugen und diese an den jeweils anderen Ultraschallwandler aussenden. Die Ultraschallsignale werden vom jeweils anderen Wandler 30 empfangen und mittels einer Elektronik ausgewertet. Der Laufzeitunterschied zwischen dem Ultraschallsignal in Strömungsrichtung und dem Ultraschallsignal in Gegenrichtung ist dabei ein Maß für die Strömungsgeschwindigkeit. Daraus kann die gewünschte Messgröße, wie z.B. ein Volumenstrom, 35 berechnet werden.

Fig. 1 zeigt eine typische Anordnung eines Ultraschall-Strömungssensors mit zwei Ultraschallwandlern A,B, die innerhalb einer Rohrleitung 3 angeordnet sind und sich in 40 einem Abstand L gegenüberstehen. In der Rohrleitung 3 strömt ein Fluid 1 mit einer Geschwindigkeit v in Richtung des

5 Pfeils 2. Die Messstrecke L ist gegenüber der Strömungsrichtung 2 um einen Winkel α geneigt. Während einer Messung senden sich die Ultraschallwandler A,B gegenseitig Ultraschallimpulse zu, die je nach Richtung von der Strömung entweder verlangsamt oder beschleunigt werden. Die
 10 Signallaufzeiten sind dabei ein Maß für die zu bestimmende Strömungsgeschwindigkeit.

Fig. 2 zeigt eine stark vereinfachte schematische Darstellung einer Wandleranordnung mit einer daran angeschlossenen
 15 Steuer- und Auswerteelektronik 4. Der Sensor arbeitet nach dem sogenannten "sing-around" Verfahren. Dabei wird durch den Empfang eines Ultraschallsignals S1 bzw. S2 an einem der Wandler A,B unmittelbar ein Ultraschallsignal in Gegenrichtung ausgelöst.

20 Eine Strömungsmessung läuft im wesentlichen wie folgt ab: Die Elektronik 4 gibt einen elektrischen Impuls an den Wandler A aus, der daraufhin ein Ultraschallsignal S1 generiert und an den zweiten Wandler B aussendet. Nach einer Streckenlaufzeit
 25 t_{12} wird das Signal S1 vom zweiten Wandler B empfangen. Unmittelbar darauf generiert der zweite Wandler B ein Ultraschallsignal S2, das nach einer Streckenlaufzeit t_{21} am ersten Wandler A ankommt. Sind t_{12} und t_{21} die Schalllaufzeiten der Signale von A nach B bzw. umgekehrt, so ergibt
 30 sich daraus ein Laufzeitunterschied $\Delta t = t_{12} - t_{21}$. Die Strömungsgeschwindigkeit v kann schließlich gemäß

$$v = \frac{2L}{\cos\alpha} \cdot \frac{\Delta t}{(\Delta t)^2} \cdot \frac{1}{s}$$

35 |
$$v = \left(\frac{1}{t_{12}} - \frac{1}{t_{21}} \right) \cdot \frac{L}{2\cos\alpha}$$

berechnet werden. Dabei ist $\Delta t = t_{12} + t_{21}$ die Summenlaufzeit für einen Umlauf oder Umlaufzeit, und s ein Korrekturfaktor mit $s = 1 - (\Delta t/\Delta t)^2$.

5

Fig. 3 zeigt den Signalverlauf eines einzelnen Ultraschallsignals S1, S2 und die Art und Weise der Bestimmung eines Empfangszeitpunktes bei einem solchen Signal. Dargestellt ist hier die sogenannte Zero-Crossing-Detektion (Nulldurchgangsdetektion). Dabei ist der "Empfangszeitpunkt" des Signals als der erste Nulldurchgang des Signals definiert, nachdem die Amplitude einen vorgegebenen Schwellenwert SW (den sogenannten pretrigger level) überschritten hat. Der Empfangszeitpunkt bei diesem Beispiel wäre somit der Zeitpunkt t_0 .

Wegen des Rauschanteils R, der dem Signal überlagert ist, führt die Zero-Crossing-Detektion jedoch zu einer relativ hohen zeitlichen Unschärfe Δt , in der Pulsflankenerkennung.

Normalerweise ist die Unschärfe Δt so groß, dass mit einer einzigen Messung, insbesondere bei kleinen Strömungsgeschwindigkeiten, keine brauchbare Messgenauigkeit erreicht werden kann.

Zur Erhöhung der Messgenauigkeit wird daher vorzugsweise ein langgezogenes Ultraschallsignal an den Ultraschallwandlern erzeugt, wie es in Fig. 4 dargestellt ist. Beim Empfang eines solchen Signals S1, S2 am anderen Wandler werden dann mehrere Empfangszeitpunkte pro Ultraschallsignal detektiert. Bei einer Messung stehen somit mehrere Laufzeitinformationen zur Verfügung, aus denen ein Messwert mit höherer Genauigkeit bestimmt werden kann, wobei die Messdauer im Vergleich zu mehreren Einzelmessungen wesentlich geringer ist.

Fig. 4 zeigt die Signale P, S1, S2 nochmals in vergrößerter Darstellung, wobei das Erregersignal P im oberen Teil und das damit erzeugte Ultraschallsignal S1 bzw. S2 im unteren Teil der Fig. dargestellt ist. Wie zu erkennen ist, entspricht die Frequenz des Ultraschallsignals A1, B1 derjenigen des Erregersignals P. Das Ultraschallsignal A1, B1 hat außerdem

5 eine über mehrere Perioden im wesentlichen gleichbleibende maximale Amplitude.

In Bezug auf die Detektion der Signale S1, S2 ist die Steuer- und Auswerteschaltung 4 z.B. derart realisiert, dass bei
10 jedem Nulldurchgang eines Ultraschallsignals S1 bzw. S2 (nachdem die Amplitude des Signals einen vorgegebenen Schwellenwert SW überschritten hat) ein Empfangszeitpunkt t_1-t_n detektiert wird.

15 Fig. 5 zeigt die Empfangszeitpunkte der Signale S1, S2 in der Reihenfolge ihres Eintreffens an den Ultraschallwandlern A, B. Das Signal S2 kommt in diesem Beispiel um mehrere Signalperioden früher am Wandler A an als das Signal S1 am Wandler B. Aus den zusammengehörigen Empfangszeitpunkten
20 $t_1', t_1'', \dots, t_n', t_n''$ wird jeweils eine Laufzeitdifferenz $\Delta t_1, \dots, \Delta t_n$ ermittelt. Hierzu sind üblicherweise n Zähler erforderlich, mit denen die Laufzeitunterschiede Δt_i zusammengehöriger Empfangsereignisse gezählt werden. Dies ist relativ aufwändig und kompliziert.

25 Es ist daher die Aufgabe der vorliegenden Erfindung, einen Ultraschall-Strömungssensor bzw. ein entsprechendes Verfahren zu schaffen, mit dem die Laufzeiten zweier langgezogener Ultraschallsignale mit möglichst geringem technischen Aufwand bestimmt werden können. Dabei sollte die Bestimmung der Laufzeiten auch bei ungünstigen Strömungsbedingungen oder bei
30 einer Umkehr der Strömungsrichtung möglich sein.

Diese Aufgabe wird erfindungsgemäß durch die im
35 Patentanspruch 1 sowie im Patentanspruch 9 angegebenen Merkmale gelöst. Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.

Ein wesentlicher Aspekt der Erfindung besteht darin, eine
40 Steuer- und Auswerteeinheit mit zwei Zählern vorzusehen, von denen der erste die Anzahl der vollen Intervalle eines ersten

5 Signals (z.B. eines Referenzsignals oder eines ersten
Ultraschallsignals) wenigstens bis zum ersten
Empfangszeitpunkt eines Ultraschallsignals zählt, und der
zweite Zähler jeweils die Zeitspanne zwischen jeweils einem
ersten und einem zweiten von mehreren paarweise
10 zusammengefassten Schalt- bzw. Empfangszeitpunkten der beiden
Signale zählt. Dadurch, dass die Laufzeit bzw.
Laufzeitdifferenz der Ultraschallsignale aus mehreren
Zeitdauern ermittelt wird, die sich zeitlich nicht
überlappen, kann die Laufzeit bzw. Laufzeitdifferenz mit nur
15 zwei Zählern und folglich mit sehr geringem technischen
Aufwand ermittelt werden.

Ein Ultraschall-Strömungssensor, der nach dem vorstehend
beschriebenen Messprinzip arbeitet, kann auf unterschiedliche
20 Art und Weise betrieben werden. Eine erste Möglichkeit
besteht darin, an den beiden Ultraschallwandlern gleichzeitig
je ein Ultraschallsignal auszusenden und die Laufzeit-
differenz der Ultraschallsignale mittels der zwei Zähler zu
messen. Ein zweite Möglichkeit besteht darin, zunächst nur an
25 einem der Wandler ein Ultraschallsignal auszusenden und
dessen Laufzeit unter Berücksichtigung eines Taktsignals zu
messen, und danach die gleiche Laufzeitmessung am anderen
Wandler durchzuführen.

30 Im Folgenden wird zunächst auf diejenige Betriebsart des
Strömungssensors eingegangen, bei der die Ultraschallsignale
gleichzeitig von den Wandlern ausgesendet werden. In diesem
Fall zählt der erste Zähler die Anzahl der vollen Intervalle
(definiert durch jeweils zwei aufeinander folgende
35 Empfangszeitpunkte) des zuerst eintreffenden
Ultraschallsignals wenigstens bis zum ersten
Empfangszeitpunkt des später eintreffenden
Ultraschallsignals, und der zweite Zähler jeweils die
Zeitspanne zwischen jeweils einem ersten und einem zweiten
40 von mehreren paarweise zusammengefassten Empfangszeitpunkten
unterschiedlicher Ultraschallsignale.

5

Die paarweise zusammengefassten Empfangszeitpunkte (Empfangspaare), deren Zeitspanne vom zweiten Zähler gemessen wird, umfassen vorzugsweise jeweils einen Empfangszeitpunkt des einen Ultraschallsignals und einen unmittelbar darauf folgenden Empfangszeitpunkt des anderen Ultraschallsignals. Die Empfangspaare sind vorzugsweise derart ausgewählt, dass sie unmittelbar aufeinander folgen, ohne Auslassung einzelner Empfangszeitpunkte. Die Auswerte- und Steuereinheit bildet aus den gemessenen Zeitspannen zwischen den Empfangspaaren vorzugsweise einen Mittelwert. Aus dem Zählerstand des ersten Zählers und dem gemittelten Zählerstand des zweiten Zählers kann somit ein relativ genauer Wert für die Laufzeitdifferenz der Ultraschallsignale bestimmt werden.

20 Gemäß einer bevorzugten Ausführungsform der Erfindung wird die paarweise Zuordnung jeweils zweier Empfangszeitpunkte gemäß folgender Regel durchgeführt: Die Steuer- und Auswerteeinheit prüft zunächst, ob der erste Empfangszeitpunkt des später eintreffenden Signals zeitlich 25 näher am vorhergehenden oder näher am folgenden Empfangszeitpunkt des zuerst eingetroffenen Ultraschall- signals als eine vorgegebene Zeitschwelle liegt, wobei der erste Zähler im ersten Fall die Zeitdauer (bzw. Anzahl der vollen Intervalle) vom ersten Empfangszeitpunkt des ersten 30 Signals bis zu demjenigen Empfangszeitpunkt des ersten Signals bestimmt, der dem ersten Empfangszeitpunkt des später eintreffenden Ultraschallsignals vorhergeht, und im anderen Fall bis zu demjenigen Empfangszeitpunkt des ersten Ultraschallsignals zählt, der dem ersten Empfangszeitpunkt 35 des später eintreffenden Ultraschallsignals folgt. Der erste Zähler zählt also die Anzahl der vollen Intervalle des ersten Ultraschallsignals bis zum ersten Empfangszeitpunkt des später eintreffenden Ultraschallsignals oder ein Intervall mehr, je nach Lage des ersten Empfangszeitpunkts des später 40 eintreffenden Ultraschallsignals im Intervall des ersten Ultraschallsignals.

5

Der zweite Zähler zählt vorzugsweise die Zeitdauern zwischen je zwei aufeinanderfolgenden Empfangszeitpunkten unterschiedlicher Signale. (Die Reihenfolge der Empfangszeitpunkte, aus denen ein Empfangspaar gebildet wird, kann sich aufgrund von Signalverschiebung während der Messung ändern).

Die Laufzeitdifferenz wird im ersten Fall aus dem Zählerstand des ersten Zählers und einem Mittelwert des Zählerstands des zweiten Zählers durch Addition, im zweiten Fall durch Subtraktion gebildet, wobei die unterschiedliche Wertigkeit beider Zähler zu berücksichtigen ist. Die unterschiedliche Auswahl des ersten Empfangspaares in Abhängigkeit von der relativen Lage des ersten Empfangszeitpunkts des später ankommenden Ultraschallsignals hat den wesentlichen Vorteil, dass die Auswertung sehr robust gegenüber einem Signaljitter (Rauschen oder Zittern des Signals) oder turbulenter Strömung ist. Die Fehlerhäufigkeit wird somit wesentlich reduziert.

Der zweite Zähler ist vorzugsweise als Aufwärts/Abwärtszähler realisiert, der in Abhängigkeit von der Reihenfolge der paarweise zusammengefassten Empfangszeitpunkte die Zählrichtung ändert und entweder aufwärts oder abwärts zählt. Auf diese Weise können insbesondere Verschiebungen in den langgezogenen Ultraschallsignalen z.B. aufgrund von turbulenter Strömung, berücksichtigt werden.

Vorzugsweise kann auf eine explizite Addition oder Subtraktion beider Zählerstände verzichtet werden, indem der erste Zähler ebenfalls als Aufwärts/Abwärtszähler realisiert wird, der bei Überschreiten der Zählergrenzen des zweiten Zählers einen Übertrag in positiver oder negativer Richtung vom zweiten Zähler erhält.

Gemäß einer bevorzugten Ausführungsform der Erfindung akkumuliert der zweite Zähler die Zeitspannen von p Paaren

5 von Empfangszeitpunkten, wobei p eine Zweierpotenz ist. Der
Mittelwert des Zählerstandes des zweiten Zählers ergibt sich
dann nach einer Division durch p . Wenn p als Zweierpotenz
gewählt wurde, kann der Mittelwert in einfacher Weise durch
eine Schieberegisteroperation gebildet werden, bei welcher
10 die Kommastraße um $\log_2 p$ Stellen verschoben wird.

15 Im Folgenden wird nun auf diejenige Betriebsart des
Strömungssensors eingegangen, bei der die Ultraschallsignale
nacheinander ausgesendet und die Signallaufzeiten unter
Berücksichtigung eines Referenzsignals ermittelt werden. Wie
auch in der ersten Betriebsart wird ein langgezogenes
Ultraschallsignal mittels eines Taktsignals (Erregersignals)
erzeugt. Dieses Taktsignal kann selbst als Referenzsignal
dienen. Alternativ kann aus dem Taktsignal das Referenzsignal
20 abgeleitet werden, indem sowohl bei den positiven als auch
negativen Flanken des Taktsignals ein Spannungspuls mit einer
definierten Flanke (z.B. positiv) erzeugt wird. Das
Ultraschallsignal wird zunächst nur von einem der Wandler
ausgesendet und am anderen Wandler empfangen.

25 Der erste Zähler zählt dann die Anzahl der vollen Intervalle
des Referenzsignals wenigstens bis zum ersten
Empfangszeitpunkt des eintreffenden Ultraschallsignals, und
der zweite Zähler jeweils die Zeitspanne zwischen jeweils
30 einem ersten und einem zweiten von mehreren paarweise
zusammengefassten Schalt- bzw. Empfangszeitpunkten der
Signale. Der erste Zähler zählt also die Anzahl der vollen
Taktperioden, und der zweite Zähler die Restzeit bis zum
Eintreffen des Ultraschallsignals unter Berücksichtigung
35 mehrerer Taktflanken-Empfangszeitpunkt-Paare (Empfangspaare).
Das Ergebnis dieser Messung ist die Laufzeit des
Ultraschallsignals in der einen Richtung. Danach wird die
Laufzeit eines Ultraschallsignals in der anderen Richtung
gemessen und aus den beiden Laufzeiten die gesuchte Messgröße
40 berechnet.

5 Die vorstehend bezüglich der ersten Betriebsart aufgeführten Ausführungsmöglichkeiten gelten in entsprechender Weise auch für die zweite Betriebsart.

Bei der Detektion eines Empfangsereignisses (z.B. 10 Nulldurchgangs) eines Ultraschallsignals wird in der Auswerteschaltung üblicherweise eine digitales Signal gesetzt (z.B. von low auf high), das den genauen Empfangszeitpunkt des Empfangsereignisses anzeigt. Die Flanke dieses Signals ist mit einer Zeitungenauigkeit (jitter) behaftet. Bei der 15 Abtastung des Signal kommt es zu Aliasing-Effekten, wenn die Taktrate des Abtastsignals nicht ausreichend hoch gewählt wird (Nyquist-Kriterium). Gemäß der Erfindung wird vorgeschlagen, das elektrische Signal mit einer Abtastrate abzutasten, die deutlich höher ist als der Kehrwert der 20 Zeitungenauigkeit eines Empfangsereignisses. Dadurch kann die Genauigkeit der Strömungsmessung wesentlich erhöht werden.

25 Im Folgenden wird die Erfindung anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:

Fig. 1 ein typisches Beispiel eines Ultraschall-Strömungssensors mit zwei Ultraschallwandlern gemäß dem Stand der Technik;

30 Fig. 2 einen Ultraschall-Strömungssensor mit einer zugehörigen Steuer- und Auswerteschaltung;

Fig. 3 ein typisches Ultraschallsignal gemäß dem Stand der Technik und die Detektion des Empfangszeitpunkts;

35 Fig. 4 ein langgezogenes Ultraschallsignal mit mehreren zur Zeitmessung genutzten Nulldurchgängen;

Fig. 5 die Ermittlung von n Differenzlaufzeiten mittels 40 n Zählern;

5 Fig. 6 die Ermittlung der Differenzlaufzeit der
Ultraschallsignale mittels zweier Zähler gemäß einer ersten
Ausführungsform der Erfindung;

10 Fig. 7 eine Steuer- und Auswerteschaltung für die Bestimmung
der Laufzeitdifferenz gemäß Fig. 6;

15 Fig. 8 die Bestimmung der Laufzeitdifferenz zweier
Ultraschallsignale gemäß einer anderen Ausführungsform der
Erfindung;

20 Fig. 9 eine Steuer- und Auswerteeinheit für die Bestimmung
der Laufzeitdifferenz zweier Ultraschallsignale gemäß dem
Verfahren von Fig. 8;

25 Fig. 10 ein Beispiel einer fehlerhaften Auswertung der
Laufzeitdifferenz bei sich verschiebenden
Empfangszeitpunkten;

30 Fig. 11 die Auswertung der Laufzeitdifferenz bei zwei
ungleichmäßigen Ultraschallsignalen gemäß einer bevorzugten
Ausführungsform der Erfindung;

35 Fig. 12 eine Steuer- und Auswerteschaltung zur Bestimmung der
Laufzeitdifferenz zweier Ultraschallsignale gemäß dem
Verfahren von Fig. 11;

40 Fig. 13 eine schematische Darstellung eines einzelnen
Empfangsereignisses;

45 Fig. 14 ein Abtastsignal mit niedrigerer und höherer
Frequenz; und

50 Fig. 15 die Normalverteilung der Zeitgenauigkeit bei der
Detektion einzelner Empfangsereignisse.

5 Bezuglich der Erläuterung der Fig. 1 bis 5 wird auf die
Beschreibungseinleitung verwiesen.

Fig. 6 zeigt ein Beispiel für den zeitlichen Verlauf der an
den Ultraschallwandlern A,B empfangenen Ultraschallsignale
10 S1,S2, die gleichzeitig am jeweils anderen Wandler B,A
ausgesendet wurden. Die positiven Flanken der digitalen Pulse
A1-An bzw. B1-Bn kennzeichnen jeweils den Empfang eines
Nulldurchgangs der Ultraschallsignale S1 bzw. S2 zu den
Zeitpunkten t_i' bzw. t_i'' . Der Laufzeitunterschied Δt der
15 beiden Ultraschallsignale S1,S2 ist gleich der Zeitdauer vom
Puls A1 bis zum Puls B1.

Der Laufzeitunterschied kann ausgedrückt werden als eine
Zeitdauer $\Delta t'$ von Puls A1 bis A3 plus ein Restwert $\Delta t''$
20 zwischen den Pulsen A3 und B1, wobei gilt $\Delta t = \Delta t' + \Delta t''$. Um
den statistischen Messfehler zu verringern, werden hier
möglichst viele Nulldurchgänge der Signale S1,S2
berücksichtigt und mehrere Rest-Zeitdauern $\Delta t''$ gemessen, die
schließlich gemittelt werden. Der Laufzeitunterschied Δt der
25 Ultraschallsignale S1,S2 ergibt sich somit aus dem Wert von
 $\Delta t'$ und dem Mittelwert der Zeiten $\Delta t_i''$.

Die Dauer der Zeiten $\Delta t'$ bzw. $\Delta t_i''$ kann in einfacher Weise
mittels zweier Zähler 5a,5b gemessen werden. Der erste Zähler
30 5a zählt dabei die Dauer der vollen Intervalle (ein Intervall
entspricht der Dauer zwischen zwei aufeinander folgenden
Pulsen, z.B. A1,A2, des selben Ultraschallsignals) bis zum
Eintreffen des ersten Pulses B1 des später ankommenden
Ultraschallsignals S1. Der Zählerstand des ersten Zählers 5a
35 bildet dabei eine grobe Abschätzung der Laufzeitdifferenz Δt
der beiden Ultraschallsignale S1,S2.

Ein zweiter Zähler misst jeweils fortlaufend die Zeitspannen
 $\Delta t_i''$ zwischen jeweils zwei paarweise zusammengefassten Pulsen
40 A4,B2;A5,B3; etc. und summiert dadurch gleichzeitig die
Messwerte. Die Pulspaare sind dabei unmittelbar aufeinander

5 folgend gewählt. Aus dem endgültigen Zählerwert wird schließlich ein Mittelwert gebildet, der zum Zählerstand des ersten Zählers 5a hinzu addiert wird. Bei Verwendung digitaler Zähler 5a, 5b bildet der Zählerstand des ersten Zählers 5a vorzugsweise die höherwertigen Bits (hsb: high 10 significant bits) und der Zählerstand des zweiten Zählers die niederwertigen Bits (lsb: least significant bits). Unter den zwei Voraussetzungen, dass erstens die Bitbreiten des ersten Zählers 5a und des zweiten Zählers 5b richtig aneinander angepasst sind und zweitens die Ultraschallfrequenz mittels 15 Teilung durch eine 2er-Potenz aus dem Zählertakt des lsb-Zählers erzeugt wurde, können die lsb-Bits des zweiten Zählers direkt an die hsb-Bits des ersten Zählers angefügt und zu einer einzigen Binärzahl zusammengesetzt werden, die proportional zur Laufzeitdifferenz Δt ist.

20 Der Zählerstand des zweiten Zählers 5b kann darüber hinaus besonders einfach gemittelt werden, wenn insgesamt p Messungen von p Intervallen Δt_i durchgeführt werden und die Anzahl p eine Zweierpotenz ist. In diesem Fall entspricht die 25 Mittelung des binären Zählerwerts (Teilung durch p) gleich einer Schieberegisteroperation um $\log_2 p$, bei der die Kommastelle um $\log_2 p$ -Stellen nach links verschoben wird. Im dargestellten Beispiel von Fig. 6 werden $p = 2^5 = 32$ Messungen von Δt_i durchgeführt und somit die Kommastelle um 30 5 Bit nach links verschoben. Die endgültige Laufzeitdifferenz Δt ergibt sich somit aus dem Zählerstand des ersten Zählers, 5a und den höherwertigen Bits (hier 10 Bit) des zweiten Zählers 5b in Einheiten der Periodendauer des lsb-Zählertaktes, wobei die 5 niederwertigen Bits des zweiten 35 Zählers entsprechende Nachkommastellen sind.

Alternativ zur Darstellung von Fig. 6 könnte die Laufzeitdifferenz Δt der Signale S1, S2 auch als Differenz der Zeitspannen [A1 bis A4] und [B1 bis A4] dargestellt werden. 40 Der erste Zähler 5a müsste ein Intervall mehr als bis zum Eintreffen des ersten Pulses B1, also von A1 bis A4 zählen,

5 und der zweite Zähler 5b jeweils die Intervalle zwischen B2,A5;B3,A6; etc.. Hierbei gilt: $\Delta t = t[A1,A4] - t[B1,A4]$.

In einer zweiten Betriebsart des Ultraschall-Strömungssensors, in der die Ultraschallsignale S1,S2 nicht gleichzeitig, sondern nacheinander ausgesendet werden, gelten die gleichen Grundsätze, wie sie bezüglich der Fig. 6 bis 15 beschrieben werden. In diesem Fall wird jedoch zunächst die Laufzeit Δt eines Ultraschallsignals (z.B. S1) in einer Richtung und danach die Laufzeit Δt eines Ultraschallsignals (z.B. S2) in der Gegenrichtung unter Berücksichtigung eines Referenzsignals (P) gemessen. In Fig. 6,8,10 oder 11 wäre das Signal S2 als das Referenzsignal P zu betrachten, welches aus dem selben Taktsignal abgeleitet wurde, mit dem das langgezogene Ultraschallsignal S1 erzeugt wurde, wobei die Empfangzeitpunkte A1 in diesem Fall Schaltzeitpunkte (z.B. positive Flanken) des Referenzsignals P wären. (Auf eine separate Darstellung wurde daher verzichtet).

Der erste Zähler 5a zählt wie in der ersten Betriebsart die Anzahl der vollen Intervalle des Referenzsignals P wenigstens bis zum ersten Empfangszeitpunkt B1 des eintreffenden Ultraschallsignals S1, und der zweite Zähler 5b misst jeweils die Zeitspanne Δt_i zwischen jeweils einem ersten und einem zweiten von mehreren paarweise zusammengefassten Schalt- bzw. Empfangszeitpunkten Ai,Bi der Signale P,S1. Der erste Zähler zählt also die Anzahl der vollen Perioden des Referenzsignals und der zweite Zähler die Restzeit Δt_i bis zum Eintreffen des Ultraschallsignals. Das Ergebnis dieser Messung ist die Laufzeit Δt des Ultraschallsignals S1. Danach wird die Laufzeit des Ultraschallsignals S2 in der anderen Richtung gemessen und aus den beiden Laufzeiten Δt die gesuchte Messgröße berechnet.

Fig. 7 zeigt ein Ausführungsbeispiel einer Steuer- und Auswerteschaltung 4 mit zwei digitalen Zählern 5a,5b zur Bestimmung der Laufzeitdifferenz Δt . Die Schaltung hat die

5 Eingänge Input A für das Signal S2 und Input B für das Signal S1. Das Schaltungsmodul 6 erhält die Pulse Ai und Bi von den Wählern A,B an den Eingängen "Input A" bzw. "Input B", lässt die zuerst ankommenden Pulse (hier A1-A3) bis auf den ersten Puls überhaupt durch (d.h. hier: A2-A3) und gibt diese an den 10 ersten Zähler 5a weiter, bis am anderen Eingang "Input B" der erste Puls (hier B1) des später ankommenden Ultraschall-signals S1 eintrifft. Der erste Zähler zählt somit bis 2 (zwei volle Intervalle) und hört danach auf zu zählen. Der Zählerstand hsb des ersten Zählers 5a ist mit dem 15 Bezugszeichen 14 gekennzeichnet. Die Zählrate des ersten Zählers 5a entspricht der Frequenz der Ultraschallsignale S1,S2.

Nach dem Eintreffen der ersten Pulses B1 des Signals S1 20 aktiviert das Modul 6 ein zweites Modul 7 mittels eines Signals "enable". Das zweite Modul 7 erhält ebenfalls die Pulse Ai,Bi an den Eingängen "Input A" bzw. "Input B" und aktiviert jeweils den zweiten Zähler 5b während der Zeitspannen A4,B2;A5,B3, etc. (Der Ausgang "Cnt enable" wird 25 dann high). Der Ausgang "cnt enable" ist mit einem AND-Gatter 10 verbunden, dessen Ausgang mit dem Takteingang Clk des zweiten Zählers 5b verbunden ist. Der zweite Zähler 5b zählt somit mit der am Eingang 16 zugeführten Taktrate "clock" aufwärts, solange der Ausgang "cnt enable" des zweiten Moduls 30 7 high ist und die Anzahl der gemessenen Intervalle α_i kleiner ist als eine vorgegebene Anzahl von Intervallen, α_i' , die am Eingang 11 vorgegeben werden kann. Die Anzahl der bereits gemessenen Intervalle α_i wird vom Zähler 12 gezählt, der mit dem Ausgang "cnt enable" des zweiten Moduls 35 7 verbunden ist. Der invertierte Ausgang eines Flip-Flops 9 ist solange high, bis die gemessene Anzahl der Intervalle α_i gleich der am Eingang 11 vorgegebenen Anzahl von Intervallen ist. Die Gleichheit der Anzahl wird von einem Logikgatter 8 erkannt, das das Flip-Flop 9 setzt. Der 40 invertierte Ausgang IQ geht somit in den Zustand low und der zweite Zähler 5b hört auf zu zählen. Der Zählerstand lsb des

5 zweiten Zählers 5b wird schließlich am Ausgang 13 ausgelesen und kann, wie vorstehend beschrieben, durch eine Schieberegisteroperation gemittelt werden. Die Schaltung wird über den Eingang "start" zurückgesetzt, so dass eine neue Messung beginnen kann.

10 Sofern die Messung gemäß der vorstehend beschriebenen zweiten Betriebsart durchgeführt wird, erhalten die Module 6,7 z.B. am Eingang "Input A" anstelle des Wandler-Ausgangssignals S2 das Referenzsignal P. Die Schaltung von Fig. 7 arbeitet
15 ansonsten in gleicher Weise wie in der ersten Betriebsart.

Fig. 8 zeigt zwei an den Wendlern A,B empfangene Ultraschallsignale S1,S2, deren Empfangszeitpunkte A1-A8 bzw. B1-B6 sich im Verlauf der Signale S1,S2 gegeneinander
20 verschieben. Eine derartige Signalverschiebung kann insbesondere durch turbulente Strömungsverhältnisse hervorgerufen werden, die einen Signaljitter (zeitliches Rauschen oder Zittern) im Signal S1,S2 bewirken. Dadurch kann sich auch die Reihenfolge der einzelnen Pulse A1-A8 gegenüber
25 den Pulsen B1-B6 vertauschen. Bei einer Auswertung der Intervalle Δt_i gemäß dem Verfahren von Fig. 6 würde der zweite Zähler 5b die Intervalle A4,B2;A5,B4;A6,B5, etc. und damit falsche Intervalle auswerten, wodurch ein erheblicher Messfehler entstehen würde.

30 Gemäß dem in Fig. 8 dargestellten Verfahren wird daher vorgeschlagen, die Pulse Ai des ersten Signals S2 und die Pulse Bi des zweiten Signals S1 wiederum jeweils paarweise zusammenzufassen, so dass aus jeweils zwei aufeinander
35 folgenden Pulsen Ai,Bi unterschiedlicher Signale ein Pulspaar gebildet wird, und jedem Pulspaar A4,B2;B3,A5; etc. ein Vorzeichen (+/-) gemäß der Reihenfolge des Auftretens der beiden Pulse Ai,Bi zuzuordnen. Der zweite Zähler 5b wird dann abhängig von diesem Vorzeichen (+/-) während der zugehörigen
40 Zeitdauer Δt_i eines Pulspaares Ai,Bi entweder hoch- oder heruntergezählt. Die einzelnen Zählwerte für die Zeiten Δt_i

5 werden vom zweiten Zähler 5b vorzugsweise akkumuliert. Überschreitet der Zählerstand des zweiten Zählers 5b die Zählergrenzen des Zählers 5b (entweder 0 oder den durch die Bitbreite des Zählers gegebenen maximalen Zählerstand) erfolgt ein Übertrag an den ersten Zähler 5a, d.h. der erste 10 Zähler 5a wird um eins hoch- oder heruntergezählt.

Nach Auswertung von p Zeitintervallen Δt_i wird der Zählerstand lsb des zweiten Zählers 5b wiederum gemittelt. Sofern p eine Zweierpotenz ist, können die Zählerstände des 15 hsb-Zählers 5a und des lsb-Zählers 5b ohne weitere arithmetische Operation einfach zu einer einzelnen Binärzahl zusammengefügt werden, wie dies in Fig. 8 unten dargestellt ist, wobei die Binärzahl dann proportional zur Laufzeitdifferenz oder Durchflussrate ist.

20 Fig. 9 zeigt eine Ausführungsform einer Auswerteeinheit 4 zur Durchführung des vorstehend bezüglich Fig. 8 beschriebenen Verfahrens. Die Erzeugung der Ultraschallsignale S1, S2 aus dem Takt eines Quarzoszillators sowie die Ablaufsteuerung des 25 gesamten Messvorgangs wurden dabei aus Gründen der Übersichtlichkeit weggelassen.

Die Auswerteschaltung ist in wesentlichen Teilen identisch 30 aufgebaut wie die Auswerteschaltung von Fig. 7, auf die hier verwiesen wird. Die von den Wandlern A, B erzeugten elektrischen Pulse A_i, B_i werden an den Eingängen "Input A" und "Input B" der Module 6 und 7 eingespeist. Das Schaltungsmodul 7 lässt die zuerst ankommenden Pulse bis auf 35 den aller ersten (hier A2-A3) durch und gibt entsprechende Signale an den ersten Zähler 5a weiter, bis der erste Puls B1 des anderen Ultraschallsignals S1 eintrifft. Die Zählrichtung des ersten Zählers 5a wird vom Modul 6 über den Ausgang +/- vorgegeben. (Die Zählrichtung ist positiv oder negativ, je nachdem, welches Signal S1, S2 zuerst ankommt).

5 Das Modul 7 erkennt ebenfalls die Reihenfolge der Pulse A_i, B_i eines Pulspaars A_i, B_i und gibt entsprechend für jedes Pulspaar individuell entweder ein positives oder ein negatives Vorzeichen am Ausgang $+/ -$ aus. Das Vorzeichen wird über ein XOR-Glied 17 und ein NOT-Glied 18 an den zweiten
10 Zähler 5b geleitet, der entsprechend aufwärts oder abwärts zählt. Der Takt "clock" am Eingang 16 gelangt, wie bereits zu Fig. 7 beschrieben wurde, nur während der Zeitintervalle α_i'' über das AND-Gatter 10 zum zweiten Zähler 5b. Der Takt "clock" wird während der Zeitintervalle α_i'' vom Modul 7 am
15 Ausgang "Cnt enable" freigegeben und gelangt somit zum zweiten Zähler 5b.

Fig. 10 zeigt zwei nacheinander an den Ultraschallwendlern A bzw. B ankommende Ultraschallsignale S_2 bzw. S_1 , deren
20 Nulldurchgänge nicht gleichmäßig an den Wendlern A, B ankommen, sondern gegeneinander verschoben sind. Die Pulse A_1-A_8 bzw. B_1-B_8 treffen dabei zeitlich so an den Ultraschallwendlern A, B ein, dass sich die Intervalle α_i'' der Pulspaare A_5, B_3 und A_6, B_4 zeitlich überlappen. Zeitlich
25 überlappende Intervalle α_i'' können jedoch nicht von einem einzigen Zähler gezählt werden. Es kommt daher zu einem Auswertefehler, wie anhand der Zählerstände hsb und lsb des ersten 5a bzw. zweiten Zählers 5b zu erkennen ist.

30 Der erste Zähler 5a zählt, wie bisher, die Anzahl der vollen Intervalle (von A_1-A_3) des zuerst ankommenden Signals S_2 , bis zum Eintreffen des ersten Pulses B_1 und hört danach auf zu zählen. Der endgültige Zählerstand des ersten Zählers 5a ist daher $hsb = 2$. Der zweite Zähler 5b zählt dann während des
35 Intervalls A_4, B_2 z.B. um 8 Zähler, während des Intervalls A_5, B_3 um weitere 9 Zähler nach oben, überspringt den Puls A_6 und zählt dann wieder im Intervall A_7, B_4 um 2 Zähler nach oben, so dass der Gesamtzählerstand $lsb = 19$ ist.
40 Der Grund für die fehlerhafte Auswertung liegt in diesem Fall darin, dass der erste Puls B_1 des Signals S_1 erst kurz vor

5 dem nächsten Signal A4 des anderen Signals S2 eintrifft und bereits durch eine geringe Signalverschiebung überlappende Zeitdauern (A5,B3 und A6,B4) erzeugt werden.

Fig. 11 zeigt ein verbessertes Auswerteverfahren, bei dem
10 derartige zeitliche Überlappungen vermieden werden können. Hierzu prüft die Auswerteeinheit 4, ob der erste Puls B1 des später eintreffenden Ultraschallsignals S1 zeitlich näher am vorhergehenden Puls A3 oder näher am nachfolgenden Puls A4 des anderen Signals S2 liegt. Eine Zeitschwelle ts , die in
15 diesem Beispiel in der Mitte des Intervalls A3,A4 liegt, dient in diesem Fall als Vergleichsmaßstab. Je nach Lage des ersten Empfangszeitpunkts B1 des später eintreffenden Ultraschallsignals S1 im Intervall des ersten Ultraschall-
signals S2, zählt der erste Zähler 5a die Anzahl der vollen
20 Intervalle bis zum ersten Empfangszeitpunkt B1 oder ein Intervall mehr. Für die Auswertung gilt entweder $\alpha t = \alpha t_1' + \alpha t_1''$ (nicht gezeigt, vergleichbar z.B. mit Fig. 6) oder $\alpha t = \alpha t' - \alpha t''$, wobei $\alpha t'$ drei Intervalle umfassen würde.

25

Im ersten Fall (der Puls B1 liegt zeitlich vor ts , nicht
gezeigt, vergleichbar z.B. mit Fig. 8) zählt der erste Zähler 5a die Anzahl der vollen Intervalle bis zum Eintreffen des ersten Pulses B1. Danach werden alle weiter folgenden Pulse
30 entsprechend der Reihenfolge ihres Eintreffens als Pulspaare A_i, B_i interpretiert, deren zugeordnete Zeitintervalle $[A_i, B_i]$ vom zweiten Zähler 5b gemessen werden. In Fig. 8. z.B. ist A4,B2 das erste dieser Pulspaare. Dieses Verfahren entspricht dem Verfahren von Fig. 8 oder Fig. 10. Der Zählerstand des
35 ersten Zählers 5a und des zweiten Zählers 5b werden (nach einer Mittelung) schließlich unter Berücksichtigung der unterschiedlichen Wertigkeiten der beiden Zähler addiert bzw. einfache zusammengesetzt.

40 Im zweiten Fall (der erste Puls B1 kommt zeitlich nach der Zeitschwelle ts an) zählt der erste Zähler 5a ein Intervall

5 weiter, d.h. alle vollen Intervalle $[A_i, A_{i+1}]$ bis einschließlich des Intervalls $[A_3, A_4]$ des Signals S2, in das der erste Puls B1 des späteren Ultraschallsignals S1 fällt. Der Zählerstand hsb des ersten Zählers 5a zählt hier somit bis drei. Ab diesem Zeitpunkt werden wiederum alle weiteren 10 Pulse in der Reihenfolge ihres Eintreffens als Paare A_i, B_i einander zugeordnet. Im Beispiel in Fig. 11. ist also B2, A5 das erste dieser Pulspaare. Der zweite Zähler 5b zählt dann wiederum während der Zeitdauer eines Pulspaars A_i, B_i , wobei der Zählerstand in Abhängigkeit von der Reihenfolge der Pulse 15 A_i, B_i entweder aufwärts oder abwärts gezählt wird

Pulspaare in der Reihenfolge B_i, A_i werden abwärts und Pulspaare in der Reihenfolge A_i, B_i aufwärts gezählt. Der Zählerstand lsb des zweiten Zählers 5b wird daher zunächst 20 negativ (z.B. $lsb = -2$), zählt während des zweiten Intervalls A6, B3 dann zurück auf 0 und während des dritten Intervalls A7, B4 um 2 Zähler nach oben auf z.B. $lsb = 2$. Der erste Zähler 5a erhält bei Überschreiten der Zählergrenzen des zweiten Zählers 5b jeweils einen Übertrag und zählt somit 25 zunächst zurück auf einen Zählerstand $hsb = 2$ und danach wieder auf einen Zählerstand $hsb = 3$.

Fig. 12 zeigt ein Ausführungsbeispiel einer Steuer- und Auswerteschaltung 4, die nahezu identisch aufgebaut ist wie 30 die Auswerteschaltung von Fig. 9. Wie auch bei den Fig. 7 und 9 wurde die Erzeugung der Ultraschallsignale S1, S2 aus dem Takt eines Quarzoszillators, sowie die Ablaufsteuerung aus Gründen der Übersichtlichkeit weggelassen. Gleiche Bestandteile sind mit den gleichen Bezugszeichen versehen.

35 Im Unterschied zu Fig. 9 umfasst das Modul 6 der Auswerteschaltung von Fig. 12 einen zusätzlichen Takteingang "clock", der eine zusätzliche Zeitmessung ermöglicht, um zu entscheiden, ob der erste Puls B1 des später ankommenden 40 Ultraschallsignals S1 vor oder nach der in Fig. 11 eingezeichneten Zeitschwelle ts eintrifft. Zu Zwecken der

5 Zeitmessung kann z.B. wiederum ein Zähler vorgesehen sein, der im Modul 6 integriert sein kann. Der Ausgang "enable" des Moduls 6 wird somit je nach Lage des ersten Empfangszeitpunkts B1 des Signal S1 früher oder später aktiv.

10 Fig. 13 zeigt ein internes Signal der Auswerteschaltung 4, das bei der Detektion eines Empfangsereignisses (z.B. eines Nulldurchganges) eines empfangenen Ultraschallsignals S1, S2 von low auf high geschaltet wird. Der Zeitpunkt der steigenden Signalflanke hat aufgrund von Signaljitter 15 (Signalzittern bzw. -rauschen) eine gewisse Zeitgenauigkeit αt_j .

Figur 15 zeigt die jitter-bedingte Häufigkeitsverteilung des detektierten Zeitpunkts für den Nulldurchgang im Falle 20 mehrerer nacheinander durchgeföhrter Messungen. Die Standardabweichung ist dabei mit $+/-\alpha t_j$ angegeben. Die Häufigkeitsverteilung kann z.B. einer Normalverteilung mit der entsprechenden Charakteristik einer Gauss-Funktion entsprechen.

25 Das interne Detektionssignal von Fig. 13 wird üblicherweise mit einem hochfrequenten Takt abgetastet, wie er in Fig. 14 oben dargestellt ist. Dieser Takt entspricht dem Takt am clock-Eingang in Fig. 9. Und Fig. 12. Wird ein Taktsignal mit 30 einer relativ niedrigen Frequenz f_1 gewählt, kann sich bei der Laufzeitmessung ein relativ hoher Aliasing-Fehler ergeben. Das Empfangsereignis wird in diesem Fall erst nach einer Zeit αt_a von der Auswerteschaltung 4 erfasst. Zur Vermeidung von Aliasing-Fehlern wird vorgeschlagen, ein 35 Abtastsignal mit einer Frequenz f_2 (siehe Fig. 14 unten) zu verwenden, die deutlich höher ist als der Kehrwert der Zeitgenauigkeit (jitter) bei der Detektion einzelner Empfangsereignisse. Die Genauigkeit der Messung kann durch diese Überabtastung weiter erhöht werden, obwohl die 40 Streubreite $+/-\alpha t_j$ der Häufigkeitsverteilung der Eingangsmessgrößen gemäss Fig. 15. unverändert groß bleibt.

5

Durch die vorstehend beschriebenen Verfahren zur Pulsauswertung kann die Messgenauigkeit eines Ultraschall-Strömungssensors wesentlich verbessert und insbesondere Fehlmessungen verhindert werden.

10 Bezugszeichenliste

1	Fluid
2	Strömungsrichtung
3	Rohrleitung
15	4 Steuer- und Auswerteschaltung
5a	erster Zähler
5b	zweiter Zähler
6	Modul zur Ansteuerung des ersten Zählers
7	Modul zur Ansteuerung des zweiten Zählers
20	8 Vergleichsgatter
9	RS-Flip-Flop
10	AND-Gatter
11	Anzahl der Pulspaare
12	Pulspaar-Zähler
25	13 Zählerstand lsb
14	Zählerstand hsb
15	Ready-Ausgang
16	Takteingang
17	XOR-Gatter
30	18 NOT-Gatter
19	OR-Gatter
20	Nulldurchgangssignal
t _{1'}	Empfangszeitpunkt des zuerst ankommenden Signals S ₂
35	t _{i''} Empfangszeitpunkte des später ankommenden Signals S ₁
at'	grobe Abschätzung der Laufzeitdifferenz
at _{i''}	Zeitintervall eines Pulspaars
at	Laufzeitdifferenz
40	A _i Pulse des zuerst ankommenden Signals S ₂
	B _i Pulse des später ankommenden Signals S ₁

10 Patentansprüche

1. Ultraschall-Strömungssensor, insbesondere zum Messen des Volumen- oder Massestroms eines Fluids (1), das durch eine Rohrleitung (3) strömt, mit zwei in Strömungsrichtung (2) versetzt angeordneten Ultraschallwandlern (A,B) die jeweils ein periodisches Ultraschallsignal (S1,S2) an den anderen Ultraschallwandler (A,B) aussenden, und einer Steuer- und Auswerteschaltung (4), die bei Empfang eines Ultraschallsignals (S1,S2) an einem der Ultraschallwandler (A,B) mehrere Empfangszeitpunkte (t_i', t_i'') pro Ultraschall-signal (S1,S2) detektiert, aus denen eine Messgröße (S) gebildet wird, dadurch gekennzeichnet, dass die Steuer- und Auswerteeinheit (4) wenigstens zwei Zähler (5a,5b) umfasst, von denen der erste (5a) die vollen Intervalle ($[t_i', t_{i+1}']$) eines ersten Signals (S2,P) wenigstens bis zum ersten Empfangszeitpunkt (t_2'') eines Ultraschallssignals (S1) zählt, und der zweite Zähler (5b) jeweils eine Zeitspanne ($\alpha t''$) zwischen einem ersten (A4) und einem zweiten (B2) von mehreren paarweise zusammengefassten Schalt- bzw. Empfangszeitpunkten (t_i', t_i'') der Signale (S1,S2,P) ermittelt.
2. Ultraschall-Strömungssensor nach Anspruch 1, dadurch gekennzeichnet, dass das erste Signal (S2,P) bei einer ersten Betriebsart ein Ultraschallsignal (S2) ist, das gleichzeitig mit dem anderen Ultraschallsignal (S1) ausgesendet wird, oder bei einer zweiten Betriebsart ein Referenzsignal (P) ist, das aus dem selben Taktsignal erzeugt wird aus dem auch das Ultraschallsignal (S1) erzeugt wird.

5 3. Ultraschall-Strömungssensor nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die paarweise zusammengefassten
Empfangszeitpunkte (t_i' , t_i'') jeweils einen Schalt- bzw.
Empfangszeitpunkt (Ai) des Signals (S2,P) und einen darauf
folgenden Empfangszeitpunkt (Bi) des Ultraschallsignals (S1)
10 umfassen.

4. Ultraschall-Strömungssensor nach Anspruch 1,2 oder 3,
dadurch gekennzeichnet, dass die Steuer- und Auswerte-
schaltung (4) prüft, ob der erste Empfangszeitpunkt (t_1'') des
15 Ultraschallsignals (S1) zeitlich näher am vorhergehenden
(t_3') oder am folgenden Schalt- bzw. Empfangszeitpunkt (t_4')
des Signals (S2,P) als eine vorgegebene Zeitschwelle (t_0)
liegt, wobei im ersten Fall der erste Zähler (5a) die
Zeitdauer ($\Delta t'$) vom ersten Schalt- bzw. Empfangszeitpunkt
20 (t_1') bis zu demjenigen Schalt- bzw. Empfangszeitpunkt (t_3')
des Signals (S2,P) zählt, der dem Empfangszeitpunkt (t_1'') des
Ultraschallsignals (S1) vorhergeht, und im anderen Fall bis
zu demjenigen Schalt- bzw. Empfangszeitpunkt (t_4') zählt, der
dem ersten Empfangszeitpunkt (t_1'') des Ultraschallsignals
25 (S1) folgt.

5. Ultraschall-Strömungssensor nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass der zweite Zähler
(5b) ein Aufwärts/Abwärtszähler ist, der in Abhängigkeit von
30 der Reihenfolge von paarweise zusammengefassten
Empfangszeitpunkten (t_i' , t_i'') bzw. (t_i'' , t_i') entweder aufwärts
oder abwärts zählt.

6. Ultraschall-Strömungssensor nach Anspruch 5, dadurch
35 gekennzeichnet, dass der erste Zähler (5a) ein
Aufwärts/Abwärtszähler ist, der sowohl einen positiven als
auch einen negativen Übertrag vom zweiten Zähler (5b)
erhalten kann.

40 7. Ultraschall-Strömungssensor nach einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass der zweite Zähler die

5 Zeitdauer ($\Delta t''$) der Intervalle akkumuliert, die von p Paaren von Empfangszeitpunkten (t_i', t_i'') gebildet werden, wobei p eine Zweierpotenz ist.

8. Ultraschall-Strömungssensor nach Anspruch 7, dadurch
10 gekennzeichnet, dass nach einer Messung der Zeitdauer der aus p Paaren gebildeten Intervalle der Zählerstand des zweiten Zählers (5b) durch eine Schieberegisteroperation oder durch Weglassen von Binärstellen oder durch eine geänderte Interpretation der Wertigkeit der Binärstellen gemittelt
15 wird.

9. Verfahren zum Ermitteln der Laufzeitdifferenz (Δt) zweier Ultraschallsignale (S1, S2) eines Ultraschall-Strömungssensors mit zwei in Strömungsrichtung (2) versetzt angeordneten
20 Ultraschallwandlern (A, B) die jeweils ein Ultraschallsignal (S1, S2) an den anderen Ultraschallwandler (B, A) aussenden, und einer Steuer- und Auswerteschaltung (4), die bei Empfang eines Ultraschallsignals (S1, S2) an einem der Ultraschallwandler (A, B) mehrere Empfangszeitpunkte (t_i', t_i'')
25 pro Ultraschallsignal (S1, S2) detektiert, aus denen eine Messgröße (S) gebildet wird, dadurch gekennzeichnet, dass mittels eines ersten Zählers (5a) eine Zeitdauer ($\Delta t'$) der vollen Intervalle ($[t_i', t_{i+1}']$) eines Signals (S2, P) bis wenigstens zum ersten Empfangszeitpunkt (t_1'') eines
30 Ultraschallsignals (S1) gezählt wird, und mittels eines zweiten Zählers (5b) jeweils die Zeitspannen ($\Delta t''$) zwischen einem ersten und einem zweiten von mehreren paarweise zusammengefassten Empfangszeitpunkten (t_i', t_i'') ermittelt werden.

35

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der zweite Zähler (5b) die Zeitdauern ($\Delta t_i''$) zwischen mehreren paarweise zusammengefassten Zeitpunkten (t_i', t_i'') misst, die jeweils einen Schalt- bzw. Empfangszeitpunkt (t_i') des Signals (S2, P) und einen Empfangszeitpunkt (t_i'') des Ultraschallsignals (S1) umfassen.

5

11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass geprüft wird, ob der erste Empfangszeitpunkt (t_1'') des Ultraschallsignals (S1) zeitlich näher am vorhergehenden (t_3') oder am folgenden Schalt- bzw. Empfangszeitpunkt (t_4') des Signals (S2,P) als eine vorgegebene Zeitschwelle (t_0) liegt, wobei im ersten Fall der erste Zähler (5a) die Zeitdauer ($\alpha t'$) vom ersten Schalt- bzw. Empfangszeitpunkt (t_1') bis zu demjenigen Schalt- bzw. Empfangszeitpunkt (t_3') des Signals (S2,P) zählt, der dem Empfangszeitpunkt (t_1'') des Ultraschallsignals (S1) vorhergeht, und im anderen Fall bis zu demjenigen Schalt- bzw. Empfangszeitpunkt (t_4') zählt, der dem ersten Empfangszeitpunkt (t_1'') des Ultraschallsignals (S1) folgt.
12. Verfahren nach einem der Ansprüche 9-11, dadurch gekennzeichnet, daß ein digitales Signal der Auswerteschaltung (4), das den Empfang eines Empfangsereignisses (Ai, Bi) anzeigt, mit einem Abtastsignal abgetastet wird, dessen Frequenz deutlich höher ist als der Kehrwert der Zeitgenauigkeit (αt_j) des Signals (20).

1 / 9

Fig. 1

Fig. 2

2 / 9

Fig. 3

Fig. 4

3 / 9

Fig. 5

Fig. 6

4 / 9

Fig. 7

5 / 9

Fig. 8

6 / 9

Fig. 9

7 / 9

Fig. 10

Fig. 11

8 / 9

Fig. 12

9 / 9

Fig. 13

Fig. 14

Fig. 15