Höhere Algorithmik, WS 2014/15 — 12. Übungsblatt

20 Gummipunkte. Schriftliche Einzelabgabe bis Dienstag, 20. Januar 2015 Aufgabe 67 ausgebessert am 12.1.2015

66. Polynomielle Reduktion, 10 Punkte

Reduzieren Sie das Rucksackproblem RP auf ganzzahlige lineare 0-1-Programmierung 0-1-ILP (Integer Linear 0-1-Programming) und zeigen Sie auf diese Weise, dass gilt:

$$RP \leq_p 0$$
-1-ILP

Überprüfen Sie jede Eigenschaft einer polynomiellen Reduktion nach.

Problem 1: Rucksackproblem RP (Entscheidungsversion)

Eingabe: Anzahl n; Gewichte g_1, \ldots, g_n ; Werte w_1, \ldots, w_n ; Gewichtsschranke G; Wertschranke W. Alle Eingaben sind natürliche Zahlen.

Frage: Gibt es eine Teilmenge I von $\{1,\ldots,n\}$ mit $\sum_{i\in I}g_i\leq G$ und $\sum_{i\in I}w_i\geq W$?

Problem 2: Ganzzahlige lineare 0-1-Programmierung 0-1-ILP (Entscheidungsversion)

Eingabe: Anzahlen m und n; m Ungleichungen in den Variablen x_1, \ldots, x_n :

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \qquad (1 \le i \le m)$$

mit ganzzahligen Koeffizienten a_{ij} und ganzzahligen rechten Seiten b_i .

Frage: Gibt es Werte $x_1, \ldots, x_n \in \{0, 1\}$, die alle m Ungleichungen erfüllen?

67. Zertifikatskriterium, 10 Punkte

Zeigen Sie 0-1-ILP \in NP. Geben Sie den polynomiellen Algorithmus an, der das Zertifikat testet, und überprüfen Sie alle notwendigen Eigenschaften des Zertifikatskriteriums.

68. (0 Punkte) Wenn P = NP wäre, was wäre dann die Klasse der NP-vollständigen Probleme? Wäre sie dann leer?

69. Erfüllbarkeit, 0 Punkte

- (a) Zeigen Sie: Eine Belegung der Booleschen Variablen A und B erfüllt die Formel $A \vee B$ genau dann, wenn sich dazu ein Wert für die neue Variable y finden lässt, sodass die Formel $(A \vee y) \wedge (\bar{y} \vee B)$ erfüllt ist.
- (b) Zeigen Sie: Eine gegebene Belegung der Variablen x_1, x_2, \ldots, x_k $(k \ge 4)$, erfüllt die Klausel

$$(x_1 \lor x_2 \lor \cdots \lor x_k)$$

genau dann, wenn sich dazu Werte der zusätzlichen Variablen y_1,\dots,y_{k-3} finden lassen, sodass die folgende Formel erfüllt ist.

$$(x_1 \lor x_2 \lor y_1) \land (\bar{y}_1 \lor x_3 \lor y_2) \land (\bar{y}_2 \lor x_4 \lor y_3) \land \cdots \land (\bar{y}_{k-4} \lor x_{k-2} \lor y_{k-3}) \land (\bar{y}_{k-3} \lor x_{k-1} \lor x_k)$$

70. Das Euklidische Rundreiseproblem in der Ebene, 0 Punkte

Eingabe: n Punkte $P_1 = (x_1, y_1), \dots, P_n = (x_n, y_n)$ mit ganzzahligen Koordinaten; ganzzahlige Schranke B

Frage: Gibt es eine Permutation $\pi: \{1, \ldots, n\} \to \{1, \ldots, n\}$ mit

$$||P_{\pi(1)} - P_{\pi(2)}|| + ||P_{\pi(2)} - P_{\pi(3)}|| + \dots + ||P_{\pi(n)} - P_{\pi(1)}|| \le B$$

Hier ist $||P_i - P_j|| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$ der (euklidische) Abstand zwischen den Punkten P_i und P_j . Warum reicht das "offensichtliche" Zertifikatskriterium in diesem Fall nicht offensichtlich aus, um zu zeigen, dass dieses Problem in NP liegt?