Harts for SII E20

Recap Let A and B be sets. Let $f:A \rightarrow B$.

- of is a surjection from A to B

 iff $(\forall y \in B) (f(x) = y \text{ has at least one soln. } x \in A)$
 - of is an injection from A to B

 iff $(\forall y \in B) (fax) = y$ has at most one soln. $A \in A$)
 - of is a bijection from A to B

 iff $(\forall y \in B) (fcx) = y$ has a unique seln. $\pi \in A$)

Q. Fill in the blank.

Let f be a function on A. Suppose f is an injection.

Then f is a bijection from A to Rng (f).

Reason Recall that any function is a surjection from its domain to its range. In other words, $f: A \to Rug(f)$ is a surjection. But f was assumed to be injective.

Hence, f is a one-to-one correspondence between A and B.

$$SIIE20$$
 (a) Let $g(x) = \frac{x}{1-x}$ for all $A \in [0,1)$.

(1) Show
$$g:[0,1) \rightarrow [0,\infty)$$
.

(NTS: for each
$$x \in [0,1)$$
, $g(x) \in [0,\infty)$, i.e., $g(x) > 0$)

Pf. Let
$$d \in [0,1)$$
. Then $0 \le d < 1$, so $0 \ge -d \ge -1$.

Since
$$270$$
 and $\frac{1}{1-x}$ 7,1, we have $g(x) = 2 \cdot \frac{1}{1-x}$ 7,0.

 $\frac{PF}{r}$. Let $y \in Rng(g)$. Then y = g(x) for some $w \in [0,1)$.

So we have
$$y = \frac{x}{1-x}$$

$$\Rightarrow (1-x)y = x$$

$$\Rightarrow y - xy = x$$

 $\Rightarrow \pi(1+y) = y$

② Show Ry(g) = [0, ∞).

(Note: This is equivalent to showing that g is surjective.)

 $\frac{\mathrm{Pf}}{\mathrm{Pf}}$. We have already shown that $\mathrm{Rug}(g)\subseteq \mathrm{Eo},\infty)$ in part Cl .

So it remains to show that $[0,\infty) \subseteq \text{Ray}(g)$.

Let $y \in [0, \infty)$. (NTE: there exists $\chi \in [0, 1)$ s.t. g(x) = y.) Take $\overline{\mathcal{H}} = \left(\frac{\eta}{1+\eta}\right) = g^{-1}(\gamma)$. From (2), we know that $g(\eta) = \gamma$. (check)

So all that is remaining Ts to confirm that $\angle E[0,1)$. Since $y \in [0,\infty)$, y 7/0, so 1+y 7/1, so $\frac{1}{1+y} \le 1$.

Now

Since
$$0 < \frac{1}{1+y} \le 1$$
, $0 > -\frac{1}{1+y} > -1$, So $1 > 1 - \frac{1}{1+y} > 0$.

In other words, 0 < x < 1.

This shows that
$$[0, \infty) \subseteq Rng(g)$$
.

Section 13.

Fundamental Principle of Counting

Equinumerousness

Equinumerousness

Definition 1

Let A and B be sets. To say that A is equinumerous to B (denoted $A \approx B$) means that there exists a bijection from A to B.

Examples.

- The sets $\{1,2\}$ and $\{\pi,e\}$ are equinumerous because the function f on $\{1,2\}$ defined by $f(1)=\pi$ and f(2)=e is a bijection from $\{1,2\}$ to $\{\pi,e\}$.
- The set \mathbb{Z} is equinumerous to the set of all even integers $B = \{2k : k \in \mathbb{Z}\}$ because the function $g : \mathbb{Z} \to B$ defined by g(n) = 2n is a bijection.

Equinumerousness (cont')

Proposition 1

Equinumerousness is reflexive, symmetric, and transitive. In other words:

- **1** (Reflexivity) For each set A, we have A is equinumerous to A.
- 2 (Symmetry) For all sets A and B, if A is equinumerous to B, then B is equinumerous to A.
- **3** (Transitivity) For all sets A, B, and C, if A is equinumerous to B and B is equinumerous to C, then A is equinumerous to C.

Idea of proof

- ① A \approx A because Td_{A} is a bijection from A to itself.
- ② Since A ≈ B, we can find a bijection of from A to B. Let $g = f^{-1}$. Then g is a bijection from B to A. So B ≈ A. (See Thm 7 in Lec 32.)

③ Since A≈B and B≈C,
we can find a bijection f from A to B
and another bijection g from B to C.
Let h = g o f. It turns out that this h
is a bijection from A to C. Thus A≈C.

Number of Elements and Equinumerousness

$$\omega = \{0, 1, 2, ---\}$$

Definition 2

Let A be a set and let $n \in \omega$. To say that A has n elements means that A is equinumerous to $\{1,\ldots,n\}$.

- A set has 0 elements iff it is empty. (See P.12 of hec. 30)
- Saying that A is an n-element set is synonymous to saying that A has nelements.

Let A be a set with 0 elements. Then we can find a bijection f from A to ϕ . NTS: $A = \phi$.

Convention

If
$$n=0$$
, then $\{1,\ldots,n\}=\emptyset$

If
$$n=1$$
, then
$$\begin{cases} 1, \dots, n \end{cases} = \begin{cases} 2 \end{cases}$$

If
$$n = 2$$
, then
$$\begin{cases} 1, \dots, n = 1, 2 \end{cases}$$

Defin but $n \in \omega$. To say that $\underline{\alpha_1, \dots, \alpha_n}$ are distinct means that the function f defined by

 $f(k) = a_k$, for all k = 1, ..., n,

is an injection.

$$\alpha_1 = 3$$

Not distinct

$$\alpha_{c} = 3$$

$$\alpha_2 = 3$$

not one-to-one

n-element Sets

Some omitted details Defin

A has n elements $\Rightarrow A \approx \{1, \dots, n\}$ $x \in \mathbb{N}$ there is a bijection

Proposition 2

Let A be a set and let $n \in \omega$. Then the following are equivalent.

- $oldsymbol{0}$ A has n elements.
- **2** There exist distinct objects a_1, \ldots, a_n such that $A = \{a_1, \ldots, a_n\}$.

$$(0 \Rightarrow 2)$$

Proof. Suppose A has n elements. Then there is a bijection f from $\{1,\ldots,n\}$ to A. Let $a_k=f(k)$ for $k=1,\ldots,n$. Since f is a surjection from $\{1,\ldots,n\}$ to A, we have $A=\{a_1,\ldots,a_n\}$. Since f is an injection, the objects a_1,\ldots,a_n are distinct.

Conversely, suppose there exist distinct objects a_1, \ldots, a_n such that $A = \{a_1, \ldots, a_n\}$. Then $A = \operatorname{Rng}(f)$ where f is a function on $\{1, \ldots, n\}$ defined by $f(k) = a_k$. Since a_1, \ldots, a_n are distinct, f is injective, so f is a bijection from $\{1, \ldots, n\}$ to A, so A has n elements.

Finite and Infinite Sets

Definition 3

Let A be a set.

- To say that A is finite means that there exists $n \in \omega$ such that A has n elements.
- To say that *A* is infinite means that *A* is not finite.

Preliminary Lemmas

Comparing the Sizes of Sets

Lemma A

Let A and B be sets. Suppose that A is equinumerous to B.

- **1** If $s \notin A$ and $t \notin B$, then $A \cup \{s\}$ is equinumerous to $B \cup \{t\}$.
- 2 If $s \in A$ and $t \in B$, then $A \setminus \{s\}$ is equinumerous to $B \setminus \{t\}$.

Define g by
$$g(x) = \begin{cases} f(x) & \text{if } x \in A \\ t & \text{if } x = s \end{cases}$$

SIIE22(0) > Then g is a bijection from AU (5) to BU (t).

Thus AUfs} ~ Bu Ett.

Comparing the Sizes of Sets (cont')

Lemma B

For all $m,n\in \omega$, if $\{1,\ldots,m\}$ is equinumerous to $\{1,\ldots,n\}$, then m=n.

Note For each $n \in \mathbb{W}$, $\frac{\{1, \dots, m\} \approx \{1, \dots, n\} \Rightarrow m = n}{= p(m)}$ Prove this using induction.

Key Results

Uniqueness of the Number of Elements

Theorem 4

The number of elements in a finite set is uniquely determined.

• According to the theorem, for each finite set A, there is a unique $n \in \omega$ such that A has n elements; we write $\overline{\overline{A}}$ for the unique n. The notation $\overline{\overline{A}}$ is read the number of elements in A or the cardinality of A.

Subsets of a Finite Set is Finite

Theorem 5

A subset of a finite set is finite and has at most as many elements as the whole set.

A precise rephrase of the theorem is: For each $n \in \omega$,

for each set B, if B has n elements, then for each $A\subseteq B$, A is finite and $\overline{A}\leqslant n$.

Thus one can prove this using induction.

Rigidity Property of Finite Sets

Theorem 6

A finite set cannot be equinumerous to a proper subset of itself.

Proof. Let B be a finite set and let A be a proper subset of B. We wish to show that B is not equinumerous to A. Suppose B is equinumerous to A. Since B is finite, B has n elements for some $n \in \omega$. Since B is equinumerous to A, A also has n elements. Since A is a proper subset of A, $B \setminus A$ is not empty. Let $b \in B \setminus A$ and let $C = A \cup \{b\}$. Then $C \subseteq B$ and C has n+1 elements. Hence by Theorem 13.30, $n+1 \leqslant n$. But n+1 > n. Thus we have reached a contradiction. Therefore B must not be equinumerous to A.

Theorem 3 on prev. page