WYZNACZANIE WZGLĘDNEJ GĘSTOŚCI 30 CIECZY I CIAŁ STAŁYCH

I. ZAGADNIENIA TEORETYCZNE

Gęstość ciał, a ich ciężar właściwy. Zależność gęstości od temperatury. Prawo Archimedesa i związane z nim metody wyznaczania gęstości ciał. Odkształcenia sprężyste - prawo Hooke'a. Wyprowadzić wzór na względną gęstość ciała stałego wyznaczoną za pomocą wagi Jolly'ego oraz wzór na gęstość względną cieczy wyznaczoną wagą Mohra. Moment siły. Równowaga momentów sił.

II. POMIARY Waga Mohra

- 1) Zrównoważyć wagę wraz z nurkiem za pomocą pionu oraz odpowiednich pokręteł przy ramieniu wagi.
- 2) Wlać ciecz wzorcową (woda destylowana) do menzurki i zanurzyć nurka w całości w cieczy.
- 3) Zrównoważyć wagę z zanurzonym nurkiem za pomocą koników.
- 4) Zapisać położenie koników uwzględniając ich masy umowne (1A; 0,1A; 0,01A)
- 5) Wyjąć nurka z cieczy i osuszyć go.
- 6) Nalać do menzurki alkohol i powtórzyć czynności opisane w punktach 3 5.

Waga Jolly'ego

- 1) Przygotować ciała przeznaczone do badań (przynajmniej cztery różne) oraz nalać wody destylowanej do zlewki.
- 2) Zanurzyć dolną szalkę w wodzie i odczytać położenie zerowe wagi h₀.
- 3) Umieszczać kolejno badane ciała na górnej szalce i notować położenia wskazówki wagi h_p.
- 4) Umieszczać w takiej samej kolejności ciała na szalce zanurzonej w wodzie i notować położenia wskazówki h_w.
- 5) Zmienić wodę destylowaną na alkohol i powtórzyć czynności z pkt. 2) 4). Przy określaniu położenia wskazówki wagi należy pamiętać, aby obraz wskazówki w lusterku pokrywał się z wskazówką.

Sprawdzenie prawa Hooke'a

- 1) Ustalić położenie zerowe wagi Jolly'ego bez zanurzania szalek w cieczy.
- 2) Obciążać kolejno dowolną szalkę odważnikami od 1g do 10g, za każdym razem odczytując położenie wskazówki wagi.
- 3) Pomiary powtórzyć dla obciążeń malejących.

III. OPRACOWANIE WYNIKÓW POMIARÓW

1. Waga Mohra

Wyznaczyć gęstość względną alkoholu d_a/d_w obliczając wskazania wagi za pomocą schematu:

 $m = 1A \times a + 0.1A \times b + 0.01A \times c$

gdzie a, b, c - położenia koników na ramieniu wagi

2. Waga Jolly'ego

Obliczyć gęstości względne badanych ciał $d_{\circ}/d_{\rm w}$ i $d_{\circ}/d_{\rm a}$ zanurzanych w wodzie i alkoholu.

3. Sprawdzenie prawa Hooke'a

Sporządzić wykres zależności wydłużenia sprężyny od obciążenia i wyznaczyć czułość wagi Jolly'ego (stała sprężystości k).

4. Ocena niepewności pomiarów

Waga Mohra i waga Jolly'ego:

Rachunek niepewności obliczonej wartości gęstości względnej cieczy d_a/d_w i ciał stałych d_o/d_w oraz d_o/d_a opieramy na niepewności maksymalnej. Najpierw obliczamy niepewności maksymalne Δx_k wszystkich wielkości mierzonych bezpośrednio (patrz: Instrukcja ONP, rozdz. 4.2.) a następnie obliczamy niepewności maksymalne $\Delta(d_a/d_w)$, $\Delta(d_o/d_w)$ oraz $\Delta(d_o/d_a)$ korzystając z prawa przenoszenia niepewności maksymalnych (patrz: Instrukcja ONP, wzór nr 18).

Sprawdzenie prawa Hooke'a

Do punktów na wykresie dopasować prostą regresji. Współczynnik nachylenia prostej regresji a jest szukaną stałą sprężystości k. Obliczyć jej niepewność standardową u(k) (patrz: Instrukcja ONP, rozdz. 4.1.1).

IV. LITERATURA

- T. Dryński "Ćwiczenia laboratoryjne z fizyki"
- H. Szydłowski "Pracownia fizyczna"
- Sz. Szczeniowski "Fizyka doświadczalna" tom I