

Fakultät für Informatik Professur Technische Informatik

Integration von Umwelt- und Sensormodellierung in die Netzwerksimulation

Verteidigung Bachelorarbeit

Thomas Rückert

Prof. Dr. Wolfram Hardt

Dipl.-Inf. Mirko Lippmann

Motivation

- Schrumpfende Sensoren
- Schrumpfende Sensorknoten
- Wachsende Mobilität
 - Drahtlose Kommunikation
 - Integrierte Energiequelle

Größere Sensornetzwerke

• "Smart Dust"

Motivation

- Komplexere Netze und Elemente erfordern Test
- Tests so real wie möglich
- Betrachtung von:
 - Energiehaushalt
 - Realistische Messwerte
 - Erfassung durch Simulierte Hardwaresensorik
 - Ausführbarer Code

7/16/15 Thomas Rückert 3 www.tu-chemnitz.de

Grundlagen

- Sensor
- Sensorknoten
- Sensornetzwerke
- Simulation
- Simulationsumgebung

7/16/15 Thomas Rückert 4 www.tu-chemnitz.de

Grundlagen – Sensor

- lateinisch sentire, dt. "fühlen" oder "empfinden"
- Technisches Gegenstück zu den menschlichen Sinnen

• z.B. für: Temperatur, Helligkeit, Druck, ...

Funktionsweise:

- Aufnehmer erfasst Daten aus der Umgebung
- Umwandlung in elektrisches Signal
- Aufnehmer
 - aktiv (erzeugt elektrisches Signal)
 - passiv (Parameterveränderung, mit Hilfsenergie bestimmen)

Grundlagen - Sensorknoten

- Viele (verschiedene) Sensorknoten
- Knoten teilweise wenige Millimeter groß ("Smart Dust")
 - Linear Technology Corporation
 - LTC5800-WHM SmartMesh WirelessHART Mote-on-Chip
 - (10mm × 10mm × 0.85mm)

Bauteile

- Transreceiver mit Antenne
- Energiequelle (Batterie oder Energy Harvesting)
- Ein oder mehrere Sensoren
- Mikrocontroller (SoC)

7/16/15 Thomas Rückert 6 www.tu-chemnitz.de

Grundlagen - Sensornetzwerke

- Verteilung der Knoten in einem Gebiet
- Große Flächen, sehr viele Knoten
- 2004 The Ohio State University
 - Über 1000 Knoten möglich
 - 250.000 m²
- Kommunikation per Funk
- Oft Selbstorganisiert oder auch mit Basis
- IEEE 802.15.4, ZigBee

7/16/15 Thomas Rückert 7 www.tu-chemnitz.de

Grundlagen - Simulation

7/16/15 Thomas Rückert 8 www.tu-chemnitz.de

Grundlagen - Simulation

- Entwicklungsprozess f

 ür Module
- Test von Ansätzen zu geringen Kosten
- Modell Abbildung eines Systems
- Evaluieren der Umsetzbarkeit
- Spezifikation relevanter Teile des Moduls
- Oberflächliche/keine Implementierung bestehender oder unwichtiger Teile
 - Co-Simulation

7/16/15 Thomas Rückert 9 www.tu-chemnitz.de

Grundlagen - Simulationsumgebung

Omnet++

- ACADEMIC PUBLIC LICENSE
 - Quellcode ist offen
- Codeausführung im Application Layer der Sensorknoten
- Protokolle f
 ür tiefere Schichten vorhanden
 - lassen sich anpassen
- Grafische Simulation

Grundlagen - Simulationsumgebung

Omnet++

- Bibliotheken/Framework in C++
- Eigene Beschreibungssprache: NED
 - Netzwerkbeschreibungssprache
- Entwicklungsumgebung auf Basis von Eclipse
 - C++ und NED-Integration
 - Grafische Umgebung für Simulation
- Frameworks wie MiXiM
 - Wireless support

Bestehende und Nutzbare Module

Omnet++

- Simulationsumgebung und -oberfläche
- Allgemein: NED, Netzwerk, Kommunikation
- Event Log

MiXiM

- Host802154_2400MHz
 - IEEE 802.15.4: Protokoll für "Wireless Personal Area Networks"
 - Batterie
 - Funktransreceiver
- BaseWorldUtility für Umgebung
- Coord

- Erweiterung der Netzwerksimulation
 - Omnet++ und MiXiM
- Sensorik
 - Verschiedene Sensoren
 - Komplexer Sensorknoten der die verschiedenen Sensoren nutzen kann
- Möglichkeiten
 - Mit diesen Erweiterungen kann das genaue Verhalten eines großen Netzwerkes von Sensorknoten simuliert werden
 - Einblicke in Energieverbrauch (einzelner Bauteile) möglich
 - Zusammenspiel der Knoten in verschiedenen Routingalgorithmen

7/16/15 Thomas Rückert 13 www.tu-chemnitz.de

Module

- Senoren mit einzelnen Bestandteilen
 - Signalerfassung, -verarbeitung, -ausgabe
- Dazu Bauteile eines Sensorknoten
 - Funk: Daten übermitteln
 - Batterie: Energiemanagement
 - Verschiedene Arten von Sensoren
- Umgebung
 - Positionen der Sensorknoten abbilden
 - positionsgebundene Messdaten
- Auswertung Simulationsparameter

7/16/15 Thomas Rückert 15 www.tu-chemnitz.de

- Energiehaushalt der Knoten
 - Energieverbrauch: niedrig im Standby oder hoch bei bestimmten Operationen
- Sensorenarten
 - Temperatur, Druck, Helligkeit, Luftfeuchtigkeit
 - Rufen die positionsgebundenen Daten ab
- Kommunikation zwischen den Knoten
 - Knoten können ein Peer-to-peer Netz bilden
- Statistiken über Simulation
 - Besonders Energieverbrauch, Kommunikation zwischen Knoten

7/16/15 Thomas Rückert 16 www.tu-chemnitz.de

Ziel – Umsetzung und Test

Bestehende Module (verwenden/erweitern)

- zB Grundlage für Knoten: Host802154_2400MHz
 - Betrachtung Energieverbrauch für Messungen, Verarbeitung von Messwerten, Sendeoperationen, Warten
- BasicWSN Protokoll für Sensornetze

Test der Module

- Beispielanwendungen implementieren
 - Diese nutzen die verschiedenen Module
 - Auswertung der Beispielsimulationen
 - Visualisierung

7/16/15 Thomas Rückert 17 www.tu-chemnitz.de

Implementierung

- Umwelt
- Sensormodul
- Energiemanagement
- Datenvisualisierung

7/16/15 Thomas Rückert 18 www.tu-chemnitz.de

Implementierung - Umwelt

- CustomWorldUtility (Kindklasse der BaseWorldUtility)
 - Playground, 2D oder 3D
 - Jeweils mit verschiedenen Größen
 - Daten zu den Sensortypen
 - Temperatur, Druck, Luftfeuchtigkeit, Helligkeit
 - Granularität, Einlesen externer Daten oder Generierung
 - Schnittstelle nach 'außen' zu den jeweiligen Sensoren

7/16/15 Thomas Rückert 19 www.tu-chemnitz.de

Implementierung – Sensormodul - Sensor

- SensingUnit
 - Schnittstelle zur Umgebung
 - Weitergeben der Information an SignalConditioner
- SignalConditioner, SignalConverter
 - Signalverarbeitung und Aufbereitung
 - Weitergeben der aufbereiteten Information
- Transducer
 - Erstellen des finalen Signals
 - Übertragung an Prozessor

Implementierung – Sensormodul - Sensor

7/16/15 Thomas Rückert 21 www.tu-chemnitz.de

Implementierung – Sensormodul - weiteres

- Prozessor
 - Steuert den Knoten
 - Messungen in Sensor starten
 - Daten versenden oder in Memory ablegen
 - Energiemodi
- Memory
 - Kann gemessene Daten speichern
- Batterie, Funk
 - Externe Module aus dem MiXiM-Framework

Implementierung – Sensormodul - weiteres

7/16/15 Thomas Rückert 23 www.tu-chemnitz.de

Implementierung – Energiemanagement

- Energieverbrauch in jedem Modul des Knotens
- Standby und pro Operation
- Batterie auf dem Knoten
 - Festgelegte Kapazität
 - Alle Module an diese angeschlossen
- Knoten beendet Ausführung sobald Batterie leer

7/16/15 Thomas Rückert 24 www.tu-chemnitz.de

- Erfassen von Eckdaten der Simulation
- Energiehaushalt der Knoten
 - Ladezustand der Batterie
 - Aktueller Energieverbrauch
- Zustandswechsel
 - Energiemodus
- Events
 - Messungen
 - Kommunikation

7/16/15 Thomas Rückert 26 www.tu-chemnitz.de

7/16/15 Thomas Rückert 27 www.tu-chemnitz.de

7/16/15 Thomas Rückert 28 www.tu-chemnitz.de

7/16/15 Thomas Rückert 29 www.tu-chemnitz.de

Implementierung – Möglichkeiten

- Komplexes Sensornetzwerk simulieren
 - Tausende Knoten
 - Verschiedene Knoten (4² Permutationen)
- Energiehaushalt pro Bauteil realistisch abbilden
- Gemeinsame Wach-Schlaf-Zyklen
 - Komplexes Verhalten
 - Abspeichern von Messdaten im Schlaf
 - Versenden von ganzen Paketen im Wachmodus

7/16/15 Thomas Rückert 30 www.tu-chemnitz.de

Ausblick

- Datenbank mit echten Umweltdaten anknüpfen
 - Realistischere Messdaten
 - Performanter als XML
 - In Abhängigkeit von der Zeit und Position
- Kommunikation mit Wach-Schlaf-Zyklen synchronisieren
- Wake-up Receiver
- Datensenke implementieren
 - Steuert die Netzwerkknoten
 - Empfängt alle Messdaten

Vielen Dank für die Aufmerksamkeit.

Präsentation der Simulationsumgebung

Beispiel

7/16/15 Thomas Rückert 33 www.tu-chemnitz.de

Quellen

- Kleiner Knoten
 - http://cds.linear.com/docs/en/datasheet/5800whmf.pdf
- Großes Netz 1000+
 - http://www.ieee-icnp.org/2005/Papers/05_sbapat-Yield.pdf
- https://de.wikipedia.org/wiki/Datei:Light_sensor.png (Urheber: vic)
- JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7 → Artikel SimANet
 - https://www.tu-chemnitz.de/informatik/ce/publications/publications.ph p?controller=detail&id=424
- https://www.tu-chemnitz.de/informatik/ce/publications/publications.php? controller=detail&id=505

7/16/15 Thomas Rückert 34 www.tu-chemnitz.de

Quellen

- https://de.wikipedia.org/wiki/Sensor
- https://en.wikipedia.org/wiki/Wireless_sensor_network#mediaviewer/File:WSN.svg
- https://de.wikipedia.org/wiki/Datei:Gas-Sensor.jpg
- https://de.wikipedia.org/wiki/Drucksensor
- https://de.wikipedia.org/wiki/IEEE_802.15.4
- Ganttprojekt zum erstellen von Gantt-Diagramm

7/16/15 Thomas Rückert 35 www.tu-chemnitz.de

Grundlagen – Sensor

- Temperatursensor
 - Heiß-/Kaltleiter
 - mit passivem Aufnehmer
 - Widerstand wird verändert
- Drucksensor
 - Piezoelektrischer Drucksensor
 - Aktiver Aufnehmer
 - Ladungstrennung erzeugt elektrische Spannung in einem Kristall

7/16/15 Thomas Rückert 36 www.tu-chemnitz.de