单选

对于给定的 $x\neq 0$,求n次多项式 $P(x)=a_0+a_1x+a_2x^2+...+a_nx^n$ 的值。

任何求值算法的时间复杂度下界是

请选择你的答案

- $\Omega(n)$
- $\Omega(nlogn)$
- $\Omega(n^3)$
- $\Omega(n^2)$

单选

下列关于背包问题(的判定形式)的表述错误的是:

请选择你的答案

0-1背包问题存在动态规划算法, 所以是P问题。

- 有界背包问题(每件物品的数量为有限个)存在伪多项式时间算法。
- 完全背包问题存在伪多项式时间算法。
- 完全背包问题(每件物品的数量无限多)是NPC问题。

且卷	J0001	*	3/

设A是n个不等的整数按照递增次序排列的数组,已知存在 i∈{1,2,...,n}使得A[i]=i。请问任何找到i的算法至少需要做多少 次比较

请选择你的答案
$\bigcap \Omega(\operatorname{nlogn})$
$\bigcap \Omega(n)$
$\bigcap \Omega(n^2)$
$\Omega(\log n)$
多选 4 ★ 以下哪些排序算法在最坏情况下时间复杂度最优?
请选择你的答案
○ 冒泡排序
〇 归并排序
○ 堆排序

下列关于拉斯维加斯算法的描述错误的是:

・キット	++0	11-7 4	H HH	
旧ロ	工4至	17/1/11	勺答	杀

- 运行多次拉斯维加斯算法运行一定能得到正确解
- 拉斯维加斯算法可以和回溯法共同使用
- 运行一次拉斯维加斯算法不一定能得到正确解
- 拉斯维加斯算法不会获得错误的解

设图G的顶点为五边形P的顶点,其边为P的边加上另一条连接P的两个不相邻顶点的边。下列命题中哪个(或哪些)命题是真命题?

I. G中存在欧拉回路

只有II

II. G中存在哈密尔顿回路

请选择你的答案

○ 只有I
○ 均不是
○ I和II

单选 7

下面关于NP问题说法正确的是: ()

请选择你的答案

- NP问题都是不可能解决的问题
- NP完全问题是P类问题的子集

P类问题包含在NP类问题中

○ NP类问题包含在P类问题中

简答 8

请用Dinics算法对下图进行计算,写出计算的过程和最大流,

设n是k的倍数,有k个排好序的数表L1, L2, ..., Lk, 每个 数表都有n/k个数。

假设n个数彼此不等,并且归并长为m,n的两个数表的时间代 价是O(m+n)。

如果使用顺序归并算法归并这k个数表,最坏情况下时间复杂 度是

请选择你的答案
\bigcirc O(k ² n)
O(kn)
O(n)
\bigcirc O(n ²)

请选择你的答案	
O(nlogn)	
\bigcirc O(n ²)	
O OO(logn)	
O(n)	

单选 11 🚖

某人选择4种基金进行组合投资,咨询师为他提供了下述5种可 能的年收益率(%),此人采用保守的策略,要求可能的最低 收益率最大,应如何确定这4种基金的投资比例?

		可	能性		
基金	1	2	3	4	5
1	5.06	8.12	8.47	40.23	-18.75
2	12.45	3.22	4.51	-1.53	7.63
3	32.18	14.16	33.64	40.25	-18.09
4	32.02	20.53	12.92	7.14	-5.55

请选择你的答案

$$\max d$$

$$s.t. \quad 5.06x_1 + 12.45x_2 + 32.18x_3 + 32.02x_4 \le d$$

$$8.12x_1 + 3.22x_2 + 14.16x_3 + 20.53x_4 \le d$$

$$8.47x_1 + 4.51x_2 + 33.64x_3 + 12.92x_4 \le d$$

$$40.23x_1 - 1.53x_2 + 40.25x_3 + 7.14x_4 \le d$$

$$-18.75x_1 + 7.63x_2 - 18.09x_3 - 5.55x_4 \le d$$

$$x_1 + x_2 + x_3 + x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0, d \le 0$$

$$\begin{aligned} & \min d \\ s.t. & 5.06x_1 + 12.45x_2 + 32.18x_3 + 32.02x_4 \geq d \\ & 8.12x_1 + 3.22x_2 + 14.16x_3 + 20.53x_4 \geq d \\ & 8.47x_1 + 4.51x_2 + 33.64x_3 + 12.92x_4 \geq d \\ & 40.23x_1 - 1.53x_2 + 40.25x_3 + 7.14x_4 \geq d \\ & -18.75x_1 + 7.63x_2 - 18.09x_3 - 5.55x_4 \geq d \\ & x_1 + x_2 + x_3 + x_4 = 1 \\ & x_1, x_2, x_3, x_4 \geq 0, d \leq 0 \end{aligned}$$

$$\begin{array}{c} \max d \\ s.t. \quad 5.06x_1 + 12.45x_2 + 32.18x_3 + 32.02x_4 \geq d \\ 8.12x_1 + 3.22x_2 + 14.16x_3 + 20.53x_4 \geq d \\ 8.47x_1 + 4.51x_2 + 33.64x_3 + 12.92x_4 \geq d \\ 40.23x_1 - 1.53x_2 + 40.25x_3 + 7.14x_4 \geq d \\ -18.75x_1 + 7.63x_2 - 18.09x_3 - 5.55x_4 \geq d \\ x_1 + x_2 + x_3 + x_4 = 1 \end{array}$$

$$\min d$$
s t 506r. + 1245r. + 3218r. + 3202r. > d

Ford-Fulkerson算法和Dinic算法的时间复杂度分别为:

请选择你的答案		
O(V*E ²))和O(V ³)	
O(V*E ²))和O(V*E ²)	
O(V ² E)₹	和O(V*E ²)	
O(V ² E)科	和O(V ³)	

单选 13 ★

请选择你的答案

- 0 1/16, 7/16
- $O_{3/16,3/16}$
- O_{3/16, 7/16}
- 1/16, 3/16

多选 14 ★

以下经典的问题(的判定形式),哪些属于NP问题?

请选择你的答案

- O-1背包问题
- 排序问题
- 图灵停机问题
- 哈密尔顿回路问题

该图的最大流量为_______;最小割中的S集(写法如

VsV1V2)______;使用FordFulkerson算法,最少需要求几次增

广路才能得到最大流_____?

 $\max 3x_1-2x_2+x_3$ $s.t. x_1+2x_2-x_3\le 1$ $4x_1 -2x_3 \ge 5$ $x_2-5x_3 \le -4$ $x_1-3x_2+2x_3=-10$ $x_1\ge 0, x_2\ge 0, x_3\ge 0$ 正确选项是

请选择你的答案

$$\min -3x_1 + 2x_{21} - 2x_{22} - 3x_3$$

$$s.t \ x_1 + 2x_{21} - 2x_{22} - x_3 + x_4 = 1$$

$$4x_1 - 2x_3 - x_5 = 5$$

$$x_{21} - x_{22} - 5x_3 + x_6 = -4$$

$$x_1 - 3x_{21} + 3x_{22} + 2x_3 = -10$$

$$x_1, x_{21}, x_{22}, x_3, x_4, x_5, x_6 \ge 0$$

如果问题A是NP完全的,则下列论断哪些是正确的?

请选择你的答案

- 一定存在一个问题B属于NP且问题B不能多项式时间变换到问题A
- 问题A不一定属于NP
- 若问题A属于P,则P不等于NP
- 〇 _{问题A一定属于NP}

简答 18 🚖

试用单纯形法求解:

min
$$x_1 - 3x_2 + 2x_3$$
;
s.t. $-2x_1 + 4x_2 \le 12$,
 $3x_1 - x_2 + 2x_3 \le 7$,
 $-4x_1 + 3x_2 + 8x_3 \le 10$,
 $x_1, x_2, x_3 \ge 0$.

单选 19 🚖

给定平面上n个点的坐标。在这些点之间存在一些边,边的权值是两个端点之间的距离。这些点和边构成平面上的简单图 G,求G的最小生成树。

请问该问题的时间复杂度下界是

 $\min x_1 - x_2$ s.t. $2x_1 + 3x_2 \le 14$

 $-x_1+x_2 \le 3$

单选 21 ★

关于SAT问题的表述错误的是:

请选择你的答案

- 3-SAT是第一个被证明的NPC问题。
- 当k>2时,k-SAT问题是NP难的。
- 2-SAT问题属于P。
-) 当k>2时,k-SAT问题是NP完全的。

	加工时间(人·小时/件)		
工序	产品 1	产品 2	可用工时(人.小时
1	0.54	0.85	800
2	0.30	0.70	500
3	1.05	0.55	900
4	0.15	0.25	120

请选择你的答案

$$\max 85x_1 + 70x_2$$

$$s.t. \quad 0.54x_1 + 0.85x_2 \ge 800$$

$$0.30x_1 + 0.70x_2 \ge 500$$

$$1.05x_1 + 0.55x_2 \ge 900$$

$$0.15x_1 + 0.25x_2 \ge 120$$

$$x_1, x_2 \ge 0$$

$$\max 85x_1 + 70x_2$$

$$s.t. \quad 0.54x_1 + 0.85x_2 \le 800$$

$$0.30x_1 + 0.70x_2 \le 500$$

$$1.05x_1 + 0.55x_2 \le 900$$

$$0.15x_1 + 0.25x_2 \le 120$$

$$x_1, x_2 \ge 0$$

$$\max 85x_1 + 70x_2$$

$$s.t. \quad 0.54x_1 + 0.85x_2 \le 800$$

$$0.30x_1 + 0.70x_2 \le 500$$

$$1.05x_1 + 0.55x_2 \le 900$$

$$0.15x_1 + 0.25x_2 \le 120$$

请选择你的答案

- 贪心算法是一种自底向上的算法,而动态规划是一种自顶向下的方法
- 适用于贪心法的问题,通过贪心算法可以得到所有最优 解
- 贪心算法和动态规划算法都具有最优子结构性质
- 适用于动态规划的问题,通过动态规划可以得到所有最优解
- 贪心算法一定不能得到全局最优解

下面有关P问题,NP问题和NPC问题,说法错误的是

请选择你的答案

- NPC问题不一定是个NP问题,只要保证所有的NP问题 都可以多项式时间变换到它即可
- 如果一个判定问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题
- NP问题是指可以对其肯定实例在多项式时间内进行验证 的判定问题
- 所有的P类问题都是NP问题

下列关于拉斯维加斯算法的描述错误的是:

你的答案

- 运行一次拉斯维加斯算法不一定能得到正确解
- 运行多次拉斯维加斯算法运行一定能得到正确解
- 拉斯维加斯算法不会获得错误的解
- 拉斯维加斯算法可以和回溯法共同使用

填空

26

该图的最大流量为______;最小割中的S集(写法如 VsV1V2)______;使用FordFulkerson算法,最少需要求几次增 广路才能得到最大流 ?

你的答案

- 1) 8
- (2) VsV1
- 3 3

请用图解法解该线性规划:

min
$$x_1-2x_2$$
;
s.t. $x_1+x_2 \ge 1$,
 $-5x_1+x_2 \le 0$,
 $-x_1+5x_2 \ge 0$,
 $x_1+2x_2 \le 4$,
 $x_1, x_2 \ge 0$.

试用单纯形法求解:

min
$$x_1-3x_2+2x_3$$
;
s.t. $-2x_1+4x_2 \le 12$,
 $3x_1-x_2+2x_3 \le 7$,
 $-4x_1+3x_2+8x_3 \le 10$,
 $x_1, x_2, x_3 \ge 0$.

你的答案