液体シンチレータを 用いた中性子波形弁別

先進理工学部 寄田研究室 物理学科 学部4年 小津龍吉

中性子測定の研究目的とその環境依存性

● 中性子は暗黒物質探索実験のバックグラウンド

● 中性子を実験環境下において測定する

環境中性子

- 宇宙線起因
- -ミューオンと大気・岩盤の反応
- -二次宇宙線

地人人下

- · 岩盤起因
- -U/Th系列の自発核分裂や(α, n)

<u>(ミューオン減少)</u>

岩盤の組成は場所ごとに異なる

<u>実験環境下での</u> 中性子測定 1/8

神岡坑内での中性子測定(2016年度,鈴木優飛修士論文)

- ◆神岡宇宙素粒子研究施設のLab-Bで液体 シンチレータ(後述)を用いて測定
 - ・ 測定方法、測定セットアップを確立
 - -早稲田地上、神岡地下で測定
 - 波形弁別分布

点線:²⁵²Cfで定義

・ レートの算出, etc.

地下1MeV以下に おいて α はnの100倍

残された課題

- 1MeV以下のαの低減による 低エネルギー領域の波形弁別
- ◆ 長期データ(二年分の統計)の解析 (1.2MeV以上)

<u>本発表では**長期データの解析**を</u> 行った。

液体シンチレータを用いた測定

◆ 測定に用いたシンチレータ:BC-501A

- 有感領域5L(4.37kg)
- 高速中性子 (0.1-1.0MeV)以上と γ線に感度を持つ
- 鉛、ポリエチレン シールド内で測定
- ◆波形弁別に優れ環境γ線との弁別が可能

²⁵²Cf線源を用いて中性子とγ線の 分離能力を確認

パイルアップ事象の除去

2つの波形の時間情報の差を利用して取り除く

◆取り除く波形
fast slow pot

t

通常
パイルアップ時

線源データを較正用として
slow/totalとの相関を確認

神岡地下における中性子識別結果

線源不使用のデータにおいても同様に中性子とγ線の分離を確認。

中性子事象数算出

◆エネルギー毎に射影したslow/total分布

◆事象数の補正

・ 線源データを用いて中性子信号領域を決定(灰色)

$$N = N_{+} + N_{flat \ background}$$

- N_{flat background}を高いslow/total領域で数える
- ・ 補正を加えた事象数を算出する

$$N_{\parallel} = (x - \alpha y)/\beta$$

α, β:補正係数

レートの測定結果と先行研究との比較

■ 1200-3200keVeeの中性子レート

測定期間	Events (× 10 ⁻¹ /day/kg)
2016_Oct-Jan	$\boldsymbol{1}.\boldsymbol{9} \pm \boldsymbol{0}.\boldsymbol{25}$
2018_Jan	2.1 ± 0.48
2018_Jul	2.5 ± 0.55

※2016_Oct-Janは3000keVeeまで

■ 中性子レートのスペクトル

- ■本解析の中性子レートは先行研究とエラーの範囲内で一致
- ■月によるレートの変動はエラーの範囲内で一致

まとめ・展望

●波形弁別の実行

-中性子likeな波形を残しつつ、パイルアップ事象の除去をして中性子の波形弁別を確認した。

● 中性子事象数の算出

-より中性子likeな領域の事象を用いて事象数に補正を加えた。

●Rateの算出

- -本手法で1月と7月について誤差の範囲内での一致を見ることができた。
- -また、先行研究と誤差の範囲内での一致を見ることができた。

■ 今後の展望

年間のレート変動について確認する。 低エネルギー領域の波形弁別が課題となる。

Back up

◆ Calibration

⁴⁰Kや²³²Thのコンプトンエッジ

LS_property

Scintillation Properties	BC-501A	BC-501	BC-519
Light Output, %Anthracene	78	80	60
Wavelength of Maximum Emission, nm	425	425	425
Decay Time, short component, ns	3.2	3.3	4.0
Atomic Composition			
No. of H Atoms per cc (x10 ²²)	4.82	5.25	6.62
No. of C Atoms per cc (x10 ²²)	3.98	4.08	3.83
Ratio H:C Atoms	1.212	1.287	1.728
No. of Electrons per cc (x10 ²⁵)	2.87	2.97	2.96

◆ Liquid Scintillator

-BC-501A

溶媒:キシレン(solvent to solute:1.66ns)

溶質:発光材, POPOP (波長変換材)

時定数:

• Fast:3.16ns

• 中間成分:32.3ns

• Slow:270ns

General Technical Data -

	BC-501A	0.874
Density g/cc	BC-501	0.901
	BC-519	0.875
Refractive Index, n _D	BC-501A	1.505
Refractive index at 425nm	BC-501A	1.530
	BC-501	1.538
	BC-519	1.50
Flash Point, T.O.C.	BC-501A	24°C
	BC-501	47°C
引火点	BC-519	74°C

α線のエネルギー

• U/Th系列の中で α 崩壊を起こす核種の内, もっともエネルギーの高い α 線を放出する核種: ^{212}Po 8.875MeV< 16 O, 28 Si, 40 Caの(α , n)反応のThreshold Energy

自発核分裂と (α, n) 反応のエネルギー

図 3.2: 自発核分裂と (α, n) 反応起因の中性子エネルギースペクトル [10]

◆Bi-Po

- Bi-Poの場合, △t<1msで信号が来る確率98.5%
- →ある半減期T_{half}を持つ放射性核種の崩壊までに要する時

$$\lambda (= \ln 2/T_{half})$$
を崩壊定数として,

$$f(t) = \lambda e^{-\lambda t}$$

ここから、信号間の時間間隔△t<Tの場合のCut Efficiencyは、

$$\int_0^T f(t)dt = 1 - e^{-\lambda T}$$

T=1msならば、半減期164usの²¹⁴Poに対するCut Efficiencyは0.985となる。

図 3.25: Delayed Coincidence を用いた ²¹⁴Po の抽出

U/Th系列

線源不使用、 γ 線でpotの大きな波形

peakの時間によるCutを行わなかった場合 の分布

