Math homework 4 - OSM Bootcamp 2018

Cooper Nederhood

2018.07.15

Exercise 6.6

The FOC are:

$$f_x = 6xy + 4y^2 = 0$$
$$f_y = 3x^2 + 8xy + x = 0$$

First, we need to go through some cases to check whether x or y can be 0.

If x = 0 then $4y^2 + y = 0 \Rightarrow y$ is imaginary

If $x \neq 0$ then 3x + 8y + 1 = 0

Then if $y=0, x\neq 0$ then $3x+1=0 \Rightarrow x=\frac{-1}{3}$

If $x \neq 0, x \neq 0$ then:

$$f_x = 6x + 4y + 1 = 0$$

$$f_y = 3x + 8y + 1 = 0$$

$$(-16y - 1) + (4y + 1) = 0$$

$$-12y - 1 = 0$$

$$\Rightarrow y = \frac{-1}{12}$$

$$\Rightarrow 3x - \frac{8}{12} + \frac{12}{12} = 0$$

$$x = \frac{-4}{36}$$

And finally our critical points are (0,0), $(\frac{-1}{3},0)$, $(\frac{-4}{36},\frac{-1}{12})$

Exercise 6.7

(i) Denote $A = [a_{i,j}]$ Then $A^T = [a_{j,i}]$ and $Q = [a_{j,i} + a_{i,j}] = [a_{i,j} + a_{j,i}] = Q^T$ And $x^TQx = x^T(A^T + A)x = (x^TA^T + x^TA)x = x^TA^Tx + x^TAx = 2x^TAx\Box$

(ii)
$$f(x) = \frac{1}{2}x^TQx - b^Tx + c$$

$$f'(x) = Q^Tx - b = 0$$

$$\Rightarrow Q^Tx^* = b$$

(iii) NEED TO DO THIS QUESTION

Exercise 6.11

$$x_1 = x_0 - f'(x_0)/f''(x_0)$$
$$x_1 = \frac{-b}{2ax_0} \Rightarrow f'(x_0) = 2ax_0 + b = -b + b = 0$$

And also, $f''(x_0) = 2a > 0$

Exercise 7.1

Let $x, y \in \text{conv}(S)$

Then x and y are of the form:

$$a_1x_1 + ... + a_nx_n = x$$
 and $b_1y_1 + ... + b_my_m = y$

Where $\sum a_i = \sum b_i = 1$ and $x_i, y_i \in S$

Then if $\lambda \in [0,1]$ then $\lambda x + (1-\lambda)y = \sum_{i=1}^{n} \lambda a_i x_i + \sum_{i=1}^{m} (1-\lambda)b_i y_i \in \text{conv}(S)$ Note, the last part holds because $\sum \lambda a_i + \sum (1-\lambda)b_i = 1$

Exercise 7.2

(i) Let $P = \{x \in V | \langle a, x \rangle = b\}$ Then let $x, y \in P$ so $\langle a, x \rangle = \langle a, y \rangle = b$ Let $\lambda \in [0,1]$ then $\langle a, \lambda x + (1-\lambda)y \rangle =$

$$=\lambda\langle a,x\rangle+(1-\lambda)\langle a,y\rangle=b\Box$$

(ii) Let $x, y \in H = \{x \in V | \langle a, x \rangle \leq b\}$ and $\lambda \in [0, 1]$. Then $\langle a, \lambda x + (1 - \lambda)y \rangle =$

$$-\lambda \langle a, x \rangle + (1 - \lambda) \langle a, y \rangle \le b \square$$

Exercise 7.4

(i) $||x-y||^2 = ||x-p+p-y||^2 = \langle x-p+p-y, x-p+p-y \rangle$ $=\langle x-p,x-p\rangle+\langle x-p,p-y\rangle+\langle p-y,x-p\rangle+\langle p-y,p-y\rangle$

$$= ||x - p||^2 + ||p - y||^2 + 2\langle x - p, p - y\rangle$$

(ii) By (i) we have $||x-y||^2 = ||x-p||^2 + ||p-y||^2 + 2\langle x-p, p-y\rangle$

And by assumption we have $\langle x-p, p-y \rangle \geq 0$

And $||p - y||^2 > 0$ if $y \neq p$

Thus, together $||x-y||^2 > ||x-p||^2 \Rightarrow ||x-y|| > ||x-p||$, where the inequality is consistent across the square root due to the positivity of the norm.

(iii) By (i), $||x-y||^2 = ||x-p||^2 + \langle x-p, p-z \rangle + ||p-z||^2$ Then if $z = \lambda y + (1-\lambda)p$ we have

$$||x - z||^2 = ||x - p||^2 + 2\langle x - p, p - \lambda y - (1 - \lambda)p\rangle + ||p - \lambda y - (1 - \lambda)p||^2$$
$$= ||x - p||^2 + 2\lambda\langle x - p, p - y\rangle + \lambda^2||y - p||^2$$

(iv) NEED TO DO THIS QUESTION

Exercise 7.8

f is convex so $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

I think there's a typo in the question because the matrix/vector operations in the argument are not compatible. If $A \in M_{m \times n}$ then $Ax\mathbb{R}^n$ but $b \in \mathbb{R}^m$ so the two can't be added?

So I'll assume $A \in M_{m \times m}$ for compatability.

Let $x,y \in \mathbb{R}^m$ then x' = Ax + b and y' = Ay + b are also in \mathbb{R}^m Thus, $f(\lambda x' + (1-\lambda)y') \le$ $\lambda f(x') + (1 - \lambda)f(y')$

and therefore $g(\lambda x + (1 - \lambda)y) \le g(x) + (1 - \lambda)g(y)$

Exercise 7.12

(i) Let $A, B \in PD_n(\mathbb{R})$

Then $\lambda A + (1 - \lambda)B = C$

And $v^T C v = \lambda v^T A v + (1 - \lambda) v^T B v \ge 0$, so we have $C \in PDn(\mathbb{R})$.

(ii) NEED TO DO THIS QUESTION

Exercise 7.13

S'pose f is not constant. Then there exists some x, y such that f(x) > f(y)By convexity we have $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

$$\Rightarrow \frac{\lambda f(x) + (1 - \lambda)f(y)}{\lambda} = \frac{f(x) - f(y)}{\lambda} \le f(\frac{\lambda x + (1 - \lambda y)}{\lambda})$$

And $f(x) > f(y) \Rightarrow \frac{f(x) - f(y)}{\lambda}$ which goes to infinity as λ goes to zero, which would imply the function is not bounded, which is a contradiction.

Exercise 7.20

By the convexity of both f and -f we have the following inequalities:

$$f(tx + (1 - t)y) \le tf(x) + (1 - y)f(y)$$

$$-f(tx + (1-t)y) \le -tf(x) - (1-y)f(y)$$

We can multiply the second equation by negative 1, and then see that for both to hold simulataneously we have equality. Thus,

$$f(tx + (1 - t)y) = tf(x) + (1 - y)f(y)$$

And we have our result.

Exercise 7.21

Let x^* be a local min. Then $f(x) \geq f(x^*)$ for all x in some epsilon neighborhood of x^*

And because ϕ is strictly increasing we have $\phi(f(x)) \ge \phi(f(x^*))$ for that same neighborhood so x^* is still a minimizer.

Similarly, going the other way, if $\phi(f(x)) \le \phi(f(x^*))$ and because ϕ is monotone then $f(x^*) \le f(x)$ for the neighborhood.