Supplement Material of the paper "Maximum Aol Minimization for Target Monitoring in Battery-free Wireless Sensor Networks"

APPENDIX A PROOF OF THEOREM 2

We only need to prove that Equation (2) is correct by contradiction. Assume there exists another path $P_l'(n, q_1,$ j, q_2) such that its length $Mt'(n, q_1, j, q_2) < Mt(n, q_1, j, q_2)$. Assume that on the path $P_l'(n, q_1, j, q_2)$, the last state of q_2 is q_3 . According to the definition of the path on EN(n), there is an edge $(q_3, q_2, action, m) \in \Delta(n)$ and action = 0 or 1. Firstly, we discuss the case when action = 1. Let $Mt'(n, q_1, d_2)$ k, q_3) denote the path length on $P_l'(n, q_1, j, q_2)$ from q_1 to q_3 , by the definition of $P_l(n, q_1, j, q_2)$, we have $k \ge j - m$ and $Mt'(n, q_1, k, q_3) \ge Mt'(n, q_1, j-m, q_3)$. Thus, $Mt'(n, q_1, j, q_2)$ $m \ge Mt'(n, q_1, j-m, q_3)$. Also, according to Equation (2), $Mt(n, q_1, j-m, q_3)$. q_1 , j, q_2) $\leq Mt(n, q_1, j-m, q_3) + m$. Therefore, we have $Mt'(n, q_1, j-m, q_3)$ q_1 , j-m, q_3) $\leq Mt'(n, q_1, j, q_2)$ -m< $Mt(n, q_1, j, q_2)$ -m< $Mt(n, q_1, j, q_2)$ -mj-m, q_3), which conflicts with the assumption that $Mt(n, q_1, j$ m, q_3) is optimal. The case in which action = 0 can be proved similarly.

APPENDIX B PROOF OF THEOREM 5

Firstly, consider an edge $(q_1(n), q_j(n), 1, m) \in \Delta(n)$. As mentioned in Step 1 in Section 3.2.2, $q_1(n)$ represents n's stable voltage $U_s(n)$. When n's voltage reaches $U_s(n)$, after m consecutive active slots, the voltage of n, namely $U_d(n, U_s(n), m) \in [D_p(n, m+1), D_p(n, m)]$, which is the voltage subinterval represented by state $q_{m+2}(n)$. Thus, we have j = m+2. Also, $|Q(n)| = Df(n, U_s(n)) + 2$. Thus, $1 \le m \le Df(n, U_s(n)) = |Q(n)| - 2$.

Secondly, consider an edge $(q_k(n), q_j(n), 1, m) \in \Delta(n)$, where $k \neq 1$. As mentioned by Step 2 in Section 3.2.2, the energy level of node n at state $q_k(n)$ is regarded as voltage $D_p(n, k-1)$. According to Property 3, since $U_d(n, U_s(n), k-1) \leq D_p(n, k-1) \leq U_d(n, U_s(n), k-2)$, we have $Df(n, U_d(n, U_s(n), k-1)) \leq Df(n, D_p(n, k-1)) \leq Df(n, U_d(n, U_s(n), k-2))$. Also, $Df(n, U_d(n, U_s(n), k-1)) = |Q(n)|-k-1$ and $Df(n, U_d(n, U_s(n), k-2)) = |Q(n)|-k$. Thus, when node n is at state $q_k(n)$, n can be active continuously for at most |Q(n)|-k-1 or |Q(n)|-k. For a certain m, according to Property 3, we have $U_d(n, U_d(n, U_s(n), k-1), m) \leq U_d(n, D_p(n, k-1), m) \leq U_d(n, U_d(n, U_s(n), k-2), m)$. That is, $U_d(n, U_s(n), k+m-1) \leq U_d(n, D_p(n, k-1), m) \leq U_d(n, U_s(n), k+m-1) \in [D_p(n, U_s(n), U$

k+m), $D_p(n, k+m-1)$], which is the voltage interval denoted by $q_{k+m+1}(n)$, $U_d(n, U_s(n), k+m-2) \in [D_p(n, k+m-1), D_p(n, k+m-2)]$, which is the voltage interval denoted by $q_{k+m}(n)$. Therefore, voltage $U_d(n, D_p(n, k-1), m)$ is within the interval denote by $q_{k+m+1}(n)$ or $q_{k+m}(n)$. As voltage $D_p(n, k-1)$ is regarded as the energy level of state $q_k(n)$, j = k+m or k+m+1. This completes the proof.