В модели Торрэнса –Сперроу в качестве источника света рассматривается телесный угол ω , противостоящий источнику. Связь между энергией источника (Е и), падающей на единицу площади за единицу времени, и интенсивностью света (I_H) определяется следующим образом:

$$E_H = I \cos \alpha d\omega = I_H(\overline{nh})d\omega (1)$$

где α — угол падения, n — нормаль к поверхности, h — направление на источник света. Если поверхность представляет из себя не идеальную форму, а форму имеющую хаотическое отклонение, то интенсивность отраженного от нее света должна быть меньше интенсивности падающего излучения. Интенсивность отраженного света Io связывается с энергией источника $E_{\rm H}$ следующим образом:

$$I_0 = r * E_{\mathcal{U}}, \ 0 \le r \le 1 \ (2)$$

где r – коэффициент двунаправленного отражения, определяющий долю энергии отраженной в заданном направлении.

Подставив (1) в (2), получим уравнение для I_0 :

$$I_0 = r \cdot I_H \left(\overline{nh} \right) d\omega$$
 (3)

Кроме того, необходимо учесть, что коэффициент г зависит от двух составляющих светового потока: зеркального и диффузионного. Поэтому его представляют в виде следующей линейной комбинации: $r=k\partial r\partial +k\partial r\partial$ (4)

где k_0 , k_3 — весовые коэффициенты, зависящие от характеристик поверхности. Чтобы учесть эффект отражения рассеянного света в выражение (3) вводят дополнительную составляющую: $I = f k_p r_p * I_p(5)$

где f — часть полусферы, открытая для источника; k_p — весовой коэффициент, определяемый характеристиками поверхности; r_p – коэффициент отражения рассеянного света, полученный путем интегрирования выражения (4) по всей полусфере; I_P – интенсивность рассеянного света. Величины коэффициентов k_{∂} , k_{β} , k_{P} и значение I_{P} определяются экспериментальным путем. Значение же самих коэффициентов r_{∂} и r_{β} можно вычислить используя законы и соотношения физической оптики. На базе формул (1) - (5) можно получить следующую формулу закраски:

$$I_{0} = f \cdot k_{p} r_{p} I_{p} + \sum_{i=1}^{m} I_{H_{i}} (k_{o} r_{o} + k_{s} r_{s}) (\overline{nh}) d\omega_{i}$$
(6)

Эта модель называется моделью Торрэнса – Кука. Она позволяет учитывать не только наличие нескольких источников света, но и их разные размеры. Основные сложности при вычислении выражения (6) вызывает расчет коэффициентов диффузной и зеркальной составляющих r_0 и r_3 . Коэффициент диффузной составляющей r_{δ} зависит от угла падения α света на поверхность объекта. Однако на практике получается, что при величине $\angle \alpha < 70^{\circ}$ значение r_{π} мало отличается от значения коэффициента при нормальном отражении ($\angle \alpha = 0^{\circ}$). Поэтому в большинстве случаев зависимостью $r_{\partial}(\alpha)$ можно пренебречь. **Коэффициент зеркальной** составляющей r_3 . Он оказывает наибольшее влияние на видимый результат наибольшее влияние на видимый результат и зависит от многих параметров. В модели Торрэнса –Спертоу рассматривается вычисление коэффициента r_3 на основании следующей формулы:

$$r_3 = \frac{F \cdot D \cdot G}{\pi (\overline{n} \cdot \overline{h})(\overline{n} \cdot \overline{S})} (7)$$

где F — коэффициент Френеля; D — функция распределения микрограней по поверхности об G — коэффициент ослабления света засчет взаимозависимости граней, S — направление на наблюдателя.

ORDER FULL VERSION S