北京科技大学 2010 — 2011 学年度第 1 学期

院(系)________ 班级______ 学号_______ 姓名______

试卷卷面成绩										占课程 平时 成绩 考核成 占	课程考 核成绩	
题号	_	<u> </u>	三	四	五	六	七	八	小计	绩	20 %	, , , , , , , , , , , , , , , , , , ,
得分												

一、 $(10 \, \text{分})$ 已知方程y'=x+y+1,求满足初始条件x=1,y=1的特

得分 二、(15分) 求方程 $\frac{dy}{dx} = 4e^{-y} \sin x - 1$ 的通解

$$1 、 方程可化为 \frac{de^y}{dx} = -e^y + 4\sin x$$

$$\diamondsuit z = e^y , \ \ \# \frac{dz}{dx} = -z + 4\sin x$$

由一阶线性方程的求解公式,得

$$z = e^{\int (-1)dx} \left(\int 4\sin x e^{-\int (-1)dx} \right) dx + c = e^{-x} \left[2(\sin x - \cos x) \right] e^{x} + c = 2(\sin x - \cos x) + c$$

常微分方程 试卷 第 1 页 共 6 页

得 分

三、(15 分) 求方程 $4x^2y^2dx + 2(x^3y - 1)dy = 0$

的积分因子,并求出方程的通解

解:
$$\frac{\partial M}{\partial y} = 8x^2y$$
, $\frac{\partial N}{\partial x} = 6x^2y$

$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = -\frac{1}{2y} \quad 积分因子 \mu(y) = e^{-\int \frac{1}{2y} dy} = y^{-\frac{1}{2}}$$

两边同乘以 $\mu(y)$ 后方程变为恰当方程:

$$4x^{2}y^{\frac{2}{3}}dx + 2y^{-\frac{1}{2}}(x^{3}y - 1)dy = 0$$

$$\frac{\partial u}{\partial x} = M = 4x^2 y^{\frac{2}{3}} \quad 两边积分得: \quad u = \frac{4}{3}x^3 y^{\frac{3}{2}} + \varphi(y)$$

$$\frac{\partial u}{\partial y} = 2x^3 y^{\frac{1}{2}} + \varphi'(y) = N = 2x^3 y^{\frac{1}{2}} - 2y^{-\frac{1}{2}}$$

得:
$$\varphi(y) = -4y^{\frac{1}{2}}$$

因此方程的通解为: $y^{\frac{1}{2}}(x^3y-3)=c$

四、(15 分) 求初值问题 $\begin{cases} \frac{dy}{dx} = x^2 - y^2 \\ y(-1) = 0 \end{cases}$ $R: |x+1| \le 1, |y| \le 1$ 的解的存在

区间,并求第二次近似解,给出在解的存在区间的误差估计。

解:
$$M = \max_{(x,y)\in R} |f(x,y)| = 4$$

$$|x-x_0| \le 1 = a, |y-y_0| \le 1 = b, \quad h = \min(a, \frac{b}{M}) = \frac{1}{4}$$

解的存在区间为 $|x-x_0| = |x+1| \le h = \frac{1}{4}$
即 $-\frac{5}{4} \le x \le -\frac{3}{4}$
令 $\varphi_0(x) = y_0 = 0$

$$\varphi_{1}(x) = 0 + \int_{-1}^{x} x^{2} dx = \frac{x^{3}}{3} + \frac{1}{3}$$

$$\varphi_{2}(x) = 0 + \int_{-1}^{x} \left[x^{2} - \left(\frac{x^{3}}{3} + \frac{1}{3}\right)^{2} \right] dx = \frac{x^{3}}{3} - \frac{x^{7}}{63} - \frac{x^{4}}{18} - \frac{x}{9} + \frac{11}{42}$$

$$\left| \frac{\partial f}{\partial v} \right| = \left| -2y \right| \le 2 = L$$

误差估计为:
$$|\varphi_2(x) - \varphi(x)| \le \frac{ML^n}{(n+1)!} h^{n+1} = \frac{1}{24}$$

得 分

五、(15 分) 求方程 $y' = x^3 y^3 - xy$ 的通解

得 分

六、(10分) 求方程 (2x+2y-1)dx+(x+y-2)dy=0 的通解

解:
$$\frac{dy}{dx} = -\frac{2(x+y)-1}{(x+y)-2}$$
, $\Leftrightarrow z=x+y$

则 $\frac{dz}{dx} = 1 + \frac{dy}{dx}$
 $\frac{dz}{dx} = 1 - \frac{2z-1}{z-2} = \frac{z+1}{-z+2}$, $\frac{-z+2}{z+1}$ $dz = dx$

所以 $-z+3\ln|z+1|=x+C_1$, $\ln|z+1|^3=x+z+C_1$

生、(10分) 求方程
$$\mathbf{y} = x \frac{dy}{dx} + \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
 的奇解。

八、(10 分) 设 $\varphi(x)$ 在区间 $(-\infty, +\infty)$ 上连续. 试证明方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \varphi(x)\sin y$

的所有解的存在区间必为 $(-\infty, +\infty)$.

由己知条件,该方程在整个 xoy 平面上满足解的存在唯一及解的延展定理条件. 显然 $y=\pm\pi$ 是方程的两个常数解. 任取初值 (x_0,y_0) ,其中 $x_0\in (-\infty,+\infty)$, $|y_0|<\pi$.记过该点的解为 y=y(x),由上面分析可知,一方面 y=y(x) 可以向平面无穷远处无限延展;另一方面又上方不能穿过 $y=\pi$,下方不能穿过 $y=-\pi$,否则与惟一性矛盾.故该解的存在区间必为 $(-\infty,+\infty)$.