

Electronics Project

Day 01: Timers

contact@42chips.fr

Résumé: Tic Tac, Tic Tac, Tic Tac.

### Chapitre I

#### Préambule

En électronique, un compteur est un circuit intégré numérique destiné à compter le nombre d'impulsions appliquées à son entrée.

Il est composé d'un certain nombre de bascules D, T ou JK.

Le compteur le plus simple est obtenu en mettant en cascade une série de bascules T, le signal à compter étant appliqué à l'entrée de la première bascule; la sortie de cette bascule pilote l'entrée de la deuxième bascule et ainsi de suite.

Le résultat du comptage apparaît sous forme de nombre binaire, la première bascule indiquant le chiffre le moins significatif.



La capacité du compteur, c'est le nombre maximum d'impulsions qu'il peut totaliser. Elle vaut  $2^N$  pour un compteur binaire.

Si l'on dépasse la capacité, le compteur revient à 0 et se remet à compter.

Mais bon, trêve de plaisanteries, voyons maintenant ce qui nous intérese le plus. Comment le faire sur minecraft

### Chapitre II

## Consignes générales

Sauf contradiction explicite, les consignes suivantes seront valables pour tous les TPs

- Le langage utilisé pour ce projet est le C.
- Il n'est pas nécessaire de coder à la norme de 42.
- Les exercices sont très précisément ordonnés du plus simple au plus complexe. En aucun cas nous ne prendrons en compte ni n'évaluerons un exercice complexe si un exercice plus simple n'est pas parfaitement réussi.
- Vos exercices seront évalués par des responsables de l'association 42Chips.
- Vous <u>ne devez</u> laisser <u>aucun</u> autre fichier que ceux explicitement specifiés par les énoncés des exercices dans votre répertoire lors de la peer-évaluation.
- Toutes les réponses à vos questions techniques se trouvent dans les datasheets ou sur Internet. A vous d'utiliser et d'abuser de ces sujets pour comprendre comment réaliser votre exercice.
- Vous <u>devez</u> utiliser la datasheet du microcontroleur qui vous est fourni et commenter les parties importantes de votre programme en renseignant où vous avez trouvé les indices dans le document, et, si nécessaire, expliquer votre démarche. Ne faîtes pas des pavés non plus. Il faut que cela reste clair.
- Vous avez une question? Demandez à votre voisin de droite ou de gauche. Vous pouvez demander sur le salon dédié dans le discord de la piscine ou en dernier recours à un staff.

# Chapitre III

### Tic & tac



Exercice: 00

Timer1

Dossier de rendu : ex00/

Fichiers à rendre : Makefile, main.c

Fonctions Autorisées : avr/io.h

- Vous devez écrire un programme qui permet d'allumer et éteindre la LED D2 (PB1) à une fréquence de 1Hz.
- Vous devez configurer les registres du Timer1 pour commander la LED.
- La boucle infinie du programme doit rester vide.
- Et vous ne devez pas utiliser PORTX.



Vous devez à chaque fois expliquer la fonction et les valeurs assignées aux registres en commentaire !

| Electronics F | Project |
|---------------|---------|
|---------------|---------|

Day 01: Timers

| <b>1</b> 22 <b>E</b> |  |
|----------------------|--|
|                      |  |
|                      |  |

Exercice: 01

Rapport cyclique

Dossier de rendu : ex01/

 $Fichiers \ \grave{a} \ rendre: \texttt{Makefile, main.c}$ 

Fonctions Autorisées : avr/io.h

• Vous devez écrire un programme qui permet d'allumer et éteindre la LED D2 (PB1) à une fréquence de 1Hz et avec un rapport cyclique de 10%.

- Vous devez configurer les registres du Timer1 pour commander la LED.
- La boucle infinie de votre programme doit rester vide.
- Et vous ne devez pas utiliser PORTX.