COMPACTNESS

COLTON GRAINGER (TOPOLOGY MATH 6210)

5. ASSIGNMENT DUE 2018-10-26

- 5.1. **[1, No. 26.1].** Let \mathscr{T} and \mathscr{T}' be two topologies on the set X; suppose that $\mathscr{T}\supset \mathscr{T}'$.
 - (a) What does compactness of X under one of these topologies imply about compactness under the other? If (X, \mathcal{T}) is compact, then (X, \mathcal{T}') is compact. The converse fails to hold generally.
 - (b) If X is compact Hausdorff under both $\mathscr T$ and $\mathscr T'$, then either $\mathscr T$ and $\mathscr T'$ are equal or they are not comparable.

Suppose $\mathscr{T}'\subset\mathscr{T}$ and both spaces are Hausdorff. The identity $(X,\mathscr{T}')\stackrel{\mathrm{id}}{\to} (X,\mathscr{T})$ is a continuous bijection. Since the domain is Hausdorff and the codomain in compact, it's a homeomorphism. \square

5.2. **[1, No. 26.5].** Let A and B be disjoint compact subspaces of the Hausdorff space X. There exist disjoint open sets B and B and B respectively.

Proof. Try to cover one at a time! Fix $a \in A$. As X is Hausdorff, we can find pairs $U_{(a,b)}$ and $V_{(a,b)}$ of open sets to separate the fixed point a from each point b as b varies through a.

Now $\{V_{(\alpha,b_j)}\}_1^n$ is an open cover of B. There's a finite set of points $\{b_j\}_1^n$ corresponding to the finite subcover of B by $\{V_{(\alpha,b_j)}\}_1^n$. Moreover the corresponding $U_{(\alpha,b_j)}$ satisfy $\alpha\in\cap_1^nU_{(\alpha,b_j)}$.

Since α was fixed, and we need to vary α , let's save memory of these open sets for later and denote

$$U_{\mathfrak{a}} = \bigcap_{1}^{\mathfrak{n}} U_{(\mathfrak{a}, \mathfrak{b}_{\mathfrak{j}})} \quad \text{and} \quad V_{\mathfrak{a}} = \bigcup_{1}^{\mathfrak{n}} V_{(\mathfrak{a}, \mathfrak{b}_{\mathfrak{j}})}.$$

Now let α run through A. We generate an open cover $\{U_{\alpha}\}$ of A with each set U_{α} separated from B and V_{α} . There's then a finite subcover $\{U_{\alpha_k}\}_1^m$ with $\{V_{\alpha_k}\}_1^m$ corresponding. A separation of A and B by open sets is given by

$$\bigcup_{1}^{m} U_{\alpha_{i}} \cap \bigcap_{1}^{m} V_{\alpha_{i}} = \emptyset$$
containing A containing B

as desired. \Box

5.3. **[1, No. 26.7].** If Y is compact, then the projection $\pi_1: X \times Y \to X$ is a closed map.

Proof. Let $K \in X \times Y$ be closed. We want to show that $X \setminus \pi(K)$ is X-open.

Let $z \in X \setminus \pi(K)$. Since K is closed and the slice $\pi^{-1}(z)$ is disjoint from K, each point in $\pi^{-1}(z)$ can be separated from K by an open N_{α} in the product space. Call the union of such $N = \bigcup N_{\alpha}$.

Date: 2018-10-26.
Compiled: 2018-10-26.

1

Observe both $N\cap K=\emptyset$ and $N\supset \pi^{-1}(z)$. (Alternatively, the existence of open N follows from the previous exercise, as $\pi^{-1}(z)$ is compact.) By the tube lemma, there's an X-open $U\ni x$ such that $\pi^{-1}(U)\subset N$. By construction, N separates $\pi^{-1}(U)$ from K, so

$$\pi(K) \cap U = \emptyset$$
.

So each point in $X \setminus \pi(K)$ can be contained in an open set $U \subset X \setminus \pi(K)$.

We've shown $X \setminus \pi(K)$ is open; therefore $\pi(K)$ is closed. We conclude that π is a closed map. \square

5.4. **[1, No. 26.11].** Let X be a compact Hausdorff space. Let \mathscr{A} be a collection of closed connected subsets of X that is simply ordered by proper inclusion. Then

$$Y = \bigcap_{A \in \mathscr{A}} A$$

is connected.

*Proof.*¹ By way contradiction, suppose C and D separate $\cap_{A \in \mathscr{A}} A$. Note that C and D are closed in X as closed sets in the closed subspace $\cap A$. Since X is Hausdorff with C and D closed (thus compact), we can find disjoint X-open $U \supset C$ and $V \supset D$ separating C and D.

Because the collection $\mathscr A$ is a family of compact subsets of the compact space X, and $\cap_{A\in\mathscr A}A\subset U\cup V$, we must have

$$\bigcap_{A\in\mathscr{A}}(A\setminus(U\cup V))=\varnothing.$$

Since the collection $\mathscr A$ is linearly ordered, there's a set $B \in \mathscr A$ such that $B \subset U \cup V$. But then B is separated by U and V, which is absurd. So the set $\cap A$ is connected. \square

5.5. **[1, No. 26.12].** Let $p: X \to Y$ be a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact, for each $y \in Y$ (such a map is called a *perfect map*). If Y is compact, then X is compact.

Proof.2 We lead out with the lemma.

Lemma. In the setup above, if U is an open set containing $p^{-1}(\{y\})$, there is a neighborhood W of y such that $p^{-1}(W)$ is contained in U.

For each $y \in Y$, take an X-open $U_y \supset p^{-1}(\{y\})$. Observe

- $X \setminus U_u$ is closed in X
- $p(X \setminus U_u)$ is closed in Y
- $y \in \underbrace{Y \setminus p(X \setminus U_y)}_{\text{open!}}$

Denote the open set $W_y := Y \setminus p(X \setminus U_y)$. By construction $y \in W_y$ and

 $W_{\rm u}$ is the complement of the image of the complement of $U_{\rm u}$,

therefore $\mathfrak{p}^{-1}(\{y\}) \subset \mathfrak{p}^{-1}(W_u) \subset U_u$.

Now continuing the proof, let $\{U_{\alpha}\}$ cover X. Since $p^{-1}(\{y\})$ is compact, there's a finite subcover $\{U_i\}_1^n$ such that

$$\mathfrak{p}^{-1}(\{y\})\subset\bigcup_1^\mathfrak{n}U_j.$$

For each y, obtain an open cover of Y as follows

¹See also https://math.stackexchange.com/questions/1238027

²See also https://math.stackexchange.com/questions/902472/.

- Set $U_y = \bigcup_1^{n_y} U_j^y$ as a finite subcover of $\mathfrak{p}^{-1}(\{y\})$. Take the open W_y corresponding to U_y from the lemma.

Since there's an open W_y containing each $y \in Y$, the collection $\{W_y\}$ is a open cover of Y. Since Y is compact, there's a finite subcover $\{W_{y_k}\}_1^m$ with

$$\mathfrak{p}^{-1}(\{y_k\}\subset \mathfrak{p}^{-1}(W_{y_k})\subset \bigcup_{1}^{n_{y_k}}U_j.$$

Now $X = p^{-1}(Y)$, thus

$$X = \bigcup_{1}^{m} \underbrace{p^{-1}(W_y)}_{\text{all with finite covers}}$$

demonstrating any $\{U_{\alpha}\}$ open cover of X contains a finite subcover. \square

5.6. [1, No. 27.3]. In \mathbf{R}_{K} , the K-topology on the real line:

(a) [0,1] is not compact.

Recall the previous exercise. If (X, \mathcal{T}) and (X, \mathcal{T}') are both compact Hausdorff and comparable, then

Both the standard topology ST and the K-topology induce a subspace topology on [0, 1]. From analysis, we know that [0,1] is compact Hausdorff in ST. Now \mathbf{R}_{K} is strictly finer than ST. By the contrapositive of the previous exercise, either [0, 1] must fail to be compact or fail to be Hausdorff. Clearly [0, 1] is Hausdorff in \mathbf{R}_{K} , so [0,1] fails to be compact. \square

(b) \mathbf{R}_{K} is connected.

Consider $(-\infty,0)$ and $(0,\infty)$ with their usual topologies as subspaces from the real line. Now I claim both sets are induced with the same relative topology from \mathbf{R}_{K} . We focus on the positive valued interval. The following are equivalent

- U is \mathbf{R}_{K} -open in $(0, \infty)$
- U is $(0, \infty) \cap V$ for $V \mathbf{R}_K$ -open in \mathbf{R}
- U is $(0, \infty) \cap W$ for W open in the standard topology and $W \not\ni 0$.

Both intervals are connected in the standard topology. Also, the closures

- $Cl((-\infty,0)) = (\infty,0]$
- $\operatorname{Cl}((0,\infty)) = [0,\infty)$

are connected. Therefore $\mathbf{R}_{K}=(-\infty,0]\cap[0,\infty)$ is connected. \square

(c) \mathbf{R}_{K} is not path connected.

We've just seen that [0,1] is not compact in \mathbf{R}_K , so we'll argue for a contradiction. Suppose $\mathfrak{p}\colon [0,1]\to$ \mathbf{R}_K is a path from p(0) = 1 to p(1) = 0 (going down to the origin). But the image of a compact, connected set under a continuous map is compact and connected, and [0,1] is not compact in \mathbf{R}_K . Absurd!

5.7. [1, No. 27.4]. A connected metric space having more than one point is uncountable.

Proof. Consider two points x and y in the metric space, with a distance function d. Let $t \in (0,1)$ be a parameter to obtain a contradiction.

If there's no α in the metric space such that $d(x,\alpha)=td(x,y)$, then we have a separation of the space into nonempty open sets $\{\beta: d(x,\alpha) < td(x,y)\}$ and $\{\beta: d(x,\alpha) > td(x,y)\}$. \square

5.8. **[1, No. 27.5].** This is a special case of the *Baire category theorem*. Let X be a compact Hausdorff space, let $\{A_n\}$ be a countable collection of closed sets of X. If each A_n has empty interior in X, then the union $\cup A_n$ has empty interior in X.

Given. X a compact Hausdorff space, $\{A_n\}_N$ closed sets with empty interiors.

To prove. Int $(\bigcup_{\mathbf{N}} A_n)$ is empty.

Proof. We can find open sets disjoint from closed sets in X like we could find open sets disjoint from points in the proof "if X is a nonempty compact Hausdorff space and X has no isolated points, then X is uncountable."

Explicitly, if K is a closed set in X and U is an open set such that $U \setminus K \neq \emptyset$, then there's an open set $V \subset U$ such that $CU(V) \subset U \setminus K$. See [1, p. 176].

We'll show any open V has a point $x \notin \bigcup_{\mathbf{N}} A_n$. So let V be open. Since $\text{Int}(A_1)$ is empty, we have by the previous argument $V_1 \subset V \setminus A_1$, with $\text{Cl}(V) \subset V \setminus A_1$. We'll define now a nested sequence of closed sets $\text{Cl}(V)_1 \supset \text{Cl}(V)_2 \supset \cdots$ inductively by finding

$$V_n \subset V_{n-1} \setminus A_n$$
 with $Cl(V_n) \subset V_{n-1} \subset Cl(V_{n-1})$.

Now since X is compact, there exists a point

$$x \in \bigcap_{\substack{N \\ \text{contained in } V}} \text{cl}\left(V_n\right) \quad \text{such that} \quad x \notin \bigcup_{\substack{N \\ N}} A_n,$$

which demonstrates the union $\cup A_n$ has trivial interior. \square

5.9. **[1, No. 28.2].** [0,1] is not limit point compact as a subspace of \mathbf{R}_ℓ .

Demonstration. Consider the open set $\{1\}$ in \mathbf{R}_{ℓ} . We have a sequence

$$\sin\left(\frac{n\pi}{(n+1)2}\right) \xrightarrow{\text{ST}} 1$$

that converges in the standard topology, but fails to converge in the lower limit topology \mathbf{R}_ℓ . \Box

5.10. **[1, No. 28.3].** Let X be limit point compact.

- (a) If $f: X \to Y$ is continuous, does it follow that f(X) is limit point compact?
 - No. Consider the continuous projection of sets in $N \times \{0, 1\}$ onto N (where $\{0, 1\}$ is an indiscrete space and N discrete).
- (b) If A is a closed subset of X, does it follow that A is limit point compact?

Yes. Any infinite subset of A has a limit point in X as setup above.

(c) If X is a subspace of the Hausdorff space Z, does it follow that X is closed in \mathbb{Z} ?

No. Consider the minimal uncountable well-ordered set $S_{\Omega} \subset \overline{S_{\Omega}}$.

REFERENCES

[1] J. R. Munkres, *Topology*, 2nd ed. Hardcover; Prentice Hall, Inc., 2000 [Online]. Available: http://www.worldcat.org/isbn/0131816292