

GRADO EN INGENIERÍA INFORMÁTICA. ESPECIALIDAD: COMPUTACIÓN.

APRENDIZAJE AUTOMÁTICO

4er Curso

7 de Febrero de 2014

Nombre:			
DNI:			

- 1. (0.5 punto) Define las fases de un problema de aprendizaje automático.
- 2. *a*) (1 punto) Explicar brevemente el método de *Eliminación de Candidatos* y escribir su algoritmo.
 - b) (0.5 punto) Para los ejemplos siguientes, ejecuta dicho algoritmo.

3. Dado el siguiente conjunto de datos:

x_1	x_2	x_3	x_4	y
a	0	Medio	FF	0
a	0	Alto	10	1
a	2	Bajo	10	1
a	1	Medio	10	0
C	2	Medio	10	1
b	2	Medio	10	0
C	2	Alto	10	1

- a) (1.5 puntos) Según el algoritmo ID3, calcular la entropía del atributo x_4 .
- b) (2 puntos) Calcular, mediante el algoritmo AQ, la primera regla que se puede extraer del siguiente conjunto de datos, considerando como criterio de selección el número de ejemplos cubiertos y luego la longitud de la regla.

- 4. Considerese el siguiente problema de programacion logica inductiva:
 - Ejemplos positivos: p(1,3) p(3,5)
 - Ejemplos negativos: p(2,4) p(4,6)
 - Conocimiento base: q(1,2) q(2,3) q(3,4) q(4,5) q(5,6) r(1) r(3) r(4) r(5)

Supongamos que el algoritmo FOIL aplicado a este problema se encuentra en un momento dado construyendo la siguiente regla: p(A,B):-q(A,X),q(X,B),r(A).

- a) (1.5 punto) ¿Devolverá esta regla como una de las que forman parte del programa aprendido, o continuara añadiendo literales a la condición?.
 Si es así ¿cuáles son los literales candidatos y cuál escogerá?
- b) (1.5 punto) ¿Sería ésta la única regla que se aprendería, o devolvería alguna mas?
 En ese caso ¿qué otra(s) regla(s) devolvería?

5. En redes neuronales:

- *a*) (1 punto) Describe DETALLADAMENTE el algoritmo del *Descenso por Gradiente* para el perceptrón
- b) (0.5 punto) Deduce la expresión de ∇E para una función de activación lineal.