2022-2023 学年度第一学期高三期末调研考试

化学试题

注意事项:

do

53

准名

崧

 $\mathbf{\overline{M}}$

世

答

- 1. 答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在 答题卡上。写在本试券上无效。
 - 3. 考试结束后,将本试卷和答题卡一并交回。

- 一、单项选择题: 本题共 9 小题,每小题 3 分,共 27 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。
- 1. 2022 年 11 月 11 日,国务院联防联控机制综合组发布"通知",公布了进一步优化防 控工作的二十条措施,以利于更好做好疫情防控。下列说法正确的是
- A. 防护服、护目镜、防疫口罩中都含有高分子材料
- B. 核酸广泛存在于动植物细胞中, 和油脂一样是一种酯类物质
- C. 84 消毒液是一种含氮的强氧化性消毒剂,常用于人体皮肤消毒
- D. 医用酒精是质量分数为 75%的乙醇水溶液, 其杀菌原理是使细菌蛋白变性
- 2. 铅同位素的研究最初为模式年龄定年和探讨成矿物质来源的示踪。自然界中sz Pb 有 204 Pb、205 Pb、205 Pb、205 Pb、4 种同位素,其中205 Pb、205 Pb 为放射性成因同位素,由 翌 U、器 Th 放射性衰变产生。下列说法错误的是
- A. 元素发生放射性衰变, 会有新的粒子产生
- B. 可用质谱法区分238 U 和222 Th
- C. 256 Pb 含有的中子数和质子数之差为 124
- D. 铅的 4 种同位素属于铅的 4 种不同核紊
- 3. 化学学科核心素养中提出了宏观辨识与微观探析,要求能从不同层次认识物质的多样性,能从微粒水平认识物质的组成、结构等。下列叙述的化学用语或图示表达正确的是
 - A. 基态钛原子的外围电子排布式: 3d24s2
 - B. SO, 的 VSEPR 模型:

- C. 用电子式表示 HCl 的形成过程: H· + . Cl: H+[: Cl:]
- D. 异丁烷的球棍模型:

高三化学试题第1页(共8页)

- 4. 在化学元素史上,氟元素的发现是参与人数极多、工作极难的研究课题之一。从发现氦000到制得单质氟,历时 118 年之久。设 N_{Λ} 为阿伏加德罗常数的值,下列说 法正确的是
 - A. 在标准状况下, 22.4 L F₂ 与足量水反应生成 O₂ 的分子数为 0.25 N_A
 - B. 1 mol 氟蒸气和 1 mol 氢气充分反应, 转移电子数小于 2 Na
 - C. 在标准状况下, 22.4 L HF 所含的质子数为 10 N_x
 - D. $1 L 1 mol \cdot L^{-1}$ 的氟化钠水溶液中 F^- 与 OH^- 离子数之和大于 N_{\star}
- 5. 古代酒农用硫磺黑烤过的橡木桶盛放葡萄酒,可以延长葡萄酒的保质期,二氧化硫作为葡萄酒的添加剂历史悠久。下列反应的离子方程式书写正确的是
 - A. 二氧化硫在葡萄酒中的抗氧化作用: 2SO₂+H₂O+O₂ == 2H++2SO₂2-
 - B. 1.2 mol 二氧化硫通人含 2 mol 氢氧化钾的溶液中, SO₂+2OH-—SO₂-+H₂O
 - C. 少量 SO₂ 气体通入 NaClO 溶液中: SO₂+2ClO⁻+H₂O -SO₂²⁻+2HClO
 - D. 硫代硫酸钠和稀硫酸反应生成二氧化硫: S₂O₃²⁻+2H⁺ = S ↓ +SO₂ ↑ +H₂O
- 6. 碳酰氯 (COCl₂) 俗名光气,熔点为-118 ℃,沸点为 8.2 ℃,週水迅速水解,生成 氯化氢。光气可由氯仿 (CHCl₃) 和氧气在光照条件下合成。下列说法错误的是

- A. 装置乙的主要作用是吸收尾气中的氯化氢, 且能防倒吸
- B. 装置丁中发生反应的化学方程式为 2CHCl。+O。 光照 2COCl。+2HCl
- C. 冰水混合物的作用是降温,主要是防止 CHCl、挥发
- D. 装置的连接顺序应为 d→a→b→e→f→a→b→c
- 7. 用体积相同的 15 mol·L⁻¹浓 HNO₃、4 mol·L⁻¹稀 HNO₃ 分别将两份等质量的铜片完全溶解,观察到现象:①Cu 和过量浓 HNO₃ 反应,所得溶液为绿色。②Cu 和过量稀 HNO₃ 反应,所得溶液为蓝色。用注射器分别取①②中等体积的少量溶液,夹上弹簧夹,完成如下实验:

实验	仪器	操作	现象
I	₩	向外拉动注射	①中液面上方呈红棕色,
П	溶液	器活塞	②中无明显变化

下列说法正确的是

- A. ①中产生 NO₂, ②中产生 NO, 说明氧化性: 稀 HNO₃>浓 HNO₃
- B. I 中溶液上方呈红棕色是因为发生反应: 2NO+O₂ == 2NO₂
- C. 溶解等量的 Cu, 消耗 HNO₃(浓)的物质的量小于 HNO₃(稀)
- D. 通过以上实验,可知溶液的绿色是溶液中溶解了二氧化氮所致 高三化学试题第2页(共8页)

- 8、用下图 I 所示裝置通电 10 min 后、去掉直流电源、连接成图 II 所示裝置,可观察到图 II 所示裝置 U形管左端铁电极表而析出白色胶状物质,U形管右端液面上升。下列说法正确的是
 - A. 同温、同压下, 装置 I 中两电极 上收集到的气体体积相等
- B. 装置 I 通电 10 min 后铁电极周围溶液 pH 增大

- C. 用装置Ⅱ进行实验时石墨电极上的电极反应为 2H++2e---H2 ↑
- D. 用装置 [[进行实验时铁电极上的电极反应为 Fe-2e-Fe²⁺
- 9. 2022 年 6 月 11 日国家航天局公布了"祝融号"火星车拍摄的首批科学影象图。火星 气体及岩石中富含的 X、Y、Z、W 为原子序数递增的 4 种短周期元素,其中 Z 为金 属元素,其单质与冷水剧烈反应,X、W 为同一主族元素,Y 是地壳中含量最高的 元素,火星岩石中含有 W 的最高价化合物 Z₂WY₃。下列说法正确的是
 - A. Z位于元素周期表第三周期 IIIA 族
 - B. 最高价氧化物对应水化物的酸性: X>W
 - C. 原子半径: Z>W>Y>X
 - D. Z和Y能形成阴阳离子个数比为1:2和1:1的两种化合物
- 二、不定项选择题:本题共4小题,每小题4分,共16分。在每小题给出的四个选项中,有一项或网项符合题目要求。若正确答案只包括一个选项,多选时,该小题得0分;若正确答案包括两个选项,只选一个且正确的得2分,选两个且都正确的得4分,但只要选错一个,该小题得0分。
- 10. 双极膜能够在直流电场作用下将 H_2O 解离为 H^+ 和 OH^- 。以维生素 C 的钠盐 $(C_6H_7O_8Na)$ 为原料制备维生素 C $(C_6H_8O_6$,具有弱酸性和还原性)的装置如图。下列说法正确的是

- A. a 离子是 H+, b 离子是 OH-
- B. 此装置最终既可以得到维生素 C, 又可以得到 NaOH
- C. 将 X 极区的 Na₂ SO₄ 替换为 C₆H₇O₆Na,可以提高维生素 C 的产率
- D. X 极的电极反应式为 4OH-+4e--O₂ ↑ +2H2O

高三化学试题第3页(共8页)

11. 常温下,用 NnOH 溶液调节 H,PO, 溶液的 pH,溶液中含磷微粒的物质的量分数与 pH 的关系如图所示。下列说法错误的是

- A. H₃PO₄ 的二级电离常数为: Ka₂=10^{-7.25}
- B. M点时, 溶液中 $c(Na^+)>c(H_2PO_{\iota}^-)=c(HPO_{\iota}^{2-})>c(OH^-)>c(H^+)$
- C. pH=2 时,溶液中水的电离程度比纯水大
- D. pH=5 时, 溶液中 $c(Na^+)=c(H_2PO_4^-)+2c(HPO_4^{2-})+3c(PO_4^{3-})$
- 12. 在容积为 1 L 的恒容密闭容器中发生反应 x A(g) +y B(g) ←z C(g), 图 I 表示 200 ℃时容器中 A、B、C 的物质的量随时间的变化关系,图 II 表示不同温度下达到平衡时 C 的体积分数随起始 n(A) 的变化关系。则下列结论正确的是

- A. 由图 Π 可知反应 x A(g)+y B(g)=z C(g)的 $\Delta H < 0$, 且 a=2
- B. 200 ℃时,反应从开始到平衡的平均速率 v(A)=0.04 mol·L⁻¹·min⁻¹
- C. 200 ℃时, 向容器中充人 2 mol A 和 1 mol B, 达到平衡时, A 的体积分数小于 0.5
- D. 若在图I所示的平衡状态下,再向体系中充入 He, 重新达到平衡前 v(E) > v(逆)
- 13. 超细银粉在光学、生物医疗等领域有着广阔的应用前录。由含银废催化剂制备超细银粉的过程如下:

- 资料: (1) 含银废催化剂成分: 主要含 Ag、α-Al₂O₂ 及少量 MgO、SiO₂、K₂O、 Fe₂O₃ 等。
 - (2) α-Al₂O₃ 为载体,且不溶于硝酸。 高三化学试题第4页(共8页)

下列说法错误的是

- A. 过程 I 中, 得到的滤流的主要成分是, a-Al₂O₃、SiO₃
- B. 过程 [[中,检验沉淀表面的 Fe3+已洗涤干净的试剂可以用 KSCN 溶液
- C. 过程IV中,发生反应的氧化剂和还原剂物质的量之比为1:4
- D. 过程 V 可以利用电能转化为化学能的装置去实现

三、非选择: 共57分

14、(14分) 三氯化六氨合钴[Co(NH₃)₆]Cl, 是橙黄色、微溶于水的配合物, 是合成其它一些含钴配合物的原料。下图是某科研小组以含钴废料(含少量 Fe、AI 等杂质)制取[Co(NH₃)₆]Cl, 的工艺流程:

已知:

- j. 浸出液中含有 Co2+、Fe2+、Fe3+、Al3+等。
- || . $K_{sp}[Co(OH)_2] = 1 \times 10^{-14.2}$, $K_{sp}[Co(OH)_3] = 1 \times 10^{-43.7}$, $K_{sp}[Fe(OH)_3] = 1 \times 10^{-37.4}$, $K_{sp}[Al(OH)_3] = 1 \times 10^{-32.9}$
- Ⅲ.[Co(NH₃)₆]²⁺具有较强还原性。
- |V. 溶液中金属离子物质的量浓度低于 $1.0\times10^{-5}\,\mathrm{mol}\cdot\mathrm{L}^{-1}$ 时,可认为沉淀完全。 回答下列问题:
- (1) 为加快废料与盐酸的反应速率,采用的方法有 (任写二条)
- (2) 写出加"适量 NaClO,"发生反应的离子方程式
- (3) "加 Na₂CO₃ 调 pH 至 a"会生成两种沉淀,同时得到含 c(Co²⁺) = 0.1mol L⁻¹的滤液,调节 pH 的范围为
- (4)①若无活性炭作催化剂,所得固体产物中除[Co(NH₃)₆]Cl₃外还会有大量二氯化 一氯五氨合钴[Co(NH₃)₅Cl]Cl₂和三氯化五氨一水合钴[Co(NH₃)₅H₂O]Cl₃ 晶体,这体现了催化剂的______性。
 - ② "氧化"时, 应先加入的物质是 (填"氨水"或"H₂O₂")。
 - ③"氧化"时,相同时间内不同的反应温度对 产品的影响关系如图,60 ℃后随温度升高, Co 的氧化率下降的主要原因是
- (5) 将"氧化"后的混合物趁热过滤,待滤液冷却后加人适量浓盐酸,过滤、洗涤、干燥,得到[Co(NH₃)₅]Cl₃晶体。该过程中加人浓盐酸的目的是_____。

高三化学试题第5页(共8页)

- 15. (14分) 富马被亚铁 [Fe(OOC-CH-CH-COO)相对分子质量为 170] 常用于治疗缺铁性贫血,也可作食品营养强化剂。某化学兴趣小组用富马酸 [(HOOCCH-CHCOOH)相对分子质量为 116] 和 FeSO。制备富马酸亚铁,并对其纯度进行测定,过程如下:
 - I. 富马酸亚铁品体的制备
 - 步骤 1: 称取 4.64 g 富马酸置于仪器 A 中, 称取一定量的水加人仪器 A 中, 开启 搅拌桨搅拌, 并开启调温型电热套使溶液温度达到 80 ℃时, 加人预先溶解 好的纯碱溶液, 在生成富马酸二钠约 5 min 后, 调节 pH 在 6.5~6.7 之 间,继续加热升温, 反应 15 min, 即可得到富马酸二钠溶液。

步骤 3. 冷却、过滤,洗涤沉淀,然后水浴干燥,得到粗产品 3.06 g。
回答下列问题:
(1) 仪器 A 的名称是, 球形冷凝管的作用是。
(2) 步骤 1 中调 pH 最好选用的酸为。
a. 盐酸 b. 硫酸 c. 硝酸
(3) 步骤 2 中生成富马酸亚铁的化学方程式为。
(4) 步骤 2 在回流过程中一直持续通人氮气的目的是。若不通氮
气,最后得到的粗产品的质量会(填"不变""偏大"或"偏小")。
Ⅱ. 产品纯度的测定
(5) 取 0.400 g 产品置于 250 mL 锥形瓶中,加人 15.00 mL 硫酸,加热溶解后冷
却,再加人 50.00 mL 新煮沸过的冷水和 2 滴邻二氮菲指示液,此时溶液呈红
色;立即用 0.1000 mol·L-1的硫酸高铈铵(NH ₄) ₂ Ce(SO ₄) ₃ 标准液滴定(还
原产物为 Ce ³⁺),滴定终点溶液变为浅蓝色。平行滴定三次,平均消耗
21.60 mL 标准液。则产品中富马酸亚铁的质量分数为

高三化学试题第6页(共8页)

16. (14 分) 合成氨工业在 20 世纪初期迅速发展,开始用氨作炸药工业的原料,为战争服务。第一次世界大战结束后,氨转向为农业、工业服务。50 年代后合成氨的原料构成发生重大变化,近 30 年来合成氨工业发展很快,三位化学家因为合成氨反应获得诺贝尔奖。

回答下列问题:

(1) 2007 年度诺贝尔化学奖获得者格哈德·埃特尔, 确认了合成氨反应机理。673 K时, 各步反应的能量变化如图, 其中吸附在催化剂表面上的粒子用"*"标注。

- ①图中决速步骤的反应方程式为
- ②工业上投料时 $c(N_2): c(H_2)=1:2.8$,试从化学反应平衡和化学反应速率的角度解释其原因:
- (2) NH_3 与 O_2 作用分别生成 N_2 、NO、 N_2 O 的反应均为放热反应。工业尾气中的 NH_3 可通过催化氧化为 N_2 除去。将一定比例的 NH_3 、 O_2 和 N_2 的混合气体以一定 流速 通过 装 有 催化 剂 的 反 应 管, NH_3 的 转 化 率、 N_2 的 选 择 性 $\left\lceil \frac{2n(N_2)}{\sqrt{NU_3}} \times 100\% \right\rceil$ 与温度的关系如图。
 - ①其他条件不变,在 175~300 ℃花 图内升高温度,出口处氮氧化物 的量_____(填"增大"或"减 小"),NH,的平衡转化率____ (填"增大"或"减小")。
 - ②为能更有效除去尾气中的 NH₃, 且使 N₂ 的选择性高,应选择的最 佳温度为_____。

反应 I: $CH_4(g)+H_2O(g)$ = $CO(g)+3H_2(g)$

反应 []: $CH_4(g)+2H_2O(g)\longrightarrow CO_2(g)+4H_2(g)$

反应Ⅲ: CO(g)+H₂O(g)=CO₂(g)+H₂(g)

高三化学试题第7页(共8页)

(4) 利用磷盐分子作为质子导体,可实现高速率电催化还原反应合成 NH₃, 其原理 如图所示。

此过程中涉及到生成 NH₃ 的反应有

17. (15分)

高温超导材料广泛应用于超导输电、超导计算机、磁悬浮列车和热核聚变反应堆等。将 $BaCO_3$ 、 $Y_2(CO_3)_3$ 和 $CuCO_3$ 混合在高温下反应可制得新型节能高温超导体钇钡铜氧(其中 Y 显 +3 价,Cu 显 +2 、 +3 价)。 回答下列问题:

- (1) Y(钇)是一种重要的稀土金属元素,与 Sc(钪)同族相邻,则 Y元素在元素 周期表中的位置为
- (3) 基态 Cu3+ 离子价层电子的电子排布图 (轨道表示式) 为
- (5) 在 BaCO₃ 中, 'C 原子采用______ 杂化, 第一电离能: C _____ O (填 ">" 或 "<")。 BaCO₃、CaCO₃、MgCO₃ 受热分解分别生成 BaO、CaO、MgO 其中 BaO、CaO、MgO 熔点 较高 的是 (填化学式)。

(6) 钇钡铜氧的晶胞结构如图,根据晶胞结构确定其化学式为_________,若该晶体 原尔质量为 M g · moL⁻¹,阿伏加德罗常数值为 N_A,则晶体密度为______

高三化学试题第8页(共8页)