# 3. Ethernet

- IEEE started a project, called **Project 802** to set standard to enable intercommunication among equipment from variety of manufacturers.
- IEEE has subdivided the data link layer into two sublayers: Logical Link Control (LLC) and Media Access Control (MAC).
- IEEE has also created several physical layer standard for different LAN protocol.

| LLC: Logical link control MAC: Media access cont |                                          |                              |                             |     |  |  |
|--------------------------------------------------|------------------------------------------|------------------------------|-----------------------------|-----|--|--|
| Upper layers                                     |                                          | Upper layers                 |                             |     |  |  |
|                                                  |                                          | LLC                          |                             |     |  |  |
| Data link layer                                  | Ethernet<br>MAC                          | Token Ring<br>MAC            | Token Bus<br>MAC            | ••• |  |  |
| Physical layer                                   | Ethernet<br>physical layers<br>(several) | Token Ring<br>physical layer | Token Bus<br>physical layer | ••• |  |  |
| Transmission medium                              |                                          | Transmission medium          |                             |     |  |  |
| OSI or Internet model                            |                                          | IEEE Standard                |                             |     |  |  |

- Data link layer include:
  - Two sublayers: LLC, MAC
  - Framing
  - Needs for LLC
- LLC- Logical Link Control
  - Data link control handles framing, flow control and error control.
  - In IEEE project 802, flow control, error control and part of the framing duties are collected into one sublayer called LLC.
  - Framing is handle by both LLC and MAC.

LLC provides one single data link control protocol for all IEEE LANs. MAC provides different protocols for different LANs.

 A single LLC protocol can provide interconnectivity between different LANs because it makes the MAC sublayer transparent..

### Framing

- LLC define PDU (Protocol Data Unit), somewhat similar to HDLC.
- Header contain control field like HDLC, which is used for flow and error control.
- The two header fields define the upper layer protocol at the source and destination that uses LLC. This fields are called **Destination Service Access Point (DSAP)** and **Source Service Access Point (SSAP)**.
- A frame defined in HDLC is divide into PDU at the LLC sublayer and a frame at MAC sublayer.
- HDLC (High Level Data Link Control)



- Need for LLC
  - The purpose of the LLC is to provide flow and error for the upper layer protocol.
  - Example: If a LAN or several LANs are used in isolated system.
    - LLC may be needed to provide flow and error control for the application layer protocols.



- Media Access Control
  - It defines the specific access method for each LAN.
  - Part of framing function is also handled by the MAC layer.
- Physical layer
  - It is dependent on the implementation and type of physical media used.
  - IEEE defines detailed specification for each LAN implementation.
- Summary
  - Ethernet is a most widely used local area network.
  - The data link layer of Ethernet consist of LLC sub layer and MAC sublayer.
  - MAC sublayer is responsible for the operation of CSMA/CD access method and framing.

Ethernet evolution through four generations



- The original Ethernet was created in 1976 at Xerox's Palo Alto Research Center (PARC).
- From that time it has gone through four generation: Standard Ethernet (10Mbps), Fast Ethernet (100Mbps), Gigabit Ethernet (1Gbps) and Ten-Gigabit Ethernet (10Gbps).
- Topics discuss in this section are:
  - MAC sublayer
  - Physical Layer

### MAC sub layer

- MAC sublayer governs the operation of the access method.
- It also frames data received from the upper layer and passes them to the physical layer.

#### • Frame Format:

- It contain 7 fields.
- Ethernet does not provides any mechanism for acknowledging receiving frame so it is unreliable.
- Acknowledgement must be implemented at the higher layers.

Preamble: 56 bits of alternating 1s and 0s.

SFD: Start frame delimiter, flag (10101011)



### **MAC Frame (802.3)**

- Preamble: 56 bits of alternating 0s and 1s.
  - 56 bits alerts receiving system to the coming frame and enables it to synchronizing its input timing.
  - Pattern provides only an alert and a timing pulse.
  - Preamble is actually added at the physical layer and is not (formally) part of the frame.
- SFD (Start Frame Delimiter)
  - Signals beginning of the frame.
  - It warns station that this is last chance for synchronization.
  - Last bit is 11 and alerts the receiver that the next field is the destination address.
- DA (Destination Address)
  - 6 byte field and contains the physical address of the destination stations to receive the packet.
- SA (Source Address)
  - 6 byte field and contains the physical address of the sender of the packet.

### **MAC Frame (802.3) (Cont...)**

- Length or type
  - The original Ethernet used this field as the type field that define the upperlayer protocol using the MAC frame.
  - IEEE standard used it as the length field to define the number of bytes in the data field.

#### Data:

- Data encapsulated from the upper-layer protocol.
- Minimum 46 and maximum 1500 bytes.

#### CRC:

Carries error detection information.

### Frame Length



**Frame Length** 

Minimum: 64 bytes (512 bits)

Maximum: 1518 bytes (12, 144 bits)

### **Addressing**

- Each station on an Ethernet network has its own Network Interface Card (NIC).
- NIC fits inside the station and provides the station with a 6-byte physical address which is normally written in hexadecimal notation with colon between bytes.

6 bytes = 12 hex digits = 48 bits

Byte 6

#### **Unicast and Multicast addresses**

Unicast: 0; multicast: 1

Byte 1

Byte 2

### Addressing (Cont...)

- A source address is always a unicast address because frame comes only from one station.
- The destination address can be unicast, multicast or broadcast.
- If least significant bit of the first byte in destination address is 0 then it is unicast otherwise multicast.
- The broadcast address is a special case of the multicast address, the recipients are all the station on the LAN. A broadcast destination address is forty-eight 1s.
- unicast :- one to one
- Broadcast :- one to many

Que: Define the type of the following destination addresses:

a. 4A:30:10:21:10:1A

b. 47:20:1B:2E:08:EE

c. FF:FF:FF:FF:FF

#### **Solution**

- To find the type of the address, we need to look at the second hexadecimal digit from the left.
  - If it is even, the address is unicast.
  - If it is odd, the address is multicast.
  - If all digits are F's, the address is broadcast.
- a. This is a unicast address because A in binary is 1010 (Even).
- b. This is a multicast address because 7 in binary is 0111 (Odd).
- c. This is a broadcast address because all digits are F's.

• Show how the address 47:20:1B:2E:08:EE is sent out on line.

#### **Solution**

• The address is sent left-to-right, byte by byte; for each byte, it is sent right-to-left, bit by bit, as shown below:



11100010 00000100 11011000 01110100 00010000 01110111

### Physical layer:

It defines several physical layer implementation.



### Encoding and Decoding:

- All implementations use digital signaling at 10 Mbps.
- At the sender, data are converted to a digital signal using Manchester Scheme.
- At the receiver, the received signal is interpreted as Manchester and decoded onto data.

(Manchester encoding is self-synchronous, providing a transition at each bit interval.)



Twisted pairs or fibers

#### 10Base5: Thick Ethernet

- 1<sup>st</sup> implementation is called 10Base5 Thick Ethernet or Thicknet.
- The name derives from size of the cable.
- It is to hard to band with your hand.



- Characteristics:
  - It use bus topology with external transceiver connected via a tap to a thick coaxial cable.
- The transceiver is responsible for transmitting, receiving, and detecting collision.
- Connected to a station via transceiver cable that provide separate path for sending and receiving.
- This means collision can only occur in coaxial cable

#### 10Base2: Thin Ethernet

- 2<sup>nd</sup> implementation is called 10Base2, Thin Ethernet or Chepernet.
- It also uses bus topology, but cable is much thinner and more flexible.



### Characteristics:

- The cable can bent to pass very close to the station.
- In this case transceiver is normally part of NIC, which is installed inside the station.
- The collision is occur in thin Ethernet.
- Its implementation is more cost effective than 10Base5.
- Installation is simpler because the thin coaxial cable is very flexible.

#### 10BaseT: Twisted Pair Ethernet

- 3<sup>rd</sup> implementation is called 10BaseT or twisted-pair Ethernet.



#### Characteristics:

- It uses physical star topology, station are connected with hub via 2 pair of twisted cable.
- Two pairs of twisted pair cable creates two path (one for sending and one for receiving) between the station and the hub.
- Collision is happen in HUB.
- Compared to 10Base5 and 10Base2, hub actually replaces the coaxial cable as far as collision concern.
- Maximum length of the twisted cable is 100m.

#### 10BaseF: Fiber Ethernet

4<sup>th</sup> implementation is called 10BaseF or Fiber Ethernet.



### Characteristics:

- It is a types of optical fiber 10-Mbps Ethernet.
- It uses star topology to connect station to hub.
- Station are connected to hub using 2 fiber-optic cables.
- Maximum length of the Fiber cable is 2000m.

| Characteristics | 10Base5             | 10Base2            | 10Base-T   | 10Base-F   |
|-----------------|---------------------|--------------------|------------|------------|
| Media           | Thick coaxial cable | Thin coaxial cable | 2 UTP      | 2 Fiber    |
| Maximum length  | 500 m               | 185 m              | 100 m      | 2000 m     |
| Line encoding   | Manchester          | Manchester         | Manchester | Manchester |

- Fast Ethernet was designed to compete with LAN protocols.
- It is also known as 802.3u.
- It can transmit data 10 times faster at rate of 100Mbps.
- Goals of Fast Ethernet
  - Upgrade the data rate to 100 Mbps.
  - Make it compatible with standard Ethernet.
  - Keep the same 48-bit address.
  - Keep the same frame format.
  - Keep the same minimum and maximum lengths.

### MAC sub layer

- It use star topology.
- For star topology there are 2 choices: Half-Duplex and Full-Duplex.

| Half Duplex                                                   | Full Duplex                                                  |
|---------------------------------------------------------------|--------------------------------------------------------------|
| Stations are connected via hub.                               | The connection is made via switch with buffers at each port. |
| The access method is same (CSMA/CD) for half duplex approach. | For full duplex fast Ethernet, there is no need for CSMA/Cd. |

### Autonegotiation

- It allows two devices to negotiate the mode or data rate of operation. It was designed particularly for the following purposes:
  - To allow incompatible devices to connect one another.
  - To allow one device to have multiple capabilities.
  - To allow a station to check a hub's capabilities.

### Physical Layer

- Physical layer in Fast Ethernet is more compatible than standard Ethernet.
- Fast Ethernet Topology
  - Fast Ethernet is designed to connect two or more station together.
  - If there are only two station, they can be connected by point to point network.
  - Three or more stations need to be connected in a star topology with hub or a switch at the center.





a. Point-to-point

b. Star

### • Implementation

- It implementation at physical layer can be categorized as either two-wire or four-wire.
- 2 wire implementation can be
  - Category-5 UTP (100Base TX)
  - Fiber optic cable (100Base FX)
- 4 wire implementation is designed for
  - Category-3 UTP (100Base T4)



- 100Base TX
  - It uses 2 twisted pair cable (Either category 5 UTP or STP).
- 100Base FX
  - It uses two pair of fiber optic cable.
  - Optical fiber can easily high bandwidth requirement by using simple encoding scheme.
- 100Base T4
  - 100Base T4 uses category-3 or higher UTP.
  - It uses 4 cables of UTP for transmitting 100Mbps.

- The need for an even higher data rate resulted in the design of the Gigabit Ethernet protocol (1000 Mbps).
- The IEEE committee calls the standard 802.3z.
- Goal :
  - Upgrade data rate to 1 Gbps.
  - Make it compatible with standard or Fast Ethernet.
  - Use same 48 bit address.
  - Use same frame format.
  - Keep same maximum and minimum frame length.
  - To support Autonegotiation as defined in Fast Ethernet.

### MAC Sublayer

- Gigabit Ethernet has 2 distinctive approach for medium access:
  - Half duplex
  - Full duplex.
- Almost all implementation of gigabit follows full duplex mode.
- Half duplex approach to show that gigabit Ethernet can be compatible with the previous generation

### Full Duplex

- In this, central switch connected to all computer or other switch.
- In this mode, each switch has buffers for each input port in which data are stored until they are transmitted.
- So there is no collision, it means that there is no CSMA/CD is used.

In the full diplex mode of gigabit Ethernet, there is no collision; the maximum length of cable is determined by the signal attenuation in the cable.

### Half Duplex

- In this mode switch can be replace by hub, which is act as the common cable in which collision might occur.
- It used CSMA/CD protocol.
- Maximum length of network is dependent on the minimum frame size.
- Three methods:
  - Traditional
  - Carrier Extension
  - Frame Bursting

#### Traditional

- We keep the minimum length of the frame as in traditional Ethernet (512 bits).
- Maximum length of the network is 25m.
- It is suitable if all stations are in one room.
- It may not even long enough to connect the computer in one office.
- Carrier Extension
  - To allow long network, we increase minimum frame length.

The carrier Extension approach defines the minimum length of a frame as 512 bytes. This means that the minimum length is 8 times longer.

- This method forces a station to adding extension bit to any frame, that is less than 4096 bits.
- This allows a length of 100m from the hub to the station.

### Frame Bursting

 Carrier extension is very inefficient if we have a series of short frame to send, each frame carries redundant bit.

# Instead of adding an extension to each frame, multiple frames are sent.

- To make these multiple frames look like one frame, extra bit is added between the frames so that channel is not idle.
- In other word method deceives other station onto thinking that a very large frame has been transmitted.

### Physical layer topology

- 2 Stations
  - Point to point
- 3 or more:
  - · Star topology with hub or switch
- 2 or more star topology





a. Point-to-point

b. Star



c. Two stars



d. Hierarchy of stars

Implementation



• It does can not use Manchester encoding scheme because it involves a very high bandwidth

| Characteristics | 1000Base-SX         | 1000Base-LX        | 1000Base-CX | 1000Base-T |
|-----------------|---------------------|--------------------|-------------|------------|
| Media           | Fiber<br>short-wave | Fiber<br>long-wave | STP         | Cat 5 UTP  |
| Number of wires | 2                   | 2                  | 2           | 4          |
| Maximum length  | 550 m               | 5000 m             | 25 m        | 100 m      |
| Block encoding  | 8B/10B              | 8B/10B             | 8B/10B      |            |
| Line encoding   | NRZ                 | NRZ                | NRZ         | 4D-PAM5    |