Change of basis

Exercise

Find a basis for P_1 the set of *all* polynomials

Every polynomial is a linear combination of monomials,

$$a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots a_n x^n$$

So $B = \{1, x, x^2, x^3, \dots, x^n\}$ is a spanning set for P. It is linearly independent and also infinitely long ... cool.

Lets write a proof by contradiction that the set of al monomials is linearly independent:

Suppose there is some finite set of B with n vectors that is linearly $\textit{dependent}\ \{x^{P_1}, x^{P_2}, \dots, x^{Pn}\}$ where $P_1 < p_2 < p_3 \dots < p_n$. Then there are some scalars (not all zero), c_1, c_2, \dots, c_n so that $c_1 x^{P_1} + c_2 x^{P_2} + \dots + x^{P_n} = 0$

This polynomial is 0 for all values of x. BUT the fundamental theorem of algebra says that a nonzero polynomial can have at most n roots. Thus, the polynomial would have to be the zero polynomial with $c_1=c_2=\cdots=c_n=0$. This is a contradiction, \implies any finite set of B is linearly independent.

Dimension

Def:

- 1. A vector is #finite_dimensional if it has a basis consisting of finitely many vectors
- 2. A vector space is #inifinite_dimensional if it has no finite basis
- 3. The vector space $\vec{0}$ is #zero_dimensional

Coordinates

Lets move to something that is more concrete. Lets say we have a finite basis $B=\left\{ ec{b}_1,\ldots,ec{b}_n
ight\}$ for the vector space V.then any $ec{v}\in V$ can be written uniquely as a linear combination of $ec{v}=c_1ec{b}_1+\cdots+c_nec{b}_n$

The unique coefficient c_1,\ldots,c_n are called the #coordinates of \vec{v} relative to the basis β , (or #b-coordinates). The entries in the coordinate vector are the coordinates of this combination. We can see this easily with the x y plane - to specify a point $(2\vec{x},3\vec{y})$ we just write out (2,3). If instead we had a rotated representation, we would still be specifying points with the coefficients scaling each vector.

Take the vector space represented by $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$

We have a basis

$$eta = \left\{ \left[egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix}, & egin{pmatrix} 0 \ 1 \ 1 \ 0 \end{pmatrix}, & egin{pmatrix} 0 \ 0 \ 0 \ 1 \end{pmatrix}
ight]
ight\}$$

We can specify coordinates of a point $\begin{bmatrix} 2 \\ -7 \\ -7 \\ 8 \end{bmatrix}$ with $\begin{bmatrix} 2 \\ -7 \\ 8 \end{bmatrix}$, because those

coordinates multiplied by the basis makes the point. We can make any basis and choose any coordinates to form that coordinate as long as β is a basis for V.

What are the coordinates of

$$\begin{bmatrix} 2 & -7 \\ -7 & 8 \end{bmatrix}$$

in the basis

$$eta = \left\{ egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix} egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}, egin{bmatrix} 0 & 0 \ 0 & 1 \end{bmatrix}
ight\}$$

The same,
$$\begin{bmatrix} 2 \\ -7 \\ 8 \end{bmatrix}$$
!

Some facts about coordinates

if B is a basis, then

$$\left[lpha_1ec{u}_1+lpha_2ec{u}_2+\ldotslpha_nec{u}_n
ight]=lpha_1[ec{u}_1]+\cdots+lpha_k[ec{u}_k]$$

This follows from the fact that

$$[ec{u}+ec{v}]_eta=[ec{u}]+[ec{v}]$$
, and $[lphaec{u}]_eta=lpha[ec{u}]_eta$

We can use coordinate vectors to check the linear independence of vector spaces that are not \mathbb{R}^n .

$$\left\{ ec{u}_1, \ldots, ec{u}_n \right\}$$
 is linearly independent $\Leftrightarrow \left\{ [ec{u}_1]_b, \ldots, [ec{u}_n]_b \right\}$ is linearly independent in \mathbb{R}^n

(make a careful note of the difference between k and n in the above).

Changing the basis

The choice of basis is important. How do we switch between bases?

In
$$\mathbb{R}^2$$
 : $B = \left\{ \begin{bmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix} \right\}$ $ec{u}, ec{v}$

We can represent the point $[5,-1]_b$ as coordinates $\begin{bmatrix} 4\\-1 \end{bmatrix}$ in the standard basis.

What if we want to change to a different basis?

$$C = \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad egin{pmatrix} 2 \\ 3 \end{bmatrix}
ight\}$$

We can represent x now as the solution to

$$egin{bmatrix} 4 \ -1 \end{bmatrix} = c_1 egin{pmatrix} 0 \ 1 \end{pmatrix} + c_2 egin{pmatrix} 2 \ 3 \end{pmatrix}$$

We can write this out as

$$egin{bmatrix} 4 \ -1 \end{bmatrix} = egin{bmatrix} 2c_2 \ c_1 + 3c_2 \end{bmatrix}$$

Or, in a slightly nicer and simultaneously grosser way,

$$egin{bmatrix} 4 \ -1 \end{bmatrix} = egin{bmatrix} 0 & 2 \ 1 & 3 \end{bmatrix} egin{bmatrix} c_1 \ c_2 \end{bmatrix}$$

We can see that $c_2 = 2$, meaning $c_1 = -7$.

However, this was a long process (find coordinates in the standard basis and then in the new). A far better way is to use a "change of basis" matrix.

$$[\vec{x}]_c = ([\vec{u}_1]_c [\vec{u}_2]_c) [\vec{x}]_b$$

We take the basis vectors in c and multiply by the representation of \vec{x} in b in order to find the representation of \vec{x} in c.

We take in some vectors from basis B, compute the representations of those in c, and then we use that to represent the transformation from B to C. We represent this change of basis matrix as $P_{c \leftarrow b}$. Because matrix

multiplication is from right to left, we take a matrix represented in B from the right and multiply it to get a matrix in C.

Suppose
$$B = \left\{ ec{u}_1, \dots, ec{u}_i
ight\}$$
 and $C = \left\{ v_1, \dots, v_n
ight\}$ then

The
$$i^{th}$$
 column of $P_{c\leftarrow b}$ is $[ec{u}_i]_\epsilon=egin{bmatrix} p_{1,i} \ p_{2,i} \ dots \ p_{n,i} \end{bmatrix}$ and $ec{u}_i=p_{1,i}ec{v}_i+\cdots+p_{n,i}ec{v}_i$

If ϵ is any basis for V, then $[u_i]_\epsilon=$

$$egin{aligned} \left([ec{v}_1]_{\epsilon}, \ldots, ec{v}_n]_{\epsilon}
ight) egin{bmatrix} p_{1,i} \ p_{2,i} \ dots \ p_{n,i} \end{bmatrix} \end{aligned}$$

We can solve this with gaussian elimination

Lets do a concrete example.

Take

$$B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}, C = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix} \right\}$$

We can compute the change of basis from B o C

$$P_{c \leftarrow b} = \left(\left[egin{pmatrix} 1 \ 0 \end{matrix}
ight]_c, \left[egin{pmatrix} 1 \ 1 \end{matrix}
ight]_c
ight)$$

We can row reduce

$$\begin{bmatrix} 0 & 2 & | & 1 & 1 \\ 1 & 3 & | & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & -\frac{3}{2} & -\frac{1}{2} \\ 0 & 1 & | & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

The right hand side is our change of basis matrix $P_{c \leftarrow b}$