Etude d'une pale d'une éolienne

TIPE 2017-2018 « Milieux : interactions, interfaces, homogénéité, ruptures »

Objectif

• Etude des modes propres et analyse de la résonance d'une pale

d'éolienne

Plan

- Appliquer le principe fondamental de la dynamique pour avoir une équation différentielle permettant d'étudier les modes propres de la pale
- Utilisation d'un code python pour résoudre cette équation
- La détermination des modes propres
- Etudier la résonance des pales

Application du principe fondamental de la dynamique pour avoir une équation différentielle

$$\frac{EI}{\rho A} \frac{\partial^4 w(x,t)}{\partial x^4} + \frac{\partial^2 w(x,t)}{\partial t^2} = 0$$

W(x,t): le déplacement

E: module d'élasticité du matériau

A : longueur de la pale

I: moment d'inertie de la section

Résoudre l'équation différentielle précédente à l'aide d'un code python

```
111001010101117 11100101000 1010110010000
00101010010101010 [01 PYTHON 10(
100100111001010100
100001110010011100.710010101010
```

La détermination des modes propres des pales

Comment peut-on chercher les modes propres des pales d'une éolienne ??
Ou ces modes propres interviennent dans le fonctionnement de ces pales ??

L'étude de la résonance des pales

Comment les pales entrent en résonance et avec quoi ??

Conclusion

Discussion

