

1

Logistic Regression

- The statisticians approached the problem "how can we use linear regression to solve this?"
 - We could consider the following encoding
 - Dependent variable coded as 0 (Not Spam) or 1 (Spam)

- We can fit a linear regression to this binary response
 - and classify as Spam if $\hat{y} > 0.5$ and Not Spam otherwise, interpreting \hat{y} as a probability that Email is Spam

3

- A major problem with such an approach
- Linear regression models produce values in $(-\infty, +\infty)$, which does not make sense as a probability
 - Employ a function that constrains the values between 0 and 1

5

Logistic Regression

• Logistic function (Sigmoid)

 $f(x) = \frac{L}{1 + e^{-k(x - x_0)}}$

 $x_0 = x$ value of midpoint L = maximum value k = growth rate

• Logistic regression model

 $\log\left(\frac{p_X}{1-p_X}\right) = \beta_0 + \beta_1 X$ Linear regression output Sigmoid input ~

$$p_X = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \quad 0 \le p_x \le 1$$

Logistic Regression

- Terminologv
 The logit $\log\left(\frac{p_X}{1-p_X}\right)$
 - · The odds of an event is defined as

odds
$$(Y = 1) = \frac{P(Y = 1)}{1 - P(Y = 1)} = \frac{p}{1 - p}$$

· Chance can be expressed either as a probability or as odds

Ranges

Measure	Min	Max	Name
P(Y=1)	0	1	"probability"
$\frac{P(Y=1)}{1-P(Y=1)}$	0	∞	"odds"
$\log\left[\frac{P(Y=1)}{1-P(Y=1)}\right]$	$-\infty$	∞	"log-odds" or "logit"

9

Logistic Regression

- The cost/loss function (compares the model's predictions to the target values)
 - The likelihood function

$$\prod_{i=1}^{N} p_{x_i}^{y_i} (1 - p_{x_i})^{1 - y_i}$$

- The likelihood is a function of model parameters, and we can estimate them by maximizing the likelihood
 - Maximum likelihood estimates (MLE)

11

- The cost/loss function
 - · No closed form solution for MLE
 - We rely on numerical approximation to find the MLE
 - · Most software uses the gradient descent algorithm

11

Logistic Regression

12

- In practice, it is more convenient to maximize the log of the likelihood function
 - product of a large number of small probabilities can easily lead to underflow in computing machines

