Лабораторна робота №3. Дискретні і неперервні моделі індивідуального позову

1 Теоретична частина

Нехай заданий деякий імовірнісний простір (Ω, G, P) та вимірний простір (R^d, β_{R^d}) , де $\beta_{R^d} - \sigma$ -алгебра борелівських множин на R^d .

Означення 1 Випадковою величиною називаеться G-вимірна функція $\xi: \Omega \to R^d$, тобто $\forall B \in \beta_{R^d}: \xi^{-1}(B) \in G$.

Якщо в попередньому означенні d=1, то ξ прийнято називати випадковою величиною, при d>1 — випадковим вектором або d-вимірною випадковою величиною.

Випадкові величини умовно поділяють на дискретні та неперервні.

Задати випадкову величину можна так:

1. Функцією розподілу:

$$F_{\xi}(x) := P(\xi < x), \ x \in \mathbb{R}^d;$$
 (1)

2. Щільністю розподілу (за умови, що вона існує):

$$f_{\xi}(x) := \frac{dF_{\xi}(x)}{dx}, \ x \in \mathbb{R}^d; \tag{2}$$

3. Характеристичною функцією

$$\varphi_{\varepsilon}(t) := Ee^{i(t,\xi)},\tag{3}$$

де E – математичне сподівання, $i=\sqrt{-1}$ – уявна одиниця, $(t,\xi):=\sum\limits_{k=1}^d t_i\xi_i$ – скалярний добуток, $t\in R^d_+$.

Дискретну випадкову величину $\xi \in \mathbb{R}^1$ можна задати таблично:

Таблиця 1

x_i	x_1	x_2	x_3		x_{n-1}	x_n
p_i	p_1	p_2	p_3	•••	p_{n-1}	p_n

або з допомогою формули

$$p_i := P\{\xi = x_i\}.$$

Модельна задача 1 Визначити основні характеристики випадкової величини (функцію розподілу, характеристичну функцію), якщо її щільність має вигляд

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Розв'язання. Дана щільність відповідає нормальному закону розподілу N(0,1). Використовуючи (2), обчислимо функцію розподілу

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(y) dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy.$$

Знайдемо характеристичну функцію:

$$\varphi_{\xi}(t) = \int_{-\infty}^{\infty} e^{ity} f_{\xi}(y) dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ity} e^{-\frac{y^2}{2}} dy =$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(ty) e^{-\frac{y^2}{2}} dy + i \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sin(ty) e^{-\frac{y^2}{2}} dy.$$

Другий інтеграл дорівнює 0 внаслідок симетричності інтервалу інтегрування та непарності підінтегральної функції. Отже,

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(ty) e^{-\frac{y^2}{2}} dy.$$

Продиференціювавши по t характеристичну функцію $\varphi_{\xi}(t)$, отримаємо

$$\varphi_{\varepsilon}'(t) = -t\varphi_{\varepsilon}(t). \tag{4}$$

Розв'язуючи (4) з врахуванням $\varphi_{\xi}(0) = 1$, отримаємо

$$\varphi_{\xi}(t) = e^{-\frac{t^2}{2}}.$$

Моделювання випадкових величин

Розглянемо моделювання дискретної випадкової величини $\eta \in R^1$. Припустимо, що дана випадкова величина (BB) η задається за допомогою формули

$$p_i = P(\eta = x_i), i = 1..n.$$

Утворимо числову послідовність:

$$q_0 := 0, q_i := q_{i-1} + p_i = \sum_{k=1}^{i} p_k, i = 1..n.$$

Зрозуміло, що послідовність $(q_i)_{i=1}^n$ є неспадною, а $q_n=1$. Розглянемо напівінтервали $[q_0,q_1),\ [q_1,q_2),...,\ [q_{n-1},q_n)$. Далі розглянемо ВВ $\alpha=\alpha(\omega)$, яка рівномірно розподілена на відрізку [0,1].

Моделювання значення BB η проводиться так:

- 1. Моделюється значення BB α ;
- 2. Перевіряється, в який із напівінтервалів $[q_{i-1}, q_i), i = 1..n$ потрапило дане значення. Припустимо, це i_0 -й інтервал $[q_{i_0-1}, q_{i_0})$.
- 3. Тоді значення ВВ η дорівнює x_{i_0} .

Для неперервних BB слід користуватися наведеною методою, попередньо наблизивши дану випадкову величину η деякою дискретною BB η_{disk} .

Моделювання ймовірності банкрутства страхової компанії

Ймовірність банкрутства страхової компанії рівна

$$p = P\{\sum_{i=1}^{N} X_i > u\},\tag{5}$$

ду N — кількість застрахованих, X_i — величина виплати i-му клієнту, u — капітал страхової компанії.

Моделювання ймовірності p проводиться наступним чином: змоделюємо K наборів випадкових величин $(X_1^j, X_2^j, ..., X_N^j), j = 1, ..., K$. Тоді наближена ймовірність банкрутства знаходиться з формули

$$p \approx \frac{Z}{K},$$
 (6)

де $Z=\#\{k: \sum_{i=1}^N X_i^k>u\},\ K$ — кількість змодельованих послідовностей $(X_1^j,X_2^j,...,X_N^j),\ j=1,...,K.$

Завдання до лабораторної роботи №3

- 1. Змоделювати наступні випадкові величини
 - (a) X_1 рівномірно розподілена BB на відрізку $[a,b], 0 \le a < b < \infty$.
 - (b) X_1 BB, розподілена за законом розподілу Бернуллі у N випробуваннях з імовірністю успіху в одному випробуванні p;
 - (c) X_1 BB, яка розподілена за законом розподілу Пуассона з параметром λ ;
 - (d) X_1 BB, яка розподілена за геометричним законом розподілу з параметром $0 \le p \le 1$;
 - (e) X_1 BB, в якої щільність розподілу визначається як

$$p_{X_1}(x) = \begin{cases} 0, & x < 0; \\ \frac{4}{\pi(e^{-x} + e^x)}, & x \ge 0; \end{cases}$$

(f) X_1 - BB, в якої щільність розподілу визначається як

$$p_{X_1}(x) = \begin{cases} 0, & x \le 0, \\ \frac{\sin(x)}{2}, & 0 < x \le \pi, \\ 0, & x > \pi. \end{cases}$$

(g) X_1 - BB, в якої щільність розподілу визначається як

$$p_{X_1}(x) = \begin{cases} 0, x \notin [0, 1], \\ x^N(N+1), x \in [0, 1]. \end{cases}$$

(h) X_1 - BB, в якої щільність розподілу визначається як

$$p_{X_1}(x) = \begin{cases} 0, & x < 0, \\ \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}} x \ge 0; \end{cases}$$

(i) X_1 - BB, яка має показниковий закон розподілу з параметром $\lambda > 0$

$$p_{X_1}(x) = \begin{cases} 0, & x < 0, \\ \lambda e^{-\lambda x}, & x \ge 0. \end{cases}$$

(j) X_1 - BB, яка має гамма-розподіл із параметрами $\lambda>0,\,\alpha>0$

$$p_{X_1}(x) = \begin{cases} 0, & x < 0, \\ \frac{\alpha^{\lambda_x \lambda^{-1} e^{-\alpha x}}}{\Gamma(\lambda)}, & x \ge 0. \end{cases}$$

(k) X_1 - BB, в якої щільність розподілу визначається арксинус-щільністю

$$p_{X_1}(x) = \begin{cases} 0, x \notin [0, 1], \\ \frac{1}{\pi \sqrt{x(1-x)}}, x \in [0, 1]. \end{cases}$$

(l) X_1 - дискретна BB, яка має нижченаведений розподіл

Таблиця 2

x_i	0	1	3	5	7	11
p_i	0,1	0.2	0,25	$0,\!15$	0,1	0,2

Вхідні дані: N – кількість відрізків, на який розбивається відрізок дослідження. Вихідні дані: значення випадкової величини.

2. Змоделювати суму

$$\xi := \sum_{i=1}^{n} X_i,$$

де X_i – випадкові величини з завдання 1. Вхідні дані: n – кількість випадкових величин. Вихідні дані: значення випадкової величини ξ .

3. Нехай випадкові величини $X_i,\ i=1,...,N$ — незалежні та мають наступний розподіл

x	0	b_1	b_2
p	p_0	p_1	p_2

Знайти наближену ймовірність банкрутства страхової компанії, користуючись формулою (6).

Вхідні дані: N — кількість застрахованих; u — капітал компанії; b_1, b_2 — значення виплат страхової компанії, p_0, p_1, p_1 — ймовірності для випадкової величини X_i (ймовірності виплат). Вихідні дані: значення ймовірності банкрутства p.