

TABLA DE CONTENIDOS

O1 OBJETIVOS

Se presentará el objetivo general y los objetivos especificos del proyecto.

O2 METODOLOGIA

Se explicará la metodologia empleada para la problemática.

O3
RESULTADOS Y ANALISIS

Mediante los métodos utilizados se presentará la solución y su respectivo análisis.

04

CONCLUSIONES

Se presentan los aprendizajes adquiridos en el proyecto.

El rendimiento de una aeronave es crucial para evaluar la disponibilidad de una misión, también para comparar aeronaves y decidir cuál es más adecuada para una misión determinada.

PROBLEMÁTICA

Las aeronaves deben poder operar de manera segura durante todo su régimen de vuelo de tal manera que se obtenga un resultado seguro a partir de fallas específicas que ocurran en cualquier punto a lo largo del rango de vuelo.

En el proyecto se busca analizar:

- Caracteristicas y especificaciones del modelo de la aeronave.
- Su rendimiento.

OBJETIVOS

Objetivo General

Dadas las características de un avión clasificar que tipo de motor utiliza.

Clasificar entre 3 tipos de motores de avión (a partir de las características y especificaciones del modelo de la aeronave).

2

Comparar entre 5 clasificadores de machine learning para evaluar si rendimiento en el conjunto de datos dado.

02 METODOLOGÍA

Metodología empleada para la problemática

DATASET

Este conjunto de datos contiene 861 aviones y sus características, como velocidad máxima, velocidad de crucero, alcance, etc.

METODOLOGÍA

01

Separación del dataset en 80% entrenamiento y 20% en validación

02

Análisis por componentes (PCA)

NUESTRA METODOLOGÍA

O3 RESULTADOS YANALISIS

Solución al problema

CLASIFICADORES

METODO GRIDSEARCH CY

REGRESIÓN LOGISTICA	SVM	KNN	NAIVE BAYES	REDES NEURONALES
Escala logarítmica	Funciones de Kernel	Iteraciones	No paramétrico	Validación cruzada

REGRESIÓN LOGISTICA

Mejores Hiperparámetros: {'C': 100, 'penalty': '12'}

Resultado mediante MCC: 0.8928944952965416 Resultado mediante Accuracy 0.9534883720930233

	0	1	2	macro avg	weighted avg
precision	0.968000	0.75	1.000000	0.906000	0.953674
recall	0.975806	0.75	0.968750	0.898185	0.953488
f1-score	0.971888	0.75	0.984127	0.902005	0.953524
support	124.000000	16.00	32.000000	172.000000	172.000000

MÁQUINAS DE SOPORTE VECTORIAL

Mejores Hiperparámetros: {'C': 10, 'decision_function_shape': 'ovo', 'kernel': 'rbf'}

Resultado mediante MCC: 0.9341319711428863 Resultado mediante Accuracy 0.9709302325581395

	0	1	2	macro avg	weighted avg
precision	0.983740	0.882353	0.96875	0.944948	0.971520
recall	0.975806	0.937500	0.96875	0.960685	0.970930
f1-score	0.979757	0.909091	0.96875	0.952533	0.971136
support	124.000000	16.000000	32.00000	172.000000	172.000000

K- VECINOS MÁS CERCANOS

Mejores Hiperparámetros: {'leaf_size': 20, 'metric': 'minkowski', 'n_neighbors': 1, 'p': 1, 'weights': 'uniform'}

Resultado mediante MCC: 0.8921036166748493 Resultado mediante Accuracy 0.9534883720930233

	0	1	2	macro avg	weighted avg
precisio	on 0.960630	0.8125	1.00000	0.924377	0.954175
recall	0.983871	0.8125	0.90625	0.900874	0.953488
f1-scor	e 0.972112	0.8125	0.95082	0.911810	0.953303
suppor	t 124.000000	16.0000	32.00000	172.000000	172.000000

NAIVE BAYES CAUSIANO

Resultado mediante MCC: 0.8710461132776235 Resultado mediante Accuracy 0.9418604651162791

	0	1	2	macro avg	weighted avg
precision	0.975207	0.684211	0.96875	0.876056	0.946936
recall	0.951613	0.812500	0.96875	0.910954	0.941860
f1-score	0.963265	0.742857	0.96875	0.891624	0.943783
support	124.000000	16.000000	32.00000	172.000000	172.000000

REDES NEURONALES

```
Mejores Hiperparámetros: {'activation': 'relu', 'alpha': 0.05, 'hidden_layer_sizes': (20, 30), 'learning_rate': 'constant', 'solver': 'lbfgs'}
```

Resultado mediante MCC: 0.9352847301199171 Resultado mediante Accuracy 0.9709302325581395

	0	1	2	macro avg	weighted avg
precision	0.991803	0.789474	1.000000	0.927092	0.974507
recall	0.975806	0.937500	0.968750	0.960685	0.970930
f1-score	0.983740	0.857143	0.984127	0.941670	0.972035
support	124.000000	16.000000	32.000000	172.000000	172.000000

O4. CONCLUSIONES

CONCLUSIONES

Mejor resultado: fueron las máquinas de soporte vectorial (SVM) y las redes neuronales,

solo fue posible reducir 2
dimensiones del total de
las características
entregadas sin afectar en
mayor medida la pérdida
de datos o información

Los clasificadores tuvieron un porcentaje superior a 86%

02

Las redes neuronales, son las que más tardan en finalizar el proceso de búsqueda por rejilla

04

REFERENCIAS

- DATASET: https://www.kaggle.com/datasets/heitornunes/aircraft-performance-dataset-aircraft-bluebook?select=Airplane_Stochastic_Imputation.csv
- INFORMACION AIRCRAFT PERFORMANCE: https://skybrary.aero/articles/aircraft-performance

GRACIAS!

