Matematyka 2 Informatyka Stosowana

Zagadnienia do egzaminu Logika i Algebra

Logika i teoria mnogości

1. Logika kwantyfikatorów.

Reprezentacja wyrażeń matematycznych w języku naturalnym za pomocą formuł w języku logiki kwantyfikatorów. Badanie tautologiczności formuł za pomocą metody tableaux.

2. Moce zbiorów.

Definicja równoliczności zbiorów. Dowodzenie równoliczności na podstawie definicji. Moce zbiorów liczbowych $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R})$. Wypowiedzi Twierdzenia Cantora i Twierdzenia Cantora-Bernsteina; dowodzenie równoliczności zbiorów za pomocą Twierdzenia Cantora-Bernsteina.

3. Zbiory przeliczalne i nieprzeliczalne.

Definicje zbiorów przeliczalnych i nieprzeliczalnych. Własności zbiorów przeliczalnych (np. przeliczalna suma zbiorów przeliczalnych jest zbiorem przeliczalnym, produkt kartezjański skończonej rodziny zbiorów przeliczalnych jest zbiorem przeliczalnym). Twierdzenie o mocy zbioru $\mathcal{P}(X)$, gdzie X jest zbiorem przeliczalnym i twierdzenie o mocy zbioru $\mathcal{P}_{sk}(X)$, gdzie X jest zbiorem przeliczalnym, a zbiór $\mathcal{P}_{sk}(X)$ jest zbiorem wszystkich podzbiorów skończonych zbioru X. Własności zbiorów nieprzeliczanych.

4. Relacja częściowego porządku.

Definicja relacji częściowego porządku. Rozstrzyganie, czy dany zbiór X jest częściowo uporządkowany przez relację R. Definicje elementów wyróżnionych w zbiorze częściowo uporządkowanych (maksymalny, minimalny, największy, najmniejszy, kres górny, kres dolny). Wyznaczanie elementów wyróżnionych w danych zbiorach częściowo uporządkowanych. Diagramy Hassego. Pojęcia drzewa, kraty, algebry Boole'a.

5. Relacja równoliczności.

Definicja relacji równoważności. Rozstrzyganie, czy dana relacja *R* jest relacją na zbiorze *X*. Definicja klasy abstrakcji danej relacji równoliczności. Wyznaczanie klas abstrakcji danej relacji równoważności.

Algebra

1. Ciała skończone.

Rachunki w ciałach skończonych \mathbb{Z}_p .

2. Grupy, pierścienia i ciała.

Definicje grupy (abelowej), pierścienia (przemiennego z jedynką) i ciała. Rozstrzyganie na podstawie definicji czy dana struktura jest grupą, pierścieniem, ciałem.

3. Przestrzenie wektorowe i ich podprzestrzenie.

Definicja przestrzeni wektorowej. Rozstrzyganie czy dana struktura jest przestrzenią wektorową. Definicja podprzestrzeni przestrzeni wektorowej. Rozstrzyganie, czy podzbiór W wektorów przestrzeni wektorowej V jest podprzestrzenią przestrzeni V.

4. Niezależność wektorów przestrzeni wektorowej i baza przestrzeni wektorowei.

Definicja liniowej niezależności. Rozstrzyganie czy dany zbiór wektorów jest zależny (niezależny). Definicja bazy danej przestrzeni wektorowej. Rozstrzyganie czy zbiór wektorów jest bazą danej przestrzeni wektorowej.

5. Endomorfizmy liniowe, macierz endomorfizmu, wartości własne i przestrzenie wektorów własnych.

Definicja endomorfizmu liniowego. Definicja wartości własnej endomorfizmu i jego przestrzeni wektorów własnych. Znajdowanie macierzy danego endomorfizmu. Znajdowanie wartości własnych i przestrzeni wektorów własnych dla danego endomorfizmu przestrzeni wektorowej.

tp