Bio	ology	4605/	7220
		ember	

1.1. The Michaelis-Menten enzyme kinetics model (1913 Biochem Z 49: 333-369) is named after German biochemist Leonor Michaelis and Canadian physician Maud Menten. Yu and Rappaport (1997 Environ Health Perspectives 105:496-503) show that the Michaelis Menten model describes the clearance rate (k) of insoluble dust particles from lungs as a function of the maximum rate (kmax), the particulate burden (m), and the particulate burden (mhalf) at which k is half of kmax.

$$k = \frac{k \max \cdot mhalf}{m + mhalf}$$

$$k = k \max \left(\frac{mhalf}{m + mhalf}\right)$$

The parameter *mhalf* and the variable m have units of milligrams (mg), k has units of %/day

a. Show units for the ratio in parentheses $\frac{mg}{mg r mg}$ and for kmax $\frac{90/day}{2}$ [1+1]

b. Explain your answer for units of kmax

Same as k because no umits for (m half)

c. Does the ratio in parentheses increase or decrease as lung burden m decreases?

Write your answer here <u>it increases</u> [no mark]

d. Given mhalf = 0.97 mg for photocopier toner dust (PTT) and kmax = 0.009/day for experimental rats, calculate the expected clearance rate at

pected clearance rate at m = 5 mg m = 0.5 mg E(k) = 0.00 | 462 E(k) = 0.00 | 5939[1]

pits for 0.5 mg

d. Show your calculations, with units, for 0.5 mg

 $E(k) = (0.009) \left(\frac{0.97}{0.5 + 0.97} \right) = 0.005939$

e. Does the expected clearance E(k) change in the direction you expected, with decrease in lung burden m? [no mark]

2. Using the expected value E(k) at a burden of m = 0.5 mg, complete a data equation for an observed value of k = 0.008

k = E(k) + residual O.008 = O.005939 + O.00206

Quiz 3

DEP = Deisel Exhaust particles

kmax	0.009	per day	
m	0.5	mg	
mhalf	2.49	mg	
E(k)	0.007495	per day	
k	0.008	per day	
residuals	0.000505	per day	

A Lung Retention Model Based on Michaelis-I Rong Chun Yu and Stephen M. Rappaport Yu and Rappaport (1997 Environ Health Pers

m		E(k)
	0.1	0.008653
	0.2	0.008331
	0.4	0.007754
	0.6	0.007252
	0.8	0.006812
	1	0.006421
	1.5	0.005617
	2	0.004991
	5	0.002992
	10	0.001794

PTT = Photocopy Test Toner

kmax	0.009	per day
m	0.5	mg
mhalf	0.97	mg
E(k)	0.005939	per day
k	0.008	per day
residuals	0.002061	per day

m		E(k)	
	0.1	0.008159	
	0.2	0.007462	
	0.4	0.006372	
	0.6	0.005561	
	0.8	0.004932	
	1	0.004431	
	1.5	0.003534	
	2	0.002939	
	5	0.001462	
	10	0.000796	

