Q 输入搜索文本...

如何安装 MegEngine

用户迁移指南

常见问题汇总

模型开发 (基础篇)

深入理解 Tensor 数据结构

Rank, Axes 与 Shape 属性

Tensor 元素索引

Tensor 数据类型

Tensor 所在设备

Tensor 具象化举例

Tensor 内存布局

使用 Functional 操作与计算

使用 Data 构建输入 Pipeline

使用 Module 定义模型结构

Autodiff 基本原理与使用

使用 Optimizer 优化参数

保存与加载模型 (S&L)

使用 Hub 发布和加载预训练模型

模型开发 (进阶篇)

<u> 通过重计算节省显存 (Recomputation)</u>

分布式训练 (Distributed Training)

量化 (Quantization)

自动混合精度 (AMP)

模型性能数据生成与分析 (Profiler)

使用 TracedModule 发版

即时编译 (JIT)

推理部署篇

模型部署总览与流程建议

使用 MegEngine Lite 部署模型

MegEngine Lite 使用接口

使用 MegEngine Lite 部署模型进阶

使用 Load and run 测试与验证模型

工具与插件篇

参数和计算量统计与可视化

MegEngine 模型可视化

RuntimeOpr 使用说明

<u>自定义算子 (Custom Op)</u>

Tensor 内存布局

▲ 警告

- 这一部分内容属于底层细节,在绝大多数情景下用户不需要了解这些背后的设计。 如果你希望成为 MegEngine 的核心开发者,了解底层细节将很有帮助,更多内容请参考开发者指南;
- 相关的代码实现在: <u>dnn/include/megdnn/basic types.h</u> megdnn::TensorLayout.

€ 参见

NumPy 对 ndarray 内存布局的解释: Internal memory layout of an ndarray

Tensor 值如何存储在内存中

一个 Tensor 类的实例由一维连续的计算机内存段组成。

结合 <u>Tensor 元素索引</u> 机制,可以将值映射到内存块中对应元素的位置, 而索引可以变化的范围由 Tensor 的 <u>形状</u> 属性指定。 每个元素 占用多少个字节以及如何解释这些字节由 Tensor 的 <u>数据类型</u> 属性指定。

一段内存本质上是连续的,有许多不同的方案可以将 N 维 Tensor 数组的项排列在一维块中。 根据排列顺序的区别,又可以分为行主序和列主序两种风格,下面我们以最简单的 2 维情况进行举例:

Row-major order

Column-major order

上图分别使用行主序和列主序进行索引:

- 其中 $a_{11} \dots a_{33}$ 代表九个元素各自的值;
- 偏移量和索引之间有着明显的关系。

图片来自 Row- and column-major order

这个 2 维 Tensor 中的元素实际上可以由一维连续的内存块分别 行映射:

Offset	Access	Value
0	a[0][0]	a11
1	a[0][1]	a12
2	a[0][2]	a13
3	a[1][0]	a21
4	a[1][1]	a22
5	a[1][2]	a23
6	a[2][0]	a31
7	a[2][1]	a32
8	a[2][2]	a33

这里以C风格所用的行主序进行举例。

MegEngine 和 NumPy 一样灵活,支持任何跨步索引方案,这里需要提到一个概念:步幅(Strides)。

Tensor 的步幅

🕕 参见

NumPy 的 ndarray 具有 <u>strides</u> 属性(MegEngine 中也存在着这一概念,但没有提供接口)。

1 注解

Tensor 的步幅 strides 是一个元组,告诉我们遍历 Tensor 元素时要在每个维度中步进(step)的字节数;或者可以理解成在某个轴上索引元素时,单位刻度代表的内存范围,即必须在内存中跳过多少字节才能沿某个轴移动到下一个位置。这个属性通常不需要由用户进行修改。

以2维情况为例

想象有这样一个由 32 位 (4 字节) 整型元素组成的 Tensor:

```
>>> x = megengine.tensor([[0, 1, 2, 3, 4], ... [5, 6, 7, 8, 9]], dtype="int32")
```

该 Tensor 中的元素一个接一个地存储在内存中(称为连续内存块),占据 40 个字节。 我们必须跳过 4 个字节才能移动到下一列,但必须跳过 20 个字节才能到达下一行的相同位置。 因此,x 的步幅为 (20,4).

我们用 s^{row} 表示行主序得到的步幅,则有 $s^{\mathrm{row}}_{0}=4\times5=20$, $s^{\mathrm{row}}_{1}=4$.

借助 s^{row} 来计算,对应地 \times [1][2] (对应值为 7)位置元素的字节偏移量为 $1 \times 20 + 2 \times 4 = 28$.

推广到一般情况

更一般的情况,对于形状为 shape 的一个 N 维 Tensor,其步幅 s^{row} 计算公式如下:

$$s_k^{ ext{row}} = ext{ itemsize } \prod_{j=k+1}^{N-1} d_j$$

其中 itemsize 取决于 dtype, 而 $d_j = \text{self.shape } [j]$.

索引为 $T[n_0, n_1, \ldots, n_{N-1}]$ 元素的字节偏移量为:

$$n_{\text{offset}} = \sum_{k=0}^{N-1} s_k n_k$$

步幅概念的用途

🙃 参见

对于一些改变形状的 Tensor 操作,我们可以通过修改步幅来避免实际进行内存的拷贝。

format介绍

在深度学习框架中,如下图所示,通用的神经网络特征图用4维数组组成,然而对于计算机而言,数据的存储只能是线性的,因此不同的数据排布(format)方式,会显著影响计算性能,其中针对GPU的特点,Megengine采用的数据排布方式有:NCHW、NHWC、NCHW4、NCHW32、NCHW64和CHWN4等等。

为更好的说明不同format的具体含义,下图列举了128个tensor的逻辑结构。其中N、H、W和C分别为:

- N: Batch。表示图片的批次,此处为2;
- H: Height。表示图片的高,此处为3;
- W: Weight。表示图片的宽,此处为3;
- C: Channel。表示图片的通道数,此处为64。

NCHW 和 NHWC

物理存储结构

NCHW: 0000 0001 0009 0010 0279 0280 1151

NHWC: 0000 0009 0018 1143 0001 0010 1144

对于 NCHW 而言,优先存储W维度,之后按照H、C和N分别存储,因此按照顺序从0000一直存储到1151;

对于 NHWC 而言,优先存储C维度,因此优先存储0000、0009一直到1143,之后继续按照W、H和N分别存储,存储0001、0010等;

2. 特性

- 对于"NCHW" 而言,其同一个通道的像素值连续排布,更适合那些需要对 每个通道单独做运算 的操作,比如"MaxPooling"。
- 对于"NHWC"而言,其不同通道中的同一位置元素顺序存储,因此更适合那些需要对 **不同通道的同一像素做某种运算** 的操作,比如"Conv"。

NCHWX

[Batch, Channels/X, Height, Width, X=4, 32或64]

1. 排布方式

由于典型的卷积神经网络随着层数的增加,其特征图在下采样后的长和宽逐渐减小,但是channel数随着卷积的filter的个数不断增大是越来越大的,经常会出现channel数为128,256等很深的特征图。 这些很深的特征图与filter数很多的卷积层进行运算的运算量很大。 为了充分利用有限的矩阵计算单元,进行了Channel维度的拆分是很有必要的。Megengine根据不同数据结构特点,分别对Channel维进行了Channel/4,Channel/32和Channel/64的拆分,下图为NCHWX的物理存储结构。

物理存储结构

NCHW4: 0000 0009 0018 0027 0001 0010 0019 0028 0002

NCHW32: 0000 0009 0279 0001 0010 0280 0002

NCHW64: 0000 0009 0567 0001 0010 0575 0002

NCHWX最先存储的都是Channel维,不同点在于因为X的不同,优先存储的Channel个数不同,NCHW4 优先存储4个channel维,此处为0000、0009、0018和0027,之后继续按照W、H、C和N进行存,此处继续存0001、0010等; NCHW32和NCHW64类似,不过优先存储的分别为32个channel和64个channel,之后继续按照W、H、C和N进行存。

2. 特性

- 更好的适配SIMT,其中NCHW4可以针对int8数据类型,利用CUDA的dp4a模块进行计算,而NCHW32和NCHW64分别针对int8和int4数据类型,更好的利用CUDA的tensorcore计算单元进行计算;
- 对cache更友好,减少cache miss;
- 易进行padding,减少边界分支判断,代码逻辑简单。

CHWN4

为了更好的适配cuda的dp4a和tensorcore处理单元,引入了CHWN4。

1. 排布方式

物理存储结构

CHWN4: 0000 0009 0018 0027 0576 0603 0001 0010

CHWN4优先存储Channel维,存储4个数,0000、0009、0018和0027之后,沿着N维,直接存0576到0603,之后在沿W维和H维,存0001和0010等。

2. 特性

- 相较于NCHWX,可以更好的利用dp4a和tensorcore处理单元,不需要layout转换;
- 此外依然具有对cache友好,及易进行padding的优点。

← 上一页
Tensor 具象化举例

下一页 使用 Functional 操作与计算