

Definition

Preliminary remark: For the expected value with respect to P we now write

$$P[X] := \int XdP.$$

 \triangleright $\mathcal{P}(E)$: probability measure on $\mathcal{B}(E)$;

 $\mathcal{P}_{\leq 1}(E)$: finite measure μ on $\mathcal{B}(E)$ with $\mu(E) \leq 1$.

 $\mathcal{C}_b(E)$: continuous, bounded functions $E \to \mathbb{R}$

 $\mathcal{C}_c(E)$: continuous functions $E \to \mathbb{R}$ with compact support

Definition 9.1

▶ Weak convergence of $P_1, P_2, \dots \in \mathcal{P}(E)$ to $P \in \mathcal{P}(E)$:

$$(P_n \xrightarrow{n \to \infty} P)$$
 : \iff $P_n[f] \xrightarrow{n \to \infty} P[f], f \in C_b(E)$

▶ Vague convergence of $\mu_1, \mu_2, \dots \in \mathcal{P}_{\leq 1}$ to μ :

$$(\mu_n \xrightarrow{n \to \infty}_{V} \mu)$$
 : \iff $\mu_n[f] \xrightarrow{n \to \infty} \mu[f], f \in \mathcal{C}_c(E)$

▶ Convergence in distribution of $X_1, X_2, ...$ to X:

$$X_n \xrightarrow{n \to \infty} X$$
 : \iff $(X_n)_* \mathsf{P}_n \xrightarrow{n \to \infty} X_* \mathsf{P}$ \iff $\mathsf{P}[f(X_n)] \xrightarrow{n \to \infty} \mathsf{P}[f(X)], \quad f \in \mathcal{C}_b(E).$

Examples

 $\begin{array}{c} \blacktriangleright \ x, x_1, x_2, \cdots \in \mathbb{R} \ \text{with} \ x_n \xrightarrow{n \to \infty} x \ \text{and} \\ \\ \mathsf{P} = \delta_x, \mathsf{P}_1 = \delta_{x_1}, \mathsf{P}_2 = \delta_{x_2}, \ldots \ \text{Then, } \mathsf{P}_n \xrightarrow{n \to \infty} \mathsf{P}, \ \text{since} \\ \\ \mathsf{P}_n[f] = f(x_n) \xrightarrow{n \to \infty} f(x) = \mathsf{P}[f], \qquad f \in \mathcal{C}_h(\mathbb{R}). \end{array}$

With
$$x_n = n$$
, we have $P_n \xrightarrow{n \to \infty}_{V} 0$, since

$$P_n[f] = f(x_n) \xrightarrow{n \to \infty} 0 = 0[f], \qquad f \in \mathcal{C}_c(\mathbb{R}).$$

- ▶ Let $X, X_1, X_2,...$ identically distributed. Then $X_n \xrightarrow{n \to \infty} X$.
- lackbox Central Limit Theorem, for example as the theorem of deMoivre-Laplace: For $p\in (0,1)$ let

$$X_n \sim B(n, p), n = 1, 2, ...$$
 and $X \sim N(0, 1)$. Then,

$$\frac{X_n - np}{\sqrt{np(1-p)}} \stackrel{n \to \infty}{\Longrightarrow} X.$$

Uniqueness of the limit

▶ Lemma 9.4: Let $P, Q, P_1, P_2, \dots \in \mathcal{P}(E)$ with

$$P_n \xrightarrow{n \to \infty} P$$
 and $P_n \xrightarrow{n \to \infty} Q$. Then $P = Q$.

Proof: to show: P(A) = Q(A) for A closed. We set

$$r(x,A) := \inf_{y \in A} r(x,y)$$

and

$$f_m(x) \mapsto (1 - m \cdot r(x, A))^+$$

for $m=1,2,\ldots$ Then $f_m \xrightarrow{m\to\infty} 1_A$. Further

$$P(A) = \lim_{m \to \infty} P[f_m] = \lim_{m \to \infty} \lim_{n \to \infty} P_n[f_m] = \lim_{m \to \infty} Q[f_m] = Q(A)$$

Convergence in probability and weak convergence

▶ Proposition 9.5: X, X_1, X_2, \dots rvs. If $X_n \xrightarrow{n \to \infty} X$, then $X_n \xrightarrow{n \to \infty} X$. If X is constant, then the inverse is also true. Proof: Suppose $X_n \xrightarrow{n \to \infty}_p X$ and $\lim_{n\to\infty} P[f(X_n)] \neq P[f(X)]$ for some $f \in \mathcal{C}_b(E)$. Choose a subsequence $(n_k)_{k=1,2,...}$ and $\varepsilon > 0$ with $\lim_{k\to\infty} |\mathsf{P}[f(X_{n_k})] - \mathsf{P}[f(X)]| > \varepsilon$. Select a further subsequence $(n_{k_{\ell}})_{\ell=1,2,...}$ with $X_{n_{k_{\ell}}} \xrightarrow{\ell \to \infty} {}_{as} X$. Then, $\lim_{\ell \to \infty} P[f(X_{n_{k_{\ell}}})] = P[f(X)]$

Convergence in probability and weak convergence

Proposition 9.5: X, X_1, X_2, \ldots rvs. If $X_n \xrightarrow{n \to \infty}_p X$, then $X_n \xrightarrow{n \to \infty} X$. If X is constant, then the inverse is also true. Proof: weak convergence \Rightarrow conv. in probability with X = c: Select $x \mapsto r(x, c) \land 1 \in \mathcal{C}_b(E)$, such that

$$P[r(X_n,c) \wedge 1] \xrightarrow{n \to \infty} P[r(X,c) \wedge 1] = 0.$$

From this, $X_n \xrightarrow{n \to \infty}_p X$ follows.

The Portmanteau Theorem

- ▶ Theorem 10.6: $X, X_1, X_2, ...$ rvs. Equivalent are:
 - (i) $X_n \xrightarrow{n \to \infty} X$;
 - (ii) $P[f(X_n)] \xrightarrow{n \to \infty} P[f(X)]$ for $f \in C_b(E)$ Lipschitz;
 - (iii) $\liminf_{n\to\infty} P(X_n\in G) \geq P(X\in G)$ for all open $G\subseteq E$.
 - (iv) $\limsup_{n\to\infty} P(X_n \in F) \le P(X \in F)$ for all closed $F \subseteq E$.
 - (v) $\lim_{n\to\infty} P(X_n \in B) = P(X \in B)$ for all $B \in \mathcal{B}(E)$ with $P(\partial B) = 0$.

Proof: $(i) \Rightarrow (ii)$: clear; $(iii) \iff (iv)$ clear;

 $(ii) \Rightarrow (iv) \ F \subseteq E \ \text{closed}, \ \varepsilon_k \downarrow 0 \ \text{and}$

$$f_k(x) = \left(1 - \frac{1}{\varepsilon_k} r(x, F)\right)^+.$$

 $\limsup_{n\to\infty} \mathsf{P}(X_n\in F) \leq \limsup_{n\to\infty} \mathsf{P}[f_k(X_n)] = \mathsf{P}[f_k(X)] \downarrow \mathsf{P}(X\in F).$

The Portmanteau Theorem

- ▶ Theorem 10.6: $X, X_1, X_2, ...$ rvs. Equivalent are:
 - (i) $X_n \xrightarrow{n \to \infty} X$;
 - (ii) $P[f(X_n)] \xrightarrow{n \to \infty} P[f(X)]$ for $f \in C_b(E)$ Lipschitz;
 - (iii) $\liminf_{n\to\infty} P(X_n\in G) \geq P(X\in G)$ for all open $G\subseteq E$.
 - (iv) $\limsup_{n\to\infty} P(X_n \in F) \le P(X \in F)$ for all closed $F \subseteq E$.
 - (v) $\lim_{n\to\infty} P(X_n \in B) = P(X \in B)$ for all $B \in \mathcal{B}(E)$ with $P(\partial B) = 0$.

Proof: (iii) \Rightarrow (i) $f \in C_b$, $0 \le f \le c$:

$$P[f(X)] = \int_0^\infty P(f(X) > t) dt \le \int_0^\infty \liminf_{n \to \infty} P(f(X_n) > t) dt$$

$$\le \liminf_{n \to \infty} \int_0^\infty P(f(X_n) > t) dt = \liminf_{n \to \infty} P[f(X_n)],$$

$$\limsup_{n\to\infty} P[f(X_n)] = c - \liminf_{n\to\infty} P[-f(X_n) + c] \le P[f(X)]$$

The Portmanteau Theorem

- ▶ 10.6: $X, X_1, X_2, ...$ ZV. Equivalent are:
 - (i) $X_n \xrightarrow{n \to \infty} X$;
 - (ii) $P[f(X_n)] \xrightarrow{n \to \infty} P[f(X)]$ for $f \in C_b(E)$ Lipschitz;
 - (iii) $\liminf_{n\to\infty} P(X_n\in G) \geq P(X\in G)$ for all open $G\subseteq E$.
 - (iv) $\limsup_{n\to\infty} P(X_n \in F) \le P(X \in F)$ for all closed $F \subseteq E$.
 - (v) $\lim_{n\to\infty} P(X_n \in B) = P(X \in B)$ for all $B \in \mathcal{B}(E)$ with $P(\partial B) = 0$.
- $(iii), (iv) \Rightarrow (v)$ For $B \in \mathcal{B}(E)$ is

$$\mathsf{P}(X \in B^{\circ}) \leq \liminf_{n \to \infty} \mathsf{P}(X_n \in B^{\circ}) \leq \limsup_{n \to \infty} \mathsf{P}(X_n \in \overline{B}) \leq \mathsf{P}(X_n \in \overline{B}).$$

$$(v) \Rightarrow (iv)$$
 For $F \subseteq E$ closed let $F^{\varepsilon} := \{x \in E : r(x, F) \le \varepsilon\}$.
Then $P(X \in \partial F^{\varepsilon}) = 0$ for Lebesgue-almost every ε . So,

$$\limsup P(X_n \in F) \leq \limsup P(X_n \in F^{\varepsilon_k}) = P(X \in F^{\varepsilon_k}) \downarrow P(X \in F).$$

Convergence of distribution functions

► Corollary 9.7: $P, P_1, P_2, \dots \in \mathcal{P}(\mathbb{R})$ with distribution functions F, F_1, F_2, \dots Then,

$$P_n \xrightarrow{n \to \infty} P \iff \left(F_n(x) \xrightarrow{n \to \infty} F(x) \text{ for all continuity points } x \text{ of } F.\right)$$

 \Rightarrow : If x is the continuity point of F, then

$$P(\partial(-\infty;x]) = P(\{x\}) = 0$$
. Also

$$F_n(x) = P_n((-\infty; x]) \xrightarrow{n \to \infty} P((-\infty; x]) = F(x).$$

'⇐': See manuscript;

The Theorem of deMoivre-Laplace

▶ For $X_n \sim B(n, p)$,

$$P\left(\frac{X_n - np}{\sqrt{np(1-p)}} \le x\right) \xrightarrow{n\to\infty} \Phi(x),$$

where Φ is the distribution function of the standard normal distribution is.

This also means

$$\frac{X_n - np}{\sqrt{np(1-p)}} \xrightarrow{N \to \infty} Z \sim N(0,1).$$

Slutzky's Theorem

- Corollary 9.9: $X, X_1, X_2, ..., Y_1, Y_2, ...$ rvs. If $X_n \xrightarrow{n \to \infty} X$ and $r(X_n, Y_n) \xrightarrow{n \to \infty}_p 0$, then $Y_n \xrightarrow{n \to \infty} X$.
- ▶ Proof: $f \in C_b(E)$ Lipschitz. Then

$$|f(x)-f(y)| \le L \cdot r(x,y) \wedge (2||f||_{\infty}), \qquad x,y \in E$$

$$\Rightarrow \limsup_{n\to\infty} |\mathsf{E}[f(X_n)-f(Y_n)]| \leq \limsup_{n\to\infty} \mathsf{E}[L\cdot r(X_n,Y_n)\wedge (2||f||_\infty)] = 0.$$

Also,

$$\limsup_{n\to\infty} \left| \mathsf{E}[f(Y_n)] - \mathsf{E}[f(X)] \right|$$

$$\leq \limsup_{n\to\infty} \left| \mathsf{E}[f(Y_n)] - \mathsf{E}[f(X_n)] \right| + \left| \mathsf{E}[f(X_n)] - \mathsf{E}[f(X)] \right| = 0.$$

The Continuous Mapping Theorem

ightharpoonup Remark: X, X_1, X_2, \dots ZV,

 $\varphi: E \to E'$ continuous. Then

$$X_n \xrightarrow{n \to \infty} X \qquad \Rightarrow \qquad \varphi(X_n) \xrightarrow{n \to \infty} \varphi(X).$$

Indeed: For $g \in C_b(E')$ we have $g \circ \varphi \in C_b(E)$, therefore

$$P[g(\varphi(X_n))] \xrightarrow{n \to \infty} P[g(\varphi(X))].$$

▶ Theorem 9.10: $X, X_1, X_2, ...$ ZV,

 $\varphi: E \to E'$ measurable,

 $U_{\varphi} := \{x : \varphi \text{ discontinuous in } x\} \subseteq E.$

$$P(X \in U_{\varphi}) = 0, \quad X_n \stackrel{n \to \infty}{\Longrightarrow} X \qquad \Rightarrow \qquad \varphi(X_n) \stackrel{n \to \infty}{\Longrightarrow} \varphi(X).$$

Weak and almost sure convergence, Skorohod

- ► Theorem 9.11: X, X_1, X_2, \ldots ZV. Then, $X_n \xrightarrow{n \to \infty} X$ holds if and only if there is a probability space exists on which random variables Y, Y_1, Y_2, \ldots are defined with $Y_n \xrightarrow{n \to \infty}_{as} Y$ and $Y \stackrel{d}{=} X, Y_1 \stackrel{d}{=} X_1, Y_2 \stackrel{d}{=} X_2, \ldots$
- ► Example: If $X, X_1, X_2, ...$ are iid, then $X_n \xrightarrow{n \to \infty} x$. With $X = Y_1, Y_2, ...$ we find $X_n \sim Y_n$ and $Y_n = X$, in particular $Y_n \xrightarrow{n \to \infty} as X$.