分析一段 264 码流

SPS:

00 00 00 01 67 4D 00 1E EC C1 62 62

这里 00 00 00 01 表征接下来的一段数据是一个 NALU, 开始解析:

67 0110 0111

```
forbidden_zero_bit------f(1) ------0
nal_ref_idc-------(2)-------11
nal_unit_type--------U(5)-------0 0111-----等于7表示这是一个SPS
```

4D 0100 1101

profile idc------U(8)------0100 1101-----77

00 1E 0000 0000 0001 1110

EC C1 62 62 1110 1100 1100 0001 0110 0010 0110 0010

注意这里最后多出两个bit 10,是由SODB转为RBSP时加上的,具体可以参看SODB转为RBSP的规则,最后加入10,一般rbsp_trailing_bits()第一bit为1,后跟若干个0,以使字节对齐。

PPS:

00 00 00 01 68 E9 4A 38 80

68 **0110 1000**

```
forbidden_zero_bit------f(1) -------0
nal_ref_idc-----------11
nal_unit_type-----------U(5)--------0 1000-----等于8,表示这是一个PPS
```

E9 4A 1110 1001 0100 1010

seq_parameter_set_id	ue(v)	1bit	1
seq_parameter_set_id	Ue(v)	1bit	1
entropy_coding_mode_flag	u(1)	1bit	1
pic_order_present_flag	U(1)	1but	0
num_slice_groups_minus1	Ue(v)	1bit	1
num_ref_idx_I0_active_minus1	Ue(v)	5bit	001 01
num_ref_idx_I1_active_minus1	Ue(v)	5bit	00 101
weighted_pred_flag	U(1)	1bit	0

38 80 0011 1000 1000 0000

weighted_bipred_idc	U(2)	2bit	00

pic_init_qp_minus26	se(v)	1bit	1
pic_init_qs_minus26	Se(v)	1bit	1
chroma_qp_index_offset	Se(v)	1bit	1
deblocking_filter_control_present_flag	U(1)	1bit	0
constrained_intra_pred_flag	U(1)	1bit	0
redundant_pic_cnt_present_flag	U(1)	1bit	0

SPS的解析到这里就结束了,后面的 1000 0000是用来使字节对齐的。

分析这段码流只是想弄懂 264 的码流结构, 边分析边写报告, 哪位朋友也对这方面感兴趣可以一起学习交流, 本人 QQ: 568865992

作者: hainei 日期: 11-4-19