

Introducción al *machine learning* con † TensorFlow

Materiales del taller:

https://github.com/cursos-COnCEPT/curso-tensorflow

1- Iniciar sesión en GoogleColab

https://colab.research.google.com/

2 - Abrir archivos

Archivo >>> Abrir cuaderno

2 - Abrir archivos

Desde GitHub

2 - Abrir archivos

Desde el ordenador (si GitHub no funciona)

Índice

- Conceptos básicos
- Tipos de aprendizaje
- Redes neuronales
- ¿Qué es TensorFlow?
- Pasos para entrenar un modelo
- Sobreajuste y subajuste
- Ajuste de hiperparámetros

¿Es lo mismo?

Machine Learning

Machine Learning

Deep Learning Rama de la informática orientada a conseguir que las máquinas simulen comportamientos humanos y tomen decisiones de forma autónoma

- Chatbots
- o Filtros email
- Coches autónomos
- Reconocimiento facial

Inteligencia Artificial

Machine Learning

Deep Learning Rama de la informática orientada a conseguir que las máquinas simulen comportamientos humanos y tomen decisiones de forma autónoma

Subcampo de la IA basado en la estadística para construir modelos predictivos que aprenden de grandes cantidades de datos.

Inteligencia Artificial

Machine Learning

Deep Learning Rama de la informática orientada a conseguir que las máquinas simulen comportamientos humanos y tomen decisiones de forma autónoma

Subcampo de la IA basado en la estadística para construir modelos predictivos que aprenden de grandes cantidades de datos.

Técnica de ML capaz de aprender **patrones más complejos** utilizando **redes neuronales**.

Machine Learning

Tipos de aprendizaje automático

Aprendizaje supervisado

Relaciona variables entrada – salida deseada

Aprendizaje no supervisado

Descubre patrones en los datos de entrada

Aprendizaje por refuerzo (RL)

Método de prueba y error

Forward propagation

Backpropagation

Backpropagation

Para resolver el siguiente problema de optimización...

$$\min \mathcal{L} = \sum_{i=1}^{N_{points}} (y_{obs,i} - y_{pred,i})^2$$

... se utilizan algoritmos basados en el método del descenso del

gradiente

$$w_{new} = w_{old} - \alpha \frac{\delta \mathcal{L}}{\delta w}$$

Tamaño del paso o *learning rate*

Introducción a TensorFlow

Preprocesamiento de datos: train-test-validation split

Preprocesamiento de datos: Escalado

- Cambio en la magnitud de las variables sin afectar su distribución.
- Facilita convergencia algoritmo optimización

Min-max

$$X_{scaled} = \frac{X - X_{min}}{X - X_{max}}$$

Estandarización

$$X_{scaled} = \frac{X - \mu_X}{\sigma_X}$$

Selección del modelo

Dense neural networks

```
keras.layers.Dense(
    units,
    activation=None,
    use_bias=True,
    kernel_initializer="glorot_uniform",
**kwargs
)
```


Recurrent neural networks

```
keras.layers.RNN(
    cell,
    return_sequences=False,
    return_state=False,
    go_backwards=False,
    stateful=False,
    unroll=False,
    zero_output_for_mask=False,
    **kwargs
)
```


Entrenamiento, evaluación y predicción

Método compile

```
model.compile(
    optimizer="rmsprop",
    loss=None,
    metrics=None,
)
```

Método predict

```
model.predict(
          x,
          batch_size=None,
          verbose="auto",
          steps=None,
          callbacks=None
)
```

Método fit

model.fit(
 x=None,
 y=None,
 batch_size=None,
 epochs=1,
 verbose="auto",
 callbacks=None,
 validation_split=0.0,
 validation_data=None,
 shuffle=True,
)

Método evaluate

```
model.evaluate(
    x=None,
    y=None,
    verbose="auto",
    callbacks=None,
    return_dict=False,
)
```


2

¿Cómo evitarlo?

Early stopping

Interrupción del entrenamiento cuando el error en validación empeora.

```
keras.callbacks.EarlyStopping(
    monitor="val_loss",
    min_delta=0,
    patience=0,
    verbose=0, restore_best_weights=False,
    start_from_epoch=0,
```


¿Cómo evitarlo?

Early stopping

Regularización

Penalización añadida en loss function proporcional al valor de los pesos

```
layer = layers.Dense(
    units=64,
    kernel_regularizer=regularizers.L1L2(l1=1e-5, l2=1e-4),
    bias_regularizer=regularizers.L2(1e-4),
    activity_regularizer=regularizers.L2(1e-5)
)
```

$$\mathcal{L} = \sum_{i=1}^{N_{points}} (y_{obs,i} - y_{pred,i})^2$$

$$+\lambda \sum_{j=1}^{N_{param}} |w_j|$$
 L1 Lasso

$$+\lambda \sum_{j=1}^{N_{param}} w_j^2$$
 L2 Ridge

¿Cómo evitarlo?

Early stopping

Regularización

Dropout

Desactivación aleatoria de neuronas durante el entrenamiento.

keras.layers.Dropout(rate, noise_shape=None, seed=None, **kwargs)

Hiperparámetros

Definición: parámetro cuyo valor se utiliza para controlar el proceso de entrenamiento.

Suelen fijarse **antes de iniciar el entrenamiento.**

La **mejor combinación** se encuentra mediante un **proceso iterativo.**

01 Definir el espacio de búsqueda

Hiperparámetros

Definición: parámetro cuyo valor se utiliza para controlar el proceso de entrenamiento.

Suelen fijarse **antes de iniciar el entrenamiento.**

La **mejor combinación** se encuentra mediante un **proceso iterativo.**

01 Definir el espacio de búsqueda

02

Seleccionar el tipo de búsqueda

- Random Search
- Grid Search
- Bayesian Search
- Hyperband Search

```
tuner = keras_tuner.RandomSearch(
    hypermodel=build_model,
    objective="val_accuracy",
    max_trials=3,
    executions_per_trial=2,
    overwrite=True,
```


Hiperparámetros

Definición: parámetro cuyo valor se utiliza para controlar el proceso de entrenamiento.

Suelen fijarse **antes de iniciar el entrenamiento.**

La **mejor combinación** se encuentra mediante un **proceso iterativo.**

01 Definir el espacio de búsqueda

O2 Seleccionar el tipo de búsqueda

03 Comenzar la búsqueda

 Método search utiliza los mismos argumentos que el método fit.

Hiperparámetros

Definición: parámetro cuyo valor se utiliza para controlar el proceso de entrenamiento.

Suelen fijarse **antes de iniciar el entrenamiento.**

La **mejor combinación** se encuentra mediante un **proceso iterativo.**

models = tuner.get_best_models(num_models=2)
best_model = models[0]
best_model.summary()

Introducción al *machine learning* con † TensorFlow

Isabela Fons

Estudiante de doctorado Grupo COnCEPT

- isabela.fons@ua.es
- INSTITUTOS UNIVERSITARIOS II P2 (0204P2049)