$$\frac{l}{a} = \frac{m}{b} = \frac{n}{c} = \pm \frac{\sqrt{l^2 + m^2 + n^2}}{\sqrt{a^2 + b^2 + c^2}} = \pm \frac{1}{\sqrt{a^2 + b^2 + c^2}}$$

(13)
$$l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$
; $m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}$; $n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$.

- (14) The direction cosines of the join of the two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are $\frac{x_2-x_1}{PO}, \frac{y_2-y_1}{PO}, \frac{z_2-z_1}{PO}$.
- (15) The direction ratios of the line joining two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are $x_2 x_1, y_2 y_1, z_2 z_1$.
- (16) If θ be the angle between two lines, then

$$\cos\theta = \frac{\sum a_1 a_2}{\sqrt{\sum a_1^2} \sqrt{\sum a_2^2}}. \quad [where, a_1 = l_1, m_1, n_1; a_2 = l_2, m_2, n_2].$$

$$\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2; \ \sin \theta = \sqrt{\sum (m_1 n_2 - m_2 n_1)^2}$$

(17) Two lines with direction cosines l_1 , m_1 , n_1 & l_2 , m_2 , n_2 will be parallel if

$$\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}.$$

- (18) Two lines with direction cosines l_1 , m_1 , n_1 & l_2 , m_2 , n_2 will be perpendicular if $l_1l_2 + m_1m_2 + n_1n_2 = 0$.
- (19) If $\vec{r} = a\hat{\imath} + b\hat{\jmath} + c\hat{k}$, then direction ratios of r are a, b, c.
- (20) The projection of line segment joining $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ on a line whose direction cosines are l, m, n is given by

$$l(x_2-x_1)+m(y_2-y_1)+n(z_2-z_1).$$

Straight Line in Space

- (1) If a line passes through a point with position vector $\overrightarrow{r_1}$ and it is parallel to \overrightarrow{m} then its vector equation is $\overrightarrow{r} = \overrightarrow{r_1} + \lambda \overrightarrow{m}$
- (2) If a line passes through a point $A(x_1, y_1, z_1)$ and it has d.r.'s a, b, c then its cartesian equations are

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$

(3) If a line passes through two points having $p.v.'s \overrightarrow{r_1}$ and $\overrightarrow{r_2}$, then its vector equation is

$$\vec{r} = \overrightarrow{r_1} + \lambda (\overrightarrow{r_2} - \overrightarrow{r_1})$$

(4) If a line passes through two points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ then its cartesian equations are

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$