TM257 - Cisco Networking Part 1

Open University TM257 (CCNA)

kcollins@kierancollins.co.uk

Contents

1	TM2	TM259 - Cisco Networking (CCNA) Part 1						
	1.1	Study	Calendar 2022J		2			
	1.2	TMA 0	1		3			
		1.2.1	Question 1 (20 Mar	ks)	3			
			1.2.1.1 Grades A	verage	4			
			1.2.1.2 Question	Score	4			
		1.2.2	-	rks)	4			
			Please sl	now your working; failure to do so will only gain under half				
			marks .		4			
			1.2.2.1.1	Infomation regarding this Q2 - A)	4			
			1.2.2.1.2	Binary to hexadecimal	5			
			1.2.2.1.3	Hexadecimal to binary	5			
				ert the following binary IP address to dotted decimal form n in module 5. Show your working; failure to do so will only				
			gain und	er half marks	6			
			1.2.2.2.1	Infomation regarding this Q2 - B)	6			
			1.2.2.3 c - Conve	ert the following IP address into binary. Show your working;				
			failure to	do so will only gain up to half marks	7			
			1.2.2.3.1	Infomation for Q2 - C	7			
			1.2.2.3.2	d - For the following IPv6 address, identify the address type				
				and write the address in compressed format	7			

1 TM259 - Cisco Networking (CCNA) Part 1

1.1 Study Calendar 2022J

Week	Date	Module Resource / Activity	Day Schools /Tutorials	TMA / EMA cut-off		
		Introduction to Networks				
1	7 Oct 2023	Getting started on Times				
		Module Guide	Introductory			
2	14 Oct 2023	Cisco NetAcad	group tutorial			
_	24 000 2020	Modules 1-3: Basic Network	Broop tatorial			
		Connectivity				
_		Link to student self enrol				
3	21 Oct 2023	Modules 4-7: Ethernet Concepts				
4	28 Oct 2023					
5	4 Nov 2023	Modules 8-10: Communicating Between				
6	11 Nov 2023	Networks				
7	18 Nov 2023	Madulas 11 13: ID Addressing	Tutorial - IP			
8	25 Nov 2023	Modules 11-13: IP Addressing	addressing			
9	2 Dec 2023	TMA preparation	TMA01 drop-			
10	9 Dec 2023	and Modules 14-15: Network	in tutorial	TMA01 – 14 Dec 2023		
10	9 Dec 2023	Application Communications	III tutoriai	TWA01 - 14 Dec 2025		
11	16 Dec 2023	Modules 16-17 Building and Securing a				
11	10 Dec 2023	Small network				
	23 Dec 2023	BREAK		uring this time, however		
30 Dec 2023		BREAK	your tutor may quite reasonably be unresponsive			
12	6 Jan 2024	Modules 16-17: Building and Securing a				
12	6 Jan 2024	Small Network - continued				
		Introduction to Networks continued				
13	13 Jan 2024	Cisco Introduction to Networks 'final'	Please check			
			guidance in TMA's			
		Switching, Routing and Wireless Essentia	01 and 02			
14	20 Jan 2024		is (SKWE)			
14		Modules 1-4: Switching Concepts,				
15	27 Jan 2024	VLANs and inter-VLAN Routing				
16	3 Feb 2024	Modules 5-6: Redundant Networks	TMA02 drop-			
17	10 Feb 2024		in tutorial			
18	17 Feb 2024	TMA 02 preparation		TMA02 – 22 Feb 2024		
19	24 Feb 2024	Modules 7-9: Available and Reliable				
20	2 Mar 2024	Networks				
21	9 Mar 2024	Modules 10-13: L2 Security and WLANS				
22	16 Mar 2024	, , , , , , , , , , , , , , , , , , , ,				
23	23 Mar 2024	Modules 14-16: Routing Concepts and				
		Configuration				
	30 Mar 2024	BREAK				
24	6 April 2024	Modules 14-16: Routing Concepts and				
24	6 April 2024	Configuration				

Figure 1.1: Study C 1

25	13 Apr 2024	EMA preparation and take remote Cisco SRWE Final Exam (CCNA 2)	Day School including Cisco SRWE Final Exam (CCNA 2)		
26	20 Apr 2024	EMA preparation and take remote Cisco SRWE Final Exam (CCNA 2)	Day School inclu Routing and Wir Essentials Final I		
27	27 Apr 2024	EMA preparation and take remote Cisco SRWE Final Exam (CCNA 2)	EMA Preparation Tutorial	Day School including Cisco Switching, Routing and Wireless Essentials Final Exam (CCNA 2)	
28	4 May 2024	EMA preparation			
29	11 May 2024	EMA preparation			
30	18 May 2024	EMA preparation			
31	25 May 2024	EMA preparation and submission		EMA - 30 th May 2024	

Figure 1.2: Study C 2

[!NOTE] This document will contain parts of the past assisgnemt and answers, but have more in-depth infomaion regarding the CCNA and More.

1.2 TMA 01

1.2.1 Question 1 (20 Marks)

From the grades in your Cisco NetAcad gradebook (look in the grades section), calculate your average grade for Introduction to Networks – module sprints 1-3, 4-7, 8-10 (i.e: 3 tests in all) and submit the calculated result as your answer to this question.

The calculation you must use and fully show in the TMA is:

1.2.1.1 Grades Average

gradeAverage = (M1>3 + M4>7 + M8>10) / 3

 $49 + 56 + 62 \div 2 = 125.666666667$, and rounded to 2 decimals is 125.67

1.2.1.2 Question Score

questionScore = $(0.2 \times \text{gradeAverage})$

 $0.2 \div 125.67 = 25.134$, and rounded to the nearest whole number is 25

1.2.2 Question 2 (20 Marks)

This question allows you to demonstrate your ability to work with the hexadecimal (hex), binary and denary numbering systems. Which is covered in module five (Number Systems). In each case you must show your working to gain full marks. By all means use a calculator to check that your answers are correct, but it will be very useful for you to be able to manipulate these types of numbers without using a calculator.

Help Referance

0123456789-ABCDEF

1.2.2.1 A - Convert the following binary MAC address to hexadecimal form. Please show your working; failure to do so will only gain under half marks

1.2.2.1.1 Infomation regarding this Q2 - A) Hexadecimal in computer science, different number based are used:

[!NOTE] denary The number system most commonly used by people. It contains 10 unique digits 0 to 9. Also known as decimal or base 10 and binary A number system that contains two symbols, 0 and 1. Also known as base 2.

- denary is base 10, which has ten symbols (0-9)
- binary is base 2, which has two symbols (0-1)

1.2.2.1.2 Binary to hexadecimal Start at the rightmost digit and break the binary number into nibbles. Next, convert each nibble into hexadecimal Put the hexadecimal digits together. Example: 11000011 to hexadecimal

Break into nibbles: 11000011.

1100 = hexadecimal C and 0011 = hexadecimal 3. Remember, this is hexadecimal base 16 symbol 3, not denary symbol 3.

Result: C3

Example: 00110011 to hexadecimal

Break into nibbles: 00110011.

0011 = hexadecimal 3 and 0011 = hexadecimal 3

Result: 33

1.2.2.1.3 Hexadecimal to binary Split the hexadecimal number into individual digits. Convert each hexadecimal digit into its binary equivalent (a nibble). Combine the nibbles to make one binary number. Example: hexadecimal 28 to binary

2 = binary 0010 and 8 = binary 1000

Result: 00101000

Example: hexadecimal FC to binary

 $\mathsf{F} = \mathsf{binary}\ 1111\ \mathsf{and}\ \mathsf{C} = \mathsf{binary}\ 1100$

Result: 11111100

Original MAC address	Each Nibbles, broken into 2	Hexadecimal Converasion
01100011	0110 0011	C1
01011100	0101 1100	5C
00001101	0000 1101	OD
00010101	0001 0101	15
11000000	1100 0000	C0
01010111	0101 0111	57

1.2.2.2 b - Convert the following binary IP address to dotted decimal form as shown in module5. Show your working; failure to do so will only gain under half marks.

1.2.2.2.1 Infomation regarding this Q2 - B) Binary to denary The value of each binary place value is calculated by multiplying the previous place value by two. The first eight binary place values are:

Binary Place Value							
128	64	32	16	8	4	2	1

In binary, each place value can only be represented by 1 or a 0.

To convert binary to denary, simply take each place value that has a 1, and add them together.

For example, the binary number 1111100 in binary place values is:

Result: $(0\ddot{O}128) + (1\ddot{O}64) + (1\ddot{O}32) + (1\ddot{O}16) + (1\ddot{O}8) + (1\ddot{O}4) + (0\ddot{O}2) + (0\ddot{O}1) = 124$ 01100011.01000010.00100001.00000001

128	64	32	16	8	4	2	1
0	1	1	0	0	0	1	1
0	1	0	0	0	0	1	0
0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	1

\$\$ This is the resulting to the binary to decimal 64 + 32 + 2 + 1 = 101 64 + 2 = 67 32 + 1 = 33and 1 the total is 101.67.33.1

\$\$

1.2.2.3 c - Convert the following IP address into binary. Show your working; failure to do so will only gain up to half marks.

1.2.2.3.1 Infomation for Q2 - C To convert an IP address to binary, you can: Break the IP address into four octets, each containing eight bits Convert each octet into binary Combine the four binary octets into a single binary code

Here's an example of converting an IP address to binary: 194.128.56.26: $194 = 11000010 \ 128 = 10000000 \ 56 = 111000 \ 26 = 11010 \ 194.128.56.26 = 110000101000000011100011010$

192.168.100.5

128	64	32	16	8	4	2	1
1	1	0	0	0	0	1	0
1	0	1	0	1	0	0	0
0	1	1	0	0	1	0	0
0	0	0	0	0	1	0	1

the total is 11000010.10101000.01100100.00000101

1.2.2.3.2 d - For the following IPv6 address, identify the address type and write the address in compressed format. Infomation about Q2 -D

Address Type:

The address type is Link-Local. This is indicated by the prefix FE80. Link-local addresses are used for communication within a single network segment and are not routable on the internet.

Compressed Format:

To compress the address, we remove leading zeros from each 16-bit hexadecimal group and replace consecutive groups of zeros with a double colon (::).

E80:AB:C000:2134::B88