7. Связь преобразования Фурье с преобразованием Лапласа

Применение преобразования Фурье к решению задачи Коши для дифференциальных уравнений существенно ограничивается тем, что это преобразование определено лишь для функций $f \in L_1(-\infty,\infty)$. В частности, преобразование Фурье не определено для функций f, растущих при $t \to +\infty$.

Предположим, что f(t) = 0 при t < 0 и существуют постоянные $s \ge 0$, M > 0 такие, что $|f(t)| \le Me^{st}$ для t > 0. Тогда $e^{-\sigma t}f(t) \in L_1(0,\infty)$ для всех $\sigma > s$ и преобразование Лапласа функции f определяется следующим образом:

$$F(p) = \int_{0}^{\infty} f(t)e^{-pt} dt$$
, где $p = \sigma + i\tau$, $\sigma > s$.

Функцию f принято называть оригиналом, а функцию F изображением функции f.

Заметим, что

$$F(p) = \Lambda[f](p) = \int_{-\infty}^{\infty} f(t)e^{-\sigma t}e^{-i\tau t} dt = \sqrt{2\pi}\mathscr{F}[f(t)e^{-\sigma t}](\tau),$$

то есть при фиксированном $\sigma > s$

$$F(\sigma + i\tau) = \Lambda[f](\sigma + i\tau) = \sqrt{2\pi} \mathscr{F}[f(t)e^{-\sigma t}](\tau).$$

Заметим, что функция F определена и аналитична на полуплоскости

$$\{p \in \mathbb{C} \mid \sigma = \operatorname{Re} p > s\}.$$

Напомним, что

$$F(\sigma + i\tau) = \sqrt{2\pi} \mathscr{F}[f(t)e^{-\sigma t}](\tau).$$

Если функция f в точке t удовлетворяет условию Дини, то справедлива формула обращения

$$f(t)e^{-\sigma t} = \frac{1}{\sqrt{2\pi}}\mathscr{F}^{-1}[F(\sigma+i\cdot)](t) = \frac{1}{2\pi}V.p.\int_{-\infty}^{\infty} F(\sigma+i\tau)e^{it\tau}d\tau,$$

то есть формула

$$f(t) = \frac{1}{2\pi} V.p. \int_{-\infty}^{\infty} F(\sigma + i\tau) e^{(\sigma + i\tau)t} d\tau,$$

приводящая к обратному преобразованию Лапласа

$$f(t) = \Lambda^{-1}[F](t) = \frac{1}{2\pi} V.p. \int_{\sigma - i\infty}^{\sigma + i\infty} F(p)e^{pt} dp.$$

Преобразование Лапласа обладает рядом свойств, близким к свойствам преобразования Фурье. Например,

$$\Lambda[f'](p) = p\Lambda[f](p) - f(0^+).$$

Действительно,

$$\Lambda[f'](p) = \int_{0}^{\infty} f'(t)e^{-pt} dt = (f(t)e^{-pt})\Big|_{0^{+}}^{\infty} + p \int_{0}^{\infty} f(t)e^{-pt} dt = -f(0^{+}) + p\Lambda[f](p).$$