Project 4: Predicting Default Risk

The Business Problem

You work for a small bank and are responsible for determining if customers are creditworthy to give a loan to. Your team typically gets 200 loan applications per week and approves them by hand.

Due to a financial scandal that hit a competitive bank last week, you suddenly have an influx of new people applying for loans for your bank instead of the other bank in your city. All of a sudden you have nearly 500 loan applications to process this week!

Your manager sees this new influx as a great opportunity and wants you to figure out how to process all of these loan applications within one week.

You have the following information to work with:

- Data on all past applications
- The list of customers that need to be processed in the next few days

Step 1: Business and Data Understanding

Key Decisions:

1. What decisions needs to be made?

We need to determine whether the new customers based on the data provided are creditworthy for a loan.

2. What data is needed to inform those decisions?

We need to know:

- ✓ Their current loan request (amount, tenor, purpose)
- ✓ Their past credit track record
- ✓ Their revenue profile, including employment status, length, salary
- ✓ Their expense profile, including average monthly, number of children in charge or dependent person
- ✓ Their asset profile, including deposit balance in the bank, numbers of properties,
- ✓ Their liability profile, including current debt outstanding
- ✓ Whether they can provide a guarantor for the loan

3. What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Since we are trying to determine the creditworthiness of a loan applicant, the problem would involve a binary model.

Step 2: Building the Training Set

Build your training set given the data provided to you. In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

To build the training set, we started to visualize the data through the field summary and pearson correlation functions.

Then we decided to remove the following field for the following reason with illustration below

Removed field	Reason
Duration in current address	Many missing data
Concurrent credit	Low variability, only "other banks/dept"
Guarantors	Low variability
Occupation	Low variability, only "1"
No of dependents	Low variability
Telephone	Not relevant data
Foreign worker	Low variability

We also decided to impute age-years for the few missing data to the median

Field summary showing low variability for concurrent credit, foreign worker, nb of dependent, guarantor

Field summary showing low variability for occupation

However the pearson correlation table does not show high correlation between data (>70%)

FieldName	Duration	Credit-Amount	Instalm	Durati	Most-valua	Age-years	Type-of-apa	Occupation	No-of-de	Telephone	Foreign-Worke
Duration-of-Credit-Month	1	0.57398	0.068106	[Null]	0.299855	[Null]	0.152516	[Null]	-0.065269	0.143176	-0.115916
Credit-Amount	0.57398	1	-0.288852	[Null]	0.325545	[Null]	0.170071	[Null]	0.003986	0.286338	0.025493
Instalment-per-cent	0.068106	-0.288852	1	[Null]	0.081493	[Null]	0.074533	[Null]	-0.125894	0.029354	-0.133411
Duration-in-Current-address	[Null]	[Null]	[Null]	1	[Null]	[Null]	[Null]	[Null]	[Null]	[Null]	[Null]
Most-valuable-available-asset	0.299855	0.325545	0.081493	[Null]	1	[Null]	0.373101	[Null]	0.046454	0.203509	-0.146005
Age-years	[Null]	[Null]	[Null]	[Null]	[Null]	1	[Null]	[Null]	[Null]	[Null]	[Null]
Type-of-apartment	0.152516	0.170071	0.074533	[Null]	0.373101	[Null]	1	[Null]	0.170738	0.101443	-0.089848
Occupation	[Null]	[Null]	[Null]	[Null]	[Null]	[Null]	[Null]	1	[Null]	[Null]	[Null]
No-of-dependents	-0.065269	0.003986	-0.125894	[Null]	0.046454	[Null]	0.170738	[Null]	1	-0.048559	0.065943
Telephone	0.143176	0.286338	0.029354	[Null]	0.203509	[Null]	0.101443	[Null]	-0.048559	1	-0.055516
Foreign-Worker	-0.115916	0.025493	-0.133411	[Null]	-0.146005	[Null]	-0.089848	[Null]	0.065943	-0.055516	1

Step 3: Train your Classification Models

We create an Estimation and Validation samples where 70% of your dataset should go to Estimation and 30% of your entire dataset should be reserved for Validation. And we create the following models: Logistic Regression, Decision Tree, Forest Model, Boosted Model

1. Which predictor variables are significant or the most important? Please show the p-values or variable importance charts for all of your predictor variables.

Below is a summary table of the significant predictor variable under the difference model.

Model type	Significant predictor variables		
Logistic Regression	Account balance Payment status of previous credit Purpose Credit amount Length of current employment Instalment per cents		
Decision Tree	Account Balance Duration of the credit in months Value savings stocks		
Forest Model	Credit amount Age in years Duration of the credit in months Account Balance		
Boosted Model	Credit amount Account balance Duration of the credit in months Payment status of previous credit		

P-values table for the Logistic Regression Model

Report for Logistic Regression Model Logmodel Basic Summary Call: $glm(formula = Credit.Application.Result \sim Account.Balance + Payment.Status.of.Previous.Credit + Purpose + Credit.Amount + Length.of.current.employment$ + Instalment.per.cent + Most.valuable.available.asset, family = binomial(logit), data = the.data) Deviance Residuals: Min 1Q Median 3Q Max -2.289 -0.713 -0.448 0.722 2.454 Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) -2.9621914 6.837e-01 3.067e-01 -4.3326 -5.2344 1e-05 *** 1.65e-07 *** -1.6053228 Account.BalanceSome Balance Payment.Status.of.Previous.CreditPaid Up 0.2360857 2.977e-01 0.7930 0.42775 Payment.Status.of.Previous.CreditSome Problems 1.2154514 5.151e-01 2.3595 0.0183 * PurposeNew car -1.6993164 6.142e-01 -2.7668 0.00566 ** -0.3983 PurposeOther -0.3257637 0.69042 8.179e-01 PurposeUsed car -0.7645820 4.004e-01 -1.9096 0.05618 Credit.Amount 0.0001704 5.733e-05 2.9716 0.00296 * 4.587e-01 3.874e-01 Length.of.current.employment4-7 yrs 0.3127022 0.6817 0.49545 Length.of.current.employment< 1yr 0.8125785 0.03596 2.0973 0.3016731 1.350e-01 2.2340 0.02549 Instalment.per.cent Most.valuable.available.asset 0.2650267 1.425e-01 1.8599 0.06289

Decision tree summary

Variable importance plot for the Forest model

Variable Importance Plot

Variable importance plot for the Boosted model

Report

Report for Boosted Model Boosted

Basic Summary:

Loss function distribution: Bernoulli Total number of trees used: 4000

Best number of trees based on 5-fold cross validation: 3940

Project 4 – Predicting Default Risk – Lina Ta

2. Validate your model against the Validation set. What was the overall percent accuracy? Show the confusion matrix. Are there any bias seen in the model's predictions?

We used the model comparison function to compare the different models showing their respective overall accuracy and confusion matrix.

			Model Con	nparison Report	
Fit and error me	asures				
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
Logmodel	0.7600	0.8364	0.7306	0.8000	0.628
Decision_tree	0.7467	0.8273	0.7054	0.7913	0.600
Forest Boosted	0.8000 0.7933	0.8707 0.8670	0.7419 0.7509	0.7953 0.7891	0.826 0.818
Accuracy_[class name AUC: area under the RC	racy, number of correct prediction a]: accuracy of Class [class name], C curve, only available for two-cl. recall / (precision + recall)	number of sam	ples that are correctly predic	er. ded to be Class [class name] divided by number of sa	mples predited to be Class [class name]
Confusion matri	ix of Boosted				
				Actual_Creditworthy	Actual_Non-Creditworthy
		_Creditworthy		101	27
	Predicted_Non-	-Creditworthy		4	18
Confusion matri	ix of Decision_tree				
				Actual_Creditworthy	Actual_Non-Creditworthy
	Predicted_	Creditworthy		91	24
	Predicted_Non-	-Creditworthy		14	21
Confusion matri	ix of Forest				
				Actual_Creditworthy	Actual_Non-Creditworthy
	Predicted_	_Creditworthy		101	26
	Predicted_Non-	-Craditworthy			19
	Fredicted_Non	Creditworthy		4	19
Confusion matri		Creditworthy		4	17
Confusion matri		Creditworthy		Actual_Creditworthy	Actual_Non-Creditworthy
Confusion matri	ix of Logmodel	_Creditworthy		7	

For the logistic regression, the overall accuracy is 76%. Though the accuracy to predict creditworthiness is quite good at 80%, however the accuracy to predict non-creditworthiness is quite low at 62.86%.

The situation is quite similar for the decision tree with an overall accuracy of 74.67% and good accuracy to predict creditworthiness at 79.13% but the accuracy to predict non-creditworthiness is quite low at 60%. The confusion matrix of the decision tree summary above shows also a very low accuracy for prediction of non-creditworthy customers.

There is indeed a bias induced by less sample of non-creditworthy clients. In fact, in our training data only 28.4% of the total customers are tagged non-creditworthy.

However, the forest and boosted model seems to perform better than the logistic regression and decision tree model. Their overall accuracies are 80% and 79.33% respectively and their accuracy rates to predict non-creditworthy customers are even higher than accuracy rates to predict creditworthy customers at 82.61% and 81.62% respectively.

Step 4: Writeup

1. Which model did you choose to use? Please justify your decision using only the following techniques:

Model Comparison Report					
Fit and error mea	sures				
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
Logmodel	0.7600	0.8364	0.7306	0.8000	0.6286
Decision_tree	0.7467	0.8273	0.7054	0.7913	0.6000
Forest	0.8000	0.8707	0.7419	0.7953	0.8261
Boosted	0.7933	0.8670	0.7509	0.7891	0.8182
Accuracy_[class name]: AUC: area under the ROC	cy, number of correct predictions	number of sam	ples that are correct	ole number. I ly predicted to be Class [class name] divided by number of samples predit	ed to be Class [class name]

a. Overall Accuracy against the Validation set

Based on the model comparison report, it appears that the Forest Tree has the highest accuracy rate with 80% compared to other models.

b. Accuracies within "Creditworthy" and "Non-Creditworthy" segments

Within "Creditworthy" and "Non-Creditworthy" segments, the logistic model appears to have the highest accuracy to predict "Creditworthy" however the accuracy for "Non-creditworthy" is quite low at 62.86%.

The Forest Tree model has again the highest accuracy for both "creditworthy" and "non-creditworthy" segments.

c. ROC graph

When comparing the ROC curve of the four models, we see that the decision tree seems to perform the worst, while the forest tree model and boosted model seem to perform the best. The model comparison report shows in fact a higher AUC for the boosted model at 0.7509.

Project 4 - Predicting Default Risk - Lina Ta

d. Bias in the Confusion Matrices

Confusion matrix of Boosted		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	27
Predicted_Non-Creditworthy	4	18
Confusion matrix of Decision_tree		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	91	24
Predicted_Non-Creditworthy	14	21
Operation matrix of Forest		
Confusion matrix of Forest		
Confusion matrix or Forest	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	Actual_Creditworthy	Actual_Non-Creditworthy 26
	_ ,	
Predicted_Creditworthy	_ ,	
Predicted_Creditworthy Predicted_Non-Creditworthy	_ ,	
Predicted_Creditworthy Predicted_Non-Creditworthy	101 4	26 19

From the confusion matrices, we see that the boosted model and forest model tend to classify more non-creditworthy customers as creditworthy while the decision tree model and logistic model tend to classify creditworthy customer as non-creditworthy.

However since the boss only care for prediction accuracy, we chose the forest model which has the highest accuracy overall.

2. How many individuals are creditworthy?

Finally, we use the score tool to predict the creditworthiness of the new customers.

The model predicts that 415 customers out of 500 are creditworthy.

415