Optimal Transport in Machine Learner: Word Mover's Distance

James Nesbit

June 20, 2019

Motivation

- Text is an increasingly popular input in empirical economic research
 - Stock market returns using financial news (Tetlock [07])
 - Political slant of media outlets (Groseclose and Milyo [05])
 - Understand macro policy using records of policy actions (Romer, Romer [04, 10])
- Text is high-dimensional data: need dimensionality reduction
 - FOMC transcripts 1987–2006: 46K+ docs, 5M+ words, 24k unique terms TODO

Document Similarity

- A common question is how similar are two documents?
- Consider the following two 'documents'
 - 1. Obama speaks to the media in Illinois.
 - 2. The **President greets** the **press** in **Chicago**.
- Obviously these are two sentences convey very similar information, but they have no words in common
 - Let V be the size of the vocabulary, e.g. in this context V=8
 - Represent a document d in the V-1 simplex, where d_i is the frequency of word i
 - d and d' are as far apart as possible
- Need a method that takes into account semantic information

Word Embedding

- Popular method in Natural Language Processing (NLP) is a 'dense representation' of words, where a vocabulary is embedded in a low dimensional vector space \mathbb{R}^N , where $N \approx 200$
 - Also commonly known as a word embedding
- The idea is that words that are 'similar' to each other will be 'close' in this vector space
- We will use this vector space embedding of words to also come up with an idea of documents being close together
- Several popular word embedding algorithms
 - word2vec
 - GloVe
 - fastText

word2vec

- We want word vectors where semantically 'similar' words are 'close'
- Idea is use 'context' words, words that occur in neighbourhood of a given word

 For example speaks and Illinois would be in the neighbourhood of media—nb(3) = {2,4},

4

word2vec

- We want a model that predicts the context words given the input word
 - Skip-gram: $p(w_2, w_4|w_3)$
 - Continuous Bag of Words (CBOW): $p(w_3|w_2, w_4)$
- We want to maximize the log probability of neighbouring words in a corpus. Given a sequence of words w₁,..., w_T

$$max_{\theta} \frac{1}{T} \sum_{t=1}^{T} \sum_{j \in nb(t)} \log p(w_j | w_t; \theta)$$

According to ML: Neural Network Architecture

According to ML: Neural Network Architecture

- Assume for simplicity we have only one word in context
 - In the output layer only worry about $y_{1,j}$
- V terms in vocabulary, N is the size of word embedding space, T is the number of words

Input layer-Hidden layer

- If input word is term k, then $x_k = 1$ and $x_{k'} = 0$ for $k' \neq k$ (one-hot vector)
- Weights between input and hidden layer are $V \times N$ matrix **W**.
- Therefore $\mathbf{h} = \mathbf{W}^{\mathsf{T}}\mathbf{x} = \mathbf{W}_{(k,\cdot)} = \mathbf{v}_{W_I}^{\mathsf{T}}$
 - v_{w_I} is the row of **W** corresponding to the input word w_I . We will call this the (input) word vector for w_I

According to ML:Neural Network Architecture

Hidden layer-Output layer

- $N \times V$ weight matrix \mathbf{W}' , $u = \mathbf{W}'\mathbf{h}$, so $u_j = \mathbf{v}'_{w_j}\mathbf{h}$
 - \bullet v_{w_j}' is the $j{\rm th}$ column of $\mathbf{W}'.$ The (output) word vector for w_l

Activation function

•
$$p(w_j|w_l) = y_j = \frac{\exp(u_j)}{\sum_{j'=1}^{V} \exp(u_{j'})}$$

According to Econometricians: Neural Network Architecture

•
$$p(w_j|w_l) = \frac{\exp(\mathbf{v}'_{w_j}\mathbf{v}_{w_l})}{\sum_{j'=1}^{V} \exp(\mathbf{v}'_{w_{j'}}\mathbf{v}_{w_l})}$$

Training the NN: Backpropagation

According to ML

Training the NN: Backpropagation

 For an individual observation with input word w_I and context word w_O

$$\max p(w_O|w_I) = \log y_{j^*}$$

$$= u_{j^*} - \log \sum_{j'=1}^{V} \exp(u_{j'}) := -E$$

where j^* is the index of w_I

- In standard ML fashion we are going to use Stochastic Gradient Descent, so let's solve for the derivatives of our parameters
 - Hidden layer–Output layer weights: W'
 - Input layer–Hidden layer weights: W

Backpropagation—Hidden layer–Output layer weights

• Recall $E = \log \sum_{j'=1}^{V} \exp(u_{j'}) - u_{j*}$

$$\frac{\partial E}{\partial u_j} = y_j - \mathbf{1}\{j = j^*\} := e_j$$

• And $u_j = \mathbf{v}'_{w_j} \mathbf{h}$

$$\frac{\partial E}{\partial w'_{ij}} = \frac{\partial E}{\partial u_j} \cdot \frac{\partial u_j}{\partial w'_{ij}} = e_j \cdot h_i$$

Using stochastic gradient descent

$$w_{ij}^{\prime\,(new)}=w_{ij}^{\prime\,(old)}-\eta e_j\cdot h_i$$

Backpropagation—Hidden layer-Output layer weights

• Stacking over i

$$\mathbf{v}_{w_j}^{\prime \,\,(new)} = \mathbf{v}_{w_j}^{\prime \,\,(old)} - \eta e_j \cdot \mathbf{v}_{w_l}$$

• If $e_j = y_j - \mathbf{1}\{j = j^*\} > 0$, \mathbf{v}'_{w_j} moves further from \mathbf{v}_{w_l}

Backpropagation—Input layer-Hidden layer weights

• Recall $E = \log \sum_{j'=1}^{V} \exp(u_{j'}) - u_{j^*}$ and $u_j = \mathbf{v}'_{w_j} \mathbf{h}$

$$\frac{\partial E}{\partial h_i} = \sum_{j=1}^{V} \frac{\partial E}{\partial u_j} \cdot \frac{\partial u_j}{\partial h_i} = \sum_{j=1}^{V} e_j \cdot w'_{ij} := EH_i$$

- *EH* is *N* vector, sum of all the output vectors of all words in vocabulary weighted by their prediction errors
- Recall that $h_i = \sum_{k=1}^{V} x_k \cdot w_{ki}$

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial h_i} \cdot \frac{\partial h_i}{\partial w_{ki}} = EH_i x_k$$

Backpropagation—Input layer-Hidden layer weights

ullet Stack across i, and noting that $x_k=1$ only for the input word, so only the row of ${f W}$ corresponding to the input vector gets updated

$$\mathbf{v}_{w_I}^{(new)} = \mathbf{v}_{w_I}^{(old)} - \eta E H^{\mathsf{T}}$$

• If $e_j = y_j - \mathbf{1}\{j = j^*\} > 0$, \mathbf{v}_{w_l} moves further from \mathbf{v}_{w_j}

Training the NN: Backpropagation

According to Econometricians

Training the NN: Backpropagation

According to Econometricians

Chain Rule

Training the NN: Easier derivation

Let's do the situation with C context words. Now

$$E = -\log p(w_{O,1}, w_{O,2}, \dots, w_{O,C}|w_{I})$$

$$= C \cdot \log \sum_{j'=1}^{V} \exp(v'_{w_{j'}} v_{w_{I}}) - \sum_{c=1}^{V} v'_{w_{j''_c}} v_{w_{I}}$$

$$\frac{\partial E}{\partial v'_{w_{j}}} = \left(C \frac{\exp(v'_{w_{j}} v_{w_{I}})}{\sum_{j'=1}^{V} \exp(v'_{w_{j'}} v_{w_{I}})} - \sum_{c=1}^{C} \mathbf{1}\{j = j^{*}\}\right) v_{w_{I}}$$

$$= v_{w_{I}} \sum_{c=1}^{V} (y_{j} - \mathbf{1}\{j_{c} = j^{*}_{c}\})$$

$$= v_{w_{I}} \sum_{c=1}^{V} e_{j_{c}}$$

Training the NN: Easier derivation

• Recall
$$E = C \cdot \log \sum_{j'=1}^{V} \exp(v'_{w_{j'}} v_{w_{l}}) - \sum_{c=1}^{V} v'_{w_{j_{c}^{*}}} v_{w_{l}}$$

$$\frac{\partial E}{\partial v'_{w_{l}}} = C \frac{\sum_{j=1}^{V} v'_{w_{j}} \exp(v'_{w_{j}} v_{w_{l}})}{\sum_{j'=1}^{V} \exp(v'_{w_{j'}} v_{w_{l}})} - \sum_{c=1}^{C} v'_{w_{j_{c}^{*}}}$$

$$= \sum_{j=1}^{V} \sum_{c=1}^{C} \left(\frac{\exp(v'_{w_{j}} v_{w_{l}})}{\sum_{j'=1}^{V} \exp(v'_{w_{j'}} v_{w_{l}})} - \mathbf{1} \{ j_{c} = j_{c}^{*} \} \right) v'_{w_{j}}$$

$$= \sum_{j=1}^{V} \sum_{c=1}^{C} e_{j_c} v'_{w_j}$$

Visualizing Training

Word Vectors for FOMC transcripts

- Transcripts for Federal Open Market Committee transcripts are available to the public at Fed's website
- Words most similar to output

Using Word Vectors for Document Similarity

- 1. Obama speaks to the media in Illinois.
- 2. The **President greets** the **press** in **Chicago**.

Word travel cost

- Key idea is to measure similarity by the 'cost' of travelling from document 1 to document 2
- ullet The distance between two word vector i and j is

$$c(i,j) = ||v_i - v_j||_2$$

Document Distance

- Let $T_{ij} \in \mathbb{R}^{V \times V}$ be a sparse flow matrix where $T_{ij} \geq 0$ denotes how much of word i in \mathbf{d} moves to word j in \mathbf{d}' .
- To transform d entirely into d', we ensure that the entire outgoing flow from word i equals d_i

$$\sum_{j} T_{ij} = d_i$$

ullet And the entire incoming flow to word j equals d_j'

$$\sum_{i} T_{ij} = d'_{j}$$

Transportation Problem

The minimum cumulative cost of moving d to d' is

$$\min_{\mathbf{T} \geq 0} \sum_{i,j=1}^{V} T_{ij} c(i,j)$$
s.t.
$$\sum_{j=1}^{V} T_{ij} = d_i, \quad \forall i \in \{1, \cdots, V\}$$

$$\sum_{i=1}^{V} T_{ij} = d'_j, \quad \forall j \in \{1, \cdots, V\}$$

• The minimum distance is called the Word Mover's distance

Example revisited

