	bay-8
→	Summary:
	Directions Planes
	[UUW] (hKl)
	<υνω> {hkl}
	Symmetry related: One can be obtained
	associated with the lattice.
	associated with the lattice.
<u> </u>	compulations related to planes:
	Ax + By + Cz = D
	$\Rightarrow \frac{x}{P/A} + \frac{y}{P/B} + \frac{z}{P/C} = 1$
	7A 7B 7C
	$S_1 = \frac{D}{A}$, $S_2 = \frac{D}{B}$, $S_3 = \frac{D}{C}$
	⇒ ~ 4 . 2
	S_1 S_2 S_3
	Intercept form of eg' of plane
☆	Translate the plane along its normal such
	Translate the plane along its normal such that it passes through origin.
	x + 9 12 - 0
	S ₁ S ₃
	$\frac{1}{s} = nh, \underline{1} = nk, \underline{\frac{1}{33}} = nl$
	S. 83

So hx + ky + lz = 0

rai + yaz + zaz is a vector on the plane.

(vector related to h, k, l)

Consider of lattice. Projection viewed along [001]

(110) plane - sed trace

[110] = [UUW] (hxl) It [hxl]

in general

0 = 14=1

ひこり K=1

ω<u>−</u>0 1=0

Creation of another vector space (suciplocal space).

 $\overrightarrow{a}_1, \overrightarrow{a}_2 \text{ and } \overrightarrow{a}_3 \longrightarrow 0, 0, w \in \mathbb{R}$

Some as the basis for 3D space dual space -> 2; (basis vectors of (loorgiser $\vec{\alpha}_i \cdot \vec{\alpha}_i^* = \lambda (\vec{s}_{ij})$ can be anything, 212 those Knonecken bolta as k of wave weter given by \vec{a}_{3} \cdot $\begin{bmatrix} \vec{a}_{1}^{*} & \vec{a}_{2}^{*} & \vec{a}_{3}^{*} \end{bmatrix} = \begin{bmatrix} \cdot & 0 \\ 0 & \cdot \\ 0 & 0 \end{bmatrix}$ As $\vec{a}_i * \vec{a}_i = 0$ (i = 2, 3)So 可光上可以可 > 2 *= × (02 × 03) $\vec{a}_i \cdot \vec{a}_i * = \vec{a}_i \cdot k(\vec{a}_i \times \vec{a}_i) = 1$ > K[Q] Q; Q;] =1 For unit cell, volume (v) 80 K= (= L = m) $\therefore \overrightarrow{q}_{1}^{*} = \underbrace{1}_{V} (\overrightarrow{q}_{2} \times \overrightarrow{q}_{3}^{2})$ A Reciprocal space metric tonson:

$$q_{ij}^* = \vec{\alpha}_i^* \cdot \vec{\alpha}_j^*$$

Shorcuts!

Roal -> Recipora-cal space

$$\overrightarrow{a_m} * = q_m \cdot \overrightarrow{a_i}$$

For eg:
$$p = p_i \vec{\alpha}_i = p_j *\vec{\alpha}_j *$$

Take
$$\vec{p}.\vec{a}_k = \vec{p}.\vec{a}_i.\vec{a}_k = \vec{p}.\vec{a}_i^*a_i^*a_k$$

$$= \vec{p}.\vec{q}_i.\vec{a}_k = \vec{p}.\vec{q}_i^*a_i^*a_k$$