

S17P3V2.1 IF board local monitoring protocol

Version	No.	:		
Revision	n Da	te:		

Prepared by:

Xiamen Xintong Information
Technology Co., Ltd

Xiamen Xintong Information Technology Co., Ltd.

Website: www.santonetech.com Contacts: Long(86-13926451982)

Catalog

PREFACE	E	2
	VIATION NOTES	
VERSIO	ON HISTORY	4
СНАРТЕ	ER1 BASIC FORMAT	5
1.1	START FLAG UNIT	5
1.2	COMMAND UNIT	5
1.3	VERIFICATION UNIT	5
1.4	END FLAG UNIT	5
1.5	CHARACTER ESCAPE	5
СНАРТЕ	ER2 DATA TRANSMISSION REQUIREMENTS	7
СНАРТЕ	ER3 AUTHENTICATION	8
СНАРТЬ	ER4 PROTECTION TIMER	9
СНАРТЕ	ER5 COMMAND UNIT	10
5.1	MODULE ADDRESS	10
5.2	DATA TYPE	10
5.3	COMMAND NUMBER	11
5.4	Answer flag	11
5.5	COMMAND LENGTH	11
5.6	COMMAND DATA	11
Chapter6	Command number and function description	12

Preface

This protocol is based on the IF board local monitoring protocol V1.0 to further improve the protocol architecture and add new functions.

Abbreviation Notes

GSM	Global System for Mobile Communication
ICM	Self excitation cancellation module
RF	Radio Frequency
PA	Power Amplifier
LNA	Low Noise Amplifier
ALC	Automatic Level Control
ATT	Attenuation
ANT	Antenna

Version History

Version No.	modificatio	Modify content
	n date	
V1.0	January 16,	Establish the first draft and formulate the IF board local
	2019	monitoring protocol

Chapter 1 Basic format

The monitoring module interacts with other modules in the form of data package. A complete command package consists of four parts: start flag unit, command unit, CRC verification unit, and end flag unit.

Common format of information interaction command package between monitoring module and each module

Start flag unit Command unit Verification Unit End flag unit	
--	--

The details of each unit in the table are as follows:

1.1 Start flag unit

1 byte length, representing the beginning of a complete command package, fixed as a hexadecimal number 0X7E.

1.2 Command unit

It consists of command control head and command body. The command control header consists of 5 fields, including module address, data type, command number, response flag, and command body length, with a total length of 6 bytes. The parsing method and actual length of the command body are jointly determined by the "module address", "data type", "command number" and "command body length" of the control part.

1.3 Verification Unit

Check the "command unit" in the protocol (from the first byte of the "command unit" to the last byte), and use the 16 bit x16+x12+x5+1 (0x1021) recommended by CCITT. Generate a 2-byte CRC checksum (low byte first, high byte last). The sender must generate a 2-byte CRC checksum according to the "command unit". After receiving the complete data package, the receiver will generate a new CRC checksum according to the "command unit". If the new CRC checksum is equal to the received checksum, it indicates that the data package is valid. Otherwise, the receiver will send back a "check error" response to the sender.

1.4 End flag unit

1 byte length, indicating the end of a complete command packet, fixed as a hexadecimal number 0X7E.

Note: If the data of a part is composed of multiple bytes, the byte arrangement should follow the

1.5 Character escape

principle of low bit first and high bit last.

Since the data is transmitted in hexadecimal mode, the judgment of the start flag and the end flag of the communication packet is affected to prevent the same data from appearing in the data. Data must be escaped during sending and receiving. The escape character used is the ASCII character't '(OX5E).

Range: In the protocol, all data except for the start flag and end flag.

Escape rules: use 0X5E, 0X5D instead of 0X5E; Use 0X5E, 0X7D instead of 0X7E.

In case of sending after escaping, the operation should be carried out in the following order: before sending the data packet, first set the CRC check value, and then perform escape processing; After receiving the data packet, first perform escape processing, and then perform CRC verification.

Chapter 2 Data transmission requirements

Asynchronous half duplex communication mode is adopted, with 8 data bits, 1 stop bit, no check bit, and data rate of 19200bps.

Chapter3 Authentication

Whether it is a function module or a monitoring module, authentication processing must be carried out after receiving the data packet. Authentication processing includes the following steps: start/end flag verification, CRC verification, command number verification, and command data verification. If any of the above phases fails to pass the verification, the authentication is considered as failed, and the receiver should respond to the sender with an error flag according to the actual situation.

Chapter4 Protection timer

The purpose of using protection timer is to ensure the reliable arrival of messages or commands in time sequence. This agreement stipulates that before receiving the reply, the main sender must set a protection timer with a timeout of 1 second. The response received before the timer timeout is a valid response, otherwise it is an invalid response or a transmission failure or module communication failure, or it is considered that the module does not exist during initialization.

Chapter5 Command unit

The command unit consists of command control head and command body, as shown in the following table:

Command unit composition format

Command control head					Command
				Body	
Module	data type	Command	Answer flag	Command Body	Command data
address		Number		Length	
2Byte	1Byte	1Byte	1Byte	1Byte	Lengthen

The relevant fields in the table are described as follows:

5.1 Module address

The address of each module in the equipment is unique. Each module only resolves commands whose module address is equal to its own address, and uses 2 bytes to represent the module address.

The first byte represents the function code of the module: provide a unique code for modules with different functions.

Module function code

Module function	number
Intermediate	0x07
frequency board	

The second byte represents the address code of the module.

This byte corresponds to the ID address of the IF board. The module type and address filtering are composed of the above two bytes, which can be modified on the webpage hardware configuration page.

5.2 data type

The communication data is mainly divided into two types, namely, active initiation data and response data.

Data type code

coding	meaning	Remarks
0X00	Monitor the active initiation	
	data	
0X01	Monitoring response	
0X02	Intermediate frequency	

	board initiatively initiates data	
0X03	IF board response	
0X04 \sim 0XFF		hold

This byte is not used at present, and 0x00 is fixed.

5.3 Command Number

The unique identification of the command is divided into three categories: parameter setting command, status query command and module debugging command. The command number in the response command is the same as the command number of the received command.

5.4 Answer flag

As the active initiator of the command, this field is filled with 0, and the passive receiver will not parse or process this field. If it is a reply message, this field is used as a reply flag. If this field is not 0X00, it indicates that the recently received command cannot be processed or has an error. The primary initiator will not parse or process the "Command Body" after receiving the response from the other party whose response flag is not 0X00. "Command Body Length" and "Command Body" are meaningful only when the response flag is 0X00.

Response flag code

coding	meaning	Remarks
0X00	success	
0X01	Wrong command number	
0X02	Command data error	
0X03	Check error	
0X04	operation failed	
0X05	Other failures	
0x06	Data value size exceeds the	
	application range	
0X06 \sim 0XFF		hold

5.5 Command length

The actual length of command data, in bytes.

5.6 Command data

The length and parsing method are determined by the "Command Body Length" and "Command Number" of the command control head.

Chapter6 Command number and function description

The command number is the unique identifier of the command, which is divided into two categories: parameter setting command and status query command. At the same time, it is divided into several modules according to functions: hardware functional status query and configuration; Hardware peripheral device parameter query and configuration; RXO/RX1 configuration query of receiving channel; Transmission channel TXO/TX1 configuration query; Near end machine configuration query; Remote machine configuration query.

Please pay attention to the green numbered items. Other numbering functions are not provided.

Hardware peripheral device parameter query and configuration

Command	meaning	Data	Function	Parameter
Number		length	description	Description
0x00	Command error return type	0	No command number	
			exists	
0x01	Query: version number	9	Software and fpga	
			version number	
0x02	Query: temperature	4		
0x03	Query: hardware status (module status)	4	Lock status	
0x04	Setting: AD5662 (fiber AFC	3	It is divided into	
	automatic frequency calibration)		automatic mode and	
0x05	Query: AD5662		manual mode	
0x06	Settings: AFC	3	AD5662 can be	
0x07	Query: AFC	_	configured in	
			automatic mode	
0x08	Setting: DATT	6		
0x09	Query: DATT			
0x0a	Settings: Restore factory configuration	0		
0x0e	Query: vcxo manual	2		
0x14	Settings: restoring consistency	0		
0x19	Setting: 5662 temperature compensation	166		-40~125 °C
0x1d	Settings: VCXO compensation	6		
	enable, step, delay, reference value			
0x1e	Query: VCXO compensation			
	enable, step, delay,			

	reference value			
0x20	Query: rx0 broadband power	2		
0x21	Query: rx1 broadband power	2		
0x25	Setting: dac0	24		
0x26	Query: dac0			
0x27	Setting: dac1	24		
0x28	Query: dac1			
0x29	Setting: 9524	96		
0x2a	Query: 9524			
0x2b	Setting: 1197a	72		18
0x2c	Query: 1197a			registers
0x2d	Setting: 1197b	72		in total, 4
0x2e	Query: 1197b			bytes each
0xc9	Setting: test control register	8		
Охса	Query: test control register			
0xcb	Setting: ETH IP address	4		
Охсс	Query: ETH IP address			
Охсе	Query: module equipment number	2		
0x16	Setting: module equipment number			
0x80	Settings: broadband switching (digital frequency selection and subband selection)	1	2 broadband, 3 narrowband	
0x81	Query: broadband switching			

Command number description:

• Type of command error return: when the current command number does not exist, the returned reply command frame is 0x00.

Version No.:

The version number includes the fpga version number and software version number

Fpga version number: year month day version number module type

Software version number: year month day version number

Note: Year is the last two digits. For example, the transmission parameter in 2017 is hexadecimal 0x11.

Module type: near end machine 0x0a, remote end machine 0x0b.

- Temperature: the low order of the returned data is in the front and the high order is in the rear, which is 32-bit data. The calculation formula of $^{\circ}$ C is: when VAL>125000; $^{\circ}$ C=((VAL * 2/1000)&0xff)/2; When VAL<=125000; $^{\circ}$ C=VAL/1000.
- Hardware status:
 - 9524 locked state.
 - HMC1197A is locked.
 - HMC1197B locking status.
 - > AFC lock status.
 - 1: Locking; 0: Loss of lock.
- AD5662: parameter (2byte)+mode (1byte); The modes are automatic: 0 manual: 1; The parameter is
 0~65535
- AFC: mode (1byte)+automatic mode optical port (1byte)+manual mode optical port (1byte);

Automatic mode optical port: ALL is 0; 1,2 is 1; 3 and 4 are 2.

Manual mode optical port: 1 is 0; 2 is 1; 3 is 2; 4 is 3.

Note: the mode is divided into automatic mode: 0 and manual mode: 1;

In automatic mode and manual mode, the selection of optical port is 0;

In manual mode, the selection of optical port in automatic mode is 0;

DATT: DATT has 6 channels in total. The range is 0~31.5, and every value change is 0.25DB step. The value passed by the protocol=the value displayed on the interface * 4.

DATT distinction: the first parameter is RX0_0; The second parameter is RX0_1; The third parameter is RX1_0; The fourth parameter is RX1_1; The fifth parameter is TX1; The sixth parameter is TX0. (The test interface is provided. The 5 and 6 parameters are only the interface exchange transmission protocol).

VCXO temperature compensation

VCXO temperature compensation configuration includes: the first byte is the enable switch (0 is off, 1 is on), the second byte is the step fixed value: 1, the third and fourth bytes are the delay fixed value 250, and the fifth and sixth bytes are the calibration values.

RXO/RX1 configuration query of receiving channel

RXO:

Command	meaning	Data length	Function	Parameter
Number			description	Description
0x20	Query: broadband power	2		
0x22	Setting: central frequency point (selected frequency subband)	4		
0x35	Setting: channel frequency point configuration (selected frequency subband)	24		
0x36	Query: channel frequency configuration			
0x37	Settings: ALC	12		
0x38	Query: ALC			
0x39	Query: Carrier search results (frequency selected subband)	1		Send 3 to 1
0x3a	Query: Carrier power value after carrier search	16		
0x3b	Setting: compensation enable switch	5		
0x3c	Query: compensation enable switch			
0x3d	Settings: gain compensation	2		
0x3e	Query: gain compensation			
0x3f	Settings: temperature compensation table	166		-40 [~] 125 °C
0x40	Query: temperature compensation table			
0x41	Setting: channel switch (frequency selective subband)	8		
0x42	Query: channel switch			
0x43	Settings: filter compensation	64		32 parameters,
0x44	Query: filter compensation			2 bytes for each
				parameter

0x45	Settings: frequency point	12		Subband gair
	compensation			adjustment
0x46	Query: frequency point compensation			
0x47	Setting: Bottom noise	13		
	(selected frequency			
	subband)			
0x48	Query: bottom noise			
0x49	Query: input power peak (input ADC peak)	2		
0x4b	Setting: ALC control difference threshold	2		
0x4c	Query: ALC control difference threshold			
0x4d	Setting: baseband gain compensation	2		
0x4e	Query: baseband gain	4		
0x4f	Settings: carrier power and switch (frequency selective subband)	1		
0xeb	Query: central frequency point	4		
0xed	Query: subband bandwidth (frequency selective subband)	6		
0xd0	Setting: Subband Bandwidth	6		
0xf1	Query: Bottom noise channel switch (frequency selection subband)	16		
0xf2	Setting: Bottom noise channel switch			
0xf4	Query: uplink noise suppression switch (frequency selective subband)	1	1 ON O OFF	
0xf5	Setting: uplink noise suppression switch		1 ON O OFF	
0xf6	Query: uplink noise suppression threshold (frequency selective subband)	4		
0xf7	Setting: uplink noise suppression threshold			
Oxfc	Query: uplink noise suppression threshold correction value (frequency selection subband)	2		
0xfd	Setting: uplink noise suppression threshold correction value			
0x82	Settings: mean exp, search num	3	Mean exp (1byte),	
0x83	Query: mean exp, search num		search num (2byte)	

0x84	Setting: synchronization (frequency	frequency switch selection	1	0 on 1 off	
0x85	subband) Query: synchronization s	frequency witch			
0xed	Setting: rx0 iir (variable bandwid band selection)		24		6 Carrier bandwidth
0xf6	Query: rx0 iir ba	ndwidth			

RX1:

Command	meaning	Data length	Function	Parameter
Number			description	Description
0x21	Query: broadband power	2		
0x23	Setting: center frequency point	4		
0x50	Settings: channel frequency configuration	24		
0x51	Query: channel frequency configuration			
0x52	Settings: ALC	12		
0x53	Query: ALC			
0x55	Query: carrier search results	1		Send 3 to 1
0x57	Query: Carrier power value after carrier search	16		
0x58	Setting: compensation enable switch	5		
0x59	Query: compensation enable switch			
0x5a	Settings: gain compensation	2		
0x5b	Query: gain compensation			
0x5c	Settings: temperature compensation table	166		-40 [~] 125 ℃
0x5d	Query: temperature compensation table			
0x5f	Setting: channel switches	8		
0x60	Query: channel switch			
0x61	Settings: filter compensation	64		32
0х62	Query: filter compensation			parameters, 2 bytes for each parameter
0x63	Settings: frequency point compensation	12		Subband gain adjustment
0x64	Query: frequency point compensation			

0x65	Settings: bottom noise	13	
0x67	Query: bottom noise		
0x68	Query: input power peak	2	
0x6a	Setting: ALC control difference threshold	2	
0x6b	Query: ALC control difference threshold		
0x6c	Setting: baseband gain compensation	2	
0x6d	Query: baseband gain	4	
0x6e	Settings: carrier power and switch	1	
0xec	Query: central frequency point	4	
0xee	Setting: rxl iir bandwidth	24	6 Carrier
			bandwidth
0xf7	Query: rxl iir bandwidth		

Command number description:

- Query baseband gain: 0~1byte compensation value, 2~3byte peak value.
- Input power (broadband power): (data [0] | data [1]<<8)/256.
- Channel frequency point configuration, central frequency point:

Channel frequency configuration: 0 frequency off.

4 bytes per channel. Step: 0.0125Mhz

Setting method: setting value=frequency point value * 10000. If you want to set the channel frequency to

941.3Mhz, the setting value is 9413000

Query method: frequency point value=return value/10000. If 8995000 is queried, the corresponding frequency point value is 899.5Mhz

Subband Bandwidth: each channel corresponds to 2byte;.

Setting method: setting value=bandwidth value * 10. If you want to set the channel bandwidth to 3Mhz,

the setting value is: 30

Query method: frequency value=return value/10. If 67 is queried, the corresponding bandwidth value is

6.7Mhz

ALC:

Mean exp (1byte): parameter range 0~255;

Search num (2byte): Parameter range: 0~65535;

Switch (1byte): open to 1; Off is 0;

Manual datt (1byte): the range is $0^{\sim}63$ db, the step is 0.25db, and the transfer parameter needs * 4;

Offset datt (1byte), the transfer parameter must be * 4: range 0~31.5db;

Target (2byte): the precision is 0.125. When transferring parameters, the low order is decimal places,

decimal places * 256, and the high order is integer digits. For example, 1.25 is converted to 0x40 0x01;

Delay time (4byte).

RXO compensation enable switch:

1 is enable; 0 is disabled.

There are five kinds of compensation, respectively: broadband gain compensation, temperature compensation, DATT compensation, flatness compensation, and channel frequency compensation.

Broadband gain compensation:

The range is val=0~1.99. The passed parameter is P=val * 16384. When val is 1, there is no gain; Gain amplification when val is greater than 1; When val is less than 1, the gain decreases.

- Temperature compensation: the temperature compensation range is -40 °C~125 °C, the compensation range is -6db~6db, and the transmitted parameter is P=val * 10+60.
- DATT compensation: just turn on the function to automatically compensate.
- Frequency point compensation:

For the passed parameters, one channel occupies two bytes.

Channel frequency point compensation value is used to realize channel gain adjustment,

or channel ATT

Setting method: Set_ Value=attenuation value * 100, attenuation value (db) range - 10db~+5db

- Peak value of input power: when the peak value of input signal is greater than 1023, self excitation alarm is provided. Near end machine (RXO); Remote computer (RXO, RX1)
- Simulate self excitation:

SWITCH of RXO RX1 ALC: OFF

MUNUAL DATE: 0

OFFSET DATE: 0 Other parameters remain unchanged.

After simulating the original configuration value of the self excitation function, configure it back.

- ALC control difference threshold: the first byte enable value: Disable: 0; ENABLE: 1, the second byte is a parameter: when it is not enabled, the parameter value is 0; When enabled, the parameter range is 0~63db. Parameter description: When ALC is started, the threshold value is set. ALC is calculated only when the threshold value exceeds the set value.
- Carrier search result: send 3byte and return 1byte. Send: exp (1byte)+searchnum (2byte).
- Bottom noise:

MEAN EXP: set index 2^{15} (1byte);

SEARCH NUM: $0^{\circ}65535$ (2 bytes);

FLOOR NOISE SWITCH: on: 1 off: 0 (1byte);

MANUAL: 32bit 1 on 0 off (4bytes);

High level of low noise suppression threshold: high threshold of low noise suppression

unit: dBm, precision: 0.1dbm

2bytes, data [0]=(low noise suppression high threshold * 256&0xff), data [1]=(low noise suppression high threshold * 256>>8&0xff), read low noise suppression high threshold=(data [0] | data [1]<<8)/256

Low level of low threshold for bottom noise suppression: unit: dBm, precision: 0.1dbm 2bytes, data [0]=(low threshold value of bottom noise suppression * 256&0xff), data [1]=(low threshold value of bottom noise suppression * 256>>8&0xff), low threshold value of bottom noise suppression reading=(data [0] | data [1]<<8)/256

Low power cnt: 0^2255 (1bytes)

• Carrier power and switch: 0 off 1 on.

ullet Threshold correction value: bottom noise suppression threshold correction value unit:

dBm, accuracy: 0.1dbm

2bytes, data [0]=(low threshold value of bottom noise suppression * 256&0xff), data [1]=(low threshold value of bottom noise suppression * 256>>8&0xff), low threshold value of bottom noise suppression reading=(data [0] \mid data [1]<<8)/256

• Channel switch: 0 on 1 off, 1 byte per channel.

Transmission channel TX0/TX1 configuration query

TXO:

Command	meaning	Data	Function	Parameter
Number		length	description	Description
0x70	Setting: TXO compensation enable switch	5		
0x71	Query: TXO compensation enable switch			
0x72	Settings: gain compensation	2		0~1.99
0x73	Query: gain compensation			
0x74	Settings: temperature compensation table	166		-40~125 ℃
0x75	Query: temperature compensation table			
0x78	Settings: filter compensation	64		32
0x79	Query: filter compensation			parameters, 2 bytes for each parameter
0x7a	Query: peak output power (DAC digital peak)	2		
0xe5	Query: downlink output power	2		
0xe7	Setting: gain power control ATT	2		
0xe9	Setting: power offset	4		
0xea	Query: power offset			
0xef	Query: gain power control ATT	2		
0xf3	Query: input and output power	8		

TX1:

Command	meaning	Data	Function	Parameter
Number		length	description	Description

21

0x80	Setting: TX1 compensation enable switch	5	
0x81	Query: TX1 compensation enable switch		
0x82	Settings: gain compensation	2	0~1.99
0x83	Query: gain compensation		
0x84	Settings: temperature compensation table	166	-40 [~] 125 ℃
0x85	Query: temperature compensation table		
0x88	Settings: filter compensation	64	32 parameters,
0x89	Query: filter compensation		2 bytes for each parameter
0x8a	Query: peak output power	2	
0xe8	Setting: gain power control ATT	2	
0xf0	Query: gain power control	2	

- TX0 TX1 compensation enable switch: provides gain compensation, temperature compensation, DATT
 compensation and flatness compensation. When configuring switch enabling, 5 parameters are transferred
 according to the corresponding position of RX0 transmission mode. The corresponding position of channel
 frequency point compensation not provided shall be filled with 0 for transmission. Example: Turn on gain
 compensation, temperature compensation, DATT compensation, flatness compensation. The passed parameters
 are: 1 1 1 1 0.
- Gain compensation: Refer to RXO gain compensation.
- Temperature compensation: Refer to RXO temperature compensation.
- Output power: Refer to RX input power.
- Gain power control ATT: byte0 input, byte1 output. Unit: dbm.

Input Yes to adjust the input power ALC control point.

Output is to adjust output power. 0.25db step.

Setting method: setting value=attenuation value * 4. If the original value is 15.5db, to modify the input ALC control point (originally -10dbm, now -11.5dbm is required), the attenuation value needs to be 13db (15.5-1.5), and the setting value is: (15.5-1.5) * 4; The output directly adjusts the output power,

Query Method: Actual Value=Return Value/4.

• Power offset: byte 0 uplink input, byte 1 downlink input, byte 2 uplink output, byte 3 downlink output;

Complement transmission.

Near end machine configuration query

Command	meaning	Data	Function	Parameter
Number		length	description	Description
0x90	Settings: optical port	4	Switch optical port	
	switch		signal	
0x91	Query: optical port switch			
			On: 0 Off: 1	
0x92	Settings: Network Mode	1		
	Configuration			
0x93	Query: network mode			
0.04	configuration	4		E. I. MAC
0x94	Setting: MAC address	4		Each MAC
0x95	Query: MAC address			address
				corresponds
				to
				hexadecimal
0x96	Settings: device ID	2		Range
		_		
0x97	Query: Device ID			1~65535
0x98	Setting: delay of reaching	64		
	the target position			
0x99	Query: delay of reaching			
	the target position			
0x9a	Query: optical port status	1		
0x9b	Query: Optical port 1	16		
	device ID topology			
0x9c	Query: actual delay of	16		
0.04	optical port 1 device	32		
0x9d	Query: optical port 1 MAC address topology	32		
0x9e	Query: Optical port 2	16		
one c	device ID topology	10		
0x9f	Query: actual delay of	16		
	optical port 2 device			
0xa0	Query: optical port 2 MAC	32		
	address topology			
0xa1	Query: Optical port 3	16		
0::-3	device ID topology	1.0		
0xa2	Query: actual delay of	16		
0xa3	optical port 3 device Query: optical port 3 MAC	32		
Oxas	address topology	32		
0xa4	Query: Optical port 4	16		
	device ID topology	1 1		
0xa5	Query: actual delay of	16		

	optical port 4 device		
0xa6	Query: optical port 4 MAC	32	
	address topology		
0xa7	Query: optical module	32	
	hardware parameters		

- Network mode configuration: including automatic switching, selective light 1, 2, selective light 3, 4,
 interleaving and stacking corresponding to parameters 0, 1, 2 and 3 respectively.
- Optical port status:
 - Fb_State [0] 1: Optical port 0 is disconnected 0: Optical port 0 is normal
 - Fb State [1] 1: Optical port 1 is disconnected 0: Optical port 1 is normal
 - Fb_ State [2] 1: Optical port 2 is disconnected 0: Optical port 2 is normal
 - Fb_State [3] 1: Optical port 3 is disconnected 0: Optical port 3 is normal
 - Fb State [4] 1: Optical port 0 transmission failure 0: Optical port 0 transmission normal
 - Fb State [5] 1: Optical port 1 transmission failure 0: Optical port 1 transmission normal
 - Fb_ State [6] 1: Optical port 2 transmission failure 0: Optical port 2 transmission normal
 - Fb_ State [7] 1: Optical port 3 transmission failure 0: Optical port 3 transmission normal
 - Time delay to reach the target position: the transfer value=val/0.016, and each device corresponds to a 2 byte time delay value, with the low order in the front and the high order in the rear.
- Query device MAC topology: four optical ports query corresponding topology information respectively; 32 bytes for each optical port topology data, and 4 bytes for each device topology MAC
- Query topology ID: four optical ports query corresponding IDs respectively; Each optical
 port provides 16 bytes. Every two bytes correspond to a device ID in the device order
- Query the actual delay: four optical ports query the corresponding delay respectively;
 Each optical port provides 16 bytes. Every two bytes correspond to one device delay in device order, val=transfer value * 0.5208
- Hardware parameters of optical module: including the temperature of four optical ports, received optical power, and transmitted optical power. 32 bytes, refer to the following table for the order

Fb0_ Temp	4byte	temperatur
		e
Fb0_ Rx_ Pwr	2byte	Received
		power
Fb0_Tx_Pwr	2byte	Transmissi
		on power
Fb1_ Temp	4byte	temperatur
		e
Fb1_ Rx_ Pwr	2byte	Received
		power
Fb1_Tx_Pwr	2byte	Transmissi
		on power
Fb2_ Temp	4byte	temperatur
		е
Fb2_ Rx_ Pwr	2byte	Received
		power
Fb2_Tx_Pwr	2byte	Transmissi
		on power
Fb3_ Temp	4byte	temperatur
		e
Fb3_ Rx_ Pwr	2byte	Received
		power
Fb3_Tx_Pwr	2byte	Transmissi
		on power

Power=transfer value * 0.1,

Temperature=transfer value * 0.001.

Remote machine configuration query

Command	meaning	Data	Function	Parameter
Number		length	description	Description
0xb0	Settings: optical port switch	4		Reference
0xb1	Query: optical port switch			near end machine
0xb2	Settings: network mode (not provided)	1	Refer to the near	No settings
0xb3	Query: network mode		mode type	are provided temporarily
0xb4	Setting: MAC address	4		Reference
0xb5	Query: MAC address			near end

				machine
0xb6	Settings: device ID	2		Reference
0xb7	Query: Device ID			near end
				machine
0xb8	Setting: delay	6		
0xb9	Query: delay			
0xba	Settings: gain compensation	4		
0xbb	Query: gain compensation			
0xbc	Query: optical port status	1		Reference
				near end
				machine
0xbd	Query: near end port location	1	Direct display of	
			decimal value	
0xbe	Query: Channel O optical	1	The mode	
0xbf	network mode Query: Channel 1 optical	1	corresponds to the	
	network mode		configuration mode	
			of the near end	
			machine	
ОхсО	Query: optical module	32		Reference
	hardware parameters			near end
				machine
0xfe	Query: own topology ID	1		

 Delay: The delay configuration is divided into two channels, each channel contains the configuration mode and delay value. Six byte parameters need to be passed.

The first byte is channel 1 mode

The second byte is channel 2 mode (used in interweaved networking mode, not used in other modes)

The third and fourth bytes correspond to the delay value of channel 1

The fifth and sixth bytes correspond to the delay value of channel 2 (used in interweaved networking mode, not used in other modes)

When the mode is manual mode, the delay value needs to be configured (refer to the near terminal delay conversion method for the delay value conversion method); When the mode is automatic, the delay value is 0.

■ Gain compensation of optical port: it includes two channels, two bytes are required respectively, and the configured value range is 0~1.99. For conversion method of configuration value, refer to RXO gain compensation conversion method