ME 536

Weeks 4: Some more math 2 remember

Matrices

Collection of vectors, where a vector generally represents a data point.

Vectors can be in the rows or columns of the **matrix**.

Convention for the rest of the course:

Columns of a data matrix represent **data points** in the rest of the class unless otherwise mentioned

Let's refresh our memories on **Matrices** and **Vectors** in action

Matrix multiplied by a Vector

$$\mathbf{M}\mathbf{x} = \mathbf{a}$$

Vector multiplies the matrix on the right.

Recall: M is the matrix and x, a are vectors.

Matrix multiplied by a Vector: 2 Main Interpretations

$$Mx = a$$

$$\mathbf{a}^{\mathrm{T}} = \begin{bmatrix} \mathbf{a} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{c} \end{bmatrix} + \mathbf{c} \begin{bmatrix} \mathbf{a} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{bmatrix}$$

Dot (or inner) product version

Linear Combination version

Generally we are used to: square M with no rank deficiency, i.e. M is full rank

Row and Column Space of a Matrix

$$\begin{bmatrix} 4 & 2 & -1 & -8 & 12 & 1 \\ 2 & 6 & -3 & -4 & 6 & 3 \\ 5 & 4 & -2 & -10 & 15 & 2 \end{bmatrix}$$
 Given **M**
$$\begin{bmatrix} -4 & -2 & 1 & 3 & -4 & -2 \\ 0 & 2 & 1 & 3 & 4 & -2 \end{bmatrix}$$

$$\begin{bmatrix} -4 & -2 & 1 & 3 & -4 & -2 \\ 0 & 2 & 1 & 3 & 4 & -2 \end{bmatrix}$$

Column space of M: C(M)

Spanned by columns of **M**

Row space of M: R(M)

Spanned by rows of **M**

Row and Column Space of a Matrix

Column space of $\mathbf{M}: \mathbf{C}(\mathbf{M}) \to \mathsf{Spanned}$ by columns of \mathbf{M}

Row space of $\mathbf{M}: \mathbf{R}(\mathbf{M}) o$ Spanned by rows of \mathbf{M}

$$C(M) \stackrel{?}{=} R(M)$$

1- Fix for general case if it is not <u>always</u> True

2- Special case when this is correct?

Matrix multiplied by a Vector: 2 Main Interpretations

$$Mx = 0$$

What if the trivial is not the only alternative: $\mathbf{x} \neq \mathbf{0}$

$\mathbf{M}\mathbf{x} = \mathbf{0}$: Different Cases

Let:

$$rank (\mathbf{M}_{3x3}) = \mathbf{2}$$

$$\mathsf{rank}\;(\mathbf{M}_{\mathbf{3}\mathbf{x}\mathbf{3}})=\mathbf{1}$$

What does C(**M**) represent in each case?

What about the basis of **M**?

Mx = 0: NULL Space - N(M)

Let:

$$rank (\mathbf{M}_{3\mathbf{x}3}) = \mathbf{2}$$

$$\mathsf{rank}\;(\mathbf{M}_{\mathbf{3}\mathbf{x}\mathbf{3}})=\mathbf{1}$$

Where does x come from? Where do all x live?

Dimension of the $N(\mathbf{M})$? Number of free Parameters?

WRAP UP for $N(M_{mxn})$

WRAP UP for $N(M_{mxn})$

Similarly for $\mathbf{M}^{\mathrm{T}}_{\mathbf{nxm}}$

$$N(\mathbf{M}^{\mathrm{T}}) \perp R(\mathbf{M}^{\mathrm{T}})$$

hence

$$N(\mathbf{M}^{\mathrm{T}}) \perp C(\mathbf{M})$$

where

$$\dim(R(\mathbf{M}^{T})) = \dim(C(\mathbf{M})) = \operatorname{rank}(\mathbf{M}) = r$$

$$\dim(N(\mathbf{M}^{\mathrm{T}})) = ?$$

Time Capsule: note to the Future

Recall that choosing a basis **from the data** matrix **M** is:

- Practical
- Yet subject to ill-conditioned cases!
 - For a square matrix, you can check for very small | |
 - But what if the Basis vectors do not form a square matrix?

Time Capsule: note to the Future

Given a full rank square matrix \mathbf{A}_{nxn}

We can consider this as a mapping from \mathbb{R}^n to \mathbb{R}^n , i.e. $\mathbf{A}:\mathbb{R}^n \to \mathbb{R}^n$

For $\mathbf{A}\mathbf{x} = \mathbf{a}$, we have $\mathbf{x}, \mathbf{a} \in \mathbb{R}^n$

What if \mathbf{A}_{nxm} is not square?

Then we have a mapping from \mathbb{R}^m to \mathbb{R}^n , i.e. $\mathbf{A}: \mathbb{R}^m \to \mathbb{R}^n$

For Ax = a, we have $x \in \mathbb{R}^m$, and $a \in \mathbb{R}^n$

Consider cases:

- 1. A_{3x2}
- 2. \mathbf{A}_{200x10}
- 3. A_{2x3}

Can you move back and forth?

Try to think about it, drawing might help

A famous Space: \mathbb{R}^n

lacktriangle All of us know a very well-known vector space: \mathbb{R}^n

For $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, we know that the length of vector x

$$||x|| = \left(\sum_{k=1}^{n} |x_k|^2\right)^{1/2}$$

- ullet For general vector spaces, we need a concept that corresponds to length in \mathbb{R}^n
- We use "norm" instead of "length"

Good news:

Our data will almost exclusively live in \mathbb{R}^n

So no weird brain freezing spaces

A famous Norm: length

Euclidean Vector Norm

For a vector $x \in \mathbb{R}^n$, the euclidean norm is defined by:

$$||x|| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$$

Just like the standard basis:

Famous, but not unique!

In general: Norm

A norm for a real or complex vector space \mathcal{V} is a function

$$\|.\|:\mathcal{V} o\mathbb{R}$$

with three properties:

- 1. $||x|| \ge 0$ for all $x \in V$ and $||x|| = 0 \iff x = 0$
- 2. $\|\alpha x\| = |\alpha| \|x\|$ for all scalars α and for all $x \in \mathcal{V}$
- 3. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathcal{V}$

p-Norms

p-Norms

For $p \ge 1$, the p-norm of a vector $x \in \mathbb{R}^n$ is defined by:

$$||x||_p = (|x_1|^p + |x_2|^p + \ldots + |x_n|^p)^{1/p}$$

- l_1 norm $\rightarrow \bullet \|\mathbf{x}\|_1$ a.k.a Taxicab or Manhattan norm
- $l_2 \text{ norm} \rightarrow \|\mathbf{x}\|_2$ Euclidean norm
- ...
- $l_{\infty} \text{ norm} \rightarrow \bullet \|\mathbf{x}\|_{\infty} \max(|\mathbf{x}_1|, ..., |\mathbf{x}_n|)$

Even though value of p determines the norm, in general they are referred to as l_p norm. (with a lowercase L)

NOTE: shape of l_p norms:

What are the set of **points with unit norm** look like:

$$l_p = 1$$

for different values of $p = \{ \frac{1}{2}, 1, 2, \infty \}$ in 2D.

NOTE: l_1 over l_2 ?

Given: A set of points in 2-dimension

Goal: Find a line to fit those points

Output : ℓ_2 minimizer line, ℓ_1 minimizer line

NOTE: l₀ norm

Despite the fact that l_0 norm is **not a norm by definition** but it is very often *used in practice*.

 \mathbf{l}_0 norm is defined by the **number of non-zero elements** in the vector.

 \rightarrow i.e. minimizing l_0 results in sparse solution

NOTE: yet another norm

Note that if **D** is a symmetric matrix with positive diagonal terms, then for the vector **v**:

$$\mathbf{v}^T\mathbf{D}\mathbf{v}$$

defines a norm in the form of a weighted sum of squares.

Example: a 2x2 case

$$\mathbf{D} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$\mathbf{v}^T \mathbf{D} \mathbf{v} = a v_1^2 + b v_2^2$$

Good news:

Every finite dimensional real or complex topological vector space has a norm

So no hunt for finding norms, well mostly...

A famous Inner Product in: \mathbb{R}^n a.k.a *DOT Product*

 \mathbb{R}^n : Collection of all finite sequences

$$x = (x_1, x_2, \dots, x_n), x_k \in \mathbb{R} \text{ for } k = 1, 2, \dots, n$$

We can define norm for
$$||x|| = \left(\sum_{k=1}^{n} x_k^2\right)^{1/2}$$

Recall: inner product of $x, y \in \mathbb{R}^n$, $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$

Clearly:
$$\langle x, x \rangle = ||x||^2$$

Inner product is a very important tool for analysis in \mathbb{R}^n .

It is a measure of angle between vectors

In general: Inner Product

Definition: An inner product on a real (or complex) vector space \mathcal{V} is a function that maps each ordered pairs of vectors v and w to a real (or complex) scalar $\langle v, w \rangle$ such that the following properties hold:

- 1. $\langle v, v \rangle$ is real with $\langle v, v \rangle \geq 0$ for all $v \in V$ and $\langle v, v \rangle = 0 \iff v = 0$
- 2. $\langle v, \alpha w \rangle = \overline{\alpha} \langle v, w \rangle$ for all scalars α and for all $v, w \in \mathcal{V}$
- 3. $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$ for all $v, u, w \in \mathcal{V}$
- 4. $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for all $v, w \in \mathcal{V}$ (note that $\langle v, w \rangle = \langle w, v \rangle$ for real spaces)

Brain teaser:

Try to come up with *your custom:*

ullet norm for vectors in \mathbb{R}^n

with three properties:

- 1. $||x|| \ge 0$ for all $x \in V$ and $||x|| = 0 \iff x = 0$
- 2. $\|\alpha x\| = |\alpha| \|x\|$ for all scalars α and for all $x \in \mathcal{V}$
- 3. $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathcal{V}$
- ullet inner product for vector pairs in $\, {\mathbb R}^n \,$
 - 1. $\langle v, v \rangle$ is real with $\langle v, v \rangle \geq 0$ for all $v \in V$ and $\langle v, v \rangle = 0 \iff v = 0$
 - 2. $\langle v, \alpha w \rangle = \overline{\alpha} \langle v, w \rangle$ for all scalars α and for all $v, w \in \mathcal{V}$
 - 3. $\langle v, w + u \rangle = \langle v, w \rangle + \langle v, u \rangle$ for all $v, u, w \in \mathcal{V}$
 - 4. $\langle v, w \rangle = \overline{\langle w, v \rangle}$ for all $v, w \in \mathcal{V}$ (note that $\langle v, w \rangle = \langle w, v \rangle$ for real spaces)

Inner Product Spaces

Simple Recipe: A vector space with an Inner Product

Examples:
$$\mathbb{R}^n$$
 with $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$

$$\mathbb{C}^n$$
 with $\langle x, y \rangle = \sum_{k=1}^n x_k \overline{y_k}$

Cauchy-Schwarz Inequality

Inner product for \mathbb{R}^2

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta)$$

$$|\langle x, y \rangle| \le ||x|| ||y|| = \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$$

For a general normed vector space \mathcal{V}

Theorem.
$$|\langle v, w \rangle| \leq \langle v, v \rangle^{1/2} \langle w, w \rangle^{1/2}, \ \forall v, w \in \mathcal{V}$$

Good to know

 In any inner product vector space, regardless of the inner product we can always define a norm

Lemma. If
$$V$$
 has the inner product $\langle .,. \rangle$, then $||v|| = |\langle v, v \rangle|^{1/2}$ is a norm

 But opposite is not true. We may not always define an inner product from a given norm

But...

• We may define an inner product from a given norm if the parallelogram law holds for the norm

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2)$$

for all $v, w \in \mathcal{V}$

Subspaces

Lemma. A subset
$$W \subset V$$
 is a subspace if $\alpha, \beta \in \mathcal{F}$ and $v, w \in W \Rightarrow \alpha v + \beta w \in W$

Practical consequence:

Any line, plane, etc are subspaces if they include the origin

Subspaces: Examples

A line through origin in \mathbb{R}^3 is a 1-dimensional subspace of \mathbb{R}^3

A plane through origin in \mathbb{R}^3 is a 2-dimensional subspace of \mathbb{R}^3

Sum of Subspaces

If \mathcal{X} and \mathcal{Y} are subspaces of a vector space \mathcal{V} , then the sum of \mathcal{X} and \mathcal{Y} is defined as all possible sums of vectors from \mathcal{X} and \mathcal{Y} :

$$\mathcal{X} + \mathcal{Y} = \{x + y : x \in \mathcal{X} \text{ and } y \in \mathcal{Y}\}$$

The sum of \mathcal{X} and \mathcal{Y} is a subspace of \mathcal{V}

Union of Subspaces

If \mathcal{X} and \mathcal{Y} are subspaces of a vector space \mathcal{V} , then the union of \mathcal{X} and \mathcal{Y} is defined:

$$\mathcal{X} \cup \mathcal{Y} = \{z : z \in \mathcal{X} \text{ or } z \in \mathcal{Y}\}$$

The union of \mathcal{X} and \mathcal{Y} may not be a subspace of \mathcal{V}

$$z_1 \in \mathcal{X} \cup \mathcal{Y}, z_2 \in X \cup \mathcal{Y}$$

but
$$z_1 + z_2 \notin \mathcal{X} \cup \mathcal{Y}$$

Intersection of Subspaces

If \mathcal{X} and \mathcal{Y} are subspaces of a vector space \mathcal{V} , then the intersection of \mathcal{X} and \mathcal{Y} is defined:

$$\mathcal{X} \cap \mathcal{Y} = \{z : z \in \mathcal{X} \text{ and } z \in \mathcal{Y}\}$$

The intersection of \mathcal{X} and \mathcal{Y} is a subspace of \mathcal{V}

Complementary Subspaces

Subspaces \mathcal{X} and \mathcal{Y} a space \mathcal{V} are complementary if

In this case, \mathcal{V} is said to be the direct sum of \mathcal{X} and \mathcal{Y}

$$V = X \bigoplus Y$$

For each $v \in \mathcal{V}$, there are unique vectors $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that v = x + y

Orthogonal Subspaces

If \mathcal{X} and \mathcal{Y} are subspaces of an *inner-product* vector space \mathcal{V} , then \mathcal{X} and \mathcal{Y} are orthogonal $\mathcal{X} \perp \mathcal{Y}$ if

If \mathcal{X} is a subspace of a finite dimensional inner-product space \mathcal{V} , then \mathcal{X}^{\perp} is its orthogonal complement if

$$\mathcal{V} = \mathcal{X} \bigoplus \mathcal{X}^{\perp}$$

Independent vs Disjoint

Linear subspaces S_1, S_2, \ldots, S_k of \mathbb{R}^n are independent

if and only if

$$\dim(S_1 + S_2 + \ldots + S_k) = \dim(S_1) + \dim(S_2) + \ldots + \dim(S_k)$$

Linear subspaces S_1, S_2, \ldots, S_k of \mathbb{R}^n are disjoint if they intersect only at the origin

Independence is stronger than disjointedness

Three lines in \mathbb{R}^2 intersecting at 0 are disjoint But they are not independent

Independent vs Disjoint

Minimal Angle

Minimum Angle

Let $\mathcal F$ and $\mathcal G$ be subspaces of $\mathbb R^D$. The minimal angle between $\mathcal F$ and $\mathcal G$ is defined as

$$\theta_{\min} = \arccos \begin{bmatrix} \max_{\substack{f \in \mathcal{F} \\ g \in \mathcal{G} \\ ||f||_2 = ||g||_2 = 1}} f^T g \end{bmatrix}$$

It is a good measure for complementary subspaces

It is not a good measure for non-complementary subspaces

Gap between Subspaces

$$d(\mathscr{F},\mathscr{G}) = \max_{\substack{g \in \mathscr{G} \\ ||g||_2 = 1}} dist(g,\mathscr{F}) = \max_{\substack{g \in \mathscr{G} \\ ||g||_2 = 1}} ||(I - P_{\mathscr{F}})g||_2$$

$$gap(\mathscr{F},\mathscr{G}) = \min(d(\mathscr{F},\mathscr{G}),d(\mathscr{G},\mathscr{F}))$$

Maximal Angle

Maximum Angle

The maximal angle between ${\mathcal F}$ and ${\mathcal G}$ is defined as

$$\theta_{\mathsf{max}} = \mathsf{arcsin}(\mathsf{gap}(\mathcal{F}, \mathcal{G})),$$

where $0 \le \theta_{\text{max}} \le \pi/2$.

It is useful for subspaces of equal dimension

Principal Angles: An iterative process

Principle Angles

Let \mathcal{F} and \mathcal{G} be subspaces of \mathbb{R}^D . Let $k = \min(\dim \mathcal{F}, \dim \mathcal{G})$. Then, the principle angles $\theta_1, \theta_2, \dots, \theta_k$ are the numbers $0 \le \theta_i \le \pi/2$ and they are defined as

$$\cos \theta_i = \max_{\substack{f \in \mathcal{F}_i \\ g \in \mathcal{G}_i}} f^t g = f_i^t g_i \quad i = 1, \dots, k$$

where
$$\mathcal{F}_1=\mathcal{F}$$
 and $\mathcal{G}_1=\mathcal{G}$, $||f_i||_2=1$, $||g_i||_2=1$, $\mathcal{F}_i=f_{i-1}^\perp \bigcap \mathcal{F}_{i-1}$, and $\mathcal{G}_i=g_{i-1}^\perp \bigcap \mathcal{G}_{i-1}$. Note that $\theta_1 \leq \theta_2 \leq \cdots \leq \theta_k$.

Principal Angles

Principle Angles

Let \mathcal{F} and \mathcal{G} be subspaces of \mathbb{R}^D . Let $k = \min(\dim \mathcal{F}, \dim \mathcal{G})$. Then, the principle angles $\theta_1, \theta_2, \ldots, \theta_k$ are the numbers $0 \leq \theta_i \leq \pi/2$ and they are defined as

$$\cos heta_i = \max_{\substack{f \in \mathcal{F}_i \ g \in \mathcal{G}_i}} f^t g = f_i^t g_i \quad i = 1, \dots, k$$

where
$$\mathcal{F}_1=\mathcal{F}$$
 and $\mathcal{G}_1=\mathcal{G},\ ||f_i||_2=1,\ ||g_i||_2=1,$ $\mathcal{F}_i=f_{i-1}^{\perp}\bigcap\mathcal{F}_{i-1},\ \text{and}\ \mathcal{G}_i=g_{i-1}^{\perp}\bigcap\mathcal{G}_{i-1}.$ Note that $\theta_1\leq\theta_2\leq\cdots\leq\theta_k.$

Time Capsule: note to the Future

Given two subspaces \mathscr{F} and \mathscr{G} let F, G form orthogonal bases for subspaces \mathscr{F} and \mathscr{G} respectively.

$$cos\theta_i = S(\mathbf{F}^T\mathbf{G})$$

where $S(\cdot)$ correspond to the singular values of \cdot

Affine Space

Affine Projections. If $\mathbf{v} \neq \mathbf{0}$ is a vector in a space \mathcal{V} , and if \mathcal{M} is a subspace of \mathcal{V} , then the set of points $\mathcal{A} = \mathbf{v} + \mathcal{M}$ is called an *affine space* in \mathcal{V} .

Manifolds

A manifold is a mathematical space that (on a sufficiently small scale) resembles to the Euclidean space of a specific dimension

Manifolds

- Manifolds are like curves and surfaces, except that they might be of higher dimension
- Every manifold has a dimension
 - The number of independent parameters to specify a point
- n dimensional manifold is an object modeled *locally* on
 - It takes exactly n numbers to specify a point

to be continued...

With matrix decomposition methods