Math 553 Homework

Theo Koss

April 2022

1 Section 2.3

• Problem 1: Let $S^2 = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 = 1\}$ be the unit sphere and let $A: S^2 \to S^2$ be the antipodal map A(x, y, z) = (-x, -y - z). Prove that A is a diffeomorphism.

Proof. For A to be a diffeomorphism it must be:

1. Differentiable (or smooth).

The map $(x, y, z) \mapsto (-x, -y, -z)$ from \mathbb{R}^3 to itself is smooth. A is a restriction of this map, therefore A is smooth.

2. Has inverse A^{-1} which is also smooth.

All A does is flip the signs of each coordinate, so A^{-1} must also simply flip the signs. Therefore $A^{-1} = A$. Since we proved above that A is smooth, then A^{-1} must also be smooth.

Thus A is a diffeomorphism.

QED

• Problem 5: Let $S \subset \mathbb{R}^3$ be a regular surface, and let $d: S \to \mathbb{R}$ be given by $d(p) = |p - p_0|$, where $p \in S$, $p_0 \neq \mathbb{R}^3$, $p_0 \notin S$; that is, d is the distance from p to a fixed point p_0 not in S. Prove that d is smooth.

Proof.

Remark. Ex. 1 in the text states, the square of the distance from a fixed point $p_0 \in \mathbb{R}^3$, $f(p) = |p - p_0|^2$ is differentiable. Furthermore it states that the need for the square comes from the fact that the distance $|p-p_0|$ is not differentiable only at $p = p_0$.

Using this, we now simply need to show that p is never equal to p_0 . This is simple, as $p \in S$ and $p_0 \notin S$, therefore they must never be equal. Therefore d is smooth QED

• Problem 6: Prove that the definition of a differentiable map between surfaces does not depend on the parametrizations chosen.

Proof. A differentiable map is a smooth, continuous map $\phi: S_1 \to S_2$. ϕ is differentiable at $p \in S_1$ if given parametrizations: $f: U \in \mathbb{R}^2 \to S_1$ and $g: W \in \mathbb{R}^2 \to S_2$. With $p \in f(U)$ and $\phi(f(U)) \subset g(W)$, the map $g^{-1} \circ \phi \circ f: U \to W$ is differentiable at $q = f^{-1}(p)$.

$$g_1^{-1} \circ \phi \circ f_1 = g_1^{-1} \circ g_2 \circ (g_2^{-1} \circ \phi \circ f_2) \circ f_2^{-1} \circ f_1$$

= $G \circ (g_2^{-1} \circ \phi \circ f_2) \circ F$

and

$$g_2^{-1} \circ \phi \circ f_2 = g_2^{-1} \circ g_1 \circ (g_1^{-1} \circ \phi \circ f_1) \circ f_1^{-1} \circ f_2$$

= $G^{-1} \circ (g_1^{-1} \circ \phi \circ f_1) \circ F^{-1}$

The maps G and F are diffemorphisms, therefore they are smooth, so this composition must be smooth. Therefore we have shown if $g_1^{-1} \circ \phi \circ f_1$ is smooth, then $g_2^{-1} \circ \phi \circ f_2$ is smooth. Therefore the choice of f_1 and g_1 or f_2 and g_2 does not matter. QED

• Problem 7: Prove that the relation " S_1 is diffeomorphic to S_2 " is an equivalence relation.

Proof. If $S_1 \simeq S_2$ then there is a smooth, bijective map $f: S_1 \to S_2$ and its inverse $f^{-1}: S_2 \to S_1$ is also smooth.

- 1. Trivially, $S \simeq S$ for all manifolds S.
- 2. Since the function and its inverse necessarily exist, $S_1 \simeq S_2 \iff S_2 \simeq S_1$.
- 3. If $S_1 \simeq S_2$, and $S_2 \simeq S_3$, then there exist functions $f: S_1 \to S_2$ and $g: S_2 \to S_3$, therefore the composition $g \circ f: S_1 \to S_3$ necessarily exists, is smooth (composition of two smooth functions is smooth), and is bijective (composition of two bijections is a bijection).

Therefore, " S_1 is diffeomorphic to S_2 " is an equivalence relation. QED

2 Section 2.4

• Problem 1: Show that the equation of the tangent plane at (x_0, y_0, z_0) of a regular surface given by f(x, y, z) = 0, where 0 is a regular value of f is,

$$f_x(x_0, y_0, z_0)(x-x_0) + f_y(x_0, y_0, z_0)(y-y_0) + f_z(x_0, y_0, z_0)(z-z_0)$$

$$= 0$$

• Problem 7: Let $f: S \to R$ be given by $f(p) = |p-p_0|^2$, where $p \in S$ and p_0 is a fixed point of \mathbb{R}^3 . Show that $df_p(w) = 2w \cdot (p-p_0), w \in T_p(S)$.

Choose a differentiable curve $\alpha: (-\epsilon, \epsilon) \to S$ with $\alpha(0) = p, \alpha'(0) = w$. Then $f(\alpha(t)) = |\alpha(t) - p_0|^2$ and

$$df_p(w) = \frac{d}{dt} f(\alpha(t))|_{t=0} = 2\alpha'(t) \cdot (\alpha(t) - p_0)|_{t=0}$$
$$= 2w \cdot (p - p_0)$$

As desired.

• Problem 10: Let $\alpha: I \to \mathbb{R}^3$ be a regular parametrized curve with nonzero curvature everywhere and PBAL. Let

$$x(s, v) = \alpha(s) + r(n(s)\cos v + b(s)\sin v, \quad r = \text{const.} \neq 0, s \in I$$

be a parametrized surface (the tube of radius r around α), where n is the normal vector and b is the binormal vector of α . Show that, when x is regular, its unit normal vector is

$$N(s, v) = -(n(s)\cos v + b(s)\sin v)$$

$$N = \frac{x_s \wedge x_v}{|x_s \wedge x_v|}$$

$$x_s = t + rn'(s)\cos v + rb'(s)\sin v$$

= $t + r(-kt - \tau b)\cos v + r\tau n\sin v$
= $(1 - rk\cos v)t - (r\tau\cos v)b + (r\tau\sin v)n$

$$x_v = 0 - rn \sin v + rb \cos v$$
$$= (-r \sin v)n + (r \cos v)b$$

$$N = \frac{(0, (r\sin(v))(-rk\cos(v) + 1))b, (r\cos(v))(-rk\cos(v) + 1))n}{\sqrt{r^2}\sqrt{(1 - rk\cos v)^2}\sqrt{\sin^2 v + \cos^2 v}}$$
$$= -(b(s)\sin v + n(s)\cos v)$$

• Problem 21: Sorry ran out of time :(