БГУИР

Кафедра ЭВМ

Отчет по лабораторной работе № 4 Тема: «Считывание, декодирование и выполнение Команд. Способ адресации операндов в командах» Вариант №36

Выполнил: студент группы 150502 Альхимович Н.Г.

Проверил: Стракович А.И.

1 ЗАДАНИЕ

Разработать архитектуру системы команд (АСК) для команд, выданных по варианту: mov из регистра в память RAM (неявная адресация) и js (непосредственная адресация).

Ввести шину адреса (ША) — по варианту 9 бит, шину данных (ШД) — по варианту 7 бит — и шину управления (ШУ).

Разделить память на память данных (блок RAM) и память команд (блок ROM). На адресные входы завести ША. Ввод и вывод данных осуществлять через ШД.

Ввести блок регистров общего назначения (РОН) и управляющую логику для него. Количество регистров -8.

Написать микропрограмму (5 вызовов команд), в которой указать конкретные адреса памяти или регистров.

Записать микропрограмму в память команд (ROM) (в файл *.hex или *.mif)

Записать необходимые данные для микропрограммы в память данных (RAM) (в файл *.hex или *.mif).

Разработать устройство управления (УУ), которое будет считывать, декодировать и выдавать управляющие сигналы для выполнения полученной команды. Ввести специальные регистры, разрядность которых определяется разрядностью ШД. Физически разместить их в блоке управления.

Промоделировать работу схемы.

2 АРХИТЕКТУРА СИСТЕМЫ КОМАНД

Команда состоит из двух основных частей: кода операции и адресного поля. Их формат и представление для написанного для реализации схемы кода приведен на рисунке 2.1.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Ячейка 1 Ячейка 2		Ячейка 1	Ячейка 2
Микропрограмма	Резерв.		ко	п					Δпп	есная	ISCTL				лчеика 1	лчеика 2	лчеика 1	лчеика 2
	гезерь.		il O						ΛДР	еснал -	асть				Hex	Hex	Dec	Dec
mov0, \$21	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	15	0	21
js 8	0	1	0	0	0	0	0	0	0	0	1	0	0	0	20	8	32	8
mov1, \$22	0	0	0	0	1	0	0	0	0	1	0	1	1	0	4	16	4	22
mov7, \$23	0	0	1	1	1	0	0	0	0	1	0	1	1	1	1C	17	28	23
mov6, \$25	0	0	1	1	0	0	0	0	0	1	1	0	0	0	18	19	24	25

Рисунок 2.1 – Архитектура системы команд

3 КОД ПРОГРАММЫ

Код программы в символьном и числовом виде приведен на рисунке 2.1 (см. раздел 2).

4 СОДЕРЖАНИЕ ПАМЯТИ ДО МОДЕЛИРОВАНИЯ И ПОСЛЕ

Содержание памяти ROM и RAM до моделирования приведено на рисунках 4.1a и 4.1б.

Addr	+0	+1	+2	+3	+4	+5	+6	+7	Addr	+0	+1	+2	+3	+4	+5	+6	+
00	00	15	20	08	00	00	00	00	00	00	00	00	00	00	00	00	0
08	04	16	1C	17	18	19	00	00	08	00	00	00	00	00	00	00	0
10	00	00	00	00	00	00	00	00	10	00	00	00	00	00	00	00	0
18	00	00	00	00	00	00	00	00	18	00	00	00	00	00	00	00	0
20	00	00	00	00	00	00	00	00	20	00	00	00	00	00	00	00	0
28	00	00	00	00	00	00	00	00	28	00	00	00	00	00	00	00	0
30	00	00	00	00	00	00	00	00	30	00	00	00	00	00	00	00	0
38	00	00	00	00	00	00	00	00	38	00	00	00	00	00	00	00	0
40	00	00	00	00	00	00	00	00	40	00	00	00	00	00	00	00	0
48	00	00	00	00	00	00	00	00	48	00	00	00	00	00	00	00	0
50	00	00	00	00	00	00	00	00	50	00	00	00	00	00	00	00	0
58	00	00	00	00	00	00	00	00	58	00	00	00	00	00	00	00	0
60	00	00	00	00	00	00	00	00	60	00	00	00	00	00	00	00	0
68	00	00	00	00	00	00	00	00	68	00	00	00	00	00	00	00	0
70	00	00	00	00	00	00	00	00	70	00	00	00	00	00	00	00	0
78	00	00	00	00	00	00	00	00	78	00	00	00	00	00	00	00	0
80	00	00	00	00	00	00	00	00	80	00	00	00	00	00	00	00	0
88	00	00	00	00	00	00	00	00	88	00	00	00	00	00	00	00	0
90	00	00	00	00	00	00	00	00	90	00	00	00	00	00	00	00	0
98	00	00	00	00	00	00	00	00	a0	00	00	00	00	00	00	00	0
a0	00	00	00	00	00	00	00	00	a8	00	00	00	00	00	00	00	0
a0 a8	00	00	00	00	00	00	00	00	b0	00	00	00	00	00	00	00	0
b0		00		00		00	00	00	b8	00	00	00	00	00	00	00	0
	00	00	00	00	00	00		00	c0	00	00	00	00	00	00	00	0
b8 c0	00	00	00	00	00	00	00	00	c8	00	00	00	00	00	00	00	0
c8				00					d0	00	00	00	00	00	00	00	0
	00	00	00		00	00	00	00	d8	00	00	00	00	00	00	00	0
d0	00	00	00	00	00	00	00	00	e0	00	00	00	00	00	00	00	0
d8	00	00	00	00	00	00	00	00	e8	00	00	00	00	00	00	00	0
e0	00	00	00	00	00	00	00	00	f0	00	00	00	00	00	00	00	0
e8	00	00	00	00	00	00	00	00	f8	00	00	00	00	00	00	00	0
f0	00	00	00	00	00	00	00	00									
f8	00	00	00	00	00	00	00	00									

a) 6)

Рисунок 4.1 – Содержание памяти ROM и RAM

Содержание памяти ROM после моделирование представлено на рисунке 4.2.

				_		_		_
Addr	+0	+1	+2	+3	+4	+5	+6	+7
000	00	15	20	08	00	00	00	00
800	04	16	1C	17	18	19	00	00
010	00	00	00	00	00	00	00	00
018	00	00	00	00	00	00	00	00
020	00	00	00	00	00	00	00	00
028	00	00	00	00	00	00	00	00
030	00	00	00	00	00	00	00	00
038	00	00	00	00	00	00	00	00
040	00	00	00	00	00	00	00	00
048	00	00	00	00	00	00	00	00
050	00	00	00	00	00	00	00	00
058	00	00	00	00	00	00	00	00
060	00	00	00	00	00	00	00	00

Рисунок 4.2 – Содержание ROM после моделирования

Содержание памяти RAM после моделирование представлено на рисунке 4.3.

tion Report	main R	AM:ii	nst4 I	pm_ra	am_do	q0:ins	t4 alt	syncr	am:a
al Notice	Addr	+0	+1	+2	+3	+4	+5	+6	+7
w Summary	000	03	00	00	00	00	00	00	00
w Settings	008	00	00	00	00	00	00	00	00
nulator	010	00	00	00	00	00	03	0B	3B
Summary	018	00	(33)	00	00	00	00	00	00
Settings	020	00	00	00	00	00	00	00	00
Simulation Waveforms	028	00	00	00	00	00	00	00	00
Logical Memories	030	00	00	00	00	00	00	00	00
main ROM:inst1 lpm	038	00	00	00	00	00	00	00	00
•	040	00	00	00	00	00	00	00	00
main RAM:inst4 lpm	048	00	00	00	00	00	00	00	00
Simulation Coverage	050	00	00	00	00	00	00	00	00
INI Usage	058	00	00	00	00	00	00	00	00
Messages	060	00	00	00	00	00	00	00	00
	068	00	00	00	00	00	00	00	00

Рисунок 4.3 — Содержание RAM после моделирования

5 ОСНОВНЫЕ СХЕМЫ

Таблица 5.1 – Используемые сигналы

Сигнал	Предназначение сигнала
address[80]	Шина адреса
clk	Сигнал Clock (синхросигнал)
data[60]	Шина данных
control[110]	Шина управления

В разработанной схеме (см. рисунок 5.1) можно выделить следующие основные блоки:

- блок управления (см. рисунок 5.2): считывание, декодирование и выдача управляющих сигналов для выполнения полученной команды;
- блок РОН (см. рисунок 5.3): регистры общего назначения и логика для считывания данных из них;
 - блок ROM (см. рисунок 5.4): содержит команды выполняемой микропрограммы;
- блок RAM (см. рисунок 5.5): память данных, записываемых в соответствии с командами.

Рисунок 5.1 – Структурная схема (общая)

Рисунок 5.2 – Блок управления (DeviceControl)

Рисунок 5.3 – Блок РОН

Рисунок 5.4 – Блок ROM

Рисунок 5.5 – Блок RAM

6 МОДЕЛИРОВАНИЕ СХЕМЫ

Результат моделирования схемы представлен на рисунках 6.1, 6.2 и 6.3.

Рисунок 6.1 – Моделирование схемы

Рисунок 6.2 – Моделирование схемы

Рисунок 6.3 – Моделирование схемы