Simple Linear Regression Models

- 1. Definition of a Good Model
- 2. Estimation of Model parameters
- 3. Allocation of Variation
- 4. Standard deviation of Errors
- 5. Confidence Intervals for Regression Parameters
- 6. Confidence Intervals for Predictions
- 7. Visual Tests for verifying Regression Assumption

©2010 Raj Jain www.rajjain.com

Simple Linear Regression Models

- Regression Model: Predict a response for a given set of predictor variables.
- □ **Response Variable**: Estimated variable
- □ Predictor Variables: Variables used to predict the response. predictors or factors
- □ Linear Regression Models: Response is a linear function of predictors.
- □ Simple Linear Regression Models:
 Only one predictor

Definition of a Good Model

Good Model (Cont)

- Regression models attempt to minimize the distance measured vertically between the observation point and the model line (or curve).
- □ The length of the line segment is called residual, modeling error, or simply error.
- □ The negative and positive errors should cancel out
 ⇒ Zero overall error
 Many lines will satisfy this criterion.

Good Model (Cont)

□ Choose the line that minimizes the sum of squares of the errors.

$$\hat{y} = b_0 + b_1 x$$

where, \hat{y} is the predicted response when the predictor variable is x. The parameter b_0 and b_1 are fixed regression parameters to be determined from the data.

□ Given *n* observation pairs $\{(x_1, y_1), ..., (x_n, y_n)\}$, the estimated response \hat{y}_i for the ith observation is:

$$\hat{y}_i = b_0 + b_1 x_i$$

☐ The error is:

$$e_i = y_i - \hat{y}_i$$

Good Model (Cont)

□ The best linear model minimizes the sum of squared errors (SSE):

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

subject to the constraint that the mean error is zero:

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0$$

☐ This is equivalent to minimizing the variance of errors (see Exercise).

Estimation of Model Parameters

■ Regression parameters that give minimum error variance are:

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n\bar{x}^2} \qquad \text{and} \qquad b_0 = \bar{y} - b_1\bar{x}$$

□ where,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\sum xy = \sum_{i=1}^{n} x_i y_i \qquad \sum x^2 = \sum_{i=1}^{n} x_i^2$$

Example 14.1

- □ The number of disk I/O's and processor times of seven programs were measured as: (14, 2), (16, 5), (27, 7), (42, 9), (39, 10), (50, 13), (83, 20)
- □ For this data: n=7, $\Sigma xy=3375$, $\Sigma x=271$, $\Sigma x^2=13,855$, $\Sigma y=66$, $\Sigma y^2=828$, $\bar{x}=38.71$, $\bar{y}=9.43$. Therefore,

$$b_1 = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2} = \frac{3375 - 7 \times 38.71 \times 9.43}{13,855 - 7 \times (38.71)^2} = 0.2438$$

$$b_0 = \bar{y} - b_1\bar{x} = 9.43 - 0.2438 \times 38.71 = -0.0083$$

□ The desired linear model is: CPU time = -0.0083 + 0.2438(Number of Disk I/O's)

2010 Rai Iain www.raiiain.com

Example 14.1 (Cont)

Example 14. (Cont)

Error Computation

Disk I/O's	CPU Time	Estimate	Error	$Error^2$
x_i	y_i	$\hat{y}_i = b_0 + b_1 x_i$	$e_i = y_i - \hat{y}_i$	e_i^2
14	2	3.4043	-1.4043	1.9721
16	5	3.8918	1.1082	1.2281
27	7	6.5731	0.4269	0.1822
42	9	10.2295	-1.2295	1.5116
39	10	9.4982	0.5018	0.2518
50	13	12.1795	0.8205	0.6732
83	20	20.2235	-0.2235	0.0500
Σ 271	66	66.0000	0.00	5.8690

©2010 Raj Jain www.rajjain.com

Derivation of Regression Parameters

□ The error in the ith observation is:

$$e_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 x_i)$$

□ For a sample of n observations, the mean error is:

$$\bar{e} = \frac{1}{n} \sum_{i} e_{i} = \frac{1}{n} \sum_{i} \{y_{i} - (b_{0} + b_{1}x_{i})\}
= \bar{y} - b_{0} - b_{1}\bar{x}$$

□ Setting mean error to zero, we obtain:

$$b_0 = \bar{y} - b_1 \bar{x}$$

□ Substituting b0 in the error expression, we get:

$$e_i = y_i - \bar{y} + b_1 \bar{x} - b_1 x_i = (y_i - \bar{y}) - b_1 (x_i - \bar{x})$$

Derivation of Regression Parameters (Cont)

☐ The sum of squared errors SSE is:

SSE =
$$\sum_{i=1}^{n} e_i^2$$

= $\sum_{i=1}^{n} \left\{ (y_i - \bar{y})^2 + 2b_1 (y_i - \bar{y}) (x_i - \bar{x}) + b_1^2 (x_i - \bar{x})^2 \right\}$
= $\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 - 2b_1 \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}) (x_i - \bar{x})$
+ $b_1^2 \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
= $s_y^2 - 2b_1 s_{xy}^2 + b_1^2 s_x^2$

Derivation (Cont)

 \square Differentiating this equation with respect to b_1 and equating the result to zero:

$$\frac{d(SSE)}{db_1} = -2s_{xy}^2 + 2b_1s_x^2 = 0$$

□ That is,

$$b_1 = \frac{s_{xy}^2}{s_x^2} = \frac{\sum xy - n\bar{x}\bar{y}}{\sum x^2 - n(\bar{x})^2}$$

Allocation of Variation

□ Error variance without Regression = Variance of the response

Error =
$$\epsilon_i$$
 = Observed Response - Predicted Response
= $y_i - \bar{y}$

and

Variance of Errors without regression
$$= \frac{1}{n-1} \sum_{i=1}^{n} \epsilon_i^2$$
$$= \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$$
$$= \text{Variance of y}$$

Allocation of Variation (Cont)

□ The sum of squared errors without regression would be:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2$$

□ This is called **total sum of squares** or (SST). It is a measure of y's variability and is called **variation** of y. SST can be computed as follows:

SST =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \left(\sum_{i=1}^{n} y_i^2\right) - n\bar{y}^2 = SSY - SSO$$

■ Where, SSY is the sum of squares of y (or Σ y²). SSO is the sum of squares of \bar{y} and is equal to $n\bar{y}^2$

Allocation of Variation (Cont)

☐ The difference between SST and SSE is the sum of squares explained by the regression. It is called SSR:

$$SSR = SST - SSE$$

or

$$SST = SSR + SSE$$

□ The fraction of the variation that is explained determines the goodness of the regression and is called the coefficient of determination, R²:

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{\text{SST} - \text{SSE}}{\text{SST}}$$

Allocation of Variation (Cont)

□ The higher the value of R^2 , the better the regression. $R^2=1 \Rightarrow \text{Perfect fit } R^2=0 \Rightarrow \text{No fit}$

Sample Correlation
$$(x, y) = R_{xy} = \frac{s_{xy}^2}{s_x s_y}$$

- \Box Coefficient of Determination = {Correlation Coefficient (x,y)}²
- Shortcut formula for SSE:

$$SSE = \Sigma y^2 - b_0 \Sigma y - b_1 \Sigma xy$$

Example 14.2

□ For the disk I/O-CPU time data of Example 14.1:

SSE =
$$\Sigma y^2 - b_0 \Sigma y - b_1 \Sigma xy$$

= $828 + 0.0083 \times 66 - 0.2438 \times 3375 = 5.87$
SST = $SSY - SSO = \Sigma y^2 - n(\bar{y})^2$
= $828 - 7 \times (9.43)^2 = 205.71$
SSR = $SST - SSE = 205.71 - 5.87 = 199.84$
 $R^2 = \frac{SSR}{SST} = \frac{199.84}{205.71} = 0.9715$

□ The regression explains 97% of CPU time's variation.

Standard Deviation of Errors

□ Since errors are obtained after calculating two regression parameters from the data, errors have n-2 degrees of freedom

$$s_e = \sqrt{\frac{\text{SSE}}{n-2}}$$

- \square SSE/(n-2) is called **mean squared errors** or (MSE).
- □ Standard deviation of errors = square root of MSE.
- \square SSY has n degrees of freedom since it is obtained from n independent observations without estimating any parameters.
- $lue{SS0}$ has just one degree of freedom since it can be computed simply from \bar{y}
- $lue{}$ SST has n-1 degrees of freedom, since one parameter \bar{y} must be calculated from the data before SST can be computed.

©2010 Rai Iain www raijain com

Standard Deviation of Errors (Cont)

- □ SSR, which is the difference between SST and SSE, has the remaining one degree of freedom.
- Overall,

$$SST = SSY - SS0 = SSR + SSE$$

 $n-1 = n - 1 = 1 + (n-2)$

■ Notice that the degrees of freedom add just the way the sums of squares do.

Example 14.3

□ For the disk I/O-CPU data of Example 14.1, the degrees of freedom of the sums are:

$$SS:$$
 $SST = SSY - SS0 = SSR + SSE$
 $205.71 = 828 - 622.29 = 199.84 + 5.87$
 $DF:$ $6 = 7 - 1 = 1 + 5$

□ The mean squared error is:

$$MSE = \frac{SSE}{DF \text{ for Errors}} = \frac{5.87}{5} = 1.17$$

☐ The standard deviation of errors is:

$$s_e = \sqrt{\text{MSE}} = \sqrt{1.17} = 1.08$$

Confidence Intervals for Regression Params

- Regression coefficients b_0 and b_1 are estimates from a single sample of size $n \Rightarrow \text{Random}$
 - \Rightarrow Using another sample, the estimates may be different. If β_0 and β_1 are true parameters of the population. That is,

$$y = \beta_0 + \beta_1 x$$

 \square Computed coefficients b_0 and b_1 are estimates of β_0 and β_1 , respectively.

$$s_{b_0} = s_e \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum x^2 - n\bar{x}^2} \right]^{1/2}$$
 $s_{b_1} = \frac{s_e}{\left[\sum x^2 - n\bar{x}^2\right]^{1/2}}$

©2010 Raj Jain www.rajjain.com

Confidence Intervals (Cont)

The $100(1-\alpha)\%$ confidence intervals for b_0 and b_1 can be be computed using $t_{[1-\alpha/2; n-2]}$ --- the $1-\alpha/2$ quantile of a t variate with n-2 degrees of freedom. The confidence intervals are:

$$b_0 \mp t s_{b_0}$$

And

$$b_1 \mp ts_{b_1}$$

If a confidence interval includes zero, then the regression parameter cannot be considered different from zero at the at $100(1-\alpha)\%$ confidence level.

Example 14.4

- □ For the disk I/O and CPU data of Example 14.1, we have n=7, \bar{x} =38.71, Σx^2 =13,855, and s_e=1.0834.
- \Box Standard deviations of b_0 and b_1 are:

$$s_{b_0} = s_e \left[\frac{1}{n} + \frac{\bar{x}^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}$$

$$= 1.0834 \left[\frac{1}{7} + \frac{(38.71)^2}{13,855 - 7 \times 38.71 \times 38.71} \right]^{1/2} = 0.8311$$

$$s_{b_1} = \frac{s_e}{\left[\Sigma x^2 - n\bar{x}^2 \right]^{1/2}}$$

$$= \frac{1.0834}{\left[13,855 - 7 \times 38.71 \times 38.71 \right]^{1/2}} = 0.0187$$

©2010 Raj Jain www.rajjain.com

Example 14.4 (Cont)

- □ From Appendix Table A.4, the 0.95-quantile of a *t*-variate with 5 degrees of freedom is 2.015.
 - \Rightarrow 90% confidence interval for b₀ is:

$$-0.0083 \mp (2.015)(0.8311) = -0.0083 \mp 1.6747$$

= $(-1.6830, 1.6663)$

- Since, the confidence interval includes zero, the hypothesis that this parameter is zero cannot be rejected at 0.10 significance level. \Rightarrow b₀ is essentially zero.
- □ 90% Confidence Interval for b_1 is: $0.2438 \mp (2.015)(0.0187) = 0.2438 \mp 0.0376$ = (0.2061, 0.2814)
- \square Since the confidence interval does not include zero, the slope b_1 is significantly different from zero at this confidence level.

Case Study 14.1: Remote Procedure Call

UN	IX	ARGUS		
Data	Time	Data	Time	
Bytes		Bytes		
64	26.4	92	32.8	
64	26.4	92	34.2	
64	26.4	92	32.4	
64	26.2	92	34.4	
234	33.8	348	41.4	
590	41.6	604	51.2	
846	50.0	860	76.0	
1060	48.4	1074	80.8	
1082	49.0	1074	79.8	
1088	42.0	1088	58.6	
1088	41.8	1088	57.6	
1088	41.8	1088	59.8	
1088	42.0	1088	57.4	

©2010 Raj Jain www.rajjain.com

□ UNIX:

□ ARGUS:

□ Best linear models are:

```
Time on UNIX = 0.030 (Data size in bytes) + 24
Time on ARGUS = 0.034 (Data size in bytes) + 30
```

□ The regressions explain 81% and 75% of the variation, respectively.

Does ARGUS takes larger time per byte as well as a larger set up time per call than UNIX?

т	Τ-	N T	7	- T	7	
	-				(•
•	Ι.	Γ	ı		1	•

Para-		Std.	Confidence
meter	Mean	Dev.	Interval
$\overline{b_0}$	26.898	2.005	(23.2968, 30.4988)
b_1	0.017	0.003	(0.0128, 0.0219)
b_1	0.017	0.003	(0.0128, 0.02

ARGUS:

	11100	<u> </u>		
	Para-		Std.	Confidence
	meter	Mean	Dev.	Interval
•	b_0	31.068	4.711	
	b_1	0.034	0.006	(0.0231, 0.0443)

- □ Intervals for intercepts overlap while those of the slopes do not.
 - ⇒ Set up times are not significantly different in the two systems while the per byte times (slopes) are different.

Confidence Intervals for Predictions

$$\hat{y}_p = b_0 + b_1 x_p$$

□ This is only the mean value of the predicted response. Standard deviation of the mean of a future sample of m observations is:

$$s_{\hat{y}_{mp}} = s_e \left[\frac{1}{m} + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}$$

 \square m =1 \Rightarrow Standard deviation of a single future observation:

$$s_{\hat{y}_{1p}} = s_e \left[1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{\sum x^2 - n\bar{x}^2} \right]^{1/2}$$

CI for Predictions (Cont)

 \square m = ∞ \Rightarrow Standard deviation of the mean of a large number of future observations at x_p :

$$s_{\hat{y}_p} = s_e \left[\frac{1}{n} + \frac{(x_p - \bar{x})^2}{\sum x^2 - n\bar{x}^2} \right]^{1/2}$$

□ $100(1-\alpha)$ % confidence interval for the mean can be constructed using a t quantile read at n-2 degrees of freedom.

CI for Predictions (Cont)

□ Goodness of the prediction decreases as we move away from the center.

Example 14.5

□ Using the disk I/O and CPU time data of Example 14.1, let us estimate the CPU time for a program with 100 disk I/O's.

CPU time = -0.0083 + 0.2438(Number of disk I/O's)

□ For a program with 100 disk I/O's, the mean CPU time is:

CPU time
$$= -0.0083 + 0.2438(100) = 24.3674$$

Standard deviation of errors $s_e = 1.0834$

Example 14.5 (Cont)

□ The standard deviation of the predicted mean of a large number of observations is:

$$s_{\hat{y}_p} = 1.0834 \left[\frac{1}{7} + \frac{(100 - 38.71)^2}{13,855 - 7(38.71)^2} \right]^{1/2} = 1.2159$$

- □ From Table A.4, the 0.95-quantile of the t-variate with 5 degrees of freedom is 2.015.
 - \Rightarrow 90% CI for the predicted mean

$$= 24.3674 \mp (2.015)(1.2159)$$

$$=$$
 $(21.9174, 26.8174)$

Example 14.5 (Cont)

□ CPU time of a single future program with 100 disk I/O's:

$$s_{\hat{y}_{1p}} = 1.0834 \left[1 + \frac{(100 - 38.71)^2}{13,855 - 7(38.71)^2} \right]^{1/2} = 1.6286$$

□ 90% CI for a single prediction:

$$= 24.3674 \mp (2.015)(1.6286)$$

$$= (21.0858, 27.6489)$$

Visual Tests for Regression Assumptions

Regression assumptions:

- 1. The true relationship between the response variable *y* and the predictor variable *x* is linear.
- 2. The predictor variable *x* is non-stochastic and it is measured without any error.
- 3. The model errors are statistically independent.
- 4. The errors are normally distributed with zero mean and a constant standard deviation.

1. Linear Relationship: Visual Test

 \square Scatter plot of y versus $x \Rightarrow$ Linear or nonlinear relationship

2. Independent Errors: Visual Test

1. Scatter plot of ε_i versus the predicted response \hat{y}_i

□ All tests for independence simply try to find dependence.

Independent Errors (Cont)

2. Plot the residuals as a function of the experiment number

3. Normally Distributed Errors: Test

□ Prepare a normal quantile-quantile plot of errors.
 Linear ⇒ the assumption is satisfied.

4. Constant Standard Deviation of Errors

■ Also known as **homoscedasticity**

□ Trend ⇒ Try curvilinear regression or transformation

Example 14.6

For the disk I/O and CPU time data of Example 14.1

- 1. Relationship is linear
- 2. No trend in residuals \Rightarrow Seem independent
- 3. Linear normal quantile-quantile plot ⇒ Larger deviations at lower values but all values are small

Example 14.7: RPC Performance

- 1. Larger errors at larger responses
- 2. Normality of errors is questionable

- **Terminology**: Simple Linear Regression model, Sums of Squares, Mean Squares, degrees of freedom, percent of variation explained, Coefficient of determination, correlation coefficient
- Regression parameters as well as the predicted responses have confidence intervals
- ☐ It is important to verify assumptions of linearity, error independence, error normality ⇒ Visual tests

©2010 Raj Jain www.rajjain.com

Exercise 14.7

□ The time to encrypt a *k* byte record using an encryption technique is shown in the following table. Fit a linear regression model to this data. Use visual tests to verify the regression assumptions.

Record	Observations		
Size	1	2	3
128	386	375	393
256	850	805	824
384	1544	1644	1553
512	3035	3123	3235
640	6650	6839	6768
768	13,887	$14,\!567$	$13,\!456$
896	28,059	$27,\!439$	$27,\!659$
1024	50,916	$52,\!129$	51,360

©2010 Raj Jain www.rajjain.com

Exercise 2.1

□ From published literature, select an article or a report that presents results of a performance evaluation study. Make a list of good and bad points of the study. What would you do different, if you were asked to repeat the study?

Homework

- □ Read Chapter 14
- □ Submit answers to exercise 14.7
- □ Submit answer to exercise 2.1