Name:	W UPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

Common Class Test 1

Course	Name Code: MA	: Advanced				estions.	Tin	nester : ne: 1 Hrs x. Marks:	II 30
S. No.								Marks	CO
Q 1	Construct $y \sin y$). A	an analytic fo Ans:	unction wl	hose imagii	nary part v	(x, y) is e	$x(x \cos y -$	3	CO2
Q 2	For what values of constant A and B following function is analytic $f(z) = A \sin x \cosh y + Bi \cos x \sinh y$. Ans:					3	CO2		
Q 3		e sufficient c n a domain D			ty of func	f(z)	=u(x,y)+	3	CO2
Q 4	Construct Ans:	analytic func	tion with	real part u($(x,y)=x^3$	$-3xy^2$.		3	CO2
Q 5	The approximate value of $\int_{0}^{1} \frac{1}{1+x} dx$ with step size $h = 0.5$ using trapezoidal rule. Ans:					3	CO1		
Q 6	What is the approximate root of equation $x \sin x + \cos x = 0$ with initial approximation $x_0 = \pi$ after first iterations of Newton Raphson method. Ans:					3	CO1		
Q 7	Given the differential equation $\frac{dy}{dx} = x + y^2$, subject to the condition $y(0) = 1$ Then the first approximate solution of the given initial value problem using Picard's method. Ans:				3	CO1			
Q 8	The initial value problem is given as $\frac{dy}{dx} = x(y+1), y(0) = 1$. The value of $y(0.2)$ using Euler's method with step size $h = 0.1$. Ans:					3	CO1		
Q 9	Using suitable interpolation techniques calculates y(0.5)					3			
	X	-2	-1	0	1	2	3		CO1
	У	15	5	1	3	11	25		
Q 10	Ans: While solving the initial value problem $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$ for finding						3		
	$y(0.2)$ with step size $h = 0.2$ using fourth order Runge-Kutta method, the value of k_2 is approximately equal to						CO1		

N	ame:	

Course Name

UPES

Common Class Test 1 Set G

Programme Name: B.Tech. SoCs/SoAE

: Advanced Engineering Mathematics II

Course Code: MATH1065

Time: 1 Hrs Max. Marks: 30

Semester : II

Nos. of page(s) : 01 Instructions: Do all questions.

1105. 01	page(s) : 01 Instructions: Do an questions.				
S. No.		Marks	CO		
Q 1	The second iteration of root of $f(x) = \cos(x) - xe^x$ in the interval [0,1] using Bisection method is	3	CO1		
Q 2	The solution of the ordinary differential equation $\frac{dy}{dx} - 2xy = 1$; $y(0) = 3$ at x=0.2 using Euler method is (use h=0.2)	3	CO1		
Q 3	The value of $\int_1^2 e^{x^3} dx$ using Simpson's 1/3 rule is (use h=1/4).	3	CO1		
Q 4	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	3	CO1		
Q 5	Using Runge-Kutta fourth order method, the value of $y(x)$ at $x = 1.05$ is for the following ODE: $\frac{dy}{dx} = x^2 + y^2; y(1) = 1.2$	3	CO1		
Q 6	A curve passes through the points $(0, 18)$, $(1, 10)$, $(3, -18)$ and $(6, 90)$. Then the slope of the curve at $x = 1$ is	3	CO1		
Q 7	The derivative of the function $f(z) = x^2 - y^2 + i2xy$ is $f'(z) = \underline{\hspace{1cm}}$	3	CO2		
Q 8	The function $u(x, y) = ax^2 + by^2$ is harmonic if the relation between a and b is	3	CO2		
Q 9	The values of a, b, c, d for which the function $f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$ is entire are $\underline{a} = \underline{b} = \underline{c} = \underline{d} = \underline{.}$	3	CO2		
Q 10	$i(cx^2 + dxy + y^2)$ is entire are $\underline{a} = \underline{b} = \underline{c} = \underline{d} = \underline{.}$ The analytic function $f(z) = u + iv$, where $u(x, y) = x^3 - 3xy^2$ and $f(0) = 0$ is $f(z) = \underline{.}$	3	CO2		

Name:	₩ UPES
Enrolment No:	UNIVERSITY OF TOWORROW

UPES

Common Class Test 1 (SET B)

Programme Name: B.Tech. SoCs/ SoAE

Course Name: Advanced Engineering Mathematics II

Course Code: MATH1065

Semester: II

Time: 1 Hrs

Max. Marks: 30

Nos. of page(s) : 1 Instructions: Do all questions.

S. No.		Marks	CO	
Q 1	The equation $x - \sin x - 0.5 = 0$, is to be solved using the Bisection method in the interval $[a, b]$, where a and b are natural numbers. The smallest suitable values of a and b are	3	CO1	
Q 2	To solve the given equation numerically using the Newton-Raphson method $x^3 + 4x - 9 = 0$, the iterative equation for the $(n+1)^{th}$ iteration is given by $x_{n+1} = \frac{ax_n^3 + b}{cx_n^2 + d}.$ The values of a, b, c , and d are			
Q 3	Consider the following system of linear equations: $27x + 6y - z = 81,$ $6x + 15y + 2z = 75,$ $x + y + 50z = 110.$ Using the initial guess as $x_0 = 0$, $y_0 = 0$, and $z_0 = 0$, the values of x_1 , y_1 , and z_1 using Gauss-Seidel method are	3	CO1	
Q 4	The values of a function $f(x)$ are tabulated below.	3	CO1	
Q 5	The value of the integral $\int_{-1}^{1.4} x x dx$ using Simpson's $(1/3)^{rd}$ rule with step size $h=0.6$ is	3	CO1	
Q 6	If a and $a + h$ are two consecutive approximate roots of the equation $f(x) = 0$ obtained by Newton-Raphson method, then h is equal to	3	CO1	
Q 7	The value of k for which the given function $f(z) = e^{-kx}e^{-i2y},$ where $z = x + iy$, and $i = \sqrt{-1}$, is analytic is	3	CO2	
Q 8	The harmonic conjugate of the harmonic function $u(x,y) = \frac{1}{2}\log(x^2 + y^2)$ is given by	3	CO2	
Q 9	The value of m for which the function $2x - x^2 + my^2$ is harmonic is	3	CO2	
Q 10	The real part of an analytic function $f(z)$, where $z = x + iy$ is given by $e^{-y} \cos x$. The imaginary part of $f(z)$ is:	3	CO2	