Homework #4 CS 217 @ SJTU Prof. Dominik Scheder TA. Tang Shuyang

Coffee Automaton

ACM Class, Zhiyuan College, SJTU Due Date: October 21, 2019 Submit Date: October 21, 2019

Exercise 1

Suppose that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_m)$, the algorithm is described as follows.

- 1. Initially $S = \{s\}, Q = \{\}, C_i = \{\}.$
- 2. Traverse all edges in reversed order until $t \in S$, then goto step 8.
- 3. For $e_i=(u_i,v_i)$, if $u_i,v_i\in S$, ignore this edge; if $u_i\in S,v_i\notin S$, let $Q\leftarrow Q\bigcup\{v_i\}$; otherwise let $C_{u_i}\leftarrow C_{u_i}\bigcup\{v_i\}$.
- 4. If $Q \neq \emptyset$, pop a vertex $u \in Q$, otherwise goto step 2.
- 5. Let $S \leftarrow S \mid |\{u\}|$.
- 6. For all $v \in C_u$, if $v \notin S \bigcup Q$, let $Q \leftarrow Q \bigcup \{v\}$.
- 7. Goto step 4.
- 8. The weight of the edge that last visited is the answer.

Each C_{u_i} can be simply maintained by a list with time complexity O(1) for each operation.

Since every edge is visited at most once, the total time complexity of the algorithm is O(n+m).

Exercise 2

Split m edges of E into $\log m$ parts $E_1, \cdots, E_{\log m}$ such that for any pairs of edges e, e' if $e \in E_i, e' \in E_j$ and i < j we have c(e) < c(e').

These parts can be obtained by the median-of-medians algorithm with time complexity of $O(m \log \log m)$.

Then rewrite the weights of each edge by the number of the parts, thus the edges are well sorted, then use the algorithm above. The time complexity is also $O(m \log \log m)$.

The overall time complexity is $O(m \log \log m)$.

Exercise 3

If we divide the edges to $\log\log\log\log m$ or $\log\log\log\log m$ parts, we can get an algorithm of time complexity of $O(m\log\log\log m)$ or $O(m\log\log\log\log m)$ similarly.

Since m is finite, we can't apply indefinite log on m.

Let
$$\log^*(n) = \min\{i \geq 0 : \log^{(i)} n \leq 1\}.$$

The best time complexity we can get is $O(m \log^*(m))$.

Exercise 4

For a graph G, let f be the flow of maximum capacity path of G, and G_f be the residual network.

We have

$$c_G^* > c_{G_f}^*$$

Every time the capacity of bottleneck edge of G must be 0 in G_f .

So there are up to m different $c_{G'}^*$.

The other part is the same case as the proof of Edmonds-Karp algorithm.

The overall time complexity is bounded by ${\cal O}(m^3)$.