TUTORIAL-5

PRE-TUTORIAL ASSIGNMENT- SOLUTION

Solution-1:

$$V_{BB} = \left(\frac{50}{100 + 50}\right) 15 = 5V, R_B = R_1 \parallel R_2 = 33.33 K\Omega$$

This transistor obviously cannot be in saturation because in that case V_E will be 14.9 V which would make V_B =15.6 V which certainly cannot happen with a +15V supply!

If the transistor is in the active region –

$$V_{BB} - 0.7 = I_B R_B + (\beta + 1) I_B R_E$$

$$4.3 = I_B(33.33 + 101 \times 5) \implies I_B = 0.008 \, mA$$

$$I_E = 0.808 \, mA \quad \Rightarrow \quad I_C = 0.8 \, mA$$

$$V_E = 4.04 \, V, V_B = 4.74 \, V$$

Since $V_C = 15\,V$, $V_{CE} = 10.96\,V$ and the transistor is confirmed to be in the active region as the B-C junction is reverse biased.

Therefore, Q-Point is $V_{CE}=10.96 \text{ V}$, $I_{C}=0.8 \text{ mA}$, $I_{B}=0.008 \text{ mA}$

and

$$r_e = \frac{V_T}{I_E} = 0.032 \ K\Omega$$

Solution-2:

The period of the waveform is T = 4 sec. Over a period, the voltage waveform can be written as

$$v(t) = -5t$$
, $0 \le t < 2$ and $v(t) = 10$, $2 \le t < 4$

The RMS voltage is

$$V_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) dt} = \sqrt{\frac{1}{4} \left[\int_{0}^{2} (-5t)^{2} dt + \int_{2}^{4} 10^{2} dt \right]} = \sqrt{\frac{1}{4} \left[\frac{25t^{3}}{3} |_{0}^{2} + 100t|_{2}^{4} \right]} = 8.165 \text{ V}$$

The power absorbed by the resistor = $V_{rms}^2/2 = 33.33 \text{ W}$

TUTORIAL-5: SOLUTIONS

Solution-1:

(a) Since the two transistors are identical, $I_{E1} = I_{E2} = 0.5I_{RE} = 0.5[5-0.7]/10 = 0.215$ mA Therefore, assuming transistors are in the active region, we have

$$I_{B1} = I_{B2} = 0.215/51 = 0.004216 \text{ mA}$$
 and $I_{C1} = I_{C2} = 0.211 \text{ mA}$ $V_{C1} = V_{C2} = 12 - 0.211(50) = 1.461 \text{ V}$ $V_{B1} = V_{B2} = 0 \text{ V}$ $V_{E1} = V_{E2} = -0.7 \text{ V}$ $V_{CE1} = V_{CE2} = 1.461 \cdot (-0.7) = 2.161 \text{ V}$

Note that $V_{BC1} = V_{BC2} = -1.461 \text{ V}$ implying that the B-C junction is reverse biased. Since the B-E junction is forward biased, the transistor is operating in the active region.

(b) For both transistors, $r_e = 26/0.215 = 121 \Omega$. Using this, the overall equivalent circuit for AC analysis may be drawn as follows.

At the output,

$$\begin{split} v_{o1} &= -50i_{b1}R_{C1} = -2500i_{b1} & v_{o2} = -50i_{b2}R_{C2} = -2500i_{b2} \\ v_{o1} - v_{o2} &= -2500(i_{b1} - i_{b2}) = -405.3(v_{i1} - v_{i2}) \end{split}$$
 Therefore, $A_V = \frac{v_{o1} - v_{o2}}{v_{i1} - v_{i2}} = -405.3$

Solution-2:

Note that $v_- = v_+ = v_s$

$$\frac{v_1 - v_s}{200} = \frac{v_s}{100} \implies v_1 = 3v_s$$

$$\frac{v_2 - v_1}{200} = \frac{v_1}{200} + \frac{v_s}{100} \implies v_2 = 2v_1 + 2v_s = 8v_s$$

$$\frac{v_o - v_2}{200} = \frac{v_2}{200} + \frac{v_2 - v_1}{200} \implies v_o = 3v_2 - v_1$$

$$\implies v_o = 21v_s \qquad Gain = A_v = 21$$

Solution-3:

The inductor is short-circuited and capacitor open-circuited in steady state for t < 0. Then, using continuity principle $i_L(0^-) = i_L(0^+) = 10$ A and $v_c(0^-) = v_c(0^+) = 20$ V.

When the switch is connected to the position '2', the circuit diagram becomes:

KCL at the top central node yields $v_c(t)/R + C dv_c(t)/dt + i_L = 0$ (1)

Since $v_c(t) = L di_L/dt$, then (1) can be written as

$$(L/R) di_L/dt + LC d^2i_L/dt^2 + i_L = 0$$
(2)

$$\Rightarrow$$
 d²i_L/dt² + 1/(RC) di_L/dt + 1/(LC) i_L = 0(3)

$$\Rightarrow$$
 d²i_L/dt² + 4.5 di_L/dt + 4.5 i_L = 0(4)

Characteristic equation of (4) gives the distinct real roots

$$r1 = (-4.5 + \sqrt{(4.5^2 - 4x4.5)})/2 = -1.5$$
 and $r2 = (-4.5 - \sqrt{(4.5^2 - 4x4.5)})/2 = -3$

Since the RLC circuit has no source and the roots are real and distinct, $i_L(t) = A_1 e^{(-1.5t)} + A_2 e^{(-3t)}$ (5)

Using the initial condition $i_L(0^+) = 10$ and (5), we get $A_1 + A_2 = 10$ (6)

Also,
$$v_c(t) = L \operatorname{di}_L(t)/dt = -3A_1 e^{(-1.5t)} - 6A_2 e^{(-3t)}$$
.

Then, setting $t = 0^+$ in the above expression one gets

L di_L(0⁺)/dt = -
$$3A_1$$
 - $6A_2$ = $v_c(0^+)$(7)

Using the initial condition $v_c(0^+) = 20$ and (7), we get - $3A_1$ - $6A_2$ = 20(8)

Simultaneous solution of (6) and (8) yields $A_1 = 26.66$ and $A_2 = -16.66$.

Then, expression for $v_c(t)$ becomes

$$v_c(t) = -80 e^{(-1.5t)} + 100 e^{(-3t)} V (approx.)$$

Solution-4:

Source in phasor form is Vs = $100 \perp 53.13^{\circ}$

Impedance seen by the source = $Z = 3.33 \mid j1.43 \mid (-j3.33) = 1.2 + j1.6 = 2 \perp 53.13^{\circ}$ (approx.)

Source current = I = $Vs/Z = 50 \perp 0^{\circ}$

$$I_R = V_S/3.33 = 30 \perp 53.13^0$$

$$I_L = Vs / (j1.43) = 69.93 \ L - 36.87^0$$

$$I_C = jVs/3.33 = 30 \perp 143.13^0$$

The current phasor diagram is shown below:

