*k*NN (*k*-Nearest Neighbors)

Boris Velichkov

Machine Learning

Supervised Learning

Unsupervised Learning

Classification

Regression

Clustering

Classification

		Attribute 1	Attribute 2	•••	•••	Attribute in	Class
Dataset	X1						"Yes"
							"No"
							"Yes"
	Xm						"Yes"

$$Xt = (a1, a2, ..., aN)$$

Class(Xt) = ?

Regression

		Attribute 1	Attribute 2	•••	•••	Attribute N	Class
Dataset	X1						1.5
							0.7
							1.8
	Xm						1.2

$$Xt = (a1, a2, ..., aN)$$

Class(Xt) = ?

Clustering

		Attribute 1	Attribute 2	•••	 Attribute N
Dataset	X1				
	•				
	Xm				

```
∀ xi ∈ D, xi = (a1, a2, ..., aN)
D = (x1, x2, ..., xm)
Clusters (D) = ?
```

Global Learning vs Local Learning

- Global Learning: Learning from all instances in the dataset.
 - Naïve Bayes Classifier
- Local Learning: Learning from some of the instances in the dataset.
 - -kNN

^{*} Local & Global Learning is different from Local & Global Search!

Instance-Based Learning vs Model-Based Learning

- Instance-Based Learning: Use the entire dataset as the model.
 - -kNN
- Model-Based Learning: Use the training data to create a model that has parameters learned from the training data.
 - Naïve Bayes Classifier

Lazy Learning vs Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (eg. Decision trees, SVM, NN): Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - k-nearest neighbor approach
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-Based Reasoning (CBR)

kNN

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X1, X2)
- Target function could be discrete- or real-value
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to the test instance.

kNN

- k-NN for real-valued prediction for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query xq
 - Give greater weight to closer neighbors
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant

kNN

- Kernel estimation
 - k-nearest neighbor

