Function generator 0.1Hz-2MHz PM 5131

9445 051 31001

Instruction manual – Gerätehandbuch – Mode d'emploi et d'entretien 9499 453 00102 88 04 01/6

Industrial & Electro-acoustic Systems

PHILIPS

Function generator 0.1 Hz - 2MHz PM 5131

9445 051 31001

Instruction manual
Gerätehandbuch
Mode d'emploi et d'entretien

9499 453 00102 88 04 01 /6

PHILIPS

Please note

In correspondence concerning this instrument, please quote the type number and serial number as given on the type plate.

Bitte beachten

Bei Schriftwechsel über dieses Gerät wird gebeten, die Typennummer und die Gerätenummer anzugeben. Diese befinden sich auf dem Typenschild an der Rückseite des Gerätes.

Noter s. v. p.

Dans votre correspondance et dans vos réclamations se rapportant à cet appareil, veuillez toujours indiquer le numéro de type et le numéro de série qui sont marqués sur la plaquette de caractéristiques.

Important

As the instrument is an electrical apparatus, it may be operated only by trained personnel. Maintenance and repairs may also be carried out only by qualified personnel.

Wichtig

Da das Gerät ein elektrisches Betriebsmittel ist, darf die Bedienung nur durch eingewiesenes Personal erfolgen. Wartung und Reparatur dürfen nur von geschultem, fach- und sachkundigem Personal durchgeführt werden.

Important

Comme l'instrument est un équipement électrique, le service doit être assuré par du personnel qualifié. De même, l'entretien et les réparations sont à confier aux personnes suffisamment qualifiées.

CONTENTS

7.

1. 1.1. 1.2. 1.3. 1.4.	GENERAL Introduction Technical data Accessories Operating principle	5 5 7 8		
2. 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 3. 3.1.	INSTALLATION INSTRUCTIONS Initial inspection Safety instructions Mains voltage setting and fuses Operating position of the instrument Dismantling the instrument Radio interference suppression OPERATING INSTRUCTIONS Controls and sockets Operation			
4. 4.1. 4.2. 4.3. 4.4. 4.5.	SERVICE PART Circuit description Access to parts Check and adjustment Safety inspection and tests after repair and maintenance Spare parts			
5.	1. Block diagram 2. Front view 3. Front view, mechanical parts 4. Bottom view 5. Unit 1, component lay-out 6. Overall circuit diagram			
6.	CODING SYSTEM OF FAILURE REPORTING FOR QUALITY			

ADDRESSES FOR SALES AND SERVICE

INHALTSVERZEICHNIS

TABLE DES MATIERES

1.	ALLGEMEINES	15	1.	GENERALITES	25
1.1.	Einleitung	15	1.1.	Introduction	25
1.2.	Technische Daten	15	1.2.	Caractéristiques techniques	25
1.3.	Zubehör	17	1.3.	Accessoires	27
1.4.	Funktionsprinzip	18	1.4.	Principe de fonctionnement	28
2.	VORBEREITUNGSANWEISUNGEN	19	2.	INSTUCTIONS POUR L'INSTALLATION	29
2.1.	Wareneingangskontrolle	19	2.1.	Inspection initiale	29
2.2.	Sicherheitsanweisungen	19	2.2.	Consignes de sécurité	29
2.3.	Netzspannungseinstellung u. Sicherungen	20	2.3.	Adaptation à la tension secteur, fusibles	30
2.4.	Betriebslage des Gerätes	20	2.4.	Position de fonctionnement de l'appareil	30
2.5.	Öffnen des Gehäuses	20	2.5.	Démontage de l'appareil	30
2.6.	Funkentstörung	20	2.6.	Suppression du rayonnement	30
3.	BETRIEBSANLEITUNG	21	3.	MISE EN SERVICE	31
3.1.	Bedienelemente und Anschlüsse	21	3.1.	Commandes et douilles	31
3.2.	Bedienung	22	3.2.	Fonctionnement	32

5. BILDVERZEICHNIS

- 1. Blockschaltbild
- 2. Frontansicht

5. RAPPEL DES FIGURES

- 1. Schéma synoptique
- 2. Face avant

Operating manual

GENERAL

1.1. INTRODUCTION

The PM 5131 function generator is an instrument designed for applications extending from the educational to the general purpose area.

It produces sinewave, triangular and squarewave output signals, the frequencies of which are adjustable in three logarithmical sub-ranges from 0.1 Hz to 2 MHz. The frequency vernier allows the frequency setting to be varied from -20% to +20%.

The output voltage is continuously adjustable up to 30 V_{pp} and can be attenuated in steps of 10 dB down to 60 dB.

A continuously adjustable output voltage can be selected separately or whenever used as d.c. offset voltage added to the selected output signal.

The generator provides a more than 3 decade sweep facility with adjustable sweep range and a variable sweep time from 10 to 150 secondes. For instance it is possible to cover the audio frequency range of 20 Hz to 20 kHz in one continuous sweep. Moreover external sweep and frequency modulation can be performed.

For TTL applications a separate output is available.

The ergonomic design of the controls and sockets serves for convenient operating the instrument.

1.2. TECHNICAL DATA

Safety characteristics

This apparatus has been designed and tested in accordance with Safety Class I requirements of IEC Publication 348, Safety Requirements for Electronic Measuring Apparatus, and has been supplied in a safe condition. This manual contains some information and warnings which must be followed by the user to ensure safe operation and to retain the apparatus in a safe condition.

Performance characteristics, specifications

Properties expressed in numerical values with stated tolerance are guaranteed by the manufacturer. Specified non-tolerance numerical values indicate those that could be nominally expected from the mean of a range of identical instruments.

This specification is valid after the instrument has warmed up for 30 minutes (reference temperature 23° C).

If not stated otherwise, relative or absolute tolerances relate to the set value.

1.2.1. Frequency

Characteristic logarithmic

Adjustments - three range pushbuttons - dial with logarithmic scale

fine control knob

Frequency indication logarithmic scale on the dial

Setting error <± 10 %

Vernier frequency adjustment —20 % ... +20 % of the dial setting

Temperature coefficient < 0,5 %/K

Short-term drift < 1,5 % within 15 min. Long-term drift < 3 % within 7 h.

1.2.2. Output

Connection

Impedance

Load capability

Wave forms

Open circuit voltage

setting rangemaximum value

DC (offset) voltage

button PUSH FOR ZERO pulled,

open circuit voltage

 button PUSH FOR ZERO and WAVE FORM button DC pressed

Attenuation

continuous

fixed

Distortion (sinewave)

Linearity (triangular wave)

Rise time, fall time (squarewave)

Overshoot and ringing (squarewave)

Amplitude response (sinewave;

reference value 1 kHz)

1.2.3. TTL output

Duty cycle Fan out

1.2.4. Frequency control

Connection

1.2.4.1. Internal sweep

Sweep mode

Sweep characteristic

Sweep range (ratio f STOP/f START)

Sweep period (sweep time)
SWEEP VOLTAGE output
(frequency analogue voltage)

connection

scale factor

1.2.4.2. External sweep or frequency modulation

Voltage vs. frequency characteristic

Max. sweep range

Sensitivity

Connection

BNC socket

 50Ω

short-circuit proof

Sinewave, triangular-, squarewave; all time-symmetrical; with

or without d.c. offset. d.c. voltage without a.c.

3 Vpp ... 30 Vpp, continuously adjustable

± 15 V

-10 V ... +10 V, continuously adjustable

< 50 mV

0 ... 20 dB (see open circuit voltage 3 V_{pp} – 30 V_{pp})

0 to 60 dB in steps of 10 dB

< 0,5 % in ranges I,II

< 3 % in range III

better than 99,5 % in ranges I, II

< 75 ns

< 2 %

< 0,1 dB in ranges I, II

< 0,3 dB in range III < 1 MHz < 1 dB in range III \le 2 MHz

(open circuit voltage 3 . . . 30 Vpp, load 50 Ω ,

attenuation 0 dB)

BNC socket

50 %

20 TTL inputs

single sweep

logarithmic

1 ... 2000 (1 ... 2.103), continuously adjustable

≤ 10 ... 150 s continuously adjustable.

BNC socket

1 V/frequency decade

BNC socket SWEEP VOLTAGE IN/OUT

logarithmic

total sub-range I, II or III

1 V/frequency decade

Input impedance

 $1 k\Omega$

Max. modulation frequency

ca. 5 kHz

1.2.5. Power supply AC mains

Reference value

230 V

Nominal values

115 V/230 V selectable by solder links

Nominal operating range

+15% of selected nominal value ±15% of selected nominal value

Operating limits

50 - 100 Hz 47,5 - 105 Hz 21 W

Nominal frequency range Limit range of operation Power consumption

Environmental conditions 1.2.6.

Ambient temperature

Reference value

+23 °C ± 1 °C

Nominal working range

+5 °C ... +40 °C

Limits for storage and transport

-40 °C ... +70 °C

Relative humidity

Reference range

45 ... 75 %

Nominal working range

20 ... 80 %

Air pressure

Reference value

1013 mbar (= 760 mm Hg)

Nominal working range

800 ... 1066 mbar (up to 2200 m height)

Air speed

Reference value

0 ... 0.2 m/s

Nominal working range

0 ... 0.5 m/s

Operating position

normally upright on feet or with handle fold down

Warm-up time

30 min.

1.2.7. Cabinet

Protection type (see DIN 40 050)

IP 20

Protection class (see IEC 348)

class 1, protective conductor

Overall dimensions

- height

140 mm

- width

310 mm

- depth

330 mm

Weight

approx. 4.5 kg

1.3. ACCESSORIES

1.3.1. Standard Instruction manual

fuse and voltage label

1.3.2. Optional PM 9585: 50 Ω termination 1 W

PM 9581: 50 Ω termination 3 W

PM 9075: Coaxial connection cable BNC-BNC

1.4. OPERATING PRINCIPLE (see Fig. 1., block diagram)

The <u>oscillator</u> of the function generator comprises the <u>switched integrator</u> and <u>the peak detector</u> (comparator). The <u>controlled current source</u> of the <u>d.c. control section</u> generates the charging current for the integrator. At the integrator output a linear voltage ramp is fed to the peak detector. When reaching the reference voltage the detector reverses the charging current of the integrator resulting in integration in the opposite direction. Integration down is performed until reaching the negative reference level of the peak detector, which again reverses the current of the switched integrator. As both reference levels are symmetrical with respect to earth, a zero symmetrical triangular wave is generated at the output of the integrator. The duty cycle of this wave is 1:1.

The output current of the controlled current source depends on the positions of the frequency dial and the FREQUENCY OFFSET control. The resulting frequency of the oscillator is determined by this current and - in addition - by the integrating capacitor in the switched integrator. Different capacitors are switched in by the FREQUENCY Hz pushbuttons. Internal frequency control of the main oscillator for single sweep is effected by the sweep control, started by the SGLE SWEEP pushbutton. The sweep range can be adjusted by the SWP STOP/START control. The SWP PERIOD turn-knob adjusts the sweep time.

The instantaneous (sweep) voltage corresponding to a distinct frequency of the oscillator is available at the SWP VOLTAGE IN/OUT socket. Via this socket external sweep or frequency modulation can be performed. The voltage to frequency relationship is logarithmical, corresponding to the transfer characteristic of the controlled current source.

The WAVE FORM switch allows the following wave forms to be selected: a triangular wave from the integrator, a squarewave from the peak detector or a sinewave formed by the <u>sine shaper</u> circuitry. The signal is fed to the OUTPUT socket via AMPLITUDE potentiometer, <u>amplifier</u> and <u>attenuator</u>.

By means of the DC OFFSET control a d.c. voltage can be added to the signal, activated by pulling the PUSH FOR ZERO switch/turn-knob. If d.c. voltage only is requested, the a.c. part of the output signal can be switched off by pressing the DC pushbutton of the wave form selector.

A squarewave signal of the peak detector is fed via the TTL buffer to the TTL OUT socket.

The stabilized power supply provides the d.c. voltages for the circuitries.

2. INSTALLATION INSTRUCTIONS

2.1. INITIAL INSPECTION

Check the contents of the shipment for completeness and note whether any damage has occurred during transport. If the contents are incomplete, or there is damage, a claim should be filed with the carrier immediately, and the Philips Sales or Service organisation should be notified in order to facilitate the repair or replacement of the instrument.

2.2. SAFETY INSTRUCTIONS

Upon delivery from the factory the instrument complies with the required safety regulations, see para. 1.2. To maintain this condition and to ensure safe operation, the instructions below must carefully be followed.

2.2.1. Maintenance and repair

Failure and excessive stress:

If the instrument is suspected of being unsafe, take it out of operation permanently.

This is the case when the instrument

- shows physical damage
- does not function anymore
- is stressed beyond the tolerable limits (e.g. during storage and transportation)

Dismantling the instrument: When removing covers or other parts by means of tools, live parts or terminals could be exposed. Before opening the instrument, disconnect it from all power sources.

If the open live instrument needs calibration, maintenance or repair, it must be performed only by trained personnel being aware of the risks. After disconnection from all power sources, the capacitors in the instrument may remain charged for some seconds.

2.2.2. Earthing (grounding)

Before any other connection is made the instrument shall be connected to a protective earth conductor via the three-core mains cable. The mains plug shall be inserted only into a socket outlet provided with a protective earth contact. The protective action shall not be negated by the use of an extension cord without protective conductor.

The external contacts of the BNC sockets must not be used to connect a protective conductor.

WARNING: Any interruption of the protective conductor inside or outside the instrument, or disconnection of the protective earth terminal, is likely to make the instrument dangerous. Intentional interruption is prohibited.

The circuit earth potential applied to the external contacts of the BNC sockets is connected to the cabinet. The external contacts of the BNC sockets must not be used to connect a protective conductor.

2.2.3. Connections

The circuit earth potential is applied to the external contacts of the BNC sockets and is connected to the cabinet by means of parallel-connected capacitor and resistor. By this means hum loops are avoided and a clear HF earthing is obtained.

If the circuit earth potential in a measurement set-up is different from the protective earth potential, it must be noticed

- that the BNC sockets can be touched and that it must not be live, see the safety regulations on the subject (VDE 0411),
- that all sockets marked with the sign ... are internally interconnected.

2.2.4. Mains voltage setting and fuses

Before inserting the mains plug into the mains socket, make sure that the instrument is set to the local mains voltage.

The instrument shall be set to the local mains voltage only by a qualified person who is aware of the hazard involved.

WARNING: If the mains plug has to be adapted to the local situation, such adaption should be done by a qualified person only.

Make sure that only fuses of the required current rating, and of the specified type, are used for renewal. The use of repaired fuses, and/or the short-circuiting of fuse holders, are prohibited. The fuse shall be renewed only by a qualified person who is aware of the hazard involved.

WARNING: The instrument shall be disconnected from all voltage sources when a fuse is to be renewed, or when the instrument is to be adapted to a different mains voltage.

2.3. MAINS VOLTAGE SETTING AND FUSES

The safety instructions in chapter 2.2.4. must be followed.

On delivery from the factory the instrument is set to 230 V (PM 5131) resp. 115 V (PM 5131 M). If the instrument is to be used on a different supply voltage proceed as follows:

- Unplug the mains connector
- Fold up the handle to the top.
 For this push the buttons of the handle.
- Loosen the central screw at the rear
- Dismantle the cabinet
- Change the solder links according to the connection diagram on the bottom side of the instrument

- If necessary exchange the supplied fuse and mains voltage label
- Close the instrument

2.4. OPERATING POSITION OF THE INSTRUMENT

The instrument may be used in the positions indicated in clause 1.2. 6. With the handle folded down, the instrument may be used in a sloping position; for this push the buttons of the handle. The characteristics mentioned in Section 1.2. are guaranteed for the specified positions.

Do not position the instrument on any surface which produces or radiates heat, or in direct sunlight.

2.5. DISMANTLING THE INSTRUMENT

- Unplug the mains connector
- Fold up the handle to the top. For this push the buttons of the handle
- Loosen the central screw at the rear
- Dismantle the cabinet

2.6. RADIO INTERFERENCE SUPPRESSION

Radio interference of the instrument is suppressed and checked carefully. In connection with deficient suppressed base units and further units radio interference can be generated, which have to be suppressed by means of additional activities.

3. OPERATING INSTRUCTIONS

3.1. CONTROLS AND SOCKETS (FIG. 2)

Legend	Position	Function
POWER o ON • OFF	251	mains switch: white dot for ON position
WAVE FORM	252/5 to 252/7	pushbuttons for the required waveform: sinewave, triangular or square wave.
FREQUENCY Hz x1 x100 x 10k	252/1 to 252/3	pushbuttons for selecting the frequency range 0.1-200 Hz, 10 Hz-20 kHz, 1 kHz-2 MHz
.1200 (logarithmical scale)	650	dial for continuous coarse frequency adjustment
FREQ OFFSET -20 %+20 %	651	knob for continuous fine frequency adjustment
ATTENUATION 10 dB 20 dB 30 dB	252/9 to 252/11	pushbuttons for setting the fixed attenuation; $40-60~\mathrm{dB}$ by combination of pushbuttons.
AMPLITUDE 3 Vpp30 Vpp	821	knob for continuous amplitude adjustment of the output signal
DC	252/8	pushbuttons for switching off the a.c. portion of the signal
DC OFFSET -10 V+10 V	822	knob for continuous d.c. voltage adjustment
PUSH FOR ZERO	822	pull-switch for adding the d.c. voltage to the output signal
OUTPUT TTL OUTput SGLE SWEEP ON OFF	200 201 252/4	BNC output socket for the signal BNC output socket for the TTL signal pushbutton for starting a single sweep period
SWP STOP/START 12000 SWP VOLTAGE	653 202	knob for adjusting the stop frequency (ratio stop/start frequency) BCN input/output socket for the frequency analogue
IN/OUT 1 V/ FREQ DEC		voltage
SWP PERIOD ≤10 s 150 s	652	knob for setting the sweep time

3.2. OPERATION

3.2.1. Setting the voltage at socket OUTPUT

By means of the control AMPLITUDE, the amplitude of the output signal is continuously variable.

Released button DC and pulled button PUSH FOR ZERO enables a continuously adjustable positive or negative d.c. voltage to be added to the output signal.

When pressing the button DC, the a.c. part of the output signal is switched off and the d.c. voltage only is fed to the output.

With step attenuator ATTENUATION, the output signal and the DC offset can be attenuated in steps of 10 dB up to 60 dB. For 10 dB to 30 dB separate pushbuttons are available. Attenuations of 40 and 50 dB are selected by combined pushbutton actions.

For 60 dB all three buttons have to be pressed.

Note: The output amplifier could be overdriven due to adding signal and DC offset voltage. To avoid limiting, the peak value of the open-circuit output voltage must not exceed ± 15 V (step attenuator set to 0 dB).

3.2.2. Setting the frequency

Three controls are provided for setting the frequency

- dial with logarithmical scale
- range selector FREQUENCY Hz
- vernier FREQ OFFSET control.

The scale reading, multiplied by the factor of the range selector, represents the frequency. In addition the frequency deviation set by means of the FREQ OFFSET control must be accounted for.

The set frequency represents:

- the output signal frequency

when button SGLE SWEEP released

the signal frequency with

when button SGLE SWEEP pressed

0 V control voltage at socket SWP VOLTAGE IN/OUT

- the start frequency

of the single sweep mode.

3.2.3. Internal single sweep

Internal single sweep from the start- to the stop-frequency is started by pressing the button SGLE SWEEP. The characteristic is exponential following the relation

where f₀ = instantaneous signal frequency at the output

f_{START} = frequency at the beginning of the sweep represented by the frequency setting, see 3.2.2.

Uc = voltage at the socket SWP VOLTAGE IN/OUT.

So a control voltage difference of 1 V results in a frequency ratio of 10:1.

At the end of the sweep the output remains at the stop frequency which can be set by the SWP STOP/START control. Resetting the SGLE SWEEP button effects the frequency to fly back to the start frequency. The sweep time is adjusted by the SWP PERIOD potentiometer.

Pre-adjustment of the stop frequency may be performed at the end of the sweep with minimum period, prior to setting the final sweep operation.

Please note:

The sweep can only be performed within the concerning sub-range . So it is obvious, that the SWP STOP/START control must only be set to a value not exceeding the upper frequency of the sub-range (e.g. 20 kHz in II), see example 1 of the figure. Only if the start frequency is the lower limit of the sub-range (e.g. 10 Hz in II, example 2), the maximum sweep range of 2000:1 can be made use of. Settings in examples 3 and 4 lead to overdriving, which besides of frequency limiting results in general distortion of the signal.

20 k

10 k

100

10

Hz

Example for the sub-range II (x100); the other two ranges to be regarded similarly.

3.2.4. External sweep and frequency modulation

The SGLE SWEEP button must be released.

The frequency of the generator can be controlled by supplying an external voltage to the SWP VOLTAGE IN/OUT socket. The frequency of the generator changes exponentially with the control voltage (1 Dekade/1 V), as described in chapter 3.2.3.

Within the frequency ranges some limitations have to be taken into account:

The start frequency limits the maximum external control voltage. A start frequency of 2 kHz for instance results in a maximum possible sweep range of 1 decade up to higher frequencies, corresponding to a control voltage of ± 1 V, example 1a of the figure. Down to lower frequencies a maximum voltage of ± 2.3 V is permitted not to exceed the limit for the stop frequency of 10 Hz, example 1b. Is the start frequency the lower limit of the sub-range (e.g. 10 Hz in II, example 2), the maximum control voltage of ± 3.3 V can be made use of.

Example for frequency modulation:

Adjusting the basic frequency to 2 kHz and applying an external d.c. control voltage of –1 V result in a center frequency of 200 Hz. Superimposition of an a.c. control voltage of 1 Vpp effects a frequency modulation within the limits of 20 Hz and 2 kHz, example 3.

Example for the sub-range II (x100); the other two ranges to be regarded similarly, Uc scale reading to be unchanged.

Bedienungsanleitung

•

ALLGEMEINES

1.1. EINLEITUNG

Der Funktionsgenerator PM 5131 wurde für Schulungsaufgaben und allgemeine Anwendungen entwickelt.

Er erzeugt sinus-, dreieck- und rechteckförmige Ausgangssignale, deren Frequenzen in drei logarithmischen Bereichen von 0,1 Hz bis 2 MHz eingestellt werden können. Die Feineinstellung lässt Verstellung der Frequenz im Bereich von –20 % bis +20 % zu.

Die Ausgangsspannung ist bis 30 V_{SS} stetig einstellbar und kann in Stufen von 10 dB bis 60 dB abgeschwächt werden.

Dem Ausgangssignal kann eine von -10~V bis +10~V stetig einstellbare Gleichspannung hinzugefügt werden. Sie kann auch separat an den Ausgang geführt werden.

Es ist möglich, die Frequenz des Generators in den 3 Bereichen jeweils über mehr als 3 Dekaden zu steuern (interner Einzelsweep). So ist es möglich, den gesamten Audio-Bereich von 20 Hz bis 20 kHz mit einem kontinuierlichen Sweep zu durchfahren. Die Sweepzeit reicht von etwa 10 bis 150 Sekunden.

Weiterhin ist externer Sweep und Frequenzmodulation möglich.

Für Anwendungen auf dem TTL-Gebiet steht ein weiterer Signalausgang zur Verfügung.

Die übersichtliche Anordnung der Bedienelemente und Anschlüsse gewährleistet eine bequeme Handhabung des Gerätes.

1.2. TECHNISCHE DATEN

Sicherheitsbestimmungen

Dieses Gerät ist gemäß Schutzklasse I der IEC 348, Sicherheitsbestimmungen für Mess- und Regeleinrichtungen, gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen. Um diesen Zustand zu erhalten und einen gefahrlosen Betrieb sicherzustellen, muß der Anwender die Hinweise und Warnvermerke beachten, die in der vorliegenden Gebrauchsanleitung enthalten sind.

Kenndatenangaben, Spezifikationen

Zahlenwerte mit Toleranzangaben werden vom Hersteller garantiert. Zahlenwerte ohne Toleranzangaben sind Durchschnittswerte und dienen nur zur Information.

Diese Kenndaten gelten nach einer Anwärmzeit des Geräts von 30 Minuten (Bezugstemperatur 23 °C). Falls nicht anders angegeben, beziehen sich relative und absolute Toleranzen auf den eingestellten Wert.

1.2.1. Frequenz

 Frequenzbereich
 0,1 Hz - 2 MHz

 Teilbereiche I II 10 Hz - 20 Hz
 1 Hz - 20 Hz

 III 1 KHz - 2 MHz
 1 KHz - 2 MHz

Charakteristik logarithmisch
Einstellelemente - 3 Bereichstasten

- Kreisskale mit logarithmischer Teilung

- Feineinsteller

Frequenzanzeige logarithmische Skale der Kreisscheibe

Einstellfehlergrenzen ± 10 %

Frequenz-Feineinstellung —20 % ... +20% der Kreisskalen-Einstellung

Temperaturkoeffizient < 0,5 %/K

Kurzzeitdrift < 1,5 % innerhalb von 15 Minuten
Langzeitdrift < 3 % innerhalb von 7 Stunden

1.2.2. OUTPUT-Signalausgang

Anschluss BNC-Buchse

Innenwiderstand 50 Ω

Belastbarkeit kurzschlußfest

Signalformen Sinus, Dreieck oder Rechteck; alle zeitsymmetrisch; mit oder

ohne Gleichspannungsoffset.

Gleichspannung ohne Wechselspannungsanteil.

Leerlaufamplitude

Einstellbereich
 3 V_{ss} ... 30 V_{ss}, stetig einstellbar

- Grenzwert ± 15 V

DC Gleichspannung (Offset)

Drucktaste PUSH FOR ZERO gezogen;
 -10 V ... +10 V, stetig einstellbar

Leerlaufspannung

Drucktaste PUSH FOR ZERO und
 < 50 mV

Signalformtaster DC gedrückt

Abschwächer

stetig
 0 ... 20 dB (siehe Leerlaufamplitude 3 V_{SS} ... 30 V_{SS})

fest (Stufenabschwächer)
 0 bis 60 dB in Stufen von 10 dB
 Klirrfaktor (Sinus)
 0,5 % in den Teilbereichen I, II

< 3 % imTeilbereich III

Linearität (Dreieck) besser als 99,5 % in den Teilbereichen I, 11

Anstiegs- und Abfallzeit (Rechteck) < 75 ns Überschwingen und Welligkeit (Rechteck) < 2 %

Amplitudengang (Sinus; Referenzwert 1 kHz) < 0,1 dB in den Teilbereichen I, II

< 0,3 dB imTeilbereich III < 1 MHz < 1 dB imTeilbereich III < 2 MHz

(Leerlaufspannung 3 ... 30 V_{SS} , Belastung 50 Ω , Abschwächer

0 dB).

1.2.3. TTL OUT-Ausgang

Anschluss BNC-Buchse

Tastgrad (duty cycle) 50 %

Grenzlast (fan-out) 20 TTL-Eingänge

1.2.4. Frequenzsteuerung

1.2.4.1. Interner Sweep

Betriebsart Einzelsweep
Sweep-Charakteristik logarithmisch

Sweepbereich (Verhältnis f STOP/START) 1 ... 2000 (1 ... 2-10³), stetig einstellbar

Sweepperiode (Sweepzeit) ≤ 10 ... 150 s, stetig einstellbar

SWEEP VOLTAGE Ausgang (Frequenzanaloge Spannung)

Anschluss
 BNC-Buchse

Skalenfaktor
 1 V/Frequenzdekade

1.2.4.2. Externer Sweep oder Frequenzmodulation

Anschluss BNC-Buchse SWEEP VOLTAGE IN/OUT

Spannungs-Frequenz Charakteristik logarithmisch

Maximaler Steuerbereich der ganze Teilbereich I, II oder III

Empfindlichkeit

1 V/Frequenzdekade

Eingangswiderstand

 $1 k\Omega$

Maximale Modulationsfrequenz

etwa 5 kHz

1.2.5. Versorgungsspannung Netzwechselspannung

Referenzwert

230 V

Nennwerte

115 V/230 V, durch Lötbrücken wählbar

Nennbetriebsbereich

± 15 % vom eingestellten Nennwert

Grenzbetriebsbereich

± 15 % vom eingestellten Nennwert

Frequenznennbereich Frequenztoleranzbereich Leistungsaufnahme

50 - 100 Hz 47,5 - 105 Hz 21 W

Umgebungsbedingungen 1.2.6.

Umgebungstemperatur

Referenzwert

+23 °C ± 1 °C

Nenngebrauchsbereich

+5 °C ... +40 °C

Grenzbereich für Lagerung und Transport

-40 °C ... +70 °C

Relative Luftfeuchte

Referenzbereich

45 % ... 75 %

Nenngebrauchsbereich

20 % ... 80 %

Luftdruck

Referenzwert

1013 mbar (= 760 mm Hg)

Nenngebrauchsbereich

800 mbar ... 1066 mbar (bis 2200 m Höhe)

Geschwindigkeit der umgebenden Luft

Referenzbereich

0 m/s ... 0,2 m/s

Nenngebrauchsbereich

0 m/s ... 0,5 m/s

Betriebslage

auf den Füssen stehend (Normallage) oder auf Tragbügel gestellt

Anwärmzeit

30 min.

1.2.7. Gehäuse

Schutzart nach DIN 40 050

IP 20

Schutzklasse nach DIN 348

Klasse 1, Schutzleiter

Abmessungen über alles

- Höhe - Breite - Tiefe

140 mm

310 mm 330 mm

Gewicht

ca. 4,5 kg

ZUBEHÖR 1.3.

1.3.1. Normalzubehör Gerätehandbuch

Sicherung und Spannungsschild

1.3.2. Sonderzubehör PM 9585: 50 Ω -Abschluß 1 W

PM 9581: 50 Ω-Abschluß 3 W

PM 9075: Koaxialkabel BNC-BNC

1.4. FUNKTIONSPRINZIP (siehe Abb. 1, Blockschaltbild)

Der Oszillator des Funktionsgenerators umfasst den geschalteten Integrator (switched integrator) und den Komparator (peak detector). Die gesteuerte Stromquelle (controlled current source) des Gleichstromteils erzeugt den Ladestrom für den Integrator. Am Integratorausgang wird eine lineare Spannungsrampe dem Komparator zugeführt. Beim Erreichen eines vorgegebenen Schwellwertes spricht der Komparator an und steuert die Stromrichtung im Integrator um. Der Integrationsvorgang verläuft nun in der entgegengesetzten Richtung. Erreicht die Spannungsrampe den anderen Schwellenwert des Komparators, so kehrt dieser die Stromrichtung im Integrator wieder um. Da die beiden Schwellenwerte entgegengesetzt gleich gross sind, entsteht so am Integratorausgang eine periodische, nullsymmetrische Dreieckspannung. Das Zeitverhältnis der ansteigenden zur abfallenden Dreieckflanke ist 1:1.

Der Ausgangsstrom der gesteuerten Stromquelle hängt von den Einstellungen der Kreisskale und dem Feineinsteller FREQ OFFSET ab. Die resultierende Frequenz des Oszillators wird von diesem Strom und zusätzlich vom Wert des Kondensators im Integrator bestimmt. Verschiedene Kapazitätswerte werden mit den Drucktasten FREQUENZY Hz eingeschaltet.

Interne Frequenzsteuerung des Oszillators für Einzelsweep erfolgt mit dem Sweep-Steuerteil (sweep control). Die Auslösung erfolgt durch Betätigen der Taste SGLE SWEEP. Der Sweepbereich wird stetig mit dem Steller SWP STOP/START eingestellt. Die Einstellung der Sweepzeit erfolgt mit dem Potentiometer SWEEP PERIOD.

Die momentane (Sweep-) Spannung, die einer bestimmten Frequenz des Oszillators entspricht, steht an der Buchse SWP VOLTAGE IN/OUT zur Verfügung. Das Verhältnis von Spannung zu Frequenz ist, entsprechend der Charakteristik der gesteuerten Stromquelle, logarithmisch.

Mit dem Signalformschalter WAVE FORM können drei Signalformen gewählt werden: die Dreieickspannung vom Integrator, die Rechteckspannung vom Komparator oder die Sinusspannung, die mit dem Sinusformer (sine shaper) aus der Dreieckspannung erzeugt wird.

Das Signal wird über den Amplitudensteller, den Verstärker (amplifier) und Abschwächer (attenuator) an den Ausgang geführt.

Mit Hilfe des Stellers DC OFFSET kann dem Signal eine Gleichspannung unterlegt werden, zugeschaltet durch Ziehen des Schalters PUSH FOR ZERO. Wenn nur die Gleichspannung allein gewünscht wird, kann der Wechselspannungsanteil des Ausgangssignals abgeschaltet werden. Dazu ist die Drucktaste DC des Signalformwählers zu betätigen.

Ein Rechtecksignal des Komparators wird über einen Trennverstärker (TTL buffer) zur TTL OUT Buchse geführt.

Das stabilisierte Netzteil liefert die Gleichspannungen für die Schaltkreise.

2. VORBEREITUNGSANWEISUNGEN

2.1. WARENEINGANGSKONTROLLE

Überprüfen Sie den Inhalt der Sendung auf Vollständigkeit und nehmen Sie eine Sichtkontrolle vor, um festzustellen, ob das Gerät während des Transports möglicherweise beschädigt wurde. Wenn der Inhalt unvollständig ist oder wenn irgendwelche Defekte wahrgenommen werden, muß beim Überbringer sofort reklamiert werden. Eine Philips Verkaufs- oder Servicestelle muß ebenfalls verständigt werden, um Reparatur oder Ersatz des Gerätes zu ermöglichen.

2.2. SICHERHEITSANWEISUNGEN

Dieses Gerät hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen (siehe Kap. 1.2.). Zur Erhaltung dieses Zustands und seines gefahrlosen Betriebs müssen die nachfolgenden Hinweise sorgfältig beachtet werden.

2.2.1. Reparatur und Wartung

Fehler und außergewöhnliche Beanspruchungen:

Wenn anzunehmen ist, daß ein gefahrloser Betrieb nicht mehr möglich ist, so ist das Gerät außer Betrieb zu setzen und gegen unabsichtlichen Betrieb zu sichern. Dieser Fall tritt ein,

- wenn das Gerät sichtbare Beschädigungen aufweist,
- wenn das Gerät nicht mehr arbeitet,
- nach Überbeanspruchungen jeglicher Art (z.B. Lagerung, Transport), die die zulässigen Grenzen überschreiten.

Öffnen des Geräts: Beim Öffnen von Abdeckungen oder Entfernen von Teilen mit Werkzeug können spannungsführende Teile freigelegt werden. Auch können Anschlußstellen spannungsführend sein. Vor dem Öffnen des Geräts muß das Gerät von allen Spannungsquellen getrennt sein.

Wenn eine Kalibrierung, Wartung oder Reparatur am geöffneten Gerät unter Spannung unvermeidlich ist, so darf das nur durch eine Fachkraft geschehen, welche die damit verbundenen Gefahren kennt. Kondensatoren im Gerät können noch geladen sein, selbst wenn das Gerät von allen Spannungsquellen getrennt wurde.

2.2.2. Erden

Bevor irgendeine Verbindung hergestellt wird, muß das Gerät über das dreiadrige Netzkabel mit einem Schutzleiter verbunden werden.

Der Netzstecker darf nur in eine Schutzkontaktsteckdose eingeführt werden.

Diese Schutzmaßnahme darf nicht unwirksam gemacht werden, z.B. durch eine Verlängerungsleitung ohne Schutzleiter.

Eine Schutzerdung über Außenkontakte der BNC-Buchsen ist unzulässig.

WARNUNG: Jede Unterbrechung des Schutzleiters innerhalb oder außerhalb des Gerätes oder Trennung des Schutzerdeanschlusses ist gefährlich. Bewußte Unterbrechung ist verboten.

2.2.3. Anschlußstellen

Die Außenkontakte der BNC-Buchsen führen das Schaltungsnullpunkt-Potential und sind mit dem Gehäuse über die Parallelschaltung von Kondensator und Widerstand verbunden. Damit werden Brummschleifen vermieden und eine eindeutige HF-Erdung der Schaltung bewirkt.

Falls das Schaltungsnullpunkt-Potential in einem Meßaufbau vom Schutzerde-Potential abweicht, ist zu beachten,

- daß die BNC-Buchsen berührbar sind und nicht berührungsgefährlich sein dürfen, siehe die einschlägigen Sicherheitsbestimmungen (VDE 0411),
- daß alle mit dem Zeichen 🔔 gekennzeichneten Buchsen intern untereinander verbunden sind.

2.2.4. Netzspannungseinstellung und Sicherungen

Vor dem Anschließen des Netzsteckers an das Netz ist zu prüfen, ob das Gerät auf die örtliche Netzspannung eingestellt ist.

Nur eine Fachkraft, die die damit verbundenen Gefahren kennt, darf das Gerät auf die örtliche Netzspannung einstellen.

WARNUNG: Wenn der Netzstecker an die örtlichen Gegebenheiten angepaßt werden muß, darf eine solche Umrüstung nur von einer Fachkraft ausgeführt werden.

Es ist zu beachten, daß nur Sicherungen mit dem angegebenen Nennstrom und vom angegebenen Sicherungstyp verwendet werden dürfen, wenn eine Sicherung zu ersetzen ist. Die Verwendung reparierter Sicherungen und das Kurzschließen des Sicherungshalters ist verboten.

Die Sicherung darf nur durch eine Fachkraft ausgewechselt werden, die die damit verbundenen Gefahren kennt.

WARNUNG: Beim Auswechseln einer Sicherung und beim Einstellen auf eine andere Netzspannung ist das Gerät von allen Spannungsquellen zu trennen.

2.3. NETZSPANNUNGSEINSTELLUNG UND SICHERUNGEN

Die Sicherheitsanweisungen im Kapitel 2.2.4. müssen eingehalten werden.

Bei Fabrikauslieferung ist das Gerät auf 230 V (PM 5131) bzw. 115 V (PM 5131 M) eingestellt.

Soll das Gerät auf einen anderen Netzspannungsbereich umgestellt werden, ist wie folgt zu verfahren:

- Netzstecker herausziehen
- Handgriff nach oben wegschwenken; dazu sind die beiden seitlichen Verriegelungsknöpfe zu drücken
- Zentralbefestigung an der Rückseite lösen
- Mantel abziehen
- Lötbrücken gemäß nebenstehendem und auf der Unterseite des Gerätes befindlichem Bild ändern

- Ggf. mitgelieferte Sicherung und Netzspannungsschild austauschen
- Gerät anschließen

2.4. BETRIEBSLAGE DES GERÄTES

Das Gerät darf in den im Kapitel1.2. 6 angegebenen Positionen betrieben werden. Bei heruntergeklapptem Tragbügel kann das Gerät in schräger Lage betrieben werden; hierzu sind die beiden Verriegelungsknöpfe an der Seite zu drücken.

Die technischen Daten im Kapitel 1.2. gelten für die angegebenen Positionen.

Das Gerät nie auf eine wärmeerzeugende oder ausstrahlende Oberfläche stellen oder direkter Sonneneinstrahlung aussetzen.

2.5. ÖFFNEN DES GEHÄUSES

- Netzstecker herausziehen
- Handgriff nach oben wegschwenken; dazu sind die beiden Verriegelungsknöpfe zu drücken
- Zentralbefestigung an der Rückseite lösen
- Mantel abziehen

2.6. FUNK-ENTSTÖRUNG

Das Gerät wurde funkentstörtechnisch sorgfältig entstört und geprüft. Beim Zusammenschalten mit nicht einwandfrei entstörten Basiseinheiten und weiteren peripheren Geräten können Funkstörungen entstehen, die dann im einzelnen Fall zusätzliche Funkentstörungs-Maßnahmen erfordern.

3. BETRIEBSANLEITUNG

3.1. BEDIENELEMENTE UND ANSCHLÜSSE (Abb. 2.)

Beschriftung	Position	Funktion
POWER	251	Netzschalter;
ON OFF		Weisses Feld für Einschaltzustand
WAVE FORM	252/5 bis 252/7	Drucktasten zur Wahl der Signalform: Sinus-, Dreieck-, oder Rechtecksignal
FREQUENCY Hz x1 x100 x10 k	252/1 bis 252/3	Drucktaster zur Wahl des Frequenzbereiches: 0,1 - 200 Hz, 10 Hz - 20 kHz, 1 kHz - 2 MHz
.1 200 (logarithmische Teilung)	650	Kreisskale zur kontinuierlichen Grobeinstellung der Frequenz
FREQ OFFSET 20 % +20 %	651	Steller zur kontinuierlichen Feineinstellung der Frequenz
ATTENUATION 10 dB 20 dB 30 dB	252/9 bis 252/11	Drucktaster zum Einstellen der festen Abschwächung 40 - 60 dB durch Kombination der Tasten
AMPLITUDE 3 V _{pp} 30 V _{pp}	821	Steller für kontinuierliche Amplituden-Einstellung des Ausgangssignals.
DC	252/8	Drucktaster zum Abschalten des Wechselspannungs- anteils des Signals.
DC OFFSET -10 V +10 V	822	Steller zur kontinuierlichen Einstellung der Gleichspannung
PUSH FOR ZERO	822	Zugschalter zur Summierung der Gleichspannung zum Ausgangssignal
OUTPUT	200	BNC-Ausgangsbuchse für das Signal
TTL OUT	201	BNC-Ausgangsbuchse für das TTL-Signal
SGLE SWEEP	252/4	Drucktaste zum Auslösen des Einzelsweep
SWP STOP/START 1 2000	653	Steller zum Einstellen der Stopfrequenz (Verhältnis Stop- zu Startfrequenz)
SWP VOLTAGE IN/OUT 1 V/FREQ DEC	202	BNC-Eingangs/Ausgangs-Buchse für die frequenzanaloge Spannung
SWP PERIOD	652	Steller für die Sweepzeit

3.2. BEDIENUNG

3.2.1. Einsteller der Ausgangsspannung (OUTPUT)

Mit dem Steller AMPLITUDE ist die Amplitude des Ausgangssignals stetig einstellbar.

Bei entriegeltem Drucktaster DC und gezogenem Knopf PUSH FOR ZERO kann dem Ausgangssignal eine stetig einstellbare positive oder negative Gleichspannung unterlegt werden. Wird der Drucktaster DC gedrückt, ist der Wechselspannungsanteil des Signals abgeschaltet, und es wird nur die Gleichspannung an den Ausgang geführt.

Mit dem Stufenabschwächer ATTENUATION kann das Ausgangssignal einschliesslich DC-Offset in Stufen von 10 dB bis 60 dB abgeschwächt werden. Für 10 bis 30 dB stehen einzelne Drucktasten zur Verfügung. 40 und 50 dB sind durch Kombination zweier Tasten wählbar.

Für 60 dB müssen alle 3 Tasten gedrückt sein.

Hinweis: Der Ausgangsverstärker ist durch gleichzeitige Aussteuerung mit Signal und DC-Offsetspannung

übersteuerbar. Zur Vermeidung von Begrenzungseffekten darf der Scheitelwert der Leerlaufaus-

gangsspannung ± 15 V nicht überschreiten (Stufenabschwächer auf 0 dB).

3.2.2. Einstellen der Frequenz

Zum Einstellen der Frequenz stehen drei Bedienungselemente zur Verfügung:

- Kreisskale mit logarithmischer Teilung
- Bereichschalter FREQUENCY Hz
- Feineinsteller FREQ OFFSET

Die resultierende Frequenz entspricht dem Produkt aus dem angezeigten Zahlenwert auf der Kreisskale und dem Einstellwert des Bereichschalters FREQUENCY Hz. Zusätzlich ist die durch den Feineinsteller FREQ OFFSET festgelegte Frequenzabweichung zu berücksichtigen.

Die eingestellte Frequenz entspricht

der Signalfrequenz

bei entriegelter Taste SGLE SWEEP

der Signalfrequenz, mit 0 V

bei gedrückten Taste SGLE SWEEP

Steuerspannung an der Buchse

SWEEP VOLTAGE IN/OUT

- der Startfrequenz

des Einzelsweep

3.2.3. Interner Einzelsweep

Interner Einzelsweep von der Start- zur Stopfrequenz wird durch Drücken der Taste SGLE SWEEP ausgelöst-Die Charakteristik ist exponentiell, gemäss der Beziehung

wobei fo = momentane Signalfrequenz am Ausgang

fSTART = Frequenz zu Beginn des Sweep, eingestellt durch die Grundfrequenz gemäss 3.2.2.

Uc = Spannung an der Buchse SWP VOLTAGE IN/OUT.

Somit ändert sich die Frequenz um eine Dekade bei einer Steuerspannungsdifferenz von 1 V. Am Ende der Sweepperiode verweilt der Ausgang an der oberen Frequenz des Sweepbereiches, die mit dem Steller SWP STOP/START eingestellt werden kann. Rücksetzen der Taste SGLE SWEEP lässt den Ausgang zur Startfrequenz zurückspringen.

Die Sweepzeit wird mit dem Potentiometer SWP PERIOD eingestellt. Vor-Einstellung der Stopfrequenz sollte am Ende des Sweep bei kleiner Periodenzeit vorgenommen werden, bevor der endgültige Sweep ausgeführt wird.

Zu beachten:

Der Sweepvorgang kann naturgemäß nur innerhalb des jeweiligen Teilfrequenzbereiches ausgeführt werden. Hieraus folgt, daß der Steller SWP STOP/START höchstens so eingestellt werden darf, daß die obere Frequenz des Teilbereiches (z.B. 20 kHz in II) nicht überschritten wird, siehe Beispiel 1 im Bild Nur wenn die Startfrequenz an der unteren Grenze des Teilbereiches liegt (z.B. 10 Hz in II, Beispiel 2), kann der maximale Sweepbereich von 2000:1 ausgenutzt werden. Einstellungen der Beispiele 3 und 4 führen zu Übersteuerungen, was sich neben der Frequenzbegrenzung durch Verzerrung der Kurvenform bemerkbar macht.

Beispiel für den Teilbereich II (x100); die beiden anderen Bereiche ergeben sich ähnlich.

3.2.4. Externer Sweep und Frequenzmodulation

Die Taste SGLE SWEEP muss entriegelt sein.

Die Signalfrequenz des Generators kann durch Zuführen einer Spannung über die Buchse SWP VOLTAGE IN/OUT gesteuert werden. Die Frequenz ändert sich dabei exponentiell mit der Steuerspannung (1 Dekade/1 V), wie in Kapitel 3.2.3. beschrieben.

Innerhalb der Frequenzbereiche müssen Begrenzungen beachtet werden:

Die Starfrequenz bestimmt die maximal zulässige externe Steuerspannung. Beträgt die Startfrequenz z.B. 2 kHz, so ergibt sich als maximal möglicher Sweepbereich zu höheren Frequenzen hin 1 Dekade, was einer maximalen Steuerspannung von +1 V entspricht, Beispiel 1a. Zu niedrigen Frequenzen hin sind maximal – 2,3 V erlaubt, um die Grenze der Stopfrequenz von 10 Hz nicht zu unterschreiten, Beispiel 1b. Liegt die Startfrequenz an der unteren Grenze des Teilbereiches (10 Hz in II, Beispiel 2), kann die maximale Steuerspannung von +3,3 V angelegt werden.

Beispiel für die Frequenzmodulation:

Einstellung einer Grundfrequenz von 2 kHz und einer externen Steuer-Gleichspannung von – 1 V führen zur Mittenfrequenz von 200 Hz. Überlagerung der Steuer-Gleichspannung mit einer Wechselspannung von 1 Vss ergibt eine Frequenzmodulation in den Grenzen von 20 Hz und 2 kHz, Beispiel 3.

Beispiel für den Teilbereich II (x100); die beiden anderen Bereiche ergeben sich ähnlich bei gleicher Steuerspannung Uc.

Notice d'emploi

1. GENERALITES

1.1. INTRODUCTION

Le générateur de fonctions PM 5131 est un appareil conçu pour des applications allant du secteur éducatif au secteur général.

Il délivre des signaux de sortie sinusoïdaux, triangulaires et rectangulaires, dont la fréquence est réglable en trois gammes logarithmiques de 0,1 Hz à 2 MHz. Le vernier de fréquence permet de faire varier la fréquence de -20 % à +20 %.

La tension de sortie est réglable de façon continue jusqu'à 30 Vcc et peut être atténuée en échelons de 10 dB

Une tension de sortie continûment réglable peut être sélectionnée séparément, ou le cas échéant, utilisée comme tension continue d'offset additionnée au signal de sortie sélectionné.

Le générateur permet le balayage sur plus de 3 décades (gamme réglable) et un temps de balayage variable entre 10 et 150 secondes. Il sera donc possible de couvrier la gamme de fréquence audio de 20 Hz à 20 kHz en un balayage continu. De plus, le balayage externe et la modulation en fréquence sont possibles.

Pour des applications TTL une sortie séparée est disponible.

La structure ergonomic des commandes et des douilles permet de manipuler l'appareil d'une façon commode.

1.2. CARACTERISTIQUES TECHNIQUES

Caractéristiques de sécurité

Cet appareil a été construit et essayé suivant les spécifications de sécurité classe I de la publication IEC 348, spécifications de sécurité pour appareils de mesure électroniques, et est livré à sortie d'usine avec ces conditions de sécurité. Ce manuel contient différentes informations et sonsignes qui doivent être suivies afin d'obtenir un fonctionnement fiable et de maintenir l'appareil dans cet état.

Caractéristiques des performances, spécifications

Les valeurs numériques avec données de tolérances sont garanties par le constructeur. Les valeurs numériques sans tolérances représentent des valeurs moyennes et ne sont mentionnées qu'à titre d'information. Les spécifications ci-après sont valables pour la température de référence de 23 °C et après 30minutes de mise en fonctionnement. Sauf autres mentions, les tolérances absolues et relatives sont données par rapport à la valeur ajustée.

1.2.1. Fréquence

 Gamme de fréquence
 0,1 Hz - 2 MHz

 Gammes sélectionnées I
 0,1 Hz - 200 Hz

 II
 10 Hz - 20 kHz

 III
 1 kHz - 2 MHz

Caractéristique Logarithmique

Réglages – trois boutons-poussoirs de gamme

cadran à échelle logarithmique
commande de réglage fin

Indication de fréquence Echelle logarithmique sur l'écran

Erreur de réglage <± 10 %

Réglage de fréquence par vernier —20 % à +20 % du réglage sur l'écran

Coefficient de temperature < 0,5 %/K

Dérive à court terme <1,5 % en 15 minutes

Oérive à long terme <3 % en 7 heures

1.2.2. Sortie

Connexion

Douille BNC

Impédance

 50Ω

Capacité de charge

Résistant aux courts-circuits

Formes d'onde

Sinusoïdale, triangulaire, rectangulaire; symétrique en tout

temps; avec ou sans offset continu.

Tension continue sans élément alternatif.

Tension en circuit ouvert:

gamme de réglagevaleur maximale

3 V_{cc} ... 30 V_{cc} réglable continûment

± 15 V

Tension continue d'offset

 bouton PUSH FOR ZERO en position tirée, tension en circuit ouvert -10 V ... +10 V, réglable continûment

boutons PUSH FOR ZERO et

WAVE FORM DC enfoncé

< 50 mV

Atténuation

continufixe

0 ... 20 dB (voir tension en circuit ouvert 3 V_{CC} ... 30 V_{CC})

0 à 60 dB en échelons de 10 dB

Distorsion (sinusoïdale)

< 0,5 % dans les gammes I, II

< 3 % dans la gamme III

Linéarité (triangulaire)

mieux que 99,5 % dans les gammes 1,11

< 0,1 dB dans les gammes I, II

Temps de montée, temps de descente

(rectangulaire)

< 75 ns

Dépassement et suroscillation

(rectangulaire)

< 2 %

Réponse en amplitude (sinusoïdal;

valeur de référence 1 kHz)

< 0,3 dB dans la gamme III < 1 MHz < 1 dB dans la gamme III \le 2 MHz

(tension en circuit ouvert 3 . . . 30 Vcc, charge 50 Ω ,

atténuation 0 dB)

1.2.3. Sortie TTL

Connexion

Douille BNC

Facteur de marche

50 %

Sortance

20 entrées TTL

1.2.4. Commande de fréquence

1.2.4.1. Balayage interne

Mode de balayage

Simple

Caractéristique de balayage

Logarithmique

Gamme de balayage (rapport

1 ... 2000 (1 ... 2.10³)

f marche/f arrêt)

réglable continûment

Période de balayage (temps de balayage)

≤ 10 ... 150 s continûment variable

Sortie de tension de balayage

(tension analogique)

Douille BNC

connexionfacteur d'échelle

1 V/décade de fréquence

1.2.4.2. Balayage externe ou modulation de fréquence

Connexion

Douille BNC SWEEP VOLTAGE (tension de balayage)

Caractéristique tension/fréquence

Logarithmique

Gamme de balayage maxi

Sous-gamme totale, I, II ou III

Sensibilité

1 V/décade de fréquence

Impédance d'entrée

 $1 k\Omega$

Fréquence de modulation maxi

env. 5 kHz

1.2.5. Alimentation Tension alternative

Valeur de référence

230 V

Valeurs nominales

115 V/230 V à sélectionner par cavaliers

Gamme de fonctionnement nominale Limites de fonctionnement

± 15 % de la valeur sélectionnée ± 15 % de la valeur sélectionnée

Gamme de fréquence nominale Gamme de fréquence limite Puissance absorbée

Conditions d'environnement 1.2.6.

Température ambiante

Valeur de référence

23 °C ± 1 °C

Gamme nominale

+5 à +40 °C

Gamme de stockage et de transport

-40 °C à +70 °C

Humidité relative

Gamme de référence

45 à 75 %

Gamme nominale de travail

20 à 80 %

Pression d'air

Valeur de référence

1013 mbar (= 760 mm Hg)

Gamme nominale de travail

800 à 1066 mbar jusqu'à 2200 m d'altitude

Déplacement d'air

Valeur de référence

0 à 0,2 m/s

Gamme nominale de travail

0 à 0,5 m/s

Position de travail

verticale sur les pieds ou inclinée reposant sur la poignée

rabattue

Temps de chauffage

30 minutes

1.2.7. Coffret

Type de protection (voir DIN 40 050)

IP 20

Classe de protection

Classe I, conducteur de terre

Dimensions totales

hauteur

140 mm

- largeur - profondeur 310 mm 330 mm

Poids

environ 4,5 kg

ACCESSOIRES 1.3.

1.3.1. Standard Notice d'emploi et d'entretien

Fusible et plaquette de tension

1.3.2. Option PM 9585: résistance terminale 50 Ω , 1 W

PM 9581: résistance terminale 50 Ω , 3 W

PM 9075: câble coaxial BNC-BNC

1.4. DESCRIPTION DU SCHEMA SYNOPTIQUE (voir Fig. 1., schéma synoptique)

L'oscillateur du générateur de fonctions est composé d'un intégrateur et d'un détecteur de crêtes (comparateur). La source de courant réglée dans la section de commande en continu délivre le courant de charge pour l'intégrateur. A la sortie de cet intégrateur, une tension linéaire est conduite au détecteur de crêtes. Au moment où la tension de référence est atteinte, le détecteur inverse le courant de charge de l'intégrateur, de sorte que l'intégration à lieu infersément. L'intégration vers le bas a lieu jusqu'à ce que le niveau de référence négatif est atteint; alors, le détecteur de crêtes inverse à nouveau le courant de l'intégrateur. Comme les deux niveaux de référence sont symétriques par rapport à la terre, une onde triangulaire symétrique au zéro est délivré à la sortie de l'intégrateur. La facteur de marche de cette onde est 1 : 1.

Le courant de sortie de la source réglée dépend des positions du cadran de fréquence et de la commande FREQUENCY OFFSET. La fréquence résultante de l'oscillateur est déterminée par ce courant ainsi que par le condensateur intégrant dans l'intégrateur. Plusieurs condensateurs sont commutées par les boutons-poussoirs FREQUENCY Hz. La commande de fréquence interne de l'oscillateur principal pour balayage simple se fait à l'aide de la commande SGLE SWEEP. Le gamme de balayage est réglable à l'aide du bouton SWP STOP/START. Le bouton SWP PERIOD permet de régler le temps de balayage.

La tension instantanée (de balayage) pour une fréquence différente de l'oscillateur est disponible à la douille SWP VOLTAGE IN/OUT. Par cette douille il est possible de réaliser le balayage externe ou la modulation de fréquence. Le rapport tension-fréquence est logarithmique, en fonction de la caractéristique de transfert de la source de courant réglée.

Le commutateur WAVE FORM permet de sélectionner les formes d'onde suivantes: une onde triangulaire de l'intégrateur, une onde rectangulaire du détecteur de crêtes ou une onde sinusoïdale du circuit conformateur d'ondes sinusoïdales. Le signal est conduit à la douille OUTPUT par le potentiomètre AMPLITUDE, l'amplificateur et l'atténuateur.

La commande DC OFFSET permet d'additionner une tension continue au signal en position tirée du bouton PUSH FOR ZERO. Si seule la tension continue est requise, un élement alternatif du signal de sortie peut être mis hors service en enfonçant le bouton-poussoir DC du sélecteur d'ondes.

Un signal sinusoïdal du détecteur de crêtes est appliqué à la douille TTL OUT par l'intermédiaire du tampon TTL.

L'alimentation stabilisée fournit les tensions continues pour les circuits.

2. INSTRUCTIONS POUR L'INSTALLATION

2.1. INSPECTION INITIALE

Sortez l'appareil hors de son emballage et assurez vous qu'il est complet et qu'il n'y a pas eu de dommages en cours de transport. En cas de dommages ou d'insuffisances, ou si la sécurité de l'appareil est mise en doute, une réclamation doit être adressée directement au transporteur. De plus, il faudra également avertir une organisation de vente ou de service Philips afin de faciliter le procédé de réparation ou de remplacement.

2.2. CONSIGNES DE SECURITE

A la livraison, l'appareil est conforme aux consignes requises de sécurite, voir chap. 1.2. Pour maintenir cet état et afin d'assurer un fonctionnement sur, il faut observer les instructions suivantes.

2.2.1. Entretien et réparation

Défauts et contraintes excessives:

Lorsque l'appareil est suspecté de n'être plus sûr, le mettre hors de service en prévoyant sa remise en état. Ce cas se présente si l'appareil

- a subit des endommagements mécaniques
- ne fonctionne plus
- a été soumis à des contraintes dépassant les limites tolérables (p. ex., pendant stockage et transport)

Démontage de l'appareil: Lors de démontage des couvercles et d'autres pièces à l'aide d'outils, des bornes et des éléments sous tension sont exposés sans protection. Avant de démonter l'appareil, le déconnecter de toutes sources de tension.

L'étalonnage, l'entretien et la réparation de l'appareil démonté doivent être uniquement accomplis par un spécialiste en observant les précautions nécessaires.

Après déconnexion de toutes les sources de tension, les condensateurs dans l'appareil peuvent demeurer chargés pendant quelques secondes.

2.2.2. Mise é la terre

Avant de procéder à toute autre connexion l'instrument doit être connecté à la terre par l'emploi d'un cordon secteur à trois conducteurs.

La fiche secteur ne doit être introduite que dans une prise à contact de terre. La mise à la terre ne doit pas être éliminée par l'emploi, par exemple, d'un câble prolongateur sans conducteur de terre.

Les contacts externes des douilles BNC ne doivent pas être utilisés pour brancher un conducteur de terre.

ATTENTION:

Toute interruption de la ligne de terre, à l'intérieur ou à l'extérieur de l'instrument, tout débranchement de la borne de terre peut rendre l'instrument dangereux. L'interruption intentionnelle de la ligne de terre est formellement interdite.

2.2.3. Contacts de raccordement

Les contacts extérieurs des douilles BNC correspondent au potentiel du point zéro du circuit interne et sont reliés au boîtier via un raccordement résistance-condensateur en parallèle. De cette facon, on évite les ronflements et on assure avec certitude un raccordement de terre HF du circuit interne.

Au cas où dans un ensemble de mesure, le potentiel du point zéro du circuit est différent du potentiel de la terre de protection il faut prendre en considération:

- que les douilles BNC sont accessibles et ne doivent pas être dangereuses à manipuler, voir les consignes de sécurité (VDE 0411)
- que toutes les douilles avec le signe 🚣 sont reliées entre elles de facon interne.

2.2.4. Adaptation à la tension secteur, fusibles

Avant d'introduire la fiche secteur dans la prise secteur, s'assurer que l'instrument est adapté a la tension locale du secteur.

L'adaptation à la tension locale doit être uniquement accomplie par un spécialiste en observant les précautions nécessaires.

ATTENTION: Si la fiche secteur doit être adaptée aux spécifications locales, cette modification doit être uniquement accomplie par un spécialiste.

En cas de remplacement, les fusibles de rechange seront correctement calibrés et d'un modèle adéquat. Il faut éviter d'utiliser des fusibles réparés ou de court-circuiter des porte-fusibles.

Le remplacement du fusible soit être uniquement accompli par un spécialiste on observant les précautions nécessaires.

ATTENTION: En cas de remplacement d'un fusible ou d'adaptation à une autre tension secteur, l'instrument sera débranché de toute source de tension.

2.3. ADAPTATION A LA TENSION SECTEUR, FUSIBLES

Les règlements de sécurité du chapitre 2.2.4. doivent être observés.

Lors de la livraison d'usine, l'appareil est règlé pour 230 V (PM 5131) resp. 115 V (PM 5131 M). Au cas où l'appareil doit être alimenté par une tension différente, procéder comme suit:

- Débrancher la fiche secteur
- Placer la poignée en haut sur l'appareil;
 à cette fin, enfoncer les boutons de la poignée
- Desserrer la vis centrale à l'arrière de l'appareil
- Démonter le boîtier
- Ressouder les pontets à souder selon le schéma de connexion que se trouve sur la partie inférieure de l'appareil

- Eventuellement change le fusible fourni et la plaquette de tension secteur
- Fermer l'appareil

2.4. POSITION DE FONCTIONNEMENT DE L'APPAREIL

L'appareil peut être utilisé dans les positions indiquées en chapitre 1.2. 6 Avec poignée rabattue, l'appareil peut être utilisé en position inclinée; à cette fin, enfoncer les boutons de la poignée. Les spécifications conformément aux paragraphe 1.2. ne sont garanties qu'en positions indiquées.

Il n'est pas recommandé de placer l'instrument en plein soleil ou sur une surface produisant de la chaleur.

2.5. DEMONTAGE DE L'APPAREIL

- Débrancher la fiche secteur
- Placer la poignée en haut sur l'appareil; a cette fin, enfoncer les boutons de la poignée
- Desserrer la vis centrale à l'arrière de l'appareil
- Démonter le boîtier

2.6. ELIMINATION DU RAYONNEMENT

L'appareil a été soigneusement protégé contre les parasites et contrôlé suivant les techniques de protection contre les rayonnements parasites. Par raccordement à d'autres unités de base et périphériques non fiables en ce qui concerne le rayonnement, il y a lieu dans certains cas de prendre des mesures concernant le déparasitage:

3. MISE EN SERVICE

3.1. COMMANDES ET DOUILLES

Légende	Repère	Fonction
POWER ON OFF	251	Commutateur secteur, point blanc indiquant la position enclenchée
WAVE FORM	252/5 à 252/7	Boutons-poussoirs pour forme d'onde requise: sinusoïdale, triangulaire ou rectangulaire
FREQUENCY Hz x1 x100 x10k	252/1 à 252/3	Sélecteurs de la gamme de fréquence 0,1 - 200 Hz, 10 Hz - 20 kHz, 1 kHz - 2 MHz
.1 200 (échelle logarithmique)	650	Cadran pour réglage de fréquence gros continu
FREQ. OFFSET -20 % +20 %	651	Cadran pour réglage de fréquence fin continu
ATTENUATION 10 dB 20 dB 30 dB	252/9 à 252/11	Boutons-poussoirs pour réglage de l'atténuation fixe; 40 - 60 dB par combinaison de boutons-poussoirs
AMPLITUDE 3 V _{pp} 30 V _{pp}	821	Bouton pour réglage d'amplitude continu du signal de sortie
DC	252/8	Bouton-poussoir pour déclenchement de la portion alternative du signal
DC OFFSET -10 V +10 V	822	Bouton pour réglage continu de tension continue
PUSH FOR ZERO	822	Tirette pour addition de la tension continue au signal de sortie
OUTPUT	200	Douille de sortie BNC pour signal
TTL OUTPUT	201	Douille de sortie BNC pour le signal TTL
SGLE SWEEP ON OFF	252/4	Bouton-poussoir pour démarrage d'une période de balayage simple
SWP VOLTAGE 1 2000	653	Bouton pour réglage de la fréquence d'arrêt (rapport fréquence arrêt/marche)
SWP VOLTAGE IN/OUT 1 V/FREQ DEC	202	Douille d'entrée/sortie BNC pour tension analogique de fréquence
SWP PERIOD ≤ 10 s 150 s	652	Bouton pour réglage du temps de balayage

3.2. **FONCTIONNEMENT**

Réglage de la tension sur la douille OUTPUT 3.2.1.

L'amplitude du signal de sortie est réglable en continu par la commande AMPLITUDE. Avec bouton DC relâché et bouton PUSH FOR ZERO tiré, une tension continue positive ou négative, continûment réglable peut être additionnée au signal de sortie. En position enfoncée du bouton DC, la portion alternative du signal de sortie est éliminée et seule la tension continue appliquée à la sortie. Le signal de sortie et l'offset en continu peuvent être atténués en échelons de 10 à 60 dB. Pour 10 à 30 dB, des boutons-poussoirs séparés sont disponibles. Des atténuations de 40 at 50 dB sont sélectionnées par l'actionnement de plusieurs boutons-poussoirs. Pour 60 dB les trois boutons doivent être enfoncés.

Remarque: L'amplificateur de sortie pourrait être surchargé à la suite de l'addition du signal et de l'offset en tension continue. Afin d'éviter la limitation, la valeur de crête de la tension sortie en circuit ouvert ne doit pas dépasser de +15 V (atténuateur par échelons réglé sur 0 dB).

3.2.2. Réglage de la fréquence

Trois commandes sont disponibles pour régler la fréquence de base:

- cadran à échelle logarithmique
- sélecteur de gamme FREQUENCY Hz
- commande vernier FREQ OFFSET

L'affichage multiplié par le facteur choisi sur le sélecteur de gamme répresente la fréquence. De plus, il faut tenir compte de l'écart de fréquence réglé à l'aide de la commande FREQ OFFSET.

La fréquence sélectionnée représente:

- la fréquence du signal de sortie

bouton SGLE SWEEP relâché

- la fréquence du signal avec 0V à la douille SWP VOLTAGE

bouton SGLE SWEEP enfoncé

IN/OUT

- la fréquence de démarrage

du mode de balayage simple

3.2.3. Balayage simple interne

La balayage simple interne de la fréquence marche-arrêt est démarré en enfonçant le bouton SGLE SWEEP. La caractéristique est exponentielle selon la formule

fo étant la fréquence instantanée à la sortie,

fSTART la fréquence au début du balayage, réprésentée par le réglage de la fréquence; voir 3.2.2. Uc la tension à la douille SWP VOLTAGE IN/OUT

De la sorte, une différence de tension de commande de 1 V résulte en un rapport de fréquence 10 : 1. A la fin du balayage la sortie reste à la fréquence d'arrêt, laquelle est réglable à l'aide de la commande SWP STOP/START. Lorsque le bouton SGLE SWEEP est relâché, la fréquence est retournée à la fréquence de démarrage. Le temps de balayage est réglé à l'aide du potentiomètre SWP PERIOD. Le pré-réglage de la fréquence d'arrêt peut être réalisée à la fin du balayage pendant un temps minimal avant de procéder au réglage du balayage final.

Veuillez noter:

Le balayage sera obtenu uniquement dans l'étendue de la sous-gamme concernée. Il est évident, que la commande SWP STOP/START doit être placée à une valeur n'excédant pas la fréquence la plus élevée de la sous-gamme (soit 20 kHz en II), voir exemple 1 du diagramme.

C'est seulement lorsque la fréquence de démarrage se situe dans la limite inférieure de la sous-gamme (soit 10 Hz en II, exemple 2), que le rapport maximum de balayage de 2000 : 1 peut être obtenu. Les conditions prévues aux exemples 3 et 4 conduisent à un dépassement du fonctionnement correct ce qui signifie une limitation en fréquence avec distorsion du signal.

Exemple pour la sous-gamme II (x 100) les deux autres gammes seront considérées de facon similaire.

3.2.4. Balayage externe et modulation de fréquence

Le bouton SGLE SWEEP doit être relâché.

La fréquence du générateur peut être contrôlée au moyen d'une tension extérieure appliquée au connecteur SWP VOLTAGE IN/OUT. La fréquence du générateur varie de facon exponentielle par rapport à la tension de commande (1 décade/1 V) comme décrit au chapitre 3.2.3.

A l'intérieur des gammes de fréquences certaines limitations doivent être observées:

La fréquence de démarrage limite la tension externe de commande. Une fréquence de démarrage de 2 kHz par exemple, représente une gamme de balayage maximum de 1 décade pour atteindre la fréquence la plus élevée et correspond à une tension de commande de +1 V, exemple 1 a du diagramme. En descendant aux fréquences les plus basses, une tension maximum de -2,3 V est tolérée de facon à ne pas dépasser la fréquence d'arrêt de 10 Hz, exemple 1 b.

Au cas où la fréquence de démarrage se situe à la limite inférieure de la sous-gamme (soit 10 Hz en II, exemple 2), la tension maximum de commande utilisée sera de +3,3 V.

Exemple pour modulation de fréquence:

Le réglage de la fréquence de base à 2 kHz et l'application d'une tension de commande externe de -1 V ont pour résultat une fréquence centrale de 200 Hz. La superposition d'une tension de contrôle ac de 1 Vpp produit une modulation de fréquence dans les limites 20 Hz à 2 kHz, exemple 3.

Exemple pour la sous-gamme II (x 100) les deux autres gammes seront considérées de facon similaire, l'échelle U¢ reste identique.

Service part

4.1. CIRCUIT DESCRIPTION PM 5131

4.1.1 Control section

Basic task of the control section is to generate the frequency determining control currents for the oscillator. Inputs of the control section are currents derived from the FREQUENCY potmeter 650, the FREQUENCY OFFSET potmeter 651, the SWEEP STOP/START potmeter 653 and the SWEEP VOLTAGE input socket. These currents are summed up at the non-inverting input of OP 417.2 and conducted to resistor 671 establishing the input control voltage Vc of the exponential voltage-to-current converter comprising OP 417.1, transistor 312 and two transistors on the array 420. This converter generates two currents Ip and In of nearly the same magnitude following the relation

$$Ip \approx In \sim exp (Vc/V\tau) \qquad \qquad whereby \ V\tau \approx 28 \ mV.$$

The operational principle of this circuitry may be explained with the aid of fig. 4.1 - 1

Fig. 4.1 - 1 exponential converter principle

Between the non-inverting and the inverting OP inputs, the circuitry comprising OP 417.1 and transistor 312 represents a voltage follower applying Vc as forward voltage to the diode 420.2. The diode current In equals the collector current of 312 apart from the bias current of the inverting OP input and the base current of transistor 312 acting as leakage currents. However, these leakage currents are compensated by the current through potmeter 681. Consequently, the characteristic In versus Vc of the whole circuitry is like the logarithmic d.c. characteristic of the diode which itself is identical with the mathematical relation presented before.

For frequency dial setting '0.1' In is about $1\mu A$. The corresponding lower Vc limit is derived from the currents through 665 and 667 fed to the summing input of OP 417.2 and transfered to 671. This basic Vc magnitude depends on the potmeter 666 setting and is sensitive to ambient temperature variations with about -2mV/K achieved by diode 420.3. This is necessary to compensate the same temperature coefficient of diode 420.2 in the exponential converter for the lower current limit. At the upper frequency and corresponding with frequency dial setting '200', In is about 2mA. The higher Vc is derived from the current through 650, 655 and 665, set by potmeter 664. This current is provided with a small positive temp. coeff. by 657 and 649 in the long-tailed resistance arrangement between the positive supply voltage and the FREQUENCY potentiometer wiper. By this the slightly decreasing temp. coeff. of the exponential converter with increasing output currents is taken into account.

Returning to fig. 4.1 - 1 it can be seen that besides of In an additional output current Ip is generated by the exponential converter. Ip is approximately proportional but only roughly matched with In. Because the oscillator needs In directly and a second input current with identical magnitude flowing into the oscillator from the positive side, Ip is mirrored by the circuitry comprising the transistors 313 and 314 and corrected by the regulator circuitry with transistors 315 and 316. This regulator derives its input voltage from the virtuell ground terminal of the integration capacitors in the quadruple switch array of the oscillator.

For internal sweep control a positive going ramp is generated at the collector of 311 by the simple integrating circuitry, comprising transistor 311 and integrating capacitor 503. The portion of this ramp voltage picked up at the wiper of the STOP/START potentiometer 653 defines the sweep range in terms of stop/start frequency ratio. The duration of the generated ramp can be set by the SWEEP PERIOD potentiometer defining the integrator input current and hence the ramp slope.

4.1.2 Oscillator

At emitter 327 the oscillator outputs a 10 Vpp triangular wave which is symmetrical with respect to ground. Simultaneously a phase coherent 6 Vpp square wave (transitions coincident with triangular wave peaks) is outputted at wiper of trimpot 732. The frequency determining two input currents of equal magnitude ranging from $1\mu\text{A}$ to 2mA in each frequency sub-range are fed in from the control section.

At fixed frequency these currents are constant d.c. currents one coming from the positive the other flowing to the negative supply voltage. These dc currents are alternatingly conducted to one of the integrating capacitors 512/513, 515 or 517 depending on the frequency sub-range selected. The switching function is performed by the transistors 320 - 323. The resulting triangular wave is picked up by the high ohmic isolation amplifier comprising transistors 324, 326 and 327 and outrouted to the internal triangular wave output. The switching-over points of the transistor array 320 - 323 at the triangular wave peaks are determined by the two-level detector including transistors 329 - 332. At base 329 the two switching levels of this circuitry are about +1.95 V and -1.95 V, corresponding with the 10 V peaks at emitter 327 decreased by the voltage divider 710/713. The switching levels are determined by nearly the same square wave levels at base 320 generated by the two level detector circuitry itself. A smaller portion of this detector reference voltage from divider 718/719 serves for switching the transistors 320 - 323. A separate 6 Vpp square wave collector output of the two level detector is routed by the isolation amplifier comprising transistors 334 and 335 to the internal output and to the TTL output stage 336.

The following basic expression for defining the oscillator frequency is valid:

$$f = \frac{1}{2VC}$$

with

V = 10V $\stackrel{\frown}{=}$ triangular wave amplitude p - p C = 47pF or 4.7nF or 470nF $\stackrel{\frown}{=}$ integrating capacitor I = 1 μ A . . . 2mA $\stackrel{\frown}{=}$ input control current

At the upper frequency end the propagation delay times of the transistor switching array, the isolation amplifier and the two-level detector, if not compensated, would result in increasing amplitudes and, hence, negative frequency setting errors. Delay compensation is performed by the lead circuit 710, 520,713.

The following oscillator adjustment positions are provided:

- 720 defining triangular wave amplitude, hence frequency also, and offset
- 723 defining triangular wave offset (adjustment after 720) and to a smaller extend the amplitude; adjustment iterative with 720.
- 732 defining the output square wave offset
- defining frequency accuracy in the 2MHz sub-range after amplitude adjustment by 720 and frequency adjustment in the 20 kHz sub-range by the control section trimpots.

4.1.3 Sine shaper

The triangular oscillator voltage is shaped to sinusoidal wave form by the sine shaper IC 0Q011. Trimpots 808 and 812 serve for minimizing the output signal distortion. The output LRC-low pass filter improves the signal shape at the upper frequency end of the oscillator. By trimpot 814 the amplitude response is adjusted. The sine wave is outputted by the isolation amplifier comprising transistors 350 and 351 and d.c. offset trimpot 816.

4.1.4 Amplifier, attenuator

One of the internally generated signals are selected by the wave form switches 252/5/6/7 and routed to the amplitude potmeter 821. The following inverting amplifier basically consists of a complementary high gain cascode stage including the transistors 352 – 354 and a buffered complementary emitter follower output stage. Overall voltage gain mainly is defined by the ratio of feedback resistor 831 to input resistor 820. Feedback trimmer 556 determines the square wave shape and the amplitude response flatness at the upper frequency end. Trimpot 824 serves for zero offset adjustment, when the DC OFFSET potentiometer 822 is switched off.

The output attenuator comprises three resistor dividers by-passed or switched on in any combination through switches 252/9/10/11.

4.1.5 Power supply

The highly stable bipolar 22V supply voltages are generated from the rectifier 440 output voltages by two four-terminal regulators 441 and 442. The voltages are adjusted by the feedback trimpots 781 and 784. Because the frequency adjustments in the control section and the oscillator are to some extent dependent on the supply voltages, adjustments of these voltages must be performed before; they must be accurate to with in ± 0.1 V.

ACCESS TO PARTS 4.2.

Before dismantling the instrument, the safety regulations in accordance with para. 2.2. must be strictly observed.

Cabinet, see 2.5. 4.2.1.

Knobs 4.2.2.

- Remove the cap from the knob.
- Unscrew the nut and remove the knob.
- When replacing the knob, ensure that the white mark is correctly aligned with the text plate markings.

4.2.3. Text plate

- Remove the cabinet, see 2.5.
- Remove the turn-knobs, see 4.2.2.
- Remove the dial
- Remove the plastic cover of the mains switch.
- The text plate can now be removed.

Be careful:

The textplate is fitted to the frontplate by double sided adhesive tape.

Pushbutton unit 4.2.4.

Replacing a pushbutton lever.

The single pushbutton lever can be replaced from the front.

- Push the spring towards the pushbuttons.
- Remove the wire strap and/or lift the plastic reed between the contacts.
- Carefully tear the pushbutton lever out of the pushbutton.

Replacing a switch of the pushbutton unit

- Straighten the 4 retaining lugs of the relevant switches as shown in the figure below.
- Break the body of the relevant switch by means of a pair of pliers and remove the pieces. The soldering pins are then accessible.
- Remove the soldering pins and clean the holes in the printed circuit board (e. g. with a suction soldering iron).
- Bend the 4 retaining lugs back to their original positions.
- Solder the new switch on to the printed circuit board.

4.3. CHECK AND ADJUSTMENT

4.3.1. General

- The limits mentioned in this paragraph are valid only for a newly adjusted instrument and therefore might deviate from the values as stated in paragraph 1.2. "Technical Data".
- Adjustment of the instrument is only permitted after a warm-up time of at least 30 minutes at an ambient temperature of (+23 ± 3) ^OC and when connected to a mains voltage of 230 V ± 5 %. The cabinet must be closed.
- The printed circuit board is mounted overhead. Nevertheless all trimming potentiometers and capacitors are accessible from the top. For adequate temperature stability during adjustment, the cabinet should be removed only for a short time and so far that the required adjusting element is just accessible.
- If not explicitely stated otherwise, the voltage potentials refer to the relevant contact measured against circuit earth (1).
- The following abbreviations are used for setting and measuring instruments:

```
X = Button pressed

- = Button not pressed/unlocked

o = Button only tipped

rh = extreme right-hand position

Ih = extreme lift-hand position

m = mid-position

ml = position in the middle between m and Ih
```

OSC	= Oscilloscope	e.g. PM 3055
С	= Counter	e.g. PM 6665
Fg	= Function generator	e.g. PM 5132
DA	= Distortion analyzer	e.g. HP 333 A
DM	= Digital multimeter	e.g. PM 2534
50 Ω	= 50 Ω terminating resistor	e.a. PM 9585

4.3.2. Preparations

- All trimming potentiometers and capacitors in mid-position; (only for completely new adjustment).
- Turn dial potentiometer to extreme counter clockwise position.
- For instruments up to LO 07...: Position dial such that the 0.1 graduation on the dial is positioned
 8 mm left to the text plate mark.
- For instruments onwards LO 08 ...: Position the adjustment mark on the dial to the text plate mark.
 - Solder joints A, B, C, D must be closed. To be opened for failure detection only.
- Terminate the OUTPUT by a 50 Ω resistor.

4.3.3. General functional test

- Actuate all buttons one after the other for rough functional test of the generator by means of an oscilloscope connected to the OUTPUT socket.
- Control the TTL output.
- Roughly control the output voltage at the SWP VOLTAGE socket during the internal sweep.

4.3.4 . . . Table of checks and adjus

	FRI	EQUEN	CY		Sust- Sht	measured quantity	measured value	remarks
Seq.	dial	ra	inge		Ctro	<u> </u>		
ocq.		x1	x100	x10k	1	• 		
		252/1	/2	/3				
1.	Pow	er supp	ly					
1.1	10	1	×			Vdc	+22 ±0.1 V	
1.2	10		x			Vdc	-22±0.1 V	
1.3	10		x		 	Vdc	+33 ±1V	
1.4	10		×			Vdc	-33 ±1V	
					: '			
2		trolled c	urrent s	ource, c	SC			
2.1	10	1	×)	Vpp	10 ±0.1 V	5. 41
2.2	10		X		3	Vdc	0 ±0,05V	after this repeat 2.1.
2.3	0.1		x		!	time T	10 T ₁	T ₁ = period time at scale mark 1
2.4	1		X		;	T f	10 ±0,1ms 10 ±0,1kHz	iterative with 2.3, 665 may be aftered
2.5	100 0.1		X		*	f	nom. value	check at scale gradua-
2.0	200			1	:		±8 %	tions 0.1, 0.3, 1, 3, 1, 10, 30, 100, 200; when
2.7	100	×		1		Т	10 ± 0.4 ms	exceeding the toleran-
						. 10	! 00 kHz ±1 % :	ce, minimize the failure by 666 (shifting the
2.8	10			×	2	•		overall transfer charac-
2.9	200			X		f	2000 ±150 kHz	teristic) or by 664 (shifting the upper part
	•			1			1150 KH2	of the transfer charac- teristic)
								teristic)
2.10	10		×			f	-20 ±5% +20 ±5 %	
3	swe	ep contr	<u>rol</u>					
3.1	0.1	1	x		4	f	1827kHz	stop frequency
3.1	0.1		^		-	1	< 10s	sweep time
3.2	0.1		×		•	t	150 -20s	
	١.,					_	+50s	
3.3	0.1	J	į x	1	K	f Vdc	10Hz+10kl	7z V check at 10 kHz
						Vac	UV~3±0.3	
4	sine	shaper,	amplifie	er, atter	ua			
4.1	10	1	x		1	Vdc	0 ±20mV	
4.2	10		x		'	Vdc	-5±0.5 V	
							+5±0.5V	
4.3	50			x	3		optimal signs	1 /
	10				3	l e	performance	≤ 75 ns distortion
4.4	10		X		2	Ñ	< 0.3 %	distortion
4.5	10		х		\$	Vdc	0 ± 20mV	offset ~
	10		×		2	Vdc	0 ± 20 mV	offset %
4.6	100		•	-	1	Vac	Δυ/υ	bandwidth
			L		L		< 0.1 dB	
4.7	50			х		k	< 2.8 %	distortion
4.8	10		x	_		Vpp	15 ±1V	
4.9	10		х			····	nom. value	attenuation
	1						± 0.2 dB	
4.10	10		X		Ι.	Vpp	1,5 ±0.3 V	
5	1	' L outpu	t					
"		_ outpu	<u>.</u>	ı	1			
5.1	0.1		×			V	4.5 ±0.2 V	1
1	1	1		1			0 ±0.2 V	

4.4. SAFETY INSPECTION AND TESTS AFTER REPAIR AND MAINTENANCE IN THE PRIMARY CIRCUIT

4.4.1. General directives

- Take care that creepage distances and clearances have not been reduced
- Before soldering, wires:
 should be bent through the holes of solder tags, or wrapped round the tag in the form of an open
 U, or, wiring ridigity shall be maintained by cable clamps or cable lacing.
- Replace all insulating guards and -plates.

4.4.2. Safety components

Components in the primary circuit may only be renewed by components selected by Philips, see also chapter 4.5.1.

4.4.3. Checking the protective earth connection

The correct connection and condition is checked by visual control and by measuring the resistance between the protective-lead connection at the plug and the cabinet/frame. The resistance shall not be more than 0.5 Ω . During measurement the mains cable should be moved. Resistance variations indicate a defect.

4.4.4. Checking the insulation resistance

Measure the insulation resistance at U = 500 Vdc between the mains connections and the protective lead connections. For this purpose set the mains switch to ON. The insulation resistance shall not be less than 2 $M\Omega$.

Note:

2 M Ω is a minimum requirement at 40 o C and 95 % relative humidity. Under normal conditions the insulation resistance should be much higher (10 to 20 M Ω).

4.5. SPARE PARTS

4.5.1. General

Standard Parts

Electrical and mechanical parts replacement can be obtained through your local Philips organisation or representative. However, many of the standard electronic components can be obtained from other local suppliers. Before purchasing or ordering replacement parts, check the parts list for value, tolerance, rating and description.

NOTE:

Physical size and shape of a component may affect instrument performance, particularly at high frequencies. Always use direct-replacement components, unless it is known that a substitute will not degrade instrument performance.

Special Parts

In addition to the standard electronic components, some special components are used:

- Components, manufactured or selected by Philips to meet specific performance requirements.
- Components which are important for the safety of the instrument, marked with 'S' in the parts list.

ATTENTION:

Both type of components may only be replaced by components obtained through your local Philips organisation.

4.5.2. Mechanical parts, miscellaneous, electrical parts not on units

Item	Fig.	Quantity	Order number	Description
	_		E222 447 04224	
1	3	1	5322 447 94324	. 3 1
1	3	1	5322 447 90395	
2	3	4	5322 462 44174	
2	3	4	5322 462 10222	
3	3	2	5322 520 34164	
4	3	2	5322 530 84075	-
5	3	2	5322 528 34101	
6	3	2	5322 532 54425	
6	3	2	5322 532 51481	•
7	3	2	5322 498 54048	
8	3	1	5322 498 54051	
9	3	2	5322 414 64053	
9	3	2	5322 414 30043	knob, brown
11	3	1	5322 447 94188	back frame
12	3	4	5322 462 44176	·
13	-	1	5322 502 14164	
14	-	1	4822 530 70124	
15	3	5	5322 414 74014	
15	3	5	5322 414 70017	
16	3	1	5322 414 74042	
16	3	1	5322 414 70043	cover for knob (scale), brown
17	3	1	5322 459 24076	front frame
18	3	1	5322 455 84083	
21	4,5	1	4822 253 30013	
22	_	1	4822 253 30017	
23	4	1	5322 146 34112	
24	4	1	5322 401 14275	cable clamp *S
25	4	1	5322 321 14048	mains cable 1850 *S
26	4	1	5322 325 60119	
27	4	1	5322 325 54067	lead-through *S
28	4	3	5322 405 94178	print holder
29	3	5	5322 414 34082	knob, grey
29	3	5	5322 414 30039	knob, brown
30	3	1	5322 450 20115	dial, mounted grey *
30	3	1	5322 450 20162	dial, mounted brown *
31	3	1	5322 414 74047	locating mark, grey
31	3	1	5322 414 70044	locating mark, brown
32	3	3	5322 267 10004	
251			5322 276 14393	mains switch *S
34	3	11	5322 414 25851	knob for pushbutton, grey
34	3	11	5322 414 20033	_
35	3	7	5322 276 14271	pushbutton switch
36	3	4	5322 276 14221	pushbutton switch
37	5	7	5322 255 44037	-
38	5	1	5322 255 44107	
39	_	•	5322 390 24013	
40	4	1	5322 121 44028	27N 2 x 2N7 250 V line filter *S
40	7	•		mponent (see chapt. 4.5.1.)
			D Barety Con	-be

Item	Fig.	Quantity	Order number	Description
441	5	1	4822 209 80384	IC 78MGCU1
442	5	1	4822 209 80374	IC 79MGCU1
540	4	1	4822 121 50624	polystyrene foil, 4.7nF
601	4	1	5322 116 50491	metal film 22.6 Ohm
650	4	1	5322 103 60004	potmeter 500 Ohm *
651	4	1	4822 101 20302	carbon potm. 47 kOhm
652	4	1	4822 101 20304	carbon potm. 220 kOhm
653	4	1	5322 101 24145	carbon potm. 4.7 kOhm
821	4	1	4822 101 20297	carbon potm. 2.2 kOhm
822	4	1	5322 101 64005	carbon potm. 10 kOhm
				+ switch

^{*} The old potmeter, item 650, 5322 103 24017, and the assigned dial mounted, item 30, 5322 450 24012, are not available anymore. They were used in instruments up to LO 07...

If one of both items in these instruments is defective, the other item must also be replaced by a new type.

Distinction can be made by the following:

old type, Megatron 500 Ohm, Ø 25.5mm, angle of rotation 275° new type, AB Electronic 500 Ohm, Ø 36.5 mm, angle of rotation 340°

4.5.3. Electrical parts

Some parts are listed in chapter 4.5.1.

INTEGRATED CIRCUITS

417	5322 209 86234	NE5532FE from LO 031001 onward
420	5322 209 85715	CA3086 SELECTED
426,427	5322 209 85559	TDA1034N until LO 021000
446	5322 209 84778	0Q0011

TRANSISTORS

311	5322	130	44322	BCY78X
312	4822	130	44196	BC548C
313,315	4822	130	40937	BC548B
314	4822	130	44197	BC558B
316	4322	130	34044	BSV80
320,322	5322	130	44594	2N3964
321,323	4822	130	44196	BC548C
324	4822	130	41024	BF245B
325,326	4822	130	40937	BC548B
		130	44034	2H2219A
327,328	5322			
329,330	4822	130	40937	BC548B
331,332	4822	130	44197	BC558B
333	5322	130	40021	2N2905
334,336	4822	130	44197	BC558B
335,351	4822	130	40937	BC548B
350	4822	130	44197	BC558B
352,354	5322	130	40468	2N2905A
353,355	5322	130	44034	2N2219A
	4822	130	40959	BC547B
356				BC557B
357	4822	130	44568	
358	5322	130	44034	2N2219A

COILS

401,402	532 2	158	14018	33MUH
445	5322	158	10276	4,7 MUH
449	5322	158	10283	150MUH

DIODES

416 418 419 421 422 423	5322 13 4822 13 4822 13 4822 13 4822 13 5322 13	0 34488 0 34233 0 34297 0 34379	1N4151 BZX79-C11 BZX79-C5V1 BZX79-B10 BZX79-B27 1N4151
424	5322 13	0 34397	BZX91
425	4822 13		BZX79-C15
429	4822 13		BZX79-B9V1
430	4822 13		BZX79-B6V2
433,434	5322 13		184151
435	4822 13		BZX75-C1V4
440	5322 13	0 32031	SKB2/08/L5A
447,448	4822 13		BZX79-B13
450	4822 13		BZX75-C2V8
451,452	5322 13	0 34321	1N4151

CAPACITORS

ITEM	ORDERING NUMBER	FARAD	TOL (%)	VOLTS	REMARKS
503 505,508 506 511 512 513 514,518 515 517 519,522 520 521,523	4822 124 20793 4822 124 20476 4822 122 31221 5322 121 40323 4822 125 50045 4822 122 31054 4822 122 31175 4822 121 50539 5322 121 50338 4822 122 30103 4822 122 31074 5322 124 24202	470MU 10MU 1N5 100N 2-22P 10P 1N0 4N7 470N 22N 56P 2MU2	10 10 2 10 1 1 -20+80 2	40 100 100 100 100 100 63 100 63 100 63	ELECTROLYTIC ELECTROLYTIC CERAMIC PLATE POLYESTER FOIL TRIMMER CERAMIC PLATE CERAMIC PLATE POLYSTYRENE FOIL CERAMIC PLATE CERAMIC PLATE CERAMIC PLATE CERAMIC PLATE CERAMIC PLATE ELECTROLYTIC
542 543,544 545,546 547,548 550,555 555,556 557,558 559-560 561,565 565	5322 121 40323 4822 124 20797 4822 124 20583 4822 124 20499 4822 122 30103 5322 121 40323 4822 122 31054 4822 122 31069 4822 122 30128 4822 122 30103 5322 122 30108 4822 122 30108 4822 122 30108 4822 122 30045	100N 2200MU 1MU 22MU 22N 100N 10P 39P 2-10P 4N7 22N 100N 39P 27P	20 -20+80 20 2 2 10 -20+80 10 2 2	100 40 63 40 63 100 100 100 100 100 100 100	POLYESTER FOIL ELECTROLYTIC ELECTROLYTIC ELECTROLYTIC CERAMIC PLATE POLYESTER FOIL CERAMIC PLATE CERAMIC PLATE TRIMMER CERAMIC PLATE CERAMIC PLATE CERAMIC PLATE POLYESTER FOIL CERAMIC PLATE CERAMIC PLATE CERAMIC PLATE CERAMIC PLATE

RESISTORS

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
8934567890123456789018465555666666666666677777777777777777777	5322 116 54595 5322 116 54565 5322 116 54657 5322 116 54637 5322 116 54637 5322 116 54637 5322 116 50443 5322 116 50443 5322 116 50457 5322 116 50484 5322 116 50583 5322 116 50635 4822 100 10476 5322 116 50579 4822 100 10038 5322 116 54597 5322 116 54597 5322 116 54587 5322 116 54587 5322 116 54549 5322 116 54549 5322 116 54549 5322 116 54549 5322 116 54549 5322 116 54549 5322 116 54549 5322 116 54549 5322 116 54549	5,11K 10,62K 64,9 ** 17,8K7K 12,1M 21,15 5,647K 47053365K 47053365K 47053365K 47053365K 47053365K 47053365K 47053365K 47053365K 4707K 47053365K 4707K	1 1 1 1 1 1 1 1 1 1 1 1 1 1	MTC265555 555555 555555 55555 MRC2255	METAL FILM NTC METAL FILM TRIMMING POTM METAL FILM

ITEM	ORDERING NUMBER	онм	TOL (%)	TYPE	REMARKS
701,702 703 704 705 706,707 708 709 710 711 712 713 714,716	5322 116 54585 5322 116 50767 5322 116 54585 5322 116 50581 5322 116 54606 5322 116 54835 5322 116 54835 5322 116 54557 5322 116 54562 5322 116 54562 5322 116 54562 5322 116 54539 5322 116 50669 5322 116 50414	3,48K 2,15K 3,49K 7,15K 715 511 1,21K 487 1,4K 805 20,87K 4,22K	1 1 1 1 1 1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25 MR25 MR25	METAL FILM
717 718 719 720 721 722 723,732 725 726 728,730 731,735 736 737	5322 116 50729 5322 116 54492 5322 116 54446 4822 101 10108 5322 116 54835 5322 116 50767 4822 100 10038 5322 116 50675 5322 116 54519 5322 116 50767 5322 116 50767 5322 116 50767 5322 116 50583	178 56,2 100 511 2,15K 470 2,26K 402 105 2,05K 2,05K 4,02K 5,9K		MR25 MR25 LIN MR30 MR25 MR25 MR25 MR25 MR25 MR25 MR25 MR25	METAL FILM METAL FILM TRIMMING POTM METAL FILM
738 739 740 741 742,743 744 745	5322 116 50524 5322 116 50621 5322 116 50586 5322 116 54562 5322 116 54472 5322 116 54549 5322 116 54571	3,01K 536 1,54 K 1,4K 105 1,0K 1,96K	1 1 1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25 MR25	METAL FILM
779 780 781,784 782,785 783	5322 116 54696 5322 116 54571 4822 100 10075 5322 116 54525 5322 116 50509	100K 1,96K 100 511 4,87K	1 1 1	MR25 MR25 LIN MR25 MR25	METAL FILM METAL FILM TRIMMING POTM METAL FILM METAL -EILM
807,809 808,812 810 811 813,818 814 815,817 816 819 820 823 824 825 826 827,830	5322 116 54613 4822 100 10038 5322 116 54743 5322 116 54549 5322 116 50509 4822 100 10035 5322 116 50414 4822 100 10038 5322 116 54608 5322 116 50664 5322 116 50664 5322 116 54686 5322 116 54686 5322 116 54686 5322 116 54686	8,66K 470 301K 1,0K 4,87K 10K 2,70 7,5K 2,05 K 237 47K 75K 237	1 1 1 1 1 1 1 1	MR25 LIN MR25 MR25 MR25 LIN MR25 LIN MR25 MR25 MR25 LIN MR25 MR25 MR25 MR25 MR25 MR25 MR25 MR25	METAL FILM TRIMMING POTM METAL FILM METAL FILM TRIMMING POTM METAL FILM TRIMMING POTM METAL FILM
828,829 831 832,833 834,836 835	5322 116 50527 5322 116 54624 5322 116 50493 5322 116 54009 5322 116 54637	33,2 11,5K 27,4 562 17,8K	1 1 1 1	MR25 MR25 MR25 MR25 MR25 MR25	METAL FILM METAL FILM METAL FILM METAL FILM METAL FILM

ITEM	ORDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
837,838	5322 116 54014	23,7	1	MR25	METAL FILM
839	5322 116 50621	536		MR25	METAL FILM
840,841	5322 116 54472	105	1	MR25	METAL FILM
842	4822 116 51152	27	5	PR52	METAL FILM
843,844	5322 116 54348	10	5	PR52	METAL FILM
845,846	4822 116 51152	27	5	PR52	METAL FILM
847 848 849	5322 116 54956 5322 116 50583 5322 116 50586	24 5,9K	5 1	PR52 MR25	METAL FILM METAL FILM METAL FILM
850 851	5322 116 50386 5322 116 54442 5322 116 55481	1,54K 51,1 442	1	MR25 MR25 MR52	METAL FILM METAL FILM
852	5322 116 54445	54.9	1	MR25	METAL FILM
853	5322 116 54458	73.2		MR25	METAL FILM
854,855	5322 116 54949	215	1	MR52	METAL FILM
856	5322 116 50583	5,9K		MR25	METAL FILM

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

,			A
① ② Country Day Month Year	③ Typenumber	/Version	Factory/Serial no.
3 2 1 5 0 4 7 5	0 P M 3 2 6	0 0 2	D O 0 0 7 8 3
CODED	FAILURE DESCRI	PTION	6
. 6	_		
Nature of call Location	Component	/sequence no. Ca	1
Installation Pre sale repair Preventive maintenance Corrective maintenance Other	T S 0 6 R 0 0 6 9 9 0 0	0 7 3 1 0 1 4	Job completed Working time Hrs
Detailed description of the information	on to be entered in th	e various boxes:	
①Country: 3 2 = Switzerland			
②Day Month Year 1 5 0 4 7 5	= 15 April 1975		
③Type number/Version O P M 3	3 2 6 0 0 2 =		1 3260, version 02 (in later is placed in front of
(4) Factory/Serial number (5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 8 3 = DO 78	3 These data are i the instrument	mentioned on the type plate of
Nature of call: Enter a cross in the Coded failure description	e relevant box		
These four boxes are used to isolate the problem area. Write the code of the part in which the fault occurs, e.g. unit no or mechanical item no of this part (refer to 'PARTS LISTS' in the manual). Example: 0001 for Unit 1 000A for Unit A 0075 for item 75 If units are not numbered, do not fill in the four boxes; see Example Job sheet.	graticule, e 990002 Knob (incl etc.) 990003 Probe (onl to instrum 990004 Leads and 990005 Holder (va fuse, board 990006 Complete board, h.t	intended to component. Onent in the circuit gnation is ters must be om the left) di boxes and written (in elast digit nost box) in boxes. ied in the Not applicable rack (text em, grip, rail, tc.) . dial knob, cap, y if attached ent) associated plugs live, transistor, d, etc.) unit (p.w. unit, etc.) (only those pe number) ation (manual, t, etc.) bject	O Unknown, not applicable (fault not present, intermittent or disappeared) 1 Software error 2 Readjustment 3 Electrical repair (wiring, solder joint, etc.) 4 Mechanical repair (polishing, filling, remachining, etc.) 5 Replacement (of transistor, resistor, etc.) 6 Cleaning and/or lubrication 7 Operator error 8 Missing items (on pre-sale test) 9 Environmental requirements are not met

- ① Job completed: Enter a cross when the job has been completed.
- Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.

1 2 = 1,2 working hours (1 h 12 mi		1	2	=	1.2	working	hours	(1	h	12	min	
------------------------------------	--	---	---	---	-----	---------	-------	----	---	----	-----	--

SALES AND SERVICE ALL OVER THE WORLD

Alger: Bureau de Liaison Philips, 24 bis, Rue Bougainville, El Mouradia, Alger; tel.:213-601405

Antilles: see Ned. Antillen

Argentina: Philips Argentina S.A., Vedia 3892, Casilla de Correo 3479, 1430 Buenos Aires; tel.:54-1-5414106/ 54-1-5417141/5422411

Austria: see Oesterreich

Australia: Philips Scientific & Industrial, 25-27 Paul Street, P.O. Box 119, North Ryde/ NSW 2113; tel.: 61-2-8888222 Service Centre: PCS Service, 2 Greenhills Avenue, Moorebank, P.O. Box 269, Liverpool/NSW 2170; tel.: 61-2-6022000

Bangla Desh: Philips Bangla Desh Ltd., 16/17 Kawran Bazar C/A P.O. Box 62; Ramna, N.V. Dhaka; tel: 325081/5, 411976 Service Centre: 50 New Eskaton Road Maghbazar, Dhaka; tel: 403047

België/Belgique: Philips & MBLE associated S.A., Scientific and Industrial Equipment Division, 80 Rue des Deux Gares, 1070 Bruxelles; tel.: 32-2-5256111

Bolivia: E.P.T.A. Industrias Bolivianas Philips S.A., Calle Mercado no. 1046, Cajón Postal 2964, La Paz, tel.: 341453/350029

Brasil: Philips do Brasil Ltda.,
Av. Eng. Luiz Carlos Berrini, 3009, Caixa Postal 8681,
CEP 04571-Sao Paulo (S.P.);
tel:: 55-11-2411611
Service Centre:
Sistemas Profissionais,
Rua Anton Philips 1,
Caixa Postal 7018,
07000 Guarulhos-S.P.;
tel.: 55-11-2090111

Canada: Philips Electronics Ltd., Test and Measurement Dept., 1001 Ellesmere Road, Scarborough (Ontario) M1P-2W7, tel.: 1-416-292 82000

Chile: Philips Chiléna S.A., Division Professional, Avenida Santa Maria 0670, Casilla 2687, Santiago de Chile; tel.:56-2-770038

Colombia: Industrias Philips de Columbia S.A., Calle 13 no. 51-39, Apartado Aereo 4282 Bogota; tel.: 57-1-2600600

Danmark:Philips Industri og Handels A/S, Prags Boulevard 80, P.O. Box 1919, DK-2300 Cøbenhavn S; tel.: 45-1-572222

Deutschland (Bundesrepublik): Philips GmbH, Unternehmensbereich Elektronik für Wissenschaft und Industrie, Miramstrasse 87, Postfach 310 320, 3500 Kassel-Bettenhausen; tel.: 49-561-5010

Ecuador: Philips Ecuador C.A., Páez 118 y Avenida Patria, Casilla 343, Quito; tel.: 593-2-546100/564601

Egypt: Philips Egypt Branch of Philips Midden Oosten N.V., 10, Abdel Rahman El Rafei Street -Dokki-, Cairo; tel.: 20-2-3490922/3490926/3490928/3492237

Eire: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Dublin 14; tel.: 353-1-693355

España: Philips libérica S.A.E., Martinez Villergas 2, Apartado 2065, Madrid 28027; tel: 34-1-4042200 Service Centre: Euroservice S.A. Calle de Albasanz 75, Madrid 28017; tel:: 34-1-2045940/2047025/2047105

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), Ras Abebe Areguay Avenua, P.O.B. 2565, Addis Ababa; tel: 448300/157441

Finland: see Suomi

France: S.A. Philips Industrielle et Commerciale, Division Science et Industrie, 105 Rue de Paris, B-P.62, 93 002 Bobigny Cedex, tel. 33-1-4830111

Germany: see Deutschland

Hellas (Greece): Philips S.A. Hellénique, 15, 25th March Street, P.O. Box 3153, Athens 10210; tel: 30-1-4894911

Hong Kong: Philips Hong Kong Ltd., 29/F Hopewell Centre, 17 Kennedy Road, G.P.O. Box 2108, Hong Kong; tel.:852-5-283298 Ireland: see Eire

India: Peico Electronics & Electricals Ltd., I&E Equipment, Shivsagar Estate, Block "A" Dr. Annie Besant Road, P.O.B. 6598, Worli, Bombay 400 018 (WB); tel:: 91-22-4921500

Indonesia: P.T. Philips Development Corporation, Jalan Gatot Subroto Kav. 35/36, P.O. Box 785/KBY, Jakarta 12950; tel.: 62-21-517900/5781977

Iran: Philips Iran Ltd., P.O.B. 11365–3891, Tehran; tel.: 98-21-674138/675158

Iraq: Philips Midden Oosten B.V., Baghdad Branch, Hai Al Whida (district), Area No. 902, Street No. 12 Building No. 141/10, P.O. Box 5749, Baghdad; tel.: 7187181

Island : Heimilisteaki SF, Saetún 8, Reykjavík; tel.: 24000

Italia: Philips S.p.A., Sezione I&E/T&M, Viale Elvezia 2, 20052 Monza (MI); tel.: 39-39-36351

Japan: see Nippon

Kenya: Philips (Kenya) Ltd., 01 Kalou Road, Industrial Area, P.O.B. 30554, Nairobi; tel.: 254-2-557999

Lebanon: Philips Middle East S.A.R.L., P.O. Box 11-670, Beyrouth; tel.: 392320/1

Malaysia: Philips Malaysia Sendirian Berhad, Wisna Philips, No. 3, Jalan SS15/2A, 47500 Petaling Jaya, Selangor, G.P.O.B. 12163, 50768 Kuala Lumpur; tel: 60-3-7345511/7554234 Service Centre: Lot 51, Jalan University, Section 13, 46200 Petaling Jaya; tel:: 60-3-7562144

México: Telecommunicaciones y Sistemas Professionales S.A. de C.V., Goldsmith No. 40, Col. Polanco, 11560 México, D.F.: tel.: 52–5-5406875

Morocco: Philips Maroc S.A., 304-Boulevard Mohammed V, B.P. 10896, Bandoeng, Casablanca 05; tel.: 212-302092/303192/308051

Nederland: Philips Nederland B.V. Boschdijk 525, Gebouw VB, 5600 PD Eindhoven; tel.: 31–40–793333

Ned. Antillen: Philips Antillana N.V., Schottegatweg Oost 146, Postbus 3523, Willemstad, Curaçao; tel.: 599-9-615277/612799 (service)

New Zealand: Philips New Zealand Ltd., Scientific and Industrial Equipment Division, 68-86 Jervois Quay, G.P.O. Box 2097, Wellington C1; tel.: 64-4-735735

Nigeria: Associated Electronic Products (Nigeria) Ltd., KM16, Ikorodu Road, Ojota, P.O.B. 1921, Lagos; tel.: 234-1-900160/69

Nippon: NF Trading Co. Ltd., 3-20 Tsunashima Higashi 6 - Chome, Kohoku-ku, Yokohama-Shi

Norge (Norway): Norsk A.S. Philips, Dept. Industry and Telecommunication, Sandstuveien 70, Postboks 1, Manglerud N 0612, Oslo 6; tel.: 47–2–680200

Oesterreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Triesterstrasse 64, Postfach 217, A 1100 Wien; tel.: 43-222-645521 Service Centre: Oesterreichische Philips Industrie GmbH Ketzergasse 120-122, A 1232 Wien; tel.: 43-222-8662

Pakistan: Philips Electrical Co. of Pakistan Ltd., P.O.B. 7101, Karachi 3; tel.: 92-21-725772

Paraguay: Philips del Paraguay S.A., Avenida Artigas 1519, Casilla de Correo 605, Asunción; tel.: 595-21-291924/291934

Péru: Philips Peruana S.A., Av. Alfonso Ugarte 1268, Lima 5, Apartado Aereo 1841, Lima 100; tel.: 51–14–326070

Philippines: Philips Industrial Development Inc., 2246 Pasong Tamo, Makati, Metro Manila; tel.: 63–2–868951/868959

Portugal: Philips Portuguesa S.A.R.L., 1009 Lisboa Codex, Av. Eng. Duarte Pacheco 6, 1000 Lisboa; tel.: 351–1-683121/9 Service Centre: Servicos Técnicos Profissionais, Outorela 7/Carnaxide, 2795 Linda-a-Velha; tel.: 351–1-2180071

Saoudi Arabia: Delegate Office of Philips Industries, P.O. Box 9844, Riyadh 11423; tel.: 966-1-4777808

Schweiz-Suisse-Svizzera: Phillips A.G., S&I Equipment, Allmendstrasse 140, Postfach 670, CH-8027 Zürich; tel.: 41-1-4882211

Singapore: Philips Singapore Private Limited, Lorong 1, Toa Payoh, Singapore 1231, P.O. Box 340 – Toa Payoh Central Post Office, Singapore 9131; tel: 65–3502000 (N.O.)

South Africa: South African Philips (Pty) Ltd., 2 Herb Street, P.O.B. 7-Z03, New Doornfontein, Johannesburg 2000; tel.: 27-11-6179111

South Korea: Philips Electronics (Korea) Ltd., 260-199 Itaewon-dong, Yongsan-ku, Philips House C.P.O. Box 3680, Seoul, Korea 140, tel. 82-2-794-501176

Spain: see España

Suomi: Oy Philips AB, Kaivokatu 8, P.O. Box 255, SF-00101 Helsinki; tel.: 358-0-17271 Service Centre: Sinikaliionte 1-3, P.O. Box 11, SF-02630 Espoo; tel.: 358-0-52571

Sverige (Sweden): Philips Försäljning AB, Div. Industrielektronik, Tegeluddsvägen 1, S 115 84 Stockholm; tel.: 46-8-7821000

Syria: Philips Moyen-Orient S.A.R.L., Rue Fardoss 79, B.P. 2442, Damas; tel.: 218605/221650/228003/221025

Taiwan: Philips Taiwan Ltd., 150, Tun Hua North Road, P.O. Box 22978, Taipei; tel.: 886-2-712-0500

Tanzania: Philips (Tanzania) Ltd., T.D.F.L. Building (1st floor), Ohio/Upanga Road P.O. Box 20104, Dar es Salaam; tel.: 29571/4

Thailand: Philips Electrical Co. of Thailand Ltd., 283 Silom Road, P.O. Box 961, Bangkok 10500; tel.: 66-2-233 6330.9/2355 665.8 Service Centre: 29/1 Sanpavud Road, Bangna, Prakanong, Bangkok 10110; tel.: 66-2-396-1639/393 8772-6/66-2-396-1437

Tunisia: S.T.I.E.T., 32 bis, Rue Ben Ghedhahem, Tunis; tel.: 216-1-348666

Türkiye: Türk Philips Ticaret A.S., Inönü Caddesi 78/80, Posta Kutusu 504, 80074 Beyoglu, Istanbul; tel.: 90-1-1435910

United Arab Emirates: Philips Middle East B.V., Dubai International Trade Centre, 11th floor, P.O. Box 9269, Dubai; tel.: 971-4-37700

United Kingdom: Pye Unicam Ltd., York Street, Cambridge CB1-2PX; tel.: 44-223-358866 Service Centre: Pye Unicam Ltd., Service Division, Beddington Lane, Croydon CR9-4EN; tel.: 44-1-6843670

Uruguay: Industrias Philips del Uruguay S.A., Avda Uruguay 1287, Casilla de Correo 294, Montevideo: tel.: 915641/2/3/4-919009 Service: 387777-387878-388484

U.S.A.:

U.S.A.:

U.S.A.:

Philips Test and Measurement Department Inc.,
California: Garden Grove 92645
12882 Valley View Street, Suite 9;
tel.: (213) 554–8741 / (714) 898–5000
California: Milpitas 95035
477 Valley Way;
tel.: (408) 946–6722
Florida: Winter Park 32789
1850 Lee Road, Suite 229;
tel.: (305) 628–1717
Illinois: Itasca 60143
500 Park Blvd., Suite 1170;
tel.: (312) 773–0616
Massachusetts: Woburn 01801
21 Olympia Avenue;
tel.: (617) 935–3972
Minnesota: Minneapolis 55420
7851 Metro Parkway, Suite 302;
tel.: (612) 854–2426
New Jersey: Mahwah 07430
85 McKee Drive;
tel.: (1-201–5293800 (Toll-free 800–6317172)

Venezuela: Industrias Venezolanas Philips S.A., Apartado Aereo 1167, Caracas 1010–A; tel.: 58–2–203.7111

Zaire: S.A.M.E./s.a.r.l., 137, Boulevard du 30 juin, B.P. 16636, Kinshasa; tel.: 31887-31888-31921

Zambia: Philips Electrical Zambia Ltd., Mwembeshi Road, P.O.B. 31878, Lusaka; tel.: 218511/218701/218321

Zimbabwe: Philips Electrical (Pvt) Ltd., 62 Mutare Road, P.O. Box 994, Harare; tel.: 47211/48031

For information on change of address:
Philips Export B.V.,
Industrial & Electro-acoustic Systems Division,
Test & Measurement, Building TQ III - 4, P.O. Box
5600 MD Eindhoven - The Netherlands
Tel. 31-40-788476

T&M/870

Fig. 2 Front view
Frontansicht
Face avant

		•

Fig. 3. Front view, mechanical parts

Fig. 4. Bottom view

