Measuring and Mitigating Unintended Bias in Text Classification

Lucas Dixon Idixon@google.com John Li*
jetpack@google.com

Jeffrey Sorensen sorenj@google.com

Nithum Thain nthain@google.com

Lucy Vasserman*
lucyvasserman@google.com

Conversation-AI

ML to improve online conversations at scale

Research Collaboration

Jigsaw, CAT, several Google-internateams, and external partners (NYTimes, Wikimedia, etc)

Perspective API

"You're a dork!"

Toxicity: 0.91

API

Data + ML
Toxicity,
Severe Toxicity,
Threat, Off-topic,
+ dozens other
models

Unintended Bias

Model falsely associates frequently attacked identities with toxicity: False Positive Bias

<u>Sentence</u>	<u>model score</u>
"i'm a proud tall person"	0.18
"i'm a proud lesbian person"	0.51
"i'm a proud gay person"	0.69

Bias Source and Mitigation

Bias caused by dataset imbalance

- Frequently attacked identities are overrepresented in toxic comments
- Length matters

Add assumed non-toxic data from Wikipedia articles to fix the imbalance.

- Original dataset had 127,820 examples
- 4,620 non-toxic examples added

	Comment Length				
Term	20-59	60-179	180-539	540-1619	1620-4859
ALL	17%	12%	7%	5%	5%
gay	88%	77%	51%	30%	19%
queer	75%	83%	45%	56%	0%
homosexual	78%	72%	43%	16%	15%
black	50%	30%	12%	8%	4%
white	20%	24%	16%	12%	2%
wikipedia	39%	20%	14%	11%	7%
atheist	0%	20%	9%	6%	0%
lesbian	33%	50%	42%	21%	0%
feminist	0%	20%	25%	0%	0%
islam	50%	43%	12%	12%	0%
muslim	0%	25%	21%	12%	17%
race	20%	25%	12%	10%	6%
news	0%	1%	4%	3%	3%
daughter	0%	7%	0%	7%	0%

Measuring Unintended Bias - Synthetic Datasets

Challenges with real data:

- Existing datasets are small and/or have false correlations
- Each example is completely unique: not easy to compare for bias

Approach: "bias madlibs": a synthetically generated 'templated' dataset for evaluation

<u>Sentence</u>	model score
"i'm a proud tall person"	0.18
"i'm a proud lesbian person"	0.51
"i'm a proud gay person"	0.69
"audre is a brazilian computer programmer"	0.02
"audre is a muslim computer programmer"	0.08
"audre is a transgender computer programmer"	0.56

Measuring Unintended Bias - Metrics Challenges

Equality of Odds

- Requires choosing a threshold, not aligned with real-world usage
- Choice of threshold can drastically change results!

ROC-AUC

 Doesn't capture bad orderings between groups

	AUC
Tall	0.93
Average	0.93
Short	0.93
Combined	0.79

Measuring Unintended Bias - Pinned AUC

Pinned AUC metric measures unintended bias on real-valued scores directly

$$D = \text{full dataset}$$

 $D_t = \text{subset of } D \text{ containing term } t$

$$PinnedAUC(t) = AUC(D_t + sample(D)), where |D_t| = |sample(D)|$$

"Pinned" Dataset for term t

Pinned AUC

$PinnedAUC(t) = AUC(D_t + sample(D))$ for identity term **t** and full dataset **D**

	AUC	Pinned AUC
Tall	0.93	0.84
Average	0.93	0.84
Short	0.93	0.79
Combined	0.79	N/A

Pinned AUC Equality Difference

For identity terms, **t**, in a balanced test set **D**:

$$PinnedAUC\Delta(t) = |AUC(D) - PinnedAUC(t)|$$

Pinned AUC Equality Difference = \sum PinnedAUC $\Delta(t)$, for all terms t

- A <u>single number</u> that measures how much a model treats different identity terms differently.
- Generalizes to identity groups if data exists.
- Questions to consider:
 - O What is the set of identities?
 - What is the appropriate test set?
 - O Squared error?

Experiments and Results

Three Models

Baseline

• 127,820 Wikipedia comments

Control

 4,620 Wikipedia article snippets, randomly selected

Bias-Mitigated

 4,620 Wikipedia article snippets, selected to balance toxicity distribution for specific terms

Model	Pinned AUC Equality Difference
Baseline	6.37
Control	6.84
Bias-Mitigated	4.07

Summary

- Unintended bias can be mitigated by strategically adding data
- Synthetic datasets enable bias measurement
- Pinned AUC metric measures bias on real-valued scores

Future work

- Beyond synthetic datasets
- Additional mitigation techniques