FHE Reading Group - January 20 Linear Transform in in BFV (Bootstrapping)

Simon Pohmann

January 21, 2023

Where do we use it?

SIMD via slots

Plaintext space is $\mathcal{P}=R/p^eR$, where $R=\mathbb{Z}[X]/(X^N+1)$; Assume e=1 $\Rightarrow \mathcal{P}=\mathbb{F}_p[X]/(X^N+1)$

Remark

 $X^N + 1$ is irreducible in \mathbb{Z}

Proposition

- $X^N + 1 \equiv f_1...f_n \mod p \text{ where } n = \operatorname{ord}_{(\mathbb{Z}/2N\mathbb{Z})^*}(p)$
- f_i irreducible of degree d = N/n

$$\Rightarrow$$
 $\mathcal{P} \cong \bigoplus_{i=1}^n \mathbb{F}_{p^d}$

One operation in $\mathcal{P} pprox n$ operations, one on each slot \mathbb{F}_{p^d}

Using it

N digit extractions

Using it (cont'd)

N/n digit extractions

Using it (cont'd)

"Evaluation map"

The "Evaluation map"

"Evaluation map" :
$$\mathcal{P} \to \bigoplus \mathbb{F}_{p^d} \cong \mathcal{P}$$

$$\sum a_i X^i \mapsto (a_i)_{0 \leq i < d}$$

It is \mathbb{F}_p -linear!

Proposition

The \mathbb{F}_p -vector space

$$\mathcal{L} := \{ f : \mathcal{P} \to \mathcal{P} \mid f \ \mathbb{F}_p\text{-linear} \}$$

is spanned by

$$\{m_k : \alpha \mapsto X^k \alpha \mid k \in \{0, ..., N-1\}\}$$

$$\circ \{\sigma_k : X \mapsto X^k \mid k \in (\mathbb{Z}/2N\mathbb{Z})^*\}$$

Computing linear transforms

Proposition

The \mathbb{F}_p -vector space

$$\mathcal{L} := \{f : \mathcal{P} \to \mathcal{P} \mid f \ \mathbb{F}_p\text{-linear}\}$$

is spanned by

$$\{m_k : \alpha \mapsto X^k \alpha \mid k \in \{0, ..., N-1\}\}$$

$$\circ \{\sigma_k : X \mapsto X^k \mid k \in (\mathbb{Z}/2N\mathbb{Z})^*\}$$

 \Rightarrow Every \mathbb{F}_p -linear map can be written as

$$\alpha \mapsto \sum_{k \in (\mathbb{Z}/2N\mathbb{Z})^*} a_k \sigma_k(\alpha)$$

where $a_k \in \mathcal{P}$

More intuitive structure - or how to find the a_k

- ▶ $k \in \langle p \rangle \subseteq (\mathbb{Z}/2N\mathbb{Z})^* \Rightarrow \sigma_k$ is Frobenius within each slot
- ▶ Otherwise $\Rightarrow \sigma_k$ permutes slots (up to inter-slot auto.)

We have

$$(\mathbb{Z}/2\mathbb{N}\mathbb{Z})^*/\langle p\rangle = \langle g_1\rangle \times ... \times \langle g_r\rangle$$

 $\Rightarrow (\mathbb{Z}/2N\mathbb{Z})^*/\langle p \rangle$ has structure of an r-dimensional hypercube

We fix a "slot 0" (arbitrarily) \Rightarrow Slots inherit hypercube structure

$$S: \mathcal{P} \stackrel{\sim}{\longrightarrow} \bigoplus_{I \in (\mathbb{Z}/2N\mathbb{Z})^*/\langle p \rangle} \mathbb{F}_{p^d}$$

More intuitive structure - or how to find the a_k (cont'd)

Example: r = 3, $(\operatorname{ord}(g_1), \operatorname{ord}(g_2), \operatorname{ord}(g_3)) = (7, 4, 2)$

Good and bad dimensions

Problem: $k \notin \langle p \rangle \Rightarrow \sigma_k$ permutes slots (up to inter-slot auto.)

Slots have no "natural" generator $/\mathbb{F}_{p^d}$ unique only up to iso. what do we mean by inter-slot automorphism?

→ can be "defined away"

 $\sigma_{g_1^5} \circ \sigma_{g_1^2} \text{ stays in slot}$ $\sigma_{g_1^5} \circ \sigma_{g_1^5} \text{ might not be identity}$

Good and bad dimensions (cont'd)

We require that $\sigma_{g_i^{d_i}}$ is identity $(d_i \text{ hypercube length})$

Proposition

$$\sigma_{g_i^{d_i}} = \mathrm{id} \quad \Leftrightarrow \quad \mathrm{ord}_{(\mathbb{Z}/2N\mathbb{Z})^*}(g_i) = d_i.$$
 (note that $d_i = \mathrm{ord}_{(\mathbb{Z}/2N\mathbb{Z})^*/\langle p \rangle}$)

- ▶ If this is the case, we call the *i*-th dimension *good*
- Otherwise, we call it bad

Remark

If i-th dim is bad, we can still compute the rotation as

$$\alpha \mapsto \sigma_{\mathbf{g}_1^{\delta}}(\alpha \cdot \mathbf{e}) + \sigma_{\mathbf{g}_1^{D-\delta}}(\alpha \cdot (1-\mathbf{e}))$$

where

$$D = \operatorname{ord}_{(\mathbb{Z}/2N\mathbb{Z})^*}(g_1)$$

and e is 1 in the first $d_i - \delta$ slots, and 0 in the others

Good and bad dimensions (cont'd)

- Some dimensions are good, some bad
- Rotation in good dimension: 1 Galois op
- Rotation in bad dimension: 2 Galois ops

Proposition

We can choose the g_i such that only one dimension is bad

So far: Rotations along a hypercube axis are easier to understand than the action of the group $(\mathbb{Z}/2N\mathbb{Z})^*$ via σ .

Back to the evaluation map

We want to write the evaluation map as a linear transform

We explain the map

$$\mathrm{Eval}: \mathcal{P} \cong \bigoplus \mathbb{F}_{\rho^d} \to \mathcal{P}, \quad (a_i) \mapsto \sum a_i X^i$$

Remark

There are "intermediate representations" in the decomposition

$$\mathcal{P} \cong \bigoplus^{d_1} \bigoplus^{d_2} ... \bigoplus^{d_r} \mathbb{F}_{p^d}$$

I et

$$\mathcal{P}_{i} = \bigoplus^{d_{i}} \dots \bigoplus^{d_{r}} \mathbb{F}_{p^{d}} \quad \Rightarrow \quad \mathcal{P} = \bigoplus^{d_{1}} \dots \bigoplus^{d_{i-1}} \mathcal{P}_{i}$$

Back to the evaluation map (cont'd)

$$\text{Eval}: \mathcal{P} \cong \bigoplus \mathbb{F}_{p^d} \to \mathcal{P}, \quad (a_i) \mapsto \sum a_i X^i$$

Do Eval along one hypercube dim:

$$\begin{aligned} \operatorname{Eval}_{i} : \bigoplus^{d_{1}} \dots \bigoplus^{d_{i}} \mathcal{P}_{i+1} & \rightarrow & \bigoplus^{d_{1}} \dots \bigoplus^{d_{i-1}} \mathcal{P}_{i} \\ \left((a_{j_{1}, \dots, j_{i}})_{j_{i}} \right)_{j_{1}, \dots, j_{i-1}} & \mapsto & \left(\sum_{j_{i}} a_{j_{1}, \dots, j_{i}} \zeta_{i}^{j_{i}} \right)_{j_{1}, \dots, j_{i-1}} \end{aligned}$$

where
$$\zeta_i = X^{d_{i+2}...d_r}$$

$$\Rightarrow$$
 Eval = Eval₁ $\circ ... \circ$ Eval_r

Back to the evaluation map (cont'd)

Why all of this?

We can just solve a (huge) linear system to find $a_k \in \mathcal{P}$ such that

$$\alpha \mapsto \sum_{k \in (\mathbb{Z}/2N\mathbb{Z})^*} a_k \sigma_k(\alpha)$$

is the transform.

Two Reasons

- The system is not easy to solve (irrelevant in practice)
- Performance!
 - ▶ In some cases, we can compute $Eval_i$ with 1 resp. 2 autos.!
 - ▶ Runtime: $2 \log_2(n)$ autos. instead of n (or $2\sqrt{n}$)!
 - Which cases? dimension is good!

Good dimensions and the factorization of Eval

Problem: $k \notin \langle p \rangle \Rightarrow \sigma_k$ permutes slots (up to inter-slot auto.)

Slots have no "natural" generator / \mathbb{F}_{p^d} unique only up to iso. - what do we mean by inter-slot automorphism?

Well, I think \overline{X} is a "natural" generator!

- ▶ Good dimension: Only one auto. for rotation \Rightarrow instead of \overline{X} , we use \overline{X}^k such that k cancels out after all rotations
- ▶ Bad dimension: Two autos. so it is impossible that k cancels out w.r.t. two different rotations

Good dimensions and the factorization of Eval (cont'd)

- ▶ Good dimension: Only one auto. for rotation \Rightarrow instead of \overline{X} , we use \overline{X}^k such that k cancels out after all rotations
- ▶ Bad dimension: Two autos. so it is impossible that *k* cancels out w.r.t. two different rotations

$$\begin{aligned} \operatorname{Eval}_i' : \bigoplus_{j_1} \dots \bigoplus_{j_i} \mathcal{P}_{i+1} & \to & \bigoplus_{j_1} \dots \bigoplus_{j_{i-1}} \mathcal{P}_i \\ & (a_{j_1, \dots, j_i})_{j_1, \dots, j_i} & \mapsto & \left(\sum_{j_i = 0}^{d_i - 1} a_{j_1, \dots, j_i} (\overline{X}^{g_i^{d_i - j_i}}) \ \overline{X}^{\left(\Delta_{i} j_i} \underbrace{g_1^{j_i} \dots g_i^{j_i}}\right)}_{j_1, \dots, j_{i-1}} \right) \\ & (a_{j_1, \dots, j_i})_{j_1, \dots, j_i} & \mapsto & \left(\sum_{j_i = 0}^{d_i - 1} a_{j_1, \dots, j_i} (\overline{X}^{g_i^{d_i - j_i}}) \ \overline{X}^{\left(\Delta_{i} j_i} \underbrace{g_1^{j_i} \dots g_i^{j_i}}\right)}_{j_1, \dots, j_{i-1}} \right) \end{aligned}$$

where $\Delta_i = d_r...d_{i+1}$.

Summary

What we did talk about

- ▶ Galois group $(\mathbb{Z}/2N\mathbb{Z})^*$ acts on $\mathbb{F}_p[X]/(X^N+1)$
- "Hypercube structure" as simplification of that action
- Describing the evaluation map in that framework

What we only sketched

- ightharpoonup Implementation of Eval_i'
- ightharpoonup Why Eval_i' is impossible in bad dimensions