02-K Means Clustering Project

May 18, 2023

1 K Means Clustering Project

For this project we will attempt to use KMeans Clustering to cluster Universities into to two groups, Private and Public.

It is very important to note, we actually have the labels for this data set, but we will NOT use them for the KMeans clustering algorithm, since that is an unsupervised learning algorithm.

When using the Kmeans algorithm under normal circumstances, it is because you don't have labels. In this case we will use the labels to try to get an idea of how well the algorithm performed, but you won't usually do this for Kmeans, so the classification report and confusion matrix at the end of this project, don't truly make sense in a real world setting!.

1.1 The Data

We will use a data frame with 777 observations on the following 18 variables. * Private A factor with levels No and Yes indicating private or public university * Apps Number of applications received * Accept Number of applications accepted * Enroll Number of new students enrolled * Top10perc Pct. new students from top 10% of H.S. class * Top25perc Pct. new students from top 25% of H.S. class * F.Undergrad Number of fulltime undergraduates * P.Undergrad Number of parttime undergraduates * Outstate Out-of-state tuition * Room.Board Room and board costs * Books Estimated book costs * Personal Estimated personal spending * PhD Pct. of faculty with Ph.D.'s * Terminal Pct. of faculty with terminal degree * S.F.Ratio Student/faculty ratio * perc.alumni Pct. alumni who donate * Expend Instructional expenditure per student * Grad.Rate Graduation rate

1.2 Import Libraries

** Import the libraries you usually use for data analysis.**

[103]:

1.3 Get the Data

** Read in the College_Data file using read_csv. Figure out how to set the first column as the index.**

[104]:

Check the head of the data

[105]:

[105]:		Private	Арр	s Acce	pt I	Enroll	Тор	10perc	\	
	Abilene Christian University	Yes	166		32	721	•	23		
	Adelphi University	Yes	218	6 19	24	512		16		
	Adrian College	Yes	142	8 10	97	336		22		
	Agnes Scott College	Yes	41	.7 3	49	137		60		
	Alaska Pacific University	Yes	19	3 1	46	55		16		
		Top25pe	rc	F.Under	grad	P.Uno	dergr	ad Ou [.]	tstate	\
	Abilene Christian University		52		2885		_	37	7440	
	Adelphi University		29		2683		1227		12280	
	Adrian College		50		1036			99	11250	
	Agnes Scott College		89		510			63	12960	
	Alaska Pacific University		44		249		8	69	7560	
		Room.Bo	ard	Books	Pers	sonal	PhD	Termi	nal \	
	Abilene Christian University	3	300	450		2200	70		78	
	Adelphi University	6	450	750		1500	29		30	
	Adrian College	3	750	400		1165	53		66	
	Agnes Scott College	5	450	450		875	92		97	
	Alaska Pacific University	4	120	800		1500	76		72	
		S.F.Rat	io	perc.al	umni	Expe	nd G	rad.Ra	te	
	Abilene Christian University	18	1.1		12	704	41	(60	
	Adelphi University	12	2.2		16	1052	27	!	56	
	Adrian College	12	.9		30	873	35	!	54	
	Agnes Scott College	7	.7		37	190	16	!	59	
	Alaska Pacific University	11	.9		2	1092	22		15	

^{**} Check the info() and describe() methods on the data.**

[106]:

<class 'pandas.core.frame.DataFrame'>

Index: 777 entries, Abilene Christian University to York College of Pennsylvania Data columns (total 18 columns):

 Private
 777 non-null object

 Apps
 777 non-null int64

 Accept
 777 non-null int64

 Enroll
 777 non-null int64

 Top10perc
 777 non-null int64

 Top25perc
 777 non-null int64

 F.Undergrad
 777 non-null int64

P.Undergrad 777 non-null int64 Outstate777 non-null int64 Room.Board 777 non-null int64 Books 777 non-null int64 Personal 777 non-null int64 PhD 777 non-null int64 Terminal 777 non-null int64 S.F.Ratio 777 non-null float64 perc.alumni 777 non-null int64 777 non-null int64 Expend 777 non-null int64 Grad.Rate

dtypes: float64(1), int64(16), object(1)

memory usage: 115.3+ KB

[107]:

[107]:		Apps	Accept	Enroll	Top10perc	Top25perc \	
	count	777.000000	777.000000	777.000000	777.000000	777.000000	
	mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	
	std	3870.201484	2451.113971	929.176190	17.640364	19.804778	
	min	81.000000	72.000000	35.000000	1.000000	9.000000	
	25%	776.000000	604.000000	242.000000	15.000000	41.000000	
	50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	
	75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	
	max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	
		F.Undergrad	P.Undergrad	Outstate	Room.Board	Books	\
	count	777.000000	777.000000	777.000000	777.000000	777.000000	
	mean	3699.907336	855.298584	10440.669241	4357.526384	549.380952	
	std	4850.420531	1522.431887	4023.016484	1096.696416	165.105360	
	min	139.000000	1.000000	2340.000000	1780.000000	96.000000	
	25%	992.000000	95.000000	7320.000000	3597.000000	470.000000	
	50%	1707.000000	353.000000	9990.000000	4200.000000	500.000000	
	75%	4005.000000	967.000000	12925.000000	5050.000000	600.000000	
	max	31643.000000	21836.000000	21700.000000	8124.000000	2340.000000	
		Personal	PhD	Terminal S.	F.Ratio perc	.alumni \	
	count	777.000000	777.000000 7	77.000000 777	.000000 777	.000000	
	mean	1340.642214	72.660232	79.702703 14	.089704 22	.743887	
	std	677.071454	16.328155	14.722359 3	.958349 12	.391801	
	min	250.000000	8.000000	24.000000 2	.500000 0	.000000	
	25%	850.000000	62.000000	71.000000 11	.500000 13	.000000	
	50%	1200.000000	75.000000	32.000000 13	.600000 21	.000000	
	75%	1700.000000	85.000000	92.000000 16	.500000 31	.000000	
	max	6800.000000	103.000000 10	00.000000 39	.800000 64	.000000	

Expend Grad.Rate

count	777.000000	777.00000
mean	9660.171171	65.46332
std	5221.768440	17.17771
min	3186.000000	10.00000
25%	6751.000000	53.00000
50%	8377.000000	65.00000
75%	10830.000000	78.00000
max	56233.000000	118.00000

1.4 EDA

It's time to create some data visualizations!

[111]:

[111]: <seaborn.axisgrid.FacetGrid at 0x11db9da90>

^{**} Create a scatter plot of Grad.Rate versus Room.Board where the points are colored by the Private column. **

Create a scatterplot of F.Undergrad versus Outstate where the points are colored by the Private column.

[112]:

[112]: <seaborn.axisgrid.FacetGrid at 0x144b90b38>

^{**} Create a stacked histogram showing Out of State Tuition based on the Private column. Try doing this using sns.FacetGrid. If that is too tricky, see if you can do it just by using two instances of pandas.plot(kind='hist'). **

[109]:

Create a similar histogram for the Grad.Rate column.

** Notice how there seems to be a private school with a graduation rate of higher than 100%. What is the name of that school?**

```
F.Undergrad P.Undergrad
                                                      Outstate
                                                                Room.Board
                                                                               600
      Cazenovia College
                                  1010
                                                  12
                                                          9384
                                                                       4840
                          Personal
                                          Terminal
                                                    S.F.Ratio
                                                                perc.alumni
                                                                              Expend \
                                     PhD
                                                          14.3
                                                                                7697
      Cazenovia College
                               500
                                      22
                                                47
                          Grad.Rate
      Cazenovia College
                                 118
     ** Set that school's graduation rate to 100 so it makes sense. You may get a warning not an error)
     when doing this operation, so use dataframe operations or just re-do the histogram visualization
     to make sure it actually went through.**
[93]:
     /Users/marci/anaconda/lib/python3.5/site-packages/ipykernel/__main__.py:1:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: http://pandas.pydata.org/pandas-
     docs/stable/indexing.html#indexing-view-versus-copy
       if __name__ == '__main__':
[94]:
[94]: Empty DataFrame
      Columns: [Private, Apps, Accept, Enroll, Top10perc, Top25perc, F.Undergrad,
      P. Undergrad, Outstate, Room. Board, Books, Personal, PhD, Terminal, S.F. Ratio,
      perc.alumni, Expend, Grad.Rate]
      Index: []
[95]:
```


1.5 K Means Cluster Creation

Now it is time to create the Cluster labels!

** Import KMeans from SciKit Learn.**

```
[114]:
```

** Create an instance of a K Means model with 2 clusters.**

```
[115]:
```

Fit the model to all the data except for the Private label.

```
[116]:
```

** What are the cluster center vectors?**

```
[117]:
```

```
[117]: array([[
                1.81323468e+03,
                                    1.28716592e+03,
                                                       4.91044843e+02,
                 2.53094170e+01,
                                    5.34708520e+01,
                                                       2.18854858e+03,
                 5.95458894e+02,
                                    1.03957085e+04,
                                                       4.31136472e+03,
                 5.41982063e+02,
                                    1.28033632e+03,
                                                       7.04424514e+01,
                 7.78251121e+01,
                                    1.40997010e+01,
                                                       2.31748879e+01,
                 8.93204634e+03,
                                    6.51195815e+01],
              [ 1.03631389e+04,
                                    6.55089815e+03,
                                                       2.56972222e+03,
```

```
4.14907407e+01, 7.02037037e+01, 1.30619352e+04, 2.46486111e+03, 1.07191759e+04, 4.64347222e+03, 5.95212963e+02, 1.71420370e+03, 8.63981481e+01, 9.13333333e+01, 1.40277778e+01, 2.00740741e+01, 1.41705000e+04, 6.75925926e+01]])
```

1.6 Evaluation

There is no perfect way to evaluate clustering if you don't have the labels, however since this is just an exercise, we do have the labels, so we take advantage of this to evaluate our clusters, keep in mind, you usually won't have this luxury in the real world.

** Create a new column for df called 'Cluster', which is a 1 for a Private school, and a 0 for a public school.**

[118]:										
[119]:										
[122]:										
[122]:	Abilene Christian University Adelphi University Adrian College Agnes Scott College Alaska Pacific University	Private Yes Yes Yes Yes Yes	Apps 1660 2186 1428 417 193	12 5 19 3 10 7 3	32 24	Enroll 721 512 336 137 55	•	10perc 23 16 22 60 16	\	
	Abilene Christian University Adelphi University Adrian College Agnes Scott College Alaska Pacific University		rc F 52 29 50 89 44	F.Undergrad P.U 2885 2683 1036 510 249			5 12	ergrad Outsta 537 74 1227 122 99 112 63 129 869 75		\
	Abilene Christian University Adelphi University Adrian College Agnes Scott College Alaska Pacific University	6 3 5	ard 300 450 750 450	Books 450 750 400 450 800	Per	2200 1500 1165 875 1500	PhD 70 29 53 92 76	3 6 9	1 \ 8 .0 .6 .7	
	Abilene Christian University Adelphi University Adrian College Agnes Scott College Alaska Pacific University	12 12	.1 .2 .9	perc.al	umni 12 16 30 37 2	704 1055 873 1905	41 27 35 16	rad.Rate 60 56 54 59		

	Cluster
Abilene Christian University	1
Adelphi University	1
Adrian College	1
Agnes Scott College	1
Alaska Pacific University	1

^{**} Create a confusion matrix and classification report to see how well the Kmeans clustering worked without being given any labels.**

[123]:

[531	_				
		precision	recall	f1-score	support
	0	0.21	0.65	0.31	212
	1	0.31	0.06	0.10	565
avg /	total	0.29	0.22	0.16	777

Not so bad considering the algorithm is purely using the features to cluster the universities into 2 distinct groups! Hopefully you can begin to see how K Means is useful for clustering un-labeled data!

[]: