# t-Test



### t-test

Used to test whether there is significant difference between the means of two groups:

Male v female

Full-time v part-time

# **Types**

Independent-samples

Compare mean scores of 2 different groups

Paired-samples

Compare mean of the same group on 2 different occasions

- Ex: weight before and after a given diet.
- More than that, use ANOVA

# Independent

#### It needs:

One categorical variable / independent variable One continuous variable / dependant variable

#### What the test will do:

It will tell you whether there is a statistically significant difference in the mean scores for the 2 groups.

#### Assumptions needed:

- -normality
- -homoscedasticity
- -independence

### **Paired**

- One group but 2 different occasion / conditions
  E.g. pre/post test
- Requirements: the same as independent
  One categorical independent
  One continuous, dependent variable
- It will tell you whether there is a statistically significant in the mean scores

#### **T-test: SPSS Output**

#### **Independent Samples Test**

|         | Levene's<br>Equality of        |       | I    | t-test for Equality of Means |         |                 |                 |            |                                                 |         |
|---------|--------------------------------|-------|------|------------------------------|---------|-----------------|-----------------|------------|-------------------------------------------------|---------|
|         |                                |       |      |                              |         |                 | Mean Std. Error |            | 95% Confidence<br>Interval of the<br>Difference |         |
|         |                                | F     | Sig. | t                            | df      | Sig. (2-tailed) | Difference      | Difference | Lower                                           | Upper   |
| affcomm | Equal variances assumed        | 1.048 | .306 | 2.116                        | 670     | .035            | .117040         | .055308    | .008442                                         | .225638 |
|         | Equal variances not assumed    |       |      | 2.123                        | 666.213 | .034            | .117040         | .055135    | .008780                                         | .225300 |
| concomm | Equal variances assumed        | 5.353 | .021 | .665                         | 670     | .506            | .036788         | .055335    | 071863                                          | .145440 |
|         | Equal variances not assumed    |       |      | .670                         | 669.997 | .503            | .036788         | .054899    | 071006                                          | .144582 |
| norcomm | Equal variances assumed        | .656  | .418 | 679                          | 670     | .497            | 034500          | .050813    | 134272                                          | .065271 |
|         | Equal variances<br>not assumed |       |      | 680                          | 668.726 | .497            | 034500          | .050723    | 134097                                          | .065096 |

(1) Sig. is 0.306 (> 0.05) so there is no significant difference in the variances of the two groups (2) so the row "**Equal variances assumed**" will be used to read the sig. of t-test (3) Sig. level for t-test is 0.035 (<0.05)

Therefore there is a significant difference in the levels of affective commitment (affcomm) between male and female employees.

### T - value

Used to work out if sample differences are significant.



- The higher the t-statistic value, the lower the probability.
- Which probability? The probability that the difference is random.
- i.e more probable that the difference observed is due to a systematic influence (i.e. experimental intervention).
- The actual distribution depends on the degrees of freedom
- \*Generally, any t-value greater than +2 or less than 2 is acceptable

# **T-test: Interpretation**

For the variable "affcomm"

Levene's Test for Equality of Variances shows that F (1.048) is not significant (0.306)\* therefore the "Equal variances assumed" row will be used for the t-test.

\* This score (sig.) has to be 0.05 or less to be considered significant.

# **T-test: Interpretation**

- Under the "t-test for Equality of Means" look at "Sig. (2-tailed)" for "Equal variances assumed".
- The score is 0.035 (which is less than 0.05), therefore there is a significant difference between the means of the two groups.

### Reporting t - test in APA style

- Report degrees of freedom in parentheses.
- Report the t statistic (rounded to two decimal places) and the significance level.

There was a significant effect for gender, t(54) = 5.43, p < .05, with men receiving higher scores than women.

### **Exercises**



- Is there difference in the number of men and women trying to study at UCBa?
- Using the dataset Guapore 2, test if there is difference between egg size of turtles from Guapore and turtles from Sao Paulo.