Literate programming with Python, R, Julia and Stata**

Miguel Portela

Universidade do Minho

1 julho, 2021

Abstract

In this presentation I will discuss how we can enhance the workflow by using literate programming to combine key features of different statistical packages, namely Stata, R, Julia and Python, on the one hand, and Latex as the typesetting system on the other. The goal is to demonstrate and share a template aiming at producing a highly automated report, or research paper, within the same framework. The tasks will run from exploratory data analysis to regression analysis, where the output, from summary to regression tables and figures, is seamlessly included in the final document. Furthermore, important elements of Latex editing, such as automatic referencing, will be highlighted. We aim at freeing the researcher form repetitive tasks to focus on critical and creative writing. Efficiency and replicability will be at the core of the discussion. RStudio will be used to edit and compile R Markdown. The focus will be on producing PDF outputs. In the presentation I will make use of packages such as bookdown, knitr, stargazer, dlookr, ggplot2, plotly, Statamarkdown, reticulate, JuliaCall, pandas, numpy, matplotlib or FixedEffectModels.

^{**}Corresponding address: miguel.portela@eeg.uminho.pt. The current template adapts part of the Rmd code by Paul C. Bauer, Mannheim Centre for European Social Research.

1 Exploratory data analysis

I start by exploring the data **NLSWORK** (National Longitudinal Survey. Young Women 14-26 years of age in 1968).

2 A tibble: 6 x 21

idcode year birth_yr age race msp nev_mar grade collgrad not_smsa <dbl+lbl> 1 1 70 51 18 2 [black] 0 1 12 0 0 2 1 71 51 19 2 [black] 1 0 12 0 0 3 1 72 51 20 2 [black] 1 0 12 0 0 4 1 73 51 21 2 [black] 1 0 12 0 0 5 1 75 51 23 2 [black] 1 0 12 0 0 6 1 77 51 25 2 [black] 0 0 12 0 0 # ... with 11 more variables: c_city , south , ind_code , # occ_code , union , wks_ue , ttl_exp , tenure , # hours , wks_work , ln_wage

Table 1: Summary statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
idcode	28,534	2,601.284	1,487.359	1	1,327	3,881	5,159
year	28,534	77.959	6.384	68	72	83	88
birth_yr	28,534	48.085	3.013	41	46	51	54
age	28,510	29.045	6.701	14.000	23.000	34.000	46.000
race	28,534	1.303	0.482	1	1	2	3
msp	28,518	0.603	0.489	0.000	0.000	1.000	1.000
nev_mar	28,518	0.230	0.421	0.000	0.000	0.000	1.000
grade	28,532	12.533	2.324	0.000	12.000	14.000	18.000
collgrad	28,534	0.168	0.374	0	0	0	1
not_smsa	28,526	0.282	0.450	0.000	0.000	1.000	1.000
c_city	28,526	0.357	0.479	0.000	0.000	1.000	1.000
south	28,526	0.410	0.492	0.000	0.000	1.000	1.000
ind_code	28,193	7.693	2.994	1.000	5.000	11.000	12.000
occ_code	28,413	4.778	3.065	1.000	3.000	6.000	13.000
union	19,238	0.234	0.424	0.000	0.000	0.000	1.000
wks_ue	22,830	2.548	7.294	0.000	0.000	0.000	76.000
ttl_exp	28,534	6.215	4.652	0.000	2.462	9.128	28.885
tenure	28,101	3.124	3.751	0.000	0.500	4.167	25.917
hours	28,467	36.560	9.870	1.000	35.000	40.000	168.000
wks_work	27,831	53.989	29.032	0.000	36.000	72.000	104.000
ln_wage	28,534	1.675	0.478	0.000	1.361	1.964	5.264

^{[1] &}quot;idcode" "year" "birth_yr" "age" "race" "msp"

^{[7] &}quot;nev_mar" "grade" "collgrad" "not_smsa" "c_city" "south"

- [13] "ind_code" "occ_code" "union" "wks_ue" "ttl_exp" "tenure"
- [19] "hours" "wks_work" "ln_wage"

num [1:28534] 1.45 1.03 1.59 1.78 1.78 ...
- attr(*, "label")= chr "ln(wage/GNP deflator)"
- attr(*, "format.stata")= chr "%9.0g"

density.default(x = In_wage)

The average age in our data is 29.

3 Tables

R Markdown PDF is now able to produce good tables with our output. For stargazer the label is contained in the function, while for kable it's contained in the chunk name.

3.1 stargazer(): Summary and regression tables

Table 1 shows data's summary statistics. stargazer() is and excellent solution to export outputs.

¹You can reference the table as 2.

Table 2: Summary table with stargazer

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

Table 3 reports regression outputs. Name the models as you can refer to their names in the text (M1, M2, M3).

Table 3: Regression table with stargazer

	De	pendent vario	able:	
	sp	eed	dist	
	M1	M2	M3	
dist	0.166***	0.166***		
	(0.017)	(0.017)		
speed			3.932***	
			(0.416)	
Constant	8.284***	8.284***	-17.579**	
	(0.874)	(0.874)	(6.758)	
Observations	50	50	50	
\mathbb{R}^2	0.651	0.651	0.651	
Adjusted R ²	0.644	0.644	0.644	
Residual Std. Error $(df = 48)$	3.156	3.156	15.380	
F Statistic ($df = 1; 48$)	89.567***	89.567***	89.567***	

Figures

Graphs with R 4.1

You can insert figures like this. One would like to produce and insert them on the fly in the .rmd file. Figure ?? is such an example.

plot(cars\$speed, cars\$dist)

Figure 1: Scatterplot of Speed and Distance (#fig:Figures 1, fig-1)

However, in some cases it does not work.

4.2 Example: ggplot2 graphs

See the ggplot2 output reported in Figure ??.

Figure 2: Miles per gallon according to the weight

4.3 Another example using Plotly

With Plotly we can produce interactive graphs which play well, for example, once can embeded in html webpages (drop by here for an example). One can insert this type of graphs in R Markdown PDF using Orca (it generates static images from Plotly graphs). Go here to check how to install it. See Figure 3 for an example.

5 Python

5.1 API data download using Python

```
import sys
print(sys.version)
```

```
3.9.4 (tags/v3.9.4:1f2e308, Apr 6 2021, 13:40:21) [MSC v.1928 64 bit (AMD64)]
```


Figure 3: Example: export a Plotly figure using 'orca'

```
import json
##from json.decoder import JSONDecodeError
import requests
import numpy as np
import pandas as pd

## INE: https://www.ine.pt/ine/json_indicador/pindica.jsp?
## op=2&varcd=0008074&Dim1=S7A2015&Dim2=200&Dim3=3&lang=PT

# api-endpoint

URL = "https://www.ine.pt/ine/json_indicador/pindica.jsp"

# define parameters

OP="2"
```

```
VARCD="0008074"

DIM1="S7A2015"

DIM2="200"

DIM3="3"

LANG="PT"

# defining a params dict for the parameters to be sent to the API

PARAMS = {'op':OP,'varcd':VARCD,'Dim1':DIM1,'Dim2':DIM2,'Dim3':DIM3,'lang':LANG}

# sending get request and saving the response as response object

r = requests.get(url = URL,params=PARAMS)

# extracting data in json format
data = r.json()

valor = data[0]['Dados']['2015'][0]['valor']

valor
```

'1.8'

Index: []

The criminal rate is 1.8%o.

5.2 Import data from PDF files

```
cd C:/Users/mangelo.EEG/Documents/GitHub/prjs/pdfs
  find . -name '*.pdf' -print0 | xargs -0 -n1 pdfsandwich -gray
  find . -name '*ocr.pdf' -print0 | xargs -0 -n1 pdftotext

['ORNALOFICIAL', 'Tercba-feira, 2 de julho de 2019', '', 'IDY', 'Série', 'Numero 30', ''
FILE: s/IVSerie-030-2019-07-02_ocr

Empty DataFrame
Columns: [linha, output, outra, source]
```

And now we use Stata to explore the data.

```
quiet cd "C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs"
quiet import delimited "C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/PE.csv", encodir
tab source
```

no observations

5.3 Run a Python script to read a PDF using the shell to run the commands wget, pdfsandwich and pdftotext

```
python3 "C:/Users/mangelo.EEG/Documents/GitHub/prjs/chunks/python_chunk.py"
```

python3: can't open file 'C:/Users/mangelo.EEG/Documents/GitHub/prjs/chunks/python_chunks

5.4 Use Stata to list the fiscal numbers (read the data produced with Python)

```
quietly{
cd C:/Users/mangelo.EEG/Documents/GitHub/prjs/chunks

use C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/nipcs, clear
compress
contract nipc
drop _freq
drop if nipc == .
format %12.0f nipc
}

//codebook nipc

tab nipc
```

nipc	Freq.	Percent	Cum.
510649068	1	4.35	4.35

510779174	1	1	4.35	8.70
511056737	1	1	4.35	13.04
511117060		1	4.35	17.39
511124899	1	1	4.35	21.74
511240619	1	1	4.35	26.09
511247478		1	4.35	30.43
513208348		1	4.35	34.78
513587128		1	4.35	39.13
514118890	1	1	4.35	43.48
514525657	1	1	4.35	47.83
514532718	1	1	4.35	52.17
514591889	1	1	4.35	56.52
515002666		1	4.35	60.87
515080985	1	1	4.35	65.22
515092550		1	4.35	69.57
515092649	1	1	4.35	73.91
515464236	1	1	4.35	78.26
515478377	1	1	4.35	82.61
515484920	1	1	4.35	86.96
515517135	1	1	4.35	91.30
515518565		1	4.35	95.65
515522988	I	1	4.35	100.00
Total	+ 	23	100.00	

6 Julia experiments

6.1 Computations

v"1.6.1"

6.2 Grab results in R

 ${\tt Julia\ Object\ of\ type\ FixedEffectModel}.$

Fixed Effect Model

Number of obs:	147715	Degrees of freedom:	67180
R2:	0.978	R2 Adjusted:	0.960
F-Stat:	23.3618	p-value:	0.000

R2 within:				0.001	1	Itera	ations:				250
lnrealwage	 	Estimate		Std.Error	t 	value	Pr(> t)	Lower	95%	Upper	95%
education lnsales	•	0.00155636 0.00622982						0.00038			
========	==:	=========	===	========	===	=====	=======	======	====	======	====

6.3 Insert Julia's results

The estimated return to education is 0.2%. The model has an \mathbb{R}^2 of 0.9782.

6.4 Computation time: run the HDFE with Stata and R and compare to Julia

```
use C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/data_short, clear
timer on 1
   reghdfe lnrealwage education lnsales,absorb(workerid firmid year)
timer off 1
timer list 1
timer clear 1
(MWFE estimator converged in 236 iterations)
HDFE Linear regression
                                             Number of obs = 147,715
Absorbing 3 HDFE groups
                                             F(2, 99667) =
                                                                  28.91
                                             Prob > F
                                                                0.0000
                                             R-squared
                                                          =
                                                                0.9782
                                             Adj R-squared = 0.9677
                                             Within R-sq. =
                                                                0.0006
                                             Root MSE
                                                                 0.0943
 lnrealwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
```

+						
education	.0015563	.0005372	2.90	0.004	.0005034	.0026092
lnsales	.0062299	.0008877	7.02	0.000	.0044899	.0079698
_cons	1.577908	.0148587	106.19	0.000	1.548785	1.60703

Absorbed degrees of freedom:

Absorbed FE	 	9	 - Redundant			+
workerid		44047	0	4404		
firmid		23127	19131	399	96	
year		4	1		3 ?	

^{? =} number of redundant parameters may be higher

```
library(lfe)
data_short <- read_dta("C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/data_short.dta")
system.time(est_hdfe <- felm(data_short$lnrealwage ~ data_short$education + data_short$l
summary(est_hdfe)</pre>
```

6.5 Output Julia's table for HDFE

7 Miguel's tests

7.1 R

Table 5 ... See Section 7.2

Example of an equation

$$\int_0^{2\pi} \sin x \, dx$$

Example of a matrix

	Inrealwage				
	(1)	(2)			
education	0.006***	0.002**			
	(0.000)	(0.001)			
Insales	0.013***	0.006***			
	(0.001)	(0.001)			
workerid	Yes	Yes			
year	Yes	Yes			
firmid		Yes			
Estimator	OLS	OLS			
N	147,715	147,715			
R^2	0.970	0.978			

$$\mathbf{X} = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

or

$$f(k) = \binom{n}{k} p^k \left(1 - p\right)^{n - k} \tag{1}$$

See Equation (1).

$$y_{ijt} = \beta x_{ijt} + \eta_i + \gamma_j + \lambda_t + \varepsilon_{ijt}$$
 (2)

Table 4: Summary table

Statistic	N	Pctl(75)	St. Dev.
idcode	28,534	3,881	1,487.359
year	28,534	83	6.384
birth yr	28,534	51	3.013
age	28,510	34.000	6.701
race	28,534	2	0.482
msp	28,518	1.000	0.489
nev mar	28,518	0.000	0.421
grade	28,532	14.000	2.324
collgrad	28,534	0	0.374
not smsa	28,526	1.000	0.450
c city	28,526	1.000	0.479
south	28,526	1.000	0.492
ind code	28,193	11.000	2.994
occ code	28,413	6.000	3.065
union	19,238	0.000	0.424
wks ue	22,830	0.000	7.294
ttl exp	28,534	9.128	4.652
tenure	28,101	4.167	3.751
hours	28,467	40.000	9.870
wks work	27,831	72.000	29.032
ln_wage	28,534	1.964	0.478

Table 5: Regression table with stargazer

	Dependent variable:					
	M1	price M2	M3			
mpg	-49.512	-52.217	-63.210			
10	(86.156)	(83.740)	(84.218)			
weight	1.747***	2.111***	2.442***			
	(0.641)	(0.619)	(0.688)			
rep78						
Observations	74	69	69			
\mathbb{R}^2	0.293	0.365	0.376			
Adjusted R ²	0.273	0.335	0.337			
Residual Std. Error	2,514.029 (df = 71)	2,374.370 (df = 65)	2,370.832 (df = 64)			
F Statistic	$14.740^{***} (df = 2; 71)$	$12.437^{***} (df = 3; 65)$	$9.654^{***} (df = 4; 64)$			
Note:		*p<0.1	; **p<0.05; ***p<0.01			

Table 6: Summary 24

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
speed	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

7.2 Stata

This a Stata example, Arellano (2003). See also Arellano and Bond (1991) and Blundell and Bond (1998). While ... (check Arellano and Bover 1995).

Variable	Obs	Mean	Std. Dev.	Min	Max
price	74	6165.257	2949.496	3291	15906
Repair Record 1978	Freq.	Percent	Cum.		
1 2 3 4 5	2 8 30 18 11	2.90 11.59 43.48 26.09 15.94	2.90 14.49 57.97 84.06 100.00		
Total	 69	100.00			

(file C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs/density.pdf written in PD
> F format)

Source	SS	df	df MS		of obs	=	234
				F(7, 2	226)	=	46.99
Model	145.879747	7	20.8399639	Prob >	· F	=	0.0000
Residual	100.230749	226	. 443498888	R-squa	ired	=	0.5927
+				Adj R-	squared	=	0.5801
Total	246.110496	233	1.05626822	Root M	ISE	=	.66596
lngdp	Coef.	Std. Err.	t	P> t	[95% Con:	f.	<pre>Interval]</pre>
+							
education	.2136664	.0193553	11.04	0.000	. 1755265		.2518063
lnk	.1978085	.0308039	6.42	0.000	.1371089		.2585082
openk	.0062439	.0011852	5.27	0.000	.0039085		.0085794
I							
year							
1975	0694608	. 1387178	-0.50	0.617	3428064		.2038849
1980	177992	.1401702	-1.27	0.205	4541996		.0982156
1985	2226975	.1400607	-1.59	0.113	4986894		.0532943
1990	34965	. 1425169	-2.45	0.015	6304819		0688182
I							

	_cons	3.38917	.7508785	4.51 0.0	1.90	9552 4	1.868789
_							
_	Variable +	Obs	Mean	Std. Dev.	Min	Max	Σ -
	lngdp	857	9.302996	1.200567	5.983335	12.51058	3

7.3 Grab Stata's output

```
use C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/data_full, clear
    quiet generate lngdp = ln(rgdpwok)
    summarize lngdp
```

Variable	Obs	Mean	Std. Dev.	Min	Max
lngdp	 857	9.302996	1.200567	5.983335	12.51058

The mean ln GDP is 9.3.

 $See \quad https://www.ssc.wisc.edu/\sim hemken/Stataworkshops/stata.html\#stata-and-r-markdown-the-statamarkdown-package$

Figure 4: Wage density

Table 7: Regression analysis

	Simple model	Include capital	Full model
Education	0.3169***	0.212***	0.2***
	(0.0093)	(0.020)	(0.0)
Capital		0.125***	0.2***
		(0.029)	(0.0)
Openness degree			0.0***
			(0.0)
R^2	0.58	0.54	0.59
RMSE	0.78	0.70	0.67
N	857	234	234

* p < 0.1; ** p < 0.05; *** p < 0.01

7.4 Use Stata to export statistics to Excel

We now export a set of statistics to an Excel file.

version 16.1

c:\ado\plus/x/xtabond2.ado

Checksum for c:/ado/plus/x/xtabond2.ado = 3720163387, size = 40472

C:\Users\mangelo.EEG\Documents\GitHub\prjs\logs

Variable	Obs Unique		Unique Mean		Max	Label	
						~ .	
country	839	106	•	•	•	Country name	
year	839	9	1980.906	1960	2000	Year of observation	
education	839	574	4.794076	.04	12.25	Education	
lngdp	839	838	9.308131	5.983335	12.51058	Log Real GDP per Worker	
open	839	2	.4982122	0	1	1 = high degree of open	
gdp	839	838	20100.66	396.7612	271192.2	GDP level	

Note: file will be replaced when the first putexcel command is issued

```
`"a"' `"b"' `"c"' `"d"' `"e"' `"f"' `"g"' `"h"' `"i"' `"j"' `"k"' `"l"' `"m"' `
> "n"' `"p"' `"r"' `"s"' `"t"' `"u"' `"v"' `"z"'
                             quietly {
  8.
  9.
                                      collapse (mean) lngdp education,by(country
> )
 10.
                                              putexcel set descriptives.xlsx, sh
> eet("FIRST LETTER `vv'") modify
 11.
                                                      putexcel D3 = matrix(t),nf
 19.
> ormat("0.00")
 20.
                                     }
 21.
                             }
 22.
Country's first letter:
    Number of countries:
Country's first letter:
    Number of countries:
Country's first letter:
    Number of countries:
```

Country's first letter: d

Number of countries: .

Country's first letter: e

Number of countries: .

Country's first letter: f

Number of countries:

Country's first letter: g

Number of countries: .

Country's first letter: h

Number of countries: .

Country's first letter:

Number of countries: .

Number of countries: .

Country's first letter: k

Number of countries: .

Country's first letter: 1

Number of countries: .

Country's first letter:

Country's first letter: n

Number of countries:

Number of countries: .

Country's first letter: p

Number of countries: .

Country's first letter:

Number of countries: .

Country's first letter: s

Number of countries: .

Country's first letter: t

Number of countries: .

Country's first letter: u

Number of countries: .

Country's first letter: v

Number of countries: .

insufficient observations
r(2001);

end of do-file
r(2001);

See Figure 5.

Figure 5: Scatterplot test MP

8 Final remarks

Check the replication package for Bonhomme, Lamadon and Manresa (2019): https://github.com/tlamadon/blm-replicate

References

Arellano, Manuel. 2003. Panel Data Econometrics. Oxford University Press.

Arellano, Manuel and Stephen Bond. 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations." *The Review of Economic Studies* 58(2):277–97.

Arellano, Manuel and Olympia Bover. 1995. "Another Look at the Instrumental Variable Estimation of Error-Components Models." *Journal of Econometrics* 68(1):29–51.

Blundell, Richard and Stephen Bond. 1998. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models." *Journal of Econometrics* 87(1):115–43.

Appendix: Chunk options

8.1 Software versioning

8.1.1 R

```
cat(paste("#", capture.output(sessionInfo()), "\n", collapse =""))
# R version 4.1.0 (2021-05-18)
# Platform: x86_64-w64-mingw32/x64 (64-bit)
# Running under: Windows 10 x64 (build 18363)
#
# Matrix products: default
#
# locale:
# [1] LC_COLLATE=Portuguese_Portugal.1252 LC_CTYPE=C
# [3] LC MONETARY=Portuguese Portugal.1252 LC NUMERIC=C
 [5] LC TIME=Portuguese Portugal.1252
# attached base packages:
# [1] stats
                graphics grDevices utils
                                              datasets methods
                                                                   base
#
# other attached packages:
  [1] plotly 4.9.4.1
                           naniar_0.6.1
                                               visdat_0.5.3
  [4] dlookr_0.4.5
                           dplyr_1.0.6
                                               ggplot2_3.3.3
  [7] haven_2.4.1
                           ExPanDaR_0.5.3
                                               JuliaCall_0.17.4
# [10] Statamarkdown 0.6.1 stargazer 5.2.2
                                               reticulate 1.20
```

```
#
# loaded via a namespace (and not attached):
    [1] colorspace 2.0-1
                               ellipsis 0.3.2
                                                      class 7.3-19
    [4] rio 0.5.26
                                                      base64enc 0.1-3
                               htmlTable 2.2.1
                                                      farver 2.1.0
    [7] rstudioapi 0.13
                               proxy_0.4-25
   [10] DT 0.18
                               mvtnorm 1.1-1
                                                      fansi 0.4.2
   [13] xml2 1.3.2
                               splines_4.1.0
                                                      extrafont 0.17
   [16] libcoin_1.0-8
                                                      Formula 1.2-4
                               knitr_1.33
   [19] jsonlite_1.7.2
                               Rttf2pt1_1.3.8
                                                      cluster_2.1.2
   [22] png_0.1-7
                                                      readr 1.4.0
                               shiny_1.6.0
   [25] compiler 4.1.0
                               httr 1.4.2
                                                      tictoc 1.0.1
   [28] backports 1.2.1
                               lazyeval 0.2.2
                                                      assertthat 0.2.1
   [31] Matrix 1.3-3
                                                      cli 2.5.0
                               fastmap 1.1.0
   [34] later 1.2.0
                               hrbrthemes_0.8.0
                                                      htmltools 0.5.1.1
   [37] tools 4.1.0
                               partykit_1.2-13
                                                      gtable_0.3.0
   [40] glue 1.4.2
                               Rcpp 1.0.6
                                                      carData 3.0-4
                                                      svglite_2.0.0
   [43] cellranger_1.1.0
                               vctrs_0.3.8
                               crosstalk_1.1.1
   [46] extrafontdb 1.0
                                                      inum 1.0-4
   [49] xfun_0.23
                               stringr_1.4.0
                                                      openxlsx_4.2.3
   [52] rvest 1.0.0
                               mime_0.11
                                                      lifecycle_1.0.0
   [55] shinycssloaders_1.0.0 RcmdrMisc_2.7-1
                                                      MASS_7.3-54
   [58] zoo 1.8-9
                               scales 1.1.1
                                                      hms 1.1.0
   [61] promises 1.2.0.1
                               sandwich 3.0-1
                                                      RColorBrewer 1.1-2
   [64] yaml 2.2.1
                               curl 4.3.1
                                                      gridExtra 2.3
   [67] UpSetR_1.4.0
                               gdtools_0.2.3
                                                      rpart_4.1-15
   [70] latticeExtra_0.6-29
                               stringi_1.6.2
                                                      highr_0.9
   [73] corrplot_0.88
                               nortest_1.0-4
                                                      e1071_1.7-7
   [76] checkmate 2.0.0
                               zip 2.1.1
                                                      rlang_0.4.11
   [79] pkgconfig_2.0.3
                               systemfonts_1.0.2
                                                      evaluate_0.14
   [82] lattice_0.20-44
                               purrr_0.3.4
                                                      labeling_0.4.2
  [85] htmlwidgets_1.5.3
                               tidyselect_1.1.1
                                                      plyr_1.8.6
  [88] magrittr_2.0.1
                               bookdown_0.22
                                                      R6_2.5.0
  [91] generics 0.1.0
                               Hmisc 4.5-0
                                                      DBI 1.1.1
  [94] pillar_1.6.1
                               foreign_0.8-81
                                                      withr_2.4.2
  [97] prettydoc_0.4.1
                               survival_3.2-11
                                                      abind_1.4-5
# [100] nnet_7.3-16
                               tibble_3.1.2
                                                      crayon_1.4.1
# [103] car_3.0-10
                               utf8_1.2.1
                                                      rmarkdown_2.8
# [106] jpeg 0.1-8.1
                               grid 4.1.0
                                                      readxl 1.3.1
# [109] data.table 1.14.0
                               forcats 0.5.1
                                                      webshot 0.5.2
# [112] digest 0.6.27
                               xtable 1.8-4
                                                      tidyr 1.1.3
# [115] httpuv 1.6.1
                               openssl_1.4.4
                                                      munsell 0.5.0
```

```
# [118] viridisLite 0.4.0 kableExtra 1.3.4 askpass 1.1
```

```
# or use message() instead of cat()
```

8.1.2 Python

```
import sys
print(sys.version)

3.9.4 (tags/v3.9.4:1f2e308, Apr 6 2021, 13:40:21) [MSC v.1928 64 bit (AMD64)]

8.1.3 Julia
v"1.6.1"

8.1.4 Stata
version 16.1
c:\ado\plus/x/xtabond2.ado
Checksum for c:/ado/plus/x/xtabond2.ado = 3720163387, size = 40472
```

8.2 All the code in the paper

To simply attach all the code you used in the PDF file in the appendix see the R chunk in the underlying .rmd file:

```
knitr::opts_chunk$set(cache = FALSE)
# Use chache = TRUE if you want to speed up compilation

# A function to allow for showing some of the inline code
rinline <- function(code){
  html <- '<code class="r">```````````````````````\code>'\
  sub("CODE", code, html)

##https://opensource.com/article/19/5/python-3-default-mac
```

```
Sys.setenv(RETICULATE PYTHON = "C:/Users/mangelo.EEG/AppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/Local/Microsoft/WindowsAppData/L
##install.packages("reticulate")
library(reticulate)
##use_python("/Library/Frameworks/Python.framework/Versions/3.8/bin/python3")
use_virtualenv("C:/Users/mangelo.EEG/Documents/python")
##knitr::opts_chunk$set(python.reticulate=FALSE)
# library(devtools) # before this you may need to install devtools
# install_github("hemken/Statamarkdown")
library(JuliaCall)
library(Statamarkdown)
stataexe <- "C:/Program Files/Stata16/StataMP-64.exe"</pre>
knitr::opts chunk$set(engine.path=list(stata=stataexe))
Sys.setenv(RETICULATE_PYTHON = "C:/Program Files/Python39/python.exe")
library(reticulate)
use_virtualenv("C:/Users/mangelo.EEG/Documents/python")
library(stargazer)
library(Statamarkdown)
stataexe <- "C:/Program Files/Stata16/StataMP-64.exe"</pre>
#stataexe <- "/Applications/Stata15/StataMP.app/Contents/MacOS//stata-mp"
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
library(JuliaCall)
options(JULIA_HOME = "C:/Users/mangelo.EEG/AppData/Local/Programs/Julia-1.6.1/bin")
julia_setup()
## ExPanDaR: Explore Panel Data Interactively
     library(ExPanDaR)
          ## type ExPanD() in the Console
setwd("C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs")
```

```
library(haven)
library(ggplot2)
nlswork <- read_dta("C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/nlswork.dta")</pre>
nls<-data.frame(nlswork)</pre>
attach(nlswork)
head(nlswork)
library(stargazer)
stargazer(nls,
          title = "Summary statistics",
          label="tab1",
          table.placement = "ht",
          header=FALSE)
library(dplyr)
library(dlookr)
library(ggplot2)
##eda_report(nlswork,output_dir = "C:/Users/mangelo.EEG/Documents/GitHub/prjs/reports/
## The data
names(nlswork)
##summary(nlswork)
## Missing values
library("visdat")
  vis_dat(nlswork)
## https://cran.r-project.org/web/packages/naniar/vignettes/naniar-visualisation.html
library(naniar)
  vis_miss(nlswork)
```

```
gg_miss_upset(nlswork)
## GRAPHS
dplyr::glimpse(nlswork$ln_wage)
d <- density(ln_wage)</pre>
plot(d)
plot(nls$ln_wage,nls$ttl_exp)
ggplot(nlswork,
       aes(x = hours,
           y = year)) +
geom_miss_point()
ggplot(nlswork,
       aes(x = hours,
           y = year)) +
geom miss point() +
facet_wrap(race)
stats <- summary(nlswork$age)</pre>
library(stargazer)
stargazer(cars,
          title = "Summary table with stargazer",
          label="tab1cars",
          table.placement = "H",
          header=FALSE)
library(stargazer)
model1 <- lm(speed ~ dist, data = cars)</pre>
model2 <- lm(speed ~ dist, data = cars)</pre>
model3 <- lm(dist ~ speed, data = cars)</pre>
stargazer(model1, model2, model3,
          title = "Regression table with stargazer",
          label="tab2",
          table.placement = "H",
          column.labels = c("M1", "M2", "M3"),
          model.numbers = FALSE,
          header=FALSE)
plot(cars$speed, cars$dist)
```

```
mtcars$cyl <- as.factor(mtcars$cyl) # Convert cyl to factor</pre>
library(ggplot2)
ggplot(mtcars, aes(x=wt, y=mpg, shape=cyl)) + geom point() +
 labs(x="Weight (lb/1000)", y = "Miles/(US) gallon",
       shape="Number of \n Cylinders") + theme classic()
library(plotly)
p <- plot_ly(cars, type = "scatter", mode="markers",</pre>
        x=\simspeed,
        y=~dist)
#Sys.setenv('MAPBOX TOKEN' = '12423423') # set arbitrary token
#orca(p, "logs/plotly-plot.pdf")
import sys
print(sys.version)
import json
##from json.decoder import JSONDecodeError
import requests
import numpy as np
import pandas as pd
## INE: https://www.ine.pt/ine/json_indicador/pindica.jsp?
## op=2&varcd=0008074&Dim1=S7A2015&Dim2=200&Dim3=3&lang=PT
# api-endpoint
URL = "https://www.ine.pt/ine/json indicador/pindica.jsp"
# define parameters
OP="2"
VARCD="0008074"
DIM1="S7A2015"
DIM2="200"
DIM3="3"
LANG="PT"
# defining a params dict for the parameters to be sent to the API
PARAMS = {'op':OP,'varcd':VARCD,'Dim1':DIM1,'Dim2':DIM2,'Dim3':DIM3,'lang':LANG}
```

```
# sending get request and saving the response as response object
r = requests.get(url = URL,params=PARAMS)
# extracting data in json format
data = r.json()
valor = data[0]['Dados']['2015'][0]['valor']
valor
  cd C:/Users/mangelo.EEG/Documents/GitHub/prjs/pdfs
    find . -name '*.pdf' -print0 | xargs -0 -n1 pdfsandwich -gray
    find . -name '*ocr.pdf' -print0 | xargs -0 -n1 pdftotext
import os
import numpy as np
import pandas as pd
import re
## CHECK PyPDF2
## wget -A pdf -m -p -E -k -K -np https://joram.madeira.gov.pt/joram/4serie/
## find . -name '*.pdf' -print0 | xargs -0 -n1 pdfsandwich -gray
## find . -name '*ocr.pdf' -print0 | xargs -0 -n1 pdftotext
# Create list with .txt files for the specified folder
files list = list()
for (dirpath, dirnames, filenames) in os.walk('C:/Users/mangelo.EEG/Documents/GitHub/pr
    files_list += [os.path.join(dirpath, file)
                   for file in filenames if file.endswith('.txt')]
##print("START:FILES -- list")
##print(files_list)
##print("END:FILES -- list")
p1 = r'PORTARIA'
p2 = r'EXTENSAO'
p3 = r'Materiais'
```

```
p5 = r'PE das'
linha = []
output = []
other = []
palavra = []
source = []
for file in files_list:
    f = open(file, "r", encoding='latin8')
    data = f.read()
    f.close()
    line = []
    nh = 0
    tmp1 = str(data)
    #print(tmp1)
    tmp2 = tmp1.splitlines()
    #print(tmp2)
    for n,tmp3 in enumerate(tmp2):
        #print(tmp3)
        if (tmp3.find("PE das") == 0):
            tmp4 = tmp3 + tmp2[2]
            line.append(tmp4)
            #print(n)
            nh = 1
        elif (nh == 1):
            nh = 0
            continue
        elif (nh == 0):
            line.append(tmp3)
    print(line)
    print(" ")
    print("FILE: ", file[46:-4])
```

```
for num, word in enumerate(line):
        if num == 0:
            continue
        else:
            match1 = re.search(p1, word)
            match2 = re.search(p2, word)
            match3 = re.search(p3, word)
            match4 = re.search(r'\d{9}', word)
            match5 = re.search(p5, word)
                        ")
            ##print("
            ##print("START: ",num)
            if match1:
                    ##print(" ")
                    print("match 1")
                    if match4:
                        ##print(" ")
                        print("match 4")
                        linha.append(num)
                        output.append(re.search(r'\d{9}', word).group())
                        other.append("vazio")
                        palavra.append(p1)
                        source.append(file[46:-4])
            elif match2:
                        ##print("
                                     ")
                        print("match 2")
                        linha.append(num)
                        output.append(re.search(r'\d{9}', word).group())
                        other.append("vazio")
                        palavra.append(p2)
                        source.append(file[46:-4])
            elif match3:
                        ##print("
                        print("match 3")
                        linha.append(num)
                        output.append(re.search(r'\d{9}', word).group())
                        other.append("vazio")
                        palavra.append(p3)
                        source.append(file[46:-4])
            elif match5:
```

```
##print(" ")
                            print("-> match 5")
                            ##word.sub(" e o ", " e a ",1)
                            print(word)
                            linha.append(num)
                            if (word.find(" e o ") > 0):
                                print("11111")
                                output.append((word.split("re a", 1)[1]).split(" e o ",
                                other.append((word.split("re a", 1)[1]).split(" e o ", 1
                            elif (word.find(" e a ") > 0):
                                print("99999")
                                output.append((word.split("re a", 1)[1]).split(" e a ",
                                other.append((word.split("re a", 1)[1]).split(" e a ", 1
                            palavra.append(p5)
                            source.append(file[46:-4])
## o paragrafo tem de estar na mesma linha e temos de ter 'e a' em vez de 'e o'
df = pd.DataFrame({'linha': linha, 'output': output,
                   'outra': other, 'source': source})
print(df)
df.to csv('data/PE.csv', index=False)
df.to_stata('data/PE.dta', write_index = False)
quiet cd "C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs"
quiet import delimited "C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/PE.csv", encodir
tab source
python3 "C:/Users/mangelo.EEG/Documents/GitHub/prjs/chunks/python_chunk.py"
quietly{
cd C:/Users/mangelo.EEG/Documents/GitHub/prjs/chunks
use C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/nipcs, clear
compress
contract nipc
drop _freq
drop if nipc == .
```

```
format %12.0f nipc
//codebook nipc
tab nipc
## This is a julia language chunk.
## In julia, the command without ending semicolon will trigger the display
## so is JuliaCall package.
## The julia display will follow immediately after the corresponding command
## just as the R code in R Markdown.
using ReadStat
using StatFiles
using StatsBase
using DataFrames
using FixedEffectModels
@time results_hdfe1 = reg(DataFrame(load("C:/Users/mangelo.EEG/Documents/GitHub/prjs/dat
@time results hdfe2 = reg(DataFrame(load("C:/Users/mangelo.EEG/Documents/GitHub/prjs/dat
using RegressionTables
regtable(results_hdfe1,results_hdfe2; renderSettings = latexOutput("logs/hdfe_output.tex
VERSION
library(JuliaCall)
 julia_eval("results_hdfe2")
betas <- julia_eval("coef(results_hdfe2)")</pre>
r2 <- julia_eval("r2(results_hdfe2)")
use C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/data_short, clear
timer on 1
    reghdfe lnrealwage education lnsales,absorb(workerid firmid year)
timer off 1
```

```
timer list 1
timer clear 1
library(lfe)
data_short <- read_dta("C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/data_short.dta")</pre>
system.time(est_hdfe <- felm(data_short$lnrealwage ~ data_short$education + data_short$]</pre>
summary(est_hdfe)
library(stargazer)
library(Statamarkdown)
stataexe <- "C:/Program Files/Stata16/StataMP-64.exe"</pre>
knitr::opts_chunk$set(engine.path=list(stata=stataexe))
setwd("C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs")
rm(list = ls())
library(haven)
nlswork <- read dta("../data/nlswork.dta")</pre>
auto <- read_dta("../data/auto.dta")</pre>
attach(nlswork)
regs1 <- lm(auto$price ~ auto$mpg + auto$weight)</pre>
regs2 <- lm(auto$price ~ auto$mpg + auto$weight + auto$rep78)</pre>
regs3 <- lm(auto$price ~ auto$mpg + auto$weight + auto$rep78 + auto$trunk)</pre>
regs4 <- lm(ln_wage ~ union)</pre>
regs5 <- lm(ln_wage ~ union + collgrad)</pre>
regs6 <- lm(ln_wage ~ union + collgrad + age)</pre>
##summary(auto)
##summary(regs1)
## https://www.jakeruss.com/cheatsheets/stargazer/
nls<-data.frame(nlswork)</pre>
stargazer(nls, summary.stat = c("n", "p75", "sd"), summary.logical = FALSE,
          title = "Summary table",
          label="tab23",
```

```
header=FALSE)
stargazer(regs1, regs2, regs3,
          title = "Regression table with stargazer",
          label="tab3",
          table.placement = "ht",
          column.labels = c("M1", "M2", "M3"),
          model.numbers = FALSE,
          header=FALSE,keep=c(0,1,2,3))
attach(auto)
library(naniar)
vis_miss(nlswork)
# plot(y=price, x=mpq)
library(stargazer)
stargazer(cars,
          title = "Summary 24",
          label="tab24",
          table.placement = "ht",
          header=FALSE)
quiet sysuse auto
sum price
tab rep78
quiet cd "C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs"
quiet use ../data/nlswork, clear
twoway (kdensity ln_wage if collgrad == 0) || (kdensity ln_wage if collgrad == 1), schement
graph export "C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs/density.pdf", replace
use ../data/data full, clear
```

table.placement = "ht",

```
quiet generate lngdp = ln(rgdpwok)
        quiet ge lnk = ln(capital)
        label var rgdpwok "Real GDP per worker"
        label var education "Education (in years)"
        label var capital "Capital"
        label var open "Degree of openness"
// # regression analysis
    quiet reg lngdp education
        estimates store r1
    quiet reg lngdp education lnk
        est store r2
    reg lngdp education lnk openk i.year
        est store r3
outreg, clear
    quiet estimates restore r1
        outreg using growth_analysis_frag, tex fragment replace rtitles("Education" \ "'
                */ drop( cons) /*
                */ ctitle("","Simple model") /*
                */ nodisplay variabels bdec(4) se starlevels(10 5 1) starloc(1) summstat
    quiet estimates restore r2
        outreg using growth_analysis_frag, tex fragment merge rtitles("Education" \ "" \
                */ drop(_cons) /*
                */ ctitle("","Include capital") /*
                */ nodisplay variabels bdec(3) se starlevels(10 5 1) starloc(1) summstat
    quiet estimates restore r3
        outreg using growth_analysis_frag, tex fragment merge rtitles("Education" \ "" \
                */ drop(_cons 1975.year 1980.year 1985.year 1990.year) /*
                */ ctitle("","Full model") /*
                */ nodisplay variabels bdec(1) se starlevels(10 5 1) starloc(1) summstat
sum lngdp
use C:/Users/mangelo.EEG/Documents/GitHub/prjs/data/data_full, clear
```

```
quiet generate lngdp = ln(rgdpwok)
     summarize lngdp
file open myfile using example.txt, write replace
file write myfile `"`r(mean)'"'
file close myfile
unlink("example.txt")
version
//ado describe
findfile xtabond2.ado
checksum "c:/ado/plus/x/xtabond2.ado"
// PUTEXCEL
cd "C:/Users/mangelo.EEG/Documents/GitHub/prjs/logs"
quiet use ../data/graph_data, clear
    codebook, compact
           putexcel clear
            putexcel set descriptives.xlsx, sheet("Avg. Educ. & desc.") replace
gen first = substr(country,1,1)
    levelsof first,local(ff)
    foreach vv of local ff {
        di _new(3) "Country's first letter: `vv'"
        preserve
        quiet keep if first == "`vv'"
        quiet unique country
            if r(unique) > 5 {
            di _new(2) " Number of countries: " r(unique) _new(1)
            quietly {
                collapse (mean) lngdp education,by(country)
```

```
putexcel set descriptives.xlsx, sheet("FIRST LETTER `vv'") modify
                    regress lngdp education
                            matrix list r(table)
                        matrix results = r(table)
                            mat 1 results
                        mat b = results[1,1...]
                        mat t = results[3,1...]
                        putexcel C2="Coef." F2="t"
                        putexcel B3 = matrix(b), rownames nformat(number_d2) right
                        putexcel D3 = matrix(t),nformat("0.00")
                }
            }
            if r(unique) <= 5 {</pre>
                // di _new(2) " Insufficient number of countries; n countries = " r(unio
            }
        restore
}
// tabulate, summarize() -- EXAMPLE
tabulate first year, summarize(education) nost nof noob
collapse (mean) education,by(first year)
reshape wide education,i(first) j(year)
mkmat education*,matrix(mean educ) rownames(first)
putexcel set descriptives.xlsx, sheet("Mean Education") modify
    putexcel C2="1960" D2="1965" E2="1970" F2="1975" G2="1980" H2="1985" I2="1990" J2="1
    putexcel B3 = matrix(mean educ), rownames nformat(number d2) right
plot(x = mpg, y = price,
    pch = 16, frame = FALSE,
```

```
xlab = "wt", ylab = "mpg", col = "#2E9FDF")
cat(paste("#", capture.output(sessionInfo()), "\n", collapse =""))
  # or use message() instead of cat()
import sys
print(sys.version)
VERSION
version
//ado describe

findfile xtabond2.ado
checksum "c:/ado/plus/x/xtabond2.ado"
```