Basic steps for effective and reproducible data visualization

Tania L. Maxwell

References used throughout the document

- Wilke, C. O. (2019). Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O'Reilly Media.
- Rougier, N. P., Droettboom, M., & Bourne, P. E. (2014). Ten simple rules for better figures. PLoS Comput Biol 10(9): e1003833.
- Raab, G., Calitri, F., & Schiedung, M. (2019, April). *Visualizing Science*. Presentation at the European Geosciences Union General Assembly, Vienna, Austria.

Useful ressources

- Wilke, C. O. (2019). Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O'Reilly Media.
 - Online version: https://serialmentor.com/dataviz/
- Link to useful R graphs:
 - https://www.r-graph-gallery.com/index.html
 - http://shinyapps.stat.ubc.ca/r-graph-catalog/#
- Rougier, N. P., Droettboom, M., & Bourne, P. E. (2014). Ten simple rules for better figures. PLoS Comput Biol 10(9): e1003833.
- https://wiki.qcbs.ca/r workshop3
- https://rstudio.com/wp-content/uploads/2015/03/ggplot2cheatsheet.pdf

Workshop outline

- 1. Rules for better figures
- 2. Using R
 - 2.1: Building your plot (Orange tree data)
 - 2.2: Building a 2nd graph (Temperature data)
 - 2.3: Plotting averages using ddply
 - 2.4: Fitting a model (i.e. a logistical model)
 - 2.5: Saving your figure

Part 1: Rules for better figures

1. What's your story?

Relationship

Distribution

Comparison

Figures: Wilke 2019

1. What's your story?

Caution!

@allison_horst

1. What's your story?

2. Know your audience

3. Adapt the figure

Maxwell et al. (2020) 2021-11-18

3. Adapt the figure (cont.)

3. Adapt the figure (cont.)

4. Include Captions

Figure 22.1: Corruption and human development: The most developed countries experience the least corruption. This figure was inspired by a posting in The Economist online (2011). Data sources: Transparency International & UN Human Development Report

Corruption and human development

The most developed countries experience the least corruption

Data sources: Transparency International & UN Human Development Report

Figures from Wilke (2019)

2021-11-18

5. Choose

your Graph

maker

4. Include Captions

5. Choose your Graph maker

Creating / editing figures manually

- 1. Irreproducible
- 2. Unlikely to re-do figure if asked to be modified
- 3. You might forget what you did

4. Include Captions

5. Choose your Graph maker

Creating / editing figures manually

R

Image editor (i.e. Inkscape)

Figure preparation pipeline

Ex: ggplot2

Reproducible

- 1. Irreproducible
- 2. Unlikely to re-do figure if asked to be modified
- 3. You might forget what you did

Part 2: Using R

Part 2.1: Building your plot (Orange tree data)

Part 2.1: Building your plot (Orange tree data)

Research question: how does circumference change with age?

→ How do I want to present my data?

Figures: Wilke 2019

Part 2.1: Building your plot (Orange tree data)

Research question: how does circumference change with age?

Figures: Wilke 2019

Display the object

Adding geom_*

p<- ggplot(tab, aes(x=age, y=circumference))+
geom_point()
p</pre>
Geom_*
Adding layers

Visual mark that

represents data

Geom_point, geom_line, geom_bar, geom_boxplot, geom_text, etc...

Grouping by a factor (i.e. Tree)

2021-11-18

 $\angle \bot$

Why are the Trees in the order 3,1,5,2,4?

R levels(tab\$Tree)

```
p<- ggplot(tab, aes(x=age, y=circumference))+
   geom_point(aes(group=Tree, color=Tree))
p</pre>
```


Why are the Trees in the order 3,1,5,2,4?

R

tab\$Tree <-factor(tab\$Tree, levels = c("1","2","3","4","5"))</pre>

You can use specify the level order with the above function.

2021-11-18

23

Tree graph reordered

R

```
tab$Tree <-factor(tab$Tree, levels = c("1","2","3","4","5"))</pre>
```

You can use specify the level order with the above function.

Rerun your previous code

```
p<- ggplot(tab, aes(x=age, y=circumference))+
   geom_point(aes(group=Tree, color=Tree))
p</pre>
```


Tree graph reordered

R

```
tab$Tree <-factor(tab$Tree, levels = c("1", "2", "3", "4", "5"))
```

You can use specify the level order with the above function.

Rerun your previous code

```
p<- ggplot(tab, aes(x=age, y=circumference))+
   geom_point(aes(group=Tree, color=Tree))
p</pre>
```

What can you notice about the order of the colors?

6. Don't trust default settings

C-related extracellular enzyme activities (nmol g⁻¹ h⁻¹) 0-5 5-15 -15-30 Especes Depth (cm) 60-90 -

Color, shape, axes, legend, etc...

creating your own palette
cbPalette <- c("#999999", "#E69F00", "#56B4E9",
"#009E73", "#F0E442", "#0072B2", "#D55E00",
"#CC79A7")</pre>

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette


```
creating your own palette
cbPalette <- c("#999999", "#E69F00", "#56B4E9",
"#009E73", "#F0E442", "#0072B2", "#D55E00",
"#CC79A7")</pre>
```

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette

```
Add to your previous graph
p<- ggplot(tab, aes(x=age, y=circumference))+
   geom point(aes(group=Tree, color=Tree))+
   scale_color_manual(name = "Tree ID",
      values=cbPalette)
P</pre>
```

Add this to your code

creating your own palette
cbPalette <- c("#999999", "#E69F00", "#56B4E9",
"#009E73", "#F0E442", "#0072B2", "#D55E00",
"#CC79A7")</pre>

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette

Add to your previous graph
p<- ggplot(tab, aes(x=age, y=circumference))+
 geom_point(aes(group=Tree, color=Tree))+
 scale_color_manual(name = "Tree ID",
 values=cbPalette)</pre>

Note: since there are five levels of Trees, R will take the first five colors in your palette.

You can rename the legend title here


```
p<- ggplot(tab, aes(x=age, y=circumference))+
    geom_point(aes(group=Tree, color=Tree), size =2.5)+
    scale_color_manual(name = " Tree ID", values =
        c("#999999", "#E69F00", "#56B4E9", "#D55E00",
        "#CC79A7"))

P

You can also add a list of
    colors with manual values

To increase your point size</pre>
```

Resource to pick colors:

http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3

Or, you can group by shape

p<- ggplot(tab, aes(x=age, y=circumference))+
 geom_point(aes(group=Tree, shape=Tree), size=2.5)
p</pre>

Manually choosing shapes

Grouping by color & shape - Caution

R

р

Our previous plot (shortened in presentation)

```
p<- p +
    scale shape manual(name = "Tree ID",
    values=c(21,22,23,24,25))+
    scale fill_manual(name="Tree ID", values =
    c("#999999", "#E69F00", "#56B4E9", "#D55E00",
    "#CC79A7"))</pre>
```

These are different shape styles, which are identified by a number

7. Use colors and symbols effectively

- Find the greyscale equivalent

https://toolstud.io/color/rgb.php

- Is black and white possible?

7. Use colors and symbols effectively(Continued)

- Think about overlap of points

Images from: https://www.extremetech.com/extreme/49034-colors-affect-colors

R

```
p<- p +
  labs(x="Age (days)", y="Tree trunk
     circumference (mm) ")
p</pre>
```

Give as much information to the reader as possible

Add a theme

```
p <- p +
  theme_classic()
     One of the built-in ggplot themes
```


Personalize your themes

- R 1. library(ggThemeAssist)
 - 2. Select your script for your graph
 - 3. Click on Addins → ggplot Theme Assistant

Personalize your themes

- 3. Using the visual interface, modify the style of your graph
- 4. Click 'Done'
- 5. The script for the figure will be added to your script

Personalize your themes

- 3. Using the visual interface, modify the style of your graph
- 4. Click 'Done'
- 5. The script for the figure will be added to your script

Note: I recommend doing this once for the basic information, which can be reusable in future graphs

- Panel & Background
- The size and color of font, axis and labels

You can save that theme and add it to any figure

NOTE: you can only save items which all fit within the "theme()" function (for example, can't save theme() + labs()

39

You can save your theme

Make two themes:

- 1. For figures to be printed
- 2. Figures for presentations


```
newtheme_print <- theme(...)
newtheme pres <- theme(...)</pre>
```


You can save your theme

Make two themes:

- 1. For figures to be printed
- 2. Figures for presentations


```
newtheme_print <- theme(...)
newtheme_pres <- theme(...)</pre>
```

Part 2.2 Building a 2nd graph (Temperature data)

Linking growth to annual temperature could be interesting?

Import new data set to create new graph

```
tab2<-as.data.frame(nhtemp)
str(tab2)
'data.frame': 60 obs. of 1 variable:
$ x: Time-Series from 1912 to 1971: 49.9 52.3 49.4 51.1 49.4...</pre>
```

Note: this data is unrelated

Part 2.2 Building a 2nd graph (Temperature data)

Linking growth to annual temperature could be interesting?

Import new data set to create new graph

```
tab2<-as.data.frame(nhtemp)
str(tab2)
'data.frame': 60 obs. of 1 variable:
  $ x: Time-Series from 1912 to 1971: 49.9 52.3 49.4 51.1 49.4...

date<-list(1912:1971)
tab_temp<-cbind(date,tab2)
colnames(tab_temp) <- c("Year", "Temperature")</pre>
```

Note: this data is unrelated

Basic plot using our theme

r

Adding special symbols

```
#create a variable called ylab_temp
ylab_temp <- expression("Temperature "~( degree~F)
#you can also add superscripts and greek letters

r<- r +
   scale_y_continuous(name = ylab_temp)</pre>
```


Adding text

```
r <- r +
  geom_text(x=1953, y=54.8,
    label="This was a warm year",
    size=5, color="black",
    family="serif")
r</pre>
```

Note: this is good for adding p-values directly only your graph

Exporting both graphs next to one another

```
figure<- ggarrange(p, r, labels = c("A)", "B)"), font.label = list (size=14, family="serif"), ncol = 2, nrow = 1)
```

Ncol = number of columns Nrow = number of rows Can remove y or x-axis titles easily: r + rremove("y.title")

Part 2.3: Plotting averages using dplyr

With the Orange tree data frame = tab

```
p<- tab %>%
  group_by(age) %>%
  summarise_each(funs( n = n(), mean = mean(.), se = sd(.)/sqrt(n())), "circumference")
```

Part 2.3: Plotting averages using dplyr

With the Orange tree data frame = tab

```
p<- tab %>%
  group_by(age) %>%
  summarise_each(funs( n = n(), mean) = mean(.), se = sd(.)/sqrt(n())), "circumference") %>%
  ggplot(aes(x=age, y=mean))+
  geom_line() +
  geom_point(size=2.5, shape=16)+
  geom_errorbar(aes(ymin=mean-se, ymax=mean+se), size= 0.3, width=15)
```

Part 2.3: Plotting averages using dplyr

With the Orange tree data frame = tab

```
p<- tab %>%
  group by (age) %>%
  summarise_each(funs(n = n(), (mean) = mean(.), se = sd(.)/sqrt(n())), "circumference") %>%
  ggplot(aes(x=age, y=mean))+
  geom line() +
  geom point(size=2.5, shape=16) +
  geom errorbar(aes(ymin=mean-se, ymax=mean+se), size= 0.3, width=15)+
  newtheme print+
  scale x continuous (name="Age (years)", limits=c(0,1700), expand=c(0,0),
breaks=c(0,365,730,1095,1450), labels=c("0","1", "2", "3","4"))+
  scale y continuous (name="Tree trunk circumference (cm)", limits=c(0,220), expand=c(0,0),
                     breaks=c(0,50,100,150,200), labels=c("0","5", "10", "15","20"))+
  labs(title="Average circumference of five trees")+
  theme(plot.title = element text(angle=0, size=18, family="serif",color = "black",hjust=0.5))
р
```

Average circumference of five trees

Part 2.4: Fitting a model (i.e. a logistical model)

R

Use dplyr to created a new data table with n, means, and se

```
cdata<- tab %>%
  group_by(age) %>%
  summarise_each(funs( n = n(), mean = mean(.), se = sd(.)/sqrt(n())), "circumference")
```

Part 2.4: Fitting a model (i.e. a logistical model)

Note: This model can be found within the datasets package for this dataset

```
cdata<- tab %>%
  group_by(age) %>%
  summarise_each(funs( n = n(), mean = mean(.), se = sd(.)/sqrt(n())), "circumference")

logistical_mod <- nls(mean ~ SSlogis(age, Asym, xmid, scal), data = cdata)

logistical_mod</pre>
```

Part 2.4: Fitting a model (i.e. a logistical model)

Note: This model can be found within the datasets package for this dataset

```
cdata<- tab %>%
  group_by(age) %>%
  summarise_each(funs( n = n(), mean = mean(.), se = sd(.)/sqrt(n())), "circumference")

logistical_mod <- nls(mean ~ SSlogis(age, Asym, xmid, scal), data = cdata)

logistical_mod

mod.predict <- cbind(data=cdata, predict(logistical_mod, interval = 'confidence'))

colnames(mod.predict) <- c("Age", "N", "mean", "se", "Predicted_values")

mod.predict</pre>
```

Fitting a model

Note: You can import data from different datasets

Part 2.5: Saving your figure

"tiff", "png", "jpeg", "bmp"

Pixel-based

The name of your figure in R

Part 2.5: Saving your figure

"pdf", "svg", "eps", "emf"

Vector-based

Can be used to add additional edits in other image editors (i.e. Inkscape, powerpoint, etc.)

Caution: this adds additional, non-reproducible work

8. Avoid 'chartjunk'

Examples from Rougier et al. 2014

9. Do not mislead the reader

Series of four values: 30, 20, 15, 10

Upper part: the disc area to represent the value

Lower part: the disc radius.

Examples from Rougier et al. 2014

8. Avoid 'chartjunk'

9. Do not mislead the reader

10. Message over beauty

Example from Rougier et al. 2014

No class next week

Presentations on Monday, Nov. 29th

> Focus on statistical analyses of the paper