

DECART Summer School 2018:

Causal Inference Module

Matching

Why match?

- We need to adjust for covariate X_i in observational study, even when the assumption of no unmeasured confounding holds.
- Easy solution: Use a parametric model for $E(Y_i(A)|X_i)$.
- But misspecified parametric model will lead to wrong causal estimates.
- Matching is a natural alternative solution with two benefits:
- > Reduces the dependence of estimates on parametric models.
- Can simplify the analysis of causal effects.

Why parametric model failed?

- Often lead to large variation in the estimates of interest.
- Why does this occur?
 - Parametric model will extrapolate to regions with only treated or only control.
 - Modeling assumption will affect these extrapolation.

What does matching do?

- Allows for relatively nonparametric ways of estimating the casual effect.
- Caution: Matching doesn't justify a causal effect automatically.
- Important Note: Without strong design (such as clinical trial), no statistical modeling could completely make the move from correlation to causation persuasive.

Assumptions

1. Consistency:

$$Y_i = Y_i(A_i)$$

2. Unmeasured Confounders Assumption:

$$A_i \perp (Y_i(0), Y_i(1))|X_i$$

3. Positivity

$$0 < P(A_i = 1|X_i) < 1$$

(Simple) Exact Matching Without Replacement

- Let X_i take on a finite number of values, x.
- Let $I_t = \{1, 2, ..., N_t\}$ be the set of treated units.
- Exact matching without replacement:

For each treated unit, $i \in I_t$

- 1. Find the set M_i^c of unmatched control units j such that $X_i = X_j$, for $j \in M_i^c$
- 2. Randomly select one of these control units to be the match, indicated j(i).
- Let $I_c = \{j(1), j(2), ..., j(N_t)\}$ be the set of control units.
- The distribution of X_i will be exactly the same for the treated and matched control:

$$P(X_i = x | A_i = 1) = P(X_i = x | A_i = 0, I_c)$$

If the data is exactly matched, then an unbiased estimator

for the average treatment effect for the treated (ATT) is:
$$\hat{\tau}_t^{match} = \frac{1}{N_t} \sum_{i:A_i=1} \hat{\tau}_i^{match} = \frac{1}{N_t} \sum_{i:A_i=1} \left(Y_i^{obs} - Y_{m_i^c}^{obs} \right)$$

i.e.

$$E[\hat{\tau}_t^{match}] = \tau_{ATT} = E[Y_i(1)|A_i = 1] - E[Y_i(0)|A_i = 1]$$

Proof:

$$E[\hat{\tau}_{t}^{match}] = E\left[\frac{1}{N_{t}}\sum_{i:A_{i}=1} \left(Y_{i}^{obs} - Y_{m_{i}^{c}}^{obs}\right)\right]$$

$$= E\left[\frac{1}{N_{t}}\sum_{i:A_{i}=1} \left(Y_{i}^{obs}\right)\right] - E\left[\frac{1}{N_{t}}\sum_{i:A_{i}=1} E\left(Y_{m_{i}^{c}}^{obs}\right)\right]$$

$$= \int E\left[Y_{i}|A_{i}=1, X_{i}=x\right]dP(X_{i}=x|A_{i}=1)$$

$$- \int E\left[Y_{i}|A_{i}=0, X_{i}=x\right]dP(X_{i}=x|A_{i}=1)$$

$$= \int E\left[Y_{i}(1)|A_{i}=1, X_{i}=x\right]dP(X_{i}=x|A_{i}=1)$$

$$- \int E\left[Y_{i}(0)|A_{i}=1, X_{i}=x\right]dP(X_{i}=x|A_{i}=1)$$

$$= E\left[Y_{i}(1)|A_{i}=1\right] - E\left[Y_{i}(0)|A_{i}=1\right]$$

Weakening the identification assumptions

- Consistency, no unmeasured confounders, total expectation and exact matching property
 - \Rightarrow identifying the ATT.
- Can weaken no unmeasured confounders to conditional mean independence (CMI):

$$E[Y_i(0)|X_i=x, A_i=1] = E[Y_i(0)|X_i=x, A_i=0]$$

- Nice features of CMI:
 - 1. Only make assumptions about $Y_i(0)$ not $Y_i(1)$.
- 2. Only make assumptions on the means, not other aspects of distribution (variance, skewness, kurtosis, etc).

Analyzing exactly matched data

Simple difference in observed means:

$$\hat{\tau}_{ATT} = \frac{1}{N_T} \sum_{i \in I_t} Y_i - \frac{1}{N_c} \sum_{j \in I_c} Y_j$$

 In simple matching mentioned above (exact, 1-to-1, no replacement):

$$\hat{\tau}_{ATT} = \frac{1}{N_T} \sum_{i=1...N_T} (Y_i - Y_{j(i)})$$

$$\widehat{\text{var}}(\hat{\tau}_{ATT}) = \frac{1}{N_T} \sum_{i=1...N_T} (Y_i - Y_{j(i)} - \hat{\tau}_{ATT})^2$$

 In practice, such an exact matching scheme is rarely feasible

- > exact matching is typically impossible
- > the pool of potential matches is often too small to ignore the conflicts

Inexact Matching without Replacement

• Match the ith treated unit with covariate values X_i to control unit m_i , that is, the control unit that solves $m_i^c = argmin_{i' \in I_c} \|X_i - X_{i'}\|$

- one control unit might be identified as match for more than one unit
 - > match all units simultaneously

$$argmin_{m_1^c,...,m_{N_t}^c \in I_c} \sum_{i=1}^{N_t} \left\| X_i - X_{m_i^c} \right\|$$
 subject to $m_i \neq m_i$,

> match units sequentially ("greedy" matching algorithm): the ordering matters

One option: match those difficult ones first: the rank of the estimated propensity scores (high -> low)

Inexact Matching without Replacement

- When multiple matches (equally close) to one treated unit
- > use the average of the outcomes for this set of tied matches as the control potential outcome for treated unit i,

 $\sum_{i' \in M_i^c} Y_{i'}(0) / M_i$, with M_i be the cardinality of M_i^c

reduced sampling variance of the resulting estimator

removing more units from the pool of possible control unites available for subsequent matches

> some selection mechanism, e.g. random selection

Distance metrics

- We need a distance metric to define distance/similarity on X_i and X_j , which might be high dimensional.
 - -- Lower value → more similar values
 - -- Choice of distance metric will lead to different matches
- Possible choices of distance:
 - > Propensity score distance metric
 - > Euclidean distance metric
 - > Mahalanobis distance metric
 - > Caliper metric
 - > Hybrid metric

Propensity score distance

- Propensity score: $e(X_i) = P(A_i = 1 | X_i)$
- Rubin et al have shown that propensity score matching has good properties if covariates are roughly normal.
- Propensity score distance:

Option 1:
$$D_{ij} = |e(X_i) - e(X_j)|$$

Option 2: $D_{ij} = |logit(e(X_i)) - logit(e(X_j))|$

Euclidean distance

- Suppose that $X_i = (X_{i1}, ..., X_{iK})$.
- The Euclidean distance metric is

$$D_{ij} = \sqrt{\sum_{k=1}^{K} \frac{\left(X_{ik} - X_{jk}\right)^2}{\widehat{\sigma}_k^2}} \quad ,$$

where
$$\hat{\sigma}_k^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_{ik} - \bar{X}_k)^2$$
.

Mahalanobis distance

- Intuition: if X_{ik} and $X_{ik'}$ are highly correlated, then their contribution to the distances should be lower.
- Easy to get close on correlated covariates, then downweight it
- Harder to get close on uncorrelated covariates, then upweight it
- The Mahalanobis distance is

$$D_{ij} = \sqrt{(X_i - X_j)^T \widehat{\Sigma}^{-1} (X_i - X_j)},$$

where weight matrix $\hat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})(X_i - \bar{X})^T$.

Caliper

 To overcome shortcomes of erroneously choosing control, we will only select the control if its distance to case meet condition:

$$D_{ij} < \varepsilon$$

• Rubin (1985) suggested using a caliper size of a quarter of a standard deviation of the sample estimate propensity score ($\varepsilon = \sigma_{ps}/4$).

Hybrid metrics

Example:

Exact on race/gender, Mahalanobis on the rest.

The general matching procedure

- 1. Choose a number of matches
- 2. Choose a distance metric
- 3. Find matches (drop non-matches)
- 4. Check balance
- 5. Repeat 1-4 until balance is acceptable
- Calculate the effect of the treatment on the outcome in the matched dataset.

The Card-Krueger Minimum Wage Data

- Card and Krueger (1995) were interested in evaluating the effect of raising the state minimum wage in New Jersey in 1993.
- data were collected on employment at fast-food restaurants in New Jersey and in the neighboring state of Pennsylvania.
- Covariates are measured on restaurant level prior to the raise;
- The outcome is employment after the raise (final empl).

The Card-Krueger New Jersey and Pennsylvania Minimum Wage Data

	(N =	(N = 347)		$(N_t = 279)$ (treated)		$(N_c = 68)$ (controls)		Log Ratio	
	Mean	(S.D.)	Mean	(S.D.)	Mean	(S.D.)	Dif	of STD	
initial empl	17.84	(9.62)	20.17	(11.96)	17.27	(8.89)	-0.28	-0.30	
burger king	0.42	(0.49)	0.43	(0.50)	0.42	(0.49)	-0.02	-0.01	
kfc	0.19	(0.40)	0.13	(0.34)	0.21	(0.41)	0.20	0.17	
roys	0.25	(0.43)	0.25	(0.44)	0.25	(0.43)	0.00	-0.00	
wendys	0.14	(0.35)	0.19	(0.40)	0.13	(0.33)	-0.18	-0.18	
initial wage	4.61	(0.34)	4.62	(0.35)	4.60	(0.34)	-0.05	-0.02	
time until	17.96	(11.01)	19.05	(13.46)	17.69	(10.34)	-0.11	-0.26	
raise									
pscore	0.80	(0.05)	0.79	(0.06)	0.81	(0.04)	0.28	-0.35	
final empl	17.37	(8.39)	17.54	(7.73)	17.32	(8.55)			

Excise on the Card-Krueger Data

- For this illustration, we focus on a small subset of 20 restaurants
- 5 from New Jersey and 15 from Pennsylvania
- We use only initial employment (initial empl) and restaurant chain (burger king or kfc) as pre-treatment variables
- Inexact match without replacement

20 Units from the Card-Krueger Dataset

Unit i	State W _i	chain X _{i1}		final empl Y_i^{obs}
<i>ι</i>	"ı	Λ_{l1}	X_{i2}	i
1	NJ	BK	22.5	40.0
2	NJ	KFC	14.0	12.5
3	NJ	BK	37.5	20.0
4	NJ	KFC	9.0	3.5
5	NJ	KFC	8.0	5.5
6	PA	BK	10.5	15.0
7	PA	KFC	13.8	17.0
8	PA	KFC	8.5	10.5
9	PA	BK	25.5	18.5
10	PA	BK	17.0	12.5
11	PA	BK	20.0	19.5
12	PA	BK	13.5	21.0
13	PA	BK	19.0	11.0
14	PA	BK	12.0	17.0
15	PA	BK	32.5	22.5
16	PA	BK	16.0	20.0
17	PA	KFC	11.0	14.0
18	PA	KFC	4.5	6.5
19	PA	BK	12.5	31.5
20	PA	BK	8.0	8.0

Match O	rder = 1,2	2,3,4,5; Mo	etric = x_1^2	$+x_2^2$
i	m_i^c	Y_i^{obs}	$Y_{m_i^c}^{\text{obs}}$	$\hat{ au}_i^{ ext{match}}$
1	11	40.0	19.5	20.5
2	7	12.5	17	-4.5
3	15	20.0	22.5	-2.5
4	8	3.5	10.5	-7
5	20	5.5	8.0	-2.5
$\hat{ au}_t^{ match}$				+0.8
Match O	rder = 1,2	2,3,5,4; Mo	etric = x_1^2	$+x_2^2$
i	m_i^c	Y_i^{obs}	$Y_{m_i^c}^{\text{obs}}$	$\hat{ au}_i^{ ext{match}}$
1	11	40.0	19.5	20.5
2	7	12.5	17.0	-4.5
3	15	20.0	22.5	-2.5
5	8	5.5	10.5	-5
4	20	3.5	8.0	-4.5
$\hat{ au}_t^{ match}$				+0.8
Match O	rder = 1,2	2,3,4,5; Mo	etric = 100	$0 \cdot x_1^2 + x_2^2$
i	m_i^c	Y_i^{obs}	$Y_{m_i^c}^{\text{obs}}$	$\hat{ au}_i^{ ext{match}}$
1	11	40.0	19.5	20.5
2	7	12.5	17.0	-4.5
3	15	20.0	22.5	-2.5
4	8	3.5	10.5	-7
5	17	5.5	14.0	-8.5

 $\hat{ au}_t^{\,match}$

The Bias of Matching Estimator

 The potential bias created by discrepancies between the pretreatment covariates of the units within a matched pair.

$$E\left[\hat{\tau}_{i}^{match}|A_{i}=1,X_{i},X_{m_{i}^{c}}\right] = E\left[Y_{i}^{1} - Y_{m_{i}^{c}}^{0}|X_{i},X_{m_{i}^{c}}\right]$$

$$= \mu_{t}(X_{i}) - \mu_{c}\left(X_{m_{i}^{c}}\right) = \tau(X_{i}) + \mu_{c}(X_{i}) - \mu_{c}\left(X_{m_{i}^{c}}\right)$$

- The unit-level bias is $B_i = \mu_c(X_i) \mu_c\left(X_{m_i^c}\right)$
- Bias adjustment:

$$\hat{\tau}_{t}^{adj} = \frac{1}{N_{t}} \sum_{i:A_{i}=1} \left(Y_{i} - Y_{m_{i}^{c}} - \hat{B}_{i} \right)$$

 \hat{B}_i can be estimated through linear model

Bias Correction Using Linear Model

- If we assume linear models for the group specific means $\mu_c(x)=\alpha_d+x\beta_d$ and $\mu_t(x)=\tau+\alpha_d+x\beta_d$
- Then we can estimate the bias as $\hat{B}_i = \hat{\mu}_c(X_i) \hat{\mu}_c\left(X_{m_i^c}\right) = (X_i X_{m_i^c})\hat{\beta}_d$
- Three simple regression based approaches can be considered to obtain \hat{B}_i :
 - 1. Regression on the Matching Discrepancy $(D_i = X_i X_{m_i^c})$ $Y_i^{obs} - Y_{m_i^c}^{obs} = \tau + D_i \beta_d + v_i$: $Y_i^{obs} - Y_{m_i^c}^{obs} \sim D_i \Rightarrow \hat{\beta}_d$
 - 2. Control Regression on Covariates

$$Y_{m_i^c} = \alpha_c + X_{m_i^c} \beta_c + v_{ci} : Y_{m_i^c} \sim X_{m_i^c} \Rightarrow \hat{\beta}_c$$

3. Pooled Regression on Covariates

$$Y_i = \alpha_p + \tau_p A_i + X_i \beta_p + v_i$$
: $Y_i \sim A_i + X_i \Rightarrow \hat{\beta}_p$

Matching Discrepancy for the 20 Units from the Card-Krueger Data (Match Order 1,2,3,4,5; Metric $x_1^2+x_2^2$)

i	m_i	Y_i^{obs}	$Y_{m_i^c}^{\text{obs}}$	$\hat{\tau}_i^{\mathrm{match}}$	$X_{i,1}$	$X_{i,2}$	$X_{m_i^c,1}$	$X_{m_i^c,2}$	$D_{i,1}$	$D_{i,2}$
1	11	40.0	19.5	20.5	0	22.5	0	20.0	0	2.5
2	7	12.5	17.0	-4.5	1	14.0	1	13.8	0	0.2
3	15	20.0	22.5	-2.5	0	37.5	0	32.5	0	5.0
4	8	3.5	10.5	-7.0	1	9.0	1	8.5	0	0.5
5	20	5.5	8.0	-2.5	1	8.0	0	8.0	1	0

Bias-Adjustment Regression Coefficients for the 20 Units from the Card-Krueger Data

	Difference Regression (Approach #1)	Control Regression (Approach #2)	Pooled Regression (Approach #3)
Regression coefficients			
Intercept	-1.30	4.21	12.01
Treatment indicator	_	_	1.63
Restaurant chain Initial employment	-1.20 1.43	2.65 0.62	-7.32 0.39

Regression on the Matching Discrepancy (Difference Regression):

First pair $(i, m_i) = (1,11), X_1 = (0,22.5), X_{m_1} = (0,20.0)$

Thus the adjusted control outcome:

$$\hat{Y}_1(0) = Y_{m_1} + D_1 \hat{\beta}_d = 19.5 - 1.20 \times D_{1,1} + 1.43 \times D_{1,2}$$

= 19.5 - 1.20 \times 0 + 1.43 \times 2.5 = 23.1

The adjusted estimate of the unit-level treatment effect

$$\hat{\tau}_1^{adj} = Y_1(1) - \hat{Y}_1(0) = 40.0 - 23.1 = 16.9$$

Similarly, we can obtain the following full set of results:

i	m_i	$Y_i(1)$	$Y_{m_i^c}(0)$	$X_{i,1}$	$X_{i,2}$	$X_{m_i^c,1}$	$X_{m_i^c,2}$	$D_{i,1}$	$D_{i,2}$	$\hat{\beta}_d^T D_i$	$\hat{Y}_i(0)$
1	11	40.0	19.5	0	22.5	0	20.0	0	2.5	3.6	23.1
2	7	12.5	17.0	1	14.0	1	13.8	0	0.2	0.3	17.3
3	15	20.0	22.5	0	37.5	0	32.5	0	5.0	7.1	29.6
4	8	3.5	10.5	1	9.0	1	8.5	0	0.5	0.7	11.2
5	20	5.5	8.0	1	8.0	0	8.0	1	0	-1.2	6.8
		$\hat{ au}_t^{ match}$	= +0.8			$\hat{\tau}_{t}^{\mathrm{adj}} =$	= -1.3				

Control Regression on Covariates:

First pair $(i, m_i) = (1,11), X_1 = (0,22.5), X_{m_1} = (0,20.0)$

Thus the adjusted control outcome:

$$\hat{Y}_1(0) = Y_{m_1} + D_1 \hat{\beta}_c = 19.5 + 2.65 \times D_{1,1} + 0.62 \times D_{1,2}$$

= 19.5 - 2.65 \times 0 + 0.62 \times 2.5 = 21.1

The adjusted estimate of the unit-level treatment effect

$$\hat{\tau}_1^{adj} = Y_1(1) - \hat{Y}_1(0) = 40.0 - 21.1 = 18.9$$

Similarly, we can obtain the following full set of results:

i	m_i	$Y_i(1)$	$Y_{m_i^c}(0)$	$X_{i,1}$	$X_{i,2}$	$X_{m_i^c,1}$	$X_{m_i^c,2}$	D_{i1}	D_{i2}^*	$\hat{\beta}_c^T D_i$	$\hat{Y}_i(0)$
1	11	40.0	19.5	0	22.5	0	20.0	0	2.5	1.5	21.0
2	7	12.5	17.0	1	14.1	1	13.8	0	0.2	0.1	17.1
3	15	20.0	22.5	0	37.5	0	32.5	0	5.0	3.1	25.6
4	8	3.5	10.5	1	9.0	1	8.5	0	0.5	0.3	10.8
5	20	5.5	8.0	1	8.0	0	8.0	1	0	2.7	10.7
		$\hat{ au}_t^{match}$	= +0.8			$\hat{\tau}_{t}^{adj} =$	-0.7				

Pooled Regression on Covariates:

First pair $(i, m_i) = (1,11), X_1 = (0,22.5), X_{m_1} = (0,20.0)$ Thus the adjustment for the 1st pair:

$$\hat{B}_1 = -7.32 \times D_{1,1} + 0.39 \times D_{1,2}$$

= $-7.32 \times 0 + 0.39 \times 2.5 = 0.98$

The adjusted estimate of the unit-level treatment effect

$$\hat{\tau}_1^{adj} = Y_1(1) - Y_{m_1}(0) - \hat{B}_1 = 40.0 - 19.5 - 0.98 = 19.52$$

Similarly, we can obtain the following full set of results:

i	m_i	$Y_i(1)$	$Y_{m_i^c}(0)$	$X_{i,1}$	$X_{i,2}$	$X_{m_i^c,1}$	$X_{m_i^c,2}$	D_{i1}	D_{i2}	$\hat{\beta}_s^T D_i$	$\hat{Y}_i(0)$
1	11	40.0	19.5	0	22.5	0	20.0	0	2.5	1.0	20.5
2	7	12.5	17.0	1	14.0	1	13.8	0	0.2	0.1	17.1
3	15	20.0	22.5	0	37.5	0	32.5	0	5.0	1.9	24.4
4	8	3.5	10.5	1	9.0	1	8.5	0	0.5	0.2	10.7
5	20	5.5	8.0	1	8.0	0	8.0	1	0	-7.3	0.7
	$\hat{\tau}_{t}^{\text{match}} = +0.8$						+1.6				

Matching with Replacement

- The set of controls selected does not depend on the ordering of treated units.
- Let L(i) be the number of times each control unit id used as a match

$$L(i) = \sum_{j=i}^{N_t} 1_{j \in M_i^c}$$

When matching without replacement, $L(i) \in \{0,1\}$ for all units.

$$\hat{\tau}_t^{repl} = \frac{1}{N_t} \sum_{i=1}^{N} \left(A_i \cdot Y_i^{obs} - (1 - A_i) \cdot L(i) \cdot Y_i^{obs} \right)$$

With or without replacement

- Matching with replacement: a single control unit could be matched repeatedly with multiple treated units.
- Pro:
 - 1. Better matches!
 - 2. Order of matching does not matter.
- Con:
 - 1. need more complicated inference.
 - 2. need to account for multiple appearances with weights.
- 3. potentially higher uncertainty (using the same data multiple times=relying on less data)

The Number of Matches

- Let σ_c^2 and σ_t^2 be the super-population variances of Y_i^0 and Y_i^1 conditional on the covaraites.
- If we use M matches, the estimator then

$$\hat{\tau}_{t}^{match,M} = \frac{1}{N_{t}} \sum_{i=1}^{N_{t}} \left(Y_{i}^{1} - \frac{1}{M} \sum_{j \in M_{i}^{c}} Y_{j}^{0} \right)$$

• The sample variance is then

$$Var(\hat{\tau}_t^{match,M}) = \frac{1}{N_t} \left(\sigma_t^2 + \frac{\sigma_c^2}{M} \right)$$

• Assume equal variance
$$\sigma_c^2 = \sigma_t^2$$

$$\frac{Var(\hat{\tau}_t^{match,1}) - Var(\hat{\tau}_t^{match,M})}{Var(\hat{\tau}_t^{match,1})} = \frac{M-1}{2M}$$
M=2 reduces the sample variance by 25% relative to using a second

M=2 reduces the sample variance by 25% relative to using a single match

Assessing balance

All matching methods seek to find the balance:

$$P(X_i = x | A_i = 1, S) = P(X_i = x | A_i = 0, S)$$

- Choice of balance metric will determine which matching method does better.
- Options: estimation of matching performance
 - 1. Differences in mean/medians, standardized.
- 2. QQ plot/K-S statistics for comparing the entire distribution.

. . .

Estimand

 Matching easiest to justify for the average treatment effect for the treated (ATT).

for the treated (ATT).
$$\hat{\tau}_t = \frac{1}{N_t} \sum_{i:A_i=1}^{J} \left(Y_i^{obs} - Y_{m_i^c}^{obs} \right)$$

 Can also justify the average treatment effect for the controls (ATU) by finding matched treated units for the controls.

$$\hat{\tau}_c = \frac{1}{N_c} \sum_{i:A_i=0} \left(Y_{m_i^t}^{obs} - Y_i^{obs} \right)$$

 Combined the two to obtain the average treatment effect for the entire sample (ATE):

$$\hat{\tau} = \frac{N_c}{N_c + N_t} \hat{\tau}_c + \frac{N_t}{N_c + N_t} \hat{\tau}_t$$

