Wireless Systems Security

EE/NiS/TM-584-A/WS

Bruce McNair bmcnair@stevens.edu

Week 4: More Security Topics

Evolution of Cryptography

- Monoalphabetic substitution, e.g.,
 - Caesar cipher $\{a,b,c,d,e,f,...,x,y,z\} \rightarrow \{b,c,d,e,f,g,...,y,z,a\}$
 - Atbash cipher $\{a,b,c,d,e,f,...x,y,z\} \rightarrow (z,y,x,w,v,....c,b,a\}$
 - Any permutation of the alphabet
 - Easily solved by observing single and double letter frequencies
 - English (like most other non-ideograph languages) have distinct letter frequencies over a small alphabet.
 - Encoding English letters requires log₂(26) ~ 4.7 bits/letter,
 - but information content in English text is

$$\Sigma p log_2(p)$$

With unequal letter probabilities, actual information content is much lower.

Equivocation of source is the effective information content

Evolution of Cryptography

- Monoalphabetic substitution, e.g.,
 - Caesar cipher $\{a,b,c,d,e,f,...,x,y,z\} \rightarrow \{b,c,d,e,f,g,...,y,z,a\}$
 - Atbash cipher $\{a,b,c,d,e,f,...x,y,z\} \rightarrow (z,y,x,w,v,...c,b,a\}$
 - Any permutation of the alphabet
 - Easily solved by observing single and double letter frequencies
 - English (like most other non-ideograph languages) have distinct letter frequencies over a small alphabet.
 - Encoding English letters requires log₂(26) ~ 4.7 bits/letter,
 - but information content in English text is

S p $log_2(p)$

With unequal letter probabilities, actual information content is much lower.

Equivocation of source is the effective information content

• Polyalphabetic substitution:

- Correlation-like techniques find the length of the key stream, k
- Problem then reduces to solving k monoalphabetic ciphers
- Using running text (e.g., from an agreed to book) makes solution harder, but with enough ciphertext, both the plaintext as well as the key stream are easily found

Evolution of Cryptography - 2

Weakness of polyalphabetic cipher is repetition of the key stream

• One-time-pad is the only provably secure cryptographic system

Evolution of Cryptography - 2

Weakness of polyalphabetic cipher is repetition of the key stream

 One-time-pad is the only provably secure cryptographic system What happens if key sequence is (accidentally) reused?

Sender (or receiver) accidentally sent M2, reusing KS1, previously used for M1

- For N bit register, if f(x) is linear, 2N-1 bits of key stream are sufficient to find f()
- So, f() must be nonlinear

- How to make f() easy to change?
- What about synchronization?

- How to make f() easy to change?
- What about synchronization?

- How to make f() easy to change?
- What about synchronization?

DES as one f() option

Internal operation of DES

Public Key Cryptosystems

Public Key Cryptosystems

- D() and E() must be built on commutative functions:
 f(g(x)) = g(f(x))
- Multiplication and exponentiation work are there others?
 These form bases for Rivest-Shamir-Adleman (RSA)
 and Diffie-Hellman PKCs
- The apparent security of PKCs come from difficulty of computing logarithms and factoring composite numbers in a finite field. *Thought* to be NP-Complete problems, Which *might* make them mathematically intractable
- E.g., $E(M) = M^e$ $D(C) = C^d$ $D(E(M)) = (M^e)^d = M^{ed} = M^1, \text{ if } d=e^{-1} \text{ in the field}$

Applications of cryptography to security

- Confidentiality the most obvious application
- Integrity

- Non-repudiation
 - Same as integrity, but seal the message: with user ID and user-specific key
- Authentication Challenge-response

