1. <u>Invariant</u>: after iteration i, sum = i^2 .

<u>1st Iteration</u>: Before the first iteration, sum = 0. During the first iteration, sum = $0 + (2 \times 1) - 1 = 1$. Thus, sum = i^2 after iteration 1, since $1^2 = 1$.

<u>Kth Iteration</u>: Suppose that sum = k^2 after the k^{th} iteration. In the $(k+1)^{th}$ iteration, sum = $k^2 + 2 \times (k+1) - 1 = k^2 + 2k + 1$. This polynomial may be factored into $(k+1) \times (k+1)$, or $(k+1)^2$, which proves that sum = i^2 for the $(k+1)^{th}$ iteration.

When n=0, sum =0 is returned and is correct, since $0^2=0$. For all other cases, by the loop invariant, sum $=i^2$ after every iteration of the for loop, so sum $=n^2$ after the n^{th} iteration, and thus this function returns n^2 whenever the loop iterates.

2. <u>B/C</u>: When n=0, QuickPow returns 1 which is correct, since QuickPow outputs 2^n and $2^0=1$. <u>I/S</u>: Given some particular but arbitrary value x in n such that $x \ge 0$, if P(x) is true for all $x \le k$, QuickPow(k) = 2^k must be true. QuickPow(k) must, for any value of k – either even or odd – return 2^k .

If k is <u>even</u>, then $t = \text{QuickPow}\left(\frac{k}{2}\right)$ which, under assumption of the induction hypothesis, is equal to $2^{\frac{k}{2}}$. If $t = 2^{\frac{k}{2}} = \sqrt[2]{2^k}$, QuickPow returns $t^2 = \left(\sqrt[2]{2^k}\right)^2 = 2^k$.

If k is \underline{odd} , then $t=QuickPow\left(\frac{k-1}{2}\right)$ which, under assumption of the induction hypothesis, is equal to $2^{\frac{k-1}{2}}$. If $t=2^{\frac{k-1}{2}}=\sqrt[2]{2^{k-1}}$, QuickPow returns $2t^2=2\times(\sqrt[2]{2^{k-1}})^2=2\times 2^{k-1}=2^k$.

Given QuickPow(k) = 2^k , it must follow that QuickPow(k + 1) = 2^{k+1} , for some $k \ge x$. If k+1 is <u>even</u>, then t= QuickPow $\left(\frac{k+1}{2}\right)$ which, under assumption of the induction hypothesis, is equal to $2^{\frac{k+1}{2}}$. If $t=2^{\frac{k+1}{2}}=\sqrt[2]{2^{k+1}}$, QuickPow returns $t^2=\left(\sqrt[2]{2^{k+1}}\right)^2=2^{k+1}$. If k+1 is <u>odd</u>, then t= QuickPow $\left(\frac{k+1-1}{2}\right)$ which, under assumption of the induction hypothesis, is equal to $2^{\frac{k}{2}}$. If $t=2^{\frac{k}{2}}=\sqrt[2]{2^k}$, QuickPow returns $2t^2=2\times(\sqrt[2]{2^k})^2=2\times2^k=2^{k+1}$.

Therefore, for all values x in n such that $x \ge 0$, QuickPow(x) = 2^x since for all values k and k + 1 in n, QuickPow returns 2^k and 2^{k+1} , respectively.