12.185

AI25BTECH11003 - Bhavesh Gaikwad

October 1, 2025

Question

If the rank of a (5×6) matrix **Q** is 4, then which one of the following statements is correct?

(EE 2008)

- Q will have four linearly independent rows and four linearly independent columns.
- b) **Q** will have four linearly independent rows and five linearly independent columns.
- c) **QQ**[⊤] will be invertible.
- d) $\mathbf{Q}^{\top}\mathbf{Q}$ will be invertible

Theoretical Solution

Primary Analysis:

Since $rank(\mathbf{Q})=4 \Rightarrow :: \mathbf{Q}$ will have four linearly independent rows and four linearly independent columns.

Option-A:

Correct Option by Primary Analysis itself.

Option-B:

Incorrect Option by Primary Analysis itself.

Option-C:

 $\mathbf{Q}\mathbf{Q}^{\top}$ is a 5×5 matrix.

Since, $rank(\mathbf{Q}\mathbf{Q}^{\top}) = rank(\mathbf{Q})$.

 \therefore rank($\mathbf{Q}\mathbf{Q}^{\top}$) = 4.

Since rank($\mathbf{Q}\mathbf{Q}^{\top}$)=4<5, Thus the 5×5 matrix $\mathbf{Q}\mathbf{Q}^{\top}$ is singular $(|\mathbf{Q}\mathbf{Q}^{\top}|=0)$, hence not invertible. Incorrect Option.

Theoretical Solution

```
Option-D:
```

 $\mathbf{Q}^{\top}\mathbf{Q}$ is a 6×6 matrix.

Since, $rank(\mathbf{Q}^{\top}\mathbf{Q}) = rank(\mathbf{Q})$.

 \therefore rank $(\mathbf{Q}^{\top}\mathbf{Q}) = 4$.

Since rank($\mathbf{Q}^{\top}\mathbf{Q}$)=4<6, Thus the 6×6 matrix $\mathbf{Q}^{\top}\mathbf{Q}$ is singular $(|\mathbf{Q}^{\top}\mathbf{Q}| = 0)$, hence not invertible. Incorrect Option.

Thus, Only Option-A is correct.

Proof by Example

Consider the 5×6 matrix **Q** of rank 4:

$$\mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & 0 & 4 & 5 \\ 0 & 0 & 1 & 0 & 6 & 7 \\ 0 & 0 & 0 & 1 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}. \tag{1}$$

Option (a): Four independent rows and columns

Clearly 4 rows of ${f Q}$ are linearly independent. Thus row rank of ${f Q}=4$

Clearly 4 columns of ${\bf Q}$ are linearly independent.

Thus column rank of $\mathbf{Q} = 4$

Thus (a) holds.

Option (b): Four independent rows and Five independent columns Column rank cannot exceed 4.

Hence (b) is false.

Proof by Example

Option (c): Invertibility of $\mathbf{Q} \mathbf{Q}^{\top}$

$$\mathbf{Q}\mathbf{Q}^{\top} = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & 0 & 4 & 5 \\ 0 & 0 & 1 & 0 & 6 & 7 \\ 0 & 0 & 0 & 1 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & 4 & 6 & 8 & 0 \\ 3 & 5 & 7 & 9 & 0 \end{pmatrix}$$
(2)

$$\mathbf{Q}\mathbf{Q}^{\top} = \begin{pmatrix} 14 & 23 & 33 & 43 & 0 \\ 23 & 42 & 59 & 77 & 0 \\ 33 & 59 & 86 & 111 & 0 \\ 43 & 77 & 111 & 146 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 (3)

Since $|\mathbf{Q} \mathbf{Q}^{\top}| = 0$. Not invertible.

(c) is false.

Proof by Example

Option (d): Invertibility of $\mathbf{Q}^{\mathsf{T}}\mathbf{Q}$

$$\mathbf{Q}^{\top}\mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & 4 & 6 & 8 & 0 \\ 3 & 5 & 7 & 9 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & 0 & 4 & 5 \\ 0 & 0 & 1 & 0 & 6 & 7 \\ 0 & 0 & 0 & 1 & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(4)

$$\mathbf{Q}^{\top}\mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 & 3\\ 0 & 1 & 0 & 0 & 4 & 5\\ 0 & 0 & 1 & 0 & 6 & 7\\ 0 & 0 & 0 & 1 & 8 & 9\\ 2 & 4 & 6 & 8 & 120 & 154\\ 3 & 5 & 7 & 9 & 154 & 197 \end{pmatrix}$$
 (5

Since, $|\mathbf{Q}^{\top}\mathbf{Q}| = 0$. Not invertible.

(d) is false.