MA 105 : Calculus Simply connected sets

Aryaman Maithani

IIT Bombay

27th October, 2019

Simply connected sets

Let $m \in \mathbb{N}$ and $D \subset \mathbb{R}^m$.

We know that a curve in D is simply a C^1 function $c:[a,b]\to D$ where $a,\ b\in\mathbb{R}$ with a< b.

For the purpose of this discussion, we shall assume a=0 and b=1.

We say that c can be *continuously* shrunk to a point $d \in D$ if there is a continuous function $H: [0,1] \times [0,1] \to D$ such that

- ① H(0,t) = c(t) for every $t \in [0,1]$,
- ② H(1,t)=d for every $t\in[0,1]$, and
- ③ H(s,1) = H(s,0) for every $s \in [0,1]$.

This map H is called a homotopy in D between the curve c and the constant curve d. The domain D is said to be simply-connected if D is path-connected and if for every simply closed curve c in D, we have a homotopy H between c and $some \ d \in D$.

Alternate definition

The previous definition can also be written in a slightly more concise (but equivalent) way.

Let D and c have the same meaning as before. Moreover, let

$$S^1:=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\} \text{ and } U^2:=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}.$$

We say that D is simply-connected if D is path-connected and any loop in D defined by $f:S^1\to D$ can be contracted to a point: there exists a continuous map $F:U^2\to D$ such that F restricted to S^1 is f.