#### MACHINE LEARNING AND AI

ЛЕКЦИЯ 6





## convolutional neural network (cnn)



Собака? (0\1)



Распознавание речи



Поиск объектов



#### проблема – выделение контура объекта





### выделение вертикальных краёв

| 3 | 0 | 1 | 2 | 7 | 4 |
|---|---|---|---|---|---|
| 1 | 5 | 8 | 9 | 3 | 1 |
| 2 | 7 | 2 | 5 | 1 | 3 |
| 0 | 1 | 3 | 1 | 7 | 8 |
| 4 | 2 | 1 | 6 | 2 | 8 |
| 2 | 4 | 5 | 2 | 3 | 9 |

| 1 | 0 | -1 |   |
|---|---|----|---|
| 1 | 0 | -1 | = |
| 1 | 0 | -1 |   |

| -5  | -4 | 0  | 8   |
|-----|----|----|-----|
| -10 | -2 | 2  | 3   |
| 0   | -2 | -4 | -7  |
| -3  | -2 | -3 | -16 |



### выделение вертикальных краёв

| 10 | 10 | 10 | 0 | 0 | 0 |
|----|----|----|---|---|---|
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |
| 10 | 10 | 10 | 0 | 0 | 0 |

| 1 | 0 | -1 |
|---|---|----|
| 1 | 0 | -1 |
| 1 | 0 | -1 |

| 0 | 30 | 30 | 0 |
|---|----|----|---|
| 0 | 30 | 30 | 0 |
| 0 | 30 | 30 | 0 |
| 0 | 30 | 30 | 0 |



## более сложный пример

| 10 | 10 | 10 | 0  | 0  | 0  |
|----|----|----|----|----|----|
| 10 | 10 | 10 | 0  | 0  | 0  |
| 10 | 10 | 10 | 0  | 0  | 0  |
| 0  | 0  | 0  | 10 | 10 | 10 |
| 0  | 0  | 0  | 10 | 10 | 10 |
| 0  | 0  | 0  | 10 | 10 | 10 |

| 1  | 1  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -1 | -1 |

\*

| 0  | 0  | 0   | 0   |
|----|----|-----|-----|
| 30 | 10 | -10 | -30 |
| 30 | 10 | -10 | -30 |
| 0  | 0  | 0   | 0   |



# общий случай

| 3 | 0 | 1 | 2 | 7 | 4 |
|---|---|---|---|---|---|
| 1 | 5 | 8 | 9 | 3 | 1 |
| 2 | 7 | 2 | 5 | 1 | 3 |
| 0 | 1 | 3 | 1 | 7 | 8 |
| 4 | 2 | 1 | 6 | 2 | 8 |
| 2 | 4 | 5 | 2 | 3 | 9 |

| $W_1$                 | W <sub>2</sub>        | $M^3$          |
|-----------------------|-----------------------|----------------|
| W <sub>4</sub>        | <b>W</b> <sub>5</sub> | W <sub>6</sub> |
| <b>W</b> <sub>7</sub> | W <sub>8</sub>        | $W_9$          |





### добавление рамки (padding)



| 1 × 1/1 | 5x5 |
|---------|-----|
| 3×3     |     |
| h-3     | +1  |
|         |     |

| 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |  |
|   |   |   |   |   |   |   |  |

3x3

padding = 'Same'



## сдвиг (stride) = /

\*







$$S = \sum_{l} q_{l}W_{l} \rightarrow S_{l}g_{l}$$
refr

## свёртка по объёму





## понижение размерности (pooling)

| 12  | 20  | 30 | 0  | mean<br>hun           |     |    |
|-----|-----|----|----|-----------------------|-----|----|
| 8   | 12  | 2  | 0  | $2 \times 2$ Max-Pool | 20  | 30 |
| 34  | 70  | 37 | 4  |                       | 112 | 37 |
| 112 | 100 | 25 | 12 |                       |     |    |



### свёрточная нейронная сеть (cnn)

CNJ Jan Le Cun



#### разновидности сетей

- AlexNet
- VGG
- Residual Network
- Siamese networks —
- Encoder-decoder -->
- etc.



#### AlexNet architecture





#### VGG-16 architecture





#### ResNet architecture





#### сиамские сети





#### encoder-decoder

