

20	9	138	180	222	264
		•			
AAG	GCG Ala 5	GCC Ala	ATG Met	CAA Gln	CAA Gln
AGAA	GTG Val	AAA Lys	TTT Phe	AAA Lys	GCA Ala 60
TTTAAGTGGA AATCCATTTC ATTAGAAAAG	GCG (Ala	CAC His	GAT Asd	GGT G1Y 45	TGT Cys
TTTC	AGG (Arg A	GTT Val	ACA Thr 30	GGC	TAT
TCCA	ATG Met	ATG Met 15	CCT	ATC H10	TTG Leu
A AA	O	TGT Cys	AAC Asn	ACA Thr	AAT Asn
GTGG.	TACA	TTC Phe	TGC Cys	TTG Leu	AAC Asn 55
LTAA(AAGCATACAA	CTC Leu	ACG Thr	GGA G1.y 40	ATA Ile
		GTT Val	AAA Lys 25	ACT	TTA Leu
AGAA(ACTC	TGC Cys 10	GATASD	ATA Ile	AAT Asn
GCCATCCCAT CAACAGAAGG	ATCGGACAAA GGGTACTCTT	GCT Ala	GATASD	ACC Thr	GTC Val
CAT	AAA	TTT Phe	GCG Ala	CAA	GAG Glu 50
ATCC	GGAC	TTC Phe	CTT Leu	ACC Thr 35	TTC Phe
GCC	ATC	GTT Val	GCA Ala 20	GTT Val	GAG Glu

ł !	908	848	0	32	& 9	14 15
!	м	m •	М	4	Ų.	N
! !	GAA Glu 75	ACG Thr	GCT Ala	S S S S S S S S S S S S S S S S S S S		
!	ACC Thr	GGA Gly	CAT His	CCA Pro		ACT
 - 	ACC Thr	GAC Asp	50 B B B B B B B	CCT Pro 115	TAA OCH	TTTTTACT
!	CAT His	AGT Ser	ATT 110	GTT Val	TCC Ser	\mathcal{O}
!	CTT Leu	CTT Leu 85	CCT Pro	GAT Asp	TGC Cys	ATCATATAGT
1	GGG G1Y 70	CCA Pro	GCG Ala	TGG Trp	AAT Asn	CATA
1	GAC	AGA Arg	GGA Gly	GCC Ala	ATA 110 125	
 - 	TGT Cys	ATC Ile	AAT Asn	TAT TYr 110	GAT Asd	AGAATA
! !	TCA Ser	ATT Ile	AAC Asn 95	AAG Lys	JCT	GCAGA
 - 	GTT Val	CAC His 80	GTC Val	TTC Phe	AGC Ser	
! :	AAA Lys 65	CCT Pro	CTT Leu	GCA Ala	A T C H J G	TAGI
1	GTC Val	GATASD	TGC Cys	GTA Val	ATC 11e 120	ATTCTAGTTG
! !	AAT Asn	ATA Ile	AAC Asn	CTT Leu 105	AGC Ser	
1 t	S & Y	CCA	AAC Asn 90	ACT Thr	TT P P P P P P	GGAGAAA

FIG. 1b

NOV 2 9 TOUR TE				
TENT & TRAVE	B			
	 	565	615	625
		TTAATGGAAT	AAAAAAAA	
	1	TAAGATTATT	AAAAAAAAA	
	! !	TTTTCACCAA	AAATAAAAA	
	 	GAGCTATTTA ATTTTTCAA TTTTCACCAA TAAGATTATT TTAATGGAAT	GTTAATGTAT TAGAATTGAA AAATAAAAA AAAAAAAA	
	! ! !	GAGCTATTTA	GTTAATGTAT	AAAAAAAAA
	$\mathbf{\Omega}$			

FIG. 1c

48	87	126	100	204	243
(1)		•			
CCCACAAG	AGC Ser	TTC Phe	CGC Arg	CTA Leu	GAC Asp 65
	ACA Thr	CAG Gln 25	666 617	TAC Tyr	TTG Leu
ATTT	GGC	CTC Leu	AAG Lys	GTC Val 50	GTG Val
AGTCAGATTT	GCC Ala 10	GCA Ala	AAG Lys	CCC	GAA Glu
	66C 61y	GCT Ala	CTC Leu 35	GCC Ala	GCC Ala
CAAACTCTAG	AAA Lys	AAG Lys	ACC Ser	ACG Thr	GTG Val 60
AAACI	AAC Asn	GAG Glu 20	TAC Tyr	GCT Ala	CTC Leu
	AAT Asn	TCT Ser	GAA Glu	GGC G1Y 45	AAC Asn
CTCCAT	GCA Ala 5	CGT Arg	GTC Val	TTA Leu	GÀA Glu
ACATO	JCG Ser	CTC Leu	CGC Arg 30	CGC Arg	CTT Leu
AAS	TCA Ser	AAG Lys	AGT Ser	AGG Arg	GTC Val 55
GAAAGTTGAA ACAT	ATT Ile	CGC Arg 15	GTC Val	TGC Cys	GCC Ala
GAAA	ATG Met	CGC Arg	JCC Ser	TAT TYr 40	GCC

FIG. 5a

-Ч

1	282	321	360	398	448	498
	ATG GCG GCG AAC GTG ACA GAA GAA ACA TCC CCC ATT GTT Met Ala Ala Asn Val Thr Glu Glu Thr Ser Pro Ile Val 70	ATC AAA CCG AGG CAT ATT ATG CTT GCC CCC AGG AAT GAT Ile Lys Pro Arg His Ile Met Leu Ala Pro Arg Asn Asp 80	GTA GAA GTT GAA CAA GCT GTT TCA CGG TGT CAC CAT CTC Val Glu Val Glu Gln Ala Val Ser Arg Cys His His Leu 95	GGC ATC AGG TGT CGT CCC TAAAACACGC AAAGAGCTGG Gly ile Arg Cys Arg Pro 105	ACCGTCGCAA ACGCCGTTCC ACCTTTCAGC CGGATTAGTT CTTGATATTT	CATTCTATCA ATCTTGGTTA TGTGACTGTG ATTTTTCGTT TTGTGTTGAA

FIG. 5b

മ

\(\)

B - - - -

1 .	548	587
· !		
1.	()	
1	T.C	
1	CTG	
1 •	GT(
1	AA	
i	CT	Ą
!	GAZ	AAZ
	3TT	AAA
i	AT(AA
	TTCTCGTTTT ATGTTGAACT AAGTCTGTGC	AAAAAA AAAAAAAA AAAAAAAA
	3TT	AAA
·	TC	AA
1	TTC	AAA
	L	A.
	GGZ	AAZ
•	ICI	<u>a</u> a a
· 1	AA'	AA
· !	C)	C)
1.		3A.A
	CTAAGCCCCC TAATCTGGAT	ACTCTTGAAG TAAA
	TAA	CIC
:	Ü	Ā
മ		

FIG. 5c

42	8	120	17 0	108
AAG AAA TCC GTC Lys Lys Ser Val	GCC CGC ATG TCT Ala Arg Met Ser 20	CTC GCC TCT AAG Leu Ala Ser Lys 35	ACC AAA GGA GTG Thr Lys Gly Val 45	AAA TGG CGC TTC Lys Trp Arg Phe 60
CCC GAA Pro Glu 5	CAT ACA His Thr	AAG CAG Lys Gln 30	CCA CCG Pro Pro	TCC GGA Ser Gly
ATC Hle	AAG Lys	CGC	CCA Pro	ACC Thr 55
ATG ACG Met Thr 1	CGT ATG Arg Met 15	GCT CCA Ala Pro	GCG CCA Ala Pro 40	ACT ACC Thr Thr
	GCC Ala	AAG Lys	AAG Lys	ACC Thr
GATCCCAAAT CATCA	CCG ATG Pro Met	GGC GGT Gly Gly 25	CTT CGC Leu Arg	AG CCC In Pro
GATCC	GCT CC Ala Pi 10	ACC GC Thr GJ	GCT CT Ala Le	AAG CAG Lys Gln 50

FIG. 6a

Ø								
 	237	276	Ж Б	348	398	448	485	
	GCG AGA TTT CAC AGG AAA CTG CCA TTC CAA GGG CTG GTG Ala Arg Phe His Arg Lys Leu Pro Phe Gln Gly Leu Val 65	AGG AAA ATC TGG CAG GAC TTG AAG ACA CAT CTG CGC TTC Arg Lys Ile Trp Gln Asp Leu Lys Thr His Leu Arg Phe 75	AAG AAC CAC TCG GTT CCT CCA CTT GAG GAG GTA ACT GAG Lys Asn His Ser Val Pro Pro Leu Glu Glu Val Thr Glu 95	GTT TAT CCT TGC CAA ACT ATT GGA GGA TGC TAT Val Tyr Pro Cys Gln Thr Ile Gly Gly Cys Tyr 105	TAGGATATTG AATTTGGATA ATGGTTTAAT TATCTGTTCT ACCTTTATGA	TCAAATTTCT GTGGCTCAGC GTTGTGTAAT TTGGGCAATC GAATTCTTAG	CTATATTGCC TCAAAAAAA AAAAAAAA AAAAAAA	

FIG. 6b

750	CGTGACGAAT	TTGCAGCAGT	GAATTGACAG CTTGGAAGTC GATCCAGTAT	CTTGGAAGTC	GAATTGACAG
700	GAGGCAAGAT	AACGTGAAGA	TTTTACTCTT	GGGGCTGGGA	GAACTTGGGC
650	CCCTAATTCT	TAACAATAAA CCCTAATTCT	TTGAAAGTTC	GGGTGCTGTA GAGACAGAAT	GGGTGCTGTA
009	GGCTGAATTT	ATTTATCAGT	ACGGATGGAG	GATTATGTTA	CACTGAGGCT
550	CTGATATGAA	CCTCTTGCCT	AGAGAAAAGC CCTCTTGCCT	TGTGAGAACG GGCTTCTGGG	TGTGAGAACG
200	TCAATGAAAT	TTTTGGTGTG	GGGATATTGA	CCGACCATCT AGTGATCCGT	CCGACCATCT
450	TGGCAGAGTT	CTGACGGGGA	TGCCATTCAT	TCCATTGAAT GTTAACCACT	TCCATTGAAT
400	TTTTCATTAT .	AAAATTTGTC	AGTAGGAGTA	TGAAAATCC CATTCTTTGT	TGAAAAATCC
350	GAATAGAAGA	AATATGTTGG GAATAGAAGA	TAGTACTCGA	TAATGCCTTA	GCCCCATCGC
300	AATTGTTAGA	TTGTTGGACG	ATTCATTTCG	GTAGTGAAAA GATTGTGATT	GTAGTGAAAA
250	GTAAGAATGT	ATAATTGTTT	TATATTTGAT	CTTTGGTGAT	TGTTAGATTG
200	TATCAACAAT	TCAAATTGAG	AATTTCTTCC	AGATAATTAA GTTTTGTAGC	AGATAATTAA
150	TTTAATGAAT	TAACTGGTTC	TATGCTCAAA	TCTCTTCTTG	TCCTATAATT
100	GAGTTAATTA	ATTTAGTAGT	TATAGGCATG	TAGTCAAAAT TGTCCTATTC	TAGTCAAAAT
50	TTTAGAGAAA	TTTGCCTAGG	TTGCCTAGGG	GGAATTAGGT	GGAGGGTGTT

FIG. 10a

-**Ч**

1 1	800	850	006	ιΩ
	8	∞	9	947
: 1				
1	CCCAA	AACCC	5555 5	
! !	ATTCC	GTGGA	CAAAI	TCACA
1	CGTTCTATAA	GAAGTTTTAA	TTTAAACATA	TCTGTATGGT
	ATCGG TCAGAGAATG CGTTCTATAA ATTCCCCCAA	AAAATCCCAT CCCATCAACA GAAGTTTTAA GTGGAAACCC	ATCGA ACAAAGGGTA TTTAAACATA CAA ATQ GGGG	TIGCT TGCGTTCTCT TCTGTATGGT TCACA
!	. GTTACATCGG	AAAATCCCAT	AGAAG	TCTTTTTGCT
A A	TGGTTGGACA	TGCGGCAGTG	ATTCCAATAG	CAGTGGTGTT
•				

FIG. 10b