Importing, Understanding and Cleaning of Data

RangeIndex: 3047 entries, 0 to 3046
Data columns (total 34 columns).

```
In [ ]:
# Supress Warnings
import warnings
warnings.filterwarnings('ignore')
In [ ]:
#importing initial necessary libraries
import pandas as pd
import numpy as np
In [ ]:
#importing datset
df = pd.read csv('https://query.data.world/s/xlh353wvypzveoxm7h4u4c6hnucftk', encoding =
"ISO-8859-1")
In [ ]:
#looking at thr first five rows
df.head()
Out[]:
   avgAnnCount avgDeathsPerYear TARGET_deathRate incidenceRate medIncome popEst2015 povertyPercent studyPerCa
0
        1397.0
                           469
                                           164.9
                                                       489.8
                                                                  61898
                                                                           260131
                                                                                           11.2
                                                                                                 499,74820
1
         173.0
                            70
                                           161.3
                                                       411.6
                                                                            43269
                                                                                           18.6
                                                                                                  23.11123
                                                                  48127
2
         102.0
                            50
                                           174.7
                                                       349.7
                                                                  49348
                                                                            21026
                                                                                           14.6
                                                                                                  47.56016
         427.0
                           202
                                                       430.4
                                                                            75882
3
                                           194.8
                                                                  44243
                                                                                           17.1
                                                                                                 342.63725
          57.0
                            26
                                           144.4
                                                       350.1
                                                                  49955
                                                                            10321
                                                                                           12.5
                                                                                                   0.00000
5 rows × 34 columns
Inspecting various aspects of the dataframe
In [ ]:
df.shape
Out[]:
(3047, 34)
In [ ]:
df.info()
<class 'pandas.core.frame.DataFrame'>
```

```
Data Columno (Cocal of Columno).
avgAnnCount
                                               3047 non-null float64
                                     3047 non-null int64
3047 non-null float64
3047 non-null float64
3047 non-null int64
avgDeathsPerYear
TARGET_deathRate
incidenceRate
medIncome
popEst2015
povertyPercent
medIncome
                                             3047 non-null int64
                                            3047 non-null float64
3047 non-null float64
studyPerCap
binnedInc
                                             3047 non-null object
MedianAge
                                             3047 non-null float64
MedianAgeMale
                                             3047 non-null float64
                                      3047 non-null float64
MedianAgeFemale
                                          3047 non-null object
3047 non-null float64
3047 non-null float64
3047 non-null float64
Geography
AvgHouseholdSize
PercentMarried
PctNoHS18_24
PctHS18_24
PctSomeColl8_24
PctBachDeg18_24
PctHS25_Over
3047 non-null float64
PctBachDeg25_Over
3047 non-null float64
PctEmployed16_Over
PctUnemployed16_Over
PctPrivateCoverage
PctPrivateCoverage
PctEmpPrivCoverage
PctPublicCoverage
PctPublicCoverage
PctPublicCoverageAlone
PctWhite
3047 non-null float64
PctPublicCoverage
3047 non-null float64
PctPublicCoverage
3047 non-null float64
PctPublicCoverage
3047 non-null float64
PctWhite
3047 non-null float64
                                             3047 non-null float64
PctHS18 24
                                               3047 non-null float64
PctWhite
PctBlack
                                               3047 non-null float64
                                               3047 non-null float64
PctAsian
                                               3047 non-null float64
PctOtherRace
                                              3047 non-null float64
PctMarriedHouseholds
BirthRate
                                               3047 non-null float64
dtypes: float64(29), int64(3), object(2)
memory usage: 809.4+ KB
```

In []:

df.isnull().sum() * 100 / len(df)

Out[]:

avgAnnCount avgDeathsPerYear	0.000000
TARGET deathRate	0.000000
incidenceRate	0.000000
medIncome	0.000000
popEst2015	0.000000
povertyPercent	0.000000
studyPerCap	0.000000
binnedInc	0.00000
MedianAge	0.00000
MedianAgeMale	0.00000
MedianAgeFemale	0.00000
Geography	0.00000
AvgHouseholdSize	0.00000
PercentMarried	0.00000
PctNoHS18_24	0.00000
PctHS18_24	0.00000
PctSomeCol18_24	74.991795
PctBachDeg18_24	0.00000
PctHS25_Over	0.00000
PctBachDeg25_Over	0.00000
PctEmployed16_Over	4.988513
PctUnemployed16_Over	0.00000
PctPrivateCoverage	0.00000
PctPrivateCoverageAlone	19.986872
PctEmpPrivCoverage	0.000000
PctPublicCoverage	0.000000
PctPublicCoverageAlone	0.00000
PctWhite	0.000000

```
      PctBlack
      0.000000

      PctAsian
      0.000000

      PctOtherRace
      0.000000

      PctMarriedHouseholds
      0.000000

      BirthRate
      0.000000
```

dtype: float64

In []:

Since PctSomeCol18_24 is having 75%(approx), we can remove this column

```
In []:

df = df.drop(['PctSomeCol18_24'], axis = 1)
```

Since PctPrivateCoverageAlone is having 20%(approx) missing values, we can remove the rows for which this value is missing

```
df = df[df['PctPrivateCoverageAlone'].notna()]
In [ ]:
df.isnull().sum() * 100 / len(df)
Out[]:
avgAnnCount
                           0.000000
                           0.000000
avgDeathsPerYear
TARGET deathRate
                           0.000000
                           0.000000
incidenceRate
medIncome
                           0.000000
popEst2015
                           0.000000
                           0.000000
povertyPercent
                           0.000000
studyPerCap
binnedInc
                           0.000000
MedianAge
                           0.000000
MedianAgeMale
                           0.000000
MedianAgeFemale
                           0.000000
Geography
                           0.000000
AvgHouseholdSize
                           0.000000
PercentMarried
                           0.000000
PctNoHS18 24
                           0.000000
PctHS18 24
                           0.000000
PctBachDeg18 24
                           0.000000
PctHS25 Over
                          0.000000
PctBachDeg25 Over
                          0.000000
PctEmployed16_Over
                          4.347826
PctUnemployed16 Over
                          0.000000
PctPrivateCoverage
                           0.000000
PctPrivateCoverageAlone
                         0.000000
PctEmpPrivCoverage
                           0.000000
                           0.000000
PctPublicCoverage
PctPublicCoverageAlone
                           0.000000
Pct.White
                           0.000000
PctBlack
                           0.000000
                           0.000000
PctAsian
                           0.000000
PctOtherRace
PctMarriedHouseholds
                           0.000000
BirthRate
                           0.000000
dtype: float64
```

Missing values are still there in column PctEmployed16_Over, again removing those rows having missing values in this column

```
In []:
df = df[df['PctEmployed16_Over'].notna()]
```

```
df.isnull().sum() * 100 / len(df)
Out[]:
                           0.0
avgAnnCount
avgDeathsPerYear
                           0.0
TARGET deathRate
                           0.0
                           0.0
incidenceRate
                          0.0
medIncome
                          0.0
popEst2015
povertyPercent
                          0.0
                          0.0
studyPerCap
                          0.0
binnedInc
MedianAge
                          0.0
                          0.0
MedianAgeMale
                          0.0
MedianAgeFemale
                          0.0
Geography
AvgHouseholdSize
                          0.0
                          0.0
PercentMarried
PctNoHS18 24
                          0.0
PctHS18 24
                          0.0
PctBachDeg18 24
                          0.0
PctHS25 Over
                          0.0
PctBachDeg25_Over
                          0.0
PctEmployed16 Over
                          0.0
PctUnemployed16 Over
                          0.0
                           0.0
PctPrivateCoverage
PctPrivateCoverageAlone
                          0.0
PctEmpPrivCoverage
                           0.0
PctPublicCoverage
                           0.0
PctPublicCoverageAlone
                           0.0
PctWhite
                           0.0
PctBlack
                           0.0
                           0.0
PctAsian
PctOtherRace
                           0.0
PctMarriedHouseholds
                           0.0
BirthRate
                           0.0
dtype: float64
In [ ]:
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2332 entries, 1 to 3046
Data columns (total 33 columns):
                          2332 non-null float64
avgAnnCount
avgDeathsPerYear
                          2332 non-null int64
TARGET deathRate
                          2332 non-null float64
                          2332 non-null float64
incidenceRate
                          2332 non-null int64
medIncome
                          2332 non-null int64
popEst2015
                         2332 non-null float64
povertyPercent
                         2332 non-null float64
studyPerCap
                          2332 non-null object
binnedInc
                         2332 non-null float64
MedianAge
MedianAgeMale
                         2332 non-null float64
MedianAgeFemale
                         2332 non-null float64
Geography
                         2332 non-null object
AvgHouseholdSize
                         2332 non-null float64
                         2332 non-null float64
PercentMarried
                         2332 non-null float64
PctNoHS18 24
                         2332 non-null float64
PctHS18 24
PctBachDeg18_24
                         2332 non-null float64
                         2332 non-null float64
PctHS25 Over
                         2332 non-null float64
PctBachDeg25 Over
Pottmployed16_Over
PctEmployed16_Over
PctUnemployed16_Over
                          2332 non-null float64
                          2332 non-null float64
PctPrivateCoverage
                          2332 non-null float64
```

PctPrivateCoverageAlone 2332 non-null float64

2332 non-null float64

PctEmpPrivCoverage

PctPublicCoverage 2332 non-null float64 PctPublicCoverageAlone 2332 non-null float64 2332 non-null float64 PctWhite PctBlack 2332 non-null float64 PctAsian 2332 non-null float64 PctOtherRace 2332 non-null float64 PctMarriedHouseholds 2332 non-null float64 2332 non-null float64 BirthRate dtypes: float64(28), int64(3), object(2)

memory usage: 619.4+ KB

No missing values are present now

In []:

df.describe()

Out[]:

	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	stı
count	2332.000000	2332.000000	2332.000000	2332.000000	2332.000000	2.332000e+03	2332.000000	23
mean	609.979056	186.875214	178.918053	448.247260	46946.153516	1.035370e+05	16.961149	1
std	1440.417501	510.206766	27.482661	53.130088	12073.977204	3.428013e+05	6.432940	Ę
min	6.000000	3.000000	59.700000	201.300000	22640.000000	8.270000e+02	3.200000	
25%	75.000000	28.000000	161.400000	420.900000	38592.000000	1.154125e+04	12.200000	
50%	173.000000	62.000000	178.600000	453.549422	45079.000000	2.692300e+04	16.000000	
75%	517.250000	145.250000	195.325000	480.425000	52350.500000	6.803800e+04	20.600000	
max	38150.000000	14010.000000	293.900000	1014.200000	125635.000000	1.017029e+07	47.400000	97

8 rows × 31 columns

In []:

#Checking for IQR, since we can figure out a lot of outliers present in the dataset

```
q1 = df.quantile(0.25)
q3 = df.quantile(0.75)
IQR = q3 - q1
print(IQR)
```

avgAnnCount	442.250000
avgDeathsPerYear	117.250000
TARGET deathRate	33.925000
incidenceRate	59.525000
medIncome	13758.500000
popEst2015	56496.750000
povertyPercent	8.400000
studyPerCap	79.990393
MedianAge	6.100000
MedianAgeMale	6.200000
MedianAgeFemale	6.100000
AvgHouseholdSize	0.260000
PercentMarried	8.600000
PctNoHS18_24	10.100000
PctHS18_24	11.400000
PctBachDeg18_24	5.000000
PctHS25_Over	9.000000
PctBachDeg25_Over	6.500000
PctEmployed16 Over	11.525000
PctUnemployed16_Over	4.100000
PctPrivateCoverage	15.125000
PctPrivateCoverageAlone	14.600000
PctEmpPrivCoverage	13.325000
PctPublicCoverage	10.900000

```
18.436178
Pct.White
PctBlack
                               10.450693
PctAsian
                               0.954343
PctOtherRace
                                1.880944
                                7.615916
PctMarriedHouseholds
BirthRate
                               1.997401
dtype: float64
In [ ]:
df \text{ out} = df[\sim((df < (q1 - 1.5 * IQR)) | (df > (q3 + 1.5 * IQR))).any(axis=1)]
print(df out.shape)
(944, 33)
```

8.400000

PctPublicCoverageAlone

I want to state a point over here, since i don't have business understanding related to the dataset given i can't decide which variables are important for me and which are not so that is why i have decided to remove all the data points which were outliers and did not considered the importance of that variable.

If you want to treat outlier and not remove them, I am doing it in one way (Capping) below, you can explore other ways

```
In [ ]:
df.skew()
Out[]:
                           10.852524
avgAnnCount
avgDeathsPerYear
                           12.086274
TARGET deathRate
                           0.176615
                           -0.016202
incidenceRate
medIncome
                           1.441171
popEst2015
                          14.741562
                          0.945489
povertyPercent
                           8.640821
studyPerCap
MedianAge
                         10.457288
                          0.098081
MedianAgeMale
MedianAgeFemale
                          -0.236170
AvgHouseholdSize
                          -3.441399
PercentMarried
                          -0.688005
                          0.942008
PctNoHS18 24
PctHS18 24
                          0.204684
PctBachDeg18 24
                           2.110282
PctHS25 Over
                          -0.341117
PctBachDeg25 Over
                          1.138598
PctEmployed16_Over
                          -0.364232
PctUnemployed16_Over
PctPrivateCoverage
                          0.956774
                           -0.382789
PctPrivateCoverageAlone -0.011272
PctEmpPrivCoverage
PctPublicCoverage
                           0.097200
                           -0.047304
PctPublicCoverageAlone
                          0.463558
PctWhite
                           -1.673339
PctBlack
                           2.249444
                           7.420264
PctAsian
                           5.090213
PctOtherRace
PctMarriedHouseholds
                          -0.610326
BirthRate
                           1.443647
dtype: float64
In [ ]:
col = df.select dtypes(include=['float64', 'int64'])
```

```
In [ ]:
for x in col:
    ten = df[x].quantile(0.10)
   nin = df[x].quantile(0.90)
   df[x] = np.where(df[x] < ten, ten, df[x])
    df[x] = np.where(df[x] > nin, nin, df[x])
In [ ]:
df.skew()
Out[]:
avgAnnCount
                          1.637213
                          1.322061
avgDeathsPerYear
TARGET deathRate
                          0.076585
incidenceRate
                          -0.247302
medIncome
                          0.308420
popEst2015
                          1.458895
                          0.325621
povertyPercent
                         1.665699
studyPerCap
                         0.027977
MedianAge
MedianAgeMale
                         0.026105
MedianAgeFemale
                         -0.088244
AvgHouseholdSize
                         0.196529
PercentMarried
                         -0.194958
PctNoHS18 24
                         0.261958
PctHS18 24
                         0.022854
PctBachDeg18 24
                         0.386740
PctHS25 Over
                         -0.112480
PctBachDeg25_Over
                         0.425570
PctEmployed16 Over
                         -0.096057
                          0.175450
PctUnemployed16 Over
PctPrivateCoverage
                         -0.140704
PctPrivateCoverageAlone
                         -0.003782
PctEmpPrivCoverage
                          0.037438
PctPublicCoverage
                         -0.034643
PctPublicCoverageAlone
                          0.116176
                         -0.885286
PctWhite
PctBlack
                          1.347077
PctAsian
                          1.210965
PctOtherRace
                          1.116929
PctMarriedHouseholds
                         -0.217603
BirthRate
                         0.327491
dtype: float64
```

In []:

df.describe()

Out[]:

	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medincome	popEst2015	povertyPercent	stu
count	2332.000000	2332.000000	2332.000000	2332.000000	2332.000000	2332.000000	2332.000000	23
mean	469.082597	109.530532	178.816012	449.315587	46057.169554	55113.109605	16.667007	
std	628.471413	112.548608	21.469822	39.367407	8626.632061	63234.224956	5.072359	1
min	36.000000	13.000000	146.110000	381.020000	34116.000000	5660.200000	9.900000	
25%	75.000000	28.000000	161.400000	420.900000	38592.000000	11541.250000	12.200000	
50%	173.000000	62.000000	178.600000	453.549422	45079.000000	26923.000000	16.000000	
75%	517.250000	145.250000	195.325000	480.425000	52350.500000	68038.000000	20.600000	
max	1962.667684	366.800000	213.500000	507.590000	61151.100000	203405.200000	25.390000	4

8 rows × 31 columns

```
In [ ]:
q1 = df.quantile(0.25)
q3 = df.quantile(0.75)
IQR = q3 - q1
print(IQR)
avgAnnCount
                           442.250000
avgDeathsPerYear
                           117.250000
TARGET deathRate
                             33.925000
incidenceRate
                             59.525000
medIncome
                         13758.500000
                          56496.750000
popEst2015
                              8.400000
povertyPercent
                            79.990393
studyPerCap
                             6.100000
MedianAge
MedianAgeMale
                             6.200000
MedianAgeFemale
                             6.100000
AvgHouseholdSize
                             0.260000
PercentMarried
                             8.600000
PctNoHS18 24
                            10.100000
PctHS18 24
                            11.400000
PctBachDeg18 24
                             5.000000
                             9.000000
PctHS25 Over
PctBachDeg25 Over
                             6.500000
PctEmployed16_Over
                            11.525000
PctUnemployed16_Over
                             4.100000
                             15.125000
PctPrivateCoverage
                          14.600000
PctPrivateCoverageAlone
PctEmpPrivCoverage
                             13.325000
                            10.900000
PctPublicCoverage
PctPublicCoverageAlone
                             8.400000
PctWhite
                             18.436178
PctBlack
                            10.450693
PctAsian
                             0.954343
PctOtherRace
                             1.880944
PctMarriedHouseholds
                              7.615916
                             1.997401
BirthRate
dtype: float64
In [ ]:
df out2 = df[\sim ((df < (q1 - 1.5 * IQR)) | (df > (q3 + 1.5 * IQR))).any(axis=1)]
print(df out2.shape)
(1348, 33)
So now i will be moving on with df_out2 dataframe, Removal of outliers and missing value is done, cleaned the
data
In [ ]:
import matplotlib.pyplot as plt
import seaborn as sns
#visulising numeric data using pair plot is of no use since there are a lot of numeric da
ta type columss
#lets check categorical variables binnedInc and geography
```

```
varlist = ['binnedInc']
def mmap(x):
   return x.map({'[22640, 34218.1]': 'BI1', "(34218.1, 37413.8]": 'BI2', '(37413.8, 403
62.7]':'BI3',
                 '(40362.7, 42724.4]':'BI4', '(42724.4, 45201]':'BI5', '(45201, 48021.6
]':'BI6',
                 '(48021.6, 51046.4]':'BI7', '(51046.4, 54545.6]':'BI8', '(54545.6, 614
94.5]':'BI9',
                 '(61494.5, 125635]':'BI10'})
# Applying the function to the housing list
df out2[varlist] = df out2[varlist].apply(mmap)
In [ ]:
df out2.binnedInc.unique()
Out[]:
array(['BI7', 'BI8', 'BI3', 'BI4', 'BI5', 'BI2', 'BI1', 'BI10', 'BI6',
       'BI9'], dtype=object)
In [ ]:
df out2.Geography.value counts()
Out[]:
Okfuskee County, Oklahoma
                                   1
King William County, Virginia
Bailey County, Texas
Johnson County, Arkansas
Menominee County, Wisconsin
Bossier Parish, Louisiana
Warren County, Indiana
Shelby County, Illinois
                                  1
Montgomery County, Indiana
Mineral County, Montana
                                  1
Todd County, Kentucky
Charlevoix County, Michigan
Bowman County, North Dakota
                                  1
                                  1
Tipton County, Tennessee
Dent County, Missouri
Hamilton County, Illinois 1
Susquehanna County, Pennsylvania 1
Fulton County, Indiana
                                  1
Tuscarawas County, Ohio
Dubois County, Indiana
                                  1
McKean County, Pennsylvania
Palo Alto County, Iowa
                                  1
Keokuk County, Iowa
Clinch County, Georgia
Carlisle County, Kentucky
Warren County, Virginia
                                  1
Rock County, Nebraska
                                  1
Kossuth County, Iowa
Lincoln County, Oregon
                                  1
Cibola County, New Mexico
                                  1
Menard County, Texas
Sevier County, Arkansas
Champaign County, Ohio
Garrett County, Maryland
                                   1
Webster County, West Virginia
                                  1
Greenbrier County, West Virginia 1
Wayne County, Nebraska
Pike County, Indiana
Lincoln County, Wisconsin
                                  1
Potter County, Pennsylvania
Lewis County, Idaho
San Miguel County, Colorado
Ochiltree County, Texas
Union County, Kentucky
```

```
Hancock County, Iowa
Ionia County, Michigan
Aroostook County, Maine
                                1
                                1
New Madrid County, Missouri
Wise County, Texas
                                1
Gregory County, South Dakota
Green County, Kentucky
                                1
Lake County, Montana
                                1
                               1
Red Willow County, Nebraska
Falls County, Texas
Polk County, Wisconsin
Caldwell County, Missouri
Livingston County, New York
Grant County, Kentucky
Cass County, Missouri
Patrick County, Virginia
Name: Geography, Length: 1348, dtype: int64
```

Since mostly geography is unique in every row we may drop this column

```
In [ ]:
```

```
df_out2 = df_out2.drop(['Geography'], axis = 1)
```

Dummy Variables

```
In [ ]:
```

```
status = pd.get_dummies(df_out2['binnedInc'], drop_first = True)
status.head()
```

Out[]:

	BI10	BI2	BI3	BI4	BI5	BI6	BI7	BI8	BI9
1	0	0	0	0	0	0	1	0	0
2	0	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	1	0	0
5	0	0	0	0	0	0	0	1	0
6	0	0	1	0	0	0	0	0	0

```
In [ ]:
```

```
df_out2 = pd.concat([df_out2, status], axis = 1)
```

```
In [ ]:
```

```
df_out2.drop(['binnedInc'], axis = 1, inplace = True)
```

In []:

```
df_out2.head()
```

Out[]:

	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medIncome	popEst2015	povertyPercent	studyPerCa
1	173.0	70.0	161.30	411.60	48127.0	43269.0	18.6	23.11123
2	102.0	50.0	174.70	381.02	49348.0	21026.0	14.6	47.56016
4	57.0	26.0	146.11	381.02	49955.0	10321.0	12.5	0.00000
5	428.0	152.0	176.00	505.40	52313.0	61023.0	15.6	180.25990
6	250.0	97.0	175.90	461.80	37782.0	41516.0	23.2	0.00000

тъ г 1.

4

Training Testing Split

```
In [ ]:
from sklearn.model selection import train test split
# We specify this so that the train and test data set always have the same rows, respecti
vely
np.random.seed(0)
df_train, df_test = train_test_split(df_out2, train_size = 0.7, test size = 0.3, random
state = 100)
In [ ]:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
In [ ]:
#will be scaling all continuous variables
var = df train.columns.tolist()
var
Out[]:
['avgAnnCount',
 'avgDeathsPerYear',
 'TARGET deathRate',
 'incidenceRate',
 'medIncome',
 'popEst2015',
 'povertyPercent',
 'studyPerCap',
 'MedianAge',
 'MedianAgeMale',
 'MedianAgeFemale',
 'AvgHouseholdSize',
 'PercentMarried',
 'PctNoHS18 24',
 'PctHS18 24',
 'PctBachDeg18 24',
 'PctHS25 Over',
 'PctBachDeg25 Over',
 'PctEmployed16 Over',
 'PctUnemployed16 Over',
 'PctPrivateCoverage',
 'PctPrivateCoverageAlone',
 'PctEmpPrivCoverage',
 'PctPublicCoverage',
 'PctPublicCoverageAlone',
 'PctWhite',
 'PctBlack',
 'PctAsian',
 'PctOtherRace',
 'PctMarriedHouseholds',
 'BirthRate',
 'BI10',
 'BI2',
 'BI3',
 'BI4',
 'BI5',
 'BI6',
 'BI7',
 'BI8',
 'BI9']
```

```
TIL [ ]:
bin vars = ['BI10', 'BI2', 'BI3', 'BI4', 'BI5', 'BI6', 'BI7', 'BI8', 'BI9']
In [ ]:
 con vars = set(var) - set(bin vars)
 con vars = list(con vars)
 con vars
Out[]:
 ['avgDeathsPerYear',
   'PctBachDeg18 24',
   'PctMarriedHouseholds',
   'avgAnnCount',
   'PctUnemployed16_Over',
   'PctAsian',
   'PctPublicCoverage',
   'PctPrivateCoverage',
   'popEst2015',
   'PctHS18_24',
   'povertyPercent',
   'PctPrivateCoverageAlone',
   'PctHS25_Over',
   'MedianAgeFemale',
   'PctWhite',
   'AvgHouseholdSize',
   'incidenceRate',
   'PctBachDeg25_Over',
   'studyPerCap',
   'MedianAgeMale',
   'PctEmpPrivCoverage',
   'TARGET deathRate',
   'medIncome',
   'PctEmployed16 Over',
   'PctPublicCoverageAlone',
   'PctNoHS18 24',
   'PctBlack',
   'BirthRate',
   'MedianAge',
   'PctOtherRace',
   'PercentMarried']
In [ ]:
 df train[con vars] = scaler.fit transform(df train[con vars])
In [ ]:
df train.head()
Out[]:
              avgAnnCount avgDeathsPerYear TARGET_deathRate incidenceRate medIncome popEst2015 povertyPercent studyPercent 
  1159
                       0.086165
                                                               0.077922
                                                                                                         0.000000
                                                                                                                                        0.250296
                                                                                                                                                                   0.538818
                                                                                                                                                                                             0.100935
                                                                                                                                                                                                                              0.116204
                                                                                                                                                                                                                                                             0.0
   835
                       0.245146
                                                                                                         0.655735
                                                                                                                                        0.709331
                                                                                                                                                                   0.985201
                                                                                                                                                                                             0.321684
                                                                                                                                                                                                                              0.142027
                                                               0.256494
                                                                                                                                                                                                                                                             0.1
  1445
                       0.064320
                                                               0.084416
                                                                                                         0.637928
                                                                                                                                        0.424113
                                                                                                                                                                   0.159163
                                                                                                                                                                                             0.069661
                                                                                                                                                                                                                              0.852163
                                                                                                                                                                                                                                                             0.0
 2227
                       0.158981
                                                               0.181818
                                                                                                         0.777415
                                                                                                                                        0.917911
                                                                                                                                                                   0.275975
                                                                                                                                                                                             0.133116
                                                                                                                                                                                                                              0.400258
                                                                                                                                                                                                                                                             0.0
 2162
                       0.064320
                                                               0.064935
                                                                                                         0.670574
                                                                                                                                        1.000000
                                                                                                                                                                   0.065175
                                                                                                                                                                                             0.061243
                                                                                                                                                                                                                              0.606843
                                                                                                                                                                                                                                                             0.0
5 rows × 40 columns
```

In []:

df train.describe()

```
Out[]:
```

	avgAnnCount	avgDeathsPerYear	TARGET_deathRate	incidenceRate	medincome	popEst2015	povertyPercent	studyP
count	943.000000	943.000000	943.000000	943.000000	943.000000	943.000000	943.000000	943.0
mean	0.154023	0.174953	0.501790	0.501659	0.410995	0.166354	0.429230	0.0
std	0.179556	0.190067	0.324935	0.334278	0.297022	0.192196	0.305570	0.1
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0
25%	0.023058	0.035714	0.229114	0.216323	0.159718	0.027540	0.167850	0.0
50%	0.092233	0.116883	0.505861	0.512602	0.365081	0.100505	0.387347	0.0
75%	0.218447	0.253247	0.768512	0.777277	0.615015	0.237275	0.658489	0.0
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.0

8 rows × 40 columns

```
In [ ]:
```

```
# Let's check the correlation coefficients to see which variables are highly correlated
plt.figure(figsize = (100, 50))
sns.heatmap(df_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```


Model Building

```
In [ ]:
```

```
y_train = df_train.pop('TARGET_deathRate')
X_train = df_train
```

```
#Build a linear model
import statsmodels.api as sm
```

```
X_train_lm = sm.add_constant(X_train)
lr 1 = sm.OLS(y train, X train lm).fit()
lr 1.params
Out[]:
                           0.477953
const
avgAnnCount
                          -5.065736
                          4.747157
avgDeathsPerYear
incidenceRate
                          0.468833
medIncome
                          0.315416
                          -0.006729
popEst2015
                          -0.073564
povertyPercent
studyPerCap
                          0.069910
MedianAge
                          0.034678
MedianAgeMale
                          -0.109428
MedianAgeFemale
                           0.000759
AvgHouseholdSize
                          0.016972
PercentMarried
                          0.162154
PctNoHS18 24
                          -0.022086
PctHS18 24
                          0.033804
PctBachDeg18 24
                          -0.020034
PctHS25 Over
                          0.156264
PctBachDeg25 Over
                          -0.014574
PctEmployed16 Over
                          -0.112340
PctUnemployed16 Over
                          0.057618
PctPrivateCoverage
                          -0.291955
PctPrivateCoverageAlone
                          -0.034688
PctEmpPrivCoverage
                          0.123249
PctPublicCoverage
                          -0.166569
PctPublicCoverageAlone
                          0.001181
PctWhite
                           0.017678
PctBlack
                          0.088760
PctAsian
                           0.063314
PctOtherRace
                          -0.111957
PctMarriedHouseholds
                          -0.128317
                          -0.025339
BirthRate
BI10
                          -0.407421
BI2
                          -0.056350
BI3
                          -0.119285
BI4
                          -0.189957
BI5
                          -0.181227
BI6
                          -0.270431
BI7
                          -0.319631
BI8
                          -0.320093
BI9
                          -0.393268
dtype: float64
In [ ]:
print(lr 1.summary())
```

	OLS Regres	ssion Resu 	lts 			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals:	TARGET_deathRate OLS Least Squares Sat, 05 Sep 2020 13:11:35 943 903	Adj. R- F-stati Prob (F	squared:	1	0.620 0.604 37.81 1.47e-161 179.00 -278.0 -84.03	
Df Model: Covariance Type:	39 nonrobust					
75]	coef	std err	t	P> t	[0.025	0.9
const	0.4780	0.116	4.123	0.000	0.250	0.

avgAnnCount	-5.0657	0.340	-14.887	0.000	-5.734	-4.
398 avgDeathsPerYear	4.7472	0.266	17.858	0.000	4.225	5.
269 incidenceRate	0.4688	0.026	17.702	0.000	0.417	0.
521 medIncome	0.3154	0.206	1.532	0.126	-0.089	0.
720 popEst2015	-0.0067	0.172	-0.039	0.969	-0.344	0.
331 povertyPercent	-0.0736	0.071	-1.035	0.301	-0.213	0.
066 studyPerCap	0.0699	0.041	1.685	0.092	-0.012	0.
151 MedianAge	0.0347	0.142	0.244	0.807	-0.244	0.
314 MedianAgeMale	-0.1094	0.098	-1.122	0.262	-0.301	0.
082 MedianAgeFemale	0.0008	0.093	0.008	0.994	-0.182	0.
184 AvgHouseholdSize	0.0170	0.040	0.424	0.672	-0.062	0.
096 PercentMarried	0.1622	0.062	2.598	0.010	0.040	0.
285 PctNoHS18_24 028	-0.0221	0.026	-0.861	0.389	-0.072	0.
PctHS18_24 083	0.0338	0.025	1.354	0.176	-0.015	0.
PctBachDeg18_24	-0.0200	0.028	-0.711	0.477	-0.075	0.
PctHS25_Over 230	0.1563	0.037	4.168	0.000	0.083	0.
PctBachDeg25_Over	-0.0146	0.047	-0.311	0.756	-0.107	0.
PctEmployed16_Over	-0.1123	0.050	-2.255	0.024	-0.210	-0.
PctUnemployed16_Over	0.0576	0.034	1.673	0.095	-0.010	0.
PctPrivateCoverage 053	-0.2920	0.122	-2.395	0.017	-0.531	-0.
PctPrivateCoverageAlone 250	-0.0347	0.145	-0.239	0.811	-0.319	0.
PctEmpPrivCoverage 253	0.1232	0.066	1.861	0.063	-0.007	0.
PctPublicCoverage	-0.1666	0.104	-1.600	0.110	-0.371	0.
PctPublicCoverageAlone 183	0.0012	0.092	0.013	0.990	-0.180	0.
PctWhite 106	0.0177	0.045	0.392	0.695	-0.071	0.
PctBlack 170	0.0888	0.042	2.134	0.033	0.007	0.
PctAsian 143	0.0633	0.041	1.557	0.120	-0.016	0.
PctOtherRace 057	-0.1120	0.028	-4.031	0.000	-0.166	-0.
PctMarriedHouseholds 010	-0.1283	0.060	-2.131	0.033	-0.246	-0.
BirthRate 019	-0.0253	0.023	-1.121	0.263	-0.070	0.
BI10 017	-0.4074	0.199	-2.050	0.041	-0.798	-0.
BI2 011	-0.0563	0.034	-1.638	0.102	-0.124	0.
BI3 029	-0.1193	0.046	-2.582	0.010	-0.210	-0.
BI4 067	-0.1900	0.063	-3.023	0.003	-0.313	-0.
BI5 028	-0.1812	0.078	-2.317	0.021	-0.335	-0.
BI6 ngo	-0.2704	0.096	-2.810	0.005	-0.459	-0.

```
\cup \cup \triangle
                         -0.3196
                                 0.117 -2.735 0.006 -0.549
                                                                                 -0.
BI7
090
BI8
                         -0.3201 0.138 -2.312 0.021 -0.592
                                                                                 -0.
048
BT9
                         -0.3933 0.171 -2.306 0.021 -0.728
                                                                                 -0.
059
______
                            55.338 Durbin-Watson:
Omnibus:
                             0.000 Jarque-Bera (JB):
Prob(Omnibus):
                                                                  5.73e-19
Skew:
                              0.472 Prob(JB):
                              4.117 Cond. No.
                                                                     178.
Kurtosis:
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie
In [ ]:
# Importing RFE and LinearRegression
from sklearn.feature selection import RFE
from sklearn.linear model import LinearRegression
In [ ]:
# Running RFE with the output number of the variable equal to 10
lm = LinearRegression()
lm.fit(X train, y train)
                      # running RFE
rfe = RFE(lm, 20)
rfe = rfe.fit(X train, y train)
In [ ]:
list(zip(X train.columns, rfe.support , rfe.ranking ))
Out[]:
[('avgAnnCount', True, 1),
 ('avgDeathsPerYear', True, 1),
 ('incidenceRate', True, 1),
 ('medIncome', True, 1),
 ('popEst2015', False, 18),
 ('povertyPercent', True, 1),
 ('studyPerCap', False, 5),
 ('MedianAge', False, 11),
 ('MedianAgeMale', True, 1),
 ('MedianAgeFemale', False, 20),
 ('AvgHouseholdSize', False, 16),
 ('PercentMarried', True, 1),
 ('PctNoHS18_24', False, 13),
 ('PctHS18 24', False, 9),
 ('PctBachDeg18_24', False, 14),
 ('PctHS25_Over', True, 1),
 ('PctBachDeg25 Over', False, 17),
 ('PctEmployed16 Over', True, 1),
 ('PctUnemployed16 Over', False, 6),
 ('PctPrivateCoverage', True, 1),
 ('PctPrivateCoverageAlone', False, 10),
 ('PctEmpPrivCoverage', True, 1),
 ('PctPublicCoverage', True, 1),
 ('PctPublicCoverageAlone', False, 19),
 ('PctWhite', False, 15),
 ('PctBlack', True, 1),
 ('PctAsian', False, 7),
 ('PctOtherRace', True, 1),
 ('PctMarriedHouseholds', True, 1),
 ('BirthRate', False, 12),
 ('BI10', True, 1), ('BI2', False, 8),
 ('BI3', False, 4),
```

```
( D14 , 11UC, 1),
 ('BI5', False, 3),
 ('BI6', True, 1),
 ('BI7', True, 1),
 ('BI8', False, 2),
 ('BI9', True, 1)]
In [ ]:
col = X train.columns[rfe.support ]
Out[]:
'PctEmployed16_Over', 'PctPrivateCoverage', 'PctEmpPrivCoverage', 'PctPublicCoverage', 'PctBlack', 'PctOtherRace', 'PctMarriedHouseholds',
      'BI10', 'BI4', 'BI6', 'BI7', 'BI9'],
     dtype='object')
In [ ]:
X train.columns[~rfe.support ]
Out[]:
Index(['popEst2015', 'studyPerCap', 'MedianAge', 'MedianAgeFemale',
      'AvgHouseholdSize', 'PctNoHS18_24', 'PctHS18_24', 'PctBachDeg18_24',
      'PctBachDeg25 Over', 'PctUnemployed16 Over', 'PctPrivateCoverageAlone',
      'PctPublicCoverageAlone', 'PctWhite', 'PctAsian', 'BirthRate', 'BI2',
      'BI3', 'BI5', 'BI8'],
     dtype='object')
In [ ]:
# Creating X test dataframe with RFE selected variables
X train rfe = X train[col]
In [ ]:
# Adding a constant variable
import statsmodels.api as sm
X train rfe = sm.add constant(X train rfe)
lm = sm.OLS(y_train, X_train_rfe).fit() # Running the linear model
print(lm.summary())
                      OLS Regression Results
______
Dep. Variable: TARGET deathRate R-squared:
                                                              0.611
                        OLS Adj. R-squared:
Model:
                                                               0.602
                    Least Squares F-statistic:
Method:
                                                               72.32
Date:
                  Sat, 05 Sep 2020
                                  Prob (F-statistic):
                                                          4.42e-173
Time:
                                 Log-Likelihood:
                         13:11:36
                                                              167.33
No. Observations:
                             943
                                  AIC:
                                                              -292.7
Df Residuals:
                             922
                                  BIC:
                                                              -190.8
Df Model:
                              2.0
                 nonrobust
Covariance Type:
______
                       coef std err t P>|t| [0.025 0.975]
                    0.4784
                              0.087
                                        5.473
                                                   0.000
                                                            0.307
                                                                       0.650
const
avgAnnCount
                    -5.0634
                               0.280
                                       -18.085
                                                  0.000
                                                            -5.613
                                                                       -4.514
avgDeathsPerYear
                    4.8071
                               0.259
                                        18.549
                                                  0.000
                                                             4.299
                                                                       5.316
                    0.4825
                               0.024
                                        19.799
                                                  0.000
                                                            0.435
                                                                       0.530
incidenceRate
                                        -1.110
medIncome
                    -0.0844
                               0.076
                                                  0.267
                                                            -0.234
                                                                       0.065
                                                            -0.202
                    -0.0713
                               0.067
                                        -1.069
                                                  0.286
                                                                        0.060
povertyPercent
                                                  0.025
                    -0.0799
                               0.035
                                        -2.252
                                                            -0.150
MedianAgeMale
                                                                       -0.010
                                         2.596
                                                  0.010
                     0.1494
                                                             0.036
                                                                       0.262
PercentMarried
                               0.058
                                        5.332
                                                             0.099
PctHS25 Over
                     0.1565
                               0.029
                                                  0.000
                                                                        0.214
PctEmployed16 Over
                    -0.1492
                                0.043
                                        -3.432
                                                   0.001
                                                            -0.235
                                                                       -0.064
                                                            -0.453
                                                                       -0.244
PctPrivateCoverage
                    -0.3486
                               0.053
                                        -6.570
                                                   0.000
```

PctEmpPrivCoverage	0.1362	0.049	2.772	0.006	0.040	0.233
PctPublicCoverage	-0.1375	0.049	-2.779	0.006	-0.235	-0.040
PctBlack	0.0839	0.034	2.464	0.014	0.017	0.151
PctOtherRace	-0.1106	0.026	-4.280	0.000	-0.161	-0.060
PctMarriedHouseholds	-0.1109	0.053	-2.098	0.036	-0.215	-0.007
BI10	0.0508	0.044	1.149	0.251	-0.036	0.137
BI4	-0.0446	0.022	-2.005	0.045	-0.088	-0.001
BI6	-0.0501	0.024	-2.049	0.041	-0.098	-0.002
BI7	-0.0504	0.027	-1.888	0.059	-0.103	0.002
BI9	-0.0085	0.036	-0.238	0.812	-0.078	0.061
=======================================		=======	========	========	========	
Omnibus:	50.	662 Durb	in-Watson:		2.059	
Prob(Omnibus):	0.	000 Jarq	ue-Bera (JB)	:	76.963	
Skew:	0.	440 Prob	(JB):		1.94e-17	
Kurtosis:	4.	089 Cond	. No.		118.	
=======================================		=======	========	========	========	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

In []:

```
lm = sm.OLS(y_train, X_train_rfe).fit() # Running the linear model
```

In []:

Prob(Omnibus):

Skew:

Kurtosis:

#Let's see the summary of our linear model print(lm.summary())

OLS Regression Results						
Dep. Variable:	TARGET_deathRate	======================================	0.611			
Model:	OLS	Adj. R-squared:	0.602			
Method:	Least Squares	F-statistic:	72.32			
Date:	Sat, 05 Sep 2020	<pre>Prob (F-statistic):</pre>	4.42e-173			
Time:	13:11:36	Log-Likelihood:	167.33			
No. Observations:	943	AIC:	-292.7			

-190.8

76.963

118.

1.94e-17

Df Residuals: 922 BIC:
Df Model: 20
Covariance Type: nonrobust

	110111						
	coef	std err	t	P> t	[0.025	0.975]	
const	0.4784	0.087	5.473	0.000	0.307	0.650	
avgAnnCount	-5.0634	0.280	-18.085	0.000	-5.613	-4.514	
-	4.8071	0.259	18.549	0.000	4.299	5.316	
avgDeathsPerYear incidenceRate	0.4825	0.239	19.799	0.000	0.435	0.530	
medIncome	-0.0844	0.076	-1.110	0.267	-0.234	0.065	
povertyPercent	-0.0713	0.067	-1.069	0.286	-0.202	0.060	
MedianAgeMale	-0.0799	0.035	-2.252	0.025	-0.150	-0.010	
PercentMarried	0.1494	0.058	2.596	0.010	0.036	0.262	
PctHS25_Over	0.1565	0.029	5.332	0.000	0.099	0.214	
PctEmployed16_Over	-0.1492	0.043	-3.432	0.001	-0.235	-0.064	
PctPrivateCoverage	-0.3486	0.053	-6.570	0.000	-0.453	-0.244	
PctEmpPrivCoverage	0.1362	0.049	2.772	0.006	0.040	0.233	
PctPublicCoverage	-0.1375	0.049	-2.779	0.006	-0.235	-0.040	
PctBlack	0.0839	0.034	2.464	0.014	0.017	0.151	
PctOtherRace	-0.1106	0.026	-4.280	0.000	-0.161	-0.060	
PctMarriedHouseholds	-0.1109	0.053	-2.098	0.036	-0.215	-0.007	
BI10	0.0508	0.044	1.149	0.251	-0.036	0.137	
BI4	-0.0446	0.022	-2.005	0.045	-0.088	-0.001	
BI6	-0.0501	0.024	-2.049	0.041	-0.098	-0.002	
BI7	-0.0504	0.027	-1.888	0.059	-0.103	0.002	
BI9	-0.0085	0.036	-0.238	0.812	-0.078	0.061	
Omnibus:	 50	.662 Durb	======= in-Watson:	=======	2.059		

0.000 Jarque-Bera (JB):

0.440 Prob(JB):

4.089 Cond. No.

```
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie
d.
In [ ]:
X train rfe.columns
Out[]:
Index(['const', 'avqAnnCount', 'avqDeathsPerYear', 'incidenceRate',
       'medIncome', 'povertyPercent', 'MedianAgeMale', 'PercentMarried',
       'PctHS25 Over', 'PctEmployed16 Over', 'PctPrivateCoverage',
       'PctEmpPrivCoverage', 'PctPublicCoverage', 'PctBlack', 'PctOtherRace',
       'PctMarriedHouseholds', 'BI10', 'BI4', 'BI6', 'BI7', 'BI9'],
      dtype='object')
In [ ]:
X train rfe = X train rfe.drop(['const'], axis=1)
In [ ]:
# Calculate the VIFs for the new model
from statsmodels.stats.outliers_influence import variance_inflation_factor
vif = pd.DataFrame()
X = X train rfe
vif['Features'] = X.columns
vif['VIF'] = [variance inflation factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort values(by = "VIF", ascending = False)
vif
```

Out[]:

	Features	VIF
1	avgDeathsPerYear	100.03
0	avgAnnCount	97.98
6	PercentMarried	33.65
14	PctMarriedHouseholds	27.64
3	medIncome	24.51
9	PctPrivateCoverage	19.96
11	PctPublicCoverage	16.93
10	PctEmpPrivCoverage	16.04
4	povertyPercent	11.45
8	PctEmployed16_Over	11.12
5	MedianAgeMale	10.75
7	PctHS25_Over	8.57
2	incidenceRate	4.84
15	BI10	2.80
19	BI9	2.59
13	PctOtherRace	2.51
12	PctBlack	1.82
18	BI7	1.61
17	BI6	1.39
16	BI4	1.22

```
X train rfe = X train rfe.drop(["BI9"], axis = 1)
In [ ]:
 X train rfe = sm.add constant(X train rfe)
 lm = sm.OLS(y_train,X_train_rfe).fit() # Running the linear model
 print(lm.summary())
                               OLS Regression Results
______
Dep. Variable: TARGET deathRate R-squared:
                                                                                                        0.611
                                  OLS Adj. R-squared:
                           OLS Adj. R-squared: U.603
Least Squares F-statistic: 76.20
Sat, 05 Sep 2020 Prob (F-statistic): 5.13e-174
Model:
                                                                                                       0.603
Method:
Date:
                                       13:11:37 Log-Likelihood:
Time:
                                                                                                     167.30
No. Observations:
                                               943 AIC:
                                                                                                      -294.6
Df Residuals:
                                               923 BIC:
                                                                                                      -197.6
Df Model:
                                                 19
Covariance Type: nonrobust
______
                                      coef
                                                                t P>|t| [0.025 0.975]
                                                std err
_____
                                                                   5.586
                                                                                   0.000
                                   0.4818
                                                   0.086
                                                                                                    0.313
const
                                                                                                                     0.651

      avgAnnCount
      -5.0666
      0.280
      -18.127
      0.000
      -5.615

      avgDeathsPerYear
      4.8102
      0.259
      18.595
      0.000
      4.303

      incidenceRate
      0.4831
      0.024
      19.954
      0.000
      0.436

      medIncome
      -0.0945
      0.063
      -1.499
      0.134
      -0.218

      povertyPercent
      -0.0746
      0.065
      -1.144
      0.253
      -0.203

      MedianAgeMale
      -0.0807
      0.035
      -2.284
      0.023
      -0.150

      PercentMarried
      0.1484
      0.057
      2.587
      0.010
      0.036

      PctHS25_Over
      0.1565
      0.029
      5.333
      0.000
      0.099

      PctEmployed16_Over
      -0.1496
      0.043
      -3.444
      0.001
      -0.235

      PctPrivateCoverage
      -0.3475
      0.053
      -6.577
      0.000
      -0.451

      PctEmpPrivCoverage
      0.1357
      0.049
      2.765
      0.006
      0.039

      PctBlack
      0.0842
      0.034
      2.476
      0.013
      0.017

      PctOtherRace
      -0.1101
      0.026
      -4.277
      0.000
      -0.161

avgAnnCount
                                                   0.280 -18.127
                                 -5.0666
                                                                                  0.000
                                                                                                  -5.615
                                                                                                                    -4.518
                                                                                                                     5.318
                                                                                                                     0.531
                                                                                                                     0.029
                                                                                                                     0.053
                                                                                                                  -0.011
                                                                                                                    0.261
                                                                                                                    0.214
                                                                                                                 -0.064
                                                                                                                  -0.244
                                                                                                                    0.232
                                                                                                                  -0.040
                                                                                                                 0.151
-0.060
-0.007
                                                                                                                    0.125
                                                                                                                 -0.001
-0.003
                                                                                                                    -0.000
_____
                                            50.561 Durbin-Watson: 0.000 Jarque-Bera (JB):
Omnibus:
                                                                                                       2.057
                                                                                                     76.757
Prob(Omnibus):
                                             0.439 Prob(JB):
Skew:
                                                                                                  2.15e-17
                                             4.087 Cond. No.
                                                                                                     118.
Kurtosis:
Warnings:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specifie
In [ ]:
 X train rfe = X train rfe.drop(["povertyPercent"], axis = 1)
In [ ]:
 X train rfe = sm.add constant(X train rfe)
 lm = sm.OLS(y_train, X_train_rfe).fit() # Running the linear model
 print(lm.summary())
                                OLS Regression Results
```

Least Squares F-statistic:

OLS Adj. R-squared:

Sat 05 Sen 2020 Proh (F-statistic). 1 08e-174

0.610

0.603

80.34

Dep. Variable: TARGET_deathRate R-squared:

Model:

Method:

Date.

Time: No. Observations: Df Residuals: Df Model:	13:1			~,·	166.64 -295.3 -203.1	
Covariance Type:	nonro					
=======================================	======== coef	======= std err	:======== t	======= P> t	[0.025	0.9751
					. – – – – – – – – – – – – – – – – – – –	
- const	0.4069	0.056	7.246	0.000	0.297	0.517
avgAnnCount	-5.0594	0.279	-18.103	0.000	-5.608	-4.511
avgDeathsPerYear	4.8053	0.259	18.575	0.000	4.298	5.313
incidenceRate	0.4817	0.024	19.919	0.000	0.434	0.529
medIncome	-0.0512	0.050	-1.015	0.310	-0.150	0.048
MedianAgeMale	-0.0695	0.034	-2.047	0.041	-0.136	-0.003
PercentMarried	0.1550	0.057	2.715	0.007	0.043	0.267
PctHS25 Over	0.1593	0.029	5.447	0.000	0.102	0.217
PctEmployed16 Over	-0.1371	0.042	-3.260	0.001	-0.220	-0.055
PctPrivateCoverage	-0.3302	0.051	-6.521	0.000	-0.430	-0.231
PctEmpPrivCoverage	0.1352	0.049	2.755	0.006	0.039	0.231
PctPublicCoverage	-0.1382	0.049	-2.797	0.005	-0.235	-0.041
PctBlack	0.0813	0.034	2.396	0.017	0.015	0.148
PctOtherRace	-0.1105	0.026	-4.295	0.000	-0.161	-0.060
PctMarriedHouseholds	-0.1102	0.053	-2.092	0.037	-0.214	-0.007
BI10	0.0511	0.034	1.494	0.136	-0.016	0.118
BI4	-0.0407	0.022	-1.862	0.063	-0.084	0.002
BI6	-0.0451	0.023	-1.980	0.048	-0.090	-0.000
BI7	-0.0449	0.024	-1.876	0.061	-0.092	0.002
Omnibus:			in-Watson:		2.052	
Prob(Omnibus):		-	ue-Bera (JB)	:	76.217	
Skew:			(JB):		2.82e-17	
Kurtosis:	4	.094 Cond	. No.		116.	
Warnings: [1] Standard Errors d. In []:	assume that t	he covarian	ce matrix of	the errors	is correctly	y specifie
<pre>X_train_rfe = X_trai</pre>	n_rfe.drop(["	medIncome"	, axis = 1)			
In []:						
<pre>X_train_rfe = sm.add lm = sm.OLS(y_train, print(lm.summary())</pre>			Running the l	inear mode.	1	
		egression R				
Dep. Variable:	 TARGET death	======= Rate R-sq	======================================	========	0.610	
Model:	_		R-squared:		0.603	
Method:	Least Squ		atistic:		85.00	
Date:	Sat, 05 Sep		(F-statistic	c):	1.91e-175	
Time:	13:1	-	Likelihood:		166.11	
No. Observations:		943 AIC:			-296.2	
Df Residuals:		925 BIC:			-208.9	
Df Model:		17				
Covariance Type:	nonro	bust				

const 0.3998 0.056 7.176 0.000 0.290 0.509 avgAnnCount -5.0788 0.279 -18.215 0.000 -5.626 -4.532 avgDeathsPerYear 4.8177 0.258 18.644 0.000 4.311 5.325 incidenceRate 0.4815 0.024 19.912 0.000 0.434 0.529 MedianAgeMale -0.0757 0.033 -2.267 0.024 -0.141 -0.010 PercentMarried 0.1620 0.057 2.858 0.004 0.051 0.273 PctHS25_Over 0.1662 0.028 5.849 0.000 0.110 0.222

coef std err t P>|t| [0.025 0.975]

PctMarriedHouseholds BI10 BI4 BI6 BI7	-0.1224	0.051	-2.387	0.017	-0.223	-0.022
	0.0396	0.032	1.227	0.220	-0.024	0.103
	-0.0400	0.022	-1.831	0.067	-0.083	0.003
	-0.0468	0.023	-2.060	0.040	-0.091	-0.002
	-0.0478	0.024	-2.011	0.045	-0.094	-0.001
Omnibus: Prob(Omnibus): Skew: Kurtosis:	50. 0. 0.	======================================	-2.011 ======== in-Watson: ue-Bera (JB) (JB): . No.		-0.094 ====================================	-0.001

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []:

```
X_train_rfe = X_train_rfe.drop(["BI10"], axis = 1)
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y_train, X_train_rfe).fit() # Running the linear model
print(lm.summary())
```

Dep. Variable:	TARGET_deathRate	R-squared:	0.609
Model:	OLS	Adj. R-squared:	0.602
Method:	Least Squares	F-statistic:	90.17
Date:	Sat, 05 Sep 2020	Prob (F-statistic):	4.17e-176
Time:	13:11:37	Log-Likelihood:	165.34
No. Observations:	943	AIC:	-296.7
Df Residuals:	926	BIC:	-214.3
Df Madal.	1.6		

Df Model: 16 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.4063	0.055	7.322	0.000	0.297	0.515
avgAnnCount	-5.0473	0.278	-18.174	0.000	-5.592	-4.502
avgDeathsPerYear	4.7859	0.257	18.610	0.000	4.281	5.291
incidenceRate	0.4818	0.024	19.919	0.000	0.434	0.529
MedianAgeMale	-0.0746	0.033	-2.234	0.026	-0.140	-0.009
PercentMarried	0.1657	0.057	2.928	0.003	0.055	0.277
PctHS25 Over	0.1581	0.028	5.719	0.000	0.104	0.212
PctEmployed16 Over	-0.1479	0.041	-3.628	0.000	-0.228	-0.068
PctPrivateCoverage	-0.3425	0.050	-6.871	0.000	-0.440	-0.245
PctEmpPrivCoverage	0.1338	0.048	2.804	0.005	0.040	0.227
PctPublicCoverage	-0.1359	0.048	-2.811	0.005	-0.231	-0.041
PctBlack	0.0835	0.034	2.465	0.014	0.017	0.150
PctOtherRace	-0.1137	0.026	-4.435	0.000	-0.164	-0.063
PctMarriedHouseholds	-0.1197	0.051	-2.337	0.020	-0.220	-0.019
BI4	-0.0413	0.022	-1.891	0.059	-0.084	0.002
BI6	-0.0508	0.023	-2.258	0.024	-0.095	-0.007
BI7	-0.0534	0.023	-2.290	0.022	-0.099	-0.008
=======================================		========	========	:=======	========	
Omnibus:			in-Watson:		2.052	
Prob(Omnibus):		-	ue-Bera (JB)	:	78.689	
Skew:	0	.437 Prob	(JB):		8.18e-18	

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

113.

4.113 Cond. No.

```
X train rfe = X train rfe.drop(["BI4"], axis = 1)
 X train rfe = sm.add constant(X train rfe)
 lm = sm.OLS(y_train,X_train_rfe).fit() # Running the linear model
 print(lm.summary())
                                     OLS Regression Results
______
Dep. Variable: TARGET_deathRate R-squared:
                                                                                                             0.608
                             TARGET_deathNate
OLS Adj. R-squared:
0.601
Least Squares F-statistic: 95.68
Sat, 05 Sep 2020 Prob (F-statistic): 2.45e-176
Model:
Method:
Date:
                                                         Log-Likelihood:
Time:
No. Observations:
                                                  943
                                                           AIC:
                                                                                                            -295.1
Df Residuals:
                                                   927
                                                           BIC:
                                                                                                            -217.5
Df Model:
                                                    15
Covariance Type:
                                       nonrobust
______
                                       coef std err t P>|t| [0.025 0.975]
 ______

        const
        0.4024
        0.056
        7.248
        0.000
        0.293
        0.511

        avgAnnCount
        -5.0348
        0.278
        -18.109
        0.000
        -5.580
        -4.489

        avgDeathsPerYear
        4.7736
        0.257
        18.542
        0.000
        4.268
        5.279

        incidenceRate
        0.4817
        0.024
        19.889
        0.000
        0.434
        0.529

        MedianAgeMale
        -0.0730
        0.033
        -2.185
        0.029
        -0.139
        -0.007

        PercentMarried
        0.1663
        0.057
        2.933
        0.003
        0.055
        0.278

        PctHS25_Over
        0.1538
        0.028
        5.576
        0.000
        0.100
        0.208

        PctEmployed16_Over
        -0.1475
        0.041
        -3.612
        0.000
        -0.228
        -0.067

        PctPrivateCoverage
        -0.3457
        0.050
        -6.930
        0.000
        -0.444
        -0.248

        PctBublicCoverage
        0.1368
        0.048
        2.865
        0.004
        0.043
        0.230

        PctBlack
        0.0841
        0.034
        2.479
        0.013

______
Omnibus:
                                             49.338 Durbin-Watson:
                                                                                                             2.056
Prob(Omnibus):
                                              0.000 Jarque-Bera (JB):
                                                                                                           75.284
                                               0.429 Prob(JB):
                                                                                                       4.49e-17
Skew:
                                                4.086 Cond. No.
Kurtosis:
______
Warnings:
 [1] Standard Errors assume that the covariance matrix of the errors is correctly specifie
In [ ]:
 X train rfe = X train rfe.drop(['const'], axis=1)
 # Calculate the VIFs for the new model
 vif = pd.DataFrame()
 X = X train rfe
vif['Features'] = X.columns
 vif['VIF'] = [variance inflation factor(X.values, i) for i in range(X.shape[1])]
 vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort values(by = "VIF", ascending = False)
vif
Out[]:
```

1 avgDeathsPerYear 97.18 0 avgAnnCount 95.14 4 PercentMarried 32.27 12 PctMarriedHouseholds 23.92 7 PctPrivateCoverage 18.67

Features

VIF

```
3
          MedianAgeMale 10.07
 6
     PctEmployed16_Over 9.43
       PctPublicCoverage 9.12
 9
           PctHS25_Over 7.64
 5
 2
           incidenceRate 4.67
11
           PctOtherRace 2.15
10
                PctBlack 1.59
14
                    BI7 1.21
13
                    BI6 1.16
In [ ]:
X train rfe = X train rfe.drop(["avgDeathsPerYear"], axis = 1)
X train rfe = sm.add constant(X train rfe)
lm = sm.OLS(y train, X train rfe).fit() # Running the linear model
print(lm.summary())
                                  OLS Regression Results
______
Dep. Variable: TARGET_deathRate R-squared:
                                        OLS Adj. R-squared:
Model:
                            Least Squares F-statistic:
Method:
                        Sat, 05 Sep 2020 Prob (F-statistic):
Date:
                                                                                   1.71e-114
                                 13:11:38 Log-Likelihood:
Time:
                                                                                         14.791
No. Observations:
                                         943 AIC:
                                                                                         0.4189
Df Residuals:
                                          928
                                               BIC:
                                                                                           73.15
Df Model:
                                           14
Covariance Type:
                           nonrobust
______
                                 coef std err t P>|t| [0.025 0.975]
   ______

      0.5422
      0.064
      8.423
      0.000
      0.416

      0.0604
      0.049
      1.220
      0.223
      -0.037

      0.3464
      0.027
      12.818
      0.000
      0.293

      -0.1262
      0.039
      -3.237
      0.001
      -0.203

      0.2813
      0.066
      4.266
      0.000
      0.152

      0.2683
      0.031
      8.526
      0.000
      0.207

      -0.2429
      0.047
      -5.126
      0.000
      -0.336

      -0.4301
      0.058
      -7.397
      0.000
      -0.544

      0.1790
      0.056
      3.208
      0.001
      0.069

      -0.1096
      0.057
      -1.937
      0.053
      -0.221

      0.0772
      0.040
      1.944
      0.052
      -0.001

      -0.1461
      0.030
      -4.874
      0.000
      -0.205

                                                                                                      0.669
const
avgAnnCount
                                                                                                      0.157
incidenceRate
                                                                                                      0.399
                                                                                                    -0.050
MedianAgeMale
PercentMarried
PctHS25 Over
                                                                                                      0.411
                                                                                                      0.330
PctEmployed16 Over
                                                                                                    -0.150
PctPrivateCoverage
                                                                                                    -0.316
PctEmpPrivCoverage
                                                                                                      0.288
PctPublicCoverage
                                                                                                      0.001
                                                                                                      0.155
PctBlack
                             -0.1461
-0.2274
                                            0.030
                                                                       0.000
                                                                                                    -0.087
                                                         -4.874
                                                                                      -0.205
PctOtherRace
PctMarriedHouseholds
                                            0.060
                                                                       0.000
                                                                                      -0.344
                                                          -3.813
                             -0.2274
                                                                                                      -0.110
                             -0.0525
                                            0.026
                                                                        0.045
                                                                                       -0.104
BT6
                                                          -2.009
                                                                                                      -0.001
                                            0.027 -2.063
BI7
                             -0.0559
                                                                        0.039
                                                                                       -0.109
                                                                                                      -0.003
______
Omnibus:
                                       5.213 Durbin-Watson:
                                                                                          2.012
```

Warnings:

Kurtosis:

Skew:

Prob(Omnibus):

Features
PctEmpPrivCoverage

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

0.074 Jarque-Bera (JB):

0.130 Prob(JB):

3.263 Cond. No.

5.358

24.4

0.0686

```
X_train_rfe = X_train_rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
```

```
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[]:

	Features	VIF
3	PercentMarried	31.96
11	PctMarriedHouseholds	23.78
6	PctPrivateCoverage	18.58
7	PctEmpPrivCoverage	14.60
2	MedianAgeMale	10.01
5	PctEmployed16_Over	9.39
8	PctPublicCoverage	8.75
4	PctHS25_Over	7.17
1	incidenceRate	4.29
0	avgAnnCount	2.24
10	PctOtherRace	2.15
9	PctBlack	1.59
13	BI7	1.21
12	BI6	1.16

In []:

Prob(Omnibus):

```
X_train_rfe = X_train_rfe.drop(["PctEmpPrivCoverage"], axis = 1)
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y_train, X_train_rfe).fit() # Running the linear model
print(lm.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	nonro	OLS lares 2020 1:38 943 929 13	R-squared: Adj. R-squared F-statistic: Prob (F-statis Log-Likelihood AIC: BIC:	tic):	0.456 0.448 59.91 3.34e-113 9.5913 8.817 76.70	
	coef	std e	 rr t	P> t	[0.025	0.975]
const	0.5832	0.0	63 9.196	0.000	0.459	0.708
avgAnnCount	0.0967	0.0	48 1.998	0.046	0.002	0.192
incidenceRate	0.3539	0.0	27 13.078	0.000	0.301	0.407
MedianAgeMale	-0.1484	0.0	39 -3.852	0.000	-0.224	-0.073
PercentMarried	0.2437	0.0	65 3.737	0.000	0.116	0.372
PctHS25 Over	0.2960	0.0	30 9.738	0.000	0.236	0.356
PctEmployed16 Over	-0.2323	0.0	48 -4.890	0.000	-0.326	-0.139
PctPrivateCoverage	-0.3223	0.0	48 -6.758	0.000	-0.416	-0.229
PctPublicCoverage	-0.1555	0.0	55 -2.826	0.005	-0.263	-0.048
PctBlack	0.0688	0.0	40 1.728	0.084	-0.009	0.147
PctOtherRace	-0.1485	0.0	30 -4.932	0.000	-0.208	-0.089
PctMarriedHouseholds	-0.1988	0.0	59 -3.354	0.001	-0.315	-0.082
BI6	-0.0587	0.0	26 -2.240	0.025	-0.110	-0.007
BI7	-0.0540	0.0	27 -1.981	0.048	-0.107	-0.001
Omnibus:	3	.373	======== Durbin-Watson:	=======	2.009	

0.185 Jarque-Bera (JB):

3.333

 Skew:
 0.100
 Prob(JB):
 0.189

 Kurtosis:
 3.211
 Cond. No.
 23.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

In []:

```
X_train_rfe = X_train_rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[]:

Features	VIF
PercentMarried	30.69
PctMarriedHouseholds	22.55
PctPrivateCoverage	11.25
MedianAgeMale	9.71
PctEmployed16_Over	9.03
PctPublicCoverage	8.53
PctHS25_Over	6.41
incidenceRate	4.24
PctOtherRace	2.14
avgAnnCount	2.11
PctBlack	1.59
BI7	1.21
BI6	1.15
	PercentMarried PctMarriedHouseholds PctPrivateCoverage MedianAgeMale PctEmployed16_Over PctPublicCoverage PctHS25_Over incidenceRate PctOtherRace avgAnnCount PctBlack Bl7

In []:

```
X_train_rfe = X_train_rfe.drop(["PctBlack"], axis = 1)
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y_train,X_train_rfe).fit() # Running the linear model
print(lm.summary())
```

OLS Regression Results

Dep. Variable: Model: Method:	TARGET_deathRate OLS Least Squares	R-squared: Adj. R-squared: F-statistic:	0.454 0.447 64.52
Date:	Sat, 05 Sep 2020	Prob (F-statistic):	1.77e-113
Time:	13:11:39	Log-Likelihood:	8.0784
No. Observations:	943	AIC:	9.843
Df Residuals:	930	BIC:	72.88
Df Model:	12		

Covariance Type: nonrobust

covariance type:	110111 0.					
	coef	std err	t	P> t	[0.025	0.975]
-						
const	0.6242	0.059	10.603	0.000	0.509	0.740
avgAnnCount	0.1023	0.048	2.116	0.035	0.007	0.197
incidenceRate	0.3550	0.027	13.106	0.000	0.302	0.408
MedianAgeMale	-0.1502	0.039	-3.895	0.000	-0.226	-0.075
	^ ^^==	^ ^ ^ ^	^ - ^ ^	^ ^ ^ ^	^ ^ ^ ^	^ ^=^

```
0.2255 0.064 3.500 0.000
PercentMarried
                                                 0.099
                                                           0.352
                                 9.771
PctHS25 Over
                 0.2973
                         0.030
                                         0.000
                                                  0.238
                                                           0.357
PctEmployed16 Over
                -0.2483
                         0.047
                                -5.321
                                         0.000
                                                 -0.340
                                                          -0.157
                                                 -0.423
PctPrivateCoverage
                -0.3300
                         0.048
                                -6.943
                                         0.000
                                                          -0.237
                -0.1777
                                         0.001
                         0.054
                                 -3.319
                                                  -0.283
                                                           -0.073
PctPublicCoverage
                                         0.000
                 -0.1491
                         0.030
                                 -4.949
                                                  -0.208
                                                           -0.090
PctOtherRace
                                         0.001
                         0.059
PctMarriedHouseholds
                 -0.1942
                                 -3.276
                                                  -0.310
                                                           -0.078
                                         0.024
BI6
                 -0.0593
-0.0558
                          0.026
                                 -2.264
                                                  -0.111
                                                           -0.008
                                 -2.264 0.024
-2.048 0.041
                         0.027
BI7
                                                  -0.109
                                                           -0.002
______
Omnibus:
                       3.650 Durbin-Watson:
                                                    2.005
Prob(Omnibus):
                       0.161 Jarque-Bera (JB):
                                                    3.598
                       0.110 Prob(JB):
Skew:
                                                    0.165
                       3.207 Cond. No.
Kurtosis:
                                                    23.4
______
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

In []:

```
X_train_rfe = X_train_rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[]:

	Features	VIF
3	PercentMarried	29.11
9	PctMarriedHouseholds	21.61
6	PctPrivateCoverage	11.23
2	MedianAgeMale	9.71
5	PctEmployed16_Over	9.03
7	PctPublicCoverage	8.48
4	PctHS25_Over	6.30
1	incidenceRate	4.21
0	avgAnnCount	2.09
8	PctOtherRace	2.08
11	BI7	1.20
10	BI6	1.15

In []:

```
X_train_rfe = X_train_rfe.drop(["PercentMarried"], axis = 1)
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y_train,X_train_rfe).fit() # Running the linear model
print(lm.summary())
```

OLS Regression Results

Dep. Variable:	TARGET_deathRate	R-squared:	0.447
Model:	OLS	Adj. R-squared:	0.441
Method:	Least Squares	F-statistic:	68.44
Date:	Sat, 05 Sep 2020	Prob (F-statistic):	8.46e-112
Time:	13:11:39	Log-Likelihood:	1.9070
No. Observations:	943	AIC:	20.19
Df Residuals:	931	BIC:	78.37

Covariance Type:	nonro	bust				
	coef	std err	t	P> t	[0.025	0.975]
-						
const	0.5821	0.058	10.041	0.000	0.468	0.696
avgAnnCount	0.0759	0.048	1.580	0.114	-0.018	0.170
incidenceRate	0.3680	0.027	13.636	0.000	0.315	0.421
MedianAgeMale	-0.0910	0.035	-2.609	0.009	-0.159	-0.023
PctHS25 Over	0.2883	0.030	9.453	0.000	0.228	0.348
PctEmployed16 Over	-0.1690	0.041	-4.118	0.000	-0.250	-0.088
PctPrivateCoverage	-0.3475	0.048	-7.308	0.000	-0.441	-0.254
PctPublicCoverage	-0.1462	0.053	-2.753	0.006	-0.250	-0.042
PctOtherRace	-0.1526	0.030	-5.037	0.000	-0.212	-0.093
PctMarriedHouseholds	-0.0242	0.034	-0.707	0.480	-0.091	0.043
BI6	-0.0619	0.026	-2.349	0.019	-0.114	-0.010
BI7	-0.0570	0.027	-2.080	0.038	-0.111	-0.003
Omnibus:	 4	.437 Durb	======== in-Watson:	:=======	1.998	
Prob(Omnibus):			ue-Bera (JB)	:	4.427	

11

Warnings:

Kurtosis:

Skew:

Df Model:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

0.109

18.7

0.126 Prob(JB):

3.223 Cond. No.

In []:

```
X_train_rfe = X_train_rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[]:

	Features	VIF
5	PctPrivateCoverage	10.85
6	PctPublicCoverage	8.47
2	MedianAgeMale	7.77
4	PctEmployed16_Over	7.19
8	PctMarriedHouseholds	7.01
3	PctHS25_Over	6.15
1	incidenceRate	4.16
7	PctOtherRace	2.04
0	avgAnnCount	2.02
10	BI7	1.20
9	BI6	1.15

```
X_train_rfe = X_train_rfe.drop(["PctPrivateCoverage"], axis = 1)
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y_train,X_train_rfe).fit() # Running the linear model
print(lm.summary())
```

```
Dep. Variable: TARGET_deathRate
                                                                               R-squared:
                                                                                                                                                     0.415
Model:
                                                         OLS Adj. R-squared:
                                                                                                                                                    0.409
                                      Least Squares F-statistic: 66.22
Sat, 05 Sep 2020 Prob (F-statistic): 1.38e-101
Method:
 Date:
                                                       13:11:39 Log-Likelihood:
                                                                                                                                               -24.397
Time:
                                                                   943 AIC:
                                                                                                                                                    70.79
No. Observations:
Df Residuals:
                                                                     932
                                                                               BIC:
                                                                                                                                                     124.1
Df Model:
                                                                      10
                                       nonrobust
Covariance Type:
 ______
                                                 coef std err t P>|t| [0.025 0.975]

        const
        0.4308
        0.056
        7.741
        0.000
        0.322

        avgAnnCount
        0.0148
        0.049
        0.304
        0.761
        -0.081

        incidenceRate
        0.3426
        0.028
        12.457
        0.000
        0.289

        MedianAgeMale
        -0.1943
        0.033
        -5.934
        0.000
        -0.259

        PctHS25_Over
        0.2869
        0.031
        9.155
        0.000
        0.225

        PctEmployed16_Over
        -0.2631
        0.040
        -6.567
        0.000
        -0.342

        PctPublicCoverage
        0.0541
        0.047
        1.158
        0.247
        -0.038

        PctOtherRace
        -0.0982
        0.030
        -3.252
        0.001
        -0.157

        PctMarriedHouseholds
        -0.0450
        0.035
        -1.286
        0.199
        -0.114

        B16
        -0.0669
        0.027
        -2.472
        0.014
        -0.120

        B17
        -0.0955
        0.028
        -3.455
        0.001
        -0.150

                                                                                                                                                                     0.540
                                                                                                                                                                      0.110
                                                                                                                                                                  0.397
-0.130
0.348
-0.184
                                                                                                                                                                       0.146
                                                                                                                                                                    -0.039
                                                                                                                                                                       0.024
                                                                                                                                                                    -0.014
                                                                                                                                                                     -0.041
 ______
 Omnibus:
                                                                 2.212 Durbin-Watson:
                                                                                                                                                    1.983
Prob(Omnibus):
                                                                 0.331 Jarque-Bera (JB):
                                                                                                                                                    2.236
                                                                0.118 Prob(JB):
2.960 Cond. No.
 Skew:
                                                                                                                                                   0.327
Kurtosis:
                                                                                                                                                     16.3
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

In []:

```
X_train_rfe = X_train_rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[]:

	Features	VIF
5	PctPublicCoverage	7.12
2	MedianAgeMale	6.53
7	PctMarriedHouseholds	6.50
3	PctHS25_Over	6.05
4	PctEmployed16_Over	4.83
1	incidenceRate	4.01
6	PctOtherRace	2.02
0	avgAnnCount	1.91
9	BI7	1.16
8	BI6	1.15

```
X_train_rfe = X_train_rfe.drop(["PctPublicCoverage"], axis = 1)
```

```
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y_train,X_train_rfe).fit() # Running the linear model
print(lm.summary())
```

OLS Regression Results

______ Dep. Variable: TARGET_deathRate R-squared: 0.415 OLS Adj. R-squared: Model: 0.409 Method: Least Squares F-statistic: 73.41 Sat, 05 Sep 2020 Prob (F-statistic): Date: 3.03e-102 Time: 13:11:39 Log-Likelihood: -25.075 No. Observations: 943 AIC: 70.15 933 BIC: Df Residuals: 118.6 9

Df Model: 9
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.4739	0.041	11.444	0.000	0.393	0.555
avgAnnCount	0.0105	0.041	0.217	0.828	-0.085	0.106
incidenceRate	0.3433	0.028	12.480	0.000	0.289	0.397
MedianAgeMale	-0.1785	0.030	-5.996	0.000	-0.237	-0.120
PctHS25_Over	0.2902	0.031	9.294	0.000	0.229	0.351
PctEmployed16_Over	-0.2950	0.029	-10.161	0.000	-0.352	-0.238
PctOtherRace	-0.0965	0.030	-3.198	0.001	-0.156	-0.037
PctMarriedHouseholds	-0.0600	0.033	-1.844	0.066	-0.124	0.004
BI6	-0.0659	0.027	-2.436	0.015	-0.119	-0.013
BI7	-0.0962	0.028	-3.479	0.001	-0.150	-0.042
Omnibus:	=======	2.163 Durk	========= oin-Watson:	=======	1.980	
Prob(Omnibus):		0.339 Jaro	que-Bera (JB)	:	2.187	
Skew:		0.116 Prok	(JB):		0.335	
Kurtosis:		2.959 Cond	d. No.		11.4	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

In []:

```
X_train_rfe = X_train_rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[]:

тъ г 1.

	Features	VIF
6	PctMarriedHouseholds	6.46
3	PctHS25_Over	4.84
2	MedianAgeMale	4.06
1	incidenceRate	3.86
4	PctEmployed16_Over	3.82
0	avgAnnCount	1.89
5	PctOtherRace	1.55
8	BI7	1.16
7	BI6	1.15

```
111 [ ] i
X_train_rfe = X_train_rfe.drop(["PctMarriedHouseholds"], axis = 1)
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y train, X train rfe).fit() # Running the linear model
print(lm.summary())
```

OLS Regression Results

Dep. Variable:	TARGET deathRate	R-squared:	0.412
Model:	OLS	Adj. R-squared:	0.407
Method:	Least Squares	F-statistic:	81.95
Date:	Sat, 05 Sep 2020	Prob (F-statistic):	1.74e-102
Time:	13:11:40	Log-Likelihood:	-26.790
No. Observations:	943	AIC:	71.58
Df Residuals:	934	BIC:	115.2
Df Model:	8		

nonrobust Covariance Type:

	coef	std err	t	P> t	[0.025	0.975]
const avgAnnCount incidenceRate MedianAgeMale PctHS25_Over PctEmployed16 Over	0.4488 0.0164 0.3487 -0.1846 0.2853 -0.3145	0.039 0.048 0.027 0.030 0.031 0.027	11.461 0.339 12.734 -6.230 9.158 -11.608	0.000 0.735 0.000 0.000 0.000	0.372 -0.079 0.295 -0.243 0.224 -0.368	0.526 0.111 0.402 -0.126 0.346 -0.261
PctOtherRace	-0.0947	0.030	-3.138	0.002	-0.154	-0.035
BI6 BI7	-0.0669 -0.0962	0.027	-2.468 -3.477	0.014	-0.120 -0.151	-0.014 -0.042
Omnibus:	=======	2.180 Du	rbin-Watson:	=======	 1.98	6

Omnibus:	2.180	Durbin-Watson:	1.986
Prob(Omnibus):	0.336	Jarque-Bera (JB):	2.218
Skew:	0.116	Prob(JB):	0.330
Kurtosis:	2.949	Cond. No.	10.4

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

In []:

```
X train rfe = X train rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort values(by = "VIF", ascending = False)
vif
```

Out[]:

	Features	VIF
3	PctHS25_Over	4.33
1	incidenceRate	3.86
2	MedianAgeMale	3.61
4	PctEmployed16_Over	2.75
0	avgAnnCount	1.89
5	PctOtherRace	1.47
7	ВІ7	1.16
6	BI6	1.15

```
X_train_rfe = X_train_rfe.drop(["avgAnnCount"], axis = 1)
X_train_rfe = sm.add_constant(X_train_rfe)
lm = sm.OLS(y_train, X_train_rfe).fit() # Running the linear model
print(lm.summary())
```

OLS Regression Results

Dep. Variable:	TARGET deathRate	R-squared:	0.412
Model:	OLS	Adj. R-squared:	0.408
Method:	Least Squares	F-statistic:	93.72
Date:	Sat, 05 Sep 2020	Prob (F-statistic):	1.83e-103
Time:	13:11:40	Log-Likelihood:	-26.847
No. Observations:	943	AIC:	69.69
Df Residuals:	935	BIC:	108.5

Df Model: 7
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	0.4516	0.038	11.789	0.000	0.376	0.527
incidenceRate	0.3516	0.026	13.527	0.000	0.301	0.403
MedianAgeMale	-0.1856	0.029	-6.302	0.000	-0.243	-0.128
PctHS25 Over	0.2836	0.031	9.223	0.000	0.223	0.344
PctEmployed16 Over	-0.3148	0.027	-11.635	0.000	-0.368	-0.262
PctOtherRace	-0.0945	0.030	-3.133	0.002	-0.154	-0.035
BI6	-0.0667	0.027	-2.462	0.014	-0.120	-0.014
BI7	-0.0961	0.028	-3.475	0.001	-0.150	-0.042
	=======	 1.907	======= Durbin-Watso	======= n:	 1.:	=== 986
Prob(Omnibus):		0.385 Jarque-Bera (JB):		1.950		
Skew:		0.108 Prob(JB):		0.3	0.377	
Kurtosis:		2.945	Cond. No.		9	.87

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specifie d.

In []:

```
X_train_rfe = X_train_rfe.drop(['const'], axis=1)
# Calculate the VIFs for the new model
vif = pd.DataFrame()
X = X_train_rfe
vif['Features'] = X.columns
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['VIF'] = round(vif['VIF'], 2)
vif = vif.sort_values(by = "VIF", ascending = False)
vif
```

Out[]:

	Features	VIF
2	PctHS25_Over	4.32
1	MedianAgeMale	3.61
0	incidenceRate	3.29
3	PctEmployed16_Over	2.73
4	PctOtherRace	1.41
6	BI7	1.16
5	BI6	1.15