Computer Graphics (CS 4731) Linear Algebra for Graphics (Vector Spaces and Barycentric Coordinates)

Joshua Cuneo

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Recall...

Points, Scalars and Vectors

Vectors

- Vectors
 - Addition & Subtraction
 - Scalar Multiplication
 - Magnitude & Normalization
 - Dot & Cross Product

Vector Addition & Subtraction

Vector-Scalar Multiplication

Magnitude of a Vector

Magnitude of a

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 \dots + a_n^2}$$

Normalizing a vector (unit vector)

$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{vector}{magnitude}$$

Note magnitude of normalized vector = 1. i.e

$$\sqrt{a_1^2 + a_2^2 \dots + a_n^2} = 1$$

Magnitude of a Vector

• Example: if a = (2, 5, 6)

• Magnitude of **a**

$$|\mathbf{a}| = \sqrt{2^2 + 5^2 + 6^2} = \sqrt{65}$$

• Normalizing a

$$\hat{\mathbf{a}} = \left(\frac{2}{\sqrt{65}}, \frac{5}{\sqrt{65}}, \frac{6}{\sqrt{65}}\right)$$

Vector Dot & Cross Product

Angle Between Two Vectors

$$\mathbf{b} \cdot \mathbf{c} = |\mathbf{b}| |\mathbf{c}| \cos \theta$$

Cross Product

a x **b** is perpendicular to both **a** and **b**

Point and Free Vectors

Rasterization

Rasterization

Think-Pair-Share

Given three points, how do we decide which pixels are inside a triangle and which aren't?

Linear Combination or Blend .75 + .25 = 1

Linear Combination or Blend

.5 + .5 = 1

 $.75 + 1 \neq 1$

$$.8 + .5 - .3 = 1$$

Think-Pair-Share

If we added these vertices together in this way, would they yield a point inside a triangle? Why or why not?

$$.8 + .5 - .3 = 1$$

Triangle

$$.8 + .5 - .3 = 1$$

Affine Combination

Given a vector

$$\mathbf{a} = (a_1, a_2, a_3, ..., a_n)$$

$$a_1 + a_2 + \dots a_n = 1$$

Affine combination: Sum of all components = 1

Convex affine = affine + no negative component
 i.e

$$a_1, a_2, \dots a_n = non - negative$$

Linear Combination

Linear Combination but Not a Blend

Rasterization

Rasterization

Rasterization

Convexity

 An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

Pixel Coordinates are in X,Y

$$X = \lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3$$
$$y = \lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

$$X = \lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3$$
$$y = \lambda_1 y_1 + \lambda_2 y_2 + \lambda_3 y_3$$

$$\lambda_3 = 1 - \lambda_1 - \lambda_2$$

$$x = \lambda_1 x_1 + \lambda_2 x_2 + (1 - \lambda_1 + \lambda_2) x_3$$

 $y = \lambda_1 y_1 + \lambda_2 y_2 + (1 - \lambda_1 + \lambda_2) y_3$

$$\lambda_3 = 1 - \lambda_1 - \lambda_2$$

Lots of rearranging...

$$\lambda_3 = 1 - \lambda_1 - \lambda_2$$

$$\lambda_1 = \frac{(y_2 - y_3)(x - x_3) + (x_3 - x_2)(y - y_3)}{(y_2 - y_3)(x_1 - x_3) + (x_3 - x_2)(y_1 - y_3)}$$

$$\lambda_2 = \frac{(y_3 - y_1)(x - x_3) + (x_1 - x_3)(y - y_3)}{(y_2 - y_3)(x_1 - x_3) + (x_3 - x_2)(y_1 - y_3)}$$

$$\lambda_3 = 1 - \lambda_1 - \lambda_2$$

 $\lambda_1 + \lambda_2 + \lambda_3 = 1$ and $0 \le \lambda_x \le 1$

Think-Pair-Share

How can we use the logic of Barycentric coordinates to determine pixel color?

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
and
 $0 \le \lambda_x \le 1$

Associate a color with each point

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
and
 $0 \le \lambda_x \le 1$

- $0 \leq \lambda_1 \leq 1$
- $0 \leq \lambda_2 \leq 1$
- $0 \leq \lambda_3 \leq 1$


```
\lambda_1 + \lambda_2 + \lambda_3 = 1
and
0 \le \lambda_x \le 1
```

- $\lambda_1 = \text{Weight 1}$
- $\lambda_2 = \text{Weight 2}$
- λ_3 = Weight 3

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
and
 $0 \le \lambda_x \le 1$

•
$$\lambda_3 =$$

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
and
 $0 \le \lambda_x \le 1$

- \lambda_1 +
- \lambda_2 +
- \lambda_3 + =

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
and
 $0 \le \lambda_x \le 1$

- \lambda_1 +
- \lambda_2 +
- λ₃ +

Colors

Colors

Add and scale are applied to **channels**This data form doesn't scale and add well

Colors

Add and scale are applied to **channels**This data form does much better

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$
and
 $0 \le \lambda_x \le 1$

•
$$\lambda_2$$
 + =

• \lambda 3 +

Associate a color with each point

