INEQUALITIES KS3 and KS4 Non-Calculator (with some examples and solutions)

NOTE: * means "may be challenging"

Examples:

Solve the following inequalities:

1.
$$x + 3 \ge 7$$

2.
$$3 - x < 7$$
 3. $2x \le 7$

3.
$$2x \le 7$$

$$x \ge 7 - 3$$

$$3 - 7 < x$$

$$x \le \frac{7}{2} (or 3.5)$$

$$x \ge 4$$

$$-4 < x$$

or
$$x > -4$$

Note: In Question 1 the smallest integer value that x may take is 4

In Question 2 the smallest integer value that x may take is -3

In Questions 3 the greatest integer value that x may take is 3

4.
$$2x - 3 > 7$$

 $2x > 7 + 3$

$$5. \ 3 - 2x \le 7 \\ 3 - 7 \le 2x$$

$$-4 \leq 2x$$

$$-2 \le x \text{ (or } x \ge -2)$$

Smallest integer value of *x* is 6

Smallest integer value of x is -2

6.
$$6x - 3 \ge 4x - 13$$

 $6x - 4x \ge -13 + 3$
 $2x \ge -10$

$$x \geq -5$$

7.
$$4x - 3 \ge 6x - 13$$

 $-3 + 13 \ge 6x - 4x$

$$10 \ge 2x$$

$$5 \ge x \text{ or } x \le 5$$

Smallest integer value of x is -5

Greatest integer value of x is 5

*8.
$$-7 < 4x - 5 < 11$$

 $-7 + 5 < 4x < 11 + 5$ (add 5 to both sides)

$$-2 < 4x < 16$$

$$\frac{-2}{4} < x < \frac{16}{4}$$

$$-\frac{1}{2} < x < 4$$
 The integer values that x may take are: 0, 1, 2 and 3.

*9.
$$-6 \le 19 - 5x < 33$$

This time we split it into two inequalities and solve each one and then combine the answers.

$$-6 \le 19 - 5x$$
 and $19 - 5x < 33$
 $5x \le 19 + 6$ $19 - 33 < 5x$
 $5x \le 25$ $-4 < 5x$
 $x \le 5$ $\frac{-4}{5} < x$ (or $-\frac{4}{5} < x$)

Now combine the two inequalities to get:

$$-\frac{4}{5} < x \le 5$$

The integer values that *x* may take are: 0, 1, 2, 3, 4 and 5. We may now show this on a number line.

Shaded circle means 5 is included.

$$10. \ 2(x-3) \ge 16$$
 $OR \ x-3 \ge 8$ $2x-6 \ge 16$ $x \ge 11$ $2x \ge 22$ $x \ge 11$

*15.
$$3 - \frac{2x}{5} \ge -1$$
 $3 + 1 \ge \frac{2x}{5}$ $4 \ge \frac{2x}{5}$ $20 \ge 2x$ $10 \ge x \ Or \ x \le 10$

QUESTIONS:

Solve the following inequalities and represent each one on a number line.

1.
$$x + 5 > 9$$

2.
$$x - 5 < -2$$
 3. $x + 9 \ge 5$

$$3. x + 9 \ge 5$$

4.
$$5 - x \le 5$$

5.
$$6 - x \ge 9$$

5.
$$6 - x \ge 9$$
 6. $4 - x > -2$

7.
$$2x > 18$$

8.
$$3x \le -12$$
 9. $15 > 2x$

9.
$$15 > 2x$$

10.
$$3x - 7 \ge 8$$

11.
$$3x + 7 \ge 1$$

10.
$$3x - 7 \ge 8$$
 11. $3x + 7 \ge 1$ 12. $4x - 6 < 10$

13.
$$7 - 3x > 13$$

13.
$$7 - 3x \ge 13$$
 14. $7 - 3x < 10$ 15. $7 > 3x - 3$

15.
$$7 > 3x - 3$$

16.
$$2x - 3 \le x - 5$$

17.
$$4x - 5 > x + 16$$

18.
$$5x > x + 2$$

19.
$$3(x-2) \le 12$$

20.
$$4x - 5 \le 2(3x - 7)$$

$$*21. -9 < 4x - 5 \le 11$$

$$*22. -1 \le 2x + 5 < 8$$

$$*23. 11 \ge 4x - 5 \ge -9$$

* 24.
$$-1 < 5 - x \le 7$$

$$*25. -1 \le 5 - 2x < 7$$

* 26.
$$\frac{x}{6} > 4$$

$$*27.\frac{2x}{3} \le 4$$

$$* 29. \frac{2x-1}{3} > 5$$

* 31.
$$5 - \frac{x}{3} \ge 9$$

$$*32. \quad \frac{7-2x}{5} > 4$$

* 32.
$$\frac{7-2x}{5} > 4$$
 * 33. $\frac{12-2x}{5} - 1 > 3$

Miscellaneous questions:

- 1. k is an integer such that $-2 \le k < 1$
 - (a) List the possible values of k.
 - (b) Solve the inequality $8y \ge y + 14$
- 2. (a) List the possible integer values of *n* such that $-1 \le n < 2$
 - (b) Solve the inequality 4y 5 < 10 y
- 3. k is an integer such that $-2 < k \le 3$.
 - (a) Write down all the possible values of k.
 - (b) Solve the inequality $4x 5 \ge 7$
- 4. x > -2. Show this inequality on the number line.

5. $-3 \le x < 2$. Show this inequality on the number line.

- 6. Solve the inequalities (a) 3x 2 < 2x 2 (b) $8y + 46 \le 14$ In each case, write down the greatest integer value of x.
- *7. The perimeter of the rectangle, R is less than the perimeter of the Square, S.

Write down an inequality and solve it to find the range of values of x.

- *8. The perimeter of the eqilateral triangle, E is less that the perimeter of the rectangle, R.
 - (a) Write down an inequality and solve it to find the range of values of y.
 - (b) What is the smallest integer value that y can take?

9. Solve the inequality 3x - 5 > 10 - 2x

*10. The perimeter of the regular Hexagon, H is greater that the perimeter of the regular pentagon, P.

Write down the range of values of x.

*11. Solve the inequality $8 - 3x \le 5 - 2x$

**12. Solve the following inequalities:

(a)
$$\frac{4x-3}{2} > \frac{x+1}{4}$$

(b)
$$\frac{4x-3}{2} + 1 > \frac{x+5}{4}$$

(c)
$$-1 < \frac{4x-5}{3} < 5$$

(d)
$$-1 < \frac{5-4x}{3} < 5$$

ANSWERS/SOLUTIONS (solutions not unique)

mathsmalakiss.com 11

3)
$$5 - \frac{2}{3} \ge 9$$
 When the subject (2) is negative, "take it to the others ide"

 $5 - 9 \ge \frac{2}{3}$
 $-4 \ge \frac{2}{3}$
 $-12 \ge 2$
 $6^2 \ge 2^{-12}$

32 $\frac{7 - 2x}{5} > 4$
 $7 - 2x > 20$
 $12 - 2x > 2x$
 $-615 > x$
 $02 x < - 4$
 $03 x < - 4$
 $04 x < - 4$
 $07 x < -$

(3) (2)
$$-1$$
, 0, 1, 2, 3 (4) \times > -2
(b) $4x-5 \ge 7$
 $4x \ge 12$
 $x \ge 3$
(5) $-3 \le x \le 2$
(6) (a) $3x-2 \le 2x-2$ (b) $8y+46 \le 14$
 $x \le 0$ greatest $8y \le -32$
 $y \le 14-46$
 $x \le 0$ greatest $y \le -4$
 $y \ge -4$
 y

mathsmalakiss.com

13

(a)
$$3x-5 > 10-2x$$
 $3x+2x > 10+5$
 $5x > 15$
 $2x > 3$
(b) $6(2x-1) > 5(2x+1)$
 $12x-6 > 10x+5$
 $2x > 11$
 $2x > 5.5$
(c) $8-3x \le 5-2x$
 $8-5 \le -2x+3x$
 $3 \le x$
 3

Continued on the next page.

(12) (b)
$$\frac{4x-3}{2}+1 > \frac{x+5}{4}$$

(x4) $\Rightarrow 2(4x-3)+4 > x+5$
 $8x-6+4 > x+5$
 $8x-x>5+6-4$
 $7x>7$
 $x>1$
 $x>1$

(C) $-1 < \frac{4x-5}{3} < 5$
(X3) $\Rightarrow -3 < 4x-5 < 15$
 $-3+5 < 4x < 15+5$
 $2 < 4x < 20$
 $0.5 < x < 5$

(X3) $\Rightarrow -3 < 5-4x < 15$
 $5plit -3 < 5-4x < 15$
 $4x < 8$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 < 2$
 $2 <$

I hope you find this useful. Apologies for the hand written solutions. Time is to blame! If you find any errors, please let me know. Thank you.

mathsmalakiss.com 15