Math 101 HW 17

Jeff Carney

March 3, 2017

Please grade 1, 2, 3

1

 \mathbf{Q} : Let $a \in (-1,0)$. Prove that $a^n \to 0$.

Since $a \in (-1,0)$ then $(-a) \in (0,1)$. We showed in class that since $(-a) \in (0,1)$ then $(-a)^n \to 0$. Let $\varepsilon > 0$. Thus, $\exists N \in \mathbb{N}$ s.t. if n > N then $|(-a)^n| < \varepsilon$. Let n > N. Note that $|a^n| = |(-a)^n| < \varepsilon$. $\therefore |a^n| < \varepsilon$ so $a^n \to 0$.

2

 \mathbf{Q} : Let c > 1. Prove that $c^n \to \infty$.

Note that since $c > 1 \ \forall n \in \mathbb{N}c^n > 0$. Consider the sequence $\{x_n\} = \{1/c^n\}$. WTS that $\{x_n\}$ is decreasing and bounded. We can do this by induction.

Let $p(n): 1/c^n \in (0,1)$ and $1/c^{n+1} < 1/c^n$.

Base Case: n=1 $c>1 \Rightarrow 1/c \in (0,1)$ and since 1/c<1 and 1/c>0 then $1/c^2<1/c$.

Inductive Step:

Suppose for some n that $1/c^n \in (0,1)$ and $1/c^{n+1} < 1/c^n$.

We know that $0 < 1/c^n < 1$ and since 1/c > 0 we have $0 < 1/c^{n+1} < 1/c < 1$. Thus $1/c^{n+1} \in (0,1)$. And since $1/c^{n+1} < 1/c^n \Rightarrow 1/c^{n+2} < 1/c^{n+1}$.

Thus $\{1/c^n\}$ is bounded and decreasing.

Since bounded, monotonic sequence converges we know that $\exists \in \mathbb{R} \text{ s.t. } 1/c^n \to l$. Also $1/c \to 1/c$. By the multiplication theorem $1/c^{n+1} \to l/c$. Note $\{1/c^{n+1}\} = \{1/c^2, 1/c^3, ...\} = \{x_{n+1}\}$ where $\{x_n\} = \{1/c^n\}$. In the homework we proved that if $x_n \to l$ then $x_{n+1} \to l$. Thus, $1/c^{n+1} \to l$ since $1/c^n \to l$. By uniqueness of limits $l = l/c \to 0 = l/c - l = l((1/c) - 1)$. But $((1/c) - 1) \neq 0$ because $1/c \neq 1$. Therefore l = 0 so $1/c^n \to 0$.

Since $\forall n \in \mathbb{N} \ c^n > 0$ and $1/c^n \to l$ then the lemma of the reciprocal theorem $c^n \to \infty$.

3

Q: Let d < -1. Prove that $\{d^n\}$ diverges but does not diverge to either ∞ or $-\infty$.

In order to show that $\{d^n\}$ diverges we can show that it is not bounded. Since |d| > 1 we know, by problem 2, that $|d|^n = |d^n|$ diverges to infinity. Thus, $\forall M > 0 \ \exists N \in \mathbb{N}$ s.t. if $n > N \ |d^n| > M$. But note that this is the negation of boundedness, thus $\{d^n\}$ is unbounded. So $\{d^n\}$ diverges. Now we want to show that it does not diverge to either ∞ or $-\infty$.

Proof that $\{d^n\}$ does not diverge to ∞ :

Assume that $\{d^n\}$ does diverge to ∞ . Then $\forall M > 0 \; \exists N \in \mathbb{N}$ s.t. if n > N $d^n > M$. Let M > 0. Let n > N. Either n is even or n is odd. If n is odd then d^n is negative $\Rightarrow \Leftarrow$ because d^n cannot be greater than a positive number. If n is even then n+1 is odd and d^{n+1} is negative and similarly we have a contradiction.

Proof that $\{d^n\}$ does not diverge to $-\infty$:

Assume that $\{d^n\}$ does diverge to $-\infty$. Then $\forall M < 0 \ \exists N \in \mathbb{N}$ s.t. if n > N $d^n < M$. Let M < 0. Let n > N. Either n is even or n is odd. If n is even then d^n is positive $\Rightarrow \Leftarrow$ because d^n cannot be greater than a negative number. If n is odd then n+1 is even and d^{n+1} is positive and similarly we have a contradiction.

 $\therefore \{d^n\}$ diverges but does not diverge to either ∞ or $-\infty$.

4

 \mathbf{Q} : Let $N \in \mathbb{N}$. Prove that $x_n \to l$ if and only if $x_{n+N} \to l$.

 (\Rightarrow) (follows from HW 9 Q4???)

 (\Leftarrow)

Assume that $x_{n+N} \to l$. B (has to be finite) terms s.t. such that $|x_{n+N} - l| < \varepsilon$ is not true. So, at most B + N terms s.t. $|x_n - l| < \varepsilon$ is not true.