2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-2 tasks

holiday Language: pl-PL

Wakacje (Holiday)

Jian-Jia planuje spędzić swoje następne wakacje na Tajwanie. Podczas wakacji będzie podróżował od miasta do miasta, starając się zwiedzić jak najwięcej atrakcji w różnych miastach.

Na Tajwanie znajduje się n miast usytuowanych wzdłuż jednej autostrady. Miasta są ponumerowane kolejno od 0 do n-1. Dla miasta i, gdzie 0 < i < n-1, sąsiednimi miastami są i-1 oraz i+1. Jedynym sąsiednim miastem dla miasta 0 jest miasto 1, a jedynym sąsiednim miastem dla miasta n-1 jest miasto n-2.

W każdym mieście znajduje się pewna liczba atrakcji. Jian-Jia ma do dyspozycji d dni wakacji i chce w tym czasie zobaczyć możliwie najwięcej atrakcji. Już zdecydował, od którego miasta rozpocznie zwiedzanie Tajwanu. Każdego dnia podczas swoich wakacji Jian-Jia może albo przemieścić się do sąsiedniego miasta, albo zobaczyć wszystkie atrakcje w mieście, w którym się aktualnie znajduje. Jednego dnia nie może jednocześnie zwiedzać miasta i przemieszczać się między miastami. Jian-Jia nigdy nie ogląda atrakcji w tym samym mieście dwukrotnie, nawet jeśli znajdzie się tam wiele razy. Pomóż Jian-Jia zaplanować wakacje tak, żeby zobaczył możliwie najwięcej różnych atrakcji.

Przykład

Załóżmy, że Jian-Jia ma 7 dni wakacji, do zwiedzenia jest 5 miast (wymienionych w tabeli poniżej), a zwiedzanie rozpoczyna się od miasta o numerze 2. Pierwszego dnia Jian-Jia odwiedza 20 atrakcji w mieście 2. Drugiego dnia Jian-Jia przemieszcza się z miasta 2 do miasta 3, a trzeciego dnia zwiedza wszystkie 30 atrakcji w tym mieście. Następne trzy dni Jian-Jia spędza, podróżując z miasta 3 do miasta 0. Siódmego dnia Jian-Jia zwiedza 10 atrakcji w mieście 0. Łączna liczba atrakcji odwiedzonych przez Jian-Jia wynosi 20+30+10=60, co jest największą możliwą liczbą atrakcji, jakie Jian-Jia może odwiedzić w ciągu 7 dni, rozpoczynając zwiedzanie od miasta 2.

miasto	liczba atrakcji	
0	10	
1	2	
2	20	
3	30	
4	1	

dzie ń	akcja		
1	zwiedza atrakcje w mieście 2		
2	przemieszcza się z miasta 2 do miasta 3		

dzie ń	akcja		
3	zwiedza atrakcje w mieście 3		
4	przemieszcza się z miasta 3 do miasta 2		
5	przemieszcza się z miasta 2 do miasta 1		
6	przemieszcza się z miasta 1 do miasta 0		
7	zwiedza atrakcje w mieście 0		

Zadanie

Napisz funkcję findMaxAttraction, która obliczy maksymalną liczbę atrakcji możliwą do odwiedzenia przez Jian-Jia.

- findMaxAttraction(n, start, d, attraction)
 - n: liczba miast.
 - start: indeks miasta, z którego rozpoczyna się zwiedzanie.
 - d: liczba dni.
 - lacktriangled attraction: tablica rozmiaru n; attraction[i] jest liczbą atrakcji w mieście i, dla 0 < i < n-1.
 - Wynikiem funkcji powinna być maksymalna liczba atrakcji możliwych do odwiedzenia przez Jian-Jia.

Podzadania

We wszystkich podzadaniach zachodzi $0 \le d \le 2n + \lfloor n/2 \rfloor$. W każdym mieście znajduje się nieujemna liczba atrakcji.

Dodatkowe ograniczenia:

podzadanie	liczba punktów	n	max liczba atrakcji w jednym mieście	miasto startowe
1	7	$2 \le n \le 20$	1,000,000,000	dowolne
2	23	$2 \leq n \leq 100,000$	100	miasto 0
3	17	$2 \le n \le 3,000$	1,000,000,000	dowolne
4	53	$2 \leq n \leq 100,000$	1,000,000,000	dowolne

Implementacja

Powinieneś zgłosić dokładnie jeden plik o nazwie holiday.c, holiday.cpp lub holiday.pas. W pliku powinna znaleźć się implementacja funkcji opisanej powyżej, o następującej sygnaturze. W przypadku programu w C/C++ powinieneś także załączyć (*include*) plik nagłówkowy holiday.h.

Zauważ, że wynik może być duży, a do przechowywania wyniku funkcji findMaxAttraction jest używany 64-bitowy typ całkowity.

Programy w C/C++

```
long long int findMaxAttraction(int n, int start, int d,
int attraction[]);
```

Programy w Pascalu

```
function findMaxAttraction(n, start, d : longint;
attraction : array of longint): int64;
```

Przykładowy program sprawdzający

Przykładowy program sprawdzający wczytuje dane w następującym formacie:

- wiersz 1: n, start, d.
- wiersz 2: attraction[0], ..., attraction[n-1].

Przykładowy program sprawdzający wypisze na wyjście wynik funkcji findMaxAttraction.