EXERCICES: CONTINUITÉ, LIMITES

1 Fonctions numériques

1.1 Monotonie

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $f \circ f$ est croissante et $f \circ f \circ f$ est strictement décroissante. Montrer que f est strictement décroissante.

1.2 Une fonction périodique étrange

Soit f la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Montrer que l'ensemble des périodes de f est \mathbb{Q} .

On a donc construit une fonction périodique non constante qui n'admet pas de plus petite période strictement positive.

2 Topologie élémentaire

2.1 Sous-groupes additifs de \mathbb{R}

Soit G un sous-groupe de $(\mathbb{R}, +)$ distinct de $\{0\}$. On note :

$$a = \inf \left(G \cap \mathbb{R}_+^* \right)$$

- 1. Montrer que a est bien défini.
- 2. Dans cette question on suppose que a > 0.
 - (a) Montrer que $a \in G$.
 - (b) En déduire que $G = a\mathbb{Z} = \{na : n \in \mathbb{Z}\}.$
- 3. Montrer que si a = 0, G est dense dans \mathbb{R} .

On résume les conclusions des questions précédentes en disant que les sous-groupes additifs de \mathbb{R} sont soit discrets soit denses dans \mathbb{R} .

4. Application:

Soit a et b deux réels non nuls tels que $a/b \notin \mathbb{Q}$. Montrer que :

$$a\mathbb{Z} + b\mathbb{Z} = \{na + mb : n, m \in \mathbb{Z}\}\$$

est dense dans \mathbb{R} .

5. Application:

Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$. On dit qu'un réel T est une période de f lorsque :

$$\forall x \in \mathbb{R} \quad f(x+T) = f(x)$$

- (a) Montrer que l'ensemble \mathcal{P} des périodes de f est un sous-groupe additif de \mathbb{R} .
- (b) On suppose que f est non constante et périodique. Montrer qu'il existe un unique $T_0 > 0$ tel que $\mathcal{P} = T_0 \mathbb{Z}$.

3 Limites

3.1 Existence et calculs de limites

Existence et calcul des limites des expressions :

$$xE\left(\frac{1}{x}\right)$$
 en 0 $E\left(\frac{1}{x}\right)$ à droite en 0

$$x\cos\left(\frac{1}{x}\right)$$
 en 0 $\cos\left(\frac{1}{x}\right)$ en 0 $\frac{x^x}{E(x)^{E(x)}}$ en $+\infty$

3.2 Existence et calculs de limites

Existence et calcul des limites des expressions :

$$\frac{6x^2 + 5x - 4}{2x - 1}$$
 en $\frac{1}{2}$ $\frac{3}{x^3 - 1} - \frac{2}{x^2 - 1}$ en 1

$$x^n e^{-1/x^2}$$
 en 0, avec $n \in \mathbb{Z}$ $\frac{\ln\left(\operatorname{ch}\left(\alpha x\right)\right)}{\ln\left(\operatorname{ch}x\right)}$ en $+\infty$, avec $\alpha \in \mathbb{R}$

$$\frac{re^{i\alpha t}-1}{t} \text{ en } 0, \text{ avec } r \in \mathbb{R}_+^* \text{ et } \alpha \in \mathbb{R} \qquad \frac{e^{2it} \tan t}{t^2} \text{ en } 0$$

3.3 Non existence d'une limite

Montrer que la fonction définie sur]0,1[par

$$\forall x \in]0,1[\quad f(x) = \sin\left(\frac{1}{x - x^2}\right)$$

n'a pas de limite en 0.

3.4 Manipulation de limite

Soit f une fonction définie sur \mathbb{R} telle que :

$$f(x) \xrightarrow[x \to 0]{} 0$$
 et $\frac{f(2x) - f(x)}{x} \xrightarrow[x \to 0]{} 0$

En remarquant que

$$f(x) = \sum_{k=1}^{n} \left(f\left(\frac{x}{2^{k-1}}\right) - f\left(\frac{x}{2^k}\right) \right) + f\left(\frac{x}{2^n}\right)$$

Montrer que :

$$\frac{f(x)}{x} \xrightarrow[x \to 0]{} 0$$

4 Continuité ponctuelle

4.1 Une fonction discontinue tout point

Soit f la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R} \quad f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Montrer que f est discontinue en tout point.

4.2 Une fonction continue en tout point de $\mathbb{R} \setminus \mathbb{Q}$

Soit f la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R} \quad f\left(x\right) = \begin{cases} 0 & \text{si } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & \text{si } x \in \mathbb{Q} \text{ et } x = \frac{p}{q} \text{ avec } (p,q) \in \mathbb{Z} \times \mathbb{N}^* \text{ et } (p,q) = 1 \end{cases}$$

- 1. Montrer que f est discontinue en tout $x \in \mathbb{Q}$.
- 2. Le but de cette question est de montrer que f est continue en tout $x \in \mathbb{R} \setminus \mathbb{Q}$. Soit $x \in \mathbb{R} \setminus \mathbb{Q}$.
 - (a) Soit (p_n) une suite d'éléments de \mathbb{Z} et (q_n) une suite d'éléments de \mathbb{N}^* telles que :

$$\frac{p_n}{q_n} \xrightarrow[n \to +\infty]{} x$$

Montrer que $(q_n) \xrightarrow[n \to +\infty]{} +\infty$.

(b) En déduire que f est continue en x.

4.3 Une équation fonctionnelle

Soit f une fonction continue sur \mathbb{R} telle que :

$$\forall x, y \in \mathbb{R} \quad f(x+y) = f(x) + f(y)$$

1. Montrer que :

$$\forall x \in \mathbb{R} \quad \forall n \in \mathbb{Z} \quad f(nx) = nf(x)$$

2. Montrer que :

$$\forall x \in \mathbb{R} \quad \forall q \in \mathbb{Q} \quad f(qx) = qf(x)$$

3. En déduire qu'il existe $a \in \mathbb{R}$ tel que :

$$\forall x \in \mathbb{R} \quad f(x) = ax$$

4. Le but de cette question est de montrer qu'il existe une fonction g de \mathbb{R} dans \mathbb{R} (qui sera donc non continue) telle que :

$$\forall x, y \in \mathbb{R} \quad g(x+y) = g(x) + g(y)$$

et telle que g ne soit pas de la forme g(x) = ax.

(a) On considère $\mathbb R$ comme $\mathbb Q$ -espace vectoriel. En admettant que $A=\mathbb Q$ admet un supplémentaire B dans $\mathbb R$ montrer qu'il existe un unique endomorphisme g tel que :

$$\forall x \in A \quad g(x) = x \text{ et } \forall x \in B \quad g(x) = 0$$

(b) Conclure.

4.4 Une équation fonctionnelle

Soit f une fonction continue de \mathbb{R} dans \mathbb{R} telle que :

$$\forall x, y \in \mathbb{R} \quad f\left(\frac{x+y}{2}\right) = \frac{f(x) + f(y)}{2}$$

1. Montrer que :

$$\mathcal{D} = \left\{ \frac{p}{2^n} : p \in \mathbb{Z} \text{ et } n \in \mathbb{N} \right\}$$

est dense dans \mathbb{R} .

- 2. Soient $a, b \in \mathbb{R}$ tels que a < b.
 - (a) Montrer que:

$$\forall x \in \mathcal{D} \cap [0,1] \quad f(\alpha \cdot a + (1-\alpha) \cdot b) = \alpha f(a) + (1-\alpha) f(b)$$

(b) En déduire qu'il existe $\alpha, \beta \in \mathbb{R}$ tels que :

$$\forall x \in [a, b]$$
 $f(x) = \alpha + \beta x$

3. Montrer que:

$$\forall x \in \mathbb{R} \quad f(x) = \alpha + \beta x$$

4.5 Une équation fonctionnelle

Soit f une application continue de \mathbb{R} dans \mathbb{R} telle que :

$$\forall x, y \in \mathbb{R}$$
 $f(x+y) = f(x) f(y)$

- 1. On suppose qu'il existe $x_0 \in \mathbb{R}$ tel que $f(x_0) = 0$. Montrer que f est la fonction nulle. Dans la suite, on suppose que f n'est pas la fonction nulle.
 - 2. Montrer que :

$$\forall x \in \mathbb{R} \quad f(x) > 0$$

3. En déduire qu'il existe $a \in \mathbb{R}$ tel que :

$$\forall x \in \mathbb{R} \quad f(x) = e^{ax}$$

4.6 Prolongement d'inégalités

1. Soient f et g deux fonctions de continues $\mathbb R$ dans $\mathbb R$ telles que :

$$\forall x \in \mathbb{Q} \quad f(x) < g(x)$$

(a) Montrer que:

$$\forall x \in \mathbb{R} \quad f(x) \leqslant g(x)$$

(b) Montrer que l'on a pas nécessairement :

$$\forall x \in \mathbb{R} \quad f(x) < g(x)$$

2. Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$ telle que :

$$\forall x, y \in \mathbb{Q} \quad x < y \Longrightarrow f(x) < f(y)$$

Montrer que f est strictement croissante, c'est-à-dire que :

$$\forall x, y \in \mathbb{R} \quad x < y \Longrightarrow f(x) < f(y)$$

5 Continuité globale

5.1 Théorème des valeurs intermédiaires

- 1. Soit f une fonction continue de [a,b] dans [a,b]. Montrer que f admet un point fixe, c'est-à-dire qu'il existe $c \in [a,b]$ tel que f(c) = c.
- 2. Soit f une fonction continue sur \mathbb{R} à valeurs dans $\{0,1\}$. Montrer que f est constante.
- 3. Déterminer les fonctions f continues de $\mathbb R$ dans $\mathbb R$ telles que :

$$\forall x \in \mathbb{R} \quad (f(x))^2 - 2xf(x) - 1 = 0$$

5.2 Théorème de la corde raide

Soit f une fonction continue de [0,1] dans \mathbb{R} telle que f(0) = f(1).

1. Montrer qu'il existe $x \in \left[0, \frac{1}{2}\right]$ tel que :

$$f\left(x + \frac{1}{2}\right) = f\left(x\right)$$

2. Application:

Montrer que si un coureur parcourt 20 km en une une heure, il existe un intervalle de temps d'une demi-heure pendant lequel il a exactement parcouru 10 km.

3. Plus généralement, montrer que si $n \in \mathbb{N}^*$, il existe $x \in [0, 1 - \frac{1}{n}]$ tel que :

$$f\left(x + \frac{1}{n}\right) = f\left(x\right)$$

4. Si $\alpha \in [0,1]$, existe-t-il toujours $x \in [0,1-\alpha]$ tel que :

$$f\left(x+\alpha\right) = f\left(x\right)$$

5.3 Théorème des valeurs intermédiaires

Pour $n \in \mathbb{N}^*$, soit f_n la fonction définie par

$$\forall x \in \mathbb{R} \quad f_n(x) = nx^{n+1} - (n+1)x^n - \frac{1}{2}$$

- 1. Démontrer que f_n admet une unique racine positive, notée x_n .
- 2. Montrer que la suite $(x_n)_{n\in\mathbb{N}^*}$ converge vers 1 (on pourra déterminer le signe de $f_{n+1}(x_n)$ pour en déduire le sens de variation de la suite).
- 3. Montrer que la fonction g, d'expression $e^y(y-1) \frac{1}{2}$, possède une unique racine, notée γ , dans $]0, +\infty[$. Donner une valeur numérique de γ à 10^{-3} près.
- 4. Établir que, si α est une constante strictement positive, alors $(f_n(1+\frac{\alpha}{n}))_{n\in\mathbb{N}^*}$ converge vers $g(\alpha)$.
- 5. Soit $\varepsilon > 0$. Montrer que $f_n(1 + \frac{\gamma + \varepsilon}{n})$ est ultimement positif, et que $f_n(1 + \frac{\gamma \varepsilon}{n})$ est ultimement négatif.
- 6. En déduire que

$$x_n = 1 + \frac{\gamma}{n} + \underset{n \to +\infty}{\text{o}} \left(\frac{1}{n}\right)$$

5.4 Théorème des valeurs intermédiaires

- 1. Montrer qu'il existe une unique suite $(x_n)_{n\in\mathbb{N}}$ à termes strictement positifs telle que $x_n^n \ln(x_n) = 1$ pour tout entier n.
- 2. Montrer que cette suite est décroissante et qu'elle tend vers 1.
- 3. Montrer que

$$x_n - 1 \underset{n \to +\infty}{\sim} \frac{w(n)}{n}$$

où w est la fonction de Lambert, c'est-à-dire la fonction réciproque de $x \mapsto xe^x$ sur \mathbb{R}_+ .

5.5 Théorème de compacité

- 1. Montrer qu'une fonction continue sur \mathbb{R} et périodique est bornée et atteint ses bornes.
- 2. Soit f une fonction continue de [a,b] dans \mathbb{R} . Montrer que :

$$\sup_{x \in [a,b]} f(x) = \sup_{x \in [a,b[} f(x)]$$

3. Soit f et g deux fonctions continues de [a,b] dans \mathbb{R} . On définit h sur [a,b] par :

$$\forall t \in [a, b] \quad h(t) = \sup_{x \in [a, b]} (f(x) + tg(x))$$

Montrer que h est continue.

4. Soit f et g deux fonctions continues définies sur [a,b] à valeurs dans $\mathbb R$ telles que :

$$\forall x \in [a, b] \quad 0 < f(x) < g(x)$$

Montrer qu'il existe $k \in [0, 1[$ tel que :

$$\forall x \in [a, b] \quad f(x) \leqslant kg(x)$$

5.6 Généralisation du théorème de Compacité

Soit f une fonction continue de \mathbb{R} dans \mathbb{R} admettant des limites finies en $+\infty$ et $-\infty$.

- 1. Montrer que f est bornée.
- 2. f atteint-elle ses bornes?

5.7 Uniforme continuité

Soit f une fonction uniformément continue de \mathbb{R} dans \mathbb{R} . Montrer qu'il existe $a, b \in \mathbb{R}_+$ tels que :

$$\forall x \in \mathbb{R} \quad |f(x)| \leq a + b|x|$$

5.8 Uniforme continuité

1. Montrer que :

$$\forall x, y \in \mathbb{R}_+ \quad |\sqrt{x} - \sqrt{y}| \leqslant \sqrt{|x - y|}$$

2. En déduire que la fonction $x \mapsto \sqrt{x}$ définie sur \mathbb{R}_+ est uniformément continue.

5.9 Fonctions Hölderiennes

Soit $\alpha > 0$. On dit qu'une fonction f est α -Hölderienne lorsqu'il existe $c \in \mathbb{R}_+$ tel que :

$$\forall x, y \in \mathbb{R} \quad |f(x) - f(y)| \le c |x - y|^{\alpha}$$

- 1. Montrer que si f est α -Hölderienne avec $\alpha > 1$, f est constante.
- 2. Montrer que si f est α -Hölderienne, f est uniformément continue.

5.10 Généralisation du théorème de Heine

Soit f une fonction continue de \mathbb{R} dans \mathbb{R} telle que :

$$f(x) \xrightarrow[x \to -\infty]{} l_1 \text{ et } f(x) \xrightarrow[x \to +\infty]{} l_2$$

Le but de cet exercice est de montrer que f est uniformément continue.

1. Soit $\varepsilon > 0$. Montrer qu'il existe $a, b \in \mathbb{R}$, avec $a \leq b$ tels que :

$$\forall x, y \in]-\infty, a] \quad |f(x) - f(y)| \le \varepsilon \text{ et } \forall x, y \in [b, +\infty[\quad |f(x) - f(y)| \le \varepsilon]$$

2. Montrer qu'il existe $\eta > 0$ tel que :

$$\forall x, y \in [a, b] \quad |x - y| \leq \eta \Longrightarrow |f(x) - f(y)| \leq \varepsilon$$

3. Conclure.