Name of Examination		Continuous Assessment Test I , Fall 2022-23 Semester (Nov.2022)			
Slot: F1 + 7	TF1	Course Mod	de: Offline	Class Number: CH2022231700654	
Course Code:	ВС	HY101L	Course Title:	Engineering Chemistry	
Faculty Name:	Dr. G. R	amachandran	Department:	SAS	

Answer any FIVE $(5 \times 10 = 50 \text{ Marks})$

Q. No.	Sub- divisi on	Questions	Marks
1.	Oil	(a) 1 mole of an ideal monoatomic gas ($C_V = 3R/2$) at 27°C expands reversibly and adiabatically from a volume of 15 dm³ to a volume of 45 dm³. Calculate q, ΔU , W and ΔH . ($R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$)	5
		(b) Given that, ΔH and ΔS for a reaction are 40 kJ mol ⁻¹ and 75 JK ⁻¹ mol ⁻¹ respectively. Find out the temperature conditions required for the reaction to be spontaneous and reversible.	5
2.		(a) Half-life of a compound is 140 minutes. how long will it take for 75% of the compound to decompose? Consider that the decomposition of a compound is of first order.	5
		(b). At 330 K, a reaction of first order is 50 % completed in 50 minutes. At 380 K, 50 % of the same reaction is completed in just 10 minutes. Calculate the energy of activation of the reaction.	5
3.		(a) Explain a pseudo first order reaction in detail with any one example.	5
		(b) Heat supplied to a heat engine is 3000 kJ. How much useful work can be done by the engine which works between 10° C and 110° C.	5
4.		(a) Within each given set of compounds, which one has more stabilized ' t_{2g} ' set of orbitals than the other compounds. Justify your choice. Set $1: [Cr(NH_3)_6]^{3+}; [CrF_6]^{3-}; [Cr(CO)_6]$	5
		Set 2: $[Fe(NH_3)_6]Cl_3$; $[Os(NH_3)_6]Cl_3$; $[Ru(NH_3)_6]Cl_3$;	
		(Atomic Number of Cr: 24, Fe:26, Ru:44 and Os:76) (b) Brief out any two diverse potential applications of Coordination compounds with suitable examples.	5

5.		Determine primary and secondary valency, hybridization, geometry, magnetic behaviour and crystal field splitting energy of the complexes [Co(NH ₃) ₅ Cl]Cl ₂ and [CuCl ₄] ²⁻ .	10
		(Atomic Number of Co is 27; Atomic Number of Cu is 29)	
6.	(i)	(a) We know CO is a strong ligand when compared with dioxygen and Fe can forms stable carbonyl compound by binding with CO. However, Fe present in haemoglobin can selectively bind with O ₂ rather than CO. How can you justify it?	5
		(b) With a proper justification, arrange the following complexes in an increasing order with respect to their CO IR stretching frequency. [Cr(CO) ₃ (PPh ₃) ₃]; [Cr(CO) ₃ (pyridine) ₃]; [Cr(CO) ₃ (PF ₃) ₃] (Atomic Number of Cr is 24)	5