Week 1 – Introduction to Networking COMP90007

Internet Technologies

1

Outline

- Computer Networks
- Network Types
- Protocols, Layers and Services

3

Terminologies

- A <u>network device</u>: eg. PC, Router, Switch, Phone
- Server: Provider of a service. Accept requests from clients
- <u>Client</u>: A network device connecting to a server and requesting a service
- Computer Network: A collection of autonomous computers interconnected by a single technology

Terminologies

- Packet: A message sent between two network devices (more specific definitions will be given during the course)
- IP address: A unique number identifying a network device

5

Network vs Computer Network

- Network (Noun):
 - An intricately connected system of things or people
 - An interconnected or intersecting configuration or system of components
- Computer Network:
 - A data network with computers at one or more of the nodes [Oxford Dictionary of Computing]
 - A collection of autonomous computers interconnected by a single technology

Computer Networks

How does it scale to billions of devices? What about distances?

7

What are the Internet and the World Wide Web?

Neither the Internet nor the WWW is a computer network!

- Simple answers:
 - The <u>Internet</u> is not a single network but a <u>network of</u> <u>networks</u>!
 - The <u>WWW</u> is a distributed system that <u>runs on top of the</u> <u>Internet</u>

https://mountpeaks.wordpress.com/

Uses of Computer Networks

- Business Applications
 - Resource sharing (e.g., printer, scanner, files)
- Home Applications
 - Access to remote information
 - Interactive entertainment
 - E-commerce
- Mobile Users
 - Mobility
 - Internet-of-things (e.g., parking, smart-meter, vending machines)
- Social Interactions

9

A Core Application Domain: Business Applications of Networks

- Origins: Simple Client-Server Network
- A network with two clients and one server

Business Applications of Networks (2)

 The client-server model involves requests and replies

Differentiating Factors of Networks

- Types of transmission technology
 - Broadcast link
 - Broadcast networks have a single communication channel shared by all machines on a network. Packets sent by any machine are received by all others, an address field in the packet specifies the intended recipient. Intended recipients process the packet contents, others simply ignore it.
 - Broadcasting is a mode of operation which allows a packet to be transmitted that every machine in the network must process.

Differentiating Factors of Networks

Types of transmission technology

□ Point-to-point links

- Data from sender machine is not seen and processed by other machines
- Point to point networks consist of many connections between individual pairs of machines. Packets travelling from source to destination must visit intermediate machines to determine a route often multiple routes of variant efficiencies are available and optimisation is an important principle.
- Unicasting is the term used where point-to-point networks with a single sender and receiver pair can exchange data

Multicasting

Transmission to a subset of the machines

13

Differentiating by Scale

Classification of interconnected processors by scale.

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country]]
1000 km	Continent	→ Wide area network
10,000 km	Planet	The Internet

Other Differentiations Exist...

E.g., Speed, Topology

15

Further Examples: Local Area Networks Commonly Distinguished by 3 factors

- Size
- Transmission Technology
 - Such as physically wired network
- Topology
 - Bus
 - only a single machine on the network can transmit at any point in time requires a negotiation mechanism to resolve transmission conflicts: Ethernet is the most common bus network
 - Ring
 - Each transmission bit is propagated individually
 - Requires access control to resolve propagation queuing
 - E.g., Token Ring

Local Area Network Examples

- (a) Bus
- (b) Ring

17

But What Makes the Internet Work

- Protocols, Layers and Services
 - Protocol Hierarchies
 - Design of Layer Models
 - Connection-Oriented and Connectionless Services
 - Services Primitives
 - Services and Protocols
- Network Reference Models
 - Open Systems Interconnect
 - □ TCP/IP
- Network Standards

Protocol Hierarchies (2)

Example information flow supporting virtual communication in layer 5

21

Design Issues for the Layers

- Choice of service type has a corresponding impact on the reliability and quality of the service
- Connection-Oriented: connect, use, disconnect (similar to telephone service)
 - Negotiation inherent in connection setup
- Connectionless: just send (similar to postal service)

Connection-Oriented and Connectionless Services

Six different types of services

Connectionoriented

Connectionless

Service	Example
Reliable message stream	Sequence of pages
Reliable byte stream	Remote login
Unreliable connection	Digitized voice
Unreliable datagram	Electronic junk mail
Acknowledged datagram	Registered mail
Request-reply	Database query

2

Service Primitives

- Primitives are a formal set of operations for services
- The number and type of primitives in any particular context is dependent on nature of service itself - in general more complex services require more primitives service
- Six service primitives for implementing a simple connectionoriented service

Primitive	Meaning	
LISTEN	Block waiting for an incoming connection	
CONNECT	Establish a connection with a waiting peer	
ACCEPT	Accept an incoming connection from a peer	
RECEIVE	Block waiting for an incoming message	
SEND	Send a message to the peer	
DISCONNECT	Terminate a connection	

Relationship of Services and Protocols

- Service = set of primitives that a layer provides to a layer above it
 - Defines what operations the layer is prepared to perform on behalf of its users
 - It says nothing about how these operations are implemented
 - interfaces between layers (service provider vs service users)
- Protocol = a set of rules governing the format and meaning of packets that are exchanged by peers within a layer
 - Packets sent between peer entities

25

Services to Protocols Relationship

The relationship between a service and a protocol.

Reference Models

- The OSI Reference Model
- The TCP/IP Reference Model
- A Comparison of OSI and TCP/IP
- A Critique of the OSI Model and Protocols
- A Critique of the TCP/IP Reference Model

2

Why do we need a network reference model?

- A reference model provides a <u>common baseline for the</u> <u>development</u> of many services and protocols by independent parties
- Since networks are very complex systems, a reference model can serve to <u>simplify the design process</u>
- It's engineering best practice to have an <u>"abstract"</u> <u>reference model</u>, and corresponding implementations are always required for validation purposes