Comparison of Gradient Descent (GD), Stochastic Gradient Descent (SGD), and Mini-Batch Gradient Descent (MBGD)

Туре	Description	When to Use	Suitable Datasets
Gradient Descent (GD)	Updates weights using the entire dataset at once.	- When the dataset is small and can fit in memory.	- Small datasets where computational resources are not a concern.
Stochastic Gradient Descent (SGD)	Updates weights for each data point individually.	- When the dataset is large and cannot be processed entirely at once.	- Large datasets, particularly online learning or streaming data.
Mini-Batch Gradient Descent (MBGD)	Updates weights using a small, random subset of the dataset (mini-batch).	- When the dataset is large , but you want a balance between computational efficiency and stability.	- Large datasets with a need for faster computation without sacrificing stability.

In-Depth Use Cases for Each Gradient Descent

1. Gradient Descent (GD):

- How It Works:
 - Computes the gradients for the entire dataset at each step.
 - Updates weights after calculating the Mean Squared Error (MSE) across all samples.
- **Pros**: Stable convergence, ensures a global look at the loss function.
- Cons: Computationally expensive for large datasets.
- Examples:
 - Small datasets (e.g., house price prediction with $\leq 10,000$ samples).
 - Solving mathematical optimization problems in **scientific computation**.

2. Stochastic Gradient Descent (SGD):

How It Works:

- Computes gradients and updates weights for each individual sample.
- Introduces randomness, which can help escape local minima.

• Pros:

- Faster updates, suitable for streaming or online data.
- Useful for non-convex optimization problems.

Cons:

High variance in updates, leading to less stable convergence.

Examples:

- Dynamic datasets (e.g., predicting website traffic using real-time data).
- Recommender systems (e.g., Netflix or Amazon recommendations).

3. Mini-Batch Gradient Descent (MBGD):

How It Works:

- Combines the stability of GD and the speed of SGD.
- Splits the dataset into mini-batches (e.g., batch size = 16, 32, or 64).

Pros:

- Computationally efficient due to vectorized operations.
- Reduces memory usage compared to full-batch GD.
- More stable updates compared to SGD.

• Cons:

• Requires tuning the batch size for optimal performance.

Examples:

- Deep learning (training neural networks where datasets are large, like ImageNet).
- **Financial data**: Predicting stock prices from historical trends.

Choosing the Right Gradient Descent for Your Dataset

Dataset Characteristics	Recommended GD	
Small datasets (<10,000 rows)	Gradient Descent (GD) : Stable and accurate, no need for batch splitting.	
Large datasets (>10,000 rows)	Mini-Batch Gradient Descent (MBGD): Strikes a balance between stability and computational efficiency.	
Streaming data or online tasks	Stochastic Gradient Descent (SGD): Efficient and ideal for constantly changing or incoming data.	
Highly noisy data	Mini-Batch Gradient Descent (MBGD): Mitigates the instability of SGD by averaging out some of the noise per batch.	
Deep learning applications	Mini-Batch Gradient Descent (MBGD): Faster convergence due to GPU optimization and manageable memory requirements.	