Mini project on

Design Of Drum Brake for Two Axle Vehicle

Vishal Singh 1401ME49

IIT Patna

Date- 01/10/2017

Objective

Design and analysis of internal expanding drum brakes for a two axle vehicle to achieve required stopping distance at given maximum velocity of the vehicle under normal conditions.

Design Parameters

Consider the Baja vehicle travelling at maximum speed of V_{max} =50 km/h, which is required to stop at a minimum stopping distance of 10m by braking. The details of the vehicle required for the design of drum brakes are mentioned below.

•	Total mass (vehicle + driver): M = 300 kg	•	Wheel base	: WB = 1.47 m
•	Height of CG from ground : H = 0.56 m	•	Max speed of vehicle	: $V_{max} = u = 50 \text{km/h}$
•	Static front axle load : $W_f = 1236N$	•	Static rear axle load	: W _r =1764 N
•	Max stopping distance : s = 10m	•	Radius of tyre	$: R_{tyre} = 0.279m$

Braking Torque Calculation

- Deceleration during braking, $a_{max} = (V_{max})^2/(2*s) = (50*1000/3600)^2/(2*10) = 9.64 \text{ m/s}^2$.
- Weight transfer during braking : $WT = (M*a_{max}*H) / WB = 1101.7 N$
- Dynamic load on the front wheels during braking= W_{fd} = Static front load + weight transfer = 2337.7N
- Braking force on each front wheel: $F_{bf} = (W_{fd}*a_{max})/(2*g) = 1148.6N$
- Braking torque on each front wheel : $T = F_{bf} * R_{tyre} = 320.9 \text{ N.m}$

Parameters Of the Drum Brake System

Following standard terminology of drum brake system have been followed for remaining work:

r = inner radius of the drum	θ_1 = angular position of friction pad start wrt hinge
a = distance b/w the hinge & the center of drum	θ_2 = angular position of friction pad end wrt hinge
b = width of the drum and pad	f = coefficient of friction b/w friction pad & drum.
P_{aR} = max pressure on right pad	P_{aL} = max pressure on left pad
θ_a = angle of max pressure wrt hinge	

And the corresponding values are as given below

r = 10 cm	a = 7.5 cm	b = 3.75cm
$\theta_1 = 10^0$	$\theta_2 = 120^0$	$\theta_a = 90^0$
f = 0.35		

Calculation

Total moment on right side pad due to frictional force about hinge: Mf

$$M_f = \int f dN(r - a\cos\theta) = \frac{f P_{aR} b r}{\sin\theta_a} \int_{\theta_a}^{\theta_2} \sin\theta (r - a\cos\theta) d\theta = 2.3327 \times 10^{-4} \times P_{aR}$$

Total moment on right side pad due to normal force about hinge: M_N

$$M_N = \frac{P_{aR}bar}{\sin\theta_a} \int_{\theta_a}^{\theta_2} \sin^2\theta \, d\theta = 3.55 \times 10^{-4} \times P_{aR}$$

$$F = \frac{M_N - M_f}{c} = 1.22 \times 10^{-4} \times \frac{P_{aR}}{c}$$

$$T_r = \frac{fP_{aR}br^2}{\sin\theta_a} \int_{\theta_1}^{\theta_2} \sin\theta \, d\theta = 1.9488 \times 10^{-4} \times P_{aR}$$

Total moment on left side pad due to frictional force and normal force respectively:

$$M_f' = M_f * P_{aL} / P_{aR}$$
 and $M_N' = M_N * P_{aL} / P_{aR}$

Since the actuating force on both pads are equal, we have

$$F = \frac{M_N' + M_f'}{C} = 1.22 \times 10^{-4} \times \frac{P_{aR}}{C}$$

On substituting the expressions for M'N and M'f we get,

$$T_L = \frac{fP_{aR}br^2}{\sin\theta_a} \int_{\theta_1}^{\theta_2} \sin\theta \, d\theta = 1.9488 \times 10^{-4} \times P_{aL}$$

Braking torque, $T = T_L + T_R$

$$P_{aR} + P_{aL} = 82.33 * 10^4 \dots (2)$$

From (1) and (2) we will get : $P_{aL} = 141*10^3 Pa = 141 kPa$

$$P_{aR} = 681.8 * 10^3 Pa = 681.8 KPa$$

Actuating force: $F = (M_N - M_f)/c = 3.6 \text{ kN}$

Results Obtained

Max pressure on right pad, Par = 681.8 kPa

Max pressure on left pad, Pal = 141 kPa

Actuating force on each pad , F = 3.6kN

Discussion

Max(Par, Pal) < Pallowe indicating the safe operation of the pad.

Material selection

Brake Drum	Friction pad
Gray Cast Iron Grade250	Rigid molded asbestos
K = 0.0544 w/mmoC	f: 0.35 -0.41
Y = 1e05 MPa	Pmax = 0.75 Mpa
Cp = 410 J / kg- K	Tmax = 4000 C

Comparison with other brakes

- Effective in heavy vehicles
- Problem of centrifugal force
- unable to release heat out
- High wear rate

What improvements can be done???

- Cooling process of the brake drum can be improved by extending fins on outer surface of the drum
- For same amount of actuating force, braking torque can be increased by increasing no of pads.