Reuse Optimization

Idea

- Eliminate redundant operations in the dynamic execution of instructions

How do redundancies arise?

- Loop invariant code (e.g., index calculation for arrays)
- Sequence of similar operations (e.g., method lookup)
- Lightning frequently strikes twice

Types of reuse optimization

- Value numbering
- Common subexpression elimination
- Partial redundancy elimination

CS553 Lecture

Value Numbering

2

Local Value Numbering

Idea

- Each variable, expression, and constant is assigned a unique number
- When we encounter a variable, expression or constant, see if it's already been assigned a number
 - If so, use the value for that number
 - If not, assign a new number
- Same number ⇒ same value

b
$$\rightarrow \#1$$
 #3
c $\rightarrow \#2$
b + c is $\#1 + \#2 \rightarrow \#3$
a $\rightarrow \#3$
d $\rightarrow \#1$

d + **c** is
$$\#1 + \#2 \rightarrow \#3$$

CS553 Lecture

Value Numbering

Global Value Numbering

How do we handle control flow?

CS553 Lecture

Value Numbering

5

Global Value Numbering (cont)

Idea [Alpern, Wegman, and Zadeck 1988]

- Partition program variables into congruence classes
- All variables in a particular congruence class have the same value
- SSA form is helpful

Approaches to computing congruence classes

- Pessimistic
 - Assume no variables are congruent (start with *n* classes)
 - Iteratively coalesce classes that are determined to be congruent
- Optimistic
 - Assume all variables are congruent (start with one class)
 - Iteratively partition variables that contradict assumption
 - Slower but better results

CS553 Lecture

Value Numbering

Role of SSA Form

SSA form is helpful

- Allows us to avoid data-flow analysis
- Variables correspond to values

CS553 Lecture

Value Numbering

7

Basis

Idea

- If x and y are congruent then f(x) and f(y) are congruent

- Use this fact to combine (pessimistic) or split (optimistic) classes

Problem

- This is not true for ϕ -functions

Solution: Label φ-functions with join point

CS553 Lecture

Value Numbering

Pessimistic Global Value Numbering

Idea

- Initially each variable is in its own congruence class
- Consider each assignment statement s (reverse postorder in CFG)
 - Update LHS value number with hash of RHS
- Identical value number ⇒ congruence

Why reverse postorder?

- Ensures that when we consider an assignment statement, we have already considered definitions that reach the RHS operands

Postorder: d, c, e, b, f, a

CS553 Lecture

Value Numbering

9

Algorithm

for each assignment of the form: "x = f(a,b)"

 $ValNum[x] \leftarrow UniqueValue()$

for each assignment of the form: "x = f(a,b)" (in reverse postorder)

 $ValNum[x] \leftarrow Hash(f \oplus ValNum[a] \oplus ValNum[b])$

 $\#11+(\#12,\#3) \rightarrow \#13$

#1

CS553 Lecture

Value Numbering

Snag!

Problem

- Our algorithm assumes that we consider operands before variables that depend upon it
- Can't deal with code containing loops!

Solution

- Ignore back edges
- Make conservative (worst case) assumption for previously unseen variable (*i.e.*, assume its in it's own congruence class)

CS553 Lecture Value Numbering 11

Optimistic Global Value Numbering

Idea

- Initially all variables in one congruence class
- Split congruence classes when evidence of non-congruence arises
 - Variables that are computed using different functions
 - Variables that are computed using functions with non-congruent operands

CS553 Lecture Value Numbering 12

Splitting

Initially

- Variables computed using the same function are placed in the same class

$$x_1 = f(a_1, b_1)$$
. . . $y_1 = f(c_1, d_1)$
. . . $z_1 = f(e_1, f_1)$

Iteratively

- *Split* classes when corresponding operands are in different classes
- Example: a₁ and c₁ are congruent,
 but e₁ is congruent to neither

CS553 Lecture

Value Numbering

13

Splitting (cont)

Definitions

- Suppose P and Q are sets representing congruence classes
- Q splits P for each i into two sets
 - $P \setminus Q$ contains variables in P whose ith operand is in Q
 - $P \mathbin{/}_{i} Q$ contains variables in P whose i^{th} operand is not in Q
- Q properly splits P if neither resulting set is empty

CS553 Lecture

Value Numbering

Algorithm

```
worklist \leftarrow \emptyset
for each function f
      C_f \leftarrow \emptyset
      for each assignment of the form "x = f(a,b)"
            C_f \leftarrow C_f \cup \{x\}
      worklist \leftarrow worklist \cup \{C_f\}
      CC \leftarrow CC \cup \{C_f\}
while worklist \neq \emptyset
      Delete some D from worklist
      for each class C properly split by D (at operand i)
            CC \leftarrow CC - C
            worklist \leftarrow worklist - C
            Create new congruence classes C_i \leftarrow \{C \setminus_i D\} and C_k \leftarrow \{C \setminus_i D\}
            CC \leftarrow CC \cup C_i \cup C_k
            worklist \leftarrow worklist \cup C_i \cup C_k
Note: see paper for optimization
CS553 Lecture
                                            Value Numbering
                                                                                                       15
```

Example

 $\begin{array}{lll} \text{SSA code} & \text{Congruence classes} \\ \mathbf{x}_0 &= & 1 & S_0 & \{\mathbf{x}_0\} \\ \mathbf{y}_0 &= & 2 & S_1 & \{\mathbf{y}_0\} \\ \mathbf{x}_1 &= & \mathbf{x}_0 + 1 & S_2 & \{\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1\} \\ \mathbf{y}_1 &= & \mathbf{y}_0 + 1 & S_3 & \{\mathbf{x}_1, \mathbf{z}_1\} \\ \mathbf{z}_1 &= & \mathbf{x}_0 + 1 & S_4 & \{\mathbf{y}_1\} \end{array}$

$$\begin{split} & \text{Worklist: } \underline{S_0} = \{ \mathbf{x}_0 \}, \underline{S_1} = \{ \mathbf{y}_0 \}, \underline{S_2} = \{ \mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1 \} \underline{S_3} = \{ \mathbf{x}_1, \mathbf{z}_1 \}, \underline{S_4} = \{ \mathbf{y}_1 \} \\ & S_0 \text{ psplit } S_0? \quad \text{no} \qquad S_0 \text{ psplit } S_1? \quad \text{no} \qquad S_0 \text{ psplit } S_2? \quad \text{yes!} \end{split}$$

$$\begin{split} &S_2 \setminus_1 S_0 = \{ \mathbf{x_1}, \mathbf{z_1} \} = S_3 \\ &S_2 \setminus_1 S_0 = \{ \mathbf{y_1} \} = S_4 \end{split}$$

CS553 Lecture Value Numbering 16

Comparing Optimistic and Pessimistic

Differences

- Handling of loops
- Pessimistic makes worst-case assumptions on back edges
- Optimistic requires actual contradiction to split classes

CS553 Lecture

Value Numbering

17

Role of SSA

Single global result

- Single def reaches each use
- No data (flow value) at each point

No data flow analysis

- Optimistic: Iterate over congruence classes, not CFG nodes
- Pessimistic: Visit each assignment once

ϕ -functions

- Make data-flow merging explicit
- Treat like normal functions

CS553 Lecture

Value Numbering

Next Time

Lecture

- Common-Subexpression Elimination

Study Suggestion

- Read Alpern and Zadeck 1992 Chapter about Value Numbering
- Do the examples in Muchnick Section 12.4 and examples in paper using the others algorithm

CS553 Lecture Value Numbering 19