CAP 5415 – Computer Vision

Marshall Tappen Fall 2010

Lecture 1

Welcome!

About Me

_

- Interested in Machine Vision and Machine Learning
- Happy to chat with you at almost any time
 - May want to e-mail me first
- Office Hours:
 - Tuesday-Thursday before class

Grading

- Problem Sets 50%
- 3 Solo Problem Sets 50%
 - You may not collaborate on these

Doing the problems

- Finishing the problem sets will require access to an interpreted environment
 - MATLAB
 - Octave
 - Numerical Python
- NO COMPILED LANGUAGES!!!!!
 - No C/C++
 - No Java
 - No x86 Assembler
- My Compiled Languages Rant

Environments

MATLAB

- Pro:Well-established package. You can find many tutorials on the net.
- Con: Not free. If your lab does not already have it, talk to me about getting access.

Octave

- Free MATLAB look-alike
- Pro: Should be able to handle anything you will do in this class
- Con: "Should be". I'm not sure about support in Windows

Environments

- Numerical Python
 - All the capabilities of MATLAB
 - Free!
 - Real programming language
 - Used for lots of stuff besides numerical computing
 - Cons: Documentation is a bit sparse and can be outdated
 - I can get you started I am working on a tutorial

Math

- We will use it
- We will be talking about mathematical models of images and image formation
- This class is not about proving theorems
- My goal is to have you build intuitions about the models
- Try and visualize the computation that each equation is expressing
- Basic Calculus and Basic Linear Algebra should be sufficient

Course Text

- We will use Szeliski Book Free this year!
- Not required more of a reference

Course Structure

- This year, we will be covering pattern recognition more deeply than in previous years
- Machine learning is critical to modern computer vision
- You need to understand it well
- Important Foundational Topics:
 - Image Processing
 - Optimization
 - Machine Learning
 - Geometry

Image Processing

- For now, we won't worry about the physical aspects of getting images
- View image as an array of continuous values

Simple Modification

- What if we wanted to blur this image?
- We could take a local average
 - Replace each pixel with the mean of an NxN pixel neighborhood surrounding that pixel.

3x3 Neighborhood

Original

Averaged

5x5 Neighborhood

Original

Averaged

7x7 Neighborhood

Original

Averaged

0	3	0	0
0	6	1	16
0	0	2	46
0	0	2	43

0	3	0	0
0	6	1	16
0	0	2	46
0	0	2	43

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1/9	31/9	0 1/9 0	?	?	?	?
0 1/9	6	1 1/9	?	1.33	?	?
0 1/9	0/9	2 46	?	?	?	?
0	0	2 43	?	?	?	?

Multiply corresponding numbers and add

- Multiply corresponding numbers and add
- Template moves across the image
- Think of it as a sliding window

This is called convolution

Mathematically expressed as

Take out a piece of paper

- Let's say *i*= 10 and *j*=10
- Which location in K is multiplied by I(5,5)?
- *l*(5,4)

$$R(i,j) = \sum_{m=-N}^{N} \sum_{n=-N}^{N} I(m,n) K(i-m,j-n)$$
 Convolution Kernel Resulting Image

Notation

- Also denoted as
- R = I * K
- We "convolve" I with K
 - Not convolute!

$$R(i,j) = \sum_{m=-N}^{N} \sum_{n=-N}^{N} I(m,n) K(i-m,j-n)$$
 Convolution Kernel Resulting Image

Sliding Template View

Take the template K

1	2	3
4	5	6
7	8	9

• Flip it

9	8	7
6	5	4
3	2	1

Slide across image

0	0	0
0	1	0
0	0	0

0	0	0
0	1	0
0	0	0

0	0	0
0	0	1
0	0	0

0	0	0
0	0	1
0	0	0

1	0	0
0	0	0
0	0	0

1	0	0
0	0	0
0	0	0

0	1	0
1	2	1
0	1	0

0	1	0
1	2	1
0	1	0

Predict the kernel

What if I wanted to compute

$$R(i,j) = I(i+1,j) - I(i,j)$$

at every pixel?

- What would the kernel be?
- This is one discrete approximation to the derivative

What's the problem with this derivative?

$$[1 - 1 0]$$

– Where's the center of the derivative?

An alternative

```
- [-1 0 1]
```

Your Convolution filter toolbox

- In my experience, 90% of the filtering that you will do will be either
 - Smoothing (or Blurring)
 - High-Pass Filtering (I'll explain this later)
- Most common filters:
 - Smoothing: Gaussian
 - High Pass Filtering: Derivative of Gaussian

Gaussian Filter

- Let's assume that a (2k+1) x (2k+ 1) filter is parameterized from -k to +k
- The Gaussian filter has the form

$$K(i,j) = \frac{1}{Z} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$

And looks like

Derivative of Gaussian Filter

Take the derivative of the filter with respect to i:

$$\frac{\partial K(i,j)}{\partial i} = \frac{-i}{\sigma^2 Z} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$

• Filter looks like:

Basically blur then take the derivative

Effect of Changing σ

- With σ set to 1
- With σ set to 3

Input

Practical Aspects of Computing Convolutions

Let's blur this flat, gray image:

What should it look like?

Practical Aspects of Computing Convolutions

 Depending on how you do the convolution in MATLAB, you could end up with 3 different images

Border Handling

- Lets go back to the sliding template view
- What if I wanted to compute an average right here?

0	3	0	0
0	6	1	16
0	0	2	46
0	0	2	43

Border Handling

1/9	1/9	1/9		
1/9	1/9	31/9	0	0
1/9	1/9	d/9	1	16
	0	0	2	46
	0	0	2	43

Practical Aspects of Computing Convolutions

- Filled in borders with zeros, computed everywhere the kernel touches
- Called "full" in MATLAB

266x266 Image

Border Handling

1/9	1/9	1	/9			
1/9	1/9	1	/9			
1/9	1/9	1	1	3	0	0
			0	6	1	16
			0	0	2	46
			0	0	2	43

Practical Aspects of Computing Convolutions

- Fill in border with zeros, only compute at "original pixels"
- Called "same" in MATLAB

256x256 Image

Border Handling

1/9	1/9	1/9		1/9		
1/9	1/9	3	1/9	0		0
1/9	1/9	6	1/9	1		16
	0	0		2		46
	0	0		2		43

Practical Aspects of Computing Convolutions

 Only compute at places where the kernel fits in the image

246x246 Image

There are other options

- The first two methods that I described fill missing values in by substituting zero
- Can fill in values with different methods
 - Reflect image along border
 - Pull values from other side
- Not supported in MATLAB's convolution
 - Eero Simoncelli has a package that supports that kind of convolution

Going Non-Linear

- Convolution is a linear operation
 - What does that mean?
- A simple non-linear operation is the median filter
 - Will explore that filter in the first problem set.

Practical Use of These Properties – Image Sharpening

Take this image and blur it

Basic Convolution Properties

$$f(x) * ((g(x) * h(x)) = (f(x) * g(x)) * h(x)$$

$$(\alpha f(x)) * g(x) = \alpha (f(x) * g(x))$$

$$f(x) * g(x) = g(x) * f(x)$$

$$f(x) * (g(x) + h(x)) = f(x) * g(x) + f(x) * h(x)$$

- Can derive all of these with the definition of convolution
- Comes from linearity of convolution

$$R(i,j) = \sum_{m=-N}^{N} \sum_{n=-N}^{N} I(m,n)K(i-m,j-n)$$

Practical Use of These Properties – Image Sharpening

What do we get if we subtract the two?

This is the leftover "sharp-stuff"

Let's make the image sharper

We know

Let's boost the sharp stuff a little

Let's boost the sharp stuff a little

Side-by Side

Now look at the computation

- Operations
 - 1 convolution
 - 1 subtraction over the whole image
- As an equation:

$$\mathcal{I} * f + 2 (\mathcal{I} - \mathcal{I} * f)$$

Rewrite this

$$\mathcal{I} * f + 2 \left(\mathcal{I} - \mathcal{I} * f \right)$$

$$\mathcal{I} * f + 2 \left(\mathcal{I} * \delta - \mathcal{I} * f \right)$$

This is an identity filter or unit impulse

Basic Convolution Properties

$$f(x) * ((g(x) * h(x)) = (f(x) * g(x)) * h(x)$$

$$(\alpha f(x)) * g(x) = \alpha (f(x) * g(x))$$

$$f(x) * g(x) = g(x) * f(x)$$

$$f(x) * (g(x) + h(x)) = f(x) * g(x) + f(x) * h(x)$$

- Can derive all of these with the definition of convolution
- Comes from linearity of convolution

$$R(i,j) = \sum_{m=-N}^{N} \sum_{n=-N}^{N} I(m,n)K(i-m,j-n)$$

Rewrite this

$$\mathcal{I} * f + 2 (\mathcal{I} - \mathcal{I} * f)$$
 $\mathcal{I} * f + 2 (\mathcal{I} * \delta - \mathcal{I} * f)$
 $\mathcal{I} * (f + 2\delta - 2f)$

Now look at the computation

$$\mathcal{I}*(f+2\delta-2f)$$

- Can pre-compute new filter
- Operations
 - 1 convolution