

planetmath.org

Math for the people, by the people.

reflective subcategory

Canonical name ReflectiveSubcategory
Date of creation 2013-03-22 17:12:15
Last modified on 2013-03-22 17:12:15

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771) Entry type Definition Classification msc 18A40

Defines reflection functor

Defines reflection
Defines coreflective
Defines coreflection

Let \mathcal{C} be a category and \mathcal{D} a subcategory of \mathcal{C} . \mathcal{D} is called a *reflective* subcategory of \mathcal{C} if the inclusion functor Inc: $\mathcal{D} \to \mathcal{C}$ has a left adjoint. More explicitly, \mathcal{D} in \mathcal{C} is reflective iff for every object A in \mathcal{C} , there is an object B in \mathcal{D} and a morphism $f: A \to B$ such that any morphism $g: A \to C$ can be uniquely factored through f; that is, there is a unique morphism $h: B \to C$ such that $g = h \circ f$.

The left adjoint is called the *reflection functor* and the mapped objects and morphisms are called the *reflections* (of the objects and morphisms being mapped by the reflection functor).

Some of the most common reflective subcategories are

- The subcategory of abelian groups in the category of groups. The reflection functor is the abelianization functor.
- The subcategory of fields in the category of integral domains. The reflection of an integral domain is its field of fractions.
- The subcategory of complete lattices in the category of lattices. The reflection of a lattice is its lattice of ideals.

Remark. If the inclusion functor has a right adjoint, then the subcategory is said to be *coreflective*. In other words, \mathcal{D} in \mathcal{C} is coreflective iff for any object $A \in \mathcal{C}$, there is an object $B \in \mathcal{D}$ and a morphism $f: B \to A$ such that any morphism $g: C \to A$ can be uniquely factored through f (by a unique morphism $f: C \to B$). For example, the subcategory of torsion abelian groups in the category of abelian groups is coreflective. The coreflection of an abelian group is its torsion subgroup.