

Nanyang Technological University SC5002 Artificial Intelligence Fundamentals and Applications

Lab Assignment II

This lab exercise will help students to gain in depth knowledge about when linear and ridge regression is used.

Exploring Linear and Ridge Regression with Cross-Validation

Objective: In this project, students will explore the concepts of Linear Regression and Ridge Regression using real-world datasets from online repositories. The goal is to understand the strengths and weaknesses of both models and explore methods to improve their performance, including cross-validation for model evaluation.

Project Tasks:

I. Dataset Selection

- Students should select a dataset from online repositories such as Kaggle, UCI Machine Learning Repository, or any online repository.
- The dataset must include both numerical and categorical features, with a continuous target variable suitable for regression.

2. Data Preprocessing

- Handle missing values using appropriate techniques (e.g., imputation).
- Encode categorical variables using One-Hot Encoding or Label Encoding.
- Scale numerical features to ensure better model performance.
- Split the dataset into training and testing sets.

3. Model Training and Evaluation

- Train a Linear Regression model and analyse its performance.
- Train a Ridge Regression model with different values of alpha.
- Implement k-fold Cross-Validation to evaluate both models and reduce variance in performance estimates.

4. Analysis and Comparison

- Compare the models using Mean Squared Error (MSE) and R² score.
- Analyse cases where Linear Regression overfits and where Ridge Regression helps prevent overfitting.

5. Improving Model Performance

- Experiment with different alpha values in Ridge Regression and observe their effect.
- Discuss practical applications where each model would be more suitable.

Nanyang Technological University SC5002 Artificial Intelligence Fundamentals and Applications

Expected Outcomes:

- A detailed video discussing the findings, including model performance, strengths and weaknesses, and potential improvements.
- A Python implementation with code and visualizations demonstrating the results including Linear and Ridge Regression and the role of cross-validation in model evaluation.

Submission Guidelines:

I. Video Presentation

- Students must create a video presentation of maximum 5 min explaining their project.
- The video should cover relevant code details, insights, and key findings.
- Each team member must present their individual contribution.
- The video should include a live recording of each presenter with their face overlayed on the slides while explaining their part.

2. GitHub Repository

- Submit a GitHub link containing the full project.
- The repository must include:
 - o Clean and well-commented code
 - o README file explaining the project, dataset, and steps taken and insights

3. Individual Contributions

- Clearly highlight the contributions of each team member in both the GitHub repository and the video.
- Each person should explain their part in the project during the video presentation.

4. Submission Format

- Submit the final video link along with the GitHub repository link.
- Ensure the video is clear, well-structured, and professional.

Important note on this lab exercise:

- The deadline for the submission: **Week 9, Sunday 19**th **October**. The link for the submission will be enabled in NTULearn.
- Only one person from the group need to submit the github link and video link/ video.
 If you are submitting any links, please make sure that it is given the access right to view by us.
- We believe and trust every NTU student can behave and act responsibly or participate fairly when working on this exercise (NTU Student Code of Conduct - Truth, Trust, & Justice).