Sparsified Distributed Adaptive Learning with Error Feedback

Anonymous Author(s)

Affiliation Address email

		Abstract
1		To be completed
2	1	Introduction
3	2	Preliminaries
4	Dis	stributed Learning.
5	Sp	arse Optimization.
6	Sk	etch and Quantization based FL.
7	3	Method
8	Co	nsider standard synchronous distributed optimization setting. AMSGrad is used as the prototype, d the local workers is only in charge of gradient computation.
10	3.1	TopK AMSGrad with Error Feedback

The key difference (and interesting part) of our TopK AMSGrad comprared with the following arxiv paper "Quantized Adam" https://arxiv.org/pdf/2004.14180.pdf is that, in our model only gradients are transmitted. In "QAdam", each local worker keeps a local copy of moment estimator m and v, and compresses and transmits m/v as a whole. Thus, that method is very much like the sparsified distributed SGD, except that g is changed into m/v. In our model, the moment estimates m and v are computed only at the central server, with the compressed gradients instead of the full gradient. This would be the key (and difficulty) in convergence analysis.

Algorithm 1 SPARS-AMS for Federated Learning

```
1: Input: parameter \beta_1, \beta_2, learning rate \eta_t.
 2: Initialize: central server parameter \theta_0 \in \Theta \subseteq \mathbb{R}^d; e_{t,i} = 0 the error accumulator for each
      worker; sparsity parameter k; N local workers; m_0 = 0, v_0 = 0, \hat{v}_0 = 0
     for t = 1 to T do
          parallel for worker i \in [n] do:
              Receive model parameter \theta_{t-1} from central server
 5:
              Compute stochastic gradient g_{t,i} at \theta_t
 6:
 7:
              Compute \tilde{g}_{t,i} = TopK(g_{t,i} + e_{t,i}, k)
              Update the error e_{t+1,i} = e_{t,i} + g_{t,i} - \tilde{g}_{t,i}
 8:
              Send \tilde{g}_{t,i} back to central server
 9:
10:
          end parallel
         Central server do:

\bar{g}_t = \frac{1}{N} \sum_{i=1}^{N} \tilde{g}_{t,i}
m_t = \beta_1 m_{t-1} + (1 - \beta_1) \bar{g}_t
v_t = \beta_2 v_{t-1} + (1 - \beta_2) \bar{g}_t^2
\hat{g}_t = may(v_t, \hat{g}_{t-1})
11:
12:
13:
14:
          \hat{v}_t = \max(v_t, \hat{v}_{t-1})
15:
          Update global model \theta_t = \theta_{t-1} - \eta_t \frac{m_t}{\sqrt{\hat{\eta}_t}}
16:
17: end for
```

3.2 Convergence Analysis

- 19 Several mild assumptions to make: Nonconvex and smooth loss function, unbiased stochastic gradi-
- ent, bounded variance of the gradient, bounded norm of the gradient, control of the distance between
- the true gradient and its sparsed variant.

22 3.2.1 Single machine

23 We first define multiple auxiliary sequences. For the first moment, define

$$\bar{m}_t = m_t + \mathcal{E}_t,$$

 $\mathcal{E}_t = \beta_1 \mathcal{E}_{t-1} + (1 - \beta_1)(e_{t+1} - e_t),$

24 such that

$$\bar{m}_t = \bar{m}_t + \mathcal{E}_t
= \beta_1 (m_t + \mathcal{E}_t) + (1 - \beta_1) (\bar{g}_t + e_{t+1} - e_1)
= \beta_1 \bar{m}_{t-1} + (1 - \beta_1) g_t.$$

- 25 TBD...
- 26 3.2.2 Multiple machine

7 4 Experiments

- 28 Our proposed TopK-EF with AMSGrad matches that of full AMSGrad, in distributed learning.
- 29 Number of local workers is 20. Error feedback fixes the convergence issue of using solely the
- 30 TopK gradient.

5 Conclusion

Figure 1: Test accuracy.

32 References:

33 [1] [2] [3] https://arxiv.org/pdf/1901.09847.pdf https://proceedings.
34 neurips.cc/paper/2018/file/b440509a0106086a67bc2ea9df0a1dab-Paper.pdf
35 https://pdfs.semanticscholar.org/8728/dee89906022c1d4f5c1de1233c3f65ab92f2.
36 pdf?_ga=2.152244026.2027005181.1606271153-15127215.1603945483

37 References

- Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi. Error feed back fixes signsgd and other gradient compression schemes. arXiv preprint arXiv:1901.09847,
 2019.
- [2] Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, and Xiaowen Chu. A convergence
 analysis of distributed sgd with communication-efficient gradient sparsification. In *IJCAI*, pages
 3411–3417, 2019.
- [3] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
 Advances in Neural Information Processing Systems, pages 4447–4458, 2018.

46 A Appendix