Feuille d'exercice n° 05 : Nombres complexes

Exercice 1 (\succeq) Résoudre pour $z \in \mathbb{C}$, $2\arg(z+i) = \arg(z) + \arg(i)$ $[2\pi]$.

Exercice 2 Soit $\omega = \exp\left(\frac{2i\pi}{7}\right)$. Calculer $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$.

(Indication: on pourra d'abord calculer AB et A + B.)

Exercice 3 (\circlearrowleft **)** Déterminer les racines 4^{es} dans \mathbb{C} de -119 + 120i

Exercice 4 (\succeq) Soit $(n, z) \in \mathbb{N}^* \times \mathbb{C}$ tel que $z^n = (z + 1)^n = 1$. Montrer que n est multiple de 6 et que $z^3 = 1$.

Exercice 5 Soit $n \in \mathbb{N}^*$. Résoudre dans \mathbb{C} l'équation d'inconnue $x: (1+x)^{2n} = (1-x)^{2n}$. Calculer alors le produit des solutions de cette équation.

Exercice 6 ($^{\circ}$) Soit n un entier supérieur ou égal à 2.

- 1) Écrire -i et 1+i sous forme trigonométrique.
- 2) Calculer les racines n^{es} de -i et de 1+i.
- 3) Résoudre $z^2 z + 1 i = 0$.
- 4) En déduire les racines de $z^{2n} z^n + 1 i = 0$.

Exercice 7 () Soit n un entier naturel non nul, notons $\omega = \exp\left(\frac{2i\pi}{n}\right)$. Calculer

$$\sum_{k=0}^{n-1} (1+\omega^k)^n.$$

Exercice 8 Résoudre dans \mathbb{C} l'équation $\overline{z} = z^3$.

Exercice 9 Résoudre dans \mathbb{C} l'équation d'inconnue $z: z^4 + 2\lambda^2 z^2 (1 + \cos \theta) \cos \theta + \lambda^4 (1 + \cos \theta)^2 = 0$ $(\lambda \in \mathbb{C}, \theta \in [0, \pi])$. Pour $n \in \mathbb{N}$, calculer $\sum_{k=1}^4 z_k^n$ où les z_k sont les racines de cette équation.

Exercice 10

- 1) Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos(\pi/8)$ et $\sin(\pi/8)$.
- 2) Calculer les valeurs de $\cos(\pi/12)$ et $\sin(\pi/12)$.

Exercice 11

- 1) Soit $x \in \mathbb{R}$. Exprimer $\cos(5x)$ en fonction de $\cos(x)$.
- 2) En déduire que $\cos\left(\frac{\pi}{10}\right)$ est racine du polynôme $16X^4 20X^2 + 5$.
- 3) En déduire la valeur de $\cos^2\left(\frac{\pi}{10}\right)$.
- **4)** Montrer que $\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$.

Exercice 12 ($^{\circ}$) Calculer $\cos 5\theta$, $\cos 8\theta$, $\sin 6\theta$, $\sin 9\theta$, en fonction de $\cos \theta$ et $\sin \theta$.

Exercice 13 () Linéariser les quantités suivantes.

1)
$$\cos^3(x)\sin^2(x)$$
.

2)
$$\cos^6(x) + \sin^6(x)$$
.

Exercice 14 (
$$\nearrow$$
) Soient $n \in \mathbb{N}$ et $a, b \in \mathbb{R}$. Calculer $\sum_{k=0}^{n} \binom{n}{k} \cos(a+kb)$ et $\sum_{k=0}^{n} \binom{n}{k} \sin(a+kb)$.

Exercice 15 Déterminer l'ensemble des nombres complexes z vérifiant chacune des équations suivantes.

1)
$$\left| \frac{z-3}{z-5} \right| = 1$$

2)
$$\left| \frac{z-3}{z-5} \right| = \frac{\sqrt{2}}{2}$$

Exercice 16 Quel est l'ensemble des nombres complexes z tels que $\frac{z+1}{z-1}$ est imaginaire pur ?

Exercice 17 Déterminer les points d'affixe $z \in \mathbb{C}$ vérifiant chaque situation.

- 1) 1, z et z^2 soient les affixes de trois points alignés.
- 2) z et $\frac{1}{z}$ soient les affixes de deux vecteurs orthogonaux.
- 3) 1, z et z + i soient les affixes des sommets d'un triangle dont le centre du cercle circonscrit est l'origine O du repère.
- 4) $z, \frac{1}{z}$ et z-1 soient les affixes de trois points situés sur un même cercle de centre O.

Exercice 18 Soient A, B et C trois points, distincts deux à deux, d'affixes respectifs a, b et c. Montrer que les propositions suivantes sont équivalentes.

- 1) ABC est un triangle équilatéral.
- 2) j ou j^2 est racine du polynôme $aX^2 + bX + c$.
- 3) $a^2 + b^2 + c^2 = ab + bc + ca$.
- 4) $(b-a)^2 + (c-b)^2 + (a-c)^2 = 0$.

Exercice 19 ()

- 1) Caractériser géométriquement l'application $\begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto (2+2i)z (7+4i) \end{cases}$
- 2) Soit r la rotation de centre le point d'affixe 1+i et d'angle de mesure $\frac{\pi}{4}$. Déterminer l'expression complexe de r.
- 3) Soient r la rotation de centre le point d'affixe 1 et d'angle de mesure $\frac{\pi}{2}$, et s la symétrie centrale de centre le point d'affixe i+3. Caractériser géométriquement l'application $s \circ r$.

