Weekly Presentation DeltaGrad: Rapid retraining of machine learning models

Yinjun Wu Edgar Dobriban Susan B Davidson

September 29, 2020

Overview

- Motivation
- 2 Related Work
- Open Delta Grad
- 4 Theoretical Results
- **5** Experimental Results

Motivation

 Wu et al.
 DeltaGrad
 September 29, 2020
 3 / 14

Regular Pipeline:

- 1 Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch

Regular Pipeline:

- Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- 3 Retrain ML model from scratch
 - Computationally expensive process

Regular Pipeline:

- Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch
 - Computationally expensive process
- Throws away useful computations from initial training

Regular Pipeline:

- 1 Train a ML model from data using a learning algorithm
- Small change in training data occurs (deletions or additions)
- Retrain ML model from scratch
 - Computationally expensive process
- Throws away useful computations from initial training

Research Question

Can we retrain models in an efficient manner?

• GDPR: Deletion of private information from public datasets

- GDPR: Deletion of private information from public datasets
- Continuous Model Updating: Handle additions, deletions and changes of training samples

- GDPR: Deletion of private information from public datasets
- Continuous Model Updating: Handle additions, deletions and changes of training samples
- Data Valuation: Leave One Out tests to find important training samples

- GDPR: Deletion of private information from public datasets
- Continuous Model Updating: Handle additions, deletions and changes of training samples
- Data Valuation: Leave One Out tests to find important training samples
- Bias Reduction: Speeds up jackknife resampling that requires retrained model parameters

Related Work

Prior Work

- Prior work for specialized problems and ML models, usually for deletion
 - Provenane Based deletions for linear and logistic regression [WTD20]
 - Newton step and noise for certified data removal [GGHv20]
 - K-means clustering [GGVZ19]

DeltaGrad

Gradient Descent

Objective function

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} F_i(\mathbf{w})$$

• Stochastic Gradient Descent update rule, \mathcal{B}_t is randomly sampled mini-batch of size B

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} - \frac{\eta_{t}}{B} \sum_{i \in \mathcal{B}_{t}} \nabla F_{i}(\mathbf{w}_{t})$$

• Full-batch gradient descent (GD) is on entire data

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \frac{\eta_t}{n} \sum_{i=1}^n \nabla F_i(\mathbf{w}_t)$$

Removal of data

- After training, $R = \{i_1, i_2, \dots, i_r\}$ is removed, where $r \ll n$
- Naive retraining is applying GD over remaining samples, \mathbf{w}^U is resulting parameters

$$\mathbf{w}^{U}_{t+1} \leftarrow \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \sum_{i \notin R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right)$$
 (1)

- The explicit gradient computation $\sum_{i \notin R} \nabla F_i \left(\mathbf{w}^U_t \right)$ is expensive
- Instead rewrite (1) as follows

$$\mathbf{w}^{U}_{t+1} = \mathbf{w}^{U}_{t} - \frac{\eta_{t}}{n-r} \left[\sum_{i=1}^{n} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right) - \sum_{i \in R} \nabla F_{i} \left(\mathbf{w}^{U}_{t} \right) \right]. \quad (2)$$

• $\sum_{i \in R} \nabla F_i \left(\mathbf{w}^U_t \right)$ is cheaper to compute

- After a small change to the data we need to redo the SGD computations
- We can achieve this by understanding the small delta of the Gradient Descent

$$\nabla F(\mathbf{w}) = \sum_{i=1}^{n} \nabla F_i(\mathbf{w}_t) \quad \& \quad \nabla F(\mathbf{w}^U) = \sum_{i=1}^{n} \nabla F_i(\mathbf{w}^U_t)$$

• Hence, the approach is called *DeltaGrad*

Aprroximating $\nabla F(\mathbf{w}^U)$

- $\mathbf{w}_0, \ldots, \mathbf{w}_t$ and $\nabla F(\mathbf{w}_0), \ldots, \nabla F(\mathbf{w}_t)$ are cached from training on initial dataset
- By Cauchy mean-value theorem¹

$$\nabla F(\mathbf{w}^{U}_{t}) - \nabla F(\mathbf{w}_{t}) = \mathbf{H}_{t} \cdot (\mathbf{w}^{U}_{t} - \mathbf{w}_{t})$$

Where $\mathbf{H}_t = \int_0^1 \mathbf{H}(\mathbf{w}_t + x(\mathbf{w}^U_t - \mathbf{w}_t))dx$ is the integrated hessian

- This requires a hessian \mathbf{H}_t at each step, which is expensive to maintain and evaluate
- ullet Leverage classical L-BFGS algorithm to approximate $ullet_t$

Wu et al. DeltaGrad September 29, 2020 12 / 14

Aprroximating $\nabla F(\mathbf{w}^U)$

- $\mathbf{w}_0, \ldots, \mathbf{w}_t$ and $\nabla F(\mathbf{w}_0), \ldots, \nabla F(\mathbf{w}_t)$ are cached from training on initial dataset
- By Cauchy mean-value theorem¹

$$\nabla F(\mathbf{w}^{U}_{t}) - \nabla F(\mathbf{w}_{t}) = \mathbf{H}_{t} \cdot (\mathbf{w}^{U}_{t} - \mathbf{w}_{t})$$

Where $\mathbf{H}_t = \int_0^1 \mathbf{H}(\mathbf{w}_t + x(\mathbf{w}^U_t - \mathbf{w}_t)) dx$ is the integrated hessian

- This requires a hessian \mathbf{H}_t at each step, which is expensive to maintain and evaluate
- ullet Leverage classical L-BFGS algorithm to approximate $ullet_t$

Wu et al. DeltaGrad September 29, 2020

12 / 14

¹Seems to be a consequence of Fundamental theory of Calculus and mean-value theorem

Theoretical Results

Experimental Results

Certified Data Removal from Machine Learning Models. arXiv:1911.03030 [cs, stat], August 2020.

- Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making Al Forget You: Data Deletion in Machine Learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 3518–3531. Curran Associates, Inc., 2019.
- Yinjun Wu, Val Tannen, and Susan B. Davidson.
 PrIU: A Provenance-Based Approach for Incrementally Updating Regression Models.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pages 447–462, Portland OR USA, June 2020, ACM.

Large Deletions

Large Deletions

Wu et al. DeltaGrad September 29, 2020 2