Homework 3

M 383C - Methods for Applied Mathematics

Lianghao Cao

October 14, 2018

Problem 2.26. Define the operator T by the formula

$$T(f)(x) = \int_a^b K(x, y) f(y) \ dy \ .$$

Suppose that $K \in L^q([a,b] \times [a,b])$, where q lies in the range $1 \le q \le \infty$. Determine the values of p for which T is necessarily a bounded linear operator from $L^p(a,b)$ to $L^q(a,b)$. In particular if a and b are both finite, show that $K \in L^\infty([a,b] \times [a,b])$ implies T to be bounded on all the L^p -spaces.

Proof. First, we can show that T is linear. Let $\alpha, \beta \in \mathbb{F}$ $f, g \in L^p$, then

$$T(\alpha f + \beta g)(x) = \int_{a}^{b} K(x, y) (\alpha f(y) + \beta g(y)) dy$$
$$= \alpha \int_{a}^{b} K(x, y) f(y) dy + \beta \int_{a}^{b} K(x, y) g(y) dy$$
$$= \alpha T(f)(x) + \beta T(g)(x)$$

Therefore T is linear.

T is bounded when $||T(f)||_q \leq C ||f||_p$ for some C > 0. To show the range of p for which T is bounded, consider the following cases:

1. 1

Apply Hölder's inequality:

$$||T(f)||_{q}^{q} = \int_{a}^{b} \left| \int_{a}^{b} K(x, y) f(y) \, dy \right|^{q} dx$$

$$\leq \int_{a}^{b} ||f||_{p}^{q} \left(\int_{a}^{b} \left| K(x, y) \right|^{q} dy \right) dx$$

$$= \left(\int_{a}^{b} \int_{a}^{b} \left| K(x, y) \right|^{q} dy \, dx \right) ||f||_{p}^{q}$$

$$= ||K||_{L^{q}([a, b]^{2})}^{q} ||f||_{p}^{q}$$

Since $K \in L^q([a,b]^2)$, $\exists C \in [0,\infty)$ s.t. $C^{1/q} = \|K\|_{L^q([a,b]^2)}$. Thus, $\|T(f)\|_q \leq C \|f\|_p$ and T is bounded for 1 .

2. p = 1 and $q = \infty$ Again, apply Hölder's inequality and let $C = ||K||_{L^{\infty}([a,b]^2)} \in [0,\infty)$:

$$||T(f)||_{\infty} = \sup_{x \in [a,b]} \left| \int_{a}^{b} K(x,y)f(y) \, dy \right|$$

$$\leq ||f||_{1} \sup_{x \in [a,b]} \left(\sup_{y \in [a,b]} |K(x,y)| \right)$$

$$= ||K||_{L^{\infty}([a,b]^{2})} ||f||_{1}$$

$$= C ||f||_{1}$$

Therefore, T is bounded for p = 1.

Now let $K \in L^{\infty}([a,b]^2)$, and let a and b to be finite. We have already shown that T is bounded for p=1 without the restriction on a and b. Consider 1 . Take the absolute value into the integral on <math>x and apply Hölder's inequality to f and g=1 a.e. on [a,b]:

$$||T(f)||_{q} = \left(\int_{a}^{b} \left|\int_{a}^{b} K(x,y)f(y) dy\right|^{q} dx\right)^{1/q}$$

$$\leq \left(\int_{a}^{b} \left(\int_{a}^{b} \left|K(x,y)f(y)\right| dy\right)^{q} dx\right)^{1/q}$$

$$\leq ||K||_{L^{\infty}([a,b]^{2})} \left(\int_{a}^{b} \left(\int_{a}^{b} \left|f(y)\right| dy\right)^{q} dx\right)^{1/q}$$

$$\leq ||K||_{L^{\infty}([a,b]^{2})} \left(\int_{a}^{b} (b-a) ||f||_{p}^{q} dx\right)^{1/q}$$

$$= (b-a)^{2/q} ||K||_{L^{\infty}([a,b]^{2})} ||f||_{p}$$

$$= C ||f||_{p}$$

where $C = (b-a)^{2/q} \|K\|_{L^{\infty}([a,b]^2)} \in [0,\infty)$. Therefore C is bounded for $1 as well. <math>\square$

Problem 2.27. Suppose that X, Y, and Z are Banach spaces and that $T: X \times Y \to Z$ is bilinear. By T being bilinear, we mean that it is linear in each of its arguments separately; that is, T(x,y) is linear in $x \in X$ for each fixed $y \in Y$, and also linear in $y \in T$ for each fixed $x \in X$.

(a) If T is continuous, prove that there is a constant $M < \infty$ s.t.

$$||T(x,y)|| < M ||x|| ||y|| \quad \forall x \in X, y \in Y$$
.

In this case, we say that T is bounded. Is completeness needed here?

Proof. T is continuous at (0,0) implies that $\forall \epsilon > 0 \ \exists \delta > 0 \ \text{s.t.}$

$$\|(x,y)\|_{X\times Y} \le \delta \Rightarrow \|T(x,y)\|_Z \le \epsilon \quad \forall (x,y) \in X\times Y.$$

Take the norm $\|(x,y)\|_{X\times Y} = \max\{\|x\|_X, \|y\|_Y\}$ and it follows that

$$\begin{split} \|T(x,y)\|_Z &= \left\|\frac{\|x\|_X\,\|y\|_Y}{\delta^2} T\left(\frac{\delta}{\|x\|_X} x, \frac{\delta}{\|y\|_Y} y\right)\right\|_Z \\ &= \frac{1}{\delta^2} \left\|T\left(\frac{\delta}{\|x\|_X} x, \frac{\delta}{\|y\|_Y} y\right)\right\|_Z \|x\|_X \|y\|_Y \\ &\leq \frac{\epsilon}{\delta^2} \left\|x\|_X \left\|y\right\|_Y \ \, \forall (x,y) \in \{X \setminus 0\} \times \{Y \setminus 0\} \end{split}$$

The inequality is concluded from

$$\left\| \left(\frac{\delta}{\|x\|_X} x, \frac{\delta}{\|y\|_Y} y \right) \right\|_{X \times Y} = \max \left\{ \left\| \frac{\delta}{\|x\|_X} x \right\|_X, \left\| \frac{\delta}{\|y\|_Y} y \right\|_Y \right\} = \delta$$

Let $M = \epsilon/\delta^2$ and the result follows.

When one of x and y is zero, instead of division by its norm, we set the component to zero directly and the same derivation will lead us to the desired result. When both x and y are zero, the equality is taken with 0 on both sides.

Completeness is not needed for the proof.

(b) Prove that T is continuous iff it is continuous at the origin (0,0).

Proof. " \Rightarrow " is trivial. For " \Leftarrow ", let T be continuous at (0,0), then, as proved above, $\exists M < \infty \text{ s.t. } ||T(x,y)||_Z \leq M ||x||_X ||y||_Y$. Now assume we have

$$\|(x_1, y_1) - (x_2 - y_2)\|_{X \times Y} = \|(x_1 - x_2, y_1 - y_2)\|_{X \times Y} \le \delta$$

for some $\delta > 0$ and $(x_1, y_1), (x_2, y_2) \in X \times Y$. Apply the triangle inequalities and boundedness/bilinearity of T:

$$\begin{aligned} \|T(x_1, y_1) - T(x_2, y_2)\|_Z &\leq \|T(x_1, y_1) - T(x_1, y_2)\|_Z + \|T(x_1, y_2) - T(x_2, y_2)\|_Z \\ &= \|T(x_1, y_1 - y_2)\|_Z + \|T(x_1 - x_2, y_2)\|_Z \\ &\leq M_1 \|x_1\|_X \|y_1 - y_2\|_Y + M_2 \|x_1 - x_2\|_X \|y_2\|_Y \\ &\leq C \left(\|x_1 - x_2\|_X + \|y_1 - y_2\|_Y \right) \\ &\leq 2C \|(x_1 - x_2, y_1 - y_2)\|_{X \times Y} \\ &\leq 2C\delta \ . \end{aligned}$$

where $C = \max\{M_1 \|x_1\|_X, M_2 \|y_2\|_Y\}$. Therefore, T is continuous everywhere.

(c) Prove that T is continuous iff it is bounded.

Proof. "\Rightarrow" is proved in (a). For "\Rightarrow" Assume that T is bounded, i.e., $\exists M < \infty$ s.t. $\|T(x,y)\|_Z \leq M \, \|x\|_X \, \|y\|_Y$. Assume that $\|(x,y)\|_{X\times Y} \leq \delta$, i.e., $\|x\|_X \, \|y\|_Y \leq \delta$ for some $(x,y)\in X\times Y$ and $\delta>0$. Then

$$||T(x,y)|| \le M\delta^2$$
.

Therefore, T is continuous at (0,0). As proved in (b), T is continuous everywhere. \square

Problem 2.28. Suppose that X is a Banach space, M and N are linear subspaces, and that $X = M \oplus N$, which means that

$$X = M + N = \{m + n : m \in M, n \in N\}$$

and $M \cap N = \{0\}$ is the trivial linear subspace consisting only of the zero element. In this case, we say that X is the direct sum of M and N and denoted that fact by writing $X = M \oplus N$. Let P denote the projection of X onto M. That is, if x = m + n, then

$$P(x) = m$$
.

Show that P is well defined and linear. Prove that P is bounded iff both M and N are closed.

Proof.

1. Assume x can be decomposed into two different representations:

$$x = m_1 + n_1 = m_2 + n_2$$

where $m_1, m_2 \in M$ and $n_1, n_2 \in N$. Then $M \ni m_1 - m_2 = n_2 - n_1 \in N$ and this implies that $M \cap N \neq \emptyset$, a contradiction. Therefore, the decomposition of x in M and N is unique and P is well define.

2. For any $\alpha, \beta \in \mathbb{F}$ as well as any $x_1 = m_1 + n_1$ and $x_2 = m_2 + n_2$ in X, we have

$$P(\alpha x_1 + \beta x_2) = \alpha m_1 + \beta m_2 = \alpha P(x_1) + \beta P(x_2)$$

Thus, P is linear.

3. "⇒"

P is bounded implies P is continuous. Notice that $N = P^{-1}(\{0\})$. Since $\{0\}$ is closed, N is closed as well. Consider a sequence $\{m_k\}_{k=1}^{\infty}$ in M that converges to $m \in X$. Now apply the projection to the sequence and obtain another sequence $\{P(m_k)\}_{k=1}^{\infty}$ in M that converges to $P(m) \in M$, due to continuity of P. Notice that $P(m_k) = m_k \ \forall k \in \mathbb{N}$. Therefore, P(m) = m and $m \in M$. Therefore, M is closed.

4. "⇐"

Assume M and N are closed. To show that P is bounded, it is sufficient to show that P is a closed operator, i.e., $\operatorname{graph}(P)$ is closed. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in X that converges to $x \in X$. Let the corresponding sequence $\{P(x_n)\}_{n=1}^{\infty}$, in M converges to y. Since M is closed, $y \in M$. Consider another sequence $\{x_n - P(x_n)\}_{n=1}^{\infty} \in N$. Since N is closed, the sequence converges to $x - y \in N$. This implies that P(x - y) = 0, which further implies that P(x) = P(y) = y. Therefore, $\operatorname{graph}(P)$ is closed and P is bounded.

Problem 2.29. Let X be a Banach space with closed linear subspaces Y and Z such that $Y \cap Z = \{0\}$ and $X = Y \oplus Z$. For $f \in Z^*$, show that $F : X \to \mathbb{F}$ is a well defined linear extension of f, where

$$F(y+z) = f(z) \ \forall y \in Y, \ z \in Z$$

and that F is bounded on X.

Proof. Consider the projection of X onto Z. If $X \ni x = y + z$, where $y \in Y$ and $z \in Z$, then P(x) = z. As we proved in Problem 2.28, P is well-defined, linear and continuous. Notice that

$$F(x) = F(y+z) = f(z) = f(P(x))$$

for all $x \in X$. Since f is also well-defined, linear and continuous, F is well-defined, linear and continuous. This implies that F is bounded on X as well.

Problem 2.32. Prove that $L^2([0,1])$ is of the first category in $L^1([0,1])$. [Hint: show that $A_k = \{ f \in L^1([0,1]) : ||f||_{L^2} \le k \}$ is closed in L^1 but has empty interior.]

Proof. Since, in $L^1([0,1])$, $L^2([0,1]) = \bigcup_{k=1}^{\infty} A_k$, we only need to show that $A_k \ \forall k \in \mathbb{N}$ are nowhere dense, i.e., their closure has empty interior.

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in A_k for some $k \in \mathbb{N}$ and converges to $f \in L^1([0,1])$. Notice that $f = \lim_{n \to \infty} f_n = \liminf_{n \to \infty} f_n$. Apply Fatou's Lemma:

$$\int_{0}^{1} |f|^{2} dx \le \liminf_{n \to \infty} \int_{0}^{1} |f|^{2} dx \le k^{2}.$$

Therefore, $f \in L^2([0,1])$ and A_k is closed.

 A_k also has no interior point because all of its elements are limit points of some sequences in the complement of A_k . Consider $g \in L^1([0,1]) \setminus L^2([0,1])$ and any $f \in A_k$. The sequence $\{f+g/n\}_{n=1}^{\infty}$ is a sequence in $L^1([0,1]) \setminus L^2([0,1])$ that converges to f. Thus, A_k has empty interior.

Problem 2.37. If a Banach space X is reflexive, show that X^* is also reflexive. Is the converse true?

Proof.

1. "⇒"

Let $E_x \in X^{**}$ s.t. $E_x(f) = f(x)$ for any $x \in X$ and $f \in X^*$. Since X is reflexive, $\forall g \in X^{**} \exists x \in X$ s.t. $g = E_x$ and the function $F: X \to X^{**}$ defined by $F(x) = E_x$ is a bijection and an isometry.

Now consider $G_f \in X^{***}$ s.t. $G_f(g) = G_f(E_x) = E_x(f) = f(x)$ for some $f \in X^*$ and $g \in X^{**}$ with its corresponding $x \in X$. Define $H: X^* \to X^{***}$ s.t. $H(f) = G_f$. We can show that

(a) H is surjective, i.e., $\forall h \in X^{***} \exists f \in X^*$ s.t. H(f) = h. For any $h \in X^{***}$, define $f_h : X \to \mathbb{F}$ s.t. $f_h(x) := h(E_x) = h(F^{-1}(x)) \ \forall x \in X$. We can show that F is linear, since

$$F(\alpha x + \beta y)(f) = E_{\alpha x + \beta y}(f)$$

$$= f(\alpha x + \beta y)$$

$$= \alpha f(x) + \beta f(y)$$

$$= (\alpha E_x + \beta E_y)(f)$$

$$= (\alpha F(x) + \beta F(y))(f)$$

where $x, y \in X$, $\alpha, \beta \in \mathbb{F}$, $f \in X^*$. Consequently, the inverse of the bijective map, F^{-1} , is also linear. As the composition of two linear functions, f_h is linear. f_h is also bounded as h is bounded. Therefore, $f_h \in X^*$. Notice that, $\forall g \in X^{**} \exists x \in X$ s.t.

$$(H(f_h))(g) = G_{f_h}(E_x) = E_x(f_h) = f_h(x) = h(E_x) = h(g)$$

Therefore, $H(f_h) = h$ and H surjective.

(b) H is an isometry. Define the norm in X^{***} as in Corollary 2.32., we have

$$\|G_f\|_{X^{***}} = \sup_{\substack{g \in X^{**} \\ g \neq \mathbf{0}}} \frac{|G_f(g)|}{\|g\|_{X^{**}}} = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|f(x)|}{\|x\|_X} = \|f\|_{X^*}$$

Therefore, H is an isometry.

(c) H is a bounded linear bijection, i.e., isomorphic. H is bounded, given the fact that

$$||H(f)||_{X^{***}} = ||G_f||_{X^{***}} = ||f||_{X^*}$$

for all $f \in X^*$. H is also injective. Let $f_1, f_2 \in X^*$. Since H is an isometry, we have

$$||H(f_1) - H(f_2)||_{X^{***}} = ||f_1 - f_2||_{X^*}$$

Therefore, $H(f_1) = H(f_2) \Rightarrow f_1 = f_2$ and H is injective. We can also show that H is linear:

$$(H(\alpha f_1 + \beta f_2))(g) = G_{(\alpha f_1 + \beta f_2)}(E_x)$$

$$= \alpha f_1(x) + \beta f_2(x)$$

$$= \alpha G_{f_1}(E_x) + \beta G_{f_2}(E_x)$$

$$= (\alpha H(f_1) + \beta H(f_2))(g)$$

where $\alpha, \beta \in \mathbb{F}$, $f_1, f_2 \in X^*$ and $g \in X^{**}$ with its corresponding $x \in X$.

- (a) to (c) combined gives us that X^* is reflexive.
- 2. "⇐"

If the Banach space X^* is reflexive, then X^{**} is also reflexive, as proven above. Notice that X is embedded into X^{**} with the reasons that $\tilde{X} = \{E_x \in X^{**} : x \in X\} \subseteq X^{**}$ and X is isometrically isomorphic to \tilde{X} . We only need to show that **the closed subset (Banach) of a reflexive Banach space is reflexive** to conclude that X is also reflexive.

Let Y be a closed subspace of X, a reflexive Banach space. Consider $j_y \in Y^{**}$ s.t. $j_y(f) = f(y) \ \forall y \in Y, f \in Y^*$ and the corresponding map:

$$J: Y \to Y^{**}, \ J(y) = j_y$$

We need to show that

$$\forall g \in Y^{**} \ \exists y \in Y \ \text{s.t.} \ (J(y))(f) = j_y(f) = f(y) = g(f)$$

for any $f \in Y^*$, i.e., J is a surjection. All other properties (isometrically isomorphic) can be derived following the similar proof for (b) and (c) in part 1.

For any $g \in Y^{**}$ and $F \in X^*$, define $G(F) := g(F|_Y)$. g is bounded and linear. The restriction to Y preserves linearity. Therefore, $G \in X^{**}$. Since X is reflexive, $\exists x_G \in X$ s.t. $G = E_{x_G}$ and $g(F|_Y) = E_{x_G}(F) = F(x_G)$. If $x_G \in Y$, then it gives us the desired conclusion.

To show that $x_G \in Y$, assume, on the contrary, that $x_G \notin Y$. By Mazure Separation Lemma I (Lemma 2.35), $\exists F_0 \in X^*$ s.t. $||F_0||_{X^*} \leq 1$, $F_0(y) = 0$ and $F_0(x) > 0 \ \forall y \in Y, x \in X \setminus Y$. Using the properties of F_0 , we have

$$g(F_0|_Y) = E_{x_G}(F_0) = F_0(x_G) > 0$$

However, since $F_0|_Y = \mathbf{0}$ and $g(F_0|_Y) = 0$, a contradiction. Therefore, $x_G \in Y$ and Y is reflexive.