DROUGHT WATER RIGHTS ALLOCATION TOOL January, 2022

RIPARIAN FORMULATION

$$0 \le P_k \le 1$$

for all basins, k

Basin proportions Pk are between 0 and 1.

$$A_i = P_k u_i$$

for all *i* users, in each basin *k*

Each user's allocation A_i is user i's basin proportion P_k , of i's demand u_i .

$$A_k = P_k U_k$$

for all k basins

Basin demand U_k is the sum of all user demand u_i in each basin k. Basin allocation A_k is the basin proportion P_k of basin demand U_k .

$$\sum_{i \in k} A_i \le v_k - e_k$$

for all *i* users that are within each basin *k*

Mass Balance: within every basin k, the sum of all users' allocations are less than or equal to flow v_k in basin k, less any environmental instream flow requirement e_k .

$$P_j \leq P_k$$

for all basins *j* and all basins *k*

Upstream basin proportions P_j cannot exceed downstream basin proportions P_k .

$$w_k = \frac{n_k}{n_{k, system outlet}}$$

for all basins, k

A basin penalty w_k is applied that increases with the ratio of the number of basins n_k upstream of basin k, to the total number of basins in the watershed.

Riparian Objective Function:

Maximize
$$z = \sum_{i} A_{i} - \sum_{k} A_{k} w_{k}$$

For all users i, and all basins, k

Maximize total user allocations A_i less the sum of downstream penalty w_k weighted basin allocations A_k .

APPROPRIATIVE FORMULATION

$$0 \le A_i \le u_i$$

for all users, i

Each appropriative user's allocation A_i must be between 0 and her reported demand u_i

$$\sum_{i \in k} A_{i,(appropriative)} \leq v_k - e_k$$
$$- \sum_{i \in k} A_{i,(riparian)}$$

for all users i, in all upstream basins k

Mass Balance: the sum of all appropriative allocations $A_{i,appropriative}$ that are in basin k, must be less than or equal to available flow vk, less any environmental instream flow requirement e_k , less the sum of all upstream riparian allocations, $A_{i,riparian}$.

Appropriative Objective Function:

$$Minimize z = \sum_{i} p_i (u_i - A_i)$$

for all users, i

Minimize the difference between demand and allocation, or shortage, $(u_i - A_i)$ weighted by the inverse of the priority of user i.