Lecture 13

Sketching root locus

Recap:

(Problem formulation)

 Plot in the complex s plane the locations of all roots of the equation

$$1 + K \cdot F(s) = 0 \quad \text{where} \quad F(s) = \frac{M(s)}{D(s)} = \frac{\prod_{k=1}^{m} (s - \beta_k)}{\prod_{k=1}^{n} (s - \alpha_k)}$$

as K varies from 0 to infinity.

This plot is called the (positive) "root locus".

Recap:

(phase and magnitude conditions)

Note that if a point S₀ in the complex plane lays on the root locus, it has to satisfy

$$1 + KF(s_0) = 0 \qquad \Leftrightarrow \qquad KF(s_0) = -1$$

which implies that these conditions hold:

magnitude condition: $|K \cdot F(s_0)| = 1$

phase condition: $\angle K \cdot F(s_0) = (2l+1)\pi$ for $l=0,\pm 1,\pm 2,\ldots$

Main features of root locus

- Number of branches
- Open loop poles (starting points for K=0)
- Open loop zeros (limiting points for K infinity)
- Parts of real line that belong to root locus
- Asymptotes
- Breakaway point (branches intersect)
- Intersections with imaginary axis
- Angles of departure or arrival at poles/zeroes

Number of branches

Summary:

- The root locus will have L branches, where L is the maximum between numbers of poles/zeros of F(s).
- If F is proper, then L is equal to the number of poles.
- F does not need to be proper in general, as it does not correspond to a model of physical system.

Example:

Characteristic equation is:

$$\underbrace{0.1s^{3} + 1.15s^{2} + 2.5s}_{D(s)} + K \underbrace{(0.1s + 1)}_{M(s)} = 0$$

$$1 + K \frac{M(s)}{D(s)} = 0$$

We consider this example in detail.

Example:

Consider the polynomial

$$0.1s^3 + 1.15s^2 + (0.1K + 2.5)s + K = 0 \Leftrightarrow 1 + K \frac{0.1s + 1}{s(0.1s^2 + 1.15s + 2.5)} = 0$$

Root locus has max{3,1}=3 branches in this example.

Open loop poles/zeroes

Summary:

For very small values of K, root locus contains points close to the poles of F(s):

$$1 + KF(s) = \frac{D(s) + KM(s)}{D(s)} = 0 \quad \stackrel{K \approx 0}{\Leftrightarrow} \quad D(s) = 0$$

- Zeroes of characteristic polynomial are the poles of the transfer function!
- We can say that branches "emanate from" open loop poles (poles as "sources").

Summary:

For large values of K, root locus is close to zeros of F(s):

$$1 + KF(s) = K \frac{{}^{1}KD(s) + M(s)}{D(s)} = 0 \quad \stackrel{K \to \infty}{\Leftrightarrow} \quad M(s) = 0$$

 We can say that zeroes are limits of branches of root locus as K grows to infinity (zeroes as "sinks").

Example:

We enter the poles and zeros of F(s)

Poles are denoted as crosses and zeros with circles.

Real line segments on the root locus

Summary:

We can quickly determine which parts of real axis belong to the root locus because of the phase condition:

phase condition: $\angle K \cdot F(s_0) = (2l+1)\pi$ for $l=0,\pm 1,\pm 2,\ldots$

Summary:

 A point on the real axis is a part of root locus iff it is to the left of an odd number of real poles and zeros

Complex conjugate poles/zeros are irrelevant.

Phase condition does not hold when we are on the right

Phase condition holds when we are on the left

Example:

Red lines belong to root locus

Asymptotes

Asymptotes

If n>m then the root locus has n-m branches that approach infinity along asymptotes that intersect the real axis at

$$\sigma \doteq \frac{\sum_{k=1}^{n} \alpha_k - \sum_{k=1}^{m} \beta_k}{n - m}$$

this is a real number because poles and zeros occur in conjugate pairs pairs

and with angles
$$\eta_k \doteq \frac{(2k-1)\pi}{n-m}$$
 for $k=1,\ldots,n-m$

the number of distinct asymptotes depends on the relative degree

Sketch of proof (see Ogata):

- As $K \to \infty$, $F(s) \to 0$ on each branch. Of the *n* branches, *m* terminate at zeros of numerator M(s). The remaining *n-m* branches must therefore stretch indefinitely. Since n > m, $F(s) \to 0$ as $|s| \to \infty$.
- For large s, root locus approaches root locus of $1+K\frac{1}{s^{n-m}}$ but with origin shifted to :

 σ

$$F(s) = \frac{s^m + b_{m-1}s^{m-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0} = \frac{\prod_{k=1}^m (s - \beta_k)}{\prod_{k=1}^n (s - \alpha_k)}$$

$$= \frac{1}{s^{n-m} + (a_{n-1} - b_{m-1})s^{n-m-1} + \dots + d_1s + d_0 + \frac{c_{m-1}s^{m-1} + \dots + c_1s + c_0}{s^m + b_{m-1}s^{m-1} + \dots + b_1s + b_0}}$$
S:
$$\approx \frac{1}{(s - \sigma)^{n-m}} = \frac{1}{s^{n-m} - \sigma(n-m)s^{n-m-1} + \dots + (n-m)(-\sigma)^{n-m-1}s + (-\sigma)^{n-m}}$$

For large s:

$$\sigma = -\frac{(a_{n-1} - b_{m-1})}{n - m} = \frac{\sum_{k=1}^{n} \alpha_k - \sum_{k=1}^{m} \beta_k}{n - m}$$

Sketch of proof

■ The phase condition for $1+K\frac{1}{s^{n-m}}$ is

$$(n-m) \angle \frac{1}{s_0} = \angle -1 = (2l+1)\pi, \ l = 0, \pm 1, \dots,$$

or equivalently

$$\angle s_0 = (2k-1)\pi/(n-m), k = 1, 2, \dots, n-m$$

Several typical cases

Example:

Since n-m=2, asymptotes are:

Points where branches intersect

(repeated roots of characteristic equation)

Summary

Consider a function f and suppose that

$$f(s) = (s - \alpha)^2 \tilde{f}(s) = 0$$

Then, we have

$$\frac{df}{ds}(s) = 2(s - \alpha)\tilde{f}(s) + (s - \alpha)^2 \frac{d\tilde{f}}{ds}(s)$$

$$f(\alpha) = 0
 \frac{df}{ds}(\alpha) = 0$$

Formula for repeated roots:

Consider

$$f(s) := D(s) + KM(s) = 0$$

K at which repeated roots occur:

$$\frac{dD}{ds} + K \frac{dM}{ds} = 0 \implies K = -\frac{\frac{dD}{ds}}{\frac{dM}{ds}}$$

$$D(s) - \frac{\frac{dD}{ds}}{\frac{dM}{ds}}M(s) = 0 \iff D(s)\frac{dM}{ds} - \frac{dD}{ds}M(s) = 0$$

Alternative approach:

We can alternatively consider:

$$K(s) := -\frac{D(s)}{M(s)}$$

 Points where branches intersect can be obtained alternatively from

$$\frac{dK}{ds} = -\frac{\frac{dD}{ds}M(s) - D(s)\frac{dM}{ds}}{M(s)^2} = 0$$

Example:

Solve

$$\frac{dK}{ds} = 0 \Leftrightarrow -0.02s^3 - 0.41s^2 - 2.3s - 2.5 = 0$$

Intersections with imaginary axis

Intersections with imaginary axis

- We can first compute the Routh array as a function of K.
- Then, we look for values of K for which some elements in the first column are equal to zero.
- Those values of K yield poles with zero real parts.
- With those values of K, we can find the purely imaginary poles of the closed loop, i.e. intersections with the imaginary axis.

Example

We computed the Routh array for the example in the last lecture:

$$\begin{array}{c|c|c} s^3 & 0.1 & (0.1K+2.5) \\ s^2 & 1.15 & K \\ s^1 & \frac{3K}{230} + 2.5 & 0 \\ s^0 & K \end{array}$$
 so stable if $K>0$ and $\frac{3K}{230} + 2.5 > 0$ (i.e. for all $K>0$)

Hence, no intersections with the imaginary axis.

Arrival/departure angles

Phase condition

We apply the phase condition when the test point coincides with a pole/zero for which we want to compute departure/arrival angle.

$$\angle(s_0 - \beta_1) - \angle(s_0 - \alpha_1) - \angle(s_0 - \alpha_2) - \angle(s_0 - \alpha_3) = (2l+1)\pi, l = 0, \pm 1, \pm 2, \dots$$

Example

 In this example, since all poles and zeroes are on the real axis it is trivial to compute departure/arrival angles.

Example

(completed root locus)

The plot shows that, starting from K=0, increasing K initially 'improves' the stability and performance properties of the closed-loop; these properties then 'degrade' as K increases beyond a certain point

```
>> z = [-10]:
 >> r = roots([0.1,1.15,2.5])
    -8.5895
    -2.9105
 >> p = [0 r(1) r(2)];
 >> g = 1;
>> F = zpk(z,p,g)
 Zero/pole/gain:
        (s+10)
 s (s+8.589) (s+2.911)
 >> rlocus(F);
as K \to \infty two (n - m = 2)
roots approach \infty along asymptotes
that intersect the real axis at
      0 - 8.5895 - 2.9105 + 10
with angles \eta_1 = \frac{\pi}{2}, \eta_2 = \frac{3\pi}{2}
```

Exercise:

Plot the root locus for:

$$1 + KF(s) = 0,$$
 $F(s) = \frac{(s-1)(s+2)}{s(s+3)(s+10)}$

Conclusions

- We showed how to construct root locus of arbitrary systems via its main features:
- Number of branches; open loop poles/zeroes.
- Segments of real line on root locus.
- Asymptotes.
- Intersections of branches.
- Intersections with imaginary axis.
- Multiple roots.
- Angles of arrival/departure.

Thank you for your attention.