Quantum Solutions

- 1. (a) Since at t=0 the system is in an eigenstate of the parity operator, we know that the associated wavefunction is either symmetric or anti-symmetric at this time. Moreover, since the potential is symmetric we have that the Hamiltonian operator commutes with $\hat{\Pi}$. Hence, the symmetry of the state will remain the same as the system evolves in time. Now the operator A is anti-symmetric (that is, $\hat{\Pi} A \hat{\Pi} = -A$). Therefore if $|\psi_{\pm}\rangle$ is an eigenstate of $\hat{\Pi}$ with eigenvalue ± 1 , then $A |\psi_{\pm}\rangle$ is an eigenstate of $\hat{\Pi}$ with eigenvalue ∓ 1 . Thus $\langle A \rangle_{|\psi_{\pm}\rangle} = \langle \psi_{\pm} | A | \psi_{\pm} \rangle = 0$, from which our result follows.
- (b) Since $\langle \hat{\Pi} \rangle_{|\psi\rangle} = 0$, we have that $|\psi\rangle = \frac{1}{\sqrt{2}}(|\psi_{+}\rangle + |\psi_{-}\rangle)$, where $|\psi_{\pm}\rangle$ is an eigenstate of $\hat{\Pi}$ with eigenvalue ± 1 . In order to obtain the lowest value of $\langle H \rangle_{|\psi\rangle}$ in such a state, simple choose $|\psi_{+}\rangle$ to be the ground state (which is the symmetric state with the lowest energy, namely $E_{0} = \frac{1}{2}\hbar\omega$) and $|\psi_{-}\rangle$ to be the first excited state (which is the anti-symmetric state with the lowest energy, namely $E_{1} = \frac{3}{2}\hbar\omega$). A simple calculation then yields $\langle H \rangle_{|\psi\rangle} = (E_{0} + E_{1})/2 = \hbar\omega$.
- 2. (a) Since A and B are Hermitian, we have that $(A+B)^2$ is also Hermitian. But 2AB is Hermitian if and only if A commutes with B. Therefore we have that $(A+B)^2=A^2+B^2+2AB=2AB$ (where the first equality uses $[A,B]=\hat{0}$), and hence $A^2+B^2=\hat{0}$. Taking the expectation of both sides of this last equation in an arbitrary state $|\psi\rangle$ yields $\langle A\psi|A\psi\rangle+\langle B\psi|B\psi\rangle=0$, where we have used the Hermiticity of A and B. Since both terms on the LHS of this equation are ≥ 0 for any A and $|\psi\rangle$, we see that $\langle A\psi|A\psi\rangle=\langle B\psi|B\psi\rangle=0$. But $\langle \phi|\phi\rangle=0$ if and only if the vector $|\phi\rangle$ is the zero vector $|0\rangle$. Hence $A|\psi\rangle=B|\psi\rangle=|0\rangle$ for all states $|\psi\rangle$, which shows that $A=B=\hat{0}$.
- (b) Let $|\phi\rangle$ be a unit vector in \mathcal{H} which is orthogonal to $|\psi\rangle$. (The vector $|\phi\rangle$ is unique up to an overall phase.) Then $\{|\psi\rangle, |\phi\rangle\}$ is an orthonormal basis for \mathcal{H} . We can now (for example) choose $A = \alpha(|\psi\rangle\langle\phi| + |\phi\rangle\langle\psi|)$ and $B = \beta(|\psi\rangle\langle\psi| |\phi\rangle\langle\phi|)$, where α and β are non-zero real numbers. The eigenvalues of A are $\pm \alpha$, and the state of the system after the first measurement is $|\chi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|\psi\rangle \pm |\phi\rangle)$ if the value $\pm \alpha$ is obtained (each occurs with probability 1/2). We want to show that if we now measure B (whose eigenvalues are $\pm \beta$), there will be a non-zero probability of obtaining the value $-\beta$, in which case the state of the system after the measurement will be $|\phi\rangle$ (which is orthogonal to $|\psi\rangle$). But it is immediate from the form of the states $|\chi_{\pm}\rangle$ that the probability of obtaining $-\beta$ in the measurement of B is 1/2, regardless of the outcome of the first measurement.
- 3. (a) For any Hamiltonian operator H and any state $|\psi\rangle$, the variational theorem tells us that $E_0 \leq \langle \psi | H | \psi \rangle$, where E_0 is the lowest energy eigenvalue of H. In our case, if we make the choice $|\psi\rangle = |\psi_0^{(0)}\rangle$ we immediately obtain $\langle \psi | H | \psi \rangle = E_0^{(0)} + \lambda E_0^{(1)}$ (since $H_0 | \psi_0^{(0)} \rangle = E_0^{(0)} | \psi_0^{(0)} \rangle$ and $E_0^{(1)} = \langle \psi_0^{(0)} | H_1 | \psi_0^{(0)} \rangle$).
- (b) Plugging the expansions for $|\psi_n\rangle$ and E_n into the time-independent Schrödinger equation $H|\psi_n\rangle=E_n|\psi_n\rangle$ and grouping terms of order λ^m $(m\geq 1)$ yields

$$H_0|\psi_n^{(m)}\rangle + H_1|\psi_n^{(m-1)}\rangle = \sum_{k=0}^m E_n^{(k)}|\psi_n^{(m-k)}\rangle$$
.

Taking the inner product of both sides with $|\psi_n^{(0)}\rangle$ (and using $\langle \psi_n^{(0)} | \psi_n^{(m)} \rangle = 0$ for all $m \geq 1$ and the Hermiticity of H_0) then gives the desired result.

4. (a) The energy levels of the particle in the two-dimensional box is just the sum of the energy levels of two one-dimensional square-well problems, one of width L and the other of width L/(N+1). Thus we have

$$E_{n_x,n_y} = \frac{\hbar^2 \pi^2}{2ML^2} (n_x^2 + (N+1)^2 n_y^2)$$

(where $n_x, n_y = 1, 2, ...$). The result then follows by a simple computation.

- (b) For a state with total angular momentum quantum number ℓ , the radial wavefunction satisfies $R(r) \sim r^{\ell}$ as $r \to 0$. Hence we have $\ell = 3$. Moreover, if the state has magnetic quantum number m, the ϕ -dependence of its wavefunction if $e^{im\phi}$. Hence we have m = 2. Finally, by substituting R(r) in the (time-independent) radial Schrödinger equation and solving for V(r) at large r, we find that V(r) goes to a constant C as $r \to \infty$. Hence, there will be a continuum in the spectrum of H for $E \geq C$.
- 5. (a) The ¹¹B atom has 5 protons, 6 neutrons, and 5 electrons, each of which is a fermion. Hence ¹¹B is made of an even number of fermions, and is therefore a boson.
- (b) In the absence of Coulomb repulsion (and spin-dependent forces), the problem reduces to 5 independent Hydrogenic atoms, each with nuclear charge Z=5, where we also have to use the Pauli Exclusion Principle in order to properly distribute the spin one-half electrons in the Hydrogenic levels. In particular, 2 electrons will be in the 1S state, 2 in the 2S state, and one in the 2P state. Hence, in our approximation, the ground state energy of the Boron atom will be $E_0 = -Z^2(13.6 \text{ eV})(1+1+1/4+1/4)=-935 \text{ eV}$.
- (c) The degeneracy of the ground state is just the degeneracy of the 2P state for an electron, which is 6 since the quantum number m_{ℓ} of the 2P electron can be 1,0, or -1 (since this is an $\ell = 1$ state) and the quantum number m_s of this electron can be $\pm 1/2$ (since the electron has s = 1/2).
- (d) Each of the spatial 2P basis states $|\psi_{2,1,m_\ell}\rangle$ ($m_\ell=0,\pm 1$) is not rotationally symmetric, and the same will be true of any linear combination of these linearly independent degenerate states.
- (e) Each Coulomb repulsion term increases the potential energy of the system, and hence the ground state energy will increase (but decrease in magnitude).