Memoria Puzzle 1 PBE

Introducció

L'objectiu d'aquest puzzle és aconseguir la conexió entre la raspberry pi i el lector RFID.

Connexió a internet

Abans de treballar amb la Raspberry Pi, hem de donar-li connexió a internet. Per tal d'aconseguir connectar-se a internet, cal connectar la Raspberry al portàtil Linux mitjançant un cable ethernet. D'aquesta manera, fent servir nmtui es pot crear una connexió ethernet compartida que permet connectar la raspberry a internet. Abans però, cal instal·lar el paquet dnsmasq.

Connexió amb el dispositiu

Un cop aconseguit connectar la raspberry a internet, mitjançant SSH ja ens podem connectar a la Raspberry. Un cop arribat aqui, per aconseguir connectar el lector RFID-RC522 a la Raspberry Pi hem de connectar els pins corresponents a la Raspberry Pi.

PIN RFID	Pin Raspberry	Funció
SDA	Pin 24	Serial Data Line
SCK	Pin 23	Serial Clock
MOSI	Pin 19	Master Out Slave In, enviar data al mòdul RFID
MISO	Pin 21	Master In Slave Out, enviar data a la Raspberry
GND	Pin 6	Cable ground
RST	Pin 22	Reset
3.3V	Pin 1	Power Supply

Un cop connectat el lector a la Raspberry Pi, hen de centrar-nos en la raspberry pi per completar la connexió.

Per poder comunicar-nos amb el lector, hem de configurar la Raspberry Pi per fer servir el bus spi. Per tal de fer això, hem de connectar-nos via *SSH* a la placa i fer servir el commandament:

sudo raspi_config

1

I un cop al menú hem de navegar fins a l'opció de *Interface Options*, i un cop dins d'aquesta opció activar el mòdul SPI.

Un cop activat el mòdul cal reiniciar la placa.

```
sudo reboot
```

Ara la placa ja es pot comunicar amb el lector, però per poder programar la seva funció hem d'instalar paquets a la raspberry pi:

```
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install python3-dev python3-pip python3-venv
```

Nom	Funció	
python3-dev	Llibreries necessàries per programar i compilar el fitxer .py	
python3-pip	Instalador de paquets de Python	
python3-venv	Paquet per generar entorns virtuals de Python	
spidev	Llibreria de python que controla les comunicacions en SPI	
mfrc522	Llibreria per controlar el lector RFID-RC522	

Amb aquests paquets instalats, ara només ens falta iniciar l'entorn virtual on programarem aquest puzzle.

```
mkdir PBE
cd PBE
python3 -m venv env
source env/bin/activate
```

I un cop dins d'aquest entorn virtual podem instal·lar els paquets de python que farem servir per comunicar-nos amb el lector.

```
sudo pip3 install spidev
sudo pip3 install mfrc522
```

Nom	Funció
spidev	Llibreria de python que controla les comunicacions en SPI
mfrc522	Llibreria per controlar el lector RFID-RC522

Programa

Aquest codi permet a la Raspberry pi llegir el UID de la targeta

```
#!/usr/bin/env python
#Importem els ports GPIO i la llibreria mfrc522
import RPi.GPIO as GPIO
from mfrc522 import SimpleMFRC522
class RfidRc522:
   def scanUid(self):
        lector = SimpleMFRC522()
        uid = lector.read_id()
        hexUid = hex(uid).upper()
        return hexUid
if __name__=="__main__":
#cal posar el codi dins de l'estructura try-finally per executar
#GPIO.cleanup() per evitar problemes amb altres programes
   try:
        rf = RfidRc522()
        uid = rf.scanUid()
        print(uid.strip("0X"))
   finally:
        GPIO.cleanup()
```

Lectura del contingut i escriptura

Aquest lector permet molt més que llegir el *UID* de les targetes, també permet escriure contingut en les targetes. Com a repte personal, he decidit implementar també aquestes funcions

Per tal de fer això, podem augmentar la classe RfidRc522:

```
class RfidRc522:

    def scanUid(self):
        lector = SimpleMFRC522()
        uid = lector.read_id()
        hexUid = hex(uid).upper()
        return hexUid

    def scan(self):
        lector = SimpleMFRC522()
        id, text = lector.read()
        return id, text

    def write(self, text):
        lector = SimpleMFRC522()
        print("Place your tag on the sensor")
        lector.write(text)
        print("Data has been written to the tag")
```

Amb aquesta definició de la classe ja podem realitzar les dues funcions bàsiques de la targeta.