

Europäisc Patentamt

European Patent Office

Officeuropéen des brevets

REC'D 10 NOV 2003

WIPO I

10/528673

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

02021602.4

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Best Available Copy

Office européen des brevets

Anmeldung Nr:

Application no.: 02021602.4

Demande no:

Anmeldetag:

Date of filing: 27.09.02

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Roche Vitamins AG

4070 Basel SUISSE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Biological process for producing 1-ascorbic acid

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C12P/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Case 21409

Biological Process for Producing L-Ascorbic acid

The present invention relates to the use of Enzyme B of Gluconobacter oxydans DSM 4025 as disclosed in EP 832,974 in a process for producing L-ascorbic acid.

Feasibility studies on the biotechnological synthesis of L-ascorbic acid (AsA) were performed for many years since the "Reichstein method" was established in 1934. The microorganisms Gluconobacter oxydans DSM 4025, Escherichia coli carrying the D-arabinono-1,4-lactone oxidase gene of Saccharomyces cerevisiae, Candida albicans and Saccharomyces cerevisiae oxidize L-galactono-1,4-lactone to AsA. Saccharomyces cerevisiae and Candida albicans possess a D-arabinose dehydrogenase catalyzing the production of D-arabinono-1,4-lactone and L-galactono-1,4-lactone from D-arabinose and L-galactose, respectively. However, there were no reports describing the possibility of biological AsA production from another L-hexose as intermediate, that is, L-idose, L-gulose, and L-talose, with a configuration corresponding to that of AsA (C4 and C5 positions).

The present invention provides the use of Enzyme B of G. oxydans DSM 4025, as disclosed in EP 832,974, in a process for producing L-ascorbic acid from L-gulose, L-galactose, L-idose or L-talose, or from L-gulono-1,4-lactone (and its acid form, L-gulonic acid) and from L-galactono-1,4-lactone (and its acid form, L-galactonic acid).

The present invention also provides the use of Enzyme B of G. oxydans DSM 4025, as disclosed in EP 832,974, in a process for producing L-gulono-1,4-lactone or L-galactono-1,4-lactone, or their acid forms L-gulonic acid or L-galactonic acid from L-gulose or L-galactose, respectively.

L-Hexoses like L-gulose, L-galactose, L-idose, and L-talose are rare sugars which are basically produced by chemical methods and are commercially high-cost compounds. How-

HEI/sk 27.09.2002

15

ever, biological preparations for L-gulose and L-galactose have been recently reported.

L-Gulose production from D-sorbitol by Enzyme A of G. oxydans DSM 4025 was reported in EP 832,974. L-Gulose production from L-sorbose by L-ribose isomerase was disclosed in US 6,037,153. L-Galactose production from L-sorbose is reported by Izumori et al.

(2001 Annual Meeting of the Society for Bioscience and Bioengineering, Japan). In this process they combined two enzymatic processes consisting of "L-sorbose to L-tagatose" reaction with L-tagatose epimerase of Pseudomonas cichorii ST-24 strain (US 5,811,271) and "L-tagatose to L-galactose" reaction with D-arabinose isomerase of Bacillus stearo-thermophilus 14a strain. L-Gulono-1,4-lactone may be prepared from D-glucose.

- 10 In another aspect the present invention provides a process for
 - (a) producing
- (i) L-ascorbic acid from L-gulose or L-galactose by an enzyme which comprises contacting L-gulose or L-galactose with an enzyme having an amino acid sequence of SEQ ID NO:2 or an amino acid sequence that is 90% identical thereto, or a portion thereof, with the activity to produce L-ascorbic acid from L-gulose and L-galactose or a functional equivalent thereof, in a reaction mixture,
 - (ii) L-gulono-1,4-lactone from L-gulose, or L-galactono-1,4-lactone from L-galactose by an enzyme which comprises contacting L-gulose or L-galactose with an enzyme having an amino acid sequence of SEQ ID NO:2 or an amino acid sequence that is 90% identical thereto, or a portion thereof, with the activity to produce L-gulono-1,4-lactone from L-gulose and L-galactono-1,4-lactone from L-galactose, or a functional equivalent thereof, in a reaction mixture, or
 - (iii) L-ascorbic acid from L-gulono-1,4-lactone or from L-galactono-1,4-lactone by an enzyme which comprises contacting L-gulono-1,4-lactone or from L-galactono-1,4-lactone with the enzyme having an amino acid sequence of SEQ IDNO:2 or an amino acid sequence that is 90% identical thereto, or a portion thereof, with the activity to produce L-ascorbic acid from L-gulono-1,4-lactone and from L-galactono-1,4-lactone, or a functional equivalent thereof, in a reaction mixture,
- 30 (b) isolating L-ascorbic acid, L-gulono-1,4-lactone or L-galactono-1,4-lactone from the reaction mixture.

In the present invention, a functional equivalent of the enzyme can be made either by chemical peptide synthesis known in the art or by recombinant means on the basis of the DNA sequences as disclosed herein by methods known in the state of the art. Amino acid exchanges in proteins and peptides which do not generally alter the activity of such mole-

and

cules are known in the state of the art. The most commonly occurring exchanges are: Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly as well as these in reverse.

Furthermore such functional equivalent of the enzyme includes an amino acid sequence encoded by a DNA sequence of SEQIDN:1 as disclosed e.g. in the sequence listing as well as the complementary strand, or those which include the sequences, DNA sequences which hybridize under standard conditions with such sequences or fragments thereof and DNA sequences, which because of the degeneration of the genetic code, do not hybridize under standard conditions with such sequences but which code for polypeptides having exactly the same amino acid sequence, wherein the functional equivalent has the enzymatic activity of producing

(i) L-ascorbic acid from L-gulose and from L-galactose,

25

30

(ii) L-gulono-1,4-lactone (and its acid form, L-gulonic acid) from L-gulose and L-galactono-1,4-lactone (and its acid form, L-galactonic acid) from L-galactose, or (iii) L-ascorbic acid from L-gulono-1,4-lactone (and its acid form, L-gulonic acid) and from L-galactono-1,4-lactone (and its acid form, L-galactonic acid).

"Standard conditions" for hybridization mean in this context the conditions which are generally used by a man skilled in the art to detect specific hybridization signals, or preferably so called stringent hybridization and non-stringent washing conditions or more preferably so called stringent hybridization and stringent washing conditions a man skilled in the art is familiar with. Furthermore, DNA sequences which can be made by the polymerase chain reaction by using primers designed on the basis of the DNA sequences disclosed herein by methods known in the art are also an object of the present invention. It is understood that the DNA sequences of the present invention can also be made synthetically as described, e.g. in EP 747,483.

A mutant of the gene can be prepared by treating the gene or a microorganism carrying the gene with a mutagen such as ultraviolet irradiation, X-ray irradiation, y-ray irradiation or contact with a nitrous acid, N-methyl-N'-nitro-N-nitrosoguanidine (NTG), or other suitable mutagens, or isolating a colony or clone occurring by spontaneous mutation or by standard methods of *in vitro* mutagenesis known in the art. Many of these methods have been described in various publications.

As used herein, a "mutant" is any gene that encodes a non-native polynucleotide sequence or a polynucleotide sequence that has been altered from its native form (such as, e.g., by rearrangement or deletion or substitution of from 1-100, preferably 20-50, more

.......

preferably less than 10 nucleotides). As noted above, such a non-native sequence may be obtained by random mutagenesis, chemical mutagenesis, spontaneous mutation, UV-irradiation, PCR-prone error generation, site-directed mutagenesis, and the like. Preferably, the mutation results in texpressing polypeptide having the increased production or improved activity compared to a non-mutant parental polypeptide using the assay procedures set forth in the Examples. Methods for generating, screening for, and identifying such mutant cells are well known in the art.

A specific and preferred G. oxydans strain as a donor of a DNA sequence encoding a polypeptide has been deposited at the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) in Göttingen (Germany) under DSM No. 4025. A biologically and/or taxonomically homogeneous culture of a microorganism having the identifying characteristics G. oxydans DSM 4025 can also be a donor of the DNA sequence.

A subculture of G. oxydans DSM 4025 has been deposited in the Agency of Industrial Science and Technology, Fermentation Research Institute, Japan, under the deposit No.: FERM BP-3812. EP 278,477 discloses the characteristics of this strain.

15

By using the information of the so determined nucleotide sequence (in consideration of the codon usage) a gene encoding evolutionally divergent enzyme having the activity of producing (i) L-ascorbic acid from L-gulose and L-galactose, (ii) L-gulono-1,4-lactone (and its acid form, L-gulonic acid) from L-gulose and L-galactono-1,4-lactone (and its acid form, L-galactonic acid) from L-galactose, or (iii) L-ascorbic acid from L-gulono-1,4-lactone (and its acid form, L-galactonic acid) and from L-galactono-1,4-lactone (and its acid form, L-galactonic acid). As A forming-activity from L-gulose or L-galactose, can be isolated from a different organism by colony- or Southern-hybridization with a probe synthesized according to the amino acid sequence deduced from said nucleotide sequence or by the polymerase chain reaction with primers also synthesized according to said information, if necessary.

Furthermore, a preferred host microorganism for constructing a recombinant microorganism carrying Enzyme B gene of G. oxydans DSM 4025 and its functional equivalent or mutant defined above may be Escherichia coli, Pseudomonas putida and G. oxydans DSM 4025 and their biologically and/or taxonomically homogeneous culture or mutant.

To construct a recombinant microorganism carrying the Enzyme B gene and its functional equivalent or mutant on a recombinant expression vector or on a chromosomal DNA of a host microorganism, various gene transfer methods including transformation, transduc-

tion, conjugal mating, and electroporation can be used. The method for constructing a recombinant organism may be selected from the methods well-known in the field of molecular biology. Usual transformation systems can be used for Escherichia coli, and Pseudomonas. A transduction system can also be used for Escherichia coli. Conjugal mating systems can be widely used in Gram-positive and Gram-negative bacteria including E. coli, Pseudomonas putida and G. oxydans. The conjugation can occur in liquid media or on a solid surface. The preferred recipient is selected from E. coli, Pseudomoas putida and G. oxydans which can produce active Enzyme B with a suitable recombinant expression vector. To the recipient for conjugal mating, a selective marker is usually added; for example, resistance against nalidixic acid or rifampicin is usually selected.

The microorganisms provided in the present invention may be cultured in an aqueous medium supplemented with appropriate nutrients under aerobic conditions. The cultivation may be conducted at a pH between about 1.0 and 9.0, preferably between about 2.0 and 8.0. While the cultivation period varies depending upon pH, temperature and nutrient medium used, usually 2 to 5 days will bring about favorable results. A preferred temperature range for carrying out the cultivation is from about 13°C to 45°C preferably from about 18°C to 42°C.

It is usually required that the culture medium contains such nutrients as assimilable carbon sources, digestible nitrogen sources and inorganic substances, vitamins, trace elements and other growth promoting factors. Examples for assimilable carbon sources include glycerol, D-glucose, D-mannitol, D-fructose, D-arabitol, D-sorbitol and L-sorbose.

Various organic or inorganic substances may also be used as nitrogen sources, such as yeast extract, meat extract, peptone, casein, corn steep liquor, urea, amino acids, nitrates, ammonium salts and the like. As inorganic substances, magnesium sulfate, potassium phosphate, ferrous and ferric chlorides, calcium carbonate and the like may be used.

If there is no clear definition, L-ascorbic acid means that the substance exists either as a free acid form or as a salt form such as Na-salt, K-salt, or hemicalcium-salt. Moreover, concentration of L-ascorbic acid is described as the free acid form unless otherwise stated.

If there is no clear definition, L-gulono-1,4-lactone and L-galactono-1,4-lactone mean that the substances exist as their lactone forms and/or their acid forms, both of which exist in an equilibrium state under various physico-chemical conditions.

10

15

20

As used herein the phrase "standard conditions for hybridization" means conditions which are generally used by a person skilled in the art to detect specific hybridization signals, or preferably, so called stringent hybridization and non-stringent washing conditions, or more preferably, so called moderately stringent conditions, or even more preferably, so called stringent hybridization and stringent washing conditions which a person skilled in the art is familiar with.

For example, any combination of the following hybridization and wash conditions may be used, as appropriate:

High Stringency Hybridization: 6X SSC, 0.5% SDS, 100 µg/ml denatured salmon sperm DNA, 50% formamide, incubate overnight at 42°C with gentle rocking.

High Stringency Wash: 1 wash in 2X SSC, 0.5% SDS at room temperature for 15 minutes, followed by another wash in 0.1X SSC, 0.5% SDS at room temperature for 15 minutes.

Low Stringency Hybridization: 6X SSC, 0.5% SDS, 100 μg/ml denatured salmon sperm DNA, 50% formamide, incubate overnight at 37°C with gentle rocking.

5 Low Stringency Wash: 1 wash in 0.1X SSC, 0.5% SDS at room temperature for 15 minutes.

Moderately stringent conditions may be obtained by varying the temperature at which the hybridization reaction occurs and/or the wash conditions as set forth above.

The concentration of the substrates including L-aldose and L-aldonolactone in a reaction mixture can vary depending on other reaction conditions, but, in general, may be between 1 g/l and 300 g/l, preferably between 10 g/l and 200g/l.

The reaction can be conducted aerobically.

For the reaction, any forms of enzyme can be used; enzyme solution, immobilized enzyme, intact cell, and immobilized cell may be used.

After the reaction, L-ascorbic acid or L-aldonolactone may be recovered from the reaction mixture by the combination of various kinds of chromatography, for example, thin layer chromatography, adsorption chromatography, ion-exchange chromatography, gel filtration chromatography or high performance liquid chromatography. L-Aldonolactone as a reaction product can also be used as a substrate for a further reaction as it is in the reaction mixture of this invention without purification.

The following examples are provided to further illustrate the process of the present invention. These examples are illustrative only and are not intended to limit the scope of the invention in any way.

Example 1: Production of L-gulono-1,4-lactone/L-gulonic acid from L-gulose by

Escherichia coli JM109 carrying the Enzyme B gene

Enzyme B gene was cloned and subcloned from pSS103R into a vector pTrcMalE to construct pTrcMalE-EnzB as described in EP 832,974. Escherichia coli JM109 carrying pTrcMalE-EnzB was grown on 2 ml of LB medium with 100 μg/ml of ampicillin at 30°C for 15 hours and 100 μl of the resulting broth was transferred into fresh LB medium with 100 μg/ml of ampicillin and incubated at 30°C for 4 hours. Then, IPTG was added to the culture at a final concentration of 0.2 mM and the culture was further cultivated at 30°C for 2 hours. The control cultivation of E. coli JM109 carrying pTrcMalE-EnzB without IPTG addition was also performed. Escherichia coli JM109 was used as the control strain in the same manner as described above, cultivation with or without addition of IPTG. The cells from 8 ml of the culture were collected by centrifugation and suspended in 1 ml of distilled water. The resulting cell suspension was used for the reaction with 400 μl of reaction mixture consisting of 250 μl of the cell suspension, 1% substrate, 0.3% NaCl, 1% CaCO₃, 1 μg/ml of PQQ and 1 mM PMS and the mixture was incubated at room temperature for 16 hr. The substrate used in this experiment was L-gulose. The amounts of L-gulono-1,4-lactone plus L-gulonic acid and AsA are summarized in Table 1.

Table 1

20

5

Strain	IPTG	HPLC							
		L-GuL+L-GuA (mM)	AsA (mg/L)						
JM109 /pTrcMalE-EnzB	· +	8.4	2.5						
	-	4.6	10.5						
JM109	+	nd	nd						
	-	nd	nd						

L-GuL: L-gulono-1,4-lactone; L-GuA: L-gulonic acid; nd: not detected

Example 2: Production of AsA from L-gulono-1,4-lactone/L-gulonic acid by

Escherichia coli JM109 carrying the Enzyme B gene

The experiment was performed as described in Example 1, except of the substrate used which was L-gulono-1,4-lactone in this Example. The amount of AsA is summarized in Table 2.

Table 2

Strain	IPTG	HPLC	
		AsA (mg/L)	
JM109 /pTrcMalE-EnzB	+	1.4	
	-	1.2	
JM109	+	nd	
	-	nd	

nd: not detected

Example 3: Production of L-galactono-1,4-lactone/L-galactonic acid from L-galactose by Escherichia coli JM109 carrying the Enzyme B gene

The experiment was performed as described in Example 1, except of the substrate used which was L-galactose in this Example. The amounts of L-galactono-1,4-lactone plus L-galactonic acid and AsA are summarized in Table 3.

Table 3

Strain	IPTG	HPLC							
		L-GaL+L-GaA (mM)	AsA (mg/L)						
JM109/pTrcMalE-EnzB	+	6.2	2.7						
	-	3.9	1.6						
JM109	+	nd	nd						
	-	nd	nd						

L-GaL: L-galactono-1,4-lactone; L-GaA: L-galactonic acid; nd: not detected

10 Example 4: Production of AsA from L-galactono-1,4-lactone/L-galactonic acid by Escherichia coli JM109 carrying the Enzyme B gene

The experiment was performed as described in Example 1, except of the substrate used which was L-galactono-1,4-lactone in this Example. The amount of AsA is summarized in Table 4.

Table 4

Strain	IPTG	HPLC	
		AsA (mg/L)	
JM109 /pTrcMalE-EnzB	+	4.7	
Ì	-	3.7	
JM109	+	nd	
	-	nd	

Claims

- 1. The use of Enzyme B of G. oxydans DSM 4025, as disclosed in EP 832,974, in a process for producing L-ascorbic acid from L-gulose, L-galactose, L-idose or L-talose, or from L-gulono-1,4-lactone (and its acid form, L-gulonic acid) and from L-galactono-1,4-lactone (and its acid form, L-galactonic acid).
- 2. The use of Enzyme B of G. oxydans DSM 4025, as disclosed in EP 832,974, in a process for producing L-gulono-1,4-lactone or L-galactono-1,4-lactone, or their acid forms L-gulonic acid or L-galactonic acid from L-gulose or L-galactose, respectively.
- 3. The use of Enzyme B of G. oxydans DSM 4025, as disclosed in EP 832,974, in a process for producing L-ascorbic acid from L-gulono-1,4-lactone or L-galactono-1,4-lactone, or their acid forms L-gulonic acid or L-galactonic acid.
 - 4. A process for (a) producing
 - (i) L-ascorbic acid from L-gulose or L-galactose by an enzyme which comprises contacting L-gulose or L-galactose with an enzyme having an amino acid sequence of SEQ ID NO:2 or an amino acid sequence that is 90% identical thereto, or a portion thereof, with the activity to produce L-ascorbic acid from L-gulose and L-galactose or a functional equivalent thereof, in a reaction mixture,
 - (ii) L-gulono-1,4-lactone from L-gulose, or L-galactono-1,4-lactone from L-galactose by an enzyme which comprises contacting L-gulose or L-galactose with an enzyme having an amino acid sequence of SEQ ID NO:2 or an amino acid sequence that is 90% identical thereto, or a portion thereof, with the activity to produce L-gulono-1,4-lactone from L-gulose and L-galactono-1,4-lactone from L-galactose, or a functional equivalent thereof, in a reaction mixture, or
- (iii) L-ascorbic acid from L-gulono-1,4-lactone or from L-galactono-1,4-lactone by an enzyme which comprises contacting L-gulono-1,4-lactone or from L-galactono-1,4-lactone with the enzyme having an amino acid sequence of SEQ IDNO:2 or an amino acid sequence that is 90% identical thereto, or a portion thereof, with the activity to produce L-ascorbic acid from L-gulono-1,4-lactone and from L-galactono-1,4-lactone, or a functional equivalent thereof, in a reaction mixture,
- and (b) isolating L-ascorbic acid, L-gulono-1,4-lactone or L-galactono-1,4-lactone from the reaction mixture.
 - 5. The process according to any one of claim 1, 2, 3 or 4, wherein the contact of the enzyme and the substrate is conducted at a pH in the range of from 1 to 9, preferably from

- 11 -

2 to 8, at a temperature in the range of from 13°C to 45°C, preferably from 18°C to 42°C, for 1 to 120 hours.

NR. 5109 S. 18/25

- 12 -

,	SEQUEN	ÇE LIS	STING	3												
	<110>	Roche	e Vit	amir	s AG	;										
	<120>	Asco	cbic	Ació	Pro	duct	ion									
	<130>	NDR5	221													
5	<160>	2														
'	<170>	Pater	ntIn	vers	ion	3.1										
	<210>	1														
	<211>	1740														
10	<2,12>	DNA														
	<213>	Gluce	onoba	actei	c oxy	rdans										
	<220>		•													
	<221>-	-CDS	••	· . • •		••	· · •	1.	٠			•	•			
	<222>	(1).	. (17	40)-	٠.											
15	<223>															
	<400>	1.			•	•	•									
	atg aa	c ccc	aca	acg	ctg	ctt	cgc	acc	agç	âcā	gcc	gtg	çta	ttg	ctt	48
	Met As	n Pro	Thr	Thr	Leu	Leu	Arg	Thr	Ser	Ala	Ala	Val	Leu	Leu	Leu ·	
	1 .		٠.	5 .	•			:	10					15	· ·	
20			٠.													
•	acc go	g ccc	gcc	gca	ttc	ącg	cag	gta	acc	ccg	att	acc	gat	gaa	ctg	96
·	Thr Al	a Pro	Ala	Ala	Phe	Ala	Gln	Val	Thr	Pro	Ile	Thr	Asp	Glu	Leu	
			20		•		•	25					30			
	•		ı				•									
25	ctg go															144
	Leu Al	a Asn	Pro	Pro	Ala	Gly	Glu	Trp	Ile	Asn	Tyr	Gly	Arg	Asn	Gln	-
		35					40					45				
•	gaa aa		•				•									192
30	Glu As		Arg	His	Ser		Leu	Thr	Gln	Ile		Ala	Asp	Asn	Val	
	50		٠٠. 	•		55					60					
						4										240
•	ggt ca	-														240
'	Gly Gl		GTÚ	Leu		.L.Eb	ALA	Arg	GTĀ		GIU	ALG	GTA	WTS	80	
35	65	, 41			70		.,			75					80	
•						# 0#	σ∍ È	~~~	~+ ~	= t-c	+	ata	~~à	220	666	. 288
	cag gt	•														. 200
	Gln Va	1 The								Mec	TYL	reu	WIG		FLU	
	•		· . ·	. 83		·	. ,	.* '	7 0					95	:	
40					~		a=+	~~~	795	90=	~~~	as t	a+~	250	+~~	336
	ggt ga Gly As															330
	GTA WE	b var		•	VTG	÷€.	wan		GTII	*111	GTA	asp	110	~~C	111	
			100					105					-+O			

	gaa	çac	cgc	cgc	caa	ctg	ccc	gcc	gtc	gcc	acg	cta	aac	gcc	caa	aac	384
	Glu	His	Arg	Arg	Gln	Leu	Pro	Ala	Val	Ala	Thr	Leu	Asn	Ala	Gln.	Gly	•
			115					120					125				
									•								
5	gac	cgc	aag	cgc	ggc	gtc	gcc	ctt	tac	ggc	acg	agc	ata	tat	ttc	agc	432
	_	_					Ala										
	_	130	-	_			135					140					
	tca	tgg	gac	aac	cat	ctg	atc	gcg	ctg	gat	atg	gag	açg	ggc	cag	gtc	480.
10.							Ile										
	145					150					155					160	
				•													
	ata	ttc	gat	atc	gaa	cgt	gga	tcg	ggc	gaa	gaç	ggc	ttg	acc	agt	aac	528
	_															Asn	
15					165	3			-	170		· -			175		
										_							
	acc	aca	ata	cca	att	ata	gcc	aat	aac	atc	atc	atc	aca	aat.	tcc	acc	576
				_			Ala										
		****	023	180					185					190			
20				100					-00								
20	taa	~==	t=+	For	ccc	tat	gga	tac	ttt	atc	tea	aua	cac	gat	tee	aca	624
	_			_			Gly Gly	_									023
	ÇŞS	GIII	_	36I	PIO	TAT	GTA		FIIG	***	ner	GTA	205	nop	DET		
			195					200					205				
76		~~*	a		~ *~	+ ~~	cgc	200	020	***	220	000	can	~~~	aac	~ ==	672
25	-				_		Arg										0/2
	THE			GIU	nea	TLD	215	Wall	urs	FIIG	116	220	GLII	FLU	GTĀ	GIU	
		210					213					220					
										***	~~~	~~~	~~~	+~~	366	200	720
			_								_					acc .	120;
30		GTA	Asp	GIU	The		Gly	Asn	Asp	Pne			Arg	Trp	wec		
	225					230					235					240	•
																	860
		-														ttc:	768
	Gly	Val	Trp	СЉ			Thr	Tyr	Asp			Thr	Asn	Leu		Phe	
35					245					250					255		
		-														acg	816
	Tyr	Gly	Ser		_	· Val	Gly	Pro			Glu	Thr	Gln	_	-	Thr	
				260					265					270			
40																CCC	864
	Pro	Gly	GJĀ	Thr	Leu	Тут	Gly	Thr	Asn	Thr	Arg	Phe	Ala	Val	Arg	Pro	•
			275					280					285				

- 14 -

	gac	ace	gge	gag	att	gto	tgg	cgt	CAC	cag	acc	ctg	ccg	cgc	gac	aac	912
	Asp	Thr	. Gly	Glu	Ile	. Val	Trp	Arg	His	Gln	Thr	Leu	Pro	Arg	Asp	Asn	
		290)				295					300					
5												gec			_		960
			G1n	Glu	Сув	Thr	Phe	Glu	Met	Met	Val	Ala	Asn	Val	qzA	Val	
	305					310					315	,				320	
												atc					1008
10	Gln	Pro	Ser	Ala			Glu	Gly	Leu	Arg	Ala	Ile	Asn	Pro	Asn	Ala	
					325					330					335		
				. ,			_										
																âāç .	1056
15	WIR	THE	GIĀ		Arg	Arg	Val	Fén		GŢĀ	Ala	Pro	CAa		Thr	Gly	
13				340					345					350			
	aca	ato	taa	tca	~~+	as t		~~~				• • •				_	
												ttc Phe					1104
		1100	355	Ber	£11¢	nap	TTG	360	SEL	атХ	GIU	Lue		Trp	Ala	Arg	
20			200					300					365				
,	gat	acc	aac	tac	acc	aat	atσ	arc	acc	tea	ato	gac	~~~	300			1150
												Asp					1152
		370		_			375					380	924	1111	GLY	neu	
25	gtg	acg	gtg	aac	gag	gat	gcg	gtg	ctg	aaa	gag	ctg	αac	att	gaa	tat	1200
												Leu					
	385					390					395		-			400	•
					•												
	gac	gtc	tgc	ccg.	acc	ttc	ctg	ggt	ggg	cgc	gac	tgg	tcg	tca.	gcc	gca	1248
30	qaA	Val	Cys	Pro	Thr	Phe	Leu	Gly	Gly	Arg	Asp	Trp	Ser	Ser	Ala	Ala	
					405					410					415		
												ctg					1296
	Leu	Asn			Thr	GJĀ	Ile			Leu	Pro	Leu	Asn	Asn	Ala	Cys	
35				420					425				•	430	• •		
							_										
	Tur	ye~ aar	TIA I	atg Ma-	gcc	gct	gat	caa cl-	gag	ttt	agc	gcg	ctc	gac	gtc	tat	1344
	Tyr		435	Met	ATG	ATT			GT/7	Pne	Ser			Asp	Val	Tyr	
40	aac		_	~~~	200	4 0~		440					445		•	•	• •
**	aac Asn																1392
	Asn	450	ner .	ਘਾਰ	I LIT.		љув 455	neu	WT g	LIO	αТÃ		GIU .	Asn :	Met	Gly	
	,						ずカコ					460					

- 15 -

	cgc	atc	gac	g¢g	att	gat	atc	agc	acc	ggg	cgc	acc	ttg	tgg	tcg	gcg	1440	
	Arg	Ile	Asp	Ala	Ile	Asp	Ile	Ser	Thr	Gly	Arg	Thr	Leu	Txp	Ser	Ala	·	
	465					470					475					480		
5		_			gcg												1488	
	Glu	Arg	Pro	Ala	Ala	Asn	Tyr	Ser	Pro	Val	Leu	Ser	Thr	Ala	Gly	ĠſЪ		
					485					490					495			
					•													
					ggc												1536	
10	Val	Val	Phe		GJA	Gly	Thr	Asp		Tyr	Phe	Arg	Ala		Ser	Gln		
				500					505					510			•	
	-				act								_		_		1584	
	Glu	Thr	_	Glu	Thr	Leu	Trp		Ala	Arg	Fen	Ala		Val	Ala	Thr		
15		•	515					520					525					
							#0 #1			a aa	~+~		+ = +	250	~~~	25-	1630	
					agc Ser												1632	•
	GTÅ	530	VTG	116	SEI	TĀT	535	nea	ASP	GTA	VOT	540	TAT	116	wra	176	•	
20		0										220						
20	aat	aca	aac	ant	ctg	acc	tat	aac	aco	caa	tta	aac	aca	cca	cta	acc	1680	
				_	Leu												2000	
	545		2	 3		550	-4	2			555					560		
																•		•
25	gag	gca	atc	gat	tcg	acc	tcg	gtc	ggt	aat	gcg	atc	tat	gtc	ttt	gca	1728	
	Glu	Ala	Ile	Asp	Ser	Thr	Ser	Val	Gly	Asn	Ala	Ile	Tyr	Val	Phe	Ala		•
					565					570					575			
	ctg	ccg	cag	taa													1740	
30	Leu	Pro	Gln											,i				
•																		
	<21	_	2															
35	<21		579															
	<21		PRT		0.450			_										
	<21:			OHOD	acte	r ux	yuan	5										
	<40	0>	4											•				
40	Mer	7 c~	Pro	ጥኮ~	Thr	T.en	T.e.r	DYM	ጥኮቍ	Ser	Ala	Ala	Val	Len	Len	Len		
-20	1	Lan,			5	~44	u	9	~44£	10			4 40 44		15	4		
	-				_													
	Thr	Ala	Pro	Ala	Ala	Phe	Ala	Gln	Val	Thr	Pro	Ile	Thr	Asp	Glu	Leu	•	
			_ •	20					25					30				

- 16 -

	Le	u Al	a Ası 35	l Pro	Pro	Ala	GIA	40	i Trt	ıle	a Ast	ı Tyx	Gl ₃	r Arg	Asn	Gln
5	Gl	11 AS	п Туз	Arg	His	Sex	Pro	·Leu	. Thr	G1r	ı Ile	Thr	: Als	qaA ı	Asn	Val
	Gl ₃ 65	y Gl	n Leu	Gln	Leu	Val	Trp	Ala	Arg	Gly	Met 75	; Glu	Ala	Gly	Ala	Val
10	Glr	ı Va	l Thr	Pro	Met 85	Ile	His	Asp	Gly	Val	. Met	Tyr	Leu	Ala	Asn 95	Pro
15	Gly	/ Asp	vaļ	11e	Gln	Ala	Leu	Asp	Ala 105	Gln	Thr	Gly	Asp	Leu 110	Ile	Ţxp
	Glu	. His	Arg		Gln	Гел	Pro	Ala 120		Ala	Thr	Leu	Asn 125		Gln	Gly
20	Asp	130	Lys	Arg	Gly	Val	Ala 135	Leu	Tyr	Gly	Thr	Ser 140	Leu	Tyr	Phe	Ser
	Ser 145		Asp	Asn	His	Leu 150	Ile	Ala	Leu	Asp	Met 155	Glu	Thr	Gly	Gln	Val 160
25	Val	Phe	Asp	Val	Glu 165	Arg	GJĀ	Ser	Gly	Glu 170	Asp	Gly	Leu	Thr	Ser 175	Asn
30	Thr	Thr	Gly	Pro 180	Ile	Val	Ala	Asn	Gly 185	Val	Ile	Va1	Ala	Gly 190	Ser	Thr
_	Cys	Gln	Tyr 195	Ser	Pro	Tyr	Gly	Суs 200	Phe	Ile	Ser	Gly	His 205	Asp	Ser	Ala
35	Thr	Gly 210	Glu	Glu	Leu		Arg 215	Asn	His	Phe	Ile	Pro 220	G1n	Pro	Gly	Glu
	225		Asp			230					235				:	240
10	ĠŦĀ ^ʻ	AGT	Trp	GTÅ.	245	TIG	THE	ıyr		250	Val.	Thr	Asn		Val : 255	Phe
	Tyx	Gly	Ser	Thr 260	Gly	Val	Gly		Ala 265	Ser	Glu	Thr		Arg (Gly '	Thr

- 17 -

	Pro	Gl3	7 Gl ₃ 275		Leu	Туг	: Gl	7 Thi 280		Thr	Arg	Phe	285		Arg	y. Pro
5	Asp	290		/ Glu	lle	Val	. Trg 295		f His	Gln	Thr	300	-	Arg) Ası): Asr
	Trp 305		Glr	Glu	Суз	Th:		e Glu	Met	Met	Val 315		, Asn	·Val	. Asç	Val
10	Ğln	Pro	Ser	· Ala	Glu 325	Met	Glu	Gly	r Leu	Arg 330	Ala	11e	Asn	Pro	Asn 335	
	Ala	Thr	Gly	Glu 340	Arg	Arg	Val	Leu	Thx 345	Gly	.Ala	Pro	Cys	Lys 350		·G1y
15	Thr	Met	Trp 355		Phe	qsA	Ala	Ala		Gly	Glu	Phe	Leu 365	Trp	Ala	- Arg
20	qaA	Thr 370		Tyr	Thr	Asn	Met 375	Ile	Ala	Ser	Ile	Asp 380	Glu	Thr	Gly	Leu
	Val 385	Thr	Val	Asn	Glu	Asp 390	Ala	Val	Leu	Lys	Glu 395	Геп	Asp	Va1	Glu	Ту г 400
25	Ąsp	Val	Cys	Pro	Thr 405	Phe	Leu	Gly	Gly	Arg 410	Asp	Trp	Ser	Ser	Ala 415	Ala
30	Leu	Asn	Pro	Asp 420	Thr	GľУ	Ile	Tyr	Phe 425	Leu	Pro	Leu	Asn	Asn 430	Ala	Суз
3 0	Tyr	Asp	Ile 435	Met	Ala	Val	Asp	Gln 440	Glu	Phe	Ser	Ala	Leu 445	gek	Val	Тут
35	Asn	Thr 450	Ser	Ala	Thx	Ala	Lys 455	Leu	Ala	Pro	Gly	Phe 460	Glu	Asn	Met	Gly

- 18 -

	Arg 465	Ile	Asp	Ala	Ile	Asp 470	Ile	Ser	Thr	G1y	Arg 475	Thr	Leu ·	Trp	Ser	Ala 480
5	Glu	Arg	Pro	Ala	Ala 485	Asn	TYĽ	Ser	Pro	Val 490	Leu	Ser	Thr	Ala	Gly 495	Gly
	Val	Val	Phe	Asn 500	Gly	Gly	Thr	ĄsĄ	Arg 505	Tyr	Phe	Arg	Ala	Leu 510	Ser	Gln
10	GГл	Thr	Gly 515	Glu	Thr	Leu	Trp	Gln 520	Ala	Arg	Leu	Ala	Thr 525	Val	Alà	Thr
15	Gly	Gln 530	Ala	Ile	Ser-	Tyr	G1u 535	·Fen.	qeA	Gly	Val	Gl n 540	TYY	île	Ala	Ile
	Gly 545	Ala	Gly	Gly	Leu	Thr 550	Tyr		Thr	Gl n	Leu 555	Asn	Ala	Pro	Leu	Ala 560
20	Glu	Ala	Ile	Asp	Ser 565	Thr	Ser	Val	Gly	Asn 570	Ala	Ile	Tyr	Val	Phe 575	Ala

Leu Pro Gln

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.