### Lecture 4: Model Free Control <sup>2</sup>

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

<sup>&</sup>lt;sup>2</sup>Structure closely follows much of David Silver's Lecture 5. For additional reading please see SB Sections 5.2-5.4, 6.4, 6.5, 6.7

#### Table of Contents

- Generalized Policy Iteration
- 2 Importance of Exploration
- Monte Carlo Control
- Temporal Difference Methods for Control
- Maximization Bias

#### Class Structure

- Last time: Policy evaluation with no knowledge of how the world works (MDP model not given)
- This time: Control (making decisions) without a model of how the world works
- Next time: Value function approximation and Deep Q-learning

#### **Evaluation to Control**

- Last time: how good is a specific policy?
  - Given no access to the decision process model parameters
  - Instead have to estimate from data / experience
- Today: how can we learn a good policy?

### Recall: Reinforcement Learning Involves

- Optimization
- Delayed consequences
- Exploration
- Generalization

### Today: Learning to Control Involves

- Optimization: Goal is to identify a policy with high expected rewards (similar to Lecture 2 on computing an optimal policy given decision process models)
- Delayed consequences: May take many time steps to evaluate whether an earlier decision was good or not
- Exploration: Necessary to try different actions to learn what actions can lead to high rewards

### Today: Model-free Control

- Generalized policy improvement
- Importance of exploration
- Monte Carlo control
- Model-free control with temporal difference (SARSA, Q-learning)
- Maximization bias

### Model-free Control Examples

- Many applications can be modeled as a MDP: Backgammon, Go, Robot locomation, Helicopter flight, Robocup soccer, Autonomous driving, Customer ad selection, Invasive species management, Patient treatment
- For many of these and other problems either:
  - MDP model is unknown but can be sampled
  - MDP model is known but it is computationally infeasible to use directly, except through sampling

## On and Off-Policy Learning

- On-policy learning
  - Direct experience
  - Learn to estimate and evaluate a policy from experience obtained from following that policy
- Off-policy learning
  - Learn to estimate and evaluate a policy using experience gathered from following a different policy

#### Table of Contents

- Generalized Policy Iteration
- 2 Importance of Exploration
- Monte Carlo Control
- 4 Temporal Difference Methods for Control
- Maximization Bias

### Recall Policy Iteration

- Initialize policy  $\pi$
- Repeat:
  - Policy evaluation: compute  $V^{\pi}$
  - Policy improvement: update  $\pi$

$$\pi'(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi}(s') = \arg\max_{a} Q^{\pi}(s, a)$$
(1)

- Now want to do the above two steps without access to the true dynamics and reward models
- Last lecture introduced methods for model-free policy evaluation

## Model-free Generalized Policy Improvement

- Given an estimate  $Q^{\pi_i}(s, a) \ \forall s, a$
- Update new policy

$$\pi_{i+1}(s) = \arg\max_{a} Q^{\pi_i}(s, a) \tag{2}$$

### Model-free Policy Iteration

- ullet Initialize policy  $\pi$
- Repeat:
  - Policy evaluation: compute  $Q^{\pi}$
  - Policy improvement: update  $\pi$  given  $Q^{\pi}$

- May need to modify policy evaluation:
  - If  $\pi$  is deterministic, can't compute Q(s,a) for any  $a \neq \pi(s)$
- How to interleave policy evaluation and improvement?
  - Policy improvement is now using an estimated Q

### Table of Contents

- Generalized Policy Iteration
- 2 Importance of Exploration
- Monte Carlo Control
- 4 Temporal Difference Methods for Control
- Maximization Bias

### Policy Evaluation with Exploration

- Want to compute a model-free estimate of  $Q^{\pi}$
- In general seems subtle
  - Need to try all (s, a) pairs but then follow  $\pi$
  - Want to ensure resulting estimate  $Q^{\pi}$  is good enough so that policy improvement is a monotonic operator
- For certain classes of policies can ensure all (s,a) pairs are tried such that asymptotically  $Q^{\pi}$  converges to the true value

### $\epsilon$ -greedy Policies

- Simple idea to balance exploration and exploitation
- Let |A| be the number of actions
- Then an  $\epsilon$ -greedy policy w.r.t. a state-action value  $Q^{\pi}(s,a)$  is  $\pi(a|s)=$

# Monotonic<sup>19</sup> $\epsilon$ -greedy Policy Improvement

#### Theorem

For any  $\epsilon$ -greedy policy  $\pi_i$ , the  $\epsilon$ -greedy policy w.r.t.  $Q^{\pi_i}$ ,  $\pi_{i+1}$  is a monotonic improvement  $V^{\pi_{i+1}} \geq V^{\pi}$ 

$$\begin{array}{lcl} Q^{\pi}(s,\,\pi_{i+1}(s)) & = & \displaystyle\sum_{a\in A} \pi_{i+1}(a|s)Q^{\pi_i}(s,\,a) \\ \\ & = & \displaystyle(\epsilon/|A|)\displaystyle\sum_{a\in A} Q^{\pi_i}(s,\,a) + (1-\epsilon)\max_{a} Q^{\pi_i}(s,\,a) \end{array}$$

• Therefore  $V^{\pi_{i+1}} \geq V^{pi}$  (from the policy improvement theorem)

<sup>&</sup>lt;sup>19</sup>The theorem assumes that  $Q^{\pi_i}$  has been computed exactly.  $\textcircled{a} \land \textcircled{b} \land \textcircled{b} \land \textcircled{b} \land \textcircled{b} \land \textcircled{c}$ 

# Monotonic<sup>21</sup> $\epsilon$ -greedy Policy Improvement

#### Theorem

For any  $\epsilon$ -greedy policy  $\pi_i$ , the  $\epsilon$ -greedy policy w.r.t.  $Q^{\pi_i}$ ,  $\pi_{i+1}$  is a monotonic improvement  $V^{\pi_{i+1}} \geq V^{\pi}$ 

$$\begin{split} Q^{\pi}(s,\pi_{i+1}(s)) &= \sum_{a \in A} \pi_{i+1}(a|s)Q^{\pi_i}(s,a) \\ &= (\epsilon/|A|) \sum_{a \in A} Q^{\pi_i}(s,a) + (1-\epsilon) \max_{a} Q^{\pi_i}(s,a) \\ &= (\epsilon/|A|) \sum_{a \in A} Q^{\pi_i}(s,a) + (1-\epsilon) \max_{a} Q^{\pi_i}(s,a) \frac{1-\epsilon}{1-\epsilon} \\ &= (\epsilon/|A|) \sum_{a} Q^{\pi_i}(s,a) + (1-\epsilon) \max_{a} Q^{\pi_i}(s,a) \sum_{a} \frac{\pi_i(a|s) - \frac{\epsilon}{|A|}}{1-\epsilon} \\ &\geq \frac{\epsilon}{|A|} \sum_{a \in A} Q^{\pi_i}(s,a) + (1-\epsilon) \sum_{a} \frac{\pi_i(a|s) - \frac{\epsilon}{|A|}}{1-\epsilon} Q^{\pi_i}(s,a) \\ &= \sum_{a} \pi_i(a|s)Q^{\pi_i}(s,a) = V^{\pi_i}(s) \end{split}$$

ullet Therefore  $V^{\pi_{i+1}} \geq V^{pi}$  (from the policy improvement theorem)

<sup>&</sup>lt;sup>21</sup>The theorem assumes that  $Q^{\pi_i}$  has been computed exactly.  $\bigcirc$ 

# Greedy in the Limit of Infinite Exploration (GLIE)

#### Definition of GLIE

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty}N_i(s,a)\to\infty$$

- Behavior policy converges to greedy policy
- A simple GLIE strategy is  $\epsilon$ -greedy where  $\epsilon$  is reduced to 0 with the following rate:  $\epsilon_i = 1/i$

### Table of Contents

- Generalized Policy Iteration
- 2 Importance of Exploration
- Monte Carlo Control
- Temporal Difference Methods for Control
- Maximization Bias

## Monte Carlo Online Control / On Policy Improvement

```
1: Initialize Q(s, a) = 0, Returns(s, a) = 0 \ \forall (s, a), Set \epsilon = 1, k = 1
 2: \pi_k = \epsilon-greedy(Q) // Create initial \epsilon-greedy policy
 3: loop
       Sample k-th episode (s_{k1}, a_{k1}, r_{k1}, s_{k2}, \dots, s_T) given \pi_k
       for t = 1, \ldots, T do
 5:
          if First visit to (s, a) in episode k then
 6:
             Append \sum_{i=t}^{T} r_{kj} to Returns(s_t, a_t)
 7:
             Q(s_t, a_t) = average(Returns(s_t, a_t))
 8:
          end if
 9:
       end for
10:
    k = k + 1, \ \epsilon = 1/k
11:
       \pi_k = \epsilon-greedy(Q^{\pi}) // Policy improvement
12:
13: end loop
```

### GLIE Monte-Carlo Control

#### Theorem

GLIE Monte-Carlo control converges to the optimal state-action value  $^a$  function Q(s,a) o q(s,a)

 $^{a}v(s)$  and q(s,a) without any additional subscripts are used to indicate the optimal state and state-action value function, respectively.

## Model-free Policy Iteration

- ullet Initialize policy  $\pi$
- Repeat:
  - Policy evaluation: compute  $Q^{\pi}$
  - Policy improvement: update  $\pi$  given  $Q^{\pi}$

• What about TD methods?

### Table of Contents

- Generalized Policy Iteration
- 2 Importance of Exploration
- Monte Carlo Control
- Temporal Difference Methods for Control
- Maximization Bias

### Model-free Policy Iteration with TD Methods

- Use temporal difference methods for policy evaluation step
- ullet Initialize policy  $\pi$
- Repeat:
  - Policy evaluation: compute  $Q^{\pi}$  using temporal difference updating with  $\epsilon$ -greedy policy
  - Policy improvement: Same as Monte carlo policy improvement, set  $\pi$  to  $\epsilon$ -greedy  $(Q^{\pi})$

# General Form of SARSA Algorithm

- 1: Set initial  $\epsilon$ -greedy policy  $\pi$ , t=0, initial state  $s_t=s_0$
- 2: Take  $a_t \sim \pi(s_t)$  // Sample action from policy
- 3: Observe  $(r_t, s_{t+1})$
- **4: loop**
- 5: Take action  $a_{t+1} \sim \pi(s_{t+1})$
- 6: Observe  $(r_{t+1}, s_{t+2})$
- 7: Update Q given  $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$ :
- 8: Perform policy improvement:
- 9: t = t + 1
- 10: end loop
  - What are the benefits to improving the policy after each step?

## Convergence Properties of SARSA

#### Theorem

Sarsa for finite-state and finite-action MDPs converges to the optimal action-value,  $Q(s, a) \rightarrow q(s, a)$ , under the following conditions:

- **1** The policy sequence  $\pi_t(a|s)$  satisfies the condition of GLIE
- ② The step-sizes  $\alpha_t$  satisfy the Robbins-Munro sequence such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

### Recall: Off Policy, Policy Evaluation

- Given data from following a behavior policy  $\pi_b$  can we estimate the value  $V^{\pi_e}$  of an alternate policy  $\pi_b$ ?
- Neat idea: can we learn about other ways to do things different than what we actually did?
- Discussed how to do this for Monte Carlo evaluation
- Used Importance Sampling
- First see how to do off policy evaluation with TD

## Importance Sampling for Off Policy TD (Policy Evaluation)

• Recall the Temporal Difference (TD) algorithm which is used to incremental model-free evaluation of a policy  $\pi_b$ . Precisely, given a state  $s_t$ , an action  $a_t$  sampled from  $\pi_b(s_t)$  and the observed reward  $r_t$  and next state  $s_{t+1}$ , TD performs the following update:

$$V^{\pi_b}(s_t) = V^{\pi_b}(s_t) + \alpha(r_t + \gamma V^{\pi_b}(s_{t+1}) - V^{\pi_b}(s_t))$$
 (3)

- Now want to use data generated from following  $\pi_b$  to estimate the value of different policy  $\pi_e$ ,  $V^{\pi_e}$
- Change TD target  $r_t + \gamma V(s_{t+1})$  to weight target by single importance sample ratio
- New update:

$$V^{\pi_e}(s_t) = V^{\pi_e}(s_t) + \alpha \left[ \frac{\pi_e(a_t|s_t)}{\pi_b(a_t|s_t)} (r_t + \gamma V^{\pi_e}(s_{t+1}) - V^{\pi_e}(s_t)) \right]$$
(4)

## Importance Sampling for Off Policy TD Cont.

Off Policy TD Update:

$$V^{\pi_e}(s_t) = V^{\pi_e}(s_t) + \alpha \left[ \frac{\pi_e(a_t|s_t)}{\pi_b(a_t|s_t)} (r_t + \gamma V^{\pi_e}(s_{t+1}) - V^{\pi_e}(s_t)) \right]$$
(5)

- Significantly lower variance than MC IS. (Why?)
- Does  $\pi_b$  need to be the same at each time step?
- What conditions on  $\pi_b$  and  $\pi_e$  are needed for off policy TD to converge to  $V^{\pi_e}$ ?

## Q-Learning: Learning the Optimal State-Action Value

- ullet Just saw how to use off policy TD to evaluate any particular policy  $\pi_e$
- Can we estimate the value of the optimal policy  $\pi^*$  without knowledge of what  $\pi^*$  is?
- Yes! Q-learning
- Does not require importance sampling
- Key idea: Maintain state-action Q estimates and use to bootstrap use the value of the best future action
- Recall Sarsa

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma Q(s_{t+1}, a_{t+1})) - Q(s_t, a_t))$$
 (6)

Q-learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma \max_{a'} Q(s_{t+1}, a')) - Q(s_t, a_t)) \quad (7)$$

## Off-Policy Control Using Q-learning

- In the prior slide assumed there was some  $\pi_b$  used to act
- $\bullet$   $\pi_b$  determines the actual rewards received
- Now consider how to improve the behavior policy (policy improvement)
- Let behavior policy  $\pi_b$  be  $\epsilon$ -greedy with respect to (w.r.t.) current estimate of the optimal q(s,a)

## Q-Learning with $\epsilon$ -greedy Exploration

- 1: Initialize  $Q(s,a), \forall s \in S, a \in A \ t = 0$ , initial state  $s_t = s_0$
- 2: Set  $\pi_b$  to be  $\epsilon$ -greedy w.r.t. Q
- **3: loop**
- 4: Take  $a_t \sim \pi_b(s_t)$  // Sample action from policy
- 5: Observe  $(r_t, s_{t+1})$
- 6: Update Q given  $(s_t, a_t, r_t, s_{t+1})$ :
- 7: Perform policy improvement: set  $\pi_b$  to be  $\epsilon$ -greedy w.r.t. Q
- 8: t = t + 1
- 9: end loop
  - What conditions are sufficient to ensure that Q-learning with  $\epsilon$ -greedy exploration converges to optimal q?
  - What conditions are sufficient to ensure that Q-learning with  $\epsilon$ -greedy exploration converges to optimal  $\pi^*$ ?

### Table of Contents

- Generalized Policy Iteration
- 2 Importance of Exploration
- Monte Carlo Control
- 4 Temporal Difference Methods for Control
- Maximization Bias

### Maximization Bias<sup>39</sup>

- Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards, ( $\mathbb{E}(r|a=a_1)=\mathbb{E}(r|a=a_2)=0$ ).
- Then  $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- Assume there are prior samples of taking action  $a_1$  and  $a_2$
- Let  $\hat{Q}(s, a_1), \hat{Q}(s, a_2)$  be the finite sample estimate of Q
- Assume using an unbiased estimator for Q: e.g.  $\hat{Q}(s, a_1) = \frac{1}{n(s, a_1)} \sum_{i=1}^{n(s, a_1)} r_i(s, a_1)$
- ullet Let  $\hat{\pi} = rg \max_a \hat{Q}(s,a)$  be the greedy policy w.r.t. the estimated  $\hat{Q}$
- Even though each estimate of the state-action values is unbiased, the estimate of  $\hat{\pi}$ 's value  $\hat{V}^{\hat{\pi}}$  can be biased:

<sup>&</sup>lt;sup>39</sup>Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance Approximation in Value Function Estimates. Management Science 2007

## Double Learning

- ullet The greedy policy w.r.t. estimated Q values can yield a maximization bias during finite-sample learning
- Avoid using max of estimates as estimate of max of true values
- Instead split samples and use to create two independent unbiased estimates of  $Q_1(s_1, a_i)$  and  $Q_2(s_1, a_i) \, \forall a$ .
  - Use one estimate to select max action:  $a^* = \arg\max_a Q_1(s_1, a)$
  - Use other estimate to estimate value of  $a^*$ :  $Q_2(s, a^*)$
  - Yields unbiased estimate:  $\mathbb{E}(Q_2(s, a^*)) = Q(s, a^*)$
- Why does this yield an unbiased estimate of the max state-action value?
- If acting online, can alternate samples used to update  $Q_1$  and  $Q_2$ , using the other to select the action chosen
- Next slides extend to full MDP case (with more than 1 state)

### Double Q-Learning

```
1: Initialize Q_1(s, a) and Q_2(s, a), \forall s \in S, a \in A \ t = 0, initial state s_t = s_0
 2: loop
       Select a_t using \epsilon-greedy \pi(s) = \arg\max_a Q_1(s_t, a) + Q_2(s_t, a)
 3:
        Observe (r_t, s_{t+1})
 4:
        if (with 0.5 probability) then
 5:
           Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha
 6:
        else
 7:
           Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha
 8.
        end if
 g.
        t = t + 1
10:
```

 Compared to Q-learning, how does this change the: memory requirements, computation requirements per step, amount of data required?

11: end loop

37 / 40

## Double Q-Learning (Figure 6.7 in Sutton and Barto 2018)



Due to the maximization bias, Q-learning spends much more time selecting suboptimal actions than double Q-learning.

Lecture 4: Model Free Control 43

#### Table of Contents

- Generalized Policy Iteration
- 2 Importance of Exploration
- Monte Carlo Control
- Temporal Difference Methods for Control
- Maximization Bias

#### Class Structure

- Last time: Policy evaluation with no knowledge of how the world works (MDP model not given)
- This time: Control (making decisions) without a model of how the world works
- Next time: Value function approximation and Deep Q-learning