Рекурсия на Prolog

Задание

Используя хвостовую рекурсию, разработать программу, позволяющую найти

- 1. n!,
- 2. п-е число Фибоначчи.

Убедиться в правильности результатов. Для одного из вариантов ВОПРОСА и каждого задания составить таблицу, отражающую конкретный порядок работы системы.

Код программы

```
include "lab16.inc"
include "lab16.inc"
domains
  n = integer
predicates
 fact(n, n)
  recursion_fact(n, n, n)
  fib(n, n)
  recursion_fib(n, n, n, n)
clauses
  recursion_fact(N, Res, Acc) :-
        N > 1, !, NewN = N - 1,
        NewAcc = Acc * N,
        recursion_fact(NewN, Res, NewAcc).
  recursion_fact(_, Res, Acc) :- Res = Acc.
  fact(N, Res) :- recursion_fact(N, Res, 1).
  recursion_fib(N, F1, F2, Res) :-
        N > 2
        !,
        NewF1 = F2,
        NewF2 = F1 + F2,
        NewN = N - 1,
        recursion_fib(NewN, NewF1, NewF2, Res).
  recursion_fib(\_, \_, B, Res) :- Res = B.
  fib(N, Res) :- recursion_fib(N, 1, 1, Res).
goal
  fact(4, Res).
   %Res=24
    %1 Solution
 %fib(4, Res).
```

%Res=3 %1 Solution

Словесное описание порядка поиска ответа на вопрос $N^{\circ}1$

тага И₅	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1	fact(4, Res)	Cpaвнение: fact(4, Res) = recursion_fact(N, Res, Acc). Унификация неуспешна (несовпадение функторов)	Прямой ход, переход к следующему предложению
2			
3	recursion_fact(4, Res, 1)	Сравнение: fact(4, Res) = fact(N, Res). Унификация успешна. Подстановка: {N=4, Res=Res}	Прямой ход, редукция резольвенты
4	4 > 1 ! NewN = 4 - 1 NewAcc = 1 * 4 recursion_fact(NewN, Res, NewAcc)	Cpaвнение: recursion_fact(4, Res, 1) = recursion_fact(N, Res, Acc). Унификация успешна. Подстановка: {N=4, Res=Res, Acc=1}	Прямой ход, редукция резольвенты
5	! NewN = 4 - 1 NewAcc = 1 * 4 recursion_fact(NewN, Res, NewAcc)	4 > 1. Правда	Прямой ход, редукция резольвенты
6	NewN = 4 - 1 NewAcc = 1 * 4 recursion_fact(NewN, Res, NewAcc)	!. Отсечение 4,5	Прямой ход, редукция резольвенты
7	NewAcc = 1 * 4 recursion_fact(3, Res, NewAcc)	NewN = 4 - 1. Подстановка: {N=4, Res=Res, Acc=1, NewN=3}	Прямой ход, редукция резольвенты
8	recursion_fact(3, Res, 4)	NewAcc = 1 * 4. Подстановка: {N=4, Res=Res, Acc=1, NewN=3, NewAcc=4}	Прямой ход, редукция резольвенты

шага №	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
9	3 > 1 ! NewN = 3 - 1 NewAcc = 4 * 3 recursion_fact(NewN, Res, NewAcc)	Cpaвнение: recursion_fact(3, Res, 4) = recursion_fact(N, Res, Acc). Унификация успешна. Подстановка: {N=3, Res=Res, Acc=4}	Прямой ход, редукция резольвенты
10	! NewN = 3 - 1 NewAcc = 4 * 3 recursion_fact(NewN, Res, NewAcc)	3 > 1. Правда.	Прямой ход, редукция резольвенты
11	NewN = 3 - 1 NewAcc = 4 * 3 recursion_fact(NewN, Res, NewAcc)	!. Отсечение 9, 10	Прямой ход, редукция резольвенты
12	NewAcc = 4 * 3 recursion_fact(2, Res, NewAcc)	NewN = 3 - 1. Подстановка: {N=3, Res=Res, Acc=4, NewN=2}	Прямой ход, редукция резольвенты
13	recursion_fact(2, Res, 12)	NewAcc = 4 * 3. Подстановка: {N=3, Res=Res, Acc=4, NewN=2, NewAcc=12}	Прямой ход, редукция резольвенты
14	2 > 1 ! NewN = 2 - 1 NewAcc = 12 * 2 recursion_fact(NewN, Res, NewAcc)	Cpaвнение: recursion_fact(2, Res, 12) = recursion_fact(N, Res, Acc). Унификация успешна. Подстановка: {N=2, Res=Res, Acc=12}	Прямой ход, редукция резольвенты
15	! NewN = 2 - 1 NewAcc = 12 * 2 recursion_fact(NewN, Res, NewAcc)	2 > 1. Правда	Прямой ход, редукция резольвенты
16	NewN = 2 - 1 NewAcc = 12 * 2 recursion_fact(NewN, Res, NewAcc)	!. Отсечение 14 , 15	Прямой ход, редукция резольвенты

№ Мага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
17	NewAcc = 12 * 2 recursion_fact(1, Res, NewAcc)	NewN = 2 - 1. Подстановка: {N=2, Res=Res, Acc=12, NewN=1}	
18	recursion_fact(1, Res, 24)	NewAcc = 12 * 2. Подстановка: {N=2, Res=Res, Acc=12, NewN=1, NewAcc=24}	Прямой ход, редукция резольвенты
19	1 > 1 ! NewN = 1 - 1 NewAcc = 42 * 1	Cpaвнение: recursion_fact(1, Res, 24) = recursion_fact(N, Res, Acc). Унификация успешна. Подстановка: {N=1, Res=Res, Acc=24}	Прямой ход, редукция резольвенты
20	! NewN = 1 - 1 NewAcc = 42 * 1	1 > 1. Ложь	Откат относительно шага 18
21	Res = 24	Cpaвнение: recursion_fact(1, Res, 24) = recursion_fact(_, Res, Acc). Унификация успешна. Подстановка: {Res=Res, Acc=24}	Прямой ход, редукция резольвенты
22		Res = 24. Подстановка: {Res=24, Acc=24}	Вывод: Res=24 Резольвента пуста, завершение работы

Словесное описание порядка поиска ответа на вопрос $N^{\circ}2$

шага	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
1	fib(4, Res)	Сравнение: fib(4, Res) = recursion_fact(N, Res, Acc). Унификация неуспешна (несовпадение функторов)	Прямой ход, переход к следующему предложению
2-5			
6	recursion_fib(4, 1, 1, Res)	Сравнение: fib(4, Res) = fib(N, Res). Унификация успешна. Подстановка: {N=2, Res=Res}.	Прямой ход, редукция резольвенты
7		Сравнение: recursion_fib(2, 1, 1, Res) = recursion_fact(N, Res, Acc)	Унификация неуспешна (несовпадение функторов)

шага №	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
8-9			
10	4 > 2 ! NewF1 = 1 NewF2 = 1 + 1 NewN = 4 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	Сравнение: recursion_fib(2, 1, 1, Res) = recursion_fib(N, F1, F2, Res). Унификация успешна. Подстановка: {N=2, Res=Res, F1=1, F2=1}.	Прямой ход, редукция резольвенты
11	! NewF1 = 1 NewF2 = 1 + 1 NewN = 4 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	4 > 2. Правда	Прямой ход, редукция резольвенты
12	NewF1 = 1 NewF2 = 1 + 1 NewN = 4 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	!. Отсечение 10, 11	Прямой ход, редукция резольвенты
13	NewF2 = 1 + 1 NewN = 4 - 1 recursion_fib(NewN, 1, NewF2, Res)	NewF1 = 1. Подстановка: {N=2, Res=Res, F1=1, F2=1, NewF1=1}.	Прямой ход, редукция резольвенты
14	NewN = 4 - 1 recursion_fib(NewN, 1, 2, Res)	NewF2 = 1 + 1. Подстановка: {N=2, Res=Res, F1=1, F2=1, NewF1=1, NewF2=2}.	Прямой ход, редукция резольвенты
15	recursion_fib(3, 1, 2, Res)	NewN = 4 - 1. Подстановка: {N=2, Res=Res, F1=1, F2=1, NewF1=1, NewF2=2, NewN=3}.	Прямой ход, редукция резольвенты
16		Cpaвнение: recursion_fib(3, 1, 2, Res) = recursion_fact(N, Res, Acc). Унификация неуспешна (несовпадение функторов)	Прямой ход, переход к следующему предложению
17- 18			

Nº Mara	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
19	3 > 2 ! NewF1 = 1 NewF2 = 1 + 2 NewN = 3 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	Cpaвнение: recursion_fib(3, 1, 2, Res) = recursion_fib(N, F1, F2, Res). Унификация успешна. Подстановка: {N=3, Res=Res, F1=1, F2=2}.	Прямой ход, редукция резольвенты
20	! NewF1 = 2 NewF2 = 1 + 2 NewN = 3 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	3 > 2. Правда.	Прямой ход, редукция резольвенты
21	NewF1 = 2 NewF2 = 1 + 2 NewN = 3 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	!. Отсечение 19, 20	Прямой ход, редукция резольвенты
22	NewF2 = 1 + 2 NewN = 3 - 1 recursion_fib(NewN, 2, NewF2, Res)	NewF1 = 2. Подстановка: {N=3, Res=Res, F1=1, F2=2, NewF1=2}.	Прямой ход, редукция резольвенты
23	NewN = 3 - 1 recursion_fib(NewN, 2, 3, Res)	NewF2 = 1 + 2. Подстановка: {N=3, Res=Res, F1=1, F2=2, NewF1=2, NewF2=3}.	Прямой ход, редукция резольвенты
24	recursion_fib(2, 2, 3, Res)	NewN = 3 - 1. Подстановка: {N=3, Res=Res, F1=1, F2=2, NewF1=2, NewF2=3, NewN=2.	Прямой ход, редукция резольвенты
25		Cpaвнение: recursion_fib(2, 2, 3, Res) = recursion_fact(N, Res, Acc). Унификация неуспешна (несовпадение функторов)	Прямой ход, переход к следующему предложению
26- 27			

Ма∟а	Состояние резольвенты, и вывод: дальнейшие действия (почему?)	Для каких термов запускается алгоритм унификации: T1=T2 и каков результат (и подстановка)	Дальнейшие действия: прямой ход или откат (почему и к чему приводит?)
28	2 > 2 ! NewF1 = 2 NewF2 = 2 + 3 NewN = 2 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	Cpaвнение: recursion_fib(2, 2, 3, Res) = recursion_fib(N, F1, F2, Res). Унификация успешна. Подстановка: {N=2, Res=Res, F1=2, F2=3}.	Прямой ход, редукция резольвенты
29	! NewF1 = 2 NewF2 = 2 + 3 NewN = 2 - 1 recursion_fib(NewN, NewF1, NewF2, Res)	2 > 2. Ложь	Откат относительно шага 28
30	Res = B	Cpaвнение: recursion_fib(2, 2, 3, Res) = recursion_fib(_, _, B, Res). Унификация успешна. Подстановка: {B=3, Res=Res}	Прямой ход, редукция резольвенты
31		Res = B. Подстановка: {B=3, Res=3}	Вывод: Res=3. Резольвента пуста, завершение работы