自编码器

李娜

朱仁煜

大纲

- 1、自编码器
- 2、栈式自编码器
- 3、欠完备自编码器
- 4、稀疏自编码器
- 5、去噪自编码器
- 6、卷积/循环自编码器

可见层

- 1、受限玻尔兹曼机是由可见层和隐藏层构成的两层结构。
- 2、可见层由可见变量组成,隐藏层由隐藏变量组成。
- 3、可见层和隐藏层之间相互连接,层内之间无连接。

可见层

能量函数:
$$E(v,h,\theta) = -\sum_{i=1}^n b_i v_i - \sum_{j=1}^m c_j h_j - \sum_{i=1}^n \sum_{j=1}^m w_{ij} v_i h_j$$

联合概率分布:
$$p(\mathbf{v}, h|\theta) = \frac{1}{Z}exp\{-E(\mathbf{v}, h, \theta)\}$$

$$Z = \sum_{v,h} exp\{-E(v, h, \theta)\}$$

对数似然函数函数:

$$\begin{array}{lcl} logL(\theta|\textbf{v}) & = & log\frac{1}{Z}\sum_{h}exp\{-E(\textbf{v},h,\theta)\} \\ & = & log\sum_{h}exp\{-E(\textbf{v},h,\theta)\} - log\sum_{v,h}exp\{-E(v,h,\theta)\} \end{array}$$

对θ求导计算梯度:

$$\begin{array}{lll} \frac{\partial logL(\theta|v)}{\partial \theta} & = & \frac{\partial (log\sum_{h}exp\{-E(\textbf{v},h,\theta)\})}{\partial \theta} - \frac{\partial (log\sum_{v,h}exp\{-E(v,h,\theta)\})}{\partial \theta} \\ & = & -\frac{1}{\sum_{h}exp\{-E(\textbf{v},h,\theta)\}}\sum_{h}(exp\{-E(\textbf{v},h,\theta)\}\frac{\partial E(\textbf{v},h,\theta)}{\partial \theta}) \\ & + & \frac{1}{\sum_{v,h}exp\{-E(v,h,\theta)\}}\sum_{v,h}(exp\{-E(v,h,\theta)\}\frac{\partial E(v,h,\theta)}{\partial \theta}) \\ & = & -\sum_{h}(p(h|\textbf{v})\frac{\partial E(\textbf{v},h,\theta)}{\partial \theta}) + \sum_{v,h}(p(v,h)\frac{\partial E(v,h,\theta)}{\partial \theta}) \end{array}$$

$$\begin{array}{lll} \frac{\partial log L(\theta|v)}{\partial w_{ij}} & = & -\sum_{h}(p(h|\mathbf{v})\frac{\partial E(v,h,\theta)}{\partial w_{ij}}) + \sum_{v,h}p(v,h)(\frac{\partial E(v,h,\theta)}{\partial w_{ij}}) \\ & = & \sum_{h_{j}}(p(h_{j}|\mathbf{v})v_{i}h_{j}) - \sum_{v_{i},h_{j}}p(v_{i},h_{j})v_{i}h_{j} \\ & = & \sum_{h_{j}}(p(h_{j}|\mathbf{v})v_{i}h_{j}) - \sum_{v_{i}}(p(v_{i})\sum_{h_{j}}p(h_{j}|v_{i})v_{i}h_{j}) \\ & = & p(h_{j}=0|\mathbf{v})v_{i}\cdot 0 + p(h_{j}=1|\mathbf{v})v_{i}\cdot 1 \\ & - & (\sum_{v_{i}}p(v_{i})p(h_{j}=0|v_{i})v_{i}\cdot 0 + \sum_{v_{i}}p(v_{i})p(h_{j}=1|v_{i})v_{i}\cdot 1) \\ & = & p(h_{j}=1|\mathbf{v})v_{i} - \sum_{v_{i}}(p(v_{i})p(h_{j}=1|v_{i})v_{i}) \end{array}$$

对比散度算法(Algorithm: CD-1)主要步骤

输入:可视层向量 \mathbf{v} ,隐藏层单元个数 \mathbf{m} ,学习效率 $\boldsymbol{\varepsilon}$

输出:连接权重矩阵 \mathbf{W} 、可视层的偏置向量 \mathbf{b} 、隐藏层的偏置向量 \mathbf{c}

初始化: 连接权重矩阵 \mathbf{W} 、可视层的偏置向量 \mathbf{b} 、隐藏层的偏置向量 \mathbf{c} 为随机的较小数值;

For i = 1, 2, ..., m (对所有隐藏层神经元)

计算
$$p(h_i = 1|\mathbf{v})$$
,即 $p(h_i = 1|\mathbf{v}) = \log istic(c_i + \sum_i W_{j,i} v_j)$

从条件分布 $p(h_i = 1|\mathbf{v})$ 中抽取 $h_i \in \{0,1\}$

End For

For i = 1, 2, ..., d (对所有可视层神经元)

计算
$$p(v_i^* = 1 | \mathbf{h})$$
,即 $p(v_i^* = 1 | \mathbf{h}) = \log istic(b_i^* + \sum_j W_{i,j} h_j^*)$

从条件分布 $p(v_i^* = 1|\mathbf{h})$ 中抽取 $v_i^* \in \{0,1\}$

End For

For i = 1, 2, ..., m (对所有隐藏层神经元)

计算
$$p(h_i^* = 1 | \mathbf{v}^*)$$
,即 $p(h_i^* = 1 | \mathbf{v}^*) = \log istic(c_i + \sum_j W_{j,i} v_j^*)$

End For

更新各个参数值:

$$\mathbf{W} \leftarrow \mathbf{W} + \varepsilon \times [p(\mathbf{h} = 1 | \mathbf{v}) \mathbf{v}^{T} - p(\mathbf{h}^{*} = 1 | \mathbf{v}^{*}) \mathbf{v}^{*T}]$$

$$\mathbf{b} \leftarrow \mathbf{b} + \varepsilon \times (\mathbf{v} - \mathbf{v}^*)$$

$$\mathbf{c} \leftarrow \mathbf{c} + \varepsilon \times [p(\mathbf{h} = 1 | \mathbf{v}) - p(\mathbf{h}^* = 1 | \mathbf{v}^*)]$$

http://blog.csdn.net/zhihua oba

$$P(h|v) = \frac{P(h,v)}{P(v)}$$

$$= \frac{1}{P(v)} \frac{1}{Z} exp\{\sum_{i=1}^{n} b_{i}v_{i} + \sum_{j=1}^{m} c_{j}h_{j} + \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}v_{i}h_{j}\}$$

$$= \frac{1}{Z'} exp\{\sum_{j=1}^{m} c_{j}h_{j} + \sum_{i=1}^{n} \sum_{j=1}^{m} w_{ij}v_{i}h_{j}\}$$

$$= \frac{1}{Z'} \prod_{j=1}^{n_{h}} exp\{c_{j}h_{j} + w_{ij}v_{i}h_{j}\}$$

$$\frac{1}{Z'} = \frac{1}{P(v)} \frac{1}{Z} exp\{\sum_{i=1}^{n} b_{i}v_{i}\}$$

$$P(h_j = 1|v) = rac{P(h_j = 1|v)}{P(h_j = 0|v) + P(h_j = 1|v)} \ = rac{exp\{c_j + w_{ij}v_i\}}{1 + exp\{c_j + w_{ij}v_i\}} \ = rac{1}{1 + exp\{-(c_j + w_{ij}v_i)\}} \ = \sigma(c_j + w_{ij}v_i)$$

$$P(v_i = 1|h) = \sigma(b_i + w_{ij}h_i)$$

Autoencoder

自编码器是一种无监督学习的数据维度压缩和特征表达方法。

编码:h = f(x)将输入压缩为潜在空间表示解码:r = g(h) 重构来自隐空间表示的输入损失函数:L(x, g(f(x)))

Autoencoder和Feedforward NN对比

- 1、Autoencoder是Feedforward NN的一种,最开始主要用于数据的降维或者特征的抽取,现在也被用于生成模型中。
- 2、Feedforward主要关注的是输出层和错误率,而 Autoencoder主要关注隐层

Autoencoder和RBM对比

- 1、都起了降维的作用
- 2、都可以用来对神经网络进行预训练
- 3、训练都是无监督的

Autoencoder和RBM对比

区别:

- 1、自编码器希望通过非线性变换找到输入数据的特征表示,它是某种确定论性的模型;而RBM则是围绕概率分布进行的,它通过输入数据的概率分布来提取中间层表示,它是某种概率论性的模型。
- 2、AE使用的是BP算法进行优化,而RBM是基于概率模型,使用CD算法进行优化。

Autoencoder:

$$h_i = s(W_i x + b_i)$$

$$r_j = s(W_j^T h + b_{dj})$$

Differences: deterministic mapping h is a function of x.

RBM:

$$P(h_i=1 \mid v) = s(W_i v+c_i)$$

$$P(v_j=1 \mid h) = s(W_j^T h+b_j)$$

stochastic mapping h is a random variable

自编码器和PCA对比

- 1、若Encoder和Decoder是线性的,将目标函数L换成均方误差,Autoencoder和PCA拥有相同的生成子空间。
- 2、Autoencoeder其实是增强的PCA, Autoencder具有非线性变换单元, 因此学习到的Code对Input的表达能力更强。

 Linear vs nonlinear dimensionality reduction

Autoencoder存在的问题:

- 1、因为Input和Output是完全相同的,所以其压缩能力有限,仅适用于与训练样本相似的样本。
- 2、Autoencoder的Encoder和Decoder不能被赋予过大的容量,其能力不能太强,否则,他们可能将训练样本完全记忆,产生过拟合。

因此对隐层单元数增加限制:

→ 欠完备自编码器

PCA: $784 \rightarrow 2$ SAE: $784 \rightarrow 1000 \rightarrow 500 \rightarrow 250 \rightarrow 2$

Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.

栈式自编码的特点

- 1、增加隐层可以学到更复杂的编码,每一层可以学习到不同的信息维度。
- 2、若层数太深, encoder过于强大, 可以将学习将输入映射为任意数(然后decoder学习其逆映射)。这一编码器可以很好的重建数据, 但它并没有在这一过程中学到有用的数据表示。

Stack AE和DBN异同点

自编码器→栈式自编码器 受限玻尔兹曼机→深度信念网络

相同点:逐层训练

不同点:训练方法不同。

欠完备自编码器

当隐层单元数大于等 于输入维度时, 网络可能发生完全记忆。

欠完备自编码器

限制隐层的维度一定要比输入维度小

欠完备自编码器特点

- 1、防止过拟合。因编码维数小于输入维数,因此可以学习数据分布最显著的特征。
- 2、若中间隐层单元数特别少,则信息量太少重构过程会比较困难。

因此提出将稀疏正则化引入其中

→ 稀疏自编码器

 $L(\boldsymbol{x}, g(f(\boldsymbol{x}))) + \Omega(\boldsymbol{h})$

- 1、未限制网络接收数据的能力,即不限制隐层的单元数。
- 2、稀疏性限制: 当神经元的输出接近于1的时候认为被激活,输出接近于0的时候认为被抑制,那么使得大部分神经元被抑制的限制。

- 1 假设用a; (x) 来表示在给定输入x的情况下, 自编码网络隐层神 经元i的激活度。
- 2 神经元*j*在所有训 练集上的平均活跃度: $\hat{\rho}_{j} = \frac{1}{m} \sum_{i=1}^{m} \left[a_{j}^{(2)}(x^{(i)}) \right]$
- 3 KL散度 $\sum_{i=1}^{\frac{\sigma^2}{\rho}} \rho \log \frac{\rho}{\hat{\rho}_i} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_i}$. ρ 表示稀疏性参数

 $(- \wedge \cup \rho)$ 均值和一个以 $\hat{\rho}_i$ 为均值的两个

伯努利随机变重的和介 / (W, b) + $\beta \sum_{j=1}^{s_2} \mathrm{KL}(\rho || \hat{\rho}_j)$, $\beta \sum_{j=1}^{s_2} \mathrm{KL}(\rho || \hat{\rho}_j)$, $\beta \sum_{j=1}^{s_2} \mathrm{KL}(\rho || \hat{\rho}_j)$, $\beta \sum_{j=1}^{s_2} \mathrm{KL}(\rho || \hat{\rho}_j)$

$$J_{\text{sparse}}(W, b) = J(W, b) + \beta \sum_{j=1}^{s_2} \text{KL}(\rho || \hat{\rho}_j),$$

$$\begin{split} \frac{\partial \sum_{j=1}^{s_2} KL(\rho||\hat{\rho_j})}{\partial z_i^{(2)}} &= \frac{\partial KL(\rho||\hat{\rho_i})}{\partial z_i^{(2)}} \\ &= \frac{\partial KL(\rho||\hat{\rho_i})}{\partial \hat{\rho_i}} \cdot \frac{\partial \hat{\rho_i}}{\partial z_i^{(2)}} \\ &= \frac{\partial (\rho \log \frac{\rho}{\hat{\rho_i}} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho_i}})}{\partial \hat{\rho_i}} \cdot \frac{\partial \hat{\rho_i}}{\partial z_i^{(2)}} \\ &= (-\frac{\rho}{\hat{\rho_i}} + \frac{1-\rho}{1-\hat{\rho_i}}) \cdot f'(z_i^{(2)}) \end{split}$$

$$\delta_i^{(2)} = \left(\left(\sum_{j=1}^{s_2} W_{ji}^{(2)} \delta_j^{(3)} \right) + \beta \left(-\frac{\rho}{\hat{\rho}_i} + \frac{1-\rho}{1-\hat{\rho}_i} \right) \right) f'(z_i^{(2)}).$$

Mini-Batch的情况:

$$\hat{\rho}_j = \frac{1}{m} \sum_{i=1}^m \left[a_j^{(2)}(x^{(i)}) \right]$$

平均激活度是根据所有样本计算出来的,使用小批量时计算效率很低,因此,使用下列计算方法:

$$\tilde{\rho}_j^t = \lambda \tilde{\rho}_j^{t-1} + (1 - \lambda) \tilde{\rho}_j^t$$

 $\tilde{\rho}_{j}^{t}$ 是t时刻Min-Batch的平均激活度

- 1、稀疏自编码器一般用来学习特征,用于分类等。
- 2、允许学习容量很高,同时防止在编码器和解码器学习一个无用的恒等函数。

稀疏限制和L1/L2正则化的关系:

- 1、稀疏限制是对激活函数的结果增加限制,使得尽量多的激活函数的结果为0(如果激活函数是tanh,则为-1)
- 3、L2/L1是对参数增加限制,使得尽可能多的参数为0。

$C(\tilde{x}|x)$

- 1、高斯噪声
- 2、随机舍去

Dataset	SVM_{rbf}	SVM_{poly}	DBN-1	SAA-3	DBN-3	$SdA-3(\nu)$
basic	3.03 ± 0.15	3.69 ± 0.17	3.94 ± 0.17	3.46 ± 0.16	3.11±0.15	2.80±0.14 (10%)
rot	11.11 ± 0.28	15.42 ± 0.32	14.69 ± 0.31	$10.30 {\pm} 0.27$	$10.30{\pm}0.27$	10.29±0.27 (10%)
bg-rand	14.58 ± 0.31	16.62 ± 0.33	9.80 ± 0.26	11.28 ± 0.28	6.73 ± 0.22	$10.38\pm0.27~(40\%)$
bg- img	22.61 ± 0.37	24.01±0.37	$16.15{\pm}0.32$	23.00 ± 0.37	16.31 ± 0.32	16.68±0.33 (25%)
rot-bg-img	55.18 ± 0.44	56.41±0.43	52.21 ± 0.44	51.93±0.44	47.39 ± 0.44	44.49±0.44 (25%)
rect	2.15 ± 0.13	$2.15{\pm}0.13$	4.71 ± 0.19	2.41 ± 0.13	2.60 ± 0.14	1.99 ± 0.12 (10%)
rect-img	24.04 ± 0.37	24.05±0.37	23.69 ± 0.37	24.05 ± 0.37	22.50 ± 0.37	21.59±0.36 (25%)
convex	19.13 ± 0.34	19.82 ± 0.35	19.92 ± 0.35	18.41 ± 0.34	18.63 ± 0.34	19.06±0.34 (10%)

SVM_rbf是使用高斯核的SVM SVM_poly是使用多项式的SVM DBN-1是使用1层隐藏单元的深度信念网络 DBN-3是使用3层隐藏单元的深度信念网络 SAA-3是使用栈式自编码器初始化之后的3层深度网络 Sda-3是3层的栈式去噪自编码器

Vincent P, Larochelle H, Bengio Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008: 1096-1103.

Autoencoder

Denoising-Autoencoder

DAE学习到的特征更具代表性

- 1、允许学习容量很高,同时防止在编码器和解码器学习一个无用的恒等函数。
- 2、经过了加入噪声并进行降噪的训练过程,能够强迫网络学习到更加鲁棒的不变性特征,获得输入的更有效的表达。

去噪自编码器和Droupout对比

- 1、若添加噪声种类为随机舍去,则去噪自编码器相当于对输入去掉一部分内容,而Droupout是去掉隐层的一部分单元。
- 2、Dropout在分层预训练权值的过程中是不参与的,只是后面的微调部分会加入;而去噪自编码器是在每层预训练的过程中作为输入层被引入,在进行微调时不参与

卷积自编码器

循环自编码器

Figure 1: Recurrent auto-encoder model. Both the encoder and decoder are made up of multilayered RNN. Arrows indicate the direction of information flow.