Eliminación de Gauss con sustitución regresiva

Para resolver el sistema lineal de $n \times n$

$$E_1: a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = a_{1,n+1}$$

$$E_2: a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = a_{2,n+1}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$E_n: a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = a_{n,n+1}$$

ENTRADA número de incógnitas y ecuaciones n; matriz ampliada $A=(a_{ij})$ donde $1\leq i\leq n$ y $1\leq j\leq n+1$.

SALIDA solución x_1, x_2, \ldots, x_n o mensaje de que el sistema lineal no tiene solución única.

Eliminación de Gauss con sustitución regresiva

- **Paso 1** Para i = 1, ..., n-1 haga pasos 2-4 (Proceso de eliminación).
 - Paso 2 Sea p el entero más pequeño con $i \le p \le n$ y $a_{pi} \ne 0$. Si no puede encontrarse un entero p entonces SALIDA ('No existe solución única'); PARAR.
 - **Paso 3** Si $p \neq i$ entonces realice $(E_p) \leftrightarrow (E_i)$.
 - **Paso 4** Para $j = i + 1, \dots, n$ haga pasos 5 y 6.
 - **Paso 5** Tome $m_{ji} = \frac{a_{ji}}{a_{ii}}$. (Multiplicadores).
 - **Paso 6** Realice $(E_j m_{ji}E_i) \rightarrow (E_j)$.

Eliminación de Gauss con sustitución regresiva

- Paso 7 Si $a_{nn}=0$ entonces SALIDA ('No existe solución única'). PARAR.
- **Paso 8** Tome $x_n = \frac{a_{n,n+1}}{a_{nn}}$. (Comience la sustitución regresiva).

Paso 9 Para
$$i = n - 1, ..., 1$$
 tome $x_i = \frac{1}{a_{ii}} \left[a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij} x_j \right]$.

Paso 10 SALIDA (x_1, x_2, \ldots, x_n) . (Procedimiento terminado exitosamente). PARAR.