重庆大学 2021 年 917 考研试题参考答案

选择题

1-5 B D C B C

6-10 A B D B A

11-15 DABCB

16-20 C C B D C

21-25 A C C A C

26-30 D C B A B

综合题

31. (1)CPU 执行时间 = (指令数 * CPI) / 主频。

假定程序的指令条数为 I。则实现 P1 的执行时间为(10%*1 + 20%*2 + 50%*3 + 20%*4) * I / 1.5GHz = 1.87 * I ns。实现 P2 的执行时间为 2 * I / 1.5GHz = 1 * I ns。故实现 2 更快。

(2)实现方式 P1 的实际 CPI = 10%*1 + 20%*2 + 50%*3 + 20%*4 = 2.8。实现方式 P2 的实际 CPI = 10%*2 + 20%*2 + 50%*2 + 20%*2 = 2。

32. 指令控制信号取值

指令	RegDst	Branch	ALUSrc	MemtoReg	RegWrite	MemWrite	MemRead
LW	0	0	1	1	1	0	1
sw	×	0	1	×	0	1	0

- 33. 由题意可知, 一级 Cache 命中时间为 2ns = 1 cycle。内存访问时间为 400ns, 即 200 cycles。 二级 Cache 命中时间为 40ns, 即 20 cycles。
 - (1) 平均访问时间 AMAT = 2ns + 5% * 400ns = 22ns
 - (2) 一级 Cache 缺失分为指令 Cache 缺失和数据 Cache 缺失。故实际的 CPI = 1.2 + 5% * 200[指令 Cache 缺失代价] + 25% * 5% * 200[数据 Cache 缺失代价] = 13.7 cycles
 - (3) 增加二级 Cache 后的实际 CPI = 1.2 + 5% * 20[一级指令 Cache 峽失代价] + 25% * 5% * 20[一级数据 Cache 峽失代价] + 1.5% * 200[二级指令 Cache 峽失代价] + 25% * 1.5% * 200[二级数据 Cache 峽失代价] = 6.2 cycles
- 34. 虚页号 = 1038/1024=1, 内偏移 = 1038% 1024=14, 物理地址 = 2*1024+14=2062。

重庆大学计算机 917 考研

- (1) 由数据结构最大需求量和已分配资源数目可得 Need 矩阵。Avaiable = [1520],使用安全性算法可得安全序列 P1、P3、P2、P4、P5。故当前状态安全。
- (2) Request₂=[1 1 0 0],使用银行家算法,先尝试分配,再执行安全性算法,存在安全 序列 P1、P3、P4、P2、P5,故分配资源给 P2。

36. 使用不同算法的执行过程如下。

(1) FIFO 算法。

Ť	1 2 3 4 1 2 5 1							Γ;	2	2	3 4			
页1	1	1	1	4	4	4	5	5	5	5	5	5		
页2		2	2	2	1	1	1	1	1	3	3	3		
页 3			3	3	3	2	2	2	2	2	4	4		
命中	×	×	×	×	×	×	×	1	/	×	×	1		

缺页中断次数 = 9

(2) LRU 算法。

	1	2	3	4	1	2	5	1	2	3	4	5
页1	1	1	1	4	4	4	5	5	5	3	3	3
页 2		2	2	2	1	1	1	1	1	1	4	4
页 3			3	3	3	2	2	2	2	2	2	5
命中	×	×	×	×	×	×	×	.√	1	×	×	×

缺页中断次数 = 10

(3) OPT 算法。

	1	2	3	4	1	2	5	1	2	3	4	5
页1	1	1	1	1	1	1	1	1	1	3	3	3
页2		2	2	2	2	2	2	2	2	2	4	4
页3			3	4	4	4	5	5	5	5	5	5
命中	×	×	×	×	1	1	X	1	1	×	×	1

37. 代码:

template <class E>

int smallcount(BinNode<E>* root, E k){

if(root==nullptr) return 0;

if(root->element() == k) return smallcount(root->left(), k) + 1;

else if(root->element() < k) return smallcount(root->right(), k) + 1 + smallcount(root->left(),

k);

}

else (root->element() > k) return smallcount(root->left(), k);

38. 执行过程如下:

V_2	V_3	V_4	<i>V</i> ₅	V ₆
10	∞	20	∞	2
$V_1 -> V_2$		V1->V4		$V_1 -> V_6$
10	· · ·	12	- 5	

重庆大学计算机 917 考研

$V_1 -> V_2$		$V_1 -> V_6 -> V_4$	V ₁ ->V ₆ ->V ₅	
10	20	12		
$V_1 -> V_2$	$V_1 -> V_6 -> V_5 -> V_3$	$V_1 -> V_6 -> V_4$		
	13	12		
	$V_1 -> V_2 -> V_3$	$V_1 -> V_6 -> V_4$		
	13			
	$V_1 -> V_2 -> V_3$			

- 39. 此题比较常见,略。
- 40. (1)序号字段(SEQ)的值是本报文段所发送的数据的第一个字节的序号。确认号(ACK)字段的值是期望收到对方下一个报文段的第一个数据字节的序号。接收窗口(WIN)是接收方根据目前接收缓存大小所许诺的最新窗口值,反映接收方的容量。
 - (2)根据 SEQ、ACK 和 DATA 字段之间的关系可得:

$$DATA1 = 100,$$

$$SEQ2 = 1100$$
,

$$SEQ3 = 900$$
,

$$SEQ4 = 900$$
, $ACK4 = 1300$,

DATA5 =
$$300$$
, SEQ5 = 1300 , ACK5 = 1000 .