THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1510 Calculus for Engineers (2020-2021) Solution to Supplementary Exercise 2

Set Notations

- 1. Describe the elements in the following sets.
 - (a) $\{2,4\}$;

Ans: The set only consists of two elements 2 and 4.

(b) (2,4);

Ans: The set of all real numbers x such that 2 < x < 4.

(c) [2,4].

Ans: The set of all real numbers x such that $2 \le x \le 4$.

- 2. Describe the elements in the following sets.
 - (a) $\mathbb{R}\setminus[2,4]$;

Ans: The set of all real numbers x such that x < 2 or x > 4.

(b) $\mathbb{R} \setminus \{2, 4\};$

Ans: The set of all real numbers x except 2 and 4.

(c) $(-\infty, 2) \cup (4, \infty)$;

Ans: The set of all real numbers x such that x < 2 or x > 4.

(d) $\mathbb{Z}^+ \cap (5, \infty)$;

Ans: The set of all positive integers n such that $n > 5 = \{6, 7, 8, \ldots\}$.

(e) $\mathbb{Z}^+ \cap [5, \infty)$.

Ans: The set of all positive integers n such that $n \ge 5 = \{5, 6, 7, \ldots\}$.

Remark: Here we use \mathbb{Z} to denote the set of all integers and \mathbb{Z}^+ to denote the set of all positive integers.

- 3. Describe the elements in the following sets.
 - (a) $\{x \in \mathbb{R} : x \ge 3\};$

Ans: The set of all real numbers x such that $x \geq 3 = [3, \infty)$.

(b) $\{n \in \mathbb{Z}^+ : n \ge 3\};$

Ans: The set of all positive integers n such that $n \ge 3 = \{3, 4, 5, \ldots\}$.

(c) $\{m \in \mathbb{Z} : -5 < m < 5\};$

Ans: The set of all integers m such that $-5 < m < 5 = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$.

(d) $\{2m-1: m \in \mathbb{Z}^+\};$

Ans: The set of all positive odd integers = $\{1, 3, 5, \ldots\}$.

(e) $\{3n : n \in \mathbb{Z}^+\}.$

Ans: The set of all positive integers which are divisible by $3 = \{3, 6, 9, \ldots\}$.

- 4. Using set notations to describe the following sets.
 - (a) the set of all real numbers except -1 and 1;

Ans: $\mathbb{R}\setminus\{-1,1\}$ or $(-\infty,-1)\cup(-1,1)\cup(1,\infty)$.

(b) the set of all positive real numbers x such that x < 1 or x > 6;

Ans: $\{x \in \mathbb{R}^+ : x < 1 \text{ or } x > 6\} \text{ or } (0,1) \cup (6,\infty).$

(c) the set of all positive even integers;

Ans: $\{2n : n \in \mathbb{Z}^+\}$ or $\{2, 4, 6, \ldots\}$.

(d) the set of all integers which are divisible by 5.

Ans: $\{5m : m \in \mathbb{Z}\}\$ or $\{\ldots, -10, -5, 0, 5, 10, \ldots\}.$

(Remark: The way of describing a set is not unique.)

Functions

- 5. Describe the domain and range of each of the following functions.
 - (a) $f(x) = \sqrt{x-1}$;

Ans: Domain = $[1, \infty)$; Range = $[0, \infty)$.

(b) $f(x) = \frac{1}{x^2}$;

Ans: Domain = $(-\infty, 0) \cup (0, \infty) = \mathbb{R} \setminus \{0\}$; Range = $(0, \infty)$.

(c) $g(x) = \sin x$;

Ans: Domain = $(-\infty, \infty) = \mathbb{R}$; Range = [-1, 1].

(d) $g(x) = 2 + 3\cos x^2$;

Ans: Domain = $(-\infty, \infty) = \mathbb{R}$; Range = [-1, 5].

(e) $h(x) = \log_2 x$;

Ans: Domain = $(0, \infty)$; Range = $(-\infty, \infty) = \mathbb{R}$.

(f) $h(x) = 3^x$.

Ans: Domain = $(-\infty, \infty) = \mathbb{R}$; Range = $(0, \infty)$.

- 6. Describe the domain of each of the following functions.
 - (a) $f(x) = \frac{1}{x^2 4x 12}$;

Ans: Domain = $\mathbb{R}\setminus\{-2,6\}$.

(b) $f(x) = \frac{1}{\sqrt{4-x^2}};$

Ans: Domain = (-2, 2).

7. Consider the following functions:

$$f(x) = \sqrt{x}$$
 and $g(x) = x + 5$.

Find the formulas explicitly describing f+g, fg, $f\circ g$ and $g\circ f$; and state the domains of the functions. Furthermore, state the range of $f\circ g$ and $g\circ f$.

Ans:
$$(f+g)(x) = x + \sqrt{x} + 5$$
, Domain = $[0, \infty)$;
 $(fg)(x) = \sqrt{x}(x+5) = x^{3/2} + 5x^{1/2}$, Domain = $[0, \infty)$;
 $(f \circ g)(x) = f(g(x)) = \sqrt{x+5}$, Domain = $[-5, \infty)$, Range = $[0, \infty)$;
 $(g \circ f)(x) = g(f(x)) = \sqrt{x} + 5$, Domain = $[0, \infty)$, Range = $[5, \infty)$.

8. Consider the function f(x) defined by

$$f(x) = \begin{cases} x+1 & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Find the value of f(-1), f(0) and f(1).

Ans:
$$f(-1) = 0$$
, $f(0) = 1$ and $f(1) = 2$.

9. Consider the function f(x) defined by

$$f(x) = \begin{cases} \sqrt{x} & \text{if } x \ge 4, \\ \frac{1}{x-4} & \text{if } x < 4. \end{cases}$$

Find the value of f(0), f(4) and f(9).

Ans:
$$f(0) = -\frac{1}{4}$$
, $f(4) = 2$ and $f(9) = 3$.

10. Fill in the blanks.

Ans:

(a) Consider the function f(x) = |x|. The function can be described explicitly by

$$f(x) = \begin{cases} \underline{\qquad x \qquad} & \text{if } x \ge 0, \\ \underline{\qquad -x \qquad} & \text{if } x < 0. \end{cases}$$

(b) Consider the function $f(x) = |x^2 - 9|$. The function can be described explicitly by

$$f(x) = \begin{cases} \frac{x^2 - 9}{-1} & \text{if } x \ge 3, \\ \frac{9 - x^2}{-1} & \text{if } -3 < x < 3, \\ \frac{x^2 - 9}{-1} & \text{if } x \le -3 \end{cases}$$

Graphs of Functions

- 11. Sketch the graph of $y = f(x) = a^x$ if
 - (a) a > 1;
 - (b) a = 1;
 - (c) 0 < a < 1.

Ans:

- 12. Let $f(x) = e^x$. Sketch the graphs of the following functions.
 - (a) y = 3f(x);
 - (b) y = -3f(x);
 - (c) y = f(x+3);
 - (d) y = f(x 3);
 - (e) y = f(x) + 3;
 - (f) y = f(x) 3;
 - (g) y = f(3x).

(Remark: What is the relation between each of the graph and the graph of f(x)?) **Ans:**

Summation Notation

13. Write down the expansion of the following expressions.

(e.g.)
$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2;$$

(a)
$$\sum_{i=1}^{4} (2i+3)^2$$
;
Ans: $5^2 + 7^2 + 9^2 + 11^2$.

Ans:
$$5^2 + 7^2 + 9^2 + 11^2$$

(b)
$$\sum_{i=2}^{5} (i^2 + 3);$$

Ans:
$$7 + 12 + 19 + 28$$
.

(c)
$$\sum_{r=0}^{5} 2^r$$
;

Ans:
$$1 + 2 + 4 + 8 + 16 + 32$$
.

(d)
$$\sum_{r=0}^{7} \left(-\frac{1}{2}\right)^r.$$

Ans:
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32} + \frac{1}{64} - \frac{1}{128}$$
.

14. Write down the expansion of the following expressions.

(e.g.)
$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots;$$

(a)
$$\sum_{i=5}^{n} \left(\frac{1}{3}\right)^{i};$$

Ans:
$$\sum_{i=5}^{n} \left(\frac{1}{3}\right)^{i} = \frac{1}{3^{5}} + \frac{1}{3^{6}} + \frac{1}{3^{7}} + \dots + \frac{1}{3^{n}};$$

(b)
$$\sum_{r=0}^{4} \frac{x^r}{r!}$$
;

Ans:
$$\sum_{r=0}^{4} \frac{x^r}{r!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$
.

(c)
$$\sum_{r=0}^{\infty} (-1)^r \frac{x^{2r+1}}{(2r+1)!};$$

(Recall: If n is a positive integer, $n! = 1 \times 2 \times 3 \times \cdots \times n$ and we define 0! = 1.)

Ans:
$$\sum_{r=0}^{\infty} (-1)^r \frac{x^{2r+1}}{(2r+1)!} = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots$$

(d)
$$\sum_{r=0}^{n} (-1)^r \frac{x^{2r}}{(2r)!}$$
;

Ans:
$$\sum_{r=0}^{n} (-1)^r \frac{x^{2r}}{(2r)!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots + (-1)^n \frac{x^{2n}}{(2n)!}.$$

(e)
$$\sum_{r=1}^{3} \frac{1}{r^2} \sin rx;$$

Ans:
$$\sum_{r=1}^{3} \frac{1}{r^2} \sin rx = \sin x + \frac{1}{4} \sin 2x + \frac{1}{9} \sin 3x$$
.

(f)
$$\sum_{r=0}^{n} \frac{(-1)^r}{r!} \cos(2r+1)x$$
.

Ans:
$$\sum_{r=0}^{n} \frac{(-1)^r}{r!} \cos(2r+1)x = \cos x - \cos 3x + \frac{1}{2} \cos 5x - \frac{1}{6} \cos 7x + \dots + \frac{(-1)^n}{n!} \cos(2n+1)x.$$

Parametrized Curves

- 15. Let $(x(t), y(t)) = (\cos t, \sin t)$, for $t \in \mathbb{R}$, be a curve defined on \mathbb{R}^2 .
 - (a) Write down the equation of the curve in x and y only.
 - (b) What is the curve?

Ans:

(a) We have $x = \cos t$ and $y = \sin t$, then $x^2 = \cos^2 t$ and $y^2 = \sin^2 t$. By adding them up, we have $x^2 + y^2 = 1$.

- (b) The curve is the unit circle (i.e. radius is 1) centered at the origin. (Remark: If (x(t), y(t)) describes a moving point, then as t increases, the point is moving along the circle in counter-clockwise direction.)
- 16. Let $A = (x_1, y_1)$ and $B = (x_2, y_2)$ be two distinct points on \mathbb{R}^2 . Let $(x(t), y(t)) = t(x_2, y_2) + (1 - t)(x_1, y_1) = (x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1))$, for $t \in [0, 1]$, be a curve defined on \mathbb{R}^2 .
 - (a) Find the endpoints (x(0), y(0)) and (x(1), y(1)) of the curve.
 - (b) Write down the equation of the curve in x and y only.
 - (c) What is the curve?

Ans:

- (a) $(x(0), y(0)) = (x_1, y_1)$ which is the point A and $(x(1), y(1)) = (x_2, y_2)$ which is the point B.
- (b) We have $x = x_1 + t(x_2 x_1)$ and $y_1 + t(y_2 y_1)$. Since A and B are two distinct points, we have either $x_1 \neq x_2$ or $y_1 \neq y_2$:
 - If $x_1 = x_2$, (then $y_1 \neq y_2$), then we have $x = x_1$ which is a vertical line.
 - If $y_1 = y_2$, (then $x_1 \neq x_2$), then we have $y = y_1$ which is a horizontal line.
 - If $x_1 \neq x_2$ and $y_1 \neq y_2$, then we have $\frac{x x_1}{x_2 x_1} = t$ and $\frac{y y_1}{y_2 y_1} = t$. By eliminating t, we have $\frac{x x_1}{x_2 x_1} = \frac{y y_1}{y_2 y_1}$, i.e. $\frac{y y_1}{x x_1} = \frac{y_2 y_1}{x_2 x_1}$.
- (c) The curve is the line segment joining points A and B. (Remark: If (x(t), y(t)) describes a moving point, then as t increases, the point is moving along the line segment starting at A and ending at B.)
- 17. Let $(x(t), y(t)) = (3\cos t 2, 3\sin t + 1)$, for $t \in \mathbb{R}$, be a curve defined on \mathbb{R}^2 .
 - (a) Write down the equation of the curve in x and y only.
 - (b) What is the curve?

Ans:

- (a) We have $x + 2 = 3\cos t$ and $y 1 = 3\sin t$, then $(x + 2)^2 = 9\cos^2 t$ and $(y 1)^2 = 9\sin^2 t$. By adding them up, we have $(x + 2)^2 + (y 1)^2 = 9$.
- (b) The curve is the circle centered at (-2,1) with radius 3. (Remark: If (x(t), y(t)) describes a moving point, then as t increases, the point is moving along the circle in counter-clockwise direction.)
- 18. Let $(x(t), y(t)) = (t^2, t^3)$, for $t \in \mathbb{R}$, be a curve defined on \mathbb{R}^2 . Write down the equation of the curve in x and y only.

Ans: We have $x = t^2$ and $y = t^3$, then $x^3 = t^6$ and $y^2 = t^6$. By eliminating t, we have $x^3 = y^2$.

19. Let $(x(t), y(t)) = (a \cos t, b \sin t)$, for $t \in \mathbb{R}$, a, b > 0, be a curve defined on \mathbb{R}^2 . Write down the equation of the curve in x and y only.

Ans: We have $(x/a)^2 = \cos^2 t$ and $(y/b)^2 = \sin^2 t$, then by eliminating t, we have $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

(Remark: The curve is the ellipse which passes through $(\pm a, 0)$ and $(0, \pm b)$.)

Sequences

20. A sequence $\{a_n\}$ is defined recursively by the following equations:

$$\begin{cases} a_1 = 2 \\ a_{n+1} = a_n^2 + 1 \text{ for } n \ge 1 \end{cases}$$

Find the first 4 terms of the sequence.

Ans: We have

$$a_1 = 2$$

 $a_2 = a_1^2 + 1 = 2^2 + 1 = 5$
 $a_3 = a_2^2 + 1 = 5^2 + 1 = 26$
 $a_4 = a_3^2 + 1 = 26^2 + 1 = 677$

21. A sequence $\{a_n\}$ is defined recursively by the following equations:

$$\begin{cases} a_1 = 1 \text{ and } a_2 = 2\\ a_n = 2a_{n-1} + a_{n-2} \text{ for } n \ge 3 \end{cases}$$

Find a_4 .

Ans: We have

$$a_1 = 1$$

 $a_2 = 2$
 $a_3 = 2a_2 + a_1 = 2 \times 2 + 1 = 5$
 $a_4 = 2a_3 + a_2 = 2 \times 5 + 2 = 12$

22. Let $\{a_n\}$ be a sequence defined by $a_n = \frac{2n+1}{n+3}$ for any positive integer n.

Complete the following table.

n	10	100	1000	10000
a_n				

By observation, when n is getting bigger and bigger, what value does a_n get closer and closer to? Hence, guess the value of $\lim_{n\to\infty} a_n$.

Ans:

n	10	100	1000	10000
a_n	1.6154	1.9515	1.9950	1.9995

By observation, when n is getting bigger and bigger, a_n gets closer and closer to 2. Hence, we guess $\lim_{n\to\infty} a_n = 2$.

(Remark: This table only gives an idea why $\lim_{n\to\infty} a_n = 2$, but it is not a formal proof.)

23. For each of the following sequences, find $\lim_{n\to\infty} a_n$, if it exists.

(a)
$$a_n = \left(\frac{1}{3}\right)^n$$
;

Ans: $\lim_{n\to\infty} a_n = 0$.

(b)
$$a_n = (-1)^n$$
;

Ans: The limit does not exist (it is an oscillating sequence).

(c)
$$a_n = 3^n$$
;

Ans: The limit does not exist (it diverges to infinity).

(d)
$$a_n = \frac{n^2 - n + 3}{3n^2 + 2n}$$
;

Ans:
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 - n + 3}{3n^2 + 2n} = \lim_{n \to \infty} \frac{1 - \frac{1}{n} + \frac{3}{n^2}}{3 + \frac{2}{n}} = \frac{1 - 0 + 0}{3 + 0} = \frac{1}{3}.$$

(e)
$$a_n = \frac{6n+3}{2n^2+9n-5}$$
;

Ans:
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{6n+3}{2n^2+9n-5} = \lim_{n \to \infty} \frac{\frac{6}{n} + \frac{3}{n^2}}{2 + \frac{9}{2} - \frac{5}{2}} = \frac{0+0}{2+0-0} = 0.$$

(f)
$$a_n = \frac{n^2 + n}{n + 7}$$
;

Ans:
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 + n}{n + 7} = \lim_{n \to \infty} \frac{n + 1}{1 + \frac{7}{n}}$$

When n goes to infinity, the denominator $1 + \frac{7}{n}$ goes to 1 while the numerator n+1 goes to infinity, so the limit does not exist (it diverges to infinity).

(g)
$$a_n = \frac{\sqrt{4n^2 + 3}}{2n + 7}$$
;

Ans:
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\sqrt{4n^2 + 3}}{2n + 7} = \lim_{n \to \infty} \frac{\sqrt{4 + \frac{3}{n^2}}}{2 + \frac{7}{n}} = \frac{\sqrt{4}}{2} = 1.$$

(h)
$$a_n = \cos \frac{n\pi}{2}$$
;

Ans: Note that the sequence is $0, -1, 0, 1, \ldots$ and it repeats every four terms, so the limit does not exist (it is an oscillating sequence).

(i)
$$a_n = \frac{\sin n}{n}$$
. (Hint: Use the sandwich theorem.)

Ans: Note that for any positive integer n, we have $-1 \le \sin n \le 1$ and so $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$.

Also
$$\lim_{n \to \infty} -\frac{1}{n} = \lim_{n \to \infty} \frac{1}{n} = 0.$$

By the sandwich theorem, $\lim_{n\to\infty} \frac{\sin n}{n} = 0$.

24. Prove that
$$\lim_{n\to\infty} \frac{\sin n + 100}{2n + (-1)^n} = 0.$$

Ans: Note that for any positive integer n, we have $-1 \le \sin n \le 1$ and $-1 \le (-1)^n \le 1$, so $\frac{99}{2n+1} \le \frac{\sin n + 100}{2n+(-1)^n} \le \frac{101}{2n-1}$.

Also
$$\lim_{n \to \infty} \frac{99}{2n+1} = \lim_{n \to \infty} \frac{101}{2n-1} = 0.$$

By the sandwich theorem, $\lim_{n\to\infty} \frac{\sin n + 100}{2n + (-1)^n} = 0.$

25. (Challenge) Let
$$\alpha > 0$$
. Prove that $\lim_{n \to \infty} \frac{\alpha^n}{n!} = 0$.

Ans:

• If $0 < \alpha < 1$, then we have $\lim_{n \to \infty} \alpha^n = 0$ and $\lim_{n \to \infty} \frac{1}{n!} = 0$, therefore

$$\lim_{n \to \infty} \frac{\alpha^n}{n!} = \left(\lim_{n \to \infty} \alpha^n\right) \left(\frac{1}{n!}\right) = 0 \cdot 0 = 0.$$

• If $\alpha > 1$, (We cannot repeat the above argument since $\lim_{n \to \infty} \alpha^n$ does not exist, and that is why this case is more difficult) we let K be a positive integer such that $\alpha < K$. Then, for any n > K, we have

$$\frac{\alpha^n}{n!} = \frac{\alpha}{1} \cdot \frac{\alpha}{2} \cdot \frac{\alpha}{3} \cdots \frac{\alpha}{K-1} \cdot \frac{\alpha}{K} \cdot \frac{\alpha}{K+1} \cdots \frac{\alpha}{n}$$

$$\leq \left(\frac{\alpha}{1} \cdot \frac{\alpha}{2} \cdot \frac{\alpha}{3} \cdots \frac{\alpha}{K-1}\right) \cdot \frac{\alpha}{K} \cdot \frac{\alpha}{K} \cdots \frac{\alpha}{K} \qquad (\because \frac{\alpha}{r} < \frac{\alpha}{K} \text{ for } K < r)$$

$$= M \cdot \left(\frac{\alpha}{K}\right)^{n-K+1}$$

$$(\text{Let } M = \frac{\alpha}{1} \cdot \frac{\alpha}{2} \cdot \frac{\alpha}{3} \cdots \frac{\alpha}{K-1} \text{ which is independent from } n)$$

Therefore, for any n > K, we have $0 \le \frac{\alpha^n}{n!} \le M \cdot \left(\frac{\alpha}{K}\right)^{n-K+1}$.

Also, note that
$$\frac{\alpha}{K} < 1$$
, so $\lim_{n \to \infty} \left(\frac{\alpha}{K}\right)^{n-K+1} = 0$.

Then, we have
$$\lim_{n\to\infty} 0 = \lim_{n\to\infty} M \cdot \left(\frac{\alpha}{K}\right)^{n-K+1}$$
.

By the sandwich theorem, we have $\lim_{n\to\infty} \frac{\alpha^n}{n!} = 0$.