

## SHEET 4 Time Response

[1] Referring to the system shown in figure, determine the values of  $K_1$  and  $K_2$  such that the system has a maximum overshoot in unit step response is 25% and the peak time is 2 sec.



- [2] The block diagram of a DC motor control system with tachometer feedback is shown in figure 4. Find the values of K and K<sub>t</sub> so that the following specifications are satisfied:
  - $k_v = 1$
  - Dominant characteristic equation roots corresponding to a damping ratio of approximately 0.707



$$k = 2.23$$
  
 $kt = 1.23$ 

[3] For the control system shown in the figure, determine the values of K and  $K_t$  such that the output has a maximum overshoot 4.3% and the rise time is approximately 2 sec. with the values of K and  $K_t$  obtained, find the steady state error when the input is a unit ramp function.



- [4] The roll control autopilot of a jet fighter is shown in figure 1 .the goal is to select a suitable K so that the response to a unit step command  $\Phi_d(t)$  will provide a response  $\Phi(t)$  that is a fast response and has an overshoot of less than or equal 9.5%:
  - a) Using the concept of dominant poles, find a suitable value of K that will achieve the desired transient response. Predict the transient response of the system (i.e. get  $t_r$   $t_p$  and  $t_s$ ).
  - b) Find the static error coefficients of the system. Evaluate the value of K that gives minimum steady state error for a unit ramp input.



Figure (1) Roll angle control