Functional Principal Component Analysis (FPCA) for Phonetic Research

Michele Gubian

formerly at University of Bristol, UK now at LMU Munich, Germany

Alignment of rising pitch accents in Spanish

- European Spanish
- Diphthong: /ja/
 e.g. Emiliana
- Hiatus /i.a/
 e.g. piano
- Rising pitch accent should align to syllabic structure

- Read speech
- 9 participants
- 20 Diphthongs +
 - 20 Hiatuses each

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

CURVES

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

NUMBERS

ANOVA

LR

CURVES

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

ext (st)	d/D	Cat.
5.3	0.9	D
4.6	0.7	Н
		•••

NUMBERS

ANOVA

LR

CURVES

- Read speech
- 9 participants
- 20 Diphthongs +20 Hiatuses each

ext (st)	d/D	Cat.
5.3	0.9	D
4.6	0.7	Н
	•••	

NUMBERS

ANOVA

LR

MISSION

automate curve parametrisation

- Data driven
- Few parameters
 - Interpretable

Road map

CURVES

Interpolate using a function basis

Dimensionality reduction tool

Data driven

- Few parameters
- Interpretable

NUMBERS

ANOVA

LM

Road map

CURVES

NUMBERS

Interpolate using a function basis

Dimensionality reduction tool

Data driven

- Few parameters
- Interpretable

ANOVA

LM

Interpolation with B-splines

Interpolation with B-splines

Interpolation with B-splines

Different durations

Take longest duration

Take shortest duration

Linear time normalisation

Linear time normalisation

- We must use the same time interval
- This implies linear time normalisation
- Durations have to be reintroduced at the end of the analysis

Road map

CURVES

NUMBERS

Interpolate to the same time interval

Data driven

Dimensionality reduction tool

- •
- Few parameters
 - Interpretable

ANOVA

LM

Principal Component Analysis

PCA limitations

- PCA does not use any explicit information related to the curve shapes or the B-splines shapes
- e.g. the sequence of coefficients c1, c2,.. reflects time adjacency of polynomial components, i.e. overlapping 'hills'

Discrete Cosine Transform

k0	k1	k2	
•••			

DCT limitations

- DCT does not (easily) encode time-localised information, e.g. a small hump in the same (time-normalised) position
- Typically only k0, k1 and k2 are used, which have a geometric interpretation
- Extracting several k's brings up the need of PCA
- In general, not effective to encode long signals

Introducing Functional PCA

Vectors

- Data objects and components are vectors
- From scores (numbers) we can reconstruct data objects (vectors)

- PCA computes new origin and unit vectors which best suit the data
- From PC scores we can reconstruct data objects

Dimensionality reduction

- We can use only part of the PCs
- This reduces the data dimensionality
- But introduces reconstruction errors too

Functions (curves)

- Origin, components and data objects are functions
- Origin is a flat line
- Components are
 11 B-spline curves

Functions (curves)

- Each of the 11 components is multiplied by a score
- These are summed together to obtain a data object

Functional PCA

 FPCA computes new origin and component functions which best suit the data

Functional PCA

- The sum of origin (mean) curve + PCs times their scores gives an approx reconstruction of the original curve
- Dimensions from 11 (B-splines) down to 2 (PCs)

Functional PCA

$$\max \left\{ var_n \left(\int_0^T \frac{PC1(t)}{f_n(t)} f_n(t) dt \right) \right\}$$

subject to
$$\int_0^T PC1^2(t) = 1$$

7.....

- FPCA definition uses the input curves f_n(t)
- FPCA is independent of the B-splines used to smooth f_n(t)

Functional PCs

Curve reconstruction

PC1 scores

PC2 scores

Curve parametrisation

Curve parametrisation

Formants

2D CURVES

NUMBERS

ANOVA

LM

LMER

Formants

2D CURVES

NUMBERS

ANOVA

LM

LMER

PC1 scores

PC2 scores

2D curve parametrisation

PC1 score

PC2 score

Many segments

- Narrow focus in Neapolitan Italian
- Focus on
 Subject, Verb or Prop. Phrase
 Danilo vola da Roma
 (Danilo flies from Rome)
- 8 CV syllables
 first C was excluded (too short)
 VCVCV CV CV CV CV

... 15 segments!

Linear time normalisation

Landmark registration

Using landmark registration

Using landmark registration

Inside landmark registration

Relative log rate

Using log rates

PC1 scores

PC1 scores

PC2 scores

multi-segment curve parametrisation

PC1 score

multi-segment curve parametrisation

PC2 score

