

Relations and Functions (continued)

Michael Butler
5 March 2019

Sets, relations, functions

- Powerset is the type constructor for sets of elements
- Cartesian product is the type constructor for pairs of elements
- A relation is a set of pairs
 - Domain and range of a relation
 - Relational image
 - Restriction and subtraction
- A function is a special case of a relation
 - Many-to-one: each domain element mapped to a unique range element
 - Partial function, function application
 - Function override
 - Total functions
- Relational inverse
- Relational composition
- Relation operators apply to functions with caution!

Total Functions

A total function is a special kind of partial function. To declare *f* as a total function:

$$f \in X \to Y$$

This means that f is well-defined for every element in X, i.e., $f \in X \rightarrow Y$ is shorthand for

$$f \in X \rightarrow Y \land dom(f) = X$$

Birthday Book Example

Birthday book relates people to their birthday.

Each person has one birthday.

People can share birthdays.

sets PERSON DATE

variables birthday $\in PERSON \rightarrow DATE$

initialisation birthday := {}

Modelling with Total functions

We can re-write the invariant for the birthday book to use total functions:

variables birthday, person invariants

```
person \subseteq PERSON
birthday \in person \rightarrow DATE
```

Using the total function arrow means that we don't need to explicitly specify that dom(birthday) = person.

We can use *person* as a guard instead of *dom(birthday)*:

```
Check \hat{=} any p, result where p \in person result = birthday(p) end
```

AddEntry needs to be modified

Add an entry to the directory:

```
 AddEntry \triangleq \textbf{any } p, d \textbf{ where} \\ p \in PERSON \\ p \not\in person \\ d \in DATE \\ \textbf{then} \\ birthday := birthday \cup \{p \mapsto d\} \\ person := person \cup \{p\} \\ \textbf{end}
```

Relational Inverse

Given $R \in S \leftrightarrow T$, the relational inverse of R is written

 R^{-1}

Predicate	Definition
$y\mapsto x \in R^{-1}$	$x \mapsto y \in R$

$$\textit{directory} \hspace{0.2cm} = \hspace{0.2cm} \left\{ \hspace{0.1cm} \textit{mary} \mapsto 287573, \hspace{0.1cm} \textit{mary} \mapsto 398620, \hspace{0.1cm} \textit{jim} \mapsto 398620 \hspace{0.1cm} \right\}$$

$$directory^{-1} = \{ 287573 \mapsto mary, 398620 \mapsto mary, 398620 \mapsto jim \}$$

$$directory^{-1}[\{398620\}] = \{ mary, jim \}$$

Inverse Queries

Return all the people associated with a number in the directory:

```
GetNames \hat{=} any n, result where n \in PhoneNum result = dir^{-1}[\ \{n\}\ ] end
```

Return all the people associated with a set of numbers:

```
GetMultiNames \hat{=} any ns, result where ns \subseteq PhoneNum result = dir^{-1}[ns] end
```

Function inverse

Check birthdays on a particular date:

```
Who \triangleq \mathbf{any}\ d, result\ \mathbf{where} d \in Date result = birthday^{-1}(d) end
```

Is this mathematically valid?

Function inverse

Check birthdays on a particular date:

```
Who \hat{=} any d, result where d \in Date result = birthday^{-1}(d) end
```

- Is this mathematically valid?
- ▶ No: $birthday^{-1}$ might not be a function.

Function inverse

 $birthday^{-1}$ is a relation:

$$birthday^{-1} \in Date \leftrightarrow Person$$

Check birthdays on a particular date:

```
Who \hat{=} any d, result where d \in Date result = birthday^{-1}[\{d\}] end
```

Alternative:

```
Who \hat{=} any d, result where d \in Date result = dom(birthday \triangleright \{d\}) end
```


Relational Composition

Given $Q \in S \leftrightarrow T$ and $R \in T \leftrightarrow U$, the relational composition of Q and R is written Q; R

We have that

$$Q ; R \in S \leftrightarrow U$$

Predicate	Definition
$x\mapsto z\in (Q;R)$	$\exists y \cdot x \mapsto y \in Q \land y \mapsto z \in R$

$$M = \{ a \mapsto I, b \mapsto m, c \mapsto n \}$$

 $N = \{ I \mapsto 4, n \mapsto 6, p \mapsto 8 \}$
 $M : N = ?$

Relational Composition

Given $Q \in S \leftrightarrow T$ and $R \in T \leftrightarrow U$, the relational composition of Q and R is written Q; R

We have that

$$Q; R \in S \leftrightarrow U$$

Predicate	Definition
$x\mapsto z\in (Q;R)$	$\exists y \cdot x \mapsto y \in Q \land y \mapsto z \in R$

$$M = \{ a \mapsto I, b \mapsto m, c \mapsto n \}$$

$$N = \{ I \mapsto 4, n \mapsto 6, p \mapsto 8 \}$$

$$M; N = \{ a \mapsto 4, c \mapsto 6 \}$$

Composition and Image

Given
$$Q \in S \leftrightarrow T$$
 and $R \in T \leftrightarrow U$ and $A \subseteq S$
$$(Q;R)[A] = R[Q[A]]$$

$$M = \{ a \mapsto I, b \mapsto m, c \mapsto n \}$$

$$N = \{ I \mapsto 4, n \mapsto 6, p \mapsto 8 \}$$

$$(M; N) [\{a, b\}] = N[M[\{a, b\}]] ?$$

Composition and Image

Given
$$Q \in S \leftrightarrow T$$
 and $R \in T \leftrightarrow U$ and $A \subseteq S$
$$(Q;R)[A] = R[Q[A]]$$

$$M = \{ a \mapsto I, b \mapsto m, c \mapsto n \}$$

$$N = \{ I \mapsto 4, n \mapsto 6, p \mapsto 8 \}$$

$$(M; N) [\{a, b\}] = (\{ a \mapsto 4, c \mapsto 6 \}) [\{a, b\}] = \{4\}$$

$$N[M[\{a, b\}]] = N[\{I, m\}] = \{4\}$$

Extend directory with friends

```
variables dir, friend
invariants
friend \in Person \leftrightarrow Person
dir \in Person \leftrightarrow PhoneNum
```

Return the telephone numbers of all friends of p:

```
GetFriendNumbers \hat{} any p, result where p \in Person result = (friend; dir)[\{p\}] end
```

Function Operators

All the relational operators can be used on functions (restriction, subtraction, image, composition, etc).

Be careful with some operators!

Assume that f and g are functions.

▶ Set Union: $f \cup g$ is a function provided

$$x \in dom(f) \land x \in dom(g) \implies f(x) = g(x)$$

Why?

- ▶ Inverse: f^{-1} is not always a function as we have seen.
- Composition? Is f; g also a function?

