Formula

$$\oint_{\mathcal{L}} ec{H} dec{l} = \int_{A} ec{J} dec{A}$$

 $\int_{\mathcal{L}} \vec{H} d\vec{l}$ je linijski integral vektorja \vec{H} magnetnega polja po zaprti poti $\mathcal{L}.$

Razlaga^[1]

Amperov zakon trdi, da če naredimo poljubno sklenjeno zanko \mathcal{L} v prostoru in vzamemo sum magnetnega polja \vec{B} , bo rezultat vedno μi_{vz} , ker je i_{vz} tok v zanki. Če napnemo površino po zanki in seštejemo tokove, ki sekajo površino, dobimo tok znotraj zanke i_{vz} .

Enačba je tako:

$$\oint_{\mathcal{L}}ec{B}dec{l}=\mu i_{vz}$$

kjer je $d\vec{l}$ neskončno majhen korak, ki ga naredimo na poti po sklenjeni zanki in μ je <u>magnetska permiabilnost</u> materiala ali vakuma. Vpoštevamo tudi relacijo $\vec{H} = \frac{\vec{B}}{\mu}$.

Drugi del enačbe, ki izgleda tako:

$$i_{vz}=\int_{A}ec{J}dec{A}$$

trdi, da so vsi tokovi, ki sekajo napeto površino enaki produktu gostoti električnega toka J in celotni površini \vec{A} . Povprečna gostota električnega toka je $\hat{J}=\frac{i}{P}$, kjer je P poljubna povšina.

1. <u>Ampere's circuital law</u> ↔