- Introduction
- Power series
 - Sequences of Functions
 - Uniform Convergence
 - Continuity and Uniform Convergence
 - Power Series
 - Taylor Series
 - Fourier Series
- Oifferentiation in Higher Dimensions
- 4 Integration in Higher Dimensions
- 5 Further Topics in Calculus
- 6 Summary Outlook and Review

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

We know the concepts of

functions, sequences, and series.

We are interested in series representing a function f(x) at every x:

$$f(x) = \sum_{j=0}^{\infty} a_j (x - x_0)^j$$

For this purpose we need the concept of a sequence of functions at first.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

A sequence of elements of \mathbb{R} (cf. Analysis 1):

$$f: \mathbb{N} \to \mathbb{R}, \ n \mapsto a_n =: f(n)$$

Definition (Sequences of Functions)

Let D be a set. A mapping

$$f: D \times \mathbb{N} \to \mathbb{R}, (x, n) \mapsto f_n =: f(n)$$

is called a **sequence** of functions $f_k : D \to \mathbb{R}, k \in \mathbb{N}$.

Other notations by writing the functions, e.g., are:

$$\{f_k\}_{k\in\mathbb{N}}=\{f_k\}_{k\geq 1}=\{f_1,f_2,f_3,\ldots,f_k,\ldots\}$$

The domain of definition D and the target area, here \mathbb{R} , have to be identical for all functions f_k .

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Example (Pointwise Convergence)

Consider $\{f_k\}_{k\in\mathbb{N}}, f_k: [0,2] \to \mathbb{R}$ with

$$f_k(x) = \begin{cases} n^2 x, & 0 \le x \le \frac{1}{n}, \\ 2n - n^2 x, & \frac{1}{n} \le x \le \frac{2}{n}, \\ 0, & \frac{2}{n} \le x \le 2. \end{cases}$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

This example exhibits that we may not swap the limit and the integral (another limit process) in general!

Definition (Pointwise Convergence)

Let *D* be a set. A sequence $\{f_n\}_{k \ge k_0}$ of functions

 $f_k: D \to \mathbb{R}$ is called **pointwise convergent** to a function

 $f:D\to\mathbb{R},$

if and only if

$$\lim_{k\to\infty} f_k(x) = f(x) \quad \text{for any } x \text{ in } D.$$

Equivalently,

For any $x \in D$ and $\varepsilon > 0$ there exists a $N = N(x, \varepsilon)$ s.t.:

 $|f_n(x) - f(x)| < \varepsilon$ for any x in D and all $n \ge N$.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Definition (Uniform Convergence)

Let *D* be a set. A sequence $\{f_n\}_{k \ge k_0}$ of functions

 $f_k: D \to \mathbb{R}$ is called **uniformly convergent** to a function

 $f: D \to \mathbb{R}$,

if and only if

For any $x \in D$ and $\varepsilon > 0$ there exists a $N = N(\varepsilon)$ s.t.:

 $|f_n(x) - f(x)| < \varepsilon$ for any x in D and all $n \ge N$.

Notice that N may depend only on ε but not on the point x.

Pointwise convergence always implies uniform convergence, the opposite is not true (see last example).

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Example Uniform Convergence

$$\left\{\frac{1}{2^{x+n}}\right\}_{n\in\mathbb{N}}$$

converges uniformly:

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in **Higher Dimensions**

Integration in **Higher Dimensions**

Further Topics in Calculus

Continuity and Uniform Convergence

Theorem (Uniform convergence preserves continuity)

Let $D \subseteq \mathbb{C}$ and $f_n : D \to \mathbb{C}$, $n \in \mathbb{C}$, a sequence of continuous functions, that uniformly converge to a function $f : D \to \mathbb{C}$,

then f is continuous.

The limit of a uniformly convergent sequence of continuous functions, is again continuous.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Example: Saw-tooth function

S.-J. Kimmerle

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Definition (Uniform norm or sup norm)

Let *D* be a set and $f: D \to \mathbb{C}$.

We set

$$||f||_D := \sup_{x \in D} |f(x)|.$$

 $\|\cdot\|_D$ defines a norm on D.

A function f is bounded iff $||f|| < \infty$.

When misunderstandings are excluded, we just write ||f|| instead of $||f||_D$.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Introduction

Power series

Sequences of Functions
Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

By this notation we may reformulate the uniform convergence:

 $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly on D

$$\iff \lim_{n\to\infty} ||f_n - f||_D = 0$$

Criterion for Uniform Convergence of a Series

Analysis 2

S.-J. Kimmerle

Theorem (Weierstrass Convergence Criterion)

Let $f_n: D \to \mathbb{C}, n \in \mathbb{N}$.

$$\sum_{n=0}^{\infty} \|f_n\|_D < \infty$$

then the series

$$\sum_{n=0}^{\infty} f_n$$

converges absolutely and uniformly on D to a function $F: D \to \mathbb{C}$.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Example: Convergence of a Power Series

Analysis 2

S.-J. Kimmerle

The series

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$$

converges uniformly on \mathbb{R} .

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Polynomials are among the functions that are easy to handle (e.g. for a machine).

Many other functions become manageable, when they are approximated by polynomials, i.e. as power series.

As for polynomials it is helpful to consider power series on \mathbb{C} from the start.

Definition (Power Series)

Let $\{a_j\}_{j\in\mathbb{N}}$ a sequence of complex numbers and $z_0\in\mathbb{C}$.

Then

$$f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j = a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots$$

is called a (complex) power series with the center of the series z_0 .

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Properties of Power Series I

The set of points z where the power series converges form a set $M \subseteq \mathbb{C}$.

Note that $z_0 \in M$.

By this the power series defines a function $f: M \to \mathbb{C}$.

The partial sums of power series are polynomials (multiply out!).

Power series have excellent properties of convergence.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Theorem (Radius of Convergence)

Let

$$f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j$$

be a complex power series.

Then exactly one of the following 2 cases holds:

- There exists a $\rho \in \mathbb{R}_0^+$ s.t. the series converges absolutely for all $z \in O_\rho(z_0) = \{z \in \mathbb{C} \mid |z z_0| < \rho \text{ and diverges for all } z \text{ with } |z z_0| > \rho.$
- The series converges absolutely for all $z \in \mathbb{C}$.

 $\rho \in \mathbb{R}_0^+ \cup \{+\infty\}$ is called **radius of convergence**, $O_{\rho}(z_0)$ is called **circle of convergence**.

For $|z| = \rho$ no general statement on convergence/divergence is possible.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Computing a Radius of Convergence

Assume for a power series holds

$$\overline{\lim}_{j\to\infty}\sqrt[j]{|a_j|}=b \quad \text{or} \quad \lim_{j\to\infty}\left|\frac{a_{j+1}}{a_j}\right|=b,$$

where $b \in \mathbb{R}_0^+ \cup \infty$, then:

- If b = 0, then $\rho = +\infty$.
- If $b = +\infty$, then $\rho = 0$.
- If 0 < b, then $\rho = \frac{1}{b}$.

The limes superior (or inferior) of the quotient is not helpful in general.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Example: Geometric Series

Geometric series:

$$\sum_{j=0}^{\infty} z^{n}$$

Set $a_j = 1$ for all $j \in \mathbb{N}$ (and $z_0 = 0$).

Since
$$b = \lim_{j \to \infty} \sqrt[j]{a_j} = 1$$
, we find $\rho = 1/b = 1$.

Thus we have (as expected) convergence for |z| < 1 and divergence for |z| > 1.

What happens for |z| = 1? Divergence, since we do not encounter a zero sequence z^n .

Moreover $\sum_{j=0}^{\infty} z^n = \frac{1}{1-z}$ for |z| < 1.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Theorem (Addition & scaling of Power Series)

Consider two power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 with radius of convergence ρ_f and

$$g(z) = \sum_{n=0}^{\infty} b_n z^n$$
 with radius of convergence ρ_g .

Then the sum/difference is given for all z with $|z| < \min(\rho_f, \rho_g)$ by:

$$\sum_{n=0}^{\infty} (a_n \pm b_n) z^n = \sum_{n=0}^{\infty} a_n z^n \pm \sum_{n=0}^{\infty} b_n z^n = f(z) \pm g(z)$$

Further, the scaling i.e. multiplication with a factor $c \in \mathbb{C}$ is given for all z with $|z| < \rho_f$ by:

$$\sum_{n=0}^{\infty} ca_n z^n = c \sum_{n=0}^{\infty} a_n z^n = cf(z).$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Theorem ((Cauchy) Product of Power Series)

Consider two power series

 $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with radius of convergence ρ_f and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ with radius of convergence ρ_g .

Then the product $f(z_1)g(z_2)$ is given for all z_1 , z_2 with $|z_1|, |z_2| < \min(\rho_f, \rho_g)$ by:

$$f(z_1)g(z_2) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} z_1^k z_2^{n-k}.$$

In particular, if $z = z_1 = z_2$:

$$f(z)g(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) z^n.$$

The latter 2 theorems also hold for $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, $g(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ by a shift.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Theorem (Series of polynomials is continuous)

Let

$$f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j$$

be a complex power series with radius of convergence ρ . Then the function

$$f: O_{\rho}(z_0) \to \mathbb{C}: z \mapsto \sum_{j=0}^{\infty} a_j(z-z_0)^j$$

is continuous.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

More Examples: Exponential Series etc.

Analysis 2

S.-J. Kimmerle

The series for the exponential function and for (co)sine, resp., have the radius of convergence $\rho = \infty$.

The latter 3 series yield a continuous function.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

