

Lecture 16 Logistic Regression

Mahdi Roozbahani Georgia Tech

Outline

Generative and Discriminative Classification

- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression

Classification

Represent the data

- A label is provided for each data point, eg., $y \in \{-1, +1\}$
- Classifier

Decision Making: Dividing the Feature Space

 Distributions of sample from normal (positive class) and abnormal (negative class) tissues

How to Determine the Decision Boundary?

• Given class conditional distribution: P(x|y=1), P(x|y=-1), and class prior: P(y=1), P(y=-1)

Bayes Decision Rule

Prior: P(y)Likelihood (class conditional distribution : $p(x|y) = \mathcal{N}(x|\mu_y, \Sigma_y)$

Posterior:
$$P(y|x) = \frac{P(y)\mathcal{N}(x|\mu_y, \Sigma_y)}{\sum_y P(y)\mathcal{N}(x|\mu_y, \Sigma_y)}$$

Bayes Decision Rule

- Learning: prior: p(y), class conditional distribution : p(x|y)
- The poster probability of a test point

$$q_i(x) \coloneqq P(y = i|x) = \frac{P(x|y)P(y)}{P(x)}$$

- Bayes decision rule:
 - If $q_i(x) > q_j(x)$, then y = i, otherwise y = j
- Alternatively:
 - If ratio $l(x) = \frac{P(x|y=i)}{P(x|y=j)} > \frac{P(y=j)}{P(y=i)}$, then y = i, otherwise y = j
 - Or look at the log-likelihood ratio $h(x) = -\ln \frac{q_i(x)}{q_i(x)}$

What do People do in Practice?

Generative models

- Model prior and likelihood explicitly
- "Generative" means able to generate synthetic data points
- Examples: Naive Bayes, Hidden Markov Models

Discriminative models

- Directly estimate the posterior probabilities
- No need to model underlying prior and likelihood distributions
- Examples: Logistic Regression, SVM, Neural Networks

Generative Model: Naive Bayes

Use Bayes decision rule for classification

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

• But assume p(x|y=1) is fully factorized: Dimensions are independent.

$$p(x|y=1) = \prod_{i=1}^{d} p(x_i|y=1)$$

 Or the variables corresponding to each dimension of the data are independent given the label

"Naïve" conditional independence assumption

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} = \frac{P(x,y)}{P(x)}$$

Joint probability model:

$$P(x, y_{label=1}) = P(x_1, ..., x_d, y_{label=1}) = P(x_1 | x_2, ..., x_d, y_{label=1}) P(x_2, ..., x_d, y_{label=1})$$

=
$$P(x_1|x_2, ..., x_d, y_{label=1})P(x_2|x_3 ..., x_d, y_{label=1})P(x_3, ..., x_d, y_{label=1})$$

= …

$$= P(x_1|x_2, ..., x_d, y_{label=1}) P(x_2|x_3 ..., x_d, y_{label=1}) ... P(x_{d-1}|x_d, y_{label=1}) P(x_d|y_{label=1}) P(y_{label=1})$$

Naïve Bayes assumption: let's rewrite it as:

$$P(x,y_{label=1}) = P(x_1|y_{label=1})P(x_2|y_{label=1})\dots P(x_n|y_{label=1})P(y_{label=1}) = \\ P(y_{label=1})\prod_{i=1}^{d}P(x_i|y_{label=1}) \qquad \qquad \text{Gaussian na\"ive Bayes} \\ \text{A typical assumption}$$

Example

Discriminative Models

- Directly estimate decision boundary $h(x) = -\ln \frac{q_i(x)}{q_j(x)}$ or posterior distribution p(y|x)
 - Logistic regression, Neural networks
 - Do not estimate p(x|y) and p(y)

- Why discriminative classifier?
 - Avoid difficult density estimation problem

Empirically achieve better classification results

Generative model

Outline

- Generative and Discriminative Classification
- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression

Gaussian Naïve Bayes

$$P(y = 1|x) = \frac{P(x|y)P(y = 1)}{P(x)} = \frac{P(y = 1)\prod_{i=1}^{d} P(x_i|y = 1)}{P(x)}$$

$$\prod_{i=1}^{d} p(x_i|y=1,\mu_{1i},\sigma_{1i})$$

$$= \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}\sigma_{1i}} \exp\left(-\frac{1}{2\sigma_{1i}^2}(x_{1i}-\mu_{1i})^2\right)$$

Prior:
$$p(y = 1) = \pi_1$$

Posterior: $p(y = 1 | x, \mu, \sigma, \pi)$

$$= \frac{\pi_1 \prod_{i=1}^d \frac{1}{\sqrt{2\pi}\sigma_{1i}} \exp\left(-\frac{1}{2\sigma_{1i}^2} (x_i - \mu_{1i})^2\right)}{\sum_{\substack{k=1 \text{labels}}}^2 \pi_k \prod_{i=1}^d \frac{1}{\sqrt{2\pi}\sigma_{ki}} \exp\left(-\frac{1}{2\sigma_{ki}^2} (x_i - \mu_{ki})^2\right)}$$

get $\exp(\ln(u))$ of numerator and denominator

$$= \frac{\exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_{1i}^{2}} (x_{i} - \mu_{1i})^{2} + \log \sigma_{1i} + C\right) + \log \pi_{1}\right)}{\sum_{k=1}^{2} \exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_{ki}^{2}} (x_{i} - \mu_{ki})^{2} + \log \sigma_{ki} + C\right) + \log \pi_{k}\right)}$$

$$= \frac{\exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_i^2} (x_i - \mu_{1i})^2 + \log \sigma_i + C\right) + \log \pi_1\right)}{\sum_{k=1}^{2} \exp\left(-\sum_{i=1}^{d} \left(\frac{1}{2\sigma_i^2} (x_i - \mu_{ki})^2 + \log \sigma_i + C\right) + \log \pi_k\right)}$$

$$= \frac{1}{1 + \exp\left(-\sum_{i=1}^{d} \left(x_{i} \frac{1}{\sigma_{i}} (\mu_{1i} - \mu_{2i}) + \frac{1}{\sigma_{i}^{2}} (\mu_{1i}^{2} - \mu_{2i}^{2})\right) + \log \frac{\pi_{2}}{\pi_{1}}\right)}{\sum_{i} \theta_{i} x_{i}}$$

$$P(y = 1|x) = \frac{1}{1 + \exp\left(-\sum_{i=1}^{d} \left(x_i \frac{1}{\sigma_i} (\mu_{1i} - \mu_{2i}) + \frac{1}{\sigma_i^2} (\mu_{1i}^2 - \mu_{2i}^2)\right) + \log\frac{\pi_2}{\pi_1}\right)}$$

Number of parameters:

 $2d + 1 \rightarrow d$ mean, d variance, and 1 for prior

$$P(y = 1|x) = \frac{1}{1 + \exp[-(\sum_{i}(\theta_{i}x_{i}) + \theta_{0})]} = \frac{1}{1 + \exp(-s)}$$

Number of parameters = $d + 1 \rightarrow \theta_0, \theta_1, \theta_2, ..., \theta_d$

Why not directly learning P(y = 1|x) or θ parameters?

Gaussian Naïve Bayes is a subset of logistic regression

Logistic function for posterior probability

Let's use the following function:

$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$
 $s = x\theta$

This formula is called sigmoid function

Many equations can give us this shape

It is easier to use this function for optimization

$$s = \sum_{i=0}^{a} x_i \theta_i = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d$$

Three linear models

g(s) is interpreted as probability

Example: Prediction of heart attacks

Input x: cholesterol level, age, weight, etc.

g(s): probability of heart attack within a certain time

We can't have a hard prediction here

 $s = x\theta$ Let's call this risk score

$$h_{\theta}(x) = p(y|x) = \begin{cases} g(s), & y = 1 \\ 1 - g(s), & y = 0 \end{cases}$$
 Using posterior probability directly

Logistic regression model

$$p(y|x) = \begin{cases} \frac{1}{1 + \exp(-x\theta)} & y = 1\\ 1 - \frac{1}{1 + \exp(-x\theta)} = \frac{\exp(-x\theta)}{1 + \exp(-x\theta)} & y = 0 \end{cases}$$

We need to find θ parameters, let's set up log-likelihood for **n** datapoints

$$l(\theta) \coloneqq \log \prod_{i=1}^{n} p(y_i, | x_i, \theta)$$
$$= \sum_{i} \theta^T x_i^T (y_i - 1) - \log(1 + \exp(-x_i \theta))$$

This form is concave, negative of this form is convex

The gradient of $l(\theta)$

$$l(\theta) \coloneqq \log \prod_{i=1}^{n} p(y_i, | x_i, \theta)$$
$$= \sum_{i} \theta^T x_i^T (y_i - 1) - \log(1 + \exp(-x_i \theta))$$

Gradient

$$\frac{\partial l(\theta)}{\partial \theta} = \sum_{i} x_i^T (y_i - 1) + x_i^T \frac{\exp(-x_i \theta)}{1 + \exp(-x_i \theta)}$$

Setting it to 0 does not lead to closed form solution

The Objective Function

 Find θ, such that the conditional likelihood of the labels is maximized

$$\max_{\theta} l(\theta) \coloneqq \log \prod_{i=1}^{n} p(y_i, | x_i, \theta)$$

• Good news: $l(\theta)$ is concave function of θ , and there is a single global optimum. $l(\frac{1}{2}\theta + \frac{2}{2}\theta)$

Bad new: no closed form solution (resort to numerical method)

Gradient Descent

 One way to solve an unconstrained optimization problem is gradient descent

 Given an initial guess, we iteratively refine the guess by taking the direction of the possible gradient

the direction of the negative gradient

 Think about going down a hill by taking the steepest direction at each step

Update rule

$$x_{k+1} = x_k - \gamma_k \nabla f(x_k)$$

 γ_k is called the step size or learning rate

Gradient Ascent(concave)/Descent(convex) algorithm

ullet Initialize parameter $heta^0$

Do

$$\theta^{t+1} \leftarrow \theta^t + \eta \sum_{i} x_i^T (y_i - 1) + x_i^T \frac{\exp(-x_i \theta)}{1 + \exp(-x_i \theta)}$$

• While the $||\theta^{t+1} - \theta^t|| > \epsilon$

Logistic Regression

$$g(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

$$s = x\theta$$

$$g(s)$$

$$s$$

$$s$$

$$\chi\theta \text{ should be large negative values for negative instances}$$

$$\chi\theta \text{ should be large positive values for positive instances}$$

- Assume a threshold and...
 - Predict y = 1 if $g(s) \ge 0.5$
 - Predict y = 0 if g(s) < 0.5

Outline

- Generative and Discriminative Classification
- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression

Multiclass Logistic Regression

Binary classification:

Multi-class classification:

Disease diagnosis: healthy / cold / flu / pneumonia

Object classification: desk / chair / monitor / bookcase

One-vs-all (one-vs-rest)

Multi-class classification:

$$h_{\theta}^{(i)}(x) = p(y = 1|x, \theta) (i = 1,2,3)$$

One-vs-all (one-vs-rest)

Train a logistic regression $h_{\theta}^{(i)}(x)$ for each class i

To predict the label of a new input x, pick class i that maximizes:

$$\max_{i} h_{\theta}^{(i)}(x)$$

Take-Home Messages

- Generative and Discriminative Classification
- The Logistic Regression Model
- Understanding the Objective Function
- Gradient Descent for Parameter Learning
- Multiclass Logistic Regression