- Calcul mental
- 2 Suites
- 3 Logarithme népérien
- 4 Dérivation
- Convexité
- 6 Probabilités

Automatisme 1 thème : calcul mental

- Le triple de 24,16 est . . .
- **3**4 × 11 = ...
- 3 202 × 198 = ...
- **Quel** est le nombre de solutions de l'équation $-2x^2 + 5 = -3$?
- **5** 40 % de 125 est égal à . . .
- Quelle est la probabilité d'obtenir au moins un pile lorsqu'on lance trois fois de suite une pièce équilibrée?
- Écrire $(3^2 \times 3^5)^4$ sous la forme d'une puissance de 3.

- Calcul mental
- 2 Suites
- 3 Logarithme népérien
- 4 Dérivation
- Convexité
- 6 Probabilités

Automatisme 2 thème : Calculs de termes

- Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = 4$ et $u_{n+1} = 2u_n 1$. Calculer u_1 et u_2 et u_3 .
- Écrire une fonction Python qui renvoie le terme de rang *n* de la suite précédente.
- Soit la suite (v_n) définie pour tout entier naturel n par $v_0 = 1$ et $v_{n+1} = v_n n + 1$. Calculer v_1 , v_2 et v_3 .
- Écrire une fonction Python qui renvoie le terme de rang *n* de la suite précédente.

Automatisme 3 thème : Suites arithmétiques

- Soit (u_n) une suite arithmétique telle que $u_4 = -1$ et $u_{16} = 3$. Déterminer la raison de cette suite et calculer u_{100} .
- Soit (u_n) une suite arithmétique de raison -3 et de premier terme $u_1 = 10$. Calculer la somme de termes successifs

$$u_{32} + u_{33} + \ldots + u_{42} = \sum_{k=32}^{42} u_k$$
.

Automatisme 4 thème : Suites arithmétiques et géométriques

- Soit (u_n) une suite arithmétique telle que $u_4 = -1$ et $u_{10} = 9$. Déterminer la raison de cette suite et calculer u_{20} .
- Soit (v_n) une suite arithmétique de premier terme $v_0 = 3$ et telle que $v_0 + v_1 + ... + v_9 = 345$. Calculer la raison de la suite (v_n) .
- Est-il vrai que pour tout entier $n \ge 0$, on a $\sum_{k=0}^{n-1} 2^k = 2^n 1$?

- Calcul mental
- 2 Suites
- 3 Logarithme népérien
- 4 Dérivation
- Convexité
- 6 Probabilités

Automatisme 5 thème : logarithme

Résoudre dans ℝ les équations suivantes

$$e^{2-x} = 4$$

$$e^x = \ln(0,1)$$

$$e^x e^{-4x+1} = \ln(10)$$

Automatisme 6 thème : logarithme

- ① Déterminer l'ensemble E des réels x tels que $x^2 1 > 0$
- ② Résoudre dans E l'équation $ln(x^2-1)=0$
- Sesondre dans E l'inéquation $ln(x^2-1) < 0$

Automatisme 7 thème : logarithme

Soit $(u_n)_{n\geqslant 0}$ une suite géométrique de premier terme $u_0=20$ et de raison 0,85.

- ① Déterminer la limite de la suite $(u_n)_{n\geq 0}$.
- ② Déterminer le plus petit entier $n \ge 0$ tel que $u_n < 10^{-6}$.

Automatisme 8 thème : logarithme

On note p_n l'effectif d'une population de bactéries au bout de n jours. La population augmente de 10 % par jour et on a $p_0 = 500$.

- ① Déterminer la nature de la suite $(p_n)_{n\geq 0}$.
- 2 Déterminer la limite de la suite $(p_n)_{n\geq 0}$.
- 4 Au bout de combien de jours la population de bactéries dépassera-t-elle un million?

Automatisme 9 thème : logarithme

Exprimer en fonction de In(2) ou d'un entier les expressions suivantes :

②
$$B = \ln(\frac{2}{5}) + \ln(5)$$

$$C = \ln(8) \ln(4)$$

$$D = \frac{\ln(8)}{\ln(4)}$$

- Calcul mental
- 2 Suites
- 3 Logarithme népérien
- 4 Dérivation
- Convexité
- 6 Probabilités

Automatisme 10 thème : dérivation

On admet que les fonctions suivante sont dérivables sur]0; $+\infty$ [, déterminer une expression de leur fonction dérivée :

1
$$f: x \mapsto x^2 - 4x + 1$$

②
$$f: x \mapsto e^x + e^1$$

5
$$f: x \mapsto (x^2 + 1)e^{-x}$$

6
$$f: x \mapsto \frac{-2}{1+e^x}$$

Automatisme 11 thème : dérivation

On a représenté ci-dessous la courbe d'une fonction dérivable sur \mathbb{R} et ses tangentes aux points d'abscisses respectives 2 et 4. Par lecture graphique, déterminer f'(2), f(2), f'(4), f(4) et des

- Calcul mental
- 2 Suites
- 3 Logarithme népérien
- 4 Dérivation
- Convexité
- 6 Probabilités

Automatisme 12 thème : convexité

Soit f la fonction définie et dérivable sur $]0; +\infty[$ telle que $f(x) = \ln(x)$.

On note \mathscr{C}_f sa courbe dans un repère du plan.

- Déterminer une équation de la tangente \mathcal{T} à \mathcal{C}_f au point d'abscisse 1.
- ② Soit la fonction d définie sur]0; $+\infty[$ par $d(x) = \ln(x) (x-1)$.
 - 1 Étudier les variations de *d* et en déduire son signe.
 - **2** En déduire une étude de la position relative de \mathcal{T} par rapport à \mathscr{C}_f .
- **3** Plus généralement, quelle conjecture peut-on faire sur la position relative de \mathscr{C}_f par rapport à sa tangente en un point d'abscisse a > 0?

- Calcul mental
- 2 Suites
- 3 Logarithme népérien
- 4 Dérivation
- Convexité
- 6 Probabilités

Automatisme 13 thème : probabilités

Parmi 25 calculettes, il y en a cinq qui sont défectueuses. Si on en prend quatre au hasard, quelle est la probabilité qu'aucune ne soit défectueuse?

Automatisme 14 thème : probabilités

Soit Z une variable aléatoire qui suit une loi binomiale de paramètres n = 70 et p un réel compris entre 0 et 1.

On donne $\mathbb{P}(Z=10)=c$ et $\mathbb{P}(Z>10)=c$ avec c et d deux réels compris entre 0 et 1.

Exprimer en fonction de c et d les probabilités $\mathbb{P}(Z \ge 10)$, $\mathbb{P}(Z < 10)$ et $\mathbb{P}(Z \le 10)$.

Automatisme 15 thème : probabilités

Soit X une variable aléatoire qui suit une loi binomiale de paramètres n un entier strictement positif et p=0,8. Déterminer le plus petit entier n tel que $\mathbb{P}(X \ge 1) > 0,9999$.