Foundation Course on Business Forecasting using Python

CONTENTS

Indian Statistical Institute

SL No.	Topics
1	Exploring time series data
2	Exponential smoothing methods
4	Autoregressive integrated moving average (ARIMA) models
4	Intervention models and dynamic regression

INTRODUCTION to BUSINESS FORECASTING

3

Indian Statistical Institute

INTRODUCTION

Forecast

A prediction of some future event or events

Example:

The number of 2 wheeler sales in Bangalore during next month
The average volume of an airline passengers in the next quarter

Field of applications

Business and industry	Medicine
Government	Social science
Economics	Politics
Environmental science	Finance

ļ

INTRODUCTION

Methodology

Based on identifying, modeling and extrapolating the patterns found in historical data

Historical data usually exhibit inertia and do not change dramatically very quickly Involves use of statistical methods and time series data

Time series

A time oriented or chronological sequence of observations on a variable or metric of interest

A collection of observations or data made sequentially in time

A dataset consisting of observations arranged in chronological order

A sequence of observations over time

5

Indian Statistical Institute

exploration of time series

TIME SERIES EXPLORATION

Time Series Plot:

The graphical representation of time series data by taking time on x axis & data on y axis.

A plot of data over time

Reveals patterns such as random, trends, level shifts, periods or cycles, seasonal, unusual observations or combination of patterns

7

Indian Statistical Institute

TIME SERIES EXPLORATION

Time Series Plot

- 1. Trend: A long term increase or decrease in the data
- 2. Cyclic: The time series data exhibiting rises and falls
- 3. Seasonal Pattern: The time series data exhibiting rises and falls influenced by seasonal factors
- 4. Unusual observation: A data point which is unusually high or low compared to other data points

TIME SERIES EXPLORATION

Time Series Plot: Example

The data on weekly sales of pharmaceutical products is given in the file pharmaceutical_Product file. Draw the time series plot and identify the underline pattern?

9

Indian Statistical Institute

TIME SERIES EXPLORATION

Time Series Plot: Example

Python Code

import pandas as mypd

import matplotlib.pyplot as myplot

mydata = mypd.read_csv("D:/LKQ_India/ModuleIII_Dataset/Pharmaceutical_Product.csv")

mydata.head()

sales = mydata.Sales

week = mydata.Week

myplot.scatter(week, sales)

myplot.plot(week, sales)

myplot.title("Time Series Plot")

myplot.xlabel("Week Number")

myplot.ylabel("Sales")

myplot.grid()

myplot.show()

TIME SERIES EXPLORATION

Time Series Plot: Example

Conclusion: More or less random pattern

11

Indian Statistical Institute

TIME SERIES EXPLORATION

Time Series Plot: Exercise 1

The data on annual production of diary products from 1960 to 1999 is given in the file Diary_Products file. Draw the time series plot and identify the underline pattern?

Conclusion: ?

TIME SERIES EXPLORATION

Time Series Plot: Exercise 2

The data on monthly sales of an aircraft component from April 2010 to October 2013 is given in the file Aircraft_Component file. Draw the time series plot and identify the underline pattern?

Conclusion: ?

13

Indian Statistical Institute

TIME SERIES EXPLORATION

Time Series Plot: Exercise 3

The data on monthly sales of a branded jacket from January 2002 to December 2005 is given in the file Branded_Jackets file. Draw the time series plot and identify the underline pattern?

Conclusion: ?

TIME SERIES EXPLORATION

Time Series Plot: Exercise 4

The data on viscosity readings in a chemical process is given in the file Chemical_Process file. Draw the time series plot and identify the underline pattern?

Conclusion: ?

15

Indian Statistical Institute

TIME SERIES EXPLORATION

Stationary Series:

A series free from trend and seasonal patterns

A series exhibits only random fluctuations around mean

A stationary time series exhibits similar statistical behavior in time and this is often characterized by a constant probability distribution in time

The mean of the stationary time series does not depend on time and auto covariance function for any lag k is only the function of k and not time

TIME SERIES EXPLORATION

Test for Stationary: Unit root test

Augmented Dickey Fuller Test (ADF):

Checks whether any specific patterns exists in the series

H0: $|\rho| = 1$ (series is non stationary)

H1: $|\rho| < 1$ (series is stationary)

A small p-value suggest data is stationary

Kwiatkowski-Phillips-Schmidt-Shin Test (KPSS):

Checks especially the existence of trend in the data set

H0: series is trend stationary

H1: series is not trend stationary

A large p-value suggest data is stationary

Note: To consider a time series to be stationary it has to pass both the tests

17

Indian Statistical Institute

TIME SERIES EXPLORATION

Stationary Series: A series free from trend and seasonal patterns.

A series exhibits only random fluctuations around mean

Example : The data on daily shipments is given in shipment.csv. Check whether the data is stationary

Day	Shipments	Day	Shipments
1	99	13	101
2	103	14	111
3	92	15	94
4	100	16	101
5	99	17	104
6	99	18	99
7	103	19	94
8	101	20	110
9	100	21	108
10	100	22	102
11	102	23	100
12	101	24	98

TIME SERIES EXPLORATION

Stationary Series: A series free from trend and seasonal patterns.

A series exhibits only random fluctuations around mean

Example: The data on daily shipments is given in shipment.csv. Check whether the data is stationary

Python code

import pandas as mypd

import matplotlib.pyplot as myplot

from statsmodels.tsa.stattools import adfuller, kpss

mydata = mypd.read_csv("D:/LKQ_India/ModuleIII_Dataset/Shipment.csv")

Shipment = mydata.Shipments

Day = mydata.Day

myplot.scatter(Day,Shipment)

myplot.plot(Day,Shipment)

myplot.title("Time Series Plot")

myplot.xlabel("Day")

myplot.ylabel("Shipment")

myplot.grid()

myplot.show()

Indian Statistical Institute

19

TIME SERIES EXPLORATION

Stationary Series: A series free from trend and seasonal patterns.

A series exhibits only random fluctuations around mean

Example : The data on daily shipments is given in shipment.csv. Check whether the data is stationary

TIME SERIES EXPLORATION

Test for checking series is Stationary: Unit root test in R

ADF Test

Python Code mytest = adfuller(Shipment) test_statistics = mytest[0] p_value = mytest[1] test_statistics p_value

Statistic	Value
Dickey-Fuller	-2.74
P value	0.068

Since p value = 0.068 < 0.1, the data is stationary at 10% significant level

21

Indian Statistical Institute

TIME SERIES EXPLORATION

Test for checking series is Stationary: Unit root test in R

KPSS test

Python Code mytest = kpss(Shipment) test_statistics = mytest[0] p_value = mytest[1] test_statistics p_value

Statistic	Value
KPSS Level	0.3
P value	0.1

Since p value = 0.1 >= 0.05, the data is stationary

TIME SERIES EXPLORATION

Exercise 1: The annual GDP values from 1993 to 2005 is given in the file GDP file : Check whether the series is stationary?

Exercise 2: The data on weekly sales of pharmaceutical products is given in the file pharmaceutical_Product file : Check whether the series is stationary?

Exercise 3: The data on annual production of diary products from 1960 to 1999 is given in the file Diary_Products file. Check whether the series is stationary?

23

Indian Statistical Institute

TIME SERIES EXPLORATION

Differencing: A method for making series stationary

A differenced series is the series of difference between each observation y_t and the previous observation y_{t-1}

$$y_t' = y_t - y_{t-1}$$

A series with trend can be made stationary with 1^{st} differencing

A series with seasonality can be made stationary with seasonal differencing

TIME SERIES EXPLORATION

Differencing: A method for making series stationary

Example: Is it possible to make the GDP data (1993 to 2005) given in GDP.csv stationary?

Python Code

import pandas as mypd

import matplotlib.pyplot as myplot

from statsmodels.tsa.stattools import adfuller, kpss

mydata = mypd.read_csv("D:/LKQ_India/ModuleIII_Dataset/GDP.csv")

gdp= mydata.GDP

Year = mydata.index

myplot.scatter(Year,gdp)

myplot.plot(Year,gdp)

myplot.title("Time Series Plot")

myplot.xlabel("Year")

myplot.ylabel("GDP")

myplot.grid()

myplot.show()

25

Indian Statistical Institute

TIME SERIES EXPLORATION

Differencing: A method for making series stationary

Example: Is it possible to make the GDP data (1993 to 2005) given in GDP.csv stationary?

TIME SERIES EXPLORATION

Differencing: A method for making series stationary

Example: Is it possible to make the GDP data (1993 to 2005) given in GDP.csv stationary?

Python Code

mytest = adfuller(gdp) test statistics = mytest[0] p_value = mytest[1]

mytest = kpss(gdp)test_statistics = mytest[0] p_value = mytest[1]

Test	Statistic	p-value
ADF	-0.75	0.833
KPSS	0.39	0.082

27

Indian Statistical Institute

TIME SERIES EXPLORATION

Differencing: A method for making series stationary

Example: Is it possible to make the GDP data (1993 to 2005) given in GDP.csv stationary?

Python Code

diff_gdp = gdp.diff()

year = diff_gdp.index

myplot.scatter(year,diff_gdp) myplot.plot(year,diff_gdp) myplot.title("Time Series Plot")

myplot.xlabel("Year") myplot.ylabel("Differenced GDP") myplot.grid()

myplot.show()

TIME SERIES EXPLORATION

Differencing: A method for making data stationary

Example: Is it possible to make the GDP data (1993 to 2005) given in GDP.csv stationary?

Differencing required is 1

 $y_t' = y_t - y_{t-1}$

Python Code

diff_gdp = diff_gdp.dropna()
mytest = adfuller(diff_gdp)
test_statistics = mytest[0]
p_value = mytest[1]

mytest = kpss(diff_gdp) test_statistics = mytest[0] p_value = mytest[1]

Test	Statistic	p-value
ADF	-23.73	0.00
KPSS	0.35	0.097

29

Indian Statistical Institute

TIME SERIES EXPLORATION

Differencing: A method for making series stationary

Exercise 1: The data on annual production of diary products from 1960 to 1999 is given in the file Diary_Products file. Check whether the series is stationary? If not can it be made stationary by differencing?

EXPONENTIAL SMOOTHING

Used to make short term forecasts of time series data

Single Exponential Smoothing:

Used for time series with no trend or seasonality

Smoothing is controlled by the parameter alpha

Value of alpha lies between 0 and 1

Alpha is estimated by minimizing the MSE

Give more weight to recent values compared to the old values

EXPONENTIAL SMOOTHING

Single Exponential Smoothing: Methodology

```
Let y_1,y_2, - - - y_t be the time series, then y_{t+1} \text{ estimate} = S_{t+1} = \alpha \ y_t + (1 \text{-} \ \alpha) \ S_t where 0 \le \alpha \le 1 and S_1 = y_1
```

33

Indian Statistical Institute

EXPONENTIAL SMOOTHING

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

Python Code

import pandas as mypd import matplotlib pyplot as myplot from statsmodels.tsa.stattools import adfuller, kpss from statsmodels.tsa.holtwinters import SimpleExpSmoothing

mydata = mypd.read_csv("D:/LKQ_India/ModuleIII_Dataset/rulers.csv")
age= mydata.Age
month = mydata.Month

mydata scatter(month_age)

myplot.scatter(month, age) myplot.plot(month, age) myplot.title("Time Series Plot") myplot.xlabel("Month") myplot.ylabel("Age") myplot.grid() myplot.show()

EXPONENTIAL SMOOTHING

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

35

Indian Statistical Institute

EXPONENTIAL SMOOTHING

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

Python code - Checking whether series is stationary

mytest = adfuller(age)

test_statistics = mytest[0]

p_value = mytest[1]

mytest = kpss(age)

test_statistics = mytest[0]

p_value = mytest[1]

Test	Statistic	P-value
ADF	-4.09	0.001
KPSS	0.3	0.1

EXPONENTIAL SMOOTHING

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

R code

Fitting Single Exponential Model mymodel = SimpleExpSmoothing(age) mymodel = mymodel.fit() mymodel.summary()

Statistic	Value
Optimum α	0.2561
AIC	231.432
BIC	234.907
AICC	232.513

37

Indian Statistical Institute

MODEL VALIDATION

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

Model diagnostics

Residual = Actual – Predicted Mean Absolute Error: MAE

Root Mean Square Error: RMSE

Mean Absolute Percentage Error: MAPE

EXPONENTIAL SMOOTHING

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

R code

```
Computing predicted values and residuals (errors)
pred = mymodel.predict(0, 41)
res = age -pred
abs_res = res.abs()
mae = abs_res.mean()

res_sq = res**2
mse = res_sq.mean()

import math as mymath
rmse = mymath.sqrt(mse)
```

39

Indian Statistical Institute

MODEL VALIDATION

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

Model diagnostics

pae = abs_res/age mape = pae.mean()

Statistic	Description	Value
MAE	Average of absolute residuals	12.0257
MSE	Average of residual squares	224.762
RMSE	Square root of MSE	14.9921
MAPE	Average of absolute % error	29.68%

Criteria

MAPE < 10% is reasonably good MAPE < 5 % is very good

MODEL VALIDATION

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

Model diagnostics - Normality of Errors with zero

Python Code

from scipy import stats

import matplotlib.pyplot as myplot

stats.probplot(age, plot=myplot)
myplot.show()

normality_test = stats.mstats.normaltest(age)
test statististic = normality test.statistic

p_value = normality_test.pvalue

41

Indian Statistical Institute

MODEL VALIDATION

Example: The age of the rulers of an European country is given in file Rulers. Forecast the age of the future ruler using single exponential smoothing method with best value of α ?

Statistic	(w)	P value
1.865	54	0.3935

MODEL DEPLOYMENT

Forecast and Prediction Interval

Prediction interval : Predicted value ± z √MSE

where z = width of prediction interval

Prediction Interval	Z
90%	1.645
95%	1.960
99%	2.576

Forecasted value S_{t+1} = αy_t + $(1 - \alpha)S_t$ Forecasted value S_{43} = αy_{42} + $(1 - \alpha)S_{42}$ Forecasted value S_{43} = 0.2560892 x 56 + (1-0.2560892) x 71.901387= 67.829

43

Indian Statistical Institute

MODEL DEPLOYMENT

Forecast

Python Code

S43 = mymodel.predict()

S43

mymodel.predict(42, 45)

Period	Forecast
43	67.829

CORRELATION & REGRESSION

Regression

Regression helps

- To identify the exact form of the relationship
- To model output in terms of input or process variables

Examples:

Expected (Yield) = 5 + 3 x Time - 2 x Temperature

47

Indian Statistical Institute

REGRESSION ANALYSIS

Exercise: The effect of temperature and reaction time affects the % yield. The data collected in given in the Mult-Reg_Yield file. Develop a model for % yield in terms of temperature and time?

Step 1: Read packages

importing the packages
import pandas as mypd
import matplotlib.pyplot as myplot
from scipy import stats
import math as mymath
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
import seaborn as mysb

REGRESSION ANALYSIS

Exercise: The effect of temperature and reaction time affects the % yield. The data collected in given in the Mult-Reg_Yield file. Develop a model for % yield in terms of temperature and time?

Step 2: Read data

#importing the dataset

mydata = mypd.read_csv("E:/hp/hp_2020/Module1/Dataset/Mult_Reg_Yield.csv") mydata.head()

Seperating x and y x = mydata.iloc[:, 0:2] y = mydata.Yield

49

Indian Statistical Institute

REGRESSION ANALYSIS

Exercise: The effect of temperature and reaction time affects the % yield. The data collected in given in the Mult-Reg_Yield file. Develop a model for % yield in terms of temperature and time?

Step 3: Correlation Analysis # Scatter plot mysb.pairplot(mydata) myplot.show()

Correlation between xs & y should be high

Correlation between xs should be low

Indian Statistical Institute **REGRESSION ANALYSIS** Step 4: Regression Modeling # fitting the model mymodel = LinearRegression() mymodel = mymodel.fit(x,y) mymodel.intercept_ mymodel.coef_ Coefficient Intercept -67.8845 Time 0.9061 -0.0642 Temperature Yield = $-67.8845 + 0.9061 \times Time - 0.0642 \times Temperature$ 52

REGRESSION ANALYSIS

Step 4: Regression Modeling

Model accuracy

rsq = mymodel.score(x,y) pred = mymodel.predict(x)

Model Adequacy

mse = mean_squared_error(y, pred)

rmse = mymath.sqrt(mse)

Statistic	Coefficient
R ²	0.8064
MSE	102.0051
RMSE	10.0998

53

Indian Statistical Institute

REGRESSION ANALYSIS

Step 4: Residual Analysis

Residual Analysis

res = y - pred

myresult = [y, pred, res]

myresult = mypd.DataFrame(myresult)

myresult =myresult.transpose()

SL No	Yield	Predicted	Residuals
0	35	37.71	-2.71
1	81.7	78.48	3.22
2	42.5	40.37	2.13
3	98.3	91.70	6.60
4	52.7	66.86	-14.16
5	82	95.57	-13.57
6	34.5	47.56	-13.06
7	95.4	85.56	9.84
8	56.7	42.66	14.04
9	84.4	87.70	-3.30
10	94.3	77.84	16.46
11	44.3	59.47	-15.17
12	83.3	90.15	-6.85
13	91.4	79.92	11.48
14	43.5	38.37	5.13
15	51.7	51.77	-0.07

REGRESSION ANALYSIS

Step 4: Residual Analysis – Actual Vs Predicted Plot myplot.scatter(y, pred)

myplot.title("Actual vs Predicted Plot") myplot.xlabel("Actual Yield")

myplot.ylabel("Predicted yield" myplot.grid() myplot.show()

Note: There need to be strong positive correlation between actual and fitted response 55

Indian Statistical Institute

REGRESSION ANALYSIS

Step 4: Residual Analysis – Predicted Vs Residuals Plot

myplot.scatter(pred, res)

myplot.title("Predicted vs Residuals Plot")

myplot.xlabel("Predicted") myplot.ylabel("Residuals")

myplot.grid() myplot.show()

Note: There need to be strong positive correlation between actual and fitted response

b

REGRESSION ANALYSIS

Normality Test: Yield data	
w	p value
1.9835	0.3709

57

REGRESSION ANALYSIS

Step 5: Cross Validation

Cross Validation

myscore = cross_val_score(mymodel, x, y, scoring='neg_mean_squared_error', cv = 4)
cv_mse = -1*myscore.mean()
rmse = mymath.sqrt(cv_mse)

Statistic	Training	Test
MSE	102.0051	122.5726
RMSE	10.0998	11.0713

59

Indian Statistical Institute

AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODEL (ARIMA)

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Exponential Smoothing: Assumption

A time series can be represented as the sum of two distinct components:

Deterministic

Stochastic (random)

Deterministic component: A function of time

Stochastic component: Assumed to be random noise and generates stochastic

behavior of the time series

Random noise assumed to be generated through

independent shocks in the process

But often the successive observations show serial dependence

Moreover for exponential smoothing, the forecast error need to be uncorrelated and are normally distributed with mean zero and constant variance

Then exponential smoothing methods may be inefficient and sometimes inappropriate.

61

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

General class of model

Takes into account the correlations in the data

Includes an explicit statistical model for irregular component of the time series that allows for non zero autocorrelations in the irregular component

Often defined for stationary time series

Non stationary time series need to be made stationary by differencing or decomposition

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Auto covariance: Measure of association between the values of a variable and its values at another time period

Auto covariance (of lag 1): Measure of association between the consecutive values of a variable

Autocorrelation (1) = Autocovariance(1)/ Variance

63

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Partial correlation:

Let x, y and z be three random variables

Consider simple linear regression of x on z: $\hat{x} = a_1 + b_1 z$

And residuals: $x^* = x - \hat{x}$

Consider simple linear regression of y on z: $\hat{y} = a_2 + b_2 z$

And residuals: $y^* = y - \hat{y}$

Partial correlation between x and y (after adjusting for z) is the correlation between x^{\star} and y^{\star}

In general, partial correlation can be seen as the correlation between two variables after adjusting for a common factor that may be affecting them $_{64}$

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Partial correlation: Example

The data on three random variables namely yield, time and temperature are given below: Compute the correlation between yield and time (after adjusting for

temperature)

Time	Temperature	Yield
130	190	35
174	176	81.7
134	205	42.5
191	210	98.3
165	230	52.7
194	192	82
143	220	34.5
186	235	95.4
139	240	56.7
188	230	84.4
175	200	94.3
156	218	44.3
190	220	83.3
178	210	91.4
132	208	43.5
148	225	51.7

65

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Partial correlation : Example

The data on three random variables namely yield, time and temperature are given below: Compute the correlation between yield and time (after adjusting for temperature)

Models

Yield = 82.5967 - 0.073 x Temperature Time = 166.0776 - 0.01004 x Temperature

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Partial correlation: Example

The data on three random variables namely yield, time and temperature are given below: Compute the correlation between yield and time (after adjusting for temperature)

Residuals(Yield*)	Residuals(Time*)
-33.6715	-34.1692
12.0024	9.6902
-25.0722	-30.0185
31.0943	27.0317
-13.0399	1.2326
13.4751	29.8509
-31.9728	-20.8678
30.0266	22.2829
-8.3070	-24.6669
18.6601	24.2326
26.3614	10.9313
-22.3194	-7.8879
16.8272	26.1322
24.1943	14.0317
-23.8523	-31.9884
-14.4063	-15.8176

Partial correlation between yield & time = Correlation between yield * & time *

= 0.8976

67

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Partial auto correlation:

Let y_1 , y_2 , - - -, y_t be a time series

Partial auto correlation between y_t and y_{t-k} is the autocorrelation between y_t and y_{t-k} after adjusting for y_{t-1} , y_{t-2} , - - - , y_{t-k-1}

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Auto Regressive Integrated Moving Average Models (ARIMA (p,d,q))

Widely used and very effective modeling approach

Proposed by George Box and Gwilym Jenkins

Also known as Box – Jenkins model or ARIMA(p,d,q)

where

- p: number of auto regressive (AR) terms
- q: number of moving average (MA) terms
- d: level of differencing

69

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

General Form

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \theta_1 e_{t-1} + \theta_2 e_{t-2} - \cdots$$

Where

c: constant

 $\phi_{1,}\, \phi_{2,}\, \theta_{1,}\, \theta_{2}$, - - - are model parameters

 $e_{t-1} = y_{t-1} - s_{t-1}$, e_t are called errors or residuals

 $\boldsymbol{s}_{t\text{--}1}$: predicted value for the t-1th observation $(\boldsymbol{y}_{t\text{--}1})$

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 1:

Draw time series plot and check for trend, seasonality, etc

Step 2:

Draw Auto Correlation Function (ACF) and Partially Auto Correlation Function (PACF) graphs to identify auto correlation structure of the series

Step 3:

Check whether the series is stationary using unit root test (ADF test, KPSS test)

If series is non stationary do differencing or transform or decompose the series

71

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 4:

Identify the model using ACF and PACF or automatically

The best model is one which minimizes AIC or BIC or both

Step 5:

Estimate the model parameters using maximum likelihood method (MLE)

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 6:

Do model diagnostic checks

The errors or residuals should be white noise and should not be auto correlated

Do Portmanteau and Ljung & Box tests. If p value > 0.05, then there is no autocorrelation in residuals and residuals are purely white noise.

The model is a good fit

73

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Example: The age of the rulers of an European country is given in file Rulers. Fit Forecasting model using ARIMA?

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 1: Read and plot the series

import pandas as mypd

import matplotlib.pyplot as myplot

from statsmodels.tsa.stattools import adfuller, kpss

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

from statsmodels.tsa.arima_model import ARIMA

from pmdarima import auto_arima

mydata = mypd.read_csv("D:/LKQ_India/ModuleIII_Dataset/rulers.csv")

age = mydata.Age

month = mydata.Month

Step 2: Time series plot

myplot.scatter(month, age)

myplot.plot(month, age)

myplot.title("Time Series Plot")
myplot.xlabel("Month")

myplot.ylabel("Age")

myplot.grid()

myplot.show()

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 3: Check whether the series is stationary

mytest = adfuller(age)
test statistics = mytest[0]

p_value = mytest[1]

mytest = kpss(age)
test_statistics = mytest[0]

p_value = mytest[1]

Test	Statistic	P value
ADF	-4.09	0.001
KPSS	0.30	0.1

Since p value of ADF test > 0.05 and that of KPSS test < 0.05, the series is stationary

77

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 4: Draw ACF & PACF Graphs

plot_acf(age) myplot.xlabel("Lag") myplot.ylabel("Autocorrelation") myplot.title("ACF Plot") myplot.grid() myplot.show()

Remark

Since ACF is exponentially decaying, MA terms may be significant

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 4: Identifying the arima model mymodel = ARIMA(age, order= (1,0,1)) mymodel = mymodel.fit() mymodel.summary()

Model	Log Likelihood	AIC	BIC
arima(1, 0, 1)	-172.626	353.252	360.202

Terms	Coefficient	Std Error	Z	p-value
Constant	56.0866	5.48	10.235	0.000
ar1	0.8341	0.17	4.914	0.000
ma1	-0.574	0.253	-2.272	0.029

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 4: Identifying the optimum arima model

Model	AIC	BIC
arima(1, 0, 1)	353.252	360.202
arima(0, 0, 1)	354.242	359.455
arima(1, 0, 0)	352.823	358.036
arima(1, 1, 1)	-	-
arima(0, 1, 1)	345.814	350.954
arima(1, 1, 0)	354.035	359.176
arima(0, 0, 2)	355.328	362.279
arima(0, 1, 2)	347.179	354.034
arima(2, 0, 0)	354.468	361.419
arima(2, 1, 0)	351.153	358.007

Remark: Model with minimum aic, bic is th optimum model

81

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 5: Identification of optimum model automatically

mymodel = auto_arima(age, trace= True, error_action= 'ignore', suppress_warnings = True, seasonal= False)

mymodel = mymodel.fit(age)
mymodel.summary()

Model	Log likelihood	AIC	BIC
Arima (0,1,1)	-169.906	345.813	350.953

Terms	Coefficient	Std Error	Z	p-value
Constant	0.3882	0.636	0.610	0.542
ma1	-0.7463	0.140	-5.335	0.000

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 5: Identification of optimum model automatically

Model	Log likelihood	AIC	BIC
Arima (0,1,1)	-169.906	345.813	350.953

Terms	Coefficient	Std Error	Z	p-value
Constant	0.3882	0.636	0.610	0.542
ma1	-0.7463	0.140	-5.335	0.000

Forecast

 $\nabla y_t = 0.3882 - 0.7463 \text{ x } (y_{t-1} - s_{t-1})$

where

 $\nabla y_t = y_t - y_{t-1}$ $s_{t-1} : y_{t-1} \text{ predicted}$

83

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 6: Checking the residuals are white noise

Test	Test Statistic	P-value
Ljung-Box	22.54	0.99

Remark: p-value > 0.05, residuals are white noise

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 7: Model diagnostic statistics
pred = mymodel.predict_in_sample()
pred = pred[1:42]
Age = age[1:42]
res = age -pred
abs_res = res.abs()
mae = abs_res.mean()
res_sq = res**2
mse = res_sq.mean()
import math as mymath
rmse = mymath.sqrt(mse)

pae = abs_res/age mape = pae.mean()

Statistic	Description	Value
MAE	Average of absolute residuals	12.3012
MSE	Average of residual squares	232.1439
RMSE	Square root of MSE	15.2363
MAPE	Average of absolute error / actual	31.24

85

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 8: Normality check on residuals

from scipy import stats import matplotlib.pyplot as myplot stats.probplot(res, plot=myplot) myplot.show()

normality_test = stats.mstats.normaltest(res) test_statististic = normality_test.statistic p_value = normality_test.pvalue

Test Statistic	p-value
0.2614	0.8775

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 8: Model diagnostics

myresult = [age, pred, res]

myresult = mypd.DataFrame(myresult)

myresult = myresult.transpose()

Period	Age	Predicted	Residuals
0	60	0.388205	59.611795
1	43	60.378055	-17.378055
41	56	73.386046	-17.386046

Step 9: Forecast Calculation

$$abla y_{42} = 0.3882 - 0.7463 x -17.386046 = 13.3634
y_{42} = y_{42} +
abla y_{42} = 56 + 13.3634 = 69.3634$$

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 9: Forecast using python

```
y_{42} = mymodel.predict(n_periods=1)
y_{42} = 69.363
```

89

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 10: Actual vs Predicted plot

import matplotlib.pyplot as myplot

```
x = x[1:42]

myplot.scatter(x, age, color = "black", label = "Actual")

myplot.scatter(x, pred, label = "Predicted")

myplot.plot(x, age, color = "black", label = "Actual")

myplot.plot(x, pred, color = "blue", label = "Predicted")

myplot.title("Actual Vs Predicted Plot")

myplot.xlabel("Time")

myplot.show()
```

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

Step 10: Actual vs Predicted plot

91

Indian Statistical Institute

AUTO REGRESIVE INTEGRATED MOVING AVERAGE MODEL

- Exercise1:The weekly production of an industrial product is given Industrial_Prduction file. Develop a model to predict the weekly production of the product?
- Exercise 2:The monthly sales of an industrial product is given Industrial_Sales file.

 Develop a model to predict the monthly sales of the product?
- Exercise 3: The annual production values of diary products from 1960 to 1999 is given in Diary_Products file. Develop a forecasting methodology using ARIMA?

INTERVENTION MODELS

Many variables may be correlated in time

A time series can not only have serial correlation with past values but also can be correlated with other variables.

Forecasting can be made more accurate by incorporating other external variables into the model

Intervention Models

In some times y_t can be affected by a known event that happens at a specific time such as fiscal policy changes, introduction of new regulatory laws, or switches suppliers, etc.

Such interventions can be modelled using indicator variables

INTERVENTION MODELS

Example

The weekly sales of laptop computers in a computer and accessories shop in Hutchins read street shop is collected for 51 weeks and is given in Laptop_Sales file. On week 40, the Government has declared lockdown to control the Covid pandemic and most of the educational institutions switched over to online mode of teaching. Fit a model to forecast the weekly laptop sales

95

Indian Statistical Institute

INTERVENTION MODELS

Reading the packages

import pandas as mypd

import matplotlib.pyplot as myplot

from statsmodels.tsa.stattools import adfuller, kpss

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

import numpy as mynp

from pmdarima import auto_arima

Reading the data

mydata = mypd.read_excel("D:/ISI/BF-06-Online//Laptop_Sales.xlsx")

Explore the data

mydata.head()

INTERVENTION MODELS

Copying the variables

sales = mydata.Sales

status = mydata.Status

week = mydata.Week

Reshaping the status variable to required 2 dimensional array

status = status.array.reshape(-1,1)

Time Sries plot of Sales

myplot.scatter(week, sales)

myplot.plot(week, sales)

myplot.title("Time Series Plot")

myplot.xlabel("Week")

myplot.ylabel("Sales")

myplot.grid()

myplot.show()

INTERVENTION MODELS

```
Check for Stationary series - ADF test
```

mytest = adfuller(sales)

adf = mytest[0]

round(adf,4)

p_value = mytest[1]

round(p_value,4)

Check for Stationary series – KPSS test

mytest = kpss(sales)

kpss = mytest[0]

round(kpss,4)

p_value = mytest[1]

round(p_value,4)

Indian Statistical Institute

99

INTERVENTION MODELS

Test	Statistic	P value
ADF	-0.6986	0.8471
KPSS	0.2063	0.1

INTERVENTION MODELS

Autocorrelation Plot

plot_acf(sales)

myplot.title("ACF Plot")

myplot.xlabel("Lag")

myplot.ylabel("Autocorrelation")

myplot.grid()

myplot.show()

Partial Autocorrelation Plot

plot_pacf(sales)

myplot.title("PACF Plot")

myplot.xlabel("Lag")

myplot.ylabel("Partial Autocorrelation")

myplot.grid()

myplot.show()

INTERVENTION MODELS

Develop intervention model

mymodel = auto_arima(sales, X= status, trace= True, error_action= 'ignore', suppress_warnings= True)

mymodel = mymodel.fit(sales, X = status)

mymodel.summary()

Statistics	Value
Model	Arima(0,0,1)
No. of observations	51
Log Likelihood	-74.177
AIC	156.354
BIC	164.081

INTERVENTION MODELS

Model Coefficient Table

	Coefficient	Std error	Z	p value
intercept	149.1384	0.287	519.018	0.000
Х	2.0037	0.537	3.733	0.000
ma1	0.7629	0.096	7.962	0.000

Model

 $y_t = 149.1384 + 0.7629e_{t-1} + 2.0037 \text{ status}_t$

105

Indian Statistical Institute

INTERVENTION MODELS

Residual Analysis – Ljung-Box test

Statistic	Value	
Ljung-Box	0.00	
p value	0.97	

INTERVENTION MODELS

Residuals and Predicted values

ypred = mymodel.predict_in_sample(X = status)
myres = sales - ypred

Model Accuracy Measures

abs_res =abs(myres)
mae = abs_res.mean()

res_sq = myres**2
mse = res_sq.mean()

pae = abs_res/sales
mape = pae.mean()

107

INTERVENTION MODELS

Indian Statistical Institute

Model Accuracy Measures

Statistic	Value
Mean Absolute Error	0.8897
Mean Square Error	1.0722
Root Mean Square Error	1.0355
Mean Absolute Percent Error	0.59

```
Indian Statistical Institute
INTERVENTION MODELS

Normality Test - Residuals
stats.probplot(myres, plot= myplot)
myplot.grid()
myplot.show()

mytest = stats.normaltest(myres)
w = mytest[0]
p_value -= myest[1]
```


INTERVENTION MODELS

Normality Test: Residuals

Statistic	Value
W	4.7597
p value	0.0926

111

Indian Statistical Institute

INTERVENTION MODELS

Actual versus Predicted Plot

myplot.scatter(week, sales, color = 'black')

myplot.scatter(week, ypred, color = 'blue')

myplot.plot(week,sales, color = 'black', label = "Actual")

myplot.plot(week, ypred, color = 'blue', label = "Predicted")

myplot.title("Actual vs Predicted Plot")

myplot.xlabel("Week")

myplot.ylabel("Sales")

myplot.grid()

myplot.legend()

myplot.show()

