AN ANALYSIS OF BID PREFERENCE PROGRAMS

BY SAMUEL SPREEN

BACKGROUND

- The California Department of Transportation (Caltrans) procurement auctions are used to allocate highway construction contracts.
- Descending auctions in which the bidder, a construction company, submits a bid that represents the cost it would charge the auctioneer, Caltrans, to complete the project.
- Caltrans utilizes a bid preference program to assist small businesses in winning procurement auctions.
- The bid preference comes in the form of a 5% bid discount applied to the bids of small businesses. This discount is only used in determining the winner of the auction and does not affect the payout.

QUESTIONS OF INTEREST

 Does the bid preference program increase or decrease the total procurement cost for Caltrans and by how much?

How much do large businesses lose because of this program?

 Does the bid preference program increase competition between small and large businesses?

DEFINING A SMALL BUSINESS

• Must have no more than 100 employees.

2

• Be independently owned, operated, and based in the state of California.

3

 Have average annual gross receipts of no more than \$10 million over the past 3 years.

EXPLORATORY DATA ANALYSIS

Their are a total of 641 procurement auctions (project IDs) within the dataset after the removal of outliers and erroneous data.

Unique Bidders: 501

Small Business Bidders: 243

Large Business Bidders: 258

Number of Bidders						
Min	Quartile I	Mean	Median	Quartile 3	Max	
2	4	4.53	5	7	20	

EXPLORATORY DATA ANALYSIS (CONTINUED)

Distribution of All Bids						
Min	Quartile I	Median	Quartile 3	Max		
103,845.00	288,362.25	467,452.50	738,929.13	11,777,770.0		

Distribution of Small Business Bids						
Min	Quartile I	Median	Quartile 3	Max		
103,845.00	245,786.00	395,526.00	601,299.00	5,965,853.00		

Distribution of Large Business Bids						
Min	Quartile I	Median	Quartile 3	Max		
106,210.00	318,227.00	514,209.00	846,282.00	11,777,770.00		

EXPLORATORY DATA ANALYSIS (CONTINUED)

An increase in the number of auction participants decreases the procurement cost of Caltrans with respect to their engineers estimate.

EXPLORATORY DATA ANALYSIS (CONTINUED)

- Regression of the number of small business bidders, large business bidders, and cost estimate on the winning bids.
 - Statistically significant coefficients of small business bidders (-18,730) and large business bidders (-42,680)

OLS Regression Results							
Dep. Varia Model: Method: Date: Time: No. Observ Df Residua Df Model:	ations: ls:	Least Squ Mon, 10 Feb 22:4	2020 9:20 641 637 3	Adj. F-sta Prob	ared: R-squared: atistic: (F-statist	ic):	0.892 0.892 1755. 2.08e-307 -8902.0 1.781e+04 1.783e+04
Covariance	Type:	nonro	bust				
	coe	std err		t	P> t	[0.025	0.975]
SmallBiz	-1.873e+0	2.44e+04 5570.464 6749.947 0.013	- -	3.362	0.001 0.000	-2.97e+04 -5.59e+04	-7791.878 -2.94e+04
Omnibus: Prob(Omnib Skew: Kurtosis:	us):	0 -2	.899 .000 .128	Jarqı Prob			1.506 150790.360 0.00 2.51e+06

THEORETICAL MODEL – ENVIRONMENT

- * For any auction with $n \ge 2$ bidders where $n = n_s + n_l$ we observe the following:
 - Small business bidders follow the cost distribution $C \sim F_s(\cdot)$
 - Large business bidders follow the cost distribution $C \sim F_l(\cdot)$
 - The distributions are asymmetric meaning $F_s(\cdot) \neq F_l(\cdot)$

THEORETICAL MODEL – LARGE BIDDERS

- For a **large business bidder** with bid b_i in an auction with n_s small and n_l large bidders the probability of winning is equivalent to:
 - Pr(i wins with bid b_i) = Pr(($n_l 1$) bid $\geq b_i$) * Pr(n_s bid $\geq 1.05 * b_i$) (1)

$$= [1 - F_l(\beta_l^{-1}(b_i))]^{(n_l - 1)} * [1 - F_s(\beta_s^{-1}(1.05 * b_i))]^{(n_s)}$$
 (2)

- **B**ecause this bidder makes a profit equivalent to their bid b_i minus their individual cost C_i if they win, this bidder maximizes profit when:
 - $\max_{b_i} \{ (b_i C_i) * [1 F_l(\beta_l^{-1}(b_i))]^{(n_l 1)} * [1 F_s(\beta_s^{-1}(1.05 * b_i))]^{(n_s)} \}$ (3)

THEORETICAL MODEL – SMALL BIDDERS

- For a **small business bidder** with bid b_i in an auction with n_s small and n_l large bidders the probability of winning is equivalent to:
 - Pr(i wins with bid b_i) = Pr($(n_s 1)$ bid $\geq b_i$) * Pr(n_l bid $\geq (b_i / 1.05)$) (I) $= [1 F_l (\beta_l^{-1} ((b_i / 1.05))]^{(n_l)} * [1 F_s (\beta_s^{-1} (b_i))]^{(n_s 1)} (2)$
- ***** Because this bidder makes a profit equivalent to their bid b_i minus their individual cost C_i if they win, this bidder maximizes profit when:
 - $\max_{b_i} \{ (b_i C_i) * [1 F_l (\beta_l^{-1}(b_i / 1.05))]^{(n_l)} * [1 F_s (\beta_s^{-1}(b_i))]^{(n_s 1)} \}$ (3)

THEORETICAL MODEL – PROFIT MAXIMIZATION

- * Taking the derivative of the profit maximization equations with respect to b_i and solving for the firms cost C_i we reach the following:
 - First order condition for large business bidders:

$$C_{i} = b_{i} - \left(\frac{(n_{l}-1) * f_{l}(\beta_{l}^{-1}(b_{i}))}{\left(1 - F_{l}(\beta_{l}^{-1}(b_{i}))\right) * \beta_{l}'(\beta_{l}^{-1}(b_{i}))} + \frac{1.05 * n_{s} * f_{s}(\beta_{s}^{-1}(1.05 * b_{i}))}{\left(1 - F_{s}(\beta_{s}^{-1}(1.05 * b_{i})) * \beta_{s}'(\beta_{s}^{-1}(1.05 * b_{i}))\right)}\right)^{-1}$$

First order condition for small business bidders:

$$C_{i} = b_{i} - \left(\frac{n_{l} * f_{l}(\beta_{l}^{-1}(b_{i}/1.05))}{1.05 * \left(1 - F_{l}(\beta_{l}^{-1}(b_{i}/1.05))\right) * \beta_{l}'(\beta_{l}^{-1}(b_{i}/1.05))} + \frac{(n_{s}-1) * f_{s}(\beta_{s}^{-1}(b_{i}))}{\left(1 - F_{s}(\beta_{s}^{-1}(b_{i}))\right) * \beta_{s}'(\beta_{s}^{-1}(b_{i}))}\right)^{-1}$$

THE EMPIRICAL MODEL

- In order to implement our model in the empirical setting we will make several changes to the theoretical model.
- In order to replace terms that involve F_l , f_l and β'_l we introduce the random variable G_l

In order to replace terms that involve
$$F_s$$
, f_s and β'_s we introduce the random variable G_s

$$(1 - F_l(\beta_l^{-1}(b))) = (1 - G_l(b|n_l, n_s))$$

$$(1 - F_s(\beta_s^{-1}(b))) = (1 - G_s(b|n_l, n_s))$$

$$g_l(b|n_l, n_s) = f_l(\beta_l^{-1}(b)) \times \frac{1}{\beta_l'(\beta_l^{-1}(b))}$$

$$g_s(b|n_l, n_s) = f_s(\beta_s^{-1}(b)) \times \frac{1}{\beta_s'(\beta_s^{-1}(b))}$$

* We can estimate both $G_{l,s}(b|n_l,n_s)$ and $g_{l,s}(b|n_l,n_s)$ by using the distribution of observed bids and kernel density estimation.

THE EMPIRICAL MODEL (CONTINUED)

Substituting in G and g into the theoretical model, we will now be applying equation (1) to large business bidders and equation (2) to small business to derive the cost distributions distributions $C \sim F_l(\cdot)$ and $C \sim F_s(\cdot)$.

$$C_{i} = b_{i} - \frac{1}{\left(\frac{(n_{l} - 1) * g_{l}(b_{i}|n_{l}, n_{s})}{\left(1 - G_{l}(b_{i}|n_{l}, n_{s})\right)} + \frac{1.05(n_{s}) * g_{s}(1.05 * b_{i}|n_{l}, n_{s})}{\left(1 - G_{s}(1.05 * b_{i}|n_{l}, n_{s})\right)}\right)}$$
(1)

$$C_{i} = b_{i} - \frac{1}{\left(\frac{(n_{l}) * g_{l}(b_{i}/1.05 | n_{l}, n_{s})}{1.05 \left(1 - G_{l}(b_{i}/1.05 | n_{l}, n_{s})\right)} + \frac{(n_{s} - 1) * g_{s}(b_{i}|n_{l}, n_{s})}{\left(1 - G_{s}(b_{i}|n_{l}, n_{s})\right)}\right)}$$
(2)

 \diamond Note: from now on we will be conditioning G and g on the engineers estimate x in addition to the number of bidders.

ALGORITHM IMPLEMENTATION

Steps:

- Identify a combination of $n_s \& n_l$ bidders and subset the data to that combination.
- Remove auctions with bids that are considered outliers.
- Create the distributions g(b|x) and G(b|x) for both small and large bidders where x is the engineers estimate.
- Calculate the firm's cost C_i given bid b_i using the appropriate equation depending on the business classification (small or large).

Number of Bids per Bidder Combination:

	Number of Small Business Bidders	Number of Large Business Bidders	count
10	1	3	238
1	0	3	189
9	1	2	168
2	0	4	131
11	1	4	129
17	2	2	127
0	0	2	111
18	2	3	109
12	1	5	96
28	3	3	96

ESTIMATION RESULTS

- When carrying out estimation steps, I focused on auctions with I small bidder and 3 large bidders.
 - The auctions with this bidder combination had bid and cost distributions that were approximately normal after the removal of outliers allowing for easier estimation.
 - After the removal of outliers, there were only 26 auctions with 104 bids.

With the Bid Preference Program:

 The total procurement cost faced by Caltrans was \$10,470,375

Without the Bid Preference Program:

- The total procurement cost faced by Caltrans was: \$13,519,275
- The average procurement cost **decreased** by \$117,265 in the presence of the bid preference program.
- Small businesses wins increased from 5 auctions without the discount to 9 auctions with the discount.

CONCLUSIONS AND NEXT STEPS

Conclusions:

- The bid preference program appears to increase competition and decrease total procurement cost.
- Due to the small sample size and single bidder combination I'd be hesitant to draw any concrete conclusions.

Next Steps:

- Try more bidder combinations to generalize the results.
- Rerun the simulations in log scale (or other transformation) to prevent errors in estimation such as negative values.

QUESTIONS?