

Prof.: Dr. Marcelo Manzato

(mmanzato@icmc.usp.br)

Aula 3 - Áudio

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 3-160

- 1 Características do Som.
- 2 Digitalização.
- 3 Compressão de Áudio.

1. Características do Som

1.1 - O quê é som?

- Som é um fenômeno físico produzido por variações (vibrações) na pressão do ar.
 - Cordas de violino, bater palmas, cordas vocais, ...
- Com as variações
 - as moléculas vizinhas vibram no ar criando um variação de pressão no ar à volta.
 - Essa alteração entre altas pressões e baixas pressões propaga-se no ar, em todas as direções, como uma onda (mecânica).

- Som é uma onda mecânica.
 - Possui alguns aspectos, entre eles: amplitude e frequência.

- Amplitude -> Intensidade
 - Está relacionada ao volume do som. Quanto maior a amplitude, mais alto ouvimos o som.

- Amplitude -> Intensidade
 - Medida em decibéis (dB).

Intensidade	Exemplos típicos
0dB	Limite da audição
25dB	Estúdio de gravação
50dB	Escritório
70dB	Conversação típica
90dB	Home audio
120dB	Limiar da dor
140dB	Show de rock

Freqüência

- Freqüência determina altura do som (altura ≠ volume).
 - Frequências altas = altura maior = sons agudos.
 Frequências baixas = altura menor = sons graves.

Categoria	Intervalo de Frequência
Infra-som	0 - 20 Hz
Som Audível	20 Hz - 20 KHz
Ultra-som	20 KHz - 1GHz
Hipersom	1 GHz - 10 GHz

- Envelope
 - Ataque (Attack), Decaimento (Decay),
 Sustentação (sustain) e Libertação (release)

1.3 – Como ouvimos sons?

- As ondas sonoras atingem o tímpano.
- O tímpano faz os ossos do ouvido médio vibrarem.
- Essas vibrações são convertidas em impulsos nervosos que são transmitidos, via o nervo auditivo, para o cérebro.
- Quando esses impulsos chegam ao cérebro, "ouvimos" o som!

1.3 – Como ouvimos sons?

 Assim, o ouvido funciona como um sensor ou transdutor que converte sons em estímulos nervosos que podem ser interpretados pelo cérebro.

2. Digitalização

- Para poder ser utilizado em um computador, o som precisa de duas transformações:
 - Eletrônica: conversão de ondas mecânicas em sinais elétricos.
 - Digital: conversão de sinais elétricos em bits.
- Similarmente ao ouvido, o microfone é um transdutor.
 - Converte as variações de pressão do ar em sinais elétricos usáveis pelos equipamentos de áudio.
 - A saída de um microfone é uma voltagem elétrica analógica que varia no tempo do mesmo modo que as ondas mecânicas do som = Sinal de Áudio

2.1 - Princípios de Digitalização.

- Freqüência: taxa com que o sinal varia entre valores positivos e negativos.
 É medida em Hertz (Hz).
- Amplitude: diferença entre os máximos valores positivos e negativos do sinal de áudio. Pode ser expressa observando-se a voltagem (dependente do sistema). Normalmente expressa em decibéis (dB).

2.1 - Princípios de Digitalização.

- Conversão analógico-digital.
 - Sinal de áudio possui duas dimensões: voltagem e tempo. As quais serão digitalizadas através de dois processos:
 - Amostragem: realiza leituras periódicas e instantâneas da voltagem em espaços de tempo uniformes.
 - Quantização: converte os valores analógicos amostrados em valores digitais.
 - Codificador:
 - Filtro digital + ADC (Analog to Digital Converter)

4

- O quanto deve ser amostrado?
 - Reconstruir exatamente o sinal → infinitas amostras.
 - Poucas amostras → sinal distorcido.

- O quanto deve ser amostrado?
 - Teorema de Nyquist: "Para obter uma representação precisa de um sinal analógico, sua amplitude deve ser amostrada a uma taxa mínima igual ou superior ao dobro da componente de mais alta freqüência presente no sinal". (taxa de Nyquist).
 - Ex. Se a frequência mais alta do sinal é de 20KHz, para que a reconstrução seja precisa, a amostragem deve ser realizada a 40KHz, ou 40 Ksps.
 - sps = samples per second.

- Aliasing.
 - Sinal = 6 KHz
 - Exemplo: 8 KHz de amostragem

Teorema de Nyquist → 2*6 = 12 KHz de amostragem (mínimo)

- Filtros anti-aliasing.
 - Removem as componentes acima da taxa de Nyquist (frequências muito altas).
- Em sistemas multimídia:
 - A largura de banda do canal é normalmente menor que a largura de banda do sinal.
 - A taxa de amostragem é determinada pelo largura de banda do canal.
 - A taxa de Nyquist será baseada na frequência mais alta suportada pelo canal.

2.2 - Exercício

- Determine a taxa de amostragem e a largura de banda de um filtro anti-aliasing necessários para digitalizar um sinal analógico cuja largura de banda varia de 15 Hz até 10 kHz, assumindo que:
 - O sinal digital será armazenado no computador
 - O sinal digital será transmitido em um canal com largura de banda de até 3.4 kHz.

2.3 - Quantização.

- Processo pelo qual os valores analógicos das amostras tomadas da amplitude do sinal são convertidos em valores digitais.
- Para reconstruir exatamente o sinal:
 - Necessidade de um número infinito de bits.
- Usando um número finito de bits:
 - Representa-se cada amostra através de um número correspondente de níveis discretos.

2.3 - Quantização.

1000 1010 0110 0011 0011 0111 1010 0111 0100 0010 0110 1010 1000 0100 0010

Tempo —→

2.3 - Quantização.

- Amostragem e Quantização
 - Número de amostras x número de níveis.
 - Compromisso.
 - Quantização resulta em distorções.

- Taxas comuns de amostragem:
 - 8.000Hz, 11.025Hz, 22.050Hz e 44.100Hz (CD).
- Números comuns de bits por amostra:
 - 4, 8, 16 e 24.
- Canais de som:
 - 1 (mono), 2 (stereo), 3, 5, 7, ...
- Qualidade de CD:
 - Amostras a 44.100Hz (4,1 KHz), 16 bits por amostra e 2 canais de som (stereo).

- Técnica conhecida como modulação por código de pulso (linear).
 - Pulse Code Modulation PCM. PCM linear.
- Circuito que realiza amostragem e quantização:
 - Conversor analógico-digital (analog to digital converter ADC).
 - Caminho inverso: DAC. Usado na reprodução de áudio digital.
- PCM é normalmente implementado em hardware.

- Após a captura
 - os dados amostrados e quantizados devem ser "guardados" em algum formato – mídia de representação.
 - WAV e MP3, por exemplo.

- Aspectos quantitativos.
 - Quantos bytes serão necessários para armazenar 1 segundo de áudio, capturado com qualidade de CD?

4

- Aspectos quantitativos.
 - Quantos bytes serão necessários para armazenar 1 segundo de áudio, capturado com qualidade de CD?
 - 1(segundo) * 44.100 (taxa de amostragem) * 2 (16 bits por amostra) * 2 (som estéreo) = 176.400 bytes.
 - Necessidade para transmissão: 1,41Mbps!

- Assumindo que a largura de banda de um sinal de fala é de 50 Hz até 10 kHz, e que a largura de banda de um sinal de música é de 15 Hz até 20 kHz, calcule:
 - A taxa de bits que é gerada pelo processo de digitalização em cada caso assumindo a taxa de amostragem Nyquist, e 12 bits por amostra para o sinal de fala e 16 bits por amostra para o sinal de música
 - Calcule a quantidade de memória necessária para armazenar
 10 minutos de música em som estéreo

3. Compressão de Áudio

3.1 – PCM Logarítmico

- Pulse Code Modulation
 - Processo de digitalização de áudio para ser usado em redes públicas de telefonia comutada (PSTN)
 - Inclui um compressor.
 - Recomendação ITU-T G.711.

3.1 – PCM Logarítmico

- Explora quantização não-linear.
 - Amplitudes maiores → maiores intervalos de quantização.
 - Amplitudes menores implicam em maior percepção de ruído de amostragem.
- Desempenho:
 - Utilizando 8 bits equivale à quantização linear com 12 bits.

3.1 – PCM Logarítmico

- PCM A-Law e μ-Law.
 - Usados em telefonia.
 - Largura de banda do sinal de voz: 200Hz a 3.4kHz.
 - Circuito telefônico:
 - 200 Hz até 3.4 kHz (Nyquist: 6.8 kHz)
 - Taxa limite do filtro: 8 kHz devido a imperfeições
 - μ-Law = EUA e Japão, 7 bits.
 - A-Law = Europa e outros, 8bits.

3.2 - ADPCM

- Adaptative Differential PCM.
 - Amostras adjacentes de áudio são parecidas. ADPCM faz previsão da amostra seguinte e codifica apenas a diferença.
 - Mudanças brusca entre amostras adjacentes causam distorções.
 - O algoritmo faz lookahead durante a compressão para adaptar a escala de diferenças de acordo com o tamanho da mudança.

Perceptual Coding – Modelo psico-acústico

Sensibilidade da audição

Perceptual Coding – Modelo psico-acústico

Mascaramento de frequência

- Mascaramento temporal
 - Após ouvir um som alto, demorará alguns instantes (~50 milisegundos) até que o ouvido possa perceber um som mais baixo

3.3 - MP3

- MPEG-1 Audio Layer 3.
 - Utiliza um modelo psico-acústico complexo.
 - Sensibilidade do ouvido.
 - Mascaramento temporal.
 - Mascaramento de frequência.
 - Elimina as frequências que o ouvido humano não consegue captar.
 - Audição humana: 20Hz a 20KHz; 2 a 4KHz.
 - Compressão com perda. As perdas não são perceptíveis.
 - Som de alta qualidade e a arquivos até 12 vezes menores.

Codecs

3.4 – Áudio sintetizado.

- Audio pode ser sintetizado.
 - sintetizadores: aparelhos capazes de gerar sons sintéticos a partir de notas musicais.
 - Cada nota é um código.
 - Sintetizadores podem "imitar" o som de diversos instrumentos.
- MIDI Music Instrument Digital Interface
 - Protocolo para comunicação digital entre instrumentos eletrônicos.
 - Formato das mensagens, conectores, cabos e sinais eletrônicos
 - Arquivos .MID.

Para Saber Mais

- Áudio e digitalização:
 - Luther, A. C. Using Digital Video. AP Professional, 1995.
 - Halsall, F. Multimedia Communications: Applications, Networks, Protocols, and Standards, Addison-Wesley Publishing, 2001. ISBN: 0201398184. Capítulo 2.
- MIDI:
 - http://www.midi.org/

Exercícios

Calcule:

- A capacidade necessária para armazenar
 60 minutos de um áudio com qualidade de CD.
- Tempo necessário para transmitir 30 segundos do áudio supra-citado usando um canal de transmissão com:
 - 64kbps
 - 1.5 Mbps