Nonlinear Data Structure

http://smartlead.hallym.ac.kr

Instructor: Jin Kim

010-6267-8189(033-248-2318)

jinkim@hallym.ac.kr

Office Hours:

10장 가중치 그래프

Shortest Path(최단경로)

Floyd-Warshall algorithm for shortest path: (모두에서 모두로의 최대경로)

- Use a different dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph G=(V,E).
- ◆ The resulting algorithm, known as the Floyd-Warshall algorithm, runs in O (V³) time.
 - <u>negative-weight edges may be</u> present,(음의가중치허용)
 - ◆ But we shall assume that there are no negative-weight cycles. (합이 음인 사이클은 안됨)

모든 정점 쌍의 최단 경로(1)(2?)

- $D^{k}[i, j] \leftarrow \min\{D^{k-1}[i, j], D^{k-1}[i, k] + D^{k-1}[k, j]\},\ k \ge 0$
 - $1.\overline{O}$ 점 i에서 j까지의 최단경로 탐색에서 인덱스가 k인 정점까지 이용할 수 있는 환경에서 정점k가 최단경로에 포함되지 않는다면 그 최단 경로 $D^k[i,j]$ 는 $D^{k-1}[i,j]$ 와 같다.
 - 2. 정점 i에서 j까지의 최단경로 탐색의 인덱스가 k인 정점까지 이용할 수 있는 환경에서 정점 k가 최단경로에 포함되어야 한다면 (i,k)와 (k,j)모두 최단 거리이어야 하고 그 경로상에 있는 정점의 인덱스는 모두 k-1이하이다. 따라서 이때 $D^k[i,j]$ 는 $D^{k-1}[i,k]$ + $D^{k-1}[k,j]$ 가 된다.

Floyd Warshall Algorithm

- Let's go over the premise of how Floyd-Warshall algorithm works...
 - Let the vertices in a graph be numbered from 1 ... n.
 - ◆ Consider the subset {1,2,..., k} of these n vertices.
 - Imagine finding the shortest path from vertex i to vertex j that uses vertices in the set {1,2,...,k} only.
 - There are two situations:
 - 1) k is an intermediate vertex on the shortest path.
 - 2) k is not an intermediate vertex on the shortest path.

모든 정점 쌍의 최단 경로(2)

◆ allShortestPath 알고리즘

```
allShortestPath(G, n)
 // G=(V, E), |V|=n
  for (i \leftarrow 0; i < n; i \leftarrow i+1) do {
    for (i \leftarrow 0; j < n; j \leftarrow j+1) do {
        D[i, i] ← weight[i, i]; // 가중치 인접 행렬을 복사
  for (k←0; k<n; k←k+1) do { // 중간 정점으로 0에서 k까지 사용하는 경로
    for (i←0; i<n; i←i+1) do { // 모든 가능한 시작점
        for (j←0; j<n; j←j+1) do { // 모든 가능한 종점
            if (D[i, i] > (D[i, k] + D[k, i])) then
                 // 보다 짧은 경로가 발견되었는지를 검사
                 D[i, j] \leftarrow D[i, k] + D[k, j];
end allShortestPath()
```


Weight matrix(가중치 행렬)

(a) 경유하는 정점이 없음

정점(1)을 경유하는 경로를 고려. 노란색은 자기자신을 경유하는 것을의미하므로 변동없음 하늘색은 자기에서 출발하여 자신으로 오는 사이클이므로 의미없음을 의미

(A) 경유하는 정점이 없음

정점(1)을 경유할경우

정점(1)을 경유하는 경로를 고려. 노란색은 자기자신을 경유하는 것을의미하므로 변동없음 하늘색은 자기에서 출발하여 자신으로 오는 사이클이므로 의미없음을 의미

adjacency matrix : 인접 행렬

B→A:ॐ 경유못함 C→A:ፙ 경유못함 E→A:ፙ 경유못함

정점(B)을 경유할경우

 $A \rightarrow B \rightarrow A$

$$A \rightarrow B(3)$$
, $B \rightarrow D(1) = 4$
값변경(change value)

A→B(3), B →E(7) =10 기존값유지(keep value)

 $C \rightarrow B(4), B \rightarrow D(1) = 5$ 값변경(change value)

D→B(5), B →C(∞) =∞ 기존값유지(keep current value)

E→B(∞)=∞ 기존값유지(keep current value)

E→B(∞)=∞ 기존값유지(keep current value)

정점(C)을 경유할경우

$$A \rightarrow C(8), C \rightarrow D(5)=13$$

기존값유지(keep current value)

A→C(8),C → E(11)=21 기존값유지(keep current value)

B→C(∞), 기존값유지(keep current value)

B→C(∞), 기존값유지(keep current value)

B→C(∞), 기존값유지(keep current value)

D→C(-5),C →A(∞) 기존값유지(keep current value)

D→C(-5),C →B(4)=-1 값변경(change value)

D→C(-5),C →E(11)=6 기존값유지(no change)

정점(D)을 경유할경우

B→D(1),D →C(-5)=-4 값변경(change value)

B→D(1),D →C(-2)=-1 값변경(change value)

C→D(5),D →A(2)=7 값변경(change value)

C→D(5),D →A(2)=7 값변경(change value)

C→D(5),D →B(-1)=4 값유지(no change)

C→D(5),D →E(-2)=3 값변경(change value)

C→D(5),D →E(-2)=3 값변경(change value)

E→D(6),D →A(2)=8 값변경(change value)

E→D(6),D →A(2)=8 값변경(change value)

E→D(6),D →B(-1)=5 값변경(change value)

E→D(6),D →B(-1)=5 값변경(change value)

E→D(6),D →C(-5)=1 값변경(change value)

E→D(6),D →C(-5)=1 값변경(change value)

정점(E)을 경유할경우

A→E(-4),E →C(1)=-3 값변경(change value)

A→E(-4),E →D(6)=2 값변경(change value)

$$B \rightarrow E(-1), E \rightarrow A(8)=7$$

값유지(no change)

$$B \rightarrow E(-1), E \rightarrow C(1)=0$$

값유지(no change)

$$B \rightarrow E(-1), E \rightarrow D(6)=5$$

값유지(no change)

$$C \rightarrow E(3), E \rightarrow A(8)=11$$

값유지(no change)

$$D \rightarrow E(-2), E \rightarrow A(8)=6$$

값유지(no change)

$$D \rightarrow E(-2), E \rightarrow B(5)=3$$

값유지(no change)

Final all to all shortest path

All to all shortest path

정점(A+B+C+D+E)을 경유하는 경로를 고려 최단경로

모든 정점 쌍의 최단 경로(3)

그래프 G에 대한 allShortestPath 알고리즘의 수행 내용

Lab

0 1 2 3

The weight matrix and the graph

	1	2	3	4	5
1	0	1	∞	1	5
2	9	0	3	2	∞
3	∞	∞	0	4	∞
4	∞	∞	2	0	3
5	3	∞	∞	∞	0

감사합니다.

