

Понятие линейного оператора

Содержание лекции:

Настоящая лекция посвящена обсуждению линейных отображений между линейными пространствами. Мы введем основные понтия и объекты, связанные с линейными операторами, а также сформулируем наиболее важные их свойства. В конце мы докажем, что множество линейных операторов может быть наделено структурой линейного пространства.

Ключевые слова:

Линейный оператор, ядро, образ, теорема об изоморфизме, относительный базис, теорема о ядре и образе, равенстро операторов, сумма, умножение на число, линейное пространство операторов.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

ПОНЯТИЕ ЛИНЕЙНОГО ОПЕРАТОРА

1.1 Определение линейного оператора

Отображение $\varphi: X \to Y$ линейного пространства X в линейное пространство Y называется **линейным оператором**, если $\forall x, x_1, x_2 \in X, \quad \forall \alpha \in \mathbb{k}$

$$\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2), \quad \varphi(\alpha x) = \alpha \varphi(x).$$

Nota bene Множество линейных операторов из $X(\mathbb{k})$ в $Y(\mathbb{k})$ обозначается $\mathrm{Hom}_{\mathbb{k}}(X,Y)$.

Nota bene Оператор $\varphi: X \to X$, отображающий X в себя, называют эндоморфизмом и пишут $\varphi \in \operatorname{End}(X)$, а в случае отображения на себя - автоморфизмом и пишут $\varphi \in \operatorname{Aut}(X)$.

Пример 1.1. Примеры линейных операторов

- 1. $\Theta: X \to Y$, $\Theta x = 0_Y$ нулевой оператор;
- 2. $\mathcal{I}: X \to X$, $\mathcal{I}x = x$ тождественный оператор;
- 3. $\mathcal{P}_{L_1}^{\parallel L_2}: X \to X$, $X = L_1 \oplus L_2$ $\mathcal{P}_{L_1}^{\parallel L_2} x = x_1$, $x_1 \in L_1$ проектор;
- 4. $\varphi:X\to X,\quad X=C^1[-1,1]$ интегральный оператор:

$$(\varphi f)(t) = \int_{-1}^{1} A(t, s) f(s) ds.$$

A(s,t) -непрерывная функция на $C^1(-1,1) \times C^1(-1,1)$ - интегральное ядро.

5. $D: X \to X$, $X = \mathcal{P}_n$ - дифференциальный оператор:

$$(Dp)(t) = \frac{d}{dt}p(t).$$

Ядром линейного оператора $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ называется подмножество X:

$$\ker \varphi = \{ x \in X : \quad \varphi(x) = 0 \}$$

Лемма 1.1. Ядро $\ker \varphi$ - линейное подпространство $X(\mathbb{k})$.

Образом линейного отображения $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ называется подмножество Y:

$$\operatorname{Im} \varphi = \{ y \in Y : \exists x \in X \quad \varphi(x) = y \} = \varphi(X).$$

Лемма 1.2. Образ $\text{Im } \varphi$ - линейное подпространство $Y(\mathbb{k})$.

ПОНЯТИЕ ЛИНЕЙНОГО ОПЕРАТОРА

1.2 Теорема о ядре и образе

Теорема 1.1. Пусть $\varphi \in \text{Hom}_{\mathbb{k}}(X,Y)$, тогда имеет место изоморфизм

$$X/\ker\varphi\simeq\operatorname{Im}\varphi.$$

Отображение $\bar{\varphi}: X/\ker \varphi \to \operatorname{Im} \varphi$, заданное как

$$x + \ker \varphi \mapsto \varphi(x)$$
.

Гомоморфно, сюрьективно и инъективно, а значит является изоморфизмом.

4

Пусть $L \leq X$ - линейное подпространство X. Набор $\{v_j\}_{j=1}^m$ из X называется линейно независимым над \Bbbk относительно L, Если

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots \lambda_m v_m \in L \quad \Rightarrow \quad \lambda_1 = \lambda_2 = \dots = \lambda_m = 0.$$

Nota bene Приведенное в определение условие эквивалентно следующему:

$$\lambda_1 \bar{v}_1 + \lambda_2 \bar{v}_2 + \ldots + \lambda_m \bar{v}_m = \bar{0} \quad \Rightarrow \quad \lambda_1 = \lambda_2 = \ldots = \lambda_m = 0.$$

Говорят, что $\{v_j\}_{j=1}^m$ порождает X относительно L, если

$$X = \langle v_1, v_2, \dots, v_m \rangle_{\mathbb{k}} + L.$$

Набор $\{v_j\}_{j=1}^m$ называется **базисом** X **относительно** L, если он линейно независим относительно L и порождает X относительно L.

Лемма 1.3. Следующие условия эквивалентны:

- $\{v_j\}_{j=1}^m$ базис X относительно L;
- $\{\bar{v}_1,\bar{v}_2,\ldots,\bar{v}_m\}$ базис X/L;
- $X = \langle v_1, v_2, \dots, v_m \rangle_{\mathbb{k}} \oplus L.$

▶

Доказательство всех импликаций следует прямо из определений.

•

Лемма 1.4. Если $L \leq X$ тогда имеет место:

$$\dim_{\mathbb{k}} X = \dim_{\mathbb{k}} L + \dim_{\mathbb{k}} X/L$$

▶

Доказательство прямо следует их предыдущей леммы.

4

ПОНЯТИЕ ЛИНЕЙНОГО ОПЕРАТОРА

Теорема 1.2. (о ядре и образе) Пусть $\varphi \in \text{Hom}_{\mathbb{k}}(X,Y)$, тогда имеет место

$$\dim_{\mathbb{k}} \ker \varphi + \dim_{\mathbb{k}} \operatorname{Im} \varphi = \dim_{\mathbb{k}} X.$$

Используем теорему об изоморфизме, а потом лемму об относительных базисах.

1.3 Пространство линейных операторов

Говорят, что операторы $\varphi, \psi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ равны, если

$$\varphi x = \psi x, \quad \forall x \in X.$$

Отображение χ называется **суммой** линейных операторов $\varphi, \psi \in \operatorname{Hom}_{\Bbbk}(X,Y)$, если

$$\forall x \in X \quad \chi(x) = \varphi(x) + \psi(x).$$

Лемма 1.5. Имеет место $\chi \in \text{Hom}_{\mathbb{k}}(X,Y)$.

$$\chi(x_1 + x_2) = \chi(x_1) + \chi(x_2),$$

$$\chi(\lambda x) = \lambda \chi(x)$$

Докажем первое утверждение:

$$\chi(x_1 + x_2) = \varphi(x_1 + x_2) + \psi(x_1 + x_2) = (\varphi + \psi)x_1 + (\varphi + \psi)x_1 = \chi(x_1) + \chi(x_2).$$

Второе утверждение доказывается аналогично. •

Отображение ζ называется **умножением** линейного оператора φ на число λ , если

$$\forall x \in X \quad \zeta x = \lambda \varphi(x)$$

Лемма 1.6. Имеет место $\zeta \in \operatorname{Hom}_{\Bbbk}(X,Y)$.

Аналогично доказательству для суммы.

Теорема 1.3. Множество $\operatorname{Hom}_{\Bbbk}(X,Y)$ - линейное пространство над полем \Bbbk .

Прямая проверка аксиом линейного пространства.

Матрица линейного оператора

Содержание лекции:

В настоящей лекции мы рассмотрим представление оператора в линейном пространстве с заданным базисом. Мы покажем, что произвольный линейный оператор в этом случае моно представить прямоугольной матрицей соответствующих размеров. Также будет обсуждаться вопрос преобразования матрицы оператора при замене базисов пространств.

Ключевые слова:

Матрица линейного оператора, базис размерность пространства линейных операторов, преобразование матрицы оператора, преобразование подобия.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА

2.1 Матрица линейного оператора

Пусть $\varphi \in \operatorname{Hom}_{\mathbb{k}}(X,Y)$ - линейный оператор и $\{e_i\}_{i=1}^n, \ \{g_j\}_{j=1}^m$ - базисы пространств X и Y соответственно.

Матрицей линейного оператора φ в паре базисов $\{e_i\}_{i=1}^n$ и $\{g_j\}_{j=1}^m$ называется матрица $A = \|\alpha_i^j\|$ по столбцам которой находятся координаты образов векторов базиса $\{e_i\}_{i=1}^n$ в базисе $\{g_j\}_{j=1}^m$:

$$\varphi(e_i) = \sum_{j=1}^m \alpha_i^j g_j.$$

Пример 2.1. Примеры:

1. $\Theta: X \to Y$:

$$A_{\Theta} = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

2. $\mathcal{I}: X \to X$:

$$A_{\mathcal{I}} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

3. $\mathcal{P}_{L_1}^{\parallel L_2}: X \to X$:

$$A_{\mathcal{P}_{L_1}^{||L_2}} = \begin{pmatrix} A_{\mathcal{I}} & 0\\ 0 & A_{\Theta} \end{pmatrix},$$

так как

$$\mathcal{P}_{L_1}^{\parallel L_2} x = x, \quad \forall x \in L_1,$$

$$\mathcal{P}_{L_1}^{\parallel L_2} x = 0, \quad \forall x \in L_2.$$

4. $D: \mathcal{P}_n \to \mathcal{P}_n$:

$$A_{\mathcal{D}} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & n \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix},$$

в базисе $\{1, t, t^2, \dots, t^n\}$.

МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА

Теорема 2.1. Задание линейного оператора φ эквивалентно заданию его матрицы A в фиксированной паре базисов.

▶

⇒ Очевидно.

 \Leftarrow Пусть $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ - линейный оператор и $\{e_i\}_{i=1}^n, \{g_j\}_{j=1}^m$ - базисы пространств X и Y соответственно. Рассмотрим элементы $x \in X$ и $y \in Y$, такие что:

$$x = \sum_{i=1}^{n} \xi^{i} e_{i}, \quad y = \sum_{j=1}^{m} \eta^{j} g_{j}, \quad \varphi(x) = y.$$

Рассмотрим действие оператора на элемент x:

$$\varphi(x) = \varphi\left(\sum_{i=1}^{n} \xi^{i} e_{i}\right) = \sum_{i=1}^{n} \xi^{i} \varphi\left(e_{i}\right) = \sum_{i=1}^{n} \xi^{i} \sum_{j=1}^{m} \alpha_{i}^{j} g_{j} = \sum_{j=1}^{m} \eta^{j} g_{j},$$

Откуда следует, что

$$\eta^j = \sum_{i=1}^n \xi^i \alpha_i^j.$$

4

Теорема 2.2. Набор операторов $\{^i_j \varepsilon\}$, действующих на произвольный вектор $x \in X$ по правилу

$$_{j}^{i}\varepsilon(x) = \xi^{i}g_{j}, \quad x = \sum_{i=1}^{n} \xi^{i}e_{i},$$

образует базис пространства $\operatorname{Hom}_{\Bbbk}(X,Y)$

Необходимо показать, что набор операторов $\{^i_k \varepsilon\}$ является полным и линейно независимым в $\operatorname{Hom}_{\Bbbk}(X,Y)$:

ПН: пусть $\varphi \in \operatorname{Hom}_{\mathbb{k}}(X,Y)$, тогда

$$\varphi(x) = \varphi\left(\sum_{i=1}^n \xi^i e_i\right) = \sum_{i=1}^n \xi^i \varphi(e_i) = \sum_{i=1}^n \xi^i \sum_{j=1}^m a_i^j g_j$$
$$= \sum_{i=1}^n \sum_{j=1}^m \xi^i a_i^j g_j = \sum_{i=1}^n \sum_{j=1}^m \sum_{j=1}^i \varepsilon(x) a_i^j, \quad \forall x \in X$$

Откуда следует, что

$$\varphi = \sum_{i=1}^{n} \sum_{j=1}^{m} {}_{j}^{i} \varepsilon a_{i}^{j}, \quad \forall \varphi \in \operatorname{Hom}_{\mathbb{k}}(X, Y).$$

ЛНЗ: положим, рассмотрим линейную комбинацию векторов набора $\{^i_j \varepsilon\}$:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} {}_{j}^{i} \varepsilon \beta_{i}^{j} = \Theta,$$

МАТРИЦА ЛИНЕЙНОГО ОПЕРАТОРА

и применим обе части операторного равенства к базисному элементу e_k пространства X. Получим:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} {}_{j}^{i} \varepsilon(e_{k}) \beta_{i}^{j} = \sum_{i=1}^{n} \sum_{j=1}^{m} \delta_{k}^{i} g_{j} \beta_{i}^{j} = \sum_{j=1}^{m} g_{j} \beta_{k}^{j} = 0_{Y}$$

Но набор $\{g_j\}_{j=1}^m$ - линейно-независимый (как базис Y) следовательно $\beta_k^j=0, \forall k$. Применяя полученное выражение ко всем элементам базиса $\{e_k\}_{k=1}^n$ получим что все коэффициенты β_k^j равны нулю.

4

Nota bene Пространство $\operatorname{Hom}_{\Bbbk}(X,Y)$ изоморфно пространству K_n^m $m \times n$ матриц.

Nota bene Размерность линейного пространства $\operatorname{Hom}_{\Bbbk}(X,Y)$ равна

$$\dim \operatorname{Hom}_{\mathbb{k}}(X,Y) = \dim_{\mathbb{k}} K_n^m = \dim_{\mathbb{k}} X \cdot \dim_{\mathbb{k}} Y = m \cdot n.$$

Теорема 2.3. Пусть $\varphi \in \operatorname{End}(X)$ имеет в базисах $\{e_i\}_{i=1}^n$ и $\{\tilde{e}_j\}_{j=1}^n$ соответственно матрицы A и \tilde{A} . Тогда

$$\tilde{A} = S \cdot A \cdot T, \quad S = T^{-1}.$$

>

Вычислим образ $\varphi(\tilde{e}_k)$ двумя способами:

$$\varphi(\tilde{e}_k) = \sum_{j=1}^n \tilde{a}_k^j \tilde{e}_j = \sum_{j=1}^n \sum_{i=1}^n \tilde{a}_k^j \tau_j^i e_i.$$

$$\varphi(\tilde{e}_k) = \varphi\left(\sum_{j=1}^n \tau_k^j e_j\right) = \sum_{j=1}^n \tau_k^j \varphi\left(e_j\right) = \sum_{j=1}^n \sum_{i=1}^n \tau_k^j a_j^i e_i.$$

Доказательство следует из равенства правых частей полученных выражений.

4

Преобразованием подобия матрицы А называется преобразование вида:

$$A\mapsto T^{-1}\cdot A\cdot T,\quad \det T\neq 0.$$

Nota bene Преобразование матрицы произвольного оператора $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ с матрицами перехода T_X и T_Y имеет вид:

$$\tilde{A} = T_Y^{-1} \cdot A \cdot T_X.$$

 $\pmb{Nota\ bene}$ При замене базиса матрица A линейного оператора φ подвергается преобразованию подобия.

Алгебры операторов и матриц

Содержание лекции:

В настоящей лекции мы обсудим композицию линейных операторов, а также рассмотрим структуры, которые возникают на множествах с этой операцией. Наибольший интерес для нас будет представлять алгебра линейных операторов и связанная с ней алгебра матриц. В конце лекции мы введем новое понятие обратного оператора и обсудим ключевые свойства этого отображения.

Ключевые слова:

Композиция операторов, произведение матриц, алгебра операторов, структурные константы алгебры, обратимый оператор, обратный оператор, критерий существования обратного оператора.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

3.1 Композиция операторов

Пусть $X(\Bbbk)$, $Y(\Bbbk)$, $Z(\Bbbk)$ - линейные пространства. **Композицией** линейных операторов $\psi \in \operatorname{Hom}_{\Bbbk}(Y,Z)$ и $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ называется отображение $\chi \in \operatorname{Hom}_{\Bbbk}(X,Z)$, такое что

$$\chi = \psi \circ \varphi \quad \psi \varphi x = \psi (\varphi x) \quad \forall x \in X.$$

Лемма 3.1. Отображение χ - линейный оператор.

Действительно:

$$\chi(x_1 + x_2) = \psi(\varphi(x_1 + x_2)) = \psi(\varphi x_1 + \varphi x_2) = \psi(\varphi x_1) + \psi(\varphi x_2) = \chi x_1 + \chi x_2,$$
$$\chi(\lambda x) = \psi(\varphi(\lambda x)) = \psi(\lambda \varphi x) = \lambda \psi(\varphi x) = \lambda \chi x.$$

Пусть $\{e_i\}_{i=1}^n$, $\{g_j\}_{j=1}^m$ и $\{h_k\}_{k=1}^p$ - базисы пространств X,Y и Z соответственно. Определим матрицы операторов φ,ψ и χ в этих базисах:

$$\varphi \quad \leftrightarrow \quad A_{\varphi} = \|\alpha_i^j\| : \quad \varphi e_i = \sum_{j=1}^m \alpha_i^j g_j,$$

$$\psi \quad \leftrightarrow \quad B_{\psi} = \|\beta_j^k\| : \quad \psi h_k = \sum_{k=1}^p \beta_j^k h_k,$$

$$\chi \quad \leftrightarrow \quad C_{\chi} = \|\gamma_i^k\| : \quad \chi e_i = \sum_{j=1}^p \gamma_j^k h_k,$$

Произведением матриц $B_{p \times m}$ и $A_{m \times n}$ называется матрица $C_{p \times n}$, такая что

$$C = \|\gamma_i^k\|: \quad \gamma_i^k = \sum_{j=1}^m \beta_j^k \cdot \alpha_i^j.$$

Теорема 3.1. Пусть $\chi = \psi \circ \varphi$, тогда $C = B \cdot A$.

Действительно, из определения следует

$$\chi e_i = \psi\left(\varphi e_i\right) = \psi\left(\sum_{j=1}^m \alpha_i^j g_j\right) = \sum_{j=1}^m \alpha_i^j \psi\left(g_j\right) = \sum_{j=1}^m \alpha_i^j \left(\sum_{k=1}^p \beta_j^k h_k\right) = \sum_{k=1}^p \left(\sum_{j=1}^m \alpha_i^j \beta_j^k\right) h_k = \sum_{i=1}^p \gamma_i^k h_k \quad \Rightarrow \quad \gamma_i^k = \sum_{j=1}^m \alpha_i^j \beta_j^k.$$

АЛГЕБРЫ ОПЕРАТОРОВ И МАТРИЦ

3.2 Алгебры операторов и матриц

Лемма 3.2. Операция композиции операторов ассоциативна:

$$\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y), \quad \psi \in \operatorname{Hom}_{\Bbbk}(Y,Z), \quad \chi \in \operatorname{Hom}_{\Bbbk}(Z,W),$$

$$\Rightarrow \quad \chi \circ (\psi \circ \varphi) = (\chi \circ \psi) \circ \varphi$$

Покажем, что композиция ассоциативна всегда:

$$(\chi \circ (\psi \circ \varphi))(x) = \chi ((\psi \circ \varphi)(x)) = \chi (\psi (\varphi(x))) = (\chi \circ \psi)(\varphi(x)) = ((\chi \circ \psi) \circ \varphi)(x).$$

4

Лемма 3.3. Множество $\operatorname{End}_{\Bbbk}(X)$ имеет структуру полугруппы относительно операции композиции \circ и структуру кольца - относительно операций + и \circ .

Алгеброй называется кольцо, снабженное структурой линейного пространства.

 ${\it Nota\ bene}$ Множество ${\rm End}_{\Bbbk}(X)$ имеет структуру алгебры относительно операций сложения и композиции.

 $\|$ Алгебра $\operatorname{End}_{\Bbbk}(X)$ называется **алгеброй операторов** над пространством $X(\Bbbk)$.

Пример 3.1. Другие примеры алгебр:

- 1. \mathbb{R} алгебра вещественных чисел;
- 2. \mathbb{C} алгебра комплексных чисел:

$$x = (x_0, x_1), \quad \leftrightarrow \quad 1 \cdot x_0 + i \cdot x_2.$$

 $3. \mathbb{R}^4$ - алгебра кватернионов:

$$x = (x_0, x_1, x_2, x_3), \quad \leftrightarrow \quad 1 \cdot x_0 + i \cdot x_1 + j \cdot x_2 + k \cdot x_3.$$

 ${\it Nota \ bene}$ Пусть ${\it A}$ - произвольная алгебра и $x,y\in {\it A},$ и $\{e_j\}_{j=1}^n$ - базис ${\it A},$ тогда

$$x = \sum_{j=1}^{n} \xi^{j} e_{j}, \quad y = \sum_{k=1}^{n} \eta^{k} e_{k},$$

и для произведения элементов будем иметь

$$x \cdot y = \left(\sum_{j=1}^{n} \xi^{j} e_{j}\right) \cdot \left(\sum_{k=1}^{n} \eta^{k} e_{k}\right) = \sum_{j,k=1}^{n} \xi^{j} \eta^{k} \left(e_{j} \cdot e_{k}\right) = \sum_{j,k,l=1}^{n} \xi^{j} \eta^{k} m_{jk}^{l} e_{l}.$$

Набор $\left\{m_{jk}^l\right\}$ называется **структурными константами** алгебры \mathcal{A} :

$$e_j \cdot e_k = \sum_{l=1}^n m_{jk}^l e_l.$$

АЛГЕБРЫ ОПЕРАТОРОВ И МАТРИЦ

Nota bene Пусть $X = X(\mathbb{k})$ - линейное пространство и $\{e_i\}_{i=1}^n$ его базис. Положим далее, что $\operatorname{End}_{\mathbb{k}}(X)$ - алгебра операторов над $X(\mathbb{k})$, причем:

$$\varphi \leftrightarrow A_{\varphi}, \quad \psi \leftrightarrow B_{\psi}, \quad A_{\varphi}, B_{\psi} \in \operatorname{Mat}_{n}.$$

Лемма 3.4. Имеют место следующие соответсвия:

$$\varphi + \psi \leftrightarrow A_{\varphi} + B_{\psi}, \quad \lambda \varphi \leftrightarrow \lambda A_{\varphi}, \quad \psi \circ \varphi \leftrightarrow B_{\psi} \cdot A_{\varphi}$$

Лемма 3.5. Имеет место изоморфизм алгебры эндоморфизмов пространства $X(\mathbb{k})$ и алгебры квадратных $n \times n$ матриц:

$$\operatorname{End}_{\mathbb{k}}(X) \simeq \operatorname{Mat}_n$$

Соответствующий изоморфизм устанавливается посредством выбора базиса $\{^i_j \varepsilon\}$ в $\operatorname{End}_{\Bbbk}(X)$ и отображением

$$\varphi = \sum_{i,j=1}^{n} {}_{j}^{i} \varepsilon \alpha_{i}^{j} \quad \leftrightarrow \quad \|\alpha_{i}^{j}\| = A_{\varphi}.$$

3.3 Обратный оператор

 $Nota\ bene$ Пусть $\varphi\in \mathrm{Hom}_{\Bbbk}(X,Y)$ - линейный оператор. Рассмотрим отображение $\tilde{\varphi}:\mathrm{Im}\,\varphi\to X$, такое что:

$$\tilde{\varphi}(y) = x \quad \forall y \in \operatorname{Im} \varphi.$$

Nota bene Иными словами, можно написать:

$$(\tilde{\varphi} \circ \varphi)(x) = x \quad \forall x \in X,$$
$$(\varphi \circ \tilde{\varphi})(y) = y \quad \forall y \in \operatorname{Im} \varphi.$$

Лемма 3.6. Отображение $\tilde{\varphi}$ - линейный оператор.

Докажем аддитивность:

$$\varphi(\tilde{\varphi}(y_1) + \tilde{\varphi}(y_2)) = (\varphi \circ \tilde{\varphi})(y_1) + (\varphi \circ \tilde{\varphi})(y_2) = y_1 + y_2,$$

$$\tilde{\varphi}(y_1) + \tilde{\varphi}(y_2) = \tilde{\varphi}(y_1 + y_2).$$

Однородность доказывается аналогично.

Оператор φ , для которого существует $\tilde{\varphi}$, обладающий перечисленными выше свойствами, называется **обратимым**.

АЛГЕБРЫ ОПЕРАТОРОВ И МАТРИЦ

Линейный оператор $\varphi^{-1} \in \operatorname{Hom}_{\Bbbk}(Y,X)$ называется **обратным оператором** к оператору $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$, если

$$(\tilde{\varphi} \circ \varphi)(x) = x \quad \forall x \in X \quad \Leftrightarrow \quad \tilde{\varphi} \circ \varphi = \mathrm{id}_X$$
$$(\varphi \circ \tilde{\varphi})(y) = y \quad \forall y \in Y \quad \Leftrightarrow \quad \varphi \circ \tilde{\varphi} = \mathrm{id}_Y.$$

Теорема 3.2. Для оператора $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ существует ему обратный $\varphi^{-1} \in \operatorname{Hom}_{\Bbbk}(Y,X)$ тогда и только тогда, когда

$$\ker \varphi = \{0\}, \quad \operatorname{Im} \varphi = Y.$$

Первое из условий гарантирует инъективность отображения, а второе - его сюрьективность. Поэтому отображение, обладающее перечисленными свойствами, является биекцией, и значит обратимо.

Nota bene Необходимым условием существования оператора обратного к $\varphi \in \operatorname{Hom}_{\Bbbk}(X,Y)$ является изоморфность пространств X и Y:

$$X \simeq Y \quad \Leftrightarrow \quad \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} Y.$$

Лемма 3.7. Отображение $\varphi \mapsto \varphi^{-1}$ обладает следующими свойствами:

$$(\varphi^{-1})^{-1} = \varphi, \quad (\psi \circ \varphi)^{-1} = \varphi^{-1} \circ \psi^{-1}.$$

Определитель линейного оператора

Содержание лекции:

В настоящей лекции мы обобщим идею тензорного произведения пространств, обсуждаемую в предыдущих лекциях. Мы определим тензорное произведение линейных операторов и распространим его на случай линейных отображений произвольных тензорных произведений пространств. Основным для нас результатом будет является введение определителя линейного оператора и доказательство его мультипликативного свойства.

Ключевые слова:

Тензорное произведение операторов, матрица тензорного произведения, тензорная степень оператора, внешняя степень пространства, определитель набора векторов, внешняя степень оператора, определитель линейного оператора, мультипликативное свойство опеределителя.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

ОПРЕДЕЛИТЕЛЬ ЛИНЕЙНОГО ОПЕРАТОРА

4.1 Тензорная степень оператора

 $Nota\ bene$ Пусть $X(\Bbbk)$ и $Y(\Bbbk)$ - линейные пространства над одним полем \Bbbk и

$$\dim_{\mathbb{k}} X = n, \quad \dim_{\mathbb{k}} Y = m.$$

Пусть также $\varphi \in \operatorname{End}_{\Bbbk}(X)$ и $\psi \in \operatorname{End}_{\Bbbk}(Y)$ - эндоморфизмы соответствующих пространств $X(\Bbbk)$ и $Y(\Bbbk)$.

Тензорным произведением операторов φ и ψ называется отображение χ , задаваемое равенством

$$\chi(x \otimes y) = (\varphi \otimes \psi)(x \otimes y) = \varphi(x) \otimes \psi(y)$$

Лемма 4.1. Отображение χ - линейный оператор на $X \otimes Y$.

С одной стороны имеем:

$$\chi(x\otimes(y_1+y_2))=\chi(x\otimes y_1+x\otimes y_2),$$

С другой стороны:

$$\chi(x \otimes (y_1 + y_2)) = \varphi(x) \otimes \psi(y_1 + y_2) = \varphi(x) \otimes \psi(y_1) + \varphi(x) \otimes \psi(y_2),$$

и тогда

$$\chi(x \otimes y_1 + x \otimes y_2) = \chi(x \otimes y_1) + \chi(x \otimes y_2).$$

Nota bene Пусть $\{e_i\}_{i=1}^n$ - базис X и $\{f_j\}_{j=1}^m$ - базис Y, тогда базис $X\otimes Y$ будут составлять элементы $\{e_i\otimes f_j\}$. Если A_{φ} и B_{ψ} - матрицы φ и ψ в соответствующих базисах, то матрица C_{χ} оператора $\varphi\otimes\psi$ будет иметь вид:

$$C = \begin{pmatrix} a_1^1 B_{\psi} & a_2^1 B_{\psi} & \dots & a_n^1 B_{\psi} \\ a_1^2 B_{\psi} & a_2^2 B_{\psi} & \dots & a_n^2 B_{\psi} \\ \dots & \dots & \dots & \dots \\ a_1^n B_{\psi} & a_2^n B_{\psi} & \dots & a_n^n B_{\psi} \end{pmatrix}.$$

Nota bene Введем следующее обозначение:

$$T_p(X) = \bigotimes_{i=1}^p X = X \otimes X \otimes \ldots \otimes X.$$

Тензорной степенью оператора φ называется отображение:

$$\varphi^{\otimes m}: T_p(X) \to T_p(X), \quad \varphi^{\otimes m} = \varphi \otimes \varphi \otimes \ldots \otimes \varphi,$$

определяемое на разложимых элементах $T_p(X)$, следующим образом:

$$\varphi^{\otimes n}(x_1 \otimes x_2 \otimes \ldots \otimes x_p) = \varphi x_1 \otimes \varphi x_2 \otimes \ldots \otimes \varphi x_p.$$

ОПРЕДЕЛИТЕЛЬ ЛИНЕЙНОГО ОПЕРАТОРА

4.2 Внешняя степень оператора

Векторное пространство $\Lambda_p(X)$ с кососимметрическим p-линейным отображением

$$X \times X \times \ldots \times X \to \Lambda_p$$
, $(x_1, x_2, \ldots, x_p) \to x_1 \wedge x_2 \wedge \ldots \wedge x_p$,

называется p-ой внешней степенью пространства X, если векторы

$$e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_p}, \quad 1 \le i_1 < i_2 < \ldots < i_p \le n,$$

образуют базис пространства $\Lambda_p(X)$.

Nota bene Очевидно, имеет место

$$\dim_{\mathbb{k}} \Lambda_p(X) = C_n^p.$$

Определителем набора векторов $\{x_i\}_{i=1}^n$ называется величина $\det[x_1, x_2, \dots, x_n]$, определяемая в некотором базисе $\{e_j\}_{j=1}^n$ пространства X равенством:

$$x_1 \wedge x_2 \wedge \ldots \wedge x_n = \det[x_1, x_2, \ldots, x_n] \cdot e_1 \wedge e_2 \wedge \ldots \wedge e_n.$$

Лемма 4.2. Два введенных определения det эквивалентны:

$$\det \{x_1, x_2, \dots, x_n\} = \det [x_1, x_2, \dots, x_n].$$

По определению, имеем:

$$x_1 \wedge x_2 \wedge \ldots \wedge x_n = \left(\xi_1^{i_1} e_{i_1}\right) \wedge \left(\xi_2^{i_2} e_{i_2}\right) \wedge \ldots \wedge \left(\xi_n^{i_n} e_{i_n}\right) =$$

$$= \sum_{\sigma} (-1)^{[\sigma]} \xi_1^{\sigma(1)} \xi_2^{\sigma(2)} \ldots \xi_n^{\sigma(n)} \cdot e_1 \wedge e_2 \wedge \ldots \wedge e_n.$$

Внешней степенью оператора $\varphi \in \operatorname{End}(X)$ называется отображение

$$\varphi^{\wedge p}: \Lambda_n(X) \to \Lambda_n(X), \quad \varphi^{\wedge p} = \varphi \wedge \varphi \wedge \ldots \wedge \varphi,$$

определяемое на разложимых элементах $\Lambda_p(X)$, следующим образом:

$$\varphi^{\wedge p}(x_1 \wedge x_2 \wedge \ldots \wedge x_p) = \varphi x_1 \wedge \varphi x_2 \wedge \ldots \wedge x_p$$

Определителем линейного оператора φ называется величина $\det(\varphi)$, которая определяется следующим равенством:

$$\varphi^{\wedge n}(e_1 \wedge e_2 \wedge \ldots \wedge e_n) = \det(\varphi) \cdot e_1 \wedge e_2 \wedge \ldots \wedge e_n.$$

ОПРЕДЕЛИТЕЛЬ ЛИНЕЙНОГО ОПЕРАТОРА

Лемма 4.3. Определитель линейного оператора в заданном базисе совпадает c определителем его матрицы в этом базисе:

$$\det(\varphi) = \det A_{\varphi}, \quad A_{\varphi} = \|a_k^i\|.$$

Из определения $\det(\varphi)$ следует

$$\varphi e_1 \wedge \varphi e_2 \wedge \ldots \wedge \varphi e_n = \det(\varphi) \cdot e_1 \wedge e_2 \wedge \ldots \wedge e_n,$$

и тогда

$$\varphi e_1 \wedge \varphi e_2 \wedge \ldots \wedge \varphi e_n = \left(a_1^{i_1} e_{i_1}\right) \wedge \left(a_2^{i_2} e_{i_2}\right) \wedge \ldots \wedge \left(a_n^{i_n} e_{i_n}\right) =$$

$$= \sum_{\sigma} (-1)^{[\sigma]} \alpha_1^{\sigma(1)} \alpha_2^{\sigma(2)} \ldots \alpha_n^{\sigma(n)} \cdot e_1 \wedge e_2 \wedge \ldots \wedge e_n.$$

Откуда получаем $\det(\varphi) = \det A_{\varphi}^T = \det A_{\varphi}$.

Лемма 4.4. Для любого $z \in \Lambda_n(X)$ имеет место $\varphi^{\wedge n}z = \det(\varphi) \cdot z$.

$$\varphi^{\wedge n} (e_1 \wedge e_2 \dots \wedge e_n) = \varphi e_1 \wedge \varphi e_2 \dots \wedge \varphi e_n =$$

$$= \det [\varphi e_1, \varphi e_2, \dots, \varphi e_n] \cdot e_1 \wedge e_2 \wedge \dots \wedge e_n =$$

$$= \det (\varphi) \cdot e_1 \wedge e_2 \wedge \dots \wedge e_n,$$

но $z = \alpha \cdot e_1 \wedge e_2 \dots \wedge e_n, \ \alpha \in \mathbb{k}$ и теорема доказана.

Nota bene Определитель $\det(\varphi)$ линейного оператора φ не зависит от базиса.

Теорема 4.1. Умножение определителей подчиняется правилу:

$$\det (\varphi \circ \psi) = \det (\varphi) \det (\psi).$$

По определению имеем:

$$\det (\varphi \psi) \cdot e_1 \wedge e_2 \dots \wedge e_n = (\varphi \psi)^{\wedge n} (e_1 \wedge e_2 \dots \wedge e_n) =$$

$$= (\varphi \psi) e_1 \wedge (\varphi \psi) e_2 \dots \wedge (\varphi \psi) e_n = \varphi (\psi e_1) \wedge \varphi (\psi e_2) \dots \wedge \varphi (\psi e_n) =$$

$$= \det(\varphi) \cdot (\psi e_1) \wedge (\psi e_2) \dots \wedge (\psi e_n) = \det(\varphi) \cdot \psi^{\wedge n} (e_1 \wedge e_2 \dots \wedge e_n) =$$

$$= \det(\varphi) \cdot \det(\psi) \cdot e_1 \wedge e_2 \dots \wedge e_n.$$

Обратная матрица

Содержание лекции:

Настоящая лекция посвящена обсуждению существования обратных элементов в алгебре матриц относительно операции умножения. Здесь мы докажем критерий существования обратной матрицы и представим способы ее вычисления.

Ключевые слова:

Единица алгебры, левый/правый обратный элемент, обратимый элемент, обратный элемент, обратная матрица, невыроженная матрица, метод Гаусса, метод союзной матрицы.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

4.1 Обратимый элемент в алгебре

Пусть \mathcal{A}_{\Bbbk} - алгебра, заданная как линейное пространство надо полем \Bbbk .

Алгебра \mathcal{A} называется **унитальной**, если в ней существует элемент $1_{\mathcal{A}} \in \mathcal{A}$, называемый **единицей алгебры**, такой что:

$$x \cdot 1_{\mathcal{A}} = x = 1_{\mathcal{A}} \cdot x \quad \forall x \in \mathcal{A}.$$

Пример 4.1. Примеры унитальных алгебр алгебр:

- 1. $\mathcal{A} = \mathbb{R}$: $1_{\mathcal{A}} = 1$;
- 2. $A = \mathbb{C} : 1_A = (1,0);$
- 3. $A = \mathbb{H}$: $1_A = (1, 0, 0, 0)$;
- 4. $\mathcal{A} = \operatorname{End}_{\mathbb{k}}(X)$:

$$1_{\mathcal{A}} = \mathrm{id}_X, \quad \mathrm{id}_X x = x, \quad \mathrm{id}_X \circ \varphi = \varphi \circ \mathrm{id}_X = \varphi.$$

5. $\mathcal{A} = \operatorname{Mat}_n$:

$$1_A = E$$
, $A \cdot E = A = E \cdot A$.

Пусть в алгебре \mathcal{A} имеет место $x \cdot y = 1_{\mathcal{A}}$, тогда

- 1. элемент x называется **левым обратным** к элементу y;
- 2. элемент y называется **правым обратным** к элементу x.

Левый обратный элемент к z, являющийся также и правым обратным элементом к z называется **обратным элементом** к z:

$$z^{-1}: \quad z \cdot z^{-1} = z^{-1} \cdot z = 1_{\mathcal{A}},$$

при этом говорят, что элемент z обратим.

Пример 4.2. Примеры обратимых элементов:

1.
$$A = \mathbb{R}$$
: $a^{-1} = 1/a$, $a \neq 0$;

2.
$$A = \mathbb{C}$$
: $z^{-1} = \bar{z}/|z|^2$, $z \neq 0$;

3.
$$\mathcal{A} = \mathbb{H}: \quad q^{-1} = q^*/|q|^2;$$

ОБРАТНАЯ МАТРИЦА

Лемма 4.1. Если элемент z имеет левый обратный элемент x и правый обратный элемент y, то

$$z^{-1} = x = y.$$

Прямой проверкой убеждаемся, что

$$x = x \cdot (z \cdot y) = (x \cdot y) \cdot z = z.$$

◀

4.2 Существование обратной матрицы

Матрицей, **обратной** к $A \in \mathrm{Mat}_n$, называется матрица A^{-1} , такая что

$$A^{-1} \cdot A = E = A \cdot A^{-1}.$$

Квадратная матрица A называется **невырожденной**, если

$$\det A \neq 0$$
.

Теорема 4.1. Матрица A^{-1} существует тогда и только тогда, когда $\det A \neq 0$.

← Достаточность:

$$\det A \neq 0 \quad \Rightarrow \quad \exists B, C: \quad A \cdot B = E, \quad C \cdot A = E, \quad \Leftrightarrow \quad \exists A^{-1} = B = C.$$

1. $A \cdot B = E$:

$$\sum_{j=1}^n \alpha_j^i \beta_k^j = \delta_k^i, \quad k = k_0 \quad \Rightarrow \quad \text{система Крамера}$$

$$\det A \neq 0 \quad \Rightarrow \quad \text{единственное решение}.$$

2. $C \cdot A = E$:

$$\sum_{j=1}^n \gamma_j^i \alpha_k^j = \delta_k^i, \quad k = k_0 \quad \Rightarrow \quad \text{система Крамера}$$

$$\det A^T = \det A \neq 0 \quad \Rightarrow \quad \text{единственное решение}.$$

⇒ Необходимость: обратить порядок рассуждений.

4

4.3 Методы вычисления обратной матрицы

1. Метод Гаусса:

$$\begin{cases} \alpha_1^1 \beta_k^1 + \alpha_2^1 \beta_k^2 + \ldots + \alpha_n^1 \beta_k^n = \delta_k^1, \\ \alpha_1^2 \beta_k^1 + \alpha_2^2 \beta_k^2 + \ldots + \alpha_n^2 \beta_k^n = \delta_k^2, \\ \ldots & \ldots \\ \alpha_1^n \beta_k^1 + \alpha_2^n \beta_k^2 + \ldots + \alpha_n^n \beta_k^n = \delta_k^n. \end{cases}$$

$$\begin{pmatrix} 1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ldots & \vdots \\ 0 & 0 & \ldots & 1 \end{pmatrix}$$

Элементарным преобразованиями приводим расширенную матрицу [A|E] к следующему виду:

$$[A|E] \sim [E|A^{-1}].$$

2. Метод союзной матрицы:

Матрицей \tilde{A} , **союзной** матрице A называется матрица, каждый элемент которой является алгебраическим дополнением соответствующего элемента матрицы A:

$$\tilde{a}_k^i = (-1)^{i+k} M_k^i.$$

Теорема 4.2. Имеет место формула:

$$A^{-1} = \frac{1}{\det A} \tilde{A}^T$$

Пусть $A \cdot B = E$, тогда

$$\sum_{j=1}^{n} \alpha_j^i \beta_k^j = \delta_k^i.$$

Фиксируем индекс k и введем обозначения:

$$b = (\delta_k^1, \delta_k^2, \dots, \delta_k^n)^T = (0, \dots, 1_k, \dots, 0)^T,$$

 $\beta_k^j = \xi^j \quad \alpha_j^i = a_j,$

откуда получаем

$$\sum_{j=1}^{n} \xi^{j} a_{j} = b. \quad \Rightarrow \quad \beta_{k}^{j} = \xi^{j} = \frac{\Delta_{j}}{\Delta} = \frac{\det \{A | a_{j} \to b\}}{\det A}.$$

Вычислим $\det \{A | a_j \to b\}$, учтя значение b:

$$\det \{A | a_j \to b\} = 0 \cdot A_j^1 + \ldots + 1 \cdot A_j^k + \ldots + 0 \cdot A_j^n = A_j^k$$

Но тогда

$$\beta_k^j = \frac{A_j^k}{\det A} = \frac{\left\{\tilde{A}^T\right\}_k^j}{\det A} \quad \Rightarrow \quad B = \frac{\tilde{A}^T}{\det A}.$$

Алгебра скалярных полиномов

Содержание лекции:

В настоящей лекции мы кратко обсуждаем структуру алгебры скалярных полиномов. Основной интерес для нас здесь представляют специальные подмножества алгебры - идеалы. Идеал обладает рядом интересных свойств и позволяет очень компактно и изящно выразить некоторые утверждения о подмножествах алгебры полиномов, которыми мы будем пользоваться в дальнейшем.

Ключевые слова:

Пространство полиномов, алгебра, идеал, порождающий полином идеала, пересечение идеалов, сумма идеалов, минимальный полином идеала, НОД и НОК.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

5.1 Структуры на множестве полиномов

Nota bene Напомним, что пространством полиномов k[t] называется множество формальных сумм следующего вида:

$$\mathbb{k}[t] = \left\{ p_n(t) = \sum_{k=0}^n \alpha_k t^k, \quad \forall n \in \mathbb{N}, \quad \alpha_k \in \mathbb{k} \right\}$$

 $Nota\ bene$ Следующие операции задают на $\Bbbk[t]$ структуру линейного пространства:

$$(p+q)(t) = p(t) + q(t), \quad (\alpha p)(t) = \alpha \cdot p(t), \quad 0(t) = 0.$$

Nota bene Операция умножения полиномов

$$(p \cdot q)(t) = p(t) \cdot q(t).$$

задает на множестве k[t] структуру коммутативного моноида, именно:

- 1. $p \cdot (q \cdot r) = p \cdot q \cdot r$;
- 2. $(p \cdot q)(t) = p(t) \cdot q(t) = q(t) \cdot p(t) = (q \cdot p)(t)$.
- 3. нейтральный по умножению: 1(t) = 1.

Nota bene Линейные операции и умножение в k[t] согласованы:

$$(p+q) \cdot r = p \cdot r + q \cdot r,$$

$$(\alpha p) \cdot q = p \cdot (\alpha q) = \alpha \cdot (pq).$$

 $Nota\ bene$ Введенные законы композиции индуцируют на множестве $\Bbbk[t]$ структуру коммутативной алгебры.

 $\|$ Алгебра $\Bbbk[t]$ называется **алгеброй скалярных полиномов**.

5.2 Идеалы алгебры k[t]

Идеалом \mathfrak{a} алгебры $\mathbb{k}[t]$ называется такое ее линейное подпространство, что

$$\mathbb{k}[t] \cdot \mathfrak{a} \subset \mathfrak{a}$$
.

Nota bene Tak kak $1(t) \in \mathbb{k}[t]$, to $\mathbb{k}[t] \cdot \mathfrak{a} = \mathfrak{a}$.

Пример 5.1. Примеры идеалов:

- $\{0\}$ и k[t] тривиальные идеалы;
- $\mathfrak{a}(\alpha) = \{ p \in \mathbb{k}[t] \mid p(\alpha) = 0, \quad \alpha \in \mathbb{k} \};$

Лемма 5.1. Пусть $q \in \mathbb{k}[t]$, тогда множество $\mathfrak{a}(q) = q \cdot \mathbb{k}[t]$ является идеалом.

Пусть $p \in \mathfrak{a}(q)$ и $h \in \mathbb{k}[t]$, тогда

$$p \cdot h = q \cdot q \cdot h = q \cdot (qh) \in q \cdot k[t] = \mathfrak{a}(q).$$

4

Идеалы вида $\mathfrak{a}(q)$, где $q \in \mathbb{k}[t]$ называются **главными идеалами** кольца $\mathbb{k}[t]$. При этом полином q называется **порождающим полиномом идеала** $\mathfrak{a}(q)$.

Nota bene Главные идеалы с порождающим полиномом q обозначают (q).

Теорема 5.1. Любой идеал в кольце k[t] является главным.

▶

Напомним, что в кольце $\Bbbk[t]$ имеется алгоритм Евклида деления многочленов с остатком. Воспользуемся этим: пусть $\mathfrak{a} \leq \Bbbk[t]$ и $q \in \Bbbk[t]$, так что $\deg(q)$ - минимальная степень в идеале \mathfrak{a} . Далее, если $p \in \mathfrak{a}$, тогда с помощью алгоритма Евклида находим, что

$$\exists ! g, r \in \mathbb{k}[t] : p = q \cdot g + r, \deg r < \deg q.$$

Имеем $p \in \mathfrak{a}$, $q \cdot g \in \mathfrak{a}$, но тогда и $r \in \mathfrak{a}$, а значит r = 0.

4

Минимальным полиномом идеала \mathfrak{a} называется нетривиальный полином p_a наименьшей степени, принадлежащий идеалу \mathfrak{a} .

 $Nota\ bene$ Минимальный полином идеала $\mathfrak a$ условимся обозначать $\min(\mathfrak a)$.

Лемма 5.2. Пусть $p_a = \min(\mathfrak{a})$, тогда

$$p \in \mathfrak{a} \quad \Leftrightarrow \quad p : p_a.$$

▶

Доказательство следует из алгоритма Евклида.

◀

Лемма 5.3. Пусть $\mathfrak{a} = (p)$ и $p_a = \min(\mathfrak{a})$, тогда $p \sim p_a$.

▶

Прямой проверкой убеждаемся, что

$$\begin{split} \mathfrak{a} &= p \cdot \mathbb{k}[t], \quad p_a \in \mathfrak{a} \quad \Rightarrow \quad \exists \, g \in \mathbb{k}[t] : \quad p_a = g \cdot p, \\ p &\in \mathfrak{a} \quad \Rightarrow \quad p \, \vdots \, p_a. \end{split}$$

◀

 $Nota\ bene$ Будем называть p_a минимальным порождающим полиномом идеала $\mathfrak a.$

5.3 Арифметика идеалов

 $\mathbf{C}\mathbf{y}$ ммой $\mathfrak{a}_1+\mathfrak{a}_2$ двух идеалов \mathfrak{a}_1 и \mathfrak{a}_2 называется множество

$$\mathfrak{b} = \left\{ p \in \mathbb{k}[t] \quad | \quad p = p_1 + p_2, \quad p_1 \in \mathfrak{a}_1, \quad p_2 \in \mathfrak{a}_2 \right\}.$$

Лемма 5.4. Сумма в идеалов является идеалом.

Пусть $p \in \mathfrak{b}$, то есть $p = p_1 + p_2, p_1 \in \mathfrak{a}_1, p_2 \in \mathfrak{a}_2$, тогда

$$\forall q \in \mathbb{k}[t] \quad q \cdot p = q(p_1 + p_2) = q \cdot p_1 + q \cdot p_2 \in \mathfrak{b}.$$

Пересечением $a_1 \cap a_2$ двух идеалов называется множество

$$\mathfrak{c} = \{ p \in \mathbb{k}[t] \mid p \in \mathfrak{a}_1 \land p \in \mathfrak{a}_2 \}.$$

Лемма 5.5. Пересечение с идеалов является идеалом.

Пусть $p \in \mathfrak{c}$, то есть $p \in \mathfrak{a}_1$ и $p \in \mathfrak{a}_2$, тогда

$$\forall q \in k[t] \quad q \cdot p \in \mathfrak{a}_1, \quad q \cdot p \in \mathfrak{a}_2 \quad \Rightarrow \quad q \cdot p \in \mathfrak{a}_1 \cap \mathfrak{a}_2.$$

Лемма 5.6. Имеет место следующее свойство

$$\mathfrak{a}_1 \subset \mathfrak{a}_2 \quad \Leftrightarrow \quad p_1 \ \vdots \ p_2.$$

⇒ Необходимость:

$$p_1 \in \mathfrak{a}_1 \quad \Rightarrow \quad p_1 \in \mathfrak{a}_2 \quad \Rightarrow \quad p_1 \ \vdots \ p_2.$$

← Достаточность:

$$p_1 = p_2 \cdot r \quad \Rightarrow \quad \forall g \in \mathfrak{a}_1 \quad g = p_1 \cdot q = p_2 \cdot r \cdot q \in \mathfrak{a}_2.$$

Лемма 5.7. Пусть $\mathfrak{a}_1 = (p_1)$ и $\mathfrak{a}_2 = (p_2)$, тогда

$$\mathfrak{a}_1 \cap \mathfrak{a}_2 = (p), \quad p = \langle p_1, p_2 \rangle.$$

Пусть $\tilde{p} = \langle p_1, p_2 \rangle$, тогда

$$p \in \mathfrak{a}_1, \quad p \in \mathfrak{a}_2 \quad \Rightarrow \quad p \ \vdots \ p_1, \quad p \ \vdots \ p_2 \quad \Rightarrow \quad p \ \vdots \ \tilde{p}.$$

С другой стороны

$$\tilde{p} \ \vdots \ p_1, \quad \tilde{p} \ \vdots \ p_2 \quad \Rightarrow \quad \tilde{p} \in \mathfrak{a}_1 \cap \mathfrak{a}_2 \quad \Rightarrow \quad \tilde{p} \ \vdots \ p.$$

1

Теорема 5.2. Пусть $\mathfrak{a}_1 = (p_1)$ и $\mathfrak{a}_2 = (p_2)$, тогда

$$\mathfrak{a}_1 + \mathfrak{a}_2 = (p), \quad p = (p_1, p_2).$$

Пусть $\tilde{p} = (p_1, p_2)$, тогда

$$p_1, p_2 \in \mathfrak{a}_1 + \mathfrak{a}_2 \quad \Rightarrow \quad p_1 \stackrel{.}{:} p, \quad p_2 \stackrel{.}{:} p \quad \Rightarrow \quad \tilde{p} \stackrel{.}{:} p.$$

С другой стороны

$$\exists q_1, q_2 \in \mathbb{k}[t]: \quad p = q_1 p_1 + q_2 p_2; \quad p_1 \ \vdots \ \tilde{p}, \quad p_2 \ \vdots \ \tilde{p} \quad \Rightarrow \quad p \ \vdots \ \tilde{p}.$$

4

Теорема 5.3. Пусть p_1, p_2 такие что $(p_1, p_2) = 1$, тогда

$$\exists q_1, q_2 \in \mathbb{k}[t]: p_1q_1 + p_2q_2 = 1$$

Пусть $\mathfrak{a}_1 = (p_1)$ и $\mathfrak{a}_2 = (p_2)$, а также $\mathfrak{a}_1 + \mathfrak{a}_2 = (p)$, тогда

$$p = (p_1, p_2) = 1 \quad \Rightarrow \quad \mathfrak{a}_1 + \mathfrak{a}_2 = (1) = \mathbb{k}[t].$$

4

Nota bene Пусть $(p_1, p_2, ..., p_k) = 1$, тогда

$$\exists \{q_i\}_{i=1}^k : \sum_{i=1}^k p_i q_i = 1.$$

Теорема 5.4. Пусть $p = p_1, p_2, \dots, p_k$, где $(p_i, p_{j \neq i}) = 1$ тогда

$$\exists \{q_i\}_{i=1}^k: \sum_{i=1}^k p'_i q_i = 1, \quad p'_i = p/p_i.$$

Алгебра операторных полиномов

Содержание лекции:

В данной лекции мы применим некоторые результаты, полученные для алгебры скалярных полиномов к новым объектам - операторным полиномам. Мы получим ряд результатов, ксающихся структуры ядер таких операторов и сформулируем важное утверждение о разложении пространства ядра полинома в прямую сумму ядер вза-имно простых его делителей.

Ключевые слова:

Операторный полином, аннулирующий полином оператора, минимальный аннулируюзий полином, теорема о ядре и образе, теорема о проекторах.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

АЛГЕБРА ОПЕРАТОРНЫХ ПОЛИНОМОВ

6.1 Операторные полиномы

Nota bene Пусть $X(\Bbbk)$ линейное пространство, $\dim_{\Bbbk} X = n$, и $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - эндоморфизм. Определим отображение $\sigma_{\varphi} : \Bbbk[t] \to \operatorname{End}_{\Bbbk}(X)$ следующим образом:

$$\sigma_{\varphi}: \quad p(t) = \sum_{i=1}^{m} \alpha_i t^i \quad \mapsto \quad p(\varphi) = \sum_{i=1}^{m} \alpha_i \varphi^i,$$

и при этом

$$\varphi^0 = \mathcal{I}, \quad \varphi^1 = \varphi, \quad \varphi^2 = \varphi \circ \varphi, \quad \dots$$

 \parallel **Операторным полиномом** называется образ полинома p при отображении σ_{arphi} .

Лемма 6.1. Отображение σ_{φ} является гомоморфизмом.

Все свойства гомоморфности очевидным образом выполняются.

•

Nota bene Из леммы следует, что образ σ_{φ} является подалгеброй алгебры $\operatorname{End}_{\Bbbk}(X)$:

$$\operatorname{Im} \sigma_{\varphi} = \mathbb{k}[\varphi]$$

Nota bene Напомним, что ядро $\ker \sigma_{\varphi}$ - это идеал, который состоит из всех всех таких полиномов $p \in \mathbb{k}[t]$, для которых $\sigma_{\varphi}(p) = \theta$, где θ - нулевой оператор.

 \parallel Всякий полином из $\ker \sigma_{\varphi}$ называется **аннулирующим полиномом** оператора φ .

Лемма 6.2. Идеал $\ker \sigma_{\varphi}$ нетривиален.

▶

Заметим, что $\mathbb{k}[\varphi] \leq \operatorname{End}_{\mathbb{k}}(X)$ и поэтому

$$\dim_{\mathbb{k}} \mathbb{k}[\varphi] \le \dim_{\mathbb{k}} \operatorname{End}_{\mathbb{k}}(X) = n^2.$$

Набор $\left\{\mathcal{I},\varphi,\varphi^2,\dots\varphi^n^2\right\}$ является линейно-зависимым в $\operatorname{End}_{\Bbbk}(X)$ и, следовательно, существует нетривиальная линейная комбинация, такая что

$$p(\varphi) = \sum_{i=1}^{n^2} \alpha_i \varphi^i = \theta \quad \Rightarrow \quad p \in \ker \sigma_{\varphi}.$$

4

Минимальным аннулирующим полиномом линейного оператора φ называется минимальный порождающий полином идеала $\ker \sigma_{\varphi}$.

 ${\it Nota~bene}~$ Будем обозначать минимальный порождающий полином оператора φ через $p_{\varphi},$ тогда можно записать:

$$p_{\varphi}(\varphi) = \theta.$$

АЛГЕБРА ОПЕРАТОРНЫХ ПОЛИНОМОВ

Лемма 6.3. Пусть $p, q \in \mathbb{k}[t]$, тогда

$$p(\varphi) = q(\varphi) \quad \Leftrightarrow \quad (p-q) \stackrel{:}{:} p_{\varphi},$$

 $p = gp_{\varphi} + r \quad \Rightarrow \quad r(\varphi) = p(\varphi).$

Лемма 6.4. В силу вышесказанного, имеем:

$$\mathbb{k}[\varphi] \simeq \mathbb{k}[t]/p_{\varphi}\mathbb{k}[t]$$

6.2 Структурная теорема

Nota bene Рассмотрим специальный случай, когда $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$.

Лемма 6.5. Пусть $p_1,\,p_2\in \Bbbk[t],\,$ такие что $(p_1,p_2)=1,\,$ тогда

$$\exists q_1, q_2 \in \mathbb{k}[t] : p_1(\varphi)q_1(\varphi) + p_2(\varphi)q_2(\varphi) = \mathcal{I}.$$

Доказательство следует из леммы о разложении НОД.

Лемма 6.6. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, тогда:

$$X = \ker p_1(\varphi) \oplus \ker p_2(\varphi).$$

Из предыдущей леммы имеем:

$$\mathcal{I} = p_1(\varphi) \cdot q_1(\varphi) + p_2(\varphi)q_1(\varphi), \quad q_1(t), q_2(t) \in \mathbb{k}[t],$$

откуда сразу можно получить

$$\forall x \in X \quad x = \mathcal{I}x = p_1(\varphi) \cdot q_1(\varphi)x + p_2(\varphi)q_1(\varphi)x = x_1 + x_2.$$

Заметим, что

$$p_2(\varphi)x_1 = q_1(\varphi)p_1(\varphi)p_2(\varphi)x = q_1(\varphi)p_{\varphi}(\varphi)x = 0 \quad \Rightarrow \quad x_1 \in \ker p_2(\varphi)$$
$$p_1(\varphi)x_2 = q_2(\varphi)p_1(\varphi)p_2(\varphi)x = q_2(\varphi)p_{\varphi}(\varphi)x = 0 \quad \Rightarrow \quad x_2 \in \ker p_1(\varphi)$$

В заключение докажем, что $\ker p_1(\varphi) \cap \ker p_2(\varphi) = \{0\}$. Действительно,

$$z \in \ker p_1(\varphi) \cap \ker p_2(\varphi) = \{0\} \implies z = p_1(\varphi) \cdot q_1(\varphi)z + p_2(\varphi)q_1(\varphi)z = 0.$$

АЛГЕБРА ОПЕРАТОРНЫХ ПОЛИНОМОВ

Лемма 6.7. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, тогда:

$$\ker p_1(\varphi) = \operatorname{Im} p_2(\varphi), \quad \ker p_2(\varphi) = \operatorname{Im} p_1(\varphi).$$

▶

Докажем первое из утверждений (второе доказывается аналогично):

$$0 = p_{\varphi}(\varphi)X = p_1(\varphi)p_2(\varphi) = p_1(\varphi)\operatorname{Im} p_2(\varphi) \quad \Rightarrow \quad \operatorname{Im} p_2(\varphi) \subseteq \ker p_1(\varphi).$$

Кроме того, имеет место:

$$\begin{cases} \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} \ker p_1(\varphi) + \dim_{\mathbb{k}} \ker p_2(\varphi) \\ \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} \ker p_2(\varphi) + \dim_{\mathbb{k}} \operatorname{Im} p_2(\varphi) \end{cases} \Rightarrow \dim_{\mathbb{k}} \ker p_1(\varphi) = \dim_{\mathbb{k}} \operatorname{Im} p_2(\varphi).$$

◀

Теорема 6.1. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, тогда:

$$X \simeq X/\ker p_1(\varphi) \oplus X/\ker p_2(\varphi).$$

Убеждаемся прямой проверкой:

$$X = \ker p_1(\varphi) \oplus \ker p_2(\varphi) = \operatorname{Im} p_2(\varphi) \oplus \operatorname{Im} p_1(\varphi) \simeq X / \ker p_2(\varphi) \oplus X / \ker p_1(\varphi).$$

•

Nota bene Из теоремы, в частности, следует, что

$$\ker p_1(\varphi) \simeq X/\ker p_2(\varphi), \quad \ker p_2(\varphi) \simeq X/\ker p_1(\varphi).$$

Лемма 6.8. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$ тогда проекторы на соответствующие подпространства $\ker p_1(\varphi)$ и $\ker p_2(\varphi)$ имеют вид:

$$\mathcal{P}_1 = q_2(\varphi)p_2(\varphi), \quad \mathcal{P}_2 = q_1(\varphi)p_1(\varphi).$$

Прямой проверкой убеждаемся, что выполняются каждое из перечисленных свойств:

$$\mathcal{P}_1 + \mathcal{P}_2 = \mathcal{I}, \quad \mathcal{P}_1 \mathcal{P}_2 = \theta = \mathcal{P}_2 \mathcal{P}_1, \quad \mathcal{P}_i \mathcal{P}_i = \mathcal{P}_i, \quad i = 1, 2.$$

4

Nota bene Следующая теорема обобщает полученные выше результаты на случай произвольного разложения минимального полинома $p_{\varphi}(\varphi)$. Доказательство проводится методом индукции:

Теорема 6.2. Пусть $p_{\varphi}(t) = \prod_{i=1}^{k} p_{i}(t)$, где все $p_{i}(t)$ взаимно простые, тогда:

- $\exists \{q_i(t)\}_{i=1}^m \subset \mathbb{k}[t] : \sum_{i=1}^m q_i(\varphi)p_i'(\varphi) = \mathcal{I};$
- $X = \bigoplus_{i=1}^{m} L_i$, $L_i = \ker p_i(\varphi) \simeq X/\ker p_i'(\varphi)$;
- $\mathcal{P}_i = q_i(\varphi)p_i'(\varphi)$ проектор на L_i .

Инвариантные подпространства

Содержание лекции:

В настоящей лекции мы начнем исследовать структуру инвариантных подпространств линейного оператора. Будут сформулированы основные понятия, связанные с задачей разложения на инвариантные подпространства, а также приведена общая формулировка спектральной теоремы.

Ключевые слова:

Инвариантное подпространство, ультраинвариантное подпространство, компонента оператора, ультрапроектор, прямая сумма компонент, спектральная компонента, нильпотентный оператор, спектральная теорема, спектр.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА

7.1 Ультраинвариантность

Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - эндоморфизм линейного пространства $X(\Bbbk)$.

Подпространство $L(\mathbb{k}) \leq X(\mathbb{k})$ линейного пространства $X(\mathbb{k})$ называется **инвариантным подпространством** линейного оператора φ , если

$$\forall x \in L \quad \varphi x \in L \quad \Leftrightarrow \quad \varphi(L) \subset L. \tag{7.1}$$

Пример 7.1.

- 1. $\{0\}$ и X инвариантные подпространства;
- 2. $\mathcal{I}: \quad \mathcal{I}x = x, \quad \forall x \in X$ любое подпространство является инвариантным;
- 3. θ : $\theta x = 0$, $\forall x \in X$ любое подпространство является инвариантным;
- 4. Пусть $X = L_1 \oplus L_2$, тогда L_1 и L_2 инвариантные подпространства для соответствующих проекторов \mathcal{P}_1 и \mathcal{P}_2 .

Инвариантное подпространство L линейного оператора φ называется **ультраин-вариантным** подпространством, если существует его дополнение L', которое тоже является инвариантным подпространством.

Nota bene В силу симметричности определения, дополнение ультраинвариантного подпространства является также ультраинвариантным подпространством.

Оператор φ_L называется компонентой оператора φ в ультраинвариантном подпространстве L, если $\varphi_L \in \operatorname{End}_{\Bbbk}(L)$ и

$$\varphi_L(x) = \varphi(x) \quad \forall x \in L.$$

Ультрапроектор - это проектор на ультраинвариантное подпространство.

Лемма 7.1. Пусть $X = L_1 \oplus L_2$ - прямая сумма ультраинвариантных подпространств оператора φ , тогда

$$\varphi = \varphi \mathcal{P}_1 + \varphi \mathcal{P}_2 \triangleq \varphi_1 \oplus \varphi_2, \quad \varphi_i \in \operatorname{End}_{\mathbb{k}}(L_i).$$

Прямой проверкой убеждаемся:

$$\forall x \in X \quad \varphi(x) = \varphi(x_1) + \varphi(x_2) = \varphi \mathcal{P}_1(x) + \varphi \mathcal{P}_2(x) = (\varphi \mathcal{P}_1 + \varphi \mathcal{P}_2)(x).$$

В условиях предыдущей леммы говорят, что оператор φ представим в виде прямой суммы своих компонент:

$$\varphi(x) = (\varphi_1 \oplus \varphi_2)(x_1 + x_2) = \varphi_1(x_1) + \varphi_2(x_2).$$

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА

7.2 Спектральная теорема

Лемма 7.2. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, так что

$$X = L_1 \oplus L_2$$
, $L_i = \ker p_i(\varphi)$, $i = 1, 2$.

Тогда L_1 и L_2 - нетривиальные инвариантные подпространства оператора φ .

Пусть $x \in L_1$, тогда $p_1(\varphi)x = 0$, откуда сразу получаем

$$p_1(\varphi)(\varphi x) = \varphi(p_1(\varphi)x) = 0 \quad \Rightarrow \quad \varphi(x) \in \ker p_1 \varphi.$$

Для $\ker p_2(\varphi)$ аналогично. Пусть теперь $\ker p_1(\varphi) = X$, тогда

$$\ker p_1(\varphi) = X \quad \Rightarrow \quad \forall x \in X \quad p_1(\varphi) = 0 \quad \Rightarrow \quad p_1(\varphi) = \theta,$$

и значит $p_1(\varphi)$ - аннулирующий полином, но $\deg p_1 < \deg p_{\varphi}$, противоречие. И, наконец, пусть $\ker p_1(\varphi) = \{0\}$, тогда

$$\dim_{\mathbb{k}} \ker p_2(\varphi) = \dim_k X - \dim_k \ker p_1(\varphi) = \dim_{\mathbb{k}} X \implies \ker p_2(\varphi) \simeq X,$$

и приходим к уже рассмотренному случаю.

◀

Лемма 7.3. Подпространства $\ker p_1(\varphi)$ и $\ker p_2(\varphi)$ - ультраинвариантные.

Оба подпространства $\ker p_1(\varphi)$ и $\ker p_2(\varphi)$ являются инвариантными.

4

Лемма 7.4. Пусть $p_{\varphi}(t) = p_1(t)p_2(t)$ разложение минимального аннулирующего полинома оператора φ на взаимно простые множители и пусть φ_i - компонента φ в соответствующием подпространстве L_i , тогда $p_i(t)$ - минимальный аннулирующий полином для φ_i .

▶

Действительно

$$\forall x \in L_i \quad p_i(\varphi_i)x = 0 \quad \Rightarrow \quad p_i(\varphi) = \theta,$$

и таким образом $p_i(t)$ - аннулирующий полином для φ_i . Докажем его минимальность. Пусть \tilde{p}_i - минимальный аннулирующий полином для φ_i , тогда

$$p_i : \tilde{p}_i \iff \exists g : p_i(t) = g(t)\tilde{p}_i(t),$$

но тогда $\tilde{p}_1(t)\cdot \tilde{p}_2(t)$ - аннулирующий полином оператора φ , степень которого меньше степени $p_{\varphi}(t)$. Противоречие.

4

ИНВАРИАНТНЫЕ ПОДПРОСТРАНСТВА

Теорема 7.1. (спектральная теорема) Пусть $p_{\varphi}(t) = p_1(t)p_2(t) \dots p_m(t)$ - минимальный полином оператора φ , разложенный на взаимно простые сомножтели. Тогда

- $\bigoplus_{i=1}^m L_i$, $L_i = \ker p_i(\varphi)$;
- $\varphi = \sum_{i=1}^{m} \varphi_i \mathcal{P}_i$,

где φ_i - компонента оператора φ в ультраинвариантном подпространстве L_i и \mathcal{P}_i - проектор подпространство L_i .

Nota bene Пусть $p_{\varphi}(t)$ представим в следущем виде:

$$p_{\varphi}(t) = \prod_{i=1}^{m} p_i(t), \quad p_i(t) = (t - t_i)^{r_i},$$

тогда сразу получаем:

$$L_i = \ker p_i(\varphi) = \ker(\varphi_i - t_i \mathcal{I}_i)^{r_i}$$

Подпространства L_i указанного вида называются **корневыми** подпространствами X относительно оператора φ . При этом L_i называется подпространством, *отвечающим корню* t_i .

 ${\it Nota \ bene}$ Напомним, что оператор au называется **нильпотентным** порядка r, если

$$\tau^r = \theta, \quad \tau^{r-1} \neq \theta.$$

Лемма 7.5. Определяемый следующим образом оператор $\tau_i: L_i \to L_i$, является нильпотентным:

$$\tau_i = \varphi_i - t_i \mathcal{I}_i$$

•

Прямой проверкой убеждаемся, что

$$\forall x \in L_i \quad (\varphi_i - t_i \mathcal{I}_i)^{r_i} x = \tau_i^{r_i} x = 0.$$

_

Nota bene Имея определение для оператора τ_i , спектральную теорему можно переписать следующим образом:

$$\varphi = \sum_{i=1}^{m} (t_i \mathcal{I}_i + \tau_i) \mathcal{P}_i, \quad \tau_i^{r_i} = \theta.$$

В приведенной выше формулировке спектральной теоремы...

 t_i называется элементарной порцией спектра;

 \mathcal{P}_i называется **спектральным ультрапроектором**;

 L_i называется спектральным ультраинвариантным подпространством;

 φ_i называется **спектральной компонентой** линейного оператора φ .

Спектральный анализ оператора

Содержание лекции:

В этой лекции мы начинаем систематически исследовать структуру инвариантных и собственных подпространств операторов. Здесь мы вводим основополагающие понятия собственного значения и собственного вектора, а также обсуждаем свойства этих объектов.

Ключевые слова:

Характеристический полином, теорема Гамильтона-Кэли, инвариант линейного оператора, собственный вектор, собственное число, спектр, характеристическое число.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

СПЕКТРАЛЬНЫЙ АНАЛИЗ ОПЕРАТОРА

8.1 Характеристический полином

 $Nota\ bene$ Из определения ядра оператора φ следует, что

$$x \in L_j \quad \Leftrightarrow \quad (\varphi - \lambda_j \mathcal{I})^{r_j} x = 0.$$

Рассмотрим частный случай, когда $r_i = 1$. Имеем:

$$(\varphi - \lambda_j \mathcal{I}) x = 0 \quad \Rightarrow \quad \varphi x = \lambda_j x.$$

Характеристическим полиномом линейного оператора φ называется операторный полином $\chi_{\varphi} \in \mathbb{k}[\varphi]$, такой что:

$$\chi_{\varphi}(\lambda) = \det(\varphi - \lambda \mathcal{I}).$$
(8.1)

Лемма 8.1. Характеристический полином $\chi_{\varphi}(\lambda)$ не зависит от выбора базиса, то есть он является функцией от λ , не зависящей от базиса.

Пусть A и \tilde{A} - матрицы оператора φ в двух различных базисах пространства X, тогда

$$\tilde{\chi}_{\varphi}(\lambda) = \det\left(\tilde{A} - \lambda E\right) = \det(SAT - \lambda E) =$$

$$= \det S \cdot \det(A - \lambda E) \cdot \det T = \det(A - \lambda E) = \chi_{\varphi}(\lambda).$$

Теорема 8.1. (Гамильтон-Кэли) Характеристический полином линейного оператора φ является его аннулирующим полиномом:

$$\chi_{\varphi} \in (p_{\varphi}).$$

Пусть характеристический полином χ_{φ} имеет следующую запись:

$$\chi_{\varphi}(\lambda) = a_0 + a_1 \lambda + a_2 \lambda^2 + \ldots + a_n \lambda^n.$$

С другой стороны, если в одном из базисов пространства X оператор φ имеет матрицу A, тогда имеет место равенство

$$\det(A - \lambda E) \cdot E = (A - \lambda E) \tilde{A}(\lambda),$$

где $\tilde{A}(\lambda)$ - матрица, союзная матрице $(A-\lambda E)$. Пусть

$$\tilde{A}(\lambda) = C_0 + C_1 \lambda + C_2 \lambda^2 + \dots + C_{n-1} \lambda^{n-1},$$

тогда имеют место следующие равенства:

$$a_0E = AC_0, \quad a_1E = AC_1 - C_0, \quad \dots, \quad a_{n-1}E = AC_{n-1} - C_{n-2}, \quad a_n = -C_{n-1}.$$

Умножив обе части на степени A, получим

$$a_0 E = A C_0, \quad \dots, \quad a_{k-1} A^{k-1} = A^k C_{k-1} - A^{k-1} C_{k-2}, \quad \dots, \quad a_n A^n = -A^n C_{n-1}.$$

Сложение данных равенств дает в левой части $\chi_{\varphi}(A)$, а в правой - ноль.

4

 ${\it Nota \ bene}$ Из того, что $\chi_{\varphi} \in (p_{\varphi})$ следует, в частности, что $\chi_{\varphi} : p_{\varphi}$ то есть имеет место

$$p_{\varphi}(\lambda) = \prod_{i=1}^{m} (\lambda - \lambda_i)^{r_i} \quad \Rightarrow \quad \chi_{\varphi}(\lambda) \sim \prod_{i=1}^{m} (\lambda - \lambda_i)^{s_i}, \quad r_i \leq s_i.$$

Инвариантом линейного оператора называется такая его числовая функция, значение которой не зависит от выбора базиса.

Nota bene Все коэффициенты характеристического полинома являются инвариантами линейного оператора.

8.2 Спектр и собственные векторы

Собственным вектором оператора φ называется вектор $x \in X$, такой что

$$x \neq 0$$
, $\varphi x = \lambda x$, $\lambda \in \mathbb{k}$,

при этом λ называется **собственным числом** линейного оператора φ .

Nota bene В дальнейшем мы остановимся на самых важных и практически значимых случаях $k = \mathbb{R}$ и $k = \mathbb{C}$.

Пример 8.1.

1. Пусть $\varphi = \mathcal{I} : X \to X$, так что $\mathcal{I}x = x$, тогда

 $\lambda = 1$ — собственное значение, $\forall x \in X$ — собственный вектор.

2. Пусть $\varphi = O: X \to X$, так что Ox = 0, тогда

 $\lambda = 0$ — собственное значение, $\forall x \in X$ — собственный вектор.

Спектром называется множество всех значений линейного оператора:

$$\sigma_{\varphi} = \sigma(\varphi) = \{\lambda_1, \lambda_2, \dots, \lambda_k\}.$$

$$\sigma_{\mathcal{I}} = \{1\}, \quad \sigma_O = \{0\}.$$

Пример 8.2. Пусть $X = L_1 \dot{+} L_2$ и $\varphi = \mathcal{P}_{L_1}^{\parallel L_2} : X \to X$, так что

$$x \in L_1 \quad \Rightarrow \quad \mathcal{P}_{L_1}^{||L_2} x = 1 \cdot x,$$
$$y \in L_2 \quad \Rightarrow \quad \mathcal{P}_{L_1}^{||L_2} y = 0 \cdot y,$$

$$y \in L_2 \quad \Rightarrow \quad \mathcal{P}_{L_1}^{\parallel L_2} y = 0 \cdot y,$$

и значит $\sigma\left(\mathcal{P}_{L_1}^{||L_2}\right) = \{0, 1\}.$

Пример 8.3. Пусть $A = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ - диагональная матрица оператора φ в базисе $\{e_j\}_{j=1}^n$. Тогда

$$\varphi e_i = \lambda_i e_i \quad \Rightarrow \quad \sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_n\}.$$

8.3 Подпространства L_{λ}

Лемма 8.2. Пусть L_{λ} - множество собственных векторов, отвечающих собственному значению λ , тогда L_{λ} - подпространство линейного пространства X.

Пусть $x_1.x_2$ - собственные векторы, отвечающие собственному значению λ , тогда

$$\varphi(x_1 + \alpha x_2) = \varphi x_1 + \alpha \varphi x_2 = \lambda x_1 + \alpha \lambda x_2 = \lambda (x_1 + \alpha x_2)$$

 $\Rightarrow (x_1 + \alpha x_2) - \text{собственный вектор},$

Лемма 8.3. Собственные векторы, отвечающие различным собственным значениям линейно независимы:

$$\lambda_1 \to x_1 \in X, \quad \lambda_2 \to x_2 \in X, \quad \dots, \quad \lambda_k \to x_k \in X,$$
 $\lambda_i \neq \lambda_{k \neq i} \quad \Rightarrow \quad \{x_i\}_{i=1}^k - \text{линейно-независимы}$

Выполним доказательство по индукции:

$$m=1: \quad \{x_1 \neq 0\} - \Pi.\text{H.3.},$$
 $m>1: \quad \{x_1,x_2,\ldots,x_m\}$ — верно, что $\Pi.\text{H.3.},$ $\Rightarrow \quad \alpha_1x_1+\alpha_2x_2+\ldots+\alpha_mx_m=0 \quad \Rightarrow \quad \alpha_1=\alpha_2=\ldots=\alpha_m=0,$

Покажем, что $\{x_1, x_2, \dots, x_m, x_{m+1}\}$ - Л.Н.З. Пусть

$$\sum_{i=1}^{m+1} \alpha_i x_i = 0 \quad \Rightarrow \quad \varphi\left(\sum_{i=1}^{m+1} \alpha_i x_i\right) = \sum_{i=1}^{m+1} \alpha_i \lambda_i x_i,$$

тогда

$$\sum_{i=1}^{m+1} \alpha_i \lambda_i x_i - \lambda_{m+1} \sum_{i=1}^{m+1} \alpha_i x_i = \sum_{i=1}^{m} \alpha_i (\lambda_i - \lambda_{m+1}) x_i = 0,$$

и значит $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$, откуда следует, что $\alpha_{m+1}x_{m+1} = 0$.

Nota bene Линейный оператор в конечномерном пространстве не может иметь более n различных собственных значений.

Пример 8.4. Рассмотрим задачу вычисления собственных векторов и собственных значений. Для этого положим

$$x = \sum_{i=1}^{n} \xi^{i} e_{i}, \quad A = ||\alpha_{k}^{i}||, \quad \xi = (\xi^{1}, \xi^{2}, ..., \xi^{n})^{T},$$

тогда

$$\varphi x = \lambda x \quad \Leftrightarrow \quad A\xi = \lambda \xi \quad \Leftrightarrow \quad A\xi - \lambda E\xi = 0,$$

 $(A - \lambda E)\xi = 0, \quad (A - \lambda E) = ||\alpha_k^i - \lambda \delta_k^i||.$

Соответствующая однородная система линейных уравнений для ξ^i имеет вид:

$$\begin{cases} (\alpha_1^1 - \lambda)\xi^1 + \alpha_2^1 \xi^2 + \dots + \alpha_n^1 \xi^n = 0 \\ \alpha_1^2 \xi^1 + (\alpha_2^2 - \lambda)\xi^2 + \dots + \alpha_n^2 \xi^n = 0 \\ \dots \\ \alpha_1^n \xi^n + \alpha_2^n \xi^2 + \dots + (\alpha_n^n - \lambda)\xi^n = 0 \end{cases}$$

Найдем все нетривиальные решения. Вычислим характеристический полином:

$$\det(A - \lambda E) = \det(\varphi - \lambda \mathcal{I}) = \chi_{\omega}(\lambda).$$

- 1. Если $\chi_{\varphi}(\lambda) \neq 0$, тогда по теореме Крамера решение существует и единственно.
- 2. Если $\chi_{\varphi}(\lambda) = 0$, тогда по теореме Кронекера-Капели у системы существует нетривиальное решение, а значит можно найти собственный вектор.

Процедура вычисления собственных значений и собственных векторов:

1.
$$\chi(\lambda) = \det(\varphi - \lambda \mathcal{I}) = 0 \quad \Rightarrow \quad \sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\};$$

2.
$$\lambda = \lambda_1$$
: $(A - \lambda_1 E)\xi_1 = 0 \Rightarrow \xi_1$;

$$\lambda = \lambda_2 : (A - \lambda_2 E)\xi_2 = 0 \Rightarrow \xi_2;$$

.

$$\lambda = \lambda_k : (A - \lambda_k E) \xi_k = 0 \implies \xi_k.$$

Nota bene Из основной теоремы алгебры следует, у каждого многочлена есть хотя бы один корень, а значит у любого оператора на $X(\mathbb{C})$ существует по крайней мере одно собственное значение и одие собственный вектор.

8.4 Характеристические числа

Nota bene Предположим теперь, что $X = X(\mathbb{R})$, тогда $\chi_{\varphi}(\lambda)$ - многочлен с вещественными коэффициентами. Если $\lambda \in \mathbb{C}$ - корень данного многочлена, то ему соответствует комплексный вектор, который будет решением уравнения на собственные векторы, однако он не будет являться элементом X.

Корень характеристического многочлена называется **характеристическим чис- лом** линейного оператора.

Теорема 8.2. Если $X = X(\mathbb{C})$ - линейное пространство над полем \mathbb{C} , то все характеристические числа являются одновременно и собственными. Если $X = X(\mathbb{R})$ - линейное пространство над полем \mathbb{R} , то собственными являются только вещественные характеристические числа.

Пример 8.5. Рассмотрим матрицу поворота двумерного пространства на угол α :

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Ее характеристический многочлен

$$\chi_R(\lambda) = \begin{vmatrix} \cos \alpha - \lambda & -\sin \alpha \\ \sin \alpha & \cos \alpha - \lambda \end{vmatrix} = (\cos \alpha - \lambda)^2 + \sin^2 \alpha,$$

имеет комплексные корни:

$$\lambda = \cos \alpha \pm i \sin \alpha,$$

которым соответствуют комплексные собственные векторы

$$V_{\pm} = \begin{pmatrix} \pm i & 1 \end{pmatrix}$$

Таким образом, диагонализовать матрицу поворота в $X(\mathbb{R})$ нельзя.

Лекция 9

Спектральный анализ: оператор скалярного типа

Содержание лекции:

В настоящей лекции мы рассмотрим простейший случай спектрального анализа оператора скалярного типа - оператора, все собственные подпространства которого одномерны. Мы получим вид спектральной теоремы для этого случая, а также обсудим ее применение для решения задач функционального анализа.

Ключевые слова:

Оператор скалярного типа, простой спектр, оператор с простым спектром, спектральный проектор, операторное разложение единицы, спектральная теорема, функция от оператора.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

9.1 Простой спектр

Оператором скалярного типа называется эндоморфизм $\varphi \in \operatorname{End}_{\Bbbk}(X)$ собственные векторы которого образуют базис пространства X.

Пример 9.1. Пусть $X = \mathbb{R}^n$ и $\varphi = A$, тогда

$$A = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\} \Rightarrow \sigma_A = \{\lambda_1, \lambda_2, \dots, \lambda_n\}, \quad Ae_i = \lambda_i e_i. \tag{9.1}$$

Пример 9.2. Пусть $X = L_1 \dot{+} L_2$ и $\mathcal{P}_{L_1}^{||L_2|} : X \to X$, так что

$$\mathcal{P}_{L_1}^{\parallel L_2} \leftrightarrow P_{L_1}^{\parallel L_2} = diag\{1, 1, \dots, 1_k; 0, 0, \dots, 0_{n-k}\} \quad \Leftrightarrow \quad \sigma_{\mathcal{P}} = \{0, 1\},$$
 (9.2)

и собственный базис формируется из базиса L_1 и его дополнения L_2 .

Собственное значение λ называется **простым**, если оно является корнем $\chi_{\varphi}(\lambda)$ единичной кратности. Иными словами, λ_0 - простое, если:

$$\chi_{\varphi}(\lambda) = 0$$
 и $\chi_{\varphi}(\lambda) = (\lambda - \lambda_0) \cdot \tilde{\chi}_{\varphi}(\lambda), \quad \tilde{\chi}_{\varphi}(\lambda_0) \neq 0.$

Линейный оператор, у которого все собственные значения простые называется **оператором с простым спектром**.

 $Nota\ bene$ В Примере (9.1) спектр оператора φ простой, а в Примере (9.2) - нет.

Лемма 9.1. В алгебраически замкнутом поле все собственные подпространства линейного оператора c простым спектром одномерны.

Пусть $\varphi\in \mathrm{End}_\Bbbk(X)$ и спектр $\sigma_\varphi=\{\lambda_i\})_{i=1}^n$ - простой. Рассмотрим инвариантные подпространства

$$L_i = \{x \in X : \varphi x = \lambda_i x\}, \quad \lambda_i \in \sigma_{\varphi}, \quad \dim L_i = n_i.$$

Имеет место

$$X = \bigoplus_{i=1}^{n} L_i \quad \Rightarrow \quad \dim X = \sum_{i=1}^{n} \dim L_i = \sum_{i=1}^{n} n_i = n, \quad n_i \ge 1,$$

откуда сразу следует, что $n_i = 1$.

СПЕКТРАЛЬНЫЙ АНАЛИЗ: ...

 ${\it Nota \ bene}$ Инвариантные подпространства L_i имеют вид

$$L_i = \ker(\varphi - \lambda_i \mathcal{I}).$$

Теорема 9.1. Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - линейный оператор c простым спектром

$$\sigma_{\varphi} = \{\lambda_i\}_{i=1}^n, \quad \varphi x_i = \lambda_i x_i,$$

тогда матрица A_{φ} линейного оператора φ , заданная в базисе $\{e_i\}_{i=1}^n$ может быть приведена к диагональной форме A_{φ}^d посредством преобразования подобия:

$$A^d = T^{-1}AT,$$

где T - матрица перехода от базиса $\left\{e_i\right\}_{i=1}^n$ к базису $\left\{x_i\right\}_{i=1}^n$

Утверждение следует из замечания о том, что столбцами матрицы T являются собственные векторы оператора $\varphi.$

Пусть λ_i - собственное значение линейного оператора $\varphi \in \operatorname{End}_{\Bbbk}(X)$. Спектральным проектором \mathcal{P}_i называется оператор проектирования на подпространство L_i , отвечающее собственному значению λ_i .

 $oldsymbol{Nota bene}$ Если $\{x_i\}_{i=1}^n$ - базис X и $\{x_j\}_{j=1}^k$ - базис L_i , тогда

$$X = L_i \oplus \mathcal{L} \left\{ x_{k+1}, x_{k+2}, \dots, x_n \right\}.$$

Лемма 9.2. Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - линейный оператор c простым спектром $\sigma_{\varphi} = \{\lambda_i\}_{i=1}^n, \, \lambda_j \neq \lambda_{i\neq j}$. Тогда спектральные проекторы φ имеют вид:

$$\mathcal{P}_i(y) = (f^i, y) x_i, \quad \forall y \in X,$$

где $\{x_i\}_{i=1}^n$ - базис пространства X из собственных векторов φ и $\{f^k\}_{k=1}^n$ - сопряженный ему базис.

Положим, $x_i \in L_i$ и $y \in \mathcal{L}\{x_{k+1}, x_{k+2}, \dots, x_n\}$, и значит нам требуется доказать, что:

$$\mathcal{P}_i x_i = x_i$$
, и $\mathcal{P}_i y = 0$.

Действительно,

$$\mathcal{P}_i x_i = (f^i, x_i) x_i = \delta_i^i x_i = x_i, \quad i = 1, \dots, k,$$

$$\mathcal{P}_i x_{k \neq i} = (f^i, x_k) x_i = \delta_i^k x_i = 0.$$

Nota bene Легко увидеть, что спектральный проектор, как и вообще любой проектор, обладает свойством $\mathcal{P}_i^2 = \mathcal{P}_i$, которое называется идемпотентностью.

СПЕКТРАЛЬНЫЙ АНАЛИЗ: ...

Лемма 9.3. В условиях предыдущей леммы справедливо

$$X = L_{\lambda_1} \oplus L_{\lambda_2} \oplus \ldots \oplus L_{\lambda_n},$$

то есть для любого $x \in X$ существует единственное разложение:

$$x = x_1 + x_2 + \ldots + x_n$$
, так что $x_i \in L_i$.

Пусть $\{e_i\}_{i=1}^n$ - базис X, так что $\varphi e_i = \lambda_i e_i$. Тогда существует единственное разложение

$$x = \sum_{i=1}^{n} \xi^{i} e_{i} = \sum_{i=1}^{n} x_{i},$$

что доказывает лемму.

◀

Лемма 9.4. Для любого элемента $x \in X$ линейного пространства X справедливо разложение

$$x = \sum_{i=1}^{n} \mathcal{P}_i(x)$$

 \blacktriangleright Пусть $\{e_i\}_{i=1}^n$ и $\{f_k\}_{k=1}^n$ - сопряженные базисы пространств X и X^* соответственно,

$$x = \sum_{i=1}^{n} \xi^{i} e_{i} = \sum_{i=1}^{n} (f^{i}, x) e_{i} = \sum_{i=1}^{n} \mathcal{P}_{i}(x).$$

4

Теорема 9.2. (спектральная теорема) Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - оператор с простым спектром, тогда имеет место разложение (спектральное)

$$\varphi = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i \quad \Leftrightarrow \quad \forall x \in X \quad \varphi x = \sum_{i=1}^{n} \lambda_i \mathcal{P}_i(x)$$

▶

$$\varphi x = \varphi\left(\sum_{i=1}^{n} \mathcal{P}_{i} x\right) = \sum_{i=1}^{n} \varphi\left(\mathcal{P}_{i} x\right) = \sum_{i=1}^{n} \lambda_{i} \mathcal{P}_{i}(x).$$

9.2 Кратные собственные числа

Nota bene Пусть теперь $\sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$, причем $k < n = \dim X$. Каждому собственному значению λ_i отвечает собственное подпространство L_i , $\dim L_i = m_i$, и в силу свойства оператора скалярного типа

$$L_i = \mathcal{L}\left\{e_1^{(i)}, e_2^{(i)}, \dots, e_{m_i}^{(i)}\right\}, \quad \sum_{i=1}^k m_i = n.$$

Лемма 9.5. Спектрального проектор на инвариантные подпространства линейного оператора скалярного типа имеет вид

$$\mathcal{P}_{i}* = \sum_{j=1}^{m_{i}} \left(f_{(i)}^{j}; *\right) e_{j}^{(i)}$$

Доказательство аналогично случаю с простым спектром. \blacktriangleleft

Nota bene Сохраняется также свойство идемпотентности

$$\mathcal{P}_i^2 = \mathcal{P}_i$$
.

 ${\it Nota \ bene}$ Базис линейного пространства X

$$\left\{e_1^1, e_2^1, \dots, e_{m_1}^1; e_1^2, e_2^2, \dots, e_{m_2}^2; \dots; e_1^k, e_2^k, \dots, e_{m_k}^k\right\}.$$

Лемма 9.6. Разложение пространства X в прямую сумму инвариантных подпространств L_i

$$X = \dot{+} \sum_{i=1}^{k} L_i \quad \Leftrightarrow \quad x = \sum_{i=1}^{k} \mathcal{P}_i.$$

Теорема 9.3. (спектральная теорема для оператора скалярного типа)

$$\varphi = \sum_{i=1}^{k} \lambda_i \mathcal{P}_i \quad \Leftrightarrow \quad \forall x \in X \quad \varphi x = \sum_{i=1}^{k} \lambda_i \mathcal{P}_i(x)$$

Лемма 9.7. Число $m_i = \dim L_i$ равно кратности характеристического корня λ_i полинома $\chi_{\varphi}(\lambda)$ и называется спектральной (геометрической) кратностью собственного значения λ_i .

$$\chi_{\varphi}(\lambda) = \det (\varphi - \lambda \mathcal{I}) = \prod_{i=1}^{k} (\lambda_i - \lambda)^{m_i}.$$

СПЕКТРАЛЬНЫЙ АНАЛИЗ: ...

Теорема 9.4. (полная система инвариантов) Пусть $\sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$ - спектр скалярного линейного оператора φ . Каждому собственному значению λ_i отвечает собственное подространство $L_i = \ker (\varphi - \lambda_i \mathcal{I})$. Положим $\dim L_i = m_i$. Тогда $\{\lambda_i, m_i\}_{i=1}^k$ - полная система инвариантов линейного оператора φ .

Характеристический полином линейного оператора φ

$$\chi_{\varphi}(\lambda) = \prod_{i=1}^{k} (\lambda - \lambda_i)^{m_i}.$$

является его инвариантом. Следовательно все его корни также являются его инвариантами. С другой стороны, имея данный набор инвариантов легко построить матрицу оператора в собственном базисе, в котором она будет иметь вид:

$$\varphi \leftrightarrow A = diag \{\lambda_1, \dots, \lambda_1; \lambda_2, \dots, \lambda_2; \dots; \lambda_k, \dots, \lambda_k\}.$$

9.3 Функциональное исчисление

Теорема 9.5. Пусть $p(\lambda)$ - скалярный полином $(\lambda \in \mathbb{R}, \mathbb{C})$. Тогда

$$p(\varphi) = \sum_{i=1}^{k} p(\lambda i) \mathcal{P}_i, \quad p(\lambda) = \sum_{j} \alpha_j \lambda^j.$$

Для доказательства достаточно проверить три свойства:

$$\varphi + \varphi = \sum_{i=1}^{k} (\lambda_i + \lambda_i) \mathcal{P}_i = 2\varphi;$$

$$\alpha \varphi = \sum_{i=1}^{k} (\alpha \lambda_i) \mathcal{P}_i;$$

$$\varphi \cdot \varphi = \left(\sum_{i=1}^{k} \lambda_i \mathcal{P}_i\right) \left(\sum_{j=1}^{k} \lambda_j \mathcal{P}_{\lambda_j}\right) = \sum_{i,j=1}^{k} \lambda_i \lambda_j \mathcal{P}_i \mathcal{P}_{\lambda_j} =$$

$$= \sum_{i,j=1}^{k} \lambda_i \lambda_j \delta_{ij} \mathcal{P}_{\lambda_j} = \sum_{i=1}^{k} \lambda_i \lambda_i \mathcal{P}_i = \sum_{i=1}^{k} \lambda_i^2 \mathcal{P}_i = \varphi^2.$$

 $Nota\ bene$ Для произвольной функции f имеет место

$$f(\varphi) = \sum_{i=1}^{k} f(\lambda_i) \mathcal{P}_i.$$

Лекция 10

Структура нильпотентного оператора

Содержание лекции:

В настоящей лекции мы изучим свойства нильпотентного оператора и структуру подпространств нак которых он действует. Будет построен базис Жордана и получена нормальная форма матрицы оператора в этом базисе. Все приведенное является краеугольным камнем построения матричной алгебры.

Ключевые слова:

Нильпотентный оператор, базис Жордана, жорданова клетка, присоединенный вектор, башня Жордана, одноклеточный оператор.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

СТРУКТУРА НИЛЬПОТЕНТНОГО ОПЕРАТОРА

10.1 Структура инвариантных подпространств

Пусть $\tau \in \operatorname{End}_{\Bbbk}(X)$ - нильпотентный оператор порядка m, так что

$$\tau^m = 0, \quad \tau^r \neq 0, \quad r < m \tag{10.1}$$

Лемма 10.1. Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - линейный оператор и $L_r = \ker \varphi^r$, тогда имеет место последовательность:

$$0 = L_0 \subseteq L_1 \subseteq L_2 \subseteq \ldots \subseteq L_{p-2} \subseteq L_{p-1} \subseteq L_p = X, \tag{10.2}$$

Имеет место

$$x \in L_r \quad \Rightarrow \quad \varphi^r x = 0 \quad \Rightarrow \quad \varphi^{r+1} x = \varphi \cdot \varphi^r x = 0.$$

Теорема 10.1. Пусть $\tau \in \operatorname{End}_{\Bbbk}(X)$ - нильпотентный оператор порядка p, то есть $\tau^p = 0$, тогда каждое включение в последовательности - точное:

$$L_{r-1} \subset L_r, \quad r = 1 \dots p.$$

Для доказательства утверждения теоремы достаточно показать, что

- 1. $\dim_{\mathbb{k}} L_{r-1} < \dim_{\mathbb{k}} L_r$;
- 2. для всякого набора $\left\{x_i^{(0)}\right\}_{i=1}^s \in L_r$ линейно независимого над L_{r-1} (то есть не выражающегося через базис L_{r-1}) набор $\left\{\tau x_i^{(0)}\right\}_{i=1}^s$ линейнонезависим над L_{r-2} .

Доказательство будем проводить индукцией по r. Пусть r = p, тогда утверждение

$$\dim_{\mathbb{k}} L_{p-1} < \dim_{\mathbb{k}} L_p$$

становится тривиальным. Вторую часть докажем от противного: пусть $\left\{\tau x_i^{(0)}\right\}_{i=1}^s$ линейнозависим над L_{r-2} , тогда

$$\exists \left\{ \alpha^{i} \right\}_{i=1^{s}} : \sum_{i=1}^{s} \alpha^{i} \tau x_{i}^{(0)} \in L_{r-2} \quad \Rightarrow \quad \tau^{r-2} \left(\sum_{i=1}^{s} \alpha^{i} \tau x_{i}^{(0)} \right) = \tau^{r-1} \left(\sum_{i=1}^{s} \alpha^{i} x_{i}^{(0)} \right) = 0,$$

но отсюда сразу следует, что

$$\sum_{i=1}^{s} \alpha^{i} x_{i}^{(0)} \in L_{i-1},$$

что противоречит исходному предположению. Следовательно, если $\{e_j\}_{j=1}^m$ - базис L_{r-2} , тогда

$$\left\{ \left\{ e_{j} \right\}_{j=1}^{m}, \left\{ \tau x_{i}^{(0)} \right\}_{i=1}^{s} \right\}$$

- линейнонезависимый набор в L_{r-1} и тогда очевидно, что $\dim_{\mathbb{K}} L_{r-2} < \dim_{\mathbb{K}} L_{r-1}$. Для r < p-2 доказательство повторяется.

СТРУКТУРА НИЛЬПОТЕНТНОГО ОПЕРАТОРА

Базис Жордана 10.2

Базисом Жордана нильпотентного оператора τ называется такой базис $\beta(X)$ пространства X, в котором матрица оператора τ имеет вид жордановой клетки

$$T = diag_{+1} \{1, 1, \dots, 1\} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Теорема 10.2. (существование) Базис Жордана существует :)

Используем слудеющую процедуру:

- 1. выберем в $L_p=X$ максимальный линейнонезависимый над L_{p-1} набор векторов $\left\{x^{(0)_{i_0}}\right\}_{i_0=1}^{s_0}, \ s_0 = \operatorname{codim}_X L_{p-1}.$
- 2. пополним набор $\{\tau x^{(0)_{i_0}}\}_{i_0=1}^{s_0}$ из L_{p-1} векторами $\{x^{(1)_{i_1}}\}_{i_1=1}^{s_1}, s_1=\operatorname{codim}_X L_{p-2}-s_0;$ до максимального линейнонезависимого над L_{p-2} набора;
- 3. продолжим процедуру пока не закончатся линейнонезависимые векторы в X и получим следующие цепочки:

$$\bullet \left\{ x_{i_0}^{(0)} \right\}_{i_0=1}^{s_0}$$

•
$$\left\{\tau x_{i_0}^{(0)}\right\}_{i_0=1}^{s_0}, \quad \left\{x_{i_1}^{(1)}\right\}_{i_1=1}^{s_1};$$

•
$$\left\{\tau^2 x_{i_0}^{(0)}\right\}_{i_0=1}^{s_0}, \quad \left\{\tau x_{i_1}^{(1)}\right\}_{i_1=1}^{s_1}, \quad \left\{x_{i_2}^{(2)}\right\}_{i_2=1}^{s_2};$$

Число получившихся векторов, очевидно, равно $\dim_{\mathbb{R}} X$ и по построению они линейно - независимы и таким образом, образует базис пространства X. Введем обзначение:

$$e_{j,k_j}^{(0)} = \tau^{p-j} x_{k_{j-1}}^{(j-1)}, \quad j = 1 \dots p, \quad k_{j-1} = 1 \dots s_{j-1};$$

$$e_{j,k_j}^{(r)} = \tau^{p-j-r} x_{k_{j-1}}^{(j-1)}, \quad j = 1 \dots p, \quad r = 0 \dots p-j, \quad k_{j-1} = 1 \dots s_{j-1};$$

Запишем таблицу еще раз, используя новые обозначения:

1.
$$e_{1,1}^{(p-1)}, \ldots, e_{1,s_0}^{(p-1)};$$

2.
$$e_{1,1}^{(p-2)}, \dots, e_{1,s_0}^{(p-2)}; e_{2,1}^{(p-2)}, \dots, e_{2,s_1}^{(p-2)};$$

3.
$$e_{1,1}^{(p-3)}, \dots, e_{1,s_0}^{(p-3)}; e_{2,1}^{(p-3)}, \dots, e_{2,s_1}^{(p-3)}; e_{3,1}^{(p-3)}, \dots, e_{3,s_2}^{(p-3)};$$

СТРУКТУРА НИЛЬПОТЕНТНОГО ОПЕРАТОРА

5.
$$e_{1,1}^{(0)}, \dots, e_{1,s_0}^{(0)}; e_{2,1}^{(0)}, \dots, e_{2,s_1}^{(0)}; e_{3,1}^{(2)}, \dots, e_{3,s_2}^{(0)}; \dots; e_{p,1}^{(0)}, \dots, e_{p,s_{p-1}}^{(0)}$$

Nota bene Векторы вида $e_{i,k}^{(0)}$, стоящие в последней строке таблицы, являются собственными векторами оператора τ , отвечающим нулевому собственному значению.

Элементы цепочки

$$e_{i,k}^{(l-1)} \to e_{i,k}^{(l-2)} \to e_{i,k}^{(l-3)} \to \dots \to e_{i,k}^{(1)} \to e_{i,k}^{(0)}$$

вида $e_{i,k}^{(r)}$ называются **присоединенными векторами** порядка r к собственному вектору $e_{i,k}^{(0)}$. Число l присоединенных векторов называется **длиной цепочки**.

 $Nota\ bene$ Линейная оболочка $L_{i,k}$ векторов данной цепочки

$$\mathcal{L}\left\{e_{i,k}^{(p-1)}, e_{i,k}^{(p-2)}, e_{i,k}^{(p-3)}, \dots, e_{i,k}^{(1)}, e_{i,k}^{(0)}\right\}, \quad \dim_{\mathbb{K}} L_{i,k} = l,$$

образует ультраинвариантное подпространство оператора τ размерности l. Матрица компоненты $\tau_{i,k} = \tau|_{L_{i,k}}$ оператора τ в ультраинвариантном подпространстве $L_{i,k}$ в указанном базисе имеет вид жордановой клетки.

Полученная таблица из собственных и присоединенных векторов опретора τ называется башней Жордана оператора τ .

Оператор $\tau_{i,k}$, называется **одноклеточным нильпотентным оператором**:

$$\tau_{i,k}e_{i,k}^{(r)} = e_{i,k}^{(r+1)}.$$

Теорема 10.3. Пусть $\tau = \dot{+} \sum_{i,k} \tau_{i,k} = \sum_{i,k} \tau_i \mathcal{P}_{i,k}$, где $T_{i,k}$ - жорданова клетка порядка $m_{i,k}$. Тогда τ - нильпотентный оператор порядка $m = \max_{i,k} m_{i,k}$.

$$T = diag\left\{T_1, T_2, \dots, T_k\right\}, \quad \Rightarrow \quad T^s = diag\left\{T_1^s, T_2^s, \dots, T_k^s\right\} = 0 \quad \forall s \ge m.$$

Лемма 10.2. Если τ - нильпотентный оператор порядка m, тогда $p_{\tau}(\lambda) = \lambda^m$ - его минимальный полином:

Действительно,

$$\tau^m = 0, \quad \tau^{m-1} \neq 0 \quad \Rightarrow \quad p_{\tau}(\lambda) = \lambda^m$$

Лекция 11

Жорданова нормальная форма

Содержание лекции:

Этой лекцией мы завершаем знакомство с линейными операторами. Здесь мы обсудим жорданову нормальную форму матрицы, а также покажем какие примущества она имеет для функционального исчисления матриц.

Ключевые слова:

Жорданова нормальная форма матрицы, алгебраическая кратность, полная кратность, спектральная кратность, функция от оператора.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА

11.1 Жорданова нормальная форма

Лемма 11.1. Пусть $\varphi \in \operatorname{End}_{\Bbbk}(X)$ и $\beta(X)$ - базис линейного пространства X, причем

$$\beta(X) = \{\beta(L_1), \beta(L_2), \dots, \beta(L_k)\}\$$

тогда матрица A оператора φ имеет в этом базисе блочно-диагональный вид:

$$A = diag\{A_1, A_2, \dots, A_k\}, \quad A_j = \lambda_j E_j + T_j.$$

Пусть $\beta(X)$ - базис X, тогда $\beta(X)=\left\{ eta\left(L_{1}
ight),eta\left(L_{2}
ight),\ldots,eta\left(L_{k}
ight) \right\}$ и

$$n_i = \dim L_i = \dim \ker (\varphi - \lambda \mathcal{I})^{m_i}.$$

Каждое подпространство L_i является ультраинвариантным, на котором действует компонента φ_i оператора φ , матрица которого как следствие имеет блочно диагональный вид:

$$\varphi \leftrightarrow A = diag\{A_1, A_2, \dots, A_k\}.$$

Nota bene В случае линейного оператора скалярного типа имеем:

$$\varphi x_i = \lambda_i x_i \Leftrightarrow \varphi_i = \lambda_i \mathcal{I}_i,$$

 $A_j = diag\{\lambda_j, \lambda_j, \dots, \lambda_j\}.$

Nota bene Пусть A_i - матрица компоненты оператора φ_i подпространстве L_i , тогда:

$$A_i = \lambda_i E_i + T_i : L_i \to L_i,$$

$$n_i = \dim L_i = \dim \ker (\varphi - \lambda_i \mathcal{I})^{m_i}.$$

Если в L_i выбран базис Жордана, тогда T_i представляет собой прямую сумму жордановых блоков.

$$T_i = diag\left\{T_{i,1}^{(m)}, T_{i,2}^{(m)}, T_{i,3}^{(m-1)}, T_{i,4}^{(m-1)}, \dots T_{i,k}^{(1)}, \dots T_{i,r_i}^{(1)} = 0\right\},$$

где r_i - число жордановых блоков, а n_i - размер жордановой клетки T_i .

Построенная таким образом форма матрицы линейного оператора называется **Жордановой нормальной формой**.

Nota bene Имеет место

◂

1.
$$\chi_{\varphi}(\lambda) = \prod_{i=1}^k (\lambda - \lambda_i)^{n_i}$$
.

2.
$$\sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}.$$

ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА

Характеристический полином компоненты φ_i имеет вид:

$$\chi_{\varphi_i}(\lambda) = \det(A_i - \lambda_i E_i) = \prod_{i=1}^{n_i} (\lambda_i - \lambda) = (\lambda_i - \lambda)^{n_i},$$

$$\chi_{\varphi}(\lambda) = \prod_{i=1}^k \chi_{\varphi_i}(\lambda) = \prod_{i=1}^k (\lambda_i - \lambda)^{n_i}.$$

Отсюда для спектра σ_{φ_i} имеем

$$\chi_{\varphi_i}(\lambda) = 0 \quad \Rightarrow \quad \lambda = \lambda_i, \quad \sigma_{\varphi_i} = \{\lambda_i\}$$

$$\chi_{\varphi}(\lambda) = 0 \quad \Rightarrow \quad \lambda = \lambda_1, \lambda_2, \dots, \lambda_k, \quad \sigma_{\varphi} = \{\lambda_1, \lambda_2, \dots, \lambda_k\}.$$

Пусть λ_i - собственное значение оператора $\varphi: X \to X$, тогда

- 1. m_i кратность корня λ_i в минимальном полиноме $p_{\varphi}(\lambda)$ алгебраическая кратность λ_i (максимальный размер жорданова блока);
- 2. n_i размерность ультраинвариантного подпространства L_i **полная крат- ность** λ_i (кратность корня характеристического полинома $\chi_{\varphi}(\lambda)$);
- 3. r_i размерность подпространства $(A_i \lambda_i E_i)$ спектральная кратность λ_i (число жордановых блоков в A_i).

Лемма 11.2. Алгебраическая и спектральная (геометрическая) кратности не превосходят полной:

$$1 < m_i < n_i, \quad 1 < r_i < m_i.$$

Nota bene Частные случаи:

- 1. $n_i = 1$ \Rightarrow $r_i = m_i = 1$ оператор с простым спектром;
- 2. $r_i = n_i \quad \Leftrightarrow \quad m_i = 1$ оператор скалярного типа;
- $3. \ r_i = 1 \quad \Leftrightarrow \quad m_i = n_i$ жорданов блок.

11.1.1 Функциональное исчисление для оператора общего вила

Пусть $\varphi \in \operatorname{End}_k(X)$ - линейный оператор над пространством X и $f: \mathbb{k} \to \mathbb{k}$ - функция, которая представима в виде степенного ряда:

$$f(x) = \sum_{m=0}^{\infty} c_m x^m.$$

Nota bene Значение $f(\varphi)$ функции f определяется следующим образом

$$f(\varphi) = \sum_{m=0}^{\infty} c_m A^m.$$

ЖОРДАНОВА НОРМАЛЬНАЯ ФОРМА

Пусть $\beta(X)$ - произвольный базис линейного пространства X и $\beta_J(X)$ - жорданов базис оператора φ . Если A - матрица оператора φ в базисе $\beta(X)$ и A_J - жорданова нормальная форма оператора матрицы оператора φ , тогда

$$A = TA_J T^{-1}, \quad f(A) = T(f(A_J)) T^{-1} = T\left(\sum_{m=0}^{\infty} c_m A_J^m\right) T^{-1}$$

 $Nota\ bene$ Матрица оператора φ в жордановой нормальной форме имеет блочнодиагональный вид и значит:

$$A_J = diag\{A_1, A_2, \dots, A_k\}, \quad A_J^m = diag\{A_1^m, A_2^m, \dots, A_k^m\}.$$

Откуда следует, что достаточно уметь возводить в степень жорданову клетку.

Nota bene Пусть далее

$$A_j = \lambda_j I_j + \tau_j, \quad \tau_j^{m_j} = 0 \quad \Rightarrow \quad (\lambda_j I_j + \tau_j)^m = \sum_{r=1}^m C_m^r \tau_j^r \lambda^{m-r},$$

где C_m^r - биномиальные коэффициенты. С учетом свойств матрицы нильпотентного оператора, будем иметь:

$$diag A_{j} = \left\{ C_{m}^{0} \lambda^{m}, C_{m}^{0} \lambda^{m}, \dots, C_{m}^{0} \lambda^{m} \right\},$$

$$diag_{+1} A_{j} = \left\{ C_{m}^{1} \lambda^{m-1}, C_{m}^{1} \lambda^{m-1}, \dots, C_{m}^{1} \lambda^{m-1} \right\},$$

$$\dots,$$

$$diag_{+r} A_{j} = \left\{ C_{m}^{r} \lambda^{m-r}, C_{m}^{r} \lambda^{m-r}, \dots, C_{m}^{r} \lambda^{m-r} \right\},$$

$$\dots$$

и тогда

$$diag f(A_j) = \{f(\lambda), f(\lambda), \dots, f(\lambda)\},$$

$$diag_{+1}(A_j) = \left\{\frac{1}{1!}f'(\lambda), \frac{1}{1!}f'(\lambda), \dots, \frac{1}{1!}f'(\lambda)\right\},$$

$$\dots,$$

$$diag_{+r}(A_j) = \left\{\frac{1}{r!}f^{(r)}(\lambda), \frac{1}{r!}f^{(r)}(\lambda), \dots, \frac{1}{r!}f^{(r)}(\lambda)\right\},$$

$$\dots$$

Пример 11.1. Пусть $f(x) = \sin(x)$ и

$$A = \left(\begin{array}{cccc} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{array}\right),$$

тогда

$$\sin(A) = \begin{pmatrix} \sin \lambda & \cos \lambda & -\frac{1}{2}\sin \lambda & -\frac{1}{6}\cos \lambda \\ 0 & \sin \lambda & \cos \lambda & -\frac{1}{2}\sin \lambda \\ 0 & 0 & \sin \lambda & \cos \lambda \\ 0 & 0 & 0 & \sin \lambda \end{pmatrix},$$