Intrusion Detection in Cyber Attacks Using Deep Learning

Abstract

In the face of increasingly sophisticated cyber attacks, this proposal presents a Deep Learning–based approach combining CNN and LSTM architectures to detect intrusions. Using the CICIDS2017 dataset, the model aims for \geq 95% accuracy and \leq 5% false-alarm rate. Expected results will demonstrate superior adaptability compared to traditional methods.

Introduction

Computer networks are the lifeblood of modern organizations—and prime targets for hackers. Rule-based IDS solutions struggle to keep pace with novel attack patterns. Deep Learning offers automated feature extraction and anomaly detection, acting as a vigilant guard that never tires.

Literature Review

- Rule-based IDS (Snort, Suricata): easy to deploy but inflexible.
- ML-based IDS: Random Forest, SVM improve accuracy but require manual feature engineering.
- Deep Learning IDS:
- Kim et al. (2019) used LSTM for sequence anomalies \rightarrow recall ~90%.
- Khan et al. (2020) proposed a CNN-LSTM hybrid → precision ~92%.

DL demands large data and training time, but delivers robust performance once trained.

Methodology

- 1. Dataset: CICIDS2017 contains 14 common attack types (Brute Force, DDoS, XSS, etc.).
- 2. Preprocessing: Remove nulls and outliers; Min–Max normalization for 80 numeric features; One-hot encoding for protocol and service fields.
- 3. Model Architecture: Input (80-dim) \rightarrow CNN (Conv1D+MaxPool) \rightarrow LSTM \rightarrow Dense \rightarrow Softmax; Optimizer: Adam (Ir=0.001); Regularization: Dropout(0.5), Early stopping (patience=5).
- 4. Training: batch size=64, epochs≤50, split 70/15/15.
- 5. Baseline: Random Forest & SVM on same preprocessed data.

Evaluation Plan

Metrics: Accuracy, Precision, Recall, F1-score, ROC-AUC.

Procedure: 5-fold cross-validation. Comparison: DL model vs. RF & SVM.

Deliverables: Confusion matrices, ROC curves.

Timeline

Phase	Weeks	Tasks	
Data Preparation & Collection	1–2	Download CICIDS2017, cleaning, EDA	
Preprocessing & Feature Eng.	3–4	Normalization, encoding, dimensionality	reduction
Model Building & Training	5–7	Implement CNN-LSTM, hyperparamete	r tuning
Evaluation & Benchmarking	8–9	Cross-validation, compare with RF/SVN	1
Report Writing & Slides Design	10	Finalize proposal report and presentation	n

References

- Denning, D. E., "An Intrusion-Detection Model," IEEE, 1987.
- Sharafaldin, I., Lashkari, A. H., Ghorbani, A. A., "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization," CICIDS2017, 2018.
- Kim, D. et al., "LSTM-based Network Intrusion Detection," Journal of Cybersecurity, 2019.
- Khan, S. U. et al., "Hybrid Deep Learning for IDS," IEEE Access, 2020.
- Scikit-learn developers, "Random Forest Classifier," 2021.