## ΥΣ02 ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

Χειμερινό Εξάμηνο 2021-2022

Τέταρτη Εργασία (1 μονάδα του συνολικού βαθμού του μαθήματος, Άριστα=250, υπάρχουν επιπλέον 25 μονάδες bonus)

Ημερομηνία Ανακοίνωσης: 12 Ιανουαρίου 2022

Ημερομηνία Παράδοσης: 27 Φεβρουαρίου 2022 (μέχρι 23:59)

**Αντιγραφή:** Σε περίπτωση που προκύψουν φαινόμενα αντιγραφής, οι εμπλεκόμενοι θα βαθμολογηθούν στην εργασία με βαθμό μηδέν.

- 1. Να παραστήσετε τις παρακάτω προτάσεις σε λογική πρώτης τάξης. Να χρησιμοποιήσετε κατάλληλο λεξιλόγιο ώστε οι τύποι που θα γράψετε να είναι κατανοητοί ή να τους εξηγήσετε προσεκτικά.
  - (a) Όλοι οι φοιτητές είναι έξυπνοι.
  - (b) Υπάρχει ένας φοιτητής.
  - (c) Υπάρχει ένας έξυπνος φοιτητής.
  - (d) Κάθε φοιτητής συμπαθεί ένα φοιτητή.
  - (e) Κάθε φοιτητής συμπαθεί ένα άλλο φοιτητή.
  - (f) Υπάρχει ένας φοιτητής που τον συμπαθούν όλοι οι άλλοι φοιτητές.
  - (g) Ο Γιάννης είναι φοιτητής.
  - (h) Ο Γιάννης δεν παίρνει το μάθημα της Τεχνητής Νοημοσύνης.
  - (i) Κανείς φοιτητής δεν συμπαθεί τον Γιάννη.
  - (j) Ο Γιάννης έχει τουλάχιστον μία αδερφή.
  - (k) Ο Γιάννης δεν έχει αδερφή.
  - (1) Ο Γιάννης έχει το πολύ μία αδερφή.
  - (m) Κάθε φοιτητής παίρνει τουλάχιστον ένα μάθημα.
  - (n) Μόνο ένας φοιτητής απέτυχε στον μάθημα της Τεχνητής Νοημοσύνης.
  - (ο) Κανείς φοιτητής δεν απέτυχε στο μάθημα της Τεχνητής Νοημοσύνης αλλά τουλάχιστον ένας φοιτητής απέτυχε στο μάθημα των Βάσεων Δεδομένων.
  - (p) Κάθε φοιτητής που παίρνει Τεχνητή Νοημοσύνη, παίρνει επίσης Λογικό Προγραμματισμό.
  - (q) Κανείς φοιτητής δεν μπορεί να ξεγελάσει όλους τους άλλους φοιτητές.
  - (r) Τρίγωνο είναι ένα πολύγωνο που έχει ακριβώς τρεις γωνίες και ακριβώς τρεις πλευρές που είναι ευθύγραμμα τμήματα.
  - (s) Ορθογώνιο τρίγωνο είναι ένα τρίγωνο που μία από τις γωνίες του είναι ορθή.
  - (t) Δύο άνδρες λέγονται σύντεκνοι όταν ο ένας έχει βαφτίσει το παιδί του άλλου.

**Διευκρίνηση:** Στις προτάσεις που έχετε να μοντελοποιήσετε μια αριθμητική έκφραση  $(\pi.\chi.,$  "ακριβώς τρεις πλευρές"), δεν πρέπει να χρησιμοποιήσετε κάποιο κατηγόρημα με αυτή τη σημασία  $(\pi.\chi.\ NumberOfSides(x,3))$ . Δοκιμάστε να γράψετε ένα τύπο της λογικής πρώτης τάξης που έχει το ίδιο νόημα χρησιμοποιώντας ένα κατηγόρημα που αναφέρεται στην ποσότητα που μετράτε  $(\pi.\chi.,\ SideOf(x,s))$  και το σύμβολο της ισότητας =.

### (30 μονάδες)



2. Θεωρήστε τον κόσμο που παριστάνεται από την παραπάνω εικόνα (περισσότερα για την ταινία Don't Look Up, αν δεν την έχετε δει, στην ιστοσελίδα https://en.wikipedia.org/wiki/Don't\_Look\_Up\_(2021\_film)):

Θεωρήστε τώρα τις παρακάτω προτάσεις της λογικής πρώτης τάξης που αναφέρονται στον κόσμο της εικόνας:

 $\phi_1: (\exists x) Cup(x)$ 

 $\phi_2: (\exists x) Woman(x)$ 

 $\phi_3: (\forall x)((Man(x) \vee Woman(x)))$ 

Έχετε να απαντήσετε τις ακόλουθες ερωτήσεις:

- (a) Να ορίσετε μια ερμηνεία για το λεξιλόγιο των παραπάνω προτάσεων που περιγράφει με ακρίβεια την δοσμένη εικόνα (δηλαδή, η I μπορεί να χρησιμοποιηθεί για να δώσει νόημα στις παραπάνω προτάσεις).
- (b) Ποιές από τις παραπάνω προτάσεις ικανοποιούνται από την I? Εξηγήστε λεπτομερώς χρησιμοποιώντας με ακρίβεια τους ορισμούς της ερμηνείας και της ικανοποίησης από τις διαφάνειες των διαλέξεων.

# (10+20=30 μονάδες)

3. Θεωρήστε τις παρακάτω προτάσεις:

All roses are flowers. Some flowers fade quickly. Therefore some roses fade quickly.

<sup>&</sup>lt;sup>1</sup> Από το βιβλίο του νομπελίστα Daniel Kahneman με τίτλο "Thinking, Fast and Slow", Penguin Books, 2011.

Μπορούμε να συμπεράνουμε την 3η πρόταση από τις δύο πρώτες; Αν ναι, αποδείξτε το γράφοντας τις προτάσεις σε λογική πρώτης τάξης και χρησιμοποιώντας ανάλυση ή σημασιολογικές έννοιες όπως ερμηνεία και ικανοποίηση. Αν όχι, εξηγήστε γιατί χρησιμοποιώντας σημασιολογικές έννοιες όπως ερμηνεία και ικανοποίηση.

### (20 μονάδες)

- 4. Θεωρήστε κάθε μια από τις παρακάτω προτάσεις της λογικής πρώτης τάξης (P και Q είναι κατηγορήματα). Είναι η πρόταση έγκυρη (valid)? Αν ναι, δώστε μια απόδειξη χρησιμοποιώντας κατάλληλες σημασιολογικές έννοιες της πρωτοβάθμιας λογικής. Αν όχι, δώστε ένα αντιπαράδειγμα.
  - (a)  $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\forall x)Q(x)$
  - (b)  $(\forall x)P(x) \lor (\forall x)Q(x) \Rightarrow (\forall x)(P(x) \lor Q(x))$

### (10+20=30 μονάδες)

5. Αποδείζτε χρησιμοποιώντας ανάλυση την πρόταση ή τις προτάσεις που βρήκατε να είναι έγκυρες στην παραπάνω ερώτηση 4.

### (10 μονάδες)

**Προσοχή:** Σε αυτή την ερώτηση καθώς και σε όλες τις άλλες που δίνονται παρακάτω και αφορούν ανάλυση, όλες οι μετατροπές τύπων και όλες οι αντικαταστάσεις να δειχθούν αναλυτικά. Αν η συζευκτική κανονική μορφή που είναι είσοδος για την ανάλυση δεν είναι σωστή, το σκέλος της ανάλυσης δεν θα βαθμολογηθεί.

- 6. Θεωρήστε τις παρακάτω προτάσεις στα Ελληνικά:
  - i. Ο Αντωνάκης, ο Βαγγελάκης και η Μαιρούλα είναι μέλη του πολιτικού κόμματος
    ΠΚ
  - ιί. Κάθε μέλος του κόμματος ΠΚ που δεν είναι δεξιός, είναι φιλελεύθερος.
  - Στους δεξιούς δεν αρέσει ο σοσιαλισμός.
  - iv. Σ' όποιον δεν αρέσει ο καπιταλισμός, δεν είναι φιλελεύθερος.
  - ν. Στον Αντωνάκη δεν αρέσει ό,τι αρέσει στον Βαγγελάκη, και του αρέσει ό,τι δεν αρέσει στον Βαγγελάκη.
  - νί. Στο Βαγγελάκη αρέσει ο σοσιαλισμός και ο καπιταλισμός.
  - νιί. Υπάρχει ένα μέλος του ΠΚ που είναι φιλελεύθερος αλλά δεν είναι δεξιός.
  - (a) Να μετατρέψετε τις παραπάνω προτάσεις (i)-(vi) σε λογικής πρώτης τάξης και να ονομάσετε τη βάση γνώσης που προκύπτει KB.
    - Να μετατρέψετε την πρόταση (vii) σε λογική πρώτης τάξης και να ονομάσετε την πρόταση που προκύπτει  $\phi$ .
    - **Σημείωση:** Να εξηγήσετε με ακρίβεια τι παριστάνουν τα σύμβολα σταθερών, συναρτήσεων και κατηγορημάτων που θα χρησιμοποιήσετε.
  - (b) Να χρησιμοποιήσετε ανάλυση (resolution) για να αποδείξετε ότι  $KB \models \phi$ ?
  - (c) Να τροποποιήσετε την απόδειξη με ανάλυση που δώσατε στο (β') χρησιμοποιώντας λεκτικά απάντησης για να βρείτε το μέλος του ΠΚ που έχει την ιδιότητα που παριστάνει η  $\phi$ .

# (15+20+5=40 μονάδες)

7. Θεωρήστε τις παρακάτω προτάσεις που αποτελούν τη βάση γνώσεων ενός πράκτορα ο οποίος κατεβάζει για λογαριασμό μας άρθρα τα οποία μας ενδιαφέρουν και βρίσκονται σε διάφορους απομακρυσμένους υπολογιστές.

- (a) Ένα άρθρο είναι προσπελάσιμο με ftp αν βρίσκεται σε κάποιο υπολογιστή στον οποίο έχουμε πρόσβαση.
- (b) Ένα άρθρο είναι στον υπολογιστή ftp.press.std.gr αν έχει δημοσιευτεί σε περιοδικό που εκδίδεται από τις εκδόσεις Student.
- (c) Αν ένας υπολογιστής προσφέρει υπηρεσίες anonymous ftp τότε όλοι έχουν πρόσβαση.
- (d) Ο υπολογιστής ftp.press.std.gr προσφέρει υπηρεσίες anonymous ftp.
- (e) Το άρθρο "Πώς να διαβάσετε αποδοτικά στην εξεταστική" δημοσιεύτηκε στο περιοδικό "Φοιτητική ζωή" που εκδίδεται από τις εκδόσεις Student.

Κωδικοποιήστε τις παραπάνω προτάσεις χρησιμοποιώντας φράσεις Horn (Horn clauses) και χρησιμοποιήστε forward ή backward chaining για να αποδείξετε ότι το άρθρο "Πώς να διαβάσετε αποδοτικά στην εξεταστική" είναι προσπελάσιμο με ftp.

**Σημείωση:** Αν γνωρίζετε ήδη Prolog, μπορείτε να την χρησιμοποιήσετε.

### (15+15=30 μονάδες)

8. (a) Θεωρήστε την παρακάτω πρόταση  $\phi$  της λογικής πρώτης τάξης:

$$(\forall x)(((\exists y)P(x,y)\Rightarrow Q(x))\land (\forall z)(R(z)\Rightarrow (\exists w)S(x,z,w)))$$

Να δώσετε τη συζευκτική κανονική μορφή (CNF) της  $\phi$ .

(b) Να χρησιμοποιήσετε ανάλυση (resolution) για να αποδείξετε ότι η πρόταση

$$(\forall x)(\forall y)(\forall z)(\exists w)((P(x,y)\Rightarrow Q(x))\land (R(z)\Rightarrow S(x,z,w)))$$

ακολουθεί λογικά από την παραπάνω πρόταση φ.

## (10+20=30 μονάδες)

9. Θεωρήστε την σχεσιακή βάση δεδομένων

ΑI

DB

Algebra

| Teaches   |
|-----------|
| Professor |

Manolis

Manolis Stavros

Elena

Course Compilers

| Name    | Dept |
|---------|------|
| Manolis | ECE  |
| Stavros | ECE  |
| Elena   | Math |
| Yannis  | Math |

Works In

και την ερώτηση σε SQL:

SELECT \*

FROM Teaches, Works In

WHERE Works In.Dept="Math" AND Teaches.Professor=Works In.Name

- (a) Να παραστήσετε την παραπάνω σχεσιακή βάση, την SQL ερώτηση και την απάντησή της σε Datalog.
- (b) Να χρησιμοποιήσετε την τεχνική του forward chaining για να βρείτε την απάντηση στην παραπάνω ερώτηση.

# (10+20=30 μονάδες)

10. Θεωρήστε το διάγραμμα οντοτήτων-συσχετίσεων (entity-relationship diagram) της Εικόνας 1.

Όπως θυμάστε από το μάθημα των Βάσεων Δεδομένων, τα διαγράμματα οντοτήτωνσυσγετίσεων χρησιμοποιούνται για την εννοιολογική μοντελοποίηση εφαρμογών. Για ευκολία σας υπενθυμίζουμε το σχετικό συμβολισμό:

• Οι τύποι οντοτήτων αναπαρίστανται με ορθογώνια.



Εικόνα 1: Ένα διάγραμμα οντοτήτων-συσχετίσεων

- Οι συσχετίσεις αναπαρίστανται με ρόμβους.
- Τα χαρακτηριστικά γνωρίσματα αναπαρίστανται με ελλείψεις.
- Τα υπογραμμισμένα χαρακτηριστικά γνωρίσματα σχηματίζουν το κλειδί ενός τύπου οντοτήτων.
- Το τριγωνάκι με τη λέξη isA αναπαριστά σχέσεις κατηγορίας/υποκατηγορίας.
  Ο συμβολισμός "isA (d)" δηλώνει ότι οι υποκατηγορίες είναι ξένες μεταξύ τους.
- Η διπλή γραμμή σε μια σχέση κατηγορίας/υποκατηγορίας δηλώνει ότι ο διαμερισμός της κατηγορίας σε υποκατηγορίες είναι πλήρης.

### Να απαντήσετε τα παρακάτω ερωτήματα:

- (a) Δώστε μια σειρά από προτάσεις της πρωτοβάθμιας λογικής (δηλαδή μια βάση γνώσεων ) που να περιγράφουν με ακρίβεια την πληροφορία που μας δίνει το παραπάνω διάγραμμα οντοτήτων-συσχετίσεων.
  - **Προσοχή:** Να εξηγήσετε προσεκτικά ποιές σταθερές, συναρτήσεις και κατηγορήματα χρησιμοποιείτε.
- (b) Χρησιμοποιώντας το συμβολισμό του προηγούμενου ερωτήματος (καθώς και ό,τι άλλο συμβολισμό χρειάζεστε) εκφράστε την πρόταση "Ο Γιώργος Γ. Μαυρόπουλος είναι τεχνικός και ζεί στην Αθήνα" σε πρωτοβάθμια λογική.

(20+5=25 μονάδες)