"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001651720008-1

L 13875-66 ACC NRI

AP6005319

SOURCE CODE: UR/0413/66/000/001/0053/0053

INVENTOR: Laptev, N. N.; Smol'nikov, L. Ye.

ORG: none

TITLE: Bridge inverter. Class 21, No. 177516

SOURCE: Izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, no. 1, 1966, 53

TOPIC TAGS: electronic component, inverter, electric energy conversion, power supply

ABSTRACT: The proposed self-excitation bridge inverter utilizes a number of parallelconnected transistors in each arm of the bridge. To prevent short circuiting of individual transistors, use is made of an auxiliary converter connected to a common power supply source. Negative feedback windings are connected through a rectifier to the

Fig. 1. Bridge inverter

1 - Basic inverter transistors; 2 - fuses 3 - auxiliary converter; 4 - feedback windings; 5 - output windings.

Card 1/2

UDC: 621.314.572:621.316.9

SUB CODE: 09/ SUBM DATE: 27May64/ ATD PRESS: 4/92	inputs of nected in Fig. 1).	paral.	lel th	rough	full-wave	rect	y conv ifiers	erter. to the	The output transistors	windings of each	are o arm ([DW]	on-
	SUB CODE:	09/	SUBM	DATE:	27May64/	ATD	PRESS	: 4/9	2			
			.				•			•	·•	

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

ACC NR: AP7002961 (A) SOURCE CODE: UR/0413/66/000/024/0040/0040

INVENTOR: Smol'nikov, L. Ye.

ORG: None

TITLE: A static power converter. Class 21, No. 189481

SOURCE: Izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, no. 24, 1966, 40

TOPIC TAGS: electric energy conversion, electronic feedback, voltage regulator

ABSTRACT: This Author's Certificate introduces a static power converter using semiconductor elements. The installation contains a current feedback unit with a transformer and a pulse voltage regulator. The circuit is simplified and reliability is improved by implementing current feedback simultaneously with voltage stabilization. The cu rent feedback unit is equipped with a DC filter in which the capacitor is charged from the pulse voltage regulator. This capacitor is connected in the transformer power supply circuit.

Card 1/2

UDC: 621.314.58;621,315,592,004

L 18262-63

ACCESSION NR: AP3006645

s/0286/63/000/008/0018/0018

AUTHOR: Laptev, N. N.; Smol'nikov, L. Ye.

TITLE: IC relaxation oscillator. Class 21, No. 153935

SOURCE: Byul, izobreteniy i tovarny*kh znakov, no. 8, 1963, 18

TOPIC TAGS: oscillator, relaxation oscillator, IC oscillator, IC relaxation oscillator, driven oscillator, controlled rectifier, SCR

ABSTRACT: This Author's Certificate introduces an LC relaxation oscillator operating in the driven mode which is modified to give a delayed pulse output. This is accomplished by connecting controlled rectifiers 2 and 4 and injection diode 3, as shown in Fig. 1 of the Enclosure. Orig. art. has: 1 figure.

ASSOCIATION: none

SUBMITTED: 03Nov61

DATE ACQ: 30Sep63

SUB CODE: GE

NO REF SOV: 000

Card 1/2

SOURCE CODE: UR/0413/66/000/022/0061/0061 FACC NR: AP7000323 INVENTOR: Laptev, N. N.; Smol'nikov, L. Ye. ORG: none TITLE: Self-exciting inverter. Class 21, No. 188568. SOURCE: Izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, no. 22, 1966, 61 TOPIC TAGS: inverter, electronic circuit, transistorized circuit ABSTRACT: An Author Certificate has been issued for a self-exciting inverter (see Fig. 1) based on thyristors either with feedback or with a tuned LC load circuit. To Fig. 1. Inverter 1 - Inverter thyristors; 2 - tuned LC circuit; 3 - isolation diodes; ...4 - saturation coil; 5 - feedback winding; 6 - output transformer; 7 - tank capacitor; 8 - limiting resistor. 621.314. UDC: 572 Card 1/2

SMOL'NIKOV, Nikelay Ivanevich; SIVEOVA, Valeriya Aleksandrevna; SMOLYARREEO,
D.A., redakter; DENISOVA, I.S., redakter; KIRSANOVA, N.A., tekhnicheskiy redakter.

[Improvement of sanitary conditions for workers pouring metal in open-hearth mills] Ozderovlenie uslovii truda pri razlivke metalla v martenovskikh tsekhakh, Moskva, Isd-ve VTsSPS Profisdat, 1955.

115 p. (Foundries--Sanitation) (MIRA 9:5)

SMOL'NIKOV, N.I., kandidat tekhnicheskikh nauk.

Test results for some collective and individual safety appli-

ances used during metal pouring in open-hearth plants. Ozdor.
usl.trud.na sav. no.44-57 '56. (MLRA 9:11)
(Open-hearth furnaces-- Safety appliances)

PHASE I BOOK EXPLOITATION 766

- Malykh, Aleksandr Aleksandrovich, Spirina, Anna Maksimovna, and Smol'nikev, Nikolay Ivanovich
- Okhrana truda v martenovskikh tsekhakh (Safety Measures in Open-hearth Furnace Shops) Moscow, Metallurgizdat, 1957. 196 p. 3,100 copies printed.
- Ed.: Raylo, P. I.; Ed. of Publishing House: Khutorskaya, Ye. S.; Tech. Ed.: Mikhaylova, V.V.
- PURPOSE: This book is intended for engineers and technicians in metallurgical plants who are interested in, or deal with industrial safety problems. The book may also be used by students in higher institutions of learning and in tekhnikums.
- COVERAGE: The authors describe various hygienic and sanitary measures adopted by Soviet industry to improve working conditions and to reduce the accident rate in open-hearth furnace shops. The most frequent causes of accidents are analyzed and the proper preventive measures are explained. Special emphasis is laid on hazardous operations around the open hearth furnace.

Card 1/4

14(5) \$0\(\text{7}\)152-59-2-13/32

AUTHORS: Musayev, I. M., Shapiro, B. A., Smol'nikov, N. V.

TITLE: Fighting Foreign Waters in the Course of the Exploitation

of a Petroleum Deposit (Bor'ba s postoronnimi vodami v

protsesse razrabotki neftyanogo mestorozhdeniya).

Experiences of the Plant of Kyurovdag NPU "Shirvanneft'"

(Iz praktiki promysla Kyurovdag NPU "Shirvanneft'")

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy. Neft' i gaz,

1959, Nr 2, pp 53 - 57 (USSR)

ABSTRACT: The main level of extraction in the southwestern branch of.

the Kyurovdag fold is the Level I, which is situated in the

upper part of the productive matter. In lithological

respects it represents a sequence of sands and clay. Under the petrolific part of the cross section layers of water were discovered, which after the decrease of ohm resistance

are marked in the core sampling diagrams. During the investigation of level I water broke through that mainly gathered in the bottom of the level and in lower lying layers. The water possibly broke through because of the

connection along the drill shaft between petrolific and water-

Card 1/2 containing layers. The casting of petroleum cement is an

SOV/152-59-2-13/32 Fighting Foreign Waters in the Course of the Exploitation of a Petroleum Deposit. Experiences of the Plant of Kyurovdag NPU "Shirvanneft'"

effective measure to abtain anhydrous petroleum from watery drillings and to lower the percentage of water in the final product. For the casting of the petrolaum cement under the conditions prevailing in Kyurovdag no lowering or elevating work has to be done which permits work without elevators and derricks.

There are 2 figures and 1 table.

THE STREET, ST

ASSOCIATION: Azerbaydzhanskiy industrial'nyy institut im. M.Azizbekova (Azerbaydzhan Industrial Institute imeni M.Azizbekov) and NPU "Shirvanneft!"

Card 2/2

SMOL'RIKOV, N.Ya.; DIKAREVA, A.I., red.; SVESHNIKOV, A.A., tekhm. red.

[Programming fundamentals for the "Ural" digital computer] Osnovy programmirovaniia diia tsifrovoi mashiny "Ural." Moskva, Izd-vo "Sovetskoe radio," 1961. 326 p. (KIRA 15:2)

(Electronic digital computers)

(Programming (Electronic computers))

MATOV, Viktor Ivanovich; MIKOLAYEV, Oleg Aleksandrovich; ZHDAHOVICH,

Mikolay Semenovich; FETISOV, Aleksandr Vasil'yevich;

SHOLINIKOV, M.Ia., red.; BORUMOV, M.I., tekhm. red.

[Digital computer for school use] Uchebmaia tsifrovaia vychislivel'naia mashina. Moskva, Gosenergoizdat, 1963. 127 p.

(Biblioteka po avtonatike, no.84) (MIRA 16:12)

(Electronic digital computers)

ZEKSESZ 17677

RUDAKOV, Mikhail Lazarevich, prof.; GUSEV, Nikolay Andreyevich, dotsent; FILATOV, Sergey Aleksandrovich, kand.tekhn.nauk; NENAZHIVIN, Aleksandr Vasil'yevich, inzhener; RASHKOVSKIY, Yakov Zel'manovich, inzhener; SMOL'NIKOV, Pavel Alekseyevich, inzhener; ZORIN, Il'ya Petrovich, inzhener; LOGINOVSKIY, Vasiliy Mikhaylovich, inzhener; BUTKEVICH, T.V., red.; LISHUTIN, B.G., red.; LUCHKO, Yu.V., red.izdatel'stva; ZEF, Ye.M., tekhn.red.

[Mine surveying in strip mining] Marksheiderskie raboty na kar'erakh. Pod obshchei red.B.G.Lishutina i A.V.Nenazhivina. Sverdlovsk, Gos.nauchno-tekhn.izd-vo lit-ry po chernoi i tavetnoi metallurgii, Sverdlovskoe otd-nie, 1957. 691 p. (MIRA 10:12) (Mine surveying)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

ANISIMOV, I.V.; SMOL'NIKOV, P.V.

Development of the combined invariant system for the control of rectification. Khim.prom. no.12:895-902 D '63. (MIRA 17:3)

L 32019-65 EWT(d)/EWP(v)/EPF(n)-2/EWP(h)/EWP(k)/EWP(1) Po-4/Pq-4/Pf-4/Pae-2/Pk-4/P1-4 IJP(c) WW/BC

ACCESSION NR: AP5003982

S/0103/65/026/001/0176/0179

AUTHOR: Smol'nikov, P. V. (Moscow)

59 B

TITLE: Determining the absolute invariance condition from the operation data of a linear control system when the disturbance is statistically specified

SOURCE: Avtomatika i telemekhanika, v. 26, no. 1, 1965, 176-179

TOPIC TAGS: automatic control, <u>automatic control design</u> automatic control system, automatic control theory

ABSTRACT: The transfer function of a compensator which meets the absolute-invariance condition can be determined from the records of measuring instruments connected to the input and output of the plant in question during its normal operation; no preliminary determination of transfer functions of the system is necessary. A two-input, single-output system is considered for which fundamental relations were written by T. P. Goodman (Trans. ASME, v. 79,

Card 1/2

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

L 32019-65

ACCESSION NR: AP5003982

O

no. 3, 1957). An integral equation (10) for correlation functions is developed, and the final formula (15) for the transfer function is derived. The controlled variable z (t) must be recorded for a constant disturbance, x (t) z const. Orig.

art. has: 3 figures and 15 formulas.

ASSOCIATION: none

SUBMITTED: 28Oct63

ENCL: 00

SUB CODE: IE, DP

NO REF SOV: 006

OTHER: 001

Card 2/2

CHERNOV, V.F.; SMOL'NIKOV, S.G.; POLYAKOV, Ya.Ya.

Caustic soda by the ferrite method. Patent U.S.S.R. 77,925, Dec. 31, 1949.

(CA 47 no.20:10815 '53)

DECEMPTYEW, A. A., Eng., SMOLTHINOV, V. L., Eng.

Electric Engineering.

New, advanced methods of electrical equipment repair. Rab. energ., 1, No. 2, 1951.

Monthly List of Russian Accessions, Library of Congress, Cotober 1952. UNCLASSIFIED.

AID P - 3404

Subject

: USSR/Electricity

Card 1/1

Pub. 29 - 19/30

Author

: Smol'nikov, V. L., Eng.

Title

: Mechanical locking of grounding knife-blades of 110 to 220-kv busbar disconnecting switches

: Energetik, 10, 26-27, 0 1955

Abstract

Periodical

: The author describes the use of portable grounding equipment, which is often inconvenient because of its weight. He advises instead the use of

grounding knife-blades of the RLNZ type. He gives a description of such an installation. One detailed

drawing.

Institution :

None

Submitted

: No date

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

Changing generators tik 5 no.12:28-33 D	over to standby excitation '57'. (Electric power station	(MIRA 1	rge- 0:12)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

AUTHOR:

Smol nikov, 7.L., Engineer

| 00**V/91-58-3-25/28**

TITLE:

On Overvoltage Caused by Higher Harmonics (O perenaprya-

zheniyakh ot vysshikh garmonik)

PERIODICAL:

Energetik, 1958, Nr 3, pp 37-38 (USSR)

ABSTRACT:

A group of three-phase triple-winding transformers of Metro-politan-Vickers make (3 x 10,500 kVA, 115/38.5/10.5 kV, circuitry $Y_0/Y_0/\text{delta-12-11})$ working at a Mosenergo block station was damaged by overvoltage. The author lists the mistakes which provoked the accident, and concludes: 1) if a transformer group has triple winding and its NN-windings are delta-connected, then it is not good to switch-in voltage, if the delta is disconnected; 2) such transformer groups have to get their NN-lead-outs equipped with coordinating spark gaps which will protect the winding insulation from over-

voltage caused by higher harmonics.

There are 2 circuit diagrams and 1 diagram.

Card 1'1

SMOL'NIKOV, V.L., inzh.

Organization of centralized repair of the electric equipment
of power plants, Elek.sta. 29 no.1:50-53 Ja '58. (NTRA 11:2)
(Electric power plants--Equipment and supplies)

GADZHIYEV, S.S., inzh.; SMOL'NIKOV, V.L., red.; BORUNOV, N.I., tekhn.red.

[Preventing breakdowns of electric equipment at electric stations and substations] Preduprezhdenie avarii s elektrooborudovaniem na elektrostentsiiakh i dopstantsiiakh. Moskva, Gos.energ.izd-vo, (MIRA 13:2)

(Electric power plants) (Electric substations)

SMOLUNIKOV, V. M., NEVSKII, N. A.

Effect of radon baths in Pietigorek on the modification in the rate of hemorrhage and capillaroscopic picture in normal subjects and in ratients with certain groups of heart diseases. Klin. med., Moskva 28:7, July 50. p. 78-9

1. Of the Experimental Division (Head-N. A. Nevskiy), Pyatigorsk Clinic of the State Balmeological Institute and of the Administration of Pyatigorsk Health Resort (Head Physician-B. N. Papkov).

CLML 19, 5, Nov., 1950

SMOL:NIKOV, V.M. [Smol'nykov, B.M.]

Interpretation of vertical electric probing curves. Dop. AN UESR nc.9:1160-1165 *61. (MIRA 14:11)

1. Institut geologii poleznykh iskopayemykh AN USSR. Predstavleno akademikom AN USSR V.B. Porfir'yevym [Porfir'iev, V.B.]. (Geophysics)

BORODIN, Yuriy Pavlovich; SMOL'NIKOV, Y.P., red.; BERMAN, B.E., red. izd-va; ZEF, Ye.M., tekhn.red.

[Blectric crane operator; textbook for technical training of workers] Mashinist elektricheskogo krana; uchebnik dlia proizvodstvenno-tekhnicheskogo obucheniia rabochikh. Sverdlovsk,
Gos. nauchno-tekhn. izd-vo lit-ry po chernoi i tsvetnoi metallurgii, 1958. 192 p. (MIRA 12:1)

(Cranes, derricks, etc.)

Ane 58-	esthesiology in for 64 Mr-Ap 156 (ANESTHESIO	eign countries OGY, review (F	(MIRA 11:10)

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

MOS, 1957 II pp 20 cm. (Tomak State Med Inst in V.M. Molotova. From Inst 22 Chest Surgery of USSR Acrel Med Sci) 200 copies (ML, 12-57, 105)

23

SMOL'NIKOV, V.P.

Macintosh's anesthetic apparatus (EMO). Eksper.khir. 2 no.2:50-54 Mr-Ap '57. (MIRA 12:8)

1. Iz instituta grudnoy khirurgii (dir. -deystvitel'nyy chlen ANN SSSR prof.A.N.Bakulev) ANN SSSR. (ANESTHESIOLOGY, appar. & instruments appar. of Macintosh (Rus))

SERGEYEV, V.N., kand.med.nauk, SMOL'NIKOV, V.P., kand.med.nauk

"Anesthesia for surgery of the heart" [in English] by K.K. Keown.

Reviewed by V.M. Sergeev, V.P. Smol'nikov. Vest.khir. 81 no.7:144-146
J1 '58 (MEART...SURGERY)
(ANESTHESIOLOGY)
(KEOWN, K.K.)

MESHALKIN, Yevgeniy Nikolayevich; SMOL'NIKOV, Viktor Prokof'yevich

[Modern inhalation anesthesia] Sovremennyi ingaliatsionnyi
narkoz. Moskva, Medgiz, 1959. 354 p. (MIRA 13:7)

(ANESTHESIA)

SMOLINIKOV, V.P. (Moskva, Begovaya ul., 11, kv.181)

Shane-Ashman method of anesthesia in thoracic surgery. Grud. khir. 1 no.1:121-125 Ja-F '59. (MIRA 13:6)

1. Iz laboratorii anesteziologii (zav. V.P. Smol'nikov) Instituta grudnoy khirurgii AMN SSSR (dir. - prof. A.A. Busalov).

(ANESTHESIA) (CHEST--SURGERY)

SMOL'NIKOV, V.P.

"Handbook of balanced anesthesia in dentistry, obstetrics, and surgery" by S.M. Shane Reviewed by V.P. Smol'nikov. Grud.khir. 1. no.2:118-120. Mr-Ap. 59. (MIRA 16:7)

SMOL'NIKOV, V.P. (Moskva, Begovaya ul.,d.ll,kv.l81)

Problem of bronchospasm. Grud. khir. 1 no.4:72-76 Jl-Ag '59.
(MIRA 15:3)

1. Iz Instituta grudnoy khirurgii AMN SSSR (dir. - prof.)
A.A. Busalov, nauchnyy rukovoditel' - akademik A.N. Bukulev).
(BRONCHI -- DISEASES)

KAZANSKIY, B.A.; LUKINA, N.Yu.; NAKHAPETYAN, L.A.; ZOTOVA, S.V.;
LOZA, G.V.; SHATENSHTEYN, G.A.; OVODOVA, V.A.; UVAROV, O.V.;
SOKOLOV, N.M.; SHOL'NIKOV, V.P.

Production of high purity cyclopropane. Khim. prom. no. 6:462-465 S '60.

(Cyclopropane)

KOVANEV, V.A.; MISTAKOPULO, N.F.; RYABOV, G.A.; SMOL'NIKOV, V.P.

Some properties of muscle relaxants. Vest. khir. 84 no.5:77-81
My '60. (MIRA 13:12)

(MUSCLE RELAXANTS)

SMOL'NIKOV, V.P.; RYADOV, G.A.

Recurarization following use of relaxants of the non-depolarizing type. Eksp.khir.i anest. 6 no.3:33-36 161. (MIRA 14:10) (MUSCLE RELAXANTS)

LUKINA, M.Yu., kard, khim.nauk; SMOL'NIKOV, V.P., kand.med.nauk (Moskva)

Cyclopropane. Priroda 50 no.11:100-102 N '61. (MIRA 14:10)
(Cyclopropane) (Anesthetics)

SMCINIKOV, V. P.

lst European Congress of Anaesthesiology, 3-7 Sep 62, Vienna

ABSTRACTS

RYABOV, G. A. Principles of Management of the Body Functions in Superficial and Profound Hypothermia in Children with Congenital Heart Disease

K CHACK Interaction of Muscular Relaxants and Corticosteroids in the Modern KOVARHIV, V. A. Anaesthesia for the Operations on the Heart

ZOLNIKOV, S. M. Some Problems of Anaesthesia for Children with Congenital Heart Disease ROSLAVLEVA, N. G. Operated Upon with the Help of Extracorporeal Circulation

GEVORKYAN, I. 8. Arterial Anaesthesia as a 7 Sort of Local Anaesthesia

SEDENTION, V. P. The Shane Effect and Pauling's Theory of Anaesthesia

SMOL'NIKOV, V. P.; STEPANYAN, Ye. P.; KUPRIYANOV, S. S.; KRAMARENKO, L. Ye.

Inversion of the symptomatology in curarization. Eksper. khir. i anest. no.2:62-66 '62. (MIRA 15:6)

1. Iz laboratorii anesteziologii (zav. - kandidat meditsinskikh nauk V. P. Smol'nikov) i laboratorii biokhimii (zav. - doktor biologicheskikh nauk Ye. P. Stepanyan) Instituta grudnoy khirurgii (dir. - prof. S. A. Kolesnikov, nauchnyy rukovoditel' - akad. A. N. Bakulev) AMN SSSR.

(MUSCLE RELAXANTS)

SMOL'NIKOV, V.P.; YEFUNI, S.N., red.; KOKIN, N.M., tekhn. red.

[Problems of emergency anesthesiology]Voprosy ekstrennoi anesteziologii. Moskva, Medgiz, 1962. 63 p. (MIRA 16:2)

(ANESTHESIOLOGY)

BUACHIDZE, L.N.; SMOL'NIKOV, V.P.

Xenon aneuthesia in man. Vest.AMN SSSR 17 no.8:22-25 '62.

(MIRA 15:12)

1. Laboratoriya anesteziologii Instituta eksperimental'noy i klinicheskoy onkologii AMN SSSR.

(XENON) (ANESTHETICS)

VOLKOVA, Z.V.; SMOL'NIKOV, V.P.

CONTROL OF THE PROPERTY OF THE

Machanism of the prolonged anesthetic sleep produced with the Shein-Ashman mixture. Vest.AMN SSSR 17 no.8:56-60 '62. (MIRA 15:12)

1. Laboratoriya anesteziologii Instituta serdechno-sosudistoy khirurgii AMN SSSR i laboratoriya radioaktivnoy indikatsii II Moskovskogo meditsinskogo instituta imeni N.I.Pirogova. (AMESTHETICS) (THIOPENTAL)

SMOLTHIKOV, V.P.; DARGHETAN, T.M. (Moskra)

What every surgeon and anesthetist should know and remember.

Eksper. khir. i anest. 8 no.3:3-6 My-Je'63 (MIRA 17:1)

SMOL'NIKOV, W.P.; NARODNITSKAYA, N.A.

Modern chloroform anesthesia for oncologic patients. Eksper. khir. i anest. no.1:74-77 '65. (MIRA 18:11)

l. Laboratoriya anesteziologii (zav. - doktor med. nauk V.P. Smol'nikov) Instituta eksperimental'noy i klinicheskoy onkologii (direktor - deystvitel'nyy chlen AMN SSSR prof. N.N. Blokhin) AMN SSSR, Moskva.

KOBLIKOV, Aleksandr Semenovich; MAZALOV, Anatoliy Gavrilovich; SMOL'NIKOV,
Viktor Yevgen'yevich; BORISOGLEBSKIY, B.V., general-leytenant yustitsii, red.; LEVINA, M.M., red.; TIMOFEYEVA, N.V., tekhn. red.

[Scientific and practical commentary on the regulation concerning military trubunals] Nauchno-prakticheskiikommentarii i polozheniiu o voennykh tribunalakh. Pod red. i s predisl. V.V.Borisoglebskogo. Izd.2., ispr. Moskva, Gos.izd-vo iurid.lit-ry, 1961. 78 p.

(MIRA 14:12)

1. Predsedatel' Voyennoy kollegii Verkhovnogo Suda SSSR (for Boriso-glebskiy).

(Courts-martial and courts of inquiry)

E.A. SMOL'NIKOV , V.A. ARSHINOV, ALEKSEEV, G.A.

Raschet i konstruirovanie rezhushchego instrumenta. Dop.v kachestve uchebn. posobiia dlia mashinostroit. tekhnikrmov. Moskva, Mashgiz, 1951. 602 p. illus.

Bibliographical footnotes.

Calculating and desinging cutting tools.

DLC: TJ1230.A47

SO: Manufacturing and Mtchanical Engineering in the Soviet Union, Library of Congress, 1953.

SMOL'NIKOV, Ye.A., kandidat tekhnicheskikh nauk.

Properties of sylvinite as heating medium for hardening steel

parts. Metalloved.i obr.met. no.6:25-32 D '55. (MLRA 9:3)

1. Vsesoyuznyy nauchno-issledovatel'skiy instrumental'nyy institut. (Steel--Hardening) (Sylvinite)

SMOL'NIKOV, Yo.A., kandidat tekhnicheskikh nauk.

Investigating deformation in high-speed cutting steel during heat treatments. Sbor.Inst. stali no.33:103-141 '55.(MLRA 9:6)

1.Kafedra metallovedeniya i termicheskoy obrabotki. Predstavleno akademikom N.T.Gudtsovym. (Tool steel---Metallography) (Steel---Heat treatment)

SALOC VIKEN, YI

129 - 8 - 11/16

AUTHOR: Smol'nikov, Ye. A., Candidate of Technical Sciences.

TITLE: Application in a salt bath of alloys of silvinite with soda. (Primeneniye v solyanykh vannakh splavov sil'vinita s sodoy).

PERIODICAL: "Metallovedeniye i Obrabotka Metallov" (Metallurgy and Metal Treatment), 1957, No.8, pp.40-42 (U.S.S.R.)

ABSTRACT: In an earlier paper (1) the author described results of investigation of the properties of molten silvinite and also of attempts of applying it in industry for heating during hardening of tools quenched in water or in a saltpetre melt, using borax as a deoxiding agent. Observations in existing baths of the operation of molten silvinite revealed a number of new features: during neating in such baths the surface quality of the hardened components depends to a large extent on their cooling conditions during the hardening process. Quenching in water or in molten saltpetre produces a clean surface, whilst quenching in oil produces a dark surface and in some cases also a coating of a dense salt film. This is attributed to the existence in silvinite of chloride salts and other admixtures, particularly On the basis of the here iron oxides and sulphuric salts. described experiments it was found that heating in molten silvinite deoxided with borax is advisable for components

Card 1/2

SMOL'NIKOV, Ye. A., kand.tekhn.nauk

Kinetics of the heating of steel products in fused salts.

Kinetics of the heating of steel products in fused salts.

Metalloved. i term. obr. met. no.6 Je '61 (MIRA 14:6)

Metalloved. i term. obr. met. no.6 Je '10 (MIRA 14:6)

1. Vsesoyuznyy nauchno-issledovatel'skiy instrumental'nyy institut.

(Steel--Heat treatment)

88283

. . . . "

s/032/61/027/001/015/037 BO17/BO54

1.9600

AUTHORS:

Smol'nikov, Ye. A., Fadyushina, M. N.

TITLE:

New Method of Determining the Decarbonized Layer in

 χ -12 (Kh-12) Steel

中心中心,他们也是一个人的人,他们也是一个人的人,他们也是一个人的人,他们也没有一个人的人,他们也没有一个人的人,他们也是一个人的人,他们也没有一个人的人,他们

PERIODICAL:

Zavodskaya laboratoriya, 1961, Vol. 27, No. 1, p. 62

TEXT: Gradual hardening was recommended to develop the decarbonized layer in the perlite region of Kh-12 steel. The steel specimen was heated to 1000-1050°C, then cooled down to 750°C, kept at this temperature for 10 min, and subsequently hardened in oil. After development by etching, the decarbonized layer in steel becomes visible as a dark stripe. Gradual hardening was also recommended to develop the decarbonized layer in the beynite region. The steel specimen was heated to 1000-1025°C, cooled down to 375-390°C, kept at this temperature for 10-20 min, and then hardened in water. in water. The decarbonized layer in steel shows a needle structure after development by etching.

Card 1/2

CIA-RDP86-00513R001651720008-1 "APPROVED FOR RELEASE: 08/31/2001

88283

New Method of Determining the Decarbonized

S/032/61/027/001/015/037 B017/B054

Layer in X-12 (Kh-12) Steel

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy instrumental'nyy institut (All-Union Scientific Research Institute of

Instruments)

Card 2/2

31,81,7 \$/129/62/000/003/008/009 E193/E383

1. 1710 AUTHOR Smol'nikov Ye.A., Candidate of Technical Sciences

TITLE

Study of the decarburizing action of a hightemperature salt bath

Metallovedeniye i termicheskaya obrabotka metallov no. 5, 1962, 49 - 56 + 1 plate PERIODICAL:

The object of the present investigation, conducted by S.I. Artem yeva under the direction of the author, was to develop methods of determining the decarburizing properties of a fused barium-chloride bath and to study the factors affecting the degree of decarburization. Experimental work was carried out in an industrial-type bath, 350 mm deep and of hexagonal cross-section, the distance between the parallel faces being 220 mm. In the first method studied, foil specimens (80 x 20 x 0.1 mm) of steels 13 (U13) (1.27% C) and P9 (R9) (0.85% C) were held in a freshly molten bath at 1 280 C for various periods quenched in water and analyzed for carbon content. The results are reproduced in Fig. 1, where the

Card 1/6

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

5/129/62/000/005/008/009 E193/E383

X

Study of

Card 2/6

carbon content (%) of steel U15 (curve 1) and R9 (curve 2) specimens is plotted against immersion time (sec) at 1 280 °C. In the next series of experiments, the decarburizing action of the bath was assessed by determining the thickness of the decarbur-1zed layer on steel R18 and P18K10 (R18K10) specimens by metallographic examination and scratch tests. The results of preliminary experiments indicate that, all other factors being equal the thickness of the decarburized layer depends on the geometry of the specimen, decarburization being particularly intensive on sharp edges and corners. Consequently, the degree of carburization was studied as a function of the occluded angle of wedge-like test pieces. The results are reproduced in Fig. 2. where the depth of decarburized layer (mm) is plotted against the occluded angle (deg) of specimens held in barium chloride at 1 280 $^{\circ}$ C for 50 min (curve 1) or 15 min (curve 2). It was concluded that the most convenient shape of specimens used with this method of determining the decarburization action of a salt bath was that shown in Fig. 3 and this type of specimen was used in all subsequent experiments. The object of the next

S/129/62/000/005/008/009 E195/E585

Study of

series of tests was to determine the effect of "ageing" on the properties of barium-chloride baths. To this end, a fresh bath of barium chloride was brought up to 1 280 °C and maintained at that temperature for 40 hours, decarburization tests being carried out on steel specimens at regular intervals. The results are reproduced in Fig. 6, where the carbon content in a foil specimen of steel U15 (%, lefthand scale - curve 1), depth of the decarburized layer on wedge-like specimens of steel R18 (mm, righthand scale - curve 2) and the content of iron oxides in the bath (%, righthand scale - curve 3) are plotted against the service life (hours) of the bath. Since the results of these experiments indicated that the decarburizing ability of the bath increased with time and was associated with a build-up of its oxide content, the effect of adding various deoxidizing agents (MgF₂, borax, ferrosilicon, CaF₂, fluorspar and crystalline silicon) was studied as well as the effect of the immersion depth. Several conclusions were reached.

Card 3/6

5/129/62/000/003/008/009 E193/E383

Study of

1) Both methods tested in the course of the present investigation (chemical analysis of foil specimens of steel Ul3 metallographic examination of wedge-like test pieces of steel R18) can be used to determine the decarburizing properties of a salt bath. The recommended holding time is 1 min in the former and 15 min in the latter case. When the metallographic method is used, the decarburized layer is more readily revealed if the test piece after being held in the bath at 1 280°C is isothermally heat-treated in the pearlitic range. 2) The greater the depth of immersion, the more intensive is the decarburization in a barium-chloride bath. This effect is associated with the existence of an oxide-concentration gradient. 3) The longer a bath remains in operation the higher becomes its oxide content and the more intensive its decarburizing action. Of the various materials tested, magnesium fluoride was found to be the most effective deoxidizing agent, Addition of 5-10% ${\rm MgF}_2$ to a barium-chloride bath will ensure absence of decarburization during the first 24 hours

Card 4/6

Study of

S/129/62/000/003/008/009 E193/E383

of the operation of the bath. Chemically pure MgF2

is recommended for hardening Mo and Co steels and for hardening steel R18 cutting tools with sharp threads or edges.

- 4) In less critical applications, 2 10% crystalline silicon or 10 25% fluorspar can be used as deoxidizing additions. Addition of the latter material lowers the melting point of the bath and so increases its useful range of application.
- 5) The service life of a high-temperature bath can be increased and its decarburizing action reduced by using electrodes of high-carbon steels $\times 25$ (Kh25) or $\times 28$ (Kh28). There are 9 figures and 1 table.

ASSOCIATION:

Vsesoyuznyy nauchno-issledovatel'skiy instrumental'nyy institut (All-Union Scientific Research Institute of Instruments)

Card 5/6

X

SMOL'NIKOV, Ye.A., kand.tekhn.nauk; BADAYEVA, A.S., inzh.

Nonmetallic inclusions in high-speed steel. Metalloved. i term. obr.

(MIRA 15:7)

met. no.6:48-50 Je 162.

l. Vsesoyuznyy nauchno-issledovatel*skiy instrumental*nyy institut.

(Tool steel-Inclusions)

SMOL'NIKOV, Ye.A.

Exposure of the decarburized layer in steels. Zav.lab. 29 no.2: (MIRA 16:5)

1. Vsesoyuznyy nauchno-issledovatel'skiy instrumental'nyy institut.
(Steel-Metallography)

SYOL'NIKOV, Ye.A., kand. tekhn.nauk; ZHDANOVA, F.I., inzh.; GELLER, Yu.A., doktor tekhn.nauk, prof., red.; LESNICHENKO, I.I., red.izd-va; SOKOLOVA, T.F., tekhn.red.

[Salt baths for the heat treatment of articles; a handbook]
Solianye vanny dlia termicheskoi obrabotki izdelii; spravochnik. Moskva, Mashgiz, 1963. 123 p. (MIRA 17:2)

SMOL'NIKOV, Ye.A.; SARMANOVA, L.M.

Salt mixtures used in Czechoslovakia and the German Democractic Republic for the heat treatment of steel products. (MIRA 16:11) i term. obr. met. no.ll:56-57 N 63.

SMOL'NIKOV, Ye.A.

Effect of heating conditions in hardening on the cutting properties of tool steels. Stan.i instr. 34 no.7:28-33 J1 '63.

(MIRA 16:9)

(Tool steel--Hardening)

SMOI'NIKOV, Ye.A.

Investigating the decarburizing effect of medium temperature salt baths. Metalloved. i term. obr. met. no.2%44-%8 F164 (MIRA 17%7)

1. Vsesoyuznyy neftegazovyy nauchno-issledovatel'skiy institut.

AUTHOR:

Described Considered of remarked Sciences)

TIPLE:

Recting Perfect of Authors to Delt France

PERFODICAL:

Managlovedent, it remains a grand substitute solution, 1900, Nr 8, pp 13-26 (8837)

ARGTRACT:

In preheating sheet authors for hardening, the rotal holding time in a sait bath (t_{tot}) is sumposed of (a) the time required for full heating of a given article (t₂) which depends on the Town and value of the article; (b) the time required for the simpletion of phase transformations in steel after heating (t₂); the laster is a constant value for steel with a certain type of initial attracture.

[1]

Card I 14

Heating Period of Artheles in Balt Batas

77577 30V/125-60-2-10/13

Each specimen was held in the bath for a gradually increasing period of time and cooled in a calorimeter. For different-size specimens calorimeters with a capacity of 5, 10, 20, and 30 l were used. The calorimetric vessel was filled with water (18° C), and after the immersion of specimens a metastatic thermometer showed the increase in the water temperature with an accuracy of 0.001° C. Curves were plotted for the changes in the heat content of specimens vs. heating time at various heating rates. Results of experiments with balls are shown in Fig. 3.

Card 3/11

Heating Period of Artibles in Salt Baths

77 (3) 007/125-6--5-10/13

area (cm²) which is adaptable to individual cases. Figure 4 shows the heating period for cylinders.

$$t_1 = 11.9(V/F)^{1.3}$$
 (9)

$$t_1 = 7.8(v/F)^{1.3}$$
 (10)

Equations (9) and (10) allow a rather accurate calculation of the time needed for a full heating of different-size cylinders. By means of Eq. (1) and Eq. (3), (9), and (10), the total heating and Eq. (3) can be calculated. In heating time tests period $t_{\rm tot}$

for tools the produced experimental data and data as indicated in Fig. 4 enabled the establishment of a correlation between the time needed for neating of complex-chaped components and that for simpler-shaped bodies. The ratio of heating time for a tool

Card 6/11

Court of the series of a strong and a grade of the series of the series of the strong and a grade of the series o

Heating Period of Articles in Salt Eaths

77-9/ 507/22-00-2-10/13

shapes is calculated, see Table, 2.

Key to Table 2: (A) Tools; (B) designation of steel; (C) heating temperature ($^{\circ}$ C); (D) a (min/cm); (E) coefficient = aZ_{sh} (min/cm); (F) twist drills; (G) hand taps; (H) pipe taps; (I) round threading dies; (J) hand reamers.

(A)	(B)	(C)	(D)	Z _{Sh}	and the second s	(E)
(F) (e) (H) (I)	9KhS UIZA UIZA 9KhS 9KhS	870 869 800 870 870	7.8 11.9 11.9 7.8 7.8	0,57 0,66 0,80 0,75 0,79	1,27 1,27 1,27 1,27	5,6 10 12 5,8 5,8

Card - 11

we stage by the of April Les in July Bellin

The hearing period for result threating also had all of 900s-steel is found from:

$$t_{\text{tot}} = 5.8 \left[\frac{(D-d)1}{4.1 + 2 (D-d)} \right]^{1.3}$$
 (23)

where D = OD, d = ID, and l = length of part being heated. On the basis of the foregoing, the author concludes as follows: (1) The calorimetric method is recommended for the determination of the period required for meating of complex-shaped articles as well as the general laws governing the certific process. (2) Mithematical mischailend to be made eachier theories, as indicated in the text object, on the determination the heating wint of chaptershaped bodies and the pharmacontails also that

1.01 11 11

Heating Period of Articles in Salt Baths

77 977 SOV/129-50-2-10/13

correlation is expressed by b < 1. (3) The values found for the coefficients of shape $({\rm Z_{Sh}})$ allow

the introduction of corrections into the heating time values with a view to individual tool shape. There are 4 figures; 2 tables; and 4 Soviet

references.

ASSOCIATION:

All-Union Scientific Research Tool Institute (Vsesoyuznyy nauchno-Issledovatel'skiy instrumental'nyy

institut)

Card 11/11

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001651720008-1"

The Market of Heating Thee Dorling Hardenling on the Directors and Properties of High-Deced Stee. 78130 **SOV**/129-60-3-9/16

nardwhing, and then gradually extinguishes. (2) Holding after completion of heating, which is required for completion of basic stages of carbides transition into completion, lasts 1.16 min for R18 steel hardened solid solution, lasts 1.16 min for R18 steel hardened

from 1,275°C; for R9 steel, hardened from 1,230°C, 0.6 min. (3) Further increase of holding is not advisable as it is followed by grain growth, unfa.orable shape and size distortions, and distribution of carbides, which results in lowering of mechanical properties. There are 1- figures; 1 table; and 4 references, 3 Soviet, are 1- figures; 1 table; and 4 references, 6. C., "Metal 1 U.K. The U.K. references is: Cope, S. C., "Metal treatment and Drop Forging," Nr 100-107, 1954.

ASSOCIATION:

All-Union Scientific Research Tool Institute (Vsesoyuznyy nauchno-issledovatel skiy instrumental nyy institut)

|Card 5/3

CIA-RDP86-00513R001651720008-1 "APPROVED FOR RELEASE: 08/31/2001

s/137/62/000/002/093/14-A060/A101

AUTHORS

Smol'nikov, Ye. A., Fadyushina, M. N.

TITLE

Determining decarbonization in steel containing 12% Cr, by the use

of pearlitic transformation

PERIODICAL:

Referativnyy zhurnal, Metallurgiya, no. 2, 1962, 71, abstract 21476 (V sb. "Metodika i praktika metallogr. issled. instrum. stali".

Moscow, Mashgiz, 1961, 66-68)

An investigation was carried out upon two methods of fixing the decarbonized layer and determining its depth in steel grade \hat{X} 12 (Kh12). The first method is based on the fact that the bainite transformation in the zone with lowered 3 content occurs earlier than in regions with higher C content. The second method is based on the nonsimultaneous transformation of supercooled austenite in the pearlitic region in zones with differing C contents. The recommended hardening schedule for the first method is: heating up for hardening to 1,000 - 1.025°C, cooling in saltpeter at 375 - 390°C for 10 - 20 min and thereupon in water. According to the second method the heating temperature for hardening is 1,000 - 1,025°C, cooling in a salt vat (78% BaCl₂ + 22% NaCl) at

Card 1/2

S/137/62/000/002/093/144
A060/A101

Determining decarbonization in steel ...

725°: for 10 min and then in oil. It is noted that both methods yield results which coincide. The values of the depth of the decarbonized layer obtained by the two methods are cited.

V. Perenets

(Abstracter's note | Complete translation]

3/121/61/000/002/003/005 A207/A101

Optimum soaking time in the heating of high-speed ...

the solid solution with carbon and alloying elements. Thus: \mathcal{T}_{opt} opt where C for \bigcirc 18 (R18) steel is 1.16 min. The final formula for computing the (3), where soaking time for R18 steel drills is as follows: \mathcal{T}_{opt} . n is the coefficient equal to 3 sec/mm of the diameter. The author asserts that various experiments showed that the heating time of tools made of high-speed steel has a significant effect on the microstructure, hardness, red hardness and cutting properties. Excessively short soaking times, which do not ensure the optimum size of the austenite grain are inexpedient since the resistance of the tool drops rather sharply by about a factor of two, and the hardness and red hardness by far do not reach the optimum values. The correct selection of the soaking time in heating should ensure a degree of saturation of the solid solution with carbon and alloying elements which guarantees a hardness of no less than RC 63 after a three-fold tempering at 560°C, a high red hardness (characterizing by hardarter a three-roll tempering at 500-0, a high red hardness (thous), and not noticeable improvement of the cutting of the cutting at 625°C (thours), and not noticeable improvement of the cutting properties. Regulating the soaking time during the hardening process is thought to be a very effective means for increasing the hardness, red hardness and cutting properties of the high-speed steel tool. The optimum heating time of various tools should ensure enough time for their heating to the temperature of the bath, and sufficient time for saturation of the solid solution with carbon and

Card 2/4

CIA-RDP86-00513R001651720008-1" APPROVED FOR RELEASE: 08/31/2001

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001651720008-1

s/137/62/000/002/092/14-A060/A101 Smol nikov, Ye. A. Determining the depth of the decarbonized layer in high-speed steel Alter-Office from the pearlitic transformation Referativnyy zhurnal, Metallurgiya, no. 2, 1962, 71, abstract 2:475 (V sb. "Metodika i praktika metallogr. issled. instrum. stali".

Mostow, Mashgiz, 1961, 69) PER LODI LAL The phenomenon of lowered stability of the supercooled austenite in nign-allow tool steel in the region of pearlitic transformation at lowered conwas used to determine the decarbonized layer. After the austenitizing and coling the specimen down to the appropriate temperature, the austenite of the fore 13 preserved, while troostite is formed in the decarbonized layer. Under subsequent cooling there arises an unetchable martenistic structure. Under ening ne roostite decarbonized layer shows itself in the form of a plack The boundary of the decarbonized layer may also be detected by using the difference in the values of the structure hardness between the core and the detained layer. For this purpose one either carries out the determination jart 1/2

Demenmining the depth ...

s/137/62/000/002/092/144 A060/A101

of the tirrehardness or else a stratch is made in the radial direction and the tirrehard of the detarbonized layer is determined from the variation in its thickness. Schedules for determining the decarbonized layer are recommended. Ser example, for P 18 (R18) - heating up to 1.280°C, cooling down to 725°C, account for 30 mms, further cooling in oil or water at 20°C.

M. Rabinovich

[Acstracter's note | Complete translation]

*ai i 2 2

AL AMBERTAGA ANTANA DISARPETAN DI PERINTINA DI PERINTINA DI PERINTINA DI PERINTINA DI PERINTINA DI PERINTINA DI

MALININA, K.A.; SMOL'NIKOV, Ye.A.; SUYETOV, A.P.; BADAYEVA, A.A.; LUNEVA, Z.S.; KUKOLEV, V.V.; SOKOLOVSKAYA, V.V.; LEBEDEVA, Ye.A.; UVAROVA, A.F., tekhn.red.

[Technological operations in the manufacture of metal-cutting tools; instructions] Tekhnologiia izgotovleniia metallorezhm-tools; instructions] Tekhnologiia izgotovleniia metallorezhm-shchikh instrumentov; rukovodiashchie materialy. Moskva, Gos. shchikh instrumentov; rukovodiashchie materialy. Moskva, Gos. nauchno-tekhn.izd-vo mashinostroit.lit-ry. No.7. [Heat treatment] Termicheskaia obrabotka. 1960. 127 p. (MIRA 13:6)

1. Vsesoyuznyy nauchno-issledovatel'skiy instrumental'nyy institut. 2. Termicheskaya laboratoriya Vsesoyuznogo nauchno-issledovatel'skogo instrumental'nogo instituta (for all, except Uvarova).

(Metal-cutting tools) (Metals-Heat treatment)

USSR/General Problems. Methodology, History, Scientific Institutions and Conference; Instruction, Questions Concerning Biblio
Abs Jour: Referat. Zhurral Khimiya, No 2, 1958, 3M61.

Author: A.F. Smol'nikova.

Title: Development of Leningrad Pastry Industry.

Orig Pub: in symposium: Pishcheraya pron-st'. L., Sel'khozgiz, 1957,

Abstract: No ebstract.

Card: 1/1 -12-

YAKHONTOV, Vladimir Vladimirovich; LUZHETSKIY, Aleksandr Nikolayevich [deceased]; ALIMDZHANOV, Rakhim Alimdzhanovich; NIKOLYUK, V.F., doktor biolog.nauk, otv.red.; SMOL'NIKOVA, B.Kh., red.; BARTSEVA, V.P., tekhn.red.

[Beneficial and injurious insects of Uzbekistan] Poleznye i vrednye nasekomye Uzbekistana. Tashkent, Izd-vo Akad.nauk Uzbekskoi SSR, 1960. 200 p. (MIRA 13:12) (Uzbekistan...Insects, Injurious and beneficial)

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001651720008-1

L 39314-65 EWT(m)/EWG(v)/EWP(j)/T ACCESSION NR: AP5005754 RM

s/0183/65/000/001/0041/0045

AUTHORS: Smol'nikova, L. G.; Konkin, A. A.

TITLE: Interaction of caprone fiber/with bifunctional compounds

SOURCE: Khimicheskiye volokna, no. 1, 1965, 41-45

TOPIC TAGS: caprone, polyamide, intermolecular bond, physicomechanical property, solubility, fiber, formic acid, adipic acid, sebacic acid, catalyst, epoxy, xylene, bifunctional compound / No. 34 caprone, No. 5 caprone, No. 200 caprone

ABSTRACT: This article, the first in a series: "Modification of Caprone Fiber," deals with experiments performed to ascertain the possibility of improving the thermal stability and modulus of elasticity of polyamide fibers by forming intermolecular bonds during the interaction of a polyamide with bifunctional compounds. The experimental work and the results of interacting caprone fiber with dichloranhydrides of dicarboxylic acids, with diepoxy compounds, and with diisocyanates are described. Caprone fibers No. 34, 5, and 200 were used with dichloranhydrides of adipic and sebacic acids in a xylene solution and with pyridine as a catalyst. The increase of weight, the change of physicomechanical properties and the solubility in an 85% formic acid were used as the criteria of bond formation. The reactions were conducted at 1200. It was found that fiber weight may be increased by 4.5-6%,

L 39314-65

ACCESSION NR: AP5005754

with a proportional decrease in the solubility and a small rise of melting point. 7 The same criteria were used to study the reaction results between the fiber and diisocyanates. A weight increase up to 28% and complete insolubility in formic acid were achieved. In the above work, the influence of temperature, time, and the concentration of the reagents were studied. Experiments with dispoxies were conducted at temperatures of 25-1800 with alkaline and acid catalysts. The results were negative. The authors thank S. V. Vinogradova for providing dichloranhydride reagents. Orig. art. has: 4 formulas and 5 graphs.

ASSOCIATION: Moskovskiy tekstil'nyy institut (Moscow Textile Institute)

SUBMITTED: 14Feb64

ENCL: 00

SUB CODE: OC

NO REF SOV: 003

OTHER: 008

SMOL'NIKOVA, L.G.; KONKIN, A.A.

Mechanical properties of capron fibers cross-linked with bifunctional compounds. Khim. volok. no.2:28-30 '65.

(MIRA 18:6)

1. Moskovskiy tekstil'nyy institut.

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001651720008-1

ENT(n)/ENG(v)/EMP(j)/T Pc-4/Pe-5 RM UR/0183/65/000/003/0020/0024 ACCESSION NR: AP5013981 677.494.657 AUTHORS: Smol'nikova, L. G.; Konkin, A. A. TITLE: Meaction of polycaprolactam fiber with cyanuric chloride SJUNGE: Khimicheskiye volokna, no. 3, 1965, 20-24 TOPIC TAGS: caprone, chlorine organic compound, fiber, organic synthesis, heat resistance, mechanical property ABSTRACT: The reaction between polycaprolactam fiber and cyanuric chloride was studied. The polycaprolactam fibers were treated with 5% solution of cyanuric chloride in absolute xylene. At 90C a monochlor-substituted derivative was obtained. On heating this product with 2N NaOH at 50C (and subsequent washing in hot water), this was converted to a dihydroxy derivative of the two initial compounds. A dichlor-substituted derivative was formed by reaction between the two initial components at 120C. With treatment in 2N NaOH at 50C for 2 hours, a hydroxy derivative was obtained. Replacement of chlorine in the triazine ring by hydroxyl group changes the physical and mechanical properties of the new fiber. The monochlor-substituted derivative dissolves in all solvents for Card 1/2

L 57082-65

ACCESSION NR: AP5013981

polyamides, but the dichlor-substituted derivative does not. The melting point of the monochlor-substituted derivative declines slightly with weight increase of fibers. The melting point of the dichlor form increases very sharply with increase in weight. The hydroxy derivative of this dichlor form has a higher melting point, greater strength, and is more hydrophilic than the parent dichlor-substituted product. Both monochlor and dichlor derivatives have higher heat resistance than the initial caprolactam fibers, and the dichlor form is more resistant than the monochlor form. The loss of strength on heating declines with increase in weight of fibers. Orig. art. has: 4 figures and 3 tables.

STATEMENT OF STREET STATEMENT OF STREET STREET, STREET STREET STREET, STREET, STREET, STREET, STREET, STREET,

ASSOCIATION: MTI

SUBMITTED: 31Mar64

ENGL: 00

SUB CODE: MT, OC

NO REF SOV: 004

OTHER: 003

Card 2/2

L 52103-65 EWT(m)/EWP(j)/T Pc-4 RM

ACCESSION NR: AP5015273

UR/0286/65/000/009/0052/0052

AUTHORS: Konkin, A. A.; Smol'nikova, L. G.; Gabriyelyan, G. A.

6

TITIE: A method of processing polyamide or a polyamide fiber. Class 29, No. 170611

SOURCE: Byulleten' izobreteniy i tovarnykh znakov, no. 9, 1965, 52

TOPIC TAGS: polyamide, fiber, hydrogen, amide, diketene

ABSTRACT: This Author Certificate presents a method for processing polyamide or a polyamide fiber by reagents interacting with hydrogen of the amide group of the polyamide. To increase the heat resistance of polyamides and products made of them, diketene or a diketene solution is used as the processing reagent.

ASSOCIATION: none

SUBMITTED: 13Feb64

ENCL: 00

SUB CODE: OC

NO REF SOV: 000

OTHER: 000

Card 1/1718

"APPROVED FOR RELEASE: 08/31/2001 C

CIA-RDP86-00513R001651720008-1

L 34825-66 EWT(m)/EMP(i)/T ACC NR. AP6017602 SOURCE CODE: UR/0183/66/000/001/0026/0029 (A)AUTHOR: Smol'nikova, L. G.; Konkin, A. A.; Makarevich, N. I. ORG: [Smol'nikova] Altai Polytechnical Institute im. Polzunov, Barnaul (Altaiskiy politekhnicheskiy institut); [Konkin] MTI; [Makarevich] Institute of Physics AN BSSR Minsk (Institut fiziki AN BSSR) TITLE: Using sulfur chloride solutions for cross-linking capron fibers Khimicheskiye volokna, no. 1, 1966, 26-29 TOPIC TAGS: chloride, sulfur compound, polymer cross linking, synthetic fiber, mylon; polyamide, IR spectrum ABSTRACT: This article is the fourth in the series "Modification of Capron Fiber". The previous studies were devoted to the effect which dicarboxylic dichlorides, diisocyanates and cyanuric chloride have on the properties of polyamide fiber. In view of the cross linking which takes place with the formation of intermolecular chemical bonds when rubber, gutta-percha and polyvinyl alcohol are treated in sulfur chloride, experiments were conducted to study the use of this reagent for cross linking in capron fiber. No 34.5 polyamide was treated in an 8% solution of pyridine in xylol. After the reaction, the modified fibers were extracted by carbon disulfide and acetone to a constant weight to eliminate the effect of sorbed sulfur on the properties of the 677.494.675 UDC: Card 1/2 Card 2/2 W