```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.metrics import classification_report, confusion_matrix
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.utils import to_categorical
url = "https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv"
df = pd.read_csv(url)
print(df.head())
                   island bill_length_mm bill_depth_mm flipper_length_mm \
species
     0 Adelie Torgersen
                                     39.1
                                                    18.7
                                                                      181.0
     1 Adelie Torgersen
                                     39.5
                                                    17.4
                                                                      186.0
     2 Adelie Torgersen
                                     40.3
                                                    18.0
                                                                      195.0
     3 Adelie Torgersen
                                     NaN
                                                    NaN
                                                                       NaN
     4 Adelie Torgersen
                                                    19.3
                                                                      193.0
                                     36.7
        body_mass_g
                       sex
     0
             3750.0
                      MALE
     1
             3800.0 FEMALE
     2
             3250.0 FEMALE
     3
               NaN
                       NaN
     4
             3450.0 FEMALE
df.dropna(inplace=True)
le_species = LabelEncoder()
le_sex = LabelEncoder()
le_island = LabelEncoder()
df['species'] = le_species.fit_transform(df['species'])
df['sex'] = le_sex.fit_transform(df['sex'])
df['island'] = le_island.fit_transform(df['island'])
features = ['bill_length_mm', 'bill_depth_mm', 'flipper_length_mm', 'body_mass_g', 'sex', 'island']
X = df[features]
y = df['species']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_{cnn} = X_{scaled.reshape}(-1, 2, 3, 1)
y_cnn = to_categorical(y, num_classes=3)
X train, X test, y train, y test = train test split(X cnn, y cnn, test size=0.2, random state=42)
model = Sequential([
    Conv2D(32, (2, 2), activation='relu', input_shape=(2, 3, 1)),
   MaxPooling2D(pool_size=(1, 1)),
    Flatten(),
   Dense(64, activation='relu'),
   Dropout(0.3),
    Dense(3, activation='softmax')
1)
   /usr/local/lib/python3.11/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.summary()
                                   What can I help you build?
                                                                                                ⊕ ⊳
```

→ Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 1, 2, 32)	160
max_pooling2d (MaxPooling2D)	(None, 1, 2, 32)	0
flatten (Flatten)	(None, 64)	0
dense (Dense)	(None, 64)	4,160
dropout (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 3)	195

Total params: 4,515 (17.64 KB)
Trainable params: 4,515 (17.64 KB)
Non trainable params: 4 (4 44 P)

history = model.fit(X_train, y_train, epochs=30, batch_size=16, validation_split=0.2)

```
→ Epoch 1/30
    14/14
                              - 3s 34ms/step - accuracy: 0.4076 - loss: 1.0607 - val accuracy: 0.8333 - val loss: 0.8878
    Epoch 2/30
    14/14
                               Os 9ms/step - accuracy: 0.8263 - loss: 0.8430 - val_accuracy: 0.7778 - val_loss: 0.7068
    Epoch 3/30
    14/14
                               0s 7ms/step - accuracy: 0.8560 - loss: 0.6436 - val_accuracy: 0.7963 - val_loss: 0.5370
    Epoch 4/30
    14/14
                               0s 7ms/step - accuracy: 0.8855 - loss: 0.4534 - val_accuracy: 0.8519 - val_loss: 0.4030
    Epoch 5/30
    14/14
                               0s 7ms/step - accuracy: 0.8978 - loss: 0.3281 - val_accuracy: 0.8519 - val_loss: 0.3181
    Epoch 6/30
                               0s 7ms/step - accuracy: 0.9137 - loss: 0.2586 - val_accuracy: 0.8889 - val_loss: 0.2433
    14/14
    Epoch 7/30
    14/14
                               0s 10ms/step - accuracy: 0.9542 - loss: 0.2014 - val_accuracy: 0.9259 - val_loss: 0.1922
    Epoch 8/30
    14/14
                               0s 12ms/step - accuracy: 0.9895 - loss: 0.1149 - val_accuracy: 0.9444 - val_loss: 0.1510
    Epoch 9/30
    14/14
                               Os 7ms/step - accuracy: 0.9826 - loss: 0.1235 - val_accuracy: 0.9815 - val_loss: 0.1160
    Epoch 10/30
    14/14
                               • 0s 7ms/step - accuracy: 0.9788 - loss: 0.1037 - val_accuracy: 0.9815 - val_loss: 0.0958
    Epoch 11/30
    14/14
                               0s 7ms/step - accuracy: 0.9987 - loss: 0.0573 - val accuracy: 0.9815 - val loss: 0.0822
    Fnoch 12/30
    14/14
                              - 0s 7ms/step - accuracy: 0.9764 - loss: 0.0651 - val accuracy: 0.9815 - val loss: 0.0700
    Epoch 13/30
    14/14
                               0s 7ms/step - accuracy: 0.9880 - loss: 0.0525 - val_accuracy: 0.9815 - val_loss: 0.0571
    Epoch 14/30
                               Os 10ms/step - accuracy: 0.9974 - loss: 0.0432 - val_accuracy: 0.9815 - val_loss: 0.0472
    14/14
    Epoch 15/30
    14/14
                               0s 7ms/step - accuracy: 0.9903 - loss: 0.0484 - val_accuracy: 0.9815 - val_loss: 0.0427
    Epoch 16/30
                              - 0s 7ms/step - accuracy: 0.9903 - loss: 0.0381 - val accuracy: 0.9815 - val loss: 0.0385
    14/14
    Fnoch 17/30
                               0s 7ms/step - accuracy: 0.9948 - loss: 0.0315 - val_accuracy: 0.9815 - val_loss: 0.0404
    14/14
    Epoch 18/30
    14/14
                               0s 7ms/step - accuracy: 0.9956 - loss: 0.0235 - val_accuracy: 0.9815 - val_loss: 0.0353
    Epoch 19/30
    14/14
                               0s 7ms/step - accuracy: 0.9948 - loss: 0.0260 - val_accuracy: 0.9815 - val_loss: 0.0302
    Epoch 20/30
    14/14
                               0s 10ms/step - accuracy: 1.0000 - loss: 0.0159 - val_accuracy: 1.0000 - val_loss: 0.0279
    Epoch 21/30
    14/14
                              - 0s 7ms/step - accuracy: 1.0000 - loss: 0.0135 - val accuracy: 0.9815 - val loss: 0.0274
    Epoch 22/30
    14/14
                              - 0s 7ms/step - accuracy: 0.9991 - loss: 0.0125 - val accuracy: 0.9815 - val loss: 0.0273
    Epoch 23/30
    14/14
                               0s 7ms/step - accuracy: 1.0000 - loss: 0.0142 - val accuracy: 0.9815 - val loss: 0.0251
    Epoch 24/30
    14/14
                               0s 7ms/step - accuracy: 1.0000 - loss: 0.0180 - val_accuracy: 0.9815 - val_loss: 0.0237
    Epoch 25/30
    14/14
                               0s 7ms/step - accuracy: 1.0000 - loss: 0.0122 - val_accuracy: 0.9815 - val_loss: 0.0236
    Epoch 26/30
    14/14
                               0s 10ms/step - accuracy: 0.9956 - loss: 0.0134 - val_accuracy: 0.9815 - val_loss: 0.0225
    Epoch 27/30
    14/14
                              - 0s 7ms/step - accuracy: 1.0000 - loss: 0.0124 - val accuracy: 1.0000 - val loss: 0.0201
    Epoch 28/30
                              - 0s 7ms/step - accuracy: 1.0000 - loss: 0.0076 - val_accuracy: 1.0000 - val_loss: 0.0200
    14/14
    Epoch 29/30
                              - 0s 10ms/step - accuracy: 0.9948 - loss: 0.0164 - val_accuracy: 1.0000 - val_loss: 0.0188
    14/14
```

loss, accuracy = model.evaluate(X_test, y_test)
print(f"Test Accuracy: {accuracy:.2f}")

```
3/3 — 0s 19ms/step - accuracy: 1.0000 - loss: 0.0037
Test Accuracy: 1.00
```

₹

Classification Report:

	precision	recall	f1-score	support
Adelie	1.00	1.00	1.00	31
Chinstrap	1.00	1.00	1.00	13
Gentoo	1.00	1.00	1.00	23
accuracy			1.00	67
macro avg	1.00	1.00	1.00	67
weighted avg	1.00	1.00	1.00	67

Confusion Matrix:

```
[[31 0 0]
[ 0 13 0]
[ 0 0 23]]
```

```
plt.plot(history.history['accuracy'], label='Train Acc')
plt.plot(history.history['val_accuracy'], label='Val Acc')
plt.title('Model Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```



```
plt.plot(history.history['loss'], label='Train Loss')
plt.plot(history.history['val_loss'], label='Val Loss')
plt.title('Model Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```


Start coding or generate with AI.