Algebraic Geometry Buzzlist

Fredrik Meyer

1 Algebraic Geometry

1.1 General terms

1.1.1 Cartier divisor

Let \mathcal{K}_X be the sheaf of total quotients on X, and let \mathscr{O}_X^* be the sheaf of non-zero divisors on X. We have an exact sequence

$$1 \to \mathscr{O}_X^* \to \mathcal{K}_X \to \mathcal{K}_X / \mathscr{O}_X^* \to 1.$$

Then a **Cartier divisor** is a global section of the quotient sheaf at the right.

1.1.2 Categorical quotient

Let X be a scheme and G a group. A **categorical quotient** is a morphism $\pi: X \to Y$ that satisfies the following two properties:

1. It is invariant, in the sense that $\pi \circ \sigma = \pi \circ p_2$ where $\sigma : G \times X \to X$ is the group action, and $p_2 : G \times X \to X$ is the projection. That is, the following diagram should commute:

$$G \times X \xrightarrow{\sigma} X$$

$$\downarrow p_2 \qquad \qquad \downarrow \pi$$

$$X \xrightarrow{\pi} Y$$

2. The map π should be *universal*, in the following sense: If $\pi': X \to Z$ is any morphism satisfying the previous condition, it should uniquely factor through π . That is:

$$X \xrightarrow{\pi} Y$$

$$\pi' \bigvee_{\exists ! h}$$

Note: A categorical quotient need not be surjective.

1.1.3 Chow group

Let X be an algebraic variety. Let $Z_r(X)$ be the group of r-dimension cycles on X, a cycle being a \mathbb{Z} -linear combination of r-dimensional subvarieties of X. If $V \subset X$ is a subvariety of dimension r+1 and $f: X \dashrightarrow \mathbb{A}^1$ is a rational function on X, then there is an integer $\operatorname{ord}_W(f)$ for each codimension one subvariety of V, the order of vanishing of f. For a given f, there will only be finitely many subvarieties W for which this number is non-zero. Thus we can define an element $[\operatorname{div}(f)]$ in $Z_r(X)$ by $\sum \operatorname{ord}_W(f)[W]$.

We say that two r-cycles U_1, U_2 are rationally equivalent if there exist r+1-dimensional subvarieties V_1, V_2 together with rational functions $f_1 \colon V_1 \dashrightarrow \mathbb{A}^1$, $f_2 \colon V_2 \dashrightarrow \mathbb{A}^1$ such that $U_1 - U_2 = sum_i[\operatorname{div}(f_i)]$. The quotient group is called the **Chow group** of r-dimensional cycles on X, and denoted by $A_r(X)$.

1.1.4 Complete variety

Let X be an integral, separated scheme over a field k. Then X is **complete** if is proper.

1.1.5 Crepant resolution

A **crepant resolution** is a resolution of singularities $f: X \to Y$ that does not change the canonical bundle, i.e. such that $\omega_X \simeq f^*(\omega_Y)$.

1.1.6 Dominant map

A rational map $f: X \rightarrow Y$ is **dominant** if its image (or precisely: the image of one of its representatives) is dense in Y.

1.1.7 Étale map

A morphism of schemes of finite type $f: X \to Y$ is **étale** if it is smooth of dimension zero. This is equivalent to f being flat and $\Omega_{X/Y} = 0$. This again is equivalent to f being flat and unramified.

1.1.8 Genus

The **geometric genus** of a smooth, algebraic variety, is defined as the number of sections of the canonical sheaf, that is, as $H^0(V, \omega_X)$. This is often denoted p_X .

1.1.9 Geometric quotient

Let X be an algebraic variety and G an algebraic group. Then a **geometric** quotient is a morphism of varieties $\pi: X \to Y$ such that

- 1. For each $y \in Y$, the fiber $\pi^{-1}(y)$ is an orbit of G.
- 2. The topology of Y is the quotient topology: a subset U of Y is open if and only if $\pi^{-1}(U)$ is open.
- 3. For any open subset $U \subset Y$, $\pi^* : k[U] \to k[\pi^{-1}(U)]^G$ is an isomorphism of k-algebras.

The last condition may be rephrased as an isomorphism of strcture sheaves: $\mathscr{O}_Y \simeq (\pi_* \mathscr{O}_X)^G$.

1.1.10 Hodge numbers

If X is a complex manifold, then the **Hodge numbers** h^{pg} of X are defined as the dimension of the cohomology groups $H^p(X, \Omega_X^q)$.

1.1.11 Linear series

A linear series on a smooth curve C is the data (\mathcal{L}, V) of a line bundle on C and a vector subspace $V \subseteq H^0(C, \mathcal{L})$. We say that the linear series (\mathcal{L}, V) have $degree \deg \mathcal{L}$ and $rank \dim V - 1$.

1.1.12 Log structure

A **prelog structure** on a scheme X is given by a pair (X, M), where X is a scheme and M is a sheaf of monoids on X (on the Étale site) together with a morphisms $\alpha: M \to \mathcal{O}_X$. It is a **log structure** if the map $\alpha: \alpha^{-1} \mathcal{O}_X^* \to \mathcal{O}_X^*$ is an isomorphism.

See [4].

1.1.13 Normal crossings divisor

Let X be a smooth variety and $D \subset X$ a divisor. We say that D is a **simple normal crossing divisor** if every irreducible component of D is smooth and all intersections are transverse. That is, for every $p \in X$ we can choose local coordinates x_1, \dots, x_n and natural numbers m_1, \dots, m_n such that $D = (\prod_i x_i^{m_i} = 0)$ in a neighbourhood of p.

Then we say that a divisor is **normal crossing** (without the "simple") if the neighbourhood above can is allowed to be chosen locally analytically or as a formal neighbourhood of p.

Example: the nodal curve $y^2 = x^3 + x^2$ is a normal crossing divisor in \mathbb{C}^2 , but not a simple normal crossing divisor.

This definition is taken from [5].

1.1.14 Normal variety

A variety X is **normal** if all its local rings are **normal** rings.

1.1.15 Proper morphism

A morphism $f: X \to Y$ is **proper** if it separated, of finite type, and universally closed.

1.1.16 Resolution of singularities

A morphism $f: X \to Y$ is a **resolution of singularities of** Y if X is non-singular and f is birational and proper.

1.1.17 Separated

Let $f: X \to Y$ be a morphism of schemes. Let $\Delta: X \to X \times_Y X$ be the diagonal morphism. We say that f is **separated** if Δ is a closed immersion. We say that X is **separated** if the unique morphism $f: X \to \operatorname{Spec} \mathbb{Z}$ is separated.

This is equivalent to the following: for all open affines $U,V\subset X$, the intersection $U\cap V$ is affine and $\mathscr{O}_X(U)$ and $\mathscr{O}_X(V)$ generate $\mathscr{O}_X(U\cap V)$. For example: let $X=\mathbb{P}^1$ and let $U_1=\{[x:1]\}$ and $U_2=\{[1:y]\}$. Then $\mathscr{O}_X(U_1)=\operatorname{Spec} k[x]$ and $\mathscr{O}_X(U_2)=\operatorname{Spec} k[y]$. The glueing map is given on the ring level as $x\mapsto \frac{1}{y}$. Then $\mathscr{O}_X(U_1\cap U_2)=k[y,\frac{1}{y}]$.

1.2 Moduli theory and stacks

1.2.1 Étale site

Let S be a scheme. Then the small étale site over S is the site, denoted by 'et(S) that consists of all étale morphisms $U \to S$ (morphisms being commutative triangles). Let $\text{Cov}(U \to S)$ consist of all collections $\{U_i \to S\}$

U_{$i \in I$} such that

$$\coprod_{i\in I} U_i \to U$$

is surjective.

1.2.2 Grothendieck topology

Let \mathcal{C} be a category. A **Grothendieck topology** on \mathcal{C} consists of a set Cov(X) of sets of morphisms $\{X_i \to X\}_{i \in I}$ for each X in $Ob(\mathcal{C})$, satisfying the following axioms:

- 1. If $V \xrightarrow{\approx} X$ is an isomorphism, then $\{V \to X\} \in \text{Cov}(X)$.
- 2. If $\{X_i \to X\}_{i \in I} \in \text{Cov}(X)$ and $Y \to X$ is a morphism in \mathcal{C} , then the fiber products $X_i \times_X Y$ exists and $\{X_i \times_X Y \to Y\}_{i \in I} \in \text{Cov}(Y)$.
- 3. If $\{X_i \in X\}_{i \in I} \in \text{Cov}(X)$, and for each $i \in I$, $\{V_{ij} \to X_i\}_{j \in J} \in \text{Cov}(X_i)$, then

$${V_{ij} \to X_i \to X}_{i \in I, j \in J} \in Cov(X).$$

The easiest example is this: Let \mathcal{C} be the category of open sets on a topological space X, the morphisms being only the inclusions. Then for each $U \in \mathrm{Ob}(\mathcal{C})$, define $\mathrm{Cov}(U)$ to be the set of all coverings $\{U_i \to U\}_{i \in I}$ such that $U = \bigcup_{i \in I} U_i$. Then it is easily checked that this defines a Grothendieck topology.

1.2.3 Site

A site is a category equipped with a Grothendieck topology.

1.3 Results and theorems

1.3.1 Adjunction formula

Let X be a smooth algebraic variety Y a smooth subvariety. Let $i: Y \hookrightarrow X$ be the inclusion map, and let \mathcal{I} be the corresponding ideal sheaf. Then $\omega_Y = i^* \omega_X \otimes_{\mathscr{O}_Y} \det(\mathcal{I}/\mathcal{I}^2)^\vee$, where ω_Y is the canonical sheaf of Y.

 $\omega_Y = i^* \omega_X \otimes_{\mathscr{O}_X} \det(\mathcal{I}/\mathcal{I}^2)^\vee$, where ω_Y is the canonical sheaf of Y. In terms of canonical classes, the formula says that $K_D = (K_X + D)\big|_D$. Here's an example: Let X be a smooth quartic surface in \mathbb{P}^3 . Then $H^1(X, \mathscr{O}_X) = 0$. The divisor class group of \mathbb{P}^3 is generated by the class of a hyperplane, and $\mathcal{K}_{\mathbb{P}^3} = -4H$. The class of X is then A since X is of degree 4. X corresponds to a smooth divisor D, so by the adjunction formula, we have that

$$K_D = (K_{\mathbb{P}^3} + D)|_D = -4H + 4H|_D = 0.$$

Thus X is an example of a K3 surface.

1.3.2 Bertini's Theorem

Let X be a nonsingular closed subvariety of \mathbb{P}^n_k , where $k = \bar{k}$. Then the set of of hyperplanes $H \subseteq \mathbb{P}^n_k$ such that $H \cap X$ is regular at every point) and such that $H \not\subseteq X$ is a dense open subset of the complete linear system |H|. See [3, Thm II.8.18].

1.3.3 Euler sequence

If A is a ring and \mathbb{P}_A^n is projective n-space over A, then there is an exact sequence of sheaves on X:

$$0 \to \Omega_{\mathbb{P}_A^n/A} \to \mathscr{O}_{\mathbb{P}_A^n}(-1)^{n+1} \to \mathscr{O}_{\mathbb{P}_A^n} \to 0.$$

See [3, Thm II.8.13].

1.3.4 Kodaira vanishing

If k is a field of characteristic zero, X is a smooth and projective k-scheme of dimension d, and \mathcal{L} is an ample invertible sheaf on X, then $H^q(X, \mathcal{L} \otimes_{\mathscr{O}_X} \Omega^p_{X/k}) = 0$ for p+q>d. In addition, $H^q(X, \mathcal{L}^{-1} \otimes_{\mathscr{O}_X} \Omega^p_{X/k}) = 0$ for p+q< d.

1.3.5 Lefschetz hyperplane theorem

Let X be an n-dimensional complex projective algebraic variety in $\mathbb{P}^n_{\mathbb{C}}$ and let Y be a hyperplane section of X such that $U = X \setminus Y$ is smooth. Then the natural map $H^k(X,\mathbb{Z}) \to H^k(Y,\mathbb{Z})$ in singular cohomology is an isomorphism for k < n-1 and injective for k = n-1.

1.3.6 Riemann-Roch for curves

The **Riemann-Roch theorem** relates the number of sections of a line bundle with the genus of a smooth curve C. Let \mathcal{L} be a line bundle ω_C the canonical sheaf on C. Then

$$h^0(C, \mathcal{L}) - h^0(C, \mathcal{L}^{-1} \otimes_{\mathscr{O}_C} \omega_C) = \deg(\mathcal{L}) + 1 - g.$$

This is [3, Theorem IV.1.3].

1.3.7 Semi-continuity theorem

Let $f: X \to Y$ be a projective morphism of noetherian schemes, and let \mathscr{F} be a coherent sheaf on X, flat over Y. Then for each $i \geq 0$, the function $h^i(y,\mathscr{F}) = \dim_{k(y)} H^i(X_y,\mathscr{F}_y)$ is an upper semicontinuous function on Y. See [3, Chapter III, Theorem 12.8].

1.3.8 Serre vanishing

One form of Serre vanishing states that if X is a proper scheme over a noetherian ring A, and \mathcal{L} is an ample sheaf, then for any coherent sheaf \mathscr{F} on X, there exists an integer n_0 such that for each i > 0 and $n \geq n_0$ the group $H^i(X, \mathscr{F} \otimes_{\mathscr{O}_X} \mathcal{L}^n) = 0$ vanishes. See [3, Proposition III.5.3].

1.4 Sheaves and bundles

1.4.1 Ample line bundle

A line bundle \mathcal{L} is **ample** if for any coherent sheaf \mathscr{F} on X, there is an integer n (depending on \mathscr{F}) such that $\mathscr{F} \otimes_{\mathscr{O}_X} \mathcal{L}^{\otimes n}$ is generated by global sections. Equivalently, a line bundle \mathcal{L} is ample if some tensor power of it is very ample.

1.4.2 Invertible sheaf

A locally free sheaf of rank 1 is called **invertible**. If X is normal, then, invertible sheaves are in 1-1 correspondence with line bundles.

1.4.3 Anticanonical sheaf

The **anticanonical sheaf** ω_X^{-1} is the inverse of the canonical sheaf ω_X , that is $\omega_X^{-1} = \mathcal{H}_{om\,\mathcal{O}_X}(\omega_X, \mathcal{O}_X)$.

1.4.4 Canonical class

The **canonical class** K_X is the class of the canonical sheaf ω_X in the divisor class group.

1.4.5 Canonical sheaf

If X is a smooth algebraic variety of dimension n, then the canonical sheaf is $\omega := \wedge^n \Omega^1_{X/k}$ the n'th exterior power of the cotangent bundle of X.

1.4.6 Sheaf of holomorphic p-forms

If X is a complex manifold, then the **sheaf of of holomorphic** p-forms Ω_X^p is the p-th wedge power of the cotangent sheaf $\wedge^p \Omega_X^1$.

1.4.7 Normal sheaf

Let $Y \hookrightarrow X$ be a closed immersion of schemes, and let $\mathcal{I} \subseteq \mathcal{O}_X$ be the ideal sheaf of Y in X. Then $\mathcal{I}/\mathcal{I}^2$ is a sheaf on Y, and we define the sheaf $\mathcal{N}_{Y/X}$ by $\mathscr{H}_{em_{\mathcal{O}_Y}}(\mathcal{I}/\mathcal{I}^2, \mathcal{O}_Y)$.

1.4.8 Reflexive sheaf

A sheaf \mathscr{F} is **reflexive** if the natural map $\mathscr{F} \to \mathscr{F}^{\vee\vee}$ is an isomorpism. Here \mathscr{F}^{\vee} denotes the sheaf $\mathscr{H}_{om\,\mathscr{O}_X}(\mathscr{F},\mathscr{O}_X)$.

1.4.9 Very ample line bundle

A line bundle \mathcal{L} is **very ample** if there is an embedding $i: X \hookrightarrow \mathbb{P}^n_S$ such that the pullback of $\mathscr{O}_{\mathbb{P}^n_S}(1)$ is isomorphic to \mathcal{L} . In other words, there should be an isomorphism $i^*\mathscr{O}_{\mathbb{P}^n_S}(1) \simeq \mathcal{L}$.

1.5 Toric geometry

1.5.1 Chow group of a toric variety

The Chow group $A_{n-1}(X)$ of a toric variety can be computed directly from its fan. Let $\Sigma(1)$ be the set of rays in Σ , the fan of X. Then we have an exact sequence

$$0 \to M \to \mathbb{Z}^{\Sigma(1)} \to A_{n-1}(X) \to 0.$$

The first map is given by sending $m \in M$ to $(\langle m, v_p \rangle)_{\rho \in \Sigma(1)}$, where v_p is the unique generator of the semigroup $\rho \cap N$. The second map is given by sending $(a_\rho)_{\rho \in \Sigma(1)}$ to the divisor class of $\sum_{\rho} a_\rho D_\rho$.

1.5.2 Polarized toric variety

A toric variety equipped with an ample T-invariant divisor.

1.5.3 Toric variety associated to a polytope

There are several ways to do this. Here is one: Let $\Delta \subset M_{\mathbb{R}}$ be a convex polytope. Embed Δ in $M_R \times \mathbb{R}$ by $\Delta \times \{1\}$ and let C_{Δ} be the cone over

 $\Delta \times \{1\}$, and let $\mathbb{C}[C_{\Delta} \cap (M \times \mathbb{Z})]$ be the corresponding semigroup ring. This is a semigroup ring graded by the \mathbb{Z} -factor. Then we define $\mathbb{P}_{\Delta} = \operatorname{Proj} \mathbb{C}[C_{\Delta} \cap (M \times \mathbb{Z})]$ to be the toric variety associated to a polytope.

1.6 Types of varieties

1.6.1 Abelian variety

A variety X is an **abelian variety** if it is a connected and **complete** algebraic group over a field k. Examples include elliptic curves and for special lattices $\Lambda \subset \mathbb{C}^{2g}$, the quotient \mathbb{C}^{2g}/Λ is an abelian variety.

1.6.2 Calabi-Yau variety

In algebraic geometry, a Calabi-Yau variety is a smooth, proper variety X over a field k such that the canonical sheaf is trivial, that is, $\omega_X \simeq \mathscr{O}_X$, and such that $H^j(X, \mathscr{O}_X) = 0$ for $1 \leq j \leq n-1$.

1.6.3 del Pezzo surface

A del Pezzo surface is a 2-dimensional Fano variety. In other words, they are complete non-singular surfaces with ample anticanonical bundle. The degree of the del Pezzo surface X is by definition the self intersection number K.K of its canonical class K.

1.6.4 Elliptic curve

An elliptic curve is a smooth, projective curve of genus 1. They can all be obtained from an equation of the form $y^2 = x^3 + ax + b$ such that $\Delta = -2^4(4a^3 + 27b^2) \neq 0$.

1.6.5 Fano variety

A variety X is Fano if the anticanonical sheaf ω_X^{-1} is ample.

1.6.6 Jacobian variety

Let X be a curve of genus g over k. The **Jacobian variety** of X is a scheme J of finite type over k, together with an element $\mathcal{L} \in \operatorname{Pic}^{\circ}(X/J)$, with the following universal property: for any scheme T of finite type over k and for any $\mathcal{M} \in \operatorname{Pic}^{\circ}(X/T)$, there is a unique morphism $f: T \to J$ such

that $f^*\mathcal{L} \simeq \mathcal{M}$ in Pic $^{\circ}(X/T)$. This just says that J represents the functor $T \mapsto \operatorname{Pic} ^{\circ}(X/T)$.

If J exists, its closed points are in 1-1 correspondence with elements of Pic $^{\circ}(X)$.

It can be checked that J is actually a group scheme. For details, see [3, Ch. IV.4].

1.6.7 K3 surface

A K3 surface is a complex algebraic surface X such that the canonical sheaf is trivial, $\omega_X \simeq \mathscr{O}_X$, and such that $H^1(X, \mathscr{O}_X) = 0$. These conditions completely determine the Hodge numbers of X.

2 Commutative algebra

2.1 Modules

2.1.1 Depth

Let R be a noetherian ring, and M a finitely-generated R-module and I an ideal of R such that $IM \neq M$. Then the I-depth of M is (see Ext):

$$\inf\{i\mid \operatorname{Ext}^i_R(R/I,M)\neq 0\}.$$

This is also the length of a maximal M-sequence in I.

2.2 Results and theorems

2.2.1 The Unmixedness Theorem

Let R be a ring. If $I = \langle x_1, \dots, x_n \rangle$ is an ideal generated by n elements such that codim I = n, then all minimal primes of I have codimension n. If in addition R is Cohen-Macaulay, then every associated prime of I is minimal over I. See the discussion after [2, Corollary 18.14] for more details.

2.3 Rings

2.3.1 Cohen-Macaulay ring

A local Cohen-Macaulay ring (CM-ring for short) is a commutative noetherian local ring with Krull dimension equal to its depth. A ring is Cohen-Macaulay if its localization at all prime ideals are Cohen-Macaulay.

2.3.2 Depth of a ring

The depth of a ring R is is its depth as a module over itself.

2.3.3 Gorenstein ring

A commutative ring R is Gorenstein if each localization at a prime ideal is a Gorenstein local ring. A Gorenstein local ring is a local ring with finite injective dimension as an R-module. This is equivalent to the following: $\operatorname{Ext}_R^i(k,R) = 0$ for $i \neq n$ and $\operatorname{Ext}_R^n(k,R) \simeq k$ (here $k = R/\mathfrak{m}$ and n is the Krull dimension of R).

2.3.4 Normal ring

An integral domain R is **normal** if all its localizations at prime ideals $\mathfrak{p} \in \operatorname{Spec} R$ are integrally closed domains.

3 Convex geometry

3.1 Cones

3.1.1 Gorenstein cone

A strongly convex cone $C \subset M_{\mathbb{R}}$ is **Gorenstein** if there exists a point $n \in N$ in the dual lattice such that $\langle v, n \rangle = 1$ for all generators of the semigroup $C \cap M$.

3.1.2 Reflexive Gorenstein cone

A cone C is **reflexive** if both C and its dual C^{\vee} are Gorenstein cones. See for example [1].

3.1.3 Simplicial cone

A cone C generated by $\{v_1, \dots, v_k\} \subseteq N_{\mathbb{R}}$ is **simplicial** if the v_i are linearly independent.

3.2 Polytopes

3.2.1 Dual (polar) polytope

If Δ is a polyhedron, its dual Δ ° is defined by

$$\Delta^{\circ} = \{ x \in N_{\mathbb{R}} \mid \langle x, y \rangle \ge -1 \,\forall \, y \in \Delta \} \,.$$

3.2.2 Gorenstein polytope of index r

A lattice polytope $P \subset \mathbb{R}^{d+r-1}$ is called a **Gorenstein polytope of index** r if rP contains a single interior lattice point p and rP - p is a reflexive polytope.

3.2.3 Nef partition

Let $\Delta \subset M_{\mathbb{R}}$ be a d-dimensional reflexive polytope, and let $m = \operatorname{int}(\Delta) \cap M$. A Minkowski sum decomposition $\Delta = \Delta_1 + \ldots + \Delta_r$ where $\Delta_1, \ldots, \Delta_r$ are lattice polytopes is called a **nef partition of** Δ **of length** r if there are lattice points $p_i \in \Delta_i$ for all i such that $p_1 + \cdots + p_r = m$. The nef partition is called *centered* if $p_i = 0$ for all i.

This is equivalent to the toric divisor $D_j = \mathcal{O}(\Delta_i) = \sum_{\rho \in \Delta_i} D_{\rho}$ being a Cartier divisor generated by its global sections. See [1, Chapter 4.3].

3.2.4 Reflexive polytope

A polytope Δ is **reflexive** if the following two conditions hold:

- 1. All facets Γ of Δ are supported by affine hyperplanes of the form $\{m \in M_{\mathbb{R}} \mid \langle m, v_{\Gamma} \rangle\}$ for some $v_{\Gamma} \in N$.
- 2. The only interior point of Δ is 0, that is: $Int(\Delta) \cap M = \{0\}$.

4 Homological algebra

4.1 Derived functors

4.1.1 Ext

Let R be a ring and M, N be R-modules. Then $\operatorname{Ext}_R^i(M, N)$ is the right-derived functors of the $\operatorname{Hom}(M, -)$ -functor. In particular, $\operatorname{Ext}_R^i(M, N)$ can be computed as follows: choose a projective resolution C of N over R. Then apply the left-exact functor $\operatorname{Hom}_R(M, -)$ to the resolution and take homology. Then $\operatorname{Ext}_R^i(M, N) = h^i(C)$.

4.1.2 Local cohomology

Let R be a ring and $I \subset R$ an ideal. Let $\Gamma_I(-)$ be the following functor on R-modules:

$$\Gamma_I(M) = \{ f \in M \mid \exists n \in \mathbb{N}, s.t.I^n f = 0 \}.$$

Then $H_I^i(-)$ is by definition the *i*th right derived functor of Γ_I . In the case that R is noetherian, we have $H_I^i(M) = \varinjlim \operatorname{Ext}_R^i(R/I_n, M)$.

See [2] and [6] for more details.

4.1.3 Tor

Let R be a ring and M, N be R-modules. Then $\operatorname{Tor}_R^i(M, N)$ is the right-derived functors of the $-\otimes_R N$ -functor. In particular $\operatorname{Tor}_R^i(M, N)$ can be computed by taking a projective resolution of M, tensoring with N, and then taking homology.

5 Differential and complex geometry

5.1 Definitions and concepts

5.1.1 Almost complex structure

An almost complex structure on a manifold M is a map $J: T(M) \to T(M)$ whose square is -1.

5.1.2 Connection

Let $E \to M$ be a vector bundle over M. A **connection** is a \mathbb{R} -linear map $\nabla : \Gamma(E) \to \Gamma(E \otimes T^*M)$ such that the Leibniz rule holds:

$$\nabla(f\sigma) = f\nabla(\sigma) + \sigma \otimes \mathrm{d}f$$

for all functions $f: M \to \mathbb{R}$ and sections $\sigma \in \Gamma(E)$.

5.1.3 Hermitian manifold

A Hermitian metric on a complex vector bundle E over a manifold M is a positive-definite Hermitian form on each fiber. Such a metric can be written as a smooth section $\Gamma(E \otimes \bar{E})^*$, such that $h_p(\eta, \bar{\zeta}) = h_p(\bar{\zeta}, \bar{\gamma})$ for all $p \in M$, and such that $h_p(\eta, \bar{\eta}) > 0$ for all $p \in M$. A **Hermitian manifold** is a complex manifold with a Hermitian metric on its holomorphic tangent space $T^{(1,0)}(M)$.

5.1.4 Kähler manifold

A Kahler manifold is ????

5.1.5 Symplectic manifold

A 2n-dimensional manifold M is **symplectic** if it is compact and oriented and has a closed real two-form $\omega \in \bigwedge^2 T^*(M)$ which is nondegenerate, in the sense that $\bigwedge^n \omega|_p \neq 0$ for all $p \in M$.

5.2 Results and theorems

References

- [1] David A. Cox and Sheldon Katz. Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.
- [2] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
- [3] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
- [4] Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In *Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988)*, pages 191–224. Johns Hopkins Univ. Press, Baltimore, MD, 1989.
- [5] János Kollár. Lectures on resolution of singularities, volume 166 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2007.
- [6] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994.