

LEHRSTUHL FÜR MESSTECHNIKProf. Dr. rer. nat. A.

Prof. Dr. rer. nat. Schütze

LeLa Jahrestagung

Sebastian Höfner

09.03.2020, Dresden

Gassensorik für Schüler*innen – Entwicklung von Umweltstudien zum Thema Luftqualität

www.ubu.ue

Was?
Warum?
Wie?

Intuitiv Einfach

Methodik Interpretation

- 3 Lernmodule als Grundlage für die Entwicklung von eigenen Umweltstudien
 - ➤ Modul 1: Funktionsweise eines Halbleiter Gassensors
 - ➤ Modul 2: Kalibrierung eines Halbleiter Gassensors
 - > Modul 3: Umweltmessungen
- Interaktive, HTML-basierte Selbstlernkurse
- Klassenstufe 8 13
- Teil eines MINT Praktikums

Modul 1 - Funktionsweise eines Metalloxid Halbleiter Gassensors

Wasser

Alkoholfreies Bier

Apfelsaft

> Theoretisches Modell

Modul 2 – Kalibrierung eines Metalloxid Halbleiter Gassensors

- Was ist eine Kalibrierung?
- Weiterführung des in Modul 1 entwickelten Modells
- Definition von Konzentrationen und Konzentrationserzeugung
- Aufnahme von Trainingsdaten
- Modellerstellung mittels künstlicher Intelligenz
- Bestimmung einer unbekannten Konzentration

Modul 3 – Umweltmessungen (Postersession)

-> Feinstaubemission von Schultafeln

Begehbare Messkammer zur Messung der Luftqualität

→ Mensch vs. Sensor

TVOC Duelle verschiedener Alltagsprodukte

II. Datenaufnahme

Mobile Assisted Seamless Learning

- Nutzung moderner on- und offline Medien (Smartphone, Tablet, PC)
- ➤ Internet of Things (IoT) Lösungen

ThingSpeak

Blynk

. . .

Entwicklung der Schülerumweltstudien, experimenteller Aufbau und Auswertung der Daten **gemeinsam** mit Wissenschaftlern

SUS 1: Untersuchung der Luft in Bienenstöcken

- Zwei Schülerinnen einer 12. Klasse
- Fragestellung: Wie setzt sich die Luft in einem Bienenstock zusammen?

Regulieren Bienen CO₂?

 Einlassen von CO₂ mit unterschiedlichen Flussraten

5 I/min

12 l/min

SUS 2: Schadstoffkarte

- Zwei Schüler einer 12. Klasse
- Zielsetzung: Visualisierung von Luftqualitätsdaten auf einer online Landkarte

SUS 3: Einfluss von Pflanzen auf die Luftqualität

- Zwei Schülerinnen einer 10. Klasse
- Fragestellung: Sollte man Pflanzen im Schlafzimmer haben?

SUS 4: Feinstaubmessungen an der Schule und im Alltag

- Zwei Schülerinnen einer 12. Klasse
- Fragestellung: Überschreiten die Feinstaubkonzentrationen vor der Schule oder an Silvester die Grenzwerte?

SUS 5: Mobiler Kohlenmonoxid Melder

- Ein Schüler einer 9. Klasse
- Zielsetzung: Entwicklung und Kalibrierung eines mobilen Kohlenmonoxid Melders

SUS 6: Mobile Schadstoffmessung

- Ein Schüler einer 9. Klasse
- Zielsetzung: Entwicklung eines ferngesteuerten Autos, das mit Gassensoren und Kamera ausgestattet ist.

SUS 7: Waldbrand Früherkennungssystem

- Ein Schüler einer 11. Klasse
- Anlass: Waldbrände in Australien
- Zielsetzung: Können Waldbrände frühzeitig mit Sensoren erkannt werden?

 Kommunikation von mehreren Sensorsystemen über ein LoRa Netzwerk

Teilchengröße	Messort 1	Messort 2	Messort 3
PM0.5	274.54	275.41	271.03
PM1.0	322.10	321.42	318.27
PM2.5	324.36	325.81	320.68
PM4	324.63	326.00	320.98
PM10	324.72	326.09	321.08

Konzentration in cm⁻³

Weitere Informationen auf <u>www.susmobil.de</u>

Vielen Dank für Ihre Aufmerksamkeit!

