Relatório Projeto 4.4 AED 2021/2022

Nome: Tomás Bernardo Martins Dias

PL (inscrição):PL3

Nº Estudante:2020215701 Login no Mooshak:2020215701

S1 - Tabela (complexidade temporal)

N/M	Tempo(s)
100000	34,51088
200000	148,545
300000	315,4484
400000	571,4252
500000	986,5573
600000	1392,469
700000	1880,551
800000	2496,093
900000	3100,715
1000000	3692,759

S2 - Tabela (complexidade temporal)

N/M	Tempo(s)
100000	7,662073
200000	30,69546
300000	68,39303
400000	121,474
500000	190,2288
600000	277,1061
700000	376,373
800000	490,8319
900000	623,5694
1000000	774,497

S3 - Tabela (complexidade temporal)

N/M	Tempo(s)
100000	4,3812086
200000	18,1691803
300000	34,127095
400000	70,012241
500000	112,294723
600000	157,3726165
700000	190,4945043
800000	220,4543345
900000	277,0433242
1000000	318,245432

S4 - Tabela (complexidade temporal)

N/M	Tempo(s)
100000	2,4646321
200000	9,6682882
300000	21,5638316
400000	39,6506877
500000	62,7293541
600000	92,8307818
700000	127,2228953
800000	162,0964319
900000	214,746875
1000000	275,537544

Gráfico de Complexidade Temporal S1 .. S4 (escala logarítmica)

Explique sucintamente a implementação "força bruta" implementada em S1. E a solução implementada em S4.

Desenvolva os comentários que considere relevantes sobre a complexidade temporal vs espacial das várias implementações da solução.

A implementação da "força bruta" para o cálculo da amplitude consiste em apenas um ciclo calcular o seu maior e menor elemento, e no final calcular a sua diferença. No caso do percentil com recurso a um contador e percorrendo o array elemento a elemento é contado o número de elementos menores que esse número e no final é feito o cálculo recorrendo á sua fórmula. No caso da mediana esta é calculada usando contadores, pois a mediana de um array com tamanho ímpar terá metade dos seus elementos maiores ou menores que ela própria, e no caso de ser par os dois valores para o cálculo da mediana terão metade dos elementos do array menos um, maiores e menores que eles respetivamente. Esta implementação apresenta complexidade temporal O(n^2) embora apresente complexidade espacial constante, O (1).

A implementação da solução S4, consiste no uso algoritmo de ordenação Counting Sort para ordenar o array, este método conta o número de ocorrência de cada elemento presente no array, armazenando esse valor num array auxiliar, calculando as suas somas cumulativas e finalmente o ordenamento e feito usando este array auxiliar com índice do array final. Depois de aplicado este método o cálculo da mediana e amplitude apenas consiste em encontrar os elementos em posições especificas e calcular o seu valor. No caso do percentil é usado pesquisa binaria para encontrar qual a posição do último elemento do array menor que o número do percentil a ser calculado.

Esta implementação é a que tem complexidade temporal mais baixa O(n) em comparação com a solução S3 que tem complexidade temporal O(nlogn) no melhor caso e no caso medio e esta apresente complexidade $O(n^2)$ no pior caso. E mesmo ao nível da complexidade espacial esta implementação apresenta complexidade espacial O(n) ou seja, menor que a da solução S3 que apresenta O(nlogn).