Amendments to the Claims

1. (Currently amended) Compound of the formula

$$R = X_{2} \xrightarrow{H} X_{1} \xrightarrow{R_{5}} NR_{3}R_{4}$$

$$OH \qquad (I)$$

where

R₁ is a) hydrogen, hydroxyl or amino; or

is b) C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_8 -alkanoyl, C_4 - C_8 -alkoxycarbonyl, aryl- C_0 - C_4 -alkyl-or heterocyclyl- C_0 - C_4 -alkyl,

R₁ is a) hydrogen; or

is b) C₁-C₈-alkyl or C₃-C₈-cycloalkyl, which radicals may be substituted by 1-4 C₁-C₈-alkyl, halogen, cyano, oxide, oxo, trifluoromethyl, C₁-C₈-alkoxy, C₁-C₈-alkoxycarbonyl, aryl or heterocyclyl;

 R_2 -is-a) C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_4 - C_8 -alkylsulphonyl, C_3 - C_8 -cycloalkylsulphonyl, aryl- C_9 - C_8 -alkylsulphonyl, heterocyclylsulphonyl, C_3 - C_{12} -cycloalkyl- C_3 - C_8 -cycloalkanoyl, aryl- C_4 - C_8 -alkanoyl, aryl- C_3 - C_8 -cycloalkanoyl, C_4 - C_8 -alkanoyl, C_4 - C_8 -alkoxycarbonyl, optionally N-mono- or N,N-di- C_4 - C_8 -alkylated carbamoyl- C_9 - C_8 -alkyl, aryl- C_9 - C_4 -alkyl or heterocyclyl- C_9 - C_4 -alkyl, which radicals may be substituted by 1-4 C_4 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -cycloalkoxy, amino, C_4 -alkylamino, di- C_4 -alkylamino, C_9 - C_6 -alkylcarbonylamino, halogen, cyano, hydroxyl, oxide, oxo, trifluoromethyl, C_4 - C_8 -alkoxy, optionally N-mono- or N,N-di- C_4 -alkylated carbamoyl, C_4 - C_8 -alkoxycarbonyl, C_{1-6} -alkylene-dioxy, aryl or heterocyclyl; or

is b) together with R₁ and the nitrogen atom to which they are bonded, a saturated or partly unsaturated 4-8-membered heterocyclic ring which may contain an additional nitrogen, oxygen or sulphur atom or an SO or SO2- group, in which case the additional nitrogen atom may optionally be substituted by C₁-C₈-alkyl, C₁-C₈-alkanoyl, C₁-C₈-alkoxycarbonyl, aryl or

heterocyclyl radicals, and this heterocyclic ring may be part of a bicyclic or tricyclic ring system-having a total of up to 16 members, and the second ring may also contain a nitrogen, oxygen or sulphur atom or an -SO-or -SO2- group, and the nitrogen atom of the second ring may optionally be substituted by C₁-C₈-alkyl, C₁-C₈-alkanoyl, C₁-C₈-alkoxycarbonyl, aryl or heterocyclyl radicals and all ring systems mentioned may be substituted by 1 4 C₁-C₈-alkyl, halogen, hydroxyl, oxide, oxo, trifluoromethyl, C₁-C₈-alkoxy, C₁-C₈-alkoxy C₁-C₈-alkoxy C₁-C₈-alkoxy-c₁-C₈-alkoxy-c₁-C₈-alkoxy-c₂-C₈-alkoxy-c₃-C₈-alkylamino, N,N-di-C₁-C₈-alkylamino, aryl-C₀-C₄-alkyl, aryloxy-C₀-C₄-alkyl, aryl-C₀-C₄-alkyl-C₁-C₈-alkoxy, heterocyclyl-C₀-C₄-alkyl, heterocyclyloxy-C₀-C₄-alkyl, heterocyclyl-C₁-C₈-alkoxy;

R₂ is a) C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkanoyl, heterocyclyl-C₁-C₈-alkanoyl, C₃-C₁₂-cycloalkyl-C₁-C₈-alkanoyl or aryl-C₁-C₈-alkanoyl, which radicals may be substituted by 1-4

C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₃-C₈-cycloalkoxy, C₁₋₆-alkylamino, cyano, halogen, hydroxyl, oxide, C₀-C₆-alkylcarbonylamino, C₁-C₈-alkoxy, oxo, trifluoromethyl or aryl; or

is b) together with R₁ and the nitrogen atom to which they are bonded, a saturated or partly unsaturated, 4-8-membered, heterocyclic ring which may contain an additional nitrogen or oxygen atom, in which case the additional nitrogen atom may optionally be substituted by C₁-C₈-alkyl or C₁-C₈-alkanoyl, and this heterocyclic ring may be part of a bicyclic or tricyclic ring system having a total of up to 16 members and the second ring may also contain a nitrogen or oxygen atom, and the nitrogen atom of the second ring may optionally be substituted by C₁-C₈-alkyl or C₁-C₈-alkanoyl, and all ring systems mentioned may be substituted by 1-4 C₁-C₈-alkyl, hydroxyl, oxo, oxide, C₁-C₈-alkoxy, C₁-C₈-alkoxy, C₁-C₈-alkoxy, C₁-C₈-alkylcarbonylamino or aryloxy-C₀-C₄-alkyl-C₁-C₈-alkoxy;

 R_3 is hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxycarbonyl or C_1 - C_8 -alkanoyl;

R₄ is hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxycarbonyl or C₁-C₈-alkanoyl;

 R_5 are each independently hydrogen or C_1 - C_8 -alkyl, or, together with the carbon atom to which they are bonded, are a C_3 - C_8 -cycloalkylidene radical;

R is an optionally substituted unsaturated carbocyclic or heterocyclic radical;

 \underline{R} is a 2- \underline{R}_A -4- \underline{R}_C -phenyl radical, 2- \underline{R}_A -pyridin-3-yl radical or 3- \underline{R}_A -pyridin-2-yl radical, where

 $\frac{R_A \text{ is } C_1 - C_4 - \text{alkoxy-} C_1 - C_4 - \text{alkyl such as propyloxymethyl, morpholino-} C_1 - C_4 - \text{alkyl such as } 2 - \text{morpholinoethyl or } 3 - \text{morpholinopropyl, } C_1 - C_8 - \text{alkanoylpiperazino-} C_1 - C_4 - \text{alkyl such as } N' - \text{acetylpiperazinomethyl, } C_1 - C_8 - \text{alkoxy such as propyloxy, } C_1 - C_4 - \text{alkoxy-} C_1 - C_5 - \text{alkoxy such as } 2 - \text{methoxyethoxy, } 3 - \text{methoxypropyloxy, } 4 - \text{methoxybutyloxy or } 5 - \text{methoxypentyloxy, } C_1 - C_4 - \text{alkoxy-} C_2 - C_4 - \text{alkenyloxy such as } 4 - \text{methoxybut-} 2 - \text{enyloxy, } C_1 - C_4 - \text{alkoxy-} C_1$

R_C is hydrogen, di-C₁-C₄-alkylamino-C₁-C₄-alkyl such as dimethylaminomethyl, piperidino-C₁-C₄-alkyl such as piperidinomethyl, pyrrolidino-C₁-C₄-alkyl such as pyrrolidinomethyl, morpholino-C₁-C₄-alkyl such as morpholinomethyl, C₁-C₈-alkanoylpiperazino-C₁-C₄-alkyl such as N'-acetylpiperazinomethyl, or C₁-C₄-alkylpiperazino-C₁-C₄-alkyl such as N'-methylpiperazinomethyl, morpholino, C₁-C₄-alkoxy such as methoxy, morpholino-C₁-C₄-alkoxy such as 2-morpholinoethoxy or 3-morpholinopropyloxy, morpholino-C₁-C₄-alkylcarbamoyl-C₁-C₄-alkoxy such as 2-morpholinoethylcarbamoylmethoxy, piperidino-C₁-C₄-alkoxy such as 2-piperidinoethoxy, carboxyl, carbamoyl, C₁-C₄-alkylcarbamoyl such as methylcarbamoyl, carboxy-C₁-C₄-alkoxy such as carboxymethoxy, di-C₁-C₄-alkylamino-C₁-C₄-alkoxy, such as 3-dimethylaminopropyloxy, C₁-C₈-alkylcarbamoyl-C₁-C₄-alkoxy such as butylcarbamoylmethoxy, or tetrazolyl-C₁-C₄-alkoxy, such as tetrazol-5-ylmethoxy; one of the X₁ and X₂ radicals is carbonyl and the other is methylene; or salt thereof, or where one or more atoms are replaced by their stable, non-radioactive isotopes.

2-3. (Cancelled)

4. (Original) Compound according to Claim 1 of the formula la

$$R = X_{2} \xrightarrow{H} X_{1} \xrightarrow{\stackrel{R}{\downarrow}_{5}} NR_{3}R_{4}$$

$$NR_{1}R_{2}$$

$$OH \qquad (Ia)$$

where R, R_1 , R_2 , R_3 , R_4 , R_5 , X_1 and X_2 are each as defined in Claim 1.

- 5. (Cancelled)
- 6. (Previously presented) A method for the therapeutic treatment of a human or animal body, which comprises administering to the human or animal body a therapeutically effective amount of a compound according to Claim 1.
- 7. (Previously presented) Pharmaceutical composition comprising, as an active pharmaceutical ingredient, a compound according to Claim 1 in free form or as a pharmaceutically usable salt, and a pharmaceutically inert, inorganic or organic excipient.
- 8-11. (Cancelled)
- 12. (Previously presented) Pharmaceutical composition comprising, as an active pharmaceutical ingredient, a compound according to Claim 4 in free form or as a pharmaceutically usable salt, and a pharmaceutically inert, inorganic or organic excipient.
- 13. (Cancelled)
- 14. (Previously presented) A method for the treatment or prevention of hypertension, heart failure, glaucoma, cardiac infarction, kidney failure or restensis, which comprises

administering, to a patient in need thereof, a therapeutically effective amount of a compound according to Claim 1.

- 15. (New) A method of inhibiting renin in a patient, which comprises administering an effective amount of a compound according to Claim 1 to a patient in need thereof.
- 16. (New) A method for the therapeutic treatment of a human or animal body, which comprises administering to the human or animal body a therapeutically effective amount of a compound according to Claim 4.
- 17. (New) A method for the treatment or prevention of hypertension, heart failure, glaucoma, cardiac infarction, kidney failure or restensis, which comprises administering, to a patient in need thereof, a therapeutically effective amount of a compound according to Claim 4.
- 18. (New) A method of inhibiting renin in a patient, which comprises administering an effective amount of a compound according to Claim 4 to a patient in need thereof.