COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 4Ahttps://eduassistpro.gitleubeim/g models. Processers edu_assist_pro

COMP9334

Week 3A: Queues with Poisson arrivals (1)

Single-server M/M/1

By using a Mark https://eduassistpro.github.tb/e mean response time is

Add WeChat edu_assist_pro

Week 3A: Queues with Poisson arrivals (2)

Multi-server M/M/m

Exponential service ti

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

 By using Markov chain, we know the mean response time is

m servers

COMP9334 T1,2021

Week 3B: Closed-queueing networks

- Analyse closed-queueing network with Markov chain
 - The transition between states is caused by an arrival or a departure according to exponential distribution

This lecture: Road Map

- Single-server queues
 - What if the arrival rate and/or the service rate is not exponentially distributed
- Multi-server queues
 - What if the arrival rate and or the service rate is not exponentially distributed
- Processor shari https://eduassistpro.github.io/

Add WeChat edu_assist_pro

General single-server queues

- Need to specify the
 - Inter-arrival time grepability diptribution Exam Help
 - Service time prob
- Independence assumhttps://eduassistpro.github.io/
 - All inter-arrival times are independe
 - All service times are independent edu_assist_pro
 - The amount of service of customer A needs is independent of the amount of time customer B needs
 - The inter-arrival time and service time are independent of each other
- Under the independence assumption, we can analyse a number of types of single server queues
 - Without the independence assumption, queueing problems are very difficult to solve!

Classification of single-server queues

- Recall Kendall's notation: "M/M/1" means
 - "M" in the 1st place means inter-arrival time is exponentially distributed
 - "M" in the 2nd place in the 2nd place
 - "1" in 3rd position me
- We use a "G" to denote https://eduassistpro.github.io/
 - Meaning any probability distribution at edu_assist_pro
- Classification of single-server queues:

		Service time Distribution:	
		Exponential	General
Inter-arrival time distribution:	Exponential	M/M/1	M/G/1
	General	G/M/1	G/G/1

T1,2021 COMP9334

Example M/G/1 queue problem

- Consider an e-mailer server
- E-mails arrive at the mail server with a Poisson distribution with mean arrival rate of 1.2 messages/s
- The service time distribution of the emails are:
 - 30% of messages processed in 0.1 s. 50% in 0.3 s, 20% in 2 s
- What is
 - Average waiting https://eduassistpro.github.io/
 - Average respons
 - Average number of the street hath edu_assist_pro
- This is an M/G/1 queue problem
 - Arrival is Poisson
 - Service time is not exponential
- In order to solve an M/G/1 queue, we need to understand what the moment of a probability distribution is.

Revision: moment of a probability distribution (1)

- Consider a discrete probability distribution
 - There are *n* possible outcomes: $x_1, x_2, ..., x_n$
 - The probability that x_i occurs is p_i
- Example: For a fair die

 - The possible outcomes are 1,2,...,6
 The probability that each outcome occurs is 1/6

https://eduassistpro.github.io/

 The first momen ean or expected Add WeChat edu_assist_pro value) is

$$E[X] = \sum_{i=1}^{n} x_i p_i$$

For a fair die, the first moment is

$$= 1 * 1/6 + 2 * 1/6 + ... + 6 * 1/6 = 3.5$$

T1,2021

Revision: moment of a probability distribution (2)

The second moment of a discrete probability distribution is

$$E[X^2] = \sum_{i=1}^{n} x_i^2 p_i$$

Assignment Project Exam Help

- For a fair die, th
- $= 1^2 * 1/6 + 2^2 * 1$ https://eduassistpro.github.io/
- You can prove thatd WeChat edu_assist_pro
 - Second moment of $X = (E[X])^2 + Variance of X$
- Note: The above definitions are for discrete probability distribution. We will look at continuous probability distribution a moment later

Solution to M/G/1 queue

- M/G/1 analysis is still tractable
- M/G/1 is no longer a Markov chain
- For a M/G/1 queue with the characteristics
 - Arrival is Poisson with rate λ
 - Service timessignment Project Exam Help
 - Mean = 1/
 - Second m https://eduassistpro.github.io/
- The mean waiting tidh WConfaeedu_assist_upris given by the Pollaczek-Khinchin (P-K) formula:

$$W = \frac{\lambda E[S^2]}{2(1-\rho)} \quad \text{where} \quad \rho = \frac{\lambda}{\mu}$$

Back to our example queueing problem (1)

- Consider an e-mailer server
- E-mails arrive at the mail server with a Poisson distribution with mean arrival rate of 1.2 messages/s
- The service time distribution of the emails are:
 - 30% of messages proceeds Perojact Estator/Help3 s, 20% in 2 s

https://eduassistpro.github.io/

- Exercise: In ord iting time using the P-K formula, we held we know edu_assist_pro
 - Mean arrival rate,
 - Mean service time, and,
 - Second moment of service time.
- Can you find them?

Back to our example queueing problem (2)

- Consider an e-mailer server
- E-mails arrive at the mail server with a Poisson distribution with mean arrival rate of 1.2 messages/s
- The service time distribution of the emails are:
 - 30% of messages processed in 0.1-s. 50% in 0.3 s, 20% in 2 s
- Solution https://eduassistpro.github.io/
 - Mean arrival rate = ... Add WeChat edu assist pro
 - Mean service time
 - Cooped moment of the convice time
 - Second moment of the service time
- You now have everything you need to compute the mean waiting time using the P-K formula

Back to our example queueing problem (3)

- Since
 - Mean arrival rate $\lambda = 1.2$ messages/s
 - Mean service time (E[S] or $1/\mu$) = 0.58s
 - Second moment of mean service time E[S²] = 0.848 s²
- Utilisation $\rho = \lambda / \mu = \lambda E[S] = 1.2 \times 0.58 = 0.696$
- Substituting theshttps://eduassistpro.githulbaio/

$$W = \frac{\lambda E[S^2]}{2(1-\rho)} \\ \text{WeChat edu_assist_pro} \\ \text{W = 1.673s.}$$

- •How about:
 - Average response time for a message
 - Average number of messages in the mail system

Back to our example queueing problem (4)

Since the mean waiting time W = 1.673s.

The mean response time T is

https://eduassistpro.github.io/

Average # messages in the syu_assist_pro

Exercise: Can you use mean waiting time and Little's Law to determine the mean number of messages in the queue?

Understanding the P-K formula

- Since the Second moment of S = E[S]² + Variance of S
- We can write the P-K formula as
 - Meaning waiting time =

Assignment Project Exam Help

https://eduassistpro.github.io/

- Smaller variance in selection of the S
- M/D/1 is a special case of M/G/1
 - "D" stands for deterministic: Constant service time E[S] and Variance of S = 0
 - For the same value of ρ and E[S], deterministic has the smallest mean response time

Moments for continuous probability density

- Exponential function is a continuous probability density
- If a random variable X has continuous probability density function f(x), then its
 - first moment (= mean, expected value) E[X] and
 - second motherite Fixent Project Exam Help are given by

https://eduassistpro.gistentoi.ce/time S is

$$E[X] = \int x f(x) We Chat edu_assist_promise = 0.5$$

$$E[X] = \int x f(x) We Chat edu_assist_promise = 0.5$$

• $E[S] = 1/\mu$

•
$$E[S^2] = 2 / \mu^2$$

$$E[X^2] = \int x^2 f(x) dx$$

T1,2021 **COMP9334** 17

M/M/1 as a special case of M/G/1

- Let us apply the result of the M/G/1 queue to exponential service time
 - Let us put E[S] = 1/ μ and E[S²] = 2 / μ ² in the P-K formula:

Assignment Project Exam Help

https://eduassistpro.github.io/

We get
 Add WeChat edu_assist_pro

 Which is the same as the M/M/1 queue waiting time formula that we derive in Week 3A

Remark on M/G/1

$$W = \frac{\lambda E[S^2]}{2(1-\rho)}$$

• $\rho \rightarrow 1$, W $\rightarrow Assignment Project Exam Help$

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Deriving the P-K formula (1)

Deriving the P-K formula (2)

- Let
 - W = Mean waiting time
 - N = Mean number of customers in the queue

 - service time

• 1/ μ = Mean service time Assignment Project Exam Help • R = Mean residual

on

https://eduassistpro.githûb.io/

- We can prove th
 - $W = N * (1/\mu) + Add WeChat edu_assist_pro$

 $W = \lambda \times W \times \frac{1}{\mu} + R \Rightarrow W = \frac{R}{1 - \mu}$

where ρ

T1,2021 **COMP9334**

Deriving P-K formula (3)

 We have just showed that the mean waiting time in a M/G/1 queue is

The P-K formula says

/G/1 queue
$$W = \frac{\lambda E[S^2]}{\text{Assignment Project Exam Help}(1-\rho)}$$

https://eduassistpro.github.io/

 We can prove the P-K formula

Add WeChat edu_assist_pro
show that the mean residual time R is

$$R = \frac{1}{2}\lambda E[S^2]$$

T1,2021 **COMP9334**

How residual service time changes over time?

Job index	Arrival time	Processing time required
1	2	2
2	6	4
3	8	4

Assignment Project Exam Help

T1,2021 COMP9334

Residual service time seen by a customer arriving at time *t*

Mean residual time seen by an arriving customer over time [0,14]

$$= \frac{\text{Area under the curve over } [0,14]}{14}$$

$$= \frac{\frac{1}{2} \times 2^2 + \frac{1}{2} \times 4^2 + \frac{1}{2} \times 4^2}{14}$$
Service time!

In general

Residual service time seen by a customer arriving at time *t*

Assuming M jobs are completed in time T Mean residual time

$$= \frac{\sum_{i=1}^{M} \frac{1}{2} S_i^2}{T} = \frac{1}{2} \frac{\sum_{i=1}^{M} S_i^2}{M} \frac{M}{T} = \frac{1}{2} E[S^2] \lambda$$

T1,2021 COMP9334

The P-K formula

Thus, the mean residual time R is

$$R = \frac{1}{2}\lambda E[S^2]$$

Assignment Project Exam Help

By substituting t

https://eduassistpro.github.io/

- We get the P-K formulæeChat edu_assist_pro
- This derivation also shows that the waiting time is proportional to the residual service time
- The residual service time is proportional to the 2nd moment of service time

G/G/1 queue

- G/G/1 queue are harder to analyse
- Generally, we cannot find an explicit formula for the the waiting time or response time for a G/G/1 queue
- Results on G/G/1 queue include
 - Approximationsignment Project Exam Help
 - Bounds on wai

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Approximate G/G/1 waiting time

- There are many different methods to find the approximate waiting time for a G/G/1 queue
- Most of the approximation works well when the traffic is heavy, i.e. when the utilisation ρ is high
- Let
 - Mean arrival rate $\equiv \lambda$ Mean arrival rate $\equiv \lambda$ Variance of inter-arrival time = σ_a^2

 - Service time S h
 Variance of servi
 https://eduassistpro.github.io/
- The approximate waiting two tonat edu_assistispro

$$W \approx \frac{\lambda^2(\sigma_a^2 + \sigma_s^2)}{1 + \lambda^2\sigma_s^2} \frac{\lambda(E[S]^2 + \sigma_s^2)}{2(1 - \rho)} \text{ where } \rho = \frac{\lambda}{\mu}$$

- Note: $\rho \to 1$, W $\to \infty$
- Large variance means large waiting time

T1,2021 **COMP9334** 28

Bounds for G/G/1 waiting time

- Let
 - Mean arrival rate = λ.
 - Variance of inter-arrival time = σ_a^2
 - Service time S has mean 1/ μ = E[S]
- Variance of service time = \(\sigma_s^2 \)
 Assignment Project Exam Help

 A bound for the
 que
- queue is

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

 Note that the bound suggests that large variance means large waiting time

T1,2021 **COMP9334** 29

Approximation for G/G/m queue

- Only approximate waiting time available for G/G/m
- The waiting time is

$$W_{G/G/m} = W_{M/M/m} \frac{C_a^2 + C_s^2}{\text{Assignment Project Exam Help}}$$

where

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

 $C_b = \text{Coeff of variation of service time}$

- Coefficient of variation of a random variable X
- = Standard deviation of X / mean of X

Note: Variance in arrival or service time increases queueing

Processor sharing (PS)

- We have so far assumed that the processor performs work on a first-come-first-serve basis
- However, this is not how CPUs perform tasks
- Consider an example: a CPU has a job queue with three tasks called Assignificate Robbeint Exam Help
 - o CPU works on and the https://eduassistpro.githuquique if it is not yet finished
 - CPU works on Task 2 for a qu eturns the task to the job queue if it is not yet finished
 - CPU works on Task 3 for a quantum and returns the task to the job queue if it is not yet finished

Modelling processor sharing

- We assume the context switching time is negligible
- We assume the quantum is small compared with the length of the task, we can think about continuous processing instead of discrete processing
- In a duration Action enwhere the least present in the job queue, each job rvice https://eduassistpro.github.io/

Add WeChat edu_assist_pro

PS: Example 1

- Example 1:
 - At time 0, there are 2 jobs in the job queue
 - Job 1 still needs 5 seconds of service
 - Job 2 still needs 3 seconds of service

Assignment Project Exam Help

Assuming no mine the time at which the jobs will be co https://eduassistpro.github.io/

Add WeChat edu_assist_pro

PS: Example 2

Example 2:

- At time 0, there are 2 jobs in the job queue
 - Job 1 still needs 5 seconds of service
 - Job 2 still needs 3 seconds of service
- Job 3 arrives at time = 1 second and requires 4 seconds of service
 Assignment Project Exam Help
 Job 4 arrives at time = 2 second and requires 1 second of service
- No more jobs https://eduassistpro.github.io/
- Add WeChat edu_assist_pro Questions:
 - Without computing the finished times for Jobs 1 and 3, are you able to tell which of these two jobs will finish first?
 - Determine the time at which the jobs will be completed

COMP9334 T1,2021 34

M/M/1/PS queues

- Jobs arrive according to Poisson distribution
- Exponential service time
- One processor using processor sharing
- State n = there are n jobs in the job queue
- State diagram: shttps://eduassistpro.gialnubthe/re is a reason for that Add WeChat edu_assist_pro

Summary

- We have studied a few types of non-Markovian queues
 - M/G/1, G/G/1, G/G/m
- Key method to derive the M/G/1 waiting time is via the residual service time
- Processor slateringn(Rest)t Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

References

- Recommended reading
 - Bertsekas and Gallager, "Data Networks"
 - Section 3.5 for M/G/1 queue
 - The result on G/G/1 bound is taken from Section 3.5.4
 - Processing sharing
 Assignment Project Exam Help
 Harchol-Balter Section 22.2.2

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

T1,2021 **COMP9334** 37