Домашнее задание по курсу "Математическая логика - 2"

1 Язык и аксиоматика теории множеств

§ 1.3

Условие Доказать, что $\emptyset \neq \{\emptyset\}$.

Доказательство По определению

 $x = y \rightleftharpoons \forall t (t \in x \Leftrightarrow t \in y).$

Пусть $\emptyset = \{\emptyset\}, \Rightarrow \forall t (t \in \{\emptyset\} \Leftrightarrow t \in \emptyset)$ Противоречие для $t = \emptyset$

§ 1.4

Условие Доказать, что $\{\{1,2\},\{2,3\}\}\neq\{1,2,3\}$.

Доказательство По определению

 $x = y \Longrightarrow \forall t (t \in x \Leftrightarrow t \in y).$

Пусть $\{\{1,2\},\{2,3\}\}=\{1,2,3\},$ \Rightarrow $\forall t(t\in\{1,2,3\}\Leftrightarrow t\in\{\{1,2\},\{2,3\}\})$ Противоречие для t=1

§ 1.6

Условие Доказать, что ∃ лишь одно множество, не имеющее элементов.

Доказательство Пусть \exists два множества X и X_0 , не имеющих элементов и такие, что $X \neq X_0$

$$\Rightarrow \exists t (t \in X \Rightarrow t \notin X_0)$$

Противоречие так как $\nexists t \in X$.

§ 1.8

Условие Доказать, что множество всех корней многочлена $\alpha(x) = \beta(x)\gamma(x)$ есть объединение множеств корней $\beta(x)$ и $\gamma(x)$.

Доказательство Чтобы докаказать, что множество корней = объединения множеств, надо доказать, что любой корень является либо корнем $\beta(x)$ либо $\gamma(x)$ и что других корней не существует.

1) Пусть существует корень x_0 , который не является корнем ни $\beta(x)$, ни корнем $\gamma(x)$ $\Rightarrow \alpha(x_0) = 0, \beta(x_0) \neq 0, \gamma(x_0) \neq 0$. Противоречие 2) Пусть x_0 корень $\beta(x)$ или $\gamma(x)$, тогда $\beta(x_0) = 0$ или $\gamma(x_0) = 0 \Rightarrow \alpha(x_0) = 0$

§ 1.9

Условие Доказать, что персечение множеств действительных корней многочленов $\alpha(x)\beta(x)$ с действительными коэффицентами совпадает с множеством всех действительных корней $\gamma(x) = \alpha^2(x) + \beta^2(x)$.

Доказательство Чтобы докаказать, что множество корней = персечение множеств, надо доказать, что любой корень из пересейчения является корнем и что других корней не существует.

1)Если x_0 корень $\alpha(x)\beta(x) \Rightarrow \gamma(x_0) = 0$ 2)Пусть существует корень $\gamma(x)x_0$, который не является корнем ни $\alpha(x)$, ни корнем $\beta(x)$

Тогда
$$\gamma(x_0) = 0 \Rightarrow \alpha^2(x_0) + \beta^2(x_0) = 0 \Rightarrow \alpha(x_0) = 0 \& \beta(x_0) = 0$$

§ 1.11 (а, г, ж)

Условие Доказать следующие тождества

$$a)A \cup A = A \cap A = A$$

Доказательство Распишем по определению

$${Z \mid (Z \in A \lor Z \in A)} = {Z \in A \cup A \mid Z \in A \land Z \in A} = A$$

Упростим

$$\{Z \mid (Z \in A)\} = \{Z \in A \cup A \mid Z \in A\} = A \Leftrightarrow A = \{Z \in A \mid Z \in A\} = A \Leftrightarrow A = A = A$$

Условие $\Gamma A \cap (B \cap C) = (A \cap B) \cap C$

Доказательство

Условие ж) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Доказательство

§ 1.15

Условие Доказать, что

a)
$$(A_1 \cup ... \cup A_n) \triangle (B_1 \cup ... \cup B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$$

Доказательство Докажем по индукции:

База индукции

$$n=1) \ (A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1) \ (очевидно)$$

n=2)
$$(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$$
 (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$
 пусть $A_0 = A_1 \cup ... \cup A_k B_0 = B_1 \cup ... \cup B_k$

$$(A_1 \cup \dots \cup A_{k+1}) \triangle (B_1 \cup \dots \cup B_{k+1}) \Leftrightarrow (A_0 \cup A_{k+1}) \triangle (B_0 \cup B_{k+1}) \subseteq$$

$$\subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

Условие б)
$$(A_1 \cap ... \cap A_n) \triangle (B_1 \cap ... \cap B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$$

Доказательство Докажем по индукции:

База индукции

$$n=1$$
) $(A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1)$ (очевидно)

$$n=2$$
) $(A_1 \cap A_2) \triangle (B_1 \cap B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$ (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cap \dots \cap A_k + 1) \triangle (B_1 \cap \dots \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup \dots \cup (A_k + 1 \triangle B_k + 1)$$

пусть
$$A_0 = A_1 \cap ... \cap A_k B_0 = B_1 \cap ... \cap B_k$$

$$(A_1 \cap ... \cap A_{k+1}) \triangle (B_1 \cap ... \cap B_{k+1}) \Leftrightarrow (A_0 \cap A_{k+1}) \triangle (B_0 \cap B_{k+1}) \subseteq$$

$$\subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cap ... \cap A_k + 1) \triangle (B_1 \cap ... \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

§ 1.17

Условие Определить операции \cup , \cap , \setminus , через:

$$a)\triangle, \cap$$

Доказательство

$$\cap = \cap$$

$$A \cup B = (A \triangle B) \triangle (A \cap B)$$
$$A \setminus B = (A \triangle B) \cap A$$

Условие б)△, ∪

Доказательство

Условие и)\, △

Доказательство

$$A \cup B = (A \setminus B) \triangle$$
$$A \cap B = (B \setminus (A \setminus B))$$
$$\setminus = \setminus$$

§ 1.18

Условие Доказать, что нельзя определить:

- a) \setminus через \cap и \cup
- б) ∪ через ∩ и \

§ 1.20

Условие Найти все подмножества множеств: \emptyset , $\{\emptyset\}$, $\{x\}$, $\{1,2\}$.

Ответ

$$\varnothing$$
 - нет $\{\varnothing\} - \varnothing$ $\{x\} - \varnothing, \{x\}$ $\{1,2\} - \varnothing, \{1\}, \{2\}, \{1,2\}$

§ 2.1

Условие Доказать, что существуют A, B и C такие, что: а) $A \times B \neq B \times A$

Решение

$$A=\{1\}$$
 и $B=\{2\}$, так как, пользуясь определением упорядоченной пары: $(\{1\},\{2\})=\{\{1\},\{1,2\}\}\neq \{\{2\},\{2,1\}\}=(\{2\},\{1\}).$

Условие б) $A \times (B \times C) \neq (A \times B) \times C$

Решение

Условие Доказать, что если A, B, C и D не пусты, то:

а)
$$A \subseteq B$$
 и $C \subseteq D \Leftrightarrow A \times C \subseteq B \times D$ б) $A = B$ и $C = D \Leftrightarrow A \times C = B \times D$

Решение

Очеивдно доказывается методом от противного.

§ 2.6(а, б, г)

Условие Доказать, что:

- a) $(A \cup B) \times C = (A \times B) \cup (B \times C)$
- 6) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- Γ $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$

Решение

2 Отношения и функции

§ 2.8(a, в)

Условие Найти $\delta_R, \, \rho_R, \, R^{-1}, \, R \cdot R, \, R \cdot R^{-1}, \, R^{-1} \cdot R$ для следующих отношений:

- (a) $R = \{(x, y) | x, y \in \mathbb{N} \text{ и } x \text{ делит } y\};$
- (в) $R = \{(x, y) | x, y \in \mathbb{D} \text{ и } x + y \leq 0\}.$

Решение (a) Это отношение - всюдуопределенное, так как для любого x существует y = x, для которого x делит $y \Rightarrow \delta_R = Pr_1(R) = \mathbb{N}$.

Аналогично это отношение - всюдузначное. $\Rightarrow \rho_R = Pr_2(R) = \mathbb{N}$.

$$R^{-1} = \{(x,y)|(y,x) \in R\} = \{(x,y)|x,y \in \mathbb{N} \text{ и } y \text{ делит } x\}.$$

$$R \cdot R \rightleftharpoons \{t \in \mathbb{N} \times \mathbb{N} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R \& v \in R \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t))\} \sim$$

$$\sim \{(x,y)|x,y \in \mathbb{N} \& \exists u \exists v (u_2 : u_1 \& v_2 : v_1 \& x = u_1 \& u_2 = v_1 \& v_2 = y)\} \sim$$
$$\sim \{(x,y)|x,y \in \mathbb{N} \& y : x\} \Rightarrow R \cdot R = R.$$

(так как $v_2 = y : v_1 = u_2 : u_1 = x$, значит x должен делить y)

$$R \cdot R^{-1} \rightleftharpoons \{t \in \mathbb{N} \times \mathbb{N} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R \& v \in R^{-1} \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t))\} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{N} \& \exists u \exists v (u_2 : u_1 \& v_1 : v_2 \& x = u_1 \& u_2 = v_1 \& v_2 = y)\} \sim$$

 $\sim \{(x,y)|x,y \in \mathbb{N}\} \Rightarrow R \cdot R^{-1} = \mathbb{N} \times \mathbb{N}$

(так как $u_2 = v_1 : v_2 = y$ и $u_2 : u_1 = x$, то можно взять в качетстве u_2 число, делящееся и на x, и на y, а сами x и y связаны не будут. Значит, нет дополнительных условий на упорядоченную

пару (x,y))

$$R^{-1} \cdot R \rightleftharpoons \{t \in \mathbb{N} \times \mathbb{N} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R^{-1} \& v \in R \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t))\} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{N} \& \exists u \exists v (u_1 : u_2 \& v_2 : v_1 \& x = u_1 \& u_2 = v_1 \& v_2 = y)\} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{N}\} \Rightarrow R^{-1} \cdot R = \mathbb{N} \times \mathbb{N}$$

(так как $x=u_1$: $u_2=v_1$ и $v_2=y$: v_1 , то можно взять в качетстве v_1 число 1, на которое делится и x, и y, а сами x и y связаны не будут. Значит, нет дополнительных условий на упорядоченную пару (x,y))

(в) Это отношение - всюдуопределенное, так как для любого x существует y=-x, для которого $x+y\leqslant 0 \Rightarrow \delta_R=Pr_1(R)=\mathbb{D}.$

Аналогично это отношение - всюдузначное. $\Rightarrow \rho_R = Pr_2(R) = \mathbb{D}$.

 $R^{-1} = \{(x,y)|(y,x) \in R\} = R$, так как отношение - симметричное.

$$R \cdot R \rightleftharpoons \{t \in \mathbb{D} \times \mathbb{D} | \exists u = (u_1, u_2) \exists v = (v_1, v_2) (u \in R \& v \in R \& pr_1(t) = pr_1(u) \& pr_2(u) = pr_1(v) \& pr_2(v) = pr_2(t)) \} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{D} \& \exists u \exists v (u_1 + u_2 \leq 0 \& v_1 + v_2 \leq 0 \& x = u_1 \& u_2 = v_1 \& v_2 = y) \} \sim$$

$$\sim \{(x, y) | x, y \in \mathbb{D} \} \Rightarrow R \cdot R = \mathbb{D} \times \mathbb{D}.$$

(условие на $x, y: x + v_1 \leq 0$ и $v_1 + y \leq 0$, но всегда можно взять v_1 таким, что оба условия будут выполняться)

В силу симметричности отношения $R \cdot R^{-1} = R^{-1} \cdot R = R \cdot R = \mathbb{D} \times \mathbb{D}$.

§ 2.9(a, B)

Условие Доказать, что:

- (a) $\delta_R = \emptyset \Leftrightarrow R = \emptyset \Leftrightarrow \rho_R = \emptyset$;
- (B) $\delta_{R_1 \cdot R_2} = R_1^{-1}(\rho_{R_1} \cap \delta_{R_2}).$

Решение (a)
$$\delta_R = \emptyset \Leftrightarrow \forall u \in \cup \cup R \ \forall v \ (u,v) \notin R \Leftrightarrow R = \emptyset$$

 $\rho_R = \emptyset \Leftrightarrow \forall v \in \cup \cup R \ \forall u \ (u,v) \notin R \Leftrightarrow R = \emptyset$

(B)
$$x \in \delta_{R_1 \cdot R_2} \Leftrightarrow \exists y : (x,y) \in R_1 \cdot R_2 \Leftrightarrow \exists y : \exists u \exists v (u \in R_1 \& v \in R_2 \& x = u_1 \& u_2 = v_1 \& v_2 = y) \Leftrightarrow \exists y \exists z = u_2 = v_1 : (x = u_1, z) \in R_1) \& (z, y = v_2) \in R_2 \Leftrightarrow \exists z : (x, z) \in R_1 \& z \in \delta_{R_2} \Leftrightarrow \exists z : (z, x) \in R_1^{-1} \& z \in \rho_{R_1} \& z \in \delta_{R_2} \Leftrightarrow x \in R_1^{-1}(\rho_{R_1} \cap \delta_{R_2}).$$

§ 2.12 (б, г)

Условие Доказать, что для любых бинарных отношений:

- 6) $(R^{-1})^{-1} = R$;
- $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}.$

Решение

$\S 2.13$

Условие Для каких бинарных отношений R справедливо $R^{-1} = -R$?

Решение Пусть $R \subseteq A \times B$.

- 1) Предположим, что $x \in A \cap B$. Тогда $(x,x) \in R \Leftrightarrow (x,x) \in R^{-1}$. Если $R^{-1} = -R$, то получим, что (x,x) лежит и в отношении, и в его дополнении, чего быть не может.
- 2) Значит, $A \cap B = \emptyset$. По определению $R \subseteq A \times B$, $R^{-1} \subseteq B \times A$. Значит, $-R = R^{-1} = \emptyset$. Получим, что $R = \emptyset$ и $R = A \times B$, что возможно только при $A = B = \emptyset$.

§ 2.14

Условие Пусть A и B - конечные множества, состоящие из m и n элементов соответственно.

- а) Сколько существует бинарных отношений между элементами множеств A и B?
- б) Сколько имеется функций из A в B?
- в) Сколько имеется 1-1-функций из A в B?
- г) При каких m и n существует взаимно однозначное соответствие между A и B?

Решение а) Столько, сколько подмножеств у множества упорядоченных пар элементов A и B. Всего пар mn, бинарных отношений 2^{mn} .

- б) Функция по определению это всюдуопределенное прямое однозначное бинарное отношение, то есть каждый элемент множества A (из m штук) входит в отношение ровно с одним элементом множества B (из n штук). Тогда всего функций $n \cdot \ldots \cdot n = n^m$.
- в) Функция f называется 1-1-функцией, если $\forall x_1, x_2, y \colon y = f(x_1), \ y = f(x_2) \Rightarrow x_1 = x_2$. Если n < m, то не существует ни одной такой функции, так как не для всех элементов множества A найдется элемент B, входящий с ним в отношение. Если $n \geqslant m$, то число таких функций равно $n(n-1)(n-2)\cdot\ldots\cdot(n-m+1)$, так как выбор каждой новой "пары"для элемента множества A уменьшает на 1 количество возможных пар для прочих элементов множества A.
- Γ) При m=n, тогда и только тогда каждый элемент множества A сможет входить в отношение ровно с одним элементом множества B и наоборот.

§ 2.22

Условие Доказать, что если f есть функция из A в B и g есть функция из B в C, то $f \cdot g$ есть функция из A в C. (?????Имелось в виду $g \cdot f$ - функция из A в C????)

Решение $g \cdot f \leftrightharpoons \{t \in Pr_1(f) \times Pr_2(g) | ... \}.$ $Pr_1(f) = A, Pr_2(g) = C \Rightarrow g \cdot f : A \to C.$

§ 2.25(а-д)

Условие Доказать, что можно установить взаимно однозначное соответствие между множествами:

- а) $A \times B$ и $B \times A$;
- б) $A \times (B \times C)$ и $(A \times B) \times C$;
- в) $(A \times B)^C$ и $A^C \times B^C$;
- Γ) $(A^B)^C$ и $A^{B\times C}$;
- д) $A^{B \cup C}$ и $A^B \times A^C$, если $B \cap C = \emptyset$.

Решение а) Предъявим это соответствие: $\forall x \in A, y \in B : (x, y) \in A \times B \leftrightarrow (y, x) \in B \times A$, то есть любой упорядоченной паре из первого векторного произведения соответствует ровно одна из второго и наоборот.

б)

§ 2.31(a)

Условие Доказать, что для любой функции f: а) $f(A \cup B) = f(A) \cup f(B)$.

Решение

$$f[A \cup B] = \{ y \in Pr_2(f) | \exists x (x \in A \cup B \& (x, y) \in f) \}$$

$$\exists x (x \in A \cup B \& (x, y) \in f) \sim \exists x (x \in A \lor x \in B \& (x, y) \in f) \sim$$

$$\sim \exists x (x \in A \& (x, y) \in f) \lor (x \in B \& (x, y) \in f)$$

Значит, $f[A \cup B] = f[A] \cup f[B]$.

§ 2.32(a)

Условие Доказать, что для любой функции f: а) $f(A \cap B) \subseteq f(A) \cap f(B)$.

Решение

$$f[A \cap B] = \{ y \in Pr_2(f) | \exists x (x \in A \cap B \& (x, y) \in f) \}$$

$$\exists x (x \in A \cap B \& (x, y) \in f) \sim \exists x (x \in A \& x \in B \& (x, y) \in f) \Rightarrow$$

$$\Rightarrow \exists x (x \in A \& (x, y) \in f) \& (x \in B \& (x, y) \in f)$$

Значит, $f(A \cap B) \subset f(A) \cap f(B)$.

§ 2.34

Условие Доказать, что $f(A) \setminus f(B) \subseteq f(A \setminus B)$ для любой функции f.

Решение

$$f[A] \setminus f[B] = \{ y \in Pr_2(f) | \exists x (x \in A \& (x, y) \in f) \& \neg \exists x (x \in B \& (x, y) \in f) \}.$$

$$\exists x (x \in A \& (x, y) \in f) \& \forall x \neg (x \in B \& (x, y) \in f) \Rightarrow$$

$$\Rightarrow \exists x (x \in A \& (x, y) \in f) \& (x \notin B \lor (x, y) \notin f) \sim$$

$$\sim \exists x (x \in A \& x \notin B \& (x, y) \in f).$$

Значит, $f[A] \setminus f[B] \subseteq f[A \setminus B]$.

$\S 2.35$

Условие Доказать, что если в предыдущем примере f есть 1-1-функция, то выполняется равенство.

Решение Пусть f является 1-1-функцией, то есть $\forall x_1, x_2, y: y = f(x_1), y = f(x_2) \Rightarrow x_1 = x_2$. Включение в одну сторону доказано в предыдущей задаче. $y \in f(A \setminus B) \Rightarrow \exists ! x \in A \setminus B: y = f(x) \Rightarrow y \in f(A)$. Так как для элемента y образа существует единственный прообраз, то $\forall z \in Bf(z) \neq y$ (потому что элемент x такой, что f(x) = y, лежит в $A \setminus B$, значит, не лежит в B). $\Rightarrow y \notin f(B) \Rightarrow y \in f(A) \setminus f(B) \Rightarrow f(A \setminus B) \subseteq f(A) \setminus f(B)$. Вместе с результатом предыдущей задачи получаем: $f(A) \setminus f(B) = f(A \setminus B)$.

§ 2.38(а, в, д)

Условие Доказать следующие тождества для любой функции f:

- a) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$;
- B) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B);$
- д) $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.

Решение а)

$$f^{-1} \leftrightharpoons \{t \in Pr_2(f) \times Pr_1(f) | f(pr_2(t)) = pr_1(t)\},$$

$$f^{-1}[A \cup B] \leftrightharpoons \{v \in Pr_2(f^{-1}) | \exists p(p \in A \cup B) \& (p, v) \in f^{-1}\} \sim$$

$$\sim \{v \in Pr_1(f) | \exists p(p \in A \cup B) \& f(v) = p\} \sim$$

$$\sim \{v \in Pr_1(f) | \exists p(p \in A \lor p \in B) \& f(v) = p\} \sim$$

$$\sim \{v \in Pr_1(f) | \exists p(p \in A) \lor \exists p(p \in B) : f(v) = p\} \Rightarrow f^{-1}[A \cup B] = f^{-1}[A] \cup f^{-1}[B].$$

Условие в) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$;

Решение

$$f^{-1}[A \cap B] \leftrightharpoons \{v \in Pr_2(f^{-1}) | \exists p(p \in A \cap B) \& (p, v) \in f^{-1}\}$$
$$\exists p(p \in A \cap B) \& ((p, v) \in f^{-1}) \sim \exists p(p \in A \& p \in B) \& ((p, v) \in f^{-1}) \sim$$
$$\sim \exists p(p \in A) \& ((p, v) \in f^{-1}) \& (p \in B) \Rightarrow f^{-1}[A \cap B] = f^{-1}[A] \cap f^{-1}[B]$$

3 Мощности множеств

§ 4.1

Условие Доказать, что:

 $A \backsim A$ (рефлексивность)

Если $A \backsim B$, то $B \backsim A$ (симметричность)

Если $A \backsim B$ и $B \backsim$, то $A \backsim$ (транзетивность)

Решение

§ **4.5**

Условие Доказать, что:

- а) Всякое подмножество конечного множества конечно
- б) Объединение конечного числа конечных множест кончено
- в) Прямое произведение конечного числа конечных множеств конечно

Доказательство

Доказательство от противного

§ 4.8

Условие Доказать, что множество тогда и только тогда бесконечно, когда оно эквивалентно некоторому своему подмножеству.

Доказательство

В условие имеется введу, подмножество не равное множетсву, тк иначе есть контрпример.

{1} эквивалентен {1}

Докажем лемму о том, что счетное множество $A \sim A \setminus B$, где B конечное множество.

А - счетное, значит все его элементы можно пронумеровать.

Возьмем множество $A \setminus B$, его мы тоже можем пронумеровать, сдвигая каждый раз нумерацию.

- \Rightarrow) Еслим множество бесконечно, то в нем есть счетное подмножество \Rightarrow \exists подмножество нашего счетного множества, которое ему \sim
- \Leftarrow) Если мноетсво \sim свое подмножеству, то оно не может быть конечным, доказывается от противного \Rightarrow оно бесконечно.

§ 4.10 a

Условие Пусть область определения счетна, доказать, что область значений этой функции конечна или счетна.

Доказательство

Докажем, что она не более чем счетна.

Тк область определения счетна, а каждой точки из области оперделения можно поставить в соотвествие значение функции в этой точки \Rightarrow область значений не более чем счетна \Rightarrow область значений этой функции конечна или счетна.

§ 4.13

Условие Доказать, что:

а) Если A бескончено и B - конечное или счетное множество, то $A \cup B \sim A$

Доказательство Рассмотрим 2 варианта А счетно и А не счетно.

Докажем от противного, что в каждом из этих случаях $A \cup B$ счетно и $A \cup B$ не счетно соответственно.

Условие б) Если А бескончено и несчетно, В конечное или счетное множество, то $A \setminus B \sim A$

Доказательство Пусть это не так $\Rightarrow A \setminus B$ - счетно или конечно. Доказываем от противного, что это невозможно.

§ 4.15

Условие Доказать, что:

а) Множество целых чисел счетно

Доказательство пронумеруем

1	2	3	4	5	6	7	8	
0	1	-1	2	-2	3	-3	4	

Условие б) Множество рациональных чисел счетно

Условие в) Множество рациональных чисел сегмента [a,b] счетно при a < b

Доказательство Множество рациональных чисел сегмента [a,b] - беконечно. (тк множество плотно)

 \Rightarrow оно не менее чем счетно. Но по доказанному выше оно не более, чем счетно \Rightarrow счетно.

Условие г) Множество пар $\langle x, y \rangle$, где х и у - рациональные числа, счетно

Доказательство Множество рациональных чисел счетно.

Тогда выпишем все рациональный числа сеткой и докажем, что кол-во пар сечтно аналогично доказатульству $4.15\ 6$

§ 4.16

Условие Доказать, что множество всех конечных последовательностей, составленных из элементов некотрого счетного множества, есть счетное множество.

Доказательство Докажем, что множество последовательностей длины п счетно.

Используя 4.15 Γ мы знаем, что счетно * счетно = счетно

 \Rightarrow счетноеⁿ = счетное.

Кол-во последовательностей конченой длиный счетно \Rightarrow множество всех последедовательностей конечной длинны тоже счетно.

§ 4.18

Условие Доказать, что множество многочленов от одной переменной с целыми коэффицентами счетно.

Доказательство Многочлен от одной переменно с целыми коэффицентами представляет из себя конечную последовательных целых чисел ⇒ сводится к задаче 4.16

§ 4.19

Условие Доказать счетность множетсва алгебраических чисел, т. е. чисел, являющихся корнями многочленов от одной переменной с целыми коэвицентами.

Доказательство Кол-во корней у многочлена степени n не более, чем n.

Тк кол-во многочленов с целыми коеффицентами от одной перменной счетно (по задаче 4.18), то и кол-во корней счетно.

Тк можем пронумеровать.

§ 4.20

Условие Доказать, что любое множество попарно непересекающихся открытых интервалов на действительной прямой не более чем счетно.

Доказательство Кол-во рациональных чисел счетно. А в каждом интервале есть хотя бы одно рациональное число ⇒ интервалов не более чем счетное кол-во.

§ 4.23

Условие Доказать, что множетсво точек разрыва монотонной функции на дейсвтительной оси не более, чем счетно.

Доказательство У монотонной функции каждая точка разрыва соответствует интервалу на оси Y

Эти интервалы попарно непересекающиеся \Rightarrow по здадаче 4.20 множесво не более, чем счетно.

§ 4.24

Условие Доказать, что: a) $(0,1) \sim [0,1] \sim (0,1] \sim [0,1)$

Доказательство

```
(0,1) \sim [0,1] 1/2 \leftrightarrow 0 1/4 \leftrightarrow 1 1/k^n \leftrightarrow 4/k^n остальные числа переведем в себя же соответственно (0,1] \sim [0,1] 1 \leftrightarrow 1 1/2 \leftrightarrow 0 1/k^n \leftrightarrow 2/k^n остальные числа переведем в себя же соответственно (0,1] \sim [0,1) x \leftrightarrow 1/2 - |1/2 - x| (симметрично отнасительно 1/2)
```

Условие б) $[a, b] \sim [c, d]$, где a < b, c < d

Доказательство

Условие в) $[a,b] \sim \mathbb{D}$

Доказательство

по пункту а) $(0,1) \sim [0,1]$

§ **4.30**

Условие Какова мощность иррациональных чисел?

Доказательство 1)Множество иррациональных чисел более чем счетно. Доказательство.

Пусть оно счетно. Выпившем все числа по порядку.

$$c_1 = 0, \ a_{11} \ a_{12} \ a_{13}, \dots,$$

$$c_2 = 0, \ a_{21} \ a_{22} \ a_{23}, \dots,$$

$$c_3 = 0, \ a_{31} \ a_{32} \ a_{33}, \dots,$$

$$\vdots$$

$$c_n = 0, \ a_{n1} \ a_{n2} \ a_{n3}, \dots,$$

Построим теперь число $C = 0, b_1b_2b_3b_4b_5...$

Так что $b_i \neq 0, b_i \neq 9, b_i \neq a_{ii}$

Получаем, число, которого нет в таблице, но которое является иррациональным.

§ 4.31

Условие Доказать существование трансцендентых (неалгебраических) чисел.

Доказательство Докажем от противного.

Пусть их нет. Тогда $\mathbb{R} \sim$ множество алгебраицеских чисел.

Но $\mathbb R$ более чем счетно, а множество всех алгебраических чисел счетно \Rightarrow существуют неалгебраические числа.

§ **4.36**

Условие

Решение

§ 4.38

Условие

Решение

§ **4.39**

Условие

Решение

§ 4.42

Условие

Решение

4 Отношение эквивелентности

§ **3.6**

Условие Построить бинарное отношение а)рефлексивное, симметричное, не транзитивное

Решение а - нормированное пространство

$$r \subseteq a * a : (x, y) \in r \leftrightarrow \parallel x - y \parallel \le \delta$$

реф. : $\forall x \parallel x - x \parallel = 0 \le s$ симм. : $\parallel x - y \parallel = \parallel y - x \parallel$

Транзитивности нет $\parallel x-y \parallel \leq s$ и $\parallel y-z \parallel \leq s \Rightarrow \parallel x-z \parallel \leq s$

Условие б)рефлексивное, антисимметричное, не транзитивное

14

Решение $r\subseteq\mathbb{R}*\mathbb{R}:(x,y)\in r\leftrightarrow x\leq y\leq x^2$ реф. : $\forall x(x,x)\in r$ антисимметрично: $x\leq y\leq x^2$ и $y\leq x\leq y^2\Rightarrow x=y$ не транз. : $(2,3)\in r,(3,8)\in r,(2,8)\not\in r$

Условие в)рефлексивное, не симметричное, транзитивное

Решение \leq на \mathbb{R} $x \leq x$ $x \leq y, y \leq z \rightarrow x \leq z$ $x \leq y \nrightarrow y \leq x$

Условие г)антисимметричное, транзитивное, не рефлексивное

Решение $a \in \mathbb{R}$ $r \subseteq \mathbb{R} \times \mathbb{R}$ $r = \{(a; a)\}$

§ 3.7

Условие а) Построить бинарное отношение, симметричное, транзитивное, но не рефлексивное.

Решение $r \subseteq \mathbb{R} \times \mathbb{R}$ $a \in \mathbb{R}$ $r = \{(a; a)\}$

Условие б) Доказать, что если R есть транзитивное и симметричное отношение на множестве A и $\delta_R \cup \rho_R = A$, то R есть эквивалентност на A.

Решение тк $\delta_R \cup \rho_R = A$, то $\exists x \in a \exists y$: либо $(x,y) \in R$ либо $(y,x) \in R$ Из симметричности $(x,y) \in R \wedge (y,x) \in R \rightarrow (x,x) \in R$ Те R - отношение эквивалентности.

§ 3.8

Условие Доказать, что если R симметрично и антисимметрично, то оно транзитивно

Решение Симметричность $(x,y) \in R \to (y,x) \in R$ Антисимметричность $(x,y) \in R \land (y,x) \in R \to y = x$ Значит в R лежат только пары вида $(x,x) \Rightarrow$ транзитивно

§ 3.9

Условие Доказать, что отношение R на множестве а zdkztzncz одновременно эквивалентностью и частичным порядком тогда и только тогда, когда $R=i_a$

Решение Если $R = i_a$, то очевидно выоплены рефлексивность, симметричность, антисимметричность и транзитивность.

Обратно:

Рефлексивность $\Rightarrow \forall x \in a(x,x) \in R \Rightarrow i_a \in R$

Сииметричность и антисимметричность $x = y \Rightarrow R \in i_a$

§ 3.11

Условие а - множество всех прямых в \mathbb{R}^2 , являются ли эквивалентностями следующие отношения? а) параллельность б) перпендикулярность

Решение а) является $a \parallel x$ $x \parallel y \to y \parallel x$ $x \parallel y \wedge y \parallel z \to x \parallel z$ б) нет $\neg x \bot x$

§ 3.12

Условие Определим на \mathbb{R} отношение а r b \leftrightarrow (a - b) $\in \mathbb{Q}$ Доказать, что r - эквивалентность

Решение
$$a - a = 0 \in \mathbb{Q}$$

 $a - b \in \mathbb{Q} \to (b - a) = -(a - b) \in \mathbb{Q}$
 $(a - b) in\mathbb{Q}(b - c) in\mathbb{Q} \to (a - c) - (a - b) + (b - c) \in \mathbb{Q}$

§ 3.17

Условие Доказать, что сущесвуют взаимоодназначные соотвествия между классом всех разбиений множества а и семествой всех отношений эквивалентности на а

Доказательство разбиение $\{a_i\}_{i\in\mathbb{I}}$

§ 3.19

Условие

Решение

§ **3.20**

Условие

Решение