Homework 4

RT Hatfield

14 September 2016

- 1. $1 < \log_2 5$ therefore $5T(\lceil \frac{n}{2} \rceil) + O(n) = O(n^{\log_2 5}) \approx O(n^{0.431})$ This is my choice.
 - $0 < \log_{\frac{n}{n-1}} 2 = \frac{\ln 2}{\ln n \ln (n-1)}$ therefore $2T(\lceil \frac{n}{\frac{n}{n-1}} \rceil) + O(1) = O(n^{\log \frac{n}{n-1}})$ This one depends on the size of n. For n = 100, it evaluates to approximately $O(n^{68.97})$. It increases proportional to n.
 - $2 > \log_3 9$ therefore $9T(\lceil \frac{n}{3} \rceil) + O(n^2) = O(n^2)$
- 2. $0 < \log_3 2$, $O(n^{\log_3 2})$
 - $1 < \log_4 5$, $O(n^{\log_4 5})$
 - $1 = \log_7 7, O(n \log n)$
 - $2 > \log_3 9$, $O(n^2)$
 - $3 = \log_2 8$, $O(n^3 \log n)$
- 3. If I understand this correctly, we want to join subproblems in constant time. Also, $0 = \log_b a$, so a = 1. So each recursion must involve a single subproblem of any size. Logical OR runs in constant time, and each recursion has a single subproblem.

Data: A sorted list L and starting index i

Result: Whether the list contains any item equal to its own position if it is I simply them

```
\begin{array}{ll} \textbf{if } i < L.size() \textbf{ then} \\ & | \text{ return } L[i] == i \text{ OR listInspector}(L,\,i+1); \end{array}
```

end else

return false;

 \mathbf{end}