МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт: №8 «Компьютерные науки и прикладнаяматематика» Кафедра: 806 «Вычислительная математика и программирование»

Курсовая работа по курсу «Фундаментальная информатика» І семестр Задание 4 «Процедуры и функции в качестве параметров»

Группа	М8О-109Б-22
Студент	Концебалов О.С.
Преподаватель	Сысоев М.А.
Оценка	
Дата	

Постановка задачи

Составить программу на Си с процедурами решения трансцендентных алгебраических уравнений резличными численными методами (итераций, Ньютона и половинного деления — дихотомии). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, заданных двумя строками таблицы, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию, например, с использованием gnuplot.

Вариант 20:

Функция:

$$0.1x^2 - x \ln x = 0$$

Отрезок содержащий корень: [1, 2]

Метод Ньютона

Вариант 21:

Функция:

$$tg x - \frac{1}{3} tg^3 x + \frac{1}{5} tg^5 x - \frac{1}{3} = 0$$

Отрезок содержащий корень: [0, 0.8]

Метод Дихотомии

Теоретическая часть Метод Ньютона

Метод Ньютона является частным случаем метода итераций.

Условие сходимости метода: $|F(x) \cdot F''(x)| < (F'(x))^2$ на отрезке [a,b].

Итерационный процесс: $x^{(k+1)} = x^{(k)} - F(x^{(k)}) / F'(x^{(k)})$.

Метод дихотомии (половинного деления)

Очевидно, что если на отрезке [a,b] существует корень уравнения, то значения функции на концах отрезка имеют разные знаки: $F(a) \cdot F(b) < 0$. Метод заключается в делении отрезка пополам и его сужении в два раза на каждом шаге итерационного процесса в зависимости от знака функции в середине отрезка.

Итерационный процесс строится следующим образом: за начальное приближение принимаются границы исходного отрезка $a^{(0)}=a$, $b^{(0)}=b$. Далее вычисления проводятся по формулам: $a^{(k+1)}=(a^{(k)}+b^{(k)})/2$, $b^{(k+1)}=b^{(k)}$, если $F(a^{(k)})\cdot F((a^{(k)}+b^{(k)})/2)>0$; или по формулам: $a^{(k+1)}=a^{(k)}$, $b^{(k+1)}=(a^{(k)}+b^{(k)})/2$, если $F(b^{(k)})\cdot F((a^{(k)}+b^{(k)})/2)>0$.

Процесс повторяется до тех пор, пока не будет выполнено условие окончания $\left|a^{(k)}-b^{(k)}\right|<\varepsilon$.

Приближенное значение корня к моменту окончания итерационного процесса получается следующим образом $x^* \approx (a^{(\kappa one \circ noe)} + b^{(\kappa one \circ noe)})/2$.

Описание алгоритма

Составляю программу для нахождения корня с помощью метода Ньютона и проверяю найденный корень, либо вывожу, что метод не применим. Аналогично поступаю и с методом дихотомии.

Использованные в программе переменные

Название переменной	Тип переменной	Смысл переменной
LDBL_EPSILON	long double	Машинный эпсилон
		1.0842e-19
step	long double	Шаг для проверки
a	long double	Левая граница отрезка
b	long double	Правая граница отрезка
x_0	long double	значение х
X	long double	Следующее значение х

Исходный код программы:

Вариант 20:

```
#include <stdio.h>
int check_convergence(long double a, long double b) {
   long double step = (b - a) / 10000;
   for (long double x = a; x <= b; x += step) {
      if (fabsl(function(x) * second_derivative(x)) < first_derivative(x) *</pre>
```

Вариант 21:

```
#include <stdio.h>
```

Входные данные

Нет

Выходные данные

Программа должна вывести для первого уравнения сходится метод или нет. В случае, если сходится, вывести его значение. Для второго уравнения вывести найденный корень и значение уравнения при таком корне.

Тест №1

Вариант 20:

Newton method Method doesn't convergent

Вариант 21:

Dichotomy Method x = 0.333255 The value of the function for such x: 0.000000

Вывод

В работе описаны и использованы различные численные методы для решения трансцендентных алгебраических уравнений. Даны обоснования сходимости и расходимости тех или иных методов. Имплементирована функция вычисления производной от заданной функции в точке. На основе алгоритма составлена программа на языке Си, сделана проверка полученных значений путем подстановки. Работа представляется довольно полезной для понимания принципов работы численных методов и способов их имплементации.

Список литературы

1. Численное дифференецирование – URL:

Численное дифференцирование — Википедия (wikipedia.org)

2. Конечная разность – URL:

Численное дифференцирование — Википедия (wikipedia.org)