Sets and quantifiers

Contents

1	Introduction to set notation	1
2	Quantifiers	2
3	Proofs with quantifiers	3
4	Negation	4

1 Introduction to set notation

Informal Definition. A set is a collection of objects.

Conventions. • Sets are frequently denoted by uppercase letters (e.g. A, B, C).

- If x is in A, then we say that x is an element of A or that A contains x, and we write $x \in A$.
- Otherwise, we write $x \notin A$.
- If the elements of A are precisely a_1, \ldots, a_n , then we write $A = \{a_1, \ldots, a_n\}$.

Examples. i. natural numbers $\mathbb{N} = \{0, 1, 2, 3, \ldots\}^{1}$

- ii. integers $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- iii. rational numbers $\mathbb Q$
- iv. real numbers \mathbb{R}
- v. complex numbers $\mathbb C$

Convention. If the elements of A are precisely those of B that satisfy a condition P, then we write

$$A = \{x \in B \mid x \text{ satisfies the condition } P\}.$$

Examples. i. $\mathbb{N} = \{ n \in \mathbb{Z} \mid n \geq 0 \}$

ii.
$$\mathbb{Q} = \left\{ \frac{n}{m} \,\middle|\, n, m \in \mathbb{Z}, m \neq 0 \right\}$$

Definition. The *empty set* \varnothing is the set that contains no elements.

That is,
$$\emptyset = \{\}.$$

¹There is an alternative convention that $\mathbb{N} = \{1, 2, 3, \ldots\}$.

2 Quantifiers

Informal Definition. If there is an element $x \in A$ that satisfies the condition P, then we write

 $\exists x \in A : x \text{ satisfies the condition } P.$

The symbol \exists is called the *existential quantifier*.

Convention. There are a few ways this can be read. Examples include,

- "There exists an x in A such that x satisfies P."
- "There is an x in A such that..."
- "There is an x in A that satisfies the condition P."

Examples. The following statements are true:

- i. $\exists n \in \mathbb{Z} : n \text{ is even}$
- ii. $\exists x \in \mathbb{R} : x > 3$
- iii. $\exists n \in \mathbb{N} : n > 3$ and n is even

The following are false:

- iv. $\exists n \in \mathbb{N} : n < 0$
- v. $\exists n \in \mathbb{Z} : n > 3 \text{ and } n < 1$
- vi. $\exists x \in \mathbb{R} : x^2 = -1$

Informal Definition. If every $x \in A$ satisfies the condition P, then we write

 $\forall x \in A : x \text{ satisfies the condition } P.$

The symbol \forall is called the *universal quantifier*.

Convention. This may be read as, for example,

- "For all/every/any x in A, x satisfies the condition P"
- "All x in A satisfy..."
- "Every/Any x in A satisfies..."

Examples. True statements:

- i. $\forall n \in \mathbb{N} : n \geq 0$
- ii. $\forall k \in \mathbb{N} : k \in \mathbb{Z}$
- iii. $\forall x \in \mathbb{R} : x^2 \ge 0$

False statements:

- iv. $\forall x \in \mathbb{R} : x \in \mathbb{N}$
- v. $\forall m \in \mathbb{Z} : m \text{ is even}$
- vi. $\forall n \in \mathbb{N} : \sqrt{n} \in \mathbb{N}$

Remark. Note that

If
$$x \in A$$
, then $P(x)$

may also be formalized as

$$\forall x \in A : P(x).$$

Examples. Quantifiers can be strung together:

- i. $\forall m \in \mathbb{Z} : \exists n \in \mathbb{N} : m < n$
- ii. $\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : x y = 2$
- iii. $\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : \forall z \in \mathbb{R} : (x y)z = 0$

Convention. When introducing new variables of the same type, it is convenient to do so alphabetically (e.g. a, b, c, or x, y, z).

3 Proofs with quantifiers

To prove a claim of the form

$$\exists x \in A : P(x),$$

we have simply to exhibit an $x \in A$ that satisfies the condition P. Consider the following example:

Claim. There is a $k \in \mathbb{Z}$ such that $k^2 = k$.

Proof. We have
$$0 \in \mathbb{Z}$$
 and $0^2 = 0$.

Remark. We could have just as well chosen k = 1. Only a single $k \in \mathbb{Z}$ satisfying $k^2 = k$ is required to prove the claim.

Convention. A proof should consist of grammatically correct English sentences. It is considered undesirable to begin a sentence with a mathematical symbol. To adhere to this rule, it is often convenient to preface an otherwise-bare mathematical formula with a brief phrase such as

- "We have..."
- "Observe that..."
- "Note that..."

To prove a claim of the form

$$\forall x \in A : P(x),$$

there are two steps:

- 1. Introduce an arbitrary $x \in A$.
- 2. Show that x satisfies P.

The first step is accomplished by means of a statement such as

- "Let $x \in A$."
- "Fix $x \in A$."
- "Suppose that $x \in A$."

Claim. If $q \in \mathbb{Q}$, then $\frac{q}{2} \in \mathbb{Q}$.

Proof. Fix $q \in \mathbb{Q}$. By the definition of \mathbb{Q} , there are $m, n \in \mathbb{Z}$ with $n \neq 0$ such that $q = \frac{m}{n}$. Thus,

$$\frac{q}{2} = \frac{m}{2n} \in \mathbb{Q}.$$

Convention. Common prefaces to a conclusion include

- "Thus,"
- "Hence,"
- "Therefore,"
- "It follows that,"

Claim. For every $m \in \mathbb{Z}$, there is an $n \in \mathbb{Z}$ with m < n.

Proof. Fix $m \in \mathbb{Z}$ and let n = m + 1. It follows that m < n.

Convention. The following phrases have similar meanings:

- "such that"
- "with"
- "subject to the condition that"
- "satisfying"
- "for which"

4 Negation

Informal Definition. The negation of a statement S is the statement that it is not the case that S, written $\neg S$

Convention. The symbol \neg is read "not".

Examples. i. The negation of

$$\exists x \in \mathbb{R} : x^2 = -1$$

is

$$\neg \exists \, x \in \mathbb{R} : x^2 = -1,$$

which states that it is not the case that there is a real number that squares to -1.

ii. The negation of

$$\forall n \in \mathbb{Z} : n \ge 0$$

is

$$\neg \forall n \in \mathbb{Z} : n \ge 0,$$

which asserts that it is not the case that every integer is positive.

Informal Definition. To *disprove* a statement S is to prove that S is false. This is equivalent to proving $\neg S$.

It is useful to note that

$$\neg \forall x \in A : P(x)$$
 is equivalent to $\exists x \in A : \neg P(x)$

and

$$\neg \exists x \in A : P(x)$$
 is equivalent to $\forall x \in A : \neg P(x)$.

Examples. i. The negation of

$$\exists x \in \mathbb{R} : \forall y \in \mathbb{R} : x = y$$

is

$$\forall x \in \mathbb{R} : \exists y \in \mathbb{R} : x \neq y$$

ii. The negation of

$$\forall m \in \mathbb{Z}: \exists n \in \mathbb{N}: m+n < 0$$

is

$$\exists m \in \mathbb{Z} : \forall n \in \mathbb{N} : m+n \geq 0$$

Proof of i. Fix $x \in \mathbb{R}$. If y = x + 1, then $x \neq y$.

Proof of ii. Put
$$m=0$$
 and let $n \in \mathbb{N}$. Since $n \geq 0$, it follows that $m+n \geq 0$.