

Pilani Campus

Forms of Parallelism

Slides from Prof. Shan Department of Computer Science & Information Systems

Parallel Computers - Characterization

- Different Characterizations:
 - Synchronous vs. Asynchronous
 - Custom interconnects vs. Commodity Interconnects
 - Signaling over Buses & Custom Switches vs.
 Data Communication over Networks

Parallel Computers - Characterizations [2]

- Custom Processors (or compute units) vs. Commodity systems
 - Custom Processors & Custom Interconnects e.g. Cray, CM, Tera, IBM, NEC
 - Commodity Processors & Custom Interconnects e.g. PARAM (Sparc/Pentium w. CDAC Switch), Virginia Tech. Custom supercomputer (Apple Macs w. Infiniband),
 - IBM Blue Gene (PowerPC w. custom switches)
 - Commodity Systems and Commodity Interconnects –
 - Clusters (e.g. Beowulf, OpenMOSIX)

Parallel Computers – Characterizations [3]

- Shared memory vs. Message Passing
 - Systems with "Message Passing over networks" are referred to as Distributed Systems
- In shared memory systems:
 - communication and coordination happens via shared data
 - (writing and reading of values) in memory
 - coordination may be required
 - for synchronization between threads or
 - for mutual exclusion of threads in accessing shared resources / shared data
- In message passing systems:
 - synchronization happens by communication;
 - communication itself may be synchronous or asynchronous

Parallel Computers – Characterizations [4]

- Flynn's Taxonomy (of parallel architectures)
 - Two axes: Instruction (stream) vs. Data (Stream)
 - Single Instruction Single Data (SISD)
 - typical sequential processor
 - Single Instruction Multiple Data (SIMD)
 - Multiple Instruction Single Data (MISD)
 - Multiple Instruction Multiple Data (MIMD)

Flynn's Taxonomy

- Single Instruction Multiple Data (SIMD)
 - Multiple processors execute the same instruction stream in lockstep
 - They operate on different parts of the data
 - e.g. Connection Machine: CM5 64K processors in a hypercube
 - e.g. Vector processors: Cray supercomputers– Cray XMP/YMP

Flynn's Taxonomy

[2]

- MISD: e.g. systolic array
 - typical problems: FFT, solving triangular linear systems

Fig. from Kung. IEEE Computer, Jan 1982

Flynn's Taxonomy

[3]

- Multiple Instruction Multiple Data (MIMD)
 - Each processor executes a separate instruction stream on a separate data stream

Flynn's Taxonomy – Software Level

- Flynn's Taxonomy morphed for software level characterization
 - Two axes: Program (instruction stream) vs. Data (Stream)
 - Single Program Single Data Stream (SPSD)
 - Single Thread
 - Single Program Multiple Data Stream (SPMD)
 - Multiple threads execute the same function on different data
 - How do you differentiate SPMD from SIMD?

Flynn's Taxonomy – Software Level [2]

- Two axes: Program (instruction stream) vs. Data (Stream)
 - Single Program Single Data Stream (SPSD)
 - Single Program Multiple Data Stream (SPMD)
 - Multiple Program Single Data Stream (MPSD)
 - Software Pipelining:

Multiple Threads execute different functions – a single data stream flows through them.

- Multiple Program Multiple Data Stream(MPMD)
 - Multiple Threads execute different functions on different data
 - but possibly communicating and co-ordinating.
 - How do you differentiate MPMD from MIMD?

Parallel vs. Distributed Systems

- Distributed Systems Structural Categorization
 - Clusters
 - Homogeneous, over LAN, tightly controlled / administered
 - Grids
 - Heterogeneous, over LAN/WAN
 - Clouds
 - Virtual nodes and networks, dynamic resource allocation.

Parallel vs. Distributed System

- Lines are blurring, but broadly:
 - Tightly coupled vs. Loosely coupled
 - Shared memory vs. Message passing
 - Bus/Switch vs. Network Interconnect
 - Monolithic vs. Composite
- Clusters form the dividing line
 - Treated as Parallel or Distributed depending on context.

References

- Flynn, Michael J. (September 1972). "Some Computer Organizations and Their Effectiveness". IEEE Transactions on Computers. C-21 (9): 948–960. doi:10.1109/TC.1972.5009071.
- http://dsc.soic.indiana.edu/publications/parallelsystemsvs distributedsystems.pdf

Thank You