Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации

Ордена Трудового Красного Знамени

федеральное государственное бюджетное образовательное учреждение высшего образования

МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ

Кафедра «Теория электрических цепей»

Электротехника

Лабораторная работа №2

«Исследование на ЭВМ характеристик источника постоянного напряжения»

Выполнил:

студент группы БВТ2306

Кесслер А. С.

Цель работы:

С помощью программы Місго-Сар получить внешние характеристики источников напряжения. Познакомиться с зависимыми источниками.

Ход работы. Схема 1.

Предварительный расчёт.

Принять:

E = 2.4 B - ЭДС источника;

r = 320 Ом – внутреннее сопротивление источника;

 $\mathrm{RH} = 0,\, 10,\, 20,\, 40,\, 80,\, 160,\, 320,\, 640,\, 1280,\, 2560$ и 5000 Ом – сопротивление нагрузки;

I = E/(r + RH) - ток в нагрузке от сопротивления RH;

Посчитать значения тока и построить график.

Также для этой цепи рассчитать следующие зависимости:

UH = IRH = f(RH) - падения напряжения на нагрузке от сопротивления нагрузки RH;

Рист = EI = f(RH) – мощность источника от сопротивления нагрузки RH; Pr = I2r = f(RH) - мощность, выделяемая на внутреннем сопротивлении источника от сопротивления нагрузки RH;

PH = I2RH = f(RH) – мощность, выделяемая на нагрузке от сопротивления нагрузки RH;

 $\eta = 100\%(PH/Pист) = f(RH) - KПД$ цепи от сопротивления нагрузки RH. Все полученные данные занести в таблицу 1.

	По предварительному расчёту						
R _H	І, мА	U _{н,} В	Рист, Вт	Pr, BT	P _H , B _T	η, %	
0	7,5	0	0,018	0,018	0	0	
10	7,273	0,073	0,017	0,017	0,0005	2,94	
20	7,059	0,141	0,017	0,016	0,001	5,88	
40	6,667	0,267	0,016	0,014	0,0018	11,25	
80	6	0,48	0,014	0,012	0,0028	20	
320	3,75	1,2	0,009	0,004	0,005	55	
1280	1,5	1,92	0,004	0,0007	0,0028	70,7	
2560	0,833	2,132	0,002	0,0002	0,0016	84,21	
5000	0,451	2,255	0,001	0,0001	0,0011	91	
	Получено эксперементально						
R _H	І, мА	U _H , B	Рист, Вт	Pr, BT	P _H , B _T	η, %	
0	7,5	0	0,018	0,018	0	0	
10	7,273	0,073	0,017	0,017	0,0005	2,94	
20	7,059	0,141	0,017	0,016	0,001	5,88	
40	6,667	0,267	0,016	0,014	0,0018	11,25	
80	6	0,48	0,014	0,012	0,0028	20	
320	3,75	1,2	0,009	0,004	0,005	55	
1280	1,5	1,92	0,004	0,0007	0,0028	70,7	
2560	0,833	2,132	0,002	0,0002	0,0016	84,21	
5000	0,451	2,255	0,001	0,0001	0,0011	91	

Таблица 1.

Вывод: ток обратно пропорционален сопротивлению нагрузки.

Вывод: напряжение прямо пропорционально сопротивлению нагрузки.

Вывод: мощность источника обратно пропорциональна сопротивлению нагрузки.

Вывод: мощность источника выделяема на внутреннем сопротивлении обратно пропорциональна сопротивлению нагрузки.

Вывод: при увеличении сопротивления нагрузки мощность выделяемой на нагрузке сначала растет (до R_H =r), а затем падает

Вывод: КПД цепи прямо пропорционально сопротивлению нагрузки.

Для цепи (схема 2) с линейным источником переменного тока, управляемым переменным напряжением (ИНУТ) рассчитать амплитуду напряжения Um на нагрузке, если управляющее сопротивление $\gamma = 3$ Ом, управляющий ток $i(t) = 2\sin(2\pi ft)$, f = 2 к Γ ц, для двух значений сопротивлений нагрузки RH 100 и 200 Ом.

	ЭВМ			
R _н ,Ом	ү, Ом	I _m ,A	Um, B	Um, B
100	3	2	6	6
200	3	2	6	6

Таблица 2. - изучение ИНУТ

Осцилограмма при $I_m = 2$

Осцилограмма при $I_m = 3$

Вывод: мы изучили зависимые источники, с помощью программы Micro-Cap получили внешние характеристики источников напряжения.

Вопросы для самопроверки.

- 1. Какой источник называется источником ЭДС. Приведите примеры независимых и зависимых источников.
- 2. Режимы работы источника ЭДС.
- 3. Чему равно падение напряжения на нагрузке $U_{\rm H}$ при $R_{\rm H}$ = r?
- 4. Чему равна мощность выделяемая на внутреннем сопротивлении источника P_r при $R_{\scriptscriptstyle H}$ = r?
- 5. Чему равен КПД при $R_{\rm H} = r$?

Ответы

- 1. Двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС.
- 2. Номинальный режим, режим холостого хода, короткое замыкание.

$$3.U_{H} = Ir = 1.2 B$$

$$4.P_r = I^2r = 4.5*10-3 B_T$$

$$5.$$
КПД = $I^2r/EI = Ir/E = 50\%$