8.BINOMIAL THEOREM SYNOPSIS

- The expansion of a binomial or any positive integral n is given by Binomial Theorem, which is $(a+b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + \dots {}^nC_{n-1}ab^{n-1} + {}^nC_nb^n$
- The coefficients of the expansions are arranged in an array. This array is called *Pascal's Triangle*.
- The general term of an expansion $(a+b)^n$ is $T_{r+1} = {}^nC_r a^{n-r} b^r$
- In the expansion $(a+b)^n$, if n is even, then the middle term is the $\left(\frac{n}{2}+1\right)^{th}$ term. If n is odd, then the middle terms are $\left(\frac{n+1}{2}\right)^{th}$ and $\left(\frac{n+1}{2}+1\right)^{th}$ terms.
- If n is positive odd integer then $(a+b)^n + (a-b)^n$ and $(a+b)^n (a-b)^n$ both have same number of terms equal to $\frac{n+1}{2}$
- If n is positive even integer, then
 - (i) $(a+b)^n + (a-b)^n$ has $(\frac{n}{2}+1)$ terms and
 - (ii) $(a+b)^n (a-b)^n$ has $\frac{n}{2}$ terms.

8.BINOMIAL THEOREM MCO

1.	The total number of terms in the expansion of $(x + a)^{51} - (x - a)^{51}$ after simplification is				
	a) 102	b) 22	c) 25	d) 24	
2)	In the binomial expansion of $(a + b)^n$, the coefficient of the 4^{th} and 13^{th} terms are equal, then n is equal to				
	a) 10	b) 12	c) 15	d) 16	
3)	If the coefficie	nts of $(r, 5)$ th and $(2r, 1)$ th	tarms in the avnancion	of $(1+y)^{34}$ are equal find	

- r.
 a) 14
 b) 15
 c) 16
 c) 16
 c) 17
 rems in the expansion of (1+x)³⁺ are equal, find r.
 b) 15
 c) 16
 d) 17
- 4) In the expansion of $\left(x \frac{1}{3x^2}\right)^9$, the term independent of x is

a) T	3 b) T ₄	c) T ₅	d) T ₆				
5) The m	iddle term in the expansion of	$(x^2 + \frac{1}{2})^{2n}$ is					
a) $^{2n}C_1$			d) $\frac{(2n)!}{n!}$				
6) The consta	nt term in the expansion of (x^2)	$(\frac{1}{6} - \chi^{-\frac{1}{3}})^9$ is					
a) 84	b) -0.84	c) 8.4	d) -84				
7) If T_2/T_3 in the expansion of $(a + b)^n$ and T_3/T_4 in the expansion of $(a+b)^{n+3}$ are equal , then $n =$							
a) 3	b) 4	c) 5	d) 6				
8) If in the bind n is equal to	omial expansion of $(1 + x)^n$, the	ne coefficients of 5 th , 6 th and	nd 7 th terms in A.P., then				
a) 7,11	b) 7, 14	c) 9,16	d) none of these				
9) If x^{-17} occurs in r^{th} term in the expansion of $(x^4 - \frac{1}{x^3})^{15}$, then $r =$							
a) 10	b) 11	c) 12	d) 13				
10) The total r	number of terms in the expansi	on $(x+a)^{100}+(x-a)^{100}$					
a) 50	b) 202	c) 51	d) None of these				
Fill In The I	<u>Blanks</u>						
1) The number is	of terms in the expansion of ($(x+a)^{51}$ - $(x-a)^{51}$ after sim	plification				
2) The number	of terms in the expansion of ($1+2x+x^2$) is					
3) In expansion of $(2x^2 - \frac{1}{3x})^9$, the coefficient of x is							
4) the fourth term from the end in the expansion of $(\frac{3}{x^2} - \frac{x^3}{3})^9$							

5) If in the expansion of (1+x) 20 , the coefficient of r th and (r+4) th terms are equal, then value of r is -----

VSA (1 MARK)

1. Write the general term in the expansion of

(a)
$$(x^2 - y)^6$$

(b)
$$\left(\frac{1}{2}x^{\cancel{3}}+x^{\cancel{5}}\right)^8$$

- 2. Find the 7th term in the expansion of $\left(3x^2 \frac{1}{x^3}\right)^{10}$
- 3. Find the 5th term from the end in the expansion of $\left(3x \frac{1}{x^2}\right)^{10}$
- 4. Find the 8th term in the expansion of ()
- 5. Find the 4th term from the end in the expansion of $\left(\frac{4x}{5} \frac{5}{2x}\right)^9$
- 6. Find the 7th term from the end in the expansion of $\left(2x^2 \frac{3}{2x}\right)^8$
- 7. Find the coefficient of:

a).x¹⁰ in the expansion of
$$\left(2x^2 - \frac{1}{x}\right)^{20}$$

b)
$$x^7$$
 in the expansion of $\left(x - \frac{1}{x^2}\right)^{40}$

c)x^m in the expansion of
$$\left(x + \frac{1}{x}\right)^n$$

- 8. If the coefficients of (2r + 4)th and (r 2)th terms in the expansion of $(1 + x)^{18}$ are equal, find r.
- 9. If the coefficients of (2r + 1)th term and (r + 2)th term in the expansion of $(1+x)^{43}$ are equal, find r.
- 10. 10. Find the middle term of the expansion $\left(\frac{2x^2}{3} + 3\right)^{10}$
- 11. Find the middle term of the expansion $\left(x \frac{1}{x}\right)^{10}$
- 12. If in the expansion of $(1+x)^n$, the coefficients of pth and qth terms are equal, prove tha p+q=n+2, where $p\neq q$.

SECTION B (4MARKS)

- 13. Find the term independent of x in the expansion of :
- (a) $\left(2x + \frac{1}{3x^2}\right)^9$
- (b) $\left(3x \frac{2}{x^2}\right)^{15}$
- $(c)\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{16}$
- 14.Expand using binomial theorem:
 - $(a)\left(x+\frac{1}{y}\right)^{11}$
 - $(b) \left(\sqrt{\frac{x}{a}} \sqrt{\frac{a}{x}} \right)^6$
- 15.Evaluate the following:
 - (a) $(1+2\sqrt{x})^5 + (1-2\sqrt{x})^5$
 - (b) $(\sqrt{3} + 1)^5 (\sqrt{3} 1)^5$

SECTION C (6 MARKS)

- 16. If the fourth term in the expansion of $(ax + 1/x)^n$ is 5/2, then find the values of a and n.
- 17. In the binomial expansion of $(1 + x)^n$, the coefficients of the fifth, sixth and seventh terms in A.P. Find all values of n for which this can happen.
- 18. If the coefficients of 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(1 + x)^{2n}$ are in A.P, show that $2n^2 9n + 7 = 0$
- 19. If the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(x+a)^n$ are 240,720 and 1080 respectively, find x, a, n.
- 20. Find the coefficient of x^7 in $(ax^2 + 1/bx)^{11}$ and of x^{-7} in $(ax 1/bx^2)^{11}$ and find the relation between a and b so that these coefficients are equal .
- 21. If n is a positive integer, prove that $3^{3n} 26n 1$ is divisible by 676.
- 22. If P is the sum of odd terms and Q that of even terms in the expansion $(x + a)^n$, prove that
 - (i) $P^2 Q^2 = (x^2 a^2)^n$
 - (ii) $4PQ = (x + a)^{2n} (x a)^{2n}$
 - (iii) $2(P^2 + Q^2) = (x + a)^{2n} + (x a)^{2n}$

SCORING KEY

MCO

1) c) 26

2) c) 15

3) a) 14

4) b)T₄

5) b) $^{2n}C_n$

6) a) 84

7) c) 5

8) b) 7, 14

9) c) 12

10) c) 51

Fill In The Blanks

1) 26

2) 23

3) 0

4) $\frac{28}{9}$ x^{12}

5) 9

1.	(a)	$(b)^{8}C_{r}(\frac{1}{2})^{8-r}(x^{1/15})^{40-5x}$	15(a)	$2(1 + 40x + 40x^2)]$
	$(-1)^6 C_{x}^{x_r} y$			
2.	17010		15(b)	152
	x^{10}			
3.	$\frac{17010}{x^8}$		16.	$a = \frac{1}{2}$, $n = 6$
4.	$\frac{x}{-120^8y^{12}}$		17.	7, 14
	-			, in the second
5.	$\frac{10500}{x^3}$		19.	n = 5, x = 2, a = 3
6.	4032 x ¹⁰		20.	${}^{11}C_5 \frac{a^6}{b^5}, {}^{11}C_6 \frac{a^5}{b^6}, ab = 1$
7.		n		
	$^{20}C_{10}2^{10}$, $^{40}C_{11}$,	(n-m) $(n+m)$ 2		
8.	6			
9.	14			
10.	8064 x ¹⁰]			
11.	-252			
13.	$(a)\frac{64}{27}{}^{9}C_{3},(b)-30$	$03.3^{10}.2^5(c)\frac{5}{4}$		
14(a)	(a)			
14(b)	(b) える。	Z Z Z Z		