Projet Série Temporelles

AHOUMENOU Onel, DEVIGNAC Vladimir, DURAND Arnaud

Packages

```
# Cette commande permet d'installer scikit-learn.
# Après l'installation, il faut la mettre en commentaire et redemarrer
le novau
# !pip install scikit-learn
# Packages généraux (tableaux, importation et visualisation des
données)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Fonctions pour la standardisation, le rmse/mse et la regression
linéaire
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean squared error
from sklearn.linear model import LinearRegression
# Fonctions pour la visualisation de l'autocorrelation et
l'autocorrelation partielle
from statsmodels.graphics.tsaplots import plot acf, plot pacf
# Fonctions pour le test de stationnarité
from statsmodels.tsa.stattools import adfuller
# Modèle ARIMA
from statsmodels.tsa.arima.model import ARIMA
```

Introduction

Dans ce projet, nous allons illustrer sur un jeu de données concret les méthodes étudiées au cours. Nos données proviennent du site kaggle

https://www.kaggle.com/datasets/aminesnoussi/air-pollution-dataset. Il traite de la pollution de l'air à Pekin entre le 02 Janvier 2010 et le 31 Décembre 2014.

L'objectif est donc de prédire la pollution futur à l'aide des données passées en suivant le plan suivant:

- 1. Pré-traitement des données
- 2. Gestion de la non-stationnarité
- 3. Identification du modèle probabiliste
- 4. Estimation des paramètres du modèle

- 5. Prédiction des valeurs futures
- 6. Evaluation de la précision de prédiction

Pré-traitement des données

Analyse de la base de données

```
# Importation des données
data = pd.read_csv("air_pollution.csv", index_col='date',
parse_dates=True)
data.head()
            pollution today
                                   dew
                                              temp
                                                          press
wnd spd \
date
                 145.958333 -8.500000 -5.125000
                                                    1024.750000
2010-01-02
24.860000
                  78.833333 -10.125000 -8.541667
                                                    1022.791667
2010-01-03
70.937917
2010-01-04
                  31.333333 -20.875000 -11.500000
                                                    1029, 291667
111.160833
                  42.458333 -24.583333 -14.458333
2010-01-05
                                                    1033,625000
56.920000
2010-01-06
                  56.416667 -23.708333 -12.541667
                                                    1033.750000
18.511667
                       rain pollution_yesterday
                 snow
date
2010-01-02
                        0.0
             0.708333
                                        10.041667
2010-01-03 14.166667
                        0.0
                                       145.958333
2010-01-04
             0.000000
                        0.0
                                        78.833333
2010-01-05
             0.000000
                                        31.333333
                        0.0
2010-01-06
             0.000000
                        0.0
                                        42.458333
```

Isolation de la variable cible "pollution_today"

```
pollution = data['pollution_today']
# Nombre de valeurs manquantes
pollution.isna().sum()
0
```

Il n'y a aucune valeur manquante.

```
Quelques statistiques utiles
pollution.describe()
         1825.000000
count
           98.245080
mean
           76.807697
std
            3.166667
min
25%
           42.333333
           79.166667
50%
75%
          131.166667
          541.895833
max
Name: pollution today, dtype: float64
```

Affichage de la série temporelle

```
plt.figure(figsize=(15, 5))
pollution.plot()
plt.ylabel("Niveaux de pollution")
plt.title("Niveaux de pollution de 2021 à 2014")
plt.show()
```


Séparation entrainement - test des données

Afin de faciliter nos analyses tout en gardant une quantité de données satisfaisante, nous allons travailler sur des moyennes de 5 jours

```
# Rééchantillonage sur 5 jours
y = pollution.resample('5D').mean()
```

Nous allons entrainer le(s) futur(s) modèle(s) sur les données de 2010 à 2013 inclus et procéder à l'évalution du(des) dit(s) modèle(s) sur les données de 2014.

```
# Données d'entrainement
X_train = y['2010':'2013'].index
y_train = np.array(y['2010':'2013'])

# Données de test
X_test = y['2014':].index
y_test = np.array(y['2014':])

#Visualisation
plt.figure(figsize=(15, 5))
plt.plot(X_train, y_train, label="Données d'entrainement")
plt.plot(X_test, y_test, label="Données de test")
plt.ylabel("Niveaux de pollution")
plt.legend()
plt.show()
```


Gestion de la non-stationnarité

Affichage de la série par années

```
années = ['2010', '2011', '2013', '2014']
x = [5*i for i in range(len(y)//5)]

plt.figure(figsize=(15, 5))
for an in années:
    plt.plot(x, pollution[an].resample('5D').mean(), label=an)
plt.legend()
plt.title("Moyennes de la pollution tous les 5 jours pour chaque
années")
plt.show()
```


La visualisation du graphe précendant étant difficile, nous allons le reprendre en faisant cette fois ci des moyennes mensuelles.

```
mois = ['Janvier', 'Février', 'Mars', 'Avril', 'Mai', 'Juin',
'Juillet', 'Aout', 'Septembre', 'Octobre', 'Novembre', 'Décembre']
années = ['2010', '2011', '2012', '2013', '2014']

plt.figure(figsize=(15, 5))
for an in années:
    plt.plot(mois, pollution[an].resample('ME').mean(), label=an)
plt.legend()
plt.title("Moyennes mensuelles de la pollution pour chaque années")
plt.show()
```


Par analyse visuelle du graphe précédent on fait l'hypothèse de la présence d'une saisonnalité annuelle.

Nous allons donc utiliser à partir d'ici uniquement les données d'entrainement X_train et y_train.

Estimation de la saisonnalité

Nous allons eliminer la saisonnalité à l'aide d'une moyenne mobile d'ordre 73 (5*73 = 365 pour 365 jours par an)

```
def moving_average(x, p):
    x.shape = len(x)
    return np.convolve(x, np.ones(p), "valid") / p # retourne

p = 73  # période de la moyenne mobile

y_train_sans_saison = moving_average(y_train, 73)

plt.figure(figsize=(18, 5))
plt.plot(X_train[(p-1)//2 : -(p-1)//2],y_train_sans_saison)
plt.title("Moyenne mobile d'ordre 73 de la série y_train")
plt.show()
```


Nous allons determiner les coefficients de saisonnalité centrés.

```
# On retire aux valeurs de bases les valeurs dénuées de saisonnalités
serie_corrigee = y_train[(p-1)//2:-(p-1)//2] - y_train_sans_saison

# On calcule les coefficients de saisonnalité en faisant des moyennes
# de chaque valeurs dont l'index est congru à i modulo p = 73 pour i
dans [0; 72]
saisonnalite = [np.mean([serie_corrigee[j] for j in range(0,
len(y_train_sans_saison)) if j%p == i]) for i in range(p)]

# On centre les valeurs obtenues
moy = np.mean(saisonnalite)
for i in range(len(saisonnalite)):
    saisonnalite[i] = saisonnalite[i] - moy

# On concatène les valeurs de saisonnalité pour matcher la longueur
des données
saison = [saisonnalite[i%73] for i in range(len(y_train))]
```

```
# Visualisation

plt.figure(figsize=(18,5))
for i in range(4): # 4 pour 4 années
    plt.plot(X_train[73*i:73*(i+1)], saison[73*i:73*(i+1)],
label=années[i])
plt.legend()
plt.ylabel("Saison")
plt.title("Saisonnalité par an")
plt.show()
```


Estimation de la tendance

```
# On retire aux données la saisonnalité
tendance = y_train - saison

# Visualisation
plt.figure(figsize=(18, 5))
plt.plot(X_train, tendance)
plt.title("Tendance")
plt.show()
```


Modelisation de la tendance

```
# On remplace les dates par le temps t allant de 0 à T=len(y_train),
avec t un entier naturel
Xt_train = np.array([i for i in range(len(y_train))])
# On procède à un changement de dimension demandé par Python pour la
régression
Xt_train.shape = (len(Xt_train), 1)
# Régréssion linéaire
modele_tendance = LinearRegression().fit(Xt_train, tendance)
fitted_values = modele_tendance.predict(Xt_train)
# Visualisation
plt.figure(figsize=(15,5))
plt.plot(y_train)
plt.plot(fitted_values)
plt.show()
```


Calcul et standartisation des résidus

```
# On calcul les résidus en retirant des données la tendance modélisée
et la saisonnalité
residus = y_train - fitted_values - saison
residus.shape = (len(residus), 1)  # Même changement de
dimension que précédemment

# Standartisation des résidus: on retire la moyenne et divise par la
variance
residus_standards = StandardScaler().fit_transform(residus)

# Visualisation
plt.figure(figsize=(15,5))
plt.plot(X_train,residus_standards)
plt.title("Résidus standardisés")
plt.show()
```


Test de stationnarité: test de Dickey-Fuller

L'hypothèse nulle de ce test est que la série n'est pas stationnaire.

On rentre les données et le type de régréssion: ici "n" signifie que l'on ni saisons, ni tendance.

```
adfuller(residus_standards, regression="n")

(-7.668757355893761,
    1.8669570560914258e-12,
    2,
    289,
    {'1%': -2.5735197583841187,
    '5%': -1.9419684074895862,
    '10%': -1.6159324128697468},
    778.129939788668)
```

Inteprétation des résulats :

Les valeurs obtenus représentent (dans l'ordre):

- La statistique de test
- La P-valeur du test
- Le nombre de lag utilisés
- Le nombre de valeurs utilisés
- La valeur critique du test pour les niveaux 1%, 5% et 10%
- La valeur de l'AIC

La P-valeur du test $1.8669*10^-12$ étant inférieur à 0.05 et la statistique de test -7,6687 étant inférieur à la valeur au seuil critique à 1%-2,5735, on rejete l'hypothèse de non stationnarité avec une précision de 1%.

La série obtenue est donc bien stationnaire.

Identification du modèle probabiliste

Analyse de l'auto correlation

```
plot_acf(residus_standards)
plt.show()
```


On observe qu'un modèle MA(3) serait adapté à nos données

Analyse de l'auto correlation partielle

```
plot_pacf(residus_standards, method='ywm')
plt.show()
```


On observe qu'un modèle AR(3) serait adapté à nos données

Nous décidons donc de choisir pour modèle probabiliste le modèle ARMA(3,3).

En plus nous étudierons un modèle proche tel que le modèle ARMA(2,2).

Estimation des paramètres des modèles

Modèle ARMA(3, 3)

```
modele arma 33 = ARIMA(residus standards, order=(3, 0, 3)).fit()
modele arma 33.summary()
<class 'statsmodels.iolib.summary.Summary'>
                                SARIMAX Results
                                         No. Observations:
Dep. Variable:
                                     У
292
                                         Log Likelihood
Model:
                       ARIMA(3, 0, 3)
-405.656
                     Fri, 20 Dec 2024
                                         AIC
Date:
827.312
```

Time:		19:43:	13 BIC		
856.726 Sample:			0 HQIC		
839.094			O HQIC		
		- 2	92		
Covariance Type: opg					
=======================================					
0.975]	coef	std err	Z	P> z	[0.025
const	-0.0027	0.092	-0.030	0.976	-0.183
0.178 ar.L1 0.030	-0.5391	0.290	-1.856	0.063	-1.108
ar.L2 0.645	-0.0805	0.370	-0.218	0.828	-0.806
ar.L3 0.895	0.3654	0.270	1.353	0.176	-0.164
ma.L1 1.286	0.7060	0.296	2.388	0.017	0.126
ma.L2 1.023	0.2275	0.406	0.560	0.575	-0.568
ma.L3 0.438	-0.1658	0.308	-0.538	0.590	-0.769
sigma2 1.080	0.9419	0.070	13.386	0.000	0.804
Ljung-Box (L1 49.33) (Q):		0.00	Jarque-Bera	(JB):
Prob(Q): 0.00			0.97	Prob(JB):	
Heteroskedast 0.80	icity (H):		0.76	Skew:	
Prob(H) (two-:	sided):		0.19	Kurtosis:	
=======================================					
Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step). """					

Modèle ARMA(2, 2)

```
modele arma 22 = ARIMA(residus standards, order=(2, 0, 2)).fit()
modele arma 22.summary()
<class 'statsmodels.iolib.summary.Summary'>
                                SARIMAX Results
                                          No. Observations:
Dep. Variable:
292
Model:
                        ARIMA(2, 0, 2)
                                          Log Likelihood
-406.075
                      Fri, 20 Dec 2024
Date:
                                          AIC
824.149
                                          BIC
Time:
                              19:43:14
846.210
Sample:
                                      0
                                          HQIC
832.986
                                  - 292
Covariance Type:
                                    opg
=======
                                                               [0.025]
                  coef
                          std err
                                                    P>|z|
0.975]
               -0.0037
                            0.099
                                       -0.038
                                                    0.970
const
                                                               -0.197
0.189
               -0.0332
                            0.235
                                       -0.141
                                                    0.888
                                                               -0.493
ar.L1
0.427
ar.L2
               0.6320
                            0.148
                                        4.263
                                                    0.000
                                                                0.341
0.923
                            0.237
                                                    0.349
ma.L1
               0.2224
                                        0.937
                                                               -0.243
0.688
ma.L2
               -0.6099
                            0.186
                                       -3.273
                                                    0.001
                                                               -0.975
-0.245
sigma2
               0.9445
                            0.068
                                       13.819
                                                    0.000
                                                                0.811
1.078
Ljung-Box (L1) (Q):
                                        0.08
                                               Jarque-Bera (JB):
54.89
Prob(Q):
                                        0.77
                                               Prob(JB):
0.00
Heteroskedasticity (H):
                                        0.78
                                               Skew:
```

Prédiction des valeurs futures

```
def prediction(modele arma, modele tendance, saisonnalite, y train,
y test):
    # On remplace les dates par le temps t allant de 0 à
T=len(y train), avec t un entier naturel
    Xt test = np.array([i+len(y train) for i in range(len(y test))])
    Xt test.shape = (len(y test), 1)
    # Tendance prédite
    t pred = modele tendance.predict(Xt test)
    # Résidus prédits
    r pred =
modele arma.get forecast(steps=len(y test)).predicted mean
    # Prédiction
    valeurs predites = t pred + saisonnalite + r pred
    return valeurs predites
def affichage(valeurs predites, X train, X test, y train, y test):
    prediction = pd.Series(valeurs predites, index=X test)
    # Visualisation des données d'entrainement, de test et prédites
    plt.figure(figsize=(15,5))
    plt.plot(X_train,y_train, label="Données d'entrainement")
    plt.plot(X_test,y_test, label='Données Test', color='orange')
    plt.plot(prediction, label='Données prédites', color='green')
    plt.title('Prédiction du modèle')
    plt.xlabel('Date')
    plt.ylabel('Taux de pollution')
    plt.legend()
    plt.show()
```

Modèle ARMA(3, 3)

prediction_arma_33 = prediction(modele_arma_33, modele_tendance, saisonnalite, y_train, y_test) affichage(prediction_arma_33, X_train, X_test, y_train, y_test)

Modèle ARMA(2, 2)

prediction_arma_22 = prediction(modele_arma_22, modele_tendance, saisonnalite, y_train, y_test) affichage(prediction_arma_22, X_train, X_test, y_train, y_test)

Evaluation de la précision de prédiction

Une première comparaison de nos modèles grace au critère d'Akaike (AIC) nous dits que le modèle **ARMA(2, 2)** (AIC = 824,149) est meilleur de peu que le modèle **ARMA(3, 3)** (AIC = 827,312).

Nous allons re-évaluer les performances de nos modèles grace au critère RMSE.

```
def evaluation(y_test, prediction):
    mse = mean_squared_error(y_test, prediction)
    rmse = mse**0.5
    print('RMSE:', rmse)
```

Modèle ARMA(3, 3)

```
evaluation(y_test, prediction_arma_33)

RMSE: 63.99525098328398
```

Modèle ARMA(2, 2)

```
evaluation(y_test, prediction_arma_22)

RMSE: 63.99789411621306
```

Le modèle ARMA(3, 3) se révèle etre le meilleur de peu selon le critère RMSE.

Conclusion: Les indices de comparaison étant très proches, on peut conclure que les deux modèles sont équivalents