

Inference of natural selection from NGS data

at the intra-species level

Matteo Fumagalli

Intended Learning Outcomes

At the end of this session you will be able to:

- list commonly used methods to detect selection
- calculate various summary statistics
- understand main confounding factors to neutrality tests
- assess statistical significance of tests

Natural selection

Natural selection

- Heritable traits that increase the fitness of the become more common.
- Sites targeted by natural selection are likely to harbour functionality
- Mutations arise randomly and evolve according to their effect on the fitness of the carrier.

Negative selection

Allele frequency trajectory - summary

Effect of selection on alleles:

- Neutral/weak: removed, polymorphic or fixed
- Strong negative: removed or polymorphic
- Strong positive: removed, polymorphic or fixed
- Balancing: removed, polymorphic or fixed

What is "strong" selection? It depends on the effective population size.

Thus, allele frequency is (almost always) not enough to determine selection.

(slide from Anders)

Testing for natural selection

If the simple observation of allele frequencies is not enough, what else can we do to detect signals of natural selection?

Testing for natural selection

If the simple observation of allele frequencies is not enough, what else can we do to detect signals of natural selection?

- use information from the surrounding genomic region
- use information from multiple species/populations
- perform selection experiments
- use external information: candidate genes/biological knowledge,functional categories, association to phenotypes

(slide from Anders)

Common methods to detect selection

Detect recent selection within species using shared variation

Time Present time

F_{sr}

Common measure for quantifying population subdivision.

$$F_{ST} = H_B / (H_W + H_B)$$

H_B: between populations

 $\mathbf{H}_{\mathbf{w}}$: average within populations

- \rightarrow if H_w << H_B0 then F_{ST}~1
- \rightarrow if H_B=0 then F_{ST}=0

From standing variation

Time

With migration

Time

With recent divergence

Population genetic differentiation

Population genetic differentiation

 $F_{ST}(T-C)\sim T(T-A-C)$

Population genetic differentiation

Detect recent selection within species using shared variation

Positive selection

- Reduction of polymorphisms levels (e.g. from 7 to 5 SNPs)

Nucleotide diversity index: Watterson's Theta with K SNPs and n chromosomes

$$\theta_{W} = \frac{K}{a_{n}}$$
$$a_{n} = \sum_{i=1}^{n-1} \frac{1}{i}$$

Positive selection

- Reduction of polymorphisms levels (Theta)
- Excess of low-frequency variants

Nucleotide diversity index: average pairwise nucleotide differences (Pi) with k_{ij} equal to the number of nucleotide differences between sequences i and j

$$\pi = \frac{\sum_{i=1}^{n-1} \sum_{j=+1}^{n} k_{i,j}}{\binom{n}{2}}$$

Positive selection

- Reduction of polymorphisms levels (Theta)
- Excess of low-frequency variants (Pi)

Under neutrality, Theta and Pi are expected to be the same. Tajima's D measures their difference.

$$D = \frac{\pi - \theta_W}{\sqrt{\hat{V}(\pi - \theta_W)}}$$

D<0 is suggestive of an excess of low-frequency variants

The Site Frequency Spectrum

Confounding factor

Demography matters!

n=20; L=500kbp; no selection

n=20; L=500kbp; no selection

- · Excess of segregating sites
- · Excess of low-frequency variants
- SFS-derived summary statistics may fail to distinguish between the effects of demography and selection

Demography matters?

Demography matters!

n=20; L=500kbp; no selection n=20; L=500kbp; no selection

- Depletion of segregating sites
- Excess of intermediate-frequency variants
- SFS-derived summary statistics may fail to distinguish between the effects of demography and selection

Experimental design matters?

The effect of ascertainment bias

HapMap Consortium. Nature 2005

Under constant population size:

Under expanding population size:

Under expanding population size and positive selection:

Demography affects all loci equally, while selection changes local patterns

Outlier approach

Empirical distribution

Under expanding population size and positive selection:

Demography affects all loci equally, while selection changes local patterns
 What should we do if we don't have genome-wide data?

Simulations-based 21 approach 0 E[D]<0 Genome / Chromosome Assign p-values (based on ranked percentile of observed value) **Expected distribution** Known demographic model 1500 N0

N1

-1

Tajima's D

Detect recent selection within species using shared variation

Positive selection

- Reduction of polymorphisms levels (Theta)
- Excess of low-frequency variants (Pi, Tajima's D, SFS)
- . ?

Positive selection

- Reduction of polymorphisms levels (Theta)
- Excess of low-frequency variants (Pi, Tajima's D, SFS)
- Extended haplotype homozygosity / Extended LD

Extended haplotype homozygosity (EHH): EHH at distance \times from the core region is the probability that two randomly chosen chromosomes carry a tested core haplotype are homozygous at all SNPs for the entire interval from the core region to the distance \times .

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(\mathbf{X}) = \sum_{h \in H_{c}(\mathbf{X})} \begin{bmatrix} n_{h} \\ 2 \end{bmatrix}$$
Core SNP

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(X) = \sum_{h \in H_{c}(X)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$
Until marker x_{i} (starting from x_{i})

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(x_{i}) = \sum_{\substack{h \in H_{c}(x_{i}) \\ l}} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

Sum across all unique haplotypes carrying the core SNP

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(x_{i}) = \sum_{h \in H_{c}(x_{i})} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

Sum across all unique haplotypes carrying the core SNP

 n_h is haplotype frequency of h

 n_h is haplotype frequency of the core SNP

Core haplotype is 1

(Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(X) = \sum_{\substack{h \in H_{c}(X) \\ f}} \frac{\binom{n_h}{2}}{\binom{n_c}{2}}$$

Sum across all unique haplotypes carrying the core SNP

 n_h is haplotype frequency of h

 n_h is haplotype frequency of the core SNP

$$EHH_c(\mathbf{x}_i = 0) = ?$$

Core haplotype is 1 (Biallelic: 0 is ancestral, 1 is derived allele)

$$EHH_{c}(X_{i}) = \sum_{\substack{h \in H_{c}(X_{i}) \\ 2}} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

$$n_{c} \text{ is haplotype frequency of the core SNP}$$

Sum across all unique haplotypes carrying the core SNP

$$EHH_c(x_i = 0) = \frac{\binom{5}{2}}{\binom{5}{2}} = 1$$

 n_h is haplotype frequency of h

the core SNP

$$EHH_{c}(x_{i} = +1) = ?$$

How many unique haplotypes carrying the core SNP? What is their frequency?

$$EHH_{\varepsilon}(X = +1) = \frac{\binom{4}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{6+0}{10} = 0.60$$

$$EHH_{c}(x_{i} = +2) = ?$$

$$EHH_c(x_i = +2) = EHH_c(x_i = +1) = 0.60$$

$$EHH_{c}(X) = \sum_{h \in H_{c}(X)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$

How many unique haplotypes carrying the core SNP?

What is their frequency?

1111 with freq=2

1110 with freq=2

1000 with freq=1

$$EHH_{c}(x_{i} = +3) = ?$$

How many unique haplotypes carrying the core SNP? What is their frequency?

what is their frequenc

1111 with freq=2

1110 with freq=2 1000 with freq=1

$$EHH_c(x_i = +3) = \frac{\binom{2}{2} + \binom{2}{2} + \binom{1}{2}}{\binom{5}{2}} = \frac{1+1+0}{10} = 0.20$$

Integrated Haplotype Score

Integrated haplotype homozygosity (iHH)

Integrated haplotype score: $iHs = ln(iHH_{\uparrow}/iHH_{0})$

Genome-wide normalization in frequency bins (to mean=0 and sd=1)

Cross-population Extended Haplotype Homozygosity

Integrated haplotype homozygosity (iHH) for populations A and B

Integrated haplotype score: $XP\text{-}EHH = In(iHH_{A}/iHH_{B})$

Genome-wide normalization in frequency bins (to mean=0 and sd=1)

Detect recent selection within species using shared variation

Intended Learning Outcomes

At the end of this session you are now be able to:

- list commonly used methods to detect selection
- calculate various summary statistics
- understand main confounding factors to neutrality tests
- assess statistical significance of tests