Some common IRK-methods (stability)

Implicit Euler (L) Trapezoidal method (L) Gauss-Legendre Collocation (IRK4) (A)

Stability of RK-methods and the stability function for system $\dot{\mathbf{x}} = \lambda \mathbf{x}$

The region of stability is $||R(z)|| \le 1$ where $z := \lambda \Delta t \in \mathbb{C}$, and the stability function is defined as:

$$R(z) = 1 + z\mathbf{b}^{T}(\mathbf{I} - z\mathbf{A})^{-1}\mathbf{1} = \frac{\det(\mathbf{I} - z(\mathbf{A} - \mathbf{1}\mathbf{b}^{T}))}{\det(\mathbf{I} - z\mathbf{A})}, \text{ where } \mathbf{A} \text{ and } \mathbf{b} \text{ are determined by the RK-method.}$$

A system is **A-stable** if $|R(\lambda h)| \le 1$ for all λ with $Re(\lambda) \le 0$ (ERK-methods are never A-stable). An A-stable system is not dependent on the time step to be stable.

An RK method is **L-stable** if it is A-stable, and in addition $|R(i\omega h)| \to 0$ when $\omega \to \pm \infty$. It will dampen out oscillations in the system, so not necessarily the best for systems that oscillates on a set frequency, but will not create extra oscillations. If not L-stable, the simulation can suffer from aliasing.

Error control is important in RK-methods. We need a small Δt , but having it too small is computational expensive and unnecessary, and how small it needs to be can vary throughout the simulation, therefore we have adaptive simulations that change Δt during the simulation. This is done by simulating with two different methods, normally with different b-coefficients, if the difference is too big the time step is decreased.

The **order** of an ERK is never bigger than the number of steps. max o = s for $s \le 4$, then the order "stalls". An IRK can maximally achieve a order of o = 2s for all s.

To simulate DAEs we can do a slight alteration to the formulas for K_1, \ldots, K_s to make them implicit:

$$\begin{bmatrix} F(K_1, z_1, x_k + \Delta t \sum_{j=1}^s a_{1j} K_j, u(t_k + c_1 \Delta t) \\ \vdots \\ F(K_i, z_i, x_k + \Delta t \sum_{j=1}^s (a_{ij} K_j), u(t_k + c_i \Delta t) \\ \vdots \\ F(K_s, z_s, x_k + \Delta t \sum_{j=1}^s (a_{sj} K_j), u(t_k + c_s \Delta t) \end{bmatrix} = 0$$

This will also work for **implicit ODEs** without the z. Note that this only works for DAEs with index 1.

Some taylor expansions

$$\dot{f}(t_k, x(t_k)) = \frac{\partial f}{\partial x} f + \frac{\partial f}{\partial t}$$

$$x(t_{k+1}) = x_k + \Delta t \cdot f(t_k, x_k) + \frac{\Delta t^2}{2} \cdot \dot{f}(t_k, x(t_k)) + O(\Delta t^3)$$

$$f(t_k + c\Delta t, x_k + a\Delta t f(t_k, x_k)) = f(t_k, x_k) + a\Delta t f(t_k, x_k) \frac{\partial f}{\partial x} + c\Delta t \frac{\partial f}{\partial t} + O(\Delta t^2)$$