МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный университет имени П. Г. Демидова»

Кафедра информатики

Сдано на кафедру	
«»	2017 г.
Заведующий кафедрой,	
д. фм. н., профессор	
C. C. Cv	ідоров

Выпускная квалификационная работа бакалавра

Название дипломной работы может не поместиться в одной строке

по направлению 02.03.02 Фундаментальная информатика и информационные технологии

Научный р	уководитель
к. фм. н.,	доцент
	П.П.Петров
«»	2017 г.
Студент гр	уппы ИТ-41БО
	И.И.Иванов
«»	2017 г.

Реферат

Объем 14 с., 5 гл., 3 рис., 2 табл., 9 источников, 2 прил.

Ключевые слова: информатика, прикладная математика.

Это пример оформления дипломной работы с помощью издательской системы IATeX $2_{\mathcal{E}}$.

Реферат размещается непосредственно за титульным листом. Объем реферата должен составлять не более половины страницы. В реферате указываются параметры ВКР: объем работы в страницах, количество глав, иллюстраций, таблиц, приложений, использованных источников. Перечень ключевых слов должен включать от 5 до 15 слов или словосочетаний из текста работы, которые в наибольшей мере характеризуют ее содержание и обеспечивают возможность информационного поиска. Ключевые слова приводятся в именительном падеже и печатаются прописными буквами полужирным шрифтом в строку через запятые.

Текст реферата должен отражать объект исследования, цель работы, результаты работы, область применения, степень внедрения или рекомендации по внедрению.

Содержание

Вв	ведение	4
1.	Структура выпускной квалификационной работы	5
2.	Оформление элементов текста	6
	2.1. Рисунки и таблицы	6
	2.2. Заголовки и приложения	7
	2.2.1. Заголовки	7
	2.2.2. Приложения	7
	2.3. Нумерация страниц	7
3.	Формулы	8
4.	Рисуем с помощью TikZ	9
5.	Псевдокод	10
3a	ключение	11
Сп	исок литературы	12
Пŗ	оиложение А. Исходный код программы на С++	13
Пт	риложение Б. Исхолный кол программы на Python	14

Введение

Во введении обосновывается актуальность выбранной темы, описываются объект и предмет исследования, цели и задачи, методы исследования и приводится краткое описание структуры работы.

1. Структура выпускной квалификационной работы

Выпускная квалификационная работа включает следующие структурные элементы:

- 1) титульный лист;
- 2) реферат;
- 3) содержание;
- 4) введение;
- 5) основную часть:
 - глава 1,
 - глава 2,
 - ...;
- 6) заключение;
- 7) список использованных источников (список литературы);
- 8) приложения.

Каждый структурный элемент ВКР начинается с новой страницы.

Разделы «Введение» и «Заключение» не нумеруются. В них не должно содержаться рисунков, формул и таблиц.

Основная часть выпускной квалификационной работы не требует специального заголовка, а делится на главы, состоящие из параграфов, которые в свою очередь, могут быть разбиты на пункты. Каждая из этих составляющих имеет заголовок, входящий в состав содержания. Слова «глава», «параграф», «пункт» в заголовках не используются. Нумерация выше названных составляющих основной части производится по числовой иерархической системе, причем после последней цифры, а также после заголовка точка не ставится.

2. Оформление элементов текста

2.1. Рисунки и таблицы

Иллюстрации (фотографии, рисунки, чертежи, графики, диаграммы и т. п.) обозначаются сокращенно словом «Рис.», которое пишется под иллюстрацией с прописной буквы и выделяется полужирным шрифтом. Нумеруются иллюстрации арабскими цифрами. Нумерация сквозная по всему тексту ВКР. Пример — рис. 1. Под рисунком по центру размещаются его наименование и поясняющие надписи. Иллюстрации располагают сразу же после ссылки на них в тексте ВКР.

Рис. 1 — Название рисунка

Таблицы нумеруются в рамках раздела арабскими цифрами. Слово «Таблица» и ее номер пишется вверху, с правой стороны над таблицей. Ниже слова «Таблица» посередине строки помещают ее название. Название таблицы должно отражать ее содержание, быть точным и кратким. Название таблицы записывается с прописной буквы и выделяется полужирным шрифтом. Заголовки строк и столбцов выделяются полужирным шрифтом. Пример — табл. 2.1.

Название таблицы

Таблица 2.1

	Число глав		
Тип работы	Одна	Две	Три
Курсовая	3	2	1
Работа бакалавра	2	4	3
Диплом	1	5	6
Магистерская диссертация	0	4	5

2.2. Заголовки и приложения

2.2.1. Заголовки

Заголовки должны четко и кратко отражать содержание соответствующих разделов, подразделов, пунктов. Заголовок печатают, отделяя от номера пробелом, с заглавной буквы. Точка в конце заголовка не ставится. Заголовки выделяют полужирным шрифтом. В заголовках следует избегать сокращений (за исключением общепризнанных аббревиатур). В заголовке не допускается перенос слова на следующую строку и подчеркивание слов. Выравнивание заголовков выполняется по левому краю или по центру строки (единообразно во всей работе) без абзацного отступа. Расстояние между названием глав и последующим текстом должно равняться двум межстрочным интервалам. Такое же расстояние выдерживается между заголовками главы и параграфа.

2.2.2. Приложения

В виде приложений оформляется материал, дополняющий основную часть ВКР. Приложения обозначают прописными буквами русского алфавита, начиная с А, за исключением букв Ё, З, Й, О, Ч, Ь, Ы, Ъ. Каждое приложение начинается с новой страницы. При этом в верхнем правом углу страницы приводят слово «Приложение», записанное строчными буквами с первой прописной, с указанием номера приложения. Название приложения располагается ниже его обозначения на отдельной строке по центру строчными буквами с первой прописной и выделяется полужирным шрифтом. Приложения должны иметь общую с основной частью документа сквозную нумерацию страниц. В тексте ВКР должны быть даны ссылки на все приложения. Ссылки на приложения в тексте ВКР должны быть организованы в строго нумерационном порядке. Пример оформления — приложение А.

2.3. Нумерация страниц

Все страницы текста ВКР, включая его иллюстрации и приложения, должны иметь сквозную нумерацию. Титульный лист считается страницей № 1, но номер на нем не проставляется. Номера страниц проставляются арабскими цифрами внизу страницы в ее правом углу или по центру. В случае необходимости номер на некоторых страницах может быть проставлен вручную.

3. Формулы

Издательская система IAT_EX [1] предлагает широкий спектр средств для набора математических формул. Подробно эта тема освещается в многочисленных книгах (см., например, [2, 3]). Ниже приводится лишь несколько простых примеров.

Если параметр a равен нулю, а $b \neq 0$, то уравнение ax = b не имеет корней. Определим функцию $\operatorname{sgn} \colon \mathbb{R} \to \mathbb{N}$ следующим образом:

$$\operatorname{sgn}(x) = \begin{cases} 1, & \text{при } x \geqslant 0, \\ -1, & \text{иначе.} \end{cases}$$
 (1)

Из формулы (1) следует, что $x \operatorname{sgn}(x) = |x|$.

Множество рациональных чисел:

$$\mathbb{Q} \coloneqq \left\{ \frac{n}{m} \,\middle|\, n \in \mathbb{Z}, \, m \in \mathbb{N} \right\}.$$

Вероятность события A при условии, что событие B произошло: $\mathsf{P}(A \mid B)$. Вот так выглядит $(n \times k)$ -матрица:

$$M = \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1k} \\ m_{21} & m_{22} & \dots & m_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & m_{nk} \end{pmatrix}$$

4. Рисуем с помощью TikZ

Пакет TikZ предлагает удобные инструменты для рисования диаграмм, блоксхем, графов, графиков функций и т. п [4, 5]. При этом рисунки сохраняются в векторной графике, а для надписей используется тот же шрифт, что и в основном тексте. Простейшие примеры использования этого пакета изображены на рис. 2 и 3.

Рис. 2 — Блок-схема

5. Псевдокод

22 **end**

Пакет algorithm2e предлагает широкий спектр инструментов для создания и оформления псевдокода. Также имеется возможность делать ссылки на строки кода. Например, в строке 16 алгоритма 1 целиком содержится цикл типа do-while.

Алгоритм 1. Быстрая сортировка Вход : массив А, индексы начала b и конца е сортируемого фрагмента Выход: массив А, отсортированный по возрастанию 1 Procedure QuickSort(A, b, e) if b < e then $m \leftarrow \text{Partition}(A, b, e)$ 3 QuickSort(A, b, m) 4 QuickSort(A, m+1, e) 5 end 6 7 end 8 Function Partition(A, b, e) $v \leftarrow A[b]$ $i \leftarrow \mathsf{b} - 1$ 10 $j \leftarrow \mathsf{e} + 1$ 11 loop 12 do 13 $i \leftarrow i + 1$ 14 while A[i] < v15 do $j \leftarrow j-1$ while A[j] > v16 if $i \geqslant j$ then 17 return j 18 end 19 поменять местами A[i] и A[j]20 endloop

Заключение

В заключении подводятся итоги выполненной работы, рассказывается о том, что удалось и что не удалось сделать, описываются перспективы продолжения исследований.

Список литературы

- [1] ТеХ в ЯрГУ [Электронный ресурс]. URL: http://www.tex.uniyar.ac.ru (дата доступа: 20.05.2017).
- [2] Oetiker T., Partl H., Hyna I., Schlegl E. The Not So Short Introduction to \LaTeX 2 ε [Электронный ресурс]. URL: https://tobi.oetiker.ch/lshort/lshort. pdf (дата доступа: 01.06.2017).
- [3] Котельников И. А., Чеботаев П. 3. ІАТ<u>Е</u>Х $2_{\mathcal{E}}$ по-русски. 3-е изд., перераб. и доп. Новосибирск : Сибирский хронограф, 2004. 496 с.
- [4] Tantau T. PGF Create PostScript and PDF graphics in T_EX [Электронный ресурс]. URL: https://www.ctan.org/pkg/pgf (дата доступа: 17.05.2017).
- [5] Кирютенко Ю. А. TikZ & PGF. Создание графики в \LaTeX 2 $_{\mathcal{E}}$ -документах. Ростов-на-Дону, 2014. 277 с. URL: https://open-edu.sfedu.ru/files/pgf-ru-all-method.pdf
- [6] Cook S. A. The complexity of theorem-proving procedures // Proceedings of the third annual ACM symposium on Theory of computing. ACM, 1971. P. 151–158.
- [7] Пупырев С. Н., Тихонов А. В. Визуализация динамических графов для анализа сложных сетей // Модел. и анализ информ. систем. 2010. Т. 17, № 1. С. 117–135.
- [8] Кузьмин И. Г. Некоторые проблемы государственных финансов в современной России // Российские предприятия в системе рыночных отношений : материалы научно-практич. конф. Ярославль, 17–18 окт. 2000 г. / отв. ред. Л.Б. Парфенова. Ярославль, 2000. С. 86–90.
- [9] ГОСТ Р 517721-2001. Аппаратура радиоэлектронная бытовая. Входные и выходные параметры и типы соединений. Технические требования. Введ. 2002-01-01. М.: Изд-во стандартов, 2001. IV, 27 с.

Приложение А

Исходный код программы на С++

```
1 #include <iostream>
2 #include <string>
3 #include <list>
4 using namespace std;
5
6 // Copy data from container 'f' to container 't'
7 template <typename Tfrom, typename Tto>
8 inline void copydata(Tfrom &f, Tto &t)
10
       for(typename Tfrom::iterator it=f.begin(); it!=f.end(); it++)
           t.push back(*it);
11
12 }
13
14 // Sort string 'source'
15 string sorts(string &source)
16 {
       list<char> tmp;
17
       copydata (source, tmp);
18
19
       tmp.sort();
       copydata (tmp, source);
20
       return source;
21
22 }
23
24 int main()
25 {
       string source;
26
       cout << "Print_something\n";</pre>
27
       getline (cin, source); // Get data from command line
28
       cout << "Your_string:_\'" << source << "\'\n";</pre>
29
       cout << "After_sort:__\'" << sorts(source) << "\'\n";</pre>
30
       return 0;
31
32 }
```

Приложение Б

Исходный код программы на Python

Пример кода на Python 3 (взят с официального сайта), реализующий симулятор машины Тьюринга для сложения унарных чисел (типа 11+111). Листинг позволяет делать (автоматическую) ссылку на какую-нибудь строку. Например, на строку 15 с командой print(tape).

```
1 # prog is indexed by the current tape symbol (0 or 1)
2 # and then by state (a kind of instruction pointer)
  # to get an 'instruction' comprising:
       symbol to write on current tape position,
       head action (-1 = move\ left, +1 = move\ right)
5
       next state (like a goto jump).
6 #
7
           symbol 0
                        symbol 1
8
9 prog = [[(1, +1, 1), (1, +1, 0)],
                                               # state 0
           [(0, -1, 2), (1, +1, 1)],
                                               # state 1
10
           \lceil (0, +1, 2), (0, +1, 9) \rceil \rceil
                                               # state 2
11
                                                # The data tape
12 tape = [1,1,0,1,1,1,0,0,0]
13 \text{ head} = 0
                                                # head position on tape
14 state = 0
                                                # instruction pointer
15 print(tape)
  while state != 9:
                                                # while not halt:
                                                # read current tape symbol
       symbol = tape[head]
17
       symbol, dir, state = t = prog[state][symbol] # lookup instruction
18
       print('_' * (head * 3 + 1)+ '^__' + str(t)) # display progress
19
20
       tape[head] = symbol
                                                # write new symbol on tape
       print(tape)
21
       head = head + dir
22
                                                      # move tape head
```