- 1. Given an additive white Gaussian noise (AWGN) channel with SNR = $\frac{P}{\sigma^2} = \gamma$. The BER corresponding to the transmission of BPSK modulated symbols is $Q(\sqrt{\gamma})$ Ans c
- 2. The Hessian of $f(\bar{\mathbf{x}}) = \frac{x_1^2}{x_2} \text{ is } \frac{2}{x_2^3} \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix} [x_2 \quad -x_1]$
- 3. The function $\sqrt{|x|}$ is Quasi-convex Ans d
- 4. The l_{∞} norm of vector $\bar{\mathbf{x}} = [x_1 \quad x_2 \quad \dots \quad x_n]^T$ is given as $\max\{|x_i|, 1 \le i \le n\}$
- 5. Given function $f(\bar{\mathbf{x}}) = \sum_{i=1}^{n} x_i \ln x_i$ equals the negative entropy. Since entropy is concave, negative entropy is convex. This can also be seen as follows

$$(x_i \ln x_i)'' = (\ln x_i + 1)' = \frac{1}{x_i} \ge 0 \Longrightarrow \text{convex}$$

Ans b

- 6. The function f(x) = h(g(x)) is convex if g is convex, and h is convex non-decreasing Ans a
- 7. Given the function $f(\bar{\mathbf{x}}) = \log \sum_{k=1}^{n} e^{x_k}$ and $z_k = e^{x_k}$. The Hessian of $f(\bar{\mathbf{x}})$ is $\frac{\operatorname{diag}(\bar{\mathbf{z}})}{\bar{\mathbf{1}}^T \bar{\mathbf{z}}} \frac{\bar{\mathbf{z}} \bar{\mathbf{z}}^T}{(\bar{\mathbf{1}}^T \bar{\mathbf{z}})^2}$

Ans d

- 8. The function f(x) = h(g(x)) is convex if g is concave, and h is convex non-increasing Ans c
- 9. Given $f(x_1, x_2) = x_1 x_2$, for $x_1, x_2 > 0$. The Hessian is $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Its eigenvalues are ± 1 . Hence, it is not PSD and therefore, not convex. Similarly, it is not concave. It can be seen that the level sets $-x_1 x_2 \le a$ or $x_1 x_2 \ge a$ are convex. Hence, $-x_1 x_2$ is quasiconvex, which implies $x_1 x_2$ is quasi-concave
- 10. The function $\sum_{i=1}^{m} \log g_i(x)$ is concave, for $g_i(x) \ge 0$, when $g_i(x)$ are concave. This can be seen as follows.

$$(\log g_i(x))'' = \left(\frac{g_i'(x)}{g_i(x)}\right)' = \frac{g_i''(x)g_i(x) - \left(g_i'(x)\right)^2}{g_i^2(x)}$$

It can be seen that $(\log g_i(x))^{\prime\prime} \le 0$ if $g_i(x)$ is concave. Ans b