INTRODUCTION

The Titanic dataset is one of the most famous datasets used in data science and machine learning. It contains real data about the **passengers on the RMS Titanic**, which sank in the North Atlantic Ocean on **April 15, 1912**, after hitting an iceberg.

This dataset helps us analyze what factors affected the survival of passengers. It includes details like:

- Name and Passenger ID
- Gender
- Age
- **Ticket class** (1st, 2nd, or 3rd)
- **Fare** (price paid for the ticket)
- Family members onboard (siblings/spouse, parents/children)
- **Embarked** (where they boarded: Southampton, Cherbourg, or Queenstown)
- Survived (1 = Yes, 0 = No)

RELATIONSHIPS AND TRENDS

1. Pclass vs Survived

- Visual Reference: Heatmap (corr = -0.34) + Pairplot
- Trend: 1st class passengers were more likely to survive.
- Reason: Priority access to lifeboats and crew.

2. Fare vs Survived

- **Visual Reference:** Pairplot (Fare higher in Survived = 1)
- **Trend:** Higher ticket fares → Higher survival probability.
- **Reason:** Wealthier passengers likely traveled in 1st class with better rescue chances.

3. Age vs Survived

- Visual Reference: Pairplot & Histograms
- **Trend:** Children (age < 10) had better survival; older adults had poorer outcomes.
- **Reason:** "Women and children first" evacuation policy favored younger passengers.

4. SibSp and Parch vs Survived

- Visual Reference: Pairplot
- Trend:
- o Solo travelers (0 siblings/spouse or parents/children) had lower survival.
 - o Those with 1–2 family members had higher survival.
 - o Large family groups fared poorly.
- **Reason:** Smaller groups were easier to evacuate and support each other.

5. Fare vs Pclass

- Visual Reference: Heatmap & Scatterplot (if used)
- Trend: Strong inverse relationship.
- **Interpretation:** Ticket pricing scaled clearly with class level (1st class paid most).

ANALYSIS OF EACH PLOT

1. **Histogram – Age**:

- o Distribution is roughly normal with a slight right skew.
- Large group between ages 20–40, some children.

2. Histogram – Fare:

- o Highly right-skewed; most passengers paid under \$100.
- Very few high-paying passengers.

3. Boxplot – Fare vs Survival:

- Survivors paid higher fares on average.
- Significant outliers among survivors (likely 1st class).

4. Boxplot – Age vs Survival:

- o Survivors are slightly younger.
- Broad age range in both groups.

5. Scatterplot – Age vs Fare by Survival:

- Survivors cluster at higher fares.
- No strong visible trend with age alone.

SUMMARY

1. Survival Distribution

About 38% survived, 62% did not.

There is a significant class-based and gender-based disparity in survival rates.

2. Passenger Class (Pclass)

Higher-class passengers had higher survival rates.

Most first-class passengers survived, while the majority of third-class passengers did not.

3. Gender Impact

Female passengers had significantly higher survival (around 74%) than males (around 19%).

Gender was one of the most influential factors.

4. Age Distribution

Most passengers were between 20–40 years old.

Children had better survival outcomes — supporting "women and children first".

5. Fare Patterns

Right-skewed distribution: most paid under \$100.

Survivors had higher median fares, indicating a correlation between fare/class and survival.

Outliers exist, especially among survivors with very high fares (likely VIPs or 1st class).

6. Family Size – SibSp & Parch

Passengers with 1–2 relatives onboard had better survival odds. Too many or no family members resulted in lower survival rates.

7. Correlation Summary

Strongest correlations with Survived:

- Sex (encoded)
- Fare
- Pclass

Age, SibSp, Parch have weaker but noticeable effects.