B. E. Fifth Semester (Computer Technology) Examination

Course Code: CT 1301/CT 301 Course Name: Theoretical Foundation of Computer Science

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :—

- (1) All questions are compulsory.
- (2) All questions carry marks as indicated.
- (3) Due credit will be given to neatness.
- (4) Assume suitable data wherever necessary.
- (5) Diagrams should be given wherever necessary.
- 1. Solve any One of the following:
 - (a) Design DFA equivalent to following NFA for the language.

Σ	0	1
p	{q, s}	{q}
q	{r}	{q, r}
r	{s}	{p}
S	ф	{p}

8

- (b) Design finite automata over alphabet $\Sigma = \{0, 1\}$ which accepts the set of strings that either starts with 01 or end with 01.
- 2. Solve any **One** of the following:
 - (a) Prove the following regular expression identities:

(i)
$$(a + b)^* = (a + b) + (a + b)^*$$

(ii)
$$(a^* b^*) = (a + b)^*$$

7

(b) Find the regular expression for the following finite automata.

3. Solve any **One** of the following:

(a) Convert the following grammar to CNF form.

$$S \longrightarrow bA \mid aB \quad A \longrightarrow b \quad AA \mid aS \mid a \quad B \longrightarrow aSS \mid bS \mid b$$
 8

(b) Find CFG for the language defined by the following regular expression:

$$(I)$$
 ab^*

(II)
$$a^* b^*$$

4. Solve any **One** of the following:

(a) Construct PDA accepting the following language

$$L = \{a^n \mid b^n \mid n \ge 0\}$$

Also simulate the acceptance of the string "aabb"

(b) Construct PDA for the following language

$$L = \{a^m b^m c^n | m, n > 1\}$$

Also give the simulation for the string "aaabbbccc" 7

7

7

- 5. Solve any Two of the following:
 - (a) Describe Turing machine model. Also design a turing machine that accepts $\{a^n \ 1^n \mid n \ge 1\}$ 7.5
 - (b) Design turing machine that replaces all occurrences of "111" by "101" from sequence of 0'S and 1'S. 7.5
 - (c) Describe the model of linear bounded automation. Also construct a Turing machine that accepts $L = \{0^{2n} | n \ge 0\}$ 7.5
- 6. Solve any Two of the following:
 - (a) What do you mean by post correspondance problem? Show whether the given PCP has solution OR not

	List A	List B
1	$\alpha_{\mathbf{i}}$	$\beta_{\mathbf{i}}$
1	a	baa
2	ab	aa
3	bba	bb

7.5

- (b) Describe decidable and undecidable language in detail with proper example. 7.5
- (c) Describe Church's Hypothesis in detail. 7.5