How To Guide for nt-tools.exe

Ajeesh T Vijayan MSc Cryptography London Metropolitan University

January 20, 2024

Introduction

This document describes how to use the command line tool developed as part of the assignments.

How To

1. Double clicking the ".exe" file will open the app. Below is a screen shot of the landing page of the app.

Figure 1: Landing Page

Figure 2: Help Page

Command Syntax

1. primes

```
primes -s 2800 -e 3100
```

The below screenshot shows a sample output:

Figure 3: List of prime numbers in a range

2. composites

```
composites --start 2800 --end 3100
```


Figure 4: List of composite numbers in a range

3. composites-pq

```
composites-pq --start 2800 --end 3100
```


Figure 5: List of composite numbers of the form N = P.Q in a range

4. nums-with-primitive-roots

```
nums-with-primitive-roots --start 600 --end 750
```

The below screenshot shows a sample output:

Figure 6: List of numbers with primitive roots in a range

5. carmichael-nums

```
# Carmichael Numbers using FLT
1. carmichael-nums --method fermat --start 2800 --end 3100
# Carmichael Numbers using Korselt criteria
2. carmichael-nums --method korselt --start 2800 --end 3100
```


Figure 7: Carmichael Numbers in a range

6. ifactors

```
# Integer Factorisation of a single number using trial and error

1. ifactors --num1 2452

# Integer factorisation of a range of numbers

2. ifactors --num1 2800 --num2 2850
```


Figure 8: Integer Factorisation

7. primality

```
# Primality check using gcd test
primality --method gcd --num 71

# Primality check using trial division
primality --method trial-division --num 71

# Primality check using Miller Rabin
primality --method miller-rabin --num 71

# Primality check using AKS Algm
primality --method aks --num 71

# Primality check using FLT - Not Implemented
primality --method fermat --num 71
```

The below screenshot shows a sample output:

```
nt-tools> primality --method gcd --num 71
GCD Test: 71 is Prime.
nt-tools> primality --method trial-division --num 71
71 is Prime
nt-tools> primality --method miller-rabin --num 71
71 is Probably Prime
nt-tools> primality --method aks --num 71
71 is Prime
nt-tools> primality --method aks --num 71
71 is Prime
nt-tools> primality --method fermat --num 71
Fermat Primality Test - Not Implemented!
nt-tools>
```

Figure 9: List of prime numbers in a range

8. miller-rabin-liars

```
miller-rabin-liars --num 2869
```

The below screenshot shows a sample output:

Figure 10: Find the Miller-Rabin Liars of a number

9. gcd

```
gcd --num1 2000 --num2 200
```

The below screenshot shows a sample output:

Figure 11: GCD of two numbers

10. quadratic-sieve

```
quadratic-sieve --num 391
```

The below screenshot shows a sample output:

Figure 12: Quadratic Sieve Evaluation Matrix

11. pollards-p-minus-1

```
pollards-p-minus-1 --num 78719 --base 13
```

The below screenshot shows a sample output:

Figure 13: Pollard's P-1 Factorisation

12. pollards-rho

```
pollards-rho --primitive-root 21 -b 47 -m 71
```


Figure 14: Discrete Logarithm - Pollard's Rho

13. modular-pow

```
modular-pow -b 26 -e 32 -m 53
```

```
mt-tools> modular-pow -b 26 -e 32 -m 53

26''2(mod 53) = 24

nt-tools>
```

Figure 15: Modular Exponentiation

14. aks-findr

aks-findr --num 71

The below screenshot shows a sample output:

```
mt-tools> aks-findr
error: the following required arguments were not provided:
--num <NUM>
Usage: aks-findr --num <NUM>
For more information, try '--help'.
nt-tools> aks-findr --num 71

AKS 'r' value for 71 is = 41
nt-tools> |
```

Figure 16: 'r' value of AKS Algm

15. list-primitive-roots

list-primitive-roots --num 17

The below screenshot shows a sample output:

```
BD:\workspace\nt-assi × + v

nt-tools> list-primitive-roots
error: the following required arguments were not provided:
--num <NUM>
Usage: list-primitive-roots --num <NUM>
For more information, try '--help'.
nt-tools> list-primitive-roots --num 17

Primitive Roots of n = 17:
    [3, 5, 6, 7, 10, 11, 12, 14]
nt-tools> |
```

Figure 17: List Primitive Roots of a number

16. ass2q2b

```
ass2q2b --start 50 --end 100
```


Figure 18: Assignment No. 2 Question 2(b) - Number of Primitive Roots

17. ass 2q2c

```
ass2q2c --start 50 --end 100
```


Figure 19: Number's of the form $p^k, 2p^k$

18. ass2q3d

```
ass2q3d --start 2800 --end 2850
```


Figure 20: Primitive Roots & Numbers of form N=P.Q

19. aks-failed-steps-for-n

```
aks-failed-steps-for-n --start 2800 --end 3100
```


Figure 21: List of numbers failed the AKS at each of steps

20. clear or cls

Clears the screen.

21. quit or exit