Tips for a good system engineer and/or a good programmer

Computer systems

- Whatever you want to do in your computer, there are ways
 - Fast searching of how to do them in google, and courage to try them in your systems
 - People often tend to try only what they know
- No fear about using new tools and commands

Programming

- Not a technique, but a science (감으로 하는 것이 아님)
- Clearly know what a language provides and understand the underlying principles in relation to its interaction with computer internals

solving a problem in a finite amount of time.

EE 205

Data Structure and Algorithms for Electrical Engineering

Lecture 3. Analysis of Algorithms

Yung Yi

What are we going to learn?

- ◆ Need to say that some algorithms are "better" than others
- Criteria for evaluation

- Structure of programs (simplicity, elegance, OO, etc.)
- Running time
- Memory space
- What else???

Running Time (§3.1)

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average-case running time is often difficult to determine.
 - Whv?
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Average Case vs. Worst Case

♦ The average case running time is harder to analyze because you need to know the probability distribution of the input.

• In certain apps (air traffic control, weapon systems, etc.), knowing the worst case time is important.

5

Experimental Approach

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a wall clock to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult and often time-consuming
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
 - Restrictions

6

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size,
 n.
- ◆ Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

The Random Access Machine (RAM) Model

♦ A CPU

A potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

Memory cells are numbered and accessing any cell in memory takes unit time.

9

11

10

12

Pseudocode (§4.2.3)

- High-level description of an algorithm
- More structured than english prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find the max element of an array

Algorithm arrayMax(A, n)Input array A of n integers Output maximum element of A

 $\begin{array}{l} \textit{currentMax} \leftarrow A[0] \\ \textbf{for } i \leftarrow 1 \textbf{ to } n-1 \textbf{ do} \\ \textbf{if } A[i] > \textit{currentMax} \textbf{ then} \\ \textit{currentMax} \leftarrow A[i] \\ \textbf{return } \textit{currentMax} \end{array}$

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

Algorithm *method* (arg [, arg...])
Input ...
Output ...

- Method call var.method (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in C, C++)
 - = Equality testing (like == in C, C++)
 - n² Superscripts and other mathematical formatting allowed

Seven Important Functions (§3.3)

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N \approx *n* log *n*
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Examples:
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

13

14

Counting Primitive Operations (§3.4)

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Algorithm $arrayMax(A, n)$ $currentMax \leftarrow A[0]$	# operations 2
for $i \leftarrow 1$ to $n - 1$ do	2 n
if $A[i] > currentMax$ then	2(n-1)
$currentMax \leftarrow A[i]$	2(n-1)
{ increment counter <i>i</i> }	2(n-1)
return currentMax	1
	Total $8n-2$

Estimating Running Time

- ◆ Algorithm arrayMax executes 8n-2 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - **b** = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a (8n 2) \le T(n) \le b(8n 2)$
- Hence, the running time T(n) is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- \bullet The linear growth rate of the running time T(n) is an intrinsic property of algorithm *arrayMax*

Big-Oh Notation (§4.2.3)

 \bullet Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

 $f(n) \le cg(n)$ for $n \ge n_0$

- \bullet Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - **■** (c-2) $n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Constant Factors

- ♦ The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function
- \bullet We consider when n is sufficiently large
 - We call this "Asymptotic Analysis" (점근적 분석)

18

20

Big-Oh Example

- \bullet Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - $n \le c$
 - The above inequality cannot be satisfied since cmust be a constant

More Big Oh Examples

• 7n-2

7n-2 is O(n) $need\ c>0\ and\ n_0\geq 1\ such\ that\ 7n-2\leq c\bullet n\ for\ n\geq n_0$ this is true for c=7 and $n_0=1$

- $3n^3+20n^2+5$ $3n^3+20n^2+5$ is $O(n^3)$ need c>0 and $n_0\geq 1$ such that $3n^3+20n^2+5\leq c\bullet n^3$ for $n\geq n_0$ this is true for c=4 and $n_0=21$
- 3 log n + 5 3 log n + 5 is O(log n) need c > 0 and $n_0 \ge 1$ such that $3 log n + 5 \le c \bullet log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$
- (Question) 3 log n + 5 is O(n)? Yes or No?

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

Which is possible?

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows faster	Yes	No
f(n) grows faster	No	Yes
Same growth	Yes	Yes

22

Big-Oh Rules

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- ◆ Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 8n 2 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- ◆ The *i*-th prefix average of an array X is average of the first (*i* + 1) elements of X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

Computing the array A of prefix averages of another array X has applications to financial analysis

25

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

26

Arithmetic Progression

- The running time of prefixAverages1 is O(1 + 2 + ...+ n)
- The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- ◆ Thus, algorithm prefixAverages1 runs in O(n²) time

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm <i>prefixAverages2(X, n)</i>	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow s + X[i]$	n
$A[i] \leftarrow s / (i+1)$	n
return A	1

 \clubsuit Algorithm *prefixAverages2* runs in O(n) time

Another Example

```
Result \leftarrow 0; m \leftarrow 1;

for I \leftarrow 1 to n

m \leftarrow m^*2;

for j \leftarrow 1 to m do

result \leftarrow result + i^*m^*j
```

Math you need to review

- Summations
- Logarithms and Exponents

- properties of logarithms:
 - $log_b(xy) = log_bx + log_by$ $log_b(x/y) = log_bx log_by$ $log_bx^a = alog_bx$ $log_ba = log_xa/log_xb$
- properties of exponentials:
 - $a^{(b+c)} = a^b a^c$ $a^{bc} = (a^b)^c$ $a^b / a^c = a^{(b-c)}$ $b = a^{\log_a b}$ $b^c = a^{c*\log_a b}$

- Proof techniques
- Basic probability
 - For randomized algorithms (later in this course)

29

31

30

32

Relatives of Big-Oh

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$

■ f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c' \bullet g(n) \le f(n) \le c'' \bullet g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation

Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less
 than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically **greater** than or equal to g(n)

big-Theta

f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)

Examples (1)

$\blacksquare 5n^2 \text{ is } \Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$ let c = 5 and $n_0 = 1$

$\blacksquare 5n^2 \text{ is } \Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$ let c = 1 and $n_0 = 1$

33

What do we want for our algorithms?

- ◆ Prof. Yung Yi → A graduate student
 - "What is the order of your algorithm?"
 - Answer: nlogn, n², n³, 2ⁿ
- Polynomial order
 - Generally fine.
 - Try to reduce the running time if above or equal to n³
- There are some problems for which there does NOT exist any polynomial-time algorithm (up to so far)
 - We say that they "NP-hard" or "NP-complete"
 - You will learn formalism for this in the algorithm class

Examples (2)

$\blacksquare 5n^2$ is $\Theta(n^2)$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. we have already seen the former, for the latter (for $O(n^2)$) recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$ Let c = 5 and $n_0 = 1$