ФИЗИКА

Лекция 13

Основы оптоэлектроники (продолжение)

Дисперсия света — зависимость фазовой скорости света (показателя преломления n) в среде от его частоты (длины волны λ).

Следствие дисперсии: разложение в спектр пучка белого света при прохождении через призму.

Дисперсия вещества – величина, определяемая соотношениями:

 $D = \frac{dn}{d\lambda} \equiv \frac{dn}{d\nu}$

Области значений v, λ , в которых дисперсия D увеличивается по модулю с ростом v, с уменьшением λ соответствуют *нормальной дисперсии света*.

Если вещество поглощает часть лучей, то в области поглощения и вблизи неё ход дисперсии обнаруживает аномалию, т.е. на некоторых участках более короткие волны преломляются меньше, чем более длинные.

Такой характер дисперсии называется аномальной дисперсией.

Гармоническая волна описывается уравнением:

$$S_0 = A_0 \cos(\omega t - kx)$$

волновое число
$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{vT} = \frac{\omega}{v}$$
 фазовая скорость

Исходя из принципа суперпозиции и разложения в ряд Фурье, любую волну можно представить в виде суперпозиции (суммы) гармонических волн, мало отличающихся друг от друга по частоте, — волнового пакета (группы волн):

$$S = 2A_0 \cos(\frac{t \cdot d\omega - x \cdot dk}{2})\cos(\omega t - kx)$$

аномальной дисперсии

Дисперсия

Скорость распространения волнового пакета –скорость перемещения максимума амплитуды волны, при условии

$$td\omega - xdk = const \Rightarrow \frac{dx}{dt} = \frac{d\omega}{dk} = u$$
групповая скорость
$$\frac{d\omega}{dk} = \frac{cd\upsilon}{\upsilon dn + nd\upsilon} \qquad u = \frac{c}{n + \upsilon \frac{dn}{d\upsilon}} = \frac{c}{1 + \frac{\upsilon}{n} \cdot \frac{dn}{d\upsilon}}$$

$$\frac{dn}{d\upsilon} > 0 \Rightarrow u = v = \frac{c}{1 + \frac{\upsilon}{\upsilon} \cdot \frac{dn}{d\upsilon}}$$
 $u > v$

и<v-нормальнаядисперсия

Оптически прозрачные среды немагнитные (μ ≈ 1). Следовательно, показатель преломления

$$n = \sqrt{\varepsilon\mu} \approx \sqrt{\varepsilon} = \sqrt{1 + \aleph} = \sqrt{1 + \frac{P}{\varepsilon_0 E}}$$

Если каждая молекула содержит один *оптический* электрон (внешний электрон), то вектор поляризованности среды

$$\overrightarrow{P} = n_0 \overrightarrow{p_l} = n_0 \cdot e \cdot \overrightarrow{r}$$

n₀-концентрация атомов, е-заряд электрона, r-смещение электрона из положения равновесия под действием вектора E световой волны.

$$n^2 = 1 + \frac{n_0 er}{\varepsilon_0 E}$$

Для определения *п* необходимо найти смещение электрона *r* под действием следующих сил:

1. Возвращающая квазиупругая сила

$$\overrightarrow{F_{\text{возвр}}} = -m \cdot \omega_0^2 \cdot \overrightarrow{r}$$

 ω_0 – циклическая частота свободных незатухающих колебаний;

2. Сила сопротивления
$$\overrightarrow{F_{coon}} = -2\beta m \cdot \frac{dr}{dt}$$

– коэффициент затухания свободных колебаний электрона;

3. Вынуждающей силы $F=-e\cdot E$ со стороны переменного электрического поля Е волны.

$$n^{2} = 1 + \frac{n_{0}e^{2}}{\varepsilon_{0}m} \cdot \frac{1}{(\omega_{0}^{2} - \omega^{2})}$$

Если в веществе различные молекулы (m_i) содержат различные заряды (e_i) , совершающие колебания с различными собственными частотами (ω_{0i}) , то

$$n^{2} = 1 + \frac{n_{0}}{\varepsilon_{0}} \sum_{i=1}^{n} \frac{\frac{e_{i}^{2}}{m_{i}}}{(\omega_{0}^{2} - \omega^{2})}$$

Если частота света ω заметно отличается от ω_{0i} – собственной частоты электронов

$$\sum_{i=1}^{n} \frac{e_i^2}{m_i} << 1 \Rightarrow n^2 \approx 1$$

Если $\omega \to \omega_{0i}$, то функция терпит разрыв: $+\infty$ при $\omega < \omega_{0i}$, и $-\infty$ при $\omega > \omega_{0i}$. В этих точках *наблюдается аномальная дисперсия*.

В остальных областях с ростом ω растет и n, наблюдается нормальная дисперсия.

Поглощение света

Абсорбция света — явление уменьшения энергии световой волны при её распространении в веществе, происходящее вследствие преобразования энергии волны во внутреннюю энергию вещества или энергию вторичного излучения, имеющего другой спектральный состав и иные направления распространения.

Поглощение света может вызывать: нагревание вещества, возбуждение или ионизацию атомов или молекул, фотохимические реакции и др. процессы в веществе.

Описывается уравнением Бугера-Ламберта (закон Бугера): $I = I_0 e^{-\alpha l}$

 I_0 , I — значения интенсивности света на входе и выходе из слоя среды толщиной I,

 α – показатель поглощения среды (линейный коэффициент поглощения), зависит от химической природы и состояния поглощающей среды и от длины световой волны λ

Поглощение света

Зависимость $\alpha(\lambda)$ объясняет окрашенность поглощающих тел. Тело при освещении белым светом будет казаться того цвета, λ которых оно плохо поглощает.

У разряженных одноатомных газов – линейчатый спектр поглощения.

У газов с многоатомными молекулами – *полосы поглощения*.

Жидкие и твердые диэлектрики – сплошной спектр поглощения (широкие полосы поглощения, в пределах которых $\alpha >>1$).

Свойства света

Эффект Фарадея (магнитное вращение плоскости поляризации) – в оптически неактивных веществах вращение плоскости поляризации под действием магнитного поля.

При движении источника и приемника электромагнитных волн друг относительно друга наблюдается **эффект Доплера**.

При небольших скоростях движения v << c, релятивистская формула эффекта Доплера совпадает с классической формулой:

 $\upsilon \approx \upsilon_0 (1 - \frac{v}{c} \cos \theta)$

Закономерности этого явления для электромагнитных волн устанавливаются на основе специальной теории относительности.

Свойства света

Если источник движется относительно приемника вдоль соединяющей их прямой ($\theta = 0, \pi$), то наблюдается продольный эффект Доплера.

$$\upsilon = \upsilon_0 \, rac{1 - \left(rac{v}{c}
ight)^2}{1 - rac{v}{c}} \,\,$$
 При $\theta = \pi \,\, v \,\, > \, v_0 \,\, \lambda \,\, < \lambda_0 \,\,$ наблюдается фиолетовое смещение При $\theta = 0 \,\, v < v_0 \,\, \lambda \,\, > \lambda_0 \,$ наблюдается красное смещение

Если источник движется перпендикулярно к ЛИНИИ наблюдения наблюдается поперечный эффект Доплера:

$$\upsilon = \upsilon_0 \sqrt{1 - \left(\frac{v}{c}\right)^2}$$

Эффект Доплера, связанный с тепловым движением излучающих свет атомов газа, вызывает уширение спектральной линии: $\upsilon_0 - \frac{\Delta \upsilon_o}{2} < \upsilon_{np} < \upsilon_0 + \frac{\Delta \upsilon_o}{2}$ $\Delta \upsilon_o \approx \sqrt{\frac{T}{m}}$

$$\Delta \upsilon_{o} \approx \sqrt{\frac{T}{m}}$$

Голография

Голография - способ записи и восстановления волнового поля, основанный на регистрации интерференционной картины, которая образована волной, отражённой предметом, освещаемым источником света (предметная волна), и когерентной с ней волной, идущей непосредственно от источника света.

$$O = a_1 e^{i\varphi_o}$$
$$R = a_2 e^{i\varphi_r}$$

$$R = a_2 e^{i\varphi_1}$$

являются функциями ϕ_{α} пространственных координат плоскости регистрации голограммы, описывающими действительную амплитуду и фазу волны комплексной амплитудой а..

Голография

Амплитуда голографического поля в плоскости регистрации голограммы А:

 $A = a_1 + a_2$

интенсивность голографического поля:

$$I = (a_1 + a_2) \cdot (a_1^* + a_2^*) = I_o + I_R + a_1 \cdot a_2^* + a_2 \cdot a_1^*$$
где I_o и I_R – интенсивности опорной и объектной волн.

Элементарная голограмма представляет собой одномерную решетку толщины Т, в которой изменение параметров среды происходит в строго определенном направлении. Образуется в результате взаимодействия двух когерентных плоских волн.

$$d = \frac{\lambda}{\sin \theta_1 + \sin \theta_2}$$

Голография

Характеристики, определяющие **свойства голограмм**:

- ✓ период голограммы d, или ее пространственная частота v=1/d;
- ✓ толщина голограммы Т;
- ✓ характер отклика регистрирующей среды на воздействие излучения (фотоотклик);
- ✓ ориентация изофазных поверхностей интерференционной картины относительно границ голограммы.

Соотношение между пространственной частотой v и толщиной T определяет меру объемности голограммы и ее важнейшие свойства: угловую и спектральную селективность, дифракционную эффективность.

Типы голограмм

Плоская (2D)

• при T_V →0 , т.е. в такой голограмме можно пренебречь эффектами, связанными с ее конечной толщиной

Объёмная (3D)

- при T_V →∞ т.е. толщина голограммы намного превышает пространственный период изменения ее оптических параметров
- Селективность голограммы свойство голограммы, связанное с уменьшением интенсивности дифрагированной (восстановленной) волны Ід при отклонении условий освещения голограммы от оптимальных, определяемых условием Вульфа-Брэггов

Типы голограмм

Объёмная (3D)

- тонкослойные трехмерные голограммы статические трехмерные голограммы в средах толщиной порядка 10-20 мкм;
- объемные (глубокие, 3D) голограммы статические трехмерные голограммы в средах толщиной порядка 1000 мкм и более;
- динамические трехмерные голограммы.

Теоретический *критерий степени объемности* (*параметр Клейна*) применимый в случае элементарных голограмм:

 $Q = \frac{2\pi\lambda T}{nd^2}$

При Q>10 голограмму принято считать трехмерной, высокоселективные трехмерные голограммы имеют Q>1000

Типы голограмм

Одноракурсная голограмма

3D голограмма

https://www.youtube.com/watch?v=ikuSPBZjkhw

Атом может самопроизвольно перейти из одного состояния в другое, энергия которого меньше энергии предыдущего. Такой переход (и испускаемое при этом излучение) называется *спонтанным*.

Под действием внешнего излучения атом также может перейти из одного состояния в другое. Если энергия конечного состояния больше энергии начального, то атом поглощает энергию. Если энергия конечного состояния меньше энергии начального, то атом испускает энергию. Такой тип излучения называется вынужденным или индуцированным излучением.

Вынужденное излучение являются строго **когерентными**.

Вероятность спонтанного перехода (в единицу времени) с высокого уровня энергии на низкий обозначим как **А**_{mn} (это обозначение называется **коэффициентом «А» Эйнштейна**).

Вероятность вынужденного перехода (в единицу времени) с высокого уровня энергии на низкий обозначим как B_{mn} (это обозначение называется коэффициентом «В» Эйнштейна).

$$A_{mn} = \frac{\hbar \omega^3}{\pi^2 c^3} \cdot \frac{1}{e^{\frac{\hbar \omega}{kT}} - 1} = \frac{\hbar \omega^3}{\pi^2 c^3} B_{mn} = P_{mn} \left(e^{\frac{\hbar \omega}{kT}} - 1 \right)$$

Вероятность спонтанного перехода с верхнего уровня энергии на нижний обратно пропорциональна среднему времени жизни возбуждённого состояния.

Вещество, находящееся в состоянии термодинамического равновесия поглощает проходящее через него излучение. Электромагнитная волна, проходя по веществу, расходует свою энергию на возбуждение атомов. Интенсивность излучения I при этом падает, подчиняясь закону Бугера:

$$I = I_0 e^{-kl}$$

где I — геометрическая длина хода луча, I_0 — начальная интенсивность при I = 0 , k — коэффициент поглощения.

Электрическое поле в резонаторе:

$$\vec{E}(\vec{r},t) = Re(E(t) \cdot \vec{E}_s(\vec{r}) \cdot e^{i\omega_0 t})$$

где E(t) - медленно меняющаяся амплитуда; Es(r) – характеризует распределение в пространстве поля рабочей моды резонатора.

Вектор поляризации активной среды – дипольный момент

ед. объёма:
$$\overrightarrow{P}(\overrightarrow{r},t) = Re(P(t) \cdot \overrightarrow{E}_{s}(\overrightarrow{r}) \cdot e^{i\omega_{0}t})$$

Мгновенная *инверсная населенность* уровней – инверсия:

 $D(t) = N_2 - N_1$

Изменение инверсии населенности имеет вид

$$\frac{dD(t)}{dt} = \Gamma(D_0 - D) - kEP$$
 мощность параметр интенсивность накачки релаксации населённости

Устройство лазера

- 1. Активная среда
- 2. Система накачки
- 3. Резонатор

Активная среда может быть твердой (кристаллы рубина или алюмо-иттриевого граната, стекло с примесью неодима в виде стержней различного размера и формы), жидкой (растворы анилиновых красителей или растворы солей неодима в кюветах) и газообразной (смесь гелия с неоном, аргон, углекислый газ, водяной пар низкого давления в стеклянных трубках). Полупроводниковые материалы и холодная плазма, продукты химической реакции тоже дают лазерное излучение.

Устройство лазера

Накачка создает **инверсную заселенность** в активных средах.

В твердотельных и жидкостных лазерах используют импульсные лампы или лазеры, газовые среды возбуждают электрическим разрядом, полупроводники — электрическим током.

Излучение, получаемое с помощью лазеров, обладает большой пространственной и временной когерентностью, высокой степенью монохроматичности, является поляризованным и узконаправленным потоком излучения (имеет малый угол расхождения пучка 10-5 рад).

У некоторых типов лазеров достигается мощность излучения порядка 10¹⁷ Вт/см², в то время как мощность излучения Солнца равна только 7⋅10³ Вт/см²

Твердотельные лазеры

- люминесцирующие твёрдые среды (диэлектрические кристаллы и стёкла)
- В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe.
- алюмо-иттриевый гранат (YAG), литиевоиттриевый фторид (YLF), сапфир (оксид алюминия) и силикатное стекло

Применение: голография, удаление тату, дальномеры, целеуказатели, хирургия, накачка др. лазеров, лазерная плавка, научные исследования нелинейной оптики, усилители в оптоволокне.

Полупроводниковые лазеры инжекция избыточных носителей заряда через p-n переход или гетеропереход, электрический пробой в сильном поле, бомбардировка быстрыми электронами, а квантовые переходы происходят между разрешёнными энергетическими зонами, а не между дискретными уровнями энергии

Применение: голография, телекоммуникация, целеуказатели, лазерные принтеры, накачка др. лазеров.

Лазеры на красителях

- раствор флюоресцирующих с образованием широких спектров органических красителей.
- метанол, этанол или этиленгликоль, в которых растворены химические красители, например кумарин или родамин.
- Конфигурация молекул красителя определяет рабочую длину волны.
- Лазерные переходы осуществляются между различными колебательными подуровнями первого возбуждённого и основного синглетных электронных состояний.

Применение: спектроскопия, научные исследования, косметическая хирургия, разделение изотопов

Газовые лазеры

- Отличаются высокой мощностью, монохроматичностью, а также узкой направленностью излучения.
- Работают в непрерывном и импульсном режимах.
- Разделяют на газоразрядные лазеры, газовые лазеры с оптическим возбуждением и возбуждением заряженными частицами (например, лазеры с ядерной накачкой), газодинамические и химические лазеры.

Применение: гравировка, сварка, фотоакустическая спектроскопия, литография, научные исследования, хирургия, коррекция зрения, исследование загрязнение атмосферы, лазерное вооружение, интерферометрия, голография, считывание штрих-кодов, демонстрация оптических эффектов, лазерное шоу

Газодинамические лазеры лазеры с тепловой накачкой, инверсия населённостей в которых создаётся между возбуждёнными колебательновращательными уровнями гетероядерных молекул путём адиабатического расширения движущейся с высокой скоростью газовой смеси (чаще N2+CO2+He или N2+CO2+H2O, рабочее вещество - CO2).

Применение: обработка и термообработка материалов, лазерная резка пластин, резисторов, сварка тонких металлических пластин (<1 мм)

Эксимерные лазеры

• Разновидность газовых лазеров, работающих эксимерных энергетических переходах молекул (димерах благородных газов, а также ИХ моногалогенидов), способных существовать лишь некоторое время в возбуждённом состоянии.

Химические лазеры

- Источником энергии служат химические реакции между компонентами рабочей среды.
- Лазерные переходы происходят между возбуждёнными колебательно-вращательными и основными уровнями составных молекул продуктов реакции.

Применение: научные исследования, противоракетная оборона; Напыление, медицина Автор: к.ф.-м.н., доцент Черкасова О.А.

Лазеры на свободных электронах

- Активная среда поток свободных электронов, колеблющихся во внешнем электромагнитном поле (за счёт чего осуществляется излучение) и распространяющихся с релятивистской скоростью в направлении излучения.
- Плавная широкодиапазонная перестройка частоты генерации
- Различают убитроны и скаттроны, накачка первых осуществляется в пространственно-периодическом статическом поле ондулятора, вторых мощным полем электромагнитной волны.

Применение: исследование атмосферы, материаловедение, медицина, противоракетная оборона

Квантовые каскадные лазеры

- Полупроводниковые лазеры, которые излучают в среднем и дальнем инфракрасном диапазоне.
- Излучают посредством вынужденных переходов между разрешенными электронными и дырочными уровнями, разделенными запрещённой зоной полупроводника, излучение квантовых каскадных лазеров возникает при переходе электронов между слоями гетероструктуры полупроводника и состоит из двух типов лучей, причем вторичный луч обладает весьма необычными свойствами и не требует больших затрат энергии.

Применение: исследование атмосферы, контроль промышленных процессов, медицина, беспроводная оптическая связь, военное применение, система координации движения

Волоконный лазер

• При полностью волоконной реализации - цельноволоконный, при комбинированном использовании волоконных и других элементов в конструкции лазера - волоконно-дискретный или гибридный.

Применение: прецизионная обработка, создание микро- и наноструктур, телекоммуникация, оптическая томография, волоконно-оптические гироскопы, ускорение электронов, волоконно-оптические тензодатчики, модуляторы

Спасибо за внимание!

