Examen 1a Avaluació. Tecnologia Industrial 2n Btx

1. (1 pt)

Un cotxe té un motor V8 amb vuit cilindres. La cilindrada és de 3 999 cm3 i el diàmetre dels cilindres és de 92 mm. Quina és la cursa dels cilindres?

- a) 73,60 mm
- b) 43,47 mm
- c) 59,06 mm
- d) 75,20 mm

2. (2,5 pts)

Un elevador de cotxes d'un taller de reparacions funciona mitjançant dos cilindres hidràulics connectats directament a la base que suporta el cotxe. Els cilindres tenen un diàmetre interior $d_{int} = 100 \text{ mm}$ i el diàmetre de la tija és $d_{tija} = 56 \text{ mm}$. Si la pressió relativa a l'interior dels cilindres és $p_{\text{int}} = 2,5$ MPa, determineu: a) La massa màxima m_{max} que pot aguantar l'elevador.

b) La tensió normal a compressió de la tija $\sigma_{_{
m tija}}$ quan s'eleva la massa màxima. [0,5 punts]

El rendiment dels cilindres és $\eta = 0.88$. Quan l'elevador puja la càrrega màxima a una velocitat v = 0.038 m/s, la bomba subministra un cabal d'oli q = 0.2985 L/s a cadascun dels cilindres. Determineu:

c) La potència P_b proporcionada per la bomba a cadascun dels cilindres.

[0,5 punts]

d) La pressió p proporcionada per la bomba.

[0,5 punts]

3. (2,5 pts)

En una instal·lació, una bomba accionada per un motor tèrmic fa pujar un volum $V = 600 \text{ m}^3$ d'aigua fins a una altura h = 3.6 m, en un temps t = 10 h de funcionament estacionari. Determineu:

a) El treball W fet per la bomba.

[1 punt]

b) La potència hidràulica P_h que desenvolupa la bomba.

- [0,5 punts]
- c) El rendiment η del grup motobomba, si el motor ha consumit c = 3 L d'un combustible de densitat $\rho = 850 \text{ kg/m}^3$ i de poder calorífic $p_c = 42,5 \text{ MJ/kg}$. [1 punt]
- 4. (1 pt) Considereu una màquina tèrmica que treballa entre dues fonts a temperatures T_1 =227 °C i T_2 = 27 °C, extreu 1000 J de la font calenta i en cedeix 700 a la font freda. Es demana respondre raonadament:
- a) Pot existir aquesta màquina?

[0,5 punts]

b) Si l'apartat anterior és cert, calculeu el treball que fa aquesta màquina. [0,5 punts]

5. (2,5 pts)

En un habitatge unifamiliar s'utilitzen captadors solars de superfície S = 2,2 m² per a produir aigua calenta, que es complementen amb un escalfador elèctric de potència $P = 1\,800$ W els dies en què la radiació solar no és suficient. L'aigua que entra en el sistema té una temperatura de 10 °C i es vol que surti a 45 °C. Es calcula que el consum diari d'aigua és c = 240 L. Sabent que la calor específica de l'aigua és c = 4,18 J/(g °C), determineu:

 a) La irradiació solar diària mínima I_{dia}, en MJ/m², necessària per a produir tota l'energia amb un únic captador solar.

Si la radiació solar diària és una tercera part de la radiació mínima necessària i es vol cobrir, com a mínim, el 60 % de la demanda amb energia solar, determineu:

b) El nombre de captadors que cal installar.

[1 punt]

c) L'energia elèctrica diària consumida $E_{\text{elèctr}}$, en kW h, si s'instal·la el nombre de captadors determinat en l'apartat b. [0,5 punts]

6. (2,5 pts)

Un vehicle utilitza gasolina de poder calorífic p_c = 42 MJ/L. Quan circula per un terreny horitzontal a una velocitat v = 100 km/h, el motor gasta c_e = 4,7 L/(100 km) i desenvolupa una potència mecànica $P_{\rm mec}$ = 21 kW. Determineu:

a) El consum, c, de gasolina en L/s.

[0,5 punts]

b) La potència tèrmica consumida, $P_{\text{tèrm}}$.

[0,5 punts]

c) El rendiment, η , del motor.

[0,5 punts]

d) La distància, d, que pot recórrer el vehicle si el dipòsit de combustible té una capacitat
 V = 45 L. [1 punt]

7. (2,5 pts)

Una embarcació té un dipòsit de capacitat $V = 600 \, \mathrm{L}$ i un motor que, en règim de funcionament nominal, proporciona una potència $P_{\rm s} = 150 \, \mathrm{kW}$ quan gira a $n = 3\,800 \, \mathrm{min^{-1}}$. El combustible que utilitza és el gasoil, de poder calorífic $p_{\rm c} = 41,7 \, \mathrm{MJ/L}$ i densitat $\rho = 0,85 \, \mathrm{kg/L}$. Amb el dipòsit ple i funcionant en règim nominal, l'embarcació té una autonomia d'un temps $t = 19,5 \, \mathrm{h}$. Determineu:

a) El parell a l'eix de sortida, Γ_s .

[0,5 punts]

b) El consum específic, c, en kg/(kW h).

[1 punt]

c) El rendiment, η , del motor.

[1 punt]

- 8. (1 pt) Un fluid circula a una velocitat de 20 m/s per una canonada de 10 cm de diàmetre guan es troba un estretament que redueix el diàmetre a 3 cm. Es demana:
- a) Calculeu el cabal del fluid en m³/s.

[0,5 pts]

b) Calculeu la velocitat del fluid en l'estretament de la canonada.

[0,5 pts]