Compte rendu de projet - TS226

Simulation d'un émetteur / récepteur ADS-B

 $\label{lem:maxime.peterlin@enseirb-matmeca.fr} A constant a constant a constant and the c$

ENSEIRB-MATMECA, Bordeaux

19 janvier 2014

Table des matières

Introduction		2
1	Étude théorique	2
2	Étude algorithmique	5
3	Implémentation sous MATLAB	5
4	Résultats	5
C	onclusion	5

Introduction

1 Étude théorique

La modulation en position d'amplitude est utilisée pour la transmission de signaux ADS-B. On a alors l'enveloppe complexe du signal émis qui est la suivante :

$$s_l(t) = \sum_{k \in \mathbb{Z}} p_{b_k}(t - kT_s)$$

avec $T_s = 1 \mu s$ le temps de l'impulsion élémentaire et

$$p_{b_k}(t) = \begin{cases} p_0(t), & \text{si } b_k = 0\\ p_1(t), & \text{si } b_k = 1 \end{cases}$$

 s_l peut également s'exprimer en fonction des symboles émis A_k et de la forme d'onde biphase donnée ci-dessous.

$$\begin{split} s_l(t) &= \sum_{k \in \mathbb{Z}} p_{b_k}(t_k T_s) \\ &= \sum_{\substack{k \in \mathbb{Z} \\ b_k = 0}} p_0(t - kT_s) + \sum_{\substack{k \in \mathbb{Z} \\ b_k = 1}} p_1(t - kT_s) \\ &= 0.5 + \sum_{\substack{b_k = 0}} p(t - kT_s) - \sum_{\substack{b_k = 1}} p(t - kT_s) \\ s_l(t) &= 0.5 + \sum_{\substack{b_k = 0}} A_k p(t - kT_s) + \sum_{\substack{b_k = 1}} A_k p(t - kT_s) \end{split}$$

Finalement, on obtient:

$$s_l(t) = 0.5 + \sum_{k \in \mathbb{Z}} A_k p(t - kT_s)$$

avec

$$A_k = \begin{cases} 1, & \text{si } b_k = 0 \\ -1, & \text{si } b_k = 1 \end{cases}$$

En réception, on aura les filtres adaptés p_0^* et p_1^* qui ont pour but de maximiser le SNR. De plus, afin de simplifier l'étape de décision et la rendre plus fiable, il faut supprimer l'interférence entre symboles, ce qui est rendu possible si les couples de filtres $(p_0(t), p_0^*(-t))$ et $(p_1(t), p_1^*(-t))$ respectent le critère de Nyquist :

$$\sum_{n=-\infty}^{\infty} P(f - \frac{n}{T_b}) = T_b$$

Avec $T_b = \frac{T_s}{2}$ le temps de l'impulsion et P la transformée de Fourier du filtre en réception. Dans notre cas, les filtres en réception $p_0^*(-t)$ et $p_1^*(-t)$ sont, à un décalage temporel près, des portes de largeur $\frac{T_s}{2}$, ainsi leur transformée de Fourier est $\frac{T_s}{2} sinc(f\frac{T_s}{2})$. On remarque que pour $f = \frac{n}{T_b}$ avec $n \in I$ on a $sinc(f\frac{T_s}{2}) = 0$. Ainsi, le critère de Nyquist est vérifié pour les deux filtres en réception.

$$\sum_{n=-\infty}^{\infty} P(f - \frac{n}{T_b}) = \frac{Ts}{2} sinc(0) = \frac{Ts}{2}$$

On veut à présent calculer la DSP du signal s_l à l'aide de l'autocorrelation moyennée de ce dernier. On commence par calculer le moment d'ordre 1 de s_l :

$$m_{s_l}(t) = E[s_l(t)] = E[0.5 + \sum_{k \in \mathbb{Z}} A_k p(t - kT_s)]$$

$$m_{s_l}(t) = 0.5 + \sum_{k \in \mathbb{Z}} \underbrace{E[A_k]}_{0.5 \cdot 1 + 0.5 \cdot -1} p(t - kT_s)$$

$$m_{s_l}(t) = 0.5$$

On remarque que ce moment d'ordre 1 est indépendant du temps.

A présent nous allons calculer l'autocorrélation du signal s_l :

$$E[s_{l}(t)s_{l}^{*}(t-\tau)] = \sum_{k} E[A_{k}^{2}p(t-kT_{s})p(t-\tau-kT_{s})]$$

$$= \sum_{k,k'} E[A_{k}p(t-kT_{s}) \cdot A_{k'}p(t-\tau-kT_{s})]$$

On sait que $p(t - kT_s) \neq 0$, si

$$0 < t - kT_s < T_s \Leftrightarrow \frac{t}{T_s} - 1 < k < \frac{t}{T_s}$$

Comme $k \in \mathbb{Z}$, on en déduit que $k = \left\lfloor \frac{t}{T_s} \right\rfloor$ Ainsi,

$$E[s_l(t)s_l^*(t-\tau)] = E[A_k]E[A_k']p(t-\left|\frac{t}{T_s}\right|T_s)p(t-\tau-\left|\frac{t-\tau}{T_s}\right|T_s)$$

Finalement,

$$R_{s_l}(t,\tau) = \begin{cases} p(t - \left\lfloor \frac{t}{T_s} \right\rfloor T_s) p(t - \tau - \left\lfloor \frac{t - \tau}{T_s} \right\rfloor T_s), \text{ si } \left\lfloor \frac{t}{T_s} \right\rfloor = \left\lfloor \frac{t - \tau}{T_s} \right\rfloor \\ 0, \text{ si } \left\lfloor \frac{t}{T_s} \right\rfloor \neq \left\lfloor \frac{t - \tau}{T_s} \right\rfloor \end{cases}$$

Nous allons maintenant montrer que le signal est cyclo-stationnaire :

$$R_{s_l}(t+T_s,\tau) = \begin{cases} p(t+T_s - \left\lfloor \frac{t+T_s}{T_s} \right\rfloor T_s) p(t+T_s - \tau - \left\lfloor \frac{t+T_s - \tau}{T_s} \right\rfloor T_s), \text{ si } \left\lfloor \frac{t+T_s}{T_s} \right\rfloor = \left\lfloor \frac{t+T_s - \tau}{T_s} \right\rfloor \\ 0, \text{ si } \left\lfloor \frac{t+T_s}{T_s} \right\rfloor \neq \left\lfloor \frac{t+T_s - \tau}{T_s} \right\rfloor \end{cases}$$

$$R_{s_l}(t+T_s,\tau) = \begin{cases} p(t+T_s-T_s-\left\lfloor\frac{t}{T_s}\right\rfloor T_s)p(t+T_s-T_s-\tau-\left\lfloor\frac{t-\tau}{T_s}\right\rfloor T_s), \text{ si } \left\lfloor\frac{t}{T_s}\right\rfloor = \left\lfloor\frac{t-\tau}{T_s}\right\rfloor \\ 0, \text{ si } \left\lfloor\frac{t}{T_s}\right\rfloor \neq \left\lfloor\frac{t-\tau}{T_s}\right\rfloor \end{cases}$$

On a alors:

$$R_{s_l}(t+T_s,\tau)=R_{s_l}(t,\tau)$$

De plus, on a vu que le moment d'ordre 1 est indépendant du temps, le signal s_l est bien cyclo-stationnaire.

Nous pouvons à présent calculer l'autocorrélation moyennée du signal s_l . Ainsi, pour $\tau \in [0, T_s]$, on a :

$$\tilde{R}_{s_l}(\tau) = \frac{1}{T_s} \int_0^{T_s} R_{s_l}(t, \tau) dt$$

$$= \frac{1}{T_s} \int_0^{T_s} p(t - \left\lfloor \frac{t}{T_s} \right\rfloor T_s) p(t - \tau - \left\lfloor \frac{t - \tau}{T_s} \right\rfloor T_s) dt$$

Si $\tau < \frac{T_s}{2}$,

$$\tilde{R}_{s_l}(\tau) = \frac{1}{T_s} \int_0^{\frac{T_s}{2}} \frac{1}{4} dt - \frac{1}{T_s} \int_{\frac{T_s}{2}}^{\frac{T_s}{2} + \tau} \frac{1}{4} dt + \frac{1}{T_s} \int_{\frac{T_s}{2} + \tau}^{T_s} \frac{1}{4} dt$$

$$= \frac{1}{4} - \frac{3\tau}{4T_s}$$

Si $\frac{T_s}{2} < \tau < T_s$,

$$\tilde{R}_{s_l}(\tau) = -\frac{1}{T_s} \int_{\tau}^{T_s} \frac{1}{4} dt$$
$$= \frac{\tau}{4T_s} - \frac{1}{4}$$

En résumé, on a pour $\tau \ge 0$

$$\tilde{R}_{s_{l}}(\tau) = \begin{cases} \frac{1}{4} - \frac{3\tau}{4T_{s}}, \text{ si } 0 \leq \tau < \frac{T_{s}}{2} \\ \frac{\tau}{4T_{s}} - \frac{1}{4}, \text{ si } \frac{T_{s}}{2} \leq \tau < T_{s} \\ 0, \text{ sinon} \end{cases}$$

Calculons à présent la densité spectrale de puissance Γ_{s_l} du signal s_l . On a

$$p(t) = -\frac{1}{2} \prod_{\frac{T_s}{2}} (t - \frac{T_s}{4}) + \frac{1}{2} \prod (t - \frac{3T_s}{4})$$

Ainsi, la transformée de Fourier s'exprime de la manière suivante :

$$\begin{split} P(f) &= \frac{1}{2} \frac{T_s}{2} sinc(f\frac{T_s}{2}) e^{-j2\pi f\frac{T_s}{4}} + \frac{1}{2} \frac{T_s}{2} sinc(f\frac{T_s}{2}) e^{-j2\pi f\frac{3T_s}{4}} \\ &= \frac{T_s}{4} sinc(f\frac{T_s}{2}) [e^{-j2\pi f\frac{3T_s}{4}} - e^{-j2\pi f\frac{T_s}{4}}] \end{split}$$

La DSP a alors l'expression suivante :

$$\Gamma_{s_l} = |P(f)|^2 = \frac{T_s^2}{16} sinc^2 (f\frac{T_s}{2}) [-2jsin(\pi f\frac{T_s}{2})]^2$$

$$= \frac{T_s^2}{16} sinc^2 (f\frac{T_s}{2}) [4sin^2 (\pi f\frac{T_s}{2})]$$

$$\Gamma_{s_l} = \frac{T_s^2}{4} sinc^2(f\frac{T_s}{2}) sin^2(\pi f\frac{T_s}{2})$$

- 2 Étude algorithmique
- 3 Implémentation sous MATLAB
- 4 Résultats

Conclusion