FR 2805543

ABSTRACT

```
ANSWER 1 OF 1 WPIX COPYRIGHT 2004 THOMSON DERWENT on STN
T.1
     2001-129394 [14]
                        WPIX
AN
     2001-073431 [09]
CR
DNC C2001-039053
     Production of base oil from hydrocarbon charging material, involves
     performing simultaneous hydrogenation and isomerization of charging
     material and contact deparaffination of the effluent under specific
     conditions.
     H04 H07 K07
DC
     BENAZZI, E; CSERI, T; GUERET, C; MARCHAL-GEORGE, N; MARION, P; MARCHAL, G
IN
     (INSF) INST FRANCAIS DU PETROLE
PA
CYC
                                                      C10G045-62
                     A 20001212 (200114)*
                                                15
     JP 2000345170
PΙ
                                                      C10G045-62
                     A3 20010314 (200117)
     CZ 2000001568
     NL 1015036
                     C2 20010212 (200121)
                                                      C10G045-62
                                                      C10G049-02
     KR 2000071874
                     Α
                        20001125 (200131)
                     A1 20010831 (200153)
                                                      C10G069-02
     FR 2805543
     ES 2185445
                     A1 20030416 (200335)
                                                       C10G047-14
     JP 2000345170 A JP 2000-132785 20000501; CZ 2000001568 A3 CZ 2000-1568
     20000428; NL 1015036 C2 NL 2000-1015036 20000427; KR 2000071874 A KR
     2000-23055 20000429; FR 2805543 A1 FR 2000-2364 20000224; ES 2185445 A1 ES
     2000-1084 20000427
FDT CZ 2000001568 A3 FR 2792945
                          20000224; FR 1999-5494
                                                          19990429
PRAI FR 2000-2364
     ICM C10G045-62; C10G047-14; C10G049-02; C10G069-02
          B01J023-42; B01J029-068; B01J029-67; C10G007-00; C10G035-085;
          C10G035-095; C10G045-02; C10G045-64; C10G065-00; C10G065-04;
          C10G067-02; C10G071-00; C10G073-02
     JP2000345170 A UPAB: 20030603
AB
     NOVELTY - The method involves performing simultaneously hydrogenation and
     isomerization of charging material containing n-paraffin using a catalyst
     (I), and contact deparaffination of effluent using a second catalyst (II).
     Both the steps are performed at specific conditions.
          DETAILED DESCRIPTION - The method involves performing:
          (a) simultaneously hydrogenation and isomerization of charging
     material containing n-paraffin using a catalyst (I) containing noble
     metals precipitated on amorphous acid support; and
           (b) contact deparaffination of the effluent from step (a).
          The charging material contains less than 1000 ppm of sulfur, less
     than 200 ppm of nitrogen, less than 50 ppm of metal and 0.2 wt.% or less
     of oxygen. Step (a) is performed in the presence of hydrogen at 200-500
     deg. C, a pressure of 2-25 MPa and a space velocity of 0.1-10/hour. The
     distribution of noble metal in the first catalyst (I) is 20-100%. Step (b)
     is performed at 200-500 deg. C, a pressure of 1-25 MPa, a space velocity
     of 0.05-50/hour and in the presence of a second catalyst (II) containing
     molecular sieve and hydrogenation-dehydrogenation component, and 50-2000 l
     of hydrogen per liter of effluent.
          USE - For production of base oil used as a lubricant for motor
     vehicles.
          ADVANTAGE - The base oil has good intermediate distillate, high
     viscosity index, good UV stability and low pour point. The lubricant has
      good properties.
      Dwg.0/3
 FS
     CPI
     AB
 FA
     CPI: H04-E08; H04-E11; H04-F02A; H04-F02E; K07-A; N01-D02; N02-F02
```

19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 No de publication :

2 805 543

(à n'utiliser que pour les commandes de reproduction)

21) No d'enregistrement national :

00 02364

51 Int CI7 : C 10 G 69/02

(12)

DEMANDE DE BREVET D'INVENTION

A1

22 Date de dépôt : 24.02.00.

(30) Priorité :

(7) Demandeur(s): INSTITUT FRANCAIS DU PETROLE

- Date de mise à la disposition du public de la demande : 31.08.01 Bulletin 01/35.
- 60 Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- 60 Références à d'autres documents nationaux apparentés :
- (72) Inventeur(s): BENAZZI ERIC, MARCHAL GEORGE NATHALIE, CSERI TIVADAR, MARION PIERRE et GUERET CHRISTOPHE.
- 73) Titulaire(s) :
- Mandataire(s):

PROCEDE FLEXIBLE DE PRODUCTION DE BASES HUILES ET DISTILLATS MOYENS AVEC UNE CONVERSION-HYDROISOMERISATION SUIVIE D'UN DEPARAFFINAGE CATALYTIQUE.

L'invention concerne un procédé, amélioré, de fabrication d'huiles de base de très haute qualité et de production simultanée de distillats moyens de haute qualité, comportant les étapes successives d'hydrolsomérisation et de déparaffinage catalytique.

L'hydroisomérisation se déroule en présence d'un catalyseur contenant au moins un métal noble déposé sur un support acide amorphe, la dispersion en métal étant de 20 -100 %. De préférence le support est une silice-alumine

Le déparaffinage catalytique se déroule en présence d'un catalyseur contenant au moins un élément hydro-dés-hydrogénant (groupe VIII) et au moins un tamis moléculaire (zéolithe préférée). De préférence le tamis est choisi parmi la zéolithe NU-10, EU-1, EU-13 et ferrierite.

FR 2 805 543 - A1

La présente invention concerne un procédé amélioré de fabrication d'huiles de base de très haute qualité c'est à dire possédant un haut indice de viscosité (VI), une bonne stabilité UV et un faible point d'écoulement, à partir de charges hydrocarbonées (et de préférence à partir de charges issues du procédé Fischer-Tropsch ou à partir de résidus d'hydrocraquage), avec éventuellement simultanément la production de distillats moyens (gasoils, kérosène notamment) de très haute qualité, c'est-à-dire possédant un faible point d'écoulement et un indice de cétane élevé.

10 Art antérieur

Les lubrifiants de haute qualité sont d'une importance primordiale pour le bon fonctionnement des machines modernes, des automobiles, et des camions.

15 Ces lubrifiants sont le plus souvent obtenus par une succession d'étapes de raffinage permettant l'amélioration des propriétés d'une coupe pétrolière. En particulier un traitement des fractions pétrolières lourdes à fortes teneurs en paraffines linéaires ou peu ramifiées est nécessaire afin d'obtenir des huiles de base de bonne qualité et ce avec les meilleurs rendements possibles, par une opération qui vise à éliminer les paraffines linéaires ou très peu branchées, des charges qui seront ensuite utilisées en tant que huiles de base.

En effet, les paraffines de haut poids moléculaire qui sont linéaires ou très faiblement branchées et qui sont présentes dans les huiles conduisent à des points d'écoulement hauts et donc à des phénomènes de figeage pour des utilisations à basse température. Afin de diminuer les valeurs des points d'écoulement, ces paraffines linéaires pas ou très peu branchées doivent être entièrement ou partiellement éliminées.

Un autre moyen est le traitement catalytique en présence ou en absence d'hydrogène et, compte tenu de leur sélectivité de forme, les zéolithes sont parmi les catalyseurs les plus utilisés.

Des catalyseurs à base de zéolithes telles que les ZSM-5, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35 et ZSM-38 ont été décrits pour leur utilisation dans ces procédés.

Tous les catalyseurs utilisés actuellement en hydroisomérisation sont du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (150 à 800 m².g¹¹ généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silices-alumines amorphes et les silice-alumines. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe VI tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.

L'équilibre entre les deux fonctions acide et hydrogénante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.

La demanderesse se propose donc, selon le procédé décrit dans l'invention, de produire conjointement des distillats moyens de très bonne qualité, des bases huiles de VI et de point d'écoulement au moins égaux à ceux obtenus avec un procédé d'hydroraffinage et/ou d'hydrocraquage.

Objet de l'invention

10

15

20

25

35

La demanderesse a porté ses efforts de recherche sur la mise au point d'un procédé amélioré de fabrication d'huiles lubrifiantes de très haute qualité et de distillats moyens de haute qualité à partir de charges hydrocarbonées et de préférence à partir de charges hydrocarbonées issues du procédé Fischer-Tropsch ou à partir de résidus d'hydrocraquage.

La présente invention porte donc sur un enchaînement de procédés pour la

fabrication conjointe d'huiles de bases de très haute qualité et de distillats moyens (gasoils notamment) de très haute qualité à partir de coupes pétrolières. Les huiles obtenues possèdent un haut indice de viscosité (VI), une faible volatilité, une bonne stabilité UV et un faible point d'écoulement.

Plus précisément, l'invention concerne un procédé pour la production d'huiles à partir d'une charge hydrocarbonée (dont de préférence au moins 20 % volume a une température d'ébullition d'au au moins 340°C), ledit procédé comportant les étapes successives suivantes :

10

15

- (a) conversion de la charge avec hydroisomérisation simultanée des n-paraffines de la charge, ladite charge ayant une teneur en soufre inférieure à 1000 ppm pds, une teneur en azote inférieure à 200 ppm pds, une teneur en métaux inférieure à 50 ppm pds, une teneur en oxygène d'au plus 0,2 %, ladite étape se déroulant à une température de 200-500 °C, sous une pression de 5 25 Mpa, avec une vitesse spatiale de 0,1 5h⁻¹, en présence d'hydrogène, et en présence d'un catalyseur contenant au moins un métal noble déposé sur un support acide amorphe, la dispersion en métal noble étant comprise entre 20 100 %.
- (b) déparaffinage catalytique d'au moins une partie de l'effluent issu de l'étape a), réalisé à une température de 200 500°C, sous une pression de 1-25 Mpa, avec une vitesse volumique horaire de 0,05-50h-1, en présence de 50-2000 litre d'hydrogène/litre d'effluent entrant dans l'étape b et en présence d'un catalyseur comprenant au moins un élément hydro-déshydrogénant et au moins un tamis moléculaire.

L'étape (a) est donc éventuellement précédée d'une étape hydrotraitement généralement réalisée à une température de 200-450°C, sous une pression de 2 à 25Mpa, avec une vitesse spatiale de 0,1-6h⁻¹, en présence d'hydrogène dans le rapport volumique hydrogène/hydrocarbure de 100-2000 l/l, et en présence d'un catalyseur amorphe comprenant au moins un métal du groupe VIII et au moins un métal du groupe VIII.

La totalité de l'effluent issu de l'étape (a) peut être envoyé dans l'étape (b).

L'étape (a) peut être éventuellement suivie d'une séparation des composés gazeux légers de l'effluent obtenu à l'issue de l'étape (a).

De préférence, l'effluent issu du traitement d'hydroisomérisation (a) est soumis à une étape de distillation (de préférence atmosphérique) de façon à séparer les composés ayant un point d'ébullition inférieur à 340°C (gaz, essence, kérosène, gasoil) des produits ayant un point d'ébullition initial supérieur à au moins 340°C et qui forment le résidu. On sépare ainsi généralement au moins une fraction distillat moyen présentant un point d'écoulement d'au plus -20°C, et un indice de cétane d'au moins 50.

Ю

15

20

L'étape (b) de déparaffinage catalytique s'applique alors au moins au résidu à l'issu de la distillation qui contient des composés à point d'ébullition supérieur à au moins 340°C. Dans un autre mode de réalisation de l'invention, l'effluent issu de l'étape (a) n'est pas distillé avant de mettre en œuvre l'étape (b). Tout au plus, il subit une séparation d'au moins une partie des gaz légers (par flash....) et il est ensuite soumis au déparaffinage catalytique.

De préférence, l'étape (b) est réalisée avec un catalyseur contenant au moins un tamis moléculaire dont le système microporeux présente au moins un type principal de canaux à ouvertures de pores ayant 9 ou 10 atomes T, T étant choisi dans le groupe formé par Si/Al, P, B, Ti, Fe, Ga, alternant avec un nombre égal d'atomes oxygène, la distance entre deux ouvertures de pores accessibles à et comportant 9 ou 10 atomes T étant d'au plus égal à 0,75 mm, et ledit tamis présentant au test n-décane un rapport 2-méthylnonane/5-néthylnonane supérieur à 5.

25

30

35

Avantageusement, l'effluent issu du traitement de déparaffinage est soumis à une étape de distillation comprenant avantageusement une distillation atmosphérique et une distillation sous vide de façon à séparer au moins une fraction huile à un point d'ébullition supérieur à au moins 340°C. Elle présente le plus souvent un point d'écoulement inférieur à -10°C et un VI supérieur à 95, une viscosité à 100°C d'au moins 3cSt (soit 3mm²/s). Cette étape de distillation est essentielle lorsque il n'y a pas de distillation entre les étapes (a) et (b).

Avantageusement, l'effluent issu du traitement de déparaffinage, éventuellement distillé, est soumis à un traitement d'hydrofinition.

Description détaillée de l'invention

Le procédé selon l'invention comprend les étapes suivantes :

La charge

La charge hydrocarbonée à partir de laquelle les huiles et éventuellement les distillats moyens de haute qualité, sont obtenus contient de préférence au moins 20 % volume de composés bouillant au-dessus de 340°C, de préférence à au moins 350°C et avantageusement à au moins 380°C. Cela ne signifie pas que le point d'ébullition est de 380°C et plus, mais de 380°C ou plus.

10

La charge contient des n-paraffines. De préférence la charge est un effluent issu d'une unité de Fischer-Tropsch. Des charges très variées peuvent être traitées par le procédé.

La charge peut être aussi par exemple des distillats sous vide issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoréduction, ou provenant d'unités d'extraction d'aromatiques, ou provenant de désulfuration ou d'hydroconversion de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide), ou encore la charge peut être une huile désasphaltée, ou encore un résidu d'hydrocraquage par exemple issu de DSV ou tout mélange des charges précédemment citées. La liste ci-dessus n'est pas limitative.

En général, les charges convenant pour l'objectif huiles ont un point d'ébullition initial supérieur à au moins 340 °C et mieux encore supérieur à au moins 370°C.

25

30

La charge introduite dans l'étape (a) de conversion-hydroisomérisation doit être propre. Nous entendrons par charge propre les charges dont la teneur en soufre est inférieure à 1000 ppm poids et de préférence inférieure à 500 ppm poids et de façon encore plus préférée inférieure à 300 ppm poids ou mieux à 100 ppm poids. La teneur en azote est inférieure à 200 ppm poids et de préférence inférieure à 100 ppm poids et de manière encore plus préférée inférieure à 50 ppm poids. La teneur en métaux de la charge tels que nickel et vanadium est extrêmement réduite c'est-à-dire inférieure à 50 ppm poids et de manière plus avantageuse inférieure à 10 ppm poids, ou mieux inférieure à 2 ppm pds.

Dans le cas où les teneurs en produits insaturés ou oxygénés sont susceptibles d'entraîner une désactivation trop importante du système catalytique, la charge (par

exemple issue du procédé Fischer-Tropsch) devra, avant d'entrer dans la zone d'hydroisomérisation, subir un hydrotraitement dans une zone d'hydrotraitement. On fait réagir de l'hydrogène avec la charge au contact d'un catalyseur d'hydrotraitement dont le rôle est de réduire la teneur en molécules hydrocarbonées insaturées et oxygénées (produites par exemple lors de la synthèse Fischer-Tropsch). La teneur en oxygène est ainsi réduite à au plus 0,2 % poids.

Dans le cas où la charge à traiter n'est pas propre au sens défini plus haut, elle est soumise dans un premier temps à une étape préalable d'hydrotraitement, durant lequel, elle est mise en contact, en présence d'hydrogène, avec au moins un catalyseur comportant un support amorphe et au moins un métal ayant une fonction hydro-déshydrogénante assurée par exemple par au moins un élément du groupe VI B et au moins un élément du groupe VIII, à une température comprise entre 200 et 450°C, de préférence 250-450°C avantageusement 330-450°C ou 360-420°C, sous une pression comprise en 5 et 25 Mpa ou mieux inférieure à 20 MPa, de préférence entre 5 et 20 Mpa, la vitesse spatiale étant comprise entre 0,1 et 6 h⁻¹, de préférence, 0,3-3h⁻¹, et la quantité d'hydrogène introduite est telle que le rapport volumique hydrogène/hydrocarbure soit comprise entre 100 et 2000 litres/litre.

10

15

30

35

Le support est généralement à base (de préférence constitué essentiellement) d'alumine ou de silice-alumine amorphe ; il peut également renfermer de l'oxyde de bore, de la magnésie, de la zircone, de l'oxyde de titane ou une combinaison de ces oxydes. La fonction hydro-déshydrogénante est remplie de préférence par au moins un métal ou composé de métal des groupes VIII et VIB de préférence choisi(s) parmi ; molybdène, tungstène, nickel et cobalt.

Ce catalyseur pourra contenir avantageusement du phosphore; en effet il est connu dans l'art antérieur que le composé apporte deux avantages aux catalyseurs d'hydrotraitement : une facilité de préparation lors notamment de l'imprégnation des solutions de nickel et de molybdène, et une meilleure activité d'hydrogénation.

Les catalyseurs préférés sont les catalyseurs NiMo et/ou NiW sur alumine, également les catalyseurs NiMo et/ou NiW sur alumine dopée avec au moins un élément compris dans le groupe des atomes formés par le phosphore, le bore, le silicium et le fluor, ou encore les catalyseurs NiMo et/ou NiW sur silice-alumine, ou sur silice-alumine-oxyde de titane dopée ou non par au moins un élément compris dans le groupe des atomes

formés par le phosphore, le bore, le fluor et le silicium.

La concentration totale en oxydes de métaux des groupes VIB et VIII est comprise entre 5 et 40 % en poids et de préférence entre 7 et 30 % et le rapport pondéral exprimé en oxyde métallique entre métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est de préférence compris entre 20 et 1,25 et encore plus préféré entre 10 et 2. La concentration en oxyde de phosphore P₂O₅ sera inférieure à 15 % poids et de préférence à 10 % poids.

Avant d'être envoyé dans l'étape (a), le produit obtenu à l'issue de l'hydrotraitement subit, si besoin, une séparation intermédiaire de l'eau (H₂O, H₂S, NH₃) de façon à amener la teneur en eau, en H₂S et en NH₃ dans la charge introduite dans l'étape (a) à des valeurs respectivement inférieures à au plus 100 ppm, 200 ppm, 50 ppm. On peut à ce niveau prévoir une éventuellement séparation des produits ayant un point d'ébullition inférieur à 340°C de façon à ne traiter dans l'étape (a) qu'un résidu.

Etape (a): Hydroisomérisation-Conversion Le catalyseur

35

- L'étape (a) a lieu en présence d'hydrogène et en présence d'un catalyseur bifonctionnel comportant un support acide amorphe (de préférence une silice-alumine amorphe) et une fonction métallique hydro-déshydrogénante assurée par au moins un métal noble. La dispersion en métal noble est de 20-100 %.
- Le support est dit amorphe, c'est-à-dire dépourvu de tamis moléculaire, et en particulier de zéolithe, ainsi que le catalyseur. Le support acide amorphe est avantageusement une silice-alumine amorphe mais d'autres supports sont utilisables. Lorsque il s'agit d'une silice-alumine, le catalyseur, généralement, ne contient pas d'halogène ajouté, autre que celui qui pourrait être introduit pour l'imprégnation, du métal noble par exemple.

Durant cette étape les n-paraffines en présence d'un catalyseur bifonctionnel subissent une isomérisation puis éventuellement un hydrocraquage pour conduire respectivement à la formation d'isoparaffines et de produits de craquage plus légers tels que les gasoils et le kérosène. La conversion varie généralement entre 5 et 90 % mais est généralement d'au moins 20 % ou supérieure à 20 %.

Dans un mode de réalisation préféré de l'invention, il est utilisé un catalyseur comprenant une silice-alumine particulière qui permet d'obtenir des catalyseurs très actifs mais aussi très sélectifs dans l'isomérisation de charges telles que définies précédemment.

5

Un catalyseur préféré comprend (et de préférence est essentiellement constitué de) 0,05-10 % en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine (qui de préférence contient 5-70 % en poids de silice) qui présente une surface spécifique BET de 100-500m²/g et le catalyseur présente :

- 10 un diamètre moyen des mésopores compris entre 1-12 nm,
 - un volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm est supérieur à 40 % du volume poreux total,
 - une dispersion du métal noble comprise entre 20-100 %,
- 15 un coefficient de répartition du métal noble supérieur à 0,1.

Les caractéristiques du catalyseur selon l'invention sont plus en détail :

20

<u>Teneur en silice</u>: le support préféré utilisé pour l'élaboration du catalyseur décrit dans le cadre de ce brevet est composé de silice SiO₂ et d'alumine Al₂O₃. La teneur en silice du support, exprimée en pourcentage poids, est généralement comprise entre 1 et 95 %, avantageusement voire entre 5 et 95 % et de manière préférée entre 10 et 80 % et de manière encore plus préférée entre 20 et 70 % et entre 22 et 45 %. Cette teneur en silice est parfaitement mesurée à l'aide de la fluorescence X.

25

<u>Nature du métal noble</u>: pour ce type particulier de réaction, la fonction métallique est apportée par un métal noble du groupe VIII de la classification périodique des éléments et plus particulièrement le platine et/ou du palladium.

30 Te

35

<u>Teneur en métal noble</u>: la teneur en métal noble, exprimée en % poids de métal par rapport au catalyseur, est comprise entre 0,05 à 10 et plus préférentiellement comprise entre 0,1 et 5.

<u>Dispersion du métal noble</u> : la dispersion, représentant la fraction de métal accessible au réactif par rapport à la quantité totale de métal du catalyseur, peut être mesurée, par exemple, par titrage H₂/O₂. Le métal est préalablement réduit c'est-à-dire qu'il

subit un traitement sous flux d'hydrogène à haute température dans ces conditions telles que tous les atomes de platine accessibles à l'hydrogène soient transformés sous forme métallique. Ensuite, un flux d'oxygène est envoyé dans des conditions opératoires adéquates pour que tous les atomes de platine réduit accessibles à l'oxygène soit oxydés sous forme PtO₂. En calculant la différence entre la quantité d'oxygène introduit et la quantité d'oxygène sortante, on accède à la quantité d'oxygène consommée ; ainsi, on peut alors déduire de cette dernière valeur la quantité de platine accessible à l'oxygène. La dispersion est alors égale au rapport quantité de platine accessible à l'oxygène sur quantité totale de platine du catalyseur. Dans notre cas, la dispersion est comprise entre 20 % et 100 % et de préférence entre 30 % et 100 %.

Répartition du métal noble : la répartition du métal noble représente la distribution du métal à l'intérieur du grain de catalyseur, le métal pouvant être bien ou mal dispersé. Ainsi, il est possible d'obtenir le platine mal réparti (par exemple détecté dans une couronne dont l'épaisseur est nettement inférieure au rayon du grain) mais bien dispersé c'est-à-dire que tous les atomes de platine, situés en couronne, seront accessibles aux réactifs. Dans notre cas, la répartition du platine est bonne c'est-à-dire que le profil du platine, mesuré d'après la méthode de la microsonde de Castaing, présente un coefficient de répartition supérieur à 0,1 et de préférence supérieur à 0,2.

<u>Surface BET</u>: la surface BET du support est comprise entre 100 m²/g et 500 m²/g et de préférence comprise entre 250 m²/g et 450m²/g et pour les supports à base de silice-alumine, de manière encore plus préférée entre 310 m²/g et 450 m²/g.

<u>Diamètre moyen des pores</u>: pour les catalyseurs préférés à base de silice-alumine le diamètre moyen des pores du catalyseur est mesuré à partir du profil de répartition poreuse obtenu à l'aide d'un porosimètre au mercure. Le diamètre moyen des pores est défini comme étant le diamètre correspondant à l'annulation de la courbe dérivée obtenue à partir de la courbe de porosité au mercure. Le diamètre moyen des pores, ainsi défini, est compris entre 1 nm (1x10⁻⁹ mètres) et 12 nm (12x10⁻⁹ mètres) et de préférence compris entre 1 nm (1x10⁻⁹ mètres) et 11 nm (11x10⁻⁹ mètres) et de manière encore plus préférée entre 3 nm (4x10⁻⁹ mètres) et 10,5 nm (10,5x10⁻⁹ mètres).

Répartition poreuse : le catalyseur préféré dont il est question dans ce brevet a une répartition poreuse telle que le volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm (soit le diamètre moyen \pm 3 nm) est supérieur à 40 % du volume poreux total et de manière préférée compris entre 50 % et 90 % du volume poreux total et plus avantageusement encore entre 50 % et 70 % du volume poreux total.

Volume poreux global du support : pour le catalyseur préféré à base de silice-alumine il est généralement inférieur à 1,0 ml/g et de préférence compris entre 0,3 et 0,9 ml/g et encore plus avantageusement inférieur à 0,85 ml/g.

La préparation et la mise en forme du support, et en particulier de la silice-alumine (notamment utilisée dans le mode de réalisation préféré) est faite par des méthodes usuelles bien connues de l'homme de l'art. De façon avantageuse, préalablement à l'imprégnation du métal, le support pourra subir une calcination comme par exemple un traitement thermique à 300-750°C (600°C préféré) pendant 0,25-10 heures (2 heures préféré) sous 0-30 % volume de vapeur d'eau (pour la silice alumine 7,5 % préféré).

20

25

5

10

15

Le sel de métal noble est introduit par une des méthodes usuelles utilisées pour déposer le métal (de préférence du platine et/ou le palladium, la platine étant encore préféré) à la surface d'un support. Une des méthodes préférées est l'imprégnation à sec qui consiste en l'introduction du sel de métal dans un volume de solution qui est égal au volume poreux de la masse de catalyseur à imprégner. Avant l'opération de réduction, le catalyseur pourra subir une calcination comme par exemple un traitement sous air sec à 300-750°C (520°C préféré) pendant 0,25-10 heures (2 heures préféré).

Avant utilisation dans la réaction d'hydroisomérisation-conversion, le métal contenu dans le catalyseur doit être réduit. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 Mpa. Par exemple, une réduction consiste en un palier à 150°C de 2 heures puis une montée en température jusqu'à 450°C à la vitesse de 1°C/min puis un palier de 2 heures à 450°C; durant toute cette étape de réduction, le débit d'hydrogène est de 1000 litres

hydrogène/ litre catalyseur. Notons également que toutes méthode de réduction exsitu est convenable.

Les conditions opératoires dans lesquelles est effectuée cette étape (a) sont importantes.

La pression sera maintenue entre 2 et 25 MPa et de préférence 2 (ou 3) à 20 Mpa et avantageusement de 2 à 18 MPa, la vitesse spatiale sera comprise entre 0,1 h⁻¹ et 10 h⁻¹ et de préférence entre 0,2 et 10h⁻¹ est avantageusement entre 0,5 et 5,0h⁻¹. Et un taux d'hydrogène compris entre 100 et 2000 litres d'hydrogène par litre de charge et préférentiellement entre 150 et 1500 litres d'hydrogène par litre de charge.

La température utilisée dans cette étape est comprise entre 200 et 450°C et préférentiellement de 250°C à 450°C avantageusement de 300 à 450°C, et encore plus avantageusement supérieure à 340°C, par exemple entre 320-450°C.

Les deux étapes d'hydrotraitement et d'hydroisomérisation-conversion peuvent être réalisées sur les deux types de catalyseurs dans des (deux ou plusieurs) réacteurs différents, ou/et sur au moins deux lits catalytiques installés dans un même réacteur.

Ainsi que cela a été montré dans le brevet US-5,879,539, l'emploi du catalyseur cidessous décrit dans l'étape (a) a pour effet d'augmenter l'indice de viscosité (VI) de + 10 points. Plus généralement, on constate que l'augmentation de VI est d'au moins 2 points, les VI étant mesurés sur une charge (résidu) déparaffinée au solvant et sur le produit issu de l'étape (a) également déparaffiné au solvant, en visant une température de point d'écoulement comprise entre - 15 et - 20°C.

On obtient généralement une augmentation de VI d'au moins 5 points, et très souvent de plus de 5 points, voire plus de 10 points.

Il est possible de contrôler l'augmentation de VI notamment à partir de la mesure de la conversion. Il sera ainsi possible d'optimiser la production vers des huiles à haut VI ou vers des rendements huiles plus élevés mais avec des VI moins élevés.

Traitement de l'effluent issu de l'étape (a)

10

15

20

30

Dans un mode de réalisation préféré, l'effluent issu de l'étape (a) d'hydroisomérisation-conversion peut en totalité être traité dans l'étape (b) de déparaffinage. Dans une variante, il pourra subir une séparation d'une partie au moins (et de préférence d'au moins une majeure partie) de gaz légers qui comprennent l'hydrogène et éventuellement aussi des composés hydrocarbonés à au plus 4 atomes de carbone. L'hydrogène peut être séparé préalablement. Le mode de réalisation (hors variante), avec passage dans l'étape (b) de la totalité de l'effluent de l'étape (a), est économiquement intéressant, puisque une seule unité de distillation est utilisée à la fin du procédé. De plus, à la distillation finale (après déparaffinage catalytique ou traitements ultérieurs) un gasoil grand froid est obtenu.

Avantageusement dans un autre mode de réalisation, l'effluent issu de l'étape (a) est distillé de façon à séparer les gaz légers et également séparer au moins un résidu contenant les composés à point d'ébullition supérieur à au moins 340°C. Il s'agit de préférence d'une distillation atmosphérique.

On peut avantageusement distiller pour obtenir plusieurs fractions (essence, kérosène, gazole par exemple), à point d'ébullition d'au plus 340°C et une fraction (appelée résidu) à point d'ébullition initial supérieur à au moins 340°C et mieux supérieur à 350°C et de préférence d'au moins 370°C ou 380°C.

Selon une variante préférée de l'invention, cette fraction (résidu) sera ensuite traité dans l'étape de déparaffinage catalytique, c'est à dire sans subir de distillation sous vide. Mais dans une autre variante, on peut utiliser une distillation sous vide.

Dans un mode de réalisation plus axé sur un objectif de production de distillats moyens, et toujours selon l'invention, il est possible de recycler une partie du résidu issu de l'étape de séparation vers le réacteur contenant le catalyseur d'hydroisomérisation de manière à le convertir et augmenter la production de distillats moyens.

D'une façon générale, on appelle dans ce texte distillats moyens, la (les) fraction(s) à point d'ébullition initial d'au moins 150°C et final allant jusqu'avant le résidu, c'est-à-dire généralement jusqu'à 340°C, 350°C ou de préférence inférieur à 370°C ou à 380°C.

25

30

35

10

15

L'effluent issu de l'étape (a) peut subir, avant ou après distillation, d'autres traitements tel que par exemple une extraction d'une partie au moins des composés aromatiques.

Etape (b): Hydrodéparaffinage catalytique

Une partie au moins de l'effluent issu de l'étape (a), effluent ayant éventuellement subi les séparations et/ou traitements décrits ci-dessus, est alors soumise à une étape de déparaffinage catalytique en présence d'hydrogène et d'un catalyseur d'hydrodéparaffinage comportant une fonction acide, une fonction métallique hydrodéshydrogénante et au moins une matrice.

Notons que les composés bouillant au-dessus d'au moins 340°C sont toujours soumis au déparaffinage catalytique.

15 Le catalyseur

5

10

La fonction acide est assurée par au moins un tamis moléculaire et de préférence un tamis moléculaire dont le système microporeux présente au moins un type principal de canaux dont les ouvertures sont formées d'anneaux qui contiennent 10 ou 9 atomes T. Les atomes T sont les atomes tétraédriques constitutifs du tamis moléculaire et peuvent être au moins un des éléments contenus dans l'ensemble suivant des atomes (Si, Al, P, B, Ti, Fe, Ga). Dans les anneaux constitutifs des ouvertures de canaux, les atomes T, définis précédemment, alternent avec un nombre égal d'atomes d'oxygène. Il est donc équivalent de dire que les ouvertures sont formées d'anneaux qui contiennent 10 ou 9 atomes d'oxygène ou formées d'anneaux qui contiennent 10 ou 9 atomes T.

Le tamis moléculaire entrant dans la composition du catalyseur d'hydrodéparaffinage peut aussi comporter d'autres types de canaux mais dont les ouvertures sont formées d'anneaux qui contiennent moins de 10 atomes T ou atomes d'oxygène.

Le tamis moléculaire entrant dans la composition du catalyseur préféré possède en outre une largeur de pont, distance entre deux ouvertures de pores, telle que définie précédemment, qui est d'au plus 0,75 nm (1nm =10-9 m) de préférence comprise entre 0,50 nm et 0,75 nm, de manière encore plus préférée entre 0,52 nm et 0,73 nm; de tels tamis permettent l'obtention de bonnes performances catalytiques dans

30

20

l'étape d'hydrodéparaffinage.

10

15

20

25

30

35

La mesure de largeur de pont est réalisée en utilisant un outil de graphisme et de modélisation moléculaire tel que Hyperchem ou Biosym, qui permet de construire la surface des tamis moléculaires en question et, en tenant compte des rayons ioniques des éléments présents dans la charpente du tamis, de mesurer la largeur de pont.

Le catalyseur préféré convenant pour ce procédé peut être également caractérisé par un test catalytique dit test standard de transformation du n-décane pur qui est réalisé sous une pression partielle de 450 kPa d'hydrogène et une pression partielle de n-C₁₀ de 1,2 kPa soit une pression totale de 451,2 kPa en lit fixe et avec un débit de n-C₁₀ constant de 9,5 ml/h, un débit total de 3,6 l/h et une masse de catalyseur de 0,2 g. La réaction est réalisée en flux descendant. Le taux de conversion est réglé par la température à laquelle se déroule la réaction. Le catalyseur soumis au dit test est constitué de zéolithe pure pastillée et de 0,5% poids de platine.

Le n-décane en présence du tamis moléculaire et d'une fonction hydrodéshydrogénante va subir des réactions d'hydroisomérisation qui vont produire des produits isomérisés à 10 atomes de carbone, et des réactions d'hydrocraquage conduisant à la formation de produits contenant moins de 10 atomes de carbone.

Dans ces conditions un tamis moléculaire utilisé dans l'étape d'hydrodéparaffinage avec le catalyseur préféré selon l'invention doit présenter les caractéristiques physico-chimiques décrites ci-dessus et conduire, pour un rendement en produits isomérisés du n-C₁₀ de l'ordre de 5% poids (le taux de conversion est réglé par la température), à un rapport 2-méthylnonane/5-méthylnonane supérieur à 5 et de préférence supérieur à 7.

L'utilisation de tamis moléculaires ainsi sélectionnés, dans les conditions décrites cidessus, parmi les nombreux tamis moléculaires existants déjà, permet notamment la production de produits à faible point d'écoulement et haut indice de viscosité avec de bons rendements dans le cadre du procédé selon l'invention.

Les tamis moléculaires pouvant entrer dans la composition du catalyseur préféré d'hydrodéparaffinage catalytique sont, à titre d'exemples, les zéolithes suivantes : Ferrierite, NU-10, EU-13, EU-1.

De préférence les tamis moléculaires entrant dans la composition du catalyseur d'hydrodéparaffinage sont compris dans l'ensemble formé par la ferrierite et la zéolithe EU-1.

D'une manière générale, le catalyseur d'hydrodéparaffinage comprend une zéolithe choisie dans le groupe formé par NU-10, EU-1, EU-13, ferrierite, ZSM-22, Theta-1, ZSM-50, ZSM-23, NU-23, ZSM-35, ZSM-38, ISI-1, KZ-2, ISI-4, KZ-1.

La teneur pondérale en tamis moléculaire dans le catalyseur d'hydrodéparaffinage est comprise entre 1 et 90 %, de préférence entre 5 et 90% et de manière encore plus préférée entre 10 et 85 %.

Les matrices utilisées pour réaliser la mise en forme du catalyseur sont à titre d'exemples et de façon non limitative, les gels d'alumine, les alumines, la magnésie, les silice-alumines amorphes, et leurs mélanges. Des techniques telles que l'extrusion, le pastillage ou la dragéification, peuvent être utilisées pour réaliser l'opération de mise en forme.

Le catalyseur comporte aussi une fonction hydro-déshydrogénante assurée, par exemple, par au moins un élément du groupe VIII et de préférence au moins un élément noble compris dans l'ensemble formé par le platine et le palladium. La teneur pondérale en métal non noble du groupe VIII, par rapport au catalyseur final, est comprise entre 1 et 40% de préférence entre 10 et 30%. Dans ce cas, le métal non noble est souvent associé à au moins un métal du groupe VIB (Mo et W préférés). S'il s'agit d'au moins un métal noble du groupe VIII, la teneur pondérale, par rapport au catalyseur final, est inférieure à 5%, de préférence inférieure à 3% et de manière encore plus préférée inférieure à 1,5%.

25

30

35

Dans le cas de l'utilisation de métaux nobles du groupe VIII, le platine et/ou le palladium sont de préférence localisés sur la matrice.

Le catalyseur d'hydrodéparaffinage selon l'invention peut en outre contenir de 0 à 20%, de préférence de 0 à 10% poids (exprimées en oxydes) de phosphore. La combinaison de métal (aux) du groupe VI B et/ou de métal (aux) du groupe VIII avec le phosphore est particulièrement avantageux.

Le traitement

Un résidu obtenu à l'issu de l'étape (a) et de la distillation et qui est intéressant à traiter dans cette étape (b) d'hydrodéparaffinage, possède les caractéristiques suivantes : il présente, un point d'ébullition initial supérieur à 340°C et de préférence supérieur à 370°C, un point d'écoulement d'au moins 15°C, un indice de viscosité de 35 à 165 (avant déparaffinage), de préférence au moins égal à 110 et de manière encore plus préférée inférieur à 150, une viscosité à 100°C supérieure ou égale à 3 cSt (mm²/s), une teneur en composés aromatiques inférieure à 10 % pds, une teneur en azote inférieure à 10 ppm pds, une teneur en soufre inférieure à 50 ppm pds ou mieux à 10 ppm pds.

Les conditions opératoires dans lesquelles s'opère l'étape catalytique du procédé de l'invention sont les suivantes :

15

20

10

- la température de réaction est comprise entre 200 et 500°C et de préférence entre 250 et 470°C, avantageusement 270-430°C;
- la pression est comprise entre 0,1 et 25 MPa (10⁶ Pa) et de préférence entre 1,0 et 20 MPa;
- la vitesse volumique horaire (vvh exprimée en volume de charge injectée par unité de volume de catalyseur et par heure) est comprise entre environ 0,05 et environ 50 et de préférence entre environ 0,1 et environ 20 h⁻¹ et de manière encore plus préférée entre 0,2 et 10 h⁻¹.

Elles sont choisies pour obtenir le point d'écoulement recherché.

Le contact entre la charge et le catalyseur est réalisé en présence d'hydrogène. Le taux d'hydrogène utilisé et exprimé en litres d'hydrogène par litre de charge est compris entre 50 et environ 2000 litres d'hydrogène par litre de charge et de préférence entre 100 et 1500 litres d'hydrogène par litre de charge.

L'effluent obtenu

L'effluent en sortie de l'étape (b) d'hydrodéparaffinage, est envoyé dans le train de distillation, qui intègre de préférence une distillation atmosphérique et une distillation sous vide, qui a pour but de séparer les produits de conversion de point d'ébullition inférieur à 340°C et de préférence inférieur à 370°C, (et incluant notamment ceux formés lors de l'étape d'hydrodéparaffinage catalytique), et de séparer la fraction qui constitue la base huile et dont le point initial d'ébullition est supérieur à au moins 340°C et de préférence supérieur ou égal à 370°C.

10

. 15

20

25

30

Par ailleurs, cette section de distillation sous vide permet de séparer les différents grades d'huiles.

De préférence, avant d'être distillé, l'effluent en sortie de l'étape (b) d'hydrodéparaffinage catalytique est, au moins en partie et de préférence, dans sa totalité, envoyé sur un catalyseur d'hydrofinishing (hydrofinition) en présence d'hydrogène de manière à réaliser une hydrogénation poussée des composés aromatiques qui nuisent à la stabilité des huiles et des distillats. Cependant, l'acidité du catalyseur doit être suffisamment faible pour ne pas conduire à la formation de produit de craquage de point d'ébullition inférieur à 340°C de manière à ne pas dégrader les rendements finaux notamment en huiles.

Le catalyseur utilisé dans cette étape comporte au moins un métal du groupe VIII et/ou au moins un élément du groupe VIB de la classification périodique. Les fonctions métalliques fortes : platine et/ou palladium, ou des combinaisons nickel-tungstène, nickel-molydbène seront avantageusement utilisées pour réaliser une hydrogénation poussée des aromatiques.

Ces métaux sont déposés et dispersés sur un support de type oxyde amorphe ou cristallin, tel que par exemple, les alumines, les silices, les silice-alumines.

Le catalyseur d'hydrofinition (HDF) peut aussi contenir au moins un élément du groupe VII A de la classification périodique des éléments. De façon préférée ces catalyseurs contiennent du fluor et/ou du chlore.

35

Les teneurs pondérales en métaux sont comprises entre 10 et 30 % dans le cas des métaux non-nobles et inférieures à 2 %, de manière préférée comprise entre 0,1 et

1,5 %, et de manière encore plus préférée entre 0,1 et 1,0 % dans le cas des métaux nobles.

La quantité totale d'halogène est comprise entre 0,02 et 30 % pds avantageusement 0,01 à 15 %, ou encore à 0,01 à 10 %, de préférence 0,01 à 5 %.

On pourra citer parmi les catalyseurs utilisables dans cette étape d'hydrofinition, et conduisant à d'excellentes performances, et notamment pour l'obtention d'huiles médicinales, les catalyseurs contenant au moins un métal noble du groupe VIII (platine et VIII par exemple) et au moins un halogène (chlore et/ou fluor), la combinaison chlore et fluor étant préférée.

Les conditions opératoires dans lesquelles s'opère l'étape d'hydrofinition du procédé de l'invention sont les suivantes :

- la température de réaction est comprise entre 180 et 400°C et de préférence entre 210 et 350°C, avantageusement 230-320°C;
 - la pression est comprise entre 0,1 et 25 Mpa (106 Pa) et de préférence entre 1,0 et 20 Mpa;
 - la vitesse volumique horaire (vvh exprimée en volume de charge injectée par unité de volume de catalyseur et par heure) est comprise entre environ 0,05 et environ 100 et de préférence entre environ 0,1 et environ 30 h⁻¹.

Le contact entre la charge et le catalyseur est réalisé en présence d'hydrogène. Le taux d'hydrogène utilisé et exprimé en litres d'hydrogène par litre de charge est compris entre 50 et environ 2000 litres d'hydrogène par litre de charge et de préférence entre 100 et 1500 litres d'hydrogène par litre de charge.

Avantageusement, la température de l'étape d'hydrofiniton(HDF) est inférieure à la température de l'étape d'hydrodéparaffinage catalytique (HDPC). La différence T_{HDPC}- T_{HDF} est généralement comprise entre 20 et 200, et de préférence entre 30 et 100°C. L'effluent en sortie d'HDF est alors envoyé dans le train de distillation.

Les produits

5

10

20

25

30

Les huiles de bases obtenues selon ce procédé présentent un point d'écoulement inférieur à -10°C, un VI supérieur à 95, de préférence supérieur à 110 et de manière

encore plus préférée supérieur à 120, une viscosité d'au moins 3,0 cSt à 100°C, une couleur ASTM inférieure à 1 et une stabilité aux UV telle que l'accroissement de la couleur ASTM est compris entre 0 et 4 et de préférence entre 0,5 et 2,5.

Le test de stabilité aux UV, adapté des procédés ASTM D925-55 et D1148-55, fournit une méthode rapide pour comparer la stabilité des huiles de lubrification exposées à une source de rayons ultaviolets. La chambre d'essai est constituée d'une enceinte métallique munie d'un plateau tournant qui reçoit les échantillons d'huiles. Une ampoule produisant les mêmes rayons ultaviolets que ceux de la lumière solaire et placée au sommet de la chambre d'essai est dirigée vers le bas sur les échantillons. Parmi les échantillons est incluse une huile standard à caractéristiques U.V connues. La couleur ASTM D1500 des échantillons est déterminée à t=0 puis après 45 h d'exposition à 55°C. Les résultats sont transcrits pour l'échantillon standard et les échantillons de l'essai comme suit :

- a) couleur initiale ASTM D1500,
 - b) couleur finale ASTM D1500,
 - c) accroissement de la couleur,
 - d) trouble,
 - e) précipité.

20

25

30

35

Un autre avantage du procédé selon l'invention est qu'il est possible d'atteindre des teneurs en aromatiques très basses, inférieures à 2 % poids de préférence à 1 % poids et mieux inférieur à 0,05 % poids) et même d'aller jusqu'à la production des huiles blanches de qualité médicinale ayant des teneurs en aromatiques inférieures à 0,01 % poids. Ces huiles ont des valeurs d'absorbance UV à 275, 295 et 300 nanomètres respectivement inférieures à 0,8, 0,4 et 0,3 (méthode ASTM D2008) et une couleur Saybolt comprise entre 0 et 30.

De façon particulièrement intéressante donc, le procédé selon l'invention permet aussi d'obtenir des huiles blanches médicinales. Les huiles blanches médicales sont des huiles minérales obtenues par un raffinage poussé du pétrole, leur qualité est soumise à différentes réglementations qui visent à garantir leur innocuité pour des applications pharmaceutiques, elles sont dépourvues de toxicité et se caractérisent par leur densité et leur viscosité. Les huiles blanches médicinales comprennent essentiellement des hydrocarbures saturés, elles sont chimiquement inertes et leur

teneur en hydrocarbures aromatiques est faible. Une attention particulière est portée aux composés aromatiques et notamment à 6 hydrocarbures aromatiques polycycliques (P.A.H. pour l'abréviation anglo-saxonne de polycyclic aromatic hydrocarbons) qui sont toxiques et présents à des concentrations d'une partie par milliard en poids de composés aromatiques dans l'huile blanche. Le contrôle de la teneur totale en aromatiques peut être effectué par la méthode ASTM D 2008, ce test d'adsorption UV à 275, 292 et 300 nanomètres permet de contrôler une absorbance inférieure respectivement à 0,8, 0,4 et 0,3 (c'est à dire que les huiles blanches ont des teneurs en aromatiques inférieures à 0,01 % en poids). Ces mesures sont effectuées avec des concentrations de 1g d'huile par litre, dans une cuve de 1 cm. Les huiles blanches commercialisées se différencient par leur viscosité mais aussi par leur brut d'origine qui peut être paraffinique ou naphténique, ces deux paramètres vont induire des différences à la fois dans les propriétés physico-chimiques des huiles blanches considérées mais aussi dans leur composition chimique.

Actuellement les coupes huiles, qu'elles proviennent soit de la distillation directe d'un pétrole brut suivi d'une extraction des composés aromatiques par un solvant, ou qu'elles soient issues de procédé d'hydroraffinage catalytique ou d'hydrocraquage, contiennent encore des quantités non négligeables de composés aromatiques. Dans le cadre législatif actuel de la majorité des pays industrialisés, les huiles blanches dites médicinales doivent avoir une teneur en aromatiques inférieure à un seuil imposé par la législation de chacun des pays. L'absence de ces composés aromatiques dans les coupes huiles se traduit par une spécification de couleur Saybolt qui doit être sensiblement d'au moins 30 (+30), une spécification maximale d'adsorption U.V. qui doivent être inférieures à 1,60 à 275 nm sur un produit pur en cuve de 1 centimètre et une spécification maximale d'absorption des produits d'extraction par du DMSO qui doit être inférieure à 0,1 pour le marché américain (Food and Drug Administration, norme n° 1211145). Ce dernier test consiste à extraire spécifiquement des hydrocarbures aromatiques polycycliques à l'aide d'un solvant polaire, souvent le DMSO, et à contrôler leur teneur dans l'extrait par une mesure d'absorption UV dans le domaine 260-350 nm.

L'invention sera illustrée avec les figures 1 à 3, représentant des modes de réalisations différents pour le traitement d'une charge, par exemple, issue du procédé Fischer-Tropsch ou d'un résidu d'hydrocraquage.

10

20

25

Figure 1

10

30

Sur la figure 1, la charge entre par la conduite (1) dans une zone d'hydrotraitement (2) (qui peut être composée de un ou plusieurs réacteurs, et comprendre un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs) dans laquelle entre de l'hydrogène (par exemple par la conduite (3)) et où est réalisée l'étape d'hydrotraitement.

La charge hydrotraitée est transférée par la conduite (4) dans la zone d'hydroisomérisation (7) (qui peut être composée de un ou plusieurs réacteurs, et comprendre un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs) où est réalisée, en présence d'hydrogène, l'étape (a) d'hydroisomérisation. De l'hydrogène peut être amené par la conduite (8).

Sur cette figure, avant d'être introduite dans la zone (7), la charge à hydroisomériser est débarrassée d'une grande partie de son eau dans le ballon (5), l'eau sortant par la conduite (6) et éventuellement de l'ammoniac et de l'hydrogène sulfuré H₂S, dans le cas où la charge qui entre par la conduite 1 contient du soufre et de l'azote.

L'effluent issu de la zone (7) est envoyé par une conduite (9) dans un ballon (10) pour séparation de l'hydrogène qui est extrait par une conduite (11), l'effluent est ensuite distillé à pression atmosphérique dans la colonne (12) d'où est extraite en tête par la conduite (13) une fraction légère contenant les composés à au plus 4 atomes de carbone et ceux bouillant en dessous.

25 Il est obtenu également au moins une fraction essence (14) et au moins une fraction distillat moyen (kérosène(15) et gazole (16) par exemple).

Il est obtenu en fond de colonne une fraction contenant les composés à point d'ébullition supérieur à au moins 340°C. Cette fraction est évacuée par la conduite (17) vers la zone (18) de déparaffinage catalytique.

La zone (18) de déparaffinage catalytique (comportant un ou plusieurs réacteurs, un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs) reçoit également de l'hydrogène par une conduite (19) pour réaliser l'étape (b) du procédé.

L'effluent obtenu sortant par la conduite (20) est séparé dans un train de distillation comportant outre le ballon (21) pour séparer l'hydrogène par une conduite (22), une

colonne de distillation atmosphérique (23) et une colonne sous vide (24) qui traite le résidu de distillation atmosphérique transféré par la conduite (25), résidu à point d'ébullition initial supérieur à 340°C.

Il est obtenu comme produits à l'issue des distillations, une fraction huile (conduite 26) et des fractions bouillant plus bas, comme le gasoil (conduite 27), kérosène (conduite 28) essence (conduite 29) ; les gaz légers s'éliminant par la conduite (30) de la colonne atmosphérique et par la conduite (31) de par la colonne de distillation sous vide.

10

L'effluent sortant par la conduite (20) peut aussi être avantageusement envoyé dans une zone d'hydrofinition (non représentée) (comportant un ou plusieurs réacteurs, un ou plusieurs lits catalytiques de un ou plusieurs catalyseurs) avant d'être injecté dans le train de séparation. De l'hydrogène peut être ajouté si besoin dans cette zone. L'effluent sortant est alors transféré dans le ballon (21) et le train de distillation décrit.

15

Pour ne pas alourdir la figure, le recyclage hydrogène n'a pas été représenté, que ce soit au niveau du ballon (10) vers l'hydrotraitement et/ou l'hydroisomérisation, et/ou au niveau du ballon (21) vers le déparaffinage et/ou l'hydrofinition.

20

25

30

Figure 2

On reconnaîtra les références de la figure 1 ici reprise. Dans ce mode de réalisation, la totalité de l'effluent issu de la zone (7) d'hydroisomérisation-conversion (étape a) passe directement par la conduite (9) dans la zone (18) de déparaffinage catalytique (étape b).

Figure 3

35

De la même façon que précédemment, les références de la figure 1 ont été conservées. Dans ce mode de réalisation, l'effluent issu de la zone (7) d'hydroisomérisation-conversion (étape a) subit dans le ballon (32) une séparation d'une partie au moins des gaz légers (hydrogène et composés hydrocarbonés à au plus 4 atomes de carbone) par exemple par flash. Les gaz séparés sont extraits par la conduite (33) et l'effluent résiduel est envoyé par la conduite (34) dans la zone (18) de déparaffinage catalytique.

On notera que sur les figures 1, 2 et 3 une séparation a été prévue sur l'effluent issu

de la zone (18) de déparaffinage catalytique. Cette séparation peut ne pas être mise en œuvre lorsque ledit effluent est traité ultérieurement dans une zone d'hydrofinition, la séparation ayant alors lieu bien après ledit traitement.

Il s'agit ici de la séparation réalisée dans les ballons ou colonnes 21, 23, 24.

Exemple 1 : Préparation du catalyseur A1 conforme à l'invention

Le catalyseur A1 est préparé à partir d'un support silice-alumine utilisée sous forme d'extrudés. Elle contient 29,3% poids de silice SiO_2 et 70,7% poids d'alumine Al_2O_3 . La silice-alumine avant ajout du métal noble, présente une surface de 330 m2/g et son volume poreux total est de 0.87 ml/g.

Le catalyseur A1 est obtenu après imprégnation du métal noble sur le support. Le sel de platine H₂PtCl₆ est dissous dans un volume de solution correspondant au volume poreux total à imprégner. Le solide est ensuite calciné pendant 2 heures sous air sec à 500°C. La teneur en platine est de 0,60 % poids. Mesurée sur le catalyseur, la surface BET est égale à 312 m²/g. La dispersion du platine mesurée par titrage H₂/O₂ est de 99 %. Par Microscopie Electronique à Transmission, le platine est difficile à mettre en évidence. Lorsqu'il est visualisé, il est sous forme de très petites particules de 0,7 à 1,0 nm.

Exemple 2 : Evaluation du catalyseur A1 en hydroisomérisation d'une charge Fischer-Tropsch suivi d'une séparation et d'un déparaffinage catalytique

Le catalyseur dont la préparation est décrite dans l'exemple 1 est utilisé afin d'hydroisomériser une charge de paraffines issues de la synthèse Fischer-Tropsch dans le but d'obtenir des huiles. Afin de pouvoir directement utiliser les catalyseurs d'hydroisomérisation, la charge a été préalablement hydrotraitée et la teneur en oxygène amenée en dessous de 0,1 % poids. Les principales caractéristiques de la charge hydrotraitée sont les suivantes :

170°C
197°C
350°C
537°C
674°C
42
+ 73°C
0,787

20

25

15

5

L'unité de test catalytique comprend un réacteur en lit fixe, à circulation ascendante de la charge ("up-flow"), dans lequel est introduit 80 ml de catalyseur. Le catalyseur est alors soumis à une atmosphère d'hydrogène pur à une pression de 10 MPa afin d'assurer la réduction de l'oxyde de platine en platine métallique puis la charge est enfin injectée. La pression totale est de 10 MPa, le débit d'hydrogène est de 1000 litres d'hydrogène gazeux par litre de charge injectée, la vitesse volumique horaire est de 2 h⁻¹ et la température de réaction de 350°C. Après réaction, les effluents sont fractionnés en produits légers (essence PI-150°C), distillats moyens (150-380°C) et résidu (380°C).

10

15

20

25

Le résidu est alors déparaffiné dans un second réacteur à circulation ascendante de la charge ("up-flow"), dans lequel est introduit 80 ml de catalyseur contenant 80% poids d'une zéolithe Ferrierite de rapport Si/Al=10,2 et 20% poids d'alumine ainsi que 0,6% poids de Pt. Le catalyseur est alors soumis à une atmosphère d'hydrogène pur à une pression de 10 MPa afin d'assurer la réduction de l'oxyde de platine en platine métallique puis la charge est enfin injectée. La pression totale est de 10 MPa, le débit d'hydrogène est de 1000 litres d'hydrogène gazeux par litre de charge injectée, la vitesse volumique horaire est de 2 h⁻¹ et la température de réaction de 350°C. Après réaction, les effluents sont fractionnés en produits légers (essence Pl-150°C), distillats moyens (150-380°C) et résidu (380⁺°C).

Les caractéristiques de l'huile obtenue sont mesurées.

Dans le tableau ci-après sont reportés les rendements pour les différentes fractions et les caractéristiques des huiles obtenues directement avec la charge et avec les effluents hydroisomérisés sur catalyseur A1 (conforme à l'invention) puis déparaffiné catalytiquement.

	Charge hydrotraitée	Effluent hydroisomérisé et déparaffiné catalytiquement
Catalyseur	1	A1
Déparaffinage	au solvant -20°C*	déparaffiné catalytiquement selon l'exemple
Densité des effluents à 15°C	0,790	0,781
% poids 380°/ effluents	58	67
% poids 380 ⁺ / effluents	42	33
Qualité du résidu 380*		

Rendement du déparaffinage	6	53
(% poids)		
Rendement huile / charge	2,5	17,5
Qualité de l'huile		
VI (Indice de Viscosité)	143	137
Répartition par coupes		
PI-150	0	10
150-380	58	58
380⁺	42	32
Conversion nette en 380° (%)	1	21,4

^{*} le solvant utilisé est la méthylisobutylcétone.

On note, de façon très claire, que la charge non hydroisomérisée et déparaffinée au solvant à -20°C, présente un rendement en huile extrêmement faible alors qu'après l'opération d'hydroisomérisation et déparaffinage catalytique, le rendement en huile est plus élevé.

Exemple 3 : production d'huile de haute qualité

- Le résidu d'hydrocraquage décrit dans le tableau ci-dessous est introduit dans un réacteur contenant un lit de catalyseur A2 d'hydroisomérisation ainsi que de l'hydrogène sous une pression totale de 7 MPa et dans un rapport volumique H2/HC = 600 NI/NI. La vitesse spatiale est alors de 1h-1 sur ce catalyseur. La température de réaction est de 326°C.
- La catalyseur A2 contient un support ayant 28 % poids SiO2 et 72 % poids Al2O3 sur lequel a été déposé 0,6% poids Pt. La dispersion en Pt est de 56 %.

 L'effluent est récupéré puis est distillé sous vide de manière à récupérer une fraction 380°C+ dont les caractéristiques sont reportées dans le tableau ci-après.
- La fraction 250-380°C qui correspond à une coupe gasoil et qui résulte de l'hydroisomérisation convertissante du résidu d'hydrocraquage présente un point d'écoulement de -20°C et un indice de cétane de 58, ce qui en fait un excellent gasoil.
- La fraction 380°C+ préparée ci-dessus est ensuite introduite dans un réacteur contenant un lit de catalyseur d'hydrodéparaffinage (0,5 % Pt déposé sur un support contenant 75 % ferrierite et 25 % Al2O3) et de l'hydrogène sous une pression de 14

MPa et dans un rapport volumique H2/HC = 1000 NI/NI. La vitesse spatiale est alors de 1 h-1 sur ce catalyseur. La température de réaction est de 315°C.

On charge dans un second réacteur situé en aval de ce premier réacteur, un catalyseur d'hydrofinition contenant 1 % poids de Pt, 1 % poids F et 1 % poids de Cl sur alumine. Le produit issu du premier réacteur est introduit dans le second réacteur qui est maintenu à une température de 220°C. La pression est de 14 MPa et le produit circule à une vitesse spatiale de 0,5h-1.

L'effluent est récupéré puis est distillé sous vide. Les caractéristiques du résidu 380°C+ sont reportées dans le tableau.

Cet exemple met en évidence que la combinaison d'une étape de conversion-hydroisomérisation (étape a) et d'une étape de déparaffinage catalytique, conduit à des produits de qualité élevée. En particulier il montre que l'étape (a) permet d'augmenter l'indice de viscosité de la fraction huile (380°C+) de 98 à 131 sans abaisser suffisamment le point d'écoulement (cf. tableau, colonnes 1 et 2). Cet abaissement est réalisé durant l'étape (b) sur le catalyseur de déparaffinage catalytique et un point d'écoulement de -18°C est obtenu ainsi qu'une couleur Saybolt de +30 qui confère au produit la qualité d'huile médicinale (cf. tableau, colonnes 2 et 3).

<u>Tableau</u>

10

	1	2	3
	Charge = Résidu	Etape (a)	Etape (b) +
	d'hydrocraquage	(Hydroisomérisation)	hydrofinition
	•		(Deparaffinage +
			hydrofinition
			Catalytique)
Température de	1	326	315 220
réaction °C		·	
Ptotale (bars)		80	140 140
Conversion en	1	45	1
380°C- (% poids)			
Soufre (ppm poids)	150	1	1
Azote (ppm poids)	9	/	1

d15/4 de la charge	0,8535	0,8360	?
ou de l'effluent total			
Teneur en 380°C+	81	/	1
dans la charge			
Fraction 380°C+			
Point d'écoulement	+40	+26	-18
(°C)			
Couleur ASTM	3,0	1	
D1500			
Fraction 380°C+	Fraction 380°C+ du	Fraction 380°C+ du	Fraction 380°C+ du
après traitement	résidu	hydroisomérisée et	hydroisomérisée,
	d'hydrocraquage	déparaffinée au	déparaffinée et
	déparaffiné au	solvant	hydrofinie
	solvant		catalytiquement
VI	98	131	129
Point d'écoulement	-15	-15	-18
(°C)			
Couleur Saybolt		/	+30
Absorption UV		1	
(D2008)			
260-280 nm	1	1	0,0007
280-290 nm	1	1	0,0006
290-300 nm	1	1	0,0004
300-360 nm	1	1	0,0002
360-400 nm	1	1	<0,0001
300-330 nm	1	1	0,0002
330-350nm	/	1	<0,0001

Ce procédé apparaît également comme un procédé très flexible et permettant d'atteindre une large gamme de rendements et de qualités d'huiles et de gasoils du fait de la possibilité de moduler l'indice de viscosité (ou la conversion) sur le catalyseur de l'étape (a) d'hydroisomérisation-conversion et à la fois la présence ou non d'une distillation après l'étape (a).

Ainsi l'étape (a) a permis d'amener le VI à un niveau élevé et ainsi de compenser en partie la perte de VI produite lors de l'étape de déparaffinage catalytique.

REVENDICATIONS

- 1. Procédé pour la production d'huiles médicinales ayant des teneurs en aromatiques inférieures à 0,01 % pds à partir d'une charge hydrocarbonée ledit procédé comportant les étapes successives suivantes :
- (a) conversion de la charge avec hydroisomérisation simultanée des n-paraffines de la charge, ladite charge ayant une teneur en soufre inférieure à 1000 ppm pds, une teneur en azote inférieure à 200 ppm pds, une teneur en métaux inférieure à 50 ppm pds, une teneur en oxygène d'au plus 0,2 % pds, ladite étape se déroulant à une température de 200-500 °C, sous une pression de 5 25 Mpa, avec une vitesse spatiale de 0,1 5h⁻¹, en présence d'hydrogène, et en présence d'un catalyseur contenant au moins un métal noble déposé sur un support acide amorphe, la dispersion en métal noble étant comprise entre 20 100 %.
 - (b) déparaffinage catalytique d'au moins une partie de l'effluent issu de l'étape (a), réalisé à une température de 200 500°C, sous une pression de 1-25 Mpa, avec une vitesse volumique horaire de 0,05-50h-1, en présence de 50-2000 litre d'hydrogène/litre d'effluent entrant dans l'étape b et en présence d'un catalyseur comprenant au moins un élément hydro-déshydrogénant et au moins un tamis moléculaire.
- 25 2. Procédé selon la revendication 1 dans lequel pour l'étape (a) il est utilisé un catalyseur contenant au moins un métal noble déposé sur une silice-alumine amorphe.
- 3. Procédé selon l'une des revendications précédentes dans lequel il est utilisé pour l'étape (a) un catalyseur essentiellement constitué de 0,05 10 % en poids d'au moins un métal noble du groupe VIII déposé sur un support amorphe de silice-alumine qui contient 5 90 % en poids de silice et présente une surface spécifique BET de 100-500 m²/g et le catalyseur présente :
 - un diamètre moyen des pores compris entre 1 12 nm,

5

- un volume poreux des pores dont le diamètre est compris entre le diamètre moyen tel que défini précédemment diminué de 3 nm et le diamètre moyen tel que défini précédemment augmenté de 3 nm est supérieur à 40 % du volume poreux total,
- une dispersion du métal noble comprise entre 20 100 %,

10

- un coefficient de répartition du métal noble supérieur à 0,1.
- 4. Procédé selon l'une des revendications précédentes dans lequel le métal noble du catalyseur de l'étape (a) est le platine et/ou le palladium.
- 5. Procédé selon l'une des revendications précédentes dans lequel la totalité de l'effluent de l'étape (a) est traité dans l'étape (b).
- 6. Procédé selon l'une des revendications 1 à 4 dans lequel l'effluent issu de l'étape
 (a) est distillé de façon à séparer les gaz légers et au moins un résidu contenant
 les composés à point d'ébullition supérieur à au moins 340°C, ledit résidu étant
 soumis à l'étape (b).
- 7. Procédé selon l'une des revendications précédentes dans lequel l'effluent issu de l'étape (b) est distillé de façon à séparer une huile contenant les composés à point d'ébullition supérieur à au moins 340°C.
 - 8. Procédé selon la revendication 7 comportant une distillation atmosphérique suivie d'une distillation sous vide du résidu atmosphérique.
 - 9. Procédé selon l'une des revendications précédentes dans lequel la charge soumise à l'étape (a) a subi préalablement un hydrotraitement puis éventuellement une séparation de l'eau, de l'ammoniac, et de l'hydrogène sulfuré.
- 10. Procédé selon l'une des revendications précédentes dans lequel le catalyseur de l'étape (b) comporte au moins un tamis moléculaire dont le système microporeux présente au moins un type principal de canaux à ouvertures de pores ayant 9 ou 10 atomes T, T étant choisi dans le groupe formé par Si, Al, P, B, Ti, Fe, Ga, alternant avec un nombre égal d'atomes oxygène, la distance entre deux ouvertures de pores accessibles à 9 ou 10 atomes T étant d'au plus à 0,75 mm, et ledit tamis présentant au test n-décane un rapport 2-méthylnonane/5-

méthylnone supérieur à 5.

- 11. Procédé selon la revendication 10 dans lequel le tamis est une zéolithe choisie dans le groupe formé par NU-10, EU-1, EU-13, ferrierite, ZSM-22, Theta-1, ZSM-50, ZSM-23, NU-23, ZSM-35, ZSM-38, ISI-1, KZ-2, ISI-4,et KZ-1.
- 12. Procédé selon l'une des revendications précédentes dans lequel l'effluent issu de l'étape (b) est soumis à une étape d'hydrofinition avant d'être distillé.
- 13. Procédé selon l'une des revendications précédentes dans lequel la charge 10 hydrocarbonnée traitée contient au moins 20 % volume de composés bouillant au-dessus de 340°C.
- 14. Procédé selon l'une des revendications précédentes dans lequel la charge hydrocarbonée traitée est choisie dans le groupe formé par les effluents issus 15 d'unité Fischer-Tropsch, les distillats sous vide issus de la distillation directe du brut, les distillats sous vide issus d'unités de conversion, les distillats sous vide provenant d'unités d'extraction d'aromatiques, les distillats sous vide provenant de désulfuration ou d'hydroconversion de résidus atmosphériques et/ou de résidus sous vide, les huiles désasphaltées, les résidus d'hydrocraquage ou tout mélange des dites charges.

20

,

RAPPORT DE RECHERCHE PRÉLIMINAIRE

N° d'enregistrement national

établi sur la base des dernières revendications déposées avant le commencement de la recherche FA 585497 FR 0002364

DOCU	IMENTS CONSIDÉRÉS COMME	PERTINENTS	Revendication(s) concernée(s)	Classement attribué à l'invention par l'INPI
atégorie	Citation du document avec indication, en cas des parties pertinentes	de besoin,		
A	EP 0 776 959 A (SHELL INT F 4 juin 1997 (1997-06-04) * revendications 1,4-6,8,10 * colonne 5, ligne 16 - colon) *	1,2,4,6, 10,11, 13,14	C10G69/02
A	WO 97 21788 A (EXXON RESEAU CO) 19 juin 1997 (1997-06-1 * revendications 1-3,5,9 * * page 4, ligne 7 - ligne 2 * page 5, ligne 9 - ligne 2 * page 6, ligne 12 - page 2	19) 21 * 31 *	1-4,6,8, 9,12-14	
A	WO 95 27020 A (INST FRANCA; MIGNARD SAMUEL (FR); MARCI (FR) 12 octobre 1995 (1995; revendications 1-7,9-11	HAL NATHALIE -10-12)	1-6,13, 14	
				DOMAINES TECHNIQUES RECHERCHÉS (Int.CL.7)
				C10G
				B01J
			<u> </u>	
	Date	d'achèvement de la recherche 17 novembre 2000	De	Examinateur Herdt, 0
X:pa Y:pa aut A:am O:div	CATÉGORIE DES DOCUMENTS CITÉS riculièrement pertinent à lui seul riculièrement pertinent en combinaison avec un re document de la même catégorie tère-plan technologique rulgation non-écrite cument intercalaire	T : théorie ou princi E : document de br à la date de dép de dépôt ou qu'é D : cité dans la den L : cité pour d'autre	pe à la base de le evet bénéficiant d ôt et qui n'a été j à une date postér ande s raisons	'invention d'une date antérieure publié qu'à cette date