Hidden Synergy

Hong Kong's Role in the Development of Science and Technology in Chinese Higher Education

Yisu Zhou, Yang Shen, Xinyue Yao

University of Macau

2024-11-01

Background

By 2020, China:

- surpassed the United States as the leading producer of research papers (Tollefson 2018),
- excelled not only in quantity but also in quality,
- the top 1 in top-cited scientific papers in 2019 (Wagner, Zhang, and Leydesdorff 2022).

Research question

How did China achieve such scientific and educational prominence in such a short period?

Conventional explanations:

Highlighting the relationship between China and the United States

- New exploratory perspective
- Adopting the historical evolutionary perspective regarding this crossborder academic relationship, Hong Kong stands out as a crucial, yet underappreciated, role in advancing China's higher education and S&T capabilities

The role of Hong Kong has often been overlooked due to two primary factors:

- Masking effect: attention frequently focuses on the prominent China-U.S. collaboration in science and technology (*Hao & Hua 2023*)
- Complicated cohesive analysis: the collaborative relationship between Hong Kong and mainland China varies by S&T discipline and the geographic location of mainland institutions

Conventional explanations

The Structuralist Perspective

- assumes a linear and nonhistorical relationship between external pressures and institutional responses;
- emphasizes **external**, systemic forces that shape the actions and growth of universities.

The Culturalist Perspective

- emphasizes the importance of **historical legacies** and **cultural traditions** in shaping the development of higher education system;
- selectively highlight successes while **ignoring the persistent challenges** within the global higher education system.

New theoretical perspective: Evolutionary Institutionalism in Higher Education

Our approach:

- views economic and institutional changes as dynamic, iterative processes characterized by continuous adaptation and experimentation
- institutional heterogeneity and selective adaptation:capturing the reality that China's higher education landscape is neither monolithic nor uniformly successful. Instead, institutions vary in capacity, approach, and impact, a phenomenon intensified by local demands and regional conditions.
- **institutional agency and feedback loops**: universities act not merely as passive recipients of state-led reforms but as active participants in their developmental trajectories.

China-Hong Kong Collaboration: A Case of Organizational Learning

S&T sectors in Hong Kong

• Despite its reputation as a finance-driven, business-oriented city, Hong Kong characterized by **autonomy** and **international connections**, has quietly fostered a **strong academic and scientific community**, especially in collaboration with mainland institutions (*Woo 2007*).

Reciprocal collaborating pattern

Data and Methodologies

Data Source

- Publication information from Web of Science (WoS)
- PhD dissertation data from *university libraries*
- University archives
- Biographical data from *key educational leaders*

Selected universities

25+3

- 25 top-ranked institutions in Mainland China based on the Nature Index 2024
- 3 prestigious universities in Hong Kong

Analysis and Disscussion

Top Collaboration Locations for Mainland Chinese Universities

Notes: Collaborating Regions denote the origins of those co-authors collaborated with the targeted institution

Notes: Collaborating Regions denote the origins of those co-authors collaborated with the targeted institution

Geographical heterogeneity

Top Collaboration Locations for universities in Guangdong province

Notes: Collaborating Regions denote the origins of those co-authors collaborated with the targeted institution

Geographic pattern of collaboration with universities in Hong Kong

Regions remain high-frequent collaboration with Hong Kong:

Top collaboration location for Hong Kong unviersities

Notes: Collaborating Regions denote the origins of those co-authors collaborated with the targeted institution

Notes: Collaborating Regions denote the origins of those co-authors collaborated with the targeted institution

Top Collaborating Subject Areas between Hong Kong and Mainland China

Top Subject Areas Collaborating with Chinese Mainland for Chinese University of Hong Kong (1990-2015) FOOD SCIENCE & TECHNOLOGY ENGINEERING, MECHANICAL GEOSCIENCES, MULTIDISCIPLINARY CHEMISTRY, APPLIED CRYSTALLOGRAPHY CHEMISTRY, ANALYTICAL METEOROLOGY & ATMOSPHERIC SCIENCES BIOCHEMICAL RESEARCH METHODS TOXICOLOGY REMOTE SENSING ORTHOPEDICS NUTRITION & DIETETICS ENGINEERING, MANUFACTURING ENGINEERING, MANUFACTURING BIOLOGY INTEGRATIVE & COMPLEMENTARY MEDICINE PHYSICS, ATOMIC, MOLECULAR & CHEMICAL BIOPHYSICS MATHEMATICS, INTERDISCIPLINARY APPLICATIONS MATHEMATICAL & COMPUTATIONAL BIOLOGY IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY ENTERDISCIPLINARY APPLIED MICROBIOLOGY CHEMISTRY, INORGANIC & NUCLEAR BIOTECHNOLOGY & APPLIED MICROBIOLOGY CHEMISTRY, MEDICINAL ROBOTICS ENGINEERING, BIOMEDICAL NANOSCIENCE & NANOTECHNOLOGY IMMUNOLOGY PLANT SCIENCES INTEGRATIVE & COMPLEMENTARY MEDICINE RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING MEDICINE, RESEARCH & EXPERIMENTAL OFFICE IMMUNUCUGT PLANT SCIENCES ENVIRONMENTAL SCIENCES RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING MEDICINE, RESEARCH & EXPERIMENTAL OPTICS 0 C C C C C Collaborating with Chinese mainland Others Chinese mainland COMPUTER SCIENCE. SOFTWARE ENGINEERING COMPUTER SCIENCE. HARDWARE & ARCHITECTURE PERIPHERAL VASCULAR DISEASE OPERATIONS RESEARCH & MANAGEMENT SCIENCE GENETICS & HEREDITY PHYSICS, MULTIDISCIPLINARY CHEMISTRY, PHYSICAL PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH BLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH MATHEMATICS AUTOMATION & CONTROL SYSTEMS CHEMISTRY, MULTIDISCIPLINARY TELECOMMUNICATIONS PEROSCIENCES PSYCHIATRY ENDOCRINOLOGY & METABOLISM CARDIAC & CARDIOVASCULAR SYSTEMS CARDIAC & CARDIOVASCULAR SYSTEMS CEL BIOLOGY MATHEMATICS. APPLIED CLINICAL NEUROLOGY MATERIALS SCIENCE, MULTIDISCIPLINARY COMPUTER SCIENCE, THEORY & METHODS COMPUTER SCIENCE, INFORMATION SYSTEMS CASTROENTEROLOGY & PHARMACY BIOCHEMISTRY & MOLECULAR BIOCTONIC

Proportion of Publications by regions

ONCOLÓGY ENGINEERING, ELECTRICAL & ELECTRONIC

Top Subject Areas Collaborating with Chinese Mainland for Hong Kong University of Science & Technology (1990-2015) PLANT SCIENCES CHEMISTRY, MEDICINAL 1001 = 1 INSTRUMENTS & INSTRUMENTATION **ENERGY & FUELS** CONSTRUCTION & BUILDING TECHNOLOGY ONCOLOGY METEOROLOGY & ATMOSPHERIC SCIENCES PHYSICS, MATHEMATICAL GEOSCIENCES, MULTIDISCIPLINARY ENGINEERING, ENVIRONMENTAL ENGINEERING, GEOLOGICAL MARINE & FRESHWATER BIOLOGY PHARMACOLOGY & PHARMACY CHEMISTRY, INORGANIC & NUCLEAR VERNICAL SCIENCE & TECHNOLO CHEMISTRY, ORGAN MATHEMATIC. CELL BIOLOGY COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ENGINEERING, MECHANICAL AUTOMATION & CONTROL OF CONTROL O Collaborating with Chinese mainland Others Chinese mainland MECHANICS ENGINEERING, CIVIL MATHEMATICS, APPLIED PHYSICS, MULTIDISCIPLINARY ENVIRONMENTAL SCIENCES COMPUTER SCIENCE, SOFTWARE ENGINEERING **BIOCHEMISTRY & MOLECULAR BIOLOGY** COMPUTER SCIENCE, HARDWARE & ARCHITECTURE NANOSCIENCE & NANOTECHNOLOGY OPERATIONS RESEARCH & MANAGEMENT SCIENCE COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PHYSICS, CONDENSED MATTER | 職 器 | 監 数 CHEMISTRY, PHYSICAL COMPUTER SCIENCE, THEORY & METHODS COMPUTER SCIENCE, INFORMATION SYSTEMS CHEMISTRY, MULTIDISCIPLINARY TELECOMMUNICATIONS PHYSICS, APPLIED MATERIALS SCIENCE, MULTIDISCIPLINARY ENGINEERING, ELECTRICAL & ELECTRONIC

75%

Proportion of Publications by regions

100%

0%

Development trends in *advantage* disciplines at each university from 1990 to 2015

The development of biochemistry&molecular biology in Chinese University of Hong Kong

The development of materials science, multidisciplinary in Hong Kong University of Science & Technology

Explanation from an Evolutionary Perspective

- Points of Contact
- Temporal Characteristics
- Geographical characteristic

Points of Contact

Renowned scientists (**Lee Tsung-Dao**) and figures(**Woo Chia-Wei,Kung Shain-dow**) became conduits for collaboration and eagerly created channels to assist Chinese scientists.

Temporal Characteristics

Table 2: Total PhD graduates for HKU, CUHK and HKUST from 1989-2005, all disciplinary fields

Year	CUHK	Mainland	M/T %	HKU Total	Mainland	M/T %	HKUST Total	Mainland	M/T %
	Total								
1989	7	5	0%	33	2	6%			
1990	11	4	36%	38	5	13%			
1991	10	2	20%	45	8	18%			
1992	17	6	35%	45	8	18%			
1993	20	8	40%	68	20	29%			
1994	19	5	26%	51	8	16%	1	0	0%
1995	33	12	36%	71	12	17%	5	3	60%
1996	78	45	58%	111	21	19%	15	4	27%
1997	70	32	46%	145	27	19%	50	25	50%
1998	66	33	50%	192	59	31%	50	27	54%
1999	88	45	51%	188	69	37%	50	34	68%
2000	107	50	47%	205	100	49%	61	39	64%
2001	113	70	62%	167	76	46%	69	34	49%
2002	154	98	64%	181	73	40%	79	45	57%
2003	110	62	56%	192	76	40%	85	54	64%
2004	174	105	60%	208	86	41%	110	66	60%
2005	170	98	58%	205	57	28%	114	74	65%

Geographical characteristic

An example regarding the collaboration between CAS and HKUST

- 1991-92, 1992-93: Zhou Guangzhao, President of CAS
- 1993.10.28-31: Xu Zhihong, Vice President of CAS
- 1994.3.21: Teng Teng, Vice President of CAS
- 1994.8.24: Xu Zhihong, Vice President of CAS
- 1994.8.26: First joint marine research lab established between HKUST and CAS in Sanya, Hainan
- 1994.9.29: Li Zhensheng, Vice President of CAS
- 1994.12.15: Lu Yongxiang, Vice President of CAS
- 1995.3.16-17: Yi Xunyan, Vice President of CAS, along with Zhu Xuan, Deputy Secretary General and Director of Bureau of Planning and Finance, CAS
- 1995.5.25: Chen Yiyu, Vice President of CAS
- 1995.11.4: Lu Yongxiang, Vice President of CAS
- 1995.11.13: Hong Zhongxiang, Director, Institute of Atmospheric Physics, CAS
- 1997.1.10: Second joint research lab established in microelectronics
- 1998: Third joint research lab established in nanotechnology

Discussion & Conclusion

- Moving beyond structuralist and cultural explanations, we use an **evolutionary institutional framework** to capture the dynamic and adaptive nature of China's academic and scientific development.
- This "cross-border knowledge exchange" blends mainland talent with Hong Kong's academic resources and freedoms. This cycle, where students gain advanced training and then bring expertise back to China, reduces talent loss and strengthens both regions' academic and scientific communities.

Limitations and further exploration

- Exploring the structure of research funding among the collaborators
- Adopting social network analysis beyond statistical description in further research
- The classification of disciplines in PhD dissertations is rough and need further refine