Bandaranayake College Gampaha Grade 12 - AL (2023)

Information & Communication Technology

Competency 3 (10.05.2022) Work Sheet 07

Answer All Questions

1) Find the most significant digit and the least significant digit of the following numbers.

Number	MSD	LSB		
329 ₁₀	3	9		
1237.010	1	7		
58.3210	5	8		
0.0975 ₁₀	9	5		
0.4_{10}	4	4		
5687010	5	7		
154.0110	1	1		
23.080_{8}	2	8		
AD239 ₁₆	10	9		
0.00110_2	4	2		
10002	8	8		
0111012	16	1		
0.110012	0.5	2**(-5)		
1.0010_2	1	0.125		
0.00110_2	0.125	0.0625		
10012	16	1		
011.101 ₂	2	0.125		

2) Convert the following decimal numbers to binary numbers.

- a) 12₁₀ 1100
- b) 46₁₀ 101110
- c) 155₁₀ 10011011
- d) 472₁₀ 111011000
- e) 1163₁₀ 10010001011

3) Convert the following decimal numbers to octal numbers.

- a) 158₁₀ 236
- b) 155₁₀ 233
- c) 472₁₀ 730
- d) 1163₁₀ 2213

4) 0 41	
4) Convert th	e following decimal numbers to hexadecimal numbers.
a) 38 ₁₀	26
b) 47 ₁₀	2f
c) 256 ₁₀	100
d) 478 ₁₀	1de

5) Convert the following binary numbers to decimal numbers.

```
a) 101<sub>2</sub>
b) 111010110<sub>2</sub>
                                   470
c) 1010010111<sub>2</sub>
                                    663
d) 1101<sub>2</sub>
                       13
```

e) 1963₁₀

7ab

6) Convert the following octal numbers to decimal numbers.

```
a) 230_8
                       152
b) 745<sub>8</sub>
                        485
c) 2065_8
                       1077
d) 1275<sub>8</sub>
                        701
```

7) Convert the following hexadecimal numbers to decimal numbers

```
a) 1A<sub>16</sub>
                            161
b) 7EF<sub>16</sub>
                           2031
c) A49_{16}
                          2633
d) AB2<sub>16</sub>
                            2738
```

8) Convert the following binary numbers to octal numbers.

```
a) 10011001<sub>2</sub>
                              231
b) 111100111<sub>2</sub>
                                747
c) 10101010110<sub>2</sub>
                                   2526
d) 1011101<sub>2</sub>
                                135
```

9) Convert the following binary numbers to hexadecimal numbers.

```
a) 11011010<sub>2</sub>
                                 da
b) 111111001101<sub>2</sub>
                                  7cd
c) 10011100011<sub>2</sub>
                                      4e3
d) 10110<sub>2</sub>
                                     16
e) 10111011100<sub>2</sub>
                                     5dc
```

10) Convert the following octal numbers to binary numbers.

- a) 457₈ 100101111
- b) 10₈ 1000
- c) 245₈ 10100101
- d) 706₈ 111000110

11) Convert the following octal numbers to hexadecimal numbers.

- a) 1057₈ 22f
- b) 320_8 d0
- c) 475₈ 13d
- d) 1673₈ 3bb

12) Convert the following hexadecimal numbers to binary numbers.

- a) 78₁₆ 1111000
- b) B2C₁₆ 101100101100
- c) 4DEF₁₆ 100110111101111
- d) 74₁₆ 1110100
- e) 2AE₁₆ 1010101110

13) Convert the following hexadecimal numbers to octal numbers.

- a) 320₁₆
- b) A7B₁₆ 5173
- c) 10ED₁₆ 10355
- d) 23A₁₆ 1072

14) Fill in the blanks in the table given below.

Name of the Colour	Colour	Hexadecimal Value	R	G	В
Dark purple		# 871F78	135	31	120
Light pink		#ffb6c1	255	182	193
Sky blue		#3299cc	50	153	204
Green		#00ff00	0	255	0
Yellow		#ffee00	255	238	0

15) Write down the answers for following questions

```
a) C1A_{16} + 4A2_{16} = 4284
b) 144_8 + 175_8 = 225
c) 124_8 + 165_8 = 201
d) 4A6_{16} + 99_{10} = 1289
e) 48B_{16} + 00101011_2 1206
```

- f) $101_{16} + 110_8 =$ 263
- g) $5D_{16} + 10111_2 =$ 116
- h) 11001100 01010101 = 119
- 16) What is the binary representation of 9.25_{10} ? 1001.001
- 17) What is the decimal equivalent to the binary 110101.11₂? 53,75
- 18) What is the binary equivalent to decimal 54.25? 110110.001
- 19) Answer the following questions.
 - a) Show how the computation 15+ (-5) is done in 8-bit two's complement arithmetic.
 - b) Explain how you deal with the carry generated in the most significant bit.
 - c) Explain how the positive and negative numbers in two's complement can be converted into decimal numbers.

```
a)
15 -5 -> 15 + (-5)

15 -> 00001111
5 -> 00000101

2's compliment to get the value of -5
1. 5 -> 1's compliment -> 11111010
2. Add 1 to LSB -> 11111010 + 00000001 = 11111011

15 + (-5) -> 00001111 + 11111011 = 100001010
```

The answer is 00001010 which is (+5)

MSB 1 is an overflow bit so it's discarded.

- b) Sine this is 2's compliment, we can just discard the overflow bit.
- c) When converting + numbers, get the decimal value of it

If it's a - number, we need to flip to get the binary number and then add1 to the number, then as usual we have to convert it to decimal