PROBLEM SHEET 1

SHUDDHODAN KADATTUR VASUDEVAN

- 1. Let I be a filtered category. Show that For any functor $F: I \to \mathbf{R}\text{-}\mathbf{mod}$, the colimit exists. Then show that colimit of short exact sequences is exact.
- 2. Let \mathscr{C} be the category of Affine Schemes over a field k. An affine group scheme is an object G in C together with the following data:
 - (1) A group structure on G, i.e. a morphism of schemes $\mu: G \times_k G \to G$, an identity element $e: \operatorname{Spec} k \to G$, and an inverse morphism $i: G \to G$.
 - (2) The group structure morphisms satisfy the usual group axioms.

Now let $\mathrm{GL}_n := \mathrm{Spec}(k[x_{ij}]_{\det(x_{ij})})$. Here $k[x_{ij}]$ is the polynomial ring in n^2 variables and $\det(x_{ij})$ is the determinant of the $n \times n$ matrix (x_{ij}) . The ring $k[x_{ij}]_{\det(x_{ij})}$ is obtained by inverting the polynomial $\det(x_{ij})$ in $k[x_{ij}]$. Show that GL_n can be endowed with the struture of affine group scheme.

HINT: By Yoneda's lemma it suffices to give functorial in A (as A varies over k-algebras) map of **Groups**, $m_A: \operatorname{GL}_n(A) \times \operatorname{GL}_n(A) \to \operatorname{GL}_n(A)$, $i_A: \operatorname{GL}_n(A) \to \operatorname{GL}_n(A)$, and $e_A: \{*\} \to \operatorname{GL}_n(A)$.

- 3. Let X be an Noetherian integral scheme. Let \mathscr{F} be a coherent sheaf on X. Show that there exists a non-empty open subset U of X such that $\mathscr{F}|_U$ is locally free (and hence flat). Later in the course we shall generalize this and obtain Grothendieck's Theorem on generic flatness.
- 4. Let X be an integral Noetherian scheme. Let \mathscr{F} be a coherent sheaf on X. Show that \mathscr{F} is flat iff the rank function

$$x \to \dim_{k(x)}(\mathscr{F}_x \otimes k(x)),$$

is locally constant on X. Here k(x) is the residue field at x.

Date: January 16, 2025.

5. Let X be a one dimensional connected and normal Noetherian scheme. Let $\mathscr F$ be a coherent sheaf on X. Show that $\mathscr F$ is locally free iff $\mathscr F$ is torsion free i.e the multiplication map

$$\mathcal{O}_X \to \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{F})$$

is injective.