Assignment 2

Problem 1: Fibonacci Puzzle

Once upon a time in a small village, a young boy named Ravi was known for his love of numbers. One day, his grandfather came to him with a puzzle. Grandfather said, "Ravi, I need your help. There is a special sequence of numbers called the Fibonacci series, where each number is the sum of the two before it. Can you find the first n numbers in this sequence for me?"

Ravi thought for a moment and decided to write a program to solve the puzzle. Can you help Ravi write a simple C program to display the first n terms of the Fibonacci series?

Input Format:

A single integer n, representing how many terms of the Fibonacci series Ravi needs to find.

Constraints:

• 3 ≤ n ≤ 50

Output Format:

Print the first n terms of the Fibonacci series in a single line, separated by spaces.

Example 1:

Input: 5
Output: 0 1 1 2 3

Explanation:

In this example, n = 5, which means we need to print the first five terms of the Fibonacci series.

- The Fibonacci series starts with 0 and 1.
- Each subsequent term is the sum of the two preceding ones. So, 0 + 1 = 1, 1 + 1 = 2, and 1 + 2 = 3.

• Therefore, the first five terms are 0 1 1 2 3.

Example 2:

Input: 7
Output: 0 1 1 2 3 5 8

Explanation:

In this example, n = 7, which means we need to print the first seven terms of the Fibonacci series.

- The Fibonacci series starts with 0 and 1.
- The next terms are calculated as 0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, and 3 + 5 = 8.
- Therefore, the first seven terms are 0 1 1 2 3 5 8.

Problem 2: Jolly Number

Write an algorithm to determine Jolly numbers up to N. A Jolly number is defined by the following process:

- 1. Starting with any positive integer, replace the number by the sum of the squares of its digits.
- 2. Repeat the process until the number equals 1 (where it will stay), or it loops until a maximum of 100 iterations.
- 3. Those numbers for which this process ends in 1 are called Jolly numbers.

Print all Jolly Numbers from 1 up to N (included).

Input Format:

A single integer N.

Output Format:

A list of all Jolly numbers up to N separated by spaces.

Constraints:

• $1 \le N \le 10,000$

Examples:

```
Input:
19
Output:
1 7 10 13 19
```

Note:

The number 19 undergoes the following transformations until it reaches the Jolly condition (sum of the squares of its digits results in 1):

```
1. 1^2 + 9^2 = 82
2. 8^2 + 2^2 = 68
```

$$3.6^2 + 8^2 = 100$$

$$4. 1^2 + 0^2 + 0^2 = 1$$

This sequence shows that starting from 19, the sequence reaches 1 in four iterations, thus confirming 19 as a Jolly number.

```
Input:
2
Output:
1
```

Problem 3: Devesh Numbers

A Devesh number is a positive integer that is divisible by the sum of its digits. For example, 12 is a Devesh number because the sum of its digits is 1 + 2 = 3, and 12 is divisible by 3. Similarly, 18 is a Devesh number because the sum of its digits is 1 + 8 = 9, and 18 is divisible by 9.

Task

Write a program that takes an integer N as input and outputs all the Devesh numbers less

than or equal to N.

Input Format:

- Two integers A and B where
- $1 \le A \le 100,000$
- $1 \le B \le 100,000$
- A ≤ B

Output Format:

 A list of all Devesh numbers within the range A to B (both included) separated by spaces.

Examples:

Input: 1 30

Output: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30

Сору

Explanation:

The Devesh numbers less than or equal to 30 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30.

Problem 4: Sudoku Solver

Determine if a 9 × 9 Sudoku board is valid according to the following rules:

- 1. Each row must contain the digits 1-9 without repetition.
- 2. Each column must contain the digits 1-9 without repetition.

Note: You only need to check the above-mentioned rules to solve the problem.

Task

Write a program that takes a 9x9 2D array as input and determines whether it is a valid Sudoku solution.

Input Format:

• A 2D array with dimensions 9x9 containing digits from range 1 to 9.

Output Format:

• Output 1 if the Sudoku is valid, otherwise 0.

Examples:

Input:

```
6 5 9 3 1 4 2 8 7

1 8 7 6 5 2 4 3 9

2 3 4 8 9 7 5 1 6

4 2 6 1 3 5 9 7 8

8 7 1 9 4 6 3 5 2

5 9 3 2 7 8 6 4 1

3 1 2 5 8 9 7 6 4

7 6 5 4 2 1 8 9 3

9 4 8 7 6 3 1 2 5
```

Output: 1

Explanation: The matrix follows the rules of Sudoku.

Input:

```
5 3 4 6 5 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 2 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 8 9 6 3 5
3 4 4 2 8 6 1 7 9
```

Output: 0

Explanation: The first row has two occurrences of 5. The fifth column has two occurrences of 8.

Submission Guidelines

 Do not rename any files given in the handout. Only write the code in the specified C files in the respective directories.

6 of 6