

Suppose A ∈ R¹⁺³ satisfies A² − 2A² = A − 2I and has the property that det(A) < 0 and trans(A) ≥ 2.
 Find the detaceteristic polynomial s(I) = det(A − tI).

It is not $-(t^3 - 2t^2 - t + 2)$.

Possible evols of
$$A$$
 are $\{1, -1, \frac{1}{2}\}$.

While $p(t) = -(t - \lambda_1)(t - \lambda_2)(t - \lambda_3)$.

 $\lambda_1, \lambda_2, \lambda_3 \in \{1, -1, 2\}$.

Mx(A) CO → old # of); me -1. if M 3, the tr = -3. X

Only one 13 -1.

Av = λv A² v = $\lambda^2 v$ A² v = $\lambda^2 v$ A³ v = $\lambda^3 v$

eignopau $E_{X} = \begin{cases} V : Av = \lambda 0 \end{cases}$ $= \begin{cases} eignoc. cenesp. to <math>\lambda \end{cases} 0 \begin{cases} 6 \end{cases}.$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

 $\mathcal{X} = (\mathbf{x} - \mathbf{A} \mathbf{x}) + \mathbf{A} \mathbf{x}.$ $\mathcal{A}^{N_1 N_2 N_3} = \mathcal{N}(\mathbf{A} - \mathbf{0} \mathbf{I}) \rightarrow \mathbf{d}_1$ $\mathcal{L}_{\mathcal{L}_1} = \mathcal{N}(\mathbf{A} - \mathbf{1} \mathbf{I}) \rightarrow \mathbf{d}_2$ $\mathcal{L}_{\mathcal{L}_2} = \mathcal{N}(\mathbf{A} - \mathbf{1} \mathbf{I}) \rightarrow \mathbf{d}_2$

Any $x \in \mathbb{R}^n$ is a L.C.of elements of E_1 and E_2 . $\Rightarrow \mathbb{R}^n = \operatorname{Span}\{V_1, ..., V_{d_1}, w_1, ..., w_{d_2}\}.$ $\Rightarrow d_1 + d_2 = n.$ geom. geo. of 1. null. of 0