Rajalakshmi Engineering College

Name: Tarrun B

Email: 241801291@rajalakshmi.edu.in

Roll no: 241801291 Phone: 9840381059

Branch: REC

Department: I AI & DS FD

Batch: 2028

Degree: B.E - AI & DS

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John is learning about Binary Search Trees (BST) in his computer science class. He wants to create a program that allows users to delete a node with a given value from a BST and print the remaining nodes using an inorder traversal.

Implement a function to help him delete a node with a given value from a BST.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the BST nodes.

The third line consists of an integer V, which is the value to delete from the BST.

Output Format

The output prints the space-separated values in the BST in an in-order traversal, after the deletion of the specified value.

If the specified value is not available in the tree, print the given input values inorder traversal.

Refer to the sample output for formatting specifications.

Sample Test Case

```
Input: 5
   1051527
   15
   Output: 2 5 7 10
   Answer
   #include <stdio.h>
   #include <stdlib.h>
   struct TreeNode {
     int data:
   struct TreeNode* left;
     struct TreeNode* right;
   };
   struct TreeNode* createNode(int key) {
     struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
   TreeNode));
     newNode->data = key;
     newNode->left = newNode->right = NULL;
     return newNode;
// Insert a node into the BST
```

```
struct TreeNode* insert(struct TreeNode* root, int key) {
    oif (root == NULL)
         return createNode(key);
       if (key < root->data)
         root->left = insert(root->left, key);
       else
         root->right = insert(root->right, key);
       return root;
    // Find the node with minimum value in a subtree
    struct TreeNode* findMin(struct TreeNode* root) {
       while (root->left != NULL)
return root;
        root = root->left;
    // Delete a node with a given key
    struct TreeNode* deleteNode(struct TreeNode* root, int key) {
       if (root == NULL)
         return root;
       if (key < root->data)
         root->left = deleteNode(root->left, key);
       else if (key > root->data)
         root->right = deleteNode(root->right, key);
       else {
        // Node found
         if (root->left == NULL) {
           struct TreeNode* temp = root->right;
           free(root);
           return temp;
         } else if (root->right == NULL) {
           struct TreeNode* temp = root->left;
           free(root);
           return temp;
         struct TreeNode* temp = findMin(root->right);
         root->data = temp->data;
         root->right = deleteNode(root->right, temp->data);
return root;
```

```
// In-order traversal of BST
void inorderTraversal(struct TreeNode* root) {

if (root I= NULL) (
       if (root != NULL) {
         inorderTraversal(root->left);
         printf("%d ", root->data);
         inorderTraversal(root->right);
       }
    }
    int main()
       int N, rootValue, V;
       scanf("%d", &N);
for (int i = 0; i < N; i++) {
    int kev:
       struct TreeNode* root = NULL;
         scanf("%d", &key);
         if (i == 0) rootValue = key;
         root = insert(root, key);
       scanf("%d", &V);
       root = deleteNode(root, V);
       inorderTraversal(root);
       return 0;
    }
                                                                              Marks : 10/10
    Status: Correct
```

24,30,129,1

241801297

241801291

24,80,129,