Laboratorio I: Piano Inclinato Misura dell'accelerazione attraverso sensori fotosensibili.

Dipartimento di Fisica E.Fermi - Università di Pisa

Di Ubaldo Gabriele

11 Novembre 2015

1 Introduzione

1.1 Teoria

Obiettivo: Studiare il moto di diverse sferette su un piano inclinato e trovare le loro accelerazioni, usandole per stimare g

La legge oraria che descrive il moto del centro di massa delle sfere è:

$$s(t) = \frac{1}{2}at^2\tag{1}$$

L'accelerazione di una sfera lungo il profilo inclinato è data da:

$$a = \frac{5}{9}gsin\alpha \tag{2}$$

1.2 Apparato sperimentale

- 3 Sfere indicate con S_i
- Un profilo mettallico ad angolo retto
- Calcolatore con programma di acquisizione dati Plasduino
- Due sensori ottici collegati al calcolatore
- Calibro ventesimale di risoluzione 0.05mm
- Metro a nastro di risoluzione 1mm
- Livella elettronica

Le sferette utilizzate sono indicizzate dalla più piccola alla più grande.

2 Esperimento

2.1 Acquisizione misure

Abbiamo misurato posto l'angolo $\alpha=3^{\circ}$ con la livella elettronica. Dopodichè abbiamo scelto arbitrariamente 5 lunghezze cercando di esplorare il range più ampio possibile e rilevaond con i sensori i tempi di percorrenza per la sfera S_1 effettuando 5 misure per ogni lunghezza.

Dopodichè rilevato i tempi di percorrenza per le sfere S_2 ed $_3$ per verificare l'indipendeza dell'accelerazione dalle caratteristiche della sfera in questione. Non è presente v_0 nell'equazione perchè abbiamo fatto in modo che fosse $v_0=0$ facendo partire le sferette da ferme e lasciandole libere esattamente prima di essere rilevate dal primo sensore cosicchè non potessero acquistare velocità. Una fotocella è stata tenuta ferma per tutta la durata dell'esperimento e per variare la lunghezza abbiamo spostato solo la fotocella di partenza. Inoltre abbiamo mantenuto costante e uguale la distanza tra il sensore e il profilo metallico nelle due fotocelle per evitare che la sfera fosse rilevata prima o dopo il dovuto. L'angolo misurato è la media dei valori trovati per diversi punti del profilo.

Tabella 1: Sfera 1

l(mm)			T(s)			$T_m(s)$
800	2.396	2.382	2.390	2.382	2.384	2.387 ± 0.005
700	2.222	2.219	2.212	2.214	2.217	2.217 ± 0.003
600	2.049	2.048	2.050	2.055	2.057	2.052 ± 0.003
500	1.871	1.874	1.863	1.867	1.870	1.870 ± 0.004
400	1.671	1.667	1.676	1.687	1.676	1.675 ± 0.007

Tabella 2: Sfere 2 e 3

$T - S_2(s)$	2.399	2.390	2.396	2.391	2.386	2.392 ± 0.004
$T-S_3(s)$	2.346	2.354	2.346	2.348	2.352	2.349 ± 0.003

2.2 Analisi dei dati

Il seguente grafico descrive la relazione tra spazio percorso e periodo quadro: I risultati del fit sono

$$\chi 2 = 5.45 \quad \chi 2_r = 1.81 \quad m = 7.18 \pm 0.08 \quad b = -0.09 \pm 0.05$$
 (3)

Dal coefficiente angolare m possiamo stimare l'accelerazione della sfera, m=2/a, ottenendo $a=0.278\pm0.003m/s^2$. Da questo valore possiamo ottenre una stima di g. Il valore stimato è $g=9.56\pm0.1$

3 Conclusione

I dati convalidano il modello fisico per cui l'accelerazione è costante al variare lo spazio percorso e non dipende dalle caratteristiche della sfera come massa o volume. Il $\chi 2$ conferma la validità della legge oraria. Il valore di g non è compatibile con il valore noto probabilmente perchè il numero di misure è troppo basso.