A11100 988583

NBS PUBLICATIONS

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

Standard X-ray Diffraction Powder Patterns

QC 100 U556 No.25-14 1977

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions:

Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Laboratory Astrophysics² — Cryogenics² — Electromagnetics² — Time and Frequency².

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials, the Office of Air and Water Measurement, and the following divisions:

Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services developing and promoting the use of available technology; cooperates with public and private organizations in developing technological standards, codes, and test methods; and provides technical advice services, and information to Government agencies and the public. The Institute consists of the following divisions and centers:

Standards Application and Analysis — Electronic Technology — Center for Consumer Product Technology: Product Systems Analysis; Product Engineering — Center for Building Technology: Structures, Materials, and Safety; Building Environment; Technical Evaluation and Application — Center for Fire Research: Fire Science; Fire Safety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus wthin the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consist of the following divisions:

Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE OF EXPERIMENTAL TECHNOLOGY INCENTIVES PROGRAM seeks to affect public policy and process to facilitate technological change in the private sector by examining and experimenting with Government policies and practices in order to identify and remove Government-related barriers and to correct inherent market imperfections that impede the innovation process.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Standards — Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

² Located at Boulder, Colorado 80302.

Standard X-ray Diffraction Powder Patterns Section 14—Data for 68 Substances

Monograph 10.25-16

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Johan H. de Groot, and Rainer Newberry

Joint Committee on Powder Diffraction Standards

Camden R. Hubbard and Simon J. Carmel

Institute for Materials Research National Bureau of Standards Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology

U. S. NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Director

Issued September 1977

Library of Congress Catalog Card Number: 53-61386

National Bureau of Standards Monograph 25

Section 14-Data for 68 Substances
Nat. Bur. Stand. (U.S.), Monogr. 25-Sec. 14, 143 pages (Sept. 1977)
CODEN: NBSMA6

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1977

CONTENTS

	Page		Page
Introduction	1	Chromium cobalt silicide,	
5		Co ₉ Cr ₁₅ Si ₆	62
Experimental patterns:		Cobalt copper tin, CoCu ₂ Sn	64
The second secon		Cobalt gallium hafnium, Co ₂ GaHf	65
Ammonium iron chloride hydrate,	7	Cobalt gallium niobium, Co ₂ GaNb	66 67
(NH ₄) ₂ FeCl ₅ ·H ₂ O	7	Cobalt germanium, Co3Ge2	67
Ammonium potassium iron chloride hydrate (kremersite),		Cobalt germanium hafnium, Co ₁₆ Ge ₇ Hf ₆	69
(NH ₄ ,K) ₂ FeCl ₅ ·H ₂ O	8	Cobalt germanium niobium,	0,5
Ammonium strontium chromium oxide,	Ü	Co ₁₆ Ge ₇ Nb ₆	71
(NH _L) ₂ Sr (CrO _L) ₂	9	Cobalt germanium tantalum,	, -
Barium vanadium oxide, Ba ₃ (VO ₄) ₂	10	ColeGe7Ta6	73
Calcium iodate (lautarite),		Cobalt hafnium tin, Co ₂ HfSn	75
Ca(IO ₃) ₂	12	Cobalt holmium, Co ₂ Ho	76
Calcium iodate hydrate,		Cobalt iron sulfide, CogFeSg	77
Ca(IO ₃) ₂ •6H ₂ O	13	Cobalt iron vanadium,	
Cesium iron chloride hydrate,		Co4.35Fe13.47V12.18	79
Cs ₂ FeCl ₅ •H ₂ O	14'	Cobalt manganese silicide, Co2MnSi.	81
Copper phosphate, Cu(PO ₃) ₂	15	Cobalt molybdenum, Co ₃ Mo	82
Lead chromium oxide, Pb ₂ CrO ₅	16	Cobalt phosphide, CoP	83
Lead hydrogen arsenate (schultenite),		Cobalt phosphide, CoP3	85
PbHAsO ₄	18	Cobalt plutonium, CoPu2	87
Lithium silicate, Li ₂ SiO ₃	19	Cobalt plutonium, CoPu6	89
Lithium tantalum oxide, LiTaO3	20	Cobalt plutonium, Co ₂ Pu	91
Manganese phosphate, Mn(PO ₃) ₂	21	Cobalt plutonium, Co ₃ Pu	92
Nickel phosphate, Ni(PO ₃) ₂	22	Cobalt plutonium, Co ₁₇ Pu ₂	94
Potassium barium chromium oxide,		Cobalt praseodymium, Co ₂ Pr	97
K ₂ Ba (CrO ₄) ₂	23	Cobalt rhodium sulfide, CogRhSg	98
Potassium barium molybdenum oxide,	2.4	Cobalt ruthenium sulfide, CogRuSg	100
K ₂ Ba (MoO ₄) 2	24	Cobalt tantalum silicide,	100
Potassium calcium sulfate hydrate	25	ColeTaeSi7	102
(syngenite), K ₂ Ca(SO ₄) ₂ ·H ₂ O Potassium iron chloride hydrate	25	Cobalt titanium silicide,	104
(erythrosiderite), K ₂ FeCl ₅ •H ₂ O	27	Co ₁₆ Ti ₆ Si ₇ Diazepam, C ₁₆ H ₁ 3ClN ₂ O	104
Potassium lead chromium oxide,	2,	(N,N) -Dimethyltryptamine, $C_{12}H_{16}N_2$.	109
K ₂ Pb (CrO ₄) 2	28	Methapyrilene hydrochloride,	103
Potassium lead molybdenum oxide,		C ₁ 4H ₂ 0ClN ₃ S	112
K ₂ Pb (MoO ₄) ₂	29	Silicon nitride, β -Si ₃ N ₄	116
Potassium lead sulfate (palmierite),		Vanadium sulfide, α -V ₃ S	118
K_2 Pb (SO ₄) ₂	30	Vanadium sulfide, β -V ₃ S	120
Potassium strontium sulfate			
(kalistrontite), K ₂ Sr(SO ₄) ₂	31	Cumulative indices:	
Rubidium barium chromium oxide,		(Circular 539, Volumes 1-10 and	
Rb ₂ Ba (CrO ₄) ₂	32	Monograph 25, Sections 1-14 inclusive)	
Rubidium iron chloride hydrate,			
Rb ₂ FeCl ₅ ·H ₂ O	33	1. Inorganic	123
Rubidium lead chromium oxide,	2.4	2. Organic	136
Rb ₂ Pb (CrO ₄) ₂	34	3. Mineral	137
Sodium magnesium sulfate hydrate	35		
(loeweite), Na ₁₂ Mg ₇ (SO ₄) ₁₃ •15H ₂ O Sodium manganese sulfate hydrate,	33		
Na ₁₂ Mn ₇ (SO ₄) ₁₃ ·15H ₂ O	37		
Ma12/11/ (504/13 10M201111111111111111111111111111111111	3,		
Calculated patterns:			
Acetanilide, C ₆ H ₅ NHCOCH ₃	38		
Allobarbital, $C_{10}H_{12}N_{2}O_{3}$	41		
Calcium carbonate (aragonite),			
CaCO ₃	44		
Calcium oxide (lime), CaO	49		
Cerium zinc, CeZn3	50		
Cerium zinc, CeZn ₅	53		
Cerium zinc, Ce ₂ Zn ₁₇	55		
Cesium cerium chloride, Cs ₂ CeCl ₆	58		
Chlorpromazine, ClaHtoClNoS	60		

ERRATA

A book has been published containing card images of NBS Standard X-ray Diffraction Powder Patterns¹. During preparation of the book, some errors were found and corrected on the card images. A list of them is available on request. The corrections below are in addition to those included on the card images.

Circular 539

- Vol. 1, p. 67 Density should be 2.749 g/cm^3
 - 1, p. 78 In the test for chemical analysis, the word should be "thiocyanate."
 - 2, p. 28 Previous erratum (Mono. 25, Sec. 5) changed the space group to Ia3. Change also the following indices: for d = 2.068, 1.808, 1.491, 1.1646, and 1.1110, use hkl = 431, 433, 543, 833, and 851 respectively.
 - 3, p. 27 Prévious erratum (Mono. 25, Sec. 5) changed the space group to Ia3. Change also the following indices: for d = 1.9301, 1.6885, and 1.3924, use hkl = 431, 433, and 543 respectively.
 - 4, p. 67 In the lattice constants, the NBS values for "b" and "c" should be interchanged. Because "b" and "c" are so nearly equal, a few indices may also need to be changed.
 - 5, p. 30 At hkl = 321, "d" should be 1.4479. At hkl = 631, "d" should be 0.7987.
 - 6, p. 41 Delete "CdI2-type structure." Insert "K2GeF6 is used as a structure type."
 - 10, p. 4 Formula in title should be AlPO4.

Monograph 25

- Sec. 5, p. 11 At hkl = 002, d should be 4.401.
 - 11, p. 39 Add this structural information: "The cubic cell given with $Z = \frac{1}{2}$ is a pseudo-cell. The true cell with Z = 1 has random voids in the Hg position."
 - 12, p. iii The formula for magnesium titanium oxide should be Mg2TiO4.
 - 12, p. 42 The text and the references at the end should both have the year 1975 for the reference to McMurdie et al.
 - 13, p. 26 At d = 1.648, the hkl's should be $\overline{442,530}$.
 - 13, p. 36 At d = 2.423, the intensity should be 20.
 - 13, p. 79 Density should be 8.605.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

The following copies may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia, 22161. Where these publications are identified with a number, it must be used in ordering. They are available in hardcopy or microfiche; the price is not fixed and will be furnished on request.

Also, until the present supply is exhausted, the publication numbers marked by an asterisk are for sale from the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402. Order Sections 11, 12, and 13 respectively, by catalog no. SN 003-003-01234-3, \$1.55; SN 003-003-01376-5, \$1.50; or Cl3.44:25/Sec. 13, \$1.80. (Add 25% additional for other than U. S. mailing).

Circular 539, Volume 1	NBS Publication	1	Number	NBS Publication	on		Numb	er
*Section 13	Volume 2. Volume 3. Volume 4. Volume 5. Volume 6. Volume 7. Volume 8. Volume 9.		178 903 178 904 178 905 178 906 178 907 178 908 178 909 178 910	,	Section Section Section Section Section Section Section Section *Section	2	178 178 194 72-5 72-5 74-5	872 0002 1079 0183

Powder Diffraction Data from the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards (1976). (The Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 19081, \$150.00).

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 14. --- Data for 68 Substances

by

Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, and Johan H. de Groot Assisted by Rainer J. Newberry* Joint Committee on Powder Diffraction Standards

and

Camden R. Hubbard and Simon J. Carmel National Bureau of Standards

Standard x-ray diffraction patterns are presented for 68 substances. Twenty-seven of these patterns represent experimental data and 41 are calculated. The experimental x-ray powder diffraction patterns were obtained with an x-ray diffractometer. All d-values were assigned Miller indices determined by comparison with computed interplanar spacings consistent with space group extinctions. The densities and lattice constants were calculated and the refractive indices were measured whenever possible. The calculated x-ray powder diffraction patterns were computed from published crystal structure data. Both peak height and integrated intensities are reported for the calculated patterns.

Key words: Crystal structure; integrated intensities; lattice constants; peak intensities; powder patterns; reference intensities; standard; x-ray diffraction.

INTRODUCTION

The Powder Diffraction File is a continuing compilation of diffraction patterns gathered from many sources. Produced and published by the Joint Committee on Powder Diffraction Standards, 1 the File is used for identification of crystalline materials by matching d-spacings and diffraction intensity measurements. Under the partial sponsorship of the Joint Committee, the program at the National Bureau of Standards contributes new data to this File. Our work also aids in the evaluation and revision of published x-ray data and in the development of diffraction techniques. This report presents information for 68 compounds (27 experimental and 41 calculated patterns), and is the twenty-fourth of the series of "Standard X-ray Diffraction Powder Patterns."

EXPERIMENTAL POWDER PATTERNS

Sample. The samples used to make NBS patterns were obtained from a variety of sources or were prepared in small quantities in our laboratory. Appropriate annealing or recrystallization of the sample improved the quality of most of the patterns. A check of phase purity was provided by indexing the x-ray pattern.

Optical data. In some cases, optical measurements were made by grain immersion methods, in white light, using oils standardized in sodium light, in the refractive index range 1.49 to 2.1 [Hartshorne and Stuart, 1970].

The names of the sample colors were selected from the ISCC-NBS Centroid Color Charts [1965].

Interplanar spacings. For spacing determinations, a shallow holder was packed with a sample mixed with an internal standard (approximately 5 wt. percent tungsten powder). If tungsten lines were found to interfere with sample lines, silver or silicon was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used. To avoid errors associated with aberrations at the very top of peaks, the readings of 20 were taken at positions about 20 percent of the way down from the top, and in the center of the peak width. The internal standard correction for each region was then applied to the measured value of 20. We have reported all data as $K\alpha_1$ peaks because the internal standard corrections for all regions were established in terms of the Ka1 wavelength.

^{*}Present address: c/o Geology Dept., Stanford Univ., Stanford, Calif. 04305

¹Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, PA. 19081. This Pennsylvania non-profit corporation functions in cooperation with the American Ceramic Society, the American Crystallographic Association, the American Society for Testing and Materials, The Clay Minerals Society, The Institute of Physics, the Mineralogical Association of Canada, the Mineralogical Society of America, The Mineralogical Society of Great Britain and Ireland, the National Association of Corrosion Engineers, and the Société Française de Minéralogie et de Cristallographie.

²See previous page for other published volumes.

The internal standards used were of high purity (99.99%). The lattice constants used for them at 25 °C are given in the table below; the 2θ angles were computed using cell dimensions uncorrected for index of refraction.

	Calculated 20	Angles, $CuKa_1$	$\lambda = 1.540598\mathring{A}$
hkl	W a=3.16524Å ±.00004	Ag a=4.08651Å ±.00002	Si a=5.43088Å ±.00004
110	40.262		
111		38.112	28.443
200	58.251	44.295	
211	73.184		
220	86.996	64.437	47.303
310	100.632		
311	100.032	77.390	56.123
222	114.923	81.533	30.123
321	131.171	01.555	
400	153.535	97.875	69.131
331		110.499	76.377
420		114.914	
422		134.871	88.032
511,	/333	156.737	94.954
440			106.710
531			114.094
620			127.547
533			136.897
444			158.638

The new internal standard Si powder is available as Standard Reference Material 640 [1974]. The lattice constant for the Si was refined from multiple powder data measurements made with tungsten as an internal standard [Swanson et al., 1966]. Cell parameter data were also collected for a single crystal from the boules ground to prepare the powder. The lattice parameters from the two methods agreed within 3 parts in 10⁵ [Hubbard et al. 1975]. D-spacing results using SRM 640 will be in agreement with patterns recorded in this series of monographs since 1966.

All of our spacing measurements were recorded at 25 \pm 1 °C on a diffractometer equipped with a focusing graphite or lithium fluoride crystal monochromator located between the sample and the scintillation counter. Pulse height discrimination was used as well. All measurements were performed using copper radiation: λ (CuK α ₁, peak)=1.540598Å [Deslattes and Henins, 1973].

Structure, lattice constants. The space groups were listed with short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography, Vol. I [1952].

Orthorhombic cell dimensions were arranged according to the Dana convention b>a>c [Palache et al., 1944]. Monoclinic and triclinic lattice constants were transformed if necessary in order to follow the convention of Crystal Data [1973]. For primitive cells, the transformed cell axes are an alternate labelling of the reduced cell

axes. For centered monoclinic cells, the transformed cell is the centered cell with the three shortest non-coplanar vectors.

A computer program [Evans et al., 1963] assigned hkl's and refined the lattice constants. Cell refinement was based only upon $2\theta_{\rm obs}$ values which could be indexed without ambiguity. program minimized the value $\Sigma(\theta_{obs}-\theta_{calc})^2$ estimated standard deviations (e.s.d.'s) of the reciprocal cell parameters were determined from the inverse matrix of the normal equations: The program calculated the e.s.d.'s of the direct cell constants by the method of propagation of errors. Since 1973, the e.s.d.'s derived by the computer program have been increased by 50% in order to reflect more truly the uncertainty in the lattice constants. A similar increase should also be applied to all lattice constants in earlier publications of this series. In indexing cubic patterns, multiple hkl's were not utilized in the refinement or reported. Instead, the single appropriate index having the largest h was listed. The number of significant figures reported for d-values varied with the symmetry and crystallinity of each sample.

Densities. These were calculated from the specified lattice constants, the Avogadro number 6.0220943 x 10²³ [Deslattes et al., 1974] and atomic weights published by IUPAC [1972].

Intensity measurements. It was found that samples which gave satisfactory intensity patterns usually had an average particle size smaller than 10 μm , as recommended by Alexander et al. [1948]. In order to avoid the orientation effects which occur when powdered samples are packed or pressed, a sample holder was made that had in its top face a rectangular cavity which extended to one end of the holder. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall (see Figure 1), and the powdered sample was allowed to drift into the end opening while the holder was held in a vertical

position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample could be exposed to the x-ray beam (as shown in Figure 2). If the sample powder did not flow readily, or was prone to orient excessively, approximately 50 volume percent of finely ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the strongest line. Any intensity larger than 20 was rounded to the nearer multiple of 5. At least 3 patterns for intensity measurements were prepared for each sample to check reproducibility.

Reference Intensity Ratio, I/I_{COYUNDUM}. The reference intensity ratio, I/I_c, has been defined as the direct ratio of the intensity of the strongest reflection of a sample, to the intensity of the reflection 113(hexagonal) of corundum [Visser and de Wolff, 1964]. The ratio is tabulated for copper K α radiation, for a 1:1 mixture by weight of the sample and corundum.

A new procedure has been adopted, to achieve greater statistical accuracy [Hubbard and Smith, 1977]. For any weight fractions of sample and corundum, x and x (x = 1-x), intensities I(h) and I(k) are measured for several sets of reflections h and k, usually within the same region of 20, to provide indications of possible preferred orientation, extinction, or other systematic errors. The reference intensity ratio is then given by

$$\frac{I(\underline{h}_0)}{I_c(113)} = \frac{x_c}{x_s} \cdot \frac{I_c^{rel}(\underline{k})}{I^{rel}(\underline{h})} \cdot \frac{I(\underline{h})}{I(\underline{k})}$$

and $(\underline{h_0})$ indicates specifically which reflection was chosen for tabulation purposes. For each of our patterns, the reflection $(\underline{h_0})$ will be the one with I=100 since only copper radiation was used. Typically, at least 3 sets of reflections and 2 mountings of the mixture were used to obtain 6 or more values for the reference intensity ratio, I/I_c. These values yield the tabulated average

 $\langle {\rm I/I_C} \rangle.$ From these data, an estimated standard deviation, Δ , (given in parentheses), was obtained from

$$\Delta = \frac{\sum_{i=1}^{n} |(i/i_c)_i - \langle i/i_c \rangle|}{n}$$

where n is the number of measurements of the reference intensity ratio.

CALCULATED POWDER PATTERNS

Since some substances of interest are not readily available for experimental work, powder patterns were calculated from published crystal structure data. The FORTRAN program used for the computations was developed by Clark, Smith and Johnson [1973] and modified at NBS.

Lattice parameters. Before the computations of the patterns, any necessary changes were made in the lattice constants in order to make them consistent with the revised value of $\lambda (\text{CuK}\alpha_1) = 1.540598 \text{Å}$ [Deslattes and Henins, 1973]. Both the altered and the original published values are given. A lattice constant arrangement which follows the conventions of Crystal Data has been referred to as the "CD cell." In several of the calculated patterns, the literature lattice constants, the atom positions, and hence the final patterns were not given in the CD arrangement. For cross-reference purposes, the CD cell was calculated separately and included in the text.

Scattering factors. Whenever possible, the same scattering factors were used which the author of the reference article specified. Otherwise, the factors were taken directly from the International Tables for X-ray Crystallography, Vol. III, [1962]. The factors were corrected for dispersion if the author had done so.

Thermal parameters. The computer program used thermal parameter data of only two forms, the isotropic B's or the anisotropic β ; in the following expressions:

$$e^{(-B \sin^2\theta)/\lambda^2}$$

or

$$e^{-(h^2\beta_{11}+k^2\beta_{22}+\ell^2\beta_{33}+2hk\beta_{12}+2h\ell\beta_{13}+2k\ell\beta_{23})}$$
.

Other thermal parameters were converted to one of these two forms. The isotropic parameters were used directly, if given by the structure reference. In a few of our patterns, anisotropic parameters were also used directly as given by the structure reference; in other work, instead of using given anisotropic parameters, approximately equivalent isotropic values were substituted as defined by:

$$B = 4 \left[\frac{\beta_{11}\beta_{22}\beta_{33}}{a^{*2}b^{*2}c^{*2}} \right]^{\frac{1}{3}}$$

Structural information. The atom positions used in these calculated patterns varied somewhat in the degree of reliability. In our text, when the expression "the structure was determined by..." was used, the atomic parameters in the reference cited had been calculated from refinement of single crystal data. Otherwise, the atomic positions had been derived by analogy with similar compounds whose structure was known. In cases where isostructural relationships were used, the atoms were in fixed special positions or the ionic radii were closely related to the corresponding radii of the atoms in the known structure.

Integrated intensities. The theoretical integrated intensity of reflection i on the "absolute/relative" scale is computed from the right hand side of the equation:

$$\frac{I_{i}^{abs}}{K} = \frac{M_{i} Lp_{i} |F_{i}T_{i}|^{2}}{2UV^{2}}$$

where:

F is the structure factor
T is the thermal correction

 $Lp = \frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta}$ is the Lorentz-polarization term

M is the multiplicity for the reflection i

μ is the linear absorption coefficient

V is the volume of the unit cell

When the largest integrated intensity was assigned a relative value of 100 and all other reflections were scaled relative to it, the intensities were placed on the relative intensity scale (I^{rel}). Relative intensities were rounded to the nearest integer value before being listed, and reflections with I^{rel} less than 0.7 were omitted.

Scale factor (integrated intensities). The scale factor, γ , was defined to convert the tabulated I^{rel} to the "absolute/relative" scale [Hubbard, Evans and Smith, 1976]. That is:

$$\gamma = \frac{\text{M'Lp'}|\text{F'T'}|^2}{200\mu\text{V}^2}$$

and

$$\frac{I^{abs}}{K} = \gamma I^{rel}$$

The primes denoted the values for the largest integrated intensity. In earlier Monographs (1969-1975), a different scale factor, $k_{\rm NBS}$, was reported which is related to γ :

$$\frac{\gamma}{k_{\text{NBS}}} = \frac{1}{2\mu V^2}$$

From γ , the theoretical value of the Reference Intensity Ratio, I/I , was calculated:

$$\text{I/I}_{\text{C}} = \frac{\mu \gamma \rho_{\text{C}}}{\mu_{\text{C}} \gamma_{\text{C}} \rho}$$

where ρ is the density and the subscript c represents corundum (α -Al₂O₃).

For refined structures, the value of $I/I_{\rm C}$ was given. For those phases whose structures were postulated or were based only on analogy to other powder patterns, $I/I_{\rm C}$ was not included and any intensity above 20 was rounded further, to the nearer multiple of 5.

 $\mbox{I/I}_{\mbox{\scriptsize C}}$ and γ are each based on the single strongest reflection, not on the overlapping sum of superimposed reflections.

Peak intensities. The purpose of calculating peak intensities was to provide a tabulated pattern similar to what might be obtained from experimental diffractometer measurements. For each predicted reflection, Cauchy profiles centered at both the α_1 and the α_2 peak positions were calculated and summed, forming a simulated powder pattern. The full width at half-maximum (FWHM) was allowed to vary to represent the changing FWHM as a function of 2θ . [The values of the FWHM vs 2θ are given in the table below]. The resultant simulated powder pattern was then analyzed for peaks. In the regions of the predicted reflections several reflections could have identical or similar 20 angles and produce only one composite peak in the simulated pattern. The 20 angle of the composite peak was assigned the hkl of the reflection having the greatest contribution to the peak intensity. If any other peak contributed more than 10% of the intensity toward the composite peak intensity, a plus sign (+) was appended to the hkl. Peaks due solely to α_2 lines were omitted. If an α_1 peak and an α_2 peak overlapped, the α_1 reflection was listed only when it contributed a significant intensity (>10%) at the peak 2θ .

The peak search routine located peaks only at 2θ angles which were a multiple of 0.02°.

2θ CuKα ₁	FWHM	2θ CuKα _l	FWHM
0° 20 40 60 80 100 120	0.12° .12 .12 .125 .130 .135 .155 .185	140 145 150 155 160 162.5 165	0.230 .255 .285 .315 .360 .410

- Alexander, L., Klug, H. P. and Kummer, E. (1948). J. Appl. Phys., 19, No. 8, 742.
- Clark, C.M., Smith, D.K., and Johnson, G.G., Jr. (1973). A FORTRAN IV Program for Calculating X-ray Powder Diffraction Patterns, Version 5, Dept. of Geosciences, Pennsylvania State Univ., University Park, PA 16802.
- Crystal Data (1973). (3rd. Ed. Published jointly by the U. S. Department of Commerce, National Bureau of Standards, Washington, D. C. 20234, and the Joint Committee on Powder Diffraction Standards, Swarthmore, PA 19081).
- Deslattes, R.D. and Henins, A. (1973). Phys. Rev. Lett. 31, 972.
- Deslattes, R. D., Henins, A., Bowman, H. A., Schoonover, R.M., Carroll, C.L., Barnes, I.L., Machlan, L.A., Moore, L. J., and Shields, W.R. (1974). Phys. Rev. Lett. 33, 463.
- Evans, H.T., Jr., Appleman, D. E. and Handwerker, D.S. (1963), Report #PB 216188, U. S. Dept. of Commerce, National Technical Information Center 5285 Port Royal Rd., Springfield, VA 22151, \$3.50.
- Hartshorne, N.H. and Stuart, A. (1970). Crystals and the Polarizing Microscope (Edward Arnold and Co., London, 4th Ed.)
- Hubbard, C. R., Evans, E. H., and Smith, D. K. (1976). J. Appl. Cryst., 9, 169.
- Hubbard, C. R. and Smith, D. K. (1977). Advances in X-ray Analysis, 20, (to be published).

- Hubbard, C. R., Swanson, H. E., and Mauer, F. A. (1975). J. Appl. Cryst. 8, 45.
- International Tables for X-ray Crystallography, I
 (1952). (The Kynoch Press, Birmingham, Eng.),
 Ibid. III (1962). Pgs. 202, 210, 213, 214.
- International Union of Pure and Applied Chemistry
 (1972). Pure Appl. Chem. 30, Nos. 3-4, 639.
- ISCC-NBS Centroid Color Charts, SRM 2106 (1965), obtainable from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$5.00 per set.
- Palache, C., Berman, H. and Frondel, C. (1944).

 Dana's System of Mineralogy (John Wiley and Sons, New York, 7th Ed.), I, 6.
- Standard Reference Material 640, Silicon Powder, X-ray Diffraction Standard, obtainable from the Office of Standard Reference Materials, Room B311, Chemistry Building, National Bureau of Standards, Washington, D.C. 20234. \$52.00 per 10 gram unit.
- Swanson, H. E., Morris, M. C., and Evans, E. H.
 (1966). Nat'l Bur. Std. U.S. Monograph 25,
 Sec. 4, 3.
- Visser, J.W. and de Wolff, P.M. (1964). "Absolute Intensities," Report 641.109, Technisch Physische Dienst, Delft, Netherlands.

The sample was prepared by slow evaporation at room temperature of an acid aqueous solution of NH₄Cl and FeCl₃.

Color

Deep reddish orange

Optical Data

Biaxial (+), $N_{\alpha} = 1.755$, $N_{\beta} = 1.77$, $N_{\gamma} = 1.82$. 2V is large.

Structure

Orthorhombic, Pmnb (62), Z=4, isostructural with K₂FeCl₅·H₂O (erythrosiderite) [Bellanca, 1947]. The structure of (NH₄)₂FeCl₅·H₂O was determined by Lindqvist [1946, 1948].

NBS lattice constants of this sample:

a = 9.925(3)Ab = 13.713(3)

c = 7.039(2)

Volume . 957.9 Å³

Density

(calculated) 1.991 g/cm³

Reference intensity

 $I/I_{corundum} = 0.8$

References

3.426

3.410

₩.082

17

Bellanca, A., (1947). Ric. Sci. Ricostr. <u>17</u>, 1360. Lindqvist, I., (1946). Ark. Kemi Mineral. Geol. A24, No. 1.

Lindqvist, I., (1948). Acta Chem. Scand. 2, 530.

 $CuK\alpha_1 \lambda = 1.540598 A; temp. 25±1 °C$

Inte	rnal standar	d Ag, a = 4.0	8651 A
d(A)	I	hkl	20 (°)
6.26	8	011	14.13
5.74 5.64	100 95	101 120	15.43 15.71
5.29 4.96	9 60 _.	111 200	16.73 17.87
4.92	80	021	18.03
4.39	5 6	121 220	20.19 22.13
3.836 3.579	12 5	031 131	23.17 24.86
3.515	5	002	25.32
3.492	4	221	25.49

040

012

041

0			20/2
d(A)	I	hkl	20 (°)
3.034	18	231	29.42
2.989	25	122	29.87
2.983	25	320	29.93
2.945	12	141	30.32
2.869	35	202	31.15
2.820	95	240	31.70
2.812	85	212	31.80
2.787	65	032	32.09
2.742	4	321	32.63
2.685	5	132	33.34
2.648	5	222	33.83
2.617	4	241	34.24
2.557	4	051	35.07
2.481	65	400	36.17
2.456	50	042	36.55
2.432	4	232	36.93
2.382	5	142,340	37.73
2.313	11	013	38.91
2.308	9	411	38.99
2.227	4	160	40.47
2.214	20	421	40.73
2.202	12	242	40.96
2.174	11	061	41.50
2.163	15	052	41.73
2.114	13	152	42.73
2.082	11	431	43.42
2.042	19	133	44.32
1.991	6	261	45.53
1.984	4	252	45.68
1.932	7	441	46.99
1.907	10	520	47.66
1.881	8	162,360	48.34
1.854	25	171,432	49.10
1.811	6	352	50.34
1.782	7	053	51.22
1.764	5	271	51.78
1.745	25	442,014	52.40
1.7180	13	540	53.28
1.7150	8	512,080	53.38
1.6915	8	413	54.18
1.6696	6	541	54.95
1.6654	5	081	55.10
1.6429	8	181,034	55.92
1.6346	8	461	56.23
1.6304	9	452	56.39
1.6201	6	280,134	56.78
1.5434	5	542,314	59.88

25.99

26.11

28.95

The sample was prepared by slow evaporation at room temperature of a l:l:l molar aqueous solution of NH $_4$ Cl, KCl and FeCl $_3$. The first crystals formed were used. From a plot of the cell parameters of the end members of the solid solution series, this sample was determined to be close to a l:l molar ratio of NH $_4$ to K. This is similar to the reported analysis of the natural mineral, kremersite, from Mt. Vesuvius [Palache et al., 1951].

Color

Deep reddish orange

Structure

Orthorhombic, Pmnb (62), Z=4, isostructural with K_2 FeCl $_5 \cdot H_2$ O and (NH $_4$) $_2$ FeCl $_5 \cdot H_2$ O. The structure of K_2 FeCl $_5 \cdot H_2$ O was determined by Bellanca[1947].

NBS lattice constants of this sample

a = 9.808(3)Ab = 13.657(4)

c = 7.028(2)

Volume

941.4

Density

(calculated) 2.175 g/cm³.

Reference Intensity

I/I = 1.2

References

Bellanca, A. (1947). Ric. Sci. Ricostr. 17, 1360. Palache, C., Berman, H., and Frondel, C. (1951).

Dana's System of Mineralogy (John Wiley & Sons, New York, 7th Ed.) pg. 101.

$CuK\alpha_1 \lambda = 1.540598 \text{ Å};$	temp. 25±1 °C
Internal standard Si,	a = 5.43088 A

	Internal sta	indard Si, a =	5.43088 A
d (A)	I	hkl	20 (°)
5.72	80	101	15.48
5.61	55	120	15.78
5.270	7	111	16.81
4.900		200,023	
3.820	6	031	23.27
3.464	1 7	221	25.70
3.41		040	26.10
3.070		041	29.06
3.016		231	29.60
2.966		301	30.11
2.95	l 9	320	30.26
2.85		202	31.28
2.800		240	31.93
2.794		212	32.00
2.783			32.14
		032	J2 • 2 ·
2.60	1 4	241	34.45
2.548	3	051	35.20
2.45		400,042	
2.374		142	37.86
2.310	9 4	013	38.95
2.27	7 2	060	39.54
2.19	11	421,242	41.16
2.15	7 12	052	41.84
2.106	5 9	152	42.91
2.038	3 14	133	44.41
1.889	7	501	48.14
1.839		432	49.54
1.800		352	50.66
1.798		243	50.74
1.779	9 4	053	51.33
1.74	2 7	014	52.49
1.73		442	52.79
1.658		081	55.35
1.654		204	55.51
1.619		452	56.81

1.662

1.651

1.619

1.604

1.554

1.5481

1.4682

1.4392

1.4319

6

5

4

3

2

2

3

5

11

Sample

The sample was precipitated by adding a strong solution of $SrCl_2$ to one of $(NH_4)_2CrO_4$, following the method of Schwarz [1966]. This material gave somewhat broad peaks which suggest that the compound may be of lower symmetry.

Color

Dark orange yellow

Structure

Hexagonal, R3m(166), Z = 3, isostructural with $Sr_3(PO_4)_2$ and many other double chromates and sulfates [Schwarz, 1966]. The structure of $(NH_4)_2Pb(SO_4)_2$ was studied by Møller [1954].

NBS lattice constants of this sample:

a = 5.758(1) A c = 22.027(4)

Volume 632.3 Å³

Density

(calculated) 2.802 g/cm³

Reference intensity

 $I/I_{corundum} = 2.2(3)$

Additional pattern

1. PDF card 19-70 [Schwarz, 1966].

References

Møller, C. K., (1954). Acta Chem. Scand. <u>8</u>, 81. Schwarz, H., (1966). Z. Anorg. Allg. Chem. <u>345</u>, 230.

$CuK\alpha_1 \lambda = 1.540598 \text{ A; temp. } 25\pm1 \text{ °C}$				
Inte	rnal standa	ard Ag, a = 4.086	551 Å	
d(A)	I	hkl	20(°)	
7.345	60	003	12.04	
4.868	5	101	18.21	
4.546	45	012	19.51	
3.696	10	104	24.06	
3.672	6	006	24.22	
3.300	100	015	27.00	
2.881	60	110	31.02	
2.680	30	113	33.41	
2.662	13	107	33.64	
2.434	4	202	36.90	
2.411	2	018	37.26	
2.271	8	024	39.65	
2.266	9	116	39.75	
2.169	20	205	41.61	
2.015		1.0.10	44.95	
2.015	20	1,0,10	44.95	
1.955	2	027	46.42	
1.857	6	0.1.11,122	49.01	
1.848	11	208	49.26	
1.836	6	0.0.12	49.61	
1.783	2	214	51.19	
1.732	11	125	52.81	

300

0.2.10

303,217

1.0.13

128

1.1.12

0.0.15

2.1.10

220

55.23

55.63

56.81

57.40

59.41

59.68

63.29

64.72

65.09

Prepared by heating stoichiometric amounts of $BaCO_3$ and V_2O_5 at 825 °C, regrinding and reheating at 860 °C for $1\frac{1}{2}$ hours, grinding again and heating on Méker burner (~ 1100 °C) for 10 minutes to improve crystallization.

Color

Colorless

Structure

Hexagonal, R3m(166), Z = 3, isostructural with $Sr_3(PO_4)_2$. The structure was determined by Zachariasen [1948] and refined by Süsse and Buerger [1970].

NBS lattice constants of this sample:

$$a = 5.7845(2)$$
 A $c = 21.317(1)$

Volume . 617.73 Å³

Density

(calculated) 5.176 g/cm³

Reference intensity

 $I/I_{corundum} = 4.7(4)$

Additional patterns

- 1. PDF card 19-144 [Lubin & Rittershaus, Gen'l. Tel. and Electronics, N.Y. (1966)].
- 2. PDF card 25-1192 [Smith et al., 1974].
- 3. Zachariasen [1948].

References

Smith, D. K., et al., (1974). Annual Report to the Joint Committee on Powder Diffraction Standards.

Süsse, P., and Buerger, M. J., (1970). Z. Kristallogr. 131, 161.

Zachariasen, W. H., (1948). Acta Crystallogr. 1, 263.

CuK α_1 λ = 1.540598 A; temp. 25±1 °C

Internal standard W, a = 3.16524 Å

d(Å)	I	hkl	20(°)
7.09	4	003	12.47
4.878			
		101	18.17
4.537		012	19.55
3.651		104	24.36
3.247	100	015	27.45
2.893	75	110	30.88
2.487		021	36.09
2.439		202	36.82
2.369			
		009	37.95
2.353	3	018	38.22
2.267	11	024	39.72
2.243	6	116	40.17
2.160	40	205	41.79
1.962		1.0.10	46.24
1.934		027	46.95
1,000	•	027	40.55
1.886		211	48.20
1.833		119	49.71
1.785	3	214	51.14
1.731	. 25	125	52.85
1.670	13	300	54.92
7 404	7.0		56.44
1.624		0.2.10	56.64
1.543		128	59.90
1.511	. 2	306	61.30
1.457	4	0.1.14	63.85
1.446	10	220	64.38
1.421	. 4	0.0.15	65.66
1.416		2.1.10	65.92
1.386			
		131	67.53
1.364		309	68.73
1.344	15 1	134	69.91
1.320	9	315	71.35
1.301	.0 2	2.0.14	72.61
1.275		1.1.15	74.30
1.243		042	76.53
1.234	_	229	77.23
1,25			
1.232	24 2	318	77.37
1.201	.5 4	045	79.75
1.186	3	1.2.14	80.97
1.164		1.3.10	82.86
1.123		324	86.57
1.42	,3	321	00,07
1.109	6 5	235	87.93
1.094	17 4	1.0.19	89.44
1.093		410	89.59
1.082		3.0.15	90.74
1.079		4.0.10	91.01
7 0 10	\r	0.1.20	05.37
1.042		0.1.20	95.27
1.026		3.1.14	97.27
1.023		0.2.19	97.57
1.013		2 • 2 • 15	98.93
1.011	.4 7	3 • 2 • 10	99.22

Barium vanadium oxide, $Ba_3(V0_4)_2$ - (continued)

Сика1	1.54059	98 Å; temp. 25:	±1 °C
Interna	al standar	d W, $a = 3.165$	524 Å
d(Å)	I	hkl	20(°)
0.9927	2	419	101.78
.9809	2	2 • 0 • 20	103.49
.9753	2	505	104.34
.9653	4	2 • 1 • 19	105.87
.9641	4	330	106.06
.9288	4	1 • 2 • 20	112.07
.9242	3	425	112.91
.9174	2	2 • 3 • 14	114.21
.9067	2	0.5.10	116.32
.8802	2	155	122.12
.8729	1	1.3.19	123.87
.8665	1	4.1.15	125.50

The preparation was begun by adding an aqueous solution of $Ca(NO_3)_2$ to one of HIO_3 to precipitate $Ca(IO_3)_2 \cdot 6H_2O$ which was then heated at 160°C. for six hours. It was heated again in a sealed glass tube at 240°C for several hours.

Color

Colorless

Structure

Monoclinic, $P2_1/n(14)$, Z=4, distorted perovskite type. [Gossner and Mussgnug, 1930]. The structure was determined by Gossner, [1937].

NBS lattice constants of this sample:

a = 7.280(1)A b = 11.304(2)c = 7.148(1) β = 106.36(2)°

Volume 564.4 Å³

Density

(calculated) 4.588 g/cm³

Reference intensity

 $I/I_{corundum} = 2.45(4)$

Additional Patterns

 PDF card 1-386, labeled Ca(IO₃)₂ but data is for Ca(IO₃)₂·H₂O, brüggenite.

References

Gossner, B., (1937). Z. Krist. $\underline{96}$, 381. Gossner, B., and Mussgnug, F., $\overline{(1930)}$. Z. Krist. 75, 410.

$CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$				
Inter	nal standa	rd Ag, a = 4.08	8651 Å	
d (Å)	I	hkl	20(°)	
5.93	12	110	14.93	
5.866	5	011	15.09	
5.779	5	<u>ī</u> 01	15.32	
5.651	3	020	15.67	
5.139	5	ī11	17.24	
4.360	50	021	20.35	
4.037	17	$\bar{1}21,111$	22.00	
3.493	65	200	25.48	
3.428	85	002	25.97	
3.378	14	<u>2</u> 11	26.36	

	·		
d (Å)	I	hkl	20 (°)
3.336	40	210,112	26.70
3.318	30	130	
		131	26.85
3.156	100		28.25
3.001	18	221	29.75
2.931	3	022	30.47
2.885	20	202	30.97
2.840	35	131	31.48
2.795	13	212	31.99
2.726	10	211	32.83
2.703	4	112	33.12
2.619	2	140	34.21
2.582	2	231	34.71
2.560	6	230,132	35.02
2.515	8	221	35.67
2.328	2	113	38.65
			33.33
2.292 2.252	5	232	39.27
,	2	231	40.01
2.240	2	013,132	40.22
2.227	8	<u>3</u> 21	40.48
2.199	5	312	41.01
2.194	5	ī23	41.11
2.161	18	202	41.77
2.151	8	150	41.97
2.146	5	051	42.06
2.122	5	212	42.57
2.120	5	023	42.64
2.067	3	223	43.77
2.038	20	331,301	44.42
2.012	30	133,103	45.02
1.987	4	330,113	45.75
1 006		700	47.16
1.926	4	303	47.16
1.917	6	321	47.39
1.897	9	Ī52,313	47.91
1.884	9	060	48.27
1.840	3	341	49.51
1.817	12	061	50.17
1.797	12	340	50.77
1.793	14	331	50.90
1.775	15	_ 133	51.44
1.756	12	342,152	52.05
1.7500	11	412	52.23
1.7460	11	243,204	52.36
1.7255	11	410,214	53.03
1.7138	14	333	53.42
1.6863	4	213	54.36
1.6600		363	FF 10
1.6629	7	261	55.19
1.6582	8	260,162	55.36
1.6514	6	062	55.61
1.6078 1.5911	1 4	05 <u>3</u> 352,343	57.25 57.91
1.001.1	-		3,,31
1.5836	4	253,234	58.21
1.5780	5	262	58.44
1.5735	5	170,411	58.62
1.5645	4	261	58.99
1.5602	4	034,162	59.17
1.5293	1	441,421	60.49

The sample was prepared by adding an aqueous solution of $Ca(NO_3)_2$ to one of HIO_3 . The loss in weight at $160\,^{\circ}C$ indicated that it was a hexahydrate.

Color

Colorless

Optical Data

Biaxial, N =1.604, N =1.644, N =1.686, 2V is large. [Winchell and Winchell, 1964].

Structure

Orthorhombic, Fdd2 (43) from precession patterns [Perloff, 1976]. Z=6 (from agreement of experimental and calculated densities).

NBS lattice constants of this sample

a = 14.866(3)A

b = 23.015(5)

c = 6.392(1)

Volume . 2187.1A³

Density

(calculated) 2.268 g/cm²

Reference Intensity

 $I/I_{corundum} = 2.4(3)$

References

Perloff, A. (1976). Private communication.
Winchell, A. N., and Winchell, H. (1964). The
Microscopical Characters of Artificial Inorganic
Solid Substances (Academic Press, New York and
London) p. 109.

	CuK α_1	λ = 1.5405	98 Å; temp. 25	±1 °C
	Inter	nal standar	d W, a = 3.16	524 Å
	d(A)	I	hkl	20(°)
ı	5.75	50	040	15,39
ı	5.69	60	111	15.55
ı	4.65	100	131	19.04
ı	3.86	25	311	23.02
I	3.714	40	400	23.94
1	3.625	11	151	24.54
ı	3.538	5	420	25.14
	3.489	55	331	25.51
	3.406	20	260	26.14
	3.121	40	440	28.58

d (A)	I	hkl	20(°)
3.078	6	022	28.99
2.983	5	351	29.93
2.936	40	202	30.42
2.878	25	080	31.05
2.867	30	171	31.17
2.842	8	222	31.45
2.676	19	511	33.46
2.669	15	460	33.55
2.616	55	242	34.25
2.544	13	531	35.25
2.517	16	371	35.64
2.455	3	062	36.57
2.370	3	422	37.93
2.343	18	191	38.39
2.331	6	262	38.60
2.275	8	640,480	39.59
2.234	1	442	40.34
2.198	7	2.10.0	41.03
2.142	3	391	42.15
2.101	15	113	43.02
2.081	9	660	43.43
2.055	11	282	44.03
2.048	8	462	44.18
2.034	12	133	44.51
2.007	5	711	45.14
			4.5.00
1.971	11	1.11.1	46.02
1.956	7	4.10.0	46.38
1.951	19	313,731	46.52
1.930	6	622	47.05
1.917	1	0.12.0,153	47.39
1.896	4	333	47.95
1.868	9	0.10.2	48.71
1.853	25	642,482	49.12
1.846	20	751,3.11.1	49.33
1.802	2	353	50.62
1.002	-	333	30.02
1.775	11	173	51.43
1.744	4	662	52.42
1.728	4	513	52.96
1.719	3	771	53.25
1.690	6	533	54.25
1.683	8	373	54.49
1.669	7	4.10.2	54.96
1.653	6	5.11.1	55.55
1.606	8	2.12.2,2.14.0	57.34
1.599	4	004	57.61
1.566	2	931	58.95
1.562	3	880	59.11
1.549	3	224	59.65
1.532	6	573	60.37

The sample was prepared by slow evaporation at room temperature of a 2:1 molar aqueous solution of CsC1 and FeCl₃.

Color

Deep reddish orange.

Structure

Orthorhombic, Amam(63), Z=4. Perloff [1976] by single crystal study found that Cs₂FeCl₅·H₂O was isostructural with Cs₂RuCl₅·H₂O. The structure of Cs₂RuCl₅·H₂O had been determined by Hopkins et al. [1966].

NBS lattice constants of this sample:

a = 8.070(1)A b = 17.326(2) c = 7.436(1)

Volume 1039.8 Å³

Density

(calculated) 3.302 g/cm³

Reference intensity
I/I = 1.9(2)

References

Hopkins, T. E., Zalkin, A., Templeton, D. H., and Adamson, M. G. (1966). Inorg. Chem. <u>5</u>, 1431. Perloff, A. (1976). Private communication.

$CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$					
Inter	nal standar	d Ag, a = 4.08	651 Å		
d (A)	I	hkl	20 (°)		
6.83	8	011	12.95		
5.91	7	120	14.97		
5.21	4	111	17.00		
4.565	40	031	19.43		
4.335	6	040	20.47		
4.037	45	200	22.00		
3.973	100	131	22.36		
3.816	5	140	23.29		
3.719	25	002	23.91		
3.660	4	220	24.30		
3.476	12	211	25.61		
3.418	3	022	26.05		
3.143	10	122,051	28.37		
3.024	20	231	29.52		
2.950	75	240	30.27		
2.950	75	240	30.27		

d(A)	I	hkl	20 (°)
2 000		,	22.04
2.888	8	060	30.94
2.822	55	042	31.68
2.736	95 45	202	32.71
2.721	45	160	32.89
2.665	5	142	33.60
2.571	4	320	34.87
2.502	2	311	35.86
2.479	4	251	36.20
2.454	4	013	36.59
2.349	2	071,260+	38.29
2.318	20	331	38.82
2.286	4	340	39.39
2.280	5	062	39.49
2.255	11	171	39.95
2.194	25	162	41.10
2.165	13	080	41.68
2.113	4	322	42.76
2.093	3	180	43.20
2.018	12	400,053	44.89
1.984	12	233	45.70
1.968	4	360	46.08
1.934	2	411	46.94
1.908	4	280	47.62
1.872	4	082	48.60
1.859	11	004	48.97
2 045		403	40.06
1.845	6	431	49.36
1.829	3 3	440	49.82 49.99
1.823 1.804	4	182 253	50.56
1.773	8	402,124	51.51
1. 775	Ü	402,124	31.31
1.770	10	371	51.61
1.739	18	362,333	52.59
1.711	6	173	53.51
1.697	16	282,451	53.98
1.693	12	1.10.0	54.12
2 654		460	55 50
1.654	2	460	55.53
1.640	8	442	56.00
1.591	4 4	2·10·0 520	57.90 58.06
1.587 1.573	8	244	58.65
1.5/5	8	244	30.03
1.570	9	511,0.10.2	58.75
1.535	6	164	60.25
1.533	5	391	60.34
1.5207	6	093	60.87
1.5126	6	540	61.23
1 5107		422	63.24
1.5101	6	433	61.34
1.4757	4	480	62.93
1.4565 1.4088	3 6	3•10•0 560	63.86 66.29
1.4000	О	300	00.29

The sample was made by heating ${\rm CuCO_3}$ and ${\rm H_3PO_4}$ together at 760 °C for 45 minutes.

Color

Very pale green

Structure

Monoclinic, I2/a (15) or Ia (9), Z = 8, [Beucher and Grenier, 1968]. Those authors gave the cell in the settings C2/c (15) or Cc (9).

NBS lattice constants of this sample:

a = 11.584(2) A b = 8.081(2) c = 9.569(2) β = 107.91(2)°

Volume 852.3 Å³

032.3 11

Density

(calculated) 3.452 g/cm³

Reference Intensity
I/I
corundum = 1.4

Additional patterns

1. PDF card 21-998 [Ball, 1968]

2. PDF card 25-1196 [Smith et al., 1974]

References

Ball, M. C., (1968). J. Chem. Soc. (London) <u>5A</u>, 1113.

Beucher, M., and Grenier, J-C., (1968). Mater. Res. Bull. 3, 643.

Smith, D. K., et al., Annual Report to the Joint Committee on Powder Diffraction Standards, 1974.

$CuK\alpha_1$ $\lambda = 1.540598$ Å; temp. 25 ± 1 °C							
Inte	Internal standard Si, a = 5.43088 A						
d (A)	I	hkl	20 (°)				
6.52 6.046 5.507 4.565 4.205	7 55 5 20 4	110 011 200 211 202	13.56 14.64 16.08 19.43 21.11				
4.101 3.716 3.645 3.448 3.376	35 30 10 40 17	112 211 121 112 121	21.65 23.93 24.40 25.82 26.38				

d(A)	I	hkl	20(°)
2 242	50	21.0	26.64
3.343	50	310	26.64
3.259	10	220	27.34
2.912	100	222	30.68
2.841	30	013	31.46
2.783	8	321	32.14
2.756	35	400	32.46
2.727	12	$\bar{4}11$	32.82
2.617	2	130	34.23
2.447	25	222	36.69
2.423	6	$\frac{1}{2}$ 31	37.08
2.334	17	411	38.55
2.301	8	323	39.11
2.277	7	420,004	39.55
2.190	8	314	41.19
2.127	4	510	42.47
2.101	6	404	43.02
2.089	6	402	
	10	_	43.28
2.049	6	224	44.17
2.030	25	233	44.59
2.007	4	521	45.14
1.877	5	523	48.46
1.861	6	<u>2</u> 15	48.89
1.835	4	332	49.63
1.821	4	$\frac{1}{2}42$	50.05
1.779	7	233	51.32
1.738	25	512,334 +	52.61
1.735	16		52.73
1.709	6	604	53.59
1.6724	5	620	54.85
1.6663	4	611	55.07
210000			33.07
1.6378	6	343	56.11
1.6293	8	440	56.43
1.5906	8	051	57.93
1.5743	6	624	58.59
1.5600	13	235 , 215	59.18
1.5450	5	710 , 406	59.81
1.5411	4	116	59.98
1.5385	4	404	60.09
1.5204	9	541,633	60.88
1.5106	12	044	61.32
1.0100	12	044	01.32
1.4932	3	435	62.11
1.4876	7	433,152	62.37
1.4827	5	226	62.60
1.4563	9	516,444	63.87

The sample was prepared by T. Negas by heating PbO (massicot) and Cr_2O_3 together at 630-650 °C for 92 hours followed by regrinding and heating.

Color

Deep orange.

Structure

Monoclinic I2/m (12), Z=4, isostructural with Pb_2SO_5 . The structure has been studied by Ruckman et al. [1972]. These authors gave the cell in a setting in C2/m (12).

NBS lattice constants of this sample:

a = 12.728(1) A b = 5.6782(5) c = 7.1414(6) β = 95.23(1)°

Volume . 513.96 Å³

Density

(calculated) 7.061 g/cm³

Reference Intensity

1/I = 5.1(3)

Additional patterns

1. PDF card 26-832 [Ruckman et al., 1972].

· Negas [1968].

References

Negas, T., (1968). J. Am. Ceram. Soc. <u>51</u>, 716. Ruckman, J. C., Morrison, R. T. W., and Buck, R. H. (1972). J. Chem. Soc. Dalton Trans. <u>1972</u>, 426.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C

Internal standard W, a = 3.16524 Å

Internal	standard	W, $a = 3.16524$	Α
d(A)	I	hkl	2Θ (°)
6.46	16	101	13.69
6.34	16	200	13.95
5.973	12	101	14.82
5.184	2	110	17.09
4.438	13	011	19.99
		_	
3.786	9	301	23.48
3.737	4	211	23.79
3.555	3	002	25.03
3.542 3.390	6	211	25.12
3.390	100	310	26.27
3.230	15	202	27.59
3.169	1	400	28.14
2.984	80	202,112	29.92
2.881	20	112	31.02
2.838	35	020	31.50
2.651	4	411	33.78
2.601	2	121	34.46
2.592	4	220	34.58
2.564	6	121	34.96
2.512	15	411	35.72
2 400	1.0	700	26.10
2.480	16	402 501	36.19
2.460 2.368	8 8	103,312	36.49 37.96
2.314	12	510	38.88
2.272	13	321	39.64
2.272	13	321	33.04
2.266	16	402	39.75
2.204	2	321	40.92
2.188	5	013	41.23
2.132	6	222	42.36
2.113	10	600	42.77
2.058	20	222	43.97
2.018	2	512	44.88
1.992	5	303	45.50
1.951	4	<u>ē</u> 11	46.51
1.875	9	413	48.50
1.869	19	512,422	48.68
1.860	8	521	48.94
1.830	2	031	49.80
1.820	2	123	50.09
1.7972	1	521	50.76
1.7779	0	004	51.35
1.7708	9 11	422	51.55
1.7541	5	204	52.10
1.7469	1	602,231	52.33
1.7273	11	330	52.97
1 7177	5	701	E2 20
1.7177 1.6947	5 7	701 620	53.29 54.07
1.6654	11	132	55.10
1.6627	4	114	55.20
1.6473	3	132	55.76
_, _,,			

Lead chromium oxide, Pb_2Cr0_5 - (Continued)

d(A)	Ι	hkl	20 (°)
1.630	4 5	323	56.39
1.624	0 4	314	56.63
1.607	6 8	712	57.26
1.587	6 1	6 13	58.05
1.584	1 2	800	58.19
1.575	3 2	622	58.55
1.568	2 3	431	58.84
1.529	1 10	523,314	60.50
1.519	7 8	811	60.91
1.506	8 9	024,703	61.49
1.502	0 4	712	61.71
1.491	9 4	224	62.17
1.478	9 2	033	62.78
1.469	9 10	514,721	63.21
1.459	3 4	613,233	63.72
1.431	3 2	523	65.12
1.426		604	65.39
1.419		040	65.73
1.399	1 2	105,631	66.81

Sample The samp	le was p	recipitate	d by adding	a concen-
_	_	_	of Pb(NO ₃) ₂	
Color				

Colorless

Optical data Biaxial (+), N $_{\alpha}$ = 1.890, N $_{\beta}$ = 1.910, N $_{\gamma}$ = 1.976, 2V is medium.

Structure

Monoclinic, P2/a (13), Z = 2. [Claringbull, 1950].

NBS lattice constants of this sample:

Volume . 190.83 Å³

Density (calculated) 6.041 g/cm³

Reference intensity
I/I = 7.6(2)

Additional patterns

- 1. PDF card 11-141 [Claringbull, 1950]
- 2. Hanawalt et al., [1938]

References

Claringbull, G. F., (1950). Mineral. Mag. <u>29</u>, 287. Hanawalt, J. D., Rinn, H. W., and Frevel, L. K. (1938). Ind. Eng. Chem. Anal. Ed. <u>10</u>, 457.

CuKα ₁ λ = 1.540598 A; temp. 25±1 °C				
	rnal standa	rd Ag, a = 4.08	651 Å	
d(A)	I	hkl	20(°)	
6.74	25	010	13.12	
4.833	12	001	18.34	
4.410	18	110	20.12	
3.931	4	011	22.60	
3.376	100	Ī11,020	26.38	
		,		
3.149	70	111	28.32	
2.919	13	120	30.60	
2.909	25	200	30.71	
2.769	6	021	32.30	
2.671	5	210	33.52	
2.603	4	201	34.43	
2.555	16	121	35.10	
2.450	5	121	36.65	
2.419	11	002	37.14	
2.395	5	201	37.53	
		-		

2.276	0			
2.252 6 030 40.00 2.204 16 220 40.92 2.187 7 112 41.24 2.100 3 130 43.04 2.061 6 721 43.89 2.041 3 031 44.34 1.967 11 022 46.12 1.951 12 202,131 46.51 1.9024 6 131 47.77 1.8751 2 712 42.25 1.8636 4 310 48.83 1.803 2 122 50.07 1.7939 10 311 50.86 1.7802 14 230 51.28 1.7200 1 212 53.21 1.7029 1 731 53.79 1.6886 11 040,311 + 54.28 1.6820 6 320 54.51 1.6820 6 320 55.72 1.6410 2 231 55.99 1.6298 3 321 56.41 1.6217 2 140 56.72 1.6123 2 132,003 57.08 1.5939 < 1 041 57.80 1.5740 5 222 58.60 1.5590 3 132 59.22 1.5497 10 141,321 + 59.61 1.5254 5 141 60.66 1.4806 5 113 62.70 1.4749 5 722 740 63.66 1.4806 5 113 62.70 1.4749 5 7232 62.97 1.4606 2 240 63.66 1.4346 2 331 64.95 1.4404 2 123 340 63.97 1.4404 2 123 65.93 1.3954 2 232 67.01 1.3788 2 331 64.95 1.3167 1 312 65.93 1.3363 < 1 142 68.80 1.3507 2 050 69.54 1.3378 2 331 64.95 1.3102 < 1 033 72.02 1.3378 2 331 67.93 1.3634 < 1 142 68.80 1.3507 2 050 69.54 1.3378 2 331 67.93 1.3634 < 1 142 68.80 1.3507 2 050 69.54 1.3378 2 331 67.93 1.3634 < 1 142 68.80 1.3507 2 050 69.54 1.3378 2 331 67.93 1.3634 < 1 142 68.80 1.3507 2 050 69.54 1.3378 2 331 75.43 1.3624 < 1 033 72.02 1.3010 3 402,051 72.61	 d(A)	I	hkl	2θ (°)
2.187 7 \$\bar{1}12\$ \$41.24\$ 2.100 3 130 \$43.04\$ 2.061 6 \$\bar{2}1\$ \$43.89\$ 2.041 3 031 \$44.34\$ 1.967 11 022 \$66.12\$ 1.951 12 \$\bar{2}02,\bar{1}31\$ \$46.51\$ 1.9024 6 131 \$47.77\$ 1.8751 2 \$\bar{2}12\$ \$48.51\$ 1.8636 4 310 \$48.83\$ 1.8203 2 122 \$50.07\$ 1.7939 10 \$\bar{3}11\$ \$50.86\$ 1.7802 14 230 \$51.28\$ 1.7200 1 \$212\$ \$3.21\$ 1.6886 11 \$040,311\$ \$43.28\$ 1.6820 6 \$320\$ \$45.51\$ 1.6820 6 \$320\$ \$55.72\$ 1.6410 2 \$231\$ \$55.99\$ 1.6288 3 \$321\$ \$56.41\$ 1.6217 2 \$140\$ \$66.72\$ 1.5393 1 \$041\$	2.252	6	030	40.00
2.041 3 031 44.34 1.967 11 022 46.12 1.951 12 202,131 46.51 1.9024 6 131 47.77 1.8751 2 212 48.51 1.8636 4 310 48.83 1.8203 2 122 50.07 1.7939 10 311 50.86 1.7802 14 230 51.28 1.700 1 212 53.21 1.7029 1 231 53.79 1.6886 11 040,311 + 54.28 1.6820 6 320 54.51 1.6844 5 032 55.72 1.6410 2 231 55.99 1.6298 3 321 56.41 1.6217 2 140 56.72 1.6123 2 132,003 57.08 1.5939 <1 041 57.80 1.5740 5 222 58.60 1.5590 3 132 59.22 1.5497 10 141,321 + 59.61 1.5254 5 141 60.66 1.4806 5 113 62.70 1.4749 5 232 62.97 1.4606 2 240 63.66 1.4806 5 113 62.70 1.4749 5 232 62.97 1.4606 2 240 63.66 1.4342 3 023,400 63.97 1.4404 2 123 64.66 1.4342 3 023,400 63.97 1.4404 2 123 64.66 1.4346 2 331 64.95 1.4157 1 312 65.93 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 1 042,123 67.63 1.3788 2 331 67.93 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 1 042,123 67.63 1.3788 2 331 67.93 1.3788 2 331 67.93 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 1 042,123 67.63 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 1 042,123 67.63 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 1 042,123 67.63 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 1 042,123 67.63 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 1 042,123 67.63 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 2 042,123 67.63 1.3788 2 331 67.93 1.3954 2 232 67.01 1.3842 2 042,123 67.63 1.3954 2 232 67.01 1.3954 2 232 67.01 1.3954 2 232 67.01 1.3954 2 232 67.01 1.3954 2 232 67.01 1.3954 2 232 67.01 1.4000000000000000000000000000000000			<u>1</u> 12	
1.8636 4 310 48.83 1.8203 2 122 50.07 1.7939 10 311 50.86 1.7802 14 230 51.28 1.7200 1 212 53.21 1.7029 1 231 53.79 1.6886 11 040,311 + 54.28 1.6820 6 320 54.51 1.6484 5 032 55.72 1.6410 2 231 55.99 1.6298 3 321 56.41 1.6217 2 140 56.72 1.6123 2 132,003 57.08 1.5740 5 222 58.60 1.5590 3 132 59.22 1.5497 10 141,321 + 59.61 56.72 1.5254 5 141 60.66 1.4542 3 023,400 63.66 1.4542 3 023,400 63.97 1.4606 2 240 63.66 1.4946 2 <	2.041 1.967 1.951	3 11 12	031 022 202,131	44.34 46.12 46.51
1.7029 1 231 53.79 1.6886 11 040,311 + 54.28 1.6820 6 320 54.51 1.6484 5 032 55.72 1.6484 5 032 55.72 1.6484 5 032 55.72 1.6484 5 032 55.72 1.6484 5 032 55.72 1.6486 5 321 56.41 1.6298 3 321 56.41 1.6217 2 140 56.72 1.6123 2 132,003 57.08 1.5939 1 041 57.80 1.5740 5 222 58.60 1.5590 3 132 59.22 1.5497 10 141,321 + 59.61 1.5590 3 132 59.22 1.4749 5 232 62.97 1.4606 2 240 63.66 1.4542 3 023,400 63.97 1.4404 2 123 64.66	1.8636 1.8203 1.7939	4 2 10	310 122 311	48.83 50.07 50.86
1.6298 3 321 56.41 1.6217 2 140 56.72 1.6123 2 132,003 57.08 1.5939 1 041 57.80 1.5740 5 222 58.60 1.5590 3 132 59.22 1.5497 10 141,321 + 59.61 1.5254 5 141 60.66 1.4806 5 113 62.70 1.4749 5 232 62.97 1.4606 2 240 63.66 1.4542 3 023,400 63.97 1.4404 2 123 64.66 1.4346 2 331 64.95 1.4157 1 312 65.93 1.3954 2 232 67.01 1.3842 2 042,123 67.63 1.3788 2 331 67.93 1.3634 <1	1.7029 1.6886 1.6820	1 11 6	231 040,311 + 320	53.79 54.28 54.51
1.5590 3 132 59.22 1.5497 10 141,321 + 59.61 1.5254 5 141 60.66 1.4806 5 113 62.70 1.4749 5 232 62.97 1.4606 2 240 63.66 1.4542 3 023,400 63.97 1.4404 2 123 64.66 1.4346 2 331 64.95 1.4157 1 312 65.93 1.3954 2 232 67.01 1.3842 2 042,123 67.63 1.3788 2 331 67.93 1.3634 <1	1.6298 1.6217 1.6123	3 2 2	321 140 132,003	56.41 56.72 57.08
1.4606 2 240 63.66 1.4542 3 023,400 63.97 1.4404 2 123 64.66 1.4346 2 331 64.95 1.4157 1 312 65.93 1.3954 2 232 67.01 1.3842 2 042,123 67.63 1.3788 2 31 67.93 1.3634 < 1	1.5590 1.5497 1.5254	3 10 5	132 141,321 + 141	59.22 59.61 60.66
1.3954 2 232 67.01 1.3842 2 042,123 67.63 1.3788 2 331 67.93 1.3634 < 1	1.4606 1.4542 1.4404	2 3 2	240 023,400 <u>1</u> 23	63.66 63.97 64.66
1.3353 2 420 70.46 1.3167 1 421 71.61 1.3102 < 1	1.3954 1.3842 1.3788	2 2 2	232 042,123 <u>3</u> 31	67.01 67.63 67.93
1.2592 1 421,223 75.43 1.2503 2 341 76.06 1.2251 3 250,242 77.92 1.2132 4 341 78.83 1.1990 2 251 79.95 1.1972 1 402 80.09 1.1791 2 052,412 81.58 1.1766 2 251 81.79 1.1679 2 313 82.53	1.3353 1.3167 1.3102	2 1 < 1	420 421 _ 033	70.46 71.61 72.02
1.1972 1 402 80.09 1.1791 2 052,412 81.58 1.1766 2 251 81.79 1.1679 2 313 82.53	1.2592 1.2503 1.2251	1 2 3	421,223 341 250,242	75.43 76.06 77.92
1.1564 2 342 83.54	1.1972 1.1791 1.1766 1.1679 1.1586	1 2 2 2 2	402 052,412 251 313 <u>1</u> 43	80.09 81.58 81.79 82.53 83.34

The sample was prepared by heating a 1:1 molar mixture of Li_2CO_3 and dried silica gel at 860 °C for 5 minutes; the material was ground and reheated for 5 minutes at 860 °C. A final heating for several minutes at about 1200 °C followed.

Color

Colorless

Structure

Orthorhombic, $Ccm2_1(36)$, Z=4, [Seeman, 1956], isostructural with Na_2SiO_3 , low $(Na_1Li)SiO_3$ [West, 1976] and Li_2GeO_3 [Völlenkle and Wittman, 1968].

NBS lattice constants of this sample:

a = 5.3975(6) Å b = 9.3974(6) c = 4.6615(5)

Volume ... 236.44 Å³

Density

(calculated) 2.527 g/cm³

Additional patterns

- 1. PDF card 15-519 [Lam, Sheffield, England].
- 2. West [1976].

References

Seemann, H. (1956). Acta Crystallogr. 9, 251. Völlenkle, H., and Wittmann, A. (1968). Monatsh. Chem. 99, 244.

West, A. R. (1976). J. Am. Ceram. Soc. 59, 118.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C

Internal standard Aq, a = 4.08651 Å

Internal	standard	Ag, $a = 4.0865$. A
o d (A)	I	hkl	20 (°)
4.69	100	020,110	18.91
3.301	65	111	26.99
2.708	65	130	33.05
2.700	45	200	33.15
2.342	19	131,220	38.41
2.331	20	002	38.60
2.091	7	221	43.24
2.085	5	022,112	43.36
1.7747	4	150	51.45
1.7667	9	310,132	51.70
1.7638	8	202	51.79
1.6563	7	241	55.43
1.6522	7		
		311,222	55.58
1.5665	12	060	58.91
1.5605	15	330	59.16
1.4747	3	113	62.98
1.4105	1	242	66.20
1.4079	1	312	66.34
1.3547	3	260	69.31
1.3475	5	133	69.73
1 2001	_	062 350	70 67
1.3001	5	062,350	72.67
1.2965	8	332,401 +	72.90
1.2544	3	171	75.77
1.2495	2	421	76.12
1.1747	2	080	81.95
1.1710	2	262	82.27
1.1681	2	243,402	82.52
1.1350	3	352,441	85.48
1.0770	<1	280	91.32
1.0759	<1	370	91.44
1.0700	<1	204	92.09
1.0488	1	082	94.52
1.0452	1	511	94.95
1.0441	<1	044	95.08
1.0253	1	190	97.40
1.0212	2	263	97.93
1.0188	1	403	98.24
1.0013	1	191	100.58
0.9984	2		
		461,173	100.98
0.9778	<1	282	103.96
0.9769	<1	372	104.10
0.9738	1	244	104.57
0.9727	<1	314	104.73
0.9397	<1		110.12
0.9384	<1	192	110.34
0.9348	1	532 442 1	110.00
0.9337	1	532,443 +	110.98
0.933/	1	334	111.18

Lithium tantalum oxide, LiTaO₃

Sample

The sample was prepared as a precipitate by adding LiOH to a solution of hydrolyzed Ta_2O_5 . This was further crystallized by heating at $860^{\circ}C$ overnight.

Color

Colorless

Structure

Hexagonal, R3c (161), Z=6, by analogy with LiNbO₃ which was studied by Bailey [1952].

NBS lattice constants of this sample:

a = 5.1530(4) A c = 13.755(2)

Volume . 316.30 A³

Density

Reference intensity

I/I corundum = 11.8(5)

(calculated) 7.430 g/cm³

Additional pattern
1. PDF card 9-187 [Lapickij and Simanov, 1955].

References

Bailey, P., thesis, Bristol (1952) quoted by Megaw, H. D. (1954). Acta Cryst. 7, 187. Lapickii, A. V. and Simanov, J. P. (1955). Zh. Fiz

Lapickij, A. V. and Simanov, J. P. (1955). Zh. Fiz. Khim. 29, 1201.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C

Internal standard Si, a = 5.43088 Å

	nai stand	aru 51, a = 5.45	000 A
d(A)	I	hkl	20 (°)
3.745	100	012	23.74
2.723	40	104	32.86
2.577	25	110	34.79
2,292	4	006	39.28
2.245	3	113	40.13
2.122	14	202	42.57
1.871	16	024	48.62
1.712	20	116	53.48
1.638	14	122	56.12
1.604	6	018	57.41
1.5139	11	214	61.17
1.4874	6	300	62.38
1.3621	3	208	68.88
1.3145	3	119,1.0.10	71.75
1.2883	3	220	73.44
	_		, 51 1 1
1.2481	3	306	76.22
1.2183	4	312	78.44
1.2043	4	128	79.53
1.1710	2	0.2.10	82.27
1.1648	4	134	82.80
1.1463	1	0.0.12	84.44
1.1231	3	226	86.61
1.10.2	1	042	88.78
1.0664	2	2.1.10	92.50
1.0471	2	137,1.1.12	94.72
1.0126	2	232	99.06
1.0047	2	318,1.2.11	100.12
0.9812	2	324	103.45
.9740	2	410	104.54

The sample was prepared by melting $MnCl_2$ with H_3PO_4 in molar proportions of 1:2.

Color

Pale pink

Structure

Monoclinic, I2/a (15) or Ia (9), Z=8 [Beucher and Grenier, 1968]. Those authors gave the cell in the settings C2/c (15) or Cc (9).

NBS lattice constants of this sample

a = 11.359(2) A b = 8.472(2) c = 10.176(2) β = 112.06°(2)

Volume . 907.57 Å³

Density

(calculated) 3.116 g/cm³

Reference intensity

 $I/I_{corundum} = 0.89(11)$

Additional pattern

1. PDF card 21-554 [Lee and Browne, 1968].

References

Beucher, M., and Grenier, J. C., (1968). Mater. Res. Bull. 3, 643.

Lee, J. D., and Browne, L. S., (1968). J. Chem. Soc. A 559.

CuKa	$\lambda = 1.540$	598 A; temp. 25	5±1 °C
	rnal standa	rd Si, a = 5.43	8088 A
d (A)	I	hkl	20 (°)
6.29	30	011	14.06
5.26	4	200	16.85
4.71	13	002	18.81
4.65	13	211	19.07
4.348	35	112	20.41
3.613	20	211	24.62
3.468	30	112	25.67
3.300	10	220	27.00
3.242	35	310	27.49
3.065	100	222	29.11
2.998	3	202	29.78
2.947	20	013	30.30
2.728	3	130	32.80
2.681	4	411	33.39
2.632	20	400	34.03
2.521	5	231	35.59
2.446	20	222	36.71
2.424	7	323	37.06
2.358	3	004	38.13
2.331	9	314,422	38.59
2.236	11	411,420	40.30
2.218	2	404	40.64
2.200	2	330	41.00
2.175	4	224	41.48
2.145	19	233	42.09
2.118	4	040	42.66
2.001	6	402	45.29
1.979	5	215	45.81
1.965	2	424,240	46.16
1.928	3	523	47.11
1.890	2	422	40.10
	3	433	48.10
1.864	4	415	48.82
1.839	6	334	49.54
1.802	7	125,233	50.60
1.767	5	532	51.70
1.735	4	224	52.71
1.728	11	242,622	52.93
1.687	2	442	54.35
1.667	10	051,512	55.05
1.6503	12	440,406	55.65

The sample was prepared by heating a 1:2 molar mixture of NiCO $_3$ and H_3PO_4 at about 700°C for 15 hours. It was reground and heated to 1000°C for 15 hours.

Color

Light yellowish green

Structure

Monoclinic, I2/a(15) or Ia(9), Z=8, [Beucher and Grenier, 1968]. These authors gave the cell in the settings C2/c(15) or Cc(9).

NBS lattice constants of this sample:

a = 11.086(3)A b = 8.227(2)c = 9.832(3) $\beta = 112.74(3)$ °

Volume 826.9 Å³

Density

(calculated) 3.480 g/cm³

Reference intensity

 $I/I_{corundum} = 1.7$

Additional pattern

1. PDF card 19-835 (Sarver, 1966].

References

Beucher, M. and Grenier, J. C. (1968). Mater. Res. Bull. $\underline{3}$, 643.

Sarver, \overline{J} . F. (1966). Trans. Brit. Ceram. Soc. 65, 191.

$CuK\alpha_1 \lambda = 1.540598 \text{ A}$; temp. 25±1 °C	
Internal standard W.	a = 3.16524 A	

Internal	standard	W, $a = 3.16524$	A
d(Å)	I	hkl	29 (°)
6.39	7	110	13.84
6.08	50		
		011	14.55
5.11	3	200	17.33
4.53	20	211	19.56
4.321	3	202	20.54
4.209	40	1 12	21.09
3.711	5	121	23.96
			25.48
3.493	19	211	
3.339	30	112	26.68
3,205	11	220	27.81
3.148	30	310	28.33
3.049	4	022	29.27
2.979	100	222	29.97
2.836	25	013	31.52
2.748	2	321	32.56
2.740	2	321	32.30
2.650	2	130	33.80
2.612	4	411	34.31
2.557	25	400,123	35.06
2.451	4	231	36.64
2.359	25	323	38.11
2.337	23	323	30.11
2.263	8	314	39.81
2.220	2	123	40.60
2.165	13	411	41.69
2.135	3	330,512	42.29
2.106	3	224	42.90
2.081	20	233	43.44
2.057	4	040	43.99
2.001	2	1 41	45.28
1.936	4	141	46.90
1.929	7	402,521	47.07
1.912	5	215	47.52
1.882	2	523	48.33
1.856	2	242	49.03
1.848	2	602	49.26
1.8102	3	415	50.37
	_	=	
1.7968	3	341	50.77
1.7857	4	<u>3</u> 34	51.11
1.7638	2	- 611	51.79
1.7392	9	143,233 +	52.58
1.7215	5	532	53.16
1.6858	7	- 622,521	54.38
1.6838		343,242	54.79
	3	· · · · · · · · · · · · · · · · · · ·	
1.6704	3	224	54.92
1.6193	7	051 225	56.81
1.5976	10	235	57.65
1.5759	1	244,251	58.52
1.5577	2	116	59.27
1.5534	4	125	59.45
1.5233	7	044	60.74
1.0233		V44	00.74

The sample was prepared by heating $K_2Cr_2O_7$ and $BaCO_3$ in a 1:1 molar ratio at 750 °C for 1 hour followed by grinding and heating for 18 hours at 750 °C.

Color

Light greenish yellow

Structure

Hexagonal, R3m(166). Z=3, isostructural with $Sr_3(PO_4)_2$ and many double sulfates and chromates [Schwarz, 1966]. The structure of $Sr_3(PO_4)_2$ was determined by Wilhelmi [1967] and $(NH_4)_2Pb(SO_4)_2$ was determined by Møller [1954].

NBS lattice constants of this sample:

a = 5.7292(5) A c = 21.512(3)

Volume 611.51 Å³

Density

(calculated) 3.645 g/cm³

Reference intensity
I/I = 3.3(2)

Additional pattern

1. PDF card 19-937 [Schwarz, 1966].

References

Møller, C. K., (1954). Acta Chem. Scand. <u>8</u>, 81. Schwarz, H. (1966). Z. Anorg. Allg. Chem. <u>344</u>, 41.

Wilhelmi, K.-A., (1967). Ark. Kemi 26, 157.

$CuK\alpha_1$ λ	= 1.540598 A;	temp.	25±1 °C
Internal	standard Si,	a = 5	.43088 A

Internal	standard	Si, a = 5.43088	A
d(A)	I	hkl	20 (°)
7.16	15	003	12.36
4.83	4	101	18.36
4.503	30	012	19.70
3.642	3	104	24.42
3.590	2	006	24.78
	100	015	27.41
2.864	70	110	31.21
2.661	14	113	33.65
2.612	8	107	34.31
2.464	2	021	36.43
2.416	3	202	37.18
2.390	7	009	37.61
2.252	11	024	40.00
2.238	8	116	40.26
2.149	30	205	42.01
1.973	20	1.0.10	45.95
1.868	2	211	48.70
1.848	4	122	49.27
1.836	5	119	49.60
1.8234	3	208	49.98
1.7926	3	0.0.12	50.90
1.7188	15	125	53.25
1.6538	9	300	55.52
1.6253	7	0.2.10	56.58
1.6118	3	303	57.10
1.6007	2	217	57.53
1.5200	3	1.1.12	60.90
1.5017	2	306	61.72
1.4676	2	0.1.14	63.32
1.4321	9	220	65.08
1.4134	10	2.1.10	66.05
1.4045	1	223	66.52
1.3766	2	0.2.13	68.05
1.3731	1	131	68.25
1.3650	2	312	68.71
1.3600	2	309	69.00
1.3533	1	1.2.11	69.39
1.3108	5	315	71.98
1.2823	7	1.1.15	73.84
1.2561	1	137	75.65
1.2289	2	229	77.63
1.2260	1	0.1.17	77.85
1.2157	2	3.0.12	78.64

Potassium barium molybdenum oxide, $K_2Ba(MoO_4)_2$

Sample

The sample was made by melting together MoO_3 , K_2CO_3 and $BaCO_3$ in a molar ratio of 2:1:1, followed by grinding and reheating.

Color

Colorless

Structure

Hexagonal, $R\overline{\text{3m}}(166)$, Z=3, isostructural with $K_2\text{Pb}(SO_4)_2$, $Sr_3(PO_4)_2$ and other double chromates and sulfates [Trunin et al., 1975]. The structure of $(NH_4)_2\text{Pb}(SO_4)_2$ was studied by Møller [1954].

NBS lattice constants of this sample:

a = 6.0051(4) Ac = 21.324(2)

Volume . 665.96 Å³

Density

. (calculated) 4.004 g/cm³

Reference intensity

 $I/I_{corundum} = 4.2(3)$

Additional pattern

1. Trunin et al. [1975].

References

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C Internal standard W, a = 3.16524 Å

Internal	Standard	w, a = 3.10324	Α
d(Å)	I	hkl	20 (°)
7.104	9	003	12.45
5.055	7	101	17.53
4.677	20	012	18.96
3.719	4	104	23.91
3.552	3	006	25.05
3.296	100	015	27.03
3.001	90	110	29.75
2.765	8	113	32.35
2.629	7	107	34.08
2.370	1	009	37.94
2.338	2	024	38.48
2.220	. 35	205	40.61
1.973	25	1.0.10	45.97
1.933	2	122	46.96
1.861	2	208,119	48.90
1.844	2	214	49.37
1.785	20	125	51.12
1.734	11	300	52.76
1.684	2	303	54.43
1.649	9	0.2.10	55.70
1.530	3	1.1.12	60.46
1.5009	8	220	61.76
1.4450	10	2.1.10	64.43
1.4295	2	312	65.21
1.4214	2	0.0.15	65.63
	_		
1.3664	6	315	68.63
1.3036	2	137	72.44
1.2852	7	1.1.15	73.65
1.2438	4	045	76.53
1.1945	4	1.3.10	80.31
1.1860	2	0.2.16,232	81.01
			84.19
1.1491	4	235	85.47
1.1351	4	410	
1.1206	2	413	86.85
1.1106	3	327	87.83
1.0993	4	3.0.15	88.97
1.0445	2	0.1.20	95.04
1.0323	2	2.2.15	96.52
	_		

Sample
The sample was prepared by mixing equal volumes
of saturated aqueous solutions of CaSO4 and
K ₂ SO ₄ , and evaporating slowly at room tempera-
ture. The first crystals formed were used.
The crystals were acicular.
Color
Colorless
601011633

$N_{\alpha} = 1.500$,		[Aruja,	1958].
	•		

Structure Monoclinic, P2₁/m (11), Z=2 [Laszkiewicz, 1936] The structure of K2Ca(SO4)2.H2O has been refined by Corazza and Sabelli[1967] and by Gorogotskaya et al. [1968].

NBS lattice constants of this sample

a = 9.777(2)A b = 7.147(2)c = 6.250(2) $\beta = 104.01(2)^{\circ}$

Volume 423.7A³

Optical data

Density (calculated) 2.574 g/cm³

Reference intensity $I/I_{corundum} = 1.05(6)$

Additional patterns 1. PDF card 11-117 [Aruja, 1958],

2. Baynham and Raistrick [1960].

References Aruja, E. (1958). Mineral Mag. 31, 943. Baynham, J. W. and Raistrick, B. (1960). Chemistry and Technology of Fertilizers (Reinhold, N. Y.). ACS Monogr. Ser. 148, Chap. 21, p. 358. Corazza, E. and Sabelli, K. (1967). Z. Krist. 124, 398. Gorogotskaya, L. I., Podberezskaya, N. V. and Borisov, S. V. (1968). Zh. Strukt. Khim., SSSR, 9 #1, 86. Laszkiewicz, A. (1936). Arch. Mineral. 12, 8.

CuKa ₁	λ = 1.54059	08 A; temp. 25±	·1 °C
	al standard	l W, a = 3.165	24 A
d (Å)	I	hkl	20 (°)
9.49	40	100	9.31
5.71	55	110	15.51
4.74	16	200	18.71
4.624	40	011	19.18
4.496	30	111	19.73
3.954	20	210	22.47
3.887	30	111	22.86
3.572	30	020	24.91
3.347	35	120	26.61
3.165	75	300	28.17
3.114	17	301,102	28.64
3.036	35	002	29.40
2.891	30	202,310	30.91
2.855	100	112,220	31.31
2.827	50	121	31.62
2.791	20	012	32.04
2.741	55	221	32.64
2.704	15	102	33.10
2.560	2	301	35.02
2.513	30	302	35.70
2.447	7	$ \begin{array}{r} 221 \\ 311 \\ 400, \overline{3}12 \\ \overline{3}21 \\ 022, 130 \end{array} $	36.69
2.411	8		37.26
2.371	20		37.91
2.355	25		38.18
2.312	16		38.93
2.288	7	411	39.34
2.250	4	410,222	40.04
2.129	5	230	42.42
2.081	14	321,231	43.46
2.046	17	203,412	44.23
2.002	9	421	45.27
1.974	8	420	45.90
1.965	25	302	46.15
1.9498	20	501	46.54
1.9447	20	013,231	46.67
1.9028	12	330	47.76
1.8968	13	500,331	47.92
1.8924	12	132	48.04
1.8333	6	510,422	49.69
1.7870	20	132,040	51.07
1.7763	7	421,223	51.40
1.7444	4	331	52.41
1.6755	7	520	54.74
1.6293	2	601	56.43
1.5812	6	423,600	58.31
1.5559	11	340	59.35
1.5436	5	610	59.87
1.5293	7	612	60.49
1.4781	4	133	62.82
1.4518	8	523	64.09

Potassium calcium sulfate hydrate (syngenite), $K_2Ca(SO_4)_2 \cdot H_2O$ - (continued)

1.4466 6 601,404 64.3 1.4278 5 224,124 + 65.30	`
	,
1.3964 3 701,613 66.90 1.3701 4 442 68.44 1.3494 6 522 69.60	0 6 2
1.3413 4 621 70.1 1.3314 4 710,514 70.7 1.3217 8 342,533 71.3 1.3085 5 343 72.1 1.2803 5 334 73.9 1.2669 3 524 74.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Potassium iron chloride hydrate
Sample The sample was made by slow evaporation at room temperature of an acid solution of KCl and FeCl ₃ .
Optical Data Biaxial (+), N = 1.712, N = 1.75, N = 1.795 2V is medium large.
Color Deep reddish orange
Structure Orthorhombic, Pmnb (62), Z=4, isostructural with (NH ₄) ₂ FeCl ₅ ·H ₂ O. The structure was determined by Bellanca [1947].
NBS lattice constants of this sample:
a = 9.706(3)Å b = 13.585(3) c = 7.018(1)
Volume ° 925.3 A

Density		
(calculated)	2.364	g/cm ³

Reference intensity
I/I = 1.9

Additional patterns

1. PDF card 25-1160, natural mineral [Mandarino, Toronto, Ontario].

Reference Bellanca, A. (1947). Ric. Sci. Ricostr. 17, 1360.

СиКа	λ_1 λ = 1.540	0598 A; temp. 25	±1 °C
	rnal standa	ard Ag, a = 4.08	651 Å
d(Å)	I	hkl	20 (°)
5.68	35	101	15.59
5.566	40	120	15.91
5.248	4	111	16.88
4.878	14	021	18.17
3.832	2	211	23.19
3.541	2	131	25.13
3.507	2	002	25.38
3.440	10	221	25.88
3.397	12	012,040	26.21
3.208	2	112,140	27.79
3.056	14	041	29.20
2.993	19	231	29.83
2.969	5	122	30.07
2.934	8	301	30.44
2.920	10	320	30.59
2.841	16	202	31.46
2.782	100	212,240	32.15
2.589	3	241	34.62
2.440	25	042	36.81
2.427	40	400	37.01
2.365	2	142	38.02
2.306	2	013	39.02
2.244	3	322,113	40.16
2.211	4	023	40.77
2.180	5	242	41.39
2.149	12	052	42.00
2.099	6	152	43.07
2.078	4	033	43.51
2.032	8	133	44.55
1.995	2	351	45.43
1.970	6	261	46.04
1.911	3	233	47.54
1.902	6	062,441	47.79
1.890	3	143	48.10
1.872	8	501,071	48.61
1.868	6	162,520	48.72
1.826	12	432,323	49.91
1.789	4	352	51.01
1.7711	3	262	51.56
1.7484	3	333	52.28
1.7404	5	014	52.54
1.7209	10	442	53.18
1.7123	4	114	53.47
1.6982	6	072,080	53.95
1.6730	4	172,180 +	54.83
1.6560	2	460,343	55.44 ·
1.6500	4	081,204	55.66
1.6392	3	541	56.06
1.6349	5	034,423	56.22
1.6084	8	452	57.23
1.5621	3	281	59.09

The sample was prepared by melting a 1:1 molar mixture of K_2CrO_4 and $PbCrO_4$.

Color

Strong yellow

Structure

Hexagonal, R3m (166), Z=3, isostructural with Sr_3PO_4 and many double chromates, sulfates and selenates [Schwarz, 1966]. The structure of $(NH_4)_2Pb(SO_4)_2$ was determined by Møller [1954].

NBS lattice constants of this sample:

$$a = 5.7173(7) \stackrel{\circ}{A}$$

 $c = 21.031(3)$

Volume . 595.35 Å³

Density

(calculated) 4.329 g/cm³

Reference intensity

 $I/I_{corundum} = 3.8(2)$

Additional pattern

1. PDF card 19-971 [Schwarz, 1966]

References

Møller, C. K. (1954). Acta Chem. Scand. <u>8</u>, 81. Schwarz, H. (1966). Z. Anorg. Allg. Chem. <u>345</u>, 230.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C

Internal standard Si, a = 5.43088 Å

	nai standa	ard S1, a = 5.430	J88 A
d (Å)	I	hkl	20 (°)
6.99	30	003	12.65
4.82	19	101	18.39
4.47	40	012	19.83
3.604	8	104	24.68
3.505	2	006	25.39
3.204	100	015	27.82
2.859	85	110	31.26
2.647	20	113	33.84
2.571	8	107	34.87
2.457	4	021	36.54
2.336	6	009	38.50
2.240	11	024	40.23
2.216	11	116	40.69
2.133	30	205	42.34
1.935	19	1.0.10	46.92
1.863	4	211	48.83
1.842	5	122	49.45
1.809	5	119	50.41
1.802	5	208	50.62
1.764	2	214	51.80
1.753	2	0.0.12	52.13
1.7102	19	125	53.54
1.6508	9	300	55.63
1.6066	7	303	57.30
1.6033	7	0.2.10	57.43
1.5884	3	217	58.02
1.4935	3	1.1.12,306	62.10
1.4380	2	0.1.14	64.78
1.4293	7	220	65.22
1.3978	10	2.1.10	66.88
1.3621	2	312	68.88
1.3053	6	315	72.33
1.2586	6	1.1.12	75.47

The sample was prepared by melting together $K_2\text{CO}_3$, PbCO $_3$ and MoO $_3$, at about 850 °C.

Color

Yellowish white

Structure

Hexagonal, R3m (166), Z=3. The similarity of the cell size, powder patterns, and chemistry of $K_2Pb(MoO_4)_2$, $Sr_3(PO_4)_2$, $K_2Pb(SO_4)_2$ (palmierite), and $(NH_4)_2Pb(SO_4)_2$ strongly suggests an isostructural relationship. The structure of $(NH_4)_2Pb(SO_4)_2$ has been studied by Møller [1954].

NBS lattice constants of this sample:

a = 5.9853(2) A c = 20.987(1)

Polymorphism

Belyaev [1961] reports a polymorphic transformation of $K_2Pb \, (MoO_4)_2$ at 765 °C. No evidence of this was seen in the present work.

Volume 651.09 Å³

Density

(calculated) 4.631 g/cm³

Reference intensity

 $I/I_{corundum} = 4.0(3)$

References

Belyaev, I.N. (1961). Russ. J. Inorg. Chem. $\underline{6}$, 602. Møller, C. K. (1954). Acta Chem. Scand. $\underline{8}$, $\overline{8}$ 1.

Internal standard Ag, a = 4.08651 Å d(Å) I hkl 20(°) 6.99 25 003 12.66 4.648 40 012 19.08 3.687 2 104 24.12 3.262 100 015 27.32 2.993 85 110 29.83 2.752 18 113 32.51 2.5595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0.10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 21.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 0.45 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.1619 1 048 83.05 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1028 3 40.10 88.61 1.0074 2 3.0.15 90.21	$CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$			
6.99 25 003 12.66 4.648 40 012 19.08 3.687 2 104 24.12 3.262 100 015 27.32 2.993 85 110 29.83 2.752 18 113 32.51 2.595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7785 3 0.0·12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0·2·10 56.36 1.5694 2 128 58.79 1.5099 3 1·1·12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0·1·14 64.69 1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1·1·15 74.85 1.2382 3 045 76.94 1.2382 3 045 76.94 1.2425 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1·1·15 74.85 1.2382 3 045 76.94 1.2382 3 045 76.94 1.2292 1 3·0·12 77.61 1.2010 1 0·1·17 79.79 1.1860 5 1·3·10 81.01 1.1619 1 048 83.05 1.1422 5 235 84.63 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4·0·10 88.61		rnal standar	d Ag, a = 4.0	08651 Å
4.648 40 012 19.08 3.687 2 104 24.12 3.262 100 015 27.32 2.993 85 110 29.83 2.752 18 113 32.51 2.595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0·12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.5694 2 128 58.79 1.5099 3 1.1·12 61.35 1.4961 8 220		I	hkl	20 (°)
4.648 40 012 19.08 3.687 2 104 24.12 3.262 100 015 27.32 2.993 85 110 29.83 2.752 18 113 32.51 2.595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0·12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.5694 2 128 58.79 1.5099 3 1.1·12 61.35 1.4961 8 220	6.99	25	003	12.66
3.687				
3.262 100 015 27.32 2.993 85 110 29.83 2.752 18 113 32.51 2.595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0·12 52.28 1.7279 12 300 52.95 1.6375 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0·2·10 56.36 1.5694 2 128 58.79 1.5099 3 1·1·12 61.35 1.4961 8 220 61.98 1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·1				
2.993 85 110 29.83 2.752 18 113 32.51 2.595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0·12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0·2·10 56.36 1.5694 2 128 58.79 1.5099 3 1·1·12 61.35 1.4961 8 220 61.98 1.4398 5 0·1·14 64.69 1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0				
2.595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0·12 52.28 1.7279 12 300 52.95 1.6397 4 217 56.04 1.6312 7 0·2·10 56.36 1.5694 2 128 58.79 1.5099 3 1·1·12 61.35 1.4961 8 220 61.98 1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 315				
2.595 8 107 34.54 2.332 3 009 38.57 2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0·12 52.28 1.7279 12 300 52.95 1.6397 4 217 56.04 1.6312 7 0·2·10 56.36 1.5694 2 128 58.79 1.5099 3 1·1·12 61.35 1.4961 8 220 61.98 1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 315				
2.332				
2.325 3 024 38.70 2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0.10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.3602 8 315 68.99 1.2961 2 1				
2.274 3 116 39.60 2.205 30 205 40.89 1.960 4 027 46.28 1.945 18 1.0·10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0·12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2·10 56.36 1.5694 2 128 58.79 1.5099 3 1.1·12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1·14 64.69 1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 <				
2.205				
1.960 4 027 46.28 1.945 18 1.0.10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2322 1	2.274	3	116	39.60
1.960 4 027 46.28 1.945 18 1.0.10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2322 1	2.205	30	205	40.89
1.945 18 1.0.10 46.65 1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3			027	
1.925 7 122 47.17 1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 23 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 0.45 76.94 1.2010 1				
1.843 3 208 49.41 1.7750 25 125 51.44 1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 23 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 0.45 76.94 1.2292 1 3.0.12 77.61 1.2010 1				
1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 0.45 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1				
1.7485 3 0.0.12 52.28 1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 0.45 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1	1 7750	25	125	51 44
1.7279 12 300 52.95 1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 <td></td> <td></td> <td></td> <td></td>				
1.6775 3 303 54.67 1.6397 4 217 56.04 1.6312 7 0·2·10 56.36 1.5694 2 128 58.79 1.5099 3 1·1·12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0·1·14 64.69 1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1·1·15 74.85 1.2382 3 045 76.94 1.2292 1 3·0·12 77.61 1.2010 1 0·1·17 79.79 1.1860 5 1·3·10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3				
1.6397 4 217 56.04 1.6312 7 0.2.10 56.36 1.5694 2 128 58.79 1.5099 3 1.1.12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 </td <td></td> <td></td> <td></td> <td></td>				
1.6312 7 0 * 2 * 10 56.36 1.5694 2 128 58.79 1.5099 3 1 * 1 * 12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0 * 1 * 14 64.69 1.4319 9 2 * 1 * 10 65.09 1.4245 4 312 65.47 1.3991 2 0 * 0 * 15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1 * 1 * 15 74.85 1.2382 3 045 76.94 1.2292 1 3 * 0 * 12 77.61 1.2010 1 0 * 1 * 17 79.79 1.1860 5 1 * 3 * 10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2 * 2 * 12 85.31 1.1312 3 410 85.84 </td <td></td> <td></td> <td></td> <td></td>				
1.5694 2 128 58.79 1.5099 3 1.1:12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1:14 64.69 1.4319 9 2.1:10 65.09 1.4245 4 312 65.47 1.3991 2 0.0:15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1:1:15 74.85 1.2382 3 045 76.94 1.2292 1 3:0:12 77.61 1.2010 1 0:1:17 79.79 1.1860 5 1:3:10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2:2:12 85.31 1.1312 3 410 85.84 1.1054 2 327 88.35 1.1028 3	1.6397	4	217	56.04
1.5099 3 1.1:12 61.35 1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1:14 64.69 1.4319 9 2.1:10 65.09 1.4245 4 312 65.47 1.3991 2 0.0:15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1:15 74.85 1.2382 3 045 76.94 1.2292 1 3.0:12 77.61 1.2010 1 0:1:17 79.79 1.1860 5 1:3:10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2:2:12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3	1.6312		0.2.10	56.36
1.4961 8 220 61.98 1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1.5694	2	128	58.79
1.4632 2 223 63.53 1.4398 5 0.1.14 64.69 1.4319 9 2.1.10 65.09 1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1.5099	3	1.1.12	61.35
1.4398 5 0 • 1 • 14 64 · 69 1.4319 9 2 • 1 • 10 65 · 09 1.4245 4 312 65 · 47 1.3991 2 0 • 0 • 15 66 · 81 1.3602 8 315 68 · 99 1.2961 2 137 72 · 93 1.2675 4 1 • 1 • 15 74 · 85 1.2382 3 045 76 · 94 1.2292 1 3 • 0 • 12 77 · 61 1.2010 1 0 • 1 • 17 79 · 79 1.1860 5 1 • 3 • 10 81 · 01 1.1619 1 048 83 · 05 1.1442 5 235 84 · 63 1.1368 3 2 • 2 • 12 85 · 31 1.1312 3 410 85 · 84 1.1166 1 413 87 · 24 1.1054 2 327 88 · 35 1.1028 3 4 • 0 • 10 88 · 61	1.4961	8	220	61.98
1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1·1·15 74.85 1.2382 3 045 76.94 1.2292 1 3·0·12 77.61 1.2010 1 0·1·17 79.79 1.1860 5 1·3·10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2·2·12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4·0·10 88.61	1.4632	2	223	63.53
1.4319 9 2·1·10 65.09 1.4245 4 312 65.47 1.3991 2 0·0·15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1·1·15 74.85 1.2382 3 045 76.94 1.2292 1 3·0·12 77.61 1.2010 1 0·1·17 79.79 1.1860 5 1·3·10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2·2·12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4·0·10 88.61	1.4398	5	0.1.14	64 - 69
1.4245 4 312 65.47 1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 35.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.3991 2 0.0.15 66.81 1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 35.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.3602 8 315 68.99 1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 35.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.2961 2 137 72.93 1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.2675 4 1.1.15 74.85 1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 35.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1 00.44			
1.2382 3 045 76.94 1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.2292 1 3.0.12 77.61 1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.2010 1 0.1.17 79.79 1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.1860 5 1.3.10 81.01 1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 35.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1.2010	1	0.1.17	79.79
1.1619 1 048 83.05 1.1442 5 235 84.63 1.1368 3 2.2.12 35.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1.1860	5	1.3.10	81.01
1.1442 5 235 84.63 1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1.1619			
1.1368 3 2.2.12 85.31 1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1.1442	5	235	
1.1312 3 410 85.84 1.1166 1 413 87.24 1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.1054 2 327 88.35 1.1028 3 4.0.10 88.61				
1.1054 2 327 88.35 1.1028 3 4.0.10 88.61	1 1166	1	413	87 24
1.1028 3 4.0.10 88.61				

Sample The sample was prepared by melting a 1:1 molar mixture of K_2SO_4 and $PbSO_4$, grinding and reheating at 450 °C overnight.

Color Colorless

Structure

Hexagonal, R3m (166), Z = 3, isostructural with $Sr_3(PO_4)_2$ and many double chromates, sulfates and selenates [Schwarz, 1966]. The structure of $(NH_4)_2Pb(SO_4)_2$ was studied by Møller [1954].

NBS lattice constants of this sample

a = 5.4950(6) A c = 20.849(4)

Volume ... 545.18 Å³

Density (calculated) 4.363 g/cm³

Reference intensity

I/I
corundum = 2.77(10)

Additional pattern

1. PDF card 20-902 [Schwarz, 1966]

References

Møller, C. K., (1954). Acta Chem. Scand. 8, 81. Schwarz, H. (1966). Z. Anorg. Allg. Chem. 344, 41.

 $CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$ Internal standard Ag, a = 4.08651 Å

	ernal standard	d Ag, a = 4.0	08651 A
 d (A)	I	hkl	20 (°)
6.948	35	003	12.73
4.641	25	101	19.11
4.333	45	012	20.48
3.515	18	104	25.32
3.477			
3.4//	3	006	25.60
3.138	100	015	28.42
2.749	70	110	32.54
2.557	35	113	35.07
2.526	13	107	35.51
2.366	9	021	38.00
2.318	10	202,009	38.82
2.287	3	018	39.36
2.166	25	024	41.67
2.156	30	116	41.86
2.068	35	205	43.74
1.910	25	1.0.10	47.57
1.860	2	027	48.94
1.792	10	211	50.92
1.772	20	122,119	51.54
1.760	7	0.1.11	51.92
1.700	,	0 1 11	31.92
1.7575	8	208	51.99
1.7373	4	0.0.12	52.64
1.7002	3	214	53.88
1.6516	20	125	55.60
1.5861	11	300	58.11
1.5684	8	0 • 2 • 10	58.83
1.5464	5	303	59.75
1.5397	4	217	60.04
1.5195	2	1.0.13	60.92
1.4823	3	2.0.11	62.62
1,4023	3	2.0.11	02.02
1.4802	3	128	62.72
1.4686	5	1.1.12	63.27
1.4428	6	306	64.54
1.4212	3	0.1.14	65.64
1.3900	2	0.0.15	67.31
1.3734	10	220	68.23
1.3617	14	2.1.10	68.90
1.3479	2	223	69.71
1.3296	2	0.2.13	70.81
1.3169	1	131	71.60
1.3103	_	131	71.00
1.3088	3	312,309	72.11
1.3046	3	1.2.11	72.38
1.2792	2	134	74.05
1.2622	<1	2.0.14	75.22
1.2582	9	315	75.50
1.2403	13	1•1•15	76.79
1.2067	2	137	79.34
1.1974	2	2.1.13	80.08
1.1878	2	401,0.1.17	80.86
1.1820	3	042	81.34

Two and one-half grams of $SrCl_2 \cdot 6H_2O$ in 10 mL H_2O was added dropwise to 20 g K_2SO_4 in 100 mL H_2O at the boiling point and refluxed with stirring for 4 days. The precipitate was filtered at the boiling point, squeezed on blotting paper and dried in dessicator. The crystallinity was improved by heating the precipitate to 600 °C for 3 days.

Color

Colorless

Structure

Hexagonal, $R\bar{3}m(166)$, Z=3, isostructural with $Sr_3(PO_4)_2$ and many double chromates, sulfates, and selenates [Schwarz, 1966]. The structure of $(NH_4)_2Pb(SO_4)_2$ was studied by Møller [1954].

NBS lattice constants of this sample:

$$a = 5.4630(3)$$
 A $c = 20.843(1)$

Volume . 538.73 Å³

Density

(calculated) 3.310 g/cm³

Reference intensity
I/I = 3.3(2)

Additional patterns

- 1. PDF card 15-123 Voronova [1962].
- 2. PDF card 19-996 Schwarz [1966].

References

Møller, C. K., (1954). Acta Chem. Scand. <u>8</u>, 81. Schwarz, H., (1966). Z. Anorg. Allg. Chem. <u>344</u>, 41.

Voronova, M. L., (1962). Zap. Vses. Mineral. Obshchest. <u>91</u>, 712.

	CuKa ₁	$\lambda = 1.540598 \text{ Å};$	temp. 25±1	°C
	Inter	cnal standard W,	a = 3.16524	1 A
	d(A)	I	hkl	20 (°)
	6.94	15	003	12.75
	4.617	1	101	19.21
	4.308	17	012	20.60
	3.472	1	006	25.64
	3.128	100	015	28.51
	2.731	65	110	32.77
	2.543	11	113	35.27
	2.520	4	107	35.60
	2.352	2	021	38.24
1	2.316	8	009	38.85

d(A)	I	hkl	20(°)
2.200		200	20.00
2.308	6	202	39.00
2.153	17	024	41.92
2.148	19	116	42.03
2.0576	25	205	43.97
1.9077	18	1.0.10	47.63
1.7818	3	211	51.23
1.7664	5	119	51.71
1.7622	2	122	51.84
1.7516	3	208	52.18
1.7364	3	0.0.12	52.67
1 6015	~1	21.4	54.10
1.6915	<1	214	54.18 55.90
1.6435	12 7	125	58.47
1.5772		300	
1.5641	5	0.2.10	59.01
1.5376	2	303	60.13
1.4657	1	1.1.12	63.41
1.4358	2	306	64.89
1.4201	1	0.1.14	65.70
1.3892	2	0.0.15	67.35
1.3655	8	220	68.68
1.3570	9	2.1.10	69.17
1.3400	1	223	70.18
1.3273	1	0.5.13	70.18
1.3033	1	309	72.46
1.3007	2	1.2.11	72.63
1.3007	2	1 2 11	72.03
1.2723	<1	134	74.52
1.2513	5	315	75.99
1.2384	8	1.1.15	76.93
1.2008	<1	137	79.81
1.1765	1	229	81.80
1.1677	<1	3.0.12	82.55
1.1533	<1	404	83.81
1.1441	1	1.2.14	84.64
1.1410	1	0.2.16	84.93
1.1379	2	045	85.21
	_		
1.1105	3	1.3.10	87.84
1.0737	1	2•2•12	91.68
1.0661	1	1.1.18	92.53
1.0506	3	235	94.31
1.0426	4	3*0*15	95.26
1.0324	2	410	96.51
1.0287	1	4.0.10	96.97
1.0210	1	413	97.97
1.0180	1	0.1.20	98.35

The sample was prepared by heating a 1:1 molar mixture of $Rb_2Cr_2O_7$ and $BaCO_3$ together at 750° for 1 hour. This was followed by grinding, and reheating at 750° for 48 hours.

Color

Light greenish yellow

Structure

Hexagonal, $R\bar{3}m(166)$, Z=3, isostructural with $Sr_3(PO_4)_2$ and many double sulfates, chromates, and selenates [Schwarz, 1966]. The structure of $(NH_4)_2Pb(SO_4)_2$ was studied by Møller [1954].

NBS lattice constants of this sample:

a = 5.8107(6) A c = 22.210(3)

Volume 649.4 Å³

Density

(calculated) 4.144 g/cm³

Reference Intensity

 $I/I_{corundum} = 5.8(2)$

Additional pattern

1. PDF card 19-1066 [Schwarz, 1966].

References

Møller, C. K., (1954). Acta Chem. Scand. <u>8</u>, 81. Schwarz, H., (1966). Z. Anorg. Allg. Chem. <u>344</u>, 41.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C

Internal standard Si, a = 5.43088 Å

Incer	nai standa	10 31, a - 3.4	3006 A
d(A)	I	hkl	29 (°)
7.39	2	003	11.96
4.90	6	101	18.09
4.58	4	012	19.38
3.731	4	104	23.83
3.326	100	015	26.78
2.905	65	110	30.75
2.705	2	113	33.09
2.683	2	107	33.37
2.500	2	021	35.89
2.467	5	009	36.39
2.455	4	202	36.58
2.430	2	018	36.97
2.291	9	024	39.29
2.287	12	116	39.37
2.189	25	205	41.21
2.031	20	1.0.10	44.57
1.972	1	027	45.99
1.895	2	211	47.96
1.881	5	119	48.34
1.876	3	122	48.49
1.850	1	0.0.12	49.20
1.799	1	214	50.70
1.748	15	125	52.28
1.677	7	300	54.68
1.665	8	0.2.10	55.10
1.528	1	306	60.56
1.513	1	0.1.14	61.19
1.480	2	0.0.15	62.71
1.453	7	220	64.02
1.4448	10	2.1.10	64.44
1.3869	1	309	67.48
1.3314	5	315	70.70
1.3196	8	1.1.15	71.43
1.2520	2	229	75.94
1.2102	3	045	79.06
1.1819	4	1.3.10	81.35

The sample was prepared by slow evaporation at room temperature. Since the material was incongruently soluble, a 1:1 molar aqueous solution of RbCl and $FeCl_3$ was prepared with some additional HCl. The first crystals formed were used.

Color

Deep reddish orange

Structure

Orthorhombic, Pmnb (62), Z=4, isostructural with $K_2FeCl_5 \cdot H_2O$ and $(NH_4)_2FeCl_5 \cdot H_2O$. The structure of $K_2FeCl_5 \cdot H_2O$ was determined by Bellanca [1947].

NBS lattice constants of this sample:

a = 9.923(3)A b = 13.836(4)c = 7.092(2)

Volume . 973.8 Å³

Density

(calculated) 2.879 g/cm³

Reference intensity
I/I = 1.7(2)

Reference

Bellanca, A., (1947). Rec. Sci. Recostr. 17, 1360.

CuK α_1 λ = 1.540598 Å; temp. 25±1 °C

Internal standard Ag. a = 4.08651 Å

Interna	l standard	Ag, $a = 4.08651$	A
o d(A)	I	hkl	20(°)
6.92	6	020	12.78
6.31	3	011	14.02
5.78	30	101	15.33
5.68	30	120	15.58
5.34	4	111	16.60
3.34	-	111	10.00
4.960	8	200,021	17.87
3.904	8	211	22.76
3.870	4	031	22.96
3.602	4	131	24.70
3.504	50	221	25.40
3.462	25	040	25.71
3.436	20	012	25.91
3.109	17	041	28.69
3.050	30	231	29.26
3.006	8	122	29.70
3.000	Ü	122	23.70
2.996	7	301	29.80
2.885	25	202	30.97
2.836	90	240	31.52
2.826	100	212	31.63
2.814	70	032	31.77
2.635	0	241	33.00
2.635	8	241	33.99
2.479	55	400,042	36.21
2.403	3	142	37.40
2.308	2	411,060	38.99
2.238	3	023	40.26
2.218	2	421	40.65
2.180	18	052	41.38
2.130	6	152	42.40
2.108	7	213	42.87
2.089	2	431	43.28
2.058	5	133	43.96
2.010	14	412	45.06
2.004	15	261	45.20
1.997	9	252	45.38
1.940	12	441	46.79
1.936	14	233	46.88
1.912	7	501	47.51
1.860	15	432	48.92
1.820	3	352	50.07
1.800	2	262	50.66
1.776	4	333	51.41
1.773	5	004	51.50
1.758	8	014	51.97
1.753	13	442	52.13
1.730	6	080	52.88
1.698	3	413	53.96
1.679	6	081,522	54.61
1.6696	4	204,362	54.95
1.6552	5	034	55.47
1.6378	12	452	56.11
1.0070		102	20111

Sample
The sample was prepared by melting a mixture of Rb₂CrO₄ and PbCrO₄, at about 730 °C.

Color Slight orange yellow

Structure

Hexagonal, $R\bar{3}m(166)$, Z=3, isostructural with $Sr_3(PO_4)_2$ and many double chromates, sulfates, and selenates [Schwarz, 1966]. The structure of $(NH_4)_2Pb(SO_4)_2$ was studied by Møller [1954].

NBS lattice constants of this sample:

 $a = 5.8037(4) \stackrel{\circ}{A}$ c = 21.827(3)

Volume 636.70 Å³

Density (calculated) 4.773 g/cm³

Reference intensity

I/I corundum = 5.3(3)

Additional pattern
1. PDF card 19-1077 [Schwarz, 1966].

References
Møller, C. K., (1954). Acta Chem. Scand. <u>8</u>, 81.
Schwarz, H., (1966). Z. Anorg. Allg. Chem. <u>344</u>, 41.

 $CuK\alpha_1 \lambda = 1.540598 \text{ Å; temp. } 25\pm1 \text{ °C}$ Internal standard Ag, a = 4.08651 Å

	ernar standar	.u Ag, a = 4.0	
d (Å)	I	hkl	20 (°)
7.273	12	003	12.16
4.897	25	101	18.10
4.567	10	012	19.42
3.699	9	104	24.04
3.638	4	006	24.45
3.030	-1	000	24.43
3.296	100	015	27.03
2.904	75	110	30.76
2.696	7	113	33.21
2.650	2	107	33.80
2.497	5	021	35.93
2.426	5	009	37.03
2.283	13	024	39.43
2.270	12	116	39.68
2.178	25	205	41.43
2.002	17	1.0.10	45.26
1.957	2	027	46.34
1.892	5	211	48.04
1.871	3	122	48.63
1.861	5	119	48.89
1.849	1	208	49.24
1.819	1	0.0.12	50.12
1.794	2	214	50.85
1.742	18	125	52.49
1.675	8	300	54.75
1.648	5	0.2.10	55.73
1.632	1	303	56.32
1.558	2	2.0.11	59.26
1.5216	2	306	60.83
1.4889	2	0.1.14	62.31
1.4546	7	0.0.15	63.95
1.4506	6	220	64.15
1.4329	8	2.1.10	65.04
1.3912	2	131	67.24
1.3784	2	309	67.95
1.3720	2	1.2.11	68.31
1.3507	1	134	69.54
1.3276	5	315	70.93
1.3276	5	1.1.15	72.62
1.2447	1	229	76.46
1.2242	1	404	77.99
7.2272	_	10.2	,,,,,,
1.2074	3	045	79.28
1.1747	3	1.3.10	81.95
1.1519	<1	321	83.94
1.1149	2	235	87.41
1.0987	3	3.0.15	89.03
1.0969	3	410	89.22

The sample was prepared by evaporation of an aqueous solution of a 6:7 molar ratio of Na₂SO₄ and MgSO₄ at 95 °C. The precipitate was filtered off while the solution was hot. The composition of this phase was originally given as Na₂Mg(SO₄)₂·2.5H₂O. It was corrected by Kühn and Ritter [1958]. The sample contained about 15% of bloedite [Na₂Mg(SO₄)₂·4H₂O]. This pattern has been confirmed by computer calculation using structure data from Fang and Robinson [1970]. The sample was colorless.

Intensities

The intensities given in the table have been calculated from the data of Fang and Robinson [1970], and thus represent the intensities which would be obtained from a sample free from bloedite.

Structure

Hexagonal, $R\overline{3}$ (148), Z=3, isostructural with Na₁₂Mn₇(SO₄)₁₃·15H₂O [Schneider and Zemann, 1959]. The structure of loeweite was determined by Fang and Robinson [1970].

NBS lattice constants of this sample:

A least squares refinement based on 43 unique reflections free from bloedite gave lattice constants which did not differ from those above by more than 0.005 A.

Volume 4140.9 Å³

Density

(calculated) 2.364 g/cm³

Reference intensity

 $I/I_{corundum} = 0.56(3)$

Additional patterns

- 1. PDF card 21-1139 [Madsen, 1966]
- PDF card 24-1107 [Heide, Min. Inst. Jena, 1967]. This pattern has the formula incorrectly given as Na₂Mg(SO₄)₂·2.5H₂O.

References

Kuhn, R., and Ritter, K.-H. (1958). Kali Steinsalz 2, 238.

Madsen, B. M., (1966). U. S. Geol. Surv. Prof. Pap. 550B, 125.

Schneider, W. (1960). Z. Anorg. Allg. Chem. 303, 113.

Schneider, W., and Zemann, J. (1959). Beitr. Mineral. Petrogr. 6, 201.

CuKα ₁ λ =	= 1.540598 A;	temp.	25±1	°C
Internal	standard Ag,	a = 4	.08651	o A

		3.	
d (A)	I	hkl	2⊖ (°)
10.37	100	101	8.52
9.42	18	110	9.38
6.98	26	021	12.68
6.21	14	012	14.26
5.61	28	211	15.78
5.45	32	300	16.26
5.19	5	202	17.07
4.55	8	122	19.49
4.471	10	003	19.84
4.294	65	131	20.67
4.046	62	113	21.95
	2	401	22.76
3.904			23.65
3.759	31	312	
3.612	9	321	24.63
3.563	4	410	24.97
3.493	2	042	25.48
3.458	52	303	25.74
3.430	45	232	27.19
	23	223	27.41
3.251			28.08
3.175	41	051	20.00
3.144	10	330	28.36
3.109	4	024	28.69
3.012	6	241	29.64
2.949	3	214	30.28
2.942	21	502	30.36
2.742	21	302	30.00
2.868	22	511	31.16
2.806	17	422	31.87
2.790	23	413	32.06
2.723	22	600	32.86
2.698	47	134	33.18
2.635	15	431	34.00
2.617	17	520	34.24
2.552	1	205	35.14
2.499	1	324	35.90
2.494	3	342	35.98
0.451	1.0	161	26 64
2.451	10	161	36.64
2.356	5	440	38.16
2.343	1	054	38.39
2.335	5	612	38.52
2.311	4	315	38.94
2.273	1	244	39.62
2.273	2	523	39.87
2.259	15	514	40.78
			40.78
2.206	15	072	41.39
2.180	6	116	41.33
2.163	3	710	41.72
2.097	2	434	43.10
2.070	9	306	43.69
2.066	11	541	43.78
2.023	16	226	44.76
2.025			

۰			-
d(A)	I	hkl	2⊖(°)
1.999	8	452	45.34
1.954	4	802	46.43
1.917	8	354	47.38
1.900	4	345	47.84
1.896	4	416	47.95
1.870	3	633	48.65
1.856	1	461	49.03
1.839	6	182	49.54
1.833	4	217	49.69
1.805	4	642	50.51
1.783	3	820	51.18
1.776	6	544	51.42
1.761	3	075	51.87
1.739	8	553,407	52.60
1.716	2	274	53.34
1.708	3	327	53.61
1.699	5	191	53.92
1.694	4	740	54.08
1.6821	3	903	54.51
1.6702	2	018	54.93
1.6557	8	823,057	55.45
1.6503	8	455	55.65
1.6448	6	208	55.85
1.6362	5	464	56.17
1.6301	6	247	56.40
1.6100	5	832	57.17
1.5869	4	0.10.2	58.08
1.5750	5	318	58.56
1.5576	2	185	59.28
L			

The sample was prepared by evaporation of an aqueous solution of 4:3 molar mixture of Na_2SO_4 and $MnSO_4$ at 95 °C. The crystals were filtered off while the solution was hot.

Color

Pale pink

Optical data

Unixial (-), $N_e = 1.501$, $N_o = 1.520$

Structure

Hexagonal, $R\overline{3}$ (148), Z=3, isostructural with $Na_{12}Mg_{7}(SO_{4})_{13}\cdot 15H_{2}O$ (loeweite). The structure has been studied by Schneider [1960].

NBS lattice constants of this sample:

a = 19.126(2) Ab = 13.529(3)

Volume . 4285.7 Å³

Density (calculated) 2.533 g/cm³

Reference intensity

 $I/I_{corundum} = 0.66(7)$

Reference

Schneider, W. (1960). Z. Anorg. Allg. Chem. 303, 113.

CuKas) - 1 540	598'A; temp. 25	+1 °C
cunal	Λ - 1.540	596 A; Cemp. 25	-1 C
Inter	nal standa:	rd Si, a = 5.43	
d (A)	I	hkl	20 (°)
10.47	55	101	8.44
9.57	25	110	9.23
7.07	85	021	12.51
.6.25	35	012	14.15
5.683	30	211	15.58
5.525	30	300	16.03
4.784	20	220	18.53
4.595	25	122	19.30
4.510	35	003	19.67
4.350	80	131	20.40
4.079	70	113	21.77
3.803	16	312	23.37
3.660	30	321	24.30
3.616	14	410	24.60
3.531	14	042	25.21
3.494	80	303	25.47
3.312	90	104,232	26.90
3.282	18	223	27.15
3.218	70	051	27.70
3.189	18	330	27.96

d (A)	I	hkl	20(°)
3.132	11	024	28.48
3.051	7	241	29.25
2.977	35	214,502	29.99
2.907	5 5	511	30.73
2.843	40	422	31.44
2.820	45	413	31.70
2.760	50	600	32.41
2.723	100	134,152	32.86
2.669	9	015,431	33.55
2.651	30	520	33.78
2.603	8	333	34.43
2.527	10	324,342	35.50
2.483 2.391	9 9	125,161	36.14
2.367	25	440 054,612	37.59 37.99
2.507	23	054,012	37.33
2.329	17	315,351	38.62
2.285 2.265	5 g	523 045,621	39.40
2.265	8 18	045,621	39.76 39.96
2.234	55	514,072	40.36
2.255	33	314,072	10.30
2.194	11	116,710	41.11
2.122	6	434	42.57
2.113	6	443	42.75
2.095 2.089	20 16	505,541 306,630	43.15 43.28
2.009	10	300,030	43.20
2.046	17	425,081	44.23
2.039	30	226	44.39
2.022	15	164,452	44.78
2.001 1.979	6 8	155,271 802	45.29 45.81
			_
1.973	9	713	45.95
1.938	19	354,722	46.83
1.920 1.913	14 10	107,345 416,550	47.31 47.48
1.893	10	633	48.01
1.882	4	027,461	48.33
1.864 1.846	6 6	182 615 , 731	48.83 49.32
1.841	8	336,900	49.48
1.829	9	642	49.83
1.796	10	544,372	50.80
1.796	10	137,075	51.26
1.761	15	553	51.89
1.736	4	274	52.67
1.722	13	327,191	53.15
1.717	13	526,740	53.31
1.704	6	903	53.75
1.681	16	814,562	54.54
1.678	14	823	54.66
1.670	12	057,455	54.94
1.657	12	208,464	55.40
1.620	8	921,725 +	56.78
1.608	10	0.10.2	57.24
1.604	7	743	57.39
1.586	12	318,292	58.10

Synonym N - phenylacetamide		lculated Pa	ttern	(Peak	heights)
Structure	d (Å)	I		hkl	2Θ (°) 。
Orthorhombic, Pbca (61), Z = 8. The structure					$\lambda = 1.540598A$
was determined by Brown and Corbridge [1954] and	9.82	100	2	0	0 9.00
refined by Brown [1966].	6.82	38	2	1 4	0 12.98
	5.82	81	1	1	1 15.20
Atom positions	5.18	31	2	1	1 17.10
All atoms were in general positions.	4.91	3	4	0	0 18.06
Lattice constants	4.74	6	0	2	0 18.72
a = 19.641 A	4.46	26	3	1 :	1 19.88
b = 9.483	4.36	27	4	1	0 20.36
c = 7.979	4.27	5	2	2 (0 20.80
(published values: $a = 19.640$, $b = 9.483$, $c = 7.979$ [Brown and Corbridge, 1954]).	4.07	40	0	2	1 21.80
	3.99	58	1	2	1 22.26
CD cell: $a = 9.483$, $b = 19.641$, $c = 7.979$,	3.91	29	1		2 22.74
space group Pcab; $a/b = 0.4828$, $c/b = 0.4063$	3.82	9		1 :	23.24
	3.76	36	2	2 :	23.62
Volume	3.70	73	2	0 :	2 24.06
	3.61	25	1	1 2	2 24.62
Density	3.44	47	2	1 2	2 25.86
(measured) 1.206 g/cm ³	3.41	8	3	0 2	2 26.12
(calculated) 1.208 g/cm ³	3.30	6	5	1 1	25.98
Thermal parameters	3.20	17	3	1 2	27.82
Isotropic: overall B = 5.0	3.09	7	4	0	20 04
isotropic: overall b - 5.0	3.05		4		2* 28.84
Scattering factors	3.02	15 30	0		2 29.24 2 29.60
C^0 , H^0 , N^0 , O^0 [International Tables, 1962]	2.884	1			2 29.60 1 30.98
C, II, N, O [International lables, 1902]	2.815	6	2		1 31.76
Scale factors (integrated intensities)					
$\gamma = 1.471 \times 10^{-3}$	2.766	4	3	2 2	2 32.34
I/I (calculated) = 0.50	2.693	3	6	2 (33.24
	2.687	3			33.32
Additional pattern	2.657	2		-	33.70
 PDF card 18-1501 [Billig, B. and Greenberg, B., Polytechnic Inst. of Brooklyn] 	2.592	6	4	2 2	2 34.58
	2.539	4	1	1 3	
References	2.532	4	6	0 2	
Brown, C. J. and Corbridge, D. E. C. (1954). Acta	2.478	3	2	1 3	36.22
Crystallogr. <u>7</u> , 711.	2.445	1		1 2	2 36.72
Brown, C. J. (1966). Acta Crystallogr. <u>21</u> , 442. International Tables for X-ray Crystallography,	2.410	2	5	2 2	2 37.28
III (1962). (The Kynoch Press, Birmingham, Eng.)	2.377	5	8		37.82
p. 202.	2,353	1	5		38.22
	2.311	3			1 * 38.94
	2.304	4	1	2 3	
	2.295	5	7	0 2	39.22
	2.273	6			39.62
	2.258	2			39.90
	2.214	2	2		40.72
	2.186	4	3		41.26
	2.097	1	4	2 3	43.10
	2.065	2		2 2	
	2.055	2		1 1	
	2.024	2	1	3 3	•
	1.967	1	5		+ 46.12
	1.943	3	3	3 3	46.72

	Calculated	Pattern	(Pea	ak h	eights)
d(A)	· I		hkl		2Θ(°) ° λ = 1.540598A
1.919	3	6	4	0+	47.32
1.915	3	9	0	2+	47.44
1.892	2	7	1	3+	48.06
1.884	2	8	3	1 +	48.28
1.880	2	4	3	3+	48.38
1.870	3	10	1	1 +	48.64
1.838	1	0	2	4+	49.56
1.813	1	2	5	1 +	50.28
1.808	2	2	5	4+	50.44
1.771	4	3	2	4+	51.58
1.748	2	5	1	4	52.30
1.744	2	8	3	2	52.42
1.708		3	4	3+	53.60
1.668	1	10	3	0	55.00
1.664	1	2	3	4+	55.16
1.658	1	3	5	2	55.38

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2⊖(°) °
					$\lambda = 1.540598A$
9.82	100		•		
6.82	100 39	2	0	0	9.00
5.83	85	1	1		12.97 15.18
5.18	33	2	1	1	17.09
4.91	3	4	0	0	18.05
4.51	Ç	7	Ü	Ü	10.05
4.74	6	0	2	0	18.70
4.47	28	3	1	1	19.87
4.36	29	4	1	0	20.35
4.27	5	2	2	0	20.79
4.08	43	0	2	1	21.79
3.99	61	1	2	1	22.26
3.99	4	0	0	2	22.27
3.91	31	1	0	2	22.73
3.83	8	4	1	1	23.23
3.76	39	2	2	1	23.61
3.70	82	2	0	2	24.06
3.61	28	1	1	2	24.61
3.46	2	3	2	1	25.73
3.44	53	2	1	2	25.85
3.41	1	4	2	0	26.11
	_		_		20.11
3.41	5	3	0	2	26.14
3.30	6	5	1	1	26.97
3.21	20	3	1	2	27.80
3.10	4	4	0	2	28.81
3.09	3	6	1	0	28.83
3.05	16	0	2	2	29.23
3.02	34	1	2	2	29.59
3.01	2	2	3	0	29.67
2.885		6	1	1	30.97
2.828		5	2	1	31.61
1					

	Calculated	Pattern	(Int	egra	ated)
d(A)	I		hkl		2Θ (°) λ = 1.540598A
2.815 2.767 2.694 2.685 2.658	7 4 4 3 5 1	2 3 6 5 4	3 2 2 1 3	1 2 0 2 0	31.76 32.33 33.23 33.35 33.69
2.592 2.552 2.549 2.539 2.531	2 1 9 1 9 4	4 6 7 1 6	2 2 1 1 0	2 1 1 3 2	34.57 35.13 35.17 35.32 35.44
2.478 2.445 2.410 2.371 2.371	5 1 0 2 7 5	2 6 5 8 0	1 1 2 1 4	3 2 2 0	36.22 36.73 37.27 37.82 37.92
2.353 2.313 2.311 2.304 2.295	7 1 1 2 4 2	5 3 7 1 7	3 3 2 2 0	1 2 1 3 2	38.22 38.83 38.94 39.07 39.22
2.278 2.276 2.27 2.258 2.25	4 4 3 2 8 1	8 6 0 2	1 3 4 2 4	1 0 1 3	39.53 39.60 39.63 39.90 39.90
2.214 2.18 2.18 2.14 2.09	7 2 5 3 5 1	2 6 3 5 4	4 3 2 1 2	1 1 3 3 3	40.72 41.25 41.26 42.09 43.09
2.066 2.059 2.026 1.96	5 2 4 3 7 1	7 9 1 5 3	2 1 3 4 3	2 1 3 1 3	43.79 44.03 44.73 46.11 46.70
1.943 1.923 1.924 1.915 1.893	3 1 0 2 5 1	1 10 6 9 6	1 1 4 0 2	4 0 0 2 3	46.73 47.22 47.30 47.45 48.03
1.89 1.88 1.88 1.87	4 1 0 1 7 1	7 8 4 9 3	1 3 3 1 1	3 1 3 2 4	48.06 48.26 48.38 48.47 48.63
1.87 1.83 1.81 1.80	9 1 3 1 7 1	10 0 2 2 3	1 2 5 2 5	1 4 1 4	48.66 49.54 50.27 50.46 51.41

Acetanilide, $C_6H_5NHCOCH_3$ -(Continued)

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2Θ (°)
					$\lambda = 1.540598A$
1.772	2	8	1	3	51.53
1.770	3	3	2	4	51.59
1.763	1	1	4	3	51.83
1.748	2	5	1	4	52.29
1.744	1	8	3	2	52.43
1.722	1	4	2	4	53.15
1.708	2	3	4	3	53.60
1.668	1	10	3	0	55.00
1.663	1	2	3	4	55.20
1.657	1	3	5	2	55.40
1.633	1	10	3	1	56.29

Synonyms

5,5 - diallylbarbituric acid, Dial

Structure

Monoclinic, C2/c (15), Z = 8. The structure was determined by Escobar [1975].

Atom positions

There was some disorder in the structure, with one carbon randomly occupying 2 sites in the proportion of 4 to 1. All other atoms were in general positions [ibid.].

Lattice constants

a = 14.570 A

b = 7.289

c = 20.618

 $\beta = 99.83^{\circ}$

(published values: a = 14.569(6), b = 7.289(4), $c = 20.617(7), \beta = 99.83(4)^{\circ}$ [Escobar, 1975]).

CD cell: a = 20.618, b = 7.289, c = 14.570, $\beta = 99.83^{\circ}$, space group A2/a; a/b = 2.8286, c/b = 1.9989

Volume 2157.5 A³

Density

(measured) 1.278 (calculated) 1.282

Thermal parameters

Isotropic: overall B = 4.0

Scattering factors C^0 , H^0 , N^0 , O^0 [International Tables, 1962]

Scale factors (integrated intensities)

 $\gamma = 1.627 \times 10^{-3}$

 I/I_{c} (calculated) = 0.65

Additional pattern

1. PDF card 5-158 [Huang, 1951]

References

Escobar, C. (1975). Acta Crystallogr. B31, 1059. Huang, T.-Y. (1951). Acta Pharm. Int. 2, 43. International Tables for X-ray Crystallography,
III (1962). (The Kynoch Press, Birmingham, Eng.) p. 202.

	Calculated	Pattern	(Pea	ak hei	ght	s)
d (A)	I		hkl	,	(=	20(°) 1.54 0 598A
10.16 7.17 6.50 6.39 6.05	6 3 100 52 51	0 2 1 -2	0 0 1 0	2 0 0 2		8.70 12.34 13.62 13.84 14.62
5.68 5.43 5.29 5.08 4.88	16 26 25 44 33	-1 2 1 0	1 0 1 0	2 2 4 3		15.60 16.30 16.76 17.46 18.18
4.52 4.16 4.03 4.00 3.917	2 6 34 14	-2 -1 -3 3	0 1 1 1 1	4 4 1 0 2		19.62 21.34 22.02 22.20 22.68
3.821 3.681 3.642 3.587 3.553	12 22 10	3 -3 0 0 3	1 1 2 2	1 3 0 1 2		23.26 24.16 24.42 24.80 25.04
3.386 3.329 3.285 3.248	4 5 14 5 52	-3 1 -2 2 4	1 1 0 2 0	4 5 6 0+ 2+		26.30 26.76 27.12 27.44 27.72
3.169 3.102 3.026 2.944 2.877	6 11 18	2 -1 2 3 2	2 1 2 1 0	1 * 6 2 * 4 6		28.14 28.76 29.50 30.34 31.06
2.845 2.788 2.714 2.692 2.671	2 . 9 . 4	2 -3 4 -5 5	2 1 0 1	3 -6 4+ 2 0		31.42 32.08 32.98 33.26 33.52
2.639 2.595 2.555 2.534 2.481	1 5 4 5	-2 5 -4 -2 0	2 1 2 0 2	5+ 1 2 8 6		33.94 34.54 35.10 35.40 36.18
2.447 2.429 2.420 2.405 2.399	5 5 5 3	2 -1 3 -4 1	2 1 1 2 3	5 8 6 4 0		36.70 36.98 37.12 37.36 37.46
2.388 2.371 2.346 2.323 2.317	4 3 2	-1 1 -1 -6 1	3 3 0 3	1 1 2 4 2		37.64 37.92 38.34 38.74 38.84

Allobarbital, $C_{10}H_{12}N_2O_3$ -(Continued)

	Calculated	Pattern	(Pe	ak he	eights)
d (A)	I		hkl		2Θ(°) ° λ = 1.540598A
2.275	1	2	0	8+	39.58
2.245		6	o	2	40.14
2.223		5	1	4	40.54
2.184		-1	1	9	41.30
2.179		۵	5	4	41.40
2.172	4	-3	3	1	41.54
2.167	4	3	3	0	41.64
2.082	2	1	1	9+	43.42
2.046	2	-4	2	7	44.24
2.033	1	0	0	10+	44.54
2.006		→ 5	1	8	45.16
2.000	2	- 6	2	3+	45.30
1.984	1	- 7	1	3+	45.68
1.959	1	- 6	2	4	46.32
1.952	1	- 7	1	4+	46.48
1.923	1	-4	2	8+	47.22
1.913	1	-4	0	10+	47.48
1.861	1	- 5	3	2	48.90
1.853		3	3	5+	49.12
1.848	1	6	2	3	49.26
1.843	1	-7	1	6	49.42
1.822	1	1	3	7+	50.02
1.813		4	2	7+	50.30
1.791		-8	0	4+	50.96
1.766	2	2	4	0	51.72
1.746	1	?	1	4	52.36
1.714	. 1	-2	0	12+	53.40
1.710		-8	0	6+	53.54
1.690		-2	4	4 +	54.22
1.683	1	5	3	4	54.46
1.630	1	-4	4	1+	56.42
1.624	2	-4	4	2+	56.62
1.608	1	-4	4	3+	57.24
1.595	1	2	4	5+	57.76

	Calculated	Pattern	(Int	egr	ated)
d (Å)	I		hkl		2Θ(°) λ = 1.540598A
10.16 7.18 6.50 6.40 6.33	6 3 100 45 4	0 2 1 -2	0 0 1 0	2 0 0 2 1	8.70 12.32 13.61 13.83 13.97
6.06 5.68 5.44 5.29 5.08	53 16 27 26 47	1 -1 2 1 0	1 1 0 1 0	1 2 2 2 4	14.62 15.60 16.28 16.74 17.45
4.88 4.53 4.16 4.04 4.00	36 3 6 37 11	-1 -2 -1 -3	1 0 1 1	3 4 4 1 0	18.16 19.60 21.34 22.01 22.21
3.917 3.823 3.682 3.645 3.587	8 12 25	-3 3 -3 0	1 1 1 2 2	2 1 3 0 1	22.68 23.25 24.15 24.40 24.80
3.553 3.386 3.331 3.286 3.250	6 3 5 14	3 -3 1 -2 2	1 1 0 2	2 4 5 6 0	25.04 26.30 26.74 27.11 27.42
3.248 3.247 3.216 3.209 3.171	1 1 3	-2 3 4 0 2	2 1 0 2 2	1 3 2 3 1	27.44 27.45 27.72 27.78 28.12
3.167 3.103 3.028 3.022 2.961	7 10 4	-2 -1 2 -2 0	2 1 2 2 2	2 6 2 3 4	28.16 28.75 29.48 29.53 30.16
2.945 2.878 2.845 2.788 2.730	3 2 2	3 2 2 -3 -1	1 0 2 1 1	4 6 3 6 7	30.33 31.04 31.42 32.08 32.78
2.720 2.713 2.705 2.704 2.691	5 1	4 0 -5 -4 -5	0 2 1 0	4 5 1 6 2	32.90 32.99 33.10 33.10 33.27
2.671 2.646 2.639 2.596 2.554	2 5 1	5 2 -2 5 -4	1 2 2 1 2	0 4 5 1 2	33.52 33.85 33.94 34.53 35.10

Allobarbital, $C_{10}H_{12}N_2O_3$ -(Continued)

	Calculated	Pattern	(Int	egr	ated)
d (A)	I		hkl		2Θ (°) ° λ = 1.540598A
2.534 2.481	6	- 2 0	0 2	8	35.40 35.18
2.447 2.430 2.420	5	2 -1 3	2 1 1	5 8 6	36.69 36.97 37.13
2.404 2.396 2.387		-4 1 -1	2 3 3	4 0 1	37.37 37.51 37.65
2.371	4	1 -1	3	1 2	37.91 38.33
2.323 2.317 2.275 2.245 2.223	1 1	-6 1 2 6 5	0 3 0 0	4 2 8 2 4	38.74 38.84 39.58 40.14 40.55
2.185 2.180 2.172 2.166 2.083	1 5 1	-1 4 -3 3 1	1 2 3 3	9 4 1 0 9	41.28 41.39 41.54 41.66 43.41
2.080 2.046 2.031 2.006 2.000	2 1 1	-2 -4 0 -5 6	2 2 0 1 2	8 7 10 8 0	43.46 44.23 44.57 45.15 45.30
1.997 1.985 1.959 1.923 1.861	1 1 1 1	-6 -7 -6 -4	2 1 2 2 3	3 3 4 8 2	45.37 45.67 46.32 47.24 48.90
1.848 1.842 1.826 1.791 1.766	1	6 •7 5 •8 2	2 1 1 0 4	3 6 7 4 0	49.27 49.43 49.90 50.96 51.71
1.746 1.714 1.690 1.683 1.670	1 1	7 -2 -2 5 -1	4 3	4 4 4 2	52.37 53.40 54.22 54.47 54.94
1.630 1.624 1.608 1.595	1	-4 -4 -4 2	4 4 4 4	1 2 3 5	56.42 56.63 57.23 57.74

Calcium carbonate,	aragonite, Ca	CO ₃				
Structure	Calc	ulated Pat	tern (Peak	k heig	hts)
Orthorhombic, Pnma (62), Z = 4. The structure was determined by Bragg [1924] and refined by de Villiers [1971]. Aragonite is isostructural with strontianite (SrCO ₃) and witherite (BaCO ₃) [de Villiers, 1971].	d (A)	I	h	kl	λ	20(°) = 1.540598A
***	4.653	1	1	0	1	19.06
Atom positions	4.211	5	0	1	1	21.08
4(c) 4 calcium	3.980	2		0	2	22.32
4(c) 4 carbon	3.394	100	1	1	1	26.24
4(c) 4 oxygen(1) 8(d) 8 oxygen(2)	3.271	62	1	0	2	27.24
Polymorphism	2.8698	4	2	0	0	31 • 14
There are 2 hexagonal polymorphs, calcite and	2.7315	1 1	_	1	2	32.76
vaterite; the 3 forms may coexist in synthetic	2.6995	62	2		1	33.16
samples.	2.4821	43	2		0+	36.16
Samples.	2.4100	18	1	0	3	37•28
Lattice constants	2.3708	42	2	1	1	37.92
a = 5.740(1) b = 4.9614(6)	2.3411	31	_	1	3	38.42
, ,	2.3283	24	2		2	38.64
c = 7.966(1)	2.1893	15	1	2	1	41.20
This cell was refined from NBS data [Swanson, Fuyat and Ugrinic, 1954, and on PDF card 5-453]	2.1682	1	1	1	3	41.62
	2.1055	22	0	2	2	42.92
CD cell: a=5.740(1), b=7.966(1), c=4.9614(6),	1.9911	6	0	0	4	45.52
space group, Pnam, a/b = 0.7206, c/b = 0.6228	1.9771	69	1	2	2	45.86
	1.9498	1	2	0	3	46.54
Volume . 226.9 A ³	1.8813	34	1	ō	4	48.34
220.5 11		_1_		_		40.46
Density	1.8769	38	2	2	0	48.46
(calculated) 2.931 g/cm ³	1.8268	3	2	2	1	49.88
(carculated) 2.931 g/Cm	1.8139	28		1	3	50.26
Thermal parameters	1.7591	4	1	1	4	51.94
Anisotropic [de Villiers, 1971]	1.7416	28	3	1	1	52•50
	1.7282	11	1	2	3	52.94
Scattering factors	1.7246	18	3	0	2	53.06
Ca ²⁺ , C ⁰ [International Tables, 1962]	1.6979	2	2	2	2	53.96
0 ²⁻ [Suzuki, 1960]	1.6359	2	2	0	4	56.18
	1.6296	1	3	1	2	56.42
Scale factors (integrated intensities) $\gamma = 0.220 \times 10^{-3}$	1 (100	•	0	7	1	56.82
I/I (calculated) = 0.98	1.6190	2 6		3		59.24
' C '	1.5585	2		0		60 • 24
Additional patterns	1.5350	1	2			60.38
1. PDF card 5-453 [Powder Diffraction Data 1976]	1.5318	i	0			61.04
2. PDF card 24-25 [Smith et al., 1973]	1 • 4991	6	1	2	4	61.84
References	1.4759	3	1		2	62.92
Bragg, W. L. (1924). Proc. Roy. Soc. Al05, 16.	1.4663	7	1	1	5	63.38
International Tables for X-ray Crystallography,	1.4329	1	2		0+	65.04
III (1962). (The Kynoch Press, Birmingham, Eng.)	1.4121	4	4	0	1	66•12
Powder Diffraction Data from the Joint Committee on	1 4100	_	2	3	1	66•22
Powder Diffraction Standards Associateship at the	1.4102	4	0		3	66.56
National Bureau of Standards (1976). (The Joint	1.4038	4		1		67.94
Committee on Powder Diffraction Standards,	1.3786	1	2			68.66
Swarthmore, PA, 19081), p. 16.	1.3659	4 5	4	1	1	69.10
Smith, D. K. et al. (1973). The Annual Report to	1.3583	5	4		•	3,410
the Joint Committee on Powder Diffraction Stan-	1.3501	2	4	0		69.58
dards.	1.3410	3	2	1	5	70.12
Suzuki, T. (1960). Acta Crystallogr. <u>13</u> , 279.	1.3278	2	0	0	6	70.92
Swanson, H. E., Fuyat, R. K, and Ugrinic, G. M.	1.3055	1	1	2	5	72.32
(1954). Nat'l Bur. Std. U.S. Circ. 539, <u>3</u> , 53. de Villiers, J. P. R. (1971). Am. Mineralogist 56,	1.3024	1	4	1	2	72.52
758.						

Ca	lculated	Pattern	(Pea	k he	ights)
d(A)	I		hkl	;	2Θ(°) 。 λ = 1.540598A
1.2611	6	2	3	3	75.30
1.2404	7	0		0+	76.78
1.2360	9	3		1	77.10
1.2235	6	4	1	3	78.04
1.2146	2	2	2	5	78.72
1.2057	8	3	2	4+	79.42
1.1937	1	3	3	2	80.38
1.1888	6	3	1	5	80.78
1.1706	9	0	2	6	82.30
1.1643	1	4	0	4	82.84
1.1598	3	1	4	2	83.24
1.1470	1	1	2	6	84.38
1.1385	1	2	4	0	85.16
1.1359	1	5	0	1	85.40
1.1333	1	4	1	4	85•64
1.1318	1	3	3	3	85.78
1.1269	2	2	4	1	86.24
1.1251	4	1	3	5	86.42
1.1164	1	1	0	7	87.26
1.1075	2	5	1	1	88.14
1.1031	1	5	0	2+	88.58
1.0978	1	3	2	5	89.12
1.0947	2	2	4	2	89.44
1.0890	1	1	1	7	90.04
1.0839	1	2	2	6	90.58
1.0739	1	4	3	1	91.66
1.0655	2	2	3	5	92.60
1.0595	1	3	3	4	93.28
1.0579	1	2	0	7	93.46
1.0539	1	4	2	4+	93.92
1.0465	1	2	4	3	94 • 80
1.0425	1	4	1	5	95.28
1.0356	4	1	4	4+	96.12
1.0330	4	5	2	1	96.44
1.0180	1	1	2	7+	98.34
1.0079	4	5	2	2	99.68
1.0070	3	3	4	2	99.80
1.0035	4	4	3	3	100.28
•9986	1	3	2	6	100.96
•9957	1	0	0	8	101.36
•9946	1	5	0	4	101.52
•9884	1	2	4	4	102.40
•9840	2	3	3	5	103.04
•9811	2	1	0	8	103.46
•9795	1	4	2	5	103.70
•9739	2	2	3	6+	104.54
•9732	1	2	2	7	104.66
•9706	2	1	5	1	105.06
•9648	1	1	4	5	105.96
•9624	1	1	1	8	106.34

d(A) I hkl 20(°) α λ = 1.540598A .9596 3 3 1 7 106.78 .9568 3 6 0 0 107.24 .9520 1 4 3 4 108.02 .9497 1 6 0 1 108.40 .9407 1 2 0 8 109.94 .9378 1 2 5 0 110.44 .9365 1 5 3 1 10.68 .9315 3 2 5 1+ 111.58 .9295 3 0 5 3 111.94 .9252 1 1 3 7 112.72 .9231 1 5 2 4 113.12 .9175 1 5 3+ 114.18 .9154 2 5 1 5 114.60 .9132 2 4 2 115.02 .9133 3 1 2 8 115.20 .9063 2 0 4 6+ 116.40 .9001 1 6 0 3 117.70 .8961 1 4 3 5 118.54 .8926 1 6 2 0 119.30 .8912 2 3 7 119.62 .8856 2 6 1 3 120.88 .8843 2 2 5 3 121.18 .8776 2 4 1 7+ 122.74 .8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .88523 1 5 3 123.24<		culated	Pattern	(Pea	k he	ights)
.9568	d (Å)	I		hkl		
.9520	•9596	3	3	1	7	106.78
.9497	•9568	3	6	0	0	/ 107.24
.9407	•9520	1	4	3	4	108.02
.9378						
.9365	•9407	1	2	0	8	109.94
.9315						
.9295						
.9252						
.9175 1 1 5 3+ 114.18 .9154 2 5 1 5 114.60 .9132 2 4 4 2 115.02 .9132 3 1 2 8 115.20 .9063 2 0 4 6+ 116.40 .9001 1 6 0 3 117.70 .8961 1 4 3 5 118.54 .8926 1 6 2 0 119.30 .8912 2 2 3 7 119.62 .8856 2 6 1 3 120.88 .8843 2 2 5 3 121.18 .8796 1 2 2 8 122.26 .8776 2 4 1 7+ 122.74 .8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4						
.9175	•9231	1	5	2	4	113.12
.9132	.9175					
.9132						
.9063	•9132		4	4		115.02
.9001	•9123	3	1	2	8	115.20
.8961 1 4 3 5 118.54 .8926 1 6 2 0 119.30 .8912 2 2 3 7 119.62 .8856 2 6 1 3 120.88 .8843 2 2 5 3 121.18 .8796 1 2 2 8 122.26 .8776 2 4 1 7+ 122.74 .8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8649 1 4 4 4 130.30 .8460 1 3 3		2	0		6+	
.8926 1 6 2 0 119.30 .8912 2 2 3 7 119.62 .8856 2 6 1 3 120.88 .8843 2 2 5 3 121.18 .8796 1 2 2 8 122.26 .8776 2 4 1 7+ 122.74 .8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8649 1 4 4 130.30 .8460 1 3 3 7						
.8912 2 2 3 7 119.62 .8856 2 6 1 3 120.88 .8843 2 2 5 3 121.18 .8796 1 2 2 8 122.26 .8776 2 4 1 7+ 122.74 .8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8649 1 4 4 130.30 .8460 1 6 2 3 131.14 .8449 1 4 2 7						
.8856						
.8843 2 2 5 3 121.18 .8796 1 2 2 8 122.26 .8776 2 4 1 7+ 122.74 .8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8643 2 2 4 6 126.06 .8523 1 5 3 4 129.32 .8489 1 4 4 130.30 .8489 1 4 4 130.30 .8449 1 3 3 7 132.40 .8391 1 3 8 131.78 .8378 1 4 2 7 133.26 .8338 3 2 1 9+ 135.00	.8912	2	2	3	7	119.62
.8796 1 2 2 8 122.26 .8776 2 4 1 7+ 122.74 .8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .8601 1 3 5 2 127.16 .8523 1 5 3 4 129.32 .8489 1 4 4 4 130.30 .8460 1 6 2 3 131.14 .8439 1 1 3 8 131.78 .8419 3 3 7 132.40 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8243 1 5 4 2	•8856	2	6	1	3	120.88
.8776	•8843	2			3	121.18
.8755 2 3 5 1 123.24 .8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .8601 1 3 5 2 127.16 .8523 1 5 3 4 129.32 .8489 1 4 4 4 130.30 .8460 1 6 2 3 131.14 .8439 1 1 3 8 131.78 .8419 3 3 7 132.40 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.68 .8360 1 3 5 3 134.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8157 1 7 0 1						
.8712 1 0 1 9+ 124.30 .8643 2 2 4 6 126.06 .8601 1 3 5 2 127.16 .8523 1 5 3 4 129.32 .8489 1 4 4 4 130.30 .8460 1 6 2 3 131.14 .8439 1 1 3 8 131.78 .8419 3 3 7 132.40 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.68 .8360 1 3 5 3 134.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5						
.8643 2 2 4 6 126.06 .8601 1 3 5 2 127.16 .8523 1 5 3 4 129.32 .8489 1 4 4 4 130.30 .8489 1 4 4 4 130.30 .8489 1 4 4 4 130.30 .8499 1 4 4 4 130.30 .8499 1 4 4 4 130.30 .8499 1 1 3 8 131.78 .8499 1 1 3 8 131.78 .8419 3 3 3 7 133.26 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6						
.8601 1 3 5 2 127.16 .8523 1 5 3 4 129.32 .8489 1 4 4 4 130.30 .8489 1 4 4 4 130.30 .8489 1 4 4 4 130.30 .8460 1 3 3 7 132.40 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.68 .8360 1 3 5 3 134.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8292 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8142 1 6 2						
.8523 1 5 3 4 129.32 .8489 1 4 4 4 130.30 .8489 1 4 4 4 130.30 .8489 1 6 2 3 131.14 .8439 1 1 3 8 131.78 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.26 .8378 1 5 4 1 133.26 .8378 1 5 4 1 133.26 .8378 1 5 4 1 133.26 .8378 1 5 4 1 133.26 .8388 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8161 1 4 5						
.8489 1 4 4 4 130.30 .8460 1 6 2 3 131.14 .8439 1 1 3 8 131.78 .8419 3 3 7 132.40 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.68 .8360 1 3 5 3 134.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1						
.84 39 1 1 3 8 131.78 .84 19 3 3 3 7 132.40 .83 91 1 4 2 7 133.26 .83 78 1 5 4 1 133.68 .83 78 1 5 4 1 133.68 .83 60 1 3 5 3 134.26 .83 38 3 2 1 9+ 135.00 .83 20 2 3 2 8 135.58 .82 69 1 0 6 0 137.36 .82 43 1 5 4 2 138.30 .82 02 1 6 0 5 139.84 .81 61 1 4 5 0 141.42 .81 57 1 7 0 1 141.58 .81 42 1 6 2 4+ 142.20 .81 18 2 4 5 1 143.28 .80 96 2 0						
.84 39 1 1 3 8 131.78 .84 19 3 3 3 7 132.40 .83 91 1 4 2 7 133.26 .83 78 1 5 4 1 133.68 .83 78 1 5 4 1 133.68 .83 60 1 3 5 3 134.26 .83 38 3 2 1 9+ 135.00 .83 20 2 3 2 8 135.58 .82 69 1 0 6 0 137.36 .82 43 1 5 4 2 138.30 .82 02 1 6 0 5 139.84 .81 61 1 4 5 0 141.42 .81 57 1 7 0 1 141.58 .81 42 1 6 2 4+ 142.20 .81 18 2 4 5 1 143.28 .80 96 2 0	•8460	1	6	2	3	131.14
.8419 3 3 3 7 132.40 .8391 1 4 2 7 133.26 .8378 1 5 4 1 133.68 .8378 1 5 4 1 133.68 .8360 1 3 5 3 134.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5						
.8378 1 5 4 1 133.68 .8360 1 3 5 3 134.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28	-8419	3	3	3	7	132.40
.8360 1 3 5 3 134.26 .8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28	.8391	1	4	2	7	133.26
.8338 3 2 1 9+ 135.00 .8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28	•8378	1	5	4	1	133.68
.8320 2 3 2 8 135.58 .8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28	.8360	1	3	5	3	134.26
.8269 1 0 6 0 137.36 .8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28		3	2	1	9+	135.00
.8243 1 5 4 2 138.30 .8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28	•8320	2				
.8202 1 6 0 5 139.84 .8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28						
.8161 1 4 5 0 141.42 .8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28	•8243	1	5	4	2	138.30
.8157 1 7 0 1 141.58 .8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28						
.8142 1 6 2 4+ 142.20 .8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28						
.8118 2 4 5 1 143.20 .8116 2 5 3 5 143.28 .8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28						
.8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28						
.8096 2 0 6 2 144.14 .8082 1 2 5 5+ 144.76 .8049 1 7 1 1 146.28	0			-	-	147.00
•8082 1 2 5 5+ 144.76 •8049 1 7 1 1 146.28						
.8049 1 7 1 1 146.28						

Cal	culated Pat	tern	(Pe	ak h	eights)
d (Å)	I		hkl		2Θ(°) ° λ = 1.540598A
.8017	3	1	6	2	147.82
-8006	1	2	2	9	148.38
•7977	1	5	_	7	149.90
•7966	1	0		10	150.46
•7946	1	2	6	0	151.60
•7927	1	7	1	2	152.70
.7906	2	6	3	3	154.00
.7890	1	1	0	10	155.00
.7849	2	4	3	7	157.90
•7834	1	7	0	3	159.00

	lculated	Pattern	(In	tegr	ated)
d (Å)	I		hkl		2Θ(°) ° λ = 1.540598A
4.657	1	1	0	1	19.04
4.211	5	0	1	1	21.08
3.983	2	0	0	2	22.30
3.395	100	1	1	1	26.22
3-272	62	1	0	2	27.23
2.8700	4	2	0	0	31.14
2.7317	10	1	1	2	32.76
2.7001	65	2		1	33.15
2.4843	34	2	_	0	36.13
2.4807	18	0	2	0	36.18
2.4100	18	1	0	3	37.28
2.3716	45	2	1	1	37.91
2.3411	31	0	1	3	38•42
2.3285	21	2	0	2	38 • 64
2.1894	16	1	2	1	41.20
2.1678	1	1	1	3	41.63
2.1057	24	0	2	2	42.92
1.9915	4	0		4	45.51
1-9769	7 9	1	2	2	45-87
1.9491	1	2	0	3	46.56
1.8815	34	1	0	4	48.34
1.8768	21	2		0	48.46
1.8604	1	3		1	48.92
1.8268	2	2		1	49 • 88
1-8141	32	2	1	3	50•25
1.7592	4	1	1	4	51.94
1.7420	33	3		1	52.49
1.7286	8	1		3	52.93
1.7247	15	3		2	53.06
1.6977	3	2	2	2	53∙96

Calcu	lated Pat	tern (Inte	egrat	ed)
d (Å)	I	h	kl	λ	20(°) ° = 1.540598A
1.6362	3	2	0	4	56.17
1.6290	1	3	1	2	56.44
1.6193	2	ō	3	1	56.81
1.5584	7	1	3	i	59.24
1 • 55 30	i	ō	2	4	59.47
1.5352	2	1	0	5	60•23
1.5326	1	2	2	3	60.35
1.5169	1	0	1	5	61.04
1.4991	7	1	2	4	61.84
1.4884	1	3	2	1	62.34
1 • 4760	4	1	3	2	62.92
1.4666	8	1	1	5	63.37
1.4350	1	4	0	0	64.93
1.4329	1	2	3	0	65.04
1•4 161	1	3	2	2	65.91
1.4123	4	4	0	1	66.11
1.4103	3	2	3	1	66.21
1.4038	4	0	3	3	66.56
1.3785	1	4	1	0	67.95
1.3658	4	2	2	4	68•66
1.3636	1	1	3	3	68.79
1.3583	6	4	1	1	69-10
1.3501	2	4	ō	2	69.58
1.3483	1	2	3	2	69.68
1.3411	3	2	1	5	70.11
1.3293	1	3	1	4	70.83
1.3277	2	0	0	6	70.93
1.3054	1	1	2	5	72.33
1.3027	1	4	1	2	72.50
1.2610	8	2	3	3	7 5•30
1.2421	3	4	2	0	76•65
1.2403	7	0	4	0	76.78
1.2360	10	3	3	1	77.10
1.2235	7	4	1	3	78.04
1 • 21 46	2	2	2	5	78•72
1 • 2058	9	3	2	4	79.41
1.2050	4	2	0	6	79.47
1.1937	1	3	3	2	80.38
1.1887	7	3	1	5	80.79
1.1858	1	4	2	2	81.02
1-1709	1	2	1	6	82.27
1.1706	11	0	2	6	82.30
1.1642	1	4	0	4	82.85
1.1598	4	1	4	2	83.23
1-1470	1	1	2	6	84•38
1-1386	1	2	4	0	85.15
1.1363	1	5	0	1	85.36
1.1335	1	4	1	4	85 • 63
1.1318	1	3	3	3	85.78
1 • 1 2 7 1	2	2	4	1	86•22

Calcu	lated Pat	ttern	(Int	egra	ted)		ılated Pat	tern	Int	egrat	:ed)
d (A)	I	1	hkl		20(°) λ = 1.540598A	d (A)	I	ł	ıkl	λ	20 (°) = 1.540598
1.1251	4	1	3	5	86.41	•9319	2	4	4	1	111.49
1.1251	1	4	2	3	86.41	•9314	1	5	0	5	111.59
1.1163	1	1	0	7	87.27	•9314	2	2	5	1	111.59
1.1092	1	ō	1	7	87.97	•9295	2	0	5	3	111.94
1.1076	3	5	1	1	88.13	•9252	1	1	3	7	112.72
1.1031	1	5	0	2	88•58	•9232	1	5	2	4	113.11
1.1029	1	1	4	3	88.61	•9224	1	3	4	4	113.25
1.0979	1	3	2	5	89.11	•9175	1	1	5	3	114.18
1.0947	2	2	4	2	89.44	•9154	2	5	1	5	114.59
1.0890	2	1	1	7	90.03	•9134	1	4	4	2	114.99
1.0839	2	2	2	6	90.58	•9128	1	2	5	2	115.10
1.0740	1	4	3	1	91.66	•9123	4	1	2	8	115.20
1.0654	2	2	3	5	92-61	•9071	1	4	2	6	116.26
1.0594	1	3	3	4	93.28	•9064	2	0	4	6	116.40
1.0579	i	2	0	7	93 • 46	•9000	1	6	0	3	117.71
1.0539	1	4	2	4	93.92	•8961	2	4	3	5	118.54
1.0537	1	5	0	3	93.94	-8926	1	6	2	0	119.31
1.0528	ī	0	4	4	94.05	-8912	2	2	3	7	119.63
1.0464	1	2	4	3	94.80	•8870	1	6	2	1	120.54
1.0425	2	4	1	5	95.28	•8856	3	6	1	3	120.88
1.0356	5	1	4	4	96.12	•8843	3	2	5	3	121.17
1.0346	2	2	1	7	96•24	•8833	1	3	0	8	121.40
1.0330	2	5	2	1	96.43	•8796	2	2	2	8	122.26
1.0189	1	1	3	6	98•23	•8777	1	1	5	4	122.72
1.0180	1	1	2	7	98•35	•8776	1	4	1	7	122.74
1.0079	4	5	2	2	99•68	•8755	3	3	5	1	123.24
1.0070	3	3	4	2	99.81	•8748	1	1	0	9	123.42
1.0035	4	4	3	3	100.28	.8714	1	0	1	9	124.26
•9985	1	3	2	6	100.97	•8710	1	6	2	2	124.35
•9957	1	0	0	8	101.35	• 86 96	1	3	1	8	124.70
•9946	2	5	0	4	101.52	.8643	4	2	4	6	126.06
•9884	1	2	4	4	102.40	•8623	1	6	0	4	126.58
•9840	2	3	3	5	103.04	•8601	1	3	5	2	127-17
.9811	2	1	0	8	103-47	•8523	1	5	3	4	129.31
•9796	1	4	2	5	103•69	•8496	1	6	1	4	130.10
•9745	1	4	0	6	104.45	•8489	1	4	4	4	130.31
•9739	2	2	3	6	104.55	•8461	1	6	2	3	131.13
.9731	1	2	2	7	104.67	•8458	1	2	0	9	131.21
•9705	2	1	5	1	105.07	•8438	1	1	3	8	131.82
•9699	1	5	2	3	105•17	•8423	1	0	5	5	132.28
•9648	1	1	4	5	105.96	•8419	6	3	3	7	132.41
•9625	1	1	1	8	106.33	.8396	1	4	3	6	133.11
•9596	5	3	1	7	106.78	•8391	2	4	2	7	133.27
•9567	3	6	0	0	107.26	•8378	1	5	4	1	133.67
•9520	1	4	3	4	108.02	•8361	1	3	5	3	134.25
•9498	1	6	0	1	108+38	•8338	5	2	1	9	135.00
•9407	1	2	0	8	109.93	•8334	2	1	5	5	135.14
.9384	1	4	4	0	110.34	-8321	3	3	2	8	135.55
•9378	1	2	5	0	110.45	.8297	1	1	4	7	136.36
•9365	2	5	3	1	110.67	•8281	1	6	3	0	136.93

Calcium carbonate, aragonite, $CaCO_3$ - (Continued)

Calcu	ılated Pa	ttern (Int	egra	ted)
d (A)	I	h	kl		2Θ(°) λ = 1.540598A
•8269	1	0	6	0	137.36
.8250	1	1	2	9	138.04
.8243	2	5	4	2	138.30
•8237	1	6	3	1	138.53
•8202	1	6	0	5	139.84
•8162	1	4	5	0	141.40
•8157	1	7	0	1	141.59
•8145	1	6	2	4	142.07
•8142	1	1	6	1	142.21
•8119	4	4	5	1	143.15
.8115	4	5	3	5	143.31
•8096	1	0	6	2	144.13
•8086	1	4	4	5	144.61
•8082	1	5	0	7	144.77
•8082	1	2	5	5	144.77
•8056	1	3	5	4	145.96
-8049	1	2	4	7	146.28
•8049	2	7	1	1	146.29
•8032	2	7	0	2	147.11
•8031	1	5	4	3	147.15
.8017	7	1	6	2	147.82
•8005	i	2	2	9	148.40
•7995	i	4	5	2	148.91
•7977	3	5	1	7	149.89
•7966	1	0	0	10	150.47
•7946	3	2	6	0	151.60
•7930	1	3	1	9	152.52
•7928	1	7	1	2	152.61
•7905	5	6	3	3	154.01
•7890	2	1	0	10	154.98
•7848	5	4	3	7	157•90
•78 35	1	7	0	3	158.94
				3	

Cubic, Fm3m (225), Z = 4, isostructural with NaCl [Davey and Hoffman, 1920].

Atom positions

4(a) 4 calcium

4(b) 4 oxygen

Lattice constants

a = 4.8108 A

(published value, 4.8105 [Swanson and Tatge, 1953, and on PDF card 4-777])

Volume

111.34 A³

Density

(calculated) 3.345 g/cm³

Thermal parameters

Isotropic: calcium B = 0.5; oxygen B = 1.0

Scattering factors O² [Suzuki, 1960] Ca²⁺ [Inter-

[International Tables, 1962]

Scale factors (integrated intensities)

 $\gamma = 0.611 \times 10^{-3}$

 I/I_{c} (calculated) = 4.56

Additional pattern

1. PDF card 4-777 [Powder Diffraction Data, 1976].

References

Davey, W. P. and Hoffman, E. O. (1920). Phys. Rev. 15, 333.

<u>International</u> <u>Tables</u> for X-ray Crystallography, <u>III</u> (1962). (The Kynoch Press, Birmingham, Eng.) p. 204.

Powder Diffraction Data from the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards (1976). (The Joint Committee on Powder Diffraction Standards, Swarthmore, PA, 19081), p. 8.

Swanson, H. E. and Tatge, E. (1953). Nat'l. Bur.

Suzuki, T. (1960). Acta Crystallogr. 13, 279. Std. U.S. Circ. 539, 1, 43.

	Calculated	Pattern	(Pea	ak he	ights)
d (A)	I		hkl		2Θ(°) λ = 1.540598A
2.77 2.40 1.70	51 100 08 49	1 2 2 3	2	1 0 0	32 • 20 37 • 36 53 • 86 64 • 16
1.38	87 13	2	2	2	67.38
1.07	37 5 57 14	4 3 4	2	0 1 0	79.66 88.52 91.46
•98: •92:		5	1	2 1+	103.34 112.60
•85 •81 •80	32 7	4 5 4	3	0 1 2+	129•86 142•62 147•78

Calculated Pattern (Integrated)									
d(A)	I		hkl		2Θ(°) λ = 1.540598A				
2.7775		1	1	1	32.20				
2.4054		2	0	0	37.35				
1.7009	54	2		0	53.86				
1.4509	16	3	1	1	64.15				
1.3888	15	2	2	2	67.38				
1.2027	6	4	0	0	79.65				
1.1037	7 6	3	3	1	88.52				
1.0757	17	4	2	0	91.46				
•9820	14	4	2	2	103.33				
•9258	5	5	1	1	112.61				
•9258	2	3	3	3	112.61				
•8504	8	4	4	0	129.85				
-8132	16	5	3	1	142.62				
-8018	22	4	4	2	147.77				
-8018	6	6	0	0	147.77				

Orthorhombic, Amma (63), Z = 4, from powder data. The pattern is nearly identical to that of PrZn3 (space group Pnma) except that for CeZn3, all hkl reflections having k+l = 2n+1 were absent, suggesting a change to the A-centered lattice [Bruzzone et al., 1970].

Atom positions

The structure was determined with all atoms in positions 4(c) of Pnma.

Lattice constants

a = 6.644 A

b = 4.627

c = 10.437

[Bruzzone et al., 1970]

CD cell: a = 6.644, b = 10.437, c = 4.627, space group Amam. a/b = 0.6366, c/b = 0.4433.

Volume

320.9 A³

Density

(calculated) 6.961 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors

Ce⁰, Zn⁰ [Cromer and Mann, 1968]

Scale factor (integrated intensities)

 $\gamma = 0.512 \times 10^{-}$

References

Bruzzone, G., Fornasini, M.L. and Merlo, F. (1970).

J. Less-Common Metals 22, 253.

Cromer, D. H. and Mann, J. B. (1968). Acta Crystallogr. A24, 361.

	Calculated	Pattern	(Peak	k height	cs)
٥					
d(A)	I		hkl		20(°)
				λ =	1.540598A
				,	
4.227	7 5	0	1	1	21.00
4.103		1	ō	2	21.64
3.567					
		1	1	1	24.94
3.321		2	0	0	26.82
2.611	100	2	1	1+	34.32
		_		_	
2.56		1	1	3	34.96
2.429		1	0	4	36.98
2.313	3 35	0	2	0	38.90
2.132	2 30	2	1	3	42.36
2.039	15	3	0	2	44.40
2.015	5 1	1	2	2	44.94
1.962	2 5	3	1	1	46.24
1.898	3 5	2	2	0	47.88
1.731		0	2	4	52.84
1.689		3	0	4	54.28
		J	•	•	34023
1.684	4 5	1	0	6	54.44
1.675		1	2		54.76
				4	
1.661		4	0	0	55.26
1.651		2	1	5	55.62
1.546	5 5	4	1	1	59.76
1.530		3	2	2	60.48
1.443	32 1	3	1	5	64.52
1.425	58 1	4	1	3	65.40
1.419	93 1	0	1	7	65.74
1.401	12 1	4	0	4	66.70
1.387	72 15	1	1	7+	67.46
1.379		1	3	3	67.90
1.368		3	0	6	68.54
1.364	-	3	2	4	68.76
1.360	_	ı	2	6	68.96
1.500	,,	•	_	Ü	00.00
1.349		A	2	^	69.62
		4	2	0	
1.297		2	3	3	72.82
1.280		1	0	8	73.98
1.267		5	1	1	74.84
1.214	1	2	0	8	78.74
1.198		5	1	3+	79.96
1.184	1	5	0	4	81.16
1.177	74 5	3	2	6	81.72
1.162	20 1	2	3	5	83.04
1.156	58 1	0	4	0	83.50
1.123	38 1	4	3	1+	86.54
1.120		1	2	8	86.88
1.107		6	0	0	88.16
1.075		2	2	8+	91.52
1.072			3	7+	91.86
1.072		0	3	7.	31.00
				•	00.60
1.065		2	1 -	9	92.60
1.058		1	3	7+	93.42
1.044		1	4	4+	95.06
1.019		6	0	4	98 • 18
1.011	1 1	3	2	8	99.26

	ulated Pa	attern	(Pe	ak h	eights)
d(A)	I		hkl	,	20 (°)
					$\lambda = 1.540598A$
1.0061	1	3	4	2	99.92
1.0020	1	5	3	1	100.48
•9989	1	6	2	0	100.92
•9963	1	2	0	10	101.28
•9699	5	5	1	7	105.16
•9671	5	5	3	3	105.60
•9543	1	3	4	4	107.64
•9514	1	0	2	10	108.12
•9491	1	4	4	0	108-50
•9338	1	7	0	2+	111.16
•9328	1	6	2	4	111.34
•9295	1	0	1	11	111.94
•9146	1	2	2	10	114.76
-8951	1	2	1	11	118.76
•8928	1	2	3	9	119.26
•8921	1	4	4	4+	119.42
•8882	1	2	5	1	120.28
•8863	1	1	5	3	120.72
•8833	5	3	4	6+	121.40
•8741	1	3	2	10	123.58
.8659	1	7	2	2+	125.64
•8636	1	2	5	3+	126.24
•8343	5	5	3	7	134.82
•8332	1	7	0	6+	135.20
. 8323	1	7	2	4	135.50
•8255	1	4	2	10	137.84
•8198	1	2	5	5	139.96
•8149	1	8	1	1	141.90
•8111	1	4	1	11	143.50
•8092	1	3	0	12+	144.34
-8081	1	0	3	11+	144.80
•8061	1	3	4	8+	145.72
•7999	1	6	4	0	148.72
•7958	1	8	1	3	150.94
•7889	1	7	1	7	155.06
•7874	1	7	3	3+	156.10
•7854	1	2	3	11+	157.50
•7839	1	7	2	6	158.62
L		·····			

	Calculated	l Pattern	(Int	egra	ted)	
d (Å)	Ι		hkl		2Θ(°) λ = 1.54059	88
4.23		0	1	1	20.98	
4-10		1	0	2	21.64	
3.56		1	1	1	24.93	
3.32		2	0	0	26.82	
2.61	3 100	2	1	1	34.30	
2.60	9 30	0	0	4	34.34	
2.56	5 80	1	1	3	34.95	
2.42	9 20	1	0	4	36.98	
2.31		0	2	0	38.90	
2.13	2 35	2	1	3	42.35	
2.03		3	0	2	44.40	
2.01		1	2	2	44.94	
1.96		3	1	1	46.23	
1.90		0	1	5	47.76	
1.89	8 5	2	2	0	47.88	
1.739	9 1	0	0	6	52.57	
1.73		3	1	3	52.80	
1.73		0	2	4	52.85	
1.68		3	0	4	54.29	
1.68	3 1	1	0	6	54-48	
1.67	5 10	1	2	4	54.75	
1.66		4	0	0	55.26	
1.65		2	1	5	55.62	
1.54		4	1	1	59.77	
1.53	0 15	3	2	2	60.48	
1.48	71 1	1	3	1	62.40	
1.44	32 1	3	1	5	64.52	
1.42	60 1	4	1	3	65.39	
1.41	91 5	0	1	7	65.75	
1.40	12 1	4	0	4	66.70	
1.39	03 1	0	2	6	67.29	
1.38	78 15	1	1	7	67.43	
1.386	55 10	2	3	1	67.50	
1.37	93 10	1	3	3	67.90	
1.36	80 5	3	0	6	68.54	
1.36	39 5	3	2	4	68.78	
1.36	09 1	1	2	6	68.95	
1.34	93 5	4	2	0	69.63	
1.29	79 5	2	3	3	72.81	
1.28	02 1	1	0	8	73.99	
1.26	77 1	5	1	1	74.84	
1.21	43 1	2	0	8	78.74	
1.19	89 10	5	1	3	79.95	
1.198	85 1	4	2	4	79.99	
1.19	49 1	3	1	7	80.28	
1.18	41 1	5	0	4	81 - 16	
1 - 17	75 10	3	2	6	81.71	
1.16	21 5	2	3	5	83.04	
1.15	67 5	0	4	0	83.51	
1.12	41 1	3	0	8	86.51	

	Calculated	Pattern	(In	tegr	ated)
0					
d(A)	I		hkl		20(°) 。
					$\lambda = 1.540598A$
					
1.12		4	3	1	86.56
1.120		1	2	8	86.90
1.107		6	0	0	88.16
1.08	23 1	3	3	5	90.76
1.079	90 1	4	1	7	91.11
1.079	52 1	2	2	8	91.52
1.07	49 1	4	3	3	91.55
1.072	20 1	0	3	7	91.87
1.07	12 1	6	1	1	91.96
1.069	55 5	2	1	9	92.60
		_	_		
1.058	83 5	1	3	7	93.42
1.05		ō	4	4	93.51
1.05		5	2	4	93.91
1.04		1	4	4	95.05
		0	0	10	95•13
1.043	37 1	U	U	10	93013
1.019	93 1	6	0	4	98.17
1		3			
1.011			2	8	99.26
1.000	_	3	4	2	99.93
1.00		5	3	1	100.48
•998	38 5	6	2	0	100.93
		_	_		
•99		2	G	10	101.36
•970		5	1	7	105.15
•967		5	3	3	105.61
• 954		3	4	4	107.65
• 95	14 1	0	2	10	108.13
•949		4	4	0	108.48
• 94		3	0	10	109.35
•93	38 1	7	0	2	111.15
•93	28 1	6	2	4	111.34
•929	95 1	0	1	11	111.94
•914	46 1	2	2	10	114.75
•899		2	1	11	118.76
• 89	28 1	2	3	9	119.26
-892	20 1	4	4	4	119.43
•89	20 1	7	0	4	119 • 45
.888	82 5	2	5	1	120.28
.886	53 5	1	5	3	120.71
.88	37 1	4	0	10	121.30
•88	33 5	3	4	6	121.40
-87	41 1	3	2	10	123.58
•87	30 1	6	1	7	123.85
•86	59 1	7	2	2	125.63
.86	36 1	2	5	3	126.25
.85		1	4	8	127.66
•83		2	4	8	133.76
•83		5	3	7	134.81
.83	32 1	7	0	6	135.19
-83	22 1	7	2	4	135.51
.82	74 1	5	4	4	137.16
•829	55 5	4	2	10	137.84

Calc	ulated Pa	ttern (Int	egr	ated)
d(Å)	I	h	kl		2Θ(°) λ = 1.540598
.8198	1	2	5	5	139.97
.8149	5	8	1	1	141.90
.8111	5	4	1	11	143.49
.8081	1	0	3	11	144.79
•8061	1	3	4	8	145.70
.8060	1	4	5	1	145.77
.8022	1	1	3	11	147.56
•7999	5	6	4	0	148.73
•7958	5	8	1	3	150.93
•7907	1	2	2	12	153.90
•7903	1	3	5	5	154-17
•7890	1	7	1	7	155.03
•7874	1	4	5	3	156.06
•7874	1	7	3	3	156.10
• 7863	1	0	5	7	156.87
•7855	1	1	1	13	157.43
•7852	1	2	3	11	157.61
•7839	5	7	2	6	158.63

Hexagonal, P6/mmm (191), Z = 1, isostructural with CaCu₅, from powder data [Lott and Chiotti,

Atom positions [ibid.]

1(a) 1 cerium

2(c) 2 zinc

3 (g) 3 zinc

Lattice constants

A composition range exists from 70.00 to 71.97 wt.% of zinc, and the constants vary accordingly. For 70 wt.% Zn:

a = 5.4166 Å

c = 4.2649

(published values: a = 5.4163, c = 4.2647 A [ibid., Table 1])

Volume

108.4 A³

Density

(calculated) 7.156 g/cm3

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors
Ce⁰, Zn⁰ [Cromer and Mann, 1968], corrected for anomalous dispersion [Cromer and Liberman, 1970].

Scale factors (integrated intensities)

 $Y = 0.786 \times 10^{-1}$

Additional patterns

- 1. Green [1973]
- 2. Lott and Chiotti [1966]

References

Cromer, D. T. and Liberman, D. (1970). J. Chem. Phys. <u>53</u> , 1891.

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Green, M. L. (1973). J. Less-Common Metals 32,

Lott, B. G. and Chiotti, P. (1966). Acta Crystallogr. 20, 733.

		Calculated	Pattern	(Pea	.k	heights)
d (A)	I		hkę		2Θ(°) ° λ = 1.540598A
4.6	<u> </u>	2	1	0	0	18.92
4.2		4	0	0	1	20.82
3.1		45	1	0	1	28.26
2.7			1	1	0	33.06
2.3		35	2	0	0	38.36
2•2	04	100	1	1	1	39.38
2.1			0	ō	2	42.36
2.0			2	0	1	44.02
1.6			1	1	2	54.74
1.6	31	9	2	1	1	56.14
1.5			2	0	2	58.44
1.5			3	0	0	59.02
1 • 4	68	18	3	0	1	63 • 30
1 • 3	60	3	1	0	3	68.98
1.3	54	12	2	2	0	69.34
1.2	61	5	3	0	2	75.32
1.2			1	1	3	75.46
1.2			3	1	1	76.48
1.2		_	2	ō	3	78.64
1.1		_	4	0	0	
			_		_	04.70
1 • 1			2	2	2	_
1.1		1	4	0	1	85 • 88
1 • 1		2	2	1	3	
1.0			0	0	4	
1 • 0	52	4	3	0	3	94 • 16
1.0	43	2	3	2	1	95•16
1.0	28		4	0	2	97.12
1.0	24		4	1	0	
•9	95	7	4	1	1	101.40
• 9	93		1	1	4	101.76
.0	71	2	2	0	4	105.04
	60		3	1	3	_
	23		4	1	2	
	87		4	2	0	
	83		3	3	1	
• 0	03	, ,	J	J	•	121042
	81		3	0	4	
	58		3	2	3	1
	39	_	1	0	5	
	38		2	2	4	
• 8	31	5	4	1	3	136.04
•8	27	1	5	1	1	137.48
	1 9		4	2	2	140.44
•8	14		1	1	5	142.46
• 7	89		4	0	4	155.06

Cerium zinc, CeZn₅ - (continued)

	Calculated	Pattern	(Int	egra	ited)
d (A)	I		hkl		2Θ(°) λ = 1.540598A
4.69 4.26 3.16 2.708 2.349	20	1 0 1 1 2	0 0 0 1	0 1 1 0 0	18.90 20.81 28.26 33.05 38.35
2 • 2 8 6 2 • 1 3 2 2 • 0 5 5 1 • 6 7 5 1 • 6 3 7	2 25 5 12 5 12	1 0 2 1 2	1 0 0 1 1	1 2 1 2 1	39.38 42.35 44.03 54.74 56.13
1 • 578 1 • 564 1 • 468 1 • 361	5 3 20 3	2 3 3 1 2	0 0 0 0	2 0 1 3 0	58.45 59.03 63.30 68.97 69.34
1.261 1.259 1.244 1.216	11 4	3 1 3 2 4	0 1 1 0 0	2 3 1 3 0	75.31 75.46 76.49 78.63 82.12
1.143 1.131 1.109 1.066	1 2 2 2	2 4 2 0 3	2 0 1 0	2 1 3 4 3	84.73 85.88 87.98 92.52 94.16
1.043 1.028 1.024 .995	3 3 3 2 5 10	3 4 4 4 1	2 0 1 1	1 2 0 1 4	95.16 97.11 97.62 101.41 101.87
.971 .960 .923 .916	2 3 3	2 3 4 5 3	0 1 1 0 3	4 3 2 1 0	105.05 106.75 113.17 114.43 117.14
.886 .883 .881 .868	4 2 1	4 3 3 4 3	2 3 0 2 2	0 1 4 1 3	120.67 121.42 121.96 125.12 127.72
.839 .838 .831 .831	9 2 10	1 2 3 4 5	0 2 3 1	5 4 2 3	133.24 133.71 135.81 136.03 137.48
.819 .814 .789	5 5	4 1 4 5	2 1 0 0	2 5 4 3	140.45 142.45 155.06 159.30

,	Cerium zino
rhombohedral modific	, $Z=3$, isostructural with ation of U_2Zn_{17} , from powder ve single crystal analysis 66].
have been refined a very similar [Johns meters for Ce ₂ Zn ₁₇ ratios of the ce ₁ l radii r _{Ce} /r _{Zn} are ratios for Nb ₂ Be ₁₇ t structure data [Zalki	several analogous compounds nd the atomic parameters are on et al., 1969]. The parawere not available, but the edges c/a and of the atomic close to the corresponding or which there is refined n et al., 1959]. The atomic were used here for Ce ₂ Zn ₁₇ .
6(c) 6 cerium 6(c) 6 zinc(C) 9(d) 9 zinc(D)	18(f) 18 zinc(F) 18(h) 18 zinc(H)
17-1	and Chiotti] = 9.0708, c = 13.2844)
946.8 A ³	
Density (calculated) 7.322 g/	cm ³
B = .74; $Zn(H)$, $B = 1$.81; Zn(D), B = 1.32; Zn(F), .04 [Johnson et al., 1969]. their values for Pr [ibid.]
Scattering factors Ce ⁰ , Zn ⁰ [Cromer and dispersion [Cromer and	Mann, 1968], corrected for d Liberman, 1970].
Scale factor (integrated $\gamma = 0.344 \times 10^{-3}$	d intensities)
53, 1891. Cromer, D.T. and Mann, logr. A24, 321. Johnson, Q., Smith, G. Acta. Crystallogr. B2	an, D.(1970). J. Chem. Phys. J.B. (1968), Acta. Crystal- S. and Wood, D. H. (1969). 5, 464. , P. (1966). Acta. Crystal-

logr. <u>20</u>, 733. Zalkin, A., Sands, D.E. and Krikorian, O.H. (1959).

Acta. Crystallogr. 12, 713.

	Calculated	Pattern	(Pea	ık h	eights)
d(Å)	I		hkl		2Θ(°) λ = 1.540598A
3.767	5	0	2	1	23•60
3.381	6	2	0	2	26.34
3.169	25	1	1	3	28.14
3.05€	9	1	0	4	29.18
2.897		2	1	1	30 • 84
2.710		1	2	2	33.02
2.618		3	0	0	34 • 22
2.536		0	2	4	35.36
2 - 51 8		0	1	5	35.62
2.267	4 65	2	2	0	39.72
2.254		0	3	3+	39.96
2 • 21 4		0	0	6+	40.72
2.201		2	0	5	40.96
2 • 1 5 0		1	3	1	41.98
2.018	0 35	2	2	3	44.88
1.9894	6	1	1	6	45.56
1.9804		1	2	5	45.78
1.942		4	0	1	46.72
1 • 8835		0	4	2	48.28
1 .844		1	0	7	49.36
1.822	0 2	1	3	4	50•02
1.7860	3	3	2	1	51.10
1.7392	2 2	2	3	2	52.58
1.7090) 2	0	2	7	53.58
1.6909	9 6	3	0	6+	54.20
1.5989	11	4	1	3+	57.60
1.5844	20	2	2	6+	58.18
1.5291	l 1	5	0	2	60.50
1.5119	9 4	3	3	0	61.26
1.4917	7 5	2	3	5	62.18
1.4309		3	3	3	65.14
1.4204	3	0	5	4	65.68
1 • 4034	4	1	1	9+	66.58
1.3800	2	1	5	2	67.86
1 •3555	5 4	2	4	4+	69.26
1.3521		5	0	5	69.46
1.3093	_	6	0	0	72.08
1.3064	10	3	2	7	72.26
1 • 2987	4	5	1	4	72.76
1 • 2959	4	4	2	5	72.94
1.2859		0	3	9+	73.60
1.2680		0	4	8+	74.82
1.2585		0		0+	75.48
1.2484		3	3	6	76.20
1 • 2462	2	1	5	5	76.36
1.2371		2	2	9	77.02
1.2102		2	5	3+	79.06
1-1339		4	4	0	85.58
1.1324		5	1	7	85.72
1.1269	9	0	6	6+	86.24

	alculated Pa	ttern	(P	eak h	eights)
d(Å)	I		hk	2	2Θ(°) ° λ = 1.540598A
1.1186	5	4	1	9+	87.04
1.1071	3	0	0	12+	88.18
1.0984	1	4	4	3	89.06
1.0752	1	2	6	2+	91.52
1.0632	1	3	5	4	92.86
1.0562	6	3	3	9	93.66
1.0351	2	6	2	4	96.18
1.0339	1	5	3	5	96.32
1.0197	2	3	0	12+	98.12
1 •0 1 30	3	7	1	3+	99.00
1.0093	4	4	4	6	99.50
1.0081	2	2	6	5	99.66
•9949	3	2	2	12	101.48
•9898	1	6	3	0+	102.20
•9660	5	6	3	3+	105.76
•9574	2	2	5	9+	107.14
.9449	1	6	2	7	109.22
•9416	1	0	8	4	109.78
•9407	1	4	5	5	109.94
•9220	1	2	7	4	113.32
•8932	1	3	3	12	119•18
8883.	3	3	2	13+	120.14
•8863	2	8	1	4	120.72
.8821	1	3	4	11+	121.68
.8689	1	1	8	5	124.88
• 8572	4	8	2	0+	127 •96
•8505	3	7	1	9+	129.84

	Calculated	Pattern	(Int	egr	ated)
d(A)	I		hkl		2Θ (°) λ = 1.540598A
.,					
3.767	7	0	2	1	23,60
3.381	9	2	0	2	26.34
3.169	40	1	1	3	28 • 14
3.059	15	1	0	4	29.17
2.897	8 3	2	1	1	30.83
2.710	8 11	1	2	2	33.02
2.618	7 70	` 3	0	0	34 • 21
2.536	2 40	0	2	4	35.36
2.517	0 4	0	1	5	35.64
2 • 26 7	8 100	2	2	0	39.71
2.254	1 85	3	0	3	39.97
2.254		0	3	3	39.97
2.214		0	0	6	40.72
2.213		2	1	4	40.73
2.200		2	0	5	40.98
2.150	1 1	1	3	1	41.99
2.018		2	2	3	44.87
1.989		1	1	6	45.55
1.980		1	2	5	45.79
1.942		4	ō	1	46.72
1.883	4 3	0	4	2	48.28
1.844		1	o	7	49.36
1.821		1	3	4	50.03
1.785		3	2	1	51 • 10
1.739		2	3	2	52.57
1.714	3 1	4	1	0	53.40
1.708		0	2	7	53.59
1.690		3	0	6	54.21
1.690		0	3	6	54.21
1 •684		3	1	5	54.41
1.599	1 7	2	1	7	57.59
1.598		4	1	3	57.61
1.598		1	4	3	57.61
1.584	3 25	2	2	6	58.18
1.584	1 12	3	2	4	58.19
1.560	3 1	0	5	1	59.17
1.529		5	0	2	60.50
1.511	9 7	3	3	0	61.26
1.491	5 9	2	3	5	62.19
1.431	1 1	1	3	7	65.13
1.430	8 25	3	3	3	65•15
1.420		0	5	4	65•69
1 • 40 3	7 7	1	1	9	66.57
1.403		5	1	1	66.60
1.380	2 3	1	5	2	67.85
1 • 355	5 1	4	1	6	69.26
1.355		1	4	6	69.26
1.355	4 6	2	4	4	69.27
1352	4 2	5	0	5	69.44
1.309	3 25	6	0	0	72.08

-				
	Calculated	Pattern	(Integ	rated)
d(A)	I		hkl	2Θ(°) λ = 1.540598A
1.3069		3	2 7	72•23
1.2986		5	1 4	72.76
1.2960		4	2 5	72.93
1 • 2859		3	0 9	73.60
1.2859	15	0	3 9	73.60
1.2855	_	4	3 1	73.63
1.2681	_	0	4 8	74.81
1 • 2585	_	0	2 10	75.48
1.2486	_	3	3 6	76.19
1.2462	3	1	5 5	76.36
1 • 2371	3	2	2 9	77.02
1.2103		0	5 7	79.06
1.2101	2	5	2 3	79.07
1.2101	3 1	2	5 3	79.07
1.1094		2	4 7	82.41
1.1339	11	4	4 0	85.58
1.1323	4	5	1 7	85.73
1 • 1270	9	6	0 6	86.23
1.1270	9	0	6 6	86.23
1.1186	4	4	1 9	87.04
1.1186	4	1	4 9	87.04
1.1183	1	3	5 1	87.07
1.1071	5	0	0 12	88.18
1 • 1 0 6 6	1	5	3 2	88.23
1.1066	1	0	7 2	88•23
1.0985	2	4	4 3	89•05
1.0858	1	6	2 1	90.38
1.0751	1	2	6 2	91.53
1.0632	3	3	5 4	92.85
1.0563	1	3	1 11	93.64
1.0562	11	3	3 9	93•66
1.0405	1	7	1 0	95 • 51
1.0352	5	6	2 4	96.17
1.0197	2	5 0	3 5 3 12	96.33
100157	•	U	3 12	98.12
1.0197	2	3	0 12	98.12
1.0134	1_	1	0 13	98•95
1.0130	3	7	1 3	99•01
1.003	3		7 3	99.01
1.0093	8	4	4 6	99.50
1.0080 1.0030	3		6 5	99.67
•9949	1		4 1	100.35
•9949	6 1		2 12	101.48
•9898	2		4 10 3 0	102.17
•9672	1	5	1 10	,
•9663	3		1 10 1 13	105.57 105.72
•9660	2		5 7	105.72
•9659	4		3 3	105.78
•9659	4		53	105.78

	Calculated	Pattern	(Ir	tegr	ated)
d(Å)	I		hkl	2	2Θ(°) 。
					$\lambda = 1.540598A$
		_			
.962		5	4	4	106.29
.957		5	2	9	107.13
•957		2 6	5	9	107.13
•944		0	8	4	109•23 109•77
•941	, 1	U	0	4	109.77
•940	7 2	4	5	5	109.94
•929	9 1	0	7	8	111.87
•925	2 1	1	3	13	112.72
•922	0 2	2	7	4	113.32
•921	1 1	8	0	5	113.50
.917	3 1	8	1	1	114.23
•910	8 1	1	8	2	115.50
•893	2 2	3	3	12	119.17
•889	0 4	3	2	13	120.11
•888	8 3	5	4	7	120.16
.888	7 1	5	5	3	120.18
•886	1 4	8	1	4	120.75
.882	1 2	3	4	11	121.67
•881	9 1	7	3	1	121.72
•868	9 2	1	8	5	124.87
.857	2 11	8	2	0	127.97
•856	7 2	0	5	13	128.10
.856	5 1	2	7	7	128.15
.856	4 1	9	0	3	128.17
•856	4 2	0	9	3	128•17
•850	5 5	7	1	9	129.84
•850	5 4	1	7	9	129.84

Structure Hexagonal, $P\overline{3}ml$ (164), Z=1 [Kaatz and Marcovich, 1966].

Atom positions
1(a) 1 cerium
2(d) 2 cesium

6(1) 6 chlorine

Lattice constants [ibid.]
a = 7.476(2) A
c = 6.039(2)

c/a = 0.8078

Volume 292.3 Å³

Density (calculated) 3.52 g/cm³ [Kaatz and Marcovich, 1966].

Thermal parameters
Isotropic [Kaatz and Marcovich, 1966].

Scattering factors
Cl_ [Dawson, 1960]
Cs , Ce L [Thomas and Umeda, 1957]

Scale factors (integrated intensities) $\gamma = 0.648 \times 10^{-3}$

References
Dawson, B. (1960). Acta Crystallogr. 13, 403.
Kaatz, T. and Marcovich, M. (1966). Acta Crystallogr. 21, 1011.
Thomas, L.H. and Umeda, K. (1957). J. Chem. Phys. 6, 293.

	Calculated Pa	ttern (Peak	heights)
o d (A)	I	hkl	20(°) °
~ (<i>)</i>		*****	$\lambda = 1.540598A$
6.47	2	100	13.68
6.04	4	001	14.66
4.41	100	011	20.10
3.74	29	110	23.80
3.24	2	200	27.54
3.24	2	200	27.54
3.18	6	111	28.06
3.02	6	002	29.56
2.852	6	201+	31.34
2.736	12	102+	32.70
2.267	22	121	39.72
2.207	22	121	39.72
2.208	14	202+	40.84
2.158	5	300	41.82
2.032	1	301+	44.56
1.922	6	103	47.26
1.901	6	212+	47.80
1.869	10	220	48.68
1.772	1	113	51.52
1.721	8	311	53.18
1.710	1	023	53.56
1.589	3	222	57.98
1.563	1	041+	59.04
1.555	4	213	59.40
1.543	3	132+	59.88
1.510	1	004	61.36
1.442	4	231+	64.56
1.427	2	042+	65.36
1.413	2	410	66.08
1.400	2	114	66.78
1.340	2	133+	70.18
1.333	2	322+	70.62
1.266	1	501	74.94
1.237	1	304+	77.02
1.195	1	323+	80.26
1.187	1	015	80.90
1.174	2	224	81.98
1.142	1	151	84.84
1.134	1	422+	85.58
1.134			90.68
	1	125	
1.079	1	600	91.10
1.032	1	144+	96.62
1.002	1	315	100.46
0.9143	3 1	531+	114.82
.8779) 1	064+	122.66

	Calculated Pattern	(Integrated)
d(A)	I	hk l λ =	20(°) 。 1.540598A
6.47 6.04 4.42 4.42 3.74	2 4 14 100 34	100 001 101 011 110	13.67 14.66 20.09 20.09 23.78
3.24 3.18 3.02 2.853 2.853	3 8 8 5 2	200 111 002 201 021	27.53 28.05 29.56 31.33 31.33
2.737 2.737 2.268 2.268 2.208	6 9 3 26 10	012 102 211 121 202	32.70 32.70 39.71 39.71 40.83
2.208 2.158 2.032 1.922 1.922	9 7 1 7 7	022 300 301 103 013	40.83 41.82 44.55 47.25
1.901 1.901 1.869 1.785 1.772	5 3 13 1	212 122 220 221 113	47.80 47.80 48.68 51.12 51.52
1.721 1.721 1.709 1.599 1.563	10 1 1 4 1	311 131 023 222 041	53.17 53.17 53.57 57.99 59.04
1.555 1.543 1.543 1.510 1.442	6 2 2 2 2 5	213 312 132 004 231	59.41 59.88 59.88 61.36 64.56

		Calculated Pa	ttern (Integ	cated)
(d(Å)	I	hkl	20(°) 。
				$\lambda = 1.540598A$
	1.427	2	042	65.36
	1.427	2	402	65.36
	1.413	3	410	66.08
:	1.400	2	114	66.77
:	1.370	1	223	68.44
	1 240	2	122	70.10
	1.340	3	133	70.18
	1.333	1	322	70.61
	1.333	1	232	70.61
	1.266	1	501	74.95
-	1.246	1	330	76.37
	1.237	1	304	77.02
	1.195	2	323	80.26
	1.187	1	015	80.90
:	1.174	3	224	81.97
:	1.142	1	151	84.85
		,	400	05.50
	1.134	1	422	85.58
	1.134	1	242	85.58
	1.083	1	125	90.67
	1.079	1	600	91.10
-	1.048	1	341	94.59
	1.007	1	513	99.82
:	1.002	1	315	100.46
(0.9744	1	611	104.47
	.9409	1	433	109.90
	.937]	1	235	110.57
	.9345		440	111.03
	.9143		531	114.82
	.8865		163	120.68
	.8377		155	133.72
	.8213	3 1	451	139.42
	.8136	5 1	217	142.43
	.7985		345	149.43
	.7946		444	151.59
	.7843		721	158.33

Synonym
3-chloro-10-(3'-dimethylamino-n-propy1)-phenothiazine

Stability

The material was unstable in light, air, and x-rays [McDowell, 1969].

Structure

Orthorhombic, Pbca (61), Z=8. The structure was determined by McDowell [ibid.].

Atom positions

All the atoms were in general positions [ibid.].

Lattice constants [ibid.]

a = 23.50(4) A

b = 15.20(2)

c = 9.23(1)

CD cell: a = 15.20, b = 23.50, c = 9.23, space group Pcab; a/b = 0.6468, c/b = 0.3928

Volume 3297. Å³

Density

(measured) 1.289 g/cm³ (calculated) 1.285 g/cm³

Thermal parameters

Isotropic: overall B = 5.0

Scattering factors C^0 , Cl^0 , N^0 , S^0 [International Tables, 1962]

Scale factors (integrated intensities)

 $\gamma = 0.545 \times 10^{-3}$

 I/I_{c} (calculated) = 0.88

References

International Tables for X-ray Crystallography,
III (1962). (The Kynoch Press, Birmingham,
Eng.), p. 202.

McDowell, J. J. H. (1969). Acta Crystallogr. <u>B25</u> 2175.

	Calculated	Pattern	(Pe	ak	heights)
d(A)	I		hkl		2Θ(°) λ = 1.540598A
11.75	100	2	0	0	7.52
9.28	2	2	1	0	9.52
7.60	13	0	2	0	11.64
7.48	10	1	1	1	11.82
6.54	5	2	1	1	13.52
6.38	1	2	2	0.	13.88
5.86	3 6	0	2	1	15.10
5.69	7	1	2	1	15.56
5.47	7	4	1	0	16.18
5.25	35	2	2	1	16.88
4.69	4	3	2	1	18.92
4.61	41	0	0	2	19.22
4.36	19	1	3	1	20.34
4.30	5	2	0	2	20.66
4.15	75	2	3	1	21.38

	Calculated	Pattern	(Pea	ak he	eights)
d (Å)	I		hkl		2Θ(°) λ = 1.540598A
4.04	6	5	1	1	22.00
3.97	36	3	0	2	22.36
3.89	22	1	2	2	22.86
3,84	ç	4	3	0+	23.16
3,79	4	6	1 .		23.44
3.74	4	2	2	2	23.78
3.67	5	. 5	2	1	24.26
3.63	5	4	0	2	24.52
3.52	16	3	2	2+	25.26
3.47	8	1	4	1	25,62
3.38	1 1	1	3	2	26.38
3.27	11	4	2	2	27.22
3.20	5	3	4	1	27.82
3.13	6	3	3	2	28.52
3.09	2	7	1	1+	28.86
3.02	2	5	2	2	29.54
2.990		1	1	3	29.86
2.934		8	0	0+	30.44
2.845		2	4	2	31.42
2,813	2	3	1	3	31.78
2.748	3	8	1	1+	32.56
2.701	4	4	5	0+	33.14
2.677	6	7	3	1 +	33.44
2.614	. 3	1	3	,3	34.28
2.592	2	4	5	1	34.58
2.556	1	7	2	2	35.08
2.538	1	5	1	3+	35.34
2.524	1	1	5	2	35.54
2,493		3	3	3	36.00
2.477	2	2	5	0+	36.24
2.400	1	4	3	3	37.44
2.393	1	0	4	3	37.56
2.355	1	8	2	2	38.18
2.342		2	4	3	38.40
2.332	2 3	3	6	1	38.58
2.295	5 1	5	3	3+	39.22
2.264		2	0	4	39.78
2.255		4	6	1 +	39.94
2.244		7	1	3+	40.16
2.234		5	5	2	40.34
2.22	7 1	8	3	2	40.48
2.214		4	4	3	40.72
2.209		7	4		40.82
2.17		9	2	2+	41.44
2,130	3	6	5	2*	42.40
2.127		6	6	0+	42.46
2.10		8	1	3+	42.94
2.08		3	5	3	43.38
2.06		4	2	4+	43.76
2.04	0 1	6	4.	3	44.36
2.03	7 1	4	7	0	44.44

	Calculated	Pattern	(Int	egr	ated)
d (A)	I		hkl		2Θ(°) λ = 1.540598A
11.75 9.30 7.60 7.48 6.55	100 2 13 9 5	2 2 0 1 2	0 1 2 1	0 0 0 1 1	7.52 9.51 11.63 11.82 13.51
6.38 5.87 5.87 5.69 5.48	1 2 36 6 7	2 4 0 1 4	2 0 2 2 1	0 0 1 1 0	13.87 15.07 15.09 15.55 16.16
5.25 4.70 4.65 4.62 4.36	38 2 1 45 20	2 3 4 0 1	2 2 2 0 3	1 1 0 2	16.88 18.88 19.08 19.22 20.33
4.34 4.30 4.15 4.15 4.13	2 4 81 2 4	1 2 2 4 2	1 0 3 2	2 1 1 2	20.45 20.66 21.37 21.39 21.48
4.04 3.98 3.94 3.89 3.86	4 40 4 23 1	5 3 0 1 3	1 0 2 2 3	1 2 2 2	22.00 22.34 22.52 22.84 23.00
3.85 3.84 3.80 3.79 3.74	2 7 1 3 4	3 4 0 6 2	1 3 4 1 2	2 0 0 0	23.10 23.16 23.39 23.44 23.77
3.67 3.63 3.54 3.53 3.52	5 6 5 3 14	5 4 4 4 3	2 0 3 1 2	1 2 1 2	24.24 24.51 25.11 25.21 25.26
3.51 3.51 3.48 3.48 3.38	3 2 1 7 12	0 6 6 1 1	4 1 2 4 3	1 1 0 1 2	25.33 25.37 25.57 25.61 26.38
3.37 3.29 3.27 3.21 3.19	2 4 11 5 4	2 5 4 3 4	4 0 2 4 4	1 2 2 1 0	26.45 27.06 27.21 27.80 27.94
3.13 3.10 3.09 3.02 2.991	7 1 1 2 2	3 6 7 5 1	3 1 2 1	2 0 1 2 3	28.51 28.79 28.88 29.54 29.85

	Calculated	Pattern	(Int	egr	ated)
d (Å)	I		hkl		20(°) λ = 1.540598A
2.950 2.937 2.934	1 2 1	4 8 0	3 0 4	2 0 2	30.27 30.40 30.45
2.930 2.846	1	6 2	1 4	2	30.48 31.41
2.814 2.753 2.747 2.709	1	3 8 3 3	1 1 4 5	3 1 2 1	31.77 32.50 32.57 33.04
2.700 2.683	3	4	5	0	33.15 33.37
2.678 2.673 2.625 2.613	1 1	7 7 4 1	3 1 4 3	2 2 3	33.43 33.50 34.14 34.28
2.591 2.557 2.538	2 1 1	4 7 5	5 2 1	1 2 3	34.59 35.07 35.34
2.524 2.493 2.476		1 3	5 3 6	2 3	35.54 36.00 36.25
2.400 2.391 2.356 2.343	1 1 1	4 0 8 2	3 4 2 4	3 2 3	37.44 37.59 38.17 38.39
2.332 2.295 2.264 2.256 2.243	1	3 5 2 4 7	6 3 0 6 1	1 3 4 1 3	38.57 39.22 39.78 39.93 40.16
2.234 2.226 2.215 2.209 2.177	2	5 8 4 ? 9	5 3 4 4 2	2 2 3 2 2	40.35 40.49 40.71 40.82 41.44
2.137 2.130 2.127 2.104 2.084	2 1 2	3 6 6 8 3	6 5 6 1 5	2 2 0 3 5	42.27 42.40 42.46 42.95 43.37
2.073 2.070 2.067 2.062 2.041	3	6 7 4 11 6	6 3 2 1 4	1 3 4 1 3	43.63 43.69 43.76 43.87 44.35
2.037	1	4	7	0	44.44

Tetragonal, P4₂/mnm(136), Z = 1, σ -phase, isostructural with σ -(Cr, Fe), from powder data, [Stüwe, 1959]. Much work has been done on the σ -phase structure which has multiple atoms in 5 sites, called A through E [Bergman and Shoemaker, 1954]. The ordering arrangement of the atoms is dependent on a complex combination of electronic and size factors [Spooner, 1968].

Atom positions

The positions used were those for σ -(Cr, Fe) [Spooner and Wilson, 1964], and for σ -(X, Y, Si) [Aronsson and Lundström, 1957]. Site occupancy shared by multiple atoms was assumed to be random and in the following proportions:

Site A: 2(a) 2.0 cobalt
Site B: 4(f) 4.0 chromium
Site C: 8(i) 5.5 chromium and 2.5 cobalt
Site D: 8(i) 6.0 silicon and 2 cobalt
Site E: 8(j) 5.5 chromium and 2.5 cobalt

Lattice constants [Stüwe, 1959] a = 8.736 A

c = 4.561

Volume 348.12 Å³

Density

(calculated) 7.054 g/cm³

Thermal parameters
Isotropic: overall B = 1.0

Scattering factors Co^0 , Cr^0 , Si^0 [Cromer and Mann, 1968].

Scale factor (integrated intensitites) $\gamma = 0.146 \times 10^{-3}$

References

Aronsson, B. and Lundström, T. (1957). Acta Chem. Scand. 11, 365.

Bergman, G. and Shoemaker, D.P.(1954). Acta Cryst-allogr. 7, 857.

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Spooner, F. J. (1968). Acta Crystallogr. A24, 605. Spooner, F.J. and Wilson, C.G. (1964). Acta Crystallogr. 17, 1533.

Stüwe, H. P. (1959). Trans. AIME 215, 408.

		Calculated	Pattern	(Peak	heights)
	d(A)	I		hkl	2Θ(°) λ = 1.540598A
_				_	
	3.904	4	2	1 (22.76
	3.089	3	2	2 (
	2.967	7	2	1 1	
	2.455	1 2	3	0 1	
	24.50	_	9	_ (37.00
	2.362	14	3	1 1	38.06
	2.281	19	0	0 2	
	2.139	5	1	1 2	
	2.119	90 50	4	3 0	
	2:002				, , , , , ,
	2.021	50	2	0 2	
	1.970	65	2		2 46.04
	1.922	10 0 35	4	1 1 3 1	• -
	1.834	7	2	2 2	
	1.758	15	3	1 2	
	1.713	1	5	1 0	
	1.660	2	3 4	2 2	
	1.604	1	5	1 1	
		_			
	1.529	1	5	2 1	
	1.387	4	4	3 2	
	1.370	2	5		2+ 68.44
	1.322	1 8	3 5	1 3	70.66 2+ 71.28
	1. 252	3 15	5	3 2	2 75.92
	1.235		4		3+ 77.16
	1.227		6	0 2	
	1.223	2 7	3	3 3	78.06
	1.215	4 5	6	1 2	78•66
	1.203	5 2	7	0 1	79.58
	1.2001		7	2 0	
	1-192		5	5 1	
	1.1815		6	2 2	
	1.170	3	5	4 2	2+ 82.28
	1.160	4 6	7	2 1	83•18
	1.147		4	3 3	
	1.140		0	0 4	
	1.0619		7 8	2 2	
	10009	, ,	· ·	2 0	93.20
	1.0320		8	2 1	
	1.0299		6	6 0	
	.997		4 3	1 4	+ 100.20 101.10
	- 9850		8	0 2	
			_		
	•9787 •9609		7	4 2	
	9587		8 5	2 2 5 3	
	•9420		7	2 3	
	•9277		9		+ 112.26

Cal	culated Pa	attern	(Pe	ak h	eights)
2 (2)					20 (0)
d(A)	I		hkl		2Θ (°) $\lambda = 1.540598A$
•8886	1	9	1	2	120.20
•8750	3	7	6	2+	123.36
•8692	3	8	2	3+	124.80
.8581	1	8	5	2+	127.72
•8539	2	9	3	2+	128.86
25.55					
• 8525	2	6	6	3	129.26
•8379	7	4	1	5+	133.66
•8340	2	3	3	5	134.92
•8267	9	7	2	4+	137.44
.8231	1	10	3	1	138.74

Calculated Pattern (Integrated) d(A) I hkl 20(°) λ = 1.540598A 3.907 3 2 1 0 22.74 3.089 2 2 2 0 28.88 2.967 6 2 1 1 30.09 2.455 1 3 0 1 36.58 2.423 2 3 2 0 37.07 2.363 13 3 1 1 38.05 2.280 18 0 0 2 39.48 2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40			<u> </u>			
d(A) I hkl 20 (°) λ = 1.540598A 3.907 3 2 1 0 22.74 3.089 2 2 2 0 28.88 2.967 6 2 1 1 30.09 2.455 1 3 0 1 36.58 2.423 2 3 2 0 37.07 2.363 13 3 1 1 38.05 2.280 18 0 0 2 39.48 2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 </th <th></th> <th>Calculated</th> <th>Pattern</th> <th>(In</th> <th>tegi</th> <th>cated)</th>		Calculated	Pattern	(In	tegi	cated)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		I		hkl		2Θ(°)
3.089 2 2 2 0 28.88 2.967 6 2 1 1 30.09 2.455 1 3 0 1 36.58 2.423 2 3 2 0 37.07 2.363 13 3 1 1 38.05 2.280 18 0 0 2 39.48 2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.713 1 5 1 0 53.43 1.661 2 3 2 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>•</th></td<>						•
3.089 2 2 2 0 28.88 2.967 6 2 1 1 30.09 2.455 1 3 0 1 36.58 2.423 2 3 2 0 37.07 2.363 13 3 1 1 38.05 2.280 18 0 0 2 39.48 2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.713 1 5 1 0 53.43 1.661 2 3 2 <td< th=""><th></th><th></th><th><u> </u></th><th></th><th></th><th></th></td<>			<u> </u>			
3.089 2 2 2 0 28.88 2.967 6 2 1 1 30.09 2.455 1 3 0 1 36.58 2.423 2 3 2 0 37.07 2.363 13 3 1 1 38.05 2.280 18 0 0 2 39.48 2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.713 1 5 1 0 53.43 1.661 2 3 2 <td< th=""><th>3.907</th><th>. 3</th><th>2</th><th>1</th><th>0</th><th>22.74</th></td<>	3.907	. 3	2	1	0	22.74
2.455				2	0	
2.423 2 3 2 0 37.07 2.363 13 3 1 1 38.05 2.280 18 0 0 2 39.48 2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 <t< th=""><th>2.967</th><th>6</th><th>2</th><th>1</th><th>1</th><th>30.09</th></t<>	2.967	6	2	1	1	30.09
2.363 13 3 1 1 38.05 2.280 18 0 0 2 39.48 2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40			3	0	1	36.58
2.280	2.423	2	3	2	0	37.07
2.139 3 1 1 2 42.21 2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40	2.363	13	3	1	1	38.05
2.119 85 4 1 0 42.63 2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40			0	0		39.48
2.059 45 3 3 0 43.93 2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40						
2.022 45 2 0 2 44.80 1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40						
1.970 65 2 1 2 46.05 1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40	2.059	45	3	3	0	43.93
1.922 100 4 1 1 47.26 1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40	2.022	45	2	0	2	44.80
1.877 35 3 3 1 48.46 1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40	1.970	65	2	1	2	46.05
1.835 7 2 2 2 49.65 1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40	1.922	100				47.26
1.759 15 3 1 2 51.95 1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40						
1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40	1.835	7	2	2	2	49.65
1.713 1 5 1 0 53.43 1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40	1.759	15	٦	1	2	51.95
1.661 2 3 2 2 55.27 1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40						
1.632 3 4 3 1 56.34 1.604 1 5 1 1 57.40						
	1.632	3	4	3	1	56.34
1 520 1 5 2 1 40 52	1.604	1	5	1	1	57.40
1 5 2 1 50.52	1.529	1	5	2	1	60.52
1.387 4 4 3 2 67.47	1.387	4	4	3	2	67.47
1.370 2 5 1 2 68.43	1 • 370	2	5	1	2	68.43
1.364 1 5 4 0 68.74				4	0	68.74
1.332 1 3 70.66	1.332	1	3	1	3	70.66
1.322 2 6 2 1 71.27	1.322	. 2	6	2	1	71.27
1.322 7 5 2 2 71.28						
1.2522 17 5 3 2 75.93						
1.2355 5 5 5 0 77.14						
1.2353 17 4 1 3 77.16	1.235	3 17	4	1	3	77.16
1.2273 5 6 0 2 77.76						
1.2231 7 3 3 3 78.07						
1.2153 6 6 1 2 78.67						
1.2038 1 7 0 1 79.57						
1.2001 12 7 2 0 79.87	1.200	1 12		2	U	79.87

	Calculated	Pattern	(Int	egr	ated)
d (A)	I		hkl		2Θ(°) λ = 1.540598A
1.192	5 5	5	5	1	80.47
1.181		6	2	2	81.38
1.170		6	4	1	82.27
1.170		5	4	2	82.28
1.160	6 7	7	2	1	83.17
1.146	9 1	4	3	3	84.38
1.140	2 7	0	0	4	84.99
1.069		6	4	2	92.10
1.062		7	2	2	92.99
1.059	5 7	8	2	0	93.28
1.032	0 4	8	2	1	96.56
1.029	6 3	6	6	0	96.86
1.004	3 3	6	6	1	100.17
1.004	1 10	4	1	4	100.20
•997	5 6	3	3	4	101.10
•985		8	0	2	102.90
• 978		7	4	2	103.82
.960		8	2	2	106.59
. 958		5	5	3	106.91
•942	0 4	7	2	3	109.72
.888	5 1	9	1	2	120.21
.875	1 2	9	2	2	123.35
.875	1 2	7	6	2	123.35
.869	2 3	8	2	3	124.80
•858	0 1	8	5	2	127.73
. 853	9 3	9	3	2	128.87
•852	5 3	6	6	3	129.26
. 837	9 5	5	5	4	133.64
.837	9 8	4	1	5	133.67
• 834	0 З	3	3	5	134.91
•826		9	4	2	137.42
.826	6 13	7	2	4	137 • 46
•823	1 2	10	3	1	138.74
•821	8 1	8	4	3	139.22

Cubic, Fm3m (225), Z=4, a Heusler alloy isostructural with Cu_2AlMn , from powder data [Dwight 1967].

Atom positions [ibid.]

4(b) 4 cobalt

8(c) 8 copper

4(a) 4 tin

Lattice constant [ibid.] a = 5.982 A

Volume 214.1 Å³

214.1 A

Density (calculated) 9.454 g/cm³

Thermal parameters
Isotropic: overall B = 1.0

Scattering factors Co^0 , Cu^0 , Sn^0 [Cromer and Mann, 1968].

Scale factor (integrated intensities) $\gamma = 1.42 \times 10^{-3}$

References

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Dwight, A.E. (1967). Intermetallic Compounds (Wiley and Sons Inc., New York), Westbrook, J. H. (ed.) p. 174.

	Calculated	Pattern	(Pea	ık hei	ghts)
d (Å)	I		hkl	λ	20(°) . = 1.540598A
3.453 2.990 2.115 1.804 1.496	3 5 100 4	1 2 2 3 4	1 0 2 1 0	1 0 0 1	25.78 29.86 42.72 50.56 62.00
1.372 1.221 1.151 1.057	20 1 6	3 4 5 4 5	3 2 1 4 3	1 2 1+ 0 1	68.30 78.22 84.00 93.52 99.24
•945 •863 •799 •778	15 2 14 13	6 4 6 7	2 4 4 3	0 4 2 1+	109.06 126.28 149.00 163.06

	Calculated	Pattern	(Int	tegr	ated)
d(Å)	I		hkl		2Θ(°) ° λ = 1.540598A
3.454	9	1	1	1	25.77
2.991 2.115	2 100	2	0	0	29.85 42.72
1.804		3	1	1	50.56
1.495	14	4	0	0	62.01
1.372	1	3	3	1	68.29
1.238	1 25	4	2	0	70•32 78•22
1.151	1	5	1	1	84.00
1.057	7	4	4	0	93.51
1.011	1	5	3	1	99.25
•945	8 11	6	2	0	109.06
.863	4 4	4	4	4	126.29
•799	4 30	6	4	2	149.00
• 778	8 1	5	5	3	163.06
•778	8 3	7	3	1	163.06

Cubic, Fm3m (225), Z = 4, a Heusler alloy isostructural with Cu₂AlMn, from powder data (x-ray and neutron) [Ziebeck and Webster, 1974].

Atom positions [ibid.]

8(c) 8 cobalt

4(a) 4 gallium

4 hafnium 4(b)

Lattice constant [ibid.]

a = 6.032 A

Volume 219.5 A³

Density

11.10 g/cm³ [ibid.] (measured) (calculated) 11.08 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors
Co⁰, Ga⁰, Hf⁰ [Cromer and Mann, 1968] corrected
for anomalous dispersion [Cromer and Liberman, 1970].

Scale factor (integrated intensities) $\gamma = 1.287 \times 10^{-3}$

References

Cromer, D.T. and Liberman, D. (1970). J. Chem. Phys. 53, 1891.

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Ziebeck, K. R. A. and Webster, P. J. (1974). J. Phys. Chem. Solids 35, 1.

	Ca	lculated	Pattern	(Peak	he	ights)
	d(A)	I		hkl		2θ (°)
			•			
	3.482	20	1	1	1	25.56
	3.016	18	2	0	0	29.60
	2.132	100	2	2	0	42.36
	1.819	9	3	1	1	50.12
	1.741	4	2	2	2	52.52
	1.508	13	4	0	0	61.44
	1.384	3	3	3	1	67.64
l	1.349	5	4	2	0	69.66
ĺ	1.231	20	4	2	2	77.46
	1.161	2	5	1	1+	83.14
	1.066	6	4	4	0	92.50
	1.020	2	5	3	1	98.14
ŀ	1.005	2	4	4	2+	100.04
	•9537	8	6	2	0	107.74
	•9198	1	5	3	3	113.74
	.9093	1	6	2	2	115.80
	•8706	2	4	4	4	124.44
	.8446	1	5	5	1+	131.56
	•8365	1	6	4	0	134 • 10
	.8061	12	6	4	2	145.74
	•7853	2	7	3	1+	157.56

	Calculated	Pattern	(In	tegr	ated)
d (Å)	I		hk	.L	2Θ(°) ° λ = 1.540598A
3.483	19	1	1	1	25.56
3.016	17	2	0	0	29.60
2.133	100	2	2	0	42.35
1.819	9	3	1	1	50.12
1.741	5	2	2	2	52.51
1.508	14	4	0	0	61.44
1.384	. 3	3	3	1	67.65
1.349	6	4	2	0	69.65
1.231	25	4	2	2	77.45
1.161	2	5	1	1	83.14
1 066	7			_	
1.066	7 2	4	4	0	92.50
1.020	2	5 4	3	1 2	98.14 100.03
•953					
		6 5	2	0	107.74
•9199	9 1	5	3	3	113.73
.909		6	2	2	115.79
.870	5 3	4	4	4	124.44
•8446		7	1	1	131.56
.8446	_	5	5	1	131.56
•8369	5 2	6	4	0	134.11
.806		6	4	2	145.74
•7853	_	5	5	3	157.57
• 785	3 5	7	3	1	157.57

Cubic, Fm3m (225), Z = 4, a Heusler alloy isostructural with Cu2AlMn, from powder data [Markiv et al., 1965].

Atom positions [ibid.]

8(c) 8 cobalt

4 gallium 4(a)

4 niobium 4(b)

Lattice constant [ibid.]

a = 5.954 A

Volume ° 211.1 Å³

Density

(calculated) 8.826 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors Co⁰, Ga⁰, Nb⁰ [Cromer and Mann, 1968]

Scale factors (integrated intensities)

 $\gamma = 1.18 \times 10^{-3}$

References

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. <u>A24</u>, 321.

Markiv, V.Ya., Voroshilov, Yu.V., Kripyakevich, P.I. and Cherkashin, E.E. (1965). Sov. Phys.-Crystallogr. 9, 619.

	Calculated	Pattern	(Pe	eak h	neights)
d(A)	I		hk	ι	2Θ (°) ° λ = 1.540598A
3.437 2.976 2.105 1.719 1.488 1.331 1.2154 1.0526 .9414 .8594	6 6 9 2	1 2 2 2 4 4 4 4 6 4	1 0 2 2 0 2 2 4 2 4	1 0 0 2 0 0 2 0 0	25.90 30.00 42.94 53.26 62.34 70.70 78.66 94.08 109.82 127.36

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2Θ(°) ° λ = 1.540598A
3.438 2.977 2.105 1.719 1.488	3 100 1	1 2 2 2 2	1 0 2 2 0	1 0 0 2 0	25.90 29.99 42.93 53.25 62.33
1.331 1.215 1.052 .941 .859	25 25 7 4 12 4 4	4 4 6 4	2 2 4 2 4	0 2 0 0 4	70.70 78.66 94.08 109.82 127.36

Hexagonal, P6₃/mmc (194), Z=1, isostructural with Ni₂In and Ni₃Sn₂, from powder data [Lecocq and Michel, 1964].

Atom positions

The structure prototype, $2(\text{Ni}_2\text{In})$, has 2 Ni atoms in positions 2(a) and also in 2(d); the indium are in 2(c). Studies on two isostructural compounds, Ni_3In_2 and Co_3Sn_2 , indicated that in their structures the site 2(d) is only partially occupied [Kanematsu, 1962; Rajeswari and Manohar, 1970].

The positions used here for Co3Ge2 were:

2(a) 2 cobalt

2(d) 1 cobalt

2(c) 2 germanium

Lattice constants [Lecocq and Michel, 1964]

A composition range exists from 36 to 44 atomic percent Ge and the constants vary accordingly. For 40 atomic percent Ge:

a = 3.964 A

c = 4.992

Volume . 67.93 Å³

Density

(calculated) 7.870 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors

Co⁰, Ge⁰ [Cromer and Mann, 1968]

Scale factor (integrated intensities) $\gamma = 0.418 \times 10^{-3}$

References

Cromer, D. T. and Mann, J. B. (1968) Acta Crystallogr. <u>A24</u>, 321.

Kanematsu, K. (1962). J. Phys. Soc. Jap. <u>17</u>, 85. Lecocq, P. and Michel, A. (1964). Bull. Soc. Chim.

Fr. <u>1964</u>, 1911.

Rajeswari, H. and Manohar, H. (1970). Indian J. Pure Appl. Phys. 8, 363.

	2 35 5	1 1	hkl O	0	2Θ(°) λ = 1.540598A
2.827 2.495 2.019	35 5	1		0	
1.623 1.552 1.497 1.414 1.256 1.248 1.195 1.151 1.144 1.056 1.040 1.023 .991 .935 .921	5 6 4 25 4 5 1 19 10 15	0 1 1 2 1 1 2 2 3 1 3 2 2 3 2 3	0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1	1 2 2 0 1 2 3 2 1 4 3 2 0 4 2 3 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.94 31.62 35.96 44.86 45.74 56.66 59.50 61.92 66.00 75.68 76.22 80.30 84.00 84.62 93.68 95.56 97.68 102.02 110.90 113.50
.843 .826 .812 .809	8 1 3 4	3 4 1	0 1 0 0	4 3 2 6	131.92 137.54 143.28 144.60
•7913 •7779	1 1	2	1 2	5	153.56 163.92

Cobalt germanium, $\operatorname{Co_3Ge_2}$ -(continued)

	Calculated	Pattern	(Int	egr	ated)
d (A)	I		hkl		2Θ(°) ° λ = 1.540598A
					
3.433	2	1	0	0	25.93
2.829	30	1	0	1	31.61
2.496	5	0	0	2	35.95
2.019	100	1	0	2	44.86
1.982	100	1	1	0	45.74
1.623	5	2	0	1	56.66
1.552		1	1	2	59.51
1.497		1	0	3	61.92
1 • 41 4	-	2	0	2	66.00
1.256	4	2	1	1	75.67
1.248	5	0	0	4	76.23
1.195	2	2	0	3	80.29
1.151	20	2	1	2	83.99
1 • 1 4 4	12	3	0	0	84.62
1.056	18	1	1	4	93.67
1.040	1	3	0	2	95.55
1.023	2	2	1	3	97.67
.991	7	2	2	0	102.03
•959	1	1	0	5	106.93
•935	2	3	1	1	110.90
• 92 1	1	2	2	2	113.51
. 890	12	3	1	2	119.97
.863	1	2	0	5	126.39
.846	1	4	0	1	131.21
• 84 3	14	3	0	4	131.93
.826	2	3	1	3	137.53
-812	8	4	0	2	143.29
.809	8	1	0	6	144.59
•791	3 3	2	1	5	153.56
• 777	9 5	3	2	1	163.92

Structure Cubic, Fm3m (225), $Z=4$, isostructural with $Cu_{16}Mg_{6}Si_{7}$, from powder data [Gladyshevs'kii et al., 1962].
Atom positions The positions are those determined by Bergman and Waugh [1956] for Cu ₁₆ Mg ₆ Si ₇ . 32(f) 32 cobalt(1) 32(f) 32 cobalt(2) 24(e) 24 hafnium 4(b) 4 germanium(1) 24(d) 24 germanium(2)
Lattice constant a = 11.567 A (published value, a = 11.566 [Gladyshevs'kii et al., 1962])
Volume 1547.6 Å ³
Density (calculated) 10.824 g/cm ³
Thermal parameters Isotropic: cobalt, B = 1.0; germanium, B = 1.0; hafnium, B = 0.8
Scattering factors Co ⁰ , Ge ⁰ , Hf ⁰ [International Tables, 1962]
Scale factor (integrated intensities) $\gamma = 0.370 \times 10^{-3}$
References Bergman, G. and Waugh, J. L. T. (1956). Acta Crystallogr. 9, 214. Gladyshevs'kii, E. I., Markiv, V. Ya., and Kuz'ma, Yu.B. (1962). Dopov. Akad. Nauk. Ukr. RSR, No. 4, p. 481. International Tables for X-ray Crystallography, III (1962). (The Kynoch Press, Birmingham, Eng.) pp. 204, 212.

	Calculated	Pattern	(Pe	ak h	eigh t s)
d(A)	I		hkl		20 (°) 。
					$\lambda = 1.540598A$
6.672	30	1	1	1	13.26
5.779	6	2	0	0	15.32
3.488 3.339	1 5	3 2	1 2	1 2	25.52 26.68
2.892	9	4	0	0	30.90
2.0072		7	Ŭ	Ū	30030
2.653	40	3	3	1	33.76
2.586	2	4	2	0	34.66
2.361	40	4	2	2	38.08
2.226	100 55	3	3	3+	40.50
2.045	33	4	4	0	44.26
1.955	8	5	3	1	46.40
1.928	30	6	0	0+	47.10
1.743	7	6	2	2	52.44
1.620	8 3	5	5 4	1	56.80
1.604	3	6	4	0	57•40
1.506	4	7	3	1+	61.54
1.446	5	8	0	0′	64.38
1.413	8	7	3	3	66.06
1.403	1	6	4	4+	66.62
1.363	25	8	2	2+	68.82
1.336	11	7	5	1+	70.44
1.327	5	6	6	2	70.98
1.270	4	7	5	3+	74.70
1.262	11	8	4	2	75.24
1.181	1	8	4	4	81.46
1.163	18	9	3	3	83.00
1.157	2	10	0	0	83.50
1.134	1	8	6	2+	85.56
1.118	2 7	7	7	3+	87.08
1.113	,	6	6	6	87.58
1.079	1	9	5	3	91.14
1.074	1	10	4	0	91.66
1.043	3	11	1	1+	95.22
1.022	1 2	8 9	8	0 1	97•78 99•32
1.011	-	7	·	•	99.52
1.007	5	8	8	2	99.84
•992	1 1	10	6	0	101.90
•981 •978	5	9	7 6	3 2	103.46 103.98
•964	4	10 8	8	4+	106.10
• 50 .	7	Ü	Ü		100010
.954	4	11	5	1	107.68
•938	2	10	6	4+	110.38
•914 •903	5 1	12 8	4 8	0 6+	114.78 117.04
•892		10	8	2	119.34
	-				
.884		1 1	5	5+	121.12
•882		10	6	6	121.64
• 864	•	13	3	1+	126.00
•862 •845		12 13	6 3	0+ 3	126.60 131.20
	2	7.5	J	3	101.20

Ca	lculated	Pattern	(Int	egra	ted)
d(A)	I		hkl		2Θ(°) λ = 1.540598A
6.678	40	1	1	1	13.25
5.783 4.090	8	2	0	0	15•31 21•71
3.488	2	3	2	0	25.52
3.339	8	2	2	2	26.68
2.892	15	4	0	0	30.90
2.654	65	3	3	1	33.75
2.586	2	4	2	0	34.65
2.361	70	4	2	2	38.08
2.226	80	5	1	1	40.49
2.226	95	3	3	3	40.49
2.045	100	4	4	0	44.26
1.955	14	5	3	1	46.40
1.928	40	6	0	0	47.10
1.928	17	4	4	2	47.10
1.744	14	6	2	2	52.43
1.620	15	5	5	1	56.79
1.604	6	6	4	С	57.40
1.506	6	7	3	1	61.53
1.506	2	5	5	3	61.53
1.446	9	8	0	0	64.38
1.413	16	7	3	3	66.06
1.403	1	6	4	4	66.62
1.363	20	6	6	0	68 • 81
1.363	25	8	2	2	68.81
1.336	13	7	5	1	70.44
1.336	9	5	5	5	70.44
1.327	9	6	6	2	70.98
1.270	2	9	1	1	74.70
1.270	7	7	5	3	74.70
1.262	20	8	4	2	75.23
1.233	1	6	6	4	77.32
1.181	3	8	4	4	81.46
1.163 1.163	35 2	9 7	3 5	3 5	83.00 83.00
1.157	2	10	0	0	83.51
1.134	1	8	6	2	85.55
1.134	1	10	2	0	85.55
1.118	3	7	7	3	87.08
1.118	1	9	5	1	87.08
1.113	13	6	6	6	87.59
1.079	2	9	5	3	91 • 15
1.074	2	10	4	0	91.66
1.056	1	10	4	2	93.69
1.043	6	11	1	1	95.22
1.043	1	7	7	5	95.22
1.022	2	8	8	0	97.78
1.011	4	9	7	1	99.32
1.007	11	8	8	2	99.83
•992	3	10	6	0	101.90

Calculated Pattern (Integrated) d(A) I hkl 20(°) \[\lambda = 1.540598A \] \[\begin{array}{cccccccccccccccccccccccccccccccccccc		•				
.981 3 9 7 3 103.47 .978 11 10 6 2 103.99 .964 5 8 8 4 106.10 .964 4 12 0 0 106.10 .954 6 11 5 1 107.69 .938 1 12 2 2 110.38 .938 3 10 6 4 110.38 .929 1 11 5 3 112.01 .914 11 12 4 0 114.78 .906 1 9 9 1 116.47 .903 1 8 8 6 117.04 .8924 5 10 8 2 119.35 .8846 11 11 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 3 121.11 .8846 11 7 1 121.11		Calculated	Pattern	(Int	egr	ated)
.981		I		hkl		, , ,
.978 11 10 6 2 103.99 .964 5 8 8 4 106.10 .964 4 12 0 106.10 .954 6 11 5 1 107.69 .938 1 12 2 2 110.38 .938 3 10 6 4 110.38 .929 1 11 5 3 112.01 .914 11 12 4 0 114.78 .906 1 9 1 116.47 .903 1 8 8 6 117.04 .8924 5 10 8 2 119.35 .8846 11 11 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 3 121.11 .8846 10 13 1 125.99 .8646 2 11 7 3 125.99 .8646						$\lambda = 1.540598A$
.978 11 10 6 2 103.99 .964 5 8 8 4 106.10 .964 4 12 0 106.10 .954 6 11 5 1 107.69 .938 1 12 2 2 110.38 .938 3 10 6 4 110.38 .929 1 11 5 3 112.01 .914 11 12 4 0 114.78 .906 1 9 1 116.47 .903 1 8 8 6 117.04 .8924 5 10 8 2 119.35 .8846 11 11 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 3 121.11 .8846 10 13 1 125.99 .8646 2 11 7 3 125.99 .8646		_				
.964						
.964 4 12 0 106.10 .954 8 11 5 1 107.69 .938 1 12 2 110.38 .938 3 10 6 4 110.38 .929 1 11 5 3 112.01 .914 11 12 4 0 114.78 .906 1 9 9 1 116.47 .903 1 8 8 6 117.04 .8924 5 10 8 2 119.35 .8846 11 11 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 3 121.11 .8846 10 13 3 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8646 3 9 7 7 125.99 .8646						
.954		_				_
.938						
.938	• 954	8	11	5	1	107.69
.929	•938	1	12	2	2	110.38
.914 11 12 4 0 114.78 .906 1 9 9 1 116.47 .903 1 8 8 6 117.04 .8924 5 10 8 2 119.35 .8846 11 11 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 9 3 121.11 .8820 10 10 6 6 121.71 .8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62	•938	3	10	6	4	110.38
.906 1 9 9 1 116.47 .903 1 8 8 6 117.04 .8924 5 10 8 2 119.35 .8846 11 11 5 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 9 3 121.11 .8820 10 10 6 6 121.71 .8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 3 10 8 4 126.62	•929	1	11	5	3	112.01
.903	•914	1 1	12	4	0	114.78
.8924 5 10 8 2 119.35 .8846 11 11 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 9 3 121.11 .8820 10 10 6 6 121.71 .8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62	•906	1	9	9	1	116.47
.8846 11 11 5 5 121.11 .8846 5 11 7 1 121.11 .8846 11 9 9 3 121.11 .8820 10 10 6 6 121.71 .8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62	•903	1	8	8	6	117.04
.8846 5 11 7 1 121.11 .8846 11 9 9 3 121.11 .8820 10 10 6 6 121.71 .8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62	.892	4 5	10	8	2	119.35
.8846 11 9 9 3 121.11 .8820 10 10 6 6 121.71 .8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62	.884	6 11	1 1	5	5	121.11
.8820 10 10 6 6 121.71 .8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62	.884	6 5	11	7	1	121.11
.8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62 .8622 3 10 8 4 126.62	•884	6 11	9	9	3	121.11
.8646 10 13 3 1 125.99 .8646 2 11 7 3 125.99 .8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62	•882	0 10	10	6	6	121.71
.8646 3 9 7 7 125.99 .8622 12 12 6 0 126.62 .8622 3 10 8 4 126.62	.864	6 10	13	3	1	
.8622 12 12 6 0 126.62 .8622 3 10 8 4 126.62	.864	6 2	11	7	3	125.99
•8622 3 10 8 4 126•62	.864	6 3	9	7	7	125.99
	• 86 2	2 12	12	6	0	126.62
.8459 5 13 3 3 131.20	•862	2 3	10	8	4	126.62
	• 845	9 5	13	3	3	131.20

Structure Cubic, Fm3m (225), $Z=4$, isostructural with $Cu_{16}Mg_6Si_7$, from powder data [Spiegel et al., 1963]. Kuz'ma et al. [1964] determined positions for $Co_{16}Nb_6Si_7$, a similar isostructural compound.
Atom positions From considerations of atomic size, the positions of Co ₁₆ Nb ₆ Si ₇ were preferred. 32(f) 32 cobalt (1) 32(f) 32 cobalt (2) 4(b) 4 germanium (1) 24(d) 24 germanium (2) 24(e) 24 niobium
Lattice constant a = 11.477 A (published value, 11.478 A [Spiegel et al., 1963])
Volume 1511.8 A ³
Density (calculated) 8.825 g/cm ³
Thermal parameters Isotropic: overall B = 1.0
Scattering factors Co ⁰ , Ge ⁰ , Nb ⁰ [International Tables, 1962]
Scale factor (integrated intensities) $\gamma = 0.425 \times 10^{-3}$
References International Tables for X-ray Crystallography, III (1962). (The Kynoch Press, Birmingham, Eng.), pp. 204, 211.
Kuz'ma, Yu. B., Gladyshevs'kii, E. I., and Byk, D. S. (1964). J. Struct. Chem. (USSR) <u>5</u> , 518. Spiegel, F. X., Bardos, D., and Beck, P. A. (1963). Trans. AIME <u>227</u> , 575.

	Calculated	Pattern	(Peal	k he	eights)
d(A)	I		hkl		2Θ(°) 。 λ = 1.540598A
5.734 3.458		2	0 1	0	15•44 25•74
2.868		4	0	0	31.16
2.63		3	3	1	34.02
2.56	5 3	4	2	0	34.94
2.34	_	4	2	2	38.40
2.209		3	3	3+	40.82
2.029 1.940		4 5	3	0	44•62 46•80
1.94		6	0	0+	47.50
1.81	5 2	6	2	0	50.24
1.75		5	3	3	52.22
1.730		6	2	2	52.88
1.60		5	5	1+	57.28
1 • 49	4 5	7	3	1+	62.06
1.43	4 6	8	Ō	0	64.96
1.402		7	3	3	66.64
1.35		8	2	2+	69.44
1.32		5	5	5+	71.08
1.31	7 3	6	6	2	71.62
1.28		8	4	0	73.78
1.26		7	5	3+	75.40
1.25		8	4	2	75.92
1.20		9	3	1	79.62
1.17	1 7	8	4	4	82.24
1.15	_	9	3	3	83.80
1 • 1 4 8		8	6	0+	84.30
1.12		10	2	0+	86.38
1.10		7 6	7	3+	87.94
1.10	4 /	0	6	6+	88.46
1.06		10	4	0	92.58
1.03		11	1	1	96.20
1.01		8	8	0	98.82
1.00		9	7	1+	100.38
•99	90 3	8	8	2	100.90
• 98	41 1	8	6	6+	103.02
•97		10	6	2	105.14
•95	_	12	0	0+	107.30
• 94	_	11	5	1+	108.92
•94	35 1	12	2	0	109•46

Cobalt germanium niobium, $Co_{16}Ge_7Nb_6$ - (Continued)

	Calculated	Pattern	(Int	egr	ated)
d(A)	I		hkl		2Θ(°) λ = 1.540598A
5.738 3.460 2.869 2.633 2.566	2 3 17	2 3 4 3 4	0 1 0 3 2	0 1 0 1 0	15.43 25.72 31.15 34.02 34.93
2.343 2.209 2.209 2.029 1.940	35 40 100	4 5 3 4 5	2 1 3 4 3	2 1 3 0	38.39 40.82 40.82 44.63 46.79
1.913 1.913 1.815 1.750	4 2 3	6 4 6 5 6	0 4 2 3 2	0 2 0 3 2	47.49 47.49 50.24 52.22 52.87
1.607 1.607 1.494 1.494	3 . 4 . 1	7 5 7 5 8	1 5 3 5	1 1 1 3 0	57.28 57.28 62.07 62.07
1.402 1.353 1.353 1.325	9 8 5 4	7 8 6 7 5	3 2 6 5	3 2 0 1 5	66.65 69.43 69.43 71.08 71.08
1.317 1.283 1.260 1.260	1 1 7	6 8 9 7 8	6 4 1 5 4	2 0 1 3 2	71.62 73.78 75.39 75.39 75.92
1.203 1.171 1.153 1.153	8 15 1	9 8 9 7 8	3 4 3 7 6	1 4 3 1 0	79.62 82.24 83.80 83.80 64.31
1 • 1 2 5 1 • 1 1 0 1 • 1 1 0 1 • 1 0 4 1 • 1 0 4	1 2 . 1	10 9 7 10 6	2 5 7 2 6	0 1 3 2 6	86.39 87.94 87.94 88.45 88.45
1.066 1.035 1.014 1.003	5 2 4 3	10 11 8 9 11	4 1 8 7 3	0 1 0 1	92.58 96.21 98.81 100.38 100.38
•998 •970 •956 •956	9 64 1 64 1	8 10 8 12 11	8 6 8 0 5	2 4 0 1	100.91 105.15 107.30 107.30 108.93
•943	34 1	12	2	0	109.47

Cobalt germanium t
Structure Cubic, Fm3m (225), Z = 4, isostructural with Cu ₁₆ Mg ₆ Si ₇ , from powder data [Gladyshevs'kii et al., 1962]. Kuz'ma et al. [1964] determined positions for Co ₁₆ Nb ₆ Si ₇ , a similar isostructural compound.
Atom positions From considerations of atomic size, the positions of Co ₁₆ Nb ₆ Si ₇ were preferred. 32(f) 32 cobalt(1) 32(f) 32 cobalt(2) 4(b) 4 germanium(1) 24(d) 24 germanium(2) 24(e) 24 tantalum
Lattice constant a = 11.421 A (published value, 11.420 A [Gladyshevs'kii et al., 1962]).
Volume . 1489.8 A ³
Density (calculated) 11.310 g/cm ³
Thermal parameters Isotropic: cobalt B = 1.0; germanium B = 1.0; tantalum B = 0.8.
Scattering factors Co ⁰ , Ge ⁰ , Ta ⁰ [International Tables, 1962]
Scale factor (integrated intensities) $\gamma = 0.463 \times 10^{-3}$
References Gladyshevs'kii, E. I., Markiv, V. Ya., and Kuz'ma, Yu. B. (1962). Dopov. Akad. Nauk. Ukr. RSR, No. 4, p. 481.

International Tables for X-ray Crystallography,

III (1962). (The Kynoch Press, Birmingham,
Eng.) pp. 204, 212.

Kuz'ma, Yu. B., Gladyshevs'kii, E. I. and Byk,
D. S. (1964). J. Struct. Chem. (USSR) 5, 518.

	Calculated	Pattern	(Pea	ak he	eights)
d (Å)	I		hkl		2Θ(°) 。 λ = 1.540598A
6.593 5.705 4.037 3.443	2	1 2 2 3	1 0 2 1	1 0 0	13.42 15.52 22.00 25.86
3.295 2.855 2.620 2.553 2.331	14 35	2 4 3 4 4	2 0 3 2 2	2 0 1 0 2	27.04 31.30 34.20 35.12 38.60
2.198 2.019 1.930 1.904 1.722	100 75 5	3 4 5 6	3 4 3 0 2	3+ 0 1 0+ 2	41.04 44.86 47.04 47.74 53.16
1.599 1.584 1.487 1.428 1.395	10 3 9 5 11	5 6 7 8 7 6	5 4 3 0 3 4	0 1+ 0 3 4+	57.58 58.20 62.40 65.30 67.02 67.58
1.346 1.319 1.310 1.254	25 10 2 5	8 5 6 7 8	2 5 6 5 4	2+ 5+ 2 3	69.82 71.48 72.02 75.82 76.36
1.166 1.148 1.142 1.120 1.104	15 2 3	8 9 10 8 7	4 3 0 6 7	4 3+ 0 2+ 3+	82.72 84.30 84.82 86.92 88.48
1.099 1.060 1.030 1.009 .998	2 1	6 10 11 8 9	6 4 1 8 7	6 0 1 0 1+	89.00 93.18 96.84 99.48 101.06
•994 •979 •969 •965	2 1 6	8 10 9 10 8	8 6 7 6 8	2 0 3 2 4+	101.60 103.72 105.34 105.88 108.06
•942	4	11	5	1+	109.72

		Calculated	Pattern	(Int	egr	ated)
	d(Å)	I		hkl		2Θ(°) λ = 1.540598A
	6.594 5.711		1 2	1 0	1 0	13.42 15.50
	4.038	-	2	2	0	21.99
	3.444		3	1	1	25.85
	3.297		2	2	2	27.02
		13		۷	۷	21.02
	2.855	17	4	0	0	31.30
	2.620	45	3	3	1	34.19
	2.554	5	4	2	0	35 • 11
	2.331	50	4	2	2	38.59
	2.198	65	5	1	1	41.03
	2.198		3	3	3	41.03
	2.019		4	4	0	44.86
	1.931	•	5	3	1	47.03
	1.904		6	0	0	47.74
	1.904	6	4	4	2	47.74
	1.722	. 5	6	2	2	53.15
l	1.599	15	5	5	1	57.59
ı	1.584	4	6	4	0	58.20
l	1.487	10	7	3	1	62.40
	1.487	3	5	5	3	62.40
	1.428	7	8	0	0	65.31
	1.395		7	3	3	67.02
	1.385		8	2	0	67.58
	1.385	-	6	4	4	67.58
	1.346	-	6	6	0	69.82
	1.346	20	8	2	2	69.82
	1.319		7	5	1	71.48
	1.319		5	5	5	71.48
	1.310		6	6	2	72.03
	1.277		8	4	0	74.21
	1.254	7	7	5	3	75.83
	1.246		8	4	2	76.36
	1.166	4	8	4	4	82.73
	1.148		9	3	3	84.30
	1 • 14 8		7	7	1	84.30
	1.148	1	7	5	5	84.30
	1.142		10	0	0	84.82
	1.120		8	6	2	86.91
	1.120		10	2	0	86.91
	1.104	6	7	7	3	88.48
	1 • 1 0 4	. 4	9	5	1	88.48
	1.099		6	6	6	89.00
	1.060		10	4	0	93.17
	1.030		11	1	1	96.84
	1.009		8	8	0	99•47
	•998	1	11	3	1	101.06
	•998		9	7	1	101.06
	.994	1	10	4	4	101.59
	.994	. 9	8	8	2	101.59
	•979	' ś	10	6	0	103.73

Calculated Pattern (Integrated) d(A) I hkl 20(°) λ = 1.54059 .969 2 9 7 3 105.34 .965 10 10 6 2 105.88 .952 2 12 0 0 108.07 .952 3 8 8 4 108.07 .942 6 11 5 1 109.72						
d(A) I hkl 20(°) λ = 1.54059 .969 2 9 7 3 105.34 .965 10 10 6 2 105.88 .952 2 12 0 0 108.07 .952 3 8 8 4 108.07		Calculated	Pattern	(Int	egr	rated)
•965 10 10 6 2 105.88 •952 2 12 0 108.07 •952 3 8 8 4 108.07		Ι		hkl		2Θ(°) ° λ = 1.540598A
•942 1 7 7 7 109•72	•965 •952 •952	10 2 3 6	1 0 12 8 11	6 0 8 5	2 0 4 1	105.88 108.07 108.07 109.72

Cubic, Fm3m (225), Z = 4, a Heusler alloy isostructural with AlCu2Mn, from powder data (x-ray and neutron) [Ziebeck and Webster, 1974].

Atom positions

8 cobalt 8(c)

4 hafnium 4(b)

4(a) 4 tin

Lattice constant

a = 6.218 A [Table 1, Ziebeck and Webster, 1974].

Volume

240.41 A³

Density

(calculated) 11.466 g/cm3 (measured) 11.400 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors

Co⁰ Sn⁰ [Cromer and Mann, 1968] Hf⁰ [International Tables, 1974]

All factors were corrected for anomalous dispersion [Cromer and Liberman, 1970].

Scale factor (integrated intensities) $\gamma = 1.253 \times 10^{-3}$

References

Cromer, D. T. and Liberman, D. (1970). J. Chem. Phys. 53, 1891.

Cromer, D.T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

International Tables for X-ray Crystallography, IV (1974). (The Kynoch Press, Birmingham, Eng.) p. 101.

Ziebeck, K.R.A. and Webster, P.J. (1974). J. Phys. Chem. Solids 35, 1.

Calcu	lated Patt	cern (1	Peak	heig	hts)
d (A)	I	hl	ςl	λ	20(°) ° = 1.540598A
3.590 3.108	5 25	1 2	1 0	1 0	24.78 28.70
2•199 1•875 1•795	100	3	1	0	41.02 48.52
1.554	5 15	2	2	2	50.82 59.42
1.390 1.269	5 20	4	2	0	67.28 74.74
1.099 1.036	5 5	4	4	0 2+	88•98 96•02
•9832 •9374	10	6	2	0 2	103.16
•8975 •8623	1	4	4	4	110.52 118.24 126.58
•8309	10	6	4	2	135.96

The same of the sa					
	culated Pat	ttern (Int	egra	ted)
d(A)	I	h	kl		20 (°)
					$\lambda = 1.540598A$
3.590	5	1	1	1	24.78
3.109	25	2	0	0	28.69
2.198	100	2	2	0	41.02
1.875	1	3	1	1	48.52
1.795	5	2	2	2	50.83
1.554	15	4	0	0	59.41
1.390	10	4	2	0	67 • 29
1.269	25	4	2	2	74.73
1.099	5	4	4	0	88.98
1.036	5	4	4	2	96.03
1.036	1	6	0	0	96.03
• 9832	10	6	2	0	103.16
•9374	5	6	2	2	110.52
•8975	5	4	4	4	118.25
•8623	5	6	4	0	126.59
.8309	25	6	4	2	135.96

Cubic, Fd3m (227), Z = 8, isostructural with Cu₂Mg, from powder data [Harris et al., 1965].

Atom positions [ibid.]

8(a) 8 holmium 16(d) 16 cobalt

Lattice constant [ibid.]

a = 7.1734 A

(published value, 7.1585 kX)

Volume 369.1 Å³

Density

(calculated) 10.177 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors Co⁰, Ho⁰ [Cromer and Mann, 1968]

Scale factor (integrated intensities) $\gamma = 1.07 \times 10^{-3}$

References

Cromer, D. T. and Mann, J. B. (1968). Acta Cryst-

allogr. <u>A24</u>, 321.

Harris, I. R., Mansey, R. C., and Raynor, G. V. (1965). J. Less-Common Metals 9, 270.

Ca	lculated	Pattern	(Pe	ak h	e i ghts)
d(A)	I		hkl		2Θ(°) λ = 1.540598A
4.141 2.536 2.162 2.071 1.7932	20 70 100 14	1 2 3 2 4	1 2 1 2 0	1 0 1 2 0	21.44 35.36 41.74 43.68 50.88
1.6456 1.4643 1.3804 1.2680 1.2126	4 20 25 16 3	3 4 5 4 5	3 2 1 4 3	1 2 1+ 0	55.82 63.48 67.84 74.82 78.88
1.1342 1.0940 1.0815 1.0045	7 7 3 1 9	6 5 6 7 6	2 3 2 1 4	0 3 2 1+ 2	85.56 89.52 90.84 100.14 106.94
.9339 .8967 .8454 .8283	13 3 5 8	7 8 8 7 6	3 0 2 5 6	1+ 0 2+ 1+ 2	111.14 118.42 131.34 136.86 138.82
.7874	2	7	5	3+	156.08

	Calculated	Pattern	(In	tegi	rated)
d(Å)	I		hkl	,	2Θ(°) ° λ = 1.540598A
4.142	17	1	1	1	21 • 44
2.536	70	2	2	ō	35.36
2.163	100	3	1	1	41.73
2.071	14	2	2	2	43.68
1.793	4 1	4	0	0	50.88
1.645		3	3	1	55.82
1.464		4	2	2	63•48
1.380		5	1	1	67.83
1.380		3	3	3	67.83
1.268	1 18	4	4	0	74.81
1.212	5 3	5	3	1	78.88
1.134	2 8	6	2	0	85.55
1.093	9 8	5	3	3	89.52
1.081	4 3	6	2	2	90.84
1.004	5 1	7	1	1	100.15
1.004	5 1	5	5	1	100.15
•958	6 11	6	4	2	106.95
•933	9 12	7	3	1	111.14
.933	9 6	5	5	3	111.14
•896	7 4	8	0	0	118.42
.876	4 1	7	3	3	123.04
.845	4 3	6	6	0	131.34
.845	4 6	8	2	2	131.34
.828	3 13	7	5	1	136.86
.828	3 2	5	5	5	136.86
.822	8 3	6	6	2	138.83
.802		8	4	0	147.67
•787		7	5	3	156.09
•787	4 2	9	1	1	156.09

Structure Cubic, Fm3m (225), Z = 4, π phase, isostructural with Co₉S₈, from powder data (neutron and x-ray) [Knop, 1962]. Atom positions [Pearson, 1967] 4(b) 3.6 cobalt 32(f) 3.6 iron 0.4 iron 24(e) 8.0 sulfur 4(b) 32(f) 28.4 cobalt 24(e) 24.0 sulfur Lattice constant a = 9.944(2) A(published value, a = 9.943(2) A, [Knop, 1962]) Volume . 983.3 Å³ Density (calculated) 5.295 g/cm³

Isotropic: cobalt, B = 0.5; iron, B = 0.5;
sulfur, B = 0.7

Scattering factors Co^0 , Fe^0 , S^0 [International Tables, 1962]

Scale factors (integrated intensities) $\gamma = 0.319 \times 10^{-3}$

Thermal parameters

References
International Tables for X-ray Crystallography III
(1962). (The Kynoch Press, Birmingham, England).
pp. 202, 204.
Knop, D. (1962). Chem. Ind. London, April 21, p.

Pearson, W.B. (1967). Handbook of Lattice Spacings and Structures of Metals and Alloys, v.2, (Pergamon, Press, N.Y.) pp. 197, 788.

 	Calculated	Pattern	(Pe	ak h	eights)
d(Å)	I		hkl		2⊖(°) 。
					$\lambda = 1.540598A$
5.734	35	1	1	1	15.44
4.968	6	2	0	0	17.84
3.515	6	2	2	0	25.32
2.998	100	3	1	1	29.78
2.870	25	2	2	2	31.14
2.486	8	4	0	0	36.10
2.281	14	3	3	1	39.48
2.223	3	4	2	0	40.54
2.030	2	4	2	2	44.60
1.913	35	5	1	1+	47.48
1.758	95	4	4	0	51.98
1.681	5	5	3	1	54.56
1.657	1	4	4	2+	55.40
1.572	1	6	2	0	58 • 68
1.516	9	5	3	3	61.06
1.499	5	6	2	2	61.84
1.435	2	4	4	4	64.92
1.392	3	7	1	1+	67.18
1.294	1 7 13	6 7	4 3	2	70.86
1.294	, 13	,	3	1+	7 3 • 02
1 • 24 2	9 11	8	0	0	76.60
1.214		7	3	3	78.70
1.148		7	5	1+	84.26
1.140		6 8	6	2	84.96 87.72
	,	8	-7	O	01012
1.091		7	5	3	89.78
1.042		9	3	1	95.28
•999		8 7	4 7	4 1+	98.76 100.84
.961		9	5	1+	106.50
		Ť	Ĭ	• .	
•956	_	10	2	2+	107.22
. 896		11	1	1+	118.44
•878° •868°		8 11	8	0	122.42
·843		9	3 7	1+	124.90 131.92
1045.	5	3	,	J ,	101092
.840		10	6	2	132.86
.828		8	8	4+	136.74
- 820		11	5	1+	139.84
•798°		9 12	7	5+ 0	149.34 156.96
• 700		12	-	J	120+90

Cobalt iron sulfide, Co₈FeS₈-(continued)

	Calculated	Pattern	(Int	egr	ated)
đ(Å)	I		hkl		2Θ (°) ° λ = 1.540598A
5.741	25	1	1	1	15.42
4.972	5	2	0	0	17.83
3.516	5	2	2	0	25.31
2.998	90	3	1	1	29.77
2.871	20	2	2	2	31.13
2.486	7	4	0	0	36.10
2.281	14	3	3	1	39.47
2.224	3	4	2	0	40.54
2.030	2	4	2	2	44.60
1.914	30	5	1	1	47.47
1.914	6	3	3	3	47.47
1.758	100	4	4	0	51.98 54.55
1.681	5	5 4	3	1 2	54.55 55.39
1.657	1	6	2	0	58.67
1.572	1	6	۷	J	30.07
1.516	10	5	3	3	61.06
1.499	6	6	2	2	61.84
1.435	2	4	4	4	64.92
1.392	2	7	1	1	67.17
1.329	1	6	4	2	70.86
1.294		7	3	1	73.03
1.294		5	5	3	73.03
1.243		8	0	0	76.59
1.214		7	3	3	78.70
1 • 148	2 7	7	5	1	84.27
1.148	2 2	5	5	5	84.27
1.140	7 2	6	6	2	84.96
1.111	8 2	8	4	0	87.71
1.091		7	5	3	89.78
1.042	4 6	9	3	1	95.29
1.014		8	4	4	98.75
•999		7	7	1	100.84
.961		7	7	3	106.51
•961		9	5	1	106.51
•956	9 2	10	2	2	107.23
•896		11	1	1	118.43
.896		7	7	5	118.43
.878		8	8	0	122.42
.868		11	3 7	1	124•90 124•90
•868	8 1	9	,		124.90
.843		9	7	3	131.93
• 843		11	6	2	131.93 132.86
.840		10			132.86
•828		8	8	4	139.83
•820	2 2	11	5	1	139 03
•820		7	7	7	139.83
•798		9	7	5	149.34
• 798		11	5	3	149.34
• 786	1 50	12	4	0	156.96

Cobalt iron vanadio
Structure Tetragonal, P42/mnm(136), Z = 1, σ -phase, isostructural with σ -(Cr,Fe), from powder data [Stüwe, 1959]. Much work has been done on the σ -phase structure which has multiple atoms in 5 sites, called A through E [Bergman and Shoemaker 1954]. The ordering arrangement of the atoms is dependent on a complex combination of electronic and size factors [Spooner, 1968].
Atom positions The positions used were those for σ -(Cr,Fe) [Spooner and Wilson, 1964]. Site occupancy shared by multiple atoms was assumed to be random and in the following proportions: Site A: 2(a) 0.49 cobalt and 1.51 iron Site B: 4(f) 4.0 vanadium Site C: 8(i) 7.0 vanadium, 0.24 cobalt, and 0.76 iron Site D: 8(i) 1.95 cobalt and 6.05 iron Site E: 8(j) 1.66 cobalt, 5.16 iron, and 1.18 vanadium
Lattice constants [Stüwe, 1959] a = 8.884 A c = 4.600
Volume . 363.1 A ³
Density (calculated) 7.45 g/cm ³
Thermal parameters Isotropic: overall B = 1.0
Scattering factors Co ⁰ , Fe ⁰ , V ⁰ [Cromer and Mann, 1968].
Scale factor (integrated intensities) $\gamma = 0.136 \times 10^{-3}$
References Bergman, G. and Shoemaker, D.P.(1954). Acta Crystallogr. 7, 857. Cromer, D.T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321. Spooner, F. J. (1968). Acta Crystallogr. A24, 605. Spooner, F. J. and Wilson, C. G. (1964). Acta Crystallogr. 17, 1533. Stüwe, H. P. (1959). Trans. AIME 215, 408.

	Calculated	Pattern	(Pea	ak h	eights)
d(A)	I		hkl		2Θ(°) . λ = 1.540598A
4.085	8	1	0	1	21.74
3.711		1	1	i	23.96
2.398		3	1	1	37.48
2.300		0	0	2	39.14
2•154		4	1	0	41.90
2.094		3	3	0	43.16
2.042		2	0	2	44.32
1.990 1.951		2	1	2	45.54 46.50
1.951		3	1 3	1	46.50 47.68
1.855		2	2	2	49.06
1.780		3	1	2	51.30
1.659		3	2	2	54.54
1.658		4 5	3	1	55.38 56.42
1.650	_	3	1	1	
1.598		4	0	2	57.64
1.553		5	2	1	59.48
1.406		4	3	2	66.44
1.389		5	1	2	67•38 70-14
1.341	4	5	2	2	70.14
1.270		5	3	2	74.66
1.256		5	5	0	75.62 76.14
1.249		4	1	3	76.14 76.78
1.245		6	0 3	2	76•38 77•02
1025	1	J	3	ټ	11.02
1 • 233		6	1	2	77.32
1.220		7	2	0	78.28
1.212		5	5	1	78.92
1.198		6	2	2	79.96
1.188	30 4	5	4	2	80 • 84
1.179		7	2	1	81 • 54
1.150		4	3	3	83 • 14
1.150		0 8	0 2	4	84 • 10 91 • 28
1.077		8	2	1	91.28
1.047		6	6	0	94.74
1.021		6	6	1	97.96
1.004		4	1	4	98.80
1.008	_	3	3	4	99.66 100.76
1.000	0 3	8	0	2	100.70
• 993		7	4	2	101.62
•975 •971		8	2 5	2	104.28 104.86
•954		5 7	2	3	104.55
•954		7	6	3 1+	107.50
		,			
•888		7	6	2+	120.16
•881		8	2	3	121.80
.867		9	3	2	125.26
•864 •848		6 5	6 5	3	125•96 130•48
•0+0	3		J	-	130.40

Cobalt iron vanadium, $Co_{4.35}Fe_{13.47}V_{12.18}$ -(continued)

Calc	ulated Pa	attern	(Pe	ak h	eights)
d(A)	I		hkl		2Θ(°) . λ = 1.540598A
•8461	5	4	1	5	131•12
•8423	2		3		132.28
•8398	3	9	4	2	133.04
• 83 6 9	7	7	2	4	133.96
•8337	1	8	4	3	135.02
•8288	2	8	6	2+	136.70
.8252	2	10	1	2	137.98
•8214	2	9	6	0	139.38

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2⊖ (°)
	_				$\lambda = 1.540598A$
					x = 1.51055011
	_				
4.085		1	0	1	21.74
3.711		1	1	1	23.96
2.398		3	1	1	37 • 48
2.300		0	0	2	39.13
2.160	2	1	1	2	41.79
2.155	100	4	1	0	41.89
2.094	45	3	3	0	43.17
2.042	35	2	0	2	44.31
1.991	75	2	1	2	45.53
1.987	1	4	2	0	45.63
1.951	100	4	1	1	46.50
1.906	50	3	3	1	47.68
1.856	13	2	2	2	49.05
1.780	15	3	1	2	51.29
1.681	4	3	2	2	54.53
1.658	4	4	3	1	55.38
1.629	4	5	1	1	56.43
1.598	1	4	0	2	57.65
1.553	1	5	2	1	59.47
1.406	2	4	3	2	66.43
1.389	2	5	1	2	67.37
1.344	1	6	2	1	69.97
1.341	4	5	2	2	70.14
1.270	2 14	5	3	2	74.66
1.256	5 5	5	5	0	75.62
1.249	3 16	4	1	3	76.13
1.245	0 8	6	0	2	76.44
1.237	1 9	3	3	3	77.02
1.233		6	1	2	77.33
1.223	5 1	7	0	1	78.04
1.220	4 12	7	2	0	78•28
1.212		5	5	1	78.92
1.198		6	2	2	79.96
1.190		6	4	1	80.67
1.188	1 4	5	4	2	80.84

	Calculated	Pattern	(Int	egr	ated)
d(A)	I		hkl		2Θ (°) λ = 1.540598A
1.179	6 9	7	2	1	81.54
1.160	9 1	4	3	3	83.14
1.151	1 1	5	1	3	84.01
1.150		0	0	4	84.11
1 • 1 47	7 1	6	3	2	84.31
1.078	0 1	7	2	2	91.21
1.077	4 8	8	2	0	91.28
1.049	0 4	8	2	1	94 • 50
1.047	0 3	6	6	0	94.73
1.020	9 3	6	6	1	97.96
1.014	6 11	4	1	4	98.80
1.008	0 5	3	3	4	99.67
1.000	1 4	8	0	2	100.75
•993	8 8	7	4	2	101.63
•975	7 2	8	2	2	104.28
•971	9 3	5	5	3	104.86
•970	9 1	8	4	1	105.00
•954	9 4	7	2	3	107.55
•888	8 1	9	2	2	120 • 15
.888	8 1	7	6	2	120.15
•881	5 3	8	2	3	121.81
•867	4 3	9	3	2	125.27
•864	7 2	6	6	3	125.96
.848	3 4	5	5	4	130.47
.846	1 7	4	1	5	131.12
- 842	3 4	3	3	5	132.28
•839	8 5	9	4	2	133.05
•836	9 11	7	2	4	133.96
•836	8 1	10	3	1	134.01
•833	7 1	8	4	3	135.03
•828	8 4	8	6	2	136.70
•828	8 1	10	0	2	136.70
.825		10	1	2	137.97
•821	4 4	9	6	0	139•38

Cubic, Fm3m (225), Z=4, a Heusler alloy, isostructural with $AlCu_2Mn$, from powder data [Gladyshevs'kii et al., 1962].

Atom positions

- 8(c) 8 cobalt
- 4(b) 4 manganese
- 4(a) 4 silicon

Lattice constant

a = 5.670 A [Gladyshevs'kii et al., 1962]

Volume ° 182.3 Å³

_

Density

(calculated) 7.320 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors

 Co^0 , Mn^0 , Si^0 [Cromer and Mann, 1968]

Scale factor (integrated intensities)

 $\gamma = 0.599 \times 10^{-3}$

References

Cromer, D.T. and Mann, J.B. (1968). Acta Crystallogr. A24, 321.

Gladyshevs'kii, E.I., Kripyakevich, P.I., Teslyuk, M.Yu., Zarechnyuk, O. S. and Kuz'ma, Yu.B. (1962). Sov. Phys. Crystallogr. 6, 207.

Calc	Calculated Pattern (Peak Heights)								
d(A)	I	h	kl		2Θ(°) λ = 1.540598A				
3.274	5	1	1	1	27.22				
2.834 2.004	5 100	2		0	31 • 54 4 5 • 20				
1.710 1.636	1	3	1 2	1 2	53.56 56.16				
1.417	10	4	0	0	65.84				
1.268	1 20	4	2	0	74 • 82 83 • 44				
1.002	5	4	4	0	100.44				
•8965	10	6	2	0	118.46				
•8184	1	4	4	4	140,52				

	Calculated	Pattern	(Int	egr	ated)
d(A)	I		hkl		2Θ(°) λ = 1.540598Å
3.27. 2.83		1 2	1 0	1 0	27.22 31.53
2.00	-	2	2	o	45.20
1.71	0 1	3	1	1	53.56
1.63	7 1	2	2	2	56.15
1-41	B 15	4	0	0	65.83
1.26	В 1	4	2	0	74.83
1.15	7 20	4	2	2	83.45
1.00	2 5	4	4	0	100.44
•896	55 10	6	2	0	118.46
•81	B 4 5	4	4	4	140.52

Hexagonal, P6 $_3$ /mmc (194), Z = 2, isostructural with Ni $_3$ Sn. The structure was determined by Alte da Veiga [1965].

Atom positions

6(h) 6 cobalt

2(c) 2 molybdenum

Lattice constants

a = 5.125 A

c = 4.113

(published values: a = 5.1245 [\pm .0015] and c = 4.1125 [\pm .0020]) [Alte da Veiga, 1965].

c/a = 0.8025

Volume 93.56 Å³

Density

(calculated) 9.682 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering_factors

 Co^{2^+} , Mo^- [Forsyth and Wells, 1959]; corrected for dispersion using $\Delta f'$ values from Dauben and Templeton [1955].

Scale factors (integrated intensities)

 $\gamma = 0.468 \times 10^{-3}$

 I/I_{c} (calculated) = 7.6

References

Alte da Veiga, L.H. (1965). Acta Crystallogr. 18, 857.

Dauben, C. H., and Templeton, D. H. (1955). Acta Crystallogr. 8, 841.

Forsyth, J.B. and Wells, M. (1959). Acta Crystallogr. 12, 412.

	Ca	Lculated Pa	ttern	(Pe	ak h	neights)
	d (A)	I		hkl		2Θ(°) λ = 1.540598A
	4.436	3	1	0	0	20.00
١	3.016	12	1	0	1	29.60
	2.562	4	1	1	0	35.00
ı	2.219	27	2	0	0	40.62
	2.056	27	0	0	2	44.00
l	1.953	100	2	0	1	46.46
1	1.677	1	2	1	0	54.68
١	1.604	2	1	1	2	57.40
ļ	1.553	2	2	1	1	59 • 46
	1.508	11	2	0	2	61.42
	1.310	1	1	0	3	72.04
-	1.300	1	2	1	2	72.68
ł	1.281	11	2	2	0	73.92
	1.179	1	3	1	1	81.56
I	1.166	11	2	0	3	82.66
-11						

d (Å)	I		hkl		2Θ(°) ° λ = 1.540598A
1.109	1	4	0	0	87.94
1.087	11	2	2	2	90.20
1.071	7	4	0	1	91.96
1.028	1	o	0	4	97.04
•988	1	3	2	1	102.40
•976	2	4	0	2	104.16
•933	2	2	0	4	111.30
.876	1	4	1	2+	123.06
•863	4	4	0	3	126.52
-8388	1	4	2	0	133.38
•8218	7	4	2	1	139.20
•8174	1	3	2	3	140.90
•8019	5	2	2	4	147.70

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2Θ(°)
_ (,					$\lambda = 1.540598A$
4-438	3	1	0	0	19.99
3.017	11	1	0	1	29.59
2.563	4	1	1	0	34.99
2.219	26	2	0	0	40.62
2.056	27	0	0	2	44.00
1.953		2	0	1	46.46
1.678	1	2	1	0	54.67
1.604		1	1	2	57.41
1.553		2	1	1	59.46
1.508	12	2	0	2	61.42
1.310		1	0	3	72.04
1.300	_	2	1	2	72.68
1.281		2	2	0	73.91
1.201		3	0	2	79•79
1.179	1	3	1	1	81.56
1.166	12	2	0	3	82.66
1.110		4	0	0	87.93
					90.20
1.087		2	2	2	91.95
1.071		0	0	4	97.03
1.026	2	U	U	•	97.00
.988	1	3	2	1	102.40
.977		4	0	2	104.15
.933		2	0	4	111.31
•916		3	1	3	114.49
•876	1	4	1	2	123.07
.863	6	4	0	3	126.53
•838	8 2	4	2	0	133.38
•821	9 15	4	2	1	139•19
-817	4 1	3	2	3	140.89
.801	9 12	2	2	4	147.71

Orthorhombic, Pnma (62), Z = 4, isostructural with MnP. The structure was refined by Rundqvist [1962].

Atom positions

All atoms were located in positions 4(c).

Lattice constants

a = 5.077 A

b = 3.281

c = 5.587

[Rundqvist, 1962].

CD cell: a = 5.077, b = 5.587, c = 3.281, space group Pnam, a/b = 0.9087, c/b = 0.5873.

Volume 3

93.07 A³

Density

(calculated) 6.417 g/cm3

Thermal parameters

Isotropic: overall B = 0.29

Scattering factors

Co⁰, P⁰ [International Tables, 1962]. The cobalt factors were corrected for dispersion [Dauben and Templeton, 1955].

Scale factors (integrated intensities)

 $\gamma = 0.158 \times 10^{-3}$

 I/I_{C} (calculated) = 2.28

References

Dauben, C. H. and Templeton, D. H. (1955). Acta Crystallogr. 8, 841.

International Tables for X-ray Crystallography,
III (1962). (The Kynoch Press, Birmingham, Eng.)
pp. 202, 210.

Rundqvist, S. (1962). Acta Chem. Scand. 16, 287.

Calculated Pattern (Peak heights)							
d (Å)	I	h	kl	λ	20(°) = 1.540598A		
3.757	7	1	0	1	23.66		
2.829	68	0	1	1	31.60		
2.793	20	0	0	2	32.02		
2.538	18	2	0	0	35.34		
2.472	41	1	1	1	36.32		
2.447	20	1	o	2	36.70		
2.311	2	2	0	1	38.94		
2.008	7	2	1	0	45.12		
1.962	51	1	1	2	46.24		
1.889	100	2	1	1	48.12		
1.879	46	2	0	2	48.40		
1.748	19	1	0	3	52.28		
1.640	26	0	2	0	56.02		
1.631	4	2	1	2	56.38		
1.620	38	0	1	3+	56.80		

d(A)	I	1	h k l		2Θ(°) 。
			-		\ = 1.540598A
1.502	3	2	0	3	61.72
1.452	1	3	1	1	64.06
1.415	3	0	2	2	65.98
1.378	3	2	2	0	67.98
1.363	5	1	2	2	68.84
1.347	2	1	0	4	69.78
1.338	1	2	2	1	70.32
1.269 1.253	4	4 3	0	0 3	74.74
1.246	5 9	1	0	4	75.90 76.38
1 076	• •		_		77.40
1.236	14 2	2	2	2	77.12
1.196	8	1	0	3	78.02 80.16
1.184	2	4	1	0	81.20
1.158	9	4	1	1	83.40
1.155	8	4	0	2	83.64
1.153	9	3	2	1	83.88
1.108	2	2	2	3	88.12
1.091	6	1	0	5	89.80
1.073	2	0	3	1	91.72
1.050	2	1	3	1	94.38
1.049	2	4	0	3	94.52
1.041	2	1	2	4	95.46
1.036	2	1	1	5	96.12
1.023	15	3	1	4	97.64
1.004	4	4	2	0	100.22
•999	6	1	3	2+	100.96
•996	6	3	2	3	101.38
•989	9	2	3	1	102.38
•981	2	2	2	4	103.50
•945	4	4	2	2	109.24
• 943	5	0	3	3	109.54
•932	1	3	0	5	111.40
•916	7	5	1	2	114.42
•909	8	1	2	5	115.94
•892	2	5	0	3	119.54
.884	3	4	2	3	121.32
.882	5	1	1	6	121.66
.874	2	2	0	6	123.56
•8490	3	1	3	4	130.28
.8462	3	6	ŏ	0	131.10
.8447	1	2	1	6	131.54
•8285	1	4	3	0	136.78
.8202	4	0	4	0	139.82
•8195	5	4	3	1+	140.08
-8107	4	6	1	1+	143.68
.8098	2	6	0	2+	144.04
•7967	1	5	1	4	150.40
•7943	1	4	3	2	151.74
.7917	4	3	1	6	153.28

	Calculated	Pattern	(Int	egr	ated)
d(A)	I		hkl		2Θ(°) λ = 1.540598A
3.757		1	0	1	23.66
2.829		0	1	1	31.60
2.794		0	0	2	32.01
2.539		2	0	0	35.33
2.471	38	1	1	1	36.32
2.447	18	1	0	2	36.69
2.311	2	2	0	1	38.94
2.008	7	2	1	0	45.12
1.962		1	1	2	46.24
1.889	100	2	1	1	48.12
1.879	38	2	0	2	48.41
1.748	3 20	1	0	3	52.28
1.640		0	2	0	56.01
1.630		2	1	2	56.39
1.620	12	3	0	1	56.80
1.620	28	0	1	3	56.80
1.502		2	0	3	61.73
1.45	2 2	3	1	1	64.06
1.415	5 3	0	2	2	65.99
1.37	8 4	2	2	0	67.98
1.363	3 5	1	2	2	68.84
1.34		1	0	4	69.78
1.33		2	2	1	70.31
1.269	5	4	0	0	74.73
1.25	2 5	3	0	3	75.91
1.24	6 9	1	1	4	76.38
1.23		4	0	1	76.98
1.23		2	2	2	77.13
1.22	4 2	2	0	4	78.02
1.19	5 9	1	2	3	80.16
1.18	4 2	4	1	0	81.19
1.15		4	1	. 1	83.39
1.15		4	0	12	83.61
1.15	3 8	3	2	1	83.88
1.10	8 2	2	2	3	88.12
1.09	1 7	1	0	5	89.80
1.09	_	4	1	2	89.94
1.07		0	3	1	91.73
1.05		0	1	5	93.48
1.05	0 2	1	3	1	94.37
1 00	0 2	4	0	3	94.52
1.04		1	0	4	95.47
1.03		i	1	5	96.13
1.02		3	1	4	97.64
1.00		2	3	0	100.16
1.00	4 5	4	2	0	100.23
.99		4	1	3	100.23
99		1	3	2	100.97
.99		3		3	101.39
•98		2		1	102.38

	Calculated	Pattern	(In	tegr	ated)
d(Å)	I		hkl		2Θ(°) λ = 1.540598A
500			2	1	102.45
•988 •981	1 2	4 2	2	4	103.50
•945		4	2	2	109•25
•943		o	3	3	109.53
.932		3	0	5	111.40
•916	10	5	1	2	114.41
•910		1	2	5	115.94
891		5	0	3	119.55
.884		4	2	3	121.32
-882		1	1	6	121.66
.874	. 3	2	0	6	123.56
849		1	3	4	130 • 28
.846	_	6	0	o	131.10
.844		2	1	6	131.53
.828		4	3	O	136.79
.820)2 7	0	4	0	139.80
.819		4	3	1	140.07
. 819	_	6	1	0	140.15
-810	7 6	6	1	1	143.68
.810	7 3	3	2	5	143.68
.809	98 2	6	0	2	144.05
.796		5	1	4	150.40
.794		4	3	2	151.75
.791	17 11	3	1	6	153.28
•788	35 2	1	0	7	155.36
.787	70 2	0	4	2	156.33
.786	52 1	6	1	2	156.89
.783	33 13	5	2	3	159.09
.786	52 1	6	1	2	156.89

Cubic, Im3 (204), Z=8, isostructural with CoAs3, from powder data [Rundqvist and Ersson, 1968]. Munson and Kasper [1968] reported a high pressure phase deficient in cobalt, with a similar cell.

Atom positions [Rundqvist and Ersson, 1968] 8(c) 8 cobalt

24(g) 24 phosphorus

Lattice constant

a = 7.7078 A
 (published value, 7.7073 A [Rundqvist and Ersson,
1968]).

Volume .457.92 Å³

Density

(calculated) 4.404 g/cm3

Thermal parameters

Isotropic [Rundqvist and Ersson, 1968].

Scattering factors

Co⁰, P⁰ [Cromer and Mann, 1968]

Scale factor (integrated intensities)

 $\gamma = 0.196 \times 10^{-3}$

References

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Munson, R. A. and Kasper, J. S. (1968). Inorg. Chem. 7, 390.

Rundqvist, S. and Ersson, N. (1968). Ark. Kemi 30, 103.

	Calculated	Pattern	(Pea	ak he	eights)
d(A)	I		hkl		2Θ(°) λ = 1.540598A
5.447	25	1	1	0	16.26
3.853		2	ō	o	23.06
3.146		2	1	1	28.34
2.725		2	2	ò	32.84
2.436		0	1	3	36.86
2.224	5 30	2	2	2	40.52
2.059		1	2	3	43.92
1.927		4	0	0	47.12
1.816		3	3	0+	50.18
1.723	-	4	2	0+	53.10
1.643	5 6	3	3	2	55.90
1.573		4	2	2	58.62
1.511		4	3	1+	61.28
1.362		4	4	o	68.86
1.322		4	3	3+	71 • 28
1.284	7 2	4	4	2	73.68
1.218		0	2	6+	78.40
1.189		1	4	5+	80.74
1.162		6	2	2	83.04
1.136		1	3	6	85.34
1.112	5 10	4	4	4	87.64
1.090	1 2	3	4	5+	89.92
1.068		6	4	0+	92.22
1.048	8 3	6	3	3+	94.52
1 • 029	9 5	2	4	6+	96.82
1.012	1 6	7	3	0	99.12
.978	9 4	2	3	7+	103.80
• 963	5 4	8	0	0	106.16
.948	8 1	1	4	7+	108.56
•934	7 11	6	4	4+	111.00
.921	3 1	3	5	6+	113.46
•908	4 12	6	6	0+	115.98
.896	0 11	7	4	3+	118.56
.884	2 3	6	6	2	121.20
•861	8 1	8	4	0+	126.72
-851	2 2	o	1	9+	129.64
.841	0 7	2	4	8+	132 • 68
.831	1 1	7	6	1+	135.88
• 821	6 1	6	6	4	139 • 28
.812	5 1	4	5	7+	142.92
•795	0 6	3	6	7+	151.36
•786	7 4	8	4	4	156•58

	Calculated	Pattern	(Inte	egrated)
d(A)	I		hkl	2Θ(°) λ = 1.540598
5.450		1		0 16.25
3.853		2		0 23.06 1 28.34
2.725		2		1 28.34 0 32.84
2.437	•	3		0 36.85
2.437	_	0		3 36.85
2.225		2		2 40.51 3 43.92
1.927		4		3 43.92 0 47.13
1.816		3		0 50.17
1.816		4		1 50.17
1.723		4		0 53.09
1.723		0		4 53.09
1.643		3 4		2 55.91 2 58.63
1.511	6 25	4	3	1 61.27
1.511		5		0 61.27
1.511		0		5 61.27
1.362		1 4		4 61.27 0 68.85
1.321	9 2	5	3	0 71.29
1 • 32 1		4		3 71.29
1.321		0		5 71.29
1.284		4 6		73.69 78.40
1.218		0	2	6 78.40
1.189		1		80.73
1.162		6		2 83.04
1 • 136 1 • 136		6 1		1 85•35 5 85•35
1.112		4 5		87.64
1.090		0		3 89.93 7 89.93
1.090		3		89.93
1.068		6		92•22
1.068		0		92.22
1.048	_	6		3 94.51
1.030		1		7 94.51 2 96.81
1.030		2		96.81
1.012		7		99•12
1.012		0	3 7	
• 978		2		7 103.80
•963		8	0 (106•16 7 108•56
•934		8	2 (111.00
•934		0		111.00
•934		6		111.00
•921		3 6		5 113.47 0 115.99

	Calculated	Pattern	(In	tegr	ated)
d(Å)	I		hkl		2Θ(°) 。 λ = 1.540598A
•908	4 5	8	2	2	115•99
•896	0 1	0	5	7	118.56
•896		7	5	0	118.56
•896	0 2	1	3	8	118.56
•896	0 11	7	4	3	118.56
•896	0 1	3	4	7	118.56
.884	1 5	6	6	2	121.21
. 86 1	8 2	8	4	0	126.73
. 851	2 2	0	1	9	129.64
•841	0 8	8	4	2	132.68
.841	0 8	2	4	8	132.68
.831	2 1	7	6	1	135.88
.831	2 1	1	2	9	135.88
.821	7 3	6	6	4	139.27
•812	5 1	7	5	4	142.92
.812	5 2	4	5	7	142.92
.795	0 2	9	3	2	151.36
.795	0 16	3	6	7	151.36
•786	7 12	8	4	4	156.58

Structure Hexagonal, P62m (189), Z = 3, cobalt-rich end member, isostructural with Fe2P, from powder data [Ellinger, 1961].

Atom positions

The positions were assigned by comparisons of cell edge and atomic radii ratios; the positions for Ni₆Si₂P [Rundqvist and Jellinek, 1959] were preferred to those for Fe2P, for this cobaltrich end member.

2(c) 2 cobalt 3(f)3 pluto ium 3 plutonium 1(b) 1 cobalt 3 (g)

Lattice constants [Ellinger, 1961]

a = 7.763 A

c = 3.648

Volume . 190.4 A³

Density

(calculated) 14.21 g/cm³

Thermal parameters

Isotropic: plutonium, B = 0.4

cobalt, B = 0.52, the value for nickel, used by Rundqvist and Jellinek [1959].

Scattering factors Co⁰, Pu⁰ [International Tables, 1962], corrected for anomalous dispersion [Dauben and Templeton, 1955].

Scale factor (integrated intensities) $\gamma = 0.707 \times 10^{-3}$

References

Dauben, C. H. and Templeton, D. H. (1955). Acta Crystallogr. 8, 241.

Ellinger, F. H. (1961). The Metal Plutonium. World Metallurgical Congress, 1957 (Univ. of Chicago Press, Chicago) p. 288.

<u>International</u> <u>Tables</u> <u>for</u> <u>X-ray Crystallography</u>, <u>III</u> (1962). (The Kynoch Press, Birmingham, England) pp. 204, 212.

Rundqvist, S. and Jellinek, F. (1959). Acta Chem. Scand. 13, 425.

	Calculated	Pattern	(Pe	ak	heights)
d(A)	I		hkl		2⊖(°) 。
					$\lambda = 1.540598A$
-					
6.72	7	1	0	0	13.16
3.880		1	1	0	22.90
3.361 3.207	1 9	2	0	0	26.50
2.657	100	1	0	1	27.80
2000,	100	•	1		33.70
2.541	60	2	1	0	35.30
2.472		2	0	1	36.32
2.240	20	3	0	0	40.22
2.085	15	2	1	1	43.36
1.940	3	2	2	0	46.78
1.910	1	3	0	1	47 • 58
1.865	6	3	1	0	48.80
1.824	12	0	0	2	49.96
1.713	2	2	2	1	53.44
1.681	3	4	0	0	54.56
1.660	15	3	1	1	55.28
1.651	3	1	1	2	55.62
1.542	4	3	2	0	59.92
1.526	8	4	0	1	60.62
1.482	17	2	1	2	62.64
1.467	2	4	1	0	63.34
1.420	16	3	2	1	65.68
1.415	10	3	0	2	65.98
1.361	5	4	1	1	68.94
1.345	4	5	0	0	69.90
1.329	2	2	2	2	70.84
1.304	3	3	1	2	72.42
1.294	2	3	3	0	73.08
1.271	4	4	2	0	74.64
1.262	2	5	0	1	75.26
1.236	2	4	0	2	77.10
1.219	1	3	3	1	78.36
1.207	2	5	1	0	79.28
1.200	4	4	2	1	79.88
1•178	3	3	2	2	81.70
1.160	5	1	1	3	83.18
1.146	2	5	1	1	84.44
1 • 1 4 3	4	2	0	3+	84.70
1.097	1	2	1	3	89.22
1.082	4	5	0	2	90.76
1.076	1	5	2	0	91 • 38
1.058	1	4	3	1	93.48
1.055	3	3	3	2	93.76
1.042	4	4	2	2	95.28
1.032	3	5	2	1	96.50
1.025	1	6	1	0	97.42
1.018	3	3		3	98.28
1.007	3	5	1	2	99.82
•987	8	6		1	102.60
•985	5	4	0	3	102.96

	Calculated	Pattern	(Pe	ak h	neights)
d(Å)	I		hkl		2Θ(°) λ = 1.540598A
.970	1	4	4	0	105.08
.960	2	5	3	0	106.66
•955	5	3	2	3	107.54
• 945	1	4	3	2	109.16
•938	4	4	4	1	110.46
•936	2	4	1	3	110.74
•929	1	5	3	1	112.08
•927	2	5	2	2	112.38
•912	1	0	0	4	115.26
• 903	1	6	2	1	117.04
.902	1	5	0	3	117.32
. 894		6	1	2	119.06
•891	1	7	1	0	119.76

d(A) I hkl 20 (°) α λ = 1.540598A 6.72 6 1 0 0 13.16 3.882 15 1 1 0 22.89 3.361 1 2 0 0 26.49 3.206 9 1 0 1 27.80 2.658 100 1 1 33.69 2.541 60 2 1 0 35.29 2.472 40 2 0 1 36.31 2.241 25 3 0 0 40.21 2.085 16 2 1 1 43.36 1.941 3 2 2 0 46.77 1.909 1 3 0 1 47.58 1.865 7 3 1 0 48.80 1.824 14 0 2 49.96 1.713 3 2 2 1 53.43 1.661 3 1 1 55.28 1.651 3 1 1 55.28 1.651 3 1 1 55.28 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 0 69.90 1.329 2 2 2 70.84 1.304		Calculated	Pattern	(In	ıtegr	ated)
3.882		I		hk	ι	' ' '
3.882	6.72	6	1	0	0	13.16
3.361	3.882	15	1			
3.206 9 1 0 1 27.80 2.658 100 1 1 1 33.69 2.541 60 2 1 0 35.29 2.472 40 2 0 1 36.31 2.241 25 3 0 0 40.21 2.085 16 2 1 1 43.36 1.941 3 0 1 47.58 1.865 7 3 1 0 48.80 1.824 14 0 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 0 54.56 1.660 17 3 1 1 55.63 1.527 10 4 0 1 60.61 1.482 2 2 2 <td< td=""><td>3.361</td><td>1</td><td>2</td><td>0</td><td>0</td><td></td></td<>	3.361	1	2	0	0	
2.658 100 1 1 1 33.69 2.541 60 2 1 0 35.29 2.472 40 2 0 1 36.31 2.241 25 3 0 0 40.21 2.085 16 2 1 1 43.36 1.941 3 2 2 0 46.77 1.909 1 3 0 1 47.58 1.865 7 3 1 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 0 54.56 1.660 17 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482	3.206	9	1	0		·
2.472 40 2 0 1 36.31 2.241 25 3 0 0 40.21 2.085 16 2 1 1 43.36 1.941 3 2 2 0 46.77 1.909 1 3 0 1 47.58 1.865 7 3 1 0 48.80 1.824 14 0 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 54.56 1.660 17 3 1 1 55.28 1.651 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64	2.658	100	1	1	1	
2.241		_	2	1	0	35.29
2.085			2	0	1	36.31
1.941 3 2 2 0 46.77 1.909 1 3 0 1 47.58 1.865 7 3 1 0 48.80 1.824 14 0 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 0 54.56 1.660 17 3 1 1 55.28 1.651 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.329 2 2 2 2 </td <td></td> <td>25</td> <td>3</td> <td>0</td> <td>0</td> <td>40.21</td>		25	3	0	0	40.21
1.909					1	43.36
1.865 7 3 1 0 48.80 1.824 14 0 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 0 54.56 1.660 17 3 1 1 55.28 1.651 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64	1.941	3	2	2	0	46,77
1.824 14 0 0 2 49.96 1.713 3 2 2 1 53.43 1.681 3 4 0 0 54.56 1.681 3 4 0 0 54.56 1.660 17 3 1 1 55.28 1.651 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.3245 5 0 0 69.90 1.329 2 2 2 2 2 70.84 1.304 4 3 1 2<			3	0	1	47.58
1.713 3 2 2 1 53.43 1.681 3 4 0 0 54.56 1.681 3 4 0 0 54.56 1.660 17 3 1 1 55.28 1.651 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 0 73.08	_			1	0	48.80
1.681 3 4 0 0 54.56 1.660 17 3 1 1 55.28 1.651 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64					2	49.96
1.660 17 3 1 1 55.28 1.651 3 1 1 2 55.63 1.542 5 3 2 0 59.92 1.527 10 4 0 1 60.61 1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64					1	53.43
1.651	1.681	3	4	0	0	54.56
1.542	_	17	3	1	1	55•28
1.527			1	1	2	55.63
1.482 20 2 1 2 62.64 1.467 1 4 1 0 63.34 1.421 19 3 2 1 65.67 1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64				2	0	59.92
1.467				0	1	60.61
1.421	1.482	20	2	1	2	62.64
1.415 9 3 0 2 65.98 1.361 6 4 1 1 68.93 1.345 5 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64						
1.361 6 4 1 1 68.93 1.345 5 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64						
1.345 5 5 0 0 69.90 1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64	_				2	
1.329 2 2 2 2 70.84 1.304 4 3 1 2 72.42 1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64						
1.304	1.345	5	5	0	0	69.90
1.294 2 3 3 0 73.08 1.271 5 4 2 0 74.64				2		70.84
1.271 5 4 2 0 74.64						
1.202 2 5 0 1 75.26						
	1.262	2	5	0	1	75.26

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		$\lambda = 1.540598A$
1 076					
1.236		4	0	2	77.10
1.219		3	3	1	78.35
1.207		5	1	0	79 28
1.200		4	2	1	79.88
1.178	3 4	3	2	2	81.70
1.160		1	1	3	83.18
1.146	2	5	1	1	84.44
1.143	3	2	0	3	84.70
1.143	3 1	4	1	2	84.73
1.105	1	4	3	0	88.37
1.097	, 2	2	1	3	89.22
1.082	2 5	5	0	2	90.75
1.077	2	5	2	0	91.37
1.058		4	3	1	93.48
1.055		3	3	2	93.76
1.043	5 5	4	2	2	95.27
1.033		5	2	1	96.50
1.025		6	1	ō	97.41
1.019		3	1	3	98.27
1.019		5	1	2	99.82
1.007	•	5	•	_	99602
• 987	10	6	1	1	102.60
•985	3	4	0	3	102.87
•970	1	4	4	0	105.09
•960	2	5	3	0	106.65
• 955	6	3	2	3	107.54
.945	1	4	3	2	109•16
• 938		4	4	1	110.45
•936		4	1	3	110.73
•929		5	3	1	112.07
• 927		5	2	2	112.38
•912	2	0	_		
•903		0	0	4	115.26
•902		6	2	1	117.03
894	1	5	0	3	117.32
.890	1	6	1	2	119.06
• 090	•	7	1	0	119.77

Structure Tetragonal, I4/mcm (140), Z = 4, isostructural with MnU $_6$, from powder data [Ellinger, 1961]. Atom positions The positions and distributions of MnU_6 were used [Baenziger et al., 1950]

Lattice constants [Poole et al., 1961, Table 6.1] a = 10.476 A c = 5.340 (published values: a = 10.475, c = 5.340 A)
Volume 586.1 Å ³
Density (calculated) 17.12 g/cm ³
Thermal parameters Isotropic: cobalt, B = 1.0; plutonium, B = 0.75
Scattering factors Co ⁰ , Pu ⁰ [International Tables, 1962]
Scale factors (integrated intensities) $\gamma = 2.67 \times 10^{-3}$
References Baenziger, N. C., Rundle, R. E., Snow, A. I., and Wilson, A. S. (1950). Acta Crystallogr. 3, 34. Ellinger, F. H. (1961). The Metal Plutonium. World Metallurgical Conference, 1957, (Univ. of Chicago Press, Chicago) p. 288 International Tables for X-ray Crystallography III (1962). (The Kynoch Press, Birmingham, England). pp. 204, 212. Poole, D.M., Bale, M. G., Mardon, P. G., Marples, J. A. C., and Nichols, J. C. (1961). Plutonium 1960. International Conference on Plutonium Metallurgy, (2nd). Cleaver Hume Press, London). p. 276.

Cal	lculated Pattern	(Pea	k hei	ghts)
d(A)	I	hkl		20 (°)
d(A)	1	nex	,	
			λ	= 1.540598A
7.41	4	1 1	0	11.94
3.70	1	2 2	0	24.02
3.52	2	2 1	1	25.28
3.31	2	3 1	0	26.90
2.670	3 0	0 0	2	33.54
2.618	5	4 0	0	34.22
2.552	100	3 2	1	35.14
2.512	4	1 1	2	35.72
2.469	2	3 3	0	36.36
2.378	1	2 0	2	37.80
2.342	6	4 2	0	38.40
2.294		4 1	1	39.24
2.166		2 2	2	41.66
2.079		3 1	2	43.50
2.055	12	5 1	0	44.04
1.951	2	4 3	1	46.52
1.870	5	4 0	2	48.66
1.761	2	4 2	2	51.88
1.746	5	6 0	0	52.36
1.639	6	6 1	1	56.06
1.039	Ü	•	•	30.00
1.628	7	5 1	2	56 • 48
1.518	17	3 2	3	61.00
1.481	6	5 5	0	62.66
1.461	7	6 0	2	63.62
1.458	5	4 1	3	63.80
1.389	4	7 2	1	67.34
1.335	3	0 0	4	70.48
1.295	9	5 5	2	72.98
1.238	2	6 1	3	76.98
1.235		6 6	0	77.20
1.195	1 1	8 3	1	80.28
	1	8 3	4	83.24
1.160 1.119	4	5 1	4+	86.98
		7 6		87.76
1.111	1		1+	
1.061	2	6 0	*	93.16
1.048	2 1	0 0	0	94.66
1.021	1	9 3	2	98.02
1.010	7	8 3	3	99.44
1.002	4	3 2	5	100.42
• 99 2	3	5 5	4	101.92
• 975	3 1	0 0	2	104.34
969	3	8 7	1	105.28
• 958	1	7 6		107.08
• 700	•			
				· · · · · · · · · · · · · · · · · · ·

Cobalt plutonium, $CoPu_6$ - (continued)

	Calculated	Pattern	(Int	tegr	ated)
d(A)	I		hkl		20 (°) λ = 1.540598A
7.41	3	1	1	0	11.94
3.70	1	2	2	0	24.01
3.52	2	2	1	1	25 • 27
3.31	2	3	1	0	26.89
2.670	25	0	0	2	33.54
2.61	9 4	4	0	0	34.21
2.55	2 100	3	2	1	35.13
2.51	2 2	1	1	2	35.72
2.46		3	3	0	36.35
2.379	9 1	2	0	2	37.79
2.34		4	2	0	38.40
2. 29		4	1	1	39.24
2.160	5 2	2	2	2	41.67
2.07	9 4	3	1	2	43.50
2.05	5 13	5	1	0	44.04
1.95	2	4	3	1	46.52
1.87	5	4	0	2	48.66
1.76	. 2	4	2	2	51.88
1.74	5 6	6	0	0	52.36
1.63	9 6	6	1	1	56.06
1.62	3 8	5	1	2	56.47
1.52	2 1	4	4	2	60.82
1.51	19	3	2	3	61.00
1 . 48	2 7	5	5	0	62.66
1 • 46	1 8	6	0	2	63.62
1.45	3 1	4	1	3	63•79
1.389	5	7	2	1	67.34
1.339	5 3	0	0	4	70.48
1 • 29	10	5	5	2	72.97
1. 23	3 2	6	1	3	76.98
1 • 23	5 1	6	6	0	77.21
1.19		8	3	1	80.27
1.16		4	2	4	83 • 23
1.12		6	6	2	86.85
1.11	9 3	5	1	4	86.96
1.11	9 2	7	2	3	87.00
1.06		6	0	4	93.16
1.04		10	0	0	94.66
1.02	1	9	3	2	98.03
1.01	8	8	3	3	99.43
1.00	2 5	3	2	5	100.43
•99		5	5	4	101.92
. 97		10	0	2	104.35
• 96		8	7	1	105.28

Cubic, Fd3m (227), Z=8, isostructural with Cu_2Mg , from powder data [Ellinger, 1961]. Their sample was described as plutonium-rich.

Atom positions

8(a) 8 plutonium

16(d) 16 cobalt

The origin was taken at $\overline{43}$ m.

Lattice constant

a = 7.081 A [Ellinger, 1961].

Volume . 355.1 Å³

Density

(calculated) 13.462 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors

Co⁰ [Cromer and Mann, 1968]

Pu⁰ [International Tables, 1974]

Scale factor (integrated intensities) $\gamma = 1.370 \times 10^{-3}$

References

Cromer, D.T. and Mann, J.B. (1968). Acta Crystal-

logr. A24, 321.

Ellinger, F. H. (1961). In <u>The Metal Plutonium</u>, (Univ. of Chicago Press, Chicago). World Metallurgical Conference, 1957 (edited by Coffinberry, A. S. and Miner, W. N.) p. 288.

International Tables for X-ray Crystallography,

IV (1974). (The Kynoch Press, Birmingham, Eng.)
p. 101.

	Calculated	Pattern	(Pe	ak he	eights)
d (A)	I		hkl		2Θ(°) λ = 1.540598A
4.08	45	1	1	1	21.74
2.504	90	2.	2	0	35.84
2.135	100	3	1	1	42.30
2.044	10	2	2	2	44.28
1.771	5	4	0	0	51.58
1.624	10	3	3	1	56.62
1.446	25	4	2	2	64.40
1.363	25	5	1	1+	68.84
1.252	15	4	4	0	75.96
1.197	5	5	3	1	80.12
1.120		6	2	0	86.94
1.080		5	3	3	91.02
1.067		6	2	2	92.38
1.022	_	4	4	4	97.82
•991	5	7	1	1+	101.96
•946	- -	6	4	2	109.00
•922	_ :	7	3	1+	113.36
•885		8	0	0	120.98
•865		7	3	3	125.86
•834	. 5	8	2	2+	134.76

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.504 85 2 2 0 35.84 2.135 100 3 1 1 42.30 2.044 10 2 2 2 44.28 1.770 5 4 0 0 51.59 1.624 10 3 3 1 56.61 1.445 30 4 2 2 64.41 1.363 20 5 1 1 68.84 1.363 5 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
2.504 85 2 2 0 35.84 2.135 100 3 1 1 42.30 2.044 10 2 2 2 44.28 1.770 5 4 0 0 51.59 1.624 10 3 3 1 56.61 1.445 30 4 2 2 64.41 1.363 20 5 1 1 68.84 1.363 5 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
2.135 100 3 1 1 42.30 2.044 10 2 2 2 44.28 1.770 5 4 0 0 51.59 1.624 10 3 3 1 56.61 1.445 30 4 2 2 64.41 1.363 20 5 1 1 68.84 1.363 5 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
2.044 10 2 2 2 2 44.28 1.770 5 4 0 0 51.59 1.624 10 3 3 1 56.61 1.445 30 4 2 2 64.41 1.363 20 5 1 1 68.84 1.363 5 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.770 5 4 0 0 51.59 1.624 10 3 3 1 56.61 1.445 30 4 2 2 64.41 1.363 20 5 1 1 68.84 1.363 5 3 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.624 10 3 3 1 56.61 1.445 30 4 2 2 64.41 1.363 20 5 1 1 68.84 1.363 5 3 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.445 30 4 2 2 64.41 1.363 20 5 1 1 68.84 1.363 5 3 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.363 20 5 1 1 68.84 1.363 5 3 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.363 5 3 3 3 68.84 1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.252 20 4 4 0 75.96 1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.197 5 5 3 1 80.12 1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.120 10 6 2 0 86.95 1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.080 10 5 3 3 91.02 1.068 1 6 2 2 92.37
1.068 1 6 2 2 92.37
1.022 1 4 4 4 97.82
000
•992 1 7 1 1 101.95
•992 1 5 5 1 101•95 •946 15 6 4 2 108•99
•946 15 6 4 2 108•99 •922 15 7 3 1 113•35
•922 5 5 5 3 113•35
3 3 3 113.33
•885 5 8 0 0 120•98
.865 1 7 3 3 125.86
•835 10 8 2 2 134 • 76
•835 5 6 6 0 134•76
•818 15 7 5 1 140·81

Structure Hexagonal, $R\overline{3}m$ (166), Z = 9, isostructural with Ni₃Pu, from powder data [Poole et al., 1961].

Atom positions

The positions assumed were those refined for Ni_3Pu [Cromer and Olsen, 1959].

Lattice constants [Poole et al., 1961]
a = 5.003 A
c = 24.42

Volume 529.3 Å³

Density (calculated) 11.82 g/cm³

Thermal parameters

Isotropic values were used from Cromer and Olsen [1959], with their data for nickel applied to the cobalt atoms here.

Scattering factors
Co⁰, Pu⁰ [International Tables, 1962], corrected
for anomalous dispersion [Cromer and Olsen,
1959].

Scale factor (integrated intensities) $\gamma = 0.369 \times 10^{-3}$

References

Cromer, D. T. and Olsen, C. E. (1959). Acta Crystallogr. 12, 689.

International Tables for X-ray Crystallography,
III, (The Kynoch Press, Birmingham, England),
pp. 202,204.

Poole, D. M., Bale, M. G., Marden, P. G., Marples, J. A. C., and Nichols, J. L. (1961). In <u>Plutonium</u>, 1960 (Cleaver Hume Press, London). International Conference on Plutonium Metallurgy, (2nd). Edited by Grison, E., Lord, W. B. H., and Fowler, R. D., p. 267.

	Calculated	Pattern	(Pe	ak h	eights)
d (Å)	I		hkl	,	20(°) ° λ = 1.540598A
8.14	8	0	0	3	10.86
4.26	35	1	0	1	20.82
4.07	1 4	0	0	6	21.82
3.531	5	1	0	4	25.20
3.241	2	0	1	5	27.50
2.717	65	1	0	7	32.94
2.501	80	1	1	0	35.88
2.495	85	0	1	8	35.96
2.391	2	1	1	3	37.58
2.157	35	0	2	1	41.84
2.131	100	1	1	6	42.38
2.041	10	0	2	4	44.34
2.035	13	0	0	12	44.48
1.975	14	0	1	11+	45.90
1.839	6	1	1	9+	49.52
1.767	4	2	0	8	51.70
1.723	2	1	0	13	53.10
1 • 63 4	4	2	1	1	56.26
1.628	5	0	0	15	56.48
1.618	10	0	ŀ	14	56.86
1.581	1	2	1	4	58.30
1.578	2	1	1	12	58.42
1.482	15	2	1	7	62.62
1.444	17	1	2	8+	64.50
1.419	7	0	2	13	65.74
1.364	12	1	1	15	68.74
1.361	25	3	0	6+	68.94
1.359	18	2	0	14	69.08
1.318	4	1	2	11	71.54
1.2749	9 1	0	3	9+	74.34
1.250		2	2	0	76.04
1 • 234		2	1	13	77.22
1.200		1	3	1	79.86
1.197		2	0	17	80.10
1.193	9 8	1	2	14	80.36
1.175	3 2	0	1	20	81.90
1.163		ō	0	21	82.96
1.136		1	3	7	85.38
1.118	2 4	3	1	8	87.08
1.115	3	2	1	16	87.36
1.105	3 1	0	2	19	88.36
1.0820		4	0	1	90.78
1.0804		3	0	15+	90.96
1.075		1	0	22	91.50
1.0656		2	2	12	92.58
1.0569	9 2	3	1	1 1	93.58
1.0549		1	1	21	93.86
1.0208		0	4	8	97.98

	Calculated	Pattern	(In	tegr	ated)
d (A)	I		hk		2Θ(°) λ = 1.5405982
				•	
8.14	7	0	0	3	10.86
4.27	30 2	1	0	1 2	20 • 8 1 21 • 7 5
4.07	12	ō	ō	6	21.82
3.533	4	1	0	4	25.18
3.241	2	0	1	5	27.50
2.717	65	1	0	7	32.94
2.713	3 70	0	0	9	32.99 35.87
2.502	45	1 0	1	8	35.96
2.391	2	i	1	3	37.59
2.158	40	ō	2	1	41.83
2.133	8	2	0	2	42.34
2.131	100	1	1	6	42.38
2.127	4	1	0	10	42.46
2.042	9	0	2	4	44.33
2.035	10	0	0	12	44.48
1.980	8 11	2	0	5 11	45.78 45.89
1.840	2	ő	2	7	49.49
1.839	5	1	1	9	49.52
1.767	4	2	0	8	51.70
1.723	2	1	0	13	53.10
1.634	4	2	0	1 15	56.25 56.48
1.618	11	0	1	14	56.86
1.582	1	2	1	4	58 • 29
1.579	1	1	1	12	58.41
1.482	18	2	1	7	62.61
1.444	11	3	0	0	64.47
1.443	14	1	2	8	64.52
1.440	1 8	1	0	16	64•70 65•74
1.364	12	0	2	13 15	68.74
1.361	10	ō	3	6	68.94
1.361	10	3	0	6	68.94
1.360	1	2	1	10	68.99
1.359	12	2	0	14	69.08
1.318	5 17	1 2	2	11	71 • 54 76 • 03
1.2344	1	2	1	13	77.22
1.2002		1	1 3	1	79.85
1.1972	: З	2	0	17	80.09
1.1956		2	2	6	80.23
1.1939	7	1	2	14	80.36
1.1752		0	1	20	81.91
1.1629		0	3	21	82•97 85•37
1.1359		2	2	9	85.40
1.1182		3	1	8	87.09

1						
	Ca	alculated	Pattern	(Ir	teg:	rated)
	d (A)	I		hk	l	20 (°) . λ = 1.540598A
						•
	1.1165	1	2	1	16	87.25
	1.1054	1	0	2	19	88.35
	1.0821	3	4	0	1	90.77
	1.0804	3	3	0	15	90.96
	1.0804	3	0	3	15	90.96
	1.0753	2	1	0	22	91.51
į	1.0665	1	4	0	4	92.48
	1.0656	5	2	2	12	92.59
	1.0568	2	3	1	11	93.59
	1.0545	8	1	1	21	93.86
	1.0208	1	0	4	8	97.98
	1.0123	1	1	3	13	99.10

Structure	Cal	lculated Pa	ttern	(Pe	ak he	ights)
Hexagonal, $P6_3/mmc$ (194), $Z = 2$, isostructural with $Ni_{17}Th_{2}$, from powder data [Ellinger, 1961]. Bouchet et al. [1966] determined positions for $Co_{17}Ho_{2}$, a similar isostructural compound.	d (A)	I		hkl		2Θ(°) 。 λ = 1.540598A
Atom positions	7.202	1	1	0	0	12.28
From considerations of atomic size, the positions	5.381	16	1	0	1	16.46
for Co ₁₇ Ho ₂ were used.	4.160	19		1	0	21.34
6(g) 6 cobalt(1)	4.052	8	0	0	2	21.92
12(j) 12 cobalt(2)	3.604	2	2	0	0	24.68
12(k) 12 cobalt(3)						
4(f) 4 cobalt(4)	3.531	6	1	0	2	25.20
2(b) 2 plutonium(l)	3.293	12	2	0	1	27.06
2(d) 2 plutonium(2)	2.903	60		1	2	30.78
	2.725	2	2	1	0	32.84
Lattice constants a = 8.325 A	2.693	7	2	0	2	33.24
c = 8.104 [Ellinger, 1961]	2.583	13	2	1	1	34.70
C = 8.104 [EIIInger, 1901]	2.529	11	1	0	3	35.46
Volume •	2.403	45	3		0	37.40
486.4 Å ³	2.261	6	2	1	2	39.84
400.4 A	2.161	25	2	0	3	41.76
Density (calculated) 10.145 g/cm ³	2.081	55	2	2	0	43.44
(carculated) 10.145 g/cm	2.067	100	3		2	43.76
Thermal parameters	2.026	25	0	ō	4	44.70
Isotropic: cobalt B = 0.6; plutonium B = 0.5.	1.951	2	1	0	4	46.52
isotropic. Cobart B = 0.0, pratoniam B = 0.5.	1.942	1	3	1	1	46.74
Scattering factors	1.919	14	2	1	3	47.34
Co ⁰ [International Tables, 1962]	1.851	4	2		2	49.18
Pu ⁰ [International Tables, 1974]	1.793	1	3	1	2	50.88
	1.766	3	2	ō	4	51.72
Scale factor (integrated intensities) $\gamma = 0.399 \times 10^{-3}$	1.626	4	2	1	4	56.56
Pa Carray na	1.621	7	3	2	1	56.76
References	1.607	3	3	1	3	57.28
Bouchet, G., Laforest, J., Lemaire, R., and Schweizer, J. (1966). C. R. Acad. Sci. Ser. B,	1.581	3	1	ō	5	58.30
262, 1227.	1.573	4	4	1	0	58.64
Ellinger, F. H. (1961). In The Metal Plutonium	1.549	10	3	0	4	59.64
(Univ. of Chicago Press, Chicago). World Metal- lurgical Conference, 1957 (edited by Coffinberry,	1.531	3	3	2	2	60.40
A. S. and Miner, W. N.) p. 288.	1.499	2	4	0	3	61.84
International Tables for X-ray Crystallography,	1.478	1	2		5	62.82
III (1962). (The Kynoch Press, Birmingham, Eng.)	1.467	15	4		2	63.36
p. 204.	1.452	15	2	2	4	64.10
International Tables for X-ray Crystallography, IV (1974). (The Kynoch Press, Birmingham, Eng.)	1.423	1	3	1	4	65.54
p. 101.	1.420	2	5		1	65.72
p. 101.	1.411	7	3		3	66.20
	1.393	5	2	1	5	67.14
	1.388	6	3	3	0	67.44
	1.359	1	5	0	2	69.08
	1.351	1	0	0	6	69.54
	1.344	1	4	2	1	69.96
	1.313	15 1	3	3	2	71.86 73.24
	1 • 285	6	1	1	6	73.68
	1.281	5	3		4	73.90
	1.278	3	5 5	0	1 3	74.10 74.54
	1.272 1.259	3 1	3	1	5	75.44
	1.239	1	3	•	J	, 5 • • •

	Calculated	Pattern	(Pea	ak h	eights)
d(A)	I		hkl		20 (°) .
					$\lambda = 1.540598A$
1.233	1	5	1	2	77.30
1.216		4	2	3	78.58
1.202		6	0	0	79.74
1 • 177		3	0	6	81.72
1.168	3	5	1	3	82.56
1.158		3	2	5	83.42
1.155		5	2	0	83.70
1 - 145		3	3	4	84.58
1.131		4	2	4	85.90
1.110	6	5	2	2	87.86
1.102		2	0	7	88.66
1.091		5	1	4	89.82
1.077		5	0	5	91.30
1.041		4	4	0	95.50
1.033	3 10	6	0	4	96.38
1.025		4	1	6	97.46
1.018		6	1	3	98.28
1.013		0	0	8	99.00
1.012		5	1	5	99.18
•992	1	6	2	1	101.84
• 984		1	1	8	103.00
•971		6	2	2	105.04
• 968		3	3	6	105.48
•962		5	3	3	106.34
• 955	1	7	1	0	107.54
•938	4	6	2	3	110.48
• 933		3	0	8	111.22
•.929		7	1	2	111.94
.926		4	4	4	112.64
•918	1	5	3	4	114.08
•917	1	5	4	1	114.24
•911	5	2	2	8	115.50
•908	4	6	3	0	115.98
• 898		6	0	6	118.20
•897	1	6	2	4	118.44
. 894	1	1	0	9	119.10
•886	8	6	3	2	120.70
• 882		4	2	7	121.64
.878		5	2	6	122.74
•873	2	5	4	3	123.74
• 86 9	2	5	3	5	124.78

	Calculated	Pattern	(Int	egrat	ed)
d (A)	I		hkl	λ	20(°) . = 1.540598A
7.210 5.387 4.163 4.052 3.605	13 17 7	1 1 1 0 2	0 0 1 0	0 1 0 2	12.27 16.44 21.33 21.92 24.68
3.532 3.294 2.903 2.725 2.693	11 60	1 2 1 2 2	0 0 1 1 0	2 1 2 0 2	25.19 27.05 30.77 32.84 33.24
2.583 2.530 2.403 2.261 2.162	11 45 6	2 1 3 2 2	1 0 0 1	1 3 0 2 3	34.70 35.46 37.39 39.83 41.75
2.081 2.067 2.026 1.950 1.941	55 100 25 2 1	2 3 0 1 3	2 0 0 0	0 2 4 4	43.45 43.76 44.69 46.52 46.75
1.918 1.851 1.793 1.766 1.654	15 5 1 3 1	2 2 3 2 3	1 2 1 0 2	3 2 2 4 0	47.35 49.17 50.88 51.72 55.51
1.626 1.621 1.607 1.581 1.573	3 6 3 3 4	2 3 3 1 4	1 2 1 0 1	4 1 3 5 0	56.56 56.76 57.28 58.30 58.63
1.549 1.531 1.499 1.478 1.467	11 3 2 1 17	3 4 2 4	0 2 0 0	4 2 3 5 2	59.64 60.40 61.83 62.81 63.37
1.452 1.423 1.420 1.411 1.393	17 1 2 8 5	2 3 5 3 2	2 1 0 2 1	4 4 1 3 5	64.09 65.54 65.72 66.20 67.14
1.388 1.358 1.351 1.344 1.313	6 1 1 1 17	3 5 0 4 3	3 0 0 2 3	0 2 6 1 2	67.44 69.09 69.54 69.96 71.86
1.291 1.285 1.281 1.279 1.272	1 6 2 3 3	4 1 3 5 5	2 1 2 1 0	2 6 4 1 3	73.23 73.68 73.91 74.09 74.54

Cobalt plutonium, $Co_{17}Pu_2$ - (Continued)

	Calculated	Pattern	(Int	egr	rated)
d(A)	I		hkl		2Θ(°) . λ = 1.540598A
1.259	2	3	1	5	75.44
1.233	1	5	1	2	77.29
1.217	5	4	2	3	78.57
1.202		6	0	0	79.74
1.177	16	3	0	6	81.72
1.175	1	5	0	4	81.95
1.168	4	5	1	3	82.55
1.158	4	3	2	5	83.43
1.154	2	5	2	0	83.71
1.145	3	3	3	4	84.58
1.131	1	4	2	4	85.89
1.110	7	5	2	2	87.86
1.102	2	2	0	7	88.67
1.091	1	5	1	4	89.82
1.077	2	5	0	5	91.29
1.041	6	4	4	0	95.50
1.034			0	4	96.37
1.034		6	1	6	97.47
1.025			_		
1.022		5 6	3 1	1 3	97•86 98•30
1.013	3	0	0	8	99.00
1.012	3	5	1	5	99.18
•998		5	3	2	101.01
•992	1	6	2	1	101.85
• 984	1	1	1	8	103.00
•971	1	6	2	2	105.04
•968		3	3	6	105.48
• 96 2		5	3	3	106.34
•955		7	1	0	107.54
•938	5	6	2	3	110.48
•933	5	3	0	8	111.22
•929		7	1	2	111.94
•926	7	4	4	4	112.64
•918	1	5	3	4	114.07
•917	1	5	4	1	114.25
•911	7	2	2	8	115.49
.910	1	6	1	5	115.69
•908		6	3	0	116.00
.898		6	0	6	118.19
•897	1	6	2	4	118.44
.894	1	1	0	9	119.11
886		6	3	2	120.70
.882		4	2	7	121.65
.878		5	2	6	122.75
.876		7	2	1	123.21
•874	-	_	٨	7	127 77
.869	3 3	5 5	4 3	3 5	123.73 124.78
	.5		- 1	-	

Cubic, Fd3m (227), Z = 8, isostructural with Cu₂Mg, from powder data [Harris et al., 1965].

Atom positions

8(a) 8 praseodymium

16(d) 16 cobalt

Lattice constant

a = 7.3063 A

(published value, 7.2911 kX [Harris et al., 1965]).

Volume 390.0 A³

Density

(calculated) 8.814 g/cm³

Thermal parameters

Isotropic: overall B = 1.0

Scattering factors

Co⁰ [Cromer and Mann, 1968] Pr⁰ [International Tables, 1974]

Scale factor (integrated intnesities) $\gamma = 0.575 \times 10^{-3}$

References

Cromer, D.T. and Mann, J.B. (1968). Acta Crystal-

logr. <u>A24</u>, 321.

Harris, I. R., Mansey, R. C., and Raynor, G. V. (1965). J. Less-Common Metals 9, 270.

International Tables for X-ray Crystallography, IV (1974). (The Kynoch Press, Birmingham, Eng.) p. 100.

Ca	alculated	Pattern	(Pe	ak h	eights)
d(A)	Ι		hkl		2Θ(°) ° λ = 1.540598A
4.215 2.583 2.203	10 65 100	1 2 3	1 2 1	1 0	21.06 34.70 40.94
2.109 1.676	15	2	2	2	42.84 54.72
1.4913 1.4060 1.2917	15 25 15	4 5 4	2 1 4	2 1+ 0	62 • 20 66 • 44 73 • 22
1.2350	1 5	5	3 2	1 0	77.18 83.64
1.1141 1.1015 1.0231	5 5 1	5 6 7	3 2 1	3 2 1+	87.48 88.74 97.68
•9763 •9512	5 10	6 7	3	2 1+	104.18 108.16
.9133 .8610 .8437	1 5 10	8 8 7 6	0 2 5 6	2+	115.00 126.92 131.86
•8020	1	7	5	2 3+	133.60 147.68

Cai	lculated F	attern	(Int	egr	ated)
d (A)	I		hkl		2Θ(°) λ = 1.540598A
4•218 2•583	10	1 2	1 2	1 0	21.04 34.70
2.203 2.109 1.676	100 15 1	3 2 3	1 2 3	1 2 1	40.93 42.84 54.72
1.4914	20 20	4 5	2	2	62•20 66•44
1.4061 1.2916 1.2350	5 20 1	3 4 5	3 4 3	3 0 1	66.44 73.22 77.18
1.1552	5 10	6 5	2	0	83 .64 87 . 47
1.1015 .9763 .9512	5 10 10	6 6 7	2 4 3	2 2 1	88.75 104.18 108.16
•9512 •9133	5	5 8 6	5 0 6	3 0	108.16 115.01 126.91
.8611 .8611 .8437	1 5 10	8	2 5	2	126.91 126.91 131.86
.8437 .8381 .8020	1 5 1	5 6 7 9	5 6 5	5 2 3 1	131.86 133.59 147.69
•8020	1		1		147.09

Structure Cubic, Fm3m (225), Z = 4, π phase, isostructural with Co₉S₈, from powder data [Knop, 1962].

Atom positions [Pearson, 1967]
32(f) 32 cobalt 8(c) 8 sulfur
4(b) 4 rhodium 24(e) 24 sulfur

Lattice constant a = 9.978(2) A (published value, a = 9.977(2) A, [Knop, 1962])

Volume 993.4 Å³

Density (calculated) 5.555 g/cm³

Scattering factors
Co⁰, Rh⁰, S⁰ [International tables, 1962]

Scale factors (integrated intensities) $\gamma = 0.413 \times 10^{-3}$

References

International Tables for X-ray Crystallography III
 (1962). (The Kynoch Press, Birmingham, England).
 pp. 202, 204, 210.

Knop, D. (1962). Chem. Ind. London, April 21, p. 739.

Pearson, W. B. (1967). Handbook of Lattice Spacings and Structures of Metals and Alloys, v.2, (Pergamon Press, N.Y.), pp. 204, 807.

	Calculated	Pattern	(Pea	ak h	eights)
d(A)	I		hkl		2⊖(°)
Q (11)	-		1111270		$\lambda = 1.540598A$
					/ - 1.340390A
5.757	7	1	1	1	15.38
4.985	12	2	ò	ō	17.78
3.526	12	2	2	0	25.24
3.008	100	3	1	1	29.68
2.881	10	2	2	2	31.02
2.001	10	_	~	~	31.02
2.494	3	4	0	0	35.98
2.288	5	3	3	1	39.34
2.231	7	4	2	0	40 • 40
2.037	4	4	2	2	44.44
1.920	30	5	1	1+	47.30
				_	
1.763	75	4	4	0	51.80
1.686	1	5	3	1	54.36
1.663	2	4	4	2+	55.18
1.577	2	6	2	0	58.46
1.522	9	5	3	3	60.82
1.504	2	6	2	2	61.60
1.333	4 2	6	4	2	70 •58
1.299	0 14	7	3	1+	72.74
1.247	3 9	8	0	0	76.28
1.219	0 1	7	3	3	78.38
1.210		6	4	4+	79.08
1.176	_	8	2	2+	81.84
1.152		7	5	1+	83.92
1 • 1 4 4		6	6	2	84.60
1.088	6 1	8	4	2	90.08
1.046	0 5	9	3	1	94.86
1.018		8	4	4	98.30
•978		8	6	2+	103.86
.964		9	5	1+	105.98
• 96 0		10	2	2+	106.70
• 900		10	~	2+	100.70
•926	4 1	10	4	0+	112.50
• 899	7 3	11	1	1+	117.78
.881	9 7	8	8	0	121.72
•846		9	7	3+	131.06
• 843		10	6	2	131.96
.809		10	6	4+	144.28
.801		9	7	5+	147.94
.788	•	12	4	0	155.12
•779	2 1	8	8	6+	162.70

 ${\tt Cobalt\ rhodium\ sulfide,\ Co_8} {\tt RhS_8} \hbox{-} ({\tt continued})$

	Calculated	Pattern	(Int	egr	ated)
d(A)	I		hkl		2Θ(°) ° λ = 1.540598A
5.761	6	1	1	1	15.37
4.989	11	2	0	0	17.76
3.528	11	2	2	0	25.22
3.008	100	3	1	1	29.67
2.880	10	2	2	2	31.02
2.494	3	4	0	0	35.97
2.289	5	3	3	1	39.33
2.231	7	4	2	0	40.39
2.037 1.920	4 30	4 5	2	2	44 • 44 47 • 30
1.920	8	3	3	3	47.30
1.764	85	4	4	0	51.79
1.687	1	5	3	1	54.35
1.663	i	6	0	o	55.19
1.663	2	4	4	2	55.19
1.578	2	6	2	0	58.45
1.522	11	5	3	3	60.83
1.504	2	6	2	2	61.61
1.440	2 1	4	4	4	64.67
1.397	2 1	7	1	1	66.91
1.383		6	4	0	67.66
1.333		6	4	2	70 • 58
1.299		7	3	1	72.74
1.299		5	5	3	72.74
1.247	2 11	8	0	0	76•28
1.219	0 1	7	3	3	78.38
1.210		6	4	4	79.08
1.152		7	5	1	83.91
1.152		5	5	5	83.91
1-144	6 1	6	6	2	84.60
1.088		8	4	2	90.07
1.046		9	3	1	94.86
1.018		8	4	4	98.30
•978 •964	•	8 9	6 5	1	103.87 105.99
.964	6 2	7	7	3	105•99
•926		10	4	0	112.50
•910		10	4	2	115.49
.899		11	1	1	117.78
•899		7	7	5	117.78
•881	9 11	8	8	0	121.72
.871		11	3	1	124.16
• 846		11	3	3	131.06
.846	3 5	9	7	3	131.06
•843	3 1	10	6	2	131.97
• 80 9		10	6	4	144.27
•801		11	5	3	147.94
.801		9	7	5	147.94
•788	_	12	4	0	155.11
•779		8	8	6	162.71
• 779;		12	4	2	162.71

Cobalt ruthenium sulfide, CogRuSg

Structure

Cubic, Fm3m (225), Z = 4, π phase, isostructural with Co₉S₈, from powder data [Knop, 1962].

Atom positions [Pearson, 1967].

32(f) 32 cobalt

8(c) 8 sulfur

4 ruthenium 4(b)

24(e) 24 sulfur

Lattice constapt [Knop, 1962]

a = 9.945(2)A

(published value, a = 9.944(2) A)

Volume 983.6 Å³

Density

(calculated) 5.599 g/cm³

Thermal parameters

Isotropic: cobalt, B = 0.5; ruthenium, B = 0.4; sulfur, B = 0.7

Scattering factors Co^0 , Ru^0 , S^0 [International Tables, 1962]

Scale factors (integrated intensities) $\gamma = 0.409 \times 10^{-3}$

References

International Tables for X-ray Crystallography III (1962). (The Kynoch Press, Birmingham, England) pp. 202, 204, 210.

Knop, O. (1962). Chem. Ind. London, April 21,

p. 739.

Pearson, W.B. (1967). Handbook of Lattice Spacings and Structures of Metals and Alloys, V.2, (Pergamon Press, N.Y.). pp. 204, 808.

$d(\mathring{A})$ I hkl 20(°	
$\lambda = 1.540$	
5.734 8 1 1 1 15.44	,
4.968 12 2 0 0 17.84	
3.515 11 2 2 0 25.32	
2.998 100 3 1 1 29.78	
2.870 10 2 2 2 31.14	
2.486 3 4 0 0 36.10)
2.282 5 3 3 1 39.46	5
2.223 6 4 2 0 40.54	4
2.030 4 4 2 2 44.60	
1.9141 30 5 1 1+ 47.46	5
1.7578 75 4 4 0 51.99	.
1.6812 1 5 3 1 54.54 1.6577 2 4 4 2+ 55.38	
1.5726 2 6 2 0 58.66	
1.5164 9 5 3 3 61.00	
1.4991 2 6 2 2 61.8	4
1.3291 2 6 4 2 70.84	4
1.2947 14 7 3 1+ 73.0	
1.2431 9 8 0 0 76.58	
1.2149 1 7 3 3 78.70	0
1.2059 1 6 4 4+ 79.4	0
1.1720 1 8 2 2+ 82.18	
1.1483 7 7 5 1+ 84.20	
1.1408 1 6 6 2 84.9	4
1.0850 1 8 4 2 90.4	6
1.0425 5 9 3 1 95.2	
1.0425 5 9 3 1 95.2 1.0150 19 8 4 4 98.7	
.9751 1 8 6 2+ 104.30	
.9614 6 9 5 1+ 106.5	
•9570 1 10 2 2+ 107 •20	
.9233 1 10 4 0+ 113.0	8
•8967 3 11 1 1+ 118·4	2
•8790 7 8 8 0 122•4 1	
.8435 4 9 7 3+ 131.9	
.8405 1 10 6 2 132.8	2
.8067 1 10 6 4+ 145.4	6
.7988 6 9 7 5+ 149.3	
.7862 14 12 4 0 156.9	

Cobalt ruthenium sulfide, Co_8RuS_8 - (continued)

	Calculated	Pattern	(I	nteg	rated)
d (Å)	I		hk.	l	2Θ(°) 。 λ = 1.540598A
5.742	7	1	1	1	15.42
4.973	10	2	0	0	17.82
3.516	11	2	2	0	25.31
2.999	100	3	1	1	29.77
2.871	10	2	2	2	31.13
2.486	3	4	0	0	36.10
2.282	6	3	3	1	39 • 46
2.224	7	4	2	0	40.53
2.030	4	4	2	2	44.60
1.9139	30	5	1	1	47.47
1.9139		3	3	3	47.47
1.7580		4	4	0	51.97 54.55
1.6810		5 6	3	1 0	55• 3 9
1.6575	_	4	4	2	55.39
1.5724	2	6	2	0	58.66
1.5166		5	3	3	61.05
1.4993		6	2	2	61.83
1.4354	. 1	4	4	4	64.91
1.3926	1	7	1	1.	67.17
1.3290	2	6	4	2	70.85
1.2947	11	7	3	1	73.02
1.2947	7	5	5	3	73.02
1.2431	12	8	0	0	76.58
1.2150	1	7	3	3	78.69
1.2060	1	6	4	4	79.39
1 • 1 4 83		7	5	1	84.26
1.1483		5	5	5	84 • 26
1.1408		6	6	2	84.95
1.0851	1	8	4	2	90.45
1.0425	_	9	3	1	95.27
1.0150		8	4	4	98•74 104•35
•9752 •9614		8	6 7	2	104.35
•9614		9	5	1	106.49
•9234	. 1	10	4	0	113.07
•9079		10	4	2	116.10
. 8967		11	1	1	118.42
-8967	2	7	7	5	118.42
.8790	11	8	8	0	122.40
•8689		1 1	3	1	124.88
•8435		9	7	3	131 •90
- 8435		11	3	3	131.90
.8405		10	6	2	132.83
.8066	2	10	6	4	145.47
•7988		9	7	5	149.30
•7988	· ·	11	5	3	149.30
• 7862	47	12	4	0	156.90

Cobalt tantalum silicide, Co₁₆Ta₆Si₇

Cobalt tantalum si
Structure Cubic, Fm3m (225), $Z=4$, isostructural with $Cu_{16}Mg_{6}Si_{7}$, from powder data [Spiegel et al., 1963]. Kuz'ma et al. [1964] determined positions for $Co_{16}Nb_{6}Si_{7}$, a similar isostructural compound.
Atom positions From considerations of atomic size, the positions of Co ₁₆ Nb ₆ Si ₇ were preferred. 32(f) 32 cobalt (1) 32(f) 32 cobalt (2) 4(b) 4 silicon (1) 24(d) 24 silicon (2) 24(e) 24 tantalum
Lattice constant a = 11.199 A (published value, 11.198 A [Spiegel et al., 1963]).
Volume 1/104.6 Å ³
Density (calculated) 10.523 g/cm ³
Thermal parameters Isotropic: cobalt B = 1.0; silicon B = 1.0; tantalum B = 0.8.
Scattering factors Co ⁰ , Si ⁰ , Ta ⁰ [International Tables, 1962]
Scale factor (integrated intensities) $\gamma = 0.361 \times 10^{-3}$

References

International Tables for X-ray Crystallography,

III (1962). (The Kynoch Press, Birmingham, Eng.),

pp. 202, 204, 212.

Kuz'ma, Yu. B., Gladyshevs'kii, E. I., and Byk,

D. S. (1964). J. Struct. Chem. (USSR) 5, 518.

Spiegel, F. X., Bardos, D., and Beck, P. A. (1963).

Trans. AIME 227, 575.

	Calculated	Pattern	(Peak	heights)
d(Å)	I		hkl	2Θ(°) λ = 1.540598A
6.458 5.597 3.959 3.232 2.800	8 1 40	1 2 2 2 4	2 0	1 13.70 0 15.82 0 22.44 2 27.58 0 31.94
2.569 2.504 2.286 2.155 1.980	6 35 100	3 4 4 5 4	2 2 1	1 34.90 0 35.84 2 39.38 1+ 41.88 0 45.80
1.893 1.866 1.568 1.553 1.458	25 12 4	5 6 5 6 7	0 (5 4 (1 48.02 0 48.76 1 58.84 0 59.48 1+ 63.78
1.400 1.368 1.358 1.320 1.293	9 2 20	8 7 6 8 5	3 3 4 4 2 2	0 66.78 3 68.52 4+ 69.10 2+ 71.42 5+ 73.12
1.229 1.222 1.125 1.120 1.098	9 14 2	7 8 9 10 10	4 2 3 3 0 0	3 77.60 2 78.16 3+ 86.38 0 86.92 0+ 89.08
1.083 1.078 1.040 1.010	3 3 2	7 6 10 11 9	6 6	3+ 90.72 6 91.26 0 95.60 1 99.44 1+ 103.86
•974 •960 •949 •946	2 9 1 5 2	8 10 9 10 8	6 (7 : 6 :	2+ 104.42 0 106.66 3 108.38 2 108.94 4+ 111.26
.923 .908 .899 .885	3 5 5 1 4 2	11 10 11 12 10	6 6 5 :	1+ 113.02 4+ 116.00 3+ 117.82 0 120.92 0+ 123.50
.864 .856 .854 .837	8 2 5 1 8	10 11 10 13 12	5 5 6 6 3 :	2 126.14 5+ 128.18 6 128.78 1+ 133.92 0 134.62
•825 •819		12 13		2 137.82 3+ 140.30

	Calculated	Pattern	(Int	egr	ated)
d (A)	I		hkl		2Θ (°) λ = 1.5405982
6.466	5 40	1	1	1	13.68
5.599		2	0	0	15.81
3.959		2	2	0	22.44
3.377		3	1	1	26.37
3.233	3 70	2	2	2	27.57
2.800		4	0	0	31.94
2.569		3	3	1	34.89
2 • 504 2 • 286		4	2	0	35•83 39•38
2.155		5	1	1	41.88
2•155		-	7	7	
1.980		3	3 4	3	41.88 45.80
1.893	_	5	3	1	48.02
1.866		6	0	o	48.75
1.866		4	4	2	48.75
1.616	1	4	4	4	56.92
1.568	25	5	5	1	58.84
1 • 553	_	6	4	0	59.47
1.458		7	3	1	63.79
1.458	6	5	5	3	63.79
1.400	5	8	0	0	66.77
1.368		7	3	3	68.53
1.358		6	4	4	69.11
1.320		6	6	0	71.41
1.320	25	8	2	2	71 • 41
1.293		7	5	1	73.12
1 • 29 3		5	5	5	73.12
1.229		7	5	3	77.61
1.222		8	4	2	78.16
1.194	1	6	6	4	80.37
1 - 1 4 3		8	4	4	84.74
1.126		9	3	3	86.37
1.126		7	7	1	86.37
1.126		7	5	5	86.37
1 • 1 20	3	10	0	0	86.92
1.098	_	8	6	2	89.09
1.098	•	10	2	0	89.09
1.083		7	7	3	90.71
1.083	•	9	5	1	90.71
1.078	7	6	6	6	91•26
1.040	6	10	4	0	95.60
1.010 .989	5	11	1	1	99.43
•989	-	8 9	8 7	0	102.19 103.86
•978	9	9	5	5	103.86
•974	7 12	8	8	2	104.42
•974	1.4	10	4	4	104.42
• 960	3 5	10	6	0	106.67
•949	9 2	9	7	3	108.38
•946	5 6	10	6	2	108.95

	Calculated	Pattern	(In:	tea:	rated)
0		-			·
d(A)	I		hkl		2Θ(°)
					$\lambda = 1.540598A$
					
•9332		8	8	4	111.26
•9332		12	0	0	111.26
•923		1 1	5	1	113.01
•9237		7	7	7	113.01
•920	5 1	12	2	0	113.60
•9084		12	2	2	115.99
•9084	4 8	10	6	4	115.99
.8999	5 2	1 1	5	3	117.82
•8854	4 5	12	4	0	120.93
.8745	5 2	12	4	2	123.49
.874	5 2	10	8	0	123.49
.8745	5 2	8	8	6	123.49
• 8640	0 3	10	8	2	126.13
•8564	4 15	11	5	5	128.17
•8564	4 3	1 1	7	1	128.17
.8564	4 5	9	9	3	128.17
•8539	9 7	10	6	6	128.87
•837	1 16	13	3	1	133.93
•837:	1 5	1 1	7	3	133.93
•8371	1 6	9	7	7	133•93
•8347	7 9	12	6	0	134.68
• 8256	5 4	12	6	2	137.82
•8190	8	13	3	3	140.30
.8190		9	9	5	140.30
.808		8	8	8	144.76

Cobalt titanium silicide, Co₁₆Ti₆Si₇

Structure	Cal	culated Pat
Cubic, Fm3m (225), $Z=4$, isostructural with $Cu_{16}Mg_{6}Si_{7}$, from powder data [Spiegel et al., 1963]. Kuz'ma et al. [1964] determined positions for $Co_{16}Nb_{6}Si_{7}$, a similar isostructural	d (A)	I
compound.	6.458	6
Atom positions	5.597	30
From considerations of atomic size, the posi-	3.959	3
tions for Co ₁₆ Nb ₆ Si ₇ were preferred.	3 • 234	2
32(f) 32 cobalt (1)	2.800	20
32(f) 32 cobalt (2)		
4(b) 4 silicon (1)	2.570	4
24(d) 24 silicon (2)	2.505	7
24(e) 24 titanium	2.286	20
	2.155	90
attice constant	1.980	100
<pre>a = 11.202 A (published value, 11.201 A [Spiegel et al.,</pre>	1.893	35
1963])	1.867	25
15051)	1.771	7
olume o	1.708	15
1405.7 A ³	1.689	8
nsity	1.617	3
(calculated) 6.743 g/cm ³	1.569	2
(carcarated) 0.743 g/cm	1.497	1
rmal parameters	1 • 459	2
sotropic: overall B = 1.0	1.400	4
attering factors	1.369	1
Co ⁰ , Si ⁰ , Ti ⁰ [International Tables, 1962]	1.359	1
	1.320	14
ale factor (integrated intensities)	1.293 1.230	9 11
$\gamma = 0.215 \times 10^{-3}$,
	1.222	4
ferences	1.174	6 8
ternational Tables for X-ray Crystallography,	1.143	8 17
<u>III</u> (1962). (The Kynoch Press, Birmingham, Eng.) pp. 202, 204.	1.120	3
z'ma, Yu. B., Gladyshevs'kii, E. I., and Byk,		
D. S. (1964). J. Struct. Chem. (USSR) 5, 518.	1.083	2
piegel, F. X., Bardos, D., and Beck, P. A.	1.078	5 1
(1963). Trans. AIME <u>227</u> , 575.	1.040	2
	.9901	4
	. 9901	7
	•9787	6
	9750	2 1
	•9606 •9501	2
	•9468	4
	•9335	3
	.9208	1
	•9086	1
	•8856	3

		Calculated	Pattern	(Pea	ak h	eights)
	d (A)	I		hkl		2Θ (°)
		_				$\lambda = 1.540598A$
	6.458	6				47.70
	5.597	30	1 2	1	1	13.70 15.82
	3.959	3	2	2	0	22.44
	3.234	2	2	2	2	27.56
	2.800	20	4	0	0	31.94
	2.570	4	3	3	1	34.88
	2.505	7	4	2	0	35.82
	2.286	20	4	2	2	39.38
	2.155	90	5	1	1+	41.88
	1.980	100	4	4	0	45.78
	1.893	35	5	3	1	48.02
	1.867	25	6	0	ō	48.74
	1.771	7	6	2	ō	51.56
	1.708	15	5	3	3	53.60
	1.689	8	6	2	2	54.28
		2				
	1.617	3 2	4	4	4	56.90
	1.569	1	7 6	1	1+	58.82
	1.459	2	7	3	2 1+	61 • 94 63 • 76
	1.400	4	8	0	0	66.76
		·		Ī		-0,0
	1.369	1	7	3	3	68.50
	1.359	1	6	4	4+	69.08
	1.320	14	6	6	0+	71.40
	1.293	9	7	5	1+	73.10
	1.230	11	7	5	3+	77.58
	1.222	4	8	4	2	78.14
	1.174	6	9	3	1	81 • 98
	1.143	8	8	4	4	84.72
	1.126	17	ò	3	3	86.34
	1.120	3	8	6	0	86.88
	1.083	2	9	5	1+	90.68
	1.078	5	6	6	6	91.22
	1.040	1	10	4	0+	95.56
	1.010	2	11	1	1 +	99.40
	•990	1 4	8	8	0	102.16
	.978	7 6	9	7	1+	103.82
	.975	_	8	3	2	103.82
	.960	_	8	6	6	106.52
	.950		9	7	3+	108.34
	•9468		10	6	2	109.90
		- 2	_			
	•933°		8	8	4	111.56
	•9086	_	12 10	2 5	0	113.56 115.94
	•8856	_	12	4	0	120.88
	.856		11	5	5+	128.10
	•8373		13	3	1+	133.86
	•8351 •8258	_	12 12	6 6	0	134.56 137.74
	.8192		9	9	5	140.22
_						

	Calculated	Pattern	(Inte	egr	ated)
		_,		-	
d (A)	I		hkl		2⊖(°) 。
					$\lambda = 1.540598A$
-	·				
6.467	, ,	1	1 .	1	13.68
5.601		2	0	0	15.81
3.961		2	2	0	22.43
3.234		2	2	2	27.56
2.800		4	0	0	31.93
2.570) 4	3	3	1	34.88
2.505		4	2	0	35.82
2 • 287	19	4	2	2	39.37
2.156	45	5	1	1	41 • 87
2.156	40	3	3	3	41.87
1.980		4	4	0	45.78
1.893		5	3	1	48.01
1.867		6	0	0	48.73
1.867		4	4	2	48.73
1.771	. 7	6	2	0	51.56
1.708	3 15	5	3	3	53.61
1.689		6	2	2	54 • 28
1.617		4	4	4	56.90
1.569	_	7	1	1	58.82
1.497		6	4	2	61.94
	_	ŭ	_	_	0.111
1.458	3 1	7	3	1	63.77
1.458		5	5	3	63.77
1.400	4	8	0	0	66.75
1.369	2	7	3	3	68.51
1.358	1	6	4	4	69.09
1.320	10	6	6	0	71.39
1.320		8	2	2	71.39
1.293		7	5	1	73.10
1.293		5	5	5	73 • 10
1.252		8	4	0	75.91
1.230		9	1	1	77.58
1 • 230		7	5	3	77.58
1.222		8	4	2	78.14
1.194	_	6	6	4	80.34
1.174	7	9	3	1	81.99
1 107	• 0	۰		4	84.71
1.143	_	8 9	3	3	86.35
1.126		7	7	1	86.35
1.120		8	6	0	86.89
1.098		10	2	ō	89.06
1.083		9	5	1	90.68
1.078		6	6	6	91.22
1.010		11	1	1	99.39
•990		8	8	0	102.15
•978	37 4	9	7	1	103.82
07/	37 3	1.1	7	,	103.82
•978		11	3 5	1 5	103.82
975	•	8	8	2	104.38
.960	•	8	6	6	106.63
950	•	9	7	3	108.33

Calc	ulated Pa	ttern	(Int	egr	ated)
đ (Å)	I	1	hkl		2Θ (°) λ = 1.540598
				_	100 77
•9501	1	11	3	3	108.33 108.90
.9467	5	10 8	6 8	2	111.21
•9335	4	12	5	0	111.55
•9208	1	10	6	4	115.94
•9086	1	10	0	4	113.94
.8856	4	12	4	0	120.87
.8747	1	10	8	0	123.43
.8643	1	10	8	2	126.07
.8566	3	11	5	5	128.11
.8566	1	11	7	1	128.11
.8566	3	9	9	3	128.11
.8373	7	13	3	1	133.85
.8373	4	11	7	3	133.85
.8373	3	9	7	7	133.85
•8349	6	12	6	0	134.61
.8258	4	12	6	2	137.74
.8192	5	9	Ò	5	140.22
.8084	1	8	8	8	144.66

Synonym	Ca	lculated P	attern	(Pe	ak he	ights)
7-chloro-1,3-dihydro-1-methyl-5-phenyl-2H-1,4-benzodiazepin-2-one	d(A)	I		hkl		2⊖(°)
Structure						$\lambda = 1.5405987$
Monoclinic, $P2_1/a$ (14), $Z = 4$. The structure	6.00			_		
was determined by Camerman and Camerman[1972].	9.28	33	1	1	0	9.52
Atom positions	7.96	22	0	0	1	11.10
All the atoms were in general positions. The	6.84	2 9	0	1	1	12.94
value of 0.2274 was used for the x coordinate of carbon (5).	6.67	31	0 2	0	0	13.26 13.70
Lattice constants	6.05	6	- 1	1	1	14 64
a = 12.929(4) A	5.93	1	1	2	0	14.64 14.92
b = 13.355(7)	5.12	1 1	0	2	1	17.32
c = 7.976(2)	5.02	20	2	0	1	17.66
$\beta = 90.01(3)^{\circ}$	4.70	100	-2	1	1	18.88
(published values: $a=12.9284(41)$, $b=13.3537(68)$ $c=7.9763(17)$, $\beta=90.010(25)$ ° [Camerman and	4.64	77		2		
Camerman, 1972]).	4.21	3	2	3	0	19.10 21.10
	4.10	5	3		0	21.10
CD cell: $a = 12.929$, $b = 13.355$, $c = 7.976$,	4.01	16	-2		1+	22.14
$\beta = 90.01$, space group P2 ₁ /a; a/b = 0.9681, c/b = 0.5972	3.887	84	0	3	1	22.86
	3.821	5	0	1	2	23.26
Volume .	3.720	41	1	3	1 +	23.90
1377.2 Å ³	3.645	12		1	1	24.40
	3.619	21	3	2	0	24.58
Density	3.394	6	2	0	2	26.24
(measured) 1.39 g/cm ³		_	_	_	_	
(calculated) 1.37 g/cm ³	3.331	16	-2	3	1+	26.74
	3.309	9	1	2	2	26.92
Thermal parameters	3.297	1 1	-3	2	1+	27.02
<pre>Isotropic: overall B = 3.0</pre>	3.232	12	1	4	0	27.58
	3.140	4	4	1	0	28.40
Scattering factors						
C^0 , H^0 , N^0 , O^0 , Cl^0 [International Tables, 1962]	3.079	2	0	4	1	28.98
	3.026	1 4	-2	2	2+	29.50
Scale factors (integrated intensities)	2.996	23	1	4	1 +	29.80
$\gamma = 0.575 \times 10^{-3}$	2.967	4	2	4	0	30.10
I/I (calculated) = 0.64	2.923	1 1	-4	1	1+	30.56
Additional pattern	2.886	15	- 3	3	1 +	30.96
1. MacDonald et al. [1972]	2.779	6	-2		1	32.18
	2.733	1	4	2	1	32.74
References	2.698	5	2	3	2+	33.18
Camerman, A. and Camerman, C. (1972). J. Amer. Chem. Soc. <u>94</u> , 268.	2.681	8	- 3	2	2	33.40
International Tables for X-ray Crystallography,	2.639	3	3	4	0	33.94
III (1962). (The Kynoch Press, Birmingham,	2.556	1	0	4	2+	35.08
Eng.) p. 202.	2.538	1	5	1	0	35.34
MacDonald, A., Michaelis, A. F., and Senkowski,	2.510	5	1	4	2+	35.74
B. Z. (1972). In <u>Analytical Profiles of Drug</u> <u>Substances I (1972). (Academic Press, N. Y.),</u>	2.506	5	-3	4	1+	35.80
p. 79.	2.485	2	1	5	1 +	36.12
	2.458	1	2	0	3+	36.52
	2.418	6	-2	1	3+	37.16
	2.413	7	5	2	0	37.24
	2,379	3	2	4	2+	37.78
				_		
	2.358	4	2	5	1 +	38.14
	2.358 2.352	4	2 -4	2	2+	38.14 38.24
			-4			
	2.352	4	-4	2	2+	38.24

	Calculated	Dattern	/Pos	ak h	eights)
	Calculated	Paccern	(100	- II	
d(A)	I		hkl		$2\Theta(°)$ ° $\lambda = 1.540598A$
2 270				7.4	40.40
2.230		- 3	1 5	3+ 1+	40.42 41.32
2.152		- 5	3	1+	41.94
2.144		3	2	3+	42.12
2.127		6	1	0	42.46
2.099		-2	5	2+	43.06
2.080		0	4	3+	43.48
2.063		- 5	2	2+	43.84
2.059		4	5	0+	43.94
2.016		3	3	3+	44.92
2.007		-4	4	2+	45.14
1.986		6	2.	1	45.64
1.980		-5	4	1 +	45.78
1.972		0	1	4+	45.98
1.950	2	5	3	2+	46.54
1.922	1	1	6	2	47.26
1.910		0	2	4	47.56
1.895		- 6 0	0 5	2	47.96
1.873		3	4	3+ 3+	48.24 48.56
1.865	2	-4	3	3+	48.80
1.836	1	-5	1	3+	49.60
1.830	2	2	7	0+	49.80
1.819	1	5	4	2+	50.10
1.809	3	2	5	3	50.40
1.780	3	7	2	0+	51.28
1.748		-2	3	4+	52.28
1.721	1	0	7	2	53.18
1.706		7	3	0+	53.68
1.697	1	-4	0	4+	53.98
1.684	1	- 5	5	2+	54.44
1.665	2	4	6	2*	55.10
1.650	1	-2	6	3+	55.66
1.621	1	-1	8	1 *	56.74
1.598	1	- 3	7	2+	57.64
1.584	1	2	8	1+	58.18
1.549	1	-2	0	5+	59.66

	Calculated	Pattern	(In	tegr	rated)
d(A)	I		hkℓ		2Θ(°) λ = 1.540598A
9.29 7.98 6.85 6.68 6.46	34 23 2 9 37	1 0 0 0	1 0 1 2 0	0 1 1 0 0	9.51 11.08 12.92 13.25 13.69
6.05 5.93 5.12 5.02 4.76	6 1 12 21 1	-1 1 0 2 -1	1 2 2 0 2	1 0 1 1	14.63 14.92 17.31 17.65 18.62
4.76 4.70 4.70 4.64 4.21	2 100 8 7 9 3	1 -2 2 2	2 1 1 2 3	1 1 0 0	18.63 18.86 18.86 19.09 21.09
4.10 4.01 4.01 3.887 3.821	5 13 5 100 3	3 -2 2 0	1 2 2 3 1	0 1 1 1 2	21.65 22.13 22.13 22.86 23.26
3.723 3.722 3.666 3.664 3.648	15 32 3 1 ç	-1 1 2 1 -3	3 3 1 1	1 1 0 2 1	23.88 23.89 24.26 24.27 24.38
3.621 3.394 3.331 3.331 3.310	23 7 10 8 5	3 2 -2 2 1	2 0 3 3 2	0 2 1 1	24.56 26.24 26.74 26.74 26.92
3.297 3.297 3.290 3.289 3.233	5 2 3 1 13	-3 3 -2 2 1	2 2 1 1 4	1 1 2 2 0	27.02 27.02 27.08 27.09 27.57
3.142 3.096 3.080 3.026 3.025	4 1 2 1 1 6	4 3 0 -2 2	1 3 4 2 2	0 0 1 2 2	28.39 28.81 28.97 29.50 29.50
2.996 2.996 2.995 2.966 2.923	7 12 8 3 7	-1 1 4 2 -4	4 4 0 4 1	1 1 0 1	29.80 29.80 29.80 30.10 30.56
2.923 2.895 2.887 2.886 2.780	6 6 8 8 7	4 -1 -3 3 -2	1 3 3 4	1 2 1 1	30.56 30.86 30.95 30.96 32.17

Diazepam, $C_{16}H_{13}C1N_20$ -(Continued)

					10 10 -
	Calculated	Pattern	(Int	egr	ated)
d(A)	I		hkl		20(°) λ = 1.540598A
	-				
2.780		2	4	1	32.17
2.733		4	2	1	32.74
2.699		-2	3	2	33.16
2.699		2	3	2	33.17
2.681	9	•3	2	2	33.39
2.639	3	3	4	0	33.94
2.539	1	5	1	0	35.33
2.511	4	1	4	2	35.73
2.511	1	4	0	2	35.73
2.506	1	-3	4	1	35.81
2.506	1	3	4	1	35.81
2.485	2	1	5	1	36.11
2.459	1	2	0	3	36.52
2.419		5	1	1	37.14
2.418		-2	1	3	37.15
2.418	1	2	1	3	37.15
2.411	4	5	2	0	37.15
2.380		-2	4	2	37.76
2.380		2	4	2	
2.358			5	1	37.77
2.356	2	-2	5	1	38.13
2.358	4	2	5	1	38.13
2.351	2	-4	2	2	38.26
2.307	1	2	2	3	39.01
2.270		3	5	0	39.67
2.248	1	-1	3	3	40.08
2.231	2	•3	1	3	40.39
2.230	1	-4	4	1	40.42
2.230		4	4	1	40.42
2.194		1	6	0	41.12
2.187		- 1	5	2	41.24
2.187	1	4	3	2	41.25
2.184		-3	5 5	2	41.31
2.184		3	5	1	41.31
2.153		-5	3	1	41.93
2.153		5	3	i	41.93
			_	_	
2.152	1	2	3	3	41.94
2.143		-3	2	3	42.13
2.143		3	2	3	42.13
2.127		6	1	0	42.46
2.099	2	-2	5	2	43.06
2.099		2	5	2	43.05
2.080		0	4	3	43.48
2.064	3	-5	2	2	43.84
2.063		5	2	2	43.84
2.059	1	4	5	0	43.94
2.055	1	6	1	1	44.02
2.007	4	- 4	4	2	45.14
2.007		4	4	2	45.15
1.986		6	2	1	45.64
1.973	2	-3	5	2	45.96

Ŧ						
		Calculated	Pattern	(In	tegr	ated)
	đ(Å)	I		hkl	,	20 (°) 。
						$\lambda = 1.540598A$
1			·			
1	1.973	2	3	5	2	45.96
1	1.972	3	0	1	4	45.98
ł	1.950	1	5	3	2	46.53
İ	1.950	1	1	1	4	46.55
	1.922	2	1	6	2	47.25
	1.911	1	0	2	4	47.55
	1.896	1	-6	0	2	47.94
1	1.890	1	- 1	2	4	48.10
	1.885	2	-6	3	1	48.25
	1.884	2	0	5	3	48.26
	1.873	2	3	4	3	48.57
	1.865	1	- 4	3	3	48.80
	1.836	1	- 5	1	3	49.61
	1.830	1	2	7	0	49.79
	1.829	1	4	5	2	49.80
1	1.819	1	5	4	2	50.10
	1.809	3	2	5	3	50.41
	1.787	1	-4	6	1	51.08
	1.780	3	7	2	0	51.28
Ì	1.721	1	0	7	2	53.18
	1.706	1	7	3	0	53.68
	1.684	1	-5	5	2	54.44
1	1.666	1	4	6	2	55.09
	1.650	1	-2	6	3	55.65
	1.621	1	-1	8	1	56.74
	1.584	1	2	8	1	58.19
	1.549	1	-2	0	5	59.65
l						

Synonyms		Calculated 1	Pattern	(Pe	ak h	eights)
DMT, 3-[2-(dimethylamino)-ethyl]indole	d(A)			hkl		20 (°)
Structure	u(A)	_		IIXx		$\lambda = 1.540598A$
Monoclinic, $P2_1/c$ (14), $Z = 8$. The structure						X 1.01035011
was determined by Falkenberg [1972].	9.28	47	0	1	1	9.52
	8.80	14	-1	1	i	10.04
Atom positions [ibid.]	7.81	4	1	1	ō	11.32
All the atoms were in general positions, with 2	7.27	15	-1	1	2+	12.16
molecules in the asymmetric unit.	6.45	45	- 2	0	2	13.72
Polymorphism [ibid.]	6.21	100	0	1	2	14.24
The batch of the material described here also	6.04	49	0	2	0	14.66
contained crystals of an entirely different	5.68	7	-2	1	2	15.58
polymorph. The latter could easily be distin-	5.57	11	0	2	1	15.90
guished by its optical properties and crystal shape, and had the monoclinic space group P2 ₁ /c	5.49	51	-2	1	1	16.14
with $Z = 4$.	5.40	7	-1	1	3	16.40
	5.20	14	1	2	0	17.04
Lattice constants [ibid.]	5.12	22	2	0	0+	17.30
a = 12.99(1) A	5.04	8	-1	2	2	17.60
b = 12.08(1) c = 18.38(2)	4.71	35	1	0	2	18.82
$\beta = 127.85(1)^{\circ}$	4.64	48	0	2	2	19.12
	4.56	7	-2			19.46
CD cell: a = 14.61, b = 12.08, c = 12.99,	4.48	68	1		1+	19.80
$\beta = 96.73^{\circ}$, space group $P2_1/n$; $a/b = 1.2098$,	4.41	17	-2		2	20.14
c/b = 1.0753	4.36	31	-1	0	4	20.34
Volume •	4.31	61	-2	2	1	20.58
2278. A ³	4.26	99		1	4+	20.82
	4.13	73		2		21.52
Density	4.05	6	-3		3	21.92
(measured) 1.080 g/cm ³ (calculated) 1.098 g/cm ³	4.00	22	- 3	0	4	22.22
	3.89	12	2	1	1	22.86
Thermal parameters	3.79	35	-3	1	4	23.44
Isotropic: overall B = 5.0	3.71	12	1	2	2+	23.94
	3.64	16	-2	2	4	24.44
Scattering factors C ⁰ , H ⁰ , N ⁰ [International Tables, 1962]	3.53	11	-1	2	4	25.18
	3.51	23	-2	1	5+	25.36
Scale factors (integrated intensities)	3.45	3	1	3	1	25.84
$\gamma = 1.321 \times 10^{-3}$	3.42	7	3	0	0	26.06
I/I (calculated) = 0.39	3.37	14	-2	3	1+	26.40
C	3.33	10	-3	2	4	26.72
Additional pattern 1. Folen [1975].	3.28	12	-3	2	1+	27.18
	3.22	11	-4		4+	27.72
References	3.17	2	2			28.16
Falkenberg, G. (1972). Acta Crystallogr. B28,	3.11	14	-4	1	4	28.64
3075. Folen, V. A. (1975). J. Forens. Sci. 20, 348.	3.10	8	1	2	3+	28.82
International Tables for X-ray Crystallography,	3.06	3	1	3	2	29 • 14
III (1962). (The Kynoch Press, Birmingham,	3.02	6	-2		6+	29.60
Eng.) p. 202.	2.976	3	-4	1	5+	30.00
	2.951	5	-3	1	6+	30.26
	2.919	2	2	2	2	30.60
	2.864	6	3	1	1	31.20
	2.845	3	-4	2	4+	31.42
	2.826	3	-4	0	6+	31.64
	2.746		-4	2	2+	32.58
	2.712	10	-2	3	5+	33.00

2.746 2.712

10

-4 2 2+ -2 3 5+

33.00

	Calculated	Pattern	(Pea	ak he	ights)
d(A)	I		hkl		2Θ(°) λ = 1.540598A
2.651	2	- 3	3	5+	33.78
2.618		1	2	4	34.22
2.606		3	3	0+	34.38
2.560 2.483		-4 -2	2	6+ 7	35.02 36.14
2.464	3	-3	4	2	36.44
2.448		-4	3	2	36.68
2.443		-4	3	5	36.76
2.413		-2	3	6	37 • 24
2.382	2	1	1	5+	37.74
2.360		4	2	0 2	38.10 38.30
2.348		3 -5	1	7	39.08
2.262		-2	5	2	39.82
2.255		-1	4	5+	39.94
2 • 24 1	3	-4	1	8+	40.20
2.239	3	2	4	2	40.24
2.221		-2	5	3	40.58
2.200		-3	3	7+	41.00
2.186	2	2	5	0+	41.26
2.173		-1	2	7+	41.52
2.153		-4 -5	4	2+ 8+	41.92 42.22
2.139		- 6	0	4+	42.32
2.114		-6	1	6+	42.74
2.098	1	-6	1	4+	43.08
2.063		-4	4	6+	43.84
2.055	1	1	1	6+	44.02
2.039		-1	4	6+	44.40
2.027	2	- 5	3	7+	44.68
2.007		1		3+	45.14
1.984		-4		8+	45.70
1.967		-1		5+	46 • 10 46 • 30
1.959		3 5		4 0+	46.72
1.934	1	-4	2	9+	46.94
1.922		-2		2+	
1.897		-2		3+	
1.874	2	2	6	0+	48.54
1.856	2	-6	3	7+	49.04
1.852	2 2	1	6	2	49.16
1.843		0	3	7+	49.40
1.824		- 5		10+	
1.798		- 3 2		9+ 6+	50.72 51.20
1.761		- 7	2	7+	51.88
1.72		-7			52.98
1.678		Ó		2+	54.66
1.67		-4		10+	
1.659) 1	-7	0	10+	55.34
1 • 64 2	2 1	-4	1	11+	55.94

	Calculated	Pattern	(In	tegr	rated)
d(Å)	I		hkl		20(°) ° λ = 1.540598A
9.28 9.13 8.82	46 2 14	0 -1 -1	1 0 1	1 2 1	9.52 9.68 10.02
7.82 7.28	11	1 -1	1	0	11.31 12.15
7.26 6.45 6.22 6.04	5 45 100 47	0 -2 0 0	0 0 1 2	2 2 0	12.19 13.72 14.23 14.65
5.69 5.58	7	0	2	1	15.56 15.88
5.49 5.47 5.40 5.20	49 7 4 12	-2 -1 -1	1 2 1 2	1 1 3 0	16.12 16.19 16.42 17.02
5.13 5.12 5.04 4.72 4.71	18 5 7 3 31	2 -2 -1 2	0 1 2 1 0	0 3 2 0 2	17.28 17.30 17.59 18.78 18.81
4.64 4.56 4.49 4.48 4.41	48 2 40 43 10	0 -2 0 1 -2	2 0 1 2 2	2 4 3 1 2	19.10 19.44 19.75 19.82 20.12
4.36 4.32 4.27 4.27 4.26	25 55 66 22 19	-1 -2 -2 -1 -3	0 2 1 2 0	4 1 4 3 2	20.33 20.56 20.79 20.80 20.83
4.13 4.10 4.05 4.02 4.00	77 6 3 2 22	-2 -1 -3 -3	2 1 1 1 0	3 4 3 2 4	21.51 21.63 21.92 22.10 22.22
3.89 3.80 3.78 3.72 3.72	11 38 2 8 4	2 -3 0 1 -3	1 1 2 2 1	1 4 3 2 1	22.85 23.42 23.54 23.92 23.93
3.64 3.63 3.54 3.51 3.50	17 1 9 20 7	-2 0 -1 -2 -3	2 0 2 1 2	4 4 4 5 3	24.43 24.51 25.15 25.35 25.41
3.47 3.45 3.42 3.40 3.38	1 2 6 5 6	0 1 3 2 -3	1 3 0 2 1	4 1 0 1 5	25.61 25.83 26.04 26.21 26.33

		Calculated	Pattern	(Tn	tea	cated)
j		Calculaced	Taccern	(111	ccgi	
}	d (A)	I		hkl		20(°)
	, ,					$\lambda = 1.540598A$
						
			_	_	_	
	3.37	11	-2	3	1	26.41
	3.35 3.33	10	-1	3	3	26.60
	3.29	2	-3 3	1	0	26.72 27.08
1	3.28	1	-2	3	3	27 • 17
	0.20	•	_	3	9	21 411
	3.28	10	-3	2	1	27.17
	3.23	9	-4	0	4	27.64
	3.21	7	2	1	2	27.74
	3.17	1	2	3	0	28.15
	3.12	1 4	-4	1	4	28.62
	3.11	1	0	2	4	28.68
	3.10	5	1	2	3	28.82
	3.09	1	0	3	3	28.82
	3.08	2	-4	0	2	28.92
	3.06	3	1	3	2	29 • 14
	3.02	2	0	4	0	29.55
	3.02	3	-2	3	4	29.55
ı	3.02	3	-2	0	6	29.61
١	2.978	2	-4	1	5	29.98
	2.975	1	3	2	0	30.01
	2.960	1	-1	3	4	30.17
1	2.957	2	-1	2	5	30.20
	2.950	3	-3	1	6	30.27
	2.939	2	-3	3	3	30.39
	2.919	1	2	2	2	30.61
	2 226			_		70.75
	2.906 2.876	1 3	1	0	4	30.75 31.08
	2.864	5	2	3	1	31.20
	2:848	1	-4	2	3	31.39
	2.845	2	-4	2	4	31.42
		_				
	2.827	3	-4	0	6	31.63
	2.822	1	0	1	5	31.68
ı	2.752	1	-4	1	6	32.50
Į	2.747	3	-4	2	2	32.57
	2.735	1	+ 2	4	2	32.72
	2.717		_ ~	2	_	70.04
	2.717	1 2	-3 -2	2	6	32•94 33•00
ı	2.712	8	-2	3	5	33.00
1	2.698	3	-2	2	6	33.18
١	2.695	1	0	3	4	33.21
ł						
1	2.651	2	- 3	3	5	33.78
	2.618	4	1	2	4	34.22
	2.606	4	3	3	0	34.38
	2.602	1	2	4	0	34.44
1	2.566	4	-3	1	7	34.94
	2.560	4	-4	2	_	75.00
	2.543	1	1	2	6	35.02 35.26
	2.484	1	-2	1	7	36.13
	2.471	1	-3	4	3	36.32
	2.464	3	-3	4	2	36.44
	/					

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2⊖(°) 。
					$\lambda = 1.540598A$
2.449	2	-4	3	2	36.67
2.443	1	-4	3	5	36.76
2.413	4	-2	3	6	37.23
2.382	1	1	1	5	37.74
2.360	2	4	2	0	38.09
2.348	1	3	2	2	38.31
2.303	5	- 5	1	7	39.08
2.262	1	-2	5	2	39.81
2.243	1	-1	5	3	40.18
2.242	1	-4	1	8	40.19
2.238	2	2	4	2	40.26
2.222	1	-2	5	3	40.57
2.204	1	-4	4	4	40.91
2.199	2	-3	3	7	41.00
2.158	1	-4	4	2	41.83
2.139	1	- 5	1	8	42.22
2.134	1	-4	2	8	42.31
2.131	1	-6	0	4	42.39
2.098	1	-6	1	4	43.08
2.039	1	-1	4	6	44.40
2.027	1	- 5	3	7	44.67
2.007	1	1	5	3	45.14
1.985	1	-4	3	8	45.67
1.983	1	-1	1	8	45.71
1.960	2	3	0	4	46.30
1.934	1	-4	2	9	46.94
1.898	1	-6	2	8	47.90
1.897	2	-2	6	3	47.92
1.874	1	2	6	0	48.54
1.856	1	-6	3	7	49.04
1.852	1	1	6	2	49.17
1.799	1	-6	2	9	50.70
1.798	1	-3	3	9	50.72
1.783	1	2	1	6	51.21
1.763	1	-7	2	7	51.82
1.727	1	-7	2	8	52.98
1.679	1	0	7	2	54.62
1.670	1	-7	2	9	54.92
1.670	1	-4	3	10	54.95
L					

Synonyms

- 2-[(2)-dimethylaminoethyl-2-thenylamino]pyridine hydrochloride
- 2. thenylpyramine hydrochloride

Structure

Monoclinic, $P2_1/c$ (14), Z=8. The structure was determined by Clark and Palenik [1972]. There were two molecules in the asymmetric unit and in one of them the thiophene ring was disordered; one sulfur and one carbon atom shared occupancy of each of 2 sites, on an approximately equal basis.

Atom positions

Three hydrogen atoms on the disordered thiophene ring were omitted from the refinement and their positions not determined. All other atoms were in general positions.

Lattice constants,

a = 10.937(3) A

b = 10.418(3)

c = 28.258(8)

 $\beta = 106.21(2)^{\circ}$

(published values: a = 10.936, b = 10.417 c = 28.256, $\beta = 106.21^{\circ}$ [Clark and Palenik, 1972]

CD cell: a = 27.305, b = 10.418, c = 10.937, $\beta = 96.41^{\circ}$, space group $P2_1/n$, a/b = 2.6209, c/b = 1.0498

Volume . 3091.8 Å³

Density

(measured) 1.273 g/cm³ (calculated) 1.280 g/cm³

Thermal parameters

Isotropic: overall B = 5.0

Scattering factors

C⁰, H⁰, Cl⁰, N⁰, S⁰ [International Tables, 1962]

Scale factors (integrated intensities)

 $\gamma = 0.213 \times 10^{-3}$

 I/I_{C} (calculated) = 0.35

Additional pattern

1. PDF 12-872 [Rose and Williams, 1959]

References

Clark, G. R. and Palenik, G. J. (1972). J. Amer. Chem. Soc. <u>94</u>, 4005.

International Tables for X-ray Crystallography,
III (1962). (The Kynoch Press, Birmingham,
Eng.) p. 202.

Rose, H. A. and Williams, J. G. (1959). J. Amer. Pharm. Ass. 48, 487.

	Calculated	Pattern	(Peak	heights)
d(A)	I		hkl		20(°) 。
				λ - 1	. 5405968
9.71	3	0			9.10
8.26	7	0			0.70
7.52	60	-1			1.76
7.10	1 0	-1			2.46
0.79	26	1	1 1	1 * 1	3.02
6.59	3	-1			3.42
6.37	5	-1			3.90
6.01	1	1			4.72
5.68	13	0			5.58
5.58	2	-1	1 4	4 19	5.88
5.43	5	-2			6.30
5.21	40	0			7.02
4.85	93	-2			3.26
4.69	20	2			8.92
4.59	8	-1	2 2	2 19	9.34
4.52	47	0	0 (6 19	9.62
4.37	24	-1			0.30
4.25	7	-1	1 6		0.90
4.13	100	2			1.52
4.02	37	- 2	0 6	5+ 2:	2.10
3.757	67	-2	1 6	6+ 2:	3.66
3.684		2			4.14
3.553		-2	2 4		5.04
3.469	10	-1	2 6		5.66
3.437	5	-2	1	7+ 25	5.90
3.401	15	-3	1 :	1+ 26	5.18
3.341	7	1	2 9		6.66
3.300	4	-2	0 8	3 + 2	7.00
3.269	2	-1	3 2	2 2	7.26
3.225	4	0	1 8	8 2	7.64
3.186	17	1	1 -	7+ 27	7.98
3.144	23	-2	1 8	8 29	3.36
3.091	2	0	3 4	4 28	3.86
3.064		1			9.12
3.008	20	2	2 4	4+ 29	9.68
2.974	16	-3	2 :	3+ 3(0.02
2.912	21	2	1 6	5 30	0.68
2.879	6	3	1 3	3+ 3:	1.04
2.850		-3	2 9	5 3:	1.36
2.834	3	2	3 1	1 3:	1.54
2.788	5	-2	2 8	8 32	2.08
2.746	3	0		6+ 38	2.58
2.736	3	-2			2.70
2.715		-4			2.96
2,688	2	- 1	2 9	9 3:	3.30
2.679	2	2	1 7	7 33	3.42
2.651	2	-2	1 10		3.78
2.626	6	-1	3 7	7+ 34	1.12
2.623	6	1			. 16
2.601	7	-2	2 9	9 4 34	4.46

	Calculated	Pattern	(Pe	eak h	eights)
d(Å)	I		hk	2	2Θ(°) λ = 1.540598A
2.546 2.527 2.502	9 6 6	3 2 1	1 3 4	5* 4* 1*	35.22 35.50 35.86
2.475	7	-1 4	4	3+ 2+	36.26 36.66
2.430 2.409 2.391 2.388	7 3 4 4	0 1 1 -3	4 3 4 2	4+ 7+ 3+ 9+	36.96 37.30 37.58 37.64
2.367	2	- 4	! 2	8 5+	37.98 38.34
2,332 2,301 2,285 2,276	4 1 2 2	-4 -1 2 0	2 3 3	6* 11* 6* 9	38.58 39.12 39.40 39.56
2.272 2.262 2.246 2.222 2.213	2 1 1 3 3	-1 0 3 -4 1	4 0 1 0	6+ 12+ 7+ 10+ 11+	39.64 39.82 40.12 40.56 40.74
2.194 2.175 2.152 2.138 2.133	1 3 2 4	2 2 -2 -4 1	4 0 3 3 3	3+ 10 10 2+ 9	41.10 41.48 41.94 42.24 42.34
2.128 2.124 2.094 2.069 2.063	4 4 1 2 3	2 •2 3 •3 4	1 2 3 4 2	10+ 12+ 5+ 5	42.44 42.52 43.16 43.72 43.86
2.044 2.038 2.030 2.010 1.999	2 2 3 2 5	1 -1 0 -2 4	5 5 5 0	0+ 2+ 3+ 14+ 6	44.28 44.42 44.60 45.08 45.32
1.982 1.973 1.947 1.939 1.933	1 3 2 3 2	-3 -2 4 0 -2	4 1 3 0 3	7 14+ 3+ 14+ 12+	45.74 45.96 46.62 46.82 46.96
1.929 1.917 1.890 1.872 1.863	2 2 3 2 2	-3 3 2 -5 2	4 3 5 2 1	8 7+ 2 9+	47.08 47.38 48.10 48.60 48.84
1.858 1.850 1.843 1.822 1.801	2 1 2 3 2	-3 4 -1 -5 -3	3 4 1 3 1	12 0+ 15+ 1+ 15+	48.98 49.22 49.42 50.02 50.64

		Calculated	Pattern	(P	eak h	eights)
_	d(A)	Ī		hk	l	2Θ (°) ° λ = 1.540598A
	1.795 1.791 1.775 1.770 1.750	3 2 3 3 1	-4 -1 -3 -6 6	1 4 3 0	14+ 10+ 13+ 8+ 0+	50.84 50.96 51.44 51.60 52.22
	1.744 1.740 1.720 1.710 1.697	2 2 1 2 1	+3 4 3 +6 -1	4 2 4 2 6	11+ 8+ 7+ 6+ 3+	52.42 52.56 53.22 53.54 54.00
	1.694 1.668 1.659 1.655	1 2 1 2	-3 4 -2 -1 -6	3 0 5 6 2	14+ 10+ 10+ 5+ 10+	54.10 55.00 55.34 55.48 56.84
	1.612 1.588 1.559 1.555 1.550	1 2 1 1	2 4 1 -4	5 5 4 1 3	8+ 2+ 13+ 17+ 15+	57.08 58.02 59.22 59.38 59.58
	1,547	1	-7	1	5+	59.74

	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2Θ(°) . λ = 1.540598A
9.73	3	0	1	1	9.09
8.26	8	0	1	2	10.70
7.52	72	-1	1	1	11.76
7.40	5	1	1	0	11.96
7.11	11	-1	1	2	12.44
6.83	1	0	1	3	12.95
6.80	20	1	1	1	13.00
6.78	13	0	0	4	13.04
6.60	2	-1	0	4	13.41
6.37	6	-1	1	3	13.89
6.02	1	1	1	2	14.71
5.68	15	0	1	4	15.58
5.58	2	-1	1	4	15.88
5.43	6	-2	0	2	16.30
5.43	18	2	0	0	16.87
3.23	10	_	Ŭ	Ü	1000.
5.21	46	0	2	0	17.01
4.86	11	0	2	2	18.23
4.86	57	- 2	0	4	18.24
4.85	53	-1	1	5	18.26
4.83	1	-2	1	1	18.37
4 65	_			2	19 40
4.82	5	-2	1	2 5	18.40 18.42
4.81	2	0	1	0	
4.69	21	2	1 2	0	18.91 19.00
4.67	1 6	-2	1	3	19.00
4.67	6	- 2	1	3	19.01

	Calculated	Pattern	(In	tegr	rated)
d(Å)	I		hkl		2θ (°) δ = 1.540598A
4.59	6	-1	2	2	19.32
4.52	58	0	0	6	19.61
4.51	1 4	1 2	2	1 2	19.68
4.40	2	-2	1	4	19.74 20.14
4.37	29	- 1	2	3	20.29
4.25	5	- 1	1	6	20.90
4.15	9 0	0	1	6	21.40
4.13	1 100	0 2	2	4	21.49 21.52
4.09		- 1			
4.09	2 18	-1 -2	2	4 5	21.72
4.03	33	-2	0	6	21.72 22.05
4.02	21	1	1	5	22.05
3.787	1	1	0	6	23.47
3.765	2	-2	2	1	23.61
3.760	42	-2	2	2	23.64
3.757	46	-2	1	6	23.67
3.750	3	-1	1	7	23.71
3.698	22	2	2	0	24.04
3.686	7	-2	2	3	24.12
3.684	52	2	0	4	24.14
3.640	1	1	2	4	24.44
3.571 3.559	2	2 1	2	1 6	24.91 25.00
3.554	50	-2	2	4	25.04
3.529	1	-1	0	8	25.22
3.470	12	- 1	2	6	25.65
3.440	2	- 3	1	2	25.88
3.438	2	-2	1	7	25.89
3.415	1	0	2	6	26.07
3.404	1 1	-3	1	1	26.16
3.402	7	2	2	2	26.17
3.392	1	0	0	8	26.25
3.364	3	0	3	2	26.47
3.351	2	-3	1	4	26.58
3.342	3	-1	1	8	26.65
3.339	4	1	2	5	26.67
3.300	4	-2	0	8	27.00
3.270	1	-1	3	2	27.25
3.242	1	0	3 3	3 1	27.49
3.239 3.225	1 3	1	1	8	27.51 27.64
3.194	11	3	1	1	27.91
3.186	2	-2	2	6	27.98
3.186	13	1	1	7	27.99
3.146		-2	1	8	28.35
3.091	1	0	3	4	28.86
2007					
3.073		-1	3	4	29.03

 					
	Calculated	Pattern	(In	tegr	ated)
d(A)	I		hkl		2Θ(°) λ = 1.540598
3.034	2	2	0	6	29.42
3.014	8	1	3	3	29.62
3.008	11	2	2	4	29.68
3.006 2.985		-1	1	9	29.69
2.985	12	-2	2	7	29.91
2.974	13	-3	2	3	30.02
2.963	ç	-3	2	1	30.14
2.933	7	-3	1	7	30.45
2.926	2	-2	3	2	30.52
2.925	3	0	3	5	30.54
2.921	1	-1	2	8	30.58
2.913	26	2	1	6	30.67
2.884	1	-2	1	9	30.98
2.879		3	1	3	31.04
2.851	2	-3	2	5	31.35
2.834	4	2	3	1	31.54
2.788		-2	2	8	32.08
2.754	2	0	3	6	32.48
2.748		2	3	2	32.56
2.743	1	-2		10	32.62
			_	_	
2.736	1	-2	3	5	32.70
2,723	4	-4	0	2	32.86
2.717	7	-4	0	4	32.94
2.714	2	1	3	5	32.97
2.713	2	0	0	10	32.98
2.689	1	-1	2	9	33.29
2.678	1	2	1	7	33.44
2.653	2	-2	1	10	33.76
2.630	1	-2	3	6	34.06
2.629	2	-4	1	4	34.07
	_		_	7	74 00
2.628	3	-1	3		34.09 34.12
2.626	2	4 2	0 2	6	34.18
2.621	1 3	1	1	9	34.23
2.618	1	0	2	9	34.34
2.009	•	ŭ	_		
2.601	5	-2	2	9	34.46
2.600	3	-3	1	9	34.47
2.593	2	0	4	1	34.57
2.558		0	4	2	35.05
2.547	6	3	1	5	35.21
2.546	5	4	1	0	35.22
2.544		2	ō	8	35.25
2.533		-1	4	1	35.41
2.528		1	4	0	35.48
2.527		2	3	4	35.49
				^	35 66
2.516		-1	4	2	35.66 35.79
2.507		-3	3	3	35.79 35.87
2.502		1 -1	4	1	36.02
2.492		-1 -1	1 4	11	36.22
2.478	5	-1	-	5	55.22

	0	Calculated	Pattorn	(Intom	
	0		Taccern	(Integ	rated)
ł	d (A)	I		hkl	20(°) λ = 1.540598A
	2.475 2.471 2.453	4 1 2	-1 2 4	3 8 1 8 0 2	36.27 36.32 36.60
	2.449	1 5	-2 0	1 11 4 4	36.66 36.94
	2.430 2.426 2.409	3 2 2 3	-4 0 1 1	0 8 3 8 3 7 4 3	36.96 37.02 37.29
	2.393	1	-2	4 3 8	37.55 37.57
	2.388 2.387 2.367 2.345 2.333	1 2 2 3 3	4 -3 -4 3 -4	1 2 2 9 1 8 2 5 2 6	37.64 37.66 37.59 38.35 38.57
	2.330 2.326 2.285 2.277 2.244	2 2 1 2 1	-2 -2 2 0 3	4 · 3 0 12 3 · 6 3 · 9 1 · 7	38.61 38.68 39.41 39.55 40.14
	2.222 2.213 2.212 2.210 2.194	3 2 1 1	-4 1 -3 0 2	0 10 1 11 3 8 1 12 4 3	40.56 40.74 40.76 40.80 41.10
	2.176 2.153 2.143 2.143 2.138	3 3 1 2 2	2 -2 4 -4	0 1 0 3 1 0 2 3 3 2 1 3	41.47 41.94 42.12 42.13 42.23
	2.134 2.130 2.128 2.125 2.124	1 2 2 1 2	1 2 -5 -4	3 9 1 10 1 5 3 1 2 12	42.32 42.41 42.45 42.51 42.53
	2.121 2.115 2.069 2.063 2.059	1 1 1 3 2	-1 -3 -3 4 0	1 13 4 3 4 5 2 4 5 2	42.60 42.72 43.71 43.85 43.93
	2.037 2.030 2.030 2.030 2.012	1 2 1 1	-1 0 -3 1 5	5 2 5 3 4 6 5 1 1 1	44.43 44.59 44.60 44.61 45.02
	2.010 1.999 1.983 1.977 1.973	1 6 1 1 3	-2 4 -3 -4 -2	0 14 1 6 4 7 1 12 1 14	45.08 45.32 45.73 45.86 45.96

	Calculated	Pattern	(1	ntegr	rated)
d(A)	I		hk	Q.	2⊖ (°)
- ()	_				$\lambda = 1.540598A$
1.947	1	4	3	3	46.60
1.941	1	-3	0	14	46.77
1.938	2	0	0	14	45.84
1.933	1	-2	3	12	46.98
1.928	1	- 3	4	8	47.09
	_	_	_		
1.919	1	-3	2	13	47.33
1.917	2		. 3	7	47.39
1.902	1 3	-1 2	5	6 2	47.79 48.10
1.886	1	4	3	4	48.21
1.000	•	7		•	40.21
1.882	1	-4	4	2	48.31
1.878	1	-4	2	12	48.42
1.872	1	-5	2	9	48.60
1.863	2	2	1	12	48.84
1.858	2	-3	3	12	48.98
1.844	1	2	3	10	49.39
1.843	1	-1	1	15	49.42
1.842	1	4	0	8	49.44
1.822	2	-5	3	1	50.01
1.801	1	- 3	1	15	50.64
1.796	1	-3	5	4	50.81
1.794	1	- 1	5	8	50.85
1.794	1	-4	1	14	50.86
1.791	1	1	4	10	50.96
1.780	î	2	2	12	51.29
	_	_		-	
1.777	1	-4	4	8	51.38
1.775	2	0	5	8	51.43
1.774 1.770	2	-3	3	13	51.46
1.750	2 1	- 6	0	8	51.60
1.750		6	0	0	52.22
1.744	1	-3	4	1 1	52.42
1.740	1	-2	1	16	52.57
1.737	1	4	2	8	52.66
1.723	1	3	4	7	53.10
1.711	1	- 6	2	6	53.52
1.709	1		1	15	53.58
1.694	1		3	1 4	54.09
1.671	1			16	54.90
1.668	1		0	10	54.99
1.665	1	2	5	7	55.10
1.659	1	-2	5	10	55.32
1.655	i			5	55.46
1.653	i		5	10	55.56
1.588	1		5	2	58.03
1.550	1			15	59.58

Str	u	ct	ur	е		
					-	

Hexagonal, $P6_3/m$ (176), Z = 4. The structure was determined by Hardie and Jack [1957].

Atom positions [ibid.]

6(h) 6 silicon

6(h) 6 nitrogen 2(c) 2 nitrogen

Polymorphism [ibid.]

A polymorph, α -Si₃N₄ is also hexagonal, with space group P31c; its structure has the same tetrahedral units as the β form but their arrangement is different.

Lattice constants

a = 7.608 A

c = 2.9109

(published values a = 7.608, c = 2.9107 [Hardie and Jack, 1957]).

CD cell; a = 7.608, c = 2.9109, c/a = 0.3826

Volume 145.9 A³

Density

(measured) 3.19 g/cm³ (calculated) 3.193 g/cm³

Thermal parameters

Isotropic: overall B = 0.5

Scattering factors

Si⁰, N⁰ [International Tables, 1962].

Scale factors (integrated intensities)

 $\gamma = 0.457 \times 10^{-3}$

Additional pattern

1. PDF card 9-259 [Decker, General Electric Co., Schenectady, N.Y.]

References

Hardie, D. and Jack, K. H. (1957). Nature, London, No. 4581, Aug. 17, p. 332.

<u>International Tables</u> <u>for X-ray Crystallography,</u> <u>III</u> (1962). (The Kynoch Press, Birmingham, Eng.) p. 202.

	Calculated	Pattern	(Peak	hei	ghts)
d (A)	Ι		hkl	λ	20 (°) = 1.540598A
6.58 3.80 3.29 2.66	40 40 100 95	1 1 2 1	1	0 0 0	13.44 23.38 27.06 33.64
2.49	95	2	1	0	36.04
2.31 2.20 2.18 1.902 1.892		1 3 2 2 2		1 0 1 0	38.94 41.08 41.36 47.78 48.04
1.827 1.753 1.592 1.548 1.511	35 11	1 3 2 1 2	2 3	0 1 1 1 + 0 +	49.86 52.14 57.86 59.70 61.28
1.455 1.438 1.434 1.359	7 6	0 1 4 1 2	4 0 1	2 0 + 1 2	63.92 64.80 64.98 69,04 70.10
1.331 1.318 1.289 1.268 1.257	20	2 5 4 3 2	0 1 3	2 0 1 0 2	70.70 71.54 73.40 74.82 75.62
1.200 1.183 1.156 1.145	2	5 5 2 2 1	2	1 0 + 2 1 +	79.84 81.22 83.58 84.58 85.16
1.096 1.083 1.055 1.048 1.023	1	5 4 2 2 1	3 5 3	1 0 0 2 + 2 +	89.28 90.66 93.80 94.58 97.72
1.015 1.005 .991 .976	9 3 9 3	3 1 2 5 1	6 5 0	1 0 1 + 2	98.72 100.10 101.90 104.10 106.74
.956 .949 .941 .930	7 10 3 2 7 2	3 1 5 2 5	6 : 3 : 0 :	2 1 * 0 3 2 *	107.36 108.40 109.84 111.72 114.06
•913 •904 •895	0 4	2 4 7	4	0 + 1 1 +	114.92 116.88 118.66

Silicon nitride, β -Si $_3N_4$ -(Continued)

•	Calculated	Pattern	(In	tegr	ated)
d (Å)	Ι		hkl		2Θ(°) λ = 1.540598A
6.59 3.80 3.29 2.66 2.49	35 41 100 100	1 1 2 1 2	0 1 0 0	0 0 0 1	13.43 23.37 27.04 33.63 36.04
2.31 2.20 2.18 1.902 1.892	6 3 3 5 9 5	1 3 2 2 2	1 0 0 2 1	1 0 1 0	38.93 41.06 41.36 47.78 48.04
1.827 1.753 1.592 1.548	13 40 13 2 5	1 3 2 3 1	3 0 2 1 3	0 1 1 1	49.86 52.13 57.87 59.70 59.70
1.512 1.512 1.455 1.438 1.438	7 9 17 4 5	3 2 0 4 1	2 3 0 1 4	0 0 2 0	61.28 61.28 63.91 64.79
1.434 1.359 1.341 1.341 1.331	3 6 45 9	4 1 3 2 2	0 1 2 3 0	1 2 1 1 2	65.00 69.04 70.09 70.09 70.71
1.318 1.289 1.268 1.257 1.200	5 25 7 19 2	5 4 3 2 5	0 1 3 1 0	0 1 0 2 1	71.54 73.39 74.82 75.62 79.83
1.183 1.156 1.145 1.138 1.096	2 3 4 4 5	5 2 2 1 5	1 2 4 3 1	0 2 1 2	81.22 83.59 84.58 85.16 89.28
1.083 1.055 1.048 1.048 1.023	4 1 4 5 3	4 2 3 2 1	3 5 2 3 4	0 0 2 2 2	90.66 93.79 94.57 94.57 97.72
1.023 1.015 1.005 .9919		4 3 1 5 2	1 4 6 2 5	2 1 0 1	97.72 98.72 100.11 101.90 101.90
.9768 .9599 .9560 .9510	3 0 6 0 1	5 1 3 4 1	0 0 3 4 6	2 3 2 0 1	104.11 106.74 107.36 108.19 108.39

Ca	lculated Pa	ttern	(In	tegr	ated)
d (Å)	I		hkl		2Θ(°) λ = 1.540598A
.9498 .9412 .9307 .9182 .9137 .9040 .8956	4 2 3 2 3 5 1 2	6 5 2 5 2 4 5 7	1 3 0 1 6 4 3 0	3 2 0	108.39 109.85 111.72 114.06 114.93 116.89 118.66

Structure

Tetragonal, $1\overline{4}2m$ (121), Z = 8. The structure was determined by Pedersen and Grønvold [1959], and is closely related to that of Ni₃P.

Atom positions [ibid.]

8(i) 8 vanadium(1) 8(f) 8 vanadium(3) 8(i) 8 vanadium(2) 8(g) 8 sulfur

Polymorphism [ibid.]

The material was stable above 950 °C, and appeared also in samples quenched from 1400 °C. A tetragonal polymorph, $\beta\text{--}V_3S$ is stable below 825 °C, and has the space group P42/nbc. The structures are closely related.

Lattice constants [ibid.]

a = 9.470 Ac = 4.589

CD cell: a = 9.470, c = 4.589, c/a = 0.4846

Volume . 411.6 Å³

Density

(measured) 5.895 g/cm³ (calculated) 5.968 g/cm3

Thermal parameters

B = 0 since absorption and temperature effects nearly balance each other [Pedersen and Grønvold, 1959].

Scattering factors

s⁰, V⁰ [Cromer polynomial format: Cromer, 1972; Cromer and Mann, 1968].

Scale factors (integrated intensities) $\gamma = 0.171 \times 10^{-3}$

References

Cromer, D. T. (1972). Private communication.

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Pedersen, B. and Grønvold, F. (1959). Acta Crystallogr. 12, 1022.

	Calculated	Pattern	(Pea	k ł	neights)
d (A)	I		hkl		20 (°) $\lambda = 1.540598A$
4.13 3.112 2.994 2.601 2.280 2.232 2.170 2.118 2.064 2.054	1 8 8 100 55 60 30 20	1 2 3 3 3 3 1 4 2 4	0 1 1 0 2 3 1 2 0	1 1 0 1 1 0 2 0 2	21.52 28.66 29.82 34.46 39.50 40.38 41.58 42.66 43.82 44.06

		Calculated	Pattern	(Pea	ak he	eight	s)
d (1	A)	I		hkl			2Θ(°) 。
(-	-,					λ =	_
					_		
1.8	392	40	2	2	2		48.04
1 . 8	857	16	5	1	0		49.02
1.8	821	12	3	1	2		50.04
1.	751	7	4	3	1+		52.20
1.6	548	9	4	0	2		55.74
•	- 4 -		_	_			55.00
	543	9	5	2	1		55.92
	500		3	3	2		57.56
	578		6	0	0		58.42
	497		6	2	0		61.92
1.4	474	1 4	6	1	1		63.00
1.4	408	1	5	4	1		66.36
1.3	376	1	3	0	3		68.06
	352	5	4	4	2		69.44
	349		6	3	1		69.62
	339		7	1	0+		70.22
		_	_	_			
	326		5	3	2		71.06
	322		3	2	3		71.28
	3 1 3		6	4	0		71.82
	300		6	0	2		72.66
1.2	273	2 15	4	1	3		74.46
1. 2	251	5 10	7	2	1		75.98
	243		7	3	0		76.56
	190		4	3	3+		80.68
	172		6	5	1		82.16
	156		5	5	2		83.52
- •				•	_		33.32
	147		0	0	4		84.36
	137		7	4	1		85.22
1.1	116	0 2	6	6	0		87.30
1.1	101	0 1	7	5	0		88.80
1.0	091	1 5	6	1	3		89.82
1.0	77	4 7	8	3	1		91.28
	052		8	0	2		94.14
	037		6	3	3		95.90
	026		8	2	2		97.20
	025		9	0	1		97.36
		•		J	•		3 (6 3 6
1.0	20	3 6	3	3	4		98.04
1.0	013		7	0	3		98.96
1.0	300	7 4	4	2	4		99.58
1.0	002	3 2	ç	2	1+	1	00.44
• 9	990	9 5	7	2	3	1	02.04
	80		8	5	1		03.54
	76		5	1	4		04.22
	51		9	1	2		08.10
	25 02		6	5	3	1	08.32
• 9	47	5	10	0	0	1	08.86
٠	411	L 6	9	4	1	1	09.88
	31		7	4	3		11.54
		9			Ü	•	

	Calculated	Pattern	(Int	ear	ated)
d (A)	I		hkl		2Θ(°) ° λ = 1.540598A
4.13 3.112 2.995 2.601 2.294	1 1 1 8 1	1 2 3 3 0	0 1 1 0	1 1 0 1 2	21.50 28.66 29.81 34.46 39.23
2.280 2.232 2.171 2.118 2.065	100 55 60 30 14	3 3 1 4 2	2 3 1 2 0	1 0 2 0 2	39.50 40.38 41.57 42.66 43.81
2.054 1.893 1.857 1.821 1.751	100 40 17 13 3	4 2 5 3 5	1 2 1 1 0	1 2 0 2 1	44.05 48.03 49.01 50.04 52.21
1.751 1.648 1.642 1.600 1.578	4 9 6 3 1	4 4 5 3 6	3 0 2 3 0	1 2 1 2 0	52.21 55.75 55.95 57.56 58.42
1.497 1.474 1.408 1.377 1.352	4 16 1 1 5	6 5 3 4	2 1 4 0 4	0 1 1 3 2	61.92 63.00 66.35 68.05 69.44
1.349 1.339 1.339 1.326 1.322	4 7 5 10 14	6 7 5 5 3	3 1 5 3 2	1 0 0 2 3	69.62 70.22 70.22 71.05 71.29
1.313 1.300 1.297 1.273 1.254	2 18	6 6 7 4 6	4 0 0 1 2	0 2 1 3 2	71.83 72.65 72.83 74.46 75.80
1.251 1.243 1.190 1.190 1.172	5 5 0 1 0 1	7 7 5 4 6	2 3 0 3 5	1 0 3 3	75.98 76.56 80.68 80.68 82.16
1.156 1.154 1.147 1.139 1.137	1 2 2 9 8 2	5 0 6 7	5 2 0 4 4	2 3 4 2 1	83.51 83.74 84.36 85.04 85.21
1.116 1.100 1.091 1.077 1.052	9 1 1 5 4 9	6 7 6 8 8	6 5 1 3 0	0 0 3 1 2	87.29 88.81 89.82 91.28 94.15

	Calculated	Pattern	(In	tegr	ated)
d (A)	I		hkl	,	2Θ(°) λ = 1.540598A
1.037 1.027 1.025 1.020 1.013 1.008 1.002 1.002 1.002 990 980	0 3 6 1 4 8 4 1 7 5 4 2 4 1 9 6 6 2	6 8 9 3 7 4 9 7 7 8	3 2 0 3 0 2 2 6 2 5 1 1 5 0 0	3 2 1 4 3 4 1 1 3 1	95.89 97.19 97.37 98.04 98.95 99.57 100.44 102.03 103.54 104.22 108.09 108.32
.941		10	0 4	0	108.86 109.87
.931	5 8	7	4	3	111.55

Structure

Tetragonal, $P4_2/nbc$ (133), Z = 8. The structure was determined by Pedersen and Grønvold [1959] and shows relationship to the $\beta\textsc{-W}\xspace$ structure type.

Atom positions [ibid.]

8(j) 8 vanadium(1) 8(i) 8 vanadium(3)

8(j) 8 vanadium(2) 8(h) 8 sulfur

Polymorphism [ibid.]

The material was stable below 825 °C. gonal polymorph, α -V₃S has the space group $I\bar{4}2m$; it is stable above 950 °C and appears also in samples quenched from 1400 °C. The two structures are closely related.

Lattice constants [ibid.]

a = 9.381 A

c = 4.663

CD cell: a = 9.381, c = 4.663, c/a = 0.4971

Volume

410.4 A³

Density

(measured) 5.939 g/cm³ (calculated) 5.985 g/cm³

Thermal parameters

B = 0, since absorption and temperature effects nearly balance each other [Pedersen and Grønvold, 1959].

Scattering factors

 v^0 , s^0 , [Cromer polynomial format: Cromer, 1972; Cromer and Mann, 1968].

Scale factors (integrated intensities)

 $\gamma = 0.152 \times 10^{-3}$

References

Cromer, D. T. (1972). Private communication.

Cromer, D. T. and Mann, J. B. (1968). Acta Crystallogr. A24, 321.

Pedersen, B. and Grønvold, F. (1959). Acta Crystallogr. 12, 1022.

-		Calculated	Pattern	(Pea	k hei	ghts)
	d(A)	I		hkl		20 (°)
	α (11)	-		11112	λ	
			-			
	2.502	25	3	1	1	35.86
	2.345	2	4	0	0	38.36
	2.332	2 100	0 3	0 2	2	38.58 39.64
	2.211	60	3	3	0	40.78
		30	J	J	•	40070
	2.200	75	1	1	2	41.00
	2.097	45	4	2	0+	43.10
	2.045	_	4	1	1	44.26
	1.913		4	2	1	47.50
	1.907	60	2	2	2	47.64
	1.840	20	5	1	0	49.50
	1.834	19	3	1	2	49.68
	1.711	6	5	1	1	53.50
	1.653	9	4	0	2	55.54
	1.605	4	3	3	2	57.38
	1.483	4	6	2	0+	62.58
	1.464	15	6	1	1	63.48
	1.414	1	6	2	1	66.04
	1.398	1	5	4	1	66.88
	1.377	2	3	1	3	68.04
	1.351	4	4	4	2	69.50
	1.339	2	6	3	1	70.22
	1.334	14	3	2	3	70.52
	1.326	13	7	1	0+	71.00
	1.324	14	5	3	2	71.16
	1.298	4 14	6	0	2	72.78
	1.295		4	0	3	72.98
	1.283		4	1	3	73.76
	1.276		7	1	1	74.26
	1.253	1 9	6	4	1	75.86
	1.249	8 7	4	2	3	76.10
	1.242		7	2	1	76.66
	1.231		7	3	0	77.42
	1.191		7	3	1	80.60
	1.187	8 5	5	1	3	80.86
	1.165	7 9	0	0	4	82.72
	1.153	0 15	5	5	2	83.84
	1.136	1 2	6	4	2	85.38
	1.105		6	6	0	88.34
	1.094	7 5	6	1	3	89.44
	1.090	7 1	7	5	0	89.86
	1.068		8	3	1.	92.24
	1.061		7	5	1	93.00
	1.047		8	0	2	94.66
	1.031	2 7	3	3	4	96.66
	1.023	1 4	8	4	1	97.68
	1.022		8	2	2	97.76
	1.019		4	2	4	98.22
	1.011		9	1	1	99.22
	1.009	0 2	7	1	3	99.54

		Calculated	Pattern	(In	tegi	rated)
	đ(A)	I		hkl		2Θ(°) λ = 1.540598A
	2.503 2.345	20	3	1 0	1 0	35•85 38•35
l	2.331	1	0	0	2	38.58
l	2.272	100	3	2	1	39.64
	2.211	55	3	3	0	40.78
	2.200	65	1	1	2	41.00
١	2.098	35	4	2	0	43.09
l	2.095	16	4	0	1	43.14
l	2.088	16 75	2	0	2	43.30
l	2.045	75	4	1	1	44 • 26
ı	1.913	20	4	2	1	47.49
ı	1.907	55	2	2	2	47.64
l	1.840	20	5	1	0	49.50
1	1.833	13	3	1	2	49.70
l	1.711	7	5	1	1	53.50
١	1.653	9	4	0	2	55.53
ı	1.604	5	3	3	2	57.39
ı	1.483	4	6	2	0	62.57
ı	1.482	1	6	0	1	62.62
l	1.464	17	6	1	1	63.48
1	1.413	1	6	2	1	66.04
ı	1.398	1	5	4	1	66 • 89
ı	1.377	3	3	1	3	68.04
ı	1.351	5	4	4	2	69.50
	1.339	1	6	3	1	70.21
	1.334	15	3	2	3	70.52
l	1.327	8	7	1	0	70.99
ı	1.327	5	5	5	0	70.99
ı	1.324	10	5	3	2	71.14
l	1.301	3	6	4	0	72.62
l	1.2985		6	0	2	72.77
ı	1.295		4	0	3	72.96
ı	1.2834		4	1	3	73.77
1	1.2760		7	1	1	74.27
I	1.2531	1 10	6	4	1	75 • 87
ı	1.2515	5 1	6	2	2	75.98
	1.2488	5	4	2	3	76 • 17
	1.2420	7	7	2	1	76.66
ı	1.2318	6	7	3	0	77.42
l	1.1909	9 8	7	3	1	80.60
	1.1873	3 2	5	1	3	80.90
1	1.1657	7 10	0	0	4	82.72
1	1.1531	18	5	5	2	83.83
1	1.1360		6	4	2	85.38
	1+1056	5 3	6	6	0	88.33
	1.0948		6	1	3	89.44
	1.0905		7	5	0	89.88
	1.0687	-	8	3	1	92.23
	1.0619		7	5	1	93.01
	1.0476	5 7	8	0	2	94.67
9						

C	Calculated	Pattern	(In	tegr	ated)
d(Å)	I		hkl		2Θ(°) ° λ = 1.540598A
1.0312 1.0233 1.0224 1.0190 1.0113	9 3 3 6 3	3 8 8 4 9		4 1 2 4 1	96.66 97.66 97.78 98.22 99.23

	Vol. or Sec.	Page		Vol. or	Dago
	360.	rage		Sec.	Page
Aluminum, Al	1	11	Ammonium copper bromide hydrate,		
Aluminum antimony, AlSb	4	72	(NH ₄) ₂ CuBr ₄ ·2H ₂ O	10m	6
Aluminum bismuth oxide, Al ₄ Bi ₂ O ₉	11m	5	Ammonium copper chloride, NH ₄ CuCl ₃	7m	7
Aluminum chloride, AlCl ₃ Aluminum chloride hydrate	9m	61	Ammonium copper chloride hydrate, (NH ₄) ₂ CuCl ₄ •2H ₂ O	1.2m	6
(chloraluminite), AlCl ₃ ·6H ₂ O	7	3	Ammonium copper fluoride, NH ₄ CuF ₃	12m 11m	6 8
Aluminum copper, Al ₄ Cu ₉	11m	79	Ammonium gallium sulfate hydrate,	11111	O
Aluminum fluoride hydroxide silicate			NH ₄ Ga (SO ₄) ₂ ·12H ₂ O	6	9
topaz, Al ₂ (F,OH) ₂ SiO ₄	lm	4	Ammonium germanium fluoride,		
Aluminum lithium, Al ₄ Li ₉	10m	98	(NH ₄) ₂ GeF ₆	6	8
Aluminum nickel, AlNi	6m	82	Ammonium hydrogen carbonate		
Aluminum nitride, AlN	12m	5	(teschemacherite), (NH ₄)HCO ₃	9	5
Aluminum nitrate hydrate,	1 7	_	Ammonium hydrogen phosphate,	4	<i>c</i> 1
A1 (NO ₃) 3 • 9H ₂ O	11m 9	6 3	NH ₄ H ₂ PO ₄	1000	64 7
Aluminum oxide (corundum), α -Al ₂ O ₃ Aluminum oxide hydrate (boehmite),	Ð	3	Ammonium iodate, NH ₄ IO ₃	10m 4	56
α-Al ₂ O ₃ ·H ₂ O	3	38	Ammonium iridium chloride,	•	30
Aluminum oxide hydrate, diaspore,		• •	(NH ₄) ₂ IrCl ₆	8	6
β-Al ₂ O ₃ ·H ₂ O	3	41	Ammonium iron chloride hydrate,		
Aluminum phosphate, Al(PO ₃) ₃	2m	3	(NH ₄) ₂ FeCl ₅ ·H ₂ O	14m	7
Aluminum phosphate (berlinite),			Ammonium iron fluoride, (NH ₄) ₃ FeF ₆	9m	9
AlPO ₄ (trigonal)	10	3	Ammonium iron sulfate, NH ₄ Fe(SO ₄) ₂	10m	8
Aluminum phosphate, AlPO ₄	1.0		Ammonium iron sulfate hydrate,		
(orthorhombic)	10	4	NH ₄ Fe(SO ₄) ₂ ·12H ₂ O	6	10
Aluminum silicate (mullite),	2m	3	Ammonium lead chloride, (NH ₄) ₂ PbCl ₆	11m	10
Al ₆ Si ₂ O ₁₃ Aluminum tungsten oxide, Al ₂ (WO ₄) ₃	3m 11m	7	Ammonium magnesium aluminum fluoride NH4MgAlF6	, 10m	9
Ammonium aluminum fluoride,	± ± ***	,	Ammonium magnesium chromium oxide	10111	
(NH ₄) ₃ AlF ₆	9m	5	hydrate, (NH ₄) ₂ Mg(CrO ₄) ₂ ·6H ₂ O	8m	10
Ammonium aluminum selenate hydrate,			Ammonium magnesium phosphate hydrate		
NH ₄ Al(SeO ₄) ₂ ·12H ₂ O	9m	6	(struvite), MgNH ₄ PO ₄ ·6H ₂ O	3m	41
Ammonium aluminum sulfate,			Ammonium manganese chloride hydrate,		
NH ₄ Al(SO ₄) ₂	10m	5	(NH ₄) ₂ MnCl ₄ ·2H ₂ O	11m	11
Ammonium aluminum sulfate hydrate			Ammonium manganese(II) fluoride,	_	
(tschermigite), NH ₄ Al(SO ₄) ₂ ·12H ₂ O	6	3	NH ₄ MnF ₃	5m	8
Ammonium azide, NH ₄ N ₃	9	4	Ammonium manganese sulfate,	7m	8
Ammonium beryllium fluoride, (NH ₄) ₂ BeF ₄	3m	5	(NH ₄) ₂ Mn ₂ (SO ₄) ₃	7111	0
Ammonium boron fluoride, NH ₄ BF ₄	3m	6	(NH ₄) ₂ Mn(SO ₄) ₂ ·6H ₂ O	8m	12
Ammonium bromide, NH ₄ Br	2	49	Ammonium mercury chloride, NH ₄ HgCl ₃	8m	14
Ammonium cadmium chloride, NH ₄ CdCl ₃	5m	6	Ammonium molybdenum oxide phosphate		
Ammonium cadmium sulfate,			hydrate, (NH ₄) ₃ (MoO ₃) ₁₂ PO ₄ ·4H ₂ O	8	10
$(NH_4)_2Cd_2(SO_4)_3$	7m	5	Ammonium nickel(II) chloride,		
Ammonium cadmium sulfate hydrate,		_	NH ₄ NiCl ₃	6m	6
(NF ₄) ₂ Cd (SO ₄) ₂ ·6H ₂ O	8m	5	Ammonium nickel chromium oxide	0	1.0
Ammonium calcium sulfate,	Om	7	hydrate, (NH ₄) ₂ Ni(CrO ₄) ₂ ·6H ₂ O Ammonium nitrate (nitrammite),	8m	16
(NH ₄) ₂ Ca ₂ (SO ₄) ₃ Ammonium chlorate, NH ₄ ClO ₄	8m	′	NH ₄ NO ₃	7	4
(orthorhombic)	7	6	Ammonium osmium bromide, (NH ₄) ₂ OsBr ₆	3	71
Ammonium chloride (sal-ammoniac),	•		Ammonium osmium chloride,		
NH ₄ Cl	1	59	(NH ₄) ₂ OsCl ₆	1m	6
Ammonium chromium sulfate hydrate,			Ammonium palladium chloride,		
NH ₄ Cr(SO ₄) ₂ ·12H ₂ O	6	7	(NH ₄) 2PdCl ₄	6	6
Ammonium cobalt (II) chloride,		_	Ammonium palladium chloride,		_
NH ₄ CoCl ₃	6ın	5	(NH ₄) ₂ PdCl ₆	8	7
Ammonium cobalt fluoride, NH ₄ CoF ₃	8m	9	Ammonium platinum bromide,	0	6
			(NH ₄) ₂ PtBr ₆	9	6
			(NH ₄) ₂ PtCl ₆	5	3
Further work on this program i			Ammonium potassium iron chloride		J
and it is anticipated that addit			hydrate (kremersite),		
will be issued. Therefore, the cum			(NH ₄ ,K) ₂ FeCl ₅ • H ₂ O	14m	8
here is not necessarily the conclu	aing inc	ex ror	Ammonium rhenium oxide, NH4ReO4	9	7
the project. m - Monograph 25.			Ammonium selenium bromide,		
A mineral name in () indicat	es a svr	thetic	(NH ₄) ₂ SeBr ₆	8	4
sample.					

122

sample.

V	ol. or			Vol. or	
	Sec.	Page		Sec.	Page
Ammonium silicon fluoride			Barium bromate hydrate,		
(cryptohalite), (NH ₄) ₂ SiF ₆	5	5	Ba (BrO ₃) ₂ •H ₂ O	8m	19
Ammonium strontium chromium oxide,			Barium bromide, BaBr ₂	10m	63
(NH ₄) ₂ Sr (CrO ₄) ₂	14m	9	Barium bromide fluoride, BaBrF	10m	10
Ammonium sulfate (mascagnite),	0	0	Barium bromide hydrate, BaBr ₂ •H ₂ O	3m	10
(NH ₄) ₂ SO ₄	9	8	Barium calcium nitrate, Ba _{.25} Ca _{.75} (NO ₃) ₂	12m	38
(NH ₄) ₂ TeBr ₆	8	5	Barium calcium nitrate,	12111	30
Ammonium tellurium chloride,			Ba _{.50} Ca _{.50} (NO ₃) ₂	12m	38
(NH ₄) ₂ TeCl ₆	8	8	Barium calcium nitrate,		
Ammonium tin chloride, (NH ₄) ₂ SnCl ₆	5	4	Ba _{.75} Ca _{.25} (NO ₃) ₂	12m	38
Ammonium vanadium oxide, NH ₄ VO ₃	8	9	Barium calcium tungsten oxide,	0	1.0
Ammonium zinc fluoride, NH ₄ ZnF ₃	8m	18	Ba ₂ CaWO ₆	9m	10
Ammonium zirconium fluoride, (NH ₄) ₃ ZrF ₇	6	14	Barium carbonate (witherite), BaCO ₃ (orthorhombic)	2	54
Antimony, Sb	3	14	Barium carbonate, BaCO ₃ (cubic)	2	24
Antimony cerium, CeSb	4m	40	at 1075 °C	10	11
Antimony dysprosium, DySb	4m	41	Barium chlorate hydrate,		
Antimony erbium, ErSb	4m	41	Ba (C10 ₄) ₂ • 3H ₂ O	2m	7
Antimony(III) fluoride, SbF ₃	2m	4	Barium chlorate hydrate,		
Antimony gadolinium, GdSb	4m	42	Ba (ClO ₃) ₂ ·H ₂ O	8m	21
Antimony gallium, GaSb Antimony gold (aurostibite), AuSb ₂ .	6 7	30 18	Barium chloride, BaCl ₂ , (cubic) Barium chloride, BaCl ₂ ,	9m	13
Antimony indium, Insb	4	73	(orthorhombic)	9m	11
Antimony(III) iodide, SbI ₃	6	16	Barium chloride fluoride, BaClF	10m	11
Antimony lanthanum, LaSb	4m	42	Barium chloride hydrate, BaCl ₂ •2H ₂ O	12m	9
Antimony neodymium, NdSb	4m	43	Barium fluoride, BaF ₂	1	70
Antimony(III) oxide (senarmontite),			Barium hydroxide phosphate,		
Sb ₂ O ₃ (cubic)	3	31	Ba ₅ (OH)(PO ₄) ₃	11m	12
Antimony (III) oxide, valentinite,	10	6	Barium load chlorido BaDbCl.	10m	66
Sb ₂ O ₃ (orthorhombic)	10	0	Barium lead chloride, BaPbCl ₄ Barium lead nitrate,	11m	13
Sb ₂ O ₄	10	8	Ba 67Pb 33 (NO 3) 2	12m	40
Antimony(V) oxide, Sb ₂ O ₅	10	10	Barium lead nitrate,		
Antimony praseodymium, PrSb	4m	43	Ba _{.67} Pb _{.33} (NO ₃) ₂	12m	40
Antimony scandium, SbSc	4m	44	Barium molybdenum oxide, BaMoO4	7	7
Antimony selenide, Sb ₂ Se ₃	3m	7	Barium molybdenum oxide, Ba ₂ MoO ₅	12m	10
Antimony silver sulfide, AgSbS ₂	5m	48	Barium nitrate (nitrobarite),	11m	14
(cubic)	Jiii	40	Ba (NO ₃) ₂ Barium oxide, BaO	9m	63
AgSbS ₂ (monoclinic)	5m	49	Barium oxide, BaO ₂	6	18
Antimony silver sulfide (pyrargyrite),			Barium phosphate, Ba3(PO4)2	12m	12
Ag ₃ SbS ₃ (trigonal)	5m	51	Barium selenide, BaSe	5m	61
Antimony silver telluride, AgSbTe ₂ .	3m	47	Barium silicate, β-BaSiO ₃	13m	8
Antimony(III) sulfide (stibnite),	_		Barium silicate (sanbornite),	1.2	7.0
Sb ₂ S ₃ Antimony telluride, Sb ₂ Te ₃	5 3m	6 8	β -BaSi ₂ O ₅ Barium silicate, Ba ₂ SiO ₄	13m	10
Antimony terbium, SbTb	5m	61	Barium silicate, Ba ₂ Si ₃ O ₈	13m 13m	12 13
Antimony thorium, SbTh	4m	44	Barium silicate, Ba ₃ SiO ₅	13m	15
Antimony thulium, SbTm	4m	45	Barium silicate, Ba ₃ Si ₅ O ₁₃	1.3m	17
Antimony ytterbium, SbYb	4m	45	Barium silicon fluoride, BaSiF ₆	4m	7
Antimony yttrium, SbY	4m	46	Barium strontium nitrate,		
Arsenic, As	3	6	Ba 25Sr 75 (NO ₃) 2	12m	42
Arsenic cerium, AsCe	4m 13m	51 7	Barium strontium nitrate,	1.2m	42
Arsenic(III) iodide, AsI ₃ Arsenic oxide (arsenolite),	13111	,	Ba _{.50} Sr _{.50} (NO ₃) ₂	12m	42
As ₂ O ₃ (cubic)	1	51	Ba.75Sr.25 (NO ₃) ₂	12m	42
Arsenic oxide, claudetite, As ₂ O ₃			Barium sulfate (baryte), BaSO ₄	10m	12
(monoclinic)	3m	9	Barium sulfide, BaS	7	8
Barium, Ba	4	7	Barium tin oxide, BaSnO ₃	3m	11
Barium aluminum oxide, BaAl ₂ O ₄	5m	11	Barium titanium oxide, BaTiO ₃	3	45
Barium aluminum oxide, Ba ₃ Al ₂ O ₆ Barium arsenate, Ba ₃ (AsO ₄) ₂	12m 2m	7 6	Barium titanium silicate (fresnoite),	_	1.4
Barium borate, BaB ₄ O ₇	2m 4m	6	Ba ₂ TiSi ₂ O ₈ Barium tungsten oxide, BaWO ₄	9 m 7	14 9
Barium borate, high form, BaB ₂ O ₄	4m	4	Barium tungsten oxide, Ba ₂ WO ₅	12m	14
Barium borate, BaB ₈ O ₁₃	7m	10	. 2 3		
		1:	23		

	Vol. or Sec.	Page		Vol. or Sec.	Page
Barium vanadium oxide, Ba ₃ (VO ₄) ₂ Barium zirconium oxide, BaZrO ₃	14m 5	10 8	Cadmium praseodymium, CdPr	5m	64
Beryllium, alpha, Be	9m	64	CdSe (hexagonal)	7	12
Beryllium aluminum oxide			Cadmium silicate, Cd ₂ SiO ₄	13m	19
(chrysoberyl), BeAl ₂ O ₄	9	10	Cadmium silicate, Cd ₃ SiO ₅	13m	20
Beryllium aluminum silicate; beryl,			Cadmium sulfate, CdSO ₄	3m	20
Be ₃ Al ₂ (SiO ₃) ₆	9	13	Cadmium sulfate hydrate,	c	_
Beryllium calcium oxide, Be ₁₇ Ca ₁₂ O ₂₉ Beryllium chromium oxide, BeCr ₂ O ₄	7m	89 12	3CdSO ₄ •8H ₂ O	6m	8
Beryllium cobalt, BeCo	10 5m	62	Cadmium sulfide (greenockite), CdS	6m 4	10 15
Beryllium germanium oxide, Be ₂ GeO ₄	10	13	Cadmium telluride, CdTe	3m	21
Beryllium lanthanum oxide, Be ₂ La ₂ O ₅	9m	65	Cadmium tungsten oxide, CdWO4	2m	8
Beryllium niobium, Be ₂ Nb	7m	92	Calcium, Ca	9m	68
Beryllium oxide (bromellite), BeO	1	36	Calcium aluminum germanium oxide,		
Beryllium palladium, BePd	5m	62	$Ca_3Al_2(GeO_4)_3$	10	15
Beryllium silicate, phenacite,			Calcium aluminum hydroxide,		
BeSi ₂ O ₄	8	11	Ca ₃ Al ₂ (OH) ₁₂	11m	16
Bismuth, Bi	3	20	Calcium aluminum oxide, Ca ₃ Al ₂ O ₆	5	10
Bismuth decreasing BiDy	4m	46	Calcium aluminum oxide (mayenite),	•	2.0
Bismuth dysprosium, BiDy Bismuth erbium, BiEr	4m	47	Calcium aluminum sulfate hydrate	9	20
Bismuth fluoride, BiF ₃	4m 1m	47 7	(ettringite), Ca ₆ Al ₂ S ₃ O ₁₈ ·3lH ₂ O	8	3
Bismuth holmium, BiHo	4m	48	Calcium bromide, CaBr ₂	11m	70
Bismuth(III) iodide, BiI ₃	6	20	Calcium bromide hydrate, CaBr ₂ •6H ₂ O	8	15
Bismuth lanthanum, BiLa	4m	48	Calcium carbonate (aragonite),		
Bismuth neodymium, BiNd	4m	49	CaCO ₃ (orthorhombic)	3	53
Bismuth oxide (bismite), α -Bi ₂ O ₃	3m	16	Calcium carbonate (aragonite), CaCO3		
Bismuth oxide bromide, BiOBr	8	14	(orthorhombic, calculated pattern)	14m	44
Bismuth oxide chloride (bismoclite),			Calcium carbonate (calcite),		
BiOCl	4	54	CaCO ₃ (hexagonal)	2	51
Bismuth oxide iodide, BiOI	9	16	Calcium chloride (hydrophilite),		
Bismuth phosphate, BiPO4 (monoclinic)	3m	11	CaCl ₂	11m	18
Bismuth phosphate, BiPO ₄ (trigonal)	3m	13	Calcium chloride fluoride, CaClF	10m	17
Bismuth praseodymium, BiPr Bismuth sulfide (bismuthinite),	4m	49	Calcium chloride hydrate, CaCl ₂ •4H ₂ O	1 1tm	72
Bi ₂ S ₃	5m	13	Calcium chloride hydrate	11m	73
Bismuth telluride, BiTe	4m	50	(antarcticite), CaCl ₂ ·6H ₂ O	12m	16
Bismuth telluride (tellurobis-	****	30	Calcium chromium germanium oxide,		
muthite), Bi ₂ Te ₃	3m	16	Ca ₃ Cr ₂ (GeO ₄) ₃	10	16
Bismuth vanadium oxide, low form,			Calcium chromium oxide (chromatite),		
BiVO ₄ (tetragonal)	3m	14	CaCrO ₄	7	13
Bismuth vanadium oxide, high form,			Calcium chromium silicate (uvarovite)	,	
BiVO ₄ (monoclinic)	3m	14	Ca ₃ Cr ₂ (SiO ₄) ₃	10	17
Boron oxide, B ₂ O ₃ , phase 1	10m	70	Calcium fluoride (fluorite), CaF ₂	1	69
Cadmium, Cd	3	10	Calcium fluoride phosphate	3	22
Cadmium ammine chloride,	10	14	(fluorapatite), Ca ₅ F(PO ₄) ₃ Calcium gallium germanium oxide,	3m	22
Cd (NH ₃) ₂ Cl ₂	10m 9	14 17	Ca ₃ Ga ₂ (GeO ₄) ₃	10	18
Cadmium bromide chloride, CdBrCl	11m	15	Calcium hydrogen phosphate hydrate,	10	10
Cadmium carbonate (otavite), CdCO ₃	7	11	Ca ₈ H ₂ (PO ₄) ₆ • 5H ₂ O	13m	21
Cadmium cerium, CdCe	5m	63	Calcium hydroxide (portlandite),		
Cadmium chlorate hydrate,			Ca (OH) 2	1	58
Cd(ClO ₄) ₂ ·6H ₂ O	3m	19	Calcium iodate (lautarite), Ca(IO3)2	14m	12
Cadmium chloride, CdCl ₂	9	18	Calcium iodate hydrate,		
Cadmium chromium oxide, CdCr ₂ O ₄	5m	16	Ca(IO ₃) ₂ ·6H ₂ O	14m	13
Cadmium copper, Cd ₈ Cu ₅	11m	81	Calcium iron germanium oxide,		
Cadmium cyanide, Cd(CN) ₂	2m	8	Calsium incompatible to (and and data)	10	19
Cadmium fluoride, CdF ₂	10m	15	Calcium iron silicate (andradite),	0	22
Cadmium lanthanum CdLa	9m 5m	16	CagFe ₂ Si ₃ O ₁₂	9	22
Cadmium lanthanum, CdLa	5m 10m	63 16	goldite, Ca ₂ Fe ₃ Si ₃ O ₁₀ (OH,O) ₂ (OH) ₂	10m	72
Cadmium molybdenum oxide, CdMoO ₄	6	21	Calcium lead nitrate,		
Cadmium nitrate hydrate,	Ü	-1	Ca_33Pb_67(NO ₃) ₂	12m	44
Cd (NO ₃) ₂ •4H ₂ O	7m	93	Calcium lead nitrate,		
Cadmium oxide, CdO	2	27	Ca _{.67} Pb _{.33} (NO ₃) ₂	12m	44
Cadmium oxide, CdO (ref. standard)	8m	2			

	Vol. or Sec.	Page		Vol. or S∈c.	Page
Calcium magnesium silicate			Cesium chlorate, CsClO4,		
(diopside), CaMg(SiO ₃) ₂	5m	17	(orthorhombic)	lm	10
Calcium molybdenum oxide			Cesium chloride, CsCl	2	44
(powellite), CaMoO ₄	6	22	Cesium chromium oxide, Cs ₂ CrO ₄	3m	25
Calcium nitrate, Ca(NO ₃) ₂	7	14	Cesium chromium sulfate hydrate,		
Calcium oxide, (lime), CaO	1	43	CsCr (SO ₄) ₂ ·12H ₂ O	8	21
Calcium oxide, (lime), CaO			Cesium cobalt(II) chloride, CsCoCl ₃	6m	11
(calculated pattern)	14m	49	Cesium cobalt chloride, Cs ₂ CoCl ₄	11m	19
Calcium oxide phosphate, Ca ₄ O(PO ₄) ₂	12m	17	Cesium copper(II) chloride, CsCuCl ₃	5m	22
Calcium phosphate, β-Ca ₂ P ₂ O ₇	7m	95	Cesium copper chloride, Cs ₂ CuCl ₄	11m	20
Calcium platinum oxide, Ca ₄ PtO ₆	10m	18	Cesium copper sulfate hydrate, Cs ₂ Cu(SO ₄) ₂ •6H ₂ O	7m	14
Calcium selenide, CaSe	5 m	64	Cesium fluoride, CsF	3m	26
Calcium strontium nitrate,	1 2	46	Cesium gallium sulfate hydrate,	31.11	
Ca _{.33} Sr _{.67} (NO ₃) ₂	12m	40	CsGa (SO ₄) 2 • 12H ₂ O	8	23
Ca_67Sr_33(NO ₃) ₂	12m	46	Cesium germanium fluoride, Cs ₂ GeF ₆	5	17
Calcium sulfate (anhydrite), CaSO ₄	4	65	Cesium iodide, CsI	4	47
Calcium sulfide (oldhamite), CaS	7	15	Cesium iodine bromide, CsI2Br	7m	103
Calcium telluride, CaTe	4m	50	Cesium iodine chloride, CsICl2	3	50
Calcium titanium oxide			Cesium iron chloride hydrate,		
(perovskite), CaTiO ₃	9m	17	Cs ₂ FeCl ₅ *H ₂ O	14m	14
Calcium tungsten oxide, Ca3WO6	9m	19	Cesium iron sulfate hydrate,	_	
Calcium tungsten oxide, scheelite,			Cs ₂ Fe(SO ₄) ₂ •6H ₂ O	7m	16
CaWO ₄	6	23	Cesium iron sulfate hydrate,	_	20
Carbon, diamond, C	2	5	CsFe (SO ₄) 2·12H ₂ O	6	28
Cerium arsenate, CeAsO4	4m	8	Cesium lead(II) chloride, CsPbCl ₃	5	24
Cerium(III) chloride, CeCl ₃	1m	8	(tetragonal)		26
Cerium cobalt, CeCo ₂	13m	50	Cesium lithium cobalt cyanide,	Om	20
Cerium cobalt, Ce ₂₄ Co ₁₁	13m	51 99	CsLiCo (CN) 6	10m	79
Cerium copper, CeCu ₆	7m 8	17	Cesium lithium fluoride, CsLiF ₂		105
Cerium(III) fluoride, CeF ₃ Cerium gallium, CeGa ₂	13m	54	Cesium magnesium chromium oxide,		
Cerium magnesium, CeMg	5m	65	Cs ₂ Mg ₂ (CrO ₄) ₃	8m	27
Cerium magnesium, CeMg3	13m	56	Cesium magnesium chromium oxide		
Cerium nickel, CeNi ₂	13m	58	hydrate, Cs ₂ Mg(CrO ₄) ₂ •6H ₂ O	8m	29
Cerium niobium titanium oxide			Cesium magnesium sulfate hydrate,		
(aeschynite), CeNbTiO ₆	. 3m	24	$Cs_2Mg(SO_4)_2 \cdot 6H_2O$	7m	18
Cerium nitride, CeN	4m	51	Cesium manganese fluoride, CsMnF3	10m	21
Cerium(IV) oxide (cerianite), CeO ₂	1	56	Cesium manganese sulfate hydrate,	_	
Cerium phosphide, CeP	4m	52	Cs ₂ Mn(SO ₄) ₂ •6H ₂ O		20
Cerium thallium, CeTl	13m	59	Cesium mercury chloride, CsHgCl ₃		22
Cerium thallium, CeTl ₃	13m	60	Cesium nickel (II) chloride, CsNiCl ₃	6m	12
Cerium thallium, Ce ₃ Tl	13m	61	Cesium nickel sulfate hydrate, Cs ₂ Ni(SO ₄) ₂ ·6H ₂ O	7m	23
Cerium (III) vanadium oxide, CeVO ₄	lm 5	9	Cesium nitrate, CsNO ₃		25
Cerium zinc, CeZn	5m 14m	65 50	Cesium osmium(IV) bromide, Cs ₂ OsBr ₆	2m	10
Cerium zinc, CeZn ₃ Cerium zinc, CeZn ₅	14m	53	Cesium osmium chloride, Cs ₂ OsCl ₆		11
Cerium zinc, Ce ₂ Zn ₁ 7	14m	55	Cesium platinum bromide, Cs2PtBr6		19
Cesium aluminum sulfate hydrate,			Cesium platinum chloride, Cs ₂ PtCl ₆	5	14
CsAl(SO ₄) ₂ ·12H ₂ O	6	25	Cesium platinum fluoride, Cs2PtF6	. 6	27
Cesium antimony fluoride, CsSbF6	4m	9	Cesium selenium bromide, Cs ₂ SeBr ₆	. 8	20
Cesium beryllium fluoride, CsBeF3	9m	69	Cesium silicon fluoride, Cs ₂ SiF ₆	. 5	19
Cesium boron fluoride, CsBF4	8	22	Cesium strontium chloride, CsSrCl ₃	6m	13
Cesium bromate, CsBrO3	8	18	Cesium sulfate, Cs ₂ SO ₄		17
Cesium bromide, CsBr	3	49	Cesium tellurium bromide, Cs ₂ TeBr ₆	9	24
Cesium cadmium bromide, CsCdBr ₃			Cesium tin chloride, Cs ₂ SnCl ₆	. 5	16
(hexagonal)	10m	20	Cesium vanadium sulfate hydrate,	1	11
Cesium cadmium chloride, CsCdCl ₃	_		CsV(SO ₄) ₂ ·12H ₂ O	. 1m	11
(hexagonal)	5m	19	Cesium zinc sulfate hydrate, $Cs_2Zn(SO_4)_2 \cdot 6H_2O \cdot	7m	25
Cesium calcium chloride, CsCaCl ₃	5m	21	Chromium, Cr		20
Cesium calcium sulfate (ScCar(SO.))	8m 7m	25 12	Chromium chloride, CrCl ₂		77
Cesium calcium sulfate, Cs ₂ Ca ₂ (SO ₄) ₃ Cesium cerium chloride, Cs ₂ CeCl ₆	7m 14m	12 58	Chromium cobalt silicide, Co ₉ Cr ₁₅ Si ₆		62
Cesium chlorate, CsClO ₃	8	20	Chromium fluoride, CrF2		81
,	_				

,	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Chromium fluoride, Cr ₂ F ₅ Chromium(III) fluoride hydrate,	7m	108	Cobalt nickel tin, Co 75Ni 75Sn 75 Cobalt nitrate hydrate,	13m	88
CrF ₃ •3H ₂ O	5m	25	α -Co (NO ₃) ₂ ·6H ₂ O	12m	22
Chromium iridium 3:1, Cr ₃ Ir	6m	14	Cobalt(II) oxide, CoO	9	28
Chromium(III) oxide, Cr ₂ O ₃	5	22	Cobalt(II,III) oxide, Co ₃ O ₄	9	29
Chromium phosphate, α-CrPO ₄	2m	12	Cobalt phosphate, Co(PO ₃) ₂	13m	23
Chromium phosphate, β -CrPO ₄	9	26	Cobalt phosphide, CoP	14m	83
Chromium rhodium 3:1, Cr ₃ Rh	6m	15	Cobalt phosphide, CoP ₃	14m	85
Chromium silicide, Cr ₃ Si	6	29	Cobalt plutonium, CoPu ₂	14m	87
Cobalt, Co (cubic)	4m	10	Cobalt plutonium, CoPu ₆	14m	89
Cobalt aluminum oxide, CoAl ₂ O ₄	9	27	Cobalt plutonium, Co ₂ Pu	14m	91
Cobalt ammine iodide, Co(NH ₃) ₆ I ₃	10m	83	Cobalt plutonium, Co ₃ Pu	14m	92
Cobalt argenide Cols	5m	26	Cobalt pracodymium Co Pr	14m	94
Cobalt arsenide, CoAs ₂	4m	10	Cobalt praseodymium, Co ₂ Pr Cobalt rhodium sulfide, Co ₈ RhS ₈	14m	97
CoAs ₃	10	21	Cobalt ruthenium sulfide, CogRuSg	14m	98 100
Cobalt borate, Co ₃ (BO ₃) ₂	12m	20	Cobalt samarium, Co ₅ Sm	14m 13m	90
Cobalt bromide hydrate, CoBr ₂ •6H ₂ O	12m	21	Cobalt silicate, Co ₂ SiO ₄	1 311	90
Cobalt(II) carbonate (sphero-			(orthorhombic)	4m	11
cobaltite), CoCO3	10	24	Cobalt silicon fluoride hydrate,		
Cobalt chlorate hydrate,			CoSiF ₆ ·6H ₂ O	3m	27
Co(ClO ₄) ₂ ·6H ₂ O	3m	28	Cobalt sulfate, β-CoSO ₄	2m	14
Cobalt chloride hydrate, CoCl ₂ •2H ₂ O	llm	22	Cobalt tantalum silicide, Col6Ta6Si7	14m	102
Cobalt chloride hydrate, CoCl ₂ ·6H ₂ O	llm	23	Cobalt thorium, Co ₁₇ Th ₂	12m	64
Cobalt chromium oxide, CoCr ₂ O ₄	9m	21	Cobalt tin, Co ₃ Sn ₂	13m	92
Cobalt copper tin, CoCu ₂ Sn	14m	64	Cobalt titanium oxide, CoTiO3	4m	13
Cobalt dysprosium, Co ₂ Dy	13m	63	Cobalt titanium silicide, Co ₁₆ Ti ₆ Si ₇	14m	104
Cobalt erbium, Co ₂ Er	13m	64	Cobalt tungsten oxide, CoWO4	4m	13
Cobalt erbium, Co7Er2	13m	65	Copper, Cu	1	15
Cobalt fluoride, CoF ₂	10m	85	Copper ammine selenate,		
Cobalt fluoride hydrate, CoF ₂ ·4H ₂ O	llm	24	Cu(NH ₃) ₄ SeO ₄	10m	87
Cobalt gadolinium, CoGd3	13m	68	Copper ammine sulfate hydrate,		
Cobalt gadolinium, Co ₂ Gd	13m	71	Cu (NH ₃) ₄ SO ₄ • H ₂ O	10m	90
Cobalt gadolinium, Co ₇ Gd ₂	13m	72	Copper antimony oxide, CuSb ₂ O ₆	5m	27
Cobalt gallium hafnium, Co ₂ GaHf	14m	65	Copper(I) bromide, CuBr	4	36
Cobalt gallium manganese, Co ₂ GaMn	13m	75	Copper(I) chloride (nantokite),		
Cobalt gallium niobium, Co ₂ GaNb	14m	66	Cucl	4	35
Cobalt gallium tantalum Co Com	10	27	Copper fluoride hydrate, CuF ₂ ·2H ₂ O	11m	25
Cobalt gallium tantalum, Co ₂ GaTa Cobalt gallium titanium, Co ₂ GaTi	13m	76	Copper hydrogen phosphite hydrate,	11m	83
Cobalt gallium vanadium, Co ₂ GaV	13m	77	CuHPO ₃ •2H ₂ O	T T I II	03
Cobalt germanium, Co ₃ Ge ₂	13m	78 67	azurite, Cu ₃ (OH) ₂ (CO ₃) ₂	10	30
Cobalt germanium hafnium, Co ₁₆ Ge ₇ Hf ₆	14m 14m	69	Copper hydroxide carbonate	10	30
Cobalt germanium manganese, Co ₂ GeMn.	13m	79	(malachite), Cu ₂ (OH) ₂ CO ₃	10	31
Cobalt germanium niobium, Co ₁₆ Ge ₇ Nb ₆	14m	71	Copper(I) iodide (marchite), CuI	4	38
Cobalt germanium oxide, Co ₂ GeO ₄	10	27	Copper(I) oxide (cuprite), Cu ₂ O	2	23
Cobalt germanium tantalum, Co ₁₆ Ge ₇ Ta ₆	14m	73	Copper (II) oxide (tenorite), CuO	1	49
Cobalt germanium titanium, Co ₂ GeTi	13m	80	Copper phosphate, Cu(PO ₃) ₂	14m	15
Cobalt hafnium tin, Co ₂ HfSn	14m	75	Copper phosphate, α-Cu ₂ P ₂ O ₇	7m	113
Cobalt holmium, Co ₂ Ho	14m	76	Copper sulfate (chalcocyanite),		
Cobalt indium, CoIn ₃	13m	81	CuSO ₄	3m	29
Cobalt iodide, CoI ₂	4m	52	Copper(II) sulfide (covellite), CuS	4	13
Cobalt iron arsenide (safflorite),			Copper uranium oxide, CuUO ₄	10m	93
CoFeAs ₄	10	28	Dysprosium arsenate, DyAsO ₄	3m	30
Cobalt iron oxide, CoFe ₂ O ₄	9m	22	Dysprosium arsenide, DyAs	4m	53
Cobalt iron sulfide, Co ₈ FeS ₈	14m	77	Dysprosium gallium oxide,		
Cobalt iron vanadium,			Dy 3Ga 5012	2m	15
Co4.35Fe13.47V12.18	14m	79	Dysprosium gold, DyAu	5m	66
Cobalt lanthanum, CoLa ₃	13m	83	Dysprosium nitride, DyN	4m	53
Cobalt lutetium, Co ₂ Lu	13m	86	Dysprosium oxide, Dy ₂ O ₃	9	30
Cobalt manganese silicide, Co ₂ MnSi	14m	81	Dysprosium silver, DyAg	5m	66
Column (CNS)	_		Dysprosium telluride, DyTe	4m	54
Co[Hg(CNS) ₄]	2m	13	Dysprosium vanadium oxide, DyVO ₄	4m	15
Cobalt modymium, Co.Nd	14m	82	Erbium arsenate, ErAsO4	3m 4m	31
Cobalt neodymium, Co ₂ Nd	13m	87	Erbium arsenide, ErAs	4m	54

	Vol. or Sec.	Page		Vol. or Sec.	Page
Erbium gallium ovide EraGasO.o	lm	12	Holmium oxide, Ho ₂ O ₃	9	32
Erbium gallium oxide, $Er_3Ga_5O_{12}$ Erbium manganese oxide, $ErMnO_3$	2m	16	Holmium selenide, HoSe	4m	59
Erbium nitride, ErN	4m	55	Holmium silver, HoAg	5m	68
Erbium oxide, Er ₂ O ₃	8	25	Holmium vanadium oxide, HoVO4	4m	18
Erbium phosphate, ErPO4	9	31	Hydrogen amidosulfate, H ₂ NSO ₃ H	7	54
Erbium silver, ErAg	5m	67	Hydrogen arsenate, H ₅ As ₃ O ₁₀	7m	84
Erbium telluride, ErTe	4m	55	Hydrogen borate, β-HBO ₂	9m	71
Erbium vanadium oxide, ErVO4	5m	29	Hydrogen borate (metaborite),	0	27
Europium arsenate, EuAsO4	3m	32	HBO ₂ (cubic)	4m 5	27 28
Europium(III) chloride, EuCl ₃ Europium gallium oxide,	1m	13	Hydrogen iodate, HIO ₃	8m	104
Eu ₃ Ga ₅ O ₁₂	2m	17	Hydrogen phosphate hydrate,		
Europium nitride, EuN	4m	56	H ₃ PO ₄ ·½H ₂ O	12m	56
Europium oxide, EuO	4m	56	Hydrogen tellurate, H ₆ TeO ₆	12m	34
Europium oxychloride, EuOCl	1m	13	Indium, In	3	12
Europium phosphate, EuPO4	11m	26	Indium arsenide, InAs	3m	35
Europium(III) vanadium oxide, EuVO4	4m	16	Indium oxide, In ₂ O ₃	5	26
Gadolinium arsenate, GdAsO ₄	4m	17	Indium phosphate, InPO4	8	29 30
Gadolinium arsenide, GdAs	4m	57	Indium sulfide, In ₂ S ₃ Iodine, I ₂	11m 3	16
Gadolinium chloride hydrate,	_	110	Iridium, Ir	4	9
GdCl ₃ ·6H ₂ O	7m	118	Iridium niobium, IrNb3	6m	19
Gadolinium fluoride, GdF ₃	1m	14	Iridium oxide, IrO ₂	4m	19
Gadolinium gallium oxide,	2m	18	Iridium titanium 1:3, IrTi3	6m	20
Gd ₃ Ga ₅ O ₁₂ Gadolinium indium, GdIn	2m 5m	67	Iridium vanadium, IrV3	6m	21
Gadolinium nitride, GdN	4m	57	Iron, α-Fe	4	3
Gadolinium oxide, Gd ₂ O ₃	1m	16	Iron arsenide, FeAs	lm	19
Gadolinium oxychloride, GdOCl	1m	17	Iron arsenide (loellingite), FeAs2	10	34
Gadolinium silver, GdAg	6m	87	Iron bromide, FeBr ₂	4m	59
Gadolinium titanium oxide, Gd ₂ TiO ₅	8m	32	Iron chloride hydrate, FeCl ₂ •2H ₂ O	11m	32
Gadolinium vanadium oxide, GdVO4	5m	30	Iron fluoride hydrate, FeF ₂ ·4H ₂ O	11m	90
Gallium, Ga	2	9	Iron hydroxide sulfate hydrate,		
Gallium arsenide, GaAs	3m	33	butlerite, Fe(OH)SO ₄ •2H ₂ O	10m	95
Gallium lutetium oxide, Ga5Lu3012	2m	22	Iron iodide, FeI ₂	4m	60
Gallium magnesium, Ga ₂ Mg	12m	48	Iron(II,III) oxide (magnetite),	_	0.7
Gallium magnesium, Ga ₅ Mg ₂	12m	51	Fe ₃ O ₄	5m	31
Gallium neodymium oxide, Ga ₅ Nd ₃ O ₁₂	lm	34	Iron sulfate hydrate (melanterite),	0	20
Gallium oxide, α -Ga ₂ O ₃	4	25	FeSO ₄ •7H ₂ O Iron sulfide (pyrite), FeS ₂	8m 5	38 29
Gallium phosphate (α-quartz type),	0	0.7	Iron thorium, Fe ₁₇ Th ₂	12m	67
GaPO ₄	8	27	Lanthanum arsenate, LaAsO ₄	3m	36
Gallium phosphate hydrate,	Om	2.4	Lanthanum arsenide, LaAs	4m	60
$GaPO_4 \cdot 2H_2O$ $Gallium$ samarium oxide, $Ga_5Sm_3O_{12}$	8m lm	34 42	Lanthanum borate, LaBO ₃	1m	20
Gallium ytterbium oxide, Ga5Yb3O12	lm	49	Lanthanum chloride, LaCl ₃	1m	20
Gallium yttrium oxide, Ga ₅ Y ₃ O ₁₂	lm	50	Lanthanum fluoride, LaF3	7	21
Germanium, Ge	1	18	Lanthanum magnesium, LaMg	5m	69
Germanium iodide, GeI ₂	4m	58	Lanthanum niobium titanium oxide,		
Germanium(IV) iodide, GeI4	5	25	Lanbtanym nitrate hydrate	3m	37
Germanium oxide, GeO ₂ (hexagonal)	_	~-	Lanthanum nitrate hydrate, La(NO ₃) ₃ •6H ₂ O	8m	40
(low form)	1	51	Lanthanum nitride, LaN	4m	61
Germanium oxide, GeO ₂	0	20	Lanthanum oxide, La ₂ O ₃	3	33
(tetragonal) (high form)	8	28	Lanthanum oxychloride, LaOCl	7	22
Gold (I) gyanida AuCN	1 10	33 33	Lanthanum phosphide, LaP	5m	69
Gold(I) cyanide, AuCN	5m	68	Lanthanum selenide, LaSe	4m	61
Gold magnesium, AuMg	6m	83	Lanthanum zinc, LaZn	5m	70
Gold niobium, AuNb3	6m	16	Lead, Pb	1	34
Gold potassium cyanide, AuK(CN) ₂	8m	36	Lead borate, PbB ₄ O ₇	4m	19
Gold tin 1:1, AuSn	7	19	Lead bromide, PbBr ₂	2	47
Gold titanium 1:3, AuTi ₃	6m	17	Lead bromide chloride, PbBrCl	11m	33
Gold vanadium, AuV3	6m	18	Lead bromide fluoride, PbBrF	10m	25
Hafnium, Hf	3	18	Lead chloride (cotunnite), PbCl ₂	12m	23
Holmium arsenate, HoAsO4	3m	34	Lead carbonate (cerussite), PbCO 3	2	56
Holmium fluoride, HoF3	10m	23	Lead chloride fluoride (matlockite),	1.0	0.5
Holmium nitride, HoN	4m	58	PbClF	13m	25

	Vol. or Sec.	Page		Vol. or Sec.	Page
Lead chromium oxide, Pb ₂ CrO ₅	14m	16	Lithium silver bromide,		
Lead fluoride, α-PbF ₂	1-1	10	Li _{.2} Ag _{.8} Br	12m	55
(orthorhombic)	5	31	Lithium silver bromide,		
Lead fluoride, β-PbF ₂ (cubic)	5	33	Li ₄ Ag ₆ Br	12m	5 5
Lead fluoride iodide, PbFI Lead hydrogen arsenate (schultenite),	10m	26	Lithium silver bromide,	1 2m	5 5
PbHAsO ₄	14m	18	Lithium silver bromide,	12m	23
Lead hydroxide phosphate,			Li 8Ag 2Br	12m	55
Pb ₅ (PO ₄) ₃ OH	8	33	Lithium sodium aluminum fluoride,		
Lead(II) iodide, PbI ₂	5	34	cryolithionite, Li3Na3Al2F12	9m	23
Lead molybdenum oxide (wulfenite),	_	2.2	Lithium sodium sulfate, LiNaSO ₄	6m	24
PbMoO ₄ Pb (NO ₂) -	7 5	23 36	Lithium sulfate, Li ₂ SO ₄	6m	26
Lead nitrate, Pb(NO ₃) ₂ Lead oxide (litharge), PbO (red,	3	30	Lithium sulfate hydrate, Li ₂ SO ₄ •H ₂ O	4m	22
tetragonal)	2	30	Lithium sulfide, Li ₂ S	10m	101
Lead oxide (massicot), PbO (yellow,			Lithium tantalum oxide, LiTaO3	14m	20
orthorhombic)	2	32	Lithium telluride, Li2Te	10m	102
Lead(II,III) oxide (minium), Pb3O4	8	32	Lithium tungsten oxide, Li ₂ WO ₄		
Lead oxide sulfate, Pb505SO4	10m	27	(trigonal)	1m	25
Lead oxybromide, Pb ₃ O ₂ Br ₂	5m	32	Lithium tungsten oxide hydrate,	2	20
Lead selenide (clausthalite), PbSe	5	38	Li ₂ WO ₄ · ½H ₂ O	2m	20
Lead strontium nitrate, Pb 33Sr 67(NO3)2	12m	53	Lithium uranium fluoride, LiUF ₅ Lutetium arsenate, LuAsO ₄	7m 5m	131 36
Lead strontium nitrate,	12111	33	Lutetium manganese oxide, LuMnO ₃	2m	23
Pb ₆₇ Sr ₃₃ (NO ₃) ₂	12m	53	Lutetium nitride, LuN	4m	62
Lead sulfate (anglesite), PbSO4	3	67	Lutetium oxide, Lu ₂ O ₃	1m	27
Lead sulfide (galena), PbS	2	18	Lutetium vanadium oxide, LuVO4	5m	37
Lead tin oxide, Pb ₂ SnO ₄	10m	29	Magnesium, Mg	1	10
Lead titanium oxide (macedonite),	_		Magnesium aluminum oxide (spinel),		
PbTiO ₃	5	39	MgAl ₂ O ₄	9m	25
Lead tungsten oxide (stolzite),	5	34	Magnesium aluminum silicate (low		
PbWO ₄ (tetragonal)	5m 8m	109	cordierite), Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic)	1m	28
Lithium aluminum fluoride,	Om	103	Magnesium aluminum silicate		20
α-Li ₃ AlF ₆	8m	111	(indialite) Mg ₂ Al ₄ Si ₅ O ₁₈		
Lithium arsenate, Li3AsO4	2m	19	(hexagonal)	lm	29
Lithium azide, LiN ₃	8m	113	Magnesium aluminum silicate		
Lithium barium fluoride, LiBaF ₃	5m	35	(pyrope), $Mg_3Al_2(SiO_4)_2$	4m	24
Lithium beryllium fluoride, Li ₂ BeF ₄	7m	126	Magnesium borate, Mg ₂ B ₂ O ₅	4	25
Lithium borate, Li ₂ B ₄ O ₇	8m	114 30	(triclinic)	4m	25 62
Lithium bromide, LiBr Lithium carbonate, Li ₂ CO ₃	4 8m	42	Magnesium bromide, MgBr ₂ Magnesium bromide hydrate,	4m	62
Lithium chlorate hydrate,	O.I.I	-12	MgBr ₂ •6H ₂ O	11m	35
LiClO _L • 3H ₂ O	8	34	Magnesium carbonate (magnesite),		
Lithium chloride, LiCl	1	62	MgCO ₃	7	28
Lithium fluoride, LiF	1	61	Magnesium cerium nitrate hydrate,		
Lithium gallium oxide, LiGaO ₂	10m	31	$Mg_3Ce_2(NO_3)_{12} \cdot 24H_2O \dots$	10	20
Lithium hydroxide hydrate, LiOH·H ₂ O	llm	92	Magnesium chlorate hydrate,	7	20
Lithium iodate, LiIO ₃ (hexagonal)	7	26	Mg(ClO ₄) ₂ •6H ₂ O	7m	30
Lithium iodate, LiIO ₃ (tetragonal)	10m	33	Magnesium chloride (chloro- magnesite), MgCl ₂	11m	94
Lithium molybdenum oxide, Li ₂ MoO ₄ (trigonal)	1m	23	Magnesium chloride hydrate,	T T III	24
Lithium niobium oxide, LiNbO ₃	6m	22	MgCl ₂ ·12H ₂ O	7m	135
Lithium nitrate, LiNO ₃	7	27	Magnesium chloride hydrate		
Lithium oxide, Li ₂ O	lm	25	(bischofite), MgCl ₂ ·6H ₂ O	11m	37
Lithium phosphate hydrate,			Magnesium chromium oxide		
Li ₃ P ₃ O ₉ •3H ₂ O	2m	20	(magnesiochromite), MgCr ₂ O ₄	9	34
Lithium phosphate, low form (lithio-	4	0.1	Magnesium fluoride (sellaite), MgF ₂	4	33
phosphate), Li ₃ PO ₄	4m	21	Magnesium fluoride silicate	1 m	30
Lithium phosphate, high form,	3m	39	(humite), Mg ₇ F ₂ Si ₃ O ₁₂	1m	30
Li ₃ PO ₄ Lithium potassium sulfate, KLiSO ₄	3m	43	(norbergite), Mg ₃ F ₂ SiO ₄	10	39
Lithium rubidium fluoride, LiRbF ₂	7m	128	Magnesium gallium oxide, MgGa ₂ O ₄	10	36
Lithium selenide, Li ₂ Se	10m	100	Magnesium germanium oxide,		
Lithium silicate, Li ₂ SiO ₃	14m	19	Mg ₂ GeO ₄ (cubic)	10	37

	Vol. or Sec.	Page		Vol. or Sec.	Page
			Manager alocalists Ma (DO)	7.4	2.1
Magnesium germanium oxide, Mg ₂ GeO ₄ (orthorhombic)	10	38	Manganese phosphate, Mn(PO ₃) ₂ Manganese selenide, MnSe	14m 10	21 41
Magnesium hydrogen phosphate hydrate, newberyite, MgHPO4 • 3H2O	7m	139	Manganese sulfide (alabandite), α-MnS	4	11
Magnesium hydroxide (brucite), Mg(OH) ₂	6	30	Manganese(II) tungsten oxide (huebnerite), MnWO ₄	2m	24
Magnesium iron hydroxide carbonate			Manganese vanadium oxide, Mn ₂ V ₂ O ₇	9m	75
hydrate, pyroaurite, Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ ·4H ₂ O, phase II	10m	104	Mercury amide chloride, HgNH ₂ Cl Mercury ammine chloride,	10m	40
Magnesium iron hydroxide carbonate	10111		Hg (NH ₃) ₂ Cl ₂	11m	39
hydrate, sjögrenite, Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ ·4H ₂ O, phase I	10m	103	Mercury bromate, Hg(BrO ₃) ₂ Mercury(II) bromide, HgBr ₂	10m 10m	107 110
Magnesium lanthanum nitrate	10111	103	Mercury(I) bromide, Hg2Br2	7	33
hydrate, Mg ₃ La ₂ (NO ₃) ₁₂ •24H ₂ O	lm	22	Mercury(I) chloride (calomel),	13m	30
Magnesium manganese oxide, MgMn ₂ O ₄	10m	35	<pre>Hg₂Cl₂ Mercury(II) chloride, HgCl₂</pre>	13m	29
Magnesium mercury, MgHg Magnesium molybdenum oxide, MgMoOu	6m 7m	84 28	Mercury chloride sulfide,		
Magnesium nickel oxide, MgNiO ₂	10m	36	α-Hg ₃ Cl ₂ S ₂	8m	118
Magnesium oxide (periclase), MgO	1	37	Mercury(II) cyanide, Hg(CN) ₂	6	35
Magnesium phosphate, Mg(PO ₃) ₂	13m	26	Mercury(II) fluoride, HgF ₂	2m	25
Magnesium phosphate, α-Mg ₂ P ₂ O ₇	9m	73	Mercury(I) iodide, HgI	4 7m	49 32
Magnesium selenide, MgSe Magnesium selenite hydrate,	5m	70	Mercury (II) oxide (montroydite), HgO	9	39
MgSeO ₃ ·6H ₂ O	8m	116	Mercury(II) selenide (tiemannite),		
Magnesium silicate, enstatite,			HgSe	7	35
MgSiO ₃	6	32	Mercury(II) sulfide (cinnabar), HgS (hexagonal)	4	17
Mg ₂ SiO ₄	1	83	Mercury(II) sulfide (metacinnabar),	_	
Magnesium sulfate hydrate			HgS (cubic)	4	21
(epsomite), MgSO ₄ ·7H ₂ O	7	30	Molyhdonum arsonido MolAss	1 10m	20 115
Magnesium sulfide, MgS	7	31	Molybdenum arsenide, Mo ₂ As ₃ Molybdenum osmium 3:1, Mo ₃ Os	6m	28
Magnesium sulfite hydrate, MgSO3.6H2O	9m	26	Molybdenum oxide (molybdite), MoO ₃	3	30
Magnesium tin, Mg ₂ Sn	5	41	Molybdenum sulfide (molybdenite),		
Magnesium tin oxide, Mg ₂ SnO ₄	10m	37	MoS ₂	5	47
Magnesium titanium oxide			Neodymium arsenate, NdAsO ₄	4m	28
(geikielite), MgTiO ₃	5	43	Neodymium arsenide, NdAs	4m 1m	64 32
Magnesium titanium oxide, Mg_2TiO_4 Magnesium tungsten oxide, $MgWO_4$	12m 13m	25 27	Neodymium borate, NdBO ₃	1m	33
Manganese, α-Mn	7m	142	Neodymium fluoride, NdF ₃	8	36
Manganese aluminum oxide (galaxite),			Neodymium oxide, Nd ₂ O ₃	4	26
MnAl ₂ O ₄	9	35	Neodymium oxychloride, NdOCl	8	37
Manganese bromide, MnBr ₂	4m	63	Neodymium phosphate, NdPO ₄	11m	40 71
Manganese(II) carbonate (rhodochrosite) MnCO	7	2.2	Neodymium selenide, NdSe Neodymium silver, NdAg	5m 5m	71
(rhodochrosite), MnCO ₃	7	32	Neodymium vanadium oxide, NdVO4	4m	30
MnCl ₂	8m	43	Neptunium nitride, NpN	4m	64
Manganese chloride hydrate,			Nickel, Ni	1	13
MnCl ₂ ·2H ₂ O	11m	38	Nickel aluminum oxide, NiAl ₂ O ₄ Nickel arsenide 1:2 (rammelsbergite),	9	42
Manganese chloride hydrate,	Om	20	NiAs ₂	10	42
MnCl ₂ ·4H ₂ O Manganese cobalt oxide, MnCo ₂ O ₄	9m 9m	28 30	Nickel arsenic sulfide		
Manganese fluoride, MnF ₂	10m	105	(gersdorffite), NiAsS	1m	35
Manganese iodide, MnI ₂	4m	63	Nickel bromide, NiBr ₂	10m	119
Manganese iron oxide (jacobsite),			Nickel(II) carbonate, NiCO3	1	20
MnFe ₂ O ₄ (manganosite)	9	36	(trigonal)	1m 9m	36 81
Manganese(II) oxide (manganosite), MnO	5	45	Nickel chloride hydrate,	Jiii	OI
Manganese oxide (hausmannite), Mn ₃ O ₄	10m	38	NiCl ₂ ·6H ₂ O	11m	42
Manganese oxide (bixbyite),			Nickel fluoride, NiF ₂	10m	121
α-Mn ₂ O ₃	11m	95	Nickel fluoride hydrate, NiF ₂ ·4H ₂ O	11m	43
Manganese oxide (pyrolusite),			Nickel gallium oxide, NiGa ₂ O ₄	10 9	45 43
β -MnO ₂ Manganese oxide hydroxide, groutite,	10m	39	Nickel germanium oxide, Ni ₂ GeO ₄ Nickel iron oxide (trevorite),	9	40
α-MnOOH	llm	97	NiFe ₂ O ₄	10	44

	Vol. or Sec.	Page		Vol. or Sec.	Page
Nickel nitrate hydrate,			Potassium calcium nickel nitrite,		
Ni(NO ₃) ₂ ·6H ₂ O	12m	26	K_2 Cani (NO ₂) 6	9m	33
Nickel(II) oxide (bunsenite), NiO	1	47	Potassium calcium sulfate,		
Nickel phosphate, Ni(PO ₃) ₂	14m	22	K ₂ Ca ₂ (SO ₄) ₃	7m	39
Nickel phosphide, Ni ₁₂ P ₅	9m	83	Potassium calcium sulfate hydrate	1.4	25
Nickel silicon fluoride hydrate, NiSiF ₆ ·6H ₂ O	0	38	(syngenite), K ₂ Ca(SO ₄) ₂ ·H ₂ O Potassium cerium fluoride, β-KCeF ₄	14m	25 50
Nickel sulfate, NiSO ₄	8 2m	26	Potassium chlorate, KClO ₃	12m 3m	59 42
Nickel sulfate hydrate (retgersite),	2111	20	Potassium chlorate, KClO ₄	6	43
Niso ₄ ·6H ₂ O	7	36	Potassium chloride (sylvite), KCl	1	65
Nickel sulfide, millerite, NiS	lm	37	Potassium chromium oxide, K ₃ CrO ₈	3m	44
Nickel tungsten oxide, NiWO4	2m	27	Potassium chromium oxide sulfate,		
Nickel yttrium, Ni ₃ Y	10m	123	$K_2(CrO_4)_{.33}(SO_4)_{.67}$	12m	28
Niobium osmium, Nb3Os	6m	30	Potassium chromium oxide sulfate,		
Niobium oxychloride, NbOCl ₃	7m	148	$K_2(CrO_4)_{.67}(SO_4)_{.33}$	12m	27
Niobium platinum, Nb ₃ Pt	6m	31	Potassium chromium sulfate hydrate,		
Niobium silicide, NbSi ₂	8	39	KCr (SO ₄) ₂ ·12H ₂ O	6	39
Osmium, Os	4	8	Potassium cobalt(II) fluoride,	_	2.5
Osmium titanium, OsTi	6m	85	KCoF ₃	6m	37
Palladium, Pd	1	21	Potassium cobalt fluoride, K ₂ CoF ₄	11m	46
Palladium hydride, PdH _{0.706} Palladium oxide, PdO	5m 4	72 27	Potassium cobalt nitrite,	9	45
Palladium vanadium, PdV ₃	6m	32	K ₃ Co(NO ₂) ₆ Potassium cobalt(II) sulfate,	9	43
Phosphorus bromide, PBr ₇	7m	150	K ₂ Co ₂ (SO ₄) 3	бm	35
Phosphorus oxide (stable form I),	7211	130	Potassium copper chloride, KCuCl ₃	7m	41
P ₂ O ₅ (orthorhombic)	9m	86	Potassium copper chloride hydrate		
Phosphorus oxide (stable form II),			(mitscherlichite), K2CuCl4 · 2H2O	9m	34
P ₂ O ₅ (orthorhombic)	9m	88	Potassium copper(II) fluoride,		
Phosphorus oxide (metastable form),			KCuF ₃	6m	38
P ₄ O ₁₀ (rhombohedral)	9m	91	Potassium cyanate, KCNO	7	39
Platinum, Pt	1	31	Potassium cyanide, KCN	1	77
Platinum titanium 1:3, PtTi ₃	6m	33	Potassium fluoride, KF	1	64
Platinum vanadium, PtV ₃	6m	34	Potassium germanium fluoride, K ₂ GeF ₆	6	41
Plutonium arsenide, PuAs	4m	65	Potassium hydrogen arsenate,		
Plutonium phosphide, PuP	4m	65	KH ₂ AsO ₄	1m	38
Plutonium telluride, PuTe Potassium aluminum sulfate,	4m	66	Potassium hydrogen phosphate,	2	60
KAl(SO ₄) ₂	Om	31	KH ₂ PO ₄ Potassium hydroxide, KOH at 300 °C	3 4m	69 66
Potassium aluminum sulfate hydrate	9m	21	Potassium iodate, KIO ₄	7	41
(potash alum), KAl(SO ₄) ₂ ·12H ₂ O	6	36	Potassium iodide, KI	í	68
Potassium barium chromium oxide,		30	Potassium iron chloride hydrate	_	
K ₂ Ba (CrO ₄) ₂	14m	23	(erythrosiderite), K ₂ FeCl ₅ •H ₂ O	14m	27
Potassium barium molybdenum oxide,			Potassium iron cyanide, K3Fe(CN)6	9m	35
K_2 Ba (MoO ₄) ₂	14m	24	Potassium iron(II) fluoride, KFeF ₃	6m	39
Potassium barium nickel nitrite,			Potassium iron fluoride, K ₃ FeF ₆	9m	37
K_2 BaNi (NO ₂) ₆	9m	32	Potassium lead chloride, KPb ₂ Cl ₅	13m	33
Potassium borohydride, KBH4	9	44	Potassium lead chromium oxide,		
Potassium bromate, KBrO ₃	7	38	K_2 Pb (CrO ₄) ₂	14m	28
Potassium bromide, KBr	1	66	Potassium lead molybdenum oxide,		
Potassium bromide chloride,			K ₂ Pb (MoO ₄) 2	14m	29
KBr _{0.5} Cl _{0.5}	8m	46	Potassium lead sulfate (palmierite),	3.4	30
Potassium bromide iodide,	11	4.4	K ₂ Pb (SO ₄) ₂	14m	30
KBr _{.33} I _{.67} Potassium bromide iodide,	11m	44	Potassium magnesium chloride hydrate (carnallite), KMgCl ₃ ·6H ₂ O	8m	50
	11m	45	Potassium magnesium chromium oxide,	On	50
KBr _{.67} I _{.33} Potassium cadmium fluoride, KCdF ₃	llm 8m	45	K ₂ Mg ₂ (CrO ₄) ₃	8m	52
Potassium cadmium sulfate,	OIII	.,	Potassium magnesium fluoride,		
K ₂ Cd ₂ (SO ₄) ₃	7m	34	KMgF ₃	6m	42
Potassium calcium carbonate			Potassium magnesium fluoride,		
(fairchildite), K ₂ Ca(CO ₃) ₂	8m	48	K ₂ MgF ₄	10m	42
Potassium calcium chloride, KCaCl3	7m	36	Potassium magnesium selenate hydrate,		
Potassium calcium fluoride, KCaF3	8m	49	K_2Mg (SeO ₄) 2 • 6H ₂ O	10m	43
Potassium calcium magnesium sulfate,			Potassium magnesium sulfate		
K ₂ CaMg (SO ₄) ₃	7m	37	(langbeinite), K ₂ Mg ₂ (SO ₄) ₃	6m	40

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Potassium magnesium sulfate hydrate			Potassium sulfate, K ₂ S ₂ O ₇	9m	9 9
(picromerite), $K_2Mg(SO_4)_2 \cdot 6H_2O$	8m	54	Potassium sulfate (arcanite), K ₂ SO ₄	3	62
Potassium manganese(II) fluoride,	_	4.5	Potassium sulfide, K ₂ S	10m	127
KMnF ₃	6m	45	Potassium thiographic KCNS	10m	128
Potassium manganese oxide, KMnO ₄ Potassium manganese(II) sulfate	7	42	Potassium thiocyanate, KCNS Potassium tin chloride, K ₂ SnCl ₆	8 6	44 38
(manganolangbeinite), K ₂ Mn ₂ (SO ₄) ₃	6m	43	Potassium titanium fluoride, K ₂ TiF ₆	7	40
Potassium molybdenum oxide phosphate	Oli	43	Potassium tungsten oxide, K ₂ WO ₄	11m	47
hydrate, K ₂ (MoO ₃) 12PO ₄ •4H ₂ O	8	43	Potassium vanadium oxide, KV ₃ O ₈	8m	56
Potassium nickel fluoride, KNiF3	7m	42	Potassium zinc bromide hydrate,		
Potassium nickel fluoride, K2NiF4	10m	45	KZnBr ₃ ·2H ₂ O	11m	104
Potassium nickel(II) sulfate,			Potassium zinc fluoride, KZnF ₃	5	51
$K_2Ni_2(SO_4)_3$	6m	46	Potassium zinc fluoride, K ₂ ZnF ₄	10m	46
Potassium niobium fluoride, K ₂ NbF ₇	8m	120	Potassium zinc iodide hydrate,		
Potassium nitrate (niter), KNO ₃	3	58	KZnI ₃ •2H ₂ O	11m	107
Potassium nitrite, KNO ₂	9m	38	Potassium zinc sulfate, K ₂ Zn ₂ (SO ₄) ₃	6m	54
Potassium nitroso ruthenium chloride,	_	20	Potassium zinc sulfate hydrate,	7	4.3
K ₂ (NO) RuCl ₅	2m	29	K_2 Zn (SO ₄) $_2$ · 6H $_2$ O · · · · · · · · · · · · · · · Potassium zinc vanadium oxide hydrate	7m	43
Potassium oxide, K ₂ O Potassium platinum bromide, K ₂ PtBr ₆	10m 8	125 40	K ₂ Zn ₂ V ₁₀ O ₂₈ •16H ₂ O	, 3m	45
Potassium platinum chloride,	0	40	Potassium zirconium fluoride,	3III	40
K ₂ PtCl ₆	13m	34	K ₃ ZrF ₇	9	46
Potassium platinum fluoride, K ₂ PtF ₆	6	42	Praseodymium arsenate, PrAsO ₄	4m	32
Potassium rhenium chloride,	ŭ		Praseodymium arsenide, PrAs	4m	67
K ₂ ReCl ₆	2m	28	Praseodymium chloride, PrCl ₃	1m	39
Potassium rhenium oxide, KReO4	8	41	Praseodymium fluoride, PrF ₃	5	52
Potassium rubidium chloride,			Praseodymium oxychloride, ProCl	9	47
K _{0.5} Rb _{0.5} Cl	8m	76	Praseodymium sulfide, PrS	4m	67
Potassium rubidium chromium oxide,			Praseodymium vanadium oxide, PrVO ₄	5m	40
KRbCrO ₄	12m	29	Praseodymium zinc, PrZn	5m	72
Potassium ruthenium chloride,			Rhenium, Re	2	13
K ₂ RuCl ₆	10	46	Rhodium, Rh	3	9
Potassium ruthenium oxide chloride			Rhodium vanadium, RhV ₃	6m	56
hydrate, K ₄ Ru ₂ OCl ₁₀ •H ₂ O	10	47	Rubidium aluminum sulfate hydrate,		
Potassium selenate, K ₂ SeO ₄	9m	41	RbA1 (SO ₄) 2 • 12H ₂ O	6	44
Potassium selenide, K ₂ Se	10m	126	Rubidium amide, RbNH ₂	5m	73
Potassium selenium bromide, K ₂ SeBr ₆ Potassium silicon fluoride	8	41	Rubidium barium chromium oxide,	1.4	22
(hieratite), K ₂ SiF ₆	5	50	$Rb_2Ba(CrO_4)_2$ $Rubidium\ bromate,\ RbBrO_3$	14m 8	32 45
Potassium silver cyanide, KAg(CN) ₂	8m	78	Rubidium bromide, RbBr	7	43
Potassium sodium aluminum fluoride	Olli	70	Rubidium cadmium chloride, high	′	40
(elpasolite), K ₂ NaAlF ₆	9m	43	form, RbCdCl ₃ (tetragonal)	5m	43
Potassium sodium bromide,			Rubidium cadmium chloride, low form,		
K ₂ Na ₈ Br	12m	62	RbCdCl ₃ (orthorhombic)	5m	41
Potassium sodium bromide,			Rubidium cadmium sulfate,		
K ₄ Na ₆ Br	12m	62	$Rb_2Cd_2(SO_4)_3$	7m	45
Potassium sodium bromide,			Rubidium calcium chloride,		
K ₆ Na ₄ Br	12m	62	RbCaCl ₃	7m	47
Potassium sodium bromide,			Rubidium calcium fluoride,		
K 8Na 2Br	12m	62	RbCaF ₃	8m	57
Potassium sodium chloride, K.2Na.8Cl	1 0	62	Rubidium calcium sulfate,	7	40
Potassium sodium chloride,	12m	63	Rb ₂ Ca ₂ (SO ₄) ₃ Rubidium chlorate, RbClO ₃	7m	48
K ₄ Na ₆ Cl	12m	63	Rubidium chlorate, RbClO ₄	8 2m	47 30
Potassium sodium chloride,	1 2111	03	Rubidium chloride, RbCl	2m 4	41
K ₆ Na ₄ Cl	12m	63	Rubidium chromium oxide, Rb ₂ CrO ₄	3m	46
Potassium sodium chloride,		03	Rubidium chromium sulfate hydrate,	J	-10
K _{.8} Na _{.2} Cl	12m	63	RbCr (SO ₄) 2 •12H ₂ O	6	47
Potassium sodium sulfate,			Rubidium cobalt(II) chloride,		
K _{.67} Na _{1.33} SO ₄	6m	48	RbCoCl ₃	6m	57
Potassium sodium sulfate, KNaSO4	6m	50	Rubidium cobalt fluoride, RbCoF ₃	8m	58
Potassium sodium sulfate			Rubidium cobalt sulfate,		
(aphthitalite), K ₃ Na(SO ₄) ₂	6m	52	Rb ₂ Co ₂ (SO ₄) ₃	8m	59
Potassium strontium sulfate			Rubidium copper chloride hydrate,	7.0	. –
(kalistrontite), K ₂ Sr(SO ₄) ₂	14m	31	Rb ₂ CuCl ₄ • 2H ₂ O	10m	47

	Vol. or Sec.	Page		Vol. or Sec.	Page
Rubidium copper sulfate hydrate,			Selenium, Se	5	54
Rb ₂ Cu (SO ₄) 2 • 6H ₂ O	8m	61	Selenium oxide (selenolite), SeO2	7m	60
Rubidium fluoride, RbF		63	Silicon, Si	13m	35
Rubidium iodate, RbIO4		31	Silicon, Si (reference standard)	12m	2
Rubidium iodide, RbI	4	43	Silicon nitride, β-Si ₃ N ₄	14m	116
Rubidium iron chloride hydrate,			Silicon oxide (a or low cristobalite)	,	
Rb ₂ FeCl ₅ ·H ₂ O	14m	33	SiO ₂ (tetragonal)	10	48
Rubidium iron sulfate hydrate,			Silicon oxide (a or low quartz),	2	24
Rb ₂ Fe(SO ₄) ₂ •6H ₂ O	8m	64	SiO_2 (hexagonal)	3	24
Rubidium lead chromium oxide,	1.4m	2.4	SiO ₂ (cubic)	1	42
Rb ₂ Pb (CrO ₄) ₂	14m	34	Silver, Ag	1	23
Rubidium magnesium chromium oxide, Rb ₂ Mg ₂ (CrO ₄) ₃	8m	66	Silver, Ag (reference standard)	8m	2
Rubidium magnesium chromium oxide	O.I.	00	Silver arsenate, Ag 3AsO4	5	56
hydrate, Rb ₂ Mg(CrO ₄) ₂ ·6H ₂ O	8m	68	Silver arsenic sulfide, xanthoconite,		
Rubidium magnesium sulfate,			Ag 3AsS3	8m	126
$Rb_2Mg_2(SO_4)_3$	7m	50	Silver bromate, AgBrO3	5	57
Rubidium magnesium sulfate hydrate,			Silver bromide (bromargyrite), AgBr	4	46
$Rb_2Mg(SO_4)_2 \cdot 6H_2O$	8m	70	Silver carbonate, Ag ₂ CO ₃	13m	
Rubidium manganese(II) fluoride,			Silver chlorate, AgClO ₃	7	44
RbMnF ₃	5m	44	Silver chloride (chlorargyrite), AgCl	4	44
Rubidium manganese sulfate,			Silver chromium oxide, Ag ₂ CrO ₄	12m	30
$Rb_2Mn_2(SO_4)_3$	7m	52	Silver cyanide, AgCN	9m	48
Rubidium nickel(II) chloride,			Silver fluoride, Ag ₂ F	5m	53
RbNiCl ₃	6m	58	Silver iodida (iodargyrita) AgI	9	49
Rubidium nickel sulfate,	0	70	Silver iodide (iodargyrite), AgI (hexagonal)	8	51
Rb ₂ Ni ₂ (SO ₄) ₃	8m	72	Silver iodide, γ-AgI (cubic)	9	48
Rubidium nickel sulfate hydrate,	Om	74	Silver manganese oxide, AgMnO ₄	7m	155
Rb ₂ Ni(SO ₄) ₂ ·6H ₂ O	8m 5m	45	Silver molybdenum oxide, Ag ₂ MoO ₄	7	45
Rubidium nitrate, RbNO ₃ (trigonal) Rubidium platinum chloride,	Jill	43	Silver nitrate, AgNO ₃	5	59
Rb ₂ PtCl ₆	5	53	Silver nitrite, AgNO ₂	5	60
Rubidium platinum fluoride,	_		Silver oxide, Ag ₂ O	. 1m	45
Rb ₂ PtF ₆	6	48	Silver(II) oxide nitrate, Ag708NO3	4	61
Rubidium selenate, Rb ₂ SeO ₄		44	Silver phosphate, Ag ₃ PO ₄	5	62
Rubidium silicon fluoride,			Silver rhenium oxide, AgReO4	8	53
Rb ₂ SiF ₆	6	49	Silver selenate, Ag ₂ SeO ₄	2m	32
Rubidium strontium chloride,			Silver sodium chloride, Ag _{0.5} Na _{0.5} Cl	8m	79
RbSrCl ₃		54	Silver sulfate, Ag ₂ SO ₄	13m	37
Rubidium sulfate, Rb ₂ SO ₄	8	48	Silver sulfide (acanthite), Ag ₂ S	10	51 74
Rubidium tellurium bromide,	0	4.6	Silver terbium, AgTbSilver thulium, AgTm	5m 5m	74
Rb ₂ TeBr ₆	8	46	Silver yttrium, AgY	5m	75
Rubidium tellurium chloride, Rb ₂ TeCl ₆	8	48	Sodium, Na	9m	105
Rubidium tin chloride, Rb ₂ SnCl ₆		46	Sodium aluminum chloride silicate,		
Rubidium zinc fluoride, RbZnF3		57	sodalite, Na ₈ Al ₆ Cl ₂ (SiO ₄) ₆	7m	158
Rubidium zinc sulfate hydrate,	-		Sodium azide, α -NaN ₃ , at -90 to		
$Rb_2Zn(SO_4)_2 \cdot 6H_2O$	7m	55	-100 °C	8m	129
Ruthenium, Ru		5	Sodium azide, β-NaN ₃	8m	130
Ruthenium titanium, RuTi		86	Sodium beryllium calcium aluminum		
Samarium arsenate, SmAsO ₄	4m	33	fluoride oxide silicate, meliphanite	,	
Samarium arsenide, SmAs	4m	68	(Na _{0.63} Ca _{1.37})Be(Al _{0.13} Si _{1.87})		7.05
Samarium chloride, SmCl ₃		40	(F _{0.75} O _{6.25})	8m	135
Samarium fluoride, SmF ₃		41	Sodium beryllium calcium fluoride		
Samarium oxide, Sm ₂ O ₃ (cubic)		34	silicate, leucophanite,	Ωm	138
Samarium oxychloride, SmOCl		43	NaBeCaFSi ₂ O ₆	8m 7m	160
Samarium silver, SmAg		73 77	Sodium borate, Na ₂ B ₈ O ₁₃ Sodium boron hydride, NaBH ₄	9	51
Samarium tin oxide, Sm ₂ Sn ₂ O ₇ Samarium vanadium oxide, SmVO ₄		47	Sodium bromate, NaBro3	5	65
Scandium arsenate, ScAsO ₄		35	Sodium bromide, NaBr	3	47
Scandium arsenide, ScAs		68	Sodium bromide chloride,		
Scandium oxide, Sc ₂ O ₃		27	NaBr ₃₃ Cl ₆₇	11m	49
Scandium phosphate, ScPO ₄		50	Sodium bromide chloride,		
Scandium silicate (thortveitite),			NaBr _{.67} Cl _{.33}	11m	50
Sc ₂ Si ₂ O ₇	7m	58			

	Vol. or Sec.	Page		Vol. or Sec.	Page
Sodium calcium aluminum fluoride			Sodium molybdenum oxide, Na ₂ Mo ₂ O ₇	9m	110
hydrate, thomsenolite, NaCaAlF ₆ • H ₂ O	8m	132	Sodium neodymium fluoride silicate,		
Sodium calcium carbonate hydrate,			(Na ₂ Nd ₈)F ₂ (SiO ₄) ₆	7m	66
pirssonite, Na ₂ Ca(CO ₃) ₂ ·2H ₂ O	9m	106	Sodium nickel(II) sulfate hydrate,	6	60
Sodium calcium silicate, Na ₂ CaSiO ₄	10m	48	Na ₂ Ni(SO ₄) ₂ •4H ₂ O Sodium nitrate (soda-niter), NaNO ₃	6m 6	68 50
Sodium calcium sulfate (glauberite),	6m	59	Sodium nitrite, NaNO ₂	4	62
Na ₂ Ca(SO ₄) ₂ Sodium carbonate hydrate (thermo-	Om	33	Sodium oxide, Na ₂ O	10m	134
natrite), Na ₂ CO ₃ ·H ₂ O	8	54	Sodium phosphate, Na ₃ P ₃ O ₉	3m	49
Sodium carbonate sulfate, Na ₄ CO ₃ SO ₄	11m	51	Sodium phosphate hydrate,		
Sodium carbonate sulfate (burkeite),			Na ₃ P ₃ O ₉ •H ₂ O	3m	50
Na ₆ CO ₃ (SO ₄) ₂	11m	52	Sodium phosphate hydrate,	13m	39
Sodium carbonate sulfate,	11	ED	α -Na ₄ P ₄ O ₁₂ ·4H ₂ O (monoclinic) Sodium phosphate hydrate,	13111	39
Na ₆ CO ₃ (SO ₄) ₂	11m	53	β-Na ₄ P ₄ O ₁₂ ·4H ₂ O (triclinic)	2m	35
Na ₆ (CO ₃) ₂ SO ₄	11m	54	Sodium phosphate hydrate,		
Sodium chlorate, NaClO ₃	3	51	Na ₆ P ₆ O ₁₈ •6H ₂ O	5m	54
Sodium chlorate, NaClO4			Sodium praseodymium fluoride		
(orthorhombic)	7	49	silicate, (Na ₂ Pr ₈)F ₂ (SiO ₄) ₆	7m	68
Sodium chloride (halite), NaCl	2	41	Sodium selenate, Na ₂ SeO ₄	9m	55
Sodium chromium oxide, Na ₂ CrO ₄	9m	48	Sodium selenide, Na_2Se	10m 8m	135 141
Sodium chromium oxide hydrate,	Om	EO	Sodium silicate, β -Na ₂ Si ₂ O ₅	10m	136
Na ₂ CrO ₄ •4H ₂ O	9m	50	Sodium sulfate, Na ₂ SO ₄	11m	57
Na ₂ Cr ₂ O ₇ ·2H ₂ O	7m	62	Sodium sulfate (thenardite), Na ₂ SO ₄	2	59
Sodium chromium oxide sulfate,	7.4.1	-	Sodium sulfide, Na ₂ S	10m	140
Na ₄ (CrO ₄) (SO ₄)	11m	55	Sodium sulfite, Na ₂ SO ₃	3	60
Sodium cobalt(II) sulfate hydrate,			Sodium telluride, Na ₂ Te	10m	141
$Na_2Co(SO_4)_2 \cdot 4H_2O$	6m	61	Sodium tin fluoride, NaSn ₂ F ₅	7m	166
Sodium cyanate, NaCNO	2m	33	Sodium tungsten oxide, Na ₂ WO ₄	1m	47
Sodium cyanide, NaCN (cubic)	1	78	Sodium tungsten(VI) oxide hydrate, Na ₂ WO ₄ •2H ₂ O	2m	33
Sodium cyanide, NaCN (orthorhombic) at 6 °C	1	79	Sodium zinc fluoride, NaZnF ₃	6m	74
Sodium fluoride (villiaumite), NaF	1	63	Sodium zinc sulfate hydrate,		
Sodium hydrogen fluoride, NaHF ₂	5	63	$Na_2Zn(SO_4)_2 \cdot 4H_2O$	6m	72
Sodium hydrogen phosphate, Na3H(PO3)	10m	130	Sodium zirconium fluoride,		
Sodium hydrogen silicate hydrate,			Na ₇ Zr ₆ F ₃₁	8m	144
Na ₂ H ₂ SiO ₄ •4H ₂ O	7m	163	Strontium aluminum hydroxide,	1 Om	50
Sodium hydrogen sulfate hydrate,	۰	E 2	Sr ₃ Al ₂ (OH) ₁₂ Strontium aluminum oxide, Sr ₃ Al ₂ O ₆	10m 10m	52
NaHSO ₄ •H ₂ O Sodium hydroxide, NaOH at 300 °C	9m 4m	52 69	Strontium arsenate, Sr ₃ (AsO ₄) ₂	2m	36
Sodium iodate, NaIO ₃	7	47	Strontium azide, Sr(N ₃) ₂	8m	146
Sodium iodate, NaIO4	7	48	Strontium borate, SrB ₂ O ₄	3m	53
Sodium iodide, NaI	4	31	Strontium borate, SrB ₄ O ₇	4m	36
Sodium iron fluoride, Na ₃ FeF ₆	9m	54	Strontium bromide fluoride, SrBrF	10m	54
Sodium lanthanum fluoride silicate,	_		Strontium bromide hydrate,	A	60
(Na ₂ La ₈)F ₂ (SiO ₄) ₆	7m	64	SrBr ₂ •6H ₂ O Strontium carbonate (strontianite),	4	60
Sodium lanthanum molybdenum oxide, NaLa(MoO ₄) ₂	1 Om	49	Srco ₃	3	56
Sodium magnesium aluminum boron	10m	43	Strontium chloride, SrCl ₂	4	40
hydroxide silicate, dravite,			Strontium chloride fluoride, SrClF	10m	55
NaMg3Al6B3 (OH) 4Si6O27	3m	47	Strontium chloride hydrate,		
Sodium magnesium carbonate (eitelite)	,		SrCl ₂ •2H ₂ O	1 1 m	58
Na ₂ Mg (CO ₃) ₂	11m	56	Strontium chloride hydrate,	A	E0.
Sodium magnesium sulfate hydrate,		63	SrCl ₂ •6H ₂ O Strontium chloride hydroxide	4	58
bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O Sodium magnesium sulfate hydrate	6m	63	phosphate, Sr ₅ Cl _{.65} (OH) _{.35} (PO ₄) ₃	11m	60
(loeweite), Na ₁₂ Mg ₇ (SO ₄) ₁₃ ·15H ₂ O	14m	35	Strontium fluoride, SrF ₂	5	67
Sodium manganese(II) fluoride,		33	Strontium hydroxide, Sr (OH) 2	13m	41
NaMnF ₃	6m	65	Strontium hydroxide hydrate,		
Sodium manganese sulfate hydrate,			Sr (OH) 2 • H ₂ O	13m	42
$Na_{12}Mn_7(SO_4)_{13} \cdot 15H_2O$	14m	37	Strontium hydroxide hydrate,	3.0	4.7
Sodium mercury(II) chloride hydrate,			Sr (OH) 2 · 8H ₂ O	13m	43
NaHgCl ₃ ·2H ₂ O	6m	66 46	Strontium indium hydroxide, Sr ₃ In ₂ (OH) ₁₂	6m	76
Sodium molybdenum oxide, Na ₂ MoO ₄	1m	46	2-3-11/2 (011/1/2	Om	, 0

	Vol. or			Vol. or	
	Sec.	Page		Sec.	Page
Strontium iodide hydrate,			Thallium gallium sulfate hydrate,		
SrI ₂ •6H ₂ O	8	58	TlGa(SO ₄) ₂ •12H ₂ O	6	57
Strontium manganese oxide, SrMnO ₃			Thallium(I) iodate, TlIO ₃	8	62
(cubic)	10m	56	Thallium(I) iodide, TlI	4	50
Strontium manganese oxide, SrMnO ₃ (hexagonal)	10m	58	(orthorhombic)	4	53
Strontium molybdenum oxide, SrMoO ₄	7	50	Tl ₂ Fe(SO ₄) ₂ •6H ₂ O	8m	87
Strontium nitrate, Sr(NO ₃) ₂	12m	31	Thallium magnesium chromium oxide,	O.I.I	0,
Strontium oxide, SrO	5	68	Tl ₂ Mg ₂ (CrO ₄) ₃	8m	89
Strontium oxide, SrO ₂	6	52	Thallium magnesium sulfate hydrate,		
Strontium oxide hydrate, SrO ₂ ·8H ₂ O	11m	61	Tl ₂ Mg(SO ₄) ₂ ·6H ₂ O	7m	74
Strontium phosphate, $\alpha - Sr_2P_2O_7$	11m	62	Thallium manganese sulfate,	7	7.0
Strontium phosphate, α -Sr ₃ (PO ₄) ₂ Strontium scandium oxide hydrate,	11m	64	Tl ₂ Mn ₂ (SO ₄) ₃ Thallium nickel sulfate hydrate,	7m	76
Sr ₃ Sc ₂ O ₆ ·6H ₂ O	6m	78	Tl ₂ Ni(SO ₄) ₂ ·6H ₂ O	7m	78
Strontium silicate, Sr ₃ SiO ₅	13m	44	Thallium(I) nitrate, TlNO ₃	6	58
Strontium sulfate (celestite),			Thallium(III) oxide, Tl ₂ O ₃	2	28
SrsO ₄	2	61	Thallium(I) phosphate, Tl ₃ PO ₄	7	58
Strontium sulfide, SrS	7	52	Thallium(III) phosphate, TlPO ₄	7	59
Strontium telluride, SrTe	4m	69	Thallium platinum chloride, Tl ₂ PtCl ₆	5	70
Strontium tin oxide, SrSnO ₃ Strontium titanium oxide, SrTiO ₃	8m	80	Thallium silicon fluoride, Tl ₂ SiF ₆	6	56 50
Strontium tungsten oxide, SrWO ₄	3 7	44 53	Thallium(I) sulfate, Tl ₂ SO ₄ Thallium(I) thiocyanate, TlCNS	6 8	59 63
Strontium tungsten oxide, Sr ₂ WO ₅	12m	32	Thallium tin chloride, Tl ₂ SnCl ₆	6	54
Strontium zirconium oxide, SrZrO3	9	51	Thallium(I) tungsten oxide, Tl ₂ WO ₄	1m	48
Sulfamic acid, H ₂ NSO ₃ H	7	54	Thallium zinc sulfate hydrate,		
Sulfur, S (orthorhombic)	9	54	$Tl_2Zn(SO_4)_2 \cdot 6H_2O$	7m	80
Tantalum, Ta	1	29	Thorium arsenide, ThAs	4m	70
Tantalum silicide, TaSi ₂	8	59	Thorium oxide (thorianite), ThO ₂	1	57
Tellurium (TV) ovide (paratellurite)	1	26	Thulium arsenate, TmAsO ₄	3m	56
Tellurium(IV) oxide (paratellurite), TeO ₂ (tetragonal)	7	56	Thulium arsenide, TmAs Thulium nitride, TmN	4m 4m	71 71
Tellurium(IV) oxide, paratellurite,	,	30	Thulium oxide, Tm ₂ O ₃	9	58
TeO ₂ (tetragonal)	10	55	Thulium telluride, TmTe	4m	72
Tellurium(IV) oxide, tellurite,			Thulium vanadium oxide, TmVO4	5m	5 7
TeO ₂ (orthorhombic)	9	57	Tin, α -Sn (cubic)	2	12
Terbium arsenate, TbAsO4	3m	54	Tin, β-Sn (tetragonal)	1	24
Terbium arsenide, TbAs	5m	75	Tin arsenide, SnAs	4m	37
Terbium nitride, TbN Terbium phosphide, TbP	4m	70 76	Tin(II) fluoride, SnF ₂ Tin hydrogen phosphate, SnHPO ₄	3m 13m	51 46
Terbium selenide, TbSe	5m 5m	76	Tin (IV) iodide, SnI ₄	5	71
Terbium sulfide, TbS	5m	77	Tin(II) oxide (romarchite), SnO	4	28
Terbium telluride, TbTe	5m	77	Tin(IV) oxide (cassiterite), SnO2	1	54
Terbium vanadium oxide, TbVO4	5m	56	Tin sulfide (berndtite), β -SnS ₂	9m	57
Thallium aluminum sulfate hydrate,			Tin(II) telluride, SnTe	7	61
TlA1(SO ₄) ₂ •12H ₂ O	6	53	Titanium, Ti	3	1
Thallium(I) arsenate, Tl ₃ AsO ₄ Thallium azide, TlN ₃	2m	37	Titanium oxide (anatase), TiO ₂	7m	82
Thallium(I) bromate, TlBrO3	8m 8	82 60	Titanium oxide, brookite, TiO ₂ (orthorhombic)	3m	57
Thallium bromide, TlBr	7	57	Titanium oxide (rutile), TiO ₂	7m	83
Thallium cadmium sulfate,	·	0,	Titanium(III) oxide, TiO _{1.515}	9	59
Tl ₂ Cd ₂ (SO ₄) ₃	8m	83	Titanium silicide, Ti ₅ Si ₃	8	64
Thallium(I) chlorate, TlClO ₄	2m	38	Titanium sulfide, TiS ₂	4m	72
Thallium(I) chlorate, TlClO ₃	8	61	Titanium sulfide, Ti ₂ S	8m	149
Thallium(I) chloride, TlCl	4	51	Tungsten, W	1	28
Thallium chromium oxide, Tl ₂ CrO ₄ Thallium chromium sulfate hydrate,	3m	54	Tungsten, W (reference standard) Tungsten sulfide (tungstenite), WS ₂	8m 8	2 65
TlCr (SO ₄) ₂ ·12H ₂ O	6	55	Uranium oxide, UO	5m	78
Thallium cobalt sulfate,	-	33	Uranium oxide (uraninite), UO ₂	2	33
Tl ₂ Co ₂ (SO ₄) ₃	8m	85	Uranium selenide, USe	5m	78
Thallium cobalt sulfate hydrate,			Uranium telluride, UTe	4m	73
Tl ₂ Co(SO ₄) ₂ *6H ₂ O	7m	70	Vanadium, V	9m	58
Thallium copper sulfate hydrate,	_		Vanadium(V) oxide (shcherbinaite),		
Tl ₂ Cu(SO ₄) ₂ •6H ₂ O	7m	72	V_2O_5	8 14m	66 118
			3		

	Vol. or	D		Vol. or	
	Sec.	Page		Sec.	Page
Vanadium sulfide, β -V ₃ S	14m	120	Zinc iodide, ZnI ₂	9	60
Ytterbium arsenate, YbAsO4	4m	38	Zinc iron oxide (franklinite),		
Ytterbium arsenide, YbAs	4m	73	ZnFe ₂ O ₄	9m	60
Ytterbium nitride, YbN	4m	74	Zinc manganese oxide (hetaerolite),		
Ytterbium oxide, Yb ₂ O ₃	6m	80	ZnMn ₂ O ₄	10m	61
Ytterbium selenide, YbSe	5m	79	Zinc molybdenum oxide, Zn ₂ Mo ₃ O ₈	7m	173
Ytterbium telluride, YbTe	5m	79	Zinc nitrate hydrate,		
Ytterbium(III) vanadium oxide, YbVO4	5m	58	α -Zn(NO ₃) ₂ ·6H ₂ O	12m	36
Yttrium arsenate, YAsO4	2m	39	Zinc oxide (zincite), ZnO	2	25
Yttrium arsenide, YAs	4m	74	Zinc selenide, ZnSe	3	23
Yttrium chloride oxide. YClo	1m	51	Zinc silicate (willemite), Zn2SiO4	7	62
Yttrium oxide, Y ₂ O ₃	3	28	Zinc silicon fluoride hydrate,		
Yttrium phosphate (xenotime), YPO4	8	67	ZnSiF ₆ ·6H ₂ O	8	70
Yttrium sulfide, YS	5m	80	Zinc sulfate (zinkosite), ZnSO4	7	64
Yttrium telluride, YTe	4m	75	Zinc sulfate hydrate (goslarite),		
Yttrium titanium oxide, Y2TiO5	11m	113	ZnSO ₄ •7H ₂ O	8	71
Yttrium vanadium oxide, YVO4	5m	59	Zinc sulfide (wurtzite), α-ZnS		
Zinc, Zn	1	16	(hexagonal)	2	14
Zinc aluminum oxide (gahnite),			Zinc sulfide (sphaelerite), β-ZnS		
ZnAl ₂ O ₄	2	38	(cubic)	2	16
Zinc ammine bromide, Zn(NH3)2Br2	11m	68	Zinc telluride, ZnTe	3m	58
Zinc ammine chloride, Zn(NH3)2Cl2	10m	59	Zinc tin oxide, Zn ₂ SnO ₄	10m	62
Zinc antimony oxide, ZnSb ₂ O ₄	4m	39	Zinc titanium oxide, ZnTiO3	13m	49
Zinc borate, ZnB ₂ O ₄	1	83	Zinc titanium oxide, Zn ₂ TiO ₄	12m	37
Zinc borate, Zn4B6O13	13m	48	Zinc tungsten oxide (sanmartinite),		
Zinc carbonate, smithsonite, ZnCO3	8	69	ZnWO4	2m	40
Zinc chromium oxide, ZnCr ₂ O ₄	9m	59	Zirconium, α-Zr	2	11
Zinc cobalt oxide, ZnCo ₂ O ₄	10m	60	Zirconium hydride, ZrH2	5m	60
Zinc cyanide, Zn(CN) ₂	5	73	Zirconium iodate, Zr(IO3)4	1m	51
Zinc fluoride, ZnF ₂	6	60	Zirconium nitride, ZrN	5m	80
Zinc fluoride hydrate,			Zirconium oxide, ZrO	5m	81
ZnF ₂ •4H ₂ O	11m	69	Zirconium phosphide, ZrP	4m	75
Zinc germanium oxide, Zn ₂ GeO ₄	10	56	Zirconium silicate, zircon, ZrSiO4	4	68
Zinc hydroxide silicate hydrate,			Zirconium sulfate hydrate		
hemimorphite, Zn4 (OH) 2Si2O7 • H2O	2	62	(zircosulfate), Zr(SO ₄) ₂ ·4H ₂ O	7	66

CUMULATIVE ORGANIC INDEX

	Vol. or Sec.	Page		Vol. or Sec.	Page
					· ugc
Acetanilide, C ₆ H ₅ NHCOCH ₃	14m	38	2-Naphthylamine, N-phenyl-,		
4-Acetyl-2'-fluorodiphenyl,			C ₁₀ H ₇ NHC ₆ H ₅	бm	29
C ₁₄ H ₁₁ FO	8m	91	Neodymium ethylsulfate hydrate,		
Alanine, L-, CH ₃ CHNH ₂ CO ₂ H	8m	93	Nd [(C ₂ H ₅)SO ₄] ₃ •9H ₂ O	9	41
Allobarbital, C ₁₀ H ₁₂ N ₂ O ₃	14m	41	Nickel acetate hydrate,	1.0	2.7
Ammonium acetate, NH ₄ *CH ₃ CO ₂ Ammonium formate, NH ₄ HCO ₂	8m	95 9	Ni(C ₂ H ₃ O ₂) ₂ ·4H ₂ O····································	13m	31
Ammonium oxalate hydrate (oxammite),	11m	9	Nickel hexaimidazole nitrate, Ni(C ₃ H ₄ N ₂) ₆ (NO ₃) ₂	7	27
(NH ₄) ₂ C ₂ O ₄ ·H ₂ O	7	5	Nickel tetrapyrazole chloride,	7m	41
Ammonium yttrium oxalate hydrate,	,	3	Ni(C ₃ H ₄ N ₂) ₄ Cl ₂	8m	44
NH ₄ Y (C ₂ O ₄) ₂ ·H ₂ O	8m	97	Octahydro-1,3,5,7-tetranitro-	Om	77
Ascorbic acid, L -, $C_6H_8O_6$	8m	99	1,3,5,7-tetrazocine (α -HMX),		
Azobenzene, C ₆ H ₅ NNC ₆ H ₅	7m	86	C ₄ H ₈ N ₈ O ₈	11m	100
Cadmium hexaimidazole nitrate,	7.***		Octahydro-1,3,5,7-tetranitro-		100
Cd (C ₃ H ₄ N ₂) ₆ (NO ₃) ₂	8m	23	1,3,5,7-tetrazocine (β-HMX),		
Calcium formate, Ca(HCO ₂) ₂	8	16	C ₄ H ₈ N ₈ O ₈	11m	102
Calcium malate hydrate,			Palladium bis-(N-isopropyl-3-ethyl-		
Ca (O ₂ C) ₂ (CH ₂ CHOH) • 2H ₂ O	10m	76	salicylaldiminate), Pd(C12H16NO)2	7m	144
Chlorpromazine, C ₁₇ H ₁₉ ClN ₂ S	14m	60	Pimelic acid, (CH ₂) ₅ (CO ₂ H) ₂	7m	153
Cobalt acetate hydrate,			Potassium formate-formic acid		
Co(C ₂ H ₃ O ₂) ₂ ·4H ₂ O	12m	19	complex, KO ₂ CH·HO ₂ CH	9m	93
Copper glutamate hydrate,			Potassium hydrogen o-phthalate,		
$Cu(O_2C)_2(H_2NCHCH_2CH_2) \cdot 2H_2O \dots$	7m	110	С ₆ H ₄ (СООН) (СООК)	4m	30
Copper tetraimidazole nitrate,			Potassium oxalate hydrate,		
$Cu(C_3H_4N_2)_4(NO_3)_2$	13m	24	K ₂ C ₂ O ₄ • H ₂ O	9m	39
Copper tetrapyrazole chloride,			Potassium oxalate perhydrate,		
$Cu(C_3H_4N_2)_4Cl_2$	8m	31	K ₂ C ₂ O ₄ • H ₂ O ₂	9m	96
Cysteine, L-, HSCH ₂ ·CH(NH ₂)·COOH	11m	86	Reserpine, $C_{33}H_{40}N_2O_9$	8m	123
Diazepam, C ₁₆ H ₁₃ ClN ₂ O	14m	106	Rubidium oxalate perhydrate,		
Dibenzoylmethane, (C ₆ H ₅ CO) ₂ CH ₂	7m	115	Rb ₂ C ₂ O ₄ • H ₂ O ₂	9m	102
(N,N) -Dimethyltryptamine, $C_{12}H_{16}N_2$	14m	109	Silver oxalate, Ag ₂ C ₂ O ₄	9m	47
bis-(o-Dodecacarborane), C ₄ B ₂₀ H ₂₂	6m	7	Sodium D-tartrate hydrate,		
Glucose, D-, α , (dextrose), $C_6H_{12}O_6$	11m	28	(CHOH-CO ₂ Na) ₂ ·2H ₂ O	11m	110
Glyoxime, H ₂ C ₂ (NOH) ₂	8m	102	Sodium oxalate, Na ₂ C ₂ O ₄	6m	70
Hexamethylenediammonium adipate,	_	101	Strontium formate, Sr(CHO ₂) ₂	8	55
(CH ₂) ₄ (CO ₂ H ₃ N) ₂ (CH ₂) ₆	7m	121	Strontium formate hydrate,	0	E.C
Holmium ethylsulfate hydrate,		10	Sr(CHO ₂) ₂ ·2H ₂ O (orthorhombic)	8	56
Ho [(C ₂ H ₅)SO ₄] ₃ •9H ₂ O	1m	18	Sucrose, C ₁₂ H ₂₂ O ₁₁ Tartaric acid, D-, (CHOHCO ₂ H) ₂	11m	66 168
Hydroquinone, γ -HOC $_6$ H $_4$ OH	8m	107	Trimethylammonium chloride,	7m	100
	10m	24	(CH ₃) ₃ NHCl	9m	113
$FeC_2O_4 \cdot 2H_2O$	8	30	2,4,6-Trinitrophenetole,	Jiii	113
Lithium oxalate, Li ₂ C ₂ O ₄	10m	34	$C_2H_5OC_6H_2$ (NO ₂) 3	8m	152
Mercury o-phthalate, C ₆ H ₄ (CO ₂ Hg) ₂	10m	113	Urea, CO(NH ₂) ₂	7	61
Methapyrilene hydrochloride,	TOIL	113	Uric acid, $C_5H_4N_4O_3$	8m	154
C14H20ClN3S	14m	112	Zinc diimidazole chloride,	Ozn	104
Methyl sulfonanilide, C ₆ H ₅ NHSO ₂ CH ₃	9m	78	$\operatorname{Zn}(C_3H_4N_2)_2\operatorname{Cl}_2$	7m	123
N-Methylphenazinium-7,7,8,8-tetra-	2111	, 3	Zinc glutamate hydrate,	7	
cyanoquinodimethanide, C25H15N6	7m	146	Zn (O ₂ CCHNH ₂ CH ₂ CH ₂ CO ₂) • 2H ₂ O · · · · · · · ·	7m	170
7 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2					

CUMULATIVE MINERAL INDEX

	Vol. or Sec.	Page	,	Vol. or Sec.	Page
Acanthite, Ag ₂ S (monoclinic)	10	51	Cryptohalite, (NH ₄) ₂ SiF ₆	5	5
Aeschynite CeNbTiO6	3m	24	Cuprite, Cu ₂ O	2	23
Alabandite, MnS	_4	11	*Diamond, C	2	5
Anatase, TiO ₂	7m	82	*Diaspore, Al ₂ O ₃ ·H ₂ O	3	41
Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Diopside, CaMg(SiO ₃) ₂	5m 3m	17 47
Anglesite, PbSO ₄	4	67 65	*Dravite, $NaMg_3Al_6B_3Si_6O_{27}(OH)_4$ Eitelite, $Na_2Mg(CO_3)_2$	11m	56
Antarcticite, CaSCl ₂ ·6H ₂ O	12m	16	Elpasolite, K ₂ NaAlF ₆	9m	43
Antimony, Sb	3	14	*Enstatite, MgSiO ₃	6	32
Aphthitalite, K ₃ Na(SO ₄) ₂	6m	52	Epsomite, MgSO ₄ • 7H ₂ O	7	30
Aragonite, CaCO ₃	3	53	Erythrosiderite, K ₂ FeCl ₅ ·H ₂ O	14m	27
Aragonite, CaCo ₃ (orthorhombic,			Eskolaite, Cr ₂ O ₃	5	22
calculated pattern)	14m	44	Ettringite, Ca ₆ Al ₂ S ₃ O ₁₈ ·3lH ₂ O	8	3
Arcanite, K ₂ SO ₄	3	62	Fairchildite, K ₂ Ca(CO ₃) ₂	8m	48
Arsenic, As	3	6	Fluorapatite, Ca ₅ F(PO ₄) ₃	3m	22
Arsenolite, As ₂ O ₃	1	51	Fluorite, CaF ₂	1	69 83
Aurostibite, AuSb ₂	7 10	18 30	Forsterite, Mg ₂ SiO ₄ Franklinite, ZnFe ₂ O ₄	1 9m	60
*Azurite, Cu ₃ (OH) ₂ (CO ₃) ₂ Baryte, BaSO ₄	10m	12	Fresnoite, Ba ₂ TiSi ₂ O ₈	9m	14
Berlinite, AlPO ₄	10	3	Gahnite, ZnAl ₂ O ₄	2	38
Berndtite, SnS ₂	9m	57	Galaxite, MnAl ₂ O ₄	9	35
*Beryl, Be ₃ Al ₂ Si ₆ O ₁₈	9	13	Galena, PbS	2	18
Bischofite, MgCl ₂ ·6H ₂ O	11m	37	Geikielite, MgTiO ₃	5	43
Bismite, α -Bi ₂ O ₃	3m	17	Gersdorffite, NiAsS	lm	35
Bismoclite, BiOCl	4	54	Glauberite, Na ₂ Ca(SO ₄) ₂	6m	59
Bismuth, Bi	3	20	Gold, Au	1	33
Bismuthinite, Bi ₂ S ₃	5m	13	Goslarite, ZnSO ₄ ·7H ₂ O	8	71
Bixbyite, α -Mn ₂ O ₃	11m	95	Greenockite, CdS	4	15
*Bloedite, Na ₂ Mg(SO ₄) ₂ ·4H ₂ O	6m	63	*Groutite, MnO(OH)	11m	97
Boehmite, Al ₂ O ₃ ·H ₂ O	3 4	38 46	Halite, NaCl	2 10m	41 38
Bromellite, BeO	1	36	*Hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ •H ₂ O	2	62
*Brookite, TiO ₂	3m	57	Hetaerolite, ZnMn ₂ O ₄	10m	61
Brucite, Mg (OH) 2	6	30	Hieratite, K ₂ SiF ₆	5	50
Bunsenite, NiO	1	47	Huebnerite, MnWO4	2m	24
Burkeite, Na ₆ CO ₃ (SO ₄) ₂	11m	52	Humboldtine, FeC ₂ O ₄ • 2H ₂ O	10m	24
*Butlerite, Fe(OH)SO ₄ ·2H ₂ O	10m	95	Humite, Mg ₇ F ₂ Si ₃ O ₁₂	lm	30
Cadmoselite, CdSe	7	12	Hydrophilite, CaCl ₂	11m	18
Calcite, CaCO ₃	2	51	Indialite, Mg ₂ Al ₄ Si ₅ O ₁₈ (hexagonal)	lm	29
Calomel, Hg ₂ Cl ₂	13m	30	Iodargyrite, AgI	8	51
Carnallite, KMgCl ₃ ·6H ₂ O	8m	50 54	Iron, α -Fe	4 9	3 36
Cassiterite, SnO ₂	1 2	61	*Julgoldite, Ca ₂ Fe ₃ Si ₃ O ₁₀ (OH,O) ₂ (OH) ₂		72
Cerianite, CeO ₂	1	56	Kalistrontite, $K_2Sr(SO_4)_2$	14m	31
Cerussite, PbCO ₃	2	56	Kremersite, (NH ₄ ,K) ₂ FeCl ₅ ·H ₂ O	14m	8
Cervantite, Sb ₂ O ₄	10	8	Langbeinite, $K_2Mg_2(SO_4)_3$	6m	40
Chalcokyanite, CuSO ₄	3m	29	Lautarite, Ca(IO ₃) ₂	14m	12
Chloraluminite, AlCl ₃ ·6H ₂ O	7	3	Lead, Pb	1	34
Chlorargyrite, AgCl	4	44	*Leucophanite, NaCaBeFSi ₂ O ₆	8m	138
Chloromagnesite, MgCl ₂	11m	94	Lime, CaO (see Vol. 1, p. 43)	14m	49
Chromatite, CaCrO ₄	7	13	Litharge, PbO (red)	2	30
Chrysoberyl, BeAl ₂ O ₄	9	10	Lithiophosphate, Li ₃ Po ₄	4m	21
Cinnabar, HgS	4 2m	17 9	Localingite, FeAs ₂	10	34
*Claudetite, As ₂ O ₃ Clausthalite, PbSe	3m 5	38	Loeweite, Na ₁₂ Mg ₇ (SO ₄) ₁₃ ·15H ₂ O Macedonite, PbTiO ₃	14m 5	35 39
Copper, Cu	1	15	Magnesiochromite, MgCr ₂ O ₄	9	34
Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈	_		Magnesite, MgCO ₃	7	28
(orthorhombic)	1m	28	Magnetite, Fe ₃ O ₄	5m	31
Corundum, Al ₂ O ₃	9	3	Malachite, Cu ₂ (OH) ₂ CO ₃	10	31
Cotunnite, PbCl ₂	12m	23	Manganolangbeinite, K ₂ Mn ₂ (SO ₄) ₃	6m	43
Covellite, CuS	4	13	Manganosite, MnO	5	45
Cristobalite (α or low) SiO ₂	10	48	Marshite, CuI	4	38
Cristobalite (β or high) SiO ₂	1	42	Mascagnite, (NH ₄) ₂ SO ₄	9	8
*Cryolithionite, Li3Na3Al2F12	9m	23	Massicot, PbO (yellow)	2 12m	32
*Natural minoral			Matlockite, PbFCl	13m	25

^{*}Natural mineral.

CUMULATIVE MINERAL INDEX - Continued

	Vol. or Sec.	Page		Vol. or Sec.	Page
Mayenite, Ca ₁₂ Al ₁₄ O ₃₃	9	20	Selenolite, SeO ₂		60
Melanterite, FeSO ₄ ·7H ₂ O	8m	38	Sellaite, MgF ₂		33
*Meliphanite,	0	105	Senarmontite, Sb ₂ O ₃		31
Na 63Cal 37BeAl 13Sil 87O6 25F 75	8m	135	Shcherbinaite, V ₂ O ₅		66
Metaborite, HBO ₂ (cubic)	4m	27	Silver, Ag		23
Metacinnabar, HgS	4	21	Silver, Ag (reference standard)	. 8m	2
Miargyrite, AgSbS ₂ * *Millerite, NiS*	5m	49	*Sjogrenite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O,	1.0	100
Minium, Pb ₃ O ₄	lm 8	37 32	phase I		103
		34	Skutterudite, CoAs ₃		21
Mitscherlichite, K ₂ CuCl ₄ ·2H ₂ O	9m 5	47	*Smithsonite, ZnCO ₃		69
Molybdita MoO.			*Sodalite, Na ₈ Si ₆ Al ₆ O ₂₄ Cl ₂		158
Molybdite, MoO3	3 9	30 39	Soda-niter, NaNO ₃		50
Montroydite, HgO		39	Sphalorite 775		24
Mullite, Al ₆ Si ₂ O ₁₃	3m	35	Sphalerite, ZnS		16
Nantokite, CuCl	4		Spinel, MgAl ₂ O ₄		25
*Newberyite, MgHPO4*3H2O	7m	139 58	Stibnite, Sb ₂ S ₃		6
Niter, KNO3	3 7	4	Stolzite, PbWO ₄	. 5m	34 56
Nitraharita Ba(NO.)					41
Nitrobarite, Ba(NO ₃) ₂	11m 10	14 39	Struvite, MgNH ₄ PO ₄ · 6H ₂ O		54
Norbergite, Mg ₃ F ₂ SiO ₄	7		Sulfur, S (orthorhombic)		
Oldhamite, CaS	7	15 11	Sylvite, KCl		65 25
Otavite, CdCO ₃	7	5	Syngenite, K ₂ Ca(SO ₄) ₂ •H ₂ O		25 57
Oxammite, (NH ₄) ₂ C ₂ O ₄ ·H ₂ O Palladium, Pd	1	21	*Tellurite, TeO ₂		26
			Tellurobismuthite, Bi ₂ Te ₃		16
Palmierite, K ₂ Pb(SO ₄) ₂	14m	30 55	Tenorite, CuO		49
*Paratellurite, TeO ₂	10 7	56	Teschemacherite, NH ₄ HCO ₃		49
Paratellurite, TeO ₂	1	37	Thenardite, Na ₂ SO ₄		59
Periclase, MgO		17			54
Perovskite, CaTiO ₃ *Phenakite, Be ₂ SiO ₄	9m 8	11	Thermonatrite, Na ₂ CO ₃ ·H ₂ O		132
Picromerite, K ₂ Mg(SO ₄) ₂ ·6H ₂ O		54	*Thomsenolite, NaCaAlF ₆ *H ₂ O Thorianite, ThO ₂		57
*Pirssonite, Na ₂ Ca(CO ₃) ₂ ·2H ₂ O	8m 9m	106	Thortveitite, Sc ₂ Si ₂ O ₇		58
Platinum, Pt	·1	31	Tiemannite, HgSe		35
Portlandite, Ca(OH) ₂	1	58	Tin, α -Sn (cubic)		12
Potash alum, KAl(SO ₄) ₂ ·12H ₂ O	6	36	Tin, β -Sn (tetragonal)		24
Powellite, CaMoO4	6	22	*Topaz, Al ₂ SiO ₄ (F,OH) ₂		4
Pyrargyrite, Ag ₃ SbS ₃	5m	51	Trevorite, NiFe ₂ O ₄		44
Pyrite, FeS ₂	5	29	Tschermigite, NH ₄ Al(SO ₄) ₂ ·12H ₂ O		3
*Pyroaurite, Mg ₆ Fe ₂ CO ₃ (OH) ₁₆ ·4H ₂ O,	3	2)	Tungstenite, WS ₂		65
phase II	10m	104	Uraninite, UO ₂		33
Pyrolusite, β-MnO ₂	10m	39	Uvarovite, Ca ₃ Cr ₂ (SiO ₄) ₃		17
Pyrope, Mg ₃ Al ₂ (SiO ₄) ₃	4m	24	*Valentinite, Sb ₂ O ₃		6
*Quartz, SiO ₂ (α or low)	3	24	Valentinite, Sb ₂ O ₃		6
Rammelsbergite, NiAs ₂	10	42	Villiaumite, NaF		63
Retgersite, NiSO ₄ ·6H ₂ O	7	36	Willemite, Zn ₂ SiO ₄		62
Rhodochrosite, MnCO ₃	7	32	Witherite, BaCO ₃		54
Romarchite, SnO	4	28	Wulfenite, PbMoO ₄		23
Rutile, TiO ₂	7m	83	Wurtzite, ZnS		14
Safflorite, CoFeAs ₄	10	28	*Xanthoconite, Ag3AsS3		126
Sal-ammoniac, NH ₄ Cl	10	59	Xenotime, YPO4		67
Sanbornite, β-BaSi ₂ O ₅	13m	10	Zinc, Zn		16
Sanmartinite, ZnWO ₄	2m	40	Zincite, ZnO		25
Scacchite, MnCl ₂	2111 8m	43	Zinkosite, ZnSO4		64
*Scheelite, CaWO4	6	23	*Zircon, ZrSiO4		68
Schultenite, PbHAsO4	14m	18	Zircosulfate, Zr(SO ₄) ₂ ·4H ₂ O		66
Selenium, Se	5	54	111000411460, 21 (504) Z 41120		- 00
Jozoniam, od ilinininininininininini	,	34		er .	

NE	33-114A (REV. 7-73)							
	U.S. DEPT. OF COMM. BIBLIOGRAPHIC DATA SHEET	1. PUBLICATION OR REPORT NO. NBS MN-25, Section 14	No.	t Accession	3. Recipient'	s Accession No.		
4.	TITLE AND SUBTITLE				5. Publicatio	n Date		
Standard X-ray Diffraction Powder Patterns						ber 1977		
	Section 14 Data f							
	gection 14 Data 1	or of publices			6. Performing	g Organization Code		
		ris, H.F. McMurdie, E.F e Groot, R.J. Newberry,				Organ, Report No.		
9.	PERFORMING ORGANIZATI	ON NAME AND ADDRESS	S.J. C	armel	10. Project/T	ask/Work Unit No.		
N/	ATIONAL BUREAU OF STAN	NDARDS Joint Committee	on					
	EPARTMENT OF COMMERCI	F Powder Diffract	ion Star	ndards	11. Contract/	Grant No.		
W	ASHINGTON, D.C. 20234	Swarthmore, PA	19081					
				1				
12.	Sponsoring Organization Nam	ne and Complete Address (Street, City,	State, ZIP)	Covered	Report & Period		
	G.	0			Inte			
	Same as	9.			14. Sponsoring Agency Code			
15.	SUPPLEMENTARY NOTES							
	Library o	f Congress Catalog Card	Number	: 53-6138	36			
16	ARSTRACT (A 200-word or 1	less factual summary of most significan	t informatio	on. If documen	t includes a si	énificant		
	bibliography or literature sur							
		ffraction patterns are pre	sented f	for 68 sub	stances.	Twenty-		
	Standard x-ray dr.	tterns represent experimen	tal data	and 41	are calcul	ated.		
	seven of these pa	x-ray powder diffraction p	atterns	were obta	ined with	an x-rav		
	The experimental	All d-values were assigned	Miller	indices d	etermined	by compari-		
	diffractometer.	All d-values were assigned	MITTEL	ith cross	aroun ext	inctions		
	son with computed interplanar spacings consistent with space group extinctions.							
	The densities and lattice constants were calculated, and the refractive indices							
	were measured whenever possible. The calculated x-ray powder diffraction patterns							
	were computed from published crystal structure data. Both peak height and							
	integrated intensities are reported for the calculated patterns.							
						·		
17.	KEY WORDS (six to twelve e	entries; alphabetical order; capitalize d	nly the firs	t letter of the	first key word	unless a proper		
	name; separated by semicolo	ons)						
	Crystal structure	; integrated intensities;	lattice	constants	s; peak int	tensities;		
	powder patterns;	reference intensities; sta	ndard;	x-ray diff	fraction.			
18.	AVAILABILITY	X Unlimited		19. SECURIT (THIS RE		21. NO. OF PAGES		
	For Official Distribution	n. Do Not Release to NTIS		UNCL AS	SIFIFD	143		
	[X] Order From Sun of Dea	U.S. Government Princips Office		20. SECURIT		22. Price		
	Washington, D.C. 20402	, U.S. Government Princing Office , SD Cat. No. C13. 44:25 Sec.	14	(THIS PA				
	_	chnical Information Service (NTIS)				\$2.75		
	Springfield, Virginia 221			UNCLASS	SIFIED			

SINGLE CRYSTAL DATA

REVISED! UPDATED!

In 1954, the first edition of CRYS-TAL DATA (Determinative Tables and Systematic Tables) was published as Memoir 60 of the Geological Society of America. In 1960, the second edition of the Determinative Tables was issued as Monograph 5 of the American Crystallographic Association, and in 1967, the Systematic Tables were issued as Monograph 6. These editions proved extremely valuable to crystallographers throughout the world. Recognizing the need for updated crystallographic information, the National Bureau of Standards Office of Standard Reference Data has sponsored the issuance of a new edition.

This, the THIRD EDITION, should be of particular interest not only to crystallographers but also to chemists, minerallogists, physicists and individuals in related fields of study. The current edition, which comprises two volumes, Organic and Inorganic, is a thoroughly revised and updated work, containing over 25,000 entries.

The entries are listed, within each crystal system, according to increasing values of a determinative number: a/b ratio in trimetric systems, c/a ratio in dimetric systems, and cubic cell edge a, in the isometric system. In addition, the following information is given:

INORGANIC VOLUME \$50.00
ORGANIC VOLUME \$30.00

axial ratio(s) and interaxial angles not fixed by symmetry, cell dimensions, space group or diffraction aspect, number of formula units per unit cell, crystal structure, (whether determined), measured density and x-ray calculated density. Also listed is the name of the compound and synonym(s), chemical formula, literature reference and transformation matrix. When available, the crystal structure type, crystal habit, cleavages, twinning, color, optical properties, indices of refraction, optical orientation, melting point and transition point are also listed.

THIS EDITION culminates years of effort by J. D. H. Donnay, Johns Hopkins University, Helen M. Ondik, National Bureau of Standards, Sten Samson, California Institute of Technology, Quintin Johnson, Lawrence Radiation Laboratory, Melvin H. Mueller, Argonne National Laboratory, Gerard M. Wolten, Aerospace Corporation, Mary E. Mrose, U.S. Geological Survey, Olga Kennard and David G. Watson, Cambridge University, England and Murray Vernon King, Massachusetts General Hospital.

Plus shipping and handling

Shipments are made via insured parcel post. Additional charges for shipments by air or commercial carrier. TERMS: Domestic—30 days Foreign—prepayment required. Address all orders to:

JOINT COMMITTEE ON POWDER DIFFRACTION STANDARDS 1601 Park Lane, Swarthmore, Pennsylvania 19081

NEDDE
NSKUS
CHERCE BATA STS
.0.
ינחטי
כע וטע

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. It is published in two sections, available separately:

• Physics and Chemistry (Section A)

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$17.00; Foreign, \$21.25.

• Mathematical Sciences (Section B)

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$9.00; Foreign, \$11.25.

DIMENSIONS/NBS (formerly Technical News Bulletin)—This monthly magazine is published to inform scientists, engineers, businessmen, industry, teachers, students, and consumers of the latest advances in science and technology, with primary emphasis on the work at NBS. The magazine highlights and reviews such issues as energy research, fire protection, building technology, metric conversion, pollution abatement, health and safety, and consumer product performance. In addition, it reports the results of Bureau programs in measurement standards and techniques, properties of matter and materials, engineering standards and services, instrumentation, and automatic data processing.

Annual subscription: Domestic, \$12.50; Foreign, \$15.65.

NONPERIODICALS

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a world-wide program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396).

NOTE: At present the principal publication outlet for these data is the Journal of Physical and Chemical Reference Data (JPCRD) published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements available from ACS, 1155 Sixteenth St. N.W., Wash. D. C. 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The purpose of the standards is to establish nationally recognized requirements for products, and to provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

Order following NBS publications—NBSIR's and FIPS from the National Technical Information Services, Springfield, Va. 22161.

Federal Information Processing Standards Publications (FIPS PUBS)—Publications in this series collectively constitute the Federal Information Processing Standards Register. Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Services (Springfield, Va. 22161) in paper copy or microfiche form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau: Cryogenic Data Center Current Awareness Service. A

literature survey issued biweekly. Annual subscription: Domestic, \$20.00; Foreign, \$25.00.

Liquified Natural Gas. A literature survey issued quarterly. Annual subscription: \$20.00

Superconducting Devices and Materials. A literature survey issued quarterly. Annual subscription: \$20.00. Send subscription orders and remittances for the preceding bibliographic services to National Bureau of Standards, Cryogenic Data Center (275.02) Boulder, Colorado 80302

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington, O.C. 20234

OFFICIAL BUSINESS

Penalty for Private Use, \$300

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-215

SPECIAL FOURTH-CLASS RATE BOOK