Distributed Autonomous Systems M

Dante Piotto

spring semester 2024

Contents

1	Intr	roduction and scenarios	5
	1.1	Distributed Autonomous System	5
	1.2	Scenarios and applications of distributed systems	5
	1.3	Measurement filtering in wireless sensor networks	5
	1.4	Parameter Estimation in Wireless Sensor Networks	6
		1.4.1 Opinion Dynamics in Social Influence Networks	6
	1.5	Main questions in averaging algorithms	6
	1.6	Distributed control in cooperative robotics	6
		1.6.1 Main questions in cooperative robotics	7
2	Gra	aph theory	9

4 CONTENTS

Chapter 1

Introduction and scenarios

1.1 Distributed Autonomous System

Each agent $i \in \{1, ..., N\}$ has

- local physical and/or cyber state x_i
- computational and sensing capabilities
- communication capability: exchange messages with "neighbours"

1.2 Scenarios and applications of distributed systems

- Averaging: distributed estimation, opinion dynamics
- Distributed control in cooperative robotics
- Distributed optimization
 - distributed machine learning
 - distributed decision-making in cooperative robotics
 - distributed optimal control in energy systems and cooperative robotics

1.3 Measurement filtering in wireless sensor networks

Consider a network of N sensors with local sensing, computation and communication. Agent $i, i \in \{1, ..., N\}$, takes a local measurement from the environment (temperature, pressure, etc.). Let $x_{i0} \in \mathbb{R}$ be the scalar local measurement Agents are interested in agreeing on the average of the measurements,

$$x_{\text{avg}} = \frac{1}{N} \sum_{i=1}^{N} x_{i0}$$

to have a better estimate of the environment quantity

Consider the following "distributed algorithm" based on "local" linear averaging, for each $i \in \{1, ..., N\}$

$$x_i^0 = x_{i0}$$

$$x_i^{k+1} = \operatorname{average}(x_i^k, \{x_j^k, j \text{ "neighbour" of } i\}), \qquad k \in \mathbb{N}$$

generalizing coefficients of the update:

$$x_i^0 = x_{i0}$$

$$x_i^{k+1} = \sum_{j=1}^N a_{ij} x_j^k \qquad k \in \mathbb{N}$$

Remark. $a_{ij} \geq 0$ and $\sum_{j=1}^{N} a_{ij} = 1$

Remark. $a_{ij} = 0$, for some $j \in \{1, ..., N\}$, i.e. $a_{ij} = 0$ if i does not have access to the estimate of j

1.4 Parameter Estimation in Wireless Sensor Networks

Consider a network of N sensors with local sensing, computation and communication aiming at estimating a common parameter $\theta^* \in \mathbb{R}$ Each sensor i measures

$$y_i = B_i \theta^* + v_i$$

with $y_i \in \mathbb{R}^{m_1}, B_i$ known matrix and v_i a random measurement noise. Assume v_1, \ldots, v_N independent and Gaussian, with zero mean and covariance $E[v_i v_i^T] = \Sigma_i$. Assume $\sum_{i=1}^N m_i \ge m$ and $\begin{bmatrix} B_1 \\ \vdots \\ B_N \end{bmatrix}$ full rank Compute a least-squares estimate

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{N} (y_i - B_i \theta)^T \Sigma_i^{-1} (y_i - B_i \theta)$$

The optimal solution is

$$\hat{\theta} = \left(\sum_{i=1}^{N} B_i^T \Sigma_i^{-1} B_i\right)^{-1} \sum_{i=1}^{N} B_i^T \Sigma_i^{-1} y_i$$

$$= \left(\frac{1}{N} \sum_{i=1}^{N} B_i^T \Sigma_i^{-1} B_i\right)^{-1} \frac{1}{N} \sum_{i=1}^{N} B_i^T \Sigma_i^{-1} y_i$$

The optimal solution can be obtained by computing two averages $\frac{1}{N}\sum_{i=1}^{N}\beta_i$ and $\frac{1}{N}\sum_{i=1}^{N}\beta_i$

1.4.1 Opinion Dynamics in Social Influence Networks

Group of N individuals, with x_i^k being the opinion of individual i at time k. Opinions are updated according to

$$x_i^{k+1} = \sum_{j=1}^{N} a_{ij} x_j^k$$

1.5 Main questions in averaging algorithms

- Do node estimates converge? Do they converge to a common value ("reach consensus")?
- Do they reach consensus to the average ("average consensus")?
- How can we model communication in general networks?
- Can we answer the above questions for general networks and communication protocols?
- What assumptions do we need on the communication network?

1.6 Distributed control in cooperative robotics

Team of N (mobile) robots aiming to execute complex tasks

Basic tasks

- rendevous, containment
- formation, flocking
- coverage

Complex tasks

- pickup and delivery
- $\bullet\,$ surveillance and patrolling
- \bullet exploration
- ullet satellite constellation

1.6.1 Main questions in cooperative robotics

- Do robot states asymptotically converge?
- Do the asympototic staes satisfy the global, desired task?
- How can we model communication in (general) robotic networks?
- What assumptions do we need on the communication network?
- Can we answer the above questions for general networks and communication protocols?

Chapter 2

Graph theory