VARIATIONAL INFERENCE

in Gaussian process models

James Hensman

Approximate Inference workshop, NIPS 2015

Lancaster Univeristy

COLLABORATORS

Alex Matthews Cambridge Univeristy

Nicolo Fusi Microsoft Research

Maurizio Filippone Eurecom

Rich Turner Cambridge Univeristy

Neil D. Lawrence Sheffield Univeristy

Zoubin Ghahramani Cambridge Univeristy

WHAT CAN GAUSSIAN PROCESSES DO?

THIS TALK

A unified view of variational GP aproximations

- · Deals with non-Gaussian posterior
- · Deals with $\mathcal{O}(n^3)$ complexity (sparse)
- · The variational distribution contains a (conditionally) Gaussian process

$$f(\boldsymbol{x}) \sim \mathcal{GP}(0, k(\boldsymbol{x}, \boldsymbol{x}'))$$

 $f \sim \mathcal{N}(0,K)$

with:

$$\boldsymbol{K}_{i,j} = k(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

$$y_i|f_i \sim \text{Po}(y_i\,|\,e^{f_i}) \qquad \text{or} \qquad \text{Bin}(y_i\,|\,\sigma(f_i)) \qquad \text{or} \dots$$

DEALING WITH NON-CONJUGACY

- Local variational bounds (classification only) ¹
- · Expectation Propagation ²
- \cdot For classification, EP > VB 3
- · Variational methods need only 2N parameters ⁴
- · VB methods can be fast too! 5
- · VB can be applied to lots of different likelihoods ⁶

¹MN Gibbs, DJC MacKay - Variational Gaussian process classifiers - IEEE TNN 2000

²Minka, T. P. A family of algorithms for approximate Bayesian inference. Doctoral dissertation, MIT - 2001

³H Nickisch, CE Rasmussen - Approximations for binary Gaussian process classification - JMLR 2008

 $^{^4}$ M. Opper and C. Archambeau – The variational Gaussian approximation revisited - Neural comp. 2009

⁵E Khan, S Mohamed, KP Murphy - Fast Bayesian inference for non-conjugate Gaussian process regression- NIPS 2012

ONguyen and Bonilla – Automated variational inference for Gaussian process models - NIPS 201

DEALING WITH $o(n^3)$ **COMPLEXITY**

- · Subset-of-data methods^{7 8} hence 'sparse'.
- · Pseudo-inputs introduced 9
- · A unifying view brings several ideas together ¹⁰
- Variational approach ¹¹ makes for better placement of pseudo/inducing points
- · Variational approach can be optimized with SVI 12

⁷AJ Smola, P Bartlett - Sparse greedy Gaussian process regression - NIPS 2001

⁸M Seeger, C Williams - Fast forward selection to speed up sparse Gaussian process regression - AISTATS 2003

⁹E Snelson, Z Ghahramani - Sparse Gaussian processes using pseudo-inputs - NIPS 2005

¹⁰] Quiñonero-Candela, CE Rasmussen - A unifying view of sparse approximate Gaussian process regression - JMLR 2005

¹¹M. Titsias - Variational learning of inducing variables in sparse Gaussian processes - AISTATS 2009

¹²J. Hensman, N. Fusi and N. Lawrence - Gaussian Processes for Big Data - UAI 201

A GRAPHICAL MODEL FOR GAUSSIAN PROCESSES

$$\begin{split} \theta &\sim p(\theta) \\ f(x) &\sim \mathcal{GP}(0, k(x, x'; \theta)) \\ f &= [f(x_1), f(x_2) \dots f(x_n)]^\top \\ y_n &\sim p(y_n \,|\, f(x_n)) \end{split}$$

A DIFFERENT GRAPHICAL MODEL FOR GAUSSIAN PROCESSES

$$\begin{split} \theta &\sim p(\theta) \\ f|\theta &\sim \mathcal{N}(0,K) \\ y_n &\sim p(y_n \,|\, f(x_n)) \\ f^*(x)|f,\theta &\sim \mathcal{GP}\big(a(x)^\top f,b(x,x')\big) \end{split}$$

A DIFFERENT GRAPHICAL MODEL FOR GAUSSIAN PROCESSES

$$\begin{aligned} \theta &\sim p(\theta) \\ f|\theta &\sim \mathcal{N}(0, \mathbf{K}) \\ y_n &\sim p(y_n \,|\, f(x_n)) \end{aligned}$$

VARIATIONAL DISTRIBUTION

$$\begin{aligned} \theta, \mathbf{u} &\sim \mathsf{q}(\theta, \mathbf{u}) \\ \mathbf{f}^{\star}(\mathbf{x}) &\sim \mathcal{GP}\big(\mathbf{a}'(\mathbf{x})^{\top}\mathbf{u}, \mathbf{b}'(\mathbf{x})\big) \end{aligned}$$

KL DIVERGENCE BETWEEN GAUSSIAN PROCESSES?

Intuitive version: **f*** is a really long vector containing all points of interest.

Rigorous version: Matthews et al.¹³

¹³On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes http://arxiv.org/abs/1504.07027

Let's ignore θ for now

Where are the **f** in the approximation?

Where are the \mathbf{u} in the model?

$$\text{ELBO} = \mathbb{E}_{q(f^\star, f, u, \theta)} \left[log \, \frac{p(y \, | \, f) p(f \, | \, u, \theta) p(f^\star \, | \, f, u, \theta) p(u \, | \, \theta) p(\theta)}{q(f \, | \, u, \theta) q(f^\star \, | \, f, u, \theta) q(u \, | \, \theta) q(\theta)} \right]$$

$$\text{ELBO} = \mathbb{E}_{q(f^{\star},f,u,\theta)} \left[log \frac{p(\textbf{y} \,|\, \textbf{f})p(\textbf{f} \,|\, \textbf{u},\theta)p(f^{\star} \,|\, \textbf{f},\textbf{u},\theta)p(\textbf{u} \,|\, \theta)p(\theta)}{q(\textbf{f} \,|\, \textbf{u},\theta)q(f^{\star} \,|\, \textbf{f},\textbf{u},\theta)q(\textbf{u} \,|\, \theta)q(\theta)} \right]$$

$$\label{eq:elbo} \begin{aligned} \text{ELBO} &= \mathbb{E}_{q(f^{\prime\prime},f,u,\theta)} \left[log \, \frac{p(\textbf{y} \,|\, \textbf{f}) p(\textbf{f} \,|\, \textbf{u},\theta) p(\textbf{f}^{\star} \,|\, \textbf{f},u,\theta) p(\textbf{u} \,|\, \theta) p(\theta)}{q(\textbf{f} \,|\, \textbf{u},\theta) q(\textbf{f}^{\star} \,|\, \textbf{f},u,\theta) q(\textbf{u} \,|\, \theta) q(\theta)} \right] \end{aligned}$$

STRATEGIES

Strategy 1: Gaussian 14

Let
$$q(\mathbf{u}, \theta) = \mathcal{N}(\mathbf{u}|\mathbf{m}, \mathbf{L}\mathbf{L}^{\top})\delta(\theta - \hat{\theta})$$

Optimize wrt $\mathbf{m}, \mathbf{L}, \hat{\theta}$ (and \mathbf{Z} !)

Strategy 2: Free-form¹⁵

Given the limited size of **Z** (and thus **u**), write down the optimal, intractable, form for $q(\mathbf{u}, \theta)$, and sample from it using HMC.

¹⁴⁾ Hensman, A Matthews, Z Ghahramani - Scalable Variational Gaussian Process Classification - AISTATS 2015

¹⁵) Hensman, AGG Matthews, M Filippone - MCMC for Variationally Sparse Gaussian Processes - NIPS 2015

STRATEGY 1

The objective function (which minimizes the KL between the q-process and the p-process) is

$$\mathcal{L} = \sum_{i} \mathbb{E}_{q(f_i)}[log\,p(\boldsymbol{y}_i|f_i)] - KL[q(u)||p(u)]$$

HIGH DIMENSIONAL PROBLEMS

Left: three k-means centers used to initialize the inducing point positions. Center: the positions of the same inducing points after optimization. Right: difference.

Data: N=60,000, D=784

Accuracy: 98.04%

FREE FORM STRATEGY

The 'perfect' distribution $\hat{q}(\mathbf{u}, \theta)$ which minimises the KL divergence (with no further restrictions) is

$$\label{eq:log_p} \log \hat{q}(u,\theta) = \mathbb{E}_{p(f \,|\, u)}[\log p(y \,|\, f)] + \log p(u,\theta) + \mathrm{const.}$$

Sampling \hat{q} costs $\mathcal{O}(NM^2)$.

SPARSE GP APPLIED TO LGCP

The posterior of the rates for the coal mining disaster data.

THE EFFECT OF INDUCING POINTS SELECTION

SPECIAL CASES AND GENERALIZATIONS

- · Exact inference (Gaussian likelihood, Z = X)
- · Subset-of-data methods (e.g. IVM ¹⁶)
- · Inter-domain approximations 17
- Black box likelihoods ¹⁸
- · Log Gaussian Cox processes 19

¹⁶Lawrence, Seeger and Herbrich - The Informative Vector Machine - NIPS 2003

¹⁷Alvarez, Rosasco and Lawrence - Kernels for vecotr valued functions, a review - foundationa and trends in ML 2011

¹⁸Dezfouli and Bonilla - Gaussian Process Models with Black-Box Likelihoods - NIPS 2015

¹⁹Lloyd et al - Variational Inference for Gaussian Process Modulated Poisson Processes - ICML 201

