

Jonathan Ho
UC Berkeley
jonathanho@berkeley.edu

Ajay Jain UC Berkeley ajayj@berkeley.edu Pieter Abbeel UC Berkeley pabbeel@cs.berkeley.edu

NeurIPS, 2020

Miao's Group - Paper Reading

向乾龙

时间:2023.11.28

Image Generation Models

Image Generation: GAN

Image Generation: GAN

Image Generation: GAN

BigGAN: High-resolution image (train on 128x128 ImageNet images, generate 128/256/512 images

Problems of GANs

- Difficult to train due to the adversarial nature of the problem formulation
- Outputs lack diversity
- Mode collapse
- Vanishing gradients
- Problem learning multimodal distribution

Image Generation: Diffusion Models

The process originates from probabilistic likelihood estimation, and take inspiration from physical phenomenon

The forward trajectory $q(\mathbf{x}_{0:T})$

t = 0

t = T

 $t=\frac{T}{2}$

Central idea comes from thermodynamics of gas molecules, The reverse trajectory whereby the molecules diffuse from high density to low density areas

 $p_{\theta}(\mathbf{x}_{0:T})$

This movement is often referred in physics literature as the increase of entropy

The drifting term $\boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) - \mathbf{x}_t$

Statistical definition: "Diffusion is the process of transforming a complex distribution into a predefined simpler one"

Forward Diffusion Process

Reverse Diffusion Process

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
 Intractable \Longrightarrow Machine Learning

Neural Network:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

Key concept behind:

- Denoising diffusion models; two steps: 1) forward, 2) reverse / reconstruction
- Build a learning model which can learn the systematic decay of information due to noise
- Reverse the process and therefore, recover the information back from the noise

Forward diffusion:

• Gaussian noise is introduced successively until the data becomes all noise

Reverse diffusion:

 Undoes the noise by learning the conditional probability densities using a neural network

Forward step:

- We can formally define the forward diffusion process as a Markov Chain
- Starting with the initial data point, we add Gaussian noise for *T* successive steps, and obtain a set of noisy samples
- The prediction of probability density at time t is only dependent on the immediate predecessor at time t-1
- The conditional probability density can be computed as:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Forward step:

The conditional probability density can be computed as:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

The complete distribution of the whole process can then be computed as follows:

$$q(\mathbf{x}_{0:T}|\mathbf{x}_0) = q(\mathbf{x}_0) \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

• The mean and variance of the density function depends on a parameter β_t , which is a hyper parameter whose value can either be taken as a constant throughout the process or can be gradually changed in the successive steps

Forward step:

- The above derivation is enough to predict the successive states
- We would like to sample at any given time interval t without going through all the intermediary steps
- This allows an efficient implementation
- Re-formulation:

$$\alpha_t = 1 - \beta_t$$
, $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \boldsymbol{\epsilon}_{t-1}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t}} \alpha_{t-1} \overline{\boldsymbol{\epsilon}}_{t-2}$$

$$= \cdots$$

$$= \sqrt{\overline{\alpha_{t}}} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha_{t}}} \boldsymbol{\epsilon}$$

Conditional probability density:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Complete distribution:

$$q(\mathbf{x}_{0:T}|\mathbf{x}_0) = q(\mathbf{x}_0) \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Reverse step:

- The reverse process requires the estimation of probability density at an earlier time step given the current state of the system
- This means estimating the $q(\mathbf{x}_t|\mathbf{x}_{t-1})$ when t = T
- Thereby generating data sample from isotropic Gaussian noise
- The estimation of previous state from the current state requires the knowledge of all the previous gradients which we can't obtain without having a learning model that can predict such estimates

Conditional probability density:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$$

Complete distribution:

$$q(\mathbf{x}_{0:T}|\mathbf{x}_0) = q(\mathbf{x}_0) \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Re-formulation:

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

Reverse step:

- The estimation of previous state from the current state requires the knowledge of all the previous gradients which we can't obtain without having a learning model that can predict such estimates
- Solution
 - Train a neural network that estimates the $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ based on learned weights θ and the current state at time t
 - Formulated as:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

$$p_{\theta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_t) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$$

Conditional probability density:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \boldsymbol{I})$$

Complete distribution:

$$q(\mathbf{x}_{0:T}|\mathbf{x}_0) = q(\mathbf{x}_0) \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Re-formulation:

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$

Reverse step:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)) \implies q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}(\mathbf{x}_t, \mathbf{x}_0), \boldsymbol{\beta}_t \boldsymbol{I})$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$$

$$= q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{\left(\mathbf{x}_{t}-\sqrt{\alpha_{t}}\mathbf{x}_{t-1}\right)^{2}}{\beta_{t}}+\frac{\left(\mathbf{x}_{t-1}-\sqrt{\overline{\alpha}_{t-1}}\mathbf{x}_{0}\right)^{2}}{1-\overline{\alpha}_{t-1}}-\frac{\left(\mathbf{x}_{t}-\sqrt{\overline{\alpha}_{t}}\mathbf{x}_{0}\right)^{2}}{1-\overline{\alpha}_{t}}\right)\right)$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{\left(\mathbf{x}_{t} - \sqrt{\alpha_{t}}\mathbf{x}_{t-1}\right)^{2}}{\beta_{t}} + \frac{\left(\mathbf{x}_{t-1} - \sqrt{\overline{\alpha}_{t-1}}\mathbf{x}_{0}\right)^{2}}{1 - \overline{\alpha}_{t-1}} - \frac{\left(\mathbf{x}_{t} - \sqrt{\overline{\alpha}_{t}}\mathbf{x}_{0}\right)^{2}}{1 - \overline{\alpha}_{t}}\right)\right)$$

$$= \exp\left(-\frac{1}{2}\left(\frac{\mathbf{x}_{t}^{2} - 2\sqrt{\alpha_{t}}\mathbf{x}_{t}\mathbf{x}_{t-1} + \alpha_{t}\mathbf{x}_{t-1}^{2}}{\beta_{t}} + \frac{\mathbf{x}_{t-1}^{2} - 2\sqrt{\overline{\alpha}_{t-1}}\mathbf{x}_{0}\mathbf{x}_{t-1} + \overline{\alpha}_{t-1}\mathbf{x}_{0}^{2}}{1 - \overline{\alpha}_{t}} - \frac{\left(\mathbf{x}_{t} - \sqrt{\overline{\alpha}_{t}}\mathbf{x}_{0}\right)^{2}}{1 - \overline{\alpha}_{t}}\right)\right)$$

$$= \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)\mathbf{x}_{t-1}^2 - \left(\frac{2\sqrt{\alpha_t}}{\beta_t}\mathbf{x}_t + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}\mathbf{x}_0\right)\mathbf{x}_{t-1} + C(\mathbf{x}_t, \mathbf{x}_0)\right)\right)$$

$$\alpha_t = 1 - \beta_t, \bar{\alpha}_t = \prod_{i=1}^t \alpha_i$$

Reverse step:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)) \implies q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}(\mathbf{x}_t, \mathbf{x}_0), \boldsymbol{\beta}_t \boldsymbol{I})$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1-\bar{\alpha}_{t-1}}\right)\mathbf{x}_{t-1}^{2} - \left(\frac{2\sqrt{\alpha_{t}}}{\beta_{t}}\mathbf{x}_{t} + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)\mathbf{x}_{t-1} + C(\mathbf{x}_{t},\mathbf{x}_{0})\right)\right)$$

$$\tilde{\beta}_t = 1 / \left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}} \right) = 1 / \left(\frac{\alpha_t - \bar{\alpha}_t + \beta_t}{\beta_t (1 - \bar{\alpha}_{t-1})} \right) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t$$

$$\widetilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0) = \left(\frac{2\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{2\sqrt{\overline{\alpha}_{t-1}}}{1 - \overline{\alpha}_{t-1}} \mathbf{x}_0\right) / \left(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \overline{\alpha}_{t-1}}\right)$$

$$= \left(\frac{2\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0\right) \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t$$

$$\mathbf{x}_{t} = \sqrt{\overline{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_{t}} \boldsymbol{\epsilon}_{t}$$

$$\mathbf{x}_{0} = \frac{1}{\sqrt{\overline{\alpha}_{t}}} (\mathbf{x}_{t} - \sqrt{1 - \overline{\alpha}_{t}} \boldsymbol{\epsilon}_{t})$$

$$= \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_t \right)$$

Reverse step:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)) \implies q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}(\mathbf{x}_t, \mathbf{x}_0), \boldsymbol{\beta}_t \boldsymbol{I})$$

$$\mu_{\theta}(\mathbf{x}_{t}, \mathbf{t}) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, \mathbf{t}) \right)$$

Reverse step:

Current state estimation:

 $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1};\boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t),\boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t,t))$

- The parameterization for:
 - Mean function:

$$\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t},t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \, \epsilon_{\theta}(\mathbf{x}_{t},t) \right)$$

• Variance function (fixed as $\Sigma_{\theta}(\mathbf{x}_t, t) = \sigma_t^2 \mathbf{I}$, $\sigma_t^2 = \beta_t$ or $\sigma_t^2 = \tilde{\beta}_t$):

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \, \epsilon_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

$$-\log p_{\theta} \leq -\log p_{\theta}(\mathbf{x}_{0}) + D_{KL}\left(\left(q(\mathbf{x}_{1:T}|\mathbf{x}_{0})||p_{\theta}(\mathbf{x}_{1:T}|\mathbf{x}_{0})\right)\right)$$

$$= -\log p_{\theta}(\mathbf{x}_{0}) + \mathbb{E}_{\mathbf{x}_{1:T} \sim q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}\left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})/p_{\theta}(\mathbf{x}_{0})}\right]$$

$$= -\log p_{\theta}(\mathbf{x}_{0}) + \mathbb{E}_{q}\left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} + \log p_{\theta}(\mathbf{x}_{0})\right]$$

$$= \mathbb{E}_{q}\left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})}\right]$$

$$= L_{VLB}$$

$$\begin{split} L_{VLB} &= \mathbb{E}_{q(\mathbf{x}_{0:T})} \left[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0:T})} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{\Pi_{t=t}^{T} q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{T})\Pi_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \right] \\ &= \mathbb{E}_{q} \left[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=1}^{T} \log \frac{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \right] \\ &= \mathbb{E}_{q} \left[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \frac{q(\mathbf{x}_{t}|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} + \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})} \right] \\ &= \mathbb{E}_{q} \left[-\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \left(\frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{0})} \cdot \frac{q(\mathbf{x}_{t}|\mathbf{x}_{0})}{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})} \right) + \log \frac{q(\mathbf{x}_{1}|\mathbf{x}_{0})}{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})} \right] \end{split}$$

$$\begin{split} L_{VLB} &= \mathbb{E}_q \left[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \left(\frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} \cdot \frac{q(\mathbf{x}_t|\mathbf{x}_0)}{q(\mathbf{x}_{t-1}|\mathbf{x}_0)} \right) + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)} \right] \\ &= \mathbb{E}_q \left[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_t|\mathbf{x}_0)}{q(\mathbf{x}_{t-1}|\mathbf{x}_0)} + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)} \right] \\ &= \mathbb{E}_q \left[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{q(\mathbf{x}_1|\mathbf{x}_0)} + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)} \right] \\ &= \mathbb{E}_q \left[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \right] \\ &= \mathbb{E}_q \left[D_{KL} \left(q(\mathbf{x}_T|\mathbf{x}_0) ||p_{\theta}(\mathbf{x}_T) \right) + \sum_{t=2}^T D_{KL} \left(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) ||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \right) - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \right] \end{split}$$

$$L_{VLB} = \mathbb{E}_{q} \left[D_{KL} \left(q(\mathbf{x}_{T} | \mathbf{x}_{0}) || p_{\theta}(\mathbf{x}_{T}) \right) + \sum_{t=2}^{T} D_{KL} \left(q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) || p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}) \right) - \log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1}) \right]$$

$$L_{T}$$

$$L_{T}$$

$$L_{T}$$

$$L_{T}$$

$$L_{VLB} = L_T + L_{T-1} + \dots + L_0$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t)) \implies q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}(\mathbf{x}_t, \mathbf{x}_0), \boldsymbol{\beta}_t \boldsymbol{I})$$

$$\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, \mathbf{t}) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, \mathbf{t}) \right)$$

$$L_t = D_{KL} \left(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) || p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \right) = \mathbb{E}_{\mathbf{x}_0, \epsilon} \frac{1}{2 || \mathbf{\Sigma}_{\theta}(\mathbf{x}_t, t) ||^2} || \widetilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t) ||$$

$$L_t^{simple} = \mathbb{E}_{t \sim [1,T]\mathbf{x}_0,\epsilon} \|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, \mathbf{t})\| = \mathbb{E}_{t \sim [1,T]\mathbf{x}_0,\epsilon} \|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, \mathbf{t})\|$$

Algorithm:

Algorithm 1 Training	Algorithm 2 Sampling				
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: end for 6: return \mathbf{x}_{0}				

Generation Ability:

Figure 1: Generated samples on CelebA-HQ 256×256 (left) and unconditional CIFAR10 (right)

Generation Ability:

Table 1: CIFAR10 results. NLL measured in bits/dim.

Model	IS	FID	NLL Test (Train)
Conditional			
EBM [11]	8.30	37.9	
JEM [17]	8.76	38.4	
BigGAN [3]	9.22	14.73	
StyleGAN2 + ADA (v1) [29]	10.06	2.67	
Unconditional			
Diffusion (original) [53]			< 5.40
Gated PixelCNN [59]	4.60	65.93	$3.\overline{03}$ (2.90)
Sparse Transformer [7]			2.80
PixelIQN [43]	5.29	49.46	
EBM [11]	6.78	38.2	
NCSNv2 [56]		31.75	
NCSN [55]	8.87 ± 0.12	25.32	
SNGAN [39]	8.22 ± 0.05	21.7	
SNGAN-DDLS [4]	9.09 ± 0.10	15.42	
StyleGAN2 + ADA (v1) $\boxed{29}$	9.74 ± 0.05	3.26	
Ours $(L, \text{ fixed isotropic } \Sigma)$	7.67 ± 0.13	13.51	< 3.70 (3.69)
Ours (L_{simple})	9.46 ± 0.11	3.17	$\leq 3.75 (3.72)$

Beat GAN:

Model	FID	sFID	Prec	Rec		Model	FID	sFID	Prec	Rec
LSUN Bedrooms 256×256				-	ImageNet 128×128					
DCTransformer [†] [42]	6.40	6.66	0.44	0.56		BigGAN-deep [5]	6.02	7.18	0.86	0.35
DDPM [25]	4.89	9.07	0.60	0.45		LOGAN [†] [68]	3.36			
IDDPM [43]	4.24	8.21	0.62	0.46		ADM	5.91	5.09	0.70	0.65
StyleGAN [27]	2.35	6.62	0.59	0.48		ADM-G (25 steps)	5.98	7.04	0.78	0.51
ADM (dropout)	1.90	5.59	0.66	0.51		ADM-G	2.97	5.09	0.78	0.59
LSUN Horses 256×256			_	ImageNet 256×256						
StyleGAN2 [28]	3.84	6.46	0.63	0.48		DCTransformer [†] [42]	36.51	8.24	0.36	0.67
ADM	2.95	5.94	0.69	0.55		VQ-VAE-2 ^{†‡} [51]	31.11	17.38	0.36	0.57
ADM (dropout)	2.57	6.81	0.71	0.55		IDDPM [‡] [43]	12.26	5.42	0.70	0.62
						SR3 ^{†‡} [53]	11.30			
LSUN Cats 256×256						BigGAN-deep [5]	6.95	7.36	0.87	0.28
DDPM [25]	17.1	12.4	0.53	0.48		ADM	10.94	6.02	0.69	0.63
StyleGAN2 [28]	7.25	6.33	0.58	0.43		ADM-G (25 steps)	5.44	5.32	0.81	0.49
ADM (dropout)	5.57	6.69	0.63	0.52		ADM-G	4.59	5.25	0.82	0.52
ImageNet 64×64						ImageNet 512×512				
BigGAN-deep* [5]	4.06	3.96	0.79	0.48		BigGAN-deep [5]	8.43	8.13	0.88	0.29
IDDPM [43]	2.92	3.79	0.74	0.62		ADM	23.24	10.19	0.73	0.60
ADM	2.61	3.77	0.73	0.63		ADM-G (25 steps)	8.41	9.67	0.83	0.47
ADM (dropout)	2.07	4.29	0.74	0.63		ADM-G	7.72	6.57	0.87	0.42

Reference

- What are Diffusion Models? | Lil'Log (lilianweng.github.io)
- https://medium.com/@marija.jegorova/a-quick-dive-into-diffusion-models-part-1-fundamentals-of-the-ddpms-4de1304d7b6f
- https://towardsdatascience.com/image-generation-in-10-minutes-with-generative-adversarial-networks-c2afc56bfa3b
- Sohl-Dickstein, et al. "Deep unsupervised learning using nonequilibrium thermodynamics." International conference on machine learning. PMLR, 2015.
- Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." NIPS 2020

Jonathan Ho **UC** Berkeley

jonathanho@berkeley.edu

Ajay Jain UC Berkeley

ajayj@berkeley.edu

Pieter Abbeel **UC** Berkeley pabbeel@cs.berkeley.edu

NeurIPS, 2020

Miao's Group - Paper Reading

向乾龙

时间: 2023.11.28