Results from Prior NSF Support

A Objectives

Our Specific Aims are to

- 1. Develop and parameterize models of *T. gondii* behavior for epithelial, muscle, neuron, and [immune response cell] *in vivo*
- 2. Combine cell population model into a cell community model to describe organ level processes and (b) link gut, muscle, brain, and vascular organs together. Use to guide and fit to *in vitro* data.
- 3. Between Host Model

A direct outcome of our research will be the ability to ...

- B Background
- C Preliminary Results
- D Research Design & Methods

Specific Aim 1:

Text

Specific Aim 2: Organ and Within-Host Modeling

Limitations to our Work

Timeline of Proposed Research

Relationship of Proposed Work to Long-Term Goals

Figure 1: Illustration of SEMPPR's ability to accurately predict ϕ using parameters Λ generated from a simple MCMC algorithm and Eqn. (2).

E Broader Impacts

Box 1: Calculating the Likelihood of a Parameter Set Λ

If we are interested in first estimating the set of parameters Λ used to calculate η we can treat the protein production rate of a gene ϕ as a nuisance parameter and integrate over it. Combining Eqn. (?? with the assumption that $\phi \sim \text{Exp}(\zeta)$, the probability of observing a sequence fixed in a population as a function of Λ is,

$$a + b = c \tag{1}$$

Formally, Eqn. (1) represents the likelihood of Λ given a codon sequence. Thus, the total likelihood

of Λ given the *n* observed gene sequences within a genome is simply,

$$Lik(\mathbf{\Lambda}|Z) = \prod_{i=1}^{n} P(Z|\mathbf{\Lambda}).$$
 (2)

Whether likelihood function of Eqn. (2) is analyzed directly or, as we propose, weighted by a prior distribution, it provides method for estimating Λ using genomic data alone. These Λ values, in turn, can be used to predict ϕ (see Figure 1).