o Interleaving + quando lo abbiano fatto?

Se
$$W_{i+j}$$
 \neq X_i \wedge W_{i+j} \neq $Y_j \Rightarrow$ $S_{i,j} = FALSE$. $\}$ CASO BASE Se W_{i+j} $=$ X_i \wedge W_{i+j} \neq $Y_j \Rightarrow$ $S_{i,j} =$ $X_{i-\Lambda}$, Y_j , $W_{i+j-\Lambda}$ S_i W_{i+j} \neq X_i \wedge W_{i+j} $=$ Y_j \Rightarrow $S_{i,j}$ $=$ X_i , $Y_{j-\Lambda}$, $W_{i+j-\Lambda}$ S_i $Y_{j-\Lambda}$ Y_j $Y_{j-\Lambda}$

ALGORITHO BOTTOM-UP:

M_{m+1}, n+1 nD matrice per ogni Coppia i, J.

INTERLEAVING (X, Y, W):

$$|f(w_{i+1} = \chi_i \times w_{i+1} = \lambda^2)$$

return S.

STRINGHE PAUNDROME:

Σ alfabeto.

ha $S = a_A...$ an una struga su Σ_i di cunghezza h. $S = \varepsilon$ Stringa vuota (n = 0).

Si vuole determinare il numero minimo di caratteri da aggiungere ad s per renderla patindroma.

Stringa palindroma che contiene s.

ESEMPI:

S= \(\tilde{e} \) \(\tilde{e} \) \(\tilde{q} \) \(\tilde{a} \) \(\tilde{q} \) \(\tilde{e} \) \(\tilde{q} \) \(\tilde{a} \) \(\tilde{e} \) \(\tilde{q} \) \(\tilde{e} \) \(\tilde{q} \) \(\tilde{e} \) \(\tilde{e

Formula hone del problema:

Sia f: \(\sum_{\text{*}} \text{*} \) N definite come segue:

 $\forall s \in \Sigma$, \uparrow f(s) = numero minimo di caratteri da aggiungere a S per ottenere una stringa pali'ndroma.

PROBLEMA: (usare questo probl.)

Istanta $s \in \Sigma$

solutione f(s)

SOTIO PROBLEMI

$$S = E \Rightarrow f(S) = 0$$

$$S = a \Rightarrow f(S) = 0$$
Caso base.

qualsiasi a e]

le s é composta da almeno 2 caratteri:

S = a S'b |S'| = |S| - 2

Dove a é il carattere initiale di S bè il carattere finale di S. S'è una stringa di lunghetta < S. finale

Ora: Casi passo

o de a=b B é palindroma, le S' è palindroma.

$$t(z) = t(z,)$$

Sa = asba

$$bS = basb$$
1+ min $\{f(as'), f(s'b)\}$

Lunghezza sottostringa parteudo dall'i-esimo ed arrivando al J-esimo carattere della stringa originale.

$$S_{A_1N} = a_A \dots a_N$$

Casi passo:

casi passo:

• quando
$$i < J$$
 Λ $i = J$ $\int_{i+J} = \int_{i+J-\Lambda} M_{i+\Lambda_i} J - \Lambda$

o quando
$$i < J$$
 Λ $i \neq J$
$$Si_{J} = 1 + \min \left\{ a_{i} \mid S_{i,J} : S_{i,J} \mid b_{J} \right\}$$

Provare

riempire la Mura. a

ete...
(guarda da seb)