Возможные решение и критерии оценивания

Возможное решение Т-10-1

Перейдём в инерциальную систему отсчёта, в которой льдина неподвижна. В этой системе отсчёта скорость камня $\vec{v}_{\text{отн}} = \vec{v}_{\text{камня}} - \vec{v}_{\text{льдины}}$. В начальный момент скорость камня относительно льдины $\sqrt{3}v_0$.

Когда скольжение прекратится, скорость камня относительно льдины будет равна нулю. В этой системе отсчёта вся кинетическая энергия камня перейдёт в теплоту:

$$Q = \frac{3mv_0^2}{2}.$$

Движение камня в системе отсчёта льдины равноускоренное: на камень действует постоянная сила трения скольжения, направленная против относительной скорости. Так как льдина движется равномерно, движение камня равноускоренное и в исход-

Рис. 10.10

ной системе отсчёта. Из треугольника скоростей ($\vec{v}(t) = \vec{v_0} + \vec{a}t$) видим, что скорость минимальна в момент, когда относительная скорость уменьшилась в два раза, так как минимальная скорость перпендикулярна относительной скорости, а треугольник равнобедренный. Таким образом, скорость камня относительно мальчика минимальна через время t/2, где t – время движения до остановки.

Для равноускоренного торможения до остановки верно, что за первую половину времени тело проходит $\frac{3}{4}$ пути, поэтому максимальное удаление камня от края льдины $y=\frac{4}{3}h$. Относительно льдины тело переместилось на $L=\frac{y}{\sin 30^\circ}=2y=\frac{8}{3}h$ в направлении $v_{\rm отh}$.

Время равноускоренного торможения до остановки можно найти из условия $\frac{4}{3}h=\frac{1}{2}v_0\cos30^\circ\cdot t$, получается $t=\frac{16}{3\sqrt{3}}\frac{h}{v_0}$.

Смещение камня по горизонтали составляет $S_x = v_0 t - L_x = \frac{4}{3\sqrt{3}} h$. Смещение относительно мальчика

$$s = \sqrt{S_x^2 + y^2} = \frac{8}{3\sqrt{3}}h.$$

Рис. 10.11

1. Найдена начальная относительная скорость $v_{\text{отн}} = \sqrt{3}v_0 \dots 1$ балл
2. Найдено количество теплоты $Q = \frac{3mv_0^2}{2}$
3. Указано, что движение камня равноускоренное
• использование 1 балл
• доказательство
4 II
4. Найден момент, когда скорость минимальна
5. Найдена максимальное перемещение $y = \frac{4}{3}h$ в направлении, перпендикулярному
5. Найдена максимальное перемещение $y = \frac{4}{3}h$ в направлении, перпендикулярному
5. Найдена максимальное перемещение $y = \frac{4}{3}h$ в направлении, перпендикулярному краю льдины
5. Найдена максимальное перемещение $y = \frac{4}{3}h$ в направлении, перпендикулярному краю льдины
5. Найдена максимальное перемещение $y=\frac{4}{3}h$ в направлении, перпендикулярному краю льдины

На изогнутом участке центры шариков движутся по окружности радиуса R=h/2. Точка O на рисунке – её центр.

Скатывающая сила – проекция силы тяжести на касательную к траектории центра шарика – в нижней части скругления для переднего шарика больше, чем для заднего. Поэтому шарики не расходятся и давят друг на друга. В верхней части скругления скатывающая сила больше для заднего шарика, он отстаёт от переднего.

Критическое положение, где сила давления шарика на шарик уменьшается до 0, а их контакт исчезает, отвечает равенству скатывающих сил. Это случай, когда точка соприкосновения шариков находится на одной горизонтали с точкой O (правая часть рис.).

Рис. 10.12

Из сохранения энергии для скорости шариков v в критическом положении получаем: $v^2 = u^2 - 2gR = u^2 - gh$, где u начальная скорость.

Далее шарики движутся раздельно. Центр переднего шарика в критическом положении выше точки O Передний окажется в верхнем колене, поднявшись на h/2-r от его положения в критический момент. Из сохранения энергии для его скорости вылета имеем:

$$v_1^2 = v^2 - 2g\left(\frac{h}{2} - r\right) = u^2 - 2g(h - r).$$

Условие, что передний шарик доберётся до верхнего колена и выдетит

$$v_1^2 > 0$$
, то есть $u^2 > 2g(h-r)$.

Задний шарик не доберётся до верхнего колена и вылетит из нижнего, если его скорость обратится в 0 ещё на участке скругления. Граничный случай нулевая скорость заднего шарика в верхнем колене. Тогда из закона сохранения энергии получим:

$$\frac{2mu_{\max}^2}{2} = 2mgh + \frac{mv_1^2}{2}$$
, и $u_{\max}^2 = 2g(h+r)$.

Тогда диапазон u задан неравенствами:

$$2g(h+r) > u^2 > 2g(h-r)$$
 или $\sqrt{2g(h+r)} > u > \sqrt{2g(h-r)},$ 4,58 м/с $> u > 4,36$ м/с.

Здесь числа посчитаны для $g=10~{\rm m/c}^2.$

- 1. Анализируя график выделяем участки кривой:
- (0-1) давление насыщенных паров много меньше давления воздуха, смесь ведёт себя, как идеальный газ;
- (1-2) активный процесс испарения воды;
- (2-3) испарение всей жидкости, и увеличение давления, как у идеального газа.

Рис. 10.13

При изохорическом нагреве давление идеального газа зависит от температуры ко следующему закону:

$$P = \frac{\nu RT}{V},$$

следовательно, коэффициент наклона прямой p(T) для идеального пропорционален количеству вещества в единице объема. На участке (2-3) коэффициент наклона в два раза больше коэффициента наклона (0-1), т. е. при полном испарении количество вещества удвоилось.

Строим касательную к участку (0-1) и она пересекает вертикальную ось в точке (4). Эта касательная l_a показывает зависимость парциального давления воздуха в смеси, и так как при испарении количество вещества удвоилось, то в точке (3) давление в два раза выше, чем в точке (4). С другой стороны между точками (3) и (4) 50 вертикальных делений по 20 торр, т. е. Их разница 1000 торр, и точка (3) имеет значение давления 2000 торр, (4) – 1000 торр, а точка (0) имеет значение 500 торр. Давление в точках A и B равно 400 торр.

Так как давление в точке (4) в два раза больше давления в точке (0), то температура в точке (4) больше в два раза, чем в точке (0). Это значит, что их разница составляет $T_0 = T_4/2$, а количество маленьких делений по горизонтальной оси 200 дел.

Заметим, что разность между кривой смеси и прямой l_a дает давление насыщенных паров воды. Для воды мы знаем, что давление насыщенных паров при 100° C(373 K) равно атмосферному, т. е. по условию задачи 760 торр, таким образом, необходимо найти, в какой точке давление смеси превышает давление воздуха на 760 торр. Для этого проводим прямую l_c , параллельную прямой l_a и смещенную на 760 торр вверх, т. е. на 38 делений по вертикальной оси, т. е. проходящую через точки(5) и (6). Эта прямая пересечёт кривую смеси в точке (7), температура которой будет составлять 100° C(373 K), и будет отстоять по горизонтальной оси на расстояние 173 клеточки от точки (0). Таким образом

$$\frac{T_4 - T_0}{200} = \frac{T_0}{200} = \frac{373 - T_0}{173} = T_0 = 200 \text{ K} = T_4 = 400 \text{ K}.$$

2. Заметим, что нам необходимо найти такую температуру, при которой давление превышает давление воздуха l_a на 40% от давления паров воды, если бы она вся испарилась, но это равно 40% давления самого воздуха. Т.к. в точке (0) давление воздуха равно 500 торр, то 40% - это 200 торр. Смещаемся на 10 делений вверх в точку (8), аналогично находим точку (9). Прямая l_b , проходящая через эти точки, пересечёт кривую смеси в точке (10), температура которой составляет (80 ± 1) °C = (353 ± 1) K.

При малых напряжениях источника U диоды закрыты, конденсаторы соединены последовательно и напряжение на каждом из них $\frac{U}{3}$. Напряжения на диодах при этом равны $2\frac{U}{3}$. Если они достигают значения U_0 (т.е. при $U=3\frac{U_0}{2}$), диоды становятся открытыми, и конденсаторы уже нельзя считать соединенными последовательно.

Пусть U_1,U_2 и U_3 — напряжения на конденсаторах при полярности, указанной на . 10.14 (источник не показан).

Тогда справедливы уравнения:

$$\begin{cases} U_1 + U_2 + U_3 = U \\ U_1 + U_2 = U_0 \\ U_2 + U_3 = U_0 \end{cases}$$

Откуда получаем:

$$\begin{cases} U_1 = U_3 = U - U_0 \\ U_2 = 2U_0 - U \end{cases}$$

Рис. 10.14

Рассмотрим пункт 1) задачи. При $U = 3U_0$ имеем:

$$\begin{cases} U_1 = U_3 = 2U_0 \\ U_2 = -U_0 \end{cases}$$

(полярность ₂ противоположна указанной на рисунке). Через диоды прошли заряды

$$q_D = -q_2 + q_3 = CU_0 + 2CU_0 = 3CU_0,$$

при этом

$$q_1 = CU_1 = 2CU_0$$
.

Значит, через источник прошел заряд

$$q_{\text{ист}} = q_1 + q_D = 5CU_0,$$

работа источника

$$A_{\text{ист}} = q_{\text{ист}}U = 15CU_0^2.$$

Энергия W_C конденсаторов при этом

$$W_C = 2\frac{C(2U_0)^2}{2} + \frac{CU_0^2}{2} = 4.5CU_0^2.$$

Тогда количество выделившегося тепла

$$Q = A_{\text{ист}} - W_C = 10,5CU_0^2.$$

Перейдем к пункту 2). До момента времени $t=\tau/2$, пока $U\leq 3U_0/2$, напряжение на диодах меньше U_0 , а напряжения на конденсаторах равны U/3. При этом токи через амперметры

$$I_1 = I_2 = \frac{\Delta q_1}{\Delta t_1} = C \frac{\Delta U_1}{\Delta t} = \frac{C U_0}{\tau}$$

При $t = \tau/2$ через диоды начинает течь ток, а напряжения на конденсаторах

$$\begin{cases} U_1 = U_3 = U - U_0 \\ U_2 = 2U_0 - U \end{cases}$$

При этом токи через амперметры

$$I_2 = \frac{\Delta q_2}{\Delta t} = C \frac{\Delta (2U_0 - U)}{\Delta t} = -CC \frac{\Delta U}{\Delta t} = -\frac{3CU_0}{\tau},$$

$$I_1 = \frac{\Delta q_2}{\Delta t} + \frac{\Delta q_D}{\Delta t} = \frac{\Delta q_3}{\Delta t} - \frac{\Delta q_2}{\Delta t} = 2C \frac{\Delta U}{\Delta t} + C \frac{\Delta U}{\Delta t} = \frac{9CU_0}{\tau}.$$

При уменьшении напряжения в интервале времени от τ до 2τ ток через диоды не течет, напряжение на конденсаторах изменяется на одну и ту же величину

$$\Delta U_1 = \Delta U_2 = \Delta U_3 = -\frac{\Delta U}{3}.$$

При этом, с учетом знака напряжения U_2 , модуль U_2 возрастает. Ток тогда

$$I_1 = I_2 = \frac{\Delta q_1}{\Delta t} = C \frac{\Delta U_1}{\Delta t} = \frac{C \Delta U}{3 \Delta t} = -\frac{C U_0}{\tau}.$$

Графики зависимостей $I_1(t), I_2(t)$ выглядят так:

1. Найдено напряжение источника, при котором			
диоды открываются $U_{\text{откр}} = \frac{3}{2}U_0$			
Вопрос 1:			
2. Найдены заряды на конденсаторах			
$q_1 = q_3 = 2CU_0, q_2 = CU_0$			
3. Найден заряд, прошедший через источник $q_{\text{ист}} = 5CU_0$			
4. Записан закон сохранения энергии $A_{\text{ист}} = Q + W_C$			
5. Получен ответ $Q=10{,}5CU_0^2$			
Вопрос 2:			
6. Указано, что при $t < \tau/2$ напряжения на конденсаторах равны 0,5 балла			
7. Найдены токи $I_1=I_2=\frac{CU_0}{\pi}$			
8. Записана система для напряжений при $\tau/2 < t < au$ (или любое эквивалентное соот-			
ношение)			
9. Найдены токи $I_1 = \frac{9CU_0}{\tau}, I_2 = -\frac{3CU_0}{\tau}$			
10. Указано, что при $ au < t < 2 au$ ток через диоды не течет			
11. Записан закон сохранения зарядов			
(или любое эквивалентное соотношение)			
12. Найдены токи $I_1 = I_2 = -\frac{CU_0}{\tau}$			
*Комментарий: Если у тока правильное значение, но неправильный знак, то ставит-			
ся на 0,2 балла меньше. Если ток не нанесен на график (или нанесен неправильно),			
ставится на 0,2 балла меньше.			

Всю цепь омметров (рис. 10.17) можно эквивалентно (без изменения тока через резистор R) заменить идеальным источником напряжения U_0 и резистором сопротивления R_0 (рис. 10.18). Поскольку число звеньев бесконечно, то значения U_0 и R_0 не зависят от номера звена, начиная с которого производится замена. Тогда эта же схема эквивалентна приведенной на рис. 10.19. Для нахождения U_0 и R_0 воспользуемся формулами последовательного и параллельного соединения источников:

$$U_{0} = U + \left(\frac{U}{R} + \frac{U_{0}}{R_{0}}\right) \frac{RR_{0}}{R + R_{0}},$$

$$R_{0} = \frac{RR_{0}}{R + R_{0}} + R.$$

Отсюда находим:

$$U_0 = \frac{(3+\sqrt{5})U}{2}, \ R_0 = \frac{1+\sqrt{5}}{2}R.$$

Тогда сила тока, протекающего через внешний резистор,

$$I_1 = \frac{U_0}{R_0 + R} - \frac{U(3 + \sqrt{5})}{2(R + R\frac{1 + \sqrt{5}}{2})} = \frac{U}{R}.$$

Показание первого омметра

$$R_1 = \frac{U}{I_1} - R = 0.$$

Показание второго омметра находим, применив закон Кирхгофа для контура с внешним резистором и первыми двумя омметрами

$$2U = 2I_1R + I_2R.$$

Тогда

$$I_2 R = 2(U - I_1 R) = 0.$$

Оказывается, что сила тока I_2 , текущего через второй омметр равна нулю. Следовательно,

$$R_2 = \frac{U}{0} - R = \infty.$$

В следующих ветвях все повторяется. Нечетные омметры показывают ноль, четные – бесконечность, поэтому $R_1=R_{13}=0, R_4=\infty.$

1.	Записано уравнение для определения U_0	.2 балла
2.	Записано уравнение для определения R_0	. 2 балла
3.	Найдены параметры источника	,5 балла
4.	Найдена сила тока через резистор	1 балл
5 .	Найдены показания первого омметра	,5 балла
6.	Записано уравнение для определения силы тока через второй омметр	1 балл
7.	Найдена сила тока через второй омметр	,5 балла
8.	Показано, что сила тока через все четные/нечетные	
OM	метры одинакова	,5 балла
9.	Приведены показания четвертого и тринадцатого омметров0,5+0	,5 балла