Chapter 20 Worksheet: Redox

I. Determine what is oxidized and what is reduced in each reaction. Identify the oxidizing agent and the reducing agent, also.

1.
$$2Sr + O_2 \longrightarrow 2SrO$$

2.
$$2Li + S \longrightarrow Li_2S$$

3.
$$2Cs + Br_2 \longrightarrow 2CsBr$$

4.
$$3Mg + N_2 \longrightarrow Mg_3N_2$$

5.
$$4\text{Fe} + 3\text{O}_2 \longrightarrow 2\text{Fe}_2\text{O}_3$$

6.
$$Cl_2 + 2NaBr \longrightarrow 2NaCl + Br_2$$

7. Si +
$$2F_2 \longrightarrow SiF_4$$

8.
$$2Ca + O_2 \longrightarrow 2CaO$$

9.
$$Mg + 2HCl \longrightarrow MgCl_2 + H_2$$

10.
$$2Na + 2H_2O \longrightarrow 2NaOH + H_2$$

11. Give the oxidation number of each kind of atom or ion.

- a. sulfate
- b. Sn c. S^{2-} d. Fe^{3+} e. Sn^{4+}

- f. nitrate g. ammonium

12. Calculate the oxidation number of chromium in each of the following.

- a. Cr_2O_3
- b. Na₂Cr₂O₇
- c. CrSO₄ d. chromate
- e. dichromate

13. Use the changes in oxidation numbers to determine which elements are oxidized and which are reduced in these reactions. (Note: it is not necessary to use balanced equations)

a.
$$C + H_2SO_4 \longrightarrow CO_2 + SO_2 + H_2O$$

b.
$$HNO_3 + HI \longrightarrow NO + I_2 + H_2O$$

c.
$$KMnO_4 + HCl \longrightarrow MnCl_2 + Cl_2 + H_2O + KCl$$

d.
$$Sb + HNO_3 \longrightarrow Sb_2O_3 + NO + H_2O$$

14. For each reaction in problem 13, identify the oxidizing agent and reducing agent.

15. Write half-reactions for the oxidation and reduction process for each of the following.

a.
$$Fe^{2+} + MnO_4^{-} \longrightarrow Fe^{3+} + Mn^{2+}$$

b.
$$\operatorname{Sn}^{2+} + \operatorname{IO}_3^{-} \longrightarrow \operatorname{Sn}^{4+} + \operatorname{I}^{-}$$

c.
$$S^{2-} + NO_3 \longrightarrow S + NO$$

d.
$$NH_3 + NO_2 \longrightarrow N_2 + H_2O$$

16. Complet and balance each reaction using the half-reaction method.

a.
$$Fe^{2+} + MnO_4^{-} \longrightarrow Fe^{3+} + Mn^{2+}$$

b.
$$Sn^{2+} + IO_3^{-} \longrightarrow Sn^{4+} + I^{-}$$

c.
$$S^{2-} + NO_3^- \longrightarrow S + NO$$

d.
$$NH_3 + NO_2 \longrightarrow N_2 + H_2O$$

e.
$$Mn^{2+} + BiO_3^{-} \longrightarrow Bi^{2+} + MnO_4^{-}$$

f.
$$I_2 + Na_2S_2O_3 \longrightarrow Na_2S_2O_4 + NaI$$

Chapter 20 Worksheet: Redox ANSWERS

I. Determine what is oxidized and what is reduced in each reaction. Identify the oxidizing agent and the reducing agent, also.

1. $2Sr + O_2 \longrightarrow 2SrO$ Sr^0 to Sr^{2+} ; oxidized/reducing agent O^0 to O^{2-} ; reduced/ox. ag.

2. $2\text{Li} + \text{S} \longrightarrow \text{Li}_2\text{S}$ Li^0 to Li^{1+} ; oxidized/red. ag. S^0 to S^{2-} ; reduced/ox. ag.

3. $2Cs + Br_2 \longrightarrow 2CsBr$ Cs^0 to Cs^{1+} ; oxidized/red. ag. Br^0 to Br^{1-} ; reduced/ox. ag.

4. $3Mg + N_2 \longrightarrow Mg_3N_2$ Mg^0 to Mg^{2+} ; oxidized/red. ag. N^0 to N^{3-} ; reduced/ox. ag.

5. $4\text{Fe} + 3\text{O}_2 \longrightarrow 2\text{Fe}_2\text{O}_3$ Fe⁰ to Fe³⁺; oxidized/red. ag. O^0 to O^{1-} ; reduced/ox. ag.

6. $Cl_2 + 2NaBr \longrightarrow 2NaCl + Br_2 Cl^0$ to Cl^{1-} ; reduced/ox. ag. Br^{1-} to Br^0 ; oxidized/red. ag.

7. $Si + 2F_2 \longrightarrow SiF_4$ Si^0 to Si^{4+} ; oxidized/red. ag F^0 to F^{1-} ; reduced/ox. ag.

9. $Mg + 2HCl \longrightarrow MgCl_2 + H_2 Mg^0$ to Mg^{2+} ; oxidized/red. ag. H^{1+} to H^0 ; reduced/o.a.

10. $2\text{Na} + 2\text{H}_2\text{O} \longrightarrow 2\text{NaOH} + \text{H}_2$ Na^0 to Na^{1+} ; oxidized/r.a. H^{1+} to H^0 ; reduced/o.a.

11. Give the oxidation number of each kind of atom or ion.

a. sulfate b. Sn c. S^{2-} d. Fe^{3+} e. Sn^{4+} f. nitrate g. ammonium

2- 0 2- 3+ 4+ 1- 1+

12. Calculate the oxidation number of chromium in each of the following.

a. Cr_2O_3 b. $Na_2Cr_2O_7$ c. $CrSO_4$ d. chromate e. dichromate 3+ 6+ 2+ 7+ 6+

13. Use the changes in oxidation numbers to determine which elements are oxidized and which are reduced in these reactions. (Note: it is not necessary to use balanced equations)

a. $C + H_2SO_4 \longrightarrow CO_2 + SO_2 + H_2O$ C^0 to C^{4+} ; oxidized S^{6+} to S^{4+} ; reduced

b. $HNO_3 + HI \longrightarrow NO + I_2 + H_2O N^{5+} \text{ to } N^{2+}; \text{ reduced}$ $I^{1-} \text{ to } I^{0}; \text{ oxidized}$

c. $KMnO_4 + HCl \longrightarrow MnCl_2 + Cl_2 + H_2O + KCl$ Mn^{7+} to Mn^{2+} ; reduced Cl^{1-} to Cl^{0} ; oxidized

d. $Sb + HNO_3 \longrightarrow Sb_2O_3 + NO + H_2O$ Sb^0 to Sb^{3+} ; oxidized N^{5+} to N^{2+} ; red.

14. For each reaction in problem 13, identify the oxidizing agent and reducing agent.

a. oxidizing agent: sulfur reducing agent: carbon

b. oxidizing agent: nitrogen reducing agent: iodine

b. Oxidizing agent. Introgen reducing agent. Todine

c. oxidizing agent: manganese reducing agent: chlorine

d. oxidizing agent: nitrogen reducing agent: antimony

15. Write half-reactions for the oxidation and reduction process for each of the following.

a.
$$Fe^{2+} + MnO_4^- \longrightarrow Fe^{3+} + Mn^{2+}$$

 $Fe^{2+} \longrightarrow Fe^{3+}$; oxidation $Mn^{7+} \longrightarrow Mn^{2+}$; reduction

b.
$$\operatorname{Sn}^{2+} + \operatorname{IO}_3^{-} \longrightarrow \operatorname{Sn}^{4+} + \operatorname{I}^{-}$$

 $\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+}$; oxidation $\operatorname{I}^{5+} \longrightarrow \operatorname{I}^{1-}$; reduction

c.
$$S^{2-} + NO_3^- \longrightarrow S + NO$$

 $S^{2-} \longrightarrow S$; oxidation $N^{5+} \longrightarrow N^{2+}$; reduction

d.
$$NH_3 + NO_2 \longrightarrow N_2 + H_2O$$

 $N^{3-} \longrightarrow N^0$; oxidation $N^{4+} \longrightarrow N^0$; reduction

16. Complete and balance each reaction using the half-reaction method.

a.
$$Fe^{2+} + MnO_4^{-} \longrightarrow Fe^{3+} + Mn^{2+}$$

c.
$$S^{2^{-}} + NO_{3}^{-} \longrightarrow S + NO$$

 $8H^{+}_{(aq)} + 3S^{2^{-}}_{(aq)} + 2NO_{3}^{-}_{(aq)} \longrightarrow 3S_{(s)} + 2NO_{(g)} + 4H_{2}O_{(1)}$

d.
$$NH_3 + NO_2 \longrightarrow N_2 + H_2O$$

 $8NH_{3(g)} + 6NO_{2(g)} \longrightarrow 7N_{2(g)} + 12H_2O_{(l)}$

e.
$$Mn^{2+} + BiO_3^- \longrightarrow Bi^{2+} + MnO_4^-$$

 $3Mn^{2+}_{(aq)} + 5BiO_3^-_{(aq)} + 6H^+_{(aq)} \longrightarrow 5Bi^{2+}_{(aq)} + 3MnO_4^-_{(aq)} + 3H_2O_{(l)}$

f.
$$I_2 + Na_2S_2O_3 \longrightarrow Na_2S_2O_4 + NaI$$

 $Na_2S_2O_{3(aq)} + H_2O_{(l)} + I_{2(s)} + 2Na^+_{(aq)} \longrightarrow Na_2S_2O_{4(aq)} + 2H^+_{(aq)} + 2NaI_{(aq)}$