数学扩展研究 II - 四面体

李宇轩

2020.03.12

目录

1	四面体				
	1.1	四面体	的符号约定	3	
	1.2	四面体	的空间角公式	4	
		1.2.1	四面体空间角基本公式	4	
		1.2.2	四面体空间角导出公式	7	
		1 2 3	四面体穴间角比例小式	Q	

1 四面体

1.1 四面体的符号约定

我们首先进行符号约定,若没有特殊说明,这些符号将在后文表达相同的含义。 我们依照下方表格的规定进行符号约定:

含义
线线角 (直线 OB 和直线 OC 所成角)
线线角(直线 OC 和直线 OA 所成角)
线线角 (直线 OA 和直线 OB 所成角)
线面角 (直线 OA 和平面 ABC 所成角)
线面角(直线 OB 和平面 ABC 所成角)
线面角 (直线 OC 和平面 ABC 所成角)
面面角(平面 OAC 和平面 OAB 所成角)
面面角(平面 OBA 和平面 OBC 所成角)
面面角(平面 OCB 和平面 OCA 所成角)

表 1: 四面体的符号约定

我们将下方图片所示的四面体作为参考:

图 1: 四面体的示意图

1.2 四面体的空间角公式

本章将研究四面体中,线线角,线面角,面面角,三者间的数量关系。

1.2.1 四面体空间角基本公式

四面体空间角基本公式(线线角形式):

$$\cos \alpha = \cos \beta \cdot \cos \gamma + \sin \beta \cdot \sin \gamma \cdot \cos A$$
$$\cos \beta = \cos \gamma \cdot \cos \alpha + \sin \gamma \cdot \sin \alpha \cdot \cos B$$
$$\cos \gamma = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta \cdot \cos C$$

四面体空间角基本公式(面面角形式):

$$\cos A = \frac{\cos \alpha - \cos \beta \cdot \cos \gamma}{\sin \beta \cdot \sin \gamma}$$
$$\cos B = \frac{\cos \beta - \cos \gamma \cdot \cos \alpha}{\sin \gamma \cdot \sin \alpha}$$
$$\cos C = \frac{\cos \gamma - \cos \alpha \cdot \cos \beta}{\sin \alpha \cdot \sin \beta}$$

在四面体 O - ABC 中,在 OA 上任取一点 D。

在四面体 O - ABC 中,取 OB 上一点 E 使得 $ED \perp OA$ 。

在四面体 O - ABC 中,取 OC 上一点 F 使得 $FD \perp OA$ 。

四面体 O-ABC 及其辅助线如下图所示:

图 2: 四面体空间角基本公式的示意图

在 $\triangle DEF$ 中根据余弦定理可得:

$$EF^2 = DE^2 + DF^2 - 2 \cdot DE \cdot DF \cdot \cos A \tag{1}$$

在 $\triangle OEF$ 中根据余弦定理可得:

$$EF^{2} = OE^{2} + OF^{2} - 2 \cdot OE \cdot OF \cdot \cos \alpha \tag{2}$$

在 △ODE 中角 ODE 是直角,根据勾股定理可得:

$$OE^2 = OD^2 + DE^2 \tag{3}$$

在 $\triangle ODE$ 中角 ODF 是直角,根据勾股定理可得:

$$OF^2 = OD^2 + DF^2 \tag{4}$$

将式 (3) 式 (4) 代入式 (2) 中, 消去 OE² 和 OF²:

$$EF^{2} = DE^{2} + DF^{2} - 2 \cdot OE \cdot OF \cdot \cos \alpha \tag{5}$$

$$EF^2 = (OD^2 + DE^2) + (OD^2 + DF^2) - 2 \cdot OE \cdot OF \cdot \cos \alpha \tag{6}$$

$$EF^{2} = 2OD^{2} + DE^{2} + DF^{2} - 2 \cdot OE \cdot OF \cdot \cos \alpha \tag{7}$$

将式 (7) 和式 (1) 相减. 整理可得:

$$(2OD^2 + DE^2 + DF^2 - 2 \cdot OE \cdot OF \cdot \cos \alpha) - (DE^2 + DF^2 - 2 \cdot DE \cdot DF \cdot \cos A) = 0$$
 (8)

$$(2OD^2 + DE^2 + DF^2 - DE^2 - DF^2) - (2 \cdot OE \cdot OF \cdot \cos \alpha - 2 \cdot DE \cdot DF \cdot \cos A) = 0$$
 (9)

$$2 \cdot OD^2 - 2 \cdot OE \cdot OF \cdot \cos \alpha + 2 \cdot DE \cdot DF \cdot \cos A = 0$$
 (10)

$$2 \cdot OE \cdot OF \cdot \cos \alpha = 2OD^2 + 2 \cdot DE \cdot DF \cdot \cos A \tag{11}$$

$$OE \cdot OF \cdot \cos \alpha = OD^2 + DE \cdot DF \cdot \cos A$$
 (12)

接下来将通过变形得到 $\cos \alpha$ 和 $\cos A$ 两者间的关系。

通过变形可以得到:

$$\cos \alpha = \frac{OD^2}{OE \cdot OF} + \frac{DE \cdot DF}{OE \cdot OF} \cdot \cos A \tag{13}$$

$$\cos \alpha = \frac{OD}{OE} \cdot \frac{OD}{OD} + \frac{DE}{OE} \cdot \frac{DF}{OF} \cdot \cos A \tag{14}$$

根据直角三角形 △ODF 可以得到:

$$\cos \beta = \frac{OD}{OF} \qquad \sin \beta = \frac{DF}{OF} \tag{15}$$

根据直角三角形 △ODE 可以得到:

$$\cos \gamma = \frac{OD}{OE} \qquad \sin \gamma = \frac{DE}{OE}$$
 (16)

将四组三角比代入可得:

$$\cos \alpha = \cos \gamma \cdot \cos \beta + \sin \gamma \cdot \sin \beta \cdot \cos A \tag{17}$$

1.2.2 四面体空间角导出公式

四面体空间角导出公式:

$$\sin A \cdot \sin \beta \cdot \sin \gamma = k$$

$$\sin B \cdot \sin \gamma \cdot \sin \alpha = k$$

$$\sin C \cdot \sin \alpha \cdot \sin \beta = k$$

其中代换变量 k 的取值为:

$$k = \sqrt{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}$$

代入四面体空间角基本公式可得:

$$\sin A = \sqrt{1 - \cos A^2} \tag{1}$$

$$= \sqrt{1 - \left(\frac{\cos \alpha - \cos \beta \cdot \cos \gamma}{\sin \beta \cdot \sin \gamma}\right)^2} \tag{2}$$

$$= \sqrt{1 - \frac{(\cos \alpha - \cos \beta \cdot \cos \gamma)^2}{\sin^2 \beta \cdot \sin^2 \gamma}}$$
 (3)

$$= \sqrt{1 - \frac{\cos^2 \alpha + \cos^2 \beta \cdot \cos^2 \gamma - 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}{\sin^2 \beta \cdot \sin^2 \gamma}}$$
 (4)

$$= \sqrt{\frac{\sin^2 \beta \cdot \sin^2 \gamma - \cos^2 \beta \cdot \cos^2 \gamma - \cos^2 \alpha + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}{\sin^2 \beta \cdot \sin^2 \gamma}}$$
 (5)

进一步代换可以得到:

$$\sin A = \frac{\sqrt{(1 - \cos^2 \beta) \cdot (1 - \cos^2 \gamma) - \cos^2 \beta \cdot \cos^2 \gamma - \cos^2 \alpha + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}}{\sin \beta \cdot \sin \gamma}$$
 (6)

$$= \frac{\sqrt{1 - \cos^2 \beta - \cos^2 \gamma - \cos^2 \alpha + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}}{\sin \beta \cdot \sin \gamma}$$
 (7)

$$= \frac{\sqrt{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}}{\sin \beta \cdot \sin \gamma}$$
(8)

定义代换变量 k:

$$k = \sqrt{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}$$
 (9)

代入代换变量 k:

$$\sin A = \frac{k}{\sin \beta \cdot \sin \gamma} \tag{10}$$

$$\sin A \cdot \sin \beta \cdot \sin \gamma = k \tag{11}$$

1.2.3 四面体空间角比例公式

四面体空间角比例公式:

$$\frac{\sin A}{\sin \alpha} = \frac{\sin B}{\sin \beta} = \frac{\sin C}{\sin \gamma} = \frac{k}{\sin \alpha \cdot \sin \beta \cdot \sin \gamma}$$

其中代换变量 k 的取值为:

$$k = \sqrt{1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma}$$

在四面体空间角导出公式两边同除可得:

$$\sin A \cdot \sin \beta \cdot \sin \gamma = k \tag{1}$$

$$\frac{\sin A}{\sin \alpha} = \frac{k}{\sin \alpha \cdot \sin \beta \cdot \sin \gamma} \tag{2}$$

$$\sin B \cdot \sin \gamma \cdot \sin \alpha = k \tag{3}$$

$$\frac{\sin B}{\sin \beta} = \frac{k}{\sin \alpha \cdot \sin \beta \cdot \sin \gamma} \tag{4}$$

$$\sin C \cdot \sin \alpha \cdot \sin \beta = k \tag{5}$$

$$\frac{\sin C}{\sin \gamma} = \frac{k}{\sin \alpha \cdot \sin \beta \cdot \sin \gamma} \tag{6}$$