07-xaringan

Ottavia M. Epifania

Cos'è xaringan

- Un altro modo per fare le slide usando sempre R
- Utilizza RMarkdown ma tramite un motore che non è pandoc
- Il risultato: slide molto belle con meno fatica
- Offre infinite possibilità ma vedremo solo alcune feature

Installazione

Nella console di RStudio basta scrivere:

```
> install.packages("xaringan")
```

premere invio e attendere il termine dell'installazione-

Per aprire un nuovo file:

Il file di default

- Il file di default che viene creato all'apertura contiene un sacco di informazioni utili su xaringan
- Fornisce un template per nuove presentazioni
- Capendo come e dove modificare quel template vi trovate con una presentazione più che dignitosa!

Presentazioni in xaringan

Yaml

```
xaringan::moon_reader:
   lib_dir: libs
   css: [default, default-fonts]
   nature:
     highlightStyle: github
     highlightLines: true
     highlightSpans: true
     countIncrementalSlides: false
```

```
xaringan::moon_reader:
   lib_dir: libs
   css: [default, default-fonts]
   nature:
     highlightStyle: github
     highlightLines: true
     highlightLanguage: r
        highlightSpans: true
   countIncrementalSlides: false
```

Si possono definire i css da usare per la presentazione. xaringan fornisce una serie di css tra cui poter scegliere:

```
> names(xaringan:::list_css())

## [1] "chocolate-fonts" "chocolate" "default-fonts" "default-fonts" "gla"
## [5] "duke-blue" "fc-fonts" "fc" "gla"
```

```
xaringan::moon_reader:
   lib_dir: libs
   css: [default, default-fonts]
   nature:
        highlightStyle: github
        highlightLines: true
        highlightLanguage: r
        highlightSpans: true
        countIncrementalSlides: false
```

Le diverse modalità con cui si possono mostrare i chunk di codice:

```
> arta, ascetic, dark, default, far, github, googlecode, idea, ir-bla
> magula, monokai, rainbow, solarized-dark, solarized-light, sunburst
> tomorrow, tomorrow-night-blue, tomorrow-night-bright, tomorrow-night
> tomorrow-night-eighties, vs, zenburn
```

```
xaringan::moon_reader:
   lib_dir: libs
   css: [default, default-fonts]
   nature:
     highlightStyle: github
     highlightLines: true
     highlightLanguage: r
     highlightSpans: true
     countIncrementalSlides: false
```

Permette di evidenziare le righe di codice segnate:

- * all'inizio delle riga di codice
- Codice "rinchiuso" tra {{ }}
- Codice seguito da #<

```
xaringan::moon_reader:
    lib_dir: libs
    css: [default, default-fonts]
    nature:
        highlightStyle: github
        highlightLines: true
        highlightLanguage: r
        highlightSpans: true
        countIncrementalSlides: false
```

Ogni linguaggio ha un suo modo specifico di essere riportato e si può scegliere

```
xaringan::moon_reader:
    lib_dir: libs
    css: [default, default-fonts]
    nature:
        highlightStyle: github
        highlightLines: true
        highlightLanguage: r
        highlightSpans: true
        countIncrementalSlides: false
```

Se viene messo highlightSpans: true permette di evidenziare solo delle parti specifiche di codice invece che la riga intera.

Basta mettere il codice che si vuole evidenziare dentro i backtick `codice da evidenziare`:

```
iris `%>%`
```

```
xaringan::moon_reader:
   lib_dir: libs
   css: [default, default-fonts]
   nature:
     highlightStyle: github
     highlightLines: true
     highlightLanguage: r
     highlightSpans: true
     countIncrementalSlides: false
---
```

Settando countIncrementalSlides: true le slide incrementali vengono conteggiate nel totale

Formattazioni generali

Creare una nuova slide

```
# Titolo
## Sottotitolo

Testo
---
```

I tre tick iniziali --- sono fondamentali per creare la nuova slide, non basta più mettere solo il cancelletto

Le pause

```
# Titolo
## Sottotitolo (non è obbligatorio)
Testo che appare subito
Testo che appare dopo la pausa
Testo che appare al terzo click del mouse
```

Due colonne, stessa grandezza

Testo nella parte sinistra

Testo nella parte destra

Parola colorata (HTML)

Testo mini

Due colonne, stessa ampiezza: Codice

```
> .pull-left[
+ **Testo nella parte sinistra**
+ <br>
+ <br>
+ <span style="color:red">Parola colorata (HTML)</span>]
+
+ .pull-right[
+ .center[*Testo nella parte destra*]
+ <br>
+ <br>
+ <font size="2">Testo mini</font>
+ ]
```

Colonne di ampiezza differente

- Un
- Elenco
- Puntato

```
> iris %>%
+ summary()
```

```
Sepal.Length Sepal.Width Petal.Length
##
  Min. :4.300 Min. :2.000 Min. :1.000
  1st Ou.:5.100
              Median :5.800 Median :3.000 Median :4.350
               Mean :3.057 Mean :3.758
  Mean :5.843
  3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
##
  Max. :7.900
               Max. :4.400 Max. :6.900
  Species
##
  setosa :50
##
  versicolor:50
##
   virginica :50
##
##
##
```

Due colonne, ampiezza differente: Codice

```
> .left-column[
+ - Un
+
+ - Elenco
+
+ - Puntato
+ ]
+
+ .right-column[
+
+ ]
```

Immagini

![Caption](percorso-allafigura)


```{r, fig.cap = "Caption", fig.
knitr::include\_graphics(path = "
```


Matematica

Esattemente come in Rmarkdown:

$$y = \alpha + \beta X + \varepsilon$$

$$rac{p}{1-p}$$

Codice R

Plot

```
> par(mar = c(4, 4, 1, 0.1))
> plot(cars, pch = 19, col = "darkgray", las = 1)
> abline(fit, lwd = 2)
```


Tabelle

Le tabelle devono essere in formato HTML (non vale la sintessi specifica di RMarkdown).

Va usato direttamente il pacchetto kable per ottenere delle tabelle velocemente:

```
> knitr::kable(head(iris), format = "html")
```

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa

Tabelle... pro

Va installato il pacchetto DT (install.packages("DT")).

```
```{r}
library(DT)
DT::datatable(
 head(iris, 10),
 fillContainer = FALSE, options = list(pageLength = 8)
)
```
```

| Show 5 v entries | | | Search: | | | | |
|------------------|----------|--------|------------------------|-------------------------|------------------------|--------|--|
| | Sepal.Le | ngth 🖣 | Sepal.Width \(\dagger | Petal.Length \(\dagger | Petal.Width \(\phi \) | Specie | |
| 1 | | 5.1 | 3.5 | 1.4 | 0.2 | setosa | |
| 2 | | 4.9 | 3 | 1.4 | 0.2 | setosa | |
| 3 | | 4.7 | 3.2 | 1.3 | 0.2 | setosa | |
| 4 | | 4.6 | 3.1 | 1.5 | 0.2 | setosa | |

Codice scrollabile

Può essere utile avere il codice che non si interrompe alla fine della pagina ma che scorre.

Per farlo, va aggiunto un po' di codice:

```
```{css, echo=F, eval = T}
.inverse {
 background-color: #272822;
 color: #d6d6d6;
 text-shadow: 0 0 20px #333;
.scrollable {
 height: 500px;
 overflow-y: auto;
.scrollable-auto {
 height: 80%;
 overflow-y: auto;
.remark-slide-number {
```

### Un esempio

```
.scrollable[
irt.icc = function(model) {
 item par = model$item
 est_theta = seq(-4,4, length.out=1000)
 item_prob = list()
 if (any(grep("guess", colnames(item_par))) == F) {
 for (i in 1:nrow(item_par)) {
 item_prob[[i]] = data.frame(theta = est_theta)
 item_prob[[i]]$it_p = IRT(item_prob[[i]]$theta,
 b = item par[i, "xsi.item"],
 a = item_par[i, "B.Cat1.Dim1"])
 item_prob[[i]]$item = item_par[i, "item"]
 } else {
 for (i in 1:nrow(item_par)) {
 item_prob[[i]] = data.frame(theta = est_theta)
 item_prob[[i]]$it_p = IRT(item_prob[[i]]$theta,
 b = item_par[i, "AXsi_.Cat1"],
 a = item_par[i, "B.Cat1.Dim1"],
 c = item nar[i, "guess"])
```

#### Your turn!

Provate a creare una presentazione con xaringan che abbia:

- Una slide con una tabella (possibilmente versione pro!)
- Una slide con due colonne di uguale ampiezza (a sx il codice per fittare il modello a dx il summary dei risultati)
- Una slide con due colonne di diversa ampiezza (a sx il codice per fittare il modello a dx il grafico dei risultati)
- Una slide con codice scrollabile