

<u>Almacenamiento</u>

Adín Ramírez adin.ramirez@mail.udp.cl

Sistemas Operativos (CIT2003-1) 1er Semestre 2015

Puntos de hoy

- ¿Qué es almacenamiento?
- Anatomía de un disco duro
- Discos de estado sólido (SSD)
- Lo que deberían saber

Almacenamiento

- ¿Donde está la información cuando apagan su computadora?
- ¿Donde almacena la nube sus datos?

Almacenamiento

- Varios dispositivos
 - Cintas magnéticas
 - Discos duros
 - Disquetes (floppy disk)
 - CD-ROM
 - Memoria flash
 - MRAM
- ¿Qué tienen en común?
- ¿En qué se diferencian?

Características del almacenamiento

- No es volátil
 - Recuerda los datos sin electricidad
- Lenta (en comparación con la RAM)
 - Milisegundos o segundos en lugar de nanosegundos
 - No podemos ejecutar programas de estos dispositivos (tenemos que obtenerlos primero)
- Orientado a bloques
 - Obtener y almacenar grandes porciones de datos

Disquetes: 128/256/512 bytes

• Discos: 512/4096 bytes

• CD-ROM: 2048 bytes

• Flash: 512/2048/4096 bytes (pero varían mucho)

► Tiempo de obtener 1 byte = tiempo de obtener 1 bloque

Modelo de almacenamiento

- No volátil
 - Escribir, apagar, leer: debe de devolver el mismo valor
 - Independientemente del tiempo
- Espacio de direcciones
 - Los bloques tienen números
 - En tiempos antiguos: (C, H, S)
 - ullet C, H, S son características geométricas de los discos antiguos
 - ► En los modernos: (*LBA*)
 - Direcciones lógicas de bloques corren de $0 \dots N$

Escribir y leer

- read_block(N) ⇒ bloque, sino error
 - A veces re intentar ayuda (pero no siempre)
- write_block(N) ⇒ éxito, o error
 - Errores indican problemas "obvios"
 - Una escritura exitosa no garantiza una lectura posterior
 - Los dispositivos usualmente contienen un buffer
 - Una operación de escritura o completa o no tiene efecto
- Los dispositivos modernos soportan tagged command queueing
 - ► El sistema operativo genera múltiples solicitudes, cada una tiene una etiqueta (tag)
 - ► El dispositivo puede retornar los resultados en cualquier orden, con la etiqueta que envió el sistema operativo

6

Cola de comandos

- El disco realiza las solicitudes de lectura fuera de orden
 - ► Colas del SO: leer 37, leer 83, leer 2
 - El disco retorna 37, 2, 83
 - Y por eso compramos discos inteligentes y que encolan múltiples peticiones
 - Colas del SO: leer 37, leer 38, leer 39
 - El disco busca una vez, lee 37–40, además de 40–72 mientras está en el vecindario
 - Envía los sectores al SO conforme están disponibles
- El disto realiza las solicitudes de escritura fuera de orden también
 - ► Cola del SO: escribir 23, escribir 24, escribir 1000, leer 4–8
 - El disco escribe 24, 23, entrega 4, 5, 6, 7, 8, escribe 1000
 - ¿Qué pasa si falla el poder antes de la última solicitud de escritura?
 - ¿Qué pasa si falla el poder antes de las dos primeras solicitudes de escritura?
 - Conozcan sus I/O (interesante lectura)

¿Cómo asegura el sistema operativo la integridad de las estructuras de datos?

- Comandos especiales
- Escribir todos las solicitudes de escritura pendientes
 - Hace pensar al disco en "tener una barrera"
 - ▶ Puede enviar el *flush* a la cola de solicitudes
 - Puede aplicar a un conjunto de solicitudes pendientes antes del flush
 - Usado raramente por el sistema operativo
- Deshabilitar la escritura al cache
 - Hace pensar al disco "no sea tan moderno"

Ejemplos

- Disco duro
 - Partes
 - ► Modelo de ejecución
- Memoria flash
 - Retos
 - Amplificación de escritura
 - Extensión de vida (wear leveling)

Anatomía del disco duro

Por fuera

http://en.wikipedia.org/wiki/Western_Digital

Por dentro

https://www.flickr.com/photos/wwarby/ 11644547564/in/photostream/

Anatomía del disco

- Un disco usualmente tiene múltiples discos, llamados platos
- Éstos giran a miles de RPM (5400, 7200, 10000, etc.)
- Discos más lentos utilizan menos poder
- Información es escrita hacia y leída desde los platos por las cabezas al final del brazo del disco

https://www.flickr.com/photos/wwarby/ 11644547564/in/photostream/

Anatomía del disco

- El brazo se mueve a través de un actuador
- Es lento
- Ambos lados de cada plato contienen información
- Cada lado es llamado una superficie
- Cada superficie tiene una cabeza de escritura/lectura

https://www.flickr.com/photos/wwarby/ 11644547564/in/photostream/

Anatomia de una superficie

- La superficie se divide en tracks
- Los tracks en sectores.
- Un sector es la unidad más. pequeña de transferencia de datos de y hacia el disco
 - ▶ 512 bytes —discos tradicionales
 - 2048 bytes —CD-ROMs
 - 4096 bytes —discos del 2010

Cilindros

- Los mismos tracks en distintas superficies son llamados un cilindro
- Los accesos son (C, H, S)
 - ► C: cilindro
 - ► H: cabeza/superficie (head)
 - ► S: sector

Un disco real

- Los discos modernos graban a través de zonas de bits
 - El disco tiene mapas de # tracks a # sectores
 - Los sectores son del mismo tamaño lineal
 - Logical Block Address (LBA): la dirección del sector (similar como el número de página nombra un cuadro)

Lectura de un sector

- Debemos hacer dos cosas antes de transferir un sector
 - Mover la cabeza lectura/escritura al track apropiado (tiempo de búsqueda)
 - Esperar hasta que el sector buscado gire (retardo rotacional o latencia rotacional)
- Observemos
 - ► Los tiempo de búsqueda promedio son 2–10 mseg
 - Rotaciones de 5400/7200/10 K/15 K rpm equivalen a una demora rotacional de 11/8/6/4 mseg

Anatomía de un sector

- Encontrar un sector involucra trabajo real
 - ► Localizar el track correcto
 - ► Escanear las cabeceras del sector para encontrar el número
- Leer los datos
- Después, leer el código de verificación de error (checksum) y compararlo

Acceso dentro de un cilindro Más rápido

- Las cabezas comparten un mismo brazo
 - ► Todas las cabezas están en el mismo cilindro simultáneamente
 - La cabeza activa está alineada, las otras están cerca
- Cambiar entre cabezas es "barato"
 - Desactivar una cabeza, y activar otra
 - Leer unos sectores, y alinear la cabeza para el nuevo sector
- Razón de transferencia óptima
 - Transferir todos los sectores en un track
 - Trasferir todos los tracks en un cilindro
 - Luego, movemos el brazo

Tiempo de acceso

- En promedio, debemos mover la cabeza de lectura/escritura sobre un tercio de los tracks
 - ▶ El tiempo para hacer esta operación es el "tiempo promedio de búsqueda"
 - ▶ 5400 rpm: ~ 10 ms
 - ▶ $7200 \, \text{rpm}$: $\sim 8.5 \, \text{ms}$
- Además, debemos esperar media rotación, en promedio
 - El tiempo de hacer ésto es "demora promedio rotacional"
 - ▶ 5400 rpm: ~ 5.5 ms
 - ▶ 7200 rpm: \sim 4 ms
- Los números no encajan
 - Mientras el brazo se mueve, el disco gira también

Tiempo de acceso

- $lue{}$ Tiempo total de acceso aleatorio es \sim 7–20 milisegundos
 - ▶ 1000 ms/segundo, 20 ms/acceso = 50 accesos/segundo
 - ▶ 50 transferencias de $\frac{1}{2}$ kilobyte por segundo = 25 KByte/seg
 - ► Los discos son lentos
 - Pero, las transferencias de discos son de cientos de MBytes /seg
- Como programadores de SO, ¿qué podemos hacer al respecto?
 - Leer/escribir más por cada búsqueda (transferencias multi sector)
 - El cache del disco puede leer adelante, y retardar las escrituras
 - No buscar tan aleatoriamente
 - Colocar los datos relevantes cerca
 - Re ordenar las solicitudes
 - SO puede hacer "calendarización de disco" en lugar de FIFO
 - Históricamente relevante, más recientemente menos
 - Los discos también calendarizan internamente

Discos de estado sólido (SSD)

- ¿Qué es "estado sólido"?
 - Significado original: "no tubos al vacío"
 - Significado actual: "no partes en movimiento"
- ¿Qué es almacenamiento en "estado sólido"?
 - RAM respaldada por batería
 - Rápida
 - Permite servidores NFS completar escrituras RPCs sin tener que esperar por el disco
 - NOR flash
 - Accesible por palabra
 - Escrituras lentas, densidad baja
 - Se usa para arrancar dispositivos embebidos, configuración de almacenamiento
 - NAND flash
 - Lee/escribe páginas (512 B), borra bloques (16 KB)
 - La mayoría de SSD actuales son NAND flash
 - Y más cosas bajo desarrollo (Phase change memory, Magnetic RAM, Memristor memory)

Características arquitecturales

- No hay partes que se muevan (mecánicas) así que no hay tiempo de búsqueda, o retardo rotacional
- Lecturas rápidas como las escrituras
- Escribir y borrar son distintas
 - Una página en blanco puede ser escrita (una sola vez)
 - Una página escrita debe ser borrada antes de re-escribir
 - Pero las páginas no se pueden borrar individualmente
 - Borrar funciona en bloques multí página (16 KB)
 - Borrar es muy lento
 - Borrar daña el bloque cada vez
- Implicaciones
 - Amplificación de escritura
 - Desgaste

■ Objetivo, copiar 2 páginas (1024 B) en un bloque (16 KB)

■ Objetivo, copiar 2 páginas (1024 B) en un bloque (16 KB)

Objetivo, copiar 2 páginas (1024 B) en un bloque (16 KB)

Objetivo, copiar 2 páginas (1024 B) en un bloque (16 KB)

■ Objetivo, copiar 2 páginas (1024 B) en un bloque (16 KB)

Resultado amplificación de escritura

- Lógicamente: escribimos 1 KB
- Físicamente: borramos y escribimos 16 KB
- Factor de amplificación: 8

Desgaste (Wear leveling)

- El mal caso
 - El sistema de archivos escribe en el mismo bloque repetidamente
 - Borrar daña parte de la flash
 - $ho \sim 10000$ borradas destruye un bloque
- Estrategia: mentirle al sistema operativo
 - ► El anfitrión cree que está escribiendo en un bloque específico (LBA)
 - Almacenar la información en otra parte
 - De manera secreta rempaeamos las direcciones del anfitrión a las direcciones NAND
 - FTL —flash translation layer
 - Cada parte del disco se mueve hacia otra parte de la flash con el tiempo
 - Sobre provisión
 - Prometer menos espacio del que existe
 - El espacio extra se utiliza para reemplazar los bloques destruidos
 - Usar la sobre provisión conforme se destruyen los bloques

Resumen SSD

- SSD vs. disco
 - SSD implementa un modelo de disco regular
 - Sectores LBA
 - Escribir sector, leer sector, parquear cabezas, etc.
 - Las operaciones de lectura son extremadamente rápidas (100 veces más rápidas), no hay tiempo de búsqueda o retraso rotacional (cada sector es cercano)
 - Las operaciones de escritura varían (tal vez 100 veces más rápido, tal vez no hay aumento de velocidad)
 - SSD usan menos energía que los discos
 - SSD son resistentes a shocks
 - Escribir en la SSD deteriora el disco más rápido
 - SSD son más caros

Resumen SSD

- Oportunidades y amenazas
 - El comando TRIM agiliza las escrituras
 - ▶ Borrar el disco de manera segura puede no ser posible
- El futuro
 - Más SSD
 - Más discos también
 - Sistemas híbridos que tomen ventaja de cada característica

26

¿Qué recordar?

- El almacenamiento es lento
 - ► Lo que hagamos toma milisegundos
- El almacenamiento miente
 - Obtenemos un número de bloques de disco
 - No hay manera de conocer donde están en el disco
 - LBA es una aproximación de cercanía
- Modelo de fallo
 - A veces una lectura falla
 - Escribir en ese bloque causará que el dispositivo re-mapee (discos y SSD)
 - Cuando el espacio re-mapeado se termine, el dispositivo se rehusará a escribir
- Seguridad
 - El borrar información de la flash es incierto
 - Sugerencia: encriptar

Lecturas extra

- Reliably Erasing Data from Flash-based Solid State Drives, Wei et al., UCSD, FAST '11, http://www.usenix.org/ legacy/events/fast11/tech/full_papers/Wei.pdf
- A Conversation with Jim Gray Dave Patterson, ACM Queue, June 2003,
 - http://queue.acm.org/detail.cfm?id=864078
- Terabyte Territory, Brian Hayes, American Scientist, May/June 2002, http://www.americanscientist.org/ issues/pub/terabyte-territory