

A: Alternatywne permutacje

Limit pamięci: 256 MB

Jasiu napisał program konwertujący permutacje do binarnych drzew przeszukiwań, zwanych dalej BST: dla permutacji $(\pi_1, \pi_2, \ldots, \pi_n)$ korzeń drzewa otrzymuje etykietę π_1 , z liczb spośród $\pi_2, \pi_3, \ldots, \pi_n$ mniejszych niż π_1 (w tej samej kolejności) tworzymy rekurencyjnie drzewo BST, które staje się lewym poddrzewem π_1 , analogicznie z większych niż π_1 tworzymy BST, które będzie prawym poddrzewem π_1 .

Ku zdziwieniu Jasia okazało się, że niektóre drzewa BST można uzyskać z kilku różnych permutacji – np. permutacje (2,3,1) oraz (2,1,3) dają to samo drzewo BST. Jasiu uznał tę własność za bardzo ciekawą i zdefiniował Liczby Jasia J_k : k-ta Liczba Jasia to najmniejsza liczba n taka, że istnieje drzewo BST mające n wierzchołków etykietowanych liczbami $1,2,\ldots,n$, które można uzyskać z dokładnie k różnych permutacji liczb $1,2,\ldots,n$. Badania nad Liczbami Jasia są trudne a ich popularność maleje. Pomóż Jasiowi – oblicz Liczbę Jasią J_k dla zadanego k.

Wejście

W pierwszym i jedynym wierszu wejścia znajduje się jedna liczba naturalna k ($1 \le k \le 10^{11}$).

Wyjście

W pierwszym i jedynym wierszu wyjścia należy wypisać wypisać jedną liczbę naturalną: Liczbę Jasia J_k , jeśli istnieje drzewo które można uzyskać z k różnych permutacji i ma ono najwyżej 5 000 wierzchołków. W drugim i ostatnim wierszu wyjścia należy wypisać najmniejszą leksykograficznie permutację generującą drzewo n-wierzchołkowe posiadające dokładnie k różnych permutacji generujących.

Jeśli takie drzewo nie istnieje lub ma powyżej 5 000 wierzchołków, to w pierwszym i jedynym wierszu należy wypisać słowo NIE.

Przykład

Wejście	Wyjście
8	5
	2 1 4 3 5

Drzewo, które ma dokładnie 8 permutacji generujących jest następujące:

Wszystkie permutacje generujące to drzewo to: (2,1,4,3,5), (2,1,4,5,3), (2,4,1,3,5), (2,4,1,5,3), (2,4,3,1,5), (2,4,3,5,1), (2,4,5,1,3), (2,4,5,3,1).