マンデルブロ集合の数理

延原 肇

マンデルブロ集合

複素関数

$$f(z) = z^2 + C$$

マンデルブロ集合は、右の複素関数から生成されます。 さて、どうやって生成されるのか、これからゆっくり説明 しますので理解してください。

マンデルブロ集合

複素関数の反復写像

$$z_{n+1} = z_n^2 + C$$

$$(z_n = x + yi, C = a + bi)$$

$$z_0 = 0$$
 から出発させ、n を大きく(反復回数を大きく)

とっても、発散しない |C| の集合のことを

マンデルブロ集合といいます。わかりましたか? 「わけわかんねーよ」という人、安心してください。次のスライドからもう少し簡単に説明してゆきます。

図と数式の対応について

$$z_{n+1} = z_n^2 + C$$

左図の各点の明るさは、各点おける発散する速さを表していて、暗いほど、発散する速さが速い。 逆に、明るいほど、発散しないで収束していることを表しています。

次から、具体的に右の数式を展開して、わかりやすく してみます。

マンデルブロ集合の数学的意味(1)

見通しがつけやすいように変形

$$z_{n+1} = z_n^2 + C$$

$$= (x_n + y_n i)^2 + (a + bi)$$

$$= \{x_n^2 + 2x_n y_n i - y_n^2\} + (a + bi)$$

$$= \{x_n^2 - y_n^2 + a\} + \{2x_n y_n + b\} i$$

実数部

虚数部

マンデルブロ集合の数学的意味(2)

$$z_{n+1} = \left\{ x_n^2 - y_n^2 + a \right\} + \left\{ 2x_n y_n + b \right\} i$$

$$z_{n+1} = x_{n+1} + y_{n+1} i$$

実数部については
$$x_{n+1} = x_n^2 - y_n^2 + a$$
 虚数部については $y_{n+1} = 2x_n y_n + b$

をひたすら計算すればよい

マンデルブロ集合の数学的意味(3)

発散する速さはどうやったらわかる?

$$x_{n+1} = x_n^2 - y_n^2 + a$$

$$y_{n+1} = 2x_n y_n + b$$

複素数の絶対値を調べるとよい

$$||z_{n+1}|| = \sqrt{x_{n+1}^2 + y_{n+1}^2}$$

絶対値が急激に大きくなると発散と判定できる

マンデルブロ集合の数学的意味(4)

この図は、何を示しているのか?

$$z_{n+1} = z_n^2 + C$$

$$C = a + bi$$

各点(a,b)における発散する速さ (暗いほど、発散する速さが速い)

ちょっと計算してみよう

(a,b)=(-2.0,2.0)

(a,b)

(a,b)=(0,2.0)

(a,b)=(2.0,2.0)

例えば・・・

$$a = -1.0, b = -1.0$$

として、以下の式で発散の様子を 調べてみると・・・

$$x_{n+1} = x_n^2 - y_n^2 + a$$

$$y_{n+1} = 2x_n y_n + b$$

$$||z_{n+1}|| = \sqrt{x_{n+1}^2 + y_{n+1}^2}$$

計算の様子

	a = -1.0	b = -1.0	
反復回数	х	У	x^2+y^2
0	-1.00	-1.00	2.00
1	-1.00	1.00	2.00
2	-1.00	-3.00	10.00
3	-9.00	5.00	106.00
4	55.00	-91.00	11306.00

絶対値が急激に大きくなるので発散 =対応する点の明るさは暗い

a=-1.0, b=-0.5の計算の様子

Г			
	a = −1.0	b = -0.5	
反復回数	х	У	x^2+y^2
0	-1.00	-0.50	1.25
1	-0.25	0.50	0.31
2	-1.19	-0.75	1.97
3	-0.15	1.28	1.66
4	-2.62	-0.89	7.65
5	5.06	4.16	42.96
6	7.31	41.65	1788.42
7	-1682.62	608.28	3201199.25

絶対値が急激に大きくなるので発散 =対応する点の明るさは暗い

a=-1.0, b=0.0の計算の様子

	a = −1.0	b = 0.0	
反復回数	х	У	x^2+y^2
0	-1.00	0.00	1.00
1	0.00	0.00	0.00
2	-1.00	0.00	1.00
3	0.00	0.00	0.00
4	-1.00	0.00	1.00
5	0.00	0.00	0.00
6	-1.00	0.00	1.00
7	0.00	0.00	0.00
8	-1.00	0.00	1.00
9	0.00	0.00	0.00

絶対値は発散せずに、Oと1で振動。 =対応する点は明るい

マンデルブロ集合の不思議な性質

拡大すると不思議な模様が見えてくる

マンデルブロ集合は宇宙?

いろいろな位置を拡大することで、様々な様相を観測することが可能

この小さい空間に、神秘的で驚異的な構造が無限に存在する

マンデルブロ集合をいざ探検!

