Supervised Learning VII – Neural Networks (cont.)

- 1. Direction of Gradient
 - a. Lets say we have a (differentiable) function 'f' we want to minimize
 - b. The derivative of 'f' is a direction
 - i. Points to local maxima (including saddle points)
 - c. We can use this to "descend!"
 - i. Move in opposite direction of derivative!
 - d. Basic algorithm (in 1-D):

while not converged and $t < t_{max}$ do:

compute
$$\frac{df}{dx}\big|_{x^{(t)}}$$
 update $x^{(t+1)}=x^{(t)}\,-\eta \frac{df}{dx}\big|_{x^{(t)}}$

t = t + 1

e.

- 2. Gradient Descent in Parameter Space
 - a. Remember, we want to find $oldsymbol{ heta}$ that optimizes a loss function
 - b. So, we need to compute

$$abla \nabla_{\theta} L(\mathbf{D}, \ \theta) = \left(\frac{\partial L}{\partial \theta_1}, \frac{\partial L}{\partial \theta_2}, \dots, \frac{\partial L}{\partial \theta_n}\right)^T$$

c. Basic algorithm (in parameter space)

while not converged and $t < t_{max}$ do:

compute
$$\nabla_{\theta}L\left(\mathbf{D},\theta\right)\Big|_{\theta^{(t)}}$$
 update $\theta^{(t+1)}=\theta^{(t)}-\eta\nabla_{\theta}L\left(\mathbf{D},\theta\right)\Big|_{x^{(t)}}$ $t=t+1$

i.

3. Computing the Gradient

- a.
- b. Gradient "flows" backward (from output to input)
- c. Lets do a small example, see if we notice any patterns

Look at all the redundant calculations!!!

$$\nabla_{\theta} L = \begin{pmatrix} \frac{\partial L}{\partial b_{3}} & \frac{\partial L}{\partial \hat{y}_{3}} \\ \frac{\partial L}{\partial w_{3,1}} & \frac{\partial L}{\partial \hat{y}_{3}} \\ \frac{\partial L}{\partial w_{3,2}} & \frac{\partial L}{\partial \hat{y}_{3}} \\ \frac{\partial L}{\partial b_{1}} & \frac{\partial L}{\partial \hat{y}_{3}} \\ \frac{\partial L}{\partial \hat{y}_{3}} & \frac{\partial \hat{y}_{3}}{\partial z_{3}} \\ \frac{\partial L}{\partial w_{3,1}} & \frac{\partial z_{3}}{\partial w_{3,1}} \\ \frac{\partial L}{\partial w_{3,1}} & \frac{\partial z_{3}}{\partial z_{3}} \\ \frac{\partial z_{3}}{\partial z_{3}} & \frac{\partial z_{3}}{\partial z_{1}} \\ \frac{\partial z_{3}}{\partial z_{1}} & \frac{\partial z_{1}}{\partial z_{1}} \\ \frac{\partial z_{1}}{\partial w_{1,1}} & \frac{\partial z_{1}}{\partial w_{1,1}} \\ \frac{\partial z_{1}}{\partial z_{1}} & \frac{\partial z_{1}}{\partial w_{1,2}} \\ \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

i.

ii. Now, we cache the backpropagation values and use it again for later (to remove redundancy)

4. Backpropagation

- a. NN computation is always a DAG
- b. Cache error as a function of layer
 - i. Remove redundant computation (from previous slide)

$$\delta_{\hat{y}_3} = \frac{\partial L}{\partial \hat{y}_3}$$

$$\delta z_3 = \delta_{\hat{y}_3} \frac{\partial \hat{y}_3}{\partial z_3}$$

$$\delta_{\hat{y}_1} = \delta z_3 \frac{\partial \hat{y}_2}{\partial z_3}$$

$$\delta_{\hat{y}_1} = \delta_{\hat{y}_1} \frac{\partial \hat{y}_1}{\partial z_1}$$

$$\frac{\partial L}{\partial w_{3,1}} \qquad \delta_{\hat{y}_3} \qquad \delta z_3 \qquad \frac{\partial z_3}{\partial w_{3,1}}$$

$$\frac{\partial L}{\partial w_{3,2}} \qquad \delta_{\hat{y}_3} \qquad \delta z_3 \qquad \frac{\partial z_3}{\partial w_{3,2}}$$

$$\frac{\partial L}{\partial b_1} \qquad \delta_{\hat{y}_3} \qquad \delta z_3 \qquad \frac{\partial z_3}{\partial w_{3,2}}$$

$$\nabla_{\theta} L = \qquad \frac{\partial L}{\partial w_{1,1}} \qquad \delta_{\hat{y}_3} \qquad \delta z_3 \qquad \delta_{\hat{y}_1} \qquad \delta z_1$$

$$\frac{\partial L}{\partial w_{1,2}} \qquad \delta_{\hat{y}_3} \qquad \delta z_3 \qquad \delta_{\hat{y}_1} \qquad \delta z_1 \qquad \frac{\partial z_1}{\partial w_{1,1}}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\delta_{\hat{y}_3} \qquad \vdots \qquad \delta_{\hat{y}_1} \qquad \delta z_1 \qquad \frac{\partial z_1}{\partial w_{1,2}}$$

$$\vdots \qquad \delta_{\hat{y}_3} \qquad \vdots \qquad \delta z_1 \qquad \frac{\partial z_1}{\partial w_{1,2}}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

- e. Calculate once and reuse it (cache the matrix that has the values)
- f. Data inputs have to be vectors

- 5. Images and Your Eyes
 - a. How do your eyes parse visual data?
 - b. How do we localize different patterns in images?
 - i. Answer: Convolution!

No statistical difference between eye response and convolution with gabor (wavelet) filters¹

- c.
- d. High level: convolution "rubs" one function (called the filter or kernel) over a signal (image)
 - i. Response signal is proportional to how similar geometry in signal is to filter
 - ii. High response -> local geometry of signal is similar to geometry of filter!
- e. Can we learn the filters?
- 6. Convolutional NNs
 - a. Implement convolution operator (over images) using learnable kernels
 - b. Generate kernels (like gabor wavelets!)
 - c. Successive layers \rightarrow more abstract features

d.

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

e.