Tables ??-??. Definitions and Parameter Values

Table 1: Parameter Values: Photosynthetic Growth

Parameter	Current Value	Previous value	Units
u_{max}^{DIAT}	6.0495e-05	6.11e-05	s^{-1}
μ_{max}^{BTH} μ_{max}^{MRUB}	2.22e-05	2.22e-05	s^{-1}
μ_{max}	2.109e-05	2.11e-05	s^{-1}
$_{\mathbf{\Omega}^{DIAT}}^{\mu_{max}}$	26.0	26.0	$^{\circ}\mathrm{C}$
$\bigcap_{M}^{max}MRUB$	31.0	31.0	$^{\circ}\mathrm{C}$
$\bigcap_{max} FLAG$			$^{\circ}\mathrm{C}$
O_{BIAT}	31.0	31.0	°C
Θ_{range}	14.0	14.0	$^{\circ}\mathrm{C}$
Θ_{range}^{MRUB}	13.0	13.0	$^{\circ}\mathrm{C}$
Θ_{range}^{FLAG}	13.0	13.0	$^{\circ}\mathrm{C}$
$I_{ m opt}^{DIAT}$	45.0	42.0	$\mathrm{W}~\mathrm{m}^{-2}$
$I_{ m opt}^{MRUB}$	37.0	37.0	$\mathrm{W}~\mathrm{m}^{-2}$
I_{opt}^{FLAG}	10.0	10.0	$\mathrm{W}~\mathrm{m}^{-2}$
$k_{ m Si}^{DIAT} \ k_{ m Si}^{MRUB} \ k_{ m Si}^{FLAG}$	2.2	1.2	μM Si
k_{Si}^{MRUB}	0.0	0.0	μM Si
k_{Si}^{FLAG}	0.0	0.0	μM Si
$_{ta}DIAT$	1.0	1.0	
κ^{MRUB}_{-}	0.5	0.5	
κ^{FLAG}	0.3	0.3	
K_{ii}^{DIAT}	2.0	2.0	μM N
$K_{\rm N}^{MRUB}$	0.5	0.5	μM N
$K_{\rm N}^{FLAG}$	0.2	0.1	μM N
	1.8	1.5	$\mu M Si (\mu M N)^{-1}$
$a_{\mathrm{Si:N}}^{DIAI} \ a_{\mathrm{Si:N}}^{MRUB} \ a_{\mathrm{Si:N}}^{FLAG}$	0.0	0.0	$\mu M \operatorname{Si} (\mu M N)^{-1}$
$a_{\mathrm{Si:N}}^{FLAG}$	0.0	0.0	μM Si (μM N) ⁻¹

Table 2: Parameter Values: Grazing

1ab.		varues. Grazing	
Parameter	Current Value	Previous value	Units
v_{max}^{MRUB}	1.887e-06	1.78e-06	s^{-1}
α^{MRUB}	0.3	0.4	μM N
K^{MRUB}	1.0	1.0	μM N
ϵ^{MRUB}	0.6	0.6	•
v_{max}^{MICZ}	2.7528e-05	2.289e-05	s^{-1}
α^{MTCZ}	0.2	0.5	μM N
K^{MICZ}	1.25	1.25	μM N
MICZ	0.27	0.26	p-2.12 1 1
MICZ	0.165	0.17	
MICZ	0.295	0.3	
MICZ	0.293	0.09	
$_{MICZ}^{ ho_{PON}}$			
$ ho_{\substack{MICZ \ MICZ}}$	0.18	0.18	N.C. N.T.
$lpha_{DIAT}$	0.1	0.3	μM N
α_{MRUB}^{MRUB}	0.2	0.5	μM N
α_{FLAG}^{mroz}	0.05	0.4	μM N
α_{PQNZ}^{M10Z}	0.5	0.6	μM N
α_{MICZ}^{MICZ}	0.2	0.3	μ M N
$K_{QIAT_{Z}}^{MICZ}$	1.0	1.0	μ M N
$K_{M,RU,R}^{MTCZ}$	1.0	1.0	μM N
K_{FLAG}^{MICZ}	1.0	1.0	μ M N
K_{PQN}^{MICZ}	2.0	2.0	μ M N
K_{MICZ}^{MICZ}	0.5	0.5	μ M N
ϵ^{MICZ}_{MEGZ}	0.6	0.6	
$v_{max_{cz}}^{\scriptscriptstyle MESZ}$	1.5207e-05	1.54e-05	s^{-1}
α^{MESZ}	0.2	0.5	μ M N
K^{MESZ}	1.0	1.0	μ M N
$ ho_{DIAT}^{MESZ}$	0.28	0.285	
$ ho_{MRUB}^{MESZ}$	0.185	0.18	
$ ho_{FLAG}^{MESZ}$	0.105	0.1	
ρ_{PON}^{MESZ}	0.15	0.15	
ρ_{MICZ}^{MESZ}	0.28	0.285	
α_{DIAT}^{MESZ}	0.0	0.0	μM N
α_{MRIIR}^{MESZ}	0.1	0.2	μM N
α_{FLAG}^{MESZ}	0.0	0.0	μM N
MESZ	0.0	0.0	μM N
α_{MICZ}^{MESZ}	0.2	0.5	μM N
K_{DLAT}^{MESZ}	0.3	0.2	μM N
K_{MBUB}^{MESZ}	1.0	1.0	μM N
K_{ELAS}^{MESZ}	0.4	0.4	μM N
K_{DSZ}^{MESZ}	0.4	0.4	μM N
K^{MESZ}	1.2	1.2	μM N
MESZ	0.0	0.0	bein in
	0.0	0.0	

 ${\bf Table~3:~Parameter~Values:~Mesozooplankton}$

Parameter	Current Value	Previous value	Units
$\begin{bmatrix} Z_w \\ [Z_1, Z_2, Z_3] \\ [\sigma_1, \sigma_2, \sigma_3] \\ [t_{01}, t_{02}, t_{03}] \end{bmatrix}$	0.38 [0.55, 0.55, 0.36] [40.0, 70.0, 43.0] [130.0, 206.0, 290.0]		μΜ N μΜ N days year day

Table 4: Parameter Values: Mortality and Excretion/Egestion

Parameter	Current Value	Previous value	Units
m_{DIAT}	6.66e-07	6.67e-07	s^{-1}
m_{MRUB}	7.77e-07	7.78e-07	s^{-1}
m_{FLAG}	4.884e-07	4.89e-07	s^{-1}
m_{MICZ}	5.55e-07	5.56e-07	s^{-1}
m_{MESZ}	0.0	0.0	s^{-1}
e_{MICZ}	5.55e-08	5.56e-08	s^{-1}
e_{MESZ}	0.0	0.0	s^{-1}

Table 5: Parameter Values: Remineralization

Parameter	Current Value	Previous value	Units
$b_{ m NH}^{ m NO}$	4.44e-07	4.44e-07	$s^{-1} (\mu M N)^{-1}$
$b_{ m DQN}^{ m NH}$	2.553e-06	2.56e-06	s^{-1}
$b_{ m PQN}^{ m NH}$	2.553e-06	2.56e-06	s^{-1}
$b_{ m bSi}^{ m dSi}$	1.221e-06	3.089e-06	s^{-1}

Table 6: Parameter Values: Optical Model

Parameter	Current Value	Previous value	Units
γ	0.091	0.091	m^{-1}
β	0.0433	0.0502	m^{-1}
λ	0.445		m^{-1}
δ	2.56	2.56	m
$a_{ m Chl:N}$	2.0	1.6	g Chl (mol N) ⁻¹

^a In the 1-d model [?, ?], λ included an additional term related to Fraser River discharge, Q, tuned to represent light attenuation due to riverine suspended sediment at the 1-d model site.

Table 7: Parameter Values: Sinking and Bottom Boundary Condition

Parameter	Current Value	Previous value	Units
$w_{\substack{s\min \\ s\min \\ w_{\substack{s\min \\ v_{\substack{smin \\ v_{\substack{smax \\ w_{\substack{b \\ v_{\substack{b \\ v_{b} \\ v_{\substack{b \\ v_{b} \\ v_{\substack{b \\ v_{b} \\$	6.42e-06 [0.6]	6.44e-06 [0.6]	${\rm m}\ {\rm s}^{-1}\ [{\rm m}\ {\rm d}^{-1}]$
$w_{ m smax}^{DIAT}$	1.54e-05 [1.3]	1.54e-05 [1.3]	${\rm m}\ {\rm s}^{-1}\ [{\rm m}\ {\rm d}^{-1}]$
w_s^{PON}	1.11e-04 [9.6]	1.11e-04 [9.6]	${\rm m}\ {\rm s}^{-1}\ [{\rm m}\ {\rm d}^{-1}]$
w_s^{bSi}	3.11e-04 [26.9]	1.44e-04 [12.4]	${\rm m}\ {\rm s}^{-1}\ [{\rm m}\ {\rm d}^{-1}]$
α_b^{Si}	0.92	0.8	
α_b^N	0.45	0.45	

Table 8: Parameter Values: Detrital Transfer Coefficients, γ^i

Table 8: Farameter values: Detrital Transfer Coefficients, $\chi_{i \to k}$									
	Current Values				Previous Values				
$j \to k$	$i=\mathrm{NH_4^+}$	i=DON	i=PON	i=bSi		$i=\mathrm{NH}_4^+$	i=DON	i=PON	i=bSi
$FLAG \rightarrow MRUB \\ DIAT \rightarrow MICZ \\ MRUB \rightarrow MICZ \\ FLAG \rightarrow MICZ \\ MICZ \rightarrow MICZ \\ MICZ \rightarrow MICZ \\ MICZ \rightarrow MORT \\ MICZ \rightarrow EXCR \\ DIAT \rightarrow MESZ \\ MRUB \rightarrow MESZ \\ FLAG \rightarrow MESZ \\ MICZ \rightarrow MESZ \\ PON \rightarrow MESZ \\$	0.05 0.05 0.05 0.05 0.05 0.00 0.05 0.25 0.05 0.0	0.47 0.47 0.47 0.47 0.47 0.0 0.47 0.25 0.47 0.47 0.47 0.47	0.47 0.47 0.47 0.47 0.47 1.0 0.47 0.5 0.47 0.47 0.47 0.47	1.0		0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.47 0.47 0.47 0.47 0.47 0.0 0.47 0.25 0.47 0.47 0.47 0.47	0.47 0.47 0.47 0.47 0.47 1.0 0.47 0.5 0.47 0.47 0.47 0.47	1.0
$MESZ \rightarrow MORT \\ MESZ \rightarrow EXCR$	$0.05 \\ 0.25$	$0.47 \\ 0.25$	$0.47 \\ 0.5$	- -		$0.05 \\ 0.25$	$0.47 \\ 0.25$	$0.47 \\ 0.5$	- -