

Matrices (repetition)

Matrix = square of numbers:

$$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 5 & 7 \\ 9 & 1 & 1 \end{bmatrix}$$

The above is 3×3

Today: all matrices are n×n square matrices. (i.e.n indicates the side length of the matrices.)

Matrices

Plus for matrices:

$$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 5 & 7 \\ 9 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 2 & 1 \\ 4 & 3 & 2 \\ 5 & 4 & 3 \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

n=3

entries:3*3=3^2

Time? $\Theta(n^2)$. you need to interate through n^2 elements, for each element you add another element, which is O(1) (constant). The

Optimal, since the output is of size n².

Matrices

Multiplication for matrices:

$$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 5 & 7 \\ 9 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 & 1 \\ 4 & 3 & 2 \\ 5 & 4 & 3 \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 5 & 7 \\ 9 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 & 1 \\ 4 & 3 & 2 \\ 5 & 4 & 3 \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & 33 \\ ? & ? & ? \end{bmatrix}$$

$$33 = 2 \cdot 1 + 5 \cdot 2 + 7 \cdot 3$$

$$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 5 & 7 \\ 9 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 & 1 \\ 4 & 3 & 2 \\ 5 & 4 & 3 \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & 33 \\ ? & 25 & ? \end{bmatrix}$$

 $25 = 9 \cdot 2 + 1 \cdot 3 + 1 \cdot 4$ 3x3 matrix, with 3 multiplications = 3^3

n^2 elements in a matrix, and have n multiplications, so n^2*n= n^3

Time? Θ(n³). Optimal?? Other algorithms??

Recursive algorithm for multiplication?

$$A_{11} \cdot B_{12} + A_{12} \cdot B_{22} = C_{12}$$

Recursive algorithm for multiplication?

$$C_{11}$$
 C_{12} C_{21} C_{22}

$$A_{11} \cdot B_{11} + A_{12} \cdot B_{21} = C_{11}$$

 $A_{11} \cdot B_{12} + A_{12} \cdot B_{22} = C_{12}$
 $A_{21} \cdot B_{11} + A_{22} \cdot B_{21} = C_{21}$
 $A_{21} \cdot B_{12} + A_{22} \cdot B_{22} = C_{22}$

Matrix addition:O(n2)

Matrix multiplication: Recursive call to matrix multiplication on $n/2 \times n/2$ matrices. (Base case: $n=1 \Rightarrow$ multiplication of numbers.) $T(n) = 8T(n/2) + n^2$

Recursive algorithm for multiplication

$$T(n) = 8T(n/2) + n^2$$

Master theorem:

- $ightharpoonup \alpha = \log_b(a) = \log_2(8) = 3$
- ▶ f(n)=n²

 $n^2 = O(n^{\alpha - 0.1}) \Rightarrow Case 1$

$$T(n) = \Theta(n^{\alpha}) = \Theta(n^{3})$$

Same as the regular algorithm.

Calculate:

Time: O(n²), since both addition and subtraction take this time.

Calculate: Both A and B have a side length of n/2, the same does S.

$$P_2 = S_2 \cdot B_{22}$$

$$P_6 = S_7 \cdot S_8$$

red dots is recursive multiplication

7 recursive calls to matrix multiplication on n/2×n/2 matrices.

Now check that the following applies:

$$P_{5}+P_{4}-P_{2}+P_{6} = A_{11}\cdot B_{11}+A_{12}\cdot B_{21}$$

$$P_{1}+P_{2} = A_{11}\cdot B_{12}+A_{12}\cdot B_{22}$$

$$P_{3}+P_{4} = A_{21}\cdot B_{11}+A_{22}\cdot B_{21}$$

$$P_{5}+P_{1}-P_{3}-P_{7} = A_{21}\cdot B_{12}+A_{22}\cdot B_{22}$$

That is, output can be calculated in $O(n^2)$ time from P_1, \ldots, P_7 , since

$$A_{21} \cdot B_{12} + A_{22} \cdot B_{22} = C_{22}$$

$$T(n) = 7T(n/2) + n^2$$

$$T(n) = 7T(n/2) + n^2$$

Master theorem:

- $ightharpoonup \alpha = \log_b(a) = \log_2(7) = 2.80735...$
- $f(n) = n^2$

$$n^2 = O(n^{\alpha - 0.1}) \Rightarrow Case 1$$

$$T(n) = \Theta(n^{\alpha}) = O(n^{2.81})$$

Better than the regular algorithm!

In the classic approach for multiplying two 2×2 Matrices, you need 8 multiplications and 4 additions. Strassen's method, by cleverly reorganizing the computation, reduces the number of multiplications to 7. Although it performs more additions (18, in fact) for 2×2 matrices, the net effect of these extra additions is still beneficial because when the algorithm is applied recursively, the overall number of operations (both multiplications and additions) across all levels of recursion is reduced.