ISyE 6420

HW1 due Tuesday, February 6, 11:55pm

HW 1

1. Bayes Network. Incidences of diseases A and B (D_A, D_B) depend on the exposure (E). Disease A is additionally influenced by risk factors (R). Both diseases lead to symptoms (S). Results of the test for disease A (T_A) are affected also by disease B. Positive test will be denoted as $T_A = 1$, negative as $T_A = 0$. The Bayes Network and needed conditional probabilities are shown in Figure.

- (a) What is the probability of disease A $(D_A = 1)$, if disease B is not present $(D_B = 0)$, but symptoms are present (S = 1)
- (b) What is the probability of exposure (E = 1), if symptoms are present (S = 1) and test is positive $(T_A = 1)$.

Hint: You can use any of methods or software in solving this problem. Approximate solutions (MATLAB/Octave, R, Python, Win/OpenBUGS) are satisfactory.

2. Jeremy and Variance from Single Observation. Jeremy believes that his IQ test scores have normal distribution with mean 110 and unknown variance σ^2 . He takes a test

and scores X = 98.

- (a) Show that inverse gamma prior $\mathcal{IG}(\alpha, \beta)$ is the conjugate for σ^2 if the observation X is normal $\mathcal{N}(\mu, \sigma^2)$ with μ known. What is the posterior?
- (b) Find a Bayes estimator of σ^2 and its standard deviation in Jeremy's model if the prior on σ^2 is an inverse gamma $\mathcal{IG}(3, 100)$.

Hint: Random variable Y is said to have an inverse gamma $\mathcal{IG}(\alpha, \beta)$ distribution if its density is given by

$$f(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)y^{\alpha+1}} \exp\left\{-\frac{\beta}{y}\right\}, \ \alpha,\beta > 0.$$

The mean of Y is $EY = \frac{\beta}{\alpha - 1}$, $\alpha > 1$ and the variance is $Var(Y) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}$, $\alpha > 2$.

(c) Use WinBUGS to solve this problem and compare the MCMC approximations with exact values from (b).

Hint: Express the likelihood terms of precision τ with gamma $\mathcal{G}a(\alpha,\beta)$ prior, but then calculate and monitor $\sigma^2 = \frac{1}{\tau}$.