CS & IT ENGINEERING

Theory of Computation Finite Automata

Lecture No. 7

TOPICS TO BE COVERED

Model-III [No. of Symbols]

33.50

W/ Son

Model-III

(1) No. of a's = 2, WE {a, by*

Model-III

Note: $L_1 = \{\omega \mid \omega \in \{a,b\}^*, \ Ma(\omega) = 2\}$ $L_2 = \{\omega \mid \omega \in \{a,b\}^*, \ Ma(\omega) = 2\}$

x is no of final states in DFA that a cleepts L.
y is " " " L2:

$$\frac{3}{3}$$

(a+b)*a(a+b)*a(a+b)

Model-4:

Length & Remainder (Divisible)

Model-4:

{ W | WE {a,b}*, | UI is divisible by 2} , INI is not divisible by 2} fw l J w l dw *(5) q w |m| = 34+2

1W1 = 211+0 - div by 2

= multiple of 2

(|w = 0 mod 2

Note: L= fw/weda, bj, /w/ is divisible by kb L= Mo. of states in min DFA = K states

$$|\omega| = (3n + 6)$$

$$\Rightarrow 3 \text{ status}$$

$$-3n+1$$

$$=3n+(2)$$

Pw

3n+1 $n \ge 3n+2$ $n \ge 3n+2$ $n \ge 3n+3$ $n \ge 3n+3$

Kz is remainder

II) If KISK2 => K2+1 states
K2 is not
remainder

K, is remainder

Model-I [No. of symbols & Remainder]

(2)
$$\{\omega\}$$
 " $\gamma_{\alpha}(\omega) = odd \}$

(2)
$$\{\omega\}$$
 ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(3) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(4) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(5) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(6) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(7) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(8) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(9) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(10) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(11) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(12) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(13) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(14) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(15) $\{\omega\}$ ", $\gamma_{\alpha}(\omega) = \text{odd } \}$
(16) $\{\omega\}$ ", $\{\omega\}$ ",

(3)
$$\{\omega\}$$
 ", $na(\omega)$ is div by $3\} = 3$ states
(4) $\{\omega\}$ ", $na(\omega)$ is not div by $3\} = 3$ states
(5) $\{\omega\}$ ", $na(\omega)$ is not div by $3\} = 3$ states

(4)
$$d\omega$$
 (1) $ma(\omega) = 100 \text{ M} + 53 \text{ M} = 100 \text{ States}$
(5) $d\omega$ (1) $ma(\omega) = 100 \text{ M} + 53 \text{ M} = 100 \text{ States}$
(6) $d\omega$ (1) $ma(\omega) = 100 \text{ M} + 53 \text{ M} = 100 \text{ States}$

(3)
$$\{\omega\}$$
 , $Na(\omega) = 123\pi + 1/25\}$ =) $1/26$ states $n \ge 0$ not sem

(3) #as is div by 3

Pw

on single

65 will rever before às

Model-7: [Sequence, No.of Symbols]

(3)
$$qab|m\geq 1, n\geq 1$$

(4) $qab|m\geq 1, n\geq 1$
(4) $qab|m\geq 1, n\geq 1$
(9) $qab|m\geq 1$
(9) $qab|m\geq 1$
(10) $qab|m\geq 1$
(11) $qab|m\geq 1$
(12) $qab|m\geq 1$
(13) $qab|m\geq 1$
(14) $qab|m\geq 1$
(15) $qab|m\geq 1$
(15) $qab|m\geq 1$
(16) $qab|m\geq 1$
(17) $qab|m\geq 1$
(17) $qab|m\geq 1$
(18) $qab|m\geq 1$
(19) $qab|m> 1$
(19) qab

Model-VIII [Multiple Condition, No. of 14mbols]

①
$$\{\omega \mid \omega \in \{\alpha, b\}^*, N_b(\omega) = 1, N_b(\omega) = 2\}$$

(2)
$$\{\omega\}$$
 | " $n_{\alpha}(\omega) \geq 1$, $n_{\beta}(\omega) \geq 2$

(3) {
$$\omega$$
 | $\gamma_{\alpha}(\omega) \leq 1$, $\gamma_{\beta}(\omega) = 2$ }

$$(9)$$
 d (1) (1) (2) (3) (4) (4) (4) (4) (5) (5) (6) (6) (6) (6) (7) (7) (8) (8) (9)

L= Zybir

