517

Teorema 10 Ley de Gauss Sea M una región elemental simétrica en \mathbb{R}^3 . Entonces si $(0,0,0) \notin \partial M$, tenemos

$$\iint_{\partial M} \frac{\mathbf{r} \cdot \mathbf{n}}{r^3} \, dS = \begin{cases} 4\pi & \text{si } (0,0,0) \in M \\ 0 & \text{si } (0,0,0) \not \in M, \end{cases}$$

donde

$$\mathbf{r}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

У

$$r(x, y, z) = ||\mathbf{r}(x, y, z)|| = \sqrt{x^2 + y^2 + z^2}.$$

Demostración de la ley de Gauss En primer lugar, suponemos que $(0,0,0) \notin M$. Entonces \mathbf{r}/r^3 es un campo vectorial de clase C^1 sobre M y ∂M , y por tanto por el teorema de la divergencia,

$$\iint_{\partial M} \frac{\mathbf{r} \cdot \mathbf{n}}{r^3} \, dS = \iiint_M \nabla \cdot \left(\frac{\mathbf{r}}{r^3}\right) \, dV.$$

Pero $\nabla \cdot (\mathbf{r}/r^3) = 0$ si $r \neq 0$, como podemos verificar fácilmente (véase el Ejercicio 38 de la Sección 4.4). Por tanto,

$$\iint_{\partial M} \frac{\mathbf{r} \cdot \mathbf{n}}{r^3} \, dS = 0.$$

Supongamos ahora que $(0,0,0) \in M$. Ya no podemos emplear el método anterior porque \mathbf{r}/r^3 no es suave en M, ya que el denominador es cero en $\mathbf{r} = (0,0,0)$. Puesto que $(0,0,0) \in M$ y $(0,0,0) \notin \partial M$, existe un $\varepsilon > 0$ tal que la bola N de radio ε centrada en (0,0,0) está completamente contenida dentro de M. Sea W la región entre M y N. Entonces W tiene como frontera $\partial N \cup \partial M = S$. Pero la orientación sobre ∂N inducida por la normal exterior sobre W es la opuesta a la obtenida a partir de N (véase la Figura 8.4.7).

Ahora $\nabla \cdot (\mathbf{r}/r^3) = 0$ sobre W, y por tanto, por el teorema de la divergencia aplicado a la región (no elemental) W,

Figura 8.4.7 Orientación exterior inducida sobre S; W es M menos la bola N.