Real Time Domain Adaptation in Semantic Segmentation

Claudia Cuttano claudia.cuttano@polito.it

Semantic Segmentation

- Task of assigning a category label to each pixel of an image.
- Multiple applications: e.g. self-driving cars, land-cover mapping...

Challenges

- Collect pixel-wise annotations is extremely expensive in terms of time.
- Performance at the expense of efficiency.

[1] "The cityscapes dataset for semantic urban scene understanding.", Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.

Performance and efficiency

- Performance at the expense of efficiency (in terms of parameters, latency and hardware requirements)
 - Large number of parameters
 - High latency
 - Deployments issues on practical scenarios

Performance and efficiency

- Performance at the expense of efficiency (in terms of parameters, latency and hardware requirements)
 - Large number of parameters
 - High latency
 - Deployments issues on practical scenarios
- → Solution: use **REAL TIME SEGMENTATION NETWORK**
- → Trade-off between efficiency and complexity

[1] "The cityscapes dataset for semantic urban scene understanding.", Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.

- Collect pixel-wise annotations is extremely expensive in terms of time.
 - o [1] 1.5 h on average to label a single image!

- Collect pixel-wise annotations is extremely expensive in terms of time.
 - o [1] 1.5 h on average to label a single image!

- → Solution 1: use **SYNTHETIC DATASETS**
 - Generated by a software
 - Close to real images
 - Pixel-wise accurate ground truth
 - Cheaper
 - E.g. images from GTA5 videogame

[1] "The cityscapes dataset for semantic urban scene understanding.", Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.

- Collect pixel-wise annotations is extremely expensive in terms of time.
 - o [1] 1.5 h on average to label a single image!

- → Solution 2: reuse data from another annotated domain.
 - No synthetic-to-real shift

- Collect pixel-wise annotations is extremely expensive in terms of time.
 - o [1] 1.5 h on average to label a single image!

→ Problem: gap between domains

DOMAIN ADAPTATION!

LoveDA

- High spatial resolution (HSR) land-cover mapping.
- The LoveDA dataset contains 5987 HSR images with 166768 annotated objects from three different cities.

urban rural

LoveDA

- High spatial resolution (HSR) land-cover mapping.
- The LoveDA dataset contains 5987 HSR images with 166768 annotated objects from three different cities.

CHALLENGES:

- multi-scale objects;
- complex background samples;
- inconsistent class distributions.

Your project

3 STEPS:

1. BASELINES

- Train the network on Urban scenario, with multiple networks under different constraints (frame per seconds, GFLOPs, parameters...)
- Test your trained network on the Rural scenario.
- Implement some *data augmentation* techniques to improve performance.

2. DOMAIN ADAPTATION

3. EXTENSIONS

- E.g. Implement solutions to address the problem of class imbalance in the dataset.
- E.g. Perform pseudolabelling in the target domain
- ... is up to you! Propose you extension

THANK YOU!

Claudia Cuttano claudia.cuttano@polito.it

