Modele Linowe

Lista 2

W tym zadaniu zostaną wykorzystane dane z pliku **ch01pr20.txt**. Druga kolumna zawiera liczbę kopiarek, a pierwsza kolumna zawiera czas (w godzinach) potrzebny na utrzymanie tych kopiarek.

- 1. Przedstaw dane na wykresie. Czy zależność jest w przybliżeniu liniowa?
- 2. Wyznacz regresję liniową z y=czas obsługi i x=liczba obsługiwanych maszyn. Give the estimated regression equation. Oblicz slope i intersept za pomocą wzorów teoretycznych oraz poleceń wbudowanych w R. Do wykresu dodaj prostą regresji liniowej.
- 3. Wyznacz 95% przedział ufności dla slope'a i intersepta: za pomocą wzorów teoretycznych oraz poleceń wbudowanych w R.
- 4. Przedstaw wyniki testu istotności slope'a i intersepta. Podaj testowane hipotezy, statystyki testowe z liczbą stopni swobody, p-wartości i własne wnioski. Oblicz statystyki testowe oraz p-wartości za pomocą wzorów teoretycznych oraz poleceń wbudowanych w R.
- 5. Podaj estymator wartości oczekiwanej czasu obsługi, której można oczekiwać, gdyby serwisowanych było k maszyn oraz 95% przedział ufności dla tej wartości, $k \in \{1, 5, 8, 11, 25, 100\}$. Oblicz przedział ufności za pomocą wzorów teoretycznych oraz poleceń wbudowanych w R. Jak długość przedziału ufności zależy od miejsca punktu względem danych?
- 6. Podaj przewidywany czas obsługi, którego można oczekiwać, jeśli k maszyn było serwisowanych oraz 95% przedział predykcyjny dla tego czasu, $k \in \{1, 5, 8, 11, 25, 100\}$. Oblicz przedział predykcyjny za pomocą wzorów teoretycznych oraz poleceń wbudowanych w R. Jak długość przedziału predykcyjnego zależy od miejsca punktu względem danych?
- 7. Dodaj do wykresu z danymi 95% przedziały ufności oraz przedziały predykcyjne dla poszczególnych obserwacji. Wyjaśnij, dlaczego przedziały ufności są zawsze mniejsze niż przedziały predykcyjne.
- 8. Załóżmy, że n = 40, $\sigma^2 = 70$, $SSX = \sum (X_i \bar{X})^2 = 500$.
 - a) Oblicz moc dla odrzucenia hipotezy zerowej $H_0: \beta_1 = 0$, na poziomie istotności $\alpha = 0,05$, jeżeli prawdziwa wartość $\beta_1 = 1$.
 - b) Przedstaw na wykresie moc jako funkcję β_1 dla wartości β_1 pomiędzy -2 a 2.
 - c) Powtórz zadanie b) dla wartości $\sigma^2=120$. Dodaj odpowiedni wykres do wykresu z zadania b). Porównaj wyniki.

1

Lab2_2023

- 9. Wygeneruj wektor $X=(X_1,\ldots X_{200})^T$ z wielowymiarowego rozkładu normalnego $\mathcal{N}(0,\frac{1}{500}I)$. Następnie wygeneruj 1000 wektorów Y z modelu $Y=5+\beta_1X+\varepsilon$, gdzie
 - a) $\beta_1 = 0$, $\varepsilon \sim \mathcal{N}(0, I)$.
 - **b)** $\beta_1 = 0, \, \varepsilon_1, \dots, \varepsilon_{200}$ są iid z rozkładu wykładniczego Exp(1).
 - c) $\beta_1 = 0, \, \varepsilon_1, \dots, \varepsilon_{200}$ są iid z rozkładu logistycznego L(0,1).
 - d) $\beta_1 = 2$, $\varepsilon \sim \mathcal{N}(0, I)$.
 - e) $\beta_1 = 2, \, \varepsilon_1, \dots, \varepsilon_{200}$ są iid z rozkładu wykładniczego z parametrem $\lambda = 1$.
 - f) $\beta_1 = 2, \varepsilon_1, \dots, \varepsilon_{200}$ są iid z rozkładu logistycznego L(0, 1).

Dla każdego powtórzenia eksperymentu przetestuj hipotezę $H_0: \beta_1 = 0$ i estymuj prawdopodobieństwo odrzucenia H_0 na podstawie częstości odrzuceń w próbie (osobno dla każdego z punktów (a)-(f)). Porównaj te estymatory prawdopodobieństwa z teoretycznym prawdopodobieństwem błędu I rodzaju (a, b, c) oraz teoretyczną mocą (d, e, f) obliczoną przy założeniu, że szum ma rozkład normalny. Podsumuj wyniki.

Zadania teoretyczne (+1pkt)

Dla modelu liniowego $Y = \beta_0 + \beta_1 X + \varepsilon$ na podstawie n = 20 obserwacji uzyskano estymatory $b_0 = 1$, $b_1 = 3$ i s = 4.

- 1. $s(b_1) = 1$, gdzie $s(b_1)$ jest estymatorem odchylenia standardowego b_1 . Skonstruuj 95% przedział ufności dla β_1 .
- 2. Czy masz statystyczne uzasadnienie dla twierdzenia, że Y zależy od X?
- 3. 95% przedział ufności dla E(Y), gdy X = 5 wynosi [13, 19]. Znajdź odpowiedni przedział predykcyjny.

2

Lab2_2023