

FIG. 2A

FIG. 3

F1G. 5

F/G: 6

F1G. 7

F1G. 9

PEPTIDE (10 /LG/WELL)

FIG. 11

PMP-2 RESIDUE:	10	20	30	40	20	09	70	MW (Da)
1-74	H ₂ N-SDDPKESEGDLH <u>CVC</u> VKTTSLVRPRHITNLELIKAGGHCPTANLIATKKNGRKLCLDLQAALYKKKIIKKLLES-COOH	ZVKTTSLVRPRH	ITNLELIKA(3GHCPTANL I	ATKKNGRKLCI	LDLQAALYKI	KKIIKKLLES-COOH	7728
1-37	H ₂ N-SDDPKESEGDLH <u>CVC</u> VKTTSLVRPRHITNLELIKAGG-COOH	VKTTSLVRPRH	ITNLEL IKA	3G-C00H		•		3805
38-74			±	N-HCPTANL	TATKKNGRKLC	LDLOAALYK	HAN-HCPTANLIATKKNGRKLCLDLOAALYKKKIIKKLLES-COOH	3923
1-15	H ₂ N-SDDPKESEGDLH <u>CVC</u> -COOH	Н000-	-			•		1544
13-27	H-CV(H ₂ N-CVCVKTTSLVRPRHI-COOH	H-C00H					1619
25-39		H ₂ N-RH	HAN-RHITNLELIKAGGHC-COOH	GHC-C00H				1572
37-51		1	H ₂ N-	GHCPTANL IA	H-GHCPTANLIATKKNG-COOH			1443
49-63			ı	=	HAN-KNGRKLCLDLQAALY-COOH	.DLQAALY-C	Н00:	1614
60-74					ı	H-N-AALYKK	H-AALYKKIIKKLES-COOH	1653

RP-1

PMP-2 (46-63)

rPMP-2

rPF-4

N-f-MLF

PBS

PEPTIDE CONCENTRATION

FIG. 14

FIG. 15

FIG. 16

Ø HYDROPHOBICO HYDROPHILIC⊜ ACIDIC

FIG. 18

GEOMETRIC MEAN MIC₁₀₀

3	_	7				-			_									
ISM INDOMENTAL	2	3	2	3	PA	EC	Q.	N/S	EF	7	SE	9	2	FAITIUGEN	DATHOOCAL			
1.40.5	12.5	106	17.7	0.0	00	25	JJ.#	7.32	50	3	6.3	/0./	70.7	50%	532	ρH		
1425	23	3	35.4	12.5		25	JJ. 4	75 /	>100		8.8	100	300	700%		pH 5.5	יאסווענט	MITRIE
	1.6		6.3	6.3	11.0	125	1.6		25		1.6	3.7	ž	50%	7	04	או סאס וא	MITRIENT PROTU
	1.6	j	125	6.3	12.0	105	3.1		50	,	7 1	3.1		100%	1.7	0H 72		
	>100	1100	100	3.1	12.5	100	6.1	7,000	>100	1.0	, ,	100	00%	202	рн			
	1.6	100		25	25		25	7100	100	3.1	!	>100	100%	1000	PH 5.5		MUELLER-H	
	3.1	25		12.5	12.5		6.3	23	25	25		6.3	20%	E O O	рн		HINTON BROTH	
	6.3	25		0.8	12.5		6.3	35		25		25	700%		pH 7.2		H	

GEOMETRIC MEAN MIC100

		NUTRIEN	NUTRIENT BROTH			MUELLER-HI	MUELLER-HINTON BROTH	<i>h</i>
	pH 5.	5.5	Hd	рН 7.2	Н	pH 5.5	Н	рН 7.2
5	20%	100%	20%	100%	20%	100%	20%	100%
	9.1	8.8	6.3	8.8	25	100	>100	>100
ر ٠٠	3.1	3.1	3.1	3.1	3.1	3.1	>100	>100
9	6.3	6.3	12.5	25	25	100	100	>100
)	3.1	1.6	3.1	3.1	12.5	50	12.5	>100
12	12.5	25	6.3	12.5	100	>100	>100	25
4	4.4	8.8	6.3	12.5	50	100	100	100
9	6.3	8.8	6.3	6.3	25	100	25	50
1	9.	1.6	2.2	1.6	3.1	1.6	3.1	3.1

ORGANISM INOCULUM = 1×10^5 CFU/ml; LOGARITHMIC-PHASE CELLS PEPTIDE CONCENTRATION = $10 \ \mu g/ml$; (4.3 nmoles / ml ; 4.3 μ M)

INCUBATION 37°C, AMBIENT CO_2 ; MIC $_{100}$ READ AT 24HR $(n \ge 2)$

GEOMETRIC MEAN MIC₁₀₀

			NUTRIEN	NUTRIENT BROTH			MUELLER-HI	MUELLER-HINTON BROTH	H
		Н	рН 5.5	Нф	pH 7.2	Н	pH 5.5	НФ	pH 7.2
	PATHOGEN	20%	100%	20%	100%	20%	100%	20%	100%
	SA	9.1	6.3	3.1	2.2	50	100	>100	>100
	3SE	1.6	1.6	9.1	1.6	3.1	3.1	>100	>100
	EF	2.2	3.1	17.7	35.4	50	100	>100	>100
L	NS	0.2	9.0	1.6	2.2	25	50	6.3	6.3
L) EC	6.3	8.8	3.1	6.3	100	>100	125	25
	PA	1.6	3.1	3.1	6.3	125	100	100	7100
L	22	4.4	4.4	3.1	44	25	50	125	100
	CN	2.2	0.78	1.6	1.6	57	20 20	5.3	2.7

PEPTIDE CONCENTRATION = 10 μ g/ml; (5.9 nmoles / ml ; 5.9 μ M) INCUBATION 37°C, AMBIENT κ CO2; MIC $_{100}$ READ AT 24HR ($n \ge 2$)

>100

>100

20

100

22

22

12.5

12.5

12.5

ટ્ટ

>100

100

PEPTIDE CONCENTRATION = 10 μ g/ml; (5.4 nmoles / ml ; 5.4 μ M)

INCUBATION 37°C, AMBIENT CO_2 ; MIC₁₀₀ READ AT 24HR ($n \ge 2$)

ORGANISM INOCULUM = 1×10^5 CFU/ml; LOGARITHMIC-PHASE CELLS

MUELLER-HINTON BROTH >100 >100 50% 100 100 100 100 100 >100 100% >100 6.25 >100 100 100 100 pH 5.5 20% 100 >100 100 100 20 20 20 GEOMETRIC MEAN MIC100 >100 100% >100 >100 >100 >100 >100 20 pH 7.2 >100 >100 >100 >100 >100 >100 NUTRIENT BROTH 20% 12.5 100% 19.8 19.8 6.3 39.7 25 25 25 pH 5.5 20% 19.8 12.5 12.5 6.3 9.9 S 25

PATHOGEN

K

SE

Ħ

S

EC

Z

8

100%

pH 7.2

>100

>100

>100

>100

PEPTIDE CONCENTRATION = 10 μ_g/m_l ; 37°C, AMBIENT C_{Q_2} ; 24 OR 48HR \dagger GEOMETRIC MEANS OF MIC₁₀₀ ($n \ge 2$); \ddagger IN VITRO TOXICITY MARKERS

ORGANISM INOCULUM = 1×10^5 CFU/ml; LOGARITHMIC-PHASE CELLS

DSE4EELE. DBEEL

TOXICITY ‡	HUVEC	ON	NO								
	RBCHg	QN	QN	QN	ON	ON	ON	ND	ON	ON	
	~ %	12.5	50	25	3.1	3.1	12.5	3.1	3.1	6.3	
	2	17.7	>100	25	25	12.5	100	8.8	6.3	12.5	
TIVITY †	PA	8.8	100	100	17.7	8.8	100	8.8	3.1	19.8	
ANTIMICROBIAL ACTIVITY †	DJ.	25	>100	100	70.7	50	>100	12.5	12.5	25	
ANTIMIC	NS	35.4	12.5	12.5	6.3	9.0	50	1.6	0.4	19.8	
	EF	50	100	20	20	25	100	6.3	25	25	
	SE	6.3	12.5	>100	2.2	0.4	25	3.1	1.6	6.3	
	25	70.7	>100	100	8.8	4.4	100	3.1	3.1	12.5	
pH 5.5	ЭОПАЭс	RP-1	RP-2	RP-3	RP-4	RP-5	RP-7	RP-8	RP-11	PP-13	

ORGANISM INOCULUM = 1×10^5 CFU/ml; LOGARITHMIC-PHASE CELLS PEPTIDE CONCENTRATION = $10 \ \mu g/ml$; 37°C, AMBIENT CO_2 ; 24 OR 48HR \dagger GEOMETRIC MEANS OF MIC $_{100}$ ($n \ge 2$); \ddagger IN VITRO TOXICITY MARKERS