Signal & System Lab (EC-395)

ASSIGNMENT: 1

NAME:	 	
YEAR :		
DATE of EXPERIMENT:		

[1] Generation of an sinusoidal sequence with frequency of 0.02 Hz and to plot 50 samples (where sampling frequency is 1Hz). Phase is pi/2 and amplitude is 5 v.

THEORY:

$$x[n] = \sin(2\pi f n + \varphi)$$
 where all terms carrying their usual meaning.

- We can obtain a discrete-time signal by sampling a continuous-time signal at equally spaced time instants, t_n = nT_S and the sampled signal can be written as:
 x[n] = x(nT_S) ∞ < n < ∞
 - The individual values x[n] are called the samples of the continuous time signal, x(t).
 - The fixed time interval between samples, T_s , is also expressed in terms of a sampling rate f_s (in samples per second) such that: $f_s = 1/T_s$ samples/sec.

	-: OUTPUT and Discussion:-
[2]	To Concrete a sinusoidal sequence with frequency of 2/20 Hz and to plot 90 semples (where
[2]	To Generate a sinusoidal sequence with frequency of 3/20 Hz and to plot 80 samples (where sampling frequency is 1Hz). Assuming phase and amplitude to be entered by the user.
THE	EORY:
Sam	e as above.
_	: SOURCE CODE:-

-: OUTPUT and Discussion:-

[3] To generate four sinusoidal sequences of phase shift of 0° ,130°,180° and 360° and plot them together using "SUBPLOT" comment. Assuming amplitude to be entered by the user.

THEORY:

"Sinusoids" is a collective term referring to both sine and cosine functions. A sinusoid is a function of time having the following form: $x[n] = \sin(2\pi f n + \varphi)$ where φ is initial phase (radians).

-: SOURCE CODE:-

[4] To write a program to generate an exponential sequence K*(a^n) with a=0.8 and number of samples to be entered by the user. Assuming amplitude to be entered by the user.

THEORY:

Y=exp(X) the exp function is an elementary function that operates element-wise on arrays. Its domain includes complex numbers. Y=exp(X) returns the exponential for each element of X.

-: SOURCE CODE:-

-: OUTPUT and Discussion:-