# Applied Computational Genomics (PHC 7736)

Spring 2023

Lecture 13: Study Protein from Its Sequence Bi Zhao, PhD

#### Overview

- Introduction to protein solvent accessibility and conservation
- Part 1: Obtain predictive results from ASAquick and MMseqs2
  - In-class work
    - Installation of tools
    - Get the predictive results
    - Short break (~10 mins)
  - Description of the Result format
- Part 2: Analyze the outputs from ASAquick and MMseqs2 to putative annotate protein residue-level solvent accessibility and conservation score
  - In-class work
    - Get the formatted putative annotations
  - Results intepretation

#### What can be learned from protein sequence

#### Structure

- What can be predicted?
  - 3D structure (AlphaFold, Atom-level)
  - Secondary structure (alpha helix, beta sheet, etc., PSIPRED, residuelevel)
  - View the overall fold of the protein
- How can this be used?
  - Understand how protein interacts with other
  - Design drugs targeting specific regions of a protein

- P24071
- Immunoglobulin alpha Fc receptor
- FCAR



#### What can be learned from protein sequence (Cont'd)

- Function (P04637 Cellular\_tumor\_antigen\_p53)
  - The highly conserved regions across different species.
  - Identify binding regions. E.g. DNA-binding regions for gene expression regulation.



# What can be learned from protein sequence (Cont'd)

- Evolution
  - Reveal relationships
  - Similar sequences have a common ancestor
  - Different species comparing may indicate the evolutionary history of those species



#### Solvent Accessibility

- The propensity of an amino acid that is exposed to the surrounding solvent or buried within the protein core.
- Solvent accessibility can be used to predict the functional and structural properties of a protein.
- ASAquick that are used to annotate protein solvent accessibility
  - Physicochemical properties, 20 parameters related to residue mutation probabilities from BLOSUM62 matrix, the residue length of the protein, its one-residue composition, etc
  - Fast and relatively accurate
  - Outputs include raw solvent accessibility score, relative solvent accessibility, secondary structure, etc.

    Buried surface area



#### Protein sequence conservation

- Multiple sequence alignment
- Conservation score
  - Calculated to quantify the degree of sequence conservation at each amino acid residue
- MMseqs2
  - Many to many sequence searching
  - Optimized algorithm that is fast and accurate
  - Outputs: cluster of sequence, sequence-level consensus score, Positionspecific scoring matrix

#### In-class work

- Download installation tutorial
- Download the reference protein sequences and uploaded to the folder where installing MMseqs2

```
$ cd ~/mmseqs2
$ mkdir dataset
$ scp ref_protein_seq.fasta.gz <u>bullrocky@sc.rc.usf.edu:/home/b/bullrochky/mmseq2/dataset</u>
$ gzip -d ref_protein_seq.fasta.gz
```

- Download code run\_asaquick.sh, create\_mmseqsDB.sh and run\_mmseqs.sh upload to each folder
- Run each script

#### Results

```
ASAquick
[bizhao@sclogin2 asaquick]$ cd GENN+ASAquick/
[bizhao@sclogin2 GENN+ASAquick]$ ls
16VPA.dsspget
                       asaq.16VPA.dsspget
                                         asaquick bin
                                                       aennstld
                                                                 install
                                                                         P01160.fasta
                                                                                      run_asaquick.sh run.out
AF-P01160-F1-model_v4.pdb asaq.P01160.fasta
                                         ASAquick GENN
                                                       getpred.sh LICENSE README
                                                                                      run.err
[bizhao@sclogin2 GENN+ASAquick]$ cd asaq.P01160.fasta/
[bizhao@sclogin2_asag_P01160.fasta]$ ls
asa2minmax asaq.pred blosnorm dsspget genn.gin physpar rasaq.pred
mmseqs2
[bizhao@sclogin2 mmseqs2]$ ls
                                    P01160.fasta P01160.pssm profileDB resultDB run.err run_mmseqs.sh run.out
create_mmseqsDB.sh dataset P01160
[hizhao@sclogin2 mmsegs2]$
 # create the pred result folder under prot analysis directory
 $ cd ~/prot study
 $ mkdir pred result
 $ cp./mmseqs2/P01160.pssm./pred_result
 $ cp./asaguick/GENN+ASAguick/asag.P01160.fasta/asag.pred./pred_result
```

### Format ASAquick

- The score represents the how much of the surrounding of a residue are occupied by other parts of the chain and how much is accessible to the solvent or to other interactions external to chain.
- To normalize the information, the experimental/theoretical score for each amino acid type are applied. These scores are from ref. Tien MZ. PLOS ONE 8(11):e80635.

```
max_value = {"A":129,"R":274,"N":195,"D":193,"C":167,
"E":223,"Q":225,"G":104,"H":224,"I":197,"L":201,"K":197,
"M":224,"F":240,"P":159,"S":155,"T":172,"W":285,"Y":263,
"V":174}
```

Score = residue["X"]/max\_value["X"]

```
14 L 20.4183 2.364
15 L 14.9352 4.816
16 A 3.6006 1.2166
17 F 22.06875 5.468
18 Q 64.2642 7.556
19 L 29.106 7.22
20 L 31.2375 7.274
21 G 27.378 6.65
22 Q 77.3682 7.228
23 T 45.1114 10.62
24 R 115.3214 8.568
25 A 41.82 6.664
26 N 53.41365 10.492
27 P 56.318 6.342
```

M 50 7722 6 250

| Query | profile | of sequ | ence 0 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-------|---------|---------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Pos   | Cns     | Α       | С      | D  | Ε  | F  | G  | Н  | I  | K  | L  | M  | N  | Р  | Q  | R  | S  | Т  | ٧  | W  | Υ  |
| 0     | M       | -1      | -1     | -1 | -1 | -3 | -1 | -1 | -1 | -1 | -3 | 11 | -1 | -1 | -1 | -1 | -3 | -2 | -1 | -1 | -1 |
| 1     | S       | -1      | -1     | -1 | -1 | -3 | 4  | -1 | -1 | -1 | -3 | -1 | -1 | -1 | -1 | -1 | 5  | -2 | -1 | -1 | -1 |
| 2     | S       | -1      | -1     | -1 | -1 | -3 | -2 | -1 | -1 | -1 | -3 | -1 | -1 | -1 | -2 | -1 | 7  | -2 | -1 | -1 | -1 |
| 3     | F       | -1      | -1     | -1 | -1 | 8  | -2 | -1 | -1 | -1 | -3 | -1 | -1 | -1 | -2 | -1 | -2 | -2 | -1 | -1 | -1 |
| 4     | S       | -1      | -1     | -1 | -1 | -3 | -2 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | -2 | -1 | 7  | -2 | -1 | -1 | -1 |
| 5     | T       | -2      | -1     | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | -2 | -1 | -2 | 8  | -1 | -1 | -1 |
| 6     | T       | -2      | -1     | -1 | -1 | -2 | -2 | -1 | 6  | -1 | -2 | -1 | -1 | -1 | -2 | -1 | -2 | 6  | -1 | -1 | -1 |
| 7     | T       | -2      | -1     | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -2 | -1 | -1 | -2 | -2 | -1 | -2 | 8  | -1 | -1 | -1 |
| 8     | K       | -2      | -1     | -1 | -1 | -2 | -2 | -1 | -1 | 6  | -2 | -2 | -1 | -2 | -2 | -1 | -2 | -2 | 6  | -1 | -1 |
| 9     | S       | -2      | -1     | -1 | -1 | -2 | 3  | -1 | -1 | -1 | -2 | -2 | -1 | -2 | -2 | -1 | 6  | -2 | -2 | -1 | -1 |
| 10    | F       | -1      | -1     | -1 | -1 | 8  | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -2 | -2 | -2 | -1 | -1 |
| 11    | L       | -2      | -1     | -1 | -1 | 5  | -2 | -1 | -1 | -1 | 4  | -2 | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 |
| 12    | L       | -2      | -1     | -1 | -1 | -2 | -2 | -1 | -1 | -1 | 6  | -2 | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 |
| 13    | F       | -2      | -1     | -1 | -1 | 7  | -2 | -1 | -1 | -1 | 2  | -2 | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 |
| 14    | L       | -2      | -1     | -1 | -1 | -2 | -2 | -1 | -1 | -1 | 6  | -2 | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 |
| 15    | Α       | 7       | -1     | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 |
| 16    | F       | -2      | -1     | -1 | -1 | 7  | -2 | -1 | -1 | -1 | -2 | -2 | -2 | -1 | -1 | -1 | -2 | -2 | 3  | -1 | -1 |

## Format MMseqs2

- Position-Specific Scoring Matrix (PSSM)
- Reflect the probability of observing each amino acid at each position
- The conservation score for each position is calculated by comparing with background frequency of that amino acid in protein database

#### How the conservation score calculated?

```
#the aa_index used to calculate PSSM and obtain the position specific conservation
blosum62_bg = \{ 'A' : 7.4, \}
              'R': 5.2,
              'N' : 4.5,
                                                                          #function to calculate PSSM
              'D' : 5.3,
                                                                          def calc_pssm_freq_df(pssm_df):
              'C' : 2.5,
              'Q' : 3.4,
                                                                               df = pssm_df[bbg_AAs]
              'E' : 5.4.
                                                                               freq = np.exp(df) * blosum62_bg
              'G' : 7.4.
                                                                               #freq_sum = np.sum(freq,axis=1)
              'H' : 2.6.
              'I' : 6.8.
                                                                               return np.array(freq)/np.sum(freq, axis=1)[:,None]
              'L' : 9.9,
              'K' : 5.8,
                                                                          def calc relative entropy(pssm df):
              'M' : 2.5.
                                                                               df = calc_pssm_freq_df(pssm_df)
              'F' : 4.7.
              'P' : 3.9,
                                                                               cons = np.sum(df*np.log(df/blosum62 bg), axis=1)
              'S' : 5.7,
                                                                               return cons
              'T': 5.1,
              'W' : 1.3,
              'Y' : 3.2,
                                                                          def format_mmseq(filename):
              'V' : 7.3 }
                                                                               pssm_df = pd.read_csv(filename, sep=" ", skiprows=1)
                                                                               print (len(pssm_df))
bbg_AAs = list(blosum62_bg.keys())
tot = sum(blosum62_bg.values())
                                                                               res = calc_relative_entropy(pssm_df)
blosum62_bg = np.array([ blosum62_bg[k] / tot for k in blosum62_bg])
```

#### In-class work

- Download python script and shell file, uploaded to sc cluster
- Run the shell file and obtain the result.
- Download and visualize the results.

#### Results

