Self-similar actions of virtually abelian groups

Зашкольний Давид Олександрович 26 квітня 2023 р.

Науковий керівник: Бондаренко Євген Володимирович

Зашкольний Д.О. 26 квітня 2023 р. 1 / 14

Contents

Theoretical background Self-similar actions Virtual endomorphisms

Main results

Self-similar actions of free abelian groups Self-similar actions of finitely generated abelian groups Self-replicating actions of crystallographic groups

Computational experiments

Зашкольний Д.О. 26 квітня 2023 р. 2 / 14

Theoretical background

Зашкольний Д.О. 26 квітня 2023 р. 3 / 14

Prerequisites. Self-similar actions

Definition. Let X be a finite alphabet. A faithful action of a group G on the set X^* is called *self-similar* if for every $g \in G$ and $x \in X$ there exist $y \in X$ and $h \in G$ such that g(xw) = yh(w) for all $w \in X^*$.

Usually a short notation is used, that originates from another definition using automata:

$$g \cdot x = y \cdot h \tag{1}$$

where h is also noted as $g|_X$ and called a restriction of g on x.

Proposition. Let H be a subgroup of finite index in the group G. If H admits a self-similar action, then G admits a self-similar action.

Зашкольний Д.О. 26 квітня 2023 р. 4 / 14

Problem

Corrolary. Every finitely generated virtually abelian group admits a self-similar action. In particular, every crystallographic group admits a self-similar action.

Question. Can we **describe** every self-similar action of finitely generated virtually abelian groups?

Зашкольний Д.О. 26 квітня 2023 р. 5 / 1-

Prerequisites. Virtual endomorphisms

Definition. A virtual homomorphism $\phi: G_1 \dashrightarrow G_2$ is a homomorphism of groups $\phi: \mathsf{Dom}\ \phi \to G_2$, where $\mathsf{Dom}\ \phi < G_1$ is a subgroup of finite index called the *domain* of the virtual homomorphism.

Proposition. The subgroup $K(\phi)$, also known as ϕ -core, that is defined as

$$K(\phi) = \bigcap_{n>1} \bigcap_{g \in G} g^{-1} Dom \ \phi^n g$$

is the maximal one among the **normal** ϕ **-invariant subgroups** of G.

Definition. A virtual endomorphism ϕ is said to be *simple* if it's core is trivial, or in other words $K(\phi) = \{e\}$.

Зашкольний Д.О. 26 квітня 2023 р. 6 / 14

Prerequisites. Associative virtual endomorphism

Definition.

The map $\phi_X: G \dashrightarrow G$ defined by the condition

$$g \cdot x = x \cdot \phi_X(g)$$

is called associative virtual endomorphism of self-similar action (G, X^*) .

Proposition. Let (G, X^*) be a self-similar action of a group G with an arbitrary associative virtual endomorphism ϕ .

- 1. If N is a normal subgroup of G, and N is ϕ -invariant, then N is contained in the kernel of the self-similar action.
- 2. The kernel of self-similar action is equal to the ϕ -core.

Зашкольний Д.О. 26 квітня 2023 р. 7 / 14

Main results

Зашкольний Д.О. 26 квітня 2023 р. 8 / 14

Main results. Free abelian groups

Theorem.

1. There is a correspondence between virtual endomorphisms $\phi: \mathbb{Z}^n \dashrightarrow \mathbb{Z}^n$ and pairs of integral $n \times n$ matrices (A_1, A_2) such that $\det(A_1) \neq 0$, given by the rule:

$$\pi = (A_1, A_2) \mapsto \phi_{\pi} : A_1(\mathbb{Z}^n) \to \mathbb{Z}^n, \quad \phi_{\pi}(g) = A_2 A_1^{-1} g$$

and two pairs (A_1, A_2) and (B_1, B_2) represent the same ϕ if and only if there exists an integral matrix P with $|\det(P)|$ such that $B_1 = A_1P$, $B_2 = A_2P$.

- 2. The ϕ_{π} has trivial core if and only if $A = A_2 A_1^{-1}$ is invertible and its characteristic polynomial is not divisible by a monic polynomial with integral coefficients.
- 3. The ϕ_{π} is surjective iff $|\det(A_2)| = 1$.

Main results. Finitely generated abelian groups

Every finitely generated abelian group G decomposes into a direct sum $G = \mathbb{Z}^n \oplus F$, where F is a finite abelian group. Virtual endomorphisms consist of triplets:

$$\phi = \begin{pmatrix} A_{\phi} & 0 \\ B_{\phi} & C_{\phi} \end{pmatrix} \tag{2}$$

where $A_{\phi} \in GL(n,\mathbb{Z})$, $B_{\phi} \in Hom(\mathbb{Z}^n, F)$ and C_{ϕ} is a virtual endomorphism on F.

Theorem. Let $\phi: G \dashrightarrow G$ be a virtual endomorphism of the finitely generated abelian group $G = \mathbb{Z}^n \oplus F$.

- 1. ϕ is simple if and only if A_{ϕ} has no eigenvalue that is algebraic integer and C_{ϕ} is simple as virtual endomorphism on F.
- 2. If ϕ is surjective and simple, then G is free abelian.

Зашкольний Д.О. 26 квітня 2023 р. 10 / 14

Main results. Crystallographic groups

Definition. A crystallographic group of dimension n is a cocompact discrete subgroup in E(n).

Theorem. An arbitrary crystallographic group Γ that is given by $(G, \mathbb{Z}^n, \alpha)$ admits a self-replicating action if and only if there exists $a = A + t \in A(n)$ where A is a matrix with rational coefficients such that A has no eigenvalue that is algebraic integer and $a^{-1}\Gamma a \subset \Gamma$.

Corrolary. Every crystallographic group Γ admits a self-replicating action with a = A + t being a scalar matrix A with trivial translation.

Combining this result with the results of Bondarenko I. we can formulate the following theorem.

Theorem. A virtually abelian group G admits a self-replicating action if and only if G is crystallographic.

Зашкольний Д.О. 26 квітня 2023 р. 11 / 14

Computational experiments

Зашкольний Д.О. 26 квітня 2023 р. 12 / 14

Computational experiments

We developed some software to work with self-similar actions of crystallographic groups, since they are objects of practical interest. All the needed code one can find on the GitHub repository: https://github.com/davendiy/master_thesis.

Particularly,

- 1. an algorithm to find the normalizer of a point group;
- an algorithm to build a self-similar action by an arbitrary conjugation in the Affine group and the respective crystallographic group of any dimension;
- results of brute-force search of faithful self-similar actions for wallpaper groups and space groups, with alphabet of the minimal possible size.

Зашкольний Д.О. 26 квітня 2023 р. 13 / 14

Thank you for attention!

Зашкольний Д.О. 26 квітня 2023 р. 14 / 14