Sinusoidal modeling

EE6641 Analysis and Synthesis of Audio Signals

Yi-Wen Liu

March 28, 2014

1

Last time: Spectral Estimation

- Resolution
 - Scenario: multiple peaks in the spectrum
 - Choice of window type and window length
 - Rule of thumb: $\Delta\omega = O(1/\Delta\tau)$
- Accuracy
 - Scenario: signal in noise
 - Quadratic interpolation of FFT log-magnitude
 - Fisher Information and Cramer-Rao lower bounds
 - Coherent frequency estimation: $\Delta \omega = O(\Delta \tau^{-3/2})$

Today's agenda

- Sinusoidal modeling
 - Analysis
 - Formula for QI-FFT
 - · Choice of window
 - · Peak tracking
 - Synthesis
 - Applications
- Spectral decomposition
 - (S + N) vs. (S + N + T)
 - Spectral subtraction

3

QI-FFT: a fast frequency estimator

- Windowing: time-domain multiplication with a shaping function
- **Zero-padding**: append zeros in time ⇔ interpolate in frequency
- FFT: apply fast Fourier transform
- Peak detection: find every peak
- Quadratic interpolation: fit a parabola in log-magnitude
- ⇒ The location of the parabola is the frequency estimate.

 Reference: M. Abe and J. Smith, "Design criteria for simple sinusoidal parameter estimation based on quadratic interpolation of FFT magnitude peaks", (AES 2004)

A formula for QI-FFT

$$L(x) = Ax^{2} + BX + C$$

 $L(-1) = L^{-}$
 $L(0) = L^{0}$
 $L(1) = L^{+}$

$$A = \frac{L^+ + L^- - 2L^0}{2}$$

$$B = (L^+ - L^-)/2$$

$$C = L^0$$

$$L(x) = A(x - q)^{2} + \hat{L}$$

$$q = -\frac{B}{2A}$$

$$\hat{L} = L^{0} - B^{2}/4A$$

5

Example: finding peaks in a spectrum

- Peaks can move
- Peaks can grow/ attenuate
- Need to ignore side lobes
 - But how?

Psychoacoustic masking

- Masking refers to the fact that softer sounds cannot be heard due to the presence of stronger sounds.
 - Forward masking
 - Simultaneous
 - Backward masking
- We will cover psychoacoustics later in this semester.

Trajectory formation

- Basic peak tracking involves:
 - Finding shortest link
 - Resolving splits
- Advanced technique includes
 - Forbidding large jumps
 - Transient detection
 - Highest peak chooses first

Part II: Synthesis

- Sinusoidal modeling
 - Analysis
 - Synthesis
 - Linear-interpolation
 - · Phase continuation
 - A window-based synthesis method
- Spectral decomposition
 - (S + N) vs. (S + N + T)
 - Spectral subtraction
 - Noise modeling (Nov. 16, 23)

13

Sinusoidal synthesis (ii): the linear interpolation method

$$\{A_m\}_{m=0}^{M-1}$$
an amplitude envelope $\{f_m\}_{m=0}^{M-1}$ a frequency envelope

$$A[n] = \beta A_m + (1 - \beta) A_{m+1}$$

$$f[n] = \beta f_m + (1 - \beta) f_{m+1}$$

$$\beta = \frac{(m+1)h-n}{h}$$

$$A[n]$$

$$A_m$$

Remark: amplitude can be log or linear scale.

The linear-interpolation method (cont'd)

• Between time mh and (m+1)h, do this:

$$A[n] = \beta A_m + (1 - \beta) A_{m+1}$$

$$f[n] = \beta f_m + (1 - \beta) f_{m+1}$$

• update the phase sample-by-sample:

$$\varphi_n = \varphi_{n-1} + 2\pi f[n]/f_s$$

- For each trajectory j, do: $s_j[n] = A[n] \cos(\varphi_n)$
- Finally, sum over all j

15

From one trajectory to a signal: a window-based method

$$\{A_m\}_{m=0}^{M-1}$$
an amplitude envelope

, hT .

$$\{f_m\}_{m=0}^{M-1}$$
a frequency envelope

Synthesis:

$$s[n] = \sum_{m=0}^{M-1} A_m w[n - mh] \cos(2\pi f_m nT + \phi_m),$$

Continuous phase updates:

16

time

summation over all trajectories

$$s[n] = \sum_{\text{trajectories}} \sum_{m=0}^{M-1} A_m w[n-mh] \cos (2\pi f_m nT + \varphi_m)$$

17

Applications of sinusoidal modeling

- Noise removal/ speech enhancement
 - Potentials in hearing aids/ cochlear implants
- Musical effects:
 - Pitch shifting/ time warping
- Parametric audio coding:
 - MPEG-4 structured audio
 - B. Vercoe et al. (1998). "Structured audio: Creation, transmission, and rendering of parametric sound representations," *Proc. IEEE*, Vol. 86, No. 5, 922-40.

Part III: Spectral decomposition

- Sinusoidal modeling
 - Analysis
 - Synthesis
 - Linear-interpolation
 - Phase continuation
 - · A window-based synthesis method
- Signal decomposition
 - Spectral subtraction
 - (S + N) vs. (S + N + T)
 - Noise modeling (Nov. 16, 23)

Spectral subtraction

- For each peak in the spectrum, do
 - 1. fit the mainlobe of Blackman window
 - 2. subtract the mainlobe
 - 3. Inverse FFT to synthesis the residual ("noise")

Transient detection: there's no gold standard

- The following is just a heuristic approach
 - Energy comparison
 - Sine-to-residual ratio (SRR)

25

Entering and exiting the transients

• Once a transient is detected, sinusoidal model is **halted** for a period of time.

Possible project ideas

- Trajectory formation
 - Causal implementation for real-time applications
 - Fighting with the chirp artifacts
- Applications of spectral subtraction
 - Noise-removal / Speech enhancement
- Audio recognition
 - Auditory scene analysis
 - Sound source segregation
 - Audio fingerprinting/ watermarking
 - And so on...