

VIBRATION NONDESTRUCTIVE INSPECTION OF LARGE-SCALE COMPOSITE STRUCTURES

M. Ken Yoon
UD-CCM

maintaining the data needed, and c including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 26 AUG 2004		2. REPORT TYPE N/A		3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Vibration Nondestructive Inspection Of Large-Scale Composite Structures				5b. GRANT NUMBER		
Six detures				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Delaware Center for Composite Materials Newark, DE 19716				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM001700, Advanced Materials Intelligent Processing Center: Phase IV., The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	OF PAGES 24	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

History

Overview

2D GSM

- ◆ Theory in 1D vs. 2D
- → Statistical treatment
- ◆ Results from FEA and lab tests

Application to CIRTM Corner Structure for Director's Room

- → Types of sensors (Accelerometers, Strain gages)
- **→** Effect of frequency range
- ◆ Method of excitation (Multi-spots, One spot)

Application to Composite Bridge (Bridge 1-351)

- ◆ 2D GSM results from data obtained year 1999~2002
- **→ Testing plan for year 2003**

Conclusion/Future Work

Gapped Smoothing Method (1-D vs. 2-D)

1-D GSM

2-D GSM

Structural Irregularity Index $\mathbf{g}_{i,j}^{T} = [1, x_i, y_j], \mathbf{?}_{i,j}^{T} = [a_o, a_1, a_2]$

$$\nabla^{2} \mathbf{y}_{i,j} = \mathbf{g}_{i,j}^{T} \mathbf{?}_{i,j}$$

$$\mathbf{g}_{i,j}^{T} = [1, x_{i}, y_{j}], \mathbf{?}_{i,j}^{T} = [a_{o}, a_{1}, a_{2}]$$

=Curvature Shape - Smoothed curvature shape

Statistical Treatment

Objective: Filter out noise to obtain only the area of damage with a confidence level CL

Flow chart for outliers detection

Histogram of structural irregularity indices

Grubb's outlier $CV = \frac{t \cdot (n-1)}{\sqrt{n \cdot (n-2+t^2)}}$

$$CV = \frac{t \cdot (n-1)}{\sqrt{n \cdot (n-2+t^2)}}$$

FEA Results (Large vs. Small Damage)

- Statistical filter removes data when there is no damage
- Algorithm detects only perimeter of damage area

Lab Testing: (Composite Plate - Multiple Damage Locations)

Definition of SII ? $|\Delta f''|$ vs. $(\Delta f'')^2$

- Squaring suppresses noise as well as secondary damage
- Noise can be filtered out by statistical treatment

Lab Testing (Composite Hull Structure)

VARTM Manufacturing process

The data used

Dry spot

Inside surface

Outside surface

Lab Testing Results (Composite Hull Structure)

Coherence function

Frequency: 50~500Hz

Both ODS and MS data detected the dry spot

© 2003 • Using ODS data shows less noise

Large-Scale CIRTM Structure

Objective:

Apply NDI techniques to large-scale composite structure Study on effects of sensor type and location of sensors

- Normal Accel.
- MEMS accel.
- X&Y Strain gage

Coherence for CIRTM Structure

Coherence functions

SII Results for Individual Sensor (Frequency: 50~500Hz)

SII with sensor type and location (16 by 9 grids:)

Accel. A

250

200 150 100

50

Results:

Accel. B

- All sensors detect damage areas
- But sensors located on large delamination can not detect smaller defects

Accel. C

→ Multiple sensors are needed to detect all defects

X-grid point

MEMS B 400 300 200 100

6

X-arid point

10 12 14

© 2003 University of Delawage All rights reserved

SII for Medium Frequency Range (Frequency: 100~1kHz)

SII with sensor type and location (16 by 9 grids)

Strain_X

Results:

Accel. B

- Medium frequency range is more sensitive to smaller defects
- The sensor next to damage can detect better the damage (Compare Accel. C & D and MEMS A & B)

Accel. C

Strain_Y

MEMS A

6 8 10 12 14 16

X-grid point

MEMS B

SII for High Frequency Range (Frequency: 100~2kHz)

SII with sensor type and location (16 by 9 grid)

Results for CIRTM Structure (Frequency Range)

Results with sensors A+B+C+D (16 by 9 grids)

Results:

- Summation of sensor response results in better defect detection of all damages
- Higher frequency is more sensitive to smaller damage but has more noise
- Statistical treatment cannot be applied ← Assumption:
 Damage area is small compared to total area.

Automation

Motivation: To monitor the condition of structures in real time while in service

Experimental Setup

(Single Excitation With Multiple MEMS Sensors)

Objective: Automated Prognostics

Approach: Substitute multiple hitting points with sensors (15 x 9=135),

actuate limited number of locations

Limitations:

- → Many sensor wires and connections Solution:
- → Wireless sensing system
- → Sensors on fibers "SMART Structure"

Yoon ONR Review - 17

© 2003 University of Delaware All rig

Results for CIRTM Structure (15 MEMS sensors: 15x9 grids, 100~1kHz)

'NEW' Excitation at one location

'Classic' Sensing at one location

Y-grid point

-200

- New method is less sensitive to small damage than classic method
- Approach has been proven, inverting hitting location to sensor location works

8 10 12 14 16

10 12 14

X-grid point

6

X-grid point

X-grid point

Results for CIRTM Structure (15 MEMS sensors: 15x9 grids, Frequency range)

Results: Resolution not as good as classic method with accelerometer but acceptable → Improved frequency spectrum of sensor and robust wiring will improve results

Large-Scale Structure (Composite Bridge)

NDI Approach:

- Visual inspection 1.
- Global NDI testing using vibration techniques → Find anomalies, changes over time
- Zoom in → Local NDI techniques

Testing

Construction

Top facesheet

Results With Year

Frequency range: 50~500Hz

Data from sensor A

Dotted line: Joint line with splice plate

Coherence Function (YR 2002)

- All the tests show anomaly near joint line
- Anomaly does not change after initial settling in the first year
- Overall change is small in the following years
- Recommendation: Evaluate local anomaly with other NDI techniques

Data courtesy of Ratcliffe + Crane

Yoon ONR

1 July 2003

Conclusion

Work done:

- → Modified 2-D Gapped Smoothing Method
 - Statistically treatment with outlier detection method
- ◆ Compared advanced sensors: MEMS & fiber optic strain sensors
- **♦** Applied to large-scale composite structures

Issues addressed:

- **♦ Large vs. small size of damage**
- → Definition of damage index (Square vs. absolute of curvature difference)
- ◆ Compared MS and ODS data
- **♦** Effects of locations of sensors and excitation
- **→** Effects of frequency range
- → Multi-excitation with single sensing vs. multi-sensing with single excitation

Ongoing And Future Work

ALGORITHM IMPROVEMENT

- **♦** Current algorithm improvement using generic smoothing techniques
- ♦ New algorithm for quantitative estimation of stiffness changes with baseline data obtained from FE model
- ◆ System integration with Labview programming using ActiveX (LABVIEW+MATLAB+OROS FFT Analyzer+MEScope Modal Analysis SW)
- New algorithm enabling reduced number of sensors with baseline data obtained from FE model

ADVANCED ACTUATORS AND SENSORS

- → Piezoelectric actuators
- **♦** Fiber optic strain sensors
- ♦ Magneto-strictive strain sensors
- MEMS accelerometers
- Sensors on fiber

AUTOMATION OF DAQ AND DATA PROCESSING

♦ Wireless sensing

Acknowledgements

- > John W. Gillespie Jr.
- Dirk Heider
- > Colin P. Ratcliffe
- > Roger M. Crane

This work is supported by the Office of Naval Research (ONR) funded Advanced Materials Intelligent Processing Center (AMIPC) programs