Harrison S. Jansma

https://harrisonjansma.com (210) 251-1512 | harrisonjansma@yahoo.com

PROFESSIONAL SUMMARY

Data Scientist • Machine Learning Engineer
Python • MySQL• Git • ML Frameworks • Jupyter Notebook

EDUCATION

The University of Texas at Dallas

Aug 2019 – May 2020

Master's in Computer Science, Data Science Track

Baylor University

Aug 2013 - May 2017

BBA Business Fellows, Secondary Major Mathematics

• Magna Cum Laude (3.86 GPA)

WORK EXPERIENCE

Self-Taught Data Scientist Plano, Texas

Jan 2018 - present

Built my own data science curriculum. Studied Python, statistics, and machine learning full-time for 9 months. Enrolled in master's program for software development skills and to network.

- Published several tutorials to teach other aspiring data scientists, a total of 9k reads.
- Created extensive write-ups for clustering, regression, and classification tasks using Jupyter Notebooks, GitHub, and Python.
- Deployed a website to showcase my portfolio with git, SSH, and back-end technologies.
- Deployed MySQL database to store emails of website subscribers with a Flask REST API.

PERSONAL PROJECTS

Dropout in Convolutional Neural Networks

Aug 15, 2018

Article detailing the benefits of batch normalization for deep learning in image recognition.

- Supported article's opinions with an experiment confirming networks built with BN had a nearly doubled prediction accuracy.
- Article reposted in KDNuggets, a data science publication boasting over 230k subscribers.
- Published in Towards Data Science, receiving 1.5k reads in the first 24 hours.

Clustering Mental Health

May 23, 2018

Clustered mental health benefits of tech industry to find potential recruitment candidates.

- Trained several clustering models on survey response data and found 5 key groupings.
- Visualized multidimensional data clusters using 2D and 3D projections. (PCA)

Apple Sentiment Analysis

June 20, 2018

Modelled sentiment of Apple products using Twitter data, Scikit-Learn, and NLTK.

• Optimized linear model, reducing prediction error by 15% using gridsearch algorithm.