Team Wheels Final Presentation

Obstacle Sensing Autonomous Car

aakashh2 | jamesey2 | gilmer2

Motivation

- Enhancing road safety
 - Ensuring lane discipline is followed
 - Maintaining safe speeds
 - Following traffic rules by recognizing traffic signs
- Ensuring pedestrian safety
 - Rising pedestrian fatalities
- Improve transportation efficiency
 - Orderly traffic = less congestion

System Overview

Primary Goals

- Drive autonomously within the GEM Car track
- Use only camera for perception
- Stay within the designated track lanes at all times
- Ensure comfort even while turning or braking

Additional Capabilities

- Detect pedestrians in front of the car and stop
- Detect stop signs and stop

Perception: Lanes

Camera input

Filtered image

Birds-eye view

Sliding windows track lane lines

Histogram to detect lane lines

Least squares polynomial fit

Detect lane between lane lines and set a waypoint to follow

Perception: Obstacles

- Detect pedestrians, stop signs, and cars
- YOLOv8m
 - CNN based Computer Vision model
 - Pre-trained detect 'person', 'car', 'stop sign', etc.
 - 25.9M parameters
 - Real-time performance

Localization and Waypoints

- Localize using only camera; GPS and IMU not used
- Relative frame of reference
 - Car is considered to be at the origin at all times

How are waypoints generated?

- When both left and right lane lines are visible -
 - Average lane pixel coordinates to get waypoint
- When only one lane line is visible stick to that line
 - Set constant offset depending on left or right lane line
- Waypoint distance from car is proportional to current speed

Control: Flowchart

Area of bounding box around object detected is used to determine proximity.

Pure Pursuit Controller is used to follow the waypoints provided.

Control: Additional Considerations

- When lane is not detected waypoints not generated
 - Synthesize waypoints and maintain heading (for Highbay)
- Ensure comfort of riders
 - Slow down on turns
 - Brake gradually if possible

System Diagram

Results: Simulation

- Set up simulator as an alternative to using only Rosbags collected from the GEM car.
- Helped with -
 - Tweaking lane detection
 - Designing waypoint algorithm
 - Figuring out control strategy
- Video shows -
 - Lane following (partial)
 - Stop sign detection

Results: GEM Highbay track

Results: GEM Stop Sign Detection

Results: GEM Pedestrian Detection

Difficulties and Limitations

- Lane detection
 - Lanes get crossed very easily and are difficult to restabilize
 - Finding a solution for waypoints when only one lane is visible
 - Narrow lanes at Highbay requires sharp turns
 - Narrow camera POV lanes go out of sight
- Working with the provided car dynamics code
 - Hard to understand how PID for steering and speed works
- Weather affects performance of algorithm
 - Cloudy vs sunny
 - Rain and snow will break lane detection

Thank you!

Tasks Remaining

- Improve lane detection
 - o Remove inconsistencies in some corner cases
- Improve waypoint following
 - Smoothen steering can be done using PID
 - Try to maintain the lane at higher speeds