Acronym

Senser

Project

ADS-B Sentence Server

Doctype

Requirements

Author

Hans-Gerhard Gross, Kai Warendorf

Contact

hggross@hs-esslingen.de;

Kai.Warendorf@hs-esslingen.de

Client

Esslingen University

Contact

Faculty of Information Technology

Version

1.0

Date

August 23, 2014

Contents

1	Proj	ect Drivers	2
	1.1	Purpose of the Project	2
			2
	1.2		3
	1.2		3
			3
2	Fun	ctional Requirements	4
		Data Model and Data Dictionary	4
			4
	2.2	Senser Functional Requirements	4
		Senser.F.10 Observe ADSB-Sentences	4
		Senser.F.20 Fetch Raw Sentences	4
3		• • • • • • • • • • • • • • • • • • •	6
	3.1	·	6
		· ·	6
	3.2	·	6
			6
			6
			7
			7
	3.3		7
			7
		1 0	7
		Senser.NF.90 OO Design Principles	8
4	Add	•	9
4	Add 4.1	•	9

Project Drivers

1.1 Purpose of the Project

1.1.1 Vision Statement

This project aims at developing a server that provides ADSB-sentences locally in a Java application.

1.1.2 Project Outcomes

The Java application fetches ADSB-sentences from an external source.

The Java application creates a sentence object for each sentence obtained.

The Java application prints a string representation of each sentence onto the screen.

1.1.3 Learning Objectives

After having completed this project, as student, you can ...

- develop and integrate Java classes.
- develop and integrate Java interfaces.
- perform simple String operations in Java.
- handle Date objects in Java.
- output Strings on the screen in Java.

1.2 Stakeholders

1.2.1 Project Team

Various members and roles.

1.2.2 Product Users

Local Flight Control Engineer, User. Priority: Key User.

Functional Requirements

2.1 Data Model and Data Dictionary

2.1.1 Use Case Diagram

2.2 Senser Functional Requirements

Model [senser] ucd :: Senser

Senser.F.10 Observe ADSB-Sentences

essential

Model [senser] uc :: Engineer \rightarrow observe sentences

Feature In order to get an overview of the local flight traffic, as I flight control engineer, I want to be able to observe each incoming ADSB-sentence, with

- Time of sentence arrival
- Originator of the sentence
- Content of the sentence, separated into payload and parity.

Senser.F.20 Fetch Raw Sentences

essential

 $\mathsf{Model} \ [\mathsf{senser}] \ \mathsf{uc} :: \mathsf{observe} \ \mathsf{sentences} \\ \ll \mathsf{uses} \\ \gg \to \mathsf{fetch} \ \mathsf{sentences}$

Feature In order to provide ADSB-sentences locally, the system shall fetch the sentences from the following web service:

http://flugmon-it.hs-esslingen.de/subscribe/ads.sentence

Feature In order to integrate seamlessly with other OS operations, the web service address shall be provided as input parameter upon application start.

Non-Functional Requirements

3.1 Look and Feel Requirements

Senser.NF.10 Text Output per ADSB-sentence

essential

Feature The system shall display each ADSB-sentence received in the following form (example):

Time: Weekday, DD.MM.YYYY, hrs:min:sec.usec

Dfca: 8D Originator: 4692CA

Payload: 584720707A0996

Parity: 49890A

3.2 Implementation-Specific Requirements

3.2.1 Process

Senser.NF.50 Test Driven Development

essential

In order to ascertain sufficient testing of the product, the implementation must be carried out following a test-driven development approach.

3.2.2 Architecture

Senser.NF.60 Use of Classes and Interfaces

essential

Feature The organization of the system implementation shall reflect the classes and interfaces shown in the following class diagrams:

3.3 Maintainability Requirements

Senser.NF.70 Documentation

essential

In order to ascertain high understandability, the source code must be self-explanatory.

Senser.NF.80 Cohesion and Coupling

essential

In order to support high maintainability, the modules of the system must be realized with high-cohesion and low coupling.

Senser.NF.90 OO Design Principles

essential

In order to support high maintainability, the other well-known principles of good object-oriented design must also be applied.

Additional Domain-Specific Information

4.1 JSON Format

The ADS-B sentences provided by the web service have the following (example) format:

```
{"subscribe":["subscribe","ads.sentence",1]}
{"subscribe":["message","ads.sentence",11408776292.1584036!ADS-B*8D3C4895586DF0F922005F59BE84;\r\n"]}
{"subscribe":["message","ads.sentence","1408776292.2016194!ADS-B*8D3C4895586DF0F922005F59BE84;\r\n"]}
{"subscribe":["message","ads.sentence","1408776292.6264563!ADS-B*8D3C489599C00438207808E23FA3;\r\n"]}
{"subscribe":["message","ads.sentence","1408776292.6264563!ADS-B*8D3C489599C00438207808E23FA3;\r\n"]}
{"subscribe":["message","ads.sentence","1408776292.6363628!ADS-B*8D3C4895200854B8C3506056AC62;\r\n"]}
{"subscribe":["message","ads.sentence","1408776293.0063913!ADS-B*8D3C4895586F10F982005F63F468;\r\n"]}
{"subscribe":["message","ads.sentence","1408776293.0464215!ADS-B*8D3C4895586F10F98E005F63F468;\r\n"]}
{"subscribe":["message","ads.sentence","1408776293.5984044!ADS-B*8F3C6635587BF4273FF51A31EE08;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.0763857!ADS-B*8F3C6635587BF4273FF51A31EE08;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.0763857!ADS-B*8F3C66359901B3468400E6A48BF;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.0768626!ADS-B*8D3C489599C004382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.0965719!ADS-B*8D3C489599C004382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5664067!ADS-B*8D3C489599C004382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5664067!ADS-B*8D3C489599C004382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5664067!ADS-B*8D3C489598C004382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5664067!ADS-B*8D3C489598C9C04382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5664067!ADS-B*8D3C489598C9C04382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5664067!ADS-B*8D3C489598C9C04382078091DCBAA;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5664067!ADS-B*8D3C468953857BCD3D3C24D04ABBB;\r\n"]}
{"subscribe":["message","ads.sentence","1408776294.5864067!A
```

4.2 ADS-B Format

Each valid ADS-B Sentence is comprised of a timestamp inidcating the arrival of the sentence in the ADS-B base station and a raw sentence as HEX-string. The timestamp represents seconds since the "Epoch" before the comma, and milliseconds after the comma (see below).

1380130780.6415110!ADS-B*8D440C9C9037B0689400D388832D;

Timestamp: 1380130780.6415110

Raw sentence: 8D440C9C9037B0689400D388832D

The raw sentence is interpreted in the following way:

DFCA: ICAO: 440C9C Payload: 9037B0689400D3 Parity: 88832D