

FIGURE 1

SP22 1 MASKRALVILAKGAEEMETVIPVDIMRRAGIKVTVAGLAGKDPVQCSRDV 50
DJ-1 1 MASKRALVILAKGAEEMETVIPVDVMRRAGIKVTVAGLAGKDPVQCSRDV 50

Peptide 1

SP22 51 VICPDTSLEEAKTQGPYDVVVLPGGNLGAQNLSESALVKEILKEQENRKG 100
DJ-1 51 VICPDASLEDAKKEGPYDVVVLPGGNLGAQNLSESAAVKEILKEQENRKG 100

Peptide 2

SP22 101 LIAAICAGPTALLAHEVGFGCKVTSHPLAKDKMMNGSHYSYSESRVEKD 149
DJ-1 101 LIAAICAGPTALLAHEIGCGSKVTTPLAKDKMMNGGHYTSENRVEKD 149

Peptide 3

SP22 150 GLILTSRGPGTSFEFALAIVEALSGKDMANQVKAPLVLKD 189
DJ-1 150 GLILTSRGPGTSFEFALAIVEALNGKEVAAQVKAPLVKD 189

Peptide 4

FIGURE 2

1 A gctgtcagagccgtctggcagggttgcacccctaaaggatattccatcttattaatcattag 65
66 A tagtgtggtcagagacttagcaccattggctcccccaacctggccagacattcagcagttta 130
131 A tcggaacagcaacaacagcaacaaaaccccaaattacaagtcttaagaaatagaaATGgca 195
B tggcttcgcgtgggtggaggaggcgccgtcaggtcttaagaaatagaaATGgca
1 M A 2
196 tccaaaagagctctggcatcctagccaaaggagcagaggagatggagacagtgattcctgtgga 260
16 S K R A L V I L A K G A E E M E T V I P V D 24
261 catcatgcggcgagctgggattaaagtaccgttgcaggcttggctggaaaggacccgtgcagt 325
38 I M R R A G I K V T V A G L A G K D P V Q 45
Peptide 1
326 gtagccgtgatgttagtgatttgcggataccagtctggagaagcaaaaaacacaggaccatac 390
59 C S R D V V I C P D T S L E E A K T Q G P Y 67
391 gatgtggttgttcttccaggagaaatctgggtgcacagaacttatctgagtcggcttggtaa 455
81 D V V V L P G G N L G A Q N L S E S A L V K 89
456 ggagatcctaaggagcaggagaacaggaaggccctcatagctgccatctgtgcgggtcctacgg 520
103 E I L K E Q E N R K G L I A A I C A G P T 110
Peptide 2
*
521 ccctgctggctcacgaagttaggcttggatgcaaggttacatcgccacccattggtaaggacaaa 585
124 A L L A H E V G F G C K V T S H P L A K D K 132
Peptide 3
586 atgatgaacggcagtcactacagctactcagagagccgtgtggagaaggacggccctcatcctcac 650
146 M M N G S H Y S Y S E S R V E K D G L I L T 154
Peptide 4
651 cagccgtggccctgggaccagcttcgagttgcgtggccattgtggaggcactcagtgcaagg 715
168 S R G P G T S F E F A L A I V E A L S G K 175
716 acatggctaaccaagtgaaggccccgttgcgtcaaaagacTAGagagcccaagccctggaccct 780
189 D M A N Q V K A P L V L K D * 189
781 ggaccccccaggctgagcaggcattggaagcccacttagtgtgtccacagccactgAACCTGGCAT 845
846 tggaagcccactagtgtgtccacagcccagtgaacctcaggaactaacgtgtgaagttagccgct 910
911 gctcaggaatctcgccctggctctgtactattctgagccttgcttagataaaacagttcccca 975
976 agctc*c*tgacggct* 985

Figure 3

Figure 4

09/25/2014 04:03:03 AM

Figure 5

0097523544 - 03030304

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

In Utero Insemination

Figure 12

Figure 13

Figure 14

In Utero Insemination

In Vitro Fertilization

FIG. 15.

1 xxxatggcataccaaaagagctctggtcatac 66
1 x x x x x x x x x x x x x x x M A S K R A L V I 22
1 ctagccaaaggagcagaggagatggagacagtgattcctgtggacatcatgcggcgagctgggatt 132
67 23 L A K G A E E M E T V I P V D I M R R A G I 44
133 aaagtcaccgttgcaggcttggtggaaaggacccgtgcagtgttagccgtatgtgattgtattgt 198
45 265 331 199 ccggataccagtctggaagaagcaaaaacacagggaccatacgtatgtttccaggagga 264
67 67 P D T S L E E A K T Q G P Y D V V V L P G G 88
265 aatctgggtgcacagaacttatctgagtcggctttggtaaggagatcctaaggagcaggagaac 330
89 397 N L G A Q N L S E S A L V K E I L K E Q E N 110
331 aggaagggcctcatagctgccatctgtcggttcacggccctgtggctcacgaagtaggcttt 396
111 111 R K G L I A A I C A G P T A L L A H E V G F 132
397 ggtatgcaagggttacatcgcacccattggtaaggacaaaatgtgaacggcagtcactacagctac 462
133 133 G C K V T S H P L A K D K M M N G S H Y S Y 154
463 528 155 tttgcgtggccattgtggaggcactcagtggcaaggacatggcttaaccatggccgtggaccagttcgag 528
177 595 177 F A L A I V E A L S G K D M A N Q V K A P L 198
595 gttctcaaagactagagagccaaaggccctggaccctggaccccccaggctgagcaggcattggaaagc 660
199 199 V L K D * 202
661 727 661 ccactagagagaccacagccaggtaaacctggcattggaaagccactagtggtccacagccagt 726
727 gaacctcaggaactaacgtgtgaagtagccgctgctcaggaatctgcgcctggctctgtactatt 792
793 793 ctgagcattgttagataaaacagttccccaaagctc 830

FIGURE 16

SP22(A)

1 gctgtgcagagccgtctggcagggttgcacccaaaggatattccatcttattaatcattag 65
 1 66 tagtgtggtcagagacttagcaccattggtctcccccaacctggtccagacatccagcagtta 130
 1 131 tcggaacagcaacaacagcaacaaaacccaaaattacaagtcttaagaaatagaaATGgca 195
 1 M A 2
 1 196 tccaaaagagctctgtcatcctagccaaaggagcagaggagatggagacagtgatccgtgga 260
 3 S K R A I V I L A K G A E E M E T V I P V D 24
 25 261 catgcggcgaacctggattaaagtaccgttgcaggcttggctggaaaggaccggcgtgcagt 325
 3 I M R R A G I K V T V A G L A G K D P V Q 45
 326 390 46 gtagccgtgatgtgtgatccggataccagtctggataagaagcaaaaacacagggaccatac 390
 46 C S R D V V I C P D T S L E E A K T Q G P Y 67
 391 455 68 gatgtggttgttccaggagaaatctgggtgcacagaacttatctgagtcggcttggtaaa 455
 68 D V V V L P G G N L G A Q N L S E S A L V K 89
 456 520 90 ggagatcctcaaggagcaggagaacaggaaggccctcatagctgccatctgtgagggtcctacgg 520
 90 E I L K E Q E N R K G L I A A I C A G P T 110
 521 585 111 ccctgctggctacgaagttaggcttggatgcaaggttacatcgcacccattggctaaggaaaa 585
 111 A L L A F E V G F G C K V T S H P L A K D K 132
 586 650 133 atgatgaacggcgtcactacagctactcagagagccgttgagaaaggacggccatcctcac 650
 133 M M N G S H Y S Y S E S R V E K D G L I L T 154
 651 715 155 cagccgtggccctgggaccagcttcgagtttgcgtggcattgtggaggcactcagtggcaagg 715
 155 S R G P G T S F E F A L A I V E A L S C K 175
 716 780 176 acatggctaacccagtgaaggcccccttgcgttctcaaagactAGagagcccaagccctggaccct 780
 176 D M A N Q V K A P L V L K D 189
 781 845 846 ggaccccccaggctgagcaggcattggaagcccactagtgtgtccacagccactgaaac 845
 846 tggaagcccactagtgtgtccacagccactgaaacctcaggaactaacgtgtgaagtagcccgct 910
 911 gctcaggaatctcgccctggctctgtactattctgagccttgctagtagaataaacagttccccca 975