Coherent Risk Measures

1 Definition and Properties

Let (Ω, \mathcal{F}) be a sample space, equipped with the sigma algebra \mathcal{F} , on which considered uncertain outcomes (random functions $Z = Z(\omega)$) are defined. By a risk measure we understand a function $\rho(Z)$ which maps Z into the extended real line $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$. In order to make this concept precise we need to define a space Z of allowable random functions $Z(\omega)$ for which $\rho(Z)$ is defined. It seems that a natural choice of Z will be the space of all \mathcal{F} -measurable functions $Z:\Omega\to\mathbb{R}$. However, typically, this space is too large for development of a meaningful theory. Unless stated otherwise, we deal in this chapter with spaces $Z:=\mathcal{L}_p(\Omega,\mathcal{F},P)$, where $p\in[1,+\infty)$. By assuming that $Z\in\mathcal{L}_p(\Omega,\mathcal{F},P)$, we assume that random variable $Z(\omega)$ has a finite p-th order moment with respect to the reference probability measure P. Also by considering function ρ to be defined on the space $\mathcal{L}_p(\Omega,\mathcal{F},P)$, it is implicitly assumed that actually ρ is defined on classes of functions which can differ on sets of P-measure zero, i.e., $\rho(Z)=\rho(Z')$ if $P\{\omega: Z(\omega)\neq Z'(\omega)\}=0$.

We assume throughout this chapter that risk measures $\rho: \mathbb{Z} \to \overline{\mathbb{R}}$ are *proper*. That is, $\rho(Z) > -\infty$ for all $Z \in \mathbb{Z}$ and the domain

$$dom(\rho) := \{ Z \in \mathcal{Z} : \rho(Z) < +\infty \}$$

is nonempty. We consider the following axioms associated with a risk measure ρ . For $Z, Z' \in \mathcal{Z}$ we denote by $Z \succeq Z'$ the pointwise partial order meaning $Z(\omega) \succeq Z'(\omega)$ for a.e. $\omega \in \Omega$. We also assume that the smaller the realizations of Z, the better; for example Z may represent a random **cost**.

(R1) *Convexity:*

$$\rho(tZ + (1-t)Z') \le t\rho(Z) + (1-t)\rho(Z')$$

for all $Z, Z' \in \mathbb{Z}$ and all $t \in [0, 1]$.

- **(R2)** *Monotonicity:* If $Z, Z' \in \mathbb{Z}$ and $Z \succeq Z'$, then $\rho(Z) \geq \rho(Z')$.
- **(R3)** Translation Equivariance: If $a \in \mathbb{R}$ and $Z \in \mathbb{Z}$, then $\rho(Z + a) = \rho(Z) + a$.
- **(R4)** Positive Homogeneity: If t > 0 and $Z \in \mathbb{Z}$, then $\rho(tZ) = t\rho(Z)$.

It is said that a risk measure ρ is *coherent* if it satisfies the above conditions (R1)–(R4). An example of a coherent risk measure is the Average Value-at-Risk $\rho(Z) := \mathsf{AVaR}^+_\alpha(Z)$. It is natural to assume in this example that Z has a finite first order moment, i.e., to use $Z := \mathcal{L}_1(\Omega, \mathcal{F}, P)$. For such space Z in this example, $\rho(Z)$ is finite (real valued) for all $Z \in Z$.

If the random outcome represents a **reward**, i.e., larger realizations of Z are preferred, we can define a risk measure $\varrho(Z) = \varrho(-Z)$, where ϱ satisfies axioms (R1)–(R4). In this case, the function ϱ also satisfies (R1) and (R4). The axioms (R2) and (R3) change to:

(R2a) Monotonicity: If $Z, Z' \in \mathbb{Z}$ and $Z \succeq Z'$, then $\varrho(Z) \leq \varrho(Z')$.

(R3a) Translation Equivariance: If $a \in \mathbb{R}$ and $Z \in \mathbb{Z}$, then $\varrho(Z + a) = \varrho(Z) - a$.

All our considerations regarding risk measures satisfying (R1)–(R4) have their obvious counterparts for risk measures satisfying (R1)-(R2a)-(R3a)-(R4).

With each space $\mathcal{Z} := \mathcal{L}_p(\Omega, \mathcal{F}, P)$ is associated its dual space $\mathcal{Z}^* := \mathcal{L}_q(\Omega, \mathcal{F}, P)$, where $q \in (1, +\infty]$ is such that 1/p + 1/q = 1. For $Z \in \mathcal{Z}$ and $\zeta \in \mathcal{Z}^*$ their scalar product is defined as

$$\langle \zeta, Z \rangle := \int_{\Omega} \zeta(\omega) Z(\omega) dP(\omega). \tag{1}$$

Recall that the conjugate function $\rho^*: \mathbb{Z}^* \to \overline{\mathbb{R}}$ of a risk measure ρ is defined as

$$\rho^*(\zeta) := \sup_{Z \in \mathcal{Z}} \left\{ \langle \zeta, Z \rangle - \rho(Z) \right\},\tag{2}$$

and the conjugate of ρ^* (the biconjugate function) as

$$\rho^{**}(Z) := \sup_{\zeta \in Z^*} \left\{ \langle \zeta, Z \rangle - \rho^*(\zeta) \right\}. \tag{3}$$

By the Fenchel-Moreau Theorem we have that if $\rho: \mathbb{Z} \to \overline{\mathbb{R}}$ is convex, proper and lower semicontinuous, then $\rho^{**} = \rho$, i.e., $\rho(\cdot)$ has the representation

$$\rho(Z) = \sup_{\zeta \in \mathbb{Z}^*} \left\{ \langle \zeta, Z \rangle - \rho^*(\zeta) \right\}, \quad \forall Z \in \mathbb{Z}.$$
 (4)

Conversely, if the representation (4) holds for some proper function $\rho^*: \mathbb{Z}^* \to \overline{\mathbb{R}}$, then ρ is convex, proper and lower semicontinuous. Note that if ρ is convex, proper and lower semicontinuous, then its conjugate function ρ^* is also proper. Clearly, we can write the representation (4) in the following equivalent form

$$\rho(Z) = \sup_{\zeta \in \mathfrak{A}} \left\{ \langle \zeta, Z \rangle - \rho^*(\zeta) \right\}, \quad \forall Z \in \mathcal{Z}, \tag{5}$$

where $\mathfrak{A} := \text{dom}(\rho^*)$ is the domain of the conjugate function ρ^* .

The following basic duality result for convex risk measures is a direct consequence of the Fenchel-Moreau Theorem.

Theorem 1.1 Suppose that $\rho: \mathbb{Z} \to \overline{\mathbb{R}}$ is convex, proper and lower semicontinuous. Then the representation (5) holds with $\mathfrak{A} := \text{dom}(\rho^*)$. Moreover, we have that: (i) Condition (R2) holds iff every $\zeta \in \mathfrak{A}$ is nonnegative, i.e., $\zeta(\omega) \geq 0$ for a.e. $\omega \in \Omega$; (ii) Condition (R3) holds iff $\int_{\Omega} \zeta dP = 1$ for every $\zeta \in \mathfrak{A}$; (iii) Condition (R4) holds iff $\rho(\cdot)$ is the support function of the set \mathfrak{A} , i.e., can be represented in the form

$$\rho(Z) = \sup_{\zeta \in \mathfrak{A}} \langle \zeta, Z \rangle, \quad \forall Z \in \mathcal{Z}. \tag{6}$$

It follows from the above theorem that if ρ is a risk measure satisfying conditions (R1)–(R3) and is proper and lower semicontinuous, then the representation (5) holds with $\mathfrak A$ being a subset of the set of probability density functions,

$$\mathfrak{P} := \left\{ \zeta \in \mathbb{Z}^* : \int_{\Omega} \zeta(\omega) dP(\omega) = 1, \ \zeta \succeq 0 \right\}. \tag{7}$$

If, moreover, ρ is positively homogeneous (i.e., condition (R4) holds), then its conjugate ρ^* is the indicator function of a convex set $\mathfrak{A} \subset \mathbb{Z}^*$, and \mathfrak{A} is equal to the subdifferential $\partial \rho(0)$ of ρ at $0 \in \mathbb{Z}$. Furthermore, $\rho(0) = 0$ and hence by the definition of $\partial \rho(0)$ we have that

$$\mathfrak{A} = \{ \zeta \in \mathfrak{P} : \langle \zeta, Z \rangle \le \rho(Z), \quad \forall \ Z \in \mathcal{Z} \}. \tag{8}$$

The set $\mathfrak A$ is weakly* closed. Recall that if the space $\mathbb Z$, and hence $\mathbb Z^*$, is reflexive, then a convex subset of $\mathbb Z^*$ is closed in the weak* topology of $\mathbb Z^*$ iff it is closed in the strong (norm) topology of $\mathbb Z^*$. If ρ is positively homogeneous and continuous, then $\mathfrak A=\partial\rho(0)$ is a *bounded* (and weakly* compact) subset of $\mathbb Z^*$.

We have that if ρ is a *coherent* risk measure, then the corresponding set $\mathfrak A$ is a set of probability density functions. Consequently, for any $\zeta \in \mathfrak A$ we can view $\langle \zeta, Z \rangle$ as the expectation $\mathbb E_{\zeta}[Z]$ taken with respect to the probability measure ζdP , defined by the density ζ . Consequently representation (6) can be written in the form

$$\rho(Z) = \sup_{\zeta \in \mathfrak{A}} \mathbb{E}_{\zeta}[Z], \quad \forall Z \in \mathcal{Z}. \tag{9}$$

Definition of a risk measure ρ depends on a particular choice of the corresponding space \mathbb{Z} . In many cases there is a natural choice of \mathbb{Z} which ensures that $\rho(\mathbb{Z})$ is finite valued for all $\mathbb{Z} \in \mathbb{Z}$. We have the following result which shows that for real valued convex and monotone risk measures, the assumption of lower semicontinuity in Theorem 1.1 holds automatically.

Proposition 1.2 Let $Z := \mathcal{L}_p(\Omega, \mathcal{F}, P)$, with $p \in [1, +\infty]$, and $\rho : Z \to \mathbb{R}$ be a real valued risk measure satisfying conditions (R1) and (R2). Then ρ is continuous and subdifferentiable on Z.

Theorem 1.1 together with Proposition 1.2 imply the following basic duality result.

Theorem 1.3 Let $\rho: \mathbb{Z} \to \overline{\mathbb{R}}$, where $\mathbb{Z} := \mathcal{L}_p(\Omega, \mathcal{F}, P)$ with $p \in [1, +\infty)$. Then ρ is a real valued coherent risk measure iff there exists a convex bounded and weakly* closed set $\mathfrak{A} \subset \mathfrak{P}$ such that the representation (6) holds.

Of course, the analysis simplifies considerably if the space Ω is finite, say $\Omega := \{\omega_1, \ldots, \omega_K\}$ equipped with sigma algebra of all subsets of Ω and respective (positive) probabilities p_1, \ldots, p_K . Then every function $Z: \Omega \to \mathbb{R}$ is measurable and the space \mathbb{Z} of all such functions can be identified with \mathbb{R}^K by identifying $Z \in \mathbb{Z}$ with the vector $(Z(\omega_1), \ldots, Z(\omega_K)) \in \mathbb{R}^K$. The dual of the space \mathbb{R}^K can be identified with itself by using the standard scalar product in \mathbb{R}^K , and the set \mathfrak{P} becomes

$$\mathfrak{P} = \left\{ \zeta \in \mathbb{R}^K : \sum_{k=1}^K p_k \zeta_k = 1, \ \zeta \ge 0 \right\}. \tag{10}$$

The above set \mathfrak{P} forms a convex bounded subset of \mathbb{R}^K , and hence the set \mathfrak{A} is also bounded.

2 Portfolio Problem

We have n assets with random return rates R_1, \ldots, R_n . We assume that the n-dimensional random vector $R = \begin{bmatrix} R_1 & R_2 & \ldots & R_n \end{bmatrix}^T$ has K realizations R^1, R^2, \ldots, R^K , attained with probabilities p_1, p_2, \ldots, p_K .

The capital to invest is fixed and equals S. For a portfolio $x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$, the profit is random and has the form

$$Z(x) = R^T x.$$

Our problem has the form

$$\min \varrho[Z(x)]$$
s.t. $x_1 + x_2 + \dots x_n = S$, (11)
$$x \in X_0$$
,

where X_0 represents additional constraints on the amounts invested (for example, no short-selling, limits on individual investments, etc.). The function $\varrho[\cdot]$ is a coherent measure of risk.

3 Average Value at Risk

Consider the extremal representation of the Average Value at Risk:

$$AV@R_{\alpha}^{-}[Z] = \min_{\eta \in \mathbb{R}} \left\{ -\eta + \frac{1}{\alpha} \mathbb{E}\left[(\eta - Z)_{+} \right] \right\}. \tag{12}$$

For a random variable Z with has K realizations z_1, z_2, \ldots, z_K , attained with probabilities p_1, p_2, \ldots, p_K , this representation takes on the form of a linear programming problem:

$$\operatorname{AV@R}_{\alpha}^{-}[Z] = \min_{\eta, v} \left\{ -\eta + \frac{1}{\alpha} \sum_{k=1}^{K} p_k v_k \right\}$$
s.t. $v_k \ge \eta - z_k, \quad v_k \ge 0, \quad k = 1, 2, \dots, K.$

This representation can be integrated to (11) to obtain the problem

$$\min_{x} AV@R_{\alpha}^{-}[Z(x)] = \min_{\eta, v, x} \left\{ -\eta + \frac{1}{\alpha} \sum_{k=1}^{K} p_{k} v_{k} \right\}$$
s.t. $v_{k} \ge \eta - z_{k}, \quad v_{k} \ge 0, \quad k = 1, 2, \dots, K$

$$z_{k} = \sum_{j=1}^{n} R_{j}^{k} x_{j}$$

$$x_{1} + x_{2} + \dots x_{n} = S,$$

$$x \in X_{0}.$$

In a more general formulation, we may combine $AV@R^-_{\alpha}[Z(x)]$ and the expected value to form the risk measure

$$\varrho[Z(x)] = -(1-c)\mathcal{E}[Z(x)] + c \text{ AV@R}_{\alpha}^{-}[Z(x)],$$

where $c \in [0, 1]$. The linear programming formulation is similar:

$$\min_{x} \varrho[Z(x)] = \min_{\eta, v, x} \left\{ -(1 - c) \sum_{k=1}^{K} p_k z_k + c \left(-\eta + \frac{1}{\alpha} \sum_{k=1}^{K} p_k v_k \right) \right\}$$
s.t. $v_k \ge \eta - z_k$, $v_k \ge 0$, $k = 1, 2, ..., K$

$$z_k = \sum_{j=1}^{n} R_j^k x_j$$

$$x_1 + x_2 + ... x_n = S,$$

$$x \in X_0.$$

This problem is usually solved for many values of $c \in [0, 1]$ to obtain points on the efficient frontier in the mean–risk plane, where risk is represented by $\delta[Z] = AV@R^-_{\alpha}[Z] + \mathcal{E}[Z]$.

4 Mean-Semideviation

Consider the mean-semideviation measure of risk:

$$\varrho[Z] = \mathcal{E}[Z] + c\sigma_1^-[Z] = \mathcal{E}[Z] + c\mathcal{E}\left\{\left(Z - \mathcal{E}[Z]\right)_+\right\}, \quad c \in [0, 1].$$
(13)

For a random variable Z with has K realizations z_1, z_2, \ldots, z_K , attained with probabilities p_1, p_2, \ldots, p_K , this measure of risk takes on the form of a linear programming problem:

$$\varrho[Z] = \min_{\mu, v} \left\{ -\mu + c \sum_{k=1}^{K} p_k v_k \right\}$$
s.t. $v_k \ge \mu - z_k$, $v_k \ge 0$, $k = 1, 2, \dots, K$

$$\mu = \sum_{k=1}^{K} p_k z_k.$$

This representation can be integrated to (11) to obtain the problem

$$\min_{x} \varrho[Z(x)] = \min_{\mu, v, x} \left\{ -\mu + c \sum_{k=1}^{K} p_k v_k \right\}$$
s.t. $v_k \ge \mu - z_k, \quad v_k \ge 0, \quad k = 1, 2, \dots, K$

$$\mu = \sum_{k=1}^{K} p_k z_k$$

$$z_k = \sum_{j=1}^{n} R_j^k x_j$$

$$x_1 + x_2 + \dots x_n = S,$$

$$x \in X_0.$$

This problem is usually solved for many values of $c \in [0, 1]$ to obtain points on the efficient frontier in the mean–risk plane, where risk is represented by $\sigma_1^-[Z]$.