Abstract Algebra

: Lecture 17

Leo

2024.11.21

1 Strick

Exercise 1. Let F be a field, and $f(x) \in F[x]$, irreducible. Then there exists an extention E of F s.t. f(x) has a root in E

证明. Let E = F[x]/(f(x)). Since F is a field, F[x] is a PID. f(x) is irriducible shows (f(x)) is a maximal ideal hence E is a field. So \bar{x} is a root of f(x) in E since $f(\bar{x}) = \overline{f(x)} = 0$.

Definition 2. F is called a algebraic closed field if any polynomial $f(x) \in F[x]$ is reducible unless degf = 1.

Definition 3. Let E/F be a field extension. Then E can be view as a vector space over F. If $\dim_F E = n$ is finite, then E is called a finite extension of F of degree n.

Lemma 4. If K/E is of degree m, E/F is of degree n, then K/F is of degree mn.

Construction by ruler(straightedge) and compasses.

- (1). We can construct all integers.

 (2) W (2). We can construct all rational numbers. 在P上最好改成 m Tan h deg = 1 較2
- (3). We can construct all roots of quadratic polynomials. Q知道 to to x²-an 数 x-an

Now Let $F_0 = \mathbb{Q}$, $F_{n+1} = F_n(\sqrt{a_n})$ where a_n is a square-free integer. Then $[F_{n+1} : F_n]$ equal to 1 or 2. i.e. if α is constructible, then F_{n+1} is a finite extension of F_0 of degree of 2^k where $k \in \mathbb{Z}_{\geq 0}$.

Let F be a finite field.

block). Then $|F| = p^d$ where p is a prime number and $d \in \mathbb{Z}_{\geqslant 1}$.

(2). $(F,+)\simeq Z_p^d$. 107177

(3).
$$(F^{\times}, *) \simeq Z_{p^d-1}$$
 有放棄或務

证明. (of (3)): Let m be the exponent of F^{\times} , m is the least common multiple of the order of elements of F^{\times} . Then each element t of F^{\times} has order dividing m. So t is a root of x^m-1 . Let $a\in F^{\times}$ with |a|=m. Then m=|a| $|F^{\times}|$ by Lagrange's theorem. So $m\leqslant p^d-1$. On the other hand, x^m-1 has at most m roots in F. So $m\geqslant p^d-1$. So $m=p^d-1$. And $F^{\times}\simeq Z_{p^d-1}$.

$$F = \{x_1, x_2, \dots \}$$

$$m = \gcd(01x_1, 01x_2, \dots)$$

$$\therefore 0(t) \mid m \mid t^m = 1$$

m roots in F. So
$$m \ge p^d - 1$$
. So $m = p^d - 1$. And $F^\times \simeq Z_{p^d - 1}$.

$$F = \{ \gamma_1, \gamma_2, \ldots, \gamma_m \}$$

$$m = \gcd(p_1 \gamma_1, p_1 \gamma_2, \ldots, p_m)$$

$$m = \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, p_2 \gamma_2, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd(p_1 \gamma_1, \ldots, p_m)$$

$$\lim_{n \to \infty} \gcd$$

Consider the group action of multiple group on addition group, we can get a semidirect product of two groups such as $Z_p^d: Z_{p^d-1}$, denoted by $AGL_1(p^d)$.

Let F be a finite field of order p^d , i.e. \mathbb{F}_{p^d} or denoted by $GF(p^d)$.

Theorem 5. $\phi: F \to F$ s.t. $x \mapsto x^p$ is an automorphism of F.

证明. Check: $(xy)^{\phi} = x^p y^p = x^{\phi} y^{\phi}$, $(x+y)^{\phi} = x^{\phi} + y^{\phi}$. This is called Frobenius automorphism.

Theorem 6. Let F be a field of charateristic 0, then a finite extension of F is a simple extension.

证明. Let $E = F(\alpha, \beta)$, Let f(x), g(x) be irreducible polynomials in F[x] s.t. $f(\alpha) = 0, g(\beta) = 0$. Let $\gamma = \alpha + c\beta$ where $c \in F$. We need to determine c s.t. $F(\alpha, \beta) = F(\gamma)$.

Let $h(x) = f(\gamma - cx) \in F(\gamma)[x]$, then $h(\beta) = f(\alpha) = 0$. So β is root of h(x) and g(x). If β is the only common root of h(x) and g(x), then $x - \beta = \gcd(g(x), h(x)) = s(x)g(x) + t(x)h(x) \in F(\gamma)[x]$.

So $\beta \in F(\gamma)$, and $\alpha = \gamma - c\beta \in F(\gamma)$. So $F(\alpha, \beta) = F(\gamma)$.

We will finish the proof next time.

gid阿纳那这样书!