Probeklausur Mathematik I

Prof. Dr. Sandra Eisenreich Wintersemester 2023/24, Hochschule Landshut

- (a) Schreiben Sie auf die ersten beiden Titelseiten Ihren Namen.
- (b) Schreiben Sie auf jedes Blatt Ihre Matrikelnummer.
- (c) Diese Probeklausur besteht aus 8 Aufgaben auf 9 Seiten. Bitte prüfen Sie, ob Aufgaben oder Seiten fehlen.
 - Verwenden Sie dokumentenechte Stifte (kein Bleistift) in blau oder schwarz.
 - Schreiben Sie Ihre Antworten in die dafür vorhergesehen Felder.
 - Hilfsmittel: nicht-programmierbarer Taschenrechner.
 - Legen Sie Ihren Personalausweis/Studentenausweis lesbar auf den Tisch.
 - Keine vorzeitige Abgabe in den letzten 5 Minuten möglich.
 - Bleiben Sie bitte am Ende an Ihrem Platz, bis die Klausuren eingesammelt und durchgezählt wurden.
 - Viel Erfolg!

Aufgabe	Punkte	Erreicht
Abbildungen	4	
Lineare Abhängigkeit	4	
Teilraum	5	
Berechnungen	17	
Logik	6	
Vollständige Induktion	10	
LGS	10	
Lineare (Un)abhängigkeit	4	
Gesamt	60	

Matrikelnummer:	Name:	
-----------------	-------	--

l. Abbildungen	(4 Punkte)
Sei $f: \mathbb{R} \to \mathbb{R}_{\geq 1}, x$ Nein:	$c\mapsto x^2+1$ Kreuzen Sie bei allen zutreffenden Aussagen Ja an, sonst
□ Ja □ Nein	Die Abbildung f ist injektiv.
□ Ja □ Nein	Die Abbildung f ist surjektiv.
\Box Ja \Box Nein	Die Abbildung f ist linear.
□ Ja □ Nein	Die Abbildung f ist ein Isomorphismus.
	gigkeit (4 Punkte) ktorraum. Unter welchen Bedingungen sind Vektoren $v_1, \ldots, v_n \in V$ Kreuzen Sie bei allen zutreffenden Aussagen Ja an, sonst Nein:
□ Ja □ Nein	Die Determinante der Matrix, die die Vektoren als Spalten hat, ist nicht Null.
□ Ja □ Nein	v_1 lässt sich schreiben als Linearkombination von v_2, \ldots, v_n
□ Ja □ Nein	$v_1 \in \operatorname{Span}(v_2, \dots, v_n).$
□ Ja □ Nein	Der Rang der Matrix, die die Vektoren als Spalten hat, ist n .
aufgeführten Be	(5 Punkte) ektorraum, und $U \subset V$ eine Teilmenge. Unter welchen der unten edingungen ist U ein Teilraum von V ? Falls U wie beschrieben ein euzen Sie "Jaän, sonst "Nein".
□ Ja □ Nein	${\cal U}$ ist abgeschlossen bezüglich Inversenbildung und Addition.
□ Ja □ Nein	${\cal U}$ ist abgeschlossen bezüglich Skalarmultiplikation mit Elementen in ${\cal K}$ und Addition.
□ Ja □ Nein	$U = \operatorname{Span}(v)$ für einen Vektor $v \in V$.
\Box Ja \Box Nein	${\cal U}$ ist eine Gerade, die nicht durch den Nullpunkt geht.
\Box Ja \Box Nein	$U = \{0\}$

4. Berechnungen

(17 Punkte)

- (a) (7 Punkte) Wandeln Sie die Zahl 131 ins Binär- und ins 9-er System um und geben Sie den Rechenweg an.
- (b) (3 Punkte) Berechnen Sie in $\mathbb{Z}/27\mathbb{Z}$ (wobei Sie das Ergebnis als Restklasse einer Zahl zwischen 0 und 26 darstellen):

$$\overline{4} \odot (\overline{11} \odot \overline{3} \oplus \overline{1})$$

- (c) (3 Punkte) Was ist die Länge der komplexen Zahl 3 4i?
- (d) (4 Punkte) Berechnen Sie das Matritzenprodukt $A \cdot B$ für folgende Matrizen:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 2 & -1 & 0 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$$

5. Logik (6 Punkte)

Prüfen Sie mit einer Wahrheitstabelle, ob folgende Äquivalenz von Aussagen gilt:

$$(A \lor B) \Leftrightarrow (\neg(\neg A \land \neg B))$$

6. Vollständige Induktion

(10 Punkte)

Zeigen Sie mit Hilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}$ gilt:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)\cdot (2n+1)} = \frac{n}{2n+1}.$$

7. LGS (10 Punkte)

Lösen Sie folgendes lineares Gleichungssystem:

8. Lineare (Un)abhängigkeit

(4 Punkte)

Sind die folgenden Vektoren linear unabhängig oder abhängig? Geben Sie den Rechenweg an!

$$v_1 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

