Towards Sensitivity Analysis of 3D Subduction Zone Thermal Structure via Model Order Reduction

MTMOD: Megathrust Modeling Framework

A collaborative effort to advance our understanding of megathrust earthquakes

https://sites.utexas.edu/mtmod/

NSF FRES, grant EAR-2121568

Gabrielle M. Hobson and Dave A. May

Institute of Geophysics and Planetary Physics

Scripps Institution of Oceanography

University of California San Diego

The challenge: quantifying uncertainty in subduction zone temperature

Models are used to investigate subduction zone temperatures and to predict the potential extent of rupture, but they are naturally subject to uncertainty.

Quantifying uncertainty in subduction zone temperature is challenging due to the combination of:

- Multiple sources of uncertainty
- Computationally expensive physical models
- Large parameter space to explore

Modified from Fig S1-1 of SZ4D Implementation plan (2022).

Hyndman & Wang (1993); Tichelaar & Ruff (1993); Oleskevich et al., (1999); van Keken et al. (2002); Currie et al. (2004); Syracuse et al. (2010); Wada & Wang (2009); Peacock (2020); Penniston-Dorland et al. (2015)

The challenge: quantifying uncertainty in subduction zone temperature

Models are used to investigate subduction zone temperatures and to predict the potential extent of rupture, but they are naturally subject to uncertainty.

Quantifying uncertainty in subduction zone temperature is challenging due to the combination of:

- Multiple sources of uncertainty
- Computationally expensive physical models
- Large parameter space to explore

We used reduced-order modeling to accurately approximate temperature within 2D thermo-mechanical subduction zone models.

Modified from Fig S1-1 of SZ4D Implementation plan (2022).

The challenge: quantifying uncertainty in subduction zone temperature

Models are used to investigate subduction zone temperatures and to predict the potential extent of rupture, but they are naturally subject to uncertainty.

Quantifying uncertainty in subduction zone temperature is challenging due to the combination of:

- Multiple sources of uncertainty
- Computationally expensive physical models
- Large parameter space to explore

We used reduced-order modeling to accurately approximate temperature within 2D thermo-mechanical subduction zone models.

Modified from Fig S1-1 of SZ4D Implementation plan (2022).

2D thermal models cannot capture certain 3D effects. We build ROMs for global 3D models of temperature in Cascadia.

- What is the uncertainty in the 3D subduction zone temperature given uncertainty in model inputs?
- Are ROMs feasible for 3D geodynamic models such as this?

Initial conditions

 $T(d) = T_b + (T_s - T_b) \operatorname{erfc}\left(\frac{d}{0.8621 \, D}\right)$

Linear transition

$$\frac{\rho - \rho_{\rm ref}}{\rho_{\rm ref}} = \omega \delta v_s$$
, $T = T_{\rm b} - \frac{1}{\alpha} \frac{\rho - \rho_{\rm ref}}{\rho_{\rm ref}}$

d: depth from surface

 $T_{\rm b}$: interior mantle temperature

 T_s : surface temperature

D: lithospheric thickness

 $\rho_{\rm ref}$: reference density

 ω : scaling factor

 δv_{s} : shear wave vel. anomaly

Governing equations:

$$\nabla \cdot \boldsymbol{u} = \mathbf{0}$$

$$-\nabla \cdot \left(2\eta(\boldsymbol{u},T)\underline{\dot{\boldsymbol{\epsilon}}}(\boldsymbol{u})\right) + \nabla p = \rho(T)\mathbf{g}$$

$$\rho c_p \left(\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T \right) - \nabla \cdot (k \nabla T) = 2\eta(\boldsymbol{u}, T) \underline{\dot{\boldsymbol{\epsilon}}}(\boldsymbol{u}) : \underline{\dot{\boldsymbol{\epsilon}}}(\boldsymbol{u})$$

Model setup guided by Goldberg & Holt (2024); Alisic et al. (2010, 2012).

D: Steinberger & Becker (2018)

 δv_s : SAVANI, Auer et al. (2014)

 $T(d) = T_b + (T_s - T_b) \operatorname{erfc}\left(\frac{d}{0.8621 \, D}\right)$

Model setup guided by Goldberg & Holt (2024); Alisic et al. (2010, 2012).

D: Steinberger & Becker (2018)

 δv_s : SAVANI, Auer et al. (2014)

Linear transition

d: depth from surface

 $T_{\rm b}$: interior mantle temperature

 T_{S} : surface temperature

D: lithospheric thickness

 $\rho_{\rm ref}$: reference density

 ω : scaling factor

 $\delta v_{\scriptscriptstyle S}$: shear wave vel. anomaly

Slab interface and thickness: Slab2, Hayes et al. (2018)

Model setup guided by Goldberg & Holt (2024); Alisic et al. (2010, 2012).

D: Steinberger & Becker (2018)

 δv_s : SAVANI, Auer et al. (2014)

Linear transition

Mesh resolution 2.8 km near slab interface

$T(d) = T_b + (T_s - T_b) \operatorname{erfc}\left(\frac{d}{0.8621 \, D}\right)$

Linear transition

$$\frac{\rho - \rho_{\rm ref}}{\rho_{\rm ref}} = \omega \delta v_s$$
, $T = T_{\rm b} - \frac{1}{\alpha} \frac{\rho - \rho_{\rm ref}}{\rho_{\rm ref}}$

Governing equations:

$$\nabla \cdot \boldsymbol{u} = \mathbf{0}$$

$$-\nabla \cdot \left(2\eta(\boldsymbol{u},T)\underline{\dot{\boldsymbol{\epsilon}}}(\boldsymbol{u})\right) + \nabla p = \rho(T)\mathbf{g}$$

$$\rho c_p \left(\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T \right) - \nabla \cdot (k \nabla T) = 2\eta(\boldsymbol{u}, T) \underline{\dot{\boldsymbol{\epsilon}}}(\boldsymbol{u}) : \underline{\dot{\boldsymbol{\epsilon}}}(\boldsymbol{u})$$

Boundary conditions

ASPECT 2.5.0

Evolved in time to

 $t = 4 \times 10^4 \text{ yrs}$

Linear transition

Initial conditions

$$\frac{\rho - \rho_{\rm ref}}{\rho_{\rm ref}} = \omega \delta v_{\rm S}$$
, $T = T_{\rm b} - \frac{1}{\alpha} \frac{\rho - \rho_{\rm ref}}{\rho_{\rm ref}}$

T_b	Interior mantle temperature	[1550, 1750] K
ω	Shear wave velocity-density scaling	[0, 0.25]
n	Dislocation creep stress exponent	[3.2, 3.8]
+		
H_{sh}	Shear heating source term	Included or not included

The interpolated Proper Orthogonal Decomposition (iPOD) process:

• Assemble model solutions into columns of snapshot matrix **X**, with corresponding parameter vector :

$$\mathbf{X}_{M \times N} = \begin{bmatrix} | & | & | & | \\ \mathbf{X}_1 & \mathbf{X}_2 & \mathbf{X}_3 & ... & \mathbf{X}_N \\ | & | & | & | \end{bmatrix}, \quad \mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, ... & \mathbf{q}_N].$$


```
\mathbf{q_i} is a vector in parameter space,
e.g. \mathbf{q_i} = (T_b, \ \omega, \ n).
\mathbf{X_{M \times N}} has M \gg N
M = \sim 9 million,
N = 550.
```

The interpolated Proper Orthogonal Decomposition (iPOD) process:

• Assemble model solutions into columns of snapshot matrix X, with corresponding parameter vector :

$$\mathbf{X}_{M \times N} = \begin{bmatrix} | & | & | & | \\ \mathbf{X}_1 & \mathbf{X}_2 & \mathbf{X}_3 & \dots & \mathbf{X}_N \\ | & | & | & | \end{bmatrix}, \quad \mathbf{Q} = [\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \dots & \mathbf{q}_N].$$

$$\mathbf{q}_i$$
 is a vector in parameter space, e.g. $\mathbf{q}_i = (T_b, \ \omega, \ n)$. $\mathbf{X}_{\mathrm{M} \times \mathrm{N}}$ has $M \gg N$ $M = \sim 9$ million, $N = 550$.

Take the Singular Value Decomposition (SVD):

$$X = U \Sigma V^{T}$$
.

- Interpolate POD coefficients $\alpha = \Sigma V^T$ at a new $\widehat{\mathbf{q}} \notin \mathbf{Q}$ using Radial Basis Function (RBF) interpolation.
- Approximate X(q̂) using an optimal orthogonal basis U and interpolated coefficients α̂:

$$\widehat{\mathbf{X}}(\widehat{\mathbf{q}}) = \mathbf{U} \widehat{\mathbf{\alpha}}.$$

Truncation

Total energy retained in r POD modes: $TE(r) = \frac{\sum_{i=1}^{r} \sigma_i}{\sum_{i=1}^{N} \sigma_i}$ σ_i : ith singular value of \mathbf{X}

Truncation

Total energy retained in r POD modes: $TE(r) = \frac{\sum_{i=1}^{r} \sigma_i}{\sum_{i=1}^{N} \sigma_i}$ σ_i : ith singular value of \mathbf{X}

Leave One Out Cross-Validation (LOOCV) error

For all $\mathbf{q}_k \in \mathbf{Q}$, build ROM using $\widetilde{\mathbf{X}} = \mathbf{X} \setminus \mathbf{X}_k$ and approximate $\widetilde{\mathbf{X}}(\mathbf{q}_k)$.

$$CV(k) = \sup \left| \widetilde{\mathbf{X}}(\mathbf{q}_k) - \mathbf{X}_k \right|$$

- Errors > 100 K on edges of Q
- Compute sub-region of Q where CV < 30 K
- Mean error in sub-region is
 12 K

Reduced-order model is 10⁵ times faster to evaluate

Offline ROM construction		
Run forward models	~ 5400 sec on 128 MPI ranks x 550 models = 105,600 core-hrs	
Compute the SVD	800 sec on 1 MPI rank	
Construct the RBF interpolant	0.96 sec on 1 MPI rank	

Online phase		
RBF evaluation time	0.001 sec on 1 MPI rank	
Matrix multiplication, $\widehat{\mathbf{X}}(\widehat{\mathbf{q}}) = \mathbf{U} \ \widehat{\mathbf{\alpha}}$	4 sec on 1 MPI rank	

 \rightarrow Speedup factor of 10⁵ once ROM is constructed.

Reduced-order model is 10⁵ times faster to evaluate

ROM evaluation is performed for full 3D domain, with slices of Cascadia shown here for clarity.

Reduced-order model is 10⁵ times faster to evaluate

ROM evaluation is performed for full 3D domain, with slices of Cascadia shown here for clarity.

ROM errors are low in the mantle wedge, higher within the slab

Summary

Key Takeaways

- Building a ROM to approximate global temperature is feasible.
- FOM-ROM error is < 30 K globally in sub-region of parameter space.
- For Cascadia, errors are low in the mantle wedge and higher within the slab.
- The ROM is 10⁵x faster to evaluate than the full-order model.

Preprint for 2D study available https://arxiv.org/abs/2410.02083

Outlook

- ROM permits rigorous global sensitivity analysis.
- Plan to expand the ROM to include additional model input parameters such as age of the incoming lithosphere and sediment cover.
- Aim to estimate uncertainty in temperature and potential rupture extent given variability in:
 - Model inputs (T_b, ω, n) ,
 - Along-margin effects (lithosphere age, sediment cover, along-margin flow).
- Preliminary results indicate that the ROM can be used for viscosity as accurately and efficiently as for temperature.

We would like to thank NSF FRES (grant EAR-2121568) and our MTMOD collaborators including Thorsten Becker at UTIG.