MIDDLE EAST TECHNICAL UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING ME 310 NUMERICAL METHODS FALL 2022

PROGRAMMING PROJECT 1

Assignment date : 09.11.2022 Due date : 23.11.2022

The programming project will be submitted through METU-Class, as described in the "Programming Project Assignment Guidelines", which is posted on METU-Class.

In False-position method (which is a bracketing method) the root of the function is estimated by the intersection of the line that passes through the function on two brackets. In order to have a better method, instead of a line we are going to use a second order polynomial. However, note that, in order to use a second order polynomial, 3 points are required. Therefore, in order to eliminate inputting 3 initial guesses to our root finding algorithm, the third point can be calculated as in the bisection method, i.e. $x_i = (x_l + x_u)/2$. The method is shown in the below figure.

Figure 1 Third initial guess obtained as Bisection method

Second order polynomial passing through the intermediate point, x_i , can be writtens as follows

$$p(x) = a(x-x_i)^2 + b(x-x_i) + c$$
,

where

$$f(x_l) = a(x_l - x_i)^2 + b(x_l - x_i) + c$$

$$f(x_u) = a(x_u - x_i)^2 + b(x_u - x_i) + c.$$

$$f(x_i) = c$$

From these equations, unknown constants of the 2nd order polynomial can be obtained as follows

^{‡ 123456} is the first six digits of the student number of the project group leader.

$$a = \frac{f(x_{l}) - f(x_{i})}{(x_{l} - x_{i})(x_{l} - x_{u})} + \frac{f(x_{i}) - f(x_{u})}{(x_{u} - x_{i})(x_{l} - x_{u})}$$

$$b = \frac{(f(x_{l}) - f(x_{i}))(x_{i} - x_{u})}{(x_{l} - x_{i})(x_{l} - x_{u})} - \frac{(f(x_{i}) - f(x_{u}))(x_{l} - x_{i})}{(x_{u} - x_{i})(x_{l} - x_{u})}.$$

$$c = f(x_{i})$$

The roots of the 2nd order polynomial can be calculated as

$$x_{1,2} = x_i + \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x_i - \frac{2c}{b \pm \sqrt{b^2 - 4ac}}$$
.

From the two roots whichever is closer to x_i is selected, since x_i is the root estimate by using Bisection method. In order to minimize $\left|x_{1,2}-x_i\right|$, $\left|b\pm\sqrt{b^2-4ac}\right|$ need to be maximum; hence, the sign before square root must be equal to the sign of b. Therefore, iterative algorithm can be written as follows

$$x_r = x_i - \frac{2c}{b + sign(b)\sqrt{b^2 - 4ac}}.$$

The new bracket can be identified as in Bisection method by comparing the sign of $f(x_r)$ with the signs of $f(x_l)$ and $f(x_u)$. This method will be referred as Polynomial Method.

Write a computer program (named $e123456.ext^{\ddagger}$, where .ext is .m, .py, .f90, .c, .cpp etc. depending on your language of preference) to find the roots of a function f(x) by using Polynomial method, Bisection method, False-position method, Secant method and Newton-Raphson method, separately. Function f(x) and f'(x) will be defined in a separate file named as f.ext and fp.ext (i.e. consistent with your program language), where the name of the function in this file should also be f and fp.

Initial bracket containing the root (x_l, x_u) , the pre-specified error tolerance (ε_s) in % and the maximum number of iterations (i_{max}) will be given in an input file named as "input.txt" where each value is on a different line respectively. Once your program file (i.e. e123456.ext) is called / executed, it should read the file "input.txt" to initialize the problem parameters, and generate solutions for the 3 methods mentioned above. Results should be saved into the following files named "output_polynomial.txt", "output_bisection.txt", "output_falseposition.txt" "output_secant.txt" and "output_newton.txt" for each method, respectively. Each line in an output file should have $i, x_r, f(x_r), \varepsilon_a$ where i is the iteration number and x_r and ε_a are the corresponding root estimate and approximate percent error, respectively.

The convergence performance of all methods should be compared by finding the root of the equation using all methods.

A sample *input.txt* file can be as follows:

- 1.0
- 2.0
- 0.00001

This means that $x_l = 1.0$, $x_u = 2.0$, $\varepsilon_s = 0.000001\%$ and $i_{max} = 30$. As a result, your code should stop if $\varepsilon_a < \varepsilon_s$ or after i_{max} iterations independent of what ε_a is. Hence, for this particular case, your output files should not have more than 30 lines.

A sample *output.txt* file will have the following format:

```
1 0.85000112 -1.25687925 ----
2 0.75000112 -0.57894156 11.76 ...
```

According to this output file, the first iteration yields $x_{r1} = 0.85000112$, $f(x_{r1}) = -1.25687925$ and approximate relative error in percent is undefined, second iteration yields $x_{r2} = 0.75000112$ $f(x_{r2}) = -0.57894156$, $\varepsilon_{a2} = 11.76$ and so on. All values should be in floating point format.

To sum up, during grading we expect your code to perform as follows:

- To start with, f.ext, e123456.ext and input.txt will be in the same folder.
- Your solver implementation (i.e. *e123456.ext*) will be run in the proper environment (C, Fortran, Matlab, Python etc.)
- Making use of *f.ext* and *input.txt* your solver code will generate 5 files "output_polynomial.txt", "output_bisection.txt", "output_falseposition.txt" "output_secant.txt" and "output_newton.txt" as defined above and stop.
- Once execution is completed and output files are generated, a summary for each method should be printed to the computer screen: the last estimate of the root (x_m) , approximate percent relative error for this estimate (ε_{an}) , total number of iterations (n) and the function value at the calculated root $(f(x_m))$.
- Your code should never crash.
- If there is an abnormality (such as problems with function f or *input.txt* file) your code should print a proper message to the screen and to the end of the output files and terminate.

Present your results in a short report (a few pages of a word document only, saved as a pdf document) which should include the following:

- A basic introduction paragraph,
- Necessary formulations and hand calculations to write your code (type it in the word document),
- Your numerical results for an example f(x) for each algorithm (i.e. Polynomial, Bisection etc.),
- Your plotted graphics including the evolution of the numerical computation process by plotting the root estimates and errors, etc. versus iteration number for each algorithm
- A single plot comparing ε_s values generated for both methods,
- Discussion of the results and conclusion,
- Appendix section including your code and executable file in the case programing languages such as C/C++, Fortran etc. are used.

Use the following functions and the given upper and lower bounds in your project report. If the method requires a single initial guess, then use the mean of the given limit.

$$x^{2} - (1 - x)^{5}$$
 [0.1,1] $xe^{x} - 1$ [-1,1]

 $cos(x)-x^3$ [0.1,1] | ln(x) [0.5,5] x^3 [-0.5,1/3] | $e^{x^2+7x-30}-1$ [2.8,3.1] $x^{-1}-sin(x)+1$ [-1.3,-0.5] |