2.6: Limits at Infinity: Horizontal Asymptotes

Horizontal Asymptotes

If f(x) approaches L as x approaches ∞ , then

$$\lim_{x \to \infty} f(x) = L.$$

If f(x) approaches L as x approaches $-\infty$, then

$$\lim_{x \to -\infty} f(x) = L.$$

f(x) has a **horizontal asymptote** y = L if one of the following is true

$$\bullet \ \lim_{x \to \infty} f(x) = L$$

•
$$\lim_{x \to -\infty} f(x) = L$$

Example 1. Find the horizontal asymptotes of each function

(a)
$$e^x$$

(c)
$$\arctan x$$

(e)
$$h(x) = \frac{\sqrt{2x^2+1}}{3x-5}$$

(b)
$$f(x) = \frac{1}{(x-c)^r}$$
 $(r > 0)$ (d) $g(x) = \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$

(d)
$$g(x) = \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

Example 2. Evaluate each infinite limit

(a)
$$\lim_{x \to \infty} \sin x$$

(b)
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

Example 3. Evaluate each limit by transforming it to an infinite limit

$$(a) \lim_{x \to 0^-} e^{\frac{1}{x}}$$

(b)
$$\lim_{x \to 2^+} \arctan\left(\frac{1}{x-2}\right)$$

Infinite Limits at Infinity

If f(x) approaches ∞ as x approaches ∞ , then

$$\lim_{x \to \infty} f(x) = \infty.$$

Similar notation is used for the other three cases: (i) f(x) approaches ∞ as x approaches $-\infty$, (ii) f(x) approaches $-\infty$ as x approaches ∞ , and (iii) f(x) approaches $-\infty$ as x approaches $-\infty$.

Example 4. Find the limit as x approaches $\pm \infty$ for each function

(a)
$$e^x$$

$$(b) \ f(x) = x^3$$

(c)
$$g(x) = \frac{x^2 + x}{3 - x}$$

