绝对值客栅卡尺芯片 GC7500A

1. 概述

GC7500A 是一款采用绝对值容栅位移测量原理而设计的绝对值容栅卡尺芯片。用这个芯片能实现绝对位置的测量,可对所设置的原点位置进行持续跟踪,无论何时开机,液晶屏都会显示关机前副尺相对于原点的准确位置,以便随时进行测量,像游标卡尺一样存在一个绝对意义上的原点,在卡尺通电后即可进行测量而不必进行繁琐的清零,校零操作;而且它可以彻底解决相对式卡尺的超速问题,使得计量更加安全可靠;应用绝对式测量原理,采用间歇工作的模式,减小了测量系统的功耗。

绝对式容栅卡尺芯片的测量包括粗测、中测、细测三条码道,通过粗测、中测、细测三种测量模式,三种测量模式分别对位移进行粗大精度、中等精度、精确精度的测量,从而完成位移测量的模数转换,实现传感器绝对位置的测量。

芯片内部包含接收切换开关、传感信号解调器、检相电路、调制信号发生器、CPU、8byte MTP、LCD 控制驱动、串口、电源管理、振荡器等。

GC7500A设计上除了传感器输入输出、容栅结构及存储器接口以外,所有功能(液晶显示、功能按键及串口输出)与GC7618B兼容的。

2. 特点

- 可随时进行测量而不必进行繁琐的原点复位操作,无操作速度限制
- 预想工作电流 16uA (利用 4MHz 晶体振荡时)
- 位移测量范围: 0~325mm
- 测量精度: ±0.02mm
- 显示分辨率: 0.01mm
- 最大响应速度: 无极限
- 两种振荡方式可选(外部 4MHz 晶体振荡或者内部 250KHz RC 振荡)
- LCD 显示次数: 4次/s
- 供电电压: 3V±0.3V
- 低电压报警显示值: 2.7V
- 自动关机功能、英制/公制转换、清零功能、显示保持功能

3. 电路原理框图

4. 电参数

参数项目	符号]	单位		
2 % A H	1,1, 3	最小值	典型值	最大值	, , ,
工作电压	$V_{\scriptscriptstyle DD}$	2.70	3.0	3.3	V
工作电流	I _{DD} (XOSC)	_	20	25	uA
工作电机	I_{DD} (RC)		16	20	uA
起振电压	V_{START}	2.50	_	_	V
维持电压	$V_{\scriptsize HOLD}$	2. 20	_	_	V
高电平最大输出电流	Іон		-0.68		mA
低电平最大输出电流	${ m I}_{ m OL}$		1.0		mA
电池欠电压报警电压值	$V_{\scriptscriptstyle ALARM}$	2.60	2.70	2.80	V
LCD 偏置电压 1	VLCD	_	1.5		V
输入高电流	I_{IH}			1	uA
输入高电压	V_{IH}	2. 4		VDD+0.3	V

输入低电压	$V_{\scriptscriptstyle \mathrm{IL}}$			0.3	V
VCM 电压	VCM	1.4	1.5	1.6	V
RC 振荡频率	${ m f}_{ m RC}$	230	250	280	KHz

5. 芯片功能说明

(1) 容栅传感器输入输出信号

GC7500A 通过电容传感器来测量长度和角度。 驱动器通过 0UT1~0UT8 终端传输调制信号到电容传感器的容栅电路,并从 CA、CB、MA、MB 端接收反馈信号。其中 CA、CB 为粗侧接收信号,MA、MB 为中测接收信号,而细测时的接收信号则是 CA+CB、MA+MB,在芯片内接收切换开关按照测试顺序进行这些信号组合,然后进入信号解调端进行解调。芯片驱动容栅的波形如下图:

GC7500A 容栅传感器驱动波形图

(2) 存储器管理

GC7500A 为了保管初期值(0位置数)内设8byte MTP,芯片可以利用SELM端选择内部MTP或则外部串行EEPROM(例:AT2402)。在任意位置上按ZERO健3秒以上,

现位置的数据自动写进去存储器上。 这时保存到存储器的数据是粗侧值 1byte,中测值 1byte,细测值 2byte,总共 4byte。每当开机时,芯片先自动读取这 4byte 数据当做零位置数据。与外部存储器连接通过 I2C 通信进行,利用 SDA、SCL 两个端口。

(3) 功能按键

- 公英制转换功能 (mm/in): 卡尺状态、任意位置按 MIC 键,公制测量和英制测量状态相互转换并在 LCD 上显示相对应的测量状态。
- 保持当前测量值功能(HOLD): 对测量状态下,任意位置按保持 HOLD 键,卡尺保持当前显示的测量数据并显示"HOLD"提示符。在保持模式下,绝对相对转换键(REL),清零键(ZERO)不起作用;其它的输入输出口正常工作。再按一次,返回绝对测量状态,提示符"HOLD"灭,显示当前位置的测量数据。
- 清零功能(ZERO): 按 ZERO 键,液晶屏显示全零。按 ZERO 健 3 秒以上,现位置的数据自动写进去存储器上。在关机状态下按 ZERO 健,就会芯片开机。
- 关断功能(ONC): 按 ONC 健, 芯片就会关机, LCD 显示和振荡器在内的所有电路都停止工作。还有开机以后过了 5 分钟, 芯片就会自动关机。
- 绝对与相对值转换功能(REL): 上电后电路自动进入绝对测量状态,在绝对测量状态下,任意位置按 REL 键,LCD 清零进入相对测量和显示相对测量 "REL"提示符。在相对测量状态下,任意位置按 REL 键,进入绝对测量,同时提示符 "REL"灭。
- 测量方向转换功能 (DIR): 在绝对测量状态下 如 DIR 悬空时, 当前显示的测量数据正常显示, 如 DIR 接 GND, 当前显示的测量数据正数变负数、负数变正数。

(4) 串口输出

GC7500A 采用 ZERO、MIC 这两个管脚做功能复用,用做串口测量数据输出端口。 其中 ZERO 做串行同步信号 SCL,MIC 输出测量数据信号 SDA。下图给出了串行信号输 出的波形图和定时信息。

GC7500A 串口同步时钟和数据信号波形图

说明:

高位为符号位,"0"表示'正',"1"表示'负'。发送的起始数据位为绝对值的最低位 LSB。当采用外部晶体振荡器时 2T= 32/fosc, fosc 为外部晶体振荡器的频率。当采用内部 RC 振荡器时,2T= 2/fosc, fosc 为内部 RC 振荡器的频率。

每段数据都是 20 位二进制码表示的位移量,且低位在前高位在后,MCU 要把总值读出来后,根据不同的情况按下列公式可以计算得 LCD 要显示的数据,其中不同的使用情况下对应的公式分别如下:

mm 显示值 = (相对值*508/512) /8

inch 显示值 = (相对值*400/512) /16

如果相对值符号位为 1 的情况下,首先要对读取到的相对值进行翻转处理,然后再使用上述公式来计算。

(5) LCD 显示

	сом3	COM2	COM1	SEG14	SEG13	SEG12	SEG11	SEG10	SEG9
COM3	COM3			REL	1F	1A	BATT	2A	HOLD
COM2		COM2		SIGN	1G	1B	2F	2G	2B
COM1			COM1	1E	1D	1C	2E	2D	2C
	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
COM3	SEG8	SEG7	SEG6 IN/P1	SEG5	SEG4 4A	SEG3 MM/P2	SEG2 5F	SEG1	
COM3 COM2									

- Segment

- Common

GC7500A COM 和 SEG 连线示意图

- LCD 电平驱动波形图

6. 压点图

7. 压点说明

No	压点名称	I/0	压点描述		
1-8	OUT1-OUT8	0	8 路容栅驱动输出		
9	HVTST	0	高压测试点		
10	VSS		电源负极		
11	CA	Ι	粗测传感信号正输入		
12	СВ	Ι	粗测传感信号负输入		
13	MA	Ι	中测传感信号正输入		
14	MB	Ι	中测传感信号负输入		
15	VDD		电源正极		
16	VCM		模拟共同基准电压		
17	SELM	Ι	存储器选择, VDD: 内部 MTP, VSS: 外部存储器		
18	SDA	I/0	I2C 总线的数据线		
19	SCL	I/0	I2C 总线的时钟线		
20	TEST	Ι	测试模式选择		
21	TSW2	Ι	测试模式选择		
22	TSW1	Ι	测试模式选择		
23	AMPO	I/0	解调信号输出,测试模式下解调信号输入		
24	DIR	Ι	测试方向选择		
25	ONC	Ι	开关机信号输入		
26	REL	Ι	绝对/相对测量模式转换		
27	HOLD	Ι	显示数据保持		
28	MIC	I/0	公英制转换输入/穿行数据输出		
29	ZERO	I/0	测量数据清零输入/穿行同步时钟输出		
30	SELX	Ι	晶体振荡/RC 振荡选择		
31, 32	XI, XO	I, 0	4MHz 晶振连接端		
33-46	SEG1-SEG14	0	LCD 段位(SEG)输出		
47-49	COM1-COM3	0	LCD 公共端(COM)输出		
50	VLCD	0	内部 VDD/2 电压引出端,外接稳压电容		

8. 压点坐标

PAD 总数: 50 pads (其中 test 用 1 个), Chip Size: 1.76mm imes 1.83mm

	Pad size: 70um X 70um				Pad size: 70um X 70um		
序号	to th	坐标(um)		序号	to th	坐标(um)	
	名称	Х	Υ		名称	Х	Υ
1	OUT1	278	48	26	SEG1	1418	1712
2	HVTST	383	48	27	SEG2	1318	1712
3	VSS	484	48	28	SEG3	1218	1712
4	CA	593	48	29	SEG4	1118	1712
5	СВ	698	48	30	SEG5	1013	1712
6	MA	803	48	31	SEG6	908	1712
7	MB	908	48	32	SEG7	803	1712
8	VDD	1013	48	33	SEG8	698	1712
9	VCM	1118	48	34	SEG9	593	1712
10	SELM	1218	48	35	SEG10	488	1712
11	SDA	1318	48	36	SEG11	383	1712
12	SCL	1418	48	37	SEG12	278	1712
13	TEST	1647	283	38	SEG13	43	1483
14	TSW2	1647	383	39	SEG14	43	1383
15	TSW1	1647	483	40	COM1	43	1277
16	AMPO	1647	583	41	COM2	43	1177
17	DIR	1647	683	42	COM3	43	1077
18	ONC	1647	783	43	VLCD	43	977
19	REL	1647	883	44	OUT8	43	877
20	HOLD	1647	983	45	OUT7	43	777
21	MIC	1647	1083	46	OUT6	43	677
22	ZERO	1647	1183	47	OUT5	43	577
23	SELX	1647	1283	48	OUT4	43	477
24	ΧI	1647	1377	49	OUT3	43	377
25	XO	1647	1483	50	OUT2	43	277

9. 应用电路图

10. 容栅设计

-动栅尺寸图

上图中精确值为: Pc=(256/259)*2.54mm 、Pm=(16/19)*2.54mm、Pt=(3/8)*2.54mm

-动栅连线图

-定栅尺寸图

上图中精确值为: Pc=(256/259)*2.54mm 、Pm=(16/19)*2.54mm

-定栅连线图

中间和下面的容栅每 40.64mm 为一组,重复即可。上面节距为 PC 的容栅与中间 1.27mm 节距的容栅每隔一个连接。布线要遵循距离最短原则,连线拐弯时,栅边线至连线的距离要等于 0.1mm。

GC7500A

实际应用时三角形的栅效果更好,所以可以依据上面的尺寸按照下面的方法进行更改

定栅

13. 订货信息

产品型号	供货方式
GC7500A	裸片, 每盘 250 只

14. 文档信息

版本	更改内容(每行一项)	更改日期&更改者(简写)
V10	创建	2021-4-19 by wyq
V10	更改串行数据输出部分说明	2021-6-10
	增加容栅部分尺寸说明	