

Reinforcement Learning: Advanced Policy Gradients

Mohammad Hossein Rohban, Ph.D.

Spring 2025

Courtesy: Most of slides are adopted from CS 285 Berkeley.

Model-Free RL

- Value-based methods
 - Learnt value function
 - Implicit policy
- Policy-based methods
 - No value function
 - Learnt policy
- Actor-critic methods
 - Learnt value function
 - Learnt policy

Overview of Modern RL Methods

Policy Gradient Intuition

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \underbrace{\nabla_{\theta} \log \pi_{\theta}(\tau_{i})}_{T} r(\tau_{i})$$
$$\sum_{t=1}^{T} \nabla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$$

maximum likelihood: $\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_{i})$

- Good stuff is made more likely
- Bad stuff is made less likely
- Simply formalizes the notion of "trial and error"!

Bias and Variance of Policy Gradient

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_i) r(\tau_i)$$

Unbiased estimation:

$$E\left[\frac{1}{N}\sum_{i=1}^{N}\nabla_{\theta}\log\pi_{\theta}(\tau_{i})r(\tau_{i})\right] = \nabla_{\theta}J(\theta)$$

But suffers from high variance!

The main source

of high variance

Reducing Variance

- Everything in the gradient whose expected is zero could be removed, without affecting the optimization, but could lead to lower gradient variance!
- Causality trick
- Discount factor
- Baseline
- Actor-critic
- Optimization techniques:
 - Natural gradient
 - Trust region

Reducing Variance: Causality

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

Causality: policy at time t' cannot affect reward at time t when t < t'

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'}) \right)$$

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} r(\mathbf{a}_{i,t'}, \mathbf{s}_{i,t'}) \right)$$

"reward to go" $\,\hat{Q}_{i,t}\,$

Reducing Variance: Discount Factor

option 1:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

option 2:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} \gamma^{t-1} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \gamma^{t-1} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(\sum_{t'=t}^{T} \gamma^{t'-t} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

Not the same

Reducing Variance: Baselines

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau) [r(\tau) - b]$$

$$b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$$

a convenient identity

$$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = \nabla_{\theta}p_{\theta}(\tau)$$

$$E[\nabla_{\theta} \log p_{\theta}(\tau)b] = \int p_{\theta}(\tau)\nabla_{\theta} \log p_{\theta}(\tau)b \,d\tau = \int \nabla_{\theta} p_{\theta}(\tau)b \,d\tau = b\nabla_{\theta} \int p_{\theta}(\tau)d\tau = b\nabla_{\theta} 1 = 0$$

subtracting a baseline is *unbiased* in expectation!

average reward is not the best baseline, but it's pretty good!

Reducing Variance: Baselines

Faster convergence:

Reducing Variance: Review

- Exploiting causality
 - Future doesn't affect the past
- Discount factor
 - Two different version
- Baselines
 - Analyzing variance for deriving optimal baselines
- Now: Introducing actor-critic methods!

Policy Gradients so Far

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}^{\pi}$$

"reward to go"

Improving Estimation of Reward to Go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t'=1}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$

 $\hat{Q}_{i,t}$: estimate of expected reward if we take action $\mathbf{a}_{i,t}$ in state $\mathbf{s}_{i,t}$

How to make a better estimate?

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) Q(\mathbf{s}_{i,t},\mathbf{a}_{i,t})$$

 $\hat{Q}_{i,t} \approx \sum_{t'=t}^{T} E_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_{t}, \mathbf{a}_{t} \right]$

much lower variance!

Improving Estimation of Reward to Go

Further improvement: Adding a baseline!

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - b_{t} \right)$$

$$b_t = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

Improving Estimation of Reward to Go

Further improvement: Adding a baseline!

$$Q(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^T E_{\pi_{\theta}} [r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) | \mathbf{s}_t, \mathbf{a}_t]$$
: true expected reward-to-go

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \left(Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) - V(\mathbf{s}_{i,t}) \right)$$

$$b_{t} = \frac{1}{N} \sum_{i} Q(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$

$$V(\mathbf{s}_{t}) = E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})}[Q(\mathbf{s}_{t}, \mathbf{a}_{t})]$$

