9.10.5.3

 ${\bf Question}$: In figure 1,4PQR = 100°, where P, Q and R are points on a circle with centre O.Find $\angle OPR$.

Solution:

Input Parameters	Description	Value
0	Center(at origin)	0
r	Radius	1
θ_1	$\angle PQR$	100°
θ_2	$\angle NOP$	165.4°
θ_3	$\angle NOR$	5°

Table 1: Table of input parameters

Output Parameters	Description	Value
Q	Point	$\begin{pmatrix} \cos \theta_1 \\ \sin \theta_1 \end{pmatrix}$
P	Point	$\begin{pmatrix} \cos \theta_2 \\ \sin \theta_2 \end{pmatrix}$
R	Point	$\begin{pmatrix} \cos \theta_3 \\ \sin \theta_3 \end{pmatrix}$

Table 2: Table of output parameters

For getting the value of the $\angle OPR$

$$\cos \angle OPR = \frac{(\mathbf{O} - \mathbf{P})^{\top} (\mathbf{R} - \mathbf{P})}{||\mathbf{O} - \mathbf{P}||||\mathbf{R} - \mathbf{P}||}$$

$$= \sqrt{\frac{1 - \cos(\theta_2 - \theta_3)}{2}}$$
(2)

$$=\sqrt{\frac{1-\cos\left(\theta_2-\theta_3\right)}{2}}\tag{2}$$

$$\angle OPR = 10^{\circ} \tag{3}$$

Figure 1: