Atividade 2

Essa atividade foi realizada em linguagem R, utilizando o software R Studio. Pacotes FrF2, unrepx, ggplot2, ggpubr e rsm.

Atividade 1

Executei o planejamento fatorial 2² sem replicação (Tabela 1) com 4 experimentos e obtive os valores dos coeficientes utilizando regressão linear de acordo com a Figura 1.

^	A	₿ ‡	y
1	-1	-1	20
2	1	-1	40
3	-1	1	30
4	1	1	52

Tabela 1 – Planejamento fatorial 2²

Figura 1 – Coeficientes de regressão

Considerando significância de 10% (p-value < 0.1) obtive a seguinte equação.

$$y = 35, 5 + 10, 5_{x1} + 5, 5_{x2}$$

Após essa etapa, conseguimos observar os gráficos de superfície na Figura 2 e de contorno na Figura 3, que demonstram que o efeito de interação entre A e B.

Figura 2 – Gráfico de superfície com interação AB

Figura 3 – Gráfico de contorno com interação AB

Assumindo que a interação AB não seja desprezível e possua valor 8, obtemos a seguinte equação.

$$y = 35, 5 + 10, 5_{x1} + 5, 5_{x2} + 8_{x1x2}$$

Após essa etapa, observamos novamente os gráficos de superfície na Figura 4 e de contorno na Figura 5, que demonstram o efeito de interação entre A e B, dessa vez sob influência da nova equação com um termo de interação x_1x_2 adicional.

Figura 4 – Gráfico de superfície com interação AB

Figura 5 – Gráfico de contorno com interação AB

Agora percebemos que há uma diferença notável entre a curvatura das linhas da interação AB, que nas Figuras 2 e 3 não existiam. Quando assumimos que a interação AB é significativa, automaticamente existe forte influência dos efeitos de A em B.

Atividade 2

A princípio fiz o planejamento fatorial 2^2 com 3 réplicas e 12 corridas, de maneira codificada, onde C = concentração de um reagente e <math>T = temperatura. A Tabela 1 demonstra a organização do planejamento, contendo os valores da resposta.

•	c ‡	T	Blocks [‡]	y
1	-1	-1	.1	26.6
2	1	-1	.1	40.9
3	-1	1	.1	11.8
4	1	1	.1	34.0
5	-1	-1	.2	22.0
6	1	-1	.2	36.4
7	-1	1	.2	15.9
8	1	1	.2	29.0
9	-1	-1	.3	22.8
10	1	-1	.3	36.7
11	-1	1	.3	14.3
12	1	1	.3	33.6

Tabela 1 – Planejamento fatorial codificado replicado

Para analisarmos os efeitos, temos os gráficos das Figuras 1 que demonstram os efeitos das variáveis C e T e da Figura 2 com os efeitos da interação CT. A princípio observamos que não há interação.

Figura 1 – Gráficos de efeitos principais C e T

Figura 2 - Gráficos de interação CT

Ao efetuar a **análise de variância (ANOVA)**, obtive os valores de p informados na Figura 3. Observa-se que os valores de C e T são significativos considerando 5% (p-value < 0,05) e a interação CT não é significativa.

```
Sum Sq Mean Sq F
                                 value
                                         Pr(>F)
                        787.3
                787.3
                               129.28 3.23e-06
                182.5
                        182.5
                                 29.97 0.000591
             1
C:T
             1
                 12.0
                         12.0
                                  1.97 0.198007
Residuals
                 48.7
                          6.1
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Figura 3 – ANOVA

Efetuando a regressão linear, observamos na Figura 4 que os coeficientes C e T são significativos, considerando 5% (p-value < 0,05) e, portanto, não rejeitamos a hipótese nula. Porém a interação CT será rejeitada, devido ao seu p-value > 0,05. Após essa breve análise, teremos o modelo representado na seguinte equação.

$$y = 27 + 8, 1_{x1} + -3.9_{x2}$$

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
             27.0000
                         0.7124
                                 37.901 2.58e-10
(Intercept)
с1
                         0.7124
                                 11.370 3.23e-06 ***
              8.1000
                                 -5.475 0.000591
T1
             -3.9000
                         0.7124
C1:T1
              1.0000
                         0.7124
                                  1.404 0.198007
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.468 on 8 degrees of freedom
Multiple R-squared: 0.9527,
                               Adjusted R-squared:
F-statistic: 53.74 on 3 and 8 DF, p-value: 1.206e-05
```

Figura 4 – Coeficientes de regressão

Visualizamos na Figura 5, o gráfico de normalidade dos resíduos e com isso concluir que os dados estão normalmente distribuídos em torno da reta. Também foi realizado o teste de Shapiro-wilk com valor de 0,2956 (p-value > 0,05), portanto, atendendo a premissa de que os dados são normalmente distribuídos.

Figura 5 – Normalidade dos resíduos

Exercício 3

Exercício 4

A princípio fiz o planejamento fatorial 2⁴ sem replicação com 16 corridas, de maneira codificada. A Tabela 1 demonstra a organização do planejamento, contendo os valores da resposta.

•	tA [‡]	pB [‡]	cC ‡	v D [‡]	y
1	-1	-1	-1	-1	45
2	1	-1	-1	-1	71
3	-1	1	-1	-1	48
4	1	1	-1	-1	65
5	-1	-1	1	-1	68
6	1	-1	1	-1	60
7	-1	1	1	-1	80
8	1	1	1	-1	65
9	-1	-1	-1	1	43
10	1	-1	-1	1	100
11	-1	1	-1	1	45
12	1	1	-1	1	104
13	-1	-1	1	1	75
14	1	-1	1	1	86
15	-1	1	1	1	70
16	1	1	1	1	96

Tabela 1 – Planejamento fatorial codificado

Utilizei o método Lenth para cálculo dos efeitos, proposto pelo professor Russel V. Lenth e em seguida, calculei os efeitos de cada variável para obter os valores informados na Tabela 2, na coluna V1.

^	V1 [‡]
(Intercept)	140.125
tA1	21.625
pB1	3.125
cC1	9.875
vD1	14.625
tA1:pB1	0.125
tA1:cC1	-18.125
pB1:cC1	2.375
tA1:vD1	16.625
pB1:vD1	-0.375
cC1:vD1	-1.125
tA1:pB1:cC1	1.875
tA1:pB1:vD1	4.125
tA1:cC1:vD1	-1.625
pB1:cC1:vD1	-2.625
tA1:pB1:cC1:vD1	1.375

Tabela 2 – Efeitos nas variáveis

Os efeitos mais importantes são A, C, D e as interações AC e AD, e por isso poucas variáveis são influentes e a maioria são insignificantes, de acordo com a Figura 1.

Figura 1 – Half normal dos principais efeitos nas variáveis

Em seguida, podemos observar o mesmo método, usando a medida ME (Erro Marginal), e o teste de significância dos efeitos, também utilizando o método de Lenth, observados na Figura 2 e Tabela 3, considerando 5% (p-value < 0,05).

Figura 2 – Pareto dos principais efeitos nas variáveis

•	effect [‡]	Lenth_PSE [‡]	t.ratio ‡	p.value [‡]	simult.pval [‡]
Α	21.625	2.625	8.238	0.0005	0.0034
AC	-18.125	2.625	-6.905	0.0008	0.0060
AD	16.625	2.625	6.333	0.0011	0.0090
D	14.625	2.625	5.571	0.0018	0.0157
С	9.875	2.625	3.762	0.0090	0.0791
ABD	4.125	2.625	1.571	0.1252	0.7608
В	3.125	2.625	1.190	0.2243	0.9633
BCD	-2.625	2.625	-1.000	0.2973	0.9929
ВС	2.375	2.625	0.905	0.3406	0.9989
ABC	1.875	2.625	0.714	0.4503	1.0000
ACD	-1.625	2.625	-0.619	0.5718	1.0000
ABCD	1.375	2.625	0.524	0.6311	1.0000
CD	-1.125	2.625	-0.429	0.6939	1.0000
BD	-0.375	2.625	-0.143	0.8945	1.0000
AB	0.125	2.625	0.048	0.9652	1.0000

Tabela 3 – Principais efeitos nas variáveis usando teste t

Os gráficos da Figura 3 demonstram que A, C e D possuem efeitos significativos e os gráficos da Figura 4 demonstram que AC e AD possuem interações significativas, e poderão ser considerados na análise.

Figura 3 – Gráficos de efeitos principais

Figura 4 – Gráficos de interação entre as variáveis

O gráfico de cubo demonstra a previsão em cada combinação dos níveis experimentais e **um ponto ótimo de 102**, de acordo com a Figura 5.

Figura 5 – Valores para otimização do modelo

Gerando o modelo linear completo, não consegui os valores dos erros porque não há réplicas no experimento. Portanto modifiquei a regressão para um modelo reduzido, utilizando uma equação de terceira ordem e obtive o modelo $y = 70 + 10,81x_1 - 9,06x_1x_3$ levando em conta o nível de significância de 5% (p-value < 0,05) ou $y = 70 + 10,81x_1 + 4,94x_3 + 7,3x_4 - 9,06x_1x_3 + 8,3x_1x_4$, levando em conta o nível de significância de 10% (p-value < 0,10).

Coefficients	5:						
	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	70.0625	0.6875	101.909	0.00625	sk sk		
tA1	10.8125	0.6875	15.727	0.04042	sk		
pB1	1.5625	0.6875	2.273	0.26388			
cc1	4.9375	0.6875	7.182	0.08808			
VD1	7.3125	0.6875	10.636	0.05968			
tA1:pB1	0.0625	0.6875	0.091	0.94228			
tA1:cC1	-9.0625	0.6875	-13.182	0.04820	ske		
tA1:vD1	8.3125	0.6875	12.091	0.05253			
pB1:cC1	1.1875	0.6875	1.727	0.33410			
pB1:vD1	-0.1875	0.6875	-0.273	0.83050			
cC1:vD1	-0.5625	0.6875	-0.818	0.56345			
tA1:pB1:cC1	0.9375	0.6875	1.364	0.40282			
tA1:pB1:vD1	2.0625	0.6875	3.000	0.20483			
tA1:cC1:vD1	-0.8125	0.6875	-1.182	0.44707			
pB1:cC1:vD1	-1.3125	0.6875	-1.909	0.30718			
Signif. code	es: 0 '**	*' 0.001 '	**' 0.01	'*' 0.05	'.' 0.1 ' ' 1		
Residual standard error: 2.75 o <u>n 1 degrees of freedom</u>							
Multiple R-S F-statistic					ed: 0.9802		
. Scaristic	. 200 01	. 1 1	., p v	0.10			

Figura 6 – Coeficientes de regressão

Após realizar a análise de variância desse modelo, obtive os mesmos resultados, demonstrando novamente que a variável A e a interação AC são as mais significativas considerando significância de 5% (p-value < 0,05) para o modelo, observados na Figura 7.

					- / - \				_	-
				F value		_				
tA	1	1870.6	1870.6	247.347	0.0404	sk.				
рв	1	39.1	39.1	5.165	0.2639					
CC	1	390.1	390.1	51.579	0.0881					
VD	1	855.6	855.6	113.132	0.0597					
tA:pB	1	0.1	0.1	0.008	0.9423					
tA:cC	1	1314.1	1314.1	173.760	0.0482	skr				
tA:vD	1	1105.6	1105.6	146.190	0.0525					
pB:cC	1	22.6	22.6	2.983	0.3341					
pB:vD		0.6	0.6	0.074	0.8305					
cC:vD	1	5.1	5.1	0.669	0.5635					
tA:pB:cC	1	14.1	14.1	1.860	0.4028					
tA:pB:vD	1	68.1	68.1	9.000	0.2048					
tA:cC:vD	1	10.6	10.6	1.397	0.4471					
pB:cC:vD	1	27.6	27.6	3.645	0.3072					
Residuals	1	7.6	7.6							
Signif. cod	les:	0 '***	0.001	'**' 0.0	01 '*'	0.05	·. '	0.1	1	L

Figura 7 – ANOVA

Agora podemos visualizar os gráficos de contorno e de superfície nas Figuras 8 e 9, que mostram as interações AD, e o ponto de otimização máxima que já foi informado antes.

Figura 8 – Gráfico de contorno com interação AD

Figura 9 – Gráfico de superfície com interação AD

Exercício 5

Conforme solicitado, fiz o planejamento fracionário com meia fração 2^{4-1} , e isso significa que teremos apenas 8 corridas para simplificação do experimento. A Tabela 1 demonstra a organização do planejamento codificado, contendo os valores da resposta.

•	tA [‡]	pB [‡]	cC ‡	v D [‡]	y
1	-1	-1	-1	-1	45
2	1	-1	-1	1	100
3	-1	1	-1	1	45
4	1	1	-1	-1	65
5	-1	-1	1	1	75
6	1	-1	1	-1	60
7	-1	1	1	-1	80
8	1	1	1	1	96

Tabela 1 – Planejamento fracionário codificado

Após submeter os dados ao planejamento, percebemos que nossa constante é I = AA = BB = CC = DD e o gerador é D = ABC. A partir da constante e do gerador, podemos definir a estrutura de confundimento completa, multiplicando o gerador por D para conseguirmos a **relação definidora** I = ABCD, que é a constante confundida com a interação de quarta ordem.

A constante e termos principais estão confundidos com interações de terceira ordem, ou seja, A+BCD é igual a 1+3=4, e os efeitos de segunda ordem confundidos com interações de segunda ordem, ou seja, AB+CD é igual a 2+2=4. Portanto, **a resolução** é **de IV** ou 2_{IV}^{4-1} . A Figura 1 demonstra a estrutura de confundimento comentada.

```
Design generating information:
[1] A=tA B=pB C=cC D=vD
$generators
[1] D=ABC
Alias structure:
                                   tA = pB:cC:vD
$main
                                   pB = tA:cC:vD
[1] A=BCD B=ACD C=ABD D=ABC
                                   cC = tA:pB:vD
                                   VD = tA:pB:cC
$fi2
                                   tA:pB = cC:vD
[1] AB=CD AC=BD AD=BC
                                   tA:cC = pB:vD
                                   tA:vD = pB:cC
```

Figura 1 – Estrutura de confundimento completa

Os gráficos da Figura 2 demonstram que A, C e D possuem efeitos significativos e os gráficos da Figura 3 demonstram que AC e AD possuem interações significativas, e poderão ser considerados na análise.

Figura 2 – Gráficos de efeitos principais

Figura 3 – Gráficos de interação entre as variáveis

O gráfico de cubo demonstra a previsão em cada combinação dos níveis experimentais e **um ponto ótimo de 100** em sua otimização, de acordo com a Figura 4.

Figura 4 – Valores para otimização do modelo

Nessa etapa, utilizei novamente o método de Lenth, e consegui os valores dos efeitos similares aos já encontrados e observamos que as variáveis A, C, D e as interações entre AC e AD possuem valores mais significativos, de acordo com a Tabela 2.

_	V1
(Intercept)	141.5
tA1	19.0
cC1	14.0
vD1	16.5
tA1:cC1	-18.5
tA1:vD1	19.0
cC1:vD1	-1.0
tA1:cC1:vD1	1.5

Tabela 2 – Efeitos usando o método Lenth

Ao plotar os gráficos conforme a Figura 5, percebi que o método de Lenth demonstrou apenas a variável A como significativa e todo o restante desprezíveis. Talvez por esse método ser mais rigoroso, obtive a equação $y = 70 + 9.5_{x1}$. Para escolha dos coeficientes, decidi que trabalharia com a regressão linear para obter uma equação mais conservadora.

Figura 5 – Half normal (esquerda) e Pareto (direita) dos principais efeitos das variáveis

Finalmente para diversificar a análise, fiz a regressão em um modelo completo e obtive os coeficientes sem o erro, e limitei os termos para até segunda ordem. Com isso consegui encontrar os erros padrão e percebi que todos os coeficientes eram insignificantes considerando 5% de acordo com a Figura 6, apenas se considerarmos 10% eles entrariam.

```
coefficients:
           Estimate Std. Error t value Pr(>|t|)
              70.75
(Intercept)
                        0.75 94.333 0.00675 **
tA1
               9.50
                         0.75 12.667
                                       0.05016 .
cc1
               7.00
                         0.75
                                9.333
                                       0.06795
                         0.75 11.000
VD1
               8.25
                                       0.05772
                         0.75 -12.333
tA1:cC1
              -9.25
                                       0.05151 .
tA1:vD1
                         0.75 12.667
              9.50
                                       0.05016
cc1:vD1
              -0.50
                         0.75
                               -0.667 0.62567
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.121 on 1 degrees of freedom
Multiple R-squared: 0.9985,
                              Adjusted R-squared:
                                                   0.9897
F-statistic: 113.6 on 6 and 1 DF, p-value: 0.0717
```

Figura 6 – Regressão linear limitada até segunda ordem

Após essa análise, reduzi o modelo utilizando abordagem de retirada de termos de forma hierárquica, observando quais termos tinham menor relevância, que nessa análise era a interação CD, visto na Figura 7. Percebemos que agora poderemos usar os coeficientes A, C, D, AC e AD que se ajustam a uma taxa de 99% em R^2 ajustado e a realização da análise de variância também comprovam esses valores conforme a Figura 8. Com isso temos a equação y = 70 + 9, $5_{x1} + 7_{x3} + 8.25_{x4} - 9.25_{x1x3} + 9.5_{x1x4}$.

```
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                        0.6374 111.00 8.11e-05 ***
(Intercept) 70.7500
                        0.6374
TA1
             9.5000
                               14.90 0.00447 **
                                       0.00819 **
cc1
            7.0000
                        0.6374
                               10.98
            8.2500
                        0.6374
                               12.94
                                       0.00592 **
VD1
tA1:cC1
            -9.2500
                        0.6374
                               -14.51
                                       0.00471 **
                               14.90 0.00447 **
                        0.6374
            9.5000
tA1:vD1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.803 on 2 degrees of freedom
Multiple R-squared: 0.9979, Adjusted R-squared:
F-statistic: 188.6 on 5 and 2 DF, p-value: 0.005282
```

Figura 7 – Regressão linear reduzida de forma hierárquica

```
Df Sum Sq Mean Sq F value Pr(>F)
            1 722.0
                      722.0
                               222.2 0.00447 **
tΑ
                               120.6 0.00819 **
CC
            1 392.0
                       392.0
            1 544.5
                               167.5 0.00592 **
                       544.5
VD
               684.5
                       684.5
                               210.6 0.00471 **
tA:cC
              722.0
                               222.2 0.00447 **
                       722.0
tA:VD
            1
Residuals
                 6.5
                        3.3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Figura 8 – ANOVA

Visualizamos na Figura 9, o gráfico de normalidade dos resíduos e com isso concluir que os dados estão normalmente distribuídos em torno da reta. Também foi realizado o teste de Shapiro-wilk com valor de 0,2913 (p-value > 0,05), portanto, atendendo a premissa de que os dados são normalmente distribuídos.

Figura 9 – Normalidade dos resíduos

Com isso, nosso modelo se ajustou em 99,3% considerando R^2 ajustado.

Portanto, se compararmos esse modelo de regressão reduzido, ele parece ser melhor que o modelo do exercício 4, que tem ajuste de 98%. Mas o que diferencia os modelos de forma interessante, são os números de variáveis que serão utilizadas, e a princípio o método de Lenth nos mostrou bem mais simplificado e isso pode ser um problema. Posteriormente, a regressão usando planejamento fracionário foi mais conservadora, aumentando bastante o número de termos.

Acredito que o modelo utilizando fatorial do exercício 4, seja mais eficiente, pois apesar do ajuste ser um pouco menor, nossa **resolução IV** acarretará em muita perda de informação.

Exercício 6-A

Conforme solicitado, fiz o planejamento fracionário com meia fração 2^{5-1} , e isso significa que teremos 16 corridas para simplificação do experimento. A Tabela 1 demonstra a organização do planejamento codificado, contendo os valores da resposta.

^	A	B	c ‡	D	E	y
1	-1	-1	-1	-1	1	8
2	1	-1	-1	-1	-1	9
3	-1	1	-1	-1	-1	34
4	1	1	-1	-1	1	52
5	-1	-1	1	-1	-1	16
6	1	-1	1	-1	1	22
7	-1	1	1	-1	1	45
8	1	1	1	-1	-1	60
9	-1	-1	-1	1	-1	6
10	1	-1	-1	1	1	10
11	-1	1	-1	1	1	30
12	1	1	-1	1	-1	50
13	-1	-1	1	1	1	15
14	1	-1	1	1	-1	21
15	-1	1	1	1	-1	44
16	1	1	1	1	1	63

Tabela 1 – Planejamento fracionário codificado

Após submeter os dados ao planejamento, percebemos que nossa constante é I = AA = BB = CC = DD = EE e o gerador é E = ABCD. A partir da constante e do gerador, podemos definir a estrutura de confundimento completa, multiplicando o gerador por D para conseguirmos a **relação definidora** I = ABCDE, que é a constante confundida com a interação de quinta ordem.

A constante e termos principais estão confundidos com interações de quarta ordem, ou seja, A+BCDE é igual a 1+4=5, e os efeitos de segunda ordem confundidos com interações de terceira ordem, ou seja, AB+CDE é igual a 2+3=5. Portanto, **a resolução** é **de V** ou 2_V^{5-1} . A Figura 1 demonstra a estrutura de confundimento comentada.

```
Design generating information:
$legend
[1] A=A B=B C=C D=D E=E

$generators
[1] E=ABCD

Alias structure:
$fi2
[1] AB=CDE AC=BDE AD=BCE AE=BCD BC=ADE BD=ACE BE=ACD CD=ABE CE=ABD DE=ABC
```

Figura 1 – Estrutura de confundimento completa

Os gráficos da Figura 2 demonstram que A, B e C possuem efeitos significativos e os gráficos da Figura 3 demonstra que AB possui interação significativa, e poderão ser considerados na análise.

Figura 2 – Gráficos de efeitos principais

Figura 3 – Gráficos de interação entre as variáveis

O gráfico de cubo demonstra a previsão em cada combinação dos níveis experimentais e **um ponto ótimo de 61,5** em sua otimização, de acordo com a Figura 4.

Figura 4 – Valores para otimização do modelo

Nessa etapa, utilizei novamente o método de Lenth, e consegui os valores dos efeitos similares aos já encontrados e observamos que as variáveis A, B, C e a interação entre AB possuem valores mais significativos, de acordo com a Tabela 2.

*	V1 [‡]
(Intercept)	60.625
A1	11.125
B1	33.875
C1	10.875
D1	-0.875
E1	0.625
A1:B1	6.875
A1:C1	0.375
B1:C1	0.625
A1:D1	1.125
B1:D1	-0.125
C1:D1	0.875
A1:E1	1.125
B1:E1	-0.125
C1:E1	0.375
D1:E1	-1.375

Tabela 2 – Efeitos usando o método Lenth

Ao plotar os gráficos conforme a Figura 5, percebi que o método de Lenth demonstrou as variáveis A, B, C e interação AB como significativas, e todo o restante desprezíveis. Talvez por esse método ser mais rigoroso, decidi que trabalharia com a regressão linear para obter a equação, mas nesse momento poderíamos obter a equação $y = 70 + 9.5_{x1}$.

Figura 5 – Half normal (esquerda) e Pareto (direita) dos principais efeitos das variáveis

Finalmente para diversificar a análise, fiz a regressão em um modelo completo e obtive os coeficientes sem o erro, e limitei os termos para até segunda ordem. Com isso consegui encontrar os erros padrão e percebi que a maioria dos coeficientes eram significantes considerando 5% (p-value < 0,05) de acordo com a Figura 6.

```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.3125
                        0.0625
                                  485 4.25e-06 ***
                        0.0625
                                    89 0.000126 ***
             5.5625
                                   271 1.36e-05 ***
B1
            16.9375
                        0.0625
                                   87 0.000132 ***
             5.4375
C1
                        0.0625
                                    -7 0.019804 *
             -0.4375
D1
                        0.0625
             0.3125
                        0.0625
                                    5 0.037750 *
A1:B1
             3.4375
                        0.0625
                                    55 0.000330 ***
                                   3 0.095466 .
A1:C1
             0.1875
                        0.0625
A1:D1
             0.5625
                        0.0625
                                     9 0.012122
                                    9 0.012122 *
             0.5625
                        0.0625
A1:E1
B1:C1
             0.3125
                        0.0625
                                    5 0.037750 *
             0.4375
                        0.0625
                                     7 0.019804
C1:D1
C1:E1
             0.1875
                        0.0625
                                     3 0.095466
                                   -11 0.008163 **
D1:E1
             -0.6875
                        0.0625
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.25 on 2 degrees of freedom
Multiple R-squared:
                        1,
                               Adjusted R-squared:
F-statistic: 7108 on 13 and 2 DF, p-value: 0.0001407
```

Figura 6 – Regressão linear limitada até segunda ordem

Após essa análise, reduzi o modelo utilizando abordagem de retirada de termos de forma hierárquica, observando quais termos tinham menor relevância, que nessa análise eram as variáveis D e E, e as interações AC, AD, AE, BC, CD, CE, DE, visto na Figura 7. Percebe-se que agora poderemos usar os coeficientes A, B, C e AB considerando uma significância de 99% (p-value < 0.01) conforme mostra a análise de variância na Figura 8. Com isso temos a equação $y = 30,31 + 5,56_{x1} + 16,94_{x2} + 5,44_{x3} + 3,44_{x1x2}$ e com ajuste de 99% considerando o R^2 ajustado.

```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        0.4045 74.936 6.79e-14 ***
(Intercept) 30.3125
             5.5625
                        0.4045
                                13.751 2.39e-07 ***
                                41.872 1.26e-11 ***
            16.9375
                        0.4045
В1
                        0.4045 13.442 2.91e-07 ***
C1
             5.4375
D1
             -0.4375
                        0.4045
                                -1.082
                                          0.308
F1
             0.3125
                        0.4045
                                 0.773
                                          0.460
A1:B1
             3.4375
                        0.4045
                                 8.498 1.36e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.618 on 9 degrees of freedom
Multiple R-squared: 0.9959, Adjusted R-squared:
F-statistic: 366.2 on 6 and 9 DF, p-value: 3.142e-10
```

Figura 7 – Regressão linear reduzida de forma hierárquica

```
Df Sum Sq Mean Sq
                              F value
                                        Pr(>F)
                         495
                              189.095 2.39e-07 ***
В
            1
                 4590
                        4590 1753.233 1.26e-11 ***
                         473 180.692 2.91e-07 ***
C
            1
                 473
                 3
                         3
D
                               1.170
                                      0.308
                                0.597
                                         0.460
F
            1
                   2
                           2
                               72.215 1.36e-05 ***
A:B
                 189
                         189
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figura 8 - ANOVA

Visualizamos na Figura 9, o gráfico de normalidade dos resíduos e com isso concluir que os dados estão normalmente distribuídos em torno da reta. Também foi realizado o teste de Shapiro-wilk com valor de 0,1093 (p-value > 0,05), portanto, atendendo a premissa de que os dados são normalmente distribuídos.

Figura 9 – Normalidade dos resíduos

Agora podemos visualizar os gráficos de contorno e de superfície nas Figuras 10 e 11, que mostram as interações da temperatura e da velocidade de agitação, e o ponto de otimização máxima que já foi informado antes.

Figura 10 – Gráfico de contorno com interação AB

Figura 11 – Gráfico de superfície com interação AB

Exercício 6-B

Sim, é possível simplificar o fatorial em duas replicadas de um fatorial 2^3 , e seguiremos com o planejamento considerando apenas as variáveis A, B e C que foram mais significativas no planejamento 2^{5-1} . Com 16 corridas. A Tabela 1 demonstra a organização do planejamento, contendo os valores da resposta. A coluna "Blocks" é gerada de forma automática pelo R, e não utilizaremos blocagem nesse estudo.

*	A	₿	c ‡	Blocks [‡]	y
1	-1	-1	-1	.1	8
2	1	-1	-1	.1	9
3	-1	1	-1	.1	34
4	1	1	-1	.1	52
5	-1	-1	1	.1	16
6	1	-1	1	.1	22
7	-1	1	1	.1	45
8	1	1	1	.1	60
9	-1	-1	-1	.2	6
10	1	-1	-1	.2	10
11	-1	1	-1	.2	30
12	1	1	-1	.2	50
13	-1	-1	1	.2	15
14	1	-1	1	.2	21
15	-1	1	1	.2	44
16	1	1	1	.2	63

Tabela 1 – Planejamento fatorial codificado

Ao plotar os gráficos conforme a Figura 1, percebi que o método de Lenth, que utiliza a medida ME (Erro Marginal) demonstraram que as variáveis A, B, C e a interação AB são significativas considerando 5% (p-value < 0,05), e todo o restante são desprezíveis.

Figura 1 – Half normal (esquerda) e Pareto (direita) dos principais efeitos das variáveis

Utilizei o método Lenth para cálculo dos efeitos, proposto pelo professor Russel V. Lenth e em seguida, calculei os efeitos de cada variável para obter os valores informados na Tabela 2, na coluna V1.

^	V1 ‡
(Intercept)	60.625
A1	11.125
B1	33.875
C1	10.875
A1:B1	6.875
A1:C1	0.375
B1:C1	0.625
A1:B1:C1	-1.375

Tabela 2 – Efeitos nas variáveis

Os gráficos da Figura 2 demonstram que as variáveis A, B e C possuem efeitos significativos e os gráficos da Figura 3 demonstram que AB possui interação significativa, e poderão ser considerados na análise.

Figura 2 – Gráficos de efeitos principais

Figura 3 – Gráficos de interação entre as variáveis

O gráfico de cubo demonstra a previsão em cada combinação dos níveis experimentais e **um ponto ótimo de 61,5** em sua otimização, de acordo com a Figura 4.

Figura 4 – Valores para otimização do modelo

Gerando o modelo linear completo e reduzido posteriormente, ambos trouxeram os mesmos coeficientes. Com isso, obtive o modelo $y = 30, 31 + 5, 56x_1 + 16, 94x_2 + 5,44x_3 + 3,44x_1x_2$ levando em conta o nível de significância de 5% (p-value < 0,05) com ajuste de 99% considerando R^2 ajustado de acordo coma Figura 5.

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
             30.3125
                         0.3802
                                 79.734 6.83e-13
              5.5625
                         0.3802
                                 14.632 4.67e-07
В1
             16.9375
                         0.3802
                                 44.552 7.11e-11
C1
              5.4375
                         0.3802
                                  14.303
                                         5.57e-07
A1:B1
              3.4375
                         0.3802
                                   9.042 1.79e-05 ***
                         0.3802
A1:C1
              0.1875
                                   0.493
B1:C1
              0.3125
                         0.3802
                                   0.822
                                            0.435
A1:B1:C1
             -0.6875
                         0.3802
                                  -1.808
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 1.521 on 8 degrees of freedom
Multiple R-squared: 0.9968,
                                Adjusted R-squared:
F-statistic: 355.6 on 7 and 8 DF, p-value: 2.454e-09
```

Figura 5 – Coeficientes de regressão

Após realizar a análise de variância desse modelo, obtive os mesmos resultados, demonstrando novamente que a variável A, B, C e a interação AB são as mais significativas considerando 5% (p-value < 0,05) para o modelo, observados na Figura 6.

```
Sum Sa Mean Sa
                                F value
                                           Pr(>F)
                                214.081 4.67e-07
                  495
                           495
                          4590 1984.892 7.11e-11 ***
В
             1
                  4590
C
                   473
                           473
                                204.568 5.57e-07
A:B
                   189
                                 81.757 1.79e-05 ***
                                  0.243
                                            0.635
                                  0.676
                                            0.435
A:B:C
                                  3.270
                                            0.108
Residuals
                    18
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Figura 6 - ANOVA

Visualizamos na Figura 7, o gráfico de normalidade dos resíduos e com isso conclui-se que os dados estão normalmente distribuídos em torno da reta. Também foi realizado o teste de Shapiro-wilk com valor de 0,7583 (p-value > 0,05), portanto, atendendo a premissa de que os dados são normalmente distribuídos.

Figura 7 – Normalidade dos resíduos

Agora podemos visualizar os gráficos de contorno e de superficie nas Figuras 8 e 9, que mostram as interações AB, e o ponto de otimização máxima que já foi informado antes.

Figura 8 – Gráfico de contorno com interação AB

Figura 9 – Gráfico de superfície com interação AB

Exercício 7

Conforme solicitado, adicionei 4 pontos centrais ao planejamento fatorial completo de maneira codificada em valores de 0. Ficamos com um total de 20 experimentos devido ao acréscimo dos pontos centrais, de acordo com a Tabela 1.

*	tA [‡]	pB [‡]	cC ‡	v D [‡]	y
1	-1	-1	-1	-1	45
2	1	-1	-1	-1	71
3	-1	1	-1	-1	48
4	1	1	-1	-1	65
5	-1	-1	1	-1	68
6	1	-1	1	-1	60
7	-1	1	1	-1	80
8	1	1	1	-1	65
9	-1	-1	-1	1	43
10	1	-1	-1	1	100
11	-1	1	-1	1	45
12	1	1	-1	1	104
13	-1	-1	1	1	75
14	1	-1	1	1	86
15	-1	1	1	1	70
16	1	1	1	1	96
17	0	0	0	0	73
18	0	0	0	0	75
19	0	0	0	0	66
20	0	0	0	0	69

Tabela 1 – Planejamento fatorial completo com pontos centrais

Realizando a regressão e a análise de variância, observei que as variáveis A, B e C e as interações AC e AD são significativas considerando 5% (p-value < 0,05), e que **não há curvatura** em consideração aos pontos centrais (marcado em vermelho), conforme vistos na Figura 1 e Figura 2.

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                       1.1745 59.654 6.93e-12 ***
(Intercept) 70.0625
                        1.1745 9.206 1.57e-05 ***
tΑ
            10.8125
                                1.330 0.220066
             1.5625
рΒ
                        1.1745
                                 4.204 0.002980 **
CC
             4.9375
                        1.1745
                                 6.226 0.000252 ***
              7.3125
                         1.1745
VD
curvatura
             0.6875
                        2.6262 0.262 0.800102
tA:pB
             0.0625
                                 0.053 0.958865
                        1.1745
                                 -7.716 5.66e-05 ***
tA:cC
             -9.0625
                        1.1745
                        1.1745
tA:vD
             8.3125
                                 7.078 0.000104 ***
pB:cC
             1.1875
                        1.1745
                                1.011 0.341574
                        1.1745
                                -0.160 0.877117
pB:vD
             -0.1875
             -0.5625
                        1.1745
                                -0.479 0.644800
cc:vD
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.698 on 8 degrees of freedom
Multiple R-squared: 0.9695,
                              Adjusted R-squared: 0.9275
F-statistic: 23.09 on 11 and 8 DF, p-value: 7.393e-05
```

Figura 1 – Regressão linear completa

	Df	Sum Sq	Mean Sq	F value	Pr(>F)						
tA		1870.6			1.57e-05	水水水					
рВ	1	39.1	39.1	1.770	0.220066						
cc	1	390.1	390.1	17.674	0.002980	sk sk					
VD	_1	855.6	855.6	38.765	0.000252	***					
curvatura	1	1.5	1.5	0.069	0.800102						
tA:pB	1	0.1	0.1	0.003	0.958865						
tA:cC	1	1314.1	1314.1	59.540	5.66e-05	软软软					
tA:VD	1	1105.6	1105.6	50.093	0.000104	***					
pB:cC	1	22.6	22.6	1.022	0.341574						
pB:vD	1	0.6	0.6	0.025	0.877117						
cC:VD	1	5.1	5.1	0.229	0.644800						
Residuals	8	176.6	22.1								
Signif. cod	es:	0 ****	0.001	'**' 0.(01 '*' 0.0	05 '.	. '	0.1	6	,	1

Figura 2 – ANOVA

Vizualizamos na Figura 3, o gráfico de normalidade dos resíduos e com isso concluir que os dados estão normalmente distribuídos em torno da reta. Também foi realizado o teste de Shapiro-wilk com valor de 0,4915 (p-value > 0,05), portanto, atendendo a premissa de que os dados são normalmente distribuídos.

Figura 3 – Normalidade dos resíduos

Finalmente poderemos visualizar na Figura 4 todos os gráficos que comprovam a **falta de curvatura ou uma curvatura bem pequena**. A média dos pontos centrais não difere muito da média dos fatoriais, o que implica que não é importante buscarmos um coeficiente quadrático para modelar a curvatura em função das variáveis que possuímos.

Figura 4 – Análise de curvatura

Exercício 8

O melhor modelo foi informado no enunciado e seguiremos com seu uso.

$$\hat{y} = 19.8 + 2.0_{x1} + 5.0_{x2} + 2.5_{x3}$$

Para obter o caminho da máxima inclinação escolhi o fator $x_2(A)$, pois este possui o maior coeficiente em módulo. Demonstrarei como chegar no valor do passo com o cálculo deste fator em escala codificada (x_p) .

$$x_i = \frac{t - t_{médio}}{\frac{t_{interv}}{2}}$$
 $A^* = \frac{A - A_{médio}}{\frac{\Delta_{interv}}{2}}$ $\Delta A^* = \frac{3 - 2}{\frac{3 - 1}{2}}$ $\Delta A^* = 1$

Agora determinarei o deslocamento dos outros fatores (passo), em unidades codificadas.

Calculando-se 2λ a partir da equação para Δx_p , é possível calcular o passo para qualquer variável (Δx_n) , $\Delta x_p = \frac{\beta_p}{2\lambda}$.

$$\Delta A^* = \frac{\beta_p}{2\lambda}$$
 $1 = \frac{5}{2\lambda}$ $2\lambda = 5$

$$\Delta G^* = \frac{\beta_j}{2\lambda}$$
 $\Delta G^* = \frac{2.0}{5}$ $\Delta G^* = \mathbf{0}, \mathbf{4}$

$$\Delta T^* = \frac{\beta_P}{2\lambda}$$
 $\Delta T^* = \frac{2.5}{5}$ $\Delta T^* = \mathbf{0}, \mathbf{5}$

Nesse momento, converti os deslocamentos codificados de volta às unidades originais para determinar os novos níveis dos fatores, considerando as varáveis codificadas e variáveis originais. Utilizaremos os valores de origem, o Δ e cada adição de passo em uma tabela.

$$A^* = \frac{A - A_{m\acute{e}dio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta A^* = \frac{\Delta A}{\frac{3-1}{2}} \qquad 1 = \frac{\Delta A}{\frac{3-1}{2}} \qquad \Delta A = 1 \ (g \ L^{-1})$$

$$G^* = \frac{G - Gmedio}{\frac{\Delta_{interv}}{2}} \qquad \Delta G^* = \frac{\Delta G}{\frac{60-20}{2}} \qquad 0, 4 = \frac{\Delta G}{20} \qquad \Delta G = 8 \ (g \ L^{-1})$$

$$T^* = \frac{T - T_{m\acute{e}dio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta T^* = \frac{\Delta T}{\frac{0,08-0,02}{2}} \qquad 0, 5 = \frac{\Delta T}{0,03} \qquad \Delta T = 0, 015 \ (mg \ L^{-1})$$

Nessa etapa calculei os deslocamentos para as variáveis de acordo com a Tabela 1. Para cada passo, andaremos 1 g L^{-1} em Asparagina, 8 g L^{-1} em Glicose e 0,015 mg L^{-1} em Tiamina.

	variáveis codificadas			variáveis originais			
Etapas	G*	A*	T*	G	Α	Т	
Origem	0	0	0	40	2	0,05	
Δ	0,4	1	0,5	8	1	0,015	
Origem + Δ	0,4	1	0,5	48	3	0,065	
Origem + 2∆	0,8	2	1	56	4	0,08	
Origem + 3∆	1,2	3	1,5	64	5	0,095	
Origem + 4∆	1,6	4	2	72	6	0,11	
Origem + 5∆	2	5	2,5	80	7	0,125	
Origem + 6∆	2,4	6	3	88	8	0,14	
Origem + 7∆	2,8	7	3,5	96	9	0,155	
Origem + 8∆	3,2	8	4	104	10	0,17	
Origem + 9∆	3,6	9	4,5	112	11	0,185	
Origem + 10Δ	4	10	5	120	12	0,2	
Origem + 11Δ	4,4	11	5,5	128	13	0,215	
Origem + 12Δ	4,8	12	6	136	14	0,23	

Tabela 1 – Deslocamentos

Exercício 9

O melhor modelo foi informado no enunciado e seguiremos com seu uso.

$$\hat{y} = 19.8 + 2.0_{x1} + 5.0_{x2} + 2.5_{x3}$$

Para obter o caminho da máxima inclinação escolhi o fator $x_1(G)$ por definição do enunciado. Demonstrarei como chegar no valor do passo com o cálculo deste fator em escala codificada (x_p) . Utilizei o deslocamento inicial como ΔG (G-Gmedio).

$$x_i = \frac{t - t_{médio}}{\frac{t_{interv}}{2}} \qquad G^* = \frac{G - G_{médio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta G^* = \frac{25}{\frac{60 - 20}{2}} \qquad \Delta G^* = 1, 25$$

Agora determinarei o deslocamento dos outros fatores (passo), em unidades codificadas.

Calculando-se 2λ a partir da equação para Δx_p , é possível calcular o passo para qualquer variável (Δx_n) , $\Delta x_p = \frac{\beta_p}{2\lambda}$.

$$\Delta G^* = \frac{\beta_p}{2\lambda}$$
 $1,25 = \frac{2,0}{2\lambda}$ $2\lambda = 1,6$

$$\Delta A^* = \frac{\beta_j}{2\lambda}$$
 $\Delta A^* = \frac{5}{1.6}$ $\Delta A^* = 3,125$

$$\Delta T^* = \frac{\beta_P}{2\lambda}$$
 $\Delta T^* = \frac{2.5}{1.6}$ $\Delta T^* = 1,5625$

Nesse momento, converti os deslocamentos codificados de volta às unidades originais para determinar os novos níveis dos fatores, considerando as varáveis codificadas e variáveis originais. Utilizaremos os valores de origem, o Δ e cada adição de passo em uma tabela.

$$G^* = \frac{G - Gmedio}{\frac{\Delta_{interv}}{2}} \qquad \Delta G^* = \frac{\Delta G}{\frac{60 - 20}{2}} \qquad 1,25 = \frac{\Delta G}{20} \qquad \Delta G = 25 \ (g \ L^{-1})$$

$$A^* = \frac{A - A_{médio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta A^* = \frac{\Delta A}{\frac{3-1}{2}} \qquad 3,125 = \frac{\Delta A}{1} \qquad \Delta A = 3,125 \ (g \ L^{-1})$$

$$T^* = \frac{T - T_{médio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta T^* = \frac{\Delta T}{\frac{0.08 - 0.02}{2}} \qquad 1,5625 = \frac{\Delta T}{0.03} \quad \Delta T = 0,0469 \ (mg \ L^{-1})$$

Nessa etapa calculei os deslocamentos para as variáveis de acordo com a Tabela 1. Para cada passo, andaremos $25~g~L^{-1}$ em Glicose, $3,125~g~L^{-1}$ em Asparagina e $0,0469~mg~L^{-1}$ em Tiamina.

	variá	variáveis codificadas			variáveis originais			
Etapas	G*	A*	T*	G	Α	Т		
Origem	0	0	0	40	2	0,05		
Δ	1,25	3,125	1,5625	25	3,125	0,0469		
Origem + Δ	1,25	3,125	1,5625	65	5,125	0,0969		
Origem + 2∆	2,5	6,25	3,125	90	8,25	0,1438		
Origem + 3∆	3,75	9,375	4,6875	115	11,375	0,1907		
Origem + 4∆	5	12,5	6,25	140	14,5	0,2376		
Origem + 5∆	6,25	15,625	7,8125	165	17,625	0,2845		
Origem + 6∆	7,5	18,75	9,375	190	20,75	0,3314		
Origem + 7Δ	8,75	21,875	10,9375	215	23,875	0,3783		
Origem + 8∆	10	25	12,5	240	27	0,4252		
Origem + 9∆	11,25	28,125	14,0625	265	30,125	0,4721		
Origem + 10∆	12,5	31,25	15,625	290	33,25	0,519		
Origem + 11Δ	13,75	34,375	17,1875	315	36,375	0,5659		
Origem + 12Δ	15	37,5	18,75	340	39,5	0,6128		

Tabela 1 – Deslocamentos com destaque no terceiro ponto

Após calcular as coordenadas do terceiro ponto que estão pintadas em amarelo $(Orirem + 3\Delta)$ na Tabela 1, utilizaremos os valores codificados $(G^* = 3,75, A^* = 9,375 \ e \ T^* = 4,6875)$ para calcular a resposta, utilizando a equação fornecida.

$$\hat{y} = 19.8 + (2.0 * 3.75) + (5.0 * 9.375) + (2.5 * 4.6875)$$

Com isso, conclui-se que o rendimento de polissacarídeo, nas condições apresentadas foi de 85,9%.

Exercício 10

O melhor modelo foi informado no enunciado e seguiremos com seu uso.

$$\hat{y} = 30 + 5_{x1} + 2.5_{x2} + 3.5_{x3}$$

Para obter o caminho da máxima inclinação escolhi o fator $x_1(t)$, pois este possui o maior coeficiente em módulo. Demonstrarei como chegar no valor do passo com o cálculo deste fator em escala codificada (x_p) . Utilizei o passo do enunciado como Δt (t-tmedio).

$$x_i = \frac{t - t_{médio}}{\frac{t_{interv}}{2}} \qquad t^* = \frac{t - t_{médio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta t^* = \frac{5}{\frac{80 - 40}{2}} \qquad \Delta t^* = \mathbf{0}, \mathbf{25}$$

Agora determinarei o deslocamento dos outros fatores (passo), em unidades codificadas.

Calculando-se 2λ a partir da equação para Δx_p , é possível calcular o passo para qualquer variável (Δx_n) .

$$\Delta x_p = \frac{\beta_p}{2\lambda}$$
 $\Delta t^* = \frac{\beta_p}{2\lambda}$ $\Delta t^* = \frac{\beta_p}{2\lambda}$ $0.25 = \frac{5}{2\lambda}$ $2\lambda = 20$

$$\Delta T^* = \frac{\beta_j}{2\lambda}$$
 $\Delta T^* = \frac{2.5}{20}$ $\Delta T^* = \mathbf{0}, \mathbf{125}$

$$\Delta P^* = \frac{\beta_P}{2\lambda}$$
 $\Delta P^* = \frac{3.5}{20}$ $\Delta P^* = 0.175$

Nesse momento, converti os deslocamentos codificados de volta às unidades originais para determinar os novos níveis dos fatores, considerando as varáveis codificadas e variáveis originais. Utilizaremos os valores de origem, o Δ e cada adição de passo em uma tabela.

$$x_{i} = \frac{t - t_{médio}}{\frac{\Delta_{interv}}{2}}$$

$$t^{*} = \frac{t - t_{médio}}{\frac{\Delta_{interv}}{2}} \qquad 0,25 = \frac{\Delta t}{\frac{80 - 40}{2}} \qquad \Delta t = 5 min$$

$$T^{*} = \frac{T - T_{médio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta T^{*} = \frac{\Delta T}{\frac{300 - 200}{2}} \qquad 0,125 = \frac{\Delta T}{50} \qquad \Delta T = 6,25^{\circ}C$$

$$P^{*} = \frac{P - P_{médio}}{\frac{\Delta_{interv}}{2}} \qquad \Delta P^{*} = \frac{\Delta P}{\frac{50 - 20}{2}} \qquad 0,175 = \frac{\Delta P}{15} \qquad \Delta P = 2,625 \ psi$$

Observando os pontos $t=85 \, min$, $T=325^o \, C \, e \, P=60 \, psi$, podemos afirmar que eles estão no caminho do gradiente ascendente, levando em conta o grau de inclinação que encontramos nos cálculos realizados, de acordo com a Tabela 1. Para cada passo, andaremos $5 \, min$ em tempo, $6,25^o \, C$ em temperatura e 2,625 em psi.

	variáveis codificadas			variáveis originais			
Etapas	t*	T*	P*	t T		Р	
Origem	0	0	0	60	250	35	
Δ	0,25	0,125	0,175	5	6,25	2,625	
Origem + Δ	0,25	0,125	0,175	65	256,25	37,625	
Origem + 2∆	0,5	0,25	0,35	70	262,5	40,25	
Origem + 3∆	0,75	0,375	0,525	75	268,75	42,875	
Origem + 4∆	1	0,5	0,7	80	275	45,5	
Origem + 5∆	1,25	0,625	0,875	85	281,25	48,125	
Origem + 6∆	1,5	0,75	1,05	90	287,5	50,75	
Origem + 7∆	1,75	0,875	1,225	95	293,75	53,375	
Origem + 8∆	2	1	1,4	100	300	56	
Origem + 9∆	2,25	1,125	1,575	105	306,25	58,625	
Origem + 10Δ	2,5	1,25	1,75	110	312,5	61,25	
Origem + 11Δ	2,75	1,375	1,925	115	318,75	63,875	
Origem + 12Δ	3	1,5	2,1	120	325	66,5	

Tabela 1 – Análise de gradiente ascendente