Листок 03. Задача классификации

Н.В. Артамонов

29 ноября 2024 г.

Содержание

L	Логистическая регрессия. SVM	1
2	k-NN	4
3	Валидация моделей	5

1 Логистическая регрессия. SVM

#1. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
male	sleep, totwrk, age, south

- 1. Подгоните логистическую регрессию и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south
0	2900	2160	32	1
1	3120	1720	24	0
2	2850	2390	44	0

вычислите прогноз для male

#2. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
male	sleep, totwrk, age, south

- 1. Подгоните модель SVM и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south
0	2900	2160	32	1
1	3120	1720	24	0
2	2850	2390	44	0

вычислите прогноз для male

#3. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
smsa	sleep, totwrk, age, south, male, yngkid, marr

- 1. Подгоните логистическую регрессию и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south	male	yngkid	marr
0	2900	2150	37	0	1	0	1
1	3120	1950	28	1	1	1	0
2	2850	2240	26	0	0	0	0

вычислите прогноз для **smsa**

#4. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
smsa	sleep, totwrk, age, south, male, yngkid, marr

1. Подгоните модель SVM и выведите коэффициенты подогнанной модели

2. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south	male	yngkid	marr
0	2900	2150	37	0	1	0	1
1	3120	1950	28	1	1	1	0
2	2850	2240	26	0	0	0	0

вычислите прогноз для **smsa**

#5. Для набора данных default рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
default	age, income, ownrent, selfempl

- 1. Подгоните логистическую регрессию и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	age	income	ownrent	selfempl
0	37	2000	0	1
1	42.5	5250	1	0
2	29	2916	0	0

вычислите прогноз для default

#6. Для набора данных default рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
default	age, income, ownrent, selfempl

- 1. Подгоните модель SVM и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	age	income	ownrent	selfempl
0	37	2000	0	1
1	42.5	5250	1	0
2	29	2916	0	0

вычислите прогноз для default

2 k-NN

#1. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
male	sleep, totwrk, age, south

Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south
0	2900	2160	32	1
1	3120	1720	24	0
2	2850	2390	44	0

Постройте прогноз для **male** методом k-NN с параметрами

No	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

#2. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
smsa	sleep, totwrk, age, south, male, yngkid, marr

Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south	male	yngkid	marr
0	2900	2150	37	0	1	0	1
1	3120	1950	28	1	1	1	0
2	2850	2240	26	0	0	0	0

Постройте прогноз для **smsa** методом k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

#3. Для набора данных default рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
default	age, income, ownrent, selfempl

Рассмотрим трёх людей с характеристиками

index	age	income	ownrent	selfempl
0	37	2000	0	1
1	42.5	5250	1	0
2	29	2916	0	0

Постройте прогноз для default методом k-NN с параметрами

No॒	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

3 Валидация моделей

#1. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
male	sleep, totwrk, age, south

и следующие модели

$N_{\overline{0}}$	Модель
1	Логистическая регрессия
2	SVM
3	k-NN с $k = 5$, веса 'uniform'
4	k-NN с $k = 5$, веса 'distance'
5	k-NN с $k = 10$, веса 'uniform'
6	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик Accuracy, ROC. Какая модель предпочтительней?

#2. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
smsa	sleep, totwrk, age, south, male, yngkid, marr

и следующие модели

No॒	Модель
1	Логистическая регрессия
2	SVM
3	k-NN с $k = 5$, веса 'uniform'
4	k-NN с $k = 5$, веса 'distance'
5	k-NN с $k = 10$, веса 'uniform'
6	k-NN c $k = 10$, Beca 'distance'

Проведите валидацию моделей относительно метрик Accuracy, ROC. Какая модель предпочтительней?

#3. Набор данных **default** разбейте на обучающую и тестовую часть в соотношении $80{:}20$.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
smsa	sleep, totwrk, age, south, male, yngkid, marr

и следующие модели

$N_{\overline{0}}$	Модель
1	Логистическая регрессия
2	SVM
3	k-NN с $k = 5$, веса 'uniform'
4	k-NN с $k = 5$, веса 'distance'
5	k-NN с $k = 10$, веса 'uniform'
6	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик Accuracy, ROC. Какая модель предпочтительней?