Define these words that we'll need to understand population genetics:
Allele
Biallelic
Homozygous
Heterozygous
Dominant
Recessive
Penetrance
Polygenic trait
Ancestry
Genetic locus
Recombination
Allele Frequency
Haplotype
Linkage (genetic)
Linkage disequilibrium
Neutral mutation

	Allele Frequencies					
Gene	Population I		Population 1			
	1	2	1	2		
_						
A	0.8	0.2	0.2	0.8		
B	0.8	0.2	0.2	0.8		
C	0.8	0.2	0.2	0.8		

Given this population data on these three alleles, how would you go about identifying which population a person most likely belonged to? What do you predict would happen in a person from population I and a person from population II had a child?

These are the results of a testcross.

In cross 1: you cross female heterozygotes of gene *A*, *B*, and *C* with homozygous recessive males.

You get the following flies:

Genotype	Number of flies
$A \bullet B \bullet C$	625
a•b•c	620
A•B•c	5
A•b•C	76
A•b•c	45
a•B•C	40
a•B•c	73
a•b•C	7

Draw a map with the appropriate distances between A, B, and C.

In cross 2: you cross female heterozygotes of gene A, B, and D with homozygous recessive males.

You get the following flies:

Genotype	Number of flies
A•B•D	527
a•b•d	528
A•B•d	530
a•b•D	525
A•b•D	97
A•b•d	99
a•B•D	98
a•B•d	99

Add gene D to your map from the 1^{st} cross.

	SI	NP 1	number	
1	2	3	4	5
A	T	G-	-T	T
T	T	G-	-T	T
A	A	G-	-T	А
T	T	G-	-T	А
A	T	G-	-T	A
T	T	C-	-A	T
A	A	C-	-A	A
T	A	C-	-A	A
A	T	C-	-A	T
T	_	_		_

For 1,2 and 2,3: Determine |D'|