BYM 510E – Homework 2

Due 10.03.2011

1. Let $x_c(t)$ be a continuous-time bandlimited signal whose Fourier Transform is :

Consider the system composed of a C/D converter followed by a D/C converter.

- (a) For a C/D sampling period of 2 sec $(T_1 = 2)$, find $X(e^{j\omega})$.
- (b) For a D/C sampling period of $T_2 = 1$ sec, determine $Y_c(\omega)$, the Fourier transform of $y_c(t)$.
- 2. Consider the following system

which samples a continuous-time signal and then applies an LTI system (denoted by S) to the resulting discrete-time signal x(n). Suppose that $X_c(\omega)$, the Fourier transform of $x_c(t)$ is given as

Suppose also that $H(e^{j\omega})$, the frequency response of the system S is given by,

- (a) Determine and sketch $X(e^{j\omega})$, the DTFT of x(n).
- (b) Determine and sketch $Y(e^{j\omega})$, the DTFT of y(n).

- 3. Compute the DFTs of the following length-N signals (where N is even).
 - (a) $x(n) = \delta(n)$ for $0 \le n \le N 1$
 - (b) $x(n) = \delta(n-m)$ for $0 \le n \le N-1$, where $0 \le m \le N-1$

(c)
$$x(n) = \begin{cases} 1 & \text{if } n \text{ is ever} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

(d)
$$x(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$$

(c)
$$x(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

(d) $x(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd} \end{cases}$
(e) $x(n) = \begin{cases} 1 & \text{if } 0 \le n \le N/2 - 1 \\ 0 & \text{if } N/2 \le n \le N - 1 \end{cases}$

- (f) $x(n) = a^n$ for $0 \le n \le N 1$
- (g) $x(n) = \exp(j\frac{2\pi}{N} m n)$ for $0 \le n \le N 1$, where $0 \le m \le N 1$
- (h) $x(n) = \sin(\frac{2\pi}{N} m n)$ for $0 \le n \le N 1$, where $0 \le m \le N 1$
- 4. Let x(n) be a length-N signal for N even, and let X(k) denote its length-N DFT. Suppose we set y(n) = X(n) for $0 \le n \le N - 1$. Express y(n) in terms of x(n).