7. MĚŘENÍ MALÝCH A STŘEDNÍCH ODPORŮ

7.1. **Úvod**

Při měření odporu se vesměs vychází z Ohmova zákona, tedy $R_{\rm X}=U/I$. Napětí i proud je možné buď měřit samostatně (tzv. Ohmova metoda), nebo měřený odpor napájet ze zdroje definovaného proudu a měřit pouze napětí (převodníky $R \to U$ používané v multimetrech). Nejnižší odporové rozsahy u běžných multimetrů bývají stovky Ohmů. Pro měření malých odporů (řádově m Ω) se tedy evidentně nehodí, a to nejen z důvodu malého rozlišení, ale i díky pouze dvouvodičovému připojení měřeného rezistoru, kdy naměřená hodnota je rovna součtu odporu měřeného rezistoru, odporu přívodů a přechodových odporů svorek. Toto eliminuje čtyřsvorkové zapojení Ohmovy metody dle obr. 7.1. K omezení vlivu termoelektrických napětí se zde dále používá komutace napájecího proudu. Hodnota měřeného odporu se vypočte jako průměr z obou měření (před a po komutaci proudu), tj. $R_{\rm X} = (R_{\rm X1} + R_{\rm X2})/2$.

I když kvalitní multimetry čtyřsvorkové zapojení pro měření odporu umožňují, bývá i v tomto případě dosažitelná přesnost měření díky složce chyby z rozsahu horší než v případě použití Ohmovy metody měření.

Převodníky $R \to U$ používané v multimetrech pro měření středních odporů (desítky Ω až jednotky $M\Omega$) pracují obvykle na principu invertujícího zesilovače s operačním zesilovačem - viz zapojení dle obr. 7.2. Jedná se o zdroj proudu protékajícího měřeným odporem řízený referenčním napětím U_r . V případě ideálního OZ předpokládáme, že $I_{\rm IP} = I_{\rm IN} = 0$ a pak tedy platí, že proud I protékající odporem $R_{\rm N}$ je roven záporně vzatému proudu protékajícího odporem $R_{\rm X}$. Z této rovnosti a vzhledem k další vlastnosti ideálního OZ, kdy $A_{\rm U} \to \infty$ a tedy pro konečné výstupní napětí musí platit $U_{\rm D} \to 0$, je invertující vstup na stejném napětí jako vstup neinvertující a úbytek napětí na odporu $R_{\rm X}$ je roven napětí U_2 na výstupu OZ (viz podklady k přednášce 7, snímek 11). Vzhledem k tomu, že výstupní napětí OZ je vždy menší než napájecí napětí zmenšené zhruba o úbytky napětí na tranzistorech výstupního stupně OZ, je tím omezen i rozsah měřených odporů ($R_{\rm X}$ I musí být menší než dosažitelné výstupní napětí OZ).

7.2. Domácí příprava

- 7.2.1. Prostudujte si teoretický úvod
- 7.2.2. Pro měření odporu převodníkem $R \to U$ odvoď te vztah pro určení měřeného odporu a nejistoty měření.
- 7.2.3. Co omezuje rozsah měření odporu převodníkem $R \to U$ a jaká bude maximální hodnota odporu, kterou bude možné v daném zapojení, s použitým rezistorem ($R_N = 10 \text{ k}\Omega$) a vstupním napětím OZ ($U_r = 10 \text{ V}$) a napájecím napětím $\pm 15 \text{ V}$, změřit?

7.3. Úkol měření

- 7.3.1. Měření malého odporu Ohmovou metodou Sestavte měřicí obvod dle obr. 7.1. Vhodnou metodikou měření vylučte vliv termoelektrických napětí. Z naměřených hodnot napětí a proudu vypočtěte velikost neznámého odporu R_X a stanovte rozšířenou nejistotu měření (pro $k_I = 2$).
- 7.3.2. Měření malého odporu multimetrem Změřte odpor přípravku multimetrem při použití 2-svorkového a 4-svorkového připojení.

7.3.3. Měření středních odporů převodníkem $R \to U$ Sestavte převodník odpor-napětí s OZ ($U_r = 10 \text{ V}$, $R_N = 10 \text{ k}\Omega$) dle obr. 7.2 a ověřte jeho funkci. Jako odpor R_X použijte odporovou dekádu a postupným zvyšováním hodnoty ověřte, zda platí předpoklad z bodu 7.2.3 domácí přípravy.

Poznámky pro měření:

- ampérmetr je součástí nastavitelného zdroje napětí;
- komutace proudu se provádí prohozením přívodů.

7.4. Schéma zapojení

Obr. 7.1. Měření malého odporu ohmovou metodou

Obr. 7.2. Zapojení pro měření odporu převodníkem $R \to U$