

2.5. SOLUBILITIES

Unit Conversions For this subsection, the following unit conversions are applicable: $^{\circ}F = 9/5^{\circ}C + 32$. To convert cubic centimeters to cubic feet, multiply by 3.532×10^{-5} . To convert millimeters of mercury to pounds-force per square inch, multiply by 0.01934. To convert grams per liter to pounds per cubic foot, multiply by 6.243×10^{-2} .

Introduction The database containing solubilities was originally published in the International Union for Pure and Applied Chemistry (IUPAC)-National Institute of Standards and Technology (NIST) Solubility Data Series. It is available at no cost online at http://srdata.nist.gov/solubility.

The H in the following tables is the proportionality constant in Henry's law, p = Hx, where x is the mole fraction of the solute in the aqueous liquid phase; p is the partial pressure in atm of the solute in the gas phase; and H is a proportionality constant, generally referred to as Henry's constant. Values of H often have considerable uncertainty and are strong functions of temperature. To convert values of H at 25°C from atm to atm/(mol/m³), divide by the molar density of water at 25°C, which is 55,342 mol/m³. Henry's law is valid only for dilute solutions.

Additional values of Henry's constant can be found in "Environmental Simulation Program," OLI Systems, Inc., Morris Plains, N.J.; "Estimated Henry's Law Constant," EPA Online Tools for Site Assessment Calculation (http://www.epa.gov/athens/learn2model/part-two/onsite/esthenry.htm); Rolf Sander, "Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry," Air Chemistry Department, Max-Planck Institute of Chemistry, Mainz, Germany; Rolf Sander, "Modeling Atmospheric Chemistry: Interactions between Gas-Phase Species and Liquid Cloud/Aerosol Particles," Surv. Geophys. 20: 1–31, 1999 (http://www.henrys-law.org).

Table 2-20 Solubilities of Inorganic Compounds in Water at Various Temperatures*

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
1	Alu min um chlo ride	AICI 3	6H ₂ 0			69.8 6 ¹⁵ °									1
2	sulfa te	Al ₂ (SO ₄)	18H ₂ O	31.2	33.5	36.4	40.4	46.1	52.2	59.2	66.1	73.0	80.8	89.0	2
3	Am mon ium alum inu m sulfa te	(NH ₄) ₂ Al ₂ (SO ₄) ₄	24H ₂ O	2.1	4.99	7.74	10.9	14.8	20.1	26.7				109. 7 ⁹⁶ °	3
4	bica rbon ate	NH ₄ HCO		11.9	15.8	21	27								4

	Subs tanc	For mula	Solid phas	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
5	e bro mide	NH ₄ Br	e	60.6	68	75.5	83.2	91.1	99.2	107. 8	116. 8	126	135. 6	145. 6	5
6	chlo ride	NH₄ CI		29.4	33.3	37.2	41.4	45.8	50.4	55.2	60.2	65.6	71.3	77.3	6
7	chlo ropl atina te	(NH ₄) ₂ Pt Cl ₆			0.7									1.25	7
8	chro mat e	(NH ₄) ₂ Cr O ₄					40.4								8
9	chro miu m sulfa te	(NH ₄) ₂ Cr ₂ (SO ₄) ₄	24II ₂ 0			10.7 8 ²⁵ °									9
10	dich rom ate	(NH ₄) ₂ Cr ₂ O ₇					47.1 7								10
11	dihy drog en phos phit e	NH ₄ H ₂ P O ₃		171		190 ¹ 4.5°	260 ³								11
12	hydr ogen phos phat e	(NH ₄) ₂ HP O ₄				131 ¹									12
13	iodid e	NH ₄ I		154. 2	163. 2	172. 3	181. 4	190. 5	199. 6	208. 9	218. 7	228. 8		250. 3	13
14	mag nesi um phos phat e	NH ₄ MgP O ₄	6H ₂ 0	0.02		0.05 2		0.03 6	0.03	0.04	0.01 6	0.01 9			14

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
15	man gane se phos phat e	NH ₄ MnP O ₄	7H ₂ 0			0		0		0	0.00	0.00 7			15
16	nitra te	NH ₄ NO ₃		118. 3		192	241. 8	297. 0	344. 0	421. 0	499. 0	580. 0	740. 0	871. 0	16
17	oxal ate	(NH ₄) ₂ C ₂ O ₄	1H ₂ 0	2.2	3.1	4.4	5.9	8.0	10.3						17
18	perc hlor ate [†]	NH ₄ ClO ₄		11.5 6		20.8		30.5 8		39.0 5		48.1 9		57.0 1	18
19	pers ulfat e	(NH ₄) ₂ S ₂ O ₈		58.2											19
20	sulfa te	(NH ₄) ₂ SO 4		70.6	73.0	75.4	78.0	81.0		88.0		95.3		103. 3	20
21	thio cyan ate	NH ₄ CNS		119. 8	144	170	207. 7								21
22	vana date (met a)	NH ₄ VO ₃				0.48	0.84	1.32	1.78		3.05				22
23	Anti mon ious fluor ide	SbF ₃		384. 7		444. 7	563. 6								23
24	sulfi de	Sb ₂ S ₃				0.00 0175 18°									24
25	Arse nic oxid e	As ₂ O ₅		59.5	62.1	65.8	69.5	71.2		73.0		75.1		76.7	25

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
26	Arse niou s sulfi de	As ₂ S ₃		5.17 × 10 ⁻⁵ at 18°											26
27	Bari um acet ate	Ba(C ₂ H ₃ O ₂) ₂	3H ₂ 0	59	63	71									27
28	acet ate	Ba(C ₂ H ₃ O ₂) ₂	1H ₂ 0				75	79	77	74	74			75	28
29	carb onat e	BaC O ₃			0.00 16 ⁸ °	0.00 22 ¹⁸	0.00 24 at 24.2°								29
30	chlo rate	Ba(C IO ₃) ₂	1H ₂ 0	20.3 4	26.9 5	33.8 0	41.7 0	49.6 1		66.8 1		84.8 4		104. 9	30
31	chlo ride	BaCl 2	2H ₂ 0	31.6	33.3	35.7	38.2	40.7	43.6	46.4	49.4	52.4		58.8	31
32	chro mat e	BaCr O ₄		0.00 02	0.00 028	0.00 037	0.00 046								32
33	hydr oxid e	Ba(0 H) ₂	8H ₂ 0	1.67	2.48	3.89	5.59	8.22	13.1 2	20.9		101. 4			33
34	iodid e	Bal ₂	6H ₂ 0	170. 2	185. 7	203. 1	219. 6								34
35	iodid e	Bal ₂	2H ₂ 0					231. 9		247. 3		261. 0		271. 7	35
36	nitra te	Ba(NO ₃)		5.0	7.0	9.2	11.6	14.2	17.1	20.3		27.0		34.2	36
37	nitrit e	Ba(NO ₂)	1H ₂ 0			67.5						205. 8		300	37
38	oxal ate	BaC ₂ O ₄			0.00 16 ⁸ °	0.00 22 ¹⁸	0.00 24 at 24.2°								38

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
39	perc hlor ate	Ba(C IO ₄) ₂	3H ₂ 0	205. 8		289. 1		358. 7	426. 3		495. 2		562. 3		39
40	sulfa te	BaS O ₄		1.15 × 10 ⁻⁴	2.0 × 10 ⁻⁴	2.4 × 10 ⁻⁴	2.85 × 10 ⁻⁴								40
41	Bery Ilium sulfa te	BeS O ₄	6H ₂ 0				52		60.6 7						41
42	sulfa te	BeS O ₄	4H ₂ 0				43.7 8	46.7 4			62		83	100	42
43	sulfa te	BeS O ₄	2H ₂ 0									84.7 6	98	110	43
44	Bori c acid	H ₃ B O ₃		2.66	3.57	5.04	6.60	8.72	11.5 4	14.8 1	16.7 3	23.7 5	30.3 8	40.2 5	44
45	Boro n oxid e	B ₂ O 3		1.1	1.5	2.2		4.0		6.2		9.5		15.7	45
46	Bro mine	Br ₂		4.22	3.4	3.20	3.13								46
47	Cad miu m chlo ride	CdCl 2	4H ₂ 0	97.5 9	125. 1										47
48	chlo ride	CdCl 2	2½H 20	90.0 1			132. 1								48
49	chlo ride	CdCl 2	1H ₂ 0		135. 1	134. 5		135. 3		136. 5		140. 4		147. 0	49
50	cyan ide	Cd(C N) ₂				1.7 ¹⁵									50
51	hydr oxid e	Cd(OH) ₂					2.6 × 10 ⁻⁴ at 25°								51

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
52	sulfa te	CdS O ₄		76.4 8	76.0 0	76.6 0		78.5 4		83.6 8			63.1 3	60.7 7	52
53	Calc ium acet ate	Ca(C ₂ H ₃ O ₂) ₂	2H ₂ 0	37.4	36.0	34.7	33.8	33.2		32.7		33.5			53
54	acet ate	Ca(C ₂ H ₃ O ₂) ₂	1H ₂ 0										31.1	29.7	54
1	Calc ium bica rbon ate	Ca(HCO ₃) ₂		16.1 5		16.6 0		17.0 5		17.5 0		17.9 5		18.4 0	1
2	chlo ride	CaCl 2	6H ₂ 0	59.5	65.0	74.5	102								2
3	chlo ride	CaCl 2	2H ₂ 0							136. 8	141. 7	147. 0	152. 7	159	3
4	fluor ide	CaF ₂				0.00 16 ¹⁸	0.00 17 ²⁶								4
5	hydr oxid e	Ca(OH) ₂		0.18 5	0.17 6	0.16 5	0.15	0.14	0.12 8	0.11 6	0.10 6	0.09	0.08 5	0.07 7	5
6	nitra te	Ca(NO ₃)	4H ₂ 0	102. 0	115. 3	129. 3	152. 6	195. 9							6
7	nitra te	Ca(NO ₃)	3H ₂ 0					237. 5	281. 5						7
8	nitra te	Ca(NO ₃)										358. 7		363. 6	8
9	nitrit e	Ca(NO ₂)	4H ₂ 0	62.0 7		76.6 8									9
10	nitrit e	Ca(NO ₂)	2H ₂ 0							132. 6	151. 9		244. 8		10

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
11	oxal ate	CaC ₂ O ₄			6.7 × 10 ⁻⁴ at 13°	6.8 × 10 ⁻⁴ at 25°	9.5 × 10 ⁻⁴ at 50°	14 × 10 ⁻⁴ at 95°							11
12	sulfa te	CaS O ₄	2H ₂ 0	0.17 59	0.19 28		0.20 90	0.20 97		0.20 47	0.19 66			0.16 19	12
13	Carb on dioxi de, 760 mm	CO ₂		0.33 46	0.23 18	0.16 88	0.12 57	0.09 73	0.07 61	0.05 76				0	13
14	mon oxid e, 760 mm	СО		0.00 44	0.00 35	0.00 28	0.00 24	0.00 21	0.00 18	0.00 15	0.00 13	0.00 10	0.00 06	0	14
15	Cesi um chlo ride	CsCl		161. 4	174. 7	186. 5	197. 3	208. 0	218. 5	229. 7	239. 5	250. 0	260. 1	270. 5	15
16	nitra te	CsN O ₃		9.33	14.9	23.0	33.9	47.2	64.4	83.8	107. 0	134. 0	163. 0	197. 0	16
17	sulfa te	Cs ₂ SO ₄		167. 1	173. 1	178. 7	184. 1	189. 9	194. 9	199. 9	205. 0	210. 3	214. 9	220. 3	17
18	Chlo rine, 760 mm ‡	Cl ₂		1.46	0.98 0	0.71 6	0.56	0.45 1	0.38 6	0.32	0.27 4	0.21 9	0.12 5	0	18
19	Chro mic anhy drid e	CrO ₃		164. 9				174. 0	182. 1				217. 5	206. 8	19
20	Cupr io chlo ride	CuCl 2	2H ₂ 0	70.7	73.7 6	77.0	80.3 4	83.8	87.4 4	91.2		99.2		107. 9	20
21	nitra te	Cu(NO ₃)	6H ₂ 0	81.8	95.2 8	125. 1									21

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
22	nitra te	Cu(NO ₃)	3H ₂ 0					159. 8		178. 8		207. 8			22
23	sulfa te	CuS O ₄	5H ₂ O	14.3	17.4	20.7	25	28.5	33.3	40		55		75.4	23
24	sulfi de	CuS				3.3 × 10 ⁻⁵ at 18°									24
25	Cupr ous chlo ride	CuCl				1.52 25°									25
26	Ferri c chlo ride	FeCI 3		74.4	81.9	91.8			315. 1			525. 8		535. 7	26
27	Ferr ous chlo ride	FeCI 2	4H ₂ 0		64.5		73.0	77.3	82.5	88.7		100			27
28	chlo ride	FeCl 2											105. 3	105. 8	28
29	nitra te	Fe(N O ₃) ₂	6H ₂ 0	71.0 2		83.8				165. 6					29
30	sulfa te	FeS O ₄	7H ₂ 0	15.6 5	20.5 1	26.5	32.9	40.2	48.6						30
31	sulfa te	FeS O ₄	1H ₂ 0								50.9	43.6	37.3		31
32	Hydr obro mic acid, 760 mm	HBr		221. 2	210. 3	198			171. 5					130	32
33	Hydr ochl oric acid, 760 mm	HCI		82.3			67.3	63.3	59.6	56.1					33

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
34	lodin e	l ₂				0.02 9	0.04	0.05 6	0.07 8						34
35	Lead acet ate	Pb(C ₂ H ₃ O ₂) ₂	3H ₂ 0				55.0 4 ²⁵ °								35
36	bro mide	PbBr 2		0.45 54		0.85	1.15	1.53	1.94	2.36		3.34		4.75	36
37	carb onat e	PbC O ₃				0.00 011									37
38	chlo ride	PbCl 2		0.67 28		0.99	1.20	1.45	1.70	1.98		2.62		3.34	38
39	chro mat e	PbCr O ₄				7 × 10 ⁻⁶									39
40	fluor ide	PbF ₂			0.06 0	0.06 4	0.06 8								40
41	nitra te	Pb(NO ₃)		38.8	48.3	56.5	66	75	85	95		115		38.8	41
42	sulfa te	PbS O ₄		0.00 28	0.00 35	0.00 41	0.00 49	0.00 56							42
43	Mag nesi um bro mide	MgB r ₂	6H ₂ 0	91.0	94.5	96.5	99.2	101. 6	104. 1	107. 5		113. 7		120. 2	43
44	chlo ride	MgC I ₂	6H ₂ 0	52.8	53.5	54.5		57.5		61.0		66.0		73.0	44
45	hydr oxid e	Mg(OH) ₂				0.00 09 ¹⁸									45
46	nitra te	Mg(NO ₃)	6H ₂ 0	66.5 5				84.7 4					137. 0		46
47	sulfa te	MgS O ₄	7H ₂ 0		30.9	35.5	40.8	45.6							47

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
48	sulfa te	MgS O ₄	6H ₂ 0	40.8	42.2	44.5	45.3		50.4	53.5	59.5	64.2	69.0	74.0	48
49	sulfa te	MgS O ₄	1H ₂ 0									62.9		68.3	49
50	Man gano us sulfa te	MnS O ₄	7H ₂ 0	53.2 3	60.0										50
51	sulfa te	MnS O ₄	5H ₂ O		59.5	62.9	67.7 6								51
52	sulfa te	MnS O ₄	4H ₂ 0			64.5	66.4 4	68.8	72.6						52
53	sulfa te	MnS O ₄	1H ₂ 0						58.1 7	55.0	52.0	48.0	42.5	34.0	53
54	Mer curo us chlo ride	HgCl		0.00 014		0.00 02		0.00 07							54
55	Moly bdic oxid e	MoO 3	2H ₂ 0			0.13 8	0.26 4	0.47 6	0.68 7	1.20 6	2.05 5	2.10 6			55
56	Nick el chlo ride	NiCl 2	6H ₂ 0	53.9	59.5	64.2	68.9	73.3	78.3	82.2	85.2			87.6	56
57	nitra te	Ni(N O ₃) ₂	6H ₂ 0	79.5 8		96.3 1		122. 2							57
58	nitra te	Ni(N O ₃) ₂	3H ₂ 0							163. 1	169. 1		235. 1		58
59	sulfa te	NiS O ₄	7H ₂ 0	27.2 2	32		42.4 6								59
60	sulfa te	NiS O ₄	6H ₂ 0						50.1 5	54.8 0	59.4 4	63.1 7		76.7	60

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
61	Nitri c oxid e, 760 mm	NO		0.00 984	0.00 757	0.00 618	0.00 517	0.00 440	0.00 376	0.00 324	0.00 267	0.00 199	0.00 114	0	61
62	Nitro us oxid e	N ₂ O			0.17 05	0.12 11									62
1	Pota ssiu m acet ate	KC ₂ H ₃ O 2	1½H 20	216. 7	233. 9	255. 6	283. 8	323. 3							1
2	acet ate	KC ₂ H ₃ O	½H ₂ 0						337. 3	350	364. 8	380. 1	396. 3		2
3	alum	K ₂ S O ₄ ·A I ₂ (S O ₄) ₃	24H ₂ O	3.0	4.0	5.9	8.39	11.7 0	17.0 0	24.7 5	40.0	71.0	109. 0		3
4	bica rbon ate	KHC O ₃		22.4	27.7	33.2	39.1	45.4		60.0					4
5	bisul fate	KHS O ₄		36.3		51.4		67.3						121. 6	5
6	bitar trate	KHC ₄ H ₄ O ₆		0.32	0.40	0.53	0.90	1.32	1.83	2.46		4.6		6.95	6
7	carb onat e	K ₂ C O ₃	2H ₂ 0	105. 5	108	110. 5	113. 7	116. 9	121. 2	126. 8	133. 1	139. 8	147. 5	155. 7	7
8	chlo rate	KCI O ₃		3.3	5	7.4	10.5	14	19.3	24.5		38.5		57	8
9	chlo ride	KCI		27.6	31.0	34.0	37.0	40.0	42.6	45.5	48.3	51.1	54.0	56.7	9
10	chro mat e	K ₂ Cr O ₄		58.2	60.0	61.7	63.4	65.2	66.8	68.6	70.4	72.1	73.9	75.6	10

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
11	dich rom ate	K ₂ Cr ₂ O ₇		5	7	12	20	26	34	43	52	61	70	80	11
12	ferri cyan ide	K ₃ Fe (CN)		31	36	43	50	60		66				82.6 104	12
13	hydr oxid e	кон	2H ₂ 0	97	103	112	126								13
14	hydr oxid e	КОН	1H ₂ 0						140					178	14
15	nitra te	KNO 3		13.3	20.9	31.6	45.8	63.9	85.5	110. 0	138	169	202	246	15
16	nitrit e	KNO 2		278. 8		298. 4		334. 9						412. 8	16
17	perc hlor ate	KCI O ₄		0.75	1.05	1.80	2.6	4.4	6.5	9	11.8	14.8	18	21.8	17
18	per man gana te	KMn O ₄		2.83	4.4	6.4	9.0	12.5 6	16.8 9	22.2					18
19	pers ulfat e [†]	K ₂ S ₂ O ₈ [†]	t	1.62	2.60	4.49	7.19	9.89							19
20	sulfa te	K ₂ S O ₄		7.35	9.22	11.1 1	12.9 7	14.7 6	16.5 0	18.1 7	19.7 5	21.4	22.8	24.1	20
21	thio cyan ate	KCN S		177. 0		217. 5									21
22	Silve r cyan ide	AgC N				2.2 × 10 ⁻⁵									22

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
23	nitra te	AgN O ₃		122	170	222	300	376	455	525		669		952	23
24	sulfa te	Ag ₂ SO ₄		0.57 3	0.69 5	0.79 6	0.88	0.97 9	1.08	1.15	1.22	1.30	1.36	1.41	24
25	Sodi um acet ate	NaC ₂ H ₃ O ₂	3H ₂ 0	36.3	40.8	46.5	54.5	65.5	83	139					25
26	acet ate	NaC ₂ H ₃ O ₂		119	121	123. 5	126	129. 5	134	139. 5	146	153	161	170	26
27	bica rbon ate	NaH CO ₃		6.9	8.15	9.6	11.1	12.7	14.4 5	16.4					27
28	carb onat e	Na ₂ CO ₃	10H ₂ O	7	12.5	21.5	38.8								28
29	carb onat e	Na ₂ CO ₃	1H ₂ 0				50.5	48.5		46.4		45.8		45.5	29
30	chlo rate	NaCl O ₈		79	89	101	113	126	140	155	172	189		230	30
31	chlo ride	NaCl		35.6 5	35.7 2	35.8 9	36.0 9	36.3 7	36.6 9	37.0 4	37.4 6	37.9 3	38.4 7	38.9 9	31
32	chro mat e	Na ₂ CrO ₄	10H ₂ O	31.7 0	50.1 7	88.7									32
33	chro mat e	Na ₂ CrO ₄	4H ₂ O				88.7	95.9 6	104	114. 6					33
34	chro mat e	Na ₂ CrO ₄									123. 0	124. 8		125. 9	34
35	dich rom ate	Na ₂ Cr ₂ O	2H ₂ 0	163. 0		177. 8			244. 8		316. 7	376. 2			35

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
36	dich rom ate	Na ₂ Cr ₂ O												426. 3	36
37	dihy drog en phos phat e	NaH ₂ PO ₄	2H ₂ 0	57.9	69.9	85.2	106. 5	138. 2							37
38	dihy drog en phos phat e	NaH ₂ PO ₄	1H ₂ 0						158. 6						38
39	dihy drog en phos phat e	NaH ₂ PO ₄								179. 3	190. 3	207. 3	225. 3	246. 6	39
40	hydr ogen arse nate	Na ₂ HAs O ₄	12H ₂ O	7.3	15.5	26.5	37	47		65		85			40
41	hydr ogen phos phat e	Na ₂ HPO 4	12H ₂ O	1.67	3.6	7.7	20.8								41
42	hydr ogen phos phat e	Na ₂ HPO 4	7H ₂ 0					51.8							42
43	hydr ogen phos phat e	Na ₂ HPO 4	2H ₂ O						80.2	82.9	88.1	92.4	102. 9		43
44	hydr ogen phos phat e	Na ₂ HPO 4												102. 2	44

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
45	hydr oxid e	NaO H	4H ₂ 0	42											45
46	hydr oxid e	NaO H	3½H 20		51.5										46
47	hydr oxid e	NaO H	1H ₂ 0			109	119	129	145	174					47
48	hydr oxid e	NaO H											313	347	48
49	nitra te	NaN O ₃		73	80	88	96	104	114	124		148		180	49
50	nitrit e	NaN O ₂		72.1	78.0	84.5	91.6	98.4	104. 1			132. 6		163. 2	50
51	oxal ate	Na ₂ C ₂ O				3.7								6.33	51
52	phos phat e, tri-	Na ₃ PO ₄	12H ₂ O	1.5	4.1	11	20	31	43	55		81		108	52
53	pyro phos phat e	Na ₄ P ₂ O 7	10H ₂ O	3.16	3.95	6.23	9.95	13.5 0	17.4 5	21.8		30.0 4		40.2 6	53
54	sulfa te	Na ₂ SO ₄	10H ₂ O	5.0	9.0	19.4	40.8								54
55	sulfa te	Na ₂ SO ₄	7H ₂ 0	19.5	30	44									55
56	sulfa te	Na ₂ SO ₄						48.8	46.7	45.3		43.7		42.5	56

	Subs tanc	For mula	Solid phas	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
	е	IIIuia	е												
57	sulfi de	Na ₂ S	9H ₂ 0		15.4 2	18.8	22.5	28.5							57
58	sulfi de	Na ₂ S	5½H 20						39.8 2	42.6 9	45.7 3	51.4 0	59.2 3		58
59	sulfi de	Na ₂ S	6H ₂ 0						36.4	39.1	43.3 1	49.1 4	57.2 8		59
60	sulfi te	Na ₂ SO ₃	7H ₂ 0	13.9	20	26.9	36								60
61	sulfi te	Na ₂ SO ₃						28	28.2	28.8		28.3			61
62	tetra bora te	Na ₂ B ₄ O	10H ₂ O	1.3	1.6	2.7	3.9		10.5	20.3					62
63	tetra bora te	Na ₂ B ₄ O	5H ₂ O								24.4	31.5	41	52.5	63
64	vana date (met a)	NaV O ₈	2H ₂ 0			15.3 25°		30.2		68.4					64
1	Sodi um vana date (met a)	NaV O ₃				21.1 0 ²⁵ °		26.2		32.9 7	36.9	38.8 75°			1
2	Stan nous chlo ride	SnCl 2		83.9		269. 8 ¹⁵ °									2
3	sulfa te	SnS O ₄				19								18	3
4	Stro ntiu m acet ate	Sr(C ₂ H ₃ O ₂) ₂	4H ₂ O	36.9	43.6 1										4

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
5	acet ate	Sr(C ₂ H ₃ O ₂) ₂	½H ₂ 0		42.9 5	41.6	39.5		37.3 5		36.2 4	36.1 0		36.4	5
6	chlo ride	SrCl 2	6H ₂ 0	43.5	47.7	52.9	58.7	65.3	72.4	81.8					6
7	chlo ride	SrCl 2	2H ₂ 0								85.9	90.5		100. 8	7
8	nitra te	Sr(N O ₃) ₂	1H ₂ 0	52.7		64.0			83.8	97.2			130. 4	139	8
9	nitra te	Sr(N O ₃) ₂	4H ₂ 0	40.1		70.5									9
10	nitra te	Sr(N O ₃) ₂					88.6	90.1		93.8	96	98	100		10
11	sulfa te	SrS O ₄		0.01 13		0.01 14	0.01 14								11
12	Sulf ur dioxi de, 760 mm [†]	SO ₂		22.8	16.2 1	11.2 9	7.81	5.41	4.5						12
13	Thall ium sulfa te	Tl ₂ S O ₄		2.70	3.70	4.87	6.16		9.21	10.9 2	12.7 4	14.6 1	16.5 3	18.4 5	13
14	Thor ium sulfa te	Th(S O ₄) ₂	9H ₂ O	0.74	0.98	1.38	1.99 5	2.99	5.22						14
15	sulfa te	Th(S O ₄) ₂	8H ₂ 0	1.0	1.25	1.62									15
16	sulfa te	Th(S O ₄) ₂	6H ₂ 0	1.50		1.90	2.45			6.64					16
17	sulfa te	Th(S O ₄) ₂	4H ₂ 0					4.04	2.54	1.63	1.09				17

	Subs tanc e	For mula	Solid phas e	0°C	10°C	20°C	30°C	40°C	50°C	60°C	70°C	80°C	90°C	100° C	
18	Zinc chlo rate	ZnCl O ₃	6H ₂ 0	145. 0	152. 5										18
19	chlo rate	ZnCl O ₃	4H ₂ 0			200. 3	209. 2	223. 2	273. 1						19
20	nitra te	Zn(N O ₃) ₂	6H ₂ 0	94.7 8		118. 3									20
21	nitra te	Zn(N O ₃) ₂	3H ₂ 0					206. 9							21
22	sulfa te	ZnS O ₄	7H ₂ 0	41.9	47	54.4									22
23	sulfa te	ZnS O ₄	6H ₂ O					70.1	76.8						23
24	sulfa te	ZnS O ₄	1H ₂ 0									86.6	83.7	80.8	24

*By N. A. Lange; abridged from "Table of Solubilities of Inorganic Compounds in Water at Various Temperatures" in Lange's Handbook of Chemistry, 10th ed., McGraw-Hill, New York, 1961 (except for NaCl, which is from CRC Handbook of Chemistry and Physics, 86th ed., CRC Press, 2005). For tables of the solubility of gases in water at various temperatures, Atack (Handbook of Chemical Data, Reinhold, New York, 1957) gives values at closer temperature intervals, usually 1 or 5°C, than are tabulated here. For materials marked by ‡, additional data are given in tables subsequent to this one. For the solubility of various hydrocarbons in water at high pressures see J. Chem. Eng. Data, 4, 212 (1959).

This table shows the grams of anhydrous substance that are soluble in 100 g of water at the temperature in degrees Celsius as indicated; when the name is followed by \dagger , the value is expressed in grams of substance in 100 cm³ of saturated solution. Solid phase gives the hydrated form in equilibrium with the saturated solution.

Table 2-21 Solubility as a Function of Temperature and Henry's Constant at 25°C for Gases in Water

Name	Formula	Α	В	С	D	<i>T</i> range, K	H at 25°C, atm
Acetylene	C ₂ H ₂	-156.51	8,160.2	21.403	0	274-343	1,330
Carbon dioxide	CO ₂	-159.854	8,741.68	21.6694	-1.10261E-03	273-353	1,635
Carbon monoxide	со	-171.764	8,296.9	23.3376	0	273-353	58,000
Ethane	C ₂ H ₆	-250.812	12,695.6	34.7413	0	275-323	29,400
Ethylene	C ₂ H ₄	-153.027	7,965.2	20.5248	0	287-346	11,726
Helium	Не	-105.9768	4,259.62	14.0094	0	273-348	142,900
Hydrogen	H ₂	-125.939	5,528.45	16.8893	0	273-345	70,800
Methane	CH ₄	-338.217	13,282.1	51.9144	-0.0425831	273-523	39,200
Nitrogen	N ₂	-181.587	8,632.13	24.7981	0	273-350	84,600
Oxygen	02	-171.2542	8,391.24	23.24323	0	273-333	43,400

The constants can be used to calculate solubility by the equation $\ln x = A + B/T + C \ln T + DT$, where T is in K and x is the mole fraction of the solute dissolved in water when the solute partial pressure is 1 atm. With the assumption that Henry's law is valid up to 1 atm, H = 1/x. Values of the constants are from P. G. T. Fogg and W. Gerrard, *Solubility of Gases in Liquids*, Wiley, 1991, New York, and *Solubility Data Series*, vol. 1, *Helium and Neon*, IUPAC, Pergamon Press, Oxford, 1979. For higher-temperature behavior and an up-to-date reference list, see R. Fernandez-Prini, J. L. Alvarez, and A. H. Harvey, *J. Phys. Chem. Ref. Data* 32(2):903, 2003. To find H at temperatures other than 25°C, first find the solubility and then take the reciprocal.

Table 2-22 Henry's Constant H for Various Compounds in Water at 25°C

Group	Compound	Formula	CAS	H, atm⁺	Rating*
Paraffin hydrocarbons	Methane	CH₄	74-82-8	36,600	4
	Ethane	C ₂ H ₆	74-84-0	26,700	3
	Propane	C ₃ H ₈	74-98-6	37,800	3
	Butane	C ₄ H ₁₀	106-97-8	51,100	3
	Pentane	C ₅ H ₁₂	109-66-0	70,000	3
	Octane	C ₈ H ₁₈	111-65-9	2,74,000	3
	Nonane	C ₉ H ₂₀	111-84-2	3,29,000	3
Olefins	Ethylene	C ₂ H ₄	74-85-1	11,700	3
	Propylene	C ₃ H ₆	115-07-1	11,700	4
Aromatics	Benzene	C ₆ H ₆	71-43-2	299	10

Group	Compound	Formula	CAS	H, atm	Rating*
	Toluene	C ₇ H ₈	108-88-3	354	10
	o-Xylene	C ₈ H ₁₀	95-47-6	272	10
	Cumene	C ₉ H ₁₂	98-82-8	724	9
	Phenol	C ₆ H ₆ O	108-95-2	0.0394	7
Aldehydes	Acetaldehyde	C ₂ H ₄ O	75-07-0	5.56	3
	Propionaldehyde	C ₃ H ₆ O	123-38-6	4.36	4
Ketones	Methylethyl ketone	C ₄ H ₈ O	78-93-3	2.59	5
Esters	Methyl formate	C ₂ H ₄ O ₂	107-31-3	13.6	3
	Ethyl formate	C ₃ H ₆ O ₂	109-94-4	13.6	3
	Methyl acetate	C ₃ H ₆ O ₂	79-20-9	5.04	3
	Butyl acetate	C ₆ H ₁₂ O ₂	123-86-4	13.6	3
Chlorine containing	Chloromethane	CH ₃ Cl	74-87-3	556	?
	Chloroethane	C ₂ H ₅ Cl	75-00-3	681	10
	Chlorobenzene	C ₆ H ₅ Cl	108-90-7	204	10
Alcohols	Methanol	CH ₄ O	67-56-1	0.272	4
	Ethanol	C ₂ H ₆ O	64-17-5	0.272	4
	1-Propanol	C ₃ H ₈ O	71-23-8	0.507	3
	1-Butanol	C ₄ H ₁₀ O	71-36-3	0.482	3
Miscellaneous	Acrylonitrile	C ₃ H ₃ N	107-13-1	5.54	3
	Dimethyl sulfide	C ₂ H ₆ S	75-18-3	121	3
	Dimethyl disulfide	C ₂ H ₆ S ₂	624-92-0	68.1	3
	Methyl mercaptan	CH ₄ S	74-93-1	177	3
	Ethyl mercaptan	C ₂ H ₆ S	75-08-1	161	3
	Pyridine	C ₅ H ₅ N	110-86-1	0.817	3

Values in this table were taken from the Design Institute for Physical Properties (DIPPR) of the American Institute of Chemical Engineers (AIChE), 801 Critically Evaluated Gold Standard™ Database, copyright 2016 AIChE, and reproduced with permission of AIChE and of the DIPPR Evaluated Process Design Data Project Steering Committee. Their source should be cited as R. L. Rowley, W. V. Wilding, J. L. Oscarson, T. A. Knotts, N. F. Giles, DIPPR® Data Compilation of Pure Chemical Properties, Design Institute for Physical Properties, AIChE, New York (2016).

Group Compound Formula CAS H, atm Rating*

*The ratings reflect DIPPR® ESP's effort to provide a critical evaluation and quality assessment of each data point with 15 being the highest score possible. The rating is not directly correlated with the estimated experimental uncertainty.

*Henry's constant is a strong nonlinear function of temperature. A single value measured at one temperature, if used for calculation at a different temperature, can lead to serious errors. Procedures for extrapolation of single-point values over the ambient temperature range (4°C < T < 50°C) are presented in Sec. 22, under "Air Pollution Control" > "Biological APC Technologies" > "Estimating Henry's law constants". Estimation procedures for the larger range (4°C < T < 200°C) are presented in F. L. Smith and A. H. Harvey, "Avoid Common Pitfalls When Using Henry's Law," *Chem. Eng. Prog.*, 103(9), 2007. See also Y.-L. Huang, J. D. Olson, and G. E. Keller II, "Steam Stripping for Removal of Organic Pollutants from Water. 2. Vapor-Liquid Equilibrium Data," *Ind. Eng. Chem. Res.*, 31, pp. 1759–1768, 1992. (Also see the Supplementary Material, which contains the databank of 404 compounds of environmental interest and other useful property data.)

Table 2-23 Henry's Constant H for Various Compounds in Water at 25°C from Infinite Dilution Activity Coefficients

Compound	CAS no.	Formula	H = γ [∞] P _{vp} , atm
Pentane	109660	C ₅ H ₁₂	63700
Hexane	1100543	C ₆ H ₁₄	84600
Heptane	142825	C ₇ H ₁₆	120000
Benzene	71432	C ₆ H ₆	309
Toluene	108883	C ₇ H ₈	344
o-Xylene	95476	C ₈ H ₁₀	267
Cumene	98,828	C ₉ H ₁₂	613
Styrene	100425	C ₈ H ₈	145
Formaldehyde	50000	CH ₂ O	14.3
Acetaldehyde	75070	C ₂ H ₄ O	4.54
Propanal	123386	C ₃ H ₆ O	5.45
Acetone	67641	C ₃ H ₆ O	2.13
Methyl ethyl ketone	78933	C ₄ H ₈ O	3.11
Methyl <i>n</i> -propyl ketone	107879	C ₅ H ₁₀ O	4.60
Formic acid	64186	CH ₂ O ₂	0.0404
Methyl acetate	79209	C ₃ H ₆ O ₂	6.38
Ethyl acetate	141786	C ₄ H ₈ O ₂	8.01
Butyl acetate	123864	C ₆ H ₁₂ O ₂	12.3
Chloroethane	75003	C ₂ H ₅ Cl	626

Compound	CAS no.	Formula	H=γ P ,atm
1-Chloropropane	74986	C ₃ H ₇ Cl	792
Chlorobenzene	108907	C ₆ H ₅ Cl	219
Methanol	67561	CH ₄ O	0.263
Ethanol	64175	C ₂ H ₆ O	0.293
Pyridine	110861	C ₅ H ₅ N	0.544
Diethyl ether	60297	C ₄ H ₁₀ O	48.7
Thiophene	110021	C ₄ H ₄ S	160

Henry's constant H at 25°C is the vapor pressure at 25°C times the infinite dilution activity coefficient, also at 25°C. Infinite dilution activity coefficients are from Mitchell and Jurs, J. Chem. Inf. Comput. Sci. **38**: 200 (1998). Henry's constant is a strong nonlinear function of temperature. A single value measured at one temperature, if used for calculation at a different temperature, can lead to serious errors. Procedures for extrapolation of single-point values over the ambient temperature range (4° C < T < 50°C) are presented in Sec. 22, pp. 22–49, under "Estimating Henry's law constants." Estimation procedures for the larger range (4° C < T < 200°C) are presented in F. L. Smith and A. H. Harvey, "Avoid Common Pitfalls When Using Henry's Law," Chem. Eng. Prog., **103**(9), 2007. See also Y.-L. Huang, J. D. Olson, and G. E. Keller II, "Steam Stripping for Removal of Organic Pollutants from Water. 2. Vapor-Liquid Equilibrium Data," Ind. Eng. Chem. Res., **31**, pp. 1759–1768, 1992. (Also see the Supplementary Material, which contains the databank of 404 compounds of environmental interest and other useful property data.)

Table 2-24 Air*

t, °C	0	5	10	15	20	25	30	35
10 ⁻⁴ × H [†]	4.32	4.88	5.49	6.07	6.64	7.20	7.71	8.23
t, °C	40	45	50	60	70	80	90	100
10 ⁻⁴ × H [†]	8.70	9.11	9.46	10.1	10.5	10.7	10.8	10.7

^{*}International Critical Tables, vol. 3, p. 257.

[†]*H* is calculated from the absorption coefficients of O₂ and N₂, taking into consideration the correction for constant argon content.

Table 2-25 Ammonia-Water at 10 and 20°C*

Mass fraction NH_3 in liquid	<i>P</i> , kPa (10°C)	Mass fraction NH ₃ in vapor (10°C)	P, kPa (20°C)	Mass fraction NH ₃ in vapor (20°C)
0.0	1.23	0.0	2.34	0.0
0.00467	1.37	0.1		
0.00495			2.60	0.1
0.1	7.07	0.84164	11.95	0.82096
0.2	20.07	0.95438	32.34	0.94541
0.3	47.37	0.98565	73.85	0.98199
0.4	99.84	0.99544	150.56	0.99393
0.5	184.44	0.99848	269.50	0.99783
0.6	292.15	0.99943	416.63	0.99913
0.7	399.03	0.99975	560.61	0.99960
0.8	486.44	0.99988	678.61	0.99980
0.9	554.33	0.99995	771.87	0.99991
1.0	615.05	1.0	857.48	1.0

^{*}Selected values from R. Tillner-Roth and D. G. Friend, *J. Phys. Chem. Ref. Data* 27:63 (1998). This reference lists solubilities for temperatures from -70 to 340°C. Densities, enthalpies, and entropies are listed for both the two-phase and single-phase regions for pressures up to 40 MPa.

Table 2-26 Carbon Dioxide (CO₂)*

Total pressure, atm	0°C†	10°C	15°C	20°C	25°C	35°C	50°C	75°C	100°C
1	1.445	0.985	0.802	0.692	0.608	0.473	0.342	0.248	0.187
2	2.89	1.946	1.587	1.374	1.207	0.943	0.683	0.495	0.373
10	12.71	8.81	7.32	6.44	5.74	4.54	3.30	2.41	1.841
20	21.23	15.38	13.13	11.84	10.75	8.64	6.34	4.65	3.62
30	25.79	19.80	17.49	16.22	15.05	12.80	9.10	6.78	5.35
36		21.45	19.42	18.30	17.29	14.80	10.63	7.90	6.35

^{*}Values selected from G. Houghton, A. M. McLean, and P. D. Ritchie, *Chem. Eng. Sci.* **6:**132–137, 1957.

†Liquid mol fraction $CO_2 \times 10^3$

Table 2-27 Chlorine (Cl₂)

Partial pressure of Cl ₂ , mmHg	Solubility, g of Cl ₂ per liter					
	0°C	10°C	20°C	30°C	40°C	50°C
5	0.488	0.451	0.438	0.424	0.412	0.398
10	0.679	0.603	0.575	0.553	0.532	0.512
30	1.221	1.024	0.937	0.873	0.821	0.781
50	1.717	1.354	1.210	1.106	1.025	0.962
100	2.79	2.08	1.773	1.573	1.424	1.313
150	3.81	2.73	2.27	1.966	1.754	1.599
200	4.78	3.35	2.74	2.34	2.05	1.856
250	5.71	3.95	3.19	2.69	2.34	2.09
300		4.54	3.63	3.03	2.61	2.31
350		5.13	4.06	3.35	2.86	2.53
400		5.71	4.48	3.69	3.11	2.74
450		6.26	4.88	3.98	3.36	2.94
500		6.85	5.29	4.30	3.61	3.14
550		7.39	5.71	4.60	3.84	3.33
600		7.97	6.12	4.91	4.08	3.52
650		8.52	6.52	5.21	4.32	3.71
700		9.09	6.90	5.50	4.54	3.89
750		9.65	7.29	5.80	4.77	4.07
800		10.21	7.69	6.08	4.99	4.27
900			8.46	6.68	5.44	4.62
1000			9.27	7.27	5.89	4.97
1200	Cl ₂ .8H ₂ O ₂ sep	parates	10.84	8.42	6.81	5.67
1500			13.23	10.14	8.05	6.70
2000			17.07	13.02	10.22	8.38
2500			21.0	15.84	12.32	10.03

3000	al pressure of Cl , mmHg		S	Solubility, g of C	l per liter		
3500 21.7 16.62 13.3 4000 24.7 18.84 15.0 4500 27.7 20.7 16.7 5000 30.8 23.3 18.4 Partial pressure of Cl ₂ , mmHg 50°C 70°C 80°C 90°C 100°C 1 5 0.383 0.369 0.351 0.339 0.326 0.31 10 0.492 0.470 0.447 0.431 0.415 0.40 30 0.743 0.704 0.671 0.642 0.627 0.55 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		0°C	10°C	20°C	30°C	40°C	50°C
4000					18.73	14.47	11.70
4500 27.7 20.7 16.7 5000 30.8 23.3 18.4 Partial pressure of Cl ₂ , mmHg Solubility, g of Cl ₂ per liter 60°C 70°C 80°C 90°C 100°C 1 5 0.383 0.369 0.351 0.339 0.326 0.31 10 0.492 0.470 0.447 0.431 0.415 0.40 30 0.743 0.704 0.671 0.642 0.627 0.55 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.56 350 2.28 2.10 1.940 1.831 1.736 1.66					21.7	16.62	13.38
Solubility, g of Cl ₂ per liter Partial pressure of Cl ₂ , mmHg Solubility, g of Cl ₂ per liter 5 0.383 0.369 0.351 0.339 0.326 0.31 10 0.492 0.470 0.447 0.431 0.415 0.40 30 0.743 0.704 0.671 0.642 0.627 0.59 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66					24.7	18.84	15.04
Partial pressure of Cl ₂ , mmHg Solubility, g of Cl ₂ per liter 5 0.383 0.369 0.351 0.339 0.326 0.31 10 0.492 0.470 0.447 0.431 0.415 0.40 30 0.743 0.704 0.671 0.642 0.627 0.55 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66					27.7	20.7	16.75
60°C 70°C 80°C 90°C 100°C 1 5 0.383 0.369 0.351 0.339 0.326 0.31 10 0.492 0.470 0.447 0.431 0.415 0.40 30 0.743 0.704 0.671 0.642 0.627 0.59 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66					30.8	23.3	18.46
5 0.383 0.369 0.351 0.339 0.326 0.31 10 0.492 0.470 0.447 0.431 0.415 0.40 30 0.743 0.704 0.671 0.642 0.627 0.59 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66	al pressure of Cl ₂ , mmHg		S	Solubility, g of C	l ₂ per liter		
10 0.492 0.470 0.447 0.431 0.415 0.40 30 0.743 0.704 0.671 0.642 0.627 0.59 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		60°C	70°C	80°C	90°C	100°C	110°C
30 0.743 0.704 0.671 0.642 0.627 0.59 50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		0.383	0.369	0.351	0.339	0.326	0.316
50 0.912 0.863 0.815 0.781 0.747 0.72 100 1.228 1.149 1.085 1.034 0.987 0.95 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		0.492	0.470	0.447	0.431	0.415	0.402
100 1.228 1.149 1.085 1.034 0.987 0.98 150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		0.743	0.704	0.671	0.642	0.627	0.598
150 1.482 1.382 1.294 1.227 1.174 1.13 200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		0.912	0.863	0.815	0.781	0.747	0.722
200 1.706 1.580 1.479 1.396 1.333 1.27 250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		1.228	1.149	1.085	1.034	0.987	0.950
250 1.914 1.764 1.642 1.553 1.480 1.41 300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		1.482	1.382	1.294	1.227	1.174	1.137
300 2.10 1.932 1.793 1.700 1.610 1.54 350 2.28 2.10 1.940 1.831 1.736 1.66		1.706	1.580	1.479	1.396	1.333	1.276
350 2.28 2.10 1.940 1.831 1.736 1.66		1.914	1.764	1.642	1.553	1.480	1.413
		2.10	1.932	1.793	1.700	1.610	1.542
400 2.47 2.25 2.08 1.965 1.854 1.77		2.28	2.10	1.940	1.831	1.736	1.661
		2.47	2.25	2.08	1.965	1.854	1.773
450 2.64 2.41 2.22 2.09 1.972 1.88		2.64	2.41	2.22	2.09	1.972	1.880
500 2.80 2.55 2.35 2.21 2.08 1.98		2.80	2.55	2.35	2.21	2.08	1.986
550 2.97 2.69 2.47 2.32 2.19 2.09		2.97	2.69	2.47	2.32	2.19	2.09
600 3.13 2.83 2.59 2.43 2.29 2.19		3.13	2.83	2.59	2.43	2.29	2.19
650 3.29 2.97 2.72 2.55 2.41 2.28		3.29	2.97	2.72	2.55	2.41	2.28
700 3.44 3.10 2.84 2.66 2.50 2.37		3.44	3.10	2.84	2.66	2.50	2.37
750 3.59 3.23 2.96 2.76 2.60 2.47		3.59	3.23	2.96	2.76	2.60	2.47
800 3.75 3.37 3.08 2.87 2.69 2.56		3.75	3.37	3.08	2.87	2.69	2.56

Partial pressure of Cl , mmHg		s	olubility, g of C	l per liter		
	0°C	10°C	20°C	30°C	40°C	50°C
900	4.04	3.63	3.30	3.08	2.89	2.74
1000	4.36	3.88	3.53	3.28	3.07	2.91
1200	4.92	4.37	3.95	3.67	3.43	3.25
1500	5.76	5.09	4.58	4.23	3.95	3.74
2000	7.14	6.26	5.63	5.17	4.78	4.49
2500	8.48	7.40	6.61	6.05	5.59	5.25
3000	9.83	8.52	7.54	6.92	6.38	5.97
3500	11.22	9.65	8.53	7.79	7.16	6.72
4000	12.54	10.76	9.52	8.65	7.94	7.42
4500	13.88	11.91	10.46	9.49	8.72	8.13
5000	15.26	13.01	11.42	10.35	9.48	8.84

Table 2-28 Chlorine Dioxide (ClO₂)

Vol % of ClO ₂ in gas phase	0°C	5°C	10°C	15°C	20°C	30°C	40°C
1	2.00	1.50	1.25	1.00	0.90	0.60	0.46
3	6.00	4.7	3.85	3.20	2.70	1.95	1.30
5	10.0	7.8	6.30	5.25	4.30	3.20	2.25
7	14.0	10.9	8.95	7.35	6.15	4.40	3.20
10	20.0	15.5	12.8	10.5	8.80	6.30	4.50
11		17.0	14.0	11.7	9.70	7.00	5.00
12		18.6	15.3	12.8	10.55	7.50	5.45
13		20.3	16.6	13.8	11.5	8.20	5.85
14			18.0	14.9	12.3	8.80	6.35
15			19.2	16.0	13.2	9.50	6.80
16			20.3	17.0	14.2	10.1	7.20

Ishi, Chem. Eng. (Japan), 22:153 (1958).

Weight of ClO₂, grams per liter of solution

Table 2-29 Hydrogen Chloride (HCl)

Weights of HCl per 100 weights of H $_{ m 2}$ O		Partial pressure of HCl, mmHg					
	0°C	10°C	20°C	30°C			
78.6	510	840					
66.7	130	233	399	627			
56.3	29.0	56.4	105.5	188			
47.0	5.7	11.8	23.5	44.5			
38.9	1.0	2.27	4.90	9.90			
31.6	0.175	0.43	1.00	2.17			
25.0	0.0316	0.084	0.205	0.48			
19.05	0.0056	0.016	0.0428	0.106			
13.64	0.00099	0.00305	0.0088	0.0234			
8.70	0.000118	0.000583	0.00178	0.0051			
4.17	0.000018	0.000069	0.00024	0.0007			
2.04		0.0000117	0.000044	0.0001			
Weights of HCl per 100 weights of H ₂ O		Partial pressure of HCl,	mm Hg				
	50°C	80°C	110°C				

	Weights of HCl per 100 weights of H $_{ m 2}$ O	Partial pressure of HCl, mm Hg				
		50°C	80°C	110°C		
78.6						
66.7						
56.3		535				
47.0		141	623			
38.9		35.7	188	760		
31.6		8.9	54.5	253		
25.0		2.21	15.6	83		
19.05		0.55	4.66	28		
13.64		0.136	1.34	9.3		
8.70		0.0344	0.39	3.10		
4.17		0.0064	0.095	0.93		

Weights of HCl per 100 weights of H 0	Partial pressure of HCl, mmHg						
	0°C	10°C	20°C	30°C			
2.04	0.00140	0.0245	0.280				
Enthalpy and phase-equilibrium data for the binary system H Engrs., 39 , 663 (1943).	ICI-H ₂ O are given by	Van Nuys, <i>Trans. Am</i> .	Inst. Chem.				

Table 2-30 Hydrogen Sulfide (H₂S)

t, °C	0	5	10	15	20	25	30	35
10 ⁻² × <i>H</i>	2.68	3.15	3.67	4.23	4.83	5.45	6.09	6.76
t, °C	40	45	50	60	70	80	90	100
10 ⁻² × H	7.45	8.14	8.84	10.3	11.9	13.5	14.4	14.8
International Critical Tables, vol. 3, p. 259.								