Clase teórica 4

Reducciones de Problemas Misceláneas de Computabilidad

Repaso

Poblamos la jerarquía de la computabilidad con algunos primeros lenguajes:

- Para probar pertenencia a R y RE hemos construido MT.
- Para probar no pertenencia a R y RE hemos utilizado la técnica de diagonalización.
- Una técnica más sencilla para probar no pertenencia a R y RE es la reducción.

Reducciones de lenguajes

• Dados dos lenguajes L_1 y L_2 , supongamos que existe una MT M_f que computa una función $f: \Sigma^* \to \Sigma^*$ de la siguiente forma:

a partir de todo $w \in L_1$, la MT M_f genera $f(w) \in L_2$

a partir de todo $w \notin L_1$, la MT M_f genera $f(w) \notin L_2$

Se define que la función f es una **reducción** de L_1 a L_2 .

Se anota $L_1 \le L_2$, y se dice que la función f es **total computable** (se computa sobre todas las cadenas).

Utilidad de las reducciones

Reducción de L_1 a L_2 Para todo w, w $\in L_1$ sii $f(w) \in L_2$

TEOREMA

Caso 1

Si $L_1 \le L_2$ entonces $(L_2 \in R \to L_1 \in R)$ O bien, por el contrarrecíproco: Si $L_1 \le L_2$ entonces $(L_1 \notin R \to L_2 \notin R)$

Caso 2

Si $L_1 \le L_2$ entonces ($L_2 \in RE \longrightarrow L_1 \in RE$) O bien, por el contrarrecíproco: Si $L_1 \le L_2$ entonces ($L_1 \notin RE \longrightarrow L_2 \notin RE$)

En ambos casos, $w \in L_1$ sii $f(w) \in L_2$ Por eso M_1 responde lo que responde M_2

Es decir, si $L_1 \le L_2$:

Si $L_1 \notin R$, no puede suceder que $L_2 \in R$.

Si $L_1 \notin RE$, no puede suceder que $L_2 \in RE$.

L₂ es tan o más difícil que L₁, resolviendo L₂ se resuelve L₁.

De esta manera, las reducciones permiten encontrar lenguajes dentro y fuera de R y RE.

Ejemplo 1.

 $HP = \{(\langle M \rangle, w) \mid M \text{ para sobre } w\}$ y $L_U = \{(\langle M \rangle, w) \mid M \text{ acepta } w\}.$

Vamos a probar $HP \leq L_U$:

De acuerdo al teorema.

si $L_1 \le L_2$, entonces $L_1 \notin R \longrightarrow L_2 \notin R$.

Por lo tanto, como HP ∉ R,

también probamos que L_U ∉ R.

Definición de la reducción

 $f((\langle M_1 \rangle, w)) = (\langle M_2 \rangle, w)$, con M_2 como M_1 , salvo que los estados q_R de M_1 se cambian en M_2 por estados q_A .

Computabilidad

Existe una MT M_f que computa f: copia ($< M_1 >$, w) pero cambiando los estados q_R de M_1 por estados q_A en M_2 .

Correctitud

 $(<M_1>, w) \in HP \longrightarrow M_1$ para sobre $w \longrightarrow M_2$ acepta $w \longrightarrow (<M_2>, w) \in L_U$ $(<M_1>, w) \notin HP \longrightarrow \underline{caso\ de\ cadena\ válida}$: M_1 no para sobre $w \longrightarrow M_2$ no para sobre $w \longrightarrow (<M_2>, w) \notin L_U$ $\underline{caso\ de\ cadena\ inválida}$: $(<M_2>, w)\ también\ es\ una\ cadena\ inválida \longrightarrow (<M_2>, w) \notin L_U$

· Ejemplo 2.

$$L_{\Sigma^*} = \{ \langle M \rangle \mid L(M) = \Sigma^* \}$$
 y $L_{EQ} = \{ (\langle M_1 \rangle, \langle M_2 \rangle) \mid L(M_1) = L(M_2) \}.$

Vamos a probar $L_{\Sigma^*} \leq L_{EQ}$:

De acuerdo al teorema,

si $L_1 \le L_2$, entonces $L_1 \notin RE \longrightarrow L_2 \notin RE$.

Por lo tanto, como $L_{\Sigma^*} \notin RE$,

también probamos que L_{EQ} ∉ RE.

Definición de la reducción

 $f(\langle M \rangle) = (\langle M \rangle, \langle M_{\Sigma^*} \rangle)$, tal que $L(M_{\Sigma^*}) = \Sigma^*$.

Computabilidad

Existe una MT M_f que computa f: copia < M > y le concatena $< M_{\Sigma^*} >$.

Correctitud

$$<\mathsf{M}> \in \mathsf{L}_{\Sigma^*} \longrightarrow \mathsf{L}(\mathsf{M}) = \Sigma^* \longrightarrow \mathsf{L}(\mathsf{M}) = \mathsf{L}(\mathsf{M}_{\Sigma^*}) \longrightarrow (<\mathsf{M}>, <\mathsf{M}_{\Sigma^*}>) \in \mathsf{L}_{\mathsf{EQ}} \\ <\mathsf{M}> \notin \mathsf{L}_{\Sigma^*} \longrightarrow \underline{\mathsf{caso}} \ \mathsf{de} \ \mathsf{cadena} \ \mathsf{v\'{a}lida} : \ \mathsf{L}(\mathsf{M}) \neq \Sigma^* \longrightarrow \mathsf{L}(\mathsf{M}) \neq \mathsf{L}(\mathsf{M}_{\Sigma^*}) \longrightarrow (<\mathsf{M}>, <\mathsf{M}_{\Sigma^*}>) \notin \mathsf{L}_{\mathsf{EQ}} \\ \underline{\mathsf{caso}} \ \mathsf{de} \ \mathsf{cadena} \ \mathsf{inv\'{a}lida} : \ (<\mathsf{M}>, <\mathsf{M}_{\Sigma^*}>) \ \mathsf{tambi\'{e}n} \ \mathsf{es} \ \mathsf{una} \ \mathsf{cadena} \ \mathsf{inv\'{a}lida} \longrightarrow (<\mathsf{M}>, <\mathsf{M}_{\Sigma^*}>) \notin \mathsf{L}_{\mathsf{EQ}} \\ \\ \mathsf{L}_{\mathsf{EQ}} \longrightarrow \mathsf{L}_{\mathsf{EQ}$$

Algunas propiedades de las reducciones

• **Reflexividad.** Para todo lenguaje L se cumple L ≤ L. La función de reducción es la función identidad.

• Transitividad. Si $L_1 \le L_2$ y $L_2 \le L_3$, entonces $L_1 \le L_3$.

Se componen las reducciones f y g y se obtiene la reducción h.

• Otra propiedad: $L_1 \le L_2$ sii $L_1^C \le L_2^C$. Es la misma función de reducción.

igual

No se cumple la simetría.

 $L_1 \le L_2$ no implica $L_2 \le L_1$.

Ultima mirada a la jerarquía de la computabilidad

SAT: fórmulas booleanas satisfactibles.

VAL: fórmulas válidas (teoremas) de la lógica de predicados.

⊨ N: enunciados verdaderos de la aritmética.

Indecibilidad de la lógica de predicados revisitada (Turing, 1936)

Axiomas y Reglas

$$K_1: A \to (B \to A)$$

$$\mathsf{K}_2 \colon (\mathsf{A} \to (\mathsf{B} \to \mathsf{C})) \to ((\mathsf{A} \to \mathsf{B}) \to (\mathsf{A} \to \mathsf{C}))$$

$$K_3: (\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)K_4: (\forall x) A(x) \rightarrow A(x|t)$$

$$K_5: (\forall x) (A \rightarrow B) \rightarrow (A \rightarrow (\forall x) B)$$

Modus Ponens (MP): A y A \rightarrow B implican B

Generalización: A implica (∀x) A

Ejemplo: $\Phi = \neg P \rightarrow (P \rightarrow Q)$

1.
$$\neg P \rightarrow (\neg Q \rightarrow \neg P)$$

2.
$$(\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)$$

3.
$$((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)) \rightarrow (\neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)))$$

$$4. \neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q))$$

$$5. \; (\neg P \rightarrow ((\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q))) \rightarrow ((\neg P \rightarrow (\neg Q \rightarrow \neg P)) \rightarrow (\neg P \rightarrow (P \rightarrow Q)))$$

6.
$$(\neg P \rightarrow (\neg Q \rightarrow \neg P)) \rightarrow (\neg P \rightarrow (P \rightarrow Q))$$

7.
$$\neg P \rightarrow (P \rightarrow Q)$$

Indecibilidad de la lógica de predicados revisitada (Turing, 1936)

Reducción de HP a VAL:

Para todo par (<M>, w),

si M para desde w, $f((<M>, w)) = \varphi$ es una fórmula válida (teorema) de la lógica de predicados si M no para desde w, $f((<M>, w)) = \varphi$ no es una fórmula válida (teorema) de la lógica de predicados

Si la lógica de predicados fuera decidible, sería decidible la detención de las máquinas de Turing.

Anexo de la clase teórica 4

Reducciones de Problemas Misceláneas de Computabilidad

Máquinas de Turing restringidas

AUTÓMATAS FINITOS (AF) (1943: modelo neuronal de McCulloch-Pitts)

- Una cinta de sólo lectura.
- Sólo movimiento a la derecha.
- Conjunto F de estados finales.

Cuando se alcanza el símbolo B (blanco) el AF para (acepta sii el estado alcanzado es final).

- El AF constituye un tipo de algoritmo muy utilizado. Por ejemplo:
 - o Para el **análisis sintáctico a nivel palabra** de los compiladores (if, then, else, while, x, 10, =, +, etc).
 - Para las inspecciones de código en el control de calidad del software.

Ejemplo

$$Q = \{q_0, q_1, q_2, q_3\}$$
 $\Sigma = \{0, 1\}$ Estado inicial q_0

$$\Sigma = \{0, 1\}$$

$$\mathsf{F} = \{\mathsf{q}_0\}$$

1.
$$\delta(q_0, 1) = q_1$$

3.
$$\delta(q_1, 0) = q_3$$

1.
$$\delta(q_0, 1) = q_1$$
 2. $\delta(q_1, 1) = q_0$
3. $\delta(q_1, 0) = q_3$ 4. $\delta(q_3, 0) = q_1$
5. $\delta(q_3, 1) = q_2$ 6. $\delta(q_2, 1) = q_3$

7.
$$\delta(q_2, 0) = q_0$$

2.
$$\delta(q_1, 1) = q_0$$

4.
$$\delta(q_3, 0) = q_1$$

6.
$$\delta(q_2, 1) = q_3$$

8.
$$\delta(q_0, 0) = q_2$$

Diagrama de transición de estados

La ejecución arranca desde la flecha.

Los estados con doble contorno son los estados finales.

El AF descripto acepta todas las cadenas de 1 y 0 con una cantidad par de 1 y una cantidad par de 0.

Algunas características de los AF

- Los AF siempre paran.
- Aceptan un tipo limitado de cadenas (no tienen memoria).
 No pueden aceptar cadenas con igual cantidad de a y b.
 No pueden chequear si una cadena es un palíndromo.
 Etc. (en general, no pueden calcular).
- Los lenguajes que aceptan se llaman regulares o de tipo 3.
- A diferencia de las MT generales, pueden decidir:

AUTÓMATAS CON PILA (AP)

- Una cinta de input de sólo lectura.
- Una cinta de lectura/escritura que se comporta como una pila.
- En un paso se pueden procesar las dos cintas.
- En la cinta de entrada siempre se va a la derecha.
- Cuando se alcanza el símbolo B (blanco) en la cinta de entrada, el AP para (acepta sii la pila está vacía).

- Problemas típicos que resuelve un AP:
 - Análisis sintáctico a nivel instrucción de los compiladores.
 - Evaluación de expresiones en la ejecución de programas.

Ejemplo. Reconocimiento de cadenas **waw^c**, tales que w tiene 0 y 1 y w^c es la inversa de w. Supongamos la entrada **001a100**:

configuración final

Algunas características de los AF

- Los AP siempre paran.
- Los lenguajes que aceptan se llaman libres de contexto o de tipo 2.
- A diferencia de las MT generales, **pueden decidir**:

Jerarquía de Chomsky:

Lenguajes de tipo 3 (**regulares**)
Lenguajes de tipo 2 (**libres de contexto**)
Lenguajes de tipo 1 (**sensibles al contexto**)
Lenguajes de tipo 0 (**recursivamente numerables**)

Enumeración de los lenguajes recursivamente numerables

Todo lenguaje L de RE se puede enumerar:

Sea M₁ una MT que acepta L. Vamos a construir una MT M₂ que genera L:

- 1. Hacer n := 1.
- 2. Generar todas las cadenas de longitud a lo sumo n en el orden canónico.
- 3. Por cada cadena generada ejecutar a lo sumo n pasos de la MT M₁. Si M₁ acepta, imprimir la cadena.
- 4. Hacer n := n + 1 y volver al paso 2.

¿Las cadenas quedan en orden canónico? ¿Se pueden repetir? ¿Se puede evitar que se repitan? (ejercicio)

Todo lenguaje L de R se puede enumerar en el orden canónico:

Sea M₁ una MT que decide L. Vamos a construir una MT M₂ que genera L en el orden canónico:

- 1. Generar la primera cadena en el orden canónico.
- 2. Ejecutar M₁ sobre la cadena generada. Si acepta, imprimirla.
- 3. Generar la siguiente cadena en el orden canónico y volver al paso 2.
- Dada una MT que enumera un lenguaje, se puede construir otra MT que lo acepta (ejercicio)

Clase práctica 4

Reducciones de Problemas Misceláneas de Computabilidad

Ejemplo 1 de reducción.

Sea el problema: dada una MT M, ¿acaso M acepta todas las cadenas de Σ^* ?

El lenguaje que representa el problema es: $L_{\Sigma^*} = \{ <M > \mid L(M) = \Sigma^* \}$. Probaremos con una reducción que $L_{\Sigma^*} \notin R$.

Ejercicio: Intuitivamente, ¿puede ser $L_{\Sigma^*} \in \mathbb{R}$?. Más aún, ¿puede ser $L_{\Sigma^*} \in \mathbb{R}$?

Usaremos: **si** $L_1 \le L_2$ **y** $L_1 \notin R$, **entonces** $L_2 \notin R$. Así, hay que encontrar una reducción de la forma $L_1 \le L_{\Sigma^*}$, de modo tal que $L_1 \notin R$. Elegimos como L_1 el lenguaje L_U .

Definición de la reducción:

Se define: $f((<M>,w)) = <M_w>$, tal que M_w es una MT que:

- a) Reemplaza su entrada por w.
- b) Ejecuta M sobre w.
- c) Acepta sii M acepta.

Computabilidad

Existe una MT M_f que computa f: genera <M_w>, agregando al código <M> un fragmento inicial que borra su entrada y la reemplaza por w.

Correctitud

 $(<M>, w) \in L_U \rightarrow M$ acepta $w \rightarrow M_w$ acepta todas sus entradas $\rightarrow L(M_w) = \Sigma^* \rightarrow <M_w> \in L_{\Sigma^*}$ $(<M>, w) \notin L_U \rightarrow \underline{caso\ de\ cadena\ válida}$: M rechaza $w \rightarrow M_w$ rechaza todas sus entradas $\rightarrow L(M_w) \neq \Sigma^* \rightarrow <M_w> \notin L_{\Sigma^*}$ $\underline{caso\ de\ cadena\ inválida}$: M_w también es una cadena inválida $\rightarrow L(M_w) \neq \Sigma^* \rightarrow <M_w> \notin L_{\Sigma^*}$

Ejemplo 2 de reducción.

L es algún lenguaje de RE. $L_U = \{(<M>, w) \mid M \text{ acepta } w\}.$ Vamos a probar que **hay una reducción de L a L_U**:

Definición de la reducción

Sea M una MT que acepta L (¿por qué existe M?). Hacemos, para todo w: f(w) = (<M>, w)

Computabilidad

Existe una MT M_f que computa f: dado w, devuelve <M> concatenado con w.

Correctitud

Claramente, $w \in L sii (< M>, w) \in L_U (¿por qué?).$

Hemos probado en definitiva que todo lenguaje de RE se puede reducir a L_{U} . Lo mismo ocurre con HP.

Los lenguajes L_U y HP son **de los más difíciles** de la clase RE.

Todos los lenguajes de RE se reducen a ellos.

Si L_U o HP fueran recursivos, entonces se cumpliría la igualdad R = RE.

Ejemplo 3. No simetría de las reducciones.

Las reducciones no cumplen la propiedad de simetría.

- Sea cualquier L ∈ R. Sea M una MT que decide.
- No puede ser L_U ≤ L (¿por qué?).
- Pero se cumple L ≤ L_U:

(Caso particular de lo visto en el slide anterior)

Ejemplo 4. Propiedad de las reducciones en la clase R.

A diferencia de lo que sucede en la clase RE, en la clase R se cumple, sin considerar los lenguajes especiales Σ^* y \emptyset , que cualquier lenguaje L_1 se puede reducir a cualquier lenguaje L_2 .

En otras palabras, todos los lenguajes de R tienen la misma dificultad.

La prueba es la siguiente:

Sean L_1 y L_2 distintos de Σ^* y \emptyset . Sean $a \in L_2$ y $b \notin L_2$. Sean M_1 y M_2 tales que deciden L_1 y L_2 .

Definición de la reducción

$$f(w) = a \text{ si } w \in L_1$$

 $f(w) = b \text{ si } w \notin L_1$

Computabilidad

Dada w, la MT M_f que computa f ejecuta M₁ sobre w, si acepta imprime *a* y si rechaza imprime b.

Todos los lenguajes de R tienen igual dificultad.

L_1 R L_2 f2 L_3 f3 L_4 f4

Correctitud

Claramente, $w \in L_1 \text{ sii } f(w) \in L_2$