1.程序关键步骤

```
def backward_maximum_matching(text, word_dict):
   result = []
   max dict length = max(len(word) for word in word dict)
   max length = min(len(text), max dict length)
   while text:
       # 遍历长度, 从最长的词开始匹配
       for i in range(max length, 0, -1):
           word = text[-i:]
           if word in word_dict:
               result.insert(0, word)
              text = text[:-i]
              break
       else: # 遍历完所有长度, 没有匹配到词, 则把最后一个字母加到结果中
           result.insert(0, text[-1])
           text = text[:-1]
   return result
```

评估并计算正确率、召回率、F-测度

```
def evaluate(predicted, target):
    predicted_set = set(predicted)
    target_set = set(target)

true_positive = len(predicted_set & target_set)
    precision = true_positive / len(predicted_set) if predicted_set else 0 # 预测正确的词数 / 预测词数
    recall = true_positive / len(target_set) if target_set else 0 # 预测正确的词数 / 目标词数
    f_measure = (2 * precision * recall) / (precision + recall) if (precision + recall) != 0 else 0

return precision, recall, f_measure
```

程序测试结果: 其中("王五"不在词表中)

```
PS D:\研究生\研一上课程\01-11下午自然语言处理\3> & D:\ProgramFilesFolder\05-Anaconda3\python.exe d:\研究生\研一上课程\01-11下午自然语言处理\3> & D:\ProgramFilesFolder\05-Anaconda3\python.exe d:\\max\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\
```

- **2**.设计并实现一个汉语未登录词(汉族人名)的识别算法(可限定条件),并通过实验分析该算法的优缺点。
- (1) 算法设计
- a. 核心思想

基于规则:利用中文姓氏库和名字特征规则,确定潜在人名的边界。

概率模型:通过统计姓氏和名字字符的联合分布,计算人名的概率值,并设置阈值判断。

修饰规则: 使用上下文特征校正识别结果, 减少误识别。

b. 算法流程

构建姓氏库:从百家姓和其他数据来源收集常见姓氏。

分词处理: 先用逆向最大匹配 (BMM) 对句子进行分词,识别潜在的未登录词。 在分词的基础上选择人名识别触发点:

利用姓氏库作为触发点,从分词结果中寻找可能是姓的词。

对姓后的 1~2 个字进行组合,判断是否可能是名字,进行有界范围的框定。

计算频率:

姓氏在文本中的出现频率。

姓名首字和尾字的联合分布概率。

识别潜在人名:

匹配姓氏作为触发点,结合后续字符判断是否构成姓名。

(2) 算法实现

```
# 人名识别函数
def recognize_names(text, word_dict, threshold=0.0001):
   segmented = backward_maximum_matching(text, word_dict)
   potential names = []
   for i, word in enumerate(segmented):
       if word in surnames: # 姓氏触发点
           # 寻找潜在名字
           if i + 1 < len(segmented): # 至少需要两个字
              m1 = segmented[i + 1]
               m2 = segmented[i + 2] if i + 2 < len(segmented) and len(segmented[i + 2]) == 1 else "" # 可能有第三个字
               if len(m1) + len(m2) >= 1 and len(m1) + len(m2) <=2: # 有界范围
                 prob = calculate_name_probability(word, m1, m2)
                   if prob > surname_threshold[word]: # 判断是否满足概率条件
                   potential_names.append((word + m1 + m2, prob))
   # 去重和规则修正
   final_names = []
   for name, prob in potential_names:
       if all([
          not name isdigit(), # 修饰规则: 避免数字
name not in word_dict, # 避免已有词典中的词
       1):
          final names.append(name)
   return segmented, final_names
```

(3) 实验结果

(4) 优缺点分析

优点::

触发机制明确。

资源消耗少,轻量,适用于功能嵌入。

缺点:

依赖分词结果:由于词典本身内容不够大,没有包含"长江"这样的词汇,所以会将"长"和"江"分开,然后将"江"作为姓氏。(第三个测试样例)

语料依赖性强:需要足够大的语料库统计支持人名概率的估计。

复姓支持有限: 当前算法对复姓和特殊名字支持较弱。

上下文信息缺失:未充分利用上下文信息来识别更复杂的未登录词,如词性等信息。

(5) 优化方向

边界校正:

利用上下文规则校正人名范围,剔除冲突识别结果。

添加修饰规则:

如标点、数字附近的否定规则。

3.1 BiGram

<EOS>李彬 阅读 了 一封 信 。<EOS> <EOS>郑新喜 阅读 了 一本 有趣 的 书 。<EOS> <EOS>柳英 阅读 了 李悦 的 一本 书 。<EOS>

李彬		李彬 阅读	
阅读	3	阅读了	3
了	3	了 一封	
一封		一封信	
信		郑新喜 阅读	
郑新喜		了 一本	
一本	2	一本 有趣	
有趣		有趣 的	
的		的书	
书	2	柳英 阅读	
柳英		了 李悦	
李悦		李悦 的	
的		的 一本	
0	3	一本书	
<eos></eos>	6	信。	
		书。	2
		<eos> 郑新喜</eos>	1
		。 <eos></eos>	3

对于句子:

郑新喜 阅读 了 一封 信 。

首先添加标记:

<EOS>郑新喜 阅读 了 一封 信 。<EOS>

P(郑新喜 <eos>)</eos>	Count(郑新喜 <eos>) / Count(<eos>)</eos></eos>	1/6
P(阅读 郑新喜)	Count(阅读 郑新喜) / Count(郑新喜)	1/1 = 1
P(了 阅读}	Count(了 阅读) / Count(阅读)	3/3 = 1
P(一封 了)	Count(一封 了) / Count(了)	1/3
P(信 一封)	Count(信 一封) / Count(一封)	1/1 = 1
P(。 信)	Count(。 信) / Count(信)	1/1 = 1
P(<eos> 。)</eos>	Count(<eos> 。) / Count(。)</eos>	3/3 = 1

答案.

P(Sentence) = P(郑新喜|<EOS>) * P(阅读|郑新喜) * P(了|阅读} * P(一封|了) * P(信|一封) * P(。 |信) * P(<EOS>|。) =

1/18

PS:若不添加标记则为 1/3, 题目中没有进行强制要求

3.2 信息熵

遥	1	下	1	童	1	声	1	河	2
远	1	面	1	年	1	随	1	水	2
的	13	是	2	阿	2	风	1	流	2
夜	1	那	4	娇	2	飘	2	即回	1
空	1	小	4	摇	1	到	1	进	1
有	2	桥	2	着	3	我	2	心	1
_	2	旁	1	唱	1	脸	2		
个	1	边	2	古	1	上	3		
弯	14	条	1	老	1	淌	1		
月	2	船	3	歌	2	泪	1		
亮	2	悠	2	谣	1	像	1		
	40		23		16		16		9

一共 104 字符

计算信息熵:

信息熵公式:

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

计算结果为:

5.10742

程序见 h_cal.py

4. 请写出语句"In the classroom, he cleaned the desk with a dishcloth."的格框架表示。

主语动词: cleaned

主要概念: cleaned, 对 clean 进行了形态变化

辅助概念:

施事格 (Agent): he

动作的执行者是 "he"。

受事格(Patient): the desk

动作的对象或影响的目标是 "the desk"。

处所格(Location): in the classroom

动作发生的地点是 "in the classroom"。

工具格(Instrument): with a dishcloth

动作使用的工具是 "a dishcloth"。

	7411 DC/14H4		
格类型		句中元素	语义角色
施事格		he	执行动作的人
受事格		the desk	被清理的对象
处所格		in the classroom	动作发生的地点
工具格		with a dishcloth	用来执行动作的工具