1

JEE Questions 4

EE24BTECH11012 - Bhavanisankar G S

			2
1) Let $g(t) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\left(\frac{\pi}{4}t + f(x)\right) dx$, where $f(x) = \log\left(x + \sqrt{x^2 + 1}\right)$, $x \in \mathbb{R}$. Then which of the following is correct?			
a) $g(1) = g(0)$	b) $\sqrt{2}g(1) = g(0)$	c) $g(1) = \sqrt{2}g(0)$	d) $g(1) + g(0) = 0$
 2) Let P be a variable point on the parabola y = 4x² + 1. Then the locus of the mid-point of the point P and the foot of perpendicular drawn from the point P to the line y = x is: a) (3x - y)² + (x - 3y) + 2 = 0 b) 2(3x - y)² + (x - 3y) + 2 = 0 c) (3x - y)² + 2(x - 3y) + 2 = 0 d) 2(x - 3y)² + (3x - y) + 2 = 0 3) The absolute value of k ∈ R, for which the following system of linear equations 			
$3x - y + 4z = 3\tag{1}$			
x + 2y - 3z = -2			(2)
	6x +	5y + kz = -3	(3)
has infinitely many solutions is :			
a) 3	b) -5	c) 5	d) -3
4) If sum of the first 21 terms of the series $\log_{9^{\frac{1}{2}}} x + \log_{9^{\frac{1}{3}}} x + \log_{9^{\frac{1}{4}}} x + \dots$, where x $\stackrel{\cdot}{\iota}$ 0 is 504, then x is equal to			
a) 243	b) 9	c) 7	d) 81
5) In a triangle ABC, if $ \mathbf{BC} = 3$, $ \mathbf{CA} = 5$ and $ \mathbf{BA} = 7$, then the projection of the vector \mathbf{BA} on \mathbf{BC} is equal to			
a) $\frac{19}{2}$	b) $\frac{13}{2}$	c) $\frac{11}{2}$	d) $\frac{15}{2}$
I. Integer-Type Questions			
1) Let $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ then $det(3Adj(2A^{-1}))$ is equal to:			
2) If (α, β) is a point on $y^2 = 6x$, that is closest to $(3, \frac{3}{2})$ then find $2(\alpha + \beta)$ 3) Let a function $g: [0, 4] \to \mathbf{R}$ be defined as			
$(max(t^3-6t^2+9t-3))$ $0 < x < 3)$			

$$g(x) = \begin{pmatrix} max(t^3 - 6t^2 + 9t - 3), & 0 \le x \le 3\\ 4 - x, & 3 < x \le 4 \end{pmatrix}$$

then the number of points in the interval (0,4) where g(x) is NOT differentiable is :

4) The number of solutions of the equation

$$\log_{x+1} \left(2x^2 + 7x + 5 \right) + \log_{2x+5} (x+1)^2 - 4 = 0$$

 $, x \ge 0, is :$

5) Let a curve y = y(x) be given by the solutio of the differential equation

$$\cos\left(\frac{1}{2}\cos^{-1}e^{-x}\right)dx = \sqrt{e^{2x} - 1}dy$$

If it intersects y-axis at y = -1 and the intersection point of the curve with the x-axis is $(\alpha, 0)$, then e^{α} is equal to :

- 6) For $p \ge 0$, a vector $\mathbf{v_2} = 2\mathbf{i} + (p+1)\mathbf{j}$ is obtained by rotating the vector $\mathbf{v_1} = \sqrt{3}p\mathbf{i} + \mathbf{j}$ by an angle θ about the origin in counter clockwise direction. If $\tan \theta = \frac{\alpha \sqrt{3}-2}{4\sqrt{3}+3}$, then the value of α is equal to :
- 7) Consider a triangle with vertices $\mathbf{A}(-2,3)$, $\mathbf{B}(1,9)$, $\mathbf{C}(3,8)$. If a line \mathbf{L} passing through the circumcentre of the triangle ABC, bisects line BC, and intersects y-axis at point $(0, \frac{\alpha}{2})$ then the value of real number α is :
- 8) For $k \in \mathbb{N}$, let

$$\frac{1}{\alpha(\alpha+1)(\alpha+2)\dots(\alpha+20)} = \sum_{k=0}^{20} \frac{A_k}{\alpha+k}$$

- where $\alpha > 0$. Then the value of $100 \left(\frac{A_{14} + A_{15}}{A_{13}}\right)^2$ is :

 9) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1 = 1$, $a_2 = 1$ and $a_{n+2} = 2a_{n+1} + a_n$ for all $n \ge 1$. Then the value of $47 \sum_{n=1}^{\infty} \frac{a_n}{2^{3n}}$ is equal to :

 10) If $\lim_{x\to 0} \frac{\alpha x e^x \beta \log(1+x) + \gamma x^2 e^{-x}}{x \sin^2 x} = 10$, α , β , $\gamma \in \mathbf{R}$, then the value of $\alpha + \beta + \gamma$ is :