КОД

Проверочная работа по МАТЕМАТИКЕ

8 класс

Вариант 1

Инструкция по выполнению работы

На выполнение работы по математике даётся 90 минут. Работа содержит 19 заданий.

В заданиях, после которых есть поле со словом «Ответ», запишите ответ в указанном месте.

В заданиях, после которых есть поле со словами «Решение» и «Ответ», запишите решение и ответ в указанном месте.

В заданиях 4 и 8 нужно отметить точки на числовой прямой.

Если Вы хотите изменить ответ, зачеркните его и запишите рядом другой.

При выполнении работы нельзя пользоваться учебниками, рабочими тетрадями, справочниками, калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

Заполняется учителем, экспертом или техническим специалистом

Обратите внимание: в случае, если какие-либо задания не могли быть выполнены целым классом по причинам, связанным с отсутствием соответствующей темы в реализуемой школой образовательной программе, в форме сбора результатов ВПР всем обучающимся класса за данное задание вместо балла выставляется значение «Тема не пройдена». В соответствующие ячейки таблицы заполняется н/п.

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	9	11	12	13	14	15
Баллы													

16(1)	16(2)	17	18	19	Сумма баллов	Отметка за работу

1 Найдите значение выражения $1\frac{1}{9}: \left(\frac{5}{6} - 1\frac{1}{18}\right)$.

2 Pешите уравнение $2x^2 + 15 - 3x = 11x - 5$.

В школе открыты две спортивные секции: по плаванию и по лёгкой атлетике. Заниматься можно только в одной из них. Число школьников, занимающихся в секции по плаванию, относится к числу школьников, занимающихся в секции по лёгкой атлетике, как 6:3. Сколько школьников занимаются в секции по плаванию, если всего в двух секциях занимаются 45 школьников?

На координатной прямой отмечены числа a, b и c. Отметьте на этой прямой какое-нибудь число x так, чтобы при этом выполнялись три условия: x-a>0, b-x>0, x-c<0.

5 Прямая y = -2x + b проходит через точку (-5; 17). Найдите b.

Ответ:

(6)

На диаграмме жирными точками показан расход электроэнергии в однокомнатной квартире в период с января по декабрь 2018 года в кВт·ч. Для наглядности точки соединены линией.

На сколько примерно киловатт-часов меньше было израсходовано в июне, чем в мае? Чем, по вашему мнению, можно объяснить снижение расхода электроэнергии в летний период? Напишите несколько предложений, в которых обоснуйте своё мнение по этому вопросу.

На соревнованиях по синхронным прыжкам в воду в жюри входит девять судей. Пятеро оценивают синхронность выполнения прыжка. Двое судей оценивают исполнение прыжка первой спортсменкой, ещё двое — исполнение прыжка второй спортсменкой. Итоговая оценка за прыжок выставляется с помощью следующего алгоритма.

- 1. Из четырёх оценок за исполнение отбрасываются две наибольшая и наименьшая.
- 2. Из пяти оценок за синхронность отбрасываются две наибольшая и наименьшая.
- 3. Сумму оставшихся пяти оценок умножают на 0,6 и на коэффициент сложности прыжка.

В таблице указаны оценки за выступление пары спортсменок. Определите итоговую оценку, которую они получили за второй прыжок.

		Оценки судей													
Прыжок	Коэффициент сложности	си	нхронн	ость вы прыжка		испол пер спортс		исполнение второй спортсменкой							
1	2,8	8,5	7	6,5	6,5	5,5	8	7,5	7,5	7					
2	1,6	8	7,5	7	6	6,5	7,5	7,5 7		7					
3	3	7	8	7,5	7,5	6	7	8	6,5	6,5					
4	2,4	7	8	8	8,5	7,5	6,5	6	7	7,5					
5	1,8	7,5	8,5	8	8	7	7	7	7,5	6,5					

Ответ:

Отметьте на координатной прямой число $4\sqrt{11}$.

Ответ:

Найдите значение выражения $\frac{4x^2-4x+1}{x^2-25}$: $\frac{10x-5}{10x-50}$ при x=-3.

Соревнования по фигурному катанию проходят 4 дня. Всего запланировано 50 выступлений: в первые два дня — по 13 выступлений, остальные распределены поровну между третьим и четвёртым днями. В соревнованиях участвует спортсмен Б. Порядок выступлений определяется жеребьёвкой. Какова вероятность того, что спортсмен Б. будет выступать в последний день соревнований?

Стоимость проезда в электричке составляет 350 рублей. Студентам предоставляется скидка 40%. Сколько рублей будет стоить билет на электричку для студента после подорожания проезда на 10%?

Ответ:

12 На клетчатой бумаге с размером клетки 1×1 изображена трапеция ABCD. Во сколько раз основание AD больше высоты трапеции?

Ответ:

(13) Найдите длину высоты равностороннего треугольника, если его сторона равна $5\sqrt{3}$.

Ответ:

- Выберите верное утверждение и запишите в ответе его номер.
 - 1) В любом ромбе диагонали равны.
 - 2) Сумма углов прямоугольного треугольника равна 90 градусам.
 - 3) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной.

Ответ:

(15)

Велосипед приводится в движение с помощью двух звёздочек и цепи, натянутой между ними (см. рис.). Велосипедист вращает педали, которые закреплены на передней звёздочке, далее усилие с помощью цепи передаётся на заднюю звёздочку, которая вращает заднее колесо. На передней звёздочке велосипеда 36 зубьев, на задней — 12. Диаметр заднего колеса равен 56 см. Какое расстояние проедет велосипед за один полный оборот педалей? При расчёте округлите π до 3,14. Результат округлите до десятых долей метра.

(16)

Самым известным и престижным турниром по автомобильным гонкам считается чемпионат мира «Формула-1». В этих соревнованиях ежегодно принимают участие 10 команд, за каждую из которых выступают два пилота (гонщика). В течение спортивного сезона проводится несколько этапов (соревнований) «Формулы-1». Эти этапы проводятся в разных странах и называются Гран-при (франц. Grand Prix — большая, главная премия), например, Гран-при Австрии, Гран-при Бельгии.

В зависимости от места, которое занял пилот на очередном этапе, он получает некоторое количество очков. Чем выше место, тем больше очков. В течение сезона ведётся подсчёт суммы очков каждого спортсмена. Чемпионом мира становится спортсмен, набравший наибольшую сумму очков за все гонки сезона.

С 17 сентября по 26 ноября состоялось семь этапов «Формулы-1» сезона 2017 года. Во всех этих гонках принимали участие Валттери Боттас, Даниэль Риккардо и Себастьян Феттель. В таблице показано, какое место занял каждый из этих трёх спортсменов на каждом этапе. Прочтите фрагмент сопровождающей статьи.

Этап		Спортсмен	
Jian	A	Б	В
Гран-при Сингапура	18	2	3
Гран-при Малайзии	4	3	5
Гран-при Японии	19	3	4
Гран-при США	2	18	5
Гран-при Мексики	4	20	2
Гран-при Бразилии	1	6	2
Гран-при Абу-Даби	3	20	1

На последних семи этапах «Формулы-1» 2017 года Риккардо и Феттель по три раза попали в тройку лучших. Лучший результат, который смог показать Риккардо на этих этапах, — призовое 2-е место. Боттас один раз смог занять 1-е место.

Макс Ферстаппен тоже принимал участие во всех этих семи гонках. На Гран-при Сингапура он занял одно из последних, 19-е место. На Гран-при Японии Ферстаппен обогнал и Боттаса, и Риккардо, и Феттеля, но не смог занять первое место, которое он сумел отвоевать на гонках в Малайзии и в Мексике. На Гран-при США Ферстаппен опередил Валттери Боттаса на одно место. На Гран-при Бразилии он отстал от Себастьяна Феттеля на четыре места, заняв то же место и в следующей гонке.

ВПР	Математика.	8	класс	Вариант	1
DIII.	mai civiai rika.	O	KJIACC.	Бариант	

КОД	

1) На основании прочитанного определите, какому спортсмену соответствует столб
--

Ответ:		
OIDCI.		

2) По имеющемуся описанию заполните таблицу, показывающую места, занятые Максом Ферстаппеном на последних семи этапах «Формулы-1» в 2017 году.

Ответ:

Этап	Место, занятое Максом Ферстаппеном
Гран-при Сингапура	
Гран-при Малайзии	
Гран-при Японии	
Гран-при США	
Гран-при Мексики	
Гран-при Бразилии	
Гран-при Абу-Даби	

В треугольнике ABC стороны AB и BC равны, $\angle ACB = 75^\circ$. На стороне BC взяли точки X и Y так, что точка X лежит между точками B и Y, AX = BX и $\angle BAX = \angle YAX$. Найдите длину отрезка AY, если AX = 20.

Катер прошёл по течению реки 32 км, повернув обратно, он прошёл ещё 24 км, затратив на весь путь 4 часа. Найдите собственную скорость катера, если скорость течения реки равна 5 км/ч. Ответ дайте в км/ч.

																						Г
Per	ше	нис	€.																			H
		Ι																				H
																						H
		\vdash						_	_						_		_	_			-	⊣
		-						_	_						_		_	_			-	⊬
	_	_						_	_						_		_	_			_	L
																						L
																						L
																						Г
																						Г
																						\Box
																						\vdash
																					\dashv	\vdash
																						\vdash
		-																				\vdash
																						⊣
																						L
																						Г
																						Г
																						Т
																						H
																						\vdash
																						H
		-																				\vdash
		-					-															\vdash
		_				_					_										_	\vdash
		_								_			_									_
																						L
																					\Box	
																						Г
																						T
																					\dashv	\vdash
						\vdash					\vdash										\dashv	\vdash
_				_																	-	\vdash
O	TB	et:						_	_						_		_	_			-	L

Дети водят хоровод вокруг новогодней ёлки. Все девочки нарядились принцессами, а все мальчики — мушкетёрами. Рядом с каждой принцессой обязательно есть хотя бы один мушкетёр. Какое наибольшее число принцесс может быть в хороводе, если всего детей 40? Свой ответ обоснуйте.

