Maciej Byczko	Prowadzący:	Numer ćwiczenia
Bartosz Matysiak	dr inż. Jacek Mazurkiewicz	5
PN 10:50 TP	Temat ćwiczenia: Układy Kombinacyjne i Sekwencyjne w VHDL-u	Ocena:
Grupa:	Data wykonania:	
В	6 Grudnia 2021r.	

Spis treści

1	Zad	nnie 1
	1.1	Polecenie
	1.2	Rozwiązanie
		1.2.1 Tabela prawdy
		1.2.2 Siatka Karnaugh
		1.2.3 Schemat układu
		1.2.4 Kod VHDL
		1.2.5 Symulacja
	1.3	Fizyczna implementacja
		1.3.1 Kod UCF
2	Zad	nnie 2
	2.1	Polecenie
	2.2	Rozwiązanie
		2.2.1 Schemat stanów
		2.2.2 Tabela prawdy
		2.2.3 Siatki Karnaugh
		2.2.4 Schemat układu
		2.2.5 Kod VHDL
		2.2.6 Symulacja
	2.3	Fizyczna implementacja
		2.3.1 Kod UCF
3	7 d	nnie 3
3	3.1	Polecenie
	$3.1 \\ 3.2$	Rozwiązanie
	3.2	3.2.1 Schemat stanów
		8
		3.2.4 Schemat układu
		3.2.5 Kod VHDL
	2.2	3.2.6 Symulacja
	3.3	Fizyczna implementacja
		3.3.1 Kod UCF
4	Zad	nnie 4
	4.1	Polecenie
	4.2	Rozwiązanie
		4.2.1 Schemat stanów
		4.2.2 Tabela prawdy
		4.2.3 Siatki Karnaugh
		T.2.9 Diami Mainaugh

5	Wn	ioski																	ļ
		4.3.1	Kod UCF		•			 •	•	 •	•						•	 •	
	4.3	Fizycz	na implementa	cja															ļ
		4.2.6	Symulacja																
			Kod VHDL .																
			Schemat ukła																

Sprawozdanie

Strona 2

1 Zadanie 1

1.1 Polecenie

Implementacja funkcji logicznej $G(w,x,y,z) = \prod (0,2,3,4,6,7,9,11,12,13,15)$ w VHDL-u za pomocą:

- 1. Zapis równań boolowskich
- 2. Metoda zapisu tablicowego

1.2 Rozwiązanie

1.2.1 Tabela prawdy

Kod dziesiętny	W	X	у	Z	G
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

1.2.2 Siatka Karnaugh

wx00 10 01 11 1 00 0 0 0 1 1 01 0 0 yz11 0 0 0 0 1 10 0 0

Rysunek 1: $Wyj_G = w\overline{xz} + \overline{wy}z + wy\overline{z}$

- 1.2.3 Schemat układu
- 1.2.4 Kod VHDL
- 1.2.5 Symulacja
- 1.3 Fizyczna implementacja
- 1.3.1 Kod UCF

2 Zadanie 2

2.1 Polecenie

Implementacja układu translatora kodu **4-bit kod NKB na 4-bit kod Aikena** w VHDL-u za pomocą:

- 1. Zapis równań boolowskich
- 2. Metoda zapisu tablicowego

2.2 Rozwiązanie

- 2.2.1 Schemat stanów
- 2.2.2 Tabela prawdy
- 2.2.3 Siatki Karnaugh
- 2.2.4 Schemat układu
- 2.2.5 Kod VHDL
- 2.2.6 Symulacja
- 2.3 Fizyczna implementacja
- 2.3.1 Kod UCF

3 Zadanie 3

3.1 Polecenie

Detektor sekwencji 11011, automat Mealy-ego, jedno wejście, jedno wyjście, brak resetu, sekwencja prawidłowa 5-bitowa w VHDL-u jako maszyna stanów.

3.2 Rozwiązanie

- 3.2.1 Schemat stanów
- 3.2.2 Tabela prawdy
- 3.2.3 Siatki Karnaugh
- 3.2.4 Schemat układu
- $3.2.5 \mod VHDL$
- 3.2.6 Symulacja
- 3.3 Fizyczna implementacja
- 3.3.1 Kod UCF

4 Zadanie 4

4.1 Polecenie

Zaprojektować licznik synchroniczny liczący w tył na bazie kodu Aikena w zakresie 0-6 (mod 7) jako maszyna stanów.

4.2 Rozwiązanie

- 4.2.1 Schemat stanów
- 4.2.2 Tabela prawdy
- 4.2.3 Siatki Karnaugh
- 4.2.4 Schemat układu
- 4.2.5 Kod VHDL
- 4.2.6 Symulacja
- 4.3 Fizyczna implementacja
- 4.3.1 Kod UCF
- 5 Wnioski