

SEQUENCE LISTING

<110> Richards, Nigel Gordon John
Chang, Christopher Harry
Peck, Ammon B.

<120> Polunucleotides Encoding Oxalate Decarboxylase from Aspergillus Niger and Methods of Use

<130> UF-314XC1

<140> US 10/644,123

<141> 2003-08-20

<150> US 60/404,892

<151> 2002-08-20

<160> 10

<170> PatentIn version 3.2

<210> 1

<211> 1397

<212> DNA

<213> Aspergillus niger

<400> 1
ttaccagcaa ctactgcaga ttcccgccctc atccccatcc attttcttcc aagacaagcc 60

attcacccccc gatcatcgcg accccatatga tcacaagggtg gatgcgatcg ggaaaggcca 120

ttagcccttg ccctggcgca tgggagatgg agccaccatc atgggacccc gcaacaagga 180

ccgtgagcgc cagaaccccg acatgctccg tcctccgagc accgaccatg gcaacatgcc 240

gaacatgcgg tggagcttg ctgactccca cattcgcatt gaggttaagcc cttcgagagt 300

cttgtgtacg acaagcaaaa taggctaattg cactgcagga gggcggctgg acacgccaga 360

ctaccgtacg cgagctgcc acaagcaggg agcttgctgg agtaaacatg cgccttgatg 420

agggtgtcat tcgcgagctg cactggcatc gggaaagcaga gtgggcgtat gtgctggccg 480

gacgtgtacg agtgactggt cttgacctgg agggaggcag cttcatcgat gacctggaaag 540

agggtgacct ctggtacttc ccatcgccatc atccccattc acttcagggt ctcagtccta 600

atggcaccga gttcttactg atttcgacg atggaaactt ttccgaggag tcaacgttct 660

tgttgaccga ctggatcggt atgtccatca ctatgctgtt gtacaacctc cacaaaaata 720

ctaacaatgc tataaaacag cacatacacc caagtctgtc ctcgccggaa acttccgcat 780

gcgcccacaa acattcaaga acatcccacc atctgaaaag tacatcttcc agggctctgt 840

cccaagactct atccccaaag aacttc'cccg caacttcaaa gcatccaagc agcgcttcac	900
gcataagatg ctcgctcaag aaccccgagca tacctctggc ggagaggtgc gcatcacaga	960
ctcggtccaaac ttcccattct ccaagacggt cgccggccgcc cacctgacca ttaaccggg	1020
cgcgtatccgg gagatgcaact ggcataccaa tgccgtatgaa tggtcctact ttaagcgcgg	1080
tcggggcgcga gtgactatct tcgctgctga aggtaatgct cgtacattcg actacgtac	1140
gggagatgtg ggcattgttc ctcgcaacat gggcatttc attgagaacc tcagtatgaa	1200
cgaggaggc gaggtgttgg aaatcttccg ggcggaccga ttccgggact tttcggtt	1260
ccagtggatg ggagagacgc cgccggat ggtggcagag catgtgttta aggatgatcc	1320
agatgcggcc agggagttcc ttaagagtgt ggagagcggg gagaaggatc caattcggag	1380
cccaagttag tagatga	1397

<210> 2
<211> 1280
<212> DNA
<213> Aspergillus niger

<400> 2	
ttaccagcaa ctactgcaga ttcccgccctc atccccatcc attttcttcc aagacaagcc	60
attcacccccc gatcatcgcg accccttatga tcacaagggtg gatgcgatcg gggaaaggcca	120
ttagcccttg ccctggcgca tgggagatgg agccaccatc atgggaccccc gcaacaagga	180
ccgtgagcgc cagaaccccg acatgctccg tcctccgagc accgaccatg gcaacatgcc	240
gaacatgcgg tggagcttg ctgactccca cattcgcatt gaggagggcg gctggacacg	300
ccagactacc gtacgcgagc tgccaacaag caaggagctt gctggagtaa acatgcgcct	360
tgtatgagggt gtcattcgcg agctgcactg gcatcggaa gcagagtggg cgtatgtct	420
ggccggacgt gtacgagtga ctggcttga cctggaggga ggcagcttca tcgatgacct	480
ggaagaggggt gacctctggt acttccatc gggccatccc cattcacttc agggtctcag	540
tcctaattggc accgagttct tactgatctt cgacgatgga aactttccg aggagtcaac	600
gttcttggc accgactgga tcgcacatac acccaagtct gtcctcgccg gaaacttccg	660
catgcggccca caaacattca agaacatccc accatctgaa aagtacatct tccagggctc	720
tgtcccagac tctatccccca aagaacttcc ccgcaacttc aaagcatcca agcagcgctt	780
cacgcataag atgctcgctc aagaacccga gcatacctt ggcggagagg tgcgcatcac	840

agactcgccc	aactttccca	tctccaaagac	ggtcgcggcc	gcccacctga	ccattaaccc	900
ggcgctatac	cgggagatgc	actggcatcc	caatcgccat	aatggtcct	actttaagcg	960
cggcggcg	cgagtgacta	tcttcgctgc	tgaaggtaat	gctcgtaat	tcgactacgt	1020
agcgggagat	gtgggcattt	ttcctcgcaa	catgggtcat	ttcattgaga	acctcagtga	1080
tgacgaggag	gtcgaggtgt	tggaaatctt	ccgggcggac	cgattccggg	actttcggt	1140
gttccagtgg	atgggagaga	cgcgcagcg	gatggtggca	gagcatgtgt	ttaaggatga	1200
tccagatgct	gccagggagt	tccttaagag	tgtggagagc	ggggagaagg	atccgattcg	1260
gagcccaagt	gagtagatga					1280

<210> 3
<211> 424
<212> PRT
<213> Aspergillus niger

<400> 3

Tyr	Gln	Gln	Leu	Leu	Gln	Ile	Pro	Ala	Ser	Ser	Pro	Ser	Ile	Phe	Phe
1															
														15	

Gln	Asp	Lys	Pro	Phe	Thr	Pro	Asp	His	Arg	Asp	Pro	Tyr	Asp	His	Lys
														30	
20								25							

Val	Asp	Ala	Ile	Gly	Glu	Gly	His	Glu	Pro	Leu	Pro	Trp	Arg	Met	Gly
														45	
35							40								

Asp	Gly	Ala	Thr	Ile	Met	Gly	Pro	Arg	Asn	Lys	Asp	Arg	Glu	Arg	Gln
50							55								60

Asn	Pro	Asp	Met	Leu	Arg	Pro	Pro	Ser	Thr	Asp	His	Gly	Asn	Met	Pro
65							70				75			80	

Asn	Met	Arg	Trp	Ser	Phe	Ala	Asp	Ser	His	Ile	Arg	Ile	Glu	Glu	Gly
85														95	

Gly	Trp	Thr	Arg	Gln	Thr	Thr	Val	Arg	Glu	Leu	Pro	Thr	Ser	Arg	Glu
100							105							110	

Leu	Ala	Gly	Val	Asn	Met	Arg	Leu	Asp	Glu	Gly	Val	Ile	Arg	Glu	Leu
115							120							125	

His	Trp	His	Arg	Glu	Ala	Glu	Trp	Ala	Tyr	Val	Leu	Ala	Gly	Arg	Val
130							135							140	

Arg	Val	Thr	Gly	Leu	Asp	Leu	Glu	Gly	Ser	Phe	Ile	Asp	Asp	Leu	
145							150				155			160	

Glu Glu Gly Asp Leu Trp Tyr Phe Pro Ser Gly His Pro His Ser Leu
 165 170 175
 Gln Gly Leu Ser Pro Asn Gly Thr Glu Phe Leu Leu Ile Phe Asp Asp
 180 185 190
 Gly Asn Phe Ser Glu Glu Ser Thr Phe Leu Leu Thr Asp Trp Ile Ala
 195 200 205
 His Thr Pro Lys Ser Val Leu Ala Gly Asn Phe Arg Met Arg Pro Gln
 210 215 220
 Thr Phe Lys Asn Ile Pro Pro Ser Glu Lys Tyr Ile Phe Gln Gly Ser
 225 230 235 240
 Val Pro Asp Ser Ile Pro Lys Glu Leu Pro Arg Asn Phe Lys Ala Ser
 245 250 255
 Lys Gln Arg Phe Thr His Lys Met Leu Ala Gln Glu Pro Glu His Thr
 260 265 270
 Ser Gly Gly Glu Val Arg Ile Thr Asp Ser Ser Asn Phe Pro Ile Ser
 275 280 285
 Lys Thr Val Ala Ala Ala His Leu Thr Ile Asn Pro Gly Ala Ile Arg
 290 295 300
 Glu Met His Trp His Pro Asn Ala Asp Glu Trp Ser Tyr Phe Lys Arg
 305 310 315 320
 Gly Arg Ala Arg Val Thr Ile Phe Ala Ala Glu Gly Asn Ala Arg Thr
 325 330 335
 Phe Asp Tyr Val Ala Gly Asp Val Gly Ile Val Pro Arg Asn Met Gly
 340 345 350
 His Phe Ile Glu Asn Leu Ser Asp Asp Glu Glu Val Glu Val Leu Glu
 355 360 365
 Ile Phe Arg Ala Asp Arg Phe Arg Asp Phe Ser Leu Phe Gln Trp Met
 370 375 380
 Gly Glu Thr Pro Gln Arg Met Val Ala Glu His Val Phe Lys Asp Asp
 385 390 395 400
 Pro Asp Ala Ala Arg Glu Phe Leu Lys Ser Val Glu Ser Gly Glu Lys
 405 410 415
 Asp Pro Ile Arg Ser Pro Ser Glu
 420

<210> 4
 <211> 409
 <212> PRT

<213> Aspergillus niger

<400> 4

Phe Gln Asp Lys Pro Phe Thr Pro Asp His Arg Asp Pro Tyr Asp His
1 5 10 15

Lys Val Asp Ala Ile Gly Glu Gly His Glu Pro Leu Pro Trp Arg Met
20 25 30

Gly Asp Gly Ala Thr Ile Met Gly Pro Arg Asn Lys Asp Arg Glu Arg
35 40 45

Gln Asn Pro Asp Met Leu Arg Pro Pro Ser Thr Asp His Gly Asn Met
50 55 60

Pro Asn Met Arg Trp Ser Phe Ala Asp Ser His Ile Arg Ile Glu Glu
65 70 75 80

Gly Gly Trp Thr Arg Gln Thr Thr Val Arg Glu Leu Pro Thr Ser Arg
85 90 95

Glu Leu Ala Gly Val Asn Met Arg Leu Asp Glu Gly Val Ile Arg Glu
100 105 110

Leu His Trp His Arg Glu Ala Glu Trp Ala Tyr Val Leu Ala Gly Arg
115 120 125

Val Arg Val Thr Gly Leu Asp Leu Glu Gly Ser Phe Ile Asp Asp
130 135 140

Leu Glu Glu Gly Asp Leu Trp Tyr Phe Pro Ser Gly His Pro His Ser
145 150 155 160

Leu Gln Gly Leu Ser Pro Asn Gly Thr Glu Phe Leu Leu Ile Phe Asp
165 170 175

Asp Gly Asn Phe Ser Glu Glu Ser Thr Phe Leu Leu Thr Asp Trp Ile
180 185 190

Ala His Thr Pro Lys Ser Val Leu Ala Gly Asn Phe Arg Met Arg Pro
195 200 205

Gln Thr Phe Lys Asn Ile Pro Pro Ser Glu Lys Tyr Ile Phe Gln Gly
210 215 220

Ser Val Pro Asp Ser Ile Pro Lys Glu Leu Pro Arg Asn Phe Lys Ala
225 230 235 240

Ser Lys Gln Arg Phe Thr His Lys Met Leu Ala Gln Glu Pro Glu His
245 250 255

Thr Ser Gly Gly Glu Val Arg Ile Thr Asp Ser Ser Asn Phe Pro Ile
260 265 270

Ser Lys Thr Val Ala Ala Ala His Leu Thr Ile Asn Pro Gly Ala Ile
 275 280 285
 Arg Glu Met His Trp His Pro Asn Ala Asp Glu Trp Ser Tyr Phe Lys
 290 295 300
 Arg Gly Arg Ala Arg Val Thr Ile Phe Ala Ala Glu Gly Asn Ala Arg
 305 310 315 320
 Thr Phe Asp Tyr Val Ala Gly Asp Val Gly Ile Val Pro Arg Asn Met
 325 330 335
 Gly His Phe Ile Glu Asn Leu Ser Asp Asp Glu Glu Val Glu Val Leu
 340 345 350
 Glu Ile Phe Arg Ala Asp Arg Phe Arg Asp Phe Ser Leu Phe Gln Trp
 355 360 365
 Met Gly Glu Thr Pro Gln Arg Met Val Ala Glu His Val Phe Lys Asp
 370 375 380
 Asp Pro Asp Ala Ala Arg Glu Phe Leu Lys Ser Val Glu Ser Gly Glu
 385 390 395 400
 Lys Asp Pro Ile Arg Ser Pro Ser Glu
 405

<210> 5
 <211> 21
 <212> DNA
 <213> Artificial sequence

<220>
 <223> PCR primer

<400> 5
 gtcctcgaga aaagatacca g

21

<210> 6
 <211> 27
 <212> DNA
 <213> Artificial sequence

<220>
 <223> PCR primer

<400> 6
 tcatctactc acttgggctc cgaattg

27

<210> 7
 <211> 11
 <212> PRT

<213> Aspergillus niger

<400> 7

Phe Gln Asp Lys Pro Phe Thr Pro Asp His Arg
1 5 10

<210> 8

<211> 4

<212> PRT

<213> Artificial sequence

<220>

<223> Anticipated N-terminal sequence of oxalate decarboxylase of
Aspergillus niger

<400> 8

Tyr Gln Gln Asp
1

<210> 9

<211> 385

<212> PRT

<213> Bacillus subtilis

<400> 9

Met Lys Lys Gln Asn Asp Ile Pro Gln Pro Ile Arg Gly Asp Lys Gly
1 5 10 15

Ala Thr Val Lys Ile Pro Arg Asn Ile Glu Arg Asp Arg Gln Asn Pro
20 25 30

Asp Met Leu Val Pro Pro Glu Thr Asp His Gly Thr Val Ser Asn Met
35 40 45

Lys Phe Ser Phe Ser Asp Thr His Asn Arg Leu Glu Lys Gly Gly Tyr
50 55 60

Ala Arg Glu Val Thr Val Arg Glu Leu Pro Ile Ser Glu Asn Leu Ala
65 70 75 80

Ser Val Asn Met Arg Leu Lys Pro Gly Ala Ile Arg Glu Leu His Trp
85 90 95

His Lys Glu Ala Glu Trp Ala Tyr Met Ile Tyr Gly Ser Ala Arg Val
100 105 110

Thr Ile Val Asp Glu Lys Gly Arg Ser Phe Ile Asp Asp Val Gly Glu
115 120 125

Gly Asp Leu Trp Tyr Phe Pro Ser Gly Leu Pro His Ser Ile Gln Ala
 130 135 140

Leu Glu Glu Gly Ala Glu Phe Leu Leu Val Phe Asp Asp Gly Ser Phe
 145 150 155 160

Ser Glu Asn Ser Thr Phe Gln Leu Thr Asp Trp Leu Ala His Thr Pro
 165 170 175

Lys Glu Val Ile Ala Ala Asn Phe Gly Val Thr Lys Glu Glu Ile Ser
 180 185 190

Asn Leu Pro Gly Lys Glu Lys Tyr Ile Phe Glu Asn Gln Leu Pro Gly
 195 200 205

Ser Leu Lys Asp Asp Ile Val Glu Gly Pro Asn Gly Glu Val Pro Tyr
 210 215 220

Pro Phe Thr Tyr Arg Leu Leu Glu Gln Glu Pro Ile Glu Ser Glu Gly
 225 230 235 240

Gly Lys Val Tyr Ile Ala Asp Ser Thr Asn Phe Lys Val Ser Lys Thr
 245 250 255

Ile Ala Ser Ala Leu Val Thr Val Glu Pro Gly Ala Met Arg Glu Leu
 260 265 270

His Trp His Pro Asn Thr His Glu Trp Gln Tyr Tyr Ile Ser Gly Lys
 275 280 285

Ala Arg Met Thr Val Phe Ala Ser Asp Gly His Ala Arg Thr Phe Asn
 290 295 300

Tyr Gln Ala Gly Asp Val Gly Tyr Val Pro Phe Ala Met Gly His Tyr
 305 310 315 320

Val Glu Asn Ile Gly Asp Glu Pro Leu Val Phe Leu Glu Ile Phe Lys
 325 330 335

Asp Asp His Tyr Ala Asp Val Ser Leu Asn Gln Trp Leu Ala Met Leu
 340 345 350

Pro Glu Thr Phe Val Gln Ala His Leu Asp Leu Gly Lys Asp Phe Thr
 355 360 365

Asp Val Leu Ser Lys Glu Lys His Pro Val Val Lys Lys Lys Cys Ser
 370 375 380

Lys
 385

<210> 10
 <211> 1512
 <212> DNA

<213> Aspergillus niger

<400>	10					
ctatgcattcc	aacgcgttgg	gagctctccc	atatggtcga	cctgcaggcg	gccgcgaatt	60
cactagtat	ttaccagcaa	ctactgcaga	ttccccctc	atccccatcc	attttcttcc	120
aagacaagcc	attcacccccc	gatcatcgcg	acccttatga	tcacaagggtg	gatgcgatcg	180
gggaaggcca	tgagcccttg	ccctggcgca	tgggagatgg	agccaccatc	atgggacccc	240
gcaacaagga	ccgtgagcgc	cagaaccccg	acatgctccg	tcctccgagc	accgaccatg	300
gcaacatgcc	gaacatgcgg	tggagctttg	ctgactccca	cattcgcatt	gaggtaagcc	360
cttcgagagt	cttgtgtacg	acaagcaaaa	taggctaatg	cactgcagga	gggcggctgg	420
acacgcccaga	ctaccgtacg	cgagctgcca	acaaggcaggg	agcttgctgg	agtaaacatg	480
cgccttgatg	agggtgtcat	tcgcgagctg	cactggcattc	gggaagcaga	gtggcgtat	540
tgctggccg	gacgtgtacg	agtgactgg	cttgacctgg	agggaggcag	cttcatcgat	600
gaccttggaa	agggtgaccc	ctgggtacttc	ccatcgggccc	atccccatcc	acttcagggt	660
ctcagtccta	atggcaccga	gttcttactg	atcttcgacg	atggaaactt	ttccgaggag	720
tcaacgttct	tgttgaccga	ctggatcggt	atgtccatca	ctatgctgtt	gtacaacctc	780
cacaaaaata	ctaacaatgc	tataaaacag	cacatacacc	caagtctgtc	ctcgccggaa	840
acttccgcat	gcccaccaa	acattcaaga	acatcccacc	atctgaaaag	tacatcttcc	900
agggctctgt	cccagactct	atccccaaag	aacttccccg	caacttcaaa	gcatccaagc	960
agcgcttcac	gcataagatg	ctcgctcaag	aaccogagca	tacctctggc	ggagaggtgc	1020
gcatcacaga	ctcgccaac	tttcccatct	ccaagacggt	cgcggccgccc	cacctgacca	1080
ttaacccggg	cgctatccgg	gagatgcact	ggcatccaa	tgcggatgaa	tggcctact	1140
ttaagcgcgg	tcgggcgcga	gtgactatct	tcgctgctga	aggtaatgct	cgtacattcg	1200
actacgttagc	gggagatgtg	ggcattgttc	ctcgcaacat	gggtcatttc	attgagaacc	1260
tcagtgtatg	cgaggaggc	gaggtgttgg	aatcttccg	ggcggaccga	ttccgggact	1320
tttcgttgtt	ccagtggatg	ggagagacgc	cgcagcggat	ggtggcagag	catgtgttta	1380
aggatgatcc	agatgcggcc	agggagttcc	ttaagagtgt	ggagagcggg	gagaaggatc	1440
caattcggag	cccaagtgag	tagatgaaat	cgaattcccg	cggccgccat	ggcggccggg	1500
agcatgcgac	gt					1512