1b. Compute the connected components.

The size of the 10 largest components are as follows:

33696
20
16
14
13

6. 137. 138. 12

9. 12
10. 12

3. Implement the exact algorithm for closeness centrality

The indices of the 15 nodes with the highest closeness centrality in the largest connected component of the email-Enron graph and their closeness centrality scores are as follows:

1. index: 136 score: 0.3873700910512278

2. index: 76 score: 0.3861183049526734

3. index: 46 score: 0.3790810701347794

4. index: 140

score: 0.37475531630928016 5. index: 370

score: 0.374522052285257

6. index: 292 score: 0.37433481830402277

7. index: 195 score: 0.37398996625821346 8. index: 734 score: 0.3739567610760898

9. index: 175 score: 0.373790823571175

10. index: 416

score: 0.3723410133156528

11. index: 1139 score: 0.36917126829695857

12. index: 458 score: 0.36829564209905014

13. index: 444

score: 0.36808643121661333 14. index: 566

score: 0.36778510303877054

15. index: 353

score: 0.36742015331435984

The time needed to run the algorithm is 27.424920189380646 minutes. I used NetworkX's implementation of BFS, and the runtime ranged from 20-33 minutes on my Dell XPS 13.

4. Implement the Eppstein-Wang approximation algorithm

{2500: 4.862294209003449, 5000: 9.6032501856486, 7500: 14.183581137657166, 10000: 22.33936465581258, 12500: 23.120983095963798}

I ran the algorithms multiple times. The left plot above is what I will be using to analyze the distribution of errors. I noticed that in most runs, the Eppstein-Wang approximation algorithm was almost at least twice as fast, even with k=12500.

As k increases, the errors generally decrease. However, at 12500 iterations, the distribution of error increases. We can see that when the sources are included, and k is large, then the distributions are skewed towards 0. This is most apparent for $k \geq 7500$ since the minimum and 1st quartile are about the same in the left plot above.