1

Probability&RV Assignment-09

Anuradha U-ee21resch01008

Download Latex code from

https://github.com/Anuradha-Uggi/Assignments-AI5002-Probability-and-Random-Variables/ blob/main/Prob ass09/rvsp 9.tex

I. QUESTION(UGC NET 2019,Q-108)

Suppose $X_i = X_1, X_2, ..., X_n$ are i.i.d Uniform $(\theta, 2\theta), \theta > 0$. Let $X_{(1)} = \min\{X_1, X_2, ..., X_n\}$ $X_{(n)} = \max\{X_1, ..., X_n\}.$ then which of following statements are correct.

- 1) $(X_{(1)},X_{(n)})$ is jointly sufficient and complete for
- 2) ($X_{(1)}, X_{(n)}$) is jointly sufficient but not complete
- 3) $\frac{X_{(n)}}{2}$ is maximum likelihood estimate for θ 4) $X_{(1)}$ is maximum likelihood estimate for θ

II. Basic Definitions

Sufficient Statistic:

Given X i.i.d Data conditioned on an unknown parameter θ , T(X) is called sufficient statistic for θ if its values contains all the information needed to compute any estimate of the parameter (Maximum likelihood estimate). according to Fisher-Neymen Factorization PDF is

$$f(X;\theta) = h(X)S(\theta, T(X)) \tag{1}$$

where h(X) is a constant and $S(\theta,T(X))$ is a function through which θ will interact to X only through T(X).

Statistic Completeness:

T(X) is said to be complete for θ if for every measurable function g;

if

$$E_{\theta}(g(T)) = 0 \tag{2}$$

for all θ then

$$P_{\theta}(g(T) = 0) = 1 \tag{3}$$

for all θ .

III. SOLUTION

Given

$$X_{(1)} = \min\{X_1, X_2, ..., X_n\} = \min\{X_i\}$$
 (4)

$$X_{(n)} = \max\{X_1, X_2, ..., X_n\} = \max\{X_i\}$$
 (5)

$$X_i = \{X_1, X_2, ..., X_n\} \sim U(\theta, 2\theta)$$
 (6)

$$P(X_i) = \frac{1}{\theta} \tag{7}$$

Statistic

$$T(X) = (\min\{X\}, \max\{X\}) \tag{8}$$

X are i.i.d so Likelihood or joint PDF is simple product of all marginal PDFs given by

$$f_X(x) = \frac{1}{\theta^n} 1_{\{\theta \le x_1 \le 2\theta\}} 1_{\{\theta \le x_2 \le 2\theta\}} \dots 1_{\{\theta \le x_n \le 2\theta\}}$$
(9)

Indicator Function($1_{\{\theta \leq X_i \leq 2\theta\}}$):

let we have

$$A \subset X \tag{10}$$

Indicator Function (or) Characteristic Function in Mathematics Indicates membership of elements in set X, having value 1 for elements of X in A and 0 for those of X not in A.its denoted by Symbol 1 or I with a subscript.

$$1_{(A)}: X \to \{0, 1\}$$
 (11)

$$1_{(A(x)):} = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$
 (12)

we know that all random samples from Random Variables $X_1, X_2, ... X_n$ lies in the range $(\theta, 2\theta)$ with a probability

$$\Pr(X = x) = \frac{1}{\theta} 1_{\{\theta \le x \le 2\theta\}} \tag{13}$$

Now the joint PDF can be expressed as

$$f_X(x) = \frac{1}{\theta^n} 1_{\{\theta \le \min\{X_i\}} 1_{\max\{X_i\} \le 2\theta}$$
 (14)

above equation implies that all samples $x_1, x_2, ...x_n$ fall in θ and 2θ .from above equation

$$h(X) = 1 \tag{15}$$

which is constant and

$$S_{(\theta,2\theta)}(X) = \frac{1}{\theta^n} \tag{16}$$

which is function of only θ . therefore $T(\min\{X_i\}, \max\{X_i\})$ is jointly sufficient to define θ thus Sufficient statistic.

Let

$$g(T) = \max\{X_i\} - \min\{X_i\} \tag{17}$$

$$E[g(T)] = E[\max\{X_i\} - \min\{X_i\}] = c$$
 (18)

$$E[\max\{X_i\} - \min\{X_i\} - c] = 0$$
 (19)

$$E[g(T) - c] = \int (\max\{X_i\} - \min\{X_i\} - c) \frac{1}{\theta^n} dx$$
 (20)

from equation (20) its clear that

$$\max\{X_i\} - \min\{X_i\} - c = 0 \tag{21}$$

for all θ therefore

$$P(\max\{X_i\} - \min\{X_i\} - c = 0) = 1$$
 (22)

for all θ therefore $T(X_{(n)}, X_{(1)})$ is Jointly sufficient and complete for θ .

Maximum Likelihood Estimate(MLE):

Likelihood can be written as

$$f_{\theta}(X_1, X_2, ..., X_n) = \frac{1}{\theta^n} I\left(\frac{\max\{X_i\}}{2} \le \theta \le \min\{X_i\}\right)$$
(23)

the MLE is the statistic that maximizes the liklihood.from equation (7) liklihood is a decreasing function of θ .therefore MLE of θ is

$$\theta = \frac{X_{(n)}}{2} = \frac{\max\{X_i\}}{2} \tag{24}$$

IV. CONCLUTION

From above observations option (1) and option (3) holds.