CSE230: Discrete Mathematics

Practice Sheet 2: **Proofs: Direct, Indirect, Contradiction, Induction**

Q1	Prove that, For all integers n, if n³ + 5 is odd then n is even.
Q2	Prove the following: Suppose a, b \in Z. If a + b \geq 19, then a \geq 10 or b \geq 10.
Q3	Prove the following: Suppose a, b, and c are positive real numbers. If $ab = c$ then $a \le \sqrt{c}$ or $b \le \sqrt{c}$.
Q4	Prove the following: The sum of a rational number and an irrational number is irrational.
Q5	Prove the following: Every nonzero rational number can be expressed as a product of two irrational numbers.
Q6	Prove the following: Suppose a,b,c \subseteq Z. If $a^2 + b^2 = c^2$, then a or b is even.
Q7	Prove the following: If a and b are positive real numbers, then $a + b \ge 2\sqrt{ab}$.
Q8	Prove by mathematical induction that if n is a positive integer then $1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$
Q9	Prove by mathematical induction that if n is a positive integer then $(1 \times 2) + (2 \times 3) + (3 \times 4) + \ldots + (n \times (n+1)) = \frac{n(n+1)(n+2)}{3}$
Q10	Prove by mathematical induction that $\sum_{k=1}^{n} k^2 = \frac{1}{6} n(n+1)(2n+1)$ for all $n \in \mathbb{N}$.
Q11	Prove by mathematical induction that if n is a positive integer then $1+5+9+13+\ldots+(4n-3)=\frac{n(4n-2)}{2}$

Q12	Prove by mathematical induction that, $\sum_{r=1}^{n} r(r+3) = \frac{1}{3}n(n+1)(n+5)$ where n > 0 and n \in N.
Q13	Prove by mathematical induction that, $\sum_{r=1}^{n} (r-1)(r+1) = \frac{1}{6}n(n-1)(2n+5)$ where n > 0 and n \in N.
Q14	Prove by mathematical induction that, $\sum_{r=2}^{n} r^2(r-1) = \frac{1}{12}n(n-1)(n+1)(3n+2)$ where n > 1 and n \in N.
Q15	Prove by mathematical induction that, $\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$ where n > 0 and n \in N.
Q16	Prove by mathematical induction that, $\sum_{r=1}^{n} r(3r-1) = n^2(n+1)$ where n > 0 and n \in N.
Q17	Prove by mathematical induction that, $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$ where n > 0 and n \in N.
Q18	Prove by mathematical induction that, $\sum_{r=1}^{n} (3^{r-1}) = \frac{3^{n}-1}{2}$ where n > 0 and n \in N.
Q19	Prove by mathematical induction that, $\sum_{r=1}^{n} r. 2^{r} = 2 + (n-1)2^{n+1}$ where n > 0 and n \in N.

Q20	Prove by mathematical induction that, $\sum_{n=1}^{n} (r+1) \cdot 2^{r} = n \cdot 2^{n}$
	$r = 1$ where n > 0 and n \in N.
Q21	Prove by mathematical induction that, $ -1 + 1 + 5 + 11 + \dots + \{n(n-1) - 1\} = \frac{1}{3}n(n+2)(n-2) $ where n > 0 and n \in N.
Q22	Prove by mathematical induction that, $4^n + 6n + 8$ is divisible by 18 where n > 0 and n \in N.
Q23	Prove by mathematical induction that, $5^{2n} + 3n - 1$ is divisible by 9 where n > 0 and n \in N.
Q24	Prove by mathematical induction that, $7^n + 5$ is divisible by 6 where $n \in \mathbb{N}$.
Q25	Prove by mathematical induction that, $7^{2n-1} + 1$ is divisible by 8 where $n \in \mathbb{N}$.
Q26	Prove by mathematical induction that, $4^n + 6n - 1$ is divisible by 9 where $n \in \mathbb{N}$.
Q27	Prove by mathematical induction that, $5^n + 8n + 3$ is divisible by 4 where $n \in \mathbb{N}$.
Q28	Prove by mathematical induction that, $3^{4n} + 2^{4n+2}$ is divisible by 5 where $n \in \mathbb{N}$.
Q29	Prove by mathematical induction that, $9^n - 5^n$ is divisible by 4 where $n \in \mathbb{N}$.

	Prove by mathematical induction that,
Q30	$(4n + 3) \times 5^n - 3$ is divisible by 16
	where $n \in \mathbb{N}$.
	Prove by mathematical induction that,
	the sum of the cubes of any three consecutive positive integers is
Q31	always divisible by 9 .
	Prove by mathematical induction that,
	$15^n - 8^{n-2}$ is divisible by 7
	15 - 8 is divisible by / where n>1 and n ∈ N.
Q32	WHELE HAL GIRL II C IN.
	Prove by mathematical induction that,
	$(2n + 1)7^n + 11$ is divisible by 4
Q33	where $n>1$ and $n \in N$.
	Prove by mathematical induction that,
	$24 \times 2^{4n} + 3^{4n}$ is divisible by 5
601	where $n>1$ and $n \in \mathbb{N}$.
Q34	
	Prove by mathematical induction that,
	$4\times7^n + 3\times5^n + 5$ is divisible by 12
	where $n \in N$.
Q35	
	Prove by mathematical induction that,
	$(2n+1)7^n-1$ is divisible by 4
Q36	where $n>1$ and $n \in \mathbb{N}$.
400	
	Prove by mathematical induction that, $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	$4^{n+1} + 5^{2n-1}$ is divisible by 21
Q37	where $n \in N$.
	Prove by mathematical induction that,
	$2^n + 6^n$ is divisible by 8
Q38	where $n \in N$.
	Prove by mathematical industion that
	Prove by mathematical induction that,
	$5^{n-1} + 11^n$ is divisible by 6
	where n is a positive integer.
Q39	

Prove by mathematical induction that, $5^{n+1} - 4n - 5$ is divisible by 16 where $n \in \mathbb{N}$.

Q40