Devoir maison 8 - Fonctions convexes

Rappel: Une fonction f définie sur un intervalle I est dite convexe si :

$$\forall (a,b) \in I^2, \forall \lambda \in [0,1], \quad f(\lambda a + (1-\lambda)b) \le \lambda f(a) + (1-\lambda)f(b)$$

f est dite **concave** si -f est convexe.

1. Soient $f \in \mathbb{R}^I$ et \mathscr{C} sa courbe représentative dans un repère orthonormé. Montrer que f est convexe sur I si, et seulement si la partie Epif du plan située au-dessus de \mathscr{C} (appelée épigraphe de f) est convexe, c'est-à-dire :

$$\forall (A,B) \in Epif, \quad [AB] \subset Epif$$

(ce qui équivaut à dire que tout arc de \mathscr{C} est sous sa corde.)

- **2.** Montrer que f est convexe sur I si, et seulement si pour tout $a \in I$, la fonction $x \mapsto \frac{f(x) f(a)}{x a}$ est croissante sur tout intervalle de $I \setminus \{a\}$.
- 3. Soient f une fonction dérivable sur un intervalle I, et $\mathscr C$ sa courbe dans un repère orthonormé.
 - a. Montrer que f est convexe sur I si, et seulement si f' est croissante sur I.
- **b.** Montrer que f est convexe sur I si, et seulement si $\mathscr C$ est située au-dessus de toutes ses tangentes.
- **4.** Étudier la convexité des fonctions $f: x \mapsto e^x, g: x \mapsto \ln(x)$ et $h: x \mapsto x^3$.
- 5. En utilisant la convexité, montrer que

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi}x \le \sin(x) \le x$$

6. Soient f une fonction convexe sur un intervalle I et n un entier supérieur à 2.

Montrer que pour $(x_i)_{1 \le i \le n} \in I^n$, $(\lambda_i)_{1 \le i \le n} \in (\mathbb{R}_+^*)^n$ tel que $\sum_{i=1}^n \lambda_i = 1$ on a :

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

Cette inégalité s'appelle inégalité de Jensen.

7. Comparaison de moyennes:

Soient $n \in \mathbb{N}^*$ et $(a_i)_{1 \leq i \leq n} \in (\mathbb{R}_+^*)^n$. On note :

$$A = \frac{1}{n} \sum_{i=1}^{n} a_i$$
, $G = \sqrt[n]{a_1 \cdots a_n}$, et H tel que $\frac{1}{H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{a_i}$

Montrer que

$$H \le G \le A$$

A s'appelle moyenne arithmétique, G moyenne géométrique et H moyenne harmonique de la famille $(a_i)_{1 \leq i \leq n}$.