Generating Sets and Basis

In a vector space V, we are particularly interested in sets of vectors A that possess the property that any vector $v \in V$ can be obtained by a linear combination of vectors in A. These vectors are special vectors, and in the following, we will characterize them.

Definition 1 (Generating Set/Span). Consider a vector space V and set of vectors $\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$. If every vector $v \in V$ can be expressed as a linear combination of x_1, \dots, x_k , \mathcal{A} is called a *generating set* or *span*, which spans the vector space V. In this case, we write $V = [\mathcal{A}]$ or $V = [x_1, \dots, x_k]$.

generating set span

Generating sets are sets of vectors that span vector (sub)spaces, i.e., every vector can be represented as a linear combination of the vectors in the generating set. Now, we will be more specific and characterize the smallest generating set that spans a vector (sub)space.

Definition 2 (Basis). Consider a real vector space V and $A \subseteq V$.

- A generating set A of V is called *minimal* if there exists no smaller set minimal $\tilde{A} \subseteq A \subseteq V$ that spans V.
- Every linearly independent generating set of V is minimal and is called basis of V.

Let V be a real vector space and $\mathcal{B} \subseteq \mathcal{V}, \mathcal{B} \neq \emptyset$. Then, the following statements are equivalent:

- \mathcal{B} is a basis of V
- B is a minimal generating set
- \mathcal{B} is a maximal linearly independent subset of vectors in V.
- Every vector $x \in V$ is a linear combination of vectors from \mathcal{B} , and every linear combination is unique, i.e., with

$$x = \sum_{i=1}^{k} \lambda_i \boldsymbol{b}_i = \sum_{i=1}^{k} \psi_i \boldsymbol{b}_i \tag{1}$$

and $\lambda_i, \psi_i \in \mathbb{R}$, $b_i \in \mathcal{B}$ it follows that $\lambda_i = \psi_i, i = 1, \dots, k$.

Example:

• In \mathbb{R}^3 , the canonical/standard basis is

canonical/standard basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}. \tag{2}$$

• Different bases in \mathbb{R}^3 are

$$\mathcal{B}_{1} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \quad \mathcal{B}_{2} = \left\{ \begin{bmatrix} 0.5\\0.8\\-0.4 \end{bmatrix}, \begin{bmatrix} 1.8\\0.3\\0.3 \end{bmatrix}, \begin{bmatrix} -2.2\\-1.3\\3.5 \end{bmatrix} \right\}$$
 (3)

• The set

$$\mathcal{A} = \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-4 \end{bmatrix} \right\} \tag{4}$$

is linearly independent, but not a generating set (and no basis): For instance, the vector $[1,0,0,0]^{\top}$ cannot be obtained by a linear combination of elements in A.

Remark. Every vector space V possesses a basis \mathcal{B} . The examples above show that there can be many bases of a vector space V, i.e., there is no unique basis. However, all bases possess the same number of elements, the *basis vectors*.

basis vectors dimension

We only consider finite-dimensional vector spaces V. In this case, the dimension of V is the number of basis vectors, and we write $\dim(V)$. If $U \subseteq V$ is a subspace of V then $\dim(U) \leq \dim(V)$ and $\dim(U) = \dim(V)$ if and only if U = V. Intuitively, the dimension of a vector space can be thought of as the number of independent directions in this vector space.