2IT80 Discrete Structures

2023-24 Q2

Lecture 7: Graphs I

Graphs

Many problems can be captured by some set of points and the connections between them. This implicit structure may help us solve these problems.

Graph

A graph G is an ordered pair (V, E), where

V is a set of elements, called vertices.

E a set of 2-element subsets of V, called edges

The degree of a vertex is equal to the number edges it is part of.

Vertices $v, v' \in V$ are adjacent when $\{v, v'\} \in E$. We say v' is a neighbor of v (and v a neighbor of v').

Example:

$$V = \{1, 2, 3, 4\}$$

 $E = \{\{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}, \{3,4\}\}$

Degree of vertex 2 is three.

Vertex 2 and vertex 3 are adjacent.

Examples

(Of things that are often modeled as a graph.)

■ Social network:

Vertices: profiles

Edges: $\{a, b\}$ if profiles a and b are friends

□ The internet:

Vertices: Computers, phones, routers, servers, etc...

Edges: $\{a, b\}$ if a has a direct connection to b

■ Software architecture

Vertices: Components

Edges: $\{a, b\}$ if a interfaces with b

In this course: mainly consider the mathematical construct.

Drawing graphs

Here we use \bigcirc for a vertex and connected vertices of edges by drawing lines (or arcs).

More formal definition of a drawing when we talk planar graphs.

Graph drawings

A graph defines only connectivity, but we can draw it.

Planar graphs can be drawn in the plane without edge crossings.

Graph drawings

Differently drawn graphs, may actually have the same structure.

Graph isomorphism

Two graphs G = (V, E) and G' = (V', E') are called isomorphic if a bijection $f : V \to V'$ exists such that $\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E'$ holds for all $x, y \in V$, $x \neq y$.

Such an f is called an isomorphism of the graphs G and G'. We indicate that two graphs G and G' are isomorphic by $G \cong G'$.

Example:

$$f: 1 \mapsto a$$
; $2 \mapsto e$; $3 \mapsto u$; $4 \mapsto b$; $5 \mapsto d$; $6 \mapsto w$; $7 \mapsto v$; $8 \mapsto c$

Reminder: Embedding

Let (X, \leq) and (X', \leq') be ordered sets. A mapping $f: X \to X'$ is called an embedding of (X, \leq) into (X', \leq') if the following conditions hold: (i) f is injective;

(ii) $f(x) \le' f(y)$ if and only if $x \le y$.

If an embedding is surjective, then it is an isomorphism.

Counting graphs

Let $V = \{1, 2, ..., n\}$. How many graphs can we make?

This depends only on the choice of edges. There are $\binom{n}{2}$ possible edges we can choose. Thus we get $2^{\binom{n}{2}}$ possible graphs.

Counting non-isomorphic graphs

Let $V = \{1, 2, ..., n\}$. How many graphs can we make?

This depends only on the choice of edges. There are $\binom{n}{2}$ possible edges we can choose. Thus we get $2^{\binom{n}{2}}$ possible graphs.

How many pairwise non-isomorphic graphs can we make?

Non-isomorphic graphs

Question: How many classes of the equivalence relation \cong on the set of all graphs with vertex set $V = \{1, 2,...,n\}$ exist?

Proof sketch:

Upperbound:

At most $2^{\binom{n}{2}}$ graphs, implies at most $2^{\binom{n}{2}}$ equivalence classes.

Lowerbound:

If two graphs are isomorphic then there exists a bijection between their vertices.

The total number of possible bijections is n!, so each equivalence class has at most n! graphs.

There are at least $\frac{2^{\binom{n}{2}}}{n!}$ equivalence classes. We can show that this function does not grow much slower than $2^{\binom{n}{2}}$.

Non-isomorphic graphs

More formal derivation for the lower bound

Define E^* as the set of equivalence classes for the set G^* of all graphs on V under the isomorphism relation \cong .

Then each $E \in E^*$ is an equivalence class that contains graphs that are all isomorphic to each other.

Consider an $E \in E^*$ and a graph $G \in E$. For each graph $G' \in E$ there is a bijection from V(G) to V(G') since G and G' are isomorphic. There are at most n! bijections between sets of n elements, so there are at most n! graphs in any equivalence class E.

The equivalence classes partition the set G^* of graphs.

So
$$|G| = \sum_{E \in E^*} |E| \le \sum_{E \in E^*} n! = |E^*| * n!$$

So
$$|G| \le |E^*| * n! => |E^*| \ge |G^*| / n! = 2^{\binom{n}{2}} / n!$$

Subgraphs

(Induced) subgraph

Let *G* and *G'* be graphs.

G is a subgraph of G' if

$$V(G) \subseteq V(G')$$
 and $E(G) \subseteq E(G') \cap {V(G) \choose 2}$.

G is an induced subgraph of G' if

$$V(G) \subseteq V(G')$$
 and $E(G) = E(G') \cap {V(G) \choose 2}$.

Example:

Graph G

Subgraph of G

Induced subgraph of G

Common graph

Complete graph K_n

$$V = \{1, 2, ..., n\}$$

$$E = {V \choose 2}$$

$$|E| = \frac{n \cdot (n-1)}{2}$$

Star graph
$$S_n$$
 $(K_{1,n})$
 $V = \{u_1\} \cup \{v_1, v_2, ..., v_n\}$
 $E = \{\{u_1, v_j\}: j = 1, 2, ..., n\}$
 $|E| = n$

Common graphs

Complete bipartite graph $K_{n,m}$

$$\begin{split} V &= \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_m\} \\ E &= \left\{ \{u_i, v_j\} : i = 1, 2, \dots, n; j = 1, 2, \dots, m \right\} \\ |E| &= n \cdot m \end{split}$$

Bipartite graph (family of graphs)

$$\begin{split} V &= \{u_1, u_2, \dots, u_n\} \cup \{v_1, v_2, \dots, v_m\} \\ E^* &= \left\{ \{u_i, v_j\} : i = 1, 2, \dots, n; j = 1, 2, \dots, m \right\} \\ E &\subseteq E^* \\ |E| &\leq n \cdot m \end{split}$$

Common graphs

Path
$$P_n$$

 $V = \{0,1,2,...,n\}$
 $E = \{\{i,i+1\}: i = 0,1,2,...,n-1\}$
 $|E| = n$

$$P_3$$

Cycle
$$C_n$$

 $V = \{1, 2, ..., n\}$
 $E = \{\{i, i + 1\}: i = 1, 2, ..., n - 1\} \cup \{\{1, n\}\}$
 $|E| = n$

Paths and cycles

A path in a graph G is a subgraph of G that is isomorphic to P_t , for some nonnegative integer t.

A cycle in a graph G is a subgraph of G that is isomorphic to C_t , for any integer $t \ge 3$. (Also known as a circuit.)

Example:

Walks

A walk is an interleaved sequence of vertices and edges $(v_0, e_1, v_1, e_2, ..., e_t, v_t)$ where $e_i = \{v_{i-1}, v_i\} \in E(G)$ for all i = 1, ..., t.

Intuition: A walk is a path that is allowed to visit the same vertices and edges again.

Example:

Quiz

The graph drawn on the right is a planar graph.

Yes, because we *can* draw it without intersecting edges.

Graph G is an induced subgraph of G' if $V(G) \subseteq V(G')$ and $E(G) \subseteq E(G')$.

No, an induced subgraph has all the edges between the selected subset of the vertices. That is, $E(G) = E(G') \cap {V(G) \choose 2}$.

The blue edges and vertices form a cycle.

No, a cycle does not pass through the same vertex multiple times.

An interleaved sequence of vertices and edges $(v_0, e_1, v_1, e_2, ..., e_t, v_t)$, where $e_i = \{v_{i-1}, v_i\} \in E(G)$ for all i = 1, ..., t.

- a) ...is a walk. b) ... is a cycle. c) ... is a mess.

Quiz

The graph drawn on the right is a planar graph.

Yes, because we *can* draw it without intersecting edges.

Graph G is an induced subgraph of G' if $V(G) \subseteq V(G')$ and $E(G) \subseteq E(G')$.

No, an induced subgraph has all the edges between the selected subset of the vertices. That is, $E(G) = E(G') \cap {V(G) \choose 2}$.

The blue edges and vertices form a cycle.

No, a cycle does not pass through the same vertex multiple times.

An interleaved sequence of vertices and edges $(v_0, e_1, v_1, e_2, ..., e_t, v_t)$, where $e_i = \{v_{i-1}, v_i\} \in E(G)$ for all i = 1, ..., t.

- a) ...is a walk. b) ... is a cycle. c) ... is a mess.

Connected and components

A graph is connected if for any two vertices $v, w \in V(G)$, G contains a walk from v to w.

The components of a graph G are the equivalence classes defined by the relation \sim on the set V(G), where $x \sim y$ if and only if there exists a walk from x to y in G.

Example:

Examples

How many components in the following graphs?

Examples

How many components in the following graphs?

```
G = (V, E)
```

V: integers from 2 to 10

 $E : \{a, b\} \text{ if } a \mid b \text{ or } b \mid a$

Theorem: Any graph G = (V, E) where each vertex $v \in V$ has $deg_G(v) \ge {(n-1)}/{2}$ is connected, where n = |V|.

Theorem: Any graph G = (V, E) where each vertex $v \in V$ has $deg_G(v) \ge {(n-1)}/{2}$ is connected, where n = |V|.

Theorem: Any graph G = (V, E) where each vertex $v \in V$ has $deg_G(v) \ge {(n-1)}/{2}$ is connected, where n = |V|.

Theorem: Any graph G = (V, E) where each vertex $v \in V$ has $deg_G(v) \ge {(n-1)}/{2}$ is connected, where n = |V|.

Theorem: Any graph G = (V, E) where each vertex $v \in V$ has $deg_G(v) \ge {(n-1)/2}$ is connected, where n = |V|.

Proof: Graph G is connected if for any two vertices $v, w \in V$, G contains a walk from v to w. Take two arbitrary vertices $v, w \in V$.

Now a case distinction based on v, w

Case 1: v = w

Case 2: there is an edge $\{v, w\}$

Case 3: "Otherwise" $\rightarrow v \neq w$ and there is no edge $\{v, w\}$

Theorem: Any graph G = (V, E) where each vertex $v \in V$ has $deg_G(v) \ge {(n-1)/2}$ is connected, where n = |V|.

Proof: Graph G is connected if for any two vertices $v, w \in V$, G contains a walk from v to w. Take two arbitrary vertices $v, w \in V$. Now a case distinction based on v, w

Case 1: v = w

Then there a walk (v) from v to w

Case 2: there is an edge $\{v, w\}$

Then there is a walk $(v, \{v, w\}, w)$ from v to w

Case 3: "Otherwise" $\rightarrow v \neq w$ and there is no edge $\{v, w\}$ Little more work

Theorem: Any graph G = (V, E) where each vertex $v \in V$ has $deg_G(v) \ge {(n-1)/2}$ is connected, where n = |V|.

Proof: Graph G is connected if for any two vertices $v, w \in V$, G contains a walk from v to w. Take two arbitrary vertices $v, w \in V$.

Case 3: $v \neq w$ and $\{v, w\} \notin E$.

Let A be the set of neighbors of v, and B be the set of neighbors of w.

We have $|A \cup B| = |A| + |B| - |A \cap B|$ (inclusion-exclusion).

 $|A \cap B| = |A| + |B| - |A \cup B|$ (rewriting)

 $|A \cap B| \ge (n-1) - |A \cup B|$ (by degree constraint)

 $|A \cap B| \ge (n-1) - (n-2)$ (since $A \cup B$ does not contain v,w)

 $|A \cap B| \ge 1$.

So there is at least one common neighbor and hence there must be a path from v to w.

As we picked v and w arbitrarily this must hold for any two vertices. Hence G is connected.

Graph distance

Distance

Graph distance

 $d_G: V \times V \to \mathbb{R}$ is the distance function of graph G.

Distance between two vertices $v, v' \in V(G)$, denoted by $d_G(v, v')$, is the minimum number of edges on a path from v to v'. (Intuition: The length of the shortest path from v to v'.)

Example:

$$d_G(a, a) = 0$$

 $d_G(b, h) = 1$
 $d_G(a, h) = 2$
 $d_G(d, e) = 2$
 $d_G(b, e) = 3$

 $d_G: V \times V \to \mathbb{R}$ is the distance function of graph G.

Distance between two vertices $v, v' \in V(G)$, denoted by $d_G(v, v')$, is the minimum number of edges on a path from v to v'. (Intuition: The length of the shortest path from v to v'.)

1. $d_G(v, v') \ge 0$, and $d_G(v, v') = 0$ if and only if v = v';

 $d_G: V \times V \to \mathbb{R}$ is the distance function of graph G.

Distance between two vertices $v, v' \in V(G)$, denoted by $d_G(v, v')$, is the minimum number of edges on a path from v to v'. (Intuition: The length of the shortest path from v to v'.)

- 1. $d_G(v,v') \ge 0$, and $d_G(v,v') = 0$ if and only if v = v';
- 2. d(v, v') = d(v', v) for any pair of vertices v, v' (symmetry);

 $d_G: V \times V \to \mathbb{R}$ is the distance function of graph G.

Distance between two vertices $v, v' \in V(G)$, denoted by $d_G(v, v')$, is the minimum number of edges on a path from v to v'. (Intuition: The length of the shortest path from v to v'.)

- 1. $d_G(v,v') \ge 0$, and $d_G(v,v') = 0$ if and only if v = v';
- 2. d(v, v') = d(v', v) for any pair of vertices v, v' (symmetry);
- 3. $d(v,v'') \le d(v,v') + d(v',v'')$ for any three vertices $v,v',v'' \in V(G)$ (triangle inequality);

 $d_G: V \times V \to \mathbb{R}$ is the distance function of graph G.

Distance between two vertices $v, v' \in V(G)$, denoted by $d_G(v, v')$, is the minimum number of edges on a path from v to v'. (Intuition: The length of the shortest path from v to v'.)

- 1. $d_G(v, v') \ge 0$, and $d_G(v, v') = 0$ if and only if v = v';
- 2. $d_G(v, v') = d_G(v', v)$ for any pair of vertices v, v' (symmetry);

Metric

- 3. $d_G(v,v'') \le d_G(v,v') + d_G(v',v'')$ for any three vertices $v,v',v'' \in V(G)$ (triangle inequality);
- 4. $d_G(v, v'')$ is a nonnegative integer for any two vertices v, v';
- 5. If $d_G(v, v'') > 1$ then there exists a vertex $v', v \neq v' \neq v''$, such that $d_G(v, v') + d_G(v', v'') = d_G(v, v'')$.

Metrics

 $d: V \times V \to \mathbb{R}$ is a metric on the set V if and only if for any $v, v' \in V$

Properties:

- 1. $d(v, v') \ge 0$, and d(v, v') = 0 if and only if v = v';
- 2. d(v, v') = d(v', v) for any pair of vertices v, v' (symmetry);
- 3. $d(v,v'') \le d(v,v') + d(v',v'')$ for any three vertices $v,v',v'' \in V(G)$ (triangle inequality);

The metric d together with V is called a metric space.

Example metrics:

- Graph distance
- Euclidean distance

Metric or not a metric?

$$d(v, w) = 0$$
, $d(v, z) = 2$, and $d(w, z) = 1$

Metric or not a metric?

$$d(v,w) = 0$$
, $d(v,z) = 2$, and $d(w,z) = 1$ can't be (prop. 1) $d(v,w) = 4$, $d(v,z) = 2$, and $d(w,z) = 1$

Metric or not a metric?

$$d(v,w) = 0$$
, $d(v,z) = 2$, and $d(w,z) = 1$ can't be (prop. 1) $d(v,w) = 4$, $d(v,z) = 2$, and $d(w,z) = 1$ can't be (prop. 3) $d(v,w) = 2$, $d(v,z) = 2$, and $d(w,z) = 1$

Metric or not a metric?

$$d(v,w) = 0$$
, $d(v,z) = 2$, and $d(w,z) = 1$ can't be (prop. 1) $d(v,w) = 4$, $d(v,z) = 2$, and $d(w,z) = 1$ can't be (prop. 3) $d(v,w) = 2$, $d(v,z) = 2$, and $d(w,z) = 1$ metric

metric

Representing graphs

Representations

We have seen several ways to represent graphs.

$$G = (V, E)$$
, where $V = \{a, b, c, d, e, f\}$, $E = \{\{a, b\}, \{a, d\}, \{a, e\}, \{b, d\}, \{b, f\}, \{c, e\}, \{c, f\}, \{e, f\}\}$.

What other options could there be?

Adjacency matrix

Let G = (V, E) be a graph with n vertices. Denote the vertices by $v_1, v_2, ..., v_n$ (in some arbitrary order). The adjacency matrix of G is an $n \times n$ matrix A_G defined by the following rule:

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

Here a_{ij} is the element on the *i*-th row and *j*-th column of A_G .

Example:

$$\{1,2\} \in E$$

$$A^{3} = \begin{pmatrix} 3 & 1 & 1 & 1 & 0 & 2 \\ 1 & 3 & 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 3 & 1 & 1 & 1 & 0 & 2 \\ 1 & 3 & 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 2 & 1 & 1 \\ 0 & 2 & 1 & 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$a_{6,2}^{(3)} = 2 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0 + 3 \cdot 1 = 6$$

Summary

Graph classes

Isomorphism

Two graphs G = (V, E) and G' = (V', E') are called isomorphic if a bijection $f : V \longrightarrow V'$ exists such that $\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E'$ holds for all $x, y \in V, x \neq y$.

Adjacency matrices

$$A_{G} = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Organizational

- Practice set:
 - Ex. 1,4: Practice definitions
 - Ex. 2,3,5,6: Proofs
 - Do exercise 4 before study group (practice definitions)
 - Try exercise 2,6 (these are somewhat harder)

- Round table discussion:
 - Opportunity to discuss what you do and do not like about course
 - Register at 2IC01 on Canvas ----->

