GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators

Dingfan Chen¹, Tribhuvanesh Orekondy², Mario Fritz¹

¹ CISPA Helmholtz Center for Information Security, ² Max Planck Institute for Informatics

Motivation

- Progress in training ML models in sensitive domains (e.g., healthcare) is impeded by scarcity of dataset
- Can we release synthetic datasets with rigorous privacy guarantees?

Task

- Privacy-preserving data generation
- High-dimensional data
 - Generative Adversarial Networks (GANs)¹
- Arbitrary downstream task
- Rigorous privacy guarantee
 - Differential Privacy (DP)²

Problem

- Existing Approach: Differentially private stochastic gradient descent (DP-SGD)³
 - Sanitize gradients before performing descent step
 - Sanitization includes:
 - *Clipping* the gradients
 - Adding calibrated <u>random noise</u>
 - However, selecting a proper clipping bound is difficult in practice:
 - Require intensive hyper-parameters search
 - Introduce high clipping bias

Vanilla GAN

- Gradient
- $oldsymbol{g}^{(t)} :=
 abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{ heta}_D, oldsymbol{ heta}_G)$ Gradient descent step

 $oldsymbol{ heta}^{(t+1)} := oldsymbol{ heta}^{(t)} - \eta \cdot oldsymbol{q}^{(t)}$

Vanilla GAN

DPGAN

- Gradient $oldsymbol{g}^{(t)} :=
 abla_{oldsymbol{ heta}} \mathcal{L}(oldsymbol{ heta}_D, oldsymbol{ heta}_G)$
- Sanitization mechanism > $\hat{oldsymbol{g}}^{(t)} := \mathcal{M}_{\sigma,C}(oldsymbol{g}^{(t)}) = \operatorname{clip}(oldsymbol{g}^{(t)},C)$ $+\mathcal{N}(0,\sigma^2C^2\boldsymbol{I})$

clipping bound

Gradient descent step $\boldsymbol{\theta}^{(t+1)} := \boldsymbol{\theta}^{(t)} - \eta \cdot \hat{\boldsymbol{g}}^{(t)}$

\longrightarrow non-private \longrightarrow sensitive \longrightarrow (ε,δ) -private

References

- ¹ Goodfellow et al., "Generative Adversarial Nets", In: NIPS 2014.
- ² Dwork et al., "The Algorithmic Foundations of Differential Privacy". In: Foundations and Trends in Theoretical Computer Science.
- ³ Abadi et al., "Deep Learning with Differential Privacy". In: CCS 2016.
- ⁴ Arjovsky et al., "Wasserstein Generative Adversarial Network". In: ICML 2017.
- ⁵ Gulrajani et al., "Improved Training of Wasserstein GANs". In: NIPS 2017
- ⁶ Augenstein et al., "Generative Models for Effective ML on Private, Decentralized Datasets". In: ICLR 2020.

Approach GS-WGAN (Gradient-sanitized Wasserstein GAN)

- Insight:
 - Only the *generator* need to be publicly-released
- Our framework:
 - 1. Selectively applying sanitization mechanism: $\hat{g}_G = \mathcal{M}_{\sigma,C}(\nabla_{G(z)}\mathcal{L}_G(\theta_G)) \cdot J_{\theta_G}G(z;\theta_G)$
 - Train the <u>discriminator</u> non-privately
 - Sanitize gradients transferred to the *generator*
 - 2. Bounding sensitivity using Wasserstein distance^{4,5}
 - Lipschitz property

Advantage:

- 1. Maximally preserve the true gradient direction
- 2. Bypass an intensive and fragile hyperparameter search for the clipping bound
- 3. Small clipping bias

Decentralized (Federated) setting: Fed-GS-WGAN

- Our framework:
 - Each user trains a discriminator on its sensitive dataset locally
 - The server maintains a generator trained with DP guarantee
- Users send the sanitized gradients to the server, while receiving generated samples from the server

Advantage:

- 1. User-level DP guarantee under an *untrusted* server assumption
 - · Gradients are sanitized at each client before sending to the server
- 2. Communication-efficient
 - Gradients w.r.t. generated samples are *more compact* than gradients w.r.t. model parameters⁶

Evaluation

- Datasets: Images (MNIST, Fashion-MNIST, Fed-EMNIST)
- Metrics:
 - **Privacy**: Determined by ε with fixed δ
 - Utility:
 - Sample quality: realism of the generated samples
 - Inception score (IS), Frechet Inception Distance (FID)
 - Usefulness for downstream tasks:
 - Classification accuracy: (trained on generated data and test on real data) MLP Acc, CNN Acc, Avg Acc, Calibrated Acc

Results

Centralized setting

- Improves the IS by:
- Improves the MLP Acc by:
- 94% on MNIST
- 45% on Fashion-MNIST
- 25% on MNIST
- 16% on Fashion-MNIST

		IS↑	$FID \downarrow$	$MLP \uparrow$	CNN ↑	$Avg \uparrow$	Calibrated ↑
				Acc	Acc	Acc	Acc
MNIST	Real	9.80	1.02	0.98	0.99	0.88	100 %
	G-PATE ¹	3.85	177.16	0.25	0.51	0.34	40%
	DP-SGD GAN	4.76	179.16	0.60	0.63	0.52	59%
	DP-Merf	2.91	247.53	0.63	0.63	0.57	66%
	DP-Merf AE	3.06	161.11	0.54	0.68	0.42	47%
	Ours	9.23	61.34	0.79	0.80	0.60	69%
	Real	8.98	1.49	0.88	0.91	0.79	100%
Fashion-MNIST	G-PATE	3.35	205.78	0.30	0.50	0.40	54%
	DP-SGD GAN	3.55	243.80	0.50	0.46	0.43	53%
	DP-Merf	2.32	267.78	0.56	0.62	0.51	65%
	DP-Merf AE	3.68	213.59	0.56	0.62	0.45	55%
	Ours	5.32	131.34	0.65	0.65	0.53	67%
Table 1: Quantitative Results on MNIST and Fashion-MNIST ($\varepsilon = 10, \delta = 10^{-5}$)							

Decentralized (Federated) setting

Better <u>sample quality</u>:

 0.28x smaller FID Lower <u>privacy cost</u>:

• 10⁴x smaller epsilon

epsilon↓ CT (byte) ↓ $FID \downarrow$ Fed Avg GAN 10.88 218.24 9.99×10^{6} $\sim 3.94 \times 10^7$ $5.99 imes 10^2 \quad \sim 1.50 imes 10^5$ 11.25 60.76 **Table 2:** Quantitative Results on Federated EMNIST ($\delta = 1.15 \times 10^{-3}$

Improve communication efficiency: 10²x gain in reducing CT

https://github.com/DingfanChen/GS-WGAN More info: (Source code and models are available)