Politechnika Wrocławska Wydział Zarządzania

Systemy Analityczne

Projekt narzędzia wspomagającego analizę kosztów hospitalizacji z zastosowaniem analityki predykcyjnej dla wybranej placówki medycznej

Grupa: Poniedziałek TN 13:15-15:00

Autor: Damian Kędzierski 260493

Prowadzący: dr inż. Marek Lubicz

Spis treści

A)	PROBLEM BIZNESOWY	3
	Problemy analityczne	3
B)	LISTA PROBLEMÓW ANALITYCZNYCH ANALITYKI PREDYKCYJNEJ:	
	Түр:	3
	ZMIENNA OBJAŚNIANIA:	
	Predyktory:	
C)	CHARAKTERYSTYKA DANYCH	
	Dane źródłowe	
	Dane wynikowe	4
D)	PROCES ANALITYCZNY (CRISP-DM)	
	Krok 1: Zrozumienie problemu biznesowego	6
	Krok 2: Zrozumienie danych	6
	KROK 3: PRZYGOTOWANIE DANYCH	
	Krok 4: Modelowanie	
	KROK 5. OCENA JAKOSCI MODELI KROK 6: WIZUALIZACJA I RAPORTOWANIE WYNIKÓW	
	Krok 7: Przedstawienie prezentacji dla decydenta	
E)	EKSPLORACYJNA ANALIZA DANYCH (EDA)	
	WSTEPNA ANALIZA EDA:	
	Szczegółowa analiza EDA:	
F)	LISTA I OMÓWIENIE STWIERDZONYCH NIEDOSKONAŁOŚCI DANYCH ŹRÓDŁOW	YCH 9
	Dane niekompletne i błędy	g
	DANE RZADKIE	
	Wartości odstające (outliers)	
G)		
H)	JEDNOZNACZNIE NAZWANY KOŃCOWY PLIK/PLIKI WYNIKOWE	10
I)	OMÓWIENIE ZAŁOŻEŃ I ZAPROJEKTOWANIE W ŚRODOWISKU ANALITYKI REDYKCYJNEJ	11
	DOBÓR NAJLEPSZYCH PREDYKTORÓW	
	Dobór algorytmów predykcyjnych Optymalizacja parametrów	
	DOBÓR PODEJŚCIA DO WALIDACJI	
	Proces	
W	YNIKI MODELU	12
w	VNIKI IMPLEMENTACII	13

a) Problem Biznesowy

Klasyfikacja świadczeń medycznych na podstawie ich kosztu (WARTOSC_SKOR). Celem jest stworzenie modelu klasyfikacyjnego, który na podstawie dostępnych informacji będzie przewidywał, czy dana procedura medyczna jest tanim, średnim, drogim lub bardzo drogim świadczeniem.

Problemy analityczne

Klasyfikacja kosztów świadczeń medycznych:

Problem klasyfikacji wieloklasowej: Zadanie polega na przewidzeniu do której
kategorii (Tanie, Średnie, Drogie, Bardzo drogie) będzie należeć konkretne
świadczenie medyczne na podstawie dostępnych danych. Model klasyfikacji będzie
mógł pomóc w automatycznym przypisaniu odpowiedniej kategorii kosztów do
nowych przypadków.

Analiza wpływu innych zmiennych na koszty:

 Analiza wpływu procedur medycznych (LISTA_PROCEDUR), głównego rozpoznania (ROZP_GLOWNE) i innych czynników na koszty świadczeń medycznych (WARTOSC_SKOR). Celem jest zidentyfikowanie czynników, które mają istotny wpływ na koszty i mogą być wykorzystane do optymalizacji procesów medycznych i zarządzania kosztami.

Wszystkie powyższe problemy analityczne mają na celu dostarczenie wiedzy i narzędzi, które mogą wesprzeć podejmowanie decyzji dotyczących zarządzania kosztami, optymalizacji procesów medycznych oraz poprawy jakości opieki zdrowotnej.

b) Lista problemów analitycznych analityki predykcyjnej:

Typ:

• Klasyfikacja

Zmienna objaśniania:

⇒ WARTOSC_SKOR (label)- wartość skorygowana.

Predyktory:

- CENA cena związana z danym świadczeniem medycznym.
- ID PACJENT (id)- identyfikator pacjenta.
- ID SWIADCZENIA (id)- identyfikator świadczenia medycznego.
- LISTA PROCEDUR lista procedur medycznych związanych ze świadczeniem.
- PKT liczba punktów związanych ze świadczeniem.
- PROD JEDN KOD kod jednostki produktowej.
- PROD JEDN NAZWA nazwa jednostki produktowej.
- PROD KONTR KOD kod kontrahenta produktowego.
- PROD KONTR NAZWA nazwa kontrahenta produktowego.
- ROZP GLOWNE główne rozpoznanie.
- ROZP GLOWNE NAZWA nazwa głównego rozpoznania.
- TYP KOMORKI OPIS opis typu komórki.
- TYP KOMORKI ORG organizacja typu komórki.

c) Charakterystyka danych

Dane źródłowe

- ⇒ nazwa(nazwy) plików szpitale2014-2016b 2.hyper
- ⇒ liczba rekordów 1 048 575
- ⇒ liczby zmiennych 22
- ⇒ listy zmiennych:

Dane wynikowe

- ⇒ nazwa(nazwy) plików 260493_szpital.xlsx
- ⇒ liczba rekordów 5 137
- ⇒ liczby zmiennych 15
- ⇒ listy zmiennych:

d) Proces Analityczny (CRISP-DM)

Krok 1: Zrozumienie problemu biznesowego

• Celem biznesowym jest stworzenie modelu klasyfikacyjnego, który przewiduje koszt świadczeń medycznych na podstawie dostępnych informacji.

Krok 2: Zrozumienie danych

• Dane obejmują informacje takie jak cena, identyfikatory pacjenta i świadczenia medycznego, lista procedur medycznych, liczba punktów, kod jednostki produktowej, kod kontrahenta produktowego, główne rozpoznanie, kod trybu przyjęcia, opis typu komórki i organizacja typu komórki.

Krok 3: Przygotowanie danych

• Przygotowanie danych będzie obejmować oczyszczenie danych, usuwanie wartości odstających i brakujących, skalowanie zmiennych oraz inżynierię cech.

Krok 4: Modelowanie

- Zastosowanie modelu klasyfikacji drzewa decyzyjnego do przewidywania kosztów świadczeń medycznych.
- Przygotowanie danych treningowych i testowych.
- Dopasowanie modelu decyzyjnego do danych treningowych.
- Ocena wydajności modelu na danych testowych.

Krok 5: Ocena jakości modeli

- Wykorzystanie miar jakości, takich jak precyzja, czułość, specyficzność, AUC, do oceny jakości modelu klasyfikacyjnego.
- Porównanie wyników miar jakości modelu dla różnych parametrów lub algorytmów.

Krok 6: Wizualizacja i raportowanie wyników

- Stworzenie wykresów i tabel, które przedstawiają informacje o kosztach świadczeń medycznych i innych zmiennych.
- Przygotowanie raportu zawierającego wyniki analizy predykcyjnej i wnioski.

Krok 7: Przedstawienie prezentacji dla decydenta

- Przygotowanie prezentacji, która zawiera opis problemu biznesowego, podejście do analizy danych, wyniki analizy predykcyjnej i wnioski.
- Omówienie różnych opcji i zaleceń dotyczących zmniejszenia kosztów świadczeń medycznych i optymalizacji procesów medycznych.

e) Eksploracyjna analiza danych (EDA)

Wstępna analiza EDA:

1st Qu.:52.00 1s Median :52.00 Me Mean :42.25 Me 3rd Qu.:52.00 3r	PKT n. : 1.01 the Qu.: 9.00 than : 20.00 tan : 414.74 that Qu.: 49.00 tax : 33311.26	TRYB_PRZYJECIA_KOD Min. :0.000 1st Qu.:6.000 Median :6.000 Mean :5.549 3rd Qu.:6.000 Max. :8.000	Min. :4100 1st Qu.:4242	LISTA_PROCEDUR Length:5137 Class :character Mode :character	PROD_JEDN_KOD Length:5137 Class :character Mode :character	PROD_JEDN_NAZWA Length:5137 Class :character Mode :character
PROD_KONTR_KOD Length:5137 Class :character Mode :character	PROD_KONTR_NAZW Length:5137 Class :characte Mode :characte	Length:5137 r Class :characte	113859760: 1 r 2599193 : 1	4 276527529: 5 2 220682089: 3 2 222387170: 3 1 225971272: 3 1 226309173: 3 1 226892785: 3	Min. : 1.01 1st Qu.: 468.00 Median : 1040.00 Mean : 1764.93 3rd Qu.: 2184.00 Max. :33311.26)) ;
ROZP_GLOWNE Length:5137 Class :character Mode :character	TYP_KOMORKI_OPI Length:5137 Class :characte Mode :characte	r				

- Cena (CENA) świadczeń medycznych w analizowanych danych oscyluje głównie wokół wartości 52, jednak średnia cena wynosi 42,25. Oznacza to, że istnieją również niższe ceny. Wartość minimalna to 1, a maksymalna to 52.
- PKT (Punkty) są zróżnicowane, od minimalnej wartości 1,01 do maksymalnej 33 311,26. Średnia liczba punktów wynosi 414,74. Mediana wynosi 20 punktów, co sugeruje skośność rozkładu.
- TRYB_PRZYJECIA_KOD (Kod trybu przyjęcia) ma wartości od 0 do 8, z medianą wynoszącą 6. Najczęściej występująca wartość to 6, co może wskazywać na dominujący tryb przyjęcia.
- TYP_KOMORKI_ORG (Typ komórki organizmu) ma przeważającą wartość 4397, ale występują również inne wartości, takie jak 4100, 4242 i 4421.
- LISTA_PROCEDUR (Lista procedur) w analizowanych danych zawiera informacje o różnych procedurach medycznych, które są związane ze świadczeniami. Długość listy procedur wynosi 5137.
- PROD_JEDN_KOD (Kod jednostki produktu), PROD_JEDN_NAZWA (Nazwa jednostki produktu), PROD_KONTR_KOD (Kod kontraktu produktu) i
 PROD_KONTR_NAZWA (Nazwa kontraktu produktu) zawierają informacje o
 różnych kodach i nazwach jednostek i kontraktów produktów.
- ROZP_GLOWNE_NAZWA (Nazwa głównego rozpoznania) ma zróżnicowane wartości, co sugeruje różnorodność rozpoznań w analizowanych danych.
- ID_PACJENT (ID pacjenta) i ID_SWIADCZENIA (ID świadczenia) są identyfikatorami pacjentów i świadczeń medycznych, które mogą być wykorzystane do analizy, segmentacji pacjentów i śledzenia historii świadczeń.

Szczegółowa analiza EDA:

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
CENA	1	5137	42.25	20.06	52	46.18	0.00	1.00	52.00	51.00	-1.57	0.47	0.28
PKT	2	5137	414.74	2171.65	20	30.71	19.27	1.01	33311.26	33310.25	9.44	119.18	30.30
TRYB_PRZYJECIA_KOD	3	5137	5.55	1.01	6	5.84	0.00	0.00	8.00	8.00	-2.53	6.46	0.01
TYP_KOMORKI_ORG	4	5137	4397.32	166.88	4421	4400.03	265.39	4100.00	4640.00	540.00	-0.05	-1.39	2.33
ID_PACJENT*	5	5137	1734.33	1031.78	1696	1713.42	1286.90	1.00	3658.00	3657.00	0.14	-1.12	14.40
ID_SWIADCZENIA*	6	5137	2469.28	1431.16	2458	2465.61	1832.49	1.00	4971.00	4970.00	0.02	-1.20	19.97
WARTOSC_SKOR	7	5137	1764.93	2858.96	1040	1199.56	1002.24	1.01	33311.26	33310.25	5.66	47.72	39.89
CENIA.													

CENA:

- Średnia cena wynosi 42.25, a mediana 52. To sugeruje, że większość świadczeń medycznych ma cenę zbliżoną do 52.
- Wartość minimalna to 1, a maksymalna 52. Zakres cen wynosi 51.

 Współczynnik skośności wynosi -1.57, co wskazuje na asymetrię rozkładu w lewo. Kurtoza wynosi 0.47, co oznacza, że rozkład jest nieco spłaszczony w porównaniu do rozkładu normalnego.

PKT:

- Średnia liczba punktów wynosi 414.74, a mediana 20. Wartość średnia jest wyższa od mediany ze względu na kilka obserwacji o bardzo wysokich wartościach punktów.
- Wartość minimalna to 1.01, a maksymalna 33311.26. Zakres liczby punktów wynosi 33310.25.
- Współczynnik skośności wynosi 9.44, co wskazuje na wyraźną asymetrię rozkładu w prawo. Kurtoza wynosi 119.18, co oznacza, że rozkład ma długie ogony i jest bardziej skupiony wokół średniej niż rozkład normalny.

TRYB PRZYJECIA KOD (Kod trybu przyjęcia):

- Średnia wartość kodu trybu przyjęcia wynosi około 5,55, z odchyleniem standardowym wynoszącym 1,01. Mediana wynosi 6, co wskazuje na przewagę wartości bliskich 6.
- Skośność jest ujemna (-2,53), co sugeruje, że rozkład jest skośny w lewo. Wyższy kurtoza (6,46) wskazuje na większe ogony rozkładu.

TYP KOMORKI ORG (Organizacja typu komórki):

- Średnia wartość organizacji typu komórki wynosi około 4397,32, z odchyleniem standardowym wynoszącym 166,88. Mediana wynosi 4421.
- Rozkład ma niewielką skośność (-0,05) i ujemną kurtozę (-1,39), co wskazuje na lekkie odchylenie od rozkładu normalnego.

ID PACJENT:

- Średnia wartość identyfikatora pacjenta wynosi 1734.33, a mediana 1696.
- Wartość minimalna to 1, a maksymalna 3658. Zakres identyfikatora pacjenta wynosi 3657.
- Współczynnik skośności wynosi 0.14, co wskazuje na niewielką asymetrię rozkładu w prawo. Kurtoza wynosi -1.12, co oznacza, że rozkład jest nieco spłaszczony w porównaniu do rozkładu normalnego.

ID SWIADCZENIA:

- Średnia wartość identyfikatora świadczenia wynosi 2469.28, a mediana 2458.
- Wartość minimalna to 1, a maksymalna 4971. Zakres identyfikatora świadczenia wynosi 4970.
- Współczynnik skośności wynosi 0.02, co wskazuje na niewielką asymetrię rozkładu w prawo. Kurtoza wynosi -1.20, co oznacza, że rozkład jest nieco bardziej spłaszczony w porównaniu do rozkładu normalnego.

WARTOSC SKOR:

- Średnia wartość skorygowana wynosi 1764.93, a mediana 1040. Oznacza to, że średnia wartość skorygowana jest wyższa od mediany, co sugeruje występowanie wartości odstających lub niestabilność w rozkładzie.
- Wartość minimalna to 1.01, a maksymalna 33311.26. Zakres wartości skorygowanych jest bardzo szeroki, co wskazuje na duże zróżnicowanie kosztów świadczeń medycznych.
- Współczynnik skośności wynosi 5.66, co wskazuje na wyraźną asymetrię rozkładu w prawo. Skośność dodatnia oznacza, że rozkład ma długie ogony w prawo i większą koncentrację wartości w lewej części rozkładu.
- Kurtoza wynosi 47.72, co oznacza, że rozkład wartości skorygowanych ma długie ogony i jest bardziej skupiony wokół średniej niż rozkład normalny. Wysoka wartość kurtozy wskazuje na występowanie wartości odstających lub nietypowych w danych.

f) Lista i omówienie stwierdzonych niedoskonałości danych źródłowych

Dane niekompletne i błędy

- Usunięcie wartości brakujących: Usunąłem wiersze, w których występowały brakujące wartości dla kolumn (szpital, ID_PACJENT), aby zachować kompletność danych w tych atrybutach.
- Usunięcie kolumn ROZP_WSP1 i ROZP_WSP1_NAZWA: Zdecydowałem się całkowicie usunąć kolumny, ponieważ miały zbyt wiele brakujących wartości (890 000 na 1 048 575 wierszy) w celu utrzymania jakości danych.
- Usunięcię kolumny RODZAJ_SWD_NAZWA z powodu występowania tylko jednej wartości

Index	Nominal value	Absolute count	Fraction	
1	Lecznictwo szpitalne	1048575	1	

Dane rzadkie

- Usunięcie rzadkich danych: W celu obsługi danych rzadkich, zdecydowałem się usunąć kolumny, które miały mniej niż 5 wystąpień (threshold = 5). Dzięki temu zapewniłem, że analiza koncentruje się na bardziej reprezentatywnych danych.
 - Wniosek wynika z informacji, że funkcja "ReplaceRareValues" została zastosowana na 6 atrybutach: LISTA_PROCEDUR, PROD_JEDN_KOD, PROD_JEDN_NAZWA, PROD_KONTR_KOD, PROD_KONTR_NAZWA oraz ROZP GLOWNE NAZWA.

Wartości odstające (outliers)

- Wykrywanie wartości odstających zostało przeprowadzone przy użyciu operatora Detect Outlier (LOF).
- Klastry: Klastry zostały oznaczone jako Cluster 0 (wartości odstające) i Cluster 1 (pozostałe wartości).
- Liczba elementów w klastrach: Klastry zawierają odpowiednio 1743 i 5137 elementów, co daje łączną liczbę elementów równą 6911.
- Wartości odstające mogą mieć istotny wpływ na analizę i modelowanie danych, dlatego ich wykrywanie i ewentualne usunięcie może być istotnym krokiem w analizie danych.

Dzięki tym krokom przetwarzania danych, zabezpieczyłem dane przed brakującymi wartościami, obsłużyłem rzadkie dane i przypisałem odpowiednie role do kolumn, aby umożliwić analize i modelowanie.

g) lista wykonanych operacji preprocessingu

- 1. Załadowanie danych
- 2. Przefiltrowanie danych
 - a. Usunięcie wartości niekompletnych w ID_PACJENT i szpital
 - b. wybranie tylko jednego szpitala S1,
 - c. WARTOSC_SKOR i CENA > 0 (w celu skupienia się tylko na hospitalizacjach kosztownych)
- 3. Wzięcie próbki danych (20% z powodu braku możliwości uruchomienia algorytmu wykrywania wartości odstających na całym zbiorze)
- 4. Zamiana typu wartości numerycznych id i zmiennej objaśnianej na zmienne nominalne
- 5. Ustanowienie ról
 - a. Id-ID PACJENT, ID SWIADCZENIA
 - b. Label WARTOSC SKOR
- 6. Wykluczenie atrybutów RODZAJ_SWD, ROZP_WSP1, ROZP_WSP1_NAZWA, WARTOSC, szpital
- 7. Zidentyfikowanie wartości rzadkich, które miały mniej niż 5 wystąpień i zmiana na wartość Other
- 8. Zdeklarowanie wartości Other jako wartość missing
- 9. Usunięcie wartości missing
- 10. Sprawdzenie wartości wag predyktorów za pomocą 2 algorytmów (Weight by information gain i weight by information gain ratio)
- 11. Wykluczenie atrybutów miesiąca i roku sprawozdawczego z powodu zbyt małych wag wpływu na zmienną objaśnianą
- 12. Normalizacja danych
- 13. Segmentacja algorytmem X-means
- 14. Zidentyfikowanie wartości odstających za pomocą operatora Detect Outlier (LOF)
- 15. Denormalizacja i zastosowanie modelu
- 16. Usunięcie wartości odstających (z wartością powyżej 5)
- 17. Zapisanie wartości odstających do pliku txt
- 18. Zapisanie oczyszczonego zbioru danych do pliku xlsx

h) jednoznacznie nazwany końcowy plik/pliki wynikowe

- 1. plik końcowy 260493 szpital.xlsx
- 2. preprocessing 260493 preprocessing.rmp
- 3. analiza EDA 260493 EDA.R
- 4. analiza atrybutów 260493_Weights.res
- 5. wartości odstające 260493 outliers.res

i) omówienie założeń i zaprojektowanie w środowisku analityki predykcyjnej

Dobór najlepszych predyktorów

Wykluczenie atrybutów ceny, miesiąca i roku sprawozdawczego z powodu zbyt małych wag wpływu na zmienną objaśnianą.

Dobór algorytmów predykcyjnych

 Najlepszym modelem w kontekście dokładności (accuracy) jest Generalized Linear Model, osiągając wynik 0,5. Oznacza to, że model poprawnie sklasyfikował 50% obserwacji. Wartości dokładności dla innych modeli wahają się między 0,3 a 0,5.

Optymalizacja parametrów

Optymalizacja parametrów obejmowała zmianę trzech kluczowych parametrów:

- Maximum_number_of_threads: Zwiększono liczbę wątków do 11, co może przyspieszyć obliczenia i przetwarzanie modelu.
- Family: Wybrano automatyczne dobranie rodziny funkcji do modelu, co pozwala na elastyczne dopasowanie do danych.
- Solver: Wybrano solver L-BFGS, który jest efektywny dla dużej ilości danych.

Dzięki optymalizacji parametrów modelu Generalized Linear Model osiągnięto minimalne poprawki wyników, co może przyczynić się do lepszej predykcji i generalizacji modelu na nowych danych.

Dobór podejścia do walidacji

 Wybór walidacji krzyżowej jako podejścia do walidacji. Pozwala na dokładne ocenienie wydajności modelu oraz zapewnia solidne oszacowanie jego zdolności do generalizacji na nowe dane.

Proces

Plik – 260493_proces Wyniki (performance) – 260493_wyniki

Wyniki modelu

W opisanym wyniku modelu klasyfikacji hospitalizacji przedstawiono różne miary oceny wydajności modelu. Oto niektóre z głównych wniosków:

Metryki modelu:

- MSE (Mean Squared Error): 0.042181417 wskazuje na średnią kwadratową różnicę między wartościami przewidywanymi a rzeczywistymi.
- RMSE (Root Mean Squared Error): 0.20538116 jest pierwiastkiem kwadratowym z MSE i mierzy przeciętną odległość między przewidywanymi wartościami a rzeczywistymi w tych samych jednostkach co zmienna docelowa.
- R^2 (R-squared): 0.7860879 jest miarą dopasowania modelu i wskazuje, jak dużo zmienności w danych jest wyjaśniane przez model. Wartość zbliżona do 1 oznacza lepsze dopasowanie.
- AUC (Area Under the Curve): 0.9960712 to miara skuteczności klasyfikatora, która ocenia zdolność modelu do rozróżniania między pozytywnymi i negatywnymi przykładami. Wartość bliska 1 oznacza wysoką skuteczność klasyfikacji.
- pr_auc (Precision-Recall AUC): 0.99835336 to miara precyzji i czułości modelu, która jest szczególnie przydatna w przypadku niezrównoważonych zbiorów danych.

Macierz pomyłek (Confusion Matrix):

- Przedstawia wyniki klasyfikacji modelu dla poszczególnych klas.
- W tym przypadku, dla klasy "Drogie_Bardzo drogie", model poprawnie sklasyfikował 1343 przypadki, a 45 przypadków zostało błędnie sklasyfikowanych jako "Tanie_Srednie".
- Dla klasy "Tanie_Srednie", model poprawnie sklasyfikował 3692 przypadki, a 57 przypadków zostało błędnie sklasyfikowanych jako "Drogie Bardzo drogie".

Threshold:

• Określa wartość progu, powyżej którego klasa "Tanie_Srednie" jest przewidywana przez model. W tym przypadku, jeśli pewność przewidywanej klasy "Tanie_Srednie" jest większa niż 0.6361296676649265, to zostanie przypisana ta klasa, w przeciwnym razie przypisana zostanie klasa "Drogie_Bardzo drogie".

Wyniki walidacji:

- Wartości dokładności, błędu klasyfikacji, współczynnika kappa i AUC są przedstawione dla różnych metryk.
- Średnia dokładność wynosi 94.28%, a błąd klasyfikacji wynosi 5.72%, co wskazuje na ogólnie dobrą wydajność modelu.
- Wartość kappa wynosi 0.844, co wskazuje na znaczne zgodności w klasyfikacji.
- AUC wynosi 0.995, co oznacza wysoką skuteczność w rozróżnianiu między klasami.

Podsumowując, model klasyfikacji hospitalizacji wydaje się być skuteczny i dobrze radzi sobie w rozróżnianiu między klasami. Wartości metryk potwierdzają wysoką dokładność i skuteczność modelu. Macierz pomyłek pokazuje niewielką liczbę błędów klasyfikacji. Jednak dokładniejszą interpretację i ostateczne wnioski można wyciągnąć, uwzględniając kontekst i cele analizy.

Wyniki implementacji

Oto wnioski dla nowych danych na podstawie implementacji modelu:

Metryki modelu:

- Dokładność (accuracy): 97.20% odsetek poprawnych klasyfikacji modelu.
- Błąd klasyfikacji (classification_error): 2.80% odsetek błędnych klasyfikacji modelu.
- Kappa: 0.930 miara zgodności klasyfikacji modelu.
- AUC: 0.992 miara skuteczności klasyfikatora w rozróżnianiu między klasami.
- MSE (Mean Squared Error): 0.042181417 średnia kwadratowa różnica między wartościami przewidywanymi a rzeczywistymi.
- RMSE (Root Mean Squared Error): 0.20538116 pierwiastek kwadratowy z MSE, mierzący przeciętną odległość między przewidywanymi wartościami a rzeczywistymi w tych samych jednostkach.

Macierz pomyłek (Confusion Matrix):

- Dla klasy "Drogie_Bardzo drogie", model poprawnie sklasyfikował 939 przypadków, a 77 przypadków zostało błędnie sklasyfikowanych jako "Tanie_Srednie".
- Dla klasy "Tanie_Srednie", model poprawnie sklasyfikował 2571 przypadków, a 24 przypadków zostało błędnie sklasyfikowanych jako "Drogie Bardzo drogie".

Threshold:

• Określa wartość progu, powyżej którego klasa "Tanie_Srednie" jest przewidywana przez model. W tym przypadku, jeśli pewność przewidywanej klasy "Tanie_Srednie" jest większa niż 0.631654679775238, to zostanie przypisana ta klasa, w przeciwnym razie przypisana zostanie klasa "Drogie Bardzo drogie".

Wnioski:

- Model nadal wykazuje wysoką dokładność (97.20%) i skuteczność w rozróżnianiu między klasami (AUC: 0.992).
- Błąd klasyfikacji wynosi 2.80%, co wskazuje na niewielką liczbę błędów w klasyfikacji.
- Wartość kappa wynosi 0.930, co oznacza znaczną zgodność w klasyfikacji.
- Macierz pomyłek pokazuje niewielką liczbę błędów klasyfikacji dla obu klas.