Contrôle de chaînes de Markov

[v.6 20091015]

TD2. Propriété de Markov forte.

Exercice 1. Soit $(X_n)_{n\geqslant 1}$ une suite iid de loi $\mathcal{U}([0,1])$ et $S_n=X_1+\cdots+X_n, S_0=0$. Soit $T=\inf\{n\geqslant 0: S_n>1\}$. Montrer que $\mathbb{P}(T\geqslant n)=1/n!$ et que $\mathbb{E}[T]=e, \mathbb{E}[S_T]=e/2$.

Exercice 2. (PROMENADE ALÉATOIRE ASYMÉTRIQUE). Soit $(X_n)_{n\geqslant 1}$ une suite iid avec $\mathbb{P}(X_n=+1)=p>1/2, \ \mathbb{P}(X_n=-1)=1-p \ \text{et} \ S_n=X_1+\cdots+X_n, S_0=0.$ Soit $\tau=\inf\{n\geqslant 0: S_n<0\}$ et $Y=\inf_{n\geqslant 0} S_n$. Montrer que

- 1. $\mathbb{P}(\tau < +\infty) < 1$;
- 2. $\mathbb{P}(Y \leqslant -k) = \mathbb{P}(\tau < +\infty)^k$
- 3. Soit $T = \inf\{m \ge 0 : S_m = 1\}$. Appliquer l'identité de Wald à $T \wedge n$ pour montrer que

$$\mathbb{E}[T] = \frac{1}{\mathbb{E}[X_1]} = \frac{1}{2 \ p - 1}.$$

Exercice 3. Soit $(X_n)_{n\geqslant 1}$ une suite iid avec $\mathbb{E}[X_n]=0$ et $\mathrm{Var}(X_n)=\sigma^2<+\infty$. Si T est un t.a. intégrable montrer que

$$\mathbb{E}[S_T^2] = \sigma^2 \mathbb{E}[T].$$

(Sugg.: Calculer $\mathbb{E}[S_{T\wedge n}^2]$ par recurrence et montrer que $(S_{T\wedge n})_{n\geqslant 1}$ est une suite de Cauchy dans $L^2(\Omega)$.)

Exercice 4. Soit $(X_n)_{n\geqslant 1}$ une suite independent et $(T_n)_{n\geqslant 1}$ une suite de t.a. intégrables et tels que $\mathbb{E}[T_n]\to +\infty$ quand $n\to +\infty$. Montrer que si pour tout $\varepsilon>0$,

$$\frac{1}{n} \sum_{m=1}^{n} \mathbb{E}[X_m 1_{X_m > \varepsilon m}] \to 0$$

quand $n \to +\infty$, alors

$$\frac{\mathbb{E}[X_{T_n}]}{\mathbb{E}[T_n]} \to 0.$$

(Sugg.: l'estimation est facile si $X_{T_n} \leq \varepsilon T_n$ ou si $T_n \leq N$ pour N fixé).

Exercice 5. Soit $(X_n)_{n\geqslant 1}$ une suite iid avec $\mathbb{E}[X_n]=0$ et $\mathbb{E}[X_n^2]=1$. Soit $T_c=\inf\{n\geqslant 0\colon |S_n|>c\sqrt{n}\}$.

- 1. En utilisant l'exercice 3 montrer que $\mathbb{E}[T_c] = +\infty$ pour c > 1.
- 2. Montrer que pour tout $\tau = T_c \wedge n$ on a

$$\mathbb{E}[\tau] \leqslant c^2 \,\mathbb{E}[\tau] + 2 \,c \sqrt{\mathbb{E}[\tau] \,\mathbb{E}[X_\tau^2]} + \mathbb{E}[X_\tau^2].$$

3. Utiliser l'exercice 4 et cette inégalité pour montrer que $\mathbb{E}[T_c] < +\infty$ si c < 1.

Exercice 6. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov d'espace d'états M et $A\subseteq M$. Soit

$$T_A^k = \inf\{n > T_A^{k-1}: X_n \in A\}, \quad T_A^0 = 0.$$

- 1. Montrer que $Y_k=X_{T_A^k}$ est une chaîne de Markov de matrice de transition $P_A(x,y)=\mathbb{P}_x(X_{T_A^1}=y),\ x,y\in A.$
- 2. Montrer que $P_A(x, y)$ est la solution minimale de l'équation

$$P_A(x, y) = P(x, y) + \sum_{z \notin A} P(x, z) P_A(z, y).$$

Exercice 7. Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov d'espace d'états $M,\,Y_n=X_{S_n}$ et

$$S_{m+1} = \inf\{n \geqslant S_m: X_n \neq X_{S_m}\}.$$

Montrer que $(Y_n)_{n\geqslant 0}$ est une chaîne de Markov de matrice de transition \tilde{P} donnée par

$$\tilde{P}(x,x) = 0, \qquad \tilde{P}(x,y) = \frac{P(x,y)}{\sum_{z \neq x} P(x,z)} \text{pour } x \neq y.$$

Exercice 8. Soit $(X_n)_{n\geqslant 1}$ une suite iid avec $\mathbb{E}[(X_1)_+]<+\infty$ et $Y_n=\max_{1\leqslant m\leqslant n}X_m-c$ n.

- 1. Soit $T = \inf\{n \ge 0 : X_n > \alpha\}$ et $p = \mathbb{P}(X_n > \alpha)$. Calculer $\mathbb{E}[Y_T]$.
- 2. Soit α la solution de $\mathbb{E}[(X_1 \alpha)_+] = c$. Montrer que $\mathbb{E}[Y_T] = \alpha$ et utiliser le fait que

$$Y_n \leqslant \alpha + \sum_{m=1}^{n} ((X_m - \alpha)_+ - c)$$

pour prouver que si T est t.a. intégrable alors $\mathbb{E}[Y_T] \leq \alpha$.