

PROGRAMAÇÃO DE COMPUTADORES

PRIMEIRO PROGRAMA

COPYRIGHT © 2024 DIATINF/CNAT/IFRN JORGIANO VIDAL

AGENDA

- Sequenciamento de instruções
 - Resolução de problemas
 - Modelagem
- Mostrando valores
- Criação de um programa
- Execução
- Lendo valores
 - a função input()
 - Conversão para inteiro: função int()
 - Conversão para real: função float()
- Mostrando valores
 - a função print()
 - Parâmetros sep e end
 - Lendo mais de um valor por linha

INSTRUÇÕES

- Um computador é capaz de entender/calcular uma instrução/expressão
- O resultado pode ser associado a uma variável
- As expressões/instruções podem manipular valores
 - Valores possuem um tipo
 - Vimos <u>inteiros</u>, <u>reais</u> e <u>textos</u> (*strings*)
- Expressões complexas podem ser divididas e sequencializadas para facilitar o entendimento

RESOLVER PROBLEMAS

- Equação do segundo grau
 - Qual(is) o(s) valor(es) de X₁ e X₂?
 - Precisamos dos valores de a, b e c
- Passos
 - 1.Saber os valores de a, b e c
 - 2.Calcular delta ($b^2-4*a*c$)
 - 3. Calcular raiz de delta (r_delta)
 - 4.Calcular $x1=(-b +r_delta)/(2*a)$
 - 5. Calcular $x2=(-b -r_delta)/(2*a)$

```
a=2
b=5
c=2
delta = 9
r_delta = 3
x1=(-5+3)/(2*2)
x2=(-5-3)/(2*2)
```


- Definir elementos do problema
 - Valores de entrada
 - Operações a serem realizadas
 - Valores de saída
- ullet Exemplo: Tempo de deslocamento t
 - Entrada: Espaço e e velocidade v
 - Operações: fórmula $t = \frac{e}{v}$
 - Saída: Tempo de deslocamento

SEQUENCIAMENTO

- Várias operações
 - Mesma sequencia de operações, <u>SEMPRE</u>!
- Cálculo de média
 - Definir nota 01. Armazena o valor na variável nota01
 - 2. Definir nota 02. Armazena o valor na variável **nota02**
 - 3. Multiplicar **nota01** por 2 e **nota02** por 3 e atribuir a variável **pontos**
 - 4. Dividir pontos por 5 e atribuir a variável media
 - 5. Mostrar o valor armazenado na variável media

PROGRAMA DE COMPUTADOR

- Sequencia de instruções
 - Arquivo texto com instruções a serem executadas
 - Em python, usamos a extensão .py

```
nota1=8.3
nota2=9.2
media=(nota1*2+nota2*3)/5
print(media)
```

EDITOR DE TEXTO

- Programa para editar arquivos de texto
 - Não contém formatação (rtf, doc, docs, odf, etc)
- O que usar
 - Bloco de notas (Win)
 - gedit (Linux)
 - nano (Linux)
 - VSCode (win, lin, etc)
 - Pico (Linux)
 - Vi, vim (Unix, linux)
 - notepad++ (windows)

- SciTE (windows)
- emacs (win, linux, etc)
- jEdit (win, linux, etc)
- Kate
- SublimeTe
- etc...

- Na linha de comando:
 - python NOME_ARQUIVO
 - onde NOME_ARQUIVO é o arquivo salvo.

```
tmp -- bash - 39×5

[$ ls
media.py
[$ python media.py
8.84
$ ||
```

MOSTRANDO VALORES

- Função print()
 - Imprime na console um texto
 - Sintaxe:
 - print(CONTEÚDO)
- Exemplos:

```
print("Olá mundo")
x=10
print(x)
y=x*2
print(y)
z=x/3.0
print(z)
print(x+y)
print(x*z+y*2-(x+y))
```


FUNÇÃO PRINT()

FUNÇÃO PRINT()

Vírgula entre parâmetros

```
nome.py
nome="Jorgiano"
print("Olá", nome, ", bom dia!")
```

Espaço é adicionado

Olá Jorgiano, bom dia!

Vírgula entre parâmetros

```
nome.py

nome="Jorgiano"
print("Olá", nome,", bom dia!")
```

• Espaço é adicionado Olá Jorgiano, bom dia!

Vírgula entre parâmetros

```
nome="Jorgiano"
print("Olá", nome, , bom dia!")

• Espaço é adicionado
Olá Jorgiano, bom dia!
```



```
olaNome.py
```

```
nome="Jorgiano"
print("Olá", nome,", bom dia!", sep="X")
```


Define separador

```
olaNome.py
```

```
nome="Jorgiano"
print("Olá", nome,", bom dia!", sep="X")
```

OláXJorgianoX, bom dia!


```
nome="Jorgiano"
print("Olá", nome, ', bom dia!", sep="X")
OláXJorgianoX, bom dia!
```



```
olaNome.py
nome="Jorgiano"
print("Olá", nome,", bom dia!", sep="X")
OláXJorgianoX, bom dia!
olaNome.py
nome="Jorgiano"
print("Olá ", nome,", bom dia!", sep="")
```



```
olaNome.py
nome="Jorgiano"
print("Olá", nome,", bom dia!", sep="X")
OláXJorgianoX, bom dia!
olaNome.py
nome="Jorgiano"
print("Olá∏", nome,", bom dia!", sep="")
```


Define separador

```
olaNome.py
nome="Jorgiano"
print("Olá", nome,", bom dia!", sep="X")
OláXJorgianoX, bom dia!
olaNome.py
nome="Jorgiano"
print("Olá[]", nome,", bom dia!", sep="")
```

Olá Jorgiano, bom dia!


```
olaNome.py
```

```
nome="Jorgiano"
print("Olá")
print(nome)
print(", bom dia!")
```



```
nome="Jorgiano"
print("Olá")
print(nome)
print(", bom dia!")

Olá↓

Jorgiano↓
, bom dia!↓
```



```
nome="Jorgiano"
print("Olá")
print(nome)
print(", bom dia!")

Olá↓
Jorgiano↓
, bom dia!↓
```

```
olaNome.py
```

```
nome="Jorgiano"
print("Olá",end="")
print(nome,end="")
print(", bom dia!")
```



```
nome="Jorgiano"
print("Olá")
print(nome)
print(", bom dia!")

Olá

Jorgiano
, bom dia!
```

```
nome="Jorgiano"
print("Olá",end="")
print(nome,end="")
print(", bom dia!")

OláJorgiano, bom dia!

✓
```

LENDO VALORES

- Programa espera do usuário dados
 - Cálculo da média deve ser feito para quaisquer notas
- Instrução para ler uma linha
 - input()
 - Lê linha como string
 - Programa para esperando usuário digitar algo
 - Leitura é feita ao pressionar a tecla [ENTER]


```
ola_mundo.py
nome=input()
print("Olá", nome)
```

```
tmp — -bash — 40×6

| $ ls
ola_mundo.py
| $ python ola_mundo.py
Jorgiano
Olá Jorgiano
$ |
```

- Função input() lê string
 - necessário converter para inteiro ou real
- Para inteiro
 - função int()
- Para real
 - função float()

- Função input() lê string
 - necessário converter para inteiro ou real
- Para inteiro
 - função int()
- Para real
 - função float()

media.py

```
nota1_txt=input()
nota1=float(nota1_txt)
nota2_txt=input()
nota2=float(nota2_txt)
media=(nota1*2+nota2*3)/5.0
print(media)
```


- Função input() lê string
 - necessário converter para inteiro ou real
- Para inteiro
 - função int()
- Para real
 - função float()

```
tmp — -bash — 40×6

spython media.py

8
9.1
8.66
s
```

media.py

```
nota1_txt=input()
nota1=float(nota1_txt)
nota2_txt=input()
nota2=float(nota2_txt)
media=(nota1*2+nota2*3)/5.0
print(media)
```

- Função input() lê string
 - necessário converter para inteiro ou real
- Para inteiro
 - função int()
- Para real
 - função float()

```
tmp — -bash — 40×6

spython media.py

8
9.1
8.66
s
```

media.py

```
nota1_txt=input()
nota1=float(nota1_txt)
nota2_txt=input()
nota2=float(nota2_txt)
media=(nota1*2+nota2*3)/5.0
print(media)
```



```
nota1=float(input())
nota2=float(input())
media=(nota1*2+nota2*3)/5.0
print(media)
```


- Divide a linha
 - split()
- Mapeia cada valor
 - map()

- Divide a linha
 - split()
- Mapeia cada valor
 - map()

```
n1, n2 = input().split()
nota1 = float(n1)
nota2 = float(n1)
media = (nota1*2+nota2*3)/5.0
print(media)
```


- Divide a linha
 - split()
- Mapeia cada valor
 - map()

- Divide a linha
 - split()
- Mapeia cada valor
 - map()

```
notas = input().split()
nota1, nota2 = map(float, notas)
media = (nota1*2+nota2*3)/5.0
print(media)
```


- Divide a linha
 - split()
- Mapeia cada valor
 - map()

- Divide a linha
 - split()
- Mapeia cada valor
 - map()

```
nota1, nota2 = map(float, input().split())
media = (nota1*2+nota2*3)/5.0
print(media)
```


PROGRAMAÇÃO DE COMPUTADORES

PRIMEIRO PROGRAMA

COPYRIGHT © 2024 DIATINF/CNAT/IFRN JORGIANO VIDAL