Load samples from "jain_feats.txt" into a 2d numpy array **X**. [For N samples shape should be Nx2] Load initial centroids from "jain_centers.txt" into another 2d numpy array **centroid_old**. [For two centroids shape should be 2x2]

Take another 2d numpy array named **centroid_new** and initialize it with zeros. [For two centroids shape should be 2x2] The initial scatter plot containing **X** and **centroid_old** should look like this:

Take a 1D numpy array named label with size equals to number of rows in X

For **e** in iterations(100):

Assign points to centroids/clusters:

For each row **i** in **X**:

Take a 1D numpy array named **dist** with size equals to number of rows in **centroid_old** For each row **j** in **centroid_old**:

Assign **dist**[**j**] := distance between **X**[**i**, :] and **centroid_old**[**j**, :]

label[i] := j, for which **dist**[j] is minimum [Can easily done by numpy argmin method]

Update Centroids:

For each row **j** in **centroid_new**:

Assign **centroid_new**[\mathbf{j}] := Average(\mathbf{X} [**label** == \mathbf{j}]) [Can easily done by numpy methods]

Stop condition check:

If:

For each row **j** in **centroid_new**:

Calculate difference between **centroid_new**[**j**] and **centroid_old**[**j**]

If the maximum value among differences found above is less than 1E-7: **STOP** Else:

 $centroid_old := centroid_new$

MOVE to next Iteration

Finally centroid_old array holds the final cluster centroids and

label array holds the final assignments to clusters

The final plot should look similar to the following:

