CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

CAMPUS VII - UNIDADE TIMÓTEO

3ª Avaliação ERE – Geometria Analítica e Álgebra Vetorial - GAAV

Assunto: Superfícies Quádricas e Diagonalização.

Valor: 26,0 pontos

Pr	ofessor:
Aluno(a):	

 A avaliação deve ser enviada para o e-mail: (terça-feira). até as 20:00h do dia 07/09/21

- > Leia com atenção antes de responder.
- > Dê respostas completas às questões e redija-as.
- LEMBRE-SE DE QUE VOCÊ SERÁ AVALIADO PELO QUE ESCREVEU E NÃO PELO QUE "PENSOU" EM ESCREVER; ATENTE À FORMULAÇÃO DE SUAS RESPOSTAS.

1º Questão (6,0 pontos)

Considere a matriz A = $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$.

- a) Ache o polinômio característico da matriz A e determine seus autovalores.
- b) Determine os autovetores associados a cada um dos autovalores encontrados no item a).
- c) Ache, se possível, uma matriz invertível P e uma matriz diagonal D tais que A = PDP⁻¹.

2º Questão (4,0 pontos)

- I) Determine em coordenadas cartesianas e classifique a superfície cuja equação em coordenadas cilíndricas é dada por $r=a.sen~\theta$.
- II) Determine a equação em coordenadas esféricas do paraboloide hiperbólico de equação $x^2 y^2 = a^2 z$.

3º Questão (6,0 pontos)

Determine a equação do lugar geométrico dos pontos P = (x, y, z) tais que a soma das distâncias de P aos dois pontos (0, 0, 3) e (0, 0, -3) é igual à 4. Que lugar geométrico é este?

4º Questão (5,0 pontos)

Considere a matriz $A = \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}$.

- a) Ache o polinômio característico, os autovalores e autovetores.
- b) Ache, se possível, uma matriz invertível P e uma matriz diagonal D tais que A = PDP⁻¹.

5º Questão (5,0 pontos)

Escreva a equação padrão das quádricas abaixo, dê o seu nome e faça o gráfico utilizando o Geogebra.

a)
$$2x^2 + 4y^2 + z^2 - 16 = 0$$

b)
$$z = x^2 + y^2$$

c)
$$4y^2 + z^2 - 4x = 0$$

d)
$$-\frac{x^2}{4} + \frac{z^2}{9} - \frac{y^2}{4} = 1$$

e)
$$y = -x^2 - 3z^2 + 2$$