

Trabalho realizado por: Daniel Évora, 99473 Natacha Sousa, 107413

Parte II

5.

6.

The linear regression model and the MLP (multi-layer perceptron) without an activation function produce nearly identical performance. This is expected because an MLP without activation functions effectively reduces to a series of linear regressions. However, the MLP with a ReLU activation function performs significantly better, highlighting the critical role activation functions play in enhancing the model's predictive capabilities.

Trabalho realizado por: Daniel Évora, 99473 Natacha Sousa, 107413

7.

MAE.	4.43263448929349	ıc		
		param alpha	param_learning_rate_init	mean_test_score
0	32	0.0001	0.001	-4.587945
1	32	0.0001	0.010	-4.764895
2	32	0.0001	0.100	-5.583986
3	64	0.0001	0.001	-4.690111
4	64	0.0001	0.010	-4.698374
5	64	0.0001	0.100	-4.979027
6	128	0.0001	0.001	-4.625272
7	128	0.0001	0.010	-4.898394
8	128	0.0001	0.100	-5.270012
9	32	0.0010	0.001	-4.566656
10	32	0.0010	0.010	-4.782789
11	32	0.0010	0.100	-5.598727
12	64	0.0010	0.001	-4.659673
13	64	0.0010	0.010	-4.809372
14	64	0.0010	0.100	-5.477193
15	128	0.0010	0.001	-4.561052
16	128	0.0010	0.010	-4.871156
17	128	0.0010	0.100	-4.932153
18	32	0.0100	0.001	-4.545442
19	32	0.0100	0.010	-4.863966
20	32	0.0100	0.100	-5.641825
21	64	0.0100	0.001	-4.683922
22	64	0.0100	0.010	-4.729835
23	64	0.0100	0.100	-5.228342
24	128	0.0100	0.001	-4.653024
25	128	0.0100	0.010	-4.910358
26	128	0.0100	0.100	-5.107659

Trabalho realizado por: Daniel Évora, 99473 Natacha Sousa, 107413

Performance do Grid Search (MAE)

Trabalho realizado por: Daniel Évora, 99473 Natacha Sousa, 107413

The optimal hyperparameters found during model tuning were a batch size of 32, a learning rate of 0.001, and an alpha value of 0.001. From the learning rate graph, it's evident that the best performance was achieved with the smallest learning rate of 0.001. This is because the maximum number of iterations was increased, allowing the model more time to converge. In contrast, a larger learning rate of 0.1 converges too quickly, overshooting the local minimum and resulting in higher errors. Although the smaller learning rate of 0.001 converges more slowly, increasing the number of iterations allows the model to reach closer to the desired local minimum in consequence having a better performance On the batch size graph, it can be observed that the batch size of 32 consistently results in the smallest error. However, there are specific combinations of parameters that occasionally cause the error to spike, surpassing those of other batch sizes. Despite these fluctuations, batch size 32 generally outperforms the others.