

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

V. Országos Magyar Matematikaolimpia XXXII. EMMV

országos szakasz, Arad, 2023. február 20-23.

XI-XII. osztály – II. forduló

1. feladat. Oldd meg a valós számok halmazán a következő egyenletet:

$$2^{\cos 3x} + \cos^3 x = 8^{-\cos x}.$$

- **2. feladat.** Az ABC háromszögben AB = AC és $\widehat{A} = 30^{\circ}$. Legyen M és N a B és C pontok AC, illetve AB oldalak szerinti szimmetrikusa. Az MN egyenes D és E pontokban metszi az AB, illetve AC oldalakat. Ha DE = 2 cm, számítsd ki a BC oldal hosszát!
- **3. feladat.** Legyen $x, y, z \in (1, +\infty)$ és $x \cdot y \cdot z = p$. Igazold, hogy

$$\log_p x \cdot \sqrt[3]{1 + \log_p y - \log_p z} + \log_p y \cdot \sqrt[3]{1 + \log_p z - \log_p x} + \log_p z \cdot \sqrt[3]{1 + \log_p x - \log_p y} \le 1.$$

4. feladat. Határozd meg azokat az $f: \mathbb{R} \setminus \{0,1\} \to \mathbb{R}$ függvényeket, amelyek teljesítik az

$$f\left(\frac{x-1}{x}\right) + f\left(\frac{1}{1-x}\right) = 4 + \frac{2}{x-1}, \quad \forall x \in \mathbb{R} \setminus \{0, 1\}$$

összefüggést!

5. feladat. Az $a_1, a_2, \ldots, a_{2023}$ olyan természetes számok, amelyekre létezik $n \in \mathbb{N}$ úgy, hogy

$$a_1^2 + a_2^2 + \ldots + a_{2023}^2 = n^2 + 2.$$

Igazold, hogy az $a_1, a_2, \ldots, a_{2023}$ számok nem lehetnek mind páratlanok!

6. feladat. Legyen P az ABC hegyesszögű háromszög egy belső pontja. Jelöljük rendre a PB, PC és PA szakaszok hosszát x, y és z-vel, a \widehat{BPC} , \widehat{CPA} és \widehat{APB} szögek mértékét α , β és γ -val. Igazold, hogy $(x\cos\alpha-y)(z\cos\beta-y)$ kifejezés értéke akkor maximális, ha P a C-ből húzott szögfelezőn helyezkedik el!