DISCRETE

PROBABILITY:

- Distributions over n bits:

$$\mathcal{X} \in \{0,13^{n}\}$$

$$\left(\begin{array}{c} P_{\mathcal{X}} \end{array}\right)_{\mathcal{X} \in \{0,13^{n}\}}$$

$$\mathcal{D} = \text{vector} \quad \mathcal{V} \in \left(\mathbb{R}^{+}\right)^{2^{n}}$$

$$\|\mathcal{V}\|_{1} = 1$$

eg. 
$$n = 3$$
  $2 : P_{000} : \sqrt{2}$ 

$$P_{101} : \sqrt{6}$$

000 
$$1/2$$

001

010

010

100

101

1/6

110

1/3

The system.

# - Two independent distributions

 $\mathcal{D}_1$ : distribution over n, bits  $\leftarrow$   $\mathcal{D}_2$ : "  $m_2$  bits  $\leftarrow$ 

We have  $n_1 + n_2$  bits, where first  $n_1$  are sampled from  $\frac{\Delta_1}{2}$ , remaining sampled independently from  $\frac{\Delta_2}{2}$ .

eg.  $n_1 = 2$   $D_1: \begin{cases} P'_{00} : 1/2 \\ P'_{10} : 1/3 \end{cases}$   $D_2: P_0^2 : 2/3 \\ P'_{11} : 1/3 \end{cases}$   $P'_{11} : 1/3$   $P'_{11} : 1/3$ 

 $\begin{bmatrix} 1/2 \\ 0/6 \\ 1/3 \end{bmatrix} - 000 \\ - 001 \\ 0 \\ 0 \\ 1/6 \\ 0 \\ 0 \\ 1/9 \\ 1/9 \\ 1/9 \\ 1/9 \end{bmatrix}$ 

State of combined system is given by TENSOR PRODUCT of  $|\Delta_1\rangle$  and  $|\Delta_2\rangle$ 

$$|\lambda\rangle = |\lambda\rangle \otimes |\lambda\rangle$$

$$|\lambda\rangle \otimes |\lambda\rangle \otimes |\lambda\rangle$$

Tensor Product: 
$$M_1$$
,  $M_2$ 

$$M_{11} m_{21} \times m_{12} m_{22}$$

=  $M_{11} [0,0] M_{2} M_{1} [0,1] M_{2} \dots$ 
 $M_{11} [0,0] M_{2} M_{1} [1,1] M_{2} \dots$ 

$$A \otimes (B + C) = A \otimes B + A \otimes C$$
 $A \otimes (B \otimes C) = (A \otimes B) \otimes C$ 
 $A \otimes (B \otimes C) = (A \otimes B) \otimes C$ 

Q1: 
$$\|V_1\|_{p} = Z_1$$
  $\|V_2\|_{p} = Z_2$   $\|V_1\|_{p} = Z_2$ 

NOTE: There exist states that cannot be decomposed as tensor product of two smaller states.

$$\begin{bmatrix} 1/2 \\ 0 \\ 0 \\ 1/2 \end{bmatrix} \neq 1 | V_1 \rangle \otimes | V_2 \rangle$$

- Mixture of two distributions

$$\Delta = \begin{cases} \Delta, & \omega \cdot P \cdot P_1 \\ \lambda_2 & \omega \cdot P \cdot P_2 \end{cases} \qquad P_1 \neq P_2 = 1.$$

$$|3\rangle = P_1 |2_1\rangle + P_2 |2_2\rangle$$

→ Operations over n-bit system:

$$\mathcal{N} = 2 \qquad \qquad \mathcal{D} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

AND: 
$$00 \rightarrow 0$$
  
 $01 \rightarrow 0$   
 $10 \rightarrow 0$ 

$$M_{AND}$$
 .  $|2\rangle$ 

M AND = [1 1 0 0 0 1]

If we have a dist." Dover 2 bits, then the dist." after applying AND is

$$\frac{12^{\prime}}{2} = M_{AND} \cdot \frac{12}{2} \times (\mathbb{R}^{+})^{4}$$

### Randomized operations

$$\frac{2}{M_{AND}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad OR \qquad \frac{1}{3} \qquad OR \qquad \frac{2}{3}$$

$$M_{AND} = \begin{bmatrix} 1 & 1/3 & 1/3 & 1/3 \\ 0 & 2/3 & 2/3 & 2/3 \end{bmatrix}$$

Thm: Any randomized process mapping  $m_1$  bits to  $m_2$  bits can be described by a  $m_1$  bits to  $m_2$  bits can be described by a  $m_1$  stockastic matrix  $m_2 \in \mathbb{R}^+$  and  $m_2 \in \mathbb{R}^+$  of  $m_1 \in \mathbb{R}^+$  of  $m_2 \in \mathbb{R}^+$  of  $m_2 \in \mathbb{R}^+$  of  $m_3 \in \mathbb{R}^+$  of  $m_4 \in \mathbb{R}^+$  of

## - Independent operations

Suppose state of the system before op. is 
$$|\lambda\rangle \otimes |\lambda\rangle$$

Tensor Product Rule:

$$(M_1 \otimes M_2) \cdot (A_1 \otimes A_2) = (M_1 A_1 \otimes M_2 A_2)$$

-> Measurement

Extracting information from a dist."

| D | measure | string x w.p. Dx.

state is destroyed,

and we "observe" x

as the outcome.

We can also make partial measurements

eg.  $\frac{1}{2}$   $\frac{1}{2}$ 

- -> Summary of classical discrete prob.
  - · n bit system described using non-neg. vector of dim." 2", l, norm 1.
  - · Independent systems tensor product of state vectors
  - · Operations -> stochastic matrices
  - · (Partial) Measurement: means to extract classical bits/info classical bits/info from state vector.

CRAZY

### DISCRETE

PROB.

Imagine a world governed by the following rules of probability:

-> state of n bit system:

 $|v\rangle \in \mathbb{R}^{2^n}$ ,  $||v\rangle||_{1} = 1$ .

 $\begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} \qquad \begin{bmatrix} 1/3 \\ -2/3 \end{bmatrix}$ 

- valid operations:

stochastic matrix, followed by

rescaling of resulting rector

(to make l, norm = 1)

parity operation  $M = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ 

 $|V\rangle = \begin{bmatrix} 2/3 \\ 0 \\ 0 \\ -1/3 \end{bmatrix} \qquad M|V\rangle = \begin{bmatrix} 1/3 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 



Prob. dist

 $\rightarrow |v\rangle \in (\mathbb{R}^+)^{2^n}$   $\|v\|_1 = 1$ 

- → All operations are stochastic matrices
- → measurement

  "No interference"

Quantum

 $\rightarrow 10> \in \mathbb{C}^{2^{n}}$   $\| \mathbf{v} \|_{2} = 1$ 

- unitary matrices

- measurement

" 9 nter fevence"

- AXIOMS OF QUANTUM

## COM PUTING

Al -> Quantum state over n qubits

described by vector 
$$v \in \mathbb{C}^{2^n}$$

$$\|v\|_{2} = 1$$

$$||v||_{2} = 1$$

A2 
$$\rightarrow$$
  $|v_1\rangle$ : state over  $n$ , qubits  $|v_2\rangle$ : state over  $n_2$  qubits

combined state: 
$$|v_1\rangle \otimes |v_2\rangle$$

# A3 - Quantum operations: only two kinds of operations available: 1. Unitary operation: multiply a unitary matrix UNITARY MATRIX: U is unitary if U.U = I conj. transpose · unitary matrices are invertible unitary matrices preserve le norm. · unitary matrices preserve inner product

• unitary matrices preserve inner product

$$\langle 107, 1\omega \rangle = \langle U10 \rangle, U1\omega \rangle$$
 $\langle 01\omega \rangle$ 
 $\langle 01\omega \rangle$ 
 $\langle 01\omega \rangle$ 
 $\langle 01\omega \rangle$ 

2. Measure ment

$$|V\rangle \longrightarrow \chi \quad \omega.p. \quad |V_{\chi}|^{2}$$

$$|V_{\chi}\rangle \longrightarrow |V_{\chi}\rangle = |V_{\chi}\rangle \longrightarrow |V_{\chi}\rangle \longrightarrow |V_{\chi}\rangle = |V_{\chi}\rangle \longrightarrow |V_{\chi}\rangle \longrightarrow$$

Partial measurement: similar to classical measurement, however we get a 'mixture' of quantum states

eq.  $\begin{bmatrix} 1/2 \\ -1/2 \\ -1/3 \\ 1/6 \end{bmatrix}$  =  $\frac{1}{2} |0\rangle |0\rangle - \frac{1}{2} |0\rangle |1\rangle + \frac{1}{3} |1\rangle |0\rangle + \frac{1}{3} |1$ 

1 ω.ρ. 1/2 0 w.p. 1/2 res. state 1/3 10> + 1/6 (1> res. state  $\frac{10}{\sqrt{2}}$ 1 /3/0> + 1 /1> 1/2 = [1/52]

$$\begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \\ \sqrt{3} \\ \sqrt{5} \end{bmatrix}$$

$$= \sqrt{2} |0\rangle |0\rangle - \frac{1}{2} |0\rangle |1\rangle + \frac{1}{\sqrt{3}} |1\rangle |0\rangle + \frac{1}{\sqrt{6}} |1\rangle |0\rangle$$

$$= \sqrt{2} |0\rangle |1\rangle + \frac{1}{\sqrt{3}} |1\rangle$$

$$= \sqrt{2} |0\rangle + \frac{1}{\sqrt{3}} |1\rangle$$

$$= \sqrt{2} |0\rangle + \frac{1}{\sqrt{6}} |1\rangle$$

$$= \sqrt{2} |0$$

 $1\psi, \rangle$ 

Suppose a quantum state is  $|\Psi_i\rangle$  w.p. p: pi,  $\Sigma pi=1$  This is not the same as  $\Sigma p: |\Psi_i\rangle$ .

mixture of quantum states

{ (Pi, IV;>)}

Σρ; =1 each (4;) is a quantum state.

- · Unitary operation on pure state produces pure state.
- · Measurement / partial measurement may produce mixed state.

Qn: You are given either  $|\psi_0\rangle = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$  or  $|\psi_1\rangle = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$ 

How do you distinguish? You are allowed to perform any unitary op. or measurement.

Qn: Show that  $\not\equiv$  unitary  $\lor$  s.t.  $\forall \ |\psi\rangle \in \mathbb{C}^2$ ,  $\lor (|\psi\rangle \otimes |0\rangle) = |\psi\rangle \otimes |\psi\rangle$ 

Encrypting a quantum state using classical bits:

Let 14> be a quantum state in C.

We will discuss how to 'encrypt' any

quantum state using a classical key.

formally

Enc (key k, 
$$\underline{1} \psi$$
)  $\longrightarrow$   $\underline{1} ct$ )

Dec (key k,  $\underline{1} ct$ )  $\longrightarrow$   $\underline{1} \psi$ 

In fact, our key k will be just 2 bits!

$$\Rightarrow a=b=0$$
 output  $|\psi\rangle$   $|\psi\rangle = |1\rangle$ 

$$\rightarrow a_2 1, b=0, \text{ output } \chi |\psi\rangle \qquad \chi |1\rangle = |0\rangle$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\Rightarrow a=0, b=1, \text{ output } Z \mid \psi \rangle$$

$$1 \qquad \qquad Z \mid 0 \rangle = \mid 0 \rangle$$

$$\left( \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \qquad Z \mid 1 \rangle = -11 \rangle$$

Dec. is just inverse operation.

Chall.

(140>, 14,>

(a,b) B = (0,13

ξης ((a, b), (Ψβ)) = (Ψ')

Adv.

measures

Pr [outcome =0] a, b, B

Qn:

Pick any Vo, V, compute

Providence =0].

### QUANTUM

#### CIRCUITS:

Some popular quantum gates - For each of these, check that they're unitary

1. 
$$X$$
 gate:  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 

$$\begin{bmatrix}
1 \\
0
\end{bmatrix}$$

$$\begin{vmatrix}
10
\end{aligned}$$

$$\begin{vmatrix}
10
\end{aligned}$$

$$\begin{vmatrix}
10
\end{aligned}$$

$$z$$
.  $Z$  gate:  $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ 

$$Z^{2} = I$$

$$|0\rangle \rightarrow |0\rangle$$

$$|1\rangle \rightarrow -|1\rangle$$

9t suffices to define gate's behaviour on some basis

x = I

Note that [6], [9] is not the only basis for eg. consider the following basis

Check: 
$$Z|+\rangle = |-\rangle$$
  
 $Z|-\rangle = |+\rangle$ 

$$H = \frac{1}{\sqrt{2}} \left[ \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

## 4. Controlled NOT gate: