CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: PROBABILITY THEORY

http://www.cs.iit.edu/~mbilgic

MOTIVATION

- The agent needs reason in an uncertain world
- Uncertainty can be due to
 - Noisy sensors (e.g., temperature, GPS, camera, etc.)
 - Imperfect data (e.g., low resolution image)
 - Missing data (e.g., lab tests)
 - Imperfect knowledge (e.g., medical diagnosis)
 - Exceptions (e.g., all birds fly except ostriches, penguins, birds with injured wings, dead birds, ...)
 - Changing data (e.g., flu seasons, traffic conditions during rush hour, etc.)
 - •
- The agent still must act (e.g., step on the breaks, diagnose a patient, order a lab test, ...)

TENTATIVE PLAN

- Probability background
- Classification
 - Naïve Bayes, logistic regression, neural networks
 - Maximum likelihood estimation, Bayesian estimation, gradient optimization, backpropagation
- Decision making
 - Episodic decision making, Markov decision processes, multi-armed bandits
 - Value of information, Bellman equations, value iteration, policy iteration, UCB1, ε-greedy
- Reinforcement learning
 - Prediction, control, Monte-Carlo methods, temporal difference learning, Sarsa, Q-learning

SOME EXERCISES

- In a class, 70% of the hardworking students got an A. John got an A. What is the probability that John is a hardworking student?
- You design a Covid test with the following behavior
 - P(+ | covid) = 0.95; P(- | covid) = 0.05
 - $P(+ | \sim covid) = 0.10; P(- | \sim covid) = 0.90$
 - John takes the test, and the result is +. What is the probability that John has covid?
- In a town, 70% of the hospitalized are vaccinated. Do the vaccines provide any protection against hospitalization?
- $P(toothache \mid cavity) = 0.75$. $P(cavity \mid toothache) = ?$

4

RANDOM VARIABLES

- Pick variables of interest
 - Medical diagnosis
 - o Age, gender, weight, temperature, LT1, LT2, ...
 - Loan application
 - o Income, savings, payment history, ...
 - Earlier examples
 - o Grad student, Grade, Covid, Test result, Ache, X-Ray
- Every variable has a domain
 - Binary (e.g., True/False)
 - Categorical (e.g., Red/Green/Blue)
 - Real-valued (e.g., 97.8)
- Possible world
 - An assignment to all variables of interest

PROBABILITY MODEL

- A **probability model** associates a numerical probability P(w) with each possible world w
 - P(w) sums to 1 over all possible worlds
- An **event** is the set of possible worlds where a given predicate is true
 - Roll two dice
 - The possible worlds are (1,1), (1,2), ..., (6,6); 36 possible worlds
 - Predicate = two dice sum to 10
 - Event = $\{(4,6), (5,5), (6,4)\}$
 - Toothache and cavity
 - Four possible worlds: (t,c), $(t,\sim c)$, $(\sim t,c)$, $(\sim t,\sim c)$
 - Some worlds are more likely than others
 - Predicate can be anything about these variables: $t \land c, t, t \lor \sim c$,

AXIOMS OF PROBABILITY

- 1. The probability P(a) of a proposition a is a real number between 0 and 1
- 2. P(true) = 1, P(false) = 0
- 3. $P(a \lor b) = P(a) + P(b) P(a \land b)$

$P(\neg a)$

- $P(a \lor \neg a) = P(a) + P(\neg a) P(a \land \neg a)$
- $P(true) = P(a) + P(\neg a) P(false)$
- $P(\neg a) = 1 P(a)$
- Intuitive explanation:
 - The probability of all possible worlds is 1
 - Either a or $\neg a$ holds in one world
 - The worlds that α holds and the worlds that $\neg \alpha$ holds are mutually exclusive and exhaustive

RANDOM VARIABLES – NOTATION

- Capital: X: a variable
- Lowercase: x: a particular value of X
- Val(X): the set of values X can take
- Bold Capital: X: a set of variables
- Bold lowercase: x: an assignment to all variables in X
- \circ P(X=x) will be shortened as P(x)
- $P(X=x \cap Y=y)$ will be shortened as P(x,y)

JOINT DISTRIBUTION

- We have n random variables, $V_1, V_2, ..., V_n$
- We are interested in the probability of a possible world, where
 - $V_1 = v_1, V_2 = v_2, ..., V_n = v_n$
- $P(V_1, V_2, ..., V_n)$ associates a probability for each possible world = the **joint distribution**
- How many entries are there, if we assume the variables are all binary?

TOOTHACHE EXAMPLE

Ache	X-Ray	P(A, X)
toothache	cavity	0.15
toothache	¬cavity	0.10
¬toothache	cavity	0.05
\neg toothache	¬cavity	0.70

PRIOR AND POSTERIOR

- Prior probability
 - Probability of a proposition in the absence of any other information
 - E.g., $P(V_1, V_3, V_5)$
- Conditional/posterior probability
 - Probability of a proposition given another piece of information
 - E.g., $P(V_2, V_3 | V_5 = T, V_7 = F)$
 - $P(A \mid B) = P(A \land B) / P(B)$

MARGINALIZATION

- Given a distribution over *n* variables, you can calculate the distribution over any subset of the variables by summing out the irrelevant ones
- For example
 - Given P(A, B, C, D)
 - Calculate
 - P(A)
 - P(A, C)
 - o ... (any subset)

LET'S ANSWER A FEW QUERIES

Ache	X-Ray	P(A, X)
toothache	cavity	0.15
toothache	¬cavity	0.10
¬toothache	cavity	0.05
\neg toothache	¬cavity	0.70

- P(cavity) = ?
- $P(\neg cavity) = ?$
- P(toothache) = ? 0.25
- $P(\neg toothache) = ? 0.75$

CONDITIONAL DISTRIBUTION

LET'S ANSWER A FEW QUERIES

Ache	X-Ray	P(A, X)
toothache	cavity	0.15
toothache	¬cavity	0.10
¬toothache	cavity	0.05
\neg toothache	¬cavity	0.70

- P(cavity | toothache) = ?
- $P(cavity \mid \neg toothache) = ?$
- $P(\neg cavity \mid toothache) = ?$
- $P(\neg cavity \mid \neg toothache) = ?$
- P(toothache | cavity) = ?
- P(¬toothache | cavity) = ?
- P(toothache | \neg cavity) = ?
- $P(\neg toothache | \neg cavity) = ?$

0.15

16

BAYES' RULE

$$P(B|A) = \frac{P(A|B)*P(B)}{P(A)}$$

BAYES' RULE

$$P(B|A) = \frac{P(A|B)*P(B)}{P(A)}$$

BAYES' RULE

$$P(B|A) = \frac{P(A|B)*P(B)}{P(A)}$$

- Example use
 - P(cause | effect) = P(effect | cause)*P(cause) / P(effect)
- o Why is this useful?
 - Because in practice it is easier to get probabilities for P(effect|cause) and P(cause) than for P(cause|effect)
 - E.g., P(disease|symptoms) =P(symptoms|disease)*P(disease) / P(symptoms)
 - It is easier to know what symptoms diseases cause. It is harder to diagnose a disease given symptoms

BAYES RULE

• Can we compute $P(\alpha|\beta)$ from $P(\beta|\alpha)$?

CLASS EXAMPLE

- In a class, 70% of the hardworking students got an A. John got an A. What is the probability that John is a hardworking student?
- Possible worlds: 4
 - <h, a>, <h, ~a>, <~h, a>, <~h, ~a>
- Let's say there are 100 students in a class
- Let's say 10 of them work hard (h), 90 do not (~h)
- Probability of a randomly picked student being hardworking
 - P(h) = 0.1
- We are told that 70% of the hardworking students got an A.
 - P(a | h) = 0.7
 - 7 hardworking students got an A; 3 did not get an A.
- What is P(h|a) = ?

CLASS EXAMPLE

- o In a class, 70% of the hardworking students got an A. John got an A. What is the probability that John is a hardworking student?
- Possible worlds: 4
 - <h, a>, <h, ~a>, <~h, a>, <~h, ~a>
- Let's say there are 100 students in a class
- Let's say 10 of them work hard (h), 90 do not (~h)
- Probability of a randomly picked student being hardworking
 - P(h) = 0.1
- We are told that 70% of the hardworking students got an A.
 - P(a | h) = 0.7
 - 7 hardworking students got an A; 3 did not get an A.
- What is P(h|a) = ?

VERY DIFFICULT CLASS

$$P(h | a) = ?$$

VERY DIFFICULT CLASS

MEDIUM DIFFICULT CLASS

$$P(h | a) = ?$$

MEDIUM DIFFICULT CLASS

$$P(h|a) = ?$$
 0. 28

WEIRD CLASS

$$P(h | a) = ?$$

WEIRD CLASS

$$P(h \mid a) = ?$$

CHAIN RULE

- P(X₁, X₂, X₃, ..., X_k) =
 - $P(X_1) P(X_2 | X_1) P(X_3 | X_1, X_2) \dots P(X_k | X_1, X_2, X_3, \dots, X_{k-1})$ • or
 - $P(X_2) P(X_1 | X_2) P(X_3 | X_1, X_2)... P(X_k | X_1, X_2, X_3, ..., X_{k-1})$ • or
 - $P(X_2) P(X_3 | X_2) P(X_1 | X_3, X_2)... P(X_k | X_1, X_2, X_3, ..., X_{k-1})$ • or
 - Pick an order, then
 - P(first)P(second | first)P(third | first, second)...P(last | all_previous)

P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B)ABC D RDAC - P(B)P(D/B) P(A/B,D) P(C/B,D,A)

Marginal Independence

- An event α is **independent** of event β in P, denoted as P \models $\alpha \perp \beta$, if
 - $P(\alpha \mid \beta) = P(\alpha)$, or
 - $P(\beta) = 0$
- Proposition: A distribution P satisfies $\alpha \perp \beta$ if and only if
- Corollary: $\alpha \perp \beta$ implies $\beta \perp \alpha$

MARGINAL INDEPENDENCE

 $P(x) \cdot P(y)$

X	\mathbf{Y}	P(X, Y)
t	t	0.18 06 203-0,18
t	f	0.42 76~0770.42
\mathbf{f}	t	0.12 1 /4 × 0.3 = 0/2
\mathbf{f}	\mathbf{f}	0.42 0.6×0770.42 0.12 0.4×0.3=0.12 0.28 0.4×0.3=0.28

$$P(x|y)$$
? $P(x)$ $P(x|y)$ - $P(x|y)$

Marginal Independence

V.18 ? 0.6

P(X)	-P(Y	
•		

X	Y	P(X, Y)
t	t	0.18 0.6 20.3:0,18
t	\mathbf{f}	0.42 16-0770.42
f	t	0.12 1,4 x 0,3 = 0/2
f	\mathbf{f}	0.42 0.6×0770.42 0.12 0.4×0.3=012 0.28 0.4×0.3=0.28

JMT

CONDITIONAL INDEPENDENCE

- Two events are independent given another event
- An event α is **independent** of event β given event γ in P, denoted as $P \models (\alpha \perp \beta \mid \gamma)$, if
 - $P(\alpha \mid \beta, \gamma) = P(\alpha \mid \gamma)$, or
 - $P(\beta, \gamma) = 0$
- Proposition: A distribution P satisfies $\alpha \perp \beta \mid \gamma$ if and only if
 - $P(\alpha, \beta \mid \gamma) = P(\alpha \mid \gamma) P(\beta \mid \gamma)$

MX

HIKIA

NUMBER OF PARAMETERS

- Assuming everything is binary
- P(V₁) requires
 - 1 independent parameter
- \circ P(V₁, V₂, ..., V_n) requires
 - 2ⁿ-1 independent parameters
- \circ P(V₁ | V₂) requires
 - 2 independent parameters
- \circ P(V₁,V₂, ..., V_n | V_{n+1}, V_{n+2}, ..., V_{n+m}) requires
 - $2^m \times (2^n-1)$ independent parameters

NUMBER OF PARAMETERS

- Assuming everything is binary
- P(V₁) requires
 - 1 independent parameter
- \circ P(V₁, V₂, ..., V_n) requires
 - 2ⁿ-1 independent parameters
- \circ P(V₁ | V₂) requires
 - 2 independent parameters
- o $P(V_1, V_2, ..., V_n | V_{n+1}, V_{n+2}, ..., V_{n+m})$ requires
 - $2^m \times (2^n-1)$ independent parameters

CONTINUOUS SPACES

- Assume X is continuous and Val(X) = [0,1]
- o If you would like to assign the same probability to all real numbers in [0, 1], what is, for e.g., P(X=0.5) = ?

PROBABILITY DENSITY FUNCTION

• We define **probability density function**, p(x), a non-negative integrable function, such that $\int_{Val(X)} p(x)dx = 1$

$$P(X \le a) = \int_{-\infty}^{a} p(x)dx$$

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

UNIFORM DISTRIBUTION

• A variable X has a uniform distribution over [a,b] if it has the PDF

$$p(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

Check and make sure that p(x) integrates to 1.

UNIFORM DISTRIBUTION

• A variable X has a uniform distribution over [a,b] if it has the PDF

GAUSSIAN DISTRIBUTION

• A variable X has a Gaussian distribution with mean μ and variance σ^2 , if it has the PDF

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x)^{2}}{2\sigma^{2}}}$$

$$0.45 \\ 0.35 \\ 0.35 \\ 0.25 \\ 0.25 \\ 0.15 \\ 0.10 \\ 0.05 \\ 0.0$$

CONDITIONAL PROBABILITY

- We want P(Y | X=x) where X is continuous, Y is discrete
- P(Y | X=x) = P(Y,X=x) / P(X=x)
 - What's wrong with this expression?
- Instead, we use the following expression

$$P(Y \mid X = x) = \lim_{\varepsilon \to 0} P(Y \mid x - \varepsilon \le X \le x + \varepsilon)$$

CONDITIONAL PROBABILITY

- We want p(Y | X) where X is discrete, Y is continuous
- o How would you represent it?

How would you represent it?

$$p(y(X-a)) N(N^{2}, 5^{-2})$$

$$p(y(X-b)) N(N^{2}, 5^{-2})$$

$$p(y(X-b)) N(N^{2}, 5^{-2})$$

EXPECTATION

$$E_{P}[X] = \sum_{x} xP(x)$$

$$E_{P}[X] = \int_{x} xp(x)dx$$

$$E_{P}[aX + b] = aE_{P}[X] + b$$

$$E_{P}[X + Y] = E_{P}[X] + E_{P}[Y]$$

$$E_{P}[X | y] = \sum_{x} xP(x | y)$$

What about E[X*Y]?

EXPECTATION

$$E_P[X] = \sum_{x} x P(x)$$

$$E_{P}[X] = \int_{x} x p(x) dx$$

$$E_{P}[aX+b] = aE_{P}[X]+b$$

$$E_{P}[X+Y] = E_{P}[X] + E_{P}[Y]$$

$$E_P[X \mid y] = \sum_{x} x P(x \mid y)$$

What about
$$E[X*Y]?XE[X] \times E[Y]$$

$$0.1 \quad 0.2 \quad 0.7$$
 $0.3 + 1 + 7 = 8.3$
 $10 \quad 14 \quad 24$

VARIANCE

$$Var_{P}[X] = E_{P}[(X - E_{P}[X])^{2}]$$

$$Var_{P}[X] = E_{P}[X^{2}] - (E_{P}[X])^{2}$$

Can you derive the second expression using the first expression?

$$Var_{P}[aX+b] = a^{2}Var_{P}[X]$$

What is Var[X+Y]?

VARIANCE

$$Var_{P}[X] = E_{P}[(X - E_{P}[X])^{2}] \mathcal{E} \left(\times^{2} - \lambda \cdot \times \times^{2} + \widehat{\times}^{2} \right)$$

$$Var_{P}[X] = E_{P}[X^{2}] - (E_{P}[X])^{2}$$

Can you derive the second expression using the first expression?

$$Var_{P}[aX+b] = a^{2}Var_{P}[X]$$

What is Var[X+Y]?

Uniform and Gaussian Distribution

- If $X \sim N(\mu, \sigma^2)$, then $E[X] = \mu$, $Var[X] = \sigma^2$
- What about the expectation and variance of a uniform distribution?