

### **SYLLABUS**

- 4.1 Introduction
- 4.2 Network devices
  - 4.2.1 NIC
  - 4.2.2 Repeater
  - 4.2.3 Bridges
  - 4.2.4 Hubs
  - 4.2.5 Switches
  - 4.2.6 Routers
  - 4.2.7 Gateway
  - 4.2.8 Access points
- 4.3 Network management software.



#### 4.1 INTRODUCTION

- **Network:** Two or more **devices** connected with each other for sharing their data and resources is called a network.
- Internetworking: When two or more networks are connected for exchanging data or resources then it is called internetworking.
- Devices used in networking and intranetworking:
  - Repeater
  - Bridge
  - Hub
  - Switch
  - Router
  - Gateway
  - Access point

## 4.2 Network Devices

•Devices and the layers at which they operate

| Layer | Name of Layer | Device                                    |
|-------|---------------|-------------------------------------------|
| 7     | Application   | Gateway                                   |
| 6     | Presentation  | Gateway                                   |
| 5     | Session       | Gateway                                   |
| 4     | Transport     | Gateway                                   |
| 3     | Network       | Routers, layer-3 Switches, Gateway        |
| 2     | Data Link     | Layer-2 Switches, Bridges, NIC's, Gateway |
| 1     | Physical      | Hubs, Repeaters, Bridges, Gateway         |

## 4.2 Network Devices



## 4.2.1 NIC (NETWORK INTERFACES CARD)

- NIC is a small printed circuit board that is installed on a motherboard of CPU.
- It provides interface between computer's internal system resources and external network resources.
- NIC has unique physical address(MAC address).
- This NIC has interfaces for twisted pair, thicknet, and thinnet connectors.
- Two types:
  - 1. ARCNET card
  - 2 ETHERNET card

# 4.2.1 NIC (NETWORK INTERFACES CARD) CONTINUE...



## 4.2.1 NIC (NETWORK INTERFACES CARD) CONTINUE...

#### ARCNET

- It consist eight dual inline package(DIP) switches.
- It supports MCA(micro channel architecture) bus.
- It is used with coaxial cable and RG-62 connector.
- It has BNC connector and jumpers on a card.
- It is generally implemented in star topology.
- It consist of boot ROM.
- o It has 8 and 16 bit port.
- Its data transmission rate is 2.5 mbps.

## 4.2.1 NIC (NETWORK INTERFACES CARD) CONTINUE...

#### ETHERNET

- o DIP switches are not available.
- It consist of PCI(peripheral component interconnect) bus.
- It is generally implemented in bus topology.
- It is available in 8,16, and 32 slots.
- o Thick Ethernet card uses AUI connector with 25-pin.
- o Thin Ethernet card uses BNC connector.
- It is used with coaxial cable and RG-58 connector.
- Thin and thick Ethernet are available.
- Its data transmission rate is 10 mbps.

#### 4.2.2 REPEATERS

- It works on physical layer of OSI model.
- Repeaters clean, amplify, and resend signals that are weakened by long cable length.
- Repeaters installed in a network, receives weak signals and regenerates it to original strength to forward refreshed copy on a link.
- o They can Built-in to hubs or switches.



## 4.2.2 REPEATERS CONTINUE...



#### 4.2.2 Repeaters continue...

- "Repeaters does not amplify"-Justify.
- An amplifier can not differentiate between original signal and noise signal.
- Repeaters does not amplify the signal, it regenerate it. When it receives a signal affected by noise signal, it creates a copy bit to its original strength.



#### 4.2.3 BRIDGES

- Bridges work at Datalink Layer of OSI model.
- It is designed to connect two or more LAN segments.
- At layer 1, it is used to regenerate a signal.
- At layer 2, it is used to filter traffic on a LAN and to keep local traffic local and also allow connectivity to other segments of the network.
- To provide **security**, it Filters traffic by looking at the MAC address and prevent unauthorized access.
- If the frame is addressed to a MAC address on the local side of the bridge, it is not forwarded to the other segment. Frames having MAC addresses on the other segment only are forwarded.
- Bridges maintain a MAC address table for both segments to which they are connected.

### 4.2.3 BRIDGES CONTINUE...



#### 4.2.3 BRIDGES CONTINUE...



- •Difference between repeater and bridge:
- •Repeaters retransmit frames to all the connected devices in a network, while
- •Bridges transmit frames only to the segment in which device with MAC address specified in frame is present.

#### 4.2.3 BRIDGES CONTINUE...

- Types of bridges:
- Simple bridge:
  - It links two segments only.
  - It is having lowest cost among other types.
  - It require manual updating of bridging table.
  - Requires more time to maintain devices.

#### 2. Multiport bridges:

- It links more then two segments.
- Three table are created, each stores physical address of stations reachable through corresponding port.

#### 3. Transparent Bridges:

20 0 t x x 2 2 2 1 2

- It builds its tables of physical station address on its own.
- It performs bridge functions by its own.
- Table is automatically built by frame movement in a

**16** 

#### 4.2.4 HUB

- It works on physical layer of OSI model.
- Hubs is a central network device that connects network nodes and provide central network management..
- They connects devices centrally in a star topology.
- They cannot filter network traffic.
- They cannot determine best path.
- They are also known as network "concentrators".
- They have multiple inputs and outputs active at the same time.
- It provides connections for all guided media types.
- They provide high speed communication.

## 4.2.4 HUB CONTINUE...



#### 4.2.4 HUB CONTINUE

#### • TYPES OF HUB:

#### 1. Active hubs:

- Active hubs work similar to repeaters.
- They need electrical power to run.
- Also called multiport repeater.

#### 2. Passive hubs:

- A passive hub serves simply provides connection between devices, enabling data to go from one device (or segment) to another.
- They don't need electrical power to run.

### 3. Intelligent hubs:

- A third type of hub, called a *intelligent hub*, actually reads the destination address of each packet and then forwards the packet to the correct port.
- Intelligent hubs are also called *manageable hubs*.

#### 4.2.5 SWITCHES

- It works on Datalink layer of OSI model.
- It provides bridging with greater efficiency.
- They have buffer for each link to which it is connected.



## 4.2.5 SWITCHES CONTINUE



#### 4.2.5 SWITCHES CONTINUE

- Types of switches:
- **Store and Forward Switches:**
- Do error checking on each frame after the entire frame has arrived into the switch.
- It stores the frame into buffer until whole packet arrives.
- The switch looks in its MAC address table for the port to which to forward the destination device.
- Highly reliable because doesn't forward bad frames.
- Slower than other types of switches because it holds on to each frame until it is completely received to check for errors before forwarding

22

#### 4.2.5 SWITCHES CONTINUE...

#### 2. Cut Through Switches:

- Faster than store and forward because doesn't perform error checking on frames.
- It Forwards bad frames too.
- Reads address information for each frame as the frames enter the switch.
- After looking up the port of the destination device, frame is forwarded without waiting for entire packet to arrive.

## 4.2.5 Layer 2 & 3 Switches differences

| Layer 2 switch                                         | Layer 3 switch                                            |
|--------------------------------------------------------|-----------------------------------------------------------|
| Works on Datalink layer.                               | Works on network layer.                                   |
| It uses MAC address for filtering and provide bridging | It uses MAC address to provide packet forwarding.         |
| It behaves as a multiport transparent bridge.          | It behaves as a router.                                   |
| It is used to connect server and clients.              |                                                           |
| <u>e</u>                                               | it is having faster table lookup and forwarding capacity. |

#### 4.2.6 ROUTERS

- It operates on Physical, Datalink and Network layer of OSI model.
- It is most active in Network layer of OSI model.
- o Different networks can be connected via routers.
- It stores **IP address** of the devices of networks in a table called routing table.
- Function of router is to receive packets from one network and forward to another network based on information stored in routing table.

## 4.2.6 ROUTERS CONTINUE...



#### 4.2.6 ROUTERS CONTINUE...

- o Routing strategies:
- Adaptive Routing
  - In adaptive routing, a router may select new route for each packet.
- Non Adaptive Routing
  - In non adaptive routing router choose same path for all the packets whose destination is same.
- Routing table contains:
  - Network address of each device,
    - Possible paths between routers,
  - Cost of sending data over paths.

## 4.2.6 ROUTERS CONTINUE...

#### Types of routers:

#### 1. Static router:

- 1. They use same path for all packets of same destination.
- 2. More secure.
- 3. Needs to maintain manually.
- 4. Can not updated automatically.

### 2. Dynamic router:

- 1.It uses a routing protocol such as OSPF or BGP to select best paths for packets.
- 2. Each packet is sent via different path.
- 3.Less secure.
- 4. Can be updated and Maintained automatically. 28

#### 4.2.7 GATEWAYS

- It operates in all seven layers of OSI model.
- It is also called **protocol converter**.
- It is used to connect two different network types.
- o Difference between router and gateway:
  - Router connects networks having implemented similar protocols.
  - Gateways used to connect two different networks implemented using different protocols.
  - They adjust data rate, size and format of packets.

## 4.2.7 GATEWAYS CONTINUE...



## 4.2.7 GATEWAYS CONTINUE...



#### 4.2.7 ACCESS POINTS

- An Access Point connects directly to a wired LAN and then provides wireless connections using wireless LAN technology for other devices to utilize that wired connection.
- APs support the connection of multiple wireless devices through their one wired connection.
- It acts as a HUB between wired and wireless networks.
- It provides security and extend physical range of LAN.

## 4.2.7 ACCESS POINTS CONTINUE...



## 4.3. NETWORK MANAGEMENT SOFTWARE

- Network software is define as a collection of program's that can be installed on file server or node.
- NETWORK MANAGEMENT PROTOCOLS:
  - SNMP: simple network management protocols
  - RMON: remote monitoring protecols
- Types of network software:
- 1. Server Software
- o 2. Client Software

## 4.3. NETWORK MANAGEMENT SOFTWARE CONTINUE...

- Server Software:
- Server software is a type of software that is designed to be used, operated and managed on a computing server.
- server software may be classified into various forms, such as the following:
  - Web server software
  - Application server software
  - Database server software
  - Cloud computing server software
  - File server software
- Client Software:
- Software that resides in a user's desktop or laptop computer or mobile device. Contrast with server software.

**35** 

## ❖UNICAST, BROADCAST AND MULTICAST

- Unicast: it is a communication between single sender and single receiver.
- Multicast: It is used to transmit a single message to a selected group of receivers.
- Broadcast: It is used to transmit a packet in a network received by all the nodes.

## IMP QUESTION

- 1. What Is NIC? And Also Explain Different Type Of NIC Card.
- 2. Give The Difference Between Repeater And Hub.
- 3. What Is Router? Which Information Can Store In A Router Table And Also Explain Various Routing Technology.
- 4. Explain Various Type Of Switch In Network System.
- 5. Explain Working Principle Of Gateway.
- 6. Explain Following Term:-
- Uncasting
- Broadcasting
- Multicasting

## **IMP QUESTION**

- 7. Differentiate Hub and Switch.
- 8. How repeater is differs from an amplifier?
- 9. Explain use of Router with example.
- 10. Differentiate Bridge and Router.
- 11. Differentiate Layer-2 and Layer-3 switch.
- 12. Explain layer-3 switch. Give its advantage and disadvantage.
- 13. Discuss network management software in brief.