Designing solution for Anomaly Detection

Import required libraries

```
In [2]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
```

Load Data

subaru

unicorn

Openness

region

royal family obfuscation

Neuroticism

PsychRegions

Extraversion 48 non-null float64
Agreeableness 48 non-null float64 Conscientiousness 48 non-null float64

jello bbq

```
df = pd.read_csv('AnomalyData.csv')
         df.columns
In [4]:
'Agreeableness', 'Conscientiousness', 'Neuroticism', 'Opénness',
               'PsychRegions', 'region', 'division'],
              dtype='object')
In [5]:
         df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 48 entries, 0 to 47
        Data columns (total 30 columns):
                            48 non-null object
        State
        state_code
        state_code 48 non-null object
data science 48 non-null float64
cluster analysis 48 non-null float64
        college
                            48 non-null float64
                            48 non-null float64
        startup
        entrepreneur
                         48 non-null float64
                            48 non-null float64
        ceo
        mortgage
                            48 non-null float64
        nba
                            48 non-null float64
        nf1
                            48 non-null float64
        m1b
                            48 non-null float64
        fifa
                            48 non-null float64
                            48 non-null float64
        modern dance
                            48 non-null float64
        prius
                            48 non-null float64
        escalade
                            48 non-null float64
```

48 non-null float64

48 non-null float64

48 non-null int64 48 non-null int64

48 non-null float64

48 non-null float64

48 non-null float64 48 non-null float64 48 non-null float64 12/22/2020 Anomaly-Detection

memory usage: 11.4+ KB

Display all columns in the pandas dataset

In [7]:	-	set_option	n('display.r	max_columns	', None)						
Out[7]:		State s	tate code	data cluste ence analys	college	startup	entrepreneur	ceo	mortgage	nba	r
	0 A	Mabama	AL	-1.00 -0.1	3 1.10	-0.68	0.15	-0.73	1.53	-0.74	-1.8
	1	Arizona	AZ ·	-0.42 -0.7	3 -0.10	0.11	0.57	0.25	0.95	0.38	0.0
	2 A	ırkansas	AR	-0.66 -0.3	9 -0.64	-0.08	0.01	-0.66	-0.50	-0.71	-1.!
	3 Ca	alifornia	CA	1.95 -0.6	2 -0.26	2.02	0.46	1.27	-0.97	1.46	-0.9
	4 C	olorado	со	0.34 0.0	0 -0.61	1.49	0.05	0.33	1.38	-0.80	1.
	4										•
In [9]:	df.d	describe()								
Out[9]:	data science			cluster college analysis		entrepr	eneur	ceo	mortgage	nba	
	coun	t 48.0000	00 48.000000	48.000000	48.000000	48.00	00000 48.000	0000 4	48.000000	48.0000	00
	mear	n -0.0008	33 -0.012500	0.060625	0.013542	0.03	31667 -0.030	0000	-0.026250	-0.0250	00
	sto	0.9713	97 0.972073	0.982906	1.023726	0.9	74069 0.910)588	0.984956	0.9987	69
	mir	1.2700	00 -1.700000	-1.960000	-1.830000	-1.94	40000 -1.380	0000	-2.400000	-1.7200	00
	25%	-0.66250	00 -0.730000	-0.617500	-0.650000	-0.60	07500 -0.675	5000	-0.732500	-0.8550	00
	50%	-0.2350	00 -0.135000	-0.050000	-0.055000	0.0	70000 -0.115	5000	-0.005000	-0.1300	00
	75%	0.35250	00 0.412500	0.747500	0.332500	0.48	85000 0.420	0000	0.537500	0.6125	00
	max 2.730000		00 2.910000	2.360000	2.630000	2.74	40000 2.460	1.890000		2.120000	
	4										•
In [10]:	df.	corr()									
Out[10]:			data science		college	startu	p entreprene	eur	ceo mortgage		
		data scien	ce 1.000000	0.515322	0.234620	0.57112	5 0.2448	83 0	.827573 (.232255	0
	clu	uster analys	sis 0.515322	1.000000	0.306682	0.41765	3 0.3389	71 0	.423187 (.422482	-0
		colleg	ge 0.234620	0.306682	1.000000	0.03466	5 0.0231	55 0	.265010 (.084482	-0
		startı	ıp 0.571125	0.417653	0.034665	1.00000	0 0.1447	38 0	.479108 (.408186	-0
		entreprene	ur 0.244883	0.338971	0.023155	0.14473	8 1.0000	00 0	.466465 (.534047	0
		Ce	eo 0.827573	0.423187	0.265010	0.47910	8 0.4664	65 1	.000000	.383807	0

	data science	cluster analysis	college	startup	entrepreneur	ceo	mortgage	
mortgage	0.232255	0.422482	0.084482	0.408186	0.534047	0.383807	1.000000	0
nba	0.339015	-0.027146	-0.102293	-0.033708	0.489639	0.543882	0.073800	1
nfl	-0.010459	0.278204	-0.084217	0.123187	0.084266	-0.018916	0.213263	-0
mlb	0.456911	0.267177	0.306460	0.232927	0.020219	0.586652	0.069867	0
fifa	0.664236	0.126510	0.057498	0.105295	0.214568	0.638202	0.002059	0
modern dance	0.413652	0.370242	0.043303	0.496930	0.255552	0.340654	0.386186	0
prius	0.472205	0.069603	0.075744	0.607550	-0.094345	0.351721	0.140359	0
escalade	-0.391230	-0.350360	-0.187946	-0.424670	0.243247	-0.216864	-0.039584	0
subaru	0.109452	0.235362	0.152443	0.573378	-0.392856	0.021788	0.071206	-0
jello	-0.348133	0.039839	-0.017704	0.101297	-0.118478	-0.400209	-0.156475	-0
bbq	-0.149987	-0.421174	-0.095490	-0.195506	0.268836	-0.039982	0.012936	0
royal family	0.367900	0.521753	0.652759	0.276730	-0.032940	0.342438	0.312534	-0
obfuscation	0.573107	0.533919	0.118185	0.802191	0.042877	0.408758	0.459819	-0
unicorn	-0.006891	0.066124	-0.037327	0.622563	-0.250256	-0.116152	0.144367	-0
Extraversion	-0.150531	-0.142460	0.066038	-0.313433	0.431629	0.097022	0.060950	0
Agreeableness	-0.330719	-0.188341	-0.082737	-0.107036	0.024527	-0.395411	-0.116628	-0
Conscientiousness	-0.385545	-0.292934	-0.200468	-0.353204	0.263212	-0.289016	0.034910	0
Neuroticism	0.026570	0.158632	0.341316	-0.140783	-0.200065	0.077181	-0.125185	-0
Openness	0.526476	0.043046	-0.038550	0.212303	0.097779	0.499034	0.171571	0
PsychRegions	0.525460	0.355168	0.286159	0.374109	0.010911	0.485397	0.143261	0
region	-0.241637	-0.227701	-0.572893	-0.010380	0.049708	-0.364362	0.015506	-0
division	-0.237509	-0.305056	-0.570083	-0.001698	-0.010349	-0.371236	-0.052207	0

Do Exploratory Data Analysis:

```
In [17]: sns.distplot(df['data science'])
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x259be18ef88>

Univariate outliers

```
In [24]: plt.figure(figsize=(12,6))
    sns.boxplot(df['data science'])
```

Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x259be33fb88>

As seen from above we can easily identify univariate outliers for data science based on the above plot

Creating custom boxplot for Outliers based on Quantile value & IQR:

```
In [26]: variable = 'data science'
```

Using state code to label the outliers and then removing it to keep only the outlier variables

Getting Quantile values and Inter Quantile Range

```
In [33]: qv_limit
```

Out[33]: 1.5225

```
In [35]: outlier_range = (data[variable]> QV3 +qv_limit) | (data[variable]<QV1-qv_limit)
   outlier_data = data[variable][outlier_range]
   outlier_name = state_code[outlier_range]</pre>
```

```
In [37]: sns.boxplot(data[variable])
```

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x259c145e3c8>

Plotting the data with states

```
In [39]: import pylab
```

```
In [44]: fig = pylab.figure(figsize=(8,6))
    ax = fig.add_subplot(1, 1, 1)
    for name, y in zip(outlier_name, outlier_data):
        ax.text(1, y, name)
    ax.boxplot(data[variable])
    ax.set_ylabel(variable)
```

Out[44]: Text(0, 0.5, 'data science')

Multivariate Outlier detection using One Class Support Vector algorithm:

```
In [45]: from sklearn.svm import OneClassSVM
In [46]: ocsvm = OneClassSVM(nu=0.25, gamma=0.05)
```

List the names of outlier states based on One Class SVM algorithm

```
In [49]:
           ocsvm.fit(data)
         OneClassSVM(cache size=200, coef0=0.0, degree=3, gamma=0.05, kernel='rbf',
                      max iter=-1, nu=0.25, random state=None, shrinking=True, tol=0.001,
                      verbose=False)
           state_code[ocsvm.predict(data) ==-1]
In [50]:
                FL
Out[50]:
                KS
          13
          14
                ΚY
          16
                ME
          17
                MD
          18
                MA
          19
                ΜI
          20
                MN
          21
                MS
          24
                NE
          25
                NV
          27
                NJ
```

28 NM 30 NC 33 OK 39 TN 43 VA

Name: state_code, dtype: object

In []: