Transformer

A universal deep learning architecture

Learning goals

- Understand the initial use of the Transformer
- Grasp the other application fields since then

MACHINE TRANSLATION

- Sequence-to-sequence task
- ◆ Crucial, that the decoder has access to the whole input sequence
 → This is very well solved by cross-attention
- Good contextualization in the encoder improves translation quality
 - (Bidirectional) RNNs/LSTMs are only (concatenated) unidirectional architectures
 - Transformer-Encoder layers are bidirectional by construction
 - Stacking them on top of each other makes this bidirectional contextualization even "deeper"

WMT 2014 EN-TO-DE AND EN-TO-FR

Parallel training data:

Parallel data:

File	Size	CS-EN	DE-EN	HI-EN	FR-EN	RU-EN	Notes	
Europarl v7	628MB	✓	✓		✓		same as previous year, <u>corpus home page</u>	
Common Crawl corpus	876MB	✓	✓		✓	✓	same as previous year	
UN corpus	2.3GB				✓		same as previous year, corpus home page	
News Commentary	77MB	✓	\checkmark		✓	✓	updated, data with document boundaries	
10 ⁹ French-English corpus	2.3 GB				✓		same as previous year [md5 sha1]	
CzEng 1.0	115MB	✓					same as previous year, corpus home page (avoid sections 98 and 99)	
Yandex 1M corpus	121MB					✓	corpus home page; v1.3 now in original case	
Wiki Headlines	7.8MB			✓		✓	Provided by CMU. The ru-en is unchanged from last year.	
<u>HindEnCorp</u>	25MB			✓			Collected by Charles University	
The JHU Corpus				4			This is fully contained in HindEnCorp, so not made available here.	

THE BLEU SCORE

- Based on n-gram overlap from candidate and reference sentence
- Precision (for each n-gram) calculated as follows:

$$P_n = \frac{\sum_{C \in \{ \text{ Candidates } \}} \sum_{n-\textit{gram} \in C} \text{ Count }_{\text{clip}} \left(n - \text{ gram } \right)}{\sum_{C' \in \{ \text{ Candidates } \}} \sum_{n-\textit{gram'} \in C'} \text{ Count } \left(n - \text{ gram }' \right)}$$

Finally, the BLEU score can be computed as

BLEU =
$$BP \cdot \exp \left(\sum_{n=1}^{N} w_n \cdot \log(P_n) \right)$$
,

• where *BP* is a "brevity penalty" to penalize short generations, *N* is the number of n-grams & w_n the weight for each P_n (usually $\frac{1}{N}$)

TRANSFORMER FOR MT

The Transformer ...

- .. outperforms the previous SOTA models
- .. at a lower number of required training FLOPs

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BL	EU	Training Cost (FLOPs)		
Wodel	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2\cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$		

➤ Source: Vaswani et al., 2017

TRANSFORMER FOR COMPUTER VISION

Vision Transformer

CLIP

(1) Contrastive pre-training

CLIP

(2) Create dataset classifier from label text

FLAMINGO

GPT-4

Example of GPT-4 visual input:

User What is funny about this image? Describe it panel by panel

GPT-4 The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning connector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large, outdated VGA connector into a small, modern smartphone charging port.

Table 3. Example prompt demonstrating GPT-4's visual input capability. The prompt consists of a question about an image with multiple panels which GPT-4 is able to answer.

► Source: OpenAl, 2023