What is claimed is:

1	1.	A method of selecting a heuristic class for data placement in a distributed
2		storage system comprising the steps of:
3		forming an integer program for each of a plurality of heuristic classes,
4		each of the integer programs comprising an objective of minimizing a
5		replication cost;
6		solving each of the integer programs which provide the replication cost
7		for each of the heuristic classes; and
8		selecting the heuristic class having a low replication cost.
1	2.	A method of selecting a heuristic class for data placement in a distributed
2		storage system comprising the steps of:
3		forming a general integer program which models the data placement;
4		forming a specific integer program which models a heuristic class for
5		the data placement, the general and specific integer programs each
6		comprising an objective of minimizing a replication cost;
7		solving the general integer program which provides a general lower
8		bound for the replication cost;
9		solving the specific integer program which provides a specific lower
10		bound for the replication cost; and
11		selecting the heuristic class if a difference between the general lower
12		bound and the specific lower bound is within an allowable amount.
1	3.	The method of claim 2 wherein inputs used in the steps of forming the general
2		and specific integer programs comprise a system configuration, a workload, and a
3		performance requirement.
1	4.	The method of claim 3 wherein the performance requirement comprises a bi-
2		modal performance metric.
1	5.	The method of claim 4 wherein the bi-modal performance metric comprises a
2		criterion and a ratio of successful attempts to total attempts.

- 1 6. The method of claim 3 wherein the performance requirement comprises a data
- 2 access latency.
- 1 7. The method of claim 3 wherein the performance requirement comprises a data
- 2 access bandwidth.
- 1 8. The method of claim 3 wherein the performance requirement comprises a data
- 2 update time.
- 1 9. The method of claim 3 wherein the performance requirement comprises an
- 2 average data access latency.
- 1 10. The method of claim 3 wherein the performance requirement comprises a data
- 2 availability requirement.
- 1 11. The method of claim 3 wherein the general integer program comprises general
- 2 constraints which model the data placement irrespective of the heuristic class for
- 3 the data placement.
- 1 12. The method of claim 11 wherein the general constraints comprise a
- 2 performance constraint which models the performance requirement.
- 1 13. The method of claim 11 wherein the specific integer program comprises the
- 2 general constraints and a specific constraint.
- 1 14. The method of claim 12 wherein the specific constraint comprises a storage
- 2 constraint.
- 1 15. The method of claim 12 wherein the specific constraint comprises a replica
- 2 constraint.
- 1 16. The method of claim 12 wherein the specific constraint comprises a routing
- 2 knowledge constraint and further wherein the routing knowledge constraint
- models an extent to which a data storage node knows of replicas of data objects

- 4 stored on other data storage nodes.
- 1 17. The method of claim 12 wherein the specific constraint comprises an access
- 2 knowledge constraint and further wherein the access knowledge constraint models
- an extent to which a data storage knows of access to replicas of data objects by
- 4 clients accessing other data storage nodes.
- 1 18. The method of claim 12 wherein the specific constraint comprises an activity
- 2 history constraint.
- 1 19. The method of claim 12 wherein the specific constraint comprises a reactive
- 2 placement constraint.
- 1 20. The method of claim 3 wherein the system configuration comprises a plurality
- of data storage nodes coupled by a plurality of network links.
- 1 21. The method of claim 20 wherein the system configuration further comprises a
- 2 plurality of clients coupled to the data storage nodes.
- 1 22. The method of claim 21 wherein the workload comprises at least some of the
- 2 clients requesting data objects stored on the data storage nodes.
- 1 23. The method of claim 22 wherein the workload further comprises at least some
- of the clients storing some of the data objects on the data storage nodes.
- 1 24. A method of selecting a heuristic class for data placement in a distributed
- 2 storage system comprising the steps of:
- forming a general integer program which models the data placement;
- 4 forming a plurality of specific integer programs which model a
- 5 plurality of heuristic classes, the general and specific integer programs
- 6 each comprising an objective of minimizing a replication cost;
- 7 solving the general integer program which provides a lower bound for
- 8 the replication cost;
- 9 solving the specific integer programs which provides the replication

10	cost for each of the heuristic classes; and
11	selecting a particular heuristic class correlated to a low replication cost
12	if a difference between the lower bound and the low replication cost is
13	within an allowable amount.
1	25. A computer readable memory comprising computer code for implementing a
2	method of selecting a heuristic class for data placement in a distributed storage
3	system, the method of selecting the heuristic class comprising the steps of:
4	forming an integer program for each of a plurality of heuristic classes,
5	each of the integer programs comprising an objective of minimizing a
6	replication cost;
7	solving each of the integer programs which provide the replication cost
8	for each of the heuristic classes; and
9	selecting the heuristic class having a low replication cost.
1	26. A computer readable memory comprising computer code for implementing a
2	method of selecting a heuristic class for data placement in a distributed storage
3	system, the method of selecting the heuristic class comprising the steps of:
4	forming a general integer program which models the data placement;
5	forming a specific integer program which models a heuristic class for
6	the data placement, the general and specific integer programs each
7	comprising an objective of minimizing a replication cost;
8	solving the general integer program which provides a general lower
9	bound for the replication cost;
10	solving the specific integer program which provides a specific lower
11	bound for the replication cost; and
12	selecting the heuristic class if a difference between the general lower
13	bound and the specific lower bound is within an allowable amount.
1	27. A computer readable memory comprising computer code for implementing a
2	method of selecting a heuristic class for data placement in a distributed storage
3	system, the method of selecting the heuristic class comprising the steps of:
4	forming a general integer program which models the data placement;
5	forming a plurality of specific integer programs which model a

6	plurality of heuristic classes, the general and specific integer programs
7	each comprising an objective of minimizing a replication cost;
8	solving the general integer program which provides a lower bound for
9	the replication cost;
10	solving the specific integer programs which provides the replication
11	cost for each of the heuristic classes; and
12	selecting a particular heuristic class correlated to a low replication cost
13	if a difference between the lower bound and the low replication cost is
14	within an allowable amount.