Übungsblatt 10

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1. Sei M eine glatte Mannigfaltigkeit, $\xi \in \Omega^1(M), \eta \in \Omega^2(M)$ und $X, Y, Z \in \Gamma(TM)$. Zeigen Sie die folgenden Formeln für $d\xi \in \Omega^2(M)$ und $d\eta \in \Omega^3(M)$:

a)
$$d\xi(X,Y) = X(\xi(Y)) - Y(\xi(X)) - \xi([X,Y])$$

b)

$$d\eta(X,Y,Z) = X(\eta(Y,Z)) + Y(\eta(Z,X)) + Z(\eta(X,Y)) -\eta([X,Y],Z) - \eta([Z,X],Y) - \eta([Y,Z],X)$$

(Hinweis: Seien A(X,Y), B(X,Y,Z) jeweils die Ausdrücke auf der rechten Seite. Zeigen Sie für $f \in C^{\infty}(M)$, dass A(fX,Y) = fA(X,Y) = A(X,fY) und B(fX,Y,Z) = fB(X,Y,Z) = B(X,fY,Z) = B(X,Y,fZ) gilt. Folgern Sie, dass es reicht die jeweiligen Ausdrücke für Koordinatenvektorfelder $X = \frac{\partial}{\partial x^i}, Y = \frac{\partial}{\partial x^j}, Z = \frac{\partial}{\partial x^k}$ zu vergleichen.)

Aufgabe 2. Sei M^n eine glatte Mannigfaltigkeit und sei $E \subset TM$ eine Distribution vom Rang k. Zeigen Sie:

a) Zu jedem $p \in M$ existiert eine Umgebung U und $\xi^1, \dots, \xi^{n-k} \in \Omega^1(U)$, sodass

$$E_q = \bigcap_{i=1}^{n-k} \ker(\xi_q^i).$$

Wir nennen ξ^1, \dots, ξ^{n-k} lokal beschreibende 1-Formen für E.

b) Die Distribution E ist genau dann involutiv wenn jede auf einer offenen Menge U definierte 1-Form $\xi \in \Omega^1(U)$ mit $\xi(X) = 0$ für alle $X \in \Gamma(U, E)$ die Bedingung

$$d\xi(X,Y) = 0 \quad \forall X,Y \in \Gamma(U,E)$$

erfüllt.

Aufgabe 3. Sei M^{2n} eine glatte Mannigfaltigkeit. Eine *symplektische Form* auf M ist eine 2-Form $\omega \in \Omega^2(M)$, die geschlossen, $d\omega = 0$, und nicht-entartet ist, d.h. falls $X \in T_pM$ existiert mit $\omega_p(X,Y) = 0 \quad \forall Y \in T_pM$, dann muss X = 0 sein.

a)* Zeigen Sie: Für $f \in C^{\infty}(M)$ existiert genau ein glattes Vektorfeld $X_f \in \Gamma(TM)$ sodass $df = i_{X_f}\omega$.

(Bonusaufgabe, 5 Zusatzpunkte. Hinweis: Schreiben Sie in lokalen Koordinaten $\omega = \frac{1}{2} \sum_{i,j=1}^n \omega_{ij} dx^i \wedge dx^j$ und zeigen Sie, dass die Matrix $[\omega_{ij}]$ invertierbar ist. Setzen Sie $X_f = \sum_{i,j=1}^n \frac{\partial f}{\partial x^i} \omega^{ij} \frac{\partial}{\partial x^j}$, und zeigen Sie, dass dies wohldefiniert ist. Hier bezeichnet ω^{ij} die Einträge der zu $[\omega_{ij}]$ inversen Matrix, also $\sum_{k=1}^n \omega^{ik} \omega_{kj} = \delta^i_j$.)

- b) Zeigen Sie $\mathcal{L}_{X_f}\omega = 0$ für alle $f \in C^{\infty}(M)$.
- c) Zeigen Sie: Falls $H^1(M) = 0$ ist, so ist jedes Vektorfeld $X \in \Gamma(TM)$ mit $\mathcal{L}_X \omega = 0$ von der Gestalt X_f für ein $f \in C^{\infty}(M)$.
- d) Für $f,g\in C^\infty(M)$ ist die Poisson-Klammer definiert durch

$$\{f,g\} = X_f(g).$$

Zeigen Sie, dass $\{,\}$ die Jacobi-Identität erfüllt (Benutzen Sie Teil a) um $\{f,g\} = \omega(X_g,X_f)$ zu zeigen, benutzen Sie dann Aufgabe 1b) und $d\omega(X_f,X_g,X_h) = 0$).

Aufgabe 4. Sei $M = \mathbb{R}^2 \setminus \{0\}$. Ziel dieser Aufgabe ist zu zeigen, dass $H^1(M) \neq \{0\}$ gilt.

- a) Zeigen Sie, dass $\xi = \frac{x}{x^2+y^2} dy \frac{y}{x^2+y^2} dx \in \Omega^1(M)$ geschlossen ist.
- b) Sei $U_1 = M \setminus \{(x,0) \mid x > 0\}$ mit Polarkoordinaten $(r,\theta): U_1 \to (0,\infty) \times (0,2\pi)$ (siehe Blatt 1). Zeigen Sie, dass $f_1 = \theta \in C^{\infty}(U_1)$ die Relation $df_1 = \xi$ auf U_1 erfüllt.
- c) Zeigen Sie, dass ξ nicht exakt ist. (Nehmen Sie an, dass ein $f \in C^{\infty}(M)$ existiert mit $df = \xi$. Folgern Sie, dass $f = f_1 + c$ auf U_1 mit einer Konstanten $c \in \mathbb{R}$ gilt und führen Sie dies zum Widerspruch.)

Abgabe Donnerstag, 23.06.2016 in der Vorlesung.