

FCC PART 15.247 TEST REPORT

For

Fuzhou Emax Electronic Co., Ltd.

Building #12-#16, CangShan Industrial Area, JuYuanZhou JinShan District, FuZhou, China.

FCC ID: WEC-1601

Report Type: Product Type: Original Report Bluetooth Smart Thermometer Lion Xion **Test Engineer:** Lion Xiao **Report Number:** RXM160520062-00 **Report Date:** 2016-07-08 Dean. Laul Dean Liu Reviewed By: RF Engineer **Test Laboratory:** Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongeun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWAREBLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE	8
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	9
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	10
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT SETUP	10
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	11
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	16
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	19
APPLICABLE STANDARD	19
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	19
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	21
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
TEST DATA	
FCC §15.247(e) - POWER SPECTRAL DENSITY	23

Report No.: RXM160520062-00

Bay Area Compliance Laboratories Corp. (Dongguan)

APPLICABLE STANDARD	23
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	23
Test Data	23

Report No.: RXM160520062-00

FCC Part 15.247 Page 3 of 25

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Fuzhou Emax Electronic Co., Ltd.'s product, model number: EM2241-T1 (FCC ID: WEC-1601) (the "EUT") in this report was a Bluetooth Smart Thermometer, which was measured approximately:5.8 cm (L) x 2.8 cm (W) x 8.3cm (H), rated input voltage: DC3V from battery.

Report No.: RXM160520062-00

All measurement and test data in this report was gathered from production sample serial number: 160520062 (Assigned by BACL, Dongguan). The EUT was received on 2016-06-24.

Objective

This report is prepared on behalf of *Fuzhou Emax Electronic Co., Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communications Commission's rules

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 06, 2015.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 4 of 25

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in testing mode, which was provided by manufacturer.

For Bluetooth LE mode, 40 channels are provided for testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
	•••		•••
		38	2478
19	2440	39	2480

Report No.: RXM160520062-00

EUT was tested with channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

No software was used in test, the engineering mode configured the maximum power as default setting.

Block Diagram of Test Setup

Below 1 G

FCC Part 15.247 Page 5 of 25

Above 1 G

FCC Part 15.247 Page 6 of 25

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
\$15.205, \$15.209, \$15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum conducted output power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RXM160520062-00

Not Applicable: the device power by battery.

FCC Part 15.247 Page 7 of 25

FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RXM160520062-00

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The tune-up power is -5.0dBm (0.32mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 0.32/5*($\sqrt{2}$.48) = 0.1 \leq 3.0

So the stand-alone SAR evaluation is not necessary.

FCC Part 15.247 Page 8 of 25

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RXM160520062-00

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 9 of 25

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: RXM160520062-00

If U_{lab} is less than or equal to U_{cispr} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 2, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 10m at Bay Area Compliance Laboratories Corp. (Dongguan) is:30M~200MHz: 4.55 dB for Horizontal, 4.57 dB for Vertical; 200M~1GHz: 4.66 dB for Horizontal, 4.56 dB for Vertical; measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical; 200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical; 1G~6GHz: 4.45 dB, 6G~18GHz: 5.23 dB

Table 2 – Values of U_{cispr}

Measurement	$U_{ m cispr}$
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB

EUT Setup

Below 1GHz:

FCC Part 15.247 Page 10 of 25

Above 1GHz:

Report No.: RXM160520062-00

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits. The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	Range RBW		IF B/W	Detector
30 MHz – 1000 MHz	1000 MHz 120 kHz		120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

FCC Part 15.247 Page 11 of 25

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Report No.: RXM160520062-00

Margin = Limit –Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-08-03	2016-08-02
Sunol Sciences	Antenna	JB3	A060611-3	2014-11-06	2017-11-05
HP	Amplifier	8447E	2434A02181	2015-09-01	2016-09-01
Agilent	Spectrum Analyzer	E4440A	SG43360054	2015-11-23	2016-11-22
ETS-Lindgren	Horn Antenna	3115	9808-5557	2015-09-06	2018-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2016-02-19	2017-02-19
R&S	Spectrum Analyzer	FSEM	DE23437	2015-11-23	2016-11-22
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2014-06-16	2017-06-15
N/A	Coaxial Cable	14m	N/A	2016-05-06	2017-05-06
N/A	Coaxial Cable	8m	N/A	2016-05-06	2017-05-06
Quinstar	Amplifier	QLW- 18405536-JO	15964001001	2015-09-06	2016-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

7.20 dB at 2390 MHz in the Horizontal polarization

Test Data

Environmental Conditions

Temperature:	27.9 °C
Relative Humidity:	50%
ATM Pressure:	99.9kPa

The testing was performed by Lion Xiao on 2016-07-04.

Test Mode: Transmitting

FCC Part 15.247 Page 12 of 25

1) Below 1GHz:

Horizontal

Report No.: RXM160520062-00

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
33.8800	25.17	QP	-1.97	23.20	40.00	16.80
103.7200	23.50	QP	-8.60	14.90	43.50	28.60
129.9100	20.00	QP	-5.70	14.30	43.50	29.20
168.7100	23.31	QP	-7.81	15.50	43.50	28.00
350.1000	21.48	QP	-4.68	16.80	46.00	29.20
482.0200	21.12	QP	-1.72	19.40	46.00	26.60

FCC Part 15.247 Page 13 of 25

Vertical

Report No.: RXM160520062-00

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
30.9700	22.68	QP	0.22	22.90	40.00	17.10
127.9700	20.12	QP	-5.62	14.50	43.50	29.00
153.1900	21.23	QP	-7.13	14.10	43.50	29.40
275.4100	20.81	QP	-6.01	14.80	46.00	31.20
436.4300	20.46	QP	-2.86	17.60	46.00	28.40
591.6300	21.94	QP	-0.74	21.20	46.00	24.80

FCC Part 15.247 Page 14 of 25

2) 1G-25GHz

	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected		
Frequency (MHz)	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit (dBµV/m)	Margin (dB)
(1.1112)	(dBµV)	(PK/QP/AV)	(H/V)	(dB)	(dB)	(dB)	(dBµV/m)	(, , , ,	(, ,
			L	ow Chann	el: 2402	MHz			
2402	60.88	PK	Н	24.82	3.66	0.00	89.36	N/A	N/A
2402	54.73	AV	Н	24.82	3.66	0.00	83.21	N/A	N/A
2402	59.95	PK	V	24.82	3.66	0.00	88.43	N/A	N/A
2402	53.81	AV	V	24.82	3.66	0.00	82.29	N/A	N/A
2390	32.03	PK	Н	24.80	3.63	0.00	60.46	74.00	13.54
2390	18.37	AV	Н	24.80	3.63	0.00	46.80	54.00	7.20
4804	46.95	PK	Н	29.71	5.06	27.41	54.31	74.00	19.69
4804	39.32	AV	Н	29.71	5.06	27.41	46.68	54.00	7.32
7206	38.32	PK	Н	33.93	6.61	25.91	52.95	74.00	21.05
7206	26.95	AV	Н	33.93	6.61	25.91	41.58	54.00	12.42
9608	30.91	PK	Н	36.36	8.53	27.55	48.25	74.00	25.75
9608	18.56	AV	Н	36.36	8.53	27.55	35.90	54.00	18.10
1971.5	37.67	PK	Н	24.10	3.04	27.49	37.32	74.00	36.68
1971.5	25.13	AV	Н	24.10	3.04	27.49	24.78	54.00	29.22
	•	•	Mi	ddle Chan	nel: 2440) MHz			
2440	60.39	PK	Н	24.89	3.76	0.00	89.04	N/A	N/A
2440	54.22	AV	Н	24.89	3.76	0.00	82.87	N/A	N/A
2440	59.46	PK	V	24.89	3.76	0.00	88.11	N/A	N/A
2440	53.30	AV	V	24.89	3.76	0.00	81.95	N/A	N/A
4880	45.56	PK	Н	29.86	5.18	27.42	53.18	74.00	20.82
4880	38.29	AV	Н	29.86	5.18	27.42	45.91	54.00	8.09
7320	37.53	PK	Н	34.11	6.75	25.88	52.51	74.00	21.49
7320	25.77	AV	Н	34.11	6.75	25.88	40.75	54.00	13.25
9760	30.80	PK	Н	36.46	8.62	27.21	48.67	74.00	25.33
9760	18.67	AV	Н	36.46	8.62	27.21	36.54	54.00	17.46
1971.5	37.59	PK	Н	24.10	3.04	27.49	37.24	74.00	36.76
1971.5	25.73	AV	Н	24.10	3.04	27.49	25.38	54.00	28.62
3219	36.40	PK	Н	26.36	6.17	27.35	41.58	74.00	32.42
3219	24.82	AV	Н	26.36	6.17	27.35	30.00	54.00	24.00
			Н	igh Chann	el: 2480				
2480	59.49	PK	Н	24.96	3.68	0.00	88.13	N/A	N/A
2480	53.65	AV	Н	24.96	3.68	0.00	82.29	N/A	N/A
2480	58.91	PK	V	24.96	3.68	0.00	87.55	N/A	N/A
2480	52.88	AV	V	24.96	3.68	0.00	81.52	N/A	N/A
2483.5	28.41	PK	Н	24.97	3.67	0.00	57.05	74.00	16.95
2483.5	15.83	AV	Н	24.97	3.67	0.00	44.47	54.00	9.53
4960	44.06	PK	Н	30.02	5.34	27.43	51.99	74.00	22.01
4960	37.30	AV	Н	30.02	5.34	27.43	45.23	54.00	8.77
7440	37.67	PK	Н	34.30	6.89	25.97	52.89	74.00	21.11
7440	25.12	AV	Н	34.30	6.89	25.97	40.34	54.00	13.66
9920	30.15	PK	Н	36.55	8.71	26.66	48.75	74.00	25.25
9920	18.57	AV	Н	36.55	8.71	26.66	37.17	54.00	16.83
1971.5	37.96	PK	Н	24.10	3.04	27.49	37.61	74.00	36.39
1971.5	25.59	AV	Н	24.10	3.04	27.49	25.24	54.00	28.76

Report No.: RXM160520062-00

FCC Part 15.247 Page 15 of 25

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RXM160520062-00

Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-11-23	2016-11-22
N/A	Coaxial Cable	0.1m	N/A	2016-05-06	2017-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2016-05-06	2017-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	29.6°C
Relative Humidity:	60 %
ATM Pressure:	99.9 kPa

^{*} The testing was performed by Lion Xiao on 2016-07-04.

FCC Part 15.247 Page 16 of 25

Test Mode: Transmitting

Date:

4.JUL.2016 20:45:33

Test Result: Compliant. Please refer to the following table and plots.

Test mode	Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
	Low	2402	0.67	≥0.5
BLE	Middle	2440	0.68	≥0.5
	High	2480	0.67	≥0.5

Report No.: RXM160520062-00

BLE Low Channel

FCC Part 15.247 Page 17 of 25

BLE Middle Channel

Report No.: RXM160520062-00

Date: 4.JUL.2016 20:43:58

BLE High Channel

Date: 4.JUL.2016 20:40:16

FCC Part 15.247 Page 18 of 25

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: RXM160520062-00

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2015-11-03	2016-11-03
Agilent	Wideband Power Sensor	N1921A	MY54170013	2015-11-03	2016-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2015-11-03	2016-11-03
N/A	Coaxial Cable	0.1m	N/A	2016-05-06	2017-05-06
E-Microwave	DC Blocking	EMDCB- 00036	0E01201047	2016-05-06	2017-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	29.6°C
Relative Humidity:	60 %
ATM Pressure:	99.9 kPa

^{*} The testing was performed by Lion Xiao on 2016-07-04.

FCC Part 15.247 Page 19 of 25

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table.

Channel	Frequency	Max Peak Conducted Output Power	Limit
	(MHz)	(dBm)	(dBm)
Low	2402	-5.29	30
Middle	2440	-6.05	30
High	2480	-6.73	30

Report No.: RXM160520062-00

FCC Part 15.247 Page 20 of 25

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RXM160520062-00

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-11-23	2016-11-22
N/A	Coaxial Cable	0.1m	N/A	2016-05-06	2017-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2016-05-06	2017-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	29.6°C	
Relative Humidity:	60%	
ATM Pressure:	99.9 kPa	

^{*} The testing was performed by Lion Xiao on 2016-07-04. Test mode: Transmitting

FCC Part 15.247 Page 21 of 25

Test Result: Compliant. Please refer to following plots.

BLE Band Edge, Left Side

Report No.: RXM160520062-00

Date: 4.JUL.2016 20:47:43

BLE Band Edge, Right Side

Date: 4.JUL.2016 20:39:37

FCC Part 15.247 Page 22 of 25

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RXM160520062-00

Test Procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set the VBW $\geq 3 \times RBW$.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-11-23	2016-11-22
N/A	Coaxial Cable	0.1m	N/A	2016-05-06	2017-05-06
E-Microwave	DC Blocking	EMDCB- 00036	0E01201047	2016-05-06	2017-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	29.6°C	
Relative Humidity:	60 %	
ATM Pressure:	99.9 kPa	

^{*} The testing was performed by Lion Xiao on 2016-07-04.

FCC Part 15.247 Page 23 of 25

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	2402	-17.34	€8
Middle	2440	-18.28	≤8
High	2480	-18.96	≤8

Report No.: RXM160520062-00

Power Spectral Density, BLE Low Channel

Date: 4.JUL.2016 20:49:46

FCC Part 15.247 Page 24 of 25

Power Spectral Density, BLE Middle Channel

Report No.: RXM160520062-00

Date: 4.JUL.2016 20:44:43

Power Spectral Density, BLE High Channel

Date: 4.JUL.2016 20:51:44

***** END OF REPORT *****

FCC Part 15.247 Page 25 of 25