Deel I Froomdoorgang aloon halfgeleiders

Hoofdstule 1
Inleiding tot halfgeleiders
- zuivere halfgelieders -> intrinsière halfgeleiders
- verontreinigen extrinsièhe halfgeleiders
3-waardig 5-waardig
P-type b-type

Hoofdstuk 2 Intrinsieke halfgeleiders Ladingsdrager in een intr. halfgeleider by OK -> alle valentie-elektronen vast ih bristalcooster Si) Thermische generatie -> thermische energie covalente binding s vry elektron o un gat (c-) beweging e: continu et: discontinu (verspringen v. gaten) gat elektion

volming

generatic

vije eveel kleiner dan

atomen

denergie covalente binding to butten

the energie tot gelighe verduld over alle e-

T > thermische p -> gat-elektronenparen T by un bepaalde T -> thermische generatie -> gat-c-paren hoe meer how groter whe thermisch Mans op evenwicht intunsièhe recombi natie ladings -# gaten a e dragersconstant Concentiatie Po = No = ni. [m-3] conc toenemen by T > tydens T stigging generatie > recombinatie -> gn thermisch evenwicht

Energieniveaus van elektronen ie intr. halfgeleider

halfgeleidukristal -> roosterstructuur -> aisorete energieniveaus

energie banden

$$F(E) = \frac{1}{\frac{(E-E_F)}{kT}}$$

hans energie-

niveau becet

 $1 + e$

n(E)= densiteit van staten

2 # beschikbore energic

I elekti/m37

Aantal gaten en elektioner ie intr. halfgeleider

ni = Km. - 3/2 p

ni=no=po (dusiteiten) [m3]

Kr (materiaal const.)

T [K]

Es (klasfenergie) [] of ev]

1c (cost. v. Boltzman)

Ne = 8,6. 105 eV/K

= 1,38. 1023 JIK

300

350

Elektische stroom door een inkrinsiehe halfgeleider

Berehening val straom

aanleggen V

E > va (driftsnelhid) e en 9+

met E = hoeveelheid bracht

unhids lading

$$|E| = \frac{V}{L}$$

beweging = a g+
links rechts

met Ip = POELA 3 hoeveelheid lading

$$R = \frac{1}{\text{Ni}(Np+Nh)e} \frac{L}{A} \Rightarrow pi = \frac{1}{\text{Ni}(Np+Nh)e}$$

Mobiliteit du ladingsdragers + invloced vh gebruikt materiaal Mn > Mp + temp. alh. Invloca ud temperatuur ni = Km. +3/2 e 2kt -> Tr -> ni 17 (exp.) -> p > · mobiliteit > als T paox sherkere tuilling va dultics -> hindu in beweging ni toename >> p aprone (by T7) => global TP => p & (exp) NTC-weerstand (Negativ Temp. coefficient)

Resistiviteit ve intr. halfgereider

Foto-elektrische effecten
sprong valentie -> conductieband.

· energie door bristal (in zyn geheel)
Lo verdield onder au dultjes

Eelektion < EG → maai toch ≥ EG

thermische generatie

energie dinct overgedhagen op de valentie-e

belicht is -> Extonen fo = EG (minsters een galpeenste)

Lo foto-elektrische generatie ~ lichtinken siteit

(boven op therm. gen.) -> therm. even w. verbroken p=n > ni

botsing ve vige -> awar elektrisch veld

Lo ET -> vd 7

Ly lawine-effect angecontroleered vermenigvuldigen vh # vige e

· hoge elektrisch velot

Las unkten uit covalente binding

La Zenereffect.

LDR - light Dependant Resistor

Low light Dependant Resistor

Low

Hoofdstuk 3 Extrinsièhe halfgeleiders

N-Halfgeleider

Joperen mut een 5-waardig atoom:

vast aar 5-waardig atcom, maar veel wakker

varnits u de doperins grand hænnen > # vige- ad gekend

- Oak gat-elektron paren (theim-gen)

- Temp. beinvloed het # miet/weinig

-> De stroom wordt gedrager door de elektronen.

Opm. De introductie vh s-waardig atom
mag de halfgelaider structure not wereligh verstoren
dopering a 100. onzuiverheidsgraad - maskeren
onzuiverheid

elektion afstavan -> (vastzittend) positief ion achter Donors thermisch evenwicht: No vaste, positive ionen · Po gaten don them. gen. geroniseach ioner No=No+ Po · no vige et alkomstip van thum. gen. => . c in N-halfgeleider Meerderhieds, dragers / Hajoritairen · Po in N-halfgeleider minder hids ladings dragers / minoritairen op 2 manieren id cond. band: Conductiebona - denorband dona band In de donationed bliver gri gater achter!

valenticband

Aheim. gan.

(bewegelijhe) gaten achter

EV

valentie band

Aantal. ladingsdragers ie exte holfgeleider

door dopeing orderdruht mer het santal minoritairen

them. evenwicht:

generatir = recombination

$$G(T) = R(T)$$

-> nt beinvloed don doperingsatomen

Gext (T) = Gia (T) Rext (t) = Rint(t)

R(T) a product converige pos. a nep. vinj eadingsdragus

want pono T - grater

hans of recombination

-> Rine (T) = C (T) ri2

Pono= ni²

P-type

N- type

no = No + po

 $po = \left(\frac{ni}{ND+p_2}\right)ni$

$$Mo = \frac{ni^2}{N_A + n_0} = \left(\frac{ni}{N_A + n_0}\right)ni$$

Dus. no LL ni

po ce ni

intuinsièhe ladingsconc. Het aantal minaitainen 22

Hoofdstuk 4

Beschouwingen ivm de energetische toestand va vive ladingsdragers

De Fermi-Dirac distributie

$$\overline{F} = \left(1 + e^{\frac{E - E_{\overline{F}}}{kT}}\right)^{-1}$$

Fermi-factor probabiliteit dat

een niveau met energie E bezet in door un e.

energie Ferni-niveour
Lo E=EF → F = 80%.

gem. them. energie ve e-

E7 dan F W

Opmerking

EG = e. VG lading. potentiaal

e = 1,6. 1019 G

$$V_T = \frac{kT}{e}$$
 intributes.

potentiaal heaf

ni = Km T 3/2 - eVa = Km T 3/2 e 2 VT

Mt = 4,141021 J = 0,0258eV by hamertemp (300K): VT = 0,0258 V = 25mV of 26 mV Deel I

De PN-junctie

gilles callebout

Hoofdstuk 5

7-en N-halfgeleiders

vooinaamste eigenschappen.

- Intunsière halfgeleider → zuiver
 - -> # gater = # elchtronen (vije)
 - -s evenwicht: ni 2 sterk T-afh.
- · P-halfgeleider
- doperen 3-woardige acceptors
- 0,000,000
- > gaten zyn de MLD vije ë zijn de med
- acceptous, et apparamen Lo voste neg. ionen NA
- · N-halfgeteider
- -s dopellin 5-walledge donols
- -s vrije = MLD gaten mld
- -> donas, gater elgestoan is waste postioned No

Er geldt nu:

noz NO(N) noz NA(P)

- · viy gat · viy elektion
- 9 vast ry con
- 19 wast passican

Hoofdstuk 6 Vaming van de PN-junctie Diffusie 0 0 0 de HLD diffunderen man het ander gebiedt ontstaan door en ver sterke conventratiegradient Lo MLD in ander gebical med La verdwynen door recombinatie 0,000 uitputtings-gebied raste ladingsdragers - ontstaan elektrisch veld afremmen diffusit -> E bevordent du diff beunging vd mld

Hoofdstuk 7 Eigenschappen van de PN-junctie Beschouwingen in verband met de buedte van het uitputtingsgebied

uitdrukking elektrische neutraliteit i.h. uit puttingsgebied:

Na loal (-e) S + No 10B1 (+e) S = 0

00

10A1 10B1

diepot mirstukt ih minst gudopectal gebied

E-Veld veroorzaakt door de vorke ionen

J

elektrisch potentiaal verschil

elektrish veld:

$$\nabla \cdot D(r) = \beta(r)$$

met

 $D(r) = \mathcal{E} \cdot \mathcal{E} r \mathcal{E}(r)$

$$\nabla \cdot E(x) = \frac{\rho(x)}{\varepsilon_0 \varepsilon_R}$$

halfgeleiderbristal perfect alindrisch:

ladings dichbeid

Voor
$$n \in [-10A], 0]$$
: $E_n = \int_{-\frac{e}{\epsilon_0 \epsilon_r}}^{n} dn \rightarrow E_n = -\frac{e}{\epsilon_0 \epsilon_r} (n + 10AI)$

vool
$$n \in [0, 1081]$$
: $E_n = \int \frac{e N_D}{\epsilon_0 \epsilon_0} dn - \frac{e N_A}{\epsilon_0 \epsilon_0} loAl$

Voca
$$n = |OB|$$
: $0 = e \frac{N_D}{\epsilon_O \epsilon_I} |OB| - c \frac{N_A}{\epsilon_O \epsilon_I} |OA|$

Potentiaal

$$\vec{E} = -\nabla V \rightarrow V(n) = -\int E_n(n) dn + cte.$$

VOOL
$$n \in [-10AI, o]$$
: $V(n) = \int \frac{eN_A}{\epsilon_0 \epsilon_n} (n + 10AI) dn$

$$\neg \nabla(n) = \frac{eNA}{\epsilon_0 \epsilon_1} \left[\frac{n^2}{2} + 10A(n + \frac{10A(n^2)}{2}) \right]$$

van
$$n \in [0, 10DI]$$
: $V(n) = -\frac{e N_0}{\epsilon_0 \epsilon_1} \int_0^n n \, dn + \frac{e N_A}{\epsilon_0 \epsilon_1} \int_0^n n \, dn + \frac{$

$$V(n) = -\frac{e N_D}{\epsilon_0 \epsilon_L} \frac{n^2}{2} + e \frac{N_A}{\epsilon_0 \epsilon_z} IOAI \left(n + \frac{IOAI}{2}\right)$$

$$V_D = \frac{e}{2\xi_0\xi_L} \frac{b^2}{\left(\frac{1}{N_0} + \frac{1}{N_0}\right)}$$

Polarisatie van un PN-junctie Ingepolariseerde junctie verbinden via Thrise contacten contact potential (one). stroom) 1) diffusientroom HLD P-N 2) driftstroom mld N -> P s netto geen stroom Voorwaarts gepdariseeral junctie I-gebied of hogor potential potential junctic: vo-vf Trooit groot to potentiaulsprong to kleiner Le diffusir MLD minder afgrement to vocusable stroom: gaten PoN → diffusiestroom 2-N P-N Invers gepolarisecral junctic P-gobied op lague potentiaal dan het N-gebied potentiaal junctik: Vo+ VR potential sprong so diffusic potential 4. enhal mag dijtstræam med. → drijtstræam P ← N zeer klein.

Hoofdstuk 8 Stroomdoorgang doorheen de PN-junctie

Verloop van het aantal minoritairen in P- en N-gebieden

depletie.

$$P(B) = P_N(0)$$

$$= P_N(0) e^{\frac{V_F}{V_T}}$$
met
$$P_{N,0} = \frac{ni^2}{N_D}$$

- → De minoritairen diffunderen docheen het gwied waarin ze geinjecteerd w → hun # noemt exp. of.
- -> dicht by nitputtingsgebied diffusiertwom v. med

Stroom door de P.N-junctie en de diodevergelijking

Stromen don un vonwaarts gepolariseerde junctie

· binnen uitputtingsgebied: elektronenstroom = ct. gen recombinatie gatenstroom = ct.

- N-gebied:
- · gatenstuoom

IP, N = diffusiestroom v. gaten

- elektionenskoom In, w
 - -> In (0) clektronenstroom acon uitputting sgebiled

P - IV does buon

-> exp. verlopend

beweging & on venduyring door recombinative met de geinjecheerde gater aan te vuller.

- · P-gebied:
- elektronenskroom

= diffusication v. e-In, P

2 > N dear brom

· gatenstroom

(analog =-skidom #)

links on A:

IP,2 + In, 2 = if

rechts van B:

IP, N + In, N = iF

binnen witp. gebied:

Ip(0) + In(0) = if

Berkening van de diodevergelijking

dielstromen and rand:

- . Ip(0): diffusientemen v. gouten = Ip, v(8)
- · In (0): diffusiestroom v. e = In, e(A)

stroom doorgang door half geleider (due I):

$$i_{F} = I_{o} \left\{ e^{\frac{V_{F}}{kT}} - 1 \right\} \quad \text{mut} \quad I_{o} = Ae \left[\frac{P_{P}}{4\rho} P_{N,o} + \frac{D_{n}}{L_{n}} n_{R,o} \right]$$
inverse
naturaties troom

De inverse naturatiestrooms L. if=- ±0

met Io = Ae [DP + Dn] ni 2 ladings chaquesons

Opmerkingen

- 1. de Phose spanningsvel buiten de uitputtingslaag, en de afwykinger ud
 toestand van lage injectie: belangrijk by hoge stromen.

 de recombinate « de them gen. binnen uitputtingslaag

 opp. stromen, die parallel met de stroom doorheen de uitputtingslaag vloeien

 b afwijken ud beschreven diede vergelijhing
- 2. als Pito >> n.P.o -> stroom gronagen door gaten
 ou sterket grotopeerde zyou injecteert haar majoritairen in
 oh minst grotopeerde zyou.
- 3. spanning over aliable: VD-Vf

 Lo inverse pol. > Vf 40

 -> Vf > -> mitputtingsgebied ->

Studie van unvoudige netwerkjes met één diade

Grafische bepaling vd diodestroom

Vb= VR+Vg Vb= RIf + Vf if = Io { e vt - 1}

Gebruik van un gelineariseerd model

$$\begin{cases} V_f = V_{TH} + Ri i_F & (vwgepol.) \\ V_b = RI_f + V_f \end{cases}$$

if =
$$\frac{V_b - V_{th}}{R + Ri}$$
 2 $\frac{V_b}{R}$ volunts V_th CCV & Ri CCR

Conductantle van een aiode by heeine signalen

2 conductantie

$$i_{F} = I_{F} + i_{f} = I_{o} \left\{ e^{\frac{U_{F}}{V_{T}}} - 1 \right\} = I_{o} \left\{ e^{\frac{V_{F} + U_{f}}{V_{T}}} - 1 \right\}$$

$$\left\{ \text{ Taylor-news uan } V_{\sharp} \right\}$$

$$i_{F}(V_{F}+U_{f})=i_{F}(V_{F})+\sum_{\substack{d=1\\ dv_{F}^{n}}} \frac{d^{n}i_{F}}{dv_{F}^{n}} \cdot \frac{(v_{f})^{n}}{n!}$$

nanwhening als
$$\frac{v_{\pm}}{v_{+}} >> \left(\frac{v_{\pm}}{v_{\tau}}\right)^{2} \frac{1}{2} + \left(\frac{v_{\pm}}{v_{\tau}}\right)^{3} \frac{1}{3!} + \left(\frac{v_{\pm}}{v_{\tau}}\right)^{3!} + \left(\frac{v_{\pm}}{v_{\tau}}\right)^{3} \frac{1}{3!} + \left(\frac{v_{\pm}}{v_{\tau}}\right)^{3}$$

$$g = \frac{if}{\sqrt{\xi}} = \frac{I \cdot e^{\frac{V_F}{V_T}}}{V_T} = \frac{1}{V_T} \left\{ I_F + I_o \right\} \stackrel{?}{\sim} \frac{I_F}{V_T}$$

- · gelykspanningsbron instelpunt (Q)
- · wisselspanningsbon via g

. totale spanning & stroom
$$\Rightarrow$$
 $\begin{cases} i_{\mp} = I_{\mp} + i_{\mp} \\ v_{\mp} = V_{\mp} + v_{\mp} \end{cases}$

Hoofdstuk 9 Doorslag van de PN-junctiè Corraker van doorslag · lawine doorslag: stuke inverse polonisation (hogre spanninger) Lo dreedte spereage? - nt mear verward t.o.v. de vrije weglingte ud loairesdiagens bewegende ladingsdrager vastziHende dultjes varning gat-elektronpoor bowine-effect Jener doaslag: Je hoge veldsterkte id uitp. boog (lage inverse spanninger) e losuhkun

lemp: ? dener doorslag & (doorslag spanning doubt)
lawine doorslag ? (doorslag spanning stigt)

maximale veld stevete: | EH| = \ \frac{2c}{E_0E_R} \frac{N_A N_D}{N_A + N_D} (V_D + V_R) \frac{1}{E_0} \frac{1}{E_0} \frac{N_0}{N_A + N_D} (V_D + V_R) \frac{1}{E_0} \frac

Zenerdiodes

- · Zenerdidde beperkt værmogen dissiperen
- · kleine klemspanning voldbendu ntwom (stabiele doordlapspanning)
- · grootste ingangsspanning stroom ec toelaatbore stroom

Hoofdstuk 10 Foto-elektrische effecten

Light-Emitterende-Diodes - LEDs

eliade VW -> veel minoritairen in P. R. N. gebied geinjeckeered.

Los terupvalla consuctiveband or valentieband server los Energie

- · indirecte klog materialen En. -> kristalrooster = wormte (sk)
- En => fotoner

- 1). behoud v. energie
- 2) behoud v. impulsmement so direct

2 ≤ hc Eg

Fotodiode & X (koth) covalente binding buken don absorptie Jotan IN-junctile i.d. burt of in uitputtings gebied I soals de minocitairen afroeun door het E Io (duftsmoon miroritainer) invers gipoloriseerd: . Ver beneden haar donslapspanning I. r invalled light nealler: - To a lightsterte of linear - temp. variaties ook invloed - zeer kleine stromen

· dicht by doorslayspanning (donker-Escotana)

light - Io 7 - doorslapspanning *

=> meter & detecteur van lichtintensiteiten & lichtpulsen

Fotovaltaische allen

← goten
elehtronen →

driftstroom v. minoritairen 1 ijv. invallend licht

· Open kring

L> nullastspanning over PN-junctic

C i.g.v. lichtingensiteit

duit joto-elèktr. gigenetterde ladingschagers Lo extra gater -> P

L, extra gater = P

varuit uitputtingsgebied

-> nt naar buiten

Lo Patentias lesschil

VP > VN > verhleinen \(\vert \) i.h.
uitputtingsgebied

Lo diffussie stroom P

I = Is VR = nullastspanning

PR Pig.v. intensiteit licht ?