

EE 604 Digital Image Processing

Clustering

- One of the most popular clustering algorithms.
- Originally developed for quantization in signal processing.
 - The standard algorithm was used by Llyod 1957
- Related to expectation-maximization(EM) algorithms

- Input: $x^{(1)}, x^{(2)}, ..., x^{(n)}$
- Output: Set of clusters $C_1, C_2, ... C_k$
- Initialization: Randomly pick ${\it k}$ centroids $z^{(1)}, z^{(2)}, ..., z^{(k)}$
- Itereate until convergence

$$z^{(j)} = \frac{1}{|C_j|} \sum_{i \in C_j} x^{(i)}$$

Properties of k-means

- Guaranteed to converge within a finite number of iterations.
- Cost function:

$$\min_{z^{(1)}, \dots, z^{(k)}_{C_1, \dots C_k}} \sum_{j=1}^k \sum_{i \in C_j} \|x^{(i)} - z^{(j)}\|^2$$

• Assignment: Fix z, optimize for C

$$\min_{C_1, \dots C_k} \sum_{j=1}^k \sum_{i \in C_j} \|x^{(i)} - z^{(j)}\|^2 = \sum_{i=1}^n \min_{j=1:k} \|x^{(i)} - z^{(j)}\|^2$$

Properties of k-means

- Guaranteed to converge within a finite number of iterations.
- Cost function:

$$\min_{z^{(1)}, \dots, z^{(k)}_{C_1, \dots C_k}} \sum_{j=1}^k \sum_{i \in C_j} \|x^{(i)} - z^{(j)}\|^2$$

• Update: Fix C, optimize for z

$$\min_{z^{(1)}, \dots, z^{(k)}} \sum_{j=1}^{k} \sum_{i \in C_j} ||x^{(i)} - z^{(j)}||^2$$

• Take partial derivative w.r.t. $\boldsymbol{z}^{(j)}$ and set to 0

$$z^{(j)} = \frac{1}{|C_j|} \sum_{i \in C_j} x^{(i)}$$

Properties of k-means

- · Connections to well-known optimization methods
 - An alternate minimization approach
 - Can also be cast as a gradient descent problem
- At each iteration, the error reduces.
- Guaranteed to converge, but no guarantee that the algorithm will converge to a global minima.
- Complexity per iteration
 - Assignment step: *O(kn)*
 - Update step: O(n)

- How to choose the initial points?
 - Smartly choose the initial points
 - · Run multiple times and choose the best result
- How to choose *k*?
 - Usually unknown and difficult
 - Use *k* that minimizes Bayesian information criterion (BIC) or Akaike information criterion (AIC)
- The similarity function matters
 - Euclidean, cosine similarity are common choices
 - Other distances can also help
- If in the feature domain, the choice of feature matters

Watershed Segmentation

Watershed

• **Physical interpretation**: Consider a gray level image as a topological surface. where the pixel intensity corresponds to the height of the surface

Watershed algorithm

- Input: a gray-level image I with gray scale $[h_{min} h_{max}]$
- Define:
 - Minima points: $M_1, ..., M_R$
 - Thresholded set: $T_h = \{p \in I | I(p) \le h\}$, where p is an pixel in I and h is some intensity level.
- Initialize:
 - $h = h_{min}$
 - Immersed set: $X_h = X_{h_{min}} = T_{h_{min}}$ $= \{ p \in I | I(p) \leq h_{min} \}$

Watershed algorithm

• Loop until h_{max}

$$X_{h+1} = X_h \bigcup IZ_{h+1}(M_1)...\bigcup IZ_{h+1}(M_R)$$

Influence set of minima M_1 at level h+1

- Watershed(I) = Set of all pixels in $I \setminus X_{hmax}$
- Let's define Influence set

$$C(M_i)$$
 = cluster associated with M_i

$$IZ_{h+1}(M_i) = \{ p \in T_{h+1} | d(p, C(M_i)) < d(p, C(M_j)) \}$$

 $\forall j, i \neq j$

Graph-based Segmentation

What is a graph?

- A graph G = (V, E) has two components
 - a set of vertices V
 - a set of edges **E**, which characterize the pairwise relationship between nodes/vertices

$$V = \{A, B, C, D\}$$

$$E = \{e_1, e_2, e_3, e_4\}$$

Adjacency matrix

• A graph is often represented as an Adjacency matrix A_d

$$\mathbf{A}_{d} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

- **A** here is binary -> indicates presence or absence of connection
- **A** here is unweighted, undirected.

- Main idea: Represent images as graphs
 - Pixels as nodes
 - Pixel relationship as edges
- Why graphs?
 - Compact representation
 - Computational convenience and scalability
 - Easy to extend to higher dimensions
 - Mathematical convenience
 - Take advantage of Graph theory

- Images as graphs
 - Each pixels is a node: $V = \{p_1, ..., p_N\}$
 - Each pair of neighboring pixels share an edge
 - The concept of neighborhood can be specified according to requirement (4-connect is popular)
 - edges can be weighted or unweighted
 - · edges can be directed or undirected
- p_i , p_j are two pixels,
 - Unweighted edge: $w_{ij} = 1$ (p_i , p_j are neighbors), $w_{ij} = 0$ (otherwise)
 - Weighted edge: $w_{ij} = 1/d(p_i, p_j)$ (p_i, p_j are neighbors), $w_{ij} = 0$ (otherwise)

$$\begin{bmatrix} w_{11} & ... & w_{1N} \\ w_{21} & ... & w_{21} \\ & & . & & . \\ w_{N1} & ... & w_{1N} \end{bmatrix}$$

Graph cut

A cut is a partition of nodes V into two non-empty sets A and $B(= V \setminus A)$.

{e1, e2}: crossing edges (has one node in A and the other in B)

$$cut(A,B) = |C| = 2$$
 $cut(A,B) = \sum_{V_i \in A, V_j \in B} w_{ij}$

- In segmentation, we are interested in partitioning the image into a number of disjoint sets.
- This is graph partition, if an image is represented as a graph.
- Often an objective is to have sets which are most dissimilar (or similar).
- So, we are interested in a partition (or cut) that has lowest number of crossing edges. - Min cut
- There are many standard algorithms for Mincut.

Kerger's mincut

Karger's Algorithm:

- Randomly choose an edge from the graph.
- Collapse the two nodes in to a supernode. Ignore self edges, keep all (parallel) edges to other nodes
- Loop until 2 nodes are left.
- The algorithm returns a mincut with a probability $\binom{n}{2}^{-1}$

Kerger's mincut

Summary

- Broad classes of segmentation approaches
 - Shape segmentation (Hough transform, Active appearance model, Snake, ...)
 - Thresholding (Optimal vs. approximate, global vs. local)
 - Region growing (surface fitting, cellular automata ...)
 - Clustering (Agglomerative, K-means, ...)
 - Graph-based (Min cut, normalized cut ...)
 - Supervised (when enough labels are available, train a binary classifier and label new pixels)