

CT1: ANALISI COMBINATORIA

Principio fondamentale del calcolo combinatorio:

Si realizzino 2 esperimenti. Si supponga che il primo esperimento abbia m esiti possibili, e che per ognuno di questi il secondo esperimento abbia n esiti possibili. Se sequenze distinte di esiti dei due esperimenti producono esiti finali distinti, allora vi sono in tutto m*n esiti possibili.

Dimostrazione:

dove si intende che l'esito finale è la coppia ordinata (i,j) se il primo esperimento ha prodotto esito i e il secondo ha prodotto esito j. L'insieme dei possibili esiti consiste di m righe, ognuna contenente n elementi. Quindi vi sono in tutto m*n esiti possibili.

Notiamo che sequenze distinte di esiti dei due esperimenti producono esiti finali distinti; in altri termini (i,j) è un risultato distinto da (j,i).

Esempio:

Un giocatore scommette su 2 partite di calcio, con esiti 1, X, 2. In quanti modi può scegliere come scommettere?

Principio fondamentale (generalizzato) del calcolo combinatorio

Si realizzino r esperimenti. Si supponga che il primo esperimento abbia n1 esiti possibili, e che per ognuno di questi il secondo esperimento abbia n2 esiti possibili, e ancora che per ognuno degli esiti dei primi 2 esperimenti il terzo esperimento abbia n3 esiti possibili, ecc...

Allora, se sequenze distinte di esiti degli r esperimenti producono esiti finali distinti, allora gli r esperimenti producono in tutto $n1 \cdot n2 \cdot \cdot \cdot$ nr esiti possibili.

Esempio:

Quanti sono i risultati possibili se si lancia a caso una moneta per n volte, se l'ordine `e rilevante?

Soluzione:

Ognuno degli n esperimenti consistenti nel lancio della moneta ha 2 possibili esiti, e quindi i risultati possibili sono $2 \times 2 \times \cdots \times 2 = 2n$.

Ad esempio, per n = 3 si hanno 8 risultati: ccc, cct, ctc, ctt, tcc, tct, ttc, ttt.

.....

Permutazioni (semplici)

In quanti modi si possono ordinare le lettere a, b, c? Per il *principio fondamentale del calcolo combinatorio* i casi possibili sono $3 \times 2 \times 1 = 6$: abc, acb, bac, bca, cab, cba. Ciascuno di questi ordinamenti prende il nome di *permutazione*.

Le permutazioni distinte di n oggetti sono $n(n-1)(n-2)\cdots 3\cdot 2\cdot 1=n!$

Permutazioni di oggetti non tutti distinti

Vi sono permutazioni distinte di n oggetti presi da r categorie, dei quali n1 sono identici fra loro, n2 sono identici fra loro e distinti dai precedenti, . . . , nr sono identici fra loro e distinti dai precedenti, con $n = n1 + n2 + \cdots + nr$.

$$\frac{n!}{n_1! \, n_2! \cdots n_r!}$$

Esempio:

Quanti sono gli anagrammi di STATISTICA?

Soluzione:

Se le 10 lettere da permutare fossero distinte vi sarebbero 10! = 3 628 800 permutazioni possibili. Tuttavia le lettere non sono distinte: se permutiamo le lettere S tra di loro, le lettere T tra di loro, le lettere A tra di loro, e le lettere I tra di loro, si ottiene comunque la stessa parola.

Il numero di anagrammi distinti è quindi:

$$\frac{10!}{2! \cdot 3! \cdot 2! \cdot 2!} = \frac{3628800}{2 \cdot 6 \cdot 2 \cdot 2} = 75600.$$

Permutazione circolare

Particolare tipo di *permutazioni semplici*, quando gli elementi sono disposti in modo circolare. Dati n elementi distinti, il numero delle permutazioni circolari è dato da: (n-1)!

Si considera un elemento in meno perché non sappiamo il primo e l'ultimo elemento.

Esempio:

Consideriamo A, B, C. In quanti modi possibili si possono sedere lungo un tavolo rotondo avente 3 sedie?

Soluzione:

I posti, non essendo numerati, in realtà le tavole 1, 4, 6 e le tavole 2, 3, 5 assumono le stesse posizioni.

(3-1)! = 2! = 2 modi possibili

(3-1) = 2! = 2 modi possibili

Disposizioni

Dati n oggetti distinti, quanti sono i sottoinsiemi di r oggetti che si possono formare. Nel caso di insiemi ordinati le sequenze da formare si dicono *disposizioni semplici* se non sono ammesse ripetizioni.

Per il principio fondamentale del calcolo combinatorio

- il numero di disposizioni semplici di n oggetti raggruppati in r classi è

$$D_{n,r} = n(n-1)(n-2)\cdots(n-r+1) = \frac{n!}{(n-r)!} = (n)_r$$

dove $(n)r := n(n-1)(n-2)\cdots(n-r+1)$ è detto fattoriale discendente.

- il numero di disposizioni con ripetizioni di n oggetti raggruppati in r classi è

$$D'_{n,r} = n \cdot n \cdot n \cdot \dots \cdot n = n^r.$$

Esempio:

Quante parole di lunghezza 2 si possono formare da un alfabeto di 4 lettere:

- (a) se le lettere non possono ripetersi?
- (b) se le lettere possono ripetersi?

Soluzione:

- (a) Si tratta di disposizioni semplici di n = 4 oggetti raggruppati in r = 2 classi, quindi $D_{4,2} = 4 \cdot 3 = 12$.
- (ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc)
- (b) Si tratta di disposizioni con ripetizioni di n = 4 oggetti raggruppati in r = 2 classi, quindi $D'_{4,2} = 4^2 = 16$.

(aa, ab, ac, ad, ba, bb, bc, bd, ca, cb, cc, cd, da, db, dc, dd)

Combinazioni

Consideriamo il problema di determinare quanti insiemi non ordinati di r oggetti si possono formare a partire da n oggetti distinti.

Nel caso di insiemi non ordinati le sequenze si dicono *combinazioni semplici* se non sono ammesse ripetizioni. Notiamo anche che $D_{n,r} = C_{n,r} \cdot r!$, in quanto il numero di sequenze ordinate è uguale al numero di sequenze non ordinate per il numero di permutazioni di r oggetti.

Il numero C_{n,r} di *combinazioni semplici* di n oggetti raggruppati in r classi è

$$C_{n,r} = \binom{n}{r} = \frac{n!}{(n-r)! \, r!} = \frac{(n)_r}{r!} = \frac{n(n-1)\cdots(n-r+1)}{r!}$$

Il numero C'n, di combinazioni con ripetizioni di n oggetti raggruppati in r classi è

$$C'_{n,r} = \binom{n+r-1}{r} = \frac{(n+r-1)!}{(n-1)! \, r!} = \frac{(n+r-1)_r}{r!} = \frac{(n+r-1)(n+r-2)\cdots n}{r!}$$

Esempio:

Quante combinazioni di 4 oggetti in gruppi di 2 si possono formare

- (a) nel caso di combinazioni semplici? (gli oggetti non possono ripetersi)
- (b) nel caso di combinazioni con ripetizioni? (gli oggetti possono ripetersi)

Soluzione:

(a) $C_{4,2} = (4)_2/2! = (4 \cdot 3)/2 = 6$

(ab, ac, ad, bc, bd, cd).

(b) $C'_{4,2} = (5)_2/2! = (5 \cdot 4)/2 = 10$

(aa, ab, ac, ad, bb, bc, bd, cc, cd, dd).

Tabella riepilogativa

	Disposizioni	Combinazioni		
	(l'ordine è rilevante)	(l'ordine non è rilevante)		
semplici	$D_{n,k} = (n)_k = \frac{n!}{(n-k)!}$	$C_{n,k} = \binom{n}{k} = \frac{(n)_k}{k!}$		
(senza ripetizioni)				
composte	$D'_{n,k} = n^k$	$C'_{n,k} = \binom{n+k-1}{k}$		
(con ripetizioni)				

Tavola (di Tartaglia-Newton) dei coefficienti binomiali

$n \backslash k$	0	1	2	3	4	5	6	7	somma	
0	1	0	0	0	0	0	0	0	$1 = 2^0$	
									$2 = 2^1$	
2	1	2	1	0	0	0	0	0	$4 = 2^2$	$\langle n \rangle$ $n!$ (n)
3	1	3	3	1	0	0	0	0	$8 = 2^3$	$\binom{n}{k} = \frac{n!}{k! (n-k)!} = \frac{(n)_k}{k!}$
4	1	4	6	4	1	0	0	0	$16 = 2^4$	
5	1	5	10	10	5	1	0	0	$32 = 2^5$	$n \pmod{n}$
6	1	6	15	20	15	6	1	0	$64 = 2^6$	$\sum_{n} {n \choose n} = 2^n;$
7	1	7	21	35	35	21	7	1	$128 = 2^7$	$\sum_{k=0}^{n} \binom{n}{k} = 2^{n};$
			(n)	\	n		n!			n! $n!$

$$\binom{n}{0} = \frac{n!}{0! \, n!} = \frac{n!}{n!} = 1; \qquad \binom{n}{n} = \frac{n!}{n! \, 0!} = \frac{n!}{n!} = 1;$$

$$\binom{n}{1} = \frac{n!}{1! \, (n-1)!} = \frac{n \, (n-1)!}{(n-1)!} = n; \qquad \binom{n}{n-1} = \frac{n!}{(n-1)! \, 1!} = \frac{n \, (n-1)!}{(n-1)!} = n;$$

$$\binom{n}{k} = \frac{n!}{k! \, (n-k)!} = \frac{n!}{(n-k)! \, k!} = \binom{n}{n-k}.$$

Formula di ricorrenza dei coefficienti binomiali

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r} \qquad 1 \le r \le n.$$

 $(\star\star)$ Dimostrazione analitica

$$\binom{n-1}{r-1} + \binom{n-1}{r} = \frac{(n-1)!}{(r-1)! (n-r)!} + \frac{(n-1)!}{r! (n-r-1)!}$$

$$= \frac{(n-1)!}{(r-1)! (n-r) (n-r-1)!} + \frac{(n-1)!}{r (r-1)! (n-r-1)!}$$

$$= \left[\frac{1}{n-r} + \frac{1}{r} \right] \frac{(n-1)!}{(r-1)! (n-r-1)!} = \frac{n}{r (n-r)} \frac{(n-1)!}{(r-1)! (n-r-1)!} = \binom{n}{r}$$

Teorema del binomio

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}, \qquad n \ge 1$$

CT2: ASSIOMI DELLE PROBABILITÀ

Spazio campionario

Chiameremo *esperimento* qualunque fenomeno il cui risultato non possa essere previsto con certezza. Sebbene l'esito dell'esperimento non sia noto a priori, supponiamo che l'insieme di tutti i possibili esiti lo sia. Definiamo questo insieme *spazio campionario* dell'esperimento e lo denotiamo con *S*; i suoi elementi sono detti *eventi elementari*.

Esempio:

Se l'esperimento consiste nel lanciare successivamente n monete, lo spazio campionario è costituito da $D'_{2,n} = 2^n$ elementi:

$$S = \{\omega_1 \omega_2 \cdots \omega_n : \forall i, \ \omega_i \in \{c, t\}\};$$
 (S è finito)

per
$$n = 3$$
: $S = \{ccc, cct, ctc, ctt, tcc, tct, ttc, ttt\}$

Esempio:

Un esperimento consiste nel lanciare ripetutamente una moneta. Consideriamo come esito dell'esperimento il numero d'ordine del lancio in cui compare testa per la prima volta. Lo spazio campionario `e l'insieme degli interi non negativi:

$$S = \{n : n = 1, 2, \ldots\}$$
 (S è infinito numerabile)

Esempio:

Se l'esperimento consiste nel misurare il tempo di vita di un dispositivo elettronico, lo spazio campionario consiste nell'insieme dei numeri reali non negativi:

$$S = \{x \in \mathbb{R} : 0 \le x < \infty\}$$
 (S è infinito non numerabile)

Evento

Un sottoinsieme A dello spazio campionario sarà detto *evento*. Un evento è quindi un insieme di possibili esiti di un esperimento. Se l'esito di un esperimento è contenuto in A, diremo che l'evento A si è verificato.

Esempio:

Nell'esperimento del lancio di 2 dadi, l'evento si verifica quando la somma dei 2 dadi è 7.

$$A = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$$

Operazioni tra eventi

- Dati due eventi $A \in B$, definiamo il nuovo evento $A \cup B$, detto unione di $A \in B$, formato da tutti gli esiti dell'esperimento che stanno in A o in B o in entrambi.
- Analogamente, dati due eventi $A \in B$, definiamo il nuovo evento $A \cap B$, detto intersezione di $A \in B$, formato da tutti gli esiti dell'esperimento che sono sia in A che in B. (Talora $A \cap B$ si indica con AB).
- Per ogni evento A definiamo il nuovo evento \overline{A} , detto complementare di A, formato da tutti gli esiti dell'esperimento che non sono in A. (Talvolta \overline{A} si indica con A^c).

Esempio:

Nell'esperimento del lancio di 2 monete, con S = {cc, ct, tc, tt}, se:

A = {cc, ct} = {croce al primo lancio},

B = {cc, tt} = {nei due lanci si ha lo stesso risultato},

si ha A \cup B = {cc, ct, tt}, A \cap B = {cc}, \overline{A} = {tc, tt}, \overline{B} = {ct, tc}.

- \bullet Il risultato di qualunque esperimento appartiene certamente allo spazio campione; pertanto S viene detto $evento\ certo$.
- Un evento si dice impossibile, e si indica con \emptyset , se non contiene esiti dell'esperimento. (\emptyset corrisponde all'insieme vuoto).
- Due eventi $A \in B$ si dicono incompatibili se $A \cap B = \emptyset$.
- A_1, A_2, \ldots si dicono a due a due incompatibili se $A_i \cap A_j = \emptyset$ per ogni $i \neq j$.
- Più eventi (in numero finito o infinito) si dicono necessari se la loro unione è S.
- Gli eventi A_1, A_2, \ldots costituiscono una partizione di S se sono necessari e a due a due incompatibili.
- Se A_1, A_2, \ldots sono eventi, si definiscono l'unione e l'intersezione di questi come

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup A_2 \cup \cdots, \qquad \bigcap_{i=1}^{\infty} A_i = A_1 \cap A_2 \cap \cdots;$$

 $\bigcup_{i=1}^{\infty} A_i$ è l'evento formato da tutti gli esiti che sono compresi in almeno uno degli eventi A_1, A_2, \ldots ;

 $\cap_{i=1}^{\infty} A_i$ è l'evento formato da tutti gli esiti che sono compresi in tutti gli eventi A_1,A_2,\ldots

• Per ogni evento A risulta

$$A \cup \overline{A} = S$$
, $A \cap \overline{A} = \emptyset$, $A \cup S = S$, $A \cap S = A$, $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$.

- Dati due eventi A e B, se tutti gli esiti di A sono anche in B, allora diciamo che A è contenuto in B, oppure che A implica B, e scriviamo $A \subset B$.
- Se $A \subset B$ e $B \subset A$, diciamo che A e B coincidono, e scriviamo A = B.
- Si ha: $A \cap B \subset A \subset A \cup B$ e $A \cap B \subset B \subset A \cup B$.
- Risulta $A \subset B$ se e solo se $\overline{B} \subset \overline{A}$.

Diagrammi di Venn

Proprietà

• commutative:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$;

associative:

$$(A \cup B) \cup C = A \cup (B \cup C), \qquad (A \cap B) \cap C = A \cap (B \cap C);$$

• distribuitive:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C), \qquad (A \cap B) \cup C = (A \cup C) \cap (B \cup C).$$

• formule di De Morgan:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \qquad \overline{A \cap B} = \overline{A} \cup \overline{B},$$

valide anche per un insieme finito di eventi A_1, A_2, \ldots, A_n :

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A}_i, \qquad \overline{\bigcap_{i=1}^{n} A_i} = \bigcup_{i=1}^{n} \overline{A}_i.$$

Classe degli Eventi

Abbiamo già visto che un sottoinsieme A dello spazio campionario è detto evento. Più precisamente, la classe degli eventi \mathcal{F} è una famiglia di sottoinsiemi di S tale che

- (i) $S \in \mathcal{F}$;
- (ii) se $A \in \mathcal{F}$ allora $\overline{A} \in \mathcal{F}$;
- (iii) se $A_1, A_2, \ldots \in \mathcal{F}$ allora $A_1 \cup A_2 \cup \cdots \in \mathcal{F}$.

Da tali proprietà segue che \mathcal{F} è una σ -algebra (sigma-algebra) di eventi, ed inoltre:

- (iv) $\emptyset \in \mathcal{F}$:
- (v) se $A_1, A_2, \ldots \in \mathcal{F}$ allora $A_1 \cap A_2 \cap \cdots \in \mathcal{F}$.

Impostazioni frequentista e soggettiva della probabilità

Supponiamo che un esperimento, il cui spazio campionario è S, venga ripetuto varie volte sotto le medesime condizioni. Per ogni evento E dello spazio campionario S, definiamo n(E) come frequenza assoluta, ossia il numero di volte che si `e verificato E nelle prime n ripetizioni dell'esperimento. Notiamo che risulta $0 \le n(E) \le n$. Allora P(E), la probabilità dell'evento E, è definita come

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

Cioè, P(E) è definita come limite della *frequenza relativa* n(E)/n, ossia limite della proporzione del numero di volte che l'evento E si verifica.

Secondo l'impostazione soggettiva la probabilità di un evento è il grado di fiducia che un individuo ha nel verificarsi dell'evento.

 $\omega =$ risultato dell'esperimento

$$\begin{cases} \omega \in \underline{A} & \Rightarrow \text{ riceviamo 1} \\ \omega \in \overline{A} & \Rightarrow \text{ riceviamo 0} \end{cases}$$

Condizione di coerenza

Le probabilità degli eventi vanno attribuite in modo che non sia possibile ottenere con un insieme di scommesse una vincita certa o una perdita certa.

Sia P(A) la probabilista di un evento A secondo l'impostazione soggettiva. Nel pagare P(A) e nel ricevere 1 oppure 0 si guadagna 1 - P(A) oppure -P(A), quindi almeno -P(A) e al massimo 1 - P(A). Se P(A) fosse negativa si avrebbe certamente un guadagno positivo, mentre se P(A) fosse maggiore di 1 si avrebbe certamente una perdita, e nei due casi la condizione di coerenza `e violata. Si ha quindi $0 \le P(A) \le 1$.

Assiomi della probabilità

Lo spazio di probabilità di un esperimento è (S, \mathcal{F}, P) , dove S è lo spazio campionario, \mathcal{F} è la classe degli eventi, e $P : \mathcal{F} \to \mathbb{R}$ è una funzione tale che per ogni evento A esiste un reale P(A), definito come probabilità di A, per cui valgono i seguenti 3 assiomi.

Assioma 1. Per ogni $A \in \mathcal{F}$ si ha

$$0 \le P(A) \le 1$$

Assioma 2.

$$P(S) = 1$$

Assioma 3. (Additività numerabile) Per ogni successione di eventi A_1, A_2, \ldots a due a due incompatibili (ossia tali che $A_i \cap A_j = \emptyset$ quando $i \neq j$), si ha

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Proposizione.

$$P(\emptyset) = 0$$

Proposizione. (Additività finita) Per ogni collezione finita A_1, A_2, \ldots, A_n di eventi a due a due incompatibili (ossia tali che $A_i \cap A_j = \emptyset$ quando $i \neq j$),

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

Proposizione. Per ogni evento A

$$P(\overline{A}) = 1 - P(A)$$

Dimostrazione. Dall'Assioma 2 e dalla proprietà di additività finita, con A e \overline{A} eventi incompatibili, segue

$$1 = P(S) = P(A \cup \overline{A}) = P(A) + P(\overline{A}),$$

da cui si giunge alla tesi.

Proposizione. Se $A \subset B$, allora

$$P(A) \le P(B)$$

Dimostrazione. Essendo $A \subset B$, abbiamo che B può essere espresso come $B = A \cup (\overline{A} \cap B)$, con $A \cap (\overline{A} \cap B) = \emptyset$.

Dalla proprietà di additività finita segue $P(B) = P(A \cup (\overline{A} \cap B)) = P(A) + P(\overline{A} \cap B),$ da cui si ha $P(B) \geq P(A)$, essendo $P(\overline{A} \cap B) \geq 0$.

Proposizione.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Dimostrazione. Notiamo che $A\cup B$ può essere espresso come unione di due eventi incompatibili A e $\overline{A}\cap B$. Grazie alla proprietà di additività finita otteniamo

$$P(A \cup B) = P(A \cup (\overline{A} \cap B)) = P(A) + P(\overline{A} \cap B).$$

Inoltre, essendo $B = (A \cap B) \cup (\overline{A} \cap B)$, con $A \cap B$ e $\overline{A} \cap B$ eventi incompatibili, applicando nuovamente la proprietà di additività finita abbiamo

$$P(B) = P(A \cap B) + P(\overline{A} \cap B)$$

o, equivalentemente,

$$P(\overline{A}\cap B) = P(B) - P(A\cap B)$$

che completa la dimostrazione.

Principio di inclusione/esclusione

Proposizione.

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Dimostrazione. Ricordando che $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$, si ha

$$P(A \cup B \cup C) = P((A \cup B) \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C),$$

e ancora

$$P(A \cup B \cup C) = P(A) + P(B) - P(A \cap B) + P(C) - P((A \cup B) \cap C).$$

Per la legge distributiva si ha

$$P(A \cup B \cup C) = P(A) + P(B) - P(A \cap B) + P(C) - P((A \cap C) \cup (B \cap C)),$$

da cui segue

$$P(A \cup B \cup C) = P(A) + P(B) - P(A \cap B) + P(C) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

ossia la tesi.

La probabilità dell'unione di n eventi A_1, A_2, \ldots, A_n può esprimersi al seguente modo:

per
$$n = 2$$
: $P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$;

per
$$n = 3$$
: $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$
 $- P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3)$
 $+ P(A_1 \cap A_2 \cap A_3)$;

Spazi campionari con esiti equiprobabili

In molti esperimenti è naturale assumere che tutti gli esiti dello spazio campionario siano equiprobabili, con S insieme finito: $S = \{1, 2, ..., N\}$. Allora si ipotizza che

$$P(\{1\}) = P(\{2\}) = \ldots = P(\{N\})$$

il che implica

$$P({i}) = \frac{1}{N}, \quad i = 1, 2, \dots, N,$$

essendo
$$1 = P(S) = P(\{1\} \cup \{2\} \cup \ldots \cup \{N\}) = P(\{1\}) + P(\{2\}) + \ldots + P(\{N\}).$$

Per la proprietà di additività avremo perciò che per ogni evento A

$$P(A) = \frac{|A|}{|S|} = \frac{\text{numero di elementi di } A}{\text{numero di elementi di } S} \qquad \text{(definizione classica di probabilità)}$$

Se assumiamo che tutti gli esiti di un esperimento siano equiprobabili, allora la probabilità di ogni evento A è uguale alla proporzione degli esiti dello spazio campionario contenuti in A (come rapporto di casi favorevoli su casi possibili).

Esempio. Se si lanciano 2 dadi, qual è la probabilità che la somma dei valori sulla faccia superiore sia uguale a 7?

Soluzione. Assumendo che i 36 possibili esiti siano equiprobabili, poiché ci sono 6 possibili esiti che danno come somma 7,

$$E = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\},$$

la probabilità desiderata sarà uguale a 6/36 ossia 1/6.

■ Probabilità condizionata

Definizione. Se P(F) > 0, la probabilità condizionata di E dato F è data da

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

Tale definizione è giustificata dalle seguenti considerazioni:

Per esperimenti dotati di spazio campionario finito e con esiti equiprobabili, abbiamo visto che per ogni evento A risulta: P(A) = |A|/|S|.

Pertanto, volendo esprimere in tale ambito la probabilità condizionata di E dato F, siamo condotti ad usare il rapporto di casi favorevoli al verificarsi di E (sapendo che si è verificato F) su casi possibili (gli elementi di F), cosicché:

$$P(E|F) = \frac{|E\cap F|}{|F|} = \frac{|E\cap F|/|S|}{|F|/|S|} = \frac{P(E\cap F)}{P(F)}.$$

Esempio. Nell'esperimento del lancio di un dado non truccato calcolare le probabilità condizionate di $A = \{1, 2\}$ dati gli eventi $B_1 = \{4, 5, 6\}, B_2 = \{1, 5, 6\}, B_3 = \{1, 2, 6\}.$ Soluzione. Risulta

$$P(A|B_1) = \frac{P(A \cap B_1)}{P(B_1)} = \frac{P(\emptyset)}{1/2} = 0,$$

$$P(A|B_2) = \frac{P(A \cap B_2)}{P(B_2)} = \frac{P(\{1\})}{1/2} = \frac{1/6}{1/2} = \frac{1}{3},$$

$$P(A|B_3) = \frac{P(A \cap B_3)}{P(B_3)} = \frac{P(\{1,2\})}{1/2} = \frac{1/3}{1/2} = \frac{2}{3}.$$

Pertanto, sebbene gli eventi B_1 , B_2 , B_3 siano equiprobabili, la probabilità condizionata di A dato B_k cambia al variare di k, ed in particolare risulta $P(A|B_2) = P(A)$.

Proposizione. (Regola del prodotto) Se $P(E_1 \cap ... \cap E_{n-1}) > 0$, allora

$$P(E_1 \cap \ldots \cap E_n) = P(E_1) P(E_2|E_1) P(E_3|E_2 \cap E_1) \ldots P(E_n|E_1 \cap \ldots \cap E_{n-1})$$

Dimostrazione. Per la definizione di probabilità condizionata, dal 2º membro si ha

$$P(E_1) \frac{P(E_1 \cap E_2)}{P(E_1)} \frac{P(E_1 \cap E_2 \cap E_3)}{P(E_1 \cap E_2)} \dots \frac{P(E_1 \cap E_2 \cap \dots \cap E_n)}{P(E_1 \cap E_2 \cap \dots \cap E_{n-1})} = P(E_1 \cap \dots \cap E_n)$$

con le probabilità a denominatore strettamente positive perché $P(E_1 \cap ... \cap E_{n-1}) > 0$.

Esempio. Da un'urna contenente n biglie numerate da 1 a n si estraggono 3 biglie a caso (senza reinserimento). Assumendo che vi sia concordanza all'estrazione k-esima se in tale estrazione fuoriesce la biglia avente numero k, calcolare la probabilità

- (a) di avere 3 concordanze,
- (a) di avere concordanza solo nelle prime 2 estrazioni.

Soluzione. Posto $A_k = \{$ si ha concordanza all'estrazione k-esima $\}$, dalla legge delle probabilità composte segue che la probabilità richiesta in (a) è data da

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) P(A_2|A_1) P(A_3|A_1 \cap A_2) = \frac{1}{n} \cdot \frac{1}{n-1} \cdot \frac{1}{n-2}.$$

Analogamente, la probabilità richiesta in (b) è

$$P(A_1 \cap A_2 \cap \overline{A_3}) = P(A_1) P(A_2 | A_1) P(\overline{A_3} | A_1 \cap A_2) = \frac{1}{n} \cdot \frac{1}{n-1} \cdot \frac{n-3}{n-2}.$$

La formula delle alternative

Proposizione. (Formula delle alternative) Sia F tale che 0 < P(F) < 1. Se E è un evento qualsiasi risulta

$$P(E) = P(E|F) P(F) + P(E|\overline{F}) P(\overline{F}).$$

Dimostrazione. L'evento E si può esprimere come $E = (E \cap F) \cup (E \cap \overline{F})$, con $E \cap F$ e $E \cap \overline{F}$ eventi incompatibili. Infatti, se un evento elementare appartiene all'evento E, esso inoltre appartiene o all'evento F o al suo complementare \overline{F} , e quindi appartiene o all'evento $E \cap F$ oppure a $E \cap \overline{F}$.

Usando la proprietà di additività finita e la regola del prodotto segue:

$$\begin{array}{ll} P(E) \,=\, P(E\cap F) + P(E\cap \overline{F}) & (E\cap F \in E\cap \overline{F} \text{ sono incompatibili}) \\ = \, P(E|F)\, P(F) + P(E|\overline{F})\, P(\overline{F}), & \text{da cui segue la tesi.} \end{array}$$

La formula delle alternative permette di determinare la probabilità di un evento condizionandolo prima alla realizzazione o meno di un altro evento.

Esempio. Da un'urna contenente 5 biglie bianche e 1 biglia rossa, 6 giocatori estraggono a turno 1 biglia a caso, senza reinserimento. Qual è la probabilità che il giocatore k-esimo estragga la biglia rossa?

Soluzione. Posto $A_k = \{il \text{ giocatore } k\text{-esimo estrae la biglia rossa}\}$, risulta

$$P(A_1) = \frac{1}{6}, \qquad P(A_2) = P(A_2|A_1)P(A_1) + P(A_2|\overline{A_1})P(\overline{A_1}) = 0 \cdot \frac{1}{6} + \frac{1}{5} \cdot \frac{5}{6} = \frac{1}{6}.$$

Analogamente, si ottiene $P(A_k) = \frac{1}{6}$ per $k = 1, 2, \dots, 6$.

Notiamo che risulta
$$P(A_k|\overline{A_1} \cap \overline{A_2} \cap \ldots \cap \overline{A_{k-1}}) = \frac{1}{6 - (k-1)}$$
, per $k = 1, 2, \ldots, 6$.

Osserviamo inoltre che gli eventi A_1, A_2, \ldots, A_6 sono necessari e a 2 a 2 incompatibili.

Proposizione. (Formula delle alternative, con n alternative) Se gli eventi F_1, F_2, \ldots, F_n sono a due a due incompatibili, necessari, e ciascuno con probabilità positiva, e se E è un evento qualsiasi, allora risulta

$$P(E) = \sum_{i=1}^{n} P(E|F_i) P(F_i).$$

Dimostrazione. Scrivendo

$$E = E \cap S = E \cap \left(\bigcup_{i=1}^{n} F_i\right) = \bigcup_{i=1}^{n} (E \cap F_i) \qquad \text{(con } E \text{ evento qualsiasi)}$$

e osservando che gli eventi $E \cap F_i$, i = 1, 2, ..., n sono a due a due incompatibili, per la proprietà di additività finita e per la regola del prodotto si ha infine

$$P(E) = P\left(\bigcup_{i=1}^{n} (E \cap F_i)\right) = \sum_{i=1}^{n} P(E \cap F_i) = \sum_{i=1}^{n} P(E|F_i) P(F_i).$$

Nella formula delle alternative

$$P(E) = \sum_{i=1}^{n} P(E|F_i) P(F_i)$$

la probabilità di E viene espressa come media ponderata delle $P(E|F_i)$, dove il peso di ciascun termine è uguale alla probabilità dell'evento F_i , rispetto al quale si condiziona.

Dalle ipotesi che gli eventi F_1, F_2, \ldots, F_n sono a due a due incompatibili e necessari segue che in un esperimento si realizza uno e uno solo degli eventi F_1, F_2, \ldots, F_n , che evidentemente costituiscono una partizione dello spazio campionario, e quindi

$$\sum_{i=1}^{n} P(F_i) = P\left(\bigcup_{i=1}^{n} F_i\right) = P(S) = 1,$$

per la proprietà di additività finita.

Esempio. Un'urna contiene 3 monete; la 1^a è non truccata, la 2^a mostra testa con probabilità p, mentre la 3^a dà testa con probabilità 1 - p, con $0 . Se si sceglie una moneta a caso qual è la probabilità che lanciata mostri testa? Se la moneta lanciata mostra testa, qual è la probabilità che si tratti della <math>2^a$?

Soluzione. Definiamo gli eventi $T = \{\text{esce testa}\}\ e\ F_j = \{\text{si sceglie la moneta}\ j\text{-esima}\},\ j=1,2,3.$ Dalle ipotesi fatte segue

$$P(F_j) = \frac{1}{3}$$
 $(j = 1, 2, 3),$

e inoltre

$$P(T|F_1) = 0.5$$
 $P(T|F_2) = p$ $P(T|F_3) = 1 - p.$

La probabilità di avere testa è quindi

$$P(T) = \sum_{j=1}^{3} P(T|F_j) P(F_j) = 0.5 \cdot \frac{1}{3} + p \cdot \frac{1}{3} + (1-p) \cdot \frac{1}{3} = \frac{1}{2}.$$

Pertanto,

$$P(F_2|T) = \frac{P(T \cap F_2)}{P(T)} = \frac{P(T|F_2)P(F_2)}{P(T)} = p\frac{2}{3}.$$

La formula delle alternative $P(E) = \sum_{i=1}^{n} P(E|F_i) P(F_i)$ permette di determinare la probabilità di un evento condizionandolo prima alla realizzazione di uno, e uno solo, degli n eventi F_1, F_2, \ldots, F_n . Supponiamo ora che E si sia verificato e di voler determinare quali degli eventi alternativi F_1, F_2, \ldots, F_n si sia anch'esso verificato.

Proposizione. (Formula di Bayes) Se E è un evento avente probabilità positiva, e F_1, F_2, \ldots, F_n sono eventi a due a due incompatibili, ciascuno avente probabilità positiva, e necessari, allora

$$P(F_j|E) = \frac{P(E|F_j) P(F_j)}{\sum_{i=1}^n P(E|F_i) P(F_i)} \qquad (j = 1, 2, \dots, n).$$

Dimostrazione. Dalla definizione di probabilità condizionata, dalla regola del prodotto e dalla formula delle alternative segue immediatamente

$$P(F_j|E) = \frac{P(E \cap F_j)}{P(E)} = \frac{P(E|F_j) P(F_j)}{\sum_{i=1}^n P(E|F_i) P(F_i)} \qquad (j = 1, 2, \dots, n).$$

Verifichiamo che le probabilità della formula di Bayes sommano all'unità; infatti risulta

$$\sum_{j=1}^{n} P(F_j|E) = \sum_{j=1}^{n} \frac{P(E|F_j) P(F_j)}{\sum_{i=1}^{n} P(E|F_i) P(F_i)} = 1.$$

Esempio. In un gioco vi sono 3 carte identiche per la forma, la prima con entrambe le facce di colore rosso, la seconda con entrambe le facce di colore nero, la terza con una faccia rossa e una nera. Si sceglie a caso una carta e la si appoggia sul tavolo; se la faccia superiore della carta è rossa, qual è la probabilità che l'altra faccia sia nera? **Soluzione.** Indichiamo con F_1 , F_2 e F_3 gli eventi riferiti alle 3 carte, e poniamo $R = \{$ la faccia superiore della carta scelta è rossa $\}$. Dalla formula di Bayes segue

$$P(F_3|R) = \frac{P(R|F_3)P(F_3)}{\sum_{i=1}^3 P(R|F_i)P(F_i)} = \frac{\frac{1}{2} \cdot \frac{1}{3}}{1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3}} = \frac{1}{3}.$$

Notiamo che tale risultato si può ottenere anche come rapporto di casi favorevoli su casi possibili, in quanto una sola delle tre facce rosse ha una faccia nera sul retro.

Eventi indipendenti

La probabilità condizionata di E dato F non è generalmente uguale a P(E). In altri termini, la conoscenza della realizzazione dell'evento F modifica in generale la possibilità del realizzarsi o meno di E.

Se P(E|F) = P(E) diciamo che E è indipendente da F. Cioè, E è indipendente da F se la conoscenza della realizzazione di F non cambia la probabilità che si realizzi E.

Se P(F) > 0, dalla formula $P(E|F) = \frac{P(E \cap F)}{P(F)}$ si vede che E è indipendente da F se

$$P(E \cap F) = P(E) P(F).$$

Tale formula è simmetrica in E ed F, pertanto se P(E) > 0 e P(F) > 0, l'evento E è indipendente da F se F è indipendente da E e viceversa.

La seguente definizione include anche i casi in cui P(E) = 0 oppure P(F) = 0.

Definizione. Due eventi E ed F si dicono *indipendenti* se vale

$$P(E \cap F) = P(E) P(F).$$

Due eventi che non sono indipendenti si dicono dipendenti.

Esempio. Uno studente deve sottoporsi a due test. Con probabilità 0,5 supererà il primo test; con probabilità 0,4 supererà il secondo test; con probabilità 0,3 li supererà entrambi. Gli eventi relativi al superamento dei due test sono indipendenti?

Soluzione. Sia B_i l'evento che lo studente superi il test *i*-esimo, i = 1, 2. Risulta

$$P(B_1 \cap B_2) = 0.3 \neq 0.2 = 0.5 \cdot 0.4 = P(B_1) P(B_2),$$

quindi gli eventi B_1 e B_2 sono dipendenti.

Proposizione. Se A e B eventi tali che P(A) > 0 e P(B) > 0, allora le seguenti uguaglianze sono equivalenti:

- (i) $P(A \cap B) = P(A) P(B)$,
- (ii) P(A|B) = P(A),
- (iii) P(B|A) = P(B).

Dimostrazione. (i) \Rightarrow (ii):

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) P(B)}{P(B)} = P(A).$$

 $(ii) \Rightarrow (iii)$:

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A|B) P(B)}{P(A)} = \frac{P(A) P(B)}{P(A)} = P(B).$$

 $(iii) \Rightarrow (i)$:

$$P(A \cap B) = P(A) P(B|A) = P(A) P(B).$$

Esercizio. Nell'esperimento che consiste nel lancio di n monete non truccate, sia $T_1 = \{\text{esce testa al primo lancio}\}, U = \{\text{esce lo stesso risultato negli } n \text{ lanci}\}, A = \{\text{esce testa almeno 1 volta}\}.$ Mostrare che T_1 e U sono indipendenti, ed inoltre che T_1 e A non sono indipendenti. Mostrare che A e U sono indipendenti se, e solo se, n = 1.

Nota. Se per gli eventi A e B risulta $A \subset B$, allora sussiste indipendenza tra i 2 eventi se e solo se P(A) = 0 oppure P(B) = 1.

Nota. Se P(A) = 0 oppure P(A) = 1, allora l'evento A è indipendente da qualsiasi altro evento B.

Proposizione. Se E ed F sono eventi indipendenti, allora E ed \overline{F} sono indipendenti. **Dimostrazione.** Poichè risulta $E = (E \cap F) \cup (E \cap \overline{F})$, con $E \cap F$ ed $E \cap \overline{F}$ eventi incompatibili, dalla proprietà di additività finita segue

$$P(E) = P(E \cap F) + P(E \cap \overline{F}).$$

Poiché per ipotesi E ed F sono eventi indipendenti, si ha

$$P(E) = P(E) P(F) + P(E \cap \overline{F}),$$

ossia

$$P(E \cap \overline{F}) = P(E) - P(E)P(F) = P(E)[1 - P(F)] = P(E)P(\overline{F}).$$

Quindi E ed \overline{F} sono indipendenti.

Notiamo pertanto che se E è indipendente da F, la probabilità che E si realizzi non è modificata dalla realizzazione o meno di F.

Inoltre, se E ed F sono indipendenti, tali sono anche \overline{E} ed F, e gli eventi \overline{E} ed \overline{F} . Nel prossimo esempio vedremo che se E è indipendente da F e da G, allora non è detto che E sia indipendente da $F \cap G$.

Esempio. Consideriamo i seguenti eventi nel lancio di due dadi non truccati: $E = \{\text{la somma dei dadi è 7}\}, F = \{\text{il primo dado dà 4}\}, G = \{\text{il secondo dado dà 3}\}.$ Esaminare l'indipendenza delle coppie di eventi E ed F, E e G, E ed $F \cap G$.

Soluzione. L'evento E è indipendente da F ed anche da G, in quanto

$$P(E \cap F) = P(\{(4,3)\}) = \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{6} = P(E)P(F),$$

$$P(E \cap G) = P(\{(4,3)\}) = \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{6} = P(E)P(G).$$

Inoltre, poiché $P(E|F\cap G)=1$, l'evento E non è indipendente da $F\cap G$.

Ispirandoci a questo esempio, appare ragionevole definire l'indipendenza di tre eventi non limitandosi a richiedere l'indipendenza delle 3 possibili coppie, ma imponendo anche una condizione che coinvolga complessivamente i 3 eventi. **Definizione.** Tre eventi E, F, G si dicono indipendenti se

$$P(E \cap F \cap G) = P(E) P(F) P(G)$$

$$P(E \cap F) = P(E) P(F)$$

$$P(E \cap G) = P(E) P(G)$$

$$P(F \cap G) = P(F) P(G)$$

Si noti che se E, F, G sono indipendenti, allora E è indipendente da ogni evento formato a partire da F e G. Ad esempio E è indipendente da $F \cup G$. Infatti si ha

$$\begin{split} P(E\cap(F\cup G)) &= P((E\cap F)\cup(E\cap G)) \\ &= P(E\cap F) + P(E\cap G) - P(E\cap F\cap G) \\ &= P(E)\,P(F) + P(E)\,P(G) - P(E)\,P(F\cap G) \\ &= P(E)\,[P(F) + P(G) - P(F\cap G)] \\ &= P(E)\,P(F\cup G). \end{split}$$