CLAIMS

We claim:

- 1 1. A waveguide comprising:
- at least one outer surface defining a waveguide cavity; and
- at least one inner surface positioned within said waveguide cavity, wherein said
- 4 inner surface comprises a frequency selective surface (FSS) having a plurality of
- 5 frequency selective surface elements coupled to at least one substrate, said substrate
- 6 defining a first propagation medium such that an RF signal having a first wavelength in
- 7 said first propagation medium can pass through said frequency selective surface;
- 8 wherein said frequency selective surface is coupled to a second propagation
- 9 medium such that in said second propagation medium said RF signal has a second
- 10 wavelength which is at least twice as long as a physical distance between centers of
- 11 adjacent ones of said frequency selective surface elements.
- 1 2. The waveguide of claim 1, wherein said second wavelength is different than
- 2 said first wavelength.
- 1 3. The waveguide of claim 1, wherein said substrate comprises a dielectric having
- 2 at least one of a relative permittivity and a relative permeability which is greater than 3.
- 1 4. The waveguide of claim 1, wherein said frequency selective surface comprises
- 2 a plurality of dielectric layers.

{WP121738;3}

- 1 5. The waveguide of claim 1, wherein said frequency selective surface comprises
- 2 at least one dielectric layer for matching an impedance of said first propagation
- medium to an impedance of said second propagation medium.
- 1 6. The waveguide of claim 1, wherein said frequency selective surface elements
- 2 comprise apertures in a conductive surface.
- 7. The waveguide of claim 1, wherein said frequency selective surface elements
- 2 comprise conductive elements.
- 1 8. An antenna for microwave radiation comprising:
- 2 a first horn; and
- at least a second horn positioned within said first horn, said second horn
- 4 comprising at least one frequency selective surface having a plurality of frequency
- 5 selective surface elements coupled to at least one substrate, said substrate defining a
- 6 first propagation medium such that an RF signal having a first wavelength in said first
- 7 propagation medium can pass through said frequency selective surface;
- 8 wherein said frequency selective surface is coupled to a second propagation
- 9 medium such that in said second propagation medium said RF signal has a second
- wavelength which is at least twice as long as a physical distance between centers of
- 11 adjacent ones of said frequency selective surface elements.

- 1 9. The antenna of claim 8, wherein said second wavelength is different than said
- 2 first wavelength.
- 1 10. The antenna of claim 8, further comprising at least a third horn positioned within
- said second horn, said third horn comprising at least one frequency selective surface.
- 1 11. The antenna of claim 8, wherein said substrate comprises a dielectric having at
- least one of a permittivity and a permeability which is greater than 3.
- 1 12. The antenna of claim 8, wherein said frequency selective surface elements
- 2 comprise apertures in a conductive surface.
- 1 13. The antenna of claim 8, wherein said frequency selective surface elements
- 2 comprise conductive elements.
- 1 14. The antenna of claim 8, wherein said frequency selective surface comprises a
- 2 plurality of dielectric layers.
- 1 15. The antenna of claim 8, wherein said frequency selective surface comprises at
- 2 least one dielectric layer matching an impedance of said first propagation medium to
- an impedance of said second propagation medium.
- 1 16. A waveguide horn antenna comprising,

{WP121738;3} 32

2		a tapered hollow metallic conductor; and	
3		a frequency selective surface comprising a substrate and an array of elements	
4	defining at least one wall of said horn, said frequency selective surface positioned for		
5	confining and guiding a propagating electromagnetic wave;		
6		said substrate having at least one of a permeability and a permittivity greater	
7	than	than about three.	
1	17.	The waveguide horn antenna according to claim 16 wherein said frequency	
2	selective surface is comprised of concentric ring slots.		
1	18.	A method for improving performance in a horn antenna comprising the steps of:	
2		forming at least one wall of said horn antenna of a frequency selective surface;	
3	and		
4		selectively reducing at least one grating lobe of said antenna by increasing at	
5	least one of a permittivity and a permeability of a substrate comprising said frequency		
6	selective surface to a value greater than three.		
1	19.	The method according to claim 18 further comprising the step of increasing said	
2	value	of at least one of said permeability and said permittivity to between about 10 and	
3	100.		

{WP121738;3} 33

- 1 20. The method according to claim 18 further comprising the step of reducing at
- 2 least one grating lobe of said antenna by decreasing a spacing between adjacent
- 3 elements of said frequency selective surface.