UFRGS

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

Departamento de Matemática Pura e Aplicada

MAT01168 - Turma D - 2025/2

Prova da área I

1	2	3	4	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

r = r	(x,y,z) e $G=G(x,y,z)$ sao runções vetoriais.
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes\left(ec{F}+ec{G} ight)=ec{ abla} imesec{F}+ec{ abla} imesec{G}$
4.	$ec{ abla}\left(fg ight) =fec{ abla}g+gec{ abla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} \times \left(f \vec{F} \right) = \vec{\nabla} f \times \vec{F} + f \vec{\nabla} \times \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = \vec{G} \cdot \left(\vec{\nabla} \times \vec{F} \right) - \vec{F} \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla}\varphi(r)=\varphi'(r)\hat{r}$

Curvatura, torção e aceleração:				
Nome	Fórmula			
Vetor normal	$\vec{N} = \frac{\vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)}{\ \vec{r}'(t) \times \vec{r}''(t) \times \vec{r}'(t)\ }$			
Vetor binormal	$ec{B} = rac{ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)}{\ ec{r}^{\prime}(t) imesec{r}^{\prime\prime}(t)\ }$			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\left\ \frac{d\vec{T}}{dt} \right\ }{\left\ \frac{d\vec{r}}{dt} \right\ } = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}'(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ = \left\ rac{dec{B}}{rac{dt}{dt}} ight\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

1 3				
$\frac{d\vec{T}}{ds}$	=		$\kappa \vec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (3.0 pontos) Considere a trajetória de uma partícula ao longo da curva parametrizada por

$$\vec{r}(t) = \operatorname{sen}(t)\vec{i} + \cos(3t)\vec{j} + \operatorname{sen}(2t)\vec{k}, \quad 0 \le t \le 2\pi,$$

responda o que se pede.

- a) (0.75 ponto) Curvatura em $t=\pi.$
- b) (0.75 ponto) Torção em $t = \pi$.
- c) (0.75 ponto) Aceleração normal e aceleração tangencial em
 $t=\pi.$
- d) (0.75 ponto) Suponha que a partícula dê uma segunda volta na mesma trajetória, isto é, $2\pi \le t \le 4\pi$, mas com uma outra cinética, em vez daquela fixada pela parametrização. Nesse caso, suponha uma aceleração tangencial constante igual a 1 m/s² e a velocidade escalar em $t=2\pi$ igual a π m/s. Calcule a velocidade escalar em $t=3\pi$ e a aceleração normal em $t=3\pi$.

- Questão 2 (3.0 pontos) Considere o campo vetorial $\vec{F} = (3yz^2 + z + 1)\vec{i} + 3xz^2\vec{j} + (6xyz + x)\vec{k}$ e a curva C dada por $\vec{r}(t) = (t+1)\vec{i} + t^2\vec{j} + t^3\vec{k}$, $0 \le t \le 1$. Responda os itens abaixo.
 - a) (0.5 ponto) Mostre que \vec{F} é um campo conservativo.
 - b) (0.5 ponto) Calcule o potencial de \vec{F} , isto é, o campo escalar φ tal que $\vec{F}=\vec{\nabla}\varphi$.
 - c) (1.0 ponto) Calcule a integral de linha $\int_C \vec{F} \cdot d\vec{r}$ usando o teorema fundamental para integral de linhas.
 - d) (1.0 ponto) Calcule a integral de linha $\int_C \vec{F} \cdot d\vec{r}$ por integração direta.

 \bullet Questão 4 (2.5 pontos) Considere a circunferência que limita a superfície aberta de equação

$$z = \sqrt{x^2 + y^2}, \ 0 \le z \le 1$$

orientada no sentido anti-horário (em relação ao eixo z) e o campo $\vec{F} = y\vec{i} - x\vec{j} + yz\vec{k}.$

- (a) (1.0 ponto) Calcule o valor de $\oint_C \vec{F} \cdot d\vec{r}$ usando integração direta.
- (b) (1.5 ponto) Calcule o valor de $\oint_C \vec{F} \cdot d\vec{r}$ usando o teorema de Stokes.