Cours 15: 10 avril 2019 Lignes de niveau

Le but est de donner une méthode pour tracer les lignes de niveau d'une fonction à deux variables par exemple

$$f(x,y) = x^2 + 2y^2 + 2xy$$

1. Préparation des fonctions élémentaires : avec $f(x,y) = x^2 + 2y^2 + 2xy$:

Attention : par la suite il suffira de changer f en g et ∇f en ∇g pour avoir les lignes de niveau d'une autre fonction g

- (a) Enregistrer la fonction def f(u): qui prend pour seule entrée la liste ou tableau u = [x, y] et retourne f(x, y)
- (b) Enregistrer def Nabla(u) : qui prend pour seule entrée la liste pou tableau u = [x, y] et retourne le vecteur $\nabla f(x, y)$ sous forme de tableau de type array de numpy
- (c) Enregistrer def Vunit(u): qui prend pour seule entrée la liste ou tableau $\vec{u}=[x,y]$ et retourne le vecteur unitaire $\vec{\omega}=\frac{\vec{u}}{||\vec{u}||}$ sous forme de tableau de type array de numpy
- 2. Construire une fonction def points (n,pas,x,y) : qui renvoie une liste $A = [A_i]_{i \in [[0,n-1]]}$ contenant n points A_i sur la ligne de niveau \mathcal{C}_p où $k = f(A_0)$ en commençant par $A_0 = [x,y]$ et où les points suivants A_i seront construits par récurrence de la manière suivante :
 - (a) En A_i supposé sur la ligne de niveau C_0 on calcule vecteur tangent unitaire \overrightarrow{T} à partir de $\nabla f(A_i)$
 - (b) On calcule le point intermédiaire B_i tel que $\overrightarrow{A_iB_i}=\ \mathtt{pas}\ \overrightarrow{T}$
 - (c) On calcule A_{i+1} tel que $\overrightarrow{OA_{i+1}} = \overrightarrow{OB_i} + \lambda \nabla f(B_i)$ Où λ est tel que, d'après la formule de Taylor-Young à l'ordre 1, le point A_{i+1} soit sur la ligne de niveau \mathcal{C}_k où $k = f(A_0)$. La valeur de λ est supposée être faible devant celle du pas

Par exemple pour 10 points avec un pas de 0.5 à partir de (1,0) on trouve >>> A=points(10,0.5,1,0)

>>> A=[[1. , 0.], [0.62, 0.32], [0.20, 0.59], [-0.23, 0.81], [-0.70, 0.96], [-1.18, 0.98], [-1.42, 0.84], [-1.44, 0.52], [-1.15, 0.14], [-0.79, -0.18]]

3. À partir de A= points(n,pas,1,0) avec n=3000 : et pas=1/100 : , tracer la ligne de niveau C_1 ci contre qui passe par le point $A_0 = [1,0]$

- 4. Donner la méthode de dichotomie def dicho(g,a,b): qui retourne à la précision 10^{-6} près une solution de g(x) = 0 sur un intervalle [a, b] si $g(a)g(b) \le 0$ sinon elle ne retourne rien
- 5. Tester votre fonction en donnant après reconnaissance graphique les 3 solutions de l'équation $e^x=3x^2$ à 10^{-6} près .

Vérifier que le produit des solutions vaut : -1.559156

6. Améliorer la fonction def dicho(g,a,b): pour qu'elle retourne une solution si elle existe de g(x)=0 à 10^{-6} près en cherchera d'abord un intervalle $[c,d]\subset [a,b]$ tel que $d-c\leq \frac{b-a}{100}$ et $g(c)g(d)\leq 0$.

Si aucun changement de signe $g(c)g(d) \leq 0$ de ce type n'est repéré , la fonction renvoie à nouveau l'ensemble vide.

7. Ecrire une procédure def lignes(n,k0,k1): qui dessine les lignes de niveau de $f(x,y) = x^2 + 2y^2 + 2xy = k$ pour k allant de k0 à k1 en recherchant les départs de la ligne de niveau sur la droite y = x du plan .

8. Autre exemple : Dessiner les lignes de niveau de $h(x,y)=x^4+y^4-4xy$

