$y = ax^2 + bx + c$ funksiýa, onuň häsiýetleri we grafigi

Kesgitleme. $y = ax^2 + bx + c$ görnüşli formula bilen berlen funksiýa kwadrat funksiýa diýilýär (bu ýerde x – özbaşdak üýtgeýän ululyk, a, b we c – käbir sanlar, özi hem $a \neq 0$). $y = ax^2$ görnüşdäki funksiýa a = 1 bolanda $y = x^2$ görnüşe eýe bolýar.. Onuň grafigi depesi koordinatalar başlangyjynda bolan, şahalary bolsa ýokaryk ugrukdyrylan **paraboladyr.**

a> 0 bolan ýagdaýyna seredeliň. $y=2x^2$ funksiýanyň grafigi \square ni guralyň. Ol grafigi $y=x^2$ funksiýanyň grafiginden peýdalanyp, gurmak amatlydyr. Bu funksiýalaryň ikisiniň hem bahalarynyň tablisasyny důzeliň:

X	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2
$y = x^2$	4	2,25	1	0,25	0	0,25	1	2,25	4
$y = 2x^2$	8	4,5	2	0,5	0	0,5	2	4,5	8

Surat 1

Tablisadan görnüşi ýaly, x-iň noldan tapawutly islen □ dik bahasynda $y = 2x^2$ funksiýanyň bahalary $y = x^2$ funksiýanyň degişli bahalaryndan 2 esse uludyr. Tablisadan peýdalanyp, ilki $y = x^2$ funksiýanyň grafigini guralyň (1-nji surat). Soňra $y = x^2$ funksiýanyň grafiginiň her bir nokadyny ol nokatdan Ox okuna çenli aralygy iki esse ulaldyp ýokary ýanyna göçürsek, $y = 2x^2$ funksiýanyň grafigini alarys. Başgaça aýdylanda $y = 2x^2$ funksiýanyň grafigi $y = x^2$ funksiýanyň grafigini $y = x^2$ funksiýanyň grafigini $y = x^2$ funksiýanyň grafigini oy okunyň boýuna 2 esse süýndürmek arkaly alynýar. Koordinatalary tablisada görkezilen nokatlaryň $y = 2x^2$ funksiýanyň grafigine degişlidigini görmek kyn däldir.

Indi $y = \frac{1}{2}x^2$ = funksiýanyň grafigini guralyň. Onuň üçin $y = x^2$ we $y = \frac{1}{2}x^2$ funksiýalaryň bahalarynyň tablisasyny düzeliň:

X	-3	-2	-1	0	1	2	3
$y = x^2$	9	4	1	0	1	4	9
$y = \frac{1}{2}x^2$	4,5	2	0,5	0	0,5	2	4,5

x-iň noldan tapawutly islendik bahasynda $y = \frac{1}{2}x^2$ funksiýanyň bahalary $y = x^2$ funksiýanyň degişli bahalaryndan 2 esse kiçidir. Grafigi 1-nji suratyň sagtarapynda ýerleşendir.

Görşüňiz ýaly, $y = ax^2$ funksiýanyň grafigini $y = x^2$ funksiýanyň grafigini özgertmek arkaly almak amatlydyr. Onuň üçin $y = x^2$ parabolany a > 1 bolanda Oy okuň boýuna a esse süýndürmeli, 0 < a < 1 bolanda bolsa, parabolanyň degişli nokatlarynyň ordinatalarynyň a bölegini almaly.

Umuman $y = ax^2$ we $y = -ax^2$ funksiýalaryň grafikleri x oka görä simmetrikdir. $y = ax^2$ funksiýanyň grafiklerine hem parabola diýilýär.

a > 0 bolanda, $y = ax^2$ funksiýanyň häsiýetlerine seredeliň.

- 1. Eger x = 0 bolsa, onda y = 0. Funksiýanyň grafigi koordinatalar başlangyjyndan geçýär.
- Eger x ≠ 0 bolsa, onda y > 0. Funksiýanyň grafigi ýokarky ýarymtekizlikde ýatýar.
- 3. Argumentiň garşylykly bahalaryna funksiýanyň deň bahalary degişli. Funksiýanyň grafigi Oy oka görä simmetrikdir.
- 4. Funksiýa ($-\infty$; 0] aralykda kemelýär, [0; $+\infty$) aralykda bolsa artýar.
- 5. Funksiýanyň iň kiçi bahasy nola deň, iň uly bahasy

ýokdur. Funksiýa özüniň iň kiçi bahasyna x = 0 bolanda eýe bolýar.

Funksiýanyň bahalar ýaýlasy $[0; +\infty)$ san aralygydyr.