

EX-2023-00247117- -UNC-ME#FAMAF

PROGRAMA DE ASIGNATURA	
ASIGNATURA: Introducción a los Algoritmos	AÑO: 2023
CARACTER: Obligatoria	UBICACIÓN EN LA CARRERA: 1° año 1° cuatrimestre / Redictado: 2° cuatrimestre
CARRERA: Licenciatura en Ciencias de la Computación	
REGIMEN: Cuatrimestral	CARGA HORARIA: 120 horas

FUNDAMENTACIÓN Y OBJETIVOS

Introducción a los Algoritmos es la primera materia de la Licenciatura en Ciencias de la Computación directamente relacionada con la programación. Se busca que el/la estudiante pueda adquirir por un lado cierta familiaridad en la manipulación de un lenguaje formal, comenzando con la aritmética y continuando con un lenguaje de programación funcional, lógica proposicional y lógica de primer orden; y por el otro, comprender a los programas como un objeto formal, con una sintaxis y semántica bien definida, cuyo comportamiento puede describirse rigurosamente. Como paradigma de programación que atraviesa estos contenidos se elige el paradigma funcional, debido a la simplicidad de su sintaxis.

Los objetivos que se buscan en esta materia son que el/la estudiante adquiera:

- -capacidad de análisis de problemas
- -formalización a soluciones de problemas
- -manipulación de expresiones formales
- -pruebas de corrección de expresiones formales
- -familiaridad con conceptos básicos de programación

CONTENIDO

I Introducción

Historia de la Computación. Software libre.

Introducción a la metodología de trabajo con expresiones aritméticas. Precedencia y tipado. Validez y satisfacibilidad. Funciones.

Il Introducción a la programación funcional

Formalismo básico. Números naturales.

Tuplas. Listas, constructores y operadores, propiedades. Modelo computacional. Diseño de programas recursivos. Demostraciones por inducción.

III Semántica de la lógica proposicional

Operadores Booleanos. Tablas de Verdad. Equivalencia, disyunción, conjunción, implicación, negación, discrepancia. Representación del conocimiento en lógica proposicional. Introducción al análisis de razonamientos.

IV Cálculo proposicional

Estructura de las pruebas formales. Axioma y teoremas. Propiedades de la lógica proposicional. Demostraciones: Equivalencia, disyunción, conjunción, implicación, negación, discrepancia.

V Cálculo de predicados

Noción de predicado. Cuantificador universal. Cuantificador existencial. Enfoque semántico (interpretación) y enfoque sintáctico (leyes). Demostraciones.

VI Especificaciones

Representación del conocimiento en lógica de predicados. Concepto de especificación formal de un problema. Ejemplos y resolución de problemas.

EX-2023-00247117- -UNC-ME#FAMAF

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

Cálculo de Programas, J. Blanco, D. Barsotti, S. Smith, 2009.

Discrete Mathematics Using a Computer, John O'Donnell, Cordelia Hall and Rex Page. 2nd Edition, Published by Springer, 2006.

BIBLIOGRAFÍA COMPLEMENTARIA

Material de Estudio. Acosta, Cherini, Losano, Pagano, 2014.

EVALUACIÓN

FORMAS DE EVALUACIÓN

Dos exámenes parciales con sus respectivos recuperatorios.

Examen final escrito.

REGULARIDAD

Aprobar las dos evaluaciones parciales o sus correspondientes recuperatorios.

PROMOCIÓN

- Aprobar todas las evaluaciones parciales con una nota no menor a 6 (seis), y obteniendo un promedio no menor a 7 (siete).
- Aprobar un coloquio.