LU ICPC kladīte;)

Contents

1. C++ programming language	1
1.1. Input/Output disable sync	1
1.2. Optimization pragmas	1
1.3. Printing structs	1
1.4. Lambda func for sorting	1
2. Algebra	
2.1. Binary exponentiation	1
2.2. Extended euclidean	1
2.3. Modular inversion & division	1
2.4. Linear Diophantine equation	1
2.5. Linear sieve	2
2.6. Matrix multiplication	
2.7. FFT	
3. Geometry	2
3.1. Dot product	2
3.2. Cross product	2
3.3. Line-point distance	2
3.4. Shoelace formula	2
3.5. Segment to line	3
3.6. Three point orientation	3
3.7. Line-line intersection	3
3.8. Check if two segments intersect	3
3.9. Graham's scan	3
3.10. Circumradius	
4. Data structures	4
4.1. Treap	4
4.2. Lazy segment tree	4
4.3. Sparse table	4
4.4. Fenwick tree	
4.5. Trie	4
4.6. Aho-Corasick	5
4.7. Disjoint Set Union	5
4.8. Merge sort tree	
5. Graph algorithms	
5.1. Bellman-Ford	6
5.2. Dijkstra	6
5.3. Floyd-Warshall	
5.4. Bridges & articulations	
5.5. Dinic's max flow / matching	
5.6. Flow with demands	
5.7. Kosaraju's algorithm	
5.8. Lowest Common Ancestor	
5.9. General matching in a graph	
6. String Processing	
6.1. Knuth-Morris-Pratt (KMP)	
6.2. Suffix Array	
	~

6.3. Longest common prefix with SA
6.4. Rabin-Karp
6.5. Z-function
6.6. Manacher's
7. Dynamic programming
7.1. Convex hull trick
7.2. Longest Increasing Subsequence
7.3. SOS DP (Sum over Subsets)
,

C++ programming language

1.1. Input/Output disable sync

```
ios_base::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
```

1.2. Optimization pragmas

```
// change to 03 to disable fast-math for geometry problems
#pragma GCC optimize("0fast,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt,tune=native")
```

1.3. Printing structs

```
ostream& operator<<(ostream& os, const pair<int, int>& p) {
   return os << "(" << p.first << ", " << p.second << ")";
}</pre>
```

1.4. Lambda func for sorting

```
using ii = pair<int,int>;
vector<ii> fracs = {{1, 2}, {3, 4}, {1, 3}};
// sort positive rational numbers
sort(fracs.begin(), fracs.end(),
   [](const ii& a, const ii& b) {
   return a.fi*b.se < b.fi*a.se;
});</pre>
```

Algebra

2.1. Binary exponentiation

```
ll m_pow(ll base, ll exp, ll mod) {
   base %= mod;
   ll result = 1;
   while (exp > 0) {
      if (exp & 1) result = ((ll)result * base) % mod;
      base = ((ll)base * base) % mod;
      exp >>= 1;
   }
   return result;
}
```

2.2. Extended euclidean

2.3. Modular inversion & division

gcd_ext defined in Section 2.2.

```
 \exists x(a \cdot x \equiv 1 \pmod{m}) \Leftrightarrow \gcd(a,m) = 1  int mod_inv(int b, int m) {    int x, y;    int g = gcd_ext(b, m, &x, &y);    if (g != 1) return -1;    return (x%m + m) % m; } int m_divide(ll a, ll b, ll m) {    int inv = mod_inv(b, m);    assert(inv != -1);    return (inv * (a % m)) % m; }
```

2.4. Linear Diophantine equation

gcd ext defined in Section 2.2.

$$\left\{x = x_0 + k \cdot \frac{b}{g}; y = y_0 - k \cdot \frac{a}{g}\right\}$$

 $a \cdot x + b \cdot y = c$

```
bool find_x0_y0(int a, int b, int c, int &x0, int &y0, int &g) {
    g = gcd_ext(abs(a), abs(b), x0, y0);
    if (c % g) return false;
    x0 *= c / g;
    y0 *= c / g;
    if (a < 0) x0 = -x0;
    if (b < 0) y0 = -y0;
    return true;
}</pre>
```

2.5. Linear sieve const int N = 10000000:

```
vector<int> lp(N+1);
vector<int> pr;
for (int i=2; i <= N; ++i) {
    if (lp[i] == 0) {
        lp[i] = i;
        pr.push back(i);
    for (int j = 0; i * pr[j] <= N; ++j) {
        lp[i * pr[j]] = pr[j];
        if (pr[j] == lp[i]) break;
}
2.6. Matrix multiplication
struct Matrix:vector<vector<int>>
{
    // "inherit" vector's constructor
    using vector::vector;
    Matrix operator *(Matrix other)
        int rows = size();
        int cols = other[0].size():
        Matrix res(rows, vector<int>(cols));
        for(int i=0;i<rows;i++)</pre>
            for(int j=0;j<other.size();j++)</pre>
                for(int k=0:k<cols:k++)</pre>
                     res[i][k]+=at(i).at(j)*other[j][k];
        return res:
};
```

2.7. FFT

```
using ld = long double;
const int N = 1 << 18;
const ld PI = acos(-1.0);
struct T {
 ld x, y;
 T() : x(0), y(0) \{ \}
 T(ld a, ld b=0) : x(a), y(b) {}
 T operator/=(ld k) { x/=k; y/=k; return (*this); }
 T operator*(T a) const { return T(x*a.x - y*a.y, x*a.y + y*a.x); }
 T operator+(T a) const { return T(x+a.x, y+a.y); }
 T operator-(T a) const { return T(x-a.x, y-a.y); }
};
void fft(T* a, int n, int s) {
 for (int i=0, j=0; i<n; i++) {
   if (i>j) swap(a[i], a[j]);
   for (int l=n/2; (j^=l) < l; l>>=1);
  for(int i = 1; (1<<i) <= n; i++){
   int M = 1 << i:
   int K = M \gg 1:
   T wn = T(\cos(s*2*PI/M), \sin(s*2*PI/M));
   for(int j = 0; j < n; j += M) {
     T w = T(1, 0);
      for(int l = j; l < K + j; ++l){}
       T t = w*a[l + K];
        a[l + K] = a[l]-t:
        a[l] = a[l] + t;
        w = wn*w:
}
void multiply(T* a, T* b, int n) {
   while (n&(n-1)) n++; // ensure n is a power of two
   fft(a,n,1);
   fft(b,n,1);
   for (int i = 0; i < n; i++) a[i] = a[i]*b[i];</pre>
   fft(a,n,-1);
    for (int i = 0; i < n; i++) a[i] /= n;
}
int main() {
 // Example polynomials: (2 + 3x) and (1 - x)
 T a[10] = \{T(2), T(3)\};
 T b[10] = \{T(1), T(-1)\};
 multiply(a, b, 4);
 for (int i = 0; i < 10; i++)
   std::cout << int(a[i].x) << " ";
```

Geometry

3.1. Dot product

$$a \cdot b = |a| |b| \cos(\theta)$$

$$a \cdot b = a_x b_x + a_y b_y$$

$$\theta = \arccos\left(\frac{a_x b_x + a_y b_y}{|a| |b|}\right)$$

Projection of a onto b:

$$\frac{a\cdot b}{|b|}$$

3.2. Cross product

$$a \times b = |a| |b| \sin(\theta)$$
$$a \times b = a_x b_y - a_y b_x$$

 θ is positive if a is clockwise from b

3.3. Line-point distance

Line given by ax + by + c = 0 and point (x_0, y_0) .

$$distance = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$

The coordinates of this point are:

$$x=\frac{b(bx_0-ay_0)-ac}{a^2+b^2}$$

$$y = \frac{a(-bx_0 + ay_0) - bc}{a^2 + b^2}$$

3.4. Shoelace formula

$$2A = \sum_{i=1}^{n} \ \begin{vmatrix} x_i & y_i \\ x_{i+1} & y_{i+1} \end{vmatrix}$$

3.5. Segment to line

$$\begin{split} \left(\left(P_x, P_y \right), \left(Q_x, Q_y \right) \right) &\to Ax + By + C = 0 \\ A &= P_y - Q_y \\ B &= Q_x - P_x \\ C &= -AP_x - BP_y \end{split}$$

Rationing the obtained line equation:

- 1. divide A,B,C by their GCD
- 2. if A < 0 or $A = 0 \land B < 0$ then multiply all by -1

3.6. Three point orientation

3.7. Line-line intersection

From system of linear equations derived Cramer's rule:

$$x = -\frac{c_1b_2 - c_2b_1}{a_1b_2 - a_2b_1}$$
$$y = -\frac{a_1c_2 - a_2c_1}{a_1b_2 - a_2b_1}$$

If the denominator equals zero, the lines are parallel or coincident.

3.8. Check if two segments intersect

```
bool on segment(Point p, Point q, Point r)
    if (q.x \le max(p.x, r.x)) \& q.x \ge min(p.x, r.x) \& \&
        q.y \leftarrow \max(p.y, r.y) \&\& q.y >= \min(p.y, r.y)
       return true:
    return false;
}
bool do intersect(Point p1, Point q1, Point p2, Point q2)
   // Find the four orientations needed for general and
    // special cases
    int o1 = orientation(p1, q1, p2);
    int o2 = orientation(p1, q1, q2);
    int o3 = orientation(p2, q2, p1);
    int o4 = orientation(p2, q2, q1);
   if (o1 != o2 && o3 != o4)
        return true;
    if (o1 == 0 && on_segment(p1, p2, q1)) return true;
   if (o2 == 0 && on segment(p1, q2, q1)) return true;
   if (o3 == 0 \&\& on segment(p2, p1, q2)) return true;
    if (04 == 0 \&\& on segment(p2, g1, g2)) return true:
```

3.9. Graham's scan

```
struct pt {double x, y;};
int orientation(pt a, pt b, pt c) {
    double v = a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
    if (v < 0) return -1: // clockwise
    if (v > 0) return +1: // counter-clockwise
    return 0;
}
bool cw(pt a, pt b, pt c, bool include_collinear) {
    int o = orientation(a, b, c);
    return o < 0 || (include_collinear && o == 0);</pre>
bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) ==
0; }
void convex hull(vector<pt>& a, bool include collinear = false) {
    pt p0 = *min element(a.begin(), a.end(), [](pt a, pt b) {
        return make pair(a.y, a.x) < make pair(b.y, b.x);</pre>
    sort(a.begin(), a.end(), [&p0](const pt& a, const pt& b) {
        int o = orientation(p0, a, b);
        if (o == 0)
            return (p0.x-a.x)*(p0.x-a.x) + (p0.v-a.v)*(p0.v-a.v)
                < (p0.x-b.x)*(p0.x-b.x) + (p0.y-b.y)*(p0.y-b.y);
        return o < 0:
    });
    if (include collinear) {
        int i = (int)a.size()-1;
        while (i \ge 0 \&\& collinear(p0, a[i], a,back())) i--:
        reverse(a.begin()+i+1, a.end());
   }
    vector<pt> st:
    for (int i = 0; i < (int)a.size(); i++) {</pre>
         while (st.size() > 1 \&\& !cw(st[st.size()-2], st.back(),
a[i], include_collinear))
            st.pop_back();
        st.push_back(a[i]);
   }
    a = st;
}
```

3.10. Circumradius

Let $a,\,b,\,c$ - sides of a triangle. A - area of the triangle. Then the circumradius is:

$$R = \frac{abc}{4A}$$

Data structures

4.1. Treap

```
// Implicit segment tree implementation
struct Node{
    int value. cnt. priority:
    Node *left, *right:
    Node(int p) : value(p), cnt(1), priority(gen()), left(NULL),
right(NULL) {};
};
typedef Node* pnode;
int get(pnode g){
    if(!q) return 0;
    return q->cnt;
}
void update cnt(pnode &q){
    if(!q) return;
    q \rightarrow cnt = get(q \rightarrow left) + get(q \rightarrow right) + 1;
}
void merge(pnode &T, pnode lef, pnode rig){
    if(!lef) {T=rig:return:}
    if(!rig){T=lef;return;}
    if(lef->priority > rig->priority){
        merge(lef->right, lef->right, rig);
        T = lef:
    else{
        merge(ria->left, lef, ria->left);
        T = ria:
    update cnt(T);
}
void split(pnode cur, pnode &lef, pnode &rig, int key){
    if(!cur){
        lef = rig = NULL;
         return;
    int id = get(cur->left) + 1;
    if(id <= key){</pre>
        split(cur->right, cur->right, rig, key - id);
        lef = cur;
    }
        split(cur->left, lef, cur->left, key);
         riq = cur;
    }
    update cnt(cur);
}
```

4.2. Lazy segment tree

```
struct SumSeamentTree{
    vector<ll> S. O. L:
    void build(ll ti, ll tl, ll tr){
        if(tl==tr){S[ti]=0[tl]; return;}
        build(ti*2, tl, (tl+tr)/2);
        build((ti*2)+1, ((tl+tr)/2)+1, tr);
        S[ti]=S[ti*2]+S[(ti*2)+1];
    void push(ll ti, ll tl, ll tr){
        S[ti] += L[ti]*(tr-tl+1);
        if(tl==tr){L[ti]=0; return;}
        L[ti+ti] \leftarrow L[ti], L[ti+ti+1] \leftarrow L[ti];
        L[ti] = 0;
   ll query(ll ti, ll tl, ll tr, ll i, ll j){
        push(ti, tl, tr);
        if(i<=tl&&tr<=j) return S[ti];</pre>
        if(tr<i||tl>j) return 0;
        ll a = query(ti*2, tl, (tl+tr)/2, i, j);
        ll b = query((ti*2)+1, ((tl+tr)/2)+1, tr, i, j);
        return a+b;
    void update(ll ti, ll tl, ll tr, ll i, ll j, ll v){
        if(i<=tl&&tr<=j){L[ti]+=v;return;}</pre>
        if(tr<i||tl>j) return;
        S[ti]+=v*(i-j+1);
        update(ti*2, tl, (tl+tr)/2, i, j, v);
        update((ti*2)+1, ((tl+tr)/2)+1, tr, i, j, v);
   }:
   ST(vector<ll> &V){
        0 = V:
        S.resize(0.size()*4, 0):
       L.resize(0.size()*4, 0):
        build(1, 0, 0.size()-1);
   }
};
4.3. Sparse table
const int N;
const int M; //log2(N)
int sparse[N][M];
void build() {
  for(int i = 0; i < n; i++)
    sparse[i][0] = v[i];
  for(int j = 1; j < M; j++)
    for(int i = 0; i < n; i++)
      sparse[i][i] =
       i + (1 << j - 1) < n
        ? min(sparse[i][j-1], sparse[i+(1 << j-1)][j-1])
        : sparse[i][j - 1];
}
int query(int a, int b){
 int pot = 32 - builtin clz(b - a) - 1;
  return min(sparse[a][pot], sparse[b - (1 << pot) + 1][pot]);</pre>
```

4.4. Fenwick tree

```
struct FenwickTree {
    vector<ll> bit; // binary indexed tree
    int n;
   FenwickTree(int n) {
        this->n = n;
        bit.assign(n, 0);
   }
   ll sum(int r) {
        ll ret = 0;
        for (; r \ge 0; r = (r \& (r + 1)) - 1)
            ret += bit[r];
        return ret;
   }
   ll sum(int l, int r) { // l to r of the og array INCLUSIVE
        return sum(r) - sum(l - 1);
    void add(int idx, ll delta) {
        for (; idx < n; idx = idx | (idx + 1))
           bit[idx] += delta:
   }
};
4.5. Trie
const int K = 26;
struct Vertex {
    int next[K]:
   bool output = false;
    Vertex() {fill(begin(next), end(next), -1);}
};
vector<Vertex> t(1); // trie nodes
void add_string(string const& s) {
   int v = 0;
    for (char ch : s) {
        int c = ch - 'a';
        if (t[v].next[c] == -1) {
            t[v].next[c] = t.size();
            t.emplace_back();
        v = t[v].next[c];
    t[v].output = true;
```

4.6. Aho-Corasick

```
const int K = 26:
struct Vertex {
    int next[K]:
    bool output = false:
    int p = -1; // parent node
    char pch; // "transition" character from parent to this node
    int link = -1; // fail link
   int go[K]; // if need more memory can delete this and use "next"
    // additional potentially useful things
    int depth = -1;
    // longest string that has an output from this vertex
    int exitlen = -1;
    Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
        fill(begin(next), end(next), -1);
        fill(begin(go), end(go), -1);
    }
};
vector<Vertex> t(1);
void add string(string const& s) {
    int v = 0:
    for (char ch : s) {
        int c = ch - 'a':
        if (t[v].next[c] == -1) {
            t[v].next[c] = t.size();
            t.emplace back(v, ch); // !!!!! ch not c
        }
        v = t[v].next[c];
    t[v].output = true;
int go(int v, char ch);
int get link(int v) {
    if (t[v].link == -1) {
        if (v == 0 || t[v].p == 0)
            t[v].link = 0;
        else
            t[v].link = go(get_link(t[v].p), t[v].pch);
    return t[v].link;
}
int go(int v, char ch) {
    int c = ch - 'a';
    if (t[v].go[c] == -1) {
        if (t[v].next[c] != -1)
            t[v].go[c] = t[v].next[c];
            // !!!!! ch not c
            t[v].go[c] = v == 0 ? 0 : go(get link(v), ch);
    return t[v].go[c];
```

```
// int go(int v, char ch) { // go without the go[K] variable
      int c = ch - 'a';
      if (t[v].next[c] == -1) {
//
//
          // !!!!! ch not c
//
          t[v].next[c] = v == 0 ? 0 : go(get_link(v), ch);
//
//
      return t[v].next[c];
// }
// helper function
int get depth(int v){
   if (t[v].depth == -1){
       if (v == 0) {
           t[v].depth = 0;
        } else {
           t[v].depth = get depth(t[v].p)+1;
   }
    return t[v].depth:
// helper function
int get exitlen(int v){
   if (t[v].exitlen == -1){
       if (v == 0){
            t[v].exitlen = 0;
       } else if (t[v].output) {
           t[v].exitlen = get depth(v);
            t[v].exitlen = get_exitlen(get_link(v));
   }
    return t[v].exitlen;
4.7. Disjoint Set Union
struct DSU {
   vector<int> parent, rank;
   DSU(int n) {
        parent.resize(n); rank.resize(n);
        for (int i = 0; i < n; i++)
           parent[i] = i;
   }
   int root(int a) {
        if (parent[a] == a) return a;
        return parent[a] = find(parent[a]);
   void unite(int a, int b) {
       a = find(a), b = find(b);
       if (a == b) return;
       if (rank[a] < rank[b]) {</pre>
           parent[a] = b;
       } else if (rank[a] > rank[b]) {
           parent[b] = a;
       } else {
           parent[b] = a;
            rank[a] = rank[a] + 1;
   }
};
```

4.8. Merge sort tree

```
struct MergeSortTree {
    int size:
    vector<vector<ll>> values:
    void init(int n){
        size = 1;
        while (size < n){</pre>
            size *= 2;
        values.resize(size*2, vl(0));
    void build(vl &arr, int x, int lx, int rx){
        if (rx - lx == 1){
            if (lx < arr.size()){</pre>
                values[x].pb(arr[lx]);
            } else {
                values[x].pb(-1);
            }
            return;
        int m = (lx+rx)/2:
        build(arr, 2 * x + 1, lx, m);
        build(arr, 2 * x + 2, m, rx):
        int i = 0:
        int j = 0;
        int asize = values[2*x+1].size();
        while (i < asize && j < asize){
            if (values[2*x+1][i] < values[2*x+2][j]){</pre>
                values[x].pb(values[2*x+1][i]);
                1++:
            } else {
                values[x].pb(values[2*x+2][j]);
                1++;
            }
        while (i < asize) {</pre>
            values[x].pb(values[2*x+1][i]);
        while (j < asize){</pre>
            values[x].pb(values[2*x+2][j]);
            j++;
        }
    void build(vl &arr){
        build(arr, 0, 0, size);
```

```
int calc(int l, int r, int x, int lx, int rx, int k){
   if (lx >= r || rx <= l) return 0;
    // (elements strictly less than k currently)
   if (lx >= l \& rx <= r)  { // CHANGE HEURISTIC HERE
        int lft = -1;
        int rght = values[x].size();
        while (rght - lft > 1){
           int mid = (lft+rght)/2;
            if (values[x][mid] < k){</pre>
               lft = mid;
           } else {
                rght = mid;
           }
        }
        return lft+1;
    int m = (lx+rx)/2:
    int values1 = calc(l, r, 2*x+1, lx, m, k):
    int values2 = calc(l, r, 2*x+2, m, rx, k):
    return values1 + values2:
int calc(int l, int r, int k){
    return calc(l, r, 0, 0, size, k);
                Graph algorithms
```

5.1. Bellman-Ford

};

```
void solve()
    vector<int> d(n, INF);
    d[v] = 0:
    for (::) {
        bool any = false;
        for (Edge e : edges)
            if (d[e.a] < INF)
                if (d[e.b] > d[e.a] + e.cost) {
                    d[e.b] = d[e.a] + e.cost;
                    any = true;
        if (!any)
            break;
    // display d, for example, on the screen
}
```

5.2. Dijkstra

```
vector<int> adj[N], adjw[N];
int dist[N];
memset(dist, 63, sizeof(dist));
priority_queue<pii> pq;
```

```
pq.push(mp(0,0));
while (!pq.empty()) {
 int u = pq.top().nd;
 int d = -pq.top().st;
 pq.pop();
  if (d > dist[u]) continue;
  for (int i = 0; i < adj[u].size(); ++i) {</pre>
   int v = adj[u][i];
   int w = adjw[u][i];
   if (dist[u] + w < dist[v])</pre>
      dist[v] = dist[u]+w, pq.push(mp(-dist[v], v));
 }
}
5.3. Floyd-Warshall
int adj[N][N]; // no-edge = INF
for (int k = 0; k < n; ++k)
 for (int i = 0; i < n; ++i)
   for (int j = 0; j < n; ++j)
      adj[i][j] = min(adj[i][j], adj[i][k]+adj[k][j]);
5.4. Bridges & articulations
// Articulation points and Bridges O(V+E)
int par[N], art[N], low[N], num[N], ch[N], cnt;
void articulation(int u) {
 low[u] = num[u] = ++cnt;
  for (int v : adj[u]) {
   if (!num[v]) {
      par[v] = u; ch[u]++;
      articulation(v);
      if (low[v] >= num[u]) art[u] = 1;
      if (low[v] > num[u]) { /* u-v bridge */ }
     low[u] = min(low[u], low[v]);
   else if (v != par[u]) low[u] = min(low[u], num[v]);
}
for (int i = 0; i < n; ++i) if (!num[i])
 articulation(i), art[i] = ch[i]>1;
5.5. Dinic's max flow / matching
Time complexity:
• generally: O(EV^2)
• small flow: O(F(V+E))
• bipartite graph or unit flow: O(E\sqrt{V})
Usage:
• dinic()
• add_edge(from, to, capacity)
• recover() (optional)
```

```
const ll N=1e5+5, INF=1e9;
struct edge{ll v, c, f;};
ll src=0, snk=N-1, h[N], ptr[N];
vector<edge> edgs;
vector<ll> q[N];
void add edge(ll u, ll v, ll c) {
    edgs.push_back(\{v,c,0\}), edgs.push_back(\{u,0,0\});
    ll k=edgs.size();
    g[u].push_back(k), g[v].push_back(k+1);
bool bfs() {
    memset(h, 0, sizeof(h));
    queue<ll> q;
    h[src]=1;
    q.push(src);
    while(!q.emptv()){
        ll u=q.front();q.pop();
        for(ll i:a[u]){
            ll v=edgs[i].v;
            if(!h[v]&&edgs[i].f<edgs[i].c)</pre>
                q.push(v),h[v]=h[u]+1;
        }
    }
    return h[snk];
ll dfs(ll u, ll flow){
    if(!flow or u==snk) return flow;
    for(ll &i=ptr[u];i<g[u].size();i++){</pre>
        edge &dir=edgs[g[u][i]],&rev=edgs[g[u][i]^1];
        if(h[dir.v]!=h[u]+1) continue;
        ll inc=min(flow,dir.c-dir.f);
        inc=dfs(dir.v,inc);
        if(inc){ dir.f+=inc,rev.f-=inc; return inc;}
    }
    return 0;
}
ll dinic(){
    ll flow=0:
    while(bfs()){
        memset(ptr.0.sizeof(ptr));
        while(ll inc=dfs(src,INF)) flow += inc;
    }
    return flow;
vector<pair<ii,ll>> recover() {
    vector<pair<ii.ll>> res:
    for(ll i=0;i<edgs.size();i+=2){</pre>
        if(edgs[i].f>0){
            ll v=edgs[i].v, u=edgs[i^1].v;
            res.push back({{u,v},edgs[i].f});
        }
    }
    return res;
}
```

5.6. Flow with demands

Finding an arbitrary flow

- Assume a network with [L;R] on edges (some may have L=0), let's call it old network.
- Create a New Source and New Sink (this will be the src and snk for Dinic).
- Modelling network:
- 1. Every edge from the old network will have cost R-L
- 2. Add an edge from New Source to every vertex v with cost:
 - S(L) for every (u, v). (sum all L that LEAVES v)
- 3. Add an edge from every vertex v to New Sink with cost:
 - S(L) for every (v, w). (sum all L that ARRIVES v)
- 4. Add an edge from Old Source to Old Sink with cost INF (circulation problem)
- The Network will be valid if and only if the flow saturates the network (max flow == S(L))

Finding Min Flow

- To find min flow that satisfies just do a binary search in the (Old Sink
 Old Source) edge
- The cost of this edge represents all the flow from old network
- Min flow = S(L) that arrives in Old Sink + flow that leaves (Old Sink -> Old Source)

5.7. Kosaraju's algorithm

```
const int N = 2e5 + 5;
vector<int> adj[N], adjt[N];
int n, ordn, scc_cnt, vis[N], ord[N], scc[N];
//Directed Version
void dfs(int u) {
 vis[u] = 1;
 for (auto v : adj[u]) if (!vis[v]) dfs(v);
 ord[ordn++] = u;
void dfst(int u) {
 scc[u] = scc cnt, vis[u] = 0;
 for (auto v : adjt[u]) if (vis[v]) dfst(v);
// add edge: u -> v
void add edge(int u, int v){
 adi[u].push back(v):
 adjt[v].push back(u);
// run kosaraiu
void kosaraju(){
 for (int i = 1; i <= n; ++i) if (!vis[i]) dfs(i);
 for (int i = ordn - 1; i \ge 0; --i) if (vis[ord[i]]) scc cnt++,
dfst(ord[i]):
}
```

5.8. Lowest Common Ancestor

```
const int N = 1e6. M = 25:
int anc[M][N], h[N], rt;
// TODO: Calculate h[u] and set anc[0][u] = parent of node u for
each u
// build (sparse table)
anc[0][rt] = rt; // set parent of the root to itself
for (int i = 1; i < M; ++i)
 for (int j = 1; j \le n; ++j)
   anc[i][j] = anc[i-1][anc[i-1][j]];
// query
int lca(int u, int v) {
 if (h[u] < h[v]) swap(u, v);
 for (int i = M-1; i \ge 0; --i) if (h[u]-(1 << i) \ge h[v])
   u = anc[i][u];
 if (u == v) return u;
  for (int i = M-1; i \ge 0; --i) if (anc[i][u] != anc[i][v])
   u = anc[i][u], v = anc[i][v];
  return anc[0][u]:
```

5.9. General matching in a graph

```
vector<int> Blossom(vector<vector<int>> graph){
  int n = graph.size();
  int timer = -1;
  vector<int> mate(n, -1), label(n), parent(n),
              orig(n), aux(n, -1), q;
  auto lca = [\&](int x, int y) {
    for (timer++; ; swap(x, y)) {
     if (x == -1) continue;
     if (aux[x] == timer) return x;
     aux[x] = timer;
     x = (mate[x] == -1 ? -1 : orig[parent[mate[x]]]);
  };
  auto blossom = [&](int v, int w, int a) {
    while (orig[v] != a) {
     parent[v] = w; w = mate[v];
     if (label[w] == 1) label[w] = 0, q.push_back(w);
     orig[v] = orig[w] = a; v = parent[w];
  };
  auto augment = [\&](int v) {
   while (v != -1) {
     int pv = parent[v]. nv = mate[pv]:
     mate[v] = pv; mate[pv] = v; v = nv;
  };
  auto bfs = [&](int root) {
   fill(label.begin(), label.end(), -1);
   iota(orig.begin(), orig.end(), 0);
   a.clear():
    label[root] = 0; q.push back(root);
    for (int i = 0; i < (int)q.size(); ++i) {
     int v = q[i];
     for (auto x : graph[v]) {
       if (label[x] == -1) {
          label[x] = 1; parent[x] = v;
          if (mate[x] == -1)
            return augment(x), 1;
          label[mate[x]] = 0; q.push_back(mate[x]);
        } else if (label[x] == 0 \&\& \text{ orig}[v] != \text{ orig}[x]) {
          int a = lca(orig[v], orig[x]);
          blossom(x, v, a); blossom(v, x, a);
       }
     }
   }
   return 0;
  for (int i = 0; i < n; i++)
   if (mate[i] == -1)
     bfs(i):
  return mate:
```

String Processing

6.1. Knuth-Morris-Pratt (KMP)

```
// Knuth-Morris-Pratt - String Matching O(n+m)
char s[N], p[N];
int b[N], n, m; // n = strlen(s), m = strlen(p);
void kmppre() {
  b[0] = -1;
  for (int i = 0, j = -1; i < m; b[++i] = ++j)
    while (j \ge 0 \text{ and } p[i] != p[j])
      i = b[i];
}
void kmp() {
  for (int i = 0, j = 0; i < n;) {
    while (j \ge 0 \text{ and } s[i] != p[j]) j=b[j];
    i++, j++;
    if (j == m) {
     // match position i-j
     j = b[j];
  }
6.2. Suffix Array
// s.push('$');
vector<int> suffix array(string &s){
  int n = s.size(), alph = 256;
  vector<int> cnt(max(n, alph)), p(n), c(n);
  for(auto c : s) cnt[c]++;
  for(int i = 1; i < alph; i++) cnt[i] += cnt[i - 1];</pre>
  for(int i = 0; i < n; i++) p[--cnt[s[i]]] = i;
  for(int i = 1; i < n; i++)
    c[p[i]] = c[p[i - 1]] + (s[p[i]] != s[p[i - 1]]);
  vector<int> c2(n), p2(n);
  for(int k = 0; (1 << k) < n; k++){
    int classes = c[p[n - 1]] + 1;
    fill(cnt.begin(), cnt.begin() + classes, 0);
    for(int i = 0; i < n; i++) p2[i] = (p[i] - (1 << k) + n)%n;
    for(int i = 0; i < n; i++) cnt[c[i]]++;
    for(int i = 1; i < classes; i++) cnt[i] += cnt[i - 1];</pre>
    for(int i = n - 1; i \ge 0; i - - p[--cnt[c[p2[i]]]] = p2[i];
    c2[p[0]] = 0:
    for(int i = 1; i < n; i++){
      pair<int, int> b1 = {c[p[i]], c[(p[i] + (1 << k))%n]};
     pair<int, int> b2 = {c[p[i - 1]], c[(p[i - 1] + (1 << k))%n]};
      c2[p[i]] = c2[p[i - 1]] + (b1 != b2);
    c.swap(c2):
  }
  return p;
```

6.3. Longest common prefix with SA

```
vector<int> lcp(string &s, vector<int> &p){
   int n = s.size();
   vector<int> ans(n - 1), pi(n);
   for(int i = 0; i < n; i++) pi[p[i]] = i;

int lst = 0;
   for(int i = 0; i < n - 1; i++){
      if(pi[i] == n - 1) continue;
      while(s[i + lst] == s[p[pi[i] + 1] + lst]) lst++;

      ans[pi[i]] = lst;
      lst = max(0, lst - 1);
   }

   return ans;
}</pre>
```

6.4. Rabin-Karp

```
// Rabin-Karp - String Matching + Hashing O(n+m)
const int B = 31;
char s[N], p[N];
int n, m; // n = strlen(s), m = strlen(p)
void rabin() {
 if (n<m) return:
  ull hp = 0, hs = 0, E = 1:
  for (int i = 0; i < m; ++i)
   hp = ((hp*B) MOD + p[i]) MOD.
   hs = ((hs*B)*MOD + s[i])*MOD.
   E = (E*B)%MOD:
  if (hs == hp) { /* matching position 0 */ }
  for (int i = m; i < n; ++i) {
   hs = ((hs*B)%MOD + s[i])%MOD;
   hhs = (hs - s[i-m]*E%MOD + MOD)%MOD;
   if (hs == hp) { /* matching position i-m+1 */ }
 }
}
```

6.5. Z-function

The Z-function of a string s is an array z where z_i is the length of the longest substring starting from s_i which is also a prefix of s.

Examples:

```
• "aaaaa": [0,4,3,2,1]
• "aaabaab": [0,2,1,0,2,1,0]
• "abacaba": [0,0,1,0,3,0,1]

vector<int> zfunction(const string& s){
    vector<int> z (s.size());
    for (int i = 1, l = 0, r = 0, n = s.size(); i < n; i++){
        if (i <= r) z[i] = min(z[i-l], r - i + 1);
        while (i + z[i] < n and s[z[i]] == s[z[i] + i]) z[i]++;
        if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
    }
    return z;
}
```

6.6. Manacher's

```
// Manacher (Longest Palindromic String) - O(n)
int lps[2*N+5];
char s[N];
int manacher() {
 int n = strlen(s);
  string p (2*n+3, '#');
  p[0] = '^';
  for (int i = 0; i < n; i++) p[2*(i+1)] = s[i];
  p[2*n+2] = '$';
  int k = 0, r = 0, m = 0;
  int l = p.length();
  for (int i = 1; i < l; i++) {
   int o = 2*k - i;
   lps[i] = (r > i) ? min(r-i, lps[o]) : 0;
   while (p[i + 1 + lps[i]] == p[i - 1 - lps[i]]) lps[i]++;
   if (i + lps[i] > r) k = i, r = i + lps[i];
    m = max(m, lps[i]);
 }
  return m;
```

Dynamic programming

7.1. Convex hull trick

```
// Convex Hull Trick
// ATTENTION: This is the maximum convex hull. If you need the
minimum
// CHT use {-b, -m} and modify the query function.
// In case of floating point parameters swap long long with long
double
typedef long long type;
struct line { type b, m; };
line v[N]: // lines from input
int n; // number of lines
// Sort slopes in ascending order (in main):
sort(v, v+n, [](line s, line t){
     return (s.m == t.m) ? (s.b < t.b) : (s.m < t.m); });
// nh: number of lines on convex hull
// pos: position for linear time search
// hull: lines in the convex hull
int nh, pos;
line hull[N];
bool check(line s, line t, line u) {
 // verify if it can overflow. If it can just divide using long
  return (s.b - t.b)*(u.m - s.m) < (s.b - u.b)*(t.m - s.m);
```

```
// Add new line to convex hull, if possible
// Must receive lines in the correct order, otherwise it won't work
void update(line s) {
 // 1. if first lines have the same b, get the one with bigger m
 // 2. if line is parallel to the one at the top, ignore
 // 3. pop lines that are worse
 // 3.1 if you can do a linear time search, use
 // 4. add new line
 if (nh == 1 and hull[nh-1].b == s.b) nh--;
 if (nh > 0 and hull[nh-1].m >= s.m) return;
 while (nh >= 2 and !check(hull[nh-2], hull[nh-1], s)) nh--;
 pos = min(pos, nh);
 hull[nh++] = s;
type eval(int id, type x) { return hull[id].b + hull[id].m * x; }
// Linear search query - O(n) for all queries
// Only possible if the queries always move to the right
type query(type x) {
 while (pos+1 < nh \text{ and } eval(pos, x) < eval(pos+1, x)) pos++;
 return eval(pos, x);
 // return -eval(pos, x); ATTENTION: Uncomment for minimum CHT
7.2. Longest Increasing Subsequence
memset(dp, 63, sizeof dp);
for (int i = 0; i < n; ++i) {
 // increasing: lower_bound
 // non-decreasing: upper bound
 int j = lower_bound(dp, dp + lis, v[i]) - dp;
 dp[j] = min(dp[j], v[i]);
 lis = \max(lis, j + 1);
7.3. SOS DP (Sum over Subsets)
// 0(bits*(2^bits))
const int bits = 20;
vector<int> a(1<<bits); // initial value of each subset</pre>
vector<int> f(1<<bits); // sum over all subsets</pre>
// (at f[011] = a[011]+a[001]+a[010]+a[000])
for (int i = 0; i<(1<<bits); i++){</pre>
    f[i] = a[i];
for (int i = 0; i < bits; i++) {</pre>
 for(int mask = 0; mask < (1<<bits); mask++){</pre>
    if(mask & (1<<i)){</pre>
        f[mask] += f[mask^(1<< i)];
 }
}
```