Integration of data sources

Patrick Lambrix

Department of Computer and Information Science Linköpings universitet

Accessing multiple data sources

Genomics

Where How?

Clinical trials

Metabolism,

toxicology

Chemical

structure

Disease models

Access to multiple data sources-Problems

- Users need good knowledge on where the required information is stored and how it can be accessed
- Hepresentation of an entity in different data sources can be different.

Same name in different data sources can refer to different entities.

Queries over multiple data sources

- Divide & order
 - Execute
- Combine

Access to multiple data sources - steps

- Decide which data sources should be used
- Divide query into sub-queries to the data sources
- Decide in which order to send sub-queries to the data sources
- Send sub-queries to the data sources use the terminology of the data sources
- Merge results from the data sources to an answer for the original query
- → mistake in any step can lead to inefficient processing of the query or failure to get a result

Problem formulation

- Data source properties
- Autonomous data sources
- Different data models
- Differences in terminology
- Overlapping, redundant data
- Integration aims to provide multiple heterogenous data transparent access to

Data source 1

Protein(name, authors, date, organism) Article(authors, title, year) date>1995

Structure(name, structure, organism) — uniform query language date>2000

- uniform representation of results

sources

Problem formulation

Protein(name, date, organism) ProteinStructure(name, structure)

Data source properties

- Autonomous data sources
- Different data models
- Differences in terminology
- Overlapping, redundant data

 Integration aims to provide transparent access to multiple heterogenous data

Protein(name, authors, date, organism)

Data source 1

Article(authors, title, year)

date>1995

sources

Structure(name, structure, organism) — uniform query language date>2000

"- uniform representation of results

Methods for integration

- Link driven federations
- Explicit links between data sources.
- Warehousing
- stored in a warehouse. Answers to queries are Data is downloaded, filtered, integrated and taken from the warehouse.
- Mediation or View integration
- A global schema is defined over all data sources.

Link driven federations

- Creates explicit links between data sources
- query: get interesting results and use web links to reach related data in other data sources

Link driven federations

SRS

- Integrates more than 300 resources
- Possible to add own resources
- Interface: SRSWWW, getz
- http://srs.ebi.ac.uk/

text search

[swissprot-des:kinase]

documents in swissprot that contain 'kinase' in the 'description'-field

[swissprot-des:kin*]

documents in swissprot that contain a word that starts with 'kin' in the 'description'-field

boolean operators:

and (&), or (I), andnot (!)

[swissprot-des:(adrenergic & receptor)! (alpha1A)] documents in swissprot that contain 'adrenergic' and 'receptor' in the 'description'-field, but not

'alpha1A'

boolean operators:

and (&), or (I), andnot (!)

documents in swissprot that contain 'kinase' in the 'description'-field and 'human' in the 'organism'-[swissprot-des:kinase] & [swissprot-org:human]

links

[swissprot-des:kinase] > PDB

documents in swissprot that contain 'kinase' in documents in PDB that are referred to from the 'description'-field

links

[swissprot-id: acha_human] > prosite > swissprot

from documents in prosite that are referred documents in swissprot that are referred to contain 'acha_human' in the 'id'- field to from documents in swissprot that

links

[swissprot-org:human] >

[swissprot-features:transmem]

documents in swissprot that contain 'transmem' in the 'features'-field and that are referred to from documents in swissprot that contain 'human' in the 'organism'-field

multiple sources

[{swissprot sptremb}-des:kinase]

[dbs={swissprot sptremb}-des:kinase]

& [dbs-org:human]

Link driven federations

- Advantages
- complex queries
- fast
- Disadvantages
- require good knowledge
- syntax based
- terminology problem not solved

- Define a global schema over the data sources
- high level query language

- Advantages
- complex queries
- requires less knowledge
- solution for terminology problem
- semantics based

- Disadvantages
- more computation
- view maintenance

Query problem

How to answer queries expressed using the global schema.

• Modeling problem

How to model the global schema, data sources and mappings.

Source

Source

Queries

- Queries use the global schema
- Conjunctive queries
- □ select-project-join queries

Mediator reformulates queries in terms of a set Equivalence and containment of queries of queries that use the local schemas. needs to be preserved.

- Q1 is contained in Q2

if the result of Q1 is a subset of the result of Q2.

Mediator

• Mediator is responsible for query processing

- reformulation of queries, decide query plan
- query optimization
- execution of query plan, assemble results into final answer

Issues:

- Semantically correct reformulation
- Access only relevant data sources

Source

Source

Knowledge

- Description of data source content
- global schema (domain model/ontology)
- local schema (data source model)
- Information for integration
- mapping
- Capabilities
- attributes and constraints
- processing capabilities
 - completeness
- cost of query answering
- reliability
- Used for
- selection of relevant data sources
- query plan formulation
- query plan optimization

Mapping

Relation between domain and data source content

Global schema:

Protein(name, date, organism) ProteinStructure(name, structure)

Data source local schema:

DS1(name, authors, date, organism) DS2(name, structure, organism)

□Global as view

The global schema is defined in terms of source terminology Protein(name, date, organism) :- DS1(name, authors, date, organism) ProteinStructure(name, structure):- DS2(name, structure, organism)

Mapping

Relation between domain and data source content

Global schema: Protein(name, date, organism) ProteinStructure(name, structure)

Data source local schema:

DS1(name, authors, date, organism) DS2(name, structure, organism)

The sources are defined in terms of the global schema. □ Local as view

DS1(name, authors, date, organism) -:

Protein(name, date, organism), date >1995

DS2(name, structure, organism) -: Protein(name, date, organism), ProfeinStructure(name, structure), date >2000

Query processing in GAV

Query: give name and structure for human proteins with date '2001'. ProteinStructure(name, structure) q(name, structure) :- Protein(name, 2001, 'human'),

GAV: Protein(name, date, organism) :- DS1(name, authors, date, organism) ProteinStructure(name, structure) :- DS2(name, structure, organism)

- No explicit representation of data source content
- Mapping gives direct information about which data satisfies the global schema.
- Query is processed by expanding the query atoms according to their definitions.

DS1(name, authors, 2001, 'human'), DS2(name, structure, organism) New query: q(name, structure) :-

Query processing in LAV

Query: give name and structure for human proteins with date '2001'. ProteinStructure(name, structure) q(name, structure) :- Protein(name, 2001, 'human'),

DS2(name, structure, organism) -: Protein(name, date, organism), ProteinStructure(name, structure), date >2000 Protein(name, date, organism), date >1995 LAV: DS1(name, authors, date, organism) -:

- Mapping does not give direct information about which data satisfies the global schema.
- To answer the query it needs to be inferred how the mappings should be used.

Query processing in LAV

Query: give name and structure for human proteins with date '2001'. ProteinStructure(name, structure) q(name, structure) :- Protein(name, 2001, 'human'),

DS2(name, structure, organism) -: Protein(name, date, organism), ProteinStructure(name, structure), date >2000 Protein(name, date, organism), date >1995 LAV: DS1(name, authors, date, organism) -:

- Bucket algoritm (Information Manifold)
- For each sub-goal in query create bucket of relevant
- □ Define rewritings of query. Each rewriting consists of one conjunct from every bucket. Check whether the resulting conjunction is contained in the query.
- ☐ The result is the union of the rewritings.

New query: q(name, structure) :-

BS1(name, authors, 2001, 'human'), DS2(name, structure, organism)

Comparison GAV - LAV

- Global as view
- Clear how data sources interact
- When a data source is added, the global schema can change
- Query processing is easy
- Local as view
- Each data source is specified in isolation
- Easy to add data sources
- Easier to specify constraints on the contents of sonrces
- Query processing requires reasoning

Capabilities

- Most common capabilities describe attributes
- □ f free, attribute can be specified or not
- □ b bound, a value must be specified for the attribute, all values are permitted
- □ u unspecified, not permitted to specify a value for the attribute
- c[S] value should be one of the values in finite
- □ o[S] value is not specified or one of the values in finite set S

DS1: (name, authors, date, organisfn) b c[human mouse]

