US Airline Passenger Satisfaction

Business Intelligence, May 2022

Our Team

Bruno Faria

2018295474 brunofaria@student.dei.uc.pt

Dylan Perdigão

2018233092 dgp@student.dei.uc.pt

Requirements

Requirements

Goals

Predict the satisfaction using machine learning techniques

Dataset

Dataset

Dataset

Data Design

Data Design

DB-AZURE

Connection to Azure database

CREATE_PERSON

Creates *Person* table on the database or drop it if exists

DIM_TABLE

Runs *Dim_Table* job for updating the dimensional tables on the database

FACT_TABLE

Runs Fact_Table job for updating the fact table on the database

UNIQUE_PERSON

Outputs unique instances of person

CRC_PERSON

Generates a unique id for the instances

PERSON_MAP

Selects attributes and set their names

INSERT_PERSON

Insert the *person* instance on the Azure database

SATISFACTION

CSV file with the data

PERSON

Lookup on the table *person* to get all instances

tMAP_1

Joins the data from the lookups in order to find the corresponding instances of the CSV file

INSERT_FACT

Updates the Azure database with the new records of facts

travels the most?

travelled distribution?

Machine Learning

Exploratory Data Analysis

Feature Selection / Reduction

Univariate Selection

Univariate feature selection works by selecting the best features based on univariate statistical tests

Recursive Feature Elimination

Select features by recursively considering smaller and smaller sets of features

Principal Component Analysis

Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space

Feature Importance

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature.

Since we only have **22** features we tried reducing to **10** and **3** features.

Feature Selection / Reduction - 3 Dimensions

Classification / Regression Models

Comparing Times : SVM Example

US_X

Univariate Statistical tests with 3 or 10 features

RFE_X

Recursive Feature Elimination with 3 or 10 features

PCA_X

Principal Component Analysis with 3 or 10 features

FI_X

Feature Importance with 3 or 10 features

Best Model: CART - Whole

93.5%

How much the

model is capable of distinguishing between classes

Confusion Matrix

Thanks for your Attention!

Any Questions?

