Etapa 1

Importação de bibliotecas

```
In [1]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  from math import sqrt, ceil
```

Importação de Dados

```
In [2]: df_raw = pd.read_csv('https://raw.githubusercontent.com/gabrielramos731/Data-science-pro
In [3]: df = df_raw.copy()
    df = df.drop(['Unnamed: 0', 'id'], axis=1)
In [4]: df['Type of Travel'] = df['Type of Travel'].str.replace('Business travel','Work travel')
    df.head()
```

_			
()11	+	1 /1	١ ۰
υu		1 -	١ .

•		Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	Gate location	•••	enteri
	0	Male	Loyal Customer	13	Personal Travel	Eco Plus	460	3	4	3	1		
	1	Male	disloyal Customer	25	Work travel	Business	235	3	2	3	3		
	2	Female	Loyal Customer	26	Work travel	Business	1142	2	2	2	2		
	3	Female	Loyal Customer	25	Work travel	Business	562	2	5	5	5		
	4	Male	Loyal Customer	61	Work travel	Business	214	3	3	3	3		

5 rows × 23 columns

Documentação dos Dados

Gender: Gender of the passengers (Female, Male)

Customer Type: The customer type (Loyal customer, disloyal customer)

Age: The actual age of the passengers

Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel)

Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus)

Flight distance: The flight distance of this journey

Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5)

Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient

Ease of Online booking: Satisfaction level of online booking

Gate location: Satisfaction level of Gate location

Food and drink: Satisfaction level of Food and drink

Online boarding: Satisfaction level of online boarding

Seat comfort: Satisfaction level of Seat comfort

Inflight entertainment: Satisfaction level of inflight entertainment

On-board service: Satisfaction level of On-board service

Leg room service: Satisfaction level of Leg room service

Baggage handling: Satisfaction level of baggage handling

Check-in service: Satisfaction level of Check-in service

Inflight service: Satisfaction level of inflight service

Cleanliness: Satisfaction level of Cleanliness

Departure Delay in Minutes: Minutes delayed when departure

Arrival Delay in Minutes: Minutes delayed when Arrival

Satisfaction: Airline satisfaction level(Satisfaction, neutral or dissatisfaction)

Análise de Dados Univariável

Departure Delay in Minutes

5]:	df.dtypes			
5]:	Gender	object		
,] .	Customer Type	object		
	Age	int64		
	Type of Travel	object		
	Class	object		
	Flight Distance	int64		
	Inflight wifi service	int64		
	Departure/Arrival time convenient	int64		
	Ease of Online booking	int64		
	Gate location	int64		
	Food and drink	int64		
	Online boarding	int64		
	Seat comfort	int64		
	Inflight entertainment	int64		
	On-board service	int64		
	Leg room service	int64		
	Baggage handling	int64		
	Checkin service	int64		
	Inflight service	int64		
	Cleanliness	int64		

int64

```
satisfaction
dtype: object

In [6]: var_cat = []
var_num = []
for i,j in zip(df.columns, df.dtypes):
    if j == 'object':
       var_cat.append(i)
    else:
       var_num.append(i)
```

float64

Valores Duplicados

Arrival Delay in Minutes

```
In [7]: df.duplicated().sum()
Out[7]:
```

Valores Nulos

```
In [8]: df.isna().sum()
                                                0
        Gender
Out[8]:
        Customer Type
                                                0
                                                0
        Type of Travel
                                                0
                                                0
        Class
        Flight Distance
                                                0
        Inflight wifi service
        Departure/Arrival time convenient
                                                0
        Ease of Online booking
                                                0
        Gate location
        Food and drink
                                                0
                                                0
        Online boarding
        Seat comfort
                                                0
       Inflight entertainment
                                                0
       On-board service
                                                0
                                                0
        Leg room service
        Baggage handling
                                                0
        Checkin service
                                                0
        Inflight service
                                                0
        Cleanliness
                                               0
        Departure Delay in Minutes
        Arrival Delay in Minutes
                                             310
        satisfaction
        dtype: int64
In [9]: df = df.dropna()
```

Box-plots

```
In [10]: fig, axes = plt.subplots(3, 6)

for i, el in enumerate(var_num):
    a = df.boxplot(el, ax=axes.flatten()[i], fontsize='large')

fig.set_size_inches(18.5, 8.5)
    plt.tight_layout()
    plt.show()
```



```
In [11]: fig, axes = plt.subplots(3, 6)

for i, el in enumerate(var_num):
    a = df.hist(el, ax=axes.flatten()[i])

fig.set_size_inches(18.5, 8.5)
plt.tight_layout()
plt.show()
```


Gráficos de Contagem

```
In [12]: fig, axes = plt.subplots(3,2, figsize=(10, 8))

for i, el in enumerate(var_cat):
    sns.countplot(x=df[el], ax=axes.flatten()[i])

    plt.tight_layout()
```


Hipótesis

- 1. O quão a classe influencia na satisfação do cliente
- 2. Qual tipo de viagem impacta mais na satisfação
- 3. O atraso é a variável de maior impacto na satisfação (primeiro modelo)?

Análise de dados bivariável

Influência da classe na satisfação

```
In [13]: df_grp = df.groupby('Class')['satisfaction'].value_counts().to_frame()

ls = []
for x in df['Class'].value_counts().values:
    ls.append(x)
    ls.append(x)

df_grp['proporcao'] = df_grp['satisfaction'] / ls * 100
df_grp.sort_index(ascending=False, inplace=True)
df_grp
```

Class	satisfaction		
Eco Plus	satisfied	1836	24.584896
	neutral or dissatisfied	5632	75.415104
Eco	satisfied	8671	18.610092
	neutral or dissatisfied	37922	81.389908
Business	satisfied	34390	69.428462
	neutral or dissatisfied	15143	30.571538

Tipo de viagem e impacto na satisfação

```
In [14]: df_grp = df.groupby('Type of Travel')['satisfaction'].value_counts().to_frame()

ls = []
for x in df.groupby('Type of Travel')['Type of Travel'].value_counts().values:
    ls.append(x)

df_grp['proporcao'] = df_grp['satisfaction'] / ls *100
df_grp.sort_index(ascending=False, inplace=True)
df_grp
```

Out[14]: satisfaction proporcao

Type of Travel	satisfaction		
Work travel	satisfied	41634	58.257888
	neutral or dissatisfied	29831	41.742112
Personal Travel	satisfied	3263	10.155934
	neutral or dissatisfied	28866	89.844066

A justificativa para diferença tão grande na satisfação pelo tipo de viagem.

Out[15]:		Flight Distance	Leg room service	Departure Delay in Minutes	Departure/Arrival time convenient
	Type of Travel				
	Personal Travel	791.240375	3.079336	14.404214	3.651125
	Work travel	1368.294872	3.473714	14.902470	2.794361

Class				
Business	1676.078493	3.644661	14.335554	2.905820
Eco	742.843281	3.086129	15.093147	3.199043
Eco Plus	746.446438	3.061328	15.329405	3.216256

Impacto de classe e viagem na satisfação

Out[18]: satisfaction proporcao

Type of Travel	Class	satisfaction		
Work travel	Eco Plus	satisfied	1525	39.314256
		neutral or dissatisfied	2354	60.685744
	Eco	satisfied	5983	29.615880
		neutral or dissatisfied	14219	70.384120
	Business	satisfied	34126	72.020091
		neutral or dissatisfied	13258	27.979909
Personal Travel	Eco Plus	satisfied	311	8.665366
		neutral or dissatisfied	3278	91.334634
	Eco	satisfied	2688	10.185290
		neutral or dissatisfied	23703	89.814710
	Business	satisfied	264	12.284784
		neutral or dissatisfied	1885	87.715216

É possível ver que em uma mesma classe, viagens a trabalho possuem um índice de satisfação superior comparado a viagens pessoais.

Etapa 2

Tratamento das variáveis categóricas

Requirement already satisfied: category_encoders in c:\users\ramos\anaconda3\lib\site-pa ckages (2.6.1)

Requirement already satisfied: scikit-learn>=0.20.0 in c:\users\ramos\anaconda3\lib\site -packages (from category encoders) (1.0.2)

Requirement already satisfied: pandas>=1.0.5 in c:\users\ramos\anaconda3\lib\site-packag es (from category encoders) (1.4.4)

Requirement already satisfied: statsmodels>=0.9.0 in c:\users\ramos\anaconda3\lib\site-p ackages (from category encoders) (0.13.2)

Requirement already satisfied: numpy>=1.14.0 in c:\users\ramos\anaconda3\lib\site-packag es (from category encoders) (1.21.5)

Requirement already satisfied: patsy>=0.5.1 in c:\users\ramos\anaconda3\lib\site-package s (from category encoders) (0.5.2)

Requirement already satisfied: scipy>=1.0.0 in c:\users\ramos\anaconda3\lib\site-package s (from category encoders) (1.9.1)

Requirement already satisfied: pytz>=2020.1 in c:\users\ramos\anaconda3\lib\site-package s (from pandas>=1.0.5->category encoders) (2022.1)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\ramos\anaconda3\lib\site-packages (from pandas>=1.0.5->category encoders) (2.8.2)

Requirement already satisfied: six in c:\users\ramos\anaconda3\lib\site-packages (from p atsy>=0.5.1->category encoders) (1.16.0)

Requirement already satisfied: joblib>=0.11 in c:\users\ramos\anaconda3\lib\site-package s (from scikit-learn>=0.20.0->category encoders) (1.1.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\ramos\anaconda3\lib\site -packages (from scikit-learn>=0.20.0->category_encoders) (2.2.0)

Requirement already satisfied: packaging>=21.3 in c:\users\ramos\anaconda3\lib\site-pack ages (from statsmodels>=0.9.0->category encoders) (21.3)

Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\users\ramos\anaconda3\lib\site-packages (from packaging>=21.3->statsmodels>=0.9.0->category_encoders) (3.0.9)

In [20]:

from category_encoders.one_hot import OneHotEncoder, OrdinalEncoder
from sklearn import preprocessing

Map para Class

```
In [21]: df_teste = df.copy()
  df_teste['Class'] = df_teste['Class'].map({'Business':3, 'Eco Plus':2, 'Eco':1})
  df_teste.head(10)
```

Out[21]:

	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Ease of Online booking	Gate location	•••	In entertain
0	Male	Loyal Customer	13	Personal Travel	2	460	3	4	3	1		
1	Male	disloyal Customer	25	Work travel	3	235	3	2	3	3		
2	Female	Loyal Customer	26	Work travel	3	1142	2	2	2	2		
3	Female	Loyal Customer	25	Work travel	3	562	2	5	5	5		
4	Male	Loyal Customer	61	Work travel	3	214	3	3	3	3		
5	Female	Loyal Customer	26	Personal Travel	1	1180	3	4	2	1		
6	Male	Loyal Customer	47	Personal Travel	1	1276	2	4	2	3		
7	Female	Loyal Customer	52	Work travel	3	2035	4	3	4	4		

8	Female	Loyal Customer	41	Work travel	3	853	1	2	2	2	
9	Male	disloyal Customer	20	Work travel	1	1061	3	3	3	4	

10 rows × 23 columns

Rótulos

- 1: Eco
- 2: Eco Plus
- 3: Business

Label Encoder

```
In [22]: df_lb_enc = df_teste.copy()
  colunas = ['Gender', 'Customer Type', 'Type of Travel', 'satisfaction']
  le = preprocessing.LabelEncoder()
  for i in colunas:
    df_lb_enc[i] = le.fit_transform(df_teste[i])
  df_encod = df_lb_enc.copy()
  df_encod.head()
```

Out[22]: Inflight Ease of **Type Flight** Departure/Arrival Gate Infli Customer Gender wifi **Online** of Class Type Distance time convenient location entertainm service booking Travel 1 ... 0 1 0 13 0 2 460 3 4 3 1 1 25 3 235 3 2 3 2 0 1 3 1142 2 2 2 2 ... 0 26 3 0 0 25 3 562 2 1 61 1 3 214 3 3 3 3

5 rows × 23 columns

8

9

Ease of Online booking

Gate location

10 Food and drink

11 Online boarding

```
df encod.info()
In [23]:
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 103594 entries, 0 to 103903
        Data columns (total 23 columns):
            Column
                                                 Non-Null Count
                                                                  Dtype
             _____
         0
                                                 103594 non-null
             Gender
                                                                  int32
         1
                                                 103594 non-null int32
             Customer Type
         2
             Age
                                                 103594 non-null int64
         3
                                                 103594 non-null int32
             Type of Travel
         4
            Class
                                                 103594 non-null
         5
            Flight Distance
                                                 103594 non-null
                                                                 int64
             Inflight wifi service
                                                 103594 non-null
         6
         7
             Departure/Arrival time convenient 103594 non-null
                                                                 int64
```

103594 non-null int64

103594 non-null int64

103594 non-null int64 103594 non-null int64

```
12 Seat comfort
                                    103594 non-null int64
13 Inflight entertainment
                                    103594 non-null int64
14 On-board service
                                   103594 non-null int64
15 Leg room service
                                   103594 non-null int64
                                   103594 non-null int64
16 Baggage handling
17 Checkin service
                                   103594 non-null int64
18 Inflight service
                                   103594 non-null int64
                                    103594 non-null int64
19 Cleanliness
20 Departure Delay in Minutes
                                 103594 non-null int64
21 Arrival Delay in Minutes
                                   103594 non-null float64
22 satisfaction
                                    103594 non-null int32
dtypes: float64(1), int32(4), int64(18)
memory usage: 17.4 MB
```

Correlações

```
In [24]: plt.figure(figsize=(15,15));
sns.heatmap(df_encod.corr(), annot=True, fmt='.2f', cmap="crest");
```


Modelo de Classificação

```
In [25]: from sklearn.neighbors import KNeighborsClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import KFold, cross_val_score, train_test_split
    from sklearn.metrics import confusion_matrix
```

Árvore de Decisão

```
In [26]: from sklearn.tree import plot_tree
from sklearn.metrics import accuracy_score
```

In [56]: def treinamento(meu_modelo, minha_max_depth=3, meu_classifier='DecisionTree', k_knn=5, m

```
if meu X == None:
    meu X = df encod[meu modelo]
if meu y == None:
    meu y = df encod['satisfaction']
X train, X test, y train, y test = train test split(meu X,
                                                       test size=0.25,
                                                       random state=42)
if meu classifier == 'DecisionTree':
    classifier = DecisionTreeClassifier(random state=42, max depth=minha max depth)
# elif meu classifier == 'KNN':
else:
   classifier = KNeighborsClassifier(n neighbors=k knn)
classifier.fit(X train, y train)
y pred = classifier.predict(X test)
acuracia = classifier.score(X test, y test)
return classifier, acuracia, y pred, y test
```

```
In [57]: modelo = ['Type of Travel', 'Class']
    classifier, acuracia, y_pred, y_test = treinamento(modelo)
    print(acuracia)
```

0.7679447082898954

Plot Árvore de Decisão

```
In [58]: plt.figure(figsize=(14,8), dpi=100)
    plot_tree(classifier, feature_names=classifier.feature_names_in_, fontsize=9);
```


Validação Cruzada

```
In [59]: import warnings
warnings.filterwarnings("ignore")
```

from sklearn.model_selection import StratifiedKFold

media: 0.768046470511718
min: 0.76496138996139
max: 0.7758470894874022

Matriz de Confusão

Teste da Hipótese - Variáveis Sozinhas

Apenas Type of Travel

```
In [62]: modelo = ['Type of Travel']
  classifier, _, y_pred, y_test = treinamento(modelo, 30)
```

```
X = df_encod[modelo]
y = df_encod['satisfaction']

cv = StratifiedKFold(n_splits = 10, shuffle=True, random_state=42)

values = cross_val_score(classifier, X, y, cv=cv, scoring='accuracy')
print(f'media: {values.mean()}\nmin: {min(values)}\nmax: {max(values)}')

media: 0.6805413437515957
min: 0.6744859542426875
max: 0.685490877497828

In [63]: plt.figure(figsize=(8,8), dpi=100)
plot_tree(classifier, feature_names=classifier.feature_names_in_);
```

```
Type of Travel <= 0.5
gini = 0.491
samples = 77695
value = [44035, 33660]
```

gini = 0.181 samples = 24128 value = [21696, 2432] gini = 0.486 samples = 53567 value = [22339, 31228]

Apenas Class

```
In [65]: modelo = ['Class']
    classifier, _, y_pred, y_test = treinamento(modelo)

X = df_encod[modelo]
y = df_encod['satisfaction']

cv = StratifiedKFold(n_splits = 10, shuffle=True, random_state=42)

values = cross_val_score(classifier, X, y, cv=cv, scoring='accuracy')
print(f'media: {values.mean()}\nmin: {min(values)}\nmax: {max(values)}')

media: 0.7523988298836256
min: 0.7495897287382952
max: 0.7621392026257361
In [66]: plt.figure(figsize=(8,8), dpi=100)
plot_tree(classifier, feature_names=classifier.feature_names_in_);
```


Melhorias da Etapa 2

Sugestão Caio e Talita

```
In [68]: # Sugestão: Utilizar mais uma variável para a classificação: variável online boarding.
        modelo = ['Type of Travel', 'Class', 'Online boarding']
         classifier, _, y_pred, y_test = treinamento(modelo)
         X = df encod[modelo]
         y = df encod['satisfaction']
         cv = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         values = cross val score(classifier, X, y, cv=cv, scoring='accuracy')
         print(f'media: {values.mean()}\nmin: {min(values)}\nmax: {max(values)}')
        media: 0.8464873036745322
        min: 0.8422779922779923
        max: 0.8526884834443479
In [69]: conf mat classifier = confusion matrix(y test, y pred)
         a = sns.heatmap(conf mat classifier, annot=True,
                         cmap='Blues', fmt='.0f',
                         xticklabels=['Não satisfeito', 'Satisfeito'],
                         yticklabels=['Não satisfeito', 'Satisfeito'])
         plt.xlabel('Predito')
         plt.ylabel('Real')
         plt.title('Matriz de confusão');
```


Apenas Online Boarding

```
In [70]: modelo = ['Online boarding']
         classifier, , y pred, y test = treinamento(modelo)
         X = df encod[modelo]
         y = df encod['satisfaction']
         cv = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         values = cross val score(classifier, X, y, cv=cv, scoring='accuracy')
         print(f'media: {values.mean()}\nmin: {min(values)}\nmax: {max(values)}')
         media: 0.7903354039778887
        min: 0.7833011583011583
        max: 0.7937059561733758
         conf mat classifier = confusion matrix(y test, y pred)
In [71]:
         a = sns.heatmap(conf mat classifier, annot=True,
                         cmap='Blues', fmt='.0f',
                         xticklabels=['Não satisfeito', 'Satisfeito'],
                         yticklabels=['Não satisfeito', 'Satisfeito'])
         plt.xlabel('Predito')
         plt.ylabel('Real')
         plt.title('Matriz de confusão');
```


Sugestão Paulo Eduardo e Pedro Henrique

```
In [72]: # Sugestão:
         # Utilizar o modelo KNN com as características escolhidas para a hipótese: Type of Trave
        modelo = ['Type of Travel', 'Class', 'Online boarding']
        X = df encod[modelo]
         y = df encod['satisfaction']
         qtd dados = df encod.shape[0]
         qtd primos = ceil(sqrt(qtd dados))
         # Para otimizar o tempo de cálculo
         qtd_primos = min(qtd_primos, 70)
        primos = []
         for i in range(2, qtd primos):
          ctr add = True
          raiz i = ceil(sqrt(i))
           for j in primos:
            if j > raiz i:
              break
             if i % j == 0:
              ctr add = False
              break
           if ctr add == True:
            primos.append(i)
         resultados = []
```

```
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
for n_vizinhos in primos:
   knn_classifier = KNeighborsClassifier(n_neighbors=n_vizinhos)

values = cross_val_score(knn_classifier, X, y, cv=cv, scoring='accuracy')

resultados.append(values.mean())

print(f"{n_vizinhos} vizinhos: ", values.mean())

plt.plot(primos, resultados);

2 vizinhos: 0.8328475760730323
```

```
Traceback (most recent call last)
KeyboardInterrupt
~\AppData\Local\Temp\ipykernel_12700\2236793127.py in <module>
         knn classifier = KNeighborsClassifier(n neighbors=n vizinhos)
     37
---> 38
         values = cross val score(knn classifier, X, y, cv=cv, scoring='accuracy')
     39
     40
         resultados.append(values.mean())
~\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in cross val score
(estimator, X, y, groups, scoring, cv, n jobs, verbose, fit params, pre dispatch, error
score)
    507
            scorer = check scoring(estimator, scoring=scoring)
    508
--> 509
           cv results = cross validate(
    510
               estimator=estimator,
    511
               X=X
~\anaconda3\lib\site-packages\sklearn\model selection\ validation.py in cross validate(e
stimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_t
rain_score, return_estimator, error_score)
    265
          # independent, and that it is pickle-able.
           parallel = Parallel(n jobs=n jobs, verbose=verbose, pre dispatch=pre dispatc
   266
--> 267
         results = parallel(
    268
               delayed (fit and score) (
    269
                    clone (estimator),
~\anaconda3\lib\site-packages\joblib\parallel.py in call (self, iterable)
  1044
                        self. iterating = self. original iterator is not None
  1045
-> 1046
                    while self.dispatch one batch(iterator):
  1047
                        pass
   1048
~\anaconda3\lib\site-packages\joblib\parallel.py in dispatch one batch(self, iterator)
    859
                        return False
    860
                    else:
--> 861
                        self. dispatch (tasks)
    862
                       return True
    863
~\anaconda3\lib\site-packages\joblib\parallel.py in dispatch(self, batch)
    777
               with self. lock:
    778
                    job idx = len(self. jobs)
--> 779
                    job = self. backend.apply async(batch, callback=cb)
    780
                    # A job can complete so quickly than its callback is
    781
                    # called before we get here, causing self. jobs to
~\anaconda3\lib\site-packages\joblib\ parallel backends.py in apply async(self, func, ca
11back)
    206
            def apply async(self, func, callback=None):
```

```
207
                """Schedule a func to be run"""
--> 208
               result = ImmediateResult(func)
   209
               if callback:
    210
                    callback (result)
~\anaconda3\lib\site-packages\joblib\ parallel backends.py in init (self, batch)
                # Don't delay the application, to avoid keeping the input
    571
                # arguments in memory
--> 572
                self.results = batch()
    573
    574
            def get(self):
~\anaconda3\lib\site-packages\joblib\parallel.py in call (self)
                # change the default number of processes to -1
    261
               with parallel backend (self. backend, n jobs=self. n jobs):
--> 262
                    return [func(*args, **kwargs)
   263
                            for func, args, kwargs in self.items]
   264
~\anaconda3\lib\site-packages\joblib\parallel.py in <listcomp>(.0)
               # change the default number of processes to -1
    261
               with parallel backend (self. backend, n jobs=self. n jobs):
--> 262
                    return [func(*args, **kwargs)
   263
                            for func, args, kwargs in self.items]
    264
~\anaconda3\lib\site-packages\sklearn\utils\fixes.py in call (self, *args, **kwargs)
            def call (self, *args, **kwargs):
    215
               with config context(**self.config):
--> 216
                    return self.function(*args, **kwargs)
   217
    218
~\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in fit and score(e
stimator, X, y, scorer, train, test, verbose, parameters, fit params, return train scor
e, return parameters, return n test samples, return times, return estimator, split progr
ess, candidate progress, error score)
    700
   701
               fit time = time.time() - start time
--> 702
               test scores = score(estimator, X test, y test, scorer, error score)
    703
               score time = time.time() - start time - fit time
    704
               if return train score:
~\anaconda3\lib\site-packages\sklearn\model selection\ validation.py in score(estimato
r, X_test, y_test, scorer, error_score)
    759
                    scores = scorer(estimator, X test)
   760
--> 761
                   scores = scorer(estimator, X test, y test)
            except Exception:
    762
               if error score == "raise":
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in __call__(self, estimator, *a
rgs, **kwargs)
   101
                for name, scorer in self. scorers.items():
   102
                    if isinstance(scorer, BaseScorer):
--> 103
                        score = scorer. score(cached call, estimator, *args, **kwargs)
   104
                    else:
    105
                        score = scorer(estimator, *args, **kwargs)
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in score(self, method_caller,
 estimator, X, y_true, sample_weight)
                11 11 11
    256
    257
--> 258
               y pred = method caller(estimator, "predict", X)
    259
                if sample weight is not None:
                    return self._sign * self._score_func(
    260
```

```
~\anaconda3\lib\site-packages\sklearn\metrics\ scorer.py in cached call(cache, estimato
r, method, *args, **kwargs)
           """Call estimator with method and args and kwargs."""
     66
     67
            if cache is None:
---> 68
               return getattr(estimator, method) (*args, **kwargs)
     69
     70
           try:
~\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py in predict(self, X)
    212
                    Class labels for each data sample.
    213
--> 214
                neigh dist, neigh ind = self.kneighbors(X)
   215
                classes = self.classes
    216
                y = self. y
~\anaconda3\lib\site-packages\sklearn\neighbors\ base.py in kneighbors(self, X, n neighb
ors, return_distance)
    774
                    else:
    775
                        parallel kwargs = {"prefer": "threads"}
--> 776
                    chunked results = Parallel(n jobs, **parallel kwargs)(
    777
                        delayed ( tree query parallel helper) (
    778
                            self. tree, X[s], n neighbors, return distance
~\anaconda3\lib\site-packages\joblib\parallel.py in call (self, iterable)
                    # remaining jobs.
   1042
                    self. iterating = False
-> 1043
                    if self.dispatch one batch(iterator):
  1044
                        self. iterating = self. original iterator is not None
   1045
~\anaconda3\lib\site-packages\joblib\parallel.py in dispatch one batch(self, iterator)
                        return False
    860
                    else:
--> 861
                       self. dispatch (tasks)
   862
                        return True
    863
~\anaconda3\lib\site-packages\joblib\parallel.py in dispatch(self, batch)
               with self. lock:
                    job idx = len(self. jobs)
    778
--> 779
                    job = self. backend.apply async(batch, callback=cb)
   780
                    # A job can complete so quickly than its callback is
    781
                    # called before we get here, causing self._jobs to
~\anaconda3\lib\site-packages\joblib\_parallel_backends.py in apply async(self, func, ca
11back)
    206
            def apply async(self, func, callback=None):
    207
                """Schedule a func to be run"""
--> 208
               result = ImmediateResult(func)
   209
               if callback:
    210
                    callback (result)
~\anaconda3\lib\site-packages\joblib\ parallel backends.py in init (self, batch)
    570
                # Don't delay the application, to avoid keeping the input
    571
                # arguments in memory
--> 572
               self.results = batch()
    573
    574
           def get(self):
~\anaconda3\lib\site-packages\joblib\parallel.py in call (self)
    260
                # change the default number of processes to -1
    261
                with parallel backend (self. backend, n jobs=self. n jobs):
                    return [func(*args, **kwargs)
--> 262
    263
                            for func, args, kwargs in self.items]
    264
```

```
~\anaconda3\lib\site-packages\joblib\parallel.py in <listcomp>(.0)
                # change the default number of processes to -1
    261
                with parallel backend (self. backend, n jobs=self. n jobs):
--> 262
                    return [func(*args, **kwargs)
    263
                            for func, args, kwargs in self.items]
    264
~\anaconda3\lib\site-packages\sklearn\utils\fixes.py in call (self, *args, **kwargs)
            def call (self, *args, **kwargs):
    215
                with config context(**self.config):
--> 216
                    return self.function(*args, **kwargs)
    217
    218
~\anaconda3\lib\site-packages\sklearn\neighbors\_base.py in tree query parallel helper
(tree, *args, **kwargs)
    598
           under PyPy.
           11 11 11
    599
--> 600
           return tree.query(*args, **kwargs)
    601
    602
KeyboardInterrupt:
```


Etapa 3

O melhor modelo até o momento foi KNN, com ênfase nas escolhas com pelo menos 29 vizinhos.

Portanto, este será o modelo testado na etapa 3.

Todas as variáveis

```
In [74]:
        # Obtém todas as colunas que não são `satisfaction`
        modelo = list()
        modelo.extend( [coluna for coluna in df encod.columns if coluna != 'satisfaction'] )
         X = df encod[modelo]
         y = df encod['satisfaction']
         qtd dados = df encod.shape[0]
         cv = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         qtd primos = ceil(sqrt(qtd dados))
         # Pra otimizar o tempo de cálculo
         qtd primos = min(qtd primos, 70)
         primos = []
         for i in range(2, qtd primos):
          ctr add = True
          raiz i = ceil(sqrt(i))
          for j in primos:
            if j > raiz i:
              break
            if i % j == 0:
              ctr add = False
              break
           if ctr add == True:
            primos.append(i)
         resultados = []
         for n vizinhos in primos:
          knn classifier = KNeighborsClassifier(n neighbors=n vizinhos)
          values = cross val score(knn classifier, X, y, cv=cv, scoring='accuracy')
          resultados.append(values.mean())
          print(f"{n vizinhos} vizinhos: ", values.mean())
         plt.plot(primos, resultados);
```

```
(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_
score)
    507
            scorer = check scoring(estimator, scoring=scoring)
    508
--> 509
           cv results = cross validate(
    510
               estimator=estimator,
    511
                X=X
~\anaconda3\lib\site-packages\sklearn\model selection\ validation.py in cross validate(e
stimator, X, y, groups, scoring, cv, n jobs, verbose, fit params, pre dispatch, return t
rain score, return estimator, error score)
          # independent, and that it is pickle-able.
    266
           parallel = Parallel(n jobs=n jobs, verbose=verbose, pre dispatch=pre dispatc
h)
--> 267
           results = parallel(
               delayed (fit and score) (
    268
    269
                    clone (estimator),
~\anaconda3\lib\site-packages\joblib\parallel.py in call (self, iterable)
   1044
                        self. iterating = self. original iterator is not None
   1045
-> 1046
                    while self.dispatch one batch (iterator):
   1047
                        pass
   1048
~\anaconda3\lib\site-packages\joblib\parallel.py in dispatch one batch(self, iterator)
    859
                        return False
    860
                    else:
--> 861
                        self. dispatch (tasks)
    862
                        return True
    863
~\anaconda3\lib\site-packages\joblib\parallel.py in dispatch(self, batch)
               with self. lock:
    777
    778
                    job idx = len(self. jobs)
--> 779
                    job = self. backend.apply async(batch, callback=cb)
    780
                    # A job can complete so quickly than its callback is
    781
                    # called before we get here, causing self._jobs to
~\anaconda3\lib\site-packages\joblib\ parallel backends.py in apply async(self, func, ca
11back)
   206
            def apply async(self, func, callback=None):
   207
               """Schedule a func to be run"""
--> 208
               result = ImmediateResult(func)
    209
               if callback:
    210
                    callback (result)
~\anaconda3\lib\site-packages\joblib\ parallel backends.py in init (self, batch)
    570
                # Don't delay the application, to avoid keeping the input
    571
                # arguments in memory
--> 572
                self.results = batch()
    573
    574
            def get(self):
~\anaconda3\lib\site-packages\joblib\parallel.py in call (self)
                # change the default number of processes to -1
    261
                with parallel backend (self. backend, n jobs=self. n jobs):
--> 262
                    return [func(*args, **kwargs)
    263
                            for func, args, kwargs in self.items]
    264
~\anaconda3\lib\site-packages\joblib\parallel.py in <listcomp>(.0)
    260
                # change the default number of processes to -1
                with parallel backend(self._backend, n_jobs=self._n_jobs):
    261
--> 262
                    return [func(*args, **kwargs)
    263
                            for func, args, kwargs in self.items]
```

```
264
~\anaconda3\lib\site-packages\sklearn\utils\fixes.py in call (self, *args, **kwargs)
            def call (self, *args, **kwargs):
    215
                with config context(**self.config):
--> 216
                    return self.function(*args, **kwargs)
   217
    218
~\anaconda3\lib\site-packages\sklearn\model selection\ validation.py in fit and score(e
stimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_scor
e, return_parameters, return_n_test_samples, return_times, return_estimator, split_progr
ess, candidate progress, error score)
   700
    701
                fit time = time.time() - start time
--> 702
                test scores = score(estimator, X test, y test, scorer, error score)
   703
                score time = time.time() - start time - fit time
    704
                if return train score:
~\anaconda3\lib\site-packages\sklearn\model selection\ validation.py in score(estimato
r, X_test, y_test, scorer, error_score)
    759
                    scores = scorer(estimator, X test)
    760
--> 761
                    scores = scorer(estimator, X test, y test)
   762
            except Exception:
    763
                if error score == "raise":
~\anaconda3\lib\site-packages\sklearn\metrics\ scorer.py in call (self, estimator, *a
rgs, **kwargs)
    101
                for name, scorer in self. scorers.items():
    102
                    if isinstance(scorer, BaseScorer):
--> 103
                        score = scorer. score(cached call, estimator, *args, **kwargs)
    104
                    else:
    105
                        score = scorer(estimator, *args, **kwargs)
~\anaconda3\lib\site-packages\sklearn\metrics\ scorer.py in score(self, method caller,
 estimator, X, y_true, sample_weight)
                11 11 11
    256
    257
--> 258
                y pred = method caller (estimator, "predict", X)
    259
                if sample weight is not None:
    260
                    return self. sign * self. score func(
~\anaconda3\lib\site-packages\sklearn\metrics\ scorer.py in cached call(cache, estimato
r, method, *args, **kwargs)
     66
           """Call estimator with method and args and kwargs."""
     67
            if cache is None:
---> 68
                return getattr(estimator, method) (*args, **kwargs)
     69
     70
           try:
~\anaconda3\lib\site-packages\sklearn\neighbors\ classification.py in predict(self, X)
    212
                    Class labels for each data sample.
    213
--> 214
                neigh dist, neigh ind = self.kneighbors(X)
    215
               classes = self.classes
    216
                y = self. y
~\anaconda3\lib\site-packages\sklearn\neighbors\ base.py in kneighbors(self, X, n neighb
ors, return distance)
   750
                        kwds = self.effective metric params
   751
--> 752
                    chunked results = list(
    753
                        pairwise distances chunked(
    754
                            Χ,
```

```
~\anaconda3\lib\site-packages\sklearn\metrics\pairwise.py in pairwise distances chunked
(X, Y, reduce func, metric, n jobs, working memory, **kwds)
               if reduce func is not None:
  1725
                    chunk size = D chunk.shape[0]
                    D chunk = reduce func(D chunk, sl.start)
-> 1726
  1727
                    check chunk size (D chunk, chunk size)
  1728
               yield D chunk
~\anaconda3\lib\site-packages\sklearn\neighbors\ base.py in kneighbors reduce func(sel
f, dist, start, n neighbors, return distance)
    633
               sample range = np.arange(dist.shape[0])[:, None]
--> 634
               neigh ind = np.argpartition(dist, n neighbors - 1, axis=1)
   635
               neigh ind = neigh ind[:, :n neighbors]
    636
                # argpartition doesn't guarantee sorted order, so we sort again
< array function internals> in argpartition(*args, **kwargs)
~\anaconda3\lib\site-packages\numpy\core\fromnumeric.py in argpartition(a, kth, axis, ki
nd, order)
   837
            11 11 11
   838
--> 839
           return wrapfunc (a, 'argpartition', kth, axis=axis, kind=kind, order=order)
   840
    841
~\anaconda3\lib\site-packages\numpy\core\fromnumeric.py in wrapfunc(obj, method, *args,
    55
     56
           try:
---> 57
               return bound (*args, **kwds)
    58
           except TypeError:
                # A TypeError occurs if the object does have such a method in its
KeyboardInterrupt:
```

Por correlação

```
In [78]: # Gera os modelos que incluem as variáveis com maior correlação com 'satisfaction'
    cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)

# Obtém a lista de colunas com sua respectiva correlação com 'satisfaction'
    correlações = df_encod.corr()['satisfaction'].drop('satisfaction')

colunas_modelo = list()
    [colunas_modelo.append([x, y]) for x, y in zip(correlacoes.values, correlacoes.index)]

colunas_modelo.sort(key=lambda x : abs(x[0]), reverse=True)

modelo = list()

y = df_encod['satisfaction']

resultados_por_correlação = list()

for coluna in colunas_modelo[:-1]:
    modelo.append(coluna[1])

X = df_encod[modelo]

resultados_modelo = []

for n_vizinhos in primos:
```

```
knn_classifier = KNeighborsClassifier(n_neighbors=n_vizinhos)

values = cross_val_score(knn_classifier, X, y, cv=cv, scoring='accuracy')

resultados_modelo.append(values.mean())

resultados_por_correlacao.append(resultados_modelo.copy())
```

```
In [79]: modelo = list()
         for coluna in colunas modelo[:-1]:
          modelo.append(coluna[1])
          resultados formatados = list()
          for i primo in range(len(primos)):
            resultados formatados.append([resultados por correlacao[len(modelo)-1], primos[i pri
           resultados formatados.sort(key=lambda x : x[0], reverse=True)
          print(f'Modelo [{len(modelo)}]: {modelo}')
          for i in range(3):
            print(f'{resultados formatados[i][1]} vizinhos: {resultados formatados[i][0]}')
          plt.plot(primos, resultados por correlacao[len(modelo)-1]);
          plt.title(f"{len(modelo)} coluna{'s' if len(modelo) > 1 else ''} com maior correlação
          plt.xlabel("Número de Vizinhos")
          plt.ylabel("Acurácia Média")
          plt.show()
          print('\n')
```

Modelo [1]: ['Online boarding'] 2 vizinhos: [0.7812806091433372, 0.7827478688816656, 0.7899492663198135, 0.7899492663198 135, 0.7900554541757843, 0.7900554541757843, 0.7903354039778887, 0.7903354039778887, 0.7 903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.790335403 9778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887] 3 vizinhos: [0.7812806091433372, 0.7827478688816656, 0.7899492663198135, 0.7899492663198 135, 0.7900554541757843, 0.7900554541757843, 0.7903354039778887, 0.7903354039778887, 0.7 903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.790335403 9778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887] 5 vizinhos: [0.7812806091433372, 0.7827478688816656, 0.7899492663198135, 0.7899492663198 135, 0.7900554541757843, 0.7900554541757843, 0.7903354039778887, 0.7903354039778887, 0.7 903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.790335403 9778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887, 0.7903354039778887]

Modelo [2]: ['Online boarding', 'Class']
2 vizinhos: [0.813078255119958, 0.8041296882087499, 0.815819530589296, 0.818425616879135
5, 0.8198738045480007, 0.8192077040426302, 0.8194007579628778, 0.8250479196460951, 0.827
6445518995474, 0.8277700512974189, 0.8279534666850046, 0.8271618844859505, 0.82812719415
45617, 0.8281368475960136, 0.8282719901855436, 0.827992090700605, 0.8275190935008485, 0.8275287180565201, 0.8284554055731294]

3 vizinhos: [0.813078255119958, 0.8041296882087499, 0.815819530589296, 0.818425616879135 5, 0.8198738045480007, 0.8192077040426302, 0.8194007579628778, 0.8250479196460951, 0.8276445518995474, 0.8277700512974189, 0.8279534666850046, 0.8271618844859505, 0.82812719415 45617, 0.8281368475960136, 0.8282719901855436, 0.827992090700605, 0.8275190935008485, 0.8275287180565201, 0.8284554055731294]

5 vizinhos: [0.813078255119958, 0.8041296882087499, 0.815819530589296, 0.818425616879135 5, 0.8198738045480007, 0.8192077040426302, 0.8194007579628778, 0.8250479196460951, 0.827 6445518995474, 0.8277700512974189, 0.8279534666850046, 0.8271618844859505, 0.82812719415 45617, 0.8281368475960136, 0.8282719901855436, 0.827992090700605, 0.8275190935008485, 0.8275287180565201, 0.8284554055731294]

0.825 - 0.820 - 0.815 - 0.810 - 0.805 -

30

Número de Vizinhos

10

0.8499721112449174, 0.8495763201453904]

0

20

Modelo [3]: ['Online boarding', 'Class', 'Type of Travel']
2 vizinhos: [0.834662465928756, 0.8368439144742359, 0.8427514609682291, 0.84627492703079
13, 0.8438520707004633, 0.8441320167753703, 0.8465742135333795, 0.8475009439127597, 0.84
92674389047108, 0.8499141961870025, 0.8499141961870025, 0.8498852358626469, 0.8491033071
050447, 0.8488426641858441, 0.8495473654118312, 0.8494990982045717, 0.8499045427455506,
0.8499721112449174, 0.8495763201453904]
3 vizinhos: [0.834662465928756, 0.8368439144742359, 0.8427514609682291, 0.84627492703079
13, 0.8438520707004633, 0.8441320167753703, 0.8465742135333795, 0.8475009439127597, 0.84

40

50

60

70

5 vizinhos: [0.834662465928756, 0.8368439144742359, 0.8427514609682291, 0.84627492703079 13, 0.8438520707004633, 0.8441320167753703, 0.8465742135333795, 0.8475009439127597, 0.84 92674389047108, 0.8499141961870025, 0.8499141961870025, 0.8498852358626469, 0.8491033071 050447, 0.8488426641858441, 0.8495473654118312, 0.8494990982045717, 0.8499045427455506, 0.8499721112449174, 0.8495763201453904]

92674389047108, 0.8499141961870025, 0.8499141961870025, 0.8498852358626469, 0.8491033071 050447, 0.8488426641858441, 0.8495473654118312, 0.8494990982045717, 0.8499045427455506,

Modelo [4]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment']
2 vizinhos: [0.8259937276857346, 0.8432822390467918, 0.851033792263158, 0.85693188565256
34, 0.8644419127455617, 0.8634090802357527, 0.864770098073747, 0.8648184034847806, 0.867
3185628224724, 0.8682935343187298, 0.8680715079607347, 0.8684576484142079, 0.86813910814
12801, 0.8679267464063294, 0.8681004906482752, 0.8683707441461568, 0.8688727268288521,
0.8688823746795077, 0.8687665333820851]

3 vizinhos: [0.8259937276857346, 0.8432822390467918, 0.851033792263158, 0.85693188565256 34, 0.8644419127455617, 0.8634090802357527, 0.864770098073747, 0.8648184034847806, 0.867 3185628224724, 0.8682935343187298, 0.8680715079607347, 0.8684576484142079, 0.86813910814 12801, 0.8679267464063294, 0.8681004906482752, 0.8683707441461568, 0.8688727268288521, 0.8688823746795077, 0.8687665333820851]

5 vizinhos: [0.8259937276857346, 0.8432822390467918, 0.851033792263158, 0.85693188565256 34, 0.8644419127455617, 0.8634090802357527, 0.864770098073747, 0.8648184034847806, 0.867 3185628224724, 0.8682935343187298, 0.8680715079607347, 0.8684576484142079, 0.86813910814 12801, 0.8679267464063294, 0.8681004906482752, 0.8683707441461568, 0.8688727268288521, 0.8688823746795077, 0.8687665333820851]

Modelo [5]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'Se at comfort']

2 vizinhos: [0.8619322704857023, 0.8642684405890314, 0.8723383141736749, 0.8740468307453 538, 0.8775122941608606, 0.8786030407967855, 0.8797807149957453, 0.8809390441080277, 0.8 80485384540554, 0.8811997159130087, 0.8809004601597998, 0.881643743470416, 0.88107420533 35451, 0.8810645444376982, 0.8803791584808092, 0.8800412982797866, 0.8795586606837691, 0.8794428165909485, 0.8790663705780994]

3 vizinhos: [0.8619322704857023, 0.8642684405890314, 0.8723383141736749, 0.8740468307453 538, 0.8775122941608606, 0.8786030407967855, 0.8797807149957453, 0.8809390441080277, 0.8 80485384540554, 0.8811997159130087, 0.8809004601597998, 0.881643743470416, 0.88107420533 35451, 0.8810645444376982, 0.8803791584808092, 0.8800412982797866, 0.8795586606837691, 0.8794428165909485, 0.8790663705780994]

5 vizinhos: [0.8619322704857023, 0.8642684405890314, 0.8723383141736749, 0.8740468307453 538, 0.8775122941608606, 0.8786030407967855, 0.8797807149957453, 0.8809390441080277, 0.8 80485384540554, 0.8811997159130087, 0.8809004601597998, 0.881643743470416, 0.88107420533 35451, 0.8810645444376982, 0.8803791584808092, 0.8800412982797866, 0.8795586606837691, 0.8794428165909485, 0.8790663705780994]

Modelo [6]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'Se at comfort', 'On-board service']
2 vizinhos: [0.8695677037966352, 0.8792402079999821, 0.8839508749782425, 0.8887773925719

189, 0.8893372800627362, 0.8901384952036558, 0.8919628996627258, 0.8910941234768341, 0.8 921559722189609, 0.8921559619691679, 0.8918470443883129, 0.8911133949513619, 0.890621102 9820934, 0.8903315202381232, 0.8900901646340396, 0.889269642610216, 0.8887001072687433, 0.8884877501927892, 0.8879857805552854]

3 vizinhos: [0.8695677037966352, 0.8792402079999821, 0.8839508749782425, 0.8887773925719 189, 0.8893372800627362, 0.8901384952036558, 0.8919628996627258, 0.8910941234768341, 0.8 921559722189609, 0.8921559619691679, 0.8918470443883129, 0.8911133949513619, 0.890621102 9820934, 0.8903315202381232, 0.8900901646340396, 0.889269642610216, 0.8887001072687433, 0.8884877501927892, 0.8879857805552854]

5 vizinhos: [0.8695677037966352, 0.8792402079999821, 0.8839508749782425, 0.8887773925719 189, 0.8893372800627362, 0.8901384952036558, 0.8919628996627258, 0.8910941234768341, 0.8 921559722189609, 0.8921559619691679, 0.8918470443883129, 0.8911133949513619, 0.890621102 9820934, 0.8903315202381232, 0.8900901646340396, 0.889269642610216, 0.8887001072687433, 0.8884877501927892, 0.8879857805552854]

Modelo [7]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'Se at comfort', 'On-board service', 'Leg room service']

2 vizinhos: [0.8698767024440353, 0.8841921933103514, 0.8899357682741698, 0.8925517269783

125, 0.8937583875920104, 0.8944437707535012, 0.8942796818166062, 0.894347224225591, 0.89

42700190571606, 0.8939804419039866, 0.8935170813732934, 0.8923201021550282, 0.8919822344

996107, 0.8919725857171557, 0.8908624697677693, 0.8906404238419878, 0.8896751402637589,

0.8892600646445128, 0.8888739372362309]

3 vizinhos: [0.8698767024440353, 0.8841921933103514, 0.8899357682741698, 0.8925517269783

125, 0.8937583875920104, 0.8944437707535012, 0.8942796818166062, 0.894347224225591, 0.89

0.8892600646445128, 0.8888739372362309]
5 vizinhos: [0.8698767024440353, 0.8841921933103514, 0.8899357682741698, 0.8925517269783
125, 0.8937583875920104, 0.8944437707535012, 0.8942796818166062, 0.894347224225591, 0.89
42700190571606, 0.8939804419039866, 0.8935170813732934, 0.8923201021550282, 0.8919822344
996107, 0.8919725857171557, 0.8908624697677693, 0.8906404238419878, 0.8896751402637589,
0.8892600646445128, 0.8888739372362309]

42700190571606, 0.8939804419039866, 0.8935170813732934, 0.8923201021550282, 0.8919822344 996107, 0.8919725857171557, 0.8908624697677693, 0.8906404238419878, 0.8896751402637589,

Modelo [8]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'Se at comfort', 'On-board service', 'Leg room service', 'Cleanliness']
2 vizinhos: [0.8802827507910045, 0.8910651678114754, 0.8948394854454802, 0.8968569773695
751, 0.8971755884592548, 0.8992316997399534, 0.8993475224013885, 0.8999556808266623, 0.8
993668143755025, 0.8983725369281409, 0.8985849163672797, 0.8972720921243946, 0.896799094
9246378, 0.8962199061417133, 0.8958048267952698, 0.8955055775646565, 0.8944147768843687,
0.8940383094401338, 0.893536367756611]

3 vizinhos: [0.8802827507910045, 0.8910651678114754, 0.8948394854454802, 0.8968569773695 751, 0.8971755884592548, 0.8992316997399534, 0.8993475224013885, 0.8999556808266623, 0.8 993668143755025, 0.8983725369281409, 0.8985849163672797, 0.8972720921243946, 0.896799094 9246378, 0.8962199061417133, 0.8958048267952698, 0.8955055775646565, 0.8944147768843687, 0.8940383094401338, 0.893536367756611]

5 vizinhos: [0.8802827507910045, 0.8910651678114754, 0.8948394854454802, 0.8968569773695 751, 0.8971755884592548, 0.8992316997399534, 0.8993475224013885, 0.8999556808266623, 0.8 993668143755025, 0.8983725369281409, 0.8985849163672797, 0.8972720921243946, 0.896799094 9246378, 0.8962199061417133, 0.8958048267952698, 0.8955055775646565, 0.8944147768843687, 0.8940383094401338, 0.893536367756611]

Modelo [9]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'Se at comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance'] 2 vizinhos: [0.8249802654211864, 0.8370176074672164, 0.8407822912275563, 0.8422399217512 163, 0.839720484416401, 0.8380022659497028, 0.8341217306421477, 0.8317277591604265, 0.82 80885403213812, 0.8225284077673305, 0.8203468017477574, 0.8163214918406057, 0.8135896694 758553, 0.8125567875806798, 0.810336549159312, 0.8078171174152929, 0.8047377655674788, 0.8041972017319541, 0.8013977987544451]

3 vizinhos: [0.8249802654211864, 0.8370176074672164, 0.8407822912275563, 0.8422399217512 163, 0.839720484416401, 0.8380022659497028, 0.8341217306421477, 0.8317277591604265, 0.82 80885403213812, 0.8225284077673305, 0.8203468017477574, 0.8163214918406057, 0.8135896694 758553, 0.8125567875806798, 0.810336549159312, 0.8078171174152929, 0.8047377655674788, 0.8041972017319541, 0.8013977987544451]

5 vizinhos: [0.8249802654211864, 0.8370176074672164, 0.8407822912275563, 0.8422399217512 163, 0.839720484416401, 0.8380022659497028, 0.8341217306421477, 0.8317277591604265, 0.82 80885403213812, 0.8225284077673305, 0.8203468017477574, 0.8163214918406057, 0.8135896694 758553, 0.8125567875806798, 0.810336549159312, 0.8078171174152929, 0.8047377655674788, 0.8041972017319541, 0.8013977987544451]

Modelo [10]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service']

2 vizinhos: [0.8390351450494805, 0.8595382412324202, 0.8623665812393007, 0.8622990388303 16, 0.8603780971613292, 0.8575304605213381, 0.8530514220935593, 0.8509470184470184, 0.84 65838399526497, 0.8405410027130271, 0.8382821645028423, 0.8337066289325195, 0.8301832430 047025, 0.8285132619276843, 0.8256463174729898, 0.821611317784211, 0.8175667047213528, 0.8164083429960929, 0.8126436350089694]

3 vizinhos: [0.8390351450494805, 0.8595382412324202, 0.8623665812393007, 0.8622990388303 16, 0.8603780971613292, 0.8575304605213381, 0.8530514220935593, 0.8509470184470184, 0.84 65838399526497, 0.8405410027130271, 0.8382821645028423, 0.8337066289325195, 0.8301832430 047025, 0.8285132619276843, 0.8256463174729898, 0.821611317784211, 0.8175667047213528, 0.8164083429960929, 0.8126436350089694]

5 vizinhos: [0.8390351450494805, 0.8595382412324202, 0.8623665812393007, 0.8622990388303 16, 0.8603780971613292, 0.8575304605213381, 0.8530514220935593, 0.8509470184470184, 0.84 65838399526497, 0.8405410027130271, 0.8382821645028423, 0.8337066289325195, 0.8301832430 047025, 0.8285132619276843, 0.8256463174729898, 0.821611317784211, 0.8175667047213528, 0.8164083429960929, 0.8126436350089694]

Modelo [11]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling']

2 vizinhos: [0.8390351143001012, 0.859711992928761, 0.8609765406463931, 0.86049392075456 38, 0.8579069158521808, 0.8562755382911769, 0.8513717465759167, 0.8490453585023525, 0.84 49235067262869, 0.8379056998540058, 0.8357047962695227, 0.8307624327194267, 0.8270267130 106401, 0.8251346878714385, 0.82250908131664, 0.8183582505802315, 0.8143619047246327, 0.8133000774138915, 0.8097477488659071]

3 vizinhos: [0.8390351143001012, 0.859711992928761, 0.8609765406463931, 0.86049392075456 38, 0.8579069158521808, 0.8562755382911769, 0.8513717465759167, 0.8490453585023525, 0.84 49235067262869, 0.8379056998540058, 0.8357047962695227, 0.8307624327194267, 0.8270267130 106401, 0.8251346878714385, 0.82250908131664, 0.8183582505802315, 0.8143619047246327, 0.8133000774138915, 0.8097477488659071]

5 vizinhos: [0.8390351143001012, 0.859711992928761, 0.8609765406463931, 0.86049392075456 38, 0.8579069158521808, 0.8562755382911769, 0.8513717465759167, 0.8490453585023525, 0.84 49235067262869, 0.8379056998540058, 0.8357047962695227, 0.8307624327194267, 0.8270267130 106401, 0.8251346878714385, 0.82250908131664, 0.8183582505802315, 0.8143619047246327, 0.8133000774138915, 0.8097477488659071]

Modelo [12]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service'] 2 vizinhos: [0.8377609550719889, 0.8580999856130178, 0.8591231991579515, 0.8577911155539 306, 0.8552813009111879, 0.853283086052417, 0.8482345579413346, 0.8457633421556098, 0.84 12457039390141, 0.8349132532060421, 0.8328282067595708, 0.8269881011084312, 0.8234550850 341467, 0.8227600540220001, 0.8200089480693302, 0.815568528066356, 0.8113887481871844, 0.8098152838204967, 0.8072765330801822] 3 vizinhos: [0.8377609550719889, 0.8580999856130178, 0.8591231991579515, 0.8577911155539 306, 0.8552813009111879, 0.853283086052417, 0.8482345579413346, 0.8457633421556098, 0.84 12457039390141, 0.8349132532060421, 0.8328282067595708, 0.8269881011084312, 0.8234550850 341467, 0.8227600540220001, 0.8200089480693302, 0.815568528066356, 0.8113887481871844, 0.8098152838204967, 0.80727653308018221 5 vizinhos: [0.8377609550719889, 0.8580999856130178, 0.8591231991579515, 0.8577911155539 306, 0.8552813009111879, 0.853283086052417, 0.8482345579413346, 0.8457633421556098, 0.84 12457039390141, 0.8349132532060421, 0.8328282067595708, 0.8269881011084312, 0.8234550850 341467, 0.8227600540220001, 0.8200089480693302, 0.815568528066356, 0.8113887481871844,

0.8098152838204967, 0.80727653308018221

Modelo [13]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service'] 2 vizinhos: [0.8370080099337267, 0.8566133947650021, 0.8592872983446398, 0.8584088882850 829, 0.8546828033817606, 0.8531576015633358, 0.8492481059314247, 0.8470858217035454, 0.8 417476540087314, 0.8354635058913947, 0.8338128400834742, 0.8282526730528469, 0.825144372 994069, 0.8238026042674175, 0.8201247604809725, 0.8156747168541262, 0.8121513532894941, 0.8110509010313528, 0.8076337188000959] 3 vizinhos: [0.8370080099337267, 0.8566133947650021, 0.8592872983446398, 0.8584088882850 829, 0.8546828033817606, 0.8531576015633358, 0.8492481059314247, 0.8470858217035454, 0.8 417476540087314, 0.8354635058913947, 0.8338128400834742, 0.8282526730528469, 0.825144372 994069, 0.8238026042674175, 0.8201247604809725, 0.8156747168541262, 0.8121513532894941, 0.8110509010313528, 0.8076337188000959] 5 vizinhos: [0.8370080099337267, 0.8566133947650021, 0.8592872983446398, 0.8584088882850 829, 0.8546828033817606, 0.8531576015633358, 0.8492481059314247, 0.8470858217035454, 0.8 417476540087314, 0.8354635058913947, 0.8338128400834742, 0.8282526730528469, 0.825144372

994069, 0.8238026042674175, 0.8201247604809725, 0.8156747168541262, 0.8121513532894941,

0.8110509010313528, 0.8076337188000959]

Modelo [14]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink']

- 2 vizinhos: [0.8339672774425164, 0.8541132512678994, 0.857250476242657, 0.85716362601896 92, 0.8537850808485039, 0.8520957584120052, 0.8470858077265548, 0.845454453460535, 0.841 0912758979657, 0.8349229513738636, 0.8330502489581552, 0.827258413309673, 0.824584529297 822, 0.82294350761336, 0.8196807729909381, 0.8155395891733861, 0.8114659962183854, 0.810 2014345237629, 0.8067746165552421]
- 3 vizinhos: [0.8339672774425164, 0.8541132512678994, 0.857250476242657, 0.85716362601896 92, 0.8537850808485039, 0.8520957584120052, 0.8470858077265548, 0.845454453460535, 0.841 0912758979657, 0.8349229513738636, 0.8330502489581552, 0.827258413309673, 0.824584529297 822, 0.82294350761336, 0.8196807729909381, 0.8155395891733861, 0.8114659962183854, 0.810 2014345237629, 0.8067746165552421]
- 5 vizinhos: [0.8339672774425164, 0.8541132512678994, 0.857250476242657, 0.85716362601896 92, 0.8537850808485039, 0.8520957584120052, 0.8470858077265548, 0.845454453460535, 0.841 0912758979657, 0.8349229513738636, 0.8330502489581552, 0.827258413309673, 0.824584529297 822, 0.82294350761336, 0.8196807729909381, 0.8155395891733861, 0.8114659962183854, 0.810 2014345237629, 0.8067746165552421]

14 colunas com maior correlação com 'satisfaction'

Modelo [15]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink', 'Customer Type']

2 vizinhos: [0.8363901812946123, 0.8556577431968397, 0.8579744219209902, 0.8582158082744 531, 0.8553488740695517, 0.853176904719042, 0.8487847463325308, 0.8465259351445278, 0.84 20469311933256, 0.8358206944067067, 0.8339769513835543, 0.8278858497320704, 0.8250671911 206229, 0.8238895001492743, 0.820424066551347, 0.8159064199485572, 0.8120548449653576, 0.8108385476825962, 0.8073248254460245]

3 vizinhos: [0.8363901812946123, 0.8556577431968397, 0.8579744219209902, 0.8582158082744 531, 0.8553488740695517, 0.853176904719042, 0.8487847463325308, 0.8465259351445278, 0.84 20469311933256, 0.8358206944067067, 0.8339769513835543, 0.8278858497320704, 0.8250671911 206229, 0.8238895001492743, 0.820424066551347, 0.8159064199485572, 0.8120548449653576, 0.8108385476825962, 0.8073248254460245]

5 vizinhos: [0.8363901812946123, 0.8556577431968397, 0.8579744219209902, 0.8582158082744 531, 0.8553488740695517, 0.853176904719042, 0.8487847463325308, 0.8465259351445278, 0.84 20469311933256, 0.8358206944067067, 0.8339769513835543, 0.8278858497320704, 0.8250671911 206229, 0.8238895001492743, 0.820424066551347, 0.8159064199485572, 0.8120548449653576, 0.8108385476825962, 0.8073248254460245]

Modelo [16]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink', 'Customer Type', 'Ease of Online booking']

2 vizinhos: [0.8417766087422909, 0.8589976755332968, 0.8608799987774793, 0.8601656897682 093, 0.8560632045102071, 0.8543353111706719, 0.8500975687118173, 0.8473368065222975, 0.8 424716453452336, 0.8362454141494107, 0.8340445161557237, 0.8289284074318827, 0.825154064 639295, 0.8231655227897626, 0.819613181196587, 0.8154141102751007, 0.8105199785238881, 0.8090237649837997, 0.8055003874421771]

3 vizinhos: [0.8417766087422909, 0.8589976755332968, 0.8608799987774793, 0.8601656897682 093, 0.8560632045102071, 0.8543353111706719, 0.8500975687118173, 0.8473368065222975, 0.8 424716453452336, 0.8362454141494107, 0.8340445161557237, 0.8289284074318827, 0.825154064 639295, 0.8231655227897626, 0.819613181196587, 0.8154141102751007, 0.8105199785238881, 0.8090237649837997, 0.8055003874421771]

5 vizinhos: [0.8417766087422909, 0.8589976755332968, 0.8608799987774793, 0.8601656897682 093, 0.8560632045102071, 0.8543353111706719, 0.8500975687118173, 0.8473368065222975, 0.8 424716453452336, 0.8362454141494107, 0.8340445161557237, 0.8289284074318827, 0.825154064 639295, 0.8231655227897626, 0.819613181196587, 0.8154141102751007, 0.8105199785238881,

0.8090237649837997, 0.8055003874421771]

Modelo [17]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink', 'Customer Type', 'Ease of Online booking', 'Age'] 2 vizinhos: [0.794775785777089, 0.8123444006871461, 0.8138213343665125, 0.81107986508290 59, 0.8036469984319681, 0.8000753676600766, 0.7941483530818891, 0.7911269563593629, 0.78 64355356970475, 0.7797170339633415, 0.777129991788984, 0.7709809965109705, 0.76711013328 08543, 0.7656428819287203, 0.7623704500702763, 0.7583837557925308, 0.7542811894679836, 0.7530359588830484, 0.7491264613875387] 3 vizinhos: [0.794775785777089, 0.8123444006871461, 0.8138213343665125, 0.81107986508290 59, 0.8036469984319681, 0.8000753676600766, 0.7941483530818891, 0.7911269563593629, 0.78 64355356970475, 0.7797170339633415, 0.777129991788984, 0.7709809965109705, 0.76711013328 08543, 0.7656428819287203, 0.7623704500702763, 0.7583837557925308, 0.7542811894679836, 0.7530359588830484, 0.7491264613875387] 5 vizinhos: [0.794775785777089, 0.8123444006871461, 0.8138213343665125, 0.81107986508290 59, 0.8036469984319681, 0.8000753676600766, 0.7941483530818891, 0.7911269563593629, 0.78 6435356970475, 0.7797170339633415, 0.777129991788984, 0.7709809965109705, 0.76711013328

08543, 0.7656428819287203, 0.7623704500702763, 0.7583837557925308, 0.7542811894679836,

0.7530359588830484, 0.7491264613875387]

Modelo [18]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink', 'Customer Type', 'Ease of Online booking', 'Age', 'Arrival Delay in Minute s']

2 vizinhos: [0.7496572972376621, 0.7656427831579873, 0.7681043669336459, 0.7663958037719 983, 0.7624379887520635, 0.7615112723496738, 0.7574183808979639, 0.7552947700710516, 0.7 516169113758167, 0.7469062285569671, 0.7449563191092297, 0.7416260206464377, 0.738845919 8928357, 0.737890280438065, 0.7346468592211424, 0.732127365978365, 0.7293665963344503, 0.7286329683288849, 0.7257177538715331]

3 vizinhos: [0.7496572972376621, 0.7656427831579873, 0.7681043669336459, 0.7663958037719 983, 0.7624379887520635, 0.7615112723496738, 0.7574183808979639, 0.7552947700710516, 0.7 516169113758167, 0.7469062285569671, 0.7449563191092297, 0.7416260206464377, 0.738845919 8928357, 0.737890280438065, 0.7346468592211424, 0.732127365978365, 0.7293665963344503, 0.7286329683288849, 0.7257177538715331]

5 vizinhos: [0.7496572972376621, 0.7656427831579873, 0.7681043669336459, 0.7663958037719 983, 0.7624379887520635, 0.7615112723496738, 0.7574183808979639, 0.7552947700710516, 0.7 516169113758167, 0.7469062285569671, 0.7449563191092297, 0.7416260206464377, 0.738845919 8928357, 0.737890280438065, 0.7346468592211424, 0.732127365978365, 0.7293665963344503, 0.7286329683288849, 0.7257177538715331]

Modelo [19]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink', 'Customer Type', 'Ease of Online booking', 'Age', 'Arrival Delay in Minute s', 'Departure/Arrival time convenient']

2 vizinhos: [0.7512500694190528, 0.7678437258780437, 0.7698612634603078, 0.7686449382235 655, 0.7629399872753478, 0.762660018837256, 0.7582485731356279, 0.7561249241049415, 0.75 24084721434852, 0.747775048537429, 0.7457575351819488, 0.7415873956990378, 0.73877834766 62712, 0.7378419908676208, 0.7353611412082308, 0.7323204189668133, 0.7295403526897879, 0.7289708108257196, 0.7259493805584162]

3 vizinhos: [0.7512500694190528, 0.7678437258780437, 0.7698612634603078, 0.7686449382235 655, 0.7629399872753478, 0.762660018837256, 0.7582485731356279, 0.7561249241049415, 0.75 24084721434852, 0.747775048537429, 0.7457575351819488, 0.7415873956990378, 0.73877834766 62712, 0.7378419908676208, 0.7353611412082308, 0.7323204189668133, 0.7295403526897879, 0.7289708108257196, 0.7259493805584162]

5 vizinhos: [0.7512500694190528, 0.7678437258780437, 0.7698612634603078, 0.7686449382235 655, 0.7629399872753478, 0.762660018837256, 0.7582485731356279, 0.7561249241049415, 0.75 24084721434852, 0.747775048537429, 0.7457575351819488, 0.7415873956990378, 0.73877834766 62712, 0.7378419908676208, 0.7353611412082308, 0.7323204189668133, 0.7295403526897879, 0.7289708108257196, 0.7259493805584162]

Modelo [20]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink', 'Customer Type', 'Ease of Online booking', 'Age', 'Arrival Delay in Minute s', 'Departure/Arrival time convenient', 'Departure Delay in Minutes'] 2 vizinhos: [0.7334401576082723, 0.7485568291389315, 0.7532289466455409, 0.7531999919119 814, 0.7517327741046247, 0.7494836107672771, 0.7466553098959701, 0.7449273308308929, 0.7 418963225978864, 0.7387108388020638, 0.737243567882143, 0.7336043173619193, 0.7318184884 64883, 0.7305346161601591, 0.7292990334258797, 0.7264900068244985, 0.723989858668399, 0.7228314727163555, 0.720350629579561]

3 vizinhos: [0.7334401576082723, 0.7485568291389315, 0.7532289466455409, 0.7531999919119 814, 0.7517327741046247, 0.7494836107672771, 0.7466553098959701, 0.7449273308308929, 0.7 418963225978864, 0.7387108388020638, 0.737243567882143, 0.7336043173619193, 0.7318184884 64883, 0.7305346161601591, 0.7292990334258797, 0.7264900068244985, 0.723989858668399, 0.7228314727163555, 0.720350629579561]

5 vizinhos: [0.7334401576082723, 0.7485568291389315, 0.7532289466455409, 0.7531999919119 814, 0.7517327741046247, 0.7494836107672771, 0.7466553098959701, 0.7449273308308929, 0.7 418963225978864, 0.7387108388020638, 0.737243567882143, 0.7336043173619193, 0.7318184884 64883, 0.7305346161601591, 0.7292990334258797, 0.7264900068244985, 0.723989858668399, 0.7228314727163555, 0.720350629579561]

20 colunas com maior correlação com 'satisfaction'

Modelo [21]: ['Online boarding', 'Class', 'Type of Travel', 'Inflight entertainment', 'S eat comfort', 'On-board service', 'Leg room service', 'Cleanliness', 'Flight Distance', 'Inflight wifi service', 'Baggage handling', 'Inflight service', 'Checkin service', 'Foo d and drink', 'Customer Type', 'Ease of Online booking', 'Age', 'Arrival Delay in Minute s', 'Departure/Arrival time convenient', 'Departure Delay in Minutes', 'Gender'] 2 vizinhos: [0.7334884192247355, 0.7485471794246773, 0.7535764593562161, 0.7534027253640 633, 0.7517424387276689, 0.7499179932694268, 0.7468869682640317, 0.7455065177502188, 0.7 423982829173967, 0.7391645225963209, 0.7374945461782995, 0.7338746118589732, 0.731808824 773638, 0.73064078910734, 0.7292990278350834, 0.726374162731678, 0.7240960502515671, 0.7 229666181012837, 0.7205243877984973]

3 vizinhos: [0.7334884192247355, 0.7485471794246773, 0.7535764593562161, 0.7534027253640 633, 0.7517424387276689, 0.7499179932694268, 0.7468869682640317, 0.7455065177502188, 0.7 423982829173967, 0.7391645225963209, 0.7374945461782995, 0.7338746118589732, 0.731808824 773638, 0.73064078910734, 0.7292990278350834, 0.726374162731678, 0.7240960502515671, 0.7 229666181012837, 0.7205243877984973]

5 vizinhos: [0.7334884192247355, 0.7485471794246773, 0.7535764593562161, 0.7534027253640 633, 0.7517424387276689, 0.7499179932694268, 0.7468869682640317, 0.7455065177502188, 0.7 423982829173967, 0.7391645225963209, 0.7374945461782995, 0.7338746118589732, 0.731808824 773638, 0.73064078910734, 0.7292990278350834, 0.726374162731678, 0.7240960502515671, 0.7 229666181012837, 0.7205243877984973]

Filtros

```
In [80]:
         from sklearn.feature selection import SelectKBest, chi2
         # Aplicando o Filter
         cv = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         # Obtém todas as colunas que não são `satisfaction`
         todas variaveis = list()
         todas variaveis.extend( [coluna for coluna in df encod.columns if coluna != 'satisfactio
         y = df encod['satisfaction']
         for n colunas in range (1, 23):
           # Realiza a seleção de características usando SelectKBest e chi2
          X = df encod[todas variaveis]
          seletor = SelectKBest(chi2, k=n colunas)
          seletor.fit transform(X, y)
           # Obtém os índices das características selecionadas
          indice caracteristicas selecionadas = seletor.get support(indices=True)
           # Obtém os nomes das características selecionadas
           caracteristicas selecionadas = X.columns[indice caracteristicas selecionadas]
          modelo = list(caracteristicas selecionadas)
           print(f'Modelo [{len(modelo)}]: {modelo}')
          X = df encod[modelo]
          resultados = []
```

```
# Testa-se 10 `n_vizinhos` distintos por modelo.
# Como a mudança entre números de vizinhos adjacentes é pequena, pula-se de 3 em 3.
for n_vizinhos in primos:
    knn_classifier = KNeighborsClassifier(n_neighbors=n_vizinhos)

    values = cross_val_score(knn_classifier, X, y, cv=cv, scoring='accuracy')

    resultados.append(values.mean())

    print(f"{n_vizinhos} vizinhos: ", values.mean())

plt.plot(primos, resultados);
plt.title(f"{len(modelo)} coluna{'s' if len(modelo) > 1 else ''} escolhidas com filter
plt.xlabel("Número de Vizinhos")
plt.ylabel("Acurácia Média")
plt.show()
print('\n')
```

Modelo [1]: ['Flight Distance'] 2 vizinhos: 0.6011930824333084 3 vizinhos: 0.5923701574852747 5 vizinhos: 0.6117728228414588 7 vizinhos: 0.6243701157406631 11 vizinhos: 0.637903672258581 13 vizinhos: 0.6419193613372588 17 vizinhos: 0.6477980528002248 19 vizinhos: 0.6496032109433499 23 vizinhos: 0.6545262862465295 29 vizinhos: 0.6585033606276004 31 vizinhos: 0.6586191823572363 37 vizinhos: 0.661988120676218 41 vizinhos: 0.663339552162315 43 vizinhos: 0.6632623488574836 47 vizinhos: 0.6637256954111863 53 vizinhos: 0.6633202611200005 59 vizinhos: 0.663069322891217 61 vizinhos: 0.6636485181967371 67 vizinhos: 0.6635327123076906

1 coluna escolhidas com filter 0.66 0.65 0.64 Acurácia Média 0.63 0.62 0.61 0.60 0.59 10 20 0 30 40 50 60 70 Número de Vizinhos

```
Modelo [2]: ['Flight Distance', 'Arrival Delay in Minutes']
             0.6031043762516395
2 vizinhos:
3 vizinhos:
             0.5965307050254921
5 vizinhos:
             0.6118694690719018
7 vizinhos:
             0.6215708050112915
11 vizinhos:
             0.6323146222429454
              0.6370542774995425
13 vizinhos:
17 vizinhos:
              0.6421993307071501
19 vizinhos:
              0.6452400781071501
23 vizinhos:
              0.6485413556786275
29 vizinhos:
              0.6517559078875326
31 vizinhos:
              0.652615026904775
37 vizinhos:
              0.6554916490277045
41 vizinhos:
              0.6576249971580118
43 vizinhos:
              0.6586386047832615
47 vizinhos:
              0.6596811438470864
53 vizinhos:
              0.6605788980615219
59 vizinhos:
              0.6604630362645133
61 vizinhos:
              0.6605692325066782
67 vizinhos:
              0.6614669569035339
```


Modelo [3]: ['Flight Distance', 'Departure Delay in Minutes', 'Arrival Delay in Minute 2 vizinhos: 0.6007394303202296 3 vizinhos: 0.5927370320550163 5 vizinhos: 0.6096685412606351 7 vizinhos: 0.6208467987659995 0.6330868696051145 11 vizinhos: 13 vizinhos: 0.6381160759245035 17 vizinhos: 0.6445161063384347 19 vizinhos: 0.6465046453925689 23 vizinhos: 0.6488696565499346 29 vizinhos: 0.6538506543654241 31 vizinhos: 0.6553565306649581 37 vizinhos: 0.6580497523090921 41 vizinhos: 0.6590246930559702 43 vizinhos: 0.6592563775144139 47 vizinhos: 0.6594301506421403 53 vizinhos: 0.6613124925223101 59 vizinhos: 0.6612449296137393 61 vizinhos: 0.6615731205327208 67 vizinhos: 0.6622488390711675

Modelo [4]: ['Flight Distance', 'Online boarding', 'Departure Delay in Minutes', 'Arriva l Delay in Minutes'] 2 vizinhos: 0.6844219284445174 3 vizinhos: 0.703496367473344 5 vizinhos: 0.713525918558499 7 vizinhos: 0.7191633000755503 0.7252735651128354 11 vizinhos: 13 vizinhos: 0.7259975573811369 17 vizinhos: 0.7279668221653453 19 vizinhos: 0.7272138919358728 23 vizinhos: 0.7285170636691054 29 vizinhos: 0.7266057791687679 31 vizinhos: 0.7271656573415913 37 vizinhos: 0.7253508765063935 41 vizinhos: 0.7236712298745314 43 vizinhos: 0.7234588746621762 47 vizinhos: 0.7230341633056663 53 vizinhos: 0.7221267975807507 59 vizinhos: 0.7194915291983058 61 vizinhos: 0.7185937945516573 67 vizinhos: 0.7165859849547946

Modelo [5]: ['Class', 'Flight Distance', 'Online boarding', 'Departure Delay in Minute s', 'Arrival Delay in Minutes'] 2 vizinhos: 0.7089986734904199 3 vizinhos: 0.7269823053163627 0.7345116784278383 5 vizinhos: 7 vizinhos: 0.7396663813497003 0.7430546256197864 11 vizinhos: 0.7431608097485596 13 vizinhos: 17 vizinhos: 0.74417437171564 19 vizinhos: 0.7437013912882724 23 vizinhos: 0.7439716941715204 29 vizinhos: 0.7426009576661183 31 vizinhos: 0.7424465147162802 37 vizinhos: 0.7406606820920462 41 vizinhos: 0.7388845168862546 43 vizinhos: 0.7379095500489941 47 vizinhos: 0.7370021628926929 53 vizinhos: 0.7362685535231148 59 vizinhos: 0.733980767101966 61 vizinhos: 0.7331023635650047 67 vizinhos: 0.7308242641300852


```
Modelo [6]: ['Age', 'Class', 'Flight Distance', 'Online boarding', 'Departure Delay in M
inutes', 'Arrival Delay in Minutes']
2 vizinhos:
            0.6766318117795095
3 vizinhos:
            0.6975692867374015
5 vizinhos:
            0.7057454693119332
7 vizinhos:
            0.709037109282548
11 vizinhos: 0.7086509911922596
13 vizinhos:
            0.7078884475887083
17 vizinhos: 0.7067301352488147
19 vizinhos: 0.7046836923183578
23 vizinhos: 0.703776293048665
29 vizinhos: 0.7010734282128721
31 vizinhos: 0.6997413185184689
37 vizinhos: 0.696652379386958
41 vizinhos:
             0.6945093573156128
43 vizinhos: 0.6943452348339403
47 vizinhos: 0.692897300614503
53 vizinhos:
              0.6921540284854795
59 vizinhos:
              0.6898565942136751
```

61 vizinhos:

67 vizinhos:

0.6892194791912429

0.6883410374505075

Modelo [7]: ['Age', 'Class', 'Flight Distance', 'Online boarding', 'Inflight entertainme nt', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

0.6961599728063672 2 vizinhos: 3 vizinhos: 0.710851984229482 5 vizinhos: 0.7187481340717656 7 vizinhos: 0.7207270513656265 11 vizinhos: 0.7210359307427076 13 vizinhos: 0.7198969094451285 17 vizinhos: 0.7190571075605827 19 vizinhos: 0.7175512182158578 23 vizinhos: 0.7150703834652574 29 vizinhos: 0.7118559207090919 31 vizinhos: 0.71077479676524 37 vizinhos: 0.7081878011808508 41 vizinhos: 0.7058323978067679 43 vizinhos: 0.7058034440050079 47 vizinhos: 0.7036411905265078 53 vizinhos: 0.7015754248725578 59 vizinhos: 0.6995000104361531 61 vizinhos: 0.6986022739259056 67 vizinhos: 0.6973570330911774

0.720 - 0.715 - 0.705 - 0.700 - 0.695 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.695 - 0.00 - 0.00 - 0.695 - 0.00 -

Modelo [8]: ['Age', 'Type of Travel', 'Class', 'Flight Distance', 'Online boarding', 'In flight entertainment', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

Número de Vizinhos

2 vizinhos: 0.7008899904621018 3 vizinhos: 0.7146745867749342 5 vizinhos: 0.722522495500341 7 vizinhos: 0.7243372837899337 11 vizinhos: 0.7237001715628997 13 vizinhos: 0.722686634754402 17 vizinhos: 0.7213931677115866 19 vizinhos: 0.7201768555200353 23 vizinhos: 0.7175415824785938 29 vizinhos: 0.7145201605974846 31 vizinhos: 0.7129950090962254 37 vizinhos: 0.7102632007084657 41 vizinhos: 0.7085545620710694 43 vizinhos: 0.7078305986885483 47 vizinhos: 0.7056490178275582 53 vizinhos: 0.7033515807603558 59 vizinhos: 0.7016140377065658 61 vizinhos: 0.7004556601407166 67 vizinhos: 0.6991911077640879

8 colunas escolhidas com filter 0.725 0.720 Acurácia Média 0.715 0.710 0.705 0.700 10 20 30 40 50 60 70 Número de Vizinhos

Modelo [9]: ['Age', 'Type of Travel', 'Class', 'Flight Distance', 'Online boarding', 'Se at comfort', 'Inflight entertainment', 'Departure Delay in Minutes', 'Arrival Delay in M inutes'] 2 vizinhos: 0.7043071848067505 0.7180628189316287 3 vizinhos: 5 vizinhos: 0.723902926446367 7 vizinhos: 0.7261617273845771 11 vizinhos: 0.7259783073379945 13 vizinhos: 0.7249937028998714 17 vizinhos: 0.723931933360691 19 vizinhos: 0.72199164101423 23 vizinhos: 0.7203216860275939 29 vizinhos: 0.7173485276265468 31 vizinhos: 0.7162287573039092 37 vizinhos: 0.71314945763686 41 vizinhos: 0.7114311953755916 43 vizinhos: 0.7108037487034011 47 vizinhos: 0.7095102565020028 53 vizinhos: 0.7069328733598934 59 vizinhos: 0.7047801969152968 61 vizinhos: 0.7042589688484562

67 vizinhos: 0.7029171917356105

9 colunas escolhidas com filter 0.725 0.720 Acurácia Média

Número de Vizinhos

40

50

60

70

30

utes', 'Arrival Delay in Minutes'] 2 vizinhos: 0.7079656480981417 3 vizinhos: 0.7302063087662567 5 vizinhos: 0.7353706828337584 7 vizinhos: 0.7370697258012637 11 vizinhos: 0.7360368345880943 13 vizinhos: 0.734279979992404 17 vizinhos: 0.7317509264881116 19 vizinhos: 0.7299071424657871 23 vizinhos: 0.7276772804205472 29 vizinhos: 0.7248103229206617 31 vizinhos: 0.7228700603917806 37 vizinhos: 0.7193081100835228 41 vizinhos: 0.7166535068641932 43 vizinhos: 0.7162287740762979 47 vizinhos: 0.7146553339363939 53 vizinhos: 0.711875233182792 59 vizinhos: 0.7096839746535663 61 vizinhos: 0.708400144279814

67 vizinhos: 0.7071645280007574

10

20

0.715

0.710

0.705

Modelo [11]: ['Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inflight wifi servic e', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'De parture Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7133231142896651 3 vizinhos: 0.733652438276678 5 vizinhos: 0.7390388843603439 7 vizinhos: 0.7398884132984915 11 vizinhos: 0.7394250704719862 13 vizinhos: 0.7379867887622014 17 vizinhos: 0.7359307017082864 19 vizinhos: 0.7337973423963868 23 vizinhos: 0.7319922364340262 29 vizinhos: 0.7285074912941985 31 vizinhos: 0.7264224467113258 37 vizinhos: 0.7227542861839127 41 vizinhos: 0.7206498788101743 43 vizinhos: 0.7200031308458763 47 vizinhos: 0.7182655738150959 53 vizinhos: 0.715987463198584 59 vizinhos: 0.7131494362054744 61 vizinhos: 0.7121648345627494 67 vizinhos: 0.7101087279410476


```
Modelo [12]: ['Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inflight wifi servic
e', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Le
g room service', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']
2 vizinhos: 0.720389232163776
            0.7389231092206766
3 vizinhos:
5 vizinhos:
            0.7450334320295224
7 vizinhos:
             0.7456609280870793
11 vizinhos: 0.7442419383514084
13 vizinhos: 0.7423886005901645
17 vizinhos: 0.7405255683882965
19 vizinhos:
              0.7386046155377172
23 vizinhos: 0.7368863635262419
29 vizinhos: 0.7332181778402457
31 vizinhos: 0.7317412944780453
37 vizinhos:
             0.7282564971574529
41 vizinhos: 0.7261135226078754
43 vizinhos: 0.7252640579638842
              0.7229183508940242
47 vizinhos:
53 vizinhos:
             0.7207367709648336
59 vizinhos: 0.7185069331463771
61 vizinhos: 0.7178698004197569
```

67 vizinhos: 0.7146649911050432

Modelo [13]: ['Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inflight wifi servic e', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Le g room service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minute s']

2 vizinhos: 0.7245400833997706 3 vizinhos: 0.740023567069614 0.7464717603292755 5 vizinhos: 7 vizinhos: 0.7471378291534676 11 vizinhos: 0.7456030400513459 13 vizinhos: 0.7445219123802965 17 vizinhos: 0.7419735557202978 19 vizinhos: 0.7400139658089268 23 vizinhos: 0.7380543926699443 29 vizinhos: 0.7347626846779758 31 vizinhos: 0.7331023672922022 37 vizinhos: 0.7292025008749597 41 vizinhos: 0.7277255914223768 0.7268278511849319 43 vizinhos: 0.7242408295101604 47 vizinhos: 53 vizinhos: 0.7222426379463738 59 vizinhos: 0.720244461291377 61 vizinhos: 0.7193466968271486 67 vizinhos: 0.7163639287792198

Modelo [14]: ['Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inf light wifi service', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-bo ard service', 'Leg room service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7255922684506524 3 vizinhos: 0.7406896293712106 5 vizinhos: 0.74686754024721 7 vizinhos: 0.7472150510942865 11 vizinhos: 0.7459891665278284 13 vizinhos: 0.744965948323898 17 vizinhos: 0.7423886481119323 19 vizinhos: 0.7405062689597877 23 vizinhos: 0.7385949593008673 29 vizinhos: 0.7350522646265479 31 vizinhos: 0.733942174767544 37 vizinhos: 0.7296465433411568 41 vizinhos: 0.7278221286322937 43 vizinhos: 0.7269340511542944 47 vizinhos: 0.724491800351922 53 vizinhos: 0.7225998022349021 59 vizinhos: 0.7205340384445511 61 vizinhos: 0.7196749082457161 67 vizinhos: 0.7167983159403664

Modelo [15]: ['Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inf light wifi service', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-bo ard service', 'Leg room service', 'Checkin service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7287198250751683 3 vizinhos: 0.7426684273947524 5 vizinhos: 0.7486726443459718 7 vizinhos: 0.7494160003369387 11 vizinhos: 0.7472537291542505 13 vizinhos: 0.7462112254988015 17 vizinhos: 0.7433732441638611 19 vizinhos: 0.74201213314593 23 vizinhos: 0.7392996158004846 29 vizinhos: 0.7363554540639684 31 vizinhos: 0.7351970895433102 37 vizinhos: 0.731075197699872 41 vizinhos: 0.7287488198761005 43 vizinhos: 0.7275904609462385 47 vizinhos: 0.7264706822374069 53 vizinhos: 0.7240381202848623 59 vizinhos: 0.721354579104362 61 vizinhos: 0.7199645282616611 67 vizinhos: 0.7179856501033737

Modelo [16]: ['Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inf light wifi service', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight ente rtainment', 'On-board service', 'Leg room service', 'Checkin service', 'Cleanliness', 'D eparture Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7286522714845912 3 vizinhos: 0.7427360555292788 5 vizinhos: 0.7482382879342044 7 vizinhos: 0.748720984233582 11 vizinhos: 0.7475047298135917 13 vizinhos: 0.7465973463844879 17 vizinhos: 0.7437593594587513 19 vizinhos: 0.7422534775684212 23 vizinhos: 0.7399657069878616 29 vizinhos: 0.7366064500643128 31 vizinhos: 0.7347240820937606 37 vizinhos: 0.7314227402281268 41 vizinhos: 0.7298202950374975 43 vizinhos: 0.7287005386918505 47 vizinhos: 0.7272332761581242 53 vizinhos: 0.7243373527430869 59 vizinhos: 0.7217599798507705 0.7206788382027305 61 vizinhos: 67 vizinhos: 0.7184200391281189

Modelo [17]: ['Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inf light wifi service', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight ente rtainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7298395804890158 3 vizinhos: 0.744087472106586 0.7491167529699241 5 vizinhos: 7 vizinhos: 0.7490781187045304 11 vizinhos: 0.7483348633478956 13 vizinhos: 0.7473309753218528 17 vizinhos: 0.7439234735542294 19 vizinhos: 0.7424754815632313 23 vizinhos: 0.740419375873329 29 vizinhos: 0.7371180573026793 31 vizinhos: 0.7361527541566637 37 vizinhos: 0.7318184754196917 41 vizinhos: 0.7301485073878645 0.7292411202315633 43 vizinhos: 47 vizinhos: 0.7273491314325372 53 vizinhos: 0.7246848859533481 59 vizinhos: 0.7221171329577064 61 vizinhos: 0.7210166862903613 67 vizinhos: 0.7190571066287834

Modelo [18]: ['Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inf light wifi service', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight ente rtainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7308531256837079 0.7442129780270528 3 vizinhos: 5 vizinhos: 0.7489719625297384 7 vizinhos: 0.7493966869314395 11 vizinhos: 0.7476301844850932 13 vizinhos: 0.7469931263024225 17 vizinhos: 0.7443868256987284 19 vizinhos: 0.7425720159777501 23 vizinhos: 0.7398884412524727 29 vizinhos: 0.7369346344606986 31 vizinhos: 0.7352260312316784 37 vizinhos: 0.7318088480686222 41 vizinhos: 0.7301678217251631 43 vizinhos: 0.7294728046900072 47 vizinhos: 0.7276194100890017 53 vizinhos: 0.725051702751529 59 vizinhos: 0.7218275641907267 61 vizinhos: 0.7212773413229538 67 vizinhos: 0.7192501614808305

Modelo [19]: ['Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inf light wifi service', 'Ease of Online booking', 'Food and drink', 'Online boarding', 'Sea t comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage h andling', 'Checkin service', 'Inflight service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7314419679080844 3 vizinhos: 0.7462207755105236 5 vizinhos: 0.751568618078175 7 vizinhos: 0.7507191459797888 11 vizinhos: 0.749541495075813 13 vizinhos: 0.7492036618969721 17 vizinhos: 0.7461147013340758 19 vizinhos: 0.744328828642469 23 vizinhos: 0.7415681055885226 29 vizinhos: 0.7381992194503055 31 vizinhos: 0.7361816883906371 37 vizinhos: 0.7331988849343323 41 vizinhos: 0.7313841022355357 43 vizinhos: 0.7302739983995414 47 vizinhos: 0.7281889351806814 53 vizinhos: 0.7263934593647886 59 vizinhos: 0.7231983006961287 61 vizinhos: 0.722204036293958 67 vizinhos: 0.7193563595865942

Modelo [20]: ['Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inf light wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Foo d and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board ser vice', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'C leanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7334401576082723 0.7485568291389315 3 vizinhos: 5 vizinhos: 0.7532289466455409 7 vizinhos: 0.7531999919119814 11 vizinhos: 0.7517327741046247 13 vizinhos: 0.7494836107672771 17 vizinhos: 0.7466553098959701 19 vizinhos: 0.7449273308308929 23 vizinhos: 0.7418963225978864 29 vizinhos: 0.7387108388020638 31 vizinhos: 0.737243567882143 37 vizinhos: 0.7336043173619193 41 vizinhos: 0.731818488464883 43 vizinhos: 0.7305346161601591 47 vizinhos: 0.7292990334258797 53 vizinhos: 0.7264900068244985 59 vizinhos: 0.723989858668399 61 vizinhos: 0.7228314727163555 67 vizinhos: 0.720350629579561

Modelo [21]: ['Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Dista nce', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online book ing', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On -board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight se rvice', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes']

2 vizinhos: 0.7334884192247355 3 vizinhos: 0.7485471794246773 5 vizinhos: 0.7535764593562161 7 vizinhos: 0.7534027253640633 11 vizinhos: 0.7517424387276689 13 vizinhos: 0.7499179932694268 17 vizinhos: 0.7468869682640317 19 vizinhos: 0.7455065177502188 23 vizinhos: 0.7423982829173967 29 vizinhos: 0.7391645225963209 31 vizinhos: 0.7374945461782995 37 vizinhos: 0.7338746118589732 41 vizinhos: 0.731808824773638 43 vizinhos: 0.73064078910734 47 vizinhos: 0.7292990278350834 53 vizinhos: 0.726374162731678 59 vizinhos: 0.7240960502515671 61 vizinhos: 0.7229666181012837 67 vizinhos: 0.7205243877984973

Modelo [22]: ['Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Dista nce', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online book ing', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight en tertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes')

2 vizinhos: 0.7345020156683927 3 vizinhos: 0.7492229091447162 0.7540880684581814 5 vizinhos: 7 vizinhos: 0.7537116261725297 11 vizinhos: 0.7531034947694374 13 vizinhos: 0.7502365372695521 17 vizinhos: 0.7470028067660561 19 vizinhos: 0.74541965448134 23 vizinhos: 0.7427168315765188 29 vizinhos: 0.7389618226890164 31 vizinhos: 0.7375428171127563 37 vizinhos: 0.7337201512049469 41 vizinhos: 0.7314999537827513 43 vizinhos: 0.7306987516870228 47 vizinhos: 0.7289418654101538 53 vizinhos: 0.726103896188605 59 vizinhos: 0.7231597055663086 61 vizinhos: 0.7223681410714425 67 vizinhos: 0.7206112706351628

Wrapper

```
In [81]:
        from sklearn.feature selection import SequentialFeatureSelector
         from sklearn.model selection import KFold, cross val score, StratifiedKFold
         # Fazer a seleção de características com train split test e o kfold depois
In [82]:
        X train, X test, y train, y test = train test split(df encod.iloc[:, :-1], df encod.iloc
                                                             test size=0.2, random state=42)
         cv = StratifiedKFold(n splits=10, shuffle=True, random state=42)
         for quant var in range(18, 22):
             knn classifier = KNeighborsClassifier(n neighbors = 5)
             # Cria um objeto Sequential Feature Selector para selecionar as duas melhores caract
             sfs = SequentialFeatureSelector(knn classifier, n features to select=quant var)
             # Aplica o Sequential Feature Selector ao conjunto de dados de treino
             X train sfs = sfs.fit transform(X train, y train)
             # Obtém o índice das características selecionadas após o último ajuste
             selected features idx = sfs.get support(indices=True)
             # Obtém os nomes das características selecionadas
             selected features names = df encod.columns[selected features idx]
             # Imprime as características selecionadas
             print("Características selecionadas: ", selected features names)
             values = cross val score(knn classifier,
                                    df encod[selected features names],
                                    df encod['satisfaction'],
```

```
print("Acurácia média: ", values.mean())
Características selecionadas: Index(['Gender', 'Customer Type', 'Type of Travel', 'Clas
       'Inflight wifi service', 'Departure/Arrival time convenient',
       'Ease of Online booking', 'Gate location', 'Food and drink',
       'Online boarding', 'Seat comfort', 'Inflight entertainment',
       'On-board service', 'Leg room service', 'Baggage handling',
       'Checkin service', 'Inflight service', 'Cleanliness'],
      dtype='object')
Acurácia média: 0.9315984188855605
Características selecionadas: Index(['Gender', 'Customer Type', 'Age', 'Type of Trave
l', 'Class',
       'Inflight wifi service', 'Departure/Arrival time convenient',
       'Ease of Online booking', 'Gate location', 'Food and drink',
       'Online boarding', 'Seat comfort', 'Inflight entertainment',
       'On-board service', 'Leg room service', 'Baggage handling',
       'Checkin service', 'Inflight service', 'Cleanliness'],
      dtype='object')
Acurácia média: 0.9161342038948469
Características selecionadas: Index(['Gender', 'Customer Type', 'Age', 'Type of Trave
l', 'Class',
       'Inflight wifi service', 'Departure/Arrival time convenient',
       'Ease of Online booking', 'Gate location', 'Food and drink',
       'Online boarding', 'Seat comfort', 'Inflight entertainment',
       'On-board service', 'Leg room service', 'Baggage handling',
       'Checkin service', 'Inflight service', 'Cleanliness',
       'Arrival Delay in Minutes',
      dtype='object')
Acurácia média: 0.895766219552058
Características selecionadas: Index(['Gender', 'Customer Type', 'Age', 'Type of Trave
l', 'Class',
       'Inflight wifi service', 'Departure/Arrival time convenient',
       'Ease of Online booking', 'Gate location', 'Food and drink',
       'Online boarding', 'Seat comfort', 'Inflight entertainment',
       'On-board service', 'Leg room service', 'Baggage handling',
       'Checkin service', 'Inflight service', 'Cleanliness',
       'Departure Delay in Minutes', 'Arrival Delay in Minutes'],
      dtype='object')
Acurácia média: 0.8763345836217253
```

cv=cv, scoring='accuracy')

1 Característica selecionada: ['Online boarding']

Acurácia média: 0.7752471085333814

2 Características selecionadas: ['Type of Travel', 'Online boarding']

Acurácia média: 0.8487943466614188

3 Características selecionadas: ['Type of Travel', 'Inflight wifi service', 'Online boarding']

Acurácia média: 0.8818370238179101

4 Características selecionadas: ['Type of Travel', 'Inflight wifi service', 'Gate location', 'Online boarding']

Acurácia média: 0.915921765752348

5 Características selecionadas: ['Type of Travel', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Baggage handling']

Acurácia média: 0.9209221543126841

6 Características selecionadas: ['Customer Type', 'Type of Travel', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Baggage handling']

Acurácia média: 0.931994188553702

7 Características selecionadas: ['Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Baggage handling']

Acurácia média: 0.9394076924137739

8 Características selecionadas: ['Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Baggage handling', 'Inflight service']

Acurácia média: 0.9402668692025772

9 Características selecionadas: ['Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Inflight entertainment', 'Baggage handling', 'Inflight service']

Acurácia média: 0.940508171694097

10 Características selecionadas: ['Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service']

Acurácia média: 0.9414734319773416

11 Características selecionadas: ['Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Ease of Online booking', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Baggage handling', 'Inflight service']

Acurácia média: 0.9421974354272356

12 Características selecionadas: ['Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Ease of Online booking', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Leg room service', 'Baggage handling', 'Inflight service']

Acurácia média: 0.9401799528211345

13 Características selecionadas: ['Gender', 'Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Ease of Online booking', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Leg room service', 'Baggage handling', 'Inflight service']

Acurácia média: 0.9397745092119549

14 Características selecionadas: ['Gender', 'Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Ease of Online booking', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Leg room service', 'Baggage handling', 'Inflight service', 'Cleanliness']

Acurácia média: 0.938162485123823

15 Características selecionadas: ['Gender', 'Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Leg room service', 'Baggage handling', 'Inflight service', 'Cleanliness']

Acurácia média: 0.9374288804132418

16 Características selecionadas: ['Gender', 'Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness']

Acurácia média: 0.935382396483613

17 Características selecionadas: ['Gender', 'Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness']

Acurácia média: 0.932930531375362

18 Características selecionadas: ['Gender', 'Customer Type', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness']

Acurácia média: 0.9315984188855605

19 Características selecionadas: ['Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness']

Acurácia média: 0.9161342038948469

20 Características selecionadas: ['Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness', 'Arrival Delay in Minutes']

Acurácia média: 0.895766219552058

21Características selecionadas: Index(['Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Inflight wifi service', 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort', 'Inflight entertainment', 'On-board service', 'Leg room service', 'Baggage handling', 'Checkin service', 'Inflight service', 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes'], dtype='object')

Acurácia média: 0.8763345836217253

Etapa 4

```
In []: # from sklearn.linear_model import LogisticRegression
# from sklearn.ensemble import RandomForestClassifier
# from sklearn.tree import DecisionTreeClassifier
# from sklearn.metrics import accuracy_score

# SEED = 42
# np.random.seed(SEED)
```

```
# cv = StratifiedKFold(n splits = 10, shuffle = True)
# knn = KNeighborsClassifier(n neighbors=3)
# model = DecisionTreeClassifier(max depth=3)
# model log = LogisticRegression(solver='liblinear')
# model rand = RandomForestClassifier(n estimators=100)
# models = [knn, model, model log, model rand]
# name = ['KNN', 'Árvore de Decisão',
         'Regressão Logística', 'Random Forest']
\# count = 0
# for item in models:
    np.random.seed(SEED)
    results = cross val score(item, X, y, cv = cv, scoring = 'accuracy')
    mean = results.mean()
    dv = results.std()
#
    print('Acurácia média - Modelo {}: {:.2f}%'.format(name[count], mean*100))
     print('Intervalo de acurácia - Modelo {}: [{:.2f}% ~ {:.2f}%] \n'.format(name[count
#
     count += 1
```