§9 Дифференцирование обобщённых функций.

Дифференцирование в обобщённом смысле, как мы увидим ниже, осуществимо в гораздо большем числе случаев, чем дифференцирование классическое. Интуитивно понятно, что это расширяет круг разрешимых краевых задач, поскольку расширяется класс дифференцируемых функций.

Понятие обобщённой производной, как и введённые нами ранее операции замены переменных и умножения обобщённой функции на мультипликатор, определяются «за счёт» основных функций.

Определение 9.1. Пусть α – мультииндекс, f – обобщённая функция (безразлично, из D'(G), или из $S'(\mathbb{R}^n)$). Её *обобщённой производной* $f^{(\alpha)}$ *порядка* α называется обобщённая функция, задаваемая правилом

$$\left(f^{(\alpha)}, \varphi\right) = (-1)^{|\alpha|} \cdot \left(f, \varphi^{(\alpha)}\right). \tag{68}$$

Пример 9.2. $\theta'(x) = \delta(x)$.

Доказательство.

$$\left(\theta'(x), \varphi(x)\right)^{(68)} = -\left(\theta(x), \varphi'(x)\right) = -\int_{0}^{+\infty} \varphi'(x) dx = -\left(\varphi(x)\Big|_{0}^{+\infty}\right) = \varphi(0) = \left(\delta(x), \varphi(x)\right). \quad \blacksquare$$

Очевидно, что обобщённое дифференцирование линейно:

Предложение 9.3. Если f, g – обобщённые функции, a, b – числа, α – мультииндекс, то $(a \cdot f + b \cdot g)^{(\alpha)} = a \cdot f^{(\alpha)} + b \cdot g^{(\alpha)}$.

Предложение 9.4. (Формула Лейбница) Пусть f – обобщённая функция, a – мультипликатор, α – мультиндекс, такой, что $|\alpha|$ = 1. Тогда

$$(f(x) \cdot a(x))^{(\alpha)} = f^{(\alpha)}(x) \cdot a(x) + f(x) \cdot a^{(\alpha)}(x).$$

Доказательство. Подчеркнём ещё раз, что α имеет вид $\alpha = (0, \dots 0, 1, 0, \dots 0)$.

$$\left(\left(a \cdot f \right)^{(\alpha)}, \varphi \right) = -\left(a \cdot f, \varphi^{(\alpha)} \right) = -\left(f, a \cdot \varphi^{(\alpha)} \right) = -\left(f, \left(a \cdot \varphi \right)^{(\alpha)} - a^{(\alpha)} \cdot \varphi \right) =$$

$$= -\left(\left(f, \left(a \cdot \varphi \right)^{(\alpha)} \right) - \left(f, a^{(\alpha)} \cdot \varphi \right) \right) = \left(f^{(\alpha)}, a \cdot \varphi \right) + \left(a^{(\alpha)} \cdot f, \varphi \right) = \left(a \cdot f^{(\alpha)} + a^{(\alpha)} \cdot f, \varphi \right). \blacksquare$$

Определение 9.5. Функцию $f:\mathbb{R}^n \to \mathbb{R}$ назовём *кусочно- гладкой*

функцией порядка k, если $\mathbb{R}^n=S\coprod G_1\coprod\ldots\coprod G_m$, где $S=\bigcup_{i=1}^m\partial G_i$, и при этом $f\in C^k\left(\overline{G_i}\right)$ для всех $i=1,\ldots,m$.

Пример 9.6. Функции |x|, $\theta(x)$, signx, $\frac{\sin x}{|x|}$ — кусочно-гладкие (на $\mathbb R$).

Замечание. При n > 1 границы областей G_i обычно предполагаются кусочно-гладкими поверхностями (или кривыми).

Теорема 9.7. (О дифференцировании кусочно-гладкой функции) Пусть n=2 или n=3. Пусть $\mathbb{R}^n=G_1\coprod S\coprod G_2$, где S — общая кусочно-гладкая граница

областей G_1 и G_2 . Пусть $f \in C^1(\overline{G_i})$ для i=1,2. Тогда обобщённая (в смысле $D'(\mathbb{R}^n)$) частная производная f_x от функции f по координате x равна

$$f_{x} = (f_{x})_{r} + ([f]_{S} \cdot \cos(x, \overline{n}))\delta_{S}, \tag{69}$$

где $[f]_S$ – скачок функции f на границе S.

Доказательство. Рассмотрим случай n=2. Каждая кусочно-гладкая функция локально интегрируема. Поэтому, применяя сначала (68), а затем (63), можем записать ($\varphi \in D(\mathbb{R}^2)$):

$$(f_x, \varphi) = -(f, \varphi_x) = -\int_{\mathbb{R}^2} f \cdot \varphi_x dx dy =$$

$$= -\int_{G_1} f \cdot \varphi_x dx dy - \int_{G_2} f \cdot \varphi_x dx dy.$$

Последнее равенство верно, так как мера Лебега линии S равна 0. Но отдельно в областях G_1 и G_2 функция f имеет классическую производную по x. Из формулы Лейбница теперь следует

$$-\int_{G_1} f \cdot \varphi_{\chi} dx dy = \int_{G_1} f_{\chi} \cdot \varphi dx dy - \int_{G_1} (f \cdot \varphi)_{\chi} dx dy. \tag{*}$$

Пусть D — некоторый круг, содержащий компактный носитель ѕиррф, S_1 — граница области $D \cap G_1$ (см. рис.). Значит, S_1 — замкнутая кусочно-гладкая кривая. Вне области $D \cap G_1$ подынтегральные функции в (*) равны 0. Поэтому

$$\int_{G_1} (f \cdot \varphi)_x dxdy = \int_{G_1 \cap D} (f \cdot \varphi)_x dxdy.$$

Для последнего интеграла справедлива формула Грина. Приведём соответствующую теорему.

Теорема. (Формула Грина) Если функции P,Q непрерывно дифференцируемы в замкнутой области $\Omega \subset \mathbb{R}^2$, ограниченной замкнутым контуром Γ , то

$$\int_{\Omega} (Q_x - P_y) dx dy = \int_{\Gamma} P dx + Q dy.$$
 (70)

Полагая $\Omega = G_1 \cap D$, $\Gamma = S_1$, $P \equiv 0$, $Q = (f \cdot \phi)_x$, а также, при $(x, y) \in S_1$, полагая $f_1(x, y) = \lim_{\begin{subarray}{c} (x', y') \in G_1 \cap D \\ (x', y') \to (x, y) \end{subarray}} f(x', y')$, по формуле (70) получим:

$$\int_{G_1 \cap D} (f \cdot \varphi)_x dxdy = \int_{S_1} \varphi \cdot f_1 dy = \int_{S} \varphi \cdot f_1 dy = \int_{S} \varphi \cdot f_1 \cdot \cos(x, \overline{n}_1) dS.$$

Здесь \overline{n}_1 — единичный вектор внешней нормали к S_1 (см. красный \overline{n} на рисунке). Кроме того, мы воспользовались тем, что в элементарном прямоугольном треугольнике с катетом dy и гипотенузой dS выполнено

$$dy = \cos(y, \overline{\tau}) dS = \cos(x, \overline{n}) dS$$
 (см. рис. 2).

Следовательно, (*) принимает вид

$$-\int_{G_1} f \cdot \varphi_X dx dy = \int_{G_1} f_X \cdot \varphi dx dy - \int_{S} \varphi \cdot f_1 \cdot \cos(x, \overline{n}_1) dS. \quad (**)$$

Аналогично, учитывая, что $\cos(x, -\overline{n}_1) = -\cos(x, \overline{n}_1)$, получим

Рис. 2

$$-\int_{G_2} f \cdot \varphi_X dx dy = \int_{G_2} f_X \cdot \varphi dx dy + \int_{S} \varphi \cdot f_2 \cdot \cos(x, \overline{n}_1) dS \cdot (***)$$

Складывая равенства (**) и (***), получим

$$(f_{x}, \varphi) = \int_{G_{1} \cup G_{2}} \varphi \cdot f_{x} dx dy + \int_{S} \varphi \cdot (f_{2} - f_{1}) \cdot \cos(x, \overline{n}_{1}) dS =$$

$$\int_{G_{1} \cup G_{2}} \varphi \cdot f_{x} dx dy + \int_{S} \varphi \cdot (f_{2} - f_{1}) \cdot \cos(x, \overline{n}_{1}) dS = ((f_{1}) + [f_{2}] \cdot \cos(x, \overline{n}_{1}) dS =$$

$$= \int_{\mathbb{R}^2} \varphi \cdot f_x dx dy + \int_{S} \varphi \cdot [f]_{S} \cdot \cos(x, \overline{n}_1) dS = ((f_x)_r + [f]_{S} \cdot \cos(x, \overline{n}_1) \delta_S, \varphi).$$

Заключаем, что
$$f_x = (f_x)_r + [f]_S \cdot \cos(x, \overline{n}_1) \delta_S$$
.

Замечание. 1) Ясно, что аналогично выводится формула для f_y .

2) При n=3 доказательство дословно такое же, но для перехода от интеграла по ограниченной области к интегралу по замкнутой границе вместо формулы Грина (70) используется формула Гаусса—Остроградского

$$\int_{\Omega} \left(P_x + Q_y + R_z \right) dx dy dz = \int_{\Gamma} \left(P \cdot \cos\left(x, \overline{n}\right) + Q \cdot \cos\left(y, \overline{n}\right) + R \cdot \cos\left(z, \overline{n}\right) \right) d\Gamma. \tag{71}$$

3) При n = 1 получим сразу по формуле интегрирования по частям:

$$f_{x} = (f_{x})_{r} + [f]_{x_{0}} \delta(x - x_{0})$$
(72)

(Доказательство – упражнение)

4) Формула (72) легко обобщается на случай m точек разрыва классической производной f_x :

$$f_{x} = (f_{x})_{r} + \sum_{i=1}^{m} [f]_{x_{i}} \delta(x - x_{i}).$$
 (73)