ESC195 Notes

QiLin Xue

February 5, 2021

Contents

1 Areas and Lengths in Polar Coordinates

1

1 Areas and Lengths in Polar Coordinates

- Suppose we have a polar curve $r = \rho(\theta)$ for $\alpha \le \theta \le \beta$.
- We can determine the area by partitioning the curve into θ_i and approximating each subregion as a circular segment. The area of a circular segment is:

$$A = \frac{1}{2}a^2\Delta\theta\tag{1}$$

We can take the radius to be $r = \rho(\theta^*)$ where $\theta_{i-1} \leq \theta^* \leq \theta_i$. The area of each region is:

$$A_i = \frac{1}{2}\rho(\theta_i^*)^2 \Delta \theta_i \tag{2}$$

so the total area is:

$$A = \lim_{|P|} \sum_{i} \frac{1}{2} \rho(\theta_i^*)^2 \Delta \theta_i \tag{3}$$

or

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \rho(\theta)^2 \, \mathrm{d}\theta \tag{4}$$

Example 1: Suppose we wish to find the area of $r = 1 - \cos \theta$.

ESC195 QiLin Xue

The area is then:

$$A = \frac{1}{2} \int_0^{2\pi} (1 - \cos \theta)^2 \, \mathrm{d}\theta \tag{5}$$

$$= \frac{1}{2} \int_0^{2\pi} (1 - 2\cos\theta + \cos^2\theta) \,d\theta \tag{6}$$

$$= \frac{1}{2} \int_0^{2\pi} \left(\frac{3}{2} - 2\cos\theta + \frac{1}{2}\cos(2\theta) \right) d\theta \tag{7}$$

$$= \frac{1}{2} \left(\frac{3}{2} \theta - 2 \sin \theta + \frac{1}{4} \sin(2\theta) \right) \Big|_{0}^{2\pi}$$
 (8)

$$=\frac{3}{2}\pi\tag{9}$$

• We can also find the area between two polar curves ρ_1 and ρ_2 . We have:

$$A = \frac{1}{2} \int_{\alpha}^{\beta} \rho_1(\theta)^2 d\theta - \frac{1}{2} \int_{\alpha}^{\beta} \rho_2(\theta)^2 d\theta = \frac{1}{2} \int_{\alpha}^{\beta} (\rho_1^2 - \rho_2^2) d\theta$$
 (10)

Warning: Be careful when applying this formula as it is possible the two functions can overlap between $\alpha \leq \theta \leq \beta$. Therefore, we always need a good idea of what's happening.

Example 2: Suppose we want to determine the area inside $r^2 = 4\cos(2\theta)$ but outside r = 1. This gives:

We first find the four points of intersection:

$$4\cos(2\theta) = 1 \implies \cos(2\theta) = \frac{1}{4} \implies \theta = \pm 0.659 \tag{11}$$

or $\theta = \pi \pm 0.659$. Due to the symmetry, we only need to find the area of one half of the area we are interested in, which gives:

$$\frac{1}{2}A = \frac{1}{2} \int_{-0.659}^{0.659} (4\cos 2\theta - 1) d\theta$$

$$= \frac{1}{2} (2\sin 2\theta - \theta) \Big|_{-0.659}^{0.659}$$
(12)

$$= \frac{1}{2} (2\sin 2\theta - \theta) \Big|_{-0.659}^{0.659} \tag{13}$$

$$=1.277$$
 (14)

so the area is A = 2.554.

• There are a few challenging examples:

Example 3: Suppose we wish to find the area between $r = \sin \theta$ and $r = \cos \theta$:

We know from symmetry that the intersection is at $\theta = \frac{\pi}{4}$. We notice that the contribution to the area from each curve ρ is equal and *independent* from each other. Therefore:

$$A = A_1 + A_2 = \int_0^{\pi/4} \frac{1}{2} \sin^2 \theta \, d\theta + \int_{\pi/4}^{\pi/2} \frac{1}{2} \cos^2 \theta \, d\theta = \frac{\pi}{8} - \frac{1}{4}$$
 (15)

• We can determine the arclength by working in parametric form. Let $x = r(\theta) \cos \theta$ and $y = r(\theta) \sin \theta$. Therefore:

$$s = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \, d\theta \tag{16}$$

$$= \int_{\alpha}^{\beta} \sqrt{(r'\cos\theta - r\sin\theta)^2 + (r'\sin\theta + r\cos\theta)^2} \,d\theta \tag{17}$$

$$= \int_{\alpha}^{\beta} \sqrt{(r'\cos\theta - r\sin\theta)^2 + (r'\sin\theta + r\cos\theta)^2} \,d\theta$$

$$= \int_{\alpha}^{\beta} \sqrt{(r'^2\cos^2\theta + r^2\sin^2\theta - 2rr'\cos\theta\sin\theta) + (r'^2\sin^2\theta + r^2\cos^2\theta + 2r'r\cos\theta\sin\theta)} \,d\theta$$
(18)

$$= \int_{\alpha}^{\beta} \sqrt{r^2(\cos^2\theta + \sin^2\theta) + r'^2(\cos^2\theta + \sin^2\theta)}$$
(19)

$$= \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, \mathrm{d}\theta \tag{20}$$

Example 4: Suppose we want to find the arclength of $r = a(1 - \cos \theta)$ from $0 \le \theta < 2\pi$. This looks like:

ESC195QiLin Xue

We have:

$$s = \int_0^{2\pi} \sqrt{r^2 + (r')^2} \, \mathrm{d}\theta \tag{21}$$

$$= \int_{0}^{2\pi} \sqrt{a^{2}(1 - 2\cos\theta + \cos^{2}\theta) + a^{2}\sin^{2}\theta} \,d\theta$$

$$= a \int_{0}^{2\pi} \sqrt{2 - 2\cos\theta} \,d\theta$$
(23)

$$= a \int_0^{2\pi} \sqrt{2 - 2\cos\theta} \,\mathrm{d}\theta \tag{23}$$

$$= a \int_0^{2\pi} \sqrt{4\sin^2\left(\frac{\theta}{2}\right)} \,\mathrm{d}\theta \tag{24}$$

$$=2a\left[-2\cos\left(\frac{\theta}{2}\right)\right]\Big|_{0}^{2\pi}\tag{25}$$

$$=8a\tag{26}$$