

Introdução à Ciência da Computação - 113913

Lista de Exercícios 6 Listas

Observações:

- As listas de exercícios serão corrigidas por um **corretor automático**, portanto é necessário que as entradas e saídas do seu programa estejam conforme o padrão especificado em cada questão (exemplo de entrada e saída). Por exemplo, não use mensagens escritas durante o desenvolvimento do seu código como "Informe a primeira entrada". Estas mensagens não são tratadas pelo corretor, portanto a correção irá resultar em resposta errada, mesmo que seu código esteja correto.
- As questões estão em **ordem de dificuldade**. Cada lista possui 7 exercícios, sendo 1 questão fácil, 3 ou 4 médias e 2 ou 3 difíceis.
- Assim como as listas, as provas devem ser feitas na versão Python 3 ou superior.
- Leia com atenção e faça **exatamente** o que está sendo pedido.

Questão A - Acesso Remoto

Arborilda é uma jovem dona de uma loja de jogos de mesa que tem crescido bastante nos últimos meses. Até então, Arborilda tem se organizado usando papel e lápis, mas é cada vez mais difícil executar as manipulações necessárias nas requisições de produtos com o crescente número de clientes a importunando.

Conhecendo sua reputação e seu conhecimento em Python, Arborilda pede a sua ajuda para ajudá-la a se organizar melhor. A primeira coisa que Arborilda faz ao chegar ao trabalho de manhã cedo, é reler todas as requisições de produtos, da mais recente para a mais antiga.

Entrada

A primeira linha da entrada consiste de um inteiro \mathbf{N} , com o número de requisições a serem processadas. As \mathbf{N} seguintes linhas contêm, cada uma, uma string \mathbf{P} , o nome do produto requisitado.

Saída

Seu programa deve imprimir uma única linha contendo os jogos da entrada, porém na ordem invertida, separados por vírgula e um único espaço.

Exemplo de Entrada	Exemplo de Saída
2	
Dixit	Carcassone, Dixit
Carcassone	
4 Magic: The Gathering Yu-Gi-Oh!Pokémon: TCG Cardfight!! Vanguard	Cardfight!! Vanguard, Pokémon: TCG, Yu-Gi-Oh!, Magic: The Gathering

Tabela 1: Questão A

Questão B - Bella e seus Amigos

Bella é uma pessoa muito popular e agradável, e tem muitos, muitos amigos. Só que desde que voltou de viagem, seu amigo André tem sido bastante inconveniente e a tem perturbado bastante com piadas inapropriadas e invasivas.

Para resolver a situação, Bella decidiu que sempre que fosse para um evento ou festa, olharia primeiro a lista de convidados para saber se seu amigo André estaria presente. Mas como essas festas normalmente têm extensas listas de convidados, Bella está tendo problemas para verificá-las uma a uma manualmente.

Conhecendo a Bella e sabendo do seu dilema, você se prontificou para auxiliá-la, escrevendo um programa python que processa a lista dos convidados e a responde se é seguro ir.

Entrada

A primeira linha da entrada consiste em um inteiro C, o número de convidados da festa em questão. As próximas C linhas contêm, cada uma, uma string não-vazia, o primeiro nome de um convidado.

Saída

Seu programa deve imprimir uma única linha com "Cuidado!" ou "Seguro!", se o André estiver na lista de convidados, ou não, respectivamente.

Exemplo de Entrada	Exemplo de Saída
4	
André	
George	Cuidado!
Julia	
Diego	
5	
Roberto	
Alberron	C 1
Andrezildo	Seguro!
Abacatilson	
Georgina	

Tabela 2: Questão B

Questão C - Cake Store

Beijo da Vó é um loja de bolos que a dona Sílvia acabou de abrir e está fazendo uma promoção de inauguração. Todo bolo que ela vende nos próximos três meses terá uma fatia premiada, e quem pegá-la ganha um carro. Mas a dona Sílvia está tendo problemas de gerenciar quem pegou a fatia premiada, pois a clientela anda volumosa.

Sabendo das suas habilidades computacionais, a dona Sílvia pediu sua ajuda para escrever um programa que a responda, para cada bolo, quem pegou a fatia premiada e foi o fatídico ganhador de um carro zero.

Entrada

A primeira linha da entrada consiste em dois inteiros \mathbf{F} e \mathbf{P} , correspondentes ao número de fatias, e o índice (iniciando em zero) da fatia premiada. As próximas \mathbf{F} linhas contêm, cada uma, uma string não-vazia \mathbf{N} e um inteiro \mathbf{E} , o primeiro nome da pessoa e o índice da fatia escolhida, respectivamente. Note que os índices das fatias são atualizados toda vez que alguém retira um pedaço.

Saída

Seu programa deve imprimir na tela o nome da pessoa que recolheu a fatia premiada.

Exemplo de Entrada	Exemplo de Saída
4 3	
Roberto 2	
Julia 2	Julia
Umbreon 0	
Blackout 0	
3 0	
Abacatilson 0	Λ l
Vigário 0	Abacatilson
Joelma 0	

Tabela 3: Questão C

Questão D - Déficit de Memória

André é uma criança perturbada que tem déficit de memória recente. Acontece que ele também tem uma quantidade enorme de brinquedos, e gosta de organizá-los das mais diversas formas.

Curioso com a sua doença e sua mania de arrumação, André inventou a seguinte brincadeira: No início da semana, André escreve a configuração dos brinquedos na sua prateleira. Uma vez por dia, durante cinco dias, André vai até a sua prateleira e move um dos seus brinquedos de lugar zero ou mais posições, empurrando os outros conforme necessário. Ao final dos cinco dias, André recupera sua anotação do início da semana e verifica o que tem de diferente para a configuração final.

Depois de esquecer de anotar a configuração inicial três vezes, André decide contratar um programador experiente para ajudá-lo na sua brincadeira, e entra em contato com você.

Entrada

A primeira linha da entrada contém um inteiro N, o número de brinquedos na prateleira. A próxima linha contém N caracteres diferentes separados por espaço, os identificadores de cada um dos brinquedos na prateleira, em ordem.

As próximas 5 linhas contêm, cada uma, um caractere \mathbf{B} , o brinquedo a ser movido; um caractere \mathbf{D} , a direção em que ele será movido, podendo ser ' \mathbf{E} ' (para esquerda), ou ' \mathbf{D} ' (para direita); e um inteiro \mathbf{Q} , a quantidade de espaços que o brinquedo será movido.

Saída

Seu programa deve imprimir uma única linha, contendo o número de brinquedos fora dos seus lugares, ao fim dos 5 dias.

Exemplo de Entrada	Exemplo de Saída
3	
ABC	
A D 2	
A E 1	0
B D 1	
A D 0	
$C \to 0$	
4	
XYZW	
X D 3	
Y D 1	4
W E 1	
$Z \to 0$	
W E 1	

Tabela 4: Questão D

Questão E - Elastiman

Roberto é um game designer muito famoso na região onde mora por ter lançado alguns jogos de sucesso, mas nunca estabeleceu uma empresa de fato.

Há duas semanas, Roberto chegou em você com a sua mais nova ideia revolucionária de jogo, Elastiman! Sem saber a quem chamar para ajudá-lo a desenvolver, ele recorreu ao programador mais próximo, que aconteceu de ser você.

Seu trabalho na primeira versão do jogo é desenvolver a parte da engine que lida com gravidade.

Entrada

A primeira linha da entrada contém um inteiro N.

As próximas N linhas conterão uma matriz $N \times N$, descrevendo o cenário atual:

- cada '.' corresponde a um espaço vazio;
- cada 'x' corresponde a um bloco fixo, que não está sujeito à gravidade;
- cada 'o' corresponde a um bloco móvel, que está sujeito à gravidade.

Saída

Seu programa deve imprimir a tela após um ciclo do loop de jogo, após a execução da gravidade. Para simplificar sua vida, considere a gravidade uma força que só puxa um espaço para baixo por loop, não uma força física de facto. Note que blocos móveis não podem atravessar blocos fixos.

Exemplo de Entrada	Exemplo de Saída
3	
	. O .
. 0 .	XXX
XXX	
3	
. 0 .	
	. O .
	XXX
XXX	

Tabela 5: Questão E

Questão F - Florêncio Pede Ajuda

Florêncio é um jovem programador Ruby que está aprendendo Java e está tendo dificuldade em não somente achar a linguagem palatável, como se acostumar ao padrão camelCase.

Sabendo do versátil programador que é, Florêncio pede sua ajuda para fazer um conversor de snake_case para CamelCase.

Entrada

A primeira e única linha da entrada consiste em uma palavra ou frase em snake_case, ou seja, todas as letras minúsculas, separadas por underscore (_).

Saída

Seu programa deve imprimir uma única linha, contendo a entrada convertida para CamelCase, ou seja, todas as letras minúsculas, exceto a primeira letra de cada palavra.

Exemplo de Entrada	Exemplo de Saída
snake_case	SnakeCase
create_underscored_book_cock_tail	CreateUnderscoredBookCockTail

Tabela 6: Questão F

Questão G - Hanoi

A Torre de Hanoi é um jogo matemático que data de 1883, mas há lendas de sua existência desde a criação do mundo. O objetivo do jogo é trazer todos os discos da haste esquerda

para a haste direita seguindo as seguintes três regras simples:

- 1. Apenas um disco pode ser movido por vez;
- 2. Cada movimento consiste em retirar o disco que está mais acima em uma das hastes, e o colocar no topo de outra haste;
- 3. Nenhum disco pode ser colocado sobre um disco menor;

Seu objetivo é criar um simulador da solução mais otimizada para este puzzle.

Entrada

A entrada consiste de apenas dois inteiros \mathbf{H} e \mathbf{P} , descrevendo o número de discos da torre de Hanoi e o número de passos desejados, respectivamente.

Saída

Seu programa deve simular a solução ótima do puzzle e parar após a execução de \mathbf{P} passos. Ao final da execução, ele deve imprimir na saída padrão três inteiros, cada um descrevendo a quantidade de discos em cada torre após \mathbf{P} passos.

Exemplo de Entrada	Exemplo de Saída
4 3	202
3 1	2 0 1

Tabela 7: Questão G