Quiz Solution

- 1) To show that Ris an equivalence relation, we must prove it (2 months)
 - (a) Reflexive: -a-a is divisible by m.

 Since, a-a=0 and $0 \not\equiv 0 \times m$. $a \equiv a \pmod{n}$ and the relation is reflexive.
 - (b) Symmetric: Suppose $a \equiv b \pmod{m}$, then (a-b) is divisible by m. So, a-b = km where k is an integer. If $a = b \pmod{m}$ and It follows that (b-a) = (-k)m so, $b \equiv a \pmod{m}$ and the relation is symmetric.
- (c) Transidirt: Suppose $a \equiv b \pmod{n}$ and $b \equiv c \pmod{m}$. So, m divides both (a-b) and (b-c) such that (a-b) = km(i) and (b-c) = nm-truther k and n are mitigan.

Adding (1) and (2), we get a-b+b-c = km + nm a-c = m(k+m)Thus, $a \equiv c \pmod{m}$

.. The relation is transitive

Hence, a=b (mod m) is an equivalence relation

$$\mathcal{M}(n) = \begin{cases} 1 & \text{if } n \leq 30 \text{ lakeh.} \\ \frac{30}{n} & \text{if } n > 30 \text{ lakeh.} \end{cases}$$

(2 marles)

Cost =
$$\{(A, 0.6), (B, 1)\}$$

Distance = $\{(A, 1), (B, 0.7)\}$

The best choice would be the plot which has a higher membership degree in the intersection set of cost and distance.

$$\therefore$$
 cno = $\{(A, 0.6), (B, 0.7)\}.$

.. Plot B is a better choice.

(i)
$$A_n = \begin{cases} i \in \mathbb{Z} = i \text{ is divisible by } n \end{cases}$$
 be a set where $n \in \mathbb{N}$, (1) $A_3 \cap A_4 = \begin{cases} i \in \mathbb{Z}^2 : \\ i \text{ is divisible by both } 3 \text{ and } 4 \end{cases}$ (1) $A_3 \cap A_4 = \begin{cases} i \in \mathbb{Z}^2 : \\ i \text{ is divisible by } 21 \end{cases}$ $= \begin{cases} i \in \mathbb{Z}^2 : i \text{ is divisible by } 21 \end{cases}$ $= \begin{cases} 0, 21, 42, 63, \dots \end{cases}$

(ii) A3 UA7 = { i e Z! i is divisible by 300 73 = {0,3, 4, 6,9, 14,21....}.

(4 mark)
$$A = \{x \mid 3x - 2 = 0, x \in \emptyset\}$$

$$2 = 1,2, \dots$$

$$3x1 - 2 \neq 0$$

.. Null fet.

(ii)
$$B = \{ 21 \ 302 - 59 = 0, 202 \}$$

 $2 = 1, 1^3 - 1 = 0$
 $3 = 3 + 6 \text{ not a null set}.$

 $A = \{4, 5, 7, 8, 10\}$, $B = \{4, 5, 9\}$ and $C = \{1, 4, 6, 9\}$ $A \cap (B \cup C) = A \cap \{1, 4, 5, 6, 9\} = \{4, 6\}$ (1 month). $(A \cap B) = \{4, 5\}$ (A \chib) \(\text{U} \chiancle \frac{3}{4}, \frac{5}{4}\). $(A \cap C) = \{4\}$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ hence Proved $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

(6) (a) $A - \emptyset = A$ (b) $\emptyset - A = \emptyset$ (1 month)

F & A= ?+, -3, men A² = AxA = \(\frac{2}{4}, +), (+,-), (-,+), (-,+) \)
(1 monte)

(1 mark) $2^3 - 1 = 7$, $2^2 = 4$

9 A = $\{1,2,3,4,8\}$ and B = $\{2,4,6,7\}$ AUB = $\{1,2,3,4,6,4,8\}$, ANB = $\{2,4\}$ (2 marks) AUB = AUB - ADB = $\{1,3,6,4,8\}$

(1 mark) Symmetric (1 mark)

 $\begin{array}{ll} \text{ (1)} & A \times B \times C = \frac{3}{2} \left(0,1,0\right), \left(0,1,1\right), \left(0,1,2\right), \left(0,2,0\right), \left(0,2,1\right), \left(0,2,2\right), \\ & \left(1,1,0\right), \left(1,1,1\right), \left(1,1,2\right), \left(1,2,0\right), \left(1,2,1\right), \left(1,2,2\right) \end{array}$

(2) Let A, B, C denote the sets of households having a washing machine, a vaccum cleaner and a reprigerator respectively.

Hence, gwen that: n(AUBUC) = 1000, n(C') = 400, n(B') = 380, n(A') = 542, n(AnB) = 294, n(BnC) = 293, n(AnC) = 190 But, $CnC'=\emptyset$ and n(CnC')=0... n(C)+n(C')=n(U)=1000... n(C)+400=1000... n(C)=6000Similarly, n(A)=458 and n(B)=620... From n(A)=458 and n(B)=620... n(A)=620... n(

This gives the number of households having all the appliances. Now, (BnC'nA') is Set of all households which have a vacuum cleaner but no washing machine or reprisesator. Hence, we need to compute n (BnC'nA').

But, $(B \cap C' \cap A') \cup (B' \cap C' \cap A') = C' \cap A'$ we know, there is no houshold which has no appliances is, $(B' \cap C' \cap A') = 0$

 $= n(U) - \{n(U) - n(AUC)\}$ $= n(U) - \{n(A) + n(C) - n(AC)\}$ = 1000 - 458 - 600 + 190 = 132.

m (Bnc'nA') = 132/ Aus

This gies no number of households having reprigeoater only.

Criven mkn if (m-n) is divisible by 3

msn if (m-n) is divisible by 4.

... (Rus) if (m-n) is divisible by 3 or is divisible by 4.

... (more) if (m-n) is not divisible by 3 and not divisible by 4.

Aus

(2 marks)

Set A = B = ? 1,2,3,43.

 f_{2} { (1,2), (2,3), (3,4), (4,1)}. So, $f_{1}=g$ verified.

:. 912 { (1,4), (2,1), (3,2), (4,3) } So, [912 f] verified.

(A)

f and g are invertible

Domain = 21,2,3,43.

(0.5+0.5= | month)

f 1 2 2 3 4 4

i. R, is not a function because there is no mage for the element 3 in the domain.

(b) $R_2 = \{ (n_1 y) | n_1 y \in \mathbb{Z}, y = n^2 + 7 \}$ $R_2 : \mathbb{Z} \to \mathbb{Z}$

: F: Z>Z.

y=f(n)= n2+7-

Putip $\chi_{=1}$, $y = 1^2 + 7 = 8$. $\chi_{=2}$, $y = 2^2 + 7 = 4 + 7 = 11$ $\chi_{=3}$, $y = 3^2 + 7 = 9 + 7 = 16$

Therefore, R2 is a function, since for each NEZ treve is a unique y given by $y = x^2 + 7$.

Range = { 8, 11, 16....}