<u>Titre</u>: Simplicité du groupe spécial orthogonal réel de dimension 3

Recasages: 103,106,108,160,161,204

Thème : Topologie, théorie des groupes, algèbre linéaire.

Références : Francinou, Gianella, Nicolas - Oraux X-Ens Algèbre 3 (p.67)

Théorème 1. Le groupe $SO_3(\mathbb{R})$ est simple.

Nous ferons appel a des raisonnement sur la topologie de $SO_3(\mathbb{R})$ on rappelle que cette topologie rend la multiplication et le passage à l'inverse continues (groupe topologique). Considérons tout d'abord $G \leq SO_3(\mathbb{R})$ un sous-groupe de G, on note G_0 la composante connexe par arcs dans G de $I := I_3$

<u>Lemme</u> 2. L'ensemble G_0 est un sous-groupe de G.

 $D\acute{e}monstration$. Par définition, les éléments de G_0 sont les but de chemins (continus bien-sûr) dans G partant de I:

$$g \in G_0 \Leftrightarrow \exists \gamma_g : [0,1] \to G \mid \begin{cases} \gamma(0) = I \\ \gamma(1) = g \end{cases}$$

Commençons par dire que si $\gamma:[0,1]\to G$ est un chemin continu, alors $g.\gamma$ défini par $g.\gamma(t)=g\gamma(t)$ est aussi un chemin continu dans G, car la multiplication par g est une application continue et stabilise G.

On a $I \in G_0$ évidemment (I appartient à sa propre composante connexe par arcs).

Soit $g, g' \in G_0$, il existe γ_g et $\gamma_{g'}$ des chemins continus de G allant de I vers g et g' respectivement. Le chemin $g.\gamma_{g'}$ est un chemin continu de G, allant de $g.\gamma_{g'}(0) = g$ vers $g.\gamma_{g'}(1) = gg'$. En concaténant $g.\gamma_{g'}$ et γ_g , on obtient un chemin continu de I vers gg', qui est donc dans G. Soit $g \in G_0$, il existe γ_g un chemin continu de I vers g dans G, en multipliant γ_g par g^{-1} , on obtient un chemin continu de g^{-1} vers $g^{-1}g = I$, donc $g^{-1} \in G_0$.

À présent, si $G \leq SO_3(\mathbb{R})$ est distingué, on veut se ramener au cas où G est connexe par arcs :

<u>Lemme</u> 3. Si $G \leq SO_3(\mathbb{R})$ est distingué, alors G_0 est également distingué dans $SO_3(\mathbb{R})$.

Démonstration. Soient $g \in G_0$, $h \in SO_3(\mathbb{R})$, et γ_g un chemin de G allant de I vers g. Comme G est distingué dans $SO_3(\mathbb{R})$, $h\gamma_g h^{-1}$ est aussi un chemin de G, allant de $hIh^{-1} = I$ vers hgh^{-1} , donc $hgh^{-1} \in G_0$ par définition.

<u>Lemme</u> **4.** Soit $g \in G$, alors la composante connexe par arcs de g dans G contient tous les conjugués de g dans $SO_3(\mathbb{R})$.

Démonstration. Soit g un élément de G, on considère $h \neq I$ une rotation quelconque d'axe Δ et d'angle θ . Pour $t \in [0,1]$, on pose h_t la rotation d'axe Δ et d'angle $t\theta$. L'application $t \mapsto h_t$ est continue, donc l'application

$$t \mapsto h_t g h_t^{-1}$$

est un chemin de G (car celui-ci est distingué), reliant g et hgh^{-1} , d'où le résultat.

Lemme 5. Si G est distingué et non trivial, alors c'est aussi le cas de G_0 .

Démonstration. Pour $g \in G$, la multiplication à gauche par g induit un homéomorphisme de G sur lui-même (la réciproque étant la multiplication par g^{-1}), cet homéomorphisme permute les composantes connexes par arcs de G: il envoie G_0 sur la composante connexe par arcs de g: les composantes connexes par arcs de G sont toutes équipotentes à G_0 .

Or, pour $g \notin Z(SO_3(\mathbb{R})) = \{I\}$, g possède un conjugué différent de lui-même, pour $I \neq g \in G$, la composante connexe par arcs de g dans G contient donc au moins 2 éléments. Par le lemme précédent, G_0 admet donc au moins 2 éléments.

On peut donc se contenter de montrer que si $G \leq SO_3(\mathbb{R})$ est distingué, non trivial et connexe par arcs, alors $G = SO_3(\mathbb{R})$ (le cas général découlant du lemme précédent).

Si $g \in G$ est une rotation d'angle θ , sa trace est donnée par $1 + 2\cos(\theta)$, donc l'application $f: g \mapsto \cos(\theta) = \frac{tr(g)-1}{2}$ est continue. Soit $I \neq g \in G$, quitte à remplacer g par g^{-1} , on peut supposer qu'une mesure de l'angle θ de g se trouve dans $]0, \pi]$, si $\theta < \pi/2$, on remplace g par une puissance de g de sorte à avoir $\theta \in]\pi/2, \pi]$ et $\cos(\theta) \leq 0$. Par continuité de f, et comme f(I) = 1, il existe $f \in G$ telle que f(f) = 0 (car $f \in G$ est connexe), donc d'angle $f \in G$. La rotation $f \in G$ est alors d'angle $f \in G$.

Or, les rotations d'angle π sont les retournements de $SO_3(\mathbb{R})$, ceux-ci sont conjugués entre eux, et donc G contient les retournements, qui engendrent $SO_3(\mathbb{R})$, d'où le résultat.