MATH326: Mathématiques pour les sciences 3

Contrôle continu n° 2 bis : durée une heure.

Mardi 13 décembre 2011.

Exercice 1 (6 points). Les trois questions sont indépendantes.

- 1. Déterminer la nature de la série $\sum_{n\geqslant 1} \frac{\ln(1+\frac{1}{n})}{n}$.
- 2. Montrer que la suite de fonctions (f_n) définie par $f_n(x) = \frac{e^{-x^{2n}}}{3^n}$ converge uniformément vers 0 sur \mathbf{R} .
- 3. Pour $x \in \mathbf{R}_+$ et $n \in \mathbf{N}^*$, on pose $u_n(x) = \left(\frac{x}{1+x}\right)^n$.
 - (a) Pour quelles valeurs de $x \in \mathbf{R}_+$, la série $\sum u_n(x)$ est-elle convergente?
 - (b) Pour $x \ge 0$, calcular $\sum_{n=1}^{+\infty} u_n(x)$.
 - (c) Montrer que la série de fonctions $\sum_{n\geqslant 1}u_n$ est normalement convergente sur [0,1].
 - (d) Montrer qu'on a : $\sum_{n=1}^{+\infty} \int_0^1 u_n(t) dt = \frac{1}{2}.$

Exercice 2 (4 points). On considère, pour $x \in \mathbf{R}$ et $n \in \mathbf{N}^*$, $f_n(x) = \frac{2^n x}{1 + n2^n x^2}$.

- 1. Montrer que la suite $(f_n)_{n\geqslant 1}$ converge simplement vers 0 sur ${\bf R}$
- 2. Calculer, pour $n \ge 1$, $\int_0^1 f_n(x) dx$ puis $\lim_{n \to +\infty} \int_0^1 f_n(x) dx$.
- 3. La suite $(f_n)_{n\geqslant 1}$ converge-t-elle uniformément vers 0 sur \mathbf{R} ?

Exercice 3 (10 points). On considère, pour $n \in \mathbb{N}^*$ et $x \ge 0$, $u_n(x) = \frac{1}{1 + n^2 x}$. On rappelle que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

1. Soit $x \ge 0$. Montrer que la série numérique $\sum u_n(x)$ est convergente si et seulement si x > 0.

Pour x > 0, on note $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- 2. Soit a > 0. Montrer que S est dérivable sur $[a, +\infty[$ et exprimer S' comme une série de fonctions. En déduire que S est dérivable sur $]0, +\infty[$.
- 3. Montrer que, pour tout x > 0, $0 \le S(x) \le \frac{\pi^2}{6x}$. En déduire $\lim_{x \to +\infty} S(x)$.
- 4. Pour $n \ge 1$ et x > 0, on note $v_n(x) = \frac{1}{n^2} xu_n(x)$.
 - (a) Montrer que pour tout x > 0, $0 \le v_n(x) \le \frac{1}{n^4 x}$.
 - (b) En déduire que $\lim_{x \to +\infty} xS(x) = \frac{\pi^2}{6}$.