Named Entity Recognition Species - 800

- Constantin Gabriel-Adrian
- Sociu Daniel
- Onescu lancu-Gabriel

Task description & Dataset exploration

The chosen task was Named Entity Recognition with the aim of recognizing tokens that mention organisms in texts that belong to eight different categories:

bacteriology	mycology
botany	protistology
entomology	virology
medicine	zoology

Dataset	None cls (0)	Species (1)	Species+ (2)
Train	141424	2557	3310
Valid	21348	384	485
Test	40488	767	1043

Main approach

- Considering the fact that we have to solve a token classification task into categories we had a few main steps to follow:
 - 1) We obtain the embeddings for each token to later on use a classifier to properly classify them.
 - 2) Train a transformer model for the classification of our embedded tokens
 - 3) Predict on the test data
- Therefore in the following slides we will present some implementation details and the obtained results.

BERT

- To train the classifier, we must process the tokens such that the data will be represented in numerical form. Thus, we used BERT transformer to transform the tokens because:
 - 1) It takes into account the context of the sentence
 - 2) It's pretrained on a dataset of considerable size
 - 3) Has variations that were pretrained on biology-specific data
 - 4) Has variations that were pretrained on NER-specific tasks

Tokenization & padding

- Considering we have sentences of different lengths (number of tokens), and that we are using a transformer, we have to make each sentence a specific length.
- We decided to have each sentence with 128 tokens, therefore we either split it (if it is longer) or we pad it.
- To be mentioned that the tokenizer used splits some tokens with multiple sub-tokens, which should not be learned by the transformer, therefore we assigned them a special label (-100).

Training via Feature extraction

- Given the fact that the aforementioned model was trained on an entirely different task & dataset, we had to find a way to adapt it to our challenge.
- Thus, in the literature there are 2 main approaches:
 - 1) Continue model training using the pretrained weights as the starting point
 - 2) Feature Extraction freeze embedding layers in order to preserve model's capacity to represent feature's data in latent space
- We explored the option of retraining some layers (mainly classifier layers) of the model in order to fine-tune our solution.

Final results - all our attempts

Model	Loss	Accuracy	F1 score
BERT uncased	0.105	0.953	0.816
RoBERTa	0.123	0.938	0.817
BertNER	0.119	0.939	0.828
BERT cased	0.086	0.944	0.850
BioBERT cased	0.089	0.944	0.866

Final results - our model vs literature

Model	Loss	Accuracy	F1 score
BioKMNER + BioBERT	-	-	0.763
SciFive-Base	-	-	0.765
BioFLAIR	-	-	0.824
Spark NLP	-	-	0.825
BioBERT cased	0.089	0.944	0.866

Loss and f1 values for the best model

Confusion matrix for the best model

Thank you for your attention!