Селіверстов Р. Г.

КОМП'ЮТЕРНІ МЕРЕЖІ

Лекція 6

КОМУТОВАНИЙ ETHERNET

Недоліки класичного Ethernet

- **погана масштабованість** (ефективний до 30 одночасно працюючих на 30% станцій);
- низький рівень безпеки (дані отримують всі);
- **різний час доставки кадру через колізії** (погано для трафіку в режимі реального часу)

Концентратор (hub)

- топологія шина
- фізичний рівень

Комутатор (switch)

- повнозв'язна топологія
- канальний рівень

Комутатор: таблиця комутації

Номер порта	МАС-адреса
1	1F:57:09:11:AD:E3

Комутатор не має власної МАС-адреси (не розпізнається вузлами) і не вимагає налаштування (самоналаштовується)

Комутатор: алгоритм зворотного навчання

Приймаючи кадр на певний порт, комутатор визначає адресу відправника і записує в таблицю комутації.

Комутатор: алгоритм прозорого моста

Приймаючи кадр на певний порт, комутатор визначає адресу одержувача і передає кадр через потрібний порт згідно з таблицею комутації.

Якщо МАС-адреси немає в таблиці комутації, то комутатор працює за правилом концентратора (сподівання на те, що до якогось порту підключений потрібний вузол, але він ще нічого не передавав)

Комутований Ethernet (без колізій)

Комутатор (switch)

ARP (Address Resolution Protocol) - протокол визначення адрес

Колізії можливі тільки при збої, тому притаманне Ethernet прослуховування несучої частоти залишається

VLAN

VLAN (Virtual Local Area Network) - технологія, яка дає змогу розділити фізичну мережу на кілька незалежних логічних мереж. Реалізується комутаторами.

Логічно будувати одну велику фізичну мережу в будівлі, а потім за потреби ділити її на логічні підмережі залежно від того, які відділи/орендарі які приміщення займають.

Переваги:

- безпека
- розподіл навантаження на мережу
- обмеження широкомовного трафіку

Комутатор не передасть кадр в іншу VLAN навіть якщо адреса отримувача співпадає з МАС-адресою її вузла.

Таблиця комутації					
Номер порта	МАС-адреса	VLAN			
1	1F:57:09:11:AD:E3	2			

			Заголовок		Дані (+ поле заповнення)	Кінцевик
Preamble	SFD	DA	SA	Т	Data (+ Padding)	FCS
7	1	6	6	2	46-1500 байт	4

0x0800 - кадр з пакетом IPv4, **0x86DD** - IPv6, **0x0806** - ARP і т. д.

Заголовок								
Preamble	SFD	DA	SA	VLAN	N°	Т	Data (+ Padding)	FCS
7	1	6	6	2	2	2	46-1500 байт	4

0x8100 - кадр з VLAN

Сучасні комутатори підтримують обидва типи кадрів, але пристрої, які не підтримують VLAN, передають усі кадри

Протокол STP

STP (Spanning Tree Protocol) - протокол сполучного дерева. Реалізується комутаторами.

Сполучне дерево - підграф без циклів, який містить усі вершини батьківського графа.

Функція - автоматичне програмне відключення дублюючих з'єднань в Ethernet.

STP: переваги

Підвищення надійності мережі

Захист від випадкових помилок конфігурації

STP: алгоритм

- **Вибір кореневого комутатора** (комутатор з найменшою МАС-адресою, але можна вплинути, щоб вибрати кореневим найпотужніший комутатор)
- Обчислення найкоротших шляхів до кореневого комутатора
- Відключення решти з'єднань

Кожні 2 секунди комутатори обмінюються спеціальними повідомленнями **BPDU** (**Bridge Protocol Data Units**), які розсилаються на спеціальну групову адресу STP **01:80:C2:00:00**

На першому етапі всі комутатори вважають себе кореневими

Комутатори порівнюють надіслані значення зі своїми та знаходять мінімуми

2 3 1

Мінімуми надсилаються (якщо мінімум не змінився, він не пересилається)

Обчислення найкоротших шляхів

Шлях (кількість проміжних комутаторів, швидкість з'єднання)

Подібно до вибору кореневого комутатора, тільки комутатори обмінюються мінімальними вартостями шляхів, значення яких закріплені стандартом

IEEE 802.1D

Швидкість з'єднання	Вартість
10 Мбіт/с	100
100 Мбіт/с	19
1 Гбіт/с	4
10 Гбіт/с	2

Обчислення мінімальних шляхів

1-й етап: Комутатори, під'єднані безпосередньо до кореневого, визначають швидкість своїх з'єднань і розсилають ці швидкості на усі інші порти

Обчислення мінімальних шляхів

2-й етап: Комутатори визначають швидкість своїх з'єднань, додають до отриманих значень відповідну вартість і розсилають менше значення на усі інші порти, а порти з іншими значеннями відключають (і т. д.)

Стани портів

- **Listening** порт обробляє BPDU, але не передає дані (ініціюється при вмиканні комутатора або під'єднанні до порта)
- Learning порт не передає кадри, а вивчає МАС-адреси в них і формує таблицю комутації
- Forwarding порт приймає і передає дані та BPDU
- **Blocking** включається програмно для портів з відмінними від мінімального значеннями найкоротших шляхів
- **Disabled** ручне відключення порта адміністратором мережі

RSTP (Rapid Spanning Tree Protocol)

STP: Listening -> Forwarding ~ 30 секунд

RSTP ~ кілька секунд

MSTP (Multiple Spanning Tree Protocol)

Дає змогу використовувати VLAN (будує окреме сполучне дерево для кожної віртуальної мережі)