Radii of Emergent Patterns in Swarmalator Systems

Date of Conference: 25-29 September 2023

Publisher: IEEE Cite This easyScholarXMX Dr PDF

Udo Schilcher; Christoph W. Rauter; Christian Bettstetter All Authors

Abstract	Abstract:
Document Sections	For a system of swarmalators converging to different types of circular patterns, we provide expressions for the outer and inner radii of these patterns and examine their dependence on the model parameters. Derivations are made for
1. Introduction	three static patterns with an infinite number of entities and a generalized swarmalator model with parameterized attraction and repulsion kernels. Simulations of finite systems show good agreement with the asymptotic
2. System Model	expressions.
3. Derivation of Radii	Published in: 2023 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)
4. Numerical Evaluation	rubinited in. 2023 IEEE international Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)

DOI: 10.1109/ACSOS58161.2023.00034@

5. Conclusions and Outlook

27 Full Text Views Model equations:

$$\begin{split} \dot{x}_i &= \frac{1}{N} \sum_{j \neq i}^N e_{ij} d_{ij}^\alpha \left(1 + J \cos \theta_{ij} \right) - e_{ij} d_{ij}^\beta \\ \dot{\theta}_i &= \frac{K}{N} \sum_{i \neq i}^N d_{ij}^\gamma \sin \theta_{ij} \end{split}$$

where
$$d_{ij} = ||x_j - x_i||$$
, $\theta_{ij} = \theta_i - \theta_j$, $e_{ij} = \frac{1}{d_{ij}}(x_j - x_i)$.
Choosing $\alpha = 0$ and $\beta = \gamma = -1$ gives the original model.

In the converged state of the static patterns, the entities no longer move, so we have $\dot{x}_i = 0$, which yields:

$$r_{\text{out}}^{\alpha}\underbrace{\sum_{j\neq i}^{N}e_{ij}g_{ij}^{\alpha}\left(1+J\cos\theta_{ij}\right)}_{\text{Attraction}A} = r_{\text{out}}^{\beta}\underbrace{\sum_{j\neq i}^{N}e_{ij}g_{ij}^{\alpha}}_{\text{Repulsion}R}$$

where
$$r_{\text{out}} = \max_{1 \leq i \leq N} \|x_i - \bar{x}\|, \, g_{ij} = \frac{d_{ij}}{r_{\text{out}}}.$$

- Pattern center \bar{x} is positioned at (1,0) and a swarmalator is present at the origin.
- using polar coordinates (r, ϕ) , hence $e_{ij} = (\cos \phi, \sin \phi)$ and $g_{ij} = r$.
- $\qquad \mathbf{l}_{O1}\left(\phi\right) = 2\cos\phi = \frac{2\sin\phi\cos\phi}{\sin\phi} = \frac{\sin2\phi}{\sin\phi}$

(a) Calculating the length $l_{O1}(\phi)$.

Due to symmetry, $\sum_{j\neq i}^{N} e_{ij,y} g_{ij}^{\alpha} = 0$, $\sum_{j\neq i}^{N} e_{ij,y} g_{ij}^{\beta} = 0$, from which follows

$$r_{\mathrm{out}}^{\alpha} \sum\nolimits_{j \neq i}^{N} e_{ij,x} g_{ij}^{\alpha} \left(1 + J \cos \theta_{ij}\right) = r_{\mathrm{out}}^{\beta} \sum\nolimits_{j \neq i}^{N} e_{ij,x} g_{ij}^{\alpha}$$

Next, we consider the limiting case $N \to \infty$ and rewrite the sums as integrals $(\mathrm{d}x\mathrm{d}y = r\mathrm{d}r\mathrm{d}\phi)$

$$r_{\mathrm{out}}^{\alpha-\beta} = \frac{\mathrm{Repulsion}}{\mathrm{Attraction}} = \frac{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \phi \int_{0}^{l_{O1}(\phi)} r^{1+\beta} \mathrm{d}r \mathrm{d}\phi}{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \phi \int_{0}^{l_{O1}(\phi)} \left(1 + J \cos \theta_{ij}\right) r^{1+\alpha} \mathrm{d}r \mathrm{d}\phi}$$

lacktriangle Static Sync State, J