Отчет по лабораторной работе №6

Дисциплина: архитектура компьютера

Гончарь Анастасия Александровна

Содержание

1	Цель работы	5		
2	Задание	6		
3	Теоретическое введение	7		
4	Выполнение лабораторной работы 4.1 Символьные и численные данные в NASM 4.2 Выполнение арифметических операций в NASM 4.2.1 Ответы на вопросы по программе 4.3 Выполнение заданий для самостоятельной работы 4.3.1 Листинг программы для вычисления значения выражения (x+5)^2-3	8 8 13 17 18		
5	Выводы	21		
Сг	Список литературы			

Список иллюстраций

4.1	Создание директории	8
4.2	Создание файла	8
4.3	Создание копии файла	8
4.4	Редактирование файла	9
4.5	Запуск исполняемого файла	9
4.6	Редактирование файла	10
4.7	Запуск исполняемого файла	10
4.8	Создание файла	10
	Редактирование файла	11
4.10	Запуск исполняемого файла	11
4.11	Редактирование файла	12
4.12	Запуск исполняемого файла	12
	Редактирование файла	13
	Запуск исполняемого файла	13
	Создание файла	13
	Редактирование файла	14
	Запуск исполняемого файла	14
	Изменение программы	15
4.19	Запуск исполняемого файла	15
	Создание файла	15
	Редактирование файла	16
4.22	Запуск исполняемого файла	16
4.23	Создание файла	18
4.24	Написание программы	18
4 25	Запуск исполняемого файла	19

Список таблиц

3.1 Описание некоторых каталогов файловой системы GNU Linux . . . 7

1 Цель работы

Целью данной лабораторной работы является освоение арифметческих инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Здесь описываются теоретические аспекты, связанные с выполнением работы.

Например, в табл. 3.1 приведено краткое описание стандартных каталогов Unix.

Таблица 3.1: Описание некоторых каталогов файловой системы GNU Linux

Имя ка-		
талога	Описание каталога	
/	Корневая директория, содержащая всю файловую	
/bin	Основные системные утилиты, необходимые как в	
	однопользовательском режиме, так и при обычной работе всем	
	пользователям	
/etc	Общесистемные конфигурационные файлы и файлы конфигурации	
	установленных программ	
/home	Содержит домашние директории пользователей, которые, в свою	
	очередь, содержат персональные настройки и данные пользователя	
/media	Точки монтирования для сменных носителей	
/root	Домашняя директория пользователя root	
/tmp	Временные файлы	
/usr	Вторичная иерархия для данных пользователя	

Более подробно про Unix см. в [1-4].

4 Выполнение лабораторной работы

4.1 Символьные и численные данные в NASM

Сначала с помощью mkdir создаю директорию, в которой буду создавать файлы с программами (рис. 4.1). Перехожу в созданный каталог с помощью утилиты cd.

```
aagoncharj@dk3n33 ~ $ mkdir ~/work/arch-pc/lab06
aagoncharj@dk3n33 ~ $ cd ~/work/arch-pc/lab06
```

Рис. 4.1: Создание директории

С помощью touch создаю файл lab6-1.asm (рис. 4.2).

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ touch lab6-1.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.2: Создание файла

Копирую в текущий каталог файл in_out.asm, т.к. он будет использоваться в других программах (рис. 4.3).

Рис. 4.3: Создание копии файла

Открываю созданный файл lab6-1.asm и вставляю в него программу вывода значения регистра eax (рис. 4.4).

Рис. 4.4: Редактирование файла

Создаю исполняемый файл программы и запускаю его. Вывод программы - символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6. (рис. 4.5)

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-1
j
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.5: Запуск исполняемого файла

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. 4.6).

Рис. 4.6: Редактирование файла

Создаю новый исполняемый файл программы и запускаю его. (рис. 4.7)

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-1
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.7: Запуск исполняемого файла

Создаю новый файл lab6-2.asm с помощью touch (рис. 4.8).

```
\label{lem:aagoncharjedk3n33} $$ \end{aagoncharjedk3n33} $$ \end{aagoncha
```

Рис. 4.8: Создание файла

Ввожу в файл другой текст программы для вывода значения регистра eax (рис. 4.9).

```
lab6-2.asm [-M--] 9 L:[ 1+ 8 9/ 9] *(117 / 117b) <EOF>
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 4.9: Редактирование файла

Создаю и запускаю исполняемый файл lab6-2 (рис. 4.10). Теперь выводится число 106.

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-2
106
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.10: Запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4 (рис. 4.11).

Рис. 4.11: Редактирование файла

Создаю и запускаю новый исполняемый файл. Теперь выводится 10,так как программа складывает не соответствующие символам коды в системе ASCII, а сами числа.(рис. 4.12)

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-2
10
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.12: Запуск исполняемого файла

Заменяю в тексте программы функцию iprintLF на iprint (рис. 4.13).

Рис. 4.13: Редактирование файла

Создаю и запускаю новый исполняемый файл. Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF. (рис. 4.14)

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-2 lab6-2 lab6-2 laagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.14: Запуск исполняемого файла

4.2 Выполнение арифметических операций в NASM

Создаю файл lab7-3.asm с помощью утилиты touch (рис. 4.15).

```
10aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ touch ~/work/arch-pc/lab06/lab6-3.asm aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ 1 bash: 1: команда не найдена aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ 1s in_out.asm lab6-1 lab6-1.asm lab6-1.o lab6-2 lab6-2.asm lab6-2.asm.save lab6-2.o lab6-3.asm aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.15: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. 4.16).

Рис. 4.16: Редактирование файла

Создаю исполняемый файл и запускаю его. (рис. 4.17)

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-3
Результат: 4
Остаток от деления: 1
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.17: Запуск исполняемого файла

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4 * 6 + 2)/5 (рис. 4.18).

```
mc[aagoncharj@dk3n33.dk.sci.pfu.edu.ru]:~/work/arch-pc/lab06
lab6-3.asm [-M--] 19 L:[ 1+17 18/ 29] *(580 /1365b) 0044 0x02C
; Программа вычисления выражения
; Include 'in_out.asm'; подключение внешнего файла
SECTION .data
div: DB 'Peзультат: ',0
rem: DB 'Octatok от деления: ',0
SECTION .text
GLOBAL _start
_start:
; ---- Вычисление выражения
mov eax,4; EAX=4
mov ebx,6; EBX=6
mul ebx; EAX=EAX+EBX
add eax,2; EAX=EAX+2
xor edx,edx; обнуляем EDX для корректной работы div
mov ebx,5; EBX=5
div ebx; EAX=EAX/≤ EDX=octatok от деления
mov edi,eax; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати
call iprintlf; из 'edi' в виде символов
mov eax,edi; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,edx; вызов подпрограммы печати
call iprintlf; из 'edx' (остаток) в виде символов
call quit; вызов подпрограммы печати значения
call iprintlf; из 'edx' (остаток) в виде символов
call quit; вызов подпрограммы печати значения
call iprintlf; из 'edx' (остаток) в виде символов
call quit; вызов подпрограммы завершения
```

Рис. 4.18: Изменение программы

Создаю и запускаю новый исполняемый файл (рис. 4.19).

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-3
Результат: 5
Остаток от деления: 1
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.19: Запуск исполняемого файла

Создаю файл variant.asm с помощью touch (рис. 4.20).

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ touch ~/work/arch-pc/lab06/variant.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ 1s
in_out.asm lab6-1.asm lab6-2 lab6-2.asm.save lab6-3 lab6-3.o
lab6-1 lab6-1.o lab6-2.asm lab6-2.o lab6-3.asm variant.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ |
```

Рис. 4.20: Создание файла

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. 4.21).

```
\oplus
                              mc [aagoncharj@dk3n33.dk.sci.pfu.edu.
                    [-M--] 39 L:[
                                    1+18 19/28] *(519 / 618
variant.asm
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите № студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
mov ebx,20
div ebx
inc edx
mov eax,rem
call sprint
call iprintLF
call quit
```

Рис. 4.21: Редактирование файла

Создаю и запускаю исполняемый файл. Ввожу номер своего студ. билета с клавиатуры, программа вывела, что мой вариант - 15. (рис. 4.22)

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf variant.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o variant variant.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./variant
Введите № студенческого билета:
1132246794
Ваш вариант: 15
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.22: Запуск исполняемого файла

4.2.1 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант" отвечают строки кода:

```
mov eax,rem
call sprint
```

- 2. Инструкция mov ecx, x используется, чтобы положить адрес вводимой строки x в регистр ecx mov edx, 80 запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры.
- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax.
- 4. За вычисления варианта отвечают строки:

```
xor edx,edx ; обнуление edx для корректной работы div mov ebx,20 ; ebx = 20 div ebx ; eax = eax/20, edx - остаток от деления inc edx ; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx.
- 6. Инструкция inc edx увеличивает значение регистра edx на 1.
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call iprintLF
```

4.3 Выполнение заданий для самостоятельной работы

Создаю файл lab6-4.asm с помощью touch (рис. 4.23).

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ touch ~/work/arch-pc/lab06/lab6-4.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ls
in_out.asm lab6-1.asm lab6-2 lab6-2.asm.save lab6-3 lab6-3.o variant variant.o
lab6-1 lab6-1.o lab6-2.asm lab6-2.o lab6-3.asm lab6-4.asm variant.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.23: Создание файла

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения (x+5)^2-3 из варианта 15 (рис. 4.24).

```
aagoncharj@dk3n33-lab06 × mc[aagoncharj@dk3n33.dk.sci.pfu.edu.ru]:-/work/arch... × ▼
lab6-4.asm [----] 13 L:[ 1+25 26/ 28] *(1653/1765b) 0032 0x020

Xinclude 'in_out.asm'; подключение внешнего файла

SECTION .data; секция инщиированных данных
msg: DB 'Bведите значение переменной х: ',0

rem: DB 'Peayльтат: ',0

SECTION .bss; секция не инщиированных данных
x: RESB 80; Переменная, значение к-рой будем вводить с клавиатуры, выделенный размер - 80 байт

SECTION .text; Код программы

_start:; Точка входа в программы
_start:; Точка входа в программы
_start:; Точка входа в программы
mov eax, msg; запись адреса выводимиого сообщения в еах
call sprint; вызов подпрограммы ввода сообщения
mov eax, x; запись дареса переменной в есх
mov edx, 80; запись длины вводиного значения в edx
call sread; вызов подпрограммы ввода сообщения
mov eax, x; вызов подпрограммы преобразования
call atoi; ASCII кода в число, 'eax=x'
add eax,5; eax = eax+5 = x + 5
mul eax; EAX=EAX=EAX (x+5)*(x+5)-3
mov edi,eax; запись результата на мкран
mov eax,rem; вызов подпрограммы печати
call sprint; сообщения 'Peayльтат'
mov eax,edi; вызов подпрограммы печати
call sprint; "cooбщения "Peayльтат'
mov eax,edi; вызов подпрограммы печати значения
call iprintLF
 из 'edi' в виде символов
call quit; вызов подпрограммы завершения
```

Рис. 4.24: Написание программы

Создаю и запускаю исполняемый файл. При вводе значения 1 выводится число 33, при вводе значения 5 - 97, что явлется верным. (рис. 4.25)

```
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-4.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-4 lab6-4.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 1
Результат: 33
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ nasm -f elf lab6-4.asm
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-4 lab6-4.o
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 5
Результат: 97
aagoncharj@dk3n33 ~/work/arch-pc/lab06 $
```

Рис. 4.25: Запуск исполняемого файла

4.3.1 Листинг программы для вычисления значения выражения (x+5)^2-3

```
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data ; секция инициированных данных
msg: DB 'Введите значение переменной х: ',0
rem: DB 'Результат: ',0
SECTION .bss ; секция не инициированных данных
х: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры, выделенный >
SECTION .text ; Kod программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
; ---- Вычисление выражения
mov eax, msg; запись адреса выводимиого сообщения в еах
call sprint; вызов подпрограммы печати сообщения
то есх, х ; запись адреса переменной в есх
mov edx, 80 ; запись длины вводимого значения в еdx
call sread ; вызов подпрограммы ввода сообщения
mov eax, х ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, 'eax=x'
add eax, 5; e\alpha x = e\alpha x + 5 = x + 5
mul eax; EAX=EAX*EAX = (x+5)*(x+5)
add eax, -3; eax = eax-3 = (x+5)*(x+5)-3
```

```
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
call quit ; вызов подпрограммы завершения
```

5 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.

Список литературы

- 1. Таненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2015. 1120 с.
- 2. Robbins A. Bash Pocket Reference. O'Reilly Media, 2016. 156 c.
- 3. Zarrelli G. Mastering Bash. Packt Publishing, 2017. 502 c.
- 4. Newham C. Learning the bash Shell: Unix Shell Programming. O'Reilly Media, 2005. 354 c.