

CS205 - FINAL PROJECT SPRING 2018

Genomic Sequencing Analysis Parallelization

Kar-Tong Tan Nripsuta Saxena Divyam Misra Andrew Lund

Introduction

- What is genomic sequencing?
 - SNPs
- Why is it important?
 - Disease diagnosis
 - Predictive testing
 - Pharmacogenetic testing

What is the problem?

 Need for Parallelization

Need for **Efficient**Parallelization

Harvard Medical School Research Computing

- 8,000 cores
 - 32 or 28 cores per node (capped at 20)
 - 256 GB RAM per node
- SLURM batch system
- Supports OpenMP, MPI
- Currently does not support Spark

Model & Data

SAMtools SNP Analysis Suite:

- 93,000 lines (mostly C)
- SAMtools, BCFtools, HTSlib

Genome Data:

- 2 people: DNA & RNA
- Alignment files (.bam) is ~10GB
- Index files (.bai) is ~5MB
- Very heterogeneous

SAMtools Parallelization Strategy

Profiling

Each sample counts as 0.01 seconds.								
%	cumulative		self	self	total			
time	seconds	seconds	calls	s/call	s/call	name		
51.10	1.16	1.16	1	1.16	2.27	mpileup		
18.06	1.57	0.41	4519010	0.00	0.00	bam_plp_next		
12.11	1.85	0.28	26195998	0.00	0.00	pileup_seq		
9.69	2.07	0.22	26896170	0.00	0.00	resolve_cigar2		
5.73	2.20	0.13	4213250	0.00	0.00	bam_mplp_auto		
0.44	2.21	0.01	353719	0.00	0.00	kh_get_olap_hash		
0.44	2.22	0.01	330015	0.00	0.00	bam_read1		
0.44	2.23	0.01	305760	0.00	0.00	mp_free		
0.44	2.24	0.01	305760	0.00	0.00	mplp_func		
0.44	2.25	0.01	305759	0.00	0.00	bam_copy1		
0.44	2.26	0.01	17474	0.00	0.00	tweak_overlap_quality		
0.44	2.27	0.01	2670	0.00	0.00	printw		
0.22	2.27	0.01	4213249	0.00	0.00	mplp_get_ref		

- 1. Single-node parallelization (binning)
- 2. MPI
- 3. Load balancing simulator
- 4. OpenMP

- 1. Single-node parallelization (binning)
- 2. MPI
- 3. Load balancing simulator
- 4. OpenMP

Optimal Bin Size

Results: Single-node Parallelization Execution Time

Results: Single-node Parallelization Speedup

- 1. Single-node parallelization (binning)
- 2. MPI
- 3. Load balancing simulator
- 4. OpenMP

Results: MPI Runtime

Results: MPI Speedup

- 1. Single-node parallelization (binning)
- 2. MPI
- 3. Load balancing simulator
- 4. OpenMP

Index Files (.bai)

What: "Table of contents" to alignment file

Our Idea: Use to quickly determine data distribution & optimal load balancing strategy

Problem: Binary, hard to read, no domain knowledge

Work-around: Load Balancing Simulator

Results: Load Balancing Simulator

Simulated Load Balancing Percent Idle CPU Time [RNA] RNA 1 Descending RNA 1 Original RNA 1 Random Idle CPU Time / Total CPU Time [proportion] 0.8 RNA 1 Ascending RNA 2 Descending RNA 2 Original RNA 2 Random 0.6 RNA 2 Ascending 0.4 0.2 0.0 20 36 64 16 128 256 Cores

- 1. Single-node parallelization (binning)
- 2. MPI
- 3. Load balancing simulator
- 4. OpenMP

Results: OpenMP

Function	1 thread time (seconds)	8 threads time (seconds)
no pragmas	22.3	
mpileup (8 pragmas)	37.5	37.4
pileup_seq (2 pragmas)	103.7	50.5

Conclusions

- Binning, MPI, and Load Balancing worked great
- OpenMP is highly complex to implement
- Transforming the index file to human-readable text is challenging!
- Load balancing simulator is a great analysis tool
- Will apply these techniques on a ~400TB dataset on a supercomputer

