July Wall

Polynômes et ensembles de Julia

10 octobre 2016

Applications polynomiales planes 1

Dans cette première partie, P désigne un polynôme complexe de degré $d \ge 1$.

1.1 Théorème de d'Alembert-Gauss

- a) Montrer que |P(z)| tend vers $+\infty$ lorsque |z| tend vers $+\infty$. En déduire que |P| atteint son minimum absolu en un point $a \in \mathbb{C}$.
- b) On suppose que P(a) est non nul et l'on écrit

$$P(a+re^{i\theta}) = a_0(1+4 \sum_{k=l}^d b_k r^k e^{ik\theta})$$

avec $b_l \neq 0$. Choisir θ de sorte que $b_l e^{it} = -|b_l|$ et montrer que, pour r > 0assez petit, $|P(a + re^{i\theta})| < |P(a)|$.

c) Montrer que C est algébriquement clos.

1.2

- a) Soit K une partie compacte de C. Montrer que la pré-image de K par P est compacte.
- b) Soit F une partie fermée du plan; montrer que P(F) est fermée.

1.3 Ouverture

a) On suppose que P(0) = 0 et qu'il existe r > 0 tel que P(B(0,r)) ne soit pas un voisinage de 0. Construire $\lambda \in \mathbb{C}^*$ des suites complexes (z_n) et $(a_{nk})_{n \in \mathbb{N}}, k = 1, \ldots, d$ telles que, pour tout $n, P(X) - z_n = \lambda \prod_{k=1}^d (X - a_{k,n}), z_n$ tend vers 0 et $|a_{k,n}| \geq r$. Montrer que, quitte à extraire, on peut supposer que toutes les suites $n \to a_{k,n}$ convergent et aboutir à une contradiction.

b) Montrer que P est une application ouverte. $P(\circ)$

1.4 Principe du maximum

Soit K un compact non vide du plan complexe. Montrer que |P| ne peut atteindre son maximum sur K en un point intérieur à K. On suggère deux méthodes :

- a) Utiliser la question précédente.
- b) Choisir un point $a \in K$ en lequel |P| atteint son maximum; écrire

$$P(a+re^{i\theta}) = b_0 + \sum_{k=1}^{d} b_k r^k e^{ik\theta}$$

et vérifier que $\int_0^{2\pi} |P(a+re^{i\theta})|^2 = 2\pi \sum_{k=0}^d |b_k|^2 r^{2k}$ pour aboutir à une contradiction.

2 Ensembles de Julia

Soit P un polynôme complexe de degré $d \ge 1$; à un nombre complexe z, il est associé la suite z_n définie par $z_0 = z$ et $z_{n+1} = P(z_n)$, notée $P^{on}(z)$.

a) Etudier z_n lorsque P est de degré 1.

On suppose désormais P de degré ≥ 2 . Soit K l'ensemble des nombres complexes z tels que z_n est bornée.

- b) Montrer qu'il existe R > 0 tel que, pour tout nombre complexe z de module > R, |P(z)| > 2|z| et en déduire que K est borné.
- c) Soit $a \notin K$. Montrer qu'il existe N tel que $|P^{oN}(a)| > R$ et en déduire que K est fermé.
- d) Soit Ω un ouvert non vide borné de \mathbb{C} , de frontière F (qui et elle aussi non vide, pourquoi?). Prouver que $\sup_{z \in \Omega} |P| = \sup_{z \in F} |P|$.
- e) Démontrer aussi que le complémentaire d'un compact du plan complexe possède une composante connexe non bornée et une seule.
- f) Prouver que le complémentaire de K est connexe.