北京邮电大学 2018—2019 学年第 2 学期

"电路与电子学基础"期末试题(2学分A卷)

考	一、学生参加考试须带学生证或学院证明,未带者不准进入考场。							
试	学生必须按照监考教师指定座位就坐。							
注	二、书本、参考资料、书包等与考试无关的东西一律放到考场指							
意	定位置。							
事	三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场							
项	规则》,有考场违纪或作弊行为者,按相应规定严肃处理。							
	四、学生必须将答题内容做在试卷上,做在草稿纸上一律无效。							
题号		=	三	四四	五		总分	
满分	- 58	10	8	12	12		100	
得分								
阅卷	:							
教师	j							
1,7,1								

一、填空题:请将每题的答案全部写入下表中,否则不计成绩。(每空2分,共58分)。

题号	1	2	3		4	4			
答案									
题号	5	6	7	8	8		9		
答案							·		
题号	10	11		12	2	1	3		14
答案									
题号	15		16			1	7		
答案									
题号	18		19		20				21
答案									

١.	电路如图1所示,	试求受控电压源的功率为	-30W	0
٠.			2011	0

班级:

学语:

姓名:

班内序号:

3. 电路如图 3 所示, ab 端的开路电压为____0__V,等效电阻为____-12___ Ω 。

- 4. 电路如图 4 所示,t = 0 时开关 S 闭合,开关闭合前电路处于稳态,时间常数 $\tau = 0.2s$, $t \ge 0$ 以后电流 $i(t) = 2 + 8e^{-5t} A$ 。
- 5. 电路如图 5 所示, 电路已处于稳态, 在 t=0 时刻, 开关 S 打开, 则 $\frac{du_c}{dt}\Big|_{t=0_+} = -3$ $\frac{V/s}{s}$

- 6. 电路如图 6 所示,已知 $u_c(t) = 2e^{-2t}V$,则电压 $u_R(t) = __-16e^{-t}V$ _____。
- 7. 若正弦电路两端的电压 $u_1 = 60\sin(\omega t + 60^\circ)V$, 电流 $i_1 = 10\cos\omega tV$,

试判断该电路等效阻抗属于___容性_____(容性、感性、纯电阻/纯感/纯容性)。

- 8. 三极管处于放大状态时,发射结处于<u>正</u>偏置,集电结处于<u>反</u>偏置。
- 9. 如图 7 所示为某正弦交流电路的一部分,已知 $i_1 = 3\cos(\omega t + 45^\circ)A$,

10. 求图 8 所示电路分别在 ω =0 的阻抗 $Z_{ab}=_10k\Omega$ _____。

- 11. 晶体三极管的基区很薄,集电结面积 大 ,发射极掺杂浓度 高 。
- 12. 电路如图 9 所示,求 🔥 = ____4∠90° _____。

- 13. 电路如图 10 所示,设二极管有 0.7V 的管压降,则电压 $u_0 = 0$ ______。
- 14. 电路如图 11 所示,判断电路中三级管工作的状态为<u>截止</u>(填截止、放大或饱和)。

- 15. 电路如图 12 所示,输入一个正弦波电压 v_i ,若输出 v_o 出现顶部被"削平",这是发生了<u>截止</u>失真,改善这种失真的办法是<u>提高</u>(填提高或降低)静态工作点。
- 16. 在引入深度负反馈条件下,运算放大器的闭环电压放大倍数仅与<u>反馈网络(或反馈系数)</u>有关。
- 17. 已知某集成运放的开环放大倍数为 1000, 其组成的集成运放放大电路电压 传输特性如图 13 所示, 这个电路的闭环电压放大倍数是___40_____, 并 判断该电路中引入了_____负____(填正、负)反馈。

- 19. 若想降低放大电路的输入电流,以及获得较大的输出电阻,可以采用<u>电</u>流并联<u></u>的反馈组态。
- 20. 引入负反馈可以<u>减小</u>放大电路的非线性失真(填"增加"或"减小"), 并且<u>提高</u>放大电路的放大倍数的稳定性。(填"提高"或"降低")。
- 21. 电路如图 15 所示,当 $u_I = 2V$, $V_R = 1V$ 时,输出电压 u_O 为-15V,则可知

 u_1 所在的输入端为 反相 端(填"同相"或"反相")。

以下为计算题,必须有解题步骤,否则不得分。

二、(10 分)如图二所示电路,如果在 ab 端接一个可变负载 R_L , 当 R_L 为多大时,可获得最大功率,并求出最大功率。

解:

开路电压:

$$40 = (3i_x + i_x) \times 5 + i_x \times (15 + 5)$$
, $i_x = 1A$

$$U_{oc} = (3i_x + i_x) \times 5 = 20V$$

等效电阻:

利用外加电源法,可知, R_{eq} =5//20=4 Ω 最大功率:

$$P_{\text{max}} = \frac{U_{oc}^2}{4R_{eq}} = \frac{400}{16} = 25\text{W}$$

三、(8 分)如图三所示电路中,稳压管的稳定电压 U_Z =6V,最小

稳定电流 $I_{Z\min}=3mA$,最大稳定电流 $I_{Z\max}=7mA$,负载电阻 $R_L=6k\Omega$, 求限流电阻 R 的取值范围。

解:
$$I_R = I_{DZ} + I_L$$

$$I_L = \frac{U_Z}{R_I} = \frac{6}{6000} = 1mA$$
 (2 分)

Q
$$I_{DZ} = (3 \sim 7)mA$$
 $\therefore I_R = (4 \sim 8)mA$

$$U_R = U_1 - U_Z = 10 - 6 = 4V$$
 (2 \(\frac{1}{2}\)

限流电阻的取值范围

$$R_{\min} = \frac{U_R}{I_{R\min}} = \frac{4}{4 \times 10^{-3}} = 1 \text{k}\Omega$$
 (255)

$$R_{\text{max}} = \frac{U_R}{I_{R_{\text{max}}}} = \frac{4}{8 \times 10^{-3}} = 500\Omega$$
 (235)

四、(12 分)电路如图四所示,三极管 eta = 50 , $\mathrm{U}_{\mathrm{BEQ}}$ = 0.7 V , r_{h_o} = $1k\Omega$ 。

- 1. 分析静态工作点 I_{CO} , I_{BO} , U_{CEO} ;
- 2. 求放大电路的 A_v , R_i 和 R_o ;

3. 若去掉电容 C_E ,试求放大电路的 A_v , R_i 和 R_o 。

解:

(1)静态工作点:

$$U_{BQ} \approx \frac{R_{B2}}{R_{B1} + R_{B2}} \cdot V_{CC} = \frac{3.4}{16.6 + 3.4} \times 10 = 1.7V (1 \%)$$

$$I_{CQ} \approx I_{EQ} = \frac{U_{BQ} - U_{BEQ}}{R_E} = \frac{1.7 - 0.7}{1} \approx \text{Im} A (2 \%)$$

$$I_{BQ} = \frac{I_{CQ}}{\beta} \approx 20 \mu A (1 \%)$$

$$U_{CEQ} = V_{CC} - I_{CQ}R_C - I_{CQ}R_E = 10 - 1 \times 6 - 1 \times 1 = 3V (1 \%)$$
(2)
$$\dot{A}_{V} = \frac{\dot{V}_o}{\dot{V}_i} = -\frac{\beta(R_C / / R_L)}{r_{be}} = -\frac{50 \times 6 / / 6}{1} = -150 (2 \%)$$

$$R_i = R_{B1} / / R_{B2} / / r_{be} = 16.6 / / 3.4 / / 1 = 0.74k\Omega (1 \%)$$

$$R_o = R_C = 6k\Omega (1 \%)$$

$$\dot{A}_{v} = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{\beta (R_{C} / / R_{L})}{r_{be} + (1 + \beta)R_{E}} = -\frac{50 \times 6 / / 6}{1 + 51 \times 1} = -2.9 \quad (2 \%)$$

$$R_{i} = R_{B1} / / R_{B2} / / [r_{be} + (1 + \beta) \cdot R_{e1}] = 16.6 / / 3.4 / / [1 + 51 \times 1] = 2.7k\Omega$$

1分)

$$R_o = R_C = 6k\Omega$$
 (1 $\%$)

- 五、(12 分)含理想运算放大器电路如图 6-1 所示,已知 $R_1=R_{f2}=300k\Omega$, $R_3=R_{f1}=150k\Omega$, $R=500k\Omega$,输入差模电压信号为 u_{I1} 和 u_{I2} 如图 2 所示。
- **1.** 请描述图 **XXX** 运算放大电路中前两级放大电路 $A_1 \times A_2$ 所完成的功能。
- 2. 请写出第二级输出电压 u_{o2} 与输入信号 u_{I1} 和 u_{I2} 的关系表达式。
- 3. 请描述图 XXX 运算放大电路中第三级放大电路 G_3 所完成的功能,第三级放大电路若使得电路满足对称性,则 R_f 的取值应满足什么条件?
- 4. 如果输入波形如图 XX 所示,请绘出输出电压 u_a 波形。

图 XX-1

图 XX-2

解:

1.前两级电路完成加减运算电路(差分比例运算) (2分)

2. 第一级为同向比例运算电路, $u_{01} = (1 + \frac{R_{f2}}{R_3})u_{11}$ (2分)

第二级输出关系为: $u_{O2} = -\frac{R_{12}}{R_3}u_{O1} + (1 + \frac{R_{12}}{R_3})u_{12}$

$$\mathbb{U} \qquad u_{O2} = (1 + \frac{R_{f2}}{R_3})(u_{12} - u_{11}) = 3(u_{12} - u_{11})$$
 (2)

分)

3. 第三级放大电路所完成电压跟随的功能, (2分)

第三级放大电路若使得电路满足对称性则 $R_f=500k\Omega$

(2分)

4.
$$u_0 = 3(u_{12} - u_{11})$$

(2分)