Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 30/09/2016	Dr. David Israel Flores Granados Ing. Mónica Patricia René Ing. San Martín Alejandro Martín Canul	Actualizacion del programa para incorporarse en el plan de estudios de Ingeniería en Datos e Inteligencia Organizacional

Relación con otras asignaturas

Anteriores	Posteriores
a) IT0316 Electronica Digital	NA
a) Todos	IVA

Nombre de la asignatura	Departamento o Licenciatura
Principios de automatización y robótica	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	IT3472	6	Licenciatura Elección Libre

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	HI
Seminario	16	32	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir los principios teóricos que constituyen los fundamentos de la robótica para el conocimiento del contexto disciplinar.

Objetivo procedimental

Aplicar los fundamentos de la robotica para la implementación de un robot simulado y fisico.

Objetivo actitudinal

Fomentar el trabajo colaborativo para la resolución de problemas y prácticas de laboratorio.

Unidades y temas

Unidad I. TRANSMISION DE MOVIMIENTO

Clasificar los sistemas de movimiento para el diseño de mecanismos automatizados.

- 1) Maquinas Simples
- 2) Sistemas mecanicos de transmision de movimiento
- 3) Ruedas y tren de engranajes
- 4) Grados de Libertad

Unidad II. Transductores y Acondicionadores de señales

Revisar los principios básicos usados en los sensores para la comprensión del funcionamiento de los mismos.

- 1) Conceptos básicos de transductores
- 2) Tipos de circuitos y Acondicionadores de señal
- 3) Filtros
- 4) Puentes, amplificadores y convertidores de alterna

Unidad III. Sensores

Emplear diferentes tipos de sensores para su integración en diversas aplicaciones utilizando tarjetas de desarrollo.

1) Sensores de velocidad, posición y aceleración	
2) Sensores de color, luz y visión	
3) Sensores de nivel y proximidad	
4) Sensores de temperatura y humedad	
5) Sensores de fuerza, torque y deformación	
6) Sensores de flujo y presión	
7) Otros sensores	
Unidad IV. Actuadores	
Emplear diferentes tipos de actuadores para su integración en diversas aplicaciones utilizando tarjetas de desarrollo.	
1) Actuadores Eléctricos	
2) Servomotores	
3) Cilindros Neumaticos	
4) Cilindros Hidraulicos	

Actividades que promueven el aprendizaje

Docente	Estudiante
Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados	Realizar tareas asignadas Participar en el trabajo individual y en equipo
Coordinar la discusión de casos prácticos.	

Resolver casos prácticos (simulaciones)

Realizar foros para la discusión de temas o problemas.

Discutir temas en el aula

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos:

http://www.ict.csiro.au/robotics/ToolBox7.htm

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Prácticas	30
Exámenes	30
Investigaciones	20
Participación en clase	20
Total	100

Fuentes de referencia básica

Bibliográficas

Corona, et. al. (2015). Sensores y actuadores con Arduino. Mexico: Patria.

Craig J. (2006). Robo¿tica (3a. Edición). USA: Pearson Prentice Hall.

Edman, A. (2012) Diseño de Mecanismos: Análisis y Síntesis (3a. Edición). México: Prentice Hall.

Roberts. (2011). Making things Move. USA: McGrawHill.

Tsai L-W. (1998). Robot Analysis: The Mechanics of Serial and Parallel Manipulators. USA: Wiley.

Web gráficas

4

Fuentes de referencia complementaria

Bibliográficas

Howie C. et. al. (1999) Principles of Robot Motion: Theory, Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents). USA: The MIT Press.

Jazar R. (2006). Theory of Applied Robotics: Kinematics, Dynamics, and Control. USA: Engineering Charles River Media.

Selig J. (2005) Geometric Fundamentals of Robotics (Monographs in Computer Science) (2nd edition). USA: Springer.

Siegwart R. (2004).Introduction to Autonomous Mobile Robots (Intelligent Robotics and Autonomous Agents). USA: The MIT Press

Spong M. y Hutchinson S. (2004). Robot Modeling and Control. USA: Wiley.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Ingeniería, licenciatura o posgrado en Ciencias de la computación, Sistemas, o Electrónica.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en el desarrollo de software de base, sistemas embebidos, controladores de dispositivos