The analyticity region of the hard sphere gas. Improved bounds

Roberto Fernandez

Laboratoire de Mathematiques Raphael Salem
UMR 6085 CNRS-Universite de Rouen
Avenue de l'Universite, BP.12
F76801 Saint-Etienne-du-Rouvray (France)

Aldo Procacci

Departamento de Matemática UFMG 30161-970 - Belo Horizonte - MG Brazil

Benedetto Scoppola

Dipartimento di Matematica Universitá "Tor Vergata" di Roma V.le della ricerca scientifica, 00100 Roma, Italy

February 1, 2008

Abstract

We find an improved estimate of the radius of analyticity of the pressure of the hard-sphere gas in d dimensions. The estimates are determined by the volume of multidimensional regions that can be numerically computed. For d=2, for instance, our estimate is about 40% larger than the classical one.

In a recent paper [4] two of us have shown that it is possible to improve the radius of convergence of the cluster expansion using a tree graph identity due to Penrose [2], see also [5, Section 3]. In this short letter we use the same idea to improve the estimates of the radius of analyticity of the pressure of the hard-sphere gas.

The grand partition function $\Xi(z,\Lambda)$ of a gas of hard spheres of diameter R enclosed in a volume $\Lambda \subset \mathbb{R}$ is given by

$$\Xi(z,\Lambda) = \sum_{n=0}^{\infty} \frac{z^n}{n!} \int_{\Lambda^n} dx_1 ... dx_n \exp\left\{-\sum_{1 \le i < j \le n} U(x_i - x_j)\right\}$$

with

$$U(x - y) = \begin{cases} 0 & \text{if } |x - y| > R \\ +\infty & \text{if } |x - y| \le R \end{cases}$$

where |x-y| denotes the euclidean distance between the sphere centers x and y. The corresponding pressure is $\lim_{\Lambda \to \mathbb{R}^d} P(z,\Lambda)$ (limit in van Hove sense), where

$$P(z,\Lambda) = \frac{1}{|\Lambda|} \log \Xi(z,\Lambda)$$

 $(|\Lambda| \text{ denotes the volume of the region } \Lambda)$. The cluster expansion, in this setting, amounts to writing the preceding logarithm as the power series (see e.g. [1])

$$\log \Xi(z,\Lambda) = \sum_{n=1}^{\infty} \frac{z^n}{n!} \int_{\Lambda^n} dx_1 \dots dx_n \sum_{\substack{g \subset g(x_1, \dots, x_n) \\ g \in G_n}} (-1)^{|g|}$$

$$\tag{1}$$

where the graph $g(x_1,...x_n)$ has vertex set $\{1,...,n\}$ and edge set $E(x_1,...x_n) = \{\{i,j\} : |x_i - x_j| \leq R\}$ (that is, if the spheres centered at x_i and x_j intersect), G_n is the set of all the connected graphs with vertex set $\{1,...,n\}$, and |g| denotes the cardinality of the edge set of the graph g. Only families $(x_1,...x_n)$ for which $g(x_1,...x_n)$ is connected contribute to (1); such families represent "clusters" of spheres.

The standard way to estimate the radius of analyticity of the pressure is to obtain a Λ -independent lower bound of the radius of convergence of the series

$$|P|(z,\Lambda) = \frac{1}{|\Lambda|} \sum_{n=1}^{\infty} \frac{|z|^n}{n!} \int_{\Lambda^n} dx_1 ... dx_n \left| \sum_{\substack{g \in g(x_1, ..., x_n) \\ a \in G}} (-1)^{|g|} \right|.$$
 (2)

This strategy leads to the classical estimation (see e.g. [6], Section 4) that the pressure is analytic if

$$|z| < \frac{1}{e V_d(R)} \,, \tag{3}$$

where $V_d(R)$ is the volume of the d-dimensional sphere of radius R (excluded volume).

Our approach is based on a well known tree identity. Let us denote by T_n the subset of G_n formed by all tree graphs with vertex set $\{1, ..., n\}$. Given a tree $\tau \in T_n$ and a vertex i of τ , we denote by d_i the degree of the vertex i in τ , i.e. the number of edges of τ containing i. We regard the trees $\tau \in T_n$ as rooted in the vertex 1. This determines the usual partial order of vertices in τ by generations: If u, v are vertices of τ , we write $u \prec v$ —and say that u precedes v— if the (unique) path from the root to v contains u. If $\{u, v\}$ is an edge of τ , then either $v \prec u$ or $u \prec v$. Let $\{u, v\}$ be an edge of τ and assume without loss of generality that $u \prec v$, then u is the called the predecessor and v the descendant. Every vertex $v \in \tau$ has a unique predecessor and $s_v = d_v - 1$ descendants, except the root that has no predecessor and $s_v = d_v$ descendants. For each vertex v of τ we denote by v' the unique predecessor of v and by $v^1, \ldots v^{s_v}$ the s_v descendants of v. The number s_v is called the branching factor; vertices with $s_v = 0$ are called end-points or "leaves".

Penrose [4] showed that the sum in (1) is equal, up to a sign, to a sum over trees satisfying certain constraints. We shall keep only the "single-vertex" constraints: descendants of a given sphere must be mutually non-intersecting. This implies that

$$\left| \sum_{\substack{g \subset g(x_1, \dots, x_n) \\ g \in G_n}} (-1)^{|g|} \right| \le \sum_{\tau \in T_n} w_{\tau}(x_1, \dots, x_n) \tag{4}$$

where

$$w_{\tau}(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } |x_v - x_{v'}| \le R \text{ and } |x_{v^i} - x_{v^j}| > R, \forall v \text{ vertex of } \tau, \ \{i, j\} \subset \{1, \dots, s_v\}, \\ 0 & \text{otherwise} \end{cases}$$

$$(5)$$

Hence from (2) and (4) we get

$$|P|(z,\Lambda) \le \sum_{n=1}^{\infty} \frac{|z|^n}{n!} \sum_{\tau \in T_n} S_{\Lambda}(\tau)$$
(6)

with

$$S_{\Lambda}(\tau) = \frac{1}{|\Lambda|} \int_{\Lambda^n} w_{\tau}(x_1, \dots, x_n) dx_1 \dots dx_n . \tag{7}$$

By (5) we have

$$S_{\Lambda}(\tau) \leq g_d(d_1) \prod_{i=2}^n g_d(d_i - 1) \tag{8}$$

where d_i is the degree of the vertex i in τ ,

$$g_d(k) = \int_{\substack{|x_i| \le R \\ |x_i - x_j| > R}} dx_1 \dots dx_k = R^{dk} \int_{\substack{|y_i| \le 1 \\ |y_i - y_j| > 1}} dy_1 \dots dy_k$$

for k positive integer, and $g_d(0) = 1$ by definition. It is convenient to write

$$g_d(k) = [V_d(R)]^k \widetilde{g}_d(k) \tag{9}$$

with

$$\widetilde{g}_d(k) = \frac{1}{[V_d(1)]^k} \int_{\substack{|y_i| \le 1 \\ |y_i - y_j| > 1}} dy_1 \dots dy_k$$
(10)

for k positive integer and $\tilde{g}_d(0) = 1$. We observe that $\tilde{g}_d(k) \leq 1$ for all values of k. From (8)–(10) we conclude that

$$S_{\Lambda}(\tau) \leq [V_d(R)]^{d_1} \widetilde{g}_d(d_1) \prod_{i=2}^n [V_d(R)]^{d_i-1} \widetilde{g}_d(d_i-1)$$

= $[V_d(R)]^{n-1} \widetilde{g}_d(d_1) \prod_{i=2}^n \widetilde{g}_d(d_i-1)$.

The last identity follows from the fact that for every tree of n vertices, $d_1 + \cdots + d_n = 2n - 2$. The τ -dependence of this last bound is only through the degree of the vertices, hence it leads, upon insertion in (6), to the inequality

$$|P|(z,\Lambda) \leq \frac{1}{V_d(R)} \sum_{n=1}^{\infty} \frac{(|z|V_d(R))^n}{n!} \sum_{\substack{d_1,\ldots,d_n\\d_1+d_2-2n-2\\d_1+d_2-2n-2}} \widetilde{g}_d(d_1) \prod_{i=2}^n \widetilde{g}_d(d_i-1) \frac{(n-2)!}{\prod_{i=1}^n (d_i-1)!}.$$

The last quotient of factorials is, precisely, the number of trees with n vertices and fixed degrees d_1, \ldots, d_n , according to Cayley formula.

At this point we can bound the last sum by a power in an obvious manner. The convergence condition so obtained would already be an improvement over the classical estimate (3). We can, however, get an even better result through a trick used by two of us in [3]. We multiply and divide by a^{n-1} where a > 0 is a parameter to be chosen in an optimal way. This leads us to the inequality

$$|P|(z,\Lambda) \leq \frac{a}{V_d(R)} \sum_{n=1}^{\infty} \frac{\left(|z| V_d(R)\right)^n}{a^n n(n-1)} \sum_{\substack{d_1,\dots,d_n\\d_1+\dots+d_n=2n-2}} \frac{\widetilde{g}_d(d_1) a^{d_1}}{d_1!} \prod_{i=2}^n \frac{\widetilde{g}_d(d_i-1) a^{d_i-1}}{(d_i-1)!}$$

$$\leq \frac{a}{V_d(R)} \sum_{n=1}^{\infty} \frac{1}{n(n-1)} \left(\frac{|z|}{a} [V_d(R)] \left[\sum_{s>0} \frac{\widetilde{g}_d(s) a^s}{s!}\right]\right)^n$$

The last series converges if

$$|z| V_d(R) \le \frac{a}{C_d(a)}$$

where

$$C_d(a) = \sum_{s>0} \frac{\widetilde{g}_d(s)}{s!} a^s$$

(this is a finite sum!). The pressure is, therefore, analytic if

$$|z| V_d(R) \le \max_{a>0} \frac{a}{C_d(a)}. \tag{11}$$

This is our new condition.

Let us show that for d = 2 the quantitative improvement given by this condition can be substantial. In this case

$$C_2(a) = \sum_{s=0}^{5} \frac{\widetilde{g}_2(s)}{s!} a^s$$

where, by definition, $\widetilde{g}_2(0) = \widetilde{g}_2(1) = 1$. The factor $\widetilde{g}_2(2)$ can be explicitly evaluated in terms of straightforward integrals and we get

$$\widetilde{g}_2(2) = \frac{3\sqrt{3}}{4\pi}$$

The other terms of the sum can be numerically evaluated using a simple Montecarlo simulation, obtaining

$$\widetilde{g}_2(3) = 0,0589$$
 $\widetilde{g}_2(4) = 0,0013$ $\widetilde{g}_2(5) \le 0,0001$

Choosing $a=\left[\frac{8\pi}{3\sqrt{3}}\right]^{1/2}$ (a value for which $\frac{a}{C_d(a)}$ is close to its maximum) we get

$$|z| V_2(R) \leq 0.5107$$
.

This should be compared with the bound $|z|V_2(R) \le 0.36787...$ obtained through the classical condition (3).

Acknowledgments: We thank Sokol Ndreca for useful discussion concerning the numerical evaluation of the \tilde{g} 's. A.P. thanks CNPq for financial support.

References

- [1] D. Brydges: A Short Course on Cluster Expansion, Les Houches 1984, K. Osterwalder, R. Stora eds., North Holland Press (1986)
- [2] O. Penrose (1967): Convergence of fugacity expansions for classical systems. In "Statistical mechanics: foundations and applications", A. Bak (ed.), Benjamin, New York.
- [3] A. Procacci and B. Scoppola: Polymer gas approach to N-body lattice systems. J. Statist. Phys. 96, 49–68 (1999)
- [4] R. Fernandez and A. Procacci: Cluster expansion for abstract polymer models. New bounds from an old approach, Preprint arXiv math-ph/0605041, to appear in Comm. Math. Phys.
- [5] Ch.E. Pfister: Large deviation and phase separation in the two-dimensional Ising model, Helv. Phys. Acta 64, 953-1054 (1991)
- [6] D. Ruelle (1969): Statistical mechanics: Rigorous results. W. A. Benjamin, Inc., New York-Amsterdam.