TP3, Codes correcteurs

1. PIVOT DE GAUSS

Notre but est ici de construire, à partir d'une matrice génératrice G à coefficients dans \mathbb{F}_2 , des matrices de contrôle C et de décodage D.

Donnons nous donc une matrice G de type (n, k) dont nous supposerons que l'application associée f_G est injective : en particulier, on a $n \ge k$.

- i) Notons I_n la matrice identité de type (n, n). Effectuer l'algorithme du pivot de Gauss (opération sur les lignes!) sur G jusqu'à obtenir une matrice triangulaire, et effectuer exactement les mêmes opérations sur les lignes de I_n , obtenant ainsi une matrice A.
- ii) Montrer que les n-k dernières lignes de A forment une matrice de contrôle C pour le code engendré par G.
- iii) Finir la résolution du système linéaire en ne considérant que les k premières lignes de G et de A et montrer que la matrice D ainsi obtenue est une matrice de décodage pour le code engendré par G (i.e. on a $DG = I_k$).

2. DISTANCE DE HAMMING

Étant donné une matrice génératrice G, nous aimerions savoir quelles sont les capacités de correction et de détection du code engendré par G. Pour cela

- i) Écrire une fonction dist_hamming prenant en paramètre G et calculant la distance de Hamming du code engendré par G (on pourra utiliser la représentation binaire des nombres de $\{0, \ldots, 2^k 1\}$ pour obtenir une liste complète de tous les vecteurs).
- ii) Écrire une fonction correction prenant en paramètre G et calculant les capacités de détection et de correction.

3. Création des syndromes

Nous souhaitons maintenant construire la table des syndromes pour une matrice de contrôle C de type (ℓ, n) fixée.

- i) Étant donnés des entiers n et t, construire la liste de tous les vecteurs de \mathbb{F}_2^n dont la distance de Hamming au vecteur nul est $\leq t$ (on pourra utiliser l'algorithme récursif vu en cours).
- ii) Écrire une fonction $liste_syndrome$ prenant en paramètre une matrice de contrôle C et retournant la liste S des $\{e, Ce\}$ pour e dans l'ensemble cidessus.
- iii) Écrire une fonction cherche_syndrome prenant en paramètres une liste S et un vecteur $x \in \mathbb{F}_2^n$, qui cherche dans la table S un élément de la forme $\{e, x\}$, renvoi e si elle le trouve, et FAUX sinon.

4. Codage et décodage

Soit G une matrice de type (n, k) à coefficients dans \mathbb{F}_2 , et supposons donnés une matrice de contrôle C, une matrice de décodage D, une liste de syndrome S et la capacité de correction t du code engendré par G.

- i) Construire une fonction codage qui, étant donnés une matrice G et un mot m, calcule le code Gm correspondant.
- ii) Construire une fonction decodage qui, étant donnés une matrice de contrôle C, une liste de syndrome S, et un code M, renvoi le mot duquel M provient s'il existe un tel code, et un message d'erreur sinon.

5. Application

Tester les fonctions écrites ci-dessus sur les exemples vus en cours et en TD.