RAPPRESENTAZIONE DEGLI ALGORITMI E STRUTTURE DI CONTROLLO

Fondamenti di Programmazione 2021/2022

Francesco Tortorella

Come si esprime un algoritmo?

- Per realizzare un procedimento risolutivo, un algoritmo esegue delle operazioni su un insieme di informazioni
- Per definire correttamente un algoritmo è quindi necessario specificare in maniera formale (precisa e non ambigua):
 - le informazioni su cui l'algoritmo lavora
 - le operazioni che l'algoritmo compie

Che cos'è l'informazione?

- Il concetto di informazione è piuttosto ampio e si presta a molte interpretazioni, che dipendono dal contesto in cui lo esaminiamo
- Possiamo assumere che informazione è tutto ciò che può consentire di ridurre il nostro grado di incertezza in merito ad una particolare situazione

Che cos'è l'informazione?

- Di conseguenza, si presuppone l'esistenza di due entità (non necessariamente delle persone fisiche), che interagiscono tra loro: un mittente, che fornisce l'informazione, ed un ricevente, al quale l'informazione è destinata.
- Per scambiare l'informazione bisogna avere un modo per rappresentarla e comunicarla.
- Una rappresentazione familiare è formata da una sequenza ordinata di simboli, appartenenti ad un certo alfabeto

Che cos'è l'informazione?

- La sequenza di simboli rappresenta l'informazione, anche se non è l'informazione stessa
- Il contenuto informativo di una sequenza di simboli dipende dal contesto
- Es.: 123456: potrebbe essere un tempo in secondi, un identificativo, un numero telefonico, ecc..

Informazione e dato

- Spesso i termini informazione e dato sono usati in modo interscambiabile; ma ...
- un dato è un singolo elemento informativo (cioè elemento da un insieme di possibili valori)
- Per avere (nuova) conoscenza (= informazione) occorre, oltre al dato, la relativa chiave di lettura, cioè il contesto all'interno del quale quel valore è in grado di ridurre l'incertezza

esempio

- Anna e Luca devono comunicare
 - Anna manda un messaggio a Luca

Luca non è in grado di interpretarlo, se non ha la

Forse è il suo numero di cellulare!!!

Luca

L'informazione nell'algoritmo

- Quanto visto finora si può riassumere dicendo che qualunque informazione è definita tramite tre caratteristiche fondamentali:
 - Valore
 - Tipo
 - Attributo
- Valore: indica il particolare elemento assunto dall'informazione
- Tipo: indica l'insieme degli elementi entro cui è stato scelto il valore attribuito all'informazione
- Attributo: indica il significato associato all'informazione nel contesto in cui questa viene utilizzata

L'informazione nell'algoritmo

Valore	Tipo	Attributo
3.5	reale	soluzione equazione
5.0	reale	soluzione equazione
5	intero	lunghezza lato
5	intero	numero prove
Luigi Rossi	sequenza di caratteri	impiegato
Luigi Rossi	sequenza di caratteri	correntista

Si ottiene un'informazione completa quando un attributo assume un valore di un determinato tipo

Organizzazione dell'informazione in un algoritmo

- All'interno di un algoritmo un'informazione può essere organizzata in vari modi:
 - variabile
 - costante
 - espressione

Variabile

- Una variabile è un ente, appartenente ad un certo tipo, che può assumere uno qualunque dei valori appartenenti al tipo.
- Una variabile è identificata da un nome, che riflette il ruolo che questa assume all'interno dell'algoritmo.
- Il valore di una variabile può essere sia utilizzato (lettura) che modificato (scrittura).

Variabile

Nell'algoritmo per il calcolo del MCD i valori di X, Y e R sono ospitati in altrettante variabili

```
    Leggi due numeri X e Y, con X > Y
    Dividi X per Y e ottieni il resto R
    Se R=0, termina: il MCD è Y
```

5. Sostituisci Y con R

4. Sostituisci X con Y

6.Torna al punto 2.

Costante

 E' un oggetto, appartenente ad un certo tipo, il cui valore rimane immodificato durante l'esecuzione dell'algoritmo.
 Ad una costante può essere attribuito un nome.

Esempi:

- 0 è una costante di tipo intero
- 3.1415 è una costante di tipo reale
- pigreco è una costante di tipo reale e valore 3.1415

Costante

Nell'algoritmo per il calcolo del MCD è presente una sola costante

- 1.Leggi due numeri $X \in Y$, con X > Y
- 2.Dividi X per Y e ottieni il resto R
- 3.Se R=0, termina: il MCD è Y
- 4. Sostituisci X con Y
- 5. Sostituisci Y con R
- 6.Torna al punto 2.

Espressione

- E' una sequenza di operandi, operatori e parentesi, dove gli operandi possono essere variabili o costanti. Il tipo dell'espressione complessiva dipende dai tipi degli operandi coinvolti nell'espressione.
- Esempi (a, b variabili intere; x, y variabili reali)
 - a*b+50 è un'espressione di tipo intero
 - a*3.1415 è un'espressione di tipo reale
 - */2 è un'espressione di tipo reale
 - **2*b*pigreco** è un'espressione di tipo reale

Espressione

Non ci sono espressioni?

- 1.Leggi due numeri X e Y, con X > Y
- 2.Dividi X per Y e ottieni il resto R
- 3.Se R=0, termina: il MCD è Y
- 4. Sostituisci X con Y
- 5. Sostituisci Y con R
- 6.Torna al punto 2.

Espressione

Non ci sono espressioni?

```
1.Leggi due numeri X e Y, con X > Y
2.R ← X-[X/Y]*Y
3.Se R=0, termina: il MCD è Y
4.X ← Y
5.Y ← R
6.Torna al punto 2.
```

Rappresentazione delle operazioni

- Come definire e rappresentare in maniera non ambigua le istruzioni che costituiscono l'algoritmo?
- Due possibili strumenti:
 - Pseudo codice
 - Diagrammi di flusso (Flow Chart)

Algorithm E (*Euclid's algorithm*). Given two positive integers m and n, find their *greatest common divisor*, that is, the largest positive integer that evenly divides both m and n.

- **E1.** [Find remainder.] Divide m by n and let r be the remainder. (We will have $0 \le r < n$.)
- **E2.** [Is it zero?] If r = 0, the algorithm terminates; n is the answer.
- **E3.** [Reduce.] Set $m \leftarrow n$, $n \leftarrow r$, and go back to step E1.

Fig. 1. Flow chart for Algorithm E.

ACHTUNG!!! Linguaggio naturale

- Nella risoluzione di un problema, il primo passo verso la modellazione di un algoritmo è cercare di descrivere le azioni da fare in linguaggio naturale
- Es. Trovare il massimo tra due numeri
- Passi:
 - Prendo il primo numero
 - Prendo il secondo numero
 - Faccio la differenza
 - Se il risultato è maggiore di 0 allora il primo numero è il massimo
 - ...

Diagramma di flusso (flow chart)

- Consente la modellazione grafica di un algoritmo
- Alternativa allo pseudocodice per algoritmi non eccessivamente complessi
- Molto immediato: consente di descrivere un algoritmo concentrandosi principalmente sulla sequenza delle operazioni di cui si compone.

Pseudo codice

- Rappresentazione dell'algoritmo in forma testuale.
- Costrutti di controllo spesso descritti con forme e parole chiave corrispondenti o vicine a quelle dei linguaggi di programmazione
- Le particolari operazioni possono essere descritte in modo informale e sintetico.

```
leggi x,y
d:= x-y
if(d > 0)
    stampa("Max è X")
else
    stampa("Max è y")
```


Flusso di esecuzione

- Quando definiamo un algoritmo, possiamo avere un'estrema variabilità in quello che è l'ordine di esecuzione della sequenza di istruzioni che compongono l'algoritmo
- Dobbiamo infatti specificare in qualche modo il flusso di esecuzione dell'algoritmo
- Specificare, cioè, se, quando, in quale ordine e quante volte devono essere eseguite le istruzioni dell'algoritmo

Strutture di controllo

- Grazie al teorema di Böhm-Jacopini (1966), possiamo individuare un numero finito delle strutture di controllo, costrutti elementari per descrivere in maniera completa la parte esecutiva di qualunque algoritmo.
- Strutture di controllo:
 - sequenza di operazioni (assegnazioni di valori a variabili in base a calcolo o da I/O)
 - selezione di azioni alternative in base alla valutazione di una condizione
 - esecuzione ciclica di una o più azioni

Strutture di controllo

- Sequenza
- Costrutti di selezione
- Costrutti ciclici

- 1.Leggi due numeri X e
 Y, con X > Y
- 2.Dividi X per Y e ottieni il resto R
- 3.Se R=0, termina: il MCD è Y
- 4. Sostituisci X con Y
- 5. Sostituisci Y con R
- 6. Torna al punto 2.

Diagrammi di flusso

- Useremo il flow chart come rappresentazione grafica del flusso di controllo
- descrive il flusso delle operazioni da eseguire per realizzare il procedimento risolutivo definito dall'algoritmo, dai dati iniziali ai risultati
- ogni istruzione dell'algoritmo viene rappresentata all'interno di un blocco elementare, la cui forma grafica è determinata dal tipo di istruzione
- i blocchi sono collegati tra loro da linee di flusso, munite di frecce, che indicano il susseguirsi di azioni elementari

Blocchi elementari del diagramma di flusso

Rettangolo: indica una azione elaborativa di tipo sequenza

Parallelogramma: indica un'operazione di input/output

Rombo: indica una selezione

 Ovale: indica l'inizio o la fine di un programma, o di una sezione di codice (in questo caso si usano anche simboli cerchietto, detti simboli di connessione)

Costrutti di calcolo e assegnazione

- L'effetto è di aggiornare il valore di una variabile di un certo tipo con il valore ottenuto dalla valutazione di un'espressione dello stesso tipo.
- Il formato è:

• Achtung: il segno = sta ad indicare l'azione di assegnare il valore a destra alla variabile il cui nome è a sinistra.

Non è il segno dell'equazione come accade in $a^2 + b^2 = c^2$

Costrutti di calcolo e assegnazione

Infatti a volte si usa il formato:

per evitare confusioni (noi comunque useremo =).

Esempi:

$$a=4$$
 $a=a+1$ $cond= a > b$
 $b=0$ $a=a+b$ $cond=(a>=0)$ and $(a<=9)$
 $b=a$

Operazioni di calcolo e assegnazione

- Assumiamo che i, j, val_m siano variabili di tipo intero e che cost_i sia una costante sempre di tipo intero
- Quali sono le operazioni corrette?

```
2040 = val_m
i + j = val_m
ci = val_m
i = j
```


Operazioni di ingresso/uscita

- Con le operazioni di input, il valore di una variabile viene modificato con il valore ottenuto grazie ad un'operazione di lettura dall'unità di ingresso (tastiera).
- Con le operazioni di output, un'espressione viene valutata ed il valore ottenuto viene presentato sull'unità di uscita (schermo).

Esercizi

- Scambio dei valori di due variabili
 - Leggere il valore di due variabili A e B e poi scambiare i due valori
- Soluzione di un sistema di due equazioni lineari in due incognite
 - Date due equazioni lineari in due incognite x e y

$$\begin{cases} a \cdot x + b \cdot y = c \\ d \cdot x + e \cdot y = f \end{cases}$$

Metodo di Cramer

trovare il valore di x e y

Metodo di Cramer

■ Determinante $\begin{vmatrix} a & b \\ d & e \end{vmatrix} = a \cdot e - b \cdot d$

■ Il valore di x è dato da
$$x = \frac{\begin{vmatrix} c & b \\ f & e \end{vmatrix}}{\begin{vmatrix} a & b \\ d & e \end{vmatrix}} = \frac{c \cdot e - b \cdot f}{a \cdot e - b \cdot d}$$

■ Il valore di y è dato da $y = \frac{\begin{vmatrix} a & c \\ d & f \end{vmatrix}}{\begin{vmatrix} a & b \\ d & e \end{vmatrix}} = \frac{a \cdot f - c \cdot d}{a \cdot e - b \cdot d}$

Costrutti di selezione

 Permettono di scegliere di eseguire una tra due istruzioni alternative in base alla valutazione di una condizione

Selezione semplice

Selezione semplice

- Il blocco istruzioni è
 eseguito solo se test è
 vero, altrimenti si procede
 in sequenza
- Il blocco istruzioni può essere costituito da uno o più istruzioni.

Esercizi

- Dato un valore X in input, assegnare ad Y il valore assoluto di X e stamparlo in uscita
- Verificare che due valori X e Y forniti in input rispettino la condizione X >= Y; se questo non fosse verificato, scambiare i due valori.

Selezione a due vie

- Se test è vero, viene eseguito blocco 1, NON viene eseguito blocco 2 e si procede in sequenza
- Se test è falso, viene eseguito blocco 2, NON viene eseguito blocco 1 e si procede in sequenza

Esempio

Calcolare e
 stampare il
 massimo tra due
 valori forniti in
 input

Esercizi

- Soluzione di un sistema di due equazioni lineari in due incognite
 - Gestire il caso in cui il determinante è nullo
- Calcolare e stampare il massimo fra tre valori forniti in input

Esercizio

- Scrivere un programma che legga da input i coefficienti a, b, c di un'equazione di secondo grado e ne calcoli le radici.
 - Considerare i casi in cui uno o più dei coefficienti sia nullo.

Costrutti ciclici

- Consentono di ripetere l'esecuzione di un'istruzione (o di un blocco di istruzioni)
- Permettono di realizzare un ciclo a condizione iniziale o a condizione finale
- Non si definisce esplicitamente il numero di ripetizioni dell'esecuzione, ma si valuta all'inizio (o alla fine) del ciclo un'espressione logica che, fin quando risulta vera, causa un'ulteriore esecuzione dell'istruzione.

Ciclo a condizione iniziale

- Si valuta test
- Se risulta vero, si esegue il blocco istruzioni e quindi si torna a verificare la condizione
- Se la condizione risulta falsa, si passa a eseguire le istruzioni che si trovano dopo la chiusura del ciclo
- Qual è il minor numero di cicli che si può effettuare ?

Esempio

- Stampare in output i primi dieci numeri naturali
- Come si modifica l'algoritmo se volessimo stampare i primi 10 numeri dispari?

Ciclo a condizione finale

- Si esegue il blocco istruzioni
- Si valuta test
- Se risulta vero si torna a eseguire il blocco istruzioni
- Se la condizione risulta falsa, si passa a eseguire le istruzioni che si trovano dopo la chiusura del ciclo
- Qual è il minimo numero di cicli che si può effettuare ?

Esercizio

Leggere da input un insieme di numeri interi e calcolarne la somma. Non si conosce in anticipo la quantità di valori da leggere; la lettura di un valore == 0 indica che l'insieme da leggere è terminato.

Esercizio

- Leggere da input un insieme di numeri reali >= 0 e determinare il valore minimo. Non si conosce in anticipo la quantità di valori da leggere; la lettura di un valore < 0 indica che l'insieme da leggere è terminato.
- Nelle stesse ipotesi dell'esercizio precedente, determinare il valore massimo dell'insieme dei valori letti.

Problema: calcolo del MCD

ACHTUNG!!

- È un ciclo a condizione iniziale?
- È un ciclo a condizione finale?

```
1.Leggi due numeri X
e Y, con X > Y
2.Dividi X per Y e
ottieni il resto R
3.Se R=0, termina: il
MCD è Y
4. Sostituisci X con Y
5. Sostituisci Y con R
6. Torna al punto 2.
```


Ciclo destrutturato

1.
$$r = x \% y$$

- 2. r!=0?
- 3. x = y
- 4. y = r
- 5. r = x % y
- 6. r!=0?
- 7. x = y
- 8. y = r
- 9. ...

Ciclo destrutturato

1.
$$r = x \% y$$

$$3./x = y$$

5.
$$r = x \% y$$

$$7/x = y$$

9. ..

Ciclo destrutturato

1.
$$r = x \% y$$

$$3./x = y$$

$$4. y= r$$

5.
$$r = x \% y$$

$$7/x = y$$

8.
$$y = r$$

1.
$$r = x \% y$$

2.
$$x = y$$

3.
$$y = r$$

5.
$$r = x \% y$$

6.
$$x = y$$

7.
$$y = r$$

9. ...

Ciclo destrutturato \rightarrow ciclo a condizione finale

1.
$$r = x \% y$$

$$3./x = y$$

$$4. y= r$$

5.
$$r = x \% y$$

$$7/x = y$$

8.
$$y = r$$

1.
$$r = x \% y$$

2.
$$x = y$$

$$3. y= r$$

5.
$$r = x \% y$$

6.
$$x = y$$

7.
$$y = r$$

9. ...

Ciclo destrutturato \rightarrow ciclo a condizione finale

1.
$$r = x \% y$$

$$3./x = y$$

5.
$$r = x \% y$$

$$7/x = y$$

8.
$$y = r$$

9. ..

1.
$$r = x \% y$$

2.
$$x = y$$

3.
$$y = r$$

5.
$$r = x \% y$$

6.
$$x = y$$

7.
$$y = r$$

9. ...

E se volessi verificare che Y sia diverso da 0?

Ciclo destrutturato → ciclo a condizione finale

1.
$$r = x \% y$$

3.
$$x = y$$

4.
$$y = r$$

5.
$$r = x \% y$$

7.
$$x = y$$

8.
$$y = r$$

1.
$$r = x \% y$$

$$2. x = y$$

$$y=r$$

5.
$$r = x \% y$$

6.
$$x = y$$

7.
$$y = r$$

2.
$$r = x \% y$$

3.
$$x = y$$

4.
$$y = r$$

6.
$$r = x \% y$$

7.
$$x = y$$

8.
$$y = r$$

Ciclo destrutturato → ciclo a condizione finale

1.
$$r = x \% y$$

3.
$$x = y$$

4.
$$y = r$$

5.
$$r = x \% y$$

7.
$$x = y$$

8.
$$y = r$$

1.
$$r = x \% y$$

$$2. x = y$$

$$3. y=r$$

5.
$$r = x \% y$$

6.
$$x = y$$

7.
$$y = r$$

2.
$$r = x \% y$$

3.
$$x = y$$

4.
$$y = r$$

6.
$$r = x \% y$$

Come possiamo riscrivere questi test?

7.
$$x = y$$

8.
$$y=r$$

Ciclo destrutturato \rightarrow ciclo a condizione finale

1.
$$r = x \% y$$

3.
$$x = y$$

4.
$$y = r$$

5.
$$r = x \% y$$

7.
$$x = y$$

8.
$$y = r$$

9. ...

6.
$$x = y$$

7.
$$y = r$$

2.
$$r = x \% y$$

3.
$$x = y$$

$$4. y=r$$

6.
$$r = x \% y$$

7.
$$x = y$$

8.
$$y = r$$

10....

Condizioni equivalenti

Ciclo destrutturato \rightarrow ciclo a condizione finale \rightarrow ciclo a condizione iniziale

1.
$$r = x \% y$$

3.
$$x = y$$

4.
$$y = r$$

5.
$$r = x \% y$$

7.
$$x = y$$

8.
$$y = r$$

9. ...

6.
$$x = y$$

7.
$$y = r$$

6.
$$r = x \% y$$

7.
$$x = y$$

8.
$$y = r$$

Condizioni equivalenti