Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

Recap: regression line

the fresher.ods dataset

there are many possibilities

there are many possibilities

let's move to R

model0

ullet weight \sim 1

model1

ullet weight \sim height

model2

ullet weight \sim gender

ullet weight \sim gender + height

ullet weight \sim gender * height

the same:

ullet weight \sim gender + height + height:gender

the Akaike criterion

https://www.sciencedirect.com/science/article/pii/S2468042719300508

Statistics for Medicine

Massimo Borelli

Master of Advanced Studies in Medical Physics

curvature in linear models generalized linear model repeated measures

curvature in linear models

generalized linear model

repeated measures

the airquality dataset

Cell: lm(formula = Oppre = Solar A * Temp + I(TempAI) + Wind + I(Wind*2))

Coefficients:

(Intercept) Solar 8 Temp I(Temp*2) Wind I(Wind*2) Solar 8: Temp 262 475749 -0.254119 -4.898987 0.036442 -13.029786 0.445797 0.804358

Logit

From Whipedia, the they excystopedia.

The article discusses the binary legit function only like discrete allows for a decursion of multiconial legit, annalist legit, neutral legit, excelled legit, and undered legit. For the basic regression truthique that uses the legit function, are explaint regression. For scandard regit, and continued by multiplication, are legit suits.

in electrics, the legit (*lookge* con-jib function is the quantile function associated with the standard logistic distribution. It has many uses in data unayels and machine learning, especially in this transformations.

intervariously, the logil is the inverse of the standard togeth: for an $\sigma(x) = 1/(1 + e^{-x})$, so the logil is defined as

$$logit(p) = \sigma^{-1}(p) = ln\left(\frac{p}{1-p}\right) \text{ for } p \in (0,1).$$

Because of this, the logit is also called the log-odds since it is equal to the logarithm of the code $\frac{p}{1-a}$ where p is a

probability. Thus, the logit is a type of function that maps

The standard logistic function is the logistic function with p

$$f(x) = rac{1}{1+e^{-x}} = rac{e^x}{e^x+1} = rac{1}{2} + rac{1}{2} anh \Big(rac{x}{2}\Big).$$

	logHE4		
	benign malignar		
Minimum	2.550	3.660	
Maximum	5.200	8.350	

				Wald Test		
	Est.	St. Error	Z	Wald	df	р
(Intercept)	-14.28	2.38	-6.00	35.98	1	< .001
logHE4	3.07	0.57	5.38	28.94	1	< .001

$$f(x) = -14.28 + 3.07x$$

$$y = \frac{\exp(f(x))}{(1 + \exp(f(x)))}$$

repeated measures

Alice Ellen 73.60 73.80

Massimo Borelli

Statistics for Medicine

repeated measures

	Alice	Ellen
1	73.60	73.80
2	73.40	73.50
3	74.10	74.60
4	73.50	73.80
5	73.20	73.60

```
Two Sample t-test
```

```
data: alice and ellen
```

```
t = -1.2227, df = 8, p-value = 0.2562 alternative hypothesis: true difference in means is not equal to 0
```

```
95 percent confidence interval: -0.865794 0.265794
```

sample estimates:

73.56 73.86

repeated measures

	Alice	Ellen		Alice	Ellen
1	73.60	73.80	12	74.10	74.60
2	73.40	73.50	13	73.60	73.80
3	74.10	74.60	14	73.40	73.60
4	73.50	73.80	15	74.10	74.40
5	73.20	73.60	16	73.50	73.70
6	74.00	74.40	17	73.20	73.50
7	73.60	73.80	18	74.00	74.40
8	73.30	73.50	19	73.60	73.90
9	74.20	74.30	20	73.30	73.60
10	73.60	73.90	21	74.20	74.50
_11	73.40	73.60	-	-	-

```
Two Sample t-test
```

data: peso by gemella

t = -2.4594, df = 40, p-value = 0.01834

alternative hypothesis: true difference in means

is not equal to 0

95 percent confidence interval:

-0.51183215 -0.05007261

sample estimates:

mean in group alice mean in group ellen

73.66190

73.94286