Finitely axiomatisable varieties generated by representable relation algebra reducts

Daniel Rogozin

1 Questions

- 1. Is the variety $V(\mathbf{R}(\cdot, ; , \mathbf{1}))$ finitely axiomatisable?
- 2. Is the variety $V(\mathbf{R}(\cdot,+,:,1))$ finitely axiomatisable?

2 Definitions

A structure $\mathcal{M} = (M, \cdot, ;, \mathbf{1})$ is called a *lower-semilattice ordered monoid* if the following axioms hold:

- (M, \cdot) is a meet-semilattice,
- $(M,;,\mathbf{1})$ is a monoid,
- $(\mathbf{1} \cdot x); (\mathbf{1} \cdot y) = \mathbf{1} \cdot x \cdot y,$
- $(\mathbf{1} \cdot x); (y \cdot z) = (\mathbf{1} \cdot x); y \cdot z,$
- $(x \cdot y)$; $(\mathbf{1} \cdot z) = x \cdot y$; $(\mathbf{1} \cdot z)$.

LSMod is the class (variety) of all lower-semilattice ordered monoids.

A lower-semilattice ordered monoid \mathcal{M} is representable if there exists a map $f: \mathcal{M} \to 2^X$ for some $X \neq \emptyset$ such that:

- \bullet f is one-to-one
- f(a;b) = f(a)|f(b)
- $f(1) = \mathbf{Id}$
- $f(a \cdot b) = f(a) \cap f(b)$

 $\mathbf{R}(\cdot,;,\mathbf{1})$ is the class of all representable lower-semilattice ordered monoids

2.1 Stone-style representation for lower-semilattices

Let \mathcal{L} be a lower semilattice.

A subset $F \subseteq \mathcal{F}(\omega)$ is a filter if F is a downward closed meet-subsemilattice. F is principal if there is some $a \in F$ such that $F = \uparrow a$. Let $A \subseteq \mathcal{F}(\omega)$, then $\langle A \rangle = \cup_{a \in A} \uparrow a$, the filter generated by F.

A subset $I \subseteq \mathcal{L}$ is an *ideal* if it is upward closed and updirected, that is, $a, b \in I$ implies there exists some c such that $a, b \leq c$. It is known that F is a prime filter iff $L \setminus F$ is a prime ideal.

Theorem 1. Let \mathcal{L} be a lower semilattice. Then $\mathcal{L} \hookrightarrow (2^{\operatorname{Spec}(\mathcal{L})})$ whenever \mathcal{L} is distributive.

2.2 Finite axiomatisability

```
Theorem 2. LSMod = V(R(\cdot, ; 1)).
```

The right-to-left inclusion is obvious. To show the left-to-right inclusion, one needs to show that the free lower-semilattice ordered monoid with ω generators $\mathcal{F}(\omega)$ is representable.

A network is a structure $\mathcal{N}=(V,E,l)$, where V is a set of vertices, E is a set of edges and $l:E\to 2^{\mathcal{F}(\omega)}$ is a labelling function with the following data:

- Each l(x, y) is a filter,
- $l(x, y); l(y, z) \subseteq l(y, z),$
- $\mathbf{1}' \in l(x, y)$ implies x = y,

•

We define a back-and-forth representability game $\mathcal{G}_{\omega}(\mathcal{F}(\omega))$ with two players \forall and \exists .

3 The distributive lattice case

Theorem 3. Let \mathcal{L} be a distributive lattice, then $\mathcal{L} \hookrightarrow 2^{\operatorname{Spec}(\mathcal{L})}$.

Given a distributive-lattice ordered monoid \mathcal{M} , its canonical extension is a structure $\mathcal{M}_+ = (\operatorname{Spec}(\mathcal{M}), \subseteq, R, E)$, where

•

•

•

Definition 1. Join-irreducibles...

TODO: complete representation vs atomic representation vs representations via join-irreducibles

TODO: Birkhoff representation

TODO: Raney representation

Theorem 4. $(\mathcal{F}_{\omega})_{+}^{+}$ is completely representable.

References

- [BJ11] Guram Bezhanishvili and Ramon Jansana. Priestley style duality for distributive meet-semilattices. *Studia Logica*, 98:83–122, 2011.
- [CG20] Sergio A Celani and Luciano J González. A categorical duality for semilattices and lattices. *Applied Categorical Structures*, 28:853–875, 2020.
- [Mik17] Szabolcs Mikulas. Ordered monoids: Languages and relations. $arXiv\ preprint\ arXiv:1704.01391,\ 2017.$