

Descenso del gradiente

Para verificar que el sistema "Aprende", podemos medir cuánto se equivoca en cada predicción e ir corrigiendo

Habitaciones

Habitaciones

El error de un punto será la diferencia entre el valor real y el valor predicho

El error total será la suma de la media de esos errores

	Predicción	Valor Real	Error (distancia)
Valor 1:	4	5	1
Valor 2:	5	4	1

Error cuadrático medio

Matemáticamente

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

La tarea será encontrar el valor mínimo de esa función, para minimizar el error

Vamos a llamarlo **Función de coste**

Para encontrar los mínimos de una función, se debe igualar a 0 su derivada

$$f'(x) = 0$$

En varias variables se deben calcular las derivadas con respecto a cada variable (Derivadas parciales)

$abla \mathsf{f}$

Para esto se usa el **gradiente**, el cual indica la dirección y magnitud en que deben ajustarse los pesos para minimizar el error.

Se calcula **El Gradiente** y se mueve el la dirección contraria y se repite hasta que se llegue cerca a un mínimo

Ejemplo interactivo

Backpropagation

Es un algoritmo para ajustar los pesos de las conexiones (w) y (b).

Funciona mediante la propagación hacia atrás del error, desde la salida hasta las entradas.

Durante este proceso, se calcula el gradiente de la función de pérdida **respecto a cada peso**, lo que permite actualizar los pesos en la dirección que reduce el error. En PyTorch es Backward()

En resumen...

El error cuadrático medio es una medida que calcula el promedio de los cuadrados de las diferencias entre las predicciones de un modelo y los valores reales, indicando qué tan precisas son las predicciones.

El descenso del gradiente es un método de optimización que sirve para minimizar la función de coste.

