Logik

Nikita Emanuel John Fehér 3793479, Lennox Heimann 3776050 Übungsleiter: Maurice Funk

17. Mai 2024

Hausaufgabe 4

Gegeben ist die aussagenlogische Formel

$$(x \wedge y) \wedge (x \wedge y \rightarrow \neg x).$$

Geben Sie eine erfüllbarkeitsäquivalente aussagenlogische Formel in konjunktiver Normalform an. Nutzen Sie dazu die Tseitintransformation aus der Vorlesung. Geben Sie alle Zwischenschritte an.

- 1) x_1 für $(x \wedge y)$ x_2 für $\neg x$ x_3 für $x \wedge y \rightarrow \neg x$ x_4 für $(x \wedge y) \wedge (x \wedge y \rightarrow \neg x)$
- 2) $x_1 \leftrightarrow (x \land y)$ $x_2 \leftrightarrow \neg x$ $x_3 \leftrightarrow x_1 \rightarrow x_2$ $x_4 \leftrightarrow x_1 \land x_3$
- 3) $x_4 \wedge (x_1 \leftrightarrow (x \wedge y)) \wedge (x_2 \leftrightarrow \neg x) \wedge (x_3 \leftrightarrow x_1 \rightarrow x_2) \wedge (x_4 \leftrightarrow x_1 \wedge x_3)$
- 4) $x_4 \wedge ((x \vee y \vee \neg x_1) \wedge (x \vee \neg y \vee \neg z) \wedge (\neg x \vee y \vee \neg x_1) \wedge (\neg x \vee \neg y \vee x_1)) \wedge ((x_2 \vee \neg \neg x) \wedge (\neg x_2 \vee \neg x)) \wedge ((x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3)) \wedge ((x_1 \vee x_3 \vee \neg x_4) \wedge (x_1 \vee \neg x_3 \vee \neg x_4) \wedge (\neg x_1 \vee x_3 \vee \neg x_4) \wedge (\neg x_1 \vee x_3 \vee x_4))$

Hausaufgabe 5

Gegeben sind folgende Horn-Formeln:

```
\varphi_1 = (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_3 \lor x_4 \lor \neg x_1) \land (x_1 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5) \land x_2,
\varphi_2 = (\neg x_3 \lor \neg x_1 \lor \neg x_2) \land x_1 \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land x_2.
```

Bestimmen Sie, ob die Formeln φ_1, φ_2 erfüllbar sind. Nutzen Sie dazu den Markierungsalgorithmus aus der Vorlesung. Geben Sie alle Zwischenschritte und (falls möglich) ein minimales Modell an.

```
 \varphi_1 \colon (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_2 \\ (\neg x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_3 \vee x_4 \vee \neg x_1) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_4 \vee \neg x_5) \wedge x_3 \\ (\neg x_1 \vee \neg x_
```

Damit ist das minimale Modell $\{x_1, x_2, x_3, x_4\}$

 φ_2 :

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land x_1 \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land x_1 \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor x_4 \lor \neg x_2) \land (\neg x_4 \lor \neg x_5 \lor x_3) \land (x_5 \lor \neg x_1 \lor \neg x_4) \land \underline{x_2}$$

$$(\neg x_3 \lor \neg x_1 \lor \neg x_2) \land \underline{x_1} \land (\neg x_1 \lor$$

Da alle Variablen in einem Constraint markiert sind $(\neg \underline{x_3} \lor \neg \underline{x_1} \lor \neg \underline{x_2})$ ist die Formel nicht erfüllbar.

Hausaufgabe 6

Gegeben sind folgende aussagenlogische Formeln:

 $\varphi_1 = (x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_2) \land (x_1 \lor \neg x_2),$

 $\varphi_2 = (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_2 \lor x_3) \land (x_1 \lor x_4) \land (\neg x_2 \lor \neg x_4) \land (\neg x_1 \lor \neg x_3).$ Beweisen Sie, dass die aussagenlogischen Formeln φ_1, φ_2 unerfüllbar sind. Geben Sie dazu jeweils einen Resolutionsbeweis in grafischer Form (wie auf Folie 99 im ersten Foliensatz) an, der die leere Klausel \square ableitet.

 φ_2 :

Hausaufgabe 7

Geben Sie an welche der folgenden Aussagen wahr oder falsch sind. Begründen Sie ihre Antworten in je einem Satz.

Für alle Belegungen V_1, V_2, V_3 (dargestellt als Mengen von Variablen) und Horn-Formeln φ_1, φ_2 gilt:

- (a) Falls V_1 minimales Modell von φ_1 und φ_2 ist, so ist V_1 minimales Modell von $\varphi_1 \wedge \varphi_2$.
- (b) Falls V_1 minimales Modell von φ_1 ist und $V_2 \subseteq V_1$, so gilt $V_2 = \neg \varphi_1$.
- (c) Falls $V_1 = \varphi_1, V_3 = \varphi_1$ und $V_1 \subseteq V_2 \subseteq V_3$, so gilt $V_2 = \varphi_1$.
- (a) Wahr. Die Belegung V_1 erfüllt φ_1 und φ_2 jeweils, damit ist auch die Konjunktion $\varphi_1 \wedge \varphi_2$ erfüllt, V_1 ist also ein Modell von $\varphi_1 \wedge \varphi_2$. Weiterhin ist V_1 ein minimales Modell von φ_1 , wenn wir also eine Variable aus V_1 entfernen ist φ_1 nicht mehr erfüllt, damit ist auch die Konjunktion nicht mehr erfüllt, damit ist gezeigt, dass V_1 ein minimales Modell von $\varphi_1 \wedge \varphi_2$ ist.
- (b) Wahr. V_2 ist als echte Teilmenge eines minimalen Modells von φ_1 gerade kein Modell von φ_1 . Somit wertet φ_1 mit der Belegung V_2 zu 0 aus, damit wertet $\neg \varphi_1$, also $\neg 0$ zu 1 aus. Entsprechend ist V_2 ein Modell von $\neg \varphi_1$.
- (c) Wahr. V_2 ist eine Obermenge von V_1 , daher besitzt es alle Variablen eines minimalen Modells. Weiterhin sind V_1 und V_2 Untermengen von V_3 , da V_3 ein Modell ist, kann es keine Variablen enthaelten, die V_1 kein Modell machen würden, selbiges geht nach gleicher Argumentation auch für V_2 . Somit ist V_2 ein Modell von φ_1 .