

Bayesian Quantile Regression

Tyler Bagwell, Meredith Kruse, Kevin McCoy

Department of Statistics, Rice University

November 21st, 2023

Table of Contents

Standard Quantile Regression Background Data Simulation + Frequentist Comparison Real Data Example

2 Bayesian Quantile Regression for Longitudinal Data Background Metropolis Hastings

Section 1

Standard Quantile Regression

What is Quantile Regression?

As opposed least squares regression which estimates conditional mean functions, quantile regression focuses on estimating families of conditional quantile functions.

$$\mathbb{E}[y_i|\mathbf{x}_i] = \mathbf{x}_i^T \boldsymbol{\beta}$$
$$q_{\tau}(y_i|\mathbf{x}_i) = \mathbf{x}_i^T \boldsymbol{\beta}(\tau)$$

traditional regression quantile regression

Notation

- Standard Linear Model: $y_t = \mu(\mathbf{x_t}) + \epsilon_t$
 - $\mu(\mathbf{x}_t) = \mathbf{x}_t' \boldsymbol{\beta}$
- The τ th regression quantile is defined as any solution, $\hat{\beta}(\tau)$,to the quantile regression minimisation problem:

$$\min_{eta} \sum_{t}
ho_{ au}(y_{t} - \mathbf{x}_{\mathbf{t}}'eta)$$

• Loss Function: $\rho_{\tau}(u) = u(\tau - I(u < 0))$

Asymmetric Laplace Distribution

 U has an asymmetric Laplace distribution if its probability density is given by:

$$f_{\tau}(u) = \tau(1-\tau)\exp\{-\rho_{\tau}(u)\}$$

where $0 < \tau < 1$.

 (Note that location and scale parameters can be incorporated into this density)

Bayesian Quantile Regression

- In the Bayesian framework we are interested in the conditional quantile, $q_{\tau}(y_i|\mathbf{x_i})$, rather than the conditional expectation.
- Given the observations $\mathbf{y} = (y_1, ..., y_n)$, the posterior distribution of $\boldsymbol{\beta}$ is given by:

$$\pi(\boldsymbol{\beta}|\mathbf{y}) \propto L(\mathbf{y}|\boldsymbol{\beta}p(\boldsymbol{\beta}))$$

where $p(\beta)$ is the prior distribution of β and the likelihood is:

$$L(\mathbf{y}|\boldsymbol{\beta}) = p^{n}(1-p)^{n} \exp\{-\sum_{i} \rho_{\tau}(y_{i} - \mathbf{x}_{i}'\boldsymbol{\beta})\}$$

using the location parameter $\mu_i = \mathbf{x}_i' \beta$

 \bullet Note: In the absence of a realistic prior we can use an imporoper uniform prior for all components of β

Data Generation - Normal error

The data was generated via

$$y_i = 5 + x + x^2 + 20\sin(x) + \epsilon$$

 $\epsilon \sim \mathcal{N}(0, 20^2) \implies SNR \approx 2.42$

Data Generation - Normal Error

The data was generated via

$$y_i = 5 + x + x^2 + 20\sin(x) + \epsilon$$

 $\epsilon \sim \mathcal{N}(0, 20^2) \implies SNR \approx 3.63$

Bayesian vs Frequentist - Normal error

Figure: (a) Frequentist QR. (b) Bayesian QR.

10 / 30

Quantile Credible Intervals - Normal error

Figure: 0.05, 0.95 Quantiles and their 95% Credible Interval

Scatterplot and Quantile Regression Fit

Sensitivity Analysis

Figure: 0.05, 0.95 Quantile Regression Lines

Sensitivity Analysis

Figure: 95% Beta Posteriors

MCMC Diagnostics

Figure: Autocorrelation Plots

Data Generation - χ^2 error

The data was generated via

$$y_i = 5 + x + x^2 + 20\sin(x) + 10 * \epsilon$$

 $\epsilon \sim \chi_4^2 \implies SNR \approx 3.06$

Bayesian vs Frequentist - χ^2 error

Figure: (a) Frequentist QR. (b) Bayesian QR.

Quantile Credible Intervals - χ^2 error

Figure: 0.05, 0.95 Quantiles and their 95% Credible Interval

Scatterplot and Quantile Regression Fit

Subsection 3

Real Data Example

World Development Factors and BMI

Figure: Data Composition

^	BMI[, 1] [‡]	Age group	Labour market insecurity[, 1]	Stakeholder engagement for developing regulations[, 1]	Dwellings without basic facilit
1	-1.147033255	18-19	-0.43110631	1.141138822	
2	-1.904771749	18-19	-0.62165053	-1.508899200	-0
3	-1.509479344	18-19	-0.59783251	-0.183880189	-0
4	-1.471243637	18-19	NA	0.194696671	0
5	-1.276634097	18-19	-0.26438011	1.519715682	-0
6	-0.923220259	18-19	0.49779679	-1.508899200	0
7	-1.560517393	18-19	NA	-1.319610770	1
8	-1.105922375	18-19	NA	-0.562457050	-0
9	-2.146164838	18-19	-0.62165053	-0.941033910	-0
10	-1.786361680	18-19	-0.09765392	-0.183880189	-0
11	-1.816586709	18-19	0.11670834	1.141138822	0
12	-1.959147603	18-19	-0.64546856	0.194696671	-0
13	-2.160005883	18-19	-0.43110631	0.005408241	-0
14	-1.610007698	18-19	-0.83601279	-0.562457050	-0
15	-1.767856834	18-19	3.99904693	-0.562457050	-0
16	-1.808632729	18-19	-0.26438011	-1.698187631	-0
17	-1.519427236	18-19	-0.93128490	0.005408241	-0
18	-1.213053798	18-19	-0.55019645	-1.508899200	-0
19	-1.465434868	18-19	-0.07383589	0.762561962	
20	-2.121626478	18-19	0.87888524	0.762561962	-0
21	-2.478171094	18-19	-0.52637842	-1.319610770	0
22	-2.293674383	18-19	0.33107059	0.194696671	0
23	-2.174829783	18-19	NA	0.573273531	0
24	-1.898703462	18-19	-0.64546856	-0.751745480	-0
25	-1.010575245	18-19	-0.21674406	2.087580973	2
				←□ → ←□ →	← 분 ト ← 분 ト → 분

World Development Factors and BMI

Figure: Beta Posteriors Over Various Quantiles

Section 2

Bayesian Quantile Regression for Longitudinal Data

What is Longitudinal Data?

- Data characterized by repeated measurements on the same subject over time → introduces within-subject dependence/correlation
 - For example: clinical trials, epidemiological studies, etc.
- Q: How to handle?
 - A: Adding random effects to your model can account for over dispersion caused by unobserved heterogeneity or for correlation in longitudinal data.
- Next: Extend the ordinary Bayesian quantile regression model from above by introducing two linear mixed-effects Bayesian quantile regression models based on work by Luo et al.

Hierarchical Bayesian Quantile Regression Model

Linear mixed-effects quantile function of the response:

$$Q_{y_{ij}}(\boldsymbol{\tau}|\mathbf{x}_{ij},\alpha_{i}) = \mathbf{x}_{ij}^{\mathsf{T}}\boldsymbol{\beta} + \mathbf{z}_{ij}^{\mathsf{T}}\alpha_{i},$$

where $Q_{y_{ij}}(\cdot) \equiv F_{y_i}^{-1}(\cdot)$ is the inverse of the cumulative distribution function of y_{ii} conditional on the covariates.

- y_{ij} : response of *i*th individual measured at time *j*.
- General hierarchical model

$$egin{aligned} egin{aligned} egin{aligned} eta_{ij} &\sim eta L D(oldsymbol{x_{ij}^T}eta + oldsymbol{z_{ij}^T}oldsymbol{lpha_i}, \sigma, au) \ eta &\sim \pi(oldsymbol{eta}) \ oldsymbol{lpha}_i | oldsymbol{\Sigma} &\sim f(oldsymbol{lpha_i} | oldsymbol{\Sigma}) \ oldsymbol{\Sigma} &\sim \pi(oldsymbol{\Sigma}) \ \sigma &\sim \pi(\sigma) \end{aligned}$$

Two Proposed Models

Need to compute: $\pi(\beta, \sigma, \Sigma, \alpha|\mathbf{y}) \propto f(\mathbf{y}, \alpha|\beta, \sigma, \Sigma)\pi(\beta)\pi(\sigma)\pi(\Sigma)$, but the posterior densities of both the fixed and random effect parameters are very complicated.

Luo et al. propose two models:

- **1 BQRMH**: ME Metropolis-Hastings Bayesian Quantile Regression
 - Draw posterior samples of β and α via MH, all other parameters can be sampled from well known distributions.
 - Con: Must tune parameters of the proposal distributions to attain decent acceptance rates. Different for every value of $\tau!$
- **2 BQRGS**: ME Bayesian Quantile Regression Gibbs Sampler.
 - Transforms the likelihood of y from ALD into a MVN with clever manipulations → posteriors are easier to derive with conjugate priors.
 - Plus: Do not need to deal with any tuning parameters!

Next, we coded up the two algorithms.

Model Comparisons via Simulated Mixed-effects Data

We compare the performance of three Bayesian QR models via a simulated simple linear mixed-effects model.

- 1 OBQR: Ordinary Bayesian Quantile Regression
- 2 BQRMH: ME Metropolis-Hastings Bayesian Quantile Regression
- **3 BQRGS**: ME Bayesian Quantile Regression Gibbs Sampler.

Use the following simple linear mixed-effects model to generate the data:

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \alpha_{i0} + \alpha_{i1} x_{ij} + \epsilon_{ij}, \quad i = 1, \dots, 20, \ j = 1, \dots, 5,$$

where $x_{ij} \sim U(0,1)$, $\boldsymbol{\beta} = (\beta_0, \beta_1)^T = (1,5)^T$, $\boldsymbol{\alpha}_i = (\alpha_0, \alpha_1)^T \sim N_2(\boldsymbol{0}, \mathbb{I}_2)$, and $\epsilon_{ij} \sim N(0,1)$. Assume weak prior information on $\boldsymbol{\beta}$:

$$\boldsymbol{\beta} \sim \mathsf{N}_2(\mathbf{0}, 100\mathbb{I}_2).$$

We investigate five different quantiles $\tau = (0.10, 0.25, 0.50, 0.75, 0.90)$.

A Simulated Dataset

 ${\tt example_dataset.png}$

Model Diagnostics

For a single simulated dataset with 5000 sample draws for au=0.50.

trace_ACF.png

Three Algorithms and Their Parameter Estimation

• Obtained via 100 simulated datasets with 5000 sample draws (500 burn-in) for $\tau \in \{0.10, 0.25, 0.50, 0.75, 0.90\}$ for each model.

bias_MSE.png

Longitudinal Studies with Missing Data

A final (third) model: **penalized model** with applications to longitudinal studies with missing data. Want to minimize:

$$\sum_{i=1}^{n} \sum_{j \in J_{obs}} \rho_{\tau} \left(y_{ij} - \boldsymbol{x}_{ij}^{T} \boldsymbol{\beta} - \boldsymbol{z}_{ij}^{T} \boldsymbol{\alpha}_{i} \right) + \frac{1}{2} \sum_{i=1}^{n} \boldsymbol{\alpha}_{i}^{T} \boldsymbol{\Lambda}^{-1} \boldsymbol{\alpha}_{i},$$

where Λ is a symmetric matrix \rightarrow can be recast into random-effects model.

- Link missing data process with the longitudinal outcome process assuming they share the same random effects α_i .
- Adds a new dimension to the likelihood: need to account for likelihood of observing or no observing an observation.
- Need to compute transition probabilities $\pi_{ij}^{(\mathcal{O})}$ and $\pi_{ij}^{(\mathcal{M})}.$

References

Y. Yuan and G. Yin, "Bayesian Quantile Regression for Longitudinal Studies with Nonignorable Missing Data," *Biometrics*, vol. 66, pp. 105–114, Mar. 2010.

K. Yu and R. A. Moyeed, "Bayesian quantile regression," 2001.

Y. Luo, H. Lian, and M. Tian, "Bayesian quantile regression for longitudinal data models," *Journal of Statistical Computation and Simulation*, 2012.

M. Fleurbaey, "Beyond gdp: The quest for a measure of social welfare," *Journal of Economic literature*, vol. 47, no. 4, pp. 1029–1075, 2009.

J. Bentham, M. Di Cesare, V. Bllano, L. M. Boddy, et al., "Worldwide trends in children's and adolescents' body mass index, underweight and obesity, in comparison with adults, from 1975 to 2016: a pooled analysis of 2,416 population-based measurement studies with 128.9 million participants," *Lancet*, 2017.