INTELIGÊNCIA ARTIFICIAL

Parte 10

Lógica Fuzzy

Prof. Me. Celso Gallão - 2014

1.1 – Introdução:

• **Lógica** é a ciência que estuda e modela as leis do raciocínio humano.

 A Lógica Proposicional mostra-se como um importante auxílio na automatização do raciocínio, porém é insuficiente para a representação de problemas complexos onde é necessário considerar valores intermediários entre verdadeiro e falso.

1.1 – Introdução:

Lógica Clássica de Aristóteles

a.C.: Princípio da Bivalência

384 a.C. - 322 a.C.

"Tudo deve ser ou não ser..."

— Aristóteles

1.1 – Introdução:

Lógica Clássica de Aristóteles

Elementos *pertencem* <u>ou</u> *não pertencem* a um dado conjunto A em um universo X, ou seja,

$$f_A(x)=1$$
 se e somente se $x \in A$
= 0 se e somente se $x \notin A$

onde $f_A(x)$ é a função característica do conjunto.

1.1 – Introdução:

• **Lógica Booleana** faz uso de váriáveis e constantes formando um conjunto discreto e finito, que unicamente podem assumir dois valores: 1 ou 0, representando Sim ou $N\tilde{a}o$.

$$\mu_A(X) = \begin{cases} 1, & Se \ X \in A \\ 0, & Se \ X \notin A \end{cases}$$

George Boole (1815-1864)

1.1 – Introdução:

• **Lógica Booleana** faz uso de váriáveis e constantes formando um conjunto discreto e finito, que unicamente podem assumir dois valores: 1 ou 0, representando Sim ou $N\tilde{a}o$.

$$\mu_A(x): X \rightarrow \{0,1\}$$

1.1 – Introdução:

 Lógica Fuzzy (nebulosa) é a ciência que estuda e modela o modo aproximado do raciocínio humano. Considera a possibilidade de algo ser e não ser ao mesmo tempo.

1965: Lógica Fuzzy (Zadeh)

"Elementos pertencem a um certo conjunto com diferentes graus de pertinência."

1.1 – Introdução:

 Lógica Fuzzy (nebulosa) é a ciência que estuda e modela o modo aproximado do raciocínio humano. Considera a possibilidade de algo ser e não ser ao mesmo tempo.

Um conjunto fuzzy A em um universo X é definido por uma <u>função</u> de pertinência:

$$\mu_{\mathsf{A}}(x) \colon \mathsf{X} \to [0,1]$$

1.1 – Introdução:

- **Lógica Fuzzy** é uma técnica inteligente que tem como objetivo modelar o modo aproximado de raciocínio, imitando a habilidade humana de tomar decisões em um ambiente de <u>incerteza</u> e <u>imprecisão</u>.
 - Exemplos: Risco de um investimento, limiares de temperatura, maturidade de uma pessoa, intensidade de fluxos, etc.

• Permite que sistemas inteligentes de controle e suporte à decisão lidem com informações imprecisas ou nebulosas.

1.1 – Introdução:

 Exemplo de aplicação: qual é a idade que define se uma pessoa é jovem ou velha?

1.1 – Introdução:

 Exemplo de aplicação: qual é a idade que define se uma pessoa é jovem ou velha?

• Fuzificação: define-se os graus de pertinência:

1.1 – Introdução:

- Lógica Fuzzy é aplicada em problemas onde o conhecimento envolve conceitos subjetivos e intrinsicamente imprecisos, e onde deseja-se obter explicações sobre o resultado do problema.
- **Fuzificação** é o processo de transformar números reais em uma representação *Fuzzy*, com o objetivo de expressá-lo como uma medida de imprecisão.

1.2 – Grau de Pertinência:

• É o **nível de compatibilidade** (incerteza) de um elemento do conjunto com o conceito semântico deste conjunto.

- No contexto da Lógica Fuzzy, o grau de pertinência descreve propriedades que têm valores contínuos, associando as partições desses valores com um conceito semântico.
 - Essas partições podem, e devem, coincidir (overlap) para modelagem da ambiguidade.

1.2 – Grau de Pertinência:

Exemplo de aplicação: Fabiana, com 43 anos, é velha?

1.2 – Grau de Pertinência:

Exemplo de aplicação: Fabiana, com 43 anos, é velha?

1.2 – Grau de Pertinência:

Exemplo de aplicação: Fabiana, com 43 anos, é velha?

Fabiana tem grau de pertinência **0,4** para velho e **0,9** para jovem. Assim, **Fabiana é mais jovem do que velha!**

Fabiana <u>é jovem e velha ao mesmo tempo</u>, porém com graus de pertinência diferentes.

1.2 – Grau de Pertinência:

Exemplo de aplicação: Fabiana, com 43 anos, é velha?
 Cálculo para Fuzzificação:

 $\mu_A(x) = (x - x_1)/(x_2 - x_1)$ **LINEAR CRESCENTE:** graus de pertinência Criança Velho Muito Velho Jovem 0,4 idade 40 20 50 70 10 30 60 80 90

1.2 – Grau de Pertinência:

• Exemplo de aplicação: *Fabiana, com 43 anos, é velha? Cálculo para Fuzzificação:*

1.2 – Grau de Pertinência:

Exemplo de aplicação: Fabiana, com 43 anos, é velha?
 Cálculo para Fuzzificação:

LINEAR DECRESCENTE: $\mu_R(x) = (x_2 - x)/(x_2 - x_1)$ graus de pertinência Criança Velho Muito Velho Joven 0,41667 idade 40 20 50 70 10 30 60 80 90

1.2 - Grau de Pertinência:

• Exemplo de aplicação: *Fabiana, com 43 anos, é velha? Cálculo para Fuzzificação:*

- No contexto da **Probabilidade**, a pertinência explica eventos que ocorrem em um <u>espaço aleatório</u>.
 - É baseada em um espaço de amostras e não em instâncias individuais.
 - Antes de selecionar um elemento de uma certa população sabese as chances do evento ocorrer.
 - Após selecionar o elemento, não existe mais a probabilidade (a incerteza).

- No contexto da Probabilidade:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).
 - 1. Qual a probabilidade e encontrarmos Coca-Cola neste drink?
 - 2. Qual a probabilidade de encontrarmos Run neste drink?
 - 3. Qual a probabilidade de encontrarmos Gelo neste drink?
 - 4. Qual a probabilidade de encontrarmos Guaraná neste drink?

- No contexto da Probabilidade:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).
 - 1. Qual a probabilidade e encontrarmos Coca-Cola neste drink? 50%
 - 2. Qual a probabilidade de encontrarmos Run neste drink? 100%
 - 3. Qual a probabilidade de encontrarmos Gelo neste drink? 100%
 - 4. Qual a probabilidade de encontrarmos Guaraná neste drink? 0%

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy:
 - Exemplo: Para fazer o drink "Cuba Livre" deve-se misturar refrigerante à base de Cola, Run e Gelo, sendo:
 - Refrigerante pode ser Coca-Cola (50ml a 60ml) ou Pepsi-Cola (60ml a 70ml), Run (10ml a 30ml) e Gelo (20ml).

- No contexto da Lógica Fuzzy, o que significa dizer:
 - Gabriela é alta com grau de pertinência 0,85.

- No contexto da Probabilidade, o que significa dizer:
 - Gabriela tem a probabilidade 0,85 de ser alta.

1.2 – Grau de Pertinência:

- No contexto da Lógica Fuzzy, o que significa dizer:
 - Gabriela é alta com grau de pertinência 0,85.

Gabriela é bem compatível com uma pessoa alta, pois possui 0,85 de grau de pertinência para a característica alta.

- No contexto da **Probabilidade**, o que significa dizer:
 - Gabriela tem a probabilidade 0,85 de ser alta.

Não se faz a menor ideia da altura de Gabriela, pois ela pode até ser uma anã, pois ela apenas tem 85% de chance de ser alta.

1 – Lógica Fuzzy

1.3 – Vantagens e Desvantagens:

Vantagens:

- Facilidade de lidar com dados imprecisos.
- Facilita as descrições das regras pelos especialistas.
- Diminuição da quantidade de regras.
- Permite a explicação do raciocínio.

1 – Lógica Fuzzy

1.3 – Vantagens e Desvantagens:

Desvantagens:

- Necessidade de especificar funções de pertinência.
- Necessidade de especialista do domínio.
- Necessidade de conhecimento de dados históricos.

2.1 – Operadores *Fuzzy*:

Dados 2 conjuntos Fuzzy, $A \in B$, temos:

a) União ou Disjunção (OU lógico):

$$\mu_{(A \cup B)}(x) = \mu_{(A+B)}(x) = m\acute{a}ximo \{ \mu_{(A)}(x) , \mu_{(B)}(x) \}$$

2.1 – Operadores *Fuzzy*:

Dados 2 conjuntos Fuzzy, $A \in B$, temos:

b) Interseção ou Conjunção (<u>E</u> lógico):

$$\mu_{(A \cap B)}(x) = \mu_{(A.B)}(x) = minimo \{ \mu_{(A)}(x) , \mu_{(B)}(x) \}$$

2.1 – Operadores *Fuzzy*:

Dados 2 conjuntos Fuzzy, $A \in B$, temos:

c) Negação ou Complemento (Não lógico):

$$\neg \mu_{(A)}(x) = 1 - \mu_{(A)}(x)$$

2.1 – Operadores Fuzzy:

Dados 2 conjuntos Fuzzy, $A \in B$, temos:

d) Condicional (Se..então lógico):

$$a \rightarrow b \leftrightarrow \neg a + b$$

$$\mu_{(A \to B)}(x) = m\acute{a}ximo \{ 1 - \mu_{(A)}(x) , \mu_{(B)}(x) \}$$

Ou ainda, aplicando De Morgan:

$$a \rightarrow b \leftrightarrow \neg (a \cdot \neg b)$$

$$\mu_{(A \to B)}(x) = 1 - minimo \{ \mu_{(A)}(x) , 1 - \mu_{(B)}(x) \}$$

2.1 – Operadores *Fuzzy*:

Dados 2 conjuntos Fuzzy, $A \in B$, temos:

e) Ou Exclusivo (Xor):

$$a \oplus b \to \neg (a \leftrightarrow b)$$

$$a \oplus b \to \neg ((a \to b) \land (a \leftarrow b))$$

$$\mu_{(A \oplus B)}(x) = 1 - (\min \{ \max \{ 1 - \mu_{(A)}(x) , \mu_{(B)}(x) \}, \\ \max \{ 1 - \mu_{(B)}(x) , \mu_{(A)}(x) \})$$

2.2 – Operações com Conjuntos *Fuzzy*:

Modificadores Linguísticos:

Utilizados para representar conceitos causadores de ambiguidades:

a) Muito:
$$\mu^2_{(A)}(x)$$

b) Pouco:
$$\sqrt[2]{\mu_{(A)}(x)}$$

c) Extremamente:
$$\mu^{3}_{(A)}(x)$$

d) Mais ou Menos:
$$\sqrt[3]{\mu_{(A)}(x)}$$

2.2 – Operações com Conjuntos *Fuzzy*:

Modificadores Linguísticos:

Exemplo 1:

2.2 – Operações com Conjuntos *Fuzzy*:

Modificadores Linguísticos:

Exemplo 2:

2.2 – Operações com Conjuntos *Fuzzy*:

Variáveis Linguísticas:

- Permitem que a linguagem da modelagem *Fuzzy* expresse a semântica usada por especialistas.
- São os qualificadores.
- Encapsula conceitos imprecisos numa forma computacionalmente eficiente.
- Têm a função de fornecer uma maneira sistemática para a caracterização aproximada de fenômenos complexos ou mal definidos. São os nomes dos conjuntos *Fuzzy*.

2.2 – Operações com Conjuntos *Fuzzy*:

Variáveis Linguísticas:

Por exemplo:

SE temperatura É NÃO MUITO alta ENTÃO risco É reduzido um POUCO.

Ex.: Temperatura de um processo

2.3 – Formato de Conjuntos Fuzzy:

a) Linear Crescente e Decrescente:

São os tipos mais simples.

2.3 – Formato de Conjuntos *Fuzzy*:

b) Triangular:

Caso especial, derivado do tipo linear.

$$Tri(x,a,b,c) = \begin{cases} 0 & x \le a \\ 1 - (b-x)/(b-a) & a < x \le b \\ (c-x)/(c-b) & b < x \le c \\ 0 & x > c \end{cases}$$

2.3 – Formato de Conjuntos *Fuzzy*:

c) Formato S:

Equação Quadrática.

$$S(x,a,b) = \begin{cases} 0 & x \le a - b \\ [x - (a - b)]^2 / 2b^2 & a - b < x \le a \\ 1 - [(a + b) - x]^2 / 2b^2 & a < x \le a + b \\ 1 & x > a + b \end{cases}$$

2.3 – Formato de Conjuntos *Fuzzy*:

d) Formato Z:

Complemento do Formato S: Z(x,a,b) = 1 - S(x,a,b)

$$Z(x,a,b) = \begin{cases} 1 & x \le a-b \\ 1-[x-(a-b)]^2/2b^2 & a-b < x \le a \\ [(a+b)-x]^2/2b^2 & a < x \le a+b \\ 0 & x > a+b \end{cases}$$

2.3 – Formato de Conjuntos *Fuzzy*:

e) Formato Pi:

Junção das curvas S e Z.

2.3 – Formato de Conjuntos *Fuzzy*:

f) Gaussiana:

Simétrica, radial e unimodal.

2.4 – Defuzificação:

- Transforma o valor fuzzy em um valor relativo à realidade.
- Deve ser também especificado por especialista do domínio.
- Principais modelos de defuzificação:
 - Método do Critério Máximo
 - Método da Média dos Máximos
 - Método do Centro Geométrico

3.1 – Aplicando Operadores e Formatos:

Exemplo 1: Quem é alto e de meia idade?

Nome	Idade	Altura	
Abel	36	1.70	
Marcelo	58	1.75	
Carlos	64	1.65	
João	32	1.78	
Pedro	40	1.77	
Tiago	22	1.60	
Felipe	47	1.73	
André	25	1.75	

3.1 – Aplicando Operadores e Formatos:

Exemplo 1: Quem é alto e de meia idade?

Nome	Idade	μ _{MI} (x)	Altura
Abel	36	0.83	1.70
Marcelo	58	0.00	1.75
Carlos	64	0.00	1.65
João	32	0.47	1.78
Pedro	40	1.00	1.77
Tiago	22	0.00	1.60
Felipe	47	0.74	1.73
André	25	0.10	1.75

3.1 – Aplicando Operadores e Formatos:

Exemplo 1: Quem é alto e de meia idade?

Nome	Idade	$\mu_{MI}(x)$	Altura	μ _{ALTO} (X)
Abel	36	0.83	1.70	0.44
Marcelo	58	0.00	1.75	0.64
Carlos	64	0.00	1.65	0.23
João	32	0.47	1.78	0.70
Pedro	40	1.00	1.77	0.69
Tiago	22	0.00	1.60	0.13
Felipe	47	0.74	1.73	0.62
André	25	0.10	1.75	0.64

3.1 – Aplicando Operadores e Formatos:

Exemplo 1: Quem é alto **E** de meia idade?

Nome	Idade	μ _{MI} (x)	Altura	μ _{ALTO} (X)
Abel	36	0.83	1.70	0.44
Marcelo	58	0.00	1.75	0.64
Carlos	64	0.00	1.65	0.23
João	32	0.47	1.78	0.70
Pedro	40	1.00	1.77	0.69
Tiago	22	0.00	1.60	0.13
Felipe	47	0.74	1.73	0.62
André	25	0.10	1.75	0.64

$$\mu_{(A \cap B)}(x) = minimo \{ \mu_{(MeiaIdade)}(x) , \mu_{(Alto)}(x) \}$$

3.1 – Aplicando Operadores e Formatos:

Exemplo 1: Quem é alto **E** de meia idade?

Nome	Idade	μ _{MI} (x)	Altura	μ _{ALTO} (X)	Fuzzy
Abel	36	0.83	1.70	0.44	0.44
Marcelo	58	0.00	1.75	0.64	0.00
Carlos	64	0.00	1.65	0.23	0.00
João	32	0.47	1.78	0.70	0.47
Pedro	40	1.00	1.77	0.69	0.69
Tiago	22	0.00	1.60	0.13	0.00
Felipe	47	0.74	1.73	0.62	0.62
André	25	0.10	1.75	0.64	0.10

$$\mu_{(A \cap B)}(x) = minimo \{ \mu_{(MeiaIdade)}(x) , \mu_{(Alto)}(x) \}$$

3.1 – Aplicando Operadores e Formatos:

Exemplo 1: Quem é alto **E** de meia idade?

Nome	Idade	μ _{MI} (x)	Altura	μ _{ALTO} (X)	Fuzzy
Abel	36	0.83	1.70	0.44	0.44
Marcelo	58	0.00	1.75	0.64	0.00
Carlos	64	0.00	1.65	0.23	0.00
João	32	0.47	1.78	0.70	0.47
Pedro	40	1.00	1.77	0.69	0.69
Tiago	22	0.00	1.60	0.13	0.00
Felipe	47	0.74	1.73	0.62	0.62
André	25	0.10	1.75	0.64	0.10

Resposta: Abel, João, Pedro, Felipe e André.

3.1 – Aplicando Operadores e Formatos:

Exemplo 2: Quem é alto OU de meia idade?

Nome	Idade	μ _{MI} (x)	Altura	μ _{ALTO} (x)
Abel	36	0.83	1.70	0.44
Marcelo	58	0.00	1.75	0.64
Carlos	64	0.00	1.65	0.23
João	32	0.47	1.78	0.70
Pedro	40	1.00	1.77	0.69
Tiago	22	0.00	1.60	0.13
Felipe	47	0.74	1.73	0.62
André	25	0.10	1.75	0.64

3.1 – Aplicando Operadores e Formatos:

Exemplo 2: Quem é alto <u>OU</u> de meia idade?

Nome	Idade	μ _{MI} (x)	Altura	μ _{ALTO} (x)
Abel	36	0.83	1.70	0.44
Marcelo	58	0.00	1.75	0.64
Carlos	64	0.00	1.65	0.23
João	32	0.47	1.78	0.70
Pedro	40	1.00	1.77	0.69
Tiago	22	0.00	1.60	0.13
Felipe	47	0.74	1.73	0.62
André	25	0.10	1.75	0.64

$$\mu_{(A \cup B)}(x) = m\acute{a}ximo\{ \mu_{(MeiaIdade)}(x) , \mu_{(Alto)}(x) \}$$

3.1 – Aplicando Operadores e Formatos:

Exemplo 2: Quem é alto OU de meia idade?

Nome	Idade	μ _{MI} (x)	Altura	$\mu_{ALTO}(x)$	Fuzzy
Abel	36	0.83	1.70	0.44	0.83
Marcelo	58	0.00	1.75	0.64	0.64
Carlos	64	0.00	1.65	0.23	0.23
João	32	0.47	1.78	0.70	0.70
Pedro	40	1.00	1.77	0.69	1.00
Tiago	22	0.00	1.60	0.13	0.13
Felipe	47	0.74	1.73	0.62	0.74
André	25	0.10	1.75	0.64	0.64

$$\mu_{(A \cup B)}(x) = m\acute{a}ximo\{ \mu_{(MeiaIdade)}(x) , \mu_{(Alto)}(x) \}$$

3.1 – Aplicando Operadores e Formatos:

Exemplo 2: Quem é alto <u>OU</u> de meia idade?

Nome	Idade	μ _{MI} (x)	Altura	μ _{ALTO} (x)	Fuzzy	•
Abel	36	0.83	1.70	0.44	0.83	←
Marcelo	58	0.00	1.75	0.64	0.64	←
Carlos	64	0.00	1.65	0.23	0.23	←
João	32	0.47	1.78	0.70	0.70	←
Pedro	40	1.00	1.77	0.69	1.00	←
Tiago	22	0.00	1.60	0.13	0.13	←
Felipe	47	0.74	1.73	0.62	0.74	←
André	25	0.10	1.75	0.64	0.64	←

Resposta: Todos.

3.1 – Composição por Produto Cartesiano:

- Para encontrar respostas para relações entre conjuntos Fuzzy, é bastante usual utilizar a composição por produto cartesiano entre matrizes.
- Efetua-se a multiplicação entre as matrizes relacionais, substituindo cada multiplicação pela operação mínimo e cada adição pela operação máximo.

$$\mu_{(A \circ B)}(a, c) = m\acute{a}ximo \{m\'{i}nimo \{ \mu_{(A)}(a,b) , \mu_{(B)}(b,c) \} \}$$

3.2 – Composição por Produto Cartesiano:

Exemplo 1: Qual a relação entre Ventilador, Casaco e Guarda-chuva, com as estações do ano?

R1(U1,U2)	Frio	Calor
Primavera	0,3	0,6
Verão	0,1	1
Outono	0,7	0,5
Inverno	1	0,2

R2(U2,U3)	Ventilador	Casaco	Guarda-chuva
Frio	0,1	0,9	0,5
Calor	1	0,2	0,7

$$\begin{bmatrix}
0,3 & 0,6 \\
0,1 & 1 \\
0,7 & 0,5 \\
1 & 0,2
\end{bmatrix}$$
o
$$\begin{bmatrix}
\mathbf{R2} \\
0,1 & 0,9 & 0,5 \\
1 & 0,2 & 0,7
\end{bmatrix}$$
=
$$\begin{bmatrix}
0,63 & ? & ? \\
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{cases}$$
? ? ? ?

Na matemática clássica, temos:

$$A \circ B[1,1] = a[1,1].b[1,1] + a[1,2].b[2,1] = 0.03 + 0.6 = 0.63$$

3.2 – Composição por Produto Cartesiano:

Exemplo 1: Qual a relação entre Ventilador, Casaco e Guarda-chuva, com as estações do ano?

R1(U1,U2)	Frio	Calor
Primavera	0,3	0,6
Verão	0,1	1
Outono	0,7	0,5
Inverno	1	0,2

R2(U2,U3)	Ventilador	Casaco	Guarda-chuva
Frio	0,1	0,9	0,5
Calor	1	0,2	0,7

$$\begin{bmatrix}
0,3 & 0,6 \\
0,1 & 1 \\
0,7 & 0,5 \\
1 & 0,2
\end{bmatrix}$$
o
$$\begin{bmatrix}
R2 \\
0,1 & 0,9 & 0,5 \\
1 & 0,2 & 0,7
\end{bmatrix}$$
=
$$\begin{bmatrix}
0,6 & ? & ? \\
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{aligned}$$
? ? ? ?

Na <u>lógica fuzzy</u>, temos:

 $\mu_{(AoB)}[1,1] = m\acute{a}ximo\{m\'{i}nimo\{(0.3,0.1), m\'{i}nimo\{(0.6,1)\}\} = 0.6$

3.2 – Composição por Produto Cartesiano:

Exemplo 1: Qual a relação entre Ventilador, Casaco e Guarda-chuva, com as estações do ano?

R1(U1,U2)	Frio	Calor
Primavera	0,3	0,6
Verão	0,1	1
Outono	0,7	0,5
Inverno	1	0,2

R2(U2,U3)	Ventilador	Casaco	Guarda-chuva
Frio	0,1	0,9	0,5
Calor	1	0,2	0,7

$$\begin{bmatrix}
0,3 & 0,6 \\
0,1 & 1 \\
0,7 & 0,5 \\
1 & 0,2
\end{bmatrix}$$
o
$$\begin{bmatrix}
R2 \\
0,1 & 0,9 & 0,5 \\
1 & 0,2 & 0,7
\end{bmatrix}$$
=
$$\begin{bmatrix}
0,6 & 0,3 & ? \\
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{cases}$$
? ? ? ?

Na **<u>lógica fuzzy</u>**, temos:

 $\mu_{(AoB)}[1,2] = m\acute{a}ximo \{m\'{i}nimo \{ (0.3,0.9) , m\'{i}nimo \{ (0.6,0.2) \} \} = 0.3$

3.2 – Composição por Produto Cartesiano:

Exemplo 1: Qual a relação entre Ventilador, Casaco e Guarda-chuva, com as estações do ano?

R1(U1,U2)	Frio	Calor
Primavera	0,3	0,6
Verão	0,1	1
Outono	0,7	0,5
Inverno	1	0,2

R2(U2,U3)	Ventilador	Casaco	Guarda-chuva
Frio	0,1	0,9	0,5
Calor	1	0,2	0,7

$$\begin{bmatrix} 0,3 & 0,6 \\ 0,1 & 1 \\ 0,7 & 0,5 \\ 1 & 0,2 \end{bmatrix} \circ \begin{bmatrix} \mathbf{R2} \\ 0,1 & 0,9 & 0,5 \\ 1 & 0,2 & 0,7 \end{bmatrix} = \begin{bmatrix} 0,6 & 0,3 & 0,6 \\ 1 & 0,2 & 0,7 \\ 0,5 & 0,7 & 0,5 \\ 0,2 & 0,9 & 0,5 \end{bmatrix}$$

3.2 – Composição por Produto Cartesiano:

Exemplo 1: Qual a relação entre Ventilador, Casaco e Guarda-chuva, com as estações do ano?

R1(U1,U2)	Frio	Calor
Primavera	0,3	0,6
Verão	0,1	1
Outono	0,7	0,5
Inverno	1	0,2

R2(U2,U3)	Ventilador	Casaco	Guarda-chuva
Frio	0,1	0,9	0,5
Calor	1	0,2	0,7

_	R3	_
0,6	0,3	0,6
1	0,2	0,7
0,5	0,7	0,5
0,2	0,9	0,5

R3(U1,U3)	Ventilador	Casaco	Guarda-chuva
Primavera	0,6	0,3	0,6
Verão	1	0,2	0,7
Outono	0,5	0,7	0,5
Inverno	0,2	0,9	0,5

3.3 – Composição por Produto Cartesiano (Tabelas):

Exemplo 2: Qual jóquei deve ser contratado?

	P	eso	Al	tura		Piloto	Salá	írio
Tabela 1	Kg	μ(leve)	cm	μ(baixo)	nota	μ(piloto)	R\$/mês	μ(salario)
Gervásio	85	0,1	130	0,9	10	1	20.000,00	0,5
Anestésio	65	0,7	160	0,5	7	0,7	35.000,00	0,8
Pancárdio	50	0,9	157	0,7	5	0,5	12.000,00	0,2
Chulésio	45	1	162	0,4	8	0,8	27.000,00	0,6

Tabela 2	μ(muito_leve)	μ(baixo)	μ(excelente_piloto)	μ(pouco_salário)
Contratar	0,9	0,7	0,5	0,8

Tabela 1: graus de pertinência em cada componente, de cada jóquei.

Tabela 2: graus de pertinência desejado para a contratação (Regras Fuzzy).

3.3 – Composição por Produto Cartesiano (Tabelas):

Exemplo 2: Qual jóquei deve ser contratado?

	Peso		Altura		Piloto		Salário	
Tabela 1	Kg	μ(leve)	cm	μ(baixo)	nota	μ(piloto)	R\$/mês	μ(salario)
Gervásio	85	0,1	130	0,9	10	1	20.000,00	0,5
Anestésio	65	0,7	160	0,5	7	0,7	35.000,00	0,8
Pancárdio	50	0,9	157	0,7	5	0,5	12.000,00	0,2
Chulésio	45	1	162	0,4	8	0,8	27.000,00	0,6

Tabela 2	μ(muito_leve)	μ(baixo)	μ(excelente_piloto)	μ(pouco_salário)
Contratar	0,9	0,7	0,5	0,8

muito_leve = leve^2 excelente_piloto = piloto^3 pouco_salário = sqrt(salário)

	Peso	Altura	Piloto	Salário
Tabela 3	μ(muito_leve)	μ(baixo)	μ(excelente_piloto)	μ(pouco_salario)
Gervásio	0,01	0,9	1	0,71
Anestésio	0,49	0,5	0,343	0,89
Pancárdio	0,81	0,7	0,125	0,45
Chulésio	1	0,4	0,512	0,77

Tabela 3: graus de pertinência de cada jóquei, adaptado à contratação.

3.3 – Composição por Produto Cartesiano (Tabelas):

Exemplo 2: Qual jóquei deve ser contratado?

$$\mu_{(contratar)}(j\acute{o}quei) = m\acute{a}x \left\{ m\acute{i}n \left\{ \mu_{(peso)}, \mu_{(altura)}, \mu_{(piloto)}, \mu_{(sal\acute{a}rio)} \right\} \right\}$$

Gervásio	Jóquei	Contrato	Min
Peso	0,01	0,90	0,01
Altura	0,90	0,70	0,70
Piloto	1,00	0,50	0,50
Salário	0,71	0,80	0,71
$\mu_{(contratar)} =$		Máx	0,71

Anestésio	Jóquei	Contrato	Min
Peso	0,49	0,90	0,49
Altura	0,50	0,70	0,50
Piloto	0,34	0,50	0,34
Salário	0,89	0,80	0,80
$\mu_{(contratar)} =$		Máx	0,80

Pancário	Jóquei	Contrato	Min
Peso	0,81	0,90	0,81
Altura	0,70	0,70	0,70
Piloto	0,13	0,50	0,13
Salário	0,45	0,80	0,45
$\mu_{(contratar)} =$		Máx	0,81

Piloto Salário	0,51 0,77	0,50 0,80	0,50 0,77
Altura	0,40	0,70	0,40
Peso	1,00	0,90	0,90
Chulésio	Jóquei	Contrato	Min

3.3 – Composição por Produto Cartesiano (Tabelas):

Exemplo 2: Qual jóquei deve ser contratado?

```
\mu_{(contratar)}(j\acute{o}quei) = m\acute{a}x \ \{m\acute{i}n \ \{ \mu_{(peso)}, \mu_{(altura)}, \mu_{(piloto)}, \mu_{(sal\acute{a}rio)} \} \}
\mu_{(contratar)}(Gerv\acute{a}sio) = m\acute{a}x \ \{m\acute{i}n \ \{ 0.01; 0.7; 0.5; 0.71 \} \} = 0.71
\mu_{(contratar)}(Anest\acute{e}sio) = m\acute{a}x \ \{m\acute{i}n \ \{ 0.49; 0.5; 0.34; 0.8 \} \} = 0.8
\mu_{(contratar)}(Panc\acute{a}rio) = m\acute{a}x \ \{m\acute{i}n \ \{ 0.81; 0.7; 0.13; 0.45 \} \} = 0.81
\mu_{(contratar)}(Chul\acute{e}sio) = m\acute{a}x \ \{m\acute{i}n \ \{ 0.9; 0.4; 0.5; 0.77 \} \} = 0.9
```

Deve-se contratar = $m\acute{a}x \{\mu_{(contratar)}(j\acute{o}quei)\} = 0,9 = Chul\acute{e}sio$

"Na medida em que a complexidade de um sistema aumenta, nossa habilidade de fazer afirmações precisas e ainda significativas sobre seu comportamento diminui, até um limiar em que a precisão e a significância (relevância) tornam-se características praticamente exclusivas mutuamente".

[Zadeh, em "O Princípio da Incompatibilidade", 1973]

Bibliografias

- 1. ROSA, João Luis Garcia. **Fundamentos da Inteligência Artificial**. 1ª ed. Rio de Janeiro: LTC, 2011.
- 2. ARTERO, Almir Olivette. **Inteligência Artificial: Teórica e Prática**. 1ª ed. São Paulo: Livraria da Física, 2009.
- 3. SIMÕES, Marcelo Godoy; SHAW, Ian S. **Controle e Modelagem Fuzzy**. 2ª ed. São Paulo: Blusher Fapesp, 2007.
- 4. NASCIMENTO JR., Cairo Lúcio; YONEYAMA, Takashi. Inteligência Artificial em Controle e Automação. 2ª ed. São Paulo: Blusher Fapesp, 2004.

Outras Referências

- 1. THOMAZ, Carlos E. **Inteligência Computacional**. Departamento de Engenharia Elétrica do Centro Universitário da FEI, 2010.
- 2. BARRETO, Guilherme de Alencar. **Redes Neurais Artificiais: Conjuntos Fuzzy e Redes RBF**. Departamento de Engenharia de Teleinformática da Universidade Federal do Ceará, 2008.
- 3. GOMIDE, Fernando. **Sistemas Fuzzy**. DCA-FEEC-Unicamp, http://www.dca.fee.unicamp.br/~gomide/courses/EA072/transp/EA072SistemasFuzz y7.2.pdf