

AASD 4000 Machine Learning - I

Applied Al Solutions Developer Program

Module 8 ML Algorithms - I Vejey Gandyer

Agenda

Model Building Template
Linear Regression
Support Vector Machine
Decision Tree
Random Forest
K-Means

ML Algorithm

What is it?

What is ML Algorithm?

ML Algorithm is a series of steps that is used to learn a mapping function that converts raw data into set of rules.

Top ML Algorithms you should be familiar with

- Linear Regression
- Logistic Regression
- Naïve Bayes
- Gaussian Mixture Models
- Support Vector Machine
- Decision Tree
- Random Forest
- Principal Component Analysis
- K-Means
- XGBoost
- LightGBM

Machine Learning Process

Model Building Template

Linear Regression

Linear Regression

Linear Regression: Straight-line fit to data

$$y = ax + b$$

```
rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
plt.scatter(x, y)
```

Slope: 2 Intercept: -5

Linear Regression

```
from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)
```

```
model.fit(x[:, np.newaxis], y)

xfit = np.linspace(0, 10, 1000)
yfit = model.predict(xfit[:, np.newaxis])

plt.scatter(x, y)
plt.plot(xfit, yfit);
```

```
print("Model slope: ", model.coef_[0])
print("Model intercept:", model.intercept_)
```

Model slope: 2.02720881036 Model intercept: -4.99857708555

Linear Basis Functions

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

$$y(\mathbf{x},\mathbf{w})=w_0+w_1x_1+\cdots+w_Dx_D$$

Polynomial Basis Functions

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \cdots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Gaussian Basis Functions

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

$$\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

Sigmoidal Basis Functions

$$y(\mathbf{x},\mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

Basis Functions

Regularization

Lasso Regression (L₁ Regularization)

$$P = \alpha \sum_{n=1}^{N} |\theta_n|$$

Ridge Regression (L₂ Regularization)

$$P = \alpha \sum_{n=1}^{N} \theta_n^2$$

Bike Traffic Prediction

Dataset: curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-

xm6k/rows.csv?accessType=DOWNLOAD

Weather data: http://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND

Cleaned data: https://github.com/subashgandyer/datasets/blob/main/seattle-bike-data.csv

Steps:

Download the dataset

Explore the dataset

Prepare the dataset

Build the model

Predict on testing data

Report insights

Notebook:

ML01_Linear_Regression_Seattle_Bike.ipynb

Support Vector Machine

SVMs are powerful and flexible class of supervised algorithms

Classification

Regression

Discriminative classifier: Rather than modeling each class, simply find a line or curve or manifold that divides the classes from each other

SVMs are powerful and flexible class of supervised algorithms

Lets draw a decision boundary

Which line to choose?

Margins

Support Vectors

Radial Basis Functions

Non-linear decision boundary

Kernel trick
https://en.wikipedia.org/
wiki/Kernel trick


```
from sklearn.svm import SVC
model = SVC(kernel='linear', C=1E10)
model.fit(X, y)
```

```
model.support_vectors_
```

```
array([[ 0.44359863, 3.11530945], [ 2.33812285, 3.43116792], [ 2.06156753, 1.96918596]])
```


Case Study: Face Recognition

Dataset: Sklearn built-in dataset

Notebook: ML02_SVM_Face_Recognition.ipynb

Non-parametric algorithm

Ask a series of questions designed to zero-in on the classification Eg: To classify an animal, ask these questions to narrow down the decision process of classifying it

Each question will cut the number of options by half, quickly narrowing down the options.

Which questions to ask at each step???

Use make_blobs()

Iteratively split the data along one or the other axis according to some quantitative criterion

At each level assign the label of the new region according to a majority vote of points within it

After first split, every point int the upper branch remains unchanged, so there is no need to further subdivide this branch

Only split further if all nodes are not of one colour (class)

After second split, every point in the lower left branch remains unchanged, so there is no need to further subdivide this branch even though it has one or two outliers from other classes

Over-fitting happens when there is too much sub-

Decision Tree Splitting

Decision Tree – Over-fitting

Combining two trees' results would help!!

Case Study:

Dataset:

Notebook: ML03_Decision_Tree_Example.ipynb

Ensemble - Bagging Algorithm

Multiple overfitting decision tree estimators can be combined to reduce the effect of overfitting

Ensemble of randomized decision trees

RandomForestClassifier

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(n_estimators=100, random_state=0)
visualize_classifier(model, X, y);

Fast Training
Fast Inference

Parallel computation can happen for decision trees

Explainability of the models is not that straight

Case Study: Best Random Forest

Dataset:

Notebook:

ML04_Random_Forests_Theory.ipynb

Assignment:

Task8_Best_Random_Forest.ipynb

K-Means

K-Means

Unsupervised algorithm

Searches for a pre-determined number of clusters within an unlabeled multidimensional dataset

Two main assumptions

- Cluster center is arithmetic mean of all points belonging to the cluster
- Each point is closer to its own cluster center than other cluster centers

K-Means from sklearn cluster import KMeans kmeans = KMeans(n_clusters=4) kmeans fit(X) y_kmeans = kmeans.predict(X)

K-Means: Expectation-Maximization (EIVI)

- 1. Guess some cluster centers
- 2. Repeat until converged
 - 1. E-Step: assign points to the nearest cluster center
 - 2. M-Step: set the cluster centers to the mean

Weaknesses of K-Means

- Globally optimal result may not be achieved with different random seeds
 - Solution: Many runs
- Number of clusters should be selected beforehand
 - Solution: Silhouette Analysis
- Limited to only linear cluster boundaries
 - Solution: SpectralClustering, GMM
- Pretty slow for large number of samples
 - Solution: MiniBatchKMeans

Case Study: Handwritten Digits

Dataset:

Notebook: ML05_KMeans_Example.ipynb

Further Reading

Scikit-learn documentation

https://scikit-learn.org/

Slides and other references made from Python Data Science Handbook by *Jake Vanderplas*