ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \left[\begin{array}{cccc} 1 & 0.15 & 0 & 0 \\ 0 & 0.8 & 0.25 & 0 \\ 0 & 0.05 & 0.7 & 0 \\ 0 & 0 & 0.05 & 1 \end{array} \right],$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = 4$ (gdzie $n \ge 0$) i $\mu_n = 3n$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0=0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1.$

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \left[\begin{array}{cccc} 0.2 & 0.4 & 0.3 & 0.1 \\ 0.4 & 0.1 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.2 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.7 \end{array} \right],$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ 0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = n$ (gdzie $n \ge 0$) i $\mu_n = n$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0=0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \begin{bmatrix} 0.7 & 0.3 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0 & 0 & 0.9 & 0.5 \\ 0 & 0 & 0.1 & 0.5 \end{bmatrix},$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = n$ (gdzie $n \ge 0$) i $\mu_n = 1$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0=0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \left[\begin{array}{cccc} 0.7 & 0 & 0 & 0.1 \\ 0.3 & 0.9 & 0 & 0 \\ 0 & 0.1 & 0.8 & 0 \\ 0 & 0 & 0.2 & 0.9 \end{array} \right],$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = n+1$ (gdzie $n \ge 0$) i $\mu_n = n^2$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0=0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \begin{bmatrix} 0.8 & 0 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0 \\ 0 & 0.1 & 0.95 & 0 \\ 0 & 0 & 0.05 & 1 \end{bmatrix},$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = 1$ (gdzie $n \ge 0$) i $\mu_n = n/3$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0 = 0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \begin{bmatrix} 0.05 & 0.01 & 0 & 0\\ 0.15 & 0.09 & 0.05 & 0.03\\ 0.3 & 0.3 & 0.25 & 0.12\\ 0.5 & 0.6 & 0.7 & 0.85 \end{bmatrix},$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = 1$ (gdzie $n \ge 0$) i $\mu_n = 1$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0 = 0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \begin{bmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \end{bmatrix},$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = \max(10 - n, 0)$ (gdzie $n \ge 0$) i $\mu_n = n$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0 = 0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 0 & 0 \end{bmatrix},$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0\\\frac{1}{3}\\\frac{1}{3}\\\frac{1}{3} \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n=3$ (gdzie $n\geq 0$) i $\mu_n=1$ (gdzie $n\geq 1$) oraz $Y_0=1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0=0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \left[\begin{array}{cccc} 0.3 & 0.8 & 0 & 0 \\ 0 & 0.2 & 0.2 & 0 \\ 0 & 0 & 0.8 & 0.9 \\ 0.7 & 0 & 0 & 0.1 \end{array} \right],$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = 1$ (gdzie $n \ge 0$) i $\mu_n = 3$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0=0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \begin{bmatrix} \frac{1}{4} & 0.05 & 0.05 & \frac{1}{4} \\ \frac{1}{4} & 0.45 & 0.45 & \frac{1}{4} \\ \frac{1}{4} & 0.45 & 0.45 & \frac{1}{4} \\ \frac{1}{4} & 0.05 & 0.05 & \frac{1}{4} \end{bmatrix},$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n=1/(n+1)$ (gdzie $n\geq 0$) i $\mu_n=1$ (gdzie $n\geq 1$) oraz $Y_0=1.$

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0 = 0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1.$

ZADANIE 1: Przeprowadzić symulację dyskretnego, jednorodnego łańcucha Markowa $\{X_n\}$ o macierzy prawdopodobieństw przejść

$$A = \left[\begin{array}{cccc} 1 & 0 & 0 & 0.01 \\ 0 & 1 & 0 & 0.02 \\ 0 & 0 & 1 & 0.05 \\ 0 & 0 & 0 & 0.9 \end{array} \right],$$

gdzie dane są następujące stany początkowe:

$$X_0^{(1)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \ X_0^{(2)} = \begin{bmatrix} \frac{1}{4} \\ 0 \\ 0 \\ \frac{3}{4} \end{bmatrix}$$

ZADANIE 2: Przeprowadzić symulację procesu narodzin i śmierci $\{Y_t\}$

o intensywnościach $\lambda_n = n$ (gdzie $n \ge 0$) i $\mu_n = 0$ (gdzie $n \ge 1$) oraz $Y_0 = 1$.

ZADANIE 3: Przeprowadzić symulację procesu Poissona $\{Z_t\}$

o intensywnościach $\lambda_n = 1$ i $\mu_n = 0$ oraz $Z_0 = 0$.

W zadaniu 1:

- narysować przykładową trajektorię,
- oszacować funkcje wartości średniej i wariancji procesów $X^{(1)}$ i $X^{(2)}$ na podstawie odpowiednio dużej liczby trajektorii,
- wyznaczyć w sposób analityczny rozkłady stacjonarne (tzn. wektory $\pi \in \mathbf{R}^4$ takie, że $A \cdot \pi = \pi$),
- zbadać zbieżność rozkładów $X_n^{(1)}$ i $X_n^{(2)}$ dla dużych n do rozkładu stacjonarnego.

W zadaniu 2:

- oszacować funkcje wartości średniej i wariancji procesu Y (dotyczy wszystkich grup),
- wyznaczyć (o ile istnieją) w sposób analityczny rozkłady stacjonarne (dotyczy tych grup, gdzie $\lambda_0 > 0$),
- wyznaczyć przybliżone prawdopodobieństwo ruiny w funkcji czasu (dotyczy tych grup, gdzie $\lambda_0 = 0$),
- wyznaczyć przybliżony rozkład Y dla kilku t i zbadać jego asymptotyczne zachowanie (dotyczy wszystkich grup).

W zadaniu 3:

- oszacować funkcje wartości średniej i wariancji procesu Z,
- sprawdzić, że $Z_t/t \to 1$ prawie na pewno przez narysowanie kilku trajektorii procesu Z_t/t ,
- (dla chętnych) sprawdzić testem χ^2 , czy Z_1 ma rozkład Poissona z $\lambda=1$.