ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 1

Aufgabe 1. (4 Punkte)

Sei $u \in C^{2;1}(B_R(0) \times [0,T)), B_R(0) \subset \mathbb{R}^n$, eine Lösung des Randwertproblems

$$\begin{cases} \dot{u} = \Delta u & \text{in } B_R(0) \times (0, T), \\ u = 0 & \text{auf } \mathcal{P}(B_R(0) \times (0, T)) \setminus B_R(0) \times \{0\}. \end{cases}$$

Beweise oder widerlege: Es gibt eine von R unabhängige Konstante $\lambda > 0$, sodass

$$||u(\cdot,t)||_{L^2(B_R(0))} \le e^{-\lambda t} \cdot ||u(\cdot,0)||_{L^2(B_R(0))}$$

für alle solche Lösungen gilt.

Aufgabe 2. (4 Punkte)

Seien $u_1, u_2 : \mathbb{R}^n \to \mathbb{R}$ subharmonisch, (C^2 -, C^0 -subharmonisch oder im Viskositätssinne). Zeige, dass es glatte subharmonische Funktionen

$$w_k: \mathbb{R}^n \to \mathbb{R} \text{ mit } w_k \longrightarrow \max\{u_1, u_2\} \text{ in } C^0_{\text{loc}}(\mathbb{R}^n)$$

gibt.

Hinweis: Approximiere den Glättungskern durch eine Linearkombination von Diracmaßen.

Aufgabe 3. (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ offen, beschränkt und zusammenhängend. Sei $\partial \Omega$ Lipschitz.

Zeige, dass intrinsischer und extrinsischer Abstand vergleichbar sind: Zu $x,y\in\Omega$ gibt es einen C^1 -Weg $\gamma:[0,1]\to\Omega$ mit $\gamma(0)=x,\,\gamma(1)=y$ und $L(\gamma)=\int_0^1\|\dot{\gamma}(t)\|\,dt\leq c(\Omega)|x-y|$.

Aufgabe 4. (4 Punkte)

Sei R > 0. Sei $0 \neq x \in \mathbb{R}^n$. Definiere $x^*(x) := \frac{R^2}{|x|^2} x$. Sei $\Omega \subset \mathbb{R}^n \setminus \{0\}$ offen. Definiere $\Omega^* := \{x^*(x) : x \in \Omega\}$. Zu $u : \Omega \to \mathbb{R}$ definieren wir $u^* : \Omega^* \to \mathbb{R}$ durch

$$u^*(x^*) := \frac{|x|^{n-2}}{R^{2n-4}} u(x) = \frac{1}{|x^*|^{n-2}} u\bigg(\frac{R^2}{|x^*|^2} x^*\bigg) \,.$$

Zeige: u ist genau dann in Ω harmonisch, wenn dies für u^* in Ω^* gilt.

Aufgabe 5. (4 Punkte)

Sei $\Gamma: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ durch

$$\Gamma(x) = \begin{cases} -|x|^{2-n}, & n > 2, \\ \log|x|, & n = 2, \end{cases}$$

 $\Gamma(x) = \begin{cases} -|x|^{2-n}, & n>2,\\ \log|x|, & n=2, \end{cases}$ definiert. Seien $f,g\in C^{\alpha}(\mathbb{R}^n)$ mit $f(0)=0,\ g(0)=1$ und $0<\alpha<1.$ Untersuche die folgenden Funktionen auf absolute Integrierbarkeit nahe x = 0:

$$\Gamma, \qquad \frac{\partial}{\partial x_i} \Gamma, \qquad \frac{\partial^2}{\partial x^i \partial x^j} \Gamma,$$

$$f \cdot \Gamma$$
, $f \cdot \frac{\partial}{\partial x_i} \Gamma$, $f \cdot \frac{\partial^2}{\partial x^i \partial x^j} \Gamma$,

$$g \cdot \Gamma$$
, $g \cdot \frac{\partial}{\partial x_i} \Gamma$, $g \cdot \frac{\partial^2}{\partial x^i \partial x^j} \Gamma$.

Aufgabe 6. (4 Punkte)

Ergänze die Details am Ende des Beweises des Theorems von Gauß (Theorem 1.7).

Abgabe: Bis Dienstag, 07.11.2017, 10:00 Uhr, in die Mappe vor Büro F 402.