测验, 10 个问题

✔ 恭喜!您通过了!

下一项

1/1分

1。

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence \boldsymbol{x} .

正确

1/1分

2。

In beam search, if you increase the beam width ${\cal B}$, which of the following would you expect to be true? Check all that apply.

Beam search will run more slowly.

正确

10/10 分 (100%)

Sequence m	odels	s & Attention mechanism
则验, 10 个问题	<u> </u>	Beam search will use up more memory.
	正确	
	正确	Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
		Beam search will converge after fewer steps.
	未选择	译的是正确的
	~	1 / 1 分
	using s	nine translation, if we carry out beam search without entence normalization, the algorithm will tend to overly short translations.
		True

正确

1/1分

False

Suppose you are building a speech recognition system, which Sequence models & Attention mechanism to a text

10/10 分 (100%)

测验, 10 个问题

transcript y . Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y} =$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^* =$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

正确

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

Continuing the example from Q4, suppose you work on your Sequence magnification the example from Q4, suppose you work on your 10/10 分 (100%)

测验, 10 个问题

majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

True.

正确

False.

1/1分

6。

Consider the attention model for machine translation.

Further, here is the formula for $lpha^{< t, t'>}$

$$\alpha^{} = \frac{\exp(e^{})}{\sum_{t'=1}^{T_x} \exp(e^{})}$$

Which of the following statements about $\alpha^{< t, t'>}$ are true? Check all that apply.

We expect to be generally larger for values of $a^{<t'>}$ that are highly relevant to the value the Sequence models white attions much an isometer the indices in the superscripts.)

10/10 分 (100%)

测验, 10 个问题

正确

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

未选择的是正确的

 $\sum_t lpha^{< t, t'>} = 1$ (Note the summation is over t .)

未选择的是正确的

 $\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t' .)

正确

1/1分

7°

The network learns where to "pay attention" by learning the values $e^{\langle t,t' \rangle}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

正确

Sequence models & Attention mechanism

10/10 分 (100%)

测验, 10 个问题

1/1分

8。

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

The input sequence length T_x is large.

正确

The input sequence length T_x is small.

1/1分

9。

Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

__c_oo_o_kk___b_ooooo__oo__kkk

- 1	✓	1	,	

cokbok

cookbook

正确

cook book

coookkbooooookkk

Sequence models & Attention mechanism

10/10 分 (100%)

测验, 10 个问题

Features of the audio (such as spectrogram
features) at time t .

正确

The t -th input word, represented as either a onehot vector or a word embedding.
Whether the trigger word is being said at time t .
Whether someone has just finished saying the trigger word at time \boldsymbol{t} .

