EEL 3040: Control Systems

Control of Multi-Agent Systems

Q 1 Consider a system of N robots moving in a planar space. Let $(x_i(t), y_i(t))$ be the positional coordinates of the i^{th} robot and it moves with constant speed v_i in the direction $\theta_i(t)$ at any instant of time t. With these notations, the equations of motion of the i^{th} robot are given by

$$\dot{x}_i(t) = v_i \cos \theta_i(t) \tag{1a}$$

$$\dot{y}_i(t) = v_i \sin \theta_i(t) \tag{1b}$$

$$\dot{\theta}_i(t) = u_i, \quad i = 1, \dots, N, \tag{1c}$$

where time derivatives \dot{x}_i, \dot{y}_i denote the speeds of the i^{th} robot along horizontal and vertical axes, respectively. Moreover, u_i is the control law which controls the rate of change $\dot{\theta}_i$ of the velocity direction. Suppose that the objective is to achieve consensus in the velocity directions θ_i of all the robots, starting from different velocity directions. To accomplish this, the control u_i can be designed as follows

$$u_i = K \sum_{j \in N(i)} (\theta_j(t) - \theta_i(t)), \quad i = 1, \dots, N,$$
 (2)

where N(i) is the set of the neighbors of the i^{th} robot and K > 0 is the controller gain. This form of the control law is usually referred to as agreement protocol in the literature. Since the control law u_i of the i^{th} robot uses the information about the velocity directions $\theta_j(t)$ of the nearby robots, the interaction topology among the robots plays an important role, which we would understand through the following MATLAB exercise.

Figure 1: Interaction topology among robots.

a) Considering three cases of the controller gains K = 0.01, 0.1 and 1, simulate the control protocol (2) for the six robots, starting from initial conditions given below, and sharing speed information according to iteration typology in Figure 1(a).

Robot Number	Initial Position $(x_i(0), y_i(0))$	Initial Velocity Direction $\theta_i(0)$	Speed v_i
1	(-10, -2)	0°	1.0
2	(4, -2)	30°	1.5
3	(-10, 10)	45°	2.0
4	(2,5)	60°	2.5
5	(0, -5)	75°	3.0
6	(5, -7)	90°	3.5

- b) Repeat the above exercise for the interaction topology in Figure 1(b) and compare the results for both scenarios in parts (a) and (b).
- c) Where does the consensus in velocity directions occur in both the cases (a) and (b), and how do different values of the controller gains influence it? Justify your answer.
- d) Simulate if there is no link between robots 2 and 5 in Figure 1(b).

Q 2 In **Q 1** above, suppose that the agents have different control gain, that is, the control gain of the i^{th} agent is $K_i > 0$. The control law (2) in this case becomes:

$$u_i = K_i \sum_{j \in N(i)} (\theta_j(t) - \theta_i(t)), \quad i = 1, \dots, N.$$
 (3)

- a) Analyze your results under control law (3) and compare with control law (2).
- b) Can we achieve the consensus at some pre-specified velocity direction by properly adjusting the control gains K_i ? Justify using simulations.