kd education academy (9582701166)

Time: 5 Hour

STD 11 Science chemistry kd700+ neet target ch-6 equilibrium part -1

Total Marks: 400

* Chemistry [400]

- 1. In which of the following equilibria, K_p and K_c are NOT equal?
 - (A) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$
 - (B) $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$
 - (C) $2\operatorname{BrCl}_{(g)} \rightleftharpoons \operatorname{Br}_{2(g)} + \operatorname{Cl}_{2(g)}$
 - (D) $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$
- 2. The equilibrium concentrations of the species in the reaction $A+B\rightleftharpoons C+D$ are 2,3,10 and $6\,mol\,L-1$, respectively at $300\,K.\,\Delta G^\circ$ for the reaction is ($R=2\,cal/mol\,K$)
 - (A) $-13.73 \, cal$
- (B) 1372.60 cal
- (C) $-137.26 \, cal$
- (D) $-1381.80 \, cal$

3. For the reversible reaction,

$$N_{2(q)}+3H_{2(q)}
ightleftharpoons 2NH_{3(q)}+$$
 heat

The equilibrium shifts in forward direction

- (A) by increasing the concentration of $NH_{3(q)}$
- (B) by decreasing the pressure
- (C) by decreasing the concentrations of $N_{2(g)}$ and $H_{2(g)}$
- (D) by increasing pressure and decreasing temperature.
- 4. $KMnO_4$ can be prepared from K_2MnO_4 as per the reaction,

$$3MnO_4^{2-}+2H_2O
ightleftharpoons 2MnO_4^-+MnO_2+4OH^-$$

The reaction can go to completion by removing OH^- ions by adding

(A) CO_2

(B) SO_2

- (C) HCl
- (D) KOH
- 5. The rate of forward reaction is two times that of reverse reaction at a given temperature and identical concentration. $K_{equilibrium}$ is
 - (A) 2.5

(B) 2

(C) 0.5

- (D) 1.5
- 6. For the reaction : $H_{2(g)}+CO_{2(g)} \rightleftharpoons CO_{(g)}+H_2O_{(g)}$, if the initial concentration of $[H_2]=[CO_2]$ and x moles/litre of hydrogen is consumed at equilibrium, the correct expression of K_p is
 - (A) $\frac{x^2}{(1-x)^2}$

(B) $\frac{(1+x)^2}{(1-x)^2}$

(C) $\frac{x^2}{(2+x)^2}$

- (D) $\frac{x^2}{1-x^2}$
- 7. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the

	(A) 16	(B) 32	(C) 64	(D) 128		
8.	$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + C$	$CO_{2(g)}$ which of the follo	owing expression is cor	rect		
	(A) $K_P = (P_{CaO} + P_{CO_2})$					
	(B) $K_P=P_{CO_2}$					
	(C) $K_P imes (P_{CaO} imes P_{CO_2})$	P_{CaCO_3}				
	(D) $rac{K_p[CaO][CO_2]}{[CaCO_3]}$			\		
9.		One mole of a compound AB reacts with one mole of a compound CD according to the equation $AB+CD \Rightarrow AD+CB$. When equilibrium had been				
	established it was fo	und that $\frac{3}{4}$ mole each	of reactant AB and	CD had been		
		d CB . There is no	change in volume. Th			
	(A) $\frac{9}{16}$	(B) $\frac{1}{9}$	(C) $\frac{16}{9}$	(D) 9		
10.	The following equilibit	rium was established	tion vessel at a certain $2SO_3 ightleftharpoons 2SO_2 + O_2$ At ϵ constant of the reaction	equilibrium 0.6		
	(A) 0.36	(B) 0.45	(C) 0.54	(D) 0.675		
11.	Consider the imagina K_c has the unit	ry equilibrium $4A + 5B$	ightleftharpoons 4X+6Y The equilib	rium constant		
	(A) Mole 2 litre $^{-2}$	(B) Litre mole ⁻¹	(C) Mole litre $^{-1}$	(D) Litre 2 mole $^{-2}$		
12.	For the system $2A(g)$ is	+B(g) ightleftharpoons 3C(g) , the ex	pression for equilibriu	m constant <i>K</i>		
	(A) $\frac{[2A] \times [B]}{[3C]}$	(B) $\frac{[A]^2 \times [B]}{[C]^3}$	(C) $\frac{[3C]}{[2A] imes [B]}$	(D) $\frac{\left[C\right]^3}{\left[A\right]^2 \times \left[B\right]}$		
13.	For the reaction $2NO_2(g) ightleftharpoons N_2O_4(g)$ at	300~K				
		become two times of	essure at equilibrium its original volume, w			
	(A) 6.4	(B) 4.51	(C) 6	(D) 5.19		
14.	The equilibrium constants K_{p_1} and K_{p_2} for the reaction					
	X ightleftharpoons 2Y and $Z ightleftharpoons P+Q,$					
	respectively are in the ratio of $1:4.$ If the degree of dissociation of X is 2 times					
	that of Z , then the ratio of total pressure $(P_1:P_2)$ at these equilibria is : (Assume degree of dissociation for both reactions are very very small)					
	(A) 1:36	i for both reactions ar (B)1 : 16	e very very small) (C) 1 : 64	(D) None of these		
	(W/ T:90	(D) I : I()	(C/1:04	TO NOTE OF LITESE		

equilibrium constant will be

15.	In a reversible reaction	n $A \overset{k_1}{\longleftrightarrow} B,$ the initial c	oncentration of \emph{A} and	B are a and b
	and the equilibrium of x " x " in terms of k_1, k_2, \ldots		(a+x) and $(b+x)$ respect	cively. Express
	(A) $rac{k_1a-k_2b}{k_1+k_2}$	(B) $rac{k_1a-k_2b}{k_1-k_2}$	(C) $rac{k_1a-k_2b}{k_1k_2}$	(D) $rac{k_1a+k_2b}{k_1+k_2}$
16.			oncentration of C at equilibrium concentra	
	(A) two times the orig	inal value	(B) one half of its orig	inal value
	(C) $2\sqrt{2}$ times to the	original value	(D) $\frac{1}{2\sqrt{2}}$ times the original	nal value
17.	Find the value of $\frac{P}{k_p}$ for	r reaction at a certain	temperature is :-	
	$2NOBr(g) \; ightleftharpoons \; 2NO(g)$ equilibrium and P_{Br_2}	_	is the total pressure	e of gases at
	(A) 9	(B) 81	(C) 27	(D) 3
18.	to the equation. $N_2(g) + 3H_2(g) ightharpoons 2NI$	$H_{3}\left(g ight)$ ure and pressure. Thei	R of H_2 reacts to give N of the ratio of the final	
	(A) 4:5	(B) 5:4	(C) 7:10	(D) 8:5
19.		ncentrations of \emph{A} an	ration of B was 1.5 timd B became equal. The	
	(A) 4	(B) 6	(C) 12	(D) 8
20.	experiment, the initi	al partial pressure o	is an elementary proof A and B are 0.6 $.2atm$, the rate of react	and $0.8atm$,
	(A) 1/48	(B) 1/24	(C) 9/16	(D) 1/6
21.		$_{(g)}+3B_{2(g)}$ If at equilik	ium in a closed contain $2moles$ of A_2 are	
	(A) 72	(B) 36	(C) 3	(D) 27
22.	-		$0.0,\;$ at equilibrium, rate for backward reaction i	
	(A) 0.5	(B) 2	(C) 10	(D) 200

23	•		when $1mole$ each of two med. The equilibrium co	
	(A) 5	(B) 1	(C) 1.5	(D) None
24	\cdot For the reaction $2N0$	$OBr(g) ightleftharpoons 2NO(g) + Br_2(g)$	$g)$, if $P_{Br_2}=rac{P}{9}$ at equilil	orium and <i>P</i> is
	total presssure, then	infind $rac{K_P}{P}$?		
	(A) $\frac{1}{9}$	(B) $\frac{1}{81}$	(C) $\frac{1}{27}$	(D) $\frac{1}{3}$
25	then find K_p for the	nixture of steam and l reaction	hydrogen contains 40%	
	(A) $\frac{9}{4}$	(B) $\frac{3}{2}$	(C) $\frac{6}{4}$	(D) None of these
26	the pressure of equi $2SO_2(g)+O_2(g) ightleftharpoons 2SO_2(g)$	librium mixture atm O_3	reacts 30% till equilibri	
	(A) 5	(B) 2.5	(C) 4.5	(D) 9
27	$C(s) + CO_2(g) ightleftharpoons 2Co$ the partial pressur equilibrium. The k_p o	e of CO_2 and CO a	re 2.0 and $4.0atm$, r	espectively, at
	(A) 0.5	(B) 4	(C) 32	(D) 8
28	-	he hydrogen is conver	ed in a closed vessel til ted to HI , the K_c at th	-
	(A) 64	(B) 16	(C) 0.25	(D) 14
29	· ·	constant of the reacti c of the reaction H_2+I_2	on $2HI ightharpoonup H_2 + I_2$ is $2 ightharpoonup 2HI$ would be	0.25, then the
	(A) 1	(B) 2	(C) 3	(D) 4
30	. In which of the follo	wing reaction $K_p > K_c$		
	(A) $N_2 + 3H_2 \implies 2NH$		(B) $H_2+I_2 ightleftharpoons 2HI$	
	(C) $PCl_3 + Cl_2 \implies PC$	$\mathcal{C}l_5$	(D) $2SO_3 \rightleftharpoons O_2 + 2SO_2$	2
31	. For the reaction <i>PCl</i>	$_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$		
	(A) $K_p=K_c$	(B) $K_p=K_c(RT)^{-1}$	(C) $K_p = K_c(RT)$	(D) $K_p=K_c(RT)^2$
32	. For the following gas		ightleftharpoons 2HI, the equilibrium	
	(A) $K_p > K_c$	(B) $K_p < K_c$	(C) $K_p=K_c$	(D) $K_p=1/K_c$
33		ϵ following reactions K_{j}	•	
	(A) $N_2 + 3H_2 \rightleftharpoons 2NH$	3	(B) $N_2 + O_2 ightharpoons 2NO$	

	(C) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$		(D) $2SO_3 ightleftharpoons 2SO_2 + O_2$	
34.	The equilibrium const	ant for the reversible	reaction, $N_2+3H_2 \implies 2$	NH_3 is K and
	for the reaction $\frac{1}{2}N_2$ + be related as	$-rac{3}{2}H_2 ightleftharpoons NH_3$ the equi	librium constant is K' .	K and K^\prime will
	(A) $K=K'$	(B) $K'=\sqrt{K}$	(C) $K=\sqrt{K'}$	(D) $K imes K' = 1$
35.	volume of the contain		$PCl_{5(g)} ightarrow PCl_{3(g)} + Cl_{2(g)}$ half its original volume will be	
	(A) 32	(B) 64	(C) 16	(D) 4
36.	For $N_2+3H_2 \rightleftharpoons 2NH_3$ $2N_2+6H_2 \rightleftharpoons 4NH_3$ is	₃ equilibrium constan	t is k then equilibrium	constant for
	(A) \sqrt{k}	(B) k^2	(C) $k/2$	(D) $\sqrt{k+1}$
37.	If equilibrium constar	nt for reaction $2AB \rightleftharpoons$	A_2+B_2 , is 49 , then the	ne equilibrium
	constant for reaction	$AB ightleftharpoons rac{1}{2}A_2 + rac{1}{2}B_2$, will	be S	
	(A) 7	(B) 20	(C) 49	(D) 21
38.	For reaction, $2A_{(g)} \rightleftharpoons 3$	$3C_{(g)}+D_{(g)}$, the value o	f K_c will be equal to	
	(A) $K_p(RT)$	(B) K_p/RT	$(C)=K_p$	(D) None of these
39.	is K_2 then		$ ightleftharpoons 2NO$ is K_1 and $rac{1}{2}N_2$	$_2+rac{1}{2}O_2 \implies NO$
	(A) $K_1=K_2$	(B) $K_2=\sqrt{K_1}$	(C) $K_1=2K_2$	(D) $K_1=rac{1}{2}K_2$
40.	For the following read	tion in gaseous phase	$CO+rac{1}{2}O_2 o CO_2$; K_p/R_0	K_c is
	(A) $(RT)^{1/2}$	(B) $(RT)^{-1/2}$	(C) (RT)	(D) $(RT)^{-1}$
41.	$1.80 imes 10^{-3}$ and kP_a is litre of K_c for this rea	14 , ($R=8.314Jk^{-1}mol^{-1}$ ction at the same temp	e reaction $2SO_{3(g)} \; ightleftharpoons 2SO_{3(g)} \; ightharpoons 2SO_{3(g)} \; ightharpoons 2SO_{3(g)} \; ho$ berature will be	
	(A) $3.09 \times 10^{-7} \ mol$ — (B) $5.07 \times 10^{-8} \ mol$ —			
	(C) $8.18 \times 10^{-9} \ mol$	7 2		
	(D) $9.24 \times 10^{-10} \ mol$			
42.	$xA_{(s)} ightleftharpoons yB_{(g)} + zC_{(g)}$ If		ich is correct	
	() = (3) (3)	κ_p , ,		

(A) y+z-x=-2 (B) y+z-x=2 (C) y+z=-2

(A) y+z-x=-2 (B) y+z-x=2 (C) y+z=-2

43. $xA_{(s)}
ightharpoonup yB_{(g)} + zC_{(g)}$ If $rac{k_c}{k_p} = (RT)^{-2},$ then which is correct

44. What is the unit of K_p for the reaction ?

		M+L ightleftharpoons ML		
		$ML+L ightleftharpoons ML_2$		
	are 4 and 3. Hence, overall stability constant for			
		$M+2L ightleftharpoons ML_2$ is		
	(A) 12	(B) 7	(C) 1.33	(D) 0.75
46.	For the equilibrium			
	$SO_2Cl_2(g) ightleftharpoons SO_2(g)+0$ K	$Cl_2(g)$, what is the ter	mperature at which $\frac{R}{I}$	$\frac{K_p(atm)}{K_c(M)} = \frac{1}{3}$?
	(A) 0.027	(B) 0.36	(C) 36.54	(D) 4.06
47.	have equilibrium co	Fium $\mathrm{SO}_2(\mathrm{g})+rac{1}{2}\mathrm{O}_2(\mathrm{g})$ \rightleftharpoons onstant K_1 and K_2 robetween K_1 and K_2 is (B) $K_2=(K_1)^2$	espectively at $298K$.	Which of the
48.	For a gaseous reaction	in $pA+qB ightleftharpoons qC+pD$, V		1
	true			,
	(A) $K_P=K_C(RT)^{p+q}$			
	(B) $K_P = K_C$			
	(C) $K_P = K_C (RT)^{p-q}$	V		
	(D) $K_P = K_C(RT)^{\left(rac{1}{p+q} ight)}$			
49.	•	x dissociation equilik be (eta_4 for this com		•
	(A) 4.7×10^{-14}	(B) 2.1×10^{13}	(C) 11.9×10^{-2}	(D) 2.1×10^{-13}
50.	Which of the following $PCl_{3(g)} + Cl_{2}(g) ightharpoons PC$	g expression is true reg $\eta_{5(g)}$	garding formation of	$PCl_{5(g)}.$
	(A) $\frac{Kp}{Kc} < 1$	(B) $\frac{Kp}{Kc} = 1$	(C) $\frac{Kp}{Kc} > 1$	(D) None
51.	The equilibrium PCl_{5}	$egin{array}{ll} g_{g}& ightleftharpoons &PCl_{3(g)}+Cl_{2(g)} \end{array}$ shows at a particular temperature G_{g}	nows that $K_{P}\left(atm ight)$ is	
	(A) 300	(B) 48.72	(C) 12.18	(D) 24.36
52.	For the reactions			
	$A \rightleftharpoons B$			
	$B \rightleftharpoons C$ K	$I_C=3$		

 $CS_2(g)+4H_2(g) o CH_4(g)+2H_2S(g)$

(B) atm^{+2}

45. For the complex ML_2 , stepwise formation constants

(C) atm^{-2}

(D) atm^{-1}

(A) atm

α		T	- 1	T
	=	,,	-	r

$$K_C = 5$$

 K_C for the reaction $A \rightleftharpoons D + E$ is

(A)
$$2+3+5$$

(B)
$$\frac{2 \times 3}{5}$$

(C)
$$\frac{5\times3}{2}$$

(D)
$$2 \times 3 \times 5$$

53. For the reactions

$$2NO+O_2
ightleftharpoons 2NO_2$$
 ; K_1

$$4NO + 2Cl_2 \rightleftharpoons 4NOCl; K_2$$

$$NO_2 + \frac{1}{2}Cl_2 \rightleftharpoons NOCl + \frac{1}{2}O_2; K_3$$

where K_1, K_2, K_3 are equilibrium constants then K_3^2 equal to

(A)
$$\sqrt{K_2/K_1}$$

(B)
$$\sqrt{K_1K_2}$$

(C)
$$\sqrt{K_2}/K_1$$

(D)
$$\frac{1}{K_1 K_2}$$

54. From the given data of equilibrium constant of following reactions

$$CO_{2(s)} + H_{2(q)} \rightleftharpoons CO_{(s)} + H_2O(g); K_1$$

$$CO_{2(s)} + CO(g) \rightleftharpoons CO_{(s)} + CO_2(g)$$
; K_2

Calculate the equilibrium for the reaction

$$CO_{2(s)} + H_2(g)
ightleftharpoons CO(g) + H_2O(g)$$

(A)
$$\frac{K_1}{K_2}$$

(B)
$$K_1.K_2$$

(C)
$$\frac{K_2}{K_1}$$

(D)
$$K_1+K_2$$

55. For the reaction

$$N_2O_4(g)
ightleftharpoons 2NO_2(g), \; rac{K_c}{K_p} \; {\sf is}$$

(A)
$$(RT)^2$$

(B)
$$(RT)^{-2}$$

(C)
$$(RT)^1$$

(D)
$$(RT)^{-1}$$

56. Find out the value of K_C for the following reaction from the value of K_P

$$2NOCl(g)
ightleftharpoons 2NO(g) + Cl_2(g)$$

[Given : $K_P = 8 \times 10^{12} atm$ at 500 K use $R = 0.08 L atm mol^{-1} K^{-1}$]

(A)
$$32 \times 10^{13} \ mol \ L^{-1}$$
 (B) $8 \times 10^{12} \ mol \ L^{-1}$ (C) $2 \times 10^{11} \ mol \ L^{-1}$

(B)
$$8 imes 10^{12}\,mol\,L^{-1}$$

(C)
$$2 imes 10^{11} \, mol \, L^{-1}$$

(D) None of these

57. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g); K_1$

$$NH_{3}(g)
ightleftharpoons rac{1}{2}\,N_{2}\left(g
ight)+rac{3}{2}H_{2}\left(g
ight);\,K_{2}$$

$$rac{1}{2}N_{2}\left(g
ight) +rac{3}{2}H_{2}\left(g
ight)
ightleftharpoons NH_{3}(g);K_{3}$$

$$2NH_3(g)
ightleftharpoons N_2(g)+3H_2(g);K_4$$

If $K_1 = K_2^x = K_3^y = K_4^z$ then correct values of x, y and z are respectively

(A)
$$2,1,-2$$

(B)
$$-1, 2, -2$$

(C)
$$-2, 2, 1$$

(D)
$$-2, 2, -1$$

58. In which of the following K_p is less than K_c ?

(A)
$$N_2O_4 \rightleftharpoons 2NO_2$$

(B)
$$2HI \rightleftharpoons H_2 + I_2$$

(C)
$$2SO_2 + O_2 \implies 2SO_3$$

(D)
$$N_2 + O_2 \implies 2NO$$

59. process $N_{2(q)}+3H_{2(q)}\rightleftharpoons 2NH_{3(q)}+heat$

(A)
$$K_p=K_c$$

(B)
$$K_p = K_c (RT)^-$$

(B)
$$K_p = K_c (RT)^{-1}$$
 (C) $K_p = K_c (RT)^{-2}$ (D) $K_p = K_c (RT)$

(D)
$$K_{p}=K_{c}\left(RT
ight)$$

60. At a certain temperature the equilibrium constant K_c is 0.25 for the reaction

$$A_2(g)+B_2(g)
ightleftharpoons C_2(g)+D_2(g)$$

If we take 1 mole of each of the four gases in a 10 litre container, what would be equilibrium concentration of $A_2(g)$?

- (A) 0.331 M
- (B) 0.033 M
- (C) 0.133 M
- (D) 1.33 M
- 61. The equilibrium constant K and reaction quotient Q are in ratio 0.33:1 . It means that
 - (A) The reaction mixture will equilibrate to form more reactant species
 - (B) The reaction mixture will equilibrate to form more product species
 - (C) The equilibrium ratio of reactant to product concentrations will be 3
 - (D) The equilibrium ratio of reactant to product concentrations will be 0.33
- 62. In the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ a graph in plotted to show the variation of rate of forward and backward reactions against time. Which of the following is correct ?

(A)
$$Q > K_{eq}
ightarrow 3, Q = K_{eq}
ightarrow 2, Q < K_{eq}
ightarrow 1$$

(B)
$$Q > K_{eq}
ightarrow 1, Q = K_{eq}
ightarrow 2, Q < K_{eq}
ightarrow 3$$

(C)
$$Q > K_{eq}
ightarrow 2, Q = K_{eq}
ightarrow 3, Q < K_{eq}
ightarrow 1$$

(D)
$$Q > K_{eq}
ightarrow 2, Q = K_{eq}
ightarrow 1, Q < K_{eq}
ightarrow 3$$

- 63. If in the reaction $N_2O_4=2NO_2,\,\alpha$ is that part of N_2O_4 which dissociates, then the number of moles at equilibrium will be
 - (A) 3

(B) 1

- (C) $(1-\alpha)^2$
- (D) $(1 + \alpha)$
- 64. At a certain temp. $2HI \rightleftharpoons H_2 + I_2$ Only 50%~HI is dissociated at equilibrium. The equilibrium constant is
 - (A) 0.25

(B) 1

(C) 3

- (D) 0.5
- 65. In the reaction, $H_2+I_2 \rightleftharpoons 2HI$. In a 2 litre flask 0.4 moles of each H_2 and I_2 are taken. At equilibrium 0.5 moles of HI are formed. What will be the value of equilibrium constant, K_c
 - (A) 20.2

(B) 25.4

- (C) 0.284
- (D) 11.1
- 66. The vapour density of completely dissociated NH_4Cl would be
 - (A) Slight less than half that of NH_4Cl
 - (B) Half that of NH_4Cl
 - (C) Double that of NH_4Cl

	(ט) Determined by th	e amount of solid NH_4	Ci in the experiment	
67.	If dissociation for r Calculate K_c	eaction, $PCl_5 \rightleftharpoons PCl_5$	$_3+Cl_2$ is 20% at 1 a	tm. pressure.
	(A) 0.04	(B) 0.05	(C) 0.07	(D) 0.06
68.		If $K_c=100,~lpha=1$, half and SO_2 are equal, the		
	(A) $0.001 M$	(B) $\frac{1}{2} SO_2$	(C) 2 times of SO_2	(D) Data incomplete
69.	dissociation of N_2 and	$C_2 + O_2 ightleftharpoons 2NO$ equilikd O_2 are (Both have sa	me initial moles)	
	(A) $\frac{1}{1+\sqrt{2}}, \frac{1}{1-\sqrt{2}}$	(B) $\frac{1}{1-\sqrt{2}}, \frac{1}{1+\sqrt{2}}$	(C) Both are $\frac{1}{1+\sqrt{2}}$	(D) Both are $\frac{1}{1-\sqrt{2}}$
70.	$AB_3(g)$ is dissociates a	as;		
	-	$\mathcal{C}_2(g)$, when the initial ped at equilibrium is 90	0torr . What percentag	
	(A) 10	(B) 20	(C) 25	(D) 30
71.	$(lpha)$ in terms of K_p are	reaction $N_2O_4\left(g ight) ightleftharpoons 2$ nd total equilibrium pro $lpha$ (B) $lpha = \sqrt{rac{K_p}{4P+K_p}}$	essure <i>P</i> is	
	(A) $\alpha = \sqrt{\frac{K_p}{K_p}}$	(B) $\alpha = \sqrt{\frac{1}{4P + K_p}}$	$(C) \alpha = \sqrt{4P}$	$\langle D \rangle \alpha = \sqrt{2P}$
72.		n of $Mg(OH)_2,$ the deg) of $Mg(OH)_2$ if concen		$Mg(OH)_2$ is $lpha$,
	(A) α	(B) 2α	(C) $1/lpha$	(D) $1/2lpha$
73.	(= /	$Br_{2(g)}$ If $NOBr$ is 40% $atm.\ K_p$ for the reaction (B) 25		
74.	The vapour density of fraction of N_2O_4 in th	of a mixture containing e mixture is	g NO_2 and N_2O_4 is 27	7.6 . The mole
	(A) 0.1	(B) 0.2	(C) 0.5	(D) 0.8
75.		ilibrium $N_2O_4 ightleftharpoons 2NO_2$ quilibrium is set up. F		
	(A) 50	(B) 25	(C) 66.66	(D) 33.33
76.	For the reaction $N_2\left(g\right)$ O_2 is	$)+O_{2}\left(g ight) ightleftharpoons 2NO\left(g ight) ;K_{0}$	$_{C}=2$ then degree of $ m c$	lissociation of
	(A) $\frac{1}{1-\sqrt{2}}$	(B) $\frac{1}{1+\sqrt{2}}$	(C) $\frac{\sqrt{2}}{1+\sqrt{2}}$	(D) $\frac{\sqrt{2}}{\sqrt{2}-1}$

	(A) At high temperature and high pressure
	(B) At high temperature and low pressure
	(C) At low temperature and high pressure
	(D) At low temperature and low pressure
80.	Reaction in which yield of product will increase with increase in pressure is
	(A) $H_{2(g)}+I_{2(g)} ightleftharpoons 2HI_{(g)}$
	(B) $H_2O_{(g)}+CO_{(g)} ightleftharpoons CO_{2(g)}+H_{2(g)}$
	(C) $H_2O_{(g)}+C_{(s)} ightleftharpoons CO_{(g)}+H_{2(g)}$
	(D) $CO_{(g)}+3H_{2(g)} ightleftharpoons CH_{4(g)}+H_2O_{(g)}$
81.	The equilibrium which remains uneffected by change in pressure of the
	reactants is
	(A) $N_{2(g)} + O_{2(g)} ightharpoonup 2NO_{(g)}$ (B) $2SO_{2(g)} + O_{2(g)} ightharpoonup 2SO_{3(g)}$
	(C) $2O_{3(g)} ightleftharpoons 3O_{2(g)}$ (D) $2NO_{2(g)} ightleftharpoons N_2O_{4(g)}$
82.	In which of the following equilibrium reactions, the equilibrium would shift to
	the right, if total pressure is increased
	(A) $N_2+3H_2 ightleftharpoons 2NH_3$
	$(B)\; H_2 + I_2 \rightleftharpoons 2HI$
	(C) $H_2 + Cl_2 \rightleftharpoons 2HCl$
	(D) $N_2O_4 ightleftharpoons 2NO$
83.	In which of the following gaseous equilibrium an increase in pressure will
	increase the yield of the products
	$(A)\ 2HI \rightleftharpoons H_2 + I_2$
	$(B)\ 2SO_2 + O_2 \ \rightleftharpoons 2SO_3$
	(C) $H_2 + Br_2 \rightleftharpoons 2HBr$
	(D) $H_2O+CO ightleftharpoons H_2+CO_2$
84.	Which of the following conditions is favourable for the production of ammonia by Haber's process
	•

77. In a saturated solution of $Mg(OH)_2$, the degree of dissociation of $Mg(OH)_2$ is α ,

79. In the reaction $A_{(g)} + 2B_{(g)}
ightharpoonup C_{(g)} + Q\,kJ$, greater product will be obtained or the

(C) $1/\alpha$

(B) $H_2 + I_2 \rightleftharpoons 2HI$

(D) $N_2 + O_2 \implies 2NO$

(D) $1/2\alpha$

Page 10

find concentration (C) of $Mg(OH)_2$ if concentration of $[OH^-]$, is 2

(B) 2α

78. Which of the following reactions proceed at low pressure

(A) α

(A) $N_2 + 3H_2 \rightleftharpoons 2NH_3$

(C) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$

forward reaction is favoured by

- (A) High concentration of reactants
- (B) Low temperature and high pressure
- (C) Continuous removal of ammonia
- (D) All of these
- 85. What would happen to a reversible reaction at equilibrium when an inert gas is added while the pressure remains unchanged
 - (A) More of the product will be formed
 - (B) Less of the product will be formed
 - (C) More of the reactants will be formed
 - (D) It remains unaffected
- 86. On addition of an inert gas at constant volume to the reaction $N_2+3H_2 \rightleftharpoons 2NH_3$ at equilibrium
 - (A) The reaction remains unaffected
 - (B) Forward reaction is favoured
 - (C) The reaction halts
 - (D) Backward reaction is favoured
- 87. Le-Chatelier principle is not applicable to
 - (A) $H_{2(g)}+I_{2(g)} \rightleftharpoons 2HI_{(g)}$
 - (B) $Fe_{(S)} + S_{(S)} \rightleftharpoons FeS_{(S)}$
 - (C) $N_{2(g)}+3H_{2(g)}
 ightleftharpoons 2NH_{3(g)}$
 - (D) $N_{2(g)} + O_{2(g)}
 ightharpoons 2NO_{(g)}$
- 88. The dissociation of phosgene, which occurs according to the reaction

$$COCl_{2}\left(g
ight)
ightleftharpoons CO\left(g
ight) +Cl_{2}$$

is an endothermic process. Which of the following will increase the degree of dissociation of $COCl_2$

- (A) Adding Cl_2 to the system
- (B) Adding ${\it He}$ to the system at constant pressure
- (C) Decreasing the temperature of the sytem
- (D) Increasing the total pressure of the system
- 89. Consider given endothermic reaction at equilibrium, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ A graph is plotted between concentration and time as shown. Effect-1 & Effect-2 are due to respectively
 - (A) P increase, T increase
 - (B) P increase, T decrease

- (C) Inert gas added at constant pressure, T increase
- (D) P decrease, T decrease
- 90. Which of the following statement is incorrect regarding catalyst?
 - (A) Does not alter, gibbs energy (ΔG) of a reaction
 - (B) The equilibrium position does not change in presence of a catalyst
 - (C) It increases speed of both forward and backward reaction
 - (D) Activation energy of reaction remain unaltered.
- 91. On heating a mixture of SO_2Cl_2 and CO , two equilibria are simultaneously established

$$SO_2Cl_2(g)
ightleftharpoons SO_2(g)+Cl_2(g)$$

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$

On adding more SO_2 at equilibrium what will happen?

- (A) Amount of CO will decrease
- (B) Amount of SO_2Cl_2 and $COCl_2$ will increase
- (C) Amount of CO will remain unaffected
- (D) Amount of SO_2Cl_2 and CO will increase
- 92. For which of the following reaction, product formation is favoured at low pressure and low temperature ?

(A)
$$CO_2(g) + C(s) \implies 2CO(g)$$
; $\Delta H^o = 172.5 \; \mathrm{kJ}$

(B)
$$CO(g) + 2H_2(g)
ightharpoonup CH_3OH(g) \; ; \; \Delta H^o = -21.7 \; kJ$$

(C)
$$2O_3(g) \rightleftharpoons 3O_2(g) \; ; \; \Delta H^o = -285 \; kJ$$

(D)
$$H_2(g) + F_2(g) \rightleftharpoons 2HF(g)$$
; $\Delta H^o = -541~kJ$

93. An equilibrium shift towards reactants at higher temperatures. Find the correct graph

(A)

(B)

(C)

(D)

- 94. The equation for the reaction in the figure below is: $H_2(g) + I_2(g) heat \rightleftharpoons 2HI(g)$ At the instant 3 min, what change was imposed into the equilibrium ?
 - (A) Pressure was increased

- (B) Temperature was decreased
- (C) Temperature was increased
- (D) Hydrogen was added
- 95. Which of the following equilibrium is not affected by pressure?

(A)
$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(a)}$$

(B)
$$N_{2(q)} + 3H_{2(q)} \rightleftharpoons 2NH_{3(q)}$$

(C)
$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$$

(D)
$$2SO_{2(q)} + O_{2(q)} \rightleftharpoons 2SO_{3(q)}$$

96. Which among the following reactions is favoured in forward direction by increase of temperature?

(A)
$$N_2(g)+3H_2(g)
ightleftharpoons 2NH_3(g)+22.9\,kcal$$

(B)
$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g) - 42.8 \, kcal$$

(C)
$$2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g) + 45.3 kcal$$

(D)
$$H_2(g) + Cl_2(g) - 44 \, kcal \Rightarrow 2HCl(g)$$

97. In which of the following equilibrium, change in volume of the system does not alter the number of moles ?

(A)
$$N_{2(g)} + O_{2(g)}
ightleftharpoons 2NO_{(g)}$$

(B)
$$PCl_{5(q)} \rightleftharpoons PCl_{3(q)} + Cl_{2(q)}$$

(C)
$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

(D)
$$SO_2Cl_{2(g)} \rightleftharpoons SO_{2(g)} + Cl_{2(g)}$$

- 98. For the reaction; $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$ the forward reaction at constant temperature is not favoured by
 - (A) Introducing chlorine gas at constant volume
 - (B) Introducing an inert gas at constant pressure
 - (C) Introducing PCl_5 at constant volume
 - (D) Increasing the volume of the container

99. For the chemical reaction

 $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g) \ \Delta H^o$ of reaction can be determined from which one of the following plots ?

(A)

(B)

(C)

(D)

100. On heating a mixture of SO_2Cl_2 and CO two equilibria are simultaneously established

$$SO_2Cl_2(g)
ightleftharpoons SO_2(g) + Cl_2(g)$$

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$

on adding more SO_2 at equilibrium what will happen?

(A) Amount of CO will decrease

(B) Amount of SO_2Cl_2 and $COCl_2$ will increase

(C) Amount of ${\it CO}$ will remain unaffected

(D) Amount of SO_2Cl_2 and CO will increase

----- उद्यमेन हि सिध्यन्ति कार्याणि न मनोरथैः। न हि सुप्तस्य सिंहस्य प्रविशन्ति मुखे मृगाः।।-जीवन में सफलता पाने के लिए मेहनत और प्रयास जरूरी हैं। केवल इच्छा करने या कल्पना करने से काम नहीं बनते -----