Gaussian naive Bayes classifier

DEFINITION 1:

Sample size: N

Sample mean:

$$\mu = \frac{1}{N} \cdot \sum_{i=1}^{N} x_i$$

Unbiased sample variance:

$$\sigma^{2} = \frac{1}{N-1} \cdot \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

TRAINING:

Training set example:

Sex (class)	Height (feet)	Weight (lbs)	Foot size (inches)
Male	6	180	12
Male	5.92	190	11
Male	5.58	170	12
Male	5.92	165	10
Female	5	100	6
Female	5.5	150	8
Female	5.42	130	7
Female	5.75	150	9

Computing means and variances of example training set:

$$\mu_{Height \, Male} = \frac{1}{4} \cdot (6 + 5.92 + 5.58 + 5.92) = \mathbf{5.855}$$

$$\sigma_{Height \, Male}^2 = \frac{1}{3} \cdot ((6 - 5.855)^2 + (5.92 - 5.855)^2 + (5.58 - 5.855)^2 + (5.92 - 5.855)^2)$$

$$\approx \mathbf{0.035033}$$

$$\mu_{Height \, Female} = \frac{1}{4} \cdot (5 + 5.5 + 5.42 + 5.75) = \mathbf{5.4175}$$

$$\sigma_{Height \, Female}^2 = \frac{1}{3} \cdot ((5 - 5.4175)^2 + (5.5 - 5.4175)^2 + (5.42 - 5.4175)^2 + (5.75 - 5.4175)^2)$$

$$= \mathbf{0.097225}$$

$$\mu_{Weight\ Male} = \frac{1}{4} \cdot (180 + 190 + 170 + 165) = 176.25$$

$$\sigma_{Weight\ Male}^2 = \frac{1}{3} \cdot ((180 - 176.25)^2 + (190 - 176.25)^2 + (170 - 176.25)^2 + (165 - 176.25)^2)$$

$$\approx 122.92$$

$$\mu_{Weight\ Female} = \frac{1}{4} \cdot (100 + 150 + 130 + 150) = 132.5$$

$$\sigma_{Weight Female}^2 = \frac{1}{3} \cdot ((100 - 132.5)^2 + (150 - 132.5)^2 + (130 - 132.5)^2 + (150 - 132.5)^2)$$

$$\approx 558.33$$

$$\mu_{Foot \ Size \ Male} = \frac{1}{4} \cdot (12 + 11 + 12 + 10) = 11.25$$

$$\sigma_{Foot \, Size \, Male}^2 = \frac{1}{3} \cdot ((12 - 11.25)^2 + (11 - 11.25)^2 + (12 - 11.25)^2 + (10 - 11.25)^2)$$

$$\approx 0.9167$$

$$\mu_{Foot \ Size \ Female} = \frac{1}{4} \cdot (6 + 8 + 7 + 9) = 7.5$$

$$\sigma_{Foot \ Size \ Female}^2 = \frac{1}{3} \cdot ((6-7.5)^2 + (8-7.5)^2 + (7-7.5)^2 + (9-7.5)^2) \approx 1.6667$$

Sex (class)	Mean (Height)	Variance (Height)	Mean (Weight)	Variance (Weight)	Mean (Foot size)	Variance (Foot size)
Male	5.855	0.035033	176.25	122.92	11.25	0.9167
Female	5.4175	0.097225	132.5	558.33	7.5	1.6667

DEFINITION 2:

Probability of class: P(Male), P(Female)

In our case classes are equiprobable: P(Male) = P(Female) = 0.5

Probability density function:

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \cdot \pi \cdot \sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}$$

Posterior probability male:

$$posterior(male) = \frac{P(male) \cdot p(height|male) \cdot p(weight|male) \cdot p(foot \ size|male)}{evidence}$$

Posterior probability female:

$$posterior(female) = \frac{P(female) \cdot p(height|female) \cdot p(weight|female) \cdot p(foot \ size|female)}{evidence}$$

Evidence:

$$evidence = P(male) \cdot p(height|male) \cdot p(weight|male) \cdot p(foot size|male) + P(female) \cdot p(height|female) \cdot p(weight|female) \cdot p(foot size|female)$$

TESTING

Testing sample:

Sex (class)	Height (feet)	Weight (lbs)	Foot size (inches)
?	6	130	8

Computing probability densities:

$$p(height|male) = \frac{1}{\sqrt{2 \cdot \pi \cdot 0.035033}} \cdot e^{\frac{-(6-5.855)^2}{2 \cdot 0.035033}} \approx 1.5788$$

$$p(weight|male) = \frac{1}{\sqrt{2 \cdot \pi \cdot 122.92}} \cdot e^{-\frac{(130 - 176.25)^2}{2 \cdot 122.92}} \approx \mathbf{0.0000059881}$$

$$p(foot \ size|male) = \frac{1}{\sqrt{2 \cdot \pi \cdot 0.9167}} \cdot e^{\frac{-(8-11.25)^2}{2 \cdot 0.9167}} \approx \mathbf{0.0013115}$$

$$p(height|female) = \frac{1}{\sqrt{2 \cdot \pi \cdot 0.097225}} \cdot e^{-\frac{(6-5.4175)^2}{2 \cdot 0.097225}} \approx \mathbf{0.22346}$$

$$p(weight|female) = \frac{1}{\sqrt{2 \cdot \pi \cdot 558.33}} \cdot e^{-\frac{(130 - 132.5)^2}{2 \cdot 558.33}} \approx \mathbf{0.016789}$$

$$p(foot \ size|female) = \frac{1}{\sqrt{2 \cdot \pi \cdot 1.6667}} \cdot e^{-\frac{(8-7.5)^2}{2 \cdot 1.6667}} \approx \mathbf{0.28669}$$

$$P(male) \cdot p(height|male) \cdot p(weight|male) \cdot p(foot size|male)$$

 $\approx 0.5 \cdot 1.5788 \cdot 0.0000059881 \cdot 0.0013115 \approx 6.19947 \cdot 10^{-9}$

$$P(female) \cdot p(height|female) \cdot p(weight|female) \cdot p(foot size|female)$$

 $\approx 0.5 \cdot 0.22346 \cdot 0.016789 \cdot 0.28669 \approx 5.37783 \cdot 10^{-4}$

Since $5.37783 \cdot 10^{-4} > 6.19947 \cdot 10^{-9}$, we predict the sample is female.

REFERENCES:

http://en.wikipedia.org/wiki/Naive Bayes classifier

http://guidetodatamining.com/guide/ch6/DataMining-ch6.pdf