STOCHASTIC VARIATIONAL INEQUALITIES IN A DYNAMICAL FRAMEWORK

Terry Rockafellar

University of Washington, Seattle University of Florida, Gainesville

West Coast Optimization Meeting
University of British Columbia, Vancouver
1 October 2016

Modeling with Variational Inequalities

Targeted applications: here with stochastic ingredients expression of conditions for optimality or equilibrium posed in a Hilbert space, finite- or infinite-dimensional

Variational inequality problem in a space ${\mathcal H}$

For $C \subset \mathcal{H}$ nonempty closed convex, $F: \mathcal{H} \to \mathcal{H}$ continuous, determine $x \in C$ such that $-F(x) \in N_C(x)$ i.e., $\langle F(x), x' - x \rangle \geq 0 \ \forall x' \in C$

Monotone case: F monotone, hence actually maximal monotone $\langle F(x') - F(x), x' - x \rangle \ge 0$ for all x, x'

Motivations in Optimization — Without Stochastics

general V.I.:
$$-F(x) \in N_C(x)$$

Elementary optimization: minimizing g(x) over $x \in C$

$$-\nabla g(x) \in N_C(x) \longrightarrow \text{first-order optimality}$$

To formulate this as a V.I., take $F = \nabla g$

Lagrangian V.I.: for I(y, z) on $Y \times Z$ closed convex

$$-\nabla_{y}I(y,z)\in N_{Y}(y), \quad \nabla_{z}I(y,z)\in N_{Z}(z),$$

To formulate this as a V.I., take

$$x = (y, z), \quad C = Y \times Z, \quad F(x) = (\nabla_y I(y, z), -\nabla_z I(y, z))$$

→ this encompasses KKT conditions in NLP and much more! (also, it can model a saddle-point in a two-person game)

Motivations in Equilibrium — Without Stochastics

Game-type equilibrium: for agents i = 1, ..., m

- agent *i* chooses $x_i \in X_i$ closed convex $\subset \mathbb{R}^{n_i}$
- minimization of f_i(x_i, x_{-i}) over x_i ∈ X_i is desired where x_{-i} stands for the choices of all the other agents
- equilibrium represented by $-\nabla_{x_i} f_i(x_i, x_{-i}) \in N_{X_i}(x_i)$ for all i agent global optimality is replaced here by "stationarity"!

To formulate this as a V.I., take

$$x = (x_1, ..., x_m),$$
 $C = X_1 \times ... \times X_m$
 $F(x) = (\nabla_{x_1} f_1(x_1, x_{-1}), ..., \nabla_{x_m} f_m(x_m, x_{-m}))$

Stochastic Structure with Emerging Information

capturing dynamics in stochastic optimization and equilibrium

Pattern of "decisions" and "observations" in N stages:

$$x_1, \ \xi_1, \ x_2, \ \xi_2, \dots, x_N, \ \xi_N$$
 with $x_k \in \mathbb{R}^{n_k}, \ \xi_k \in \Xi_k$
 $x = (x_1, \dots, x_N) \in \mathbb{R}^n = \mathbb{R}^{n_1} \times \dots \times \mathbb{R}^{n_N}$
 $\xi = (\xi_1, \dots, \xi_N) \in \Xi \subset \Xi_1 \times \dots \Xi_N$

Interpretation: each $\xi \in \Xi$ is an information **scenario**

Nonanticipativity of decisions

$$x_k$$
 can respond to $\xi_1, ..., \xi_{k-1}$ but not to $\xi_k, ..., \xi_N$:
 $x(\xi) = (x_1, x_2(\xi_1), x_3(\xi_1, \xi_2), ..., x_N(\xi_1, \xi_2, ..., \xi_{N-1}))$

Simplifying assumptions here:

- the scenario space Ξ has only finitely many elements ξ
- each scenario $\xi \in \Xi$ has known probability $p(\xi) > 0$
 - $\longrightarrow \Xi$ is a probability space

Function Space Framework for Responses

$$\mathcal{L} = \mathbf{all}$$
 functions from **scenario** space Ξ to **decision** space R^n
 $\Xi \subset \Xi_1 \times \cdots \subseteq N$, $R^n = R^{n_1} \times \cdots \times R^{n_N}$

Response functions as elements of this space:

$$x(\cdot): \xi = (\xi_1, \dots, \xi_N) \mapsto x(\xi) = (x_1(\xi), \dots, x_N(\xi))$$

Expectation inner product giving Hilbert structure:

$$\langle x(\cdot), w(\cdot) \rangle = E_{\xi}[x(\xi) \cdot w(\xi)] = \sum_{\xi \in \Xi} p(\xi) \sum_{k=1}^{N} x_k(\xi) \cdot w_k(\xi)$$

Nonanticipativity subspace:

in terms of scenarios
$$\xi = (\xi_1, \dots, \xi_{k-1}, \xi_k, \dots, \xi_N)$$
, $\mathcal{N} = \{x(\cdot) \in \mathcal{L} \mid x_k(\xi) \text{ depends only on } \xi_1, \dots, \xi_{k-1}\}$ $\longrightarrow x(\cdot)$ is nonanticipative $\iff x(\cdot) \in \mathcal{N}$

Complementary subspace: $\mathcal{M} = \mathcal{N}^{\perp}$ (source of "multipliers")

$$\mathcal{M} = \{ w(\cdot) \in \mathcal{L} \mid E_{\xi_1, \dots, \xi_N}[w_k(\xi_1, \dots, \xi_{k-1}, \xi_k \dots, \xi_N)] = 0 \}$$

Multistage Stochastic Optimization in this \mathcal{L} -Setting

```
Basic constraint beyond nonanticipativity: x(\cdot) \in C

C = \{x(\cdot) \in L \mid x(\xi) \in C(\xi) \subset R^n \text{ for all } \xi \in \Xi\}
```

Convexity assumption: making \mathcal{C} be closed convex $\neq \emptyset$ in \mathcal{L} $\mathcal{C}(\xi)$ closed convex $\neq \emptyset$ in \mathbb{R}^n for every scenario $\xi \in \Xi$

Stochastic programming problem in a classical format

minimize
$$\mathcal{G}(x(\cdot)) = E_{\xi}[g(x(\xi), \xi)]$$
 over all functions $x(\cdot) \in \mathcal{C} \cap \mathcal{N}$

Smoothness assumption: making \mathcal{G} be a \mathcal{C}^1 function on \mathcal{L} $g(\cdot, \xi)$ is a \mathcal{C}^1 function on \mathbb{R}^n for every scenario $\xi \in \Xi$

Directional derivatives: $d\mathcal{G}(x(\cdot))(u(\cdot)) = \langle \nabla \mathcal{G}(x(\cdot), u(\cdot)) \rangle$ the gradient $\nabla \mathcal{G}(x(\cdot)) \in \mathcal{L}$ takes ξ to $\nabla g(x(\xi), \xi)$

Convex minimization case: \mathcal{G} is convex if each $g(\cdot, \xi)$ is convex

Variational Inequalities in the Response Function Space ${\cal L}$

First-order optimality condition in stochastic programming

$$-\nabla \mathcal{G}(x(\cdot)) \in N_{\mathcal{C} \cap \mathcal{N}}(x(\cdot))$$

the V. I. for the gradient mapping $\nabla \mathcal{G}$ and the convex set $\mathcal{C} \cap \mathcal{N}$ this condition is **sufficient** in the case of **convex** minimization

Generalization: replace $\nabla \mathcal{G}$ by any mapping $\mathcal{F}: \mathcal{L} \to \mathcal{L}$ where

$$\mathcal{F}(x(\cdot))$$
 takes ξ to $F(x(\xi),\xi)$ for functions $F(\cdot,\xi):\mathbb{R}^n\to\mathbb{R}^n$

stochastic programming had $F(\cdot,\xi) = \nabla g(\cdot,\xi)$

Continuity assumption: $F(\cdot,\xi)$ continuous making \mathcal{F} continuous

Definition of a stochastic variational inequality, basic form

$$-\mathcal{F}(x(\cdot)) \in N_{\mathcal{C} \cap \mathcal{N}}(x(\cdot))$$

Monotone case: \mathcal{F} is monotone if $F(\cdot, \xi)$ is monotone $\forall \xi \in \Xi$

Stochastic Decomposition

Basic S.V.I. to understand further:
$$-\mathcal{F}(x(\cdot)) \in N_{\mathcal{C} \cap \mathcal{N}}(x(\cdot))$$
 $\mathcal{C} = \{x(\cdot) \mid x(\xi) \in \mathcal{C}(\xi), \, \forall \xi\}, \quad \mathcal{N} = \text{nonanticipativity subspace}$ Calculus of normals: if $\exists \tilde{x}(\cdot) \in \mathcal{N} \text{ with } \tilde{x}(\xi) \in \text{ri } \mathcal{C}(\xi) \, \forall \xi, \text{ then } N_{\mathcal{C} \cap \mathcal{N}}(x(\cdot)) = N_{\mathcal{C}}(x(\cdot)) + N_{\mathcal{N}}(x(\cdot)) \text{ where } N_{\mathcal{N}}(x(\cdot)) = \mathcal{N}^{\perp} = \mathcal{M}$ and moreover $v(\cdot) \in N_{\mathcal{C}}(x(\cdot)) \iff v(\xi) \in N_{\mathcal{C}(\xi)}(x(\xi)) \, \forall \xi$

Definition of a stochastic variational inequality, extensive form

$$x(\cdot) \in \mathcal{N} \text{ and } \exists w(\cdot) \in \mathcal{M}: \quad -F(x(\xi), \xi) - w(\xi) \in N_{C(\xi)}(x(\xi)), \ \forall \xi$$

the basic and extensive forms of are "essentially equivalent"

Meaning in stochastic programming: when
$$F(\cdot, \xi) = \nabla g(\cdot, \xi)$$

 $x(\xi)$ minimizes $g(\cdot, \xi) + \langle \cdot, w(\xi) \rangle$ over $C(\xi)$

 \Rightarrow the multiplier vectors $w(\xi)$ capture the **price of information** having $w(\cdot) \in \mathcal{M}$ is a "martingale-like" condition

Projection Tool for Aggregating Responses

Recalling the structure of the complementary subspaces:

$$\mathcal{N} = \left\{ x(\cdot) \in \mathcal{L} \,\middle|\, x_k(\xi) \text{ depends only on } \xi_1, \dots, \xi_{k-1} \right\}$$

$$\mathcal{M} = \left\{ w(\cdot) \in \mathcal{L} \,\middle|\, E_{\xi_k, \dots, \xi_N} [w_k(\xi_1, \dots, \xi_{k-1}, \xi_k \dots, \xi_N)] = 0 \right\}$$

Aggregation: let $\mathcal{P} = \text{projection onto } \mathcal{N}$

then $\mathcal{I} - \mathcal{P} = \text{projection onto } \mathcal{M}, \text{ since } \mathcal{M} = \mathcal{N}^{\perp}$

Execution relative to the information structure

- Scenarios $\xi = (\xi_1, \dots, \xi_N)$ and $\xi' = (\xi'_1, \dots, \xi'_N)$ are at stage k are information-equivalent if $(\xi_1, \dots, \xi_{k-1}) = (\xi'_1, \dots, \xi'_{k-1})$
- Let $A_k(\xi) = k$ th-stage equivalence class containing ξ
- Then $x(\cdot) = \mathcal{P}(\bar{x}(\cdot))$ has its kth-stage component given by

$$x_k(\xi) = \sum_{\xi' \in A_k(\xi)} p(\xi') \bar{x}_k(\xi') / \sum_{\xi' \in A_k(\xi)} p(\xi')$$

thus $x_k(\xi)$ is the **conditional expectation** of $\bar{x}_k(\xi)$ relative to the kth-stage information-equivalence class containing ξ

Progressive Hedging in Stochastic Programming

Rock. & Wets, 1991: stochastic decomposition realized iteratively

Algorithm statement in the convex case with parameter r>0

Having
$$x^{\nu}(\cdot) \in \mathcal{N}$$
 and $w^{\nu}(\cdot) \in \mathcal{M}$, get $\bar{x}^{\nu}(\cdot) \in \mathcal{L}$ by
$$\bar{x}^{\nu}(\xi) = \operatorname{argmin}_{x \in \mathcal{C}(\xi)} \left\{ g(x, \xi) + x \cdot w^{\nu}(\xi) + \frac{r}{2} ||x - x^{\nu}(\xi)||^2 \right\}$$

Then get $x^{\nu+1}(\cdot) \in \mathcal{N}$ and $w^{\nu+1}(\cdot) \in \mathcal{M}$ by aggregation:

$$x^{\nu+1}(\cdot) = \mathcal{P}(\bar{x}^{\nu}(\cdot)), \qquad w^{\nu+1}(\cdot) = w^{\nu}(\cdot) + r[\bar{x}^{\nu}(\cdot) - x^{\nu+1}(\cdot)]$$

Convergence theorem — when a solution pair $x(\cdot)$, $w(\cdot)$, exists

The sequence $\{(x^{\nu}(\cdot), w^{\nu}(\cdot))\}_{\nu=1}^{\infty}$ generated by the algorithm will always converge to a particular solution pair $(x^*(\cdot), w^*(\cdot))$, with

$$||x^{\nu+1}(\cdot) - x^*(\cdot)||^2 + r^{-2}||w^{\nu+1}(\cdot) - w^*(\cdot)||^2$$

$$\leq ||x^{\nu}(\cdot) - x^*(\cdot)||^2 + r^{-2}||w^{\nu}(\cdot) - w^*(\cdot)||^2$$

Progressive Hedging for Stochastic Variational Inequalities

Recall extensive form of S.V.I:
$$x(\cdot) \in \mathcal{N}, \ w(\cdot) \in \mathcal{M}, \ -F(x(\xi), \xi) - w(\xi) \in \mathcal{N}_{C(\xi)}(x(\xi)) \ \forall \xi \in \Xi$$

Algorithm statement in the monotone case with parameter r > 0

Having $x^{\nu}(\cdot) \in \mathcal{N}$ and $w^{\nu}(\cdot) \in \mathcal{M}$, get $\bar{x}^{\nu}(\cdot) \in \mathcal{L}$ by solving for **each individual scenario** $\xi \in \Xi$ the V.I.

$$-F^{\nu}(x,\xi)\in N_{C(\xi)}(x)$$

with respect to $x \in \mathbb{R}^n$ to get $\bar{x}^{\nu}(\xi)$, where

$$F^{\nu}(x,\xi) = F(x,\xi) + w^{\nu}(\xi) + r[x - x^{\nu}(\xi)].$$

Then get $x^{\nu+1}(\cdot) \in \mathcal{N}$ and $w^{\nu+1}(\cdot) \in \mathcal{M}$ by aggregation:

$$x^{\nu+1}(\cdot) = \mathcal{P}(\bar{x}^{\nu}(\cdot)), \qquad w^{\nu+1}(\cdot) = w^{\nu}(\cdot) + r[\bar{x}^{\nu}(\cdot) - x^{\nu+1}(\cdot)]$$

Convergence theorem — when a solution pair $x(\cdot)$, $w(\cdot)$, exists same result again!

The Role of Monotonicity and its Prospects

Technical basis for the algorithm:

proximal point algorithm applied to a mapping $T: \mathcal{L} \Rightarrow \mathcal{L}$ T is derived from a "twisting" of the ingredients of the S.V.I.

Global convergence: T should be a maximal monotone mapping **Local convergence:** T just maximal monotone locally at solution

Prospects for extended stochastic programming:

- convexity of the cost functions can be weakened to a second-order optimality condition right at a solution
- expectation can be replaced by a risk measure in the objective

Prospects for game models and equilibrium

- game versions of multistage stochastic programming
- local convergence in circumstances of "moderate interaction"
- an augmented Lagrangian technique can actually elicit that!

Some References

- [1] R.T. Rockafellar, R.J -B Wets (2016) "Stochastic variational inequalities: single-stage to multistage," *Mathematical Programming B*, forthcoming.
- [2] R.T. Rockafellar and R.J-B Wets (1991) "Scenarios and policy aggregation in optimization under uncertainty," *Mathematics of Operations Research* 16, 119–147.
- [3] R.T. Rockafellar and R.J-B Wets (1976) "Nonanticipativity and L^1 -martingales in stochastic optimization problems," *Mathematical Programming Study* 6, 170-187.

website: www.math.washington.edu/~rtr/mypage.html