Problem 1

- (a) True. The dominant term in the polynomial is $2n^3$. As n approaches infinity, the lower-degree terms $(-8n^2 + 32n + 9)$ become negligible in comparison to $2n^3$. Also, we have: $2n^3 8n^2 + 32n + 9 \le C \cdot n^3$ for some constant C and sufficiently large n.
- (b) True. For any real $p \geq 0$, n^p is a polynomial function, and e^n is an exponential function. Exponential functions grow faster than any polynomial function. When $n \to \infty$, we have $\lim_{n \to \infty} \frac{n^p}{e^n} = 0$. There exists a constant C > 0 and $n_0 > 0$ such that for all $n > n_0$, we have $n^p \leq C \cdot e^n$. This implies that n^p grows slower than e^n .
- (c) False. For any real $p \ge 0$, as $n \to \infty$: $\lim_{n \to \infty} \frac{e^n}{n^p} = \infty$. This means e^n grows faster than n^p and is not bounded above by n^p multiplied by any constant.
- (d) False. The function \sqrt{n} increases without bound as $n \to \infty$, although it grows slower than linear functions. Since O(1) represents constant functions that do not grow with n, and \sqrt{n} does grow with n, we have $\sqrt{n} \notin O(1)$.

Problem 2

We need to show that there exist positive constants c_1 , c_2 , and n_0 such that for all $n \ge n_0$: $c_1 n^y \le (n+x)^y \le c_2 n^y$. Since x and y are constants and y > 0, we can consider n becomes large.

For the Upper Bound: For $n \geq 1$, we have $(n+x)^y \leq (n+|x|)^y \leq n^y (1+\frac{|x|}{n})^y$. Using the inequality $(1+\varepsilon)^y \leq e^{y\varepsilon}$ for $\varepsilon \geq 0$, we get: $(1+\frac{|x|}{n})^y \leq e^{y\cdot\frac{|x|}{n}} \leq e^{y|x|}$. Thus, we have $(n+x)^y \leq n^y \cdot e^{y|x|} = C_2 n^y$, where $C_2 = e^{y|x|}$ is a constant.

For the Lower Bound: For sufficiently large n, we have $(n+x)^y \geq (n-|x|)^y = n^y \left(1-\frac{|x|}{n}\right)^y$. By using the inequality $(1-\varepsilon)^y \geq 1-y\varepsilon$ for $0<\varepsilon<1$ and y>0: $\left(1-\frac{|x|}{n}\right)^y \geq 1-y\cdot\frac{|x|}{n}$. Therefore, $(n+x)^y \geq n^y\left(1-\frac{y|x|}{n}\right) \geq n^y\left(1-\frac{y|x|}{n_0}\right) = C_1n^y$, for $n\geq n_0$, where $C_1=1-\frac{y|x|}{n_0}$ is positive when $n_0>y|x|$.

We can say that there exist constants $C_1 > 0$ and $C_2 > 0$ such that: $C_1 n^y \le (n+x)^y \le C_2 n^y$, which means that $(n+x)^y = \Theta(n^y)$.

Problem 3

(a) Applying the Master Theorem for recurrences of the form:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

We have a = 16, b = 4, $f(n) = n^2$. Then let's compute $\log_b a$:

$$\log_b a = \log_4 16 = 2$$

We need to compare f(n) with $n^{\log_b a}$: $f(n) = n^2$ and $n^{\log_b a} = n^2$. Since $f(n) = \Theta(n^{\log_b a})$, we are in Case 2 of the Master Theorem, then we have:

$$T(n) = \Theta\left(n^{\log_b a} \cdot \log n\right) = \Theta\left(n^2 \log n\right)$$

(b) Applying the Master Theorem for recurrences of the form:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

We have a = 2, b = 4, $f(n) = n^{1/2}$. Then let's compute $\log_b a$:

$$\log_b a = \log_4 2 = \frac{1}{2}$$

Since $f(n) = \Theta\left(n^{\log_b a}\right)$, we are in Case 2. Then we have $T(n) = \Theta\left(n^{\log_b a} \cdot \log n\right) = \Theta\left(n^{1/2} \log n\right)$.

(c) The recurrence reduces n by 2 each time, we expand the recurrence by repeatedly substituting:

$$T(n) = T(n-2) + n^2 = T(n-4) + (n-2)^2 + n^2 = T(n-6) + (n-4)^2 + (n-2)^2 + n^2 = T(k) + \sum_{i=0}^{t} (n-2i)^2 + n^2 = T(n-2) + (n-2)^2 + n^2 = T(n-2) + (n-2)^2 + n^2 = T(n-2)^2 + n^2 = T(n-2)$$

k is a small constant, and t is n/2 . The sum S is: $S = \sum_{i=0}^t (n-2i)^2$

This sum consists of approximately n/2 terms of decreasing squares starting from n^2 down to a constant. The sum of squares of the first m positive integers is $\sum_{k=1}^m k^2 = \frac{m(m+1)(2m+1)}{6}$. However, our sum is similar to summing squares from n down to a small number. To estimate S, we can consider it proportional to $n^3: S \approx \int_0^{n/2} (n-2x)^2 dx$. Then let's compute the integral:

$$S \approx \int_0^{n/2} (n - 2x)^2 dx = \left[(n - 2x)^3 / (-6) \right]_0^{n/2} = \left(0 - \frac{n^3}{6} \right) = \frac{n^3}{6}$$

The total sum S is proportional to n^3 , so: $T(n) = T(k) + S = \Theta(n^3)$

(d) Applying the Master Theorem for recurrences of the form:

$$T(n) = a T\left(\frac{n}{b}\right) + f(n)$$

we have a = 3, bj = 3, $f(n) = \frac{n}{\log n}$, we calculate $\log_b a = \log_3 3 = 1$. So $n^{\log_b a} = n$.

Then let's compare f(n) with $n^{\log_b a}$: $f(n) = \frac{n}{\log n} = \frac{n^{\log_b a}}{\log n}$ f(n) is slightly smaller than n due to the $\log n$ denominator. Determine which case of the Master Theorem applies: The Master Theorem doesn't directly handle f(n) being smaller than $n^{\log_b a}$ by a logarithmic factor. Since $f(n) = \frac{n}{\log n} = n^{\log_b a}/\log n = o\left(n^{\log_b a}\right)$, but not polynomially smaller. The recurrence resembles $T(n) = 3T\left(\frac{n}{3}\right) + n$, which has a solution $T(n) = \Theta(n\log n)$. Because f(n) is $\frac{n}{\log n}$, which is n divided by $\log n$, the overall T(n) will be $\Theta(n\log\log n)$.

Problem 4

Pseudocodes are also written in matrixmult.py files as code comments.

Pseudocode and runtime analysis

```
function matrix mul(A, B):
Executed: Once when the function is called.
Time Complexity: O(1)
m = number of rows in A
Executed: Each line is executed once.
Time Complexity: O(1) per line.
Total Time: O(1)
k = number of columns in A (also number of rows in B)
Executed: Each line is executed once.
Time Complexity: O(1) per line.
Total Time: O(1)
n = number of columns in B
Executed: Each line is executed once.
Time Complexity: O(1) per line.
Total Time: O(1)
Initialize C as an m \times n matrix filled with zeros
Executed: Once.
Operations: Initializes an m * n matrix.
Time Complexity: O( m * n )
The outer list comprehension runs m times.
The inner list comprehension runs n times for each outer iteration.
Total Time: O( m * n )
for i from 0 to m - 1:
Executed: m times.
Time Complexity: Loop overhead is negligible; loop body determines total time.
for j from 0 to n - 1:
Executed: m * n times (nested inside the i loop).
Time Complexity: Loop overhead is negligible.
sum = 0
Executed: m * n times
Time Complexity: O(1) per execution.
Total Time: O(m * n)
```

for 1 from 0 to k - 1:

Executed: m * n times

Iterations per Execution: k times.

Time Complexity: Loop overhead is negligible

sum = sum + A[i][1] * B[1][j]

Executed: m * n * k times

Time Complexity per Execution: O(1)

Total Time: O(m * n * k)

C[i][j] = sum

Executed: m * n times

Time Complexity per Execution: O(1)

Total Time: O(m * n)

return C

Executed: Once.

Time Complexity: O(1)

Overall runtime is $O(m \times n \times k)$

Theoretical Runtime for Each Matrix Shape

Many Rows x Few Columns Matrix A : m = N , k = 4. Matrix B : k = 4 , $n = \frac{N}{4}$ Total Time Complexity:

$$O(m \times n \times k) = O\left(N \times \frac{N}{4} \times 4\right) = O(N^2)$$

Square Matrices Matrix A:m=N , k=N. Matrix B:k=N , n=N Total Time Complexity:

$$O(m\times n\times k)=O(N\times N\times N)=O(N^3)$$

Few Rows x Many Columns Matrix A : $m=\frac{N}{4},$ k = N. Matrix B : k = N , n = 4N Total Time Complexity:

$$O(m \times n \times k) = O\left(\frac{N}{4} \times 4N \times N\right) = O(N^3)$$

Units: Time is measured in milliseconds (ms).

N	Many Rows x Few Columns (ms)	Square Matrices (ms)	Few Rows x Many Columns (ms)
4	0.009	0.010	0.007
8	0.008	0.039	0.031
16	0.025	0.215	0.201
32	0.108	1.493	1.485
64	0.314	11.147	10.583
128	1.025	67.544	61.873
256	3.331	511.097	521.692
512	13.584	4585.500	4909.575

Table 1: Measured average runtimes of 5 runs for different matrix sizes and shapes

Figure 1: The plot of the relationship between runtime and the input size N. Here I also take log on both x-axis and y-axis.

Analysis of Results

1. Many Rows x Few Columns (Expected $O(N^2)$)

The runtime increases approximately with \mathbb{N}^2 . When \mathbb{N} doubles, the runtime nearly quadruples.

- N = 32 to N = 64: Runtime increases from 0.108 ms to 0.314 ms (about 2.9 times).
- N=64 to N=128: Runtime increases from 0.314 ms to 1.025 ms (about 3.26 times).
- N = 128 to N = 256: Runtime increases from 1.025 ms to 3.331 ms (about 3.25 times).

These results suggest quadratic growth, consistent with $O(N^2)$.

2. Square Matrices (Expected $O(N^3)$)

Runtime increases significantly as N increases. When N doubles, runtime approximately multiplies by 8.

- N = 32 to N = 64: Runtime increases from 1.493 ms to 11.147 ms (about 7.47 times).
- N=64 to N=128: Runtime increases from 11.147 ms to 67.544 ms (about 6.06 times).
- N = 128 to N = 256: Runtime increases from 67.544 ms to 511.097 ms (about 7.57 times).
- N=256 to N=512: Runtime increases from 511.097 ms to 4585.500 ms (about 8.97 times).

Results suggest cubic growth, consistent with $O(N^3)$.

3. Few Rows x Many Columns (Expected $O(N^3)$)

Runtime growth is similar to square matrices. When N doubles, runtime increases by approximately 8 times.

- N = 32 to N = 64: Runtime increases from 1.485 ms to 10.583 ms (about 7.12 times).
- N=64 to N=128: Runtime increases from 10.583 ms to 61.873 ms (about 5.85 times).
- N=128 to N=256: Runtime increases from 61.873 ms to 521.692 ms (about 8.43 times).
- N = 256 to N = 512: Runtime increases from 521.692 ms to 4909.575 ms (about 9.41 times).

Results suggest cubic growth, consistent with $O(N^3)$.

Comparison of Theory and Practice

The potential reasons of divergence between theory and practice:

• Python interpreter overhead.

- System load and background processes.
- Memory caching effects.
- Memory access order impacts caching efficiency.

Problem 5

```
function matching length sub strs(s, c1, c2):
Initialize c1 ranges as result of find ranges(c1)
Initialize c2_ranges as result of find_ranges(c2)
Initialize result as an empty set
for each length in c1_ranges:
    if length exists in c2 ranges:
        c1 starts = c1 ranges[length]
        c2 starts = c2 ranges[length]
        for each c1 start in c1 starts:
            for each c2_start in c2_starts:
                Add (c1 start, c2 start, length) to result
return result
function find ranges(char):
Initialize ranges as an empty dictionary with lists as default values
Initialize i as 0
Initialize n as length of s
while i < n:
if s[i] == char:
start = i
while i < n and s[i] == char:
Increment i by 1
length = i - start
Add start to ranges[length]
else:
```

Increment i by 1 return ranges function matching length sub strs(s, c1, c2): Executed: Once when the function is called. Time Complexity: O(1) Initialize c1 ranges as result of find ranges(c1) Executed: Once (calls find ranges function). Time Complexity: O(n) since find ranges iterates through string s. Initialize c2 ranges as result of find ranges(c2) Executed: Once (calls find ranges function). Time Complexity: O(n) since find ranges iterates through string s. Initialize result as an empty set Executed: Once. Time Complexity: O(1)for each length in c1 ranges: Executed: L1 times, where L1 is the unique lengths in c1 ranges. Time Complexity: O(L1) if length exists in c2 ranges: Executed: L1 times, checking existence in c2 ranges. Time Complexity: O(1) per check Total Time: O(L1) c1_starts = c1_ranges[length] Executed: L1 times, assigning list from dictionary. Time Complexity: O(1) per assignment Total Time: O(L1) c2 starts = c2 ranges[length] Executed: L1 times, assigning list from dictionary. Time Complexity: O(1) per assignment Total Time: O(L1) for each c1 start in c1 starts: Executed: L1 * N1 times, where N1 is average starts per length in c1 ranges. Time Complexity: Loop overhead is negligible; body determines total time.

for each c2_start in c2_starts: Executed: L1 * N1 * N2 times, where N2 is average starts per length in c2 ranges. Time Complexity: Loop overhead is negligible. Add (c1 start, c2 start, length) to result Executed: L1 * N1 * N2 times, adding to result set. Time Complexity per Execution: O(1) Total Time: O(L1 * N1 * N2)return result Executed: Once. Time Complexity: O(1) function find ranges(char): Executed: Once per call. Time Complexity: O(1)Initialize ranges as an empty dictionary Executed: Once. Time Complexity: O(1) Initialize i as 0 Executed: Once. Time Complexity: O(1) Initialize n as length of s Executed: Once. Time Complexity: O(1) while i < n: Executed: n times, iterates through each character in s. Time Complexity: O(n)if s[i] == char: Executed: Up to n times, depending on occurrences of char in s. Time Complexity: O(1) per check Total Time: O(n) start = i Executed: O(1) per match, up to n times. Time Complexity: O(n)

while i < n and s[i] == char:</pre>

Executed: Up to n times (increments until char changes).

Time Complexity: O(n)

Increment i by 1

Executed: n times across matches.

Time Complexity: O(n)

length = i - start

Executed: O(1) per match. Time Complexity: O(n)

Add start to ranges[length]

Executed: O(1) per match, up to n times.

Time Complexity: O(n)

return ranges Executed: Once.

Time Complexity: O(1)

The overall runtime is $O(n + L_1 \times N_1 \times N_2)$ In the worst case, this is $O(n^3)$.

N	Best Case Time (ms)	Worst Case Time (ms)	Random Input Time (ms)
512	0.051	7.216	2.209
1024	0.209	34.161	14.929
2048	0.773	143.085	57.414
4096	3.292	757.593	244.013
8192	17.775	4126.838	1338.515
16384	74.511	790339.969	

Table 2: Measured average runtimes of 5 runs for different input sizes and cases

Collaborators: None

Figure 2: Runtime vs. Input Size for Different Cases with Theoretical Curves