LETTER 1331

Synthesis of 1,1-Organodiboronates via Rh(I)Cl-Catalyzed Sequential Regioselective Hydroboration of 1-Alkynes

Kohei Endo,* Munenao Hirokami, Takanori Shibata*

Department of Chemistry and Biochemistry, Advanced School of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan

Fax +81(3)52863487; E-mail: kendo@aoni.waseda.jp; E-mail: tshibata@waseda.jp

Received 21 January 2009

Abstract: A Rh(I)Cl–DPPB-complex-catalyzed sequential hydroboration of aryl alkynes and aliphatic alkynes was achieved. The reaction proceeded with almost perfect regioselectivity to afford 1,1-organodiboronate compounds in moderate to good yield.

Key words: rhodium, hydroborations, alkynes, regioselectivity

1,1-Organodimetallic compounds are interesting synthetic intermediates and provide unique reactivity. 1,2 We focused on the easy access to 1,1-organodiboronates, the borons of which attach to an sp³ carbon atom, as the new approach to the preparation of 1,1-organodimetallic compounds.³ The boronate compounds can be readily converted into alcohols, amines, and carboxylic acids, and also used for the formation of C-C bond; thus 1,1-organodiboronates would be fascinating synthetic intermediates for the further functionalization.⁴ The precedents reported the formation of multiborylated compounds as a regioisomeric mixture via hydroboration or diboration.⁵ Another approach is the oxidative borylation of alkenylboronates affording 1,1-organodiboronate as a side product.⁶ Hiyama et al. reported the synthesis of 1,1-organodiborylated cyclopropanes and alkenes from 1,1-diboromo compounds.⁴ Here describes the one-step synthesis of 1,1organodiboronates via Rh(I)Cl-catalyzed sequential and regioselective hydroboration.

In general, the hydroboration of 1-alkynes gives alkenylboronates; the sequential regioselective hydroboration of alkenylboronates using pinacolborane providing 1,1-organodiboronates has never been reported.⁷ The conventional reports concerning the hydroboration of C–C multiple bond provides a regioisomeric mixture and reduction product as well as tri- and tetraboronates; thus the control of the regioselectivity and the inhibition of overreaction via oxidative borylation are difficult to achieve. We focused on the Rh-catalyzed hydroboration, which generates Rh–C bond after the insertion of olefinic moiety into Rh–H bond (Scheme 1).

The generation of α -Rh,B intermediate is expected, which is the typical feature of the carbometalation reaction of alkenylboronates.¹ At one hand, the predominant generation of π -benzylic rhodium intermediate (β -Rh,B intermediate)

Scheme 1 Regioselective Rh-catalyzed hydroboration

diate) derived from vinylarenes would be another regioselectivity to 1,2-organodiboronates.

The numerous numbers of studies for Rh-catalyzed hydroboration of alkenes provide the efficient synthetic approaches to organoboronate compounds. 8,9 In contrast, there are a few reports concerning on Rh-catalyzed hydroboration of 1-alkynes providing alkenylboronates. 10 We hypothesized the Rh-catalyzed sequential and regioselective hydroboration of 1-alkynes to form 1,1-organo-diboronates via the generation of α -Rh,B intermediate. The examination of various reaction conditions realized the regioselective formation of 1,1-organo-diboronates. The reaction of α -Rh and pinacolborane (HBpin, commercially available, 2.4 equiv) was carried out in the presence of [RhCl(cod)]₂ (5 mol% Rh) and ligand (6 mol%) in DCE at room temperature (Scheme 2 and Table 1).

Among the various phosphine ligands, DPPB provided the high catalytic activity to give the desired 1,1-organo-diboronate 2a in 67% yield along with the formation of reduction product, 2-phenethylboronate, as a byproduct (entry 4). The appreciated feature of the present reaction is the almost perfect regioselectivity; the formation of α -Rh,B intermediate surpasses the formation of π -benzylic rhodium intermediate. The reaction in the presence of cationic and basic Rh complexes decreased the yield of product (entries 9 and 10).

Scheme 2 Sequential hydroboration of 1-alkyne

SYNLETT 2009, No. 8, pp 1331–1335 Advanced online publication: 08.04.2009 DOI: 10.1055/s-0028-1088131; Art ID: U00509ST © Georg Thieme Verlag Stuttgart · New York 1332 K. Endo et al. LETTER

Table 1 Screening of Reaction Conditions from 1a to 2a

Entry	Rh complex ^a	Ligand ^b	Time (h)	Yield (%) ^c
1	[RhCl(cod)] ₂	DPPM ^d	48	11
2	$[RhCl(cod)]_2$	DPPE ^e	24	4
3	$[RhCl(cod)]_2$	$DPPP^{f}$	48	25
4	$[RhCl(cod)]_2$	$DPPB^g$	24	67
5	[RhCl(cod)] ₂	DPPPent ^h	30	21
6	$[RhCl(cod)]_2$	XANTPHOS ⁱ	24	6
7	$[RhCl(cod)]_2$	Ph_3P^j	24	21
8	$[RhCl(cod)]_2$	$P(OPh)_3^{\ j}$	48	40
9	$[Rh(cod)_2]BF_4$	DPPB	24	43
10	$[Rh(OH)(cod)]_2$	DPPB	24	53

^a Amount of Rh used: 5 mol%.

Under the optimum reaction conditions in hand, the sequential hydroboration of terminal alkynes was examined (Table 2). The reaction of phenylacetylene (1a) gave the desired product 2a in 62% isolated yield (entry 1). The reaction using Rh complex (1 mol\% Rh) afforded the product 2a in 58% yield. The use of arylethynes bearing electron-donating group on benzene ring gave the similar results; p- and o-tolylacetylenes (1b,c) provided the desired products 2b and 2c in 57% and 75% yield, respectively (entries 2 and 3). The reaction of p-, m-, and oethynylanisoles (1d-f) afforded the diboronates 2d-f in moderate yield (entries 4–6). The use of arylethyne bearing halide substituent on benzene ring decreased the yield of product; 4-bromophenylacetylene (1g) provided the diborylated compound 2g in 40% yield (entry 7). The reaction of 1-ethynylnaphthalene (1h) gave the product 2h in 68% yield (entry 8). 4-Ethynylbiphenyl (1i) provided the product 2i in 55% yield (entry 9). The aliphatic alkynes could participate in the reaction. The reaction of 1j gave the product 2j in 59% yield (entry 10). Propargyl ether derivative 1k afforded the product 2k in 51% yield along with the formation of unidentified byproducts (entry 11). The bulky alkyne, 3,3-dimethylbut-1-yne (11), decreased the yield of product **2l** (entry 12). The reaction of alkenylboronate was carried out (Scheme 3). The hydroboration of 3 with HBpin (1.2 equiv) in the presence of [RhCl(cod)]₂ (5 mol% Rh) and DPPB (6 mol%) gave **2a** in 75% yield. Thus, the present reaction from alkynes as substrate is considered to proceed via alkenylboronates. It is notable that the use of alkenylboronate 3 is in favor of

Scheme 3 Rh(I)Cl-catalyzed hydroboration of alkenylboronate

the generation of α -Rh,B intermediate rather than π -benzylic β -Rh,B intermediate. 12

The synthetic applications were examined for the present novel type of 1,1-organodiboronate. The selective homologation reaction enables the synthesis of a wide variety of boronate compounds. The selective monohomologation of **2a** using chloromethyllithium gave the corresponding product **4** in 64% yield (Scheme 4). The reaction using dichloromethyllithium derivatives afforded the corresponding alkenylboronates **5a** and **5b**, respectively, in good yield (Scheme 5). This is the useful approach to the synthesis of multisubstituted alkenylboronates, which can participate in the Suzuki cross-coupling

$$\begin{array}{c} \text{Ph} & \begin{array}{c} \text{CICH}_2\text{Li} \\ \text{(3 equiv)} \end{array} \\ \\ \text{Bpin} & \begin{array}{c} \text{Et}_2\text{O-THF} \\ -78 \text{ °C to r.t.} \end{array} \\ \\ \textbf{2a} & \begin{array}{c} \text{Bpin} \end{array} \\ \\ \textbf{4 64}\% \end{array}$$

Scheme 4 Homologation of 2a using chloromethyllithium

Scheme 5 Homologation of 2a using dichloromethyllithium derivatives

Scheme 6 Homologation of **2a** for allenylboronate synthesis and sequential oxidation

^b Amount of ligand used: 6 mol%.

^c The yield was determined with 1,1,2,2-tetrachloroethane by the integration ratio of ¹H NMR analysis.

^d 1,1-Bis(diphenylphosphino)methane.

^e 1,2-Bis(diphenylphosphino)ethane.

f 1,3-Bis(diphenylphosphino)propane.

g 1,4-Bis(diphenylphosphino)butane.

h 1,5-Bis(diphenylphosphino)pentane.

ⁱ 9,9-Dimethyl-4,5-bis(diphenylphosphino)xanthene.

^j Amount of ligand used: 12 mol%.

Table 2 Synthesis of Various 1,1-Organodiboronates^a

Entry	1-Alkyne		Product		Yield (%) ^b
1	1 a		2a	Bpin	62, 58° (17, 16°)
2	1b	Me	2b	Bpin	57 (24)
3	1c	Me	2c	Me Bpin	75 (16)
4	1d	MeO———	2d	Bpin Bpin	61 (23)
5	1e	MeO	2 e	MeO Bpin	63 (19)
6	1f	OMe	2f	OMe Bpin	64 (18)
7	1g	Br—	2 g	Bpin	40 (24)
8	1h		2h	Bpin	68 (14)
9	1i	Ph—	2i	Bpin	55 (20)
10	1j	$Ph + \sqrt{\sum_{2}}$	2j	Ph Bpin Bpin	59 (12)
11 ^d	1k	Ph ==	2k	Ph Bpin TBSO Bpin	51
12 ^d	11	$\rightarrow =$	21	Bpin	26

^a The reaction of alkyne and HBpin (2.4 equiv) was carried out in the presence of [RhCl(cod)]₂ (5 mol% Rh) and DPPB (6 mol%) in DCE at r.t. for 24 h.

reaction. The reaction using 3-chloro-3-methylbut-1-ynyllithium provided the allenylboronate $\bf 6$ in moderate yield (Scheme 6). The allenylboronate $\bf 6$ bearing an additional boryl group alpha to the C–C double bond was successively oxidized under the typical conditions to give the enone derivative $\bf 7$. This result suggested that the predominant oxidation of allenylboronate moiety proceeded to form enone bearing boronate moiety at α -carbon and subsequent isomerization and protonation took place to furnish enone $\bf 7$ in $\bf 86\%$ yield.

In conclusion, we succeeded in the sequential regioselective hydroboration of terminal alkynes for the facile synthesis of 1,1-organodiboronates in the presence of [RhCl(cod)]₂ and DPPB. The formation of α -Rh,B intermediate surpasses the formation of β -Rh,B intermediate which is the favorable regioselectivity of the Rh-catalyzed hydroboration of vinylarenes. The demonstration of synthetic utility of 1,1-organodiboronate showed the homologation reaction for the synthesis of 1,2-organodiboronate, di- and trisubstituted alkenylboronates, and allenylboro-

^b The isolated yields are described. The yields of the reduction product of alkenylboronate are described in parentheses.

^c The yield using [RhCl(cod)]₂ (1 mol% Rh) and DPPB (1.2 mol%) is described.

^d Unidentified side products were obtained.

1334 K. Endo et al. LETTER

nate. The continuous studies are in progress, and the synthetic applications are in due course in our laboratory.

Typical Procedure of Rh(I)-Catalyzed Sequential Hydroboration

To a mixture of [RhCl(cod)]₂ (12.3 mg, 0.025 mmol, 5 mol% Rh), DPPB (25.6 mg, 0.06 mmol, 6 mol%) in DCE (1 mL) were added phenylacetylene (1a, 1.0 mmol, 102 mg) and pinacolborane (2.4 mmol, 308 mg, 2.4 equiv) at r.t. The reaction mixture was stirred at r.t. for 24 h and passed through a pad of SiO_2 with Et_2O (50 mL). The crude mixture was concentrated to dryness. The purification by SiO_2 column chromatography (5% EtOAc in hexane as eluent) gave the product 2a in 62% yield (0.62 mmol) as colorless oil.

$\hbox{2-Phenyl-1,1-bis} (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) ethane (2a)$

Colorless oil. ¹H NMR (400 MHz, C_6D_6): $\delta = 7.32$ (m, 2 H), 7.14 (m, 2 H), 7.03 (m, 1 H), 3.24 (d, J = 8.3 Hz, 2 H), 1.51 (t, J = 8.3 Hz, 1 H), 1.04 (s, 24 H). ¹³C NMR (100 MHz, C_6D_6): $\delta = 145.1$, 128.8, 125.7, 82.9, 32.1, 24.9, 24.7. ¹¹B NMR (128 MHz, C_6D_6): $\delta = 34.2$. IR (neat): 2978, 1454, 1319, 1139, 971, 851 cm⁻¹. HRMS-FAB (+): m/z calcd for $C_{20}H_{33}B_2O_4^+$: 359.2559 [M + H]⁺; found: 359.2567 [M + H]⁺.

1,1-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-p-tolylethane (2b)

Colorless oil. ¹H NMR (400 MHz, C_6D_6): $\delta = 6.98$ (m, 2 H), 6.70 (m, 2 H), 2.97 (d, J = 8.0 Hz, 2 H), 1.84 (s, 3 H), 1.25 (t, J = 8.0 Hz, 1 H), 0.77 (s, 24 H). ¹³C NMR (100 MHz, C_6D_6): $\delta = 124.1$, 134.6, 129.0, 128.7, 82.9, 31.7, 27.7, 24.6, 21.0. ¹¹B NMR (128 MHz, C_6D_6): $\delta = 33.7$. IR (neat): 2978, 1379, 1319, 1140, 970, 854 cm⁻¹. HRMS–FAB (+): m/z calcd for $C_{21}H_{34}B_2O_4$: 372.2643; found: 372.2629.

1,1-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2- σ -tolylethane (2c)

Pale yellow oil. ^1H NMR (400 MHz, C_6D_6): δ = 7.21 (m, 1 H), 6.77 (m, 3 H), 2.93 (d, J = 8.5 Hz, 2 H), 1.95 (s, 3 H), 1.26 (t, J = 8.5 Hz, 1 H), 0.78 (s, 24 H). ^{13}C NMR (100 MHz, C_6D_6): δ = 142.9, 136.2, 130.2, 128.7, 125.9, 125.8, 82.9, 29.0, 24.8, 19.5. ^{11}B NMR (128 MHz, C_6D_6): δ = 34.5. IR (neat): 2978, 1464, 1315, 1141, 971, 852 cm $^{-1}$. HRMS–FAB (+): m/z calcd for $\text{C}_{21}\text{H}_{35}\text{B}_2\text{O}_4^+$: 373.2716 [M + H] $^+$; found: 373.2733 [M + H] $^+$.

2-p-Methoxyphenyl-1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane (2d)

Colorless oil. ¹H NMR (400 MHz, C_6D_6): $\delta = 7.24$ (m, 2 H), 6.77 (m, 2 H), 3.33 (s, 3 H), 3.22 (d, J = 8.4 Hz, 2 H), 1.50 (t, J = 8.4 Hz, 1 H), 1.07 (s, 12 H), 1.06 (s, 12 H). ¹³C NMR (100 MHz, C_6D_6): $\delta = 158.3$, 137.2, 129.6, 113.9, 82.9, 54.8, 31.3, 24.9, 24.8. ¹¹B NMR (128 MHz, C_6D_6): $\delta = 34.0$. IR (neat): 2978, 1463, 1301, 1140, 972, 854 cm⁻¹. HRMS–FAB (+): m/z calcd for $C_{21}H_{34}B_2O_5$: 388.2592; found: 388.2552.

2-*m*-Methoxyphenyl-1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane (2e)

Pale yellow oil. 1 H NMR (400 MHz, C_6D_6): $\delta = 6.81$ (m, 1 H), 6.70 (m, 2 H), 6.41 (m, 1 H), 3.08 (s, 3 H), 2.97 (d, J = 8.4 Hz, 2 H), 1.75 (t, J = 8.4 Hz, 1 H), 0.79 (s, 12 H), 0.78 (s, 12 H). 13 C NMR (100 MHz, C_6D_6): $\delta = 160.2$, 146.7, 129.3, 121.1, 114.2, 111.6, 82.9, 54.6, 32.3, 24.9, 24.8. 11 B NMR (128 MHz, C_6D_6): $\delta = 34.0$. IR (neat): 2978, 1489, 1317, 1140, 972, 850 cm $^{-1}$. HRMS–FAB (+): m/z calcd for $C_{21}H_{34}B_2O_5$: 388.2592; found: 388.2554.

$\hbox{$2$-$o$-Methoxyphenyl-1,1-bis} (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane (2f)$

Colorless oil. ¹H NMR (400 MHz, C_6D_6): δ = 6.99 (m, 1 H), 6.54 (m, 1 H), 6.27 (m, 1 H), 5.99 (m, 1 H), 2.91 (d, J = 8.0 Hz, 2 H), 2.75 (s, 3 H), 1.28 (t, J = 8.0 Hz, 1 H), 0.55 (s, 12 H), 0.54 (s, 12 H). ¹³C NMR (100 MHz, C_6D_6): δ = 158.1, 133.2,130.0, 126.9, 120.2, 110.2, 82.8, 54.6, 26.9, 24.9, 24.8. ¹¹B NMR (128 MHz, C_6D_6): δ = 33.8; IR (neat): 2978, 1493, 1317, 1140, 972, 852 cm⁻¹. HRMS-FAB (+): m/z calcd for $C_{21}H_{34}B_2O_5$: 388.2592; found: 388.2594.

2-p-Bromophenyl-1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane (2g)

Pale yellow oil. ¹H NMR (400 MHz, C_6D_6): δ = 7.27 (m, 2 H), 6.93 (m, 2 H), 3.03 (d, J = 8.4 Hz, 2 H), 1.35 (t, J = 8.4 Hz, 1 H), 1.02 (s, 24 H). ¹³C NMR (100 MHz, C_6D_6): δ = 144.0, 131.3, 130.6, 119.5, 83.0, 31.4, 24.9, 24.7. ¹¹B NMR (128 MHz, C_6D_6): δ = 34.4. IR (neat): 2978, 1486, 1317, 1072, 971, 852 cm⁻¹. HRMS–FAB (+): m/z calcd for $C_{20}H_{32}B_2BrO_4^+$: 437.1665 [M + H]⁺; found: 437.1678 [M + H]⁺.

$\hbox{$2-$(Naphthalen-1-yl)-1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane (2h) } \\$

Colorless oil. 1 H NMR (400 MHz, C_6D_6): $\delta = 8.12$ (m, 1 H), 7.58 (m, 2 H), 7.47 (m, 1 H), 7.23 (m, 1 H), 7.15 (m, 2 H), 3.63 (d, J = 8.0 Hz, 2 H), 1.64 (t, J = 8.0 Hz, 1 H), 0.98 (s, 12 H), 0.97 (s, 12 H). 13 C NMR (100 MHz, C_6D_6): $\delta = 140.9$, 134.4, 132.6, 128.8, 126.7, 125.8, 125.6, 125.5, 125.4, 124.5, 83.0, 28.9, 24.9, 24.8. 11 B NMR (128 MHz, C_6D_6): $\delta = 33.8$. IR (neat): 2978, 1378, 1323, 1140, 972, 849 cm $^{-1}$. HRMS–FAB (+): m/z calcd for $C_{24}H_{34}B_2O_4$: 408.2643; found: 408.2614.

2-p-Biphenyl-1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethane (2i)

Pale yellow solid; mp 87 °C. ¹H NMR (400 MHz, C_6D_6): δ = 7.43 (m, 6 H), 7.15 (m, 3 H), 3.29 (d, J = 8.3 Hz, 2 H), 1.56 (t, J = 8.3 Hz, 1 H), 1.07 (s, 12 H), 1.06 (s, 12 H). ¹³C NMR (100 MHz, C_6D_6): δ = 144.3, 141.9, 138.8, 129.2, 128.9, 127.3, 127.1, 127.0, 83.0, 31.8, 24.9, 24.7. ¹¹B NMR (128 MHz, C_6D_6): δ = 34.1. IR (neat): 2977, 1486, 1319, 971, 842 cm⁻¹. HRMS–FAB (+): m/z calcd for $C_{26}H_{36}B_2O_4$: 434.2800; found: 434.2795.

5-Phenyl-1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentane (2j)

Colorless oil. ¹H NMR (400 MHz, C_6D_6): δ = 7.27 (m, 2 H), 7.14 (m, 3 H), 2.58 (t, J = 7.6 Hz, 2 H), 1.60 (m, 4 H), 1.32 (m, 2 H), 1.21 (s, 24 H), 0.72 (t, J = 7.6 Hz, 1 H). ¹³C NMR (100 MHz, C_6D_6): δ = 142.9, 128.4, 128.1, 125.4, 82.9, 36.7, 32.1, 31.3, 25.5, 24.8, 24.5. ¹¹B NMR (128 MHz, C_6D_6): δ = 33.9. IR (neat): 2978, 1371, 1315, 1142, 970, 850 cm⁻¹. HRMS–FAB (+): m/z calcd for $C_{23}H_{38}B_2O_4$: 400.2956; found: 400.2942.

3-(*tert*-Butyldimethylsiloxy)-3-phenyl-1,1-bis(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)propane (2k)

Pale yellow oil. ¹H NMR (400 MHz, C_6D_6): δ = 7.51 (m, 2 H), 7.17 (m, 2 H), 7.04 (m, 1 H), 4.87 (t, J = 7.6 Hz, 1 H), 2.47 (m, 1 H), 2.34 (m, 1 H), 1.30 (t, J = 7.6 Hz, 1 H), 1.08 (m, 24 H), 0.99 (s, 9 H), 0.19 (s, 3 H), 0.00 (m, 3 H). ¹³C NMR (100 MHz, C_6D_6): δ = 146.4, 128.3, 127.2, 126.6, 84.84, 84.82, 77.6, 38.1, 26.2, 25.1, 24.9, 24.8, 24.7, 18.5, -4.3, -4.5. ¹¹B NMR (128 MHz, C_6D_6): δ = 34.0. IR (neat): 2978, 1389, 1319, 1092, 970, 849 cm⁻¹. HRMS–FAB (+): m/z calcd for $C_{27}H_{47}B_2O_5^+$: 501.3373 [M – 1]⁺; found: 501.3397 [M – 1]⁺.

3,3-Dimethyl-1,1-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butane (2l)

White solid; mp 67 °C. ¹H NMR (400 MHz, C_6D_6): $\delta = 1.53$ (d, J = 6.8 Hz, 2 H), 1.23 (s, 24 H), 0.84 (s, 9 H), 0.74 (t, J = 6.8 Hz, 1

H). 13 C NMR (100 MHz, C_6D_6): δ = 82.3, 39.2, 31.5, 29.1, 24.7, 24.6. 11 B NMR (128 MHz, C_6D_6): δ = 33.9. IR (neat): 2978, 1389, 1309, 1144, 968, 866 cm $^{-1}$. ESI-HRMS (+): m/z calcd for $C_{18}H_{36}B_2NaO_4^+$: 361.2692 [M + Na] $^+$; found: 361.2686 [M + Na] $^+$.

Acknowledgment

K.E. thanks the Teijin Pharma Award in Synthetic Organic Chemistry, Japan and Waseda University Grant for Special Research Projects.

Reference and Notes

- (1) (a) Handbook of Functionalized Organometallics, Vol. 1 and 2; Knochel, P., Ed.; Wiley-VCH: Weinheim, 2005.
 (b) Hirai, A.; Nakamura, M.; Nakamura, E. J. Am. Chem. Soc. 1999, 121, 8665. (c) Normant, J. F. Acc. Chem. Res. 2001, 34, 640. (d) Dembitsky, V. M.; Ali, H. A.; Srebnik, M. Appl. Organomet. Chem. 2003, 17, 327.
- (2) The 1,1-organodiboronate attached to sp³-carbon center was obtained as a byproduct, see: McIsaac, D. I.; Geier, S. J.; Vogels, C. M.; Decken, A.; Westcott, S. A. *Inorg. Chim. Acta* 2006, 359, 2771.
- (3) The diboration reaction of alkynylboronate or alkenylboronate was reported, which provides a mixture of 1,1,1- and 1,1,2-alkenyltriborylated or 1,1,1- and 1,1,2-alkyltriborylated compounds along with the formation of other types of diborylated compounds, see: Nguyen, P.; Coapes, R. B.; Woodward, A. D.; Taylor, N. J.; Burke, J. M.; Howard, J. A. K.; Marder, T. B. *J. Organomet. Chem.* **2002**, 652, 77.
- (4) (a) Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.; Hiyama, T. *Angew. Chem. Int. Ed.* 2001, 40, 790. (b) Kurahashi, T.; Hata, T.; Masai, H.; Kitagawa, H.; Shimizu, M.; Hiyama, T. *Tetrahedron* 2002, 58, 6381.
 (c) Shimizu, M.; Nakamaki, C.; Shimono, K.; Schelper, M.; Kurahashi, T.; Hiyama, T. *J. Am. Chem. Soc.* 2005, 127, 12506. (d) Shimizu, M.; Schelper, M.; Nagao, I.; Shimoto, K.; Kurahashi, T.; Hiyama, T. *Chem. Lett.* 2006, 35, 1222.
- (5) The hydroboration of alkynes using BH₃·THF complex was reported to give a mixture of monoborylated, 1,1-diborylated, and 1,2-diborylated compounds along with the formation of reduction product, see: (a) Pasto, D. J. J. Am. Chem. Soc. 1964, 86, 3039. (b) Rao, V. V. R.; Agarwal, S. K.; Mehrotra, I.; Devaprabhakara, D. J. Organomet. Chem. 1979, 166, 9.
- (6) The diboration reaction gave the regioisomeric mixture of products, see: Coapes, R. B.; Souza, F. E. S.; Thomas, R. L.; Hall, J. J.; Marder, T. B. Chem. Commun. 2003, 614.
- (7) (a) Brown reported the sequential hydroboration of alkynes using 9-BBN to obtain 1,1-organodiborane intermediates, which was readily converted into primary alcohol via

- protonolysis and oxidation; see: Brown, H. C.; Scouten, C. G.; Liotta, R. *J. Am. Chem. Soc.* **1979**, *101*, 96. (b) Matteson reported the stepwise synthesis of 1,1-organodiboronate via the hydroboration of 1-hexyne using BCl₃ and TMS. The subsequent reaction with 1,3-propanediol afforded the corresponding 1,1-organodiboronate, see: Soundararajan, R.; Matteson, D. S. *Organometallics* **1995**, *14*, 4157.
- (8) Rh(I)-catalyzed hydroboration of alkenes, see: (a) Hayashi, T. In Comprehensive Asymmetric Catalysis, Vol. 1; Jacobsen, E. N.; Phaltz, A.; Yamamoto, H., Eds.; Springer: New York, 1999, 349. (b) Hayashi, T.; Matsumoto, Y.; Ito, Y. J. Am. Chem. Soc. 1989, 111, 3426. (c) Westcott, S. A.; Blom, H. P.; Marder, T. B.; Baker, R. T. J. Am. Chem. Soc. **1992**, 114, 8863. (d) Brown, J. M.; Hulmes, D. E.; Layzell, T. P. J. Chem. Soc., Chem. Commun. 1993, 1673. (e) Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482. (f) Doucet, H.; Fernandez, E.; Layzell, T. P.; Brown, J. M. Chem. Eur. J. 1999, 5, 1320. (g) Chen, A.; Ren, L.; Crudden, C. M. J. Org. Chem. 1999, 64, 9704. (h) Demay, S.; Volant, F.; Knochel, P. Angew. Chem. Int. Ed. 2001, 40, 1235. (i) Murata, M.; Kawakita, K.; Asana, T.; Watanabe, S.; Masuda, Y. Bull. Chem. Soc. Jpn. 2002, 75, 825. (j) Crudden, C. M.; Edwards, D. Eur. J. Org. Chem. 2003, 4695. (k) Crudden, C. M.; Hleba, Y. B.; Chen, A. C. J. Am. Chem. Soc. 2004, 126, 9200. (1) Segarra, A. M.; Daura-Oller, E.; Claver, C.; Poblet, J. M.; Bo, C.; Fernández, E. Chem. Eur. J. 2004, 10, 6456. (m) Moteki, S. A.; Wu, D.; Chandra, K. L.; Reddy, D. S.; Takacs, J. M. Org. Lett. 2006, 8, 3097. (n) Carroll, A.-M.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609. (o) Edwards, D. R.; Hleba, Y. B.; Lata, C. J.; Calhoun, L. A.; Crudden, C. M. Angew. Chem. Int. Ed. 2007, 46, 7799.
- (9) (a) Endo, K.; Hirokami, M.; Shibata, T. *Organometallics* 2008, 27, 5390. (b) Endo, K.; Hirokami, M.; Takeuchi, K.; Shibata, T. *Synlett* 2008, 3231.
- (10) (a) Lee, T.; Baik, C.; Jung, I.; Song, K. H.; Kim, S.; Kim, D.; Kang, S. O.; Ko, J. *Organometallics* **2004**, *23*, 4569.
 (b) Ohmura, T.; Yamamoto, Y.; Miyaura, N. *J. Am. Chem. Soc.* **2000**, *122*, 4990.
- (11) Both of the commercially available HBpin and purified HBpin according to the literature gave the almost same results; the impurities in HBpin was suggested by: Shimada, S.; Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. *Angew. Chem. Int. Ed.* **2001**, *40*, 2168.
- (12) The regioselectivity was confirmed by ¹H NMR, HMQC, and HMBC analyses. The crude products did not include 1,2-diboronate. The oxidation of product 2a under H₂O₂/NaOH conditions did not give 1-phenyl-1,2-ethanediol derived from 1,2-diboronate at all (unidentified products were obtained). The oxidation of 1,2-diboration product was reported, see: Trudeau, S.; Morgan, J. B.; Shrestha, M.; Morken, J. P. *J. Org. Chem.* 2005, 70, 9538.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.