Report zo zimného semestra

Naprogramoval som naivný backtracking algoritmus na zistenie, či má daný graf G acyklické vrcholové regulárne farbenie s k farbami (či platí $a(g) \leq k$) ako súčasť knižnice ba-graphs. Algoritmus postupne generuje všetky regulárne farbenia a skontroluje, či sú acyklické. Kontrola acykliskosti skontroluje každú dvojicu farieb, či neexistuje cyklus obsahujúci vrcholy iba s týmito farbami.

Ak farbenie existuje pre k-regulárny graf G=(V,E), algoritmus ho zvládne nájsť do pár sekúnd, pokiaľ $|V|+k\approx 18$ (okrem zopár vínimok, kde sa čas zvýši na pár minút). V prípade, že farbenie neexistuje pre k-regulárny graf G=(V,E), algoritmus to zistí do pár sekúnd, pokiaľ $|V|+k\approx 13$.

Otestoval som, že pre stromy platí a(G)=2 a že pre grafy G s maximálnym stupňom vrchola $\Delta(G)$ platí:

- 1. $\Delta(G) = 3 \Rightarrow a(G) \leq 4$,
- $2. \ \Delta(G) = 4 \Rightarrow a(G) \le 5,$
- 3. $\Delta(G) = 5 \Rightarrow a(G) \leq 7$,
- $4. \ \Delta(G) = 6 \Rightarrow a(G) \leq 12.$

Na nájdenie acyklického hranového regulárneho farbenia grafu G = (V, E) stačí skonštruovať line grafu L(G) a nájsť acyklické vrcholové regulárne farbenie grafu L(G).

Otestoval som Fiamčíkovu hypotézu, tj. pre k-regulárne grafy G platí $a(G) \leq k+2$, a ak k=3 a zároveň G nie je K_4 ani $K_{3,3}$, tak $a(G) \leq 4$.

V letnom semestry spravím algoritmus založený na SAT solveri.