Iperbolicità di Gromov in più variabili complesse

2* Aprile 2022

Scuola Normale Superiore di Pisa

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo $\Omega \subseteq \mathbb{C}^n, n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$. Come ρ si può prendere $-\delta(x)$ per $x \in \Omega$ e $\delta(x)$ per $x \in \mathbb{C}^n \setminus \Omega$, dove $\delta(x) = \mathrm{dist}(x, \partial\Omega)$.

Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo $\Omega \subseteq \mathbb{C}^n, n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$. Come ρ si può prendere $-\delta(x)$ per $x \in \Omega$ e $\delta(x)$ per $x \in \mathbb{C}^n \setminus \Omega$, dove $\delta(x) = \mathrm{dist}(x, \partial\Omega)$.

Definizione

Dato $p \in \partial\Omega$, lo spazio tangente complesso a $\partial\Omega$ in p è $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p), Z \rangle = 0\}$. Diciamo che Ω è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial \rho^{2}}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_p \partial \Omega$ per ogni $p \in \Omega$.

Domini strettamente pseudoconvessi e metrica di Kobayashi

Setting: fissiamo $\Omega \subseteq \mathbb{C}^n, n \geq 2$ un dominio limitato con bordo C^2 , cioè esiste $\rho \in C^2(\mathbb{C}^n)$ tale che $\Omega = \{\rho(z) < 0\}$. Come ρ si può prendere $-\delta(x)$ per $x \in \Omega$ e $\delta(x)$ per $x \in \mathbb{C}^n \setminus \Omega$, dove $\delta(x) = \mathrm{dist}(x, \partial\Omega)$.

Definizione

Dato $p \in \partial\Omega$, lo spazio tangente complesso a $\partial\Omega$ in p è $H_p\partial\Omega = \{Z \in \mathbb{C}^n \mid \langle \bar{\partial}\rho(p),Z\rangle = 0\}$. Diciamo che Ω è strettamente pseudoconvesso se la forma di Levi

$$L_{\rho}(p;Z) = \sum_{\nu,\mu=1}^{n} \frac{\partial \rho^{2}}{\partial z_{\nu} \partial \bar{z}_{\mu}}(p) Z_{\nu} \bar{Z}_{\mu}, \quad Z = (Z_{1}, \dots, Z_{n}) \in \mathbb{C}^{n}$$

è definita positiva in $H_p \partial \Omega$ per ogni $p \in \Omega$.

Nel seguito, lavoriamo sempre sotto l'ipotesi che Ω sia strettamente pseudoconvesso.

Domini strettamente pseudoconvessi e metrica di Kobayashi

Definizione

Sia $\mathbb D$ il disco unitario in $\mathbb C$, data $f:\mathbb D\longrightarrow\mathbb C^n$ olomorfa indichiamo con Df(z) il differenziale di f in $z\in\mathbb D$. La metrica di Kobayashi su Ω è

$$K(x;Z) = \inf\{|v| \mid v \in \mathbb{C}, \text{ esiste } f: \mathbb{D} \longrightarrow \Omega$$
 olomorfa con $f(0) = x, Df(0)v = Z\},$

che induce la distanza di Kobayashi d_K .

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X, d) uno spazio metrico, dati $x, y \in X$ il prodotto di Gromov con punto base w è $(x, y)_w = \frac{1}{2} (d(x, w) + d(y, w) - d(x, y))$. Dato $\delta \geq 0$, diciamo che X è δ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni $x,y,z,w \in X$.

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X,d) uno spazio metrico, dati $x,y\in X$ il prodotto di Gromov con punto base w è $(x,y)_w=\frac{1}{2}\big(d(x,w)+d(y,w)-d(x,y)\big)$. Dato $\delta\geq 0$, diciamo che X è δ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni $x,y,z,w \in X$.

Fissato $w \in X$, il bordo iperbolico è $\partial_G X$ costruito come classe di equivalenza delle successioni (x_i) che convergono a infinito, cioè tali che $\lim_{i,j\to\infty}(x_i,x_j)=\infty$; due tali successioni $(x_i),(y_i)$ sono equivalenti se $\lim_{i\to\infty}(x_i,y_i)=\infty$.

Domini strettamente pseudoconvessi e iperbolicità di Gromov

Definizione

Sia (X,d) uno spazio metrico, dati $x,y\in X$ il prodotto di Gromov con punto base w è $(x,y)_w=\frac{1}{2}\big(d(x,w)+d(y,w)-d(x,y)\big)$. Dato $\delta\geq 0$, diciamo che X è δ -iperbolico se

$$(x,y)_w \ge (x,z)_w \wedge (y,z)_w - \delta$$
 per ogni $x,y,z,w \in X$.

Teorema

(Balogh-Bonk) (Ω, d_K) è Gromov iperbolico, e il bordo iperbolico $\partial_G \Omega$ può essere identificato con il bordo euclideo $\partial \Omega$. Inoltre, la distanza di Carnot-Carathéodory d_H su $\partial \Omega$ (quella indotta dalla forma di Levi) sta nella classe canonica di distanze su $\partial_G X$, cioè esiste $\varepsilon > 0$ tale che $d_H(a,b) \simeq \exp((a,b)_w)$ per ogni $a,b \in \partial_G X$.

Conseguenze: estensioni al bordo di funzioni olomorfe

Devo trovare un modo rapido di riassumere la proposizione 5.3, con tutte le definizioni e conseguenze (compresi i corollari 6.1 e 6.2).

Definizione

Un orociclo di centro $\tau \in \partial \mathbb{D}$ e raggio R > 0 è

$$E(\tau,R) = \left\{ z \in \mathbb{D} \mid \frac{|\tau - z|^2}{1 - |z|^2} < R \right\}.$$

Definizione

Un orociclo di centro $\tau \in \partial \mathbb{D}$ e raggio R>0 è

$$E(\tau,R) = \Big\{z \in \mathbb{D} \mid \tfrac{|\tau-z|^2}{1-|z|^2} < R\Big\}.$$

Detta ω la distanza iperbolica su \mathbb{D} , si ha

$$E(\tau, R) = \{ z \in \mathbb{D} \mid \lim_{w \to \tau} \left(\omega(z, w) - \omega(0, w) \right) < \frac{1}{2} \log R \}.$$

Definizione

Un orociclo di centro $\tau\in\partial\mathbb{D}$ e raggio R>0 è

$$E(\tau, R) = \left\{ z \in \mathbb{D} \mid \frac{|\tau - z|^2}{1 - |z|^2} < R \right\}.$$

Teorema

(Wolff) Sia $f : \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che per ogni R > 0 vale che $f(E(\tau, R)) \subseteq E(\tau, R)$.

Definizione

Un orociclo di centro $\tau \in \partial \mathbb{D}$ e raggio R > 0 è

$$E(\tau, R) = \left\{ z \in \mathbb{D} \mid \frac{|\tau - z|^2}{1 - |z|^2} < R \right\}.$$

Teorema

(Wolff) Sia $f : \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che per ogni R > 0 vale che $f(E(\tau, R)) \subseteq E(\tau, R)$.

Teorema

(Wolff-Denjoy) Sia $f: \mathbb{D} \longrightarrow \mathbb{D}$ olomorfa e senza punti fissi. Allora esiste un unico $\tau \in \partial \mathbb{D}$ tale che $f^k \longrightarrow \tau$ uniformemente sui compatti.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi iperbolici (è vera quest'affermazione?), valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Karlsson, 2001: sotto opportune ipotesi, che sono soddisfatte dagli spazi iperbolici (è vera quest'affermazione?), valgono dei risultati simili per funzioni 1-lipschitziane dallo spazio in sé.

Usando il teorema di Balogh-Bonk e il fatto che i biolomorfismi sono delle isometrie rispetto a d_K , si ottengono delle generalizzazioni dei teoremi di Wolff e Wolff-Denjoy per i domini strettamente pseudoconvessi.

Strada per la dimostrazione del teorema di BB

• Per una metrica F su Ω che soddisfa certe ipotesi, si ha che esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C,$$

dove
$$g(x,y) = 2\log\left(\frac{d_H(\pi(x),\pi(y)) + h(x) \vee h(y)}{\sqrt{h(x)h(y)}}\right).$$

Strada per la dimostrazione del teorema di BB

• Per una metrica F su Ω che soddisfa certe ipotesi, si ha che esiste $C \geq 0$ tale che per ogni $x,y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C,$$

dove
$$g(x,y) = 2 \log \left(\frac{d_H(\pi(x), \pi(y)) + h(x) \vee h(y)}{\sqrt{h(x)h(y)}} \right).$$

• La metrica di Kobayashi soddisfa le suddette ipotesi.

Strada per la dimostrazione del teorema di BB

• Per una metrica F su Ω che soddisfa certe ipotesi, si ha che esiste $C \geq 0$ tale che per ogni $x,y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C,$$

dove
$$g(x,y) = 2 \log \left(\frac{d_H(\pi(x), \pi(y)) + h(x) \vee h(y)}{\sqrt{h(x)h(y)}} \right).$$

- La metrica di Kobayashi soddisfa le suddette ipotesi.
- Si ha dunque che possiamo confrontare d_K con la funzione g, e da questa disuguaglianza segue il teorema di Balogh-Bonk.

Disuguaglianze per metriche di Finsler

Definizione

Una metrica di Finsler su Ω è una funzione continua $F: \Omega \times \mathbb{C}^n \longrightarrow [0, +\infty)$ tale che F(x; tZ) = |t| F(x; Z) per ogni $x \in \Omega, Z \in \mathbb{C}^n, t \in \mathbb{C}$.

Disuguaglianze per metriche di Finsler

Teorema

Sia F una metrica di Finsler su Ω tale che esistono delle costanti $\varepsilon_0 > 0, s > 0, C_1 > 0, C_2 \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e $Z \in \mathbb{C}^n$ si ha

$$\left(1 - C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1/C_2) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2} \le F(x; Z)
\le \left(1 + C_1 \delta^s(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + C_2 \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2}.$$
(1)

Allora esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ vale

$$g(x,y) - C \le d_F(x,y) \le g(x,y) + C. \tag{2}$$

Disuguaglianze per metriche di Finsler

Idea della dimostrazione: capire quali sono i punti salienti e riassumerli. Richiede un po' di lavoro.

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$\left(1 - C\delta^{1/2}(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2} \le K(x; Z)
\le \left(1 + C\delta^{1/2}(x)\right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)}\right)^{1/2}.$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo;

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo;

con un opportuno biolomorfismo, ci si sposta in \mathbb{C}^n ;

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Traccia della dimostrazione: si localizza a un intorno di un punto del bordo;

con un opportuno biolomorfismo, ci si sposta in \mathbb{C}^n ; stringendo l'immagine del biolomorfismo tra due ellissoidi complessi, uno contenuto e uno che lo contiene, seguono le stime volute.

Proposizione

Per ogni $\varepsilon > 0$ esistono $\varepsilon_0 > 0$ e $C \ge 0$ tali che per ogni $x \in \Omega$ con $\delta(x) < \varepsilon_0$ e per ogni $Z \in \mathbb{C}^n$ si ha

$$(1 - C\delta^{1/2}(x)) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 - \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} \le K(x; Z)$$

$$\le \left(1 + C\delta^{1/2}(x) \right) \left(\frac{|Z_N|^2}{4\delta^2(x)} + (1 + \varepsilon) \frac{L_\rho(\pi(x); Z_H)}{\delta(x)} \right)^{1/2} .$$

Corollario

Esiste $C \geq 0$ tale che per ogni $x, y \in \Omega$ si ha

$$g(x,y) - C \le d_K(x,y) \le g(x,y) + C. \tag{3}$$

Traccia della dimostrazione del teorema di Balogh-Bonk: dati $r_{ij} \geq 0$ tali che $r_{ij} = r_{ji}$ e $r_{ij} \leq r_{ik} + r_{kj}$, allora $r_{12}r_{34} \leq 4((r_{13}r_{24}) \vee (r_{14}r_{23}))$.

Traccia della dimostrazione del teorema di Balogh-Bonk: dati $r_{ij} \geq 0$ tali che $r_{ij} = r_{ji}$ e $r_{ij} \leq r_{ik} + r_{kj}$, allora $r_{12}r_{34} \leq 4((r_{13}r_{24}) \vee (r_{14}r_{23}))$. Siano $x_1, x_2, x_3, x_4 \in \Omega$, poniamo $h_i = \delta(x_i)^{1/2}$, $d_{ij} = d_H(\pi(x_i), \pi(x_j))$ e $r_{ij} = d_{ij} + h_i \vee h_j$.

Traccia della dimostrazione del teorema di Balogh-Bonk: dati $r_{ij} \geq 0$ tali che $r_{ij} = r_{ji}$ e $r_{ij} \leq r_{ik} + r_{kj}$, allora $r_{12}r_{34} \leq 4((r_{13}r_{24}) \vee (r_{14}r_{23}))$. Siano $x_1, x_2, x_3, x_4 \in \Omega$, poniamo $h_i = \delta(x_i)^{1/2}$, $d_{ij} = d_H(\pi(x_i), \pi(x_j))$ e $r_{ij} = d_{ij} + h_i \vee h_j$. Segue che

$$(d_{12} + h_1 \vee h_2)(d_{34} + h_3 \vee h_4)$$

$$\leq 4\Big(\big((d_{13} + h_1 \vee h_3)(d_{24} + h_2 \vee h_4)\big)\big((d_{14} + h_1 \vee h_4)(d_{23} + h_2 \vee h_3)\big)\Big),$$

Traccia della dimostrazione del teorema di Balogh-Bonk: dati $r_{ij} \geq 0$ tali che $r_{ij} = r_{ji}$ e $r_{ij} \leq r_{ik} + r_{kj}$, allora $r_{12}r_{34} \leq 4((r_{13}r_{24}) \vee (r_{14}r_{23}))$. Siano $x_1, x_2, x_3, x_4 \in \Omega$, poniamo $h_i = \delta(x_i)^{1/2}$, $d_{ij} = d_H(\pi(x_i), \pi(x_j))$ e $r_{ij} = d_{ij} + h_i \vee h_j$. Segue che

$$(d_{12} + h_1 \vee h_2)(d_{34} + h_3 \vee h_4)$$

$$\leq 4\Big(\big((d_{13} + h_1 \vee h_3)(d_{24} + h_2 \vee h_4) \big) \big((d_{14} + h_1 \vee h_4)(d_{23} + h_2 \vee h_3) \big) \Big),$$

che grazie al Corollario diventa

$$d_K(x_1, x_2) + d_K(x_3, x_4)$$

$$\leq (d_K(x_1, x_3) + d_K(x_2, x_4)) (d_K(x_1, x_4) + d_K(x_2, x_3)) + C,$$

da cui segue l'iperbolicità di (Ω, d_K) .

Usando la definizione e il Corollario, troviamo che una sequenza (x_i) in (Ω, d_K) converge a infinito se e solo se la sequenza $(\pi(x_i))$ converge e $h(x_i) \longrightarrow 0$, cioè se e solo se (x_i) converge rispetto alla metrica euclidea a un punto di $\partial\Omega$;

Usando la definizione e il Corollario, troviamo che una sequenza (x_i) in (Ω, d_K) converge a infinito se e solo se la sequenza $(\pi(x_i))$ converge e $h(x_i) \longrightarrow 0$, cioè se e solo se (x_i) converge rispetto alla metrica euclidea a un punto di $\partial\Omega$; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite euclideo è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito.

Usando la definizione e il Corollario, troviamo che una sequenza (x_i) in (Ω, d_K) converge a infinito se e solo se la sequenza $(\pi(x_i))$ converge e $h(x_i) \longrightarrow 0$, cioè se e solo se (x_i) converge rispetto alla metrica euclidea a un punto di $\partial\Omega$; inoltre, due successioni convergenti a infinito sono equivalenti se e solo se il loro limite euclideo è lo stesso, e ogni punto del bordo è limite di una successione che converge a infinito. Usando di nuovo il Corollario e la definizione di prodotto di Gromov, con semplici calcoli si trova che

$$d_H(a,b) \approx \exp\left(-(a,b)_w\right)$$
 per ogni $a,b \in \partial \Omega$.

Fine

Grazie per l'attenzione!