Interior-Point Methods for Inequality Constrained Optimisation

Lecture 10, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk)

We will spend the next two lectures on constrained optimisation problems

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } c(x) \left\{ \stackrel{\geq}{=} \right\} 0,$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $c: \mathbb{R}^n \to \mathbb{R}^m$ are C^1 (sometimes C^2) with Lipschitz continuous derivatives.

In practice this assumption is often violated, but algorithms still work.

Merit Functions:

Constrained optimisation addresses two conflicting goals:

- minimize the objective function f(x),
- satisfy the constraints.

To overcome this obstacle, we minimise a composite merit function $\Phi(x,p)$,

- p are parameters,
- (some) minimizers of $\Phi(x,p)$ with respect to x approach those of f(x) subject to the constraints as p approaches a certain set \mathscr{P} ,
- we only use *unconstrained* minimization methods to minimise Φ .

Example 1. The equality constrained problem

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } c(x) = 0$$

can be solved using the quadratic penalty function

$$\Phi(x,\mu) = f(x) + \frac{1}{2\mu} ||c(x)||_2^2$$

as a merit function.

- If $x(\mu)$ minimises $\Phi(x,\mu)$, follow $x(\mu)$ as $\mu \to 0+$.
- Convergence to spurious stationary points may occur, unless safeguards are used.

The Log Barrier Function for Inequality Constraints:

From now on we consider the inequality constrained problem

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } c(x) \geq 0,$$

where the constraint functions c are such that there exist points x for which c(x) > 0 (componentwise).

We use the logarithmic barrier function

$$\Phi(x,\mu) = f(x) - \mu \sum_{i=1}^{m} \log c_i(x)$$

as merit function.

- If $x(\mu)$ minimises $\Phi(x,\mu)$, follow $x(\mu)$ as $\mu \to 0+$.
- Convergence to spurious stationary points may occur, unless safeguards are used.
- All $x(\mu)$ are interior, i.e., $c(x(\mu)) > 0$.

Barrier function $\Phi(x,\mu)=x_1^2+x_2^2-\mu\log(x_1+x_2^2-1)$ for the problem $\min_{x\in\mathbb{R}^2}\,x_1^2+x_2^2\text{ s.t. }x_1+x_2^2\geq 1,$

with $\mu = 10$.

Algorithm 2. [Basic Barrier Function Algorithm]

- 1. Choose $\mu_0 > 0$, set k = 0.
- 2. Until "convergence", repeat
 - i) find x_{start}^k for which $c(x_{start}^k) > 0$,
 - ii) starting from x_{start}^k , use an unconstrained minimization algorithm to find an "approximate" minimizer x^k of $\Phi(x,\mu_k)$,
 - iii) choose $\mu_{k+1} \in (0, \mu_k)$,
 - iv) increment k by 1.

Remarks:

- The sequence $(\mu_k)_{\mathbb{N}}$ has to be chosen so that $\mu_k \to 0$. Often one chooses $\mu_{k+1} = 0.1\mu_k$, or even $\mu_{k+1} = \mu_k^2$.
- One might choose $x_{start}^k = x^{k-1}$, but this is often a poor choice.

From Lecture 7, recall the notion of active set

$$\mathscr{A}(x) = \{i : c_i(x) = 0\}.$$

Correspondingly, the *inactive set* is defined as

$$\mathscr{I}(x) = \{i : c_i(x) > 0\}.$$

Recall that the LICQ (linear independence constraint qualification) holds at x if $\{a_i(x) : i \in \mathcal{A}(x)\}$ is linearly independent.

Theorem 3. [Main Convergence Result] Let $f, c \in C^2$. If the method for computing the sequences $(\mu_k)_{\mathbb{N}}$ and $(x^k)_{\mathbb{N}}$ in Algorithm 2 are such that $\nabla_x \Phi(x^k, \mu_k) \to 0$ and $x^k \to x^*$, and if the LICQ holds at x^* , then

i) there exists a vector of Lagrange multipliers y^* such that (x^*,y^*) satisfies the first order optimality conditions for problem

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } c(x) \ge 0,$$

ii) setting $y_i^k := \frac{\mu_k}{c_i(x^k)}$, we have $y^k \to y^*$.

Algorithms to Minimise $\Phi(x,\mu)$:

Can use

- linesearch methods
 - should use specialized linesearch to cope with singularity of log
- trust-region methods
 - need to reject points for which $c(x_k + s_k) \geqslant 0$
 - (ideally) need to "shape" trust region to cope with contours of the singularity

Generic Barrier Newton System:

The Newton correction s from x in the minimisation of Φ is

$$(H(x,y(x)) + \mu A^{\mathsf{T}}(x)C^{-2}(x)A(x)) s = -g(x,y(x,\mu)),$$

where

- $C(x) = Diag(c_1(x), ..., c_m(x)),$
- $y(x,\mu) = \mu C^{-1}(x)e$ with $e = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^T$, $(y(x,\mu))$ are the estimates of Lagrange multipliers),
- $g(x,y(x,\mu)) = g(x) A^{\mathsf{T}}(x)y(x,\mu)$ (gradient of the Lagrangian),
- $H(x,y(x)) = H(x) \sum_{i=1}^{m} y_i(x,\mu)H_i(x)$.

We also write

$$(H(x, y(x, \mu)) + A^{\mathsf{T}}(x)C^{-1}(x)Y(x, \mu)A(x)) s = -g(x, y(x, \mu)),$$

where $Y(x,\mu) = \text{Diag}(y_1(x,\mu),\ldots,y_m(x,\mu))$, and we call these the *primal* Newton equations.

Potential Difficulty 1: Ill-conditioning of the Hessian of Φ .

Roughly speaking, in the non-degenerate case we have

- m_a eigenvalues $\approx \lambda_i (A_{\mathscr{A}}^{\mathsf{T}} Y_{\mathscr{A}}^2 A_{\mathscr{A}})/\mu_k$,
- $n-m_a$ eigenvalues $\approx \lambda_i(N_{\mathscr{A}}^{\mathsf{T}}H(x_*,y_*)N_{\mathscr{A}})$,

where

 $m_a =$ number of active constraints,

 $\mathscr{A} = \text{active set at } x^*,$

Y = diagonal matrix of Lagrange multipliers,

 $N_{\mathscr{A}}=$ orthogonal basis for null-space of $A_{\mathscr{A}}.$

Thus, the condition number of $\nabla_{xx}\Phi(x_k,\mu_k)$ is of order $\mathcal{O}(1/\mu_k)$, and one may not be able to find minimizer easily.

Potential Difficulty 2: x^{k-1} may be a poor choice of x_{start}^k .

Near x^* we have

$$0 \approx \nabla_x \Phi(x^{k-1}, \mu_{k-1})$$

$$= g(x^{k-1}) - \mu_{k-1} A^{\mathsf{T}}(x^{k-1}) C^{-1}(x^{k-1}) e$$

$$\approx g(x^{k-1}) - \mu_{k-1} A^{\mathsf{T}}_{\mathscr{A}}(x^{k-1}) C^{-1}_{\mathscr{A}}(x^{k-1}) e.$$

Thus, roughly speaking – by just keeping the $\mathcal{O}(\mu^{-1})$ terms – in the non-degenerate case the Newton correction to x^{k-1} for $\Phi(x, \mu_k)$ satisfies

$$\mu_k A_{\mathscr{A}}^{\mathsf{T}}(x^{k-1}) C_{\mathscr{A}}^{-2}(x^{k-1}) A_{\mathscr{A}}(x^{k-1}) s \approx -g(x^{k-1}, y(x^{k-1}, \mu_k))$$

$$= -g(x^{k-1}) + \mu_k A^{\mathsf{T}}(x^{k-1}) C^{-1}(x^{k-1}) e$$

$$\approx (\mu_k - \mu_{k-1}) A_{\mathscr{A}}^{\mathsf{T}}(x^{k-1}) C_{\mathscr{A}}^{-1}(x^{k-1}) e,$$

and using the LICQ (full rank condition),

$$A_{\mathscr{A}}(x^{(k-1)})spprox \left(1-rac{\mu_{k-1}}{\mu_k}
ight)c_{\mathscr{A}}(x^{k-1}).$$

Using this estimate in the Taylor expansion of $c_{\mathscr{A}}$ around x^{k-1} , we find

$$c_{\mathscr{A}}(x^{(k-1)} + s) \approx c_{\mathscr{A}}(x^{(k-1)}) + A_{\mathscr{A}}(x^{(k-1)})s$$

 $\approx \left(2 - \frac{\mu_{k-1}}{\mu_k}\right) c_{\mathscr{A}}(x^{k-1}) < 0, \quad \text{for } \mu_k < \frac{1}{2}\mu_{k-1}.$

Thus, we cannot decrease μ agressively, for otherwise the Newton step becomes infeasible, and we therefore have slow convergence.

Perturbed Optimality Conditions:

Recall that the first order optimality conditions for

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } c(x) \ge 0$$

are the following,

$$g(x) - A^{\mathsf{T}}(x)y = 0$$
, dual feasibility $C(x)y = 0$, complementary slackness $c(x) \geq 0$ and $y \geq 0$.

For $\mu > 0$, let us now consider the "perturbed" equations

$$g(x) - A^{\mathsf{T}}(x)y = 0,$$

 $C(x)y = \mu e,$
 $c(x) \ge 0 \text{ and } y \ge 0.$

Primal-Dual Path-Following:

Primal-dual path-following is based on the idea of tracking the roots of the system of equations

$$g(x) - A^{\mathsf{T}}(x)y = 0,$$

$$C(x)y = \mu e,$$

whilst maintaining c(x) > 0 and y > 0 through explicit control over the variables.

Using Newton's method to solve this nonlinear system, the correction (s, w) to (x, y) satisfies

$$\begin{bmatrix} H(x,y) & -A^{\mathsf{T}}(x) \\ YA(x) & C(x) \end{bmatrix} \begin{bmatrix} s \\ w \end{bmatrix} = -\begin{bmatrix} g(x) - A^{\mathsf{T}}(x)y \\ C(x)y - \mu e \end{bmatrix},$$

where

$$H(x,y) = H(x) - \sum_{i=1}^{n} y_i H_i(x)$$
 and $Y = \text{Diag}(y)$.

Eliminating w, we find

$$(H(x,y) + A^{\mathsf{T}}(x)C^{-1}(x)YA(x))s = -(g(x) - \mu A^{\mathsf{T}}(x)C(x)^{-1}e).$$

These are called the *primal-dual* Newton equations.

Comparing the primal-dual Newton equations with the primal ones (obtained for the minimisation of the barrier function $\Phi(x,\mu)$), the picture is as follows:

$$(H(x, y(x, \mu)) + A^{\mathsf{T}}(x)C^{-1}(x)Y(x, \mu)A(x)) s_p = -g(x, y(x, \mu)), \quad \text{(primal)}$$

$$(H(x, y) + A^{\mathsf{T}}(x)C^{-1}(x)YA(x)) s_{pd} = -g(x, y(x, \mu)), \quad \text{(primal-dual)},$$

where

$$y(x,\mu) = \mu C^{-1}(x)e.$$

The difference is that in the primal-dual equations we are free to choose the y in the left-hand side, wheras in the primal case these are dependent variables. This difference matters!

Potential Difficulty 2 Revisited: $x_{start}^k = x^{k-1}$ can be a good starting point!

The primal method has to choose $y=y(x_{start}^k,\mu_k)=\mu_kC^{-1}(x^{(k-1)})e$, which is a factor μ_k/μ_{k-1} too small for good Lagrange multiplier estimates, because it is $\mu_{k-1}C^{-1}(x^{(k-1)})e$ that converges to y^* for $k\to\infty$ and not $\mu_kC^{-1}(x^{(k-1)})e$.

The primal-dual method on the other hand is allowed to choose the good estimators $y = \mu_{k-1}C^{-1}(x^{(k-1)})e$.

Advantage: Roughly, in the non-degenerate case, the primal-dual correction s_{pd} satisfies

 $\mu_{k-1}A_{\mathscr{A}}^{\mathsf{T}}(x^{k-1})C_{\mathscr{A}}^{-2}(x^{k-1})A_{\mathscr{A}}(x^{k-1})s_{pd} \approx (\mu_k - \mu_{k-1})A_{\mathscr{A}}^{\mathsf{T}}(x_{k-1})C_{\mathscr{A}}^{-1}(x_{k-1})e,$ so that – using the LICQ –

$$A_{\mathscr{A}}(x^{k-1})s_{pd}pprox \left(rac{\mu_k}{\mu_{k-1}}-1
ight)c_{\mathscr{A}}(x^{k-1}).$$

Using this estimate in the Taylor expansion of $c_{\mathscr{A}}$ around x^{k-1} , we have

$$c_{\mathscr{A}}(x^{k-1}+s_{pd}) \approx c_{\mathscr{A}}(x^{k-1}) + A_{\mathscr{A}}(x^{k-1})s_{pd} \approx \frac{\mu_k}{\mu_{k-1}}c_{\mathscr{A}}(x^{k-1}) > 0.$$

Thus, the Newton step is feasible even for agressive decreases of μ , and we have fast convergence.

Primal-Dual Barrier Methods:

Choose a search direction s for $\Phi(x, \mu_k)$ by (approximately) solving the problem

$$\min_{s \in \mathbb{R}^n} g(x, y(x, \mu))^{\mathsf{T}} s + \frac{1}{2} s^{\mathsf{T}} \left(H(x, y) + A^{\mathsf{T}}(x) C^{-1}(x) Y A(x) \right) s,$$

possibly subject to a trust-region constraint, where $y(x,\mu) = \mu C^{-1}(x)e$, so that $g(x,y(x,\mu)) = \nabla_x \Phi(x,\mu)$.

Various possibilities for the choice of y:

- $y = y(x, \mu) \Rightarrow$ primal Newton method,
- occasionally $y=(\mu_{k-1}/\mu_k)y(x,\mu_k)\Rightarrow$ good starting point,
- $y = y_{old} + w$ (where w is the correction to y_{old} from the primal-dual Newton system) \Rightarrow primal-dual Newton method,
- $\max(y_{old} + w, \epsilon(\mu_k)e)$ for "small" $\epsilon(\mu_k) > 0$ (e.g., $\epsilon(\mu_k) = \mu_k^{1.5}$) \Rightarrow practical primal-dual method.

Potential Difficulty 1 Revisited: Ill-conditioning \Rightarrow we can't solve equations accurately.

Roughly speaking, in the non-degenerate case we have

$$\begin{bmatrix} H & -A^{\mathsf{T}} \\ YA & C \end{bmatrix} \begin{bmatrix} s \\ w \end{bmatrix} = -\begin{bmatrix} g - A^{\mathsf{T}}y \\ Cy - \mu e \end{bmatrix}, \Rightarrow \begin{bmatrix} H & -A^{\mathsf{T}}_{\mathscr{A}} & -A^{\mathsf{T}}_{\mathscr{A}} \\ Y_{\mathscr{A}}A_{\mathscr{A}} & C_{\mathscr{A}} & 0 \\ Y_{\mathscr{A}}A_{\mathscr{A}} & 0 & C_{\mathscr{I}} \end{bmatrix} \begin{bmatrix} s \\ w_{\mathscr{A}} \\ w_{\mathscr{I}} \end{bmatrix} = -\begin{bmatrix} g - A^{\mathsf{T}}_{\mathscr{A}}y_{\mathscr{A}} - A^{\mathsf{T}}_{\mathscr{A}}y_{\mathscr{I}} \\ C_{\mathscr{A}}y_{\mathscr{A}} - \mu e \\ C_{\mathscr{I}}y_{\mathscr{I}} - \mu e \end{bmatrix}, \Rightarrow \begin{bmatrix} H + A^{\mathsf{T}}_{\mathscr{I}}C^{-1}_{\mathscr{I}}Y_{\mathscr{A}}A_{\mathscr{I}} & -A^{\mathsf{T}}_{\mathscr{A}} \\ A_{\mathscr{A}} & C_{\mathscr{A}}Y_{\mathscr{A}}^{-1} \end{bmatrix} \begin{bmatrix} s \\ w_{\mathscr{A}} \end{bmatrix} = -\begin{bmatrix} g - A^{\mathsf{T}}_{\mathscr{A}}y_{\mathscr{A}} - \mu A^{\mathsf{T}}_{\mathscr{A}}C^{-1}_{\mathscr{A}}e \\ c_{\mathscr{A}} - \mu Y^{-1}_{\mathscr{A}}e \end{bmatrix}.$$

Note that the terms $C_{\mathscr{I}}^{-1}$ and $Y_{\mathscr{A}}^{-1}$ are bounded as $\mu \to 0$. Therefore, this system is well-behaved even for small μ and in the limit becomes

$$\begin{bmatrix} H & -A_{\mathscr{A}}^{\mathsf{T}} \\ A_{\mathscr{A}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} s \\ w_{\mathscr{A}} \end{bmatrix} = - \begin{bmatrix} g - A_{\mathscr{A}}^{\mathsf{T}} y_{\mathscr{A}} \\ \mathbf{0} \end{bmatrix}$$

Algorithm 4. [Practical PD Method]

- 1. Choose $\mu_0 > 0$ and a feasible $(x_{start}^0, y_{start}^0)$, and set k = 0.
- 2. Until "convergence", repeat
 - i) starting from $(x^k_{start}, y^k_{start})$, use unconstrained minimisation to find (x^k, y^k) such that $\|C(x^k)y^k \mu_k e\| \le \mu_k$ and $\|g(x^k) A^\mathsf{T}(x^k)y^k\| \le \mu_k^{1.00005}$,
 - ii) set $\mu_{k+1} = \min(0.1\mu_k, \mu_k^{1.9999})$,
 - iii) find $(x_{start}^{k+1}, y_{start}^{k+1})$ by applying a primal-dual Newton step from (x^k, y^k) ,
 - iv) if $(x_{start}^{k+1}, y_{start}^{k+1})$ is infeasible, reset $(x_{start}^{k+1}, y_{start}^{k+1})$ to (x_k, y_k) ,
 - v) increment k by 1.

Theorem 5. [Fast Asymptotic Convergence of Algorithm 4] Let $f, c \in C^2$. If a subsequence $\{(x^k, y^k) : k \in \mathbb{K}\}$ of the iterates produced by Algorithm 4 converges to a point (x^*, y^*) that satisfies the second-order sufficient optimality conditions, where $A_{\mathscr{A}}(x^*)$ is a full-rank matrix, and where $(y^*)_{\mathscr{A}} > 0$, then

- i) for all $k \in \mathbb{N}$ large enough the point $(x_{start}^k, y_{start}^k)$ satisfies the termination criterion of step 2.i), so that the inner minimisation loop becomes unnecessary (the algorithm stays on track),
- ii) the entire sequence $((x^k, y^k))_{\mathbb{N}}$ converges to (x^*, y^*) ,
- iii) convergence occurs at a superlinear rate (Q-factor 1.9998).

Other Issues:

- polynomial algorithms for many convex problems
 - linear programming
 - quadratic programming
 - semi-definite programming . . .
- excellent practical performance
- globally, need to keep away from constraint boundary until near convergence, otherwise very slow
- initial interior point: solve

$$\min_{(x,\gamma)} \gamma \text{ s.t. } c(x) + \gamma e \ge 0.$$