

Ayudantía 14 - Teoría de números

29 de noviembre de 2024

Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

- Relación divide a: La relación divide a, denotada por | sobre $\mathbb{Z}\setminus 0$, es tal que $a \mid b$ si y solo si $\exists k \in \mathbb{Z}$ tal que $b = k \cdot a$.
- Identidad de Bézout: Esta identidad enuncia que si $a, b \in \mathbb{Z}$ son distintos de 0 y gcd(a, b) = d, entonces existen $x, y \in \mathbb{Z}$ tales que:

$$a \cdot x + b \cdot y = d$$

- Relación módulo n: La relación módulo n, denotada por \equiv_n sobre \mathbb{Z} , es tal que $a \equiv_n b$ si y solo si $n \mid (b-a)$. Esta relación es de equivalencia.
- Operación módulo n: La operación módulo n entrega el resto de la división por n, se denota por $a \mod n$.
- Teorema:

$$a \equiv_n b \iff a \mod n = b \mod n$$

- Máximo común divisor: Dados a y b diremos que su máximo común divisor denotado como gcd(a, b) es el máximo natural n tal que $n \mid a y n \mid b$.
- Teorema Chino del Resto: el sistema de ecuaciones

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

tiene solución única en \mathbb{Z}_m con $m = \prod_{i=1}^n m_i$.

1 Divisibilidad

Sea $k \in \mathbb{Z}$ tal que k > 0, y considere k números enteros consecutivos x_1, \ldots, x_k . Demuestre que $k \mid \prod_{i=1}^k x_i$.

2 Números primos

1. Sea p un número primo > 2. Demuestre que para cada $a \in \mathbb{Z}_p, a \neq 0$, se tiene que

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$
 o $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$

Nota: \mathbb{Z}_p denota al conjunto de las clases de equivalencia de enteros módulo p. Por ejemplo, $\mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}.$

2. Demuestre que si p > 3 es un número primo, entonces $p^2 \equiv 1 \pmod{24}$.

3 Función φ de Euler

La función $\varphi(n)$ de Euler es una función aritmética¹ que indica la cantidad de enteros positivos menores a n que son coprimos a n, esto es,

$$\varphi(n) = |\{m \in \mathbb{Z} \mid 0 < m < n \land \gcd(n, m) = 1\}|$$

- 1. Una función aritmética f es multiplicativa si cuando n y m son coprimos entonces f(nm) = f(n)f(m), esto es, $\gcd(n,m) = 1 \Rightarrow f(nm) = f(n)f(m)$. Demuestre que φ es multiplicativa.
- 2. Demuestre que $\varphi(n) = n \prod_{p \mid n} \left(1 \frac{1}{p}\right)$

¹Una función aritmética es una función cuyo dominio son los enteros positivos y su rango es cualquier subconjunto de los números complejos.