Roman Shaikh Student number: 18300989 CS7DS3-Applied Statistical Modelling Short-Assignment-2

Question 1:

Suppose y follows a Poisson distribution so that $y \sim (\theta)$ and

$$P(Y = y) = \frac{1}{y!} \theta^{y} \exp(-\theta)$$

A. General Exponential family of distribution form is given by:

$$P(x \mid \eta) = h(x) \exp(\eta^T t(x) - a(\eta))$$

Where η is called "natural parameter"

t(x) is called "sufficient static"

h(x) is called "underlying measure"

 $a(\eta)$ is called "log normalizer"

Given,
$$P(Y = y) = \frac{1}{y!} \exp(-\theta) \theta^y$$

$$= \frac{1}{y!} \exp(y \log \theta - \theta)$$

Therefore, on comparing above equation with standard form, we get

$$a(\eta) = \theta$$
$$\eta^{T} = \log \theta$$
$$h(x) = \frac{1}{y!}$$
$$t(x) = y$$

When we have enough samples / observations y_i $i=1\dots n$, this PDF becomes as follows,

$$P\left(\frac{y}{\theta}\right) = \prod_{i=1}^{n} \frac{1}{y_i!} \exp(-\theta) \theta^{y_i}$$

$$= \frac{1}{\prod_{i=1}^{n} y_{i}!} \exp(-n\theta) \ \theta^{\sum y_{i}}$$

$$= \frac{1}{\prod_{i=1}^{n} y_{i}!} \exp(\sum y_{i} \log \theta - n\theta)$$

Here,

$$\eta(\theta) = log \, \theta \;\;$$
 is Natural parameter.($oldsymbol{\phi}(oldsymbol{ heta})$)

$$a(\theta) = \exp(-n\theta)$$
 is the link function / log normalizer. ($g(\theta)$)

$$h(y) = \frac{1}{\prod_{i=1}^{n} y_i!}$$
 is the normalizing constant. ($h(y)$)

$$t(x) = \sum y_i$$
 is the sufficient static. $(s(y))$

B. We build a Poisson regressing model using

$$\log(y) = \alpha + \beta X + \varepsilon$$

Here y is a count Response variable.

We can also consider y/t (i.e. the incident / response), where t is the time interval or space or grouping.

X is the exploratory variable.

Therefore, we consider y/t as our outcome.

We require, the No. of times a customer defaults a loan - ? | Given some variables.

For this, We first group customers based on defaulter count.

We consider variables like the annual income & No. of Loans of a customer.

We can group this variable in different brackets like:

- Annual income {Low income (0 to 30k), High income (30 to 50k)}
- No. of Loans {<2, 2-5, >5}

The customers with same values of feature variable $X_1, X_2 ... X_n$ belong to same group. i.e. defaulter or not defaulter.

E.g. 0 – No defaulter & 1 - Yes defaulter.

Total Loan	Income group	Defaulter status
<2	High	0
3-5	Low	1
>5	Low	1
>5	High	0
<2	Low	0
•••	•••	

Therefor as from above example we can identify a defaulting customer based on the No. Of loans and the income group.

Effects on analysis:

Interpretation of parameter estimates

$$\log(\mu) = \alpha + \beta X$$

$$\mu = \exp(\alpha + \beta X)$$

$$= \exp(\alpha) \exp(\beta X)$$

- i. When $\beta=0$, we get $\exp(\alpha)=\mu$ i.e. mean of μ [expected count of y is e^{α}]. This implies X is not related to y
- ii. If $\beta > 0$, then $\exp(\beta) > 1$ and expected count E(y|x) is $\exp(\beta)$ times larger than when X = 0
- iii. Similarly, if $\beta < 0$, then $\exp(\beta) < 1$ and expected count E(y|x) is $\exp(\beta)$ times smaller than when X=0

If the time t is not considered, then we can apply linear regression instead of Poisson.

Question 2:

Α.

Latent Variable:

 α = Parameter of the Dirichlet prior on the pre-document topic distribution

 β = Dirichlet prior on the pre-topic word distribution.

 y_i = topic distribution of document i

 z_{ij} = topic of word j in document i

Parameters:

 w_{ii} = specific word

Latent Dirichlet allocation (LDA):

- LDA is a generative model in statics which allows set of observed values to be explained by unobserved groups.
- LDA is an example of topic model, widely used in NLP for classifying words in a document and identifying topics.

The PDF of Dirichlet distribution is given by

$$Dir(\theta \mid \alpha) = \frac{1}{\beta(\alpha)} \prod_{i=1}^K \theta_i^{\alpha_i - 1}$$
, where $\beta(\alpha) = \frac{\prod_{i=1}^k \tau(\alpha_i)}{\tau(\sum_{i=1}^k \alpha_i)}$ and $\alpha = (\alpha_1 \dots \alpha_k)$

Graph for Latent Dirichlet allocation (LDA):

Plate notation for LDA with Dirichlet-distributed topic-word distributions

Explanation:

- i. First, we draw multinomial distribution for each topic $y_i \dots y_k$
- ii. Then for each document we generate a multinomial distribution $y_i \sim D\left(\alpha\right)$
- iii. Follow this by selecting for each work a multinomial distribution parametrized by Y

Below we find the visualization of Dirichlet distribution with varying α :

→ when m = no. of topic concentrated around edges with very less probability, to belong to any of the topics.

Mixture model:

- Mixture model is a probabilistic approach for representing the normally distributed subpopulations within an overall population.
- They generally don't require knowing which subpopulation a data point belongs to , allowing the model to learn the subpopulation automatically.

One-dimensional Model is given by:

$$p(x) = \sum_{i=1}^{K} \phi_i N(x|\mu_i, \sigma_i)$$

$$N(x|\mu_i, \sigma_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(x - \mu_i)^2}{2\sigma_i^2}\right)$$

$$\sum_{i=1}^{K} \phi_i = 1$$

Graph for Mixture Model (Non-Bayesian GMM):

Where,

K → Number of mixture components

 $N \rightarrow$ number of observations

 $z_i = 1 \dots N \rightarrow \text{component of observation i}$

 $x_i = 1 \dots N \rightarrow \text{observation i}$

$$\theta_i = 1 \dots K \rightarrow \{\mu_i, i = 1 \dots K; \sigma_i^2, i = 1 \dots K\}$$

 $\mu_i = 1 \dots K \rightarrow \text{mean component of i}$

Non-Bayesian Gaussian mixture model using plate notation.

$$\sigma_i^2 = 1 \dots K \rightarrow \text{Variance component of i}$$

$$x_i = 1 \dots N \rightarrow N(\mu_{zi}, \sigma_{zi}^2)$$

Differences between these two models:

LDA:

- LDA is not a purely mixture model but a **admixture** model.
- Has more than one latent variable.
- Used to model documents and topics
- For each topic we calculate the Multinomial distribution

Mixture Model:

- Mixture models can be either Gaussian mixture model, multivariate gaussian mixture model OR a categorical mixture model
- MMs use single latent variable
- This are modeled over number of observations.
- There are two main parts in a mixture model a kernel with parameter θ represented by $P(\alpha \mid \theta)$ and a mixing distribution $P(\theta)$