

지열 이용 시스템

구분	신재생에너지 KIER-3			
기술 준비도 (TRL)	Level 4 : 실험실 규모의 소재/부품/시스템 핵심성능 평가			
목적	■ 특허이전 ■ 기술·노하우 이전 ■ 후속과제연계 기타()	1		

연구자	이의준	소속	열에너지변환연구실
주요연구분야	에너지 효율, 신재생에너지	연락처	Tel: 042-860-3514 E-mail: ejlee@kier.re.kr

기술 개요

- 태양전지모듈, 지열교환부 및 지열 히트펌프를 구비한 태양열 지열 융합 기술(PVT-GSHP, Photovoltaic Thermal Ground Source Heat Pump)
- 열매체가 태양열과 지열을 모두 흡수한 후 이를 지열 히트펌프로 유입되도록 함으로써 열효율을 향상 시킴

[그림 1] 지열 히트펌프시스템 난방 사이클

[그림 2] 지열 히트펌프시스템 냉방 사이클

기술적인 차별성

- ① 송풍기로 외기를 유입시켜 열 교환을 진행하는 공기식 태양광열 시스템(PVT_a) 및 15℃의 물을 열원으로 이용한 태양광열 시스템(PVT_w)를 기존의 태양광을 이용한 전력생산 시스템(REF)과 비교한 결과, 전기 효율과 열효율을 합한 총 효율이 기존 태양광 시스템(REF)에서는 12.22%, 공기열원 태양광열 시스템(PVT a)에서는 29.50%, 수열원 태양광열 시스템(PVT w)에서는 68.74%로 나타남([표 1] 참조)
- ② 외부 공기 대신 15℃의 지열이 히트펌프 열원으로 유입에 따른 효과를 시뮬레이션한 결과, 실내 설정 온도가 20℃의 경우 약 45%의 난방 에너지 절감량을 나타낼 수 있음을 확인함([그림 4] 참조)
- ③ PVT-GSHP 시스템의 운전비용은 기존 보일러 시스템 대비 40.4%의 운전비용 절감효과를 나타냄.([표 3] 참조)

	T _a (°C)	$G_t(W/m^2)$	$T_s({}^*\!\mathbb{C})$	$W_p(W)$	$\eta_{pv}(\%)$	W _t (W)	$\eta_{pvt}(\%)$	$\eta_{total}(\%)$
REF	25	700	48.79	139.71	12.22	0	0	12.22
PVT_a	25	700	36.38	149.31	13.06	187.95	16.44	29.50
PVT_w	25	700	19.73	156.42	13.68	629.53	55.05	68.74

[표 1] 태양광열 시스템 효율 비교

[그림 4] 지열 히트펌프 시스템의 난방 에너지 절감량

(Unit: 1000 WON)

Costs	unit	Boiler/ Chiller	PVT-GSHP	
Natural Gas	WON/yr	2,149	67	
Electricity [from grid]	WON/yr	2,479	2,693	
Total	WON/yr	4,628	2,760	

[표 2] PVT-GSHP 시스템의 운전 비용

관련 지적재산권

No.	출원국가	우선일	출원번호	발명의 명칭
1	KR	2012.11.02	2012-0123683	태양에너지와 지열을 융합한 열-전기 복합 생산 시스템
2	KR	2012.02.16	2012-0015832	연료전지와 지열히트펌프를 이용한 복합 냉난방 시스템
3	KR	2012.03.20	2012-0028430	태양광 모듈 및 이를 이용한 에너지 자립형 신선 외기 난방 시스템

연구 논문

No.	논문명	게재지	연구결과
1	연료전지 지열히트펌프 마이크로제 너레이션 IEA ECBCS Annex 54 경 제성 평가 연구	설비공학논문 집	기존 설비 대비 대체 설비비용 산출/에너지 소비량에 따른 유지비용 산출/설비비용 지원정책에 따른 경제성 평가/발전 자원정책에 따른 경제성 평가
2	IEA ECBCS Annex 54 방법에 근거 한 PVT-GSHP 시스템 경제성 평가 연구	한국태양에너 지학회논문집	보일러/칠러 설비 대비 PVT-GSHP 시스템 초기 설치 비용분석/ 에너지 사용요금에 따른 운전비 용 분석/ 인센티브제도에 의한 경제성 분석
3	ICT 기반 지열 히트펌프 시스템 성 능 진단 기술 소개	설비저널	지열히트펌프 기술과 ICT와의 융합화를 통한 원 격 진단 및 제어에 대한 규명

연구 및 생산시설

PVT 실험 모듈

PVT-GSHP 시스템 성능 평가 모듈