Representations of rational Cherednik algebras of Σ_n in positive characteristic

Sheela Devadas

April 27, 2015

Abstract

We study lowest-weight irreducible representations of rational Cherednik algebras associated to the symmetric group Σ_n in characteristic p when p divides n, τ is trivial, $\hbar=1$, and c is generic. We describe the generators of kernel of the contravariant bilinear form on the Verma module in terms of a formal power series that is related to the residues that generate the kernel in the characteristic 0 case; we give a formula for the Hilbert series of the irreducible representation.

1 Introduction and Definitions

In this paper we study lowest-weight representations of rational Cherednik algebras associated to the symmetric group Σ_n in characteristic p dividing n.

Given a vector space \mathfrak{h} , an element $s \in \mathrm{GL}(\mathfrak{h})$ is an reflection if it has finite order and $\mathrm{rank}(1-s)=1$. A finite subgroup of $\mathrm{GL}(\mathfrak{h})$ that is generated by reflections is a reflection group. In particular the symmetric group Σ_n in n variables is a reflection group (the reflections are the transpositions).

Given a reflection group $G \subset GL(\mathfrak{h})$ and a vector space \mathfrak{h} over a field k, we let \mathcal{S} be the set of reflections in G. For each $s \in \mathcal{S}$ we assign a vector $\alpha_s \in \mathfrak{h}^*$ spanning the image of 1-s, and choose $\alpha_s^{\vee} \in \mathfrak{h}$ so that $(1-s)x = \langle \alpha_s^{\vee}, x \rangle \alpha_s$ for all $x \in \mathfrak{h}^*$, where $\langle \cdot, \cdot \rangle$ indicates the pairing between \mathfrak{h} and \mathfrak{h}^* . We choose $\hbar \in k$ a number and $c : \mathcal{S} \to k$ a function so that c(s) = c(s') whenever s, s' are conjugate. Let \overline{c} be the function defined by $\overline{c}(s) = c(s^{-1})$.

Let $T(\mathfrak{h} \oplus \mathfrak{h}^*)$ be the tensor algebra of $\mathfrak{h} \oplus \mathfrak{h}^*$. Then we define the rational Cherednik algebra $H_{\hbar,c}(G,\mathfrak{h})$ as the quotient of $k[G] \ltimes T(\mathfrak{h} \oplus \mathfrak{h}^*)$ by the following relations for all $x, x' \in \mathfrak{h}^*, y, y' \in \mathfrak{h}$:

$$[x, x'] = 0, \quad [y, y' = 0], \quad [y, x] = \hbar \langle y, x \rangle - \sum_{s \in \mathcal{S}} c(s) \langle y, \alpha_s \rangle \langle \alpha_s^{\vee}, x \rangle s.$$

We can give $H_{\hbar,c}(G,\mathfrak{h})$ a \mathbb{Z} -grading by setting $\deg x = 1$ for $x \in \mathfrak{h}^*$, $\deg y = -1$ for $y \in \mathfrak{h}$, and $\deg g = 0$ for $g \in k[G]$. We get the PBW-type decomposition $H_{\hbar,c}(G,\mathfrak{h}) = \operatorname{Sym}(\mathfrak{h}) \otimes_k k[G] \otimes_k \operatorname{Sym}(\mathfrak{h}^*)$ ([4], section 3.2).

In general, for any $\alpha \neq 0$, $H_{\hbar,c}(G,\mathfrak{h}) \simeq H_{\alpha\hbar,\alpha c}(G,\mathfrak{h})$. Then we can assume $\hbar = 0$ or $\hbar = 1$.

Let τ be a representation of G. The Verma module $M_{\hbar,c}(G,\mathfrak{h},\tau)$ is defined as $H_{\hbar,c}(G,\mathfrak{h}) \otimes_{k[G] \ltimes \operatorname{Sym}(\mathfrak{h})} \tau$. Using the PBW decomposition of the Cherednik algebra, we see that $M_{\hbar,c}(G,\mathfrak{h},\tau) = \operatorname{Sym}(\mathfrak{h}^*) \otimes_k \tau$ as a k-vector space; we can give this a \mathbb{Z} -grading in an obvious way. As described in section 2.5 of [1], $M_{\hbar,c}(G, \mathfrak{h}, \tau)$ has a unique maximal graded proper submodule $J_{\hbar,c}(G, \mathfrak{h}, \tau)$ which can be realized as the kernel of the contravariant form $\beta_c: M_{\hbar,c}(G, \mathfrak{h}, \tau) \times M_{\hbar,\overline{c}}(G, \mathfrak{h}^*, \tau^*) \to k$; β_c can be characterized by the property that for all $x \in \mathfrak{h}^*, y \in \mathfrak{h}, f \in M_{\hbar,c}(G, \mathfrak{h}, \tau), g \in M_{\hbar,\overline{c}}(G, \mathfrak{h}^*, \tau^*), v \in \tau, w \in \tau^*$:

$$\beta_c(xf,g) = \beta_c(f,xg), \quad \beta_c(f,yg) = \beta_c(yf,g), \quad \beta_c(v,w) = \langle v,w \rangle.$$

The quotient $L_{\hbar,c}(G, \mathfrak{h}, \tau) = M_{\hbar,c}(G, \mathfrak{h}, \tau)/J_{\hbar,c}(G, \mathfrak{h}, \tau)$ is a finite-dimensional irreducible \mathbb{Z} -graded representation of $H_{\hbar,c}(G, \mathfrak{h})$.

To understand the action of $H_{\hbar,c}(G,\mathfrak{h})$ on $M_{\hbar,c}(G,\mathfrak{h},\tau)$, we can use the PBW decompositions. The action of $\operatorname{Sym}(\mathfrak{h}^*)$ on $M_{\hbar,c}(G,\mathfrak{h},\tau) = \operatorname{Sym}(h^*) \otimes_k \tau$ is by left multiplication; k[G] acts by the diagonal action, and $\operatorname{Sym}(\mathfrak{h})$ acts via *Dunkl operators*. For $y \in \mathfrak{h}$, the Dunkl operator D_y acts on $M_{\hbar,c}(G,\mathfrak{h},\tau)$ by:

$$D_y(f \otimes v) = \hbar \partial_y f \otimes v - \sum_{s \in S} c(s) \frac{(y, \alpha_s)}{\alpha_s} (1 - s).f \otimes s.v.$$

Throughout the paper we let $G = \Sigma_n$ and τ the trivial representation. There is only one conjugacy class of reflections in Σ_n , so c is an element of k for our purposes. We call c generic if we do not specify its value. We will be concerned with the case $\hbar = 1$ and c generic in this paper. (Note that in particular this case means that $\bar{c} = c$, since there is only one conjugacy class of reflections.) The characteristic of the field k is p > 0. We let V be the vector space spanned by y_0, \ldots, y_{n-1} and let \mathfrak{h} be the subspace spanned by $y_i - y_j$ for $i \neq j$; Σ_n acts by permuting indices. Then if x_0, \ldots, x_{n-1} is the dual basis for V^* , we see that \mathfrak{h}^* is the span of x_0, \ldots, x_{n-1} under the relation $x_0 + \cdots + x_{n-1} = 0$; alternatively we can consider \mathfrak{h}^* as the span of x_0, \ldots, x_{n-2} with x_{n-1} defined as $-x_0 - \cdots - x_{n-2}$. For a transposition $s_{ij} \in \Sigma_n$ with i < j, we let the corresponding vector $\alpha_{s_{ij}} \in \mathfrak{h}^*$ be $x_i - x_j$.

In this case, since τ is trivial, $M_{\hbar,c}(G, \mathfrak{h}, \tau)$ is a polynomial ring $k[x_0, \ldots, x_{n-2}]$; we call this polynomial ring A. Similarly we refer to $J_{\hbar,c}(G, \mathfrak{h}, \tau)$ as J, which is an ideal in A, and A/J is the irreducible representation of the Cherednik algebra we desire to find. Because of the definition of the contravariant form β_c , showing that an element f of A is in the kernel of β_c is equivalent to showing that the Dunkl operators corresponding to the basis elements of \mathfrak{h} annihilate f. If D_i is the Dunkl operator corresponding to y_i , the Dunkl operators for the elements of \mathfrak{h} are spanned by $D_i - D_j$ with $i \neq j$.

We assume p > 2 since the case p = 2 is fully characterized in [5].

2 Representations of rational Cherednik algebras of Σ_n in positive characteristic $p\mid n$

In this paper we consider the case where the characteristic p of k divides n. This is related to the case in characteristic 0 where c takes the specific value p/n, as described in [2]. In that case the generators of the ideal J were the residues at infinity of $\frac{1}{z-x_a}\prod_{i=0}^{n-1}(z-x_i)^c$ for each a. To get a similar result in positive characteristic, we must consider formal power series in z with coefficients from A. The formal power series would be $\frac{1}{z^{p+1}}\frac{1}{1-x_az}\prod_{j=0}^{n-1}(1-x_jz)^c$, with the corresponding generator as the coefficient of 1/z. We simplify and truncate the formal power series so we can define it in positive characteristic.

We let $g = \prod_{j=0}^{n-1} (1 - x_j z)$. Let F_a for $a = 0, \ldots, n-1$ be the formal power series in z defined by $F_a = \frac{1}{1-x_a z} \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$ where ${c \choose k} = \frac{c(c-1)\dots(c-k+1)}{k!}$.

Proposition 2.1. Let f_a be the coefficient of z^p in the power series F_a . Then f_a for a = 0, ..., n-1 are annihilated by the Dunkl operators.

Proof. Taking the Dunkl operator of an element of A consists of taking derivatives in the x_i , dividing by polynomials in the x_i , and letting the symmetric group act on the x_i , in addition to linear operations. We see that this means we can apply the Dunkl operators to F_a and check that the coefficient of z^p in the result is 0 to show that the Dunkl operators annihilate the f_a .

We note that each F_a is symmetric in the x_i not including x_a , and that for any transposition $s_{ab} \in \Sigma_n$, $s_{ab}F_a = F_b$. Therefore we need only consider the action of the Dunkl operators on F_0 . We also note that \mathfrak{h} is spanned by $y_i - y_0$ for $0 < i \le n - 1$; then using the fact that F_0 is symmetric in the x_i with $i \ne 0$, we need only show that $(D_1 - D_0)(F_0)$ has z^p coefficient 0 to show that all of the f_a are annihilated by the Dunkl operators.

We also note that adding powers z^k with k > p will not change the value of the z^p coefficient in $(D_1 - D_0)(F_0)$. In particular, we note that since $x_0 + \cdots + x_{n-1} = 0$ divides the coefficient of z in g, we have $z^2 \mid g - 1$. Then since p > 2, we note that $z^{p+1} \mid z^{2p-2} \mid (g-1)^{p-1}$. Therefore we can add multiples of $(g-1)^{p-1}$ when taking the Dunkl operator's action on F_0 , since even when multipled by another power series it cannot contribute anything to the coefficient of z^p . We also note that we can add n times any multiple of F_0 since $n \equiv 0 \mod p$.

Using the allowed manipulations and the fact that $x_{n-1} = -x_0 + \cdots - x_{n-2}$, we see that up to the z^p coefficient,

$$\frac{\partial F_0}{\partial x_1} = \left(\frac{zc}{1-x_{n-1}z} - \frac{zc}{1-x_1z}\right)F_0, \quad \frac{\partial F_0}{\partial x_0} = \left(\frac{zc}{1-x_{n-1}z} + \frac{z(1-c)}{1-x_1z}\right)F_0.$$

We note that when 0 < i, j we have $\frac{1-s_{ij}}{x_i-x_j}(F_0) = 0$. We also see that for $0 < i \le n-1$ we have $\frac{1-s_{ij}}{x_i-x_j}(F_0) = \frac{z}{1-x_{iz}}F_0$.

We also consider $\frac{\partial F_0}{\partial z}$; up to the addition of some multiple of $(g-1)^{p-1}$, this is equal to $\frac{x_0}{1-x_0z}F_0 - \sum_{j\geq 0} \frac{-x_jc}{1-x_jz}F_0$.

Then we see that:

$$(D_{1} - D_{0})(F_{0}) = \frac{\partial F_{0}}{\partial x_{1}} - \frac{\partial F_{0}}{\partial x_{0}} - c\frac{1 - s_{01}}{x_{1} - x_{0}}(F_{0}) + c\sum_{j>0} \frac{1 - s_{0j}}{x_{0} - x_{j}}(F_{0})$$

$$= \left(\frac{zc}{1 - x_{n-1}z} - \frac{zc}{1 - x_{1}z}\right) F_{0} - \left(\frac{zc}{1 - x_{n-1}z} + \frac{z(1 - c)}{1 - x_{1}z}\right) F_{0} + \frac{zc}{1 - x_{1}z} F_{0} + \sum_{j>0} \frac{zc}{1 - x_{j}z} F_{0}$$

$$= \frac{z(c - 1)}{1 - x_{0}z} F_{0} + \sum_{j>0} \frac{zc}{1 - x_{j}z} f_{0}$$

$$= -\frac{z}{1 - x_{0}z} f_{0} + \left(\sum_{j} \frac{zc}{1 - x_{j}z} f_{0}\right) - nzcf_{0}$$

$$= -zf_{0} + \frac{z - x_{0}z^{2}}{1 - x_{0}z} f_{0} - \frac{z}{1 - x_{0}z} f_{0} + \left(\sum_{j} \frac{-zc + x_{j}cz^{2}}{1 - x_{j}z} f_{0} + \frac{zc}{1 - x_{j}z} f_{0}\right)$$

$$= -zf_{0} + \frac{-x_{0}z^{2}}{1 - x_{0}z} f_{0} + \left(\sum_{j} \frac{x_{j}cz^{2}}{1 - x_{j}z} f_{0}\right)$$

$$= -zf_{0} - z^{2} \frac{\partial f_{0}}{\partial z}.$$

Then if b is the coefficient of z^{p-1} in f_0 , we see that the coefficient of z^p in $-zf_0$ is -b, and the coefficient of z^p in $-z^2\frac{\partial f_0}{\partial z}$ is -(p-1)b=b. Therefore the coefficient of z^p in $(D_1-D_0)(F_0)$ is -b+b=0; this means that $(D_1-D_0)(f_0)=0$.

Then as we discussed above, the symmetry of the f_a means that all the f_a are annihilated by the Dunkl operators, as desired.

Proposition 2.2. The f_a for a = 0, ..., n-2 are linearly independent homogeneous polynomials of degree p.

Proof. We recall that $F_a = \frac{1}{1-x_az} \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right) = \left(\sum_{k=0}^{\infty} x_a^k z^k\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$. It is then clear that f_a is a homogeneous polynomial in the x_i of degree p, since the coefficient of z^k for any k in F_a is a homogeneous polynomial in the x_i of degree k for all k (this follows from the fact that this is true in both multiplicands in F_a).

Since c is generic, we can write the f_a as polynomials in c with coefficients from the polynomial ring A; we can therefore consider the 'constant term' of f_a as a polynomial in c. Recall that f_a is the coefficient of z^p in $F_a = \left(\sum_{k=0}^{\infty} x_a^k z^k\right) \left(\sum_{k=0}^{p-1} {c \choose k} (g-1)^k\right)$. Then as polynomials it is clear that $c \mid {c \choose k}$ for all k > 0; therefore when trying to find the constant term of the coefficient of z^p , we can ignore the terms with k > 0 in the second multiplicand. The term for k = 0 is just 1; it is then clear that the constant term (the coefficient of c^0) of f_a is x_a^p .

If $\sum_{a=0}^{n-2} \lambda_a f_a = 0$ for some λ_a rational functions in c, we can multiply through by a least common denominator and assume the λ_a are polynomials in c. We assume that not all of the λ_a are 0. Then we can let e be the smallest nonnegative integer such that there exists an index b with the coefficient of c^e in λ_b nonzero. We can divide all of the λ_a by c^e , so that λ_b for some b must have nonzero constant term.

The constant term of the sum is $\sum_{a=0}^{n-2} \mu_a x_a^p$ where μ_a is the constant term of λ_a . Since the x_a^p for $a=0,\ldots,n-2$ are clearly linearly independent, we see that μ_a must be 0 for $a=0,\ldots,n-2$. Then in particular the constant term μ_b of λ_b is 0, a contradiction. This means that our assumption that not all of the λ_a were 0 is false, so $\lambda_a=0$ for all a.

Then since $\sum_{a=0}^{n-2} \lambda_a f_a = 0$ means all the λ_a are 0, we see that f_a for $a = 0, \dots, n-2$ are linearly independent as desired.

Proposition 2.3. Let $I \subseteq A$ be the ideal generated by f_a for a = 0, ..., n-2. A/I is a complete intersection.

Proof. We write x for the vector $\langle x_0, \ldots, x_{n-2} \rangle$, where the x_i are taken from the rational function field in c over k. Then we can consider f_a as a function on these vectors x for all a. For any rational function u(c), we let $u(c)x = \langle u(c)x_0, \ldots, u(c)x_{n-2} \rangle$.

To show that A/I is a complete intersection, we will show that if $f_a(x) = 0$ for a = 0, ..., n-2, then x = 0, which is an equivalent condition.

By Proposition 2.2, f_a is a homogeneous polynomial in the x_i of degree p for all a. Then for any rational function u(c), we see that $f_a(u(c)x) = u(c)^p f_a(x)$. In particular, if $f_a(x) = 0$, then for any rational function u(c) we have $f_a(u(c)x) = 0$ as well. Therefore if $f_a(x) = 0$ for all a = 0, ..., n-2, then by choosing a particular polynomial v(c) such that $v(c)x_i$ is a polynomial in c for all i = 0, ..., n-2 (a least common denominator), we see that since $f_a(v(c)x) = 0$ that we can just assume the x_i are polynomials in c. We assume that not all of the x_a are 0. Then we can find the smallest nonnegative integer e such that there exists an e0 with the coefficient of e0 in e1 nonzero. Then since e2 and e3 are 0 and e4 nonzero by dividing through by e6.

For any a, we can then consider $f_a(x)$ to be a polynomial in c. Since this is zero, we can in particular consider the constant term, which must be 0. The constant term of the coefficient of z^p is the constant term of x_a^p ; this must be the constant term of x_a raised to the p power. If this is zero, then the constant term of x_a must be 0.

Then if $f_a(x) = 0$ for a = 0, ..., n - 2, we see that the constant terms in all the x_a are 0. In particular, x_b has zero constant term, a contradiction. This means that our assumption that not all of the x_a were 0 is false, so $x_a = 0$ for all a.

Therefore $f_0(x) = \cdots = f_{n-2}(x) = 0$ implies x = 0, so A/I is a complete intersection.

Theorem 2.4. The f_a generate the ideal J; A/J has Hilbert series $\left(\frac{1-t^p}{1-t}\right)^{n-1}$.

Proof. By Propositions 2.2, 2.3, A/I is a complete intersection with n-1 generators of degree p. It then must have Hilbert series $h_{A/I}(t) = \left(\frac{1-t^p}{1-t}\right)^{n-1}$. By Proposition 2.1, the generators of I are annihilated by the Dunkl operators, so $I \subseteq J$.

By Proposition 3.4 in [1], we see that the Hilbert series of A/J is $\left(\frac{1-t^p}{1-t}\right)^{n-1}h(t^p)$ for some polynomial h with nonnegative integer coefficients; since $I\subseteq J$, we see that $h_{A/I}(t)\geq h_{A/J}(t)$ coefficientwise; however by this restriction of the form of $h_{A/J}(t)$, we see that the only possible choice for h is h(t)=1. Therefore $h_{A/I}(t)=h_{A/J}(t)$, so I=J and these n-1 generators generate the whole ideal J.

References

- [1] Martina Balagović, Harrison Chen, Representations of rational Cherednik algebras in positive characteristic, *J. Pure Appl. Algebra* **217** (2013), no. 4, 716–740, arXiv:1107.0504v2.
- [2] Tatyana Chmutova, Pavel Etingof, On some representations of the rational Cherednik algebra, Representation Theory of the American Mathematical Society 7.24 (2003), 641–650, arXiv:0303194v2
- [3] Sheela Devadas, Steven V. Sam, Representations of rational Cherednik algebras of G(m,r,n) in positive characteristic, *Journal of Commutative Algebra* **6.4** (2014), 525–559, arXiv:1304.0856v2
- [4] Pavel Etingof, Xiaoguang Ma, Lecture notes on Cherednik algebras, arXiv:1001.0432v4.
- [5] Carl Lian, Representations of Cherednik algebras associated to symmetric and dihedral groups in positive characteristic, arXiv:1207.0182v1.