PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-090150

(43) Date of publication of application: 04.04.1995

(51)Int.CI.

CO8L 27/06 B32B 27/30 C08K C09C 1/36 // C01G 23/00

(21)Application number : 04-266503

(71)Applicant: TAKIRON CO LTD

(22)Date of filing:

08.09.1992

(72)Inventor: YAGI TOSHIYUKI

UEDA HEIZO MATSUI MIKIO

TAKAHASHI KATSUMI

(54) COLORED ANTISTATIC MOLDING AND COLORED ANTISTATIC LAMINATE (57)Abstract:

PURPOSE: To improve antistatic properties and strength without impairing the color of a pigment by incorporating a specific conductive substance and the pigment into a vinyl chloride resin composition.

CONSTITUTION: Particles of TiO2 having a length of 1-10µm and an aspect ratio of 3 or higher are coated with a conductive layer doped with 1-50wt.% tin oxide to obtain a conductive substance. A vinyl chloride resin composition is mixed with at least 20wt.% the substance and an azo, benzidine, indanthrene, phthalocyanine, or other pigment. This mixture is molded into a sheet to obtain colored antistatic moldings 2, 2 having a thickness of 0.1-1.5mm. The moldings 2. 2 are laminated to both sides of a 2-30mm-

thick core layer 1 made of a (chlorinated) vinyl chloride resin composition to obtain the title laminate.

LEGAL STATUS

[Date of request for examination]

11.08.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3308606

[Date of registration]

17.05.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出國公開發号

特開平7-90150

(43)公開日 平成7年(1995)4月4日

(51) Int.CL*	織別起号	庁内整理番号	Ρī	技術沒示魯所
COSL 27/06	070 /3121	77 1 122-21 m · 3	- •	60 (17 50/4 /RE17)
B 3 2 B 27/30	101	8115-4F		
C 0 8 K 9/02	KJE			
C 0 9 C 1/36	PAV			
# C 0 1 G 23/00	C			
			密查請求	京諸県 苗界項の数2 FD (全 6 円)
(21)出職番号	特顯平4−266503		(71)出廢人	000108719
				タキロン株式会社
(22)出窗日	平成4年(1992)9月8日			大阪府大阪市中央区安土町2丁目3番13号
			(72) 発明者	八木 鍛之
				大阪市中央区安土町2丁目3番13号 タキロン株式会社内
			(72) 発明者	
			(12/)0916	大阪市中央区安土町2丁目3番13号 タキ
				ロン株式会社内
			(72) 発明者	
			(12,76,712	大阪市中央区安土町2丁目3番13号 夕斗
				ロン株式会社内
				最終質に続く

(54) 【発明の名称】 着色制電性成形体および着色制電性積層体

(57)【要約】

【目的】 塩化ビニル制脂組成物に導電性物質と顔料を 提入することによって制電性成形体を得る場合に、顔料 の元々の色が導電性物質の色によって損なわれずにその まま表面に現れる制電性成形体を提供する。シートなど の制電性成形体において、表面に現れる色を同一にして 種々の電気抵抗値を容易に設定することのできるように する。

【構成】 制電性成形体でなるシート2は、塩化ビニル 制脂組成物に、酸化チタンの表面に酸化器でなる導電層 を形成した白色の導電性物質と、顔料とを混入したもの である。

【特許請求の範囲】

【語求項1】 塩化ビニル樹脂組成物に、酸化チタンの 表面に酸化銀からなる導電層を形成した導電性物質と顔 料とが復入されていることを特徴とする者色制電性成形

1

【請求項2】 塩化ビニル樹脂組成物または塩素化塩化 ピニル樹脂組成物により形成されて着色された芯層の少 なくとも片面に、塩化ビニル樹脂組成物と酸化テタンの 表面に酸化銀からなる導電層を形成した導電性物質と顔 性積層体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、塩化ビニル樹脂組成物 を主体とする着色された副電性成形体およびその副電性 成形体を制管層に利用した制電性積層体に関する。

[0002]

【従来の技術】近時、電子機器分野における静電気障害 を防止することなどのために制電性シートが貧用されて いる。中でも塩化ビニル樹脂組成物を主体とする制電性 20 シートは、経済性に使れ、しかも塩化ビニル制脂に特有 の耐薬品性の食さを発揮させることができることなどの ために今後も需要が増大する傾向にある。

【①①①3】従来、塩化ビニル樹脂組成物を主体とする 制電性シートとして、塩化ビニル樹脂組成物でなるペー ス基材の表面に導電性塗料の塗布層を形成したものが知 **られていた。**

【0004】他方、最近では電子機器の外ケースなどを 種々の色に着色してカラー化 (カラーリング) すること 塗布層が形成される塩化ビニル樹脂のベース基材に顔料 を混入することによりベース基材を着色したものが知ら れている。

[0005]

【発明が解決しようとする課題】しかしながら、上掲し た若色された制電性シートにおいては、塩化ビニル樹脂 のベース基材の表面に導電性塗料の塗布層を形成するも のであるため、ベース基材に顔料を添加して着色しても ベース基材の色が導電性塗料の塗布層によって損なわれ るので、制電性シートの表面色を所望の色に定めること 40 が困難であった。

【①①①6】本発明は上述の問題に鑑み、塩化ビニル樹 脂組成物に導電性物質と顔斜とを混入することを基本と してなされたものであり、安価であって、顔料による君 色が導電性物質の色によってあまり損なわれずにそのま ま表面に現れ、しかも表面に現れる色を容易に同一にし て種々の電気抵抗値を容易に設定することのできる制電 性成形体を提供することを目的とする。また、制電機能 を有ししかも強度などの機能を容易に付加することので きる制電性積層体を提供することを目的とする。

[0007]

【課題を解決するための手段】請求項1の発明による者 色副電性成形体は、塩化ビニル樹脂組成物に、酸化チタ ンの表面に酸化館からなる導電層を形成した導電性物質 と顔料とが混入されているものである。

【①①08】請求項2の発明による着色制電性積層体 は、塩化ビニル樹脂組成物または塩素化塩化ビニル樹脂 組成物により形成されて着色された芯層の少なくとも片 面に、塩化ビニル樹脂組成物と酸化チタンの表面に酸化 料とからなる若色された制電層を積暑してなる若色制電 10 錦からなる導電層を形成した導電性物質と顔料とからな る若色された制電層を積層してなるものである。

[00009]

【作用】請求項1の発明の着色制電性成形体によると、 顔斜とともに塩化ビニル樹脂組成物に混入される導電性 物智が略白色であるので、当該者色制電性成形体の表面 には顔料により着色される色がそのまま現れ、しかも導 弯性物質の混入量を変えて電気抵抗値を変えても表面色 は傾斜により着色された色になる。また、顔料を変える ことで種々の色を有する成形体が得られる。

【①①10】請求項2の発明の着色制電性成形体による と、芯磨と制電暑との着色がよく似た色相になり端面や 断面の色が同じとなる。また、表面の制電層により制電 効果が発揮される。さらに、芯層の配合組成や厚みを変 えることによって補煙体全体の機能を変えることができ

【①①11】本発明の着色制電性成形体の主体となる塩 化ビニル樹脂組成物は、塩化ビニル樹脂、安定剤、滑 剤。可塑剤などの添加物を所定の割合で一般的処方に準 じて配合したものであり、請求項1の発明による着色制 が多々行われているけれども、それらには導営性塗料の 30 営性成形体はそのような塩化ビニル樹脂組成物と導営性 物質と顔料とが所定の割合で混入された成形体組成物を 板状などの種々の形に成形したものである。

> 【()()12】導電性物質としては、白色である酸化チタ ンの表面に酸化臨あるいはアンチモンをドーピングした 酸化鋁でなる導電層を形成したものを好適に用いること ができ、このような導電性物質は薄い青味がかった日色 を呈している。中でも針状、繊維状、谷状、その他これ ちと類似形状の酸化チタンの表面に酸化器あるいはアン チモンをドーピングした酸化銀でなる導電層を形成した ものを用いると、塩化ビニル樹脂組成物中に混入された 針状などの導電性物質が絡まって個々の導管性物質相互 の連続性が高まる。このため、少量を配合するだけでも 優れた漆電性が発揮され、また、配合量を少し変えるだ けで導電性を大幅に調節することが可能である。とのこ とにより、たとえば当該着色制電性成形体をシート状に 成形した場合には、ベース基材となる塩化ビニル樹脂層 に導電性物質が混入されたことによって生じる胎性が最 小限度に抑制され、ペース基材である塩化ビニル樹脂層 の可撓性が損なわれにくい。また、酸化チタンが上述の 50 ような形状をなしているので、その導電性物質自体が結

強微能としての機能を発揮する。上記針状酸化チタンと しては長さ1~10 µm。アスペクト比3以上の形状の ものを用いることが好ましい。酸化鋁は酸化チタンに対 し1~50重量%、好ましくは5~30重置%の割合で 酸化チタン表面を覆うように用いられている。そして、 酸化鶏にアンチモンをドービングすることで導電性能を □ 向上させ得るが、酸化アンチモンとして30重量%(酸 化錦に対して)以下にして酸化アンチモンによる過度の 着色を防止する必要がある。このような略白色の導電性 5.0%含有させることで1.010意以下の制電性を付与す ることができる。

3

【①①13】顔斜としては塩化ビニル樹脂に一般に用い られているものを用いることができる。たとえばアゾ 孫、ベンジジン系、スレン系、フタロシャーニン系など が用いられる。このような顔料の配合量は所塑の色や濃 度などに応じて種々変更される。

【10014】上記の如き、塩化ビニル樹脂組成物と白色 の導電性物質と顔料とを混合した成形体組成物は、カレ ンダーロールでシート状に成形した後に、熱圧プレスし 20 て着色制電性平板に成形されたり、押出機にて着色制電 性平板や断面丸形あるいは繭形などの着色制電性溶接棒 やし型の者色調電性アングルなどに成形される。

【0015】さらに、図1のように塩化ビニル樹脂製あ るいは塩素化塩化ビニル樹脂製の厚さ2~30mm程度 の芯層1の両面に、厚さり、1~1.5mm程度の上記 者色制電性シート2、2を熱プレスあるいはラミネート などにより満層一体化して着色制電性積層体にすること もできる。芯層 1 としては塩化ビニル樹脂組成物あるい*

* は塩素化塩化ビニル樹脂組成物に同種の顔料を加え、音 色制電性シート2と略同一の色相に調色されていて、準 面を見ただけでは区別がつきにくいようにしておくこと が好ましい。この着色芯層に用いられる塩化ビニル樹脂 組成物としては、成形体組成物に用いたものと同じ組成 物でもよいし、別の組成物でもよい。特に、芯層1に特 別な機能を待たせ着色制電性積層体としての機能を向上 させる別の組成物を用いることが好ましい。たとえば耐 熱性を向上させるために塩素化塩化ビニル樹脂からなる 物質は成形体組成物中に2.0%以上、好ましくは2.5~ 10 組成物、MBSなどの精強剤を添加して筒撃性を向上さ せた組成物、充填剤を添加して剛性を向上させた組成物 などを用いて各種機能を付加し、積層体としての耐熱 性、衝撃性、剛性を向上させることができる。 [0016]

> 【実能例】次に本発明の着色制電性成形体が板状である 場合の実施例を説明する。

【0017】平均重合度1300の塩化ビニル樹脂(P VC) 100部に対し、錦系安定剤(マレート錦)3 部、滑削0.5部、針状導電性酸化チタン45部、各種 顔斜を下記の表しに示す割合で混合し、この成形体組成 物を170℃でロール混練し、混線後にプレスすること によって厚みlmmのシートを成形し各試料の表面抵抗 と色相と色差を測定した。その結果を表しに示す。な お、表1の表面抵抗は三菱油化製の「ハイレスター」を 用いて測定し、色差は日本電色工業(株)製の「25-9 ()」を用いて測定した。また、表1中の色差し、a, りはC!Eで1976年に勧告された色差色による。 [0018]

【表】】

試料番号		1	2	3	4
塩化ビニル樹脂 組成物		103. 5	103.5	103. 5	103.5
導電性物質		45	45	45	45
难 料	アゾ系	0.1			0.03
	ベンジジ ン系		0.2		
	スレン系			9.1	0.1
表面抵抗 Ω		107	107	107	107
色相		赤紫	貴縁	青	青緑
色差	L,	72.8	75.5	69.3	72.8
	а	5. 0	- 6.3	5.6	1. 2
	b	- 0.9	8. 4	-10.5	- 4.5

【()() 19】表 1より、各試料の表面抵抗は 1() とな り、制電性を有していることが判る。また、色钼および 色差表示から判るように各色相が顔斜を変えることによ り変化しており、 本発明に係る君色制電板が得られるこ 50 Pが800、1000、1300、2000のもの(C

とが判る。

【① () 2 () 】塩化ビニル樹脂には、種々の平均重合度 (バーP:以下、Pと記す)のものがあるが、そのうち

特開平7-90150

1 量はすべて56.8%) を用い、それぞれの成形体組 成物中に15~30%の範囲で所定量の上記導電性物質 を提入して作製した厚さ 1 mmのシート状の各試料の表

* した。 表2にその結果を示す。 [0021]

【表2】

面抵抗と、一部の試料の耐磨耗性(重量減少度)を測定半

【①022】ところで、一般に塵芥の付着を抑制するの に十分な制電性を発揮し得る表面抵抗値として望ましい 値は1010以下、好ましくは100 Ω以下であるとい ましい表面抵抗値は1010Ω以下であり、表2より試料 6、10, 13、14, 16~18のものが制電性シー トとしての用途に適する。したがって、導電性物質は2 0%以上混入する必要がある。ただし、50%より多い と混入量に見合う導電性の向上が得にくくなるので、2 0~50%の範囲であることが好ましい。

【0023】さらに衰2より塩化ビニル樹脂の平均重合 度Pが変われば表面抵抗が変化し、特にPが1300以 上になると表面抵抗が急激に低下していることが刺る。 なせ表面抵抗が低下するかについての明確な解析結果は 40 【表3】

存在しない。また、耐磨耗性においてもPが1300以 上になると急激に良くなっていることも判る。したがっ て、Pが1300以上の塩化ビニル樹脂を用い、導電性 われている。このことより制電性シートに要求される望 30 物質を2.5%以上含有した成形体組成物であれば、平板 や異形品としたときの裏面抵抗が10°Q以下となり、 さらに耐磨耗性も良好となり好ましく用いられる。

> 【0024】次に、図1に示す精層体の試料を表3に示 す配合割合で作製した。各組成物をO. 5 mmのカレン ダーシートとなし、制電層を厚さ1mm、芯層を厚さ3 mmとなるように各シートを重ね合わせ、厚さ5 mmの 試料を熱圧プレスで作製し、各物性値を測定した。その 結果を表3に合わせて示す。

[0025]

	•					ð
試料番号		19	2 0	2 1	2 2	2 3
制電層		番号 4の試料と同じ				
: 选图	PVC C-PVC Sn系安定剂 Pb系安定剂 滑剤 可塑剤 7クリル系補強剤	100 3 0.5 1.0 20	3 0.5 1.0	100 4 0.5	番号14の試 料で厚み5 mmの試料を 作成	塩化ビニル 樹脂組成物 で厚み5 mm の試料を作 成
	金金		9			,
安面抽	表面抵抗 Ω		10°	10*	10"	1012以上
引發	強き kg/cm²	550	639	584	515	700
曲げ弾性率 10*kgf/cm²		4.3	5. 5	5. 2	5.3	3.7
717-1	衝擊値 kg /cm²	26. 1	3.7	3. 7	4. 1	3.5
熱変派	%温度 ℃	70.2	69. 6	93.5	66. 8	62

【0026】表3より、アクリル系補強剤を添加した芯 層よりなる綺層体は、アイゾット衡整値が格段に高く、 高衡型性制電性積層体となっていることが判る。また、 塩素化塩化ビニル樹脂 (C-PVC) を使用した芯層よ 温で使用できることが判る。雲母を添加した芯層よりな るものは、曲げ弾性率が若干向上していることも判る。 さらに、導弯性物質として針状導弯性酸化チタンを使用 しているので、一般塩化ビニル樹脂板に比べて衝蛇性、 耐熱性に優れていることも判る。このように芯層に機能 性を付与すれば、制電性能を保持したまま各種の機能を 綺層体に付与することができる。

[0027]

【発明の効果】請求項1の発明の着色制管性成形体は、 **澤電性を与えるために不可欠の成分である澤電性物質に 40 【図面の簡単な説明】** 略白色のものを用いたので、導弯性物質とともに塩化ビ ニル樹脂組成物に混入される顔料による者色の色がその まま表面に現れる。そのため、顔料の混入量や種類を変 えて表面色を所望の色に容易に定めることができるとい う効果がある。

【0028】また、婆窩性物質が略白色であるために婆 電性物質の混入量を変えて電気抵抗値を調節しても顔料 による者色の色がそのまま表面に現れるので、同じ色の 異なる電気抵抗値を持つ制電性成形体を容易に得ること りなる論層体は、熱変形温度が90℃以上であるので高 30 が可能であり、しかも表面色を変えずに電気抵抗値を大 幅に下げて優れた制電作用を容易に付与することができ るという効果がある。

> 【①)29】請求項2の発明の者色制電性積層体は、表 層の制電層により制電性が付与され、積層体の強度や耐 熱性は范围により付加されて真用的な積層体が得られ る。また、制電器は略白色の導電性物質を用いているの で頗斜により望みの色が得られ、その色に合わせて芯層 を調色でき、全体として略同一色になされた箱層体が得 **ちれる。**

【図1】請求項2の発明の実施例による者色制電性荷層 体を示す断面図である。

【符号の説明】

- 1 港層
- 2 制電性シート (制電層)

(6)

特開平7-90150

[図1]

フロントページの続き

(72)発明者 高橋 勝美 大阪市中央区安土町2丁目3番13号 タキ ロン株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ___

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.