FEUILLE 4: GROUPES SYMÉTRIQUES

Exercice 1. Déterminer l'ensemble A des éléments σ de S_4 qui vérifient $\sigma(2) = 3$. Est-ce un sous-groupe de S_4 ?

Exercice 2. Montrer que le groupe S_n est non abélien quel que soit $n \geq 3$.

Exercice 3. Soient $2 \le k \le n$ deux entiers. Combien S_n possède-t-il de k-cycles?

Exercice 4. Soient $2 \le k \le n$ deux entiers, et $c = (a_1 \dots a_k) \in S_n$ un k-cycle.

- 1. Donner l'inverse c^{-1} de c.
- 2. Quel est le plus petit entier $\ell \geq 1$ tel que $c^{\ell} = \operatorname{Id}$?
- 3. Montrer que c peut s'écrire comme produit de k-1 transpositions, et en déduire sa signature $\varepsilon(c)$.
- 4. Montrer que toute permutation de S_n peut s'écrire comme produit de transpositions. Cette décomposition est-elle toujours unique?

Exercice 5. 1. Décomposer en produit de cycles à supports disjoints les permutations suivantes :

$$a = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 7 & 1 & 6 & 2 & 3 & 5 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 2 & 6 & 8 & 5 & 1 & 3 & 4 \end{pmatrix}$$

$$c = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 1 & 8 & 6 & 2 & 4 & 3 & 7 \end{pmatrix}$$

$$d = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 1 & 8 & 9 & 7 & 3 & 2 & 4 & 6 \end{pmatrix}$$

- 2. En déduire la signature de chacune d'elles.
- 3. Calculer a^{10}, b^{11}, c^{12} et d^{13} .
- 4. Donner le nombre d'inversions de a, b, c et d.

Exercice 6 (Autour de la signature). On note sgn : $S_n \to \{-1,1\}$ la signature.

1. On considère les deux permutations suivantes :

$$e = (1 \ 8 \ 3)(4 \ 3 \ 2 \ 5)(1 \ 6)(7 \ 6 \ 8 \ 4)(5 \ 7 \ 2),$$
 $f = (1 \ 8 \ 2 \ 5)(1 \ 4)(3 \ 2 \ 7 \ 6 \ 8)(2 \ 3 \ 8)(4 \ 5).$

- (a) Calculer la signature de chacune des deux
- (b) Décomposer e et f en produit de cycles à supports disjoints.
- 2. Soit $\tau \in S_n$. Calculer la signature de τ^{-1} en fonction de celle de τ .

- 3. On note $A_n := \{ \sigma \in S_n, \operatorname{sgn}(\sigma) = 1 \}.$
 - (a) Démontrer que A_n est un sous-groupe. Appelé groupe alterné.
 - (b) Déterminer A_3 et A_4 (indication: on pourra réfléchir aux décompositions en cycles possibles).
 - (c) Soit τ une transposition. Démontrer que l'application $f_{\tau}: \sigma \mapsto \tau \cdot \sigma$ vérifie $f_{\tau}^2 = \text{Id}$ (pour $\sigma \in S_n$). Que dire de la décomposition de $f_{\tau}(\sigma)$ en produit de cycles à supports disjoints?
 - (d) Montrer que, pour toute permutation σ , on a $\operatorname{sgn}(f_{\tau}(\sigma)) = -\operatorname{sgn}(\sigma)$.
 - (e) En déduire que, pour tout entier $n \ge 2$, on a $\#A_n = \frac{n!}{2}$.

Exercice 7. Soient $2 \le k \le n$ deux entiers, et $(a_1...a_k) \in S_n$ un k-cycle.

- 1. Montrer que, pour toute permutation $\sigma \in S_n$, on a $\sigma(a_1...a_k)\sigma^{-1} = (\sigma(a_1), \sigma(a_2), \ldots, \sigma(a_k))$.
- 2. En déduire que si deux cycles $c, d \in S_n$ sont deux cycles de même longueur, alors il existe $\sigma \in S_n$ tel que $c = \sigma d\sigma^{-1}$.
- 3. Que peut-on dire de deux permutations $\sigma, \tau \in S_n$ dont les décompositions en produit de cycles à supports disjoints comportent un même nombre de cycles de chaque longueur ?
- 4. Pour $\sigma = (2\ 4)(3\ 8)(7\ 6\ 5)$ et $\tau = (6\ 2)(1\ 3)(4\ 8\ 7)$, trouver un élément $\phi \in S_8$ tel que l'on ait $\tau = \phi \sigma \phi^{-1}$.

Exercice 8 (Générateurs de S_n). Soit $n \geq 2$ un entier.

- 1. Démontrer que tout élément de S_n peut s'écrire comme produit de transpositions de la forme $(1\ 2), (1\ 3), \ldots, (1\ n)$.
- 2. Démontrer que tout élément de S_n peut aussi s'écrire comme produit de transpositions de la forme $(1\ 2), (2\ 3), \ldots, (n-1\ n)$.
- 3. Démontrer que tout élément de S_n peut s'écrire comme produit d'éléments de la forme $(1\ 2)$ ou $(1\ 2\ ...\ n)$.

Exercice 9 (Centre de S_n). Soit $n \ge 1$ un entier. On note $Z(S_n) = \{\sigma \in S_n : \forall x \in S_n, \sigma x = x\sigma\}$, le centre de S_n . Montrer que $Z(S_n) = Id$ pour $n \ge 3$. Que se passe-t-il pour n = 1 et n = 2?