Mirror Descent

Axel Böhm

October 19, 2021

About norms

2 Bregman distances

Mirror descent

Recap on (sub)-gradient descent

 \diamond When we used a norm $\|\cdot\|$ we meant the 2-norm, i.e.

$$||x||_2 = \left(\sum_{i=1}^d x_i^2\right)^{1/2}.$$

In gradient descent we used Lipschitz continuity:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

(Lead to a complexity of $\mathcal{O}(\frac{L}{k})$)

- ♦ For sub-gradient descent we used $||g|| \le G$ which lead to a complexity of $\mathcal{O}(\frac{G}{\sqrt{k}})$.
- But there are other norms

$$||x||_{\infty} \le ||x||_2 \le \sqrt{d} ||x||_{\infty}$$

It can happen that $\|g\|_{\infty} \leq G$ but $\|g\|_{2} \approx \sqrt{dG}$

Recap on (sub)-gradient descent

 \diamond When we used a norm $\|\cdot\|$ we meant the 2-norm, i.e.

$$||x||_2 = \left(\sum_{i=1}^d x_i^2\right)^{1/2}.$$

In gradient descent we used Lipschitz continuity:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

(Lead to a complexity of $\mathcal{O}(\frac{L}{L})$)

- ♦ For sub-gradient descent we used $||g|| \le G$ which lead to a complexity of $\mathcal{O}(\frac{G}{\sqrt{k}})$.
- But there are other norms

$$||x||_{\infty} \le ||x||_2 \le \sqrt{d} ||x||_{\infty}$$

It can happen that $\|g\|_{\infty} \leq G$ but $\|g\|_{2} \approx \sqrt{dG}$

Recap on (sub)-gradient descent

 \diamond When we used a norm $\|\cdot\|$ we meant the 2-norm, i.e.

$$||x||_2 = \left(\sum_{i=1}^d x_i^2\right)^{1/2}.$$

In gradient descent we used Lipschitz continuity:

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

(Lead to a complexity of $\mathcal{O}(\frac{L}{k})$)

- ♦ For sub-gradient descent we used $||g|| \le G$ which lead to a complexity of $\mathcal{O}(\frac{G}{\sqrt{L}})$.
- But there are other norms

$$||x||_{\infty} \le ||x||_2 \le \sqrt{d} ||x||_{\infty}$$

It can happen that $\|g\|_{\infty} \leq G$ but $\|g\|_2 \approx \sqrt{d}G$.

Different norms?

But where did we use the norm in the **method**?

Gradient Descent

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

equivalently

$$x_{k+1} = \operatorname*{arg\,min}_{x \in \mathbb{R}^d} \left\{ f\big(x_k\big) + \langle \nabla f\big(x_k\big), x - x_k \rangle + \frac{1}{2\alpha_k} \|x - x_k\|_2^2 \right\}$$

We can replace the 2-norm with a more general distance.

Bregman distance

- $h: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex
 - (i) h is differentiable of the interior of dom h
- (ii) h is 1-strongly convex w.r.t. $\|\cdot\|_2$

Then

$$\mathcal{D}_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle.$$

Properties

- $\Diamond \mathcal{D}_h(x,y) \geq 0$
- $\diamond \ \mathcal{D}_h(x,y) \neq \mathcal{D}_h(y,x)$
- $\diamond \mathcal{D}_h(\cdot, y)$ is convex for all y

$$\mathcal{D}_h(x,y) \approx \frac{1}{2} \langle \nabla^2 h(y)(x-y), x-y \rangle = \frac{1}{2} ||x-y||_{\nabla^2 h(y)}^2$$

$$\Diamond \mathcal{D}_h(x,y) \geq \frac{1}{2} ||x-y||^2$$
 (1-strong convexity)

Bregman distance

- $h: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is convex
- (i) h is differentiable of the interior of dom h
- (ii) h is 1-strongly convex w.r.t. $\|\cdot\|_2$

Then

$$\mathcal{D}_h(x,y) := h(x) - h(y) - \langle \nabla h(y), x - y \rangle.$$

Properties

- $\diamond \mathcal{D}_h(x,y) \geq 0$
- $\diamond \mathcal{D}_h(x,y) \neq \mathcal{D}_h(y,x)$
- $\diamond \mathcal{D}_h(\cdot, y)$ is convex for all y

$$\mathcal{D}_h(x,y) \approx \frac{1}{2} \langle \nabla^2 h(y)(x-y), x-y \rangle = \frac{1}{2} ||x-y||_{\nabla^2 h(y)}^2$$

$$\diamond \mathcal{D}_h(x,y) \ge \frac{1}{2} ||x-y||^2$$
 (1-strong convexity)

Examples

$$h(x) = \frac{1}{2} ||x||_2^2 \text{ gives } \mathcal{D}_h(x, y) = ||x - y||^2$$

$$h(x) = \frac{1}{2(p-1)} ||x||_p^2 \text{ with } p \in [1,2]$$

 $\diamond \ \Delta^d = \{x \in \mathbb{R}^d_+ : \sum_{i=1}^d x_i = 1\}$ the *unit simplex* and

$$h(x) = \begin{cases} \sum_{i=1}^{d} x_i \log(x_i) & x_i > 0 \\ +\infty & \text{otherwise} \end{cases}$$

the Negative entropy.

Negative entropy

- \diamond Negative entropy: $h(x) = \sum_{i=1}^{d} x_i \log(x_i)$ for $x_i > 0$.
- \diamond Then $\nabla h(x) = \log(x) + 1$ (coordinatewise) and

$$\mathcal{D}_h(x,y) = \sum_{i=1}^d x_i \log(x_i) - y_i \log(y_i) - \langle \log(y) + 1, x - y \rangle$$

$$= \sum_{i=1}^d x_i \log(x_i) - \sum_{i=1}^d x_i \log(y_i)$$

$$= \sum_{i=1}^d x_i \log\left(\frac{x_i}{y_i}\right)$$

Known as Kullback-Leibler divergence K(X||Y).

 \diamond Is strongly convex over Δ

$$\mathcal{D}(x,y) \ge \frac{1}{2} \|x - y\|_1^2$$
 Pinsker's ineq.

Mirror descent

Idea: replace squared Euclidian norm with more general object:

$$\begin{aligned} x_{k+1} &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{\alpha_k} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha_k} \mathcal{D}_h(x, x_k) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha_k} (h(x) - h(x_k) - \langle \nabla h(x_k), x - x_k \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \nabla f(x_k), x \rangle + \frac{1}{\alpha_k} (h(x) - \langle \nabla h(x_k), x \rangle) \} \\ &= \underset{x \in \mathbb{R}^d}{\text{arg min}} \{ \langle \alpha_k \nabla f(x_k) - \nabla h(x_k), x \rangle + h(x) \} \end{aligned}$$

Question: But why mirror descent?

Mirror descent

Idea: replace squared Euclidian norm with more general object:

$$\begin{split} x_{k+1} &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{1}{\alpha_k} \mathcal{D}_h(\mathbf{x}, \mathbf{x}_k) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{\alpha_k} \mathcal{D}_h(\mathbf{x}, \mathbf{x}_k) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{\alpha_k} (h(\mathbf{x}) - h(\mathbf{x}_k) - \langle \nabla h(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{\alpha_k} (h(\mathbf{x}) - \langle \nabla h(\mathbf{x}_k), \mathbf{x} \rangle) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \alpha_k \nabla f(\mathbf{x}_k) - \nabla h(\mathbf{x}_k), \mathbf{x} \rangle + h(\mathbf{x}) \} \end{split}$$

Mirror descent

Idea: replace squared Euclidian norm with more general object:

$$\begin{split} x_{k+1} &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ f(\mathbf{x}_k) + \langle \nabla f(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle + \frac{1}{\alpha_k} \mathcal{D}_h(\mathbf{x}, \mathbf{x}_k) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{\alpha_k} \mathcal{D}_h(\mathbf{x}, \mathbf{x}_k) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{\alpha_k} (h(\mathbf{x}) - h(\mathbf{x}_k) - \langle \nabla h(\mathbf{x}_k), \mathbf{x} - \mathbf{x}_k \rangle) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{\alpha_k} (h(\mathbf{x}) - \langle \nabla h(\mathbf{x}_k), \mathbf{x} \rangle) \} \\ &= \arg\min_{\mathbf{x} \in \mathbb{R}^d} \{ \langle \alpha_k \nabla f(\mathbf{x}_k) - \nabla h(\mathbf{x}_k), \mathbf{x} \rangle + h(\mathbf{x}) \} \end{split}$$

Question: But why mirror descent?

The Mirror part

$$x_{k+1} = \arg\min_{x \in \mathbb{R}^d} \{ \langle \alpha_k \nabla f(x_k) - \nabla h(x_k), x \rangle + h(x) \}$$

By optimality condition:

$$0 = \alpha_k \nabla f(x_k) - \nabla h(x_k) + \nabla h(x_{k+1})$$

Therefore

$$\nabla h(x_{k+1}) = \nabla h(x_k) - \alpha_k \nabla f(x_k)$$

Why it's called mirror descent

Figure: $\psi = h$

Mirror Descent on the unit simplex

Negative entropy: $h(x) = \sum_{i=1}^{d} x_i \log(x_i)$ for $x_i > 0$.

We define $a := \alpha_k \nabla f(x_k) - \nabla h(x_k)$. Then

$$x_{k+1} = \underset{x \in \Delta}{\operatorname{arg min}} \{ \langle a, x \rangle + h(x) \}$$

with $x_i \geq 0$ and $\sum x_i = 1$.

How to solve this?

Via Lagrange

$$L(x,\mu) = \langle a, x \rangle + h(x) - \mu(x_1 + \dots + x_d - 1)$$

Mirror Descent on the unit simplex [contd]

Then,

$$\partial_{x_i} L(x, \mu) = a_i + \log(x_i) + 1 - \mu \stackrel{!}{=} 0$$
 $\log(x_i) = \mu - 1 - a_i$
 $x_i = e^{\mu - 1 - a_i} = \beta e^{-a_i}$

with $\beta = e^{\mu - 1}$.

Second constraint

$$\sum_{i=1}^{d} x_i \stackrel{!}{=} 1 \Rightarrow \sum_{i=1}^{d} \beta e^{-a_i} = 1 \Rightarrow \beta = \frac{1}{\sum_{i=1}^{d} e^{-a_i}} \Rightarrow x_i = \frac{e^{-a_i}}{\sum_{j=1}^{d} e^{-a_j}}$$

Final mirror descent update

$$x_{k+1}(i) = \frac{x_k(i)e^{\alpha_k[\nabla f(x_k)]_i}}{\sum_{i=1}^d e^{\alpha_k[\nabla f(x_k)]}}$$

Mirror Descent on the unit simplex [contd]

Then,

$$\partial_{x_i} L(x, \mu) = a_i + \log(x_i) + 1 - \mu \stackrel{!}{=} 0$$

$$\log(x_i) = \mu - 1 - a_i$$

$$x_i = e^{\mu - 1 - a_i} = \beta e^{-a_i}$$

with $\beta = e^{\mu - 1}$.

Second constraint:

$$\sum_{i=1}^{d} x_i \stackrel{!}{=} 1 \Rightarrow \sum_{i=1}^{d} \beta e^{-a_i} = 1 \Rightarrow \beta = \frac{1}{\sum_{i=1}^{d} e^{-a_i}} \Rightarrow x_i = \frac{e^{-a_i}}{\sum_{j=1}^{d} e^{-a_j}}$$

Final mirror descent update

$$x_{k+1}(i) = \frac{x_k(i)e^{\alpha_k[\nabla f(x_k)]_i}}{\sum_{i=1}^d e^{\alpha_k[\nabla f(x_k)]_i}}$$

Mirror Descent on the unit simplex [contd]

Then,

$$\partial_{x_i} L(x, \mu) = a_i + \log(x_i) + 1 - \mu \stackrel{!}{=} 0$$
 $\log(x_i) = \mu - 1 - a_i$
 $x_i = e^{\mu - 1 - a_i} = \beta e^{-a_i}$

with $\beta = e^{\mu - 1}$.

Second constraint:

$$\sum_{i=1}^{d} x_i \stackrel{!}{=} 1 \Rightarrow \sum_{i=1}^{d} \beta e^{-a_i} = 1 \Rightarrow \beta = \frac{1}{\sum_{i=1}^{d} e^{-a_i}} \Rightarrow x_i = \frac{e^{-a_i}}{\sum_{j=1}^{d} e^{-a_j}}$$

Final mirror descent update:

$$x_{k+1}(i) = \frac{x_k(i)e^{\alpha_k[\nabla f(x_k)]_i}}{\sum_{j=1}^d e^{\alpha_k[\nabla f(x_k)]_j}}$$

(General) mirror descent convergence statement

Since we changed norm in the space of the variable x, we need to go to the dual norms in the space of the subgradients

$$\|y\|_* := \max_{\|x\|=1} \{\langle y, x \rangle\}.$$

Theorem

In $(\mathbb{R}^d,\|\cdot\|)$ and subgradients bounded in dual norm $\|g_k\|_* \leq G$, then

$$f(\hat{x}_k) - f^* \leq \frac{\mathcal{D}(x^*, x_0) + \frac{1}{2} \sum_i \alpha_i^2 G^2}{\sum_i \alpha_i}$$

Convergence on the unit simplex

What about $\mathcal{D}(x^*, x_0)$? Let $x_0 = (\frac{1}{n}, \dots, \frac{1}{n})$, then

$$\mathcal{D}(x, x_0) = \sum x_i \log \left(\frac{x_i}{\frac{1}{n}}\right) = \sum x_i \log(x_i) + \log(n) \le \log(n)$$

while $||x_0 - x^*||^2 \le 2$.

But if

$$\|g\|_{\infty} = \|g\|_{1}^{*} \leq G$$

we can still have

$$\|g\|_2 \approx \sqrt{d}G$$
.

Proof

In the Euclidian space we used

$$\langle x_{k+1} - x_k, x^* - x_{k+1} \rangle =$$

$$= \frac{1}{2} \|x^* - x_k\|^2 - \frac{1}{2} \|x^* - x_{k+1}\|^2 - \frac{1}{2} \|x_{k+1} - x_k\|^2$$