Appendix B: Code for analysis comparing to historical data

Carl Boettiger 2018-01-29

Section 1: Model estimates from data

Computes model parameter estimates for selected stocks in RAM using NIMBLE.

```
# devtools::install_qithub("boettiqer-lab/sarsop") ## install package first if necessary.
library(tidyverse)
library(sarsop)
library(nimble)
library(parallel)
library(gridExtra)
if(!file.exists("ramlegacy.zip")){
download.file(paste0(
  "https://depts.washington.edu/ramlegac/wordpress/databaseVersions/",
  "RLSADB v3.0 (assessment data only) excel.zip"),
 "ramlegacy.zip")
}
path <- unzip("ramlegacy.zip")</pre>
sheets <- readxl::excel sheets(path)</pre>
ram <- lapply(sheets, readxl::read_excel, path = path)</pre>
names(ram) <- sheets</pre>
unlink("ramlegacy.zip")
unlink("RLSADB v3.0 (assessment data only).xlsx")
ramlegacy <-
 ram$timeseries_values_views %>%
  select(assessid, stockid, stocklong, year, SSB, TC) %>%
  left_join(ram$stock) %>%
  left_join(ram$area) %>%
  select(assessid, stockid, scientificname,
         commonname, areaname, country, year,
         SSB, TC) %>%
  left_join(ram$timeseries_units_views %>%
              rename(TC_units = TC, SSB_units = SSB)) %>%
  select(scientificname, commonname,
         stockid, areaname, country, year,
         SSB, TC, SSB units, TC units)
```

Let's filter out missing data, non-matching units, and obvious reporting errors (catch exceeding total spawning biomass), then we rescale each series into the 0,1 by appropriate choice of units:

```
df2 <- ramlegacy %>%
  filter(!is.na(SSB), !is.na(TC)) %>%
  filter(SSB_units == "MT", TC_units=="MT") %>%
  filter(SSB > TC) %>%
  select(-SSB_units, -TC_units) %>%
```

```
group_by(stockid) %>%
  mutate(scaled_catch = TC / max(SSB),
         scaled_biomass = SSB / max(SSB))
stock_ids <- c("PLAICNS", "ARGHAKENARG")</pre>
examples <- df2 %>%
  filter(stockid %in% stock_ids) %>%
  ungroup() %>%
  group_by(commonname)
## Model does not estimate sigma_m; data is insufficient to do so.
gs_code <- nimble::nimbleCode({</pre>
 r ~ dunif(0, 2)
 K ~ dunif(0, 2)
  sigma ~ dunif(0, 1)
 x[1] < -x0
  for(t in 1:(N-1)){
    mu[t] \leftarrow x[t] + x[t] * r * (1 - x[t] / K) - min(a[t],x[t])
    x[t+1] \sim dnorm(mu[t], sd = sigma)
  }
})
fit_models <- function(fish, code){</pre>
  # fish <- examples %>% filter(stockid == stock_ids[1])
  ## Rescale data
  N <- dim(fish)[1]</pre>
  scaled_data <- data.frame(t = 1:N, y = fish$scaled_biomass, a = fish$scaled_catch)</pre>
  data = data.frame(x = scaled_data$y)
  ## Compile model
  constants <- list(N = N, a = scaled_data$a)</pre>
  inits \leftarrow list(r = 0.5, K = 0.5, sigma = 0.02, x0 = scaled_data\$y[1])
  model <- nimbleModel(code, constants, data, inits)</pre>
  C_model <- compileNimble(model)</pre>
  mcmcspec <- configureMCMC(model, thin = 1e2)</pre>
  mcmc <- buildMCMC(mcmcspec)</pre>
  Cmcmc <- compileNimble(mcmc, project = model)</pre>
  Cmcmc$run(1e6)
  samples <- as.data.frame(as.matrix(Cmcmc$mvSamples))</pre>
  burnin \leftarrow 1:(0.05 * dim(samples)[1]) # drop first 5%
  samples <- samples[-burnin,1:(length(inits) - 1)] # drop raised vars, burnin</pre>
  #gather(samples) %>% ggplot() + geom_density(aes(value)) + facet_wrap(~key, scale='free')
  ## Return fit
  data.frame(stockid = fish$stockid[1],
             commonname = fish$commonname[1],
              r = mean(samples$r),
              K = mean(samples K),
              sigma_g = mean(samples$sigma),
```

```
r_sd = sd(samples$r),
           K_sd = sd(samples K),
           sigma_g_sd = sd(samples$sigma),
           stringsAsFactors = FALSE)
}
set.seed(123)
fits <- examples %>% do(fit_models(., code=gs_code))
|-----|-----|-----|
   -----|----|-----|
fits
# A tibble: 2 x 8
# Groups: commonname [2]
 stockid
          commonname
                                   K sigma_g r_sd K_sd sigma_g_sd
 <chr>
            <chr>
                                                           <dbl>
                          <dbl> <dbl>
                                     <dbl> <dbl> <dbl> <
1 ARGHAKENARG Argentine hake 1.04
                                1.20
                                      0.112 0.177 0.188
                                                          0.0263
            European Plaice 0.906 1.78
                                     0.128 0.0734 0.155
                                                          0.0130
2 PLAICNS
pars <- fits %>% ungroup() %>% select(commonname, r, K, sigma_g)
pars
```

commonname	r	K	$sigma_g$
Argentine hake European Plaice	$\begin{array}{c} 1.0387783 \\ 0.9055933 \end{array}$		$\begin{array}{c} 0.1118370 \\ 0.1275455 \end{array}$

Calculations of the Decision Policies for Historical Data

```
options(mc.cores = parallel::detectCores()) # Reserve ~ 10 GB per core
log_dir <- "../data/ram_ex"

## Classic Graham-Schaefer. Note that recruitment occurs *before* harvest
gs <- function(r,K){
  function(x, h){
    x + x * r * (1 - x / K) - pmin(x,h)
  }
}
reward_fn <- function(x,h) pmin(x,h)
discount <- .95</pre>
```

Discretize space

Note that the large values of K require we carry the numerical grid out further.

```
states <- seq(0,4, length=150)
actions <- states
observations <- states</pre>
```

Consider all parameter values combinations for which we want solutions (both species at each of three possible levels of measurement uncertainty; though we will focus on the 0.1 level for simplicity as overall pattern is the same at 0.15):

$sigma_m$	r	K	$sigma_g$	scenario
0.00	1.0387783	1.196112	0.1118370	1
0.00	0.9055933	1.778186	0.1275455	2
0.10	1.0387783	1.196112	0.1118370	3
0.10	0.9055933	1.778186	0.1275455	4
0.15	1.0387783	1.196112	0.1118370	5
0.15	0.9055933	1.778186	0.1275455	6
	0.00 0.00 0.10 0.10 0.15	0.00 1.0387783 0.00 0.9055933 0.10 1.0387783 0.10 0.9055933 0.15 1.0387783	0.00 1.0387783 1.196112 0.00 0.9055933 1.778186 0.10 1.0387783 1.196112 0.10 0.9055933 1.778186 0.15 1.0387783 1.196112	0.00 1.0387783 1.196112 0.1118370 0.00 0.9055933 1.778186 0.1275455 0.10 1.0387783 1.196112 0.1118370 0.10 0.9055933 1.778186 0.1275455 0.15 1.0387783 1.196112 0.1118370

Create the model matrices (transition, observation, and reward matrix):

Here's the slowest part: computing POMDP alpha vectors.

```
sigma_m = meta[i,"sigma_m"][[1]],
                              noise = "normal",
                              commonname = meta[i, "commonname"][[1]],
                              scenario = meta[i, "scenario"][[1]])
      sarsop(models[[i]]$transition,
             models[[i]] $observation,
             models[[i]] $reward,
             discount = discount,
             precision = 2e-6,
             timeout = 25000,
             log_dir = log_dir,
             log_data = log_data)
    })
meta <- meta_from_log(data.frame(model="gs"), log_dir) %>%
  mutate(scenario = as.character(scenario)) %>%
  left_join(
    select(meta, sigma_m, commonname, scenario),
    by = c("scenario", "sigma_m", "commonname")) %>%
  arrange(scenario)
alphas <- alphas_from_log(meta, log_dir)</pre>
#models <- models_from_log(meta)</pre>
```

Comparison to the static models

```
pars <- examples %>%
  group_by(commonname) %>%
  summarise(N = max(SSB)) %>%
  right_join(
  meta %>%
    select(commonname, r, K) %>%
    distinct())
```

Add corresponding static policy levels on:

Convert example data into discrete index space.

Static policy calculations:

```
CE_f <- function(S_star, r, K, i)
   index(pmax(gs(r[[1]],K[[1]])(states,0) - S_star[[1]],0), actions)[i]
MSY_f <- function(F_MSY, i) index(states * F_MSY[[1]], actions)[i]
TAC_f <- function(F_TAC, i) index(states * F_TAC[[1]], actions)[i]
rescale <- function(x, N) states[x]*N

historical <- ex %>%
   group_by(commonname) %>%
   mutate(CE = CE_f(S_star, r, K, biomass),
        MSY = MSY_f(F_MSY, biomass),
        TAC = TAC_f(F_TAC, biomass)) %>%
   select(year, biomass, catch, CE, MSY, TAC, commonname, N) %>%
   gather(model, stock, -year, -commonname, -N) %>%
   mutate(stock = states[stock] * N) %>%
   select(-N)
```

Compute POMDP policy for historical data:

Join records:

```
pomdp_sims <-
  meta %>%
  select(scenario, commonname, sigma_m) %>%
  left_join(pars) %>%
  right_join(pomdp_sims)
```

Final plot, as in paper but including MSY:

```
ram_ex <- read_csv(file.path(log_dir, "ram_ex.csv"))
ram_ex %>%
  filter(model %in% c("biomass", "catch", "POMDP", "CE", "TAC", "MSY")) %>%
  ggplot(aes(year, stock, col=model)) +
  geom_line(lwd=1) +
  scale_color_manual(values = colors) +
  facet_wrap(~commonname, scales = "free", ncol=1)
```

