Supervised Learning

EXPECTATION

REALITY

INPUT = FEATURES

OUTPUT = TARGET

	predetti	reali_test
0	27.609031	22.6
1	22.099034	50.0
2	26.529255	23.0
3	12.507986	8.3
4	22.254879	21.2
97	28.271228	24.7
98	18.467419	14.1
99	18.558070	18.7
100	24.681964	28.1
101	20.826879	19.8

	predetti	reali_test
0	27.609031	22.6
1	22.099034	50.0
2	26.529255	23.0
3	12.507986	8.3
4	22.254879	21.2
97	28.271228	24.7
98	18.467419	14.1
99	18.558070	18.7
100	24.681964	28.1
101	20.826879	19.8

Introducendo opportune assunzioni si ottiene il modello di regressione lineare semplice.

Assunzione 1:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 per ogni osservazione i=1,...n

Assunzione 2:

Le \mathcal{E}_i sono variabili casuali indipendenti con valore atteso $E(\mathcal{E}_i) = 0$ e varianza costante $V(\mathcal{E}_i) = \sigma^2$ per ogni i=1,...,n

Assunzione 3:

I valori x_i della variabile esplicativa X sono noti senza errore

MAE, MSE, RMSE, Coefficient of Determination, Adjusted R Squared — Which Metric is Better?

The objective of Linear Regression is to find a line that minimizes the prediction error of all the data points.

• The Mean absolute error represents the average of the absolute difference between the actual and predicted values in the dataset. It measures the average of the residuals in the dataset.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

Where, \hat{y} - predicted value of y \bar{y} - mean value of y • Mean Squared Error represents the average of the squared difference between the original and predicted values in the data set. It measures the variance of the residuals.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

• Root Mean Squared Error is the square root of Mean Squared error. It measures the standard deviation of residuals.

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

• The coefficient of determination or R-squared represents the proportion of the variance in the dependent variable which is explained by the linear regression model. It is a scale-free score i.e. irrespective of the values being small or large, the value of R square will be less than one.

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

• Adjusted R squared is a modified version of R square, and it is adjusted for the number of independent variables in the model, and it will always be less than or equal to R². In the formula below **n** is the number of observations in the data and **k** is the number of the independent variables in the data.

$$R_{adj}^2 = 1 - \left[\frac{(1-R^2)(n-1)}{n-k-1} \right]$$

