Lecture Notes EMSE 4765: Data Analysis - Statistics Review

Chapter 16: Exploratory Data Analysis: Numerical Summaries

Version: 1/19/2021

Text Book: A Modern Introduction to Probability and Statistics, Understanding Why and How

By: F.M. Dekking. C. Kraaikamp, H.P.Lopuhaä and L.E. Meester

16 Exploratory Data Analysis: Numerical Summaries 16.0 Introduction . . .

- The classical way to describe important features of a dataset is **to give several** numerical summaries for:
 - 1) The center of a dataset
 - 2) The amount of variability among the elements of a dataset,
 - 3) The quantiles for a dataset.
- To distinguish them from corresponding notions for probability distributions of random variables, one adds the word "sample" or "empirical"; For example:
 - 1) The sample mean of a dataset
 - 2) The sample variance of a dataset,
 - 3) The empirical quantiles for a dataset.
- The boxplot, a classical graphical display of some of these numerical summaries.

16.1 The center of a data set . . .

• The best-known method to identify the center of a dataset (x_1, \ldots, x_n) is to compute the sample mean :

$$\overline{x}_n = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i.$$

One often drops the subscripts n and simply writes \overline{x} (read "x-bar").

Example: Wick Temperature Data

The following dataset consists of hourly temperatures in degrees Fahrenheit (rounded to the nearest integer), recorded at Wick in northern Scotland from 5 p.m. December 31, 1960, to 3 a.m. January 1, 1961.

Source: V. Barnett and T. Lewis. Outliers in statistical data. Third edition, 1994. © John Wiley & Sons Limited. Reproduced with permission.

16 Exploratory Data Analysis: Numerical Summaries 16.1 The center of a data set . . .

• The sample median $Med(x_1, x_2, ..., x_n)$ or Med_n is the middle element of the data set when n is odd and the average of the two middle ones when n is even.

		Α	В	С	D	E	F
			Ordered	Collumn A Minus	Ordered	Correctled	Ordered
Row	Time of Day	Temperature (F)	Column A	utliers	Column C	Column A	Column E
1	17:00	43	41	43	41	43	39
2	17:30	43	41	43	41	43	39
3	18:00	41	41	41	41	41	41
4	18:30	41	41	41	41	41	41
5	19:00	41	41	41	41	41	41
6	19:30	42	42	42	42	42	42
7	20:00	43	43	43	43	43	42
8	20:30	58	43		43	42	42
9	21:00	58	43		43	42	43
10	21:30	41	58	41		39	43
11	22:00	41	58	41		39	43
Sa	ample Mean	44.73		41.78		41.45	
Sample Median		42		41	J	42	
Sample St. Dev		6.62		0.97		1.44	

16 Exploratory Data Analysis: Numerical Summaries 16.1 The center of a data set . . .

• The sample mean \overline{x} is the natural analogue for E[X] where X is a random variable pdf f(x). However, the sample mean \overline{x} is very sensitive to outliers, whereas the sample median Med_n is not.

• By no means should one leave out measurements that deviate a lot from the bulk of the data! One should be aware of outliers and only correct them if one concludes an error occurred in the data recorded process.

16.1 The center of a data set . . .

Same analysis in file "Wick_Temperature.R"

16 Exploratory Data Analysis: Numerical Summaries 16.2 The variability of a data set . . .

• To quantify the amount of variability among the elements of a dataset (x_1, x_2, \dots, x_n) , one often uses the sample variance defined by:

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2$$

• Up to a scaling factor this is equal to the average squared deviation from \overline{x}_n . At first sight, it seems more natural to define the sample variance by :

$$\widetilde{s}_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x}_{n})^{2} = \frac{n-1}{n} \times s_{n}^{2}$$

In Chapter 19, it is explained why one prefers s_n^2 over \tilde{s}_n^2 .

16.2 The variability of a data set . . .

• Because s_n^2 is in different units from the elements of the dataset, one often evaluates instead the sample standard deviation:

$$s_n = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x}_n)^2}$$

		Α	В	С	D	E	F
			Ordered	Column A minus	Ordered	Corrected	Ordered
Row	Time of Day	Temperature (F)	Column A	Outliers	Column C	Column A	Column E
1	17:00	43	41	43	41	43	39
2	17:30	43	41	43	41	43	39
3	18:00	41	41	41	41	41	41
4	18:30	41	41	41	41	41	41
5	19:00	41	41	41	41	41	41
6	19:30	42	42	42	42	42	42
7	20:00	43	43	43	43	43	42
8	20:30	58	43		43	42	42
9	21:00	58	43		43	42	43
10	21:30	41	58	41		39	43
11	22:00	41	58	41		39	43
Sa	ample Mean	44.73		41.78		41.45	
Sai	mple Median	42		41		42	
Sample St. Dev.		6.62		0.97		1.44	

16.2 The variability of a data set . . .

- Just as the sample mean, the sample standard deviation is very sensitive to outliers.
- A more robust measure of variability is the median of absolute deviations or MAD; First evaluate Med_n , second evaluate

$$|x_i - Med_n|, i = 1, \ldots, n$$

Third, set:

$$MAD(x_1,...,x_n) = Med(|x_1 - Med_n|, |x_2 - Med_n|, ..., |x_2 - Med_n|)$$

• Just as the sample median, the MAD is hardly affected by outliers.

16 Exploratory Data Analysis: Numerical Summaries 16.2 The variability of a data set . . .

• Just as the sample median, the MAD is hardly affected by outliers.

		Α	В С		D	E	F
Row	Time of Day	Temperature (F) - Sample Median	Ordered Column A	Temperature (F) - Sample Median	Ordered Column C	Temperature (F) - Sample Median	
1	17:00	1	0	2	0	1	0
2	17:00	1	1	2	0	1	0
3	17:00	1	1	0	0	1	0
4	17:00	1	1	0	0	1	1
5	17:00	1	1	0	0	1	1
6	17:00	0	1	1	1	0 _	— 1
7	17:00	1	1	2	2	1	1
8	17:00	16	1		2	0	1
9	17:00	16	1		2	0	1
10	17:00	1	16	0		3	3
11	17:00	1	16	0		3	3
	MAD	1		0		1	

16 Exploratory Data Analysis: Numerical Summaries 16.3 Empirical Quantiles, Quartiles and the Inter Quartile Range (IQR)...

- The sample median divides the dataset in two more or less equal parts: about half of the elements are less than the median and about half of the elements are greater than the median.
- The pth empirical quantile is denoted by $q_n(p)$: It divides the dataset in two parts in such a way that a proportion p is less than a certain number and a proportion 1-p is greater than this number.
- The order statistics consist of the same elements as in the original dataset x_1, x_2, \ldots, x_n , but in ascending order. Denote by $x_{(k)}$ the kth element in the ordered list. Then

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n-1)} \le x_{(n)}.$$

are called the order statistics of x_1, x_2, \ldots, x_n .

• One often sets $x_{(0)} \equiv 0$ and $x_{(n+1)} \equiv \infty$ for positive RV's.

16.3 Empirical Quantiles, Quartiles and the Inter Quartile Range (IQR) ...

Example: Wick Temperature Data

	A	В	С	D	E	F
		Ordered	Collumn A minus	Ordered	Corrected	Ordere
Time of Day	Temperature (F)	Collumn A	Outliers	Collumn C	Collumn A	Collumi
17:00	43	41	43	41	43	38
17:30	43	41	43	41	43	39
18:00	41	41	41	41	41	41
18:30	41	41	41	41	41	41
19:00	41	41	41	41	41	41
19:30	42	42	42	42	42	42
20:00	43	43	43	43	43	42
20:30	58	43		43	42	42
21:00	58	43		43	42	43
21:30	41	58	41		39	43
22:00	41	58	41		38	43
Average		44.73		41.78	_	41.36
Median		42		41		42

Order Statistics Wick Temperature Data

• Note that by putting the elements in order, it is possible that successive order statistics are the same, for instance, $x_{(1)} = x_{(2)} = \dots = x_{(5)} = 41$.

16.3 Empirical Quantiles, Quartiles and the Inter Quartile Range (IQR) . . .

• To compute empirical quantiles one linearly interpolates between order statistics of the dataset. Let $0 \le p \le 1$, and suppose for a data set of size n,

$$\frac{k}{n} \le p \le \frac{k+1}{n} \Leftrightarrow k \le np \le k+1$$

Then one evaluates the $q_n(p)$ as follows from $x_{(k)}$ and $x_{(k+1)}$:

$$q_n(p) = \alpha [x_{(k+1)} - x_{(k)}] + x_{(k)}$$
, where $\alpha = np - k$

Exercise: Compute $q_{11}(0.55)$ for the Wick temperature data.

Answer: We have n = 11, p = 0.55 and $np = 6.05 \Rightarrow 6 \leq np < 7$ and thus k = 6. We have $\alpha = 6.05 - 6 = 0.05$. With $x_{(6)} = 42$ and $x_{(7)} = 43$ it follows that

$$q_{11}(0.55) = 0.05 \cdot (43 - 42) + 42 = 42.05$$

16.3 Empirical Quantiles, Quartiles and the Inter Quartile Range (IQR) . . .

Analysis in file "Empirical_Quantile_Example.R"

Example data set for positive continuous random variable X:

$$(x_{(1)}, x_{(2)}, \dots, x_{(10)}) = (6, 8, 9, 10, 11, 12, 14, 16, 19, 24)$$

Evaluate $q_{10}(0.85)$: Set $x_{(0)} \equiv 0$.

$$n=10, p=0.85$$
 and $np=8.5 \Rightarrow$ $8 \le np < 9$ and thus $k=8$.

Thus:

$$\alpha = 8.5 - 8 = 0.5$$
.

With $x_{(8)} = 16$ and $x_{(9)} = 19$:

$$q_{10}(0.85) = 0.5 \cdot (19 - 16) + 16$$
$$= 17.5$$

16.3 Empirical Quantiles, Quartiles and the Inter Quartile Range (IQR) . . .

• The distance between the upper and lower quartiles is called the interquartile range, or IQR:

$$IQR = q_n(0.75) - q_n(0.25)$$

Example: Old Faithfull Duration Data

n	272					
		Lower		Upper		
	Min	Quartile	Median	Quartile	Max	IQR
	96	129	240	267	306	138
р	0.0037	0.25	0.5	0.75	1	
np	1	68	136	204	272	
k	1	68	136	204	272	
α	0	0	0	0	0	
$X_{(k)}$	96	129	240	267	306	
$x_{(k+1)}$	100	130	240	268	Infin	

16.3 Empirical Quantiles, Quartiles and the Inter Quartile Range (IQR) . . .

Same analysis in file "OldFaithFul_IQR.R"

16 Exploratory Data Analysis: Numerical Summaries 16.4 The box-and-whisker-plot...

• Tukey (1977) proposed visualizing the five-number summary discussed in the previous section by a so-called box-and-whisker plot, briefly boxplot.

Fig. 16.3. A boxplot.

16.4 The box-and-whisker-plot . . .

Examples: Old Faithfull Duration and Software Data

Fig. 16.4. Boxplot of the Old Faithful data and the software data.

16 Exploratory Data Analysis: Numerical Summaries 16.4 The box-and-whisker-plot . . .

Example: Minitab box-plot Old-Faithfull data

16.4 The box-and-whisker-plot . . .

Same analysis in file "OldFaithFul_BoxPlot.R"

Boxplot of Durations (s) and Waiting Times (min)

Durations (in Sec)

Waiting Times (in Min)

16 Exploratory Data Analysis: Numerical Summaries 16.4 The box-and-whisker-plot . . .

Example: Minitab box-plot software data

16.4 The box-and-whisker-plot . . .

Same analysis in file "SoftwareFailure_BoxPlot.R"

Boxplot of Successive Interfailure Times

Interfailure Times

