Transforming NFA to DFA

Consider the NFA M_1 again

There are only limited number of choices. For example:

$$0\underline{a}ab \vdash 1ab \vdash 1b \vdash 2$$
$$0aab \vdash 3ab \vdash 3b$$
$$\{0\}aab \vdash \{1, 3\}ab \vdash \{1, 3\}b \vdash \{2\}$$

Why <u>limited</u> number of choices?

The state set is finite.

We summarize the choices at each step by combining all configuration sequences into one "super-conf. sequence".

$$\{0\}aab \vdash \{1,3\}ab \vdash \{1,3\}b \vdash \{2\}.$$

We now have a set of all possible states at each step. From this point of view the computation of the NFA on an input word is <u>deterministic</u>.

A super-configuration has the form

where $K \subseteq Q$ and $x \in \Sigma^*$.

Note that $\underline{\emptyset}x$ is a super-conf., it means that the NFA cannot be in any state at that point, i.e., an abort has occurred.

We say that

$$Kx \vdash Ny$$

if x = ay, for some $a \in \Sigma$, and $N = \{q \mid (p, a, q) \in \delta$, for some $p \in K\}$

More examples on super-configurations

M: L(M) is the set of all words that have "ba" as a subword.

The super-configuration sequence on input word "abbaa" is as follows:

$$\{0\}abbaa \vdash \{0\}bbaa \vdash \{0,1\}baa \vdash \{0,1\}aa \\ \vdash \{0,2\}a \vdash \{0,2\}$$

Notice that given a set $K \subseteq Q$ and an input symbol $a \in \Sigma$, the set $N \subseteq Q$ s.t. $Ka \vdash N$ is uniquely determined.

Lemma (2.3.1) (Determinism Lemma) Let $M = (Q, \Sigma, \delta, s, F)$ be an NFA. Then for all words \underline{x} in Σ^* and for all $\underline{K} \subseteq Q$.

 $Kx \vdash^* N$ and $Kx \vdash^* P$

implies

P = N.

Lemma (2.3.2) Let $M=(Q,\Sigma,\delta,s,F)$ be an NFA. Then for all words \underline{x} in Σ^* and for all \underline{q} in Q,

 $qx \vdash^* p$

iff $\{q\}x \vdash^* P$, for some P with p in P.

Example (Transformation of an NFA to a DFA)

$$M = (Q, \Sigma, \delta, s, F)$$
 where

$$Q = 0, 1, 2, \qquad \Sigma = a, b$$

 $s = 0, \qquad F = \{2\}$

$$M' = (Q', \Sigma, \delta', s', F') \ \mathbf{where}$$

$$Q' = 2^Q = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

5':	input symbol							
<i>.</i>	(current y state	a	Ь				
	0	φ	φ	ø				
	۸ ·	10}	{0}	10,13				
	2	{1}	123	ø				
	3	{2}	{2}	123				
	4	fo, 1}	10,2}	10,13				
	5	10,2}	10,23	10,1,2}				
	6	1,23	123	12}				
	7	10,1,2}	10, 2}	10,1,23				

$$\underline{\delta'(P,a) = \{q \mid (p,a,q) \in \delta \text{ and } p \in P\}}$$

$$s' = \{0\}$$
$$F' = \{$$

Algorithm NFA to DFA

—The Subset Construction

On entry: An NFA $M = (Q, \Sigma, \delta, s, F)$.

On exit: A DFA $M' = (Q', \Sigma, \delta', s', F')$ satisfying L(M) = L(M').

begin Let $Q'=2^Q, s'=\{s\}$ and $F'=\{K\mid K\in Q', \text{ and } K\cap F\neq\emptyset\}$ We define $\delta':Q'\times\Sigma\to Q'$ by For all $K\in Q'$ and for all $a\in\Sigma$, $\delta'(K,a)=N, \text{ if } Ka\vdash N \text{ in } M.$

end of Algorithm

if
$$N = \{q \mid (p, a, q) \in \delta \text{ and } p \in K\}$$

$$s' = \{0\}$$

i nput symbol					a	16
state		Ь.		0	10 }	10, 11
-	10}		•		12]	
	{0,2}		-	200	123	
{o, z}	10,23	{0,1,2}		-	,-, /	7 2 5
10,1,2}	10,23	10,1,2}				

Algorithm NFA to DFA 2

—<u>The Iterative Subset Construction</u>

Theorem Given an NFA $M=(Q,\Sigma,\delta,s,F)$, then the DFA $M'=(Q',\Sigma',\delta',s',F')$ obtained by either subset construction satisfies L(M')=L(M).

Proof:

By Lemma 2.3.2, for all $x \in \Sigma^*$ in M $sx \vdash^* p$, iff $\{s\}x \vdash^* P$ for some P with $p \in P$

By the construction of M', $\{s\}x \vdash^* P \text{ in } M \text{ iff}$ $\{s\}x \vdash^* P \text{ in } M'.$

$$x \in L(M) \Leftrightarrow sx \vdash^* f$$
, for some $f \in F$
 $\Leftrightarrow \{s\}x \vdash^* P, \ f \in P, \ \text{in } M$
 $\Leftrightarrow \{s\}x \vdash^* P, \ \text{in } M' \ \text{and } P \cap F \neq \emptyset$
 $\Leftrightarrow s'x \vdash^* P, \ P \in F$
 $\Leftrightarrow x \in L(M')$

Theorem

Every NFA Language is a DFA language and conversely.

$$(\mathcal{L}_{NFA} = \mathcal{L}_{DFA})$$

Example

Every finite language is accepted by a DFA.