Ayudantía 4 Computación Científica II

Profesor: Ariel Sanhueza Ayudante: Javier Levio Silva

08 de octubre de 2018

- 1. Demuestre que la Cuadratura Gaussiana posee una precisión de 2n-1, utilizando el el polinomio de Legrendre de grado n en el intervalo [-1,1].
- 2. ¹ Estime numéricamente la siguiente integral $\int_{0}^{\sqrt{\pi}} f(x) dx$. Desafortunadamente, no conocemos la función f(x), sin embargo conocemos algunos valores puntuales de f(x), ver Cuadro 1 al reverso. Para realizar esta tarea usted tiene 2 opciones: (i) Use la Cuadratura Gaussiana con 4 puntos o (ii) Use la regla del trapecio con todos los puntos. Hint 1: Use la Cuadratura Gaussiana! Hint 2: $\int_{0}^{b} f(x) dx = \frac{(b-a)}{2} \int_{0}^{1} f\left(\frac{(b-a)}{2}y + \frac{a+b}{2}\right) dy$
- 3. ² Se define como el vector propio izquierdo, al vector fila $v \in \mathbb{R}^n$ que satisface la siguiente ecuación:

$$\mathbf{v}A = \lambda_l \mathbf{v},$$

donde $A \in \mathbb{R}^{n \times n}$. Construya un algoritmo que encuentre el vector propio izquierdo dominante, donde el vector propio izquierdo dominante está asociado al valor propio izquierdo de mayor magnitud.

Hint: You don't need to reinvent the wheel! Just make sure you use the wheel you already know correctly.

4. ³ Se tiene la siguiente función $p(x) = f(x) + \varepsilon(x)$ para $x \in [0, 10]$, donde f(x) es la data pura y $\varepsilon(x)$ es un error de medición. Lamentablemente solo tenemos a nuestra disposición p(x) pero nos interesa recuperar f(x). Lo único que se sabe es que $\varepsilon(x)$ es una función de error que sigue una distribución $\mathbb{N}(0, \delta)$. Considere el siguiente operador integral propuesto para reducir el efecto de $\varepsilon(x)$:

$$I_a(x) = \int_{x-a}^{x+a} p(y) \, dy$$

- a) Construya un algoritmo que aproxime numéricamente la integral propuesta. Su algoritmo debe recibir como parámetro el error absoluto permitido γ .
 - Hint: You have to make sure that for a given x and a you compute $I_a(x)$ with an absolute error less or equal than γ .
- b) Por estudios anteriores, se sabe que f(x) tiene un máximo en el punto x_0 . Construya un algoritmo que obtenga el máximo de $I_a(x)$ en función de a para $a \in [1e-5, 1e0]$. Usted debe explicar claramente los argumentos de su algoritmo y el output.

Hint: You may assume that for a small a the maximum are close to x_0

¹Ejercicio de Certamen

²Ejercicio de Certamen

³Ejercicio de Certamen

\overline{i}	x_i	$f(x_i)$
1	0.0000000000000000	1.0000000000000000000000000000000000000
	0.123064739633033	1.019901047710160
3	0.123004739033033	1.030138669702805
4	0.196953695496920	1.050715797573628
5	0.208117367423653	1.056573487187084
6	0.302572135547782	1.118359981383717
7	0.302572135347782	1.138270921836243
8	0.345210715061993	1.153172928388755
9	0.368213626750597	1.173665209847130
10	0.393035852634578	1.197085421368538
11	0.400435930687961	1.204325167474603
12	0.403524461378651	1.207381343845325
13	0.408529627155104	1.212377053602576
14	0.457407764052104	1.263896667573237
15	0.464758222106825	1.272062969984017
16	0.525844293956580	1.343953411094050
17	0.533945218175038	1.354007677327113
18	0.551414445999036	1.376086504325018
19	0.565019828833651	1.393650339205012
20	0.584926570484331	1.419914364814356
21	0.621647605351785	1.470056181170819
22	0.671067658285153	1.540791186614049
23	0.724437065183703	1.621005435760562
24	0.751816006680852	1.663561611017466
25	0.762522747450137	1.680445339069012
26	0.772255810474422	1.695907245273584
27	0.777876773914162	1.704884940564168
28	0.834689902561324	1.797494677750108
29	0.900155372361869	1.907987674799948
30	0.905319025849890	1.916856183279154
31	0.944408766728593	1.984648025199786
32	0.975126728570404	2.038678590993638
33	1.040509647200401	2.155641475857971
34	1.054425837265141	2.180848163172586
35	1.068511555267051	2.206465261893277
36	1.103308363275618	2.270175362213168
37	1.142024151070050	2.341739879218183
38	1.187527280421185	2.426726253128566
39	1.260597148854453	2.565181350797173
40	1.408802005675764	2.854898994213702
41	1.438488908602440	2.914803590535310
42	1.449207380222845	2.936626406273386
43	1.496498370966329	3.034301332809291
44	1.552568209403744	3.153558417316548
45	1.603859757547790	3.266705776688983
46	1.636647802493652	3.341477983754462
47	1.649389111272483	3.371116156302948
48	1.664336934572994	3.406335166502679
49	1.736558786135677	3.584226848594182
50	1.772453850905516	3.678164325843305

Cuadro 1: $f(x_i)$ y x_i

x_i	c_i
-0.861136311594053	0.347854845137454
-0.339981043584856	0.652145154862546
0.339981043584856	0.652145154862546
0.861136311594053	0.347854845137454

Cuadro 2: Las raíces del polinomio de Legendre de 4
to orden son x_i y los pesos asociados son $c_i = \int_{-1}^1 L_i(x) dx$