Self-Paced Network Embedding

Hongchang Gao
Department of Electrical and Computer Engineering
University of Pittsburgh
Pittsburgh, USA
hongchanggao@gmail.com

Heng Huang*
Department of Electrical and Computer Engineering
University of Pittsburgh
Pittsburgh, USA
heng.huang@pitt.edu

KDD '18, August 19–23, 2018, London, United Kingdom © 2018 Association for Computing Machinery. ACM ISBN 978-1-4503-5552-0/18/08...\$15.00 https://doi.org/10.1145/3219819.3220041

Network Embedding

Negative Sampling

- Pre-designed distribution Intuition
- ignores that the less connected nodes may also be informative in practice.
- the sampling distribution does not change during training.

Problem Definition

Given a network $\mathcal{G} = \{V, E\}$ where $V = \{v_i\}_{i=1}^n$ denotes a set of n nodes and $E = [e_{ij}] \in \mathbb{R}^{n \times n}$ denotes the adjacency matrix, if there exists an edge between node v_i and v_j , $e_{ij} = 1$. Otherwise, $e_{ij} = 0$. The embedding of each node v_i is a low-dimension vector $u_i \in \mathbb{R}^d$.

employ negative sampling method to accelerate it as follows:

$$\max \log p(v_p|v_i) + \sum_{j \in \mathcal{N}_{v_i}} \log(1 - p(v_j|v_i)),$$

- The popularity-based sampling method cannot really reflect the informativeness of a node. Some less connected nodes can also be much informative in practice.
- The informativeness of a node is usually changing with the training process going on. But the predefined sampling method fails to reflect this change.

Informativeness of Nodes.

Traditional:

$$p(v_j|v_i) = \sigma(u_j^T u_i) = \frac{1}{1 + \exp(-u_j^T u_i)},$$
 (4)

easy negative context node — conditional probability is low

difficult negative context node ———— conditional probability is high

vj is more informative to the node vi.

informativeness-aware negative sampling distribution

$$p_{ij} = \frac{\exp(u_j^T u_i)}{\sum_{j \in \mathcal{N}_{v_i}} \exp(u_j^T u_i)}, \qquad (5)$$

Self-Paced Negative Sampling

$$p_{ij} = \frac{\exp(u_j^T u_i)}{\sum_{j \in \mathcal{N}_{v_i}} \exp(u_j^T u_i)},$$
 (5)

It always selects the difficult negative context node

From easy samples to difficult samples

SeedNE

With the training process going on, $l(\mu)$ is increasing difficult negative context nodes will be included gradually.

$$\begin{aligned} \max \log p(v_p|v_i) + \sum_{\substack{p'_{ij} \\ j \sim N_{v_i}}} \log(1 - p(v_j|v_i)) + l(\mu) \\ s.t. \quad p'_{ij} = \begin{cases} p_{ij}, & p_{ij} < l(\mu) \\ 0, & otherwise \end{cases}, \end{aligned}$$

Extension: Adversarial Self-Paced Network Embedding.

$$\begin{split} \min_{\theta} \max_{\phi} E_{v_j \sim p_d(v_j|v_i)} \log p_{\phi}(v_j|v_i) \\ + E_{v_j \sim G_{\theta}(v_j|v_i)} [\log(1-p_{\phi}(v_j|v_i))] \end{split}$$

 $p_d(v_i|v_i)$ denotes the sampling distribution for the positive context node of node v_i , $G_{\theta}(v_i|v_i)$ denotes the sampling distribution for the negative context node, which is constructed from the generator.

Discriminator

$$\max_{\phi} E_{v_{j} \sim p_{d}(v_{j}|v_{i})} \log p_{\phi}(v_{j}|v_{i}) + E_{v_{j} \sim G_{\theta}(v_{j}|v_{i})} [\log(1 - p_{\phi}(v_{j}|v_{i}))],$$

Generator

$$\min_{\theta} E_{v_j \sim G_{\theta}(v_j|v_i)}[\log(1 - p_{\phi}(v_j|v_i))] \quad G_{\theta}(v_j|v_i) = \frac{\exp(u_j^{\prime T} - p_{\phi}(v_j|v_i))}{\sum_{j} \exp(u_j^{\prime T} - p_{\phi}(v_j|v_i))}$$

$$G_{\theta}(v_j|v_i) = \frac{\exp(u_j^T u_i')}{\sum_j \exp(u_j^T u_i')},$$

ASeedNE

ignores the easy negative context node

$$\begin{aligned} & \min_{\theta} \max_{\phi} E_{v_{j} \sim p_{d}(v_{j}|v_{i})} \log p_{\phi}(v_{j}|v_{i}) + l(\mu) \\ & + E_{v_{j} \sim G'_{\theta}(v_{j}|v_{i})} [\log(1 - p_{\phi}(v_{j}|v_{i}))] \\ & s.t. \quad G'_{\theta}(v_{j}|v_{i}) = \begin{cases} G_{\theta}(v_{j}|v_{i}), & G_{\theta}(v_{j}|v_{i}) < l(\mu) \\ 0, & otherwise \end{cases}. \end{aligned}$$

Policy Gradient

$$\begin{split} &\nabla_{\theta} E_{v_j \sim G_{\theta}(v_j|v_i)}[\log(1-p_{\phi}(v_j|v_i))] \\ &= \sum_{j=1}^K \nabla_{\theta} G_{\theta}(v_j|v_i) \log(1-p_{\phi}(v_j|v_i)) \\ &= \sum_{j=1}^K G_{\theta}(v_j|v_i) \nabla_{\theta} \log[G_{\theta}(v_j|v_i)] \log(1-p_{\phi}(v_j|v_i)) \\ &= E_{v_j \sim G_{\theta}(v_j|v_i)} \nabla_{\theta} \log[G_{\theta}(v_j|v_i)] \log(1-p_{\phi}(v_j|v_i)) \;. \end{split}$$

EXPERIMENTS

Table 1: Description of Benchmark Datasets

Dataset	#Nodes	#Edges	#Labels
Wiki	4,777	184,812	40
PPI	3,890	76,584	50
Cora	2,708	5,278	7
Citeseer	3,312	4,660	6
BlogCatalog	10,312	333,983	39
Facebook	4,039	88,234	-
GR-QC	5,242	14,496	-

Baselines

DeepWalk, Node2Vec, GraRep, LINE.

Table 7: Link Prediction Accuracy

Method	Facebook	GR-QC
DeepWalk	0.9050	0.8354
Node2Vec	0.8900	0.7949
GraRep	0.9445	0.8899
LINE	0.9329	0.8847
SeedNE	0.9532	0.9208
ASeedNE	0.9545	0.9230

Method	50%		
	Micro-F1	Macro-F1	
DeepWalk	0.3927	0.2556	
Node2Vec	0.3965	0.2582	
GraRep	0.3674	0.2039	
LINE	0.3518	0.1786	
SeedNE	0.4095	0.2646	
ASeedNE	0.4106	0.2680	

Figure 1: The visualization of Cora dataset.

Thanks and QA