BEST AVAILABLE COPY

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 9 August 2001 (09.08.2001)

PCT

(10) International Publication Number WO 01/57206 A2

- (51) International Patent Classification⁷: C12N 15/11, 9/00, A61K 31/7088, C07H 21/00, C12N 5/10 // A61P 35/00
- (US). HOLMAN, Patricia, S. [US/US]; 730 San Jose Avenue, San Francisco, CA 94110 (US).
- (21) International Application Number: PCT/US01/03504
- (74) Agents: TERPSTRA, Anita, J. et al.; McDonnell Boehnen Hulbert & Berghoff, 300 South Wacker Drive, 32nd Floor, Chicago, IL 60606 (US).
- (22) International Filing Date: 2 February 2001 (02.02.2001)
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
- (25) Filing Language:
- HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(26) Publication Language:

US

English

English

(30) Priority Data: 60/179,983 3 February 2000 (03.02.2000)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): RI-BOZYME PHARMACEUTICALS, INC. [US/US]; 2950 Wilderness Place, Boulder, CO 80301 (US).

Published:

(71) Applicant and

— without international search report and to be republished upon receipt of that report

(72) Inventor: FATTAEY, Ali, R. [IR/US]; 3107 Washington Street, San Francisco, CA 94115 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): JARVIS, Thale [US/US]; 2265 Dartmouth Avenue, Boulder, CO 80305 (US). MCSWIGGEN, James [US/US]; 4866 Franklin Drive, Boulder, CO 80301 (US). BOOHER, Robert, N. [US/US]; 1720 Funston Avenue, San Francisco, CA 94110

11/57206 A

(54) Title: METHOD AND REAGENT FOR THE INHIBITION OF CHECKPOINT KINASE-1 (CHK 1) ENZYME

DESCRIPTION

METHOD AND REAGENT FOR THE INHIBITION OF CHECKPOINT KINASE-1 (CHK1) ENZYME

Background Of The Invention

The present invention concerns compounds, compositions, and methods for the study, diagnosis, and treatment of conditions and diseases related to the expression of kinases which phosphorylate Cdc25 S216, such as Chk1 (checkpoint kinase 1) enzyme.

The following is a brief description of the current understanding of Chk1. The discussion is not meant to be complete and is provided only for understanding the invention that follows. The summary is not an admission that any of the work described below is prior art to the claimed invention.

Mammalian cells treated with agents that inhibit DNA replication or cause DNA damage undergo cell cycle arrest due to the presence of multiple checkpoint response mechanisms. Cancer cells frequently lack the p53-induced G1 DNA damage checkpoint response and instead arrest in G2 due to a checkpoint pathway directed towards preventing Cdc2 kinase activation. Inhibition of Cdc2 kinase activity is mediated by Wee1-like kinases, which phosphorylate key residues within the ATP-binding pocket of Cdc2 (accession No. X05360). Maintenance of this arrest also involves repressing Cdc25 function, the phosphatase that removes the Cdc2 inhibitory phosphorylations, by a mechanism involving the binding of 14-3-3 proteins to a phosphorylated serine residue (S216) in Cdc25. Multiple kinases, including Chk1 (accession No. AFO16582), Chk2 (Cds1) (accession No. NM_007194), and C-TAK1 (accession No. AL050393), can phosphorylate Cdc25 S216 (accession No. M34065) *in-vitro*. These kinases may function in the DNA replication and/or DNA damage checkpoint response *in vivo*.

Hoekstra et al., International PCT publication No. WO/9955844, describe, in general terms, a method for promoting differentiation of a differentiation-inhibited cell by introducing into a cell a first polynucleotide encoding an antisense polynucleotide that hybridizes to a second polynucleotide encoding a cell cycle checkpoint protein.

Summary Of The Invention

The invention features novel nucleic acid-based techniques [e.g., enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, 2-5A antisense chimeras, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups] and methods for their use to modulate the expression of kinases which phosphorylate Cdc25 S216, such as Chk1 (checkpoint kinase 1) enzyme, Chk2 (Cds1) and C-TAK1.

The description below of the various aspects and embodiments is provided with reference to the exemplary gene Chk1. However, the various aspects and embodiments are also directed to each of the other genes which phosphorylate Cdc25S216. Those additional genes can be analyzed for target sites as described for Chk1. Further, the nucleic acid-based techniques, molecules, and compositions targeted to those genes can be performed as for Chk1. Thus, the inhibition and the effects of such inhibition of the other genes can be performed as described herein.

In a preferred embodiment, the invention features the use of one or more of the nucleic acid-based techniques independently or in combination to inhibit the expression of the genes encoding Chk1. Specifically, the invention features the use of nucleic acid-based techniques to specifically inhibit the expression of Chk1 gene.

In another preferred embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH, G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, to inhibit the expression of Chk1 gene.

By "inhibit" it is meant that the activity of Chk1 or level of RNAs or equivalent RNAs encoding one or more protein subunits of Chk1 is reduced below that observed in the absence of the nucleic acid molecules of the invention. In one embodiment, inhibition with enzymatic nucleic acid molecule preferably is below that level observed in the presence of an enzymatically inactive or attenuated molecule that is able to bind to the same site on the target RNA, but is unable to cleave that RNA. In another embodiment, inhibition with antisense oligonucleotides is preferably below that level observed in the presence of, for example, an oligonucleotide with scrambled sequence or with mismatches. In another embodiment, inhibition of Chk1 genes with the nucleic acid molecule of the instant invention is greater than in the presence of the nucleic acid molecule than in its absence.

By "enzymatic nucleic acid molecule" it is meant a nucleic acid molecule which has complementarity in a substrate-binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave target RNA. That is, the enzymatic

nucleic acid molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. These complementary regions allow sufficient hybridization of the enzymatic nucleic acid molecule to the target RNA and thus permit cleavage. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in this invention (see for example Werner and Uhlenbeck, 1995, Nucleic Acids Research, 23, 2092-2096; Hammann et al., 1999, Antisense and Nucleic Acid Drug Dev., 9, 25-31). The nucleic acids may be modified at the base, sugar, and/or phosphate groups. The term enzymatic nucleic acid is used interchangeably with phrases such as ribozymes, catalytic RNA, enzymatic RNA, catalytic DNA, aptazyme or aptamer-binding ribozyme, regulatable ribozyme, catalytic oligonucleotides, nucleozyme, DNAzyme, RNA enzyme, endoribonuclease, endonuclease, minizyme, leadzyme, oligozyme or DNA enzyme. All of these terminologies describe nucleic acid molecules with enzymatic activity. The specific enzymatic nucleic acid molecules described in the instant application are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target nucleic acid regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart a nucleic acid cleaving and/or ligation activity to the molecule (Cech et al., U.S. Patent No. 4,987,071; Cech et al., 1988, 260 JAMA 3030).

By "nucleic acid molecule" as used herein is meant a molecule having nucleotides. The nucleic acid can be single, double, or multiple stranded and may comprise modified or unmodified nucleotides or non-nucleotides or various mixtures and combinations thereof.

By "enzymatic portion" or "catalytic domain" is meant that portion/region of the enzymatic nucleic acid molecule essential for cleavage of a nucleic acid substrate (for example, see Figures 1-5).

By "substrate binding arm" or "substrate binding domain" is meant that portion/region of a enzymatic nucleic acid which is able to interact, for example via complementarity (i.e., able to base-pair with), with a portion of its substrate. Preferably, such complementarity is 100%, but can be less if desired. For example, as few as 10 bases out of 14 can be base-paired (see for example Werner and Uhlenbeck, 1995, Nucleic Acids Research, 23, 2092-2096; Hammann et al., 1999, Antisense and Nucleic Acid Drug Dev., 9, 25-31). Examples of such arms are shown generally in Figures 1-5. That is, these arms contain sequences within a enzymatic nucleic acid which are intended to bring enzymatic nucleic acid and target RNA together through complementary base-pairing interactions. The enzymatic nucleic acid of the invention may have binding arms that are contiguous or non-contiguous and may be of varying lengths. The length of the binding arm(s) are preferably greater than or equal to four nucleotides and of sufficient

length to stably interact with the target RNA; preferably 12-100 nucleotides; more preferably 14-24 nucleotides long (see for example Werner and Uhlenbeck, supra; Hamman et al., supra; Hampel et al., EP0360257; Berzal-Herrance et al., 1993, EMBO J., 12, 2567-73). If two binding arms are chosen, the design is such that the length of the binding arms are symmetrical (i.e., each of the binding arms is of the same length; e.g., five and five nucleotides, or six and six nucleotides, or seven and seven nucleotides long) or asymmetrical (i.e., the binding arms are of different length; e.g., six and three nucleotides; three and six nucleotides long; four and five nucleotides long; four and six nucleotides long; and the like).

By "Inozyme" or "NCH" motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described as NCH Rz in Figure 2. Inozymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCH, where N is a nucleotide, C is cytidine and H is adenosine, uridine or cytidine, and / represents the cleavage site. H is used interchangeably with X. Inozymes can also possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCN, where N is a nucleotide, C is cytidine, and / represents the cleavage site. "I" in Figure 2 represents an Inosine nucleotide, preferably a ribo-Inosine or xylo-Inosine nucleoside.

By "G-cleaver" motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described as G-cleaver in Figure 2. G-cleavers possess endonuclease activity to cleave RNA substrates having a cleavage triplet NYN/, where N is a nucleotide, Y is uridine or cytidine and / represents the cleavage site. G-cleavers may be chemically modified as is generally shown in Figure 2.

By "amberzyme" motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in Figure 3. Amberzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NG/N, where N is a nucleotide, G is guanosine, and / represents the cleavage site. Amberzymes may be chemically modified to increase nuclease stability through substitutions as are generally shown in Figure 3. In addition, differing nucleoside and/or non-nucleoside linkers can be used to substitute the 5'-gaaa-3' loops shown in the figure. Amberzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2'-OH) group within its own nucleic acid sequence for activity.

By "zinzyme" motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in Figure 4. Zinzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet including but not limited to YG/Y, where Y is uridine or cytidine, and G is guanosine and / represents the cleavage site. Zinzymes may be chemically

modified to increase nuclease stability through substitutions as are generally shown in Figure 4, including substituting 2'-O-methyl guanosine nucleotides for guanosine nucleotides. In addition, differing nucleotide and/or non-nucleotide linkers can be used to substitute the 5'-gaaa-2' loop shown in the figure. Zinzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2'-OH) group within its own nucleic acid sequence for activity.

By 'DNAzyme' is meant, an enzymatic nucleic acid molecule that does not require the presence of a 2'-OH group for its activity. In particular embodiments the enzymatic nucleic acid molecule may have an attached linker(s) or other attached or associated groups, moieties, or chains containing one or more nucleotides with 2'-OH groups. DNAzymes can be synthesized chemically or expressed endogenously in vivo, by means of a single stranded DNA vector or equivalent thereof. An example of a DNAzyme is shown in Figure 5 and is generally reviewed in Usman et al., International PCT Publication No. WO 95/11304; Chartrand et al., 1995, NAR 23, 4092; Breaker et al., 1995, Chem. Bio. 2, 655; Santoro et al., 1997, PNAS 94, 4262; Breaker, 1999, Nature Biotechnology, 17, 422-423; and Santoro et. al., 2000, J. Am. Chem. Soc., 122, 2433-39. Additional DNAzyme motifs can be selected for using techniques similar to those described in these references, and hence, are within the scope of the present invention.

By "sufficient length" is meant an oligonucleotide of greater than or equal to 3 nucleotides that is of a length great enough to provide the intended function under the expected condition. For example, for binding arms of enzymatic nucleic acid "sufficient length" means that the binding arm sequence is long enough to provide stable binding to a target site under the expected binding conditions. Preferably, the binding arms are not so long as to prevent useful turnover.

By "stably interact" is meant interaction of the oligonucleotides with target nucleic acid (e.g., by forming hydrogen bonds with complementary nucleotides in the target under physiological conditions) that is sufficient to the intended purpose (e.g., cleavage of target RNA by an enzyme).

By "equivalent" RNA to Chk1 is meant to include those naturally occurring RNA molecules having homology (partial or complete) to Chk1 proteins or encoding for proteins with similar function as Chk1 in various organisms, including human, rodent, primate, rabbit, pig, protozoans, fungi, plants, and other microorganisms and parasites. The equivalent RNA sequence also includes in addition to the coding region, regions such as 5'-untranslated region, 3'-untranslated region, intron-exon junction and the like.

By "homology" is meant the nucleotide sequence of two or more nucleic acid molecules is partially or completely identical.

6

By "antisense nucleic acid", it is meant a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 Nature 365, 566) interactions and alters the activity of the target RNA (for a review, see Stein and Cheng, 1993 Science 261, 1004 and Woolf et al., US patent No. 5,849,902). Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule may bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule may bind such that the antisense molecule forms a loop. Thus, the antisense molecule may be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule may be complementary to a target sequence or both. For a review of current antisense strategies, see Schmajuk et al., 1999, J. Biol. Chem., 274, 21783-21789, Delihas et al., 1997, Nature, 15, 751-753, Stein et al., 1997, Antisense N. A. Drug Dev., 7, 151, Crooke, 2000, Methods Enzymol., 313, 3-45; Crooke, 1998, Biotech. Genet. Eng. Rev., 15, 121-157, Crooke, 1997, Ad. Pharmacol., 40, 1-49. In addition, antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. The antisense oligonucleotides can comprise one or more RNAse H activating region, which is capable of activating RNAse H cleavage of a target RNA. Antisense DNA can be synthesized chemically or expressed via the use of a single stranded DNA expression vector or equivalent thereof.

By "RNase H activating region" is meant a region (generally greater than or equal to 4-25 nucleotides in length, preferably from 5-11 nucleotides in length) of a nucleic acid molecule capable of binding to a target RNA to form a non-covalent complex that is recognized by cellular RNase H enzyme (see for example Arrow et al., US 5,849,902; Arrow et al., US 5,989,912). The RNase H enzyme binds to the nucleic acid molecule-target RNA complex and cleaves the target RNA sequence. The RNase H activating region comprises, for example, phosphodiester, phosphorothioate (preferably at least four of the nucleotides are phosphorothiote substitutions; more specifically, 4-11 of the nucleotides are phosphorothiote substitutions); phosphorodithioate, 5'-thiophosphate, or methylphosphonate backbone chemistry or a combination thereof. In addition to one or more backbone chemistries described above, the RNase H activating region can also comprise a variety of sugar chemistries. For example, the RNase H activating region can comprise deoxyribose, arabino, fluoroarabino or a combination thereof, nucleotide sugar chemistry. Those skilled in the art will recognize that the foregoing are non-limiting examples and that any combination of phosphate, sugar and base chemistry of a nucleic acid that supports the activity of RNase H enzyme is within the scope of the definition of the RNase H activating region and the instant invention.

By "2-5A antisense chimera" is meant an antisense oligonucleotide containing a 5'-phosphorylated 2'-5'-linked adenylate residue. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5A-dependent ribonuclease which, in turn, cleaves the target RNA (Torrence et al., 1993 Proc. Natl. Acad. Sci. USA 90, 1300; Silverman et al., 2000, Methods Enzymol., 313, 522-533; Player and Torrence, 1998, Pharmacol. Ther., 78, 55-113).

By "triplex forming oligonucleotides" is meant an oligonucleotide that can bind to a double-stranded DNA in a sequence-specific manner to form a triple-strand helix. Formation of such triple helix structure has been shown to inhibit transcription of the targeted gene (Duval-Valentin et al., 1992 Proc. Natl. Acad. Sci. USA 89, 504; Fox, 2000, Curr. Med. Chem., 7, 17-37; Praseuth et. al., 2000, Biochim. Biophys. Acta, 1489, 181-206).

By "gene" it is meant a nucleic acid that encodes an RNA, for example, nucleic acid sequences including but not limited to structural genes encoding a polypeptide.

"Complementarity" refers to the ability of a nucleic acid to form hydrogen bond(s) with another RNA sequence by either traditional Watson-Crick or other non-traditional types. In reference to the nucleic molecules of the present invention, the binding free energy for a nucleic acid molecule with its target or complementary sequence is sufficient to allow the relevant function of the nucleic acid to proceed, e.g., enzymatic nucleic acid cleavage, antisense or triple helix inhibition. Determination of binding free energies for nucleic acid molecules is well known in the art (see, e.g., Turner et al., 1987, CSH Symp. Quant. Biol. LII pp.123-133; Frier et al., 1986, Proc. Nat. Acad. Sci. USA 83:9373-9377; Turner et al., 1987, J. Am. Chem. Soc. 109:3783-3785). A percent complementarity indicates the percentage of contiguous residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). "Perfectly complementary" means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.

By "RNA" is meant a molecule comprising at least one ribonucleotide residue. By "ribonucleotide" or "2'-OH" is meant a nucleotide with a hydroxyl group at the 2' position of a β -D-ribo-furanose moiety.

By "decoy RNA" is meant a RNA molecule that mimics the natural binding domain for a ligand. The decoy RNA therefore competes with natural binding target for the binding of a specific ligand. For example, it has been shown that over-expression of HIV trans-activation

8

response (TAR) RNA can act as a "decoy" and efficiently binds HIV tat protein, thereby preventing it from binding to TAR sequences encoded in the HIV RNA (Sullenger et al., 1990, Cell, 63, 601-608). This is but a specific example and those in the art will recognize that other embodiments can be readily generated using techniques generally known in the art.

Several varieties of naturally occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor of gene expression, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme.

The enzymatic nucleic acid molecule that cleave the specified sites in Chk1-specific RNAs represent a novel therapeutic approach to treat a variety of pathologic indications, including cancer.

In one of the preferred embodiments of the inventions described herein, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in the motif of a hepatitis delta virus, group I intron, group II intron or RNase P RNA (in association with an RNA guide sequence), Neurospora VS RNA, DNAzymes, NCH cleaving motifs, or G-cleavers. Examples of such hammerhead motifs are described by Dreyfus, supra, Rossi et al., 1992, AIDS Research and Human Retroviruses 8, 183. Examples of hairpin motifs are described by Hampel et al., EP0360257, Hampel and Tritz, 1989 Biochemistry 28, 4929, Feldstein et al., 1989, Gene 82, 53, Haseloff and Gerlach, 1989, Gene, 82, 43, Hampel et al., 1990 Nucleic Acids Res. 18, 299; and Chowrira & McSwiggen, US. Patent No. 5,631,359. The hepatitis delta virus motif is described by Perrotta and Been, 1992 Biochemistry 31, 16. The RNase P motif is described by Guerrier-Takada et al., 1983 Cell 35, 849; Forster and Altman, 1990, Science 249, 783; and Li and Altman, 1996, Nucleic Acids Res. 24, 835. The Neurospora VS RNA ribozyme

motif is described by Collins (Saville and Collins, 1990 Cell 61, 685-696; Saville and Collins, 1991 Proc. Natl. Acad. Sci. USA 88, 8826-8830; Collins and Olive, 1993 Biochemistry 32, 2795-2799; and Guo and Collins, 1995, EMBO. J. 14, 363). Group II introns are described by Griffin et al., 1995, Chem. Biol. 2, 761; Michels and Pyle, 1995, Biochemistry 34, 2965; and Pyle et al., International PCT Publication No. WO 96/22689. The Group I intron is described by Cech et al., U.S. Patent 4,987,071. DNAzymes are described by Usman et al., International PCT Publication No. WO 95/11304; Chartrand et al., 1995, NAR 23, 4092; Breaker et al., 1995, Chem. Bio. 2, 655; and Santoro et al., 1997, PNAS 94, 4262. NCH cleaving motifs are described in Ludwig & Sproat, International PCT Publication No. WO 98/58058; and G-cleavers are described in Kore et al., 1998, Nucleic Acids Research 26, 4116-4120 and Eckstein et al., International PCT Publication No. WO 99/16871. Additional motifs include the Aptazyme (Breaker et al., WO 98/43993), Amberzyme (Class I motif; Figure 3; Beigelman et al., International PCT publication No. WO 99/55857) and Zinzyme (Beigelman et al., International PCT publication No. WO 99/55857), all these references are incorporated by reference herein in their totalities, including drawings and can also be used in the present invention. These specific motifs are not limiting in the invention. and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule (Cech et al., U.S. Patent No. 4,987,071).

In preferred embodiments of the present invention, a nucleic acid molecule of the instant invention can be between 13 and 100 nucleotides in length. Exemplary enzymatic nucleic acid molecules of the invention are shown in Tables III-XIII. For example, enzymatic nucleic acid molecules of the invention are preferably between 15 and 50 nucleotides in length, more preferably between 25 and 40 nucleotides in length, e.g., 34, 36, or 38 nucleotides in length (for example see Jarvis et al., 1996, J. Biol. Chem., 271, 29107-29112). Exemplary DNAzymes of the invention are preferably between 15 and 40 nucleotides in length, more preferably between 25 and 35 nucleotides in length, e.g., 29, 30, 31, or 32 nucleotides in length (see for example Santoro et al., 1998, Biochemistry, 37, 13330-13342; Chartrand et al., 1995, Nucleic Acids Research, 23, 4092-4096). Exemplary antisense molecules of the invention are preferably between 15 and 75 nucleotides in length, more preferably between 20 and 35 nucleotides in length, e.g., 25, 26, 27, or 28 nucleotides in length (see for example Woolf et al., 1992, PNAS., 89, 7305-7309; Milner et al., 1997, Nature Biotechnology, 15, 537-541). Exemplary triplex forming oligonucleotide molecules of the invention are preferably between 10 and 40 nucleotides in length, more preferably between 12 and 25 nucleotides in length, e.g., 18, 19, 20, or 21 nucleotides in length (see for example Maher et al., 1990, Biochemistry, 29, 8820-8826; Strobel

10

and Dervan, 1990, Science, 249, 73-75). Those skilled in the art will recognize that all that is required is for the nucleic acid molecule are of length and conformation sufficient and suitable for the nucleic acid molecule to catalyze a reaction contemplated herein. The length of the nucleic acid molecules of the instant invention are not limiting within the general limits stated.

Preferably, a nucleic acid molecule that down regulates the replication of Chk1 comprises between 12 and 100 bases complementary to a RNA molecule of Chk1. Even more preferably, a nucleic acid molecule that down regulates the replication of Chk1 comprises between 14 and 24 bases complementary to a RNA molecule of Chk1.

In a preferred embodiment, the invention provides a method for producing a class of nucleic acid-based gene inhibiting agents which exhibit a high degree of specificity for the RNA of a desired target. For example, the enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of target RNAs encoding kinases which phosphorylate Cdc25 S216, such as Chk1 proteins (specifically Chk1 gene) such that specific treatment of a disease or condition can be provided with either one or several nucleic acid molecules of the invention. Such nucleic acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the nucleic acid molecules (e.g., ribozymes and antisense) can be expressed from DNA and/or RNA vectors that are delivered to specific cells.

In a preferred embodiment, the invention features the use of nucleic acid-based inhibitors of the invention to specifically target genes that share homology with the Chk1 gene.

As used in herein "cell" is used in its usual biological sense, and does not refer to an entire multicellular organism, e.g., specifically does not refer to a human. The cell may be present in an organism which may be a human but is preferably a non-human multicellular organism, e.g., birds, plants and mammals such as cows, sheep, apes, monkeys, swine, dogs, and cats. The cell may be prokaryotic (e.g., bacterial cell) or eukaryotic (e.g., mammalian or plant cell).

By "Chk1 proteins" is meant, a protein or a mutant protein derivative thereof, comprising phosphorylation activity, preferably to serine residue (S216), or its equivalent, in Cdc25 phosphatase.

By "highly conserved sequence region" is meant, a nucleotide sequence of one or more regions in a target gene does not vary significantly from one generation to the other or from one biological system to the other.

The nucleic acid-based inhibitors of Chk1 expression are useful for the prevention and/or treatment of diseases and conditions such as cancer, including cancer of the colon, rectum, lung,

breast, prostate and any other diseases or conditions that are related to or will respond to the levels of Chk1 in a cell or tissue, alone or in combination with other therapies. In addition, Chk1 inhibition may be used as a therapeutic target for abrogating the G2 DNA damage checkpoint arrest; a situation that may selectively sensitize p53-deficient tumor cells to radiation or chemotherapy treatment.

By "related" is meant that the reduction of Chk1 expression (specifically Chk1 gene) RNA levels and thus reduction in the level of the respective protein will relieve, to some extent, the symptoms of the disease or condition.

The nucleic acid-based inhibitors of the invention are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the enzymatic nucleic acid inhibitors comprise sequences, which are complementary to the substrate sequences in Tables III to VIII. Examples of such enzymatic nucleic acid molecules also are shown in Tables III to VIII. Examples of such enzymatic nucleic acid molecules consist essentially of sequences defined in these Tables.

In yet another embodiment, the invention features antisense nucleic acid molecules and 2-5A chimera including sequences complementary to the substrate sequences shown in **Tables III** to **IX**. Such nucleic acid molecules can include sequences as shown for the binding arms of the enzymatic nucleic acid molecules in **Tables III** to **VIII** and sequences shown as GeneBlocTM sequences in **Table IX**. Similarly, triplex molecules can be provided targeted to the corresponding DNA target regions, and containing the DNA equivalent of a target sequence or a sequence complementary to the specified target (substrate) sequence. Typically, antisense molecules will be complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule may bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule may bind such that the antisense molecule forms a loop. Thus, the antisense molecule may be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule may be complementary to a target sequence or both.

By "consists essentially of" is meant that the active nucleic acid molecule of the invention, for example an enzymatic nucleic acid molecule, contains an enzymatic center or core equivalent to those in the examples, and binding arms able to bind RNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage. Thus, a core

region may, for example, include one or more loop, stem-loop structure or linker, which does not prevent enzymatic activity. Thus, the underlined regions in the sequences in **Tables III** and **IV** can be such a loop, stem-loop, nucleotide linker, and/or non-nucleotide linker and can be represented generally as sequence "X". For example, a core sequence for a hammerhead enzymatic nucleic acid can comprise a conserved sequence, such as 5'-CUGAUGAG-3' and 5'-CGAA-3' connected by a sequence X, where X is 5'-GCCGUUAGGC-3' (SEQ ID NO 3173) or any other stem II region known in the art or a nucleotide and/or non-nucleotide linker. Similarly, for other nucleic acid molecules of the instant invention, such as Inozyme, G-cleaver, amberzyme, zinzyme, DNAzyme, antisense, 2-5A antisense, triplex forming nucleic acid, and decoy nucleic acids, other sequences or non-nucleotide linkers may be present that do not interfere with the function of the nucleic acid molecule.

Sequence X may be a linker of ≥ 2 nucleotides in length, preferably 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 26, 30, where the nucleotides may preferably be internally base-paired to form a stem of preferably ≥ 2 base pairs. Alternatively or in addition, sequence X may be a non-nucleotide linker. In yet another embodiment, the nucleotide linker X can be a nucleic acid aptamer, such as an ATP aptamer, HIV Rev aptamer (RRE), HIV Tat aptamer (TAR) and others (for a review see Gold et al., 1995, Annu. Rev. Biochem., 64, 763; and Szostak & Ellington, 1993, in The RNA World, ed. Gesteland and Atkins, pp. 511, CSH Laboratory Press). A "nucleic acid aptamer" as used herein is meant to indicate a nucleic acid sequence capable of interacting with a ligand. The ligand can be any natural or a synthetic molecule, including but not limited to a resin, metabolites, nucleosides, nucleotides, drugs, toxins, transition state analogs, peptides, lipids, proteins, amino acids, nucleic acid molecules, hormones, carbohydrates, receptors, cells, viruses, bacteria and others.

In yet another embodiment, the non-nucleotide linker X is as defined herein. The term "non-nucleotide" as used herein include either abasic nucleotide, polyether, polyamine, polyamide, peptide, carbohydrate, lipid, or polyhydrocarbon compounds. Specific examples include those described by Seela and Kaiser, Nucleic Acids Res. 1990, 18:6353 and Nucleic Acids Res. 1987, 15:3113; Cload and Schepartz, J. Am. Chem. Soc. 1991, 113:6324; Richardson and Schepartz, J. Am. Chem. Soc. 1991, 113:5109; Ma et al., Nucleic Acids Res. 1993, 21:2585 and Biochemistry 1993, 32:1751; Durand et al., Nucleic Acids Res. 1990, 18:6353; McCurdy et al., Nucleosides & Nucleotides 1991, 10:287; Jschke et al., Tetrahedron Lett. 1993, 34:301; Ono et al., Biochemistry 1991, 30:9914; Arnold et al., International Publication No. WO 89/02439; Usman et al., International Publication No. WO 95/1910 and Ferentz and Verdine, J. Am. Chem. Soc. 1991, 113:4000, all hereby incorporated by reference herein. A "non-nucleotide" further means any group or

compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound can be abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine. Thus, in a preferred embodiment, the invention features an enzymatic nucleic acid molecule having one or more non-nucleotide moieties, and having enzymatic activity to cleave an RNA or DNA molecule.

In another aspect of the invention, ribozymes or antisense molecules that cleave target RNA molecules and inhibit Chk1 (specifically Chk1 gene) activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme or antisense expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the ribozymes or antisense are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of ribozymes or antisense. Such vectors can be repeatedly administered as necessary. Once expressed, the ribozymes or antisense bind to the target RNA and inhibit its function or expression. Delivery of ribozyme or antisense expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell.

By "vectors" is meant any nucleic acid- and/or viral-based technique used to deliver a desired nucleic acid.

By "patient" is meant an organism, which is a donor or recipient of explanted cells or the cells themselves. "Patient" also refers to an organism to which the nucleic acid molecules of the invention can be administered. Preferably, a patient is a mammal or mammalian cells. More preferably, a patient is a human or human cells.

By "enhanced enzymatic activity" is meant to include activity measured in cells and/or in vivo where the activity is a reflection of both the catalytic activity and the stability of the nucleic acid molecules of the invention. In this invention, the product of these properties can beincreased in vivo compared to an all RNA enzymatic nucleic acid or all DNA enzyme. In some cases, the activity or stability of the nucleic acid molecule can bedecreased (i.e., less than tenfold), but the overall activity of the nucleic acid molecule is enhanced, in vivo.

The nucleic acid molecules of the instant invention, individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed above. For example, to treat a disease or condition associated with the levels of Chk1, the patient may be treated, or other appropriate cells may be treated, as is evident to those skilled in the art, individually or in combination with one or more drugs under conditions suitable for the treatment.

In a further embodiment, the described molecules, such as antisense or ribozymes, can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules could be used in combination with one or more known therapeutic agents to treat cancer, including but not limited to cancer of the colon, rectum, lung, breast and prostate.

In another preferred embodiment, the invention features nucleic acid-based inhibitors (e.g., enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, 2-5A antisense chimeras, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or inhibit the expression of genes (e.g., Chk1) capable of progression and/or maintenance of cancer.

In another aspect, the invention provides mammalian cells containing one or more nucleic acid molecules and/or expression vectors of this invention. The one or more nucleic acid molecules may independently be targeted to the same or different sites.

By "comprising" is meant including, but not limited to, whatever follows the word "comprising". Thus, use of the term "comprising" indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present. By "consisting of" is meant including, and limited to, whatever follows the phrase "consisting of". Thus, the phrase "consisting of" indicates that the listed elements are required or mandatory, and that no other elements may be present.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Description Of The Preferred Embodiments

First the drawings will be described briefly.

Drawings

Figure 1 shows the secondary structure model for seven different classes of enzymatic nucleic acid molecules. Arrow indicates the site of cleavage. ----- indicate the target sequence. Lines interspersed with dots are meant to indicate tertiary interactions. - is meant to indicate base-paired interaction. Group I Intron: P1-P9.0 represent various stem-loop structures (Cech et al., 1994, Nature Struc. Bio., 1, 273). RNase P (M1RNA): EGS represents external guide sequence (Forster et al., 1990, Science, 249, 783; Pace et al., 1990, J. Biol. Chem., 265, 3587). Group II Intron: 5'SS means 5' splice site; 3'SS means 3'-splice site; IBS means intron binding site; EBS means exon binding site (Pyle et al., 1994, Biochemistry, 33, 2716). VS RNA: I-VI are meant to indicate six stem-loop structures; shaded regions are meant to indicate tertiary interaction (Collins, International PCT Publication No. WO 96/19577). HDV Ribozyme: : I-IV are meant to indicate four stem-loop structures (Been et al., US Patent No. 5,625,047). Hammerhead Ribozyme: : I-III are meant to indicate three stem-loop structures; stems I-III can be of any length and may be symmetrical or asymmetrical (Usman et al., 1996, Curr. Op. Struct. Bio., 1, 527). Hairpin Ribozyme: Helix 1, 4 and 5 can be of any length; Helix 2 is between 3 and 8 base-pairs long; Y is a pyrimidine; Helix 2 (H2) is provided with a least 4 base pairs (i.e., n is 1, 2, 3 or 4) and helix 5 can be optionally provided of length 2 or more bases (preferably 3 -20 bases, i.e., m is from 1 - 20 or more). Helix 2 and helix 5 may be covalently linked by one or more bases (i.e., r is ≥ 1 base). Helix 1, 4 or 5 may also be extended by 2 or more base pairs (e.g., 4 - 20 base pairs) to stabilize the ribozyme structure, and preferably is a protein binding site. In each instance, each N and N' independently is any normal or modified base and each dash represents a potential base-pairing interaction. These nucleotides may be modified at the sugar, base or phosphate. Complete base-pairing is not required in the helices, but is preferred. Helix 1 and 4 can be of any size (i.e., o and p is each independently from 0 to any number, e.g., 20) as long as some base-pairing is maintained. Essential bases are shown as specific bases in the structure, but those in the art will recognize that one or more may be modified chemically (abasic, base, sugar and/or phosphate modifications) or replaced with another base without significant effect. Helix 4 can be formed from two separate molecules, i.e., without a connecting loop. The connecting loop when present may be a ribonucleotide with or without modifications to its base, sugar or phosphate. " $q'' \ge is 2$ bases. The connecting loop can also be replaced with a non-nucleotide linker molecule. H refers to bases A, U, or C. Y refers to pyrimidine bases. " refers to a covalent bond. (Burke et al., 1996, Nucleic Acids & Mol. Biol., 10, 129; Chowrira et al., US Patent No. 5,631,359).

Figure 2 shows examples of chemically stabilized ribozyme motifs. HH Rz, represents hammerhead ribozyme motif (Usman et al., 1996, Curr. Op. Struct. Bio., 1, 527); NCH Rz represents the NCH ribozyme motif (Ludwig & Sproat, International PCT Publication No. WO

WO 01/57206

98/58058); G-Cleaver, represents G-cleaver ribozyme motif (Kore et al., 1998, Nucleic Acids Research 26, 4116-4120). N or n, represent independently a nucleotide which may be same or different and have complementarity to each other; rI, represents ribo-Inosine nucleotide; arrow indicates the site of cleavage within the target. Position 4 of the HH Rz and the NCH Rz is shown as having 2'-C-allyl modification, but those skilled in the art will recognize that this position can be modified with other modifications well known in the art, so long as such modifications do not significantly inhibit the activity of the ribozyme.

Figure 3 shows an example of the Amberzyme ribozyme motif that is chemically stabilized (see, for example, Beigelman et al., International PCT publication No. WO 99/55857, incorporated by reference herein; also referred to as Class I Motif). The Amberzyme motif is a class of enzymatic nucleic molecules that do not require the presence of a ribonucleotide (2'-OH) group for its activity.

Figure 4 shows an example of the Zinzyme A ribozyme motif that is chemically stabilized (Beigelman et al., International PCT publication No. WO 99/55857, incorporated by reference herein; also referred to as Class A or Class II Motif). The Zinzyme motif is a class of enzymatic nucleic molecules that do not require the presence of a ribonucleotide (2'-OH) group for its activity.

Figure 5 shows an example of a DNAzyme motif described by Santoro et al., 1997, PNAS, 94, 4262.

Figure 6 shows a bar graph of a nucleic acid inhibitor (50 to 200 nM GeneBlocTM screen against Chk1 RNA in HeLa cells using 1.25 μg/ml GSV lipid with 24 hour sustained delivery in a 96-well format. Relative amounts of target RNA were measured normalized to actin using real-time PCR monitoring of amplification compared to mismatch nucleic acid and untreated controls. The sequences of GeneBlocTM reagents used in this experiment are shown in Table IX.

Figure 7 shows a bar graph of a lipid optimization study utilizing lead nucleic acid inhibitors (GeneBlocs[™]) targeting Chk1 RNA in HeLa cells; 96-well plate format, 5000 cells/well, GSV lipid. Six different lipid concentrations are shown in conjunction with two different concentrations of the nucleic acid inhibitors.

Figure 8 shows a bar graph displaying a time-course inhibition study of a lead nucleic acid inhibitor (GeneBlocTM) targeting Chk1 RNA compared to a scrambled nucleic acid control, both at 5 and 100 nM concentrations; 96-well plate format, 5000 cells/well, 1.0 μg/ml GSV lipid.

Figure 9 shows a bar graph representing inhibition of Chk1 RNA via primary lead (GeneBlocTM) inhibition as described in Figure 6, however utilizing a 6-well plate format with a cell density of 150,000 cells per well.

Figure 10 shows a bar graph representing inhibition of Chk1 RNA via primary lead (GeneBlocTM) inhibition in conjunction with +/- etoposide and nocodazole treatment; 50 nM GeneBlocTM, 1.25 μg/ml GSV lipid, HeLa cells, 6-well plate format, 100,000 cells/well.

Figure 11 shows a bar graph of a lipid optimization study utilizing a lead nucleic acid inhibitor (GeneBlocTM) targeting Chk1 RNA in DLD-1 cells; 96-well plate format, 15,000 cells/well, GSV lipid. Four different lipid concentrations are shown in conjunction with two different concentrations of the nucleic acid inhibitor.

Figure 12 shows a bar graph of a lipid optimization study utilizing a lead nucleic acid inhibitor (GeneBlocTM) targeting Chk1 RNA in MCF-7 cells; 96-well plate format, 10,000 cells/well, GSV lipid. Four different lipid concentrations are shown in conjunction with two different concentrations of the nucleic acid inhibitor.

Figure 13 shows a dose curve of primary and secondary nucleic acid inhibitor (GeneBlocTM) leads targeting Chk1 RNA in HeLa cells using 1.25 μg/ml GSV lipid, 24 hr timepoint, 96-well plate format with a density of 5000 cells/well.

Mechanism of action of Nucleic Acid Molecules of the Invention

Antisense: Antisense molecules can be modified or unmodified RNA, DNA, or mixed polymer oligonucleotides which primarily function by specifically binding to matching sequences resulting in inhibition of peptide synthesis (Wu-Pong, Nov 1994, *BioPharm*, 20-33). The antisense oligonucleotide binds to target RNA by Watson Crick base-pairing and blocks gene expression by preventing ribosomal translation of the bound sequences either by steric blocking or by activating RNase H enzyme. Antisense molecules can also alter protein synthesis by interfering with RNA processing or transport from the nucleus into the cytoplasm (Mukhopadhyay & Roth, 1996, *Crit. Rev. in Oncogenesis* 7, 151-190).

In addition, binding of single stranded DNA to RNA may result in nuclease degradation of the heteroduplex (Wu-Pong, *supra*; Crooke, *supra*). To date, the only backbone modified DNA chemistry which will act as substrates for RNase H are phosphorothioates, phosphorodithioates, and borontrifluoridates. Recently it has been reported that 2'-arabino and 2'-fluoro arabinocontaining oligos can also activate RNase H activity.

A number of antisense molecules have been described that utilize novel configurations of chemically modified nucleotides, secondary structure, and/or RNase H substrate domains (Woolf et al., International PCT Publication No. WO 98/13526; Thompson et al., International PCT Publication No. WO 99/54459; Hartmann et al., USSN 60/101,174 which was filed on September 21, 1998) all of these are incorporated by reference herein in their entirety.

In addition, antisense deoxyoligoribonucleotides can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. Antisense DNA can be expressed via the use of a single stranded DNA intracellular expression vector or equivalents and variations thereof.

Triplex Forming Oligonucleotides (TFO): Single stranded DNA can be designed to bind to genomic DNA in a sequence specific manner. TFOs are comprised of pyrimidine-rich oligonucleotides which bind DNA helices through Hoogsteen Base-pairing (Wu-Pong, supra). The resulting triple helix composed of the DNA sense, DNA antisense, and TFO disrupts RNA synthesis by RNA polymerase. The TFO mechanism can result in gene expression or cell death since binding may be irreversible (Mukhopadhyay & Roth, supra).

2-5A Antisense Chimera: The 2-5A system is an interferon mediated mechanism for RNA degradation found in higher vertebrates (Mitra et al., 1996, Proc Nat Acad Sci USA 93, 6780-6785). Two types of enzymes, 2-5A synthetase and RNase L, are required for RNA cleavage. The 2-5A synthetases require double stranded RNA to form 2'-5' oligoadenylates (2-5A). 2-5A then acts as an allosteric effector for utilizing RNase L which has the ability to cleave single stranded RNA. The ability to form 2-5A structures with double stranded RNA makes this system particularly useful for inhibition of viral replication.

(2'-5') oligoadenylate structures can be covalently linked to antisense molecules to form chimeric oligonucleotides capable of RNA cleavage (Torrence, *supra*). These molecules putatively bind and activate a 2-5A dependent RNase, the oligonucleotide/enzyme complex then binds to a target RNA molecule which can then be cleaved by the RNase enzyme.

Enzymatic Nucleic Acid: Seven basic varieties of naturally occurring enzymatic RNAs are presently known. In addition, several in vitro selection (evolution) strategies (Orgel, 1979, Proc. R. Soc. London, B 205, 435) have been used to evolve new nucleic acid catalysts capable of catalyzing cleavage and ligation of phosphodiester linkages (Joyce, 1989, Gene, 82, 83-87; Beaudry et al., 1992, Science 257, 635-641; Joyce, 1992, Scientific American 267, 90-97; Breaker et al., 1994, TIBTECH 12, 268; Bartel et al., 1993, Science 261:1411-1418; Szostak, 1993, TIBS 17, 89-93; Kumar et al., 1995, FASEB J., 9, 1183; Breaker, 1996, Curr. Op. Biotech., 7, 442; Santoro et al., 1997, Proc. Natl. Acad. Sci., 94, 4262; Tang et al., 1997, RNA 3, 914;

WO 01/57206

Nakamaye & Eckstein, 1994, supra; Long & Uhlenbeck, 1994, supra; Ishizaka et al., 1995, supra; Vaish et al., 1997, Biochemistry 36, 6495; all of these are incorporated by reference herein). Each can catalyze a series of reactions including the hydrolysis of phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions.

Nucleic acid molecules of this invention will block to some extent Chk1 protein expression and can be used to treat disease or diagnose disease associated with the levels of Chk1.

The enzymatic nature of a ribozyme has significant advantages, such as the concentration of ribozyme necessary to affect a therapeutic treatment is lower. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can be chosen to completely eliminate catalytic activity of a ribozyme.

Nucleic acid molecules having an endonuclease enzymatic activity are able to repeatedly cleave other separate RNA molecules in a nucleotide base sequence-specific manner. Such enzymatic nucleic acid molecules can be targeted to virtually any RNA transcript, and achieve efficient cleavage in vitro (Zaug et al., 324, Nature 429 1986; Uhlenbeck, 1987 Nature 328, 596; Kim et al., 84 Proc. Natl. Acad. Sci. USA 8788, 1987; Dreyfus, 1988, Einstein Quart. J. Bio. Med., 6, 92; Haseloff and Gerlach, 334 Nature 585, 1988; Cech, 260 JAMA 3030, 1988; and Jefferies et al., 17 Nucleic Acids Research 1371, 1989; Santoro et al., 1997 supra).

Because of their sequence specificity, trans-cleaving ribozymes can be used as therapeutic agents for human disease (Usman & McSwiggen, 1995 Ann. Rep. Med. Chem. 30, 285-294; Christoffersen and Marr, 1995 J. Med. Chem. 38, 2023-2037). Ribozymes can be designed to cleave specific RNA targets within the background of cellular RNA. Such a cleavage event renders the RNA non-functional and abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively inhibited (Warashina et al., 1999, Chemistry and Biology, 6, 237-250).

The nucleic acid molecules of the instant invention are also referred to as GeneBloc[™] reagents, which are essentially nucleic acid molecules (e.g.; ribozymes, antisense) capable of down-regulating gene expression.

GeneBlocs are modified oligonucleotides including ribozymes and modified antisense oligonucleotides that bind to and target specific mRNA molecules. Because GeneBlocs can be

PCT/US01/03504

designed to target any specific mRNA, their potential applications are quite broad. Traditional antisense approaches have often relied heavily on the use of phosphorothioate modifications to enhance stability in biological samples, leading to a myriad of specificity problems stemming from non-specific protein binding and general cytotoxicity (Stein, 1995, Nature Medicine, 1, 1119). In contrast, GeneBlocs contain a number of modifications that confer nuclease resistance while making minimal use of phosphorothioate linkages, which reduces toxicity, increases binding affinity and minimizes non-specific effects compared with traditional antisense oligonucleotides. Similar reagents have recently been utilized successfully in various cell culture systems (Vassar, et al., 1999, Science, 286, 735) and in vivo (Jarvis et al., manuscript in preparation). In addition, novel cationic lipids can be utilized to enhance cellular uptake in the presence of serum. Since ribozymes and antisense oligonucleotides regulate gene expression at the RNA level, the ability to maintain a steady-state dose of GeneBloc over several days was important for target protein and phenotypic analysis. The advances in resistance to nuclease degradation and prolonged activity in vitro have supported the use of GeneBlocs in target validation applications.

20

Target sites

WO 01/57206

Targets for useful ribozymes and antisense nucleic acids can be determined as disclosed in Draper et al., WO 93/23569; Sullivan et al., WO 93/23057; Thompson et al., WO 94/02595; Draper et al., WO 95/04818; McSwiggen et al., US Patent No. 5,525,468. All of these publications are hereby incorporated by reference herein in their totality. Other examples include the following PCT applications, which concern inactivation of expression of disease-related genes: WO 95/23225, WO 95/13380, WO 94/02595, all of which are incorporated by reference herein. Rather than repeat the guidance provided in those documents here, specific examples of such methods are provided herein, not limiting to those in the art. Ribozymes and antisense to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also described. The sequences of human Chk1 RNAs were screened for optimal enzymatic nucleic acid and antisense target sites using a computer-folding algorithm. Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme, or G-Cleaver ribozyme binding/cleavage sites were identified. These sites are shown in Tables III to VIII (all sequences are 5' to 3' in the tables; underlined regions can be any sequence or linker X, the actual sequence is not relevant here). The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule. While human sequences can be screened and enzymatic nucleic acid molecule and/or antisense thereafter designed, as discussed in Stinchcomb et al., WO 95/23225, mouse targeted ribozymes may be useful to test efficacy of action of the enzymatic nucleic acid molecule and/or antisense prior to testing in humans.

PCT/US01/03504

Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme or G-Cleaver ribozyme binding/cleavage sites were identified. The nucleic acid molecules are individually analyzed by computer folding (Jaeger et al., 1989 Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the sequences fold into the appropriate secondary structure. Those nucleic acid molecules with unfavorable intramolecular interactions such as between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity.

Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme or G-Cleaver ribozyme binding/cleavage sites were identified and were designed to anneal to various sites in the RNA target. The binding arms are complementary to the target site sequences described above. The nucleic acid molecules were chemically synthesized. The method of synthesis used follows the procedure for normal DNA/RNA synthesis as described below and in Usman et al., 1987 J. Am. Chem. Soc., 109, 7845; Scaringe et al., 1990 Nucleic Acids Res., 18, 5433; Wincott et al., 1995 Nucleic Acids Res., 23, 2677-2684; and Caruthers et al., 1992, Methods in Enzymology 211,3-19.

Synthesis of Nucleic acid Molecules

Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small nucleic acid motifs ("small refers to nucleic acid motifs no more than 100 nucleotides in length, preferably no more than 80 nucleotides in length, and most preferably no more than 50 nucleotides in length; e.g., antisense oligonucleotides, hammerhead or the NCH ribozymes) are preferably used for exogenous delivery. The simple structure of these molecules increases the ability of the nucleic acid to invade targeted regions of RNA structure. Exemplary molecules of the instant invention are chemically synthesized, and others can similarly be synthesized.

Oligonucleotides (e.g.; antisense GeneBlocsTM) are synthesized using protocols known in the art as described in Caruthers et al., 1992, Methods in Enzymology 211, 3-19, Thompson et al., International PCT Publication No. WO 99/54459, Wincott et al., 1995, Nucleic Acids Res. 23, 2677-2684, Wincott et al., 1997, Methods Mol. Bio., 74, 59, Brennan et al., 1998, Biotechnol Bioeng., 61, 33-45, and Brennan, US patent No. 6,001,311. All of these references are incorporated herein by reference. The synthesis of oligonucleotides makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 µmol scale protocol with a 2.5 min coupling step for 2'-O-methylated nucleotides and a 45 sec coupling step for 2'-deoxy nucleotides. Table II outlines the amounts and the contact times of the reagents used in the

synthesis cycle. Alternatively, syntheses at the 0.2 µmol scale can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, CA) with minimal modification to the cycle. A 33-fold excess (60 μ L of 0.11 M = 6.6 μ mol) of 2'-O-methyl phosphoramidite and a 105-fold excess of S-ethyl tetrazole (60 μ L of 0.25 M = 15 μ mol) can be used in each coupling cycle of 2'-O-methyl residues relative to polymer-bound 5'-hydroxyl. A 22-fold excess (40 μ L of 0.11 M = 4.4 μ mol) of deoxy phosphoramidite and a 70-fold excess of S-ethyl tetrazole (40 μ L of 0.25 M = 10 μ mol) can be used in each coupling cycle of deoxy residues relative to polymer-bound 5'-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include; detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6lutidine in THF (ABI); and oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PERSEPTIVETM). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide, 0.05 M in acetonitrile) is used.

Deprotection of the antisense oligonucleotides is performed as follows: the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65 °C for 10 min. After cooling to -20 °C, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H2O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder.

The method of synthesis used for normal RNA including certain enzymatic nucleic acid molecules follows the procedure as described in Usman et al., 1987, J. Am. Chem. Soc., 109, 7845; Scaringe et al., 1990, Nucleic Acids Res., 18, 5433; Wincott et al., 1995, Nucleic Acids Res. 23, 2677-2684 and Wincott et al., 1997, Methods Mol. Bio., 74, 59, and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 µmol scale protocol with a 7.5 min coupling step for alkylsilyl protected nucleotides and a 2.5 min coupling step for 2'-O-methylated nucleotides. Table II outlines the amounts and the contact times of the reagents used in the synthesis cycle. Alternatively, syntheses at the 0.2 µmol scale can be done on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, CA) with minimal

modification to the cycle. A 33-fold excess (60 μ L of 0.11 M = 6.6 μ mol) of 2'-O-methyl phosphoramidite and a 75-fold excess of S-ethyl tetrazole (60 μ L of 0.25 M = 15 μ mol) can be used in each coupling cycle of 2'-O-methyl residues relative to polymer-bound 5'-hydroxyl. A 66-fold excess (120 μ L of 0.11 M = 13.2 μ mol) of alkylsilyl (ribo) protected phosphoramidite and a 150-fold excess of S-ethyl tetrazole (120 μ L of 0.25 M = 30 μ mol) can be used in each coupling cycle of ribo residues relative to polymer-bound 5'-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include; detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PERSEPTIVETM). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1dioxide0.05 M in acetonitrile) is used.

Deprotection of the RNA is performed using either a two-pot or one-pot protocol. For the two-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65 °C for 10 min. After cooling to -20 °C, the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H2O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder. The base deprotected oligoribonucleotide is resuspended in anhydrous TEA/HF/NMP solution (300 µL of a solution of 1.5 mL N-methylpyrrolidinone, 750 µL TEA and 1 mL TEA•3HF to provide a 1.4 M HF concentration) and heated to 65 °C. After 1.5 h, the oligomer is quenched with 1.5 M NH4HCO₃.

Alternatively, for the one-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 33% ethanolic methylamine/DMSO: 1/1 (0.8 mL) at 65 °C for 15 min. The vial is brought to r.t. TEA•3HF (0.1 mL) is added and the vial is heated at 65 °C for 15 min. The sample is cooled at -20 °C and then quenched with 1.5 M NH₄HCO₃.

For purification of the trityl-on oligomers, the quenched NH₄HCO₃ solution is loaded onto a C-18 containing cartridge that had been prewashed with acetonitrile followed by 50 mM TEAA. After washing the loaded cartridge with water, the RNA is detritylated with 0.5% TFA

WO 01/57206

for 13 min. The cartridge is then washed again with water, salt exchanged with 1 M NaCl and washed with water again. The oligonucleotide is then eluted with 30% acetonitrile.

Inactive hammerhead ribozymes or binding attenuated control (BAC) oligonucleotides) are synthesized by substituting a U for G5 and a U for A14 (numbering from Hertel, K. J., et al., 1992, Nucleic Acids Res., 20, 3252). Similarly, one or more nucleotide substitutions can be introduced in other enzymatic nucleic acid molecules to inactivate the molecule and such molecules can serve as a negative control.

The average stepwise coupling yields are typically >98% (Wincott et al., 1995 Nucleic Acids Res. 23, 2677-2684). Those of ordinary skill in the art will recognize that the scale of synthesis can be adapted to be larger or smaller than the examples described above including but not limited to 96-well format, all that is important is the ratio of chemicals used in the reaction.

Alternatively, the nucleic acid molecules of the present invention can be synthesized separately and joined together post-synthetically, for example by ligation (Moore et al., 1992, Science 256, 9923; Draper et al., International PCT publication No. WO 93/23569; Shabarova et al., 1991, Nucleic Acids Research 19, 4247; Bellon et al., 1997, Nucleosides & Nucleotides, 16, 951; Bellon et al., 1997, Bioconjugate Chem. 8, 204).

The nucleic acid molecules of the present invention are modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H (for a review see Usman and Cedergren, 1992, TIBS 17, 34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163). Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Wincott et al., supra, the totality of which is hereby incorporated herein by reference) and are re-suspended in water.

The sequences of the ribozymes and antisense constructs that are chemically synthesized, useful in this study, are shown in **Tables III to IX**. Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity. The ribozyme and antisense construct sequences listed in **Tables III to IX** may be formed of ribonucleotides or other nucleotides or non-nucleotides. Such ribozymes with enzymatic activity are equivalent to the ribozymes described specifically in the Tables.

Optimizing Activity of the nucleic acid molecule of the invention.

Chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) that prevent their degradation by serum ribonucleases can increase their potency (see

25

e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., 1990 Nature 344, 565; Pieken et al., 1991, Science 253, 314; Usman and Cedergren, 1992, Trends in Biochem. Sci. 17, 334; Usman et al., International Publication No. WO 93/15187; Rossi et al., International Publication No. WO 91/03162; Sproat, US Patent No. 5,334,711; and Burgin et al., supra); all of these describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of the nucleic acid molecules described herein. All these references are incorporated by reference herein. Modifications which enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired.

There are several examples in the art describing sugar, base and phosphate modifications that can be introduced into nucleic acid molecules with significant enhancement in their nuclease stability and efficacy. For example, oligonucleotides are modified to enhance stability and/or enhance biological activity by modification with nuclease resistant groups, for example, 2'amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H, nucleotide base modifications (for a review see Usman and Cedergren, 1992, TIBS. 17, 34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163; Burgin et al., 1996, Biochemistry, 35, 14090). Sugar modifications of nucleic acid molecules have been extensively described in the art (see Eckstein et al., International Publication PCT No. WO 92/07065; Perrault et al. Nature, 1990, 344, 565-568; Pieken et al. Science, 1991, 253, 314-317; Usman and Cedergren, Trends in Biochem. Sci., 1992, 17, 334-339; Usman et al. International Publication PCT No. WO 93/15187; Sproat, US Patent No. 5,334,711 and Beigelman et al., 1995, J. Biol. Chem., 270, 25702; Beigelman et al., International PCT publication No. WO 97/26270; Beigelman et al., US Patent No. 5,716,824; Usman et al., US patent No. 5,627,053; Woolf et al., International PCT Publication No. WO 98/13526; Thompson et al., USSN 60/082,404 which was filed on April 20, 1998; Karpeisky et al., 1998, Tetrahedron Lett., 39, 1131; Earnshaw and Gait, 1998, Biopolymers (Nucleic acid Sciences), 48, 39-55; Verma and Eckstein, 1998, Annu. Rev. Biochem., 67, 99-134; and Burlina et al., 1997, Bioorg. Med. Chem., 5, 1999-2010; all of the references are hereby incorporated by reference herein in their totalities). Such publications describe general methods and strategies to determine the location of incorporation of sugar, base and/or phosphate modifications and the like into ribozymes without inhibiting catalysis. In view of such teachings, similar modifications can be used as described herein to modify the nucleic acid molecules of the instant invention.

While chemical modification of oligonucleotide internucleotide linkages with phosphorothioate, phosphorothioate, and/or 5'-methylphosphonate linkages improves stability, too many of these modifications may cause some toxicity. Therefore when designing nucleic acid molecules the amount of these internucleotide linkages should be minimized. The reduction

in the concentration of these linkages should lower toxicity resulting in increased efficacy and higher specificity of these molecules.

Nucleic acid molecules having chemical modifications which maintain or enhance activity are provided. Such nucleic acid is also generally more resistant to nucleases than unmodified nucleic acid. Thus, in a cell and/or in vivo the activity may not be significantly lowered. Therapeutic nucleic acid molecules delivered exogenously must optimally be stable within cells until translation of the target RNA has been inhibited long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days depending upon the disease state. Clearly, nucleic acid molecules must be resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of RNA and DNA (Wincott et al., 1995 Nucleic Acids Res. 23, 2677; Caruthers et al., 1992, Methods in Enzymology 211,3-19 (incorporated by reference herein) have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.

Use of the nucleic acid-based molecules of the present invention will lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple antisense or enzymatic nucleic acid molecules targeted to different genes, nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of molecules (including different motifs) and/or other chemical or biological molecules). The treatment of patients with nucleic acid molecules can also include combinations of different types of nucleic acid molecules.

Therapeutic nucleic acid molecules (e.g., enzymatic nucleic acid molecules and antisense nucleic acid molecules) delivered exogenously must optimally be stable within cells until translation of the target RNA has been inhibited long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days depending upon the disease state. Clearly, these nucleic acid molecules must be resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of nucleic acid molecules described in the instant invention and in the art have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.

In yet another preferred embodiment, nucleic acid catalysts having chemical modifications which maintain or enhance enzymatic activity are provided. Such nucleic acid is also generally more resistant to nucleases than unmodified nucleic acid. Thus, in a cell and/or in vivo the activity may not be significantly lowered. As exemplified herein such ribozymes are useful in a

cell and/or in vivo even if activity over all is reduced 10 fold (Burgin et al., 1996, Biochemistry, 35, 14090). Such ribozymes herein are said to "maintain" the enzymatic activity of an all RNA ribozyme.

In another aspect the nucleic acid molecules comprise a 5' and/or a 3'- cap structure.

By "cap structure" is meant chemical modifications, which have been incorporated at either terminus of the oligonucleotide (see, for example, Wincott et al., WO 97/26270, incorporated by reference herein). These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and may help in delivery and/or localization within a cell. The cap may be present at the 5'-terminus (5'-cap) or at the 3'-terminus (3'-cap) or may be present on both termini. In non-limiting examples the 5'-cap is selected from the group comprising inverted abasic residue (moiety), 4',5'-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide, 4'thio nucleotide, carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alphanucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5dihydroxypentyl nucleotide, 3'-3'-inverted nucleotide moiety; 3'-3'-inverted abasic moiety; 3'-2'inverted nucleotide moiety; 3'-2'-inverted abasic moiety; 1,4-butanediol phosphate; 3'phosphoramidate; hexylphosphate; aminohexyl phosphate; 3'-phosphate; 3'-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety (for more details see Wincott et al., International PCT publication No. WO 97/26270, incorporated by reference herein).

In yet another preferred embodiment, the 3'-cap is selected from a group comprising, 4',5'-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4'-thio nucleotide, carbocyclic nucleotide; 5'-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threo-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5'-5'-inverted nucleotide moiety; 5'-5'-inverted abasic moiety; 5'-phosphoramidate; 5'-phosphorothioate; 1,4-butanediol phosphate; 5'-amino; bridging and/or non-bridging 5'-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non bridging methylphosphonate and 5'-mercapto moieties (for more details, see Beaucage and Iyer, 1993, Tetrahedron 49, 1925; incorporated by reference herein).

By the term "non-nucleotide" is meant any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar

28

and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound is abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine.

An "alkyl" group refers to a saturated aliphatic hydrocarbon, including straight-chain, branched-chain, and cyclic alkyl groups. Preferably, the alkyl group has 1 to 12 carbons. More preferably it is a lower alkyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, =0, =S, NO2 or N(CH3)2, amino, or SH. The term also includes alkenyl groups which are unsaturated hydrocarbon groups containing at least one carbon-carbon double bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkenyl group has 1 to 12 carbons. More preferably it is a lower alkenyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkenyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, =0, =S, NO2, halogen, N(CH3)2, amino, or SH. The term "alkyl" also includes alkynyl groups which have an unsaturated hydrocarbon group containing at least one carbon-carbon triple bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkynyl group has 1 to 12 carbons. More preferably it is a lower alkynyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkynyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, =0, =S, NO2 or N(CH3)2, amino or SH.

Such alkyl groups may also include aryl, alkylaryl, carbocyclic aryl, heterocyclic aryl, amide and ester groups. An "aryl" group refers to an aromatic group which has at least one ring having a conjugated π electron system and includes carbocyclic aryl, heterocyclic aryl and biaryl groups, all of which may be optionally substituted. The preferred substituent(s) of aryl groups are halogen, trihalomethyl, hydroxyl, SH, OH, cyano, alkoxy, alkyl, alkenyl, alkynyl, and amino groups. An "alkylaryl" group refers to an alkyl group (as described above) covalently joined to an aryl group (as described above). Carbocyclic aryl groups are groups wherein the ring atoms on the aromatic ring are all carbon atoms. The carbon atoms are optionally substituted. Heterocyclic aryl groups are groups having from 1 to 3 heteroatoms as ring atoms in the aromatic ring and the remainder of the ring atoms are carbon atoms. Suitable heteroatoms include oxygen, sulfur, and nitrogen, and include furanyl, thienyl, pyridyl, pyrrolyl, N-lower alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl and the like, all optionally substituted. An "amide" refers to an -C(O)-NH-R, where R is either alkyl, aryl, alkylaryl or hydrogen.

29

By "nucleotide" is meant a heterocyclic nitrogenous base in N-glycosidic linkage with a phosphorylated sugar. Nucleotides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1' position of a nucleotide sugar moiety. Nucleotides generally comprise a base, sugar and a phosphate group. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see for example, Usman and McSwiggen, supra; Eckstein et al., International PCT Publication No. WO 92/07065; Usman et al., International PCT Publication No. WO 93/15187; Uhlman & Peyman, supra all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach et al., 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of chemically modified and other natural nucleic acid bases that can be introduced into nucleic acids include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine), propyne, quesosine, 2-thiouridine, 4-thiouridine, wybutosine, wybutoxosine, 4-acetylcytidine, 5-5'-carboxymethylaminomethyl-2-thiouridine, (carboxyhydroxymethyl)uridine, carboxymethylaminomethyluridine, beta-D-galactosylqueosine, 1-methyladenosine, 1-3-methylcytidine, 2,2-dimethylguanosine, 2-methyladenosine, 2methylinosine, methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2thiouridine, 5-methylaminomethyluridine, 5-methylcarbonylmethyluridine, 5-methyloxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, -D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin et al., 1996, Biochemistry, 35, 14090; Uhlman & Peyman, supra). By "modified bases" in this aspect is meant nucleotide bases other than adenine, guanine, cytosine and uracil at 1' position or their equivalents; such bases may be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.

By "nucleoside" is meant a heterocyclic nitrogenous base in N-glycosidic linkage with a sugar. Nucleosides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1' position of a nucleoside sugar moiety. Nucleosides generally comprise a base and sugar group. The nucleosides can be unmodified or modified at the sugar, and/or base moiety, (also referred to interchangeably as nucleoside analogs, modified nucleosides, non-natural nucleosides, non-standard nucleosides and other; see for example, Usman and McSwiggen, supra; Eckstein et al., International PCT

Publication No. WO 92/07065; Usman et al., International PCT Publication No. WO 93/15187; Uhlman & Peyman, supra all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach et al., 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of chemically modified and other natural nucleic acid bases that can be introduced into nucleic acids include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine), propyne, quesosine, 2-thiouridine, 4-thiouridine, wybutoxosine, 4-acetylcytidine, wybutosine, 5-(carboxyhydroxymethyl)uridine, 5'carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, -D-1-methyladenosine, 1-methylinosine, 2,2-dimethylguanosine, galactosylqueosine, 3methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-5-methoxyaminomethyl-2-thiouridine, 5-methylaminomethyluridine, methylguanosine, 5methylcarbonylmethyluridine, 5-methyloxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6isopentenyladenosine, beta-D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin et al., 1996, Biochemistry, 35, 14090; Uhlman & Peyman, supra). By "modified bases" in this aspect is meant nucleoside bases other than adenine, guanine, cytosine and uracil at 1' position or their equivalents; such bases may be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.

In a preferred embodiment, the invention features modified ribozymes with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, morpholino, amidate carbamate, carboxymethyl, acetamidate, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions. For a review of oligonucleotide backbone modifications see Hunziker and Leumann, 1995, Nucleic Acid Analogues: Synthesis and Properties, in Modern Synthetic Methods, VCH, 331-417, and Mesmaeker et al., 1994, Novel Backbone Replacements for Oligonucleotides, in Carbohydrate Modifications in Antisense Research, ACS, 24-39.

By "abasic" is meant sugar moieties lacking a base or having other chemical groups in place of a base at the 1' position, (for more details, see Wincott et al., International PCT publication No. WO 97/26270).

By "unmodified nucleoside" is meant one of the bases adenine, cytosine, guanine, thymine, uracil joined to the 1' carbon of beta-D-ribo-furanose.

By "modified nucleoside" is meant any nucleotide base which contains a modification in the chemical structure of an unmodified nucleotide base, sugar and/or phosphate.

31

In connection with 2'-modified nucleotides as described for the present invention, by "amino" is meant 2'-NH₂ or 2'-O- NH₂, which may be modified or unmodified. Such modified groups are described, for example, in Eckstein *et al.*, U.S. Patent 5,672,695 and Matulic-Adamic *et al.*, WO 98/28317, respectively, which are both incorporated by reference herein in their entireties.

Various modifications to nucleic acid (e.g., antisense and ribozyme) structure can be made to enhance the utility of these molecules. Such modifications will enhance shelf-life, half-life in vitro, stability, and ease of introduction of such oligonucleotides to the target site, e.g., to enhance penetration of cellular membranes, and confer the ability to recognize and bind to targeted cells.

Use of these molecules will lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes (including different ribozyme motifs) and/or other chemical or biological molecules). The treatment of patients with nucleic acid molecules may also include combinations of different types of nucleic acid molecules. Therapies may be devised which include a mixture of ribozymes (including different ribozyme motifs), antisense and/or 2-5A chimera molecules to one or more targets to alleviate symptoms of a disease.

Administration of Nucleic Acid Molecules

Methods for the delivery of nucleic acid molecules are described in Akhtar et al., 1992, Trends Cell Bio., 2, 139; and Delivery Strategies for Antisense Oligonucleotide Therapeutics, ed. Akhtar, 1995 which are both incorporated herein by reference. Sullivan et al., PCT WO 94/02595, further describes the general methods for delivery of enzymatic RNA molecules. These protocols may be utilized for the delivery of virtually any nucleic acid molecule. Nucleic acid molecules may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, nucleic acid molecules may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the nucleic acid/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or

WO 01/57206

pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of nucleic acid delivery and administration are provided in Sullivan *et al.*, supra, Draper *et al.*, PCT WO93/23569, Beigelman *et al.*, PCT WO99/05094, and Klimuk *et al.*, PCT WO99/04819 all of which have been incorporated by reference herein.

The molecules of the instant invention can be used as pharmaceutical agents. Pharmaceutical agents prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state in a patient.

The negatively charged polynucleotides of the invention can be administered (e.g., RNA, DNA or protein) and introduced into a patient by any standard means, with or without stabilizers, buffers, and the like, to form a pharmaceutical composition. When it is desired to use a liposome delivery mechanism, standard protocols for formation of liposomes can be followed. The compositions of the present invention may also be formulated and used as tablets, capsules or elixirs for oral administration; suppositories for rectal administration; sterile solutions; suspensions for injectable administration; and other compositions known in the art.

The present invention also includes pharmaceutically acceptable formulations of the compounds described. These formulations include salts of the above compounds, e.g., acid addition salts, including salts of hydrochloric, hydrobromic, acetic acid, and benzene sulfonic acid.

A pharmacological composition or formulation refers to a composition or formulation in a form suitable for administration, e.g., systemic administration, into a cell or patient, preferably a human. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should not prevent the composition or formulation from reaching a target cell (i.e., a cell to which the negatively charged polymer is desired to be delivered to). For example, pharmacological compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the composition or formulation from exerting its effect.

By "systemic administration" is meant in vivo systemic absorption or accumulation of drugs in the blood stream followed by distribution throughout the entire body. Administration routes that lead to systemic absorption include, without limitations: intravenous, subcutaneous, intraperitoneal, inhalation, oral, intrapulmonary and intramuscular. Each of these administration routes exposes the desired negatively charged polymers, e.g., nucleic acids, to an accessible diseased tissue. The rate of entry of a drug into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier comprising the compounds of the instant invention can potentially localize the drug, for example, in certain

.

WO 01/57206

PCT/US01/03504

33

tissue types, such as the tissues of the reticular endothelial system (RES). A liposome formulation that can facilitate the association of drug with the surface of cells, such as, lymphocytes and macrophages is also useful. This approach may provide enhanced delivery of the drug to target cells by taking advantage of the specificity of macrophage and lymphocyte immune recognition of abnormal cells, such as cancer cells.

By pharmaceutically acceptable formulation is meant, a composition or formulation that allows for the effective distribution of the nucleic acid molecules of the instant invention in the physical location most suitable for their desired activity. Non-limiting examples of agents suitable for formulation with the nucleic acid molecules of the instant invention include: Pglycoprotein inhibitors (such as Pluronic P85) which can enhance entry of drugs into the CNS (Jolliet-Riant and Tillement, 1999, Fundam. Clin. Pharmacol., 13, 16-26); biodegradable polymers, such as poly (DL-lactide-coglycolide) microspheres for sustained release delivery after intracerebral implantation (Emerich, DF et al, 1999, Cell Transplant, 8, 47-58) Alkermes, Inc. Cambridge, MA; and loaded nanoparticles, such as those made of polybutylcyanoacrylate, which can deliver drugs across the blood brain barrier and can alter neuronal uptake mechanisms (Prog Neuropsychopharmacol Biol Psychiatry, 23, 941-949, 1999). Other non-limiting examples of delivery strategies for the nucleic acid molecules of the instant invention include material described in Boado et al., 1998, J. Pharm. Sci., 87, 1308-1315; Tyler et al., 1999, FEBS Lett., 421, 280-284; Pardridge et al., 1995, PNAS USA., 92, 5592-5596; Boado, 1995, Adv. Drug Delivery Rev., 15, 73-107; Aldrian-Herrada et al., 1998, Nucleic Acids Res., 26, 4910-4916; and Tyler et al., 1999, PNAS USA., 96, 7053-7058.

The invention also features the use of the composition comprising surface-modified liposomes containing poly (ethylene glycol) lipids (PEG-modified, or long-circulating liposomes or stealth liposomes). These formulations offer a method for increasing the accumulation of drugs in target tissues. This class of drug carriers resists opsonization and elimination by the mononuclear phagocytic system (MPS or RES), thereby enabling longer blood circulation times and enhanced tissue exposure for the encapsulated drug (Lasic et al. Chem. Rev. 1995, 95, 2601-2627; Ishiwata et al., Chem. Pharm. Bull. 1995, 43, 1005-1011). All incorporated by reference herein. Such liposomes have been shown to accumulate selectively in tumors, presumably by extravasation and capture in the neovascularized target tissues (Lasic et al., Science 1995, 267, 1275-1276; Oku et al., 1995, Biochim. Biophys. Acta, 1238, 86-90). All incorporated by The long-circulating liposomes enhance the pharmacokinetics and reference herein. pharmacodynamics of DNA and RNA, particularly compared to conventional cationic liposomes which are known to accumulate in tissues of the MPS (Liu et al., J. Biol. Chem. 1995, 42, 24864-24870; Choi et al., International PCT Publication No. WO 96/10391; Ansell et al., International PCT Publication No. WO 96/10390; Holland et al., International PCT Publication No. WO

WO 01/57206

96/10392; all of which are incorporated by reference herein). Long-circulating liposomes are also likely to protect drugs from nuclease degradation to a greater extent compared to cationic liposomes, based on their ability to avoid accumulation in metabolically aggressive MPS tissues such as the liver and spleen.

34

PCT/US01/03504

The present invention also includes compositions prepared for storage or administration which include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A.R. Gennaro edit. 1985) hereby incorporated by reference herein. For example, preservatives, stabilizers, dyes and flavoring agents may be provided. These include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. In addition, antioxidants and suspending agents may be used.

A pharmaceutically effective dose is that dose required to prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state. The pharmaceutically effective dose depends on the type of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors which those skilled in the medical arts will recognize. Generally, an amount between 0.1 mg/kg and 100 mg/kg body weight/day of active ingredients is administered dependent upon potency of the negatively charged polymer.

The nucleic acid molecules of the present invention may also be administered to a patient in combination with other therapeutic compounds to increase the overall therapeutic effect. The use of multiple compounds to treat an indication may increase the beneficial effects while reducing the presence of side effects.

Alternatively, certain of the nucleic acid molecules of the instant invention can be expressed within cells from eukaryotic promoters (e.g., Izant and Weintraub, 1985, Science, 229, 345; McGarry and Lindquist, 1986, Proc. Natl. Acad. Sci., USA 83, 399; Scanlon et al., 1991, Proc. Natl. Acad. Sci. USA, 88, 10591-5; Kashani-Sabet et al., 1992, Antisense Res. Dev., 2, 3-15; Dropulic et al., 1992, J. Virol., 66, 1432-41; Weerasinghe et al., 1991, J. Virol., 65, 5531-4; Ojwang et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 10802-6; Chen et al., 1992, Nucleic Acids Res., 20, 4581-9; Sarver et al., 1990 Science, 247, 1222-1225; Thompson et al., 1995, Nucleic Acids Res., 23, 2259; Good et al., 1997, Gene Therapy, 4, 45; all of the references are hereby incorporated in their totality by reference herein). Those skilled in the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The activity of

such nucleic acids can be augmented by their release from the primary transcript by a ribozyme (Draper et al., PCT WO 93/23569, and Sullivan et al., PCT WO 94/02595; Ohkawa et al., 1992, Nucleic Acids Symp. Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993, Nucleic Acids Res., 21, 3249-55; Chowrira et al., 1994, J. Biol. Chem., 269, 25856; all of these references are hereby incorporated in their totalities by reference herein).

In another aspect of the invention, RNA molecules of the present invention are preferably expressed from transcription units (see, for example, Couture et al., 1996, TIG., 12, 510) inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of nucleic acid molecules. Such vectors might be repeatedly administered as necessary. Once expressed, the nucleic acid molecule binds to the target mRNA. Delivery of nucleic acid molecule expressing vectors could be systemic, such as by intravenous or intra-muscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review, see Couture et al., 1996, TIG., 12, 510).

In one aspect, the invention features an expression vector comprising a nucleic acid sequence encoding at least one of the nucleic acid molecules disclosed in the instant invention. The nucleic acid sequence encoding the nucleic acid molecule of the instant invention is operable linked in a manner which allows expression of that nucleic acid molecule.

In another aspect, the invention features an expression vector comprising: a) a transcription initiation region (e.g., eukaryotic pol I, II or III initiation region); b) a transcription termination region (e.g., eukaryotic pol I, II or III termination region); c) a nucleic acid sequence encoding at least one of the nucleic acid catalyst of the instant invention; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. The vector may optionally include an open reading frame (ORF) for a protein operably linked on the 5' side or the 3'-side of the sequence encoding the nucleic acid catalyst of the invention; and/or an intron (intervening sequences).

Transcription of the nucleic acid molecule sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the

levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990, *Proc. Natl. Acad. Sci. U S A*, 87, 6743-7; Gao and Huang 1993, *Nucleic Acids Res..*, 21, 2867-72; Lieber et al., 1993, *Methods Enzymol.*, 217, 47-66; Zhou et al., 1990, *Mol. Cell. Biol.*, 10, 4529-37). All of these references are incorporated by reference herein.

Several investigators have demonstrated that nucleic acid molecules, such as ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., 1992, Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 10802-6; Chen et al., 1992, Nucleic Acids Res., 20, 4581-9; Yu et al., 1993, Proc. Natl. Acad. Sci. USA, 90, 6340-4; L'Huillier et al., 1992, EMBO J., 11, 4411-8; Lisziewicz et al., 1993, Proc. Natl. Acad. Sci. U. S. A, 90, 8000-4; Thompson et al., 1995, Nucleic Acids Res., 23, 2259; and Sullenger & Cech, 1993, Science, 262, 1566). More specifically, transcription units such as the ones derived from genes encoding U6 small nuclear (snRNA), transfer RNA (tRNA) and adenovirus VA RNA are useful in generating high concentrations of desired RNA molecules such as ribozymes in cells (Thompson et al., supra; Couture and Stinchcomb, 1996, supra; Noonberg et al., 1994, Nucleic Acid Res., 22, 2830; Noonberg et al., US Patent No. 5,624,803; Good et al., 1997, Gene Ther., 4, 45; and Beigelman et al., International PCT Publication No. WO 96/18736; all of these publications are incorporated by reference herein. The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors) (for a review, see Couture and Stinchcomb, 1996, supra).

In yet another aspect, the invention features an expression vector comprising a nucleic acid sequence encoding at least one of the nucleic acid molecules of the invention, in a manner which allows expression of that nucleic acid molecule. The expression vector comprises in one embodiment; a) a transcription initiation region; b) a transcription termination region; c) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.

In another preferred embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an open reading frame; d) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3'-end of said open reading frame; and wherein said sequence is operably

linked to said initiation region, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.

In yet another embodiment the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region, said intron and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.

In another embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) an open reading frame; e) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3'-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said intron, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.

Examples.

The following are non-limiting examples showing the selection, isolation, synthesis and activity of nucleic acids of the instant invention.

The following examples demonstrate the selection and design of Antisense, hammerhead, DNAzyme, NCH, Amberzyme, Zinzyme, or G-Cleaver ribozyme molecules and binding/cleavage sites within Chk1 RNA.

Nucleic acid inhibition of Chk1 target RNA

Control of the cell cycle is one of the most highly orchestrated events in the cell. There is a great deal of interest in discovering the function of genes involved in mitotic checkpoint abrogation, since inhibition of these genes or activities of these gene products could sensitize cells to DNA damaging agents. In these studies, the cell cycle regulatory role of Chk1 (GeneBank Accession # AF016582 is investigated).

In the fission yeast Schizosaccharomyces pombe, DNA damage by gamma irradiation or a chemical agent such as etoposide leads to activation of Chk1 by phosphorylation. Chk1, also known as p56chk1, is a Wee 1-like protein kinase, which phosphorylates and inactivates Cdc25. Cdc25 is a phosphatase that acts directly on Cdc2. Chk1 is required for the DNA damage checkpoint, whereas the rad gene products are required for both S-M and DNA damage checkpoints. Wee 1 is also phosphorylated by Chk1 in vitro, also suggesting that Wee 1 is regulated by Chk1 in vivo and the resulting G2 delay is the result of maintaining Y15

phosphorylation on Cdc2. In normal mammalian cells, DNA damage would lead to arrest at G1/S arrest via the p53 pathway, or G2/M arrest via the Cdc2/CyclinB pathway. Thus, p53- cells can remain viable following DNA damage because of the Cdc2/CyclinB arrest pathway. If the Cdc2/CyclinB mediated checkpoint is abrogated via inhibition of Weel and Myt1 by small molecule inhibitors in a p53- cell type, then viability is compromised. Chk1 has recently been cloned from mammalian cells. The Chk1 protein is modified in response to DNA damage, and has been shown to bind and phosphorylate Cdc25A, Cdc25B and Cdc25C. The phosphorylation of Cdc25C prevents activation of the Cdc2/CyclinB complex and blocks entry into mitosis, thereby validating the inhibition of Chk1 as a target for nucleic acid based therapeutics.

To address whether checkpoint kinases function redundantly during DNA replication and/or DNA damage checkpoint responses, applicant undertook an oligonucleotide-based approach to block Chk1 gene function in a human cell line. HeLa cells lacking Chk1 protein failed to maintain a G2 cell cycle arrest after etoposide or gamma radiation-induced DNA damaging treatments. Additionally, Chk1-defeicient cells failed to respond to the DNA replication inhibitor hydroxyurea. Based on these results, applicant concludes that the Chk1 kinase plays an essential role in both the DNA replication and DNA damage checkpoint responses. These results also suggest the neither Chk2 nor C-TAK1 kinases function in these checkpoint responses to a significant level, at least in HeLa cells. Thus, Chk1 is validated as an attractive therapeutic target for abrogating the G2 DNA damage checkpoint arrest; a situation that may selectively sensitize p53-deficient tumor cells to radiation or chemotherapy treatment.

Example 1: Identification of Potential Target Sites in Human Chk1 RNA

The sequence of human Chk1 is screened for accessible sites using a computer-folding algorithm. Regions of the RNA are identified that do not form secondary folding structures. These regions contain potential ribozyme and/or antisense binding/cleavage sites. The sequences of these binding/cleavage sites are shown in **Tables III-IX**.

Example 2: Selection of Enzymatic Nucleic Acid Cleavage Sites in Human Chk1 RNA

Ribozyme target sites are chosen by analyzing sequences of Human Chk1 (Genbank accession number: AF016582) and prioritizing the sites on the basis of folding. Ribozymes are designed that could bind each target and are individually analyzed by computer folding (Christoffersen et al., 1994 J. Mol. Struc. Theochem, 311, 273; Jaeger et al., 1989, Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. As noted below, varying

39

binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.

Example 3: Chemical Synthesis and Purification of Ribozymes and Antisense for Efficient Cleavage and/or blocking of Chk1 RNA

Ribozymes and antisense constructs are designed to anneal to various sites in the RNA message. The binding arms of the ribozymes are complementary to the target site sequences described above, while the antisense constructs are fully complimentary to the target site sequences described above. The ribozymes and antisense constructs were chemically synthesized. The method of synthesis used followed the procedure for normal RNA synthesis as described above and in Usman et al., (1987 J. Am. Chem. Soc., 109, 7845), Scaringe et al., (1990 Nucleic Acids Res., 18, 5433) and Wincott et al., supra, and made use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. The average stepwise coupling yields were typically >98%.

Ribozymes and antisense constructs are also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). Ribozymes and antisense constructs are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; see Wincott et al., supra; the totality of which is hereby incorporated herein by reference) and are resuspended in water. The sequences of the chemically synthesized ribozymes and antisense constructs used in this study are shown below in Table III-IX.

Example 4: Ribozyme Cleavage of Chk1 RNA Target in vitro

Ribozymes targeted to the human Chk1 RNA are designed and synthesized as described above. These ribozymes can be tested for cleavage activity in vitro, for example, using the following procedure. The target sequences and the nucleotide location within the Chk1 RNA are given in Tables III-IX.

Cleavage Reactions: Full-length or partially full-length, internally-labeled target RNA for ribozyme cleavage assay is prepared by in vitro transcription in the presence of [a-32p] CTP, passed over a G 50 Sephadex® column by spin chromatography and used as substrate RNA without further purification. Alternately, substrates are 5'-32P-end labeled using T4 polynucleotide kinase enzyme. Assays are performed by pre-warming a 2X concentration of purified ribozyme in ribozyme cleavage buffer (50 mM Tris-HCl, pH 7.5 at 37°C, 10 mM MgCl₂) and the cleavage reaction was initiated by adding the 2X ribozyme mix to an equal volume of substrate RNA (maximum of 1-5 nM) that was also pre-warmed in cleavage buffer.

As an initial screen, assays are carried out for 1 hour at 37°C using a final concentration of either 40 nM or 1 mM ribozyme, i.e., ribozyme excess. The reaction is quenched by the addition of an equal volume of 95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol after which the sample is heated to 95°C for 2 minutes, quick chilled and loaded onto a denaturing polyacrylamide gel. Substrate RNA and the specific RNA cleavage products generated by ribozyme cleavage are visualized on an autoradiograph of the gel. The percentage of cleavage is determined by Phosphor Imager[®] quantitation of bands representing the intact substrate and the cleavage products.

Example 5: Nucleic acid inhibition of Chk1 target RNA in vivo

Antisense nucleic acid molecules (GeneBlocs[™]) targeted to the human Chk1 RNA are designed and synthesized as described above. These nucleic acid molecules can be tested for cleavage activity *in vivo*, for example, using the following procedure. The target sequences and the nucleotide location within the Chk1 RNA are given in **Tables III-IX**.

Two formats were used to test the efficacy of nucleic acid reagents (GeneBlocs[™] targeting Chk1. First, the reagents were tested on asynchronous HeLa cells, to determine the extent of RNA and protein inhibition. To demonstrate whether cells bypass the G2/M checkpoint, HeLa cells (p53-) are treated with etoposide to damage the DNA. Nocodazole and the potential checkpoint inhibitor are added 16 hours later, when all the cells should be arrested in G2. Nocodazole blocks cells from leaving mitosis, so if they have abrogated the checkpoint, the cells will be blocked in mitosis and appear "rounded" in shape. Other surrogate mitotic markers include decreased phosphorylation of cdc-2 at Thr14 and Tyr15, phosphorylation of Myt-1, and phosphorylation of PP1. This study set out to determine whether inhibiting expression of the Chk1 gene would allow the G2/M checkpoint to be bypassed after DNA damage, as well as determining if the presence of p53 influences the DNA-damage checkpoint response.

Eight GeneBlocTM reagents (e.g.; see Table IX) were selected against the Chk1 cDNA target. RNA inhibition was measured after delivery of these reagents by GSV lipid (Glenn Research) to HeLa cells. Relative amounts of target RNA were measured versus actin using real-time PCR monitoring of amplification (ABI 7700 Taqman®). The results are shown in Figure 6. The comparison is made to a mixture of 5 oligonucleotide sequences made to unrelated targets (GB-3) or to a randomized oligonucleotide control with the same overall length and chemistry, but randomly substituted at each position (GBC3.2). Primary and secondary lead reagents were chosen for the target and optimization performed. The optimal GSV lipid concentration was chosen after screening for RNA inhibition with oligonucleotides at 5 and 50 nM (Figure 7). After optimal lipid concentration was chosen, a RNA time-course of inhibition

was performed with the lead nucleic acid molecule (GeneBlocTM) (Figure 8). In addition, a cell-plating format was tested for RNA inhibition. The use of a 96-well (5000 cells/well) versus six-well (150,000 cells/well) plating density made no difference in the extent of RNA inhibition (Figure 9). The phenotypic assays require treatment with etoposide and nocodazole as described above, and RNA inhibition in this assay was also determined (Figure 10). The various treatments had essentially no effect on RNA levels.

Optimization of delivery conditions were also performed in DLD-1 (p53-) (Figure 11) and MCF-7 (Figure 12) (p53+) cells. Similar levels of inhibition were observed when compared to HeLa cells at the optimal GSV concentration. Dose curves were also generated in HeLa cells with the two best lead nucleic acid molecules (Figure 13). IC50 values for both leads were in the 1-2 nM range. Similar IC50s were observed in DLD-1 and MCF-7 cells. Protein levels were assessed at 8, 24 and 32 hours after nucleic acid administration, as well as one to five days post delivery. The target protein was significantly reduced (80-90%) by 24 hours after nucleic acid administration and remained low (undetectable by western blot) until at least day 5. Application of nucleic acid inhibitors in the checkpoint abrogation assay resulted in the "rounding up" phenotype for the Chk1 target. Also, there is an increase in Myt 1 phosphorylation and a large increase in PP1 phosphorylation. There also appear to be decreases in phosphorylation of the Y15 and T14 residues on Cdc2, although this is not complete. Most importantly, this evidence demonstrates the role of Chk1 in the G2/M checkpoint and suggests that inhibitors of Chk1 activity can be useful alone or in combination with DNA damaging agents in treatment of certain types of cancer.

Indications

Particular degenerative and disease states that can be associated with Chk1 expression modulation include but are not limited to cancers of the colon, rectum, lung, breast and prostate

The present body of knowledge in Chk1 research indicates the need for methods to assay Chk1 activity and for compounds that can regulate Chk1 expression for research, diagnostic, and therapeutic use.

Radiation and chemotherapeutic treatments are non-limiting examples of methods that can be combined with or used in conjunction with the nucleic acid molecules (e.g. ribozymes and antisense molecules) of the instant invention. Those skilled in the art will recognize that other drug compounds and therapies can be similarly be readily combined with the nucleic acid molecules of the instant invention (e.g. ribozymes and antisense molecules) are hence within the scope of the instant invention.

42

PCT/US01/03504

Diagnostic uses

The nucleic acid molecules of this invention (e.g., ribozymes) can be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of Chkl RNA in a cell. The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes described in this invention, one can map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes can be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets can be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of ribozymes of this invention are well known in the art, and include detection of the presence of mRNAs associated with Chk1-related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.

In a specific example, ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme is used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA is cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the "non-targeted" RNA species. The cleavage products from the synthetic substrates also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus, each analysis requires two ribozymes, two substrates and one unknown sample, which is combined into six reactions. The presence of cleavage products is determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., Chk1) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios are correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.

43

Additional Uses

Potential usefulness of sequence-specific enzymatic nucleic acid molecules of the instant invention might have many of the same applications for the study of RNA that DNA restriction endonucleases have for the study of DNA (Nathans et al., 1975 Ann. Rev. Biochem. 44:273). For example, the pattern of restriction fragments can be used to establish sequence relationships between two related RNAs, and large RNAs could be specifically cleaved to fragments of a size more useful for study. The ability to engineer sequence specificity of the enzymatic nucleic acid molecule is ideal for cleavage of RNAs of unknown sequence. Applicant has described the use of nucleic acid molecules to down-regulate gene expression of target genes in bacterial, microbial, fungal, viral, and eukaryotic systems including plant, or mammalian cells.

All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.

One skilled in the art would readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the invention disclosed herein without departing from the scope and spirit of the invention. Thus, such additional embodiments are within the scope of the present invention and the following claims.

The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may

44

be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.

In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

Other embodiments are within the claims that follow.

TABLE I

Characteristics of naturally occurring ribozymes

Group I Introns

- Size: ~150 to >1000 nucleotides.
- Requires a U in the target sequence immediately 5' of the cleavage site.
- Binds 4-6 nucleotides at the 5'-side of the cleavage site.
- Reaction mechanism: attack by the 3'-OH of guanosine to generate cleavage products with 3'-OH and 5'-guanosine.
- Additional protein cofactors required in some cases to help folding and maintainance of the active structure.
- Over 300 known members of this class. Found as an intervening sequence in *Tetrahymena thermophila* rRNA, fungal mitochondria, chloroplasts, phage T4, bluegreen algae, and others.
- Major structural features largely established through phylogenetic comparisons, mutagenesis, and biochemical studies [i,ii].
- Complete kinetic framework established for one ribozyme [ii,iv,v,vi].
- Studies of ribozyme folding and substrate docking underway [vii,viii,ix].
- Chemical modification investigation of important residues well established [x,xi].
- The small (4-6 nt) binding site may make this ribozyme too non-specific for targeted RNA cleavage, however, the Tetrahymena group I intron has been used to repair a "defective" beta-galactosidase message by the ligation of new beta-galactosidase sequences onto the defective message [xii].

RNAse P RNA (M1 RNA)

- Size: ~290 to 400 nucleotides.
- RNA portion of a ubiquitous ribonucleoprotein enzyme.
- Cleaves tRNA precursors to form mature tRNA [xiii].
- Reaction mechanism: possible attack by M²⁺-OH to generate cleavage products with 3'-OH and 5'-phosphate.

RNAse P is found throughout the prokaryotes and eukaryotes. The RNA subunit has been sequenced from bacteria, yeast, rodents, and primates.

46

- Recruitment of endogenous RNAse P for therapeutic applications is possible through hybridization of an External Guide Sequence (EGS) to the target RNA [xiv,xv]
- Important phosphate and 2' OH contacts recently identified [xvi,xvii]

Group II Introns

- Size: >1000 nucleotides.
- Trans cleavage of target RNAs recently demonstrated [xviii,xix].
- Sequence requirements not fully determined.
- Reaction mechanism: 2'-OH of an internal adenosine generates cleavage products with 3'-OH and a "lariat" RNA containing a 3'-5' and a 2'-5' branch point.
- Only natural ribozyme with demonstrated participation in DNA cleavage [xx,xxi] in addition to RNA cleavage and ligation.
- Major structural features largely established through phylogenetic comparisons [xxii].
- Important 2' OH contacts beginning to be identified [xxiii]
- Kinetic framework under development [xxiv]

Neurospora VS RNA

- Size: ~144 nucleotides.
- Trans cleavage of hairpin target RNAs recently demonstrated [xxv].
- Sequence requirements not fully determined.
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- Binding sites and structural requirements not fully determined.
- Only 1 known member of this class. Found in Neurospora VS RNA.

Hammerhead Ribozyme

47

(see text for references)

- Size: ~13 to 40 nucleotides.
- Requires the target sequence UH immediately 5' of the cleavage site.
- Binds a variable number nucleotides on both sides of the cleavage site.
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- 14 known members of this class. Found in a number of plant pathogens (virusoids) that use RNA as the infectious agent.
- Essential structural features largely defined, including 2 crystal structures [xxvi,xxvii]
- Minimal ligation activity demonstrated (for engineering through in vitro selection) [xxviii]
- Complete kinetic framework established for two or more ribozymes [xxix].
- Chemical modification investigation of important residues well established [xxx].

Hairpin Ribozyme

- Size: ~50 nucleotides.
- Requires the target sequence GUC immediately 3' of the cleavage site.
- Binds 4-6 nucleotides at the 5'-side of the cleavage site and a variable number to the 3'-side of the cleavage site.
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- 3 known members of this class. Found in three plant pathogen (satellite RNAs of the tobacco ringspot virus, arabis mosaic virus and chicory yellow mottle virus) which uses RNA as the infectious agent.
- Essential structural features largely defined [xxi,xxii,xxxii,xxxii]
- Ligation activity (in addition to cleavage activity) makes ribozyme amenable to engineering through in vitro selection [xxxv]
- Complete kinetic framework established for one ribozyme [xxxvi].
- Chemical modification investigation of important residues begun [xxxvii,xxxviii].

Hepatitis Delta Virus (HDV) Ribozyme

- Size: ~60 nucleotides.
- Trans cleavage of target RNAs demonstrated [xxxix].
- Binding sites and structural requirements not fully determined, although no sequences 5' of cleavage site are required. Folded ribozyme contains a pseudoknot structure [xl].
- Reaction mechanism: attack by 2'-OH 5' to the scissile bond to generate cleavage products with 2',3'-cyclic phosphate and 5'-OH ends.
- Only 2 known members of this class. Found in human HDV.
- Circular form of HDV is active and shows increased nuclease stability [xli]

i. Michel, Francois; Westhof, Eric. Slippery substrates. Nat. Struct. Biol. (1994), 1(1), 5-7.

Lisacek, Frederique; Diaz, Yolande; Michel, Francois. Automatic identification of group I intron cores in genomic DNA sequences. J. Mol. Biol. (1994), 235(4), 1206-17.

Herschlag, Daniel; Cech, Thomas R.. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry (1990), 29(44), 10159-71.

Herschlag, Daniel; Cech, Thomas R.. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry (1990), 29(44), 10172-80.

v. Knitt, Deborah S.; Herschlag, Daniel. pH Dependencies of the Tetrahymena Ribozyme Reveal an Unconventional Origin of an Apparent pKa. Biochemistry (1996), 35(5), 1560-70.

Bevilacqua, Philip C.; Sugimoto, Naoki; Turner, Douglas H.. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. Biochemistry (1996), 35(2), 648-58.

Li, Yi; Bevilacqua, Philip C.; Mathews, David; Turner, Douglas H.. Thermodynamic and activation parameters for binding of a pyrene-labeled substrate by the Tetrahymena ribozyme: docking is not diffusion-controlled and is driven by a favorable entropy change. Biochemistry (1995), 34(44), 14394-9.

Banerjee, Aloke Raj; Turner, Douglas H.. The time dependence of chemical modification reveals slow steps in the folding of a group I ribozyme. Biochemistry (1995), 34(19), 6504-12.

ix. Zarrinkar, Patrick P.; Williamson, James R.. The P9.1-P9.2 peripheral extension helps guide folding of the Tetrahymena ribozyme. Nucleic Acids Res. (1996), 24(5), 854-8.

^{×.} Strobel, Scott A.; Cech, Thomas R.. Minor groove recognition of the conserved G.cntdot.U pair at the Tetrahymena ribozyme reaction site. Science (Washington, D. C.) (1995), 267(5198), 675-9.

Strobel, Scott A.; Cech, Thomas R.. Exocyclic Amine of the Conserved G.cntdot.U Pair at the Cleavage Site of the Tetrahymena Ribozyme Contributes to 5'-Splice Site Selection and Transition State Stabilization. Biochemistry (1996), 35(4), 1201-11.

Sullenger, Bruce A.; Cech, Thomas R.. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature (London) (1994), 371(6498), 619-22.

xiii. Robertson, H.D.; Altman, S.; Smith, J.D. J. Biol. Chem., <u>247</u>, 5243-5251 (1972).

Forster, Anthony C.; Altman, Sidney. External guide sequences for an RNA enzyme. Science (Washington, D. C., 1883-) (1990), 249(4970), 783-6.

Yuan, Y.; Hwang, E. S.; Altman, S. Targeted cleavage of mRNA by human RNase P. Proc. Natl. Acad. Sci. USA (1992) 89, 8006-10.

- Harris, Michael E.; Pace, Norman R. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA (1995), 1(2), 210-18.
- Pan, Tao; Loria, Andrew; Zhong, Kun. Probing of tertiary interactions in RNA: 2'-hydroxyl-base contacts between the RNase P RNA and pre-tRNA. Proc. Natl. Acad. Sci. U. S. A. (1995), 92(26), 12510-14.
- Pyle, Anna Marie; Green, Justin B.. Building a Kinetic Framework for Group II Intron Ribozyme Activity: Quantitation of Interdomain Binding and Reaction Rate. Biochemistry (1994), 33(9), 2716-25.
- Michels, William J. Jr.; Pyle, Anna Marie. Conversion of a Group II Intron into a New Multiple-Turnover Ribozyme that Selectively Cleaves Oligonucleotides: Elucidation of Reaction Mechanism and Structure/Function Relationships. Biochemistry (1995), 34(9), 2965-77.
- XX. Zimmerly, Steven; Guo, Huatao; Eskes, Robert; Yang, Jian; Perlman, Philip S.; Lambowitz, Alan M.. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell (Cambridge, Mass.) (1995), 83(4), 529-38.
- ^{xxi}. Griffin, Edmund A., Jr.; Qin, Zhifeng; Michels, Williams J., Jr.; Pyle, Anna Marie. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2'-hydroxyl groups. Chem. Biol. (1995), 2(11), 761-70.
- Michel, Francois; Ferat, Jean Luc. Structure and activities of group II introns. Annu. Rev. Biochem. (1995), 64, 435-61.
- Abramovitz, Dana L.; Friedman, Richard A.; Pyle, Anna Marie. Catalytic role of 2'-hydroxyl groups within a group II intron active site. Science (Washington, D. C.) (1996), 271(5254), 1410-13.
- Daniels, Danette L.; Michels, William J., Jr.; Pyle, Anna Marie. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J. Mol. Biol. (1996), 256(1), 31-49.
- ^{xxv}. Guo, Hans C. T.; Collins, Richard A.. Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from Neurospora VS RNA. EMBO J. (1995), 14(2), 368-76.
- Scott, W.G., Finch, J.T., Aaron, K. The crystal structure of an all RNA hammerhead ribozyme: Aproposed mechanism for RNA catalytic cleavage. Cell, (1995), 81, 991-1002.
- McKay, Structure and function of the hammerhead ribozyme: an unfinished story. RNA, (1996), 2, 395-403.
- **viii . Long, D., Uhlenbeck, O., Hertel, K. Ligation with hammerhead ribozymes. US Patent No. 5,633,133.
- Hertel, K.J., Herschlag, D., Uhlenbeck, O. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry, (1994) 33, 3374-3385. Beigelman, L., et al., Chemical modifications of hammerhead ribozymes. J. Biol. Chem., (1995) 270, 25702-25708.
- Exercise No. 1995, 270, 25702-25708. Beigelman, L., et al., Chemical modifications of hammerhead ribozymes. J. Biol. Chem., (1995)
- Hampel, Arnold; Tritz, Richard; Hicks, Margaret; Cruz, Phillip. 'Hairpin' catalytic RNA model: evidence for helixes and sequence requirement for substrate RNA. Nucleic Acids Res. (1990), 18(2), 299-304.
- catalysis by the hairpin ribozyme. Nature (London) (1991), 354(6351), 320-2.
- ***iii . Berzal-Herranz, Alfredo; Joseph, Simpson; Chowrira, Bharat M.; Butcher, Samuel E.; Burke, John M.. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. (1993), 12(6), 2567-73.
- xxxiv. Joseph, Simpson; Berzal-Herranz, Alfredo; Chowrira, Bharat M.; Butcher, Samuel E.. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev. (1993), 7(1), 130-8.
- Erzal-Herranz, Alfredo; Joseph, Simpson; Burke, John M.. In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev. (1992), 6(1), 129-34.
- Hegg, Lisa A.; Fedor, Martha J.. Kinetics and Thermodynamics of Intermolecular Catalysis by Hairpin Ribozymes. Biochemistry (1995), 34(48), 15813-28.
- xxxvii . Grasby, Jane A.; Mersmann, Karin; Singh, Mohinder; Gait, Michael J.. Purine Functional Groups in Essential Residues of the Hairpin Ribozyme Required for Catalytic Cleavage of RNA. Biochemistry

(1995), 34(12), 4068-76.

- Schmidt, Sabine; Beigelman, Leonid; Karpeisky, Alexander; Usman, Nassim; Sorensen, Ulrik S.; Gait, Michael J.. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. (1996), 24(4), 573-81.
- Perrotta, Anne T.; Been, Michael D.. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis .delta. virus RNA sequence. Biochemistry (1992), 31(1), 16-21.
- Perrotta, Anne T.; Been, Michael D.. A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature (London) (1991), 350(6317), 434-6.
- Puttaraju, M.; Perrotta, Anne T.; Been, Michael D.. A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res. (1993), 21(18), 4253-8.

Table II:

A. 2.5 µmol Synthesis Cycle ABI 394 Instrument

Reagent	Equivalents	Amount	Wait Time* DNA	Wait Time* 2'-O-methyl	Wait Time*RNA
Phosphoramidites	6.5	163 µL	45 sec	2.5 min	7.5 min
S-Ethyl Tetrazole	23.8	238 μL	45 sec	2.5 min	7.5 min
Acetic Anhydride	100	233 μL	5 sec	5 sec	5 sec
N-Methyl Imidazole	186	233 µL	5 sec	5 sec	5 sec
TCA	176	2.3 mL	21 sec	21 sec	21 sec
lodine	11.2	1.7 mL	45 sec	45 sec	45 sec
Beaucage	12.9	645 µL	100 sec	300 sec	300 sec
Acetonitrile	NA	6.67 mL	NA	NA	NA

B. 0.2 µmol Synthesis Cycle ABI 394 Instrument

Reagent	Equivalents	Amount	Wait Time* DNA	Wait Time* 2'-O-methyl	Wait Time*RNA
Phosphoramidites	15	31 µL	45 sec	233 sec	465 sec
S-Ethyl Tetrazole	38.7	31 µL	45 sec	233 min	465 sec
Acetic Anhydride	655	124 µL	5 sec	5 sec	5 sec
N-Methyl Imidazole	1245	124 µL	5 sec	5 sec	5 sec
TCA	700	732 µL	10 sec	10 sec	10 sec
lodine	20.6	244 µL	15 sec	15 sec	15 sec
Beaucage	7.7	232 μL	100 sec	300 sec	300 sec
Acetonitrile	NA	2.64 mL	NA	NA	NA

C. 0.2 µmol Synthesis Cycle 96 well Instrument

		Amount: DNA/2'-O- methyl/Ribo	Wait Time* DNA	Wait Time* 2'-O- methyl	Wait Time* Ribo
Phosphoramidites	22/33/66	40/60/120 μL	60 sec	180 sec	360sec
S-Ethyl Tetrazole	70/105/210	40/60/120 μL	60 sec	180 min	360 sec
Acetic Anhydride	265/265/265	50/50/50 μL	10 sec	10 sec	10 sec
N-Methyl Imidazole	502/502/502	50/50/50 μL	10 sec	10 sec	10 sec
TCA	238/475/475	250/500/500 µL	15 sec	15 sec	15 sec
lodine	6.8/6.8/6.8	80/80/80 µL	30 sec	30 sec	30 sec
Beaucage	34/51/51	80/120/120	100 sec	200 sec	200 sec
Acetonitrile	NA	1150/1150/1150 µL	NA	NA	NA

Wait time does not include contact time during delivery.

5

Table III: Human Chk1 Hammerhead Ribozyme and Substrate Sequence

Pos	Substrate	Seq ID	Ribozyme	Rz Seq ID
12	CGGACAGU C CGCCGAGG	1	CCUCGGCG CUGAUGAG GCCGUUAGGC CGAA ACUGUCCG	1423
25	GAGGUGCU C GGUGGAGU	2	ACUCCACC CUGAUGAG GCCGUUAGGC CGAA AGCACCUC	1424
34	GGUGGAGU C AUGGCAGU	3	ACUGCCAU CUGAUGAG GCCGUUAGGC CGAA ACUCCACC	1425
48	AGUGCCCU U UGUGGAAG	4	CUUCCACA CUGAUGAG GCCGUUAGGC CGAA AGGGCACU	1426
49	GUGCCCUU U GUGGAAGA	5	UCUUCCAC CUGAUGAG GCCGUUAGGC CGAA AAGGGCAC	1427
66	CUGGGACU U GGUGCAAA	6	UUUGCACC CUGAUGAG GCCGUUAGGC CGAA AGUCCCAG	1428
93	AGGUGCCU A UGGAGAAG	7	CUUCUCCA CUGAUGAG GCCGUUAGGC CGAA AGGCACCU	1429
103	GGAGAAGU U CAACUUGC	8	GCAAGUUG CUGAUGAG GCCGUUAGGC CGAA ACUUCUCC	1430
104	GAGAAGUU C AACUUGCU	9	AGCAAGUU CUGAUGAG GCCGUUAGGC CGAA AACUUCUC	1431
109	GUUCAACU U GCUGUGAA	10	UUCACAGC CUGAUGAG GCCGUUAGGC CGAA AGUUGAAC	1432
119	CUGUGAAU A GAGUAACU	11	AGUUACUC CUGAUGAG GCCGUUAGGC CGAA AUUCACAG	1433
124	AAUAGAGU A ACUGAAGA	12	UCUUCAGU CUGAUGAG GCCGUUAGGC CGAA ACUCUAUU	1434
139	GAAGCAGU C GCAGUGAA	13	UUCACUGC CUGAUGAG GCCGUUAGGC CGAA ACUGCUUC	1435
151	GUGAAGAU U GUAGAUAU	14	AUAUCUAC CUGAUGAG GCCGUUAGGC CGAA AUCUUCAC	1436
154	AAGAUUGU A GAUAUGAA	15	UUCAUAUC CUGAUGAG GCCGUUAGGC CGAA ACAAUCUU	1437
158	UUGUAGAU A UGAAGCGU	16	ACGCUUCA CUGAUGAG GCCGUUAGGC CGAA AUCUACAA	1438
172	CGUGCCGU A GACUGUCC	17	GGACAGUC CUGAUGAG GCCGUUAGGC CGAA ACGGCACG	1439
179	UAGACUGU C CAGAAAAU	18	AUUUUCUG CUGAUGAG GCCGUUAGGC CGAA ACAGUCUA	1440
188	CAGAAAAU A UUAAGAAA	19	UUUCUUAA CUGAUGAG GCCGUUAGGC CGAA AUUUUCUG	1441
190	GAAAAUAU U AAGAAAGA	20	UCUUUCUU CUGAUGAG GCCGUUAGGC CGAA AUAUUUUC	1442
191	AAAAUAUU A AGAAAGAG	21	CUCUUUCU CUGAUGAG GCCGUUAGGC CGAA AAUAUUUU	1443
202	AAAGAGAU C UGUAUCAA	22	UUGAUACA CUGAUGAG GCCGUUAGGC CGAA AUCUCUUU	1444
206	AGAUCUGU A UCAAUAAA	23	UUUAUUGA CUGAUGAG GCCGUUAGGC CGAA ACAGAUCU	1445
208	AUCUGUAU C AAUAAAAU	24	AUUUUAUU CUGAUGAG GCCGUUAGGC CGAA AUACAGAU	1446
212	GUAUCAAU A AAAUGCUA	25	UAGCAUUU CUGAUGAG GCCGUUAGGC CGAA AUUGAUAC	1447
220	AAAAUGCU A AAUCAUGA	26	UCAUGAUU CUGAUGAG GCCGUUAGGC CGAA AGCAUUUU	1448
224	UGCUAAAU C AUGAAAAU	27	AUUUUCAU CUGAUGAG GCCGUUAGGC CGAA AUUUAGCA	1449
235	GAAAAUGU A GUAAAAUU	28	AAUUUUAC CUGAUGAG GCCGUUAGGC CGAA ACAUUUUC	1450
238	AAUGUAGU A AAAUUCUA	29	UAGAAUUU CUGAUGAG GCCGUUAGGC CGAA ACUACAUU	1451
243	AGUAAAAU U CUAUGGUC	30	GACCAUAG CUGAUGAG GCCGUUAGGC CGAA AUUUUACU	1452
244	GUAAAAUU C UAUGGUCA	31	UGACCAUA CUGAUGAG GCCGUUAGGC CGAA AAUUUUAC	1453
246	AAAAUUCU A UGGUCACA	32	UGUGACCA CUGAUGAG GCCGUUAGGC CGAA AGAAUUUU	1454
251	UCUAUGGU C ACAGGAGA	33	UCUCCUGU CUGAUGAG GCCGUUAGGC CGAA ACCAUAGA	1455
269	AAGGCAAU A UCCAAUAU	34	AUAUUGGA CUGAUGAG GCCGUUAGGC CGAA AUUGCCUU	1456
271	GGCAAUAU C CAAUAUUU	35	AAAUAUUG CUGAUGAG GCCGUUAGGC CGAA AUAUUGCC	1457
276	UAUCCAAU A UUUAUUUC	36	GAAAUAAA CUGAUGAG GCCGUUAGGC CGAA AUUGGAUA	1458
278	UCCAAUAU U UAUUUCUG	37	CAGAAAUA CUGAUGAG GCCGUUAGGC CGAA AUAUUGGA	1459
279	CCAAUAUU U AUUUCUGG	38	CCAGAAAU CUGAUGAG GCCGUUAGGC CGAA AAUAUUGG	1460
280	CAAUAUUU A UUUCUGGA	39	UCCAGAAA CUGAUGAG GCCGUUAGGC CGAA AAAUAUUG	1461
282	AUAUUUAU U UCUGGAGU	40	ACUCCAGA CUGAUGAG GCCGUUAGGC CGAA AUAAAUAU	1462
283	UAUUUAUU U CUGGAGUA	41	UACUCCAG CUGAUGAG GCCGUUAGGC CGAA AAUAAAUA	1463
284	AUUUAUUU C UGGAGUAC	42	GUACUCCA CUGAUGAG GCCGUUAGGC CGAA AAAUAAAU	1464
291	UCUGGAGU A CUGUAGUG	43	CACUACAG CUGAUGAG GCCGUUAGGC CGAA ACUCCAGA	1465
296	AGUACUGU A GUGGAGGA	44	UCCUCCAC CUGAUGAG GCCGUUAGGC CGAA ACAGUACU	1466
310	GGAGAGCU U UUUGACAG	45	CUGUCAAA CUGAUGAG GCCGUUAGGC CGAA AGCUCUCC	1467
311	GAGAGCUU U UUGACAGA	46	UCUGUCAA CUGAUGAG GCCGUUAGGC CGAA AAGCUCUC	1468

212	ACACCUTUL II LICACAAA	4.5		
312	AGAGCUUU U UGACAGAA	47	UUCUGUCA CUGAUGAG GCCGUUAGGC CGAA AAAGCUCU	1469
313	GAGCUUUU U GACAGAAU	48	AUUCUGUC CUGAUGAG GCCGUUAGGC CGAA AAAAGCUC	1470
322	GACAGAAU A GAGCCAGA	49	UCUGGCUC CUGAUGAG GCCGUUAGGC CGAA AUUCUGUC	1471
334	CCAGACAU A GGCAUGCC	50	GGCAUGCC CUGAUGAG GCCGUUAGGC CGAA AUGUCUGG	1472
356	CAGAUGCU C AGAGAUUC	51	GAAUCUCU CUGAUGAG GCCGUUAGGC CGAA AGCAUCUG	1473
363	UCAGAGAU U CUUCCAUC	52	GAUGGAAG CUGAUGAG GCCGUUAGGC CGAA AUCUCUGA	1474
364	CAGAGAUU C UUCCAUCA	53	UGAUGGAA CUGAUGAG GCCGUUAGGC CGAA AAUCUCUG	1475
366	GAGAUUCU U CCAUCAAC	54	GUUGAUGG CUGAUGAG GCCGUUAGGC CGAA AGAAUCUC	1476
367	AGAUUCUU C CAUCAACU	55	AGUUGAUG CUGAUGAG GCCGUUAGGC CGAA AAGAAUCU	1477
371	UCUUCCAU C AACUCAUG	56	CAUGAGUU CUGAUGAG GCCGUUAGGC CGAA AUGGAAGA	1478
376	CAUCAACU C AUGGCAGG	57	CCUGCCAU CUGAUGAG GCCGUUAGGC CGAA AGUUGAUG	1479
391	GGGGUGGU U UAUCUGCA	58	UGCAGAUA CUGAUGAG GCCGUUAGGC CGAA ACCACCCC	1480
392	GGGUGGUU U AUCUGCAU	59	AUGCAGAU CUGAUGAG GCCGUUAGGC CGAA AACCACCC	1481
393	GGUGGUUU A UCUGCAUG	60	CAUGCAGA CUGAUGAG GCCGUUAGGC CGAA AAACCACC	1482
395	UGGUUUAU C UGCAUGGU	61	ACCAUGCA CUGAUGAG GCCGUUAGGC CGAA AUAAACCA	1483
404	UGCAUGGU A UUGGAAUA	62	UAUUCCAA CUGAUGAG GCCGUUAGGC CGAA ACCAUGCA	1484
406	CAUGGUAU U GGAAUAAC	63	GUUAUUCC CUGAUGAG GCCGUUAGGC CGAA AUACCAUG	1485
412	AUUGGAAU A ACUCACAG	64	CUGUGAGU CUGAUGAG GCCGUUAGGC CGAA AUUCCAAU	1486
416	GAAUAACU C ACAGGGAU	65	AUCCCUGU CUGAUGAG GCCGUUAGGC CGAA AGUUAUUC	1487
425	ACAGGGAU A UUAAACCA	66	UGGUUUAA CUGAUGAG GCCGUUAGGC CGAA AUCCCUGU	1488
427	AGGGAUAU U AAACCAGA	67	UCUGGUUU CUGAUGAG GCCGUUAGGC CGAA AUAUCCCU	1489
428	GGGAUAUU A AACCAGAA	68	UUCUGGUU CUGAUGAG GCCGUUAGGC CGAA AAUAUCCC	1490
440	CAGAAAAU C UUCUGUUG	69	CAACAGAA CUGAUGAG GCCGUUAGGC CGAA AUUUUCUG	1491
442	GAAAAUCU U CUGUUGGA	70	UCCAACAG CUGAUGAG GCCGUUAGGC CGAA AGAUUUUC	1492
443	AAAAUCUU C UGUUGGAU	71	AUCCAACA CUGAUGAG GCCGUUAGGC CGAA AAGAUUUU	1493
447	UCUUCUGU U GGAUGAAA	72	UUUCAUCC CUGAUGAG GCCGUUAGGC CGAA ACAGAAGA	1494
461	AAAGGGAU A ACCUCAAA	73	UUUGAGGU CUGAUGAG GCCGUUAGGC CGAA AUCCCUUU	1495
466	GAUAACCU C AAAAUCUC	74	GAGAUUUU CUGAUGAG GCCGUUAGGC CGAA AGGUUAUC	1496
472	CUCAAAAU C UCAGACUU	75	AAGUCUGA CUGAUGAG GCCGUUAGGC CGAA AUUUUGAG	1497
474	CAAAAUCU C AGACUUUG	76	CAAAGUCU CUGAUGAG GCCGUUAGGC CGAA AGAUUUUG	1498
480	CUCAGACU U UGGCUUGG	77	CCAAGCCA CUGAUGAG GCCGUUAGGC CGAA AGUCUGAG	1499
481	UCAGACUU U GGCUUGGC	78	GCCAAGCC CUGAUGAG GCCGUUAGGC CGAA AAGUCUGA	1500
486	CUUUGGCU U GGCAACAG	79	CUGUUGCC CUGAUGAG GCCGUUAGGC CGAA AGCCAAAG	1501
496	GCAACAGU A UUUCGGUA	80	UACCGAAA CUGAUGAG GCCGUUAGGC CGAA ACUGUUGC	1502
498	AACAGUAU U UCGGUAUA	81	UAUACCGA CUGAUGAG GCCGUUAGGC CGAA AUACUGUU	1503
499	ACAGUAUU U CGGUAUAA	82	UUAUACCG CUGAUGAG GCCGUUAGGC CGAA AAUACUGU	1504
500	CAGUAUUU C GGUAUAAU	83	AUUAUACC CUGAUGAG GCCGUUAGGC CGAA AAAUACUG	1505
504	AUUUCGGU A UAAUAAUC	84	GAUUAUUA CUGAUGAG GCCGUUAGGC CGAA ACCGAAAU	1506
506	UUCGGUAU A AUAAUCGU	85	ACGAUUAU CUGAUGAG GCCGUUAGGC CGAA AUACCGAA	1507
509	GGUAUAAU A AUCGUGAG	86	CUCACGAU CUGAUGAG GCCGUUAGGC CGAA AUUAUACC	1508
512	AUAAUAAU C GUGAGCGU	87	ACGCUCAC CUGAUGAG GCCGUUAGGC CGAA AUUAUUAU	1509
521	GUGAGCGU U UGUUGAAC	88	GUUCAACA CUGAUGAG GCCGUUAGGC CGAA ACGCUCAC	1510
522	UGAGCGUU U GUUGAACA	89	UGUUCAAC CUGAUGAG GCCGUUAGGC CGAA AACGCUCA	1511
525	GCGUUUGU U GAACAAGA	90	UCUUGUUC CUGAUGAG GCCGUUAGGC CGAA ACAAACGC	1512
542	UGUGUGGU A CUUUACCA	91	UGGUAAAG CUGAUGAG GCCGUUAGGC CGAA ACCACACA	1513
545	GUGGUACU U UACCAUAU	92	AUAUGGUA CUGAUGAG GCCGUUAGGC CGAA AGUACCAC	1514
546	UGGUACUU U ACCAUAUG	93	CAUAUGGU CUGAUGAG GCCGUUAGGC CGAA AAGUACCAC	1515
547	GGUACUUU A CCAUAUGU	94	ACAUAUGG CUGAUGAG GCCGUUAGGC CGAA AAAGUACCA ACAUAUGG CUGAUGAG GCCGUUAGGC CGAA AAAGUACC	1516
552	UUUACCAU A UGUUGCUC	95	GAGCAACA CUGAUGAG GCCGUUAGGC CGAA AUGGUAAA	1517

556	CCAUAUGU U GCUCCAGA	96	UCUGGAGC CUGAUGAG GCCGUUAGGC CGAA ACAUAUGG	1518
560	AUGUUGCU C CAGAACUU	97	AAGUUCUG CUGAUGAG GCCGUUAGGC CGAA AGCAACAU	1519
568	CCAGAACU U CUGAAGAG	98	CUCUUCAG CUGAUGAG GCCGUUAGGC CGAA AGUUCUGG	1520
569	CAGAACUU C UGAAGAGA	99	UCUCUUCA CUGAUGAG GCCGUUAGGC CGAA AAGUUCUG	1521
585	AAGAGAAU U UCAUGCAG	100	CUGCAUGA CUGAUGAG GCCGUUAGGC CGAA AUUCUCUU	1522
586	AGAGAAUU U CAUGCAGA	101	UCUGCAUG CUGAUGAG GCCGUUAGGC CGAA AAUUCUCU	1523
587	GAGAAUUU C AUGCAGAA	102	UUCUGCAU CUGAUGAG GCCGUUAGGC CGAA AAAUUCUC	1524
601	GAACCAGU U GAUGUUUG	103	CAAACAUC CUGAUGAG GCCGUUAGGC CGAA ACUGGUUC	1525
607	GUUGAUGU U UGGUCCUG	104	CAGGACCA CUGAUGAG GCCGUUAGGC CGAA ACAUCAAC	1526
608	UUGAUGUU U GGUCCUGU	105	ACAGGACC CUGAUGAG GCCGUUAGGC CGAA AACAUCAA	1527
612	UGUUUGGU C CUGUGGAA	106	UUCCACAG CUGAUGAG GCCGUUAGGC CGAA ACCAAACA	1528
622	UGUGGAAU A GUACUUAC	107	GUAAGUAC CUGAUGAG GCCGUUAGGC CGAA AUUCCACA	1529
625	GGAAUAGU A CUUACUGC	108	GCAGUAAG CUGAUGAG GCCGUUAGGC CGAA ACUAUUCC	1530
628	AUAGUACU U ACUGCAAU	109	AUUGCAGU CUGAUGAG GCCGUUAGGC CGAA AGUACUAU	1531
629	UAGUACUU A CUGCAAUG	110	CAUUGCAG CUGAUGAG GCCGUUAGGC CGAA AAGUACUA	1532
640	GCAAUGCU C GCUGGAGA	111	UCUCCAGC CUGAUGAG GCCGUUAGGC CGAA AGCAUUGC	1533
651	UGGAGAAU U GCCAUGGG	112	CCCAUGGC CUGAUGAG GCCGUUAGGC CGAA AUUCUCCA	1534
680	ACAGCUGU C AGGAGUAU	113	AUACUCCU CUGAUGAG GCCGUUAGGC CGAA ACAGCUGU	1535
687	UCAGGAGU A UUCUGACU	114	AGUCAGAA CUGAUGAG GCCGUUAGGC CGAA ACUCCUGA	1536
689	AGGAGUAU U CUGACUGG	115	CCAGUCAG CUGAUGAG GCCGUUAGGC CGAA AUACUCCU	1537
690	GGAGUAUU C UGACUGGA	116	UCCAGUCA CUGAUGAG GCCGUUAGGC CGAA AAUACUCC	1538
714	AAAAACAU A CCUCAACC	117	GGUUGAGG CUGAUGAG GCCGUUAGGC CGAA AUGUUUUU	1539
718	ACAUACCU C AACCCUUG	118	CAAGGGUU CUGAUGAG GCCGUUAGGC CGAA AGGUAUGU	1540
725	UCAACCCU U GGAAAAA	119	UUUUUUCC CUGAUGAG GCCGUUAGGC CGAA AGGGUUGA	1541
736	AAAAAAU C GAUUCUGC	120	GCAGAAUC CUGAUGAG GCCGUUAGGC CGAA AUUUUUUU	1542
740	AAAUCGAU U CUGCUCCU	121	AGGAGCAG CUGAUGAG GCCGUUAGGC CGAA AUCGAUUU	1543
741	AAUCGAUU C UGCUCCUC	122	GAGGAGCA CUGAUGAG GCCGUUAGGC CGAA AAUCGAUU	1544
746	AUUCUGCU C CUCUAGCU	123	AGCUAGAG CUGAUGAG GCCGUUAGGC CGAA AGCAGAAU	1545
749	CUGCUCCU C UAGCUCUG	124	CAGAGCUA CUGAUGAG GCCGUUAGGC CGAA AGGAGCAG	1546
751	GCUCCUCU A GCUCUGCU	125	AGCAGAGC CUGAUGAG GCCGUUAGGC CGAA AGAGGAGC	1547
755	CUCUAGCU C UGCUGCAU	126	AUGCAGCA CUGAUGAG GCCGUUAGGC CGAA AGCUAGAG	1548
764	UGCUGCAU A AAAUCUUA	127	UAAGAUUU CUGAUGAG GCCGUUAGGC CGAA AUGCAGCA	1549
769	CAUAAAAU C UUAGUUGA	128	UCAACUAA CUGAUGAG GCCGUUAGGC CGAA AUUUUAUG	1550
771	UAAAAUCU U AGUUGAGA	129	UCUCAACU CUGAUGAG GCCGUUAGGC CGAA AGAUUUUA	1551
772	AAAAUCUU A GUUGAGAA	130	UUCUCAAC CUGAUGAG GCCGUUAGGC CGAA AAGAUUUU	1552
775	AUCUUAGU U GAGAAUCC	131	GGAUUCUC CUGAUGAG GCCGUUAGGC CGAA ACUAAGAU	1553
782	UUGAGAAU C CAUCAGCA	132	UGCUGAUG CUGAUGAG GCCGUUAGGC CGAA AUUCUCAA	1554
786	GAAUCCAU C AGCAAGAA	133	UUCUUGCU CUGAUGAG GCCGUUAGGC CGAA AUGGAUUC	1555
796	GCAAGAAU U ACCAUUCC	134	GGAAUGGU CUGAUGAG GCCGUUAGGC CGAA AUUCUUGC	1556
797	CAAGAAUU A CCAUUCCA	135	UGGAAUGG CUGAUGAG GCCGUUAGGC CGAA AAUUCUUG	1557
802	AUUACCAU U CCAGACAU	136	AUGUCUGG CUGAUGAG GCCGUUAGGC CGAA AUGGUAAU	1558
803	UUACCAUU C CAGACAUC	137	GAUGUCUG CUGAUGAG GCCGUUAGGC CGAA AAUGGUAA	1559
811	CCAGACAU C AAAAAAGA	138	UCUUUUUU CUGAUGAG GCCGUUAGGC CGAA AUGUCUGG	1560
821	AAAAAGAU A GAUGGUAC	139	GUACCAUC CUGAUGAG GCCGUUAGGC CGAA AUCUUUUU	1561
828	UAGAUGGU A CAACAAAC	140	GUUUGUUG CUGAUGAG GCCGUUAGGC CGAA ACCAUCUA	1562
841	AAACCCCU C AAGAAAGG	141	CCUUUCUU CUGAUGAG GCCGUUAGGC CGAA AGGGGUUU	1563
868	CCCCGAGU C ACUUCAGG	142	CCUGAAGU CUGAUGAG GCCGUUAGGC CGAA ACUCGGGG	1564
872	GAGUCACU U CAGGUGGU	143	ACCACCUG CUGAUGAG GCCGUUAGGC CGAA AGUGACUC	1565
873	AGUCACUU C AGGUGGUG	144	CACCACCU CUGAUGAG GCCGUUAGGC CGAA AAGUGACU	1566
L	L			

885	UGGUGUGU C AGAGUCUC	145	GAGACUCU CUGAUGAG GCCGUUAGGC CGAA ACACACCA 1567
891	GUCAGAGU C UCCCAGUG	146	CACUGGGA CUGAUGAG GCCGUUAGGC CGAA ACUCUGAC 1568
893	CAGAGUCU C CCAGUGGA	147	UCCACUGG CUGAUGAG GCCGUUAGGC CGAA AGACUCUG 1569
903	CAGUGGAU U UUCUAAGC	148	GCUUAGAA CUGAUGAG GCCGUUAGGC CGAA AUCCACUG 1570.
904	AGUGGAUU U UCUAAGCA	149	UGCUUAGA CUGAUGAG GCCGUUAGGC CGAA AAUCCACU 1571
905	GUGGAUUU U CUAAGCAC	150	GUGCUUAG CUGAUGAG GCCGUUAGGC CGAA AAAUCCAC 1572
906	UGGAUUUU C UAAGCACA	151	UGUGCUUA CUGAUGAG GCCGUUAGGC CGAA AAAAUCCA 1573
908	GAUUUUCU A AGCACAUU	152	AAUGUGCU CUGAUGAG GCCGUUAGGC CGAA AGAAAAUC 1574
916	AAGCACAU U CAAUCCAA	153	UUGGAUUG CUGAUGAG GCCGUUAGGC CGAA AUGUGCUU 1575
917	AGCACAUU C AAUCCAAU	154	AUUGGAUU CUGAUGAG GCCGUUAGGC CGAA AAUGUGCU 1576
921	CAUUCAAU C CAAUUUGG	155	CCAAAUUG CUGAUGAG GCCGUUAGGC CGAA AUUGAAUG 1577
926	AAUCCAAU U UGGACUUC	156	GAAGUCCA CUGAUGAG GCCGUUAGGC CGAA AUUGGAUU 1578
927	AUCCAAUU U GGACUUCU	157	AGAAGUCC CUGAUGAG GCCGUUAGGC CGAA AAUUGGAU 1579
933	UUUGGACU U CUCUCCAG	158	CUGGAGAG CUGAUGAG GCCGUUAGGC CGAA AGUCCAAA 1580
934	UUGGACUU C UCUCCAGU	159	ACUGGAGA CUGAUGAG GCCGUUAGGC CGAA AAGUCCAA 1581
936	GGACUUCU C UCCAGUAA	160	UUACUGGA CUGAUGAG GCCGUUAGGC CGAA AGAAGUCC 1582
938	ACUUCUCU C CAGUAAAC	161	GUUUACUG CUGAUGAG GCCGUUAGGC CGAA AGAGAAGU 1583
943	UCUCCAGU A AACAGUGC	162	GCACUGUU CUGAUGAG GCCGUUAGGC CGAA ACUGGAGA 1584
953	ACAGUGCU U CUAGUGAA	163	UUCACUAG CUGAUGAG GCCGUUAGGC CGAA AGCACUGU 1585
954	CAGUGCUU C UAGUGAAG	164	CUUCACUA CUGAUGAG GCCGUUAGGC CGAA AAGCACUG 1586
956	GUGCUUCU A GUGAAGAA	165	UUCUUCAC CUGAUGAG GCCGUUAGGC CGAA AGAAGCAC 1587
975	UGUGAAGU A CUCCAGUU	166	AACUGGAG CUGAUGAG GCCGUUAGGC CGAA ACUUCACA 1588
978	GAAGUACU C CAGUUCUC	167	GAGAACUG CUGAUGAG GCCGUUAGGC CGAA AGUACUUC 1589
983	ACUCCAGU U CUCAGCCA	168	UGGCUGAG CUGAUGAG GCCGUUAGGC CGAA ACUGGAGU 1590
984	CUCCAGUU C UCAGCCAG	169	CUGGCUGA CUGAUGAG GCCGUUAGGC CGAA AACUGGAG 1591
986	CCAGUUCU C AGCCAGAA	170	UUCUGGCU CUGAUGAG GCCGUUAGGC CGAA AGAACUGG 1592
1007	GCACAGGU C UUUCCUUA	171	UAAGGAAA CUGAUGAG GCCGUUAGGC CGAA ACCUGUGC 1593
1009	ACAGGUCU U UCCUUAUG	172	CAUAAGGA CUGAUGAG GCCGUUAGGC CGAA AGACCUGU 1594
1010	CAGGUCUU U CCUUAUGG	173	CCAUAAGG CUGAUGAG GCCGUUAGGC CGAA AAGACCUG 1595
1011	AGGUCUUU C CUUAUGGG	174	CCCAUAAG CUGAUGAG GCCGUUAGGC CGAA AAAGACCU 1596
1014	UCUUUCCU U AUGGGAUA	175	UAUCCCAU CUGAUGAG GCCGUUAGGC CGAA AGGAAAGA 1597
1015	CUUUCCUU A UGGGAUAC	176	GUAUCCCA CUGAUGAG GCCGUUAGGC CGAA AAGGAAAG 1598
1022	UAUGGGAU A CCAGCCCC	177	GGGGCUGG CUGAUGAG GCCGUUAGGC CGAA AUCCCAUA 1599
1032	CAGCCCCU C AUACAUUG	178	CAAUGUAU CUGAUGAG GCCGUUAGGC CGAA AGGGGCUG 1600
1032	CCCCUCAU A CAUUGAUA	179	UAUCAAUG CUGAUGAG GCCGUUAGGC CGAA AUGAGGGG 1601
1033	UCAUACAU U GAUAAAUU	180	AAUUUAUC CUGAUGAG GCCGUUAGGC CGAA AUGUAUGA 1602
			UACCAAUU CUGAUGAG GCCGUUAGGC CGAA AUCAAUGU 1603
1043	ACAUUGAU A AAUUGGUA	181	
1047	UGAUAAAU U GGUACAAG	182	CUUGUACC CUGAUGAG GCCGUUAGGC CGAA AUUUAUCA 1604 AUCCCUUG CUGAUGAG GCCGUUAGGC CGAA ACCAAUUU 1605
	AAAUUGGU A CAAGGGAU	183	
1060	CAAGGGAU C AGCUUUUC	184	GAAAAGCU CUGAUGAG GCCGUUAGGC CGAA AUCCCUUG 1606
1065	GAUCAGCU U UUCCCAGC	185	GCUGGGAA CUGAUGAG GCCGUUAGGC CGAA AGCUGAUC 1607
1066	AUCAGCUU U UCCCAGCC	186	GGCUGGGA CUGAUGAG GCCGUUAGGC CGAA AAGCUGAU 1608
1067	UCAGCUUU U CCCAGCCC	187	GGGCUGGG CUGAUGAG GCCGUUAGGC CGAA AAAGCUGA 1609
	CAGCUUUU C CCAGCCCA	188	UGGGCUGG CUGAUGAG GCCGUUAGGC CGAA AAAAGCUG 1610
1068		!	
1082	CCACAUGU C CUGAUCAU	189	AUGAUCAG CUGAUGAG GCCGUUAGGC CGAA ACAUGUGG 1611
1082 1088	GUCCUGAU C AUAUGCUU	190	AAGCAUAU CUGAUGAG GCCGUUAGGC CGAA AUCAGGAC 1612
1082 1088 1091	GUCCUGAU C AUAUGCUU CUGAUCAU A UGCUUUUG	190 191	AAGCAUAU CUGAUGAG GCCGUUAGGC CGAA AUCAGGAC 1612 CAAAAGCA CUGAUGAG GCCGUUAGGC CGAA AUGAUCAG 1613
1082 1088	GUCCUGAU C AUAUGCUU	190	AAGCAUAU CUGAUGAG GCCGUUAGGC CGAA AUCAGGAC 1612

				. <u></u>
1098	UAUGCUUU U GAAUAGUC	194	GACUAUUC CUGAUGAG GCCGUUAGGC CGAA AAAGCAUA	1616
1103	UUUUGAAU A GUCAGUUA	195	UAACUGAC CUGAUGAG GCCGUUAGGC CGAA AUUCAAAA	1617
1106	UGAAUAGU C AGUUACUU	196	AAGUAACU CUGAUGAG GCCGUUAGGC CGAA ACUAUUCA	1618
1110	UAGUCAGU U ACUUGGCA	197	UGCCAAGU CUGAUGAG GCCGUUAGGC CGAA ACUGACUA	1619
1111	AGUCAGUU A CUUGGCAC	198	GUGCCAAG CUGAUGAG GCCGUUAGGC CGAA AACUGACU	1620
1114	CAGUUACU U GGCACCCC	199	GGGGUGCC CUGAUGAG GCCGUUAGGC CGAA AGUAACUG	1621
1128	CCCAGGAU C CUCACAGA	200	UCUGUGAG CUGAUGAG GCCGUUAGGC CGAA AUCCUGGG	1622
1131	AGGAUCCU C ACAGAACC	201	GGUUCUGU CUGAUGAG GCCGUUAGGC CGAA AGGAUCCU	1623
1152	GCAGCGGU U GGUCAAAA	202	UUUUGACC CUGAUGAG GCCGUUAGGC CGAA ACCGCUGC	1624
1156	CGGUUGGU C AAAAGAAU	203	AUUCUUUU CUGAUGAG GCCGUUAGGC CGAA ACCAACCG	1625
1173	GACACGAU U CUUUACCA	204	UGGUAAAG CUGAUGAG GCCGUUAGGC CGAA AUCGUGUC	1626
1174	ACACGAUU C UUUACCAA	205	UUGGUAAA CUGAUGAG GCCGUUAGGC CGAA AAUCGUGU	1627
1176	ACGAUUCU U UACCAAAU	206	AUUUGGUA CUGAUGAG GCCGUUAGGC CGAA AGAAUCGU	1628
1177	CGAUUCUU U ACCAAAUU	207	AAUUUGGU CUGAUGAG GCCGUUAGGC CGAA AAGAAUCG	1629
1178	GAUUCUUU A CCAAAUUG	208	CAAUUUGG CUGAUGAG GCCGUUAGGC CGAA AAAGAAUC	1630
1185	UACCAAAU U GGAUGCAG	209	CUGCAUCC CUGAUGAG GCCGUUAGGC CGAA AUUUGGUA	1631
1200	AGACAAAU C UUAUCAAU	210	AUUGAUAA CUGAUGAG GCCGUUAGGC CGAA AUUUGUCU	1632
1202	ACAAAUCU U AUCAAUGC	211	GCAUUGAU CUGAUGAG GCCGUUAGGC CGAA AGAUUUGU	1633
1203	CAAAUCUU A UCAAUGCC	212	GGCAUUGA CUGAUGAG GCCGUUAGGC CGAA AAGAUUUG	1634
1205	AAUCUUAU C AAUGCCUG	213	CAGGCAUU CUGAUGAG GCCGUUAGGC CGAA AUAAGAUU	1635
1223	AAGAGACU U GUGAGAAG	214	CUUCUCAC CUGAUGAG GCCGUUAGGC CGAA AGUCUCUU	1636
1233	UGAGAAGU U GGGCUAUC	215	GAUAGCCC CUGAUGAG GCCGUUAGGC CGAA ACUUCUCA	1637
1239	GUUGGGCU A UCAAUGGA	216	UCCAUUGA CUGAUGAG GCCGUUAGGC CGAA AGCCCAAC	1638
1241	UGGGCUAU C AAUGGAAG	217	CUUCCAUU CUGAUGAG GCCGUUAGGC CGAA AUAGCCCA	1639
1256	AGAAAGU U GUAUGAAU	218	AUUCAUAC CUGAUGAG GCCGUUAGGC CGAA ACUUUUCU	1640
1259	AAAGUUGU A UGAAUCAG	219	CUGAUUCA CUGAUGAG GCCGUUAGGC CGAA ACAACUUU	1641
1265	GUAUGAAU C AGGUUACU	220	AGUAACCU CUGAUGAG GCCGUUAGGC CGAA AUUCAUAC	1642
1270	AAUCAGGU U ACUAUAUC	221	GAUAUAGU CUGAUGAG GCCGUUAGGC CGAA ACCUGAUU	1643
1271	AUCAGGUU A CUAUAUCA	222	UGAUAUAG CUGAUGAG GCCGUUAGGC CGAA AACCUGAU	1644
1274	AGGUUACU A UAUCAACA	223	UGUUGAUA CUGAUGAG GCCGUUAGGC CGAA AGUAACCU	1645
1276	GUUACUAU A UCAACAAC	224	GUUGUUGA CUGAUGAG GCCGUUAGGC CGAA AUAGUAAC	1646
1278	UACUAUAU C AACAACUG	225	CAGUUGUU CUGAUGAG GCCGUUAGGC CGAA AUAUAGUA	1647
1289	CAACUGAU A GGAGAAAC	226	GUUUCUCC CUGAUGAG GCCGUUAGGC CGAA AUCAGUUG	1648
1301	GAAACAAU A AACUCAUU	227	AAUGAGUU CUGAUGAG GCCGUUAGGC CGAA AUUGUUUC	1649
1306	AAUAAACU C AUUUUCAA	228	UUGAAAAU CUGAUGAG GCCGUUAGGC CGAA AGUUUAUU	1650
1309	AAACUCAU U UUCAAAGU	229	ACUUUGAA CUGAUGAG GCCGUUAGGC CGAA AUGAGUUU	1651
1310	AACUCAUU U UCAAAGUG	230	CACUUUGA CUGAUGAG GCCGUUAGGC CGAA AAUGAGUU	1652
1311	ACUCAUUU U CAAAGUGA	231	UCACUUUG CUGAUGAG GCCGUUAGGC CGAA AAAUGAGU	1653
1312	CUCAUUUU C AAAGUGAA	232	UUCACUUU CUGAUGAG GCCGUUAGGC CGAA AAAAUGAG	1654
1322	AAGUGAAU U UGUUAGAA	233	UUCUAACA CUGAUGAG GCCGUUAGGC CGAA AUUCACUU	1655
1323	AGUGAAUU U GUUAGAAA	234	UUUCUAAC CUGAUGAG GCCGUUAGGC CGAA AAUUCACU	1656
1326	GAAUUUGU U AGAAAUGG	235	CCAUUUCU CUGAUGAG GCCGUUAGGC CGAA ACAAAUUC	1657
1327	AAUUUGUU A GAAAUGGA	236	UCCAUUUC CUGAUGAG GCCGUUAGGC CGAA AACAAAUU	1658
1340	UGGAUGAU A AAAUAUUG	237	CAAUAUUU CUGAUGAG GCCGUUAGGC CGAA AUCAUCCA	1659
1345	GAUAAAAU A UUGGUUGA	238	UCAACCAA CUGAUGAG GCCGUUAGGC CGAA AUUUUAUC	1660
1345	UAAAAUAU U GGUUGACU	239	AGUCAACC CUGAUGAG GCCGUUAGGC CGAA AUAUUUUA	1661
1351	AUAUUGGU U GACUUCCG	240	CGGAAGUC CUGAUGAG GCCGUUAGGC CGAA ACCAAUAU	1662
1351	GGUUGACU U CCGGCUUU	241	AAAGCCGG CUGAUGAG GCCGUUAGGC CGAA ACCAACAC	1663
			GAAAGCCG CUGAUGAG GCCGUUAGGC CGAA AAGUCAACC	1664
1357	GUUGACUU C CGGCUUUC	242	GRANGELG CUGNUGNG GEEGUUNGGE CGAM ANGULANC	1004

1363	UUCCGGCU U UCUAAGGG	243	CCCUUAGA CUGAUGAG GCCGUUAGGC CGAA AGCCGGAA	1665
1364	UCCGGCUU U CUAAGGGU	244	ACCCUUAG CUGAUGAG GCCGUUAGGC CGAA AAGCCGGA	1666
1365	CCGGCUUU C UAAGGGUG	245	CACCCUUA CUGAUGAG GCCGUUAGGC CGAA AAAGCCGG	1667
1367	GGCUUUCU A AGGGUGAU	246	AUCACCCU CUGAUGAG GCCGUUAGGC CGAA AGAAAGCC	1668
1380	UGAUGGAU U GGAGUUCA	247	UGAACUCC CUGAUGAG GCCGUUAGGC CGAA AUCCAUCA	1669
1386	AUUGGAGU U CAAGAGAC	248	GUCUCUUG CUGAUGAG GCCGUUAGGC CGAA ACUCCAAU	1670
1387	UUGGAGUU C AAGAGACA	249	UGUCUCUU CUGAUGAG GCCGUUAGGC CGAA AACUCCAA	1671
1398	GAGACACU U CCUGAAGA	250	UCUUCAGG CUGAUGAG GCCGUUAGGC CGAA AGUGUCUC	1672
1399	AGACACUU C CUGAAGAU	251	AUCUUCAG CUGAUGAG GCCGUUAGGC CGAA AAGUGUCU	1673
1408	CUGAAGAU U AAAGGGAA	252	UUCCCUUU CUGAUGAG GCCGUUAGGC CGAA AUCUUCAG	1674
1409	UGAAGAUU A AAGGGAAG	253	CUUCCCUU CUGAUGAG GCCGUUAGGC CGAA AAUCUUCA	1675
1423	AAGCUGAU U GAUAUUGU	254	ACAAUAUC CUGAUGAG GCCGUUAGGC CGAA AUCAGCUU	1676
1427	UGAUUGAU A UUGUGAGC	255	GCUCACAA CUGAUGAG GCCGUUAGGC CGAA AUCAAUCA	1677
1429	AUUGAUAU U GUGAGCAG	256	CUGCUCAC CUGAUGAG GCCGUUAGGC CGAA AUAUCAAU	1678
1447	CAGAAGGU U UGGCUUCC	257	GGAAGCCA CUGAUGAG GCCGUUAGGC CGAA ACCUUCUG	1679
1448	AGAAGGUU U GGCUUCCU	258	AGGAAGCC CUGAUGAG GCCGUUAGGC CGAA AACCUUCU	1680
1453	GUUUGGCU U CCUGCCAC	259	GUGGCAGG CUGAUGAG GCCGUUAGGC CGAA AGCCAAAC	1681
1454	UUUGGCUU C CUGCCACA	260	UGUGGCAG CUGAUGAG GCCGUUAGGC CGAA AAGCCAAA	1682
1467	CACAUGAU C GGACCAUC	261	GAUGGUCC CUGAUGAG GCCGUUAGGC CGAA AUCAUGUG	1683
1475	CGGACCAU C GGCUCUGG	262	CCAGAGCC CUGAUGAG GCCGUUAGGC CGAA AUGGUCCG	1684
1480	CAUCGGCU C UGGGGAAU	263	AUUCCCCA CUGAUGAG GCCGUUAGGC CGAA AGCCGAUG	1685
1489	UGGGGAAU C CUGGUGAA	264	UUCACCAG CUGAUGAG GCCGUUAGGC CGAA AUUCCCCA	1686
1499	UGGUGAAU A UAGUGCUG	265	CAGCACUA CUGAUGAG GCCGUUAGGC CGAA AUUCACCA	1687
1501	GUGAAUAU A GUGCUGCU	266	AGCAGCAC CUGAUGAG GCCGUUAGGC CGAA AUAUUCAC	1688
1510	GUGCUGCU A UGUUGACA	267	UGUCAACA CUGAUGAG GCCGUUAGGC CGAA AGCAGCAC	1689
1514	UGCUAUGU U GACAUUAU	268	AUAAUGUC CUGAUGAG GCCGUUAGGC CGAA ACAUAGCA	1690
1520	GUUGACAU U AUUCUUCC	269	GGAAGAAU CUGAUGAG GCCGUUAGGC CGAA AUGUCAAC	1691
1521	UUGACAUU A UUCUUCCU	270	AGGAAGAA CUGAUGAG GCCGUUAGGC CGAA AAUGUCAA	1692
1523	GACAUUAU U CUUCCUAG	271	CUAGGAAG CUGAUGAG GCCGUUAGGC CGAA AUAAUGUC	1693
1524	ACAUUAUU C UUCCUAGA	272	UCUAGGAA CUGAUGAG GCCGUUAGGC CGAA AAUAAUGU	1694
1526	AUUAUUCU U CCUAGAGA	273	UCUCUAGG CUGAUGAG GCCGUUAGGC CGAA AGAAUAAU	1695
1527	UUAUUCUU C CUAGAGAA	274	UUCUCUAG CUGAUGAG GCCGUUAGGC CGAA AAGAAUAA	1696
1530	UUCUUCCU A GAGAAGAU	275	AUCUUCUC CUGAUGAG GCCGUUAGGC CGAA AGGAAGAA	1697
1539	GAGAAGAU U AUCCUGUC	276	GACAGGAU CUGAUGAG GCCGUUAGGC CGAA AUCUUCUC	1698
1540	AGAAGAUU A UCCUGUCC	277	GGACAGGA CUGAUGAG GCCGUUAGGC CGAA AAUCUUCU	1699
1542	AAGAUUAU C CUGUCCUG	278	CAGGACAG CUGAUGAG GCCGUUAGGC CGAA AUAAUCUU	1700
1547	UAUCCUGU C CUGCAAAC	279	GUUUGCAG CUGAUGAG GCCGUUAGGC CGAA ACAGGAUA	1701
1563	CUGCAAAU A GUAGUUCC	280	GGAACUAC CUGAUGAG GCCGUUAGGC CGAA AUUUGCAG	1702
1566	CAAAUAGU A GUUCCUGA	281	UCAGGAAC CUGAUGAG GCCGUUAGGC CGAA ACUAUUUG	1703
1569	AUAGUAGU U CCUGAAGU	282	ACUUCAGG CUGAUGAG GCCGUUAGGC CGAA ACUACUAU	1704
1570	UAGUAGUU C CUGAAGUG	283	CACUUCAG CUGAUGAG GCCGUUAGGC CGAA AACUACUA	1705
1580	UGAAGUGU U CACUUCCC	284	GGGAAGUG CUGAUGAG GCCGUUAGGC CGAA ACACUUCA	1706
1581	GAAGUGUU C ACUUCCCU	285	AGGGAAGU CUGAUGAG GCCGUUAGGC CGAA AACACUUC	1707
1585	UGUUCACU U CCCUGUUU	286	AAACAGGG CUGAUGAG GCCGUUAGGC CGAA AGUGAACA	1708
1586	GUUCACUU C CCUGUUUA	287	UAAACAGG CUGAUGAG GCCGUUAGGC CGAA AAGUGAAC	1709
1592	UUCCCUGU U UAUCCAAA	288	UUUGGAUA CUGAUGAG GCCGUUAGGC CGAA ACAGGGAA	1710
1593	UCCCUGUU U AUCCAAAC	289	GUUUGGAU CUGAUGAG GCCGUUAGGC CGAA AACAGGGA	1711
1594	CCCUGUUU A UCCAAACA	290	UGUUUGGA CUGAUGAG GCCGUUAGGC CGAA AAACAGGG	1712
1596	CUGUUUAU C CAAACAUC	291	GAUGUUUG CUGAUGAG GCCGUUAGGC CGAA AUAAACAG	1713
			<u> </u>	

1.04		000		
1604	CCAAACAU C UUCCAAUU	292	AAUUGGAA CUGAUGAG GCCGUUAGGC CGAA AUGUUUGG	1714
1606	AAACAUCU U CCAAUUUA	293	UAAAUUGG CUGAUGAG GCCGUUAGGC CGAA AGAUGUUU	1715
1607	AACAUCUU C CAAUUUAU	294	AUAAAUUG CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAGAUGUU	1716
1612	CUUCCAAU U UAUUUUGU	295	ACAAAAUA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AUUGGAAG	1717
1613	UUCCAAUU U AUUUUGUU	296	AACAAAAU CUGAUGAG GCCGUUAGGC CGAA AAUUGGAA	1718
1614	UCCAAUUU A UUUUGUUU	297	AAACAAAA CUGAUGAG GCCGUUAGGC CGAA AAAUUGGA	1719
1616	CAAUUUAU U UUGUUUGU	298	ACAAACAA CUGAUGAG GCCGUUAGGC CGAA AUAAAUUG	1720
1617	AAUUUAUU U UGUUUGUU	299	AACAAACA CUGAUGAG GCCGUUAGGC CGAA AAUAAAUU	1721
1618	AUUUAUUU U GUUUGUUC	300	GAACAAAC CUGAUGAG GCCGUUAGGC CGAA AAAUAAAU	1722
1621	UAUUUUGU U UGUUCGGC	301	GCCGAACA CUGAUGAG GCCGUUAGGC CGAA ACAAAAUA	1723
1622	AUUUUGUU U GUUCGGCA	302	UGCCGAAC CUGAUGAG GCCGUUAGGC CGAA AACAAAAU	1724
1625	UUGUUUGU U CGGCAUAC	303	GUAUGCCG CUGAUGAG GCCGUUAGGC CGAA ACAAACAA	1725
1626	UGUUUGUU C GGCAUACA	304	UGUAUGCC CUGAUGAG GCCGUUAGGC CGAA AACAAACA	1726
1632	UUCGGCAU A CAAAUAAU	305	AUUAUUUG CUGAUGAG GCCGUUAGGC CGAA AUGCCGAA	1727
1638	AUACAAAU A AUACCUAU	306	AUAGGUAU CUGAUGAG GCCGUUAGGC CGAA AUUUGUAU	1728
1641	CAAAUAAU A CCUAUAUC	307	GAUAUAGG CUGAUGAG GCCGUUAGGC CGAA AUUAUUUG	1729
1645	UAAUACCU A UAUCUUAA	308	UUAAGAUA CUGAUGAG GCCGUUAGGC CGAA AGGUAUUA	1730
1647	AUACCUAU A UCUUAAUU	309	AAUUAAGA CUGAUGAG GCCGUUAGGC CGAA AUAGGUAU	1731
1649	ACCUAUAU C UUAAUUGU	310	ACAAUUAA CUGAUGAG GCCGUUAGGC CGAA AUAUAGGU	1732
1651	CUAUAUCU U AAUUGUAA	311	UUACAAUU CUGAUGAG GCCGUUAGGC CGAA AGAUAUAG	1733
1652	UAUAUCUU A AUUGUAAG	312	CUUACAAU CUGAUGAG GCCGUUAGGC CGAA AAGAUAUA	1734
1655	AUCUUAAU U GUAAGCAA	313	UUGCUUAC CUGAUGAG GCCGUUAGGC CGAA AUUAAGAU	1735
1658	UUAAUUGU A AGCAAAAC	314	GUUUUGCU CUGAUGAG GCCGUUAGGC CGAA ACAAUUAA	1736
1668	GCAAAACU U UGGGGAAA	315	UUUCCCCA CUGAUGAG GCCGUUAGGC CGAA AGUUUUGC	1737
1669	CAAAACUU U GGGGAAAG	316	CUUUCCCC CUGAUGAG GCCGUUAGGC CGAA AAGUUUUG	1738
1685	GGAUGAAU A GAAUUCAU	317	AUGAAUUC CUGAUGAG GCCGUUAGGC CGAA AUUCAUCC	1739
1690	AAUAGAAU U CAUUUGAU	318	AUCAAAUG CUGAUGAG GCCGUUAGGC CGAA AUUCUAUU	1740
1691	AUAGAAUU C AUUUGAUU	319	AAUCAAAU CUGAUGAG GCCGUUAGGC CGAA AAUUCUAU	1741
1694	GAAUUCAU U UGAUUAUU	320	AAUAAUCA CUGAUGAG GCCGUUAGGC CGAA AUGAAUUC	1742
1695	AAUUCAUU U GAUUAUUU	321	AAAUAAUC CUGAUGAG GCCGUUAGGC CGAA AAUGAAUU	1743
1699	CAUUUGAU U AUUUCUUC	322	GAAGAAAU CUGAUGAG GCCGUUAGGC CGAA AUCAAAUG	1744
1700	AUUUGAUU A UUUCUUCA	323	UGAAGAAA CUGAUGAG <u>GCCGUUAGGC</u> CGAA AAUCAAAU	1745
1702	UUGAUUAU U UCUUCAUG	324	CAUGAAGA CUGAUGAG GCCGUUAGGC CGAA AUAAUCAA	1746
1703	UGAUUAUU U CUUCAUGU	325	ACAUGAAG CUGAUGAG GCCGUUAGGC CGAA AAUAAUCA	1747
1704	GAUUAUUU C UUCAUGUG	326	CACAUGAA CUGAUGAG GCCGUUAGGC CGAA AAAUAAUC	1748
1706	UUAUUUCU U CAUGUGUG	327	CACACAUG CUGAUGAG GCCGUUAGGC CGAA AGAAAUAA	1749
1707	UAUUUCUU C AUGUGUGU	328	ACACACAU CUGAUGAG GCCGUUAGGC CGAA AAGAAAUA	1750
1716	AUGUGUGU U UAGUAUCU	329	AGAUACUA CUGAUGAG GCCGUUAGGC CGAA ACACACAU	1751
1717	UGUGUGUU U AGUAUCUG	330	CAGAUACU CUGAUGAG GCCGUUAGGC CGAA AACACACA	1752
1718	GUGUGUUU A GUAUCUGA	331	UCAGAUAC CUGAUGAG GCCGUUAGGC CGAA AAACACAC	1753
1721	UGUUUAGU A UCUGAAUU	332	AAUUCAGA CUGAUGAG GCCGUUAGGC CGAA ACUAAACA	1754
1723	UUUAGUAU C UGAAUUUG	333	CAAAUUCA CUGAUGAG GCCGUUAGGC CGAA AUACUAAA	1755
1729	AUCUGAAU U UGAAACUC	334	GAGUUUCA CUGAUGAG GCCGUUAGGC CGAA AUUCAGAU	1756
1730	UCUGAAUU U GAAACUCA	335	UGAGUUUC CUGAUGAG GCCGUUAGGC CGAA AAUUCAGA	1757
1737	UUGAAACU C AUCUGGUG	336	CACCAGAU CUGAUGAG GCCGUUAGGC CGAA AGUUUCAA	1758
1740	AAACUCAU C UGGUGGAA	337	UUCCACCA CUGAUGAG GCCGUUAGGC CGAA AUGAGUUU	1759
1756	AACCAAGU U UCAGGGGA	338	UCCCCUGA CUGAUGAG GCCGUUAGGC CGAA ACUUGGUU	1760
1757	ACCAAGUU U CAGGGGAC	339	GUCCCCUG CUGAUGAG GCCGUUAGGC CGAA AACUUGGU	1761
1758	CCAAGUUU C AGGGGACA	340	UGUCCCCU CUGAUGAG GCCGUUAGGC CGAA AAACUUGG	1762

1772	ACAUGAGU U UUCCAGCU	341	AGCUGGAA CUGAUGAG GCCGUUAGGC CGAA ACUCAUGU	1763
1773	CAUGAGUU U UCCAGCUU	342	AAGCUGGA CUGAUGAG GCCGUUAGGC CGAA AACUCAUG	1764
1774	AUGAGUUU U CCAGCUUU	343	AAAGCUGG CUGAUGAG GCCGUUAGGC CGAA AAACUCAU	1765
1775	UGAGUUUU C CAGCUUUU	344	AAAAGCUG CUGAUGAG GCCGUUAGGC CGAA AAAACUCA	1766
1781	UUCCAGCU U UUAUACAC	345	GUGUAUAA CUGAUGAG GCCGUUAGGC CGAA AGCUGGAA	1767
1782	UCCAGCUU U UAUACACA	346	UGUGUAUA CUGAUGAG GCCGUUAGGC CGAA AAGCUGGA	1768
1783	CCAGCUUU U AUACACAC	347	GUGUGUAU CUGAUGAG GCCGUUAGGC CGAA AAAGCUGG	1769
1784	CAGCUUUU A UACACACG	348	CGUGUGUA CUGAUGAG GCCGUUAGGC CGAA AAAAGCUG	1770
1786	GCUUUUAU A CACACGUA	349	UACGUGUG CUGAUGAG GCCGUUAGGC CGAA AUAAAAGC	1771
1794	ACACACGU A UCUCAUUU	350	AAAUGAGA CUGAUGAG GCCGUUAGGC CGAA ACGUGUGU	1772
1796	ACACGUAU C UCAUUUUU	351	AAAAAUGA CUGAUGAG GCCGUUAGGC CGAA AUACGUGU	1773
1798	ACGUAUCU C AUUUUUAU	352	AUAAAAAU CUGAUGAG GCCGUUAGGC CGAA AGAUACGU	1774
1801	UAUCUCAU U UUUAUCAA	353	UUGAUAAA CUGAUGAG GCCGUUAGGC CGAA AUGAGAUA	1775
1802	AUCUCAUU U UUAUCAAA	354	UUUGAUAA CUGAUGAG GCCGUUAGGC CGAA AAUGAGAU	1776
1803	UCUCAUUU U UAUCAAAA	355	UUUUGAUA CUGAUGAG GCCGUUAGGC CGAA AAAUGAGA	1777
1804	CUCAUUUU U AUCAAAAC	356	GUUUUGAU CUGAUGAG GCCGUUAGGC CGAA AAAAUGAG	1778
1805	UCAUUUUU A UCAAAACA	357	UGUUUUGA CUGAUGAG GCCGUUAGGC CGAA AAAAAUGA	1779
1807	AUUUUUAU C AAAACAUU	358	AAUGUUUU CUGAUGAG GCCGUUAGGC CGAA AUAAAAAU	1780
Assessment of the latest of th				

Input Sequence = AF016582 Cut Site = UH/.

Stem Length = 8 . Core Sequence = CUGAUGAG <u>GCCGUUAGGC</u> CGAA

AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)

Underlined region can be any X sequence or linker as previously defined herein.

Table IV: Human Chk1 NCH Ribozyme and Substrate Sequence

Pos	Substrate	Seq ID	Ribozyme	Rz Seq ID
9	GGCCGGAC A GUCCGCCG	359	CGGCGGAC CUGAUGAG GCCGUUAGGC CGAA IUCCGGCC	1781
13	GGACAGUC C GCCGAGGU	360	ACCUCGGC CUGAUGAG GCCGUUAGGC CGAA IACUGUCC	1782
16	CAGUCCGC C GAGGUGCU	361	AGCACCUC CUGAUGAG GCCGUUAGGC CGAA ICGGACUG	1783
24	CGAGGUGC U CGGUGGAG	362	CUCCACCG CUGAUGAG GCCGUUAGGC CGAA ICACCUCG	1784
35	GUGGAGUC A UGGCAGUG	363	CACUGCCA CUGAUGAG GCCGUUAGGC CGAA IACUCCAC	1785
40	GUCAUGGC A GUGCCCUU	364	AAGGGCAC CUGAUGAG GCCGUUAGGC CGAA ICCAUGAC	1786
45	GGCAGUGC C CUUUGUGG	365	CCACAAAG CUGAUGAG GCCGUUAGGC CGAA ICACUGCC	1787
46	GCAGUGCC C UUUGUGGA	366	UCCACAAA CUGAUGAG GCCGUUAGGC CGAA IGCACUGC	1788
47	CAGUGCCC U UUGUGGAA	367	UUCCACAA CUGAUGAG GCCGUUAGGC CGAA IGGCACUG	1789
59	UGGAAGAC U GGGACUUG	368	CAAGUCCC CUGAUGAG GCCGUUAGGC CGAA IUCUUCCA	1790
65	ACUGGGAC U UGGUGCAA	369	UUGCACCA CUGAUGAG GCCGUUAGGC CGAA IUCCCAGU	1791
72	CUUGGUGC A AACCCUGG	370	CCAGGGUU CUGAUGAG GCCGUUAGGC CGAA ICACCAAG	1792
76	GUGCAAAC C CUGGGAGA	371	UCUCCCAG CUGAUGAG GCCGUUAGGC CGAA IUUUGCAC	1793
77	UGCAAACC C UGGGAGAA	372	UUCUCCCA CUGAUGAG GCCGUUAGGC CGAA IGUUUGCA	1794
78	GCAAACCC U GGGAGAAG	373	CUUCUCCC CUGAUGAG GCCGUUAGGC CGAA IGGUUUGC	1795
91	GAAGGUGC C UAUGGAGA	374	UCUCCAUA CUGAUGAG GCCGUUAGGC CGAA ICACCUUC	1796
92	AAGGUGCC U AUGGAGAA	375	UUCUCCAU CUGAUGAG GCCGUUAGGC CGAA IGCACCUU	1797
105	AGAAGUUC A ACUUGCUG	376	CAGCAAGU CUGAUGAG GCCGUUAGGC CGAA IAACUUCU	1798
108	AGUUCAAC U UGCUGUGA	377	UCACAGCA CUGAUGAG GCCGUUAGGC CGAA IUUGAACU	1799
112	CAACUUGC U GUGAAUAG	378	CUAUUCAC CUGAUGAG GCCGUUAGGC CGAA ICAAGUUG	1800
127	AGAGUAAC U GAAGAAGC	379	GCUUCUUC CUGAUGAG GCCGUUAGGC CGAA IUUACUCU	1801
136	GAAGAAGC A GUCGCAGU	380	ACUGCGAC CUGAUGAG GCCGUUAGGC CGAA ICUUCUUC	1802
142	GCAGUCGC A GUGAAGAU	381	AUCUUCAC CUGAUGAG GCCGUUAGGC CGAA ICGACUGC	1803
169	AAGCGUGC C GUAGACUG	382	CAGUCUAC CUGAUGAG GCCGUUAGGC CGAA ICACGCUU	1804
176	CCGUAGAC U GUCCAGAA	383	UUCUGGAC CUGAUGAG GCCGUUAGGC CGAA IUCUACGG	1805
180	AGACUGUC C AGAAAAUA	384	UAUUUUCU CUGAUGAG GCCGUUAGGC CGAA IACAGUCU	1806
181	GACUGUCC A GAAAAUAU	385	AUAUUUUC CUGAUGAG GCCGUUAGGC CGAA IGACAGUC	1807
203	AAGAGAUC U GUAUCAAU	386	AUUGAUAC CUGAUGAG GCCGUUAGGC CGAA IAUCUCUU	1808
209	UCUGUAUC A AUAAAAUG	387	CAUUUUAU CUGAUGAG GCCGUUAGGC CGAA IAUACAGA	1809
219	UAAAAUGC U AAAUCAUG	388	CAUGAUUU CUGAUGAG GCCGUUAGGC CGAA ICAUUUUA	1810
225	GCUAAAUC A UGAAAAUG	389	CAUUUUCA CUGAUGAG GCCGUUAGGC CGAA IAUUUAGC	1811
245	UAAAAUUC U AUGGUCAC	390	GUGACCAU CUGAUGAG GCCGUUAGGC CGAA IAAUUUUA	1812
252	CUAUGGUC A CAGGAGAG	391	CUCUCCUG CUGAUGAG GCCGUUAGGC CGAA IACCAUAG	1813
254	AUGGUCAC A GGAGAGAA	392	UUCUCUCC CUGAUGAG GCCGUUAGGC CGAA IUGACCAU	1814
266	GAGAAGGC A AUAUCCAA	393	UUGGAUAU CUGAUGAG GCCGUUAGGC CGAA ICCUUCUC	1815
272	GCAAUAUC C AAUAUUUA	394	UAAAUAUU CUGAUGAG GCCGUUAGGC CGAA IAUAUUGC	1816
273	CAAUAUCC A AUAUUUAU	395	AUAAAUAU CUGAUGAG GCCGUUAGGC CGAA IGAUAUUG	1817
285	UUUAUUUC U GGAGUACU	396	AGUACUCC CUGAUGAG GCCGUUAGGC CGAA IAAAUAAA	1818
293	UGGAGUAC U GUAGUGGA	397	UCCACUAC CUGAUGAG GCCGUUAGGC CGAA IUACUCCA	1819
309	AGGAGAGC U UUUUGACA	398	UGUCAAAA CUGAUGAG GCCGUUAGGC CGAA ICUCUCCU	1820
317	UUUUUGAC A GAAUAGAG	399	CUCUAUUC CUGAUGAG GCCGUUAGGC CGAA IUCAAAAA	1821
327	AAUAGAGC C AGACAUAG	400	CUAUGUCU CUGAUGAG GCCGUUAGGC CGAA ICUCUAUU	1822
328	AUAGAGCC A GACAUAGG	401	CCUAUGUC CUGAUGAG GCCGUUAGGC CGAA IGCUCUAU	1823
332	AGCCAGAC A UAGGCAUG	402	CAUGCCUA CUGAUGAG GCCGUUAGGC CGAA IUCUGGCU	1824
338	ACAUAGGC A UGCCUGAA	403	UUCAGGCA CUGAUGAG GCCGUUAGGC CGAA ICCUAUGU	1825

342	AGGCAUGC C UGAACCAG	404	CUGGUUCA CUGAUGAG GCCGUUAGGC CGAA ICAUGCCU	1826
343	GGCAUGCC U GAACCAGA	405	UCUGGUUC CUGAUGAG GCCGUUAGGC CGAA IGCAUGCC	1827
348	GCCUGAAC C AGAUGCUC	406	GAGCAUCU CUGAUGAG GCCGUUAGGC CGAA IUUCAGGC	1828
349	CCUGAACC A GAUGCUCA	407	UGAGCAUC CUGAUGAG GCCGUUAGGC CGAA IGUUCAGG	1829
355	CCAGAUGC U CAGAGAUU	408	AAUCUCUG CUGAUGAG GCCGUUAGGC CGAA ICAUCUGG	1830
357	AGAUGCUC A GAGAUUCU	409	AGAAUCUC CUGAUGAG GCCGUUAGGC CGAA IAGCAUCU	1831
365	AGAGAUUC U UCCAUCAA	410	UUGAUGGA CUGAUGAG GCCGUUAGGC CGAA IAAUCUCU	1832
368	GAUUCUUC C AUCAACUC	411	GAGUUGAU CUGAUGAG GCCGUUAGGC CGAA IAAGAAUC	1833
369	AUUCUUCC A UCAACUCA	412	UGAGUUGA CUGAUGAG GCCGUUAGGC CGAA IGAAGAAU	1834
372	CUUCCAUC A ACUCAUGG	413	CCAUGAGU CUGAUGAG GCCGUUAGGC CGAA IAUGGAAG	1835
375	CCAUCAAC U CAUGGCAG	414	CUGCCAUG CUGAUGAG GCCGUUAGGC CGAA IUUGAUGG	1836
377	AUCAACUC A UGGCAGGG	415	CCCUGCCA CUGAUGAG GCCGUUAGGC CGAA IAGUUGAU	1837
382	CUCAUGGC A GGGGUGGU	416	ACCACCCC CUGAUGAG GCCGUUAGGC CGAA ICCAUGAG	1838
396	GGUUUAUC U GCAUGGUA	417	UACCAUGC CUGAUGAG GCCGUUAGGC CGAA IAUAAACC	1839
399	UUAUCUGC A UGGUAUUG	418	CAAUACCA CUGAUGAG GCCGUUAGGC CGAA ICAGAUAA	1840
415	GGAAUAAC U CACAGGGA	419	UCCCUGUG CUGAUGAG GCCGUUAGGC CGAA IUUAUUCC	1841
417	AAUAACUC A CAGGGAUA	420	UAUCCCUG CUGAUGAG GCCGUUAGGC CGAA IAGUUAUU	1842
419	UAACUCAC A GGGAUAUU	421	AAUAUCCC CUGAUGAG GCCGUUAGGC CGAA IUGAGUUA	1843
432	UAUUAAAC C AGAAAAUC	422	GAUUUUCU CUGAUGAG GCCGUUAGGC CGAA IUUUAAUA	1844
433	AUUAAACC A GAAAAUCU	423	AGAUUUUC CUGAUGAG GCCGUUAGGC CGAA IGUUUAAU	1845
441	AGAAAAUC U UCUGUUGG	424	CCAACAGA CUGAUGAG GCCGUUAGGC CGAA IAUUUUCU	1846
444	AAAUCUUC U GUUGGAUG	425	CAUCCAAC CUGAUGAG GCCGUUAGGC CGAA IAAGAUUU	1847
464	GGGAUAAC C UCAAAAUC	426	GAUUUUGA CUGAUGAG GCCGUUAGGC CGAA IUUAUCCC	1848
465	GGAUAACC U CAAAAUCU	427	AGAUUUUG CUGAUGAG GCCGUUAGGC CGAA IGUUAUCC	1849
467	AUAACCUC A AAAUCUCA	428	UGAGAUUU CUGAUGAG GCCGUUAGGC CGAA IAGGUUAU	1850
473	UCAAAAUC U CAGACUUU	429	AAAGUCUG CUGAUGAG GCCGUUAGGC CGAA IAUUUUGA	1851
475	AAAAUCUC A GACUUUGG	430	CCAAAGUC CUGAUGAG GCCGUUAGGC CGAA IAGAUUUU	1852
479	UCUCAGAC U UUGGCUUG	431	CAAGCCAA CUGAUGAG GCCGUUAGGC CGAA IUCUGAGA	1853
485	ACUUUGGC U UGGCAACA	432	UGUUGCCA CUGAUGAG GCCGUUAGGC CGAA ICCAAAGU	1854
490	GGCUUGGC A ACAGUAUU	433	AAUACUGU CUGAUGAG GCCGUUAGGC CGAA ICCAAGCC	1855
493	UUGGCAAC A GUAUUUCG	434	CGAAAUAC CUGAUGAG GCCGUUAGGC CGAA IUUGCCAA	1856
530	UGUUGAAC A AGAUGUGU	435	ACACAUCU CUGAUGAG GCCGUUAGGC CGAA IUUCAACA	1857
544	UGUGGUAC U UUACCAUA	436	UAUGGUAA CUGAUGAG GCCGUUAGGC CGAA IUACCACA	1858
549	UACUUUAC C AUAUGUUG	437	CAACAUAU CUGAUGAG GCCGUUAGGC CGAA IUAAAGUA	1859
550	ACUUUACC A UAUGUUGC	438	GCAACAUA CUGAUGAG GCCGUUAGGC CGAA IGUAAAGU	1860
559	UAUGUUGC U CCAGAACU	439	AGUUCUGG CUGAUGAG GCCGUUAGGC CGAA ICAACAUA	1861
561	UGUUGCUC C AGAACUUC	440	GAAGUUCU CUGAUGAG GCCGUUAGGC CGAA IAGCAACA	1862
562	GUUGCUCC A GAACUUCU	441	AGAAGUUC CUGAUGAG GCCGUUAGGC CGAA IGAGCAAC	1863
567	UCCAGAAC U UCUGAAGA	442	UCUUCAGA CUGAUGAG GCCGUUAGGC CGAA IUUCUGGA	1864
570	AGAACUUC U GAAGAGAA	443	UUCUCUUC CUGAUGAG GCCGUUAGGC CGAA IAAGUUCU	1865
588	AGAAUUUC A UGCAGAAC	444	GUUCUGCA CUGAUGAG GCCGUUAGGC CGAA IAAAUUCU	1866
592	UUUCAUGC A GAACCAGU	445	ACUGGUUC CUGAUGAG GCCGUUAGGC CGAA IAAAUUCU ACUGGUUC CUGAUGAG GCCGUUAGGC CGAA ICAUGAAA	1867
592	UGCAGAAC C AGUUGAUG	445	CAUCAACU CUGAUGAG GCCGUUAGGC CGAA ICAUGAAA CAUCAACU CUGAUGAG GCCGUUAGGC CGAA IUUCUGCA	1868
598	GCAGAACC A GUUGAUGU	447	ACAUCAAC CUGAUGAG GCCGUUAGGC CGAA IGUUCUGC	1869
613	GUUUGGUC C UGUGGAAU	448	AUUCCACA CUGAUGAG GCCGUUAGGC CGAA IACCAAAC	1870
614	UUUGGUCC U GUGGAAUA	449	UAUUCCAC CUGAUGAG GCCGUUAGGC CGAA IGACCAAA	1871
627	AAUAGUAC U UACUGCAA	450	UUGCAGUA CUGAUGAG GCCGUUAGGC CGAA IUACUAUU	1872
631	GUACUUAC U GCAAUGCU	451	AGCAUUGC CUGAUGAG GCCGUUAGGC CGAA IUAAGUAC	1873
634	CUUACUGC A AUGCUCGC	452	GCGAGCAU CUGAUGAG GCCGUUAGGC CGAA ICAGUAAG	1874

620	HCCANHOO H CCCHCCAO	457		
639	UGCAAUGC U CGCUGGAG	453	CUCCAGCG CUGAUGAG GCCGUUAGGC CGAA ICAUUGCA	1875
643	AUGCUCGC U GGAGAAUU	454	AAUUCUCC CUGAUGAG GCCGUUAGGC CGAA ICGAGCAU	1876
654	AGAAUUGC C AUGGGACC	455	GGUCCCAU CUGAUGAG GCCGUUAGGC CGAA ICAAUUCU	1877
655	GAAUUGCC A UGGGACCA	456	UGGUCCCA CUGAUGAG GCCGUUAGGC CGAA IGCAAUUC	1878
662	CAUGGGAC C AACCCAGU	457	ACUGGGUU CUGAUGAG GCCGUUAGGC CGAA IUCCCAUG	1879
663	AUGGGACC A ACCCAGUG	458	CACUGGGU CUGAUGAG GCCGUUAGGC CGAA IGUCCCAU	1880
666	GGACCAAC C CAGUGACA	459	UGUCACUG CUGAUGAG GCCGUUAGGC CGAA IUUGGUCC	1881
667	GACCAACC C AGUGACAG	460	CUGUCACU CUGAUGAG GCCGUUAGGC CGAA IGUUGGUC	1882
668	ACCAACCC A GUGACAGC	461	GCUGUCAC CUGAUGAG GCCGUUAGGC CGAA IGGUUGGU	1883
674	CCAGUGAC A GCUGUCAG	462	CUGACAGC CUGAUGAG GCCGUUAGGC CGAA IUCACUGG	1884
677	GUGACAGC U GUCAGGAG	463	CUCCUGAC CUGAUGAG GCCGUUAGGC CGAA ICUGUCAC	1885
681	CAGCUGUC A GGAGUAUU	464	AAUACUCC CUGAUGAG GCCGUUAGGC CGAA IACAGCUG	1886
691	GAGUAUUC U GACUGGAA	465	UUCCAGUC CUGAUGAG GCCGUUAGGC CGAA IAAUACUC	1887
695	AUUCUGAC U GGAAAGAA	466	UUCUUUCC CUGAUGAG GCCGUUAGGC CGAA IUCAGAAU	1888
712	AAAAAAAC A UACCUCAA	467	UUGAGGUA CUGAUGAG GCCGUUAGGC CGAA IUUUUUUU	1889
716	AAACAUAC C UCAACCCU	468	AGGGUUGA CUGAUGAG GCCGUUAGGC CGAA IUAUGUUU	1890
717	AACAUACC U CAACCCUU	469	AAGGGUUG CUGAUGAG GCCGUUAGGC CGAA IGUAUGUU	1891
719	CAUACCUC A ACCCUUGG	470	CCAAGGGU CUGAUGAG GCCGUUAGGC CGAA IAGGUAUG	1892
722	ACCUCAAC C CUUGGAAA	471	UUUCCAAG CUGAUGAG GCCGUUAGGC CGAA IUUGAGGU	1893
723	CCUCAACC C UUGGAAAA	472	UUUUCCAA CUGAUGAG GCCGUUAGGC CGAA IGUUGAGG	1894
724	CUCAACCC U UGGAAAAA	473	UUUUUCCA CUGAUGAG GCCGUUAGGC CGAA IGGUUGAG	1895
742	AUCGAUUC U GCUCCUCU	474	AGAGGAGC CUGAUGAG GCCGUUAGGC CGAA IAAUCGAU	1896
745	GAUUCUGC U CCUCUAGC	475	GCUAGAGG CUGAUGAG GCCGUUAGGC CGAA ICAGAAUC	1897
747	UUCUGCUC C UCUAGCUC	476	GAGCUAGA CUGAUGAG GCCGUUAGGC CGAA IAGCAGAA	1898
748	UCUGCUCC U CUAGCUCU	477	AGAGCUAG CUGAUGAG GCCGUUAGGC CGAA IGAGCAGA	1899
750	UGCUCCUC U AGCUCUGC	478	GCAGAGCU CUGAUGAG GCCGUUAGGC CGAA IAGGAGCA	1900
754	CCUCUAGC U CUGCUGCA	479	UGCAGCAG CUGAUGAG GCCGUUAGGC CGAA ICUAGAGG	1901
756	UCUAGCUC U GCUGCAUA	480	UAUGCAGC CUGAUGAG GCCGUUAGGC CGAA IAGCUAGA	1902
759	AGCUCUGC U GCAUAAAA	481	UUUUAUGC CUGAUGAG GCCGUUAGGC CGAA ICAGAGCU	1903
762	UCUGCUGC A UAAAAUCU	482	AGAUUUUA CUGAUGAG GCCGUUAGGC CGAA ICAGCAGA	1904
770	AUAAAAUC U UAGUUGAG	483	CUCAACUA CUGAUGAG GCCGUUAGGC CGAA IAUUUUAU	1905
783	UGAGAAUC C AUCAGCAA	484	UUGCUGAU CUGAUGAG GCCGUUAGGC CGAA IAUUCUCA	1906
784	GAGAAUCC A UCAGCAAG	485	CUUGCUGA CUGAUGAG GCCGUUAGGC CGAA IGAUUCUC	1907
787	AAUCCAUC A GCAAGAAU	486	AUUCUUGC CUGAUGAG GCCGUUAGGC CGAA IAUGGAUU	1908
790	CCAUCAGC A AGAAUUAC	487	GUAAUUCU CUGAUGAG GCCGUUAGGC CGAA ICUGAUGG	1909
799	AGAAUUAC C AUUCCAGA	488	UCUGGAAU CUGAUGAG GCCGUUAGGC CGAA IUAAUUCU	1910
800	GAAUUACC A UUCCAGAC	489	GUCUGGAA CUGAUGAG GCCGUUAGGC CGAA IGUAAUUC	1911
804	UACCAUUC C AGACAUCA	490	UGAUGUCU CUGAUGAG GCCGUUAGGC CGAA IAAUGGUA	1912
805	ACCAUUCC A GACAUCAA	491	UUGAUGUC CUGAUGAG GCCGUUAGGC CGAA IGAAUGGU	1913
809	UUCCAGAC A UCAAAAAA	492	UUUUUUGA CUGAUGAG GCCGUUAGGC CGAA IUCUGGAA	1914
812	CAGACAUC A AAAAAGAU	493	AUCUUUUU CUGAUGAG GCCGUUAGGC CGAA IAUGUCUG	1915
830	GAUGGUAC A ACAAACCC	494	GGGUUUGU CUGAUGAG GCCGUUAGGC CGAA IUACCAUC	1916
833	GGUACAAC A AACCCCUC	495	GAGGGGUU CUGAUGAG GCCGUUAGGC CGAA IUUGUACC	1917
837	CAACAAAC C CCUCAAGA	496	UCUUGAGG CUGAUGAG GCCGUUAGGC CGAA IUUUGUUG	1918
838	AACAAACC C CUCAAGAA	497	UUCUUGAG CUGAUGAG GCCGUUAGGC CGAA IGUUUGUU	1919
839	ACAAACCC C UCAAGAAA	498	UUUCUUGA CUGAUGAG GCCGUUAGGC CGAA IGGUUUGU	1920
840	CAAACCCC U CAAGAAAG	499	CUUUCUUG CUGAUGAG GCCGUUAGGC CGAA IGGGUUUG	1921
842	AACCCCUC A AGAAAGGG	500	CCCUUUCU CUGAUGAG GCCGUUAGGC CGAA IAGGGGUU	1922
0	_	J		

861	AAAAAGGC C CCGAGUCA	502	UGACUCOO CUCATORO COCCUERA COR CONTRACTORO	
		502	UGACUCGG CUGAUGAG GCCGUUAGGC CGAA ICCUUUUU	1924
862	AAAAGGCC C CGAGUCAC	503	GUGACUCG CUGAUGAG GCCGUUAGGC CGAA IGCCUUUU	1925
863	AAAGGCCC C GAGUCACU	504	AGUGACUC CUGAUGAG GCCGUUAGGC CGAA IGGCCUUU	1926
869	CCCGAGUC A CUUCAGGU	505	ACCUGAAG CUGAUGAG GCCGUUAGGC CGAA IACUCGGG	1927
871	CGAGUCAC U UCAGGUGG	506	CCACCUGA CUGAUGAG GCCGUUAGGC CGAA IUGACUCG	1928
874	GUCACUUC A GGUGGUGU	507	ACACCACC CUGAUGAG GCCGUUAGGC CGAA IAAGUGAC	1929
886	GGUGUGUC A GAGUCUCC	508	GGAGACUC CUGAUGAG GCCGUUAGGC CGAA IACACACC	1930
892	UCAGAGUC U CCCAGUGG	509	CCACUGGG CUGAUGAG GCCGUUAGGC CGAA IACUCUGA	1931
894	AGAGUCUC C CAGUGGAU	510	AUCCACUG CUGAUGAG GCCGUUAGGC CGAA IAGACUCU	1932
895	GAGUCUCC C AGUGGAUU	511	AAUCCACU CUGAUGAG GCCGUUAGGC CGAA IGAGACUC	1933
896	AGUCUCCC A GUGGAUUU	512	AAAUCCAC CUGAUGAG <u>GCCGUUAGGC</u> CGAA IGGAGACU	1934
907	GGAUUUUC U AAGCACAU	513	AUGUGCUU CUGAUGAG GCCGUUAGGC CGAA IAAAAUCC	1935
912	UUCUAAGC A CAUUCAAU	514	AUUGAAUG CUGAUGAG GCCGUUAGGC CGAA ICUUAGAA	1936
914	CUAAGCAC A UUCAAUCC	515	GGAUUGAA CUGAUGAG GCCGUUAGGC CGAA IUGCUUAG	1937
918	GCACAUUC A AUCCAAUU	516	AAUUGGAU CUGAUGAG GCCGUUAGGC CGAA IAAUGUGC	1938
922	AUUCAAUC C AAUUUGGA	517	UCCAAAUU CUGAUGAG GCCGUUAGGC CGAA IAUUGAAU	1939
923	UUCAAUCC A AUUUGGAC	518	GUCCAAAU CUGAUGAG GCCGUUAGGC CGAA IGAUUGAA	1940
932	AUUUGGAC U UCUCUCCA	519	UGGAGAGA CUGAUGAG GCCGUUAGGC CGAA IUCCAAAU	1941
935	UGGACUUC U CUCCAGUA	520	UACUGGAG CUGAUGAG GCCGUUAGGC CGAA IAAGUCCA	1942
937	GACUUCUC U CCAGUAAA	521	UUUACUGG CUGAUGAG <u>GCCGUUAGGC</u> CGAA IAGAAGUC	1943
939	CUUCUCUC C AGUAAACA	522	UGUUUACU CUGAUGAG <u>GCCGUUAGGC</u> CGAA IAGAGAAG	1944
940	UUCUCUCC A GUAAACAG	523	CUGUUUAC CUGAUGAG <u>GCCGUUAGGC</u> CGAA IGAGAGAA	1945
947	CAGUAAAC A GUGCUUCU	524	AGAAGCAC CUGAUGAG GCCGUUAGGC CGAA IUUUACUG	1946
952	AACAGUGC U UCUAGUGA	525	UCACUAGA CUGAUGAG GCCGUUAGGC CGAA ICACUGUU	1947
955	AGUGCUUC U AGUGAAGA	526	UCUUCACU CUGAUGAG GCCGUUAGGC CGAA IAAGCACU	1948
977	UGAAGUAC U CCAGUUCU	527	AGAACUGG CUGAUGAG GCCGUUAGGC CGAA IUACUUCA	1949
979	AAGUACUC C AGUUCUCA	528	UGAGAACU CUGAUGAG GCCGUUAGGC CGAA IAGUACUU	1950
980	AGUACUCC A GUUCUCAG	529	CUGAGAAC CUGAUGAG GCCGUUAGGC CGAA IGAGUACU	1951
985	UCCAGUUC U CAGCCAGA	530	UCUGGCUG CUGAUGAG GCCGUUAGGC CGAA IAACUGGA	1952
987	CAGUUCUC A GCCAGAAC	531	GUUCUGGC CUGAUGAG GCCGUUAGGC CGAA IAGAACUG	1953
990	UUCUCAGC C AGAACCCC	532	GGGGUUCU CUGAUGAG GCCGUUAGGC CGAA ICUGAGAA	1954
991	UCUCAGCC A GAACCCCG	533	CGGGGUUC CUGAUGAG GCCGUUAGGC CGAA IGCUGAGA	1955
996	GCCAGAAC C CCGCACAG	534	CUGUGCGG CUGAUGAG GCCGUUAGGC CGAA IUUCUGGC	1956
997	CCAGAACC C CGCACAGG	535	CCUGUGCG CUGAUGAG GCCGUUAGGC CGAA IGUUCUGG	1957
998	CAGAACCC C GCACAGGU	536	ACCUGUGC CUGAUGAG GCCGUUAGGC CGAA IGGUUCUG	1958
1001	AACCCCGC A CAGGUCUU	537	AAGACCUG CUGAUGAG GCCGUUAGGC CGAA IUGCGGGUU	1959
1003	CCCCGCAC A GGUCUUUC	538	GAAAGACC CUGAUGAG GCCGUUAGGC CGAA IUGCGGGG	1960
1008	CACAGGUC U UUCCUUAU	539	AUAAGGAA CUGAUGAG GCCGUUAGGC CGAA IAAAGACC	1961
1012	GGUCUUUC C UUAUGGGA	540	UCCCAUAA CUGAUGAG GCCGUUAGGC CGAA IAAAGACC	1962
1013	GUCUUUCC U UAUGGGAU	541	AUCCCAUA CUGAUGAG GCCGUUAGGC CGAA IUAUCCCA	1963
1024	UGGGAUAC C AGCCCCUC	542 543	GAGGGGCU CUGAUGAG GCCGUUAGGC CGAA IUAUCCCA UGAGGGGC CUGAUGAG GCCGUUAGGC CGAA IGUAUCCC	1964 1965
1025	GGGAUACC A GCCCCUCA	543	GUAUGAGG CUGAUGAG GCCGUUAGGC CGAA IGUAUCCC GUAUGAGG CUGAUGAG GCCGUUAGGC CGAA ICUGGUAU	1965
1028	AUACCAGO C CUCAUACA		UGUAUGAG CUGAUGAG GCCGUUAGGC CGAA ICUGGUAU UGUAUGAG CUGAUGAG GCCGUUAGGC CGAA IGCUGGUA	1966
1029	VACCAGCC C UCAUACA	545	AUGUAUGA CUGAUGAG GCCGUUAGGC CGAA IGCUGGUA	1967
1030	ACCAGCCC C UCAUACAU CCAGCCCC U CAUACAUU	546 547	ANUGUAUGA CUGAUGAG GCCGUUAGGC CGAA IGGCUGGU AAUGUAUG CUGAUGAG GCCGUUAGGC CGAA IGGGCUGG	1968
1031		547	UCAAUGUA CUGAUGAG GCCGUUAGGC CGAA IGGGCUGG UCAAUGUA CUGAUGAG GCCGUUAGGC CGAA IAGGGGCU	1969
1033	AGCCCCUC A UACAUUGA	}	UUUAUCAA CUGAUGAG GCCGUUAGGC CGAA IAGGGGCU UUUAUCAA CUGAUGAG GCCGUUAGGC CGAA IUAUGAGG	1970
1037	CCUCAUAC A ACCGALICA	549		
1053	AUUGGUAC A AGGGAUCA	550	UGAUCCCU CUGAUGAG GCCGUUAGGC CGAA IUACCAAU	1972

1001	ANGGONIG A GOVERNIGO			
1061	AAGGGAUC A GCUUUUCC	551	GGAAAAGC CUGAUGAG GCCGUUAGGC CGAA IAUCCCUU	1973
1064	GGAUCAGC U UUUCCCAG	552	CUGGGAAA CUGAUGAG GCCGUUAGGC CGAA ICUGAUCC	1974
1069	AGCUUUUC C CAGCCCAC	553	GUGGGCUG CUGAUGAG GCCGUUAGGC CGAA IAAAAGCU	1975
1070	GCUUUUCC C AGCCCACA	554	UGUGGGCU CUGAUGAG GCCGUUAGGC CGAA IGAAAAGC	1976
1071	CUUUUCCC A GCCCACAU	555	AUGUGGGC CUGAUGAG GCCGUUAGGC CGAA IGGAAAAG	1977
1074	UUCCCAGC C CACAUGUC	556	GACAUGUG CUGAUGAG GCCGUUAGGC CGAA ICUGGGAA	1978
1075	UCCCAGCC C ACAUGUCC	557	GGACAUGU CUGAUGAG GCCGUUAGGC CGAA IGCUGGGA	1979
1076	CCCAGCCC A CAUGUCCU	558	AGGACAUG CUGAUGAG GCCGUUAGGC CGAA IGGCUGGG	1980
1078	CAGCCCAC A UGUCCUGA	559	UCAGGACA CUGAUGAG GCCGUUAGGC CGAA IUGGGCUG	1981
1083	CACAUGUC C UGAUCAUA	560	UAUGAUCA CUGAUGAG GCCGUUAGGC CGAA IACAUGUG	1982
1084	ACAUGUCC U GAUCAUAU	561	AUAUGAUC CUGAUGAG GCCGUUAGGC CGAA IGACAUGU	1983
1089	UCCUGAUC A UAUGCUUU	562	AAAGCAUA CUGAUGAG GCCGUUAGGC CGAA IAUCAGGA	1984
1095	UCAUAUGC U UUUGAAUA	563	UAUUCAAA CUGAUGAG GCCGUUAGGC CGAA ICAUAUGA	1985
1107	GAAUAGUC A GUUACUUG	564	CAAGUAAC CUGAUGAG GCCGUUAGGC CGAA IACUAUUC	1986
1113	UCAGUUAC U UGGCACCC	565	GGGUGCCA CUGAUGAG GCCGUUAGGC CGAA IUAACUGA	1987
1118	UACUUGGC A CCCCAGGA	566	UCCUGGGG CUGAUGAG GCCGUUAGGC CGAA ICCAAGUA	1988
1120	CUUGGCAC C CCAGGAUC	567	GAUCCUGG CUGAUGAG GCCGUUAGGC CGAA IUGCCAAG	1989
1121	UUGGCACC C CAGGAUCC	568	GGAUCCUG CUGAUGAG GCCGUUAGGC CGAA IGUGCCAA	1990
1122	UGGCACCC C AGGAUCCU	569	AGGAUCCU CUGAUGAG GCCGUUAGGC CGAA IGGUGCCA	1991
1123	GGCACCCC A GGAUCCUC	570	GAGGAUCC CUGAUGAG GCCGUUAGGC CGAA IGGGUGCC	1992
1129	CCAGGAUC C UCACAGAA	571	UUCUGUGA CUGAUGAG GCCGUUAGGC CGAA IAUCCUGG	1993
1130	CAGGAUCC U CACAGAAC	572	GUUCUGUG CUGAUGAG GCCGUUAGGC CGAA IGAUCCUG	1994
1132	GGAUCCUC A CAGAACCC	573	GGGUUCUG CUGAUGAG GCCGUUAGGC CGAA IAGGAUCC	1995
1134	AUCCUCAC A GAACCCCU	574	AGGGGUUC CUGAUGAG GCCGUUAGGC CGAA IUGAGGAU	1996
1139	CACAGAAC C CCUGGCAG	575	CUGCCAGG CUGAUGAG GCCGUUAGGC CGAA IUUCUGUG	1997
1140	ACAGAACC C CUGGCAGC	576	GCUGCCAG CUGAUGAG GCCGUUAGGC CGAA IGUUCUGU	1998
1141	CAGAACCC C UGGCAGCG	577	CGCUGCCA CUGAUGAG GCCGUUAGGC CGAA IGGUUCUG	1999
1142	AGAACCCC U GGCAGCGG	578	CCGCUGCC CUGAUGAG GCCGUUAGGC CGAA IGGGUUCU	2000
1146	CCCCUGGC A GCGGUUGG	579	CCAACCGC CUGAUGAG GCCGUUAGGC CGAA ICCAGGGG	2001
1157	GGUUGGUC A AAAGAAUG	580	CAUUCUUU CUGAUGAG GCCGUUAGGC CGAA IACCAACC	2002
1168	AGAAUGAC A CGAUUCUU	581	AAGAAUCG CUGAUGAG GCCGUUAGGC CGAA IUCAUUCU	2003
1175	CACGAUUC U UUACCAAA	582	UUUGGUAA CUGAUGAG GCCGUUAGGC CGAA IAAUCGUG	2004
1180	UUCUUUAC C AAAUUGGA	583	UCCAAUUU CUGAUGAG GCCGUUAGGC CGAA IUAAAGAA	2005
1181	UCUUUACC A AAUUGGAU	584	AUCCAAUU CUGAUGAG GCCGUUAGGC CGAA IGUAAAGA	2006
1192	UUGGAUGC A GACAAAUC	585	GAUUUGUC CUGAUGAG GCCGUUAGGC CGAA ICAUCCAA	2007
1196	AUGCAGAC A AAUCUUAU	586	AUAAGAUU CUGAUGAG GCCGUUAGGC CGAA IUCUGCAU	2008
1201	GACAAAUC U UAUCAAUG	587	CAUUGAUA CUGAUGAG GCCGUUAGGC CGAA IAUUUGUC	2009
1206	AUCUUAUC A AUGCCUGA	588	UCAGGCAU CUGAUGAG GCCGUUAGGC CGAA IAUAAGAU	2010
1211	AUCAAUGC C UGAAAGAG	589	CUCUUUCA CUGAUGAG GCCGUUAGGC CGAA ICAUUGAU	2011
1212	UCAAUGCC U GAAAGAGA	590	UCUCUUUC CUGAUGAG GCCGUUAGGC CGAA IGCAUUGA	2012
1222	AAAGAGAC U UGUGAGAA	591	UUCUCACA CUGAUGAG GCCGUUAGGC CGAA IUCUCUUU	2013
1238	AGUUGGGC U AUCAAUGG	592	CCAUUGAU CUGAUGAG GCCGUUAGGC CGAA ICCCAACU	2014
1242	GGGCUAUC A AUGGAAGA	593	UCUUCCAU CUGAUGAG GCCGUUAGGC CGAA IAUAGCCC	2015
1266	UAUGAAUC A GGUUACUA	594	UAGUAACC CUGAUGAG GCCGUUAGGC CGAA IAUUCAUA	2016
1273	CAGGUUAC U AUAUCAAC	595	GUUGAUAU CUGAUGAG GCCGUUAGGC CGAA IUAACCUG	2017
1279	ACUAUAUC A ACAACUGA	596	UCAGUUGU CUGAUGAG GCCGUUAGGC CGAA IAUAUAGU	2018
1282	AUAUCAAC A ACUGAUAG	597	CUAUCAGU CUGAUGAG GCCGUUAGGC CGAA IUUGAUAU	2019
1285	UCAACAAC U GAUAGGAG	598	CUCCUAUC CUGAUGAG GCCGUUAGGC CGAA IUUGUUGA	2020
1298	GGAGAAAC A AUAAACUC	599	GAGUUUAU CUGAUGAG GCCGUUAGGC CGAA IUUUCUCC	2021
1470	GONGANAC A NUMANCUC		ORGODORO COGROGAG GCCGOORGC CGAA 1000COCC	1 2021

1205	CANUARA II CAIREECA	<u> </u>	2703 3 3 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1305	CAAUAAAC U CAUUUUCA	600	UGAAAAUG CUGAUGAG GCCGUUAGGC CGAA IUUUAUUG	2022
1307	AUAAACUC A UUUUCAAA	601	UUUGAAAA CUGAUGAG GCCGUUAGGC CGAA IAGUUUAU	2023
1313	UCAUUUUC A AAGUGAAU	602	AUUCACUU CUGAUGAG GCCGUUAGGC CGAA IAAAAUGA	2024
1355	UGGUUGAC U UCCGGCUU	603	AAGCCGGA CUGAUGAG GCCGUUAGGC CGAA IUCAACCA	2025
1358	UUGACUUC C GGCUUUCU	604	AGAAAGCC CUGAUGAG GCCGUUAGGC CGAA IAAGUCAA	2026
1362	CUUCCGGC U UUCUAAGG	605	CCUUAGAA CUGAUGAG GCCGUUAGGC CGAA ICCGGAAG	2027
1366	CGGCUUUC U AAGGGUGA	606	UCACCCUU CUGAUGAG GCCGUUAGGC CGAA IAAAGCCG	2028
1388	UGGAGUUC A AGAGACAC	607	GUGUCUCU CUGAUGAG GCCGUUAGGC CGAA IAACUCCA	2029
1395	CAAGAGAC A CUUCCUGA	608	UCAGGAAG CUGAUGAG GCCGUUAGGC CGAA IUCUCUUG	2030
1397	AGAGACAC U UCCUGAAG	609	CUUCAGGA CUGAUGAG GCCGUUAGGC CGAA IUGUCUCU	2031
1400	GACACUUC C UGAAGAUU	610	AAUCUUCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA IAAGUGUC	2032
1401	ACACUUCC U GAAGAUUA	611	UAAUCUUC CUGAUGAG GCCGUUAGGC CGAA IGAAGUGU	2033
1419	AGGGAAGC U GAUUGAUA	612	UAUCAAUC CUGAUGAG GCCGUUAGGC CGAA ICUUCCCU	2034
1436	UUGUGAGC A GCCAGAAG	613	CUUCUGGC CUGAUGAG GCCGUUAGGC CGAA ICUCACAA	2035
1439	UGAGCAGC C AGAAGGUU	614	AACCUUCU CUGAUGAG GCCGUUAGGC CGAA ICUGCUCA	2036
1440	GAGCAGCC A GAAGGUUU	615	AAACCUUC CUGAUGAG GCCGUUAGGC CGAA IGCUGCUC	2037
1452	GGUUUGGC U UCCUGCCA	616	UGGCAGGA CUGAUGAG GCCGUUAGGC CGAA ICCAAACC	2038
1455	UUGGCUUC C UGCCACAU	617	AUGUGGCA CUGAUGAG <u>GCCGUUAGGC</u> CGAA IAAGCCAA	2039
1456	UGGCUUCC U GCCACAUG	618	CAUGUGGC CUGAUGAG GCCGUUAGGC CGAA IGAAGCCA	2040
1459	CUUCCUGC C ACAUGAUC	619	GAUCAUGU CUGAUGAG GCCGUUAGGC CGAA ICAGGAAG	2041
1460	UUCCUGCC A CAUGAUCG	620	CGAUCAUG CUGAUGAG GCCGUUAGGC CGAA IGCAGGAA	2042
1462	CCUGCCAC A UGAUCGGA	621	UCCGAUCA CUGAUGAG GCCGUUAGGC CGAA IUGGCAGG	2043
1472	GAUCGGAC C AUCGGCUC	622	GAGCCGAU CUGAUGAG GCCGUUAGGC CGAA IUCCGAUC	2044
1473	AUCGGACC A UCGGCUCU	623	AGAGCCGA CUGAUGAG <u>GCCGUUAGGC</u> CGAA IGUCCGAU	2045
1479	CCAUCGGC U CUGGGGAA	624	UUCCCCAG CUGAUGAG GCCGUUAGGC CGAA ICCGAUGG	2046
1481	AUCGGCUC U GGGGAAUC	625	GAUUCCCC CUGAUGAG GCCGUUAGGC CGAA IAGCCGAU	2047
1490	GGGGAAUC C UGGUGAAU	626	AUUCACCA CUGAUGAG GCCGUUAGGC CGAA IAUUCCCC	2048
1491	GGGAAUCC U GGUGAAUA	627	UAUUCACC CUGAUGAG GCCGUUAGGC CGAA IGAUUCCC	2049
1506	UAUAGUGC U GCUAUGUU	628	AACAUAGC CUGAUGAG GCCGUUAGGC CGAA ICACUAUA	2050
1509	AGUGCUGC U AUGUUGAC	629	GUCAACAU CUGAUGAG GCCGUUAGGC CGAA ICAGCACU	2051
1518	AUGUUGAC A UUAUUCUU	630	AAGAAUAA CUGAUGAG GCCGUUAGGC CGAA IUCAACAU	2052
1525	CAUUAUUC U UCCUAGAG	631	CUCUAGGA CUGAUGAG GCCGUUAGGC CGAA IAAUAAUG	2053
1528	UAUUCUUC C UAGAGAAG	632	CUUCUCUA CUGAUGAG GCCGUUAGGC CGAA IAAGAAUA	2054
1529	AUUCUUCC U AGAGAAGA	633	UCUUCUCU CUGAUGAG GCCGUUAGGC CGAA IGAAGAAU	2055
1543	AGAUUAUC C UGUCCUGC	634	GCAGGACA CUGAUGAG GCCGUUAGGC CGAA IAUAAUCU	2056
1544	GAUUAUCC U GUCCUGCA	635	UGCAGGAC CUGAUGAG GCCGUUAGGC CGAA IGAUAAUC	2057
1548	AUCCUGUC C UGCAAACU	636	AGUUUGCA CUGAUGAG GCCGUUAGGC CGAA IACAGGAU	2058
1549	UCCUGUCC U GCAAACUG	637	CAGUUUGC CUGAUGAG GCCGUUAGGC CGAA IGACAGGA	2059
1552	UGUCCUGC A AACUGCAA	638	UUGCAGUU CUGAUGAG GCCGUUAGGC CGAA ICAGGACA	2060
1556	CUGCAAAC U GCAAAUAG	639	CUAUUUGC CUGAUGAG GCCGUUAGGC CGAA IUUUGCAG	2061
1559	CAAACUGC A AAUAGUAG	640	CUACUAUU CUGAUGAG GCCGUUAGGC CGAA ICAGUUUG	2062
1571	AGUAGUUC C UGAAGUGU	641	ACACUUCA CUGAUGAG GCCGUUAGGC CGAA IAACUACU	2063
1572	GUAGUUCC U GAAGUGUU	642	AACACUUC CUGAUGAG GCCGUUAGGC CGAA IGAACUAC	2064
1582	AAGUGUUC A CUUCCCUG	643	CAGGGAAG CUGAUGAG GCCGUUAGGC CGAA IAACACUU	2065
1584	GUGUUCAC U UCCCUGUU	644	AACAGGGA CUGAUGAG GCCGUUAGGC CGAA IUGAACAC	2066
1587	UUCACUUC C CUGUUUAU	645	AUAAACAG CUGAUGAG GCCGUUAGGC CGAA IAAGUGAA	2067
1588	UCACUUCC C UGUUUAUC	646	GAUAAACA CUGAUGAG GCCGUUAGGC CGAA IGAAGUGA	2068
1589	CACUUCCC U GUUUAUCC	647	GGAUAAAC CUGAUGAG GCCGUUAGGC CGAA IGGAAGUG	2069
1597	UGUUUAUC C AAACAUCU	648	AGAUGUUU CUGAUGAG GCCGUUAGGC CGAA IAUAAACA	2070

1500	CHRISTICA & BACKTOWN			
1598	GUUUAUCC A AACAUCUU	649	AAGAUGUU CUGAUGAG <u>GCCGUUAGGC</u> CGAA IGAUAAAC	2071
1602	AUCCAAAC A UCUUCCAA	650	UUGGAAGA CUGAUGAG GCCGUUAGGC CGAA IUUUGGAU	2072
1605	CAAACAUC U UCCAAUUU	651	AAAUUGGA CUGAUGAG GCCGUUAGGC CGAA IAUGUUUG	2073
1608	ACAUCUUC C AAUUUAUU	652	AAUAAAUU CUGAUGAG GCCGUUAGGC CGAA IAAGAUGU	2074
1609	CAUCUUCC A AUUUAUUU	653	AAAUAAAU CUGAUGAG GCCGUUAGGC CGAA IGAAGAUG	2075
1630	UGUUCGGC A UACAAAUA	654	UAUUUGUA CUGAUGAG GCCGUUAGGC CGAA ICCGAACA	2076
1634	CGGCAUAC A AAUAAUAC	655	GUAUUAUU CUGAUGAG GCCGUUAGGC CGAA IUAUGCCG	2077
1643	AAUAAUAC C UAUAUCUU	656	AAGAUAUA CUGAUGAG GCCGUUAGGC CGAA IUAUUAUU	2078
1644	AUAAUACC U AUAUCUUA	657	UAAGAUAU CUGAUGAG GCCGUUAGGC CGAA IGUAUUAU	2079
1650	CCUAUAUC U UAAUUGUA	658	UACAAUUA CUGAUGAG GCCGUUAGGC CGAA IAUAUAGG	2080
1662	UUGUAAGC A AAACUUUG	659	CAAAGUUU CUGAUGAG GCCGUUAGGC CGAA ICUUACAA	2081
1667	AGCAAAAC U UUGGGGAA	660	UUCCCCAA CUGAUGAG GCCGUUAGGC CGAA IUUUUGCU	2082
1692	UAGAAUUC A UUUGAUUA	661	UAAUCAAA CUGAUGAG GCCGUUAGGC CGAA IAAUUCUA	2083
1705	AUUAUUUC U UCAUGUGU	662	ACACAUGA CUGAUGAG GCCGUUAGGC CGAA IAAAUAAU	2084
1708	AUUUCUUC A UGUGUGUU	663	AACACACA CUGAUGAG GCCGUUAGGC CGAA IAAGAAAU	2085
1724	UUAGUAUC U GAAUUUGA	664	UCAAAUUC CUGAUGAG GCCGUUAGGC CGAA IAUACUAA	2086
1736	UUUGAAAC U CAUCUGGU	665	ACCAGAUG CUGAUGAG GCCGUUAGGC CGAA IUUUCAAA	2087
1738	UGAAACUC A UCUGGUGG	666	CCACCAGA CUGAUGAG GCCGUUAGGC CGAA IAGUUUCA	2088
1741	AACUCAUC U GGUGGAAA	667	UUUCCACC CUGAUGAG GCCGUUAGGC CGAA IAUGAGUU	2089
1751	GUGGAAAC C AAGUUUCA	668	UGAAACUU CUGAUGAG GCCGUUAGGC CGAA IUUUCCAC	2090
1752	UGGAAACC A AGUUUCAG	669	CUGAAACU CUGAUGAG GCCGUUAGGC CGAA IGUUUCCA	2091
1759	CAAGUUUC A GGGGACAU	670	AUGUCCCC CUGAUGAG GCCGUUAGGC CGAA IAAACUUG	2092
1766	CAGGGGAC A UGAGUUUU	671	AAAACUCA CUGAUGAG GCCGUUAGGC CGAA IUCCCCUG	2093
1776	GAGUUUUC C AGCUUUUA	672	UAAAAGCU CUGAUGAG GCCGUUAGGC CGAA IAAAACUC	2094
1777	AGUUUUCC A GCUUUUAU	673	AUAAAAGC CUGAUGAG GCCGUUAGGC CGAA IGAAAACU	2095
1780	UUUCCAGC U UUUAUACA	674	UGUAUAAA CUGAUGAG GCCGUUAGGC CGAA ICUGGAAA	2096
1788	UUUUAUAC A CACGUAUC	675	GAUACGUG CUGAUGAG GCCGUUAGGC CGAA IUAUAAAA	2097
1790	UUAUACAC A CGUAUCUC	676	GAGAUACG CUGAUGAG GCCGUUAGGC CGAA IUGUAUAA	2098
1797	CACGUAUC U CAUUUUUA	677	UAAAAAUG CUGAUGAG GCCGUUAGGC CGAA IAUACGUG	2099
1799	CGUAUCUC A UUUUUAUC	678	GAUAAAAA CUGAUGAG GCCGUUAGGC CGAA IAGAUACG	2100
1808	UUUUUAUC A AAACAUUU	679	AAAUGUUU CUGAUGAG GCCGUUAGGC CGAA IAUAAAAA	2101
1813	AUCAAAAC A UUUUGUUU	680	AAACAAAA CUGAUGAG GCCGUUAGGC CGAA IUUUUGAU	2102
<u> </u>	L			

Input Sequence = AF016582 Cut Site = CH/.

Stem Length = 8 . Core Sequence = CUGAUGAG GCCGUUAGGC CGAA

AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)

Underlined region can be any X sequence or linker as previously defined herein.

I = Inosine

5

WO 01/57206

Table V: Human Chk1 G-Cleaver Ribozyme and Substrate Sequence

Pos	Substrate	Seq ID	Ribozyme	Rz Seq ID
14	GACAGUCC G CCGAGGUG	681	CACCUCGG UGAUGGCAUGCACUAUGCGCG GGACUGUC	2103
17	AGUCCGCC G AGGUGCUC	682	GAGCACCU UGAUGGCAUGCACUAUGCGCG GGCGGACU	2104
22	GCCGAGGU G CUCGGUGG	683	CCACCGAG UGAUGGCAUGCACUAUGCGCG ACCUCGGC	2105
43	AUGGCAGU G CCCUUUGU	684	ACAAAGGG UGAUGGCAUGCACUAUGCGCG ACUGCCAU	2106
50	UGCCCUUU G UGGAAGAC	685	GUCUUCCA UGAUGGCAUGCACUAUGCGCG AAAGGGCA	2107
70	GACUUGGU G CAAACCCU	686	AGGGUUUG UGAUGGCAUGCACUAUGCGCG ACCAAGUC	2108
89	GAGAAGGU G CCUAUGGA	687	UCCAUAGG UGAUGGCAUGCACUAUGCGCG ACCUUCUC	2109
110	UUCAACUU G CUGUGAAU	688	AUUCACAG UGAUGGCAUGCACUAUGCGCG AAGUUGAA	2110
113	AACUUGCU G UGAAUAGA	689	UCUAUUCA UGAUGGCAUGCACUAUGCGCG AGCAAGUU	2111
115	CUUGCUGU G AAUAGAGU	690	ACUCUAUU UGAUGGCAUGCACUAUGCGCG ACAGCAAG	2112
128	GAGUAACU G AAGAAGCA	691	UGCUUCUU UGAUGGCAUGCACUAUGCGCG AGUUACUC	2113
140	AAGCAGUC G CAGUGAAG	692	CUUCACUG UGAUGGCAUGCACUAUGCGCG GACUGCUU	2114
145	GUCGCAGU G AAGAUUGU	693	ACAAUCUU UGAUGGCAUGCACUAUGCGCG ACUGCGAC	2115
152	UGAAGAUU G UAGAUAUG	694	CAUAUCUA UGAUGGCAUGCACUAUGCGCG AAUCUUCA	2116
160	GUAGAUAU G AAGCGUGC	695	GCACGCUU UGAUGGCAUGCACUAUGCGCG AUAUCUAC	2117
167	UGAAGCGU G CCGUAGAC	696	GUCUACGG UGAUGGCAUGCACUAUGCGCG ACGCUUCA	2118
177	CGUAGACU G UCCAGAAA	697	UUUCUGGA UGAUGGCAUGCACUAUGCGCG AGUCUACG	2119
204	AGAGAUCU G UAUCAAUA	698	UAUUGAUA UGAUGGCAUGCACUAUGCGCG AGAUCUCU	2120
217	AAUAAAAU G CUAAAUCA	699	UGAUUUAG UGAUGGCAUGCACUAUGCGCG AUUUUAUU	2121
227	UAAAUCAU G AAAAUGUA	700	UACAUUUU UGAUGGCAUGCACUAUGCGCG AUGAUUUA	2122
233	AUGAAAAU G UAGUAAAA	701	UUUUACUA UGAUGGCAUGCACUAUGCGCG AUUUUCAU	2123
294	GGAGUACU G UAGUGGAG	702	CUCCACUA UGAUGGCAUGCACUAUGCGCG AGUACUCC	2124
314	AGCUUUUU G ACAGAAUA	703	UAUUCUGU UGAUGGCAUGCACUAUGCGCG AAAAAGCU	2125
340	AUAGGCAU G CCUGAACC	704	GGUUCAGG UGAUGGCAUGCACUAUGCGCG AUGCCUAU	2126
344	GCAUGCCU G AACCAGAU	705	AUCUGGUU UGAUGGCAUGCACUAUGCGCG AGGCAUGC	2127
353	AACCAGAU G CUCAGAGA	706	UCUCUGAG UGAUGGCAUGCACUAUGCGCG AUCUGGUU	2128
397	GUUUAUCU G CAUGGUAU	707	AUACCAUG UGAUGGCAUGCACUAUGCGCG AGAUAAAC	2129
445	AAUCUUCU G UUGGAUGA	708	UCAUCCAA UGAUGGCAUGCACUAUGCGCG AGAAGAUU	2130
452	UGUUGGAU G AAAGGGAU	709	AUCCCUUU UGAUGGCAUGCACUAUGCGCG AUCCAACA	2131
515	AUAAUCGU G AGCGUUUG	710	CAAACGCU UGAUGGCAUGCACUAUGCGCG ACGAUUAU	2132
523	GAGCGUUU G UUGAACAA	711	UUGUUCAA UGAUGGCAUGCACUAUGCGCG AAACGCUC	2133
526	CGUUUGUU G AACAAGAU	712	AUCUUGUU UGAUGGCAUGCACUAUGCGCG AACAAACG	2134
535	AACAAGAU G UGUGGUAC	713	GUACCACA UGAUGGCAUGCACUAUGCGCG AUCUUGUU	2135
537	CAAGAUGU G UGGUACUU	714	AAGUACCA UGAUGGCAUGCACUAUGCGCG ACAUCUUG	2136
554	UACCAUAU G UUGCUCCA	715	UGGAGCAA UGAUGGCAUGCACUAUGCGCG AUAUGGUA	2137
557	CAUAUGUU G CUCCAGAA	716	UUCUGGAG UGAUGGCAUGCACUAUGCGCG AACAUAUG	2138
571	GAACUUCU G AAGAGAAG	717	CUUCUCUU UGAUGGCAUGCACUAUGCGCG AGAAGUUC	2139
590	AAUUUCAU G CAGAACCA	718	UGGUUCUG UGAUGGCAUGCACUAUGCGCG AUGAAAUU	2140
602	AACCAGUU G AUGUUUGG	719	CCAAACAU UGAUGGCAUGCACUAUGCGCG AACUGGUU	2141
605	CAGUUGAU G UUUGGUCC	720	GGACCAAA UGAUGGCAUGCACUAUGCGCG AUCAACUG	2142
615	UUGGUCCU G UGGAAUAG	721	CUAUUCCA UGAUGGCAUGCACUAUGCGCG AGGACCAA	2143
632	UACUUACU G CAAUGCUC	722	GAGCAUUG UGAUGGCAUGCACUAUGCGCG AGUAAGUA	2144
637	ACUGCAAU G CUCGCUGG	723	CCAGCGAG UGAUGGCAUGCACUAUGCGCG AUUGCAGU	2145
641	CAAUGCUC G CUGGAGAA	724	UUCUCCAG UGAUGGCAUGCACUAUGCGCG GAGCAUUG	2146
652	GGAGAAUU G CCAUGGGA	725	UCCCAUGG UGAUGGCAUGCACUAUGCGCG AAUUCUCC	2147
671	AACCCAGU G ACAGCUGU	726	ACAGCUGU UGAUGGCAUGCACUAUGCGCG ACUGGGUU	2148

<u> </u>	LICA CA COLL C. LICA COA CIT	705		
678	UGACAGCU G UCAGGAGU	727	ACUCCUGA UGAUGGCAUGCACUAUGCGCG AGCUGUCA	2149
692	AGUAUUCU G ACUGGAAA	728	UUUCCAGU UGAUGGCAUGCACUAUGCGCG AGAAUACU	2150
737	AAAAAAUC G AUUCUGCU	729	AGCAGAAU UGAUGGCAUGCACUAUGCGCG GAUUUUUU	2151
743	UCGAUUCU G CUCCUCUA	730	UAGAGGAG UGAUGGCAUGCACUAUGCGCG AGAAUCGA	2152
757	CUAGCUCU G CUGCAUAA	731	UUAUGCAG UGAUGCAUGCACUAUGCGCG AGAGCUAG	2153
760	GCUCUGCU G CAUAAAAU	732	AUUUUAUG UGAUGGCAUGCACUAUGCGCG AGCAGAGC	2154
776	UCUUAGUU G AGAAUCCA	733	UGGAUUCU UGAUGGCAUGCACUAUGCGCG AACUAAGA	2155
864	AAGGCCCC G AGUCACUU	734	AAGUGACU UGAUGGCAUGCACUAUGCGCG GGGGCCUU	2156
881	CAGGUGGU G UGUCAGAG	735	CUCUGACA UGAUGGCAUGCACUAUGCGCG ACCACCUG	2157
883	GGUGGUGU G UCAGAGUC	736	GACUCUGA UGAUGGCAUGCACUAUGCGCG ACACCACC	2158
950	UAAACAGU G CUUCUAGU	737	ACUAGAAG UGAUGGCAUGCACUAUGCGCG ACUGUUUA	2159
959	CUUCUAGU G AAGAAAAU	738	AUUUUCUU UGAUGGCAUGCACUAUGCGCG ACUAGAAG	2160
968	AAGAAAAU G UGAAGUAC	739	GUACUUCA UGAUGGCAUGCACUAUGCGCG AUUUUCUU	2161
970	GAAAAUGU G AAGUACUC	740	GAGUACUU UGAUGGCAUGCACUAUGCGCG ACAUUUUC	2162
999	AGAACCCC G CACAGGUC	741	GACCUGUG UGAUGGCAUGCACUAUGCGCG GGGGUUCU	2163
1040	CAUACAUU G AUAAAUUG	742	CAAUUUAU UGAUGGCAUGCACUAUGCGCG AAUGUAUG	2164
1080	GCCCACAU G UCCUGAUC	743	GAUCAGGA UGAUGGCAUGCACUAUGCGCG AUGUGGGC	2165
1085	CAUGUCCU G AUCAUAUG	744	CAUAUGAU UGAUGGCAUGCACUAUGCGCG AGGACAUG	2166
1093	GAUCAUAU G CUUUUGAA	745	UUCAAAAG UGAUGGCAUGCACUAUGCGCG AUAUGAUC	2167
1099	AUGCUUUU G AAUAGUCA	746	UGACUAUU UGAUGGCAUGCACUAUGCGCG AAAAGCAU	2168
1165	AAAAGAAU G ACACGAUU	747	AAUCGUGU UGAUGGCAUGCACUAUGCGCG AUUCUUUU	2169
1170	AAUGACAC G AUUCUUUA	748	UAAAGAAU UGAUGGCAUGCACUAUGCGCG GUGUCAUU	2170
1190	AAUUGGAU G CAGACAAA	749	UUUGUCUG UGAUGGCAUGCACUAUGCGCG AUCCAAUU	2171
1209	UUAUCAAU G CCUGAAAG	750	CUUUCAGG UGAUGGCAUGCACUAUGCGCG AUUGAUAA	2172
1213	CAAUGCCU G AAAGAGAC	751	GUCUCUUU UGAUGGCAUGCACUAUGCGCG AGGCAUUG	2173
1224	AGAGACUU G UGAGAAGU	752	ACUUCUCA UGAUGGCAUGCACUAUGCGCG AAGUCUCU	2174
1226	AGACUUGU G AGAAGUUG	753	CAACUUCU UGAUGGCAUGCACUAUGCGCG ACAAGUCU	2175
1257	GAAAAGUU G UAUGAAUC	754	GAUUCAUA UGAUGGCAUGCACUAUGCGCG AACUUUUC	2176
1261	AGUUGUAU G AAUCAGGU	755	ACCUGAUU UGAUGGCAUGCACUAUGCGCG AUACAACU	2177
1286	CAACAACU G AUAGGAGA	756	UCUCCUAU UGAUGGCAUGCACUAUGCGCG AGUUGUUG	2178
1318	UUCAAAGU G AAUUUGUU	757	AACAAAUU UGAUGGCAUGCACUAUGCGCG ACUUUGAA	2179
1324	GUGAAUUU G UUAGAAAU	758	AUUUCUAA UGAUGGCAUGCACUAUGCGCG AAAUUCAC	2180
1337		759	UAUUUUAU UGAUGGCAUGCACUAUGCGCG AUCCAUUU	2181
1352		760	CCGGAAGU UGAUGGCAUGCACUAUGCGCG AACCAAUA	2182
1373			CAAUCCAU UGAUGGCAUGCACUAUGCGCG ACCCUUAG	2183
1402			UUAAUCUU UGAUGGCAUGCACUAUGCGCG AGGAAGUG	2184
1420			AUAUCAAU UGAUGGCAUGCACUAUGCGCG AGCUUCCC	2185
1424			CACAAUAU UGAUGGCAUGCACUAUGCGCG AAUCAGCU	2186
1430			GCUGCUCA UGAUGGCAUGCACUAUGCGCG AAUAUCAA	2187
1432			UGGCUGCU UGAUGGCAUGCACUAUGCGCG ACAAUAUC	2188
1457			UCAUGUGG UGAUGGCAUGCACUAUGCGCG AGGAAGCC	2189
1464			GGUCCGAU UGAUGGCAUGCACUAUGCGCG AUGUGGCA	2190
1495		769	ACUAUAUU UGAUGGCAUGCACUAUGCGCG ACCAGGAU	2191
			CAUAGCAG UGAUGGCAUGCACUAUGCGCG ACUAUAUU	2192
1507			CAACAUAG UGAUGGCAUGCACUAUGCGCG AGCACUAU	2193
1512			AAUGUCAA UGAUGGCAUGCACUAUGCGCG AUAGCAGC	2194
1515		773	AAUAAUGU UGAUGGCAUGCACUAUGCGCG AACAUAGC	2195
	AUUAUCCU G UCCUGCAA	 	UUGCAGGA UGAUGGCAUGCACUAUGCGCG AGGAUAAU	2196
<u> </u>	CCUGUCCU G CAAACUGC	<u> </u>	GCAGUUUG UGAUGGCAUGCACUAUGCGCG AGGACAGG	2197
1350	CEUGUCCU G CAMACUGC	113		4131

1557	UGCAAACU G CAA	AUAGU 776	ACUAUUUG UGAUGGCAUGCACUAUGCGCG AGUUUGCA	2198
1573	UAGUUCCU G AAGI	UGUUC 777	GAACACUU UGAUGGCAUGCACUAUGCGCG AGGAACUA	2199
1578	CCUGAAGU G UUC	ACUUC 778	GAAGUGAA UGAUGGCAUGCACUAUGCGCG ACUUCAGG	2200
1590	ACUUCCCU G UUUZ	AUCCA 779	UGGAUAAA UGAUGGCAUGCACUAUGCGCG AGGGAAGU	2201
1619	UUUAUUUU G UUU	GUUCG 780	CGAACAAA UGAUGGCAUGCACUAUGCGCG AAAAUAAA	2202
1623	טטטטפטטט פ טטכנ	GGCAU 781	AUGCCGAA UGAUGGCAUGCACUAUGCGCG AAACAAAA	2203
1656	UCUUAAUU G UAA	GCAAA 782	UUUGCUUA UGAUGGCAUGCACUAUGCGCG AAUUAAGA	2204
1681	GAAAGGAU G AAU	AGAAU 783	AUUCUAUU UGAUGGCAUGCACUAUGCGCG AUCCUUUC	2205
1696	AUUCAUUU G AUU	AUUUC 784	GAAAUAAU UGAUGGCAUGCACUAUGCGCG AAAUGAAU	2206
1710	UUCUUCAU G UGU	GUUUA 785	UAAACACA UGAUGGCAUGCACUAUGCGCG AUGAAGAA	2207
1712	CUUCAUGU G UGUT	UUAGU 786	ACUAAACA UGAUGGCAUGCACUAUGCGCG ACAUGAAG	2208
1714	UCAUGUGU G UUU	AGUAU 787	AUACUAAA UGAUGGCAUGCACUAUGCGCG ACACAUGA	2209
1725	UAGUAUCU G AAUT	UUGAA 788	UUCAAAUU UGAUGGCAUGCACUAUGCGCG AGAUACUA	2210
1731	CUGAAUUU G AAA	CUCAU 789	AUGAGUUU UGAUGGCAUGCACUAUGCGCG AAAUUCAG	2211
1768	GGGGACAU G AGUT	UUUCC 790	GGAAAACU UGAUGGCAUGCACUAUGCGCG AUGUCCCC	2212

Input Sequence = AF016582. Cut Site = YG/M or UG/U.

Stem Length = 8. Core Sequence = UGAUG GCAUGCACUAUGC GCG

AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)

Table VI: Human Chk1 Zinzyme Ribozyme and Substrate Sequence

Pos	Substrate	Seq ID	Ribozyme	Rz Seq ID
10	GCCGGACA G UCCGCCGA	791	UCGGCGGA GCCGAAAGGCGAGUCAAGGUCU UGUCCGGC	2213
14	GACAGUCC G CCGAGGUG	792	CACCUCGG GCCGAAAGGCGAGUCAAGGUCU GGACUGUC	2214
20	CCGCCGAG G UGCUCGGU	793	ACCGAGCA GCCGAAAGGCGAGUCAAGGUCU CUCGGCGG	2215
22	GCCGAGGU G CUCGGUGG	794	CCACCGAG GCCGAAAGGCGAGUCAAGGUCU ACCUCGGC	2216
27	GGUGCUCG G UGGAGUCA	795	UGACUCCA GCCGAAAGGCGAGUCAAGGUCU CGAGCACC	2217
32	UCGGUGGA G UCAUGGCA	796	UGCCAUGA GCCGAAAGGCGAGUCAAGGUCU UCCACCGA	2218
38	GAGUCAUG G CAGUGCCC	797	GGGCACUG GCCGAAAGGCGAGUCAAGGUCU CAUGACUC	2219
41	UCAUGGCA G UGCCCUUU	798	AAAGGCA GCCGAAAGGCGAGUCAAGGUCU UGCCAUGA	2220
43	AUGGCAGU G CCCUUUGU	799	ACAAAGGG GCCGAAAGGCGAGUCAAGGUCU ACUGCCAU	2221
50	UGCCCUUU G UGGAAGAC		GUCUUCCA GCCGAAAGGCGAGUCAAGGUCU AAAGGGCA	2222
68	GGGACUUG G UGCAAACC		GGUUUGCA GCCGAAAGGCGAGUCAAGGUCU CAAGUCCC	2223
70	GACUUGGU G CAAACCCU		AGGGUUUG GCCGAAAGGCGAGUCAAGGUCU ACCAAGUC	2224
87	GGGAGAAG G UGCCUAUG		CAUAGGCA GCCGAAAGGCGAGUCAAGGUCU CUUCUCCC	2225
89	GAGAAGGU G CCUAUGGA		UCCAUAGG GCCGAAAGGCGAGUCAAGGUCU ACCUUCUC	2226
101	AUGGAGAA G UUCAACUU		AAGUUGAA GCCGAAAGGCGAGUCAAGGUCU UUCUCCAU	2227
110	UUCAACUU G CUGUGAAU		AUUCACAG GCCGAAAGGCGAGUCAAGGUCU AAGUUGAA	2228
113	AACUUGCU G UGAAUAGA	<u> </u>	UCUAUUCA GCCGAAAGGCGAGUCAAGGUCU AGCAAGUU	2229
122	UGAAUAGA G UAACUGAA		UUCAGUUA GCCGAAAGGCGAGUCAAGGUCU UCUAUUCA	2230
134	CUGAAGAA G CAGUCGCA		UGCGACUG GCCGAAAGGCGAGUCAAGGUCU UUCUUCAG	2231
137	AAGAAGCA G UCGCAGUG	ļ	CACUGCGA GCCGAAAGGCGAGUCAAGGUCU UGCUUCUU	2232
140	AAGCAGUC G CAGUGAAG		CUUCACUG GCCGAAAGGCGAGUCAAGGUCU GACUGCUU	2233
143	CAGUCGCA G UGAAGAUU		AAUCUUCA GCCGAAAGGCGAGUCAAGGUCU UGCGACUG	2234
152	UGAAGAUU G UAGAUAUG	<u> </u>	CAUAUCUA GCCGAAAGGCGAGUCAAGGUCU AAUCUUCA	2235
163	GAUAUGAA G CGUGCCGU		ACGGCACG GCCGAAAGGCGAGUCAAGGUCU UUCAUAUC	2236
165	UAUGAAGC G UGCCGUAG		CUACGGCA GCCGAAAGGCGAGUCAAGGUCU GCUUCAUA	2237
167	UGAAGCGU G CCGUAGAC	ļ	GUCUACGG GCCGAAAGGCGAGUCAAGGUCU ACGCUUCA	2238
170	AGCGUGCC G UAGACUGU		ACAGUCUA GCCGAAAGGCGAGUCAAGGUCU GGCACGCU	2239
177	CGUAGACU G UCCAGAAA		UUUCUGGA GCCGAAAGGCGAGUCAAGGUCU AGUCUACG	2240
204	AGAGAUCU G UAUCAAUA		UAUUGAUA GCCGAAAGGCGAGUCAAGGUCU AGAUCUCU	2241
217	AAUAAAAU G CUAAAUCA		UGAUUUAG GCCGAAAGGCGAGUCAAGGUCU AUUUUAUU	2242
233	AUGAAAAU G UAGUAAAA		UUUUACUA GCCGAAAGGCGAGUCAAGGUCU AUUUUCAU	2243
236	AAAAUGUA G UAAAAUUC		GAAUUUUA GCCGAAAGGCGAGUCAAGGUCU UACAUUUU	
249	AUUCUAUG G UCACAGGA	 	UCCUGUGA GCCGAAAGGCGAGUCAAGGUCU CAUAGAAU	2245
264	GAGAGAAG G CAAUAUCC		GGAUAUUG GCCGAAAGGCGAGUCAAGGUCU CUUCUCUC	2246
289	UUUCUGGA G UACUGUAG		CUACAGUA GCCGAAAGGCGAGUCAAGGUCU UCCAGAAA	2247
294	GGAGUACU G UAGUGGAG		CUCCACUA GCCGAAAGGCGAGUCAAGGUCU AGUACUCC	2248
297	GUACUGUA G UGGAGGAG	ļ.—	CUCCUCCA GCCGAAAGGCGAGUCAAGGUCU UACAGUAC	2249
307	GGAGGAGA G CUUUUUGA		UCAAAAAG GCCGAAAGGCGAGUCAAGGUCU UCUCCUCC	2250
325	AGAAUAGA G CCAGACAU		AUGUCUGG GCCGAAAGGCGAGUCAAGGUCU UCUAUUCU	2251
336	AGACAUAG G CAUGCCUG	<u> </u>	CAGGCAUG GCCGAAAGGCGAGUCAAGGUCU CUAUGUCU	2252
340	AUAGGCAU G CCUGAACC	<u> </u>	GGUUCAGG GCCGAAAGGCGAGUCAAGGUCU AUGCCUAU	2253
353	AACCAGAU G CUCAGAGA		UCUCUGAG GCCGAAAGGCGAGUCAAGGUCU AUCUGGUU	2254
380	AACUCAUG G CAGGGGUG	_	CACCCCUG GCCGAAAGGCGAGUCAAGGUCU CAUGAGUU	2255
386	UGGCAGGG G UGGUUUAU		AUAAACCA GCCGAAAGGCGAGUCAAGGUCU CCCUGCCA	2256
389	CAGGGGUG G UUUAUCUG	835	CAGAUAAA GCCGAAAGGCGAGUCAAGGUCU CACCCCUG	2257

200				
397	GUUUAUCU G CAUGGUAU	836	AUACCAUG GCCGAAAGGCGAGUCAAGGUCU AGAUAAAC	2258
402	UCUGCAUG G UAUUGGAA	837	UUCCAAUA GCCGAAAGGCGAGUCAAGGUCU CAUGCAGA	2259
445	AAUCUUCU G UUGGAUGA	838	UCAUCCAA GCCGAAAGGCGAGUCAAGGUCU AGAAGAUU	2260
483	AGACUUUG G CUUGGCAA	839	UUGCCAAG GCCGAAAGGCGAGUCAAGGUCU CAAAGUCU	2261
488	UUGGCUUG G CAACAGUA	840	UACUGUUG GCCGAAAGGCGAGUCAAGGUCU CAAGCCAA	2262
494	UGGCAACA G UAUUUCGG	841	CCGAAAUA GCCGAAAGGCGAGUCAAGGUCU UGUUGCCA	2263
502	GUAUUUCG G UAUAAUAA	842	UUAUUAUA GCCGAAAGGCGAGUCAAGGUCU CGAAAUAC	2264
513	UAAUAAUC G UGAGCGUU	843	AACGCUCA GCCGAAAGGCGAGUCAAGGUCU GAUUAUUA	2265
517	AAUCGUGA G CGUUUGUU	844	AACAAACG GCCGAAAGGCGAGUCAAGGUCU UCACGAUU	2266
519	UCGUGAGC G UUUGUUGA	845	UCAACAAA GCCGAAAGGCGAGUCAAGGUCU GCUCACGA	2267
523	GAGCGUUU G UUGAACAA	846	UUGUUCAA GCCGAAAGGCGAGUCAAGGUCU AAACGCUC	2268
535	AACAAGAU G UGUGGUAC	847	GUACCACA GCCGAAAGGCGAGUCAAGGUCU AUCUUGUU	2269
537	CAAGAUGU G UGGUACUU	848	AAGUACCA GCCGAAAGGCGAGUCAAGGUCU ACAUCUUG	2270
540	GAUGUGUG G UACUUUAC	849	GUAAAGUA GCCGAAAGGCGAGUCAAGGUCU CACACAUC	2271
554	UACCAUAU G UUGCUCCA	850	UGGAGCAA GCCGAAAGGCGAGUCAAGGUCU AUAUGGUA	2272
557	CAUAUGUU G CUCCAGAA	851	UUCUGGAG GCCGAAAGGCGAGUCAAGGUCU AACAUAUG	2273
590	AAUUUCAU G CAGAACCA	852	UGGUUCUG GCCGAAAGGCGAGUCAAGGUCU AUGAAAUU	2274
599	CAGAACCA G UUGAUGUU	853	AACAUCAA GCCGAAAGGCGAGUCAAGGUCU UGGUUCUG	2275
605	CAGUUGAU G UUUGGUCC	854	GGACCAAA GCCGAAAGGCGAGUCAAGGUCU AUCAACUG	2276
610	GAUGUUUG G UCCUGUGG	855	CCACAGGA GCCGAAAGGCGAGUCAAGGUCU CAAACAUC	2277
615	UUGGUCCU G UGGAAUAG	856	CUAUUCCA GCCGAAAGGCGAGUCAAGGUCU AGGACCAA	2278
623	GUGGAAUA G UACUUACU	857	AGUAAGUA GCCGAAAGGCGAGUCAAGGUCU UAUUCCAC	2279
632	UACUUACU G CAAUGCUC	858	GAGCAUUG GCCGAAAGGCGAGUCAAGGUCU AGUAAGUA	2280
637	ACUGCAAU G CUCGCUGG	859	CCAGCGAG GCCGAAAGGCGAGUCAAGGUCU AUUGCAGU	2281
641	CAAUGCUC G CUGGAGAA	860	UUCUCCAG GCCGAAAGGCGAGUCAAGGUCU GAGCAUUG	2282
652	GGAGAAUU G CCAUGGGA	861	UCCCAUGG GCCGAAAGGCGAGUCAAGGUCU AAUUCUCC	2283
669	CCAACCCA G UGACAGCU	862	AGCUGUCA GCCGAAAGGCGAGUCAAGGUCU UGGGUUGG	2284
675	CAGUGACA G CUGUCAGG	863	CCUGACAG GCCGAAAGGCGAGUCAAGGUCU UGUCACUG	2285
678	UGACAGCU G UCAGGAGU	864	ACUCCUGA GCCGAAAGGCGAGUCAAGGUCU AGCUGUCA	2286
685	UGUCAGGA G UAUUCUGA	865	UCAGAAUA GCCGAAAGGCGAGUCAAGGUCU UCCUGACA	2287
743	UCGAUUCU G CUCCUCUA	866	UAGAGGAG GCCGAAAGGCGAGUCAAGGUCU AGAAUCGA	2288
752	CUCCUCUA G CUCUGCUG	867	CAGCAGAG GCCGAAAGGCGAGUCAAGGUCU UAGAGGAG	2289
757	CUAGCUCU G CUGCAUAA	868	UUAUGCAG GCCGAAAGGCGAGUCAAGGUCU AGAGCUAG	2290
760	GCUCUGCU G CAUAAAAU	869	AUUUUAUG GCCGAAAGGCGAGUCAAGGUCU AGCAGAGC	2291
773	AAAUCUUA G UUGAGAAU	870	AUUCUCAA GCCGAAAGGCGAGUCAAGGUCU UAAGAUUU	2292
788	AUCCAUCA G CAAGAAUU	871	AAUUCUUG GCCGAAAGGCGAGUCAAGGUCU UGAUGGAU	2293
826	GAUAGAUG G UACAACAA	872	UUGUUGUA GCCGAAAGGCGAGUCAAGGUCU CAUCUAUC	2294
851	AGAAAGGG G CAAAAAGG	873	CCUUUUUG GCCGAAAGGCGAGUCAAGGUCU CCCUUUCU	2295
859	GCAAAAAG G CCCCGAGU	874	ACUCGGGG GCCGAAAGGCGAGUCAAGGUCU CUUUUUGC	2296
866	GGCCCCGA G UCACUUCA	875	UGAAGUGA GCCGAAAGGCGAGUCAAGGUCU UCGGGGCC	2297
876	CACUUCAG G UGGUGUGU	876	ACACACCA GCCGAAAGGCGAGUCAAGGUCU CUGAAGUG	2298
879	UUCAGGUG G UGUGUCAG		CUGACACA GCCGAAAGGCGAGUCAAGGUCU CACCUGAA	2299
881	CAGGUGGU G UGUCAGAG	878	CUCUGACA GCCGAAAGGCGAGUCAAGGUCU ACCACCUG	2300
883	GGUGGUGU G UCAGAGUC	879	GACUCUGA GCCGAAAGGCGAGUCAAGGUCU ACACCACC	2301
889	GUGUCAGA G UCUCCCAG	ļ	CUGGGAGA GCCGAAAGGCGAGUCAAGGUCU UCUGACAC	2302
897	GUCUCCCA G UGGAUUUU	881	AAAAUCCA GCCGAAAGGCGAGUCAAGGUCU UGGGAGAC	2303
910	UUUUCUAA G CACAUUCA	882	UGAAUGUG GCCGAAAGGCGAGUCAAGGUCU UUAGAAAA	2304
941	UCUCUCCA G UAAACAGU	883	ACUGUUUA GCCGAAAGGCGAGUCAAGGUCU UGGAGAGA	2305
948	AGUAAACA G UGCUUCUA	ļ	UAGAAGCA GCCGAAAGGCGAGUCAAGGUCU UGUUUACU	2306

050	TIANACACII C. CITICITACII	005	ACTION OF COCCARACCOCA CITICA A COTTON A COTTON	
950	UAAACAGU G CUUCUAGU	885	ACUAGAAG GCCGAAAGGCGAGUCAAGGUCU ACUGUUUA	2307
957	UGCUUCUA G UGAAGAAA	886	UUUCUUCA GCCGAAAGGCGAGUCAAGGUCU UAGAAGCA	2308
968	AAGAAAAU G UGAAGUAC	887	GUACUUCA GCCGAAAGGCGAGUCAAGGUCU AUUUUCUU	2309
973	AAUGUGAA G UACUCCAG	888	CUGGAGUA GCCGAAAGGCGAGUCAAGGUCU UUCACAUU	2310
981	GUACUCCA G UUCUCAGC	889	GCUGAGAA GCCGAAAGGCGAGUCAAGGUCU UGGAGUAC	2311
988	AGUUCUCA G CCAGAACC	890	GGUUCUGG GCCGAAAGGCGAGUCAAGGUCU UGAGAACU	2312
999	AGAACCCC G CACAGGUC	891	GACCUGUG GCCGAAAGGCGAGUCAAGGUCU GGGGUUCU	2313
1005	CCGCACAG G UCUUUCCU	892	AGGAAAGA GCCGAAAGGCGAGUCAAGGUCU CUGUGCGG	. 2314
1026	GGAUACCA G CCCCUCAU	893	AUGAGGGG GCCGAAAGGCGAGUCAAGGUCU UGGUAUCC	2315
1049	AUAAAUUG G UACAAGGG	894	CCCUUGUA GCCGAAAGGCGAGUCAAGGUCU CAAUUUAU	2316
1062	AGGGAUCA G CUUUUCCC	895	GGGAAAAG GCCGAAAGGCGAGUCAAGGUCU UGAUCCCU	2317
1072	UUUUCCCA G CCCACAUG	896	CAUGUGGG GCCGAAAGGCGAGUCAAGGUCU UGGGAAAA	2318
1080	GCCCACAU G UCCUGAUC	897	GAUCAGGA GCCGAAAGGCGAGUCAAGGUCU AUGUGGGC	2319
1093	GAUCAUAU G CUUUUGAA	898	UUCAAAAG GCCGAAGGCGAGUCAAGGUCU AUAUGAUC	2320
1104	UUUGAAUA G UCAGUUAC	899	GUAACUGA GCCGAAAGGCGAGUCAAGGUCU UAUUCAAA	2321
1108	AAUAGUCA G UUACUUGG	900	CCAAGUAA GCCGAAAGGCGAGUCAAGGUCU UGACUAUU	2322
1116	GUUACUUG G CACCCCAG	901	CUGGGGUG GCCGAAAGGCGAGUCAAGGUCU CAAGUAAC	2323
1144	AACCCCUG G CAGCGGUU	902	AACCGCUG GCCGAAAGGCGAGUCAAGGUCU CAGGGGUU	2324
1147	CCCUGGCA G CGGUUGGU	903	ACCAACCG GCCGAAAGGCGAGUCAAGGUCU UGCCAGGG	2325
1150	UGGCAGCG G UUGGUCAA	904	UUGACCAA GCCGAAAGGCGAGUCAAGGUCU CGCUGCCA	2326
1154	AGCGGUUG G UCAAAAGA	905	UCUUUUGA GCCGAAAGGCGAGUCAAGGUCU CAACCGCU	2327
1190	AAUUGGAU G CAGACAAA	906	UUUGUCUG GCCGAAAGGCGAGUCAAGGUCU AUCCAAUU	2328
1209	UUAUCAAU G CCUGAAAG	907	CUUUCAGG GCCGAAAGGCGAGUCAAGGUCU AUUGAUAA	2329
1224	AGAGACUU G UGAGAAGU	908	ACUUCUCA GCCGAAAGGCGAGUCAAGGUCU AAGUCUCU	2330
1231	UGUGAGAA G UUGGGCUA	909	UAGCCCAA GCCGAAAGGCGAGUCAAGGUCU UUCUCACA	2331
1236	GAAGUUGG G CUAUCAAU	910	AUUGAUAG GCCGAAAGGCGAGUCAAGGUCU CCAACUUC	2332
1254	GAAGAAAA G UUGUAUGA	911	UCAUACAA GCCGAAAGGCGAGUCAAGGUCU UUUUCUUC	2333
1257	GAAAAGUU G UAUGAAUC	912	GAUUCAUA GCCGAAAGGCGAGUCAAGGUCU AACUUUUC	2334
1268	UGAAUCAG G UUACUAUA	913	UAUAGUAA GCCGAAAGGCGAGUCAAGGUCU CUGAUUCA	2335
1316	UUUUCAAA G UGAAUUUG	914	CAAAUUCA GCCGAAAGGCGAGUCAAGGUCU UUUGAAAA	2336
1324	GUGAAUUU G UUAGAAAU	915	AUUUCUAA GCCGAAAGGCGAGUCAAGGUCU AAAUUCAC	2337
1349	AAAUAUUG G UUGACUUC	916	GAAGUCAA GCCGAAAGGCGAGUCAAGGUCU CAAUAUUU	2338
1360	GACUUCCG G CUUUCUAA	917	UUAGAAAG GCCGAAAGGCGAGUCAAGGUCU CGGAAGUC	2339
1371	UUCUAAGG G UGAUGGAU	918	AUCCAUCA GCCGAAAGGCGAGUCAAGGUCU CCUUAGAA	2340
1384	GGAUUGGA G UUCAAGAG	919	CUCUUGAA GCCGAAAGGCGAGUCAAGGUCU UCCAAUCC	2341
1417	AAAGGGAA G CUGAUUGA	920	UCAAUCAG GCCGAAAGGCGAGUCAAGGUCU UUCCCUUU	2342
1430	UUGAUAUU G UGAGCAGC	921	GCUGCUCA GCCGAAAGGCGAGUCAAGGUCU AAUAUCAA	2343
1434	UAUUGUGA G CAGCCAGA	922	UCUGGCUG GCCGAAAGGCGAGUCAAGGUCU UCACAAUA	2344
1437	UGUGAGCA G CCAGAAGG	923	CCUUCUGG GCCGAAAGGCGAGUCAAGGUCU UGCUCACA	2345
1445	GCCAGAAG G UUUGGCUU	924	AAGCCAAA GCCGAAAGGCGAGUCAAGGUCU CUUCUGGC	2346
1450	AAGGUUUG G CUUCCUGC	925	GCAGGAAG GCCGAAAGGCGAGUCAAGGUCU CAAACCUU	2347
1457	GGCUUCCU G CCACAUGA	926	UCAUGUGG GCCGAAAGGCGAGUCAAGGUCU AGGAAGCC	2348
1477	GACCAUCG G CUCUGGGG	927	CCCCAGAG GCCGAAAGGCGAGUCAAGGUCU CGAUGGUC	2349
1493	GAAUCCUG G UGAAUAUA	928	UAUAUUCA GCCGAAAGGCGAGUCAAGGUCU CAGGAUUC	2350
1502	UGAAUAUA G UGCUGCUA	929	UAGCAGCA GCCGAAAGGCGAGUCAAGGUCU UAUAUUCA	2351
1504	AAUAUAGU G CUGCUAUG	930	CAUAGCAG GCCGAAAGGCGAGUCAAGGUCU ACUAUAUU	2352
1507	AUAGUGCU G CUAUGUUG	931	CAACAUAG GCCGAAAGGCGAGUCAAGGUCU AGCACUAU	2353
1512	GCUGCUAU G UUGACAUU	932	AAUGUCAA GCCGAAAGGCGAGUCAAGGUCU AUAGCAGC	2354
1545	AUUAUCCU G UCCUGCAA	933	UUGCAGGA GCCGAAAGGCGAGUCAAGGUCU AGGAUAAU	2355

1550	CCUGUCCU G CAAACUGC	934	GCAGUUUG GCCGAAAGGCGAGUCAAGGUCU AGGACAGG	2356
1557	UGCAAACU G CAAAUAGU	935	ACUAUUUG GCCGAAAGGCGAGUCAAGGUCU AGUUUGCA	2357
1564	UGCAAAUA G UAGUUCCU	936	AGGAACUA GCCGAAAGGCGAGUCAAGGUCU UAUUUGCA	2358
1567	AAAUAGUA G UUCCUGAA	937	UUCAGGAA GCCGAAAGGCGAGUCAAGGUCU UACUAUUU	2359
1576	UUCCUGAA G UGUUCACU	938	AGUGAACA GCCGAAAGGCGAGUCAAGGUCU UUCAGGAA	2360
1578	CCUGAAGU G UUCACUUC	939	GAAGUGAA GCCGAAAGGCGAGUCAAGGUCU ACUUCAGG	2361
1590	ACUUCCCU G UUUAUCCA	940	UGGAUAAA GCCGAAAGGCGAGUCAAGGUCU AGGGAAGU	2362
1619	UUUAUUUU G UUUGUUCG	941	CGAACAAA GCCGAAAGGCGAGUCAAGGUCU AAAAUAAA	2363
1623	UUUUGUUU G UUCGGCAU	942	AUGCCGAA GCCGAAAGGCGAGUCAAGGUCU AAACAAAA	2364
1628	UUUGUUCG G CAUACAAA	943	UUUGUAUG GCCGAAAGGCGAGUCAAGGUCU CGAACAAA	2365
1656	UCUUAAUU G UAAGCAAA	944	UUUGCUUA GCCGAAAGGCGAGUCAAGGUCU AAUUAAGA	2366
1660	AAUUGUAA G CAAAACUU	945	AAGUUUUG GCCGAAAGGCGAGUCAAGGUCU UUACAAUU	2367
1710	UUCUUCAU G UGUGUUUA	946	UAAACACA GCCGAAAGGCGAGUCAAGGUCU AUGAAGAA	2368
1712	CUUCAUGU G UGUUUAGU	947	ACUAAACA GCCGAAAGGCGAGUCAAGGUCU ACAUGAAG	2369
1714	UCAUGUGU G UUUAGUAU	948	AUACUAAA GCCGAAAGGCGAGUCAAGGUCU ACACAUGA	2370
1719	UGUGUUUA G UAUCUGAA	949	UUCAGAUA GCCGAAAGGCGAGUCAAGGUCU UAAACACA	2371
1743	CUCAUCUG G UGGAAACC	950	GGUUUCCA GCCGAAAGGCGAGUCAAGGUCU CAGAUGAG	2372
1754	GAAACCAA G UUUCAGGG	951	CCCUGAAA GCCGAAAGGCGAGUCAAGGUCU UUGGUUUC	2373
1770	GGACAUGA G UUUUCCAG	952	CUGGAAAA GCCGAAAGGCGAGUCAAGGUCU UCAUGUCC	2374
1778	GUUUUCCA G CUUUUAUA	953	UAUAAAAG GCCGAAAGGCGAGUCAAGGUCU UGGAAAAC	2375
1792	AUACACAC G UAUCUCAU	954	AUGAGAUA GCCGAAAGGCGAGUCAAGGUCU GUGUGUAU	2376
			······································	

Input Sequence = AF016582. Cut Site = G/Y

Stem Length = 8 . Core Sequence = GCcgaaagGCGaGuCaaGGuCu

AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)

Table VII: Human Chk1 DNAzyme and Substrate Sequence

Pos	Substrate	Seq ID	DNAzyme	Seq ID
10	GCCGGACA G UCCGCCGA	791	TCGGCGGA GGCTAGCTACAACGA TGTCCGGC	2377
14	GACAGUCC G CCGAGGUG	792	CACCTCGG GGCTAGCTACAACGA GGACTGTC	2378
20	CCGCCGAG G UGCUCGGU	793	ACCGAGCA GGCTAGCTACAACGA CTCGGCGG	2379
22	GCCGAGGU G CUCGGUGG	794	CCACCGAG GGCTAGCTACAACGA ACCTCGGC	2380
27	GGUGCUCG G UGGAGUCA	795	TGACTCCA GGCTAGCTACAACGA CGAGCACC	2381
32	UCGGUGGA G UCAUGGCA	796	TGCCATGA GGCTAGCTACAACGA TCCACCGA	2382
38	GAGUCAUG G CAGUGCCC	797	GGGCACTG GGCTAGCTACAACGA CATGACTC	2383
41	UCAUGGCA G UGCCCUUU	798	AAAGGGCA GGCTAGCTACAACGA TGCCATGA	2384
43	AUGGCAGU G CCCUUUGU	799	ACAAAGGG GGCTAGCTACAACGA ACTGCCAT	2385
50	UGCCCUUU G UGGAAGAC	800	GTCTTCCA GGCTAGCTACAACGA AAAGGGCA	2386
68	GGGACUUG G UGCAAACC	801	GGTTTGCA GGCTAGCTACAACGA CAAGTCCC	2387
70	GACUUGGU G CAAACCCU	802	AGGGTTTG GGCTAGCTACAACGA ACCAAGTC	2388
87	GGGAGAAG G UGCCUAUG	803	CATAGGCA GGCTAGCTACAACGA CTTCTCCC	2389
89	GAGAAGGU G CCUAUGGA	804	TCCATAGG GGCTAGCTACAACGA ACCTTCTC	2390
101	AUGGAGAA G UUCAACUU	805	AAGTTGAA GGCTAGCTACAACGA TTCTCCAT	2391
110	UUCAACUU G CUGUGAAU	806	ATTCACAG GGCTAGCTACAACGA AAGTTGAA	2392
113	AACUUGCU G UGAAUAGA	807	TCTATTCA GGCTAGCTACAACGA AGCAAGTT	2393
122	UGAAUAGA G UAACUGAA	808	TTCAGTTA GGCTAGCTACAACGA TCTATTCA	2394
134	CUGAAGAA G CAGUCGCA	809	TGCGACTG GGCTAGCTACAACGA TTCTTCAG	2395
137	AAGAAGCA G UCGCAGUG	810	CACTGCGA GGCTAGCTACAACGA TGCTTCTT	2396
140	AAGCAGUC G CAGUGAAG	811	CTTCACTG GGCTAGCTACAACGA GACTGCTT	2397
143	CAGUCGCA G UGAAGAUU	812	AATCTTCA GGCTAGCTACAACGA TGCGACTG	2398
152	UGAAGAUU G UAGAUAUG	813	CATATCTA GGCTAGCTACAACGA AATCTTCA	2399
163	GAUAUGAA G CGUGCCGU	814	ACGGCACG GGCTAGCTACAACGA TTCATATC	2400
165	UAUGAAGC G UGCCGUAG	815	CTACGGCA GGCTAGCTACAACGA GCTTCATA	2401
167	UGAAGCGU G CCGUAGAC	816	GTCTACGG GGCTAGCTACAACGA ACGCTTCA	2402
170	AGCGUGCC G UAGACUGU	817	ACAGTCTA GGCTAGCTACAACGA GGCACGCT	2403
177	CGUAGACU G UCCAGAAA	818	TTTCTGGA GGCTAGCTACAACGA AGTCTACG	2404
204	AGAGAUCU G UAUCAAUA	819	TATTGATA GGCTAGCTACAACGA AGATCTCT	2405
217	AAUAAAAU G CUAAAUCA	820	TGATTTAG GGCTAGCTACAACGA ATTTTATT	2406
233	AUGAAAAU G UAGUAAAA	821	TTTTACTA GGCTAGCTACAACGA ATTTTCAT	2407
236	AAAAUGUA G UAAAAUUC	822	GAATTTTA GGCTAGCTACAACGA TACATTTT	2408
249	AUUCUAUG G UCACAGGA	823	TCCTGTGA GGCTAGCTACAACGA CATAGAAT	2409
264	GAGAGAAG G CAAUAUCC	824	GGATATTG GGCTAGCTACAACGA CTTCTCTC	2410
289	UUUCUGGA G UACUGUAG	825	CTACAGTA GGCTAGCTACAACGA TCCAGAAA	2411
294	GGAGUACU G UAGUGGAG	826	CTCCACTA GGCTAGCTACAACGA AGTACTCC	2412
297	GUACUGUA G UGGAGGAG	827	CTCCTCCA GGCTAGCTACAACGA TACAGTAC	2413
307	GGAGGAGA G CUUUUUGA	828	TCAAAAAG GGCTAGCTACAACGA TCTCCTCC	2414
325	AGAAUAGA G CCAGACAU	829	ATGTCTGG GGCTAGCTACAACGA TCTATTCT	2415
336	AGACAUAG G CAUGCCUG	830	CAGGCATG GGCTAGCTACAACGA CTATGTCT	2416
340	AUAGGCAU G CCUGAACC	831	GGTTCAGG GGCTAGCTACAACGA ATGCCTAT	2417
353	AACCAGAU G CUCAGAGA	832	TCTCTGAG GGCTAGCTACAACGA ATCTGGTT	2418
380	AACUCAUG G CAGGGGUG	833	CACCCCTG GGCTAGCTACAACGA CATGAGTT	2419
386	UGGCAGGG G UGGUUUAU	834	ATAAACCA GGCTAGCTACAACGA CCCTGCCA	2420
389	CAGGGGUG G UUUAUCUG	835	CAGATAAA GGCTAGCTACAACGA CACCCCTG	2421
397	GUUUAUCU G CAUGGUAU	836	ATACCATG GGCTAGCTACAACGA AGATAAAC	2422

402	UCUGCAUG G UAUUGGAA	837	TTCCAATA GGCTAGCTACAACGA CATGCAGA	2423
445	AAUCUUCU G UUGGAUGA	838	TCATCCAA GGCTAGCTACAACGA AGAAGATT	2424
483	AGACUUUG G CUUGGCAA	839	TTGCCAAG GGCTAGCTACAACGA CAAAGTCT	2425
488	UUGGCUUG G CAACAGUA	840	TACTGTTG GGCTAGCTACAACGA CAAGCCAA	2426
494	UGGCAACA G UAUUUCGG	841	CCGAAATA GGCTAGCTACAACGA TGTTGCCA	2427
502	GUAUUUCG G UAUAAUAA	842	TTATTATA GGCTAGCTACAACGA CGAAATAC	2428
513	UAAUAAUC G UGAGCGUU	843	AACGCTCA GGCTAGCTACAACGA GATTATTA	2429
517	AAUCGUGA G CGUUUGUU	844	AACAAACG GGCTAGCTACAACGA TCACGATT	2430
519	UCGUGAGC G UUUGUUGA	845	TCAACAAA GGCTAGCTACAACGA GCTCACGA	2431
523	GAGCGUUU G UUGAACAA	846	TTGTTCAA GGCTAGCTACAACGA AAACGCTC	2432
535	AACAAGAU G UGUGGUAC	847	GTACCACA GGCTAGCTACAACGA ATCTTGTT	2433
537	CAAGAUGU G UGGUACUU	848	AAGTACCA GGCTAGCTACAACGA ACATCTTG	2434
540	GAUGUGUG G UACUUUAC	849	GTAAAGTA GGCTAGCTACAACGA CACACATC	2435
554	UACCAUAU G UUGCUCCA	850	TGGAGCAA GGCTAGCTACAACGA ATATGGTA	2436
557	CAUAUGUU G CUCCAGAA	851	TTCTGGAG GGCTAGCTACAACGA AACATATG	2437
590	AAUUUCAU G CAGAACCA	852	TGGTTCTG GGCTAGCTACAACGA ATGAAATT	2438
599	CAGAACCA G UUGAUGUU	853	AACATCAA GGCTAGCTACAACGA TGGTTCTG	2439
605	CAGUUGAU G UUUGGUCC	854	GGACCAAA GGCTAGCTACAACGA ATCAACTG	2440
610	GAUGUUUG G UCCUGUGG	855	CCACAGGA GGCTAGCTACAACGA CAAACATC	2441
615	UUGGUCCU G UGGAAUAG	856	CTATTCCA GGCTAGCTACAACGA AGGACCAA	2442
623	GUGGAAUA G UACUUACU	857	AGTAAGTA GGCTAGCTACAACGA TATTCCAC	2443
632	UACUUACU G CAAUGCUC	858	GAGCATTG GGCTAGCTACAACGA AGTAAGTA	2444
637	ACUGCAAU G CUCGCUGG	859	CCAGCGAG GGCTAGCTACAACGA ATTGCAGT	2445
641	CAAUGCUC G CUGGAGAA	860	TTCTCCAG GGCTAGCTACAACGA GAGCATTG	2446
652	GGAGAAUU G CCAUGGGA	861	TCCCATGG GGCTAGCTACAACGA AATTCTCC	2447
669	CCAACCCA G UGACAGCU	862	AGCTGTCA GGCTAGCTACAACGA TGGGTTGG	2448
675	CAGUGACA G CUGUCAGG	863	CCTGACAG GGCTAGCTACAACGA TGTCACTG	2449
678	UGACAGCU G UCAGGAGU	864	ACTCCTGA GGCTAGCTACAACGA AGCTGTCA	2450
685	UGUCAGGA G UAUUCUGA	865	TCAGAATA GGCTAGCTACAACGA TCCTGACA	2451
743	UCGAUUCU G CUCCUCUA	866	TAGAGGAG GGCTAGCTACAACGA AGAATCGA	2452
752	CUCCUCUA G CUCUGCUG	867	CAGCAGAG GGCTAGCTACAACGA TAGAGGAG	2453
757	CUAGCUCU G CUGCAUAA	868	TTATGCAG GGCTAGCTACAACGA AGAGCTAG	2454
760	GCUCUGCU G CAUAAAAU	869	ATTTTATG GGCTAGCTACAACGA AGCAGAGC	2455
773	AAAUCUUA G UUGAGAAU		ATTCTCAA GGCTAGCTACAACGA TAAGATTT	2456
788	AUCCAUCA G CAAGAAUU	·871	AATTCTTG GGCTAGCTACAACGA TGATGGAT	2457
826	GAUAGAUG G UACAACAA	872	TTGTTGTA GGCTAGCTACAACGA CATCTATC	2458
851	AGAAAGGG G CAAAAAGG	873	CCTTTTTG GGCTAGCTACAACGA CCCTTTCT	2459
859	GCAAAAAG G CCCCGAGU	874	ACTCGGGG GGCTAGCTACAACGA CTTTTTGC	2460
866	GCCCCGA G UCACUUCA	875	TGAAGTGA GGCTAGCTACAACGA TCGGGGCC	2461
876	CACUUCAG G UGGUGUGU	876	ACACACCA GGCTAGCTACAACGA CTGAAGTG	2462
879	UUCAGGUG G UGUGUCAG	877	CTGACACA GGCTAGCTACAACGA CACCTGAA	2463
881	CAGGUGGU G UGUCAGAG	878	CTCTGACA GGCTAGCTACAACGA ACCACCTG	2464
883	GGUGGUGU G UCAGAGUC	879	GACTCTGA GGCTAGCTACAACGA ACACCACC	2465
889	GUGUCAGA G UCUCCCAG	880	CTGGGAGA GGCTAGCTACAACGA TCTGACAC	2466
897	GUCUCCCA G UGGAUUUU	881	AAAATCCA GGCTAGCTACAACGA TGGGAGAC	2467
910	UUUUCUAA G CACAUUCA	882	TGAATGTG GGCTAGCTACAACGA TTAGAAAA	2468
941	UCUCUCCA G UAAACAGU	883	ACTGTTTA GGCTAGCTACAACGA TGGAGAGA	2469
	AGUAAACA G UGCUUCUA	884	TAGAAGCA GGCTAGCTACAACGA TGTTTACT	2470
948				
950	UAAACAGU G CUUCUAGU	885	ACTAGAAG GGCTAGCTACAACGA ACTGTTTA	2471

957	UGCUUCUA G UGAAGAAA	886	THE COURT COURT OF A COR TO CAR COR	
968	AAGAAAAU G UGAAGUAC		TTTCTTCA GGCTAGCTACAACGA TAGAAGCA	2472
973	AAUGUGAA G UACUCCAG	887	GTACTTCA GGCTAGCTACAACGA ATTTTCTT	2473
981		888	CTGGAGTA GGCTAGCTACAACGA TTCACATT	2474
	GUACUCCA G UUCUCAGC AGUUCUCA G CCAGAACC	889	GCTGAGAA GGCTAGCTACAACGA TGGAGTAC	2475
988		890	GGTTCTGG GGCTAGCTACAACGA TGAGAACT	2476
999	AGAACCCC G CACAGGUC	891	GACCTGTG GGCTAGCTACAACGA GGGGTTCT	2477
1005	CCGCACAG G UCUUUCCU	892	AGGAAAGA GGCTAGCTACAACGA CTGTGCGG	2478
1026	GGAUACCA G CCCCUCAU	893	ATGAGGG GGCTAGCTACAACGA TGGTATCC	2479
1049	AUAAAUUG G UACAAGGG	894	CCCTTGTA GGCTAGCTACAACGA CAATTTAT	2480
1062	AGGGAUCA G CUUUUCCC	895	GGGAAAAG GGCTAGCTACAACGA TGATCCCT	2481
1072	UUUUCCCA G CCCACAUG	896	CATGTGGG GGCTAGCTACAACGA TGGGAAAA	2482
1080	GCCCACAU G UCCUGAUC	897	GATCAGGA GGCTAGCTACAACGA ATGTGGGC	2483
1093	GAUCAUAU G CUUUUGAA	898	TTCAAAAG GGCTAGCTACAACGA ATATGATC	2484
1104	UUUGAAUA G UCAGUUAC	899	GTAACTGA GGCTAGCTACAACGA TATTCAAA	2485
1108	AAUAGUCA G UUACUUGG	900	CCAAGTAA GGCTAGCTACAACGA TGACTATT	2486
1116	GUUACUUG G CACCCCAG	901	CTGGGGTG GGCTAGCTACAACGA CAAGTAAC	2487
1144	AACCCCUG G CAGCGGUU	902	AACCGCTG GGCTAGCTACAACGA CAGGGGTT	2488
1147	CCCUGGCA G CGGUUGGU	903	ACCAACCG GGCTAGCTACAACGA TGCCAGGG	2489
1150	UGGCAGCG G UUGGUCAA	904	TTGACCAA GGCTAGCTACAACGA CGCTGCCA	2490
1154	AGCGGUUG G UCAAAAGA	905	TCTTTTGA GGCTAGCTACAACGA CAACCGCT	2491
1190	AAUUGGAU G CAGACAAA	906	TTTGTCTG GGCTAGCTACAACGA ATCCAATT	2492
1209	UUAUCAAU G CCUGAAAG	907	CTTTCAGG GGCTAGCTACAACGA ATTGATAA	2493
1224	AGAGACUU G UGAGAAGU	908	ACTTCTCA GGCTAGCTACAACGA AAGTCTCT	2494
1231	UGUGAGAA G UUGGGCUA	909	TAGCCCAA GGCTAGCTACAACGA TTCTCACA	2495
1236	GAAGUUGG G CUAUCAAU	910	ATTGATAG GGCTAGCTACAACGA CCAACTTC	2496
1254	GAAGAAAA G UUGUAUGA	911	TCATACAA GGCTAGCTACAACGA TTTTCTTC	2497
1257	GAAAAGUU G UAUGAAUC	912	GATTCATA GGCTAGCTACAACGA AACTTTTC	2498
1268	UGAAUCAG G UUACUAUA	913	TATAGTAA GGCTAGCTACAACGA CTGATTCA	2499
1316	UUUUCAAA G UGAAUUUG	914	CAAATTCA GGCTAGCTACAACGA TTTGAAAA	2500
1324	GUGAAUUU G UUAGAAAU	915	ATTTCTAA GGCTAGCTACAACGA AAATTCAC	2501
1349	AAAUAUUG G UUGACUUC	916	GAAGTCAA GGCTAGCTACAACGA CAATATTT	2502
1360	GACUUCCG G CUUUCUAA	917	TTAGAAAG GGCTAGCTACAACGA CGGAAGTC	2503
1371	UUCUAAGG G UGAUGGAU	918	ATCCATCA GGCTAGCTACAACGA CCTTAGAA	2504
1384	GGAUUGGA G UUCAAGAG	919	CTCTTGAA GGCTAGCTACAACGA TCCAATCC	2505
1417	AAAGGGAA G CUGAUUGA	920	TCAATCAG GGCTAGCTACAACGA TTCCCTTT	2506
1430	UUGAUAUU G UGAGCAGC	921	GCTGCTCA GGCTAGCTACAACGA AATATCAA	2507
1434	UAUUGUGA G CAGCCAGA	922	TCTGGCTG GGCTAGCTACAACGA TCACAATA	2508
1437	UGUGAGCA G CCAGAAGG	923	CCTTCTGG GGCTAGCTACAACGA TGCTCACA	2509
1445	GCCAGAAG G UUUGGCUU	924	AAGCCAAA GGCTAGCTACAACGA CTTCTGGC	2510
1450	AAGGUUUG G CUUCCUGC	925	GCAGGAAG GGCTAGCTACAACGA CAAACCTT	2511
1457	GGCUUCCU G CCACAUGA	926	TCATGTGG GGCTAGCTACAACGA AGGAAGCC	2512
1477	GACCAUCG G CUCUGGGG	927	CCCCAGAG GGCTAGCTACAACGA CGATGGTC	2513
1493	GAAUCCUG G UGAAUAUA	928	TATATTCA GGCTAGCTACAACGA CAGGATTC	2514
1502	UGAAUAUA G UGCUGCUA	929	TAGCAGCA GGCTAGCTACAACGA TATATTCA	2515
1504	AAUAUAGU G CUGCUAUG	930	CATAGCAG GGCTAGCTACAACGA ACTATATT	2516
1507	AUAGUGCU G CUAUGUUG	931	CAACATAG GGCTAGCTACAACGA AGCACTAT	2517
1512	GCUGCUAU G UUGACAUU	932	AATGTCAA GGCTAGCTACAACGA ATAGCAGC	2518
1545	AUUAUCCU G UCCUGCAA	933	TTGCAGGA GGCTAGCTACAACGA AGGATAAT	2519
1550	CCUGUCCU G CAAACUGC	934	GCAGTTTG GGCTAGCTACAACGA AGGACAGG	2520
1330	CCOGOCCO G CAMACOGC		JUICITIO COCINCIACION AGGACAGO	

1557	UGCAAACU G CAAAUAGU	935	ACTATTTG GGCTAGCTACAACGA AGTTTGCA	2521
1564	UGCAAAUA G UAGUUCCU	936	AGGAACTA GGCTAGCTACAACGA TATTTGCA	2522
1567	AAAUAGUA G UUCCUGAA	937	TTCAGGAA GGCTAGCTACAACGA TACTATTT	2523
1576	UUCCUGAA G UGUUCACU	938	AGTGAACA GGCTAGCTACAACGA TTCAGGAA	2524
1578	CCUGAAGU G UUCACUUC	939	GAAGTGAA GGCTAGCTACAACGA ACTTCAGG	2525
1590	ACUUCCCU G UUUAUCCA	940	TGGATAAA GGCTAGCTACAACGA AGGGAAGT	2526
1619	UUUAUUUU G UUUGUUCG	941	CGAACAAA GGCTAGCTACAACGA AAAATAAA	2527
1623	UUUUGUUU G UUCGGCAU	942	ATGCCGAA GGCTAGCTACAACGA AAACAAAA	2528
1628	UUUGUUCG G CAUACAAA	943 -	TTTGTATG GGCTAGCTACAACGA CGAACAAA	2529
1656	UCUUAAUU G UAAGCAAA	944	TTTGCTTA GGCTAGCTACAACGA AATTAAGA	2530
1660	AAUUGUAA G CAAAACUU	945	AAGTTTTG GGCTAGCTACAACGA TTACAATT	2531
1710	UUCUUCAU G UGUGUUUA	946	TAAACACA GGCTAGCTACAACGA ATGAAGAA	2532
1712	CUUCAUGU G UGUUUAGU	947	ACTAAACA GGCTAGCTACAACGA ACATGAAG	2533
1714	UCAUGUGU G UUUAGUAU	948	ATACTAAA GGCTAGCTACAACGA ACACATGA	2534
1719	UGUGUUUA G UAUCUGAA	949	TTCAGATA GGCTAGCTACAACGA TAAACACA	2535
1743	CUCAUCUG G UGGAAACC	950	GGTTTCCA GGCTAGCTACAACGA CAGATGAG	2536
1754	GAAACCAA G UUUCAGGG	951	CCCTGAAA GGCTAGCTACAACGA TTGGTTTC	2537
1770	GGACAUGA G UUUUCCAG	952	CTGGAAAA GGCTAGCTACAACGA TCATGTCC	2538
1778	GUUUUCCA G CUUUUAUA	953	TATAAAAG GGCTAGCTACAACGA TGGAAAAC	2539
1792	AUACACAC G UAUCUCAU	954	ATGAGATA GGCTAGCTACAACGA GTGTGTAT	2540
35	GUGGAGUC A UGGCAGUG	955	CACTGCCA GGCTAGCTACAACGA GACTCCAC	2541
57	UGUGGAAG A CUGGGACU	956	AGTCCCAG GGCTAGCTACAACGA CTTCCACA	2542
63	AGACUGGG A CUUGGUGC	957	GCACCAAG GGCTAGCTACAACGA CCCAGTCT	2543
74	UGGUGCAA A CCCUGGGA	958	TCCCAGGG GGCTAGCTACAACGA TTGCACCA	2544
93	AGGUGCCU A UGGAGAAG	959	CTTCTCCA GGCTAGCTACAACGA AGGCACCT	2545
106	GAAGUUCA A CUUGCUGU	960	ACAGCAAG GGCTAGCTACAACGA TGAACTTC	2546
117	UGCUGUGA A UAGAGUAA	961	TTACTCTA GGCTAGCTACAACGA TCACAGCA	2547
125	AUAGAGUA A CUGAAGAA	962	TTCTTCAG GGCTAGCTACAACGA TACTCTAT	2548
149	CAGUGAAG A UUGUAGAU	963	ATCTACAA GGCTAGCTACAACGA CTTCACTG	2549
156	GAUUGUAG A UAUGAAGC	964	GCTTCATA GGCTAGCTACAACGA CTACAATC	2550
158	UUGUAGAU A UGAAGCGU	965	ACGCTTCA GGCTAGCTACAACGA ATCTACAA	2551
174	UGCCGUAG A CUGUCCAG	966	CTGGACAG GGCTAGCTACAACGA CTACGGCA	2552
186	UCCAGAAA A UAUUAAGA	967	TCTTAATA GGCTAGCTACAACGA TTTCTGGA	2553
188	CAGAAAAU A UUAAGAAA	968	TTTCTTAA GGCTAGCTACAACGA ATTTTCTG	2554
200	AGAAAGAG A UCUGUAUC	969	GATACAGA GGCTAGCTACAACGA CTCTTTCT	2555
206	AGAUCUGU A UCAAUAAA	970	TTTATTGA GGCTAGCTACAACGA ACAGATCT	2556
210	CUGUAUCA A UAAAAUGC	971	GCATTTTA GGCTAGCTACAACGA TGATACAG	2557
215	UCAAUAAA A UGCUAAAU	972	ATTTAGCA GGCTAGCTACAACGA TTTATTGA	2558
222	AAUGCUAA A UCAUGAAA	973	TTTCATGA GGCTAGCTACAACGA TTAGCATT	2559
225	GCUAAAUC A UGAAAAUG	974	CATTTCA GGCTAGCTACAACGA GATTTAGC	2560
231	UCAUGAAA A UGUAGUAA	975	TTACTACA GGCTAGCTACAACGA TTTCATGA	2561
241	GUAGUAAA A UUCUAUGG	976	CCATAGAA GGCTAGCTACAACGA TTTACTAC	2562
246	AAAAUUCU A UGGUCACA	977	TGTGACCA GGCTAGCTACAACGA AGAATTTT	2563
252	CUAUGGUC A CAGGAGAG	978	CTCTCCTG GGCTAGCTACAACGA GACCATAG	2564
267	AGAAGGCA A UAUCCAAU	979	ATTGGATA GGCTAGCTACAACGA TGCCTTCT	2565
269	AAGGCAAU A UCCAAUAU	980	ATATTGGA GGCTAGCTACAACGA ATTGCCTT	2566
274	AAUAUCCA A UAUUUAUU	981	AATAAATA GGCTAGCTACAACGA TGGATATT	2567
276	UAUCCAAU A UUUAUUUC	982	GAAATAAA GGCTAGCTACAACGA ATTGGATA	2568
280	CAAUAUUU A UUUCUGGA	983	TCCAGAAA GGCTAGCTACAACGA AAATATTG	2569
	Latinition A Goodbaa			

291	UCUGGAGU A CUGUAGUG	984	CACTACAG GGCTAGCTACAACGA ACTCCAGA	2570
315	GCUUUUUG A CAGAAUAG	985	CTATTCTG GGCTAGCTACAACGA CAAAAAGC	2571
320	UUGACAGA A UAGAGCCA	986	TGGCTCTA GGCTAGCTACAACGA TCTGTCAA	2572
330	AGAGCCAG A CAUAGGCA	987	TGCCTATG GGCTAGCTACAACGA CTGGCTCT	2573
332	AGCCAGAC A UAGGCAUG	988	CATGCCTA GGCTAGCTACAACGA GTCTGGCT	2574
338	ACAUAGGC A UGCCUGAA	989	TTCAGGCA GCCTAGCTACAACGA GCCTATGT	2575
346	AUGCCUGA A CCAGAUGC	990	GCATCTGG GGCTAGCTACAACGA TCAGGCAT	2576
351	UGAACCAG A UGCUCAGA	991	TCTGAGCA GGCTAGCTACAACGA CTGGTTCA	2577
361	GCUCAGAG A UUCUUCCA	992	TGGAAGAA GGCTAGCTACAACGA CTCTGAGC	2578
369	AUUCUUCC A UCAACUCA	993	TGAGTTGA GGCTAGCTACAACGA GGAAGAAT	2579
373	UUCCAUCA A CUCAUGGC	994	GCCATGAG GGCTAGCTACAACGA TGATGGAA	2580
377	AUCAACUC A UGGCAGGG	995	CCCTGCCA GGCTAGCTACAACGA GAGTTGAT	2581
393	GGUGGUUU A UCUGCAUG	996	CATGCAGA GGCTAGCTACAACGA AAACCACC	2582
399	UUAUCUGC A UGGUAUUG	997	CAATACCA GGCTAGCTACAACGA GCAGATAA	2583
404	UGCAUGGU A UUGGAAUA	998	TATTCCAA GGCTAGCTACAACGA ACCATGCA	2584
410	GUAUUGGA A UAACUCAC	999	GTGAGTTA GGCTAGCTACAACGA TCCAATAC	2585
413	UUGGAAUA A CUCACAGG	1000	CCTGTGAG GGCTAGCTACAACGA TATTCCAA	2586
417	AAUAACUC A CAGGGAUA	1001	TATCCCTG GGCTAGCTACAACGA GAGTTATT	2587
423	UCACAGGG A UAUUAAAC	1002	GTTTAATA GGCTAGCTACAACGA CCCTGTGA	2588
425	ACAGGGAU A UUAAACCA	1003	TGGTTTAA GGCTAGCTACAACGA ATCCCTGT	2589
430	GAUAUUAA A CCAGAAAA	1004	TTTTCTGG GGCTAGCTACAACGA TTAATATC	2590
438	ACCAGAAA A UCUUCUGU	1005	ACAGAAGA GGCTAGCTACAACGA TTTCTGGT	2591
450	UCUGUUGG A UGAAAGGG	1006	CCCTTTCA GGCTAGCTACAACGA CCAACAGA	2592
459	UGAAAGGG A UAACCUCA	1007	TGAGGTTA GGCTAGCTACAACGA CCCTTTCA	2593
462	AAGGGAUA A CCUCAAAA	1008	TTTTGAGG GGCTAGCTACAACGA TATCCCTT	2594
470	ACCUCAAA A UCUCAGAC	1009	GTCTGAGA GGCTAGCTACAACGA TTTGAGGT	2595
477	AAUCUCAG A CUUUGGCU	1010	AGCCAAAG GGCTAGCTACAACGA CTGAGATT	2596
491	GCUUGGCA A CAGUAUUU	1011	AAATACTG GGCTAGCTACAACGA TGCCAAGC	2597
496	GCAACAGU A UUUCGGUA	1012	TACCGAAA GGCTAGCTACAACGA ACTGTTGC	2598
504	AUUUCGGU A UAAUAAUC	1013	GATTATTA GGCTAGCTACAACGA ACCGAAAT	2599
507	UCGGUAUA A UAAUCGUG	1014	CACGATTA GGCTAGCTACAACGA TATACCGA	2600
510	GUAUAAUA A UCGUGAGC	1015	GCTCACGA GGCTAGCTACAACGA TATTATAC	2601
528	UUUGUUGA A CAAGAUGU	1016	ACATCTTG GGCTAGCTACAACGA TCAACAAA	2602
533	UGAACAAG A UGUGUGGU	1017	ACCACACA GGCTAGCTACAACGA CTTGTTCA	2603
542	UGUGUGGU A CUUUACCA	1018	TGGTAAAG GGCTAGCTACAACGA ACCACACA	2604
547	GGUACUUU A CCAUAUGU	1019	ACATATGG GGCTAGCTACAACGA AAAGTACC	2605
550	ACUUUACC A UAUGUUGC	1020	GCAACATA GGCTAGCTACAACGA GGTAAAGT	2606
552	UUUACCAU A UGUUGCUC	1021	GAGCAACA GGCTAGCTACAACGA ATGGTAAA	2607
565	GCUCCAGA A CUUCUGAA	1022	TTCAGAAG GGCTAGCTACAACGA TCTGGAGC	2608
583	AGAAGAGA A UUUCAUGC	1023	GCATGAAA GGCTAGCTACAACGA TCTCTTCT	2609
588	AGAAUUUC A UGCAGAAC	1024	GTTCTGCA GGCTAGCTACAACGA GAAATTCT	2610
595	CAUGCAGA A CCAGUUGA	1025	TCAACTGG GGCTAGCTACAACGA TCTGCATG	2611
603	ACCAGUUG A UGUUUGGU	1026	ACCAAACA GGCTAGCTACAACGA CAACTGGT	2612
620	CCUGUGGA A UAGUACUU	1027	AAGTACTA GGCTAGCTACAACGA TCCACAGG	2613
625	GGAAUAGU A CUUACUGC	1028	GCAGTAAG GGCTAGCTACAACGA ACTATTCC	2614
629	UAGUACUU A CUGCAAUG	1029	CATTGCAG GGCTAGCTACAACGA AAGTACTA	2615
635	UUACUGCA A UGCUCGCU	1030	AGCGAGCA GGCTAGCTACAACGA TGCAGTAA	2616
649	GCUGGAGA A UUGCCAUG	1031	CATGGCAA GGCTAGCTACAACGA TCTCCAGC	2617
655	GAAUUGCC A UGGGACCA	1032	TGGTCCCA GGCTAGCTACAACGA GGCAATTC	2618
L	<u> </u>	L	<u></u>	

660	GCCAUGGG A CCAACCCA	1022	TOCOMPON COMPONENTS AND COMPONENTS	
664	UGGGACCA A CCCAGUGA	1033	TGGGTTGG GGCTAGCTACAACGA CCCATGGC	2619
672	ACCCAGUG A CAGCUGUC	1034	TCACTGGG GGCTAGCTACAACGA TGGTCCCA	2620
687	UCAGGAGU A UUCUGACU	1035	GACAGCTG GGCTAGCTACAACGA CACTGGGT	2621
693		1036	AGTCAGAA GGCTAGCTACAACGA ACTCCTGA	2622
	GUAUUCUG A CUGGAAAG	1037	CTTTCCAG GGCTAGCTACAACGA CAGAATAC	2623
710	AAAAAAA A CAUACCUC	1038	GAGGTATG GGCTAGCTACAACGA TTTTTTTT	2624
712	AAAAAAAC A UACCUCAA	1039	TTGAGGTA GGCTAGCTACAACGA GTTTTTTT	2625
714	AAAAACAU A CCUCAACC	1040	GGTTGAGG GGCTAGCTACAACGA ATGTTTTT	2626
720	AUACCUCA A CCCUUGGA	1041	TCCAAGGG GGCTAGCTACAACGA TGAGGTAT	2627
734	GGAAAAA A UCGAUUCU	1042	AGAATCGA GGCTAGCTACAACGA TTTTTTCC	2628
738	AAAAAUCG A UUCUGCUC	1043	GAGCAGAA GGCTAGCTACAACGA CGATTTTT	2629
762	UCUGCUGC A UAAAAUCU	1044	AGATTTTA GGCTAGCTACAACGA GCAGCAGA	2630
767	UGCAUAAA A UCUUAGUU	1045	AACTAAGA GGCTAGCTACAACGA TTTATGCA	2631
780	AGUUGAGA A UCCAUCAG	1046	CTGATGGA GGCTAGCTACAACGA TCTCAACT	2632
784	GAGAAUCC A UCAGCAAG	1047	CTTGCTGA GGCTAGCTACAACGA GGATTCTC	2633
794	CAGCAAGA A UUACCAUU	1048	AATGGTAA GGCTAGCTACAACGA TCTTGCTG	2634
797	CAAGAAUU A CCAUUCCA	1049	TGGAATGG GGCTAGCTACAACGA AATTCTTG	2635
800	GAAUUACC A UUCCAGAC	1050	GTCTGGAA GGCTAGCTACAACGA GGTAATTC	2636
807	CAUUCCAG A CAUCAAAA	1051	TTTTGATG GGCTAGCTACAACGA CTGGAATG	2637
809	UUCCAGAC A UCAAAAAA	1052	TTTTTTGA GGCTAGCTACAACGA GTCTGGAA	2638
819	CAAAAAG A UAGAUGGU	1053	ACCATCTA GGCTAGCTACAACGA CTTTTTTG	2639
823	AAAGAUAG A UGGUACAA	1054	TTGTACCA GGCTAGCTACAACGA CTATCTTT	2640
828	UAGAUGGU A CAACAAAC	1055	GTTTGTTG GGCTAGCTACAACGA ACCATCTA	2641
831	AUGGUACA A CAAACCCC	1056	GGGGTTTG GGCTAGCTACAACGA TGTACCAT	2642
835	UACAACAA A CCCCUCAA	1057	TTGAGGGG GGCTAGCTACAACGA TTGTTGTA	2643
869	CCCGAGUC A CUUCAGGU	1058	ACCTGAAG GGCTAGCTACAACGA GACTCGGG	2644
901	CCCAGUGG A UUUUCUAA	1059	TTAGAAAA GGCTAGCTACAACGA CCACTGGG	2645
912	UUCUAAGC A CAUUCAAU	1060	ATTGAATG GGCTAGCTACAACGA GCTTAGAA	2646
914	CUAAGCAC A UUCAAUCC	1061	GGATTGAA GGCTAGCTACAACGA GTGCTTAG	2647
919	CACAUUCA A UCCAAUUU	1062	AAATTGGA GGCTAGCTACAACGA TGAATGTG	2648
924	UCAAUCCA A UUUGGACU	1063	AGTCCAAA GGCTAGCTACAACGA TGGATTGA	2649
930	CAAUUUGG A CUUCUCUC	1064	GAGAGAAG GGCTAGCTACAACGA CCAAATTG	2650
945	UCCAGUAA A CAGUGCUU	1065	AAGCACTG GGCTAGCTACAACGA TTACTGGA	2651
966	UGAAGAAA A UGUGAAGU	1066	ACTTCACA GGCTAGCTACAACGA TTTCTTCA	2652
975	UGUGAAGU A CUCCAGUU	1067	AACTGGAG GGCTAGCTACAACGA ACTTCACA	2653
994	CAGCCAGA A CCCCGCAC	1068	GTGCGGGG GGCTAGCTACAACGA TCTGGCTG	2654
1001	AACCCCGC A CAGGUCUU	1069	AAGACCTG GGCTAGCTACAACGA GCGGGGTT	2655
1015	CUUUCCUU A UGGGAUAC	1070	GTATCCCA GGCTAGCTACAACGA AAGGAAAG	2656
1020	CUUAUGGG A UACCAGCC	1071	GGCTGGTA GGCTACCAACGA CCCATAAG	2657
1022	UAUGGGAU A CCAGCCCC	1072	GGGGCTGG GGCTAGCTACAACGA ATCCCATA	2658
1033	AGCCCCUC A UACAUUGA	1073	TCAATGTA GGCTAGCTACAACGA GAGGGGCT	2659
1035	CCCCUCAU A CAUUGAUA	1074	TATCAATG GGCTAGCTACAACGA ATGAGGGG	2660
1037	CCUCAUAC A UUGAUAAA	1075	TTTATCAA GGCTAGCTACAACGA GTATGAGG	2661
1041	AUACAUUG A UAAAUUGG	1076	CCAATTTA GGCTAGCTACAACGA CAATGTAT	2662
1045	AUUGAUAA A UUGGUACA	1077	TGTACCAA GGCTAGCTACAACGA TTATCAAT	2663
1051	AAAUUGGU A CAAGGGAU	1078	ATCCCTTG GGCTAGCTACAACGA ACCAATTT	2664
1058	UACAAGGG A UCAGCUUU	1079	AAAGCTGA GGCTAGCTACAACGA CCCTTGTA	2665
1076	CCCAGCCC A CAUGUCCU	1080	AGGACATG GGCTAGCTACAACGA GGGCTGGG	2666
1078	CAGCCCAC A UGUCCUGA	1081	TCAGGACA GGCTAGCTACAACGA GTGGGCTG	2667
	L		<u> </u>	

1086	AUGUCCUG A UCAUAUGC	1082	GCATATGA GGCTAGCTACAACGA CAGGACAT	2668
1089	UCCUGAUC A UAUGCUUU	1083	AAAGCATA GGCTAGCTACAACGA GATCAGGA	2669
1091	CUGAUCAU A UGCUUUUG	1084	CAAAAGCA GGCTAGCTACAACGA ATGATCAG	2670
1101	GCUUUUGA A UAGUCAGU	1085	ACTGACTA GGCTAGCTACAACGA TCAAAAGC	2671
1111	AGUCAGUU A CUUGGCAC	1086	GTGCCAAG GGCTAGCTACAACGA AACTGACT	2672
1118	UACUUGGC A CCCCAGGA	1087	TCCTGGGG GGCTAGCTACAACGA GCCAAGTA	2673
1126	ACCCCAGG A UCCUCACA	1088	TGTGAGGA GGCTAGCTACAACGA CCTGGGGT	2674
1132	GGAUCCUC A CAGAACCC	1089	GGGTTCTG GGCTAGCTACAACGA GAGGATCC	2675
1137	CUCACAGA A CCCCUGGC	1090	GCCAGGGG GGCTAGCTACAACGA TCTGTGAG	2676
1163	UCAAAAGA A UGACACGA	1091	TCGTGTCA GGCTAGCTACAACGA TCTTTTGA	2677
1166	AAAGAAUG A CACGAUUC	1092	GAATCGTG GGCTAGCTACAACGA CATTCTTT	2678
1168	AGAAUGAC A CGAUUCUU	1093	AAGAATCG GGCTAGCTACAACGA GTCATTCT	2679
1171	AUGACACG A UUCUUUAC	1094	GTAAAGAA GGCTAGCTACAACGA CGTGTCAT	2680
1178	GAUUCUUU A CCAAAUUG	1095	CAATTTGG GGCTAGCTACAACGA AAAGAATC	2681
1183	UUUACCAA A UUGGAUGC	1096	GCATCCAA GGCTAGCTACAACGA TTGGTAAA	2682
1188	CAAAUUGG A UGCAGACA	1097	TGTCTGCA GGCTAGCTACAACGA CCAATTTG	2683
1194	GGAUGCAG A CAAAUCUU	1098	AAGATTTG GGCTAGCTACAACGA CTGCATCC	2684
1198	GCAGACAA A UCUUAUCA	1099	TGATAAGA GGCTAGCTACAACGA TTGTCTGC	2685
1203	CAAAUCUU A UCAAUGCC	1100	GGCATTGA GGCTAGCTACAACGA AAGATTTG	2686
1207	UCUUAUCA A UGCCUGAA	1101	TTCAGGCA GGCTAGCTACAACGA TGATAAGA	2687
1220	UGAAAGAG A CUUGUGAG	1102	CTCACAAG GGCTAGCTACAACGA CTCTTTCA	2688
1239	GUUGGGCU A UCAAUGGA	1103	TCCATTGA GGCTAGCTACAACGA AGCCCAAC	2689
1243	GGCUAUCA A UGGAAGAA	1104	TTCTTCCA GGCTAGCTACAACGA TGATAGCC	2690
1259	AAAGUUGU A UGAAUCAG	1105	CTGATTCA GGCTAGCTACAACGA ACAACTTT	2691
1263	UUGUAUGA A UCAGGUUA	1106	TAACCTGA GGCTAGCTACAACGA TCATACAA	2692
1271	AUCAGGUU A CUAUAUCA	1107	TGATATAG GGCTAGCTACAACGA AACCTGAT	2693
1274	AGGUUACU A UAUCAACA	1108	TGTTGATA GGCTAGCTACAACGA AGTAACCT	2694
1276	GUUACUAU A UCAACAAC	1109	GTTGTTGA GGCTAGCTACAACGA ATAGTAAC	2695
1280	CUAUAUCA A CAACUGAU	1110	ATCAGTTG GGCTAGCTACAACGA TGATATAG	2696
1283	UAUCAACA A CUGAUAGG	1111	CCTATCAG GGCTAGCTACAACGA TGTTGATA	2697
1287	AACAACUG A UAGGAGAA	1112	TTCTCCTA GGCTAGCTACAACGA CAGTTGTT	2698
1296	UAGGAGAA A CAAUAAAC	1113	GTTTATTG GGCTAGCTACAACGA TTCTCCTA	2699
1299	GAGAAACA A UAAACUCA	1114	TGAGTTTA GGCTAGCTACAACGA TGTTTCTC	2700
1303	AACAAUAA A CUCAUUUU	1115	AAAATGAG GGCTAGCTACAACGA TTATTGTT	2701
1307	AUAAACUC A UUUUCAAA	1116	TTTGAAAA GGCTAGCTACAACGA GAGTTTAT	2702
1320	CAAAGUGA A UUUGUUAG	1117	CTAACAAA GGCTAGCTACAACGA TCACTTTG	2703
1331	UGUUAGAA A UGGAUGAU	1118	ATCATCCA GGCTAGCTACAACGA TTCTAACA	2704
1335	AGAAAUGG A UGAUAAAA	1119	TTTTATCA GGCTAGCTACAACGA CCATTTCT	2705
1338	AAUGGAUG A UAAAAUAU	1120	ATATTTTA GGCTAGCTACAACGA CATCCATT	2706
1343	AUGAUAAA A UAUUGGUU	1121	AACCAATA GGCTAGCTACAACGA TTTATCAT	2707
1345	GAUAAAAU A UUGGUUGA	1122	TCAACCAA GGCTAGCTACAACGA ATTTTATC	2708
1343	AUUGGUUG A CUUCCGGC	1123	GCCGGAAG GGCTAGCTACAACGA CAACCAAT	2709
1374	UAAGGGUG A UGGAUUGG	1124	CCAATCCA GGCTAGCTACAACGA CACCCTTA	2710
	GGUGAUGG A UUGGAGUU	1125	AACTCCAA GGCTAGCTACAACGA CCATCACC	2711
1378			AGGAAGTG GGCTAGCTACAACGA CTCTTGAA	2712
1393	UUCAAGAG A CACUUCCU		TCAGGAAG GGCTAGCTACAACGA CTCTTG	2712
1395	CAAGAGAC A CUUCCUGA	1127	CCCTTTAA GGCTAGCTACAACGA CTTCAGGA	2713
1406	UCCUGAAG A UUAAAGGG	1128	AATATCAA GGCTAGCTACAACGA CAGCTTCC	2714
1421	GGAAGCUG A UUGAUAUU			<u> </u>
1425	GCUGAUUG A UAUUGUGA	1130	TCACAATA GGCTAGCTACAACGA CAATCAGC	2716

1460 UUCCUGCC A CAUGAUCG 1132 CGATCATG GGCTAGCTACAACGA GGCAGGAA 2 1462 CCUGCCAC A UGAUCGGA 1133 TCCGATCA GGCTAGCTACAACGA GTGGCAGG 2 1465 GCCACAUG A UCGGACCA 1134 TGGTCCGA GGCTAGCTACAACGA CATGTGGC 2 1470 AUGAUCGG A CCAUCGGC 1135 GCCGATGG GGCTAGCTACAACGA CCGATCAT 2 1473 AUCGGACC A UCGGCUCU 1136 AGAGCCGA GGCTAGCTACAACGA CCGATCAT 2 1487 UCUGGGGA A UCCUGGUG 1137 CACCAGGA GGCTAGCTACAACGA TCCCCAGA 2 1497 CCUGGUGA A UAUAGUGC 1138 GCACTATA GGCTAGCTACAACGA TCACCAGG 2 1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA ATCACCA 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA ATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA ATTCTCTA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA ATTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA ATTCTCTA 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1551 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGA 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
1462 CCUGCCAC A UGAUCGGA 1133 TCCGATCA GGCTAGCTACAACGA GTGGCAGG 2 1465 GCCACAUG A UCGGACCA 1134 TGGTCCGA GGCTAGCTACAACGA CATGTGGC 2 1470 AUGAUCGG A CCAUCGGC 1135 GCCGATGG GGCTAGCTACAACGA CCGATCAT 2 1473 AUCGGACC A UCGGCUCU 1136 AGAGCCGA GGCTAGCTACAACGA GGTCCGAT 2 1487 UCUGGGGA A UCCUGGUG 1137 CACCAGGA GGCTAGCTACAACGA TCCCCAGA 2 1497 CCUGGUGA A UAUAGUGC 1138 GCACTATA GGCTAGCTACAACGA TCCCCAGA 2 1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA ATTCACCA 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA AGCAGCAC 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGA 2	2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
1465 GCCACAUG A UCGGACCA 1134 TGGTCCGA GGCTAGCTACAACGA CATGTGGC 2 1470 AUGAUCGG A CCAUCGGC 1135 GCCGATGG GGCTAGCTACAACGA CCGATCAT 2 1473 AUCGGACC A UCGGCUCU 1136 AGAGCCGA GGCTAGCTACAACGA GGTCCGAT 2 1487 UCUGGGGA A UCCUGGUG 1137 CACCAGGA GGCTAGCTACAACGA TCCCCAGA 2 1497 CCUGGUGA A UAUAGUGC 1138 GCACTATA GGCTAGCTACAACGA TCACCAGG 2 1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA AGCAGCAC 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA CATCATCA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTCTA 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGA 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA TTGCAGGT 2	2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
1470 AUGAUCGG A CCAUCGGC 1135 GCCGATGG GGCTAGCTACAACGA CCGATCAT 2 1473 AUCGGACC A UCGGCUCU 1136 AGAGCCGA GGCTAGCTACAACGA GGTCCGAT 2 1487 UCUGGGGA A UCCUGGUG 1137 CACCAGGA GGCTAGCTACAACGA TCCCCAGA 2 1497 CCUGGUGA A UAUAGUGC 1138 GCACTATA GGCTAGCTACAACGA TCACCAGG 2 1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA AGCAGCAC 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA CAACATAG 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
1473 AUCGGACC A UCGGCUCU 1136 AGAGCCGA GGCTAGCTACAACGA GGTCCGAT 2 1487 UCUGGGGA A UCCUGGUG 1137 CACCAGGA GGCTAGCTACAACGA TCCCCAGA 2 1497 CCUGGUGA A UAUAGUGC 1138 GCACTATA GGCTAGCTACAACGA TCACCAGG 2 1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA AGCAGCAC 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2722 2723 2724 2725 2726 2727 2728 2729 2730
1487 UCUGGGGA A UCCUGGUG 1137 CACCAGGA GGCTAGCTACAACGA TCCCCAGA 2 1497 CCUGGUGA A UAUAGUGC 1138 GCACTATA GGCTAGCTACAACGA TCACCAGG 2 1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA AGCAGCAC 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2723 2724 2725 2726 2727 2728 2729 2730 2731
1497 CCUGGUGA A UAUAGUGC 1138 GCACTATA GGCTAGCTACAACGA TCACCAGG 2 1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA AGCAGCAC 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGT 2	2724 2725 2726 2727 2728 2729 2730
1499 UGGUGAAU A UAGUGCUG 1139 CAGCACTA GGCTAGCTACAACGA ATTCACCA 2 1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA AGCAGCAC 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2725 2726 2727 2728 2729 2730 2731
1510 GUGCUGCU A UGUUGACA 1140 TGTCAACA GGCTAGCTACAACGA AGCAGCAC 2 1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2726 2727 2728 2729 2730 2731
1516 CUAUGUUG A CAUUAUUC 1141 GAATAATG GGCTAGCTACAACGA CAACATAG 2 1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGGT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2727 2728 2729 2730 2731
1518 AUGUUGAC A UUAUUCUU 1142 AAGAATAA GGCTAGCTACAACGA GTCAACAT 2 1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2728 2729 2730 2731
1521 UUGACAUU A UUCUUCCU 1143 AGGAAGAA GGCTAGCTACAACGA AATGTCAA 2 1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2729 2730 2731
1537 UAGAGAAG A UUAUCCUG 1144 CAGGATAA GGCTAGCTACAACGA CTTCTCTA 2 1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2730 2731
1540 AGAAGAUU A UCCUGUCC 1145 GGACAGGA GGCTAGCTACAACGA AATCTTCT 2 1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2731
1554 UCCUGCAA A CUGCAAAU 1146 ATTTGCAG GGCTAGCTACAACGA TTGCAGGA 2 1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	
1561 AACUGCAA A UAGUAGUU 1147 AACTACTA GGCTAGCTACAACGA TTGCAGTT 2 1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	
1582 AAGUGUUC A CUUCCCUG 1148 CAGGGAAG GGCTAGCTACAACGA GAACACTT 2	2732
	2733
1594 CCCUGUUU A UCCAAACA 1149 TGTTTGGA GGCTAGCTACAACGA AAACAGGG 2	2734
	2735
1600 UUAUCCAA A CAUCUUCC 1150 GGAAGATG GGCTAGCTACAACGA TTGGATAA 2	2736
1602 AUCCAAAC A UCUUCCAA 1151 TTGGAAGA GGCTAGCTACAACGA GTTTGGAT 2	2737
1610 AUCUUCCA A UUUAUUUU 1152 AAAATAAA GGCTAGCTACAACGA TGGAAGAT 2	2738
1614 UCCAAUUU A UUUUGUUU 1153 AAACAAAA GGCTAGCTACAACGA AAATTGGA 2	2739
1630 UGUUCGGC A UACAAAUA 1154 TATTTGTA GGCTAGCTACAACGA GCCGAACA 2	2740
1632 UUCGGCAU A CAAAUAAU 1155 ATTATTTG GGCTAGCTACAACGA ATGCCGAA 2	2741
1636 GCAUACAA A UAAUACCU 1156 AGGTATTA GGCTAGCTACAACGA TTGTATGC 2	2742
1639 UACAAAUA A UACCUAUA 1157 TATAGGTA GGCTAGCTACAACGA TATTTGTA 2	2743
1641 CAAAUAAU A CCUAUAUC 1158 GATATAGG GGCTAGCTACAACGA ATTATTTG 2	2744
1645 UAAUACCU A UAUCUUAA 1159 TTAAGATA GGCTAGCTACAACGA AGGTATTA 2	2745
1647 AUACCUAU A UCUUAAUU 1160 AATTAAGA GGCTAGCTACAACGA ATAGGTAT 2	2746
1653 AUAUCUUA A UUGUAAGC 1161 GCTTACAA GGCTAGCTACAACGA TAAGATAT 2	2747
1665 UAAGCAAA A CUUUGGGG 1162 CCCCAAAG GGCTAGCTACAACGA TTTGCTTA 2	2748
1679 GGGAAAGG A UGAAUAGA 1163 TCTATTCA GGCTAGCTACAACGA CCTTTCCC 2	2749
1683 AAGGAUGA A UAGAAUUC 1164 GAATTCTA GGCTAGCTACAACGA TCATCCTT 2	2750
1688 UGAAUAGA A UUCAUUUG 1165 CAAATGAA GGCTAGCTACAACGA TCTATTCA	2751
1692 UAGAAUUC A UUUGAUUA 1166 TAATCAAA GGCTAGCTACAACGA GAATTCTA 2	2752
1697 UUCAUUUG A UUAUUUCU 1167 AGAAATAA GGCTAGCTACAACGA CAAATGAA	2753
1700 AUUUGAUU A UUUCUUCA . 1168 TGAAGAAA GGCTAGCTACAACGA AATCAAAT	2754
1708 AUUUCUUC A UGUGUGUU 1169 AACACACA GGCTAGCTACAACGA GAAGAAAT 2	2755
1721 UGUUUAGU A UCUGAAUU 1170 AATTCAGA GGCTAGCTACAACGA ACTAAACA	2756
1727 GUAUCUGA A UUUGAAAC 1171 GTTTCAAA GGCTAGCTACAACGA TCAGATAC	2757
1734 AAUUUGAA A CUCAUCUG 1172 CAGATGAG GGCTAGCTACAACGA TTCAAATT	2758
1738 UGAAACUC A UCUGGUGG 1173 CCACCAGA GGCTAGCTACAACGA GAGTTTCA	2759
1749 UGGUGGAA A CCAAGUUU 1174 AAACTTGG GGCTAGCTACAACGA TTCCACCA	2760
1764 UUCAGGGG A CAUGAGUU 1175 AACTCATG GGCTAGCTACAACGA CCCCTGAA	2761
1766 CAGGGGAC A UGAGUUUU 1176 AAAACTCA GGCTAGCTACAACGA GTCCCCTG	2762
1784 CAGCUUUU A UACACACG 1177 CGTGTGTA GGCTAGCTACAACGA AAAAGCTG	2763
1786 GCUUUUAU A CACACGUA 1178 TACGTGTG GGCTAGCTACAACGA ATAAAAGC	2764
	2765

1790	UUAUACAC A CGUAUCUC	1180	GAGATACG GGCTAGCTACAACGA GTGTATAA	2766
1794	ACACACGU A UCUCAUUU	1181	AAATGAGA GGCTAGCTACAACGA ACGTGTGT	2767
1799	CGUAUCUC A UUUUUAUC	1182	GATAAAAA GGCTAGCTACAACGA GAGATACG	2768
1805	UCAUUUUU A UCAAAACA	1183	TGTTTTGA GGCTAGCTACAACGA AAAAATGA	2769
1811	UUAUCAAA A CAUUUUGU	1184	ACAAAATG GGCTAGCTACAACGA TTTGATAA	2770
1813	AUCAAAAC A UUUUGUUU	1185	AAACAAAA GGCTAGCTACAACGA GTTTTGAT	2771

Input Sequence = AF016582 Cut Site = R/Y

Stem Length = 8 . Core Sequence = GGCTAGCTACAACGA

AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)

Table VIII: Human Chk1 Amberzyme Ribozyme and Substrate Sequence

Rz Seq ID	2772	2773	2774	2775	2776	2777	2778	2779	2780	2781	2782	2783	2784	2785	2786	2787	2788	2789	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799
Ribozyme	UCGGCGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCCGGC	CACCUCGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGACUGUC	ACCGAGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUCGGCGG	CCACCGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCUCGGC	UGACUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCGGGG CGAGCACC	UGCCAUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCACCGA	GGGCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUGACUC	AAAGGGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCCAUGA	ACAAAGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGCCAU	GUCUUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAGGGCA	GGUUUGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAGUCCC	AGGGUTUG GGAGGAAACUCC CU UCAAGGACAUCGUCGGG ACCAAGUC	CAUAGGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUCUCCC	UCCAUAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCUUCUC	AAGUUGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCCAU	AUUCACAG GGAGGAAACUCC CU UCAAGGACAUCGUCGGG AAGUUGAA	UCUAUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAAGUU	UUCAGUUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUAUUCA	UGCGACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUUCAG	CACUGCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCUUCUU	cuucacue egaggaaacuce cu ucaaggacaucegeg gacugcuu	AAUCUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCGACUG	CAUAUCUA GGAGGAAACUCC CU UCAAGGACAUCGUCGGGG AAUCUUCA	ACGGCACG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAUAUC	CUACGGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GCUUCAUA	GUCUACGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACGCUUCA	ACAGUCUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGCACGCU	UUUCUGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUCUACG
Seq ID	791	792	793	794	795	962	797	798	799	800	801	802	803	804	805	908	807	808	809	810	811	812	813	814	815	816	817	818
Substrate	GCCGGACA G UCCGCCGA	GACAGUCC G CCGAGGUG	ccecceae e vecuceeu	GCCGAGGU G CUCGGUGG	GGUGCUCG G UGGAGUCA	UCGGUGGA G UCAUGGCA	GAGUCAUG G CAGUGCCC	UCAUGGCA G UGCCCUUU	AUGGCAGU G CCCUTUGU	UGCCCUUU G UGGAAGAC	GGGACTUG G UGCAAACC	GACUUGGU G CAAACCCU	GGGAGAAG G UGCCUAUG	GAGAAGGU G CCUAUGGA	AUGGAGAA G UUCAACUU	UUCAACUU G CUGUGAAU	AACUUGCU G UGAAUAGA	UGAAUAGA G UAACUGAA	CUGAAGAA G CAGUCGCA	AAGAAGCA G UCGCAGUG	AAGCAGUC G CAGUGAAG	CAGUCGCA G UGAAGAUU	UGAAGAUU G UAGAUAUG	GAUAUGAA G CGUGCCGU	UAUGAAGC G UGCCGUAG	UGAAGCGU G CCGUAGAC	AGCGUGCC G UAGACUGU	CGUAGACU G UCCAGAAA
Pos	10	14	20	22	27	32	38	41	43	50	89	70	87	89	101	110	113	122	134	137	140	143	152	163	165	167	170	177

204	AGAGAUCU G UAUCAAUA	819	UAUUGAUA GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AGAUCUCU	2800
217	AAUAAAAU G CUAAAUCA	820	UGAUUUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUUAUU	2801
233	AUGAAAAU G UAGUAAAA	821	UUUUACUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUUCAU	2802
236	AAAAUGUA G UAAAAUUC	822	GAAUUUUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACAUUUU	2803
249	AUUCUAUG G UCACAGGA	823	UCCUGUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUAGAAU	2804
264	GAGAGAAG G CAAUAUCC	824	GGAUATUG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG CUUCUCUC	2805
289	UUUCUGGA G VACUGUAG	825	CUACAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCAGAAA	2806
294	GGAGUACU G UAGUGGAG	826	CUCCACUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUACUCC	2807
297	GUACUGUA G UGGAGGAG	827	CUCCUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACAGUAC	2808
307	GGAGGAGA G CUUUUUGA	828	UCAAAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUCCUCC	2809
325	AGAAUAGA G CCAGACAU	829	AUGUCUGG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UCUAUUCU	2810
336	AGACAUAG G CAUGCCUG	830	CAGGCAUG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG CUAUGUCU	2811
340	AUAGGCAU G CCUGAACC	831	GGUUCAGG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AUGCCUAU	2812
353	AACCAGAU G CUCAGAGA	832	UCUCUGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCUGGUU	2813
380	AACUCAUG G CAGGGGUG	833	CACCCCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUGAGUU	2814
386	uggcagge g ugguunau	834	AUAAACCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCUGCCA	2815
389	CAGGGGUG G UUUAUCUG	835	CAGAUAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACCCCUG	2816
397	GUUUAUCU G CAUGGUAU	936	AUACCAUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAUAAAC	2817
402	UCUGCAUG G UAUUGGAA	837	UUCCAAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUGCAGA	2818
445	AAUCUUCU G UUGGAUGA	838	UCAUCCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAGAUU	2819
483	AGACUUUG G CUUGGCAA	683	UUGCCAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAAGUCU	2820
488	UUGGCUUG G CAACAGUA	840	UACUGUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAGCCAA	2821
494	UGGCAACA G UAUUUCGG	841	CCGAAAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUUGCCA	2822
205	GUAUTUCG G UAUAAUAA	842	UNAUUAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAAAUAC	2823
513	UNAUNANC G UGAGCGUU	843	AACGCUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAUUAUUA	2824
517	AAUCGUGA G CGUUUGUU	844	AACAAACG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCACGAUU	2825
519	uceveage e unuenuea	845	UCAACAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GCUCACGA	2826
523	GAGCGUUU G UUGAACAA	846	UUGUUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAACGCUC	2827
535	AACAAGAU G UGUGGUAC	847	GUACCACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCUUGUU	2828
537	CAAGAUGU G UGGUACUU	848	AAGUACCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAUCUUG	2829
540	GAUGUGUG G UACUUUAC	849	GUAAAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACACAUC	2830

CUCCAGAA 851 CAGAACCA 852 UUGAUGUU 853 UUUGGAUGG 854 UCCUGUGG 855 UCCUGUGG 856 UACUUACU 858 CUCGCUGG 859 CUGGAGAA 861 UGAGAGAA 864 UGAGGAGU 864 UGAGGAGU 864 UGAGGAGU 865 CUGGAGGA 865 UGAGGAGU 866 CUGGAGGA 865 UGAGGAGU 866 CUCCUCUGA 866 CUCCUCUGA 866 CUCCUCUGA 869 UUGAGAAU 871 UACAGAAU 871 UACAACAA 873 CCCCGAAGU 875 UCACUUCA 876 UCACUUCA 876	CUGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACAUAUG 2832 SUUCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAAAUU 2833 CAUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCAACUG 2836 ACCAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCAACUG 2836 ACCAGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC 2837 AUGCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC 2839 AAGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUCCCAC 2841 CALUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUCCCAC 2841 CACAUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC 2841 CACAUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC 2842 CACUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUUCUCA 2844 CAUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUUCACA 2845 CAUGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUACACG 2845 CAGGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA 2845 CAGGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA 2845 CAGGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAAUCGA 2845 CAGGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAAUCGA 2846 CAGGGAAAACUCC CU UCAAGGACAUCGUCCGGG AGAAACGA 2846 CAGGGAAAACUCC CU UCAAGGACAUCGUCCGGG AGAGGAAACGA 2846 <
852 853 854 855 855 855 860 862 863 864 865 865 865 865 865 865 867 871 872 873 873 875	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUUCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUAAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUACUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGACCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGACCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGACCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGACCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGACCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCCAACCACC GGAGGAAACCACC CU UCAAGGACAUCGUCCGGG AGAGCCAACCACC GGAGGAAACCACC CU UCAAGGACAACCGACCACGG AGAGCCAACCACC GGAGGAAACCACC CU UCAAGGACAAUCGUCCGGG AGAGCAACACCCCCC GGAGGAAACCACC CO UCAAGGACAACCCCCGGG AGAGCAACACCACCCCCCCCCC
853 854 855 855 856 860 861 863 864 865 865 866 865 865 865 865 865 867 871 872 873 873 875	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUUCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCAACAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAGCAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAGG
854 855 855 857 860 861 862 863 864 865 865 866 865 865 865 865 867 871 872 873 874 875	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCAACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGACCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUAAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUGUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUGUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUGUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUCG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUCG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUCG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGAGCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCAAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAGAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAGAGC GGAGGAAACUCC CU UCAAGGACAAUCGUCCGGG AGCAGAGC
UCCUGUGG 855 UGGAAUAG 856 UACUUACU 858 CAAUGCUC 859 CUGGAGAA 860 CUGGAGAA 861 UGACAGCU 862 CUGUCAGG 863 UAUUCUGA 865 CUCCUCUA 866 CUCCUCUA 869 UAUUCUGA 869 UAUUCUGAAA 869 UUGCAUAAAU 871 UACAACAA 872 CAAGAAUU 871 UACAACAA 873 CCCCGAGU 874 UCACUUCA 875 UCACUUCA 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGACCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUAAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUAGGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUGGCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAGUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAGCAAC
UGGAAUAG 856 UACUUACU 857 CAAUGCUC 858 CUCGCUGG 859 CUGGAGAA 861 UGACAGGAGU 864 UCAGGAGU 864 UCAGGAGU 865 CUCCUCUGA 866 CUCCUCUGA 866 CUCCUCUGA 869 CUCCUCUGA 869 CUCCUCUGA 869 CUCCUCUGA 869 CUCCUCUGA 869 CUCCUCUGA 871 UACAAGAAU 872 UACAAGAAU 874 UCACCUGAG 875 UCACCUGAG 875 UCACCUGAG 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGACCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCGUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAUCGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG
UACUUACU 857 CAAUGCUC 858 CUCGCUGG 859 CUGGAGAA 860 CUGGAGGA 861 UGACAGCU 862 CUGUCAGG 864 UCAGGAGU 864 UCAGGAGU 864 UCAGGAGU 864 UAUUCUGA 865 CUCCUCUGA 865 CUCCUCUGA 865 CUCCUCUGA 866 CUCCUCUGA 867 CUCCUGAGA 871 UUGAGAAU 872 CAAGAAUU 874 UCACCCGAGU 874 UCACCUCA 875 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAACUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAGAAUUU
CAAUGCUC 858 CUCGCUGG 859 CUGGAGAA 860 CUGGAGAA 861 UGACAGCU 862 CUGUCAGG 864 UAUUCUGA 865 CUCCUCUGA 865 CUCCUCUGA 865 CUCCUCUGA 865 CUCCUCUGA 865 CUCCUCUGA 869 CUCCUCUGA 869 UAUGAGAAU 871 UACAACAA 872 CAAGAAUU 874 UACACUUCA 874 UCACCCGAGU 875 UCACCUCAA 875	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUAAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAGCAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGAGUUU
CUCGCUGG 859 CUGGAGAA 860 CCAUGGGA 861 UGACAGCU 862 CUGUCAGG 864 UAUUCUGA 865 CUCCUGCUGA 865 CUCCUGCUGA 865 CUCCUGCUGA 868 CUCCUGCUGA 869 CUCCCAUAAA 870 CAAGAAUU 871 UACAACAA 872 CAAAAAGG 873 CCCCGAGGU 874 UCACUUCA 875 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAGCAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCUGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGAGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGAGAC
CUGGAGAA 860 CCAUGGGA 861 UGACAGCU 862 CUGUCAGG 863 UCAGGAGU 864 UAUUCUGA 865 CUCCUCUGA 865 CUCCUCUGA 865 CUCCUGCUG 867 CUCCUGCUGA 868 CUCCCUGADA 869 UUGGCAUAA 871 UACAGAAUU 871 UACAACAA 872 CCACCGAGU 874 UCACUUCA 875 UGGUGUGU 876 UGACUUCA 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAGCAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGCACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
CCAUGGGA 861 UGACAGCU 862 CUGUCAGG 863 UCAGGAGU 864 UAUUCUGA 865 CUCCUCUCUA 866 CUCCUCUGA 867 CUCCUCUGAAAU 869 CUGCAUAAAU 871 UUGAGAAU 871 UACAACAA 872 CCAAAAAGG 873 CCCCCGAGU 874 UCACUUCA 875 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
UGACAGCU 862 CUGUCAGG 863 UCAGGAGU 864 UAUUCUGA 865 CUCCUCUGA 866 CUCCUCUGA 868 CUCCUCUGA 869 CUGCAUAA 869 UUGAGAAU 871 UACAACAA 872 CCCCGAGU 873 UCACUUCA 874 UCACUUCA 875 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUGUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAGUUU
CUGUCAGG 863 UCAGGAGU 864 UAUUCUGA 865 CUCCUCUGA 866 CUCCUGCUG 867 CUCCUGCAUAA 868 CUCCCAUAAAU 869 UUGAGAAU 871 UACAAAAGG 873 CCCCCGAGU 874 UCACUUCA 875 UGGUGUGU 876 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUGUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
UCAGGAGU 864 UAUUCUGA 865 CUCCUCUA 866 CUCCUCUA 867 CUGCAUAA 869 CAUAAAAU 871 UUGAGAGU 872 CAAAAAGG 873 CCCCCGAGU 874 UCACUUCA 875 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUGUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
UAUUCUGA 865 CUCCUCUA 866 CUCUGCUG 867 CUGCAUAA 869 CAUAAAAU 870 CAAAAAAGG 872 CAAAAAAGG 873 CCCCCGAGU 874 UCACUUCA 875 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAGAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
G CUCCUCUA 866 G CUCUGCUG 867 G CUCCAUAA 869 G CAUAAAAU 870 G CAUAAAAU 871 G CAAGAAUU 871 G CAAGAAUU 872 G CAAAAAGG 873 G CAAAAAGG 874 G CCCCGAGU 874 G UCACUUCA 875 G UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAGAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
G CUCUGCUG 867 G CUGCAUAA 868 G CAUAAAAU 870 G UUGAGAAUU 871 G UACAACAA 872 G CAAAAAGG 873 G CACCCGAGU 874 G UCACUUCA 875 G UCACUUCA 875 G UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAGAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
CUGCAUAA 868 CAUAAAAU 869 UUGAGAAU 871 UACAACAA 872 CAAAAAGG 873 CCCCGAGU 874 UCACUUCA 875 UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
G CAUAAAAU 869 G UUGAGAAU 870 G CAAGAAUU 871 G UACAACAA 872 G CAAAAAGG 873 G CCCCGAGU 874 G UCACUUCA 875 G UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAGAGC
G UUGAGAAU 871 G CAAGAAUU 871 G UACAACAA 872 G CAAAAAGG 873 G CCCCGAGU 874 G UCACUUCA 875 G UGGUGUGU 876	GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
CAAGAAUU 871 UACAACAA 872 CAAAAAGG 873 CCCCGAGU 874 UCACUUCA 875 UGGUGUGU 876	
G UACAACAA 872 G CAAAAAGG 873 G CCCCGAGU 874 G UCACUUCA 875 G UGGUGUGU 876	GGAGGAAACUCC CU
CAAAAAGG 873 CCCCGAGU 874 UCACUUCA 875 UGGUGUGU 876	SUUGUA GGAGGAAACUCC CU UCAAGGACAUCGUCGGG CAUCUAUC 2853
G CCCCGAGU 874 G UCACUUCA 875 G UGGUGUGU 876	JUUUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCUUUCU
UCACUUCA 875 UGGUGUGU 876	JCGGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUUUGC 2855
uccucucu 876	AAGUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCGGGGCC 2856
	ACACCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGAAGUG 2857
G UGUGUCAG 877 CUGACACA	SACACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACCUGAA 2858
G UGUCAGAG 878 CUCUGACA	SUGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCACCUG 2859
G UCAGAGUC 879 GACUCUGA	GGAGGAAACUCC CU
G UCUCCCAG 880 CUGGGAGA	SEGAGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUGACAC

897	GUCUCCCA G UGGAUUUU	881	AAAAUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGAGAC	2862
910	UUUUCUAA G CACAUUCA	882	UGAAUGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUAGAAAA	2863
941	UCUCUCCA G DAAACAGU	883	ACUGUUUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAGAGA	2864
948	AGUAAACA G UGCUUCUA	884	UAGAAGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUUUACU	2865
950	UAAACAGU G CUUCUAGU	885	ACUAGAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGUUUA	2866
957	UGCUUCUA G UGAAGAAA	886	UUUCUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAAGCA	2867
896	AAGAAAU G UGAAGUAC	887	GUACUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUUCUU	2868
973	AAUGUGAA G UACUCCAG	888	CUGGAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCACAUU	2869
981	GUACUCCA G UUCUCAGC	889	GCUGAGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAGUAC	2870
988	AGUUCUCA G CCAGAACC	890	GGUUCUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAGAACU	2871
666	AGAACCCC G CACAGGUC	891	GACCUGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGGGUUCU	2872
1005	ccecacae e ucunuccu	892	AGGAAAGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGUGCGG	2873
1026	GGAUACCA G CCCCUCAU	893	AUGAGGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUAUCC	2874
1049	AUAAAUUG G UACAAGGG	894	CCCUUGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUUUAU	2875
1062	AGGGAUCA G CUUUUCCC	895	GGGAAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAUCCCU	2876
1072	UUUUCCCA G CCCACAUG	968	CAUGUGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGAAAA	2877
1080	GCCCACAU G UCCUGAUC	897	GAUCAGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGUGGGC	2878
1093	GAUCAUAU G CUUUUGAA	868	UUCAAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAUGAUC	2879
1104	UUUGAAUA G UCAGUUAC	899	GUAACUGA GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UAUUCAAA	2880
1108	AAUAGUCA G UUACUUGG	006	CCAAGUAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGACUAUU	2881
1116	GUUACUUG G CACCCCAG	901	CUGGGGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAGUAAC	2882
1144	AACCCCUG G CAGCGGUU	902	AACCGCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGGGGUU	2883
1147	cccuseca e ceeuuseu	903	ACCAACCG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCCAGGG	2884
1150	UGGCAGCG G UUGGUCAA	904	UUGACCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGCUGCCA	2885
1154	AGCGGUUG G UCAAAGA	905	UCUUUUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAACCGCU	2886
1190	AAUUGGAU G CAGACAAA	906	UUUGUCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCAAUU	2887
1209	UNAUCAAU G CCUGAAAG	206	CUUUCAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGAUAA	2888
1224	AGAGACUU G UGAGAAGU	806	ACTUCUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGUCUCU	2889
1231	ugugagaa g uugggcua	606	UAGCCCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCACA	2890
1236	GAAGUUGG G CUAUCAAU	016	AUUGAUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAACUUC	1682
1254	GAAGAAAA G UUGUAUGA	911	UCAUACAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUCUUC	2892

1257	GAAAAGUU G UAUGAAUC	912	GAUUCAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACUUUUC	2893
1268	UGAAUCAG G UUACUAUA	913	UAUAGUAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGAUUCA	2894
1316	UUUUCAAA G UGAAUUUG	914	CAAAUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUGAAAA	2895
1324	GUGAAUUU G UUAGAAAU	915	AUUUCUAA GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AAAUUCAC	2896
1349	AAAUAUUG G UUGACUUC	916	GAAGUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUAUUU	2897
1360	GACUUCCG G CUUUCUAA	917	UVAGAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGGAAGUC	2898
1371	UUCUAAGG G UGAUGGAU	918	AUCCAUCA GGAGGAACUCC CU UCAAGGACAUCGUCCGGG CCUUAGAA	2899
1384	GGAUUGGA G UUCAAGAG	919	CUCUUGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCAAUCC	2900
1417	AAAGGGAA G CUGAUUGA	920	UCAAUCAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCCCUUU	2901
1430	UUGAUAUU G UGAGCAGC	921	GCUGCUCA GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AAUAUCAA	2902
1434	UAUUGUGA G CAGCCAGA	922	UCUGGCUG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UCACAAUA	2903
1437	UGUGAGCA G CCAGAAGG	923	CCUUCUGG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UGCUCACA	2904
1445	GCCAGAAG G UUUGGCUU	924	AAGCCAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUCUGGC	2905
1450	AAGGUUUG G CUUCCUGC	925	GCAGGAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACCUU	2906
1457	GGCUUCCU G CCACAUGA	926	UCAUGUGG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AGGAAGCC	2907
1477	GACCAUCG G CUCUGGGG	927	CCCCAGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAUGGUC	2908
1493	GAAUCCUG G UGAAUAUA	928	UAUAUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGGAUUC	2909
1502	UGAAUAUA G UGCUGCUA	929	UAGCAGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUAUUCA	2910
1504	AAUAUAGU G CUGCUAUG	930	CAUAGCAG GGAGGAACUCC CU UCAAGGACAUCGUCCGGG ACUAUAUU	2911
1507	AVAGUGCU G CUAUGUUG	931	CAACAUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCACUAU	2912
1512	GCUGCUAU G UUGACAUU	932	AAUGUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAGCAGC	2913
1545	AUVAUCCU G UCCUGCAA	933	UUGCAGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAUAAU	2914
1550	ccueuccu e caaacuec	934	GCAGUUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGACAGG	2915
1557	UGCAAACU G CAAAUAGU	935	ACUAUTUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUUUGCA	2916
1564	UGCAAAUA G UAGUUCCU	936	AGGAACUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUUGCA	2917
1567	AAAUAGUA G UUCCUGAA	937	UUCAGGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACUAUUU	2918
1576	UUCCUGAA G UGUUCACU	938	AGUGAACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAGGAA	2919
1578	ccugaagu e uucacuuc	686	GAAGUGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUUCAGG	2920
1590	ACUUCCCU G UUUAUCCA	076	UGGAUAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGGAAGU	2921
1619	UNITARIAN G UNITERIACE	176	CGAACAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAAUAAA	2922
1623	unuuguuu g uucegcau	942	AUGCCGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAACAAAA	2923

943
945
946
947
948
949
950
951
952
953
954
1186
1187
1188
1189
1190
1191 GGCACUGC
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

96	UGCCUAUG G AGAAGUUC	1205	GAACUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUAGGCA	2955
98	CCUAUGGA G AAGUUCAA	1206	UUGAACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCAUAGG	2956
115	COUGCUGU G AAUAGAGU	1207	ACUCUADU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAGCAAG	2957
120	UGUGAAUA G AGUAACUG	1208	CAGUUACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCACA	2958
128	GAGUAACU G AAGAAGCA	1209	UGCUUCUU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AGUUACUC	2959
131	UAACUGAA G AAGCAGUC	1210	GACUGCUU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UUCAGUUA	2960
145	GUCGCAGU G AAGAUUGU	1211	ACAAUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGCGAC	2961
148	GCAGUGAA G AUUGUAGA	1212	UCUACAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCACUGC	2962
155	AGAUUGUA G AUAUGAAG	1213	CUUCAUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACAAUCU	2963
160	GUAGAUAU G AAGCGUGC	1214	GCACGCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAUCUAC	2964
173	GUGCCGUA G ACUGUCCA	1215	UGGACAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACGGCAC	2965
182	ACUGUCCA G AAAAUAUU	1216	AAUAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGACAGU	2966
193	AAUAUUAA G AAAGAGAU	1217	AUCUCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUAAUAUU	2967
197	UUAAGAAA G AGAUCUGU	1218	ACAGAUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCUUAA	2968
199	AAGAAAGA G AUCUGUAU	1219	AUACAGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUUCUU	2969
227	UAAAUCAU G AAAAUGUA	1220	UACAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAUUUA	2970
248	AAUUCUAU G GUCACAGG	1221	CCUGUGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAGAAUU	2971
255	UGGUCACA G GAGAGAAG	1222	CUUCUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGACCA	2972
256	GGUCACAG G AGAGAAGG	1223	CCUUCUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGUGACC	2973
258	UCACAGGA G AGAAGGCA	1224	UGCCUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUGUGA	2974
260	ACAGGAGA G AAGGCAAU	1225	AUUGCCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUCCUGU	2975
263	GGAGAGAA G GCAAUAUC	1226	GAUAUUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCUCC	2976
286	UNAUTUCO G GAGUACOG	1227	CAGUACUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAAUAA	2977
287	UAUUUCUG G AGUACUGU	1228	ACAGUACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGAAAUA	2978
299	ACUGUAGU G GAGGAGAG	1229	CUCUCCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUACAGU	2979
300	CUGUAGUG G AGGAGAGC	1230	GCUCUCCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACUACAG	2980
302	GUAGUGGA G GAGAGCUU	1231	AAGCUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCACUAC	2981
303	UAGUGGAG G AGAGCUUU	1232	AAAGCUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUCCACUA	2982
305	GUGGAGGA G AGCUUUUU	1233	AAAAAGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUCCAC	2983
314	AGCUUUUU G ACAGAAUA	1234	UAUUCUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAAAGCU	2984
318	UUUUGACA G AAUAGAGC	1235	GCUCUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCAAAA	2985
1				

323	ACAGAAUA G AGCCAGAC	1236	GUCUGGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCUGU	2986
329	UAGAGCCA G ACAUAGGC	1237	GCCUAUGU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UGGCUCUA	2987
335	CAGACAUA G GCAUGCCU	1238	AGGCAUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUGUCUG	2988
344	GCAUGCCU G AACCAGAU	1239	AUCUGGUU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AGGCAUGC	2989
350	CUGAACCA G AUGCUCAG	1240	CUGAGCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUUCAG	2990
358	GAUGCUCA G AGAUUCUU	1241	AAGAAUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAGCAUC	2991
360	UGCUCAGA G AUUCUUCC	1242	GGAAGAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUGAGCA	2992
379	CAACUCAU G GCAGGGGU	1243	ACCCCUGC GCAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAGUUG	2993
383	UCAUGGCA G GGGUGGUU	1244	AACCACCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCCAUGA	2994
384	CAUGGCAG G GGUGGUUU	1245	AAACCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGCCAUG	2995
385	AUGGCAGG G GUGGUUUA	1246	UCAAGGACAUCGUCCGGG	2996
388	GCAGGGGU G GUUVAUCU	1247	AGAUAAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCCCUGC	2997
401	AUCUGCAU G GUAUUGGA	1248	UCCAAUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGCAGAU	2998
407	೮	1249	UCAAGGACAUCGUCCGGG	5999
408	UGGUAUUG G AAUAACUC	1250	GAGUUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUACCA	3000
420	AACUCACA G GGAUAUUA	1251	UAAUAUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGAGUU	1008
421	ACUCACAG G GAUAUUAA	1252	UVAAVAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGUGAGU	3002
422	CUCACAGG G AUAUUAAA	1253	UUUAAUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUGUGAG	3003
434	UUAAACCA G AAAAUCUU	1254	AAGAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUUUAA	3004
448	CUUCUGUU G GAUGAAAG	1255	CUUUCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACAGAAG	3005
449	UUCUGUUG G AUGAAAGG	1256	CCUTUCAU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG CAACAGAA	3006
452	UGUUGGAU G AAAGGGAU	1257	AUCCCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCAACA	3007
456	GGAUGAAA G GGAUAACC	1258	GGUDAUCC GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UUUCAUCC	3008
457	GAUGAAAG G GAUAACCU	1259	AGGUUAUC GGAGGAACUCC CU UCAAGGACAUCGUCCGGG CUUUCAUC	3009
458	ຽ	1260	GAGGUUAU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG CCUUUCAU	3010
476	AAAUCUCA G ACUUUGGC	1261	GCCAAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAGAUUU	3011
482	CAGACUUU G GCUUGGCA	1262	UGCCAAGC GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AAAGUCUG	3012
487	vougacou a acaacago	1263	ACUGUUGC GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AAGCCAAA	3013
201	AGUAUUUC G GUAUAAUA	1264	UAUUAUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAAAUACU	3014
515	Ð	1265	CAAACGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACGAUUAU	3015
526	CGUUUGUU G AACAAGAU	1266	AUCUUGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACAAACG	3016

3025 3026 3028 3035 3039 3046 3018 3019 3020 3022 3023 3024 3027 3029 3030 3034 3036 3038 3040 3043 3032 3033 3041 3042 3044 3045 3047 3017 3021 3031 3037 UUCAGAAG UCAACUAA UGCAUGAA AAACAUCA ACAGGACC CACAGGAC AUGGCAAU Acuededuu UGGAGCAA UCUUCAGA שכשכשכ AACUGGUU CAGCGAGC CAUGGCAA CUGACAGC AGAAUACU AGUCAGAA CAGUCAGA AAGGGUUG AACUAAGA UUGUUCAA AGAAGUUC υσυστοσο AGCGAGCA UCCAGCGA CCAUGGCA UGACAGCU UUUCCAGU CAAGGGUU GAUUUUUUU ACACAUCU UCAAGGACAUCGUCCGGG CU UCAAGGACAUCGUCCGGG UCAAGGACAUCGUCCGGG UCAAGGACAUCGUCCGGG UCAAGGACAUCGUCCGGG CU UCAAGGACAUCGUCCGGG CU UCAAGGACAUCGUCCGGG CU UCAAGGACAUCGUCCGGG 8 D C CO D C B 5 CG CO 8 5 CG CG CG D 8 5 G S 딩 딩 CG CG 8 딩 CC S B GGAGGAAACUCC ACUCC GGAGGAAACUCC GGAGGAAACUCC GGAGGAAACUCC GGAGGAAACUCC AACUGGUU GGAGGAAACUCC GGAGGAAACUCC GGAGGAAACUCC GGAGGAAACUCC GGAGGAAACUCC ACAGCUGU GGAGGAAACUCC AACUCC GGAGGA GGAGGA UGGAUUCU GAUGGAUU CUUCUCUU AUTOCUCUU GAAAUUCU GUACUAUU GCAAUUCU GUUGGUCC AUTOUTUUT עכעכעעכע CCAAACAU GAAUACUC CAGAAGUU CAAUUCUC UGGCAAUU AGAAUACU UUUCUUUC מממממממ AGCAGAAU CCACACAU AUGAAAUU UACUAUUC GGUUGGUC UUUCCAGU עטטטטטטט UAAAGUAC CACAGGAC GGGUUGGU uuuucuuu 1275 1280 1290 1270 1272 1273 1276 1278 1279 1283 1285 1286 1296 1269 1271 1274 1282 1287 1288 1291 1292 1293 1297 1277 1281 1284 1289 1294 1295 AUUGCCAU G GGACCAAC G ACUGGAAA G AAUCCAUC AUGUGUGG GUACUUUA G AACUUCUG G AAGAGAAG G AGAAUUUC UUCAUGCA G AACCAGUU G AUGUUUGG G AAUAGUAC G GAGAAUUG G AAUUGCCA GACCAACC G ACAGCUGU G GAGUAUUC G GAAAGAAA AAAGAAAA G AAAAAAAA G AGAAUCCA G AGAAGAGA UCUGAAGA G AAGAGAAU G AAUUUCAU GUCCUGUG GGUCCUGU G GAAUAGUA AGAAUUGC ACCAACCC G AGUAUUCU G GAAAAAA G AAAAAAU G AUUCUGCU ပ හ හ Ö ט O G GAACUUCU UGCUCGCU UCGCUGGA AGUAUUCU AACCCUUG UUGCUCCA GAAGAGAA AACCAGUU UGAUGUUU GUCCUGUG AACCCAGU UUCUGACU AGAUGUGU AGAGAAGA UCUGACUG AAAAAUC UCUUAGUU UUGAACAA UUGCCAUG UGCCAUGG AGCUGUCA CAACCCUU UUAGUUGA CUUCUGAA GCUCGCUG GCUGUCAG ACUGGAAA 778 609 618 969 776 563 576 658 683 701 726 737 571 574 579 593 602 617 644 645 647 657 629 671 682 692 581 697 727

S S S S S S S S S S S S S S S S S S S	AUCAGCAA G AAUUACCA	1298	UGGUAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGCUGAU	3048
Ö	CCAUUCCA G ACAUCAAA	1299	UNUGAUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAAUGG	3049
O	UCAAAAAA G AUAGAUGG	1300	CCAUCUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUUUGA	3050
1.73	AAAAGAUA G AUGGUACA	1301	UGUACCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUCUUUU	3051
	AGAUAGAU G GUACAACA	1302	UGUUGUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCUAUCU	3052
1	CCCCUCAA G AAAGGGGC	1303	GCCCCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGAGGGG	3053
	UCAAGAAA G GGGCAAAA	1304	UNUVGCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCUUGA	3054
	CAAGAAAG G GGCAAAAA	1305	UNUTUGCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUCUUG	3055
	AAGAAAGG G GCAAAAAG	1306	CUUUUUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUUCUU	3056
175	GGCAAAAA G GCCCCGAG	1307	CUCGGGGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUUGCC	3057
(C.)	AAGGCCCC G AGUCACUU	1308	AAGUGACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGGGCCUU	3058
10	UCACUUCA G GUGGUGUG	1309	CACACCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAAGUGA	3059
IU -	CUUCAGGU G GUGUGUCA	1310	UGACACAC GGAGGAAACUCC CU UCAAGGACAUCGUCGGG ACCUGAAG	3060
ιO	GUGUGUCA G AGUCUCCC	1311	GGGAGACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGACACAC	3061
ľÜ	cucccagu e eaunuucu	1312	AGAAAAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGGGAG	3062
\Box	ucccague e auuuucua	1313	UAGAAAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACUGGGA	3063
רייו	UCCAAUUU G GACUUCUC	1314	GAGAAGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAUUGGA	3064
17)	ccaauuug g actucucu	1315	AGAGAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAAUUGG	3065
17)	CUUCUAGU G AAGAAAU	1316	AUTUTICUT GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUAGAAG	3066
IC)	CUAGUGAA G AAAAUGUG	1317	CACAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCACUAG	3067
てり	GAAAAUGU G AAGUACUC	1318	GAGUACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAUUUUC	3068
Ū	ប	1319	eceegeuu geaggaaacucc cu ucaaggacauceucege uggcugag	3069
ıΟ	cccccaca e eucunucc	1320	GGAAAGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGCGGG	3070
ıD	UUCCUUAU G GGAUACCA	1321	UGGUAUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAAGGAA	3071
ū	UCCUUAUG G GAUACCAG	1322	CUGGUAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUAAGGA	3072
ıO	ccuvauge e avaccaec	1323	GCUGGUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAUAAGG	3073
(3)	CAUACAUU G AUAAAUUG	1324	CAAUUUAU GGAGGAAACUCC CU UCAAGGACAUCGUCGGG AAUGUAUG	3074
ורא	GAUAAAUU G GUACAAGG	1325	CCUUGUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUUAUC	3075
. —	UGGUACAA G GGAUCAGC	1326	GCUGAUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGUACCA	3076
1 7 7	GGUACAAG G GAUCAGCU	1327	AGCUGAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUGUACC	3077
LZD	GUACAAGG G AUCAGCUU	1328	AAGCUGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUGUAC	3078

93

1085	CAUGUCCU G AUCAUAUG	1329	CAUAUGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGACAUG	3079
1099	AUGCUUUU G AAUAGUCA	1330	UGACUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAAGCAU	3080
1115	AGUUACUU G GCACCCCA	1331	UGGGGUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGUAACU	3081
1124	GCACCCCA G GAUCCUCA	1332	UGAGGAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGGUGC	3082
1125	CACCCCAG G AUCCUCAC	1333	GUGAGGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGGGGUG	3083
1135	UCCUCACA G AACCCCUG	1334	CAGGGGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGAGGA	3084
1143	GAACCCCU G GCAGCGGU	1335	ACCGCUGC GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AGGGGUUC	3085
1149	cuescasc e suussuca	1336	UGACCAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GCUGCCAG	3086
1153	CAGCGGUU G GUCAAAAG	1337	CUUTUGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACCGCUG	3087
1161	GGUCAAAA G AAUGACAC	1338	GUGUCAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUGACC	3088
1165	AAAAGAAU G ACACGAUU	1339	AAUCGUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUCUUUU	3089
1170	AAUGACAC G AUUCUUUA	1340	UAAAGAAU GGAGGAAACUCC CU UCAAGGACAUCGUCGGG GUGUCAUU	3090
1186	ACCAAAUU G GAUGCAGA	1341	UCUGCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUUGGU	3091
1187	CCAAAUUG G AUGCAGAC	1342	GUCUGCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUUUGG	3092
1193	UGGAUGCA G ACAAAUCU	1343	AGAUUUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCAUCCA	3093
1213	CAAUGCCU G AAAGAGAC	1344	GUCUCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGCAUUG	3094
1217	GCCUGAAA G AGACUUGU	1345	ACAAGUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCAGGC	3095
1219	CUGAAAGA G ACUUGUGA	1346	UCACAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUUCAG	3096
1226	AGACUUGU G AGAAGUUG	1347	CAACUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAAGUCU	3097
1228	ACUUGUGA G AAGUUGGG	1348	CCCAACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCACAAGU	3098
1234	GAGAAGUU G GGCUAUCA	1349	UGAUAGCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACUUCUC	3099
1235	AGAAGUUG G GCUAUCAA	1350	UUGAUAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAACUUCU	3100
1245	CUAUCAAU G GAAGAAAA	1351	ł	3101
1246	UAUCAAUG G AAGAAAG	1352	CUUTUCUT GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUUGAUA	3102
1249	CAAUGGAA G AAAAGUUG	1353	CAACUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCCAUUG	3103
1261	AGUUGUAU G AAUCAGGU	1354	ACCUGAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUACAACU	3104
1267	AUGAAUCA G GUUACUAU	1355	AUAGUAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAUUCAU	3105
1286	CAACAACU G AUAGGAGA	1356	UCUCCUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUUGUUG	3106
1290	AACUGAUA G GAGAAACA	1357	UGUIUCUC GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UAUCAGUU	3107
1291	ACUGAUAG G AGAAACAA	1358	UNGUIUTCU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG CUAUCAGU	3108
1293	UGAUAGGA G AAACAAUA	1359	UAUUGUUU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG UCCUAUCA	3109

1318	UUCAAAGU G AAUUUGUU	1360	AACAAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUUUGAA	3110
1328	AUUUGUUA G AAAUGGAU	1361	AUCCAUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAACAAAU	3111
1333	UUAGAAAU G GAUGAUAA	1362	UNAUCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUCUAA	3112
1334	UAGAAAUG G AUGAUAAA	1363	UUUAUCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUUUCUA	3113
1337	AAAUGGAU G AUAAAAUA	1364	UAUUUUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCAUTU	3114
1348	AAAAUAUU G GUUGACUU	1365	AAGUCAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUAUUUU	3115
1352	UAUUGGUU G ACUUCCGG	1366	CCGGAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACCAAUA	3116
1359	UGACUUCC G GCUUUCUA	1367	UAGAAAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGAAGUCA	3117
1369	CUUUCUAA G GGUGAUGG	1368	CCAUCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUAGAAAG	3118
1370	UUUCUAAG G GUGAUGGA	1369	UCCAUCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUAGAAA	3119
1373	CUAAGGGU G AUGGAUUG	1370	CAAUCCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCCUUAG	3120
1376	AGGGUGAU G GAUUGGAG	1371	CUCCAAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCACCCU	3121
1377	GGGUGAUG G AUUGGAGU	1372	ACUCCAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUCACCC	3122
1381	GAUGGAUU G GAGUUCAA	1373	UUGAACUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUCCAUC	3123
1382	AUGGAUUG G AGUUCAAG	1374	CUUGAACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUCCAU	3124
1390	GAGUUCAA G AGACACUU	1375	AAGUGUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGAACUC	3125
1392	GUUCAAGA G ACACUUCC	1376	GGAAGUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUGAAC	3126
1402	CACUUCCU G AAGAUUAA	1377	UVAAUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAAGUG	3127
1405	UUCCUGAA G AUUAAAGG	1378	CCUUUAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAGGAA	3128
1412	AGAUUAAA G GGAAGCUG	1379	CAGCUUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUAAUCU	3129
1413	GAUUAAAG G GAAGCUGA	1380	UCAGCUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUAAUC	3130
1414	AUUAAAGG G AAGCUGAU	1381	AUCAGCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUUAAU	3131
1420	GGGAAGCU G AUUGAUAU	1382	AUAUCAAU GGAGGAACUCC CU UCAAGGACAUCGUCCGGG AGCUUCCC	3132
1424	AGCUGAUU G AUAUUGUG	1383	CACAAUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUCAGCU	3133
1432	GAUAUUGU G AGCAGCCA	1384	UGGCUGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAAUAUC	3134
1441	AGCAGCCA G AAGGUUUG	1385	CAAACCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGCUGCU	3135
1444	AGCCAGAA G GUUUGGCU	1386	AGCCAAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUGGCU	3136
1449	GAAGGUUU G GCUUCCUG	1387	CAGGAAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAACCUUC	3137
1464	UGCCACAU G AUCGGACC	1388	GGUCCGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGUGGCA	3138
1468	ACAUGAUC G GACCAUCG	1389	CGAUGGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAUCAUGU	3139
1469	CAUGAUCG G ACCAUCGG	1390	CCGAUGGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAUCAUG	3140

1476	GGACCAUC G GCUCUGGG	1391	CCCAGAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAUGGUCC	3141
1482	uceecucu e eceaaucc	1392	GGAUUCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCCGA	3142
1483	CGGCUCUG G GGAAUCCU	1393	AGGAUUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGAGCCG	3143
1484	GGCUCUGG G GAAUCCUG	1394	CAGGAUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAGAGCC	3144
1485	GCUCUGGG G AAUCCUGG	1395	CCAGGAUU GGAGGAAACUCC CU UCAAGGACAUCGUCGGGG CCCAGAGC	3145
1492	GGAAUCCU G GUGAAUAU	1396	AUAUUCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAUUCC	3146
1495	AUCCUGGU G AAUAUAGU	1397	ACUAUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCGGGG ACCAGGAU	3147
1515	GCUAUGUU G ACAUUAUU	1398	1	3148
1531	UCUUCCUA G AGAAGAUU	1399	AAUCUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGGAAGA	3149
1533	UUCCUAGA G AAGAUUAU	1400		3150
1536	CUAGAGAA G AUUAUCCU	1401	AGGAUAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCUAG	3151
1573	UAGUUCCU G AAGUGUUC	1402	GAACACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAACUA	3152
1627	GUUUGUUC G GCAUACAA	1403		3153
1670	AAAACUUU G GGGAAAGG	1404	ccutucce geaggaaacuee eu ucaaggacaucegeg aaaguuuu	3154
1671	AAACUUUG G GGAAAGGA	1405	UCCUUUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAAGUUU	3155
1672	AACUUUGG G GAAAGGAU	1406	AUCCUUUC GGAGGAAACUCC CU UCAAGGACAUCGUCGGGG CCAAAGUU	3156
1673	ACUUUGGG G AAAGGAUG	1407	CAUCCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCAAAGU	3157
1677	UGGGGAAA G GAUGAAUA	1408	UAUUCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCCCCA	3158
1678	GGGGAAAG G AUGAAUAG	1409	CUAUUCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUCCCC	3159
1681	GAAAGGAU G AAUAGAAU	1410	AUUCUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCUUUC	3160
1686	GAUGAAUA G AAUUCAUU	1411	AAUGAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCAUC	3161
1696	AUUCAUUU G AUUAUUUC	1412	GAAAUAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAUGAAU	3162
1725	UAGUAUCU G AAUUUGAA	1413	UUCAAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAUACUA	3163
1731	CUGAAUUU G AAACUCAU	1414	AUGAGUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAUUCAG	3164
1742	ACUCAUCU G GUGGAAAC	1415		3165
1745	CAUCUGGU G GAAACCAA	1416	UVGGUUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCAGAUG	3166
1746	AUCUGGUG G AAACCAAG	1417	CUUGGUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACCAGAU	3167
1760	AAGUUUCA G GGGACAUG	1418	CAUGUCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAAACUU	3168
1761	AGUUUCAG G GGACAUGA	1419	UCAUGUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGAAACU	3169
1762	GUUUCAGG G GACAUGAG	1420	CUCAUGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUGAAAC	3170
1763	UUUCAGGG G ACAUGAGU	1421	ACUCAUGU GGAGGAAACUCC CU UCAAGGACAUCGUCGGGG CCCUGAAA	3171

Input Sequence = AF016582. Cut Site = $G/$. Stem Length = 8. Core Sequence = $GGAGGAACUCC$ CU UCAAGGACAUCGUCCGGG	1768	GGGGACAU G AGUUUUCC	<u>ğ</u>	G AGI	3000C		1422		GGAAAACU	GGAC	GAAACUCC	8	GGAAAACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGUCC	AUGUC
tem Length = 8.	Input	Sequence	1)	AF0	16582	•	: Sit	ti	G/.					
	tem		ω.	•	ore 5	seguenc	ă	GGAG	GAAACUCC	CG	UCAAGGACAU	CGU	נככפפפ	

97

CLAIMS

PCT/US01/03504

What is claimed is:

- 1. A nucleic acid molecule which down regulates expression of a Chk1 gene.
- 2. The nucleic acid of claim 1, wherein said nucleic acid molecule is used to treat cancer.
- 5 3. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule is an enzymatic nucleic acid molecule.
 - 4. The nucleic acid of claim 3, wherein a binding arm of said enzymatic nucleic acid molecule comprise sequences complementary to any of sequences defined as Sequence ID Nos. 1-1422.
- The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule comprises any of sequences defined as sequence ID Nos. 1423-3172.
 - 6. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule is an antisense nucleic acid molecule.
- 7. The nucleic acid molecule of claim 6, wherein said antisense nucleic acid molecule comprises sequence complementary to any of sequence defined as Sequence ID Nos. 1-1422 and 3173-3180.
 - 8. The nucleic acid molecule of claim 6, wherein said antisense nucleic acid molecule comprise any of sequences defined as sequence ID Nos. 3181-3188.
- 9. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a hammerhead (HH) motif.
 - 10. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a hairpin, hepatitis Delta virus, group I intron, VS nucleic acid, amberzyme, zinzyme or RNAse P nucleic acid motif.
- 11. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a NCH motif.
 - 12. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a G-cleaver motif.

- 13. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is a DNAzyme.
- 14. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule comprises between 12 and 100 bases complementary to the RNA of Chk1 gene.
- 5 15. The nucleic acid of claim 3, wherein said enzymatic nucleic acid molecule comprises between 14 and 24 bases complementary to the RNA of Chk1 gene.
 - 16. The nucleic acid molecule of claim 1, wherein said nucleic acid is chemically synthesized.
- 17. The nucleic acid molecule of claim 1, wherein said nucleic acid comprises at least one 2'sugar modification.
 - 18. The nucleic acid molecule of claim 1, wherein said nucleic acid comprises at least one nucleic acid base modification.
 - 19. The nucleic acid molecule of claim 1, wherein said nucleic acid comprises at least one phosphate backbone modification.
- 15 20. A mammalian cell including the nucleic acid molecule of claim 1.
 - 21. The mammalian cell of claim 20, wherein said mammalian cell is a human cell.
 - 22. A method of reducing Chk1 activity in a cell, comprising the step of contacting said cell with the nucleic acid molecule of claim 1, under conditions suitable for said reduction of Chk1 activity.
- 20 23. A method of treatment of a patient having a condition associated with the level of Chk1, comprising contacting cells of said patient with the nucleic acid molecule of claim 1, under conditions suitable for said treatment.
 - 24. The method of claim 23 further comprising the use of one or more therapies under conditions suitable for said treatment.
- 25 25. A method of cleaving RNA of Chk1 gene, comprising, contacting the nucleic acid molecule of claim 1, with said RNA under conditions suitable for the cleavage of said RNA.

- 26. The method of claim 25, wherein said cleavage is carried out in the presence of a divalent cation.
- 27. The method of claim 26, wherein said divalent cation is Mg^{2+} .
- The nucleic acid molecule of claim 1, wherein said nucleic acid comprises a cap structure, wherein the cap structure is at the 5'-end or 3'-end or both the 5'-end and the 3'-end.
 - 29. The enzymatic nucleic acid molecule of claim 9, wherein said hammerhead motif comprises sequences complementary to any of sequences shown as Seq ID Nos 1-358.
- The enzymatic nucleic acid molecule of claim 11, wherein said NCH motif comprises sequences complementary to any of sequences shown as Seq ID Nos 359-680.
 - 31. The enzymatic nucleic acid molecule of claim 12, wherein said G-cleaver motif comprises sequences complementary to any of sequences shown as Seq ID Nos 681-790.
 - 32. The enzymatic nucleic acid molecule of claim 13, wherein said DNAzyme comprises sequences complementary to any of substrate sequences shown as Seq. ID Nos 791-1185.
- 15 33. The enzymatic nucleic acid molecule of claim 10, wherein said zinzyme comprises sequences complementary to any of substrate sequences shown as Seq. ID Nos 791-954.
 - 34. The enzymatic nucleic acid molecule of claim 10, wherein said amberzyme comprises sequences complementary to any of substrate sequences shown as Seq. ID Nos 791-1422.
- An expression vector comprising nucleic acid sequence encoding at least one nucleic acid molecule of claim 1, in a manner which allows expression of that nucleic acid molecule.
 - 36. A mammalian cell including an expression vector of claim 35.
 - 37. The mammalian cell of claim 36, wherein said mammalian cell is a human cell.
 - 38. The expression vector of claim 35, wherein said nucleic acid molecule is an enzymatic nucleic acid molecule.
- The expression vector of claim 35, wherein said expression vector further comprises a sequence for an antisense nucleic acid molecule complementary to the RNA of Chk1 gene.

- 40. The expression vector of claim 35, wherein said expression vector comprises sequence encoding at least two said nucleic acid molecules, which may be same or different.
- The expression vector of claim 40, wherein one said expression vector further comprises sequence encoding antisense nucleic acid molecule complementary to the RNA of Chk1 gene.
- 42. The expression vector of claim 40, wherein one said expression vector further comprises sequence encoding enzymatic nucleic acid molecule complementary to the RNA of Chk1 gene.
- 43. A method for treatment of cancer comprising the step of administering to a patient the nucleic acid molecule of claim 1 under conditions suitable for said treatment.
 - 44. The method of claim 43, wherein said cancer is colorectal cancer.
 - 45. The method of claim 43, wherein said cancer is lung cancer.

5

- 46. The method of claim 43, wherein said cancer is breast cancer.
- 47. The method of claim 43, wherein said cancer is prostate cancer.
- 15 48. A method for treatment of cancer comprising the step of administering to a patient the antisense nucleic acid molecule of claim 7 under conditions suitable for said treatment.
 - 49. The method of claim 45, wherein said method further comprises administering to said patient the nucleic acid molecule of claim 1 in conjunction with one or more of other therapies.
- 20 50. The method of claim 49, wherein said "other therapies" are therapies selected from the group consisting of radiation and chemotherapy treatment.
 - The nucleic acid molecule of claim 7, wherein said nucleic acid molecule comprises at least five ribose residues; at least ten 2'-O-methyl modifications, and a 3'- end modification.
- The nucleic acid molecule of claim 51, wherein said nucleic acid molecule further comprises phosphorothioate linkages on at least three of the 5' terminal nucleotides.
 - 53. The nucleic acid molecule of claim 51, wherein said 3'- end modification is 3'-3' inverted abasic moiety.

101

- 54. The nucleic acid molecule of claim 3, wherein said nucleic acid molecule comprises at least five ribose residues; at least ten 2'-O-methyl modifications, and a 3'- end modification.
- 55. The nucleic acid molecule of claim 54, wherein said nucleic acid molecule further comprises phosphorothicate linkages on at least three of the 5' terminal nucleotides.
 - 56. The nucleic acid molecule of claim 54, wherein said 3'- end modification is 3'-3' inverted abasic moiety.
 - 57. The enzymatic nucleic acid molecule of claim 13, wherein said DNAzyme comprises at least ten 2'-O-methyl modifications and a 3'-end modification.
- The enzymatic nucleic acid molecule of claim 57, wherein said DNAzyme further comprises phosphorothioate linkages on at least three of the 5' terminal nucleotides.
 - 59. The enzymatic nucleic acid molecule of claim 57, wherein said 3'- end modification is 3'-3' inverted abasic moiety.

Figure 1: Ribozyme Motifs

Figure 2: Examples of Nuclease Stable Ribozyme Motifs

Figure 3: 2'-O-Me substituted Amberzyme Enzymatic Nucleic Acid Motif

Figure 4: Stabilized Zinzyme Ribozyme Motif

Zinzyme A-motif RZ

Uppercase indicates natural ribo residues

Legend

C indicates 2' - d-NH 2-C

Lowercase: 2'- O- Me

Subscript s indicates phosphothioate linkage

B: 3'-3' abasic moiety

Figure 5: DNAzyme Motif

Legend
Y = U or C
R = A or G

ocs in HeLa cells, 24 h sustained delivery Fig. 6: Screen of Chk-1 GeneBl

normalized chk1 RNA

efficacy (Chk1, RPI# 11023) in HeLa cells concentrations, 5000 cells/well Fest of GeneBloc ng different GSV different

24 hours 16 hours 4 hours 8 hours 2 hours 2 days 3 days days Figure 8: Time course of efficacy of Chk-1 lead GeneBloc RPI# 11023 N **33** 噩 题 rmat, 5000 cells/well), 1.0 ug/ml GSV Mn 0.2 Ma 001 (96-well fo Ma 0.2 - - STREETHOUSE RPI#11023 cells - Presentiamentos - In The State of Ma 001

chk-1 RNA normalized to actin RNA

9/13

lead GeneBloc RPI# 11023 against Chk-1 Fig. 9: Test of primary

I# 11023, HeLa cells, 6-well format, 100,000 cells/well, RP 10: Test of Chk-1 lead GeneBloc Fig.

ug/ml GSV 1.25 50 nM GeneBloc, cells. ated tre +/- etoposide, nocodazole

chk-1 RNA normalized to actin RNA

chk1 RNA normalized to actin RNA

Fig. 12: T

chk1 RNA normalized to actin RNA

GeneBloc (nM)

concentration of

Fig. 13: Comparison of primary and secondary GeneBloc leads against Chk-1, Hela cells (96 well-format, 5000 cells/well), 1.25 ug/ml GSV, 24 h timepoint

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.