Κατευθυνόμενη Παράγωγος

Οι μεριχές παράγωγοι μιας συνάρτησης $f:X\subseteq\mathbb{R}^2\to\mathbb{R}$ σε ένα σημείο $(x_0,y_0)\in X$, όπου X ανοιχτό σύνολο, ορίζονται ως εξής

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f((x_0, y_0) + h(1, 0)) - f(x_0, y_0)}{h},$$

$$f_y(x_0, y_0) = \lim_{h \to 0} \frac{f((x_0, y_0) + h(0, 1)) - f(x_0, y_0)}{h}$$
(1)

και εκφράζουν το ρυθμό μεταβολής της συνάρτησης f(x,y) στην περιοχή του σημείου (x_0,y_0) κατά τις κατευθύνσεις των αξόνων x και y.

Για τον προσδιορισμό των μεταβολών της συνάρτησης f κατά την κατεύθυνση ενός αυθαίρετου διανύσματος \mathbf{u} , από τους ορισμούς των μερικών παραγώγων, οδηγούμαστε στον ακόλουθο ορισμό.

Ορισμός. (Κατευθυνόμενη Παράγωγος)

Έστω μία πραγματική συνάρτηση $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$ δύο μεταβλητών με πεδίο ορισμού το ανοικτό υποσύνολο X του \mathbb{R}^2 , $(x_0,y_0) \in X$ και $\mathbf{u} = (u_1,u_2) \in \mathbb{R}^2$ με $||\mathbf{u}|| = 1$. Τότε, η κατευθυνόμενη παράγωγος της f στο σημείο (x_0,y_0) ως προς την κατεύθυνση \mathbf{u} ορίζεται από το όριο

$$f_{\mathbf{u}}(x_0, y_0) = \lim_{h \to 0} \frac{f((x_0, y_0) + h(u_1, u_2)) - f(x_0, y_0)}{h}$$
(2)

και εκφράζει το ρυθμό μεταβολής της f στο σημείο (x_0,y_0) ως προς την κατεύθυνση \mathbf{u} , δηλαδή κατά μήκος της ευθείας του X που περνάει από το (x_0,y_0) και είναι παράλληλη στην \mathbf{u} .

Παρατήρηση. Η κατευθυνόμενη παράγωγος $f_{\bf u}$ ανάγεται με τις επιλογές ${\bf u}={\bf e}_1=(1,0)$ και ${\bf u}={\bf e}_2=(0,1)$ στις μερικές παραγώγους $f_{\bf x}$ και $f_{\bf y}$, δηλαδή ισχύει

$$f_{e1}(x_0,y_0) = f_x(x_0,y_0) \text{ Kal } f_{e2}(x_0,y_0) = f_y(x_0,y_0).$$

Παράδειγμα. Βρείτε την κατευθυνόμενη παράγωγο της συνάρτησης

$$f(x,y)=\left\{\begin{array}{ll} \frac{\sin(xy)}{y}, & y\neq 0\\ 0, & y=0 \end{array}\right.$$
 στο σημείο $\mathbf{p}=(0,0)$ ως προς την κατεύθυνση $\mathbf{u}=\frac{1}{\sqrt{2}}(1,1)$.

Λύση. Από τον τύπο (2), ευρίσκουμε

$$f_{\mathbf{u}}(0,0) = \lim_{h \to 0} \frac{f\left((0,0) + h\frac{1}{\sqrt{2}}(1,1)\right) - f(0,0)}{h} = \lim_{h \to 0} \frac{f\left(\frac{h}{\sqrt{2}}, \frac{h}{\sqrt{2}}\right)}{h}$$
$$= \lim_{h \to 0} \frac{\frac{\sin\left(\frac{h^2}{2}\right)}{\frac{h}{\sqrt{2}}}}{h} = \lim_{h \to 0} \frac{\sin\left(\frac{h^2}{2}\right)}{\frac{h^2}{\sqrt{2}}} = \frac{1}{\sqrt{2}} \lim_{h \to 0} \frac{\sin\left(\frac{h^2}{2}\right)}{\frac{h^2}{2}} = \frac{1}{\sqrt{2}}$$

4

Ο Ορισμός της κατευθυνόμενης παραγώγου επεκτείνεται και για συναρτήσεις $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ n μεταβλητών.

Στη συνέχεια, αναφέρουμε τον ορισμό του σημαντικού διανύσματος της κλίσης πραγματικής συνάρτησης πολλών μεταβλητών.

Ορισμός. (Κλίση πραγματικής συνάρτησης πολλών μεταβλητών)

Έστω $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ μία πραγματική συνάρτηση n μεταβλητών με πεδίο ορισμού ένα ανοικτό υποσύνολο X του \mathbb{R}^n . Όταν υπάρχουν οι μερικές παράγωγοι πρώτης τάξης της f: $\frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_n}$ στο $\mathbf{x}\in X$, τότε ορίζουμε ως κλίση το διάνυσμα

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1}, \frac{\partial f(\mathbf{x})}{\partial x_2}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \frac{\partial f(\mathbf{x})}{\partial x_2} \\ \vdots & \vdots & \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} & \vdots \end{pmatrix}$$
(3)

το οποίο αναφέρεται επίσης και ως ανάδελτα (gradient).

Για συναρτήσεις C^1 , ο υπολογισμός της κατευθυνόμενης παραγώγου επιτυγχάνεται με τη βοήθεια της κλίσης από την εφαρμογή του ακόλουθου θεωρήματος.

Θεώρημα. Έστω μία πραγματική συνάρτηση $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ n μεταβλητών, η οποία είναι \mathbb{C}^1 στο $\mathbf{p} \in X$. Τότε, υπάρχει η κατευθυνόμενη παράγωγος $f_{\mathbf{u}}(\mathbf{p})$ στο σημείο \mathbf{p} ως προς την κατεύθυνση \mathbf{u} και ισχύει

$$f_{\mathbf{u}}(\mathbf{p}) = \nabla f(\mathbf{p}) \cdot \mathbf{u}. \tag{4}$$

Παράδειγμα. Βρείτε την κατευθυνόμενη παράγωγο της συνάρτησης
$$f(x,y,z) = x^2y^2 + z(x+y)$$
 στο σημείο $\mathbf{p} = (1,-1,2)$ ως προς την κατεύθυνση $\mathbf{u} = \frac{1}{5}(0,3,4)$.
$$f(x,y,z) = x^2y^2 + z(x+y)$$
 $f(x,y,z) = x^2y^2 + z(x+y)$ $f(x,y,z) = x^2y^2 + z(x+y)$ $f(x,y,z) = x^2y^2 + z(x+y)$
$$f(x,y,z) = x^2y^2 + z(x+y)$$

$$f(x,y,z) = x^2y^2 + z^2$$

$$f(x,y,z) = x^2y^2 + z^2$$

$$f(x,y,z) = x^2y^2 + z^2$$

$$\nabla f(x, y, z) = (2xy^2+z, 2yx^2+z^4, x+y)$$

Θεώρημα. Έστω μία πραγματική συνάρτηση $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ n μεταβλητών, η οποία είναι \mathbb{C}^1 στο $\mathbf{p} \in X$ με $\nabla f(\mathbf{p}) \neq \mathbf{0}$ και \mathbf{u} κατεύθυνση του \mathbb{R}^n (δηλαδή $||\mathbf{u}|| = 1$). Τότε, η κατευθυνόμενη παράγωγος $f_{\mathbf{u}}(\mathbf{p})$ λαμβάνει (ως συνάρτηση του \mathbf{u}) μέγιστη τιμή ίση με $||\nabla f(\mathbf{p})||$ όταν $\nabla f(\mathbf{p})$ και \mathbf{u} είναι παράλληλα και ομόρροπα και ελάχιστη τιμή ίση με $-||\nabla f(\mathbf{p})||$ όταν $\nabla f(\mathbf{p})$ και \mathbf{u} είναι παράλληλα και αντίρροπα. Δηλαδή, η κατεύθυνση του $\nabla f(\mathbf{p})$ είναι εκείνη του μέγιστου ρυθμού αύξησης της f στο \mathbf{p} και η κατεύθυνση του $-\nabla f(\mathbf{p})$ είναι εκείνη του μέγιστου ρυθμού μείωσης της f στο \mathbf{p} .

68

Απόδειξη. Από τον γεωμετρικό ορισμό του εσωτερικού γινομένου διανυσμάτων, χρησιμοποιώντας τον τύπο (4), λαμβάνουμε

$$f_{\mathbf{u}}(\mathbf{p}) = ||\nabla f(\mathbf{p})||||\mathbf{u}||\cos\theta = ||\nabla f(\mathbf{p})||\cos\theta,$$

όπου $\theta \in [0,\pi]$ η γωνία των $\nabla f(\mathbf{p})$ και \mathbf{u} , από την οποία προκύπτουν

$$\max(f_{\mathbf{u}}(\mathbf{p})) = ||\nabla f(\mathbf{p})|| \text{ $\delta \tau \alpha \nu$ } \theta = 0, \min(f_{\mathbf{u}}(\mathbf{p})) =$$
$$-||\nabla f(\mathbf{p})|| \text{ $\delta \tau \alpha \nu$ } \theta = \pi.$$

Παράδειγμα. Η θερμοκρασία των σημείων (x,y,z) του χώρου R^3 δίνεται από τη συνάρτηση

$$f(x,y,z) = x^2 - y - 2z$$
.

Ένα πτηνό βρίσκεται στο σημείο $\mathbf{p} = (1,2,1)$. Βρείτε την κατεύθυνση που πρέπει να πετάξει ώστε να ζεσταθεί περισσότερο και ταχύτερα καθώς και το μέγιστο ρυθμό αύξησης της θερμοκρασίας.

Λύση. Οι μερικές παράγωγοι πρώτης τάξης της συνάρτησης f

$$f_x = 2x$$
, $f_y = -1$, $f_z = -2$

είναι συνεχείς συναρτήσεις και άρα η f είναι \mathbf{C}^1 συνάρτηση στο \mathbf{R}^3 .

Εξάλλου, ισχύει

$$\nabla f(\mathbf{p}) = \nabla f(1,2,1) = (2,-1,-2)$$

 $\mu \epsilon ||\nabla f(1,2,1)|| = 3.$

Επομένως, σύμφωνα με το Θεώρημα \mathcal{F} ζητούμενη κατεύθυνση είναι εκείνη του $\nabla f(1,2,1)$,

δηλαδή

$$\mathbf{V} = \frac{\nabla f(1,2,1)}{||\nabla f(1,2,1)||} = \left(\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}\right),$$

όπου διαιρέσαμε με τη $||\nabla f(1,2,1)||$ ώστε το \mathbf{u} να είναι μοναδιαίο διάνυσμα. Ο

ζητούμενος τοπικός μέγιστος ρυθμός αύξησης της θερμοκρασίας είναι

$$||\nabla f(1,2,1)|| = 3.$$

4