Matematika I

undefined undefined

Meno a priezvisko: Podpis:
Ročník: študijný program:
1. (11b) Daná je všeobecná rovnica kužeľosečky $9x^2 - 25y^2 - 54x - 100y - 44 = 0$. Doplňte
a) (2b) Stredová rovnica kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Popíšte (ak existujú):
c_1) dĺžka hlavnej poloosi je
d) (4b) Napíšte súradnice (ak existujú):
d_1) stredu kužeľosečky
e) (1h) Znázornite kužeľosečku a v náčrte popíšte jej významné prvky

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je trojuholník s vrcholmi A = [1, 1], B = [1, 2] a C = [2, 2].

- **4.** (4b) Bod M má v cylindrickej súradnicovej sústave nasledujúce súradnice: $M = \left[2\sqrt{3}, \frac{11\pi}{6}, -2\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [3, \sqrt{3}, -2]$$

d)
$$M = [-3, \sqrt{3}, -2]$$

b) (2b) Znázornite bod M v pravouhlej súradnicovej sústave.

Náčrt:

Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) - 4y'(x) + 5y(x) = \sin 2x$.
b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
harakteristická rovnica je:
b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stra- ou.
undamentálny systém riešení je
b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
artikulárne riešene je
b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
šeobecné riešenie danej LODR je
Vypočítajte, ak existuje
$\lim_{[x,y]\to[1,1]} \frac{x-1}{x+y-2}.$
ýsledok:
Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x+2y}$ v bode $T=\left[-1,y_0,\frac{1}{3}\right].$
(b) Nájdite y_0 a uveďte súradnice dotykového bodu :
b) Rovnica dotykovej roviny τ je:
Daná je funkcia $f(x,y) = \ln(x^2 + y^2)$, bod $A = [1, 2]$ a vektor $\vec{l} = (1, -2)$.
b) Nájdite gradient funkcie $f(x, y)$ v bode A .
radient funkcie $f(x,y)$ v bode A je
b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
erivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=(x-1)^2+2y^2$ a oblasť $M.$ Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[0,-1],\ B=[1,-1],\ C=[1,1]$ a $D=[0,1].$
a) Načrtnite oblasť M :
Náčrt:
Pomocou matematických vzťahov popíšte hranice oblasti M :
(a) (2b) <i>AB</i>
(b) (2b) BC
(c) (2b) CD
(d) (2b) AD
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti $M.$ Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je".
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode viazané lokálne
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
Najväčšia hodnota funkcie $f(x,y)$ je:
Najmenšia hodnota funkcie $f(x,y)$ je: