Lecture 13: DNN Optimization Theory

Haizhao Yang

Department of Mathematics University of Maryland College Park

2022 Summer Mini Course Tianyuan Mathematical Center in Central China

Supervised deep learning

Conditions

- Given data pairs $\{(x_i, y_i = f(x_i))\}$ from an unknown map f(x) defined on Ω
- $\{x_i\}_{i=1}^n$ are sampled randomly from an unknown distribution U(x) on Ω

Goal

Recover the unknown map f(x)

Deep learning in practice

Only the empirical loss is available:

$$R_{\mathcal{S}}(\theta) := \frac{1}{N} \sum_{i=1}^{N} (h(x_i; \theta) - y_i)^2$$

■ The best empirical solution is $h(x; \theta_S)$ with

$$\theta_{\mathcal{S}} = \operatorname{argmin} R_{\mathcal{S}}(\theta)$$

- Numerical optimization to obtain a numerical solution $h(x; \theta_N)$.
- In practice, $\theta_N \neq \theta_S$ and how good θ_N is?

Main Algorithms

- First order methods: stochastic gradient descent and its variants
- Second order methods: Newton method
- Quasi-second order methods: quasi-Newton methods

In Practice

First order methods usually have the best performance in terms of the computational speed and generalization error.

Main Analysis Tools for First Order Methods

- Neural tangent kernel (lazy training)
- Mean-field analysis

Neural tangent kernel/Lazy training

- Idea: in the limit of infinite width, deep learning becomes kernel methods
- Global optimization convergence:
 - Jacot et al. 2018 (two layers);
 - Du et al. 2019 (L layers, DNN);
 - Z Allen-Zhu, Y Li, Z Song 2018 (L layers, DNN, RNN);
 - D Zou*, Y Cao*, D. Zhou, and Q Gu 2018 (L layers, DNN, milder conditions)
 - Chizat et al. 2018
- Generalization theory
 - Y Cao and Q Gu, 2019a (GD)
 - Y Cao and Q Gu, 2019b (SGD)
- Consistent optimization and generalization for classification
 - Z Ji and M Telgarsky 2020
 - Z Chen*, Y Cao*, D Zou, and Q Gu 2020

Optimization objective function:

$$R_{\mathcal{S}}(\boldsymbol{\theta}) := \frac{1}{N} \sum_{i=1}^{N} (h(\boldsymbol{x}_i; \boldsymbol{\theta}) - f(\boldsymbol{x}_i))^2$$

- Introduce $\mathcal{X} := [\mathbf{x}_1, \dots, \mathbf{x}_N]^T \in \mathbb{R}^{N \times d}$, then
 - $h(\mathcal{X}; \boldsymbol{\theta}(t)) := [h(\boldsymbol{x}_i; \boldsymbol{\theta}(t))] \in \mathbb{R}^N$
 - $\nabla_{\boldsymbol{\theta}} h(\mathcal{X}; \boldsymbol{\theta}(t)) := [\nabla_{\boldsymbol{\theta}_i} h(\boldsymbol{x}_i; \boldsymbol{\theta}(t))] \in \mathbb{R}^{N \times W}$
 - $\nabla_{h(\mathcal{X};\theta(t))} R_{\mathcal{S}} := \frac{2}{N} (h(\mathcal{X};\theta(t)) f(\mathcal{X})) := [\frac{2}{N} (h(\mathbf{x}_i;\theta(t)) f(\mathbf{x}_i))] \in \mathbb{R}^N$

Gradient descent

$$\theta(t+1) = \theta(t) - \tau \frac{2}{N} \sum_{i=1}^{N} (h(\mathbf{x}_i; \theta(t)) - f(\mathbf{x}_i)) \nabla_{\theta(t)} h(\mathbf{x}_i; \theta)$$
$$= \theta(t) - \tau \nabla_{\theta} h(\mathcal{X}; \theta(t))^{T} \nabla_{h(\mathcal{X}; \theta(t))} R_{S},$$

Gradient flow

$$\partial_t \theta(t) = -\nabla_{\theta} h(\mathcal{X}; \theta(t))^T \nabla_{h(\mathcal{X}; \theta(t))} R_{\mathcal{S}},$$

Gradient flow

$$\partial_t \theta(t) = -\nabla_{\theta} h(\mathcal{X}; \theta(t))^T \nabla_{h(\mathcal{X}; \theta(t))} R_{\mathcal{S}},$$

DNN evolution

$$\partial_t h(\mathcal{X}; \theta(t)) = \nabla_{\theta} h(\mathcal{X}; \theta(t)) \partial_t \theta(t) = -\hat{\mathbf{K}}_t(\mathcal{X}, \mathcal{X}) \nabla_{h(\mathcal{X}; \theta(t))} R_{\mathcal{S}}$$
 with the neural tangent kernel (NTK)

$$\hat{\mathbf{K}}_t = \nabla_{\boldsymbol{\theta}} h(\mathcal{X}; \boldsymbol{\theta}(t)) \nabla_{\boldsymbol{\theta}} h(\mathcal{X}; \boldsymbol{\theta}(t))^T.$$

Nonlinear ODEs and challenging to analyze

Linearization

$$h^{\text{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) := h(\boldsymbol{x};\boldsymbol{\theta}(0)) + \nabla_{\boldsymbol{\theta}} h(\boldsymbol{x};\boldsymbol{\theta}(0))(\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)) \approx h(\boldsymbol{x};\boldsymbol{\theta}(t)),$$

Approximate DNN evolution

$$\begin{array}{lcl} \partial_t h^{\mathsf{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) & = & -\hat{\boldsymbol{K}}_0(\boldsymbol{x},\mathcal{X}) \nabla_{h^{\mathsf{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t))} R_{\mathcal{S}} \\ & = & -\hat{\boldsymbol{K}}_0(\boldsymbol{x},\mathcal{X}) \frac{2}{N} (h^{\mathsf{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) - f(\mathcal{X})) \end{array}$$

Linear ODE with a solution

$$h^{\text{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) = h(\boldsymbol{x};\boldsymbol{\theta}(0)) - \hat{\boldsymbol{K}}_0(\boldsymbol{x},\mathcal{X})\hat{\boldsymbol{K}}_0^{-1} \left(I - e^{-\hat{\boldsymbol{K}}_0 t}\right) (h(\mathcal{X};\boldsymbol{\theta}(0)) - \mathcal{Y})$$
 and
$$h^{\text{lin}}(\mathcal{X};\boldsymbol{\theta}(t)) = \left(I - e^{-\hat{\boldsymbol{K}}_0 t}\right) \mathcal{Y} + e^{-\hat{\boldsymbol{K}}_0 t} h(\mathcal{X};\boldsymbol{\theta}(0)).$$
 with $\mathcal{Y} := [y_1,\ldots,y_N]^T \in \mathbb{R}^N.$

Question:

How to go through the details to show the convergence to a global minimizer rigorously?

Notations:

$$\begin{aligned} \boldsymbol{a}_k^t &:= \boldsymbol{a}_k(t), \quad \boldsymbol{w}_k^t := \boldsymbol{w}_k(t), \quad \boldsymbol{\theta}^t := \boldsymbol{\theta}(t) := \operatorname{vec}\{\boldsymbol{a}_k^t, \boldsymbol{w}_k^t\}_{k=1}^N. \\ & \bar{\boldsymbol{a}}_k^t := \bar{\boldsymbol{a}}_k(t) := \gamma^{-1} \boldsymbol{a}_k(t) \\ & \text{with } 0 < \gamma < 1, \text{ e.g., } \gamma = \frac{1}{\sqrt{N}} \text{ or } \gamma = \frac{1}{N}. \\ & \bar{\boldsymbol{\theta}}(t) \text{ means } \operatorname{vec}\{\bar{\boldsymbol{a}}_k^t, \boldsymbol{w}_k^t\}_{k=1}^N. \end{aligned}$$

Initialization:

- Activation function: $\sigma(x) = \max\{x, 0\}$ for our two-layer neural network $h(\mathbf{x}_i; \theta)$.
- Prediction error at one sample: $e_i = h(\mathbf{x}_i; \theta) - f(\mathbf{x}_i)$ and $\mathbf{e} = (e_1, e_2, \dots, e_n)^{\mathsf{T}}$.
- Empirical risk:

$$R_{S}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h(\mathbf{x}_{i}; \theta) - f(\mathbf{x}_{i}))^{2} = \frac{1}{2n} \mathbf{e}^{\mathsf{T}} \mathbf{e}.$$

GD dynamics:

$$\dot{\boldsymbol{\theta}} = -\nabla_{\boldsymbol{\theta}} R_{\mathcal{S}}(\boldsymbol{\theta}),\tag{1}$$

or equivalently in terms of a_k and \mathbf{w}_k as follows:

$$\dot{a}_k = -\nabla_{a_k} R_S(\theta) = -\frac{1}{n} \sum_{i=1}^n e_i \sigma(\mathbf{w}_k^\mathsf{T} \mathbf{x}_i),$$

$$\dot{\mathbf{w}}_k = -\nabla_{\mathbf{w}_k} R_S(\theta) = -\frac{1}{n} \sum_{i=1}^n e_i a_k \sigma'(\mathbf{w}_k^\mathsf{T} \mathbf{x}_i) \mathbf{x}_i.$$

■ NTK $k^{(a)}$ for parameters in the last linear transform

$$k^{(a)}({m x},{m x}') := \mathbb{E}_{{m w} \sim \mathcal{N}({m 0},{m I}_d)} g^{(a)}({m w};{m x},{m x}'),$$

where

$$g^{(a)}(\mathbf{\textit{w}}; \mathbf{\textit{x}}, \mathbf{\textit{x}}') := [\sigma(\mathbf{\textit{w}}^\intercal \mathbf{\textit{x}})] \cdot [\sigma(\mathbf{\textit{w}}^\intercal \mathbf{\textit{x}}')] \,.$$

■ NTK $k^{(w)}$ for parameters in the first layer

$$k^{(w)}(\boldsymbol{x}, \boldsymbol{x}') := \mathbb{E}_{(\boldsymbol{a}, \boldsymbol{w}) \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_{d+1})} g^{(w)}(\boldsymbol{a}, \boldsymbol{w}; \boldsymbol{x}, \boldsymbol{x}'),$$

where

$$g^{(w)}(a, \mathbf{w}; \mathbf{x}, \mathbf{x}') := a^2 [\sigma'(\mathbf{w}^{\mathsf{T}}\mathbf{x})\mathbf{x}] \cdot [\sigma'(\mathbf{w}^{\mathsf{T}}\mathbf{x}')\mathbf{x}'].$$

■ Gram matrices $K^{(a)}$ and $K^{(w)}$ with $K_{ij}^{(a)} = k^{(a)}(\mathbf{x}_i, \mathbf{x}_j)$ and $K_{ii}^{(w)} = k^{(w)}(\mathbf{x}_i, \mathbf{x}_i)$, respectively.

Assumption

We assume that

$$\lambda_{\mathcal{S}} := \lambda_{\mathsf{min}}\left(extbf{\emph{K}}^{(a)}
ight) > 0.$$

■ The discrete NTK matrix $\hat{\pmb{K}}(\theta) = \hat{\pmb{K}}^{(a)}(\theta) + \hat{\pmb{K}}^{(w)}(\theta)$ with

$$\hat{\mathbf{K}}_{ij}^{(a)}(\theta) := \frac{1}{N} \sum_{k=1}^{N} g^{(a)}(\mathbf{w}_k; \mathbf{x}_i, \mathbf{x}_j),$$

$$\hat{\mathbf{K}}_{ij}^{(w)}(\mathbf{a}) := \frac{1}{N} \sum_{k=1}^{N} g^{(w)}(\mathbf{a}, \mathbf{w}_k; \mathbf{x}_i, \mathbf{x}_j),$$

$$\hat{\mathbf{K}}_{ij}^{(w)}(\theta) := \frac{1}{N} \sum_{k=1}^{N} g^{(w)}(a_k, \mathbf{w}_k; \mathbf{x}_i, \mathbf{x}_j).$$

- $\hat{\mathbf{K}}^{(a)}(\theta)$ and $\hat{\mathbf{K}}^{(w)}(\theta)$ are both Gram matrices (positive semi-definite).
- The dynamics of GD:

$$\frac{\mathrm{d}}{\mathrm{d}t}h(\mathbf{x}_i;\theta) = -\frac{1}{n}\sum_{j=1}^n \hat{\mathbf{K}}_{ij}(\theta)(h(\mathbf{x}_j;\theta) - f(\mathbf{x}_j))$$

and

$$\frac{\mathrm{d}}{\mathrm{d}t}R_{\mathcal{S}}(\theta) = -\|\nabla_{\theta}R_{\mathcal{S}}(\theta)\|_{2}^{2} = -\frac{N}{n^{2}}\mathbf{e}^{\mathsf{T}}\hat{\mathbf{K}}(\theta)\mathbf{e} \leq -\frac{N}{n^{2}}\mathbf{e}^{\mathsf{T}}\hat{\mathbf{K}}^{(a)}(\theta)\mathbf{e}.$$

The dynamics of GD:

$$\frac{\mathrm{d}}{\mathrm{d}t}R_{\mathcal{S}}(\theta) \le -\frac{N}{n^2} \mathbf{e}^{\mathsf{T}} \hat{\mathbf{K}}^{(a)}(\theta) \mathbf{e}. \tag{2}$$

- Goal: $h(\mathbf{x}_i; \theta(t)) \rightarrow f(\mathbf{x}_i)$ for all $\mathbf{x}_i \Leftrightarrow R_S(\theta) \rightarrow 0$.
- True if the smallest eigenvalue $\lambda_{\min}\left(\hat{\pmb{K}}^{(a)}(\theta)\right)$ has a positive lower bound uniformly in t

Introduce a stopping time $t^* = \inf\{t \mid \theta(t) \notin \mathcal{M}(\theta^0)\}$, where

$$\mathcal{M}(\boldsymbol{\theta}^{0}) := \left\{ \boldsymbol{\theta} \mid \|\hat{\boldsymbol{K}}^{(a)}(\boldsymbol{\theta}) - \hat{\boldsymbol{K}}^{(a)}(\boldsymbol{\theta}^{0})\|_{F} \leq \frac{1}{4} \lambda_{S} \right\}. \tag{3}$$

For any $t \in [0, t^*)$, we have:

Approximation

- (Initialization) $\lambda_{\min} \left(\hat{\mathbf{K}}^{(a)}(\theta(0)) \right) \approx \lambda_{\mathcal{S}}$?
- (Evolution) $\lambda_{\min} \left(\hat{\mathbf{K}}^{(a)}(\theta(0)) \right) \approx \lambda_{\min} \left(\hat{\mathbf{K}}^{(a)}(\theta(t)) \right)$?

Loss bound

■ The GD dynamics

$$\frac{\mathrm{d}}{\mathrm{d}t}R_{\mathcal{S}}(\theta) \leq -\frac{N}{n^2} \boldsymbol{e}^{\mathsf{T}}\hat{\boldsymbol{K}}^{(a)}(\theta)\boldsymbol{e}$$

And hence

$$R_S(\theta(t)) \le \exp\left(-\frac{N\lambda_S t}{n}\right) R_S(\theta^0)$$

Overparametrization:

When N is large enough, t^* is in fact equal to infinity? $\frac{1}{2}$

Theorem (Linear convergence rate (arXiv:2106.06682))

Let $\theta^0 := \operatorname{vec}\{a_k^0, \boldsymbol{w}_k^0\}_{k=1}^N$ at the GD initialization for minimizing MSE, where $a_k^0 \sim \mathcal{N}(0, \gamma^2)$ and $\boldsymbol{w}_k^0 \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d)$ with any $\gamma \in (0, 1)$. Let $C_d := \mathbb{E}\|\boldsymbol{w}\|_1^4 < +\infty$ with $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_d)$ and $\lambda_{\mathcal{S}}$ be a positive constant in our assumption. For any $\delta \in (0, 1)$, if

$$N \ge \max \left\{ \frac{32n^4 C_d}{\lambda_s^2 \delta}, \frac{4\sqrt{2}dn\sqrt{R_S(\theta^0)}}{\lambda_S}, \frac{256\sqrt{2}d^3n^2(\log(4N(d+1)/\delta))\sqrt{R_S(\theta^0)}}{\lambda_S^2} \right\}, \tag{4}$$

then with probability at least $1 - \delta$ over the random initialization θ^0 , we have, for all $t \ge 0$,

$$R_S(\theta(t)) \leq \exp\left(-rac{N\lambda_S t}{n}
ight) R_S(\theta^0).$$

Lemma

For any $\delta \in (0,1)$ with probability at least $1-\delta$ over the random initialization, we have

$$R_S(\theta^0) \leq \frac{1}{2} \left(1 + 6\gamma \sqrt{N}d \left(\log \frac{4N(d+1)}{\delta} \right) \left(\sqrt{2\log(2d)} + \sqrt{2\log(8/\delta)} \right) \right)^2$$

 $R_S(\theta^0)$ is not large.

Lemma

For any $\delta \in (0,1)$, if $N \ge \frac{16n^4C_d}{\lambda_S^2\delta}$, then with probability at least $1-\delta$ over the random initialization, we have

$$\lambda_{\mathsf{min}}\left(\hat{\pmb{K}}^{(a)}(\pmb{ heta}^0)
ight) \geq rac{3}{4}\lambda_{\mathcal{S}},$$

where $C_d := \mathbb{E} \| \mathbf{w} \|_1^4 < +\infty$ with $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$.

The law of large number:

- lacksquare $\lambda_{\mathcal{S}} := \lambda_{\min} \left(\mathbf{K}^{(a)} \right) > 0.$
- Gram matrices $K^{(a)}$ with $K^{(a)} = \mathbb{F} \qquad G^{(a)}(W, Y, Y') = \mathbb{F} \qquad \mathbb{F} = (W, Y, Y')$

$$K_{ij}^{(a)} := \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)} g^{(a)}(\mathbf{w}; \mathbf{x}, \mathbf{x}') = \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)} \left[\sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}) \right] \cdot \left[\sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}') \right].$$

$$\hat{\pmb{K}}_{ij}^{(a)}(\theta) := \frac{1}{N} \sum_{k=1}^{N} g^{(a)}(\pmb{w}_k; \pmb{x}_i, \pmb{x}_j).$$

Lemma

For any $\delta \in (0,1)$, if $N \ge \max\left\{\frac{32n^4C_d}{\lambda_s^2\delta}, \frac{4\sqrt{2}dn\sqrt{R_S(\theta^0)}}{\lambda_S}\right\}$, then with probability at least $1-\delta$ over the random initialization, for any $t \in [0,t^*)$ and any $k \in [N]$,

$$egin{aligned} |a_k(t)-a_k(0)| & \leq q, & \|oldsymbol{w}_k(t)-oldsymbol{w}_k(0)\|_{\infty} & \leq q, \ |a_k(0)| & \leq \gamma\eta, & \|oldsymbol{w}_k(0)\|_{\infty} & \leq \eta, \end{aligned}$$

where

$$q := \frac{8dn\sqrt{R_{\mathcal{S}}(\theta^0)\log\frac{4N(d+1)}{\delta}}}{N\lambda_{\mathcal{S}}}$$

and

$$\eta := \sqrt{2\log rac{4N(d+1)}{\delta}}.$$

- Concentration inequality.
- Parameters stay around initialization when width $N \to \infty$.

Lemma: $t^* = \infty$

- $t \rightarrow t^*$, $\theta(t)$ will go out of a neighborhood of $\theta(0)$.
- When $t \in [0, t^*)$, $|\theta(t) \theta(0)| \le O(\frac{1}{N})$.
- Therefore, when *N* is large enough, $t^* = \infty$.

Optimization for PDE Solvers

Question: can we apply existing optimization analysis for PDE solvers?

A simple example

- Two-layer network: $h(\mathbf{x}; \theta) = \sum_{k=1}^{N} a_k \sigma(\mathbf{w}_k^T \mathbf{x})$.
- A second order differential equation: $\mathcal{L}u = f$ with

$$\mathcal{L}u = \sum_{\alpha,\beta=1}^{d} A_{\alpha\beta}(\mathbf{x}) u_{\mathbf{x}_{\alpha}\mathbf{x}_{\beta}}.$$

- $f(\mathbf{x}; \theta) := \mathcal{L}h(\mathbf{x}; \theta) = \sum_{k=1}^{N} a_k \mathbf{w}_k^T A(\mathbf{x}) \mathbf{w}_k \sigma''(\mathbf{w}_k^T \mathbf{x}) \text{ to fit } f(\mathbf{x})$
- Much more difficult nonlinearity in x and w in the fitting than the original NN fitting.

Optimization for PDE Solvers

Assumption

- Two-layer network: $h(\mathbf{x}; \theta) = \sum_{k=1}^{N} a_k \sigma(\mathbf{w}_k^T \mathbf{x})$ on $[0, 1]^d$.
- A second order differential equation: $\mathcal{L}u = f$ with

$$\mathcal{L}u = \sum_{\alpha,\beta=1}^d A_{\alpha\beta}(\boldsymbol{x}) u_{x_\alpha x_\beta} + \sum_{\alpha=1}^d b_\alpha(\boldsymbol{x}) u_{x_\alpha} + c(\boldsymbol{x}) u.$$

• \mathcal{L} satisfies the condition: there exists $M \geq 1$ such that for all $\mathbf{x} \in \Omega = [0, 1]^d$, $\alpha, \beta \in [d]$, we have $\mathbf{A}_{\alpha\beta} = \mathbf{A}_{\beta\alpha}$

$$|A_{\alpha\beta}(\boldsymbol{x})| \leq M, \quad |b_{\alpha}(\boldsymbol{x})| \leq M, \quad \text{and} \quad |c(\boldsymbol{x})| \leq M.$$

- Fixed *n* samples in the PDE domain.
- Empirical loss

$$R_{S}(\theta) = \frac{1}{2n} \sum_{\{\boldsymbol{x}_{i}\}_{i=1}^{n}} |\mathcal{L}h(\boldsymbol{x}_{i}; \theta) - f(\boldsymbol{x}_{i})|^{2}$$

with h satisfying boundary conditions.

Optimization for PDE Solvers

Luo and Y., arXiv:2006.15733

Theorem (Linear convergence rate)

Let $\boldsymbol{\theta}^0 := \operatorname{vec}\{\boldsymbol{a}_k^0, \boldsymbol{w}_k^0\}_{k=1}^N$ be the GD initialization, where $\boldsymbol{a}_k^0 \sim \mathcal{N}(0, \gamma^2)$ and $\boldsymbol{w}_k^0 \sim \mathcal{N}(\boldsymbol{0}, \mathbb{I}_d)$ with any $\gamma \in (0, 1)$. Let $C_d := \mathbb{E} \|\boldsymbol{w}\|_1^{12} < +\infty$ with $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{0}, \mathbb{I}_d)$ and λ_S be a positive constant. For any $\delta \in (0, 1)$, if width

$$\begin{split} N \geq \max \left\{ \frac{512 n^4 M^4 C_d}{\lambda_S^2 \delta}, \frac{200 \sqrt{2} M d^3 n \log(4N(d+1)/\delta) \sqrt{R_S(\theta^0)}}{\lambda_S}, \\ \frac{2^{23} M^3 d^9 n^2 (\log(4N(d+1)/\delta))^4 \sqrt{R_S(\theta^0)}}{\lambda_S^2} \right\}, \end{split}$$

then with probability at least 1 $-\delta$ over the random initialization θ^0 , we have, for all $t \ge 0$,

$$R_{\mathbb{S}}(\theta(t)) \leq \exp\left(-\frac{N\lambda_{\mathbb{S}}t}{n}\right)R_{\mathbb{S}}(\theta^0).$$

Mean-Field Analysis

- Chizat and Bach 2018; Mei et al. 2018; Mei et al. 2019, Lu et al. 2020, etc.
- Idea:
 - 1) a two-layer neural network can be seen as an approximation to an infinitely wide neural network with parameters following a distribution p_t ;
 - 2) understanding network training via the evolution of p_t .