

Identifying Obfuscated Code through Graph-Based Semantic Analysis of Binary Code

December 10-12, 2024, Istanbul, Turkey

Roxane Cohen <rcohen@quarkslab.com>, Quarkslab & LAMSADE, CNRS

Robin David <rdavid@quarkslab.com>, Quarkslab

Florian Yger <florian.yger@dauphine.psl.eu>, INSA Rouen

Fabrice Rossi <fabrice.rossi@dauphine.psl.eu>, CEREMADE

Background: Compilation

Source Code

(C, Java, Rust)

```
int ZEXPORT inflateReset(strm)
z_streamp strm;
{
    struct inflate_state FAR *state;

    if (strm == Z_NULL || strm->state == Z_NULL)
        state = (struct inflate_state FAR *)strm->state;
        state->wsize = 0;
        state->whave = 0;
        state->wnext = 0;
        return inflateResetKeep(strm);
}
```

Compilation

(gcc, clang)

Machine Code

(x86, ARM, Aarch64)

Reverse Goal

Reverse **Engineering** > What is the function doing? > Is it legit or suspicious? (backdoor, malware)

Machine Code

(x86, ARM, Aarch64)

Control Flow Graph (CFG)

(Encode loop, and branching condition logic. One for each function)

Q

Background: Semanticinary code is not easy

Obfuscation

Definition

All the techniques used to alter the syntactic properties of a program without modifying its semantics (preserving soundness)

Obfuscation types

- Inter-procedural (between functions)
- Intra-procedural (inside functions)
- Data (constants, strings, etc.)

Obfuscation: reverser's nightmare

Why?

Intellectual property (video games, applications...)
Malwares (APT...)
Diversification

Reverser point of view

Understand what the obfuscation is supposed to hide Get rid of it (deobfuscation)

How can we recognize an obfuscated function?

Which function is obfuscated? How it is obfuscated?

Machine Learning for obfuscation detection

Current state-of-the-art

- Little study about classical ML for obfuscation detection [1, 2, 3]
- Little or no study on deep-learning potential for obfuscation detection [4]
- No satisfactory obfuscated dataset available (too small, not enough obfuscations...)

Goal: general study about ML for obfuscation analysis

- Evaluating 1) Graph representation 2) Features 3) Models 4) Data in the context of function obfuscation detection
- ➤ Binary classification vs multi-class classification (11 classes!)
- [1] Greco and al. Explaining binary obfuscation 2023
- [2] Schrittwieser and al. Modeling obfuscation stealth through code complexity. 2023
- [3] Salem and al. Metadata recovery from obfuscated programs using machine learning. 2016
- [4] Jiang and al. Function-level obfuscation detection method based on graph convolutional networks. 2021

Dataset

Dataset

- > projects: zlib, lz4, minilua, sqlite, freetype
- obfuscator: OLLVM, Tigress
- obfuscations:
 - intra (CFF, Opaque, Virtualization)
 - inter (Split, Merge, Copy)
 - o data (EncodeArithmetic, EncodeLiterals)
 - mix1 (intra & data)
 - o mix2 (intra & inter & data)
- > High class unbalance

Dataset-1

- Split per function
- Randomly assign functions (and their obfuscations variants) to a set (training, validation, testing)
- "Easy" setup as two functions belonging to the same program may be close

Dataset-2

- > Split per binary
- Assign all the functions of zlib/lz4/minilua (and their obfuscations variants) to the training set, sqlite/freetype to the validation/test set
- "Harder" setup: it must generalize to completely unseen binaries

Classical ML

Features

Reminder

- 1 function = 1 CFG = 1 graph
- Classical ML: 1 graph = 1 feature vector (1, d)

Models

inside the function assembly

Random Forest GradientBoosting

Extract various graph features

(#nodes, #edges, cyclomatic
complexity, density)

Use the TF-IDF feature of the
128-most frequent mnemonics

Cyclomatic = E - N + 2PComplexity

measure of the complexity of a code (# linearly independent paths)

mov eax, 0 operands

Graph Neural Networks

Definition

- Neural networks adapted to non-euclidean data
- Invariant to permutation
- Iteratively update initial node feature given the node neighborhood

$$a_v^{(k)} = AGGREGATE^{(k)} \left(\left\{ h_u^{(k-1)} : u \in \mathcal{N}(v) \right\} \right)$$

$$h_v^{(k)} = COMBINE^{(k)} \left(h_v^{(k-1)}, a_v^{(k)} \right)$$

$$h_G = READOUT(\left\{ h_v^{(K)} | v \in G \right\})$$

Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019)

Graph Neural Networks

GCN	$\mathbf{x}_i' = \mathbf{\Theta}^ op \sum_{j \in \mathcal{N}(i) \cup \{i\}} rac{e_{j,i}}{\sqrt{\hat{d}_j \hat{d}_i}} \mathbf{x}_j$	$\hat{d}_i = 1 + \sum_{j \in \mathcal{N}(i)} e_{j,i}$
SAGE	$\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \mathrm{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$	
GIN	$\mathbf{x}_i' = h_{\mathbf{\Theta}}\left((1+\epsilon)\cdot\mathbf{x}_i + \sum_{j\in\mathcal{N}(i)}\mathbf{x}_j ight)$	
GAT	$\mathbf{x}_i' = \sum_{j \in \mathcal{N}(i) \cup \{i\}} lpha_{i,j} \mathbf{\Theta}_t \mathbf{x}_j,$	$\alpha_{i,j} = \frac{\exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}_s^{\top}\boldsymbol{\Theta}_s\mathbf{x}_i + \mathbf{a}_t^{\top}\boldsymbol{\Theta}_t\mathbf{x}_j\right)\right)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(\mathrm{LeakyReLU}\left(\mathbf{a}_s^{\top}\boldsymbol{\Theta}_s\mathbf{x}_i + \mathbf{a}_t^{\top}\boldsymbol{\Theta}_t\mathbf{x}_k\right)\right)}$

Comparison of GNN convolution.

GIN offers the best theoretical guarantees (as powerful as the 1-WL test)

Graph Neural Networks

Reminder

- 1 function = 1 CFG = 1 graph
- GNN: 1 graph ~ 1 feature vector per node!

Features

- Identity feature (vector filled with 1's)
- Coarse assembly feature: counting the number of assembly classes (floating-point mnemonics, data-transfer mnemonics...)
- "Semantic" assembly feature: counting the assembly mnemonics (mov, lea, ...)
- "Semantic" Pcode feature: counting the Pcode mnemonics (BRANCH, STORE,...)

Pcode is an intermediary representation that translates an assembly instruction into an architecture-agnostic language

Advantage: only 72 Pcode mnemonics! Assembly mnemonics > 1800.

Evaluation

How can we compare the functions pair that should be matched (Ground-Truth) and the functions that are matched by a differ on stripped binaries?

True Positives

good match correctly identified

False Positives

wrong match identified

True Negative

Not a match considered as-is

False Negative

Good match **not** identified

Recall =
$$\frac{}{}$$
 \Rightarrow $\frac{\text{balanced accuracy}}{}$ = $\frac{\text{Recall(c0)} + ... + \text{Recall(cn)}}{n}$

C1-	Features	A 1 41	Balanced accuracy	
Graph		Algorithm	Dataset-1	Dataset-2
	Graph features &	RandomForest	0.702	0.60
	assembly (Dim: #23)	GradientBoosting	0.725	0.649
	TF-IDF on assembly	RandomForest	0.76	0.607
	mnemonics (Dim: $\#128$)	GradientBoosting	0.80	0.683
		GCN	0.634	0.608
		Sage	0.615	0.574
	Identity (Dim: #1)	GIN	0.603	0.531
		GAT	0.589	0.539
		UNet	0.616	0.555
		GCN	0.659	0.658
		Sage	0.694	0.66
	Counting mnemonic classes (Dim: #27)	GIN	0.701	0.673
		GAT	0.655	0.667
CFG		UNet	0.66	0.654
CrG		GCN	0.789	0.736
	Semantic & counting	Sage	0.801	0.755
	PCode mnemonics	GIN	0.80	0.766
	(Dim: #78)	GAT	0.805	0.731
		UNet	0.779	0.672
		GCN	0.792	0.758
	Semantic & counting	Sage	0.802	0.727
	assembly mnemonics	GIN	0.793	0.727
	(Dim: #1839)	GAT	0.797	0.729
		UNet	0.785	0.701

Stable baselines, with better scores using GB and mnemonic TF-IDF

Dataset-1 have higher score than **Dataset-2**

Cnomb	Features	A largarithans	Balanced accuracy	
Graph		Algorithm	$Dataset ext{-} 1$	Dataset - 2
	Graph features &	RandomForest	0.702	0.60
	assembly (Dim: #23)	GradientBoosting	0.725	0.649
	TF-IDF on assembly	RandomForest	0.76	0.607
	mnemonics (Dim: #128)	GradientBoosting	0.80	0.683
		GCN	0.634	0.608
		Sage	0.615	0.574
	Identity (Dim: $\#1$)	GIN	0.603	0.531
		GAT	0.589	0.539
		UNet	0.616	0.555
		GCN	0.659	0.658
		Sage	0.694	0.66
	Counting mnemonic	GIN	0.701	0.673
	classes (Dim: #27)	GAT	0.655	0.667
CFG		UNet	0.66	0.654
OrG		GCN	0.789	0.736
	Semantic & counting	Sage	0.801	0.755
	PCode mnemonics	GIN	0.80	0.766
	(Dim: #78)	GAT	0.805	0.731
		UNet	0.779	0.672
		GCN	0.792	0.758
	Semantic & counting	Sage	0.802	0.727
	assembly mnemonics	GIN	0.793	0.727
	(Dim: #1839)	GAT	0.797	0.729
		UNet	0.785	0.701

GNN with coarse features give disappointing results.

Meaningful features ("semantic") outperform baselines

G 1	Features	A.1 *41	Balanced accuracy	
Graph		Algorithm	$Dataset ext{-}1$	Dataset-2
	Graph features &	RandomForest	0.702	0.60
	assembly (Dim: $#23$)	GradientBoosting	0.725	0.649
	TF-IDF on assembly	RandomForest	0.76	0.607
	mnemonics (Dim: $\#128$)	GradientBoosting	0.80	0.683
		GCN	0.634	0.608
		Sage	0.615	0.574
	Identity (Dim: $\#1$)	GIN	0.603	0.531
		ĜAT	0.589	0.539
		UNet	0.616	0.555
	Counting mnemonic classes (Dim: #27)	GCN	0.659	0.658
		Sage	0.694	0.66
		GIN	0.701	0.673
CFG		GAT	0.655	0.667
		UNet	0.66	0.654
		GCN	0.789	0.736
	Semantic & counting	Sage	0.801	0.755
	PCode mnemonics	GIN	0.80	0.766
	(Dim: #78)	GAT	0.805	0.731
		UNet	0.779	0.672
		GCN	0.792	0.758
	Semantic & counting	Sage	0.802	0.727
	assembly mnemonics	GIN	0.793	0.727
	(Dim: $#1839$)	GAT	0.797	0.729
		UNet	0.785	0.701

Pcode feature outperforms assembly feature while being less costly (#78 instead of #1839) and CPU-agnostic

G1-	Features	A 1 : 4 1	Balanced accuracy	
Graph		Algorithm	$Dataset ext{-} 1$	Dataset-2
	Graph features &	RandomForest	0.702	0.60
	assembly (Dim: #23)	GradientBoosting	0.725	0.649
	TF-IDF on assembly	RandomForest	0.76	0.607
	mnemonics (Dim: #128)	GradientBoosting	0.80	0.683
		GCN	0.634	0.608
		Sage	0.615	0.574
	Identity (Dim: #1)	GIN	0.603	0.531
		GAT	0.589	0.539
		UNet	0.616	0.555
		GCN	0.659	0.658
		Sage	0.694	0.66
	Counting mnemonic	GIN	0.701	0.673
	classes (Dim: #27)	GAT	0.655	0.667
CFG		UNet	0.66	0.654
CrG		GCN	0.789	0.736
	Semantic & counting	Sage	0.801	0.755
	PCode mnemonics	GIN	0.80	0.766
	(Dim: # 7 8)	GAT	0.805	0.731
		UNet	0.779	0.672
		GCN	0.792	0.758
	Semantic & counting	Sage	0.802	0.727
	assembly mnemonics	GIN	0.793	0.727
	(Dim: #1839)	GAT	0.797	0.729
		UNet	0.785	0.701

Multi-class classification (11 classes)

~ ı	Features		Balanced accuracy	
Graph		Algorithm		Dataset-2
	Graph features &	RandomForest	0.65	0.57
	assembly (Dim: #23)	GradientBoosting	0.66	0.594
	TF-IDF on assembly	RandomForest	0.697	0.593
	mnemonics (Dim: #128)	GradientBoosting	0.724	0.579
		GCN	0.323	0.326
	~	Sage	0.341	0.347
	Identity (Dim: #1)	GIN	0.414	0.407
	500 11 000 000000 000	GAT	0.192	0.195
		UNet	0.362	0.299
		GCN	0.431	0.462
		Sage	0.498	0.499
	Counting mnemonic	GIN	0.488	0.474
	classes (Dim: #27)	GAT	0.45	0.342
CFG		UNet	0.439	0.448
OrG		GCN	0.721	0.675
	Semantic & counting	Sage	0.737	0.549
	PCode mnemonics	GIN	0.732	0.657
	(Dim: #78)	GAT	0.729	0.637
	196	UNet	0.704	0.655
		GCN	0.723	0.633
	Semantic & counting	Sage	0.718	0.535
	assembly mnemonics	GIN	0.713	0.427
	(Dim: #1839)	GAT	0.723	0.646
	*	UNet	0.709	0.611

Multi-class classification (11 classes)

Same trend than in the binary case!

Results are very promising given the high number of classes

	Features		Balanced accuracy	
Graph		Algorithm		Dataset-2
	Graph features &	RandomForest	0.65	0.57
	assembly (Dim: #23)	GradientBoosting	0.66	0.594
	TF-IDF on assembly	RandomForest	0.697	0.593
	mnemonics (Dim: #128)	GradientBoosting	0.724	0.579
		GCN	0.323	0.326
	~	Sage	0.341	0.347
	Identity (Dim: #1)	GIN	0.414	0.407
	0.000	GAT	0.192	0.195
		UNet	0.362	0.299
		GCN	0.431	0.462
		Sage	0.498	0.499
	Counting mnemonic	GIN	0.488	0.474
	classes (Dim: #27)	GAT	0.45	0.342
CFG		UNet	0.439	0.448
CFG		GCN	0.721	0.675
	Semantic & counting	Sage	0.737	0.549
	PCode mnemonies	GIN	0.732	0.657
	(Dim: #78)	GAT	0.729	0.637
		UNet	0.704	0.655
		GCN	0.723	0.633
	Semantic & counting	Sage	0.718	0.535
	assembly mnemonics	GIN	0.713	0.427
	(Dim: #1839)	GAT	0.723	0.646
	*	UNet	0.709	0.611

Real-world example: XTunnel

XTunnel

- Malware designed by APT28 (Russia)
- Used to exfiltrate data from a compromised device
- Obfuscated with OpaquePredicates [1]

	Binary balanced accuracy	Multi-class balanced accuracy
Sample C637E	0.726	0.533
Sample 99B45	0.711	0.55

[1] Bardin and al. **Backward-bounded dse: Targeting infeasibility questions** on obfuscated codes. 2017

Obfuscation detection and classification

- Promising results, with satisfactory baselines
- GNN need meaningful features conveying part of the function "semantics"
- GNN with a strong generalization power
- ➤ High results, both for the binary and multi-class classification
- Concrete example with malware obfuscation detection

Thank you

Contact information:

Email:

contact@quarkslab.com

Phone:

+33 1 58 30 81 51

Website:

quarkslab.com

@quarkslab