Unidade 6 – Testes para k amostras relacionadas

Teste de Friedman

Este teste tem a mesma configuração de um delineamento em blocos casualizados.

Como as k amostras estão em correspondência, o número de casos é o mesmo em cada uma delas. A correspondência pode ser estabelecida estudando-se o mesmo grupo de indivíduos sob cada um dos k tratamentos.

Hipóteses:

 $^{\rm H}{}_{\rm o}$: os tratamentos não diferem entre si;

H₁: pelo menos dois tratamentos diferem entre si.

Procedimento:

- 1) dispor os escores em uma tabela de dupla entrada com k tratamentos e n blocos;
- 2) atribuir postos de 1 a k às observações em cada bloco. Se houver empate nas ordenações, calcular a média dos postos;
- 3) determinar a soma dos postos em cada tratamento: R_j;

Blocos	T1	T2	ТЗ	Tk
1	X_{11}	X ₂₁	X ₃₁	X_{k1}
2	X_{12}	X_{22}	X_{32}	X_{k2}
		•••	•••	
n	X_{1n}	X_{2n}	X_{3n}	X_{kn}
Totais	R_1	R_2	R ₃	R _n

4) calcular o valor de χ_r^2 usando a equação:

$$\chi_r^2 = \frac{12}{nk(k+1)} \sum_{j=1}^k (R_j^2) - 3n(k+1)$$

Onde: n = número de blocos;

k = número de tratamentos;

 R_j = soma dos postos atribuídos às observações do tratamento j.

Regra de decisão:

Para amostras pequenas: k = 3, k = 4 e k = 5, localizar na tabela o valor crítico $F_{\rm r.}$

Se
$$\chi_r^2 \ge F_r$$
 rejeita-se H_0

Para demais casos, utilizar a Tabela da distribuição Qui-quadrado, com $\nu=k$ - 1 graus de liberdade.

Comparações múltiplas para o teste de Friedman

a) Caso de pequenas amostras

Consideram-se todos os pares de tratamentos e determina-se, para cada par, a diferença:

$$|Ri - Rj|$$
 $(i = 1, 2, ..., k - 1)$ $(j = i + 1, ..., k)$

Em que: Ri e Rj representam as somas das ordens atribuídas aos tratamentos i e j, respectivamente, nos n blocos.

A um nível α , admite-se: ti \neq tj, se $|\text{Ri} - \text{Rj}| \geq \Delta$, isto é, a diferença mínima significativa (d.m.s.), a um nível de significância α , é:

d.m.s =
$$\Delta$$
, ou seja:

Os valores de Δ (diferença mínima significativa) são obtidos por uma tabela específica (Tabela 18).

b) Caso de grandes amostras

Quando o número de blocos, ou o número de tratamentos, ou ambos ultrapassam os valores previstos na tabela para pequenas amostras, obtémse a diferença mínima significativa através de:

d.m.s. =
$$Q\sqrt{\frac{nk(k+1)}{12}}$$

Onde: Q é valor da amplitude, dado por uma tabela específica (Tabela 16).

Exemplo: A tabela abaixo mostra os resultados de rendimento (kg/ha) de 4 híbridos de milho (XL210, XL212, XL214 e XL215) de um experimento no delineamento em blocos casualizados com 4 repetições

BLOCOS	XL210	XL212	XL214	XL215
I	4500	7500	6000	6200
II	4800	7800	6200	6100
III	5000	7000	6300	6250
IV	4900	8000	5900	6100

Verificar pelo teste de Friedman se os híbridos diferem-se quanto ao rendimento.

H_o: os tratamentos não diferem entre si;

 H_1 : os tratamentos diferem entre si.

BL	XL210		XL212		XL214		XL215	
I	4500	1	7500	4	6000	2	6200	3
II	4800	1	7800	4	6200	3	6100	2
III	5000	1	7000	4	6300	3	6250	2
IV	4900	1	8000	4	5900	2	6100	3
	R1=	4	R2=	16	R3=	10	R4=	10

$$\chi_r^2 = \frac{12}{4 \times 4(4+1)} \left(4^2 + 16^2 + 10^2 + 10^2 \right) - 3 \times 4(4+1) = 10,80$$

Na tabela 17:

Como 10,80 > 7,50, rejeita-se a hipótese nula. Logo existem diferenças entre os tratamentos e procede-se às comparações múltiplas.

$$|R_1 - R_2| = |4 - 16| = 12$$

$$|R_1 - R_3| = |4 - 10| = 6$$

$$|R_1 - R_4| = |4 - 10| = 6$$

$$|R_2 - R_3| = |16 - 10| = 6$$

$$|R_2 - R_4| = |16 - 10| = 6$$

$$|R_3 - R_4| = |10 - 10| = 0$$

Pela Tabela 18 encontramos a DMS.

	V=4	
2	6	0,083
3	8.	0,049
1000	9	0.007
4	10	0,026
	11	0,005
5	11	0037
	12	0,013
6	12	0,037
- 1	13	0.018

A DMS será 10. Ou seja, as diferenças necessitam ser no mínimo 10 para que se tenha diferença entre os tratamentos. No nosso caso só temos diferença entre o tratamento 1 e 2 (XL210 e XL212).

Exemplo de comparações múltiplas para o teste de Friedman, para o caso de grandes amostras

Admitindo-se um caso onde k = 5 e n = 16, no qual o teste de Friedman detectou diferença significativa entre, pelo menos dois tratamentos, procede-se ao cálculo das comparações múltiplas para verificar quais deles estão causando estas diferenças, de acordo com a soma de postos a seguir:

$$R_1 = 28$$
 $R_2 = 45$ $R_3 = 41$ $R_4 = 59$ $R_5 = 67$
$$d.m.s. = Q\sqrt{\frac{nk(k+1)}{12}}$$

O valor de Q está na Tabela 16 (mesma tabela utilizada no teste de Kruskal Wallis)

	α				
K	0,20	0,10	0,05	0,01	0,001
2	1,812	2,326	2,772	3,643	4,654
3	2,424	2,902	3,314	4,120	5,063
4	2,784	3,240	3,633	4.493	5,309
5	3,037	3,478	3,858	4,603	5,484
)	3,232	3,661	4,030	4,757	5,619
7	3,389	3,808	4,170	4,882	5,730
8	3,520	3,931	4,286	4,987	5,823
9	3,632	4,037	4,386	5,078	
10	3 730	4.120	1,500	5,076	5,903

$$d.m.s. = 3,858\sqrt{\frac{16 \times 5 \times 6}{12}} = 24,4$$

Agora é só comparar a diferença entre todos os pares de R com a DMS.

$$|R_1 - R_2| = 17$$
 $|R_2 - R_4| = 14$

$$|R_1 - R_3| = 13$$
 $|R_2 - R_5| = 22$

$$|R_1 - R_4| = 31$$
 $|R_3 - R_4| = 18$

$$|R_1 - R_5| = 39$$
 $|R_3 - R_5| = 26$

$$|R_2 - R_3| = 4$$
 $|R_4 - R_5| = 8$