Lecture 2

Finite Fields and Vector Spaces

1

2.1 Binary Arithmetic and Field

• Consider the binary set, $\{0, 1\}$. Define two binary operations, called addition "+" and multiplication ":", on this set as follows:

$$0+0=0$$
 $0 \cdot 0 = 0$ $0+1=1$ $0 \cdot 1 = 0$ $1+0=1$ $1 \cdot 0 = 0$ $1 \cdot 1 = 1$

This two operations are commonly called modulo-2 addition and multiplication, respectively.

• The set {0, 1} together with modulo-2 addition and multiplication is said to form a binary field, denoted GF(2). This binary field GF(2) plays an important role in error control coding.

2.2 Vector Space over GF(2)

• A binary n-tuple is an ordered sequence,

$$(a_0, a_1, \ldots, a_{n-1})$$

with components from GF(2), i.e., $a_i = 0$ or 1 for $0 \le i < n$.

• There are 2^n distinct binary n-tuples. We denote this set of 2^n distinct binary n-tuples with \mathbf{V}_n .

• Define an addition operation on V_n as follows:

$$(a_0, a_1, \dots, a_{n-1}) + (b_0, b_1, \dots, b_{n-1})$$

= $(a_0 + b_0, a_1 + b_1, \dots, a_{n-1} + b_{n-1}),$

where $a_i + b_i$ is carried out in modulo-2 addition.

• The addition of two binary n-tuples in V_n results in a third binary n-tuple in V_n .

• Define a scalar multiplication between an element c in GF(2) and an n-tuple $(a_0, a_1, \ldots, a_{n-1})$ in V_n as follows:

$$c(a_0, a_1, \dots, a_{n-1}) = (c \cdot a_0, c \cdot a_1, \dots, c \cdot a_{n-1}),$$

where $c \cdot a_i$ is carried out in modulo-2 multiplication.

- The scalar multiplication also results in a binary n-tuple in V_n .
- The addition + defined on V_n is associative and commutative:

$$((a_0, a_1, \dots, a_{n-1}) + (b_0, b_1, \dots, b_{n-1})) + (c_0, c_1, \dots, c_{n-1})$$

$$= (a_0, a_1, \dots, a_{n-1}) + ((b_0, b_1, \dots, b_{n-1}) + (c_0, c_1, \dots, c_{n-1})),$$

$$(a_0, a_1, \dots, a_{n-1}) + (b_0, b_1, \dots, b_{n-1})$$

$$= (b_0, b_1, \dots, b_{n-1}) + (a_0, a_1, \dots, a_{n-1}).$$

• The set V_n together with the addition defined between two n-tuples in V_n and the scalar multiplication defined between an element in GF(2) and an n-tuple in V_n is said to form a **vector**

space over GF(2).

• The elements in V_n are called vectors and the elements of GF(2) are called scalars. Vectors are represented by boldface letters, e.g.,

$$\mathbf{a} = (a_0, a_1, \dots, a_{n-1}).$$

- Note that V_n contains the all-zero n-tuple, $\mathbf{0} = (0, 0, \dots, 0)$.
- Also $0 \cdot (a_0, a_1, \dots, a_{n-1}) = \mathbf{0}$, and

$$(a_0, a_1, \dots, a_{n-1}) + (a_0, a_1, \dots, a_{n-1}) = (0, 0, \dots, 0).$$

• Example 2.1: Let n = 4, the vector space V_4 over GF(2)

consists of the following 16 vectors:

- A subset S of the vector space V_n over GF(2) is called a subspace of V_n if: (1) The all-zero vector 0 is in S; (2) For any c in GF(2) and any vector a in S, $c \cdot a$ is a vector in S; and (3) For any two vectors, a and b, the sum a + b is also a vector in S.
- Example 2.2: The following set of vectors,

form a subspace of the vector space V_4 over GF(2).

2.3 Linear Combinations of Vectors

• A linear combination of k vectors, $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{k-1}$, in \mathbf{V}_n is a vector of the following form::

$$\mathbf{u} = c_0 \mathbf{v}_0 + c_1 \mathbf{v}_1 + \dots + c_{k-1} \mathbf{v}_{k-1},$$

where $c_i \in GF(2)$ for $0 \le i < k$. The scalars $c_0, c_1, \ldots, c_{k-1}$ are called the **coefficients** of the linear combination.

• There are 2^k such linear combinations of $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{k-1}$. These 2^k linear combinations give 2^k vectors in \mathbf{V}_n which form a subspace of \mathbf{V}_n . • A set of vectors, $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{k-1}$, in \mathbf{V}_n is said to be linearly independent if

$$c_0 \mathbf{v}_0 + c_1 \mathbf{v}_1 + \ldots + c_{k-1} \mathbf{v}_{k-1} \neq \mathbf{0}$$

unless all the coefficients $c_0, c_1, \ldots, c_{k-1}$ are the zero element of GF(2).

• A set of vectors, $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{k-1}$, in \mathbf{V}_n is said to be linearly dependent if the there exist k scalars **not all zero** such that

$$c_0 \mathbf{v}_0 + c_1 \mathbf{v}_1 + \ldots + c_{k-1} \mathbf{v}_{k-1} = \mathbf{0}$$

• The subspace given by the 2^k linear combinations of k linearly independent vectors, $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_{k-1}$, in \mathbf{V}_n is called a k-dimensional subspace \mathbf{S} of \mathbf{V}_n . We say that \mathbf{S} is spanned by these k linearly independent vectors. These k linearly

- independent vectors are said to form a basis \mathcal{B} of S.
- For a given k-dimensional subspace S of the vector space V_n over GF(2), there may be more than one basis with k linearly independent vectors which span the subspace S.
- V_n is an n-dimensional vector space over GF(2) and is spanned by the n linearly independent vectors, $e_0, e_0, \ldots, e_{n-1}$, where the ith vector,

$$\mathbf{e}_i = (0, 0, \dots, 0, 1, 0, \dots, 0),$$

has a 1-component at the *i*th position and all the other components are zeros. Any vector $\mathbf{a} = (a_0, a_1, \dots, a_{n-1})$ is given by the following linear combination of $\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{n-1}$:

$$\mathbf{a} = a_0 \mathbf{e}_0 + a_1 \mathbf{e}_1 + \ldots + a_{n-1} \mathbf{e}_{n-1}.$$

The set $\{\mathbf{e}_i : 0 \le i < n\}$ forms a basis of \mathbf{V}_n .

2.4 Dual Space

• Inner product: The inner product of two vectors, $\mathbf{a} = (a_0, a_1, \dots, a_{n-1})$ and $\mathbf{b} = (b_0, b_1, \dots, b_{n-1})$, in \mathbf{V}_n is defined as follows:

$$\mathbf{a} \cdot \mathbf{b} = a_0 \cdot b_0 + a_1 \cdot b_1 + \ldots + a_{n-1} \cdot b_{n-1},$$

where $a_i \cdot b_i$ and $a_i \cdot b_i + a_{i+1} \cdot b_{i+1}$ are carried out in modulo-2 multiplication and addition, respectively. Hence, the inner product $a \cdot b$ of a and b is a scalar, either 0 or 1.

• Two vectors \mathbf{a} and \mathbf{b} in \mathbf{V}_n are said to be **orthogonal** if their inner product $\mathbf{a} \cdot \mathbf{b} = 0$.

• Example 2.3 The inner product of vectors, (11011) and (10101), in the vector space V_5 over GF(2) is

$$(11011) \cdot (10101) = 1 \cdot 1 + 1 \cdot 0 + 0 \cdot 1 + 1 \cdot 0 + 1 \cdot 1$$
$$= 1 + 0 + 0 + 0 + 1$$
$$= 0.$$

Hence, these two vectors are orthogonal.

• Let S be a k-dimensional subspace of the vector space V_n of all the n-tuples over GF(2). Let S_d be the subset of vectors in V_n such that for any vector $a \in S$ and any vector $b \in S_d$,

$$\mathbf{a} \cdot \mathbf{b} = 0$$

• S_d contains at least the all-zero n-tuple 0 and hence it is

non-empty.

- S_d is an (n-k)-dimensional subspace of V_n and is called the **dual** (or **null**) **space** of S and vice versa. Since S_d is an (n-k)-dimensional subspace of V_n , it must contain n-k linearly independent vectors $\mathbf{u}_0, \mathbf{u}_1, \ldots, \mathbf{u}_{n-k-1}$ that span S_d .
- Example 2.4: Consider the vector space V_5 of all the 5-tuples over GF(2). The following 3-dimensional and 2-dimensional subspaces S and S_d of V_5 are dual spaces to each other.

S	\mathbf{S}_d

- (00000) (00000)
- (11100) (10101)
- $(01010) \quad (01110)$
- (10001) (11011)
- (10110)
- (01101)
- (11011)
- (00111)

2.5 Irreducible Polynomials over GF(2)

A polynomial

$$f(X) = f_0 + f_1 X + \dots + f_n X^n$$

in X with coefficients f_i from the binary field GF(2) is called a polynomial over GF(2) or a binary polynomial. If $f_n \neq 0$, f(X) is said to have degree n, otherwise it has degree less than n.

- For example, $1 + X + X^2$, $1 + X + X^4$, $1 + X^3 + X^5$ are binary polynomials of degree 2, 4 and 5, respectively.
- A polynomial p(X) over GF(2) of degree m is said to be **irreducible** if it is not divisible by any polynomial over GF(2) of degree less than m but greater than zero.

• For example,

$$1+X+X^2, 1+X+X^4, 1+X^3+X^4, 1+X+X^5, 1+X^2+X^5$$
 are irreducible polynomials over GF(2).

- For any positive integer $m \ge 1$, there exists at least one irreducible polynomial of degree m over GF(2).
- An irreducible polynomial p(X) of degree m over GF(2) is said to be **primitive** if the smallest positive integer n for which p(X) divides $X^n + 1$ is $n = 2^m 1$.
- For example, $1 + X + X^4$ is a primitive polynomial. The smallest positive integer n for which $1 + X + X^4$ divides $X^n + 1$ is $n = 2^4 1 = 15$.
- For any positive integer m, there exists a primitive polynomial of degree m over GF(2).

• Table 2.1 gives a list of primitive polynomials.

Table 2.1: A List of Primitive Polynomials

Degree m	Primitive Polynomials
3	$1 + X + X^3$
4	$1 + X + X^4$
5	$1 + X^2 + X^5$
6	$1 + X + X^6$
7	$1 + X^3 + X^7$
8	$1 + X^2 + X^3 + X^4 + X^8$
9	$1 + X^4 + X^9$
10	$1 + X^3 + X^{10}$
11	$1 + X^2 + X^{11}$
12	$1 + X + X^4 + X^6 + X^{12}$
13	$1 + X + X^3 + X^4 + X^{13}$
14	$1 + X + X^6 + X^{10} + X^{14}$
15	$1 + X + X^{15}$
16	$1 + X + X^3 + X^{12} + X^{16}$
17	$1 + X^3 + X^{17}$
18	$1 + X^7 + X^{18}$
19	$1 + X + X^2 + X^5 + X^{19}$
20	$1 + X^3 + X^{20}$
21	$1 + X^2 + X^{21}$
22	$1 + X + X^{22}$
23	$1 + X + X^2 + X^7 + X^{23}$

2.6 Groups

- Let G be a set of elements. A binary operation * on G is a rule that assigns to each pair of elements a and b a uniquely defined third element c = a * b in G. When such a binary operation * is defined on G, we say that G is closed under *.
- A binary operation * on G is said to be associative if, for any a and b in G,

$$a * (b * c) = (a * b) * c.$$

 A group is an algebraic system with an associate binary operation * defined on it.

- **Definition 2.1:** A set *G* on which a binary operation * is defined is called a group if the following conditions (or axioms) are satisfied:
 - (1) The binary operation is associative.
 - (2) G contains a unique element e such that for any element e in G,

$$a * e = e * a = a$$
.

This element e is called the **identity element** of G.

(3) For any element a in G, there exists a unique element a' in G such that

$$a * a' = a' * a = e.$$

The element a' is called the **inverse** of a, and vice versa.

• A group is said to be **commutative** if its binary operation * also satisfies the following condition: For any elements a and b in G,

$$a * b = b * a$$
.

- The set of all integers is a commutative group under real addition +. The integer 0 is the identity element with respect to real addition +, and the integer -k is the inverse of the integer k.
- The set of all rational numbers excluding zero is a commutative group under real multiplication "·". Integer 1 is the identity element with respect to real multiplication "·", and the rational number $\frac{b}{a}$ is the (multiplicative) inverse of $\frac{a}{b}$.
- The number of elements in a group is called the **order** of the

group. A group of finite order is called a **finite group**.

- For any positive integer m, it is possible to construct a group of order m under a binary operation that is very similar to real addition.
- Example 2.5: The set $\{0, 1\}$ with modulo-2 addition as defined below:

is a commutative group with two elements. We can easily prove that modulo-2 addition satisfies the associative and commutative laws. The 0-element is the identity element with respect the modulo-2 addition, 0 is its own inverse and 1 is its own inverse.

• Let m be a positive integer. Consider the set of integer $G = \{0, 1, 2, \dots, m-1\}$. Let + be the real addition. Define a binary operation, denoted \boxplus . For any two integers i and j in G,

$$i \boxplus j = r$$

where r is the **remainder** resulting from dividing the sum i+j by m. By Euclids division algorithm, r is a non-negative integer between 0 and m-1 and is therefore an element in G. Thus G is closed under the binary operation \boxplus , which is called modulo-m addition.

• The modulo-m addition is associative and commutative. G is a group under the modulo-m addition where: (1) the integer 0 is

the identity element; and (2) for any integer $i \in G$, m - i is also in G and is the inverse of i with respect to \boxplus , called the additive inverse of i. Clearly, i is the additive inverse of m - i.

- The above group under modulo-m addition is called an **additive** group. The order of the group is m.
- Example 2.6: Let m=7. Table 2.2 displays the additive group $G=\{0,1,2,3,4,5,6\}$ under modulo-7 addition.

Table 2.2: The additive group with modulo-7 addition

	0	1	2	3	4	5	6
0	0	1 2 3 4 5 6	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

• Next we present a class of finite groups under a binary operation

similar to real multiplication.

- Let p be a prime, say 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...
- Consider the set of nonzero integers less than p, $G = \{1, 2, \dots, p-1\}$. Let \cdot denote real multiplication. Note that every integer in G is relatively prime to p. Define a binary operation, denoted \Box , on G as follows: For any two integers, i and j, in G,

$$i \boxdot j = r,$$

where r is the remainder resulting from dividing the real product $i \cdot j$ by p. Since both i and j are relative to p, the real product $i \cdot j$ is not divisible by p and hence r is in G and G is closed under \Box . The binary operation \Box is referred to as the modulo-p multiplication. Since real multiplication is associative and

commutative, the modulo-p multiplication \Box is also associative and commutative. The integer 1 is the identity element of G with respect to \Box . It can be proved that every element i in G has a unique inverse with respect to \Box , which is called the **multiplicative inverse** of i. G is called a **multiplicative group**.

• Example 2.7 Let p = 7. Table 2.3 displays the multiplicative group $G = \{1, 2, 3, 4, 5, 6\}$ under modulo-7 multiplication.

Table 2.3: The multiplicative group with modulo-7 multiplication

•	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	4 1 5 2 6 3	2	1

From the table, we can easily check that every integer in G has a multiplicative inverse, e.g., the multiplicative inverse of 3 is 5.

• Consider the multiplicative group $G = \{1, 2, ..., p-1\}$ under modulo-p multiplication. Let α be an element in G. We define the powers of a as follows:

$$\alpha^1 = \alpha, \ \alpha^2 = \alpha \boxdot \alpha, \ \alpha^3 = \alpha \boxdot \alpha \boxdot \alpha, \dots, \alpha^i = \alpha \boxdot \alpha \boxdot \ldots \boxdot \alpha, \dots$$

Clearly, these powers of α are element of G.

- **Definition 2.2**: A multiplicative group G is said to be **cyclic** if there exists an element α in G such that for any element β in G, there is an non-negative integer i for which $\beta = \alpha^i$. Such element α is called the **generator** of the cyclic group and we write $G = < \alpha >$.
- Consider the multiplicative group $G = \{1, 2, 3, 4, 5, 6\}$ under the modulo-7 multiplication given by Table 2.3. The powers of

3 are:

$$3^{1} = 3,$$
 $3^{2} = 3 \boxdot 3 = 2,$
 $3^{3} = 3^{2} \boxdot 3 = 2 \boxdot 3 = 6,$
 $3^{4} = 3^{3} \boxdot 3 = 6 \boxdot 3 = 4,$
 $3^{5} = 3^{4} \boxdot 3 = 4 \boxdot 3 = 5,$
 $3^{6} = 3^{5} \boxdot 3 = 5 \boxdot 3 = 1.$

- Hence G is a cyclic group with 3 as a generator.
- Definition 2.3: An non-empty subset H of a group G with a binary operation * defined on it is called a subgroup of G if H is itself a group with respect to the binary operation * of G, i.e., H satisfies all the axioms of a group under the same operation *

of G.

- To determine whether a subset *H* of a group *G* with a binary operation * is a subgroup, we need not to verify all the axioms. The following axioms are sufficient:
 - (S1) For any two elements a and b in H, a * b is also an element in H.
 - (S2) For any element a in H, its inverse is also an element in H.
- The axiom S1 implies that H is closed under operation *. Axioms S1 and S2 together imply that H contains the identity element e of G. H satisfies the associative law by virtue that every element in H is also in G and * is an operation on H.
- Example 2.8: Consider the additive group

 $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ under modulation-8 addition given by Table 2.4. The subset $H = \{0, 2, 4, 6\}$ forms a subgroup of G under modulo-8 addition as shown in Table 2.5.

Table 2.4: The additive group under modulo-8 addition

	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Table 2.5: A subgroup of the additive group under modulo-8 addition

	0	2	4	6
0	0	2	4	6
2	2	4	6	0
4	4	6	0	2
6	6	0	2	4

2.7 Finite Fields

- A **field** is a set of elements in which we can perform addition, subtraction, multiplication and division **without leaving the set**. Addition and multiplication satisfy associative, commutative and **distributive laws**.
- The system of real numbers is a field, called the real-number field. The system of complex numbers is also a field, known as the complex-number field.
- The complex-number field is actually constructed from the real-number field by requiring the symbol $i=\sqrt{-1}$ as a root of the irreducible polynomial X^2+1 over the real-number field.

- Every complex number is of the form, a + bi, where a and b are real numbers.
- The complex-number field contains the real-number field as a **subfield**. We say that the complex-number field is an **extension field** of the real-number field. Both the real and complex number fields have infinite number of elements.
- **Definition 2.4:** Let F be a set of elements on which two binary operations, called **addition** "+" and **multiplication** "·", are defined. F is a field under these two operations, if the following conditions (or axioms) are satisfied:
 - (1) F is a **commutative group** under addition "+". The identity element with respect to addition + is called the **zero**

- **element** (or the additive identity) of F and is denoted by 0.
- (2) The set F\{0} of nonzero elements of F forms a commutative group under multiplication "·". The identify element with respect to multiplication · is called the unit element (or multiplicative identity) of F and is denoted by 1.
- (3) For any three elements a, b and c in F,

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$

The above equality is called the **distributive law**, i.e., multiplication is **distributive across addition**.

• From the definition, we see that a field consists of two groups with respect to two binary operations, addition and multiplication. The group under addition is called the **additive**

group of the field, and the group under multiplication is called the **multiplicative group** of the field.

- Since each group must contain an identity element, a field must contain at least two elements.
- In a field, the additive inverse of an element a is denoted by "-a", and the multiplicative inverse of a **nonzero element** b is denoted by " b^{-1} ".
- Based on addition and multiplication operations, additive and multiplicative inverses of elements of a field, two other operations, namely **subtraction** "–" and **division** "÷", can be defined.
- Subtracting a field element b from a field element a is defined as

adding the additive inverse -b of b to a, i.e.,

$$a-b \triangleq a + (-b).$$

It is clear a - a = 0.

• Dividing a field element a by a nonzero element b is defined as multiplying a by the multiplicative inverse b^{-1} of b to a, i.e.,

$$a \div b = a \cdot (b^{-1}).$$

It is clear $a \div a = 1$ provided $a \neq 0$.

- **Definition 2.5:** The number of elements in a field is called the **order** of the field. A field with finite order is called a **finite field**, otherwise called an **infinite field**.
- The real-number and complex-number fields are examples of

infinite fields.

- The real-number and complex-number fields are examples of infinite fields.
- It is possible to construct finite fields. Finite fields are also called **Galois fields** after their discoverer, a French mathematician Galois.
- For any **prime** p and any positive integer m, there exists a Galois field, denoted $GF(p^m)$, with p^m elements. The most important subclass of Galois fields is the subclass with p=2.
- **Prime Field**: Let p be a prime. We have shown in Section 2.6 that the set $\{0, 1, \ldots, p-1\}$ forms a commutative group under modulo-p addition and the subset $\{1, 2, \ldots, p-1\}$ forms a

commutative group under modulo-p multiplication. Based on the definitions of modulo-p addition and multiplication, and the fact that real addition and multiplication satisfy the distributive law, we can prove that modulo-p addition and multiplication also satisfy the distributive law. Therefore, the set

$$GF(p) = \{0, 1, ..., p - 1\}$$

forms a finite field with p elements. This finite field is called a **prime field**.

- **Remark:** If m is not a prime, the set $\{0, 1, 2, \dots, m-1\}$ does not form a field under modulo-m addition and multiplication.
- Example 2.9 The smallest prime is p = 2. Therefore, the set $\{0, 1\}$ forms a field GF(2) with two elements under modulo-2

addition and multiplication as defined below:

+	0	1
0	0	1
1	1	0

•	0	1
0	0	0
1	0	1

This field is also called the binary field as was introduced in Section 2.1.

• Example 2.10: Let p = 7. The set $GF(7) = \{0, 1, 2, ..., 6\}$ forms a field with 7 elements under modulo-7 addition and multiplication as defined in Table 2.2 and 2.3, respectively.

\Box	0	1	2	3	4	5	6
0	0	1	2	3	4 5 6 0 1 2	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3		5

·	1	2	3	4	5	6
1	1	2	3 6 2 5 1 4	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

- **Definition 2.6:** Let F be a field. A subset K of F that is itself a field under the operations of F is called a **subfield** of F. In this context, F is called an **extension field** of K. If $K \neq F$, we say that K is a **proper subfield** of F. A field containing no proper subfields is called a **prime field**.
- Fundamental Properties of a field F:
 - (1) For every element a in F, $a \cdot 0 = 0 \cdot a = 0$.
 - (2) For any two nonzero elements a and b in F, $a \cdot b \neq 0$.
 - (3) For two elements a and b in F, $a \cdot b = 0$ implies that either a = 0 or b = 0.

(4) For any two elements a and b in F,

$$-(a \cdot b) = (-a) \cdot b = a \cdot (-b).$$

- (5) For $a \neq 0$, $a \cdot b = a \cdot c$ implies that b = c (called cancelation law).
- **Definition 2.7:** Let F be a field and 1 be its unit element (or multiplicative identity). The **characteristic** of F is defined as the smallest positive integer λ such that

$$\sum_{i=1}^{\lambda} 1 = \underbrace{1 + 1 + \ldots + 1}_{\lambda} = 0,$$

where the summation represents repeated applications of addition + of the field $\lambda-1$ times (or sum of the unit element

of F λ times). If no such λ exits, F is said to have **zero** characteristic, i.e., $\lambda = 0$.

- The characteristic λ of a finite field is a prime. The characteristic of the prime field GF(p) is p.
- **Definition 2.8:** Let b be a nonzero element of a finite field GF(q), where q is a power of a prime. The smallest positive integer n such that $b^n = 1$ is called the **order** of the nonzero field element b.
- Consider the element 2 of the prime field GF(7) given by Tables 2.2 and 2.3. The powers of 2 are:

$$2, 2^2 = 4, 2^3 = 1$$

Therefore, the smallest positive integer n for with $2^n = 1$ is

- n=3. Hence the order of 2 is 3.
- The powers, b^0, b, \ldots, b^{n-1} form a cyclic subgroup of the multiplicative group of GF(q).
- Again, consider the element 2 of the prime field GF(7) given by Tables 2.2 and 2.3. The set {1, 2, 4} form a cyclic subgroup of the multiplicative group of GF(7) given by Table 2.3.
- Theorem 2.1: The order n any nonzero element b of GF(q) divides q-1.
- **Definition 2.9:** A nonzero element a of a finite field GF(q) is called a **primitive element** if its order is q-1. That is the powers of α ,

$$\alpha^0 = 1, \alpha, \alpha^2, \dots, \alpha^{q-2}$$

form all the nonzero elements of GF(q).

- Every finite field has at least one primitive element.
- Consider the element 3 of the prime field GF(7). Using the Table 2.3, we find that the powers of element 3 are:

$$3, 3^2 = 2, 3^3 = 6, 3^4 = 4, 3^5 = 5, 3^6 = 1.$$

The order of element 3 is 6 and hence 3 is a primitive element of GF(7). The element 5 is also a primitive element of GF(7).

2.8 Construction of Galois Field $\mathbf{GF}(2^m)$

- Construction begins with a primitive polynomial (irreducible) $p(X) = 1 + p_1 X + ... + p_{m-1} X^{m-1} + X^m$ of degree m over GF(2).
- Since p(X) is irreducible over GF(2), it has no root in GF(2), i.e., neither 0 or 1 is a root of p(X).
- Since p(X) has degree m, it has m roots. These m roots must be in a larger field that contains GF(2) as a subfield.
- Let α be a root of p(X), i.e.,

$$p(\alpha) = 0.$$

• Starting from the binary field $GF(2)=\{0,1\}$ and α , we define a multiplication "·" to introduce a **sequence of powers** of α as

follows:

$$0 \cdot 0 = 0,$$

$$0 \cdot 1 = 1 \cdot 0 = 0.$$

$$1 \cdot 1 = 1$$

$$0 \cdot \alpha = \alpha \cdot 0 = 0$$

$$1 \cdot \alpha = \alpha \cdot 1 = \alpha$$

$$\alpha^2 = \alpha \cdot \alpha$$

$$\alpha^3 = \alpha \cdot \alpha \cdot \alpha$$

$$\vdots$$

$$\alpha^j = \alpha \cdot \alpha \cdot \alpha \cdot \alpha \cdot \alpha \cdot (j \text{ times})$$

$$\vdots$$

• From the definition of multiplication ":", we see that

$$0 \cdot a^{j} = a^{j} \cdot 0 = 0$$

$$1 \cdot \alpha^{j} = \alpha^{j} \cdot 1 = \alpha^{j}$$

$$\alpha^{i} \cdot \alpha^{j} = \alpha^{i+j}$$

$$(2.2)$$

• Now we have the following set of elements:

$$F = 0, 1, \alpha, \alpha^2, \dots, \alpha^j, \dots, \tag{2.3}$$

which is closed under multiplication ".".

• Since α is a root of p(X) and p(X) divides $X^{2^m-1}+1$, α must be a root of $X^{2^m-1}+1$. Hence, $\alpha^{2^m-1}+1=0$, which implies that

$$\alpha^{2^m - 1} = 1. \tag{2.4}$$

• As a result, F consists of finite number of elements,

$$F = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{2^m - 2}\}.$$
 (2.5)

- Let $\alpha^0 = 1$.
- The multiplication defined by (2.1) is carried out as follows using equality of (2.4): For $0 \le i, j < 2^m$,

$$\alpha^i \cdot \alpha^j = \alpha^{i+j} = \alpha^r, \tag{2.6}$$

where r is the remainder resulting from dividing i+j by 2^m-1 . Since $0 \le r < 2^m-1$, α^r is an element in F given by (2.5). hence F is closed under the multiplication "·" defined by (2.6).

• For $0 \le i < 2^m - 1$,

$$\alpha^i \cdot \alpha^{2^m - 1 - i} = \alpha^{2^m - 1} = 1.$$

Hence α^{2^m-1-i} is the inverse of α^i (vice versa) with respect to the multiplication "·", defined by (2.6).

• Using the fact $\alpha^{2^m-1} = 1$, we can write

$$\alpha^{2^{m}-1-i} = \alpha^{2^{m}-1} \cdot \alpha^{-i} = 1 \cdot \alpha^{-i} = \alpha^{-i}. \tag{2.7}$$

- We use α^{-i} to denote the multiplicative inverse of α^{i} .
- The element "1" in F is the multiplicative identity (or the unit element) of F.
- Based on the definition of the multiplication "·" given by (2.6), we can readily prove that multiplication "·" is both associative and commutative. Hence, $F \setminus \{0\}$ is a group under the multiplication "·", defined by (2.6).

- Next we define an addition "+" on F to make F as a group under this addition operation.
- For $0 \le i < 2^m 1$, dividing X^i by p(X), we obtain

$$X^{i} = q_{i}(X)p(X) + b_{i}(X), (2.8)$$

where $q_i(X)$ and $b_i(X)$ are quotient and remainder, respectively. The remainder is a polynomial over GF(2) with degree m-1 or less and is of the following form:

$$b_i(X) = b_{i,0} + b_{i,1}X + \ldots + b_{i,m-1}X^{m-1}.$$
 (2.9)

with $b_{i,j} \in GF(2)$.

• Since p(X) is an irreducible polynomial over GF(2) and X and p(X) are relatively prime, X^i is not divisible by p(X). Hence

for
$$0 \le i < 2^m - 1$$
,

$$b_i(X) \neq 0.$$

• For $0 \le i, j < 2^m - 1$ and $i \ne j$, we can readily prove that

$$b_i(X) \neq b_j(X). \tag{2.10}$$

• Replacing X of (2.8) by α , we have

$$\alpha^{i} = q_{i}(\alpha)p(\alpha) + b(\alpha)$$

$$= q_{i}(\alpha) \cdot 0 + b(\alpha)$$

$$= b_{i,0} + b_{i,1}\alpha + \dots b_{i,m-1}\alpha^{m-1}.$$
(2.11)

- Since $b(X) \neq 0$, $\alpha^i \neq 0$.
- Eq. (2.11) shows that each nonzero element in F can be expressed as a polynomial of α with degree m-1 or less. It

follows from (2.10) that for $i \neq j$,

$$\alpha^i \neq \alpha^j$$
.

This says that all the nonzero elements in F are distinct.

- The 0-element in F may be represented by the zero polynomial.
- Note that there are exactly 2^m polynomials of α over GF(2) with degree m-1 or less. Each of the 2^m elements in F is represented by **one and only one** of these polynomials, and each of these polynomials represents **one and only one** element in F.
- Now we define an addition "+" on F using the polynomial representations of the elements in F. Consider two elements α^i

and α^j of F in polynomial form,

$$\alpha^{i} = b_{i,0} + b_{i,1}\alpha + \dots + b_{i,m-1}\alpha^{m-1}$$
$$\alpha^{j} = b_{j,0} + b_{j,1}\alpha + \dots + b_{j,m-1}\alpha^{m-1}$$

• The addition of two elements α^i and α^j in F is defined as follows:

$$\alpha^{i} + \alpha^{j} = (b_{i,0} + b_{i,1}\alpha + \dots + b_{i,m-1}\alpha^{m-1})$$

$$+ (b_{j,0} + b_{j,1}\alpha + \dots + b_{j,m-1}\alpha^{m-1})$$

$$= (b_{i,0} + b_{j,0}) + (b_{i,1} + b_{j,1})\alpha + \dots + (b_{i,m-1} + b_{j,m-1})\alpha^{m-1}.$$
(2.12)

where $b_{i,k} + b_{j,k}$ is carried out over GF(2) (modulo-2 addition).

• The polynomial given by (2.12) is a polynomial of α with

degree m-1 or less over GF(2) and hence represents an element α^l in F. From (2.12), we can easily verify that

$$0 + \alpha^i = \alpha^i + 0. \tag{2.13}$$

Therefore, F is close under the addition "+" defined by (2.12).

- Since modulo-2 addition is associative and commutative, we can readily verify that the addition defined by (2.12) is also associative and commutative.
- Note that

$$\alpha^{i} + \alpha^{i} = (b_{i,0} + b_{i,0}) + (b_{i,1} + b_{i,1})\alpha + \dots + (b_{i,m-1} + b_{i,m-1})\alpha^{m-1}$$
$$= 0 + 0 \cdot \alpha + \dots + 0 \cdot \alpha^{m-1} = 0.$$
 (2.14)

Hence α^i is its own inverse with respect to the addition "+" defined by (2.12).

- Based on the above developments, we conclude that F is a commutative group under the addition defined by (2.12) with 0 as the additive identity.
- We can prove that the multiplication defined by (2.6) satisfies the distributive law across addition defined by (2.12).
- Up to this point, we have proved that: (1) F is a commutative group under the addition "+" defined by (2.12): (2) $F \setminus \{0\}$ is a commutative group under the multiplication defined by (2.6); and (3) multiplication and addition defined on F satisfy the

distributive law. Hence,

$$F = \{\alpha^{\infty} = 0, \alpha^{0} = 1, \alpha, ..., \alpha^{2^{m}-2}\}\$$

is a field with 2^m elements, denote $GF(2^m)$.

• Let $-\alpha^i$ denote the additive inverse of the element α^i . From (2.14), we see that

$$-\alpha^i = \alpha^i$$
.

Note that the correspondence

$$b_{i,0} + b_{i,1}\alpha + \ldots + b_{i,m-1}\alpha^{m-1}$$

 $\iff (b_{i,0}, b_{i,1}, \ldots, b_{i,m-1})$

is one-to-one.

• Therefore, every element in $GF(2^m)$ can be represented in three

forms: (1) power form; (2) polynomial form; and (3) vector form.

- It is easier to carry out addition in either polynomial form or vector form. It is much easier to perform multiplication in power form.
- Example 2.10: Let m = 4. In this example, we give the construction of the Galois field $GF(2^4)$ with 16 elements. First, we choose a primitive polynomial of degree 4 over GF(2),

$$p(X) = X^4 + X + 1.$$

• Let α be a root of p(X). Then

$$p(\alpha) = \alpha^4 + \alpha + 1 = 0.$$

Using the facts $\alpha^4 + \alpha^4 = 0$ and $\alpha^4 + 0 = 0$, we have

$$\alpha^4 = \alpha + 1.$$

• Consider the set,

$$\{0, 1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5, \alpha^6, \alpha^7, \alpha^8, \alpha^9, \alpha^{10}, \alpha^{11}, \alpha^{12}, \alpha^{13}, \alpha^{14}\}.$$

Note $\alpha^{15} = 1$.

• Using the identity $\alpha^4 = \alpha + 1$, every power α^i can be expressed

as a polynomial of a with degree 3 or less as follows:

$$0$$

$$1 = 1$$

$$\alpha = \alpha$$

$$\alpha^{2} = \alpha^{2}$$

$$\alpha^{3} = \alpha^{3}$$

$$\alpha^{4} = 1 + \alpha$$

$$\alpha^{5} = \alpha \cdot \alpha^{4} = \alpha \cdot (1 + \alpha) = \alpha + \alpha^{2}$$

$$\alpha^{6} = \alpha \cdot \alpha^{5} = \alpha \cdot (\alpha + \alpha^{2}) = \alpha^{2} + \alpha^{3}$$

$$\alpha^{7} = \alpha \cdot \alpha^{6} = \alpha \cdot (\alpha^{2} + \alpha^{3}) = \alpha^{3} + \alpha^{4} = 1 + \alpha + \alpha^{3}$$

$$\alpha^{8} = \alpha \cdot \alpha^{7} = \alpha \cdot (\alpha + \alpha + \alpha^{4}) = \alpha + \alpha^{2} + \alpha^{4} = 1 + \alpha^{2}$$

$$\alpha^{9} = \alpha \cdot \alpha^{7} = \alpha \cdot (1 + \alpha^{2}) = \alpha + \alpha^{3}$$

$$\alpha^{10} = \alpha \cdot \alpha^{9} = \alpha \cdot (\alpha + \alpha^{3}) = \alpha^{2} + \alpha^{4} = 1 + \alpha + \alpha^{2}$$

$$\alpha^{11} = \alpha \cdot \alpha^{10} = \alpha \cdot (1 + \alpha + \alpha^{2}) = \alpha + \alpha^{2} + \alpha^{3}$$

$$\alpha^{12} = \alpha \cdot \alpha^{11} = \alpha \cdot (\alpha + \alpha^{2} + \alpha^{3}) = \alpha^{2} + \alpha^{3} + \alpha^{4} = 1 + \alpha + \alpha^{2} + \alpha^{3}$$

$$\alpha^{13} = \alpha \cdot \alpha^{12} = \alpha \cdot (1 + \alpha + \alpha^{2} + \alpha^{3}) = \alpha + \alpha^{2} + \alpha^{3} + \alpha^{4} = 1 + \alpha^{2} + \alpha^{3}$$

$$\alpha^{14} = \alpha \cdot \alpha^{13} = \alpha \cdot (1 + \alpha^{2} + \alpha^{3}) = \alpha + \alpha^{3} + \alpha^{4} = 1 + \alpha^{3}$$

$$\alpha^{15} = \alpha \cdot \alpha^{14} = \alpha \cdot (1 + \alpha^{3}) = \alpha + \alpha^{4} = 1$$

• Table 2.6 gives the field of GF(2⁴) with 16 elements in three different forms.

Table 2.6: GF(2^4) generated by the primitive polynomial $p(X) = 1 + X + X^4$

Power	Polynomial Vector							
representation		representation					representation	
0	0			Р				(0 0 0 0)
1	1							$(1\ 0\ 0\ 0)$
lpha			lpha					$(0\ 1\ 0\ 0)$
$lpha^2$					$lpha^2$			(0 0 1 0)
$lpha^3$							$lpha^3$	(0 0 0 1)
$lpha^4$	1	+	α					(1 1 0 0)
$lpha^5$			α	+	$lpha^2$			(0 1 1 0)
$lpha^6$					$lpha^2$	+	$lpha^3$	(0 0 1 1)
$lpha^7$	1	+	α			+	$lpha^3$	(1 1 0 1)
$lpha^8$	1			+	$lpha^2$			(1 0 1 0)
$lpha^9$			α			+	$lpha^3$	(0 1 0 1)
$lpha^{10}$	1	+	α	+	$lpha^2$			(1 1 1 0)
$lpha^{11}$			α	+	$lpha^2$	+	$lpha^3$	(0 1 1 1)
$lpha^{12}$	1	+	α	+	$lpha^2$	+	$lpha^3$	(1 1 1 1)
α^{13}	1			+	$lpha^2$	+	$lpha^3$	(1 0 1 1)
α^{14}	1					+	α^3	(1 0 0 1)

• The primitive polynomial $p(X) = X^4 + X + 1$ that generates $GF(2^4)$ given in Table 2.6 has four roots, α , α^2 , α^4 and α^8 . To verify this, we replace X of p(X) by α , α^2 , α^4 and α^8 in turn as follows (using Table 2.6):

$$p(\alpha) = \alpha^4 + \alpha + 1 = 1 + \alpha + \alpha + 1 = 0$$

$$p(\alpha^2) = \alpha^8 + \alpha^2 + 1 = 1 + \alpha^2 + \alpha^2 + 1 = 0$$

$$p(\alpha^4) = \alpha^{16} + \alpha^4 + 1 = \alpha + 1 + \alpha + 1 = 0$$

$$p(\alpha^8) = \alpha^{32} + \alpha^8 + 1 = \alpha^2 + 1 + \alpha^2 + 1 = 0.$$

- The roots α , α^2 , α^4 and α^8 are called **conjugate roots** of p(X).
- Hence, $p(X) = (X + \alpha)(X + \alpha^2)(X + \alpha^4)(X + \alpha^8)$. Using

Table 2.6, we find that

$$p(X) = (X + \alpha)(X + \alpha^{2})(X + \alpha^{4})(X + \alpha^{8})$$

$$= (X^{2} + (\alpha + \alpha^{2})X + \alpha^{3})(X^{2} + (\alpha^{4} + \alpha^{8})X + \alpha^{12})$$

$$= (X^{2} + \alpha^{5}X + \alpha^{3})(X^{2} + \alpha^{5}X + \alpha^{12})$$

$$= X^{4} + (\alpha^{5} + \alpha^{5})X^{3} + (\alpha^{12} + \alpha^{10} + \alpha^{3})X^{2} + (\alpha^{8} + \alpha^{17})X$$

$$+ \alpha^{15}$$

$$= X^{4} + X + 1.$$

- $GF(2^m)$ is called an **extension field** of GF(2) and GF(2) is called a **ground field** of $GF(2^m)$.
- Every Galois field $GF(2^m)$ of 2^m elements is generated by a primitive polynomial of degree over GF(2).

• **Isomorphism:** To construct an extension field $GF(2^m)$ of degree m of GF(2), we need a primitive polynomial p(X) of degree m over GF(2). If a different primitive polynomial $p^*(X)$ of degree m over GF(2) is used, the construction results in an extension field $GF^*(2^m)$ of degree m of GF(2) that has the same set of elements as that of $GF(2^m)$. There is a one-to-one correspondence between $GF(2^m)$ and $GF^*(2^m)$ such that if

$$a \longleftrightarrow a^*, b \longleftrightarrow b^*, c \longleftrightarrow c^*, \text{ then}$$

$$a + b \longleftrightarrow a^* + b^*$$

$$a \cdot b \longleftrightarrow a^* \cdot b^*$$

$$(a + b) + c \longleftrightarrow (a^* + b^*) + c^*$$

$$(a \cdot b) \cdot c \longleftrightarrow (a^* \cdot b^*) \cdot c^*$$

$$a \cdot (b + c) \longleftrightarrow a^* \cdot (b^* + c^*).$$

• GF(2^m) and GF*(2^m) are said to be *isomorphic*. That is, GF(2^m) and GF*(2^m) are structurally identical. In this sense, we may say that any primitive polynomial p(X) of degree m over GF(2^m) give the same extension field GF(2^m) of degree m. This implies the **uniqueness** of the extension field GF(2^m).

Some Fundamental Properties of Gallois Field $GF(2^m)$

• Let $f(X) = f_0 + f_1X + ... + f_nX^n$ be a polynomial over GF(2). Then for any nonnegative integer t, the following equality holds,

$$[f(X)]^{2^t} = f(X^{2^t}).$$

• **Theorem 2.2:** Let f(X) be a polynomial over GF(2). Let β be a nonzero element of $GF(2^m)$. If β is a root of f(X) (i.e., $f(\beta) = 0$), then for any nonnegative integer t, β^{2^t} is also a root of f(X) (i.e., $f(\beta^{2^t}) = 0$).

• The element β^{2^t} is called a **conjugate** of β . It follows from Theorem 2.1 that

$$\beta, \beta^2, \beta^{2^2}, \ldots, \beta^{2^t}, \ldots$$

are also roots of f(X).

• For a finite field, the number of conjugates of a nonzero element β in $GF(2^m)$ must be finite. Let e be the **smallest nonnegative** integer for which

$$\beta^{2^e} = \beta.$$

This integer e is called the **exponent** of β . The powers,

$$\beta, \beta^2, \beta^{2^2}, \dots, \beta^{2^{e-1}}$$

are distinct and form all the conjugates of β .

- Let β be a nonzero element of $GF(2^m)$ with order n (i.e., n is the smallest nonnegative integer such that $\beta^n = 1$). It follows from Theorem 2.1 that n divides $2^m 1$. Let $2^m 1 = kn$.
- Consider β^{2^m-1} . Then $\beta^{2^m-1}=\beta^{kn}=(\beta^n)^k$. Since $\beta^n=1$, $\beta^{2^m-1}=1$.

This implies that β is a root of $X^{2^m-1}+1$.

- Theorem 2.3: The $2^m 1$ nonzero elements of $GF(2^m)$ form all the roots of $X^{2^m-1} + 1$. Conversely, all the $2^m 1$ roots of $X^{2^m-1} + 1$ form all the nonzero elements of $GF(2^m)$.
- It follows from Theorem 2.3 that

$$X^{2^{m}-1} + 1 = (X+1)(X+\alpha)(X+\alpha^{2})...(X+\alpha^{2^{m}-2}).$$

- **Definition 2.10:** Let β be an element of $GF(2^m)$. Let $\phi(X)$ be the polynomial of the **smallest degree** over GF(2) that has β as a root, i.e., $\phi(\beta) = 0$. This polynomial $\phi(X)$ is called the **minimal polynomial** of β .
- **Theorem 2.4:** The minimal polynomial $\phi(X)$ of a field element β is irreducible.
- **Theorem 2.5:** The minimal polynomial $\phi(X)$ of a field element β is unique.
- **Theorem 2.6:** Let f(X) be a polynomial over GF(2). Let $\phi(X)$ be the minimal polynomial of an element β in GF(2^m). If β is a root of f(X), then f(X) is divisible by $\phi(X)$.
- Theorem 2.7: Let p(X) be an irreducible over GF(2). Let β be

an element of $GF(2^m)$ and $\phi(X)$ be its minimal polynomial. If β is a root of p(X), then $\phi(X) = p(X)$.

- The minimal polynomial of the 0-element of $GF(2^m)$ is X.
- It follows from Theorems 2.3 and 2.6 that we have Theorem 2.8.
- **Theorem 2.8:** Let $\phi(X)$ be the minimal polynomial of a nonzero element of $GF(2^m)$. Then $\phi(X)$ divides $X^{2^m-1}+1$.
- Theorem 2.9: Let $\phi(X)$ be the minimal polynomial of an element β of $GF(2^m)$ whose exponent is e. Then

$$\phi(X) = \prod_{i=0}^{e-1} (X + \beta^{2^t}).$$

• Example 2.11: Consider the field $GF(2^4)$ given by Table 2.6.

The conjugates of α^3 are:

$$\alpha^3, (\alpha^3)^2 = \alpha^6, (\alpha^3)^{2^2} = \alpha^{12}, (\alpha^3)^{2^3} = \alpha^{24} = \alpha^9.$$

Note that $(\alpha^3)^{2^4} = \alpha^{48} = \alpha^3$. Hence, the minimal polynomial of α^3 is

$$\phi(X) = (X + \alpha^3)(X + \alpha^6)(X + \alpha^9)(X + \alpha^{12}).$$

Expanding the right-hand side of the above equation, we have

$$\phi(X) = X^4 + X^3 + X^2 + X + 1,$$

which is irreducible.

Consider the element α^5 of GF(2⁴). The conjugates of α^5 are α^5 and α^{10} . Since $(\alpha^5)^{2^2} = \alpha^{20} = \alpha^5$, the exponent of α^5 is e = 2.

The minimal polynomial of α^5 is then

$$\phi(X) = (X + \alpha^5)(X + \alpha^{10}) = X^2 + (\alpha^5 + \alpha^{10})X + \alpha^{15}$$
$$= X^2 + X + 1.$$

2.9 Construction of Galois Field GF(q)

- Construction of a Galois field GF(q) with $q = p^m$ elements, where p is a prime, is similar to the construction of Galois field $GF(2^m)$ with 2^m elements.
- Construction begins with a prime field GF(p) as the ground field and a (monic) primitive polynomial

$$p(X) = p_0 + p_1 X + \ldots + p_{m-1} X^{m-1} + X^m$$

degree m over GF(p), where $p_0 \neq 0$.

- Let α be a root of p(X). Then the construction process of $GF(p^m)$ is exactly the same as that of $GF(2^m)$ from the binary ground field and a binary primitive polynomial p(X).
- The fundamental properties of $GF(p^m)$ are exactly the same as those of $GF(2^m)$.
- In fact, we can construct a Galois field $GF(q^m)$ with q^m elements from a ground field GF(q), where q is a power of prime, and a (monic) primitive polynomial p(X) of degree m over GF(q). Again, the construction of $GF(q^m)$ is exactly the same as that of $GF(2^m)$ from GF(2).

2.10 Vector spaces

- **Definition 2.11:** Let F be a field. Let V be a set of elements on which a binary operation called addition + is defined. A multiplication operation, denoted by "·", is defined between the elements of F and the elements of V. The set V is called a vector space over the field F if it satisfies the following axioms:
 - (1) V is a commutative group under addition + defined on V.
 - (2) For any element a in F and any element \mathbf{v} in \mathbf{V} , $a \cdot \mathbf{v}$ is an element in \mathbf{V} .

(3) For any elements a and b in F and any element v in V, the following associative law holds:

$$(a \cdot b) \cdot \mathbf{v} = a \cdot (b \cdot \mathbf{v}).$$

(4) For any element a in F and any elements u and v in V, the following distributive law holds:

$$a \cdot (\mathbf{u} + \mathbf{v}) = a \cdot \mathbf{u} + a \cdot \mathbf{v}.$$

(5) For any two elements a and b in F and any element \mathbf{v} in \mathbf{V} , the following distributive law holds:

$$(a+b) \cdot \mathbf{v} = a \cdot \mathbf{v} + b \cdot \mathbf{v}.$$

(6) Let 1 be the unit element of F. Then, for any element \mathbf{v} in

 \mathbf{V} ,

$$1 \cdot \mathbf{v} = \mathbf{v}$$
.

- The elements of V are called **vectors** and denoted by boldface lower-case letters, u, v, w, etc. The elements of F are called **scalars** and denoted by lower-case letters, a,b, c, etc. The addition + on V is called **vector addition**, the multiplication "·" that combines a scalar a in F and a vector v in V into a vector $a \cdot v$ in V is referred to as **scalar multiplication**, and the vector $a \cdot v$ is called the **product** of a and v.
- The additive identity of V is denoted by the boldface 0, called the zero vector of V.
- Note that we use + for both additions on V and F. It should be clear that when we combine two vectors in V, + means the

vector addition; and when we combine two scalars in F, + means the addition defined on the field F. We also use "·" for both scalar multiplication and multiplication defined on the field F. When a scalar in F and a vector in \mathbf{V} are combined, "·" means scalar multiplication: and when two scalars in F are combined, "·" means multiplication on F.

- Some basic properties of a vector space **V** over a field *F* are given below:
 - (1) Let 0 be the zero element of the field F. For any vector \mathbf{v} in \mathbf{V} ,

$$0 \cdot \mathbf{v} = \mathbf{0}$$
.

(2) For any element a in F, $a \cdot 0 = 0$.

(3) For any element a in F and vectors \mathbf{v} in \mathbf{V} ,

$$-a \cdot \mathbf{v} = a \cdot (-\mathbf{v}) = -(a \cdot \mathbf{v}),$$

i.e., either $-a \cdot \mathbf{v}$ or $a \cdot (-\mathbf{v})$ is the additive inverse of the vector $a \cdot \mathbf{v}$.

- **Definition 2.12:** Let S be a nonempty subset of a vector space V over a field F. S is called a **subspace** of V if it satisfies the axioms for a vector space given by Definition 2.11.
- To determine whether a subset S of a vector space V over a field F is subspace, it is sufficient to prove that:
 - (S1) For any two vectors \mathbf{u} and \mathbf{v} in \mathbf{S} , $\mathbf{u} + \mathbf{v}$ is also a vector in \mathbf{S} .

- (S2) For any element a in F and any vector \mathbf{u} in S, $a \cdot \mathbf{u}$ is also in S.
- The most commonly used vector space in error control coding is the vector space V_n of all the n-tuples over a finite filed GF(q). This vector space consists of q^m vectors (or n-tuples). The case for q=2 was presented in Section 2.2.

2.11. Remarks

- Galois fields are important in studying of the theory of error-correcting codes.
- In particular, they are used for constructing BCH, Reed-Solomon and low-density parity-check codes.

The Field of Real Numbers

- The set of real numbers with real addition and multiplication forms a field.
- Real addition is associative and commutative, i.e.,

$$(a+b)+c = a+(b+c) = a+b+c.$$

$$a+b=b+a$$
.

• For any real number a, there exists a unique number –a such that

$$a + (-a) = 0.$$

The number –a is called the additive inverse of a and vise versa.

• For any real number a,

$$0 + a = a + 0 = a$$
.

• The element 0 is called the additive identity or just "zero".

- The set of real numbers, R, is said to form a group under the real addition "+", called an additive group.
- Real multiplication "." is associative and commutative, i.e.,

$$(a \cdot b) \cdot c = a \cdot (b \cdot c),$$

$$a \cdot b = b \cdot a$$
.

• For any nonzero number a, there exists a unique number a⁻¹ for which

$$a \cdot a^{-1} = 1$$

The number a⁻¹ is called the multiplicative inverse of a, and vise versa.

• For any real number a,

$$1 \cdot a = a \cdot 1 = a$$
.

• The number 1 is called the multiplicative identity element, or the unit element or just "one".

- The nonzero elements of R is said to form a multiplicative group to form a multiplicative group under real multiplication.
- Distributive law holds,

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Also

$$a \cdot 0 = 0 \cdot a = 0$$

• Subtraction of a real number "b" from a real number "a" is defined as adding the additive inverse –b of b to a, i.e.,

$$a-b \stackrel{\triangle}{=} a + (-b).$$

• Dividing a real number "a" by a nonzero real number "b" is defined as multiplying a by the multiplicative inverse b⁻¹ of b,

$$a \div b \underline{\Delta} a \cdot (b^{-1}).$$

- R consists of two groups, an additive group and a multiplicative group.
- Basically, we can add, subtract, multiply and divide without leaving the system of real numbers.
- From the real-number field R, we can construct the field of complex numbers, which is called an extension field of R.

Important Properties of $GF(2^m)$

• Consider the Galois field $GF(2^m)$. Let α be a primitive element of $GF(2^m)$. Then

$$\alpha^0 = 1, \alpha, \alpha^2, \dots, \alpha^{2^m - 2}$$

form the $2^m - 1$ nonzero elements of $GF(2^m)$ and

$$\alpha^{2^m-1} = 1.$$

• **Theorem 1** For any nonzero element β in $GF(2^m)$, $\beta^{2^m-1}=1$.

Proof: Since β is a nonzero element of $GF(2^m)$, it must be a power of α , say $\beta = \alpha^j$. Consider

$$\beta^{2^{m}-1} = (\alpha^{j})^{2^{m}-1} = (\alpha^{2^{m}-1})^{j} = (\alpha^{0})^{j} = 1.$$

This proves the theorem.

• **Theorem 2** The $2^m - 1$ nonzero elements of $GF(2^m)$ form all the roots of $X^{2^m-1} + 1$.

Proof: Let β be a nonzero element of $GF(2^m)$. It follows from Theorem 1 that $\beta^{2^m-1}=1$. Hence $\beta^{2^m-1}+1=0$. This implies that β is a root of $X^{2^m-1}+1$.

• **Theorem 3** The roots of $X^{2^m-1} + 1$ give all the nonzero elements of $GF(2^m)$.

Proof: This theorem is a direct consequence of Theorem 2.

• **Theorem 4** The order n of a nonzero element β of $GF(2^m)$ divides $2^m - 1$.

Proof: Suppose n does not divide $2^m - 1$. Dividing $2^m - 1$ by n, we have

$$2^m - 1 = qn + r$$

where 0 < r < n (i.e., r is a positive integer less than n). Consider

$$\beta^{2^m-1} = \beta^{qn+r} = (\beta^{qn})(\beta^r).$$

Since $\beta^{2^m-1}=1$ and $\beta^n=1$. It follows from the above expression that we have $\beta^r=1$. Since 0 < r < n and n is the smallest positive integer for which $\beta^n=1$, then $\beta^r=1$ is not possible. Therefore, our hypothesis that n does not divide 2^m-1 is invalid. Consequently, n must divide 2^m-1 .

• **Theorem 5** Let β be an element of $GF(2^m)$. The minimal polynomial $\phi(X)$ of β is unique.

Proof: Let $\phi'(X)$ be another minimal polynomial of β . Then, $\phi(X)$ and $\phi'(X)$ must have the same degree, say k. The sum $\phi(X) + \phi'(X)$ is a polynomial of degree less than k. Since β is a root of both $\phi(X)$ and $\phi'(X)$, then

$$\phi(\beta) + \phi'(\beta) = 0.$$

If $\phi(X) \neq \phi'(X)$, we would have a nonzero polynomial $\phi(X) + \phi'(X)$ over GF(2) with degree less than k that has β as a root. This contradicts to the fact that $\phi(X)$ is the smallest degree polynomial over GF(2) which has β as a root. Hence, we must have $\phi(X) = \phi'(X)$. This implies that $\phi(X)$ is unique.

• **Theorem 6** The minimal polynomial $\phi(X)$ of an element β of $GF(2^m)$ is irreducible.

Proof: Suppose $\phi(X)$ is not irreducible (i.e. reducible). Then $\phi(X) = \phi_1(X)\phi_2(X)$ with

$$0 < \deg \phi_1(X), \deg \phi_2(X) < \deg \phi(X).$$

Since

$$\phi(\beta) = \phi_1(\beta)\phi_2(\beta) = 0,$$

then either $\phi_1(\beta) = 0$ or $\phi_2(\beta) = 0$. This contradicts to the fact that $\phi(X)$ is the smallest degree polynomial over GF(2) for which $\phi(\beta) = 0$. Hence $\phi(X)$ can not be factored over GF(2) and must be irreducible.

• Theorem 7 Let $\phi(X)$ be the minimal polynomial of the element β of $GF(2^m)$. Let f(X) be a polynomial over GF(2). If $f(\beta) = 0$, then f(X) is divisible by $\phi(X)$.

Proof: Dividing f(X) by $\phi(X)$, we have

$$f(X) = q(X)\phi(X) + r(X)$$

with $\deg r(X) < \deg \phi(X)$. Suppose $r(X) \neq 0$ (the zero polynomial). Consider

$$f(\beta) = q(\beta)\phi(\beta) + r(\beta).$$

Since $f(\beta)$ and $\phi(\beta) = 0$, we must have

$$r(\beta) = 0.$$

This says that β is a root of r(X). This contradicts to the fact

that $\phi(X)$ is the smallest degree polynomial over GF(2) that has β as a root. Hence, r(X) must be the zero polynomial and $\phi(X)$ must divide f(X).

• **Theorem 8** The minimal polynomial $\phi(X)$ of any nonzero element β of $GF(2^m)$ divides $X^{2^m-1}+1$.

Proof: Since β is a root of $X^{2^m-1}+1$ (Theorem 2), it follows from Theorem 7 that $\phi(X)$ divides $X^{2^m-1}+1$.

• **Theorem 9** Let $\phi(X)$ be the minimal polynomial of the element β of $GF(2^m)$. Let p(X) be an irreducible polynomial over GF(2) such that $p(\beta) = 0$. Then, $\phi(X) = p(X)$.

Proof: This theorem is a direct consequence of Theorem 7.

• Let β be an element of $GF(2^m)$. Let e be exponent of β , i.e., e is the smallest positive integer for which $\beta^{2^e} = \beta$. Then

$$\beta, \beta^2, \beta^{2^2}, \dots, \beta^{2^{e-1}}$$

are all the distinct conjugates of β .

• **Theorem 10** Let β be an element of $GF(2^m)$ with exponent e. Then, the minimal polynomial of β is given by $\phi(X) = \prod_{i=0}^{e-1} (X + \beta^{2^i}).$