

# Extended Algorithms courses COMP3821/9801

Aleks Ignjatović

School of Computer Science and Engineering University of New South Wales

Introduction to Randomized Algorithms: Randomized Hashing

### Hash Functions

#### Scenario:

- You are given an assignment to implement hashing;
- You will self-grade in pairs, testing and grading your partners implementation;
- Your partner plays dirty:
  - he analyses your hash function;
  - picks a sequence of the worst-case keys, causing your implementation to take O(n) time to search.
- What would you do?

## Hash functions: randomised hashing

#### Solution:

- Randomise your hashing;
- Pick a hash function randomly in a way that is independent of the keys that are actually going to be stored.
- In this way no single input always evokes worst case performance!
- Guarantees good performance on average over many runs of your program, no matter what keys adversary chooses.

# Towards randomised hashing: universal families of hash functions

- Let H be a (finite) collection of hash functions that map a given universe U of keys into the (much smaller) range  $\{0, 1, m-1\}$ ;
- *H* is said to be **universal** if:
  - for each pair of distinct keys  $x, y \in U$ , the number of hash functions  $h \in H$  for which h(x) = h(y) is |H|/m.
- In other words: any two keys x and y, if you randomly pick a hash function from H, the chance of a collision between x and y is the same, equal to 1/m.

## Universal hashing

- Assume a family of hash functions *H* is universal.
  - Let  $y, z \in U$  be arbitrary keys. For a randomly chosen  $h \in H$  let the random variable  $c_{yz}$  be defined by  $c_{yz} = 1$  if the keys y and z collide under h, i.e., h(y) = h(z), and  $c_{yz} = 0$  otherwise.
  - Fix x; then, by definition of a universal family, the expected value  $E[c_{yx}]$  satisfies

$$E[c_{yx}] = P(h(y) = h(x)) \cdot 1 + P(h(y) \neq h(x)) \cdot 0$$
$$= \frac{1}{m} \cdot 1 + \left(1 - \frac{1}{m}\right) \cdot 0$$
$$= \frac{1}{m}$$

## Universal hashing

- Assuming that family H is universal, and assuming that we are hashing n keys into a hash table of size m,
- let  $C_x$  be total number of collisions involving key x; then

$$C_x = \sum_{y \neq x} c_{yx}$$

• Then the expected value  $E[C_x]$  satisfies

$$E[C_x] = \sum_{y \neq x} E[c_{yx}] = \frac{n-1}{m} \tag{1}$$

• Thus, if  $n \leq m$  then the expected total number of collisions involving any particular key x is less than 1!

## Universal hashing family main property:

#### If we:

- choose randomly a hash function h from a universal family of hash functions H;
- hash n keys into a hash table of size m,

### then:

- the expected number of keys in each slot is  $\alpha = n/m$ ;
- thus, if  $n \le m$  then the expected total number of collisions involving any particular key x is  $\frac{n-1}{m} < 1$ .

## Designing a universal family of hash Functions

- $\bullet$  Choose the size m of the hash table to be a prime number;
- let r be such that the size |U| of the universe U of all keys satisfies  $m^r \leq |U| < m^{r+1}$  (i.e.  $r = \lfloor \log_m |U| \rfloor$ );
- represent each key x in base m, i.e., let  $x_0, x_1, \ldots, x_r$  be such that  $0 \le x_i < m$  for all i such that  $0 \le i \le r$  and such that

$$x = \sum_{i=0}^{r} x_i \, m^i$$

- let  $\vec{a} = \langle a_0, a_1, \dots, a_r \rangle$  be a sequence of r+1 randomly chosen elements from the set  $\{0, 1, \dots, m-1\}$ ;
- define corresponding hash function  $h_{\vec{a}}(x) = \left(\sum_{i=0}^r x_i a_i\right) \pmod{m};$

## Proving universality of family of hash functions $h_{\vec{a}}$

- Assume x, y are two distinct keys;
- let the corresponding sequences be  $\langle x_0, x_1, \dots, x_r \rangle$  and  $\langle y_0, y_1, \dots, y_r \rangle$ ;
- then

$$h_{\vec{a}}(x) = h_{\vec{a}}(y) \Leftrightarrow \sum_{i=0}^{r} x_i a_i = \sum_{i=0}^{r} y_i a_i \pmod{m}$$
  
 $\Leftrightarrow \sum_{i=0}^{r} (x_i - y_i) a_i = 0 \pmod{m}$ 

- since  $x \neq y$  there exists  $k \leq r$  such that  $x_k \neq y_k$ ;
- let us assume that  $x_0 \neq y_0$ ;
- then  $(x_0 y_0)a_0 = -\sum_{i=1}^r (x_i y_i)a_i \pmod{m}$

## Universality of family of hash functions $h_{\vec{a}}$ (continued)

- Since m is a prime, every non-zero element  $z \in \{0, 1, ..., m-1\}$  has a multiplicative inverse  $z^{-1}$ , such that  $z \cdot z^{-1} = 1 \pmod{m}$ ;
- since  $x_0 y_0 \neq 0$  we have that

$$(x_0 - y_0)a_0 = -\sum_{i=1}^{r} (x_i - y_i)a_i \pmod{m}$$

implies

$$a_0 = \left(-\sum_{i=1}^r (x_i - y_i)a_i\right)(x_0 - y_0)^{-1} \pmod{m}$$

## Universality of family of hash functions $h_{\vec{a}}$ (continued)

• However, 
$$a_0 = \left(-\sum_{i=1}^r (x_i - y_i)a_i\right)(x_0 - y_0)^{-1} \pmod{m}$$
 implies that

- for any two keys x, y such that  $x_0 \neq y_0$  and
- for any randomly chosen r numbers  $a_1, a_2, \ldots, a_r$

there exists **exactly one**  $a_0$  (the one given by the above equation) such that for  $\vec{a} = \langle a_0, a_1, \dots, a_r \rangle$  we have

$$h_{\vec{a}}(x) = h_{\vec{a}}(y)$$



## Universality of family of hash functions $h_{\vec{a}}$ (continued)

- Since there are:
  - $m^r$  sequences of the form  $\langle a_1, \ldots, a_r \rangle$ , each of which can uniquely be extended to a sequence  $\vec{a} = \langle a_0, a_1, \ldots, a_r \rangle$  such that  $h_{\vec{a}}(x) = h_{\vec{a}}(y)$
  - and  $m^{r+1}$  sequences of the form  $\vec{a} = \langle a_0, a_1, \dots, a_r \rangle$  in total,

we conclude that the probability to randomly chose a sequence  $\vec{a} = \langle a_0, a_1, \dots, a_r \rangle$  such that  $h_{\vec{a}}(x) = h_{\vec{a}}(y)$ , i.e., such that x and y collide, is equal to

 $\frac{m^r}{m^{r+1}} = \frac{1}{m}$ 

 $\bullet$  Thus, the family H is a universal collection of hash functions.

## Using universal family of hash functions $h_{\vec{a}}$ :

- Pick  $r = \lfloor \log_m |U| \rfloor$ , so that  $m^r \leq |U| < m^{r+1}$ ;
- For each run, pick a hash function by randomly picking the vector  $\vec{a} = \langle a_0, a_1, \dots, a_r \rangle$  such that  $0 \le a_i < m$  for all i s.t.  $0 \le i \le r$ ;
- during each run, use that function on all keys

Note that

$$h_{\vec{a}}(x) = \left(\sum_{i=0}^{r} x_i a_i\right) \pmod{m} = \langle x, y \rangle \pmod{m};$$

Scalar product  $\langle x, y \rangle$  can be computed very fast on modern hardware.