分數欄

109 學年度第一學期五專(資工一乙)數學第二次小考

一、單一選擇題(共70分,每題10分)

1. (A) $a = \sec 85^{\circ}, b = \csc 85^{\circ}, c = \cot 85^{\circ}$,其大小關係為何? (A) a > b > c (B) c > a > b (C) c > b > a (D) b > a > c

解析: tan 85° > sin 85° > cos 85°

$$\Rightarrow \frac{1}{\tan 85^{\circ}} < \frac{1}{\sin 85^{\circ}} < \frac{1}{\cos 85^{\circ}}$$
$$\Rightarrow \sec 85^{\circ} > \csc 85^{\circ} > \cot 85^{\circ}$$

2. (D) 設 x 為任意實數,則關於函數 $f(x) = 3\sin x - 1$ 的敘述何者錯誤? (A) $-4 \le f(x) \le 2$ (B) f(x) 的週期為 2π (C) $f(\pi) < 0$ (D) y = f(x) 的圖形對稱原點

解析: (A):: x 為任意實數

$$\therefore$$
 $-1 \le \sin x \le 1 \Rightarrow -3 \le 3\sin x \le 3 \Rightarrow -4 \le 3\sin x -1 \le 2$

(B) $f(x) = 3\sin x - 1$ 的週期為 2π

(C)
$$f(\pi) = 3\sin \pi - 1 = 3 \times 0 - 1 = -1 < 0$$

(D) $y = 3\sin x - 1$ 的圖形為 $y = 3\sin x$ 向下平移一個單位 如下圖所示, y = f(x) 的圖形沒有對稱原點

- 3. (C) $\triangle ABC$ 中, $\angle A: \angle B: \angle C=1:4:1$,則其對應邊長比a:b:c 為何? (A)1:4:1
 - (B)1:2:1 (C)1: $\sqrt{3}$:1 (D)2: $\sqrt{3}$:2

解析: $\angle A = 180^{\circ} \times \frac{1}{6} = 30^{\circ}$

$$\angle B = 180^{\circ} \times \frac{4}{6} = 120^{\circ}$$

$$\angle C = 180^{\circ} \times \frac{1}{6} = 30^{\circ}$$

 $\Rightarrow a:b:c = \sin 30^{\circ}: \sin 120^{\circ}: \sin 30^{\circ} = 1:\sqrt{3}:1$

解析: 原式= sin 30°+ tan 225°- sec 60°

$$=\frac{1}{2}+1-2=-\frac{1}{2}$$

5. (D) 化簡
$$\frac{\sin(\pi + \theta)}{\sin(2\pi - \theta)} + \frac{\cos(-\theta)}{\sin(\frac{3\pi}{2} + \theta)}$$
 得 (A)-2 (B)-1 (C)1 (D)0

解析: 原式 =
$$\frac{-\sin\theta}{-\sin\theta} + \frac{\cos\theta}{-\cos\theta} = 1 - 1 = 0$$

6. (A)
$$\triangle ABC$$
 中, $a=3,b=5,c=7$,則其外接圓半徑為何? (A) $\frac{7\sqrt{3}}{3}$ (B) $\frac{7\sqrt{3}}{2}$ (C) $\frac{3\sqrt{3}}{7}$

$$(D)\frac{2\sqrt{3}}{7}$$

解析:
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = -\frac{1}{2}$$

$$\Rightarrow \angle C = 120^{\circ} \Rightarrow \sin C = \frac{\sqrt{3}}{2}$$

$$\therefore R = \frac{c}{2\sin C} = \frac{7}{\sqrt{3}} = \frac{7\sqrt{3}}{3}$$

7. ($^{\mathbf{C}}$) 在 \triangle ABC 中,若 $\angle A$ 之內角平分線交 \overline{BC} 於 D,其中 $\overline{AB}=3$ 、 $\overline{AC}=6$,且 $\angle A=120^{\circ}$,

如圖,則
$$\overline{CD}$$
=?

(A)
$$\sqrt{26}$$

B)
$$3\sqrt{3}$$

(B)
$$3\sqrt{3}$$
 (C) $2\sqrt{7}$ (D) $\sqrt{7}$

$$(D)\sqrt{7}$$

解析:

①利用面積不變求 \overline{AD} ,設 $\overline{AD} = x$

$$\triangle ABC = \triangle ABD + \triangle ACD \Rightarrow \frac{1}{2} \times 3 \times 6 \times \sin 120^{\circ} = \frac{1}{2} \times 3 \times x \times \sin 60^{\circ} + \frac{1}{2} \times 6 \times x \times \sin 60^{\circ}$$
$$\Rightarrow 18 = 9x \Rightarrow x = \overline{AD} = 2$$

 \bigcirc \triangle $ACD <math>\rightleftharpoons$

由餘弦定理可知 $\overline{CD}^2 = 2^2 + 6^2 - 2 \times 2 \times 6 \times \cos 60^\circ = 28$

$$\overrightarrow{CD} = \sqrt{28} = 2\sqrt{7}$$

二、填充題(共 30 分,每題 10 分)

答案: -1

解析: 原式 = $(\cos 5^{\circ} + \cos 175^{\circ}) + \dots + (\cos 85^{\circ} + \cos 95^{\circ}) + \cos 90^{\circ} + \cos 180^{\circ}$ = $0 + 0 + \dots + 0 + 0 + (-1) = -1$

2. 已知 $3\cos^2\theta = 5\sin\theta + 1$,則 $\csc\theta =$ ______。

答案: 3

解析:由平方關係知: $\cos^2\theta = 1 - \sin^2\theta$

$$3(1-\sin^2\theta)=5\sin\theta+1$$

$$3 - 3\sin^2\theta = 5\sin\theta + 1$$

$$3\sin^2\theta + 5\sin\theta - 2 = 0$$

$$(3\sin\theta - 1) \cdot (\sin\theta + 2) = 0$$

$$\therefore \sin \theta = \frac{1}{3}, -2 \ (\overrightarrow{\wedge} \stackrel{\triangle}{\ominus})$$

因此,
$$\csc\theta = \frac{1}{\sin\theta} = 3$$

3. △ABC 之三邊長為 7, 8, 9, 則三角形面積為____。

答案: 12√5 (單位)²

解析:
$$s = \frac{(7+8+9)}{2} = 12$$

$$\triangle = \sqrt{s(s-a)(s-b)(s-c)} = 12\sqrt{5}$$