mas550 homework

20208209 오재민

2020년 9월 21일

Problem (1.1.2).

Let $A = \prod_{i=1}^d (a_i, b_i]$. Then

$$A = (\Pi_{i=1}^d [a_i - 1, b_i]) \cap (\Pi_{I=1}^d (a_i, b_i + 1))$$

which is intersection of open set and closed set. So, $A \in \mathbb{R}^d$ therefore $\sigma(S_d) \subset \mathbb{R}^d$.

On the other hand, let $B = \prod_{i=1}^{d} (a_i, b_i)$ where $-\infty < a_i < b_i < \infty$. We can choose sequences $\{a_{i,j}\}_{j=1}^{\infty}$ and $\{b_{i,j}\}_{j=1}^{\infty}$ for each $1 \le i \le d$ such that $a_{i,j} \downarrow a_i$ and $b_{i,j} \uparrow b_i$. Then $B_n = \prod_{i=1}^{d} (a_{i,n}, b_{i,n}] \uparrow B$. So B is a countable union of open rectangles, hence $B \in \sigma(S_d)$. Since such B forms basis of topology on \mathbb{R}^d , we can conclude that $\mathcal{R}^d \subset \sigma(S_d)$.

Problem (1.2.3).

Let F be a distribution function. It is nonnegative, nondecreasing. So $\lim_{y\downarrow x} F(y)$ and $\lim_{y\uparrow x} F(y)$ always exist. Let x be a point where F is discontinuous. Since F is discontinuous at x, we can assume without loss of generality $\lim_{y\downarrow x} F(y) > F(x)$. Choose a rational number $q_x \in (F(x), \lim_{y\downarrow x} F(y))$. Then function $x\mapsto q_x$ is injective since F is nondecreasing. So there is injection from set of discontinuities to rational numbers. Now we can conclude that set of discontinuities is at most countable.

Problem (1.3.4).

- (a) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuous function. Consider $\mathcal{B} = \{U \subset \mathbb{R}: f^{-1}(U) \in \mathcal{R}^d\}$. It is well known that \mathcal{B} is a σ -field. By continuity of f, \mathcal{B} contains every open set of \mathbb{R} , hence $\mathcal{R} \subset \mathcal{B}$. Therefore f is a measurable function.
- (b) Let \mathcal{F} be a σ -field that makes all the continuous functions measurable. Let $\pi_i : \mathbb{R}^d \to \mathbb{R}$ be the projection on i-th factor, which is continuous. Then $\cap_{i=1}^d \pi_i^{-1}((a_i,b_i)) = \prod_{i=1}^d (a_i,b_i) \in \mathcal{F}$. Since \mathcal{F} contains every open rectangles in \mathbb{R}^d , we can conclude that $\mathcal{R}^d \subset \mathcal{F}$. This means \mathcal{R}^d is the smallest such σ -field. The fact that \mathcal{R}^d makes all the continuous functions measurable is written in (a).

Problem (1.3.1).

Since $\sigma(X)$ is the smallest σ -field which makes X measurable, it sufficient to show that X is measurable with respect to $\sigma(X^{-1}(A))$.

Let $X : \Omega \to S$. It is clear that $\{X \in A\} \in \sigma(X^{-1}(A))$ for all $A \in A$. But by theorem 1.3.1, since A generates S, X is measurable with respect to $\sigma(X^{-1}(A))$.

Therefore we can conclude that $\sigma(X^{-1}(A)) \subset \sigma(X)$, and reverse inclusion is canonical since $X^{-1}(A) \subset \sigma(X)$.

Problem (1.4.1).

Let $E_n = \{x : f(x) > \frac{1}{n}\}$. Then $\int f d\mu \geq \int_{E_n} f d\mu \geq \int_{E_n} \frac{1}{n} d\mu = \frac{1}{n} \mu(E_n)$. Therefore $\mu(E_n) = 0$ for every positive integer n. So, $\mu(\{f > 0\}) = \sum_{n=1}^{\infty} \mu(E_n) = 0$. This says f = 0 a.e.

Problem (1.4.2). Since $E_{n+1,2m} \cup E_{n+1,2m+1} = E_{n,m}$ and $\frac{2m+1}{2^{n+1}} \ge \frac{m}{2^n}$, we can easily see that $\sum_{m\ge 1} \frac{m}{2^n} \mu\left(E_{n,m}\right)$ is monotonically increasing as n grows.

For every positive integer M, $\sum_{m=1}^{M} \frac{m}{2^n} \mu\left(E_{n,m}\right) \leq \int f d\mu$. So $\sum_{m\geq 1} \frac{m}{2^n} \mu\left(E_{n,m}\right) \leq \int f d\mu$.

Let $s_n = \sum_{m=1}^{n2^n} \frac{m}{2^n} 1_{E_{n,m}}$. Then $\int s_n d\mu \leq \sum_{m\geq 1} \frac{m}{2^n} \mu\left(E_{n,m}\right) \leq \int f d\mu$. But $s_n \uparrow f$ monotonically. By monotone convergence theorem, $\lim_{n\to\infty} \int s_n d\mu = \int f d\mu$. Hence by sandwich lemma, the desired result follows.

Problem (1.5.1).

First, we will show that $|g| \leq ||g||_{\infty}$ a.e.

It is true because

$$\mu\left(|g| > \|g\|_{\infty}\right) = \mu\left(\bigcup_{n=1}^{\infty} \left\{|g| \ge \|g\|_{\infty} + \frac{1}{n}\right\}\right)$$
$$\le \sum_{n=1}^{\infty} \mu\left(\left\{|g| > \|g\|_{\infty} + \frac{1}{n}\right\}\right)$$
$$= 0$$

by definition of $||g||_{\infty}$.

Hence $|g| \leq ||g||_{\infty}$ a.e.

Then, $\int |fg| d\mu \le ||g||_{\infty} \int |f| d\mu = ||g||_{\infty} ||f||_{1}$.

Problem (1.5.3).

(a) Since p > 1, $x \mapsto |x|^p$ is convex function. $|f + g|^p \le 2^{p-1}(|f|^p + |g|^p)$ follows from convexity of $|x|^p$.

 $\int |f+g|^p d\mu \leq \int 2^p |f|^p d\mu + \int 2^p |g|^p d\mu. \text{ Therefore finiteness of } ||f||_p \text{ and } ||g||_p \text{ leads } ||f+g||_p < \infty.$

Now, consider $\int |f+g|^p d\mu = \int |f+g||f+g|^{p-1} d\mu \le \int |f||f+g|^{p-1} d\mu + \int |g||f+g|^{p-1} d\mu$. Let q be Holder conjugate of p. Then by applying Holder inequality, we get $||f+g||_p^p \le ||f+g||_p^{p/q} (||f||_p + ||g||_p)$. Simple calculating leads Minkowski's inequality.

(b) First consider p=1. By using triangle inequality, the result follows directly. Next consider $p=\infty$. $|f+g| \le |f| + |g| \le ||f||_{\infty} + ||g||_{\infty}$ a.e. Therefore $||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$.

Problem (1.6.8).

First assume $g = 1_A$. Then $\int g d\mu = \mu(A) = \int_A f(x) dx = \int 1_A f dm$ where m is Lebesgue measure.

Next, assume $g = \sum_i a_i 1_{A_i}$, simple function. Then $\int g d\mu = \sum_i a_i \mu(A_i) = \sum_i a_i \int 1_{A_i} f dm$.

Next, assume g is nonnegative measurable. Let $\{s_n\}_{n=1}^{\infty}$ be increasing sequence of simple function converges to g pointwisely. Then $\int gd\mu = \lim_{n\to\infty} \int s_n d\mu =$

 $\lim_{n\to\infty}\int s_nfdm$. But $s_nf\uparrow gf$ since f is nonnegative. By monotone convergence theorem, we can get $\int gd\mu = \int gfdm$.

Last, assume g is integrable function. We can decompose g by $g = g^+ - g^-$. Applying 3rd step for g^+, g^- each, we can get $\int g d\mu = \int g^+ f dm - \int g^- f dm = \int g f dm$ since f is nonnegative.

Problem (1.6.13).

Since $X_n \uparrow X$, $X_n^+ \uparrow X^+$ and $X_n^- \downarrow X^-$. And note that $X_n^- \leq X_1^-$ which is integrable. Apply monotone convergence theorem to X_n^+ and apply dominated convergence theorem to X_n^- to get $\lim EX_n = \lim EX_n^+ - \lim EX_n^- = EX^+ - EX^- = EX$.