Basi di dati

Schema

An **attribute** is a (name, domain) pair; we can define the dom() function on a set of names, which associates to each **name** a specific **domain** (different attributes can have the same domain)

$$dom: \{ \operatorname{name}_1, ..., \operatorname{name}_n \} \rightarrow \{ \operatorname{domain}_1, ..., \operatorname{domain}_k \}$$

$$\operatorname{name}_i \mapsto \operatorname{domain}_i$$

PDF 7 slide 2

A **relation schema** $R = \{A_1, A_2, ..., A_n\}$ is a set of attributes

Tuples & instances

PDF 7 slide 3 Given a relation schema $R=A_1A_2...A_n$, a **tuple** t on R is a function such that

$$egin{aligned} t: R &
ightarrow igcup_{i=1}^n dom(A_i) \ A_i &
ightarrow a \in dom(A_i) \end{aligned}$$

Given a relation schema R, a subset $X\subseteq R$ and t a tuple on R, the **reduction** of t on X is defined as

$$t[X] = \{\,(A,t[A])\mid A\in X\,\}$$

PDF 7 slide 4 Given a relation schema R, a subset $X\subseteq R$ and t_1,t_2 tuples on R

$$t_1[X] = t_2[X] \iff t_1[A] = t_2[A] \ \forall A \in X$$

PDF 7 slide 5 Given a relation schema R and $t_1, t_2, ..., t_k$ tuples on R, a set $r = \{t_1, t_2, ..., t_k\}$ is an instance of R

Functional dependencies

PDF 7 slide 6

Given a relation schema R and $X,Y\in \mathcal{P}(R)\setminus \set{\varnothing}$ we have that (X,Y) is a **functional dependency** on R (noted as $X\to Y$)

PDF 7 slide 7

Given a relation schema R and a functional dependency X o Y defined on R we say that an **instance** r of R satisfies the functional dependency X o Y if

$$orall t_1, t_2 \in r \quad t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

Instance legality & closure

PDF 7 slide 14

Given a relation schema R and a set F of functional dependencies defined on R, an **instance** r of R is **legal** if it satisfies every dependency in F

$$orall X
ightarrow Y \in F \quad orall t_1, t_2 \in r \quad t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$

PDF 7 slide 20

Given a relation schema R and a set F of functional dependencies defined on R, the closure of F is the set of functional dependencies that are satisfied by every legal instance of R

$$F^+ = \set{V o W \mid orall \ ext{legal} \ r \ ext{of} \ R, r \ ext{satisfies} \ V o W}$$

V o W doesn't necessarily have to be in F

$$F\subseteq F^+$$

PDF 7 slide 21

$$F\subseteq F^+$$

Proof

$$F^+ = \set{V o W \mid orall \ ext{legal} \ r \ ext{of} \ R, r \ ext{satisfies} \ V o W}$$

By definition r is legal if it satisfies every dependency $X \to Y \in F \implies$ given $X \to Y \in F$, every legal instance of R satisfies $X \to Y \implies X \to Y \in F^+$

Keys

PDF 7 slide 22

Given a relation schema R and a set F of functional dependencies on R, $K\subseteq R$ is a **key** of R if

- ullet $K o R \in F^+$
- $\forall K' \subset K, \ K' \to R \notin F^+$
- " \subset " means **proper subset**, which implies that K
 eq K'

Trivial dependencies

PDF 7 slide 26

Given a schema R and $X,Y\in \mathcal{P}(R)\setminus \set{\varnothing}:Y\subseteq X$, we have that **every instance** r of R **satisfies** the dependency $X\to Y$

Proof

Given an instance r of $R, \ \forall t_1, t_2 \in r$ we have that

$$t_1[X]=t_2[X] \Longrightarrow$$
 by definition $t_1[A]=t_2[A] \ orall A\in X \Longrightarrow$ as $Y\subseteq X$ we have that $t_1[A']=t_2[A'] \ orall A'\in Y \Longrightarrow$ by definition $t_1[Y]=t_2[Y]$

As
$$t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y]$$
 we have that r satisfies $X o Y$

Decomposition

PDF 7 slide 27

Given a schema R and a set of functional dependencies F on R, we have that

$$X o Y \in F^+ \iff X o A \in F^+ \ orall A \in Y$$

Proof

$$egin{aligned} X
ightarrow Y \in F^+ &\Longrightarrow orall \, \operatorname{legal} \, r \, \operatorname{of} \, R \quad orall t_1, t_2 \in r \quad t_1[X] = t_2[X] \implies t_1[Y] = t_2[Y] \implies t_1[A] = t_2[A] \, orall A \in Y \implies X
ightarrow A \in F^+ \, orall A \in Y \implies orall \, \operatorname{legal} \, r \, \operatorname{of} \, R \quad orall t_1, t_2 \in R \quad t_1[X] = t_2[X] \implies t_1[A] = t_2[A] \, orall A \in Y \implies t_1[Y] = t_2[Y] \implies X
ightarrow Y \in F^+ \end{aligned}$$

F^A

PDF 8 slide 3 F^A is a set of functional dependencies on R such that

- ullet $X o Y \in F \implies X o Y \in F^A$
- ullet $Y\subseteq X\in R \implies X o Y\in F^A$ (refelxivity)
- ullet $orall Z\in R, X o Y\in F^A \implies ZX o ZY\in F^A$ (augmentation)
- ullet $X o Y,Y o Z\in F^A \implies X o Z\in F^A$ (transitivity)

PDF 8 slide 6 derivates

- ullet $X o Y, X o Z\in F^A \implies X o YZ\in F^A$ (union)
- ullet $X o Y\in F^A \wedge Z\subseteq Y \implies X o Z\in F^A$ (decomposition)
- ullet $X o Y,WY o Z\in F^A \implies WX o Z\in F^A$ (pseudotransitivity)

PDF 8 slide 8 $X o A_1 A_2 ... A_n \in F^A \iff orall i = 1,...,n \quad X o A_i \in F^A$

Derivates (Proofs)

Union

$$X o Y, X o Z\in F^A \implies$$
 by augmentation $X o XY, XY o YZ\in F^A \implies$ by transitivity $X o YZ\in F^A$

Decomposition

$$X o Y \in F^A \wedge Z \subseteq Y \implies Y o Z \in F^A \implies$$
 by transitivity $X o Z \in F^A$

Pseudotransitivity

$$X o Y, WY o Z\in F^A \implies$$
 by augmentation $WX o WY\in F^A \implies$ by transitivity $WX o Z\in F^A$

$$(X)_F^+$$

PDF 8 slide 9

Given a relation schema R, a set F of dependencies on R and $X\subseteq R$. The **closure** of X with respect to F, denoted $(X)_F^+$ is defined as

$$(X)_F^+ = \set{A \in R \mid X o A \in F^A}$$

We have that $X\subseteq (X)_F^+$

Proof

 $orall A \in X$ by reflexivity $X o A \in F^A \implies$ by definition $A \in (X)_F^+ \implies X \subseteq (X)_F^+$

We can use Armstrong's axioms as $(X)_F^+$ is defined of F^A

NOTE: \$(X)

Lemma of closure

PDF 8 slide 10

Let R be a schema and F a set of functional dependencies on R

$$X o Y \in F^A \iff Y \subseteq (X)_F^+$$

Proof

$$X o Y\in F^A \Longrightarrow$$
 by decomposition $X o A\in F^A\ orall A\in Y \Longrightarrow$ by definition $A\in (X)_F^+\ orall A\in Y \Longrightarrow Y\subseteq (X)_F^+$

$$Y\subseteq (X)_F^+\implies A\in (X)_F^+\ orall A\in Y\implies$$
 by definition $X\to A\in F^A\ orall A\in Y\implies$ by union $X\to Y\in F^A$

$$F^+=F^A$$

PDF 8 slide 11

Let R be a relation schema and F a set of functional dependencies on R then $F^+=F^A$

Proof

Let F_i be the value of F after the i-th application of an Armstrong's axiom, with $F_0=F$

$$F^A\subseteq F^+$$

Base case

$$F_0 = F \subseteq F^+ \implies F_0 \subseteq F^+$$

Inductive step

$$F_i \subseteq F^+ \implies F_{i+1} \subseteq F^+$$

Let $X o Y \in F_{i+1}$, either

- ullet $X o Y\in F_i \implies ext{by HP } X o Y\in F^+$
- ullet $X o Y\in F_{i+1}\setminus F_i$, which means that X o Y has been optained through one of the axioms

$$F^A\subseteq F^+$$

Reflexivity

 $Y\subseteq X \implies$ given that X o Y is satisfied by every instance $X o Y\in F^+$

Augmentation

$$Z\subseteq R, X=ZV, Y=ZW\wedge V o W\in F_i$$
 given $t_1,t_2\in r$ legal instance of R we have that $t_1[X]=t_2[X]\implies (t_1[V]=t_2[V]\implies$ by HP $t_1[W]=t_2[W])\wedge t_1[Z]=t_2[Z]\implies t_1[Y]=t_2[Y]$

Transitivity

$$X o Z, Z o Y\in F_i \implies ext{by HP } orall ext{ legal } r ext{ of } R, orall t_1, t_2\in r, t_1[X]=t_2[X] \implies t_1[Z]=t_2[X] \implies t_1[Y]=t_2[Y] ext{ we have that } t_1[X]=t_2[X] \implies t_1[Y]=t_2[Y] \implies X o Y\in F^+$$

$F^+ \subseteq F^A$ (legal instance)

Given $X\subseteq R$ we can build an instance $r=\set{t_1,t_2}$ on R such that

r	$(X)_F^+$					$R\setminus (X)_F^+$				
t_1	1	1	1	•••	1	1	1	1	•••	1
t_2	1	1	1	•••	1	0	0	0	•••	0

Let's verify that r is a legal instance. Given $V o W\in F$, as V,W
eq arnothing by definition, we could have

- ullet $V
 subseteq (X)_F^+ \implies \exists A \in V: A \in R \setminus (X)_F^+ \implies t_1[V]
 ot= t_2[V] \implies r$ satisfies V o W
- $V \subseteq (X)_F^+$, we could have that

$$\circ \ W \subseteq (X)_F^+ \implies t_1[V] = t_2[V] \wedge t_1[W] = t_2[W] \implies r$$
 satisfies $V o W$

$$\circ \ W
subseteq (X)_F^+ \implies \exists A \in W : A \in R \setminus (X)_F^+ \implies t_1[V] = t_2[V] \wedge t_1[W]
eq t_2[W]$$

$F^+ \subseteq F^A$ (legal instance)

In the last case r doesn't satisfy V o W, so we have to show that it can't happen. Let's suppose that $\exists V o W\in F$ such that r doesn't satisfy V o W; by construction we have that

$$V\subseteq (X)_F^+ \wedge \exists A\in W: A\in R\setminus (X)_F^+ \implies A
otin (X)_F^+$$

We have that

- ullet $V\subseteq (X)_F^+$ \Longrightarrow by the lemma of closure $X o V\in F^A$
- ullet $A\in W \implies$ by decomposition $V o A\in F^A$

By transitivity $X o A \in F^A \implies$ by the lemma of closure $A \in (X)_F^+$ which is a contraddiction

Legality

In the first 2 cases r satisfies $V o W \in F$, case 3 can't happen $\implies r$ is a legal instance of R

$$F^+\subseteq F^A$$

Let's consider $X o Y \in F^+$

By definition we have that $X\subseteq (X)_F^+\Longrightarrow$ by construction $t_1[X]=t_2[X]\Longrightarrow$ by hypotesis and given that r is a legal instance $t_1[Y]=t_2[Y]\Longrightarrow$ by the lemma $Y\subseteq (X)_F^+\Longrightarrow X\to Y\in F^A$

$$F^+=F^A$$

Given that $F_i \subseteq F^+ \ orall i \in \mathbb{N}$ and $F^+ \subseteq F^A$ we have that $F^+ = F^A$

3NF

PDF 9 slide 14

Given a relation schema R and a set of functional dependencies F on R.

R is in 3NF if $orall X o A \in F^+: A
otin X$ either

- *A* is prime (belongs to a key)
- *X* is superkey

3NF pt.2

PDF 10 slide 4

Let R be a relation schema and F a set of functional dependencies on R

An attribute $A \in R$ partially depends on a key K if

- $\exists X \subset R : A \notin X \land X \rightarrow A \in F \land X \subset K$
- A isn't prime

An attribute $A \in R$ transitively depends on a key K if

- $\bullet \ \exists X \subset R : A \notin X \land X \to A \in F \land K \to X \in F$
- X isn't a key
- A isn't prime

 $X\subset R$ means that X
eq R, otherwise X would be a superkey, as $R o R\in F^A=F^+$

3NF pt.3

PDF 10 slide 5

Given a schema R and a set of functional dependencies F on R, TFAE

- ullet R is in 3NF
- there are no attributes that partially or transitively depend on a key
- ullet $orall X o A \in F^+: A
 otin X$ either:
 - \circ A is prime (belongs to a key)
 - $\circ X$ is superkey

Proof

TODO: I have it, I just have to write it out in \LaTeX

BCNF (Boyce-Codd)

PDF 10 slide 20

A relation schema R is in **Boyce-Codd Normal Form** (BCNF) when every determinant in F is a superkey. A relation that respects Boyce-Codd Normal Form is also in **3NF**, but the opposite is not true.

$(X)_F^+$

PDF 11 slie 5

```
def clousure(R, F, X):
    Z = X
    S = { A ∈ R | Y → V ∈ F ∧ Y ⊆ Z ∧ A ∈ V }

if S ⊆ Z:
    return Z

return closure(R, F, Z ∪ S)
```

$$(X)_F^+$$

PDF 11 slide 8

The algorithm ${\tt closure()}$ correctly computes the closure of a set of attributes X respectively to a set F of functional dependencies on R

Proof

Let's consider Z_i, S_i the values of Z and S at the i-th call of the function and $Z_f, S_f \mid S_f \subseteq Z_f$ the values of Z, S at the last call of the function. Let's prove by induction that $Z_i \subseteq (X)_F^+$

$$Z_i\subseteq (X)_F^+$$

Base case

$$Z_0=X\subseteq (X)_F^+$$

Inductive step $Z_i \subseteq (X)_F^+ \implies Z_{i+1} \subseteq (X)_F^+$

Given that $Z_{i+1} = Z_i \cup S_i$ then if $A \in Z_{i+1}$ either

- ullet $A\in Z_i \implies ext{by HP } A\in (X)_F^+$
- $A \in S_i \implies$ by construction $\exists Y \to V \in F \mid Y \subseteq Z_i \land A \in V \implies$ by HP $Y \subseteq (X)_F^+ \implies$ by the lemma of closure $X \to Y \in F^A$ and by decomposition $Y \to A \in F^A \implies$ by transitivity $X \to A \in F^A \implies$ by definition $A \in (X)_F^+$

$(X)_F^+ \subseteq Z_f$ (legal instance)

Given Z_f we can build an instance $r=\set{t_1,t_2}$ on R such that

r	Z_f					$R \setminus Z_f$				
t_1	1	1	1	•••	1	1	1	1	•••	1
t_2	1	1	1	•••	1	0	0	0	•••	0

Let's verify that r is a legal instance. Given $V o W \in F$ as V, W
eq arnothing we could have either

- ullet $V
 subseteq Z_f \implies \exists A\in V: A\in R\setminus Z_f \implies t_1[V]
 eq t_2[V] \implies r$ satisfies V o W
- ullet $V\subseteq Z_f$
 - $\circ \ W \subseteq Z_f \implies$ by construction $t_1[V] = t_2[V] \wedge t_1[W] = t_1[W] \implies r$ satisfies V o W
 - ullet $W
 subseteq Z_f \implies$ by construction $t_1[V] = t_2[V] \wedge t_1[W]
 eq t_2[W]$

$(X)_F^+ \subseteq Z_f$ (legal instance)

Let's suppose that $\exists V o W \in F : r$ doesn't satisfy $V o W \implies$ by construction

$$V\subseteq Z_f \wedge \exists A\in W: A\in R\setminus Z_f \implies A
otin Z_f$$

Given that $V\subseteq Z_f\wedge V o W\in F\wedge A\in W\implies$ by construction of $S_f,\ A\in Z_f$ which is a contraddiction

Legality

In the first 2 cases r satisfies $V o W \in F$ case 3 can't happen $\implies r$ is a legal instance of R

$$(X)_F^+ \subseteq Z_f$$

Let's consider $A\in (X)_F^+$

Given that $X \to A \in F^A = F^+$ and r is a legal instance $\implies r$ satisfies $X \to Y$, and given that by construction $X \subseteq Z_f \implies t_1[X] = t_2[X] \implies$ by definition $t_1[A] = t_2[A] \implies$ by construction $A \in Z_f$

$$Z_f = (X)_F^+$$

Given that $Z_i\subseteq (X)_F^+\ orall i\in \mathbb{N}$ and $(X)_F^+\subseteq Z_f$, we have that $Z_f=(X)_F^+$

Intersection Rule

PDF 12 slide 19

Given a relation scheme R and a set of functional dependencies F on R

$$X := \bigcap_{V o W \in F} R - (W - V)$$

If $X \to R \in F^+$ then the intersection is the only key to R otherwise there are multiple keys, and **ALL** of them must be identified to check if R is in **3NF**

Decomposition

PDF 13 slide 8

Let R be a relation scheme, a decomposition ho of R is such that

$$ho = \set{R_1, R_2, ..., R_k} \subseteq \mathcal{P}(R) : igcup_{i=1}^k R_i = R$$

Equivalence

PDF 13 slide 12

Let F and G be two sets of functional dependencies, we can define an equivalence relation

$$F \equiv G \iff F^+ = G^+$$

- ullet reflexivity $F \implies F^+ = F^+ \implies F \equiv F$
- ullet simmetry $F\equiv G \implies F^+=G^+ \implies G^+=F^+ \implies G\equiv F$
- ullet transitivity $F\equiv G\wedge G\equiv H\implies F^+=G^+\wedge G^+=H^+\implies F^+=H^+\implies F\equiv H$

PDF 13 slide 14

Let F and G be two sets of functional dependencies

$$F \subset G^+ \implies F^+ \subset G^+$$

$$F \subset G^+ \implies F^+ \subset G^+$$

Base case

$$F_0 = F \subseteq G^+ \implies F_0 \subseteq G^+$$

Inductive Step

$$F_i \subseteq G^+ \implies F_{i+1} \subseteq G^+$$

 $X o Y \in F_{i+1} \implies X o Y$ has been optained through

- ullet reflexivity $Y\subseteq X \implies$ given that X o Y is satisfied by every instance $X o Y\in G^+$
- ullet augmentation $\exists Z \subseteq R, V o W \in F_i \mid X = ZV, Y = ZW$
- transitivity

TODO

Preserving F

PDF 13 slide 15

Let R be a relation scheme, F a set of functional dependencies on R and $\rho = \{R_1, R_2, ..., R_k\}$ a decomposition of R, we say that ρ preserves F if

$$F\equiv G=igcup_{i=1}^k\pi_{R_i}(F)$$

Where

$$\pi_{R_i}(F) = \set{X o Y \in F^+ \mid XY \subseteq R_i}$$

PDF 13 slide 16

Given the definition of G, it will always be that $G\subseteq F^+\implies G^+\subseteq F^+$ so it is enough to verify that $F\subseteq G^+$

Dependency preservation

PDF 13 slide 17

```
def preserves_dependencies(R, F, ρ):
    for X → Y ∈ F:
        if Y ⊈ closure_G(R, F, ρ, X):
            return false
    return true
```

This algorithm is enough as we just have to check wether $F\subseteq G^+$

Given $X o Y \in F$ we have that $X o Y \in G^+ = G^A \iff$ by the lemma of closure $Y \subseteq (X)_G^+$

$(X)_G^+$

```
def clousure_G(R, F, X, ρ):
    Z = X
    S = Ø

    for P ∈ ρ:
        S = S ∪ (closure(R, F, Z ∩ P) ∩ P)

    if S ⊆ Z
        return Z

    return closure_G(R, F, Z ∪ S)
```

PDF 13 slide 23 Let R be a relation schema, F a set of functional dependencies on R and $\rho=\{R_1,R_2,...,R_k\}$ a decomposition of R and $X\subseteq R$ the algorithm <code>closure_G()</code> correctly computes $(X)_G^+$

$$Z_f\subseteq (X)_G^+$$

Let Z_i, S_i the values of Z and S at the i-th call of the function, with $Z_0 = X$, and $S_f \subseteq Z_f$

Base case

$$Z_0 = X \subseteq (X)^+_G \implies Z_0 \subseteq (X)^+_G$$
 by HP

Inductive step

$$Z_i\subseteq (X)_G^+ \implies Z_{i+1}\subseteq (X)_{G'}^+$$
 given that $S_i=igcup_{j=1}^k (Z_i\cap R_j)_F^+\cap R_j$

Let
$$A \in Z_{i+1} = Z_i \cup S_i \implies \exists j : A \in (Z_i \cap R_j) \cap R_j \implies Z_i \cap R_j o A \in G^A$$

By HP we have that $Z_i\subseteq (X)_G^+\implies X o Z_i\in G^A$, let $Z_i=(Z_i\cap R_j)\cup V$ by decomposition we have that $X o Z_i\cap R_j\in G^A\implies$ by transitivity $X o A\in G^A$

$$X\subseteq Y \implies (X)_F^+\subseteq (Y)_F^+$$

 $X\subseteq Y \implies Y o X \in F^A$ by reflexivity

Given $A\in (X)_F^+\Longrightarrow$ by the lemma of closure $X\to A\in F^A\Longrightarrow$ by transitivity $Y\to A\in F^A\Longrightarrow$ by the lemma of closure $A\in (Y)_F^+$

$$(X)_G^+ \subseteq Z_f$$

 $X\subseteq Z_f \implies (X)_G^+\subseteq (Z_f)_{G'}^+$ we have to prove that $Z_f=(Z_f)_G^+$

Let's consider $A \in S' = \{ A \in R \mid V \to W \in G \land V \subseteq Z_f \land A \in W \} \implies \exists V \to W \in G : V \subseteq Z_f \land A \in W \implies \exists R_j \in \rho : VW \subseteq R_j \implies V \subseteq Z_f \cap R_j \land A \in R_j \implies A \in (Z_f \cap R_i)^+_F \cap R_i \implies A \in S_f \implies A \in Z_f$

Loseless join

PDF 15 slide 11 Let R be a relation schema. A decomposition $ho=\{R_1,R_2,...,R_k\}$ of R has a lossless join if $\forall r$ legal instance of R we have that $r=\pi_{R_1}(r)\bowtie \pi_{R_2}(r)\bowtie ...\bowtie \pi_{R_k}(r)$

PDF 15 slide 13 Let R be a relation schema and let $\rho=\{R_1,R_2,...,R_k\}$ be a decomposition of R; for each legal instance r of R, we denote $m_{\rho}(r)=\pi_{R_1}(r)\bowtie \pi_{R_2}(r)\bowtie ...\bowtie \pi_{R_k}(r)$

- $ullet r\subseteq m_
 ho(r)$
- $ullet \pi_{R_i}(m_
 ho(r)) = \pi_{R_i}(r)$
- $ullet m_
 ho(m_
 ho(r))=m_
 ho(r)$

Given $S_1,...,S_k$ relation schemas with their instances $s_1,...,s_k$, let's define the \bowtie operator as

$$igotimes_{i=1}^k S_i = \{igcup_{i=1}^k t_j \mid orall s_i \; orall t_j \in s_i \; \wedge igcup_{i=1}^k t_j ext{ is a function} \}$$

$$r\subseteq m_
ho(r)$$

 $t \in r \implies t[R_i] \in \pi_{R_i}(r) \ orall R_i \in
ho$ by definition

$$igotimes_{i=1}^k \pi_{R_i}(r) = \{igcup_{i=1}^k p_i[R_i] \mid p_i[R_i] \in \pi_{R_i}(r) \land igcup_{i=1}^k p_i[R_i] ext{ is a function } \}$$

 $orall t \in r, \; t = igcup_{i=1}^k t[R_i]$ as by definition of ho we have that $R = igcup_{i=1}^k R_i$

 $t \in r \implies t$ is a function by definition

$$t=igcup_{i=1}^k t[R_i]\inigotimes_{i=1}^k \pi_{R_i}(r)=m_
ho(r)\implies t\in m_
ho(r)$$

$$\pi_{R_i}(m_
ho(r))=\pi_{R_i}(r)$$

 $t \in r \implies$ by definition $t[R_i] \in \pi_{R_i}(r) \ orall R_i \in
ho$ $\pi_{R_i}(m_
ho(r)) = \{ \ q[R_i] \ | \ q \in igotimes_{i=1}^k \pi_{R_i}(r) \ \}$

$$\pi_{R_i}(r) \subseteq \pi_{R_i}(m_
ho(r))$$

$$t \in r \implies t \in m_
ho(r) \implies t[R_i] \in \pi_{R_i}(m_
ho(r))$$

$$\pi_{R_i}(m_
ho(r))\subseteq\pi_{R_i}(r)$$

 $q\inigotimes_{i=1}^k\pi_{R_i}(r)\implies$ by definition of join $q=igotimes_{i=1}^k\set{p_i[R_i]}\mid p_i\in r\implies$ given that q is a function $q[R_i]=p_i[R_i]$ and $p_i\in r\implies p_i[R_i]\in\pi_{R_i}(r)$ we have that $q[R_i]\in\pi_{R_i}(r)$

$$m_
ho(m_
ho(r))=m_
ho(r)$$

$$m_
ho(m_
ho(r))=igotimes_{i=1}^k\pi_{R_i}(m_
ho(r))=igotimes_{i=1}^k\pi_{R_i}(r)=m_
ho(r)$$

Loseless join pt.2

PDF 15 slide 15 Given $ho=\set{R_1,R_2,...,R_k}$, build a table r with |R| columns and k rows. At the i-th row and j-th column put a_j if $A\in R_i$ else b_{ij}

Correctness

PDF 15 slide 19

Let R be a relation scheme, F a set of functional dependencies on R and let $\rho = \{R_1, R_2, ..., R_k\}$ be a decomposition of R; the algorithm correctly decides whether ρ has a lossless join

 $r=m_
ho(r) \iff r$ has a tuple with all a when the algorithm termintes

TODO: I can prove $r=m_{
ho}(r)\implies r$ has a tuple with all a when the algorithm terminates, I just have to write it in \LaTeX

Minimal cover

PDF 17 slide 7

Let R be a schema and F be a set of functional dependencies on R. A **minimal cover** of F is a set of functional dependencies $G \equiv F$ such that:

- $\forall X \rightarrow Y \in G, |Y| = 1$
- $\bullet \ \, \forall X \rightarrow A \in G, \nexists X' \subset X \mid G \equiv (G \set{X \rightarrow A}) \cup \set{X' \rightarrow A}$
- ullet $exists X o A \in G \mid G \equiv G \{X o A\}
 exists$

Minimal cover (step 1)

$$F_1=\set{X o A\mid X o Y\in F\wedge A\in Y}$$
 $F\stackrel{A}{ o}F_1$ by decomposition $F_1\stackrel{A}{ o}F_1^A\implies F\subseteq F_1^A$ $F_1\stackrel{A}{ o}F$ by union $F\stackrel{A}{ o}F^A\implies F_1\subseteq F^A$ $F\equiv F_1$

Minimal cover (step 2)

$$\mathsf{Given}\: X \to A \in F_1, X' \subset X \land X' \to A \in F_1^+ \implies F_2 = (F_1 \setminus \set{X \to A}) \cup \set{X' \to A}$$

$$X'\subseteq X\implies X o X'\in F_1^+\wedge X o X'\in F_2^+$$
 by reflexivity

$$X o A\in F_1$$

- $\bullet \ X \to A \in F_2 \implies X \to A \in F_2^+$
- ullet $X o A
 otin F_2 \implies X o X'\in F_2^+\wedge X' o A\in F_2^+ \implies X o A\in F_2^+$ by transitivity

$$X o A\in F_2$$

- $\bullet \ X \to A \in F_1 \implies X \to A \in F_1^+$
- ullet $X o A
 otin F_1 \implies X o A\in F_1^+$ by HP

 $F_2 \equiv F_1 \implies F \equiv F_2$ by transitivity of the \equiv relationship

Minimal cover (step 3)

$$X o A \in F_2, \; A \in (X)^+_{F_2 \setminus \set{X o A}} \implies F_3 = F_2 \setminus \set{X o A}$$

$$X o A \in F_2$$

- $X \to A \in F_3 \implies X \to A \in F_3^+$
- ullet $X o A
 otin F_3 \implies X o A\in F_3^+$ by HP as $A\in (X)_{F_3}^+$

$$X o A \in F_3$$

- $\bullet \ X \to A \in F_2 \implies X \to A \in F_2^+$
- ullet $X o A
 otin F_2$ is a contraddiction as $F_3=F_2\setminus\set{X o A}$ by definition

$$F_2 \equiv F_3 \implies F \equiv F_3$$

Decomposition

```
def decomposition(R, F: minimal cover):
      S = \emptyset
      \rho = \emptyset
      for A \in R \mid \exists X \rightarrow Y \in F : A \in XY:
            S = S \cup \{A\}
      if S \neq \emptyset:
            R = R - S
            \rho = \rho \cup \{S\}
      if \exists X \rightarrow Y \in F \mid XY = R:
            \rho = \rho \cup \{R\}
      else:
            for X \rightarrow A \in F:
                   \rho = \rho \cup \{XA\}
```

Decomposition pt.2

PDF 19 slide 5

Let R be a relational schema and F a set of functional dependencies on R, which is a minimal cover; the algorithm decomposition() computes (in polynomial time) a decomposition ρ of R such that:

- each relational schema in ρ is in 3NF
- ullet ho preserves F