Ex 1 Simplifications : on utilise évidemment les formes trigonométriques, qui sont mieux adaptées aux puissances :

$$(1+i)^{25} = \left(\sqrt{2}e^{1\pi/4}\right)^{25} = 2^{25/2}e^{25i\pi/4} = 2^{12}\sqrt{2}e^{i(6\pi+\pi/4)} = 4096\sqrt{2}e^{i\pi/4}$$

Soit

$$(1+i)^{25} = 4096(1+i)$$

De même

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20} = \left(\frac{2e^{i\pi/3}}{\sqrt{2}e^{-i\pi/4}}\right)^{20} = \left(\sqrt{2}\right)^{20} \frac{e^{20i\pi/3}}{e^{-20i\pi/4}} = 2^{10} \frac{e^{i(6\pi+2\pi/3)}}{e^{-5i\pi}} = -2^{10} e^{2i\pi/3} = -2^{10} \frac{-1+i\sqrt{3}}{2}$$

Ainsi

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20} = 512\left(1-i\sqrt{3}\right)$$

Ex 2 Soit $k \in \mathbb{Z}$. Simplifions $(1+i\sqrt{3})^k - (1-i\sqrt{3})^k$ à l'aide de la forme trigonométrique :

$$\left(1 + i\sqrt{3}\right)^k - \left(1 - i\sqrt{3}\right)^k = \left(2e^{i\pi/3}\right)^k - \left(2e^{-i\pi/3}\right)^k = 2^k \left(e^{ik\pi/3} - e^{-ik\pi/3}\right)^k$$

Les formules d'Euler donnent donc

$$(1+i\sqrt{3})^k - (1-i\sqrt{3})^k = 2^{k+1}i\sin\frac{k\pi}{3}$$

Ex 3 Soit $x \in \mathbb{R}$, et z = 1 + ix. Appelons $\theta = \text{Arg}(z)$ l'argument principal de z. Comme Re z > 0, on a $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

 $\tan\theta=x$

Il vient

$$\theta = \arctan\left(x\right)$$

 $\begin{aligned} &\textit{Remarque}: \text{ on a aussi } \sin\theta = \frac{x}{\sqrt{1+x^2}}, \text{ donc } \boxed{\theta = \arcsin\frac{x}{\sqrt{1+x^2}}} \\ &\text{En revanche, } \cos\theta = \frac{1}{\sqrt{1+x^2}}, \text{ mais } \theta = \arccos\frac{1}{\sqrt{1+x^2}} \text{ seulement si } x \geqslant 0. \text{ Sinon, } \theta = -\arccos\frac{1}{\sqrt{1+x^2}} \end{aligned}$

Ex 4 Soit $(z_n)_{n\in\mathbb{N}}$ la suite définie par récurrence par $z_0\in\mathbb{C}$ et $\forall n\in\mathbb{N},\ z_{n+1}=\frac{1}{5}\left(3z_n+2\overline{z_n}\right)$. Pour tout entier $n\in\mathbb{N}$, notons $x_n=\operatorname{Re} z_n$ et $y_n=\operatorname{Im} z_n$. Alors la relation de récurrence s'écrit :

$$\forall n \in \mathbb{N}, \ x_{n+1} + iy_{n+1} = \frac{1}{5} \left(3(x_n + iy_n) + 2(x_n - iy_n) \right) = x_n + i\frac{y_n}{5}$$

En identifiant parties réelles et imaginaires, il vient

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = x_n \\ y_{n+1} = \frac{y_n}{5} \end{cases}$$

 $(x_n)_{n\in\mathbb{N}}$ est donc la suite constante de valeur $x_0=\operatorname{Re} z_0$ et $(y_n)_{n\in\mathbb{N}}$ la suite géométrique de premier terme $y_0 = \operatorname{Im} z_0$ et de raison 1/5. Il vient

$$\forall n \in \mathbb{N}, \ z_n = x_0 + \frac{y_0}{5^n}$$

Ainsi

La limite de
$$(z_n)$$
 existe et vaut $\operatorname{Re} z_0$

PCSI 1 Thiers 2019/2020

Ex 5 Soit
$$\theta \in \mathbb{R}$$
 et $Z = \frac{1 + (\cos \theta + i \sin \theta)^3}{(\cos \theta + i \sin \theta)^2} = \frac{1 + e^{3i\theta}}{e^{2i\theta}}$. On sait réduire Z :

$$Z = \left(2\cos\frac{3i\theta}{2}e^{3i\theta/2}\right)e^{-2i\theta} = 2\cos\frac{3\theta}{2}e^{-i\theta/2}$$

On discute alors sur θ :

- Si $\cos \frac{3\theta}{2} = 0$, alors Z = 0

Cela arrive lorsque $\frac{3\theta}{2} \equiv \frac{\pi}{2} \ [\pi]$, soit $\theta \equiv \frac{\pi}{3} \ \left[\frac{2\pi}{3}\right]$, i.e. lorsque θ est de la forme $\frac{(2k+1)\pi}{3}$ avec $k \in \mathbb{Z}$.

- Si
$$\cos \frac{3\theta}{2} > 0$$
, alors $|Z| = 2 \cos \frac{3\theta}{2}$ et $\arg Z \equiv \frac{\theta}{2}$ $[2\pi]$

Cela arrive lorsque

$$\exists k \in \mathbb{Z} / \frac{-\pi}{2} + 2k\pi < \frac{3\theta}{2} < \frac{\pi}{2} + 2k\pi$$

soit

$$\exists k \in \mathbb{Z} / \frac{-\pi}{3} + \frac{4k\pi}{3} < \theta < \frac{\pi}{3} + \frac{4k\pi}{3}$$

Autrement dit lorsque

$$\theta \in \bigcup_{k \in \mathbb{Z}} \left[\frac{(4k-1)\pi}{3}, \frac{(4k+1)\pi}{3} \right]$$

$$- \underline{\text{Si } \cos \frac{3\theta}{2} < 0}, \text{ alors } \boxed{|Z| = -2\cos \frac{3\theta}{2} \quad \text{et} \quad \arg Z \equiv \frac{\theta}{2} + \pi \ [2\pi]} \text{ (puisque } Z = -2\cos \frac{3\theta}{2} e^{-i\theta/2} e^{i\pi} \text{)}.$$

$$\exists k \in \mathbb{Z} / \frac{\pi}{2} + 2k\pi < \frac{3\theta}{2} < \frac{3\pi}{2} + 2k\pi$$

soit

$$\exists k \in \mathbb{Z} \: / \: \frac{\pi}{3} + \frac{4k\pi}{3} < \theta < \pi + \frac{4k\pi}{3}$$

autrement dit lorsque

$$\theta \in \bigcup_{k \in \mathbb{Z}} \left] \frac{(4k+1)\pi}{3}, \frac{(4k+3)\pi}{3} \right[$$

Ex 6 Soient $(\alpha, \beta) \in \mathbb{R}^2$ et $Z = e^{i\alpha} + e^{i\beta}$. Alors

$$Z = e^{i\alpha} \left(1 + e^{i(\beta - \alpha)} \right) = 2e^{i\alpha} \cos \frac{\beta - \alpha}{2} e^{i\frac{\beta - \alpha}{2}}$$

Ainsi

$$Z = 2\cos\frac{\beta - \alpha}{2}e^{i\frac{\beta + \alpha}{2}}$$

 $Z = 2\cos\frac{\beta - \alpha}{2}e^{i\frac{\beta + \alpha}{2}}$ Remarque : une autre méthode pour arriver à cette factorisation de Z est de mettre directement en facteur le complexe $e^{i\frac{\alpha+\beta}{2}}$, par analogie avec la mise en facteur de $e^{i\frac{\theta}{2}}$ dans $1+e^{i\theta}=e^{i0}+e^{i\theta}$: on obtient

$$Z = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\left(\alpha - \frac{\alpha+\beta}{2}\right)} + e^{i\left(\beta - \frac{\alpha+\beta}{2}\right)} \right) = e^{i\frac{\alpha+\beta}{2}} \left(e^{i\frac{\alpha-\beta}{2}} + e^{i\frac{\beta-\alpha}{2}} \right) = 2\cos\frac{\beta-\alpha}{2}e^{i\frac{\beta+\alpha}{2}}$$

On discute alors sur le signe de $\cos \frac{\beta - \alpha}{2}$:

- Si
$$\cos \frac{\beta - \alpha}{2} = 0$$
, alors $Z = 0$

$$- \underline{\operatorname{Si} \cos \frac{\beta - \alpha}{2} > 0}, \operatorname{alors} \boxed{|Z| = 2 \cos \frac{\beta - \alpha}{2} \quad \text{et} \quad \arg Z \equiv \frac{\alpha + \beta}{2} \ [2\pi]}$$

$$- \underline{\operatorname{Si} \cos \frac{\beta - \alpha}{2} < 0}, \operatorname{alors} \boxed{|Z| = -2 \cos \frac{\beta - \alpha}{2} \quad \text{et} \quad \arg Z \equiv \frac{\alpha + \beta}{2} + \pi \ [2\pi]} \text{ (puisque } Z = -2 \cos \frac{\beta - \alpha}{2} e^{i\frac{\beta + \alpha}{2}} e^{i\pi}).$$

Ex 7 Soient a et b deux complexes de module 1 tels que $ab \neq -1$: montrons que $Z = \frac{a+b}{1+ab} \in \mathbb{R}$. On a :

$$\overline{Z} = \overline{\left(\frac{a+b}{1+ab}\right)} = \frac{\bar{a}+\bar{b}}{1+\bar{a}\bar{b}} = \frac{\bar{a}+\bar{b}}{1+\bar{a}\bar{b}}$$

Or $a \in \mathbb{U} \iff \bar{a}a = 1 \iff \bar{a} = \frac{1}{a}$ et de même $b \in \mathbb{U} \iff \bar{b} = \frac{1}{b}$. Ainsi

$$\overline{Z} = \frac{\frac{1}{a} + \frac{1}{b}}{1 + \frac{1}{ab}} = \frac{b+a}{ab+1} = Z$$

On peut en conclure que Z est réel, CQFD.

Ex 8 Soit z un nombre complexe et $Z = \frac{1+zi}{1-zi}$. Alors

$$|Z| = 1 \Longleftrightarrow \left| \frac{1+zi}{1-zi} \right| = 1 \Longleftrightarrow |1+zi| = |1-zi| \Longleftrightarrow |1+zi|^2 = |1-zi|^2$$

La définition du module donne alors

$$|Z| = 1 \iff (1+zi)\overline{(1+zi)} = (1-zi)\overline{(1-zi)}$$

$$\iff (1+zi)(1-\overline{z}i) = (1-zi)(1+\overline{z}i)$$

$$\iff zi - \overline{z}i = -zi + \overline{z}i$$

$$\iff z = \overline{z}$$

Finalement, on a l'équivalence

$$|Z|=1\Longleftrightarrow z\in\mathbb{R}$$

Ex 9 Soient a et b deux réels, z=a+ib, A=|z|, $\varphi=\operatorname{Arg} z$ et $f\left(\theta\right)=a\cos\theta+b\sin\theta$. Alors

$$\bar{z}e^{i\theta} = (a+ib)(\cos\theta + i\sin\theta)$$

Donc

$$\operatorname{Re}\left(\bar{z}e^{i\theta}\right) = a\cos\theta + b\sin\theta = f\left(\theta\right)$$

Par ailleurs

$$\bar{z}e^{i\theta} = Ae^{-i\varphi}e^{i\theta} = Ae^{i(\theta-\varphi)}$$

Il vient donc

$$\operatorname{Re}\left(\bar{z}e^{i\theta}\right) = A\cos\left(\theta - \varphi\right)$$

En égalant, on retrouve la réduction utile en physique :

$$f(\theta) = A\cos(\theta - \varphi)$$

Ex 10 Soit
$$(z, z') \in \mathbb{C}^2$$
. Montrons que $|z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2)$:

$$|z+z'|^2 + |z-z'|^2 = (z+z')\left(\overline{z}+\overline{z'}\right) + (z-z')\left(\overline{z}-\overline{z'}\right)$$

$$= 2z\overline{z} + 2z'\overline{z'} + 0$$

$$= 2\left(|z|^2 + |z'|^2\right) \quad \text{CQFD}.$$

Géométriquement, considérons le parallélogramme ABCD, et posons

$$\vec{u} = \overrightarrow{AB} = \overrightarrow{DC}$$
 et $\overrightarrow{u'} = \overrightarrow{BC} = \overrightarrow{AD}$

On a alors $\vec{u} + \overrightarrow{u'} = \overrightarrow{AC}$ et $\vec{u} - \overrightarrow{u'} = \overrightarrow{DB}$. En notant z et z' les affixes de \vec{u} et $\overrightarrow{u'}$, on obtient

$$AC^2 + DB^2 = 2(AB^2 + BC^2)$$

ou encore

$$AC^2 + DB^2 = AB^2 + BC^2 + CD^2 + DA^2$$

Autrement dit la somme des carrés des deux diagonales vaut la somme des carrés des 4 côtés. Ce résultat de géométrie est connu sous le nom d'identité du parallélogramme.

Ex 11 Soient z, z', u des nombres complexes vérifiant $zz' = u^2$, et ζ, ζ' des racines carrées de z et z'. Montrons que

$$|z| + |z'| = \left| \frac{z + z'}{2} + u \right| + \left| \frac{z + z'}{2} - u \right|$$

On peut écrire $z=\zeta^2$ et $z'=\zeta'^2$. Mais $u^2=zz'=\left(\zeta\zeta'\right)^2$, d'où $u=\zeta\zeta'$ ou $u=-\zeta\zeta'$; mais dans tous les cas :

$$\begin{split} \left|\frac{z+z'}{2}+u\right| + \left|\frac{z+z'}{2}-u\right| &= \left|\frac{\zeta^2+\zeta'^2}{2}+\zeta\zeta'\right| + \left|\frac{\zeta^2+\zeta'^2}{2}-\zeta\zeta'\right| \quad \text{\#symétrie} \\ &= \left|\frac{\zeta^2+\zeta'^2+2\zeta\zeta'}{2}\right| + \left|\frac{\zeta^2+\zeta'^2-2\zeta\zeta'}{2}\right| \\ &= \frac{1}{2}\left|\left(\zeta+\zeta'\right)^2\right| + \left|\left(\zeta-\zeta'\right)^2\right| \\ &= \frac{1}{2}\left(\left|\zeta+\zeta'\right|^2+\left|\zeta-\zeta'\right|^2\right) \\ &= \frac{1}{2}\left(\left(\zeta+\zeta'\right)\left(\bar{\zeta}+\bar{\zeta'}\right) + \left(\zeta-\zeta'\right)\left(\bar{\zeta}-\bar{\zeta'}\right)\right) \\ &= \frac{1}{2}\left(2\zeta\bar{\zeta}+2\zeta'\bar{\zeta'}\right) \\ &= |\zeta|^2+\left|\zeta'\right|^2 \\ &= |z|+|z'| \quad \text{CQFD}. \end{split}$$

Ex 12 Soit
$$\alpha$$
 un réel de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et $z = \frac{1}{1 + i \tan \alpha}$.

a) On a, en multipliant numérateur et dénominateur par $\cos \alpha \neq 0$:

$$z = \frac{\cos \alpha}{\cos \alpha + i \sin \alpha} = \frac{\cos \alpha}{e^{i\alpha}} = \cos \alpha e^{-i\alpha}$$

Or $\alpha\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, donc $\cos\alpha>0$. On peut alors "identifier" module et argument

$$\begin{cases} |z| = \cos \alpha \\ \operatorname{Arg} z = -\alpha \ [2\pi] \end{cases}$$

b) On en déduit :

Re
$$z = \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

Im $z = -\cos \alpha \sin \alpha = -\frac{1}{2}\sin 2\alpha$

On pose $\theta = -2\alpha$. On a alors

$$\begin{cases} \operatorname{Re} z = \frac{1}{2} + \frac{1}{2} \cos \theta \\ \operatorname{Im} z = \frac{1}{2} \sin \theta \end{cases}$$

c) Lorsque α varie dans $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, θ varie dans $\left]-\pi,\pi\right[$, et le point M d'affixe z vérifie

$$z - \frac{1}{2} = \frac{1}{2}e^{i\theta}$$

En particulier $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ donc M est sur le cercle Γ de centre C d'affixe $\frac{1}{2}$ et de rayon $\frac{1}{2}$, avec $M\neq O$ (puisque $\theta\in\left]-\pi,\pi\right[$, $z-\frac{1}{2}=-\frac{1}{2}e^{i\theta}\neq-\frac{1}{2},$ et donc $z\neq0$)

Inversement, tout point $M\left(z\right)$ de $\Gamma\setminus\left\{O\right\}$ vérifie $CM=\frac{1}{2}$ donc $\exists\theta\in\left]-\pi,\pi\right[$ tel que $z-\frac{1}{2}=\frac{1}{2}e^{i\theta}.$ Ainsi

$$M$$
 décrit Γ privé du point O

 $\boxed{M \ \text{d\'ecrit} \ \Gamma \ \text{priv\'e du point} \ O}$ d) Soit M_0 le point d'affixe $z_0 = \frac{1}{1+i\tan\frac{7\pi}{8}} = \frac{1}{1+i\tan\left(\frac{-\pi}{8}\right)}.$

D'après la question précédente, M_0 est sur le cercle Γ .

De plus il correspond à la valeur $-\frac{\pi}{8} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{de } \alpha, \text{c'est-à-dire à la valeur } \frac{\pi}{4} \text{ de } \theta.$

Ainsi
$$z_0 - \frac{1}{2} = \frac{1}{2}e^{i\pi/4}$$
, ce qui entraine que $\left(\vec{i}, \overrightarrow{CM}_0\right) \equiv \frac{\pi}{4} \ [2\pi]$.

On construit donc le cercle Γ , puis la demi-droite issue de C faisant un angle de $\frac{\pi}{4}$ avec l'axe (Ox) .

Le point de rencontre avec Γ est le point M_0 cherché.

$$\textbf{Ex 13} \quad \text{Soit } \theta \in \mathbb{R}. \text{ Résolvons le système } (S): \left\{ \begin{array}{l} \cos\theta + \cos\left(\theta + x\right) + \cos\left(\theta + y\right) = 0 \\ \sin\theta + \sin\left(\theta + x\right) + \sin\left(\theta + y\right) = 0 \end{array} \right. .$$
 Sachant que pour a et b réels on peut écrire
$$\left\{ \begin{array}{l} a = 0 \\ b = 0 \end{array} \right. \Longleftrightarrow a + ib = 0 \text{, on a}$$

Sachant que pour
$$a$$
 et b réels on peut écrire
$$\begin{cases} a=0 \\ b=0 \end{cases} \iff a+ib=0, \text{ on a}$$

$$(S) \iff \cos\theta + \cos(\theta + x) + \cos(\theta + y) + i(\sin\theta + \sin(\theta + x) + \sin(\theta + y)) = 0$$

$$\iff e^{i\theta} + e^{i(\theta + x)} + e^{i(\theta + y)} = 0$$

$$\iff e^{i\theta} \left(1 + e^{ix} + e^{iy}\right) = 0$$

$$\iff 1 + e^{ix} + e^{iy} = 0 \quad \text{puisque } e^{i\theta} \neq 0$$

On revient alors aux parties réelles et imaginaires :

$$(S) \Longleftrightarrow \begin{cases} 1 + \cos(x) + \cos(y) = 0 \\ \sin(x) + \sin(y) = 0 \end{cases} \Longleftrightarrow \begin{cases} \cos(x) + \cos(y) = -1 \\ \sin(y) = \sin(-x) \end{cases}$$

L'égalité des sinus fournit donc :

$$(S) \iff \begin{cases} \cos\left(x\right) + \cos\left(x\right) = -1 \\ y \equiv -x \left[2\pi\right] \end{cases} \quad \text{ou} \quad \begin{cases} \cos\left(x\right) + \cos\left(\pi + x\right) = -1 \\ y \equiv \pi + x \left[2\pi\right] \end{cases}$$

$$\iff \begin{cases} \cos\left(x\right) = -\frac{1}{2} \\ y \equiv -x \left[2\pi\right] \end{cases} \quad \text{ou} \quad \begin{cases} 0 = -1 \\ y \equiv \pi + x \left[2\pi\right] \end{cases}$$

$$\iff \begin{cases} x \equiv \frac{2\pi}{3} \left[2\pi\right] \quad \text{ou} \quad x \equiv -\frac{2\pi}{3} \left[2\pi\right] \\ y \equiv -x \left[2\pi\right] \end{cases}$$

Finalement l'ensemble des solutions es

$$S = \left\{ \left(\frac{2\pi}{3} + 2k\pi, -\frac{2\pi}{3} + 2k'\pi \right), \ (k, k') \in \mathbb{Z}^2 \right\} \cup \left\{ \left(-\frac{2\pi}{3} + 2k\pi, \frac{2\pi}{3} + 2k'\pi \right), \ (k, k') \in \mathbb{Z}^2 \right\}$$

Ex 14 Résolution d'équations dans C.

a) $(E): z^2 - (2+i)z - 1 + 7i = 0$ a pour discriminant $\Delta = (2+i)^2 + 4(1-7i) = 7 - 24i$ Déterminons une racine carrée δ de Δ : si $x = \text{Re } \delta$ et $y = \text{Im } \delta$, alors

$$\delta^{2} = \Delta \iff \begin{cases} |\delta|^{2} = |\Delta| = 25 \\ x^{2} - y^{2} + 2xy = 7 - 24i \end{cases} \iff \begin{cases} x^{2} + y^{2} = 25 \\ x^{2} - y^{2} = 7 \\ 2xy = -24 \end{cases} \iff \begin{cases} x^{2} = 16 \\ y^{2} = 9 \\ xy < 0 \end{cases}$$

On choisit $\underline{\delta = 4 - 3i}$ d'où les deux solutions de (E) :

$$\frac{2+i+4-3i}{2} = \boxed{3-i} \quad \text{et} \quad \frac{2+i-4+3i}{2} = \boxed{-1+2i}$$

b) $(E): z^4 - (5-14i)z^2 - 2(5i+12) = 0$. En posant $Z = z^2$, elle se ramène à

$$(E'): Z^2 - (5 - 14i)Z - 2(5i + 12) = 0$$

dont le discriminant est $\Delta=(5-14i)^2+8$ $(5i+12)=-75-100i=5^2$ (-3-4i) . Déterminons une racine carrée δ' de $\Delta'=-3-4i$: si $x=\operatorname{Re}\delta$ et $y=\operatorname{Im}\delta$, alors

$$\delta^2 = \Delta \Longleftrightarrow \left\{ \begin{array}{l} x^2 + y^2 = 5 \\ x^2 - y^2 = -3 \\ 2xy = -4 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} x^2 = 1 \\ y^2 = 4 \\ xy < 0 \end{array} \right.$$

On choisit $\delta'=1-2i$: Alors $\delta=5\,(1-2i)$ est un racine carrée de Δ , d'où

$$(E') \iff \begin{cases} z^2 = \frac{5 - 14i + 5 - 10i}{2} = 5 - 12i \quad (e_1) \\ z^2 = \frac{5 - 14i - 5 + 10i}{2} = -2i \quad (e_2) \end{cases}$$

Résoudre (e_1) revient à extraire les racines carrées de 5-12i: en posant $x=\operatorname{Re} z$ et $y=\operatorname{Im} z$,

$$z^{2} = 5 - 12i \iff \begin{cases} x^{2} + y^{2} = 13 \\ x^{2} - y^{2} = 5 \\ 2xy = -12 \end{cases} \iff \begin{cases} x^{2} = 9 \\ y^{2} = 4 \\ xy < 0 \end{cases} \iff \begin{cases} z = 3 - 2i \\ z = -3 + 2i \end{cases}$$

Pour résoudre (e_2) , on passe par la forme trigonométrique

$$z^2 = -2i \iff z^2 = 2e^{-i\pi/2} \iff z = \pm\sqrt{2}e^{-i\pi/4} \iff \begin{cases} z = 1 - i \\ z = -1 + i \end{cases}$$

Au total les quatre solutions de (E) sont

$$3-2i, -3+2i, 1-i, -1+i$$

c) $(E): z^2 + (1 - i\sqrt{3})z - i\sqrt{3} = 0$ a pour discriminant

$$\Delta = \left(1 - i\sqrt{3}\right)^2 + 4i\sqrt{3} = 1 + 2i\sqrt{3} - 3 = \left(1 + i\sqrt{3}\right)^2$$

On en déduit ses deux solutions :

$$\frac{-1 + i\sqrt{3} + 1 + i\sqrt{3}}{2} = \boxed{i\sqrt{3}} \quad \text{et} \quad \frac{-1 + i\sqrt{3} - 1 - i\sqrt{3}}{2} = \boxed{-1}$$

Qui étaient prévisibles quand on avait remarqué que -1 était solution évidente!

Ex 15 Soit $t \in \mathbb{R}$. On considère l'équation complexe (E_t) $z^2 - 2(1 + 2e^{it})z - 3 = 0$

a) Le discriminant de (E_t) s'écrit

$$\Delta_t = 4\left(\left(1 + 2e^{it}\right)^2 + 3\right) = 4\left(4 + 4e^{it} + 4e^{2it}\right) = 16\left(1 + e^{it} + e^{2it}\right)$$

Or on sait que $1 + e^{2it} = 2\cos t e^{it}$, d'où

$$\Delta_t = 16 \left(e^{it} + 2\cos t e^{it} \right)$$

Finalement

$$\Delta_t = 16u(t)e^{it}$$
, avec $\underline{u(t)} = 1 + 2\cos t$

b) Solutions de (E_t) .

* $1^{\text{er}} \cos : 1 + 2 \cos t = 0$. Cela équivaut à $\cos t = -\frac{1}{2}$, soit $t \equiv \frac{2\pi}{3}$ $[2\pi]$ ou $t \equiv -\frac{2\pi}{3}$ $[2\pi]$ Alors $\Delta_t = 0$ et (E_t) admet la solution double

$$z_t = 1 + 2e^{it}$$

On peut préciser : si $t \equiv \frac{2\pi}{3} \ [2\pi]$, alors $z_t = i\sqrt{3}$ et si $t \equiv -\frac{2\pi}{3} \ [2\pi]$, alors $z_t = -i\sqrt{3}$

* $2^{\text{ème}} \cos t : 1 + 2 \cos t > 0$. Cela équivaut à $\cos t > -\frac{1}{2}$, soit

$$\exists k \in \mathbb{Z} \ / \ -\frac{2\pi}{3} + 2k\pi < t < \frac{2\pi}{3} + 2k\pi$$

Déterminons une racine carrée δ_t de Δ_t : la forme trigonométrique vue plus haut nous permet de choisir, puisque u(t) > 0,

$$\delta_t = 4\sqrt{u\left(t\right)}e^{it/2}$$

Les solutions de (E_t) sont alors

$$\begin{cases} z_t = 1 + 2e^{it} - 2\sqrt{u(t)}e^{it/2} \\ z'_t = 1 + 2e^{it} + 2\sqrt{u(t)}e^{it/2} \end{cases}$$

* $3^{\text{ème}} \cos t < 1 + 2 \cos t < 0$. Cela équivaut à $\cos t < -\frac{1}{2}$, soit

$$\exists k \in \mathbb{Z} / \frac{2\pi}{3} + 2k\pi < t < \frac{4\pi}{3} + 2k\pi$$

Déterminons une racine carrée δ_t de Δ_t : la forme trigonométrique de Δ_t est, puisque $1+2\cos t<0$,

$$\Delta_t = -16u(t) e^{it+\pi}$$

On peut donc choisir

$$\delta_t = 4\sqrt{-u(t)}e^{i(t/2+\pi/2)}$$

soit

$$\delta_{t} = 4\sqrt{-u\left(t\right)}ie^{it/2}$$

Les solutions de (E_t) sont alors

$$\begin{cases} z_t = 1 + 2e^{it} - 2i\sqrt{-u(t)}e^{it/2} \\ z'_t = 1 + 2e^{it} + 2i\sqrt{-u(t)}e^{it/2} \end{cases}$$

Ex 16 Cherchons une solution réelle de l'équation (E): $iz^3 + (2i-1)z^2 - (i+4)z + 3(2i-1) = 0$. Si $z \in \mathbb{R}$,

$$(E) \iff -z^2 - 4z - 3 + i\left(z^3 + 2z^2 - z + 6\right) = 0 \iff \begin{cases} z^2 + 4z + 3 = 0 \text{ et} \\ z^3 + 2z^2 - z + 6 = 0 \end{cases}$$

 $z^2 + 4z + 3$ admet les solutions -1 et -3 mais -1 n'est pas solution de $z^3 + 2z^2 - z + 6$ et -3 l'est.

On peut en conclure que -3 est solution de (E), qui se factorise donc par z+3:

$$iz^{3} + (2i - 1)z^{2} - (i + 4)z + 3(2i - 1) = (z + 3)(iz^{2} - (1 + i)z - 1 + 2i)$$

Cette factorisation peut s'obtenir par coefficients indéterminés ou par division euclidienne polynomiale). Alors

(E)
$$\iff$$
 $\begin{cases} z = -3 \text{ ou} \\ iz^2 - (1+i)z - 1 + 2i = 0 \ (E') \end{cases}$

Pour résoudre (E'), on calcule le discriminant $\Delta = (1+i)^2 + 4i(1-2i) = 8+6i$.

On cherche une racine carrée δ de Δ avec $x=\operatorname{Re}\delta$ et $y=\operatorname{Im}\delta$:

$$\delta^2 = 8 + 6i \Longleftrightarrow \begin{cases} x^2 + y^2 = 10 \\ x^2 - y^2 = 8 \\ 2xy = 6 \end{cases} \Longleftrightarrow \begin{cases} x^2 = 9 \\ x^2 = 1 \\ xy > 0 \end{cases}$$

On choisit $\delta = 3 + i$, d'où les deux racines de (E'): $\frac{1+i+3+i}{2i} = 1-2i$ et $\frac{1+i-3-i}{2i} = i$ On conclut avec les solutions de (E):

$$-3, i, 1-2i$$

Ex 17 Soit
$$x \in \mathbb{R}$$
, $n \in S_n = \sum_{k=0}^n \cos(2kx)$ et $T_n = \sum_{k=0}^{n-1} \cos(2k+1)x$.
a) On a $S_n = \sum_{k=0}^n \cos(2kx) = \sum_{k=0}^n \operatorname{Re} e^{2ikx} = \operatorname{Re} \sum_{k=0}^n e^{2ikx} = \operatorname{Re} \sum_{k=0}^n \left(e^{2ix}\right)^k$. Notons $Z_n = \sum_{k=0}^n \left(e^{2ix}\right)^k$
* Si $2x \equiv 0$ [2π], i.e. $x \equiv 0$ [π], alors $e^{2ix} = 1$ et $Z_n = n+1=S_n$

* Si $2x \not\equiv 0$ $[2\pi]$, i.e. $x \not\equiv 0$ $[\pi]$, alors $e^{2ix} \not= 1$ et

$$Z_n = \frac{1 - e^{2i(n+1)x}}{1 - e^{2ix}} = \frac{-2i\sin((n+1)x)e^{i(n+1)x}}{-2i\sin(x)e^{ix}} = \frac{\sin((n+1)x)}{\sin x}e^{inx}$$

Il vient

$$S_n = \frac{\sin((n+1)x)}{\sin x}\cos(nx)$$

b) De même
$$T_n == \operatorname{Re} \sum_{k=0}^{n-1} e^{(2k+1)ix} = \operatorname{Re} \sum_{k=0}^{n-1} \left(e^{2ix} \right)^k e^{ix} = \operatorname{Re} \left(e^{ix} Z_{n-1} \right).$$

* Si
$$2x \equiv 0$$
 $[2\pi]$, i.e. $x \equiv 0$ $[\pi]$, alors $e^{2ix} = 1$ et $e^{ix}Z_{n-1} = ne^{ix}$ et $T_n = n\cos x$

* Si $2x\not\equiv 0$ $[2\pi]$, i.e. $x\not\equiv 0$ $[\pi]$, alors $e^{2ix}\not=1$ et d'après a) :

$$e^{ix}Z_{n-1} = e^{ix}\frac{\sin(nx)}{\sin x}e^{i(n-1)x} = \frac{\sin(nx)}{\sin x}e^{inx}$$

Il vient

$$T_n = \frac{\sin(nx)}{\sin x}\cos(nx) = \frac{\sin(2nx)}{2\sin x}$$

c) Posons $S = \cos^2 \frac{\pi}{14} + \cos^2 \frac{3\pi}{14} + \cos^2 \frac{5\pi}{14}$. En linéarisant

$$S = \frac{1}{2} \left(3 + \cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} \right) = \frac{1}{2} \left(3 + \cos \frac{\pi}{7} + \cos \frac{3\pi}{7} + \cos \frac{5\pi}{7} \right) = \frac{1}{2} \left(3 + T_3 \right)$$

Avec $x = \frac{\pi}{7}$. d'où

$$S = \frac{1}{2} \left(3 + \frac{\sin(6\pi/7)}{2\sin(\pi/7)} \right) = \frac{1}{2} \left(3 + \frac{\sin(\pi/7)}{2\sin(\pi/7)} \right) = \boxed{\frac{7}{4}}$$

Ex 18 Soit $x \neq \frac{\pi}{2}$ [π]. On suppose de plus que $x \neq 0$ [π], et on pose $S_n = \sum_{k=0}^n \frac{\cos(kx)}{\cos^k x} = \frac{\sin(n+1)x}{\cos^n x \sin x}$. On a :

$$S_n = \sum_{k=0}^n \frac{\cos(kx)}{\cos^k x} = \operatorname{Re} \sum_{k=0}^n \frac{\cos(kx) + i\sin(kx)}{\cos^k x} = \operatorname{Re} \sum_{k=0}^n \frac{\left(e^{ix}\right)^k}{\cos^k x} = \operatorname{Re} \sum_{k=0}^n \left(\frac{e^{ix}}{\cos x}\right)^k$$

Or $x \neq 0$ $[\pi]$, donc $\frac{e^{ix}}{\cos x} = 1 + i \tan x \neq 1$, et on peut écrire

$$\sum_{k=0}^{n} \left(\frac{e^{ix}}{\cos x}\right)^{k} = \frac{1 - \left(\frac{e^{ix}}{\cos x}\right)^{n+1}}{1 - \frac{e^{ix}}{\cos x}}$$

$$= \frac{\cos x}{\cos^{n+1} x} \times \frac{\cos^{n+1} x - e^{i(n+1)x}}{\cos x - e^{ix}}$$

$$= \frac{\cos^{n+1} x - \cos(n+1)x - i\sin(n+1)x}{-i\sin x}$$

$$= \frac{i\left(\cos^{n+1} x - \cos(n+1)x\right) + \sin(n+1)x}{\sin x}$$

Ainsi

Ainsi
$$S_n = \frac{\sin{(n+1)\,x}}{\sin{x}}$$
 Si $x=0$ $[\pi]$, alors $\frac{e^{ix}}{\cos{x}}=1+i\tan{x}=1$, d'où $S_n=\sum_{k=0}^n 1=n+1$

Ex 19 On considère un complexe z tel que $|z| \le 1$, $(u_n)_{n \in \mathbb{N}}$ la suite géométrique de premier terme 1 et de raison $\frac{1+z}{2}$ et S_n la somme des n+1 premiers termes de (u_n) , soit $S_n = \sum_{k=0}^n u_k$. a) On suppose |z| < 1. donc $\forall n \in \mathbb{N}, \ |z^n| = |z|^n < 1$. Donc $(z_n)_{n \in \mathbb{N}}$ converge vers 0.

De plus $\left|\frac{1+z}{2}\right| \leqslant \frac{1}{2} \left(1+|z|\right) < 1$, on a $\frac{1+z}{2} \neq 1$ et on peut écrire pour tout entier $n \in \mathbb{N}$

$$S_n = \frac{1 - \left(\frac{1+z}{2}\right)^n}{1 - \frac{1+z}{2}}$$

Mais $\left|\frac{1+z}{2}\right| < 1$ entraine que $\left(\left(\frac{1+z}{2}\right)^n\right)_{n \in \mathbb{N}}$ converge vers 0. Il s'ensuit que $(S_n)_{n \in \mathbb{N}}$ converge vers

$$S = \frac{1}{1 - \frac{1+z}{2}} = \frac{2}{1-z}$$

b) On suppose |z|=1 et on pose $z=e^{i\theta}$, avec $\theta\in]-\pi,0[\cup]0,\pi[$. Alors

$$\frac{1+z}{2} = \frac{1+e^{i\theta}}{2} = \cos\frac{\theta}{2}e^{i\theta/2}$$

En particulier

En particulier
$$\left|\frac{1+z}{2}\right| = \left|\cos\frac{\theta}{2}\right| \in \left]0,1\right[\quad \text{puisque } \frac{\theta}{2} \in \left]-\frac{\pi}{2},0\right[\cup \left]0,\frac{\pi}{2}\right[$$
 On peut alors encore écrire pour tout $n \in \mathbb{N}$:

$$S_n = \frac{1 - \left(\frac{1+z}{2}\right)^n}{1 - \frac{1+z}{2}}$$

et comme au a), $(S_n)_{n\in\mathbb{N}}$ converge vers

$$S = \frac{1}{1 - \frac{1+z}{2}} = \frac{2}{1-z} = \frac{2}{1-e^{i\theta}} = \frac{2}{-2i\sin\frac{\theta}{2}e^{i\theta/2}} = \frac{ie^{-i\theta/2}}{\sin\frac{\theta}{2}} = \frac{\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}$$

Finalement

$$S = 1 + i \cot \frac{\theta}{2}$$

 $\textbf{Ex 20} \quad \text{On considère la suite } (z_n)_{n \in \mathbb{N}} \text{ de nombres complexes définie par } \left\{ \begin{array}{l} z_0 = i \\ \forall n \in \mathbb{N}, \ z_{n+1} = \frac{1}{2} \left(z_n + |z_n| \right) \end{array} \right.$

Pour tout entier n, on pose : $z_n = \rho_n e^{i\theta_n}$, avec $\rho_n \in \mathbb{R}_+^*$ et $\theta_n \in]-\pi,\pi]$

a) Le point $A_1(z_1)$ est le milieu de $A_0(z_0)$ et $B_0(|z_0|)$, le point $A_2(z_2)$ est le milieu de $A_1(z_1)$ et $B_1(|z_1|)$, et ainsi de suite.

- b) Montrons par récurrence que $\forall n \in \mathbb{N}, \ z_n \notin \mathbb{R} : H\left(n\right)$.
 - i. H(0) est vraie (car $i \notin \mathbb{R}$)
 - ii. Soit $n \in \mathbb{N}$. Supposons H(n) et montrons $H(n+1): z_{n+1} \notin \mathbb{R}$.

Par l'absurde, si $z_{n+1} \in \mathbb{R}$, on aurait un réel x tel que $\frac{1}{2}\left(z_n + |z_n|\right) = x$.

Mais alors on aurait $z_n=2x-|z_n|\in\mathbb{R},$ ce qui est contraire à H(n). Ainsi $z_{n+1}\notin\mathbb{R}$

- iii. Par récurrence, $H\left(n\right)$ est vraie pour tout entier $n\in\mathbb{N}.$
- c) La relation de récurrence vérifiée par (z_n) s'écrit donc :

$$\forall n \in \mathbb{N}, \ \rho_{n+1}e^{i\theta_{n+1}} = \frac{1}{2}\left(\rho_n e^{i\theta_n} + \rho_n\right) = \frac{1}{2}\rho_n\left(e^{i\theta_n} + 1\right) = \rho_n\cos\frac{\theta_n}{2}\,e^{i\frac{\theta_n}{2}}$$

Comme $\frac{\theta_n}{2}\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, on a bien $\rho_n.\cos\frac{\theta_n}{2}>0.$ On en déduit, par "unicité" de la forme trigonométrique :

$$\forall n \in \mathbb{N}, \left\{ \begin{array}{l} \rho_{n+1} = \rho_n \cos \frac{\theta_n}{2} \\ \theta_{n+1} = \frac{\theta_n}{2} \end{array} \right.$$

 $(\theta_n)_{n\in\mathbb{N}}$ est donc une suite géométrique de raison $\frac{1}{2}$, d'où, comme $\theta_0=\arg(z_0)=\frac{\pi}{2}$

$$\forall n \in \mathbb{N}, \theta_n = \frac{\theta_0}{2^n} = \frac{\pi}{2^{n+1}}$$

d) (ρ_n) vérifie donc la relation

$$\forall n \in \mathbb{N}, \ \rho_{n+1} = \rho_n \cos \frac{\theta_n}{2} = \rho_n \cos \frac{\pi}{2^{n+2}}$$

Conséquemment :

$$\forall n \in \mathbb{N}^*, \ \rho_n = \rho_{n-1} \cos \frac{\pi}{2^{n+1}} = \rho_{n-2} \cos \frac{\pi}{2^n} \cos \frac{\pi}{2^{n+1}} = \ldots = \rho_0 \cos \frac{\pi}{2^2} \ldots \cos \frac{\pi}{2^{n-1}} \cos \frac{\pi}{2^n} \cos \frac{\pi}{2^{n+1}} \cos \frac{\pi}{2^{n+1}} \cos \frac{\pi}{2^n} \cos \frac{\pi}{2^{n+1}} \cos \frac{\pi}{2^n} \cos \frac{\pi}{2^n}$$

Ainsi ($\rho_0=|i|=1$) :

$$\forall n \in \mathbb{N}^*, \ \rho_n = \prod_{k=1}^n \cos \frac{\pi}{2^{k+1}}$$

Remarque : pour montrer plus rigoureusement cette égalité, on peut raisonner par récurrence, ou multiplier terme à terme les égalités

$$\forall k \in [[1, n]], \ \rho_k = \rho_{k-1} \cos \frac{\pi}{2^{k+1}}$$

Cela donne

$$\prod_{k=1}^{n} \rho_k = \prod_{k=1}^{n} \rho_{k-1} \prod_{k=1}^{n} \cos \frac{\pi}{2^{k+1}} = \prod_{k=0}^{n-1} \rho_k \prod_{k=1}^{n} \cos \frac{\pi}{2^{k+1}}$$

Comme les ρ_k sont non nuls, on peut simplifier, et il reste

$$\rho_n = \rho_0 \prod_{k=1}^n \cos \frac{\pi}{2^{k+1}} = \prod_{k=1}^n \cos \frac{\pi}{2^{k+1}}$$

Pour tout $k \in \mathbb{N}$, on a la formule

$$\sin\left(2\frac{\pi}{2^{k+1}}\right) = 2\sin\frac{\pi}{2^{k+1}}\cos\frac{\pi}{2^{k+1}}$$

Comme $\frac{\pi}{2^{k+1}} \in \left]0, \pi\right[$, on a $\sin \frac{\pi}{2^{k+1}} \neq 0$, et on peut donc écrire

$$\cos \frac{\pi}{2^{k+1}} = \frac{\sin \frac{\pi}{2^k}}{2\sin \frac{\pi}{2^{k+1}}}$$

En passant au produit, on a alors pour tout entier $n \in \mathbb{N}$ le télescopage :

$$\rho_n = \prod_{k=1}^n \frac{\sin \frac{\pi}{2^k}}{2 \sin \frac{\pi}{2^{k+1}}} = \frac{1}{2^n} \frac{\sin \frac{\pi}{2}}{\sin \frac{\pi}{4}} \times \frac{\sin \frac{\pi}{4}}{\sin \frac{\pi}{8}} \times \dots \times \frac{\sin \frac{\pi}{2^n}}{\sin \frac{\pi}{2^{n+1}}} = \frac{1}{2^n \sin \frac{\pi}{2^{n+1}}}$$

$$\rho_n = \frac{1}{2^n \sin \frac{\pi}{2^{n+1}}}$$

e) Finalement : $\forall n \in \mathbb{N}$,

$$z_n = \rho_n e^{i\theta_n} = \frac{e^{i\frac{\pi}{2^{n+1}}}}{2^n \sin\frac{\pi}{2^{n+1}}} = \frac{\cos\frac{\pi}{2^{n+1}} + i\sin\frac{\pi}{2^{n+1}}}{2^n \sin\frac{\pi}{2^{n+1}}}$$

Soit

$$z_n = \frac{1}{2^n} \left(\cot \frac{\pi}{2^{n+1}} + i \right) = \frac{1}{2^n \tan \frac{\pi}{2^{n+1}}} + \frac{i}{2^n}$$

<u>Calcul de la limite</u>: posons $x = \frac{\pi}{2^{n+1}} \underset{n \to +\infty}{\longrightarrow} 0$. On sait que

$$\lim_{x \to 0} \frac{\tan x}{x} = \tan'(0) = 1$$

D'où par composée

$$\lim_{n \to \infty} \frac{\tan \frac{\pi}{2^{n+1}}}{\frac{\pi}{2^{n+1}}} = 1 \quad \text{soit} \quad \lim_{n \to \infty} 2^n \tan \frac{\pi}{2^{n+1}} = \frac{\pi}{2}$$

Comm $\lim \frac{1}{2^n} = 0$, il vient

$$\lim_{n \to \infty} z_n = \frac{2}{\pi}$$

Ex 21 Soit
$$z \in \mathbb{C} \setminus \{-1,0,1\}$$
; on considère les points $A(1)$, $B(-1)$, $M(z)$, $M'\left(\frac{1}{z}\right)$, et I le milieu de $[MM']$. Montrons que (MM') est bissectrice de l'angle $\left(\overrightarrow{IA},\overrightarrow{IB}\right)$, c'est-à-dire $\left(\overrightarrow{IA},\overrightarrow{IM'}\right) = \left(\overrightarrow{IM'},\overrightarrow{IB}\right)$: Le point I a pour affixe $\frac{1}{2}\left(z+\frac{1}{z}\right) = \frac{z^2+1}{2z}$. Alors

aff
$$\overrightarrow{IA} = 1 - \frac{z^2 + 1}{2z} = -\frac{(z - 1)^2}{2z}$$
 et aff $\overrightarrow{IB} = -1 - \frac{z^2 + 1}{2z} = -\frac{(z + 1)^2}{2z}$

enfin

aff
$$\overrightarrow{IM'} = \frac{1}{z} - \frac{z^2 + 1}{2z} = -\frac{z^2 - 1}{2z} = -\frac{(z - 1)(z + 1)}{2z}$$

Alors

$$\left(\overrightarrow{IA}, \overrightarrow{IM}\right) \equiv \arg \frac{\operatorname{aff} \overrightarrow{IM'}}{\operatorname{aff} \overrightarrow{IA}} \equiv \arg \left(\frac{z+1}{z-1}\right) [2\pi]$$

et

$$(\overrightarrow{IM}, \overrightarrow{IB}) \equiv \arg \frac{\operatorname{aff} \overrightarrow{IB}}{\operatorname{aff} \overrightarrow{IM'}} \equiv \arg \left(\frac{z+1}{z-1}\right) [2\pi]$$

On a bien l'égalité des angles, d'où notre résultat

Ex 22 Soient A(a), B(b), C(c) trois points du plan : on dit que ABC est équilatéral direct lorsque $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2}$.

a) Montrons que ABC est équilatéral direct si et seulement si $a + bj + cj^2 = 0$: On a ABC est équilatéral direct si et seulement si

$$\begin{cases}
AB = AC \\
(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{3} [2\pi]
\end{cases} \iff \begin{cases}
\left| \frac{c-a}{b-a} \right| = 1 \\
\arg \frac{c-a}{b-a} \equiv \frac{\pi}{3} [2\pi]
\end{cases} \iff \frac{c-a}{b-a} = e^{i\pi/3}$$

Remarquons que $e^{i\pi/3} = -e^{4i\pi/3} = -i^2$. Il vient

ABC est équilatéral direct si et seulement si $c - a = -j^2 (b - a)$

Cela s'écrit aussi

$$-(1+j^2)a+j^2b+c=0$$

 $-\left(1+j^2\right)a+j^2b+c=0$ En se souvenant que $1+j+j^2=0$, cela équivaut à

$$ja + j^2b + c = 0$$

et en multipliant par j^2 , sachant que $j^3 = 1$, à

$$a + bj + cj^2 = 0$$
 CQFD.

b) Montrons que ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + bc + ca$: On montre comme au a) que

$$ABC$$
 est équilatéral indirect si et seulement si $a + bj^2 + cj = 0$

(en effet, il suffit de remarquer que ABC est équilatéral indirect si et seulement si ACB est équilatéral direct) On a alors

ABC est équilatéral

si et seulement si ABC est équilatéral direct ou ABC est équilatéral indirect si et seulement si $a+bj+cj^2=0$ ou $a+bj^2+cj=0$ si et seulement si $(a+bj+cj^2)(a+bj^2+cj)=0$ #règle du produit nul si et seulement si $a^2+b^2j^3+c^2j^3+(j+j^2)ab+(j+j^2)ac+(j+j^2)bc=0$

Avec les relations $j^3 = 1$ et $1 + j + j^2 = 0$, il vient

ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + bc + ca$ CQFD.