

PATENT
Attorney Docket No.:3502.1

PATENT APPLICATION

SYNTHETIC TAG GENES

Inventor: Frederick C. Christians
1444 Arbor Ave.
Los Altos, CA 94024

Assignee: Affymetrix, Inc.
3380 Central Expressway
Santa Clara, CA 95051

Entity: Large

SYNTHETIC TAG GENES

This application claims the benefit of U.S. provisional application 60/395,530,
5 filed July 12, 2002, the disclosures of which are incorporated here by reference in their
entirety for all purposes.

FIELD OF INVENTION

10 This invention relates in general to methods for nucleic acid analysis, and, in particular to, synthetic Tag genes useful as assay controls, in assay development, product development and validation, and for quality control.

BACKGROUND OF THE INVENTION

15 New technology has enabled the production of microarrays smaller than a thumbnail that contain hundreds of thousands or more of different molecular probes. These techniques are described in U.S. Pat. No. 5,143,854, PCT WO 92/10092, and PCT WO 90/15070. Microarrays have probes arranged in arrays, each probe ensemble assigned a specific location. Microarrays have been produced in which each location has
20 a scale of, for example, ten microns. The microarrays can be used to determine whether target molecules interact with any of the probes on the microarrays. After exposing the array to target molecules under selected test conditions, scanning devices can examine each location in the array and determine whether a target molecule has interacted with the probe at that location.

25 Microarrays wherein the probes are oligonucleotides ("oligonucleotide arrays") show particular promise. Arrays of nucleic acid probes can be used to extract sequence information from nucleic acid samples. The samples are exposed to the probes under conditions that allow hybridization. The arrays are then scanned to determine to which probes the sample molecules have hybridized. One can obtain sequence information by
30 selective tiling of the probes with particular sequences on the arrays, and using algorithms to compare patterns of hybridization and non-hybridization. This method is

useful for sequencing nucleic acids. It is also useful in gene expression monitoring, i.e., monitoring the expression of a multiplicity of preselected genes.

There is a need for exogenous nucleic acid controls ("spikes") for microarray analysis. While genotyping applications will benefit from the use of spikes, the need is especially acute for gene expression monitoring, in which the goal is to determine the quantity of each transcript species in a sample. Variations in sample preparation, hybridization conditions, and array quality are just some of the factors that influence the values determined for the transcript levels of different samples. Constructing large databases of samples prepared differently and hybridized to different array types becomes especially challenging. The use of quality-assured control polynucleotides during sample preparation and during hybridization to microarrays greatly enhances the ability to normalize data and to compare experiments, as well as to monitor each step of the assay. Many other applications can also benefit from control spikes. One advantage comes from starting with defined quantities of spiked polynucleotides of known sequences.

15

SUMMARY OF THE INVENTION

In one aspect of the invention, a method to construct a synthetic "gene" composed of linked synthetic Tag gene sequences is provided. In one embodiment, the genes, about 500 to 4000 base pairs long, are made by annealing and extending overlapping 60mer oligonucleotides followed by cloning into a plasmid vector. Both poly(A)-tailed sense (Tag) RNA and antisense (Tag Probe) RNA can be produced from the clones by in-vitro transcription. In another embodiment, the genes can be used as exogenous spikes for any sample. In another aspect of the invention, these synthetic gene spikes can serve as normalization controls in gene expression monitoring experiments and can also be used to assess system specificity, sensitivity, and dynamic range. These synthetic Tag genes are thus useful in assay development, in product development and validation, and for quality control.

30

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:

5 Figure 1. Synthesizing genes from oligonucleotides. A) Each 60-mer oligonucleotide is designed to overlap by 20 bases two different oligonucleotides encoding the opposite strand. In this case the left-most antisense oligonucleotide circularizes the assembly by annealing to the 5' end of the leftmost sense oligonucleotide and to the 3' end of the rightmost sense oligonucleotide. B) Extension of the annealed oligonucleotides by DNA polymerase results in a spiral concatamer. C) Multiple rounds of extension, with replenishment of nucleotides and polymerase each round, can yield products over 50 kb in length (the largest marker band is 12 kb). Assembly of five different genes is shown here. D) PCR or restriction endonuclease digestion of a concatamer can yield a single monomer, which can then be cloned into a vector.

10 Figure 2. Tag clone arrangement in a plasmid vector. Each Tag gene consists of linked GenFlex™ (Affymetrix, Inc., Santa Clara, CA) Tag sequences, arranged so that transcription from the T3 promoter makes poly(A)-tailed sense (Tag) RNA, and T7 transcription makes antisense (Tag probe) RNA.

15 Figure 3. BigTag clone arrangement in a plasmid vector.

20 Figure 4. Using TagI-Q plasmid a control for long-range PCR. The PstI -linearized plasmid is depicted in panel A. Three primer-binding sites and two PCR amplicons are indicated. Panel B gives the sequences of the primers that are used to produce the PCR products shown in panel C (the two PCRs were performed in triplicate). Plasmid TagI-Q and the primers can be used as quality-assured reagents to control for the long-range PCRs, fragmentation, labeling, and/or hybridization steps in genotyping assays.

25 Figure 5. Site-directed mutagenesis added restriction endonuclease recognition sites for XbaI ("X") and for EcoRI ("E") to pTagIQ to create plasmid pTagIQ.EX (panel A). Panel B is an agarose gel demonstrating the presence the expected products following XbaI/EcoRI double digests.

DETAILED DESCRIPTION OF THE INVENTION

The present invention has many preferred embodiments and relies on many patents, applications and other references for details known to those of the art. Therefore, when a patent, application, or other reference is cited or repeated below, it should be 5 understood that it is incorporated by reference in its entirety for all purposes as well as for the proposition that is recited.

As used in this application, the singular form "a," "an," and "the" include plural references unless the context clearly dictates otherwise. For example, the term "an agent" includes a plurality of agents, including mixtures thereof.

10 An individual is not limited to a human being but may also be other organisms including but not limited to mammals, plants, bacteria, or cells derived from any of the above.

Throughout this disclosure, various aspects of this invention can be presented in a range format. It should be understood that the description in range format is merely for 15 convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, 20 from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.

The practice of the present invention may employ, unless otherwise indicated, conventional techniques and descriptions of organic chemistry, polymer technology, 25 molecular biology (including recombinant techniques), cell biology, biochemistry, and immunology, which are within the skill of the art. Such conventional techniques include polymer array synthesis, hybridization, ligation, and detection of hybridization using a label. Specific illustrations of suitable techniques can be had by reference to the example hereinbelow. However, other equivalent conventional procedures can, of course, also be 30 used. Such conventional techniques and descriptions can be found in standard laboratory manuals such as Genome Analysis: A Laboratory Manual Series (Vols. I-IV), Using

PATENT
Attorney Docket No.:3502.1

Antibodies: A Laboratory Manual, Cells: A Laboratory Manual, PCR Primer: A Laboratory Manual, and Molecular Cloning: A Laboratory Manual (all from Cold Spring Harbor Laboratory Press), Stryer, Biochemistry, (WH Freeman), Gait, "Oligonucleotide Synthesis: A Practical Approach" 1984, IRL Press, London, all of which are herein
5 incorporated in their entirety by reference for all purposes.

The present invention can employ solid substrates, including arrays in some preferred embodiments. Methods and techniques applicable to polymer (including protein) array synthesis have been described in U.S.S.N 09/536,841, WO 00/58516, U.S. Patents Nos. 5,143,854, 5,242,974, 5,252,743, 5,324,633, 5,384,261, 5,424,186,
10 5,451,683, 5,482,867, 5,491,074, 5,527,681, 5,550,215, 5,571,639, 5,578,832, 5,593,839, 5,599,695, 5,624,711, 5,631,734, 5,795,716, 5,831,070, 5,837,832, 5,856,101, 5,858,659, 5,936,324, 5,968,740, 5,974,164, 5,981,185, 5,981,956, 6,025,601, 6,033,860, 6,040,193, 6,090,555, and 6,136,269, in PCT Applications Nos. PCT/US99/00730 (International Publication Number WO 99/36760) and PCT/US 01/04285, and in U.S. Patent
15 Applications Serial Nos. 09/501,099 and 09/122,216 which are all incorporated herein by reference in their entirety for all purposes.

Patents that describe synthesis techniques in specific embodiments include U.S. Patents Nos. 5,412,087, 6,147,205, 6,262,216, 6,310,189, 5,889,165, and 5,959,098. Nucleic acid arrays are described in many of the above patents, but the same techniques
20 are applied to polypeptide arrays.

The present invention also contemplates many uses for polymers attached to solid substrates. These uses include gene expression monitoring, profiling, library screening, genotyping, and diagnostics. Gene expression monitoring, and profiling methods can be shown in U.S. Patents Nos. 5,800,992, 6,013,449, 6,020,135, 6,033,860, 6,040,138, 6,177,248 and 6,309,822. Genotyping and uses therefor are shown in USSN 10/013,598, and U.S. Patents Nos. 5,856,092, 6,300,063, 5,858,659, 6,284,460 and 6,333,179. Other uses are embodied in U.S. Patents Nos. 5,871,928, 5,902,723, 6,045,996, 5,541,061, and 6,197,506.

The present invention also contemplates sample preparation methods in certain preferred embodiments. For example, see the patents in the gene expression, profiling, genotyping and other use patents above, as well as USSN 09/854,317, Wu and Wallace,

Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988), Burg, U.S. Patent Nos. 5,437,990, 5,215,899, 5,466,586, 4,357,421, Gubler et al., 1985, Biochimica et Biophysica Acta, Displacement Synthesis of Globin Complementary DNA: Evidence for Sequence Amplification, transcription amplification, Kwok et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989), Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990), WO 88/10315, WO 90/06995, and 6,361,947.

The present invention also contemplates detection of hybridization between ligands in certain preferred embodiments. See U.S. Pat. Nos. 5,143,854, 5,578,832; 5,631,734; 5,834,758; 5,936,324; 5,981,956; 6,025,601; 6,141,096; 6,185,030; 6,201,639; 10 6,218,803; and 6,225,625 and in PCT Application PCT/US99/ 06097 (published as WO99/47964), each of which also is hereby incorporated by reference in its entirety for all purposes.

The present invention may also make use of various computer program products and software for a variety of purposes, such as probe design, management of data, 15 analysis, and instrument operation. See, U.S. Pat. Nos. 5,593,839, 5,795,716, 5,733,729, 5,974,164, 6,066,454, 6,090,555, 6,185,561, 6,188,783, 6,223,127, 6,229,911 and 6,308,170.

Additionally, the present invention may have preferred embodiments that include methods for providing genetic information over the internet. See provisional application 20 60/349,546.

I. Synthetic Tag genes

In accordance with one aspect of the present invention, synthetic genes are made using Affymetrix GenFlex™ (Affymetrix, Inc., Santa Clara, CA) Tag sequences. Tag 25 sequences are 20mer probes which were selected from all possible 20mers to have similar hybridization characteristics and minimal homology to sequences in the public databases. See, e.g., U.S. Patent No. 6,458,530 (incorporated here by reference). The list of the reverse complements corresponding to the Tag sequences (also sometimes called the Tag probes) used to construct the Tag genes is set forth below in Seq. Id. Nos. 1-2050

30

Seq. Id	3' to 5' sequence
1	TAAACTAGCATTGAGCCAC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
2	AAATCAGCAAACGGGCTCCG
3	GAATTGATAATCGCAGCCAC
4	GATATAGGAATGGCGCATAC
5	CTCATCGGAAGGGCTCGTAA
6	ACAGATGAAAGGCAGTTCT
7	TTTGGTAGCTGAGTGCCCTA
8	TAACTGGTTTGACGCCACGC
9	TAATTGAGCTGACGGCGCAC
10	TTGTTGCTACTCTGGCCCAG
11	TTCCGTGCATAGTATAGGGA
12	TTATGCGACTTATCTCGGGA
13	TGTATAGGATTATGTCCCG
14	CTGCTAGGAATATGAGCTAC
15	CTTCTGTCAATATGGGTACG
16	TATTTCGAGATATGAGGC
17	TTGATCGTAGATTCTGTGAGC
18	CGAGATTACAATTACGAGC
19	TGGTGTCTAGCTTCCAGCCT
20	TGAGGTCACGGTTCATGCTA
21	TGGTTACTGGTATATGCCGC
22	CCGAGTGCAGAATAAACCG
23	GCGGTCTCAATACAAACTCA
24	GAAGCTACCATAACGAGCA
25	ACGGGATAACAAACGCAGCCT
26	AGAAGATCAACAGCTCGTCC
27	ATAAGATCAAGACCTGTGCC
28	ATTAGATTAAGACCAGCGCC
29	ATATAATCAAGACTGGCGCG
30	AGCATATAACCAACTGATCCG
31	ACACTATTAAGCTGCTCCG
32	CAATGTATAAGACTCTCGCC
33	CACTAATTACAGACGAAGCCG
34	GACCCCTATCAGACAGATGCA
35	CACGCATCAAGACAGTATCG
36	CAGCTCTAACGACTTGGACA
37	GGTATCATAGGACATTGCA
38	GGTTACATGGATATAGCACC
39	TGTGTTTCAGCTATGCAGGC
40	TAATTGCTGCAACCAGATC
41	ATAATTCCAACATGGGAGCC
42	CATTGCTTAATATGGGAGCC
43	CAATGCTTAATACCGACACG
44	GATTGCTTAGACCCCTGCACG
45	GATTCAATTAGACCAGGGCCT
46	GATTCTACATGCCACTAGCA
47	CCTGCGAACTGGCCTGAATA
48	CGCAGCGGAAGGCTCAATAA
49	CCTACCGCAAGGCAGGATAA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
50	CCTATGATAAGGCACGCACA
51	CGCTGTCAAGGCTCGTATA
52	CGATTGTCAAGGCAGTGATA
53	CATTGCGAACTGCATCTAAC
54	GATA GTCCAATGCTACTGAC
55	GATT CGGTAAATGCGCTGTAA
56	GACGTTCAATGCAGCGTAA
57	GAGAGT GCAATGCCACTAA
58	GAGATCCGAATGCGCGTACT
59	CGAGATCCAAGGCCCATGAT
60	AGCTTGACAGTAACCATGA
61	AGAGTTGAACAGCATAACCCT
62	TATCTGATCGGACGGCCAGT
63	TATTGACTACTGCGCCTCAG
64	TTGGACTATTGGTATCGCC
65	TTGTCAGATTGGATGCGCTC
66	TATGCAGAATGGCGTGTATC
67	CATTGGATAAAGCACTGATCG
68	CCCGGAATAAGGCCACGATA
69	CTCATAGAATGGACAGATC
70	CATAGATTAAGCACTCAGCC
71	CATGATGTAAGCACGCTACC
72	CAGGAGCGAACGAGATACTC
73	CAGAGCAGAACGACTCACGT
74	TACATAGGCTTCAGCATCAC
75	TATTATACCTTGATCCGCGC
76	TAAACTGCTTGCATA CGGC
77	TATAAGCCTTGCAGCGGACC
78	TTTAAGCGGTGGATCTAGCT
79	TTAATAGCCTTGAGCAGCGA
80	ATAAAATGCTTGGAACCCCTCG
81	GAAAGTTCATGGAATCGAGC
82	GCAAGGATTTCGACTCAGAC
83	CAAAGAATAATCGCTCCTCG
84	TAAAGCACTTATGACTCGGC
85	TTATAGCATTCTGTAGGC
86	TCGCTGACATTGATTAGCC
87	CCTTGAATAATATCTCGGCC
88	AGGTCCAGAAATTGCTGCAC
89	AGCTCAGGAAATTCTAGCGA
90	AGCTATGCAAATTAGAGGCC
91	GGTAGGCTAATTATGGCAC
92	CTAATGCAATTCAATGCCGC
93	CAACTGGCAATCAATACGCT
94	CCAAGCGAACATGCAACGTATC
95	GCATAGCGAATTGGAGATAC
96	GCATGTCGAATGGATGATAC
97	GCACGTTCAATGGCTCGACT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
98	GCAGCGCAATCTGTCGAGTA
99	AGCAGTGC AA ATCCTGATAC
100	AGCTTCGCAAATCTGGTACA
101	AGCCTGCGAAATCTACTGAA
102	GCAGATCGAATTATGGAGAC
103	GCAGAGTCAATTATCATGCC
104	CGTTAGGCAATA C ATTTCCC
105	ACTGGTGCAAAGTCTTCGAC
106	GGTATATGAATGTGTCGTCC
107	GATAGTGC A ATCTAGGTGAC
108	GCAGTGCAATGGATGTACTA
109	GCTAGGCTAATGTCCGGCTA
110	GGTAGCCTAATGTGTCGTCA
111	GGACGTGCAATCTTGTGACC
112	GAGCGCCGAATCTAGTCGAA
113	GGGAGCGACCTCTAGCTTAT
114	GC GGG TGCAATCTCGCTTAA
115	CGCCGCGCAAGCTGTATTAA
116	CGGCTGCGAAGCTGTCTTAA
117	CATCCGCTAAGATCGGTTAA
118	CGTGCAGCATAATCCATCAG
119	TGAGAGCTGGATCGCATTCC
120	TAGGTGCTAGGATCTCAGCC
121	TAGGTATCAGGATT C AGGCC
122	TGCGCCAGTGAGTCGTATAT
123	CAGCAACGTGGATCAACTAT
124	CAGCGGCTAAGATCAATACC
125	GCAGCCTAATCTGGCCTAGT
126	GGGCCTGTACCTGCAATTCA
127	TAGGCCGGACCTGCTGTTAT
128	TAAGCCGCCACGGAGTGTAA
129	TAAGGCTCTTGAGACGTAGT
130	TAAGCCC G ATCAGCATGGAC
131	TTGCCCGTAGTCAGCTTAGA
132	GAAGCACCGATCAGACACTG
133	CAGGCACCAAGTAGCACAGT
134	GGTGC G CATGTACTCAGTT
135	TCAGGCTTATCGAGCGCGTT
136	GCAGGGCAGATCGACCTAGTT
137	GGATAGGGACTCAGATATAC
138	GCATGGTTACCTACGCCAGA
139	GGAGGCTGACTCATACGCAA
140	GGAGCCTGACCTAGTCGATA
141	GC GG CCAATT C GGCGATAAT
142	GGTGCTGACATTAGGCCAT
143	GATCCCACATAGCGGACAAT
144	GATCCAATCTGTCAGCACAT
145	GAGCCAATCTGACTACCAGT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
146	TGCTGGATATGACTGTCGA
147	TGCTCTGCACTGCTGACGTA
148	TCACCAGCCAGACTGTGTAG
149	AGGAGCAACCATCATGCACG
150	GGGCATACTTATCCCCGAGAT
151	CGGGCGATACCACTCAGATT
152	AGCGGCACCAGACATACGT
153	CACGCCATACCAAGGAGAGT
154	CAGTGCATACCAAGCGACGA
155	CAGGCAGTACACAATCTACG
156	TACGTGCGATCCATAGCTGA
157	GAGTGACACCTCAGCAGATA
158	CTACAGCACCTCAGGAGAGT
159	CTCACGACATCCAGGAGTAT
160	CCAGCACGACAGAGAGATGT
161	CGCACACACCTGAGAGAGAT
162	GCGCACGCACTCAGATGTAA
163	AGACGCTAACCAACGAGAGT
164	GACGCCACAGTCACTAGAGA
165	GGCGCACACTGTACTCAGAT
166	CGAAGGCCAGTACCAAGATA
167	GGGTCGCTACCTACTCTGAT
168	GAGACATGATCTACCAAGTAC
169	GGACGCTTACTCAGCAGTCA
170	CGGGTGTACAGAGCTATCA
171	CGCGGCTTACACAGACATTA
172	CGGAGCTTACACATTAGCAG
173	CTGAGCATACTTCACGAT
174	CCGATCATAACTGTAGATGC
175	CCGCCGATAACTGCTTGAGA
176	GGCCATATACGAGATGTAGA
177	CGTCCCTAACGGCTGGTAT
178	ATACCCAGAACGACTATGCG
179	ATCCCACGAACGATGAATCT
180	ATCCGAGAACCGGGCGATAA
181	CCTCGCCGAAGCGTGTAA
182	GCGCCGCACAGAGTCTTATA
183	CGCGCTGCACAGAGCATATA
184	CCGCTGACACAGGCAGATAT
185	GCGTATGACCAGGTGTATAT
186	CTGTATGAAGGTGCTGTACT
187	GTTTCGCACGAGGATGTATC
188	GTGCTCGCAGAGGATTATC
189	TAGGCCAGAGTAGCGACTTA
190	CAGATCCTAACAGAGCAGTTAC
191	TAGATGCTAGGAGCGATTCA
192	TAAGTCGGTGGAGCATATCA
193	TAAGCGCGTGGACTCCTAAA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
194	TAAGTGGACTGAGCGCATAT
195	TATAACGGCAGTGGATCAGAT
196	CTATACGCAATGCACTCAGA
197	CTATCGTCAAGTGATGGACC
198	TATAGACTAGGTGATCGAGC
199	TAGTACGAGTGGGCATCAAA
200	TAGACGTAGTGAGCATGACT
201	TGACGAGTTAGGATCTATGC
202	TTACGAGTGTAGCGTCCATG
203	TCGTCGTAGCATCTCGCAGT
204	TCGACGTAGGATCGCAGTAC
205	TCAGTATCATGGAGTACGAG
206	TGCACTAGATGGATCGACT
207	TGCGATTACTGCCGTACGT
208	TGGACTCTATGGCAGCCGTA
209	TGACAGCAGTTGCAGTCCGT
210	TACACAGGCTTGCAGCTCGA
211	TGCAGCGGAGATCCATATCA
212	GCGCAGGGAGATCCATATCA
213	CGGCAGCCAAGTCCAGTATA
214	CAGCGCCCAAGACGTGTATA
215	GTGCCTGCATAGCGATAGTC
216	TGCCTGCAGAGGCCTGTATT
217	TGGCATCGAGAGGCCGTTCTA
218	GCAGGGAGCAGAGCTTATATC
219	GCGGGATCACGACGTTTACA
220	GTGGCGATAGAGCATTCTCC
221	AACCGCAGAAACCATTGCC
222	AGGCAGACAACCTCAATCCGG
223	AGGAGAGCAACCTACACTCG
224	AGCCAACGAACCTACATGGG
225	CCGCAAGCACGTCGAATGAA
226	GCGCATGGACGACAAACGTA
227	GCCAGGAGACGTAGATATTA
228	GCGCATAGAGAGAGATCATC
229	TGGTATATCGGTAGATTGCG
230	GAGCTATAAGGTGGATTAC
231	CGCGGATAACTTGATTCA
232	GTCGGCTTACCTGATAGCGA
233	GGAGCTATACATGCCCTATCC
234	GGTGCCGTACATGCTCGTAT
235	TCGGCTTGACGTGCTCGTAT
236	GGGCTGTGACTAGACTCTCA
237	GCGAATTAGTAGACCGCACA
238	GAATCTCGAATAGCGGTACA
239	GACAGTTGACATGACAGTAG
240	GACATTGACATCGCATAACAC
241	GAGTTAGAATCGTGAGCAC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
242	CTATTGCAAGTGTGAGCC
243	GTTATGGACACTGCTCGACG
244	AGCGTTCTAAATGCGTCACA
245	CCGATATGAACTGTCACTAC
246	CGCGAATGAAGTCTACATAC
247	CCACTATGAAGCGATATACC
248	CACCACTGAAGAGATAACCGC
249	GCACTGTTACATGATAACCTC
250	GCCAGTTACAGTCATGCCA
251	GCGCAGCTAGATCCACTGAT
252	GCGTGCAGGAGACCTCATTTA
253	GCTCACGAGGCACGCTTTAT
254	GCGCCAGTAGCAGCAGCTTATT
255	GGCTCAGTAGCAGCTCATCAT
256	ACTTGCACAGCACAATACGT
257	CGCCATACAGCACGATATTA
258	CCGCAGACAGCACGAGTATT
259	CCAAGGAGACTACACGATCT
260	GCACAGGTAGCTCGACGTAT
261	GTCAAGATGCTACCGTTCA
262	CGATATGAAGCTCAGTGAAC
263	CCTATGAAGCTATCGCAACA
264	CTTATCACAGCATCCGAGAG
265	CCCGTGCAACGATTGACAA
266	CGGCGGTTAAGTTCAATCA
267	GGTCGAGCATGATAGCTTAT
268	GTGGTAGCAGCATAGCTTAT
269	TAGCGTGGAGCATCCTCAGT
270	CAACGGTGAGCAACTATCAG
271	CTGGTTCGAGCAATCTATCA
272	TCGGGTCTAGGATGCTCTAC
273	TCGATGCACTGATGTCACTA
274	TCGTATATCCCATGCGATCT
275	TACGGTCCAGCATCAGCTTA
276	ATCAGTCCAACCTACAGATG
277	ATCAACTGAACCTCATACGG
278	TACTTCTGAGCAGGGAGCTA
279	TAGTTATGAGCAGGGGTCCA
280	CTTGTGACATCAGCCACGAT
281	CACGGAGCAAGAGCACATCT
282	CACGGGTGAAGAGCCATACA
283	CAGGAGTTAATAGCTCATCC
284	TAAGATTAGTTAGCAGCGCC
285	GAGTGATTAGCAGACGCCAC
286	CGATGATTACCAATGCCACG
287	GACTGATTAGCAGCATCCACA
288	GATTATGAGCACTATGCC
289	GCTATATTACGAGCTATGCC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
290	GTTTATATCGAGGCAGGCCA
291	GTTACTATCCGATCAGAGCG
292	CGTCATGTACCATCAAGTCG
293	GTTATCTACGGATCATGCGA
294	CTGCCGTAAGTCTCATGCGA
295	CTAGCCGAATACTGCATACA
296	CTGCGTCGAGAACATCGCGTTA
297	CATACACGACAATAGCTTCG
298	GATACCGACTCATAACATTGC
299	GATACCGCACGATCAGCAGA
300	GTATATGCAGACTACTGGAG
301	TATAGTCGATTATCCCAGCC
302	CATAGTACAATATCCCAGCG
303	CTTGACAGCTACTACCAGTG
304	CTGAGACAGCTATCGACACA
305	CTGAGTAAGTCTTCCACACG
306	TCGGATATACTATGCGTCAG
307	CGTAGGATAGAACATGCACAGT
308	CATGATAACACACTCAGGAGG
309	CGGAATCACGACTACATACG
310	GGGTATCACCGAGTCACCTCA
311	GAGAGAACCGTATCACAGCC
312	GAGTATGTAATCTACCTGCC
313	GAGTAATCATAGTAGCAGCC
314	GACTATAATCCAGCACCAGG
315	GACATATAGCTCCACTCAGA
316	TAGACCTAGTTGCAGCGCGA
317	TAATACACGTTCACGGCAG
318	GTACATATCTGTACCGCGCA
319	TAGTATATCCTACGCCGCTA
320	GAGTATATCGCAATGCCAGC
321	GAGTTGTCACATAGGCCACC
322	GACGCATGACATATTCCCTAC
323	GAGACACTTGACAGTAGCCA
324	GGCTAGTTACTCAGATCACA
325	CGCAATAAGTCTAGCTCACT
326	CATGTAATAGCAGTCACAC
327	CTAGTTAATGTCAATCCGGC
328	GACTGTGAATCATTGCAGC
329	CGTCGTGAATCAGCACAGC
330	ATTCGGTCACACAGCACAGA
331	ATCTGCTGACACACACTAAG
332	AGCTCGCTAAATATGTTAGGC
333	ACTGTCGCAAATATCACACG
334	ACTGTCGACCAACCAATAG
335	GTTACTAGCTGGACCTCAGA
336	TTATAGACTGGTGCAGAACAA
337	TTAGCATACTGTGCGCGAAC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
338	TGTGCTGACTTAGGTCGAAT
339	TCTCGGGACGTTGCCCTATA
340	TGTCGGCAGCTTGGCTATA
341	TGTTCGTACTGTGCCCTAC
342	TGTCAGGTACTGGTCGCTAC
343	TTCATGTAATGTGGCTACCG
344	TTTACTAGAGTGGCGCATGA
345	TTAGATAGATGTTGGCCAG
346	CTCAATAGATTATAGGCAGC
347	TCGAATCGCTGTTACGGAAA
348	TCAGACTAGGGTAGCGCATA
349	TCAGCAGTATGTAGGCAGTA
350	TAAGCCGGGTACGCTATT
351	TATGACCGATGTGCAGGTAT
352	TTAGCACGCTCGGCATGTT
353	TTCACACGGTCTGCGAGCTT
354	CTTCAGACAGGGAGGAGATAT
355	TCCAGCCGACGTGCGATTAA
356	TCCAGCGTACCTGCTTAG
357	CTCCAGTCAAGTGCTTCGAG
358	CTCCAGCGAAGTGATGAGAA
359	TGTCAGCGGATGCCATATA
360	TCCATGCGAGGATCAGGTAT
361	TGCAAGCAGTTCTCAGCGTA
362	TGTAGGACCTGTGCTCACTG
363	TTTATCGCAGTGCTCAGGCT
364	TATGTCAGCAGGCCAGCTT
365	TTCTCGTAGCTGCGCTAGT
366	TATTCGAGCTAGGGACGCAT
367	TATTTATACTGCGAGCGAGG
368	GACCTTACACTGGCACGAGA
369	TACTGATAGCATGGACGTT
370	TCGGATAGCAGTGCCTCTA
371	GCTGATGCACGAGGCCATTA
372	GCTGGATCACGAGGCTCATA
373	CGCTTGTACCAGGCCATAG
374	CGTGATTGACCAGACCCAGT
375	TACGCTGGATCAGACGGTCA
376	ATCCTGAACGCAGAGACACG
377	ATCGTTGCACCAAGAACTACA
378	CTCTCAGGACCAAGCATGATA
379	TCTGAGCGATCTGCCAGTCA
380	GGTGAGACCTATGTATATCG
381	TTAGAGTCTTAGGCATGTCG
382	TTATAGCCGTAGGCAGGTAC
383	CTCTAAGTATTGGACACGCA
384	GCTAGGATATAGGACACTGA
385	GCTATCGAATGTGCAGTACG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
386	TCTATCCACTGCGGACGAGT
387	TCATACTCATGTGCAGCTCT
388	TCATCGAGATCGGCCACTGT
389	CTTATGATACCAGTCAGCAC
390	TATTGGTACGGAGTTAGCCC
391	GTAGATGACCCAGTCCAGC
392	GGCTGTTACCGAGTCTCAGA
393	TGCTAGTTAGGAGTATCGCA
394	GGCTTACTAGCAGTCACGCA
395	CAGCATATAAGAGTCGTACC
396	GGCATCATAGACGCTACGCT
397	GAGTCAGCAATCGCAGCTAA
398	GATCAGTAATGCGGAGCAAC
399	TATCATAGATGCGGACGGAT
400	CAGTCCACAAGCGCGAGTAA
401	CGTAGCCCAGTGCCGATAT
402	GACGCACCACAGGCTAGTAT
403	CTAGCATACCAGGCGAGAGT
404	AGTGCATCACAAGAGACTCG
405	GCCATAGACGAGGAGTATC
406	GGAATACGCTGAGATATACG
407	GTAAATCGCTCAGCAGCATT
408	CACAAGCGACCAGAAGCGTT
409	TCTTATCGACCAGGGCGGTT
410	GACACTATCCCAGACGGAGT
411	TTACTAGGTTCAGCGCGATC
412	TTCAGATCCTCAGCGTAGTC
413	TCTCAGATATTCGTAGCAGC
414	TGTCCTATTAGTAGCTGCGAG
415	TAGATACTCTGAGCTAGGAG
416	TGTCCTCCAGATCGTGCAGT
417	TCGGTCTAGCTGGTAGCAT
418	ATCTGGCGAACAGGTGCATA
419	AATGCGCGAAACGGCGATAC
420	TTTGTGCGAGTAGTCGCATC
421	TGTTGTGCACTCTCCAGGCA
422	CATTGTGAACCTCTACGTCAG
423	CGGATGTCAAGCTCTCACAG
424	CTGGCGAACACTCTCAGGT
425	ATGCGGAGAACCTCTGACAA
426	GCGCGTGAATCTGTGACTA
427	GCGCTCTGAATCTGTGAGAA
428	GCGCTATGAATGTCAGCTAA
429	GCCGAGGTAATGTGATATAC
430	GCCGCGTGAATATGAAGATA
431	GCGGCGAGAACATCTCCGATA
432	GATGGTAGAATCTCTCAC
433	GCTGCGGGAGACTATCATCT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
434	GCTGGATTACGATGCCATAG
435	GTTGATTCACGATGGCAGAT
436	CTTCACGCAAGTTGTCCAGA
437	CTTACGCCAAGTTGTCAAGAA
438	CTTGCCTCAATAGTCTGAGA
439	CCTGTGCGAACTGTCTTACA
440	CTCAGTCCAAGTGGCTCAGA
441	CCATAGCGAACGCGCACAGTA
442	CCAGCACTAACGCGCAGATAG
443	CTCCGCCTAACGTGGCAGTAA
444	TGCGCCTGACGTTCGGATTA
445	TGTCAGTAGCTTGAGAGTC
446	GCTCACAGAGTTGATAGAC
447	GCTACAGGAGTGGATATTAC
448	GTGACAGTGGCAGATATAAC
449	TCGCACTGAGCTGTAATCGA
450	TCTTATGAGATGTAGCTCGC
451	TCCATCTAGCTGTAGCCGAA
452	GTCATAGCAGCTTAGACCTA
453	TTATGCTGACTGTGCTCGAC
454	TTAGTGCAGTATTAGTCGCG
455	TGTCCTGACCTTGTAGCCGAC
456	TGTTGACACTTGCCTACCGG
457	TCTTAGCATGTGCGACGACG
458	GCTAAGCTCTTCAACTCGCG
459	CATAAGACTTTCCAATCGCG
460	CTGAAGCACTTCCACGAAG
461	CTGAACCCGTTGCAGAGAGA
462	CGGAACCGATGGCACAATAT
463	GGTGACCGATGGCTACTCAT
464	ATGGCGCGAACCTGTACTA
465	CATCGCGGAAGCCACGTATA
466	GACGGCAGAATGCAGTATAT
467	CGCGGAAGAAAGCATATTG
468	CTCAAGGGCACGCAATCTAG
469	TCACAGGAGGCTCGACTCTA
470	CGACAAGGCATTACACTAG
471	ATAAAGGTATGCCAACCGC
472	TATAATGCGTTCACGTCCC
473	TCTAATGCCCTGACACGAAAC
474	TGAATGCCGTGACTCGTAAA
475	GTGGAGGCACTGCATCATAA
476	GTGGGTGTGACCTCGCCATTA
477	GGAGATGCACTACGGACTAT
478	GAGGATCGAATACTGTCGTA
479	CGGAGAGCAAGTCATACGAC
480	GCAGGAGAGCGGACTATACTA
481	GAGCGTGTAAATCCGATCTAA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
482	CGATACGGAAGGCGCACTAA
483	CGATAGGTAAGGCGACTCAA
484	GATGTGGCACGACGATCATA
485	TGAGTAGGCAGTCCGATCTA
486	TGATAGGCAGTGAGTTCATC
487	TTATGGCGAGAGTTGTATC
488	GTTTAGGCACGATGCTGTAT
489	GCGTTAGGACCATAGTCTAC
490	CCGATGCGACAATACGTTAG
491	TCTAGCGTCCCATAGCGTAG
492	CTGTCTGGACCATAGCAGCA
493	CTGCTTGCACGATGAGCGAA
494	TAGCCCGGACGATGTAGTCA
495	CCGCTACAAGCATTGGGAAT
496	CGGCTAGAAGAACATGATGCT
497	CCGATGATAAGCTAGTATGC
498	GCGGATAGACCATTATTGAC
499	GCCACTAGACCATCGGTGAT
500	GCACCGGGACCATCGTTTAT
501	GCCGCTCGACCATAGTGATA
502	GCCGAGTCACCATGCTGTAT
503	CACGGGTACCCAAGCGTATT
504	GACGGCGACCCAGGTTATAT
505	TGTGCGTCAGCAGTTAGTAT
506	GCTCGGCTACCACTCGTTAT
507	CGCTGGACACCACTGTGATA
508	CGGTGGAGACCAAGATTATAT
509	CGCGGGACACCAAGCATATTA
510	GCTCGCGCATTAGCATATAA
511	GCTGACATCCACGCATTGAG
512	CGCTGATCCACCGAGATTAG
513	ACGCAACCAACAGCGAGTGT
514	CACAGACCAACAAGCTATGGG
515	CCTAGCCCCAAGGCATTAGAA
516	CCGTAGCTCCAAGGCATGTA
517	CAGTGCGCCAGAGCAAGTAA
518	GAGCCACCAACGAGTCATGTA
519	GGTCACCACTCAGCGATGTA
520	GTGTGCCACTAGGCCGATT
521	GGAGACCCGTAGGCATAATT
522	CGCTGTAAGGATGCTGAATA
523	GTCGTGCAGGATGCCATATT
524	GTTC CGCACCGATGCCAGATT
525	GCTGCGACCATCGTCAGATA
526	GTCTAGCGATCATGCTCAAT
527	CTCTACGAATCATGCGGAAG
528	CTTAGATACTACGAGCACGA
529	GTGACGCTACGTGAGCCTAA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' séquence
530	TACCGTGTACGTGAGCGCAT
531	TACTGCGACGTAGCGAGTC
532	TACTAGGTACTCGCGGCACT
533	TACTGCGTACTCGGAGCATA
534	GCTCACGTACTCGACAGAAA
535	GTGTACTATGTAGCGAGATC
536	TAGTAGTACGCTGTCAGAGC
537	TGTCGTCGAGTCGTAGATAC
538	GTAGTACACGGAGTGATCCT
539	GTAGTACGAGCTGAGACTCT
540	GTGACTAGCTCGTAATTCTG
541	GAGACACGGTACTAGAGACT
542	CAACAGCGTCACAGACATGG
543	CTATGAGACCACCTCGATAT
544	ATTCGGCGACAACGCATTAA
545	GTTGCCGTACTAGGGATACT
546	GGCGCAGTACGATTGACTAT
547	GTGCGACGAGCTTGTCACTA
548	TGCGTGTGACTATTGATACG
549	CGTCTGCGAACCTTGCTACG
550	CTGTAGCGAACGTTCTCATAAC
551	TCGGCGTTACGTGCTGACTA
552	TGAGCTATACTCGTCGTAG
553	CCGATACTAACGCGTTACGAA
554	CGTCATACATAGGACTAGCA
555	CGCACGCTACAGACTATTAT
556	GCGAGCGTACTATACATAAC
557	GCGAGTCTACGACCTCTATA
558	CGGTACGCACGACAGTCATA
559	CGGTACATACGACTATACAG
560	CGCTAGATAACCAACTGATA
561	CTCTAGGTACACTACTGCAT
562	CGTCAGAGACACTGGAATAG
563	CTGCGCGTACACTCGGATAT
564	CTGTCGCTACACTCGTGAGA
565	GTAGACGCCTAGTCAGATAG
566	GAGCGACTACGAGCCACTAT
567	GTGCGACTACGTGCATCACT
568	CGTAGGACACGAGCGTATAT
569	GGCGACGACGTGACTATACT
570	CGGTCACGACGACGAGATAT
571	GCGTCACACGAGCCGATATT
572	GTCGCTCACGATGCGGATTT
573	GACCGACAGATCGTGCACATC
574	GACCACGTACATGAGCTGAC
575	GGCGACGTTAGATGATATTCT
576	GAGACTGTAATCGCATATCC
577	GACTATGTAATCGAGCCTAC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
578	GATAGTCGAATCGCGGATAA
579	TATACGGACTCGGCCCTAGA
580	TAGTCTAGCTGAGCCATCGA
581	GTATATGACCTAGTGCCACG
582	GTGTTGTACCGATGTGCTCCA
583	GAGTCTGACATAGGGCACCT
584	GAGTTGCACGTAGACGATAC
585	GACTCGCGCATAGACACATG
586	GACAGGCTACGAGACTAGAT
587	GTGACGGCACTAGCAATATA
588	CTGCTCTGACACGCGAGTAT
589	CGGCTGTGACACGAGCTATT
590	CTGGTGCACACGCCCTATAT
591	GTCAGTGGACTAGCCCTACA
592	ATCGAGTCAACCGGCCTAGA
593	TCGATAGCCTACGTGCCGTT
594	GGAGACCTCTACGCACGTGTT
595	GCGTGACAGCTCGCACTATA
596	GCGTAGCTCAGCGACATTAA
597	GCTATACGCAACCGTCAATGTA
598	CGCATACACTCAGCAGAGAT
599	CTACTTACAGCAGCGACGAG
600	ATCTCGACACAAGCTAATCG
601	CATCGGATACACGCATACAG
602	ACATACAACACCGCTTAGGG
603	TAUTGAGTCCACGCTCGTA
604	GATACAGCCTACGACCGGAT
605	GATACATTACTCGACACGCG
606	CGCTACAGAGATGCACAGAG
607	CCGACTGTAACGTGATGAA
608	GGTGTATACGTGCATAGCC
609	CTCGTATTAAGTGCCTACC
610	TATAGTATCGAGGAGCGACC
611	GTATAGTACGTGATAGGCTC
612	GTACGATACGTGACTAGAGC
613	GTAGGTCGAGCTGCATACTC
614	TTACAGTAGTCTGCATCCCT
615	CTAGTCAAGTCTGCATACAG
616	CTGTCTAACCGGCCACATA
617	CTCGCAATACGTGTACCGTG
618	TCCGATCTACGTGACGGTGA
619	TCTCGCCGACGTGGCTTAA
620	TCTGTCCACGTGCGGGTTAT
621	TCGTCCTGACTCGCTGGTAA
622	GTCCCTAGACTCGCAGTGAT
623	GCGACAGTAGCTGCAATGAT
624	GACGTAATATGCCACATCA
625	GACGAGGTACAGCGCATACA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
626	GCAGGTCTACGACGCATGAT
627	GCAGAGTACGGACGCATATC
628	GAGTAGATACTAGGTACCGAT
629	GAGCGATCACACGTCCGATT
630	GGTCGCATAGACGTATCAGT
631	GGTGTCTCACGAGTATCGAC
632	GTAGGCTAGACGGTCCACTA
633	GACGGACACTGAGCACATAG
634	GACACCTATGTAGCAATGAC
635	CACAGTACAATAGCACCTGG
636	CACCAGAACGTTAGGCACAGT
637	CACTACTCAAGAGGCCAGTTA
638	CGCCGACGAATAGCCAGATA
639	GCCGCACTACTAGCGATGAA
640	GACCAGTTACGAGGCAGCGAA
641	GATCACGTAGGAGGCACCGTA
642	GTACGCAGAGGAGTCATCCA
643	GTCGCTGACTAGGATCACGT
644	TACCGCAGACTCGGACTCGAT
645	GTCGCTATATCGGACCTAAC
646	ACTCGCATAAACGACAGTCT
647	TGGAGTCGAGTAGTACATAC
648	TACCGACATGGTAGGACGCTA
649	TGACTTCTACGTGGCGATAT
650	TACGCTCCGAGAGGGCGATTT
651	CACCTTCGACGAGCAAGAGT
652	TACGCTCGCTCAGCTTAGGT
653	TACGGCATCGACGCTATTGC
654	TACGGCGACTGAGATGCCAT
655	TACGTGCTAGGAGATGTAAC
656	TATCGTCTATCAGATTGCC
657	TATCGTATCCACGTTCCGAG
658	GATCGTACATCAGTGTCCAC
659	GAGTCTATATCAGTAGCGAC
660	GTTAGTCGATCAGTAGAGCA
661	GTCCTACGATGAGTGACGCA
662	CGTCTTCTAACCGTGAGCAGTA
663	GTCTCCTACCGTGAGCAGTA
664	ATCTCACTACAAGAGCCTAG
665	CTGTGACGACCAAGACGCTTA
666	CTGAGCGTAAGTGATTGTAC
667	CTCGTAGCAATAGATTCCC
668	CTACGTGCAATAGCAGCTCA
669	CCGGCAGTACAGATAAGTCA
670	CGCCGGATAACAGAGTAATCG
671	CTCAGCATACTAGTACAGC
672	CCGAGCTTACAACGTGTGCA
673	GACGCATTACCACTGGCGAT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
674	CAGGGTGTACCAACGAAGCAT
675	CGGTGTTACAGCAATCCAT
676	CTGGCTGCAATAGCGCGATA
677	TGGGCTACAGTTGCCTCAT
678	TCTGGCATAGCAGGTGTCAC
679	GGGATTCTACCAGTCGCAC
680	GAGGATGCAATCGTAGTCAA
681	AGGGATAACCATGCACACCG
682	CATGAAGACTTGCAC TACC
683	CGCCGACCAATGGGCATATA
684	CCCGAGCCA ACTGGAGATAA
685	CCCGCAGCAACTGGGATTAA
686	GCCATAGGAGCAGCGATTAA
687	CCGCTTGAGCAGACAGGATAT
688	CCGTTGCAGACAGCCAGTA
689	CCGTTACAATGAGCACACA
690	CGTTCTTAATGAGCGACAG
691	CGAGCCTTAATGACGCACAA
692	GGCAGCATACTCACGATCAT
693	CTGCGAGCAATCAGCCGATA
694	CCGCAGCAAGCTATCGAGAA
695	CGGC GTTCAAGCAAACCGAA
696	CAGTTACAAGCATATCCCG
697	CATTGACGAAGCATAGTTCC
698	CATAGT GCAAGCAGCGACAC
699	ATCTGTGCAACCATAGTACC
700	ACTTGAAATGAGAAGCCC GT
701	CAGGAGAAGCGAATAGCCTC
702	CCAGAGAGAGCAATATCCGC
703	CAAGGAATATACAGGCCCGC
704	CAGAACTGAATTACAGCGCC
705	CATCAGACAATTACAGCTCG
706	CACCCGATAAGAGCATACGG
707	CACTCCAGAAGCACGATAGG
708	CAGCACCGAAGCAGAAGTCT
709	CAGATCAGAAGCAGGACGCT
710	CAGACCATAAGCACAGGC GT
711	ACAACACAAATGGCGCGGCT
712	ACGCAGATAAAATCACCTCGG
713	CAAGACAGAATACTCTCCGG
714	CACAATACAATAGGCTCGCG
715	CAATAAGACATAGGCCGCCG
716	CACAACGGATTAGAAGCGCG
717	GACATGATATGAGAATGCGC
718	AGCAAACTAAGAGCCGGGTC
719	AACAATACAACCGT CGCG
720	AAATAACTAACCGCCTGCGT
721	CAAACACGAAGAGCCTGTCG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
722	CACTAATCAAGCGACAGGCG
723	CATATACCAAGCTATCAGCG
724	CACATTCAAGACGATCACGT
725	CACCTATGAAGAGACTCACG
726	AACTATATCAAAGCCCTGGC
727	ACAATACCAAATGCCCGGG
728	AGAAACGCAAATGCCTCTCG
729	CGAAAGCATAATAGCGGTGC
730	GGCAGAATCTCGTGTACTAG
731	GGTACATTATGCTAGAGAGC
732	GATACATGATGATAGCAGCG
733	AGAACAGGAACATCGCTGCC
734	AGATAAGCAACATCCTGTCC
735	CATAAGCTAAGATCCTGGAC
736	ATTAGCGAAGAAGCATGGC
737	ATAGCTCAATCAACGATGCG
738	TATATCGCATCCACTCTGGG
739	CATCTCCGAAGCACATTGAG
740	CATTCGTCAAGCACTTCAGA
741	CATTATCGAAGCACGGTACA
742	GATTCGGACAGCACGGCATA
743	GCTCCGGCAGTCACGATTAA
744	GACTGTCGAGCACCCATTGA
745	GATCGTCGAGCAGCAGCCTAAT
746	GAGGTAGACGAGCAGCCTATA
747	GCGCGTATAGCTCTCCATAG
748	TAGCGAGTAGCACTTCGATA
749	CTAAGTGTAGCACCAACATCA
750	GTAGATCGAGCAGCCAGTCT
751	GACATAGACCATACCACGTT
752	CGTCTTCGAGCAAGTGCAGT
753	CTCTCCGGCAGCGATATGTA
754	CCCTCAGCACGAGATATAAG
755	CCCTTGCAGCAGCATTGCGAA
756	CTCCAGGCAATGAGAGCACA
757	CCCAGATCAAGCGATGCAGA
758	CTGAATCCAATGTACGTGAC
759	CGGCATTCAAGGTAGCGACA
760	GCCCCGATTAAGGTGTCAA
761	GCCCCGATCAATGGCTGCATA
762	CGCCATCCAAGGGCTGTATA
763	CGGATGCCAAGGGCTTCATA
764	GGTTGCGCCAGGTATCTTA
765	GGTCCGGCATGGATCACTAA
766	GGCTGGCACATGATCGTATA
767	TGGTTGCACCTGGATCGAAA
768	TGATTGCCACTGCTCATACG
769	TGTTGATCCATGTCCATAGC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
770	TTAAGGCACCTGATCTCAGC
771	GTAATGCCCTGGACCGCAAT
772	GTAAAGCCTTCCACGGCAAT
773	GTTGCCATTGAGCCAGAT
774	GTTGCCACCTGAGACGTTA
775	AATGCCAACAAAGCGAGTG
776	CACCGGCCAAGAAGTACAGT
777	CATCCGCCAACAGCAGAGTGAA
778	CGTTGCCAATGCACGAGCTA
779	GATGGCTGAATGACGTTTAC
780	GATTGCCTAATGAGTCTGAC
781	AATCAGCCAAAGATGTGGGC
782	AATCATGCACAAAGTTGCC
783	ATTTAGGCAAGAAGGCCACC
784	AATTGGCTAAAGAGGCCACC
785	ACATTGGCAAAGCGAACTCC
786	AATGGGAGAAAGCCGACTCT
787	TGTGCTGGAGCTTCAGTCAC
788	GTTGTGCAGGATTATCGACA
789	GCTTGCAGACGAGTCATCAC
790	GGATGGATACTAGCGACTCC
791	GCTATGGCACAGGCATCTAC
792	GGACTGGCACATCCCGTATA
793	GGATCGGACCATTCTCACTA
794	GGATGGCGACATGCTCACTA
795	GAGCTGGCAATCGTGTACT
796	GGATGGCTACATGATCTGAT
797	GGCAGCAATTGGGCTAATA
798	GCCTAGCAATGTTCCCAGAG
799	GAGCGGCAATGATGATCCAT
800	TGGTGCATAGCTGCGATCCA
801	GGCTGCACAGGTGTATCCAA
802	GAGATGCCAATCGGCCATAA
803	TATATGGCACATCGTTCGGA
804	TGATGCCACGTCGTCGTAT
805	ATTGATCCACACACAGTAGC
806	AGCTGATCCAAGCAACGTAC
807	GTTGATGCAGATCGCGTATC
808	TCGTGGCAGATCGCTTCAT
809	TGTGGCCGAGATGCCTTCTA
810	TTTGC GGACTTCGCTATCAA
811	TCCCATGCACCTGAGTGGAT
812	TTTCATGGAGCTGTCGCGTA
813	TTTACCTGTGGTGTAGCGA
814	TTGTCATGCCTGCCAGTCGA
815	CTTTCATGCAGGCAGAGCCA
816	CCTTAAGCTGGCACACGAT
817	CCTATCAAGGATGCACACGA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
818	CCGTTCAGAATATGACACAC
819	TAGGTCAGATCATGCCGCAC
820	ATGTGCATACAAGCTACGAC
821	CTGAGAATATGAGAGACGCC
822	ACTCACGCAAATGAACGGCG
823	CTTAGCGAATATGCGATACG
824	ACTCTGATAAATCCGACACG
825	ACTGTGCGAAATCCCAGACA
826	ACTGATGAAATCCACACCG
827	ACGTGAACAATTCCACACTG
828	ACTGCACGAAATCGACATCG
829	ACTTCTGAAATCGCAGCAC
830	CTGCTTGAAATAGCGATCAC
831	ATGCGGTTAACGCGTAATAC
832	TACGCTGAGTCATCCGAAATA
833	CTTGTGAGACACTCCGACAT
834	CTGGTGACATACTATCAGAC
835	CGTGCCTAACGCTGTCGATA
836	CGGTATCGAACGCTGTGCTAA
837	CGCGTGTGAAGCTGCTATA
838	CCTAGTAGAACGCTCCACAGA
839	TGTGTCGGAGTCGCCATAT
840	TCTGTCGAGGGTAGGCCATAT
841	GCTGTCGAGAGCGATCATCA
842	GCAGTCGGACGAGATTCTAC
843	GCGATGGTACTAGATCAGCA
844	GTGTAGGGACTCGTATCACT
845	GTACGAGCAGTTGAGCATAA
846	GTCAGTCGAGATTCAAGCACT
847	GTCGAGTCAGATGCACGTCA
848	GTGTATCTAGCTGCACGCAC
849	GTTGTCCTACGTGCAGTCAG
850	TATGTAACCGTATCGACGCA
851	TCGTGTCGAGTATCCGAAA
852	GTACGTTGACAGTCTGCACA
853	TTCTGTAGAGGTCTGCCAATT
854	ATTCTGAGAGACAAGCCTCC
855	ATTCTGACACAATCATCGCG
856	ATTCAAGAACTAATGCACCGC
857	AGGTATGAACCCTCGCACAC
858	ATTTGATGAACTCCGCAGAC
859	GTTTGCTGACCTCGCAGTCT
860	ATTGCCGGAACGCATTATAC
861	TGTGTGGGATCGCCCTATCT
862	TTGAGTGAGCTCGCCTTATA
863	TGCGTGCAGGTGCCACTAAA
864	GTGCTGCATGAGCCAGTTCA
865	GGCTCTACATGGCGATAGCA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
866	GCTCTCTAATTGCGGACACA
867	GGATATAAGTTGCGGCACTA
868	GGATGTAATGGTAGCTCCTA
869	GGATGACGAGGTCTCACCAT
870	GGATGCGACGATCTGACAT
871	CGTGATCGAAGGCTGCACAA
872	CTAGATGTAAGTAGCTGGAC
873	CGAATGAAGGATCGAGACCT
874	CGGCCTGGAAGTCACTCATA
875	GGCCTTGGACTACCGCTTAA
876	TGCTCGAGGGTCCCACCTA
877	TGCTCTGGTACTGTCCGACTA
878	TGCTTGTGAGAGTCGCTACT
879	ATGCTTGCAGAACCGTCAGC
880	TGACTGTAGGGAGGCCCAAC
881	TGCTTGGCAGGATGTCTTAA
882	GGCTCCGGCATGAGTATATC
883	TGCTTTGCAGTGAGGCTCTC
884	CAATTGGAACTAGCCTTCG
885	TTTGCTGCATCCGGCCTGTA
886	TTGGGCCACTGCGCTCTTA
887	TGTGAGCCCTGGCACGTTA
888	GGTGGCCCGATCACATTCAA
889	GGCAGGGCACCTCAGTTAT
890	GGGTGGCCCCTACCTATCTAA
891	GTCTGGCCCTACCTATGGTT
892	GCAGGGCACACCTCTGATTAA
893	GCAGGGCGCACCATTCATTAT
894	GGAGCCCACCATGAGCTATA
895	GAATCTCCACCAGGCGGATA
896	GGATACGTGCTACAGTGAT
897	TCGTATAGCTGTATCGACGG
898	CTAACTAGCTGTAAGCGACC
899	ACTAGATAACAGATGCGCCG
900	CAACTATCATCAAGACGGCG
901	CAACAGAGATGAAGCGCGTC
902	CAACATATCATAAAGCGCGTC
903	GCAGATAGCATCATATACGC
904	GCAGACTGAATTAGCTCTAC
905	GTAAATTCTACTAGCGCGAC
906	AGGAATCTAACCAACGCGCAG
907	AGACCAATAAGCACCTGGG
908	AGACAAACATTACGCCGGG
909	AGAATAAATTACTGCCGGC
910	GAGCACATATTATTACGCC
911	CAGAAGATAATATGCTCGCC
912	GAATAGCCGATAATCTCAGC
913	GAATAGCTTACACTGCCCT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
914	GAATCACTCTGAATGAGCAC
915	GGATCACACTGCCGGACTAT
916	GGACCCATAGCACTCTGATT
917	GAGGCATTAGCACCAGCTCT
918	GGATTATCAGCACTCAGTAC
919	GGGATCTCAGACGATGCTCT
920	GGGTATATCAGCGGATTCCA
921	GCAATTGATCTAATGCTCC
922	ACCAATGCAAATAGCGGCC
923	AGCAAATTAACACTTGGGCC
924	GAAACAAGCAGATTGCGGC
925	TTAATTCCGTGATATGCGCG
926	GGATCTAATGGTTATGACCG
927	GCATGAAGTGGTGTCAACTC
928	GCTTAATGGTCGTGACGCC
929	GCTTAGAATTAGTGCAGGC
930	GCGTCAGAATTATGCCACA
931	GCTAGATAATTAGGCCACG
932	GCTGATAATGCTGAGGACTA
933	GCAGAATTGCATAGACGCAC
934	GCATGATTAGCATAGACGGA
935	CCAGCAATAGCAATCACGGG
936	ATTGCACATTCAACTGACGC
937	TGGCATTACTTAGTGCAC
938	GAAGCCATATCAATGCTCAC
939	GCGAGCAATTGATGCCACT
940	GGCCCAAGTTGTGACATGA
941	GGGCATAATGGTTGATACTC
942	TTGGTGCATGGATCTCTCCC
943	TTTAGGGCAGGTTAGCTTCC
944	TTATCCGGCTAGAGTGCAC
945	TGATGACCTGTTAGCAGTAC
946	GGACCATGTGCTACGCAAAT
947	GTGAGCAGATTGAGCCAGAC
948	GAGAGACCATTGAGCCGATA
949	GCGTCGTCAATGTTGCCACT
950	GGGTTAACCTGCCACGTA
951	GTGCTGACATTGCGGCCATT
952	GCCTGTAATCGTGGGCACAT
953	AGCGCGTCAAATGACATAC
954	AGCGTCTGAAATGCTATCAC
955	AGTGCGCGAAATGTTCTACA
956	CGTCGCCAATATGATCGAAT
957	CGCCACAAAGTTGAGCGATA
958	GCCCTACAGCGTGAGCTATA
959	TGTCAGTGATCCGGGACTAT
960	GTTATCGCACCTGAGGCGTA
961	GTTGTGACCTCTGAGCACGT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
962	GTTTCACGCTATGCGAGCCA
963	GTTTACCGCTCTCCAGGGAT
964	TGCGTACCTCCTGCATGGTT
965	TGACTACC GTGTCGCATACG
966	TGGACTACGTGTCTCGATAG
967	TAGTGATACTGACTCATGGC
968	CGTCTGATACAGCCCAGTGT
969	GCCGTATCACGACGCTAGAT
970	AGCTCGATACAACGCTAGAG
971	ATCTACTTAACGCGCTACAG
972	GACATCGTACCACTGCGTAG
973	GACTCGTGACCACTCTGTAG
974	GACTCGGACC ATATCTACGG
975	CACTACGCAAGACTATGTAC
976	CGAGTCTCACAGCAATCTAG
977	CGATCTAGCACGCAATATAC
978	GACCAGCGACGACAGTAGAT
979	CGTAGACAGGCCACGCAGTTA
980	CGTATGCTACCACCGATTAT
981	CGTGC GATACCAGCGTAGAT
982	CTCCGTACAGCAGGCAGTAT
983	CTCGTCGTACAGCGATCA GT
984	CTACAGATA CGTCGAGAGAG
985	CTACGCGACACGCATGAGAT
986	TAGACGCTCGCACGGTAGTA
987	GCCGCTAGACGACGGTATAT
988	GTATCACTAGGACGAGGTAT
989	GTACTCACAGTGCAGAGCT
990	CGACTACACAGCTCAGGATA
991	CACCGACA ACTCGTAGAGAG
992	CGACCCACACTAGGAGAGAT
993	ACGGC CACACAGGAGACTT
994	AGTACCA CAACTCAGACGTG
995	AGTACAGCAACGCAGAGCCT
996	GTCAGCGACCGTCAGCTATT
997	GTCAGGC ACTAGGAGCTATC
998	TGTCGGTCACTCCTGGACTA
999	TCGGTTACGTCCGCATGTA
1000	TCGTTTACCTGTCGCCGCTGA
1001	TGTGTCTCACTTCCGCGAGT
1002	TCTGAGCACTCTCTCGTAGG
1003	GTTGATGACTCGCCACACGT
1004	CTGAGATCACAGCAGACTAG
1005	TTAGACTCCTGCCGGTAGA
1006	TATAGCT CCTAGCAGGCGTA
1007	TATGCTCCACGTCTAGTGAG
1008	CTCTATCACCAGCGATGAGA
1009	CGCTCCAGACAGCATATAGA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1010	ACATACCGAAAGCTCTAGCG
1011	ACATCGCTAACGACATCGG
1012	ATATCGCGCAATCAACGCTA
1013	CGATGCGCCACTCAAGGTAT
1014	TATGCCGACGGTCAGGCTAA
1015	TATGCCACGTCCGGTGATT
1016	TCTCGCTCACTGCGTATGAT
1017	TATCCGTCACTCCGTAGAGG
1018	TATCGACTATCCCTGAGACG
1019	GTATAGACCTCTCAGACGCG
1020	CTATCGTAATATCAGTCCGC
1021	CGATGACAATTAGGTACACG
1022	GAGCATAATGACGTAGACCG
1023	CGACAATACTTGACAGCACG
1024	CGATGATAATAGAGTAGCCG
1025	CTATGATTAAGTCGTAGCCC
1026	AGGTGAATAACGCATACGCC
1027	GAGTGAGTAATGCTACGTCA
1028	GATCGACGAATGTTAGAGAC
1029	GAACACGAAATGCGGAGACT
1030	GACCGTCAATCGCGTCAGAT
1031	TACCCGCATCGACGGAGTTT
1032	GTCAGCGCACTCCTGGTTTA
1033	TCAGGCCACGTAGCGTTAT
1034	TTCCCGCTATCCATGCGTGA
1035	TGCTGATACTCGGCTGCATC
1036	TGAGTAGCATCGGTGACTTC
1037	TTGTATCACTGTGCTGCCCA
1038	TTTAGTCAGTATGCTCGCGG
1039	TTACGTTATATGGCCGAGG
1040	TGAGATCACGTTGCCGAGT
1041	GTATCATTAGCTCCGCAGAG
1042	TATCATGTAGACTCGGAGGC
1043	GTATGCTTAGATATGCAGCG
1044	TTGTTAGCTCTGCACGG
1045	ATATCGTTAACGCCATACGCC
1046	ATTCTGATAACGCTCTCGAC
1047	ATTCGTCCAACGCGGTCGAT
1048	ATATGCACAACGCGCAATCG
1049	TTAGCTCTATCGCAGTCCGA
1050	ATTAGCTGAACGCCCTCGCAA
1051	ATTATCTAACGGAGGAGCA
1052	ATGTTGCTAACGGACGGACA
1053	ATGTGTTAACGGAGACAGA
1054	CTCTTCTAACGTGAGTCGAG
1055	CTGCTTGAAGTCGTCTCACG
1056	CTGCGTTGAAGTGGCTTACT
1057	GTGCGTTCACATGGCCGTAT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1058	GTAGCCGCACCTGACTGTAT
1059	GTAGCGCCACCTGACGTTAT
1060	GGCGCGTCACATGATACATT
1061	GGTGCTACGATGACTCAGT
1062	GAAGGGCCCCTACACTCTATA
1063	GACAGGGCACACGACTCTAT
1064	TGCGCGGCACTCGTTCTATA
1065	GCGGTTGCACTCGTAGCATA
1066	GAGGCGTGACCAGTCCATAT
1067	GGACGCTCACCACTGCTTAT
1068	AGTGTCCAACCAGACAGAG
1069	AGTGCCATACAAGCGCATAG
1070	GTAGCCTTACATTGGCAGAG
1071	GTCGCCGCACATTGGTTAT
1072	GTTGAGTCAGATTAGCAGTC
1073	TCGTAGGGACTGCGCTCATA
1074	CTCAGATGACAGCGACGCAT
1075	CTCTGAGGACAGCCGAATCT
1076	CTAGGATGACAGCCAGACAC
1077	CGTGAATTACATCAGACAGC
1078	CTGATTATAGCTCATAGGCC
1079	CTAATATGATGACAGTCCGC
1080	TACTTATGATGACTGCGGAC
1081	GAACATGCTGACAGTACCG
1082	CGATTCTGACCACATACGAG
1083	CTAATCTGACCACGAGACGA
1084	CTGTATTGACATCAGACGAG
1085	CTTCTCAGACATCGGACGAG
1086	GCACTGTGAATTAGCGAGCA
1087	GCCTACGGAATTGGCAGACT
1088	GACCTGGAATTAGCACACGC
1089	GCCTGCGAATTAGCGGACAT
1090	GCGATGCTAATGATGTGTAC
1091	GCCC GTCTAATGAGTGGACA
1092	GCCTAGCTCATCAGACGGAA
1093	GCATGGACATCCTACGGAGAA
1094	CGCCTGCCAACGCTGTGATAT
1095	GCCTGCGCCATCAGTAGATA
1096	GCACGGCCAATTACTCGATA
1097	GCAGCGAGACCATGTGATAC
1098	GCAGCAGCACACTGATCGTT
1099	GACCCAGCACATTAGCGAGA
1100	GCTCCTGCAATGTGCGGATA
1101	GCGCCTGAATTGTAGCACGT
1102	GCCACAGCATTGGAGAGAAT
1103	GCCAGGCTAATGGATAGTAA
1104	GCCCTGCGAATGAAAGACAT
1105	GCAGCGGGAAATTAGATATAAC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1106	GCAGGTGCAATGATTCTACC
1107	GACCGGGCAATCACTTCAGA
1108	GCCGGGCAATGCGTTCATAT
1109	CCCAGGGCAAGCGATCATAA
1110	GCCACAGGCAGGGCATATTA
1111	GCCTAATCCTGGGACACTGA
1112	TCGTCTCGATCTAGGCCATG
1113	GTGTCTCGACTCAGCCATATA
1114	GACGTAGTAATCATGTCCTCC
1115	GACTTATACGTCATGCGACC
1116	ACGATGTAACACAGCGACCG
1117	AGTCGTGTAACCATGTGACA
1118	GTCGTGACAGTGATGTAUTC
1119	GTGGAGTGACGTATCTCTAA
1120	TAGAGGTGACGTAGTCCACT
1121	GTCGTGCGAGATAGCTCTTA
1122	GTGTAGAGATATAGCATCGC
1123	TAGTCGTGAGATAGCGATT
1124	CAGTGTGTACGAATACGAAG
1125	CGAGTGTACACATACCACTA
1126	CGTATAGCAGACAGCGCAAT
1127	GACATCGACGACAGGCCATA
1128	CGAACGCTCACGTAAGTCAAG
1129	TAGTGCTCACGTAGCCCAGT
1130	TGCCACCGGTGAGCTAGTTT
1131	TAGCTGCCAGGAGCGTTCTA
1132	TCGGCCTACGCTGTGCATTA
1133	TAGGGTACTGATGAGCACTC
1134	CTACGGGAAGGTTAGCACCA
1135	TGGTGATACTGTGCCCTA
1136	GATTAGATACCACTGCCACA
1137	GGAGTGATAACCTCGATCCAC
1138	AGCTGACGAAATCTTCACAC
1139	GAGGAGATAATGGTCACTAC
1140	CACCGAATAATACATCCTCG
1141	ACAGCAACAAGTCGAGCCGT
1142	ACGGAGAGAAATCAGCCCTC
1143	CAAGAGATAATACGGCTGCC
1144	CAAGTCCTAACGACAGCTACG
1145	ATAAGCGCAAGACAGGCGTC
1146	ATCTGAGCACAACTAGGACG
1147	CACAGGCTAACGACAGGGAGCT
1148	CATAGCGTAAGCCAAGCAGC
1149	CATAGTCTAACGCCACATCAG
1150	GACAGTACATGCCAATCAGC
1151	GCGGTAAATCGGTGCATCAA
1152	GGGAGTATAGCTGACCACATCA
1153	GTAGGCAGACCTGATCCCTT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1154	GAGCCAGACCACGCTTGATT
1155	GGCGCATCACTAGCCAGATT
1156	GGAGCTACATCCGCCAGTTT
1157	GGAGTCTACCCAGGGCATT
1158	CGCGCTCTACACGATGGATA
1159	CGTGCCACACCTTGGAGTAT
1160	CGCGGCACACAGTTCAGTAT
1161	GCTCGTCCACAGTGCAGTT
1162	GCTGACGCAGAGTCCAGTTA
1163	CCGTAGCGACAATCAGCTTA
1164	ACGCACCGAAAGTGAGCGAT
1165	ACGTCCCAAAGTGCAGACA
1166	ACGCAGTCAAAGTCATATCC
1167	CAGAGTCTAACGATCACACG
1168	CACTGTCTAACGATACACACG
1169	CAGCGTACAAGCTATACAGC
1170	CCGACGACAATGTACGACAG
1171	GACTAGCGAATCTAACGAGC
1172	CGTCGAGCAATATGAATGAC
1173	CTGTCGCGCACTTCATAGGA
1174	CCGCGACCACGATAGAGAAT
1175	GGCACACACGTCTCGATAA
1176	GGCAGACGACGTTGCATACA
1177	CGTGGGACACAGTCGATCAT
1178	AGTGGAGAACATCGTGTAA
1179	GGCAGCACAGCTGTACGAT
1180	GACCATTAATATGTCGAGC
1181	GTACGCATAATTAGCCAGCA
1182	GGCAATCTGTTCACGACCAA
1183	GCTGACTAATTGCTAGACAG
1184	GGTGTCTAATTGTATGCACG
1185	GTTGACACATTGTTAGCAGC
1186	TTAAGAGATTAGTCTGCCGC
1187	TCACGTAATTGTTAGCCGC
1188	TGAGTGATAAGCTCGGATCTC
1189	ATGATGATAACTACGTGCC
1190	ATGCGAATAACTATGACGCC
1191	ATGGAGATAACTATGCACCC
1192	TCGTTGCGACCTATGCGTAG
1193	TAGTCGACCTACTGCTAG
1194	ATACGTGCAACCACTGCTAA
1195	ATGTCGATAACCTCTGCTAC
1196	ATCTAGTCAACCTGAGCTAC
1197	AGTATAGCAACCTCAACTCG
1198	AAGACACTAAACTCTGCTCG
1199	ACGATAATAACAGCTCCTCG
1200	ATAGATATAACTGACGCGCC
1201	ACTGTAATAACCAAGCCTCG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1202	ACTGATAGAACACAGCGCG
1203	ATGGCGACACACATACAGCG
1204	ACGGCGAGAAATACGATGCC
1205	GACCGCAGATCAATGTAGTA
1206	CGAGAGTAATCAATCATCCG
1207	CGAGCAATACATACATCTGC
1208	CAACATAGTTACACACGCTG
1209	CAGCTTATAGAGACACACTC
1210	CCATAGAAGTAGACACCTCG
1211	CTCAGAGACATGACACTCGA
1212	ATCAGGTCAACTAATCACCG
1213	AGCGCAGTAAATAGCTTAGC
1214	ACTCCACGAAACATGATTGC
1215	CTCAATATAGACACGATGCC
1216	CGCATTAGAGACAGATCGAG
1217	CGCACATGACATAGAGCACG
1218	CGCACATTAGACAGAGAGGC
1219	CTAGACTAATGCAGAGAGCG
1220	GCGTATAGATGCAGAGATCC
1221	TCACTAGCGTGGATAGAGC
1222	CAGACTGAACATCAATGTACC
1223	CACGATGAACTAGATGTACC
1224	CGAATGATAAGTATGACGGC
1225	CGAGATGCAAGTATAGTACC
1226	GGATAGCGAGATATAGACCC
1227	GCATAGCAGATGGACGATC
1228	CTCACAGGACATGCAATCGG
1229	TATACATGCTTCGATACCG
1230	ATATCAATAACTGCGACGCC
1231	AATACGAAAGATGCGGCCCG
1232	ACAGATACAATGTCGCCCG
1233	ACGAATAGAAATGTGCCCG
1234	ACATTACTAAAGGTGCGACC
1235	AGATTAGTAAATGCTGCGCC
1236	ACTATGATAACAGCAGCCCG
1237	ATATGAATAACTCCAGCGCC
1238	AGACTGAAATCTACAGCCCG
1239	GTACTGATAATTGGATGCC
1240	CCAGAACGGTTGCAGACACT
1241	GCAATAGTTGGACCCAGGCT
1242	GGAATAGGTGGACTCACTCA
1243	GCACAAAGTTCGCGCATCGA
1244	GCAGGAATCTGTGCAGCATCT
1245	GCGAGAATATGGTGACATCT
1246	GCGGTCAATTAGTGGACTCC
1247	CTCCTACAATGGTGACACTG
1248	CTATTACAATGGTATGCCCG
1249	AATCATACAAAGTGTGCCGC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1250	CATGATCTAAGAGTGTAGCC
1251	CAAGAAGTAAGATGCGTAGCC
1252	CATGTGATAAAGATGTGGACC
1253	AACTTAGCAAACCTAGCGCC
1254	TCTTCGATATGATAGCGTCG
1255	GACGTTAATTGATGAGACGC
1256	GCGTGAAGTTGTTAGCACAT
1257	GCCGATACATGCTGCACGAT
1258	CGCCGATTAAGCTGCCACAT
1259	CGTCATTTAACGTTAGCGCAC
1260	CTCCATCTAACGGTGCGATAC
1261	CGCTTATCAAGGTGCAGACC
1262	GATGACTCAATGTGACTCAG
1263	CGCTAGTGACAATTATGTGC
1264	GCTAGGTGACAGTATGCTAT
1265	GCTGTGCTACGACGTTGACA
1266	GCTAGAGTAGACCGATGCCA
1267	GTATATCGAGATCATAGGCG
1268	GTCTTGGACTATACGAGCGC
1269	TACTTGTAGATAGCGAGCGA
1270	GTACTCTGACATGATTGCA
1271	TATACTGACCTTATCGGCAC
1272	TCGTCTTGAGATATGTGGAC
1273	TCATGTTACGGTATCGGAGA
1274	TCATCTGCACGTATCGTCAA
1275	GCGACTGGACAGATTGCATA
1276	CGGGCGCGAAGTATTACAT
1277	GTGTGGGCACGTATTCATA
1278	TCCGGGCACGGTGTATATA
1279	TGGGCGCTACTGGCTCTAA
1280	TGCGCCGCCAGTCTGTTATA
1281	TGGCCGTTAGAGTCTGCACT
1282	ATGGGCGCAACCCCTGTCATA
1283	CAGCCCTGAAGACTGCGATA
1284	CGCCGCTCAAGGCTATGATA
1285	CGCTCCTGAAGGGTAGTTAA
1286	GGCCCGACAGGGTGTATTAT
1287	GGATAGGCAGATGCACTTAT
1288	GGACAGACGTTGACCAGCTA
1289	GTAGCGACATTGAGTTAGCA
1290	GACTACGAATTGAGCATAACG
1291	CTACACTAATTGCAAGCAGCA
1292	CGTACCCGAATGCGCAGCAGAA
1293	GACGCCTAATGACGCTGAAA
1294	TAGCTTGTACTGCGACTGAC
1295	GATACTCTAACGCCATCGAC
1296	CGGCGTACAATGCCATAGAA
1297	CGGATACGAAGGCTATGCAA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1298	ACGGATCGAAAGGTATGCC
1299	ACGGCGCGAAAGCGTCATAA
1300	CGTGAGGGAATACGTCATCA
1301	CACAGTGGAAAGACGCATCAC
1302	GAGGTGACATGACGTACATC
1303	GAGTAGCGAATGCTCAGCCA
1304	TATAGCACAGTGTCCAGCAA
1305	CGTATGTCAAGGGCTGTATA
1306	CGAGACGCAAGGGATTACA
1307	GAGACGCAATGTGAATTACG
1308	GATCGCACAGGAGCGTATCA
1309	TGCCAGAGCGTATGAGCAA
1310	TGAGGGCGAGCTATCTATCA
1311	TTGGCTAGGTATCGCTAC
1312	TGGTTAGCAGGTATGATCCT
1313	CTCACTGCAAGGATGGACT
1314	TCCTGTAGATCCCTATGCGG
1315	TCGTTGTCAGCATATTGAGC
1316	ATCATGTGAACCTATTGGCC
1317	TACACTGGGACCTATGGCA
1318	TACCTGGGAGCATAGCTGAC
1319	TAGCCCGCAGCATAGGGTAT
1320	GAGCCTCAATGCTACGGAAG
1321	GATGTTCAATGCTGGCGAA
1322	GACTTGTGAATATCTGTGCC
1323	GCCGCCGAATTATTGAGCAA
1324	TGGACTGATTGATAGGCAAC
1325	TGGCAGATCGGTGTATTCAA
1326	TATGCGTAATGGGTGTTCCA
1327	TTAGGTCGATTGATAGTCGC
1328	TCTGCTTACTGCGTAGCCA
1329	TTGACGAGTTGCAGTGCTC
1330	CTTGATTAAGTGCTGTACGC
1331	CTCGGATCAAGGCTTACCGT
1332	CCGGGCTAACGCTTGTAA
1333	TGTCGCCAGCTCATGTGTT
1334	CTGGACCCACAGCTATGGAT
1335	CACGGGCCAAGAGATATACC
1336	CGCCCGCCAAGTGATGTATA
1337	CGCCAGCCACATGGATAGAT
1338	GCCCAGATACTGCGATTAG
1339	GCTGGCCTACATCCGTATGA
1340	AGATGGCGAAATCCGTATAG
1341	GCAGGGACATTACGATCAGT
1342	AGCAGGTGAAATCGTACTAC
1343	GCAGGTCAATCTCTGTACGA
1344	GCATTGTAAGTTCGGTCAAG
1345	GCACGGTAATTCACTACG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1346	AGCATCATAACCCAAGCTGG
1347	ACCAGTCCAAAGCATAGTCG
1348	ATCATTCAACGCAGTGACC
1349	TCAGCCCTATCGCAGGATGT
1350	GTCAGCACCAAGCCGTGATTA
1351	GAATTACGCACCCAGCTTGA
1352	GAATGCGCCTACCAAGCTATA
1353	GAATGGCGACAGCGTACATA
1354	GGATTGCCACGACTCACAAA
1355	GCTCATTGACACTGCGCTAT
1356	GAGCATGGACCACGGCTATA
1357	CAAATGGACAGACAGCCTGC
1358	CACTTGAAAGCACAATCACG
1359	GCTGTTGCAGGACGCGATCTA
1360	TACCTGGCATGACGGGATAT
1361	TTCGTGGACTTGCGGATCTA
1362	TTCCCTGCGATAGCGGGCTTT
1363	TTGATCTGATAGCGGGCTC
1364	TTGATCGCATAGCGTCTGAC
1365	TTCGAGGCATGTGGATCTCC
1366	TTCAGCGGCTAGGCGATTT
1367	TCCAGCAGATCGGCGAGTTT
1368	TTCAGCCGATCTGCCGATAT
1369	TTCTATCGCATGTCAGCCGT
1370	TGTAATGCCCTGCCAGCCGTA
1371	TAATTGCCCTGCACAACCTGGA
1372	TAATTCCATTGACGGCAGCG
1373	TTATTGCCATAGCGCGACGC
1374	ACAATTCAAAGCCTGACCG
1375	ACAGGCCAAAGCACTAGGT
1376	CGAATGCCAAGGCCAGCTAA
1377	GATGGTTCAATGCCCTGGACA
1378	CTGGGCCAAGTTCTGAGACA
1379	CGTGGGCAATACAGTTGAAT
1380	GAGCTGCGAATCGGTATTAA
1381	GACCGGGCGAATCGAGCATAA
1382	GACTTCGCAATCGGCACGTA
1383	GACGCGCCAATCGTGCCTATA
1384	GATCGCTGAATCGTGCCTAA
1385	GATCACTGAATGCGACGCTAA
1386	GATCGTGCAATGAGGTAC
1387	GAGGACTAATTGAGATGCAC
1388	GACCGATAATTGATATGCC
1389	TAGCATTGATCCCATGTCAC
1390	TTCAAGCTTATGCCAGTCGCG
1391	TGACGGCCTTGCATATCCGA
1392	GAACGCGCCTTACATCAAGA
1393	GAATACCAGTTACACTCCAG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1394	CAAGAACTGTTACACATCGC
1395	GACGGAGAATGGACTACACGT
1396	TACAGACGCTTGCATAGATC
1397	TAACGACCTTAGCGACGGGT
1398	TAACCGACGCTTCCCAAGGA
1399	TTACCGCTGTTGAGCCCGTA
1400	TTCCCATGTATCGAGCGTCAG
1401	TATACGCCCTTCAGATCGGG
1402	CTAAGCCTATGCAATATCGC
1403	CCAGCTATAAGCATATTGCC
1404	TACAGCATTGTCATGGACTC
1405	TAAGCTATTGGACATTGGGC
1406	TTAGCATCCTGTCATAGGGC
1407	TCTAGCAGCTTTCATAGCCA
1408	TCATCACGCTTCCGAGGAT
1409	GCATACATTGGACGAGAGCT
1410	TCTAGCATTAGCATGGTGC
1411	TTATGACTTGATCTGAGGCG
1412	TGTCGCACTGGCTTAGCTC
1413	GAGTTGAATGCAGATAGCTC
1414	TGCAGGCTCGCAGATGCTAT
1415	TGCGAGGACTGTAGCTTAAT
1416	TGGGCACTCTCGCCTAGTTT
1417	TGAAGCGCCTCGACTAGGTT
1418	TCATCGGCACTGATAGCTCA
1419	TCATCAGGCATGGAGCCAGT
1420	TAATCAGCGTTACGTCCGCA
1421	GAATGTGACCGCAAGTCTGAC
1422	AGATTTGCACAGATAACGCG
1423	GATTACTGACCAGCATCGAG
1424	AACTATCGAAACCGCCAGGG
1425	ATAATACAAGAGTCGCGCCG
1426	ATAATCATAACCTCGACGCG
1427	ATTATCATAACAAGGCAGGCG
1428	TATATCGGATCAGCAGGTCA
1429	TAATTCGCTACGCAGGGAG
1430	TAATCCTGTTACGCGGGAGGC
1431	CTTAGCTCCACGCAGTGTG
1432	TTCTAGCCGTCCGCAGTTG
1433	GTCATGCGAGCAGCAGTCCT
1434	GGCGTTCGAGCAGTCATCTT
1435	TACCGCCAGTCAGCGAGTTA
1436	TACCGCCTAGCAGCATTGGT
1437	TACCGCACTGCATGTCAGGT
1438	TGTCCTCGATGCAGGTCTAGT
1439	GCCGCATGACGAGGATATAC
1440	TACCGCGAGGCAGGATTCTT
1441	TACAGCAGTGCAGGGCCCTTA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1442	GCAGCTAGAGCAGAGTATCA
1443	GACAGCAGATCAGAGACTCC
1444	TAAGCACGTTAGAGCTGAC
1445	TAACCGTGTGCAGATCGGAT
1446	TACTCGGGACCTGGATCTAC
1447	TCAGGGCTACTCGATTGGAA
1448	TCCGCAGACTTAGCGTTACG
1449	TGAGCAGCCTACGTTACTAG
1450	TGCGTCAGATGCGTATATGC
1451	TCGTCAGATGCGGAGTTCA
1452	TCGGCTATATGCCAGATCCT
1453	AAGGACAAAGAGCGCGTCTC
1454	TAGCACCGATGGCGAGCTTA
1455	TGTCACGGTGCCGCAATAT
1456	TGGTCCGACTGCTGCTACTA
1457	TGTGCCGACTGCCGCTTAT
1458	TTCCGAGTATGGATCGGTAT
1459	TTACGCAGTTGCATGGAGCT
1460	TTCTGATTAGCTGCGGACGC
1461	TGGTTATACTTTGCGAGAGC
1462	TTTGTTAGCTCGGGCAGCC
1463	TTGGTCTGATCCGGGCATAC
1464	TGCTTGGACTCCGGCGATT
1465	CTGCTTGGACCAGCCAGTTA
1466	AAGCTGGAAACGCACACCT
1467	AAGCGGGCAAACGATATGCT
1468	AAATGCCGAAACCATCTCGT
1469	CCATTCGGAAGCGACTCGAT
1470	TACATGGGCTGAGAACGCAA
1471	TATTGGGCACGAGCGCCTAT
1472	CATCCGGGAAGAGTAGCACA
1473	ATTCATGCACATAGCACGC
1474	ATTGCAGCACAAGCCAGACT
1475	TTGCTAGGCTCAGTCCCAGT
1476	TTGGCGAGCTGCGTTCTCAT
1477	TCCCAGAGATGCGACTGCTA
1478	TTCGCTGGATCGGCATGTCT
1479	TTGCTCCTAGCTCGCGTGAT
1480	TTGCTGCTAGTCCAGTAGGC
1481	CATTAAGCAGTCGAGAGACC
1482	CGTTAATGCAGCGAGAACATCA
1483	CGCAAGCTCAGCAGAACATTAC
1484	CCATGTCGAAGCATTATAC
1485	CTGAATGTAATCATCGTGCC
1486	CTTAGATGAATCACTGCCAC
1487	CTTCACGGAATCTAGGCACA
1488	CACTCTTGAAGCTAAGCACA
1489	CCTCTAAGCATGTTGACACA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1490	CATGCCGGAAGATGCGTACA
1491	CAGGCAGCAAGATGTACGAC
1492	CAGTGGGCAAGATAAGATT
1493	CCGTGCCCAAGCTAGTGATA
1494	GATCGGGCAATCTCGTACT
1495	TTCAGTGCATTATAGTGCAG
1496	TTATCTGCATGAGTAGGTAG
1497	TCGATAATCTTGTAGCGCG
1498	TCTTACAGCTTGCAGGGAG
1499	TCCTACATTCACGGGAG
1500	TCTTCATCAGTGAGGCGCGA
1501	TTTCTAGGATGTATGCGAGC
1502	TATCCAGCATTACTGCGAGA
1503	TTATTCTCAGCACGACCGA
1504	TGATTGGCACTCGCGCTAA
1505	TTTGTATGAGTCGCTCCGAA
1506	TTCCGATCAGTCGATGCAAA
1507	GATCGTCAATCTGATGCACC
1508	AGATCGCTAACATGAGGACCC
1509	GATGCTATAATCGTATGCC
1510	AGGAGCGTAAATTATCAGCC
1511	GGGCGATGACTATATCTGAA
1512	CTGGATTGACACTAGCATAC
1513	CTGCGGATACCATAGACAAC
1514	ACTGCAATAACATATCCGCG
1515	AATGACATAAAGTGTGCCC
1516	ACATGCAGAAAGTAGTCCGC
1517	ACAGGCGAACAAATGTACCCG
1518	ACCAGCACAAAGTCTACTGT
1519	AGAGAGCCAAATGACTGTCC
1520	TAGTGCATAATTGCTTGC
1521	TGAGCATATAGTATTGGGC
1522	TGAGCGTTAGAGCTTGATCC
1523	TAGGCGCTAGGACTCGTTAT
1524	TATGGCCGACGATGTGTAC
1525	TATGGCTGACGTAGCGCACT
1526	TCTCGGTTACTGAGTGGACT
1527	ATAACGGGACAGAACAGCTGCT
1528	ATAGAACTCAATAGCCGCTC
1529	CATAATACACATACGCTGCG
1530	CAGTACGCAAGCAGATAGCC
1531	CAGACGCGAAGATAAGTTCC
1532	CAGCCAAGATAGCATACTCG
1533	TCCCATAGATAGCTCGCTGG
1534	TTCCGCATGAGTGCTGAGTAC
1535	TTCCCATATACTGGTCGGCAG
1536	TTTATGATATGCGTCGCGGA
1537	TTTCTTATATGCGCGAGCGG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1538	TGTTGCATATTAGCGGGCTCG
1539	TATATGACATCTCTTGCCTCG
1540	TTGTCACATTGCGCTCCGA
1541	GCATCCGAATTGCGACGACT
1542	GGATCTGAATTGCGCGACCA
1543	GGCTATGAATTTCGCATCAC
1544	GGATATGCAATTGTAGCCC
1545	CAGCGTATAAGCAAGATGGAT
1546	CGAGCGATAATCAAGTCGAG
1547	CGCGGATGACACATACTCAG
1548	CGACGAGCACCAATTGAGA
1549	CCGTAGTGACCAATGCAGAC
1550	GCGATATACATCATTGGAC
1551	GACAGTCTAATCACTCGTAC
1552	GCAGTTATACTAAGGTGTGC
1553	GCAGTAGTAATGAGTGTAC
1554	GCAATGTAGTCGAAGTGTCT
1555	GCATATAGATACCATTGCG
1556	CGAATACTAGACACATTGCG
1557	CAACTACAGTACACAGCGTG
1558	AGACACAGAACTACCGCGTG
1559	ATAGCACAACGTAGACGCCG
1560	ATACAGTCAACTACATCGCG
1561	AGTACAACCTAGAACATCCGGC
1562	GAAGACTACTAGATAACGCGC
1563	CGATAATACTACAGACTCCG
1564	CCGTGCGTACACATAGATCA
1565	CGTGAGCGACACATGATCCT
1566	CTGTAGTGACATATAGAGCG
1567	ATGTCGTCACACAGAAATCG
1568	ATGCTACGAACATACCAATCG
1569	ATGATAACGTACACACCTGC
1570	TCGGTCTACGTCTGCTCAGT
1571	GGCTCACGATCCACTGGTTA
1572	TGCCCTGATAACCTTGGATGAC
1573	GGCCGTGAATTATCATAGAC
1574	GGCTTGGACGCATTGATAAC
1575	CCCATCGAAGCATGTGTAAA
1576	CGGCATCGAAGGCCTTCATA
1577	GCCAGTTGACCAACTCTGAG
1578	TCGCATTAGCCATGTGGAGC
1579	GCAATCTAGTCTAATGGCGC
1580	CTAAGATGTTCTAATGCCCG
1581	CCAATAGTAAGTAATGGGCC
1582	TCATTATACTCTGATGGCCC
1583	ATGCTAATAACTGATGCCCG
1584	AGTGTCAACCATGATGAACC
1585	AGAGCATAACATCATGGCCC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1586	AGAATCTAACAGCGATGCCG
1587	ATTAGACAAGTCGATGGCC
1588	ATATTAAGAAGTAGGCAGGCC
1589	CATATCAGAATAACGATGGCC
1590	GATATACAGGATTATGGCGC
1591	CATAAAATTGGTTCACACCGC
1592	GAAACTCCAATTCAAGCGGAC
1593	GAACAAATGAATTAGCGGCC
1594	TTCCATTAGATGTGATGCC
1595	TATCATATCATCTGAGGCC
1596	ATCAGAAGAACTGCACGTCC
1597	AGCACAAGAACTACCGCCTG
1598	AGCAAAGAACCATGCCCGT
1599	TAAGAGCAATGTGGCGTAC
1600	TTCAGGGCATTGAGCGTAAA
1601	TTAATGGGCTTGAGCGTATC
1602	TTAATGCGGTTGAGATCGAC
1603	GCAGGGATAGCAGATAACATC
1604	TCAGGAGAGGCATCGCATCA
1605	TTATCTTAGGGATGCCGATC
1606	TGTGCTCTAGGTATCCGAG
1607	TTGTATCTAGTGCAGGCAA
1608	TATTATCTAGTATGCCGCGC
1609	TAGTTATCAGAGTGACTGCG
1610	GTTAGATCATAGTACCCGCG
1611	GTTAGTATAGATTGCCGAC
1612	GTGTTTATACGTTGAGCACG
1613	TTATCTGTAGTCATCGAGGC
1614	TGATACTGAGTTAGCGAGCT
1615	GTGATCTCAGAGCGCAGCTT
1616	CAGATGTCAAGACGCGGACT
1617	CTGGTCAGACAGCGGAATCT
1618	CGTGGCAGACAGCTAGATAT
1619	GTGCCGAGACTCCACTGTTA
1620	GCGGACAGCTCTCCTAGTAT
1621	ATGCACAACATCAAGCCTG
1622	GTGCTTTACTAGCGGAGCCA
1623	TAAATATCGTATAGCGGCCG
1624	TAATTCTACTATACGCGGGC
1625	TAAATCGTATGTAGCAGCGC
1626	TCCCTCACTGTAGGCTAGGC
1627	TCAGTTATATGAGCCGACTC
1628	TCACGTATATTGACTCCGAC
1629	TCACCGTATTCGAGGCGACA
1630	TCGTACTGATTGACGGTGAT
1631	TCACAGCGGTCGAGGTTACT
1632	TTCACCGCGGTCGAGTATCT
1633	TACTTGACGTGACTGCATCG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1634	CGTCACAGAGGACAGCATA
1635	TCACTAGAGCGTCGAGCTGT
1636	TCTACAGTGTGTCAGAGTGA
1637	CTACCTAATCGACAGCAGAG
1638	CACCGATAACTACAGCAGGG
1639	CAACGTCTAGGACAAGGCAG
1640	CACTAGCTCAGACAGACGAG
1641	GACTTTACAGTACGATCAGC
1642	GACACTGACTGACATCGAGA
1643	GAGACAGTCGAGCGATCAAT
1644	GCACTTGTACGTCCAGTCAG
1645	GTACACGGACTGCCAGCATA
1646	GTAATACGCTATCAGCAGAC
1647	CTAGATAGACATCACTCACG
1648	TAGACTCTCGATCAGCCGTA
1649	GACTTGCACGTACAGCCGAA
1650	CTTATGCGACACTAGCTCGA
1651	CTGATGCTACACTAGGCACA
1652	GCAGACGCACTATCATATAC
1653	GCAGTAGACACTTCTCACGA
1654	GCAGGGTACACTGACCGACTA
1655	GCACATCACTGCACGATAGA
1656	GCAATGACTTCGACTCCAGA
1657	GACAAGTCATTACAGGCAGA
1658	GTAACTTGTTGACAGTGCG
1659	GACACTGCATGGACAGCGTA
1660	GCAAGGACTGAGACATGCTT
1661	TGCGAGGTAGGTTATATCTC
1662	TGCGGAGAGTGATATACTTC
1663	GGCGTGAGAGCATTATATCT
1664	GTGCTGCGAGAGTTATCT
1665	CCCGCGTGTACCATATAATAC
1666	GAGCGTGGACGATATACACT
1667	GGCCGTGTACGATTATGACT
1668	GTAGCTTGACGATGCTGACT
1669	GTGCTGGTACTAGCTGCTCT
1670	TAATGTGACGTAGCCGACTC
1671	TACCGAGTGCAGAGATGCTCA
1672	TACCGATGTCGATAGATCCA
1673	TCTCGTATAGGATGAGCAAC
1674	TCGTGAGTAGGATGCTTCA
1675	TACGTGAGATGATGATCGCT
1676	TAGTCGGTAGCATGAGTCTA
1677	TAGTCGAGGAGTAGTCATC
1678	TAGGTACAGTGTGGATACT
1679	CTGCGTCAAGTGTGAGAAT
1680	TGTGCGCTAGAGTCTGTCCT
1681	GGTGCCTACGATCTCCTAT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1682	GTGTGGGTACTATGCCATCA
1683	GCTGATGTACTATCCATACC
1684	GCTAGATGACGATCAGGTAC
1685	GCATCTGTACGATCTCAGCA
1686	GCATCACGACGATTATCAGA
1687	GCTACGTTACCATGTGCAGA
1688	GCGTAGTTACCATGCTCACA
1689	GCGTGAGCACACTCTATCAG
1690	GCGTGCAGAATTATGTATCAG
1691	TGTGGACACTCTTATAGGC
1692	GCGTGAGTAATTGACTACG
1693	AGGTGCGTACAAATGCTATG
1694	CGCAGCCGAAGTACGCTATA
1695	CGACTGCTAAGGAGCGTACA
1696	CGATGTTGACAGACCGCACT
1697	CATGTAGAACTGACTCACAC
1698	CGAGCGGTAAGGATCTCACA
1699	ACACGCTGAAAGAGTACGCC
1700	GATCTGACAGGTAGCGATAC
1701	TCTCGTGCAGGTAGCTGTCA
1702	GCTCGGACAGATCGGTATCA
1703	GCCGGTATAGCTCGATATGC
1704	GCTGATACAGTCGATAGAC
1705	CCTGACTAACGCTCGATAGAG
1706	GCTGATTACGATCTAGTAGC
1707	GAATGCTCACGACGAGTAGC
1708	GAACTGTCCTGACGAATGAG
1709	TTACTGTCTATGCGATCCGA
1710	GTTATGTCATCGCAGATTCC
1711	AGCTATATCAAGCAAGCGTC
1712	GCTTATACAGTGCAGTAGAG
1713	TTAAGTAGGTAGCTGGCCTC
1714	CAAGAGTAAC TGCAAGGCC
1715	CACTAAGACATGCACAGCGG
1716	CCTAGTGCAGACCACATGAT
1717	TCATGCACGTGCCATAGGT
1718	TCTATACGCTCGTGCAAGGA
1719	TCAAGCCCAGGCCGAGTTA
1720	TCAGCGCCAGCATTGATGGT
1721	CCATGCGGACCAAGTCGATA
1722	GAATGCCGAGCAATGATCCT
1723	GAATCGGCAGCAATACTGTC
1724	GAAGCCCAGCTAAGTGGTAT
1725	AACAGCCCCAACCGGATGGT
1726	TAAGCACCTTGCAGGATAGA
1727	TCAGCCCCGATCCAGGGTATT
1728	TATGCGCCCAGGAGGGCTTA
1729	TGCCCGAGCAGGTGGATTAT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1730	TAGCTCGCATCACTGACGGA
1731	GGTCCCATA CGAGTGGCATA
1732	ACTAACCCAACAGCGGAGGT
1733	CAGCTCTAACGCAGCACAGGA
1734	CAGGTCAAGCACATACCA GT
1735	CTGTGCAATCACGCCAGAGA
1736	CGGCGCAATAATGTCACAGA
1737	CGGGACATAATTGACACAGT
1738	AGGGCCAGACAATACACCGT
1739	GAGGTACAATTTGCTACAC
1740	CAGGCACAAGATTGAGCAGC
1741	ACAAGCGCAAATACTGCCGG
1742	ACAATCTGAAATAGCGCGGC
1743	ATCGACCCAAGAATAGCTCG
1744	ATAAGCACAAGCAGCGCGGT
1745	AACACTCCAAACCGAGGGTG
1746	AATCTATCAAAGCGACGGCC
1747	ATTCCCATAACGCGGAGGAC
1748	ATGCCAGCAACGCGCTAGAA
1749	ATGCTACAAGCCACGAGAG
1750	ATGCTCCAACGATA CATACG
1751	CAGCTTCAAGAGTACATACG
1752	CATGTCACAAGGGCATAGAC
1753	CATGGTCTAACGCCCTACAGA
1754	ACATGGCGAAAGCACCCACGT
1755	CTTAGTTCAATGCACGCACG
1756	CGCCAGTTAACGACGACAG
1757	CAGCAGCAACTCGACTAGAG
1758	CCGAAGTCAACTGCGCTAGA
1759	CCAGTGTCAATAAGAGACGT
1760	CCAGGGCGAACTGATCGTAAA
1761	CCTGGTACAATCAGTAGCAA
1762	CTAGTGGCAATCATCAGACA
1763	CAATGCGAACTCACTAGACG
1764	CATGGCGTACCAATACCTAG
1765	AAGTGGCCCAAATAACTGCC
1766	CAAGGCCAATACACAGGGT
1767	GATCTGCCAATGCCGCGATA
1768	GATTGCCAATGTGCGCTAA
1769	GAGCCGCCAATGTCACTAGA
1770	GCGCCCCGGAATGTCGTATAT
1771	GCCCGCGCCAATGTTACGTTA
1772	CTTCGCCCAATGCGTAGGAA
1773	TTCCCATGATCGCTGACGAG
1774	TTGCGGGAGCTGCCCTTAA
1775	TTTCCCGGATAGCCGCTGTA
1776	TTTGCTGGAGTATGCCGCTCA
1777	TTGTTCTCAGCTTGCAGGAG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1778	TGTGTGGCAGCTTAGTCAC
1779	TCTTGGGTAGCATCTGTCAC
1780	TGGGTGTCAGCATCTACGCA
1781	TTGTGGCAGGTATGCTCCAA
1782	GTTGGGCACGGATCTCTATA
1783	GCCGAGGCACCATGCTTATA
1784	CGCTTGGGACAATCGCGTAT
1785	CCGCAGGGAACCTCAGCATA
1786	TGGAGGGCAGTCTCTCATAA
1787	CTGGGTGCAAGTTGTATCAA
1788	TGGCGCACATGGTGTCTAA
1789	TGGCATCACTGCTGCCAAT
1790	TGCCAGTCATCCTAGCGTGT
1791	TCAGGCCAGGACTGCTTATC
1792	TTGGCATAGGAGTGCTTCTA
1793	TTTGCAGACGGGTGTGCTATA
1794	TTGAGTCAGGGTGCCAACT
1795	TTTAATATCGTTGCCCGAGC
1796	TCAGGATGATGAGCATGTAC
1797	CTCAAGCTGGGAGAACAGTA
1798	TCAGAAGTGGCTGGATCATA
1799	TCTCACATGGCTGGAGCATT
1800	CTACTGACACTGACCAGGGA
1801	TCGTAGCGACTCTCCAGGTT
1802	TACGTGTCACTATCGTCGAG
1803	TATAGTTACGTCTCGCACGC
1804	TACCGTTACGTGCTCAGAG
1805	CACTACAACGTGCTACAGAG
1806	ATAGGTATAACGCAGTACGC
1807	ATAGCAGTAACGCATAGTCC
1808	ATAATCGTAACGCACCGACG
1809	ATGAGTGTAAACGCCCTCGACA
1810	ATGTAGCGAACGTACTCACA
1811	ATCTAGCGAACGGAACATATC
1812	GTAGAGTCACGATGCACTAC
1813	GTAGTATGACGTAGCAGTAC
1814	GTACGTCGAGCTAGATCGCT
1815	GAGTCTGTACGAGGTATCAT
1816	CGTGTCTTACAGCACTACAT
1817	CGTGCCTACAGCAGTCATT
1818	GTAGCCTAGACGCAGTCGTA
1819	CGTCTCGCAAGTCGCGTATA
1820	AGTCGCGCACAGCAACGTAT
1821	ATCGAGGTAACGCCATATAC
1822	CTCGTACATGCCATAGAT
1823	ATGCGACGAACGCGGGATATA
1824	CTAGACAGACTGCGACATAC
1825	TAGTCGTAGAGGCGCTATCA

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1826	CTATCGAAGTCGCGTGAAC
1827	CTCGTATAGAGATCAATCC
1828	CCCGTATAGACAGATATGA
1829	CTCGCTTACCGACAGACTGGA
1830	CGCGCACGAGACATAGCTTA
1831	AGCGTCACACACAAGACTGG
1832	CCTACGAGACACATGACAGG
1833	CGCCGAGTACACATGCCAGAT
1834	CCGTCGATACTAGACTCAGAT
1835	CTCGTCAGACAGAGCGGATT
1836	GTCTGCCACGTATCGGATT
1837	TCTCGCGTACTTAGGCATCA
1838	GTCTCGGTACGATGTAGCAA
1839	CGTGTGAGACAGTAGCATAT
1840	CGTGTAGCACAGCGACGATT
1841	GTGTAGCTCAGTCAGCATCA
1842	AGGTAGATAACGCTAGATCC
1843	CTGTAGAGACATCTGAATCC
1844	CTGATAACGAAGTCTTATGCC
1845	CACGCTCGAACAGACTAATGAC
1846	CACCGCGATAAGACGTATAGC
1847	CTAGCAGTAAGTCTATGCAC
1848	CGTAGTTGAAGTCATCGACA
1849	CGCGATAGAACGTCAGGACAT
1850	GACGGACGACATCTGAGCAT
1851	CATAGACGAATAACAGCGGGC
1852	GATCACGACCTACTAGCAGG
1853	AGATATAACGAACCTCTCGCG
1854	GATTATAGACTACTGAGGCC
1855	GAGTTTATACTACAGTGCCG
1856	GTCACTTACGCTCAGGCAGA
1857	TCGCTAGACGCTCTGGCATA
1858	GTACGCTCAGCACTGGCATT
1859	GACGCGCTAACTACTGTCACA
1860	GCGTGCATACGACTGCCATA
1861	TGTAGTCTAGTCATGGTCA
1862	GTATAGTCAGAGCTGGCACC
1863	CGTCAGTCAAGTATGGCACA
1864	ACGAGAGTAAATATGCTGCC
1865	ATAGAGCGAACGATAAGTTGC
1866	ATCTGACTAACGATGATGCC
1867	GTTGTTAGGACGTATGATCTC
1868	TTAGTCGAGTCTATGAGCCC
1869	CGACGATAACGTAATCTAGC
1870	CTGATAACAGGCATAGACATC
1871	GGTATCAGAGCTAGGACTAT
1872	TCTATCTCAGCTACGGTCGA
1873	TCAGTTCGATCTACGGCTAG

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1874	TCAGTGCAGTCAGGTACGA
1875	GTCACTGCACTCACGGTAGA
1876	TAACGAGTCTTCAGCAGCTA
1877	GAAGTCGCCTACATAGCCTA
1878	GAAGTCCGTTACATGACCAT
1879	GTCAGAGGATCGAGCCACTT
1880	GCGAGACAGGTCACTACAAT
1881	CGTCAGAAGGCTCGCACATA
1882	GCATACAGGTTACGACGCC
1883	GCGATACAGGTTCAGAGATA
1884	GGACGCATAGCTCGCAGTAT
1885	GGACGCAGATCGCAGCATAT
1886	CGCGTTAACCGCAGAGAAC
1887	CGCGTTCTAACGGCACGGATA
1888	CGCGTCGCAAGGCTGTTATA
1889	CGATACGCAAGGCTACGACA
1890	CATCTAAGGACACTACACTG
1891	TATCATCGAGGACTCAGTGC
1892	CACCGAGCAAGACTGACATG
1893	CGCACCCGAAGTCAGAGATA
1894	CGGCTAGGAAGTCAGCATAA
1895	ATGCTGCAACCGCCTAA
1896	CCCGCTGCAACGTGTTCTATA
1897	GTCGCTGCATAGCATCTCAG
1898	GTCTGTGCATAGAGCGTCAT
1899	GTGGTGTCACTGATACGTCA
1900	GGTTAGCACTAGATCGCACT
1901	CGGGATCTACAGCATCATAG
1902	CTGGATATACAGCACTCACA
1903	ATGCGGCTAACGCCCTAA
1904	TCGGGGCGCACTCTGTTATA
1905	TCGTGCTACTGCCACTGTAT
1906	TAGGACACTTCGCCACTATG
1907	TATGACAGTTCGCGCTACCG
1908	TCGGCGAGTTAGCCCTATGT
1909	TAGCCACCGTAGCTGATCGT
1910	GTAACCCGCTATCAGATCGA
1911	AGAGCGCAACACCACATTGT
1912	AGGCTAAGAACGCACACTCG
1913	GAGCCTAGACAGCTTCATAC
1914	GGCAGTTACGACTCGACAT
1915	GGCCTTAGACGACTCGCATA
1916	GGTCGATCAGCACTGCATAC
1917	GGAGAGTCAGCACAGTCCTA
1918	GTATAGGCAGCACGGCTCAT
1919	GCACGGCGAGCACTATCTTA
1920	TAACGTCCTGCACGATCTGT
1921	GGACGCCTAGCACATCTGAT

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1922	CGCTGCACATCACATGGATT
1923	GCACATCGAGCACATGCAGT
1924	GCACGACCAGCTCTTAGGAT
1925	CCCACCAGACAGATAGAGGT
1926	CCCGACGCACGAATAGATAG
1927	CCCACGACAGATACTGAGT
1928	CTTCGCGCAGCTACATAGAT
1929	CGCTCCGAAGCTGCGATAAT
1930	CGCCCGCGTAAGCAACAAATT
1931	CGACGCTCAAGGACTCATAA
1932	CGCACACTAAGGATCATTAC
1933	AGACACGCAAGAAGCTGGCT
1934	GCACGCATAGCAGAGGGATCT
1935	GCTACGTCACTGAGCAGGAT
1936	GTACATCTCGTGAGCAGAGC
1937	CTACACGACTTGAGACGAAG
1938	CTAAGTACGTGCAAGCAAGG
1939	GACACGTAGGACAGCTATGC
1940	GACATAGTAGACATCTCACG
1941	GACAGCGTAGACATCGTCAG
1942	GACTATCACGACATTAGCG
1943	GATCTACACGGCTACCGAGTGG
1944	GCTTACTACGGATAGATCAG
1945	GCGTATCTAATGGAGTAGCA
1946	GCGTATTACAGTGAGCGAC
1947	GCGTATATCGAATTGAGTGC
1948	GCGTTCACAGAGTCCACGAT
1949	CGCGTATCAAGGTACGACA
1950	GCTATTACAGTGTCAAGAGAC
1951	CGTCAGATAAGGTGAGTTAC
1952	CGTCTGTGAAGGTACGCTAA
1953	TATTAGCACTCGTCAGCAGC
1954	ATGTTATCAACGTCAGCGAC
1955	GGCATACTAGAGTCAGCGAT
1956	AGTGCAGATAACATACGAGCG
1957	CAGCACACAGAGTACAGCGT
1958	CGTAGCATAAGGTACAGCACC
1959	GTCATAGACGTTGATACCA
1960	GCTACGATAGATGAGGCCACG
1961	CGGAGTACACCAAGATCCAGA
1962	GAGCGTATAGGAGATCCAAC
1963	GACTGTAGAGAGACGATCCA
1964	CTAGTAGGAAGTGCGATCAA
1965	CGTAGAGGAAGTGATACTCA
1966	CGTATCGGAAGTGAGTATCA
1967	CTATGACGAAGTGAGAGTAC
1968	GTTCGTAGAGATGATCGTCA
1969	GTTCTCAGATAGTATGCAGC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
1970	AGTCTGTTAACGATATGCGCC
1971	AGCACGGAACACGTAAGCCCT
1972	ATCCAGAGAACGTGAGATCC
1973	GACAGTGTAAATATGAGGACC
1974	CATAGTAGAACATTGAGGCC
1975	TGAGATATACTATGCGGCCA
1976	ATGAACATACTATACCGCGC
1977	TTCTCTATATCGTCGCGGA
1978	TGAGTTTACGTGTATGGCAC
1979	ACGGCATCAAAGTTGCATAC
1980	ACGGGCTCAAAGTATGATAG
1981	AGGCGCTTAAATGTGGATAC
1982	CTGCCGTTAACGGCGGACAT
1983	CTGAGCCAATAGGCGCACTT
1984	TAGGCATGATGAGAGCTATC
1985	TGCCTATGAGGAGTATGAAC
1986	GGGCTATAATGAGCTTGACT
1987	TAGGCTTCATCAGCTATCAG
1988	ATTGCTTCAACGGGCATTAC
1989	TATGATCCATGCGACTCGGA
1990	TTGTATCCATCGGCCAGTG
1991	ATCAAGGCAACCGCCAGTAG
1992	TCTCAGCCATCCGTGATAGG
1993	TATCAGGCATCCGAGCATAG
1994	TTAAGCTCCTCAGTCCATGT
1995	TAAGGGCGATGAGCCTATCT
1996	TAAGGCCGAGGGAGCTTCAT
1997	TAAGGCAGTGGAGCCCTCTA
1998	TGGACAGGCTGCGCTCTATA
1999	CTGGAAGCCTGCGACCAAAT
2000	TCAATGCACTGAGCCCCGAGA
2001	GATTACACACTGACCCATGTA
2002	TAAATAGATTGGAGACGCGC
2003	GCATTAGAAGGTCTGGACTA
2004	ATTGGCATAACGTATTGCGC
2005	CAGGACTGAAGATCGAGTAC
2006	TAGAGTCAGTCAGCTCGA
2007	TTTATCGTAGCTGGCTGCC
2008	AGGATTAGAACCTACGCACC
2009	GCCGTGAGACCCTGTACTA
2010	GACGCTGAATCCTATTGACA
2011	CGCCTAAGGATCGTGAAGTA
2012	CGACGACGAAGCTGCATGAA
2013	ACTCGAATAACAGCATCTCG
2014	CCCGTAAGCATGGCACAGAT
2015	CAATACAAGATTACGGCCTC
2016	GATCAGAACATTGTTACGC
2017	TCTGTGTACTGCTGCCAAT
2018	ATATTGGAACGCAGCTCAC

PATENT
Attorney Docket No.:3502.1

Seq. Id	3' to 5' sequence
2019	TGCAGTATCGCAGCGGTTCTA
2020	GGGCAATGTTTATCCACAGA
2021	CTGACCGAATCCAGCAGAGA
2022	GATCGTGAATCCGCGCACTA
2023	GAGCCGTAATCCGAGCGATA
2024	TACTCCTGACGACTTAGGCA
2025	TGCTGTCACTCGCGTCTAT
2026	GTACTAGCATATCATCGACG
2027	TATCGCATAGATCAGTGAGC
2028	TACGGGCAGCCAGGTACTTT
2029	GTTCATCACGAGTGGCTAGA
2030	CATGTATCAAGATGGCTGAC
2031	GGTCGCGCATTCCAGCATA
2032	GCACATATCTAGCGACATCT
2033	ACGGGGCTAAAGGTAGATAC
2034	CACTGCCACAAGATGTAGA
2035	GGATTTACATGGCCTAGCAA
2036	CATGACACAGAACATCGACCGT
2037	AGAGGCATAAAATGAGTCTCC
2038	TGAGTAGTACGTTACGCCCTG
2039	CGATAGCGAAGGAGTCCACA
2040	ACACTCTGAAAAGACGCGACG
2041	GTCTTAATGTTGGGCAACG
2042	GTTATCGACTACGCTGTACT
2043	TCGTGAGACCGTCGTCAAGTA
2044	GACAGCGCAGTACAGGTAAT
2045	CGTACAGTAAGTATGATGCC
2046	TAGAGCATCTGACGCTATGA
2047	GTCACGATTAGTAGGCACG
2048	TCGTACCTGTATTCAAGCGCG
2049	TTAATCCGCTGTAGCCCCAA
2050	TTAATTGACTTCGCTCCAGC

In accordance with one aspect of the present invention, Tag genes were made by annealing and extending overlapping 23 to 192 oligonucleotides randomly chosen from the 20mer Tags or their complements from Seq. Id. Nos. 1-2050 assembled head to tail.

5 In accordance with the present invention, Tag genes preferably comprise 5 to 1000 randomly chosen 20mer Tags sequences from Seq. Id. Nos. 1-2050 or their complements. More preferably, Tag genes comprise 10 to 500 randomly chosen 20mer Tag sequences or their complements. Still more preferably, Tag genes comprise 20 to 200 randomly chosen 20mer Tags sequences or their complements.

10 In accordance with one aspect of the present invention, a Tag gene is incorporated into a vector having a first promoter sequences 5' to the Tag gene and a poly(A) tract 3'

to the Tag gene such that a sense polyA⁺ RNA is generated from transcription initiated from the first promoter; a second promoter sequence is located 3' to the Tag gene and on the opposite strand as the first promoter such that antisense RNA can be synthesized from the second promoter of the Tag gene. The choice of synthesizing sense or anti-sense Tag 5 gene sequence will depend on the ability of the transcript to bind to Tag probes placed on the nucleic acid array. In accordance with one aspect of the present invention, one or more endonuclease restriction sites may also be incorporated into the Tag gene constructs.

Preferably, in accordance with one aspect of the present invention, the first promoter is a T3 promoter. In a preferred embodiment the second promoter is a T7 10 promoter. Transcription can be performed either in vivo or in vitro, in accordance with the present invention. It is also preferred that the nucleic acid array is an Affymetrix GeneChip® Array.

In accordance with one aspect of the present invention, sense RNA containing the Tag gene sequences and the poly A tail synthesized from the first promoter can be spiked 15 into samples, containing for example mRNA, and subsequently hybridized (after labeling) to a nucleic acid array having appropriate Tag probes (i.e. probe sequences complementary to the Tag gene in question). With a nucleic acid array having the appropriate Tag probes, spiking can serve as a control for various aspects of the assay process such as variations in sample preparation, hybridization conditions, and array 20 quality. In accordance with one aspect of the present invention, anti-sense transcripts of the Tag genes can also be used as control spikes for a nucleic acid array having appropriate probes.

In accordance with another aspect of the present invention, the synthetic Tag gene DNA itself can also serve as spikes in applications involving genomics. For example, 25 Tag gene DNA could serve as a control for PCR, including long range PCR, fragment labeling, sample preparation and as quality control for the nucleic acid array.

The invention will be further illustrated, without limitation, by the following examples.

EXAMPLES

30

Example 1

Construction of cloned synthetic Tag Genes

In one embodiment, thirteen different Tag sequences of varying sizes were designed by randomly assigning 20mer GenFlex™ Tag sequences chosen from Seq. Id. Nos. 1-2050, set forth above, to groups, and orienting the sequences head to tail. 60mer oligonucleotides were designed to encode the desired genes as well as flanking sequence 5 used for assembling and cloning the genes. The gene assembly with unpurified 60mers can be accomplished by polymerase extension of the annealed oligonucleotides as depicted in Figure 1 and described in U.S. Patent Numbers 5,834,252, 5,928,905, and 6,368,861 and in Stemmer et al. (1995) Gene 164:49, each of which is incorporated here by reference.

10 Oligonucleotides, nucleotides, PCR buffer, and thermostable DNA polymerase are combined and subjected to temperature cycling. After about every 30 temperature cycles fresh buffer, nucleotides, and polymerase are added to replenish the reaction. Each oligonucleotide serves as both template and primer, and because of the oligonucleotide design, the extended products continuously grow in a spiral of 15 concatamers that can reach over 50 kb.

Following assembly of the oligonucleotides into concatamerized products, monomers for cloning are prepared by digestion with restriction enzymes either directly or following amplification by conventional PCR with flanking primers. The digested monomers are ligated to the plasmid vector pSPORT1 (Invitrogen Life Technologies, 20 Carlsbad, CA) (see Figure 2) and the constructions propagated in the *E. coli* strain DH5α. Subsequently two features useful in generating poly(A) sense RNA are added to each construct: a T3 RNA polymerase promoter upstream of the gene, and a poly(A) tract downstream of the gene. The 13 genes constructed are named TagA, TagB, TagC, TagD, TagE, TagF, TagG, TagH, TagI, TagJ, TagN, TagO, and TagQ. Two additional 25 constructs, called Big Tags, were made: TagI and TagN are combined to make TagIN, and TagI, TagN, TagO, and TagQ are combined to make TagIQ (see Figure 3). TagIQ is then altered by site-directed mutagenesis to add two restriction sites, EcoRI and XbaI, and the resulting construct is named TagIQ.EX. These additional restriction sites make construct TagIQ.EX useful for as a genotyping assay control (see below). Fluorescent 30 dideoxy DNA sequencing was used to determine the sequences of all the constructs, which are shown below. Organization of a synthetic Tag gene and flanking sequence in

PATENT
Attorney Docket No.:3502.1

the Tag gene clone is shown in Table 1 below. The actual sequences of synthetic Tag genes and flanking sequence in the Tag gene clones are shown in Table 2. The T3 and T7 RNA polymerase promoters and the poly(A) sites are underlined, and the Tag sequence is in CAPS. The DNA sequence shown is the sense (Tag) strand. The length of each Tag sequence is given.

The sizes of the Tag sequences in constructs TagA through TagQ ranged from 467 to 1000 bp, with a total of 9808 bp; the TagIN construct has 1944 bp, and TagIQ has 3849 bp of Tag sequence. There are a total of 78 base pairs different from the designed sequence, a rate of 8 bp per thousand; these changes are fairly evenly distributed and probably arose from polymerase errors made during the assembly and reamplification reactions. There are in addition 3 deletions of 12, 36, and 90 bp, the latter two of which are caused by the introduction of an unexpected restriction site that led to truncation of a gene during cloning. The synthetic Tag sequence in the plasmids does not appear to affect bacterial growth, and the plasmids are stable.

15

Table 1

Organization of a synthetic Tag gene and flanking sequence

SphI recognition site – T3 promoter – spacer – TAG GENE – spacer – (A)21 – PstI recognition site – spacer – T7 promoter

20

SphI	T3 →	TAG GENE →
gcatg <u>caattaaccct</u> cactaaagg <u>ggacgcgt</u> acgt <u>aagcttggatcct</u> tagaXXXXXX		
XXXXXXXXXXXXXX		
XXXXXXXXXXXXXX		
XXXXXXXXXXXXXX		
25	XXXXXXXXXXXXXX	XXXXXXXXXXXXXX
XXXXXXXXXXXXXX		
XXXXXXXXXXXXXX		
XXXXXXXXXXXXXX		
XXX <u>gtcgaccggaa</u> tccgaaaaaaa <u>aaaaactgcaggcgta</u> cc <u>agcttccctat</u> agt <u>gagtcgtatt</u>		
poly(A)		PstI
← T7		

30

Table 2

Determined sequences of the synthetic Tag genes

TagA 501bp

gcatgcaattaaccctcactaaaggggacgcgtacgtaagcttggatccttagaATTGATCGTAAC~~T~~CGGGT
GACCAATGACCATATACGGCGTATTAAGGTGTACCCTCGGTCTCAACTTGTC

GTATGGGACTTCAAGTACCTAGCTCGCGACGCTTAGATGACTTATCCA
TAGTCCTAAGTCGGCGCCGGTTAACGCCGCTATTAGCGTGTGGACTCTCTC
TAGGAGCGGCTTCGCACAAATTACTGCTCAATCCTAGATACGTTGCGCTCTT
GGTAAACGGCTCAGATCTTAGCACTCGTCAGTTCTACGATGGCAAGTCGTG
5 CCTCGTTCTCGTGTAGAATATCAGCTAATAGGGTCGGCTAACAGTGTATCCG
GTGGACAAGCACTGACACCGCATGACGTTCGTCAAGAGTCGCATAATCTCAG
AATCCGTACAGCCGCATGGGTTCACGGCTATAAAACAGCGTCATCAGCGTA
GGGTATCGCTTCGCGTGTCACTGACTTGGGCCACGTCTCTCTCGCACATTAG
GCTAGATTgtcgacccggaaattcggaaaaaaaaaaaaactgcagcgtaccagcttccctatagtgagt

10 cgtatta

TagB 467bp

gcatgcaatttaaccctactaaaggacgcgtacgtaagctggatcctctagaTTTAGTCGTTAGCCCCGAGC
TTAACTATTAGCGTCGGTGCTATATCCTAACCGCGTATGGAGTAGCCTCCCG
15 AGCATTGTCTACCTAACCGTCAAGAAAACCACATCGACTCACGGGATATTGACC
AAACTGCGGTGCGATTAACACTCGACTGCCCGTGAACAACGATGAGACCGGGC
TAAGGCACGTATCATATCCCTAATTGCTGAATAGTGCCCTACATATCCTAAT
ACAGGCGCGACGAACCTTATACTCGATGGAAGACAGTTAACCCATGCATAA
AGCTCTATACTCCGAGAACTAGCATCTAACGACTCGGCTCTAACGTTAAGTGC
20 TCGACCACAGATCGAAGGTCGGAACCTCCAGTGCCAAAGTACGATGGCTCACGT
CTTATTGGGCCGCCAGAGTTATGTTGAGTCCTCGATGTATGCGCTCGTTGC
CCTATTGTTGTCGGATCTCTAGTTgtcgacccggaaattcggaaaaaaaaaaaaac
tgcaggcgtaccagcttccctatagtgagtcgtatta

25 TagC 579bp

gcatgcaatttaaccctactaaaggacgcgtacgtaagctggatcctctagaTGTGATAATTGACGAGG
CGTTACATATTCTGAGAGGGGTGATTAAGTCTGCTTCGGCCTGGGATGGTCTG
TCTACGTGTGCGTAGTTCTGTCATAGCGTCGAGGATTCTGAACCTGTCCATAG
TATCCTGTAAGCGTCCAATGTACCTATATCGTGGACCCAAAGTCGATACGTCC
30 GATTAAGCGACGTTGGTCTAGGTAACGAATTATACCCCTGGGTTACGAATTAT
GGCTGTGCCTAACGAATCTGGGACGTGCCTAAGTAATCTGGTCCCGCAGTAA

GATGTACGGTGATCGTGGACGCTTGACCGACTTATGCGTCGCCTCCGAGTT
ATTGGATGGCGTCCGTCCTATTGGATACTATTCCGTGCGTGTGCGACACGTT
CCGAGCATATGCTAACAGTCCGTCACTATGTAACGCTTGACGTAGATTGCTA
TCAGGTTACGATGACTGCTAACGCCATTACGCGACATTCTGCAAAGTTACGTG
5 CATTCTCTCACGTTACGGCTGATTCTCTAGGCTTACGCGATGAGCTCTAGGT
TCCGGGTACTATCGAACGTGTCATTGGTACTgtcgacccgggaattccggaaaaaaa
aaaaaaactgcaggcgtaccagcttccctatagagtgcgtatta

TagD 519bp

10 gcatgcaattaaccctcactaaaggacgcgtacgtaaagctggatccctagaATAGACTAGCCTGCCGGTC
AATAACTGATGACGCGGAGTCAACCTGATAACCCATAGCGGAACAGTCTAAC
CTACGCGAGATACTGCTTACCGCACATAGGTAACTATTCTGACTAGCAGG
CCTTATTCCGGTGCTATGAGTATCTTACCTGGTAGGTATCTAATTCTGAG
TCGGGTACTACATTCTGCGATGGGTCCCTCGCTCGTCTATGAGGTCTCGTCT
15 TCGTGAGTGCAATGTATCCGAAGTCGTAGTGATAATATGGAACTAGGCGCGA
TTTGACGAACGTATGCCGCATATTGGAACGTCGCCTGGAAATTGCCACCTA
GATCGAAATTATCGGAACTCGTCGCTTATTACGAACCTTGGGAGCCGTTCC
AAAGCTGAGTCTGGTTCTTATTAGCGAGGAGCATTCTGTAATACTGAGCCG
AATATCGTAAGACATCCGCGAGCGACTGTAAACTAATCGGGAACTTATTAT
20 AGAGCCGGTCCAGGTCTTGAACGACGTgtcgacccgggaattccggaaaaaaa
aaaaaaactgcaggcgtaccagcttccctatagagtgcgtatta

TagE 578bp

gcatgcaattaaccctcactaaaggacgcgtacgtaaagctggatccctagaCCATCCGATTAAATACCGT
25 GGATTACGTTAAGTTACGGCGTTGACTTACTTATGCGAGGTTCGCTTACGTT
GCATAGCGGATCGCTAACCTCTATGCGTACAGCTTACCTACTATGCGTGCAA
GTTACCGAGCTGACGTCGCGTTAGACAGCTCATTCTGACGTTAGGACTATG
TCGAAGCGTTCGACCATGTCGTCTAGCTTAATACCTCTGCGTCTCAGTTAAT
AGTACGGGCAATCCGTTATGTAAGGGTGACCACTGCTTACGTTAGGACTATG
30 TACTTACACAGCAGGCGATCACGTTAGATCCACTGCGTCACGTTACCTACATG
ATCGATCCGATTACAGGCCGATCCATCGGATTACACACGAGTCCTGCACGTT

AGAACACTGGCTCGCGGTTAGATCAGCTTCCCTCGCTGGAGATCGAATACG
CCCAGCTWAGAGCGAATTGCAGCGCGTTCGACATAATTGCCGACGCTTCGAC
AGAATTGTAGGCGATTCTAGCCAATTGCACGTCGTATTAGGTAGTCACTCTCG
ACCTAGCGTAAGGATCCACGATCCTAGAGTCGGgtcgacccggaaattccggaaaaaaaaaaaaaaa

5 aaaaaaaaactgcaggcgtaccagcttccctatagtgagtcgtatta

TagF 660bp

gcatgcaattaaccctactaaaggacgcgtacgtaaagctggatcctagaACGCGGTCACTCAGCATAT
AGTCGTTGCACCTAGTTGATAGTCGCCGATTCTAGTTATGGCGTCGGATTAGA
10 CGGGATCACCCGGACATGGACGTTAAGTATCCGGCCTGGACGACAATAATT
GGCGGTGCCTCACAAATTCCGAGAACTCTGCATCAATTGGGCTAGTCGTAC
CTGAACGGGCATCAGTCGAATCTCTCGTGGCTAGTCTGTGACGTCCGTGGTT
CATCGTGTACCACCGGGTACATGAGTCAAAGTCCGAATAGCTCGCGAACG
TCCGTCTAGCTGGATCAACCTATCCCTGAGTCTATGCGTACCAATGGATGC
15 GGTCTCCCTCCGACTGAGTATCGTTCCCTCGGACTGGATCAGCTATCCACGAGC
TGTAATCCGGTACTAGGGTGTATGCCCTGTTACTAGGTTAGACAGTCGTGTAC
TCGGTTAGACTGATGGTCAACGACCTATACTGACAGCATACGAGACGTGACG
ACTGCATAGTGGTCGGTCTGACACATCTCCTCGTGGTAGTACGTCCCCGTA
TGGATAGGGCTCTAGCCCGCTATGGTAGTCAATGCCGTTGGTCTGTATGC
20 AGTGCGGTATGGTCCTCTCAGTCACGTATGGTCGCTGCTGCCGTATGTG
TTAGATGCgtcgacccggaaattccggaaaaaaaaaaaaaaaactgcaggcgtaccagcttccctatagtgag
tcgtatta

TagG 760bp

25 gcatgcaattaaccctactaaaggacgcgtacgtaaagctggatcctagaATGCAGCGTAGGTATCGAC
TCTCACTGTGGAGTCGTCTATGATGTCGTGGAGTCCTCTCAGAGTGCTGTAGG
TCCTCATAGTCGTGCTGTCTCTACACCGCTGCGTGAGTCTACATTCTGC
GAGTTGGTGCTCTACTGCAGGTGTCAGTGATCTCTCCCGCTGTGACATGAGTC
TAGCTTCGCGGTATGGTCTATCCCAGCGATGGATGAGACTACTCTGTACTAG
30 ATGGTCATGCCCTCGAATGAGTCGTCAGTCAGTGCCACAAATGTCTCGATAGTGC
CCGAATGTGTCTGTAATGCCCTCGAATGTGTAATCGTCAACTCGTATGTGAAGT

GCTAGGCTAGTATTGACATCTACGGCGGTATTGACGAACCTCCGGTATAT
GCTCTACATCTGCAGGAAATTGCCGACCATAATGGGTCTGCTGATACGCTA
GGGTGCTTGCTACTTAGATAGGCGTCTGGCCGCTATCGCGCGTGTCTCAG
AATATGCGCGACGTGTCTGGTATATGGCGACTGTGTCCGTATACGCATACT
5 GGTCCACATATAGACATACTCCACGACATGACAAAGCGTGCTCCTACATAG
CACGAGCGTCTCCTAAATAGATCCGGTCTTATCGCTGAATGTCTAGGATTCTC
GTCAATGATCTACGATCCTCGCTAAGTATTCAAGCCACCTCGTATAATGCGTAC
GCACCTGAGGATTATTACCTGACTCGGTATAATATGCCGTACCTAGTCT
Agtcgacccggaaattccggaaaaaaaaaaaaactgcaggcgtaaccagcttccctatagtgagtcgtatta

10

TagH 848bp

gcatgcaattaccctcactaaagggacgcgtacgtaagcttgatccttagaGATATGCGTTACGTGAGT
TGATAGCAGTTCACTACCTGGATATCTGATCCACTAGCTCGATCATGCTCACC
CATAGTTATCTGCATCACTCGTACTGAAATGCTCACATCGCAGGTAGAGCAG
15 CATCGTAGAGCGTCAAGCTGCATCCTAGCGTCATGAGTCATAGTACCTCATGC
TCACGTGATCTACCCTAGCTGACCGCTAACGTCAGGCAATGTGTCCGAACGGCAGCTAC
CCGACGGCATACTGTCGTCAACGTCAGGCAATGTGTCCGAACGGCAGCTAC
GTCGCCCTACGGAGTAATCGCGCCCTAGGTATAGTGCCGTGGTCAGGT
CATATGTCGCGGGTTCTGCACATATCAGGACGTATCGCTATCAGACGGACG
20 CTCTCGGACCTAACCGTAGCTCTCGGCAAGATCGTCCTCGTCTCGAATATAG
CGCCCTAGTGCTGCAAATGTCACCGCTATCTCGTAAGGGTCCGTCTGTTGAG
TTAGGCCTCCTCTCGTTGGATGTGAGCTGGTTGCTGGATGGTGCAGCTTAC
TTCGCGTACCTGCTTTGCATCAGTCCTCTGCATCTATAATCGCGTATCTCTC
TCTAGTAGACCATATAGCCATCTAACGCGCTCGATATTCCACCTAACGTGGCGCC
25 TATTGAACTAACGTGGCAGCCGAATGGACTATCGCTCCTCGATATGTACGGAT
AGGCCACGGCATGTACGAGCATAAGCCGAAC TGCAACGAGCATAACCGACACT
GATCTGAGAGTCGCTAAATCATCTCGGTCTTAGAGCTTATGCCATGTCT
GTCAACTGTACTGTCATCCTGTAACTGTAGCGTATGTGgtcgacccggaaattccggaaaa
aaaaaaaaaaaaactgcaggcgtaaccagcttccctatagtgagtcgtatta

30

TagI 940bp

gcatgcaattaaccctactaaagggacgcgtacgtaagctggatccctagaGATAAGCGTTCACAGCTCG
GCAATACCTGTGACGAGCTGCTCGCAAGATTACGCAGTGTGGCTATACTTG
ACAGTGATGGCGCTTACTTCAGATGTATGGGTGATACTTCGCTATATGGGTGG
TCACTTCTCTATGGCGCGTGACAATGTACTATGGAGCGGTCAATGTCAGTACG
5 GATCGCGTCGATCTAGGTGACTACGCACGCCCTGGAGTAAATCGARWGCTC
CGTGCGAATACGCGGTCATCGTGCGAATAACCGAGTCATCGTGAGTAGTTAT
GAACGTGTCGTGTTATGCAGCGGTATGTCGTGCTATAATGGCGTCTGCGTGC
TCATAAGGTTCCCTGTGCTAGACGTGTCCCATCGAGCTGCATAGCTA
TTCGAGTCACTTGGGACTTCGATAGCGTTGAAATAGTGTCGTAGGCTCTC
10 GGGCACGTTGYAAACTGTTGCCGCCAATTCAAGATTAGTCCAGCTCGTACTA
TCGAATACACCATCGTCGTATCGAATAATCGCACCTCGTAGGAGTCAGTGC
ACTCGTTGATAGTCAACCAAGCTCGTAGATAGTAGCCCAGATCCTACGAGA
TGAGCTACGTAACTACAGTGATAGCATATAGGGTACGCTAGAATGCCAGGTC
GTAGTCGAATTAGTCAGGTTGGATGTCTACTAGTTGACTTGGAGTTGCCATG
15 AAGACTCGTCCCTCGATATCAATACTCGTCCGCAGGTGAACACTGTAGTCGGT
GCTAGTGCCCCACTTCTCGGTATGTGTGCCTCAATTATCGAGTAGGATTCTAATC
AATCGTCGCGGCTACTAATYGTCTGCGGGGCTACTAATGGTTACGGGCCT
GACTAATCGTGTAGGTGTCTAATACATCGGATACGGGCGATATAGCTCG
ATACGGCAAATATAGCTCCGTCCGGTgtcgaccccggaattccggaaaaaaaaaaaaaaaac
20 tgcaggcgtaccagcttccctatagtgagtgcgtatta

TagJ 960bp

gcatgcaattaaccctactaaagggacgcgtacgtaagctggatccctagaCAATGATAGGCTAGTCTCG
CGCAGTACATGGTAGTTCAGCCAATAGATGCCTAGTACGCTGACGGCATTCA
25 GAGTACGCTGATCGGCTTATGACGTATGTGACGCAGCTCTTAGCGCAATGTAT
GTGCTGTTATCGAAGCCTATGGCTGAGTATGTAACGCTATGGCGTGCTAGTCG
TCTCATATACGTCTGATGACCTCGTATCATGTTATAGGGCTCGAACTGTCGA
TGATGGTCACGACTCTGCGATAGCTGGTGACTCTAGTCAGTACTATGTGGAGGT
30 CTCCGCCCTAGTGCTGATGTATGCCCTAGTGCTCAGTGGAGTCTCTTTAG
CATAGTGTCGCTCATACATTAGTGGACGGCTATTAGTATCATCGGGCT

GATATAGGTCGTGGCTCCCTGTATATCGAGGTGAGTCTATCTGGATCAACGTC
GCACTATGATGTGCAAAGTGTGTCGTCCATGTATAGACAGTGCACGTATCATAT
AGGATGCGCGATCTCATAACAGCGTTACGGTCGCTCGTACTGTATAAGGAT
GCTCTGTGAACGTGTCATCGGTCCGATCAATTAGTCTAGTGTGCGTTATTAGA
5 TCGAGTGAGTACATGATTGTCAGTGTGGATCAATTACAGTTAGGCCGCTGA
CACATTAGTAACGTCGGCAAGCACTTAGTCGTGTCGAAGCCAGTGTGTCGT
GTCTTAGACGACTGTGTGTGATTCTCGAGCGATTATACATCCGTGACAGCGT
TTATAGTGTGCTGACAGACTGGTTGGTTATCCAATGATCGACCTGGAGTCTAA
TATCTGACCACGCCTGTAATCGTATGACACCGCCTGACACGACTGAATCCA
10 GCTTAAGAGCCCTGCAACCGATATACAGGCCTGCTACCGATATgtcgacccggg
aattccggaaaaaaaaaaaaaaaactgcaggcgtaccagttccctatagtgagtgcgtatta

TagN 998bp

gcatgcaattaaccctactaaaggacgcgtacgtaagctggatcctctagaAGATCGCAGGGTATCGCAT
15 CGACAGACCTGGTATCGTCGTGACGAACGTGCTACTCGCTTATCGGCCTGCT
ACATCAGTGGCGATGTCGTAACCCTAGCCGATCTTACTTACGAGGCTA
CTATTCGATCAAACTCGCCTATCTGGTAATAACTGCGGTGATCTGGTAGGCCAC
TACGTGCGCCTGGTAGCAAATACGGCGAGCTGGTATCACTATCGGCTCAGTG
GTCCGACATAGTCCCCAGTGGTTCGCTAACTGCCGCTGGTCCAATATAAC
20 ACGCAGTCGTCAATCATCGAGCCGATGGTCAGCAATAGCGCCTGTGGTGAC
ACTATGCCACCTCTGGTCTAATATAGCGCCCTGTGGTCGTATAATCGAGCGCG
TAATCGTATATYCGACTGTAGGTGCGTAACTCGCGACTAGGTGGCTCTAAC
GCGTTGGTTGCGCTCACAGTGTCTGGTTCGATACCCGGATGGGTTCCGT
AATCTTGGCATCGAGGTTCGTACATGTCACGCGGCTCGTCATTCTCGGTG
25 GTGCTCAGTACATCCAGTGGTGAGTCGCTACATCACACGGTGATCCGGCTAA
ACCTCTGGGCATCCGTATTAAGCGACATTCTACGACTTATCAGCACGTCTA
CGGTATAACAAGGCGTGCTACGGCTAACGACGCTGGTAGCAGTCTATCAGA
TCGCTAGTACGAGTTAGAGATGCTTAGTACGCCCTCGAATCTATGATGCTCGT
GCTCACGCGATGCACTCGGATTATGGCACATGCACTCGCGTAATGACGCTGC
30 ATCGCTCAGTATGATCCATGAGCGCCGTGAATGACGCATGAGCCTCGTATCG
AGTGCATGAGCTGTCTTCACATGATACATCGCTCTAAATCATCATGCGACAG

TCTCGACAGCAGCTCAGCATCTATGCATCATGTGCCTCACTAGGACATCATGC
TCGACTCTGAGACACTGATCGAGCATTAAAGACgtcgacccggaatccggaaaaaaaaaaaaaaa
aaaaaaaaactgcaggcgtaccagcttccctatagtgagtcgtatta

5 TagO 998bp

gcatgcaattaaccctcactaaaggagacgcgtacgtaagcttggatcctctagaCTCTGTGTCATGATCGTGA
GTTGTCGAGTGTCTGTACCAATACTCTGGTGAGCTATATAAGCCGCTGTT
CGTAAATCAACGGCATGATCCCTATGACCGCGTCATGCTAACTGATAACACGC
TGCTCGAACAGTGATACGCACACTGATAACTATGCGCAGACGCTTGAAACGA
10 TGTGACATCGCTTAGAGTATGAGCCGCAATGCACGACTGATAACTCGATAT
GAGCAGCAGTCGGTATGATTGCAATGCTTCAGTATGTATCCTGATCGTGC
GTGCGATGTCTGATAATACGCTCGCATGATATGTATTGCGCTCAGATGCTGGA
GATATGCCATGCGTGTGCAGTATGCCATGTATGCTGATATGTCGCGATCTA
TGTGGTGACTATGAGATCCATGTGATGACGTTGCAGTCTGTGACCTTATCG
15 ACGCGCATGTGAGCCTATAGACAGCGATGTGAGCACTCTCATCTGCGGATCA
GTCTATCCTCGCTGATGCTCAGTGATACACCGCTGACTGATGACGTAGTGAGCATCC
TGTGCTCGCATATACCGCTGCTGCACTGATATGAGCCAGTGCTGCTGCTCTCT
ACGGAGTGTGCTCGGCTATAACAGCGAGTGCTACGCCAACTGGCTGTCTA
GCACTGTAGCTGGTGCATGTACTCGACTGCCGCTGCATCTACTATAAGACTCT
20 GACATTAGCGTATAGGCTGATACATTAGCTCGGATGCTATCAGCTTGCGCCTA
TTATATGCCTGACGCGGGATCTATCAGAACGACTCGGTAGCTCATATAACTGG
ATCACGGTGCCACAACATGCTACACGAGGTCTCAGACTCTATCCCGTGGACT
CAACGTGCATCTGCTATGCTGAGCGCGTATCTGTTACCTGTCCGATGCTCTG
ATCTACACTGCCGTATCGTTATATGACGAGACTGTGCGCTCATAGCCGACAC
25 TGTGCTCGATAAGACCACGCTGTGCGGATATAgtcgacccggaa
aaaaaaaaactgcaggcgtaccagcttccctatagtgagtcgtatta

TagQ 1000bp

gcatgcaattaaccctcactaaaggagacgcgtacgtaagcttggatcctctagaCTAGTGCATCCTCGTGGCA
30 TCATGCGTCTCCTCAGTAGGTCTGCGACTGATCCTAGTGCAATGCGTCTGAGC
CTGAGCTACAGCGATATAGCCTGGATTGTGAGCGTATTGCTGTCAGAACCTC

AGCTCATCATGTATGATGCTGTACCATCCTGCGATACTGAAGATGCACCGCTA
TAATGCGAGGCTCTCCGCTAAAGTGGAAAGCTGCTCGTTCTCAATGCGAGCGA
GTCGAATCCAATGCCGTAGCTGCGATAACGATGCCGCTGACTCTACGGTAAT
GCACGATCCTCTACATTGATAGCAGATAGTCTAACGGGATAGCATAGGTGCA
5 AGGCTCCTAGCATGTAGTCACAGGTGCTCAGATATAGTCATCGCTGCAATCA
GCTAGTCATCTTGTCAAGGATGCTACTCACTGCGTGAGAAGATTGCGACAGACT
TCAGAGGATGGCACTCGTCATTAGAGTGATGTTCTCGGATCGACACTGCTGGT
CTGCGAATGACTCGCATTCACTAACATGGAGCATCGTTATCTAAAGGGGATG
CACGTTATCGTCGAGTGGCCGTATGTCTATGCAGTGC GGCTATGTCTCATT
10 AGCGAGTCGTATGTATCATGTCGGGCTCGAACATGTTGCACACGTCTGCGTAATG
GTGACCGCTAGTCCCASATGGTGCTTCGTAGCCACAAATGTCGTTAGGTAGAC
CGACGTTATCGCGCTATACCCGATGTCAACCGAGTTAGACCGTATCGTCCCC
AGTGCCCTAACGATGGTCAAGCGTGCTCCTACGTTAGTATCAGTTCCCTATTG
GTACGTCTGGCGTACTTCTGAAACGTGATGGCGGCTGGTTACCGTATATGG
15 GCTCGGTTGACCTCTATTGGCGTTGTTGACCCGAATTGGTATCCTCGTCGT
TAAATGGCGAACGTCGTCTGCTATAGGCAAACGTCTGTCGGTCATGGCAAAT
GTTACTCGTGTGCAAGAAATTACTCGCTGTCgtcgacccggaaattccggaaaaaaaaaaaa
aaaaaaaaactgcaggcgtaccagcttccctatagtgagtcgtatta

20 TagIN 1944bp
gcatgcaattaaccctcactaaaggacgcgtacgttaagcttGATAAGCGTTCACAGCTCGGCAATAC
CTGTGACGAGCTGCTCGCAAGATTACGCAGTGTGGCTATACTGACAGTGAT
GGCGCTTACTTCAGATGTATGGGTGATACTCGCTATATGGGTGGTCACTTCT
CTATGGCGCGTACAATGTACTATGGAGCGGTCAATGTCAGTACGGATCGCG
25 TCGATCTAGGTGACTACGCACGCCCTGGAGTAAATCGAGTGCTCCGTGCGA
AATACGCGGTATCGTGCATAACCGAGTCATCGTGAGTAGTATGAAACGTG
TCGTGTTATGCAGCGGTATGTCGTGCTATAATGGCGTCTGTCGTGCTCATAAG
GTT CCTCTGATGTGCTAGACGTGTCCATCGAGCTGCATAGCTATACTCGAGT
CACTGGGATACTCGATAGCGTTGAAATAGTGTGCTAGGCTCTGGGCACG
30 TTGTTAAACTGTTGCCGCCAATTCAAGATTAGTCCAGCTCGTACTATCGAATA
CACCATCGTGTATCGAATAATCGCACCTCGTAGGAGTCAGTTGCCACTCGTT

GATAGTCAACCAAGCTCGTTAGATAGTAGCCCAGATCCTACGAGATGAGCTA
CGTAACTACAGTGATAGCATATAGGGTACGCTAGAACATGCCAGGTCGTAGTCG
AATTAGTCAGGTTGGATGTCTACTAGTTGACTTGGAGTATGCCATGAAGACTC
GTCCCTCGATATCAATACTCGTCCGCAGGTGAACACTGTAGTCGGTGCTAGTG
5 CCCACTTCTCGGTATGTGTCCTCAATTATCGAGTAGGATTCTAATCAATCGTC
GCGGCTCACTAATTGTCTGCGGTGGCTACTAATGGTTACGGTGCGCTGACTAAT
CGTGTAGGTGTCTAATAACATCGTGATACGGCGATATAATGCTCGATACGGC
AAATATAGCTCCGTCCGGTGGATCCAGATCGCAGGGTATCGCATCGACAGAC
CTGGTATCGTCGTGACGAACGTGCTACTCGCTTATCGGCCTGCTACATCAGT
10 GGCGATGTTCGTAACCCTAGCCGATCTTCTACTTACGAGGCTACTATTGCA
TCAAACCTCGCCTATCTGGTAATAACTCGCGTGATCTGGTAGGCCACTACGTGCG
CCTGGTAGCAAATACGGCGAGCTGGTATCACTATCGGCTCAGTGGTCCGACA
TAGTGCCAGTGGTCGCATAACTGCCGCTGGGTCCAATATAACACGCAGTC
GTCAATCATACGAGCCGATGGTCAGCAATAGCGCCTGTGGTGACACTATGCC
15 ACCTCTGGTCTAATATAGGCCCTGTGGTCGTATAATCGAGCGCGTAATCGTA
TATCCGACTGTAGGTGCGTAACTCGCGACTAGGTGGCTCTAATCTGCGTTGGT
TGTGCGCTCACAGTGTCTGGTGTTCGATACCCGGATCGGGTCCGTAATCTTGG
CATCGAGGTTCGTACATGTCACGCGGTCTCGTTATTCTCGGTGGTGCTCAG
TACATCCAGTGGTGAGTCGCTACATCACACGGTATCCGGCTAACCTCTGG
20 GCATCCGTATTAAGCGACATTCTACGACTTATCAGCACGTCTACGGTATAA
CAAGGGCGTCTACGGTCTAACGACGCGTGGTAGCAGTCTATCAGATCGCTAGT
ACGAGTTAGAGATGCTTAGTACGCCCTCGAATCTATGATGCTCGTGCTCACGC
GATGCACTCGGATTATGGCACATGCACTCGCGTAATGACGCTGCATCGCTCA
GTATGATCCATGAGCGCCGTGAATGACGATGAGCCTCGTATCGAGTGCATG
25 AGCTGTCTTCACATGATAACATCGCTCTAAATCATCATGCGACAGTCTCGACA
GCAGCTCAGCATCTATGCATCATGTGCCTCACTAGGACATCATGCTCGACTCT
GAGACACTGATCGAGCATTAAAGACtctagagcggccgcccactagttagtcgtcgacccccggaaatt
ccggaaaaaaaaaaaaaaaactgcaggcgtaccagcttccctatagttagtcgttatta

30 TagIQ (INOQ) 3849bp

PATENT
Attorney Docket No.:3502.1

gcatgcattaaaccctactaaaggacgcgtacgttaGATAAGCGTCACAGCTCGGCAATAC
CTGTGACGAGCTGCTCGCAAGATTACGCAGTGTGGCTATACTGACAGTGAT
GGCGCTTAACCTCAGATGTATGGGTGATACTTCGCTATATGGGTGGTCACTTCT
CTATGGCGCGTGACAATGTACTATGGAGCGGTCAATGTCAGTACGGATCGCG
5 TCGATCTAGGTGACTACGCACGCCCTGGAGTAAATCGAGTGCTCCGTGCGA
AATACGCAGTCATCGTGCATAACCGAGTCATCGTAGTGTAGTGAACGTG
TCGTGTTATGCAGCGGTATGTCGTGCTATAATGGCGTCTGTCGTGCTCATAG
GTTCCCTCTGATGTGCTAGACGTGTCCATCGAGCTGCATAGCTATACTTCGAGT
CACTTGGGATACTCGATAGCGTTGTGAATAGTGTGCTAGGCTCTGGGCACG
10 TTGTTAAACTGTTGCCGCCAATTCAAGATTAGTCCAGCTCGTACTATCGAATA
CACCATCGTCGTATCGAATAATCGCACCTCGTAGGAGTCAGTGCCACTCGTT
GATAGTCACCAAGCTCGTTAGATAGTAGCCCAGATCCTACGAGATGAGCTA
CGTAACACTACAGTGATAGCATATAGGGTACGCTAGAACATGCCAGGTCGTAGTCG
AATTAGTCAGGTTGGATGTCTACTAGTTGACTTGGAGTATGCCATGAAGACTC
15 GTCCCTCGATATCAATACTCGCCGCAGGTGAACACTGTAGTCGGTGCTAGTG
CCCACCTCTCGGTATGTGTCCTCAATTATCGAGTAGGATTCTAATCAATCGTC
GCGGCTCACTAATTGTCCTGCGGTGGCTACTAATGGTTACGGTGCCTGACTAAT
CGTGTAGGTGTCTAACATCGTACGGCGATATAATGCTCGATACGGC
AAATATAGCTCCGTCCGGTGGATCCAGATCGCAGGGTATCGCATCGACAGAC
20 CTGGTATCGTCGTACGAACGTGCTACTCGCTTATCGGCGCTGCTACATCGT
GGCGATGTTCGTAACCCTAGCCGATCTTCTACTTACGAGGCTACTATTGCA
TCAAACCTCGCCTATCTGGTAATAACTCGGGTGATCTGGTAGGCCACTACGTGCG
CCTGGTAGCAAATACGGCGAGCTGGTATCACTATCGGCTCAGTGGTCCGACA
TAGTGCCAGTGGTCGCATAACTGCCGCTGGTCCAATATAACACCGCAGTC
25 GTCAATCATAcgagccgatggtcagcaatAGCGCCTGTGGTGAACACTATGCC
ACCTCTGGTCTAATATAGCGCCCTGTGGTCGTATAATCGAGCGCGTAATCGTA
TATCCGACTGTAGGTGCGTAACTCGCGACTAGGTGGCTCTAATCTCGGTTGGT
TGTGCTCACAGTGTCTGGTGTTCGATACCCGGATCGGGTCCGTAATCTTGG
CATCGAGGTTTCGTACATGTCACGCCGTCTCGTTCAATTCTCGGTGGTGCAG
30 TACATCCAGTGGTGAGTCGCTACATCACACCGGTGATCCGGCTAAACCTCTGG
GCATCCGTATTAAGCGACATTCCCTACGACTTATCAGCACGTCCTACGGTATAA

PATENT
Attorney Docket No.:3502.1

CAAGGCGTGCTACGGTCTAACGACGCTGGTAGCAGTCTATCAGATCGCTAGT
ACGAGTTAGAGATGCTTAGTACGCCTTCGAATCTATGATGCTCGTGCTCACGC
GATGCACTCGGATTATGGCACATGCACTCGCGTAATGACGCTGCATCGCTCA
GTATGATCCATGAGCGCCGTGAATGACGCATGAGCCTCGTATCGAGTGCATG
5 AGCTGTCTTCACATGATAACATCGCTCTAAATCATCATGCGACAGTCTCGACA
GCAGCTCAGCATCTATGCATCATGTGCCTCACTAGGACATCATGCTCGACTCT
GAGACACTGATCGAGCATTAAAGACTCTAGACTCTGTGCCATGATCGTGAGTT
GTCGCAGTGTCTGTACCAAACTCTGGTGGAGCTATATAAGCCGCTGTTGCGT
AAATCAACGGCATGATCCCTATGACCGCGTCATGCTAACTGATAACACGCTGC
10 TCGAACAGTGATACGCACACTGATAACTATGCGCAGACGCTTGAAACGATGT
GACATCGCTCTAGAGTATGAGCCGAATGCACGACTGATACTCGATATGAG
CAGCAGTCGGCTATGATTGCAATGCTGCAGTATGTATCCTGATCGTGCCTG
CGATGTCTGATAATACGCTCGCATGATATGTATTGCGCTCAGATGCTGGAGAT
ATGCCATGCGTGTGTCAGTATGCCATGTATGCTGATATGTCGCGATCTATGT
15 GGTGACTATGAGATCCATGTGATGACGTTGCAGTCTCTGTGACCTTATCGACG
CGCATGTGAGCCTATAGACAGCGATGTGAGGCACTCTCATCTGCGGATCAGTC
TATCCTCGCTGATGCTCAGTGATAACACGCTGATGCACGTAGTGAGGATCCTGT
GCTCGCATATACCGCTGCTGCACTGATATGAGCCAGTGCTGCTGCTCTACG
GAGTGTGCTCGGCTATAACAGCGAGTGCTACGCCCTAAACTGGCTGTCTAGCA
20 CTGTAGCTGGTGCATGTACTCGACTGCCGCTGCATCTACTATAAGACTCTGAC
ATTAGCGTATAGGCTGATAACATTAGCTCGGATGCTATCAGCTTGCCTATT
TATGCCTGACGCCGGATCTATCAGAACGACTCGGTAGCTCATATACTGGATC
ACGGTGCCACAACATGCTACACGAGGTCTCAGACTCTATCCCGTGGACTCAA
CGTGCATCTGCTATGCTGAGCGCGTATCTGTGACCTGTCCGATGCTCTGATC
25 TACACTGCCGTGATCGTTATATGACGAGACTGTGCCTCATAGCCGACACTGT
GCTCGATAAGACCACGCTGTGCGGATATAGTCGACCTAGTGCATCCTCGTGG
CATCATGCGTCTCCTCAGTAGGTCTGCGACTGATCCTAGTGCATGCGTCTGA
GCCTGAGCTACAGCGATATAGCCTGGATTGTGAGCGTATTGCTGTCAAGAAC
CTCAGCTCATGTATGATGCTGTACCATCCTGCGATACTGAAGATGCACCG
30 CTATAATGCGAGGCTCTCCGCTAAAGTGGAAAGCTGCTCGTTCTCAATGCGAG
CGAGTCGAATCCAATGCCGTAGCTGCGATAACGATGCCGCTGACTCTACGGT

AATGCACGATCCTCTACATTGATAGCAGATAGTCTAACGGGATAGCATAGGT
GCAAGGCTCCTAGCATGTAGTCACAGGTGCTCAGATATAGTCATCGCTGCAA
TCAGCTAGTCATCTTGTCAAGGATGCTACTCACTGCGTGCAGAAGATTGACAG
ACTTCAGAGGATGGCACTCGTCATTAGAGTGATGTTCTCGGATCGACACTGCT
5 GGTCTGCGAATGACTCGCATTCACTAACATGGAGCATCGTTATCTAAAGGGG
ATGCACGTTATCGTCAGTGGCCGTATGTCTATGCAGTGCGGCCTATGTCTC
ATTAGCGAGTCGTATGTATCATGTCGGGCTCGAATGTTGCACACGTCTGCGTA
ATGGTGACCGCTAGTCCCACATGGTCTCGTAGGCCACAAATGTCGTTAGGTA
GACCGACGTTATCGCGCTAACCGATGTCAACGCGAGTTAGACCGTATCGT
10 CCCCAGTGCCCTAACGATGGTCAAGCGTGCTCCTACGTTAGTATCAGTTCCCT
ATTGGTACGTCTGGCGTACTTCTGAAACGTGATGGGCGGCTGGTTACCCGTAT
ATGGGCTCGGTTGACCTCTATTGGCGTTGACCCgaattccggaaaaaaaaaaaaaa
aaaaactgcaggcgtaccagcttccctatagtgagtcgtatta

15 TagIQ.EX (3849 bp; the 2 bp differences from TagIQ are underlined and in bold)
gcatgcaatttaaccctcactaaaggacgcgtacgtagcttGATAAGCGTTCACAGCTCGGCAATAC
CTGTGACGAGCTGCTCGCAAGATTACGCAGTGTGGCTATACTGACAGTGAT
GGCGCTTACTTCAGATGTATGGGTGATACTTCGCTATATGGGTGGTCACTTCT
CTATGGCGCGTGACAAATGTATATGGAGCGGTCAATGTCAGTACGGATCGCG
20 TCGATCTAGGTGACTACGCACGCCTCTGGAGTAAATCGAGTGCTCCGTGCGA
AATACGCGGTCATCGTGCAATAACCGAGTCATCGTGAGTAGTATGAACGTG
TCGTGTTATGCAGCGGTATGTCGTGCTATAATGGCGTCTGCGTGCTATAAG
GTTCCCTCTGATGTGCTAGACGTGTCCATCGAGCTGCAAGCTATAACTCGAGT
CACTGGGACTTCGATAGCGTTGAATAGTGTCGTAGGCTCTGGGACG
25 TTGTTAAACTGTTGCCGCCAATTCAAGATTAGTCCAGCTCGTACTATCGAATA
CACCATCGTCGTTATCGAATAATCGCACCTCGTAGGAGTCAGTGCCACTCGTT
GATAGTCACCAAGCTCGTTAGATAGTAGCCCAGATCCTACGAGATGAGCTA
CGTAACTACAGTGATAGCATATAGGGTACGCTAGAATGCCAGGTCGTAGTCG
AATTAGTCAGGTTGGATGTCTACTAGTTGACTGGAGTTATGCCATGAAGACTC
30 GTCCCTCGATATCAATAACTCGTCCGCAGGTGAACACTGTAGTCGGTGCTAGT
CCCACTTCTCGGTATGTGCTCAATTATCGAGTAGGATTCTAATCAATCGTC

PATENT
Attorney Docket No.:3502.1

GC GGCTCACTAATTGTCTCGGGTGGCTACTAATGGTTACGGTGCCTGACTAAT
CGTGTAGGTGTCTAACATACATCGTACGGCGATAATGCTCGATACGGC
AAATATAGCTCCGTCCGGTGGATCCAGATCGCAGGGTATCGCATCGACAGAC
CTGGTATCGTCGTGACGAACGTGCTACTCGCTTATCGGGCCTGCTACATCAGT
5 GGCGATGTTCGTAACCCTAGCCGATCTTCTTACTTACGAGGCTACTATTGCA
TCAAACTCGCCTATCTGGTAATAACTGCGGTGATCTGGTAGGCCACTACGTGCG
CCTGGTAGCAAATACGGCGAGCTGGTATCACTATCGGCTCAGTGGTCCGACA
TAGTGCCCAGTGGTCGCATAACTGCCGCTGGGTCCAATATAAACACGCAGTC
GTCAATCATACGAGCCGATGGTCAGCAATAGGCCCTGTGGTGACACTATGCC
10 ACCTCTGGTCTAATATAGGCCCTGTGGTCGTATAATCGAGCGCGTAATCGTA
TATCCGACTGTAGGTGCGTAACTCGCGACTAGGTGGCTCTAATCTGCCTGGT
TGTCGCTCACAGTGTCTGGTGTTCGATACCCGGATCGGGTCCGTAATCTTGG
CATCGAGGTTCGTACATGTCACGCCGCTCGTTATTCTCGGTGGTGCTCAG
TACATCCAGTGGTGAGTCGCTACATCACACGGTATCCGGCTAACACCTCTGG
15 GCATCCGTATTAAGCGACATTCCCTACGACTTATCAGCACGTCCACGGTATAA
CAAGGCGTGCTACGGTCTAACGACGCTGGTAGCAGTCTATCAGATCGCTAGT
ACGAGTTAGAGATGCTTAGTACGCCCTCGAATCTATGATGCTCGTGCTCACGC
GATGCACTCGGATTATGGCACATGCACTCGCGTAATGACGCTGCATCGCTCA
GTATGATCCATGAGCGCCGTGAATGACGCATGAGCCTCGTATCGAGTGATG
20 AGCTGTCTTCACATGATACTCGCTCTAAATCATCATGCGACAGTCTCGACA
GCAGCTCAGCATCTATGCATCATGTGCCTCACTAGGACATCATGCTCGACTCT
GAGACACTGATCGAGCATTAAAGACTCTAGACTCTGTGCCATGATCGTGAGTT
GTCGCAGTGTCTGTACCAAACTCTGGTGGAGCTATATAAGCCGCTGTTGCGT
AAATCAACGGCATGATCCCTATGACCGCGTCATGCTAACTGATAACACGCTGC
25 TCGAACAGTGATACGCACACTGATAACTATGCGCAGACGCTTGAAACGATGT
GACATCGCTCTAGAGTATGAGCCGAATGCACGACTGATACTCGATATGAG
CAGCAGTCGGCTATGATTGCAATGCTTGCAGTATGTATCCTGATCGTGCCTG
CGATGTCTGATAATACGCTCGCATGATATGTATTGCGCTCAGATGCTGGAGAT
ATGCCATGCGTGCTGTCAGTATGCCATGTATGCTGATATGTCGCGATCTATGT
30 GGTGACTATGAGATCCATGTGATGACGTTGCAGTCTCTGTGACCTTATCGACG
CGCATGTGAGCCTATAGACAGCGATGTGAGGACTCTCATCTGCGGATCAGTC

TATCCTCGCTGATGCTCAGTGATACACGCTGATGCACGTAGTGAGCATCCTGT
GCTCGCATATACCGCTGCTGCACTGATATGAGCCAGTGCTGCTGCTCTACG
GAGTGTGCTCGGCTATAAACAGCGAGTGCTACGCCCTAAACTGGCTGTCTAGAA
CTGTAGCTGGTGCATGTACTCGACTGCCGCTGCATCTACTATAAGACTCTGAC
5 ATTAGCGTATAAGGCTGATACATTAGCTCGGATGCTATCAGCTTGCACCTATT
TATGCCTGACGCCGGATCTATCAGAACGACTCGGTAGCTCATATACTGGATC
ACGGTGCCACAACATGCTACACGAGGTCTCAGACTCTATCCCCTGGACTCAA
CGTGCATCTGCTATGCTGAGCGCGTATCTGTGTACCTGTCCGATGCTCTGATC
TACACTGCCGTGATCGTTATATGACGAGACTGTGCCTCATAGCCGACACTGT
10 GCTCGATAAGACCACGCTGTGCGGATATAGTCGACCTAGTGCATCCTCGTGG
CATCATGCGTCTCCTCAGTAGGTCTGCGACTGATCCTAGTGCATGCGTCTGA
GCCTGAGCTACAGCGATATAGCCTGGATTGTGAGCGTATTCGCTGTCAGAAC
CTCAGCTCATCATGTATGATGCTGTACCATCCTGCGATACTGAAGATGCAACCG
CTATAATGCGAGGCTCTCCGCTAAAGTGGAAAGCTGCTCGTTCTCAATGCGAG
15 CGAGTCGAATTCAATGCCGTAGCTGCGATAACGATGCCGCTGACTCTACGGT
AATGCACGATCCTCTACATTGATAGCAGATAGTCTAACGGGATAGCATAGGT
GCAAGGCTCCTAGCATGTAGTCACAGGTGCTCAGATATAGTCATCGCTGCAA
TCAGCTAGTCATCTGTCAGGATGCTACTCACTGCGTGCAGAAGATTGCAACG
ACTTCAGAGGATGGCACTCGTCATTAGAGTGATGTTCTCGGATCGACACTGCT
20 GGTCTGCGAATGACTCGCATTCACTAACATGGAGCATCGTTATCTAAAGGGG
ATGCACGTTATCGTCAGTGGCCGTATGTCTATGCAGTGCAGGCTATGTCTC
ATTAGCGAGTCGTATGTATCATGTCGGGCTCGAATGTTGCACACGTCTGCGTA
ATGGTGACCGCTAGTCCCACATGGTGCTCGTAGCCACAAATGTCGTTAGGTA
GACCGACGTTATCGCGCTAACCGATGTCAACGCGAGTTAGACCGTATCGT
25 CCCCAGTGCCCTAACGATGGTCAAGCGTGCTCCTACGTTAGTATCAGTTCCCT
ATTGGTACGTCTGGCGTACTTCTGAAACGTGATGGGCGGCTGGTTACCGTAT
ATGGGCTCGGTTGACCTCTATTGGGCGTTGTGACCCgaattccggaaaaaaaaaaaaaaa
aaaaactgcaggcgtaccagcttccctatagtgagtcgtatta

Example 2

30 Testing the Tag genes

The synthetic genes were tested in a number of ways. 1) An oligonucleotide array was designed and made to probe many positions along the length of each Tag gene. Hybridizing RNA made from the Tag genes clearly shows the expected uniform hybridization both across each gene and between the 13 genes, a uniformity that is 5 lacking from naturally occurring genes. This uniformity is expected because the Tags are originally designed for such characteristic.

In addition, the average signal from the Tag genes is higher than the signal from transcripts from human genes spiked in at equivalent concentrations. Data from these experiments are used to help develop new probe selection rules and new gene expression 10 algorithms. 2) Probe sets for the Tag genes are included on the Affymetrix HG_U133 human gene expression arrays (Affymetrix, Inc., Santa Clara, CA). Tag gene RNA spikes are used to help validate the array design. Again the Tag gene transcripts demonstrate consistent hybridization and high signal intensity. 3) The plasmid containing the longest Tag gene construct, pTagIQ, contains 3849 bp of Tag sequence 15 (Tags I, N, O, and most of Q). This plasmid may be used for genotyping applications. For variant detection (resequencing) assays, the plasmid may be used as a template to test long-range PCR (Figure 4) and the PCR product from this plasmid can be labeled and hybridized to test other steps of the assay. For microarray SNP analysis, TagIQ.EX (Figure 5) can serve as an assay control. One sample preparation method calls for 20 digesting genomic DNA with a restriction endonuclease and then preferentially amplifying fragments of a particular size range, 400-800 bp, for example. TagIQ.EX can be added to the test DNA, and then digested with XbaI or EcoRI, amplified, labeled, and hybridized along with the test DNA. The results of the Tag sequence can be used to assess system performance. 4) RNA spikes from Tag genes have been used as exogenous 25 controls in quantitative RT-PCR experiments. These spikes can be used to normalize quantitative RT-PCR to aid in determining absolute transcript levels. In addition, the Tag gene spikes can also allow direct comparisons between microarray and RT-PCR results, or between different types of microarrays (spotted arrays vs. GeneChip[®] arrays (Affymetrix, Inc., Santa Clara, CA), for example). The universal absence of the synthetic 30 genes will also allow comparisons between different sample types; for example, data

from microarray and RT-PCR experiments can be normalized for samples from mouse, human, and bacteria.

An example of an application of the cloned Tag genes is provided by the Affymetrix CustomSeq(TM) resequencing arrays, which contain probes complementary to portions of both DNA strands of the TagIQ.EX sequence, as well as probes complementary to DNA derived from customer-specified genes or genomes. A GeneChip(R) Resequencing Assay Kit containing the TagIQ.EX plasmid and PCR primers is available from Affymetrix to amplify the relevant Tag DNA, and thus serves as a control for the PCR process. Amplified Tag DNA can then serve as a control for fragmentation and labeling. Furthermore, because the Tag sequence was chosen to be absent from any genomic sample, cross-hybridization should be minimal between Tag-derived DNA and DNA derived from any genomic sample, so Tag DNA can be mixed with DNA complementary to other probes on the resequencing arrays. Hybridization of the mixture to resequencing arrays provides a control of the hybridization and base-calling process.

It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by references for all purposes.