Data Structures

Arjun Mukherjee[†]

Course webpage:

http://www.cs.uh.edu/~arjun/courses/ds

Administrivia

General Information

Instructor: Arjun Mukherjee

Email: arjun@cs.uh.edu

Office: PGH 582

- Administrative details (e.g., lecture times, venue, office hours, assignment due dates) available in course webpage
- http://www.cs.uh.edu/~arjun/courses/ds
- Lecture slides, notes, syllabus, other resources are also available via the course page above.

Classwork/Lab Information

- Weekly Meetings conducted by TAs
 - M 4-5.30 PM GAR 205

- Problem solving mainstream codebase Development in Java
- Classwork and Lab performance count towards total grade
- Refer to TAs for lab specific lecture slides, notes, syllabus, problems, solutions and leverage TAs' office hours for help.

Resources

Course materials (lecture notes/slides, online resources/offline copies, sample midterm and final questions, etc.):

- Download from this location:
 http://www2.cs.uh.edu/~arjun/courses/ds/course_materials.
 zip
- Please do not re-post on the web or distribute without prior permission
- IMP: These resources, along with sections in books (under Required Readings) should be used for preparing for this course.

Books are available online (e.g., used copies @ Amazon, online pdfs). An online copy is also included (to help you get started until your book comes!)

Grading

- 5 HomeWorks: 5 x 15% = 75%
- Exam 1: 30%
- Classwork/Lab: 10%
- Lecture Attendance: 5%
- Max Points: 120%
 - But graded on 100%
 - Grading will be curved relative to class performance

Prerequisites

- Knowledge of
 - basic probability theory, functions, high school Math
 - Basic control flow and algorithms
 - Familiarity with C/C++, Java, Python, etc.
 for programming
 - Homeworks will be done in Java If you don't have prior Java background, a Java primer walkthrough will be done
 - TAs will help with Java support as and where needed.

Reading materials

Required Text

Goodrich, M. T., Tamassia, R., Goldwasser, M. H.
 Data Structures and Algorithms in Java. Wiley, 6th edition, 2016.

References:

- The Algorithm Design Manual, 2nd Edition by Steven S Skiena
- Introduction to Algorithms, 3rd Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
- Elements of Programming Interviews in Java: The Insiders' Guide, by Adnan Aziz, Tsung-Hsien Lee, Amit Prakash

Topics

- Introduction and Java Primer
- Fundamental Data Structures
- Algorithm Analysis
- Recursion
- Stacks and Queues
- Trees
- Priority Queues
- Maps and Hash Tables
- Sorting and Selection
- Graph Algorithms

Feedback and suggestions

- Your feedback and suggestions are most welcome!
 - It will help me adapt the course to your needs.
- Share your questions and concerns with the class very likely others may have the same.
- No pain no gain…☺
 - The more you put in, the more you get
 - Your grades are proportional to your efforts

To be successful

- Work hard and Work step by step (each step counts)
 - Attend labs and lectures
 - Write your own code
 - Visit course web for due dates
 - Submit HWs on time
- NO NO
 - No direct copies of others' code or code on internet (We know how to catch you!)
 - You can however use online references for ideas but all your code and submitted work must be 100% of your own writing

Introduction to Java