

Free Lunch Multivariate Forecast Projection: reducing forecast variance using linear combinations

Yangzhuoran Fin Yang Rob J Hyndman George Athanasopoulos Anastasios Panagiotelis

Free lunch forecast projection

A model-independent post-forecast adjustment method that can reduce forecast variance without introducing new data or information.

Australian tourism data

- The data include tourism information on seven states and territories which can be divided into 77 regions
 - For example, Melbourne, Sydney, East Coast

Visitor nights

The total number of nights spent by Australians away from home recorded monthly

Total and Region

Melbourne and Sydney

Intuition

Observation

1. Better signal-noise ratio in the linear combination.

Intuition

Observation

- 1. Better signal-noise ratio in the linear combination.
- 2. Similar patterns are shared by different series.

Intuition

Observation

- 1. Better signal-noise ratio in the linear combination.
- 2. Similar patterns are shared by different series.

One step further

Finding components that have better signal-noise ratio:

- 1. Easy to forecast;
- 2. Capturing the common signals;
- 3. Improving forecast of original series.

Literature

Forecast reconciliation

bagging

Forecast combination

Factor model

Series $z_t \in \mathbb{R}^m$

Components $oldsymbol{c}_t = \Phi oldsymbol{z}_t \in \mathbb{R}^p$

Free lunch forecast projection

$$m{y}_t = egin{bmatrix} m{z}_t \ m{c}_t \end{bmatrix} \qquad ilde{m{y}}_{t+h} = m{M} \hat{m{y}}_{t+h}$$

$$\tilde{\mathbf{z}}_{t+h} = \mathbf{J} \tilde{\mathbf{y}}_{t+h} = \mathbf{J} \mathbf{M} \hat{\mathbf{y}}_{t+h} \qquad \mathbf{J} = \mathbf{J}_{m,p} = \begin{bmatrix} \mathbf{I}_m & \mathbf{O}_{m imes p} \end{bmatrix}$$

$$\mathbf{M} = \mathbf{I}_{m+p} - \mathbf{W}_h \mathbf{C}' (\mathbf{C} \mathbf{W}_h \mathbf{C}')^{-1} \mathbf{C},$$

$$oldsymbol{\mathcal{C}} = egin{bmatrix} -\Phi & oldsymbol{I}_{oldsymbol{
ho}} \end{bmatrix}$$

Properties

Lemma 2.1

The matrix M is a projection onto the space where the constraint C is satisfied.

Corollary 2.1

- The projected forecast $\tilde{\mathbf{y}}_{t+h}$ satisfies the constraint \mathbf{C} .
- For \mathbf{y}_{t+h} that already satisfies the constraint, the projection does not change its value:
 - $\mathbf{M}\mathbf{y}_{t+h} = \mathbf{y}_{t+h}$
- If the base forecasts are unbiased, then the projected forecasts are also unbiased.

Variance reduction

Theorem 2.1

The variance reduction is **positive** semi-definite:

$$Var(\hat{\boldsymbol{y}}_{t+h} - \boldsymbol{y}_{t+h}) - Var(\tilde{\boldsymbol{y}}_{t+h} - \boldsymbol{y}_{t+h}) = \boldsymbol{W}_h \boldsymbol{C}' (\boldsymbol{C} \boldsymbol{W}_h \boldsymbol{C}')^{-1} \boldsymbol{C} \boldsymbol{W}_h,$$

$$\begin{aligned} \operatorname{Var}(\hat{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) - \operatorname{Var}(\tilde{\boldsymbol{z}}_{t+h} - \boldsymbol{z}_{t+h}) \\ &= \boldsymbol{J} \boldsymbol{W}_h \boldsymbol{C}' (\boldsymbol{C} \boldsymbol{W}_h \boldsymbol{C}')^{-1} \boldsymbol{C} \boldsymbol{W}_h \boldsymbol{J}' \end{aligned}$$

Example

$$W_h = I_{m+p}$$

$$\Phi\Phi' = \mathbf{I}_p$$
 when $p \leq m$
 $\Phi'\Phi = \mathbf{I}_m$ when $p = m$.

$$\operatorname{Var}(\hat{\boldsymbol{y}}_{t+h} - \boldsymbol{y}_{t+h}) - \operatorname{Var}(\tilde{\boldsymbol{y}}_{t+h} - \boldsymbol{y}_{t+h}) = \frac{1}{2} \begin{vmatrix} \Phi' \Phi & -\Phi' \\ -\Phi & \boldsymbol{I}_p \end{vmatrix}.$$

Monotonicity

Theorem 2.2

Minimum variance of individual series

Theorem 2.4

Estimation of W_h

Simulation

Tourism

FRED-MD

