Package 'grwat'

October 27, 2023

Type Package

Title River Hydrograph Separation and Analysis

Version 0.0.4 **Date** 2023-10-27

Description River hydrograph separation and daily runoff time series analysis. Provides various filters to separate baseflow and quickflow. Implements advanced separation technique by Rets et al. (2022) <doi:10.1134/S0097807822010146> which involves meteorological data to reveal genetic components of the runoff: ground, rain, thaw and spring (seasonal thaw). High-performance C++17 computation, annually aggregated variables, statistical testing and numerous plotting functions for high-quality visualization.

License MIT + file LICENSE

URL https://github.com/tsamsonov/grwat

BugReports https://github.com/tsamsonov/grwat/issues

Encoding UTF-8

Language en-US

LinkingTo Rcpp

SystemRequirements pandoc

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

Depends R (>= 3.3)

Imports cli, Rcpp, magrittr, dplyr, tidyr, lubridate, stringr, rlang, grid, ggplot2, zoo, trend, mblm, R.utils

Suggests ggridges, ggHoriPlot, ggthemes, kableExtra, knitr, ncdf4, rmarkdown, sf, testthat, stringi

NeedsCompilation yes

Author Timofey Samsonov [aut, cre] (https://orcid.org/0000-0001-5994-0302), Ekaterina Retz [ctb] (https://orcid.org/0000-0002-4505-1173), Maria Kireeva [ctb] (https://orcid.org/0000-0002-8285-9761) gr_baseflow

Maintainer Timofey Samsonov <tsamsonov@geogr.msu.ru>

Repository CRAN

Date/Publication 2023-10-27 11:40:12 UTC

R topics documented:

ar h	aseflow Extract baseflow	
ndex		3
	spas	3:
	gr_test_vars	3:
	gr_summarize	3
	gr_set_param	2
	gr_set_locale	2
	gr_separate	2
	gr_report	2.
	gr_read_rean	2
	gr_plot_vars	2
	gr_plot_tests	2
	gr_plot_sep	2
	gr_plot_ridge	1
	gr_plot_periods	1
	gr_plot_minmonth	1
	gr_plot_matrix	1
	gr_plot_hori	1.
	gr_plot_acf	1
	gr_kable_tests	1
	gr_join_rean	1
	gr_help_vars	1
	gr_help_params	1
	gr get params	1
	gr get gaps	
	gr_fill_gaps	
	gr_check_params	
	gr_buffer_geo	
	or hiller den	

Description

Extract baseflow from hydrological series using the filtering approach

gr_baseflow 3

Usage

```
gr_baseflow(
   Q,
   a = 0.925,
   k = 0.975,
   C = 0.05,
   aq = -0.5,
   passes = 3,
   padding = 30,
   method = "lynehollick"
)
```

Arguments

Q	Numeric runoff vector.
a	Numeric value of a filtering parameter used in 'chapman', 'jakeman' and 'lynehollick' methods. Defaults to 0.925.
k	Numeric value of a filtering parameter used in 'boughton' and 'maxwell' methods. Defaults to 0.975.
С	Numeric value of a separation shape parameter used in 'boughton', 'jakeman' and 'maxwell' methods
aq	Numeric value of a filtering parameter used in 'jakeman' method. Defaults to -0.5.
passes	Integer number of filtering iterations. The first iteration is forward, second is backward, third is forward and so on. Defaults to 3.
padding	Integer number of elements padded at the beginning and ending of runoff vector to reduce boundary effects. Defaults to 30.
method	Character string to set baseflow filtering method. Available methods are 'boughton', 'chapman', 'furey', 'jakeman', 'lynehollick' and 'maxwell'. Default is 'lynehollick', which corresponds to Lyne-Hollick (1979) hydrograph separation method.

Value

Numeric baseflow vector with length equal to Q

```
library(grwat)
library(ggplot2)
library(dplyr)
library(tidyr)
library(lubridate)

data(spas) # example Spas-Zagorye data is included with grwat package
# Calculate baseflow using Line-Hollick approach
```

gr_buffer_geo

```
hdata = spas %>%
 mutate(Qbase = gr_baseflow(Q, method = 'lynehollick',
                             a = 0.925, passes = 3))
# Visualize for 1980 year
ggplot(hdata) +
 geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
 geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
 scale_x_date(limits = c(ymd(19800101), ymd(19801231)))
# Compare various approaches
hdata = spas %>%
 mutate(lynehollick = gr_baseflow(Q, method = 'lynehollick', a = 0.9),
         boughton = gr_baseflow(Q, method = 'boughton', k = 0.9),
         jakeman = gr_baseflow(Q, method = 'jakeman', k = 0.9),
        maxwell = gr_baseflow(Q, method = 'maxwell', k = 0.9)) %>%
 pivot_longer(lynehollick:maxwell, names_to = 'Method', values_to = 'Qbase')
# Visualize for 1980 year
ggplot(hdata) +
 geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
 geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
 scale_x_date(limits = c(ymd(19810101), ymd(19811231))) +
 facet_wrap(~Method)
# Compare Lyne to Kudelin
p = gr_get_params('center')
p$filter = 'kudelin'
hdata = spas %>%
 mutate(lynehollick = gr_baseflow(Q, method = 'lynehollick',
                                   a = 0.925, passes = 3),
        kudelin = gr_separate(spas, p)$Qbase) %>%
 pivot_longer(lynehollick:kudelin, names_to = 'Method', values_to = 'Qbase')
# Visualize for 1980 year
ggplot(hdata) +
 geom_area(aes(Date, Q), fill = 'steelblue', color = 'black') +
 geom_area(aes(Date, Qbase), fill = 'orangered', color = 'black') +
 scale_x_date(limits = c(ymd(19800101), ymd(19801231))) +
 facet_wrap(~Method)
```

gr_buffer_geo

Quasi-geographic buffering

Description

Generate the buffer of spatial object in geographic coordinates. The function transforms the object into Azimuthal equidistant projection, then buffers it by the specified radius and then reprojects into geographical coordinate system (WGS84)

gr_check_data 5

Usage

```
gr_buffer_geo(g, bufsize)
```

Arguments

g sf or sfg object with known coordinate system. bufsize Numeric value of a buffer distance, in meters.

Value

sf or sfg object, buffered to bufsize and projected into geographic coordinates (WGS84).

Examples

```
if (require("sf")) {
   library(grwat)
   library(ggplot2)
   path = system.file("extdata", "spas-zagorye.gpkg", package = "grwat")
   basin = sf::st_read(path, layer = 'basin') # read basin region

   basin_buffer = gr_buffer_geo(basin, 25000)

ggplot() +
   geom_sf(data = basin_buffer, fill = 'orangered', color = 'black') +
   geom_sf(data = basin, fill = 'steelblue', color = 'black')
}
```

gr_check_data

Check the correctness of data frame for separating

Description

This function is called inside gr_separate(), but can be used explicitly inside your code.

Usage

```
gr_check_data(df)
```

Arguments

df

data.frame with four columns: date, runoff, temperature, precipitation, as required by gr_separate().

Value

stops execution if df contains the wrong number of columns, or the columns have the wrong types, or the data in columns is incorrect (e.g. runoff or precipitation are negative).

gr_check_params

Examples

gr_check_params

Check the correctness of parameters list for separating

Description

Check the correctness of parameters list for separating

Usage

```
gr_check_params(params, df = NULL)
```

Arguments

params list of separation parameters, as returned by gr_get_params() function data.frame with four columns: date, runoff, temperature, precipitation, as required by gr_separate(). Required when params is a list of parameter lists. Defaults to NULL.

Value

stops the execution if anything is wrong and prints the exact reason of the error. Otherwise prints the message that everything is OK

gr_check_params 7

```
library(grwat)
# example Spas-Zagorye data is included with grwat package
data(spas)
params = gr_get_params(reg = 'center')
gr_check_params(params)
# set the unknown parameter
paramsnew = -2
# use try if you do not want to stop at error
try(gr_check_params(params))
# remove wrong parameter
params$new = NULL
# remove right parameter
params$grad1 = NULL
try(gr_check_params(params))
# reset
params = gr_get_params(reg = 'center')
sep = gr_separate(spas, params, debug = TRUE)
parlist = attributes(sep)$params
parlist[['2002']]$grad1 = 4
# if the parlist is used for separation
# then data frame must be specified
try(gr_check_params(parlist))
gr_check_params(parlist, spas)
# grad parameter is not known
parlist[['2002']]$grad = 4
try(gr_check_params(parlist, spas))
# remove wrong parameter
parlist[['2002']]$grad = NULL
# remove year
parlist[['2002']] = NULL
try(gr_check_params(parlist, spas))
parlist[['2002']] = parlist[['2001']]
gr_check_params(parlist, spas)
```

gr_fill_gaps

	0.77	
gr	+ i	gaps

Fill missing daily data

Description

Use the function to fill the missing daily data by linear interpolation. These can be both missing dates and missing runoff or temperature values. A preliminary summary of missing data can be viewed by gr_get_gaps()

Usage

```
gr_fill_gaps(hdata, autocorr = 0.7, nobserv = NULL)
```

Arguments

hdata data. frame with at least two columns, where the first column is Date, and the

remaining columns have numeric type.

autocorr Autocorrelation value that defines possible length of the period that can be filled.

Defaults to 0.7. If nobserv parameter is set, then this parameter is ignored. If both parameters are NULL, then all gaps are filled disregard of their lengths (not

recommended).

nobserv Maximum number of contiguous observations that can be interpolated. Defaults

to NULL. If this parameter is set, then autocorr parameter is ignored. If both parameters are NULL, then all gaps are filled disregard of their lengths (not rec-

ommended).

Value

data. frame which is a filled version of hdata

gr_get_gaps 9

```
# identify gaps
gr_get_gaps(hdata)

# fill gaps
fhdata = gr_fill_gaps(hdata, autocorr = 0.8)

# check the results
gr_get_gaps(fhdata)

# fill gaps
fhdata = gr_fill_gaps(hdata, nobserv = 7)

# check the results
gr_get_gaps(fhdata)
```

gr_get_gaps

Get gaps in the daily data

Description

Use the function to detect periods of missing data. The first column must be of Date type. The data is considered to be a gap if any value in the row is missing.

Usage

```
gr_get_gaps(hdata)
```

Arguments

hdata

data. frame with at least two columns, where the first column is Date

Value

data.frame with periods of data and periods of gaps, containing five columns: number of the period (num), start of the period (start_date), end of the period (end_date), duration of the period (duration) and type of the period (type).

10 gr_get_params

gr_get_params

Get hydrograph separation parameters

Description

The function returns the list of parameters that can be used by gr_separate(). Since the parameters are region-specific, the location must be selected. It can be identified by region name or geographic coordinates. If both are specified, then region have a higher priority

Usage

```
gr_get_params(reg = "center", lon = NULL, lat = NULL)
```

Arguments

reg	Character string — the name of the region. Defaults to 'center'.
lon	Numeric value of the longitude. Ignored if reg is specified.
lat	Numeric value of the latitude. Ignored if reg is specified.

Value

List of separation parameters that can be used in gr_separate() function.

gr_help_params 11

Examples

```
library(grwat)
params = gr_get_params(reg = 'center')
print(params)
```

gr_help_params

Get the information about parameters used to separate the hydrograph

Description

Get the information about parameters used to separate the hydrograph

Usage

```
gr_help_params()
```

Value

data.frame with description of hydrograph separation parameters that are used in gr_separate()

Examples

```
library(grwat)
gr_help_params()
```

gr_help_vars

Hydrograph separation variables

Description

Use this function to learn the meaning of the variables that are calculated by gr_summarize().

Usage

```
gr_help_vars()
```

Value

data.frame of hydrograph separation variables

```
library(grwat)
gr_help_vars()
```

12 gr_join_rean

gr_join_rean

Join reanalysis data

Description

The function performs spatial join of meteorological variables (temperature and precipitation) from grwat reanalysis to the daily runoff time series. Reanalysis covers the East European Plain with 0.75 degrees spatial resolution and is obtained based on CIRES-DOE (1880-1949) and ERA5 (1950-2021) data. This function is useful when the data from meteorological stations are missing inside the basin.

Usage

```
gr_join_rean(hdata, rean, buffer)
```

Arguments

hdata data.frame containing 2 columns: Date and runoff

rean list as returned by gr_read_rean()

buffer sf object containing the region to select reanalysis data. Usually a river basin

is used to select the meteorological data. Use gr_buffer_geo() to buffer the

basin by specified distance and get more data, if needed.

Details

Download the reanalysis archive from here.

Value

data. frame with four columns: date, runoff, temperature, precipitation.

gr_kable_tests 13

```
Q = q
 head(hdata)
 # read basin
 basin_path = system.file("extdata", "spas-zagorye.gpkg",
                           package = "grwat")
 basin = sf::st_read(basin_path, layer = 'basin') # read basin region
 basin_buffer = gr_buffer_geo(basin, 25000)
 ## Not run:
   # read reanalysis data
   rean = gr_read_rean(
      '/Volumes/Data/Spatial/Reanalysis/grwat/pre_1880-2021.nc',
      '/Volumes/Data/Spatial/Reanalysis/grwat/temp_1880-2021.nc'
    )
   # spatial join of reanalysis data to runoff data
   hdata_rean = gr_join_rean(hdata, rean, basin_buffer)
   head(hdata_rean)
## End(Not run)
}
```

gr_kable_tests

Tabular representation of tests

Description

This function is used to represent the results of gr_test_vars() in a tabular form. Used mainly in gr_report(), but can be used for your own purposes.

Usage

```
gr_kable_tests(tests, format = "html")
```

Arguments

tests list of tests as returned by gr_test_vars() function.

format Character string encoding the type of output. Currently 'html' only is sup-

ported.

Value

HTML table as returned by knitr::kable() function.

14 gr_plot_acf

Examples

```
if (require("kableExtra")) {
  library(grwat)

  data(spas) # example Spas-Zagorye data is included with grwat package
  # separate
  sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

  # summarize from 1965 to 1990
  vars = gr_summarize(sep, 1965, 1990)

  # test all variables
  tests = gr_test_vars(vars)

  # kable tests
  gr_kable_tests(tests)
}
```

gr_plot_acf

Plot runoff ACF

Description

The function plots the autocorrelation function (ACF) for daily runoff time series. A number of days corresponding to the specified autocorr value is highlighted.

Usage

```
gr_plot_acf(hdata, autocorr = 0.7, maxlag = 30, print = TRUE)
```

Arguments

hdata	data.frame with first column as Date and the second column as runoff
autocorr	Numeric value of the autocorrelation for which the time period will be highlighted. Defaults to 0.7 .
maxlag	Integer value of the maximum daily lag used to calculate the correlation. Defaults to 30 .
print	Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing the autocorrelation function (ACF) for daily runoff time series

gr_plot_hori 15

Examples

```
library(grwat)
# example Spas-Zagorye data is included with grwat package
data(spas)
head(spas)
# plot ACF
gr_plot_acf(spas, 0.65)
```

gr_plot_hori

Horizon hydrograph plot

Description

A convenient wrapper around ggHoriPlot::geom_horizon() to visualize multiple river hydrographs at once.

Usage

```
gr_plot_hori(df, years, pal = "Blues", rev = TRUE, scale = 6, print = TRUE)
```

Arguments

df	data.frame with date (1st) and runoff (2nd) columns.
years	Integer vector of years to be plotted.
pal	$Numeric \ or \ character \ string. \ Color \ palette \ identifier \ passed \ to \ ggplot 2:: scale_fill_distiller().$
rev	Boolean. Reverse the palette? Defaults to FALSE.
scale	Numeric scale factor passed to ggHoriPlot::geom_horizon(). Defaults to 6.
print	Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing multiple river hydrographs at once using the horizon plot approach

```
if (require("ggHoriPlot") && require("ggthemes")) {
   library(grwat)
   data(spas) # example Spas-Zagorye data is included with grwat package
   # separate
   sep = gr_separate(spas, params = gr_get_params(reg = 'center'))
```

16 gr_plot_matrix

```
# horizon plot for selected years
gr_plot_hori(sep, years = 1960:1980)
}
```

```
gr_plot_matrix
```

Runoff matrix plot

Description

The function plots runoff values, components and seasons using the matrix-based approach. The X axis corresponds to the day of the year, and the Y axis corresponds to the year. The function is useful when the whole picture of river runoff needs to be assessed.

Usage

```
gr_plot_matrix(df, years = NULL, type = "runoff", print = TRUE)
```

Arguments

df data.frame of hydrograph separation produced by gr_separate().

years Integer vector of years to be plotted. Defaults to NULL.

type Character string. Supported options are 'runoff', 'component', and 'season'.

Defaults to 'runoff'.

print Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot

aesthetics before plotting.

Value

ggplot2 object representing the runoff values, components or seasons using the matrix-based approach

```
library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# matrix plot for runoff
gr_plot_matrix(sep, type = 'runoff')

# matrix plot for seasons
gr_plot_matrix(sep, type = 'season')

# matrix plot for genetic components
gr_plot_matrix(sep, type = 'component')
```

gr_plot_minmonth 17

nimum runoff month	Plot min	r_plot_minmonth	gr_plot
--------------------	----------	-----------------	---------

Description

Generate a histogram of a minimum runoff month for two periods: before and after the change year set by year parameter.

Usage

```
gr_plot_minmonth(
  df,
  year = NULL,
  exclude = NULL,
  tests = NULL,
  pagebreak = FALSE,
  print = TRUE
)
```

Arguments

df	${\tt data.frame\ of\ hydrograph\ and\ meteorological\ variables\ as\ produced\ by\ gr_summarize()}.$
year	Integer. Change year value to separate two periods.
exclude	Integer vector of years to be excluded from plotting.
tests	Tests list for the same variables (generated by gr_test_vars() function)
pagebreak	Logical. Whether to break page between plots (needed for reporting). Defaults to FALSE.
print	Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

list of two ggplot2 objects, representing the histogram of a minimum runoff month for two periods: before and after the change year

```
library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)
```

18 gr_plot_periods

```
# plot minimum runoff month for two periods divided by Pettitt test
gr_plot_minmonth(vars, tests = gr_test_vars(vars))

# plot minimum runoff month for two periods divided by fixed year
gr_plot_minmonth(vars, year = 1978)
```

gr_plot_periods

Plot long-term hydrograph variable changes

Description

This function generates boxplots of the hydrograph separation variables produced by <code>gr_summarize()</code>. The data for each variable is divided into two samples: before and after the change year either set by year parameter or extracted from tests (statistically estimated). Different background fill colors are used to differentiate seasons types.

Usage

```
gr_plot_periods(
    df,
    ...,
    year = NULL,
    exclude = NULL,
    tests = NULL,
    layout = as.matrix(1),
    pagebreak = FALSE,
    print = TRUE
)
```

Arguments

df	data.frame of hydrograph and meteorological variables produced by gr_summarize().
	Quoted sequence of variable names.
year	Integer. Change year value to separate two periods (overridden by tests if it is supplied).
exclude	Integer vector of years to be excluded from plotting.
tests	Tests list for the same variables (generated by gr_test_vars() function)
layout	matrix that encodes the order of plotting.
pagebreak	Logical. Whether to break page between plots (needed for reporting). Defaults to FALSE.
print	Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

list of ggplot2 objects, one for each variable, representing its long-term changes

gr_plot_ridge 19

Examples

```
library(grwat)
data(spas) # example Spas-Zagorye data is included with grwat package
# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))
# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)
# plot periods with fixed change year
gr_plot_periods(vars, Qygr, year = 1978)
# plot periods with change year from Pettitt test
gr_plot_periods(vars, Qygr, tests = TRUE)
# calculate test beforehand
tests = gr_test_vars(vars)
gr_plot_periods(vars, Qspmax, tests = tests)
# use matrix layout to plot multiple variables
gr_plot_periods(vars, Qygr, Qspmax, D10w1, Wsprngr,
                layout = matrix(1:4, nrow = 2),
                tests = tests)
```

gr_plot_ridge

Ridgeline hydrograph plot

Description

A convenient wrapper around <code>ggridges::geom_ridgeline()</code> to visualize multiple river hydrographs at once.

Usage

```
gr_plot_ridge(
   df,
   years,
   pal = 4,
   rev = FALSE,
   scale = 0.01,
   alpha = 0.8,
   print = TRUE
)
```

20 gr_plot_sep

Arguments

df	data.frame with date (1st) and runoff (2nd) columns.
years	Integer vector of years to be plotted.
pal	$Numeric \ or \ character \ string. \ Color \ palette \ identifier \ passed \ to \ ggplot2::scale_fill_distiller().$
rev	Boolean. Reverse the palette? Defaults to FALSE.
scale	Numeric scale factor passed to ggridges::geom_ridgeline(). Defaults to 0.01.
alpha	Numeric opacity value of the ridgeline plot. Defaults to 0.8.
print	Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

ggplot2 object representing the multiple river hydrographs at once using the ridgeline plot approach

Examples

```
if (require("ggridges")) {
   library(grwat)

   data(spas) # example Spas-Zagorye data is included with grwat package
   # separate
   sep = gr_separate(spas, params = gr_get_params(reg = 'center'))
   # ridgline plot for selected years
   gr_plot_ridge(sep, years = c(1960, 1965, 1989, 2001, 2012))
}
```

gr_plot_sep

Plot hydrograph separation

Description

The function plots river hydrograph by filling the different flow types using colors. Matrix layouts can be used if multiple plots are needed. Temperature and precipitation can be overlaid.

Usage

```
gr_plot_sep(
   df,
   years = NULL,
   layout = as.matrix(1),
```

gr_plot_sep 21

```
pagebreak = FALSE,
temp = FALSE,
prec = FALSE,
span = 5,
print = TRUE
)
```

Arguments

df data.frame of hydrograph separation as produced by gr_separate().

years Integer vector of years to be plotted.

layout matrix that encodes the order of plotting.

pagebreak Logical. Whether to break page between plots (used by gr_report()). Defaults

to FALSE.

temp Boolean. Add temperature curve to the plot? Defaults to FALSE. If both temp =

TRUE and prec = TRUE, then the axis is drawn for precipitation.

prec Boolean. Add precipitation curve to the plot? Defaults to FALSE. If both temp =

TRUE and prec = TRUE, then the axis is drawn for precipitation.

span Integer number of days to accumulate precipitation for plotting.

print Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot

aesthetics before plotting.

Value

list of ggplot2 objects, one for each year, representing the hydrograph separation

```
library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# One year
gr_plot_sep(sep, 1978)

# Two years
gr_plot_sep(sep, c(1978, 1989))

# Two years in a matrix layout
gr_plot_sep(sep, 1988:1989, layout = matrix(1:2, nrow = 2, byrow = TRUE))

# Add temperature and precipitation
gr_plot_sep(sep, 1991, temp = TRUE, prec = TRUE)
```

gr_plot_tests

gr_plot_tests

Plot change year density

Description

The function extracts change years from results of <code>gr_test_vars()</code> and plots their probability density. Since for every variable the change year is individual, this procedure allows finding the one most probable year, which is the mode of the distribution. This year is highlighted by the line and labeled on the plot.

Usage

```
gr_plot_tests(tests, type = "year", print = TRUE)
```

Arguments

tests list of tests generated by gr_test_vars().

type Character string type of the plot. Currently only 'year' is supported, which

means that the distribution density of the change year detected by Pettitt test is

visualized. Ignored until other types are implemented.

print Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot

aesthetics before plotting.

Value

ggplot2 object representing the selected type of the tested variable

```
library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)

# test all variables
tests = gr_test_vars(vars)

# plot change year from Pettitt test
gr_plot_tests(tests, type = 'year')
```

gr_plot_vars 23

	_	
or	plot	vars

Plot interannual hydrograph variable changes

Description

This function plots the hydrograph separation variables produced by gr_summarize(). Different background fill colors and line types are used to differentiate seasons and variable types.

Usage

```
gr_plot_vars(
   df,
    ...,
   tests = NULL,
   exclude = NULL,
   smooth = TRUE,
   layout = as.matrix(1),
   pagebreak = FALSE,
   print = TRUE
)
```

Arguments

df	data.frame of hydrograph and meteorological variables produced by gr_summarize().
	Quoted sequence of variable names.
tests	list of tests for the same variables (generated by gr_test_vars() function). If tests are specified, then they are added to the plot.
exclude	Integer vector of years to be excluded from plotting.
smooth	Logical. If TRUE then local smoothing regression is plotted. Defaults to TRUE.
layout	matrix that encodes the order of plotting.
pagebreak	Logical. Whether to break page between plots (gr_report()). Defaults to FALSE.
print	Boolean. Print plot? Defaults to TRUE. Use FALSE if you want to tweak the plot aesthetics before plotting.

Value

list of ggplot2 objects, one for each variable, representing its interannual changes

```
library(grwat)
data(spas) # example Spas-Zagorye data is included with grwat package
# separate
```

24 gr_read_rean

gr_read_rean

Read reanalysis data

Description

The function reads meteorological variables (temperature and precipitation) from grwat reanalysis for using with gr_join_rean(). Reanalysis covers the East European Plain with 0.75 degrees spatial resolution and is obtained based on CIRES-DOE (1880-1949) and ERA5 (1950-2021) data.

Usage

```
gr_read_rean(file_prec, file_temp)
```

Arguments

file_prec Character string path to precipitation NetCDF file.

file_temp Character string path to temperature NetCDF file.

Details

Download the reanalysis archive from here.

Value

list containing time series, precipitation series, temperature series and spatial points (sf)

```
if (require("sf") && require("ncdf4")) {
   library(grwat)
   # read reanalysis data
```

gr_report 25

```
## Not run:
    rean = gr_read_rean(
        '/Volumes/Data/Spatial/Reanalysis/grwat/pre_1880-2021.nc',
        '/Volumes/Data/Spatial/Reanalysis/grwat/temp_1880-2021.nc'
)
    str(rean)
## End(Not run)
}
```

gr_report

Report hydrograph separation and variables

Description

This function generates a graphical HTML report that summarizes separation of hydrograph, its variables and their statistical properties. See example report generated by this command for spas dataset included in grwat package.

Usage

```
gr_report(
    sep,
    vars,
    output = "Report.html",
    year = NULL,
    exclude = NULL,
    temp = FALSE,
    prec = FALSE,
    span = 5,
    locale = "EN"
)
```

Arguments

sep	data.frame of hydrograph separation as returned by gr_separate() function.
vars	data.frame of hydrograph variables as returned by gr_summarize() function.
output	Character string path to the output file. Must have .html extension.
year	Integer value of year used to divide series in two samples compared by Student and Fisher tests. Defaults to NULL which means that the year is calculated automatically by Pettitt test. Defaults to NULL.
exclude	Integer vector of years to be excluded from reporting. Defaults to NULL.
temp	Boolean. Plot temperature on the top of hydrograph? Defaults to FALSE. If both temp = TRUE and prec = TRUE, then the axis is drawn for precipitation.

26 gr_separate

prec	Boolean. Plot precipitation on the top of hydrograph? Defaults to FALSE. If both temp = TRUE and prec = TRUE, then the axis is drawn for precipitation.
span	Integer number of days to accumulate precipitation for plotting. Defaults to 5.
locale	Character string locale. Currently only English ('EN') and Russian ('RU') locales are supported. Defaults to 'EN'.

Value

No return value, called for side effects

Examples

```
## Not run:
    if (require("knitr") && require("rmarkdown") && require("kableExtra")) {
        library(grwat)

        data(spas) # example Spas-Zagorye data is included with grwat package

        # separate
        sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

        # summarize
        vars = gr_summarize(sep)

        # report
        report = '~/Spas-Zagorye.html'

        gr_report(sep, vars, output = report)
        browseURL(report)
    }

## End(Not run)
```

gr_separate

Advanced hydrograph separation

Description

Separates the runoff into genetic components: groundwater, thaw, rain and spring.

Usage

```
gr_separate(df, params = gr_get_params(), debug = FALSE)
```

gr_separate 27

Arguments

df data.frame with four columns: date, runoff, temperature, precipitation.

params list of separation parameters, as returned by gr_get_params() function. Can

also be a list of such lists if modified parameters are required for some years. In this case the length of params must be equal to the number of calendar years

in df or be equal to 1.

debug Boolean. If TRUE then additional attributes jittered and params are written to

the output data.frame. jittered is an integer vector of years for which the separation parameters were randomly jittered. params is a list of separation parameter lists used for each year (some o those may have been jittered). Defaults

to FALSE.

Value

A data.frame with 11 columns:

Column	Description
Date	date
Q	total runoff
Temp	temperature
Prec	precipitation
Qbase	baseflow
Quick	quickflow
Qspri	spring flood
Qrain	rain floods
Qthaw	thaw floods
Season	a season of the year
Year	a water-resources year

28 gr_set_locale

```
jit = attributes(sep_debug)$jittered
print(jit)
# actual params used for each year
parlist = attributes(sep_debug)$params
partab = do.call(dplyr::bind_rows, parlist) # View as table
head(partab)
# extract and tweak parameters for selected year
p = parlist[['1989']]
p\$grad1 = 1
p\$grad2 = 2.5
# use tweaked parameters for all years
sep_debug = gr_separate(spas, params = p, debug = TRUE)
# Visualize
gr_plot_sep(sep_debug, c(1978, 1989))
# actual params used for each year
parlist = attributes(sep_debug)$params
# tweak parameters for selected year
parlist[['1989']]$grad1 = 3
parlist[['1989']]$grad2 = 6
# set the sprecdays parameter for multiple years
parlist = gr_set_param(parlist, sprecdays,
                       years = c(1978, 1989:1995),
                       value = 15)
# set the spcomp parameter for all years
parlist = gr_set_param(parlist, spcomp, value = 2.5)
# use the list of parameters for separation
sep_debug = gr_separate(spas, params = parlist, debug = TRUE)
# Visualize
gr_plot_sep(sep_debug, c(1978, 1989))
```

gr_set_locale

Set the language that is used for plotting

Description

Run this function once at the beginning of the session. All plots will be labeled using the selected language.

gr_set_param 29

Usage

```
gr_set_locale(locale = "EN")
```

Arguments

locale

Character string locale. Currently only English ('EN'), Russian ('RU') and Ukrainian ('UA') locales are supported. More locales can be requested at issue on GitHub. Defaults to 'EN'.

Details

Note to Linux users: the desired locale may not be installed on the system. A list of available locales can be obtained in bash terminal:

```
locale -a
```

Russian locale is ru_RU.UTF-8, and Ukrainian locale is uk_UA.UTF-8. If absent in the list, then install the desired locales by:

```
sudo locale-gen ru_RU.UTF-8
sudo locale-gen uk_UA.UTF-8
sudo update-locale
```

Then restart R session, and localization should work as expected.

Value

No return value, called for side effects

Examples

```
library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# Default is English
gr_set_locale('EN')
gr_plot_sep(sep, 1978)
```

 ${\tt gr_set_param}$

Set the value of hydrograph separation parameter

Description

The value is set for selected years in parameter list. Such list is returned by gr_separate() with debug = TRUE set.

gr_set_param

Usage

```
gr_set_param(params, p, value, years = NULL)
```

Arguments

params list of lists of hydrograph separation parameters as returned in params at-

tribute by gr_separate() with debug = TRUE.

p Name of the parameter.

value Numeric value to set.

years Integer vector of years to modify. Defaults to NULL, which means that all years

will be modified.

Value

list of lists — a modified version of params

```
library(grwat)
data(spas) # example Spas-Zagorye data is included with grwat package
# Debug mode gives access to additional information
sep = gr_separate(spas,
                  params = gr_get_params(reg = 'center'),
                  debug = TRUE
# Visualize
gr_plot_sep(sep, c(1978, 1989))
# actual params used for each year
parlist = attributes(sep)$params
# set the sprecdays parameter for multiple years
parlist = gr_set_param(parlist, sprecdays,
                       years = c(1978, 1989:1995),
                       value = 15)
# use the list of parameters for separation
sep_new = gr_separate(spas, params = parlist, debug = TRUE)
# Visualize
gr_plot_sep(sep_new, c(1978, 1989))
```

gr_summarize 31

gr_summarize	Summarize hydrograph separation

Description

Use this function to get meaningful summary statistics for hydrograph separation. Resulting variables are described by gr_help_vars(). This function is a convenient wrapper around dplyr's df %>% group_by %>% summarize idiom.

Usage

```
gr_summarize(df, year_min = NULL, year_max = NULL)
```

Arguments

df	$\verb data.frame of hydrograph separation resulting from \verb gr_separate() function $
year_min	integer first year to summarise
year_max	integer last year to summarise

Value

data.frame with one row for each water-resources year and multiple columns of statistics explained by gr_help_vars().

```
library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize
vars = gr_summarize(sep)

head(vars)

gr_plot_vars(vars, Qygr, tests = TRUE)
```

gr_test_vars

|--|

Description

Use this function to test interannual changes or hydrograph separation variables returned by <code>gr_summarize()</code>. Pettitt test is used to detect the change year — i.e. the year which divides the time series into the statistically most differing samples. Student (Welch) and Fisher tests are used to estimate the significance of mean and variance differences of these samples. Theil-Sen test calculates the trend slope value. Mann-Kendall test is performed to reveal the significance of the trend.

Usage

```
gr_test_vars(df, ..., year = NULL, exclude = NULL)
```

Arguments

df	data.frame as produced by gr_summarize() function.
	Names of the tested variables (quoted).
year	Integer value of year used to divide series in two samples compared by Student and Fisher tests. Defaults to NULL which means that the year is calculated automatically by Pettitt test.
exclude	Integer vector of years to be excluded from tests.

Details

Number of observations formally required for various tests: Pettitt > 0, Mann-Kendall > 2, Theil-Sen > 1, Student > 1, Fisher > 1.

Value

list of testing results with following elements:

Element	Description
ptt	Pettitt tests for change year
mkt	Mann-Kendall test for trend significance
tst	Theil-Sen test for slope estimation
ts_fit	Theil-Sen linear model fit
tt	Student (Welch) test for significance of mean differences between two periods
ft	Fisher test for significance of variance differences between two periods
year	Integer value of year used to divide series in two samples compared by Student and Fisher tests
maxval	Maximum value for the variable along the full time series
fixed_year	Boolean TRUE or FALSE value indicating if the year was fixed
pvalues	p-values of all tests summarized as a single table for all variables

spas 33

Examples

```
library(grwat)

data(spas) # example Spas-Zagorye data is included with grwat package

# separate
sep = gr_separate(spas, params = gr_get_params(reg = 'center'))

# summarize from 1965 to 1990
vars = gr_summarize(sep, 1965, 1990)

# test all variables
tests = gr_test_vars(vars)

# view Pettitt test for Qygr
tests$ptt$Qygr

# view Fisher test for Q30s
tests$ft$Q30s

# test only Qygr and Q30s using 1978 as fixed year and excluding 1988-1991 yrs
gr_test_vars(vars, Qygr, Q30s, year = 1978, exclude = 1981:1983)
```

spas

Spas-Zagorye daily runoff data

Description

A dataset containing the daily runoff data for Spas-Zagorye gauge on Protva river in Central European plane. The dataset is supplemented by meteorological variables (temperature and precipitation) obtained from CIRES-DOE (1880-1949) and ERA5 (1950-2021) data.

Usage

spas

Format

A data frame with 23742 rows and 4 variables:

Date date, in dates

Q daily runoff, in m3/s

Temp daily temperature, in Celsius degrees

Prec daily precipitation, in mm

spas spas

Source

https://allrivers.info/gauge/protva-obninsk

https://gmvo.skniivh.ru

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5

https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html

Index

```
* datasets
                                                 gr_summarize(), 11, 17, 18, 23, 25, 32
    spas, 33
                                                 gr_test_vars, 32
                                                 gr_test_vars(), 13, 17, 18, 22, 23
ggHoriPlot::geom_horizon(), 15
ggplot2::scale_fill_distiller(), 15, 20
                                                 knitr::kable(), 13
ggridges::geom_ridgeline(), 19, 20
                                                 spas, 33
gr_baseflow, 2
gr_buffer_geo, 4
gr_buffer_geo(), 12
gr_check_data, 5
gr_check_params, 6
gr_fill_gaps, 8
gr_get_gaps, 9
gr_get_gaps(), 8
gr_get_params, 10
gr_get_params(), 6, 27
gr_help_params, 11
gr_help_vars, 11
gr_help_vars(), 31
gr_join_rean, 12
gr_join_rean(), 24
gr_kable_tests, 13
gr_plot_acf, 14
gr_plot_hori, 15
gr_plot_matrix, 16
gr_plot_minmonth, 17
gr_plot_periods, 18
gr_plot_ridge, 19
gr_plot_sep, 20
gr_plot_tests, 22
gr_plot_vars, 23
gr_read_rean, 24
gr_read_rean(), 12
gr_report, 25
gr_report(), 13, 21, 23
gr_separate, 26
gr_separate(), 5, 6, 10, 11, 16, 21, 25, 29-31
gr_set_locale, 28
gr_set_param, 29
gr_summarize, 31
```