ANALYTIC GEOMETRY, PROBLEM SET 3

- **1.** Find the orthogonal projection $pr_{\overline{u}}(\overline{v})$, where $\overline{v} = 10\overline{a} + 2\overline{b}$, $\overline{u} = 5\overline{a} 12\overline{b}$, if $\overline{a} \perp \overline{b}$ and $||\overline{a}|| = ||\overline{b}|| \neq 0$.
- **2.** Using the dot product, prove the **Cauchy-Buniakowski-Schwarz** inequality, i.e. show that if $a_1, a_2, a_3, b_1, b_2, b_3 \in \mathbb{R}$, then $(a_1b_1 + a_2b_2 + a_3b_3)^2 \le (a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$.
- **3.** For a tetrahedron ABCD, show that $\cos(\widehat{AB}, \widehat{CD}) = \frac{AD^2 + BC^2 AC^2 BD^2}{2AB \cdot CD}$. (the 3D version of the **cosine theorem**)
- **4.** Let ABCD be a tetrahedron and G_A the center of mass of the BCD side. Then the following equality holds: $9AG_A^2 = 3(AB^2 + AC^2 + AD^2) (BC^2 + CD^2 + BD^2)$.
- **5.** Let a, b, and c denote the lengths of the sides of $\triangle ABC$. We write O for its circumcenter, R for the length of its circumradius, H for its orthocenter and G for the centroid. Show that a) $OH^2 = 9R^2 (a^2 + b^2 + c^2)$; b) $OG^2 = R^2 1/9(a^2 + b^2 + c^2)$.
- **6.** Determine the components of a vector $\overline{v} \in V_3$, knowing that the following relations hold simultaneously:
 - (i) the angle between \overline{v} and \overline{i} is 45°;
 - (ii) the angle between \overline{v} and \overline{j} is 60°;
 - (iii) $|pr_{\overline{i}}(\overline{v})| = 3\sqrt{2}$,

where $\bar{i}, \bar{j}, \bar{k} \in V_3$ are standard unit versors.

- 7. Find the area of the plane triangle having the vertices A(1,0,1), B(0,2,3), C(2,1,0).
- **8.** Let \overline{a} , \overline{b} , \overline{c} be three noncollinear vectors. Show that there exists a triangle ABC with $\overline{BC} = \overline{a}$, $\overline{CA} = \overline{b}$ and $\overline{AB} = \overline{c}$ if and only if $\overline{a} \times \overline{b} = \overline{b} \times \overline{c} = \overline{c} \times \overline{a}$.
- **9.** Find a vector orthogonal on both \overline{u} and \overline{v} , if:
 - a) $\overline{u} = -7\overline{i} + 3\overline{j} + \overline{k}$ and $\overline{v} = 2\overline{i} + 4\overline{k}$ b) $\overline{u} = (-1, -1, -1)$ and $\overline{v} = (2, 0, 2)$.

Date: October 21, 2022.