## Department Of Aerospace Engineering, Indian Institute Of Technology Madras



# AS2101: Introduction to Aerospace Engineering

Report 7

Pranit Zope AE20B046

December 1, 2021

## Contents

| 1                         | Aim                                                                                     | 2                          |  |  |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|
| 2                         | Theory  2.1 Fundamental Rule of Gaussian Quadrature                                     | 2<br>2<br>2<br>2<br>3      |  |  |  |  |  |
| 3                         | First 5 Legendre Polynomials - Graphical Representation                                 |                            |  |  |  |  |  |
| 4                         | Manual Integration                                                                      |                            |  |  |  |  |  |
| 5                         | Results using Trapezoidal and Gaussian Methods5.1 Gaussian Method5.2 Trapezoidal Method | <b>5</b><br>5              |  |  |  |  |  |
| 6                         | Errors(log(error) vs N : Graphical Analysis 6.1 Gaussian Method                         |                            |  |  |  |  |  |
| $\mathbf{A}_{\mathbf{J}}$ | ppendix                                                                                 | 7                          |  |  |  |  |  |
| $\mathbf{A}$              | .m code for Gaussian Method                                                             |                            |  |  |  |  |  |
| В                         | .m code for Trapezoidal Method                                                          |                            |  |  |  |  |  |
| $\mathbf{C}$              | .m code for error analysis C.1 Gaussian Method                                          | <b>7</b><br>7<br>8         |  |  |  |  |  |
| $\mathbf{L}$              | ist of Figures                                                                          |                            |  |  |  |  |  |
|                           | Trapezoidal Method of Integration                                                       | 2<br>3<br>3<br>4<br>5<br>6 |  |  |  |  |  |

#### 1 Aim

To Find the Integral

$$\int_{-1}^{1} e^{-x} sin^2(4x)$$

using Trapezoidal and Gaussian Quadrature and comparing the efficiency of both the techniques.

#### 2 Theory

#### 2.1 Fundamental Rule of Gaussian Quadrature

This is used to find the exact values of definite integrals of polynomials (degree = 2n-1, where n is the number of nodes solved.)

$$\int_{-1}^{1} f(x)dx = \sum_{i=0}^{n} f(x_i) \cdot w_i \tag{1}$$

Here, w is called the weighted sum.

#### 2.2 Gauss-Legendre Quadrature

To find the weighted sum (w), we need a set of orthogonal polynomials called the **Legendre Polynomials** which are given by Rodrigue's formula, which states

$$P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} (x^2 - 1)^n$$

The roots of  $P_n(x)$  are the nodes used. After this, we calculate the weighted sum by the formula:

$$w_i(x) = \frac{2}{(1 - x_i^2)[(P_n(x_i)]^2]}$$

## 2.3 Trapeziodal Method of Integration

We divide the area under curve into several trapezoids and sum up the area to ultimately find the value of definite integral.



Figure 1: Trapezoidal Method of Integration

$$I = \sum_{i=0}^{n} \frac{(x_{i+1} - x_i)(f(x_i) + f(x_{i+1}))}{2}$$

## Legendre Polynomials

| n | ${\widetilde P}_n(x)$                         |
|---|-----------------------------------------------|
| 0 | 1                                             |
| 1 | 2x-1                                          |
| 2 | $6x^2-6x+1$                                   |
| 3 | $20x^3 - 30x^2 + 12x - 1$                     |
| 4 | $70x^4 - 140x^3 + 90x^2 - 20x + 1$            |
| 5 | $252x^5 - 630x^4 + 560x^3 - 210x^2 + 30x - 1$ |

Figure 2: First 5 Legendre Polynomials

## Nodes and weights

| Number of points, $n$ | Points, $x_i$                                         |           | Weights, $w_i$                |          |
|-----------------------|-------------------------------------------------------|-----------|-------------------------------|----------|
| 1                     | 0                                                     |           | 2                             |          |
| 2                     | $\pm \frac{1}{\sqrt{3}}$ $\pm 0.57735$                |           | 1                             |          |
|                       | 0                                                     |           | $\frac{8}{9}$                 | 0.888889 |
| 3                     | $\pm\sqrt{rac{3}{5}}$                                | ±0.774597 | $\frac{5}{9}$                 | 0.555556 |
| 4                     | $\pm\sqrt{\frac{3}{7}-\frac{2}{7}\sqrt{\frac{6}{5}}}$ | ±0.339981 | $\frac{18+\sqrt{30}}{36}$     | 0.652145 |
|                       | $\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$ | ±0.861136 | $\frac{18-\sqrt{30}}{36}$     | 0.347855 |
|                       | 0                                                     |           | $\frac{128}{225}$             | 0.568889 |
| 5                     | $\pm\frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$         | ±0.538469 | $\frac{322+13\sqrt{70}}{900}$ | 0.478629 |
|                       | $\pm\frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$         | ±0.90618  | $\frac{322-13\sqrt{70}}{900}$ | 0.236927 |

Figure 3: Nodes and Weight Sums of first 5 n

#### 2.4 Change of Limits

As we can see in the Fundamental rule of Gaussian Quadrature, the limits give us integrals inly from -1 to 1.

Thus, in order to change the limits from (-1 to 1) to (a to b), we use  $x = \frac{b-a}{2}u + \frac{b+a}{2}$  such that we can get the required integral by putting u from -1 to 1.

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{b-a}{2}u + \frac{b+a}{2}\right) du$$

# 3 First 5 Legendre Polynomials - Graphical Representation



Figure 4: Graphical Representation of first 5 Legendre polynomials

## 4 Manual Integration

We will find the value by manual integration first, and then later tally with the results of the Trapezoidal and gaussian Method.

$$I = \int_{-1}^{1} e^{-x} \sin^2(4x) dx$$

As we know,  $f(x) \equiv f(a+b-x)$ ;

$$I = \int_{-1}^{1} e^x \sin^2(4x) dx$$

Solving this, we get

$$I = \left[ -\frac{e^x}{130} \left[ 8\sin(8x) + \cos(8x) - 65 \right]_{-1}^1 \right]$$

Which on putting limits gives us I = 0.9899352767719962

## 5 Results using Trapezoidal and Gaussian Methods

#### 5.1 Gaussian Method

```
>> gaussian(10)
ans = 0.989935015655239

>> gaussian(30)
ans = 0.989935276771999

>> gaussian(50)
ans = 0.989935276771994
```

#### 5.2 Trapezoidal Method

```
>> trapezoidal(10)
ans = 1.036961178946498

>> trapezoidal(30)
ans = 0.994978738845161

>> trapezoidal(50)
ans = 0.991745973094080
```

## 6 Errors(log(error) vs N : Graphical Analysis

#### 6.1 Gaussian Method



Figure 5: log(error) vs N graph for Gaussian Method

<sup>\*</sup>Code attached in appendix

<sup>\*</sup>Code attached in appendix

## 6.2 Trapezoidal Method



Figure 6:  $\log(\text{error})$  vs N graph for Trapezoidal Method

#### A .m code for Gaussian Method

```
# Pranit Zope
# AE20B046
# Task 06
function retval = gaussian (n)
format long
x=zeros(99);
w=zeros(100);
for i=1:99
file_name=int2str(i);
a=strcat(file_name, "roots.txt");
b=strcat(file_name, "weights.txt");
temp_1=importdata(a);
temp_2=importdata(b);
  for j=1:size(temp_1)(1,2)
   x(i,j) = temp_1(1,j);
  endfor
  for j=1:size(temp_2)(1,2)
      w(i,j) = temp_2(1,j);
endfor
endfor
retval=0;
for k=1:99
  retval+=w(n,k)*f(x(n,k));
endfunction
```

## B .m code for Trapezoidal Method

```
# Pranit Zope
# AE20B046
# Task 06

function retval = trapezoidal(n)
format long

x=linspace(-1,1,n+1);
retval=0;
for i=1:n
   retval+=0.50*(x(i+1)-x(i))*(f(x(i))+f(x(i+1)));
endfor
endfunction
```

#### C .m code for error analysis

#### C.1 Gaussian Method

```
# Pranit Zope
# AE20B046
# Task 06
```

```
format long;
x=1:99;
y1=[];
for i=1:99
    y1=[y1,log(error(gaussian(i)))];
endfor
gaussian(21)
plot(x,y1,"-",'linewidth',2.5)
grid on
title('log(error) vs N for Gaussian method')
xlabel('N (No of equations created)')
ylabel('log(error)')
set(gca,'fontsize',24)
```

#### C.2 Trapezoidal Method

```
# Pranit Zope
# AE20B046
# Task 06
format long
x=1:99
y 1 = []
for i=1:99
 y1=[y1,log(error(trapezoidal(i)))]
endfor
trapezoidal(99)
plot(x,y1,"-",'linewidth',2.5)
grid on
title('log(error) vs N for Trapezoidal method')
xlabel('N (No of area segments created)')
ylabel('log(error)')
set(gca,'fontsize',24)
```