Construct a minimal DFA for regular expression 1(10|01)*1 following steps below:

(a) Construct an equivalent NFS using Thompson's construction.

NFA Term: 0 NFA Term: 1

NFA Term: 01 NFA Term: 10

NFA Term: 10|01

NFA Term: $(10|01)^*$

NFA Term: 1(10|01)*1

(b) Convert the NFA to an equivalent DFA.

$$q_0 = \varepsilon\text{-closure}(\{s_{00}\}) = \{s_{00}\}$$
Start state.

$$T[q_0, 0] = \varepsilon$$
-closure($\{\}$) = q_e
 $T[q_0, 1] = \varepsilon$ -closure($\{s_{01}\}$) = $\{s_{01}, s_{02}, s_{03}, s_{04}, s_{05}, s_{13}, s_{14}\} = q_1$

$$\begin{split} T[q_1,0] &= \varepsilon\text{-closure}(\{s_{07}\}) = \{s_{07},s_{09}\} = q_2 \\ T[q_1,1] &= \varepsilon\text{-closure}(\{s_{06},s_{15}\}) = \{s_{06},s_{08},s_{15}\} = q_3 \ \# \ \text{Final state}. \end{split}$$

$$T[q_2, 0] = \varepsilon\text{-closure}(\{\}) = q_e$$

$$T[q_2, 1] = \varepsilon\text{-closure}(\{s_{11}\}) = \{s_{03}, s_{04}, s_{05}, s_{11}, s_{12}, s_{13}, s_{14}\} = q_4$$

$$T[q_3, 0] = \varepsilon$$
-closure($\{s_{10}\}$) = $\{s_{03}, s_{04}, s_{05}, s_{10}, s_{12}, s_{13}, s_{14}\} = q_5$
 $T[q_3, 1] = \varepsilon$ -closure($\{\}\}$) = q_e

$$T[q_4, 0] = \varepsilon$$
-closure $(\{s_{07}\}) = q_2 \#$ Already computed.
 $T[q_4, 1] = \varepsilon$ -closure $(\{s_{06}, s_{15}\}) = q_3 \#$ Already computed.

$$T[q_5, 0] = \varepsilon$$
-closure $(\{s_{07}\}) = q_2 \#$ Already computed.
 $T[q_5, 1] = \varepsilon$ -closure $(\{s_{06}, s_{15}\}) = q_3 \#$ Already computed.

	0	1
q_0	q_e	q_1
q_1	q_2	q_3
q_2	q_e	q_4
q_3	q_5	q_e
q_4	q_2	q_3
q_5	q_4	q_3

Equivalent DFA.

(c) Minimize the DFA in step (b).

Final state:

$$p_0 = \{q_3\}$$

Other states:

$$p_1 = \{q_0, q_1, q_2, q_4, q_5\}$$

p_1	0
q_0	p_e
q_1	p_1
q_2	p_e
q_4	p_1
q_5	p_1

Split p_1 into 2 partitions:

$$p_1 = \{q_0, q_2\}$$

$$p_1 = \{q_0, q_2\}$$

$$p_2 = \{q_1, q_4, q_5\}$$

Now,

$$p_0 = \{q_3\}$$

$$p_1 = \{q_0, q_2\}$$

$$p_0 = \{q_3\}$$

$$p_1 = \{q_0, q_2\}$$

$$p_2 = \{q_1, q_4, q_5\}$$

p_1	0	1
q_0	p_e	p_2
q_2	p_e	p_2

p_2	0	1
q_1	p_1	p_0
q_4	p_1	p_0
q_5	p_1	p_0

No change.

Minimized DFA.

Problem 2.5 in Section 2.6 at page 104.

NFA.

Note: I use the NFA in the textbook for decimals. The textbook constructs "concatenation" in a slightly different way than my notes.

$NFA \rightarrow DFA$

Here I try to reuse the results for decimals. So I assume the NFA \rightarrow DFA \rightarrow minimal DFA steps for decimals are done.

Below we construct minimal DFA for integers.

$$q_0 = \varepsilon$$
-closure $(\{s_{15}\}) = \{s_{15}\}$

$$T[q_0,d] = \varepsilon$$
-closure($\{s_{16}\}$) = $\{s_{16},s_{17},s_{18},s_{20}\} = q_1 \#$ Final state

$$T[q_1, d] = \varepsilon$$
-closure($\{s_{19}\}$) = $\{s_{18}, s_{19}, s_{20}\} = q_2 \#$ Final state

$$T[q_2,d] = \varepsilon\text{-closure}(\{s_{19}\}) = q_2$$

$DFA \, \rightarrow \, minimal \,\, DFA \,\, for \,\, integer$

$$p_1 = \{q_0\}, \, p_2 = \{q_1, q_2\}$$

Try p_2 ,

	d
q_1	p_2
q_2	p_2

no further partitioning needed, we get:

The textbook gives the minimal DFA for decimals as follows:

Combine both, we have NFA below:

State t_4 accepts decimals. State t_6 accepts integers.

Note that it is still an NFA. We now transform it to DFA and then minimal DFA.

$$t_0' = \varepsilon\text{-closure}(\{t_0\}) = \{t_0, t_1, t_5\}$$
Start state.

$$T[t_0',d]=\varepsilon\text{-closure}(\{t_2,t_6\})=\{t_2,t_6\}=t_1'$$
Final state for integer $T[t_0',.]=\varepsilon\text{-closure}(\{t_3\})=\{t_3\}=t_2'$

$$T[t_1',d] = \varepsilon$$
-closure $(\{t_2,t_6\}) = t_1'$
 $T[t_1',.] = \varepsilon$ -closure $(\{t_4\}) = \{t_4\} = t_3' \#$ Final state for decimal

$$T[t_2',d] = \varepsilon\text{-closure}(\{t_4\}) = t_3'$$

$$T[t_2',.] = \emptyset \text{ $\#$ error.}$$

$$T[t_3', d] = \varepsilon$$
-closure $(\{t_4\}) = t_3'$
 $T[t_3', .] = \emptyset$

$DFA \, \rightarrow \, minimal \, \, DFA$

$$p_1 = \{t'_0, t'_2\}, p_2 = \{t'_1\}, p_3 = \{t'_3\}$$

Note that we put t'_1 , and t'_3 into two different partitions to distinguish integer from decimal. Try p_1 ,

	d
t'_0	p_2
t_2'	p_3

split p_1 to $p_1 = \{t'_0\}, p_4 = \{t'_2\}.$

Minimize the DFA.

$$P_1 = \{q_0, q_1, q_3\}$$

$$P_2 = \{q_2, q_4\}$$

Try P_1 .

	a
q_0	p_1
q_1	p_2
q_3	p_2

Partition P_1 by "a" to $P_1 = \{q_0\}, P_3 = \{q_1, q_3\}.$ Now $P_1 = \{q_0\}, P_2 = \{q_2, q_4\}, P_3 = \{q_1, q_3\}.$

Try P_2 .

	a
q_2	p_3
q_4	p_2

Split
$$P_2$$
 by "a" to $P_2=\{q_2\},\ P_4=\{q_4\}.$
Now $P_1=\{q_0\},\ P_2=\{q_2\},\ P_3=\{q_1,q_3\},\ P_4=\{q_4\}.$

Try P_3 .

	a	b
q_1	p_2	p_4
q_3	p_2	p_4

No further partitioning needed. $\,$

Minimized DFA.