Nama : Dhanar Agastya Rakalangi

NRP : 5002221075

- 1. Perhatikan barisan fungsi (f_n) yang didefinisikan dengan $f_n(x) = \frac{nx}{1 + nx^2}$ untuk $x \in A := [0, \infty)$.
 - (a) Tunjukkan bahwa (f_n) terbatas pada A untuk semua $n \in \mathbb{N}$.

Jawab:

Perhatikan $f_n(x) = \frac{nx}{1 + nx^2}$ dengan $x \in A$, maka x > 0, $nx \ge 0$ dan $1 + nx^2 \ge 1$. Selanjutnya dengan definisi, terdapat M > 0 sedemikian hingga $|f_n| \le M$, maka $f_n(x) \le \frac{nx}{1}$. Dengan demikian, $f_n(x)$ terbatas pada A untuk semua $n \in \mathbb{N}$.

(b) Tunjukkan bahwa (f_n) konvergen titik-demi-titik ke suatu fungsi f, tetapi tidak terbatas.

Jawab:

- Untuk x = 0, kita punya $f_n(0) = 0$ untuk setiap $n \in \mathbb{N}$. Sehingga $f_n(x)$ konvergen ke 0.
- Untuk x > 0, kita punya $f_n(x) = \frac{nx}{1 + nx^2} = \frac{1}{1/nx + x} \implies \frac{1}{x}$. Sehingga $f_n(x)$ konvergen ke 1/x.

Jadi, dapat disimpulkan (f_n) konvergen titik-demi-titik ke suatu fungsi f yaitu

$$f(x) = \begin{cases} 0 & \text{jika } x = 0\\ 1/x & \text{jika } x > 0 \end{cases}$$

.

Selanjutnya akan ditunjukkan bahwa ftidak terbatas, kita gunakan kontradiksi. Asumsikan fterbatas, maka ada M>0sehingga $|f(x)|\leq M$ untuk setiap $x\in A$. Kita ambil $x=\frac{1}{(3M)},$ maka $f\left(\frac{1}{(3M)}\right)=3M$, jelas ini kontradiksi dengan asumsi bahwa fterbatas.

- $\therefore f$ tidak terbatas.
- (c) Apakah (f_n) konvergen seragam pada A? Jelaskan!

Jawab:

Tidak konvergen seragam, karena f tidak kontinu pada A, padahal (f_n) kontinu untuk setiap $n \in \mathbb{N}$.

2. Jika $\sum a_n$ konvergen mutlak dan (b_n) barisan terbatas, tunjukkan bahwa $\sum a_n b_n$ konvergen mutlak.

Jawab:

Karena $\sum a_n$ konvergen mutlak, maka $\sum |a_n|$ konvergen. Karena (b_n) terbatas, maka ada M>0 sehingga $|b_n|\leq M$ untuk setiap $n\in\mathbb{N}$. Dengan demikian, kita punya $|a_nb_n|\leq M|a_n|$ untuk setiap $n\in\mathbb{N}$. Karena $\sum |a_n|$ konvergen, maka $\sum M|a_n|$ juga konvergen. Dengan demikian, $\sum a_nb_n$ konvergen mutlak.

3. Tunjukkan bahwa deret $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \dots$ adalah konvergen,
tetapi uji rasio dan uji akar gagal

diterapkan untuk memeriksa konvergensi deret tersebut.

Jawab:

Kita perhatikan bahwa deret tersebut dapat ditulis sebagai berikut

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \frac{1}{(2n)^3} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} + \sum_{n=1}^{\infty} \frac{1}{(2n)^3}$$

• Uji Rasio:

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \lim_{n \to \infty} \frac{f_{n+1}}{f_n}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{(2n)^2}}{\frac{1}{(2n-1)^2}} = \lim_{n \to \infty} \frac{(2n-1)^2}{2n^2} = 1 \text{ (Tidak dapat ditentukan)}$$

$$\sum_{n=1}^{\infty} \frac{1}{(2n)^3} = \lim_{n \to \infty} \frac{f_{n+1}}{f_n}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{(2n+1)^3}}{\frac{1}{2n}} = 1 \text{ (Tidak dapat ditentukan)}$$

• Uji Akar :

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \lim_{n \to \infty} |x_n|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \left| \frac{1}{(2n-1)^{\frac{2}{n}}} \right| = e^{(\frac{2}{n})\ln(2n-1)} = e^0 = 1 \text{ (Tidak dapat ditentukan)}$$

$$\sum_{n=1}^{\infty} \frac{1}{(2n)^3} = \lim_{n \to \infty} |x_n|^{\frac{1}{n}}$$

$$= \lim_{n \to \infty} \left| \frac{1}{(2n)^{\frac{3}{n}}} \right| = e^{(\frac{3}{n})\ln(2n)} = e^0 = 1 \text{ (Tidak dapat ditentukan)}$$

Kita perhatikan bahwa deret $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ adalah deret p-harmonik dengan p=2>1 yang konvergen. Demikian pula dengan deret $\sum_{n=1}^{\infty} \frac{1}{(2n)^3}$ adalah deret p-harmonik dengan p=3>1 yang konvergen juga. Sehingga deret tersebut konvergen.

4. Diberikan $\sum a_n$ deret yang konvergen mutlak. Tunjukkan bahwa $\sum a_n \sin(nx)$ adalah deret yang konvergen mutlak dan seragam.

Jawab:

Karena $\sum a_n$ konvergen mutlak, maka $\sum |a_n|$ konvergen. Karena $\sin(nx)$ terbatas sehingga $|\sin(nx)| \leq 1$ untuk setiap $n \in \mathbb{N}$. Dengan demikian, kita punya $|a_n\sin(nx)| \leq |a_n|$ untuk setiap $n \in \mathbb{N}$. Sehingga didapatkan $\sum |a_n\sin(nx)| \leq \sum |a_n|$. Dengan kriteria uji banding, maka $\sum a_n\sin(nx)$ konvergen mutlak.

Untuk menunjukkan bahwa $\sum a_n \sin(nx)$ konvergen seragam terutama pada interval $[0, 2\pi]$, kita gunakan kriteria Weierstrass M. Dalam kasus ini, kita dapat mengambil $f_n(x) = a_n \sin(nx)$ dan $M_n = |a_n|$. Kita sudah tahu bahwa $\sum |a_n|$ konvergen, maka sesuai Kriteria Weierstrass M, $\sum a_n \sin(nx)$ konvergen seragam pada interval $x \in [0, 2\pi]$.