第一章 线性代数的背景

November 7, 2018

1

1.1 矩阵

在这一章中,向量空间是定义在复数域上的, $\mathbb{C}^{n\times m}$ 表示由所有定义在 C 上的 $n\times m$ 的矩阵构成的向量空间。

加法:C = A + B,这里的 A, B 和 C 都 $\in \mathbb{C}^{n \times m}$,即 $c_{ij} = a_{ij} + b_{ij}$.

数乘: $C = \alpha A$,即 $c_{ij} = \alpha a_{ij}$.

乘法:C = AB,这里 A $\in \mathbb{C}^{n \times m}$, B $\in \mathbb{C}^{m \times p}$, C $\in \mathbb{C}^{n \times p}$, 即 $c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$.

 a_{*j} 表示矩阵 A 的第 \mathbf{j} 列, a_{i*} 表示矩阵 A 的第 \mathbf{i} 行。 A^H 表示矩阵 A 的转置共轭矩阵,即 $A^H = \bar{A}^H = \bar{A}^T$.

1.2 方阵与特征值

I 表示单位矩阵,若 CA=AC=I,则称矩阵 C 为矩阵 A 的逆矩阵 A^{-1} .

$$det(A) = a_{11}A_{11} + a_{11}A_{11} + \dots + (-1)^{1+n}A_{1n} = \sum_{j=1}^{n} (-1)^{j+1}a_{1j}det(A_{1j})$$

如果 det(A) = 0, 则称矩阵 A 是奇异的, 否则称 A 为非奇异的。

$$det(AB) = det(A)det(B)$$

$$det(A^T) = det(A)$$

$$det(\alpha A) = \alpha^n det(A)$$

$$det(\bar{A}) = \overline{det(A)}$$

$$det(I) = 1$$

1.2.1 定义

设 A 是 n 阶方阵,如果存在数 λ 和非零 n 维列向量 u,使得 $Au=\lambda u$ 成立,则称 λ 是 A 的一个特征值, 非零向量 u 称为矩阵 A 的对应于特征值 λ 的特征向量。

 $p_A(\lambda) = det(A - \lambda I)$ 称为矩阵 A 的特征多项式, λ 是矩阵 A 的特征值当且仅当 $det(A - \lambda I) \equiv p_A(\lambda) = 0$, 即 λ 是矩阵 A 的特征多项式的一个根。

矩阵 A 的谱是指 A 的所有特征值组成的集合,记为 $\sigma(A)$ 。

矩阵 A 是奇异的当且仅当 A 有一个特征值为 0。

1.2.2 命题

矩阵A是非奇异的当且仅当A可逆。

矩阵 A 的谱半径等于矩阵 A 的特征值的模的最大值,记为 $\rho(A)$,矩阵 A 的迹等于 A 的所有对角线元素的和,记为 $tr(A) = \sum_{i=1}^n a_{ii}$,也等于 A 的所有特征值的和。

1.2.3 命题

如果 λ 是矩阵 A 的特征值,那么 $\bar{\lambda}$ 是矩阵 A^H 的特征值。

如果存在一个非零列向量 x 使得 $Ax = \lambda x$, 则称 λ 为一个右特征值, x 称为矩阵 x 的特征值 x 的右特征向量。如果存在一个非零列向量 x 使得 x0 使得 x1 为一个左特征值, x2 称为矩阵 x3 的特征值 x3 的左特征向量。

$$Au = \lambda u, v^H A = \lambda v^H.$$

$$u^H A^H = \bar{\lambda} u^H. A^H v = \bar{\lambda} v.$$

1.3 矩阵范数

设矩阵 $\mathbf{A} \in \mathbf{C}^{n \times m}$, 定义矩阵 \mathbf{A} 的范数 $\parallel A \parallel_{pq} = \max \frac{\parallel Ax \parallel_p}{\parallel x \parallel_q}$, 这里 $x \neq 0, x \in \mathbf{C}^m$. 范数满足下面的性质:

 $||A|| \ge 0, \forall A \in \mathbb{C}^{n \times m},$ 并且 ||A|| = 0 当且仅当 A=0.

 $\parallel \alpha A \parallel = |\alpha| \parallel A \parallel, \forall A \in \mathbb{C}^{n \times m}, \forall \alpha \in \mathbb{C}.$

 $||A + B|| \le ||A|| + ||B||, \forall A, B \in \mathbb{C}^{n \times m}.$

当 q = p 时的范数称为 **p**-范数,有 $||AB||_p \le ||A||_p ||B||_p$ 。

对于方阵 A, 有 $||A^k||_p \le ||A||_p^k$, 如果 A^k 的 p-范数小于 1, 那么 A^k 收敛到 0。

矩阵 A 的 Frobenius 范数定义为 $(\sum_{i=1}^{m} \sum_{i=1}^{n} |a_{ij}|^2)^{1/2}$ 。

 $||A||_1 = max \sum_{i=1}^n |a_{ij}|, j=1,2,\cdots,m.$

 $||A||_{\infty} = max \sum_{i=1}^{m} |a_{ij}|, i=1,2,\dots,n.$

 $||A||_2 = [\rho(A^H A)]^{1/2} = [\rho(AA^H)]^{1/2}$

 $\parallel A \parallel_F = [tr(A^HA)]^{1/2} = [tr(AA^H)]^{1/2}$

设 $A \in \mathbb{C}^{n \times m}$, $A^H A$ 的特征值是非负的,令 $q = \min(n,m)$, $A^H A$ 的 q 个非负特征值的算术平方根叫作 A 的奇异值。 $||A||_2$ 等于矩阵 A 的最大的奇异值,记为 σ_1 .

1.4 子空间, 秩和核

向量集 $G=a_1,a_2,\cdots,a_q$ 的所有线性组合是一个向量子空间,叫做 G 的线性扩张。

 $spanG=spana_1,a_2,\cdots,a_q=z\in \mathbf{C}^n|z=\sum_{i=1}^q\alpha_ia_i,\alpha_{ii=1,2,\cdots q}\in \mathbf{C}^n$. 如果 a_1,a_2,\cdots,a_q 是线性无关的,那么 a_1,a_2,\cdots,a_q 叫做 spanG 的一组基。

给定两个向量子空间 S_1 和 S_2 ,它们的和 $S=S_1+S_2$ 也是一个向量子空间,定义为 S_1 中的所有向量和 S_2 中的所有向量的和。两个向量子空间的交集还是一个子空间,如果交集为 $\mathbf{0}$,则称 S_1 与 S_2 的和为直和,记 为 $S=S_1 \bigoplus S_2$. 当 \mathbf{S} 等于 C^n 时, $\forall x \in C^n$,存在唯一的向量 $x_1 \in S_1$ 和 $x_2 \in S_2$,使得 $x=x_1+x_2$,即分解 是唯一的.

算子 $P: x \longrightarrow x_1$, 是线性的, 并且有 $P^2 = P$, 即是幂等的。