Алгебраические группы

Пусть $X = V(I) \subset \mathbb{A}^n$, $Y = V(J) \subset \mathbb{A}^m$ — алгебраические множества. *Морфизм* аффинных алгебраических многообразий $\phi \colon X \to Y$ — это отображение, являющееся ограничением полиномиального отображения пространств $(P_1(x_1, \dots, x_n), \dots, P_m(x_1, \dots, x_n)) \colon \mathbb{A}^n \to \mathbb{A}^m$.

- 1. Пусть ϕ как выше. Двойственный гомоморфизм ϕ^* переводит алгебру функций $\mathbb{K}[Y] = \mathbb{K}[y_1, \dots, y_m]/J$ в $\mathbb{K}[X] = \mathbb{K}[x_1, \dots, x_n]/I$. Напишите его формулу.
- **2.** Пусть $C = V(x^3 y^2) \subset \mathbb{A}^2$. Проверьте, что отображение $\phi \colon \mathbb{A}^1 \to C, \quad t \mapsto (t^2, t^3)$ морфизм. Является ли ϕ изоморфизмом?
- **3.** Аффинное алгебраическое многообразие X это (неприводимое) алгебраическое множество с точностью до изоморфизма. Вложение в аффинное пространство соответствует выбору набора порождающих алгебры функций $\mathbb{K}[X]$. Проверьте это.
- **4.** Пусть $Y = V(I) \subset X$ замкнутое подмножество. Открытое подмножество $U = X \setminus Y$ имеет алгебру функций $\mathbb{K}[Y] = \mathbb{K}[X]_I = \left\{\frac{x}{z} \mid x, z \in \mathbb{K}[X], \exists n, I^n \frac{x}{z} \subset \mathbb{K}[X]\right\}$. Пусть $U \subset \mathbb{A}^1$ непустое открытое множество. Найдите минимальную систему порождающих $\mathbb{K}[U]$.
- **5.** Проверьте, что невырожденные матрицы $n \times n$ над \mathbb{K} образуют группу по умножению. Это *полная линейная группа* $GL(n,\mathbb{K})$. Найдите её алгебру функций и убедитесь, что отображения умножения и обратного элемента морфизмы. Такая группа называется (аффинной) алгебраической.

Группа поля по сложению $\mathbb{G}_a = (\mathbb{K}, +)$ называется $a\partial \partial umu$ вной (однопараметрической) группой, а группа поля по умножению $\mathbb{G}_m = (\mathbb{K}^{\times}, \cdot) -$ мультипликативной.

- **6.** * Докажите, что на \mathbb{A}^1 без двух и более точек нет структуры алгебраической группы.
- 7. Найдите замкнутые подгруппы в $GL(2,\mathbb{C})$, изоморфные \mathbb{G}_a или \mathbb{G}_m . Указание: Чему равно замыкание бесконечной циклической подгруппы в \mathbb{G}_a или \mathbb{G}_m ?
- **8.** Пусть $U, V \subset GL(n, \mathbb{K})$ непустые открытые подмножества, а поле \mathbb{K} бесконечно. Докажите, что $UV = \{uv \mid u \in U, v \in V\} = GL(n, \mathbb{K}).$

Действием алгебраической группы G на многообразии X называется морфизм $\cdot: G \times X \to X$, задающий действие G как (абстрактной) группы: $e \cdot x = x$, $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x)$, для любых $g_1, g_2 \in G$, $x \in X$.

- **10.** Рассмотрите \mathbb{G}_a -действия на \mathbb{A}^2 вида $(x,y) \mapsto (x+P(y),y)$ и $(x,y) \mapsto (x,y+P(x))$. Докажите, что группа, ими порождённая, транзитивно действует на
 - \bullet \mathbb{A}^2 :
 - парах различных точек из \mathbb{A}^2 ;
 - упорядоченных m-наборах различных точек из \mathbb{A}^2 .

Это свойство называется бесконечной транзитивностью.

Пучок функций на многообразии Z состоит из алгебр функций, определённых для всех открытых подмножеств в Z, удовлетворяющих аксиомам (1) ограничения на подмножество и (2) восстановления функции на множестве по согласованному набору функций на подмножествах. Пучок функций позволяет склеивать абстрактные алгебраические многообразия из аффинных.

11. Найдите пучок функций на проективном пространстве $\mathbb{P}^n(\mathbb{K})$. Чему равна алгебра функций на нём?

12. Проективное многообразие изоморфно замкнутому подмножеству $\{P(x_0,\ldots,x_n)=0\}\subset \mathbb{P}^n(\mathbb{K})$, где P — однородный многочлен. Укажите набор \mathbb{G}_a -действий, которые в совокупности транзитивно действуют на квадрике $\{x_0x_1-x_2x_3\}\subset \mathbb{P}^3(\mathbb{K})$.