Resumo Detalhado de 4-Vetores na Relatividade Especial

Samuel Keullen Sales

October 8, 2025

1. Introdução

Este documento detalha os conceitos de transformações de Lorentz, 4-vetores, energia e momento (4-momento) e 4-força na relatividade especial. Inclui explicações formais, interpretações, fórmulas destrinchadas, legendas e exemplos práticos.

2. 4-Vetores

Um 4-vetor é um objeto covariante sob transformações de Lorentz. Os principais 4-vetores são:

$$X^{\mu} = (ct, \mathbf{x})$$
 4-posição
$$U^{\mu} = \frac{dX^{\mu}}{d\tau} = \gamma(c, \mathbf{v})$$
 4-velocidade
$$P^{\mu} = mU^{\mu} = (E/c, \mathbf{p})$$
 4-momento
$$F^{\mu} = \frac{dP^{\mu}}{d\tau}$$
 4-força

Observação: O 4-vetor posição é independente, o 4-momento depende do momento 3D e da massa, e a 4-força depende do 4-momento. O 4-velocidade tem magnitude c no tempo próprio.

3. Energia e Momento (4-Momento)

3.1 Forma científica

$$P^{\mu} = \left(\frac{E}{c}, \mathbf{p}\right)$$
 4-momento, componente temporal = energia, espacial = momento (1)

$$E = \gamma mc^2$$
 Energia total, incluindo repouso (2)

$$\mathbf{p} = \gamma m \mathbf{v}$$
 Momento 3D relativístico (3)

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}} \qquad \text{Fator de Lorentz} \tag{4}$$

$$E^2 = (pc)^2 + (mc^2)^2$$
 Relação fundamental energia-momento, invariância relativística (5)

3.2 Forma destrinchada

- Energia de repouso: $E_0 = mc^2$ (partícula em repouso)
- Energia cinética relativística: $E_k = (\gamma 1)mc^2$

- Momento 3D: $\mathbf{p} = \gamma m \mathbf{v}$
- Verificação da relação: $E^2 (pc)^2 = (mc^2)^2$

3.3 Exemplo prático

Dado: m = 1 kg, v = 0.6c

- 1. Fator de Lorentz: $\gamma = 1/\sqrt{1 0.6^2} = 1.25$
- 2. Energia total: $E = \gamma mc^2 \approx 1.125 \times 10^{17} \text{ J}$
- 3. Momento: $\mathbf{p} = \gamma mv = 0.75c \approx 2.25 \times 10^8 \text{ kg m/s}$
- 4. Verificação: $E^2 = (pc)^2 + (mc^2)^2 \approx 1.125 \times 10^{17} \text{ J}$

4. 4-Força

4.1 Forma científica

$$F^{\mu} = \frac{dP^{\mu}}{d\tau}$$
 4-força como derivada do 4-momento pelo tempo próprio (6)

$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$
 Componentes espaciais, força clássica (7)

4.2 Interpretação

A 4-força depende do 4-momento, garantindo covariância. Componentes espaciais se reduzem à força clássica em referenciais comuns.

5. Relação Hierárquica dos 4-Vetores

- 4-posição X^{μ} : independente
- 4-velocidade $U^{\mu}=dX^{\mu}/d\tau$: derivada da posição
- 4-momento $P^{\mu} = mU^{\mu}$: depende da 4-velocidade e massa
- 4-força $F^{\mu} = dP^{\mu}/d\tau$: depende do 4-momento

Ou seja: $X^{\mu} \to U^{\mu} \to P^{\mu} \to F^{\mu}$.

6. Outros 4-Vetores (Revisão rápida)

$$X^{\mu}=(ct,\mathbf{x})$$
 4-posição
$$U^{\mu}=\gamma(c,\mathbf{v})$$
 4-velocidade
$$P^{\mu}=mU^{\mu}$$
 4-momento
$$F^{\mu}=dP^{\mu}/d\tau$$
 4-força