Классы:

Canvas:

- C.load(filename) загружает картинку filename
- C.save(filename) сохраняет текущую картинку в filename
- C(int x, int y) создаёт пустой холст x на y
- C.fill canvas(int R, int G, int B) заливает весь холст цветом R.G.B
- C.put_pixel(int x, int y, int R, int G, int B) закрашивает пиксель (x, y) цветом R.G.B (Ось 0х вправо, Ось 0у вниз)

Reader:

- R(string scene, string objs) настраивает ридер на чтение параметров сцены в scene и объектов в objs
- R.read_scene(vector<double>& camera, ...) читает параметры сцены в переданные переменные
- R.read_objects(vector<figure*>& objs) читает объекты в переданный вектор

Raytracer:

- R.calc_shadow(...) private служебная функция, рассчёт теней
- R.calc_light(...) private служебная функция, рассчёт света (диффузный / глянец)
- R(string scene, string objs, string saveto, int thread_num) конструктор...
- R.raytrace() берёт инструкции из scene, объекты из objs, рассчитывает на CPU в thread_num потоках и сохраняет в saveto
- R.stripe_trace(...) служебная функция, рассчёт фрагмента экрана, распоточивается

Renderer:

- R(string scene_tmpl, string obj_tmpl, string save_tmpl, int thread_num) конструктор...
- R.render(int frame_number, bool logs) рендерит frame_number кадров по сценам scene_tmpl, объектам string_tmpl, сохраняет кадры по save_tmpl, рендер на CPU в thread_num потоках
- R.render_scope(...) вспомогательная функция, рендерит часть кадров, распоточивается
- R.join_to_video(string frame_tmpl, string video_name, int framerate, int quality, string ffmpeg_dir) склеивает кадры из frame_tmpl в видео video_name, FPS = framerate, качество quality: 1 = лучшее, 30 = худшее, ffmpeg_dir путь к необходимой утилите.

 (https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip)

• figure:

- uint8 t surface: 0 = диффузный объект, 1 = глянцевый объект
- virtual bool traceback(s_point, trace_ray, res_v, mode) трассирует луч trace_ray из точки пространства s_point в режиме mode (нужно для оптимизации...), сохранение результата в вектор res_v
- res_v = [x, y, z, R, G, B, Nx, Ny, Nz, stype, otype] координаты пересечения, Цвет точки пересечения, нормаль к пересеченной поверхности, тип поверхности (диффуз / глянец), тип пересеченного объекта (1 = сфера, 2 = коробка, 3 = пирамидка)

box:

- double half_diag_quad квадрат половины диагонали (= квадрат радиуса описанной сферы...) - значение для оптимизации, вычисляется при инициализации объекта
- bool internal(...) private служебная функция, определяет принадлежность точки грани.

tetra:

- vector<double> optimize_center центр описанной сферы значение для оптимизации, вычисляется при инициализации
- double circumscribed_RAD радиус описанной сферы значение для оптимизации, вычисляется при инициализации
- bool internal(...) private служебная функция, определяет принадлежность точки полигону тетраэдра

spinlock:

- Самописный мьютекс, .lock() / .unlock()

Функции:

- split_by_space(...) парсит строку на составляющие, нужна для чтения файлов
- vectmul(vect_1, vect_2) векторное произведение, возвращает вектор
- scalmul(vect 1, vect 2) скалярное произведение
- dist_quad(point_1, point_2) квадрат расстояния между точками (без корня для оптимизации)
- volume_vect(vect_1, vect_2, vect_3) объем параллелепипеда, натянутого на три вектора (не помню зачем нужна...:()
- vectmul_area(vect_1, vect_2) площадь векторного произведения
- int closest_point(...) ближайшая точка к данной необходима при наложении трассируемых объектов
- to_length(vector, len) приводит вектор vector к длине len
- void check_system_cores() вывод оптимального числа потоков текущей системы

Форматы:

• Параметры сцены в текстовом файле:

camera X Y ZПоложение камерыnormal_ X Y ZНаправление "взгляда"upvector X Y ZНаправление "вверх"light X Y ZПоложение лампочкиscreen_dist DРасстояние до экранаview_depth VDГлубина зренияscreen_width SWРазрешение экрана Xscreen_height SHРазрешение экрана Y

Порядок строк в файле не важен.

• Обьекты сцены в текстовом файле:

```
sphere R G B x y z Radius Surface
box R G B x_min y_min z_min x_max y_max z_max Surface
tetra R G B x1 y1 z1 ... x4 y4 z4 Surface
```