- 1. Решить приближенно интегральное уравнения Фредгольма $u(x) 2 \int_0^1 (x^2 s) u(s) ds = (2x^2 3)/6$ методом механических квадратур с использованием формулы трапеций.
- 2. Определите порядок метода $y_1 = y_0 + \frac{h}{4} \Big(f_0 + 3f(x_0 + h, y_0 + hk) \Big)$, где $f_0 = f(x_0, y_0)$, $k = f(x_0 + \frac{h}{2}, y_0 + \frac{h}{2} f_0)$. Запишите его таблицу Бутчера.
- 3. Дано ОДУ $y'(x) = \frac{x}{y(x)}$ и точки (0,1), $(1/2, \sqrt{5}/2)$, через которые проходит решение. Вычислить приближенное значение y(1) явным методом Адамса.
- 4. Даны два метода Рунге–Кутты: $\frac{\alpha}{1}$ и $\frac{\beta}{\beta}$. Записать таблицу Бутчера для метода, который получается последовательным применением этих методов с шагом $\frac{h}{2}$. Определить максимально возможный порядок получившегося метода.

1. Формулировка задачи в стандартном виде

Уравнение имеет вид

$$u(x) \ - \ \lambda \int_a^b K(x,s) \, u(s) \, ds = f(x),$$

где

$$\lambda=2, \quad [a,b]=[0,1], \quad K(x,s)=x^2-s, \quad f(x)=rac{2x^2-3}{6}=rac{x^2}{3}-rac{1}{2}.$$

2. Метод механических квадратур (трапеции)

Разобьём [0,1] на n равных частей длины

$$h = \frac{1-0}{n} = \frac{1}{n}.$$

Будем в демонстрации брать n=2 (три узла). Тогда

$$h=rac{1}{2}, \qquad x_j=jh, \ j=0,1,2.$$

По формуле трапеций веса

$$A_0=rac{h}{2}=rac{1}{4}, \quad A_1=h=rac{1}{2}, \quad A_2=rac{h}{2}=rac{1}{4}.$$

3. Дискретизация и система линейных уравнений

В узлах x_i (i=0,1,2) требуем

$$u(x_i) - 2\sum_{j=0}^2 A_j \, K(x_i, x_j) \, u(x_j) = f(x_i).$$

Обозначим $u_i=u(x_i)$. Тогда для каждого i имеем:

$$u_i \ - \ 2 \Big(A_0 K_{i0} u_0 + A_1 K_{i1} u_1 + A_2 K_{i2} u_2 \Big) = f_i,$$

где

$$K_{ij} = K(x_i, x_j) = x_i^2 - x_j, \quad f_i = f(x_i) = rac{x_i^2}{3} - rac{1}{2}.$$

3.1. Значения x_i , f_i и K_{ij}

i	x_i	$f_i=rac{x_i^2}{3}-rac{1}{2}$
0	0	$-rac{1}{2}$
1	$\frac{1}{2}$	$\frac{1/4}{3} - \frac{1}{2} = -\frac{5}{12}$
2	1	$\frac{1}{3} - \frac{1}{2} = -\frac{1}{6}$

i,j	$K_{ij}=x_i^2-x_j$
(0,0)	0 - 0 = 0
(0,1)	0-0.5=-0.5
(0,2)	0-1=-1
(1,0)	0.25 - 0 = 0.25
(1,1)	0.25 - 0.5 = -0.25
(1,2)	0.25 - 1 = -0.75
(2,0)	1-0=1
(2,1)	1-0.5=0.5
(2,2)	1 - 1 = 0

3.2. Запись трёх уравнений

Для i=0:

$$u_0 - 2\Big(rac{1}{4}\cdot 0\cdot u_0 + rac{1}{2}\cdot (-0.5)\,u_1 + rac{1}{4}\cdot (-1)\,u_2\Big) = -rac{1}{2} \implies u_0 + rac{1}{2}\,u_1 + rac{1}{2}\,u_2 = -rac{1}{2}.$$

Умножим на 2:

$$2u_0 + u_1 + u_2 = -1.$$

Для i=1:

$$u_1 - 2\Big(rac{1}{4}\cdot 0.25\,u_0 + rac{1}{2}\cdot (-0.25)\,u_1 + rac{1}{4}\cdot (-0.75)\,u_2\Big) = -rac{5}{12}.$$

Раскрыв скобки:

$$u_1 - \left(rac{1}{8} u_0 - rac{1}{4} u_1 - rac{3}{8} u_2
ight) = -rac{5}{12} \implies -rac{1}{8} u_0 + rac{5}{4} u_1 + rac{3}{8} u_2 = -rac{5}{12}.$$

Умножим на 24:

$$\boxed{-3u_0 + 30u_1 + 9u_2 = -10.}$$

Для i=2:

$$u_2 - 2\Big(rac{1}{4}\cdot 1\,u_0 + rac{1}{2}\cdot 0.5\,u_1 + rac{1}{4}\cdot 0\,u_2\Big) = -rac{1}{6} \implies u_2 - ig(rac{1}{2}u_0 + rac{1}{2}u_1ig) = -rac{1}{6}.$$

Умножим на 6:

$$-3u_0 - 3u_1 + 6u_2 = -1.$$

Итого система

$$egin{cases} 2u_0+u_1+u_2=-1,\ -3u_0+30u_1+9u_2=-10,\ -3u_0-3u_1+6u_2=-1. \end{cases}$$

4. Решение системы

1. Из первого уравнения выразим

$$u_2 = -1 - 2u_0 - u_1$$
.

2. Подставим в второе и третье уравнения.

Во 2-м:

$$-3u_0 + 30u_1 + 9(-1 - 2u_0 - u_1) = -10 \implies -21u_0 + 21u_1 = -1.$$
 (4)

В 3-м:

$$-3u_0 - 3u_1 + 6(-1 - 2u_0 - u_1) = -1 \implies -15u_0 - 9u_1 = 5.$$
 (5)

Решим (4),(5). Из (4): $21u_1=21u_0-1 \Rightarrow u_1=u_0-rac{1}{21}$.

Подставляем в (5):

$$-15u_0 - 9(u_0 - \frac{1}{21}) = 5 \implies -24u_0 + \frac{3}{7} = 5 \implies u_0 = -\frac{4}{21}$$

Тогда

$$u_1 = -rac{4}{21} - rac{1}{21} = -rac{5}{21}, \quad u_2 = -1 - 2ig(-rac{4}{21}ig) - ig(-rac{5}{21}ig) = -rac{8}{21}.$$

5. Итоговое приближение

В узлах:

$$u(0)=u_0=-rac{4}{21},\quad uig(rac{1}{2}ig)=u_1=-rac{5}{21},\quad u(1)=u_2=-rac{8}{21}.$$

По методу Нистрёма (классический «обратный» вариант механических квадратур) приближённое решение на всём отрезке:

$$u(x)pprox f(x) \ + \ 2\sum_{j=0}^2 A_j \, (x^2-x_j) \, u_j \ = \ -rac{4}{21} \, (x^2+1).$$

Данный метод является явным методом Рунге-Кутты с тремя стадиями. Его формула:

$$y_1 = y_0 + rac{h}{4} \left(f_0 + 3 \cdot f(x_0 + h, y_0 + h \cdot k)
ight),$$

где:

- $f_0 = f(x_0, y_0)$
- $k = f(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f_0).$

Таблица Бутчера

Метод можно представить в виде таблицы Бутчера:

$$\begin{array}{c|cccc} 0 & 0 & \\ \frac{1}{2} & \frac{1}{2} & 0 & \\ 1 & 0 & 1 & 0 \\ \hline & \frac{1}{4} & 0 & \frac{3}{4} \end{array}$$

Здесь:

- c_i значения аргумента x для каждой стадии,
- a_{ij} коэффициенты для вычисления промежуточных значений,
- b_j веса для линейной комбинации стадий при вычислении $y_1.$

Определение порядка метода

Чтобы определить порядок метода, проверим условия порядка:

- 1. Условие первого порядка: $\sum b_j=1$
 - ullet $rac{1}{4}+0+rac{3}{4}=1$ выполнено.
- 2. Условие второго порядка: $\sum b_j c_j = rac{1}{2}$

•
$$\frac{1}{4} \cdot 0 + 0 \cdot \frac{1}{2} + \frac{3}{4} \cdot 1 = \frac{3}{4}
eq \frac{1}{2}$$
 — не выполнено.

Поскольку второе условие не выполнено, метод имеет первый порядок точности.

Вывод

• Таблица Бутчера:

• Порядок метода: 1 (первый).

Этот метод является явным методом Рунге-Кутты с тремя стадиями и первым порядком точности.

1. Постановка задачи

Нужно примерно найти

y(1)

для ОДУ

$$y'(x)=rac{x}{y(x)}$$

при известных значениях решения в точках

$$(x_0,y_0)=(0,1),\quad (x_1,y_1)=\Big(rac{1}{2},rac{\sqrt{5}}{2}\Big).$$

Будем использовать явный двухшаговый метод Адамса-Башфорта (Adams-Bashforth 2):

$$y_{n+1} = y_n + rac{h}{2} \, ig(3 \, f_n - f_{n-1} ig),$$

где $f_k = f(x_k, y_k)$.

2. Определение параметров

1. Шаг интегрирования

$$h=x_1-x_0=rac{1}{2}-0=rac{1}{2}.$$

2. Сетка

$$x_0=0, \quad x_1=rac{1}{2}, \quad x_2=x_1+h=1.$$

3. Надо найти

$$y_2 pprox y(1)$$
.

3. Вычисление значений f

Функция правой части:

$$f(x,y) = \frac{x}{y}.$$

• При $(x_0, y_0) = (0, 1)$:

$$f_0=f(x_0,y_0)=rac{0}{1}=0.$$

• При $(x_1,y_1)=(rac{1}{2},rac{\sqrt{5}}{2})$:

$$f_1 = f\!\!\left(rac{1}{2},rac{\sqrt{5}}{2}
ight) = rac{rac{1}{2}}{rac{\sqrt{5}}{2}} = rac{1}{\sqrt{5}} = rac{\sqrt{5}}{5}.$$

4. Формула метода Адамса-Башфорта

Для n=1 (переход от x_1 к x_2) имеем:

$$y_2=y_1+rac{h}{2}\left(3\,f_1-f_0
ight).$$

Подставляем:

$$y_2 = rac{\sqrt{5}}{2} + rac{rac{1}{2}}{2} \Big(3 \cdot rac{\sqrt{5}}{5} - 0 \Big) = rac{\sqrt{5}}{2} + rac{1}{4} \, rac{3\sqrt{5}}{5}.$$

5. Алгебраическое упрощение

1. Первое слагаемое:

$$\frac{\sqrt{5}}{2} = \frac{10\sqrt{5}}{20}.$$

2. Второе слагаемое:

$$\frac{1}{4} \, \frac{3\sqrt{5}}{5} = \frac{3\sqrt{5}}{20}.$$

3. Суммируем:

$$y_2 = rac{10\sqrt{5}}{20} + rac{3\sqrt{5}}{20} = rac{13\sqrt{5}}{20}.$$

6. Численная оценка

$$\sqrt{5}pprox 2.236067977, \quad y_2=rac{13\sqrt{5}}{20}pprox rac{13 imes 2.236067977}{20}pprox rac{29.0688837}{20}pprox 1.4534442.$$

Даны два одностадийных метода Рунге–Кутты (оба второго порядка) с шагом h:

1. Метод M_1 с таблицей Бутчера

$$\begin{array}{c|c} \alpha & \alpha \\ \hline & 1 \end{array}$$

т. е.

$$k_1=fig(t_n+lpha h,\; y_n+lpha h\, k_1ig), \qquad y_{n+1}=y_n+h\, k_1.$$

2. Метод M_2 с таблицей Бутчера

т.е.

$$k_1' = f(t_n + eta h, \ y_n + eta h \, k_1'), \qquad y_{n+1} = y_n + h \, k_1'.$$

Нужно получить единую формулировку «композитного» метода, который получается последовательным применением M_1 и M_2 на полушаге h/2, и определить его максимальный порядок.

Шаг 1. Механика последовательного применения

Пусть мы хотим сделать шаг от (t_n,y_n) до (t_{n+1},y_{n+1}) , где $t_{n+1}=t_n+h.$

- 1. Первый полушаг: применяем M_1 с шагом $\frac{h}{2}$.
 - Стадия

$$K_1 = f\Bigl(t_n + lpha \cdot rac{h}{2}, \; y_n + lpha rac{h}{2} \, K_1\Bigr).$$

• Промежуточное приближение

$$y^* \ = \ y_n + rac{h}{2} \, K_1, \qquad t^* = t_n + rac{h}{2}.$$

- 2. Второй полушаг: применяем M_2 с тем же шагом $\frac{h}{2}$, но уже к y^* в точке t^* .
 - Стадия

$$K_2 = f \Big(t^* + eta \cdot rac{h}{2}, \; y^* + eta rac{h}{2} \, K_2 \Big) \; = \; f \Big(t_n + rac{1+eta}{2} \, h, \; y_n + rac{h}{2} \, K_1 + eta rac{h}{2} \, K_2 \Big).$$

• Окончательное приближение

$$y_{n+1} = y^* + rac{h}{2}\,K_2 = y_n + rac{h}{2}\,K_1 + rac{h}{2}\,K_2.$$

Итого у метода две «внутренние» стадии K_1 и K_2 .

Шаг 2. Таблица Бутчера композитного метода

Обозначим общий шаг как h.

Коэффициенты вводятся так, чтобы

$$t$$
-координаты : $c_i h =$ аргумент времени в $f, \qquad y$ -аргументы : $y_n + h \sum_j a_{ij} K_j,$

И

$$y_{n+1} = y_n + h \sum_i b_i \, K_i.$$

Из механики вычислений:

1. Стадия 1 (K_1) :

$$c_1h=lpharac{h}{2}\implies c_1=rac{lpha}{2},$$
 y -аргумент $=y_n+rac{h}{2}\,lpha\,K_1=y_n+h\Big(rac{lpha}{2}\,K_1+0\cdot K_2\Big)\implies a_{11}=rac{lpha}{2},\quad a_{12}=0.$

2. Стадия 2 (K_2):

$$c_2h=rac{1+eta}{2}\,h \implies c_2=rac{1+eta}{2},$$
 y -аргумент $=y_n+rac{h}{2}\,K_1+rac{h}{2}\,eta\,K_2=y_n+h\Big(rac{1}{2}\,K_1+rac{eta}{2}\,K_2\Big)\implies a_{21}=rac{1}{2},\quad a_{22}=rac{eta}{2}.$

Таким образом, **таблица Бутчера** композитного метода:

$$egin{aligned} c_1 = rac{lpha}{2} & a_{11} = rac{lpha}{2} & a_{12} = 0 \ & c_2 = rac{1+eta}{2} & a_{21} = rac{1}{2} & a_{22} = rac{eta}{2} \ & b_1 = rac{1}{2} & b_2 = rac{1}{2} \end{aligned}$$

Шаг 3. Определение порядка метода

Для явного двух-стадийного РК порядка p коэффициенты должны удовлетворять ряду условий порядка. Проверим их по порядкам.

Порядок 1

$$b_1 + b_2 = 1: \quad rac{1}{2} + rac{1}{2} = 1 \;\; \checkmark$$

Значит метод как минимум 1-го порядка.

Порядок 2

Нужна дополнительная условие

$$b_1\,c_1+b_2\,c_2=rac{1}{2}.$$

Подставляем:

$$\frac{1}{2} \cdot \frac{\alpha}{2} + \frac{1}{2} \cdot \frac{1+\beta}{2} = \frac{\alpha+(1+\beta)}{4} = \frac{\alpha+\beta+1}{4} \stackrel{!}{=} \frac{1}{2} \implies \alpha+\beta+1 = 2 \implies \boxed{\alpha+\beta=1}.$$

При этом условии метод имеет точность как минимум второго порядка.

Порядок 3

Надо дополнительно две уравнения:

1.
$$b_1c_1^2 + b_2c_2^2 = \frac{1}{3}$$
.

2.
$$b_1(a_{11}c_1 + a_{12}c_2) + b_2(a_{21}c_1 + a_{22}c_2) = \frac{1}{6}$$
.

Если подставить все наши a_{ij}, b_i, c_i и воспользоваться $\beta=1-\alpha$ (из условия порядка 2), получится система на α . Её решение не существует (система противоречива), то есть третьего порядка метод **не достигает**.

Вывод

1. Butcher-таблица композита (две стадии):

$$egin{array}{c|c} rac{lpha}{2} & rac{lpha}{2} & 0 \ \hline 1+eta & rac{1}{2} & rac{eta}{2} \ \hline & rac{1}{2} & rac{1}{2} \end{array}$$

2. Условие на второй порядок:

$$\alpha + \beta = 1$$
.

3. Максимальный порядок получившегося метода равен 2.