

KRAVSPECIFIKATION

Grupp 1

Version 1.0

Status

Granskad	2015-02-03	Jesper Otterholm
Godkänd	2015-02-03	Kent Palmkvist

PROJEKTIDENTITET

Grupp 1, 2015-VT Tekniska högskolan vid Linköpings universitet, ISY

Namn	Ansvar	Telefon	E-post
Jesper Otterholm	Projektledare (PL)	073 800 03 17	jesot351@student.liu.se
Lage Ragnarsson	Dokumentansvarig (DOA)	073 972 36 35	lagra033@student.liu.se
Erik Sköld		073 905 43 43	erisk214@student.liu.se
Emma Söderström		073 396 21 72	emmso236@student.liu.se
Matilda Östlund Visén		073 817 15 90	matos000@student.liu.se
Filip Östman		072 203 33 07	filos433@student.liu.se

E-postlista för hela gruppen: jesot351@student.liu.se

Kund: Institutionen för systemteknik, Linköpings universitet **Kontaktperson hos kund:** Kent Palmkvist, 3B:502, 013-28 13 47, kentp@isy.liu.se

Kursansvarig: Thomas Svensson, 3B:528, 013-28 13 68, thomass@isy.liu.se Handledare: Kent Palmkvist, 3B:502, 013-28 13 47, kentp@isy.liu.se

Innehåll

1	Inle	dning	. 5
	1.1 1.2 1.3 1.4	Parter	. 5 . 5 . 6
2	Öve	rsikt av systemet	. 6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Grov beskrivning av produkten Produktkomponenter Beroenden till andra system Ingående delsystem Avgränsningar Designfilosofi Generella krav på hela systemet	. 6 . 7 . 7 . 7
3	Styr	modulen	. 8
	3.1 3.2 3.3	Gränssnitt Designkrav Funktionella krav för styrmodulen	. 9
4	Sen	sormodulen	10
	4.1 4.2 4.3	Gränssnitt	10
5	Kom	nmunikationsmodulen	11
	5.1 5.2 5.3	Gränssnitt	11
6	PC-ı	modulen	12
	6.1 6.2 6.3	Gränssnitt	12 12
7		/ på vidareutveckling	
8		örlitlighet	
9		nomi	
10		eranskrav och delleveranser	
11	_	umentation	
12		ldning	
13	Refe	erenser	15

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2015-01-30	Första utkastet	Alla	
0.2	2015-02-02	Andra utkastet	Alla	
0.3	2015-02-03	Tredje utkastet	Alla	
1.0	2015-02-03	Första versionen	Alla	

1 INLEDNING

Detta är en kravspecifikation till ett kandidatprojekt där en prototyp av en undsättningsrobot ska tas fram. Undsättningsroboten ska kunna navigera i och utforska en grotta för att leta efter nödställda. Då nödställda funnits ska roboten kunna navigera fram och tillbaka mellan startplatsen och de nödställda bärandes på förnödenheter.

Roboten ska kommunicera trådlöst med en PC som befinner sig utanför grottsystemet.

Figur 1 Systemet i dess omgivning

1.1 Parter

Detta projekt består huvudsakligen av fyra parter: kunden (ISY, genom Kent Palmkvist), beställaren (Kent Palmkvist), projektgruppens medlemmar, samt handledaren som anlitas av projektgruppen. Projektgruppens medlemmar ska designa och producera produkten.

Tekniska experter inom specifika ämnesområden finns även tillgängliga som en begränsad resurs för hjälp till projektgruppen.

1.2 Syfte och Mål

Kandidatprojektets huvudsakliga syfte är att förbereda för kommande yrkesliv genom att ett realistisk projekt simuleras. Målsättningen i projektet är att studenten ska tillgodogöra sig större erfarenheter inom de tekniska bitarna, så som elektronikkonstruktion och programmering samt att kunna följa en projektmodell. Utöver en större inblick i hur digitala system fungerar ges även ett etikavsnitt inriktat mot företagande, för att ge en tankeställare kring vilka moraliska ställningstagande en ingenjör kan ställas inför. En stor del av projektet är också att arbeta aktivt i grupp med problemlösning för att ytterligare realisera ett verklighetstänk i projektet.

Projektgruppens mål är ta fram en prototyp för en undsättningsrobot enligt beställarens direktiv och denna kravspecifikation.

1.3 Användning

Produkten är en prototyp för en undsättningsrobot, som skulle kunna nyttjas för att underlätta ett räddningsarbete. Roboten ska skickas in i en outforskad grotta och söka upp nödställda. Sedan ska den kunna åka tillbaka till startpositionen och få förnödenheter som den kan leverera tillbaka till de nödställda. Projektgruppen avser dock att använda roboten i en tävling, varav tävlingsdirektiven samt banan beskrivs i bilaga

1.4 **Definitioner**

- Banan, Grotta, Labyrint avser den miljö roboten ska navigera och leta nödställda i.
- Nösdställa den fiktivt nödställda i labyrinten som roboten ska hitta. Refereras ibland till som "målet".

Kraven kommer listas på följande vis:

ŀ	(rav nr x	Förändring	Kravtext för krav nr X	prioritet
---	-----------	------------	------------------------	-----------

Det första fältet anger ett kravnummer som är unikt för hela dokumentet. I det efterföljande fältet anges om förändringar av kravet har skett, och i så fall när dessa infördes. Prioritet listas i tre nivåer där 1 står för baskrav, 2 respektive 3 för utökade krav som prioriteras i given ordning i mån av tid.

2 ÖVERSIKT AV SYSTEMET

Systemet är uppbyggt av moduler som kommunicerar enligt ett specificerat gränssnitt. En översikt av systemet illustreras i figur 2.

Figur 2 Översikt av systemet

2.1 Grov beskrivning av produkten

Produkten utgörs av en robot som skall kunna kartlägga sin omgivning och hitta nödställda i ett grottliknande utrymme utan att köra in i väggar. När den nödställde är funnen skall roboten hitta snabbaste kända vägen till utgången för att hämta proviant eller liknande till de nödställda.

2.2 Produktkomponenter

I leveransen ingår följande:

- En fungerande robot
- Programvara till PC
- Teknisk dokumentation
- En demonstration i form av en tävling

2.3 Beroenden till andra system

Systemet är beroende av en PC för att köra tillhörande programvara.

2.4 Ingående delsystem

Ingående delsystem på roboten är kommunikationsmodul, sensormodul och styrmodul. I hela systemet ingår även programvara till en dator och hårdvara för att kommunicera med roboten. (Se figur 2.)

2.5 Avgränsningar

Systemet behöver inte uppfylla krav som inte står nämnda i detta dokument.

2.6 **Designfilosofi**

Roboten ska bestå av separata moduler. Detta för att relativt enkelt kunna byta ut eller lägga till fler moduler utan att designa om hela projektet. Modulerna kan dock vara monterade på samma kort.

2.7 Generella krav på hela systemet

Dessa krav beskriver krav som ställs på systemet som en helhet.

Krav nr 1	Original	Roboten ska kunna köra autonomt i en bana definierad av tävlingsreglerna, se bilaga A.	1
Krav nr 2	Original	Roboten ska reagera på följande kommandon skickade från en PC: framåt, bakåt, framåt vänster, framåt höger, rotera vänster, rotera höger, stopp och kalibrering.	1
Krav nr 3	Original	Roboten ska kunna kommunicera sensordata till en PC.	1
Krav nr 4	Original	Roboten ska kunna köra i korridorer, parallellt med väggarna utan att slingra sig fram.	1
Krav nr 5	Original	Roboten ska kunna upptäcka start och mål (nödställda) i banan, markerade med svart markering i golvet enligt bilaga A.	1
Krav nr 6	Original	Roboten ska kunna beräkna och köra kortaste kända vägen mellan den nödställde och startpositionen.	1
Krav nr 7	Original	Roboten ska kunna transportera förnödenheter från startpositionen till den nödställde.	1
Krav nr 8	Original	Roboten ska kunna köra framåt och bakåt, framåt vänster och framåt höger, samt rotera vänster och höger.	1
Krav nr 9	Original	Roboten ska kunna mäta avlagd sträcka och skicka till PC:n.	1
Krav nr 10	Original	Roboten ska kunna navigera efter insamlad information om omgivningen.	1
Krav nr 11	Original	Roboten ska kunna släppa av förnödenheter vid målet.	1
Krav nr 12	Original	Roboten ska autonomt kunna plocka upp förnödenheter.	3
Krav nr 13	Original	Roboten ska ha en LCD display för att visa utvalda sensordata samt styrbeslut tagna av styrmodulen.	2
Krav nr 14	Original	Roboten ska ha en brytare för att ställa roboten i autonomt respektive manuellt läge.	1
Krav nr 15	Original	Roboten ska ha en knapp som startar den i tävling.	1
Krav nr 16	Original	Roboten ska på kommando kunna kalibrera den sensor som känner av svarta markeringar i golvet, specificerade i bilaga A.	1

3 STYRMODULEN

Styrmodulen är den del av systemet som i autonomt läge tar logiska beslut om vad som ska ske utifrån data erhållen av sensormodulen. Detta innefattar att avgöra var roboten ska åka och styra motorerna därefter. I manuellt läge ska styrmodulen istället utföra de kommandon som kommunikationsmodulen tagit emot från PC-modulen.

Figur 3 Översikt av styrmodulen

3.1 Gränssnitt

Styrmodulen ska skicka och ta emot information från kommunikationsmodulen. Den ska även ta emot data från sensormodulen.

Krav nr 17	Original	Styrmodulen ska skicka och ta emot information enligt bestämt gränssnitt för kommunikation.	1
------------	----------	---	---

3.2 Designkrav

Krav nr 18 Or	Original	Styrmodulen ska ha minst en processor	1
---------------	----------	---------------------------------------	---

3.3 Funktionella krav för styrmodulen

Nedan listas specifika krav på styrmodulen funktionalitet.

Krav nr 19	Original	Styrmodulen skall kunna styra robotens motorer	1
Krav nr 20	Original	Motorerna skall kunna styras framåt och bakåt.	1
Krav nr 21	Original	Styrmodulen ska kunna få information om sin omgivning från sensormodulen	1
Krav nr 22	Original	Kortaste sträckan till given plats i utforskad terräng skall kunna beräknas.	1

4 SENSORMODULEN

Sensormodulen läser av samtliga sensorer och sammanställer erhållen rådata i användbar form. Detta innebär att omvandla spänningsvärden till faktiska avstånd samt att uppskatta robotens position och orientering. Denna information ska sedan finnas tillgänglig för övriga delsystem.

Figur 4 Översikt av sensormodulen

4.1 Gränssnitt

Sensormodulen skickar information framtagen från sensordata till styrmodulen och kommunikationsmodulen.

Krav nr 23	Original	Sensormodulen ska skicka information enligt bestämt gränssnitt för kommunikation.	1
Krav nr 24	Original	Avståndsmätningar ska skickas till övriga moduler mätta i millimeter.	1

4.2 Designkrav

ŀ	Krav nr 25 Original	Sensormodulen ska innehålla minst en processor.	1	
---	---------------------	---	---	--

4.3 Funktionella krav för sensormodulen

Nedan listas funktionella krav för sensormodulen.

Krav nr 26	Original	Sensormodulen ska kunna läsa av data från sensorerna.	1
Krav nr 27	Original	Sensormodulen ska kunna sammanställa insamlad data.	1
Krav nr 28	Original	Sensormodulen ska med sensorer kunna mäta avstånd mellan 10 och	1
		50 cm med en noggrannhet bättre än 10cm.	
Krav nr 29	Original	Sensormodulen ska kunna mäta avlagd sträcka med en noggrannhet	1
	_	bättre än 20% på sträckor över en meter.	

5 KOMMUNIKATIONSMODULEN

Kommunikationsmodulens huvuduppgift är att trådlöst kommunicera med en PC. Den kommer från PC-modulen ta emot kommandon som ska föras vidare till styrmodulen. I andra riktningen kommer den att skicka sensor- och kartdata från övriga moduler till PC-modulen.

Figur 5 Översikt av systemet

5.1 Gränssnitt

Kommunikationsmodulen skickar kommandon till styrmodulen och tar emot sensor- och kartdata. Kommunikationen med PC-modulen sker via Bluetooth.

	Krav nr 30	Original	Kommunikationsmodulen ska ha ett Bluetooth-gränssnitt.	1	l
--	------------	----------	--	---	---

5.2 Designkrav

Krav nr 31	Krav nr 31 Original Kommunikationsmodulen ska ha minst en processor.		1
Krav nr 32	Original	Kommunikationsmodulen ska ha en Bluetoothmodul.	1

5.3 Funktionella krav för kommunikationsmodulen

I	Krav nr 33	Original	Kommunikationsmodulen ska kunna kommunicera med en dator.	1

6 PC-MODULEN

PC-modulen utgörs av ett mjukvarupaket körbart på en PC med Bluetooth-stöd och används dels för att skicka kommandon till roboten och dels för att visa sensor- och kartdata. Styrmodulens kartdata och beslut ska visas för att kunna förbättra och felsöka robotens navigering. Rå sensordata ska kunna visas i felsökningssyfte.

Figur 6 Exempel på ett möjligt datorgränssnitt

6.1 Gränssnitt

Krav nr 34	Original	PC-modulen ska ha ett Bluetooth-gränssnitt.	1
Krav nr 35	Original	PC-modulen ska kunna användas med en joystick.	2
Krav nr 36	Original	PC-modulen ska grafiskt kunna visa aktuell kartdata.	1

6.2 Designkrav

6.3 Funktionella krav för PC-modulen

Krav nr 38	Original	PC-modulen ska kunna kommunicera med kommunikationsmodulen.	1
Krav nr 39	Original	PC-modulen ska kunna visa sensormodulens sensordata samt	1
		styrmodulens samlade information om omgivningen.	
Krav nr 40	Original	PC-modulen ska kunna ställa in parametrar roboten använder sig av för styrning och navigering.	2

7 KRAV PÅ VIDAREUTVECKLING

Efter projektets avslutande finns inga krav på vidareutveckling.

8 TILLFÖRLITLIGHET

Roboten ska kunna genomföra tävlingen som specificeras i bilaga A. Den ska även, i en separat körning, kunna demonstrera krav som inte nödvändigtvis testas i tävlingen. Därutöver ges inga krav på tillförlitlighet.

Krav nr 41 Original		Original	Roboten ska kunna genomföra tävlingen, specificerad i bilaga A.	
Krav r	nr 42	Original	Roboten ska kunna repetera en lyckad körning under samma förhållanden.	1

9 EKONOMI

Projektet genomförs av 6 projektmedlemmar under en total arbetstid på 1380 timmar. Handledaren finns tillgänglig vid ett tvåtimmarspass i veckan under projektets gång.

Krav nr 43	Original	Total arbetstid får ej överstiga 1380 timmar efter godkänd projektplan.	1	
------------	----------	---	---	--

10 LEVERANSKRAV OCH DELLEVERANSER

Leveranser och datum hämtade ifrån kursens hemsida.

Krav nr 44	Original	Projektplan, tidsplan och systemskiss version 0.1 senast 16/2-2015	1
Krav nr 45	Original	Projektplan, tidsplan och systemskiss version 1.0 senast 20/2-2015	1
Krav nr 46	Original	Förstudie version 0.1 senast 5/3-2015	1
Krav nr 47	Original	Designspecifikation version 0.1 senast 11/3-2015	1
Krav nr 48	Original	Designspecifikation version 1.0 senast 24/3-2015	1
Krav nr 49	Original	Förstudie version 1.0 senast 1/4-2015	1
Krav nr 50	Original	Designspecifikation version 1.0 senast 17/4-2015	1
Krav nr 51	Original	Kappa version 1.0 senast 21/5-2015	1
Krav nr 52	Original	Teknisk dokumentation och användarhandledning version 1.0 senast 27/5-2015	1
Krav nr 53	Original	Redovisning och demonstration vecka 23	1
Krav nr 54	Original	Efterstudie senast 5/6-2015	1
Krav nr 55	Original	Tidsrapportering enligt plan på kurshemsidan	1

11 DOKUMENTATION

Projektet genomförs utefter LIPS-modellen med tillhörande dokumentation. En sammanfattning av samtliga dokument som ska föras under projektets gång ges nedan.

Dokument	Språk	Syfte	Målgrupp	Format/ media
Kravspecifikation	Svenska	Fastställa krav och ramar för produkten såväl som arbetet.	Projektgrupp / Beställare	pdf
Systemskiss	Svenska	Beskriver översiktligt hur produkten är tänkt att konstrueras.	Projektgrupp / Beställare	pdf
Projektplan	Svenska	Beskriver hur projektet ska genomföras.	Projektgrupp / Beställare	pdf
Tidplan	Svenska	Planerad tidsåtgång för respektive ingående arbetsmoment.	Projektgrupp / Beställare	pdf
Designspecifikation	Svenska	Beskriver i detalj hur produkten ska konstrueras.	Projektgrupp / Handledare	pdf
Teknisk dokumentation	Svenska	Beskriver hur produkten är konstruerad.	Beställare / Kund	pdf
Användarhandledning	Svenska	Beskriver hur produkten ska användas.	Beställare / Kund	pdf
Efterstudie	Svenska	Sammanställning av projektgruppens erhållna erfarenheter.	Projektgrupp / Framtida projektgrupper	pdf

12 UTBILDNING

Ingen utbildning utöver en demonstration samt tillhandahållande av teknisk dokumentation ges.

13 REFERENSER

Publicerade källor

Projektmodellen LIPS (2011), Thomas Svensson och Christian Kryssander, Studentlitteratur, ISBN 9789144075259

Elektroniska källor

Tomas Svensson, Kursinformation Kandidatprojekt. Besökt: 2015-02-02

http://www.isy.liu.se/edu/kurs/TSEA56/kursinformation/

Tomas Svensson, Projektdirektiv. Besökt: 2015-02-02

http://www.isy.liu.se/edu/kurs/TSEA56/Dokument/Projektdirektiv%20undsattningsrobot 15.pdf

Opublicerade källor

Personlig kommunikation