High Dimensional Statistics

Yanbo Tang

Imperial College London

Febuary 2025

Content of this week

- Concentration and its uses
- Sub-Gaussian random variables
- Sub-Exponential random variables

Concentration

Concentration cont.

Let X_1, \ldots, X_n be a sequence of IID random variables. Take the familiar example of the weak law of large numbers,

$$\sum_{i=1}^n \frac{X_i}{n} \xrightarrow{p} \mu,$$

if $E|X_1| < \infty$, and where $\mu = E[X_1]$.

Concentration cont.

Let X_1, \ldots, X_n be a sequence of IID random variables. Take the familiar example of the weak law of large numbers,

$$\sum_{i=1}^n \frac{X_i}{n} \xrightarrow{p} \mu,$$

if $E|X_1| < \infty$, and where $\mu = E[X_1]$.

Similarly we can think of the CLT, where for an IID sequence of random variables the second moment exists

$$\sqrt{n}\left(\sum_{i=1}^n \frac{X_i}{n} - \mu\right) \stackrel{p}{\to} Z,$$

where $Z \sim N(0, 1)$.

Example

But how fast is this happening? It turns out that convergence in probability/distribution alone can't answer that questions.

Example

Let $U \sim \text{uniform}(0,1)$, and $M_n \downarrow 0$ with $M_0 < 1$. Consider the sequence of random variable random variable $X_n = \mathbb{I}[u \in \underbrace{(0,M_n)}]$, then $X_n \stackrel{p}{\longrightarrow} 0$ and for all $0 < \epsilon < 1$

$$\mathbb{P}[|X_n| > \epsilon] \le M_n.$$

High-dimensions

In what follows we generally thing of high-dimensional as being when the number of parameters is increasing with the number of parameters. In this scenario it is no longer clear if the CLT and WLLN hold:

High-dimensions

In what follows we generally thing of high-dimensional as being when the number of parameters is increasing with the number of parameters. In this scenario it is no longer clear if the CLT and WLLN hold:

Example

Consider a *p*-dimensional multivariate normal distribution $X_{n,p} \sim N(0, I_p)$, if the dimension \underline{p} is fixed by the weak law of large numbers:

$$\frac{\sum_{i=1}^{n} X_{n,p}}{n} \stackrel{p}{\to} 0.$$

However, if p increase with n such that $p/n \rightarrow c > 0$ then

$$\left\|\frac{\sum_{i=1}^{n} X_{n,p}}{n}\right\|_{2}^{2} \sim \frac{\chi_{p}^{2}}{n},$$

whose variance > 0, therefore this never converges in probability to 0.

Basic concentration inequality

But what if we get more creative...

Theorem

For a positive random variable X with $E[X] < \infty$:

$$\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}.$$

$$P(|X-u| > t) : P(|X-u|^k = t^k) \in \frac{E[|X-u|^k]}{t^k}$$

$$Well minimply min t= |X-u|^k$$

$$f(x):|R-7|R^{\frac{1}{t}} + \text{lat is infrassing}$$

$$p(|X-u| > t) = p(f(|X-u|) = f(t)) \in \frac{E[f(|X-u|)]}{f(t)}$$

$$f(x) = op(|X|) |X=0$$

$$p(|X-u| > t) = inf E[cxp(|X(|X-u|) - |X-t|)]$$

$$p(|X-u| > t) = oxp(|X(|X-u|) - |X-t|)$$

Chernoff approach for Gaussians if x1 N(u, 82) x-a~N(0,82) $EIep(\lambda(x-a))$] = $ep(\frac{x^2 s^2}{2})$ $\forall x \in \mathbb{R}$ inf xelo, w) = - >t minimizal at >= \$ 2 P(X-42t) = ep(-t2)

Sub-Gaussian

Definition

A random variable X is called sub-Gaussian if there exists a $\sigma > 0$:

$$\mathbb{E}[\exp(\lambda(X-\mu))] \leq \exp\left(\frac{\lambda \sigma^2}{2}\right)$$

for all $\lambda \in \mathbb{R}$.

Sub-Gaussian concentration

Proposition

A sub Gaussian random variable X with proxy variance σ satisfies:

$$\mathbb{P}[X - \mu > t] \le \exp\left(\frac{-t^2}{2\sigma^t}\right),$$

$$\mathbb{P}[X - \mu < -t] \le \exp\left(\frac{-t^2}{2\sigma^2}\right),$$

$$\mathbb{P}[|X - \mu| > t] \le 2\exp\left(\frac{-t^2}{2\sigma^2}\right).$$

All bounded variables are sub-Gaussian

Lemma

Hoeffding Lemma: Let X be any random variable such that a < X < b almost surely. Then for all $\lambda \in \mathbb{R}$:

$$\mathbb{E}[\exp(\lambda X)] \le \exp(\lambda^2 (b-a)^2/8)$$

Preservation of Sub-Gaussianity

Proposition

Suppose that X_1 and X_2 are 0 mean sub-Gaussian random variables with proxy variances of σ_1^2 and σ_2^2

- If they are independent, then $X_1 + X_2$ is sub-Gaussian with proxy variance $\sigma_1^2 + \sigma_2^2$
- In general, $X_1 + X_2$ sub-Gaussian with proxy variance $(\sigma_1 + \sigma_2)^2$
- For $c \in \mathbb{R}$, cX_1 is subGaussian with proxy variance $c^2\sigma_1^2$.

Hoeffding's bound

Theorem

Hoeffding bound for averages: Let X_i for i = 1, ..., n be a sequence of IID random variables with proxy variances σ^2 , then:

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} X_i/n - \mu\right| \ge t\right) \le \exp\left(\frac{-nt^2}{2\sigma^2}\right)$$

$$\begin{array}{c}
\operatorname{Proof}: \underbrace{X_{i}}_{n} \quad n \text{ Sub G}(0, \frac{\sigma^{2}}{n^{2}}) \\
\Xi_{i} \xrightarrow{n} \quad n \text{ Sub G}(0, \frac{\sigma^{2}}{n})
\end{array}$$

Application to Monte Carlo

$$\frac{|\mathcal{V}(F)|}{|\mathcal{V}(F')|} \approx \frac{n}{|F|} \frac{I(X_i \in F)}{n}$$

$$|V_{n}(t^{2}) I(x_{i} \in I)| \text{ is burked to, } v_{n}(t^{2}) I$$

$$|V_{n}(t^{2}) I(x_{i} \in I)| \text{ is burked to, } v_{n}(t^{2}) I(t^{2}) I(x_{i} \in I)| \text{ is burked to, } v_{n}(t^{2}) I(t^{2}) I(x_{i} \in I)| \text{ is burked to, } v_{n}(t^{2}) I(t^{2}) I(x_{i} \in I)| \text{ is burked to, } v_{n}(t^{2}) I(t^{2}) I(t^{2})$$

Xi ~ Clasteran(t')

Application to Monte Carlo cont.

Maxima of sub-Gaussians

Proposition

Let X_1, \ldots, X_n be a sequence of sub-Gaussian random variables with common proxy variance σ^2 then

$$\mathbb{E}[\max_{\substack{1 \leq n \\ i \leq i \neq n}} X_i] \leq \sigma \sqrt{2 \log(n)},$$

$$\mathbb{P}(\max_{\substack{1 \leq n \\ 1 \leq i \neq n}} X_i > t) \leq N \exp\left(\frac{-t^2}{\sigma^2}\right).$$

Note that independence is not needed.

Proof
$$E[man exp(izi)] \leq \sum_{i=1}^{N} E[exp(izi)] \leq Nop(\sum_{i=1}^{N})$$

$$E[may z_i] \leq \log(x) + \sum_{i=1}^{N} \sum_{j=1}^{N} \log(x_j) + \sum_{j=1}^{N$$

Maximum over infinite sets

What if we wanted a maximum over an infinite set? For example, consider the unit ℓ_2 ball in \mathbb{R}^d and we are interested in controlling for:

$$E[\sup_{\theta \in \mathcal{B}_2} \theta^\top X],$$

where X follows some sub-Gaussian distribution.

ϵ -cover

Definition

Fix $K \subset \mathbb{R}^d$ and $\varepsilon > 0$. A set \mathcal{N} is called an ε -net of K with respect to a distance $d(\cdot, \cdot)$ on \mathbb{R}^d , if $\mathcal{N} \subset K$ and for any $z \in K$, there exists $x \in \mathcal{N}$ such that $d(x, z) \leq \varepsilon$.

Unit ball

Lemma

For any $\varepsilon \in (0,1)$, the unit Euclidean ball \mathcal{B}_2 has an ε -net \mathcal{N} with respect

For any
$$\varepsilon \in (0,1)$$
, the unit Euclidean ball B_2 has an ε -net N with respect to the Euclidean distance of cardinality $|N| \leq (3/\varepsilon)^d$.

Take $X_1 = 0$ $\forall_{1:2,2}$ take X_i is becomy $X \in B_2$ such that $|X - X_j| = \varepsilon$ $\forall_j < i$. If (and find such X_i then we are done). How by is this Collabora? $\forall_{X_i, Y_i} \in N$ $|X - Y_i| = \varepsilon$

or Balls (artifal of X_i : of robins ε_2 are degunit

$$V_{X_i} = 0$$

$$V_{X_i}$$

Proof $\left(\frac{3}{2} \right)^{2} \leq \left(\frac{3}{2} \right)^{2}$

Supremum over L^2 ball

Theorem

Let $X \in \mathbb{R}^d$ be a sub-Gaussian random vector with variance proxy σ^2 . Then

$$\mathbb{E}\big[\sup_{\theta \in B_2} \theta^T X\big] = \mathbb{E}\big[\sup_{\theta \in B_2} |\theta^T X|\big] \leq 4\sigma\sqrt{d}.$$

Moreover, for any $\delta > 0$, with probability $1 - \delta$, it holds

$$\sup_{\theta \in B_2} \theta^T X = \sup_{\theta \in B_2} |\theta^T X| \le 4\sigma \sqrt{d} + 2\sigma \sqrt{2 \log(1/\delta)}.$$

Proof: tale
$$\alpha = -Net$$
 then $|N| \le 6d$
 $t = 3eR$ $t = 1eR$ $t =$

But
$$\max_{x \in \frac{1}{2} \mathbb{R}} = \frac{1}{2} \max_{x \in \mathbb{S}_{3}} x^{\frac{1}{2}}$$

Et $\max_{x \in \frac{1}{2} \mathbb{R}} = 2 \text{ for } x^{\frac{1}{2}}$

Et $\max_{x \in \mathbb{S}_{3}} x^{\frac{1}{2}}$

Et $\max_{x \in \mathbb{S}_$

Sub-Exponential definition

Definition

A random variable with mean X with $\mu = E[X]$ is sub-exponential if there are non-negative parameters (ν, α) such that

$$E\left[\exp(\lambda(X-\mu))\right] \le \exp\left(\frac{\nu^2\lambda^2}{2}\right) \text{ for all } |\lambda| < \frac{1}{\alpha}.$$

Sub-exponential concentration

Proposition

Suppose that X is a sub-exponential distribution with parameters (ν, α) then:

$$\mathbb{P}[X - \mu \ge t] \le \begin{cases} e^{-\frac{t^2}{2\nu^2}} & \text{if } 0 \le t \le \frac{\nu^2}{\alpha}, \\ e^{-\frac{t}{2\alpha}} & \text{for } t > \frac{\nu^2}{\alpha}. \end{cases}$$

e.g. exposolal distribution with
$$\Theta$$
: 1 has my $\frac{1}{(-x)} = E[e_{yx} \times x)]$

Themuff is appeared $P(x \ge t) \le e^{-x} E[e^{-x} \times t] = e^{-x} E[e_{yx} \times x)$

Note $\frac{1}{1 + x} = \frac{1}{1 + x} =$

Bernstein condition

Definition

Bernstein condition. Given a random variable X with mean μ and variance σ^2 , we say that Bernstein's condition with parameter b holds if

$$\mathbb{E}[(X-\mu)^k] \le \frac{1}{2}k!\sigma^2b^{k-2} \quad \text{for all } k \in \mathbb{N}.$$

Bernsetin condition

Proposition

Another way to get sub-exp tails For any random variable satisfying the Bernstein condition with parameter b

$$\mathbb{E}[e^{\lambda(X-\mu)}] \leq \exp\left(\frac{\lambda\sigma^2}{2-2|\lambda|b}\right) \qquad \textit{for all } |\lambda| < \frac{1}{\nu},$$

and, moreover, the concentration inequality

$$\mathbb{P}[|X - \mu| \ge t] \le 2 \exp\left(\frac{-t^2}{2(\sigma^2 + bt)}\right)$$
 for all $t \ge 0$.

Preservation of sub-exponentials

Proposition

Preservation of sub-exponential property. For a sequence of independent random variables X_i for i = 1, ..., n which are sub-exponential (ν_i, α_i) , the sum

$$\sum_{i=1}^n (X_i - E(X_i)),$$

is sub-exponential with parameters (ν_*, α_*) where $\alpha_* = \max_{i=1,\dots,n} \alpha_i$ and

$$\nu_{\star} = \sqrt{\sum_{i=1}^{n} \nu_i^2}.$$

Chi-squared concentration Consider for $Y_n = \frac{1}{2} Z_i^2$ $Z_i \sim M \delta_i^2$)

Johnson-Lindenstrauss

(ll,,...,lln) lice Rd

$$F: (R^{d}_{17}|R^{m} m < x d)$$

$$F: (R^{d}_{17}|R^{m} m < x d)$$

$$C1-\delta) \leq ||F(D_{c}) - F(D_{f})||_{2} \leq CH\delta) \quad \delta > 0$$

$$||A_{c} - A_{f}||_{2}$$

$$Revelum Propolein Xe|R^{mrid} when Xiy Zen NO(1)$$

$$F: U - 7 \frac{XU}{m}$$

$$Nsto Mal X_{c}C(R^{d} X_{o} n Mo, Zlard)$$

$$flow ΔX_{c} , $\Delta X_{c}$$$

Johnson-Lindenstrauss Cont

$$PI\left|\frac{|r_{X}u|_{1}^{2}}{m||u||_{2}^{2}}-1\right|>\delta = 29p(-m\delta^{2})$$

By afforder of F tuespel

PI 1/1F(1)||1 & C(1-8), C(1+8)] = 2exp(1-11)²)

Wat 1-2 m7/6 by(2)