微分積分学A 中間試験

2024年6月20日第2時限施行 担当水野将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 1.

次の問いに答えなさい. 答えのみを書くこと.

(1) Archimedes の公理を述べなさい.

(4) 集合 $S \subset \mathbb{R}$ が上に有界であることの定義を述べなさい.

(2) Cantor の公理を述べなさい.

(5) 空でない集合 $S \subset \mathbb{R}$ に対して Weierstrass の定理を述べなさい. なお, 必要に応じて, $S_U := \{M \in \mathbb{R} : M \ \text{は} \ S \ \text{の上界} \}$ を用いてよい.

(3) 数列 $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束する,すなわち $a_n \to a \quad (n \to \infty)$ であることの定義を述べなさい.

(6) α が集合 $S \subset \mathbb{R}$ の上限 $\alpha = \sup S$ であること の, ε 論法を用いた定義を述べなさい.

(7)	数列 $\{a_n\}_{n=1}^{\infty}$	が (広義)	単調増加で	ある	ح ک	20
	定義を述べる	なさい.				

(10) 有界な数列に対する Bolzano-Weierstrass の定理を述べなさい.

(8) 単調増加な数列の収束性に関する定理を述べなさい.

(11) 数列 $\{a_n\}_{n=1}^{\infty}$ が Cauchy 列であることの定義を述べなさい.

(9) 自然対数の底 e の定義を述べなさい.

(12) 実数の完備性に関する定理を述べなさい.

(13) $a_{n+1} - a_n \to 0$ $(n \to \infty)$ であるが、 $\{a_n\}_{n=1}^{\infty}$ が収束しないような数列 $\{a_n\}_{n=1}^{\infty}$ の例をあげなさい.

この下は計算用紙として利用してよい.

(14) 正の数 a > 0 に対して,極限値 $\lim_{n \to \infty} a^n$ を求めなさい (答えのみでよい).

(15) 漸化式 $a_n = \sqrt{3 + 2a_{n-1}}$ (n = 1, 2, 3, ...), 初項 $a_0 = 5$ で定められた数列 $\{a_n\}_{n=0}^{\infty}$ は収束する. その極限値を求めなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.

$$\frac{3n+10}{10n+12} o \frac{3}{10} \quad (n o \infty)$$
 となることを ε -N 論法で示したい

問題 2.
$$\frac{3n+10}{10n+12} \to \frac{3}{10} \quad (n \to \infty) \ \text{となることを} \ \epsilon\text{-N}$$
 論法で示したい.
$$(1) \frac{3n+10}{10n+12} \to \frac{3}{10} \quad (n \to \infty) \ \text{O} \ \epsilon\text{-N}$$
 論法を用いた定義を述べなさい.
$$(2) \frac{3n+10}{10n+12} \to \frac{3}{10} \quad (n \to \infty) \ \epsilon \epsilon\text{-N}$$
 論法を用いて示しなさい.

(2)
$$\frac{3n+10}{10n+12} \rightarrow \frac{3}{10}$$
 $(n \rightarrow \infty)$ を ε - N 論法を用いて示しなさい.

問題 3.

収束する数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ に対して, $a:=\lim_{n\to\infty}a_n$, $b:=\lim_{n\to\infty}b_n$ とおく.

(1) $\lim_{n\to\infty}(a_n-2b_n)=a-2b$ となることの ε -N 論法による定義を述べなさい.

- (2) $\lim_{n\to\infty} (a_n-2b_n)=a-2b$ となることを ε -N 論法を用いて示しなさい.

問題 4.

A := (10,23) とおく. $\sup A = 23$ を示したい.

- (1) $\sup A = 23$ の定義を述べなさい.
- (2) $\sup A = 23$ を証明しなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.