支持向量机的原理

分享人: 张召凯

问题

1 如何用支持向量机将一组正负样本分离

2 支持向量机和深度学习的关系

目 CONTENTS

1 线性可分支持向量机

2 线性支持向量机

线性可分支持向量机定义:

训练数据线性可分时,通过硬间隔最大化,学习到的线性分类器。

考虑右图二维特征空间中的分类问题

- * 代表正样本
- 代表负样本

A表示一个距离 超平面最近的样 本,距离为d, 最大化d。

可以表示为下面约束最优化问题

```
egin{array}{lll} \max & d \ s.t. & d_i \geq d & , & i=1,2,\ldots,N \end{array}
```

解上述最优化问题,我们需要引入三个概念

点到平面的距离公式

点 x_0 到超平面wx+b=0的距离公式

$$d=rac{|wx_0+b|}{\|w\|}$$

几何间隔

几何间隔表示为 γ ,则样本点 (x_i,y_i) 的几何间隔为

$$\gamma_i = rac{y_i(wx_i+b)}{\|w\|}$$

函数间隔

函数间隔表示为 $\hat{\gamma}$,则样本点 (x_i,y_i) 的几何间隔为

$$\hat{\gamma}_i = y_i(wx_i + b)$$

假定超平面为wx+b=0,那距离为d到底是多少? 我们假定间隔边界所在的平面为 $wx+b=\pm a$,而A样本点位于边界之上, 我们称之为支持向量。

d可以表示为

$$d=rac{a}{\|w\|}$$

约束最优化问题可以转化成下述问题

$$s.t. \hspace{0.5cm} egin{array}{c} \displaystyle \max_{w,b} & \displaystyle rac{a}{\|w\|} \ \displaystyle y_i(wx_i+b) & \geq rac{a}{\|w\|} \end{array} , i=1,2,\ldots,N$$

最常见的线性可分支持向量机的形式

为什么a可 以用1代替

对于任意的函数间隔 $\pm a$,在x不变的情况的下,我们都可以找到一个因子 λ ,使得函数间隔变为1,即 $\lambda wx+\lambda b=1$

对于我们最终想要的超平面wx+b=0来说, 如果得到 $\lambda wx+\lambda b=0$ 的话,是一样的。

在变换前后,支持向量不变,支持向量到超平面的距离也不变。

目标函数的替换

这个替换和我们本 科是用拉格朗日条 件极值解题做的替 换一样——方便计 算

构造拉格朗日函数

$$egin{aligned} L(w,b,lpha) &= rac{\left\|w
ight\|^2}{2} - \sum_{i=1}^N lpha_i y_i \{(w\cdot x_i+b)-1\} \ s.t. \quad lpha_i &\geq 0 \ y_i (w\cdot x_i+b)-1 \geq 0 \qquad i=1,2,\ldots,N \end{aligned}$$

上式中第二项恒大于等于零,所以上述函数的最大值存在的情况下,就为第一项的值

优化问题转化为

$$\min_{lpha}\max_{w,b}L(w,b,lpha)$$

L是凸函数,属于凸函数优化问题。 函数优化问题。 此处的凸函数定义与同济高数书上的定义是反的

拉格朗日对偶问题

$$\min_{lpha} \max_{w,b} L(w,b,lpha)$$

当w,α满足KKT条件时,原始问题的解和对偶问题的解相同

$$egin{aligned}
abla_w L(w^*, b^*, lpha^*) &= 0 \
abla_b L(w^*, b^*, lpha^*) &= 0 \ lpha^*(y_i(w^* \cdot x_i + b^*) - 1) &= 0 \ y_i(w^* \cdot x_i + b^*) - 1 &\geq 0 \ lpha^* &\geq 0 \qquad i = 1, 2, \dots, N \end{aligned}$$

对变量w, b, α求偏导, 并令偏导为0可得:

$$egin{aligned} \omega &= \sum_{i=1}^m lpha_i y_i x_i \ \sum_{i=1}^m lpha_i y_i &= 0 \end{aligned}$$

将结果代入

$$egin{aligned} \max_{lpha} -rac{1}{2} \sum_{i=1}^N \sum_{j=1}^N lpha_i y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N lpha_i \ s.t. & \sum_{i=1}^N lpha_i y_i = 0 \ lpha_i \geq 0 & i = 1, 2, \dots, N \end{aligned}$$

根据KKT条件,可以得到原始最优化问题的解

(x_j,y_j)是α_j不 为0的样本

分类决策函数

$$f(x) = sgn(\sum_{j=1}^N \alpha_i y_i(x_i \cdot x) + b^*)$$

如下图所示训练集,正样本点(1,0),负样本点(2,0),试求最大间隔分离超平面。

线性支持向量机定义:

在训练数据线性不可分时,通过软间隔最大化,学习到的线性分类器。

考虑右图二维特征空间中的分类问题

- * 代表正样本
- 代表负样本

A表示一个距离 超平面最近的样本,距离为d, 最大化d的同时, 最小化ξ。

约束最优化问题

$$egin{aligned} \min rac{\left\|w
ight\|^2}{2} + C \xi_i \ s.t. & y_i(wx_i+b) \geq 1-\xi_i \quad i=1,2,\ldots,N \ \xi_i \geq 0 \quad i=1,2,\ldots,N \end{aligned}$$

松弛变量 ξ :

惩罚参数C:

最小化目标函数的两层含义:

- 1、间隔尽量大
- 2、误分类点的个数尽量小

构造拉格朗日函数

$$egin{aligned} L(w,b,lpha,\mu) &= rac{\left\|w
ight\|^2}{2} - \sum_{i=1}^N lpha_i \{y_i(w\cdot x_i+b) - 1 + \xi_i\} - \sum_{i=1}^N \mu_i \xi_i \ s.t. \quad lpha_i \geq 0 \qquad \mu_i \geq 0 \qquad i = 1,2,\ldots,N \end{aligned}$$

转化为拉格朗日对偶问题,分别对w, b, α , μ 求偏导,并令偏导数为0,得

$$egin{aligned} \max_{lpha} -rac{1}{2} \sum_{i=1}^N \sum_{j=1}^N lpha_i y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N lpha_i \ s.t. & \sum_{i=1}^N lpha_i y_i = 0 \ & C - lpha_i - \mu_i = 0 \ & lpha_i \geq 0 \ & \mu_i \geq 0 & i = 1, 2, \dots, N \end{aligned}$$

消去μ

$$egin{aligned} \max_{lpha} -rac{1}{2} \sum_{i=1}^N \sum_{j=1}^N lpha_i y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N lpha_i \ s.t. & \sum_{i=1}^N lpha_i y_i = 0 \ 0 \leq lpha_i \leq C & i = 1, 2, \dots, N \end{aligned}$$

形式上和线性可分支持向量机差不多,只是求b时, 需要选取0<α<C对应的样本进行计算

支持向量		
线性可分支持向量机	线性支持向量机	
● 间隔边界上的向量	 间隔边界上的向量 (0<α<c, li="" μ为任意值)<="" 此时ξ="0,"> 间隔边界与超平面之间的向量 (α=C, 此时μ=0, 0<ξ<1) 超平面上的向量 (α=C, 此时μ=0, ξ=1) 分离超平面误分类的向量 (α=C, 此时μ=0, ξ>1) </c,>	

线性支持向量机的另一种形式

$$\min_{w,b} \qquad \sum_{i=1}^N [1-y_i(w\cdot x_i+b)]_+ + \lambda {\lVert w \rVert}^2$$

合页损失函数(hinge loss funtion)

$$L(y(wx+b))=[1-y(wx+b)]_+$$

取正值函数

$$[z]_+=\left\{egin{array}{l} z,z>0 \ 0,z\leq 0 \end{array}
ight.$$

$$egin{aligned} \min rac{\left\|w
ight\|^2}{2} + C \xi_i \ s.t. & y_i(wx_i+b) \geq 1 - \xi_i \quad i=1,2,\ldots,N \ \xi_i \geq 0 \quad i=1,2,\ldots,N \end{aligned}$$

合页损失函数的应用

- 力线性支持向量机的损失函数
- ②为感知机的损失函数

	线性可分支持向量 机	线性支持向量机	深度学习
是否有损失	无	有	有
损失函数	无	合页损失函数+L2 正则化	最小均方差
学习方法	凸二次规划	凸二次规划	梯度下降
适用范围	线性可分	近似线性可分	线性和非线 性都适用
数据集数量依赖	低	低	高

参考

- 1、统计学习方法-李航
- 2 https://www.cnblogs.com/xxrxxr/p/7536131.html
- 3 https://www.jianshu.com/p/fe14cd066077

感谢

贾鑫康推荐编写数学公式的工具 Vscode+ Markdown All in One(plugin)

谢谢

