Introduction to Statistics and Data Science using eStat

Chapter 12 Correlation and Regression Analysis

12.1 Correlation Analysis

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

12.2 Simple Linear Regression Analysis

12.3 Multiple Linear Regression Analysis

[Example 12.1.1] Based on the survey of advertising costs and sales for 10 companies that make the same product, we obtained the following data.

 Using "eStat, draw a scatter plot for this data and investigate the relation of the two variables.

Company	1 2 3 4 5 6 7 8 9 10
Advertise (X) Sales (Y)	4 6 6 8 8 9 9 10 12 12 39 42 45 47 50 50 52 55 57 60

<Answer of Example 12.1.1>

Random Sample

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$$

from a population with (μ_X, μ_Y) and (σ_X^2, σ_Y^2)

- Population Covariance
- Sample Covariance
- Population Correlation
- Sample Correlation

$$\sigma_{XY} = Cov(X,Y) = E(X_i - \mu_X)(Y_i - \mu_Y)$$

$$S_{XY} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$\rho = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

$$r = \frac{S_{XY}}{S_X S_Y} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^n (X_i - \overline{X})^2 \sum_{i=1}^n (Y_i - \overline{Y})^2}}$$

- Characteristics of ρ
- 1) ρ has a value between -1 and +1.
 - closer to +1 ⇒ strong positive linear relation
 - closer to -1 ⇒ strong negative linear relation.
 - closer to 0 ⇒ weak linear relation
- 2) If all values of X and Y are located on a straight line, ρ is either +1 or -1.
- 3) ρ is only a measure of linear relationship between two variables.
 - if ρ =0, there is no linear relationship between the two variables, but there may be a different relationship

Simulation of correlation coefficient

[Example 12.1.2] Find the sample covariance and correlation coefficient for the advertising costs and sales of [Example 12.1.1].

<Answer>

$$SXX = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$= \sum_{i=1}^{n} X_i^2 - n \overline{X}^2$$

$$= 766 - 10 \times 8.4^2 = 60.4$$

$$SYX = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

SYY =
$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

= $\sum_{i=1}^{n} {Y_i}^2 - n \overline{Y}^2$
= 25097 - 10×49.7² = 396.1

$$SXY = \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

= $\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y}$
= $4326 - 10 \times 8.4 \times 49.7 = 151.2$

id	X	Y	X^2	<i>Y</i> ²	ΧY
1	4	39	16	1521	156
2	6	42	36	1764	252
3	6	45	36	2025	270
4	8	47	64	2209	376
5	8	50	64	2500	400
6	9	50	81	2500	450
7	9	52	81	2704	468
8	10	55	100	3025	550
9	12	57	144	3249	684
10	12	60	144	3600	720
Sum	84	497	766	25097	4326
Mean	8.4	49.7			

<Answer of Example 12.1.2>

$$S_{XY} = \frac{1}{n-1}SXY = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})(Y_i - \overline{Y}) = \frac{151.2}{10-1}$$

$$r = \frac{S_{XY}}{S_X S_Y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}} = \frac{SXY}{\sqrt{SXX SXY}} = \frac{151.2}{\sqrt{60.4 \times 396.1}} = 0.978$$

\Box Testing the population correlation coefficient ρ

Null Hypothesis: $H_0: \rho = 0$

Test Statistic:
$$t_0 = \sqrt{n-2} \frac{r}{\sqrt{1-r^2}} \sim t_{n-2}$$

Rejection Region of H_0 :

- 1) $H_1: \rho < 0$ Reject H_0 if $t_0 < -t_{n-2; \alpha}$
- 2) $H_1: \rho > 0$ Reject H_0 if $t_0 > t_{n-2; \alpha}$
- 3) $H_1: \rho \neq 0$ Reject H_0 if $|t_0| > t_{n-2; \alpha/2}$

[Example 12.1.3] In Example 12.1.2, test the hypothesis that the population correlation coefficient between advertising cost and the sales amount is zero at the significance level of 0.05.

<Answer>

$$t_0 = \sqrt{n-2} \frac{r}{\sqrt{1-r^2}} = \sqrt{10-2} \frac{0.978}{\sqrt{1-0.978^2}} = 13.26$$

$$t_{10-2;0.025} = 2.306$$

Hence $H_0: \rho = 0$ is rejected

	Regression Analysis				
7	Regression	y =	28.672 +	2.503 x	
	Correlation Coefficient	r = 0.978	H ₀ : ρ = 0 H ₁ : ρ ≠ 0	t value = 13.117	p value < 0.0001
	Coefficient of Determination	r ² = 0.956			
	Standard Error	s = 1.483			

[Example 12.1.4] Draw a scatter plot matrix and correlation coefficient matrix using four variables of the iris data saved in the following location of eStat.

[Ex] ⇒ eBook ⇒ EX120104_Iris.csv

- The variables are Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width.
- Test the hypothesis whether the correlation coefficients are equal to zero.

<Answer of Example 12.1.4>

Descriptive Statistics						
Variable	Variable Name	Observation	Mean	Std Dev	std err	95% Confidence Interval
Variable 1	Sepal.Length	150	5.843	0.828	0.068	(5.710, 5.977)
Variable 2	Sepal.Width	150	3.057	0.436	0.036	(2.987, 3.128)
Variable 3	Petal.Length	150	3.758	1.765	0.144	(3.473, 4.043)
Variable 4	Petal.Width	150	1.199	0.762	0.062	(1.076, 1.322)
Missing Observations	0					

Correlation Matrix					
Correlation Analysis H ₀ : ρ=0 ρ≠0 t-value p-value	Variable Name	Variable 1	Variable 2	Variable 3	Variable 4
Variable 1	Sepal.Length	1	-0.118 t-value = -1.440 p-value 0.1519	0.872 t-value = 21.646 p-value < 0.0001	0.818 t-value = 17.296 p-value < 0.0001
Variable 2	Sepal.Width	-0.118 t-value = -1.440 p-value 0.1519	1	-0.428 t-value = -5.768 p-value < 0.0001	-0.366 t-value = -4.786 p-value < 0.0001
Variable 3	Petal.Length	0.872 t-value = 21.646 p-value < 0.0001	-0.428 t-value = -5.768 p-value < 0.0001	1	0.963 t-value = 43.387 p-value < 0.0001
Variable 4	Petal.Width	0.818 t-value = 17.296 p-value < 0.0001	-0.366 t-value = -4.786 p-value < 0.0001	0.963 t-value = 43.387 p-value < 0.0001	1

Thank you