ICIT'24 Presentation Focusing the View: Enhancing U-Net with Convolutional Block Attention for Superior Medical Image Segmentation

Nhu-Tai Do¹, Dat Nguyen Khanh², Tram-Tran Nguyen-Quynh², Quoc-Huy Nguyen¹

¹Saigon University, Vietnam ²Ho Chi Minh City University of Foreign Language-Information Technology, Vietnam

September 2024

Agenda

1	Introduction
2	2. Related works
3	. Proposed method
4	Experiments and Discussion
4 5	5. Conclusion

1. INTRODUCTION

Our Problem:

- Input: High-resolution colonoscopic images
- Output: Binary masks that delineate the exact boundaries of polyps

Application:

- Early detection to improving patient outcomes
- Endoscopy Support
- Drug Research and Development

- Reducing Endoscopy Time and Cost
- Medical Education and Training

1. INTRODUCTION

Challenges:

- Polyps can vary greatly in shape, size, and color.
- Similarity between polyp and surrounding tissue.

Fig 2. (a) Varies greatly in shape, size and color (b) Similarity between polyps and surrounding tissue.

2. Related works

Common Attention Blocks:

WOO, Sanghyun, et al CBAM [1]

Áp dụng các lớp tích chập trên sự kết hợp của các tính năng đỉnh và trung bình theo kênh

Fig 2. CBAM Architecture

- Optimize performance with Chanel Attention and Spatial Attention
- Focus on important features
- Use aggregated information from the entire feature space to determine importance
- Through global aggregation (both average and maximum) over spatial features.

HE, Kaiming, et al Residual Block [2]

Fig 3. Residual Block

- Reduce vanishing gradient problem
- Speed up learning time
- Shortcut connections allow gradients to propagate directly through the network during backpropagation.

2. Related Works

Common Attention Block:

CORDONNIER, Self-Attention (SA) [1]

Fig 4. Self-Attention

- Understanding Context
- Flexibility
- Query (Q), Key (K) and Value (V) are computed by multiplying the input by three matrices.

3. Proposed Method

Unet Focus

Fig 5. Our method - Unet Focus

- Feature Enhancement: Integrates CBAM in convolutional layers for superior feature refinement.
- Residual Blocks: Maintain effective training and prevent model degradation.
- Advanced Decoder Path: Utilizes up-sampling and skip connections to recover details, improving segmentation accuracy.
- Unique CBAM Placement: Positioned in the decoder and after each down-sampling to focus on critical features.

3. Proposed Method

Unet Focus + CBAM

Fig 5. CBAM Architecture

3. Proposed Method

Unet Focus + CBAM

Fig 6. More Details about our method

Datasets: Endoscopic imaging collection

Kvasir-SEG [1] – **1000** images

CVC-ClinicDB [2] – 612 images

Train: 800

Val: 100

Test: 100

Train: 488

Val: 62

Test: 62

Fig 7. Example Images of Datasets

^[1] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, "CVC-ClinicDB," 2015. [Online]. Available: https://polyp.grand-challenge.org/CVCClinicDB/

^[2] D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and H. D. Johansen, "Kvasir-Seg: A Segmented Polyp Dataset," in *International Conference on Multimedia Modeling*, 2020, pp. 451-462.

Experiment setup:

• Image Size: **352x352x3**

Learning rate: 1e-4 (0.0001)

Optimize: AdamW [1]

• Loss: **Dice Loss** [2]

500 epochs

Metrics: Dice Score and mIOU

Fig 8. Data agumentation (Use many add-ons like Flip Horizontal, Flip Vertical, Color Jitter,...)

^[1] LLUGSI, Ricardo, et al. Comparison between Adam, AdaMax and Adam W optimizers to implement a Weather Forecast based on Neural Networks for the Andean city of Quito. In: 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM). IEEE, 2021. p. 1-6.

^[2] ZHAO, Rongjian, et al. Rethinking dice loss for medical image segmentation. In: 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. p. 851-860.

Fig 9. Ablation Studies on our method

Unet Focus + CBAM

Table 1: Ablation Studies on CBAM

	CVC-ClinicDB		Kvasir-SEG	
Models	DSC	mIOU	DSC	mIOU
U-Net Focus + CBAM Encoder	0.911	0.836	0.862	0.762
U-Net Focus + CBAM Decoder	0.919	0.852	0.883	0.801
U-Net Focus + CBAM Encoder/Decoder	0.935	0.877	0.891	0.803

Using CBAM on both Encode and Decode branches achieves the highest rate. Improves Dice score by 2% on CVC-ClinicDB and 1% on Kvasir-SEG

Unet Focus + CBAM

Table 2: SOTA Comparision

	Year	CVC-ClinicDB		Kvasir-SEG	
Model		DSC	mIOU	DSC	mIOU
U-Net	2015	0.710	0.627	0.818	0.746
ResUnet++	2019	0.763	0.701	0.813	0.793
HRNetV2	2019	0.778	0.636	0.853	0.744
DCRNet	2022	0.856	0.788	0.886	0.825
MSRF-Net	2022	0.906	0.828	0.851	0.740
Ours	2024	0.935	0.877	0.891	0.803

The segmentation results show that my proposed method achieves the best results with a Dice score of 0.935 on CVC-ClinicDB and 0.891 on Kvasir-SEG.

Unet Focus + CBAM

Fig. 10. Grad-CAM comparison highlights our model-based enhancement focus

5. Conclusion

- **Integration of CBAM:** The addition of the Convolutional Block Attention Module (CBAM) to the U-Net Focus architecture has led to significant enhancements in medical image segmentation.
- Enhanced Accuracy: CBAM enables more precise focus on critical image areas, greatly improving the accuracy and sensitivity of object detection and segmentation.
- Impressive Results: Testing on CVC-ClinicDB and Kvasir-SEG datasets showed that U-Net Focus with CBAM significantly outperforms traditional U-Net and competes well with other advanced models.
- **Future Potential:** Demonstrates the value of CBAM, suggesting potential for further advancements in attention mechanisms within practical applications.

Thank you