

Микропроцессорные устройства обработки сигналов

Лекция L12 «Входы-выходы общего назначения»

http://vykhovanets.ru/course67/

Состав микропроцессора

Альтернативные функции

Имя	Вывод	Альтернативная функция
GP[0]	L10	MMC0_CLK, I2S0_CLK
GP[1]	M11	MMC0_CMD, I2S0_FS
GP[2]	L9	MMC0_D0, I2S0_DX
GP[3]	M10	MMC0_D1, I2S0_RX
GP[4]	L12	MMC0_D2
GP[5]	L11	MMC0_D3
GP[6]	M13	MMC1_CLK, I2S1_CLK
GP[7]	L14	MMC1_CMD, I2S1_FS
GP[8]	M14	MMC1_D0, I2S1_DX
GP[9]	M12	MMC1_D1, I2S1_RX
GP[10]	K14	MMC1_D2
GP[11]	L13	MMC1_D3
GP[12]	P7	LCD_D[2]
GP[13]	N7	LCD_D[3]
GP[14]	N8	LCD_D[4]
GP[15]	P9	LCD_D[5]

Имя	Вывод	Альтернативная функция
GP[16]	N9	LCD_D[6]
GP[17]	P10	LCD_D[7]
GP[18]	N10	LCD_D[8], I2S2_CLK, SPI_CLK
GP[19]	P11	LCD_D[9], I2S2_FS, SPI_CS0
GP[20]	N11	LCD_D[10], I2S2_RX, SPI_RX
GP[21]	N1	EM_A[15]
GP[22]	E2	EM_A[16]
GP[23]	G1	EM_A[17]
GP[24]	G2	EM_A[18]
GP[25]	G4	EM_A[19]
GP[26]	J3	EM_A[20]
GP[27]	P12	LCD_D[11], I2S2_DX, SPI_TX
GP[28]	N12	LCD_D[12], I2S3_CLK, UART_RTS
GP[29]	P13	LCD_D[13], I2S3_FS, UART_RTS
GP[30]	N13	LCD_D[14], I2S3_RX, UART_RXD
GP[31]	P14	LCD_D[15], I2S3_DX, UART_TXD

Организация входов-выходов

Использование входов-выходов

	TMS320C	MMC0_CLK/I2S0_CLK/GP[0] MMC0_CMD/I2S0_FS/GP[1] MMC0_D0/I2S0_DX/GP[2] MMC0_D1/I2S0_RX/GP[3] MMC0_D2/GP[4] MMC0_D3/GP[5]	L10 M11 L9 M10 L12 L11	GP[0] GP[1] GP[2] GP[3] GP[4] GP[5]	MMC0_CLK MMC0_CMD MMC0_DATA0 MMC0_DATA1 MMC0_DATA2 MMC0_DATA3
	111100200	MMC1_CLK/I2S1_CLK/GP[6] MMC1_CMD/I2S1_FS/GP[7] MMC1_D0/I2S1_DX/GP[8] MMC1_D1/I2S1_RX/GP[9] MMC1_D2/GP[10] MMC1_D3/GP[11]	M13 L 14 M14 M12 K14 L13	GP[6] GP[7] GP[8] GP[9] GP[10] GP[11]	MMC1_CLK MMC1_CMD MMC1_DATA0 MMC1_DATA1 MMC1_DATA2 MMC1_DATA3
		LCD_D[2]/GP[12] LCD_D[3]/GP[13] LCD_D[4]/GP[14] LCD_D[5]/GP[15] LCD_D[6]/GP[16] LCD_D[7]/GP[17]	P7 N7 N8 P9 N9 P10	GP[12] GP[13] GP[14] GP[15] GP[16] GP[17]	LCD_DATA2 LCD_DATA3 LCD_DATA4 LCD_DATA5 LCD_DATA6 LCD_DATA7
CPU A20 J3	EM AROOMODIOGI	LCD_D[8]/I2S2_CLK/GP[18]/SPI_CLK LCD_D[9]/I2S2_FS/GP[19]/ SPI_CS0 LCD_D[10]/I2S2_RX/GP[20]/SPI_RX	N10 P11 N11	LCD DATA9 LCD DATA10	LCD_DATA8 LCD_DATA9 LCD_DATA10
CPU A19 G4 CPU A18 G2 CPU A17 F2 CPU A16 E2 CPU A15 N1	EM_A[20]/GP[26] EM_A[19]/GP[25] EM_A[18]/GP[24] EM_A[17]/GP[23] EM_A[16]/GP[22] EM_A[15]/GP[21]	LCD_D[11]/I2S2_DX/GP[27]/SPI_TX LCD_D[12]/UART_RTS/GP[28]/I2S3_CLK LCD_D[13]/UART_CTS/GP[29]/I2S3_FS LCD_D[14]/UART_RX/GP[30]/I2S3_RX LCD_D[15]/UART_DX/GP[31]/I2S3_DX	P12 N12 P13 N13 P14	UART_RTS UART_CTS. UART_RX UART_TX	LCD DATA11 UART_RTS UART CTS UART_RX UART_TX

Регистр выбора шин

EBSR (1C00h) – External Bus Selection Register (регистр выбора внешних шин)

15	14		12	11	10	9	8
Reserved	PPMODE			SP1N	MODE	SP0MODE	
7	6	5	4	3	2	1	0
Reserved	Reserved	A20_MODE	A19_MODE	A18_MODE	A17_MODE	A16_MODE	A15_MODE

- **PPMODE** Parallel Port **Mode** (режим параллельного порта, 21 вывод: 000 LCD[21 вывод];
- 001 SPI[7 выводов], GPIO[29:27, 20:18], UART[4 вывода] и I2S2 [4 вывода];
- 010 LCD[13 выводов] и GPIO[31:27, 20:18];
- 011 LCD[13 выводов], SPI [4 вывода] и I2S3 [4 вывода];
- 100 LCD[13 выводов], I2S2 [4 вывода] и UART [4 вывода];
- 101 LCD[13 выводов], SPI[4 вывода] и UART[4 вывода];
- 110 SPI[7 выводов], I2S2[4 вывода], I2S3[4 вывода] и GPIO[29:27, 20:18];
- 111 зарезервировано)
- SP1MODE Serial Port 1 Mode (режим последовательного порта 1, 6 выводов:
- 00 MMC/SD1[6 выводов]; 01 I2S1[4 вывода] and GPIO[11:10];
- 10 GPIO[11:6]; 11 зарезервировано)
- SP0MODE Serial Port 0 Mode (режим последовательного порта 1, 6 выводов:
- 00 MMC/SD0[6 выводов]; 01 I2S0[4 вывода], GPIO[5:4];
- 10 GPIO[5:0]; 11 зарезервировано)
- **Ax_MODE Ax Mode** (режим адресных выводов A[20:15]: 0 интерфейс расширенной памяти, 1 входы-выходы общего назначения GPIO[26:21])

Подтягивающие резисторы

PDINHIBR1 (1C17h) – Pull-Down Inhibit Register 1

15	14	13	GP[11]12	GP[10]11	GP[9] 10	GP[8] 9	GP[7] 8
Reser	ved	S15PD	S14PD	S13PD	S12PD	S11PD	S10PD
7	6	GP[5] 5	GP[4] 4	GP[3] 3	GP[2] 2	GP[1] 1	GP[0] 0
Rese	rved	S05PD	S04PD	S03PD	S02PD	S01PD	S00PD

PDINHIBR2 (1C18h) – Pull-Down Inhibit Register 2

15	14	13	12	11	10	9	8
Reserved	INT1PU	INT0PU	RESETPU	EMU01PU	TDIPU	TMSPU	TCKPU
7	6	GP[26] ⁵	GP[25] 4	GP[24] ³	GP[23] ²	GP[22] 1 (GP[21] ⁰
Reserved		A20PD	A19PD	A18PD	A17PD	A16PD	A15PD

PDINHIBR3 (1C19h) – Pull-Down Inhibit Register 3

G	iP[31] ¹⁵	GP[30] ¹⁴	GP[29]13	GP[28] ¹²	GP[27] ¹¹ GP[20] ¹⁰		GP[19] ⁹	GP[18] ⁸
	PD15PD	PD14PD	PD13PD	PD12PD	PD11PD	PD10PD	PD9PD	PD8PD
G	P[17] ⁷	GP[16] ⁶	GP[15] 5	GP[14] 4	GP[13] ³	GP[12] ²	1	0
	PD7PD	PD6PD	PD5PD	PD4PD	PD3PD	PD2PD	Re	served

- PU Pull-Up (подтягивание к питанию)
- PD Pull-Down (подтягивание к земле)
- S Serial port (выводы последовательных портов)
- INTx Interrupt x (выводы прерывания микропроцессора)
- RESET Reset (вывод сброса микропроцессора)
- EMU01 Emulator (выводы 0 и 1 прерывания эмулятора)
- TDI Test data input (JTAG, вывод входных данных)
- TMS Test mode select (JTAG, вывод выбора режима)
- TCK Test clock (JTAG, вывод тактового сигнала)
- A Address (адресные выводы EMIF)

Регистры входов-выходов

Адрес в памяти	Обозначение	Описание
1C06h	IODIR1	Регистр направления 1 (0 – ввод данных, 1 – вывод данных)
1C07h	IODIR2	Регистр направления 2 (0 – ввод данных, 1 – вывод данных)
1C08h	IOINDATA1	Регистр входных данных 1 (0 – вход "0", 1 – вход "1")
1C09h	IOINDATA2	Регистр входных данных 2 (0 – вход "0", 1 – вход "1")
1C0Ah	IODATAOUT1	Регистр выходных данных 1 (0 – выход "0", 1 – выход "1")
1C0Bh	IODATAOUT2	Регистр выходных данных 2 (0 – выход "0", 1 – выход "1")
1C0Ch	IOINTEDG1	Регистр полярности прерываний 1 (0 – передний фронт, 1 – задний)
1C0Dh	IOINTEDG2	Регистр полярности прерываний 2 (0 – передний фронт, 1 – задний)
1C0Eh	IOINTEN1	Регистр разрешения прерываний 1 (0 – запрещено, 1 – разрешено)
1C0Fh	IOINTEN2	Регистр разрешения прерываний 2 (0 – запрещено, 1 – разрешено)
1C10h	IOINTFLG1	Регистр флагов прерываний 1 (0 – нет события, 1 – событие есть)
1C11h	IOINTFLG2	Регистр флагов прерываний 2 (0 – нет события, 1 – событие есть)

- IO Input-Output (входы-выходы)
- DIR Direction (направление)
- IN, OUT Input, Output (вход, выход)
- INT Interrupt (прерывание)
- **EDG Edg**e (фронт)
- EN Enable (разрешение)
- FLG Flag (флаг)

Вектор прерываний

Век 00 04	TOP RESET TINT	Прерывание Сброса и инициализации Агрегированное таймера	Прис 00 06	ритет	Адр IVPD:(IVPD:2	00h
08	 DMA	 Прямого доступа к памяти	 11		 IVPD:4	40h
13	 SAR	 Агрегированное АЦП	 18		 IVPD:6	68h
18	RTC	 Часов реального времени	 12		 IVPH:9	90h
21	GPIO	 Портов ввода-вывода	20		IVPH:/	48 h
	15		11	10	9	8
IFF	₹1	Reserved		RTOS	DLOG	BERR
		R.A		R/\/_0	R/\/_0	R/\/_0

	10				1.1	10	3	0
IFR1			Reserved			RTOS	DLOG	BERR
00 0046h	7	6	R-0 5	4	3	R/W-0 2	R/W-0 1	R/W-0 0
	I2C	EMIF	GPIO	USB	SPI	RTC	RCV3	XMT3
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	15				11	10	9	8
IER1			Reserved			RTOS	DLOG	BERR
00 0045h	7	6	R-9 5	4	3	R/W-0 2	R/W-0 1	R/W-0 0
	I2C	EMIF	GPIO	USB	SPI	RTC	RCV3	XMT3
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

Внешние расширения

Экспериментальная схема

Заголовочный файл

```
/* Структура регистровой памяти входов-выходов общего назначения */
typedef struct {
   volatile unsigned int IODIR1;
                                        /* Регистр направлений 1, +0 */
   volatile unsigned int IODIR2;
                                        /* Регистр направлений 2, +1 */
   volatile unsigned int IOINDATA1;
                                        /* Регистр входных данных 1, +2 */
   volatile unsigned int IOINDATA2;
                                        /* Регистр входных данных 2, +3 */
   volatile unsigned int IODATAOUT1;
                                        /* Регистр выходных данных 1, +4 */
   volatile unsigned int IODATAOUT2;
                                        /* Регистр выходных данных 2, +5 */
   volatile unsigned int IOINTEDG1;
                                        /* Регистр полярности 1, +6 */
   volatile unsigned int IOINTEDG2;
                                        /* Регистр полярности 2, +7 */
   volatile unsigned int IOINTEN1;
                                        /* Регистр разрешений 1, +8 */
   volatile unsigned int IOINTEN2;
                                        /* Регистр разрешений 2, +9 */
   volatile unsigned int IOINTFLG1;
                                        /* Регистр флагов 1, +10 */
   volatile unsigned int IOINTFLG2;
                                        /* Регистр флагов 1, +11 */
} GPIORegs;
/* Регистровая память входов-выходов общего назначения */
                 ((ioport GPIORegs*)0x1C06h)
#define GPIO
/* Регистр разрешения и флагов прерываний */
#define IER1
                (*(volatile unsigned int *)0x000045h)
                (*(volatile unsigned int *)0x000046h)
#define IFR1
```

Ввод-вывод по опросу

```
void main() {
   // Локальные данные
                                       // Флаг режима индикации и счетчик
   int blink = 0, cnt = 0;
   // Начальные установки
   GPIO->IODIR1 &= \sim0x10;
                                       // GPIO4 – направление ввода (кнопка)
                                       // GPIO5 – направление вывода(светодиод)
   GPIO->IODIR1 = 0x20;
   // Бесконечный цикл
   while(1) {
      // Вывод данных
      if( blink == 1 ) {
                                             // Если режим индикации 1
                                             // Инверсия выхода GPIO5
         GPIO->IODATAOUT1 ^= 0x20;
         cnt=15000; while(cnt--> 0);
                                             // Задержка
      // Ввод данных
      if(!(GPIO->IOINDATA1 & 0x10)) {
                                             // Если кнопка нажата
         cnt=15000; while(cnt-->0);
                                             // Задержка
         while(!(GPIO->IOINDATA1 & 0x10)); // Ожидание отпускания кнопки
         cnt=15000; while(cnt-->0);
                                             // Задержка
         if( blink == 1 ){
                                             // Если режим индикации
             GPIO->IÓDATAOUT1 &= ~ 0x20;
                                             // Выключить светодиод
                                             // Снять режим индикации
             blink = 0;
                                             // Иначе
         } else
             blink = 1;
                                             // Установка режима индикации
```

Ввод-вывод через прерывания

```
interrupt void GPIO_ISR (void) {
   int cnt = 0;
                                       /* Cчетчик */
   /* Ветвление по источникам прерываний */
   if( GPIO->IOINTFLG1 & 0x10 ) {
                                       /* Прерывание от кнопки (GPIO4) */
      GPIO->IODATAOUT1 ^{-} ~ 0x20;
                                       /* Инверсия выхода светодиода (GPIO5) */
      cnt=15000; while(cnt-->0);
                                       /* Задержка */
      while(!(GPIO->IOINDATA1&0x10));/* Ожидание отпускания кнопки */
      cnt=15000; while(cnt-->0);
                                       /* Задержка */
      GPIO->IOINTFLG1 &= \sim0x10;
                                       /* Сброс флага прерывания от GPIO4 */
                                       /* else if ... else ... */
   IER1 = 0x20;
                                       /* Разрешение прерываний от GPIO */
void main() {
   /* Локальные данные */
   long isr = (long)&GPIO_ISR;
   /* Начальные установки */
   GPIO->IODIR1 &= \sim0x10;
                                       /* GPIO4 — направление ввода (кнопка) */
   GPIO->IODIR1 = 0x20;
                                       /* GPIO5 – направл. вывода (светодиод) */
   /* Настройка прерываний */
   ISR_plug(21, isr);
                                       /* Установка вектора прерываний */
   GPIO->IOINTEDG1 |= 0x10;
                                       /* GPIO4 – по заднему фронту */
   GPIO->IOINTEN1 |= 0x10;
                                       /* GPIO4 – разрешение прерываний */
   IER1 = 0x20;
                                       /* Разрешение прерываний от GPIO */
   /* Бесконечный цикл */
   while(1);
```