Intergral Equivalence of Hyperbolic Manifolds

Justin Katz

Purdue University

Katz9@purdue.edu

May 15, 2021

• An ideal inverse theorem in geometry takes the form: Suppose M_1 and M_2 are Riemannian manifolds such that $F(M_1) = F(M_2)$ for some geometric invariant (or collection of such) F, then M_1 and M_2 are isometric.

- An ideal inverse theorem in geometry takes the form: Suppose M_1 and M_2 are Riemannian manifolds such that $F(M_1) = F(M_2)$ for some geometric invariant (or collection of such) F, then M_1 and M_2 are isometric.
- The natural **obstruction** to such theorems is a **construction** of nonisometric Riemannian manifolds M_1 and M_2 which have identical invariant(s): $F(M_1) = F(M_2)$.

- An ideal inverse theorem in geometry takes the form: Suppose M_1 and M_2 are Riemannian manifolds such that $F(M_1) = F(M_2)$ for some geometric invariant (or collection of such) F, then M_1 and M_2 are isometric.
- The natural **obstruction** to such theorems is a **construction** of nonisometric Riemannian manifolds M_1 and M_2 which have identical invariant(s): $F(M_1) = F(M_2)$.
- The focus of this talk will be on a procedure for constructing arbitrarily large families of pairwise non-isometric covers of a hyperbolic n manifold which are isospectral, and further have compatibly isomorphic integral cohomology.

- An ideal inverse theorem in geometry takes the form: Suppose M_1 and M_2 are Riemannian manifolds such that $F(M_1) = F(M_2)$ for some geometric invariant (or collection of such) F, then M_1 and M_2 are isometric.
- The natural **obstruction** to such theorems is a **construction** of nonisometric Riemannian manifolds M_1 and M_2 which have identical invariant(s): $F(M_1) = F(M_2)$.
- The focus of this talk will be on a procedure for constructing arbitrarily large families of pairwise non-isometric covers of a hyperbolic n manifold which are isospectral, and further have compatibly isomorphic integral cohomology.
- The mechanism for producing these families is a refinement of a nearly 100 year old technique which uses configurations of finite groups as combinatorial "seeds" for stitching together manifolds.

• We begin with three characterizations of a configuration of a finite group G and two subgroups G_1 and G_2 which serve as the input to Sunada's method for constructing isospectral manifolds.

Gassmann equivalence: Almost Conjugate Subgroups

Definition

Given a finite group G and a pair of subgroups $G_1, G_2 \leq G$, we say that G_1 and G_2 are **almost conjugate in** G if for each $g \in G$,

$$|\mathit{G}_1\cap \mathit{g}^{\mathit{G}}|=|\mathit{G}_2\cap \mathit{g}^{\mathit{G}}|$$

where g^G denotes the G conjugacy class of g.

Gassmann equivalence: Almost Conjugate Subgroups

Definition

Given a finite group G and a pair of subgroups $G_1, G_2 \leq G$, we say that G_1 and G_2 are **almost conjugate in** G if for each $g \in G$,

$$|G_1 \cap g^G| = |G_2 \cap g^G|$$

where g^G denotes the G conjugacy class of g.

• If G_1 and G_2 are conjugate in G, then G_1 and G_2 are clearly almost conjugate.

Gassmann equivalence: Almost Conjugate Subgroups

Definition

Given a finite group G and a pair of subgroups $G_1, G_2 \leq G$, we say that G_1 and G_2 are **almost conjugate in** G if for each $g \in G$,

$$|\mathit{G}_1\cap \mathit{g}^{\mathit{G}}|=|\mathit{G}_2\cap \mathit{g}^{\mathit{G}}|$$

where g^G denotes the G conjugacy class of g.

- If G_1 and G_2 are conjugate in G, then G_1 and G_2 are clearly almost conjugate.
- Our interest will be in non-conjugate, almost conjugate subgroups.

Gassmann equivalence: Fixed Point Equivalence

Definition

Given a finite group G and a pair of subgroups $G_1, G_2 \leq G$, we say that G_1 and G_2 are **fixed point equivalent** if, for any irreducible unitary representation $\rho: G \to GL(V)$, one has

$$\dim \operatorname{Fix}_{G_1}(V) = \dim \operatorname{Fix}_{G_2}(V)$$

Gassmann equivalence: Q equivalence

Definition

Given a finite group G and a pair of subgroups $G_1, G_2 \leq G$, we say that G_1 and G_2 are \mathbb{Q} equivalent if there is an isomorphism

$$\mathbb{Q}[G/G_1] \approx \mathbb{Q}[G/G_2]$$

as $\mathbb{Q}[G]$ modules.

Lemma

If G is a finite group, and $G_1, G_2 \leq G$, then the following are equivalent:

- \bullet G_1 and G_2 are almost conjugate
- G_1 and G_2 are fixed point equivalent.
- G_1 and G_2 are \mathbb{Q} -equivalent.

If these conditions are satisfied, we call (G, G_1, G_2) a Gassmann triple.

Lemma

If G is a finite group, and $G_1, G_2 \leq G$, then the following are equivalent:

- \bullet G_1 and G_2 are almost conjugate
- G_1 and G_2 are fixed point equivalent.
- G_1 and G_2 are \mathbb{Q} -equivalent.

If these conditions are satisfied, we call (G, G_1, G_2) a Gassmann triple.

 The equivalence of these three concepts follows from the representation theory of finite groups.

Lemma

If G is a finite group, and $G_1, G_2 \leq G$, then the following are equivalent:

- \bullet G_1 and G_2 are almost conjugate
- G_1 and G_2 are fixed point equivalent.
- G_1 and G_2 are \mathbb{Q} -equivalent.

If these conditions are satisfied, we call (G, G_1, G_2) a Gassmann triple.

- The equivalence of these three concepts follows from the representation theory of finite groups.
- Almost conjugacy gives a relationship between the internal structure of conjugacy classes of G, relative to G_1 and G_2 .

Lemma

If G is a finite group, and $G_1, G_2 \leq G$, then the following are equivalent:

- G_1 and G_2 are almost conjugate
- G_1 and G_2 are fixed point equivalent.
- G_1 and G_2 are \mathbb{Q} -equivalent.

If these conditions are satisfied, we call (G, G_1, G_2) a Gassmann triple.

- The equivalence of these three concepts follows from the representation theory of finite groups.
- Almost conjugacy gives a relationship between the internal structure of conjugacy classes of G, relative to G_1 and G_2 .
- Fixed point equivalence gives a relationship between the fixed point sets G_1 and G_2 in representations of G, a notion seemingly external to G.

• The notion of Q-equivalence has a natural refinement.

ullet The notion of \mathbb{Q} -equivalence has a natural refinement.

Definition

For a commutative ring R with 1, say that (G, G_1, G_2) are R-equivalent if $R[G/G_1]$ and $R[G/G_2]$ are isomorphic as R[G] modules. When $R = \mathbb{Z}$, we refer to \mathbb{Z} -equivalence as **integral equivalence**.

ullet The notion of \mathbb{Q} -equivalence has a natural refinement.

Definition

For a commutative ring R with 1, say that (G, G_1, G_2) are R-equivalent if $R[G/G_1]$ and $R[G/G_2]$ are isomorphic as R[G] modules. When $R = \mathbb{Z}$, we refer to \mathbb{Z} -equivalence as **integral equivalence**.

• Integral equivalence is the key mechanism in our construction.

• Given a closed Riemannian manifold M, the Laplace-Beltrami operator Δ_M acts on smooth functions, as well as on smooth differential k-forms.

- Given a closed Riemannian manifold M, the Laplace-Beltrami operator Δ_M acts on smooth functions, as well as on smooth differential k-forms.
- For each $0 \le k \le \dim(M)$ let \mathcal{E}_M^k denote the **eigenvalue spectrum** of Δ_M acting on k forms. Here, we think of \mathcal{E}_M^k as a discrete measure on $[0,\infty)$ which assigns to each $\lambda \in [0,\infty)$ the (finite) multiplicity of λ as an eigenvalue for Δ_M acting on k-forms.

- Given a closed Riemannian manifold M, the Laplace-Beltrami operator Δ_M acts on smooth functions, as well as on smooth differential k-forms.
- For each $0 \le k \le \dim(M)$ let \mathcal{E}_M^k denote the **eigenvalue spectrum** of Δ_M acting on k forms. Here, we think of \mathcal{E}_M^k as a discrete measure on $[0,\infty)$ which assigns to each $\lambda \in [0,\infty)$ the (finite) multiplicity of λ as an eigenvalue for Δ_M acting on k-forms.
- When M is negatively curved, let \mathcal{L}_{M}^{p} denote the **primitive length spectrum** of M, viewed as a discrete measure on $(0,\infty)$ which assigns to each ℓ the number of primitive geodesics on M of length ℓ .

- Given a closed Riemannian manifold M, the Laplace-Beltrami operator Δ_M acts on smooth functions, as well as on smooth differential k-forms.
- For each $0 \le k \le \dim(M)$ let \mathcal{E}_M^k denote the **eigenvalue spectrum** of Δ_M acting on k forms. Here, we think of \mathcal{E}_M^k as a discrete measure on $[0,\infty)$ which assigns to each $\lambda \in [0,\infty)$ the (finite) multiplicity of λ as an eigenvalue for Δ_M acting on k-forms.
- When M is negatively curved, let \mathcal{L}_{M}^{ρ} denote the **primitive length spectrum** of M, viewed as a discrete measure on $(0,\infty)$ which assigns to each ℓ the number of primitive geodesics on M of length ℓ .
- For a negatively curved manifold, eigenvalue spectrum and the primitive length spectrum are related by the wave trace formula.

• For the purposes of this talk, say M_1 and M_2 are **Laplace isospectral** if $\mathcal{E}_{M_1}^k = \mathcal{E}_{M_2}^k$ as measures, for all k.

- For the purposes of this talk, say M_1 and M_2 are **Laplace isospectral** if $\mathcal{E}_{M_1}^k = \mathcal{E}_{M_2}^k$ as measures, for all k.
- Say M_1 and M_2 are **length isospectral** if $\mathcal{L}^p_{M_1} = \mathcal{L}^p_{M_2}$ as measures.

Theorem (Sunada 1985)

Theorem (Sunada 1985)

If M is a closed Riemannian manifold, and $\rho: \Gamma = \pi_1(M) \to G$ is a surjective homomorphism to a finite group such that $G_1, G_2 \leq G$ are subgroups with (G, G_1, G_2) forming a Gassmann triple, then the covers M_1 and M_2 corresponding to $\rho^{-1}(G_1)$ and $\rho^{-1}(G_2)$ are Laplace isospectral and length isospectral.

• Proving M_1 and M_2 are Laplace isospectral is easily seen through the fixed point equivalence.

Theorem (Sunada 1985)

- Proving M_1 and M_2 are Laplace isospectral is easily seen through the fixed point equivalence.
- This is a manifestation of function spaces being contravariant.

Theorem (Sunada 1985)

- Proving M_1 and M_2 are Laplace isospectral is easily seen through the fixed point equivalence.
- This is a manifestation of function spaces being contravariant.
- By contrast, length isospectrality is best seen through almost conjugacy, since this describes how conjugacy classes in $\pi_1(M)$ factor in the covers associated to $\rho^{-1}(G_j)$.

Theorem (Sunada 1985)

- Proving M_1 and M_2 are Laplace isospectral is easily seen through the fixed point equivalence.
- This is a manifestation of function spaces being contravariant.
- By contrast, length isospectrality is best seen through almost conjugacy, since this describes how conjugacy classes in $\pi_1(M)$ factor in the covers associated to $\rho^{-1}(G_j)$.
- This is a manifestation of length sets being covariant.

Theorem (Sunada 1985)

- Proving M_1 and M_2 are Laplace isospectral is easily seen through the fixed point equivalence.
- This is a manifestation of function spaces being contravariant.
- By contrast, length isospectrality is best seen through almost conjugacy, since this describes how conjugacy classes in $\pi_1(M)$ factor in the covers associated to $\rho^{-1}(G_j)$.
- This is a manifestation of length sets being covariant.
- Provided M has a sufficiently rich covering space theory, $\pi_1(M)$ will surject any finite group. The natural requirement is **largeness**.

• Even if G_1 and G_2 are non-conjugate almost conjugate subgroups of G, it is possible that the manifolds M_1 and M_2 constructed in Sunada's theorem are actually isometric.

- Even if G_1 and G_2 are non-conjugate almost conjugate subgroups of G, it is possible that the manifolds M_1 and M_2 constructed in Sunada's theorem are actually isometric.
- Provided M satisfies various structural hypotheses (for example, being negatively curved), this can only occur when $\rho^{-1}(G_1)$ and $\rho^{-1}(G_2)$ are conjugate via an element of the commensurator of $\pi_1(M)$ inside the isometry group of the universal cover of M.

- Even if G_1 and G_2 are non-conjugate almost conjugate subgroups of G, it is possible that the manifolds M_1 and M_2 constructed in Sunada's theorem are actually isometric.
- Provided M satisfies various structural hypotheses (for example, being negatively curved), this can only occur when $\rho^{-1}(G_1)$ and $\rho^{-1}(G_2)$ are conjugate via an element of the commensurator of $\pi_1(M)$ inside the isometry group of the universal cover of M.
- In order to prohibit such accidental isometries, one must add conditions on M to make sure this commensurator is small.

- Even if G_1 and G_2 are non-conjugate almost conjugate subgroups of G, it is possible that the manifolds M_1 and M_2 constructed in Sunada's theorem are actually isometric.
- Provided M satisfies various structural hypotheses (for example, being negatively curved), this can only occur when $\rho^{-1}(G_1)$ and $\rho^{-1}(G_2)$ are conjugate via an element of the commensurator of $\pi_1(M)$ inside the isometry group of the universal cover of M.
- In order to prohibit such accidental isometries, one must add conditions on M to make sure this commensurator is small.
- When *M* is hyperbolic, a theorem of Margulis makes **non-arithmeticity** the natural requirement.

How similar are manifolds arising from Sunada's construction?

• Granting that M_1 and M_2 are isospectral but non-isometric, a natural question is "what geometric invariants can be used to distinguish M_1 and M_2 ?"

How similar are manifolds arising from Sunada's construction?

- Granting that M_1 and M_2 are isospectral but non-isometric, a natural question is "what geometric invariants can be used to distinguish M_1 and M_2 ?"
- Applying Hodge's theorem to the 0 eigenspace, Laplace isospectrality (from Sunada or otherwise) implies equality of deRham cohomology: $H_{dR}^k(M_1) \approx H_{dR}^k(M_2)$ as real vector spaces.

- Granting that M_1 and M_2 are isospectral but non-isometric, a natural question is "what geometric invariants can be used to distinguish M_1 and M_2 ?"
- Applying Hodge's theorem to the 0 eigenspace, Laplace isospectrality (from Sunada or otherwise) implies equality of deRham cohomology: $H_{dR}^k(M_1) \approx H_{dR}^k(M_2)$ as real vector spaces.
- Equivalently, Laplace isospectral Riemannian manifolds have the same Betti numbers.

- Granting that M_1 and M_2 are isospectral but non-isometric, a natural question is "what geometric invariants can be used to distinguish M_1 and M_2 ?"
- Applying Hodge's theorem to the 0 eigenspace, Laplace isospectrality (from Sunada or otherwise) implies equality of deRham cohomology: $H_{dR}^k(M_1) \approx H_{dR}^k(M_2)$ as real vector spaces.
- Equivalently, Laplace isospectral Riemannian manifolds have the same Betti numbers.
- What can be said of the torsion part of integral homology/cohomology?

• In general: nothing (Sunada or otherwise).

- In general: nothing (Sunada or otherwise).
- In one direction, Bartel–Page (2016) proved: for any finite set S of primes, there exist (Sunada) isospectral hyperbolic 3-manifolds which have have non-isomorphic cohomology rings with coefficients in F_p for $p \in S$, and isomorphic cohomology rings with coefficients in F_p for p outside S.

- In general: nothing (Sunada or otherwise).
- In one direction, Bartel–Page (2016) proved: for any finite set S of primes, there exist (Sunada) isospectral hyperbolic 3-manifolds which have have non-isomorphic cohomology rings with coefficients in F_p for $p \in S$, and isomorphic cohomology rings with coefficients in F_p for p outside S.
- Such a cosntruction is possible is due to the ubiquity of \mathbb{Q} equivalent triples (G, G_1, G_2) which are not \mathbb{Z} equivalent.

- In general: nothing (Sunada or otherwise).
- In one direction, Bartel–Page (2016) proved: for any finite set S of primes, there exist (Sunada) isospectral hyperbolic 3-manifolds which have have non-isomorphic cohomology rings with coefficients in F_p for $p \in S$, and isomorphic cohomology rings with coefficients in F_p for p outside S.
- Such a cosntruction is possible is due to the ubiquity of \mathbb{Q} equivalent triples (G, G_1, G_2) which are not \mathbb{Z} equivalent.

• We proved the other direction:

• We proved the other direction:

Theorem (Arapura, Katz, Mcreynolds, Solapurkar 2017

Let M be a closed hyperbolic n manifold that is **large** and **non-arithmetic**. Then for each integer j > 0, there exist pairwise nonisometric Riemannian covers $M_1,...,M_j$ of M such that the following hold:

• We proved the other direction:

Theorem (Arapura, Katz, Mcreynolds, Solapurkar 2017

Let M be a closed hyperbolic n manifold that is **large** and **non-arithmetic**. Then for each integer j > 0, there exist pairwise nonisometric Riemannian covers $M_1,...,M_j$ of M such that the following hold:

ullet (Laplace isospectrality) For each k,i,i', one has $\mathcal{E}^k_{M_i}=\mathcal{E}^k_{M_{i'}}$

• We proved the other direction:

Theorem (Arapura, Katz, Mcreynolds, Solapurkar 2017

Let M be a closed hyperbolic n manifold that is **large** and **non-arithmetic**. Then for each integer j > 0, there exist pairwise nonisometric Riemannian covers $M_1,...,M_j$ of M such that the following hold:

- ullet (Laplace isospectrality) For each k,i,i', one has $\mathcal{E}^k_{M_i}=\mathcal{E}^k_{M_{i'}}$
- ullet (Length isospectrality) For each $i,i',~\mathcal{L}^p_{M_i}=\mathcal{L}^p_{M_{i'}}.$

• We proved the other direction:

Theorem (Arapura, Katz, Mcreynolds, Solapurkar 2017

Let M be a closed hyperbolic n manifold that is **large** and **non-arithmetic**. Then for each integer j > 0, there exist pairwise nonisometric Riemannian covers $M_1,...,M_j$ of M such that the following hold:

- ullet (Laplace isospectrality) For each k,i,i', one has $\mathcal{E}^k_{M_i}=\mathcal{E}^k_{M_{i'}}$
- ullet (Length isospectrality) For each $i,i',~\mathcal{L}^p_{M_i}=\mathcal{L}^p_{M_{i'}}.$
- (Compatible isomorphism of integral cohomology) For each k, i, i' there exist isomorphisms $\psi_k : H^k(M_i, \mathbb{Z}) \to H^k(M_{i'}, \mathbb{Z})$ which commute with restriction and corestriction relative to the covering maps $M_i \to M$ and $M_{i'} \to M$.

• Supposing one has access to a collection of finite groups G containing arbitrarily large families of nonconjugate integral equivalent subgroups $G_1,...,G_j$, the theorem is a straightforward application of Sunada's method plus Shapiro's lemma.

- Supposing one has access to a collection of finite groups G containing arbitrarily large families of nonconjugate integral equivalent subgroups $G_1,...,G_j$, the theorem is a straightforward application of Sunada's method plus Shapiro's lemma.
- Unlike Q equivalent configurations, which are fairly abundant, all known examples of nontrivial \mathbb{Z} equivalent triples (G, G_1, G_2) are essentially derived from a single example:

- Supposing one has access to a collection of finite groups G containing arbitrarily large families of nonconjugate integral equivalent subgroups $G_1,...,G_j$, the theorem is a straightforward application of Sunada's method plus Shapiro's lemma.
- Unlike Q equivalent configurations, which are fairly abundant, all known examples of nontrivial \mathbb{Z} equivalent triples (G, G_1, G_2) are essentially derived from a single example:
- In 1993 Scott proved that there exists a nonconjugate pair of subgroups G_1 and G_2 , both isomorphic to A_5 , of $G = \mathsf{PSL}(2, F_{29})$ such that the (G, G_1, G_2) forms a \mathbb{Z} -equivalent triple.

- Supposing one has access to a collection of finite groups G containing arbitrarily large families of nonconjugate integral equivalent subgroups $G_1,...,G_j$, the theorem is a straightforward application of Sunada's method plus Shapiro's lemma.
- Unlike Q equivalent configurations, which are fairly abundant, all known examples of nontrivial \mathbb{Z} equivalent triples (G, G_1, G_2) are essentially derived from a single example:
- In 1993 Scott proved that there exists a nonconjugate pair of subgroups G_1 and G_2 , both isomorphic to A_5 , of $G = PSL(2, F_{29})$ such that the (G, G_1, G_2) forms a \mathbb{Z} -equivalent triple.
- The novelty of our result lies in the production of arbitrarily large nontrivial such families using this single example.

• Starting with a single nontrivial integrally equivalent triple (G, G_1, G_2) : subgroups of G^m consisting of products $\prod_{n=1}^m G_{\nu_n}$ where $\nu_n \in \{1,2\}$ give rise 2^m pairwise nonconjugate $\mathbb Z$ equivalent subgroups of G^m .

- Starting with a single nontrivial integrally equivalent triple (G, G_1, G_2) : subgroups of G^m consisting of products $\prod_{n=1}^m G_{\nu_n}$ where $\nu_n \in \{1,2\}$ give rise 2^m pairwise nonconjugate \mathbb{Z} equivalent subgroups of G^m .
- Since M is large, there are plenty of surjections $\pi_1(M) \to G^m$, for each m. Pulling back any of the Z equivalent subgroups above produces lots of \mathbb{Z} equivalent subgroups of $\pi_1(M)$.

- Starting with a single nontrivial integrally equivalent triple (G, G_1, G_2) : subgroups of G^m consisting of products $\prod_{n=1}^m G_{\nu_n}$ where $\nu_n \in \{1,2\}$ give rise 2^m pairwise nonconjugate $\mathbb Z$ equivalent subgroups of G^m .
- Since M is large, there are plenty of surjections $\pi_1(M) \to G^m$, for each m. Pulling back any of the Z equivalent subgroups above produces lots of \mathbb{Z} equivalent subgroups of $\pi_1(M)$.
- That said, many of these subgroups are actually conjugate in $\pi_1(M)$. In order to produce non-conjugate $\mathbb Z$ equivalence subgroups, one looks at the growth of the hom spaces $\pi_1(M) \to G^m$ as a function of m.

- Starting with a single nontrivial integrally equivalent triple (G, G_1, G_2) : subgroups of G^m consisting of products $\prod_{n=1}^m G_{\nu_n}$ where $\nu_n \in \{1,2\}$ give rise 2^m pairwise nonconjugate $\mathbb Z$ equivalent subgroups of G^m .
- Since M is large, there are plenty of surjections $\pi_1(M) \to G^m$, for each m. Pulling back any of the Z equivalent subgroups above produces lots of \mathbb{Z} equivalent subgroups of $\pi_1(M)$.
- That said, many of these subgroups are actually conjugate in $\pi_1(M)$. In order to produce non-conjugate $\mathbb Z$ equivalence subgroups, one looks at the growth of the hom spaces $\pi_1(M) \to G^m$ as a function of m.
- Standard estimates for asymptotics of hom spaces of nonabelian free groups to finite groups, along with the assumption of non-arithmeticity on $\pi_1(M)$ shows that there are so many \mathbb{Z} -equivalent collections arising from this construction that they cannot all be accounted for by conjugacy. QED

May 15, 2021