Digital Signal Processing

Lab 5 DSP Number Systems

Introduction

Lab Objectives

- Explore how several data types commonly used in DSP affect memory usage and computation speed
- Explore the effects of finite precision math on calculations
- Measure the execution speed for addition and multiplication and compare how the speed changes using the various number data types
 - Demonstrate the use of an internal timer function to measure the execution time for a section of code
 - Understand the impact of data types on execution speed and on memory usage

Lab #5 Overview

- This lab consists of 4 main sections:
 - Basic math operations and data types
 - Illustration of round off error
 - Unexpected behavior due to finite precision effects
 - Measuring execution time and memory usage
 - Some operations take longer with different data types
 - Explore the difference of multiplication between float and long
 - Measure execution time of various operations
 - Resources
 - Review the reading and lecture notes on fixed and floating point numbers
 - http://Arduino.cc (an invaluable resource for our platform)

Lab #5 Overview

- For this lab it will be easier to use the serial monitor than MATLAB to capture output data
 - You will make tables of results and it is easiest to use Excel for this rather than MATLAB
 - A set of blank Excel tables will be provided for you in myCourses
- Lab #5 is due at the start of your lab period in myCourses, week #7 (week of 02/27).
 - IEEE Journal Format (PDF format ONLY)
 - Also include a work-breakdown document (TXT, DOC or PDF format)

Arduino Data Types – A Few Examples

BYTE – 8 bit unsigned integer

BYTE 8 Bits Unsigned		
Decimal	Bit Pattern	
255	11111111	
254	11111110	
253	11111101	
•••	•••	
2	0000010	
1	0000001	
0	0000000	

0 to 255

Arduino Data Types – A Few Examples

INT – 16 bit signed integer - 2's Complement

INT 16 Bits 2's Complement			
Decimal	Bit Pattern		
32767	011111111111111		
32766	011111111111110		
32765	0111111111111101		
2	000000000000010		
1	000000000000001		
0	00000000000000		
-1	111111111111111		
-2	11111111111111		
-3	1111111111111101		
•••			
-32766	100000000000010		
-32767	100000000000001		

-32,768 to 32,767

Arduino Data Types – A Few Examples

LONG Integer - 32 bits 2's complement

LONG 32 Bits 2's Complement		
Decimal	Bit Pattern	HEX
2147483647	011111111111111111111111111111111	0x7FFFFFF
2147483646	011111111111111111111111111111111	0x7FFFFFE
2147483645	01111111111111111111111111111111111	0x7FFFFFD
•••	::	
2	000000000000000000000000000000000000000	0x00000002
1	000000000000000000000000000000000000000	0x0000001
0	000000000000000000000000000000000000000	0x00000000
-1	111111111111111111111111111111111	0xFFFFFFF
-2	1111111111111111111111111111111111	0xFFFFFFE
-3	111111111111111111111111111111111111	0xFFFFFFD
•••		•••
-2147483646	100000000000000000000000000000000000000	0x80000002
-2147483647	100000000000000000000000000000000000000	0x80000001
-2147483648	100000000000000000000000000000000000000	0x80000000

