Comparing Models of Subject-Clustered Single-Cell Data

Lee Panter

```
Audrey Hendricks<sup>1</sup>, PhD------(Committee Chair and Advisor)
Stephanie Santorico<sup>1</sup>, PhD-----(Committee Member)
Rhonda Bacher<sup>2</sup>, PhD-----(Committee Member)
```

¹The University of Colorado-Denver ²The University of Florida

Introduction

Single-Cell (SC) Basics

"Bulk" Sequencing Methods

- Analyze combined expression from thousands/millions of cells
- Often fail to capture variability within sample
- Measurement accuracy less concerning, and protocol dependencies less influential

SC Sequencing Methods

- Analyze expression measurements for individual cells
- Hundreds/thousands of SC measurements -- one "SC sample"

Applications of SC methods

- Detecting values differentially expressed across conditions [1]
 - Identifying rare cellular subpopulations [2]

Production of SC data & technology

- Increasingly economical to produce SC data
- Multiple-source samples enable analysis of source-level associations
 - e.g., multiple subject sample --> analysis of subject-level associations
- Problematic to integrate multiple samples into a single data set
 - Protocol dependencies affect data quality and reliability

Introduction

Motivation

What problem am I addressing?

- Single-cell (SC) data is increasing in prevalence
- SC data with multiple subjects emerging for analysis
- Not clear how to analyze subject level relationships

What do I do to solve the problem?

- Outline five modeling methods and how the models account for subject level relationships in SC data
- Apply the modeling methods to motivating SC data example
 - Describe how the models account for subject level relationships in the motivating SC data example
 - Compare how (if) model frameworks account for SLRs in practice

Model Descriptions

Overview of Selected Models

The Models

- 1. Linear Model (LM)
- 2. Linear Model with Fixed Effect for Subject (LM-FE)
- 3. Linear Mixed Effect Model with Random Intercept for Subject (LMM-RI)
- 4. Linear Mixed Effect Model with Random Intercept and Random Slope for Subject (LMM-RS)
- 5. Generalized Estimating Equations (GEE)

Model Descriptions

Notation

 (X_{ij}, Y_{ij}) - subject level predictor-response pair

i=1,...N - subject from which measurement was taken N - Total number of subjects

 $j=1,\dots,n_i$ measurement index taken within subject i (repeated measure index)

 $oldsymbol{n_i}$ - Total number of repeated measurements within subject $oldsymbol{i}$

Overview of Selected Models

Linear Model (LM)

MODEL DEFINITION:

Linear Model (LM)

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + \epsilon_{ij}$$

Terms:

• β_0 : Intercept

• β_1 : Fixed effect slope

• ϵ_{ij} : Residual Error $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$

 (X_{ij}, Y_{ij}) - subject level predictor-response pair

i = 1, ...N - subject from which measurement was taken

N - Total number of subjects $j=1,...,n_i$ (repeated measure index)

 $m{n_i}$ - Total number of repeated measurements within subject $m{i}$

MODEL INFORMATION:

Linear Model (LM)

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + \epsilon_{ij}$$

- Does not account for subject level associations in the data
- Assumes observations are independent
- $oldsymbol{eta_1}$ parameter interpreted as population average representation of relationship between predictor and response.
- Nested within all other models

Overview of Selected Models

Linear Model with Fixed Effect (LM-FE)

MODEL DEFINITION:

Linear Model with Fixed Effect (LM-FE)

$$Y_{ij} = \beta_0 + \beta_{1i}(subject)_i + \beta_2 X_{ij} + \epsilon_{ij}$$

Terms:

$$(subject)_i = \begin{cases} 0 & if \ not \ subject \ i \\ 1 & if \end{cases}$$
 subject i

• β_0 : Intercept

• β_1 : Fixed Effect Intercept (subject)

for i = 2, ..., N

• β_2 : Fixed Effect Slope

• ϵ_{ij} : Residual Error $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$

MODEL INFORMATION:

Linear Model with Fixed Effect (LM-FE)

$$Y_{ij} = \beta_0 + \beta_{1i}(subject)_i + \beta_2 X_{ij} + \epsilon_{ij}$$

- Accounts for subject-level associations by:
 - Uniformly shifting the mean of the fitted values specific to a subject
 - Adds N-1 parameters
- Assumes that observations are independent within an individual
- $m{eta_1}$ parameter interpreted as population average representation of relationship between predictor and response, having accounted for average deviation of each subject

Overview of Selected Models

Linear Mixed Model with Random Effect Intercept (LMM-RI)

MODEL DEFINITION:

Linear Mixed Model with Random Effect Intercept (LMM-RI)

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + b_{0i}(subject)_i + \epsilon_{ij}$$

Terms:

• β_0 : Intercept

$$\boldsymbol{\epsilon_i} = \begin{bmatrix} \epsilon_{i1} \\ \vdots \\ \epsilon_{in_i} \end{bmatrix} \quad \boldsymbol{I_{n_i}} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & 1 & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$

- β_1 : Fixed Effect Slope
- b_{0i} : Random Effect Intercept (subject) $b_{0i} \sim N(0, \sigma_b^2)$
- ϵ_i : Residual Error $\epsilon_i \sim N(\mathbf{0}, \sigma_{\epsilon}^2 I_{n_i})$ for i = 1, ..., N

MODEL INFORMATION:

Linear Mixed Model with Random Effect Intercept (LMM-RI)

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + b_{0i}(subject)_i + \epsilon_{ij}$$

- Accounts for subject-level associations by incorporating subject-specific variances
 - Allow for outcomes to be higher/lower for each subject
- Assumes:
 - observations are independent within subject
 - Residual error is independent of the random effects
- $oldsymbol{eta}_1$ parameter interpreted as subject-specific representation of relationship between predictor and response
 - Conditional on an individual subject, and
 - Representative of that specific subject

Overview of Selected Models

Linear Mixed Model with Random Effect Intercept and Slope (LMM-RS)

MODEL DEFINITION:

Linear Mixed Model with Random Effect Intercept and Random Effect Slope (LMM-RS)

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + b_{0i}(subject)_i + \left[b_{1i}(subject)_i X_{ij}\right] + \epsilon_{ij}$$

Terms:

• β_0 : Intercept

$$\boldsymbol{b}_i = \begin{bmatrix} b_{0i} \\ b_{1i} \end{bmatrix} \sim N(\boldsymbol{0}, \boldsymbol{G})$$

• β_1 : Fixed Effect Slope

• b_{0i} : Random Effect Intercept (subject)

$$m{G} = egin{bmatrix} \sigma_{b_0}^2 & \sigma_{b_{10}} \ \sigma_{b_{10}} & \sigma_{b_1}^2 \end{bmatrix}$$

• b_{1i} : Random Effect Slope(subject)

• ϵ_i : Residual Error $\epsilon_i \sim N(\mathbf{0}, \sigma_{\epsilon}^2 I_{n_i})$ for i = 1, ..., N

MODEL INFORMATION:

Linear Mixed Model with Random Effect Intercept and Random Effect Slope (LMM-RS)

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + b_{0i}(subject)_i + \left[b_{1i}(subject)_i X_{ij}\right] + \epsilon_{ij}$$

- Accounts for subject-level associations by incorporating subject-specific variances that are:
 - Covariate independent. (Random Intercept)
 - allows average outcome of each subject to deviate from average subject response
 - Covariate dependent. (Random Slope)
 - allows outcomes of each subject to be variably associated with covariates
- Assumes:
 - Residual error is independent of the random effects
- $oldsymbol{eta_1}$ parameter interpretation is conditional on an individual subject, and representative of that specific subject

Overview of Selected Models

Generalized Estimating Equations (GEE)

MODEL DEFINITION:

Generalized Estimating Equations (GEE)

Model Requires Individual Specification of:

Random Component

 $Y_{ij} \sim N(\mu, \sigma^2)$

Used for this Analysis

- Systematic Components
 - Linear Predictor: a linear function of the explanatory $\eta_{ij} = \beta_0 + \beta_1 X_{ij}$ variables
 - Link Function: establishes the relationship between Linear $\longrightarrow E[Y_{ij}|X_{ij}] = g(\mu_{ij}) = \mu_{ij} = \eta_{ij}$ Predictor and Expected Outcome
- Working Covariance Structure \longrightarrow $[Cov(Y_{ij}, Y_{ik})]_{jk} = \begin{cases} Var(Y_i) & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$
 - Assumed to approximate true within-subject correlation

Probability Distribution: assumed for the responses

$$j,k \in \{1,\dots,n_i\}$$

MODEL INFORMATION:

Generalized Estimating Equations (GEE)

- Accounts for subject-level association by incorporating assumed correlation structure into residual error
- Iterative fitting process:
 - 1. Estimate regression parameters (standard GLM Theory), and use to:
 - 2. Estimate working correlation structure from standardized residuals, and use to:
 - 3. Correct regression parameter estimates from (1), use to: --> (2)
- Quasi-likelihood, no specification of joint distribution
- A-priori specification of working covariance
 - consistent estimates even with misspecification
- $oldsymbol{eta}_1$ parameter interpreted as population average representation of relationship between predictor and response.

Motivating Example

Data

Initial Data:

Quality Control Data

Population: 45 Lupus Nephritis Cases vs 25 Control

Population: 27 subjects, case/control status not present. ———— 15 Subjects

• 9560 SC observations — → 1110 SC Observations

23 Flow Cytometry variables

10 metadata variables (subject, cell-type)

Model 1: Predictor log(CD19) --> Response log(MALAT1)

Model 2: Predictor log(CD34) --> Response log(FBLN1)

Data Source: 2018 article: "The immune cell landscape in kidneys with Lupus Nephritis patients" [3]

Motivating Example

Models

Proposal: A method for estimating subject level associations in SC data

- Data Requirements:
 - Single-cell level variable measurements
 - Data is scRNA-seq expression
 - Detectable, subject-level associations between predictor and outcome

Results

Model Parameters

Variable Pair #1: MALAT1<--CD19

Variable Pair #2: FBLN1<--CD34

Model Designation	Model Description	Estimate	Std. Error	Test Statistic	p-value	Estimate	Std. Error	Test Statistic	p-value
LM	Linear Model	4.918e-2	1.455e-2	3.381	7.47e-4	7.884e-1	4.92e-2	4.002	<2e-16
LM-FE	Linear Model with Fixed-Effect Intercept	4.833e-2	1.381e-2	3.500	4.84e-4	1.31e-1	3.42e-2	3.818	1.42e-4
LMM-RI	Linear Mixed Model with Random Intercept	4.920e-2	1.374e-2	3.579	3.6e-4	1.35e-1	3.42e-2	3.95	8.4e-5
LMM-RS	Linear Mixed Model with Random Slope	5.938e-2	3.538e-2	1.678	1.19e-1	1.705e-1	7.29e-2	2.34	6.7e-2
GEE	Generalized Estimating Equations	4.918e-2	1.455e-2	3.381**	7.47e-4	7.884e-1	4.92e-2	4.002**	< 2e-16

Model	LM	LM-FE	LMM-RI	LMM-RS	GEE
LM	0	-1.7283	0.0407	20.7401	0.0000
LM-FE	1.7587	0	1.8001	22.8636	1.7587
LMM-RI	-0.0407	-1.7683	0	20.6911	-0.0407
LMM-RS	-17.1775	-18.6090	-17.1438	0	-17.1775
GEE	0.0000	-1.7283	0.0407	20.7401	0

Slope Percent Change

Variable Pair #1: MALAT1<--CD19

Variable Pair #2: FBLN<--CD34

Model	LM	LM-FE	LMM-RI	LMM-RS	GEE
LM	0	-5.0859	-5.5670	143.1615	0.0000
LM-FE	5.3584	0	-0.5069	156.1912	5.3584
LMM-RI	5.8952	0.5095	0	157.4964	5.8952
LMM-RS	-58.8751	-60.9666	-61.1645	0	-58.8751
GEE	0.0000	-5.0859	-5.5670	143.1615	0

Model	LM	LM-FE	LMM-RI	LMM-RS	GEE
LM	0	-5.0859	-5.5670	143.1615	0.0000
LM-FE	5.3584	0	-0.5069	156.1912	5.3584
LMM-RI	5.8952	0.5095	0	157.4964	5.8952
LMM-RS	-58.8751	-60.9666	-61.1645	0	-58.8751
GEE	0.0000	-5.0859	-5.5670	143.1615	0

Standard Error Percent Change

Variable Pair #1: MALAT1<--CD19

Variable Pair #2: FBLN<--CD34

Model	LM	LM-FE	LMM-RI	LMM-RS	GEE
LM	0	-30.4878	-30.4878	48.1707	0.0000
LM-FE	43.8596	0	0.0000	113.1579	43.8596
LM-RI	43.8596	0.0000	0	113.1579	43.8596
LM-RS	-32.5103	-53.0864	-53.0864	0	-32.5103
GEE	0.0000	-30.4878	-30.4878	48.1707	0

Results | Model Parameters

Model	LM	LM-FE	LMM-RI	LMM-RS	GEE
LM	0	3.5197	5.8563	-50.3697	0.0000
LM-FE	-3.4000	0	2.2571	-52.0571	-3.4000
LMM-RI	-5.5323	-2.2073	0	-53.1154	-5.5323
LM-RS	101.4899	108.5816	113.2896	0	101.4899
GEE	0.0000	3.5197	5.8563	-50.3697	0

Test Statistic Percent Change

Variable Pair #1: MALAT1<--CD19

Variable Pair #2: FBLN<--CD34

Model	LM	LM-FE	LMM-RI	LMM-RS	GEE
LM	0	-4.5977	-1.2994	-41.5292	0.0000
LM-FE	4.8193	0	3.4573	-38.7114	4.8193
LM-RI	1.3165	-3.3418	0	-40.7595	1.3165
LM-RS	71.0256	63.1624	68.8034	0	71.0256
GEE	0.0000	-4.5977	-1.2994	-41.5292	0

Model Parameter Comparison Results

- LM and GEE estimates are similar down to accuracy of $1x10^{-4}$
- LM-FE and LMM-RI estimates similar
- LMM-RS Standard Error largest compared to other methods within variable pairings
- LMM-RI Standard Error is smallest compared to other methods within variable pairings
- Test statistics similar between LM and GEE as well as between LM-FE and LMM-RI models
- Test statistics for LMM-RS are 86% larger on average than other models

Results

Nested Models

Nested Model Comparisons:

Testing Inclusion of Fixed Effect Intercept

Variable Pair	Model	Resid DF	RSS	DF	Sum of Squares	F-stat	P(>F)
MAI ATI CD10	LM	1108	1167.76				
MALAT1-CD19	LM-FE	1094	935.89	14	231.87	19.36	6.4776e-44
EDI N1 CD94	LM	1108	650.51				
FBLN1-CD34	LM-FE	1094	214.92	14	435.59	158.38	2.8058e-251

Support for inclusion of subject-specific fixed effect intercept

Nested Model Comparisons:

Testing Inclusion of Random Effect Intercept

Variable Pair	Model	df	AIC	logLik	L.Ratio	p-value
MATATI CD10	LM	3	3224.097	-1609.048		
MALAT1-CD19	LMM-RI	4	3032.024	-1512.012	194.0722	4.1068e-44
EDI N1 CD94	LM	3	2572.807	-1283.403		
FBLN1-CD34	LMM-RI	4	1438.086	-715.043	1136.72	3.4517e-249

Support for inclusion of subject-specific random effect intercept

Nested Model Comparisons:

Testing Inclusion of Random Effect Slope

Variable Pair	Model	df	AIC	logLik	L.Ratio	p-value
MATATI OD10	LMM-RI	4	3032.024	-1512.012		
MALAT1-CD19	LMM-RS	6	2993.820	-1490.910	42.20503	6.8437e-10
EDI NII OD94	LMM-RI	4	1438.086	-715.043		
FBLN1-CD34	LMM-RS	6	1438.068	-713.034	4.018095	0.1341

Borderline support for inclusion of subject-specific random effect slope for the MALAT1 \sim CD19 variable pairing

Conclusion

Overall Conclusions

- Population average models (LM and GEE) & models with subject specific intercept terms (LM-FE and LMM-RI) have:
 - Similar estimates within/differing estimates between descriptions
- Nested Model Comparisons --> sufficient evidence to support inclusion of:
 - Subject specific fixed effect intercept
 - Subject specific random effect intercept

Indicative of subject-specific, covariate independent associations not accounted for in overall population averaged/marginal models

- LMM-RS model has largest standard errors
- Nested model comparisons: *borderline* or insufficient evidence to support inclusion of subject-specific random slope

Indicative that subject-specific associations are NOT covariate dependent

Conclusion

Limitations & Future Work

Limitations

- All results based on just two scRNA-seq variable pairs
- scRNA-seq data heavily influenced by protocol dependencies & measurement inconsistencies

Future Work

- Extending analysis to all variable pairs
- Overfitting considerations: test/train model development not implemented but should be going forward

THANK YOU

References

- 1. Bacher R, Kendziorski C (2016) Design and computational analysis of single-cell rna-sequencing experiments. *Genome biology* 17: 63.
- 2. Ståhlberg A, Andersson D, Aurelius J, et al. (2010) Defining cell populations with single-cell gene expression profiling: Correlations and identification of astrocyte subpopulations. *Nucleic acids* research 39: e24–e24.
- 3. Arazi A, Rao DA, Berthier CC, et al. (2018) The immune cell landscape in kidneys of lupus nephritis patients. *bioRxiv* 363051.