Logistic Regression

By Trần Minh Dương - Learning Support

Exercise 1

Explain how the two methods work for logistic regression:

- Gradient Descent
- Newton Method

Logistic Regression & Gradient Descent

Logistic regression is a classification algorithm that models the probability of a binary outcome using the logistic (sigmoid) function.

Key Points:

Hypothesis Function: The predicted output (probability) of logistic regression is computed as follows:

• For a single example:

$$h_{ heta}(x^{(i)}) = rac{1}{1+e^{- heta^T x^{(i)}}}$$

Here, $x^{(i)}$ is a single input example.

• For the entire dataset (input matrix):

$$h_{ heta}(X) = rac{1}{1 + e^{-X heta}}$$

Where:

- $x^{(i)}$: A column vector representing the i-th example, containing n features. Dimension: $n \times 1$.
- X: The input matrix containing m examples and n features. **Dimension:** $m \times n$.
- heta: The parameter vector containing n weights (including $heta_0$, the bias term). **Dimension:** n imes 1.

Cost function:

To optimize θ , we minimize the negative log-likelihood cost function:

$$J(heta) = -rac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \log(1-h_ heta(x^{(i)}))
ight]$$

Where:

- m: Number of training examples.
- $y^{(i)}$: Actual label (0 or 1) for the i-th training example.
- $h_{ heta}(x^{(i)})$: Predicted probability for the i-th training example.

Steps of Gradient Descent for Logistic Regression

This follows **exactly the same** procedure as Linear Regression

To minimize $J(\theta)$, we compute its gradient and update θ iteratively:

Scalar form:

For j = 0, 1, ..., n:

$$rac{\partial J(heta)}{\partial heta_j} = rac{1}{m} \sum_{i=1}^m \left(h_ heta(x^{(i)}) - y^{(i)}
ight) \cdot x_j^{(i)}$$

Where:

- $h_{ heta}(x^{(i)})$ is the predicted output
- ullet $h_{ heta}(x^{(i)})-y^{(i)}$ is the residuals (error compared to actual output)
- $\boldsymbol{x}_{j}^{(i)}$ is the j-th feature value of the i-th training example

Then the parameters θ are updated as:

$$\theta_j = \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}$$

Matrix Form (for all θ):

The gradient can also be written compactly in matrix form as:

$$abla J(heta) = rac{1}{m} X^T (h_ heta(X) - y)$$

Where:

- X: Feature matrix (including a column of 1s for the bias term).
- $h_{\theta}(X)$: Vector of predicted probabilities for all training examples.
- y: Vector of actual labels.

Update Rule in Matrix Form:

$$\theta = \theta - \alpha \nabla J(\theta)$$

2. Newton's Method for Logistic Regression

Newton's method refines the parameters θ using second-order optimization, incorporating the Hessian matrix H:

1. **Gradient:** Same as above:

$$abla J(heta) = rac{1}{m} X^T (h_ heta(X) - y)$$

2. Hessian Matrix:

$$H = rac{1}{m} X^T R X$$

Where:

- R: Diagonal matrix where $R_{ii} = h_{ heta}(x^{(i)}) \cdot (1 h_{ heta}(x^{(i)})).$
- 3. Update Rule:

$$\theta = \theta - H^{-1} \nabla J(\theta)$$

Newton's method often converges faster than gradient descent but is computationally expensive for large datasets.

Summary of Key Differences

Aspect	Gradient Descent	Newton's Method	
Approach	Iterative, uses first derivative	Iterative, uses first and second derivatives	
Computation Cost	Lower per iteration	Higher per iteration due to Hessian inversion	
Convergence Speed	Slower for large datasets	Faster, but depends on dataset size	
Suitability	Large datasets or high dimensions	Small to medium datasets	

Exercise 2

Given the training data for a classification problem, to identify if a person is male/female base on his/her weight and high. Stating at $\theta_0=\theta_1=\theta_2=0$ and learning rate $\alpha=0.0001$.

Training example	Height(cm)	Weight (kg)	Gender
1	172	68	Male
2	163	52	Female
3	158	50	Female
4	180	75	Male

Calculate the coefficients after the first iteration with

- a) Batch-gradient descent.
- b) Newton method

Part a: Using Batch-gradient descent

```
X = np.array([
            [1,172,68],
            [1,163,52],
            [1,158,50],
            [1,180,75]
        ]) #Add a column of 1 to the left to represent the bias term X 0
        y = np.array([0,1,1,0]) # 0 for male, 1 for female
        m = len(y)
        alpha = 0.001
In [3]: theta = np.array([0,0,0],dtype=float)
        def hypothesis(X, theta):
            return 1 / (1 + np.exp(-X @ theta))
        def cost func(predictions, y):
            return -1/m * np.sum(y*np.log(predictions) + (1-y)*np.log(1-predictions))
        iterations = 100
        for i in range(1,iterations+1):
            predictions = hypothesis(X,theta)
            errors = predictions - y
            gradient = 1/m * (X.T @ errors)
            theta -= alpha * gradient
            if (i==1):
                 print("After the first iteration:")
                 print("Predictions: ",predictions)
                 print("Errors: ", errors)
                 print("Gradient: ",gradient)
                 print("Theta = ",theta)
                 print("Cost = ",cost func(predictions,y),"\n")
            if (i%10==0):
                 print(f"Iteration {i}: Theta = {theta}, Cost = {cost_func(predictions,y):.4f}
       After the first iteration:
       Predictions: [0.5 0.5 0.5 0.5]
       Errors: [ 0.5 -0.5 -0.5 0.5]
       Gradient: [0. 3.875 5.125]
       Theta = [0.
                           -0.003875 -0.0051251
       Cost = 0.6931471805599453
       Iteration 10: Theta = [0.00038151 \ 0.02552992 \ -0.0277586], Cost = 5.7494
       Iteration 20: Theta = [0.00068845 \ 0.03880599 \ -0.05969616], Cost = 5.4982
       Iteration 30: Theta = [0.0009826 \quad 0.05043766 \quad -0.09177184], Cost = 5.3825
       Iteration 40: Theta = [0.0012791 \ 0.0629325 \ -0.1231119], Cost = 5.1787
       Iteration 50: Theta = [0.0015715 \quad 0.07509407 \quad -0.15425996], Cost = 4.9968
       Iteration 60: Theta = [0.0018635 \quad 0.08748283 \quad -0.18507323], Cost = 4.7880
       Iteration 70: Theta = [0.00215382 \ 0.09980324 \ -0.21573278], Cost = 4.5807
       Iteration 80: Theta = [0.00244351 \ 0.11218556 \ -0.24623472], Cost = 4.3643
       Iteration 90: Theta = [0.00273237 \ 0.12455841 \ -0.27664243], Cost = 4.1461
       Iteration 100: Theta = [0.00302071 \ 0.13694618 \ -0.30696939], Cost = 3.9242
In [4]: #Assume me, a guy who is 170cm short and 62kg fat, lets see what gender I am
        def what_gender_am_I(height, weight):
            tmd = np.array([1,height,weight])
            tmd_gender = hypothesis(tmd,theta)
            print(tmd gender)
```

```
if (tmd_gender < 0.5): #male
    print("A dude :")
elif (tmd_gender > 0.5): #female
    print("A cutie patooie :")
what_gender_am_I(170,62)
```

0.9859608815891429 A cutie patooie 😍

0.539212276978382 A cutie patooie **\$\cup\$**

Part b: Using Newton method

Recall:

$$abla J(heta) = rac{1}{m} X^T (h_{ heta}(X) - y)$$
 $H = rac{1}{m} X^T R X$
 $heta = heta - H^{-1}
abla J(heta)$

```
In [5]: theta = np.array([0,0,0],dtype=float)
        def hypothesis(X,theta):
            return 1 / (1+ np.exp(-X @ theta))
        def compute gradient(X,y,theta):
            gradient = 1/m * X.T @ (hypothesis(X,theta) - y)
            return gradient
        def compute hessian(X,theta):
            h = hypothesis(X,theta)
            R = np.diag(h*(1-h))
            return 1/m * (X.T @ R @ X)
        gradient = compute_gradient(X, y, theta)
        hessian = compute_hessian(X, theta)
        theta = theta - np.linalg.inv(hessian) @ gradient
        print("After one iteration: ")
        print("Gradient:\n", gradient)
        print("Hessian:\n", hessian)
        print("Updated Theta:\n", theta)
       After one iteration:
       Gradient:
        [0.
               3.875 5.125]
       Hessian:
        [[2.5000000e-01 4.2062500e+01 1.5312500e+01]
        [4.2062500e+01 7.0948125e+03 2.5982500e+03]
        [1.5312500e+01 2.5982500e+03 9.6581250e+02]]
       Updated Theta:
        [-19.26812373 0.25391138 -0.38289741]
In [6]: #Now let's ask for Mr. Newton's opinion about my gender
        what_gender_am_I(170,62)
```

```
In [13]: #Maybe Mr.Newton will change his mind after 20 iterations?
theta = np.array([0,0,0],dtype=float)
iterations = 20
for i in range(1,iterations+1):
    gradient = compute_gradient(X, y, theta)
    hessian = compute_hessian(X, theta)
    theta = theta - np.linalg.inv(hessian) @ gradient

what_gender_am_I(170,62)

0.20767546835047637
```

Tips for your model to work correctly and efficiently:

A dude 🤨

- Try different values of the hyperparameter α , whether it is 0.1, 0.01 or 0.001
- Add more and more iterations so your model can reach the optimal solution
- Try different initial parameters to begin with. A cost function may have many local minimums, yet there is only 1 global minimum.
- Visualize convergence by plotting the cost function over iterations to confirm it is decreasing.

Here's a quick visualization for the Gradient Descent with different values of α

```
In [21]:
         import matplotlib.pyplot as plt
         def gradient descent(X, y, alpha, iterations):
             theta = np.array([0,0,0], dtype=float)
             costs = []
             for i in range(1, iterations + 1):
                 predictions = hypothesis(X, theta)
                 errors = predictions - y
                 gradient = 1/m * (X.T @ errors)
                 theta -= alpha * gradient
                 cost = cost_func(predictions, y)
                 costs.append(cost)
                 if i == 1 or i % 10 == 0:
                     print(f"Alpha = {alpha}, Iteration {i}: Theta = {theta}, Cost = {cost:.4f
             return theta, costs
         iterations = 30
         alphas = [0.0001, 0.001]
         costs_by_alpha = {}
         for alpha in alphas:
             print(f"\nRunning gradient descent with alpha = {alpha}...")
             theta, costs = gradient_descent(X, y, alpha, iterations)
             costs_by_alpha[alpha] = costs
         plt.figure(figsize=(8, 6))
         for alpha, costs in costs_by_alpha.items():
             plt.plot(range(1, iterations + 1), costs, label=f"Alpha = {alpha}")
```

```
plt.title("Cost vs. Iterations (Gradient Descent with Different Alphas)")
 plt.legend()
 plt.grid()
 plt.show()
Running gradient descent with alpha = 0.0001...
                                                 -0.0003875 -0.0005125], Cost = 0.6931
Alpha = 0.0001, Iteration 1: Theta = [0.
Alpha = 0.0001, Iteration 10: Theta = [2.61383667e-05 5.59458853e-04 -3.47731806e-0]
3], Cost = 0.6806
Alpha = 0.0001, Iteration 20: Theta = [5.56316431e-05 \ 1.73488809e-03 \ -6.68271752e-0]
3], Cost = 0.6689
Alpha = 0.0001, Iteration 30: Theta = [8.47464161e-05 2.89547698e-03 -9.84821154e-0]
3], Cost = 0.6575
Running gradient descent with alpha = 0.001...
Alpha = 0.001, Iteration 1: Theta = [0.
                                               -0.003875 -0.005125], Cost = 0.6931
Alpha = 0.001, Iteration 10: Theta = [0.00038151 \ 0.02552992 \ -0.0277586], Cost = 5.7
494
Alpha = 0.001, Iteration 20: Theta = [ 0.00068845  0.03880599 -0.05969616], Cost = 5.4
Alpha = 0.001, Iteration 30: Theta = [0.0009826 \quad 0.05043766 \quad -0.09177184], Cost = 5.3
825
```

plt.xlabel("Iterations")

plt.ylabel("Cost")

Cost vs. Iterations (Gradient Descent with Different Alphas)

This document is written in Jupyter Notebook by Trần Minh Dương(tmd) - Learning Support.

If you have any question or find any error in this document, DM/ping me at @tmdhoctiengphap or @ICT-Supporters on the Discord of USTH Learning Support.