1. Define the Problem Statement

• **Objective**: The goal is to analyze trip data to understand patterns in delivery times, distances, and other route-related attributes. The insights will be used to improve route efficiency, identify key factors impacting delivery performance, and provide actionable recommendations for business improvements.

Key Aspects:

- o Identify the main sources of delays or extended delivery times.
- Explore the relationship between distance, time, and route type.
- o Detect patterns in trip creation times to optimize resource allocation.

2. Perform Exploratory Data Analysis (EDA)

- Data Overview:
 - o **Shape of Data**: Look at the number of rows and columns.

0

Convert Categorical Attributes to 'Category':

o **Data Types**: List data types of all columns using df.dtypes.

Missing Values:

Detect missing values with final_df.isnull().sum().

• Statistical Summary:

View the summary statistics for numerical columns using final_df.describe().

For categorical columns, use final_df.describe(include='category').

• Visual Analysis:

- Continuous Variables:
 - Plot distributions of each continuous variable to observe spread, skewness, and potential outliers.

Categorical Variables:

Use box plots to understand the distribution and spread of categorical

variables.

o Insights from EDA:

- Identify outliers in attributes like actual_time and actual_distance_to_destination.
- Comment on the range of each attribute, noting variables with high variance.
- Observe relationships between variables using correlation heatmaps and pairplots.
- Insights into potential relationships, e.g., actual_time vs. osrm_time or actual_distance_to_destination vs. osrm_distance.

3. Feature Creation

Extract features from columns:

- o Split destination_name and source_name into city, place code, and state.
- o Extract year, month, and day from trip_creation_time.
- o Calculate additional metrics, e.g., time_taken_to_reach_destination.

```
[19] # 1. Split and extract features from 'destination_name'
final_df['destination_city_place_code'] = final_df['destination_name'].str.extract(r'([A-Za-z_]+)')
final_df['destination_state'] = final_df['destination_name'].str.extract(r'\(([^\alpha]+\)\)')

[20] # 2. Split and extract features from 'source_name'].str.extract(r'\(([^\alpha]+\)\)')

[21] # Convert 'trip_creation_time' to datetime format
final_df['trip_creation_time'] = pd.to_datetime(final_df['trip_creation_time'])

[21] # Convert 'trip_creation_time'] = pd.to_datetime(final_df['trip_creation_time'])

[22] # 3. Extract features from 'trip_creation_time'].dt.year
final_df['trip_war'] = final_df['trip_creation_time'].dt.nonth
final_df['trip_day_of_yeek'] = final_df['trip_creation_time'].dt.day_name()
final_df['trip_day_of_yeek'] = final_df['trip_creation_time'].dt.day
final_df['trip_day_of_yeek'] = final_df['trip_creation_time'].dt.day
final_df['trip_hour'] = final_df['trip_creation_time'].dt.hour]
```


4. Merging Rows and Aggregation

- Grouping by Trip_uuid:
 - Aggregate based on Trip_uuid, preserving the first and last values for selected fields.

0

5. Comparison and Visualization of Time and Distance Fields

- Time Fields:
 - o Compare actual_time and osrm_time to check for discrepancies.

```
from scipy, stats import test ind
from scipy, stats import test rel
from scipy, stats import test rel
import matplotlib.pyplot as plt
import matplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.py
```

• Distance Fields:

Plot the comparison between actual_distance_to_destination and osrm_distance.

6. Missing Values Treatment & Outlier Treatment

• Missing Value Treatment:

 Use imputation methods like mean, median, or forward fill depending on the nature of the missing data.

• Outlier Treatment:

 Calculate IQR for each column, filtering out values beyond the upper and lower bounds.

7. Checking Relationship Between Aggregated Fields

• Correlations:

 Use a heatmap to explore correlations between aggregated fields like actual_time, actual_distance_to_destination, and other fields.

• Visual Analysis:

o Plot scatter plots to see how aggregated fields interact.

 Example: Relationship between cumulative distance and time can reveal insights about delivery efficiency.

8. Handling Categorical Values

• One-Hot Encoding:

 Convert categorical columns like route_type to one-hot encoding to prepare them for machine learning models.

for col in ['route_type', 'source_name', 'destination_name']:

final_df[col] = final_df[col].astype('category')

 $\overline{}$

 Use MinMaxScaler for normalization or StandardScaler for standardization based on your analysis needs.

```
        Q
        from sklamm_preprocessing import StandardScaler, NinWasScaler numerical_cols = ['actual_distance_to_destination', 'actual_time', 'osm_time', 'osm_distance', 'segent_actual_time', 'isguent_osm_time', 'segent_osm_time', 'segent_osm_time', 'segent_osm_time', 'ite_pun', 'trip_year', 'trip_month', 'trip_day', 'trip_hour', 'trip_tear', 'trip_month', 'trip_day', 'trip_hour', 'trip_sear', 'trip_month', 'trip_day', 'trip_hour', 'trip_sear', 'trip_month', 'trip_day', 'trip_hour', 'trip_sear', 'trip_month', 'trip_day', 'trip_hour', 'trip_sear', 'trip_month', 'trip_day', 'trip_hour', 'trip_month', 'trip_month', 'trip_day', 'trip_hour', 'trip_month', 'trip_month',
```

10. Business Insights

Pattern Analysis:

 Identify the busiest corridors, average time, and average distance between destinations.

- Observe which states or regions are generating the highest volume of deliveries.
- o Insights into peak trip creation times and delays.

11. Recommendations

• Route Optimization:

o Focus on optimizing the busiest routes by redistributing resources during peak times.

• State-Specific Focus:

o Increase delivery resources in states with the highest order volume.

• Improving Time Estimates:

 Update osrm_time estimates where there is a significant discrepancy between planned and actual times.