# VE444: Networks

Yifei Zhu, assistant professor University of Michigan-Shanghai Jiao Tong University



# **Matching Markets**

## Matching is common

- Matching is a common phenomenon in our society
  - Student-university matching
  - Employee-employer matching
  - Wife-husband matching
- 2012 Nobel Prize in Economy:
  - Lloyd S. Shapley and Alvin E. Roth
  - For the theory of stable allocations and the practice of market design

#### Start from a simple example

- 5 students and 5 rooms, every one shows his/her preference
- Is there a matching that satisfies all students?
- A bipartite graph



#### **Perfect Matching**

- Perfect Matching: When there are an equal number of nodes on each side of a bipartite graph, a perfect matching is an assignment of nodes on the left to nodes on the right, in such a way that
  - each node is connected by an edge to the node it is assigned to, and
  - no two nodes on the left are assigned to the same node on the right.





#### **Constricted Set**

How to prove to others that a bipartite graph has no perfect matching?



Neighbor set N(S): collection of all neighbors of a right/left side node set S. Constricted sets: a set, S, on one side is constricted if S is strictly larger than N(S)

#### **Constricted Set**

 Matching Theorem: If a bipartite graph (with equal numbers of nodes on the left and right) has no perfect matching, then it must contain a constricted set.





# Matching theorem Proof: augmenting path

- Enlarging the existing matching
  - Matching edges
  - Non-matching edges
- If there is an alternating path whose endpoints are unmatched nodes, then the matching can be enlarged
  - Alternating path: a path that alternates between nonmatching and matching edges
  - Augmenting path: an alternating path with unmatched endpoints
  - Flip the roles of edges in the augmenting path to enlarge the matching



### Augmenting path example



Find the path is not easy.

### Finding the augmenting path is not easy



We need an algorithm to find it.

## **Alternating BFS**





### Identifying the constricted set



Constricted set: The set of nodes in all even layers at the end of a failed alternating BFS

#### Identifying the constricted set



Constricted set: The set of nodes in all even layers at the end of a failed alternating BFS

#### Back to Matching Theorem

W: any unmatched node on the right-hand side

Run alternating BFS on current matching, then, either there is an

augmenting path beginning at W, or there is a constricted set containing W

- Matching Theorem: If a bipartite graph (with equal numbers of nodes on the left and right) has no perfect matching, then it must contain a constricted set.
  - If no perfect matching, only maximum matching exists
  - from unmatched nodes, no way to enlarge it further.
  - Constricted set identified.

#### Matching based on valuations

- Not only buying or not buying, there can be different valuation on a single object
  - The same object has different values for different people
  - The same person has different values for different objects
- How to do matching with valuations?

#### Marriage Model

#### Participants

- Set of men M, with typical man  $m \in M$
- Set of women W, with typical woman  $w \in W$ .
- One-to-one matching: each man can be matched to one woman, and vice-versa.

#### Preferences

- Each man has strict preferences over women, and vice versa.
- A woman w is acceptable to m if m prefers w to being unmatched.

#### Marriage Model: Matching

- A matching is a set of pairs (m,w) such that each individual has one partner.
  - If the match includes (m,m) then m is unmatched.
- A matching is *stable* if
  - Every individual is matched with an acceptable partner.
  - There is no man-woman pair, each of whom would prefer to match with each other rather than their assigned partner.
- If such a pair exists, they are a blocking pair and the match is unstable.

#### Example 1

- Two men m,m' and two women w,w'
- m prefers w to w'
- m' prefers w' to w
- w prefers m to m'
- w' prefers m' to m
- Possible match: (m,w') and (m',w)
- Unique stable match: (m,w) and (m',w')

#### Example 2

- Two men m,m' and two women w,w'
- m prefers w to w'
- m' prefers w' to w
- w prefers m' to m
- w' prefers m to m'
- Two stable matches {(m,w),(m',w')} and {(m,w'),(m',w)}
- First match is better for the men, second for the women.
- Is there always a stable match? How to find one?

#### **Deferred Acceptance**

- Men and women rank all potential partners
- Algorithm
  - Each man proposes to highest woman on his list
  - Women make a "tentative match" based on their preferred offer, and reject other offers, or all if none are acceptable.
  - Each rejected man removes woman from his list, and makes a new offer.
  - Continue until no more rejections or offers, at which point implement tentative matches.
- This is the "man-proposing" version of the algorithm; there is also a "woman proposing" version.

## Example

Preferences of men and women

• Find a stable matching.

# Stable matchings exist

Theorem. The outcome of the DA algorithm is a stable one-to-one matching (so a stable match exists).

#### Proof.

- Algorithm must end in a finite number of rounds.
- Suppose m, w are matched, but m prefers w'.
  - At some point, m proposed to w' and was rejected.
  - At that point, w' preferred her tentative match to m.
  - As algorithm goes forward, w' can only do better.
  - So w' prefers her final match to m.
- Therefore, there are NO BLOCKING PAIRS.

Further analysis on DA: truthfulness, pareto-optimality, etc could be done.

#### **Matching Market**

Valuation (different on different objects)



- Matching always exists
- Which is good?

#### Which is better?



#### Quality evaluation

 We care whether there is a matching that everybody will be satisfied (i.e., happy)



### Relationship between two cases





#### Describes the basic case as well



#### How to find the optimal assignment?

- Sellers, buyers, valuation (different on different objects)
- Exhaustive search?
  - Time complexity n!



#### **Matching Market Framework**

- Sellers, buyers, valuation (different on different objects)
- We care whether there is a matching that everybody will be satisfied (i.e., happy)
- What kind of mechanism will provide such matching?
- What if we do not have a centralized coordinator?

#### **Elements overview**

- What if we do not have a centralized coordinator?
  - Replace the central coordinator by a pricing scheme
- Each seller offer a price pi
- Buyer payoff: valuation minus the price
- Preferred sellers: the seller or sellers that maximize the payoff for buyer j
  - Preferred seller graph

## Preferred seller graph

Sellers

**Buyers Valuations** 

Prices Sellers

**Buyers Valuations** 

(a)

(x)

12, 4, 2

5



12, 4, 2

(b)

y

8, 7, 6

2



8, 7, 6

(c)

 $\left(z\right)$ 

7, 5, 2

0

(c) (z)

7, 5, 2

## Preferred seller graph



### Market clearing price



A set of price is **market clearing price** if the resulting preferred-seller graph has a perfect matching.

#### Market clearing price



A set of price is **market clearing price** if the resulting preferred-seller graph has a perfect matching.

- Coordination over tie-breaking allowed
- Multiple sets of market clearing price could exist

#### Optimality of the Market-clearing Prices

Optimality of the Market-clearing Prices: For any set of market-clearing prices, a perfect matching in the resulting preferred-seller graph has the maximum total valuation of any assignment of sellers to buyers

#### Reason:

M: perfect matching

Total Payoff of buyers in M = Total Valuation of buyers in M – Sum of all prices

Optimality of the Market-clearing Prices (v2): For any set of market-clearing prices, a perfect matching in the resulting preferred-seller graph has the maximum sum of payoffs of all sellers to buyers

#### Existence of Market-clearing prices

Existence of Market-clearing prices: For any set of buyer valuations, there exists a set of market-clearing price.

- Why it always exists?
  - Construct a procedure that stops only when marketclearing prices are found
  - This procedure has limited rounds.

# How to find a set of Market-Clearing Prices?

- Two parts: price probing(increase) and price reduction
- Procedure:
  - At the start of each round, a set of prices, with the smallest one equal to 0
  - Construct the preferred-seller graph and check whether there is a perfect matching
  - 3. Stops when perfect matching exists, output current prices
  - 4. If not, identify a constricted set of buyers, S and their neighbors N(S)
  - 5. Each seller in N(S) simultaneously raises his price by one unit
  - 6. Reduce price to guarantee the smallest price equal to 0.
  - 7. Using the updated price to start a new round

# How to find a set of Market-Clearing Prices?

- Two parts: price probing and price reduction
- Procedure:
  - 1. At the start of each round, a set of prices, with the smallest one equal to 0
  - Construct the preferred-seller graph and check whether there is a perfect matching
  - 3. Stops when perfect matching exists, output current prices
  - 4. If not, identify a constricted set of buyers, S and their neighbors N(S)
  - 5. Each seller in N(S) simultaneously raises his price by one unit
  - 6. Reduce price to guarantee the smallest price equal to 0.
  - 7. Using the updated price to start a new round

# How to find a set of Market-Clearing Prices?









(c) Start of third round

(d) Start of fourth round

#### Existence of the market clearing price

- This procedure stops after finite rounds.
- Potential energy:
  - Potential energy of a buyer: maximum payoff under current prices
  - Potential energy of a seller: current price
  - Potential energy of the auction: sum of potentials of all buyers and sellers
- Potential energy at the begin: P≥ 0
- Potential energy at the start of each round at least zero
- Potential energy only changes when the prices change
  - Price reduction: no change
- Price probing (S: constricted buyer set):
  - Each seller potential goes up by one unit
  - Each buyer potential goes down by one unit
  - But  $S \ge N(S)$

#### Existence of the market clearing price









(b) Start of second round

(c) Start of third round (d) Start of fourth round

#### Relationship with auction?

#### **Summary**

- Perfect matching v.s. constricted set
- Alternating BFS -> perfect matching
  - Augmented path || constricted set
- Existence of the market clearing price
- Optimality of the market clearing price