Prof. Georg Hoever

1. Praktikum zur

Höhere Mathematik 2 für (Wirtschafts-)Informatik

Ziel dieses Praktikums ist eine Implementierung des Gradientenverfahrens mit Schrittweitensteuerung.

1. Aufgabe

Um bequem mit Vektoren $\vec{x} \in \mathbb{R}^n$ arbeiten zu können, soll eine Klasse CMyVektor implementiert werden:

• Überlegen Sie sich, durch welche(n) Datentyp(en) Sie die Informationen speichern, z.B. die Dimension als Integer und die Werte in einem double-Array; Sie können auch die Standardklasse vector<double> der C++-Standard-Template-Library nutzen

Implementieren Sie die Informationen als private Attribute.

- Implementieren Sie (public-)Methoden, um
 - einen Vektor einer bestimmten Dimension anzulegen,
 - die Dimension eines Vektors auszugeben,
 - eine bestimmte Komponente des Vektors zu setzen,
 - eine bestimme Komponente des Vektors auszugeben.

Tipp: Sie können beispielsweise elegant den Indexoperator [] oder Klammeroperator () überladen.

• Implementieren Sie eine (public-)Methode, die die Länge des Vektors zurückgibt.

Implementieren Sie ferner zwei überladene Operator-Funktionen

```
CMyVektor operator+(CMyVektor a, CMyVektor b)
CMyVektor operator*(double lambda, CMyVektor a),
```

die eine Vektor-Addition und eine skalare Multiplikation realisieren.

2. Aufgabe

Zu einer Funktion $f: \mathbb{R}^n \to \mathbb{R}$ soll der Gradient an einer Stelle $\vec{x} \in \mathbb{R}^n$ berechnet werden:

• Implementieren Sie eine Funktionen

CMyVektor gradient(CMyVektor x, double (*funktion)(CMyVektor x)),

der man im ersten Parameter die Stelle \vec{x} und im zweiten Parameter die Funktion f als Funktionspointer übergibt, und die den Gradienten $\vec{g} = \operatorname{grad} f(\vec{x})$ numerisch durch

$$g_i = \frac{f(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

zu festem $h = 10^{-8}$ berechnet.

3. Aufgabe

Zu einer Funktion $f: \mathbb{R}^n \to \mathbb{R}$ soll ausgehend von einer Stelle $\vec{x} \in \mathbb{R}^n$ das Gradientenverfahren mit folgender Schrittweitensteuerung zur Maximierung von f durchgeführt werden:

Sei $\vec{x}_{\text{neu}} = \vec{x} + \lambda \cdot \text{grad } f(\vec{x}).$

Falls $f(\vec{x}_{neu}) > f(\vec{x})$:

Teste eine doppelte Schrittweite. Dazu sei $\vec{x}_{\text{test}} = \vec{x} + 2 \cdot \lambda \cdot \text{grad } f(\vec{x})$.

Falls $f(\vec{x}_{\text{test}}) > f(\vec{x}_{\text{neu}})$:

Nimm \vec{x}_{test} als neues \vec{x} und verdopple die Schrittweite λ .

Ansonsten wird \vec{x}_{neu} als neues \vec{x} genommen und die Schrittweite beibehalten.

Falls $f(\vec{x}_{\text{neu}}) \leq f(\vec{x})$:

Halbiere die Schrittweite solange, bis für das entsprechende \vec{x}_{neu} gilt: $f(\vec{x}_{\text{neu}}) > f(\vec{x})$.

Dieses \vec{x}_{neu} wird dann als neues \vec{x} genommen und die Schrittweite entsprechend übernommen.

Dieses Verfahren soll solange durchgführt werden, bis $\|\operatorname{grad} f(\vec{x})\| < 10^{-5}$ ist, oder bis 50 Schritte gemacht wurden.

• Implementieren Sie das entsprechende Verfahren.

Nutzen Sie wieder einen Funktions-Pointer zur Angabe der zu maximierenden Funktion. Neben der Startstelle \vec{x} soll die Schrittweite λ optionales Argument mit default-Wert 1.0 sein.

- Testen Sie das Verfahren an den folgenden Beispielen:
 - $-f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \sin(x+y^2) + y^3 6y^2 + 9y,$ Startstelle $\vec{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix},$ default-Schrittweite,
 - $-g: \mathbb{R}^3 \to \mathbb{R}, \ g(x_1, x_2, x_3) = -(2x_1^2 2x_1x_2 + x_2^2 + x_3^2 2x_1 4x_3),$ Startstelle $\vec{x} = (0, 0, 0)^T$, Start-Schrittweite $\lambda = 0.1$.