フォールトトレランス

- 1. フォールトトレランスの基本概念を学習する
- 2. RAIDについて学習する
- 3. 信頼性評価について学習する

フォールトトレランス (Fault tolerance)

- フォールトトレランス■フォールトに耐えられること
- フォールトトレラントシステムコフォールトに耐えられるシステム
- 例.
 - ロパリティビット
 - □ 2線式論理
 - TMR
 - □ 商用のフォールトトレラントサーバ
 - RAID

パリティビット (parity bit)

- ●ビット列の1のビットの数を,偶数,または,奇数にたもつために付加する1ビットのこと
 - □偶数パリティ
 - ◆パリティビットも含めて、1の数を偶数にする方式
 - -0100010 + パリティビット 0
 - -0100011 + パリティビット 1
 - □奇数パリティ

2線式論理 (Dual-rail logic)

- 1を(1, 0), 0を(0, 1)で表現
 - 2ビットの符号語 (code word)
 - ◆ 1ビットのエラーを検出可能
- ●Notを用いない回路で実現可能

2線式論理 (Dual-rail logic)

- ●Notがない回路の出力へのフォールトの影響
 - □値が1→0になる故障 → 1→0 のみ
 - ■値が0 →1になる故障 → 0→1 のみ
- ●同じ方向のエラーなら間違った符号語は出力されない
 - □例えば(0,1)→(1,0)は起こりえない
 - □出力が符号語でない場合は,エラーが検出されたことになる
 - □ Fault-Secure
 - ◆誤った符号語を出力しない性質

TMR (Triple Modular Redundancy)

- ●3重系
 - モジュール×3+多数決器
- ●多数決器 (Voting element, voter)
 - Bit-wise voting
 - ◆1ビット毎に多数決を採る方法
 - ◆2つ以上のModuleのFaultに耐えられる場合がある

商用のフォールトトレラントコンピュータ

● HPE NonStopシステムファミリ

- ストラタス フォールト・トレラント・サーバ
 - □ 2重系
 - □高可用性

https://www.hitachi-systems.com/campaign/02/ftserver/

フェイルセイフ(fail-safe)

●障害がおきても安全な出力・状態に移行

□一種のフォールトトレランス

安全 Safe

近い概念. Fail-operational 制御システムが障害となっても,機能を縮退してシステム自体 は動作を継続

2. RAID

- Redundant Array of Inexpensive Disks
 - → Redundant Array of Independent Disks
 - □複数のハードディスクを用いて,フォールトトレラントな記憶領域を 実現
- Striping
 - □ 記憶領域をStripeに分割し、複数のディスクに分散させること
 - □ 1ストライプ = 負荷の分散
 - ◆ 典型的な大きさ:128KB, 256KB, 512KB

RAID-0 (Striping)

- ●データが重複しないようにストライプを分散
 - □アクセスの並列化による 性能の向上
 - ■No fault tolerance
 - □利用効率(記憶容量に対する使用可能容量の割合)= 100%

RAID-1 (Mirroring)

- ●同一のデータを複数(N台)のディスクで保持
 - □高いFault tolerance (N-1台の障害への耐性)
 - □高速な読み出し
 - □低速な書き込み
 - □利用効率=100/N%

RAID-5

- パリティをディスクに分散
 - □Disk 1台のフォールトをmask
 - □高速な読み出し・書き込み
 - □利用効率 100×(N-1/N) %

RAID-6

- ●2重パリティ
 - □Disk 2台のフォールトをmask
 - □利用効率 100×(N-2/N) %

3. 信頼性評価について学習する

- ●評価尺度
 - □信頼度 reliability
 - □可用度 availability
 - **■**MTTF
- ●参考.正常・障害以外の状態をもつシステム
 - □漸次縮退(gracefully degrading)システム
 - ◆ 正常と障害の間に、機能が縮退した状態が存在
 - □評価尺度
 - ◆Performability: Performance + Reliability

Reliability (信頼度)とMTTF

- Reliability
 - □時刻 t までシステムが正しく動き続ける確率
 - □failure rate (障害率) λ ($\lambda \ge 0$)が一定の場合 $R(t) = e^{-\lambda t}$
 - ◆ t: 時刻 (t ≥ 0), e: 自然対数の底
- MTTF
 - □障害までの平均時間 $MTTF = \int_0^\infty R(t) dt$
 - $\square R(t) = e^{-\lambda t}$ のとき, MTTF = $\frac{1}{\lambda}$

TMRのReliabilityとMTTF

- $R(t) = 3e^{-2\lambda t} 2e^{-3\lambda t}$
 - ロモジュールの信頼度: $R_m(t) = e^{-\lambda t}$
 - ■Voting element (多数決器, voter)は, 故障しない

- □2台以上のモジュールが故障していなければ,正常
- MTTF = _____
 - ロ モジュールのMTTF: MTTF_m = $\frac{1}{\lambda}$

$$\int a^{x} dx = \frac{a^{x}}{\log a} + C$$
$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

マルコフモデル (Markov models)

- ●状態変化をマルコフ連鎖で表現
 - □状態+遷移率
 - □詳細な動作を表現可能
- ●例. 2重系+修復人1

マルコフモデル (Markov models)

- ●状態変化をマルコフ連鎖で表現
 - □状態+遷移率
 - □詳細な動作を表現可能
- ●例. 2重系+修復人1

Module Module Module Module

連続時間

λ: 障害率(failure rate)

μ: 修復率(repair rate)

離散時間

定常アベイラビリティの解析

- ●定常アベイラビリティ
 - □システムが正常である確率
 - □例の場合. 状態1か2にいる確率
- ●求め方
 - \square_{π_i} : 状態iにいる確率として, 連立方程式をとく

$$\begin{cases} 0 = \mu \pi_2 - 2\lambda \pi_1 \\ 0 = 2\lambda \pi_1 + \mu \pi_3 - (\mu + \lambda)\pi_2 \\ 0 = \lambda \pi_2 - \mu \pi_3 \\ \pi_1 + \pi_2 + \pi_3 = 1 \end{cases}$$

