Assignment 9—Grundlagen der Bioinformatik

Anastasia Grekova 4149666 and Huajie Chen 4199962 July 1, 2018

1 Secondary structure using JPRED4

A Protein Secondary Structure Prediction Server

1. *Note: there is only first part of the result presented, because a window size is too small for the whole sequence.

The sequence for which the prediction was made is on the top of the picture.

JNetPRED

The consensus prediction - helices are marked as red tubes, and sheets as dark green arrows.

Total query length 126

According to prediction:

of \(\mathbb{k}\)-sheet amino acids: 9 + 6 + 3 + 4 = 22

of α -strand amino acids 53:

As we can see the main structure according that prediction is α -strand.

jhmm - Jnet HMM profile prediction

of \(\mathbb{R}\)-sheet amino acids:23

of α -strand amino acids: 50

As we can see the main structure according that prediction is α -strand.

jpssm - Jnet PSIBLAST PSSM profile prediction

of \(\mathbb{S}\)-sheet amino acids:20

of α -strand amino acids:64

As we can see the main structure according that prediction is α -strand.

jpssm/jhmm

$$\frac{matches}{Query.length} = \frac{67}{126} = 53,17\%$$

jpssm/JNetPRED

$$\frac{matches}{Query.length} = \frac{72}{126} = 57,14\%$$

JNetPRED/jhmm

 $\frac{matches}{Query.length} = \frac{69}{126} = 54,76\%$ Two different reports have identified essentially "the same" secondary structure feature, when the sum of amino acids, involved in either α -strand, β -sheet or neither of both structures, by every report makes the greatest part of all predictions we have observed in the report.

All reports contain 3 features : predicted α -strand, predicted β -sheet or not defined.

Predicted α -strand for each pair of reports = $\frac{\#matches}{maxNumberOfAlphaAA}$:

 $\begin{array}{l} {\rm jpssm/jhmm:} \frac{50}{64} = 78,12\% \\ {\rm jpssm/JNetPRED:} \frac{53}{64} = 82,81\% \\ {\rm JNetPRED/jhmm:} \frac{57}{60} = 95\% \end{array}$

Predicted β -sheet for each pair of reports = $\frac{\#matches}{maxNumberOfAlphaAA}$:

 $\begin{array}{l} {\rm jpssm/jhmm:} \frac{17}{23} = 73,91\% \\ {\rm jpssm/JNetPRED:} \frac{19}{23} = 82,61\% \\ {\rm JNetPRED/jhmm:} \frac{20}{26} = 76,9\% \end{array}$

Calculating hydrophobic moment

The amino acid sequence is LRDWVVEVEKR. The given formular to calculate the hydrophobic moment is:

$$\mathcal{M}^{\omega}(p,q) = \left[\left(\sum_{i=p}^{q} h(a_i)cos(i\omega)\right)^2 + \sum_{i=p}^{q} h(a_i)sin(i\omega)\right]^{\frac{1}{2}}$$

According to the amino acid hydrophobic table (Kyte and Doolittle 1982):

$$h_L = 4$$
 $h_R = -4.5$ $h_D = -3.5$ $h_W = -1$ $h_V = -1.2$ $h_E = -3.5$ $h_R = -4.5$

Besides, this should be an α -helix, which means $\omega = 100^{\circ}$

Then just put this values into the formula and get the final outcome. The final outcome is 11.93.

Maximizing hydrophobic moment 3

 $\omega = 100^{\circ}, \sin \omega > 0, \cos \omega < 0, |\sin \omega| > |\cos \omega|$ Pick "I" with the largest positive h.

 $\omega=200^{\circ}, sin\omega<0, cos\omega<0, Pick "R" with the smallest negative h.$

 $\omega = 300^{\circ}, \sin\omega < 0, \cos\omega > 0, |\sin\omega| > |\cos\omega|$ Pick "R" with the smallest negative h.

 $\omega = 400^{\circ}, \sin \omega > 0, \cos \omega > 0$, Pick "I" with the largest positive h.

 $\omega = 500^{\circ}, \sin\omega > 0, \cos\omega < 0, |\cos\omega| > |\sin\omega|$ Pick "R" with the smallest negative h.

 $\omega = 600^{\circ}, \sin \omega < 0, \cos \omega < 0$ Pick "R" with the smallest negative h.

```
\omega=700^\circ, sin\omega<0, cos\omega>0, |cos\omega|>|sin\omega| Pick "I" with the largest positive h.
```

Therefore, the final determined sequence is "IRRIRRIIRRII"

 $[\]omega=800^{\circ}, sin\omega>0, cos\omega>0, Pick$ "I" with the largest positive h.

 $[\]omega=900^{\circ}, sin\omega=0, cos\omega=-1$ Pick "R" with the smallest negative h.

 $[\]omega=1000^\circ, sin\omega<0, cos\omega>0, |sin\omega|>|cos\omega|$ Pick "R" with the smallest negative h. $\omega=1100^\circ, sin\omega>0, cos\omega>0,$ Pick "I" with the largest positive h.

 $[\]omega=1200^\circ, sin\omega>0, cos\omega<0, |sin\omega|>|cos\omega| \text{Pick "I"} \text{ with the largest positive h.}$