Университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчет по лабораторной работе №1 Вариант 25

Выполнил:

Туляков Евгений Р32101

Преподаватель:

Рыбаков Степан Дмитриевич

Цель работы

Разработать программу для подсчета корней СЛАУ. Для прямых методов должно быть реализовано:

- Вычисление определителя
- Вывод треугольной матрицы (включая преобразованный столбец В)
- Вывод вектора неизвестных: x_1, x_2, \dots, x_n
- Вывод вектора невязок: r_1, r_2, \dots, r_n

Описание метода

Метод Основан на приведении матрицы системы к треугольному виду так, чтобы ниже ее главной диагонали находились только нулевые элементы. Прямым ходом метода Гаусса состоит в последовательном исключении неизвестных из уравнений системы. Сначала с помощью первого уравнения исключается x_1 из всех последующих уравнений системы. Затем с помощью второго уравнения исключается x_2 из третьего и всех последующих уравнений и т. д. Обратный ход метода Гаусса состоит в последовательном вычислении искомых неизвестных: решая последнее уравнение, находим единственное в этом уравнении неизвестное x_n . Далее, используя это значение, из предыдущего уравнения вычисляем x_{n-1} и т.д. Последним найдем x_1 из первого уравнения.

Код программы

https://github.com/youngpopeugene/ComputationalMath/tree/main/lab1

Функция, реализовывающая сам метод

```
public static double[][] calculateTriangleMatrix(double[][]
matrix) {
    int n = matrix.length;
    for(int i = 0; i < n; i++) {
        System.out.println(Printer.getBlueText("Iteration Nº "
        + (i+1)));
        Integer point = findMaxColumnElement(matrix, i);
        if (point == null) return null;
        if(point != i)

System.out.println(Printer.getYellowText("Swapping lines Nº" +
        (point + 1) + " and Nº " + (i+1)));
        else System.out.println(Printer.getYellowText("No
swapping required"));</pre>
```

```
for (int j = i; j <= n; j++) {
            double temp = matrix[i][j];
           matrix[i][j] = matrix[point][j];
           matrix[point][j] = temp;
        System.out.println(Printer.getYellowText("After
swapping:"));
        Printer.printMatrix(matrix);
        for (int k = n; k >= i; k--)
           matrix[i][k] /= matrix[i][i];
        Printer.printMatrix(matrix);
        for (int k = i + 1; k < n; k++)
            for (int j = n; j >= i; j--)
                matrix[k][j] -= matrix[k][i] * matrix[i]
        System.out.println(Printer.getYellowText("After
matrix transformation №" + (i+1)));
        Printer.printMatrix(matrix)
   return matrix
```

Результат работы программы

GAUSS METHOD with the choice of the main element by columns If you want to stop program execution type \exit in console

```
Enter type of file1: keyboard [k] or file [f]
f
Enter name of file:
file1

Initial matrix:
    2,00    3,00   -1,00    7,00
```

1,00 6,00	-1,00 -2,00	6,00 1,00	14,00 11,00
Iteration № Max column of Swapping line After swapping	element: 6, nes №3 and		
• • •	-2,00	1,00	11,00
•	-1,00	6,00	14,00
2,00	3,00	-1,00	7,00
After matri			4 07
1,00	-0,33		1,83
0,00 0,00	-0,67 3,67		12,17 3,33
Iteration №			
Max column	•		
Swapping li		№ 2	
After swapp: 1,00	-0,33	0,17	1,83
0,00	3,67	-1,33	3,33
0,00	-0,67	5,83	12,17
After matri			4 07
1,00	-0,33	0,17	1,83
0,00 0,00	1,00 0,00	-0,36 5,59	0,91 12,77
Iteration №			
Max column		59	
No swapping After swapp			
1,00	-0,33	0,17	1,83
0,00	1,00	-0,36	0,91
0,00	0,00	5,59	12,77
After matri			
1,00	-0,33	0,17	1,83
0,00	1,00	-0,36	0,91
0,00	0,00	1,00	2,28
Triangle ma			
	-0,33	0,17	1,83
0,00	1,00	-0,36	0,91
0,00	0,00	1,00	2,28
Matrix dete	rminant:		

1,00

Solutions for SLAE:

2,03 1,74 2,28

Residual vector:

-0,00 0,00 0,00

Process finished with exit code 0

Вывод

Во время выполнения лабораторной работы я изучил работу прямого метода Гаусса с выбором главного элемента по столбцу.

Основной недостаток прямого метода – хранение всей матрицы в памяти. Также метод не учитывает количество нулевых элементов, в результате чего проводятся лишние арифметические операции. Из-за того, что результаты вычисления используются повторно, накапливается вычислительная погрешность.

При решении СЛАУ методом Гаусса может получиться большая погрешность из-за использования маленьких ведущих элементов. Выбор главного максимального элемента позволяет избежать этого.