# Averaging of biological replicates

# Vladimir Kiselev 28 April 2015

## Contents

| 1 | Ave        | raging all bio replicates of PIP3                                                            | 1 |
|---|------------|----------------------------------------------------------------------------------------------|---|
|   | 1.1        | Separated siINPP4(A+B) and siSHIP2 conditions $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$ | 1 |
|   | 1.2        | $siINPP4(A+B)\&siSHIP2\ condition\$                                                          | 4 |
|   | 1.3        | Final plot of PIP3 data                                                                      | 6 |
| 2 | Ave        | raging all bio replicates of $PI(3,4)P2$                                                     | 6 |
|   | 1110       | raging air bio replicates of $\Gamma(0,1)/\Gamma_2$                                          | U |
|   | 2.1        |                                                                                              | _ |
|   | 2.1        |                                                                                              | 7 |
|   | 2.1<br>2.2 | Separated siINPP4(A+B) and siSHIP2 conditions                                                | 7 |

# 1 Averaging all bio replicates of PIP3

## 1.1 Separated siINPP4(A+B) and siSHIP2 conditions

Looking at the file bio-reps-summary.pdf I decided to normalize all PIP3 data to the peak value in PTEN-sictrl, which is about 0.01 (in Golden Ration units). To do this I merge all data from the following files into one file and treat these different data as biological replicates:

```
2014_09_05B_c4_FULLn1
2014_09_19B_c4_FULLn2
2015_02_23B_c4_FULLn3
2014_12_18A_c4_full
2015_02_06B_c4_pten_ship2_ptenship2_n2
2015_04_04A_c4_wt_ship2_pten_ptenship2_N3
2014_12_12A_c4_wt_ab_pten_tc
2015_02_14B_c4_pten_ab_pab_tcN2_pabVSpabsN2
2015_03_06A_c4_pi34p2Trans_n3
2015_08_06A_c4_PTEN_crispr_n1
```

Then I find a coefficient of normalisation for each replicate (so that it should be always 0.01 in PTEN-sictric condition)

| rep                   | norm.coef         |  |
|-----------------------|-------------------|--|
| 2014_09_05B_c4_FULLn1 | 0.743657678035968 |  |
| 2014 09 19B c4 FULLn2 | 0.917853550380810 |  |

| rep                                                   | norm.coef         |
|-------------------------------------------------------|-------------------|
| 2015_02_23B_c4_FULLn3                                 | 3.876077770904362 |
| 2014_12_18A_c4_full                                   | 0.948582326607152 |
| 2015_02_06B_c4_pten_ship2_ptenship2_n2                | 2.572207144731321 |
| 2015_04_04A_c4_wt_ship2_pten_ptenship2_N3             | 3.126230418069979 |
| 2014_12_12A_c4_wt_ab_pten_tc                          | 1.057647838786254 |
| $2015\_02\_14B\_c4\_pten\_ab\_pab\_tcN2\_pabVSpabsN2$ | 1.461183579234045 |
| 2015_03_06A_c4_pi34p2Trans_n3                         | 3.511431787232272 |
| 2015_08_06A_c4_PTEN_crispr_n1                         | 0.842264131853826 |

Then I normalise each biological replicate by its coefficient.

The resulting plot for PIP3 without PI3K inhibitor:



The resulting plot for PIP3 with PI3K inhibitor:



Now I remove the outlier experiment  $2015\_02\_06B\_c4\_pten\_ship2\_ptenship2\_n2$  (it is an outlier for both cases with and without PI3K inhibitor). The resulting plots are the following:





Now I will average all of the replicates shown in the previous figure and plot the averaged data with error bars corresponding to biological noise:



#### 1.2 siINPP4(A+B)&siSHIP2 condition

Note that there are still two experiments left in which we looked at double silencing of INPP4(A+B) and SHIP2:

 $2014\_10\_10A\_c4\_pabVSpabs$ 

 $2015\_02\_14B\_c4\_pabVSpabsN2$ 

I have not used them in the previous section because they do not have PTEN-sictrl condition and would not be able to normalise them. But now, looking the last figure, I can normalise them by PTEN-siINPP4(A+B)

condition (all other bio replicates are quite consistent in this point). The PIP3 concentration at this point should be:

```
d1[Genotype == "PTEN" & Condition == "siINPP4(A+B)" & Time == 1, Bio.Mean.GR.norm]
```

#### ## [1] 0.00745414134784178

So, first I normalise these two experiments by this time point:

| rep                              | norm.coef         |
|----------------------------------|-------------------|
| 2014_10_10A_c4_pabVSpabs         | 0.716750190606507 |
| $2015\_02\_14B\_c4\_pabVSpabsN2$ | 1.784728351457595 |

And then merge these two replicates with the ones defined before.

Now the total data set looks like:





# 1.3 Final plot of PIP3 data

And averaging of all biological replicates provides a final plot containing all PIP3 data (I will be working with it in the modeling part):



# 2 Averaging all bio replicates of PI(3,4)P2

The same procedure as in the previous chapter can be done for PI(3,4)P2 lipids.

### 2.1 Separated siINPP4(A+B) and siSHIP2 conditions

Looking at the file bio-reps-summary.pdf I decided to normalize all PI(3,4)P2 data to the peak value in PTEN-sictrl. To do this I merge all data from the following files into one file and treat these different data as biological replicates:

```
2014_09_05A_c18_FULLn1
2014_09_19A_c18_FULLn2
2015_02_23A_c18_FULLn3
2014_12_12B_c18_wt_ab_pten_tc
2015_02_14A_c18_pten_ab_pab_tcN2_pabVSpabsN2
2015_03_06B_c18_pi34p2Trans_n3
2015_08_06B_c18_PTEN_crispr_n1
```

To find the averaged concentration in PTEN-sictrl condition I simply average the data in this point (there are no really bad outliers in PI(3,4)P2 data, so it is possible to do it):

```
d[Time == 1 & Condition == "sictrl" & Genotype == "PTEN", list(mean(Mean.GR))]
```

```
## V1
## 1: 0.0765314027687824
```

Then I find a coefficient of normalisation for each replicate (so that it should be always 0.0765314027687824 in PTEN-sictrl condition)

| rep                                                    | norm.coef         |
|--------------------------------------------------------|-------------------|
| 2014_09_05A_c18_FULLn1                                 | 1.136474167778717 |
| 2014_09_19A_c18_FULLn2                                 | 1.060293486809454 |
| 2015_02_23A_c18_FULLn3                                 | 1.066929539741907 |
| 2014_12_12B_c18_wt_ab_pten_tc                          | 0.887924335445865 |
| $2015\_02\_14A\_c18\_pten\_ab\_pab\_tcN2\_pabVSpabsN2$ | 1.261817988105321 |
| 2015_03_06B_c18_pi34p2Trans_n3                         | 0.693827082989926 |
| 2015_08_06B_c18_PTEN_crispr_n1                         | 1.136788951176873 |

Then I normalise each biological replicate by its coefficient.

The resulting plot for PIP3 without PI3K inhibitor:



The resulting plot for PIP3 with PI3K inhibitor:



Now I will average all of the replicates shown in the previous figure and plot the averaged data with error bars corresponding to biological noise:



## 2.2 siINPP4(A+B)&siSHIP2 condition

Note that there are still two experiments left in which we looked at double silencing of INPP4(A+B) and SHIP2:

$$2014\_10\_10B\_c18\_pabVSpabs$$

$$2015\_02\_14A\_c18\_pabVSpabsN2$$

I have not used them in the previous section because they do not have PTEN-sictrl condition and would not be able to normalise them. But now, looking the last figure, I can normalise them by PTEN-siINPP4(A+B) condition (all other bio replicates are quite consistent in this point). The PIP3 concentration at this point should be:

#### ## [1] 0.146433426237419

So, first I normalise these two experiments by this time point:

| rep                                                | norm.coef |
|----------------------------------------------------|-----------|
| 2014_10_10A_c4_pabVSpal<br>2015_02_14B_c4_pabVSpal |           |

And then merge these two replicates with the ones defined before.

Now the total data set looks like:



# 2.3 Final plot of PI(3,4)P2 data

And averaging of all biological replicates provides a final plot containing all PI(3,4)P2 data (I will be working with it in the modeling part):

