

Patent Abstracts of Japan

PUBLICATION NUMBER

2000057700

PUBLICATION DATE

25-02-00

APPLICATION DATE

04-08-99

APPLICATION NUMBER

11221747

APPLICANT: SAMSUNG ELECTRONICS CO LTD;

INVENTOR: JUNG GYU-HWAN;

INT.CL.

G11B 20/12 G11B 20/18 H03M 13/27

TITLE

INTERLEAVING METHOD FOR

HIGH-DENSITY RECORDING MEDIUM

AND CIRCUIT THEREFOR

ABSTRACT: PROBLEM TO BE SOLVED: To provide an interleaving method capable of being applied to a high-density recording medium and performing a high speed search and to provide the circuit therefor.

> SOLUTION: This interleaving circuit includes an intra-block interleaver 104 which interleaves input data having a prescribed error-correcting code in an error-correcting block and outputs the data interleaved in the block, and an intra-block interleaver 106 which interleaves the data interleaved in the block in prescribed number of error-correcting blocks among blocks and which outputs the data interleaved among blocks.

COPYRIGHT: (C)2000, JPO

*(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-57700 (P2000-57700A)

(43)公開日 平成12年2月25日(2000.2.25)

大韓民国京畿道水原市勧善区勧善洞1274番

(外1名)

地新東亜大原アパート511棟1005号

弁理士 志賀 正武

(51) Int.Cl.7		識別記号	FI	テーマコード(参考)
G11B 2	20/12		G11B 20/12	, 12 () 3,
2	20/18	5 3 6	20/18	5 3 6 B
		5 7 0		570G
H03M 1	3/27		H 0 3 M 13/27	
			審査請求有 競求	対項の数26 OL (全 12 頁)

(21)出願番号 特願平11-221747 (71)出願人 390019839 三星電子株式会社 (22)出願日 平成11年8月4日(1999.8.4) 大韓民国京畿道水原市八達区梅雞洞416 (72)発明者 鄭 宗植 (31)優先権主張番号 199831697 大韓民国ソウル特別市永登浦区楊坪洞1街 (32) 優先日 平成10年8月4日(1998.8.4) 20番地新東亜アパート 5 棟302号 (33)優先権主張国 韓国 (KR) (72) 発明者 李 胤雨 (31) 優先権主張番号 199846240 大韓民国京畿道水原市勧善区勧善洞1188番 (32)優先日 平成10年10月30日(1998.10.30) 地星志アパート105棟905号 (33)優先権主張国 韓国 (KR) (72) 発明者 鄭 圭桓

(54) 【発明の名称】 高密度記録媒体のためのインタリープ方法及びその回路

(57)【要約】

【課題】 高密度記録媒体に適用可能で、しかも高速サーチが可能なインタリーブ方法及びその回路を提供する。

【解決手段】 所定のエラー訂正コードをもつ入力データをエラー訂正ブロック内でインタリーブし、ブロック内でインタリーブされたデータを出力するブロック内インタリーバ104と、ブロック内でインタリーブされたデータを所定数のエラー訂正ブロック単位でブロック間インタリーブし、ブロック間インタリーブされたデータを出力するブロック間インタリーバ106とを含むインタリーブ回路。

(74)代理人 100064908

3D: <JP2000057700A__J_>

【請求項1】 高密度記録媒体のエラー訂正能力を向上 させるための方法において、

(a) 所定のエラー訂正コードをもつ入力データをエラー訂正プロック内でインタリーブし、第1のインタリーブされたデータを発生する段階と、

(b) 前記第1のインタリーブされたデータを所定数のエラー訂正ブロック単位でブロック間インタリーブし、第2のインタリーブされたデータを発生する段階とを含むインタリーブ方法。

【請求項2】 前記エラー訂正コード及びエラー訂正プロックのサイズは、DVD-ROM、DVD-RAM、DVD-RWなどのDVDファミリー製品と互換可能なRS (208,192,17)であり、ここで、KSはリードーソロモンコードの略字であり、20 8は全体コードワードの大きさであり、192はコードワードのうちユーザデータの大きさであり、17は外部パリティの個数に1を和したものを表すことを特徴とする請求項1に記載のインタリーブ方法。

【請求項3】 前記(b)段階においては、隣り合う2つのエラー訂正ブロック内のセクタをブロック間インタリーブすることを特徴とする請求項1に記載のインタリーブ方法。

【請求項4】 前記 (b) 段階においては、エラー訂正 ブロックが、セクタA1、セクタA2、...、セクタA16 からなるAブロックとセクタB1、セクタB2、...、セ クタB16からなるBブロックがあるとするとき、ブロック 間インタリーブの順序は、A1、B16、A2、B15、A3、B1 4、...、A14、B3、A15、B2、A16、B1であることを特 徴とする請求項3に記載のインタリーブ方法。

【請求項5】 前記(b)段階においては、エラー訂正 ブロック内の各セクタの位置情報が存在する行はインタ リーブせずに固定することを特徴とする請求項4に記載 のインタリーブ方法。

【請求項6】 前記(b)段階においては、隣り合う2 つのエラー訂正ブロックで、各ブロックの奇数番目のセクタ同士でインタリーブし、同様に偶数番目のセクタ同士でインタリーブすることを特徴とする請求項3に記載のインタリーブ方法。

【請求項7】 前記(b)段階においては、隣り合う2つ以上のエラー訂正ブロック内のセクタをブロック間インタリーブすることを特徴とする請求項1に記載のインタリーブ方法。

【請求項8】 前記(b)段階においては、前記エラー 訂正ブロック内の各セクタの位置情報が存在する行はインタリーブせずに固定することを特徴とする請求項1に 記載のインタリーブ方法。

【請求項9】 前記 (b) 段階においては、2つのエラー訂正ブロック単位で各セクタの位置情報が存在する行はインタリーブせずに固定し、セクタの1行単位でブローック間インタリーブすることを特徴とする請求項8に記

載のインタリーブ方法。

【請求項10】 前記2つのエラー訂正ブロックをAブロック及びBブロックとするとき、Aブロックのある1行は、Bブロックの位置情報が存在する行を除いてはいずれの位置にも配列可能なことを特徴とする請求項9に記載のインタリーブ方法。

【請求項11】 前記(b)段階においては、隣り合う 2つのエラー訂正ブロック単位で各ブロック内のセクタ をブロック間インタリーブするが、2つのエラー訂正ブ ロックをAブロック及びBブロックとするとき、Aブロッ クの最初のセクタの位置情報 (ID) が存在する1行を配 列し、Aブロックの最初のセクタのIDが存在する部分を 除いた12行を配列し、Aブロックの2番目のセクタのID が存在する1行を配列し、Bブロックの最初のセクタのID が存在する部分を除いた12行を配列し、. . . 、Bブロ ックの15番目のセクタのIDが存在する1行を配列し、Aブ ロックの16番目のセクタのIDが存在する部分を除いた12 行を配列し、Bブロックの16番目のセクタのIDが存在す る1行を配列し、Bブロックの16番目のセクタのIDが存在 する部分を除いた12行を配列する順序に従ってインタリ ープすることを特徴とする請求項8に記載のインタリー ブ方法。

【請求項12】 前記(b)段階においては、隣り合う 2つのエラー訂正ブロック単位で各ブロック内のセクタ をインタリーブするが、2つのエラー訂正ブロックをA ブロック及びBブロックとするとき、Aブロックの最初の セクタの位置情報 (ID) が存在する1行を配列し、Aブロ ックの最初のセクタのIDが存在する部分を除いた最初の 6行とBブロックの最初のセクタのIDが存在する部分を除 いた最初の6行を配列し、Aブロックの2番目のセクタの IDが存在する1行を配列し、Aブロックの最初のセクタの 残りの6行とBブロックの最初のセクタの残りの6行を配 列し、... Bブロックの15番目のセクタのIDが存在 する1行を配列し、Aブロックの16番目のセクタのIDが存 在する部分を除いた最初の6行とBブロックの16番目のセ クタのIDが存在する部分を除いた最初の6行を配列し、B ブロックの16番目のIDが存在する1行を配列し、Aブロッ クの16番目のセクタの残りの6行とBブロックの16番目の セクタの残りの6行を配列する順序に従ってインタリー ブすることを特徴とする請求項8に記載のインタリーブ 方法。

【請求項13】 前記記録媒体は、最小マーク長が0.2 2μm、トラックピッチ長が0.42μm、記録可能なユーザ データが約14.8GByteであり、記録媒体上のエラー訂正 可能な長さは約6.5mmであることを特徴とする請求項1 に記載のインタリーブ方法。

【請求項14】 前記記録媒体は、最小マーク長が0.2 2μm、トラックピッチ長が0.4μm、記録可能なユーザ データが約15.5 GByteであり、記録媒体上のエラー訂 正可能な長さは約6.5mmであることを特徴とする請求項 - Îに記載のインタリーブ方法。

【請求項15】 前記入力データは、列方向に最大で29 バイトのバーストエラーに対しエラー訂正可能なことを 、特徴とする請求項1に記載のインタリーブ方法。

【請求項16】 高密度記録媒体のエラー訂正能力を向上させるための回路において、所定のエラー訂正コードをもつ入力データをエラー訂正ブロック内でインタリーブし、ブロック内でインタリーブされたデータを出力するブロック内インタリーバと、前記ブロック内でインタリーブされたデータを所定数のエラー訂正ブロック単位でブロック間インタリーブし、ブロック間インタリーブされたデータを出力するブロック間インタリーバとを含むインタリーブ回路。

【請求項17】 前記エラー訂正コード及びエラー訂正ブロックのサイズは、DVD-ROM、DVD-RAM、DVD-RAMなどのDVDファミリー製品と互換可能なRS(208,192,17)であり、ここで、RSはリードーソロモンコードの略字であり、208は全体コードワードの大きさであり、192はコードワードのうちユーザデータの大きさであり、17は外部バリティの個数に1を和したものを表すことを特徴とする請求項16に記載のインタリーブ回路。

【請求項18】 前記ブロック間インタリーバは、隣り合う2つのエラー訂正ブロック内のセクタをブロック間インタリーブすることを特徴とする請求項16に記載のインタリーブ回路。

【請求項19】 前記ブロック間インタリーバは、隣り合う2つのエラー訂正ブロックで各ブロックの奇数番目のセクタ同士でインタリーブを行い、同様に偶数番目のセクタ同士でインタリーブを行うことを特徴とする請求項18に記載のインタリーブ回路。

【請求項20】 前記ブロック間インタリーバは、隣り合う2つ以上のエラー訂正ブロックをブロック間インタリーブすることを特徴とする請求項16に記載のインタリーブ回路。

【請求項21】 前記ブロック間インタリーバは、前記エラー訂正ブロックの各セクタの位置情報が存在する行はインタリーブせずに固定することを特徴とする請求項16に記載のインタリーブ回路。

【請求項22】 前記ブロック間インタリーバは、2つのエラー訂正ブロック単位で各セクタの位置情報が存在する行はインタリーブせずに固定し、セクタの1行単位でブロック間インタリーブすることを特徴とする請求項21に記載のインタリーブ回路。

【請求項23】 前記2つのエラー訂正ブロックをAブロック及びBブロックとするとき、Aブロックのある1行は、Bブロックの位置情報が存在する行を除いてはいずれの位置にも配列可能なことを特徴とする請求項22に記載のインタリーブ回路。

【請求項24】 前記入力データは、列方向に最大で29 バイトのバーストエラーに対しエラー訂正可能なことを 特徴とする請求項16に記載のインタリーブ回路。

【請求項25】 前記記録媒体は、最小マーク長が0.2 2μm、トラックビッチ長が0.42μm、記録可能なユーザ データが約14.8GByteであり、記録媒体上のエラー訂正 可能な長さは約6.5mmであることを特徴とする請求項16 に記載のインタリーブ回路。

【請求項26】 前記記録媒体は、最小マーク長が0.2 2μm、トラックピッチ長が0.4μm、記録可能なユーザ データが約15.5GByteであり、記録媒体上のエラー訂正 可能な長さは約6.5mmであることを特徴とする請求項16 に記載のインタリーブ回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、エラー訂正分野に係り、特に、IID-DVD (High Definition DigitalVersatile Disc)フォーマットを有する高密度記録媒体に適用でき、しかも高速サーチが可能なインタリープ方法及びその回路に関する。

[0002]

【従来の技術】近年、1枚の光ディスクに記録可能なデータの容量が大きくなりつつあり、これは良好な画質及び音質を提供するために、それに相応する多量のデータを記録かつ再生し、コンピュータ周辺機器としての役割を十分果たすべく、各種の情報を記憶できるようにするためである。

【0003】このため、光ディスクも、初期のコンパクトディスク (CD) で約600Mbyteの記憶容量を有していたものが、DVDフォーマットのディスク ("DVD") への発展に伴い、約4.7GByteの記憶容量を有するに至っている。この記憶容量は、MPEG (Moving Picture Expert Group)-2の画質とAC (Audio Coding)-3の音質を持ちながら、約135分間再生できるようにしたものである。

【0004】ところが、最近、HDTVの商業化が進むにつれて、HDTV水準の画質が要求されている。従って、HDTV水準の画質への要求に応えるには、さらなるデータの記憶容量をもつ記録媒体が望まれる。これを目標に開発されているのが、HD-DVDフォーマットのディスク("HD-DVD")である。

【0005】通常のDVDに記憶可能な容量(約4.7Gbyte)から約3.28倍大きくなった約15Gbyteのデータが記憶できなければ、HDTV画質に対応できる映像及び音声を約130分間連続して再生できない。このHD-DVDは、記録される実際のビット長を縮めることで、DVDの一種であるDVD-ROM (Read Only Memory)に等しいサイズのディスクに記録されるデータの容量を大きくしている。

【0006】ところが、これは、光記録再生装置のピックアップ部でのデータ検出時に生じるエラー量が増加し、ディスクに僅かな傷がついたとき、これによるデータの損失は、通常のDVDよりも大きくならざるを得ない。このデータ損失を補えるものがエラー訂正技術であ

るが、これを適用する方法に応じて、記録されるユーザデータの量と、記録及び再生に際しユーザデータの信頼性に大いに影響する。そのため、DVDに適用されていたエラー訂正方法をそのままHD-DVDに適用する場合、再生されるデータの信頼度が格段に落ちる。

【 0 0 0 7】DVDの一例であるDVD-ROMに用いられるエラー訂正ブロックのためのフォーマットは、図1に示すように、列方向に208バイト、行方向に182バイトとなるように構成されている。行方向には、172バイトのユーザデータと10バイトの内部パリティがあり、列方向には12バイトのセクタが16個あり、16バイトの外部パリティがある。

【0008】図2に示すように、このエラー訂正ブロックに対してインタリーブを行っている。インタリーブを行う理由は、隣り合うビットを引き離してディスクに記録されるようにし、ディスクにある程度の傷がついたとしても、エラー訂正ができるようにするためである。すなわち、16バイトの外部パリティを1行ずつ毎セクタの最後に挿入されるように配列している。このように、通常のDVDにおいては、エラー訂正ブロック単位で行ーインタリーブのみ適用していた。しかし、この方法では、田ーDVDなどの高密度記録媒体に望まれるエラー訂正能力を持てない。

【0009】図2において、全体のエラー訂正ブロックのサイズは、37.856 (182×208) バイトとなる。このエラー訂正ブロックで訂正可能な、連続したエラーの範囲は182バイト×16行である。これは、外部バリティの大きさが16バイトであることに起因する。実際にディスクに記録される時は、ユーザデータ及びバリティのほか、子め決まっているシンクパターンもあるから、エラー訂正能力を計算するに際しては、これを考慮しなければならない。このシンクパターンは、1行に2個ずつ挿入されているが、32ピットのシンクパターンが91バイト毎に1個ずつ挿入されているから、1行の182バイトには64ピットのシンクパターンがあることになる。

【0010】従って、通常のDVDフォーマットのディスクのためのエラー訂正ブロックで訂正可能なバーストエラーの大きさは下記の通りである。1行が182バイトとなっており、これは8対16変調することを考慮しなければならないため、

32ビット×2個+ (182バイト×8)×2倍=2.976ビット .

となり、全体のエラー訂正ブロックで訂正可能なバーストエラーの大きさは、

2.976ビット×16行=47,616ビット

となる。DVDフォーマットのディスクにおいて、最小マーク長(3T)が 0.4μ mとなっているが、これは3チャネルビットに相当する。よって、訂正可能な長さをXとするとき、

 $-0.-4\mu$ m: 3 \forall y $h = X \mu$ m: 47,616 \forall y h

X=0. 000634m=6. 34mm

となる。上記のような計算の結果、DVDのエラー訂正プロックで訂正可能な最大のエラーの大きさは47,616ビットとなる。

【0011】DVDの仕様は、記録可能な最小マーク長が 0.4μmであり、トラック間の距離(トラックピッチ) が0.74μmである。このとき、エラー訂正能力は、列方 向に外部パリティが16バイトであるため、ディスクのト ラック向きに約6.3mmの傷がついたとしても、エラー訂 正ができるようになっている。

【0012】従って、通常の光ディスクにおいては、ディスクのトラック向きについた約6.3mmの傷を訂正できるエラー訂正能力が要求されている。DVDフォーマットにおいても同様のエラー訂正能力が要求されており、これに基づきエラー訂正ブロックで訂正可能なビット数を設定している。

【0013】DVDに用いられるエラー訂正ブロックでは、同じ6.3mmの傷に対し、DVD-ROMではエラー訂正が可能であるが、HD-DVDではそうでない。これは、DVD-RO Mは約6.3mmの傷について47,616ビット分の情報に影響が及ぶが、HD-DVDはこれらの約3.28倍に至る156,180ビット分の情報に影響が及ぶからである。このため、通常のDVDに用いられていたエラー訂正方法をそのままHD-DV Dに適用し難い問題点があった。

[0014]

【発明が解決しようとする課題】本発明は、上記事情に 鑑みて成されたものであり、その目的は、DVDフォーマットと互換可能でありながら、エラー訂正能力は向上される、高密度記録媒体のためのインタリーブ方法を提供 するところにある。

【0015】本発明の他の目的は、DVDフォーマットでのエラー訂正コードを用いながら、エラー訂正能力は向上され、しかも希望する箇所へのアクセス時間もDVDフォーマットと同様にして高速サーチが可能な高密度記録媒体のためのインタリーブ回路を提供するところにある。

[0016]

【課題を解決するための手段】前記目的を達成するために、本発明にかかるインタリーブ方法は、高密度記録媒体のエラー訂正能力を向上させるための方法であって、所定のエラー訂正コードをもつ入力データをエラー訂正ブロック内でインタリーブし、第1のインタリーブされたデータを発生する段階と、前記第1のインタリーブされたデータを所定数のエラー訂正ブロック単位でブロック間インタリーブし、第2のインタリーブされたデータを発生する段階とを含むことを特徴とする。

【0017】前記他の目的を達成するために、本発明にかかるインタリーブ回路は、高密度記録媒体のエラー訂正能力を向上させるための回路であって、ブロック内インタリーバとブロック間インタリーバを含み、ブロック

 内インタリーバは、所定のエラー訂正コードをもつ入力 データをエラー訂正ブロック内でインタリーブしてブロック内でインタリーブされたデータを出力し、ブロック ・間インタリーバは、前記ブロック内でインタリーブされたデータを所定数のエラー訂正ブロック単位でブロック 間インタリーブしてブロック間インタリーブされたデータを出力することを特徴とする。

[0018]

【発明の実施の形態】以下、添付の図面に基づき、本発明にかかる高密度記録媒体のためのインタリーブ方法及びその回路の望ましい実施形態について説明する。図3は、本発明にかかるインタリーブ回路が採られた光記録再生装置のチャネル変調器のブロック図である。エラー訂正符号化器(ECCで記してある:102)は、HD-DVDから読み取ったデータをエラー訂正符号化して、エラー訂正符号化されたデータを提供する。このとき、エラー訂正符号化器102で用いるエラー訂正コードは、通常のDVDで用いるRS(208、192、17)と同様である。ここで、RSは、リードーソロモン(Reed-Solomon)コードの略字で、208は全体のコードワードの数であり、192は全体のコードワードのうちユーザデータの大きさであり、17はパリティの個数に1を和したものである。

【0019】ブロック内インタリーバ104は、エラー訂正符号化器102でエラー訂正符号化されたデータをブロック内でインタリーブする。つまり、このブロック内インタリーバは、通常のDVDフォーマットの行ーインタリーブと同様に、16バイトの外部バリティを各セクタの最後に1行ずつ挿入する。ブロック間インタリーバ106は、ブロック内でインタリーブされた2つのエラー訂正ブロック単位でブロック間インタリーブを行い、位置情報であるID (Identification)の存在する各セクタの最初行はインタリーブしない。

【0020】変調器108は、ブロック間インタリーバ106でブロック間インタリーブされたデータを所定の変調体系(ここでは、8対16変調)により変調する。シンク挿入器110は、変調されたデータに対して32ビットの2つのシンクパターンを挿入して、ディスクに記録するために出力する。

【0021】まず、本発明に適用されるHD-DVD記録フォーマットについて説明する。本発明で用いるHD-DVD記録フォーマットの一実施形態では、トラックピッチを0.42μmとし、最小マーク長を0.22μmとする。これにより、DVDと同様の面積に記録可能なデータ量は以下のように計算される。

【OO22】ディスクの記録可能な面積は、円の面積が πr²であるから(ここで、rは円の半径)、

外部円の面積=π(58mm)2=0.01056832m2、

内部円の面積=π(24mm)²=0. 00180956m²

データ領域=0.00875876㎡

となる。ここで、トラックピッチ長が0.42μm、最小ピ ッチ長が0.22μm=3T=3ビットであるから、3ビットが占 める面積は0.42μm/0.22μm=9.24/10⁻¹⁴㎡とな り、これにより、1ビットが占める面積は、9.24×10 114㎡を3で除した3、08×10⁻¹⁴㎡となる。ここで、記録 可能なデータ領域は0.00875876㎡であるから、記録可 能な容量であるデータ領域を1ビットが占める面積3.08 N10-14㎡で除すると、2、84/10¹¹ビットとなる。これ は8対16変調により変調された値であるから、変調前に 計算すると、2、84×10¹¹/2ビットとなり、バイト単位 では (2.84×10¹¹/2) / Sbyte=17.777Gbyteとなる。 【0023】通常のDVDで用いるエラー訂正ブロックに おいて、ユーザデータでないエラー訂正用バリティとシ ンクパターンが占める割合は、次のように計算される。 総ユーザデータ量=192×172=33,024バイト、 パリティ量=16×182+192×10=4.832バイト、 シンクパターンの大きさ= (208×32×2) /8=1,664バイ

となる。したがって、

総冗長量=4.832+1.664=6.496バイト、

総データ量=33,024+6,496=39,520バイト

となる。総冗長量と総データ量との割合は6,496/39,52 0=16.437%であるから、HD-DVDでの冗長の大きさをXと するとき、

 $6,496:39,520=X:17.777\times10^{9}$

 $X=2.922\times 10^9$

となる。従って、実際に記録可能なユーザデータ量は、 17. 777×10⁹ - 2. 922×10⁹=14. 8Gbyte

となる。本発明で提案する、HD-DVDのフォーマットで記録可能な総ユーザデータ量は14.8Gbyteである。また、ディスクのトラック向きに少なくとも約6.3mを訂正できなければならないため、ディスクに記録される最小マーク長が0.22μm=3T=3ビットであるとき、エラー訂正可能なビット数をXとすれば、

6. 3mm: X=0. 22μm: 3ビット

X=85.909ビット

となる。16対8復調を行うと、85,909/2=42,954ビットとなる。そして、これをバイト単位に換算すると、42,9 54/8=5,369バイトとなり、これをDVDのエラー訂正プロックに対応させると、1行に182バイトがあるから、列方向に5,369/182=29.5行となる。ここで、行方向182バイトにはシンクバターンが含まれていないため、シンクパターンまで考慮した上でエラー訂正に要求されるパリティ数を計算する必要がある。すなわち、シンクバターンは1行に64ビットが挿入され、このシンクバターンは前もって定まっているから、5,369/182+64/8=28.2行となる。この値が、列方向のエラー訂正に必要とされるパリティの個数となる。従って、外部エラー訂正で列方向に少なくとも29バイトは訂正できる。

【0024】一方、本発明が適用されるHD-DVDの他の実施形態による記録フォーマットが、トラック間の距離が0.4μmで、最小マーク長が0.22μmとなっている場合にも、同じくインタリーブを行うと、6.5mmの傷がついたとしてもエラー訂正でき、実際に記録可能なユーザデータ量を計算すると、次のようになる。

【0025】前述のように、DVD-ROMと同様の面積に記録可能なデータ領域は $0.00875876m^2$ であり、トラックピッチ長が 0.4μ mであり、最小ピッチ長が 0.22μ m=3T=3ビットであるため、3ビットが占める面積は 0.4μ m \times 0. 22μ m= $8.8\times10^{-14}m^2$ となり、これにより、1ビットが占める面積は $8.8\times10^{-14}m^2$ を3で除した $2.93\times10^{-14}m^2$ となる。ここで、記録可能なデータ領域は $0.0087587m^2$ であるから、これを1ビットが占める面積 $2.93\times10^{-14}m^2$ で除すると、 2.98×10^{11} ビットとなる。これは8対16変調により変調された値であるから、変調前に換算すると、 2.98×10^{11} /2ビットとなり、バイト単位で換算すると、 2.98×10^{11} /2/8byte=18.6Gbyteとなる。

【0026】DVDエラー訂正ブロックにおいて、ユーザデータでないエラー訂正用パリティとシンクパターンが占める割合は、前述のように総ユーザデータ量が33.024バイトであり、パリティ量が4,832バイトであり、シンクパターンの大きさが1.664バイトであるから、総冗長量は6,496バイトとなり、総データ量は39,520バイトとなる。

【 O O 2 7 】総冗長量と総データ量との割合は、6,496 〈39,520=16.437%であるから、HD-DVDでの冗長をXとするとき、

6.496:39,520=X:18.6×10⁹ X=3.057×10⁹バイト

となる。これにより、実際に記録可能なユーザデータ量は18. $6 \times 10^9 - 3$. $057 \times 10^9 = 15$. 5 Gbyte となる。

【ΟΟ28】要するに、本発明のHD-DVD記録フォーマットによれば、通常のDVDと互換性を有しながら、エラー訂正可能な長さが通常のDVDの6.3mmから6.5mmに伸ばされるとともに、記録容量が15.5Gbyteまで増大できながらも、現在の光ディスクで要求されるエラー訂正能力を確保することができる。エラー訂正長を6.5mnに伸ばすには、トラックピッチ長を0.74μmから0.42μmに縮め、かつ最小の記録マーク長を0.4μmから0.22μmに縮めるHD-DVD記録フォーマットを用いる。また、記録容量を15.5Gbyteに増大するには、トラックピッチ長を0.4μmとし、最小の記録マーク長を0.22μmとするHD-DVD記録フォーマットを用いる。本発明のさらに他の記録フォーマットとしては、トラックピッチ長を0.4μmまたは0.42μmとし、最小の記録マーク長を0.25μmとして用いることもできる。

【 0 0 2 9】一方、光ディスクの記録容量を増大する方法には、1ビットを記録するに要される面積を縮める方 —法が最も広範に用いられている。この方法を用いること で、CDからDVDへの発展に伴い、該記録容量が約4.8倍高まっている。こうなると、光ディスクの特性から、ピックアップ部で用いるレーザの波長も締めなければならないため、データの検出に際しエラー率が高まり、しかもディスクの表面に生じる同寸法の傷にも、CDよりはDV Dでエラー訂正できないビット数が増大する。従って、CDプレーヤーよりは、DVDプレーヤーで用いるエラー訂正方法が一層多くのエラーを訂正できるようにする必要がある。

【0030】このDVDより多くの情報を記録できる媒体 であるHD-DVDにおいては、1ビットを記録するに要され る面積がDVDよりも約1./3./36に縮まっている。これ は、HD-DVD 1 枚に約15GByteの情報を記録できるように するためである。これにより、エラー訂正能力も同じく 向上される必要がある。本発明においては、IID-DVDのた めのエラー訂正能力を高める方法として、ブロック内イ ンタリーブ及びブロック間インタリーブを用い、エラー 訂正ブロックで隣り合うセクタを引き離してIID-DVDに記 録することにより、ディスクに傷がついたとき、この傷 がエラー訂正ブロックで連続しないようにし、これによ り訂正可能なバーストエラーの大きさを伸ばしている。 【0031】次に、本発明の一実施形態にかかるブロッ ク間インタリーブを説明する。図4は、図3に示されたブ ロック間インタリーバ106に適用可能な一実施形態によ るブロック間インタリーブ方法を説明するための図であ る。図4において、エラー訂正ブロックがAブロック及び Bブロックがあり、Aブロックの内容はセクタA1、セクタ A2、...、セクタA16からなり、Bブロックの内容はセ クタB1、セクタB2、. . . 、セクタB16からなるとする とき、ブロック間インタリーブはA1、B16、A2、B15、A 3、B14、. . . 、A14、B3、A15、B2、A16、B1の順序で 行われる。このようにブロック間インタリーブを行う。 と、図5に示されたように、列方向に最大で29パイトの エラーが生じるとしても訂正可能である。

【0032】本発明は、エラー訂正能力を向上させるために、エラー訂正用パリティを増大する方法を用いず、 隣り合う2つのエラー訂正ブロックに対し各ブロックの セクタをインタリーブすることで、バーストエラーに対 するエラー訂正能力を高める方法を用いる。

【0033】ディスクに記録するデータの順序をエラー 訂正ブロックに配列されたデータの順序と異ならしめる ことにより、ディスクの一定領域に生じうる傷による影響が、複数(ここでは2つ)のエラー訂正ブロックに分 散されるようにする。従って、本発明にかかるブロック 間インタリーブにより、ディスクの傷が原因で損失され たデータが分散されることから、エラー訂正可能なデー タが通常のDVDより多くなる。HD-DVDでエラー訂正可能 なバーストエラーは次のように計算される。

【0034】通常のDVDにおいて、RSコードにて訂正可能なバーストエラーの訂正範囲は、16行×182バイトで

ある。図4に示されたように、ブロック間インタリーブを行ってから訂正可能な最大長は、A1セクタの13行、A2セクタの3行ともエラーが生じるのであれば、Aブロック、に対しては16行となる。この場合を、訂正可能な最大エラーが生じたと言える。本発明の第1実施形態によるブロック間インタリーブを行ってから訂正可能なバーストエラーの訂正範囲は、図5に示されたように、Aブロックの13行の最初のセクタとBブロックの13行の16番目のセクタとAブロックの3行の2番目のセクタをすべて和した29行となる。

【0035】本発明の一実施形態によるブロック間インタリーブされた結果を、エラー訂正ブロック単位で再配列すると、図6に示されたようにA1セクタ、A2セクタの順番で1つのエラー訂正ブロックが構成され、図7に示されたようにB1セクタ、B2セクタの順番でもう1つのエラー訂正ブロックが構成される。このとき、それぞれのエラー訂正ブロックは、列方向に16バイトのエラーを訂正できるので、Aブロックで列方向にエラーが生じた16バイトを構成するには、A1セクタで13バイト、A2セクタで3バイトにエラーが生じなければならない。これは、実際のディスクに、図5に示されたように、A1セクタに13バイト、B16セクタに13バイト、そしてA2セクタに3バイトのエラーが連続して生じた場合である。

【0036】従って、HD-DVDにおいては、列方向に合計 29バイトのエラーが生じたとしても、DVDでのエラー訂 正コードを用いてエラーを訂正することができる。すな わち、エラー訂正用パリティを追加せずに、最大で5,287(29×182)バイトのエラーが訂正可能となる。この値をHD-DVDのディスクのトラック向きの長さに換算すると、シンクパターンが現在のDVDと同様であると仮定したとき、エラー訂正ブロックで1行ごとに64ビットのシンクパターンが追加される。

【0037】従って、5.510バイト(29×(64/8+182))のシンクパターンが構成されるが、これをビットに換算すると、44.080(5,510×8)となる。8対16変調を行うと、2倍に増大するので、29.386(88,160/3)個の最小マークに対応する。従って、エラー訂正可能な最大長は、6.5mm(29,386×0.22μm)となる。

【0038】本発明の一実施形態においては、隣り合う2つのエラー訂正ブロック単位でブロック間インタリーブを行っているが、これに限定されることなく、2つ以上のエラー訂正ブロックに対してもブロック間インタリーブが可能である。エラー訂正能力を向上させるためのブロック間インタリーブの他の例として、2つのエラー訂正ブロックで各ブロックの奇数番目のセクタ、及び偶数番目のセクタ同士で配列することもできる。このとき、ブロック間インタリーブによりディスクへのアクセス時間に損失が生じうるが、これを防止できるブロック間インタリーブ方法について説明する。

_【.0.039】ブロック内インタリーブ済みのセクタは、

図8に示されたように、セクタの最初行には位置情報であるIDが含まれている。2つのエラー訂正ブロックを用いブロック間インタリーブを行うとき、位置情報であるID (12バイト) が存在する行はその位置を固定させ、残りの行のみセクタ間インタリーブする。

【0040】エラー訂正ブロックが、Aブロック及びBブ ロックがあるとし、Aブロックの内容がセクタA1、セク タA2、...、セクタA16からなり、Bブロックの内容が セクタB1、セクタB2、...、セクタB16からなると し、A1セクタを182バイト単位に区切ってA101、A102、A 103、...、A113、A2セクタを182バイト単位に区切っ てA201、A202、A203、...、A213等で順序を決め、B1 セクタを182バイト単位に区切ってB101、B102、B10 3、...、B113、B2セクタを182バイト単位に区切って B201、B202、B203、...、B213等で順序を決めると、 インタリーブを行うとき、IDが存在するA101、A201、A3 01、... A1601とB101、B201、B301、... B1601は その位置を固定させ、残りのデータに対して1行、つま り、182バイト単位で2つのエラー訂正ブロック間にイ ンタリーブを行うことができる。例えば、Aブロックの ある1行の182バイトは、BブロックのIDが存在する位置 を除いてはいずれの位置にも配列可能である。

【0041】このように、IDを含んでいる各セクタの最初行はそのままにしておくと、ディスク上のデータの位置を知らせるIDは順次ディスクに記録されるので、ディスクへのアクセス時間が通常のDVDと同様に維持でき、エラー訂正能力は、IDを含んでいる最初行を除いたデータと最終行のバリティデータを含めてブロック間インタリーブを行うことにより向上させることができる。

【0042】図9は、本発明の他の実施形態によるブロック間インタリーブを示す図である。同図において、インタリーブの順序は、Aブロックの最初のセクタのIDが存在する1行(182バイト)を配列し、Aブロックの最初のセクタのIDが存在する最初行を除いた12行を配列し、Aブロックの2番目のセクタのIDが存在する1行を配列し、Bブロックの最初のセクタのIDが存在する最初行を除いた12行を配列し、、Bブロックの15番目のセクタのIDが存在する1行を配列し、Aブロックの16番目のセクタのIDが存在する1行を配列し、Bブロックの16番目のセクタのIDが存在する1行を配列し、Bブロックの16番目のセクタのIDが存在する行を除いた12行を配列する順序でインタリーブされる。

【0043】従って、本発明においては、隣り合うエラー訂正ブロック間に、セクタ単位でIDの存在する行を除いたデータに対しインタリーブを行いHD-DVDに記録することにより、ディスクに傷がついたとき、この傷がエラー訂正ブロックでは連続されないようにして、訂正可能なバーストエラーの大きさを伸ばしている。

【0044】DVDフォーマットで訂正可能なバーストエラーの最大の大きさは16行×182バイトであるから、こ

れを目安に本発明の他の実施形態によるブロック間イン タリーブを行ってから訂正可能な最大長は次のように計算できる。

【0045】A1セクタのIDが存在する1行、A1セクタの12行、A2セクタのIDが存在する1行、B1セクタの12行、A2セクタの2行ともにエラーが生じたとするとき、Aブロックに対しては13+1+2=16行となる。従って、この場合を、訂正可能な最大のエラーが生じたと言える。これはインタリーブされた状態であるから、訂正可能な最大エラーの大きさは、上記のような値を和すると、列方向に1+12+1+12+2=28バイトであり、該全体の大きさは28/182バイトである。

【0046】図10は、本発明の他の実施形態によるブロック間インタリーブを行ってから訂正可能な最大エラーが生じた場合を示す図である。これをエラー訂正単位に再配列すると、図11に示されたように、A1セクタ、A2セクタの順序で1つのエラー訂正ブロックが構成され、図12に示されたように、B1セクタ、B2セクタの順序でもう1つのエラー訂正ブロックが構成される。

【0047】このとき、それぞれのエラー訂正ブロックは、列方向に16バイトのエラーを訂正できるが、Aブロックで列方向にエラーが生じた16バイトを構成するには、A1セクタに13バイト、IDが存在するA2セクタに1バイト、A2セクタに2バイトでいずれもエラーが生じなければならない。ここで、A3セクタのIDが存在する1行は、図11に示されたAブロックから明らかなように、連続していない。

【0048】これは、実際のディスクにはA1セクタのIDが存在する1バイト、A1セクタのデータ12バイト、A2セクタのIDが存在する1バイト、B1セクタのデータ12バイト、そしてA2セクタのデータ2バイトで連続してエラーが生じた場合である。これを合計すると、28バイト(13+1+12+2)となる。従って、HD-DVDでは列方向に合計で28バイトのエラーが生じた場合であっても、通常のDVDでのエラー訂正コードを用いてエラーを訂正することができる。これにより、エラー訂正用パリティを追加せずに、最大で5.096(28×182)バイトのエラーを訂正することができる。

【 O O 4 9 】この値をHD-DVDのディスクのトラック向きの長さに換算すると、エラー訂正可能な最大の傷の寸法が分かる。ここで、シンクパターンは、通常のDVDと同様であると仮定したとき、エラー訂正ブロックで1行に64ビットが追加される。従って、シンクパターンは28行×(64/8+182)=5,320×4-42,560ビットとなる。これを8対16変調すると、2倍に増大するので、85,120(42,560×2)ビットとなる。本発明において、実際の3Tの長さを0、22μmにする場合は、28,373(85,120/3)個の最小マークに対応する。従って、エラー訂正される-長さは6、24mm(28,373×0、22μm)となる。

【0050】図13は、本発明のさらに他の実施形態によ るブロック間インタリーブを説明するための図である。 図13においても、両ブロック間にインタリーブを行うと き、各IDが存在する行はそのままにしておき、1つのセ クタ内に両ブロックの各セクタの半分ずつ配列する。す なわち、図14に示されたように、インタリーブの順序。 は、Aブロックの最初のセクタのIDが存在する1行 (182 バイト)を配列し、Aブロックの最初のセクタのIDが存 在する行を除いた最初の6行とBブロックの最初のセクタ のIDが存在する最初行を除いた最初の6行を配列し、Aブ ロックの2番目のセクタのIDが存在する1行を配列し、A ブロックの最初のセクタの残りの6行とBブロックの最初 のセクタの残りの6行を配列し、...、Bブロックの15 番目のセクタのIDが存在する1行を配列し、Aブロックの 16番目のセクタのIDが存在する最初行を除いた最初の6 行とBブロックの16番目のセクタのIDが存在する最初行 を除いた最初の6行を配列し、Bブロックの16番目のセク タのIDが存在する1行を配列し、Aブロックの16番目のセ クタの残りの6行とBブロックの16番目のセクタの残りの 6行を配列する順序に従ってインタリーブされる。

【 O O S 1 】本発明においては、ブロック内インタリーブのみならず、ブロック間インタリーブを行うので、エラー訂正可能なバーストエラーが、通常のDVDでのエラー訂正可能なバーストエラーよりも大きくなる。このとき、訂正可能な長さも、通常のDVDで約6.3mmであったものが、約6.5mmに伸ばされる。これにより、DVD-ROMよりも高いバーストエラー訂正能力を持つことになる。さらに、DVD-ROM、DVD-RAM、DVD-RW(Rewritable)などのDVDファミリー製品で用いる通常のDVDのためのエラー訂正コード及びエラー訂正ブロックの寸法をそのままHD-DVDに用いることができる。

【0052】本発明によると、図9及び図14に示されたように、2つのエラー訂正ブロックに対してセクタ間インタリーブを行うが、このとき、IDの存在する毎セクタの最初行はそのままにしておき、残りのデータをセクタ間インタリーブする。その結果、ディスク上の位置を知らせるIDはインタリーブしないことから、現在のDVDに同水準のアクセス時間を保ちながら、エラー訂正能力を向上させることができる。これにより、DVDより高いバーストエラー訂正能力を有しながら、アクセス時間の無損失を図ることができる。

【0053】一方、図4に示されたブロック間インタリーブにおいては、アクセス時間の損失を無くすために、IDの存在する毎セクタの最初行はインタリーブしないこともできる。

[0054]

【発明の効果】以上述べたように、本発明によれば、エラー訂正コードの形態を通常のDVDフォーマットと同様にして、ブロック内インタリーブだけでなく、ブロック間インタリーブを行い、ディスクの偽によるバーストエ

(9) 開2000-57700 (P2000-577JL

ラー訂正能力を改善することから、DVDフォーマットの 互換性が維持でき、しかも位置情報の存在する行はブロック間インタリーブしないことから、ブロック間インタ ・リーブに起因するアクセス時間の損失無しに高速サーチ が可能となる。

【図面の簡単な説明】

【図1】 通常のDVDのためのエラー訂正ブロックのフォーマットを示す図である。

【図2】 通常のDVDのためのインタリーブされたエラー訂正ブロックを示す図である。

【図3】 本発明にかかるインタリーブ回路を採っている光記録再生装置のチャネル変調器のブロック図である。

【図4】 本発明の一実施形態によるブロック間インタ リーブを説明するための図である。

【図5】 本発明の一実施形態によるブロック間インタ リーブ後のエラー訂正可能な範囲を説明するための図である。

【図6】 図5に図示のブロック間インタリーブされた 結果を各エラー訂正ブロックで再配列した図である。

【図7】 図6に続く、図5に図示のブロック間インタリ

ープされた結果を各エラー訂正プロックで再配列した図である。

【図8】 本発明にかかるブロック内インタリーブ後の セクタの仕組みを示す図である。

【図9】 木発明の他の実施形態によるブロック間イン タリーブを説明するための図である。

【図10】 本発明の他の実施形態によるブロック間インタリーブ後のエラー訂正可能な範囲を説明するための図である。

【図11】 図10に図示のブロック間インタリーブされた結果を各エラー訂正ブロックで再配列した図である。

【図12】 図11に続く、図10に図示のブロック間イン タリーブされた結果を各エラー訂正ブロックで再配列し た図である。

【図13】 本発明のさらに他の実施形態によるブロック間インタリーブを説明するための図である。

【図14】 本発明のさらに他の実施形態によるブロック間インタリーブされた結果を示す図である。

【符号の説明】

104 ブロック内インタリーバ

106 ブロック間インタリーバ

【図1】

l a ∸	172 メイト	10 パイト	
ŦĹ	セクタ 1	· i · · · · i	
	t/9 2		
	t11 3		
	t19 4		
192 M F I	<u>:</u>		
	t09 15		12 パイト
	₹09 16		- //1 ト
16 1	外部ペリティ		

【図2】

【図3】

(10) | 12000-57700 (P2000-577JL

【図4】

【図5】

【図11】

【図6】

【図7】

J=	172 : 서구ト	10 ペイト	
	セクタ: B1	Ì	
	•		
	セクタ 813		
	セクタ 814		
	セクタ B15		
3 x 1	/// セクタ B16///		

【図12】

(11) 月2000-57700 (P2000-577JL

[**38**]

【図9】

【図10】

(1)

(12) #2000-57700 (P2000-577JL

【図13】

【図14】

DOCID: <JP2000057700A J >