RELATION BETWEEN GCV AND NCV:-

- GCV = NCV + Latent heat of condensation of steam
- NCV = GCV Latent heat of condensation of steam

RELATION BETWEEN GCV AND NCV:-

- NCV = GCV -9 ×Mass of hydrogen × Latent heat of steam
- NCV = GCV 0.09 × % of hydrogen × Latent heat of steam.

(latent heat of steam = 587cal/g)

GCV FORMULA FOR BOMBS CALORIMETER:-

$$GCV = M * Cp * (t_2-t_1)$$
m

Notations:

- Mass of the fuel sample taken = m gm
- Mass of water taken in the copper calorimeter = W gm
- Water equivalent of calorimeter = w gm
- Initial temperature of water = t1 0C
- Final temperature of water = t2 0C
- Specific heat of water = Cp = 1cal/g

ACID CORRECTION FORMULA:-

GCV =
$$(W + w)[(t_2-t_1)+t_1] - (t_1 + t_2)$$

M

Fuse Wire Correction (tf), Acid Correction (ta), Cooling correction (tc)

GCV FORMULA FOR BOY'S CALORIMETER:-

$$GCV = W (t2-t1) \times Cp$$

$$V$$
(V)denotes volume of fuel

NCV FORMULA FOR BOYS CALORIMETER:-

$$NCV = \frac{W (t2-t1) \times Cp}{V} - \frac{m \times 587}{V}$$

Latent heat of steam per m3 of fuel sample = $\frac{m \times 587}{V}$ kcal

PROXIMATE ANALYSIS:-

Percentage	Name of Instrument	Temperature	Duration	Formula
Moisture(M) %	Oven	110°C	60 min	$m2 = \frac{m-m1}{m} *100$
Volatile Matter(Vm) %	Muffle Furnace	950 ⁰ ±25	7 min	$Vm = \frac{m1 - m2}{m} * 100$
Ash content(Ash)%	Muffle Furnace	750°C	30 min	$\frac{weight\ of\ residue}{m}*100$
Fixed Carbon(FC) %	-	-	-	100-(M%+Vm%+Ash%+FC%)

ULTIMATE ANALYSIS:-

FOR CARBON:

%Carbon(C) =
$$\frac{12*x*100}{44*W}$$

FOR HYDROGEN:-

% Hydrogen(H)=
$$\frac{2*y*100}{18*W}$$

FOR NITROGEN: -

$$%N = (V_2 - V_1) * X * 14*100$$

$$1000 *W$$

Here 'x' denotes normality for NaOH.

FOR SULPHUR:-

$$\%S = \frac{a * 32 * 100}{233 * W}$$

QUANTITY OF AIR REQUIRED FOR COMBUSTION(kg):-

Quantity of Air (In kg) =
$$O_2$$
 req. (in Kg) x 100 / 23

VOLUME OF AIR REQUIRED FOR COMBUSTION(m3): -

Volume of Air (in m^3) = O_2 req (in m^3) x 100 / 21