Vysoké učení technické v Brně Fakulta informačních technologií

Signály a systémy Projekt

Dominik Harmim (xharmi00) xharmi00@stud.fit.vutbr.cz 29. prosince 2017

Řešení

Řešeno v programu MATLAB. Všechny uvedené funkce jsou funkcemi v tomto programu, pokud není řečeno jinak. Obrázky jsou na první pohled možná špatně čitelné, ale jsou ve vektorovém formátu, takže je možné hezky si je zvětšit, doufám že s tím nebude problém.

Veškeré výpočty jsou v odevzdaném souboru xharmi00.m.

- Vzorkovací frekvence signálu je 16 000 [Hz]. Délka signálu ve vzorcích je 16 000, v sekunddách 1 [s]. Zvuk jsem zpracoval funkcí audioread.
- 2. Spektrum signálu pomocí diskrétní Fourierovy transformace jsem spočítal funkcí fft.

 Maximum modulu spektra signálu je na frekvenci 685 [Hz]. Maximum a jeho pozici, podle které jsem našel jeho frekvenci jsem našel funkcí max. 4. Filtr je stabilní, protože všechny póly p_k jsou uvnitř jednotkové kružnice, platí vzath $|p_k| < 1$. Obrázek s nulami a póly jsem vytvořil funkcí zplane.

5. Filtr je typu **horní propusť**, viz přednáška o systémech s diskrétním časem. Modul kmitočtové charakteristiky jsem spočítal funkcí freqz s počtem bodů pro zobrazení 256.

6. Filtraci jsem provedl funkcí filter. Spektrum

signálu pomocí diskrétní Fourierovy transformace jsem spočítal funkcí fft.

- 7. Maximum modulu spektra filtrovaného signálu je na frekvenci **6 292 [Hz]**. Maximum a jeho pozici, podle které jsem našel jeho frekvenci jsem našel funkcí max.
- 8. Obdelníkové implusy se nacházejí na vzorku **12 538**, což je čas **0.783625** [s], viz obrázek.

9. Autokorelační koeficienty jsem spočítal funkcí xcorr a výsledek jsem vydělil počtem vzorků, aby to odpovídalo zadanému vztahu $R[k] = \frac{1}{N} \sum_{n} x[n] x[n+k]$.

- 10. Hodnota koeficientu R[10] je -0.020553.
- 11. Inspiroval jsem se algoritmem funkce hist2 implementovaném v souboru hist2opt.m ze studijní etapy k projektu. Obrázek jsem vytvořil funkcí imagesc.

- 12. Ověření, zda se jedná o správnou sdruženou funkci hustoty rozdělení pravděpodobnosti jsem provedl výpočtem $\int_{x_1} \int_{x_2} p(x_1, x_2, 10) dx_1 dx_2 = 1$. Výpočet jsem provedl tak, jak je to udělané ve funkci hist2 implementované v souboru hist2opt.m ze studijní etapy k projektu. Získal jsem výsledek 0.999375, z čehož usuzuji, že se jedná o správnou sdruženou funkci hustoty rozdělení pravděpodobnosti, pokud budu tolerovat určitou zaokrouhlovací chybu.
- 13. Hodnota koeficientu R[10] je −0.020562. Výpočet jsem provedl tak, jak je to udělané ve funkci hist2 implementované v souboru hist2opt.m ze studijní etapy k projektu. Pokud bych měl výsledek srovnat s výsledkem z úlohy 10, řekl bych, že hodnoty jsou ekvivalentní, pokud budu tolerovat určitou zaokrouhlovací chybu.