# Exhibit 67-F























|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68233                  | -002          | Grid Box#                    | 8584       | No. of Grids<br>Counted | 2          |
| Analyst:               | Anthony K               | Ceeton        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 2/14/2018 - 2/15/2018   |               | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.024                   | 8             | G. O. III MICIONS -          | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 2                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str. # | Grid Opening | Structure | Asbestos      | Longth | Width | Datio | SAED | EDS |
|--------|--------------|-----------|---------------|--------|-------|-------|------|-----|
| ou.#   | A5-B1        | Structure | Туре          | Length | wiath | Ratio | SAED | EUS |
|        |              |           |               |        |       |       |      | -   |
|        | B2           |           |               |        |       |       |      |     |
|        | B3           |           |               |        |       |       |      |     |
|        | B4           |           |               |        |       |       |      | -   |
|        | B5           |           |               |        |       |       |      | -   |
|        | B6           |           |               |        |       |       |      |     |
|        | C1<br>C2     |           |               |        |       |       |      |     |
|        |              |           |               |        |       |       |      | -   |
|        | C3           |           |               |        |       | -     |      | -   |
|        | C4           |           |               |        |       |       |      |     |
|        | C5           |           |               |        |       |       |      |     |
|        | C6           |           |               |        |       |       |      | -   |
|        | C7           |           |               |        |       |       |      | +   |
|        | C8           |           |               |        |       |       |      |     |
|        | C9           |           |               |        |       |       |      |     |
|        | D1           |           |               |        |       |       |      |     |
|        | D2           |           |               |        |       |       | -    |     |
|        | D3           | 50.00     |               |        |       | 00.7  | - 75 |     |
| 1      | D4           | Bundle    | Anthophyllite | 25.7   | 0.7   | 36.7  | Х    | Х   |
|        | D5           |           |               |        |       |       |      | 1   |
|        | D6           |           |               |        |       |       |      |     |
|        | D7           |           |               |        |       |       |      |     |
|        | D8           |           |               |        |       |       |      |     |
|        | F1           |           |               |        |       |       |      |     |
|        | F2           |           |               |        |       |       |      |     |
| 2      | F3           | Bundle    | Anthophyllite | 16.4   | 2,6   | 6.3   | X    | X   |
|        | F4           |           | 10 1          |        |       | 1. 1  |      |     |
| 3      | F5           | Fiber     | Anthophyllite | 7.6    | 0.5   | 15.2  | X    | X   |
|        | F6           |           |               |        |       |       |      |     |
|        | F7           |           |               |        |       |       |      |     |
|        | F8           |           |               | -      |       |       |      | -   |
|        | G1           |           |               |        |       |       |      |     |
|        | G2           |           |               |        |       |       |      |     |
|        | G3           |           |               |        |       | 14.   |      |     |
|        | G4           |           |               |        |       |       |      |     |
|        | G5           |           |               |        |       |       |      |     |
|        | H1           |           |               |        |       |       |      |     |
|        | H2           |           |               |        |       |       | d-   |     |
|        | H3           |           | FC            |        |       | 1     |      |     |
|        | H4           |           |               |        |       |       |      |     |
|        | H5           |           |               |        |       | 1     |      |     |
|        | - 11         |           |               |        |       |       |      |     |
|        | 12           |           |               |        |       |       |      |     |
|        | 13           |           |               |        |       |       |      |     |
|        | 14           |           |               |        |       | 1     |      |     |
|        | 15           |           |               |        |       | [E    |      |     |
|        | 16           |           |               |        |       | 4     |      |     |
|        | 17           |           |               |        |       |       |      |     |
|        | J6           |           |               |        |       |       |      |     |
|        | J7           |           |               |        |       |       |      |     |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68233-                 | -002          | Grid Box #   8584            |            | No. of Grids<br>Counted | 2          |
| Analyst:               | Anthony K               | eeton         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 2/14/2018 - 2/15/2018   |               | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.024                   | 8             | G. O. III IIIICIOIIS –       | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation 1       | Γalc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 2                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| Su. # | B5-A1        | Structure | туре             | Length | width | Natio | SAED | EDS |
|       | A2           |           |                  |        |       | -     |      | +   |
|       |              |           |                  |        |       |       |      |     |
|       | A3           | -         |                  |        |       |       |      | -   |
|       | A4           |           |                  |        |       |       |      | -   |
|       | A5           |           |                  |        |       |       |      | -   |
|       | A6           |           |                  |        |       |       |      |     |
|       | A7           |           |                  |        |       |       |      | _   |
|       | A8           |           |                  |        |       |       |      |     |
|       | A9           |           |                  |        |       |       |      |     |
|       | B1           |           |                  |        |       |       |      |     |
|       | B3           |           |                  |        |       |       |      |     |
|       | B4           |           |                  |        |       |       |      |     |
|       | B5           |           |                  |        |       |       |      |     |
|       | B6           |           |                  |        |       |       |      |     |
|       | B7           |           |                  |        |       |       | Į.   |     |
|       | B8           |           |                  |        |       |       |      |     |
|       | B9           |           |                  |        |       |       |      |     |
|       | C3           |           |                  |        |       |       |      |     |
|       | C4           |           |                  |        |       |       |      |     |
|       | C5           |           |                  |        |       |       |      |     |
|       | C6           |           |                  |        |       |       |      |     |
|       | C7           |           |                  |        |       |       |      | 1   |
|       | C8           |           |                  |        |       |       |      | 1   |
|       | C9           |           |                  |        |       |       |      | T   |
|       | C10          |           |                  |        |       |       |      | 1   |
|       | D3           |           |                  |        |       |       |      | +   |
|       | D4           | +         |                  |        |       |       | -    | +   |
|       | D5           |           |                  |        |       |       |      | 1   |
|       | D6           |           |                  |        |       |       |      | 1   |
|       | D7           | -         |                  |        |       |       |      | +   |
|       | D8           |           |                  |        |       |       |      |     |
|       | D9           |           |                  |        |       |       |      | +   |
|       | D10          | -         |                  |        |       | -     | -    | +   |
|       | G1           |           |                  |        |       |       |      | +   |
|       | G1<br>G2     |           |                  |        |       |       |      | -   |
|       | G2<br>G2     |           |                  |        |       |       |      | -   |
|       | G3           |           |                  |        |       |       |      | 1   |
|       | G4           |           |                  |        |       |       |      | 1   |
|       | G5           |           |                  |        |       |       |      | -   |
|       | G6           |           |                  |        |       |       |      |     |
|       | G7           |           |                  |        |       |       |      |     |
|       | G8           |           |                  |        |       |       |      |     |
|       | G9           |           |                  |        |       |       |      |     |
|       | G10          |           |                  |        |       |       |      |     |
|       | H4           | -         |                  |        |       | -     |      |     |
|       | H5           |           |                  |        |       |       | H.   |     |
|       | H6           |           |                  |        |       |       |      |     |
|       | H7           | F 9       |                  |        |       |       |      |     |
|       | H8           |           |                  |        |       |       |      |     |
|       | H9<br>H10    |           |                  |        |       | 14    |      |     |
|       | H10          |           |                  |        |       |       |      |     |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68233                  | -002          | Grid Box # 8584 No. of Grids |            | No. of Grids<br>Counted | 2          |
| Analyst:               | Anthony K               | Ceeton        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 2/14/2018 - 2/15/2018   |               | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.024                   | 8             | G. O. III MICIOIIS -         | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 2                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Dt . # | 6416         | 04        | Asbestos | - doub | 387.444 | 5-4-  | CAED | EDO |
|--------|--------------|-----------|----------|--------|---------|-------|------|-----|
| Str. # | Grid Opening | Structure | Type     | Length | Width   | Ratio | SAED | EDS |

| Org. Sample<br>Wt.        | Sample Wt.<br>Post HL<br>Separation |        |             |          |        |
|---------------------------|-------------------------------------|--------|-------------|----------|--------|
| 0.02480                   | 0.02480                             | g      |             |          |        |
| Percent of<br>Orig. Post  |                                     |        |             |          |        |
| Separation                | 100                                 | (%)    |             |          |        |
| Wt. Of<br>Sample          |                                     | 1      |             |          |        |
| Analyzed                  | 0.00013596                          | g      |             |          |        |
| Filter size               | 201.1                               | mm²    |             |          |        |
| Number of<br>Structures   |                                     |        | Detection   | L. C.    |        |
| Counted                   | 3                                   | Str.   | Limit       | 7.35E+03 | Str./g |
| Structures<br>per Gram of |                                     |        | Analytical  |          |        |
| Sample                    | 2.21E+04                            | Str./g | Sensitivity | 7.35E+03 | Str./g |





2/15/2018





2/15/2018







# Case 3:16-md-02738-MAS-RLS Document 9902-5 Filed 05/30/19 Page 28 of 201 PageID: 79846

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6823                   | 3-002         | Grid Box#          | 8584      | No. of Grids<br>Counted | 2         |
| Analyst:               | Anthony                 | Keeton        |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 2/14/2018 - 2/15/2018   |               | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.024                   | 0.02480       |                    | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 2                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. #  | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED         | EDS      |
|---------|--------------|----------------|--------|-------|-------|--------------|----------|
| Talc #1 | D5-B9        | Fibrous Talc   | 11     | 1.3   | 8.5   | Fibrous Talc | Observed |
|         |              |                |        |       |       | Trace thro   | ughout   |





M68233-002-Talc #1 Diffraction @ 50cm

2/14/2018



# **Section 13**

#### MAS, LLC PLM ANALYSIS

| roj#-Spl#              | M68503 - 046ISO        | Analyst Paul Hess                 | Date 10/28/2018                       |
|------------------------|------------------------|-----------------------------------|---------------------------------------|
| lientName Dept         | 14 Environmental       | Client                            | Spl 2018-0061-57A                     |
| ocation                |                        |                                   |                                       |
| ype_Mat Show           | ver to Shower Deodoran | t Body Powder with Baking Soda    | a                                     |
| Gross Off-white Visual | powder                 |                                   | % of Sample 100                       |
|                        | OPTICAL DA             | ATA FOR ASBESTOS IDENTIFI         | CATION                                |
| Morphology             |                        |                                   |                                       |
| Pleochroism            |                        |                                   |                                       |
| Refract Index          |                        |                                   |                                       |
| Sign^                  |                        |                                   |                                       |
| Extinction             |                        |                                   | -                                     |
| Birefringence          |                        |                                   |                                       |
| Melt<br>Fiber Name     |                        |                                   |                                       |
| Fiber Name             |                        |                                   |                                       |
| Chrysotile             | JS COMPONENTS          | ***                               |                                       |
| Opaques                |                        | X                                 | -                                     |
| Talc                   |                        | X                                 | <u> </u>                              |
| Mineral grains         |                        | X                                 | 7                                     |
| Binder Descripti       | ion                    |                                   |                                       |
| Comme                  | nts X = Materials dete | cted. *** Trace amount of fibrous | s Talc observed.                      |
|                        |                        | The method detection              | n limit is 1% unless otherwise stated |

#### MAS, LLC PLM ANALYSIS

| roj#-Spl#                                       | M68503 - 046BL1          | Analyst Paul Hess             | Date 10/22/2018                        |
|-------------------------------------------------|--------------------------|-------------------------------|----------------------------------------|
| lientName Dep                                   | ot 14 Environmental      | Clien                         | tSpl 2018-0061-57A                     |
| ocation                                         |                          |                               |                                        |
| ype_Mat Sho                                     | ower to Shower Deodoran  | t Body Powder with Baking Soc | da (100mg prep)                        |
| Gross White o                                   | lebris on slide          |                               | % of Sample 100                        |
|                                                 |                          |                               |                                        |
|                                                 | OPTICAL DA               | ATA FOR ASBESTOS IDENTIF      | FICATION                               |
| Morphology                                      |                          |                               |                                        |
| Pleochroism                                     |                          |                               |                                        |
| Refract Index                                   |                          |                               |                                        |
| Sign^                                           |                          |                               |                                        |
| Extinction                                      |                          |                               |                                        |
| Birefringence                                   |                          |                               |                                        |
| Melt                                            |                          | _                             |                                        |
| Fiber Name                                      |                          |                               |                                        |
| ASBESTOS M                                      | INERALS                  | EST. VOL. %                   |                                        |
| Tremolite/Actir<br>Anthophyllite<br>OTHER FIBRO |                          |                               |                                        |
| NON FIBROUS                                     | SCOMPONENTS              |                               | 7                                      |
| Opaques                                         |                          | X                             | -                                      |
| Talc                                            |                          | X                             | =                                      |
| Mineral grains                                  |                          | X                             |                                        |
|                                                 |                          |                               | =                                      |
| Binder Descrip                                  | otion                    |                               |                                        |
|                                                 | - E                      |                               | 30                                     |
| Comm                                            | ents X = Materials detec | cted.                         |                                        |
|                                                 | 0                        |                               |                                        |
|                                                 | -                        | The method detection          | on limit is 1% unless otherwise stated |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -046          | Grid Box#                    | 8637       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/2018 - 1           | 1/2/2018      | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.031                   | 11            | G. G. III MICIONS -          | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

|        | 12.962-00.00 | 6166.6    | Asbestos |        | 625.363 | .21   | 1.622.6 |     |
|--------|--------------|-----------|----------|--------|---------|-------|---------|-----|
| Str. # | Grid Opening | Structure | Type     | Length | Width   | Ratio | SAED    | EDS |
| NSD    | D7-A1        |           |          |        |         |       |         |     |
| NSD    | A2           |           |          |        |         | 1     |         |     |
| NSD    | A3           |           |          |        |         |       |         |     |
| NSD    | A4           |           |          |        |         |       |         |     |
| NSD    | A5           |           |          |        |         |       |         |     |
| NSD    | A6           |           |          |        |         |       |         |     |
| NSD    | A7           |           |          |        |         |       |         |     |
| NSD    | 8A           |           |          |        |         |       |         |     |
| NSD    | A9           |           |          |        |         |       |         |     |
| NSD    | A10          |           |          |        |         |       |         |     |
| NSD    | B1           |           |          |        |         | 4     |         |     |
| NSD    | B2           |           |          |        |         |       |         |     |
| NSD    | B3           |           |          |        |         |       |         |     |
| NSD    | B4           |           |          |        |         |       |         | 1   |
| NSD    | B5           |           |          |        |         |       |         |     |
| NSD    | B6           |           |          |        |         |       |         |     |
| NSD    | B7           |           |          |        |         |       |         | 1   |
| NSD    | B8           |           |          |        |         |       |         | 1   |
| NSD    | B9           |           |          |        |         |       |         |     |
| NSD    | B10          |           |          |        |         |       |         |     |
| NSD    | C1           |           |          |        |         |       |         | 1   |
| NSD    | C2           |           |          |        |         |       |         | 1   |
| NSD    | C3           |           |          |        |         |       |         | +   |
| NSD    | C4           |           |          |        |         |       |         | +   |
| NSD    | C5           |           |          |        |         |       |         | +   |
| NSD    | C6           |           |          |        |         |       |         | +   |
|        | C7           |           |          |        |         |       |         | -   |
| NSD    |              |           |          |        |         |       |         | -   |
| NSD    | C8           |           |          |        |         |       |         |     |
| NSD    | C9           |           |          |        |         |       |         | -   |
| NSD    | C10          |           |          |        |         |       |         |     |
| NSD    | D1           |           |          |        |         |       |         | _   |
| NSD    | D2           |           |          |        |         |       |         |     |
| NSD    | D3           |           |          |        |         |       |         |     |
| NSD    | D4           |           |          |        |         |       |         |     |
| NSD    | D5           |           |          |        |         | -     |         |     |
| NSD    | D6           |           |          |        |         |       |         |     |
| NSD    | D7           |           |          |        |         |       |         |     |
| NSD    | D8           |           |          |        |         | 1     |         |     |
| NSD    | D9           |           |          |        |         |       |         |     |
| NSD    | D10          |           |          |        |         |       |         |     |
| NSD    | E1           | 1         |          |        |         |       |         |     |
| NSD    | E2           |           |          |        |         |       |         |     |
| NSD    | E3           |           |          |        |         |       |         |     |
| NSD    | E4           | 1         | -        |        |         |       |         |     |
| NSD    | E5           |           |          |        |         |       |         |     |
| NSD    | E6           |           |          |        |         |       |         |     |
| NSD    | E7           |           |          |        |         |       |         |     |
| NSD    | E8           |           |          |        |         |       |         |     |
| NSD    | E9           |           |          |        |         |       |         |     |
| NSD    | E10          |           |          |        |         |       |         | 1   |

|                        |                               | TEM    | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |  |
|------------------------|-------------------------------|--------|------------------------------|------------|-------------------------|------------|--|
| Project/<br>Sample No. | M68503-046                    |        | Grid Box #                   | 8637       | No. of Grids<br>Counted | 2          |  |
| Analyst:               | Jayme Callan                  |        |                              | Length     | Width                   | G. O. Area |  |
| Date of<br>Analysis    | 11/1/2018 - 11/2/2018         |        | G. O. in microns =           | 105        | 105                     | 11025      |  |
| Initial<br>Weight(g)   | 0.03111                       |        | G. O. III MICIONS -          | 105        | 105                     | 11025      |  |
| Analysis<br>Type       | Post Separation Talc Analysis |        | Grid Acceptance              | Yes        | Average                 | 11025      |  |
| Scope No.              | Accelerating<br>Voltage       | 100 KV | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |  |
| 3                      | Screen<br>Magnification       | 20 KX  | Area Examined mm²            |            |                         | 1.103      |  |

| C4- #  | Cald Onenies | Otomostomo | Asbestos | Louisi | 14/1:441- | Detie | CAED |     |
|--------|--------------|------------|----------|--------|-----------|-------|------|-----|
| Str. # | Grid Opening | Structure  | Type     | Length | Width     | Ratio | SAED | EDS |
| NSD    | D6-A1        |            |          |        |           |       |      | 1   |
| NSD    | A2           |            |          |        |           |       |      |     |
| NSD    | A3           |            |          |        |           | -     |      |     |
| NSD    | A4           |            |          |        |           |       |      |     |
| NSD    | A5           | -          |          |        |           |       |      |     |
| NSD    | A6           |            |          |        |           |       |      |     |
| NSD    | A7           |            |          |        |           |       |      |     |
| NSD    | A8           |            |          |        |           |       |      |     |
| NSD    | A9           |            |          |        |           |       |      |     |
| NSD    | A10          |            |          |        |           |       |      |     |
| NSD    | B1           | Page 100   |          |        |           |       |      |     |
| NSD    | B2           |            |          |        |           |       |      |     |
| NSD    | B3           |            |          |        |           |       |      |     |
| NSD    | B4           | 1          |          |        |           |       |      |     |
| NSD    | B5           |            |          |        |           |       |      |     |
| NSD    | B6           |            |          |        |           |       |      |     |
| NSD    | B7           |            |          |        |           |       |      | 1   |
| NSD    | B8           |            |          |        |           |       |      | 1   |
| NSD    | B9           |            |          |        |           |       |      | 1   |
| NSD    | B10          |            |          |        |           |       |      | †   |
| NSD    | C1           |            |          |        |           |       |      | +   |
| NSD    | C2           |            |          |        |           |       |      | +   |
| NSD    | C3           |            |          |        |           | -     |      |     |
| NSD    | C4           |            |          |        |           |       |      | -   |
| NSD    | C5           |            |          |        |           |       |      | +   |
| NSD    | C6           |            |          |        |           |       |      | -   |
|        | C7           |            |          |        |           |       |      | -   |
| NSD    |              |            |          |        |           |       |      | -   |
| NSD    | C8           |            |          |        |           |       |      | -   |
| NSD    | C9           |            |          |        |           |       |      | +   |
| NSD    | C10          |            |          |        |           | 1     |      | -   |
| NSD    | D1           |            |          |        |           | -     |      |     |
| NSD    | D2           |            |          |        |           |       |      |     |
| NSD    | D3           |            |          |        |           | (     |      |     |
| NSD    | D4           |            |          |        |           |       |      |     |
| NSD    | D5           |            |          |        |           |       |      |     |
| NSD    | D6           |            |          |        |           | 1     |      |     |
| NSD    | D7           |            |          |        |           |       |      |     |
| NSD    | D8           |            |          |        |           |       |      |     |
| NSD    | D9           |            |          |        |           |       |      |     |
| NSD    | D10          |            |          |        |           |       |      |     |
| NSD    | E1           |            |          |        |           |       |      | 1   |
| NSD    | E2           |            |          |        |           |       |      |     |
| NSD    | E3           |            |          |        |           |       |      |     |
| NSD    | E4           |            |          |        |           |       |      |     |
| NSD    | E5           |            |          |        |           |       |      | 1   |
| NSD    | E6           |            |          |        |           |       |      | 1   |
| NSD    | E7           |            |          |        |           |       |      |     |
| NSD    | E8           |            |          |        |           |       |      |     |
| NSD    | E9           |            |          |        |           |       |      | 1   |
| NSD    | E10          |            |          |        |           |       |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|---------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -046          | Grid Box # 8637 No. of Grids Counted |            | 2                |            |
| Analyst:               | Jayme Callan            |               |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 11/1/2018 - 11/2/2018   |               | G. O. in microns =                   | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.031                   | 11            | G. O. In microns –                   | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                             | 15%        | G.O.s<br>Counted | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                             | mined mm²  |                  | 1.103      |

|        | Tarana Tarana | 1         | Asbestos | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 17 - 47 - 57 1 |       | 1-1-2-3-1 |     |
|--------|---------------|-----------|----------|-----------------------------------------|----------------|-------|-----------|-----|
| Str. # | Grid Opening  | Structure | Type     | Length                                  | Width          | Ratio | SAED      | EDS |

| Org. Sample<br>Wt.                               | Sample Wt.<br>Post HL<br>Separation |        |                           |          |        |
|--------------------------------------------------|-------------------------------------|--------|---------------------------|----------|--------|
| 0.03111                                          | 0.03111                             | g      |                           |          |        |
| Percent of<br>Orig. Post<br>Separation           | 100                                 | (%)    |                           |          |        |
| Wt. Of<br>Sample<br>Analyzed                     | 0.00017056                          | g      |                           |          |        |
| Filter size                                      | 201.1                               | mm²    |                           |          | 2.     |
| Number of<br>Structures<br>Counted<br>Structures | 0                                   | Str.   | Detection<br>Limit        | 5.86E+03 | Str./g |
| per Gram of<br>Sample                            | <5863                               | Str./g | Analytical<br>Sensitivity | 5.86E+03 | Str./g |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | 3-046         | Grid Box#          | 8637      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jayme Callan            |               |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 11/1/2018 -             | 11/2/2018     | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.03111                 | 0.03111       |                    | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 15%       | G.O.s<br>Counted        | 100       |
| 3                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED            | EDS      |
|--------|--------------|----------------|--------|-------|-------|-----------------|----------|
| NSD    | D7-A1        | 1-1-1-4-4      |        |       |       | No Fibrous tale | observed |

# **Section 14**

#### MAS, LLC PLM ANALYSIS

| roj#-Spl#                                                                 | M68503 - 042ISO         | Analyst Paul Hess              | Date 10/29/2018   |
|---------------------------------------------------------------------------|-------------------------|--------------------------------|-------------------|
| lientName Dep                                                             | ot 14 Environmental     | Clients                        | Spl 2018-0061-49A |
| ocation                                                                   |                         |                                |                   |
| pe_Mat Her                                                                | bal Shower to Shower De | odorant Body Powder with Bakir | ng Soda           |
| 44 E 14 Mary 17                                                           | te powder               |                                | % of Sample 100   |
| Gross <u>Off-whi</u><br>Visual                                            | te powder               |                                |                   |
| visuai                                                                    |                         |                                |                   |
|                                                                           | OPTION DA               | TA FOR ASSESSED INFINITION     | CATION            |
|                                                                           | OPTICAL DA              | TA FOR ASBESTOS IDENTIFIC      | CATION            |
| Morphology                                                                | straight                | straight                       |                   |
| Pleochroism                                                               | none                    | none                           |                   |
| Refract Index                                                             | 1635/1.620              | 1.623/1.609                    |                   |
| Sign^                                                                     | positive                | positive                       |                   |
| Extinction                                                                | oblique                 | parallel                       |                   |
| Birefringence                                                             | medium                  | medium                         |                   |
| Melt                                                                      | no                      | no                             |                   |
| <b>Fiber Name</b>                                                         | Actinolite/Tremolite    | Anthophyllite                  |                   |
| Amosite<br>Crocidolite<br>Tremolite/Actir<br>Anthophyllite<br>OTHER FIBRO | nolite DUS COMPONENTS   | <0.1<br><0.1<br>***            |                   |
| 1000                                                                      | S COMPONENTS            |                                |                   |
| Opaques                                                                   | ė,                      | X                              | <u> </u>          |
| Talc                                                                      |                         | X                              | 2                 |
| Mineral grains                                                            | <del>-</del>            | X                              | -                 |
|                                                                           |                         |                                |                   |

#### MAS, LLC PLM ANALYSIS

| oj#-Spl#                                   | M68503 - 042BL1           | Analyst Paul Hess                | Date 10/23/2018     |  |  |
|--------------------------------------------|---------------------------|----------------------------------|---------------------|--|--|
| ientName Dep                               | t 14 Environmental        | ClientS                          | pl 2018-0061-49A    |  |  |
| cation                                     |                           |                                  |                     |  |  |
| pe_Mat Herb                                | oal Shower to Shower De   | eodorant Body Powder with Baking | g Soda (100mg prep) |  |  |
| Gross White de                             | ebris on slide            |                                  | % of Sample 100     |  |  |
| -                                          |                           |                                  | _                   |  |  |
|                                            | OPTICAL DA                | ATA FOR ASBESTOS IDENTIFIC       | ATION               |  |  |
| Morphology                                 | straight                  |                                  |                     |  |  |
| Pleochroism                                | none                      |                                  |                     |  |  |
| Refract Index                              | 1.635/1.620               |                                  |                     |  |  |
| Sign^                                      | positive                  | 11                               |                     |  |  |
| Extinction                                 | oblique                   |                                  |                     |  |  |
| Birefringence                              | medium                    |                                  |                     |  |  |
| Melt                                       | no                        |                                  |                     |  |  |
| Fiber Name                                 | Actinolite/Tremolite      |                                  |                     |  |  |
| ASBESTOS MI                                | WEDALO.                   | EST. VOL. %                      |                     |  |  |
|                                            |                           |                                  |                     |  |  |
| 01                                         |                           |                                  |                     |  |  |
| Chrysotile                                 |                           |                                  |                     |  |  |
| Amosite                                    |                           |                                  |                     |  |  |
| Crocidolite                                |                           |                                  |                     |  |  |
| Tremolite/Actin                            | olite                     | < 0.1                            |                     |  |  |
| Anthophyllite                              |                           |                                  |                     |  |  |
| OTHER FIBRO                                | US COMPONENTS             |                                  |                     |  |  |
|                                            |                           |                                  |                     |  |  |
|                                            |                           | <del>-</del>                     |                     |  |  |
|                                            |                           |                                  |                     |  |  |
|                                            |                           |                                  |                     |  |  |
|                                            |                           |                                  |                     |  |  |
|                                            |                           |                                  |                     |  |  |
| NON FIRROUS                                | COMPONENTS                |                                  |                     |  |  |
|                                            | COM CIVERTO               |                                  |                     |  |  |
| TOR I IBROOK                               |                           |                                  |                     |  |  |
|                                            |                           | X                                |                     |  |  |
| Opaques                                    |                           | X                                |                     |  |  |
| Opaques<br>Falc                            |                           | X                                |                     |  |  |
| Opaques<br>Falc                            |                           |                                  |                     |  |  |
|                                            |                           | X                                |                     |  |  |
| Opaques<br>Falc                            |                           | X                                |                     |  |  |
| Dpaques<br>Γalc<br>Mineral grains          |                           | X                                |                     |  |  |
| Opaques<br>Falc<br>Mineral grains          | tion                      | X                                |                     |  |  |
| Opaques<br>Falc<br>Mineral grains          | tion                      | X                                |                     |  |  |
| Opaques Falc Mineral grains Binder Descrip |                           | X                                |                     |  |  |
| Opaques Falc Mineral grains Binder Descrip | ents Actinolite/Tremolite | X                                | emolite cleavage    |  |  |

The method detection limit is 1% unless otherwise stated.

















99.8um



|                        |                         | TEM                | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|--------------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -042               | Grid Box # 8637 No. of Grids Counted |            | 2                |            |
| Analyst:               | Mehrdad Motamedi        |                    |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/31/2018-11/1/2018    |                    | C O in wiscons -                     | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.03095                 | G. O. in microns = | 105                                  | 105        | 11025            |            |
| Analysis<br>Type       | Post Separation         | Talc Analysis      | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV             | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 4                      | Screen<br>Magnification | 20 KX              | Area Exa                             | mined mm²  |                  | 1.103      |

| Str. #   | Grid Opening | Structure | Asbestos      | Length | Width | Ratio | SAED | EDS |
|----------|--------------|-----------|---------------|--------|-------|-------|------|-----|
| NSD      | E6-B1        | Structure | Туре          | Length | width | Ratio | SAED | EDS |
| NSD      | B2           |           |               |        |       |       |      | +   |
| NSD      | B3           |           |               |        |       |       |      | +   |
| NSD      | B4           |           |               |        |       |       |      | +   |
| NSD      | B5           |           |               |        |       |       |      | +   |
| NSD      | B6           |           |               |        |       |       |      | +   |
| NSD      | B7           |           |               |        |       |       |      | +   |
| NSD      | B8           |           |               |        |       |       |      | -   |
| NSD      | B9           |           |               |        |       |       |      | +   |
| NSD      | B10          |           |               |        |       |       | -    | -   |
| NSD      |              |           |               |        |       |       |      | -   |
|          | C1           |           |               |        |       |       |      | -   |
| NSD      | C2           |           |               |        |       |       |      | -   |
| NSD      | C3           |           |               |        |       |       |      | -   |
| NSD      | C4           |           |               |        |       |       |      |     |
| NSD      | C5           |           |               |        |       |       |      | _   |
| NSD      | C6           |           |               |        |       |       |      |     |
| NSD      | C7           |           |               |        |       |       |      |     |
| NSD      | C8           |           |               |        |       |       |      |     |
| NSD      | C9           |           |               |        |       |       |      |     |
| NSD      | C10          |           |               |        |       |       |      |     |
| NSD      | D1           |           |               |        |       |       |      |     |
| NSD      | D2           |           |               |        |       |       |      |     |
| NSD      | D3           |           |               |        |       |       |      |     |
| NSD      | D4           |           |               |        |       |       |      |     |
| NSD      | D5           |           |               |        |       |       |      |     |
| NSD      | D6           |           |               |        |       |       |      |     |
| NSD      | D7           |           |               |        |       |       |      |     |
| NSD      | D8           |           |               |        |       |       |      |     |
| NSD      | D9           |           |               |        |       |       |      | 1   |
| NSD      | D10          |           |               |        |       |       |      | 1   |
| NSD      | 11           |           |               |        |       |       |      | †   |
| NSD      | 12           |           | 1             |        |       |       |      | 1   |
| NSD      | 13           |           |               |        |       |       |      |     |
| NSD      | 14           |           |               |        |       |       |      | 1   |
| NSD      | 15           |           |               |        |       |       |      |     |
| 1        | 16           | Bundle    | Anthophyllite | 19     | 2     | 9.5   | X    | X   |
| NSD      | 17           | Danaio    | , and opinymo |        |       | 0.0   | Α,   |     |
| NSD      | 18           |           |               |        |       |       |      |     |
| NSD      | 19           |           |               |        |       |       |      | 1   |
| NSD      | 110          |           |               |        |       |       |      | +   |
| NSD      | J1           |           |               |        |       |       |      | 1   |
| NSD      | J2           |           |               |        |       |       |      | +   |
| NSD      | J3           |           |               |        |       |       |      | +   |
| NSD      | J4           |           |               |        |       |       |      | +   |
| NSD      | J5           |           |               |        |       |       |      | +   |
|          |              |           |               |        |       |       | +    | -   |
| NSD      | J6           |           |               |        |       |       |      | -   |
| NSD      | J7           |           |               |        |       |       |      | 1   |
| NSD<br>2 | J8<br>J9     |           | A (1)         | 29     | -     | 44.5  |      |     |
| .,       | .19          | Bundle    | Anthophyllite | 29     | 2     | 14.5  | X    | X   |

|                        |                         | TEM                | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|--------------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -042               | Grid Box # 8637 No. of Grids Counted |            | 2                |            |
| Analyst:               | Mehrdad Motamedi        |                    |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/31/2018-11/1/2018    |                    | C O in wiscons -                     | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.03095                 | G. O. in microns = | 105                                  | 105        | 11025            |            |
| Analysis<br>Type       | Post Separation         | Talc Analysis      | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV             | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 4                      | Screen<br>Magnification | 20 KX              | Area Exa                             | mined mm²  |                  | 1.103      |

| .530   | 129622000    | 230000    | Asbestos       | To Auras I | 6.92.96.25 | 24.00 | T. Carlon |     |
|--------|--------------|-----------|----------------|------------|------------|-------|-----------|-----|
| Str. # | Grid Opening | Structure | Type           | Length     | Width      | Ratio | SAED      | EDS |
| NSD    | E7-J1        |           |                |            |            |       |           |     |
| NSD    | J2           |           |                |            |            |       |           |     |
| NSD    | J3           |           |                |            |            |       |           |     |
| NSD    | J4           |           |                |            |            |       |           |     |
| NSD    | J5           | -         |                |            |            |       |           |     |
| NSD    | J6           |           |                |            |            |       |           |     |
| NSD    | J7           |           |                |            |            |       |           |     |
| NSD    | J8           |           |                |            |            |       |           |     |
| NSD    | J9           |           |                |            |            | 4     |           |     |
| NSD    | J10          |           |                |            |            |       |           |     |
| NSD    | H1           | -         |                |            |            |       |           |     |
| NSD    | H2           |           |                |            |            |       |           |     |
| NSD    | H3           |           |                |            |            |       |           |     |
| NSD    | H4           |           |                |            |            |       |           |     |
| NSD    | H5           |           |                |            |            |       |           |     |
| NSD    | H6           |           |                |            |            |       |           |     |
| NSD    | H7           |           |                |            |            |       |           |     |
| NSD    | H8           |           |                |            |            |       |           |     |
| NSD    | H9           |           |                |            |            |       |           |     |
| NSD    | H10          |           |                |            |            |       |           |     |
| NSD    | F1           |           |                |            |            |       |           |     |
| NSD    | F2           |           |                |            |            |       |           | Î   |
| NSD    | F3           |           | _              |            | - 1        | 1     |           | 1   |
| NSD    | F4           |           |                |            |            |       |           |     |
| NSD    | F5           |           |                |            |            |       |           | 1   |
| NSD    | F6           |           |                |            |            |       |           | Ť   |
| NSD    | F7           |           |                |            |            |       |           |     |
| NSD    | F8           |           |                |            |            |       |           |     |
| NSD    | F9           | 1         |                |            |            |       |           |     |
| NSD    | F10          |           |                |            |            |       |           |     |
| NSD    | D1           |           |                |            |            |       |           | 1   |
| NSD    | D2           |           |                |            |            |       |           | 1   |
| NSD    | D3           |           |                |            |            |       | -         | 1   |
| NSD    | D4           |           |                |            |            |       |           | 1   |
| NSD    | D5           |           |                |            |            |       |           |     |
| NSD    | D6           |           |                |            |            |       |           |     |
| NSD    | D7           |           |                |            |            |       |           |     |
| NSD    | D8           |           |                |            |            |       |           | 1   |
| NSD    | D9           |           |                |            |            |       |           |     |
| NSD    | D10          |           |                |            |            |       |           | 1   |
| NSD    | A1           |           |                |            |            |       |           | 1   |
| NSD    | A2           |           |                |            |            |       |           |     |
| 3      | A3           | Bundle    | Anthophyllite  | 6.7        | 0.8        | 8.4   | Y         | Х   |
| 4      | 710          | Bundle    | Anthophyllite  | 40         | 6          | 6.7   | X         | X   |
| NSD    | A4           | Darlais   | - and opinymic | -10        |            | V.1   |           | ^   |
| NSD    | A5           |           |                |            |            |       |           | 1   |
| NSD    | A6           |           |                |            |            |       |           | 1   |
| NSD    | A7           |           |                |            |            |       |           | 1   |
| NSD    | A8           |           |                |            |            |       |           | 1   |
| NSD    | A9           |           |                |            |            |       |           | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|---------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -042          | Grid Box # 8637 No. of Grids Counted |            | 2                |            |
| Analyst:               | Mehrdad Motamedi        |               |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/31/2018-11/1/2018    |               | G. O. in microns =                   | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.030                   | 95            | G. O. In microns –                   | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa                             | mined mm²  |                  | 1.103      |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length   | Width | Ratio | SAED | EDS |
|--------|--------------|-----------|------------------|----------|-------|-------|------|-----|
| NSD    | A10          |           |                  | ( pr = 1 |       |       |      |     |

| Org. Sample<br>Wt.                               | Sample Wt.<br>Post HL<br>Separation |        |                           |          |        |
|--------------------------------------------------|-------------------------------------|--------|---------------------------|----------|--------|
| 0.03095                                          | 0.03095                             | g      |                           |          |        |
| Percent of<br>Orig. Post<br>Separation           | 100                                 | (%)    |                           |          |        |
| Wt. Of<br>Sample<br>Analyzed                     | 0.00016968                          | g      |                           |          |        |
| Filter size                                      | 201.1                               | mm²    |                           |          |        |
| Number of<br>Structures<br>Counted<br>Structures | 4                                   | Str.   | Detection<br>Limit        | 5.89E+03 | Str./g |
| per Gram of<br>Sample                            | 2.36E+04                            | Str./g | Analytical<br>Sensitivity | 5.89E+03 | Str./g |





M68503-042-001 Anthophyllite Diffraction 1 @ 50cm

11/1/2018



M68503-042-001 Anthophyllite Diffraction 2 @ 50cm

11/1/2018







M68503-042-002 Anthophyllite Diffraction 1 @ 50cm

11/1/2018









M68503-042-003 Anthophyllite Diffraction 1 @ 50cm

11/1/2018





M68503-042-003 Anthophyllite (  $6.7 \text{um} \times 0.8 \text{um}$ )

11/1/2018







M68503-042-004 Anthophyllite Diffraction 2 @ 50cm

11/1/2018



|                        |                         | TEM Bulk      | Talc Structur      | e Count S                            | heet             |           |
|------------------------|-------------------------|---------------|--------------------|--------------------------------------|------------------|-----------|
| Project/<br>Sample No. | M6850                   | 3-042         | Grid Box#          | Grid Box # 8637 No. of Grids Counted |                  | 2         |
| Analyst:               | Mehrdad N               | /lotamedi     |                    | Length                               | Width            | G.O. Area |
| Date of<br>Analysis    | 10/31/                  | 2018          | 8 G. O. in         |                                      | 105              | 105       |
| Initial<br>Weight(g)   | 0.030                   | 095           | microns =          | 105                                  | 105              | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes                                  | Average          | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%                                  | G.O.s<br>Counted | 100       |
| 4                      | Screen<br>Magnification | 20 KX         | Area               | Examined                             | mm²              | 1.103     |

| Str.# | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED           | EDS        |
|-------|--------------|----------------|--------|-------|-------|----------------|------------|
| NSD   | E6           | L-2            |        |       |       | No Fibrous Tal | c Observed |

# **Section 15**

| oj#-Spl#                                                                 | M68503 - 057ISO                         | Analyst Paul Hess               | Date 10/29/2018                    |
|--------------------------------------------------------------------------|-----------------------------------------|---------------------------------|------------------------------------|
| ientName Dep                                                             | t 14 Environmental                      | ClientS                         | Spl 2018-0070-10A                  |
| cation                                                                   |                                         |                                 |                                    |
| pe_Mat Johr                                                              | nson's Baby Powder                      |                                 |                                    |
| Gross Off-white                                                          | e powder                                |                                 | % of Sample 100                    |
| +                                                                        | OPTICAL DA                              | TA FOR ASBESTOS IDENTIFIC       | CATION                             |
| Morphology                                                               | straight                                | straight                        |                                    |
| Pleochroism                                                              | none                                    | none                            | -                                  |
| Refract Index                                                            | 1.635/1.620                             | 1.631/1.616                     |                                    |
| Sign^                                                                    | positive                                | positive                        |                                    |
| Extinction                                                               | oblique                                 | parallel                        | +                                  |
| Birefringence                                                            | medium                                  | medium                          | -                                  |
| Melt                                                                     | no                                      | no                              | 1                                  |
| Fiber Name                                                               | Actinolite/Tremolite                    | Anthophyllite                   |                                    |
| Tibel Name                                                               | Additionte/ Hemonite                    | Anthophymic                     |                                    |
| Crocidolite Tremolite/Actin Anthophyllite  OTHER FIBRO Falc -B/Y DS in 1 | US COMPONENTS                           | <0.1<br><0.1                    |                                    |
|                                                                          | COMPONENTS                              | x                               |                                    |
| Opaques                                                                  |                                         |                                 | <u> -</u>                          |
| Talc                                                                     |                                         | X                               | 4.                                 |
| Mineral grains                                                           |                                         | X                               | 1                                  |
| Binder Descrip                                                           | tion                                    |                                 |                                    |
| Comme                                                                    | Actinolite/Tremolite observed. X = Mate | and Anthophyllite observed. *** | Trace amount fibrous Talc          |
|                                                                          | ODSOLVEG. A - INIAIC                    | CC0.1000-1000-1000-             | limit is 1% unless otherwise state |

| roj#-Spl#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M68503 - 057BL1            | Analyst Paul Hess                     | Date 10/23/2018                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|------------------------------------------|
| lientName                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dept 14 Environmental      | ClientS                               | pl 2018-0070-10A                         |
| ocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                       |                                          |
| /pe_Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Johnson's Baby Powder (100 | Omg prep)                             |                                          |
| Gross White | te debris on slide         |                                       | % of Sample 100                          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OPTICAL DA                 | ATA FOR ASBESTOS IDENTIFIC            | CATION                                   |
| Morpholo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gy                         |                                       |                                          |
| Pleochrois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sm                         |                                       |                                          |
| Refract Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.27                       |                                       | 11                                       |
| Sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                       |                                          |
| Extincti-<br>Birefringen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 207/                       |                                       |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | elt                        |                                       |                                          |
| Fiber Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                       |                                          |
| Amosite<br>Crocidolite<br>Tremolite/A<br>Anthophyllit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ctinolite                  |                                       |                                          |
| NON FIBRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OUS COMPONENTS             |                                       |                                          |
| Opaques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | Х                                     | 2                                        |
| Talc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | X                                     | 5 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 1 |
| Mineral grain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                          | X                                     |                                          |
| E. G. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cription                   | · · · · · · · · · · · · · · · · · · · |                                          |

The method detection limit is 1% unless otherwise stated.













M68503-057ISO-002 Actinolite/Tremolite Crossed Polars

|                        |                         | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|---------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -057          | Grid Box # 8637 No. of Grids Counted |            | 2                |            |
| Analyst:               | Mehrdad Motamedi        |               |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/29/2                 | 018           | G. O. in microns =                   | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.0218                  | 82            | G. O. In microns –                   | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa                             | mined mm²  |                  | 1.103      |

| C4 #       | Cald Oncolon | Ctonstano | Asbestos  | Lawate | VALL SALE | D-45- | CAED |     |
|------------|--------------|-----------|-----------|--------|-----------|-------|------|-----|
| Str. #     | Grid Opening | Structure | Type      | Length | Width     | Ratio | SAED | EDS |
| NSD        | C6-A1        |           |           |        |           |       |      | -   |
| NSD<br>NSD | A2           |           |           |        |           |       |      | -   |
|            | A3           |           |           |        |           |       |      |     |
| NSD        | A4           |           |           |        |           |       |      |     |
| NSD        | A5           |           |           |        |           |       |      | -   |
| NSD        | A6           |           |           |        |           |       |      |     |
| NSD        | A7           |           |           |        |           |       |      |     |
| NSD        | A8           |           |           |        |           |       |      |     |
| NSD        | A9           |           |           |        |           |       |      |     |
| NSD        | A10          |           |           |        |           |       |      |     |
| NSD        | B1           |           |           |        | -         |       |      | _   |
| NSD        | B2           |           |           |        |           |       |      | 1   |
| NSD        | B3           |           |           |        |           |       |      |     |
| NSD        | B4           |           |           |        |           |       |      |     |
| NSD        | B5           |           |           |        |           |       |      |     |
| NSD        | B6           |           |           |        |           |       |      |     |
| NSD        | B7           |           |           |        |           |       |      |     |
| NSD        | B8           |           |           |        |           |       |      |     |
| NSD        | B9           |           |           |        |           |       |      |     |
| NSD        | B10          |           |           |        |           |       |      |     |
| NSD        | C1           |           |           |        | 7         |       |      |     |
| NSD        | C2           |           |           | 1      |           |       |      |     |
| NSD        | C3           |           |           |        |           |       |      |     |
| NSD        | C4           |           |           |        |           |       |      |     |
| NSD        | C5           |           |           |        |           |       |      |     |
| NSD        | C6           |           |           |        |           |       |      |     |
| NSD        | C7           |           |           |        |           |       |      |     |
| NSD        | C8           |           |           |        |           |       |      |     |
| NSD        | C9           |           |           |        |           |       |      | 1   |
| NSD        | C10          |           |           |        |           |       |      |     |
| NSD        | D1           |           |           |        |           |       |      |     |
| NSD        | D2           |           |           |        |           |       |      | 1   |
| NSD        | D3           |           |           |        |           |       |      |     |
| NSD        | D4           |           |           |        |           |       |      |     |
| NSD        | D5           |           |           |        |           |       |      |     |
| NSD        | D6           |           |           |        |           |       |      | 1   |
| NSD        | D7           |           |           |        |           |       |      | 1   |
| NSD        | D8           |           |           |        |           |       |      |     |
| NSD        | D9           |           |           |        |           |       |      |     |
| NSD        | D10          |           |           |        |           |       |      | 1   |
| NSD        | F1           |           |           |        |           |       |      |     |
| NSD        | F2           |           |           |        |           |       |      | 1   |
| NSD        | F3           |           |           |        |           |       |      | 1   |
| NSD        | F4           |           |           |        |           |       |      | 1   |
| NSD        | F5           |           |           |        |           |       |      | 1   |
| NSD        | F6           |           |           |        |           |       |      | 1   |
| NSD        | F7           |           |           |        |           |       |      |     |
| NSD        | F8           |           |           |        |           |       |      | 1   |
| 1          | F9           | Bundle    | Tremolite | 8      | 1.5       | 5.3   | X    | X   |
| NSD        | F10          | Dujiulo   | Trombile  |        | 1.0       | 0.0   | ^    | 1 ^ |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|---------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -057          | Grid Box # 8637 No. of Grids Counted |            | 2                |            |
| Analyst:               | Mehrdad Motamedi        |               |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/29/2                 | 018           | G. O. in microns =                   | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.0218                  | 82            | G. O. In microns –                   | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa                             | mined mm²  |                  | 1.103      |

| Str.# | Grid Onening | Ctructure | Asbestos   | Longth | Width | Datia | SAED | EDS |
|-------|--------------|-----------|------------|--------|-------|-------|------|-----|
|       | Grid Opening | Structure | Type       | Length | wiath | Ratio | SAED | EDS |
| NSD   | C7-J1        |           |            |        |       |       |      | 1   |
| NSD   | J2           |           |            |        |       |       |      | 1   |
| NSD   | J3           |           |            |        |       |       |      |     |
| NSD   | J4           |           |            |        |       |       |      | -   |
| NSD   | J5           |           |            |        |       |       |      |     |
| NSD   | J6           |           |            |        |       |       |      |     |
| NSD   | J7           |           |            |        |       |       |      | -   |
| NSD   | J8           |           |            |        |       |       |      |     |
| NSD   | J9           |           |            |        |       |       |      |     |
| NSD   | J10          |           |            |        |       |       |      |     |
| NSD   | 11           | 1         |            |        |       |       |      |     |
| NSD   | 12           |           |            |        |       |       |      |     |
| NSD   | 13           |           |            |        |       |       |      |     |
| NSD   | 14           |           |            |        |       | 4     |      |     |
| NSD   | 15           |           |            |        |       |       |      |     |
| NSD   | 16           |           |            |        |       |       |      |     |
| NSD   | 17           |           |            |        |       |       |      |     |
| NSD   | 18           |           |            |        |       |       |      |     |
| NSD   | 19           |           |            |        |       |       |      |     |
| NSD   | 110          |           |            |        |       | 4     |      |     |
| NSD   | H1           |           |            |        |       |       |      |     |
| NSD   | H2           |           |            |        |       |       |      | 1   |
| NSD   | H3           | - 1       | Barrer III |        |       |       |      | -   |
| NSD   | H4           |           |            |        |       |       |      |     |
| NSD   | H5           |           |            |        |       |       |      | 1   |
| NSD   | H6           |           |            |        |       |       |      |     |
| NSD   | H7           |           | -          |        |       | - (   |      |     |
| NSD   | H8           |           |            |        |       |       |      |     |
| NSD   | H9           | -         |            |        |       |       |      | İ   |
| NSD   | H10          |           |            |        |       |       |      |     |
| NSD   | G1           |           |            |        |       |       |      |     |
| NSD   | G2           |           |            |        |       |       |      | 1   |
| NSD   | G3           |           |            |        |       |       |      | 1   |
| NSD   | G4           |           |            |        |       |       |      |     |
| NSD   | G5           |           |            |        |       |       |      |     |
| NSD   | G6           |           |            |        |       |       |      |     |
| NSD   | G7           |           |            |        |       |       |      |     |
| NSD   | G8           |           |            |        |       |       |      | 1   |
| NSD   | G9           |           |            |        |       |       |      |     |
| NSD   | G10          |           |            |        |       |       |      | 1   |
| NSD   | F1           |           |            |        |       |       |      | 1   |
| NSD   | F2           |           |            |        |       |       |      | 1   |
| NSD   | F3           |           |            |        |       |       |      |     |
| NSD   | F4           |           |            |        |       |       |      |     |
| NSD   | F5           |           |            |        |       |       |      |     |
| NSD   | F6           |           |            |        |       |       |      | 1   |
| NSD   | F7           |           |            |        |       |       |      |     |
| NSD   | F8           |           |            |        |       |       |      | 1   |
| NSD   | F9           |           |            |        |       |       |      | 1   |
| NSD   | F10          | 1         |            |        |       |       |      | 1   |

### Case 3:16-md-02738-MAS-RLS Document 9902-5 Filed 05/30/19 Page 95 of 201 PageID: 79913

|                        |                         | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|---------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -057          | Grid Box # 8637 No. of Grids Counted |            | 2                |            |
| Analyst:               | Mehrdad Motamedi        |               |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/29/2                 | 018           | G. O. in microns =                   | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.0218                  | 32            | G. O. In microns –                   | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa                             | mined mm²  |                  | 1.103      |

|        |              | 1         | Asbestos | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 17 - 47 - 57 1 |       | 1. 1 |     |
|--------|--------------|-----------|----------|-----------------------------------------|----------------|-------|------|-----|
| Str. # | Grid Opening | Structure | Type     | Length                                  | Width          | Ratio | SAED | EDS |

Detection Limit

Analytical Sensitivity 8.36E+03

8.36E+03

Str./g

Str./g

| Org. Sample<br>Wt.                     | Sample Wt.<br>Post HL<br>Separation |        |
|----------------------------------------|-------------------------------------|--------|
| 0.02182                                | 0.02182                             | g      |
| Percent of<br>Orig. Post<br>Separation | 100                                 | (%)    |
| Wt. Of<br>Sample<br>Analyzed           | 0.00011962                          | g      |
| Filter size                            | 201.1                               | mm²    |
| Number of<br>Structures                |                                     |        |
| Counted                                | 1                                   | Str.   |
| Structures per Gram of                 | Tak to J                            |        |
| Sample                                 | 8.36E+03                            | Str./g |







### Case 3:16-md-02738-MAS-RLS Document 9902-5 Filed 05/30/19 Page 99 of 201 PageID: 79917

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | 3-057         | Grid Box#          | 8637      | No. of Grids<br>Counted | 2         |
| Analyst:               | Mehrdad N               | /lotamedi     |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/29/                  | 2018          | 18 G. O. in        |           | 105                     | 105       |
| Initial<br>Weight(g)   | 0.02                    | 182           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 4                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED           | EDS        |
|--------|--------------|----------------|--------|-------|-------|----------------|------------|
| NSD    | C6           | 1-3-6-7-6-6    |        |       |       | No Fibrous Tal | c Observed |

# **Section 16**

| clientName Dept 1 ocation ype_Mat Johnson                                                    | 4 Environmental  | Contract to the contract to th | Control San Salary |  |
|----------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| ocation                                                                                      |                  | Clients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spl 2018-0060-53A  |  |
|                                                                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |
| -                                                                                            | on's Baby Powder |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |
| 0" 1"                                                                                        |                  | % of Comple 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |
| Gross Off-white p                                                                            | oowder           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % of Sample 100    |  |
| visuai                                                                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>        |  |
|                                                                                              | 0571011 51       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |  |
|                                                                                              | OPTICAL DA       | TA FOR ASBESTOS IDENTIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CATION             |  |
| Morphology s                                                                                 | straight         | straight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
|                                                                                              | none             | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |
| Refract Index 1                                                                              | 1.624/1.611      | 1.633/1.621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |  |
| Sign^ p                                                                                      | positive         | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |
| <b>Extinction</b> p                                                                          | parallel         | oblique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |  |
| Birefringence n                                                                              | nedium           | medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |  |
|                                                                                              | 10               | no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |  |
| Fiber Name A                                                                                 | Anthophyllite    | Actinolite/Tremolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |
| Chrysotile                                                                                   |                  | EST. VOL. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>.</u>           |  |
| Chrysotile<br>Amosite<br>Crocidolite<br>Tremolite/Actinoli<br>Anthophyllite<br>OTHER FIBROUS | iteS COMPONENTS  | <0.1<br><0.1<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |  |
| Chrysotile                                                                                   | S COMPONENTS     | <0.1<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
| Chrysotile                                                                                   | S COMPONENTS     | <0.1<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |
| Chrysotile                                                                                   | S COMPONENTS     | <0.1<br><0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |  |

| oj#-Spl#          | M68503 - 020BL1                         | Analyst Paul Hess              | Date 10/25/2018                     |
|-------------------|-----------------------------------------|--------------------------------|-------------------------------------|
| The second second | t 14 Environmental                      | Client                         | tSpl 2018-0060-53A                  |
| cation            |                                         | The Artist                     |                                     |
| pe_Mat John       | nson's Baby Powder (100                 | Jmg prep)                      | - 2.23.2 . 5.2.5                    |
|                   | ebris on slide                          | % of Sample 100                |                                     |
| /isual            |                                         |                                |                                     |
| -                 | 0.0000000000000000000000000000000000000 |                                |                                     |
|                   | OPTICAL DA                              | ATA FOR ASBESTOS IDENTIF       | ICATION                             |
| Morphology        | straight                                |                                |                                     |
| Pleochroism       | none                                    |                                |                                     |
| Refract Index     | 1.635/1.620                             |                                |                                     |
| Sign^             | positive                                |                                |                                     |
| Extinction        | oblique                                 |                                |                                     |
| Birefringence     | medium                                  |                                |                                     |
| Melt              | no                                      |                                |                                     |
| Fiber Name        | Actinolite/Tremolite                    |                                |                                     |
| ASBESTOS MI       | dazete e                                | EST. VOL. %                    |                                     |
| Anthophyllite     | US COMPONENTS                           |                                |                                     |
| ION FIBROUS       | COMPONENTS                              |                                | <del>-</del>                        |
| Opaques           |                                         | X                              | <del>_</del>                        |
| Talc              | 40                                      | X                              | <del>-</del>                        |
| Mineral grains    |                                         | X                              | <del></del> -                       |
| mineral grains    |                                         | ^                              | <b>=</b>                            |
| Binder Descrip    | tion                                    |                                |                                     |
| 25.00             | Appropria                               |                                | the transfer                        |
| Comme             | Actinolite/Tremolite                    | e asbestos observed. X = Mater | ials detected.                      |
|                   |                                         | The method detection           | on limit is 1% unless otherwise sta |





77.4um





M68503-020BL1-001 Actinolite/Tremolite Perpendicular Dispersion

M68503-020BL1-001 Actinolite/Tremolite Elongation @ 200X

M68503-020BL1-001 Actinolite/Tremolite Crossed Polars









|                        |                                        | TEM       | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|----------------------------------------|-----------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                                 | -020      | Grid Box#                    | 8637       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                                | allan     |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/26/2018 - 1                         | 0/30/2018 | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0209                                 | 99        | G. O. III INICIONS =         | 105        |                         | 11025      |
| Analysis<br>Type       | 0.02099  Post Separation Talc Analysis |           | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage                | 100 KV    | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification                | 20 KX     | Area Examined mm²            |            |                         | 1.103      |

| C4- #  | Cald Caracter | Ct.       | Asbestos      | 1.22.34 | 140.  | D-45  | CATD | FDO |
|--------|---------------|-----------|---------------|---------|-------|-------|------|-----|
| Str. # | Grid Opening  | Structure | Type          | Length  | Width | Ratio | SAED | EDS |
| NSD    | E10-A4        |           |               |         |       |       |      |     |
| NSD    | A5            |           |               |         |       |       |      |     |
| NSD    | A6            |           |               |         |       |       |      | -   |
| NSD    | A7            |           |               |         |       |       |      | -   |
| NSD    | A8            |           |               |         |       |       |      | -   |
| NSD    | A9            |           |               |         |       |       |      | -   |
| NSD    | A10           |           |               |         |       |       |      | -   |
| NSD    | B3            |           |               |         |       |       |      |     |
| NSD    | B4            |           |               |         |       |       |      |     |
| NSD    | B5            |           |               |         |       |       |      |     |
| NSD    | B6            |           |               |         |       |       |      |     |
| NSD    | B7            |           |               |         |       |       |      |     |
| NSD    | B8            |           |               |         |       |       |      |     |
| NSD    | B9            |           |               |         |       |       |      |     |
| NSD    | B10           |           |               |         |       |       |      |     |
| NSD    | C3            |           |               |         |       |       |      |     |
| NSD    | C4            |           |               |         |       |       |      |     |
| NSD    | C5            |           |               |         |       |       |      |     |
| NSD    | C6            |           |               |         |       |       |      |     |
| NSD    | C7            |           |               |         |       |       |      |     |
| NSD    | C8            |           |               |         |       |       |      |     |
| NSD    | C9            | 40000     |               |         |       |       |      |     |
| 1      | C10           | Bundle    | Anthophyllite | 8.5     | 0.42  | 20.2  | X    | X   |
| NSD    | D3            |           |               |         |       |       |      |     |
| NSD    | D4            |           |               |         |       |       |      |     |
| NSD    | D5            |           |               |         |       |       |      |     |
| NSD    | D6            |           |               |         |       |       |      | 1   |
| NSD    | D7            |           |               |         |       |       |      | 1   |
| NSD    | D8            |           |               |         |       |       |      | 1   |
| NSD    | D9            |           |               |         |       |       |      | 1   |
| NSD    | D10           |           |               |         |       |       |      |     |
| NSD    | E3            |           |               |         |       |       |      | 1   |
| NSD    | E4            |           |               |         |       |       |      |     |
| NSD    | E5            |           |               |         |       |       |      | 1   |
| NSD    | E6            | -         |               |         |       |       |      |     |
| NSD    | E8            |           |               |         |       |       |      | 1   |
| NSD    | E9            |           |               |         |       |       |      | 1   |
| NSD    | E10           |           |               |         |       |       |      |     |
| NSD    | F2            |           |               |         |       |       |      | 1   |
| NSD    | F3            |           |               |         |       |       |      | 1   |
| NSD    | F4            |           |               |         |       |       |      |     |
| NSD    | F5            |           |               |         |       |       | -    | 1   |
| NSD    | F6            |           |               |         |       |       |      | t - |
| NSD    | F7            |           |               |         |       |       |      | t - |
| NSD    | F8            |           |               |         |       |       |      | +   |
| NSD    | F9            |           |               |         |       |       |      | +   |
| NSD    | F10           |           |               |         |       |       |      | 1   |
| NSD    | G2            |           |               |         |       |       |      | +   |
|        | G2<br>G3      |           | -             |         |       |       |      |     |
| NSD    |               |           |               |         |       |       |      |     |

|                        |                               | TEM       | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------------|-----------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                        | -020      | Grid Box # 8637 No. of Grids Counted |            |                  | 2          |
| Analyst:               | Jayme C                       | allan     |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/26/2018 - 1                | 0/30/2018 | C O in microns -                     | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.020                         | 99        | G. O. in microns =                   | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation Talc Analysis |           | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage       | 100 KV    | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 3                      | Screen<br>Magnification       | 20 KX     | Area Examined mm²                    |            | 1.103            |            |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length | Width   | Ratio | SAED | EDS |
|--------|--------------|-----------|------------------|--------|---------|-------|------|-----|
| NSD    | E8-A1        | Otractare | 1,700            | Length | Width   | Ratio | UNLD | LDC |
| NSD    | A2           |           |                  |        |         |       |      | +   |
| NSD    | A3           |           | +                |        |         |       |      | +   |
| NSD    | B1           |           | -                |        |         |       |      | +   |
| NSD    | B2           |           | -                |        |         |       |      | +   |
| NSD    | B3           |           |                  |        |         |       |      | +   |
|        |              |           | -                |        |         | -     |      | +   |
| NSD    | B4           |           | -                |        |         |       |      | -   |
| NSD    | B5           |           |                  |        |         |       |      | 1   |
| NSD    | B6           |           |                  |        |         |       |      | _   |
| NSD    | B7           |           |                  |        |         |       |      | -   |
| NSD    | C1           |           |                  |        |         |       |      |     |
| NSD    | C2           |           |                  |        |         |       |      |     |
| NSD    | C3           |           |                  |        |         |       |      |     |
| NSD    | C4           |           |                  |        |         | 4     |      |     |
| NSD    | C5           |           |                  |        |         |       |      |     |
| NSD    | C6           |           |                  |        |         |       |      |     |
| NSD    | C7           |           |                  |        |         |       |      |     |
| NSD    | C8           |           |                  |        |         |       |      |     |
| NSD    | C9           |           |                  |        |         |       |      |     |
| NSD    | D1           |           |                  |        |         |       |      |     |
| NSD    | D2           |           |                  |        |         |       |      | 1   |
| NSD    | D3           |           |                  |        |         |       |      | 1   |
| NSD    | D4           |           |                  |        |         |       |      | _   |
| NSD    | D5           |           |                  |        |         |       |      | +   |
| NSD    | D6           |           |                  |        |         |       |      | +   |
| NSD    | D7           |           |                  |        |         |       |      | +   |
| NSD    | D8           |           |                  | _      |         |       |      | +   |
| NSD    | D9           |           |                  |        |         |       |      | +   |
| NSD    | E1           |           |                  |        |         |       |      | +   |
|        |              |           |                  |        |         |       |      | +   |
| NSD    | E2           |           |                  |        |         |       |      | -   |
| NSD    | E3           |           |                  |        | 1000000 |       |      | -   |
| 2      | E4           | Bundle    | Tremolite        | 2.7    | 0.44    | 6.1   | X    | X   |
| NSD    | E5           |           |                  |        |         |       |      |     |
| NSD    | E6           |           |                  |        |         |       |      |     |
| NSD    | E7           |           |                  |        |         |       |      |     |
| NSD    | E8           |           |                  |        |         |       |      |     |
| NSD    | E9           |           | -                |        |         |       |      |     |
| NSD    | F1           |           |                  | 1      | U       |       |      |     |
| NSD    | F2           |           |                  |        |         | 4     |      |     |
| 3      | F3           | Bundle    | Anthophyllite    | 4.62   | 0.62    | 7.5   | X    | X   |
| NSD    | F4           |           |                  |        |         |       |      |     |
| NSD    | F5           |           |                  |        |         |       |      |     |
| 4      | F6           | Bundle    | Anthophyllite    | 21.1   | 0.98    | 21.5  | X    | X   |
| NSD    | F7           |           |                  |        |         |       |      |     |
| NSD    | F8           |           |                  |        |         |       |      | 1   |
| NSD    | F9           |           |                  |        |         |       |      | 1   |
| NSD    | G1           |           |                  |        |         |       |      |     |
| NSD    | G2           |           |                  |        |         |       |      | 1   |
| NSD    | G3           |           |                  |        |         |       |      | 1   |
| NSD    | G4           |           |                  |        |         |       |      | +   |

## 

|                        |                         | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |            |
|------------------------|-------------------------|---------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -020          | Grid Box # 8637 No. of Grids Counted |            |                  | 2          |
| Analyst:               | Jayme Callan            |               |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 10/26/2018 - 10/30/2018 |               | G. O. in microns =                   | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.0209                  | 99            | G. O. In microns –                   | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                             | 20%        | G.O.s<br>Counted | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²                    |            | 1.103            |            |

|        |              | 1         | Asbestos |        | 1 - 4 - 5 - 1 |       | 1 (2.5.1) |     |
|--------|--------------|-----------|----------|--------|---------------|-------|-----------|-----|
| Str. # | Grid Opening | Structure | Type     | Length | Width         | Ratio | SAED      | EDS |

| Org. Sample<br>Wt.                     | Sample Wt.<br>Post HL<br>Separation |        |                           |          |        |
|----------------------------------------|-------------------------------------|--------|---------------------------|----------|--------|
| 0.02099                                | 0.02099                             | g      |                           |          |        |
| Percent of<br>Orig. Post<br>Separation | 100                                 | (%)    |                           |          |        |
| Wt. Of<br>Sample<br>Analyzed           | 0.00011507                          | g      |                           |          |        |
| Filter size                            | 201.1                               | mm²    |                           |          | 2.0    |
| Number of<br>Structures<br>Counted     | 4                                   | Str.   | Detection<br>Limit        | 8.69E+03 | Str./g |
| Structures<br>per Gram of<br>Sample    | 3.48E+04                            | Str./g | Analytical<br>Sensitivity | 8.69E+03 | Str./g |





























# 

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | 3-020         | Grid Box#          | 8637      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jayme (                 | Callan        |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/26/2018 -            | 10/30/2018    | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.020                   | 099           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 3                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. #  | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED         | EDS      |
|---------|--------------|----------------|--------|-------|-------|--------------|----------|
| Talc #1 | E8-A10       | B/Talc         | 16.6   | 2.3   | 7.2   | Fibrous talc | observed |
|         |              |                |        | \     |       | trace throu  | igh out  |







# **Section 17**

### MAS, LLC PLM ANALYSIS

| lientName LEVY ocation ype_Mat Johnso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | & KONIGSBERG                 | · · · · · · · · · · · · · · · · · · · |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Clien                                 | ntSpl 20180056-06D   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                       | 70.0                 |
| pe mat Julius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on & Johnson Talcum P        | owder                                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | naudar                       |                                       | 0/ of Samuel 100     |
| ross Off-white prince                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | powder                       |                                       | % of Sample 100      |
| isuai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                       |                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ODTION DA                    | TA FOR AGREGACO INCLUS                | FIGATION             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OPTICAL DA                   | TA FOR ASBESTOS IDENTI                | FICATION             |
| Morphology s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | straight                     | straight                              | straight             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | none                         | none                                  | none                 |
| Refract Index 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.630/1.615                  | 1.630/1.615                           | 1.620/1.605          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oositive                     | positive                              | positive             |
| The state of the s | oblique                      | parallel                              | oblique              |
| Birefringence n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | moderate                     | moderate                              | moderate             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                           | no                                    | no.                  |
| Fiber Name A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A 12 PA CT 121               | 1 1777                                | no                   |
| Chrysotile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | Anthophyllite  EST. VOL. %  <0.1      | Tremolite/Actinolite |
| Chrysotile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ERALS iteite                 | EST. VOL. %                           |                      |
| Chrysotile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ERALS  ite  S COMPONENTS  55 | <0.1<br><0.1                          |                      |
| ASBESTOS MINI Chrysotile Amosite Crocidolite Tremolite/Actinoli Anthophyllite DTHER FIBROU Falc -B/Y DS in 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ERALS  ite  S COMPONENTS  55 | <0.1<br><0.1                          |                      |
| Chrysotile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ERALS  ite  S COMPONENTS  55 | <0.1<br><0.1<br><0.1                  |                      |

The method detection limit is 1% unless otherwise stated.

### MAS, LLC PLM ANALYSIS

|                                                                                                                  | M69042 - 002BL               | Analyst Paul Hess          | Date 10/15/2018                                          |
|------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|----------------------------------------------------------|
| ientName LEV                                                                                                     | Y & KONIGSBERG               | Client                     | Spl 20180056-06D                                         |
| cation —                                                                                                         |                              | - (Y-W)-                   | \$ · 7 <del>  4   4   4   4   4   4   4   4   4   </del> |
|                                                                                                                  | nson & Johnson Talcum I      | Powder                     |                                                          |
|                                                                                                                  | ebris on slide               |                            | % of Sample 100                                          |
| ross White d                                                                                                     | edits off slide              |                            | % of Sample 100                                          |
| isuai                                                                                                            |                              |                            |                                                          |
| -                                                                                                                | ODTION DA                    | TA COR ASSESSED INCIDENTIE |                                                          |
|                                                                                                                  | OPTICAL DA                   | ATA FOR ASBESTOS IDENTIF   | ICATION                                                  |
| Morphology                                                                                                       | straight                     | straight                   |                                                          |
| Pleochroism                                                                                                      | none                         | none                       |                                                          |
| Refract Index                                                                                                    | 1.630/1.615                  | 1.630/1.615                |                                                          |
| Sign^                                                                                                            | positive                     | positive                   |                                                          |
| Extinction                                                                                                       | oblique                      | parallel                   |                                                          |
| Birefringence                                                                                                    | moderate                     | moderate                   |                                                          |
| Melt                                                                                                             | no                           | no                         |                                                          |
| Fiber Name                                                                                                       | Actinolite/Tremolite         | Anthophyllite              |                                                          |
| Crocidolite                                                                                                      |                              | <0.1                       | <u>-</u>                                                 |
| Crocidolite<br>Fremolite/Actin<br>Anthophyllite                                                                  | olite                        | <0.1<br><0.1               |                                                          |
| Crocidolite<br>Fremolite/Actin<br>Anthophyllite<br>OTHER FIBRO                                                   | oolite                       |                            |                                                          |
| Crocidolite  Tremolite/Actin Anthophyllite  OTHER FIBRO                                                          | OUS COMPONENTS               |                            |                                                          |
|                                                                                                                  | OUS COMPONENTS               | < 0.1                      |                                                          |
| Crocidolite  Cremolite/Actin Anthophyllite  OTHER FIBRO  SON FIBROUS  Opaques  Falc                              | OUS COMPONENTS               | < 0.1                      |                                                          |
| Crocidolite  Tremolite/Actin Anthophyllite  OTHER FIBRO  NON FIBROUS                                             | DUS COMPONENTS  S COMPONENTS | X<br>X                     |                                                          |
| Crocidolite  Fremolite/Actin Anthophyllite  OTHER FIBRO  NON FIBROUS  Depaques  Talc  Mineral grains             | DUS COMPONENTS  S COMPONENTS | X<br>X                     |                                                          |
| Crocidolite Fremolite/Actin Anthophyllite OTHER FIBRO  NON FIBROUS  Depaques Falc Mineral grains  Binder Descrip | S COMPONENTS  Stion          | X<br>X                     |                                                          |

The method detection limit is 1% unless otherwise stated.

















163.2um



M69042-002BL-001 Anthophyllite Perpendicular dispersion







|                        |                           | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|---------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042                    | -002          | Grid Box # 862               |            | No. of Grids<br>Counted | 2          |
| Analyst:               | Anthony K                 | Ceeton        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 9/26/2018 - 9<br>&10/27/2 |               | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0200                    | 00            | G. O. III INICIONS =         | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation           | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage   | 100 KV        | Loading%                     | 12%        | G.O.s<br>Counted        | 100        |
| 2                      | Screen<br>Magnification   | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str. #   | Grid Opening | Structure | Asbestos      | Length | Width | Ratio   | SAED | EDS |
|----------|--------------|-----------|---------------|--------|-------|---------|------|-----|
| NSD      | B2-B6        | Structure | Туре          | Length | width | Ratio   | SAED | EDS |
| NSD      | B7           |           |               |        |       |         |      | +   |
| 1        | B8           | Bundle    | Anthophyllite | 35.4   | 1.8   | 19.7    | V    | V   |
|          | DO           | Bundle    |               | 12.4   |       |         | X    | X   |
| 2<br>NSD | B9           | Bundle    | Anthophyllite | 12.4   | 1.1   | 11.3    | X    | Х   |
| NSD      | B10          |           |               |        |       |         |      |     |
|          |              |           |               |        |       |         |      | -   |
| NSD      | C3           |           |               |        |       |         |      |     |
| NSD      | C4           |           |               |        |       |         |      |     |
| NSD      | C5           |           |               |        |       |         |      |     |
| NSD      | C6           |           |               |        |       |         |      | -   |
| NSD      | C7           |           | - 1           | - 4    | 2-    |         |      |     |
| NSD      | C8           |           |               |        |       |         |      |     |
| NSD      | C9           |           |               |        |       |         |      |     |
| NSD      | C10          |           |               |        |       |         |      |     |
| 3        | E1           | Bundle    | Anthophyllite | 6.4    | 1.1   | 5.8     | X    | X   |
| NSD      | E2           |           |               |        |       |         |      | 1   |
| NSD      | E3           |           |               |        |       |         |      |     |
| NSD      | E4           |           |               |        |       |         |      |     |
| NSD      | E5           |           |               |        |       |         |      |     |
| NSD      | E6           |           |               |        | ) - I |         |      |     |
| NSD      | E7           |           |               |        |       |         |      |     |
| NSD      | E8           |           |               |        |       | 14 / 14 |      |     |
| 4        | E9           | Bundle    | Anthophyllite | 6      | 0.7   | 8.6     | X    | X   |
| NSD      | E10          |           |               |        |       |         | 3972 |     |
| NSD      | F1           |           |               |        |       |         |      | 1   |
| NSD      | F2           |           | 1             |        |       |         |      | 1   |
| NSD      | F3           |           |               |        |       |         |      | 1   |
| NSD      | F4           |           | 1             |        |       |         |      | +   |
| NSD      | F5           |           |               |        |       |         |      | +   |
| NSD      | F6           |           |               |        |       |         |      | +   |
| NSD      | F7           |           | +             |        |       |         |      | +   |
| NSD      | F8           |           | +             |        |       |         |      | +   |
| NSD      | F9           |           |               |        |       |         |      | 1   |
|          |              |           |               |        |       |         |      | 1   |
| NSD      | F10<br>G1    |           |               |        |       |         |      | +   |
| NSD      |              |           |               |        |       |         |      | 1   |
| NSD      | G2           |           |               |        |       |         |      | 1   |
| NSD      | G3           |           |               |        |       |         |      | -   |
| NSD      | G4           |           |               |        |       |         |      | 1   |
| NSD      | G5           |           |               |        |       |         |      | 1   |
| NSD      | G6           |           |               |        |       |         |      |     |
| NSD      | G7           |           |               |        |       |         |      |     |
| NSD      | G8           |           |               |        |       |         |      |     |
| NSD      | G9           |           |               |        |       |         |      |     |
| NSD      | G10          |           |               |        |       | - 1     |      |     |
| NSD      | H3           |           |               |        |       |         |      |     |
| NSD      | H4           |           |               |        |       |         |      |     |
| NSD      | H5           |           |               |        |       |         |      |     |
| NSD      | H6           |           |               |        | ·     |         |      |     |
| 5        | H7           | Bundle    | Anthophyllite | 34.5   | 1.1   | 31.4    | X    | X   |
| NSD      | H8           |           |               |        |       |         |      |     |

|                        |                           | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  | _          |
|------------------------|---------------------------|---------------|--------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M69042-                   | -002          | Grid Box # 8621 No. of Grids Counted |            |                  | 2          |
| Analyst:               | Anthony K                 | eeton         |                                      | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 9/26/2018 - 9<br>&10/27/2 |               | C O in misrans -                     | 105        | 1177             | 11025      |
| Initial<br>Weight(g)   | 0.0200                    | 00            | G. O. in microns =                   | 105        |                  | 11025      |
| Analysis<br>Type       | Post Separation 1         | Talc Analysis | Grid Acceptance                      | Yes        | Average          | 11025      |
| Scope No.              | Accelerating Voltage      | 100 KV        | Loading%                             | 12%        | G.O.s<br>Counted | 100        |
| 2                      | Screen<br>Magnification   | 20 KX         | Area Exa                             | mined mm²  |                  | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type    | Length | Width | Ratio    | SAED | EDS |
|-------|--------------|-----------|---------------------|--------|-------|----------|------|-----|
| NSD   | H9           | Structure | туре                | Length | width | Natio    | SAED | EDS |
| NSD   | B3-B1        |           |                     |        |       |          |      | 1   |
|       |              |           | +                   |        |       |          | -    | +   |
| NSD   | B2           |           |                     |        |       |          |      | -   |
| NSD   | B3           |           |                     |        |       |          |      | -   |
| NSD   | B4           |           |                     |        |       |          |      | +   |
| NSD   | B5           |           |                     |        |       | -        |      | +   |
| NSD   | B6           |           |                     |        |       |          |      | -   |
| NSD   | B7           |           |                     |        |       |          |      |     |
| NSD   | B8           |           |                     |        |       |          |      |     |
| NSD   | B10          |           |                     |        |       | 1        |      | -   |
| 6     | C1           | Bundle    | Anthophyllite       | 11.5   | 1.2   | 9.6      | X    | X   |
| NSD   | C2           |           |                     |        |       |          |      |     |
| NSD   | C3           |           |                     |        |       |          |      |     |
| NSD   | C4           |           |                     |        |       | 4        |      |     |
| NSD   | C5           |           |                     |        |       |          |      |     |
| NSD   | C6           |           |                     |        |       |          |      |     |
| NSD   | C7           |           |                     |        |       |          |      |     |
| NSD   | C8           |           |                     |        |       |          |      |     |
| NSD   | C9           |           |                     |        |       |          |      | 1   |
| NSD   | C10          |           |                     |        |       |          |      | 1   |
| NSD   | D1           |           |                     |        |       |          |      | 1   |
| NSD   | D2           |           |                     |        | 1     |          |      | 1   |
| NSD   | D3           |           |                     |        | _ 1   |          |      | 1   |
| NSD   | D4           |           |                     |        |       |          |      | 1   |
| NSD   | D5           |           |                     |        | 1     |          |      | 1   |
| NSD   | D6           |           |                     |        |       |          |      | 1   |
| NSD   | D7           |           | -                   |        |       |          |      | +   |
| NSD   | D8           |           |                     |        |       |          |      | +   |
| NSD   | D9           |           | <b>-</b>            |        |       |          |      | +   |
| NSD   | D10          |           | -                   |        |       |          |      | +   |
| NSD   | G1           |           | -                   |        |       | -        |      | +   |
|       | G2           |           | -                   |        |       |          |      | -   |
| NSD   |              | Donadle.  | A with a wife diffe | 44.5   | -     | 44.5     | V    | - V |
| 7     | G3           | Bundle    | Anthophyllite       | 11.5   | 1     | 11.5     | X    | X   |
| NSD   | G4           |           |                     |        |       |          |      | +   |
| NSD   | G5           |           |                     |        |       |          |      |     |
| NSD   | G6           |           |                     |        |       |          |      | 1   |
| NSD   | G7           |           |                     |        |       |          |      | 1   |
| NSD   | G8           |           |                     |        |       |          |      |     |
| NSD   | G9           |           |                     |        |       | 4        |      |     |
| NSD   | G10          | 1         |                     |        |       |          |      |     |
| NSD   | H1           |           |                     |        |       |          |      |     |
| NSD   | H2           |           |                     |        | 10    | 20 00 00 |      | 3   |
| NSD   | H3           |           |                     |        |       |          |      |     |
| NSD   | H4           |           |                     |        |       | 1        |      |     |
| NSD   | H5           |           |                     |        |       | . 1      |      |     |
| NSD   | H6           | 1         |                     |        |       |          |      |     |
| NSD   | H7           |           |                     |        |       |          |      |     |
| NSD   | H8           |           |                     |        |       |          |      |     |
| NSD   | H9           |           |                     |        |       |          |      |     |
| NSD   | H10          |           |                     |        |       |          |      | 1   |

# 

|                        |                           | TEM           | <b>Bulk Talc Structure C</b>         | ount Sheet |                  |                |
|------------------------|---------------------------|---------------|--------------------------------------|------------|------------------|----------------|
| Project/<br>Sample No. | M69042                    | -002          | Grid Box # 8621 No. of Grids Counted |            |                  | 2              |
| Analyst:               | Anthony K                 | Ceeton        |                                      | Length     | Width            | G. O. Area     |
| Date of<br>Analysis    | 9/26/2018 - 9<br>&10/27/2 |               | C O in microns -                     | 105        | 105              | 11025          |
| Initial<br>Weight(g)   | 0.020                     | 00            | G. O. in microns =                   | 105        | 105              | 11025<br>11025 |
| Analysis<br>Type       | Post Separation           | Talc Analysis | Grid Acceptance                      | Yes        | Average          |                |
| Scope No.              | Accelerating<br>Voltage   | 100 KV        | Loading%                             | 12%        | G.O.s<br>Counted | 100            |
| 2                      | Screen<br>Magnification   | 20 KX         | Area Exa                             | mined mm²  |                  | 1.103          |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|--------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD    | 14           |           |                  |        |       |       | 2550 |     |

| Org. Sample<br>Wt.                               | Sample Wt.<br>Post HL<br>Separation |        |                           |          |        |
|--------------------------------------------------|-------------------------------------|--------|---------------------------|----------|--------|
| 0.02000                                          | 0.02000                             | g      |                           |          |        |
| Percent of<br>Orig. Post<br>Separation           | 100                                 | (%)    |                           |          |        |
| Wt. Of<br>Sample<br>Analyzed                     | 0.00010965                          | g      |                           |          |        |
| Filter size                                      | 201.1                               | mm²    |                           |          |        |
| Number of<br>Structures<br>Counted<br>Structures | 7                                   | Str.   | Detection<br>Limit        | 9.12E+03 | Str./g |
| per Gram of<br>Sample                            | 6.38E+04                            | Str./g | Analytical<br>Sensitivity | 9.12E+03 | Str./g |



2 4520

M69042-002-001 Anthophyllite Diffraction - 1 @ 50cm

9/26/2018





M69042-002-002 Anthophyllite Diffraction - 1 @ 50cm



M69042-002-002 Anthophyllite Diffraction - 2 @ 50cm





2 4539



2 4797

M68042-002-003 Anthophyllite Diffraction - 2 @ 50cm









2 4547

M69042-002-005 Anthophyllite Diffraction - 1 @ 50cm

9/28/2018



2 4556

M69042-002-005 Anthophyllite Diffraction - 2 @ 50cm

9/28/2018





9/28/2018