# Q-VLM: Post-training Quantization for Large Vision-Language Models

Changyuan Wang<sup>1</sup>, Ziwei Wang<sup>3</sup>, Xiuwei Xu<sup>2</sup>, Yansong Tang<sup>1</sup>; Jie Zhou<sup>2</sup>, Jiwen Lu<sup>2</sup>

<sup>1</sup>Shenzhen International Graduate School, Tsinghua University, China

<sup>2</sup>Department of Automation, Tsinghua University, China

<sup>3</sup>School of Electrical and Electronic Engineering, Nanyang Technological University

{wangchan22@mails.,xxw21@mails.,tang.yansong@sz.}tsinghua.edu.cn;

{jzhou@,lujiwen@}tsinghua.edu.cn; ziwei.wang@ntu.edu.sg

- Problem / objective
  - Efficient multi-modal inference
- Contribution / Key idea
  - Post-training quantization framework for LVLMs (Large Vision Language Model)

#### Overview



Figure 1: The overall pipeline of our method. We employ entropy as the proxy to represent cross-layer dependency for efficient block assignment, which decomposes the large search space from the entire model to blocks containing multiple layers. Moreover, the visual encoder is further optimized for fine-grained search space decomposition.

### **Preliminaries - Post-training Quantization for LVLMs**

• Global Optimization : 정확하지만 탐색 비용 너무 크다.

$$\min_{\{Q_k\}} J = \left\| W_q^{(n)} X_q^{(n)} - W_r^{(n)} X_r^{(n)} \right\|_2^2 
s.t. X_q^{(k+1)} = Q_k(W_q^{(k)} X_q^{(k)})$$
(1)

● Greedy Layer-wise Optimization : 계산은 빠르지만 cross-layer dependency 무시로 인한 오차 누적된다.

$$\min_{Q_k} \quad J = \left\| W_q^{(k)} X_q^{(k)} - W_r^{(k)} X_r^{(k)} \right\|_2^2 \tag{2}$$

## **Ours - Mining Cross-layer Dependency for LVLM Quantization**

• Block-wise Quantization 제안

NeurIPS 2024

## **Optimizing Visual Encoders for LVLM Quantization**