粒子物理习题

Fall 2024

1. 下面这些过程是否是标准模型费曼图?

- 2. 电子轰击原子核(核电荷数为 Ze)时,受原子核库伦力作用发生转向、减速,从而**韧致辐射**出光子。画出该过程的最低阶费曼图,并粗略估计其反应截面至 $O(\alpha)$.
- 3. $D^0(c\bar{u})$ 介子的两个可能的弱衰变过程为:

$$D^0 \to K^- + \pi^+ \tag{1}$$

$$D^0 \to K^+ + \pi^-$$
 (2)

- (a) 画出这两个过程在夸克层次的费曼图。
- (b) 估计过程(2)与过程(1)的衰变率之比,据此理解为何过程(2)被称为**双卡比玻压低** (**Doubly Cabibbo Suppressed**) 过程。
- 4. 画出下面这些过程的费曼图,并按寿命由短到长排序

(a)
$$\Delta^+(uud) \to n(udd) + \pi^+(u\bar{d})$$

(b)
$$\Sigma^0(uds) \to \Lambda(uds) + \gamma$$

(c)
$$\pi^+(u\bar{d}) \to \mu^+ + \nu_{\mu}$$

5. 粒子的寿命和它衰变时的相互作用类型有密切联系,如下图所示(横坐标是粒子的寿命,纵坐标是相互作用类型)。

- (a) 为什么 K^{\pm} , D^{\pm} , B^{\pm} 等介子只有弱衰变?
- (b) $\phi(s\bar{s})$ 介子主要是什么类型的衰变? 它大致落在图中什么位置?
- (c) Σ^0 和 Λ 重子的夸克组分都是 uds,它们的质量很接近,分别是 $m_{\Sigma^0}=1192\,\mathrm{MeV}$, $m_{\Lambda}=1115\,\mathrm{MeV}$,两者还有相同的自旋和宇称 $J^P=\frac{1}{2}^+$ 。为什么 Σ^0 的衰变是电磁作用过程,而 Λ 的衰变是弱作用过程?据此写出它们的主要衰变模式。
- (d) Σ^{*0} 重子的夸克组分也是 uds,其质量为 1385 MeV,自旋宇称为 $J^P = \frac{3}{2}^+$ 。它应该落在图中什么位置?主要衰变模式是什么?
- (e) 同位旋三重态中的 π^0 的寿命比 π^\pm 的寿命长大约 9 个数量级,为什么?
- 6. 己知自然单位制中下述物理量及测量值

反应总截面
$$\sigma=0.2\times 10^{-6}\,\mathrm{MeV^{-2}}$$
 粒子平均寿命 $\tau=10^{-2}\,\mathrm{MeV^{-1}}$ 粒子约化 Compton 波长 $\lambda=10^{-3}\,\mathrm{MeV^{-1}}$

计算它们在国际单位制中相应的值。

- 7. 美国 SLAC 的 PEP-II 是能量不对称的正负电子对撞机,其 e^+ 和 e^- 束流的能量分别为 3.1 GeV 和 9 GeV. 计算该对撞机的有效质心能量。
- 8. 考虑两体衰变过程 $i \to 1 + 2$. 设粒子 i、1、2 的质量分别是 m_i 、 m_1 、 m_2 ,证明: 在粒子 i 静止系中,粒子 1 的动量大小为:

$$|\mathbf{p}| = \frac{1}{2m_i} \sqrt{\left[m_i^2 - (m_1 + m_2)^2\right] \left[m_i^2 - (m_1 - m_2)^2\right]}.$$
 (3)

- (a) 分别就 $m_1 = m_2$ 、 $m_1 \ll m_2$ 、 $m_i = m_1$ 这 3 种特殊情形进行讨论。
- (b) 世界上绝大多数的缪子束流设施均采用由靶表面静止 π 介子产生缪子—**表面缪子** (surface muon) 的工作方式,表面缪子是单能的且几乎完全极化。对于 $\pi^+ \to \mu^+ \nu_\mu$,在 π^+ 静止系中计算 μ^+ 动量大小。

9. 考虑三体衰变过程 $i \to 1 + 2 + 3$. 设粒子 $i \times 1 \times 2 \times 3$ 的质量分别是 $m_i \times m_1 \times m_2 \times m_3$,证明: 在粒子 i 静止系中,粒子 1 的能量最大值为

$$E_1^{\text{max}} = \frac{m_i^2 + m_1^2 - (m_2 + m_3)^2}{2m_i} \tag{4}$$

缪子最主要的衰变模式是**米歇尔衰变(Michel decay)** $\mu^+ \to \bar{\nu}_\mu e^+ \nu_e$,在 μ^+ 静止系中计 算 e^+ 最大能量。

10. 考虑中微子 ν 轰击静止靶粒子 X 的反应过程 $\nu + X \to \ell + Y$. 证明: 只有当中微子能量 E_{ν} 大于某个阈值时该过程才可能发生,即 E_{ν} 必须满足

$$E_{\nu} > \frac{(m_{\ell} + m_{Y})^{2} - m_{X}^{2}}{2m_{X}} \tag{5}$$

- 11. 光子与质子碰撞可以发生光生反应 $\gamma + p \rightarrow \pi^0 + p$,从而产生 π^0 介子。
 - (a) 假设初态质子静止,求能产生该反应的光子的阈能。
 - (b) 宇宙空间充满温度 ~ 2.7 K 的背景辐射,该辐射光子的平均能量为 $E_{\gamma} = \frac{3}{2}kT \simeq 5.8 \times 10^{-4}$ eV。假设很高能量的质子和背景辐射光子对头碰撞,求能够发生该反应的质子的最小能量 E_p 。据此解释宇宙中能量高于 E_p 的质子数量发生明显跌落的现象(Greisen-Zatsepin-Kuzmin cutoff, GZK 截断)。
- 12. 质子打靶可以产生单个、2个或多个 π 介子,其中产生单 π 的典型过程有:

$$pp \to pn\pi^+, pp\pi^0, d\pi^+$$

 $pn \to pn\pi^0, pp\pi^-, nn\pi^+$

试对于其中的两个过程:

$$pp \to pn\pi^+$$
 (6)

$$pn \to nn\pi^+$$
 (7)

计算入射质子的阈动能。

- 13. 1987年2月超新星1987A爆发,被日本的 Kamioka 和美国的 IMB 探测到。超新星爆发时产生大量的电子反中微子 $\bar{\nu}_e$,它们质量相同但是能量不同,因而在宇宙空间飞行的速度不同,到达地球的时间也不同。 $\bar{\nu}_e$ 到达地球后与实验室水池中的质子 p 发生反 β 衰变。实验发现反 β 衰变事件集中发生在 $10\,\mathrm{s}$ 的时间间隔内,人们在储水 $1000\,\mathrm{meV}$ 中观测到 $10\,\mathrm{r}$ 个反 β 事例,且测得 $\bar{\nu}_e$ 的能量从 $5\,\mathrm{meV}$ 到 $20\,\mathrm{meV}$,平均能量 $10\,\mathrm{meV}$ 。
 - (a) 写出 $\bar{\nu}_e$ 的产生过程。
 - (b) 实验如何探测 $\bar{\nu}_e$?
 - (c) 设 1987A 距离地球 1.5×10^5 光年,估计 $\bar{\nu}_e$ 的质量上限。
 - (d) 估计 $\bar{\nu}_e$ 从超新星带走的能量。
- 14. 在电子的某个自旋态 $|\chi\rangle$,测量 S_z 得测量值为 $\frac{1}{2}$ 的概率是 $\frac{1}{6}$,测量 S_y 得测量值为 $\frac{1}{2}$ 的概率是 $\frac{1}{3}$ 。求电子的自旋态 $|\chi\rangle$ 和 S_x 的平均值 $\langle\chi|S_x|\chi\rangle$ 。

15. 任意方向单位矢量 n 的球坐标系表示为

$$\mathbf{n} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

- (a) 求厄米算符 $\hat{h} = \boldsymbol{\sigma} \cdot \mathbf{n}$ 的本征值和相应的本征矢,这里 $\boldsymbol{\sigma}$ 是 Pauli 算符。
- (b) 粒子处在自旋朝上的态 α , 求 \hat{h} 的可能测值和相应概率。
- 16. 当质心系总能量约为 1232 MeV 时, 求下列三个强作用过程的截面之比:
 - a) $\pi^- + p \rightarrow K^0(d\bar{s}) + \Sigma^0(uds)$
 - b) $\pi^- + p \rightarrow K^+(u\bar{s}) + \Sigma^-(dds)$
 - c) $\pi^- + p \rightarrow K^-(\bar{u}s) + \Sigma^+(uus)$
- 17. 三个中性粒子 a, b, c 的同位旋 I 均为零,自旋宇称 J^P 分别是 2^+ , 1^- , 0^- 。假设三个粒子的质量都足以产生两个 π 介子,问哪些粒子能强衰变到 2π ? 为什么?
- 18. 证明: 一个标量介子不能通过强作用和电磁作用衰变为三个赝标介子。
- 19. K^- 介子可以被 ${}^4\text{He}$ 核吸收生成奇异核 ${}^4\text{H}_\Lambda$:

$$K^- + {}^4\mathrm{He} \rightarrow {}^4\mathrm{H}_\Lambda + \pi^0$$

研究 ${}^4H_{\Lambda}$ 的衰变分支比及其衰变产物的角分布表明 ${}^4He_{\Lambda}$ 的自旋 $J_{4H_{\Lambda}}=0$.

- (a) 写出 ⁴H_A 的重子成分,给出它的重子数、奇异数和超荷;
- (b) 求 K^- 的内禀字称,并说明其内禀字称的推出与 K^- 被吸收前的轨道角动量无关。
- 20. 简要回答下列问题:
 - (a) 实验上找到的粒子的最大电荷是 2e;
 - (b) 我们对 μ 子定义了宇称, 但是该定义没有实际意义;
 - (c) 标准模型中不存在中子反中子振荡 $n \leftrightarrow \bar{n}$:
 - (d) ρ^0 衰变到 $\pi^+\pi^-$ 的过程是允许的,衰变到 $\pi^0\pi^0$ 的过程是禁戒的:
 - (e) 若 SU(3) 味对称严格成立,则电磁衰变过程 $\Sigma^{*-} \to \Sigma^{-} \gamma$ 禁戒, $\Sigma^{*+} \to \Sigma^{+} \gamma$ 允许。 $(\Sigma^{*}$ 量子数 $I(J^{P}) = 1(\frac{3}{2}^{+})$,也记作 $\Sigma(1385)$ 或 $\Sigma^{*}(1385)$,括号内数字是其质量。)
- 21. 中性矢量介子 $V(q\bar{q})$ 具有相同 $J^{PC} = 1^{--}$,它们可以通过电磁作用衰变到 $e^{+}e^{-}$:

$$V \ \to \ \gamma^* \ \to \ e^+e^-$$

该过程的衰变率与 q 的电荷成正比。忽略衰变过程的相空间,证明衰变率之比为

$$\Gamma_{\rho}:\Gamma_{\omega}:\Gamma_{\phi}=9:1:2$$

22. 证明: 在味 SU(2) 中 \bar{u} , \bar{d} 反夸克二重态必须写为

$$\bar{q} = \begin{pmatrix} -\bar{d} \\ \bar{u} \end{pmatrix} \tag{8}$$

才能保证它和u, d夸克二重态具有相同的幺正变换性质。

- 23. 根据夸克模型,中子的组分夸克是 udd。综合考虑夸克的味道、自旋、颜色和位置空间波函数,写出中子味道和自旋部分的波函数 $\psi = \eta_{\text{flavor}}\chi_{\text{spin}}$.
- 24. 利用 Dirac γ 矩阵的性质 $\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu}$, 证明:

$$\gamma^{\mu}\gamma_{\mu} = 4$$

$$\gamma^{\mu}\phi\gamma_{\mu} = -2\phi$$

$$\gamma^{\mu}\phi\phi\gamma_{\mu} = 4a \cdot b$$
(9)

其中 a 是任意四维矢量, $\phi = \gamma^{\mu}a_{\mu}$ 是 Feynman 记号。

- 25. Dirac 粒子和反粒子的旋量波函数可写为 u(p,s) 和 v(p,s), s=1,2. 证明:
 - (a) 除非在粒子静止系中,或者在 z 轴与粒子动量平行的坐标系中,u(p,s),v(p,s) 通常不是自旋算符 z 分量 $\frac{1}{5}\Sigma_3$ 的本征函数。
 - (b) u(p,s), v(p,s) 满足如下关系:

$$u^{\dagger}(p,s)u(p,s') = 2E\delta_{ss'}, \qquad v^{\dagger}(p,s)v(p,s') = 2E\delta_{ss'}$$
(10)

$$\bar{u}(p,s)u(p,s') = 2m\delta_{ss'}, \qquad \bar{v}(p,s)v(p,s') = -2m\delta_{ss'}$$
(11)

$$\sum_{s} u(p,s)\bar{u}(p,s) = \not p + m, \qquad \sum_{s} v(p,s)\bar{v}(p,s) = \not p - m \tag{12}$$

其中m和E是粒子的质量和能量,式(12)称为**完全关系(completeness relations)**

26. 四分量旋量波函数 u_1 或 u_2 可写为:

$$u = \begin{pmatrix} \xi \\ \chi \end{pmatrix}$$

其中 ξ 和 χ 是二分量旋量。证明:在非相对论极限,即 $\beta \equiv \frac{v}{c} \ll 1$ 情形下, χ 的分量比 ξ 的分量小 β 因子(据此理解为何把 ξ 称为**大分量**, χ 称为**小分量**。类似地,对于 v_1 和 v_2 ,把 ξ 称为小分量, χ 称为大分量)。

27. 证明: Dirac 旋量方程 (p - m)u = 0 的伴随旋量方程是:

$$\bar{u}(\not p - m) = 0 \tag{13}$$

不必知道旋量 u 的具体形式,利用归一化条件 $u^{\dagger}u=2E$,证明:

$$u\bar{u} = 2m \tag{14}$$

$$\bar{u}\gamma^{\mu}u = 2p^{\mu} \tag{15}$$

28. 定义**手性算符(chiral operator)**

$$\gamma^5 = \gamma_5 = i\gamma^0 \gamma^1 \gamma^2 \gamma^3 \tag{16}$$

(a) 证明 γ^5 是厄米算符,即

$$\gamma^{5\dagger} = \gamma^5 \tag{17}$$

- (b) 求解 γ^5 的本征值方程。
- (c) 证明如下与 γ^5 相关的性质:

$$(\gamma^5)^2 = 1 \tag{18}$$

$$\gamma^5 \gamma^\mu = -\gamma^\mu \gamma^5 \tag{19}$$

$$\left[\bar{\psi}\gamma^{\mu}\gamma^{5}\phi\right]^{\dagger} = \bar{\phi}\gamma^{\mu}\gamma^{5}\psi\tag{20}$$

其中 ψ , ϕ 为任意 Dirac 旋量。

- 29. 从经典物理的角度看,Klein-Gordon 方程是描写无自旋自由玻色子的相对论性运动方程。作为特例,假设 Klein-Gordon 方程与时间无关,求此时方程的静态解,该静态解又称为 Yukawa 势。若玻色子质量为零,方程的静态解又如何?
- 30. 自由实标量场 $\phi(x)$ 的 Lagrangian 密度为

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)(\partial^{\mu} \phi) - \frac{1}{2} m^2 \phi^2 = \frac{1}{2} \dot{\phi}^2 - \frac{1}{2} (\nabla \phi)^2 - \frac{1}{2} m^2 \phi^2$$

- (a) 证明其运动方程是 Klein-Gordon 方程。
- (b) 量子场论中,把经典场看成是无穷多各种允许动量 **p** 的模式谐振子的线性叠加,即 把经典场做 Fourier 展开,然后对它进行算符化

$$\phi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_{\mathbf{p}}}} \left[c(\mathbf{p}) e^{-ip \cdot x} + c^{\dagger}(\mathbf{p}) e^{ip \cdot x} \right]$$

式中 $\phi(x) = \phi(\mathbf{x}, t)$ 是场算符, $E_{\mathbf{p}}$ 是动量为 \mathbf{p} 的场量子的能量, $c^{\dagger}(\mathbf{p})$ 和 $c(\mathbf{p})$ 分别是场量子的产生算符和消灭算符。计算场算符的共轭动量算符 $\pi(x)$

$$\pi(x) = \frac{\partial \mathcal{L}}{\partial \dot{\phi}}$$

(c) 证明: 如果 $c(\mathbf{p}_1)$ 和 $c^{\dagger}(\mathbf{p}_2)$ 满足如下对易关系

$$[c(\mathbf{p}_1), c^{\dagger}(\mathbf{p}_2)] = (2\pi)^3 \delta^{(3)}(\mathbf{p}_1 - \mathbf{p}_2)$$
 (21)

那么 $\phi(\mathbf{x},t)$ 和 $\pi(\mathbf{x},t)$ 的对易关系是

$$[\phi(\mathbf{x}_1, t), \ \pi(\mathbf{x}_2, t)] = i\delta^{(3)}(\mathbf{x}_1 - \mathbf{x}_2)$$
 (22)

(d) 假设实标量场处在边长为 L、体积为 $V = L^3$ 的的立方体内,证明矩阵元

$$\langle 0|c(\mathbf{p})|\mathbf{p}\rangle = \sqrt{2E_{\mathbf{p}}}V, \qquad \langle \mathbf{p}|c^{\dagger}(\mathbf{p})|0\rangle = \sqrt{2E_{\mathbf{p}}}V$$
 (23)

$$\langle 0|\phi(x)|\mathbf{p}\rangle = e^{-ip\cdot x}, \qquad \langle \mathbf{p}|\phi(x)|0\rangle = e^{ip\cdot x}$$
 (24)

式中 $|0\rangle$ 是真空态, $|\mathbf{p}\rangle = \sqrt{2E_{\mathbf{p}}}c^{\dagger}(\mathbf{p})|0\rangle$ 是动量为 \mathbf{p} 的单粒子态。

(e) 证明实标量场的 Hamiltonian 为

$$H = \frac{1}{2} \int d^3x \left[\pi^2 + (\nabla \phi)^2 + m^2 \phi^2 \right] = \int \frac{d^3p}{(2\pi)^3} E_{\mathbf{p}} \left[c^{\dagger}(\mathbf{p}) c(\mathbf{p}) + \frac{1}{2} (2\pi)^3 \delta^{(3)}(0) \right]$$
(25)

对基态 $|0\rangle$ 计算 $H|0\rangle$ 结果为无穷大,试对此进行讨论。

31. 证明: 电磁作用顶点 $e^-e^+ \rightarrow \gamma$ 和 $\gamma \rightarrow e^-e^+$ 的跃迁矩阵元分别是

$$e^{-}e^{+} \to \gamma : \quad \langle \mathbf{k}\lambda | \mathcal{H}_{em} | p; p' \rangle = -\bar{v}(p')(e\gamma^{\mu})u(p) \, \epsilon_{\mu}^{*}(\mathbf{k}\lambda)e^{i(k-p-p')x}$$

$$\gamma \to e^{-}e^{+} : \quad \langle p; p' | \mathcal{H}_{em} | \mathbf{k}\lambda \rangle = -\bar{u}(p) \, (e\gamma^{\mu})v(p')\epsilon_{\mu}(\mathbf{k}\lambda)e^{i(p+p'-k)x}$$
(26)

其中粒子态 $|p\rangle$ 是 $|\mathbf{p},s\rangle$ 的简写, $|p'\rangle$ 是 $|\mathbf{p}',s'\rangle$ 的简写。

32. 对于二体碰撞过程 $1+2 \rightarrow 3+4$,可以引入 Lorentz 不变的初始流量 F. 假设是正面碰撞,F 可写为

$$F \equiv 4E_1E_2(v_1 + v_2)$$

- (a) 把F写成明显Lorentz不变的形式。
- (b) 证明:在实验室系(粒子2静止系)中

$$F = 4|\mathbf{p}_1|m_2 \tag{27}$$

(c) 证明: 在粒子1和2的动量中心系中

$$F = 4|\mathbf{p}^*|\sqrt{s} \tag{28}$$

式中 $|\mathbf{p}^*|$ 是入射粒子 1 或 2 的动量大小, \sqrt{s} 是质心系中粒子的总能量。

33. 证明: 实验室系中二体碰撞过程 $1+2 \rightarrow 3+4$ 的 Lorentz 不变相空间元为

$$dLips^{(2)} = \frac{1}{4(2\pi)^2} \frac{|\mathbf{p}_3|^2}{|\mathbf{p}_3|(E_1 + m_2) - E_3|\mathbf{p}_1|\cos\theta} d\Omega$$
 (29)

式中 θ 是粒子3的动量方向 \mathbf{p}_3 与粒子1的动量方向 \mathbf{p}_1 之间的夹角,即散射角。

34. 利用量子场论方法,计算极端相对论情形下(即忽略入射和出射粒子的质量)非极化 e^-e^+ 湮灭产生非极化 $\mu^-\mu^+$ 的 Lorentz 不变跃迁振幅。证明其对末态自旋求和、对初态 自旋求平均后的结果为

$$\overline{|\mathcal{M}_{fi}|^2}_{ee} = 2e^4 \frac{t^2 + u^2}{s^2} \tag{30}$$

式中 s,t,u 是 Mandelstam 不变量。利用**交叉对称**原理,证明 $e^-\mu^-\to e^-\mu^-$ 过程的跃迁振幅平方的平均值为

$$\overline{|\mathcal{M}_{fi}|^2}_{e\mu} = 2e^4 \frac{u^2 + s^2}{t^2}$$

35. 考虑一个速度为v 的电子轰击电荷为Ze 的重核靶的过程。靶的质量很大,故其反冲可忽略。对电子而言,静止靶产生的电磁场是外场,即经典Coulomb 势

$$A^{\mu} = \left(\frac{Ze}{4\pi r}, 0, 0, 0\right)$$

电子与重核之间的 Hamiltonian 密度为

$$\mathcal{H}_{\rm int} = -e\overline{\psi}\gamma^{\mu}\psi A_{\mu}$$

利用量子场论方法,计算该过程的一阶 S 矩阵元

$$s_{fi}^{(1)} = -i \int \mathrm{d}^4 x \langle f | \mathcal{H}_{\mathrm{int}} | i
angle = e \int \mathrm{d}^4 x \langle \mathbf{p}_f, s_f | \overline{\psi} \gamma^\mu \psi | \mathbf{p}_i, s_i
angle A_\mu$$

式中 \mathbf{p} 和s是粒子的动量和自旋。证明实验室系中该过程的微分截面为

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{4Z^2\alpha^2}{q^4}E^2\left(1 - v^2\sin^2\frac{\theta}{2}\right) \tag{31}$$

其中 E 是电子能量, θ 是散射角, $\alpha = \frac{e^2}{4\pi}$ 是电磁作用精细结构常数, $q = |\mathbf{p}_i - \mathbf{p}_f|$ 是动量转移大小。式(31) 称为 **Mott 公式**,讨论其与 **Rutherford 公式**的关系。

- 36. 利用量子场论方法,计算最低阶 **Compton 散射** $\gamma e^- \to \gamma e^-$ 的反应截面。能否用交叉对 称原理,直接从该结果得到 $e^+ e^- \to \gamma \gamma$ 的反应截面?(注意 Compton 散射有两个拓扑不等的费曼图,传播子是费米子)
- 37. 在 SLAC 的 SPEAR 正负电子对撞机实验中,当 e^-e^+ 质心能量为 $4.03\,\text{GeV}$ 时,人们在 $K^-\pi^+\pi^+$ 系统的不变质量 $M_{KK\pi}=1.87\,\text{GeV}$ 处发现一个共振峰,记作 D^+ ,实验测得其自旋为零。
 - (a) 请用夸克模型说明 D+ 不可能是奇异粒子。
 - (b) $K\pi\pi$ 终态的自旋字称是什么?
 - (c) 同一个实验中,人们在 $K^-\pi^+$ 系统的不变质量谱上发现一个质量和 D^+ 几乎完全相同的粒子,称为 D^0 。问 $K\pi$ 系统的自旋字称是什么?
 - (d) 设这两个粒子属于同一组同位旋多重态,上述衰变过程是什么相互作用?
- 38. 有人设想在质子轰击静止质子靶的实验中通过如下反应寻找 H 粒子:

$$p + p \rightarrow H + K^+ + K^+$$

- (a) 说明 H 粒子的电荷、重子数和奇异数。
- (b) H 粒子至少含有几个夸克? 写出其可能的夸克组分。
- (c) 理论预期这种状态的 H 粒子的质量为 $2150\,\mathrm{MeV}$ 。为了产生这个粒子,入射质子的最小动能是多少?
- 39. (Thomson 7.3) In an e^-p scattering experiment, the incident electron has energy $E_1 = 529.5$ MeV and the scattered electrons are detected at an angle of $\theta = 75^{\circ}$ relative to the incoming beam.

- (a) At this angle, almost all of the scattered electrons are measured to have an energy of $E_3 \approx 373 \, \text{MeV}$. What can be concluded from this observation?
- (b) Find the corresponding value of Q^2 .
- 40. (Thomson 8.1) In fixed-target electron-proton elastic scattering

$$Q^2 = 2M(E_1 - E_3) = 2ME_1y$$
 and $Q^2 = 4E_1E_3\sin^2\frac{\theta}{2}$

(a) Use these relations to show that

$$\sin^2 \frac{\theta}{2} = \frac{E_3}{E_1} \frac{M^2}{Q^2} y^2$$

and hence

$$\frac{E_3}{E_1}\cos^2\frac{\theta}{2} = 1 - y - \frac{M^2y^2}{Q^2}$$

(b) Assuming azimuthal symmetry and using Equations (7.31) and (7.32), show that

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \left| \frac{\mathrm{d}\Omega}{\mathrm{d}Q^2} \right| \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\pi}{E_3^2} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

(c) Using the results of (a) and (b) show that the Rosenbluth equation

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4E_1^2 \sin^4 \frac{\theta}{2}} \frac{E_3}{E_1} \left(\frac{G_E^2 + \tau G_M^2}{1 + \tau} \cos^2 \frac{\theta}{2} + 2\tau G_M^2 \sin^2 \frac{\theta}{2} \right)$$

can be written in the Lorentz-invariant form

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{Q^4} \left[\frac{G_E^2 + \tau G_M^2}{1+\tau} \left(1 - y - \frac{M^2 y^2}{Q^2} \right) + \frac{1}{2} y^2 G_M^2 \right]$$

- 41. (Thomson 8.4) If quarks were spin-0 particles, why would $F_1^{ep}(x)/F_2^{ep}(x)$ be zero?
- 42. (Thomson 8.8) At the HERA collider, electrons of energy $E_1=27.5\,\mathrm{GeV}$ collided with protons of energy $E_2=820\,\mathrm{GeV}$. In deep inelastic scattering events at HERA, show that the Bjorken x is given by

$$x = \frac{E_3}{E_2} \left[\frac{1 - \cos \theta}{2 - (E_3/E_1)(1 + \cos \theta)} \right]$$

where θ is the angle through which the electron has scattered and E_3 is the energy of the scattered electron. Estimate x and Q^2 for the event shown in Figure 8.13 assuming that the energy of the scattered electron is 250 GeV.

43. (Thomson 10.9) Drell – Yan production of $\mu^-\mu^+$ pairs with an invariant mass Q^2 has been studied in π^{\pm} interactions with carbon (which has equal numbers of protons and neutrons). Explain why the ratio

$$\frac{\sigma(\pi^+C \to \mu^-\mu^+X)}{\sigma(\pi^-C \to \mu^-\mu^+X)}$$

tends to unity for small Q^2 and tends to $\frac{1}{4}$ as Q^2 approaches s.

- 44. QED 中带电粒子是用旋量场表示的费米子。如果带电粒子是标量玻色子,经常用复标量场表示。试利用 U(1) 定域规范不变性,得到"带电标量粒子的 QED".
- 45. (Griffiths 8.16) Calculate the octet $q\bar{q}$ color factor using the state
 - (a) $b\bar{q}$
 - (b) $(r\bar{r} b\bar{b})/\sqrt{2}$
 - (c) $(r\bar{r} + b\bar{b} 2g\bar{g})/\sqrt{6}$
- 46. (Griffiths 8.18) Calculate the sextet qq color factor using the state $(rb + br)/\sqrt{2}$.
- 47. (Griffiths 9.17) Calculate decay rates for the following processes:
 - (a) $\Sigma^0 \rightarrow \Sigma^+ + e^- + \bar{\nu}_e$
 - (b) $\Sigma^- \rightarrow \Lambda + e^- + \bar{\nu}_e$
 - (c) $\Xi^- \rightarrow \Xi^0 + e^- + \bar{\nu}_e$
 - (d) $\Lambda \rightarrow p + e^- + \bar{\nu}_e$
 - (e) $\Sigma^- \rightarrow n + e^- + \bar{\nu}_e$
 - (f) $\Xi^0 \rightarrow \Sigma^+ + e^- + \bar{\nu}_e$

Assuming the coupling is always $\gamma^{\mu}(1-\gamma^5)$ – that is, ignore the strong interaction corrections to the axial coupling – but do not forget the Cabibbo factor. Compare the experimental data.

- 48. (Griffiths 9.21) In Example 9.4 I used *muon* neutrinos, rather than *electron* neutrinos. As a matter of fact, ν_{μ} and $\bar{\nu}_{\mu}$ beams are easier to produce than ν_{e} and $\bar{\nu}_{e}$, but there is also a *theoretical* reason why $\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$ is simpler than $\nu_{e} + e^{-} \rightarrow \nu_{e} + e^{-}$ or $\bar{\nu}_{e} + e^{-} \rightarrow \bar{\nu}_{e} + e^{-}$. Explain.
- 49. (Thomson 11.7) Predict the ratio of the $K^- \to e^- \bar{\nu}_e$ and $K^- \to \mu^- \bar{\nu}_\mu$ weak interaction decay rates and compare your answer to the measured value of

$$\frac{\Gamma(K^- \to e^- \bar{\nu}_e)}{\Gamma(K^- \to \mu^- \bar{\nu}_\mu)} = (2.488 \pm 0.012) \times 10^{-5}$$

- 50. (Thomson 15.2) Draw the lowest-order Feynman diagram for the decay $\pi^0 \to \nu_\mu \bar{\nu}_\mu$ and explain why this decay is effectively forbidden.
- 51. 画出以下味道改变中性流(FCNC)过程的费曼图:
 - $B^0_{(s)} \to \mu^+ \mu^-$
 - $B^+ \to K^+ \ell^+ \ell^-$
 - $B^0 \to K^{*0} \ell^+ \ell^-$
 - $B^- \to K^0 \pi^- \mu^+ \mu^-$

- 52. 粒子数据组(PDG2022)中列出了一些 D^0 介子的二体和三体弱衰变过程的分支比测量 值,如下表所示(括号中的数字为误差):

画出这些过程的费曼图。如何理解这些分支比测量值?

- 53. (Thomson 17.5) Explain why the Higgs potential can contain terms with only even powers of the field ϕ .
- 54. (Thomson 17.12) Draw the lowest-order Feynman diagrams for the processes $e^-e^+ o HZ$ and $e^-e^+ \to H\nu_e\bar{\nu}_e$, which are the main Higgs production mechanism at a **future high-energy** linear collider.
- 55. (Thomson 17.13) In the future, it might be possible to construct a **muon collider** where the Higgs boson can be produced directly through $\mu^-\mu^+ \to H$. Compare the cross sections for $e^-e^+ \to H \to bb, \, \mu^-\mu^+ \to H \to bb \text{ and } \mu^-\mu^+ \to \gamma \to bb \text{ at } \sqrt{s} = m_H.$
- 56. (Thomson 16.1) After correcting for QED effects, including initial-state radiation, the measured $e^-e^+ \to \mu^-\mu^+$ and $e^-e^+ \to$ hadrons cross sections at the peak of the Z resonance give

$$\sigma^0(e^-e^+ \to Z \to \mu^-\mu^+) = 1.9993 \, \text{nb} \quad \text{and} \quad \sigma^0(e^-e^+ \to Z \to \text{hadrons}) = 41.476 \, \text{nb}.$$

- (a) Assuming lepton universality, determine $\Gamma_{\ell\ell}$ and $\Gamma_{hadrons}$, where ℓ represents lepton.
- (b) Hence, using the measured value of $\Gamma_Z = 2.4952 \pm 0.0023$ GeV and the theoretical value of $\Gamma_{\nu\nu}$ given by

$$\Gamma(Z \to f\overline{f}) = \frac{g_Z^2 m_Z}{48\pi} (c_V^2 + c_A^2)$$

obtain an estimate of the number of light neutrino flavors.