From Prototype to Production

The tools we've discussed in this book are great for many machine learning applications, and allow very quick analysis and prototyping. Python and scikit-learn are also used in production systems in many organizations—even very large ones like international banks and global social media companies. However, many companies have complex infrastructure, and it is not always easy to include Python in these systems. That is not necessarily a problem. In many companies, the data analytics teams work with languages like Python and R that allow the quick testing of ideas, while production teams work with languages like Go, Scala, C++, and Java to build robust, scalable systems. Data analysis has different requirements from building live services, and so using different languages for these tasks makes sense. A relatively common solution is to reimplement the solution that was found by the analytics team inside the larger framework, using a high-performance language. This can be easier than embedding a whole library or programming language and converting from and to the different data formats.

Regardless of whether you can use scikit-learn in a production system or not, it is important to keep in mind that production systems have different requirements from one-off analysis scripts. If an algorithm is deployed into a larger system, software engineering aspects like reliability, predictability, runtime, and memory requirements gain relevance. Simplicity is key in providing machine learning systems that perform well in these areas. Critically inspect each part of your data processing and prediction pipeline and ask yourself how much complexity each step creates, how robust each component is to changes in the data or compute infrastructure, and if the benefit of each component warrants the complexity. If you are building involved machine learning systems, we highly recommend reading the paper "Machine Learning: The High Interest Credit Card of Technical Debt", published by researchers in Google's machine learning team. The paper highlights the trade-off in creating and maintaining machine learning software in production at a large scale. While the issue of technical debt *is* particularly pressing in large-scale and long-term projects, the lessons learned can help us build better software even for short-lived and smaller systems.

Testing Production Systems

In this book, we covered how to evaluate algorithmic predictions based on a test set that we collected beforehand. This is known as *offline evaluation*. If your machine learning system is user-facing, this is only the first step in evaluating an algorithm, though. The next step is usually *online testing* or *live testing*, where the consequences of employing the algorithm in the overall system are evaluated. Changing the recommendations or search results users are shown by a website can drastically change their behavior and lead to unexpected consequences. To protect against these surprises, most user-facing services employ *A/B testing*, a form of blind user study. In