

Xiangtai Li^{1*}, Wenwei Zhang^{2*}, Jiangmiao Pang^{3,5*}, Kai Chen^{4,5}, Guangliang Cheng⁴, Yunhai Tong¹, Chen Change Loy²

¹Peking University, ²S-Lab, Nanyang Technological University, ³The Chinese University of Hong Kong, ⁴SenseTime Research, ⁵Shanghai AI Laboratory

1. Motivation

Summary of Video Segmentation Tasks:

- Different video segmentation tasks have different solutions
- Video Semantic Segmentation (VSS): no instance tracking.
- Video Instance Segmentation (VIS): no background context.
- Video Panoptic Segmentation (VPS): unifies VSS and VIS.
- Is there a unified solution to handle all three tasks?

Figure From: A Survey on Deep Learning Technique for Video Segmentation

Current Solution For Video Panoptic Segmentation

- Complex and hand-crafted pipelines vary from models (a: top-down, b: bottom up).
- Tackle the segmentation and tracking with specific task heads (a, b): semantic/instance/tracking heads
- Need post process and offline tracking (b) or extra optical flow learning and warping (a).
- Is there a simple solution to handle VPS problem?

Key Motivation:

- Image segmentation tasks are *already unified* by kernel based method like **K-Net**.
- Kernel based method can also simplify video panoptic segmentation.

Unify Video Segmentation Tasks via Kernels

Adopting Kernel based method can generalize into VSS and VIS.

2. Toy Experiment

KITTI-STEP	STQ	AQ	SQ	VPQ
K-Net	67.5	65.5	68.9	-
K-Net + Unitrack	65.1	64.3	68.9	-
Cityscapes-VPS	STQ	AQ	SQ	VPQ
K-Net	-	-	-	54.3
K-Net + Unitrack	-	-	-	53.2

K-Net is better than K-Net + Unitrack!

Observation

- Original learned kernels encode instance-wised information.
- Directly using kernel can lead to better performance than several advanced trackers.
- Let's just link and track the kernels in temporal dimension!

3. Method

- Both thing kernels and stuff kernels are randomly initialized and learns to segment
- Kernel Update Head update kernels by:
 - Group Feature Assembling
 - Adaptive Kernel Update
 - and Kernel Interaction sequentially

Figure 1. The best performance and GFlops trade-off

Lighter and Stronger

Video K-Net (swin-base)

(b) results on Cityscapes-VPS

✓ ViP-Deeplab

for both KITTI-STEP (a) and Cityscapes VPS (b).

Video K-Net

(a) results on KITTT-STEP

Video K-Net: Extending K-Net into Video Domain

- Three modifications based on the image K-Net.
- Only one extra tracking loss into K-Net.
- Online Inference *without* offline posting processing.

Modification 1: Learning to Fuse Kernels (green box)

- Fuse the kernel at the last kernel update stage.
- Use Adaptive Kernel Update (operation from K-Net).

Modification 2: Learning to Link Kernels (orange box)

- Message passing from reference frames key frames.
- Link thing kernels across temporal dimension via Multi Head Self Attention (MHSA).

Modification 3: Learning Kernel Association Embeddings (red box)

- Apply mask-based assignment to associate kernels and masks.
- Adopt sparse kernel association rather than quasi-dense regional proposals.
- v kernels in key frame are matched with k kernels (k^+ positative, k^- negative) in reference frames via a temporal contrastive loss L_{track}: $L_{\text{track}} = -\sum_{\mathbf{k}} \log \frac{\sin \mathbf{k} \cdot \mathbf{k}}{\exp(\mathbf{v} \cdot \mathbf{k}^{+}) + \sum_{\mathbf{k}^{-}} \exp(\mathbf{v} \cdot \mathbf{k}^{-})}$

4. Experiments

- Baseline: original K-Net, M: Modification
- KAE: Kernel Association Embedding (M3)
- KL: Kernel Linking (M2) KF: Kernel Fusion (M1)

Table 2. Results on KITTI-STEP using ResNet-50 backbone STQ SQ Method 0.59 0.50 0.71 P + SORTP+ Mask Propagation 0.67 0.63 0.71 0.58 | 0.47 | 0.71 P+IoU Assoc 0.58 | 0.51 | 0.67 | Motion-Deeplab **VPSNet** 0.56 | 0.52 | 0.61 0.71 | 0.70 | 0.71 Video K-Net

Figure 2. Visual Improvements over K-Net baseline.

Our Video K-Net

- Video K-Net achieves 3.4% improvements over strong K-Net baseline for STQ metric.
- Video K-Net achieves relatively 10% improvements over Motion Deeplab on KITTI-STEP for STQ metric.
- Better performance with less GFlops than previous top-down and bottom up methods on Cityscapes VPS.
- Generalizes well on VIS (Youtube-2019) and VSS (VSPW).

Table 4. Results on VSPW-VSS using ResNet-101 backbone.

Method	mIoU	mVC ₈	m <i>VC</i> ₁₆
Deeplav3+	35.7	83.5	78.4
PSPNet	36.5	84.4	79.8
TCB (PSPNet)	37.5	86.9	82.1
Video K-Net (PSPNet)	37.9	87.0	82.1
Video K-Net (Deeplabv3+)	38.0	87.2	82.3

Figure 3. Visual Results on Cityscapes VPS (left) and KITTI STEP (right).

