财

 \forall

倒

昆明理工大学 2010 级 试卷 (A卷)

考试科目: 线性代数 考试日期: 2011年6月20日 命题教师: 命题小组

题	三号	_	11	111	四	五	六	七	总分
评	分								
阅	卷人								

一、判断题(正确填"√",错误填"×"): (每小题 2分, 共 20分)

- 1. 对n阶方阵A,B, 等式 $(A+B)^2 = A^2 + 2AB + B^2$ 成立. ()
- 2. 若n阶方阵A,B满足|AB|=0,则A与B均不可逆. ()
- 3. 若n阶方阵A的秩 $R(A) \le n$, 则|A| = 0. ()
- 4. 若 A 为 m 行 n 列矩阵,则 $R(A) \ge \min\{m,n\}$. ()
- 5. 零向量可由任意同维向量组线性表示. ()
- 6. 若同维向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性无关,则每个 \vec{a}_i 均不能由向量组
- 中其余m-1个向量线性表示. $(1 \le i \le m)$ ()
- 7. 齐次线性方程组 $A\vec{x} = \vec{0}$ 若存在基础解系,则基础解系是唯一的.
- 8. 若n阶方阵A为正交矩阵,则 A^{-1} 存在且也是正交矩阵. ()
- 9. 若n阶方阵A与B相似,则|A| = |B|. ()
- 10. 任一n阶方阵A的属于不同特征值的特征向量必正交. ()

二、填空题: (每小题 3 分, 共 30 分)

$$1. \begin{vmatrix} 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 2 \\ 0 & 3 & 0 & 3 \\ 0 & 0 & 4 & 4 \end{vmatrix} = \underline{\hspace{1cm}}.$$

- 2. 设A为2阶方阵,B为3阶方阵,且|A|=2,|B|=-2,则|-|A|B|=____.
- 3. $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$,且(2A X) + 2(B X) = 0,则|X| =_____.
- 5. 设 $\vec{\alpha}_1 = (6, a+1, 3)^T$, $\vec{\alpha}_2 = (a, 2, -2)^T$, 则当 $a = ____$ 时, $\vec{\alpha}_1$, $\vec{\alpha}_2$ 线性相关.
- 6. 设 $\vec{\eta}_1, \vec{\eta}_2, \dots, \vec{\eta}_s$ 是 非 齐 次 线 性 方 程 组 $A\vec{x} = \vec{b}$ 的 s 个 解 向 量 , 若 $c_1\vec{\eta}_1 + c_2\vec{\eta}_2 + \dots + c_s\vec{\eta}_s$ 也是该方程组的解,则 $c_1 + c_2 + \dots + c_s =$ ______.
- 7. 设四元线性方程组 $A\vec{x}=\vec{b}$ 中, R(A)=3,且其三个解向量为 $\vec{\eta}_1=(1,0,-1,2)^T, \vec{\eta}_2=(2,1,0,1)^T, \vec{\eta}_3=(4,3,1,-4)^T$,则该方程组的通解为

$$\vec{x} =$$
 .

- 8. 设正交矩阵 A 满足 |A| < 0,则 |A| = _______.
- 10. 若二次型 $f = x_1^2 + ax_3^2 + 2x_1x_2 2ax_2x_3$ 的秩为 2,则 a =_______.

三、设
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
,求解矩阵方程
 $2AX = BX + C$. (12分)

K

图

計

倒

涿

四、求向量组 $\vec{\alpha}_1 = (1,2,1,3)^T$, $\vec{\alpha}_1 = (4,-1,-5,-6)^T$, $\vec{\alpha}_1 = (1,-3,-4,-7)^T$ 的 秩和一个极大无关组. (10分)

2010 级 线性代数 试卷 A 卷 第 3 页 共 6 页

五、求线性方程组
$$\begin{cases} x_1 - x_2 + x_3 + x_4 = 1\\ 2x_1 + x_2 + 4x_3 + 5x_4 = 6 \text{ 的通解.} & \textbf{(12 分)}\\ x_1 + 2x_2 + 3x_3 + 4x_4 = 5 \end{cases}$$

考试座位号	最
课序号	和
任课教师姓名	世
任课	K
孙 마	₹
	**
专业班级	和
学院	诏 2010 级 <u>线性代数</u> 试卷 A 卷 第 5 页 共 6 页

七、设A,B为n阶方阵,且 $A^2 = A,B^2 = B,(A+B)^2 = A+B$,试证明: AB = BA = O. (4分)