Analysis and Differential Equations

Individual

(Please select 5 problems to solve)

1. a) Let x_k , k = 1, ..., n be real numbers from the interval $(0, \pi)$

and define $x = \frac{\sum_{i=1}^{n} x_i}{n}$. Show that

$$\prod_{k=1}^{n} \frac{\sin x_k}{x_k} \le \left(\frac{\sin x}{x}\right)^n.$$

b) From

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2},$$

calculate the integral $\int_0^\infty \sin(x^2) dx$.

- **2.** Let $f: \mathbb{R} \to \mathbb{R}$ be any function. Prove that the set of points x in \mathbb{R} where f is continuous is a countable intersection of open sets.
- **3.** Let f(z) be holomorphic in D: |z| < 1 and $|f(z)| \le 1$ $(z \in D)$. If z_0 is a point in D such that both z_0 and $-z_0$ are zeros of order m of f(z) and $0 < |z_0| \le \frac{m-1}{m}$, then $|f(0)| < e^{-2}$.
- **4.** Find a harmonic function f on the right half-plane such that when approaching any point in the positive half of the y-axis, the function has limit 1, while when approaching any point in the negative half of the y-axis, the function has limit -1.
- **5.** Let $K(x,y) \in L^1([0,1] \times [0,1])$. For all $f \in C^0[0,1]$, the space of continuous functions on [0,1], define a function

$$Tf(x) = \int_0^1 K(x, y) f(y) dy$$

Prove that $Tf \in C^0([0,1])$. Moreover $\Omega = \{Tf | ||f||_{sup} \leq 1\}$ is precompact in $C^0([0,1])$, i.e. every sequence in Ω has a converging subsequence, here $||f||_{sup} = \sup\{|f(x)||x \in [0,1]\}$. (Hint: Every Lebesgue integrable function over the square can be approximated by polynomial functions in the L^1 norm.)

6. Consider the equation $\dot{x} = -x + f(t,x)$, where $|f(t,x)| \leq \phi(t)|x|$ for all $(t,x) \in \mathbb{R} \times \mathbb{R}$, $\int_{-\infty}^{\infty} \phi(t)dt < \infty$. Prove that every solution approaches zero as $t \to \infty$.