

Model Optimization and Tuning Phase Report

Date	8 August 2025
Skill wallet ID	SWUID20250185217
Project Title	Anemia Sense: Leveraging Machine Learning for Precise Anemia Recognition
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase focuses on refining machine learning models to achieve peak predictive performance. This stage involves implementing optimized model code, systematically fine-tuning hyperparameters, and evaluating multiple configurations to identify the most effective setup. Performance metrics such as Accuracy, F1-Score, Precision, Recall, and ROC-AUC will be compared across tuned models. The process culminates in a clear justification for the final model selection, ensuring enhanced predictive accuracy, computational efficiency, and overall robustness in real-world deployment.

Hyperparameter Tuning Documentation (6Marks):

Model	Tuned Hyperparameters	Optimal Values
Logistic Regression	<pre>param_grid_lr = { 'penalty': ['l1', 'l2'], 'C': [0.01, 0.1, 1, 10, 100], 'solver': ['liblinear'], 'max_iter': [1000, 3000, 5000] } grid_lr = GridSearchCV(LogisticRegression(), param_grid_lr, cv=5, scoring='accuracy')</pre>	<pre>grid_lr.fit(X_train_scaled, y_train) print("Best Params:", grid_lr.best_params_) print("Best Accuracy:", grid_lr.best_score_) Best Params: {'C': 100, 'max_iter': 1000, 'penalty': 'l1', 'solver': 'liblinear'} Best Accuracy: 1.0</pre>
Random Forest	<pre>param_grid_rf = { 'n_estimators': [50, 100, 200, 300], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False] } grid_rf = GridSearchCV(estimator=RandomForestClassifier(random_state=42), param_grid=param_grid_rf, cv=5, scoring='accuracy', n_jobs=-1, verbose=2)</pre>	print("Best Random Forest Parameters:", grid_rf.best_params_) print("Best Cross-Validation Accuracy:", grid_rf.best_score_] Fitting 5 folds for each of 280 candidates, tetalling 1440 fits Best Random Forest Parameters: ('bootstrap': True, 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50) Best Cross-Validation Accuracy: 1.0


```
param_grid_nb = {
                                                                                                                                   print("Best NB Parameters:", grid_nb.best_params_)
                                                                                                                                  print("Best CV Accuracy:", grid_nb.best_score_)
Naïve Bayes
                                                                                                                                 Fitting 5 folds for each of 5 candidates, totalling 25 fits
                                   grid_nb = GridSearchCV(
                                                                                                                                  Best NB Parameters: {'var_smoothing': 1e-09}
                                          GaussianNB(),
                                                                                                                                  Best CV Accuracy: 0.9324298258971625
                                          param_grid=param_grid_nb,
                                          cv=5.
                                          scoring='accuracy',
                                          n_jobs=-1,
                                            "C: [0.1, 1, 10, 100],

'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],

'gamma': ['scale', 'auto'],

'degree': [2, 3, 4] # Only used in 'poly' kernel
                                                                                                                                    rint("Best SVC Parameters:", grid_svc.best_params_)
rint("Best CV Accuracy:", grid_svc.best_score_)
SVM
                                                                                                                                  Fitting 5 folds for each of 96 candidates, totalling 480 fits
Best SVC Parameters: {'C': 100, 'degree': 2, 'gamma': 'scale', 'kernel': 'linear'
Best CV Accuracy: 1.0
                                      grid_svc = GridSearchCV(
                                            SVC(probability=True, random_state=42),
                                            param_grid=param_grid_svc,
                                             scoring='accuracy',
                                            n_jobs=-1,
                                    param_grid_gbc = {
                                          'n_estimators': [100, 200, 300],
'learning_rate': [0.01, 0.05, 0.1, 0.2],
                                          'max_depth': [3, 4, 5],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4],
'subsample': [0.8, 1.0]
                                                                                                                                    int("Best GBC Parameters:", grid_gbc.best_params_)
int("Best CV Accuracy:", grid_gbc.best_score_)
Gradient
                                                                                                                                 Fitting 5 folds for each of 640 candidates, totalling 3240 fits

Dest GBC Parameters: {'learning_rate': 0.01, 'max_depth': 3, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100, 'subsample': 0.0}

Best CV Accuracy: 1.0
Boosting
                                   grid_gbc = GridSearchCV(
                                         GradientBoostingClassifier(random_state=42),
                                         param_grid=param_grid_gbc,
                                         scoring='accuracy',
                                         n_jobs=-1,
                                          verbose=2
```


Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric	
Logistic Regression	<pre>print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_lr)) print("\nClassification Report:\n", classification_report(y_test, y_pred_lr)) Confusion Matrix: [[113 0]</pre>	
Random Forest	<pre>print("\nClassification Report:\n", classification_report(y_test, y_pred_rf)) print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_rf)) Classification Report:</pre>	

T		
<pre>print("\nClassification Report:\n", classification_report(y_test, print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_nb)</pre>		
	Classification Report: precision recall f1-score support	
	0 0.99 0.96 0.98 113	
	1 0.97 0.99 0.98 135 accuracy 0.98 248	
Noïvo Povos	macro avg 0.98 0.98 0.98 248 weighted avg 0.98 0.98 0.98 248	
Naïve Bayes	Confusion Matrix:	
	[[109 4] [1 134]]	
	<pre>print("\nClassification Report:\n", classification_report(y_test, y_pred_svc)) print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_svc))</pre>	
	Classification Report: precision recall f1-score support	
	0 1.00 1.00 1.13 1 1.00 1.00 1.00 135	
	accuracy 1.00 248 macro avg 1.00 1.00 248	
SVM	weighted avg 1.00 1.00 1.00 248	
	Confusion Matrix: [[113 0]	
	[0 135]]	
	<pre>print("\nClassification Report:\n", classification_report(y_test, y_pred_gbc))</pre>	
	<pre>print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred_gbc)) Classification Report:</pre>	
	precision recall f1-score support	
	0 1.00 1.00 1.00 113 1 1.00 1.00 1.00 135	
	accuracy 1.00 248 macro avg 1.00 1.00 1.00 248 weighted avg 1.00 1.00 1.00 248	
Gradient Boosting		
2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Confusion Matrix: [[113	

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Gradient Boosting model was selected for its superior performance, exhibiting high accuracy during hyperparameter tuning. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.