1

Assignment 2

Prabhath Chellingi - CS20BTECH11038

Download all python codes from

https://github.com/PRABHATH-cs20-11038/ Assignment_1/tree/main/Assignment_2

and latex-tikz codes from

https://github.com/PRABHATH-cs20-11038/ Assignment_1/tree/main/Assignment_2

1 Problem

(GATE-EC-66) Consider two identical boxes B_1 and B_2 , where the box B_i (i=1,2) contains i+2 red and 5-i-1 white balls. A fair die is cast. Let the number of dots shown on the top face of the die be N. If N is even or 5, then two balls are drawn with replacement from the box B_1 , otherwise, two balls are drawn with replacement from the box B_2 . The probability that the two drawn balls are of different colours is

2 Solution

Let $X \in \{1, 2, 3, 4, 5, 6\}$ be the random variables representing the outcome for a die. The *PDF* of die is

$$\Pr(X = N) = \begin{cases} \frac{1}{6} & 1 \le N \le 6\\ 0 & otherwise \end{cases}$$
 (2.0.1)

As we know

$$Pr(X = m) . Pr(X = n) = 0$$
 (2.0.2)

for all $m, n \in \{1, 2, 3, 4, 5, 6\}$ as a single die cannot show more than one outcome at a roll.

Let $Y \in \{0, 1\}$ represent the die where 1 denotes the die with outcome $N = \{2, 4, 5, 6\}$ and 0 denotes the remaining.

$$Pr(Y = 1) = Pr((X = 2) + (X = 4) + (X = 5) + (X = 6)) (2.0.3)$$

by using *Boolean logic* and equation (2.0.2), we get,

$$\Pr(Y=1) = \frac{2}{3} \tag{2.0.4}$$

$$Pr(Y = 0) = 1 - Pr(Y = 1) = \frac{1}{3}$$
 (2.0.5)

we get,

(i) probability of selecting box B_1 ,

$$Pr(B_1) = Pr(Y = 1) = \frac{2}{3}$$
 (2.0.6)

(ii) probability of selecting box B_2 ,

$$Pr(B_2) = Pr(Y = 0) = \frac{1}{3}$$
 (2.0.7)

let $C \in \{0, 1\}$ where 0 denotes to red balls and 1 denotes to white balls.

TABLE 2
TABLE OF NUMBER OF BALLS

bag	no. of red balls $(i+2)$	no. of white balls $(5 - i - 1)$	total balls
B_1	$n(C=0 B_1)=3$	$n(C=1 B_1)=3$	$n(C B_1) = 6$
B_2	$n(C=0 B_2)=4$	$n(C=1 B_2)=2$	$n(C B_2) = 6$

 $TABLE \ 2$ Table of probability of taking balls from each bag

bag	Probability of taking red ball	Probability of taking white ball
B_1	$Pr(C = 0 B_1) = 1/2$	$Pr(C = 1 B_1) = 1/2$
B_2	$Pr(C = 0 B_2) = 2/3$	$Pr(C = 1 B_2) = 1/3$

The probability of picking second ball is not effected by picking first ball because the second ball is chose after replacement.

Selecting two balls with replacement is a Bernoulli distribution of 2 trails,

 $\label{eq:table 2} TABLE\ 2$ Table of no. of ways of selecting two different coloured balls

Cases	Trail 1	Trail 2
$(B_1, C = 0, C = 1)$	$\Pr\left(C=0 B_1\right)$	$\Pr\left(C=1 B_1\right)$
$(B_1, C = 1, C = 0)$	$\Pr\left(C=1 B_1\right)$	$\Pr\left(C = 0 B_1\right)$
$(B_2, C = 0, C = 1)$	$\Pr\left(C=0 B_2\right)$	$\Pr\left(C=1 B_2\right)$
$(B_2, C = 1, C = 0)$	$\Pr\left(C=1 B_2\right)$	$\Pr\left(C = 0 B_2\right)$

TABLE 2
TABLE OF VARIABLES DESCRIPTION

Variables	Description
	probability of selecting two
$\Pr((C = 0, C = 1) B_1)$	different coloured balls from
	$box B_1$
	probability of selecting two
$Pr((C = 0, C = 1) B_2)$	different coloured balls from
	$box B_2$
Pr(T)	probability of selecting two
11(1)	different coloured balls

from equation (2.0.13)

$$Pr(T) =$$

$$Pr((C = 0, C = 1)|B_1) \cdot Pr(B_1) +$$

$$Pr((C = 0, C = 1)|B_2) \cdot Pr(B_2) \quad (2.0.14)$$

$$\Pr(T) = \left(\frac{1}{2}\right) \left(\frac{2}{3}\right) + \left(\frac{4}{9}\right) \left(\frac{1}{3}\right) \tag{2.0.15}$$

Hence, the probability of selecting two different coloured balls from the bags is

$$\Pr(T) = \frac{13}{27} \tag{2.0.16}$$

Probability-

simulation: 0.48015,

actual: 0.48148148148145

(i)

$$Pr((C = 0, C = 1)|B_1) =$$

$$Pr(C = 0|B_1) \cdot Pr(C = 1|B_1)$$

$$+ Pr(C = 1|B_1) \cdot Pr(C = 0|B_1) \quad (2.0.8)$$

$$\Pr\left((C=0,C=1)|B_1\right) = \frac{1}{2} \tag{2.0.9}$$

(ii)

$$Pr((C = 0, C = 1)|B_2) =$$

$$Pr(C = 0|B_2) \cdot Pr(C = 1|B_2)$$

$$+ Pr(C = 1|B_2) \cdot Pr(C = 0|B_2) \quad (2.0.10)$$

$$\Pr\left((C=0,C=1)|B_1\right) = \frac{4}{9} \tag{2.0.11}$$

Now,

$$Pr(T) = Pr(((C = 0, C = 1)|B_1)(B_1)) + pr((C = 0, C = 1)|B_2)(B_2) (2.0.12)$$

→ by using conditional probability,

$$Pr(EF) = Pr(E|F) \cdot Pr(F) \qquad (2.0.13)$$