ABIDES – Agent Based Interactive Discrete Event Simulation

- https://github.com/jpmorganchase/abides-jpmc-public
- NASDAQ-like exchange agent that mains limit order book
- FIFO order matching
- Gives a selection of market agents
 - <u>abides-jpmc-public</u>/<u>abides-markets</u>/<u>abides markets</u>/agents/
 - Can write your own (rule-based or learning)
- Agents are combined into configurations that comprise the markets
 - abides-jpmc-public/abides-markets/abides markets/configs/
 - Can write your own

Noise agents

- Arrive to the market randomly, trade on demand
- abides-jpmc-public/abidesmarkets/abides markets/agents/noise_agent.py

lacktriangle

```
bid, bid_vol, ask, ask_vol = self.get_known_bid_ask(self.symbol)

if self.order_size_model is not None:
    self.size = self.order_size_model.sample(random_state=self.random_state)

if self.size > 0:
    if buy_indicator == 1 and ask:
        self.place_limit_order(self.symbol, self.size, Side.BID, ask)
    elif not buy_indicator and bid:
        self.place_limit_order(self.symbol, self.size, Side.ASK, bid)
```

Value Agents

- Introduce the concept of **fundamental** price represents the knowledge of the outside world (earnings, macro events, etc.)
 - Can be any time series e.g., mean reverting, historical
- **Value** agents act upon the knowledge of fundamental buy if asset is cheap relative to fundamental and sell if it is expensive
- <u>abides-jpmc-public</u>/<u>abides-markets</u>/<u>abides markets</u>/<u>agents</u>/**value_agent.py**

Value Agents

```
mid = int((ask + bid) / 2)
spread = abs(ask - bid)
if self.random_state.rand() < self.percent_aggr:</pre>
    adjust int = 0
else:
    adjust_int = self.random_state.randint(
        0, min(9223372036854775807 - 1, self.depth_spread * spread)
    # adjustment to the limit price, allowed to post inside the spread
    # or deeper in the book as a passive order to maximize surplus
if r T < mid:
    # fundamental belief that price will go down, place a sell order
    buy = False
    p = (
        bid + adjust int
    ) # submit a market order to sell, limit order inside the spread or deeper in the book
elif r_T >= mid:
    # fundamental belief that price will go up, buy order
    buy = True
    p = (
        ask - adjust_int
    ) # submit a market order to buy, a limit order inside the spread or deeper in the book
```

Momentum Agents

- Act on observed LOB trends
- <u>abides-jpmc-public</u>/<u>abides-markets</u>/<u>abides markets</u>/<u>agents</u>/<u>examples</u>/**momentum_agent.py**

Momentum Agents

```
if bid and ask:
    self.mid_list.append((bid + ask) / 2)
   if len(self.mid_list) > 20:
        self.avg_20_list.append(
           MomentumAgent.ma(self.mid_list, n=20)[-1].round(2)
   if len(self.mid_list) > 50:
        self.avg_50_list.append(
           MomentumAgent.ma(self.mid_list, n=50)[-1].round(2)
   if len(self.avg_20_list) > 0 and len(self.avg_50_list) > 0:
        if self.order_size_model is not None:
           self.size = self.order_size_model.sample(
                random_state=self.random_state
        if self.size > 0:
           if self.avg_20_list[-1] >= self.avg_50_list[-1]:
                self.place_limit_order(
                   self.symbol,
                   quantity=self.size,
                   side=Side.BID,
                   limit_price=ask,
            else:
                self.place_limit_order(
                    self.symbol,
                    quantity=self.size,
                   side=Side.ASK,
                   limit_price=bid,
```

Market Makers

- Posts on both sides on LOB to satisfy regulatory constraints
- Adjusts for liquidity dropouts
- <u>abides-jpmc-public</u>/<u>abides-</u> <u>markets/abides markets/agents/market makers/adaptive_market_maker_agent.py</u>

```
lowest_bid = highest_bid - ((self.num_ticks - 1) * self.tick_size)
highest_ask = lowest_ask + ((self.num_ticks - 1) * self.tick_size)

bids_to_place = [
    price
    for price in range(lowest_bid, highest_bid + self.tick_size, self.tick_size)
]
asks_to_place = [
    price
    for price in range(lowest_ask, highest_ask + self.tick_size, self.tick_size)
]
```

Market Configurations

- abides-jpmc-public/abides-markets/abides markets/configs/
- Examples:
 - RMSC03: 1 Exchange Agent, 1 POV Market Maker Agent, 100 Value Agents, 25 Momentum Agents, 5000 Noise Agents
 - RMSC04: 1 Exchange Agent, 2 Market Maker Agents, 102 Value Agents, 12 Momentum Agents, 1000 Noise Agents
- Simulated a market that corresponds to a configuration:

```
$ abides abides-markets/abides_markets/configs/rmsc04.py --end_time "10:00:00"
```

Market Impact Configuration

- Multi-agent simulations allow to simulate market impact of trading:
 - Execution agent is trading by lifting limit order book layers; momentum agents amplify the impact of execution; value agents push price back towards the fundamental

Notebook Example

• abides-jpmc-public/notebooks/demo_ABIDES-Markets.ipynb

- Each agent maintains a log
 - Exchange agent markets log (i.e., midprices)

Gym

 https://github.com/jpmorganchase/abides-jpmcpublic/tree/main/abides-gym

Time Series Models and Applications in Financial Markets

What are time series models?

- **Time series** is a time-oriented or chronological sequence of observations on a variable of interest
- Time series models employ the statistical properties of **historical** data to specify a formal model and then estimate the unknown parameters of this model

Stationary Time Series

• Time series is called **stationary** if its properties are not affected by a change in the time origin, i.e. if joint probability distribution is exactly the same for y_t , y_{t+1} ,..., y_{t+n} and y_{t+k} , y_{t+k+1} ,..., y_{t+k+n}

• A **stationary** time series is one whose statistical properties such as mean, variance,

autocorrelation, etc. are all constant over time

- What if time series is not stationary?
- Non-linear trends
 - Data transformations ($log y_t, sqrt(y_t), y_t^2$)
- Linear (polynomial) trends
 - Finance: forecast returns
 - Differencing $(x_t = at+b+ \varepsilon_t, x_t x_{t-1} \sim \varepsilon_t \varepsilon_{t-1} + a)$
- Seasonal trends
 - Example: forecast of energy derivative prices based on weather patterns
 - Fit trigonometric model (eg., A+B Cos wt+C Sin wt)
 - Deseason (eg. $y_t = S_t + T_t + \varepsilon_t$, S_t seasonal component, T_t linear component, ε_t noise)

Example: making time series stationary

- Example: anti-allergy drug sales
- Nonlinear growth -> log data transformation
- Seasonal pattern and linear trend -> deseasoning and first differencing

Forecasting: General Methodology

- Identify candidate predictor time series x_{1t} , x_{2t} , ... x_{nt}
- Plot predictor time series and visually determine the basic features
 - Outliers
 - Non-linear transformations
 - Trends/seasonality
- Data-splitting
 - Insample dataset: train multiple models
 - Validation dataset: select the best model
 - Outsample dataset: predict and analyze performance
- Forecast time series \tilde{y}_t

Practical guidelines

Forecast quality

- How to evaluate forecast quality?
 - $\tilde{y}_t = f(x_{1t}, x_{2t}, ..., x_{nt})$ forecast
 - $MSE = \sum_{t=1}^{T} (y_t \tilde{y}_t)^2$ mean squared error
 - linear regression fit minimizes MSE

•
$$R^2 = 1 - \frac{MSE}{\sum_{t=1}^{T} (y_t - \hat{y})^2}$$

•
$$\hat{\mathbf{y}} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- how well predictor variables explain variance in y_t
- will increase on insample data when the number of predictor variables is large (overfitting)

Overfitting

- Overfitting ~ fitting the noise
- Underfitting ~ not capturing enough complexity of the data
- General rules:
 - choose forecast of the simplest possible functional form
 - choose forecast with the smallest number of predictor variables
- Good value of R²?
 - It depends!
 - R^2 on insample data **fit** quality
 - R^2 on outsample data **prediction** quality
 - Consider comparing MSE to baseline model on outsample data

Overfitting

Insample

Outsample

Forecasting by linear regression

• Single or multiple predictors

$$Y = a_1 X_1 + a_2 X_2 + ... + a_n X_n + b + \varepsilon$$

• Fit coefficients to a_i to minimize MSE and compute standard errors SE associated with a_i

- 1. Variable selection
 - Forward selection add predictors that maximize R^2
 - Backward selection remove predictors with largest p-value
 - t-value = $a_i/SE(a_i)$ number of standard deviation that a_i is away from 0
 - p-value = probability of observing a value equal to t-value or larger given a_i =0
 - remove variables with high p-values
 - LASSO family

2. Collinearity

- Two or more predictor variables are closely related to each other
 - Combine variables (eg., credit score + credit limit = credit worthiness)
- Variance inflation factor $VIF(i) = 1/(1-R^2_{Xi/X-i})$
 - Regress X_i onto other predictors
 - When VIF(i) high (>=10):
 - Drop variable i

Potential problems

Check **residuals** (ideally normal i.i.d.):

- Non-linearity of response-predictor relationships
 - Log(X), sqrt(X), X², sin(X) etc.
 - Neural networks
- Correlation of error terms
 - Very common in time series data (residuals will look like time series themselves)
 - Autoregressive process (AR(n))
- Non-constant variance of error terms
 - Weighted least squares
 - ith response has average of n_i observations with variance δ_i
 - Weight of *i*th response is inversely proportional to δ_i

Autoregressive models (AR)

- Example: EOD price forecast, daily volume forecast
- $y_t = a + by_{t-1} + \varepsilon_t$, lag k=1
- $y_t = a + by_{t-1} + cy_{t-2} + \varepsilon_t$, lag k=2
- Use partial autocorrelation function (PACF) is useful to determine lag
 - PACF the amount of correlation with each lag that is not accounted by more recent lags

Forecasting by smoothing

- Smoothing is a technique that separates signal from noise
- Examples:
 - Average $\tilde{y}_{T+1} = (y_T + y_{T-1} + ... + y_{T-N+1})/N$
 - Median $\tilde{y}_{T+1} = median(y_T, y_{T-1}, \dots, y_{T-N+1})$
 - Exponential moving average $\tilde{y}_{T+1} = \lambda y_T + (1 \lambda) \tilde{y}_T$

Neural Networks (NNs) and Forecasting

Advantage:

- By universal approximation theorem, can theoretically approximate almost any function!
- Can capture complex non-linear dependencies
- Scale favorably with large amounts of data
- Very effective for language and image processing

Disadvantages:

- Expensive to train
- Produces "black box" solution
- Overfitting issues
- When it comes to time series, can be very effective too, but compare to simpler baseline

NN Architectures for Time Series

- Time Delay Neural Networks
 - Window of inputs
 - Time lag determined by modeler
 - Number of weights grows linearly with inputs
- Recurrent Neural Networks
 - Contains internal hidden layers to keep track of the past especially designed for modeling autoregression
 - Use LSTMs (Long Short-Term Memory) memory cells for modeling lags of unknown duration

Reinforcement Learning (RL)

- Forecast predicts future events
 - passive, does not interact with the environment
- RL agent optimizes future outcomes
 - active agent

- Environment: Markov Decision Process (MDP)
 - State space: environment and agent states
 - Action space
 - Transition probabilities from one state to another under certain action
 - Model-free vs. model-based
 - Reward for transition from one state to another given certain action
- Objective: maximize future **cumulative** rewards
 - Sequential decision making

Bayesian Methods and Forecasting

- Useful when little or no information is available at the time forecast is required or observations are expensive
 - Online experiment design (drug tests)
- Estimate distribution of unobserved data given observed data
- Effective ways to calculate using Gaussian distribution
 - If one needs to estimate μ of normal distribution and 6^2 is known
 - Assume normal prior for μ with parameters μ_o , δ_o^2

$$E(\mu'\mid x) = rac{\sigma^2 \mu + \sigma_0^2 x}{\sigma^2 + \sigma_0^2}$$

$$\operatorname{Var}(\mu' \mid x) = rac{\sigma^2 \sigma_0^2}{\sigma^2 + \sigma_0^2}$$

Bayesian Methods Work

