

AI/
$$lo = -gm U_{be}$$
, $U_{be} = \lambda_i f_{be}$ $\lambda_0/\lambda_i = -gm F_{be} = -(s_0)$
 $R_i/U_i = \lambda_i f_{be} + (\lambda_i + g_m U_{be}) R_E$
 $= \lambda_i f_{be} + (\lambda_i + g_m \lambda_i f_{be}) R_E$ as $U_{be} = \lambda_i f_{be}$
 $\therefore U_i = f_{be} + (1 + g_0) R_E$ as $f_{be} = g_m f_{be}$
 $\int_0^{\infty} \frac{U_i}{U_i} du$
 $\int_0^{\infty} \frac{U_i}{U_i} du$

$$A_{V}/V_{o} = i_{o}R_{t} = -g_{m}V_{be}R_{t}$$

$$U_{i} = i_{i}\left[f_{be} + (1+\beta_{o})R_{E}\right]$$

$$= \frac{U_{be}}{f_{be}}\left[f_{be} + (1+\beta_{o})R_{E}\right]$$

$$A_{V} = \frac{U_{o}}{V_{t}} = \frac{-g_{m}U_{be}R_{b}}{T_{be}}\left[f_{be} + (1+\beta_{o})R_{E}\right]$$

$$A_{V} = \frac{U_{o}}{V_{i}} = \frac{g_{o}R_{t}}{T_{be}}\left[f_{be} + (1+\beta_{o})R_{E}\right]$$

$$A_{V} = \frac{U_{o}}{V_{i}} = \frac{g_{o}R_{t}}{T_{be}}\left[f_{be} + (1+\beta_{o})R_{E}\right]$$

N.

$$\frac{2}{1 + g_m R_E} = \frac{as \beta_0 >> 1}{ann \beta_0 / r_{be}} = 5m$$
If $g_m R_E >> 1$, $A_V \rightarrow -\frac{R_t}{R_E}$

independent of transitor parameters and Ic (9m)

Output resistance, Ro

 $R_o = r_o //R_C$

So remove R_C and calculate r_o (redefine i as the current into r_o)

With R_C removed:
$$i = g_m v_{be} + \frac{v - v_E}{r_{co}}$$
 (1)

$$i' = i \frac{R_E}{R_E + R_S + r_{be}} = -\frac{v_{be}}{r_{be}}$$
 (2)

$$v_{be} = -i \frac{r_{be} R_E}{R_E + R_S + r_{be}} \tag{3}$$

$$v_E = i'(R_S + r_{be}) = -v_{be} \left(1 + \frac{R_S}{r_{be}}\right)$$
 (using (2))

Sub. (3) and (4) in (1):
$$i = -g_m \frac{r_{be}R_E}{R_E + R_S + r_{be}}i + \frac{v}{r_{ce}} - \frac{r_{be}R_E}{R_E + R_S + r_{be}} \left(1 + \frac{R_S}{r_{be}}\right) \frac{1}{r_{ce}}i$$

that is,
$$i \left[1 + \frac{r_{be}R_E}{R_E + R_S + r_{be}} \left(g_m + \left(1 + \frac{R_S}{r_{be}} \right) \frac{1}{r_{ce}} \right) \right] = \frac{v}{r_{ce}}$$

and
$$r_o = \frac{v}{i} = r_{ce} \left[1 + \frac{r_{be}R_E}{R_E + R_S + r_{be}} \left(g_m + \frac{1}{r_{ce}} \left(1 + \frac{R_S}{r_{be}} \right) \right) \right]$$

generally
$$g_m >> \frac{1}{r_{ce}} \left(1 + \frac{R_S}{r_{be}} \right)$$
 (r_{ce} large, generally R_S < r_{be})

$$r_o \approx r_{ce} \left[1 + \frac{\beta_o R_E}{R_E + R_S + r_{be}} \right]$$
 and $R_o = R_C / / r_{o.}$ Often $R_C << r_o$ and $R_o \approx R_C$

GM/

Transconductoric Gain
$$G_{IM} = \frac{1}{V_U}$$
 $V_i = \lambda_i \text{ fbe} + (\lambda_i + 9 \text{ m Vbe}) \text{ RE}$
 $= \frac{1}{2} \left[\text{ fbe} + (1 + \beta_0) \text{ RE} \right] \quad a_0 \quad \text{Vbe} = \lambda_i \text{ fbe}$
 $\lambda_0 = -9 \text{ m Vbe}$
 $= -9 \text{ m Vi} \text{ fbe}$
 $= -\beta_0 \text{ i}$
 $G_{IM} = \frac{\lambda_0}{V_U} = \frac{-\beta_0}{\text{fbe} + (1 + \beta_0) \text{ Re}} \quad a_0 \quad \beta_0 \gg 1$
 $G_{IM} = G_{IM} = G_{IM} \quad G_{IM} \quad \text{interpolation of } R_L$
 $G_{IM} = G_{IM} = G_{IM} \quad G_{IM} \quad \text{interpolation of } R_L$
 $V_0 = -9 \text{ m Voe } R_L$
 $V_0 = -9$

Common Base

A_I/

Assume
$$R_E \gg R_i$$
 so treat R_E as open ect.
 $i_0 = -g_m U_{be} = -g_m (i_0 - \lambda_i) \Gamma_{be}$

as
$$U_{be} = + (\dot{\lambda_0} - \dot{\lambda_i}) f_{be}$$

$$\dot{\lambda}_o = -\beta_o \left(\dot{\lambda}_o - \dot{\lambda}_b \right)$$

$$A_{\rm I} = \frac{\dot{x_0}}{4i} = \frac{\beta_0}{1 + \beta_0}$$

Ri/

$$\lambda_{i}^{\cdot} = -\frac{U_{be}}{V_{be}} - g_{m} U_{be}$$

$$= \left(\frac{I}{V_{be}} + g_{m}\right) V_{i} \quad \text{as} \quad V_{i}$$

$$\frac{V_i}{l_i} = \frac{V_i}{V_{be} + g_m} = \frac{V_{be}}{V_{be}}$$

$$= \frac{V_{be}}{V_{be}}$$

$$=$$
 t_e

rekke justifies original assumption

A_V/

$$V_o = -g_m V_{be} R_t$$

$$V_i = -V_{be}$$

$$A_V = \frac{U_0}{U_i} = g_m R_t$$

Same magnitude as

So remove Re and calculate to

$$L = - \frac{\sigma_{be}}{R_S / / \tau_{be}}$$

$$i = -g_m (R_s // r_{be}) i + \frac{U}{r_{ce}} - i \frac{(R_s // r_{be})}{r_{ce}}$$

$$i\left[1 + g_m R_s // r_{be} + \frac{R_s // r_{be}}{r_{ce}}\right] = \frac{U}{r_{ce}}$$

$$\frac{v}{i} = r_{ce} \left[1 + \left(g_m + \frac{1}{r_{ce}} \right) R_s / r_{be} \right]$$

...
$$R_0 = R_c // t_o$$
Often $R_c \ll r_o$ and $R_o \approx R_c$

$$i_0 = -g_m V_{be}$$

$$= + g_m V_i \quad as \quad V_i = -V_{be}$$

$$\therefore G_M = \frac{i_0}{V_i} = g_m$$

RM/

$$V_{be} = -g_{m} V_{be} R_{t}$$

$$V_{be} = -(\lambda_{i} + g_{m} V_{be}) \Gamma_{be}$$

$$V_{be} (1 + g_{m} \Gamma_{be}) = -\lambda_{i} \Gamma_{be}$$

$$\therefore V_0 = + g_m R_b \frac{J_i \Gamma_{be}}{1 + g_m \Gamma_{be}}$$

$$R_{M} = \frac{V_{o}}{i_{i}} = \frac{g_{m}r_{be}}{1 + g_{m}r_{be}} R_{t}$$

$$= \frac{\beta_{o}R_{t}}{1 + \beta_{o}}$$