Decomposing discrete time multistate models

Tim Riffe

5-3-2020

Discrete time multistate models

A typical model

A typical model

Generalizing the objective

$$\xi = f(\theta)$$

Generalizing the objective

$$\xi = f(\theta)$$

where ξ can be any synthetic quantity calculated using θ .

 \blacktriangleright often ξ is an expectancy

Kitagawa, Arriaga, stepwise algorithm, Oaxaca-Blinder, CF, Horiuchi, LTRE, SVD, SSE, and many many more

Kitagawa, Arriaga, stepwise algorithm, Oaxaca-Blinder, CF, Horiuchi, LTRE, SVD, SSE, and many many more

Method	order indep.	exact sum	interpretable
Stepwise		Χ	X
Horiuchi	Χ	Χ	Χ
LTRE	Χ	X^\dagger	Х

Method	order indep.	exact sum	interpretable
Stepwise		Χ	X
Horiuchi	Χ	X	X
LTRE	Χ	X^\dagger	Χ

They're all good enough for what we're doing

[†] requires a modification

$$\Delta \xi = \xi^2 - \xi^1$$

$$\Delta \xi = \xi^2 - \xi^1$$
$$= f(\theta^2) - f(\theta^1)$$

$$\Delta \xi = \xi^2 - \xi^1$$

$$= f(\theta^2) - f(\theta^1)$$

$$\Delta \xi = \sum_i \mathbf{c}_i$$

$$\Delta \xi = \xi^2 - \xi^1$$

$$= f(\theta^2) - f(\theta^1)$$

$$\Delta \xi = \sum \mathbf{c}_i$$

$$\mathbf{c} = \mathcal{D}(f, \theta^2, \theta^1)$$

Let's talk about θ

Observation

$$\xi = f(\theta) = f(\theta)$$

Observation

$$\xi = f(\theta) = f(\theta)$$

$$\Delta \xi = \xi^2 - \xi^1 = \xi^2 - \xi^1$$

Observation

$$\xi = f(\theta) = f(\theta)$$

$$\Delta \xi = \xi^2 - \xi^1 = \xi^2 - \xi^1$$

$$\mathcal{D}(f, \theta^2, \theta^1) \neq \mathcal{D}(f, \theta^2, \theta^1)$$

$$\sum \mathbf{c}^i = \sum \mathbf{c}^i$$

$$\mathbf{c}^i \neq \mathbf{c}^i$$

Example

DFLE increased from 30.75 in 2006 to 32.33 in 2014. That's 1.58 years

(HRS, women with secondary education)

Example

Same result whether we omit:

- self-transitions
- mortality transitions
- ▶ health transitions

Example

But very different stories if we decompose:

Resid.	DF-DF	DF-Dis.	DF mort	DisDF	DisDis.	Dis. mort
(self)		-0.01	1.32	-0.28		0.54
(dead)	1.28	0.04		-1.86	2.13	
(other)	0.21		1.10		-0.41	0.67

Thank you intermission

A new property

We would like a solution that gives consistent interpretable results

A new property

We would like a solution that gives consistent interpretable results

Solution

A new property

We would like a solution that gives consistent interpretable results

Solution

Make θ consist in conditional probabilities

Specifics

For standard calcs we use (two of)

 $[p^{stay}, p^{switch}, p^{die}]$

Specifics

For standard calcs we use (two of)

 $[p^{stay}, p^{switch}, p^{die}]$

Transform this into two multiplicative probabilities

 $[p^{stay}|survive, p^{survive}]$

Complementarity (or *symmetry*?)

DF mort	Dis. mort	DF-Dis.	DisDF
1.29	0.58	0.02	-0.31

Complementarity (or *symmetry*?)

DF mort	Dis. mort	DF-Dis.	DisDF
1.29	0.58	0.02	-0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results **identical**

Complementarity (or *symmetry*?)

DF mort	Dis. mort	DF-Dis.	DisDF
1.29	0.58	0.02	-0.31

Transitions can be framed in terms of mortality or survival, in terms of staying in the state of transfering out of it. Results **identical**

Really, IDENTICAL

Small things

- ▶ Best to logit or similar before decomposing $(f(\theta))$ just needs to undo it)
- ▶ Probably extends to larger state spaces
- ► Accounting for initial conditions not treated here

Things to consider

- ► Recheck LTRE work in lit
- ► Low programming overhead on top of MS modeling
- ► MS papers probably should do this