HW8. Seq2Seq

Size of Input, Hidden State, and Output Vectors

Component	Description	Size
Input Vector	One-hot encoding of tokens "a", "b", etc.	6
Hidden State	Counts of tokens "a" to "e"	5
Output Vector	Count and end-of-sequence indicator	2

Final Weights

1. Encoding Weight Matrix W_e (size 5 imes 11)

 $W_e = [A \, | \, B]$, where:

• A (size 5×6):

$$A = egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ \end{pmatrix}$$

• B (size 5×5):

$$B = I_5$$

2. Output Weight Matrix W_o and Bias b_o (sizes 2 imes 5 and 2 imes 1)

$$W_o = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ -1 & -1 & -1 & -1 & -1 \end{bmatrix}, \quad b_o = egin{bmatrix} 0 \ 1 \end{bmatrix}$$

3. Hidden State Transition Matrix W_h (size 5 imes 5)

$$W_h = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Encoding Phase: Counts the occurrences of each token "a" to "e" in the input sequence.

Decoding Phase: Outputs the counts in order and signals the end when all counts have been outputted.

Model Flow:

- Input: Sequence of tokens ending with ".".
- Hidden State: Accumulates counts during encoding.
- Output: Sequence of counts followed by an end-of-sequence indicator.

Explanation

Tokens: "a", "b", "c", "d", "e", "." (end-of-sequence token)

Input Encoding:

- **Input vector** x_t : One-hot vector of size **6** (representing each token).
- **Hidden state** s_t : Vector of size **5** (counts of "a" to "e").
- Initial hidden state: $s_0 = [0, 0, 0, 0, 0]^T$.

Encoding Function:

$$s_{t+1} = W_e egin{bmatrix} x_t \ s_t \end{bmatrix}$$

• **Purpose**: Update the hidden state s_t by incrementing the count corresponding to the input token and preserving existing counts.

How W_e Works:

- For tokens "a" to "e":
 - The corresponding row in A adds 1 to the count in s_t .
- For the EOS token ".":
 - \circ The last column in A is zeros, so counts remain unchanged.
- ullet $B=I_5$ ensures the previous counts in s_t are carried over.

Decoding Functions:

$$\operatorname{output}_v = \operatorname{ReLU}(W_o s_v' + b_o)$$

$$s_{v+1}^\prime = W_h s_v^\prime$$

• Purpose: Output the counts in order and signal the end of the sequence.

How W_o and W_h Work:

- ullet W_o extracts the count of the current token and determines if the sequence has ended.
 - \circ **First row**: Outputs the current count $s_{v}^{\prime(1)}$.
 - \circ **Second row**: Computes $-\sum_{i=1}^5 {s'}_v^{(i)} + 1$, which is positive only when all counts are zero.
- Bias b_o adjusts the end-of-sequence indicator to be 1 when the sequence ends.
- W_h shifts the hidden state to the left, preparing s_{v+1}^\prime for the next token's count.

Decoding Process Steps

- 1. Initialization:
 - Set $s_0' = s_T$ (the final hidden state from the encoding phase).
- 2. At each decoding step v:
 - Compute Output:
 - $\circ ext{ output}_v^{(1)} = ext{ReLU}(s'_v^{(1)})$ (current token count).
 - $\circ \ \mathrm{output}_v^{(2)} = \mathrm{ReLU}(-\sum_{i=1}^5 {s'}_v^{(i)} + 1)$ (end-of-sequence indicator).
 - Update Hidden State:
 - Update Hidden State:
 - $\circ \ s_{v+1}' = W_h s_v'$ (shift counts for the next token).