«» 2021г.
Зав. каф.
Теоретической физики
д.фм.н. С. А. Тарасенко

ИСПОЛЬЗОВАНИЕ ТУЛИЕВЫХ БОЛОМЕТРОВ В КАЧЕСТВЕ ПЕРЕСПЕКТИВНЫХ ДЕТЕКТОРОВ СОЛНЕЧНЫХ АКСИОНОВ

выпускная квалификационная работа бакалавра

Направление 03.03.01 Прикладные математика и физика

Кузьмичев Артем Михайлович

Научный руководитель	Е.В. Унжаков
Студент	А.М. Кузьмичев

Санкт-Петербург, 2021

Содержание

Введение	3
Глава 1. Обзор теории и экспериментов по поиску аксиона .	6
1.1. Появление в теории, PQWW-аксион	6
1.2. «Невидимый» аксион	7
1.3. Астрофизические ограничения	8
Глава 2. Резонансное поглощение солнечных аксионов	9
2.1. Поток и энергетический спектр солнечных аксионов	9
2.2. Резонансное поглощение аксиона в ядерных переходах	
магнитного типа	12
2.3. Резонансное поглощение аксионов ядрами $^{169}{\rm Tm}$	13
2.4. Использование тулиевых болометров	15
Глава 3. Оценка параметров симуляции	18
3.1. Эффективность регистрации HPGe детектора	18
3.2. Естественная радиоактивность сырья	19
3.3. Экспериментальные спектры фонового излучения	21
Глава 4. Чувствительность будущего эксперимента по поис-	
ку аксионов	22
4.1. Моделирование эксперимента	22
4.2. Оценка числа возможных аксионных событий	24
4.3. Предел на константы связи	25
2	20

Введение

В настоящее время Стандартная модель является наиболее успешной физической теорией, описывающей элементарные частицы и их взаимодействия. Тем не менее, существует целый ряд наблюдений и экспериментов, для которых Стандартная модель не даёт адекватных объяснений. Одним из них является сильная СР-проблема, заключающаяся в ненаблюдении СР-нарушения в сильных взаимодействиях. Так называемый θ -член в лагранжиане квантовой хромодинамики (КХД) отвечает за взаимодействие глюонных полей и имеет следующий вид:

$$\mathcal{L}_{\text{KX},\perp} = \ldots + \theta \cdot G_{\mu\nu}^a \tilde{G}_a^{\mu\nu} \,. \tag{1}$$

Данный член является калибровочно- и лоренц-инвариантным и не нарушает перенормируемости теории, однако в то же время является нечётным относительно Р и Т преобразований, что должно вести к несохранению СР-симметрии в сильных взаимодействиях в случае $\theta \neq 0$. Например, теоретически предсказанный дипольный момент нейтрона оказывается равным $|d_n| \sim \theta \cdot 10^{-16}$ е · см [1]. В то же время, установленный экспериментальный предел ($|d_n| < 1.8 \cdot 10^{-26}$ е · см (90% у.д.)) [2] позволяет заключить, что $\theta < 10^{-10}$, что делает θ -член очень малым по сравнению с другими слагаемыми лагранжиана КХД.

Решение данной проблемы было предложено в 1977 г. Роберто Печчеи и Хелен Квинн [3]. Согласно работе учёных, введение дополнительной киральной симметрии U(1) может скомпенсировать СР-неинвариантное слагаемое в лагранжиане КХД за счёт спонтанного нарушения этой симметрии на некотором энергетическом масштабе f_A . В результате такого нарушения, как показали чуть позже Стивен Вайнберг [4] и Фрэнк Вильчек [5] за счёт механизма Намбу-Голдстоуна возникает новая псевдоскалярная нейтральная частица. Название «аксион» дано Ф. Вильчеком по марке стирального порошка, так как аксион должен «очищать» КХД от сильной СР-проблемы; а также из-за связи с осевым (англ. axial) током.

В первоначальной стандартной модели аксиона, также называемой моделью PQWW-аксиона (Peccei-Quinn-Weinberg-Wilczek) масштаб нару-

шения симметрии совпадал с масштабом электрослабого взаимодействия: $f_A \approx \frac{1}{(\sqrt{2}G_F)^{1/2}} \approx 250$ ГэВ. Тем самым, нижняя граница взаимодействия с веществом оказалась предопределена теорией и необнаружение его в проведённых экспериментах по поиску аксиона на реакторах [6, 7] и на ускорителях [8, 9] надёжно исключили возможность существования стандартного аксиона.

Два класса теоретических моделей так называемого «невидимого» аксиона, адронный аксион и GUT-аксион, так или иначе подавляют его взаимодействие с обычным веществом: фотонами $(g_{A\gamma})$, лептонами (g_{Ae}) и нуклонами (g_{AN}) , в то же время сохраняя его в виде, необходимом для решения сильной СР-проблемы. Масса аксиона и его константы связи оказываются обратно пропорциональны масштабу f_A , который, в отличие от модели «стандартного» аксиона, не фиксируется, а может быть произвольным, вплоть до планковских значений 10^9 ГэВ, подавляя тем самым его взаимодействия.

Результаты современных экспериментов интерпретируются преимущественно в рамках этих двух наиболее популярных моделей. Основные экспериментальные усилия сосредоточены на поиске аксиона с массой в диапазоне $10^{-6} \div 10^{-2}$ эВ. Этот диапазон свободен от астрофизических и космологических ограничений, кроме того, реликтовые аксионы с такой массой считаются наиболее вероятными кандидатами на роль частиц, образующих темную материю. Имеются и другие предпосылки к активным поискам новой частицы. Существование аксионов или ALP (аксионоподобных частиц, от англ. $Axion-Like\ Particle$) могло бы объяснить слишком быстрое охлаждение ряда классов звезд [10], а также аномальную прозрачность Вселенной для гамма-квантов с энергией порядка 1 ТэВ [11, 12].

Целью настоящей работы являлся расчёт чувствительности планируемого эксперимента по поиску резонансного поглощения ядром 169 Tm солнечных аксионов с энергией E=8.41 кэВ. Опираясь на измеренные экспериментальные спектры сырья для болометрического детектора, а также интенсивность фоновых событий подземной низкофоновой установки, были определены необходимые параметры симулируемых процессов (прежде всего, рождения частиц) в модели эксперимента в Geant4. Полученный

спектр симуляции позволяет установить предел на константы связи аксиона с веществом, при котором связанные с ним события в пике с энергией $E=8.41~{\rm kpB}$ можно будет на достаточном уровне достоверности выделить на фоне остальных событий, зарегистрированных болометром.

Глава 1. Обзор теории и экспериментов по поиску аксиона

1.1 Появление в теории, PQWW-аксион

Первое появление аксиона в теории связано с проблемой ненаблюдения СР-нарушения в сильных взаимодействиях. В 1977 году Роберто Печчеи и Хелен Квинн [3], находясь в поисках решения данной проблемы, предложили ввести дополнительную киральную симметрию. Спонтанное нарушение симметрии Печчеи-Квинн $U(1)_{PQ}$ компенсирует CP-неинвариантное слагаемое в лагранжиане КХД. Как показали Стивен Вайнберг и Фрэнк Вилчек [4, 5], в результате такого нарушения за счёт механизма Намбу–Голдстоуна возникает новая псевдоскалярная нейтральная частица. Новое аксионное поле ϕ_A вводится в лагранжиан заменой $\theta \mapsto \theta - \phi_A/f_A$:

$$\mathcal{L}_{QCD} = \ldots + (\theta - \phi_A/f_A) G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a. \tag{2}$$

В первоначальной «стандартной» модели аксиона масштаб нарушения симметрии f_A совпадал с масштабом электрослабого взаимодействия:

$$f_A \approx \frac{1}{(\sqrt{2}G_F)^{1/2}} \approx 250 \text{ } \Gamma \text{9B} \,,$$
 (3)

в то время как ожидаемая масса аксиона в данной теории получалась равной:

$$m_A \approx (25 \text{ kpB}) N \left(X + \frac{1}{X} \right) ,$$
 (4)

где N — число поколений кварков, X — неизвестный параметр, вычисляемый как отношение вакуумных средних значений хиггсовских полей. Исходя из N=3 и неравенства о средних $X+\frac{1}{X}\geqslant 2$ можно заключить, что масса должна превышать 150 кэВ.

Реакторные эксперименты и эксперименты с искусственными источниками [6, 7] пытались обнаружить аксион по наиболее вероятной моде распада $A \to 2\gamma$. В ускорительных экспериментах [8, 9] предпринимались попытки обнаружить распады каонов $(K^+ \to \pi^+ + A)$ и пионов

 $(\pi^+ \to e^+ + \nu + A)$, тяжелых кваркониев $(J/\Psi \to A + \gamma$ и $\Upsilon \to A + \gamma)$, а также распады самого аксиона на два γ -кванта или на электрон-позитронную пару после рождения его в реакции $p(e) + N \to A + X$. Необнаружение аксионов в проведённых экспериментах надёжно исключили возможность существования PQWW-аксиона.

1.2 «Невидимый» аксион

Два класса теоретических моделей так называемого «невидимого» аксиона, так или иначе, подавляют его взаимодействие с обычным веществом, тем не менее сохраняя его в виде, необходимом для решения сильной СР-проблемы:

- 1. Адронный или KSVZ (Kim, Shifman, Vainshtein, Zakharov) аксион [13, 14] (постулируется наличие дополнительного тяжёлого кварка)
- 2. GUT или DFSZ (Dine, Fischler, Srednicki, Zhitnitskii) аксион [15, 16] (вводятся добавочные хигтсовские поля)

Масса аксиона и его константы связи оказываются обратно пропорциональны энергетическому масштабу нарушения симметрии f_A , который, в отличие от модели «стандартного» аксиона, не фиксируется, а может быть произвольным, вплоть до планковских значений 10^9 ГэВ, подавляя тем самым взаимодействие с обычным веществом:

$$m_A \approx \frac{f_\pi m_\pi}{f_A} \left(\frac{z}{(1+z+w)(1+z)} \right)^{\frac{1}{2}} \approx \frac{6.0 \times 10^6}{f_A (\Gamma \circ B)}$$
 (5)

где z и w — отношения масс легких кварков ($z=m_u/m_d\approx 0.59,~w=m_u/m_s\approx 0.029$), а $m_\pi\approx 135$ МэВ и $f_\pi\approx 93$ МэВ — соответственно, масса и распадная константа пиона.

Экспериментальное закрытие гипотезы PQWW-аксиона указывает на то, что масштаб нарушения симметрии превышает масштаб электрослабого взаимодействия. С учётом верхнего предела в виде планковской массы получаем 250 ГэВ $\approx f_{\rm PQWW} < f_A < m_{\rm P} \approx 10^{19}$ ГэВ, откуда следует, что диапазон возможных масс новой частицы 10^{-12} эВ $\lessapprox m_A \lessapprox 100$ кэВ.

1.3 Астрофизические ограничения

Имеется целый ряд астрофизических и космологических соображений [17—19], позволяющих ввести ограничения на параметры новой частицы. Так, данные по вспышке сверхновой SN1987A позволили получить верхний предел на массу $m_A < 10^{-3}$ эВ для DFSZ аксиона. В отличие от DFSZ-аксиона, адронный аксион не имеет взаимодействия с лептонами в древесном порядке, поэтому ограничения на его массу в модели слабее.

В целом из астрофизических данных следует, что аксион должен иметь массу в диапазоне $10^{-5} \div 10^{-3}$ эВ. Для KSVZ-аксиона существует дополнительное окно диапазоне $10^{-1} \div 10$ эВ. Следует отметить, что данные ограничения получены в моделях предполагающих строгую связь $f_A \cdot m_A \approx f_\pi \cdot m_\pi$. В моделях, включающих взаимодействие нашего мира с зеркальным [20], данное соотношение не выполняется, что приводит к существованию неисключенного никакими имеющимися наблюдательными данными окна для аксиона около энергии 1 МэВ.

Глава 2. Резонансное поглощение солнечных аксионов

2.1 Поток и энергетический спектр солнечных аксионов

Существование новой частицы должно приводить к тому что звёзды, в том числе Солнце, должны являться мощным источником аксионов, рождаемых в следующих процессах:

- 1. Обратный эффект Примакова для аксиона $(g_{A\gamma})$
- 2. Аксионное тормозное излучение (g_{Ae})
- 3. Комптоновское рассеяние аксиона (g_{Ae})
- 4. Атомные переходы магнитного типа (g_{Ae})
- 5. Ядерные реакции (g_{AN})
- 6. Тепловое возбуждение ядер (g_{AN})

В ряде предыдущих работ по поиску резонансного поглощения солнечных аксионов [21—23] механизмы, связанные с возбуждением ядерных уровней за счёт высокой температуры, предполагались основным источником аксионов ввиду наличия данных элементов на Солнце. Современные солнечные модели не дают конкретных прогнозов о содержании тулия на Солнце, в связи с чем в настоящей работе уделяется внимание другим процессам рождения.

Обратный эффект Примакова для аксиона назван по аналогии с конверсией пиона в фотон в поле ядра, и обеспечивает конверсию фотонов в аксионы в электромагнитном поле плазмы. Лагранжиан, описывающий взаимодействие аксионного поля ϕ_A с электромагнитным полем, которое задаётся тензором $F^{\alpha\beta}$:

$$\mathcal{L} = g_{A\gamma} \, \varphi_A \, F_{\alpha\beta} \tilde{F}^{\alpha\beta} = g_{A\gamma} \, \varphi_A \, \vec{B} \cdot \vec{E} \,. \tag{6}$$

Соответствующая данному взаимодействию константа связи $g_{A\gamma}$ в моделях «невидимого» аксиона равна:

$$g_{A\gamma} = \frac{\alpha}{2\pi f_A} \left[\frac{E}{N} - \frac{2(4+z)}{3(1+z)} \right] = \frac{\alpha}{2\pi f_A} C_{A\gamma\gamma}, \qquad (7)$$

где $\alpha=1/137$ — постоянная тонкой структуры; z и w — отношения масс легких кварков ($z=m_u/m_d\approx 0.59,~w=m_u/m_s\approx 0.029$); остальные параметры являются модельно зависимыми:

Теоретическая модель	E/N	$C_{A\gamma\gamma}$
GUT-аксион (DFSZ)	8/3	0.74
Адронный аксион (KSVZ)	0	-1.92
Альтернативная модель адронного аксиона [24]	2	0

Таблица 1: Константа связи с фотоном в разных моделях аксиона

Константа связи с электроном зависит от аксионной модели В случае DFSZ-аксиона взаимодействие разрешено в древесном порядке, и g_{Ae} зависит от массы электрона m_e как:

$$g_{Ae} = \frac{1}{3}\cos^2\beta \cdot \frac{m_e}{f_A} \tag{8}$$

где β это относительный угол

В модели KSVZ взаимодействие проходит через радиационные поправки [16]:

$$g_{Ae} = \frac{3\alpha^2 n m_e}{2\pi f_A} \left(\frac{E}{N} \ln \frac{f_A}{m_e} - \frac{2}{3} \cdot \frac{4+z+w}{1+z+w} \ln \frac{\Lambda}{m_e} \right)$$
(9)

где $\Lambda \approx \Gamma$ эВ -мастшатб КХД.

Аксионы, рождённые при конверсии фотонов Солнца и достигнувшие поверхности земли имеют следующий энергетический спектр [25—27]:

$$\frac{d\Phi_A}{dE_A} = \left(\frac{g_{A\gamma}}{10^{-10} \text{ }\Gamma \text{9B}}\right)^2 \frac{\Phi_0}{E_0} \frac{(E_A/E_0)^3}{\exp(E_A/E_0) - 1} \left[\text{cm}^{-2} \cdot \text{c}^{-1} \cdot \text{k9B}^{-1}\right]$$
(10)

Рис. 1: Форма спектров солнечных аксионов. Расчёт выполнен для номинальных значений $g_{A\gamma}=10^{-10}~\Gamma$ э B^{-1} и $g_{Ae}=10^{-11}$ при $m_A=0$.

где $E_0=kT=1.103$ кэВ – температура плазмы Солнца в энергетических единицах, $\Phi_0=5.95\cdot 10^{14}~{\rm cm}^{-2}~{\rm c}^{-1}$ - светимость Солнца.

Ожидаемый поток аксионов за счёт взаимодействий g_{Ae} , вычисляется с использованием сечений для комптоновских процессов [28, 29] и тормозного излучения [30], данных стандартной солнечной модели о плотности электронного газа, распределении температуры и концентрациях различных элементов [31, 32]. Учёт образования аксионов с помощью процессов атомной рекомбинации произведён в работе [33]. Формы спектров солнечных аксионов для перечисленных процессов образования приведены на рис. 1. Воспользовавшись зависимостями (5) и (7), можно получить полный поток аксионов от данного процесса в терминах m_A :

$$\Phi_A = \int_0^{+\infty} \frac{d\Phi_A}{dE_A} dE_A = 7.44 \times 10^{11} \left(\frac{m_A}{1 \text{ sB}}\right) \left[\text{cm}^{-2} \cdot \text{c}^{-1}\right]$$
(11)

Предпринимались попытки обнаружить данные аксионы при конверсии аксиона обратно в фотон в лабораторных магнитных полях (BNL [34], Tokio axion helioscope [35, 36], CAST – CERN Axion Solar Telescope [37]). Кроме того, другой возможный механизм поиска — когерентная конверсия

аксиона в фотон в поле кристалла [38] — лег в основу экспериментов с германиевыми детекторами SOLAX [39, 40] и COSME [41, 42], а также DAMA [43] — с детектором на основе кристалла NaI. Установленные верхние пределы на константу связи варьируются в диапазоне $g_{A\gamma} \leq 10^{-10} \div 10^{-8}$.

2.2 Резонансное поглощение аксиона в ядерных переходах магнитного типа

Аксион способен испытывать резонансное поглощение атомным ядром в переходах магнитного типа, так как является псевдоскалярной частицей. Релаксация возбужденных ядер приводит к образованию γ -квантов, а также конверсионных и Оже-электронов, которые могут быть зарегистрированы обычными средствами. Изотопы 57 Fe, 83 Kr и 169 Tm обладают подходящими низколежащими ядерными переходами для поиска аксиона данным методом.

В Петербургском институте ядерной физики активно ведутся эксперименты по поиску резонансного поглощения солнечных аксионов [44—48]. Первые эксперименты были выполнены по схеме «мишень-детектор» с нуклидами ⁵⁷Fe и ¹⁶⁹Tm имеющих энергию первого возбуждённого уровня 14.4 кэВ и 8.41 кэВ, соответственно. Мишень устанавливалась непосредственно над полупроводниковым Si(Li) детектором. Сама установка находилась на поверхности земли, но была снабжена активной защитой, для защиты от космогенных компонент фона. В результате проведённых измерений были получены ограничения на аксион-нуклонную константу связи:

⁵⁷Fe:
$$|g_{AN}^3 + g_{AN}^0| \le 3.12 \times 10^{-6}; \quad m_A \le 151 \text{ 9B},$$
 (12)

и произведение аксион-фотонной и аксион-нуклонной констант:

¹⁶⁹Tm:
$$g_{A\gamma} |g_{AN}^3 + g_{AN}^0| \le 9.2 \times 10^{-13}; \quad m_A \le 191 \text{ 9B}.$$
 (13)

Следующим шагом было создание низкофоновой установки в сотрудничестве с Баксанской Нейтринной Обсерваторией (БНО) на базе газового пропорционального счётчика [23]. Глубокое расположение (4800 м вод-

Рис. 2: Схема уровней ядра ¹⁶⁹Tm [50]

ного эквивалента) обеспечило снижение космогенного фона и увеличило чувствительности эксперимента. В установке был использован газообразный криптон, обогащённый изотопом ⁸³Kr. Предыдущие ограничения на аксион-нуклонную константу были улучшены приблизительно на порядок и составили [49]:

$$|g_{AN}^3 \text{Kr}: |g_{AN}^3 - g_{AN}^0| \le 8.4 \cdot 10^{-7}; \quad m_A \le 65 \text{ 9B}$$
 (14)

2.3 Резонансное поглощение аксионов ядрами ¹⁶⁹Тт

Рассмотрим подробнее процесс резонансного поглощения аксионов ядром тулия, с последующим излучением гамма-кванта: $A+^{169}{\rm Tm} \to ^{169}{\rm Tm}^* \to ^{169}{\rm Tm}+\gamma$. Схема уровней нуклида $^{169}{\rm Tm}$ показана на рис. 2. Первый возбуждённый уровень $(3/2^+)$ имеет энергию E=8.41 кэВ, с примесью вероятности перехода Е2-типа $\delta=0.033$. С учётом относительно высокого коэффициента внутренней конверсии $(\frac{e}{\gamma}=285$ [50]) вероятность излучения гамма-кванта при разрядке данного уровня составит $\eta=\frac{1}{1+e/\gamma}\approx 3.5\cdot 10^{-3}$.

Сечение резонансного поглощения аксионов можно получить из выражения для сечения поглощения гамма-квантов, с учётом отношения ве-

роятностей излучения аксиона и фотона $\frac{\omega_A}{\omega_\gamma}$ в данном переходе [51]:

$$\sigma(E_A) = \pi \sigma_{0_{\gamma}} \Gamma\left(\frac{\omega_A}{\omega_{\gamma}}\right) \tag{15}$$

$$\frac{\omega_A}{\omega_\gamma} = \frac{1}{2\pi\alpha(1+\delta^2)} \frac{g_{AN}^3 \beta + g_{AN}^0}{(\mu_0 - 0.5)\beta + \mu_3 - \eta} \left(\frac{p_A}{p_\gamma}\right)^3 \tag{16}$$

где $\sigma_{0\gamma}$ — максимальное сечение резонансного поглощения гамма-квантов (экспериментально определённое значение для $^{169}\mathrm{Tm}$ составляет $\sigma_{0\gamma}=2.56\times 10^{19}~\mathrm{cm}^2$). Из времени жизни первого возбуждённого уровня $\tau=5.89$ нс можно получить собственную ширину уровня $\Gamma=1.13\cdot 10^{-7}$. Далее, p_A и p_γ — импульсы аксиона и фотона, соответственно; $\alpha=1/137$ — постоянная тонкой структуры, $\mu_0=\mu_p+\mu_n\approx 0.88$ и $\mu_3=\mu_p-\mu_n\approx 4.71$ — изоскалярный и изовекторный ядерные магнитные моменты; параметры β и η задаются ядерными матричными элементами:

$$\eta = -\frac{\left\langle J_f \left| \sum_{i=1}^A l(i)\tau_3(i) \right| J_i \right\rangle}{\left\langle J_f \left| \sum_{i=1}^A \sigma(i)\tau_3(i) \right| J_i \right\rangle}, \tag{17}$$

$$\beta = -\frac{\left\langle J_f \left| \sum_{i=1}^A \sigma(i) \right| J_i \right\rangle}{\left\langle J_f \left| \sum_{i=1}^A \sigma(i) \tau_3(i) \right| J_i \right\rangle}, \tag{18}$$

и в случае ядра $^{169}{\rm Tm},$ имеющего нечётное число нуклонов и неспаренный протон, составляют $\beta\approx 1$ и $\eta\approx 0.5.$

Скорость поглощения солнечных аксионов R_A одним ядром $^{169}{\rm Tm}$ в единицу времени выражается как $R_A = \sigma(E_A) \left. \frac{d\Phi_A}{dE_A} \right|_{E_A=8.14~{\rm кэB}}$. Тогда, используя выражения для сечения (15), отношения вероятностей (16), констант взаимодействия (7,9) и массы аксиона, мы можем записать R_A :

• в терминах констант связи

$$R_A = C_{Ax} g_{Ax}^2 (g_{AN}^0 + g_{AN}^3)^2 \left(\frac{p_A}{p_\gamma}\right)^3$$

$$C_{A\gamma} = 104, \quad C_{Ae} = 2.76 \times 10^5;$$
(19)

• в терминах произведения констант связи и массы

$$R_A = C'_{Ax} g_{Ax}^2 m_A^2 \left(\frac{p_A}{p_\gamma}\right)^3$$

$$C_{A\gamma} = 4.08 \times 10^{-13} , \quad C_{Ae} = 1.03 \times 10^{-9} ;$$
(20)

• в терминах массы аксиона

$$R_A = C_{Ax}'' m_A^4 \left(\frac{p_A}{p_\gamma}\right)^3$$

$$C_{A\gamma}'' = 6.64 \times 10^{-32}, \quad C_{Ae}'' = 8.08 \cdot 10^{-31}.$$
(21)

В приведённых формулах m_A масса аксиона выражена в единицах эВ. Константы C_{Ax} , а также их пересчитанные версии C'_{Ax} и C''_{Ax} , зависят от аксионной модели, мишени и др. параметров и были вычислены для ядер ¹⁶⁹Tm в работах [33, 46].

2.4 Использование тулиевых болометров

Работы [32, 45, 46] по поиску аксиона с помощью реакции резонансного поглощения ядром ¹⁶⁹Tm были выполнены в схеме мишень-детектор. Наилучшие полученные ограничения:

$$g_{Ae} \left| g_{AN}^3 + g_{AN}^0 \right| \le 2.1 \times 10^{-14} \,,$$
 (22)

$$g_{Ae} \cdot m_A \leqslant 3.1 \times 10^{-7} \text{ 9B}.$$
 (23)

Внесение вещества мишени в рабочий объём детектора позволяет существенно увеличить чувствительность эксперимента. Нивелируется са-

мопоглощение гамма-квантов веществом мишени. Низколежащие ядерные уровни имеют значительные коэффициенты внутренней конверсии ($\approx 10^{-2}$), поэтому практически вся энергия рассеивается в детекторе. При этом необходимо достаточно сильное подавление фонов, так как тулий имеет ряд характеристических рентгеновских линий, близких к энергии 8.41 кэВ [46].

Первые попытки задействовать тулийсодержащие кристаллы $NaTm(WO_4)_2$ и $NaTm(MoO_4)_2$ в экспериментах по поиску аксиона были изложены в работе [52]. Использование охлаждённого до 10 мК кристалла тулиевого граната ($Tm_3Al_5O_{12}$) в качестве болометрического криогенного детектора изучено в работе [53]. Проведённые измерения подтвердили принципиальную возможность его использования в экспериментах по поиску, тем не менее, указали на ряд сложностей, которые необходимо преодолеть. В частности, радиационная чистота сырья должна быть повышена для уменьшения влияния естественной радиоактивности на низкофоновый эксперимент; разрешение детектора также требует оптимизации. Следует заметить, что, хотя ряд российских ученых участвуют в международных экспериментах по поиску 2β -распада и темной материи с использованием криогенных болометров, для российских институтов методика съема сигнала с больших кристаллов, охлажденных до 10 мК, является принципиально новой.

Недавняя работа [48] реализовала описанный эксперимент для тулиевого болометра с датчиком края перехода (Transition Edge Sensor), напыленным непосредственно на поверхность кристалла. Эффективная экспозиция составила 19.2 г · день. Полученные ограничения:

$$g_{A\gamma} |g_{AN}^3 + g_{AN}^0| \le 1.44 \times 10^{-14} \, \text{FeB}^{-1},$$
 (24)
 $g_{A\gamma} \cdot m_A \le 2.31 \times 10^{-7};$

$$g_{Ae} |g_{AN}^3 + g_{AN}^0| \le 2.81 \times 10^{-16},$$
 (25)
 $g_{Ae} \cdot m_A \le 4.59 \times 10^{-9} \text{ sB}.$

Рис. 3: Образцы кристаллов тулий-содержащего граната $Tm_3Al_5O_{12}$.

Здесь масса аксиона выражена в единицах эВ, $g_{A\gamma}$ — в ГэВ $^{-1}$, а константы g_{Ae} , g_{AN}^0 и g_{AN}^3 — безразмерны. Данные ограничения значительно улучшают результаты с тулием в схеме мишень-детектор [46], тем не менее, всё ещё уступают результатам эксперимента с 83 Kr [49].

В настоящее время идёт процесс подготовки к эксперименту в криогенной установке с хорошими низкофоновыми характеристиками. Измерены спектры естественной радиоактивности сырья, выращена новая партия кристаллов тулиевого граната (3). Симуляция данного эксперимента с целью расчёта его чувствительности и является задачей данной работы.

Глава 3. Оценка параметров симуляции

3.1 Эффективность регистрации HPGe детектора

Рис. 4: Геометрические параметры установки farPPD.

Для исследования чистоты сырья, используемого для изготовления тулиевого болометра, были произведены измерения на подземной установке с HPGe-детектором в Баксанской Нейтринной Обсерватории (БНО). Данная установка была промоделирована в Geant4 с целью получения зависимости эффективности регистрации детектора от энергии гамма-частицы, выпускаемой в объёме условного образца. Схема установки изображена на рис. 4. Визуализация модели в Geant 4 представлена на рис. 5 и 6.

Каждый элементарный запуск Монте-карло симуляции начинался с рождения гамма-кванта со случайным изотропно распределённым начальным импульсом внутри объёма условного образца. Программа моделирует все возможные последующие взаимодействия, в том числе рождение вторичных частиц, принимая во внимание геометрию эксперимента. Для частиц, попавших в чувствительный объём детектора, регистрируется рассеянная там энергия.

Рис. 5: Модель установки farPPD в Geant4.

Для всех энергий гамма-кванта от 0 до 2000 кэВ с шагом 5 кэВ была запущена симуляция методом Монте-Карло, последовательно моделирующая $N=10^7$ элементарных запусков. Эффективность регистрации детектора (рис. 7) вычислялась как отношение зарегистрированных событий в пике к полному числу выпущенных частиц (элементарных запусков):

Исходный код, а также подробная информация о модели доступны в репозитории на GitHub: github.com/artem-phys/Geant4-farPPD

3.2 Естественная радиоактивность сырья

Активности изотопов для кристалла $Tm_3Al_5O_{12}$ были измерены в работе [53]. Тем не менее, относительно высокое содержание изотопа америция 241 Am ($A=94\pm9$ Бк/кг), полученное в данной работе, указывало на возможный источник загрязнения данным изотопом, что требовало устранения перед проведением низкофонового эксперимента. Измеренные на установке farPPD спектры сырья, а также вычисленная в симуляциях эффективность регистрации, позволили получить ограничение на содержание 241 Am, подтвердив радиоактивную чистоту новой партии выращенных кристаллов относительно данного изотопа.

По значениям удельной активности, предполагая скорость распада изотопов маленькой по сравнению с временем эксперимента $(T_{1/2} \gg T =$

Рис. 6: Увеличенное изображение детектора в модели. Красный цилиндр — HPGедетектор. Чёрным цветом изображён мёртвый слой — нечувствительный объём детектора. Зелёные линии представляют собой треки симулируемых частиц.

 3.15×10^7 с), можно оценить число распадов конкретонго изотопа, которое будет соответствовать годовой экспозиции кристалла с массой 8.18 г в установке: $N_{\text{из.}} \approx \frac{A \cdot m}{\lambda}$. В табл. 2 приведены значения определённых активностей.

Таблица 2: Активность нуклидов A в образце и полное число распадов за год, соответствующее данной активности

		A (Бк/кг)	Число ядер $N_{\rm из.}$
²³² Th	228 Ra		5.9×10^5
	$^{228}\mathrm{Th}$		1.6×10^{5}
^{238}U	226 Ra		2.8×10^{8}
	$^{210}{\rm Pb}$	4	3.4×10^{7}
$^{235}{ m U}$	Ũ	0.11	6.7×10^{13}
		0.36	1.7×10^{14}
	$^{60}\mathrm{Co}$	0.020	4.0×10^{4}
	$^{241}\mathrm{Am}$	0.1	1.6×10^{7}
	$^{137}\mathrm{Cs}$	0.85	9.8×10^{6}

Detector sensitivity dependency on gamma energy

Рис. 7: Зависимость эффективности регистрации детектора от энергии гамма-кванта

3.3 Экспериментальные спектры фонового излучения

Помимо естественного излучения радиоактивных изотопов, содержащихся в сырье для болометра, учёту подлежит также фоновое излучение внутри будущей установки. Фоновый спектр (в отсутствие образца) был измерен также на установке farPPD в БНО. Зарегистрированные HPGедетектором события (рис. 8) могут послужить разумной оценкой для моделирования распределения рождаемых фоновых гамма-квантов в симуляции будущего эксперимента по поиску аксиона:

События ниже энергии 50 кэВ не записывались, так как представляют собой шумы регистрации детектора. Ввиду того, что интересующий нас пик 8.41 кэВ находится как раз в указанном диапазоне, возникает необходимость сделать предположения о спектре фонового излучения. К счастью, отсутствие сильных характерных линий в данном диапазоне позволяет ограничится равномерным приближением.

FarPPD Background

Рис. 8: Фоновое излучение, зарегистрированное HPGe-детектором в отсутствие образца. Данные экстраполированы так, чтобы значения на графике соответствовали времени экспозиции 1 год

Глава 4. Чувствительность будущего эксперимента по поиску аксионов

4.1 Моделирование эксперимента

Предложенный низкофоновый эксперимент с криогенным тулиевым болометром был промоделирован в Geant4 методом Монте-Карло. В качестве базы для геометрии низкофоновой защиты заимствованы размеры и материалы установки farPPD из предыдущей модели (рис. 9). Последнее связано исключительно с произвольностью выбора параметров ещё не реализованной установки. На момент написания работы планируется размещение болометрического кристалла в криогенный криостат в МРІ или в лаборатории Гран-Сассо.

Внутри вакуумной камеры по центру расположен болометрический кристалл из $Tm_3Al_5O_{12}$ в форме куба размером ребром 10.8 мм (рис. 10). Данный объём является чувствительным за исключением тонкого (d=0.01 мм) слоя на поверхности кристалла. В качестве рождаемых частиц выбраны радиоактивные изотопы, содержащиеся в незначительном количестве в сырье для болометра, а также гамма-кванты фонового излучения. Вопрос определения параметров рождаемых частиц (активности изотопов

и распределения по энергиям фонового излучения) был подробно рассмотрен в предыдущей главе. Запуски с каждым из возможных источников были разделены: всего было проведено 9 запусков с различными нуклидами и 1 запуск для фона, включающие в себя различное число элементарных запусков, соответствующее необходимой экспозиции. Для каждого изотопа полная эффективная экспозиция соответствует вычисленным параметрам $N_{\rm из.}$ из таблицы 2. Для фонового излучения полное число симулируемых гамма-квантов и его распределение соответствует графику 8.

В ходе элементарного запуска генерируется одна частица: либо радиоактивный изотоп, либо гамма-квант фонового излучения. В случае, если появившийся радиоактивный изотоп не распался за время T_{stop} , данная частица удаляется и элементарный запуск считается завершённым. Время T_{stop} равно 1 году и увеличивается в некоторых случаях с целью соблюдения необходимой эффективной экспозиции, если для сокращения объёма симуляции было уменьшено число генерируемых ядер (см. исходный код). Для гамма-кванта таких ограничений по времени нет, и элементарный запуск обрывается с потерей энергии гамма-квантом и всеми порождёнными вторичными частицами, если такие были.

Энергия, выделившаяся в активном объёме детектора, записывается в файл. Следует заметить, что распаду многих радиоактивных изотов соответствует одновременное рождение альфа-частиц с энергией порядка МэВ и гамма-кванта в интересующем нас кэВном диапазоне. Так как они находятся в активном объёме детектора, им сразу регистрируется суммарная энергия данных частиц, естественно, порядка МэВ. Возможность получить вклад от спектра изотопов в интересующей нас области возникает за счёт вероятности рождения ядра в граничном слое и улёта альфа-частицы без попадания в детектор. Визуализация симуляции представлена на рис. 9.

Исходный код, а также подробная информация о модели доступны в репозитории на GitHub: github.com/artem-phys/TmCryst

Рис. 9: Модель будущего низкофонового эксперимента по поиску аксионов в Geant4

4.2 Оценка числа возможных аксионных событий

Результаты десяти запусков для разных источников $h_{\mathrm{source}}(E)$ были просуммированы:

$$h_{all}(E) = \sum_{source=0}^{10} h_{source}(E), \qquad (26)$$

и полученный экспериментальный спектр симуляции $h_{\rm all}(E)$ для времени экспозиции T=1 год приведён на рис. 11. Для получения верхнего предела на число отсчётов в данном пике $S_{\rm lim}$ использовался метод максимального правдоподобия. Функция правдоподобия находилась в предположении, что число отсчётов в каждом канале гистограммы $h_{all}(E)$ имеет нормальное распределение и является линейной комбинацией Монте-Карло спектров тех же источников (но с большей накопленной статистикой) и гауссиана, описывающего искомый аксионный пик с энергией $E_A=8.41$ кэВ и разрешением $\sigma=0.38$ кэВ, взятым из работы [53]. Итого, подгоночная функция имеет вид:

$$N(E) = \sum_{\text{source}=0}^{10} f_{\text{source}} \cdot H_{\text{source}}(E) + S_A \cdot \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(E - E_A)^2}{2\sigma^2}\right], \quad (27)$$

Рис. 10: Болометр в центре установки

где $H_{\text{source}}(E)$ – гистограммы результатов симуляций, аналогичных $h_{\text{source}}(E)$, но с увеличенной в k=10 раз статистикой; f_{source} – коэффициенты линейной комбинации, соответствующие доле $H_{\text{source}}(E)$ в спектре симуляции $h_{\text{all}}(E)$.

Общее число степеней свободы в интервале, на котором осуществлялась подгонка, составляет n=940. Результаты фита, соответствующие минимальному значению $\chi^2/n=\frac{980}{940}$ показаны на рисунке 12. Определённое значение площади аксионного пика $S_A=7\pm96$ событий. Верхний предел, соответствующий 90% уровню достоверности может быть найден через квантиль стандартного нормального распределения:

$$S_{\lim} = S_A + u_{0.9} \cdot \Delta_{S_A} = 165. \tag{28}$$

4.3 Предел на константы связи

Полное число зарегистрированных событий в пике, который можно сопоставить с аксионом, пропорционально числу ядер $^{169}\mathrm{Tm}$ в мишени, времени измерений и эффективности регистрации детектора. Найдём число ядер в мишени $^{169}\mathrm{Tm}$. Для этого вычислим молярную массу вещества

Events count by the bolometer

Рис. 11: Спектр симуляции TmCryst

детектора:

$$\mu_{\text{Tm}_3\text{Al}_5\text{O}_{12}} = 3 \cdot 168.93 + 5 \cdot 26.98 + 12 \cdot 16 = 833.69 \frac{\Gamma}{\text{MOJIb}}.$$
 (29)

Каждая молекула мишени содержит 3 ядра $^{169}{\rm Tm}$. Подставляя массу кристалла m=8.18 г, получаем:

$$N_{\rm Tm} = 3\nu \cdot N_A = 3\frac{m}{\mu}N_A = 3 \cdot \frac{8.18}{833.69} \cdot 6.022 \times 10^{23} \approx 1.77 \times 10^{22} \,.$$
 (30)

Итого, полагая:

- Число ядер в мишени $N_{\mathrm{Tm}} = 1.77 \cdot 10^{22}$
- Эффективность регистрации $\varepsilon \sim 1$, так как ядра мишени находится непосредственно внутри активного объема
- Время экспозиции 1 год: $T = 3.15 \cdot 10^7 c$

мы можем записать предел:

$$\varepsilon \cdot T \cdot R_A \cdot N_{Tm} \leqslant S_{\lim} \,. \tag{31}$$

Events count by the bolometric detector

Рис. 12: Спектр симуляции в диапазоне подгонки и результат фита

Если предположить, что $\frac{p_A}{p_\gamma} \approx 1$, то можно получить ограничения на константы связи и массу, воспользовавшись выражениями для скорости счёта R_A (19), (20) и (21):

• в терминах констант связи

$$\left| g_{A\gamma} \left(g_{AN}^0 + g_{AN}^3 \right) \right| \le 1.7 \cdot 10^{-15} \, \text{FpB}^{-1},$$
 (32)
 $\left| g_{Ae} \left(g_{AN}^0 + g_{AN}^3 \right) \right| \le 3.3 \cdot 10^{-17};$

• в терминах произведения констант связи и массы

$$|g_{A\gamma}m_A| \le 2.7 \cdot 10^{-8}$$
, (33)
 $|g_{Ae}m_A| \le 5.4 \cdot 10^{-10} \text{ 9B}$;

• в терминах массы аксиона

$$m_A \leqslant 4.4 \text{ 9B}. \tag{34}$$

Приведённые верхние пределы и определяют чувствительность эксперимента. Наличие у аксиона параметров, превышающих данные значения, позволит заметить его пик на фоне остальных зарегистрированных событий. Сравнивая результат настоящей работы с пределами [48] можно заключить, что проведение низкофонового эксперимента с криогенным тулиевым болометром поможет улучшить предыдущие ограничения как минимум на порядок.

Заключение

Основные результаты, полученные в настоящей работе, заключаются в следующем:

- 1. Разработана модель установки farPPD в Geant4
- 2. Рассчитана $\varepsilon(E_{\gamma})$ эффективность регистрации НРGe-детектора, зависящая от энергии гамма-кванта, рождаемого в объёме условного образца
- 3. Оценена радиоактивная чистота сырья, используемого для изготовления болометрических кристаллов $^{169}{
 m Tm}$
- 4. С использованием некоторых деталей конструкции низкофоновой защиты farPPD разработана модель будущей установки TmCryst в Geant4
- 5. Получены экспериментальные спектры симуляции TmCryst, с помощью которых рассчитана чувствительность будущего эксперимента по поиску аксиона, как минимум на порядок существующие верхние пределы на параметры аксиона.

Тем самым, количественно подтверждена перспективность использования криогенного тулиевого болометра в будущем эксперименте по поиску аксиона — гипотетической частицы способной пролить свет на ряд нерешённых вопросов современной физики. Разработанные подходы и программное обеспечение могут быть полезны при подготовке, проведении и анализе данных реального эксперимента.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 19-02-00097.

Источники

- [1] RJ Crewther и др. «Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics». в: *Physics Letters B* 88.1-2 (1979), с. 123—127.
- [2] Christopher Abel и др. «Measurement of the permanent electric dipole moment of the neutron». в: *Physical review letters* 124.8 (2020), с. 081803.
- [3] R. Peccei и H. Quinn. «CP Conservation in the Presence of Pseudoparticles». в: *Physical Review Letters* 38 (1977), с. 1440—1443.
- [4] Steven Weinberg. «A New Light Boson?» B: Phys. Rev. Lett. 40 (1978),
 c. 223—226. DOI: 10.1103/PhysRevLett.40.223.
- [5] Frank Wilczek. «Problem of Strong P and T Invariance in the Presence of Instantons». B: Phys. Rev. Lett. 40 (1978), c. 279—282. DOI: 10.1103/PhysRevLett.40.279.
- [6] J-L Vuilleumier и др. «An experimental limit on production of axions in a fission reactor». в: *Physics Letters B* 101.5 (1981), с. 341—343.
- [7] СН Кетов и др. «Поиски необычных явлений в потоке реакторных антинейтрино». в: $\Pi ucьма\ \epsilon\ \mathcal{K} \mathcal{I} \mathcal{T} \Phi\ (1986)$.
- [8] H Faissner и др. «Limit on axion decay into an electron pair». в: *Physics Letters B* 96.1-2 (1980), с. 201—205.
- [9] MJ Savage, BW Filippone и LW Mitchell. «New limits on light scalar and pseudoscalar particles produced in nuclear decay». в: *Physical Review D* 37.5 (1988), с. 1134.
- [10] J Isern и др. «Axions and the cooling of white dwarf stars». в: *The Astrophysical Journal Letters* 682.2 (2008), с. L109.
- [11] Jord Albert и др. «Very-high-energy gamma rays from a distant quasar: how transparent is the universe?» в: Science 320.5884 (2008), с. 1752—1754.

- [12] A. De Angelis и др. «Photon propagation and the very high energy gamma-ray spectra of blazars: how transparent is the Universe?» в: Monthly Notices of the Royal Astronomical Society: Letters 394.1 (март 2009), с. L21—L25. ISSN: 1745-3933. DOI: 10.1111/j.1745-3933.2008. 00602.x. URL: http://dx.doi.org/10.1111/j.1745-3933.2008. 00602.x.
- [13] Jihn E Kim. «Weak-interaction singlet and strong CP invariance». B: Physical Review Letters 43.2 (1979), c. 103.
- [14] Mikhail A Shifman, AI Vainshtein и Valentin I Zakharov. «Can confinement ensure natural CP invariance of strong interactions?» в: Nuclear Physics B 166.3 (1980), с. 493—506.
- [15] Michael Dine, Willy Fischler и Mark Srednicki. «A simple solution to the strong CP problem with a harmless axion». в: *Physics letters B* 104.3 (1981), с. 199—202.
- [16] AR Zhitnitskii. «О возможности подавления аксион-адронных взаимодействий». в: *Yad. Fiz* 31 (1980), с. 497.
- [17] Michael S Turner. «Windows on the Axion». B: Physics Reports 197.2 (1990), c. 67—97.
- [18] Georg G. Raffelt. «Axions in astrophysics and cosmology». B: 30th Rencontres de Moriond: Euroconferences: Dark Matter in Cosmology, Clocks and Tests of Fundamental Laws. 1995. arXiv: hep-ph/9502358.
- [19] Georg G Raffelt. «Astrophysical methods to constrain axions and other novel particle phenomena». B: *Physics reports* 198.1-2 (1990), c. 1—113.
- [20] Zurab Berezhiani, Leonida Gianfagna и Maurizio Giannotti. «Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited». в: *Physics Letters B* 500.3-4 (2001), с. 286—296.
- [21] AV Derbin и др. «Search for resonant absorption of solar axions emitted in M1 transition in 57 Fe nuclei». в: *The European Physical Journal C* 62.4 (2009), с. 755—760.

- [22] Milica Krčmar и др. «Search for solar axions using 7 Li». в: *Physical review D* 64.11 (2001), с. 115016.
- [23] AV Derbin и др. «Recent results of search for solar axions using resonant absorption by 83Kr nuclei». в: Journal of Physics: Conference Series. т. 934. 1. IOP Publishing. 2017, с. 012018.
- [24] David B Kaplan. «Opening the axion window». B: Nuclear Physics B 260.1 (1985), c. 215-226.
- [25] K Van Bibber и др. «Design for a practical laboratory detector for solar axions». в: *Physical Review D* 39.8 (1989), с. 2089.
- [26] RJ Creswick и др. «Theory for the direct detection of solar axions by coherent Primakoff conversion in germanium detectors». в: *Physics Letters B* 427.3-4 (1998), с. 235—240.
- [27] S. Scopel и др. «Theoretical expectations and experimental prospects for solar axions searches with crystal detectors». в: 2nd International Workshop on the Identification of Dark Matter. сент. 1998. arXiv: astro-ph/9810308.
- [28] Maxim Pospelov, Adam Ritz и Mikhail Voloshin. «Bosonic super-WIMPs as keV-scale dark matter». в: *Physical Review D* 78.11 (2008), с. 115012.
- [29] Paolo Gondolo и Georg G Raffelt. «Solar neutrino limit on axions and keV-mass bosons». в: *Physical Review D* 79.10 (2009), с. 107301.
- [30] A. R. Zhitnitskij и Yu. I. Skovpen'. «On production and detecting of axions at transmission of electrons through matter.» в: Sov. J. Nucl. Phys. 29 (1979).
- [31] Dalibor Kekez и др. «Search for solar hadronic axions produced by a bremsstrahlung-like process». в: *Physics Letters B* 671.3 (2009), с. 345—348.
- [32] AV Derbin и др. «Constraints on the axion-electron coupling for solar axions produced by a Compton process and bremsstrahlung». в: *Physical Review D* 83.2 (2011), с. 023505.

- [33] Javier Redondo. «Solar axion flux from the axion-electron coupling». B: Journal of Cosmology and Astroparticle Physics 2013.12 (2013), c. 008.
- [34] DM Lazarus и др. «Search for solar axions». в: *Physical review letters* 69.16 (1992), с. 2333.
- [35] Shigetaka Moriyama и др. «Direct search for solar axions by using strong magnetic field and X-ray detectors». в: *Physics Letters B* 434.1-2 (1998), с. 147—152.
- [36] Yoshizumi Inoue и др. «Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium». в: *Physics Letters B* 536.1-2 (2002), с. 18—23.
- [37] Berta Beltran. «Search for solar axions: The CAST experiment at CERN». B: $arXiv\ preprint\ hep-ex/0507007\ (2005)$.
- [38] EA Paschos и Konstantin Zioutas. «A proposal for solar axion detection via Bragg scattering». в: *Physics Letters B* 323.3-4 (1994), с. 367—372.
- [39] FT Avignone III и др. «First results from Solax: A new technique to detect axions from the sun». в: *Physics of Atomic Nuclei* 61 (1998).
- [40] FT Avignone III и др. «Solar axion experiments using coherent Primakoff conversion in single crystals». в: Nuclear Physics B-Proceedings Supplements 72 (1999), с. 176—182.
- [41] S Scopel и др. «Theoretical expectations and experimental prospects for solar axions searches with crystal detectors». в: arXiv preprint astro-ph/9810308 (1998).
- [42] A Morales и др. «Particle dark matter and solar axion searches with a small germanium detector at the Canfranc underground laboratory». в: Astroparticle Physics 16.3 (2002), с. 325—332.
- [43] R Bernabei и др. «Search for solar axions by Primakoff effect in NaI crystals». в: *Physics Letters B* 515.1-2 (2001), с. 6—12.

- [44] A. V. Derbin и др. «Search for solar axions emitted in an M1 transition in 7Li* nuclei». в: Journal of Experimental and Theoretical Physics Letters 81.8 (апр. 2005), с. 365—370. ISSN: 1090-6487. DOI: 10.1134/1.1951009. URL: https://doi.org/10.1134/1.1951009.
- [45] A. V. Derbin и др. «Search for resonant absorption of solar axions by atomic nuclei». в: Bulletin of the Russian Academy of Sciences: Physics 71.6 (июнь 2007), с. 832—840. ISSN: 1934-9432. DOI: 10. 3103 / S1062873807060160. URL: https://doi.org/10.3103/S1062873807060160.
- [46] A. V. Derbin и др. «Search for solar axions produced by Primakoff conversion using resonant absorption by 169Tm nuclei». в: *Physics Letters B* 678.2 (2009), с. 181—185. ISSN: 0370-2693. DOI: https://doi.org/10.1016/j.physletb.2009.06.016. URL: http://www.sciencedirect.com/science/article/pii/S0370269309006881.
- [47] V. N. Muratova и др. Searches for axioelectric effect of solar axions with BGO-scintillator and BGO-bolometer detectors. 2015. arXiv: 1501. 02943 [hep-ex].
- [48] A. H. Abdelhameed и др. «New limits on the resonant absorption of solar axions obtained with a ¹⁶⁹Tm-containing cryogenic detector». в: The European Physical Journal C 80.5 (май 2020). ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-020-7943-5. URL: http://dx.doi.org/10.1140/epjc/s10052-020-7943-5.
- [49] A V Derbin и др. «Recent Results of Search for Solar Axions Using Resonant Absorption by 83Kr nuclei». в: Journal of Physics: Conference Series 934 (дек. 2017), с. 012018. ISSN: 1742-6596. DOI: 10.1088/1742-6596/934/1/012018. URL: http://dx.doi.org/10.1088/1742-6596/934/1/012018.
- [50] СМ Lederer и VS Shirley. «Table of Isotopes John Wiley & Sons». в: Inc., NY (1978).
- [51] TW Donnelly и др. «Do axions exist?» в: *Physical Review D* 18.5 (1978), с. 1607.

- [52] A. V. Derbin и др. «Tm-Containing Bolometers for Resonant Absorption of Solar Axions». в: 2015. DOI: 10.3204/DESY-PROC-2015-02/derbin_alexander.
- E. Bertoldo и др. «A test of bolometric properties of Tm-containing crystals as a perspective detector for a solar axion search». в: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 949 (янв. 2020), с. 162924. ISSN: 0168-9002. DOI: 10.1016/j.nima.2019.162924. URL: http://dx.doi.org/10.1016/j.nima.2019.162924.