Point of Care Device for measurement and analysis of vital parameters

Team Members:

Huzefa Essaji (B-41) Parth Bhalerao (A-65) Vivek Kaushik (B-82) Chandrakant Mohadikar (B-104)

7th Semester – Final Year Major Project

Outline

- > Introduction
- **➤** Literature Survey
- Proposed Methods
- > Performance Analysis
- Conclusion
- References

Introduction

 As we know, whenever a patient goes to a doctor with slightly off the charts symptoms, the most common advice that is being given to them is to perform all the vital related tests like ECG, Heart Rate, Blood Pressure and Oxygen Level, etc.

- Many a times, patient in rural areas travel to urban areas for their check up and cannot afford these costly tests.
- Also, even if they visit the local clinics in sub-urban areas, they do not have these facilities and do not provide accurate results.

Objectives

- Hence, to solve this issue, we tend to develop a device, which is capable of measuring several vital parameters like: ECG, Heart Rate, Sp02, Blood Pressure, Monitoring of several body parts like ear canal, eye pupil, skin rash, etc.
- We aim to provide all these functionalities into a single device with high accuracy.
- Secondly, we aim to achieve high portability in our device, which would be handy and easy to carry. For this, we will be designing our hardware in as much low form factor as possible.
- Also, we wish to develop a mobile application as well as an online website to store all the details related to patients, so that they can connect with doctors for further diagnosis and medications, ultimately establishing an online practo-service.
- Several parameters, will be calculated in a non-invasive way, via implementing several algorithms.
- Additionally, we wish to implement several machine learning algorithms to perform certain predictions, based on patient history.

Objectives

PHASE I

Real time HD image of Ear canal for Ear problems

Real time measurement of Body TEMPERATURE

Real time Heart Beat (ECG) measurement

Real time image of **SKIN** to investigate rashes or change of color

Real time HD image of LARYNX to investigate infection if any

Real time BLOOD OXYGEN measurement

PHASE II

Real time sounds to **LUNGS** to investigate Chest congestion / coughs etc

Real time sounds of HEART to investigate any abnormalities

Real time sounds of ABDOMEN to investigate any infection / abnormalities

Real time **Blood Pressure** measurement

Diagnostics for Blood Parameters using a drop of Blood.

Portable ECG Monitoring System with USB Host Interface (2010 IEEE-EMB)

Portable ECG Monitoring System Design (IEEE 2019)

ECG Monitoring Device Based On Arduino (IEEE 2020)

Portable ECG Device for Remote Monitoring and Detection of Onset of Arrhythmia (IEEE 2020)

Algorithm	Decision tree	SVM	Naïve Bayes	KNN	MLP
Accuracy	65.51%	98%	69%	65.51%	72.41%
F1 score	0.62	0.98	0.69	0.66	0.72

Low Cost, Portable ECG Monitoring and Alarming System Based on Deep Learning (IEEE 2020)

Name	Value
Classification rate for train data	99%
Classification rate for test data	97%
Overall model accuracy	97.57%
Model loss	0.01%
Total root mean square error	0.004

Machine Learning in Electrocardiogram Diagnosis (IEEE 2009)

Author(s)	Feature extraction/reduction method	Classification model	Accuracy (%)
Y. zbay et al. [37]	Segments of arrhythmia.	MLP-BB+FCNN*	98.9 for ANN 99.9for FCNN
A. Sengur et al.[38]	Wavelet transforms and short time Fourier transform	AIS based fuzzy k-NN**	95.9 sensitivity# 96specificity# #
Z. Dokur et al. [39]	Fourier and wavelet analyses	ANN+GAs	96
K. Lewenstein et al. [40]	Segment of QRS complex, P and T wave	ANN + Expert System	92.5 sensitivity 96.7specificity
C-W. CHU et al. [41]	Moving average and differential equation approach	ANN and CBR	very high clustering performance
R. Ceylan et al. [42]	Segments of arrhythmia	T2FCM+ANN***	99
R. U. Acharya et al. [17, 18]	Spectral entropy	ANN + Fuzzy	80-85

A Survey: Classification of ECG Signals using Machine Learning Techniques (IEEE 2015)

Researchers	No. of features	ECG Features	Preprocessing Technique	Database	Modeling Technique	Performance Measures	Accuracy (%)
R.Ceylan et al. (2008)	1	RR interval	Feature extraction: DWT	MIT-BIH arrhythmias	3-layered FFNN, T2FCNN, fuzzy clustering neural network	Sensitivity, Specificity, Average detection rate	96.7 100 98.35
J.Wang et al (2012)	2	R peak, RR interval	Feature normalization: Z score, Feature reduction: PCA and LDA		PNN classifier with probability density function (pdf) as training rule		97.98 99.10 99.71
V Kumari and P.Kumar (2013)	1	RR interval	Feature extraction: Symlets, CWT, Feature reduction: Symmetric uncertainty		Modular neural network – MLPNN	Precision , Recall, Root MSE	95.1 95.1 0.1765
S.Jadhav et al. (2012)	1	RR interval	Feature extraction: DWT	UCI arrhythmia	MLPNN, Generalized FFNN, Modular neural network	Sensitivity, Specificity, Accuracy	93.75 93.1 86.67
A.Dallali et al. (2011)	1	RR interval	Feature normalization: Z score, Denoised: Baseline adjustment, Feature extraction: DWT	7-11-11-11	FCM and heart rate variability (HRV)	Accuracy	99.05
M.Vijayavanan et al. (2014)	12	Peaks-R, Q, S, P, T, Intervals- RR, PR, QT, ST, QRS duration, Segments- ST, PR			Feed forward PNN classifier Trained with extracted features	Accuracy	96.5
A.Dallali et al. (2011)	2	RR interval R point location	Feature extraction: DWT using Daubechies wavelet Of order 3	Y-2 (100) 000	Pre-classification: FCM, Final classification: MLPNN	Accuracy	99.99

Application of Machine Learning on ECG Signal Classification Using Morphological Features (IEEE 2020)

#	ANN Classifier's Performance					
Hidden Neurons	Training	Validation	Test	All		
î e	TP=34.3%,	TP=33.3%,	TP=33.3%,	TP=34%,		
	TN=42.4%,	TN=53.3%.	TN=26.7%,	TN=41%,		
10	FP=18.6%,	FP=0%,	FP=20%,	FP=16%,		
	FN=5.7%,	FN=13.3%,	FN=20%,	FN=9%,		
	Accuracy=75.7%	Accuracy=86.7%	Accuracy=60%	Accuracy=75%		
0 8	TP=42.9%,	TP=46.7%,	TP=40%,	process are sound		
14	TN=44.3%,	TN=33.3%,	TN=46.7%,	TP=43%,		
	FP=7.1%,	FP=6.7%,	FP=6.7%,	TN=43%,		
	FN=5.7%,	FN=13.3%.	FN=6.7%,	FP=7%, FN=7%		
	Accuracy=87.1%	Accuracy=80%	Accuracy=86.7%	Accuracy=75.7%		
	TP=40%, TN=50%,	TP=53.3%,	TP=60%, TN=33.3%,	TP=45%,		
22	FP=7.1%,	TN=46.7%,	FP=0%,	TN=47%,		
	FN=2.9%,	FP=0%, FN=0%,	FN=6.7%,	FP=5%, FN=3%,		
	Accuracy=90%	Accuracy=100%	FN=6.7%, Accuracy=93.3%	Accuracy=92%		
28	TP=12.9%,	TP=6.7%,	TP=20%,	TP=49%,		
	TN=45.7%,	TN=66.7%,	TN=46.7%,	TN=13%,		
	FP=40%,	FP=26.7%,	FP=33.3%,	FP=37%,		
	FN=1.4%,	FN=0%,	FN=0%,	FN=1%,		
		Accuracy=73.3%	Accuracy=66.7%			

Classification and Detection of Arrhythmia in ECG Signal Using Machine Learning Techniques (IEEE 2019)

Machine learning methods	Traini ng sample	Test sampl e	Sensitiv ity (%)	Specific ity (%)	Accura cy (%)
SVM-Linear	84148	21037	86.16	53.21	75.46
SVM-RBF	84148	21037	96.62	49.64	82.32
Decision Tree	84148	21037	97.34	68.24	93.40
Random Forest	84148	21037	94.91	47.66	78.03
KNN	84148	21037	85.82	52.26	77.65
Naïve Bayes	84148	21037	55.34	63.72	58.38
Ada-Boost	84148	21037	87.32	82.57	85.30

	Estimation of Blood Pressure by using Electrocardiogram(ECG) and Photo-plethysmogram(PPG) (IEEE 2015)
	In this study, we found the relationship between blood pressure (BP) and pulse transit time (PTT). After measuring ECG and photo-plethysmogram, the PTT was calculated from the acquired signals. Blood pressure (BP), the pressure exerted by circulating blood upon the walls of blood vessels, is an
	important physiological parameter and can provide some information forpersonal healthcare. Pulse transit time is the time taken for the arterial pulse Pressure wave to travel from the aortic valve to a peripheral site.
	It is usually measured from the R wave on the electrocardiogram to a photoplethysmography signal. PTT is inversely proportional to blood pressure.
$\overline{}$	The mean error are 0.29 mmHg for SBP and 0.1mmHg for DBP. These results are satisfied with the regulation of ANSI/AAMI for certification of sphygmomanometer that rea measurement error value should be within the mean error of ± 5 mmHg

ECG Heartbeat Classification Using Multimodal Fusion (IEEE 2021)

Categories	Annotations
	Normal
N	Left/Right bundle branch block
11	Atrial escape
	Nodal escape
	Atrial Premature
C	Aberrant atrial premature
3	Nodal premature
	Supra-ventricular premature
X7	Premature ventricular contraction
v	Ventricular escape
F	Fusion of ventricular and normal
	Paced
Q	Fusion of paced and normal
	Unclassifiable

ECG Heartbeat Classification Using Multimodal Fusion (IEEE 2021)

TABLE 5. Experimental results of MIT-BIH dataset using AlexNet.

Modalities	Accuracies%	Precision%	Recall%
GAF Images only	97.3	85	91
RP Images only	97.2	82	93
MTF Images only	91.5	86	89
Concatenation Fusion	97	82	91
Average Fusion	98.5	95	93.1
Proposed MIF	98.6	93	92
Proposed MFF	99.7	98	98

TABLE 6. Experimental results of MIT-BIH dataset using simpler CNN of Fig. 4.

Modalities	Accuracies%	Precision%	Recall%
GAF Images(gray scale)	94.2	74.2	91
RP Images(gray scale)	96.3	80	90
MTF Images(gray scale)	94	72	86
Concatenation Fusion	94.6	80.4	84
Average Fusion	97.6	87	92
Proposed MFF	98.3	90.5	93

TABLE 7. Experimental results of PTB dataset using AlexNet.

Modalities	Accuracies%	Precision%	Recall%
GAF Images only	98.4	98	96
RP Images only	98	98	94
MTF Images only	95.3	94	89
Concatenation Fusion	97.4	95	95
Average Fusion	98.5	97	98
Proposed MIF	98.4	98	94
Proposed MFF	99.2	98	98

TABLE 8. Experimental results of PTB dataset using simpler CNN of Fig. 4.

Modalities	Accuracies%	Precision%	Recall%
GAF Images (gray scale)	94.7	91	90
RP Images (gray scale)	95.1	95	87
MTF Images(gray scale)	86.6	80	69
Concatenation Fusion	92.2	88	84
Average Fusion	96.3	91	94
Proposed MFF	96.5	94	93

TABLE 9. Comparison of heart beat classification results of MITBIH dataset with previous methods.

Previous Methods	Accuracies%	Precision%	Recall%
Izci et al. [43]	97.96	#3	=32
Dang et al. [23]	95.48	96.53	87.74
Li et al. [47]	99.5	97.3	98.1
Zhao et al. [49]	98.25	***	
Oliveria et al. [37]	95.3	23	팔
Huang et al. [21]	99	- 5	#2
Shaker et al. [32]	98	90	97.7
Kachuee et al. [28]	93.4	-0	-
Xu et al. [66]	95.9	-	*3
He et al. [67]	98.3	20	- mai
Qiao et al. [68]	99.3		25
Proposed MIF	98.6	93	92
Proposed MFF	99.7	98	98

TABLE 10. Comparison of MI classification results of PTB dataset with previous methods.

Previous Methods	Accuracies%	Precision%	Recall%
Dicker et al. [39]	83.82	82	95
Acharya et al. [27]	95.22	95.49	94.19
Kojuri et al. [69]	95.6	97.9	93.3
Kachuee et al. [28]	95.9	95.2	95.1
Liu et al. [40]	96	97.37	95.4
Sharma et al. [12]	96	99	93
Chen et al. [31]	96.18	97.32	93.67
Cao et al. [70]	96.65		
Ahamed et al. [71]	97.66	80.	
Proposed MIF	98.4	98	94
Proposed MFF	99.2	98	98

TABLE 11. Comparison of computational cost of AlexNet and CNN of Fig. 4 using MFF framework on MIT-BIH dataset.

CNN Model	Fusion Framework	Training Parameters
AlexNet	MFF	9259427
AlexNet	MIF	3086475
CNN of Fig. 4	MFF	612069

Sr. No.	Title	Indexing and Year of Publication	Remarks
1	Portable ECG Monitoring System with USB Host Interface (2010 IEEE-EMB)	2010 3rd International Conference on Biomedical Engineering and Informatics.	Only a theoretical explanation of how the required system can be developed is explained. System developed on a 8051 MCU variant. Only ECG transfer and display process and no analysis performed.
2	Portable ECG Monitoring System Design (IEEE 2019)	2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE).	Concerned only with how ECG can be acquired via sensors and main focus is on data transfer and display of data via Wi-Fi and development of UI on Android. No analysis of ECG is performed.
3	ECG Monitoring Device Based On Arduino (IEEE 2020)	2020 Medical Technologies Congress (TIPTEKNO).	Concerned with developing of a low cost simple system working of Arduino, which receives ECG signal and displays on a monitor. No analysis is performed.
4	Portable ECG Device for Remote Monitoring and Detection of Onset of Arrhythmia (IEEE 2020)	2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT).	Developed a complete system on R-pi along with analysis of ECG signals.

Sr. No.	Title	Indexing and Year of Publication	Remarks
5	Low Cost, Portable ECG Monitoring and Alarming System Based on Deep Learning (IEEE 2020)	2020 IEEE Region 10 Symposium (TENSYMP).	Complete End-to-End system for ECG acquisition and analysis done via ML algorithm. However, hardware is bulky and should be changed.
6	Machine Learning in Electrocardiogram Diagnosis (IEEE 2009)	2009 International Multiconference on Computer Science and Information Technology.	A survey is carried out on several ML algorithms for ECG diagnosis and their comparison has been done.
7	A Survey : Classification of ECG Signals using Machine Learning Techniques (IEEE 2015)	2015 International Conference on Advances in Computer Engineering and Applications.	A survey is carried out on several ML algorithms for ECG diagnosis and their comparison has been done.
8	Application of Machine Learning on ECG Signal Classification Using Morphological Features (IEEE 2020)	2020 IEEE Region 10 Symposium (TENSYMP).	ML model based on neural networks is explained and a methodology is defined to classify and perform analysis of ECG into normal and abnormal category.
9	Classification and Detection of Arrhythmia in ECG Signal Using Machine Learning Techniques (IEEE 2019)	2019 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).	Several ML techniques are applied on ECG signals and their comparison is made to find which technique is best.

Sr. No.	Title	Indexing and Year of Publication	Remarks
10	Estimation Of Blood Pressure by using Electrocardiogram(ECG) and Photoplethysmogram(PPG) (IEEE 2015)	2015 Fifth International Conference on Communication Systems and Network Technologies.	Discussed techniques and algorithms, by the help of which, we can accurately predict the blood-pressure from ECG and PPG.
11	ECG Heartbeat Classification Using Multimodal Fusion (IEEE 2021)	IEEE Access, 9, 100615-100626.	Concerned with analysis of ECG signals and classification of Heart beat into several categories.

Generalized Block Diagram

Proposed Method

Proposed Method

The Proposed Device is centered around a dedicated micro processor which will be able to acquire the Analog signals, convert them into Digital data and through use of the algorithms. All process the same to give digital outputs as per the medical templates required. Since the microprocessor and other components are mass produced the reliability and repeatability in the devices is assured.

Name	Age	Gender	Location	Blood Group	Action
Higely Essaji	529	MALE	xontra	81	Chknee
Wat	21	MALE	nagpur	3+	Clother
Adinya Pathak	21	MALE	Negpur	8+	Clockee
Rahul Laddhad	30	MALE	Negrai	0-	Click Heie
Ang Shemu	13	MALE	Debi	0-	Click Here
Backir	33	MALE	wentha	8+	Click name
Abhijit	28	MALE	NAGPUR	3+	Click Have
Ashai T	45	MALE	Negrun	A.	Statione
Modul Vajpajee :	-12	MALE	Negour:	Dvit .	CRACHINE

Hearth Disease Prediction

Personal Informations							
Name	Cart		Sm	Male	. 0		
Age	19-24		Race	White			
Height	185	.0.	Weight	70	:0		
eneral Information							
Have you smoked at least	: 100 digarettes in your entire life?	Yes	*				
Heavy alcohol drinkers (N	tale: >14 drinks & Female: >7 drinks per week)	Yee	#				
Would you say t	hat in general your health is	Fair	#]			500	
On average, how many h	ours of sleep do you get in a 24-hour period?	3	4				
How many days durin	ng the past 30 days was your mental health not good?	15	ō.			7	
How many days during	ng the past 30 days was your physical health not good?	15					
lealth Information					- TIP		
Did you do exercise during	g the past 30 days other than their regular job?	Yes	#]				
Do you have serious	difficulty walking or climbing stairs?	Yes	\$]				
	Have you ever had a stroke?	Yes	#				
н	ave you ever had a diabetes?	Yes.	#				1
н	ave you ever had an asthma?	Yes	#]				
Have	you ever had a skin cancer?	Yes	#				
Have yo	u ever had a kidney disease?	Yes	0				

Impact Of Project

Conclusion

- ✓ With the proposed device a person doesn't require to visit hospital and can eventually test for the required parameters using wearable medical device at home.
- \checkmark Wearable medical device can provide regular records of these tests to doctors.
- ✓ The complete system is user friendly and easy to use.
- ✓ With the advances in this wearable medical device, we can help many patients by saving their time and money, along with connecting them with doctors remotely.

References

- Jourand, P., De Clercq, H., Corthout, R., & Puers, R. (2009). Textile integrated breathing and ECG monitoring system. Procedia Chemistry, 1(1), 722-725. Weiler, D. T., Villajuan, S. O., Edkins, L., Cleary, S., & Saleem, J. J. (2017, September).
- Wearable heart rate monitor technology accuracy in research: a comparative study between PPG and ECG technology. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 61, No. 1, pp. 1292-1296).
- Chan, M., Estève, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges.
- Chung, H. U., Rwei, A. Y., Hourlier-Fargette, A., Xu, S., Lee, K., Dunne, E. C., ... & Rogers, J. A. (2020). Skin interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units.

References

Portable ECG Monitoring System with USB Host Interface (2010 IEEE-EMB), 2010 3rd International Conference on Biomedical Engineering and Informatics.
Portable ECG Device for Remote Monitoring and Detection of Onset of Arrhythmia (IEEE 2020), 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT).
A Survey : Classification of ECG Signals using Machine Learning Techniques (IEEE 2015), 2015 International Conference on Advances in Computer Engineering and Applications.
Application of Machine Learning on ECG Signal Classification Using Morphological Features (IEEE 2020), 2020 IEEE Region 10 Symposium (TENSYMP).
Estimation Of Blood Pressure by using Electrocardiogram(ECG) and Photo-plethysmogram(PPG) (IEEE 2015) 2015 Fifth International Conference on Communication Systems and Network Technologies.
ECG Heartbeat Classification Using Multimodal Fusion (IEEE 2021). IEEE Access. 9, 100615-100626.

