Ejercicios II – Tema 1

Realiza las siguientes conversiones numéricas

1.	Convierte los siguientes números binarios a números decimales. 10011110 = 1001111 = 1001001 =
2.	Convierte los siguientes números en decimal a su equivalente binario. 71 = 268 = 59 = 301 =
3.	Convierte los siguientes números en hexadecimal a su equivalente decimal. FF11 = C30 = 4AFF = 610 =
4.	Convierte las siguientes cantidades decimales a su equivalente hexadecimal. 917 = 1002 = 201 = 1902 =
5.	Transforma los siguientes números en base 2 a sus correspondientes números en base 16 y en base 8. $1101000111010 = 101010100000001 =$
6.	Transforma los siguientes números en base 16 a los correspondientes números en base 2 y en base 8: 1CA5F = BD345 =
7.	Convierte los siguientes números al sistema de representación decimal. Antes, explica brevemente el proceso que seguirás para hacer la conversión. $100_{(3}=1000_{(6}=561_{(7}=$

8. Convierte los siguientes números expresados en sistema decimal al sistema de representación que se especifica. Antes, explica brevemente el proceso que seguirás para hacer la conversión. 2231₍₁₀₎ a base 5 =

```
231<sub>(10</sub> a base 7 = 2<sub>(10</sub> a base 3 = 2<sub>(10</sub> a base 4 = 7<sub>(10</sub> a base 8 = 189<sub>(10</sub> a base 9 =
```

9. Convierte los siguientes números expresados en binario al sistema de representación decimal.

```
111100110,01<sub>(2</sub> = 1111111111,0101<sub>(2</sub> =
```

10. Convierte los siguientes números expresados en hexadecimal al sistema de representación octal.

```
62BB,2D<sub>(16</sub> = 1B3C,3<sub>(16</sub> =
```

- 11. ¿Qué ocurre cuando tratamos de convertir 289₍₈ en un sistema de representación en base 2? Justifica tu respuesta y ofrece una solución válida.
- 12. Realiza las siguientes sumas en binario. Recuerda que puedes comprobar el resultado pasando tanto los operadores como el resultado a decimal.

```
1111,111_{(2)} + 10000,00_{(2)} =
1101001000,0110_{(2)} + 1000,00001_{(2)} =
```

13. Realiza las siguientes restas en binario.

```
101110110,111_{(2)} - 101,1110_{(2)} = 101001111010_{(2)} - 100111_{(2)} =
```

14. Realiza las siguientes multiplicaciones en binario.

```
1111111_{(2} \cdot 101_{(2} = 11011010_{(2)} \cdot 1110_{(2)} = 11011010_{(2)} \cdot 1110_{(2)} = 11011010_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110_{(2)} = 1110
```

15. Realiza las siguientes divisiones en binario.

$$10000_{(2} / 100_{(2} = 11100100_{(2} / 1100_{(2} = 110000_{(2)})$$

16. Realiza las siguientes operaciones en binario utilizando el complemento a 1.

```
25_{(10} - 30_{(10} =
-12_{(10} - 20_{(10} =
-96_{(10} - 123_{(10} =
```

17. Realiza las siguientes operaciones en binario utilizando el complemento a 2.

$$15_{(10} - 5_{(10} =$$
 $-14_{(10} - 50_{(10} =$
 $-37_{(10} - 111_{(10} =$

18. Expresa el número -71 en complemento a 1, complemento a 2, signo magnitud (siendo n = 8 bits) y exceso a 2^{n-1} -1 (siendo también n = 8).