문제 2 mpg 자료를 이용하여 다음을 코딩하라.(결측값은 제거할 것). (조건: 반응 변수: mpg01, 예측 변수: cylinders, weight, displacement, horsepower로 지정)

1. mpg의 값이 중앙값보다 크면 1로, 아니면 0으로 할당하는 이항 변수 자료를 만들어라. 그리고 Auto 자료에 mpg01 이라는 변수명으로 추가하라.

	mpg [‡]	cylinderŝ	displacement	horsepower	weight	acceleration	year ‡	origin [‡]	name \$\div\$	mpg01 [‡]
1	18	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu	0
2	15	8	350.0	165	3693	11.5	70	1	buick skylark 320	0
3	18	8	318.0	150	3436	11.0	70	1	plymouth satellite	0
4	16	8	304.0	150	3433	12.0	70	1	am c rebel sst	0
5	17	8	302.0	140	3449	10.5	70	1	ford torino	0
6	15	8	429.0	198	4341	10.0	70	1	ford galaxie 500	0
7	14	8	454.0	220	4354	9.0	70	1	chevrolet impala	0
8	14	8	440.0	215	4312	8.5	70	1	plymouth fury iii	0

2. 선형 판별 분석(LDA)을 수행하라. 이때, 자료를 짝수년을 기준으로 훈련 자료와 시험 자료로 분리하고 전체 오차율을 구하여라.

```
> table(lda.class,mpg01.test) # 혼동 행렬을 생성하여 예측값과 test set 비교 mpg01.test
lda.class 0 1 0 86 9 1 14 73
> mean(lda.class==mpg01.test)
[1] 0.8736264
> mean(lda.class != mpg01.test)
[1] 0.1263736
> (14+9)/(182) # 전체 오차율은 12.6%
[1] 0.1263736
```

3. 이차 판별 분석(QDA)을 수행하라. 그리고 혼동 행렬 (confusion matrix)을 만들고 전체 오차율을 구하여라.

4. 다중 로지스틱 회귀 분석을 수행하라. 그리고 시험자료에서 예측한 값과 실제 값을 비 교하고 전체 오차율을 구하여라.

5. 최근접이웃방법(KNN)을 수행하라. 그리고 K = 1, K = 10, K = 100일 때, 각 전체 오차율을 구하여라.

```
> knn.pred = knn(train.x, test.x, train.mpg01, k = 1) #k가 1인 KNN 수행
> mean(knn.pred != mpg01.test) #k가 1일때의 전체오차율은 15.4%
[1] 0.1538462
> knn.pred = knn(train.x, test.x, train.mpg01, k = 10) #k가 10인 KNN 수행
> mean(knn.pred != mpg01.test) #k가 10일때의 전체오차율은 16.5%
[1] 0.1648352
> knn.pred = knn(train.x, test.x, train.mpg01, k = 100) #k가 100인 KNN 수행
> mean(knn.pred != mpg01.test) #k가 100일때의 전체오차율은 14.3%
[1] 0.1428571
```