Homework 3

1 Charset

$$\Sigma = \{0, 1\}$$

2 Language

 $L(M) = \{w | w \text{ has even number of } 0 \text{ and every } 0 \text{ followed by at least an } 1\}$

3 RE

As requirement, we can construct the regular expression as below.

(1*011*01)*1*

4 NFA

NFA can be derived from RE. Here is the step.

Figure 1: Step 1

Figure 2: Step 2

Figure 3: Step 3

Figure 4: Step 4

5 DFA

To obtain the goal, we can use the lemma of De Morgen's law, i.e., $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. The DFAs of $\{w|w\ has\ even\ number\ of\ 0\}$ and $\{w|inw, every\ 0\ followed\ by\ at\ least\ an\ 1\}$ are shown as below respectively.

Figure 5: $\{w \mid w \text{ has even number of } 0\}$

Figure 6: $\{w \mid \text{in } w, \text{ every } 0 \text{ followed by at least an } 1\}$

Take the complement of them and union them, we have

Figure 7: The complement and union of the 2 DFAs, another NFA

Then we can turn the NFA to DFA, where $q_0 = \{1, 2, 4\}$.

$q_0 \xrightarrow{0} \{3,5\} (q_1)$	$q_0 \xrightarrow{1} \{2,4\} (q_2)$
$q_1 \xrightarrow{0} \{2,6\} (q_3)$	$q_1 \xrightarrow{1} \{3,4\} (q_4)$
$q_2 \xrightarrow{0} \{3,5\} (q_1)$	$q_2 \xrightarrow{1} \{2,4\} (q_2)$
$q_3 \xrightarrow{0} \{3,6\} (q_5)$	$q_3 \xrightarrow{1} \{2,6\} (q_3)$
$q_4 \xrightarrow{0} \{2,5\} (q_6)$	$q_4 \xrightarrow{1} \{3,4\} (q_4)$
$q_5 \xrightarrow{0} \{2,6\} (q_3)$	$q_5 \xrightarrow{1} \{3,6\} (q_5)$
$q_6 \xrightarrow{0} \{3,6\} (q_5)$	$q_6 \xrightarrow{1} \{2,6\} (q_3)$

Table 1: Turn the NFA to DFA

We can draw the corresponding DFA.

Figure 8: DFA in complement

Then turn to its complement, and obtain the DFA we want.

Figure 9: DFA

Or we can simplify it.

Figure 10: DFA after simplification