

A. Papadopoulos, G. Pallis, M. D. Dikaiakos

Identifying Clusters with Attribute Homogeneity and Similar Connectivity in Information Networks

IEEE/WIC/ACM International Conference on Web Intelligence
Nov. 17-20, 2013
Atlanta, GA
USA

The Real World: Information Networks

Model such Information Networks as

attributed multi-graphs

An Online Social Network

Clustering

- The process of identifying groups of related data/objects in a dataset/information network
- Why? Discover hidden knowledge!

Network

Applications

Co-author Networks

Recommending new collaborations

Social Networks

Recommend friendships, group targeted advertisement

- A vertex may belong to more than one cluster
 - Fuzzy clustering
- Cluster based on:
 - Structure
 - Attributes

Cluster based on:

- Attributes
- Structure

Cluster based on:

- **Attributes**
- Structure

Communities?

Cluster based on:

- Attributes
- Structure

Similar Connectivity?

Cluster based on:

- Structure
- Attributes

- How to balance the attribute and structural properties of the vertices?
- How to identify which link type is more important?
 - A request to join a political group is more important than sharing a funny video
- How to identify which attribute is more important?
 - The attribute political views of a person is clearly more important than its name or gender

Related Work

Distance Based

- SA-Cluster (ACM TKDD 2011)
 - Graph augmentation with attributes and random walks
 - Different attributes importance
- PICS (SIAM SDM 2012)
 - MDL Compression
 - Similar connectivity
 - Parameter Free

Model Based

- BAGC (SIGMOD 2012)
 - Bayesian Inference Model
 - Directed graphs
- GenClus (VLDB 2012)
 - EM algorithm
 - Multi-graphs
 - Different link types importance

HASCOP

Related Work

	Directed	Weighted	Multi graph	Attribute weights	Link-Type weights	Similar Connectivity	Parameter Free
SA-Cluster[1]	~	V		V			
BAGC[2]	V						
GenClus[3]	V	V			V		
PICS[4]	✓					V	V
HASCOP	✓		V	V	V	✓	✓

- [1] H. Cheng, Y. Zhou, and J. X. Yu. Clustering large attributed graphs: A balance between structural and attribute similarities. *ACM Trans. Knowl. Discov. Data*, Feb. 2011.
- [2] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In *Proceedings of SIGMOD '12*, 2012.
- [3] Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. *Proc. VLDB Endow.*, Jan. 2012.
- [4] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos. PICS: Parameter-free identification of cohesive subgroups in large attributed graphs. *SDM*, Apr. 2012

HASCOP

Objective Function
Similar Connectivity
Attribute Coherence
Weight Adjustment Mechanism
Clustering Process

HASCOP

Assigns vertices in the same cluster so as to exhibit both similar connectivity and attribute coherence

• Given function $s(v_i, c_j)$ the clustering objective function is:

$$O(\Theta, \vec{\omega_t}, \vec{w_\alpha}) = \sum_{i=1}^{|V|} \sum_{j=1}^k \Theta_{i,j} \cdot s(v_i, c_j, \vec{\omega_t}, \vec{w_a})$$

Similar Connectivity

Two vertices v_i, v_j
have similar
connectivity
pattern if S(v_i) and
S(v_i) highly

Similar Connectivity represents how similar two vertices are based on their <u>outgoing</u> links

Similar Connectivity

	▶ v 5
V1	V2
\	
Cluster 1	

L ^O	v_1	v_2	v_3	v_4	v_5
c_1	1	1	1	0	0

v_1	1	1	1	0	0
v_2	0	1	1	0	0
v_3	1	1	1	0	0
v_4	0	1	0	1	1
v_5	0	0	0	0	1

$$link_sim(v_1, c_1) = 1$$

$$link_sim(v_5, c_1) = \frac{1}{3}$$

- (a) Example graph
- (b) Cluster c_1 properties and adjacency matrix.
- (c) Similar Connectivity

$$link_sim(v_i, c_j) = \frac{1}{|V|}$$

$$1 + \sqrt{\sum_{x=1}^{|V|} \left(L_{i,x} - \mathcal{C}_{j,x}^{links}\right)^2}$$

Attribute Coherence

- Weighted Euclidean distance
- It is close to one if the attribute vector of v_i is very close to the attribute centroid of c_j

$$attr_sim(v_i, c_j, \vec{w_{lpha}}) = rac{1}{1 + \sqrt{\sum\limits_{l=1}^{p} w_{lpha_l} \cdot \left(A_{i,l} - \mathcal{C}_{j,l}^{attr}
ight)^2}}$$

HASCOP: Approach

 A vertex has high similarity with a cluster if both their similar connectivity and attribute coherence are high.

$$s(c_j, v_i, \vec{w_a}) = link_sim(v_i, c_j) \cdot attr_sim(v_i, c_j, \vec{w_\alpha})$$

Weight Adjustment

- Voting mechanism
- The weights are adjusted towards the direction of increasing the clustering objective function:
 - If vertices in the same cluster are connected by link-type A then the weight of link-type A is increased
 - If vertices in the same cluster share the same value for an attribute X then the weight of attribute X is increased

Clustering Process

Evaluation

Datasets
Evaluation Measures
Evaluations

Datasets

GoogleSP-23: Google Software Packages

- Built from software files installed on Cloud
- Software files are not densely connected components

- Vertex: software file
- Attributes:
 - File Size
 - File Type
 - Last Access Time
 - Last Content Modified Time
 - Time of the most recent metadata change
- Link-types:
 - File name similarities
 - File path similarities

Datasets

DBLP: Bibliography Network

- Vertex: author
- Attributes:
 - Number of publications
 - Research area
- Link-types:
 - Co-author relationship

Dataset	DBLP-1000	GoogleSP-23	
Nodes	1000	1297	
Edges	17128	24153	
Attributes	2	5	
Link Types	1	2	
Type of Graph	Undirected	Undirected	

Evaluation Measures

- Entropy
 - Attribute properties
 - Close to zero for attribute cohesive clusters
- For GoogleSP-23 dataset we measure:
 - The percentage of clusters overlapping with a software package
 - The percentage of software packages that were actually identified

Evaluation – DBLP-1000

Very close to the lowest average entropy

Evaluation – DBLP-1000

Successfully identified the importance of "Area of interest" against "No of publications"

Evaluation – GoogleSP-23

Comparison to the "ground truth"

 Must identify the software packages

 HASCOP is closest to the "optimal" entropy

Evaluation – GoogleSP-23

- HASCOP found 51 clusters
- More than 80% of returned clusters by HASCOP and PICS are consisted of files from the same software packages

Evaluation – GoogleSP-23

- Almost all clusters (>90%) returned by HASCOP have full overlap with a software package
- Almost all (21 of 23) software packages have been identified

Conclusions

Conclusions Future Work

Conclusions

- HASCOP succeeded in returning clusters useful to many applications studying such information networks
 - Correctly identified software packages installed on a Cloud infrastructure
- Experiments confirmed that HASCOP finds clusters characterized by attribute homogeneity
- Similar Connectivity is important

Future Work

- Integrate into MinerSoft¹ (a software file search engine)
- Extend HASCOP to handle:
 - Weighted multi-graphs
 - Heterogeneous information networks
 - Deploy to a large scale Hadoop cluster

1: Minersoft is available at: http://euclid.grid.ucy.ac.cy:1997/MinerSoft/SimpSearch

A. Papadopoulos, G. Pallis, M. D. Dikaiakos { andpapad, gpallis, mdd } @ cs.ucy.ac.cy

Identifying Clusters with Attribute Homogeneity and Similar Connectivity in Information Networks

Thank You!

Laboratory for Internet Computing
Department of Computer Science
University of Cyprus
http://linc.ucy.ac.cy

References

- [1] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos. Pics: Parameter-free identification of cohesive subgroups in large attributed graphs. In *Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012*, Anaheim, CA, April 2012.
- [2] H. Cheng, Y. Zhou, and J. X. Yu. Clustering large attributed graphs: A balance between structural and attribute similarities. *ACM Trans. Knowl. Discov. Data*, 5(2):12:1–12:33, Feb. 2011.
- [3] I. Choi, B. Moon, and H.-J. Kim. A clustering method based on path similarities of xml data. *Data Knowl. Eng.*, 60(2):361–376, Feb. 2007.
- [4] M. D. Dikaiakos, A. Katsifodimos, and G. Pallis. Minersoft: Software retrieval in grid and cloud computing infrastructures. *ACM Trans. Internet Technol.*, 12(1):2:1–2:34, July 2012.
- [5] S. Jenkins and S. Kirk. Software architecture graphs as complex networks: A novel partitioning scheme to measure stability and evolution. *Information Sciences*, 177(12):2587 2601, 2007.

References

- [6] S. E. Schaeffer. Graph clustering. *Computer Science Review*, 1(1):27 64, 2007.
- [7] Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. *Proc. VLDB Endow.*, 5(5):394–405, Jan. 2012.
- [8] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In *Proceedings of the 2012 international conference on Management of Data,* SIGMOD '12, pages 505–516, New York, NY, USA, 2012. ACM.
- [9] X. Zheng, D. Zeng, H. Li, and F. Wang. Analyzing open-source software systems as complex networks. *Physica A: Statistical Mechanics and its Applications*, 387(24):6190–6200, 2008.
- [10] Y. Zhou, H. Cheng, and J. Yu. Clustering large attributed graphs: An efficient incremental approach. In *Data Mining (ICDM), IEEE 10th International Conference on,* pages 689–698, Dec. 2010.
- [11] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. *Proc. VLDB Endow.*, 2(1):718–729, Aug. 2009.

Search | Advanced Search

270 results from 1601896 indexed docs in (0.52 seconds)

Binary files Library files Script/Source files

Maybe you want to search for: filoop

[binary] =2 [library] =51 [script/source] =217

[library] libhadoop.so.1.0.0

Add your Tag for this result

Located at E

[library] libhadoop.so

Add your Tag for this result

Located at ±

[library] libhadoop.so.1

Add your Tag for this result

Located at 1

[library] libhadoop.a

Add your Tag for this result

Located at 1

And

Software Graph

Evaluation – Runtime

- For the GoogleSP-23 dataset containing two different types of links, and five attributes HASCOP converged at the fourth iteration
- Weight adjustment process is time consuming
 - The importance of each link type and attribute has been successfully identified
 - HASCOP converges faster
 - HASCOP reveals important characteristics of the information network under study