Prediction of Protein Folded Structure by Monte Carlo Simulation

Team 5: Alex Walsh, Jingqian Liu, Jinghong Liu

Proteins: The basics

- Proteins are complex macromolecules made of long chains of amino acids
- Proteins have several levels of structure, ranging from segments of residue chains coiling into α-helices, to multiple subunits combining into one large protein
- Folding is a complicated process that involves interaction between each AA and water molecules, hydrophobic/hydrophilic regions of other AAs, and sometimes other proteins
- This makes folding a computationally expensive problem

Protein Folding Models

Popular methods

- All-Atom MD with explicit solvents
 - Effective, but slow and limited to a small number of residues
- United-atom models
 - Levitt-Warshel, UNRES, KABS
- More recent developments use deep learning to simulate folding

Our project

- Previously proposed method with united atom models
 - The Generalized Born model can simulate the effects of water implicitly
 - Levitt and Warshel model reduces each amino acid to two beads
 - Virtual Movement Monte-Carlo (VMMC) is a cluster algorithm that prevents low acceptance rates by moving neighbor particles with the seed
- To further improve the efficiency and feasibility we adopted an united-atom model created by A. LIWO in 1993 (Precursor of UNRES)

Protein Sci. 1993 Oct; 2(10): 1715–1731.

Geometry of the Model

- Proteins are usually described by two angles, ϕ and ψ . This degree of freedom is reduced in the model
- By reducing the residues to three kinds of beads including C^α bead, peptide group bead and side chain bead.
- Fixed parameters:
 - \circ b_{SC}, the distance between C^{α} and its side chain (SC)
 - \circ θ_{SC} , the angle between SC and the peptide group of the previous residue (P)
 - \circ C^{α}-C^{α} distance (3.8 Å)
 - o Dihedral angle defined by $SC(i)-C^{\alpha}(i)-C^{\alpha}(i-1)-C^{\alpha}(i+1)$
- Parameter can be changed
 - \circ γ, the torsion angle, namely the dihedral angle defined by last two C^αs, C^α and SC. With a peptide with n C^α atoms, there are (n-3) γ, which means (n-3) degree of freedoms

Geometry of the Model

Dummy residues

 Dummy beads are appended to the protein chain (if the end residue is not GLY) to add an additional degree of freedom

Two lists for the model

- Geometry list and interaction list
- C^α s and dummy beads just included in the geometry list but not in interaction list

Summary of Algorithm

Force Field

 Side Chain-Side chain (SC-SC) interactions

$$U_{SC_{i}}U_{SC_{j}} \begin{cases} \left| \epsilon_{ij} \right| \left[\left(\frac{r_{ij}^{0}}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{ij}^{0}}{r_{ij}} \right)^{6} \right] & \text{(hydrophobic)} \\ \left| \epsilon_{ij} \right| \left(\frac{r_{ij}^{0}}{r_{ij}} \right)^{6} & \text{(hydrophilic)} \end{cases}$$

Validate the SC-SC interactions: 64 SC beads in a (80Å * 80 Å * 80 Å) PBC box

Force Field

- Peptide-Peptide (P-P)
 - Hydrogen bonds, electrostatic interactions
 - Important for forming secondary structures
 - o Proline is special

$$U_{p_{i}p_{j}} = \frac{A_{p_{i}p_{j}}}{r_{ij}^{3}} (\cos \alpha_{ij} - 3\cos \beta_{ij}\cos \gamma_{ij})$$

$$- \frac{B_{p_{i}p_{j}}}{r_{ij}^{6}} \left[4 + (\cos \alpha_{ij} - 3\cos \beta_{ij}\cos \gamma_{ij})^{2} - 3(\cos^{2}\beta_{ij} + \cos^{2}\gamma_{ij}) \right]$$

$$+ \epsilon_{p_{i}p_{j}} \left[\left(\frac{r_{p_{i}p_{j}}^{0}}{r_{ij}} \right)^{12} - 2\left(\frac{r_{p_{i}p_{j}}^{0}}{r_{ij}} \right)^{6} \right]$$

Type of residue pair	ϵ	r^0	A	В
ordinary-ordinary	0.305	4.51	3.73	1306
ordinary-proline	0.365	4.54	0.00	1129
proline-proline	0.574	4.48	5.13	335

Proline has no H-bond donor

Force Field

- Side Chain-Peptide (SC-P)
 - Potential between SC and Ps which are not its neighbors
- Torsional Energy
 - Energy related with the torsion angle

$$U_{SC_i p_j} = \epsilon_{SC_p} \left(\frac{r_{SC_p}^0}{r_{ij}}\right)^6$$

$$U_{tor}(\gamma_i) = a_0 + \sum_{k=1}^6 (a_k \cos k\gamma_i + b_k \sin k\gamma_i)$$

Settings for the Simulation

- Room temperature @ 298k
- Time steps (τ): 1 step = changing torsion angles in range of (-10°, 10°) (40-70% in different systems)
- Menu of moves: loop over all the γ in one pass
- No periodic boundary condition was used in structure prediction
 - Consider our model as 1 big molecule

- Protein: monomer of 6B17
- Sequence: TPRQARAARAAC
- Running 50000 passes takes
 ~44min

- The distance between two turns in predicted structure: 4.9 Å (5.4Å in natural helix)
- RMSD (Root-mean-square deviation) between natural and predicted structure is 3.3 Å
- The top view of the predicted structure resemble the natural helix structure

Energy profile: P-P potential contribute a lot to process of folding

Structure prediction of β hairpin

Protein: 2EVQ

Sequence: KTWNPATGKWTE

Natural structure

Predicted structure

Structure prediction of β hairpin

What cause the failure of prediction?
 Sampling method or force field or bugs?

 A test performed to figure out the issue: Put the natural structure under the force field

$$|\epsilon_{ij}| \left[\left(\frac{r_{ij}^0}{r_{ij}} \right)^{12} - 2 \left(\frac{r_{ij}^0}{r_{ij}} \right)^6 \right]$$
 (hydrophobic)

5.0 Å< the van der Waals radii 7.2 Å

$$U_{SC_3SC_{10}} \approx 121 \, kcal/mol$$

 This united-atom model may not be suitable for all the protein folding

Summary

- We made a tool to make protein structure prediction by implementing A. LIWO model in 1993
- We made evaluation of this force field by both pre-prediction simulation and also predicting simple α helix and β hairpin structures. α helix prediction shows consistency with natural structure while β hairpin prediction shows inconsistency with natural structure.
- Improvement can be done with UNRES model

Gitlab link: https://gitlab.engr.illinois.edu/physic466project/mc_proteinfolding

Questions?