Transmission Control Protocol

PRESENTED BY:

SABIN NEPAL

RAJAN BHATTARAI

ACHUT DAHAL

ARUNA SHRESTHA

Table of content

- Introduction to TCP
- Features of TCP
- ► TCP header
- Connection management
- Flow control
- Error control

Introduction to TCP

- A reliable, connection-oriented transport protocol
- protocol for data transmission in communication network such as internet
- provides a reliable stream delivery and connection service to applications
- corresponds to the transport layer of TCP/IP suite
- ► Used in World Wide Web (WWW), E-mail, File Transfer Protocol, Secure Shell, peer-to-peer file sharing, and some streaming media applications.

Features

- Numbering system
- Sequence number
- Acknowledgement number
- Error control
- Flow control

Services

- Process to process communication
- Stream delivery service
- Full duplex-communication
- Connection-oriented service
- Reliable service

TCP header

TCP H	eader				_			-																										
Offsets	Octet	0								1								2								3	3							
Octet	Bit	0	1 2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	2	25 26	27	28	3 29	30	31	
0	0	Source port D														De	Destination port																	
4	32	Seq	Sequence number																															
8	64	Ack	Acknowledgment number (if ACK set)																															
12	96	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																																
16	128	Che	Checksum														Urgent pointer (if URG set)																	
20	160	Opt	ions	s (:	if I	Da	ta C	Offs	et:	> 5	, pa	adc	led	at	the	en	d v	vitl	ı "(0" 1	byt	es i	if n	ece	ess	ary	7)							
4		•••																															Þ	

TCP connection

- Establishes a virtual path between source and destination
- works in Server/Client model
- ► TCP uses the services of IP to deliver individual segments, but it controls the connection itself
- Transmission requires 3 phases
 - Connection established
 - Data transfer
 - Connection termination

Connection Establishment

- SYN:
 - Synchronization of sequence no's
 - Consumes 1 sequence no
 - Carries no real data
- ► SYN+ACK
 - ► SYN segment for communication in other direction and ACK for the received SYN,
 - Consumes 1 sequence no
- ACK
 - Just an ACK segment
 - Does not consume any sequence number

Data Transfer

- Pushing data
 - Increase efficiency of data
 - Sending and receiving buffers the data
 - Delivers to application program on ready
- Urgent data
 - Application program send urgent bytes
 - Sending application program want a piece
 Of program to read out which is handled by
 URG bit

Connection termination

- FIN
 - Consumes 1 sequence no
 - May or may not consume data
- ► FIN+ACK
 - Consumes 1 sequence no
 - ► FIN announce closing of connection In other Direction and ACK for received FIN
- ACK
 - Does not consume any sequence no

Flow Control

- ► TCP uses sliding window to handle flow control
- Technique to properly match the transmission rate of the sender to that of the receiver and network

Error Control

- Error detection and correction is achieved of three simple tools
 - Checksum
 - Includes 16-bit checksum in every segment which is used to check for corrupt segment
 - If corrupted, it is discarded by destination TCP and is considered lost
 - Acknowledgement
 - ►TCP uses acknowledgement to confirm the receipt of data segments

- ACK segments are never acknowledged
- Retransmission
 - Lost, delayed or corrupted data are retransmitted
 - Segment is retransmitted either when a retransmission timer expires or when sender receives three duplicate ACK's
 - ► Retransmission after RTO
 - Retransmission after 3 duplicate ACK's
 - Out of order segments

References

- 1. https://www.tutorialspoint.com/data_communication_computer_network/transmission_control_protocol.htm
- 2. https://www.slideshare.net/k33a/transmission-control-protocol-tcp-31902778
- https://www.slideshare.net/k33a/transmission-control-protocol-tcp-31902778