where λ is the column vector $\lambda = (\lambda_1, \dots, \lambda_n)$. Since A has an inverse A^{-1} , by multiplying both sides of the equation $A\lambda = 0$ by A^{-1} we obtain

$$A^{-1}A\lambda = I_n\lambda = \lambda = A^{-1}0 = 0,$$

which shows that the columns (A^1, \ldots, A^n) are linearly independent.

Conversely, assume that the columns (A^1, \ldots, A^n) are linearly independent. Since the vector space $E = K^n$ has dimension n, the vectors $(v_1, \ldots, v_n) = (A^1, \ldots, A^n)$ form a basis of K^n . By definition, the matrix A is defined by expressing each vector $v_j = A^j$ as the linear combination $A^j = \sum_{i=1}^n a_{ij}e_i$, where (e_1, \ldots, e_n) is the canonical basis of K^n , and since (v_1, \ldots, v_n) is a basis, by Proposition 4.3, the matrix A is invertible.

Proposition 4.3 suggests the following definition.

Definition 4.3. Given a vector space E of dimension n, for any two bases (u_1, \ldots, u_n) and (v_1, \ldots, v_n) of E, let $P = (a_{ij})$ be the invertible matrix defined such that

$$v_j = \sum_{i=1}^n a_{ij} u_i,$$

which is also the matrix of the identity id: $E \to E$ with respect to the bases (v_1, \ldots, v_n) and (u_1, \ldots, u_n) , in that order. Indeed, we express each $\mathrm{id}(v_j) = v_j$ over the basis (u_1, \ldots, u_n) . The coefficients $a_{1j}, a_{2j}, \ldots, a_{nj}$ of v_j over the basis (u_1, \ldots, u_n) form the jth column of the matrix P shown below:

The matrix P is called the change of basis matrix from (u_1, \ldots, u_n) to (v_1, \ldots, v_n) .

Clearly, the change of basis matrix from (v_1, \ldots, v_n) to (u_1, \ldots, u_n) is P^{-1} . Since $P = (a_{ij})$ is the matrix of the identity id: $E \to E$ with respect to the bases (v_1, \ldots, v_n) and (u_1, \ldots, u_n) , given any vector $x \in E$, if $x = x_1u_1 + \cdots + x_nu_n$ over the basis (u_1, \ldots, u_n) and $x = x'_1v_1 + \cdots + x'_nv_n$ over the basis (v_1, \ldots, v_n) , from Proposition 4.2, we have

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix},$$