Carathédory の拡張定理

katatoshi

2018年4月23日

集合 X の部分集合族 \mathcal{G} 上で定義された関数 $\mu:\mathcal{G}\to [0,\infty]$ が前測度(pre-measure)であるとは以下の性質をみたすことである.

- (1) $\emptyset \in \mathcal{G}$ $\Leftrightarrow \exists \mu(\emptyset) = 0$
- (2) \mathcal{G} の元の列 $(G_i)_{i=1}^{\infty}$ が互いに素,すなわち $i \neq j$ ならば $G_i \cap G_j = \emptyset$,であり $\bigcup_{i=1}^{\infty} G_i \in \mathcal{G}$ ならば $\mu(\bigcup_{i=1}^{\infty} G_i) = \sum_{i=1}^{\infty} \mu(G_i)$

 σ -加法族上の前測度は測度に他ならない。

集合 X の部分集合族 S は以下の性質をみたすとき (X 上の) 集合の半環 (semi-ring of sets) 1 と呼ばれる.

- (1) $\varnothing \in \mathcal{S}$
- (2) $S, T \in \mathcal{S}$ $\Leftrightarrow S : S \cap T \in \mathcal{S}$
- (3) $S,T\in\mathcal{S}$ ならば有限個の互いに素な \mathcal{S} の元 S_1,S_2,\cdots,S_n が存在して $S\setminus T=\bigcup_{i=1}^n S_i$

集合 X の部分集合族 $\mathcal R$ は以下の性質をみたすとき(X 上の)集合の環(ring of sets)と呼ばれる.

- $(1) \varnothing \in \mathcal{R}$
- (2) $S, T \in \mathcal{R}$ ならば $S \cup T \in \mathcal{R}$

 $^{^1}$ 半加法族と呼んでいるテキストもある. しかし semi-ring をそのように呼んでしまうと次に述べる ring を加法族と呼びたくなり algebra と呼ばれる集合族と紛らわしい(σ -algebra を σ -加法族と呼ぶのと同じように algebra を加法族と呼びたくなる). そこでこの文章では semi-ring を集合の半環と呼び ring を集合の環と呼ぶことにした. なお, ring $\mathcal R$ は $X\in\mathcal R$ であるとき algebra と呼ばれる. ring は必ずしも X を含まないため ring と algebra は異なる概念である.

集合の環 \mathcal{R} の元S,Tについて $S\cap T=S\setminus (S\setminus T)\in \mathcal{R}$ が成り立つので,集合の環は共通部分についても閉じている.集合の環は集合の半環であり, σ -加法族は集合の環である.

 \mathfrak{R} をすべての元が集合 X 上の集合の環であるような集合族とする. するとその共通部分 $\mathfrak{R} = \{S \mid \forall \mathcal{R} \in \mathfrak{R}(S \in \mathcal{R})\}$ は再び集合 X 上の集合の環となる.

実際,任意の $\mathcal{R} \in \mathfrak{R}$ について $\emptyset \in \mathcal{R}$ であるから $\emptyset \in \bigcap \mathfrak{R}$ となり(1)をみたす.次に, $S,T \in \bigcap \mathfrak{R}$ ならば,任意の $\mathcal{R} \in \mathfrak{R}$ について $S,T \in \mathcal{R}$ であるから,任意の $\mathcal{R} \in \mathfrak{R}$ について $S \cup T \in \mathcal{R}$ である。よって, $S \cup T \in \bigcap \mathfrak{R}$ となり(2)をみたす。(3)をみたすことは(2)と同様にして確認できる。

集合 X の部分集合族 G に対して,G を包むような X 上の集合の環の全体の集合族を \Re とすると, \bigcap \Re は $G\subseteq\bigcap$ \Re をみたす集合 X 上の集合の環であり,任意の \Re \in \Re について \bigcap \Re \subseteq \Re である.すなわち, \bigcap \Re は G を包むような X 上の集合の環の中で最小のものであり,これを G によって生成された集合の環と呼び,ここでは $\rho(G)$ で表すことに する.

命題 1 S を集合 X 上の集合の半環とすると

$$\rho(S) = \{S_1 \cup \cdots \cup S_n \mid n \in \mathbb{N}, S_1, \cdots, S_n \in S \text{ は互いに素} \}$$

証明 右辺の集合を U とおく. $S \subseteq U \subseteq \rho(S)$ であるから,U が集合の環であることを示せば, $\rho(S)$ が S を包む最小の集合の環であることから $\rho(S) = U$ となる.

U が集合の環の性質 (1), (2), (3) をみたすことを示す. $\varnothing \in S \subseteq U$ であるから, U は (1) をみたす. 次に, $S = S_1 \cup \cdots \cup S_m$, $T = T_1 \cup \cdots \cup T_n \in U$ とおく. U はその定義から互いに素な集合の和集合について閉じており, $S_i \cap T_j$, $i = 1, \cdots, m, j = 1, \cdots, n$ は 互いに素であるから

$$S \cap T = (S_1 \cup \cdots \cup S_m) \cap (T_1 \cup \cdots \cup T_n) = \bigcup_{i=1}^m \bigcup_{j=1}^n (S_i \cap T_j) \in \mathcal{U}$$

となり、 $\mathcal U$ は共通部分について閉じている。 $\mathcal U$ が共通部分について閉じていることと、集合の半環の性質 (3) より $S_i\setminus T_j\in \mathcal U,\, i=1,\cdots m,\, j=1,\cdots n$ が成り立つことから

$$S \setminus T = (S_1 \cup \cdots \cup S_m) \setminus (T_1 \cup \cdots \cup T_n) = \bigcup_{i=1}^m \bigcap_{j=1}^n (S_i \setminus T_j) \in \mathcal{U}$$

である. したがって, U は (3) をみたす. U は差集合, 共通部分, 互いに素な集合の和集合について閉じているので

$$S \cup T = (S \setminus T) \cup (S \cap T) \cup (T \setminus S) \in \mathcal{U}$$

となり, *U* は (2) をみたす.

命題 2 S を集合 X 上の集合の半環とし, $\mu: S \to [0,\infty]$ を S 上の前測度とする.このとき, μ は集合の環 $\rho(S)$ 上の前測度 $\bar{\mu}: \rho(S) \to [0,\infty]$ に一意に拡張される.

集合 X の冪集合 $\mathcal{P}(X)$ 上で定義された関数 $\mu^*: \mathcal{P}(X) \to [0,\infty]$ が外測度 (outer measure) であるとは以下の性質をみたすことである.

- (1) $\mu^*(\emptyset) = 0$
- (2) (単調性) $A \subset B$ ならば $\mu^*(A) < \mu^*(B)$
- (3) $(\sigma$ -劣加法性) $\mathcal{P}(X)$ の元の列 $(A_i)_{i=1}^{\infty}$ に対して, $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$

命題 3 X を集合とし、 μ^* を $\mathcal{P}(X)$ 上の外測度とする. X の部分集合族 \mathcal{A}^* を

$$\mathcal{A}^* = \{ A \subseteq X \mid \forall Q \subseteq X (\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A)) \}$$

と定義すると, \mathcal{A}^* は σ -加法族となる.また, μ^* の \mathcal{A}^* への制限 $\mu^*|_{\mathcal{A}^*}:\mathcal{A}^*\to [0,\infty]$ は (X,\mathcal{A}^*) 上の測度となる.

命題 3 の σ -加法族 A^* の元 $A \in A^*$ を μ^* -可測集合という.

 \mathcal{G} を集合 X の部分集合族とする. \mathcal{G} の元の列 $(G_i)_{i=1}^\infty$ が X の部分集合 $A\in\mathcal{P}(X)$ の \mathcal{G} -被覆であるとは, $A\subseteq\bigcup_{i=1}^\infty G_i$ が成り立つことをいう. $A\in\mathcal{P}(X)$ の \mathcal{G} -被覆全体の集合を $\mathcal{C}(A)$ とする.

命題 4 \mathcal{G} を $\varnothing \in \mathcal{G}$ であるような X の部分集合族とし、関数 $\mu: \mathcal{G} \to [0,\infty]$ を前測度とする². このとき、関数 $\mu^*: \mathcal{P}(X) \to [0,\infty]$ を $A \in \mathcal{P}(X)$ に対して

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(S_i) \mid (S_i)_{i=1}^{\infty} \in \mathcal{C}(A) \right\}$$

と定めると μ^* は外測度となる. ただし $\inf \emptyset = \infty$ とする.

証明 $G_i = \emptyset, i \in \mathbb{N}$ とすると $(G_i)_{i=1}^{\infty} \in \mathcal{C}(\emptyset)$ であるから, $\mu^*(\emptyset) \leq \sum_{i=1}^{\infty} \mu(G_i) = 0$. $\mu^*(\emptyset) > 0$ であるから $\mu^*(\emptyset) = 0$ である.

 $^{^2}$ 前測度でなくとも $\mu(\varnothing)=0$ でありさえすれば命題は成り立つが、前測度でない場合には関心がないため、 μ は前測度であると仮定する.

 $A \subseteq B$ とすると $\mathcal{C}(B) \subseteq \mathcal{C}(A)$ であるから

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu(G_i) \mid (G_i)_{i=1}^{\infty} \in \mathcal{C}(A) \right\}$$

$$\leq \inf \left\{ \sum_{i=1}^{\infty} \mu(G_i) \mid (G_i)_{i=1}^{\infty} \in \mathcal{C}(B) \right\}$$

$$= \mu^*(B)$$

である. よって μ^* は単調性をみたす.

 $A_i \in \mathcal{P}(X), i \in \mathbf{N}$ とする. $\mu^*(A_i) = \infty$ となる $i \in \mathbf{N}$ が存在するか,任意の $i \in \mathbf{N}$ に対して $\mu^*(A_i) < \infty$ であるが $\sum_{i=1}^{\infty} \mu^*(A_i) = \infty$ となる場合, $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leq \infty$ より $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$ となる.

任意の $i\in \mathbf{N}$ に対して $\mu^*(A_i)<\infty$ であり, $\sum_{i=1}^\infty \mu^*(A_i)<\infty$ であるとする.このとき,任意の $i\in \mathbf{N}$ に対して $\mathcal{C}(A_i)\neq\varnothing$ が成り立つ.下限の性質から,任意の $\varepsilon>0$ に対して

$$\sum_{i=1}^{\infty} \mu(G_{ij}) \le \mu^*(A_i) + \frac{\varepsilon}{2i}$$

となるような被覆 $(G_{ij})_{j=1}^\infty\in\mathcal{C}(A_i)$ が各 $i\in \mathbf{N}$ に対して存在する. 両辺の i についての和をとると

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu(G_{ij}) \le \sum_{i=1}^{\infty} \mu^*(A_i) + \varepsilon$$

となるので, $\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\mu(G_{ij})<\infty$ である.よって,杉浦 [4] 定理 5.4 より

$$\sum_{i,j=1}^{\infty} \mu(G_{ij}) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu(G_{ij}) < \infty$$

である。すなわち,正項二重級数 $\sum_{i,j=1}^{\infty} \mu(G_{ij})$ は収束するので,杉浦 [4] 定理 5.5 より,N から $N \times N$ への全単射 ϕ を一つとると,一列化 $\sum_{k=1}^{\infty} \mu(G_{\phi(k)})$ は収束し,

$$\sum_{k=1}^{\infty} \mu(G_{\phi(k)}) = \sum_{i,j=1}^{\infty} \mu(G_{ij})$$

である. \mathcal{G} の元の列 $(G_{\phi(k)})_{k=1}^{\infty}$ は $\bigcup_{i=1}^{\infty} A_i$ の \mathcal{G} -被覆であるから 3 , μ^* の定義より

$$\mu^* \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{k=1}^{\infty} \mu(G_{\phi(k)})$$

$$\leq \sum_{i,j=1}^{\infty} \mu(G_{ij})$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \mu(G_{ij})$$

$$\leq \sum_{i=1}^{\infty} \mu^*(A_i) + \varepsilon$$

である. ε は任意であったから, $\mu^*(\bigcup_{i=1}^\infty A_i) \leq \sum_{i=1}^\infty \mu^*(A_i)$ となる.よって, μ^* は σ -劣加法性をみたす.

命題 4 の外測度 μ^* を,前測度 μ から誘導された外測度という.

命題 5 S を集合 X 上の集合の半環とし、 μ を S 上の前測度とする. このとき、 μ から誘導された外測度 μ^* は μ の $\mathcal{P}(X)$ への拡張となっている.

命題 6 S を集合 X 上の集合の半環, μ を S 上の前測度, μ^* を μ から誘導された外測度 とする.このとき, $S \in S$ は μ^* -可測集合である.

定理 1(Carathéodory) S を集合 X 上の集合の半環とし、 μ を S 上の前測度とする. このとき、 μ は $\sigma(S)$ 上の測度へ拡張することができる。さらに、S の元の単調増加列 $(S_i)_{i=1}^\infty$ で、 $S_i \uparrow X$ かつ任意の $i \in \mathbf{N}$ について $\mu(S_i) < \infty$ をみたすようなものが存在するならば、 $\sigma(S)$ への拡張は一意である。

証明 (存在すること) μ から誘導された外測度を μ^* とし, μ^* -可測集合全体の集合を A^* とする.命題 6 より $S\subseteq A^*$ であり,命題 3 より A^* は σ -加法族であるから, $\sigma(S)\subseteq\sigma(A^*)=A^*$ が成り立つ.再び命題 3 より, $\mu^*|_{A^*}$ は A^* 上の測度であるから, その $\sigma(S)$ への制限 $\mu^*|_{\sigma(S)}$ は $\sigma(S)$ 上の測度である.定理 5 より, μ^* は μ の $\mathcal{P}(X)$ への 拡張になっているので, $\mu^*|_{\sigma(S)}$ は μ の $\sigma(S)$ への拡張である.

(一意であること)S の元の単調増加列 $(S_i)_{i=1}^\infty$ で, $S_i \uparrow X$ かつ任意の $i \in \mathbb{N}$ について $\mu(S_i) < \infty$ をみたすようなものが存在するならば,集合の半環 S は共通部分について閉

 $^{3 \} x \in \bigcup_{i=1}^{\infty} A_i$ ならば $x \in A_i$ となる $i \in \mathbf{N}$ が存在する. $(G_{ij})_{j=1}^{\infty}$ は A_i の被覆であるから, $x \in G_{ij}$ となる $j \in \mathbf{N}$ が存在する. したがって, $x \in G_{\phi(\phi^{-1}(i,j))} \subseteq \bigcup_{k=1}^{\infty} G_{\phi(k)}$ である.

じているので、Schilling[2] の定理 5.7(測度の一意性定理)より、 μ の $\sigma(S)$ への拡張は一意である.

参考文献

- [1] R.M. Dudley, *Real analysis and probability* 2nd ed., Cambridge : Cambridge University Press , 2002.
- [2] René L. Schilling, Measures, integrals and martingales, Cambridge University Press, 2011.
- [3] 岩田耕一郎『ルベーグ積分:理論と計算手法』森北出版, 2015.
- [4] 杉浦光夫『解析入門』東京大学出版会, 1980.