Real Analysis

Mid-Sem 2023

Time - 1.5 hours

Full marks 50

- 1.a) Prove that for each $n \ge 2$, $(n+1)! > 2^n$.
- b) Prove that for all $n \in \mathbb{N}$, $(3+\sqrt{5})^n + (3-\sqrt{5})^n$ is an even integer.
- 2.a) Prove that the set of natural numbers is not bounded from above.
- b) Prove that there is an unique positive real number x, such that $x^2 = 2$ (5+5)
- 3.a) Prove that the union and intersection of finite number of open sets in \mathbb{R} are open sets themselves.

 (10+5)
- 4.a) Prove that $\lim_{n\to\infty} \frac{S_n}{t_n} = \frac{s}{t}$, given $\lim_{n\to\infty} S_n = s$ and $\lim_{n\to\infty} t_n = t$ with $t_n \neq 0 \ \forall n \in \mathbb{N}$ and $t \neq 0$.
- b) Show whether the following sequence (x_n) with $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$ is convergent or not.
- c) Given $x \ge 1$, show that $\lim_{n \to \infty} (2x^{1/n} 1)^n = x^2$ (5+5+5)