

3101, 3101A 16 x 4 BIT HIGH SPEED RAM

- Fast Access Time 35 nsec max -50(3101)
 over 0-75°C Temperature Range
 (3101A)
- Simple Memory Expansion through Chip Select Input — 17 nsec max over 0-75°C Temperature Range (3101A)
- DTL and TTL Compatible Low Input Load Current: 0.25 mA max

WRITE ENABLE

Vcc

- OR-Tie Capability Open Collector Outputs
- Fully Decoded on Chip Address Decode and Buffer
- Minimum Line Reflection Low Voltage Diode Input Clamp
- Ceramic and Plastic Package 16 Pin Dual In-ILine Configuration

HIGH

The Intel 3101 and 3101A are high speed fully decoded 64 bit andom access memories, organized 16 words by 4 bits. Their high speed makes them ideal in scratch pad applications. An unselected chip will not generate noise at its output during writing of a selected chip. The output is held high on an unselected chip regardless of the state of the read/write signal.

The use of Schottky barrier diode clamped transistors to obtain fast switching speeds results in higher performance than equivalent devices with gold diffusion processes.

The Intel 3101 and 3101A are packaged in either hermetically sealed 16 pin ceramic packages, or in low cost silicone packages, and their performance is specified over a temperature range from 0°C to 75°C.

The storage cells are addressed through an on chip 1 of 16 binary decoder using four input address leads. A separate Chip Select lead allows easy selection of an individual package when outputs are OR-tied.

In addition to the address leads and the Chip Select lead, there is a write input which allows data presented at the data leads to be entered at the addressed storage cells.

PIN CONFIGURATION LOGIC SYMBOL **BLOCK DIAGRAM** ADDRESS INPUT A. [A, <u>6</u> CHIP SELECT CS ADDRESS INPUT 400 WRITE ENABLE WE A₂ ADDRESS INPUT A, 0¹³ DATA INPUT D. ADDRESS INPUT DATA OUTPUT 0.C O. DATA INPUT DATA INPUT D, C 6 11 D O. DATA DUTPUT (16) ∨_{CC} DATA OUTPUT 0, [O. DATA INPUT WRITE AND SENSE AMPLIFIER (E) ⊒Ö, DATA BUTPUT GNO [000000000 D₂ G₂ D₃ G₃ D₄ TRUTH TABLE PIN NAMES WRITE OPERATION OUTPUT SELECT FNARLE DATA INPUTS cs. CHIP SELECT INPUT WRITE HIGH D_1-D_4 LOW COMPLEMENT OF BEAD ADDRESS INPUTS 01-04 DATA OUTPUTS WRITTEN DATA

POWER (+5V)

Absolute Maximum Ratings*

Temperature Under Bias:

Ceramic Plastic

-65°C to +125°C -65°C to +75°C

Storage Temperature

-65°C to +160°C

All Output or Supply Voltages

-0.5 to +7 Volts

All Input Voltages **Output Currents**

-1.0 to +5.5 Volts

100 mA

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. Characteristics $T_A = 0$ °C to +75°C, $V_{CC} = 5.0$ V)±5%

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	TEST CONDITIONS
IFA	ADDRESS INPUT LOAD CURRENT		-0.25	mA	V _{CC} =5.25V, V _A =0.45V
I _{FD}	DATA INPUT LOAD CURRENT		-0.25	mA	V _{CC} =5.25V, V _D =0.45V
I _{FW}	WRITE INPUT LOAD CURRENT		-0.25	mA	V _{CC} =5.25V, V _W =0.45V
I _{FS}	CHIP SELECT INPUT LOAD CURRENT		-0.25	mA	V _{CC} =5.25V, V _S =0.45V
I _{RA}	ADDRESS INPUT LEAKAGE CURRENT		10	μΑ	V _{CC} =5.25V, V _A =5.25V
I _{RD}	DATA INPUT LEAKAGE CURRENT		10	μА	V _{CC} =5.25V, V _D =5.25V
I _{RW}	WRITE INPUT LEAKAGE CURRENT		10	μA	V _{CC} =5.25V, V _W =5.25V
1 _{RS}	CHIP SELECT INPUT LEAKAGE CURRENT		10	μA	V _{CC} =5.25V, V _S =5.25V
V _{CA}	ADDRESS INPUT CLAMP VOLTAGE		-1.0	V	V _{CC} =4.75V, I _A =-5.0 mA
V _{CD}	DATA INPUT CLAMP VOLTAGE		-1.0	V	$V_{CC} = 4.75V$, $I_{D} = -5.0 \text{ mA}$
V _{CW}	WRITE INPUT CLAMP VOLTAGE		-1.0	V	$V_{CC} = 4.75V$, $I_{W} = -5.0 \text{ mA}$
V _{CS}	CHIP SELECT INPUT CLAMP VOLTAGE		-1.0	V	$V_{CC} = 4.75V$, $I_{S} = -5.0 \text{ mA}$
V _{OL}	OUTPUT "LOW" VOLTAGE		0.45	V	V _{CC} =4.75V, I _{OL} = 15 mA)
					Memory Stores "Low"
ICEX	OUTPUT LEAKAGE CURRENT		100	μA	V _{CC} =5.25V, V _{CEX} =5.25V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					V _S =2.5V
l _{cc}	POWER SUPPLY CURRENT		105	mA	$V_{CC} = 5.25V, V_A = V_S = V_D = 0V$
V _{IL}	INPUT "LOW" VOLTAGE		0.85	V	V _{CC} =5.0V
V _{IH}	INPUT "HIGH" VOLTAGE	2.0		V	V _{CC} =5.0V

Typical Characteristics

Switching Characteristics

Conditions of Test:

Input Pulse amplitudes: 2.5V
Input Pulse rise and fall times of
5 nanoseconds between 1 volt
and 2 volts

Speed measurements are made at 1.5 volt levels Output loading is 15mA and 30 pF

NOTE 1: t_{SR} is associated with a read cycle following a write cycle and does not affect the access time.

A.C. Characteristics $T_A = 0$ °C to +75°C, $V_{CC} = 5.0V \pm 5\%$

READ CYCLE						
	PARAMETER	3101A LIMITS (ns)		3101 LIMITS (ns)		
SYMBOL						
		MIN.	MAX.	MIN.	MAX.	
t _{S+} , t _S _	Chip Select to Output Delay	5	17	5	42	
t A-, tA+	Address to Output Delay	10	35	10	60	

C _{IN}	INPUT CAPACITANCE (All Pins)	10 pF maximum	
C _{OUT}	OUTPUT CAPACITANCE	12 pF maximum	

WRITE CYCLE							
		3101A LIMITS (ns)		3101 LIMITS (ns)			
SYMBOL	TEST						
		MIN.	MAX.	MIN.	MAX.		
tsR	Sense Amplifier Recovery Time		35		50		
twe	Write Pulse Width	25		40			
^t DW	Data-Write Overlap Time	25		40			
^t WR	Write Recovery Time	0		5			

NOTE 2: This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, $V_{bias} = 2V$, $V_{CC} = 0V$, and $T_A = 25^{\circ}C$.

Typical A.C. Characteristics

150

LOAD CAPACITANCE (pF)

50

200

ō

50

AMBIENT TEMPERATURE (°C)