CLASE 10 - INFERENCIA ESTADÍSTICA.

Curso Análisis de expresión diferencial de genes e investigación reproducible.

Dr. José Gallardo Matus | https://genomics.pucv.cl/

Pontificia Universidad Católica de Valparaíso

03 November 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es la inferencia estadística?.
- ¿Cómo someter a prueba una hipótesis?
- Pruebas paramétricas: correlación, comparación de medias con 2 o más muestras independientes.
- Interpretar resultados de análisis de datos con R.

2.- Práctica con R y Rstudio cloud

- Someter a prueba diferentes hipótesis estadísticas.
- Realizar gráficas avanzadas con ggplot2.

¿QUÉ ES LA INFERENCIA ESTADÍSTICA?

Inferencia estadística : Son procedimientos que permiten obtener o extraer conclusiones sobre los parámetros de una población a partir de una muestra de datos tomada de ella.

¿Qué inferencia puede hacer de los datos de esta población? ¿Qué ocurre si la muestra no es aleatoria?

INFERENCIA ESTADÍSTICA

¿Par qué es importante la inferencia estadística?

- Es más económico que hacer un Censo.
 20 plantas fueron evaluadas para su respuesta al sulfato de magnesio en concentraciones similares al suelo de marte.
- Bajo ciertos supuestos permite hacer afirmaciones. El gen A se expresó más en el tejido tumoral que en el tejido normal.
- ▶ Bajo ciertos supuestos permite hacer predicciones. Nuestros resultados sugierene que el gen A y el gen B podrían ser nuevos biomarcadores para la predicción temprada de la enfermedad de la arteria coronaria.

CONCEPTOS IMPORTANTES

Parámetro

Constante que caracteriza a todos los elementos de un conjunto de datos de una población. Se representan con letras griegas.

Promedio de una población (mu) = μ .

Estadístico

Una función de una muestra aleatoria o subconjunto de datos de una población.

Promedio de una muestra $(\bar{X}) = \sum_{n} \frac{X_i}{n}$

ESTIMACIÓN DE PARÁMETROS

Objetivo: Hacer generalizaciones de una población a partir de una muestra.

Tipos de estimación

- **Estimación puntual:** Consiste en asumir que el parámetro tiene el mismo valor que el estadístico en la muestra.
- ▶ El valor promedio del delta CT para el gen A fue mayor en pacientes enfermos (15.19 ± 1.9) que en pacientes sanos (12.98 ± 1.8).
- ► Estimación por intervalos: Se asigna al parámetro un conjunto de posibles valores que están comprendidos en un intervalo asociado a una cierta probabilidad de ocurrencia.
- ► El valor promedio del delda delta CT es = -0.546, con un intervalo de confianza del 95% entre -0.949, -0.143.

PRUEBAS DE HIPÓTESIS

Objetivo

Realizar una afirmación acerca del valor de un parámetro, usualmente contrastando con alguna hipótesis.

Hipótesis estadísticas

Hipótesis nula (H₀) es una afirmación, usualmente de igualdad.

 $Hipótesis\ alternativa\ (H_A)$ es una afirmación que se deduce de una observación previa (bibliografía) y que el investigador cree que es verdadera.

Ejemplo

 $\mathbf{H_0}$: La expresión del gen A es = en el tejido tumoral que en el tejido sano.

 $\mathbf{H}_{\mathbf{A}}$: La expresión del gen A es > en el tejido tumoral que en el tejido sano.

PRUEBA DE HIPÓTESIS: UNA COLA O DOS COLAS

La hipótesis alternativa se puede plantear de tres maneras diferentes:

- A) UNA COLA:
- 1. El gen se expresa más en el tejido A que en el tejido B.
- 2. El gen se expresa menos en el tejido A que en el tejido B.
- B) DOS COLAS:
- 2. El gen se expresa diferente (quizas más o quizás menos) en el tejido A que en el tejido B.

¿CUÁNDO RECHAZAR H₀?

Regla de decisión

Rechazo $\mathbf{H_0}$ cuando la evidencia observada es poco probable que ocurra bajo el supuesto de que la hipótesis sea verdadera.

Generalmente $\alpha = 0.05$ o 0.01.

Es decir, rechazamos cuando el valor del estadístico está en el 5% inferior de la función de distribución muestral.

Precaución en comparaciones múltiples

Si evalúo 100 genes para el mismo tratamiento, solo por azar debemos esperar que 5 de ellos (100*0,05) estén falsamente asociados al tratamiento con probabilidad menor a 0,05.

► Corrección de Bonferroni: Dividir α por el número de repeticiones. α corregido = 0,05 / 100 = 0,0005.

TIPOS DE PRUEBAS ESTADÍSTICAS

Según si los datos de expresión de genes cumplen algunos supuestos, las pruebas se pueden clasificar en:

1. Métodos paramétricos

► La prueba de hipótesis asume una distribución normal de la variable aleatoria. Es posible transformar para cumplir el supuesto (ej. Log(FC)).

2. Métodos NO paramétricos

La prueba de hipótesis no asume una distribución normal de la variable aleatoria.

PRUEBA DE CORRELACIÓN

HIPÓTESIS PRUEBA DE CORRELACIÓN

Hipótesis

 H_0 : $\rho = 0$ ausencia de correlación. H_1 : $\rho \neq 0$ existencia de correlación.

Supuestos:

- 1) Las variables X e Y son continuas y su relación en lineal.
- 2) La distribución conjunta de (X,Y) es una distribución Bivariable normal.

ESTUDIO DE CASO: HK GENE EN NOGAL

Estudio de caso: Correlación entre CT de 18S rRNA y GAPDH en Nogal.

PRUEBA DE CORRELACIÓN DE PEARSON

```
cor.test(nogal$\`18S rRNA\`, nogal$GAPDH,
         method = "pearson",
         alternative = "two.sided")
##
##
    Pearson's product-moment correlation
##
## data: nogal$`18S rRNA` and nogal$GAPDH
## t = 8.4367, df = 19, p-value = 7.543e-08
## alternative hypothesis: true correlation is not equal to
## 95 percent confidence interval:
## 0.7408925 0.9541700
## sample estimates:
##
         cor
## 0.8884297
```

PRUEBA DE COMPARACIÓN DE MEDIAS

HIPÓTESIS COMPARACIÓN DE MEDIAS

Hipótesis

 $H_0: \mu_1 = \mu_2.$ $H_1: \mu_1 \neq \mu_2$

Supuestos

- 1) La variable X es continua.
- 2) Distribución normal.

ESTUDIO DE CASO: ARABIDOPSIS

Adaptado de Yuan, et al, 2006. Expresión diferencial del gen MT-7 de Arabidopsis tratada con jasmonato de metilo y con alameticinam, y no tratada (control).

PRUEBA DE T PARA DOS MUESTRAS INDEPENDIENTES

Hipótesis

```
H_0: delta ct(tratamiento) = delta ct(control).

H_1: delta ct(tratamiento) \neq delta ct(control).

H_1: delta delta Ct \neq 0.

delta delta Ct (Tratamiento - control) = -0.6848

test <- t.test(-Ct ~ Sample, Arabidopsis,

alternative = c("two.sided"),

var.equal=TRUE)
```

INTERPRETACIÓN PRUEBA DE T PARA DOS MUESTRAS INDEPENDIENTES

```
##
## Two Sample t-test
##
## data: -Ct by Sample
## t = -5.2577, df = 22, p-value = 2.829e-05
## alternative hypothesis: true difference in means is not
## 95 percent confidence interval:
## -0.9549519 -0.4146981
## sample estimates:
## mean in group 1-Treatment mean in group 2-Control
##
                    2.955583
                                              3.640408
```

ANOVA

¿Qué es un análisis de varianza?

Herramienta básica para analizar el efecto de uno o más factores (cada uno con dos o más niveles) en un experimento.

PROBLEMA DE LAS COMPARACIONES MÚLTIPLES

¿Por qué preferir anova y no múltiples t-test?

Porque con una t-test normal al aumentar el número de comparaciones múltiples se incrementa la tasa de error tipo I.

ANOVA PARA COMPARAR MEDIAS

¿Por qué se llama ANOVA si se comparan medias?

Por que el estadístico **F** es un cociente de varianzas.

$$\mathbf{F} = rac{\sigma_{entregrupos}^2}{\sigma_{dentrogrupos}^2}$$

Mientras mayor es el estadístico **F**, más es la diferencia de medias entre grupos.

SUPUESTOS DE UNA ANOVA

- 1) Independencia de las observaciones.
- 2) Normalidad.
- 3) Homocedasticidad: homogeneidad de las varianzas.

TEST POSTERIORES (PRUEBAS A POSTERIORI)

¿Para qué sirven?

Para identificar que pares de niveles de uno o más factores son significativamente distintos entre sí.

¿Cuando usarlos?

Sólo cuando se rechaza H_0 del ANOVA.

Tukey test

Es uno de los más usados, similar al *t-test*, pero corrige la tasa de error por el número de comparaciones.

ANOVA COMO UN MODELO LINEAL

¿Qué es un modelo lineal?

Modelo estadístico que define una relación matemática lineal entre variables de interes.

Modelo lineal para ANOVA de una vía

$$y \sim \mu + \alpha + \epsilon$$

Modelo lineal para ANOVA de dos vías

$$y \sim \mu + \alpha + \beta + \epsilon$$

Modelo lineal para ANOVA de dos vías con interacción

$$y \sim \mu + \alpha + \beta + \alpha * \beta + \epsilon$$

HIPÓTESIS EN UNA ANOVA

Hipótesis factor 1

 $\mathbf{H_0}: \alpha_{1.1} = \alpha_{1.2} = \alpha_{1.3}$

Hipótesis factor 2

 $\mathbf{H_0}:\,\beta_{2.1}=\beta_{2.2}=\beta_{2.3}$

Hipótesis interacción

 $H_0: \alpha^*\beta = 0$

Hipótesis Alternativa

H_A: No todas las medias son iguales

ESTUDIO DE CASO: HPS70

Adaptado de Xu, et al, 2018. Expresión diferencial del gen hps-70 en peces expuestos a tratamiento de frío o calor.

PRUEBA DE ANOVA

```
H_0: delta ct(hot) = delta ct(cold) = delta ct(control).
H_1: No todas las medias son iguales.
res.aov <- lm(deltaCt ~ Treatment, data = dat hps70)
anova (res.aov)
## Analysis of Variance Table
##
## Response: deltaCt
             Df Sum Sq Mean Sq F value Pr(>F)
##
## Treatment 2 56.518 28.2591 414.71 7.439e-14 ***
## Residuals 15 1.022 0.0681
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

COMPARACIONES MÚLTIPLES

```
fit_anova <- aov(res.aov)
tk <- TukeyHSD(fit_anova)</pre>
```

Table 1: Prueba de Tukey.

Trat.	Contraste	H0	Dif.	IC-bajo	IC-alto	p-ajus
Treatment	2-Hot-1-Ctrl	0	-1.36	-1.75	-0.97	0
Treatment	3-Cold-1-Ctrl	0	2.89	2.50	3.28	0
Treatment	3-Cold-2-Hot	0	4.25	3.86	4.64	0

RECOMENDACIONES FINALES

- 1. Demuestre que la eficiencia de amplificación es la misma para su gen de interes y su gen de referencia.
- 2. Use el valor de Ct como la principal variable aleatoria para explorar y someter a prueba su hipótesis: Delta Delta Ct = 0.
- 3. La práctica de someter a prueba una hipótesis de comparación de medias usando el 2-delta delta Ct o el Gene Expression Ratio no es recomendada (Tranforme a log).
- 4. Visualice sus datos de Delta Ct (tratamiento y control), luego realice la prueba estadística (H0 = delta delta Ct = 0) y finalmente interprete y muestre la expresión diferencial usando 2-Delta Delta Ct, Fold change o Gene Expression Ratio.

Fuente: Yuan et al. 2006, Schmittgen & Livak. 2008, Ahmed and Kim. 2018

PRÁCTICA ANÁLISIS DE DATOS

RESUMEN DE LA CLASE

- 1. Conceptos básicos de inferencia estadística
 - Estadístico y parámetro.
- 2. Conceptos básicos de pruebas de hipótesis
 - Hipótesis nula, alternativa.
- 3. Realizar pruebas de hipótesis
 - Test de correlación.
 - ► Test de comparación de medias para 2 muestras independientes.
 - Anova
- 4. Realizar gráficas avanzadas con ggplot2.