Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Curso de Ciências de Computação

SCE0185 TEORIA DA COMPUTAÇÃO E LINGUAGENS FORMAIS

Lista de Exercícios Capítulo 1

	_			
1.	Que	linguagem	а	aramatica

$$S \rightarrow ()$$

$$S \rightarrow)($$

$$S \rightarrow SS$$

$$S \rightarrow (S)$$

$$S \rightarrow)S($$

gera?

2. Que linguagem a gramática

$$S \to 0$$

$$S \to 1$$

$$S \to S0$$

gera?

3. Esta gramática:

$$S \rightarrow ()$$

$$S \rightarrow (S)$$

$$S \rightarrow SSS$$

gera exatamente a linguagem dos parênteses casados?

- 4. Escreva uma gramática para a linguagem $\{a^nb^{2n} \mid n > 0\}$.
- 5. Que linguagem a gramática $S \rightarrow aSb \mid SS \mid ab \mid ba$ gera? Prove seu resultado.
- 6. Escreva gramáticas para as seguintes linguagens:
 - a) expressões aritméticas envolvendo os dígitos 0 e 1 e as operações + e *. Exemplo: (1 + (0 * 1))
 - b) { $w \mid w \in da \text{ forma } a^n b^m, \text{ com } n < m$ }
 - c) Fórmulas do cálculo proposicional com duas variáveis, p e q, e conectivos and, or e not. Exemplo: (p or (q and (not p)))
 - d) { $ww^R \mid w \text{ em } \{a,b\}^*\}$ onde w^R significa a forma reversa de w, isto é, se w = abaa, então $w^R = aaba$.
- 7. Ache uma GLD para a linguagem $\{w \in \{a, b\}^* \mid w \text{ não contenha a subcadeia bab}\}.$

- 8. Seja a seguinte definição: Uma gramática G = (Σ, V, S, P) é linear a direita se toda produção for da forma A → bC ou A → b, onde A e C ∈ V e b ∈ Σ ∪ {λ}. Agora seja a seguinte gramática G1 composta das seguintes produções: A → wB | w, onde A e B ∈ V e w ∈ Σ*. Mostre que L(G1) pode ser gerada por uma gramática linear a direita.
- 9. Descreva em palavras as linguagens especificadas pelas seguintes expressões regulares:
 - (a) (aa)*(bb)*
 - (b) $(a^*b^*c^*)^*$
 - (c) $((a + b + c)(bb)^* + (a + b + c))^*$
 - (d) (aaa + aaaaa)*
- 10. Dê uma GLD para a linguagem ((a + bb)* + c)*.
- 11. Converta os seguintes conjuntos regulares em AFNs.
 - (a) (((11)*0)* + 00)*
 - (b) (1 + 11 + 0)*(00)*
- 12. Especifique e descreva um AFN que aceita o conjunto de todas as sentenças com dois 0's consecutivos ou dois 1's consecutivos, para $\Sigma = \{0,1\}$.
- 13. Seja $M=(\{q_0,\ q_1\},\ \{0,1\},\ \delta,\ \{q_0\},\ \{q_1\})$ um AFN (autômato finito não determinístico) onde

$$\delta(q_0, 0) = \{q_0, q_1\} \quad \delta(q_0, 1) = \{q_1\} \quad \delta(q_1, 0) = \emptyset \quad \delta(q_1, 1) = \{q_0, q_1\}$$

Qual é o AFD (autômato finito determinístico) correspondente?

- 14. Considere a seguinte gramática regular, $G = (\{0, 1\}, \{S, B\}, S, P\})$, onde P consiste de: $S \to 0B$, $B \to 0B$, $B \to 1S$, $B \to 0$. Pode-se construir um autômato finito não determinístico $M = (\{S, B, A\}, \{0,1\}, \delta, \{S\}, \{A\})$, onde δ é dado por:
 - 1) $\delta(S, 0) = \{B\}$, já que $S \to 0B$ é a única produção em P com S à esquerda e 0 à direita.
 - 2) $\delta(S, 1) = \emptyset$, já que nenhuma produção tem S à esquerda e 1 à direita.
 - 3) $\delta(B, 0) = \{B, A\}$, já que $B \rightarrow 0B$ e $B \rightarrow 0$ estão em P.
 - 4) $\delta(B, 1) = \{S\}$, já que $B \rightarrow 1S$ está em P.
 - 5) $\delta(A, 0) = \delta(A, 1) = \emptyset$.

Ache um autômato finito determinístico M_1 equivalente a M.

- 15. Ache um autômato finito determinístico (AFD) que aceite todas as cadeias em {0,1}* tal que todo 0 tem um 1 imediatamente à sua direita. Construa uma gramática do tipo 3 que gere esta linguagem.
- 16. Dê os conjuntos regulares correspondentes aos seguintes AFDs:

(a)

(b)

17. Converta o seguinte AFN em um AFD.

18. Seja

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, \{q_0\}, \{q_2\})$$

um autômato finito não determinístico (AFN) com δ dado por:

	а	b
q_0	$\{q_1, q_2\}$	$\{q_{0}\}$
q_1	$\{q_0, q_1\}$	Ø
q_2	$\{q_0, q_2\}$	$\{q_1\}$

Ache um autômato finito determinístico (AFD) que aceite T(M).

19. Considerando que:

- toda linguagem livre de contexto também é sensível ao contexto;
- nem toda gramática livre de contexto é sensível ao contexto;
- há quatro tipos de gramáticas/linguagens segundo Chomsky,

as gramáticas abaixo são livres de contexto? São sensíveis ao contexto? Por que?

a)
$$G = (\Sigma, V, S, P)$$
, onde $\Sigma = \{a, b\}$, $V = \{A, B\}$, $S = A$, $P = \{A \rightarrow Ba, B \rightarrow BB, Aa \rightarrow Bb, B \rightarrow b, B \rightarrow bA, A \rightarrow a, Ab \rightarrow \lambda\}$

b)
$$G = (\Sigma, V, S, P)$$
, onde $\Sigma = \{0, 1\}, V = \{S\}, P = \{S \to 0.S1, S \to \lambda\}$

Que linguagem é gerada pela gramática do item b?

- 20. Quais são as diferenças básicas entre um autômato finito determinístico e um não determinístico? Defina T(M), o conjunto de cadeias aceitas pelo autômato M, para os dois tipos.
- 21. Dê a especificação e o diagrama de estados de um autômato finito não determinístico M que aceite a linguagem $(a+b)^*$ tal que nenhuma cadeia só de a's ou só de b's seja aceita. Obtenha o autômato determinístico M' equivalente a M. Construa uma gramática linear à direita que gere esta linguagem. Dê a expressão regular que representa esta linguagem.
- 22. Dê a especificação $(Q, \Sigma, \delta, Q_0, F)$ e o diagrama de estados de um autômato finito não determinístico (AFN) que aceite o conjunto de todas as cadeias que contenham dois O's consecutivos ou dois O's consecutivos. Teste para O11010.
- 23. Considere gramáticas lineares à esquerda, que são gramáticas nas quais toda produção é da forma $A \to Ab$ ou $A \to b$, com $A \in V$ e $b \in \Sigma \cup \{\lambda\}$. Uma linguagem linear à esquerda é uma linguagem que pode ser gerada por uma gramática linear à esquerda. Mostre através de um exemplo, que as linguagens lineares à esquerda coincidem com as linguagens lineares à direita.

4

- 24. Dê a especificação $(Q, \Sigma, \delta, q_0, F)$ e o diagrama de estados de um autômato finito determinístico (AFD) que aceite cadeias de um alfabeto $\Sigma = \{0,1\}$, com número par de 0's e um número par de 1's. Escreva a gramática linear a direita (GLD) equivalente a esse autômato e a expressão regular que representa a linguagem de estados finitos correspondente.
- 25. Seja $\Sigma = \{a, b\}$. Mostre que a linguagem L_1 que consiste de todas as cadeias nas quais o número de *a*'s é igual ao número de *b*'s não é regular.
- 26. Dado um alfabeto Σ . Considere a seguinte linha de raciocínio:
 - a) Para qualquer cadeia $x \in \Sigma^*$, a linguagem $\{x\}$ é regular.
 - b) Para quaisquer linguagens regulares $A \in B$, a linguagem $A \cup B$ é regular.
 - c) Toda linguagem $L \subseteq \Sigma^*$ pode ser escrita como uma união de linguagens da seguinte forma: $L = \bigcup_{x \in L} \{x\}$.
 - d) Portanto, toda linguagem $L \subseteq \Sigma^*$ é regular.

Critique este argumento. As três hipóteses estão corretas? A lógica é válida? Se não, você pode identificar uma falha? A conclusão está correta?

- 27. Construa um autômato finito que aceite a linguagem regular $\{(ab)^*b^+c^*\}$ sem usar arcos- λ .
- 28. Dê o autômato finito determinístico que aceite a linguagem regular $L = (b^*c^*ab)$. Qual é a gramática linear a direita G que gera L?
- 29. Seja $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, \{q_0\}, \{q_2\})$ um autômato finito não determinístico (AFN) com mapeamento de transmissão de estado δ definida como

$$\begin{array}{ll} \delta(q_0,\ a) = \{q_1,\ q_2\} & \delta(q_1,\ a) = \{q_0,\ q_1\} & \delta(q_2,\ a) = \{q_0,\ q_2\} \\ \delta(q_0,\ b) = \{q_0\} & \delta(q_1,\ b) = \varnothing & \delta(q_2,\ b) = \{q_1\} \end{array}$$

- a) Ache um autômato finito determinístico (AFD) que aceite o conjunto de cadeias aceitas por *M*;
- b) Ache a gramática linear a direita (GLD) que gera a Linguagem de Estados Finitos (LEF) aceita por *M*;
- c) Ache a expressão regular que represente esta linguagem.
- 30. Considere uma gramática $G = (\Sigma, V, S, P)$, onde $\Sigma = \{0, 1\}$, $V = \{S\}$, $P = \{S \rightarrow 0S1, S \rightarrow 01\}$. Qual o tipo (menos complexo) desta gramática segundo a hierarquia de Chomsky? Dê a descrição formal da linguagem gerada por esta gramática. Se for possível, descreva o autômato finito, com o menor número de estados possível, que aceite esta linguagem.

- 31. Quais são as diferenças básicas entre um autômato finito determinístico (AFD) e um não determinístico (AFN)? Defina T(M), o conjunto de cadeias aceitas pelo autômato M, para os dois tipos.
- 32. Seja a linguagem $L \subset \{0, 1\}^*$ constituída de cadeias que contêm a subcadeia **10** a sua extrema direita. Exemplo: $10010 \in L$, enquanto que $010100 \notin L$.
 - a) Escreva um autômato finito não-determinístico (AFN) que aceita a linguagem *L*;
 - b) Escreva o autômato finito determínistico (AFD) que aceita *L*;
 - c) Escreva a expressão regular equivalente a *L*;
 - d) Escreva a gramática linear a direita, sem produções- λ , que gera L.
- 33. Considere a seguinte linguagem:

 $L = \{ w \mid w \in (a + b)^* \text{ tal que haja número par de duplas de ba's} \}$

Exemplo: a cadeia a**ba**ab**baba** não pertence a *L*, enquanto que a cadeia **ba**ab**ba** pertence. Se possível, escreva o autômato finito determinístico (AFD) que processa L e dê a gramática linear a direita equivalente. Se não for possível explique o porquê.

34. Dê o diagrama de estados de um autômato finito determinístico (AFD) que aceite a linguagem dada pela expressão regular (b* + (ab)*). Escreva a gramática equivalente.