1 Static Semantics

 $\Theta; \Delta; \Gamma \vdash e : t$ Typing rules for expressions

$$\overline{\Theta;\Delta;\cdot,x:t\vdash x:t}\quad \text{TY_VAR_LIN}$$

$$\frac{x:t\in\Delta}{\Theta;\Delta;\cdot\vdash x:t}\quad \text{TY-VAR}$$

$$\Theta; \Delta; \Gamma \vdash e : t$$

$$\Theta; \Delta; \Gamma', x: t \vdash e': t'$$

$$\frac{\Theta; \Delta; \Gamma', x : t \vdash e' : t'}{\Theta; \Delta; \Gamma, \Gamma' \vdash \mathbf{let} \ x = e \ \mathbf{in} \ e' : t'} \quad \mathrm{TY_LET}$$

$$\overline{\Theta;\Delta;\cdot\vdash():\mathbf{unit}}\quad \mathrm{Ty_Unit_Intro}$$

$$\Theta; \Delta; \Gamma \vdash e : \mathbf{unit}$$

$$\Theta; \Delta; \Gamma' \vdash e' : t$$

$$\overline{\Theta; \Delta; \Gamma, \Gamma' \vdash \mathbf{let} \, () = e \, \mathbf{in} \, e' : t}$$

 Ty_Unit_Elim

$$\Theta$$
; Δ ; · \vdash **true** : **bool** TY_BOOL_TRUE

$$\overline{\Theta;\Delta;\cdot\vdash\mathbf{false}:\mathbf{bool}}\quad \mathrm{TY_BOOL_FALSE}$$

$$\Theta; \Delta; \Gamma \vdash e : !bool$$

$$\Theta; \Delta; \Gamma' \vdash e_1 : t'$$

$$\Theta; \Delta; \Gamma' \vdash e_2 : t'$$

$$\Theta; \Delta; \Gamma, \Gamma' \vdash e_2 : t$$
 TY_BOOL_ELIM

$$\overline{\Theta; \Delta; \cdot \vdash k : \mathbf{int}}$$
 TY_INT_INTRO

$$\overline{\Theta; \Delta; \cdot \vdash el : elt}$$
 TY_ELT_INTRO

$$\Theta; \Delta; \cdot \vdash v : t$$

$$\frac{v \neq l \cdot f}{\Theta; \Delta; \cdot \vdash \mathbf{Many} \ v : !t} \quad \mathsf{TY_BANG_INTRO}$$

$$\Theta$$
; Δ ; $\Gamma \vdash e : !t$

$$\Theta; \Delta, x: t; \Gamma' \vdash e': t'$$

$$\Theta; \Delta; \Gamma, \Gamma' \vdash \text{let Many } x = e \text{ in } e' : t'$$
 TY_BANG_ELIM

$$\Theta; \Delta; \Gamma \vdash e : t$$

$$\Theta; \Delta; \Gamma' \vdash e' : t'$$

$$\frac{\Theta; \Delta; \Gamma' \vdash e' : t'}{\Theta; \Delta; \Gamma, \Gamma' \vdash (e, e') : t \,\otimes\, t'} \quad \text{Ty_Pair_Intro}$$

$$\Theta; \Delta; \Gamma \vdash e_{12} : t_1 \otimes t_2$$

$$\frac{\Theta; \Delta; \Gamma', a: t_1, b: t_2 \vdash e: t}{\Theta; \Delta; \Gamma, \Gamma' \vdash \mathbf{let} \, (a,b) = e_{12} \, \mathbf{in} \, e: t} \quad \text{TY_PAIR_ELIM}$$

$$\begin{array}{l} \Theta \vdash t' \operatorname{Type} \\ \Theta ; \Delta ; \Gamma , x : t' \vdash e : t \\ \hline \Theta ; \Delta ; \Gamma \vdash \operatorname{fun} x : t' \to e : t' \multimap t \\ \hline \Theta ; \Delta ; \Gamma \vdash \operatorname{fun} x : t' \to e : t' \multimap t \\ \hline \Theta ; \Delta ; \Gamma \vdash e : t' \multimap t \\ \hline \Theta ; \Delta ; \Gamma \vdash e' : t' \\ \hline \Theta ; \Delta ; \Gamma ; \vdash e' : t \\ \hline \Theta ; \Delta ; \Gamma ; \vdash e : t \\ \hline \Theta ; \Delta ; \Gamma \vdash \operatorname{fun} fc \to e : \forall fc.t \\ \hline \Theta ; \Delta ; \Gamma \vdash$$

2 Dynamic Semantics

$$\frac{\langle \sigma, e \rangle \rightarrow \operatorname{err}}{\langle \sigma, C[e] \rangle \rightarrow \operatorname{err}} \quad \operatorname{OP_CONTEXT_ERR}$$

$$\frac{0 \leq k_1, k_2 \quad l \text{ fresh}}{\langle \sigma, \operatorname{matrix} k_1 k_2 \rangle \rightarrow \langle \sigma + \{l \mapsto_1 M_{k_1, k_2}\}, l \cdot 1 \rangle} \quad \operatorname{OP_MATRIX}$$

$$\overline{\langle \sigma + \{l \mapsto_1 m_{k_1, k_2}\}, \operatorname{free} l \cdot 1 \rangle \rightarrow \langle \sigma, () \rangle} \quad \operatorname{OP_FREE}$$

$$\overline{\langle \sigma + \{l \mapsto_1 m_{k_1, k_2}\}, \operatorname{share} l \cdot f \rangle \rightarrow \langle \sigma + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2}\} + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2}\}, (l \cdot \frac{1}{2}f, l \cdot \frac{1}{2}f) \rangle}} \quad \operatorname{OP_SHARE}$$

$$\frac{f \leq 1}{\langle \sigma + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2}\} + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2}\}, \operatorname{unshare} v v \rangle \rightarrow \langle \sigma + \{l \mapsto_f m_{k_1, k_2}\}, l \cdot f \rangle} \quad \operatorname{OP_UNSHARE_EQ}$$

$$\frac{l \neq l'}{\langle \sigma + \{l \mapsto_{\frac{1}{2}f} m_{k_1, k_2}\} + \{l' \mapsto_{\frac{1}{2}f} m'_{k_1, k_2}\}, \operatorname{unshare} (l \cdot \frac{1}{2}f) (l' \cdot \frac{1}{2}f') \rangle \rightarrow \operatorname{err}} \quad \operatorname{OP_UNSHARE_NEQ}$$

$$\sigma' \equiv \sigma + \{l_1 \mapsto_{fc_1} m_{1k_1, k_2}\} + \{l_2 \mapsto_{fc_2} m_{2k_2, k_3}\} \quad v_1 \equiv l_1 \cdot f_1 \quad v_2 \equiv l_2 \cdot f_2$$

$$v_3 \equiv l_3 \cdot 1$$

$$\overline{\langle \sigma' + \{l_3 \mapsto_1 m_{1k_1, k_3}\}, \operatorname{gemm} v_1 v_2 v_3 \rangle \rightarrow \langle \sigma' + \{l_3 \mapsto_1 (m_1 m_2 + m_3)_{k_1, k_3}\}, ((v_1, v_2), v_3) \rangle} \quad \operatorname{OP_GEMM_MATCH}$$

$$\frac{k_2 \neq k'_2}{\sigma' \equiv \sigma + \{l_1 \mapsto_{fc_1} m_{1k_1, k_2}\} + \{l_2 \mapsto_{fc_2} m_{2k'_2, k_3}\}}{v_1 \equiv l_1 \cdot f_1} \quad v_2 \equiv l_2 \cdot f_2 \quad v_3 \equiv l_3 \cdot 1} \quad \operatorname{OP_GEMM_MISMATCH}$$

$$\operatorname{OP_GEMM_MISMATCH}$$

3 Interpretation

3.1 Definitions

Operationally, $Heap \sqsubseteq Loc \times Permission \times Matrix$ (a multiset), denoted with a σ . Define its interpretation to be $Loc \rightharpoonup Permission \times Matrix$ with $\star : Heap \times Heap \rightharpoonup Heap$ as follows:

$$(\varsigma_{1} \star \varsigma_{2})(l) \equiv \begin{cases} \varsigma_{1}(l) & \text{if } l \in \text{dom}(\varsigma_{1}) \land l \notin \text{dom}(\varsigma_{2}) \\ \varsigma_{2}(l) & \text{if } l \in \text{dom}(\varsigma_{2}) \land l \notin \text{dom}(\varsigma_{1}) \\ (f_{1} + f_{2}, m) & \text{if } (f_{1}, m) = \varsigma_{1}(l) \land (f_{2}, m) = \varsigma_{2}(l) \land f_{1} + f_{2} \leq 1 \\ \text{undefined} & \text{otherwise} \end{cases}$$

Commutativity and associativity of \star follows from that of +.

 $\varsigma_1 \star \varsigma_2$ is defined if it is for all $l \in \text{dom}(\varsigma_1) \cup \text{dom}(\varsigma_2)$.

Implicitly denote
$$\varsigma \equiv \mathcal{H}\llbracket \sigma \rrbracket \equiv \bigstar_{(l,f,m) \in \sigma} [l \mapsto_f m]$$
.

The n-fold iteration for the StepsTo (functional) relation, is also a (functional) relation:

$$\forall n. \ \mathbf{err} \to^n \mathbf{err} \qquad \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle \qquad \langle \sigma, e \rangle \to^0 \langle \sigma, e \rangle \qquad \langle \sigma, e \rangle \to^{n+1} ((\langle \sigma, e \rangle \to) \to^n)$$

Hence, all bounded iterations end in either an err, a heap-and-expression or a heap-and-value.

3.2 Interpretation

$$\begin{split} \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, *)\} \\ \mathcal{V}_{k}[\mathbf{bool}] &= \{(\emptyset, true), (\emptyset, false)\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, n) \mid 2^{-63} \leq n \leq 2^{63} - 1\} \\ \mathcal{V}_{k}[\mathbf{int}] &= \{(\emptyset, f) \mid f \text{ a IEEE Float64} \} \\ \mathcal{V}_{k}[[\mathbf{f} \mathbf{mat}]] &= \{(\{l \mapsto_{2^{-f}} -\}, l)\} \\ \mathcal{V}_{k}[[t]] &= \{(\emptyset, \mathbf{Many} v) \mid (\emptyset, v) \in \mathcal{V}_{k}[[t]] \} \\ \mathcal{V}_{k}[[t] &= \{(\varsigma, \mathbf{fun} fc \to v) \mid \forall f. (\varsigma, (\mathbf{fun} fc \to v) [f]) \in \mathcal{V}_{k}[[t][fc/f]]] \} \\ \mathcal{V}_{k}[[t_{1} \otimes t_{2}]] &= \{(\varsigma_{1} \star \varsigma_{2}, (v_{1}, v_{2})) \mid (\varsigma_{1}, v_{1}) \in \mathcal{V}_{k}[[t_{1}]] \land (\varsigma_{2}, v_{2}) \in \mathcal{V}_{k}[[t_{2}]] \} \\ \mathcal{V}_{k}[[t \to t']] &= \{(\varsigma_{i} \vee \varsigma_{i}, v') \mid (v') = \mathbf{fun} x : t \to e \vee v' = \mathbf{fix}(g, x : t, e : t')) \land \\ \forall j \leq k, (\varsigma_{e}, v) \in \mathcal{V}_{j}[[t]], \varsigma_{v'} \star \varsigma_{v} \text{ defined} \Rightarrow (\varsigma_{v'} \star \varsigma_{v}, v' v) \in \mathcal{C}_{j}[[t']] \} \\ \mathcal{C}_{k}[[t]] &= \{(\varsigma_{s}, e_{s}) \mid \forall j < k, \sigma_{r}, \varsigma_{s} \star \varsigma_{r} \text{ defined} \Rightarrow \langle \sigma_{s} + \sigma_{r}, e_{s} \rangle \to^{j} \text{ err } \vee \exists \sigma_{f}, e_{f}, \\ \langle \sigma_{s} + \sigma_{f}, e_{s} \rangle \to^{j} \langle \sigma_{f} + \sigma_{r}, e_{f} \rangle \land (e_{f} \text{ is a value} \Rightarrow (\varsigma_{f} \star \varsigma_{r}, e_{f}) \in \mathcal{V}_{k-j}[[t]]) \} \\ \mathcal{I}_{k}[[t]] &= \{[t]\} \\ \mathcal{I}_{k}[[t]] &= \{\delta[x \mapsto v_{x}] \mid \delta \in \mathcal{I}_{k}[[t]] \theta \land (\emptyset, v_{x}) \in \mathcal{V}_{k}[[\theta(t)]] \} \\ \mathcal{L}_{k}[[t], x : t] \theta &= \{(\varsigma \star \varsigma_{x}, \gamma[x \mapsto v_{x}]) \mid (\varsigma, \gamma) \in \mathcal{L}_{k}[[t]] \theta \land (\varsigma_{x}, v_{x}) \in \mathcal{V}_{k}[[\theta(t)]] \} \\ \varsigma &= \mathcal{H}[[\sigma]] = \bigstar(t, f, m) \in \sigma[t \mapsto_{f} m] \\ k[\Theta; \Delta; \Gamma \vdash e : t] &= \forall \theta, \delta, \gamma, \sigma. \text{ dom}(\Theta) = \text{dom}(\theta) \land (\varsigma, \gamma) \in \mathcal{L}_{k}[[t]] \theta \land \delta \in \mathcal{I}_{k}[[t]] \theta \Rightarrow \\ (\varsigma, \gamma(\delta(e))) \in \mathcal{C}_{k}[[\theta(t)]] \end{cases}$$

4 Proofs

4.1 Lemmas

4.1.1
$$\forall \sigma_s, \sigma_r, e. \ \varsigma_s \star \varsigma_r \ \mathbf{defined} \ \Rightarrow \forall n. \ \langle \sigma_s, e \rangle \to^n = \langle \sigma_s + \sigma_r, e \rangle \to^n$$

SUFFICES: By induction on n, consider only the cases $\langle \sigma_s, e \rangle \to \langle \sigma_f, e_f \rangle$ where $\sigma_s \neq \sigma_f$.

PROOF SKETCH: Only OP_{FREE, MATRIX, SHARE, UNSHARE_EQ, GEMM_MATCH} change the heap: the rest are either parametric in the heap or step to an **err**.

PROVE: $\langle \sigma_s + \sigma_r, e \rangle \rightarrow \langle \sigma_f + \sigma_r, e_f \rangle$.

- $\langle 1 \rangle 1$. CASE: OP_FREE, $\sigma_s \equiv \sigma' + \{l \mapsto_1 m\}$, $\sigma_f = \sigma'$. PROOF: Instantiate OP_FREE with $(\sigma' + \sigma_r) + \{l \mapsto_1 m\}$, valid because $l \notin \text{dom}(\varsigma_r)$ by $\varsigma' \star [l \mapsto_1 m] \star \varsigma_r$ defined (assumption).
- $\langle 1 \rangle 2$. Case: Op_Matrix Proof: Rule has no requirements on σ_s so will also work with $\sigma_s + \sigma_r$.
- $\langle 1 \rangle 3$. Case: Op_Share, $\sigma_s \equiv \sigma' + \{l \mapsto_f m\}$, $\sigma_f = \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}$. Proof: Union-ing σ_r does not remove $l \mapsto_f m$, so that can be split out of $\sigma_s + \sigma_r$ as before.
- $\langle 1 \rangle 4. \text{ Case: Op_Unshare_Eq, } \sigma_s \equiv \sigma' + \{l \mapsto_{\frac{1}{2} \cdot f} m\} + \{l \mapsto_{\frac{1}{2} \cdot f} m\}, \ \sigma_f = \sigma' + \{l \mapsto_f m\}.$
 - $\langle 2 \rangle 1$. Union-ing σ_r does not remove $l \mapsto_{\frac{1}{2} \cdot f} m$, so that can still be split out of $\sigma_s + \sigma_r$.
 - $\langle 2 \rangle 2$. There may also be other valid splits introduced by σ_r .
 - $\langle 2 \rangle 3$. However, by assumption of $\varsigma_s \star \varsigma_r$ defined, any splitting of $\sigma_s + \sigma_r$ will satisfy $f \leq 1$.
- $\langle 1 \rangle$ 5. Case: Op_Gemm_Match
 - $\langle 2 \rangle 1$. By assumption of $\varsigma_s \star \varsigma_r$ defined, either l_1 (or l_2 , or both) are not in σ_r , or they are and the matrix values they point to are the same.
 - $\langle 2 \rangle 2$. The permissions (of l_1 and/or l_2) may differ, but OP_GEMM_MATCH universally quantifies over them and leaves them unchanged, so they are irrelevant.
 - $\langle 2 \rangle 3$. Only the pointed to matrix value at l_3 changes.
 - $\langle 2 \rangle 4$. Suffices: $l_3 \notin \pi_1[\sigma_r]$.
 - $\langle 2 \rangle 5$. By assumption of $\varsigma_s \star \varsigma_r$ defined, $l_3 \notin \text{dom}(\varsigma_r)$.
 - $\langle 2 \rangle 6$. Hence $l_3 \notin \pi_1[\sigma_r]$.

4.1.2 $\forall k, t. \ \mathcal{V}_k[\![t]\!] \subseteq \mathcal{C}_k[\![t]\!]$

Follows from definition of $C_k[\![t]\!]$, $\to^j (\forall n. \langle \sigma, v \rangle \to^n \langle \sigma, v \rangle)$ for arbitrary $j \leq k$ and 4.1.1.

4.1.3 $\forall \delta, \gamma, v. \ \delta(\gamma(v))$ is a value.

By construction, δ and γ only map variables to values, and values are closed under substitution.

5

4.1.4 $\forall k, \sigma, \sigma', e, e', t. \ (\varsigma', e') \in \mathcal{C}_k[\![t]\!] \land \langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \Rightarrow (\varsigma, e) \in \mathcal{C}_{k+1}[\![t]\!]$

Assume: arbitrary j < k + 1, and σ_r such that $\varsigma \star \varsigma_r$ defined.

- $\langle 1 \rangle 1$. CASE: j = 0. Clearly $\sigma_f = \sigma_s + \sigma_r$ and e' = e. Remains to show that if e is a value then $(\varsigma_s \star \varsigma_r, e) \in \mathcal{V}_k[\![t]\!]$. This is true vacuously, because by assumption, e is not a value.
- $\langle 1 \rangle 2$. Case: $j \geq 1$. We have $\langle \sigma, e \rangle \to^j = \langle \sigma', e' \rangle \to^{j-1}$. Instantiate $(\varsigma', e') \in \mathcal{C}_k[\![t]\!]$, with j-1 < k and σ_r to conclude the required conditions.

4.1.5
$$j \leq k \Rightarrow {}_{-k} \llbracket \cdot \rrbracket \subseteq {}_{-i} \llbracket \cdot \rrbracket$$

Lemma 4.1.4 is the inductive step for this lemma for the $\mathcal{C}[]$ case. Need to prove for $\mathcal{V}[]$, by induction on t and then index.

Suffices: Consider only $t \multimap t'$ case, rest use k directly on structure of type.

Assume: Arbitrary $j \leq k$ and $(\varsigma_{v'}, v') \in \mathcal{V}_k \llbracket t \multimap t' \rrbracket$.

PROVE: $(\varsigma_{v'}, v') \in \mathcal{V}_j[\![t \multimap t']\!].$

- $\langle 1 \rangle 1$. v' is of the correct syntactic form (lambda or fixpoint) by assumption.
- $\langle 1 \rangle 2$. Assume: arbitrary $j' \leq j$ and $(\varsigma_v, v) \in \mathcal{V}_{j'}[\![t]\!]$ such that $\varsigma_{v'} \star \varsigma_v$ is defined.
- $\langle 1 \rangle 3$. SUFFICES: to show $(\varsigma_{v'} \star \varsigma_v, v'v) \in \mathcal{C}_{i'} \llbracket t' \rrbracket$.
- $\langle 1 \rangle 4$. This is true by instantiating $(\varsigma_{v'}, v') \in \mathcal{V}_k[\![t \multimap t']\!]$ with $j' \leq k$ and $(\varsigma_v, v) \in \mathcal{V}_{j'}[\![t]\!]$.
- **4.1.6** $\forall \Delta, \Gamma, t, k, \theta, \delta, \gamma. \ \delta \in \mathcal{I}_k[\![\Delta]\!] \theta \wedge \gamma \in \pi_2[\mathcal{L}_k[\![\Gamma]\!] \theta] \Rightarrow \operatorname{dom}(\Delta) = \operatorname{dom}(\delta) \text{ and } \operatorname{dom}(\Gamma) = \operatorname{dom}(\gamma)$ PROOF: By induction on Δ and Γ .
- **4.1.7** $\forall k, \Gamma, \Gamma', \theta, \sigma_+, \gamma_+. \ (\varsigma_+, \gamma) \in \mathcal{L}_k[\![\Gamma, \Gamma']\!]\theta \wedge \Gamma, \Gamma' \ \mathbf{disjoint} \Rightarrow \exists \sigma, \gamma, \sigma', \gamma'. \ \sigma_+ = \sigma + \sigma' \wedge \gamma, \gamma' \ \mathbf{disjoint} \ \wedge \gamma_+ = \gamma \cup \gamma' \\ \wedge (\varsigma, \gamma) \in \mathcal{L}_k[\![\Gamma]\!] \wedge (\varsigma', \gamma') \in \mathcal{L}_k[\![\Gamma']\!]$

PROOF: By induction on Γ' .

4.2 Soundness

$$\forall \Theta, \Delta, \Gamma, e, t. \ \Theta; \Delta; \Gamma \vdash e : t \Rightarrow \forall k. \ _k \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$$

PROOF SKETCH: Induction over the typing judgements.

Assume: 1. Arbitrary $\Theta, \Delta, \Gamma, e, t$ such that $\Theta; \Delta; \Gamma \vdash e : t$.

- 2. Arbitrary $k, \theta, \delta, \gamma, \sigma$ such that:
 - a. $dom(\Theta) = dom(\theta)$
 - b. $(\varsigma, \gamma) \in \mathcal{L}_k[\![\Gamma]\!]\theta$
 - c. $\delta \in \mathcal{I}_k \llbracket \Delta \rrbracket \theta$.
- 3. W.l.o.g., all variables are distinct, hence $dom(\Delta)$ and $dom(\Gamma)$ are disjoint

so $\gamma \circ \delta = \delta \circ \gamma$ (as substitutions defined recursively over expressions).

PROVE: $(\varsigma, \gamma(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

Assume: Arbitrary j < k and σ_r , such that $\varsigma \star \varsigma_r$ defined.

SUFFICES: $\langle \sigma + \sigma_r, e \rangle \rightarrow^j \mathbf{err} \vee \exists \sigma_f, e_f. \langle \sigma + \sigma_r, e \rangle \rightarrow^j \langle \sigma_f + \sigma_r, e_f \rangle$

 $\land (e_f \text{ is a value } \Rightarrow (\varsigma_f \star \varsigma_r, e_f) \in \mathcal{V}_{k-j}[\![t]\!]).$

SUFFICES: By 4.1.1, to show $\langle \sigma, e \rangle \to^j \mathbf{err} \vee \exists \sigma_f, e_f. \langle \sigma, e \rangle \to^j \langle \sigma_f, e_f \rangle$

 $\land (e_f \text{ is a value } \Rightarrow (\varsigma_f, e_f) \in \mathcal{V}_{k-j}[\![t]\!])$

- $\langle 1 \rangle 1$. Case: Ty_Let.
 - $\langle 2 \rangle 1$. By induction,
 - 1. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma \vdash e : t \rrbracket$
 - 2. $\forall k. \ _{k} \llbracket \Theta; \Delta; \Gamma', x : t \vdash e' : t' \rrbracket$.
 - $\langle 2 \rangle 2$. By 2b, 3 and 4.1.7, we know there exists the following:
 - 1. $(\varsigma_e, \gamma_e) \in \mathcal{L}_k \llbracket \Gamma \rrbracket$
 - 2. $\gamma = \gamma_e \cup \gamma_{e'}$
 - 3. $\sigma = \sigma_e + \sigma_{e'}$.
 - $\langle 2 \rangle 3$. So, using $k, \theta, \delta, \gamma_e, \sigma_e$, we have $(\varsigma_e, \gamma_e(\delta(e))) \in \mathcal{C}_k[\![\theta(t)]\!]$.
 - $\langle 2 \rangle 4$. By $\langle 2 \rangle 2$, $(\varsigma_e, \gamma(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
 - $\langle 2 \rangle$ 5. By definition of $C_k[\cdot]$ and $\langle 2 \rangle$ 2, we instantiate with j and $\sigma_r = \sigma_{e'}$ to conclude that $\langle \varsigma, \gamma(\delta(e)) \rangle$ either takes j step to **err** or another heap-and-expression $\langle \sigma_f, \gamma(\delta(e_f)) \rangle$.
 - $\langle 2 \rangle$ 6. Case: **err** By Op_Context_Err, the whole expression reduces to **err** in j < k steps.
 - $\langle 2 \rangle$ 7. Case: j steps to another heap and expression. By OP_CONTEXT and, the whole expression does the same.
 - $\langle 2 \rangle$ 8. If it is not a value, we are done. If it is $(\varsigma_f, v) \in \mathcal{V}_{k-j}\llbracket \theta(t) \rrbracket$ by 4.1.3. SUFFICES: $(\varsigma_f \star \varsigma_{e'}, \mathbf{let} \ x = v \mathbf{in} \ \gamma(\delta(e'))) \in \mathcal{C}_{k-j}\llbracket \theta(t') \rrbracket$ by 4.1.4 j times. SUFFICES: $(\varsigma_f \star \varsigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}\llbracket \theta(t') \rrbracket$ by 4.1.4.
 - $\langle 2 \rangle 9$. By 4.1.5, $(\varsigma_{e'}, \gamma_{e'}[x \mapsto v]) \in \mathcal{L}_k[\![\Gamma', x : t]\!]\theta \subseteq \mathcal{L}_{k-i-1}[\![\Gamma', x : t]\!]\theta$.
 - $\langle 2 \rangle 10$. Instantiate 2 of step $\langle 2 \rangle 1$ with $\theta, k j 1, \delta, \gamma_{e'}[x \mapsto v], \sigma_{e'}$ to conclude $(\varsigma_{e'}, \gamma_{e'}[x \mapsto v](\delta(e'))) \in \mathcal{C}_{k-j-1}\llbracket \theta(t') \rrbracket$.

- $\langle 2 \rangle 11$. By 3, we have $\gamma(\delta(e'))[x/v] = \gamma_{e'}[x \mapsto v](\delta(e'))$ and by 4.1.1 we conclude $(\varsigma_f \star \varsigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}[\theta(t')]$
- $\langle 1 \rangle 2$. Case: Ty_Pair_Elim.

PROOF SKETCH: Similar to TY_LET, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-i} \llbracket \theta(t_1) \otimes \theta(t_2) \rrbracket$, we have $v = (v_1, v_2)$.
- $\langle 2 \rangle 2$. SUFFICES: $(\varsigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-j-1} \llbracket \theta(t') \rrbracket$ by 4.1.4 j+1 times.
- $\langle 2 \rangle 3$. By 4.1.5, $(\varsigma_{e'}, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2]) \in \mathcal{L}_k[\Gamma', a : t_1, b : t_2]\theta \subseteq \mathcal{L}_{k-j-1}[\Gamma', a : t_1, b : t_2]\theta$.
- $\langle 2 \rangle 4$. Instantiate k-j-1 $[\Theta; \Delta; \Gamma', a: t_1, b: t_2 \vdash e': t']$ with $\theta, \delta, \gamma_{e'}[a \mapsto v_1, b \mapsto v_2], \sigma_{e'}$.
- $\langle 2 \rangle 5$. By $3 (\varsigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$.
- $\langle 1 \rangle 3$. Case: Ty_Bang_Elim.

PROOF SKETCH: Similar to TY_LET, but with the following key differences.

- $\langle 2 \rangle 1$. When $(\varsigma_f, v) \in \mathcal{V}_{k-j}[\![\theta(!t)]\!]$, since $\mathcal{V}_{k-j}[\![\theta(!t)]\!] = \mathcal{V}_{k-j}[\![!\theta(t)]\!]$, we have $\varsigma_f = \emptyset$ and $v = \mathbf{Many} v'$ for some $(\emptyset, v') \in \mathcal{V}_{k-j}[\![\theta(t)]\!]$.
- $\langle 2 \rangle 2$. Suffices: $(\varsigma_{e'}, \mathbf{let} \, \mathbf{Many} \, x = \mathbf{Many} \, v' \, \mathbf{in} \, \gamma(\delta(e'))) \in \mathcal{C}_{k-i} \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 3$. SUFFICES: $(\varsigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}[\theta(t)]$ by 4.1.4 j+1 times.
- $\langle 2 \rangle 4$. Instantiate k-i-1 Θ ; $\Delta, x: t, \Gamma' \vdash e': t'$ with $\theta, \delta_{e'} = \delta[x \mapsto v'], \gamma_{e'}, \sigma_{e'}$.
- $\langle 2 \rangle 5$. By 3, $(\varsigma_{e'}, \gamma(\delta(e'))[x/v]) \in \mathcal{C}_{k-j-1}[\theta(t)]$.
- $\langle 1 \rangle 4$. Case: Ty_Unit_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{let}() = e \mathbf{in} e'))) \in \mathcal{C}_k[\![\theta(t)]\!].$

PROOF: Similar to TY_LET but with OP_LET_UNIT.

- $\langle 2 \rangle 1$. When $(\sigma_{ef}, v) \in \mathcal{V}_{k-j}[\mathbf{unit}]$, we have $\sigma_{ef} = \emptyset$ and v = ().
- $\langle 2 \rangle 2$. Suffices: $(\sigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-j-1}\llbracket \theta(t') \rrbracket$ by 4.1.4.
- $\langle 2 \rangle 3$. DEFINE: $\gamma_{e'}$ to be the restriction of γ to dom (Γ') . Thus, by 4.1.5, $(\sigma_{e'}, \gamma_{e'}) \in \mathcal{L}_k \llbracket \Gamma' \rrbracket \theta \subseteq \mathcal{L}_{k-j-1} \llbracket \Gamma' \rrbracket \theta$.
- $\langle 2 \rangle 4$. Instantiate $\llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$ with $\theta, k j 1, \delta, \gamma_{e'}, \sigma_{e'}$.
- $\langle 2 \rangle 5$. By $3 (\sigma_{e'}, \gamma(\delta(e'))) \in \mathcal{C}_{k-i-1} \llbracket \theta(t') \rrbracket$.
- $\langle 1 \rangle$ 5. Case: Ty_Bool_Elim.

PROVE: $(\sigma, \gamma(\delta(\mathbf{if} e \mathbf{then} e_1 \mathbf{else} e_2))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.

PROOF: Similar to Ty_Unit_Elim but with Op_If_{True,False}

and $\sigma_{ef} = \emptyset$ and v =Many true or v =Many false.

 $\langle 1 \rangle 6$. Case: Ty_Bang_Intro.

PROVE: $(\sigma, \gamma(\delta(\mathbf{Many}\,e))) \in \mathcal{C}_k[\![\theta(!t)]\!].$

SUFFICES: $(\sigma, \mathbf{Many} \gamma(\delta(e))) \in \mathcal{C}_k[\![!\theta(t)]\!].$

 $\langle 2 \rangle$ 1. By assumption of TY_BANG_INTRO, e = v for some value $v \neq l$, $\Gamma = \emptyset$ and so $\llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ by induction.

- $\langle 2 \rangle 2$. SUFFICES: $(\emptyset, \mathbf{Many} \, \delta(v)) \in \mathcal{C}_k \llbracket ! \theta(t) \rrbracket$ by 3 and 2b.
- $\langle 2 \rangle 3$. Instantiate $\llbracket \Theta; \Delta; \cdot \vdash v : t \rrbracket$ with $\theta, k, \delta, \gamma = \llbracket, \sigma = \emptyset$ to obtain $(\emptyset, \delta(v)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 4$. Instantiate $(\emptyset, \delta(v)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ with j = 0, and $\sigma_r = \emptyset$, to conclude $(\emptyset, v) \in \mathcal{V}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle$ 5. By definition of $\mathcal{V}_k[\![!\theta(t)]\!]$, 4.1.3 and 4.1.2 we have $(\emptyset, \mathbf{Many}\,\delta(v)) \in \mathcal{C}_k[\![!\theta(t)]\!]$.
- $\langle 1 \rangle 7$. Case: Ty_Pair_Intro.

PROVE: $(\sigma, \gamma(\delta((e, e')))) \in \mathcal{C}_k \llbracket \theta(t \otimes t') \rrbracket$.

Assume: Arbitrary $j \leq k$ and σ_r .

Suffices: Show whole expression either reduces to **err** or a heap and expression in j steps.

- $\langle 2 \rangle 1$. Define: $(\sigma_1, \gamma_1) \in \mathcal{L}_j[\![\Gamma]\!]$ similar to (σ_e, γ_e) in Ty_Let.
- $\langle 2 \rangle 2$. By induction,
 - 1. $[\Theta; \Delta; \Gamma_1 \vdash e_1 : t_1]$
 - 2. $\llbracket \Theta; \Delta; \Gamma_2 \vdash e_2 : t_2 \rrbracket$.
- $\langle 2 \rangle 3$. Instantiate the first with $\theta, k, \delta, \gamma_1, \sigma_1$.
- $\langle 2 \rangle 4$. Therefore, $(\sigma_1, \gamma_1(\delta(e_1))) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle$ 5. So, $(\sigma_1 \star \sigma_2, \gamma_1(\delta(e_1)))$ either reduces to **err** or a heap and expression in j steps.
- $\langle 2 \rangle$ 6. Case: **err** By Op_Context_Err and 3, so too does the whole expression. Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma, \gamma(\delta((e, e')))) \in \mathcal{C}_k \llbracket \theta(t \otimes t') \rrbracket$.
- $\langle 2 \rangle$ 7. Case: j steps to another heap and expression. By Op_Context and 3, the whole expression does the same.
- $\langle 2 \rangle 8$. If it is not a value, we are done. If it is $(\sigma_{1f}, v_1) \in \mathcal{V}_{k-j}[\![\theta(t_1)]\!]$ by 4.1.3. SUFFICES: By 4.1.4, $(\sigma_{1f} \star \sigma_{e_2}, (v_1, e_2)) \in \mathcal{C}_{k-j}[\![\theta(t_1 \otimes t_2)]\!]$.
- $\langle 2 \rangle 9$. Instantiate the second IH with $\theta, j, \delta, \gamma_2, \sigma_2$ defined as per usual.
- $\langle 2 \rangle 10$. So, $(\sigma_{1f} \star \sigma_2, \gamma_2(\delta(e_2)))$ either reduces to **err** or a heap and expression in j steps.
- $\langle 2 \rangle$ 11. CASE: **err** By OP_CONTEXT_ERR, 3, so too does the whole expression. Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma_{e_2}, (v_1, e_2)) \in \mathcal{C}_{k-j} \llbracket \theta(t_1 \otimes t_2) \rrbracket$.
- $\langle 2 \rangle$ 12. Case: j steps to another heap and expression. By Op_Context and 3, the whole expression does the same.
- $\langle 2 \rangle$ 13. If it is not a value, we are done. If it is $(\sigma_{2f}, v_2) \in \mathcal{V}_{k-j}[\![\theta(t_2)]\!]$ by 4.1.3. SUFFICES: By 4.1.4, $(\sigma_{1f} \star \sigma_{2f}, (v_1, v_2)) \in \mathcal{C}_{k-2j}[\![\theta(t_1 \otimes t_2)]\!]$.
- $\langle 2 \rangle 14$. By 4.1.5 and 4.1.2, $(\sigma_{1f} \star \sigma_{2f}, (v_1, v_2)) \in \mathcal{V}_{k-j}[\![\cdot]\!] \subseteq \mathcal{V}_{k-2j}[\![\cdot]\!] \subseteq \mathcal{C}_{k-2j}[\![\cdot]\!]$ as needed.
- $\langle 1 \rangle 8$. Case: Ty_Lambda.

PROVE: $(\sigma, \gamma(\delta(\mathbf{fun}\,x:t\to e))) \in \mathcal{C}_k[\![\theta(t\multimap t')]\!].$

SUFFICES: By 6, to show $\ldots \in \mathcal{V}_k \llbracket \theta(t \multimap t') \rrbracket$.

Assume: Arbitrary j < k, $(\sigma_v, v) \in \mathcal{V}_i[\![\theta(t)]\!]$ such that $\sigma \star \sigma_v$ is defined.

SUFFICES: $(\sigma \star \sigma_v, \gamma(\delta(\mathbf{fun}\,x:t\to e))\,v) \in \mathcal{C}_j[\![\theta(t')]\!].$

SUFFICES: $(\sigma \star \sigma_v, \gamma(\delta(e))[x/v]) \in C_i \llbracket \theta(t') \rrbracket$.

- $\langle 2 \rangle 1$. By induction, $\llbracket \Theta; \Delta; \Gamma, x : t \vdash e \rrbracket$.
- $\langle 2 \rangle 2$. Instantiate it $\theta, j-1, \gamma[x \mapsto v], \sigma_v \star \sigma$.
- $\langle 2 \rangle 3$. Hence, $(\sigma_v \star \sigma, \gamma[x \mapsto v](\delta(e))) \in \mathcal{C}_{j-1} \llbracket \theta(t) \rrbracket$.
- $\langle 2 \rangle 4$. By 3, we are done.
- $\langle 1 \rangle 9$. Case: Ty_App.

PROVE: $(\sigma, \gamma(\delta(ee'))) \in \mathcal{C}_k[\![\theta(t)]\!].$

Assume: Arbitrary j and σ_r such that $\sigma \star \sigma_r$ defined.

Suffices: Show whole expression either reduces to **err** or a heap and expression in j steps.

- $\langle 2 \rangle 1$. By induction,
 - 1. $\llbracket \Theta; \Delta; \Gamma \vdash e : t' \multimap t \rrbracket$
 - 2. $\llbracket \Theta; \Delta; \Gamma' \vdash e' : t' \rrbracket$.
- $\langle 2 \rangle 2$. Instantiate the first with $\theta, k, \delta, \gamma_e, \sigma_e$ as per usual definitions, to conclude $(\sigma_e, \gamma_e(\delta(e))) \in \mathcal{C}_k \llbracket \theta(t' \multimap t) \rrbracket$.
- $\langle 2 \rangle 3$. Instantiate this with j and $\sigma_{e'}$ to conclude $(\sigma = \sigma_e \star \sigma_{e'}, \gamma(\delta(ee')))$ reduces to **err** or another heap and expression in j steps (using 3).
- $\langle 2 \rangle 4$. Case: **err**

By Op_Context_Err, so too does the whole expression.

Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma, \gamma(\delta(ee^t))) \in \mathcal{C}_k[\![\theta(t' \multimap t)]\!]$.

 $\langle 2 \rangle$ 5. Case: j steps to another heap and expression.

By Op_Context, the whole expression does the same.

If it is not a value, we are done.

If it is $(\sigma_{ef}, \mathbf{fun} \, x : t \to e_b) \in \mathcal{V}_{k-i} \llbracket \theta(t' \multimap t) \rrbracket$ by 4.1.3.

- $\langle 2 \rangle 6$. SUFFICES: By 4.1.4, to show $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta((\mathbf{fun}\,x:t \to e_b)\,e'))) \in \mathcal{C}_{k-j}[\![\theta(t)]\!]$.
- $\langle 2 \rangle 7$. Instantiate the second IH with $\theta, j, \delta, \gamma_{e'}, \sigma_{e'}$ defined as per usual.
- $\langle 2 \rangle 8$. So, $(\sigma_{ef} \star \sigma_{e'}, \gamma_{e'}(\delta(e')))$ either reduces to **err** or a heap and expression in j steps.
- $\langle 2 \rangle 9$. Case: **err**

By Op_Context_Err and 3, so too does the whole expression. Since $j \leq k$ and σ_r (for 4.1.1) are arbitrary, $(\sigma_{ef} \star \sigma_{e'}, \gamma(\delta((\mathbf{fun} x : t \to e_b) e'))) \in \mathcal{C}_{k-j}[\![\theta(t)]\!]$.

 $\langle 2 \rangle 10$. Case: j steps to another heap and expression.

By Op_Context and 3, the whole expression does the same.

- $\langle 2 \rangle$ 11. If it is not a value, we are done. If it is, by definition of $(\sigma_{ef}, \mathbf{fun} \, x : t \to e_b) \in \mathcal{V}_{k-j}[\![\theta(t' \multimap t)]\!]$, we have $(\sigma_{ef} \star \sigma_{e'f}, \gamma(\delta((\mathbf{fun} \, x : t \to e_b) \, v'))) \in \mathcal{C}_{k-2j}[\![\theta(t)]\!]$.
- $\langle 1 \rangle 10$. Case: Ty_Gen.

PROVE: $(\sigma, \gamma(\delta(\mathbf{fun}\ fc \to e))) \in \mathcal{C}_k[\![\theta(\forall fc.\ t)]\!].$

 $\langle 1 \rangle 11$. Case: Ty_Spc.

PROVE: $(\sigma, \gamma(\delta(e[f]))) \in \mathcal{C}_k \llbracket \theta(t[fc/f]) \rrbracket$.

 $\langle 1 \rangle 12$. Case: Ty_Fix.

PROVE: $(\sigma, \gamma(\delta(\mathbf{fix}(g, x : t, e : t')))) \in \mathcal{C}_k[\![\theta(!(t \multimap t'))]\!].$ SUFFICES: to show ... $\in \mathcal{V}_k[\![!(\theta(t) \multimap \theta(t'))]\!]$, by 4.1.2.

- $\langle 2 \rangle 1$. Assume: Arbitrary j < k and $(\sigma, v) \in \mathcal{V}_j[\![\theta(t)]\!]$.
- $\langle 2 \rangle 2$. Suffices: $(\sigma, letManyG \ g \ v) \in \mathcal{C}_i \llbracket \theta(t') \rrbracket$.
- $\langle 2 \rangle 3$. Let: $e_1 = e[g/\text{fun } x : t \to letManyG \ g \ x]$.
- $\langle 2 \rangle 4$. SUFFICES: by 4.1.4, $(\sigma, (\mathbf{fun} \ x : t \to e_1) \ v) \in \mathcal{C}_{i-1} \llbracket \theta(t') \rrbracket$.
- $\langle 2 \rangle 5$. SUFFICES: by 4.1.4, $(\sigma, e_1[x/v]) \in \mathcal{C}_{j-2}[\theta(t')]$.
- $\langle 2 \rangle 6$. By induction, we have $\llbracket \Theta; \Delta, g: t \multimap t'; x: t \vdash e: t' \rrbracket$.
- $\langle 2 \rangle$ 7. Instantiate this with $\theta, j-2, \delta[g \mapsto \mathbf{fun} \ x : t \to e_1], \gamma = [x \mapsto v], \sigma$ (???). Prove: $(\sigma, \mathbf{fun} \ x : t \to e_1) \in \mathcal{V}_{j-2}[\![\theta(t) \multimap \theta(t')]\!]$.
 - $\langle 3 \rangle 1$. Suffices: by 4.1.4, $(\sigma', e_1[x/v']) \in \mathcal{C}_{j-2}[\theta(t')]$ for arbitrary $(\sigma', v') \in \mathcal{V}_{j-2}[\theta(t)]$.
 - $\langle 3 \rangle 2$. We can again use the induction hypothesis $[\Theta; \Delta, g: t \multimap t'; x: t \vdash e: t']$.
 - $\langle 3 \rangle 3$. But since it's true for $\mathcal{C}_0 \llbracket \cdot \rrbracket$ (base case), it's true by induction ???
- $\langle 2 \rangle 8$. Lastly, we show $\delta(\gamma(e)) = e_1[x/v]$, which follows by their definitions, to conclude $(\sigma, e_1[x/v]) \in \mathcal{C}_{i-2}\llbracket \theta(t') \rrbracket$.
- $\langle 1 \rangle 13$. Case: Ty_Var_Lin.

PROVE: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k[\![\theta(t)]\!].$

- $\langle 2 \rangle 1$. $\Gamma = \{x : t\}$ by assumption of Ty_VAR_LIN.
- $\langle 2 \rangle 2$. SUFFICES: $(\sigma, \gamma(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3.
- $\langle 2 \rangle 3$. By 2b, there exist $(\sigma_x, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$, such that $\sigma = \sigma_x$ and $\gamma = [x \mapsto v_x]$.
- $\langle 2 \rangle 4$. Hence, $(\sigma_x, v_x) \in \mathcal{C}_k[\![\theta(t)]\!]$, by 4.1.2.
- $\langle 1 \rangle 14$. Case: Ty_Var.

PROVE: $(\sigma, \gamma(\delta(x))) \in \mathcal{C}_k[\![\theta(t)]\!]$.

- $\langle 2 \rangle 1$. $x: t \in \Delta$ and $\Gamma = \emptyset$ by assumption of Ty_VAR.
- $\langle 2 \rangle 2$. Suffices: $(\emptyset, \delta(x)) \in \mathcal{C}_k \llbracket \theta(t) \rrbracket$ by 3 and 2b.
- $\langle 2 \rangle 3$. By 2c, there exists v_x such that $(\emptyset, v_x) \in \mathcal{V}_k[\![\theta(t)]\!]$.
- $\langle 2 \rangle 4$. Hence, $(\emptyset, v_x) \in \mathcal{C}_k[\![\theta(t)]\!]$, by 4.1.2.
- $\langle 1 \rangle 15$. Case: Ty_Unit_Intro.

PROVE: $(\sigma, \gamma(\delta(()))) \in \mathcal{C}_k \llbracket \theta(\mathbf{unit}) \rrbracket$.

 $\langle 1 \rangle 16.$ Case: Ty_Bool_True, Ty_Bool_False, Ty_Int_Intro, Ty_Elt_Intro. Similar to Ty_Unit_Intro.

5 Grammar Definition

```
::=
                                        matrix expressions
m
              M
                                           matrix variables
             m+m'
                                           matrix addition
              m m'
                                           matrix multiplication
                          S
              (m)
       ::=
                                        fractional capability
             fc
                                           variable
             1
                                           whole capability
                                        linear type
             unit
                                           unit
             bool
                                           boolean (true/false)
             int
                                           63-bit integers
             elt
                                           array element
             f arr
                                           arrays
             f mat
                                           matrices
              !t
                                           multiple-use type
             \forall fc.t
                          bind fc in t
                                           frac. cap. generalisation
              t \otimes t'
                                           pair
              t \multimap t'
                                           linear function
                          S
              (t)
                                           parentheses
                                        primitive
p
             \mathbf{not}
                                           boolean negation
              (+)
                                           integer addition
                                           integer subtraction
                                           integer multiplication
              (*)
                                           integer division
              (=)
                                           integer equality
                                           integer less-than
              (\langle)
                                           element addition
              (+.)
              (-.)
                                           element subtraction
                                           element multiplication
              (*.)
              (/.)
                                           element division
                                           element equality
              (=.)
                                           element less-than
              (<.)
                                           array index assignment
             \mathbf{set}
                                           array indexing
             get
             share
                                           share array
             unshare
                                           unshare array
             free
                                           free arrary
                                           Owl: make array
             array
                                           Owl: copy array
             copy
             \sin
                                           Owl: map sine over array
                                           Owl: x_i := \sqrt{x_i^2 + y_i^2}
             hypot
                                           BLAS: \sum_{i} |\overset{\mathbf{v}}{x_i}|
             asum
```

```
BLAS: x := \alpha x + y
             axpy
             dot
                                                           BLAS: x \cdot y
             rotmg
                                                           BLAS: see its docs
             scal
                                                           BLAS: x := \alpha x
             amax
                                                           BLAS: \operatorname{argmax} i : x_i
             \mathbf{set}\mathbf{M}
                                                           matrix index assignment
             \mathbf{get}\mathbf{M}
                                                           matrix indexing
             shareM
                                                           share matrix
             unshareM
                                                           unshare matrix
             freeM
                                                           free matrix
                                                           Owl: make matrix
             matrix
             copyM
                                                           Owl: copy matrix
             copyM\_to
                                                           Owl: copy matrix onto another
                                                           dimension of matrix
             sizeM
                                                           transpose matrix
             trnsp
                                                           BLAS: C := \alpha A^{T?} B^{T?} + \beta C
             gemm
                                                           BLAS: C := \alpha AB + \beta C
             symm
             posv
                                                           BLAS: Cholesky decomp. and solve
                                                           BLAS: solve with given Cholesky
             potrs
                                                        values
v
                                                           primitives
             p
                                                           variable
                                                           unit introduction
             ()
             true
                                                           true
             false
                                                           false
             k
                                                           integer
             l \cdot f
                                                           heap location
                                                           array element
              el
             Many v
                                                           !-introduction
             \mathbf{fun}\,fc \to v
                                                           frac. cap. abstraction
              v[f]
                                                           frac. cap. specialisation
             (v, v')
                                                           pair introduction
             \mathbf{fun}\,x:t\to e
                                     \mathsf{bind}\ x\ \mathsf{in}\ e
                                                           abstraction
                                     bind g \cup x in e
             \mathbf{fix}(g, x:t, e:t')
                                                           fixpoint
                                                           parentheses
             (v)
                                                        expression
e
       ::=
             p
                                                           primitives
                                                           variable
             \mathbf{let}\,x=e\,\mathbf{in}\,e'
                                     bind x in e'
                                                           let binding
                                                           unit introduction
             \mathbf{let}() = e \mathbf{in} e'
                                                           unit elimination
             true
                                                           true
             false
                                                           false
             if e then e_1 else e_2
                                                           if
                                                           integer
             l \cdot f
                                                           heap location
```

```
array element
                         el
                         Many e
                                                                                     !-introduction
                         \mathbf{let}\,\mathbf{Many}\,x=e\,\mathbf{in}\,e'
                                                                                     !-elimination
                         \mathbf{fun}\,fc \to e
                                                                                      frac. cap. abstraction
                         e[f]
                                                                                     frac. cap. specialisation
                                                                                     pair introduction
                         (e, e')
                         \mathbf{let}(a,b) = e \, \mathbf{in} \, e'
                                                           bind a \cup b in e'
                                                                                     pair elimination
                         \mathbf{fun}\,x:t\to e
                                                           bind x in e
                                                                                      abstraction
                         e e'
                                                                                      application
                         \mathbf{fix}\left(g,x:t,e:t'\right)
                                                           bind g \cup x in e
                                                                                     fixpoint
                                                                                      parentheses
C
                                                                                  evaluation contexts
                 ::=
                         \mathbf{let}\,x = [-]\,\mathbf{in}\;e
                                                           bind x in e
                                                                                     let binding
                         \mathbf{let}\,()=[-]\,\mathbf{in}\;e
                                                                                     unit elimination
                         \mathbf{if} \left[ - \right] \mathbf{then} \; e_1 \, \mathbf{else} \; e_2
                         \mathbf{Many}[-]
                                                                                     !-introduction
                         \mathbf{let}\,\mathbf{Many}\,x = [-]\,\mathbf{in}\,e
                                                                                     !-elimination
                         \mathbf{fun}\,fc \to [-]
                                                                                     frac. cap. abstraction
                         [-][f]
                                                                                     frac. cap. specialisation
                         ([-], e)
                                                                                     pair introduction
                         (v, [-])
                                                                                     pair introduction
                         \mathbf{let}(a,b) = [-] \mathbf{in} e
                                                          bind a \cup b in e
                                                                                     pair elimination
                         [-]e
                                                                                     application
                                                                                      application
                         v[-]
Θ
                                                                                  fractional capability environment
                         \Theta, fc
Γ
                                                                                  linear types environment
                         \Gamma, x:t
                         \Gamma, \Gamma'
\Delta
                                                                                  intuitionistic types environment
                         \Delta, x:t
                                                                                  heap (multiset of triples)
                                                                                      empty heap
                         \sigma + \{l \mapsto_f m_{k_1,k_2}\}
                                                                                     location l points to matrix m
                                                                                  result of small step
StepsTo
                                                                                      heap and expression
                         \langle \sigma, e \rangle
                         \mathbf{err}
                                                                                     error
```