SQL - Funkcje okna (Window functions) Lab 1

Imiona i nazwiska: Kacper Cienkosz, Miłosz Dubiel

Celem ćwiczenia jest przygotowanie środowiska pracy, wstępne zapoznanie się z działaniem funkcji okna (window functions) w SQL, analiza wydajności zapytań i porównanie z rozwiązaniami przy wykorzystaniu "tradycyjnych" konstrukcji SQL

Swoje odpowiedzi wpisuj w miejsca oznaczone jako:

Ważne/wymagane są komentarze.

Zamieść kod rozwiązania oraz zrzuty ekranu pokazujące wyniki, (dołącz kod rozwiązania w formie tekstowej/źródłowej)

Zwróć uwagę na formatowanie kodu

Oprogramowanie - co jest potrzebne?

Do wykonania ćwiczenia potrzebne jest następujące oprogramowanie:

- MS SQL Server wersja 2019, 2022
- PostgreSQL wersja 15/16
- SQLite
- Narzędzia do komunikacji z bazą danych
 - SSMS Microsoft SQL Managment Studio
 - DtataGrip lub DBeaver
- Przykładowa baza Northwind
 - W wersji dla każdego z wymienionych serwerów

Oprogramowanie dostępne jest na przygotowanej maszynie wirtualnej

Dokumentacja/Literatura

- Kathi Kellenberger, Clayton Groom, Ed Pollack, Expert T-SQL Window Functions in SQL Server 2019, Apres 2019
- Itzik Ben-Gan, T-SQL Window Functions: For Data Analysis and Beyond, Microsoft 2020

Kilka linków do materiałów które mogą być pomocne - https://learn.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver16

- https://www.sqlservertutorial.net/sql-server-window-functions/
- https://www.sqlshack.com/use-window-functions-sql-server/
- https://www.postgresql.org/docs/current/tutorial-window.html
- https://www.postgresqltutorial.com/postgresql-window-function/
- o https://www.sqlite.org/windowfunctions.html
- https://www.sqlitetutorial.net/sqlite-window-functions/
- Ikonki używane w graficznej prezentacji planu zapytania w SSMS opisane są tutaj:
 - https://docs.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physicaloperators-reference

Przygotowanie

Uruchom SSMS - Skonfiguruj połączenie z bazą Northwind na lokalnym serwerze MS SQL

Uruchom DataGrip (lub Dbeaver)

- Skonfiguruj połączenia z bazą Northwind
 - o na lokalnym serwerze MS SQL
 - o na lokalnym serwerze PostgreSQL
 - o z lokalną bazą SQLite

Zadanie 1 - obserwacja

Wykonaj i porównaj wyniki następujących poleceń.

```
select avg(unitprice) avgprice
from products p;

select avg(unitprice) over () as avgprice
from products p;

select categoryid, avg(unitprice) avgprice
from products p
group by categoryid

select avg(unitprice) over (partition by categoryid) as avgprice
from products p;
```

Jaka jest są podobieństwa, jakie różnice pomiędzy grupowaniem danych a działaniem funkcji okna?

Wyniki:

```
northwind.public> select avg(unitprice) avgprice from products p
[2025-03-21 10:36:29] 1 row retrieved starting from 1 in 60 ms (execution:
10 ms, fetching: 50 ms)
```

```
northwind.public> select avg(unitprice) over () as avgprice from products p
[2025-03-21 10:41:16] 77 rows retrieved starting from 1 in 20 ms
(execution: 3 ms, fetching: 17 ms)
```

	□ categoryid	÷	□ avgprice ÷
1		8	20.682499885559082
2		7	32.369999694824216
3		1	37.979166666666664
4		5	20.25
5		4	28.729999923706053
6		2	22.854166825612385
7		6	54.00666666030884
8		3	25.1600000674908

```
northwind.public> select avg(unitprice) over (partition by categoryid) as avgprice
from products p
[2025-03-21 10:44:36] 77 rows retrieved starting from 1 in 23 ms
(execution: 4 ms, fetching: 19 ms)
```


Główna różnica, którą zauważyliśmy, polega na tym, że funkcje okna nie zmieniają ilości wierszy zwracanych w wynikach zapytania. Jedynie dodana jest kolumna z odpowiednimi wartościami przypisanymi do odpowieniego wiersza. Grupowanie danych zmienia wyniki, ponieważ łączy wiersze na podstawie określonej kolumny, przez co liczba wyników może się zmniejszyć.

Zadanie 2 - obserwacja

Wykonaj i porównaj wyniki następujących poleceń.

Jaka jest różnica? Czego dotyczy warunek w każdym z przypadków? Napisz polecenie równoważne

- 1. z wykorzystaniem funkcji okna. Napisz polecenie równoważne
- 2. z wykorzystaniem podzapytania

Wyniki:

1. Wyniki z wykorzystaniem grupowania

	☐ productid ÷	□ productname ÷	□ unitprice ÷	□ avgprice ÷
1	1	Chai	18	28.83389609200614
2	2	Chang	19	28.83389609200614
3	3	Aniseed Syrup	10	28.83389609200614
4	4	Chef Anton's Cajun Seasoning	22	28.83389609200614
5	5	Chef Anton's Gumbo Mix	21.35	28.83389609200614
6	6	Grandma's Boysenberry Spread	25	28.83389609200614
7	7	Uncle Bob's Organic Dried Pears	30	28.83389609200614
8	8	Northwoods Cranberry Sauce	40	28.83389609200614
9	9	Mishi Kobe Niku	97	28.83389609200614

Polecenie równowążne z wykorzystaniem funkcji okna

```
select
   p.productid,
   p.ProductName,
   p.unitprice,
```

```
avg(p.unitprice) over () as avgprice
from products p
order by productid
limit 9;
```

□ productid 7 :	□ productname ♡	□ unitprice 7 ÷	□ avgprice 7 ÷
1	1 Chai	18	28.83389609200614
2	2 Chang	19	28.83389609200614
3	3 Aniseed Syrup	10	28.83389609200614
4	4 Chef Anton's Cajun Seasoning	22	28.83389609200614
5	5 Chef Anton's Gumbo Mix	21.35	28.83389609200614
6	6 Grandma's Boysenberry Spread	25	28.83389609200614
7	7 Uncle Bob's Organic Dried Pears	30	28.83389609200614
8	8 Northwoods Cranberry Sauce	40	28.83389609200614
9	9 Mishi Kobe Niku	97	28.83389609200614

2. Wyniki z wykorzystaniem funkcji okna

	□ productid ♡ ÷	□ productname ▽	□ unitprice `	7 ÷	□ avgprice ♡ ÷
1	1	.Chai		18	31.372222264607746
2	2	Chang		19	31.372222264607746
3	3	Aniseed Syrup		10	31.372222264607746
4	4	Chef Anton's Cajun Seasoning		22	31.372222264607746
5	5	Chef Anton's Gumbo Mix		21.35	31.372222264607746
6	6	Grandma's Boysenberry Spread		25	31.372222264607746
7	7	Uncle Bob's Organic Dried Pears		30	31.372222264607746
8	8	Northwoods Cranberry Sauce		40	31.372222264607746
9	9	Mishi Kobe Niku		97	31.372222264607746

Polecenie równowążne z wykorzystaniem pozdapytania

Różnica między wykorzystaniem podzapytania i funkcji okna polega na tym, że funkcja okna stosuje się do danych już zawężonych przez warunek WHERE, a podzapytanie stosuje się do wszystkich danych wybranych w podzapytaniu, a następnie wybiera odpowiednie dane na podstawie warunku. Stąd, aby zrobić do pierwszego polecenia odpowiadające mu z wykorzystaniem funkcji okna, należy zastosować funkcję okna do wszystkich danych następnie posortować po productid i wziąć 9 pierwszysch elementów. Aby zrobić drugie zapytanie za pomocą podzapytania, należy zawęzić dane warunkiem where w podzapytaniu.

Zadanie 3

Baza: Northwind, tabela: products

Napisz polecenie, które zwraca: id produktu, nazwę produktu, cenę produktu, średnią cenę wszystkich produktów.

Napisz polecenie z wykorzystaniem z wykorzystaniem podzapytania, join'a oraz funkcji okna. Porównaj czasy oraz plany wykonania zapytań.

Przetestuj działanie w różnych SZBD (MS SQL Server, PostgreSql, SQLite)

W SSMS włącz dwie opcje: Include Actual Execution Plan oraz Include Live Query Statistics

W DataGrip użyj opcji Explain Plan/Explain Analyze

Wyniki:

MSSQL

PostgreSQL

SQLite

Zadanie 4

Baza: Northwind, tabela products

Napisz polecenie, które zwraca: id produktu, nazwę produktu, cenę produktu, średnią cenę produktów w kategorii, do której należy dany produkt. Wyświetl tylko pozycje (produkty) których cena jest większa niż średnia cena.

Napisz polecenie z wykorzystaniem podzapytania, join'a oraz funkcji okna. Porównaj zapytania. Porównaj czasy oraz plany wykonania zapytań.

Przetestuj działanie w różnych SZBD (MS SQL Server, PostgreSql, SQLite)

Wyniki:		

zadanie	pkt
1	1
2	1
3	1
4	1
razem	4