IQIC - January 27rd, 2023

January 27, 2023

1 Recapitulation of Quantum Channels

A quantum channel $\mathcal{N}_{A\to B}$ taking operators from the set of bounded operators in A to the set of bounded operators in B is defined as

$$\mathcal{N}_{A\to B}:\mathcal{B}(A)\to\mathcal{B}(B)$$

has the following properties:

1.1 Trace Preserving

$$\forall X \in \mathcal{B}(A), \quad Tr(\mathcal{N}_{A \to B}(X)) = Tr(X)$$

This preserves the validity of the outcome of the operation by keeping the trace as 1.

1.2 Completely Positive

Taking the maximally entangled state Φ_{RA} , defined as

$$\Phi_{RA} = |\phi\rangle\langle\phi|_{RA}$$

where the system R is a space characteristic of the channel, and,

$$|\phi\rangle_{RA} = \frac{1}{\sqrt{d}} \; \Sigma_{i=0}^{d-1} |i\rangle_R |i\rangle_A$$

where

 $\{|i\rangle_R\}_i$ forms an orthonormal basis of R

 $\{|i\rangle_A\}_i$ forms an orthonormal basis of A

$$d = infinum\{dim(A), dim(R)\}$$

the channel produces a semi-positive definite state as output regardless of input if

$$\mathcal{N}_{A\to B}(\Phi_{RA}) \geq 0$$

Here, $\mathcal{N}_{A\to B}(\Phi_{RA})$ is referred to as the *Choi* of the channel.

2 **Pure States**

Pure states can be represented by $|\phi\rangle_{RA}$ such as:

$$|\phi\rangle_{RA} = \sum_{i=0}^{d-1} \sqrt{p_i} |i\rangle_R |i\rangle_A$$

 p_i represents the probability of $|i\rangle_R|i\rangle_A$ in the superposition of states, and $\sum_{i=0}^{d-1}p_i=1$.

Further, if the number of basis vectors in R exceeds d then we can choose any d arbitrary basis vectors for forming $\{|i\rangle_R\}_i$

3 Further comments

It must be noted that we are working in an open quantum system while working with quantum channels

Also,

$$\mathcal{N}_{A\to B}(\varphi_A) = Tr_{E'}[U_{AE\to BE'}(\varphi_A \otimes \omega_E)U_{AE\to BE'}^{\dagger}]$$

where $U_{AE \to BE'}$ is a unitary matrix. Now, unitary matrices are square matrices implying that their application on a matrix preserves the matrix's dimensions. So, we have

$$dim(AE) = dim(BE')$$

 $Tr_{F'}(.)$ is the partial trace of (.) with respect to matrix E' defined as

$$Tr_{\scriptscriptstyle B}(X_{AB}) = \Sigma_i \langle i|_B X | i \rangle_B$$

where $\{|i\rangle_B\}_i$ forms the orthonormal basis of B.

The partial trace with respect to B trims the input X_{AB} to a matrix Y_A in A by removing all indication of B.

 $M_A \otimes N_B(\varphi_{AB})$ is a local operation on φ_{AB} where M_A acts on A and N_B acts on B. Moreover,

$$[M_A \otimes \mathcal{I}_B, \mathcal{I}_A \otimes N_B] = 0$$

which indicates that the order of application of M_A and N_B on φ_{AB} doesn't matter.

gWe also note

$$Tr_{A}[M_{A}\otimes N_{B}(\varphi_{AB})]=N_{B}(\varphi_{B})$$

where

$$\varphi_B = Tr_{\scriptscriptstyle A}[\varphi_{AB}]$$