

SECOND SEMESTER 2020-2021 Course Handout (Part II)

Date: 15/01/2022

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No: CHE F242

Course Title:

Numerical Methods for Chemical Engineers

Instructor-in-charge: Dr. Arnab Dutta

1. Objective & Motivation:

The knowledge of numerical methods is essential to tackle real-life problems, which may not be possible to solve analytically. Numerical methods have always been a powerful tool to solve various complex physio-chemical phenomena spanning different domain. It is not only important to understand these algorithms but one also has to implement it with the help of computer codes. The amalgamation of these algorithms along with computer codes is necessary to get a complete flavor of this subject. In this course, you will be exposed to a variety of algorithms for solving algebraic and differential equations both from theoretical as well as computational perspective using MATLAB.

2. Learning Outcomes:

- Numerical techniques to solve linear and non-linear algebraic equations
- Solve ordinary and partial differential equations using numerical methods
- Numerical schemes to perform differentiation and integration
- Parameter estimation using regression techniques

3. Text Book:

Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", Tata McGraw-Hill 6th Edition 2012.

4. Reference Books:

- 1. S. K. Gupta, "Numerical Methods for Engineers", New Age International Publishers 2^{nd} Edition 2010.
- 2. Stefan J. Chapman "MATLAB Programming for Engineers", 4th Edition. Cengage Learning.

5. Course Plan:

Lec.	Learning	Topics to be covered	Chapter in the Text Book
No.	Objectives		Dook
1-2	Introductio n	■ Get to know the students	
		Understand students' notion about the subject	
		Introduction to the course	
		Necessity of mathematical models & algorithms	
		 Computational tools for problem solving 	
2-3	Error analysis	Significant digits	Chapters: 3-4
		Accuracy & precision	
		■ Round off errors	
		■ Truncation error	
		Error propagation	
4-9	Roots of Equations	■ Bisection method	Chapters: 5-7
		False-position method	
		Newton-Raphson's method	
		Secant method	
		Roots of polynomials	
10-	Linear Algebraic Equations	■ Gauss elimination	Chapters: 9-11
14		■ Gauss-Jordan	
		■ LU decomposition	

		Thomas algorithm				
		■ Gauss-Seidel				
_	Numerical Differentiati on &	Differentiation technique	Chapters: 21-23			
		Trapezoidal rule				
	Integration	Simpson's rule				
20-	ODE-IVPs#	Euler's method	Chapters: 25-26			
28		 Adams-Bashforth & Adams-Moulton techniques 				
		Runge-Kutta methods				
		Stiffness of ODEs				
		Predictor-Corrector techniques				
		Stability of algorithms				
29-	ODE-BVPs [†]	Finite difference	Chapters: 27, 31			
32		Shooting techniques				
33-	PDE [‡]	■ Elliptic equations	Chapters: 29-31			
36		Parabolic equations				
		Finite difference				
37- 39	Curve Fitting	Linear regression	Chapter: 17-18			
		 Newton's divided difference interpolating polynomials 				
		Lagrangian Interpolation				
40	Course wrap-up					
** 1		Il aboutous ous talson from the supersuited toutheals				

^{*} Unless otherwise specified all chapters are taken from the prescribed textbook.

6. Evaluation Scheme:

Component	Duratio n (minute	Weighta ge (%)	Date & Time	Nature of Component
	s)			
Mid-Term	90	30	12/03 11.00am to12.30pm	Open Book

[#] Ordinary Differential Equations: Initial Value Problems

[†] Ordinary Differential Equations: Boundary Value Problems

[‡] Partial Differential Equations

Assignments(3)		25	TBA in the class	Open Book
			(Evenly	
			distributed)	
Viva/Quiz/Lab		10	TBA in the class	Open Book
Activity			(This will be	
			part of	
			continuous	
			assessment)	
Comprehensive	120	35	11/05 AN	Open Book
Examination				

- **7. Tutorials:** Hand-on session using MATLAB. Please install MATLAB in your personal PCs.
- **8. Consultation Hour:** Will be announced in the class. [Chamber: D216]
- 9. Notices: Notices concerning the course will be communicated via CMS.
- **10.Make-up Policy:** Make-up will be granted only for genuine cases with valid justification and only with prior permission of Instructor-in-charge.
- **11.Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Arnab Dutta

Arnab Dulta

Instructor-in-charge CHE F242