Optimization

Pieter Vanderschueren

Year 2024-2025

Contents

Funda	mental Concepts	2
1	Fundamental Concepts of Optimization	3
2	Types of Optimization Problems	4
3	Convex Optimization	7
4	The Lagrangian Function and Duality	
Uncon	strained Optimization Algorithms	11
5	Optimality Conditions	12
6	Estimation and Fitting Problems	13
7	Newton Type Optimization	14
8	Globalisation Strategies	15
9	Calculating Derivatives	16
Constr	rained Optimization Algorithms	17
10	Optimality Conditions for Constrained Optimization	18
11	Equality Constrained Optimization Algorithms	19
12	Inequality Constrained Optimization Algorithms	20
13	Optimal Control Problems	21

Fundamental Concepts

1 Fundamental Concepts of Optimization

Theorem 1.1: Optimization problem in standard form

minimize
$$x \in \mathbb{R}^n$$
 $f(x)$ subject to $g(x) = 0$, $h(x) \ge 0$.

Theorem 1.2: Level Set

The set

$$\{ x \in \mathbb{R}^n \mid f(x) = c \}$$

is the level set of f for the value c, i.e. the set of all points that map to the same value c.

Theorem 1.3: Feasible set

The set

$$\{ x \in \mathbb{R}^n \mid g(x) = 0 \land h(x) \ge 0 \}$$

is the feasible set Ω , i.e. the set of all points that satisfy the constraints.

Theorem 1.4: Global minimizer

The point x^* is a global minimizer if and only if

$$x^* \in \Omega, \ \forall x \in \Omega: \ f(x^*) \le f(x).$$

Theorem 1.5: Strict global minimizer

The point x^* is a strict global minimzer if and only if

$$x^* \in \Omega, \ \forall x \in \Omega \setminus \{x^*\}: \ f(x^*) < f(x).$$

Theorem 1.6: Strict local minimizer

The point x^* is a strict local minimizer if and only if $x^* \in \Omega$ and there exists a neighborhood \mathcal{N} of x^* such that

$$\forall x \in (\Omega \cap \mathcal{N}) \setminus \{x^*\}: \ f(x^*) < f(x).$$

Theorem 1.7: Weierstrass

If $\Omega \in \mathbb{R}^n$ is compact, i.e. limited and closed, and $f: \Omega \to \mathbb{R}$ is continuous, then there exists a global minimizer (a solution) of the optimization problem

Proof 1.1: Weierstrass

Regard the graph of f, $G = \{(x, f(x)) \in \mathbb{R}^n \times \mathbb{R} \mid x \in \Omega\}$. G is a compact set, and so is the projection of G onto its last coordinate, the set $G = \{s \in \mathbb{R} \mid \exists x \text{ such that } (x, s) \in G\}$, which is a compact interval $[f_{\min}, f_{\max}] \subset \mathbb{R}$. By construction, there must be at least one x^* such that $(x^*, f(x^*)) \in G$.

2 Types of Optimization Problems

Theorem 2.1: Convex set

A set $\Omega \subset \mathbb{R}^n$ is convex if

$$\forall x, y \in \Omega, \ \forall \lambda \in [0, 1]: \ x + \lambda(y - x) \in \Omega.$$

or if "all connecting lines lie inside the set".

Theorem 2.2: Convex function

A function $f:\Omega\to\mathbb{R}$ is convex if

$$\forall x, y \in \Omega, \ \forall \lambda \in [0, 1]: \ f(x + \lambda(y - x)) \le f(x) + \lambda(f(y) - f(x)).$$

or if "all secants (i.e. a line segment between two points on the graph) are above graph". This definition is equivalent to saying that the Epigraph of f, i.e. the set $\{(x,s) \in \mathbb{R}^n \times \mathbb{R} \mid x \in \Omega, s \geq f(x)\}$, is a convex set.

Note: a concave function is the same but then with \geq instead of \leq .

Property 2.1: Convex function

If $f: D \to \mathbb{R}$ and $\Omega_f = \{(x,y) \mid x \in D, y \ge f(x)\}$ then the following holds:

f is convex $\Leftrightarrow \Omega_f$ is convex.

Theorem 2.3: Convex optimization problem

An optimization problem with convex feasible set Ω and convex objective function $f: \Omega \to \mathbb{R}$ is called a convex optimization problem.

Property 2.2: Globality of local minima of convex optimization problem

For a convex optimization problem, a local minimum is also a global one.

Proof 2.1: Globality of local minima of convex optimization problem

Regard a local minimum x^* of the convex optimization problem

minimize
$$x \in \mathbb{R}^n$$
 subject to $x \in \Omega$.

We will show that for any point $y \in \Omega$ holds $f(y) \geq f(x^*)$, i.e. x^* is a global minimum.

First we choose, using local optimality, a neighborhood $\mathcal N$ of x^* such that for all $\tilde x \in \Omega \cap \mathcal N$ holds $f(\tilde x) \geq f(x^*)$. Second, we regard the connecting line between x^* and y. This line is completely contained in Ω due to the convexity of Ω . Now we choose a point $\tilde x$ on this line such that it is in the neighborhood, but not equal to x^* , i.e. $\tilde x = x^* + \lambda(y - x^*)$ for some $\lambda \in (0,1)$, and $\tilde x \in \Omega \cap \mathcal N$. Due to local optimality, we have $f(\tilde x) \geq f(x^*)$, and due to convexity we have

$$f(\tilde{x}) = f(x^* + \lambda(y - x^*)) \le f(x^*) + \lambda(f(y) - f(x^*)).$$

It follows that $\lambda(f(y) - f(x^*)) \ge 0$, and since $\lambda \in (0,1)$, we have $f(y) \ge f(x^*)$, as desired.

Theorem 2.4: Unconstrained optimization problem

An optimization problem with no constraints, i.e. g(x) = 0 and $h(x) \ge 0$ are empty, is called an unconstrained optimization problem.

Example 2.1: Nonlinear Programming (NLP)

Nonlinear Programming Problems are poblems of the following form:

$$\begin{aligned} & \underset{x \in \mathbb{R}^n}{\text{minimize}} & & f(x) \\ & \text{subject to} & & g(x) = 0, \\ & & & h(x) \ge 0, \end{aligned}$$

where $f: \mathbb{R}^n \to \mathbb{R}, g: \mathbb{R}^n \to \mathbb{R}^p$, and $h: \mathbb{R}^n \to \mathbb{R}^q$, are assumed to be continuously differentiable at least once.

Page 5

Example 2.2: Linear Programming (LP)

When the functions f, g, h are affine (i.e., they can be expressed in the form $f(x) = a^T x + b$ for some vector a and scalar b) in the general formulation (see Theorem 2.1), the general NLP gets something easier to solve, namely a Linear Program (LP), which can be written as follows:

minimize
$$x \in \mathbb{R}^n$$
 $c^T x$ subject to $Ax - b = 0$, $Cx - d \ge 0$,

where $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$, $C \in \mathbb{R}^{q \times n}$, and $d \in \mathbb{R}^q$.

Example 2.3: Quadratic Programming (QP)

When the functions g, h are affine (as for an LP in Theorem 2.2), and the objective function f is a linear-quadratic function, the NLP becomes a Quadratic Program (QP), which can be written as follows:

minimize
$$x \in \mathbb{R}^n$$
 $c^T x + \frac{1}{2} x^T B x$
subject to $Ax - b = 0$, $Cx - d \ge 0$,

where, in addition to the LP parameters, $B \in \mathbb{R}^{n \times n}$ is the Hessian matrix. Specifically, for the objective function $f(x) = c^T x + \frac{1}{2} x^T B x$, the Hessian is given by:

$$\nabla^2 f(x) = B.$$

Theorem 2.5: Convex QP

If the Hessian matrix B is positive semi-definite (i.e. if $\forall z \in \mathbb{R}^n \setminus \{0\} : z^T B z \ge 0$) we call the QP a convex QP. Convex QPs are tremendously easier to solve globally than "non-convex QPs" (i.e., where the Hessian B is not positive semi-definite), which might have different local minima (i.e. have a non-convex solution set).

Theorem 2.6: Strictly convex QP

If the Hessian matrix B is positive definite (i.e. if $\forall z \in \mathbb{R}^n : z^T B z > 0$) we call the QP a strictly convex QP. Strictly convex QPs are a subset of convex QPs (see Theorem 2.5).

Example 2.4: Mixed-Integer Programming (MIP)

A mixed-integer programming problem or mixed-integer program (MIP) is a problem with both real and integer decision variables. A MIP can be formulated as follows:

where $x \in \mathbb{R}^n$ are the continuous variables, and $z \in \mathbb{Z}^m$ are the integer variables.

3 Convex Optimization

Theorem 3.1: Convexity for C^1 functions

Assume that $f:\Omega\to\mathbb{R}$ is continuously differentiable and Ω is convex. Then holds that f is convex if and only if

$$\forall x, y \in \Omega: \ f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

i.e. tangents lie below the graph.

Proof 3.1: Convexity for C^1 functions

"\Rightarrow": Due to convexity of f holds for given $x, y \in \Omega$ and for any $\lambda \in [0, 1]$ that

$$f(x + \lambda(y - x)) - f(x) \le \lambda(f(y) - f(x)).$$

and therefore that

$$\nabla f(x)^T (y-x) = \lim_{\lambda \to 0} \frac{f(x+\lambda(y-x)) - f(x)}{\lambda} \le \frac{f(y) - f(x)}{y-x}.$$

"\(\infty\)": To prove that $z = x + \lambda(y - x) = (1 - \lambda)x + \lambda y$ holds that $f(z) \leq (1 - \lambda)f(x) + \lambda f(y)$, we can use the equation from Theorem 3.1 twice to get

$$f(x) \ge f(z) + \nabla f(z)^T (x - z)$$
 and $f(y) \ge f(z) + \nabla f(z)^T (y - z)$,

which yield, when weighted with $(1 - \lambda)$ and λ respectively, that

$$(1 - \lambda)f(x) + \lambda f(y) \ge f(z) + \nabla f(z)^{T} \underbrace{\left[(1 - \lambda)(x - z) + \lambda(y - z) \right]}_{=0}$$

Theorem 3.2: Generalized Inequality for Symmetric Matrices

We write for a symmetric matrix $B = B^T$, $B \in \mathbb{R}^{n \times n}$ that " $B \succeq 0$ " if and only if B is positive semi-definite, i.e.,

$$\forall z \in \mathbb{R}^n : \ z^T B z \ge 0,$$

or, equivalently, if all (real) eigenvalues of B are non-negative.

Theorem 3.3: $O(\cdot)$

For a function $f: \mathbb{R}^n \to \mathbb{R}^m$, we write

$$f(x) = O(g(x))$$

if and only if there exists a constant C>0 and a neighborhood \mathcal{N} of 0 such that

$$\forall x \in \mathcal{N} : ||f(x)|| \le Cg(x),$$

i.e. "f shrinks as fast as g".

Theorem 3.4: $o(\cdot)$

For a function $f: \mathbb{R}^n \to \mathbb{R}^m$, we write

$$f(x) = o(g(x))$$

if and only if there exists a neighborhood \mathcal{N} of 0 and a function $c: \mathcal{N} \to \mathbb{R}$ with $\lim_{x\to 0} c(x) = 0$ such that

$$\forall x \in \mathcal{N}: \|f(x)\| \le c(x)g(x),$$

i.e. "f shrinks faster than g".

Theorem 3.5: Convexity for C^2 functions

Assume that $f: \Omega \to \mathbb{R}$ is twice continuously differentiable and Ω is convex and open. Then holds that f is convex if and only if

$$\forall x \in \Omega : \nabla^2 f(x) \succeq 0,$$

i.e. the Hessian of f is positive semi-definite.

Proof 3.2: Convexity for C^2 functions

To prove that the Theorem 3.1 implies the Theorem 3.5, we can use a second order Taylor expansion of y at x in an arbitrary direction p:

$$f(x + tp) = f(x) + t\nabla f(x)^{T} p + \frac{t^{2}}{2} p^{T} \nabla^{2} f(x) p + o(t^{2} ||p||).$$

From this we obtain that

$$p^{T} \nabla^{2} f(x) p = \lim_{t \to 0} \frac{2}{t^{2}} \left(\underbrace{f(x+tp) - f(x) - t \nabla f(x)^{T} p}_{(3.1): \geq 0} \right) \geq 0.$$

Conversely, to prove the other direction, we use the Taylor rest term formula with some arbitrary $\theta \in (0,1)$:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \underbrace{\frac{1}{2} t^{2} (y - x)^{T} \nabla^{2} f(x + \theta(y - x)) (y - x)}_{(3.5): \ge 0}.$$

Property 3.1: Convexity perserving operations on convex functions

The following operations preserve the convexity of a function:

1. Affine input transformation: If $f: \Omega \to \mathbb{R}$ is convex, then also

$$A \in \mathbb{R}^{n \times m} : \ \tilde{f}(x) = f(Ax + b)$$

is convex on the domain $\tilde{\Omega} = \{x \mid Ax + b \in \Omega\}.$

- 2. Concatenation with monotone convex function: If $f:\Omega\to\mathbb{R}$ is convex and $g:\mathbb{R}\to\mathbb{R}$ is convex and monotonely increasing, then the composition $g\circ f$ is convex.
- 3. The supremum over a set of convex functions $f_i(x)$, $i \in I$, i.e.,

$$f(x) = \sup_{i \in I} f_i(x)$$

is convex.

Proof 3.3: Convexity perserving operations on convex functions

- 1. Not seen in this course.
- 2. Recall that g is a convex and monotonely increasing function, then:

$$\nabla^2(g\circ f) = \underbrace{g''(f(x))}_{>0} \underbrace{\nabla f(x) \nabla f(x)}_{\succeq 0}^T + \underbrace{g'(f(x))}_{>0} \underbrace{\nabla^2 f(x)}_{\succeq 0} \succeq 0,$$

i.e. $g \circ f$ is convex, since the Hessian is positive semi-definite.

3. Epigraph of f is the intersection of the epigraphs of f_i , which are convex.

Theorem 3.6: Concave function

A function $f: \Omega \to \mathbb{R}$ is concave if and only if -f is convex.

Theorem 3.7: Convexity of Sublevel subsets

The sublevel set

$$\{ x \in \Omega \mid f(x) \le c \}$$

of a convex function $f:\Omega\to\mathbb{R}$ with respect to any constant $c\in\mathbb{R}$ is convex.

Proof 3.4: Convexity of Sublevel subsets

If $f(x) \leq c$ and $f(y) \leq c$, then for any $\lambda \in [0,1]$ holds also

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y) \le \underbrace{(1-\lambda)c + \lambda c}_{=c}.$$

Property 3.2: Convexity perserving operations on convex sets

The following operations preserve the convexity of a set:

- 1. The intersection of finitely or infinitely many convex sets is convex.
 - 2. Affine image: if Ω is convex, then for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ also the set $A\Omega + b = \{y \in \mathbb{R}^m \mid \exists x \in \Omega : y = Ax + b\}$ is convex.
 - 3. Affine pre-image: if Ω is convex, then for $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$ also the set $\{z \in \mathbb{R}^m \mid Az + b \in \Omega\}$ is convex.

Example 3.1: Convex Feasible set

If $\forall i \in [1, m] : f_i : \mathbb{R}^n \to \mathbb{R}$ are convex functions, then the set

$$\Omega = \{x \in \mathbb{R}^n \mid f_i(x) < 0, i \in [1, m]\}$$

is a convex set, because it is the intersection of sublevel sets Ω_i of convex functions f_i , i.e.

$$\Omega = \bigcap_{i=1}^{m} \Omega_{i}$$

$$= \bigcap_{i=1}^{m} \{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0\}.$$

4 The Lagrangian Function and Duality

Unconstrained Optimization Algorithms

5 Optimality Conditions

6 Estimation and Fitting Problems

7 Newton Type Optimization

8 Globalisation Strategies

9 Calculating Derivatives

Constrained Optimization Algorithms

10	Optimality Conditions for Constrained Optimization					

Equality Constrained Optimization Algorithms

12 Inequality Constrained Optimization Algorithms

13 Optimal Control Problems