Data-Science 1

machine learning

24/04/2024

Inhoud

- regressie en metrieken
 - multivariate regressie
 - evaluatiemetrieken
 - MSE
 - RMSE
 - MAE
 - MAPE

Multivariate Lineaire Regressie

Lineaire regressie

wat was (bivariate) lineaire regressie ook al weer?

Lineaire regressie

- lineaire regressie is een (eenvoudige) machine learning techniek:
 - je geeft voorbeelden uit het verleden (puntenwolk)
 - je stelt een model op om voorspellingen te kunnen doen (een rechte lijn met slope en intercept)
 - je gebruikt het model om voorspellingen te doen

Multivariate lineaire regressie

• je kan lineaire regressie ook toepassen op meerdere

variabelen

voorbeeld:

14.0	verkoopresultaat	leeftijd	inkomen	werkervaring	klantencontacten
1	239.231	34	35125.3	3	21
2	244.051	33	46337.8	5	11
3	219.486	33	32189.6	6	9
4	309.835	32	55517	7	17
5	220.038	35	33362.8	5	12
6	212.289	28	46780.3	4	8
7	263.155	37	37993	4	19
8	271.657	45	37197.9	8	10
9	337.086	30	50566.6	9	20
10	312.401	37	41956.8	11	19
11	245.454	40	40179.9	3	17
12	217.946	33	46511.7	3	9
13	26/1251	20	35866	6	1/1

verkoopresultaat = a + b * leeftijd + c * inkomen + d * werkervaring + e * klantencontacten

Multivariate lineaire regressie

- verkoopresultaat = a + b * leeftijd + c * inkomen + d * werkervaring + e * klantencontacten
- dit heet een "lineaire combinatie" van de kolommen leeftijd, inkomen, werkervaring en klantencontacten
- opmerkingen
 - kolommen moeten minstens interval meetniveau hebben
 - iedere rij is nu ook een punt, maar in hoger-dimensionale ruimte...
 - we zoeken nu een "hypervlak" dat door de punten gaat

Coefficients → Data Orange Data Data csv Linear Regression Data Table CSV File Import Select Columns Axes 400 **N** werkervaring N verkoopresultaat 380 Scatter Plot Find Informative Projections 360 Attributes 340 N verkoopresultaat (Same shape) Shape: 320 verkoopresultaat Size: (Same size) (No labels) Label only selection and subset Symbol size: 260 Jittering: 240 ☐ Jitter numeric values 220 Show color regions 150 - 200 200 - 250 ✓ Show legend 200 -250 - 300 Zoom/Select 300 - 350 180 [1] 350 - 400 10 12 14

werkervaring

Evaluatiemetrieken

Multivariate lineaire regressie

- hoe weten we hoe goed dit model is?
 - waarde van RMSE geeft enkel weer hoe goed het model presteert op de gegeven data
 - er kan dus overfitting ontstaan wanneer de RMSE heel klein wordt
 - hoe weten we of het ook goed is voor nieuwe data?
 - oplossing: splits de dataset op in 2 delen
 - training dataset
 - test dataset

Metrieken

- Mean Squared Error: $MSE = \frac{1}{n} \sum e_i^2$
- Root Mean Squared Error: $RMSE = \sqrt{\frac{1}{n} \sum e_i^2}$
- Mean Absolute Error: $MAE = \frac{1}{n} \sum |e_i|$
- Mean Absolute Percentage Error: $MAPE = \frac{1}{n} \sum \left| \frac{e_i}{x_i} \right|$

Voorspellingen maken

Voorspellingen maken

Oefeningen

Oefeningen

- Zie Canvas
 - Revenue