Algorithmen Tutorium

LUCA DREILING

Wir beginnen um 16:15

Organisation

- Start: 16.15
- Webcam ist gerne anmachen
- Kontakt: <u>luca.dreiling@student.uni-tuebingen.de</u>
 - Im Discord-Forum
 - Via Discord-PN nur bei extrem wichtigen Fällen
- Keine Anwesenheitspflicht
- Folien + Beispiele (wenn vorhanden) bekommt ihr per Mail NACH dem Tutorium
- Das Tutorium wird nicht aufgenommen (bitte auch nicht von euch)

Übungsgruppen

- 2er Gruppen
- Keine Gruppen Leuten aus anderen Tutorien
- Falls noch keine gefunden Partner*in -> In Breakout-Sessions & Nach dem Tutorium
- Beide Namen und Matrikelnr. auf die Abgaben
- Es gelten die üblichen Regeln zu Plagiaten

Ablauf

- Kurze Diskussion der Vorlesungsstoffes (~10min)
- Präsenzübungsblatt (~50min)
 - Zufällige Verteilung in Breakout-Rooms
 - PÜ findet sich auf Moodle
- Besprechung des PÜ (~20min)
- Fragen zur Vorlesung und Besprechung des Übungsblattes

Landau Notation

- Beschreibt Verhalten/Laufzeit von Algorithmen/Funktionen für große Eingaben
- Verschiedene Symbole "Für große X wächst f immer ____ als c * g, mit der Konstanten c"
- o: f wächst langsamer als g
- O: f wächst fast so schnell wie g
- Θ: f wächst genauso schnell wie g
- Ω , ω analog zu O und o, nur mit "schneller"

Landau Notation

- "∈" oder "="?
 - Entweder: O(n) ist Klasse/Menge von Funktion => "∈"
 - Oder: O(n) ist eine Größe => "="
 - In der Praxis: Egal☺
- Zusammengesetzte Terme? Z.B. x^3 + 1000x + 10^42
 - Höchste Potenz der Summe bestimmt den "limes superior"
 - Achtung bei Multiplikation!

Pseudocode

- Dient zum Skizzieren des Vorgehens
- Stil relativ frei (Am Besten wie in der VL!)
 - Tipp: Nutzt die Sprache in der der Algorithmus implementiert werden soll
- Keine Implementierung!
 - Abstrakte Anwesungen erlaubt: "An empty Array of size x"
- Ein- und Ausgaben erkenntlich machen

Vollständige Induktion

- Induktionsanfang (IA): Sei n_0 = 0. (Kann auch eine andere Zahl sein)
 - [Zeige, dass die Aussage für n_0 gilt]
- Insduktionsschritt (IS):
 - Induktionsvorrausetzung (IV): Die Aussage gelte f
 ür beliebiges, aber festes n ≥n_0; n ∈ N.
 - Induktionsbehauptung (IB): Die Aussage gelte für n + 1.
- Beweis der IB:
 - Beweise Aussage für n + 1, mit dem Wissen, dass sie für n gilt.
 - Meistens: Zerfällt es dann in die Aussage für n und einen weiteren Teil.
 - Bsp: (n + 1)! = (n + 1) * n! => Entspricht Definition der Fakultät => q.e.d.