Feuille1

k	x0 x1 x2 x3	y0 y1 y2 y3 y4 y5 y6 y7	dist(y,z)	y0 y1 y2 y3 y4 y5 y6 y7 (-1) ^y	$F_z(y) = 8-2dist(y,z)$
0	0 0 0 0	0 0 0 0 0 0 0 0	5	1 1 1 1 1 1 1 1	-2
1	1 0 0 0	0 1 0 1 0 1 0 1	3	1 -1 1 -1 1 -1 1 -1	2
2	0 1 0 0	0 0 1 1 0 0 1 1	5	1 1 -1 -1 1 1 -1 -1	-2
3	1 1 0 0	0 1 1 0 0 1 1 0	3	1 -1 -1 1 1 -1 -1 1	2
4	0 0 1 0	0 0 0 0 1 1 1 1	5	1 1 1 1 -1 -1 -1 -1	-2
5	1 0 1 0	0 1 0 1 1 0 1 0	3	1 -1 1 -1 -1 1 -1 1	2
6	0 1 1 0	0 0 1 1 1 1 0 0	5	1 1 -1 -1 -1 -1 1 1	-2
7	1 1 1 0	0 1 1 0 1 0 0 1	7	1 -1 -1 1 -1 1 1 -1	-6
8	0 0 0 1	1 1 1 1 1 1 1 1 1	3	-1 -1 1 -1 -1 -1 -1 -1	2
9	1 0 0 1	1 0 1 0 1 0 1 0	5	-1 1 -1 1 -1 1 -1 1	-2
10	0 1 0 1	1 1 0 0 1 1 0 0	3	-1 -1 1 1 -1 -1 1 1	2
11	1 1 0 1	1 0 0 1 1 0 0 1	5	-1 1 1 -1 -1 1 1 -1	-2
12	0 0 1 1	1 1 1 1 0 0 0 0	3	-1 -1 -1 -1 1 1 1 1	2
13 14	1 0 1 1	1 0 1 0 0 1 0 1	5	-1 1 -1 -1 1 -1 1 -1	-2
14	0 1 1 1	1 1 0 0 0 0 1 1	3	-1 -1 1 1 1 1 -1 -1	2
15	1 1 1 1	1 0 0 1 0 1 1 0	1	-1 1 1 -1 1 -1 1 1	6
		z0 z1 z2 z3 z4 z5 z6 z7		z0 z1 z2 z3 z4 z5 z6 z7 F _z (i)=(-	1) ^{zi}
		1 1 0 1 0 1 0		-1 -1 1 -1 1 -1 1	

Cas: $r = 3, 2^r = 8$

Soit $\bar{z} \in \Omega^8$ un élément à débruiter. Le but est de trouver l'élément $\bar{\nu} \in RM \subset \Omega^8$ du code tel $d_H(\bar{\nu}, \bar{z})$ est minimal.

On peut calculer $d_H(\bar{y}, \bar{z})$

- soit pour tous les éléments $\bar{y} \in RM$;
- soit pour les éléments $\bar{y} \in RM_0$ (la 1ère moitié de RM) et utiliser $d_H(\bar{y} + \bar{b}_3, \bar{z}) = 8 d_H(\bar{y}, \bar{z})$ pour les éléments de RM_1 (la 2ème moitié de RM).

Il est plus pratique de travailler avec la fonction

$$\hat{F}(\bar{y}) = \sum_{i=0}^{7} (-1)^{y_i} (-1)^{z_i}$$

plutôt qu'avec la distance de Hamming à laquelle elle est liée par $\hat{F}(\bar{y}) = 8 - 2d_H(\bar{y}, \bar{z})$.

Celle-ci est en effet plus symétrique, car $\hat{F}(\bar{y} + \bar{b}_3) = -\hat{F}(\bar{y})$.

Donc, il est équivalent de chercher l'élément $\bar{\nu}$ appartenant à

- RM tel que $d_H(\bar{\nu}, \bar{z})$ est minimal;
- RM tel que $\hat{F}(\bar{\nu})$ est maximal;
- RM_0 tel que $|\hat{F}(\bar{\nu})|$ est maximal et le remplacer par $\bar{\nu} + \bar{b}_3$ si $\hat{F}(\bar{\nu}) < 0$.

On examine à présent la structure de $\hat{F}(\bar{\nu})$ sur la 1ère moitié RM_0 du code pour faire apparaître l'algorithme de calcul rapide.

Eléments de la base :

$$\begin{array}{l} \bar{b}_0 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \bar{b}_1 = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \bar{b}_2 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \bar{b}_3 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \end{array}$$

Avec $u \in \{0, 1, 2, ..., 7\}$ et en posant $F(i) = (-1)^{z_i}$ pour i = 0, 1, 2, ..., 7, on a :

$$u = 0 = (0000)$$
: $\bar{y} = (0\ 0\ 0\ 0\ 0\ 0\ 0)$

$$\Rightarrow \hat{F}(0) = (-1)^{0}F(0) + (-1)^{0}F(1) + (-1)^{0}F(2) + (-1)^{0}F(3) + (-1)^{0}F(4) + (-1)^{0}F(5) + (-1)^{0}F(6) + (-1)^{0}F(7)$$

$$= F(0) + F(1) + F(2) + F(3) + F(4) + F(5) + F(6) + F(7)$$

$$u = 1 = (1000): \quad \bar{y} = (0\ 1\ 0\ 1\ 0\ 1)$$

$$\Rightarrow \hat{F}(1) = (-1)^0 F(0) + (-1)^1 F(1) + (-1)^0 F(2) + (-1)^1 F(3) + (-1)^0 F(4) + (-1)^1 F(5) + (-1)^0 F(6) + (-1)^1 F(7)$$

$$= F(0) - F(1) + F(2) - F(3) + F(4) - F(5) + F(6) - F(7)$$

$$u = 2 = (0100): \quad \bar{y} = (0\ 0\ 1\ 1\ 0\ 0\ 1\ 1)$$

$$\Rightarrow \hat{F}(2) = (-1)^0 F(0) + (-1)^0 F(1) + (-1)^1 F(2) + (-1)^1 F(3) + (-1)^0 F(4) + (-1)^0 F(5) + (-1)^1 F(6) + (-1)^1 F(7)$$

$$= F(0) + F(1) - F(2) - F(3) + F(4) + F(5) - F(6) - F(7)$$

$$u = 3 = (1100): \quad \bar{y} = (0\ 1\ 1\ 0\ 0\ 1\ 1\ 0)$$

$$\Rightarrow \hat{F}(3) = (-1)^0 F(0) + (-1)^1 F(1) + (-1)^1 F(2) + (-1)^0 F(3) + (-1)^0 F(4) + (-1)^1 F(5) + (-1)^1 F(6) + (-1)^0 F(7)$$

$$= F(0) - F(1) - F(2) + F(3) + F(4) - F(5) - F(6) + F(7)$$

$$u = 4 = (0010): \quad \bar{y} = (0\ 0\ 0\ 0\ 1\ 1\ 1\ 1)$$

$$\Rightarrow \hat{F}(4) = (-1)^0 F(0) + (-1)^0 F(1) + (-1)^0 F(2) + (-1)^0 F(3) + (-1)^1 F(4) + (-1)^1 F(5) + (-1)^1 F(6) + (-1)^1 F(7)$$

$$= F(0) + F(1) + F(2) + F(3) + F(4) - F(5) - F(6) - F(7)$$

$$u = 5 = (1010): \quad \bar{y} = (0\ 1\ 0\ 1\ 1\ 0\ 1\ 0)$$

$$\Rightarrow \hat{F}(5) = (-1)^0 F(0) + (-1)^1 F(1) + (-1)^0 F(2) + (-1)^1 F(3) + (-1)^1 F(4) + (-1)^0 F(5) + (-1)^1 F(6) + (-1)^0 F(7)$$

$$= F(0) - F(1) + F(2) - F(3) - F(4) + F(5) - F(6) + F(7)$$

$$u = 6 = (0110): \quad \bar{y} = (0\ 0\ 1\ 1\ 1\ 1\ 0\ 0)$$

$$\Rightarrow \hat{F}(6) = (-1)^0 F(0) + (-1)^0 F(1) + (-1)^1 F(2) + (-1)^1 F(3) + (-1)^1 F(4) + (-1)^1 F(5) + (-1)^0 F(6) + (-1)^0 F(7)$$

$$= F(0) + F(1) - F(2) - F(3) - F(4) - F(5) + F(6) + F(7)$$

$$u = 7 = (1110): \quad \bar{y} = (0\ 1\ 1\ 0\ 1\ 0\ 1)$$

$$\Rightarrow \hat{F}(7) = (-1)^0 F(0) + (-1)^1 F(1) + (-1)^1 F(2) + (-1)^0 F(3) + (-1)^1 F(4) + (-1)^0 F(5) + (-1)^0 F(6) + (-1)^1 F(7)$$

$$= F(0) - F(1) - F(2) + F(3) + F(4) - F(5) - F(6) + F(7)$$

FIGURE 1 – Illustration du calcul