Yingjie Lian Assignment 03 CS-3200 03.05.2018

Assignment 03 Report

In my matlab files, those are called programs are my source code. And the readme notes are in the matlab file too. I wrote those readme files as comments.

1.

$$.A = \begin{bmatrix} 4 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ * & * & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 & -2 \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ L21 & 1 & 0 \\ L31 & L32 & 1 \end{bmatrix} U = \begin{bmatrix} 4 & 1 & -2 \\ 0 & U22 & U23 \\ 0 & 0 & U33 \end{bmatrix}$$

Multiplying out LU and setting the answer equal to A gives:

$$\begin{pmatrix} 4 & 1 & -2 \\ 4 * L21 & L21 + U22 & -2 * L21 + U23 \\ 4 * L31 & L31 + L32 * U22 & -2 * L31 + L32 * U23 + U33 \end{pmatrix} = \begin{bmatrix} 4 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 0 \end{bmatrix}$$

$$L21 = 1$$

 $U22 = 3$
 $U23 = -1$
 $L31 = 2$
 $L32 = 2/3$
 $U33 = -14/3$

So an LU decomposition of A is

$$.A = \begin{bmatrix} 4 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2/3 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 & -2 \\ 0 & 3 & -1 \\ 0 & 0 & 14/3 \end{bmatrix}$$

2.

If A=LU, then Ax=LUx=b. Thus, first solve Ly=b, for y, then solve Ux=y for x.

Since
$$Ax = \begin{bmatrix} 0 \\ 3 \\ 16 \end{bmatrix} = b$$

LY=b for the vector
$$Y = \begin{pmatrix} y1\\ y2\\ y3 \end{pmatrix}$$

So LY =
$$\begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 2 & 2/3 & 1 \end{bmatrix} \begin{pmatrix} y1\\ y2\\ y3 \end{pmatrix} = \begin{bmatrix} 0\\ 3\\ 16 \end{bmatrix} = b$$

$$\begin{bmatrix} 2 & 2/3 & 1 \end{bmatrix} \setminus y3/ = 16.$$

 $y1 = 0$
 $y1+y2 = 3 => y2=3$
 $2*y1 + 2/3 * y2 + y3 = 16 => y3 = 14$

Now that we have found Y we finish the procedure by solving UX = Y for X. That is we solve:

$$Ux = \begin{bmatrix} 4 & 1 & -2 \\ 0 & 3 & -1 \\ 0 & 0 & -14/3 \end{bmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 14 \end{pmatrix} = Y$$

$$x3 = 3$$

$$3*x2+(-1)*x3 = 3 => x2 = 2$$

$$4*x1+x2+(-2)*x3=0 => x1=1$$

3.

$$B = \begin{bmatrix} 4 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 2 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 4 \end{bmatrix}$$

For B, we have where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ L21 & 1 & 0 \\ L31 & L32 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} U11 & U12 & U13 \\ 0 & U22 & U23 \\ 0 & 0 & U33 \end{bmatrix}$$

Multiplying out LU and setting the answer equal to B gives:

$$\begin{bmatrix} U11 & U12 & U13 \\ L21U11 & L21U12 + U22 & L21U13 + U23 \\ L31U11 & L31U12 + L32U22 & L31U13 + L32U23 + U33 \end{bmatrix} = \begin{bmatrix} 4 & 1 & -27 \\ 4 & 4 & -37 \\ 8 & 4 & 27 \end{bmatrix}$$

U11=4

U12=1

U13 = -2

L21=1

U22 = 3

U23=-1

L31=2

L32=2/3

U33=20/3

So an LU decomposition of B is

$$B = \begin{bmatrix} 4 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2/3 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 & -2 \\ 0 & 3 & -1 \\ 0 & 0 & 20/3 \end{bmatrix}$$

For C, we have where

$$L = \begin{bmatrix} 1 & 0 & 0 \\ L21 & 1 & 0 \\ L31 & L32 & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} U11 & U12 & U13 \\ 0 & U22 & U23 \\ 0 & 0 & U33 \end{bmatrix}$$

Multiplying out LU and setting the answer equal to B gives:

$$\begin{bmatrix} U11 & U12 & U13 \\ L21U11 & L21U12 + U22 & L21U13 + U23 \\ L31U11 & L31U12 + L32U22 & L31U13 + L32U23 + U33 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -27 \\ 4 & 4 & -3 \\ 8 & 4 & 4 \end{bmatrix}$$

U11=2

U12=1

U13=-2

L21=2

U22=2

U23=1

L31=4

L32=0

U33=12

So an LU decomposition of C is

$$C = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 12 \end{bmatrix}$$

Since LU decomposition of A, B, and C are:

$$.A = \begin{bmatrix} 4 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2/3 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 & -2 \\ 0 & 3 & -1 \\ 0 & 0 & -14/3 \end{bmatrix}$$

$$B = \begin{bmatrix} 4 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 2/3 & 1 \end{bmatrix} \begin{bmatrix} 4 & 1 & -2 \\ 0 & 3 & -1 \\ 0 & 0 & 20/3 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 1 & -2 \\ 4 & 4 & -3 \\ 8 & 4 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 12 \end{bmatrix}$$

So for A and B, their LU decompositions are similar, but for U33 of A is -14/3, U33 for B is 20/3

For A and C, their LU decompositions are NOT similar because there are a lot differences.

For L31 of A is 2, L31 of C is 4; L32 of A is 2/3, L32 of C is 0; U11 of A is 4, U11 of C is 2; U22 of A is 3, U22 of C is 2; U23 of A is -1, U23 of C is 1; U33 of A is -14/3, U33 of C is 12.

I used the 1-norm to compute the estimated condition number. In matlab, I used the cond() function to compute the condition number.

Value of a	1.0	0.1	1.0e-3	1.0e-5	1.0e-7
Value of n					
21	242	840	6.0264e+04	6.0003e+06	6.0000e+08
41	882	3.0764e+03	2.2092e+05	2.2001e+07	2.2000e+09
81	3.3620e+03	1.1738e+04	8.4344e+05	8.4003e+07	8.4000e+09
161	1.3122e+04	4.5818e+04	3.2933e+06	3.2801e+08	3.2800e+10

Value of a	1.0e-9	1.0e-11	1.0e-13	1.0e-15
Value of n				
21	6.0000e+10	6.0000e+12	6.0000e+14	6.0000e+16
41	2.2000e+11	2.2000e+13	2.2000e+15	2.2000e+17
81	8.4000e+11	8.4000e+13	8.4000e+15	8.4000e+17
161	3.2800e+12	3.2800e+14	3.2800e+16	3.2800e+18

So here is the graph the shows how does the condition number vary with the value of a when n = 21. The first graph is the actual estimated condition number. Since it grows too fast when a is getting smaller, so on the second graph, I used the log base 10 condition number instead of the actual estimated condition number. So this way, we can see how fast it grows on the estimated condition number when a is getting smaller.

If H1 = 8 and Hr = 4 Solve the system of equations for n = 161

When $\mathbf{a} = 1.0$, h1 = -71.5247, h2 = -151.0494, h160 = -154.9506, and h161 = -75.4753

When a = 1.0e-5,

h1=-111.9868, h2=-231.9737, h160=-7.8026e+06, and h161=-3.9013e+06

When a = 1.0e-15,

h1 = -111.9877, h2 = -231.9753, h160 = -7.8025e + 16, and h161 = -3.9012e + 16

Iterative refinement:

When a = 1.0, I got these improved Residuals when I run my Matlab code IterativeRefinement(1).

1.0e+06 *

Columns 1 through 11

0.176	5 0.353	30 0.5	293	0.7053	0.8811	1.0565	1.2314
1.4058	1.5796	1.7527	1.925	0			

Columns 12 through 22

2.096	56 2.26	572 2.4	4369	2.6055	2.7731	2.9395	3.1047
3.2685	3.4311	3.5922	3.75	18			

Columns 23 through 33

3.91	00 4.0	665 4.	2214	4.3746	4.5260	4.6756	4.8233
4.9691	5.1130	5.2548	5.39	946			

Columns 34 through 44

5.532	2 5.66	5.76	3009	5.9319	6.0606	6.1869	6.3108
6.4324	6.5514	6.6679	6.78	19			

Columns 45 through 55

Columns 56 through 66

Columns 67 through 77

8.6258 8.8651 8.5	8.6696 8863 8.90		8.7476 191	8.7818	8.8128	8.8406
Columns 78	8 through 88					
8.9306 8.9193 8.9	8.9388 9046 8.88		8.9454 655	8.9438	8.9389	8.9307
Columns 89	through 99					
8.8410 8.5796 8.5	8.8133 5295 8.47		8.7482 199	8.7109	8.6703	8.6265
Columns 10	00 through 110)				
8.3604 7.8586 7.	8.2978 7749 7.68	0.2322	8.1635 990	8.0917	8.0170	7.9393
Columns 11	11 through 12	1				
7.5067 6.7835 6.	7.4116 6695 6.55		7.2131 340	7.1097	7.0036	6.8949
Columns 12	22 through 13	2				
6.3125 5.3962 5.3	6.1886 2565 5.11		21,7550	5.8026	5.6693	5.5339
Columns 13	33 through 14	3				
4.8250 3.7533 3			4.3762 699	4.2230	4.0680	3.9115
Columns 14	44 through 15	4				
3.1060 1.9260 1.	2.9408 7536 1.58	2.7743 804 1.4	2.6067 065	2.4380	2.2683	2.0976
Columns 15	55 through 16	1				
1.2321	1.0571	0.8816	0.7057	0.5296	0.3532	0.1766

When a =1.0e-5, I got these improved Residuals when I run my Matlab code

IterativeRefinement(1.0e-5).

1.0e+15 *

Columns 1 through 11			
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000
Columns 12 through 22			
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000
Columns 23 through 33			
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	0.0001	0.0001	0.0001
Columns 34 through 44			
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	0.0001	0.0001	0.0001
Columns 45 through 55			
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	0.0001	0.0001	0.0001
Columns 56 through 66			
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	0.0001	0.0001	0.0001
Columns 67 through 77			
0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002	0.0002	0.0002	0.0002
Columns 78 through 88			
0.0002 0.0002 0.0002 0.0002 0.8813 1.0987 1.3142 1.5274	0.2215	0.4423	0.6624

1.7381 1.9458 2.1503 2.3512 2.5483 2.7412 2.9298 3.1136 3.2925 3.4662 3.6344

Columns 100 through 110

3.7970 3.9537 4.1043 4.2486 4.3864 4.5175 4.6418 4.7591 4.8693 4.9722 5.0676

Columns 111 through 121

5.1555 5.2358 5.3083 5.3730 5.4298 5.4786 5.5193 5.5520 5.5765 5.5928 5.6010

Columns 122 through 132

5.6009 5.5927 5.5763 5.5517 5.5190 5.4782 5.4293 5.3725 5.3077 5.2351 5.1548

Columns 133 through 143

5.0668 4.9713 4.8684 4.7582 4.6408 4.5165 4.3853 4.2474 4.1031 3.9525 3.7958

Columns 144 through 154

3.6332 3.4649 3.2912 3.1124 2.9285 2.7400 2.5471 2.3501 2.1492 1.9448 1.7371

Columns 155 through 161

1.5265 1.3134 1.0980 0.8807 0.6619 0.4419 0.2211

When a=1.0e-15, I got these improved Residuals when I run my Matlab code IterativeRefinement(1.0e-15).

1.0e+35 *

Columns 1 through 11

Columns 12 through 22

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000				
Columns 23 through 33							
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000				
Columns 34 through 44							
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000				
Columns 45 through 55							
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000				
Columns 56 through 66							
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000				
Columns 67 through 77							
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000				
Columns 78 through 88							
0.0000 0.0000 0.0000 0.0000 0.8811 1.0985 1.3139 1.5272	0.2213	0.4421	0.6622				
Columns 89 through 99							
1.7378 1.9455 2.1500 2.350 3.1132 3.2921 3.4658 3.6341	9 2.5480	2.7409	2.9294				
Columns 100 through 110							
3.7966 3.9533 4.1039 4.248 4.7588 4.8689 4.9718 5.0672	4.3860	4.5171	4.6414				

Columns 111 through 121

1.5264

1.3133

1.0979

5.155 5.5516	2 5 5.5761		5.3080 25 5.600	5.3726 06	5.4294	5.4782	5.5190	
Column	s 122 th	rough 132						
5.600 5.3722	6 5 5.3074		5.5759 48 5.154		5.5187	5.4778	5.4290	
Column	s 133 th	rough 143						
5.066 4.2472	55 4 4.1029	9710 3.952		4.7579 56	4.6406	4.5162	4.3850	
Column	Columns 144 through 154							
3.633 2.3500	0 3 2.1491		3.2911 47 1.737	3.1122 70	2.9284	2.7399	2.5470	
Column	s 155 th	rough 161						

Then, we can conclude that, these number has been improved by using Iterative refinement.

0.8806

0.6618

0.4419

0.2211