36-755: Advanced Statistics Theory I

Fall 2017 Nov. 15

Lecture 21: VC Theory for Functions

Lecturer: Alessandro Rinaldo Scribes: Yufei Yi

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

21.1 Extension of VC Theory to Functions on \mathbb{R}^d

Lemma 21.1 Let \mathcal{F} be a class of real-valued function such that $f: \mathcal{X} \to [0,1], \forall f \in \mathcal{F}$. Then, for $X, X_i, i = 1, ..., n \in \mathcal{X}$:

$$||P_n - P||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}f(X) \right| \le \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{f(X_i) > t\} - \mathbb{P}\{f(X_i) > t\} \right|$$

Proof:

$$\text{Recall}: \qquad X = \int_0^\infty \mathbb{I}\{X>t\}dt \quad , \quad \mathbb{E}X = \int_0^\infty \mathbb{P}(X>t)dt$$

Fix $f \in \mathcal{F}$,

$$\frac{1}{n} \left| \sum_{i=1}^{n} f(X_{i}) - \mathbb{E}f(X) \right| = \frac{1}{n} \left| \int_{0}^{\infty} \sum_{i=1}^{n} \left[\mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right] dt \right| \\
\leq \int_{0}^{1} \frac{1}{n} \left| \sum_{i=1}^{n} \left[\mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right] \right| dt \\
\leq \sup_{t \in [0,1]} \frac{1}{n} \left| \sum_{i=1}^{n} \left[\mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right] \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right| \\
\leq \sup_{f \in \mathcal{F}, t \in (0,1)} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} - \mathbb{P}\{f(X_{i}) > t\} \right|$$

Remark 21.2 For $f \in \mathcal{F}$ and $t \in (0,1)$, let

$$A_{f,t} = \{X \in (0,1), f(X) > t\}$$
 and $A = \{A_{f,t}, f \in \mathcal{F}, t \in (0,1)\}$

Then,
$$||P_n - P||_{\mathcal{F}} \le |\sup_{A \in \mathcal{A}} |P_n(A) - P(A)|$$

The VC dimension of \mathcal{F} is the VC dimension of \mathcal{A} .

21.2 Approach Based on Covering Numbers

Definition 21.3 (Review: δ -cover and δ -covering number) For $\delta > 0$, a δ -cover of \mathcal{F} w.r.t. metric d on \mathcal{F} is a subset $\{f_1, ..., f_M\} \subset \mathcal{F}$ such that $\forall f \in \mathcal{F}, \exists i \in [1, ..., M]$ satisfying $d(f, f_i) \leq \delta$. The δ -covering number of F w.r.t. metric d is the size of the smallest δ -cover of \mathcal{F} .

Definition 21.4 (Empirical Metric $d_{1,P_n}(,)$) For $X_1,...,X_n$ i.i.d. $\sim P$ and $f,g \in \mathcal{F}$. Define

$$d_{1,P_n}(f,g) = \frac{1}{n} \sum_{i=1}^n |f(X_i) - g(X_i)|$$

Notice $\mathbb{E}[d_{1,P_n}(f,g)] = \int |f(X) - g(X)| dP_n$ (L₁ distance w.r.t. empirical measure)

Theorem 21.5 *For* $\lambda \in (0, 1)$,

$$\mathbb{P}(||P_n - P||_{\mathcal{F}} \ge \lambda) \le \mathbb{E}[N_1(\frac{\lambda}{8}, \mathcal{F}, P_{2n})] \exp\{-\frac{n\lambda^2}{32}\}$$
where $N_1(\frac{\lambda}{8}, \mathcal{F}, P_{2n})$ is the cardinality of $\frac{\lambda}{8}$ -cover of \mathcal{F} w.r.t. $d_{1,P_{2n}}(f,g)$.

Proof:

1. For $\lambda \in (0,1)$, if $n \geq \frac{2}{\lambda^2}$, then

$$\mathbb{P}\{||P_n - P||_{\mathcal{F}} \ge \lambda\} \le 2\mathbb{P}\{||P_n - P'_n||_{\mathcal{F}} \ge \frac{\lambda}{2}\}$$

$$\le 2\mathbb{E}_{X,X'}\left\{\mathbb{P}_{\epsilon}\left[\frac{1}{n}\sup_{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\epsilon_i(f(X_i) - f(X'_i))\right| \ge \frac{\lambda}{2}\middle|X,X'\right]\right\}$$
(21.1)

2. Discretization:

Let $C_{\frac{\lambda}{8}}$ be a smallest $\frac{\lambda}{8}$ -cover of \mathcal{F} w.r.t. metric $d_{1,P_{2n}}$. Then,

$$|C_{\frac{\lambda}{8}}| = N_1(\frac{\lambda}{8}, \mathcal{F}, P_{2n})$$
 and $\mathcal{F} \subset \bigcup_{g \in C_{\frac{\lambda}{8}}} B(g, \frac{\lambda}{8})$

$$where \ B(g, \frac{\lambda}{8}) = \{ f \in \mathcal{F}, d_{1, P_{2n}}(f, g) \leq \frac{\lambda}{8} \}$$

Notice that for any $f \in \mathcal{F}$ in $B(g, \frac{\lambda}{8})$,

$$\frac{1}{n} \sum_{i=1}^{n} |f(X_i) - g(X_i)| + \frac{1}{n} \sum_{i=1}^{n} |f(X_i') - g(X_i')| \le \frac{\lambda}{4}$$
(21.2)

Then, (21.1) is upper bounded by

$$\mathbb{P}_{\epsilon} \left[\sup_{g \in C_{\frac{\lambda}{8}}} \sup_{f \in B(g, \frac{\lambda}{8})} \frac{1}{n} | \sum_{i=1}^{n} \epsilon_{i}(f(X_{i}) - f(X'_{i}))| \ge \frac{\lambda}{2} | X, X' \right] \\
\le \sum_{g \in C_{\frac{\lambda}{8}}} \mathbb{P}_{\epsilon} \left[\sup_{f \in B(g, \frac{\lambda}{8})} \frac{1}{n} | \sum_{i=1}^{n} \epsilon_{i}(f(X_{i}) - f(X'_{i}))| \ge \frac{\lambda}{2} | X, X' \right] \\
\le \sum_{g \in C_{\frac{\lambda}{8}}} \mathbb{P}_{\epsilon} \left[\frac{1}{n} | \sum_{i=1}^{n} \epsilon_{i}(g(X_{i}) - g(X'_{i}))| \ge \frac{\lambda}{4} | X, X' \right] \qquad \text{By (21.2)} \\
\le N_{1}(\frac{\lambda}{8}, \mathcal{F}, P_{2n}) 2 \exp \left\{ -\frac{n^{2}\lambda^{2}}{32 \sum_{i=1}^{n} [g(X_{i}) - g(X'_{i})]^{2}} \right\} \qquad \text{Hoeffding} \\
= N_{1}(\frac{\lambda}{8}, \mathcal{F}, P_{2n}) 2 \exp \left\{ -\frac{n\lambda^{2}}{32} \right\} \qquad (21.3)$$

3. Take expectation w.r.t. X, X' (get rid of the randomness of $N_1(\frac{\lambda}{8}, \mathcal{F}, P_{2n})$). Combine (21.3), (21.1), we get

$$\mathbb{P}\{||P_n - P||_{\mathcal{F}} \ge \lambda\} \le \mathbb{E}[N_1(\frac{\lambda}{8}, \mathcal{F}, P_{2n})] \ge \exp\left\{-\frac{n\lambda^2}{32}\right\}$$

Remark 21.6 How to bound the random covering number?

1. Bound it by
$$N_{\infty}(\frac{\lambda}{8}, \mathcal{F})$$
, where $||f - g||_{\infty} = \sup_{X \in \mathcal{X}} |f(X) - g(X)|$. (HW 6)

2. More generally:

Theorem 21.7 Let \mathcal{F} be a class of functions taking values in [0, B] with VC dimension ν . Then for $\lambda < \frac{B}{4}$, p > 1:

$$N_p(\lambda, \mathcal{F}) \le 3 \left[\frac{2eB^p}{\lambda^p} \log(\frac{3eB^p}{ep}) \right]^{\nu}$$

where $N_p(\lambda, \mathcal{F})$ is the λ -covering number w.r.t. L_p - distance: $(\int |f(X) - g(X)|^p dP)^{\frac{1}{p}}$

21.3 Good to Know

21.3.1 Measurability:

 $\sup_{f\in\mathcal{F}} |\frac{1}{n}\sum_{i=1}^n f(X_i) - \mathbb{E}f(x)|$ is measurable under the assumption that \mathcal{F} is separable.

Definition 21.8 (Separability) A class of function \mathcal{F} on \mathcal{X} is separable if there exists a countable subset $\mathcal{F}_0 \subset \mathcal{F}$ such that $\forall f \in \mathcal{F}$, $\exists \{f_n\} \subset \mathcal{F}_0$ satisfying

$$f(X) = \lim_{n \to \infty} f_n(X), \quad \forall X \in \mathcal{X}$$

21.3.2 Talagrand's Inequality for the Suprema of Empirical Processes

Theorem 21.9 Let \mathcal{F} be a class of real-valued function such that $f: \mathcal{X} \to [0,1], \forall f \in \mathcal{F}$. Then, for t > 0 and $\sigma^2(\mathcal{F}) = \sigma^2(\mathcal{F}, P) = \sup_{f \in \mathcal{F}} Var[f(X)]$:

$$\mathbb{P}\Big\{||P_n - P||_{\mathcal{F}} \ge \mathbb{E}||P_n - P||_{\mathcal{F}} + \sqrt{\frac{2t}{n}\sigma^2(\mathcal{F}) + 2\mathbb{E}||P_n - P||_{\mathcal{F}}} + \frac{t}{3n}\Big\} \le e^{-t}, \quad and$$

$$\mathbb{P}\Big\{||P_n - P||_{\mathcal{F}} \le \mathbb{E}||P_n - P||_{\mathcal{F}} - \sqrt{\frac{2t}{n}\sigma^2(\mathcal{F}) + 2\mathbb{E}||P_n - P||_{\mathcal{F}}} - \frac{t}{n}\Big\} \le e^{-t}$$

Remark 21.10 We can bound $\mathbb{E}||P_n - P||_{\mathcal{F}}$ by Rademacher complexity of \mathcal{F} .

Next Time: suprema of sub-Gaussian processes.