#### **ROAD MAP**



- Matematiksel Altyapı
- Temel Veri Yapıları
  - Linear Data Structures
  - Graphs
  - Trees
- Algoritma nedir?
- Algoritma Analizi
- Farklı Problemler ve bunların analizi
- Çalışma Zamanı Fonksiyonları

## **Matematiksel Altyapı**

- Fonksiyonlar
- Logaritma
- Toplama
- Olasılık
- Asymptotic Notasyonlar
- Recursion
  - Recurrence equation

## Temel Veri Yapıları



- Bir veri yapısı birbiriyle ilişkili veri elemanlarını organize etmeye yarar.
- Linear Veri Yapıları
  - Array
  - Linked list
  - Stack
  - Queue
  - Prioritiy Queue
  - Graphs
  - Trees





- Array (Dizi)
  - Bir dizi, n aynı veri türünün ardışıl olarak bilgisayar belleğinde saklandığı veri yapısıdır.
  - Bir indexi (indisi) belirtilerek diziye erişilebilir.

| Item[0] | Item[1] |  | Item[n-1] |
|---------|---------|--|-----------|
|---------|---------|--|-----------|

n elemanlı bir array

- Linked List (Bağlı Liste)
  - Bağlantılı bir liste, düğüm adı verilen sıfır veya daha fazla öğenin dizilimidir.
  - Her düğüm iki tür bilgi içerir :
    - Veri
    - Bağlantılı listenin diğer düğümlerine işaretçiler (pointer) olarak adlandırılan bir veya daha fazla bağ



- Stack (Yığın)
  - Bir yığın, eklemelerin ve silme işlemlerinin yalnızca sondan yapılabileceği (üst olarak adlandırılır) bir listedir.
  - Last In First Out(LIFO))









- Queue (Kuyruk)
  - Queue, elemanların yapının ön tarafından silindiği bir yapıdır.

dequeue işlemi

- Sıranın , arka adı verilen diğer ucuna yeni elemanlar eklenir
  - enqueue operation
- First In First Out (FIFO)





- Priority Queue (Öncelik Kuyruğu)
  - Bir öncelik sırası, tamamen karşılaştırılabilir bir evrenin veri öğelerinin bir listesidir.
    - Örneğin. tam sayı veya reel sayı
    - Dinamik olarak değişen adaylar grubu arasında en yüksek önceliğe sahip bir öğe seçilmesi gerekir
    - İşlemler:
    - Insert → adding a new element
    - Delete → deleting largest/smallest element
    - Search → find largest/smallest element
  - Bir priority queue uygulaması da, heap adı verilen usta bir veri yapısına dayalıdır

## Graphs (Çizgeler)



- Bir graph G=(V,E) ikilisini içerir.
  - V : <u>vertices (köşeler)</u> , nodes (düğümler)
  - E : <u>edges (kenarlar)</u>
    - Her kenar bir ikilidir (v,w), | v,w € V
  - Eğer bu ikililer sıralı ise çizge yönlü bir çizge yani directed bir graphtır.
    - Bazen <u>digraphs</u> olarak adlandırılırlar.
  - Eğer kenar ikilileri sıralı değilse çizge yönsüz undirected'dır.
  - W düğümü v ye komşu ise (v,w) € E olmalıdır.

## **Graphs**





7 köşe (vertex) ve 12 kenarlı (edges) bir graph





- Bir path (yol), v'den w'ye kadar bir düğümler (vertices, nodes) dizisidir
- Bir path'in tüm kenarları farklıysa, bu pathin basit olduğu söylenir
- Uzunluk, bir path'in kenarlarının (edgelerinin) toplam sayısıdır
- Bir cycle (döngü) uzunluğu ≥ 1 olan bir yoldur; burada v= w olmalıdır.
- Bir çizgede döngü yoksa bu çizge acyclictir.



## Graphs (Çizgeler)

- Her düğümün her düğümebağlı olduğu çizgeye <u>complete graph</u> denilmektedir.
- Çok yüksek sayıda edge'e sahip olan çizgeye (dense) graph denilmektedir.
- Vertex sayısına oranla çok az sayıda edge'e sahip olan graph'a ise sparse graph denilmektedir.

A graph is <u>connected</u> if for every pair of vertices u and v there is a path from u to v

6







#### **Adjacency Matrix Gösterimi**

- n x n bir binary matristir.
  - i. satır ve j. sütun, i. vertexten j. vertex'e bir kenar varsa 1'e eşittir
  - ikininci satır ve j sütun, eğer böyle bir kenar yoksa 0'a eşittir

|   | а | b | С | d | е | f |
|---|---|---|---|---|---|---|
| а | 0 |   | 1 | 1 | 0 | 0 |
| b | 0 | 0 |   | 0 | 0 | 1 |
| С | 1 | 1 | 0 | 0 | 1 | 0 |
| d | 1 | 0 | 0 | 0 | 1 | 0 |
| е | 0 | 0 | 1 | 1 | 0 | 1 |
| f | 0 | 1 | 0 | 0 | 1 | 0 |



#### Adjacency List Gösterimi

- Listenin köşesine bitişik tüm köşeleri içeren, bağlantılı listelerden oluşan ve her köşe başlığına ait bir koleksiyon
- Grafik yoğun değilse (seyrektir) bitişik liste gösterimi daha iyi bir çözümdür.



## Trees (Ağaçlar)

15

- Ağaç, bağlı bir acyclic bir graftır
- .rooted tree
  - Root denilen özel bir düğüme sahiptir.



tree rooted tree





#### **Recursive Definition of Rooted Trees:**

- Tree bir node'lar koleksiyonudur.
  - A tree can be empty (Tree boş olabilir)
  - Bir tree 0 veya daha çok subtree'ye sahip olabilir
     T<sub>1</sub>, T<sub>2</sub>,... T<sub>k</sub> connected to a root node by edges



## **Trees - Terminology**





#### Family Tree Terminolojisi

- child → F A'nın child'idir.
- parent → A, F'nin parent'ıdır.
  - Root dışındaki her düğüm bir parenta bağlıdır.
  - sibling → Aynı parent'a sahip düğümler(K, L, M)
- leaf → Çocuğu olan düğümler (P, Q)
- Ancestor / Descendant



- Path: n<sub>1</sub>, n<sub>2</sub>, ... n<sub>k</sub> şeklinde bir düğüm dizilimidir. Burada bu dizilim n<sub>i</sub> düğümü n<sub>i+1</sub> düğümünün parentıdır. 1≤i<k</li>
- Lenght: path üzerindeki edge sayısıdır. (k-1)
- Depth: roottan n<sub>i</sub> 'ye olan tek (unique) yolun length'idir.
   Root'un depthi 0'dır.
  - Bir treenin depth'i ise roota en uzak olan düğümün depth'idir.
     Height: n<sub>i</sub> yüksekliği, n<sub>i</sub>den bir yaprağa uzanan en uzun yolun uzunluğudur.
  - height of a tree = height of the root = depth of the tree

## **Ağaçlar**



- Ordered (Sıralı) tree
  - Her köşenin tümünün sıralı olduğu rooted bir tree.
  - Binary tree
    - Hiçbir düğümün ikiden fazla olmadığı sıralı bir ağaç.
  - Her child parentının sol ya da sağ çocuğu olmaktadır.

## **Ağaçlar**

- Binary Search Tree (BST)
  - Bir binary tree
    - Hiç tekrarnanan elemanı yok.
  - Search Tree özelliğini sağlamaktadır.
    - Sol alt ağaçtaki öğeler kökten daha küçük
    - Sağ alt ağaçtaki öğeler kökten daha büyük
    - Sağ ve sol alt ağaçların kendisi de bir BST

#### Heap

- Priority queue uygulamak için
- İkili bir ağaç yani binary bir tree.
- Heap order özelliğini sağlamaktadır.
  - Her eleman parentından büyüktür.



#### **ROAD MAP**

- Matematiksel Altyapı
- Temel Veri Yapıları
  - Linear Data Structures
  - Graphs
  - Trees
- Algoritma nedir?
- Algoritma Analizi
- Farklı Problemler ve bunların analizi
- Çalışma Zamanı Fonksiyonları





Bir algoritma, bir problemi çözmek ya da bir işlevi hesaplamak için izlenecek sonlu, açıkça belirtilen talimat dizisidir

Bir algoritma genel olarak

- Bir (birkaç) girdi alır.
- Sınırlı bir süre içerisinde komutları yerine getirmelidir.
- Bir çıktı üretmektedir.

Etkili bir komut, temelde kalem ve kağıt kullanarak gerçekleştirmenin mümkün olduğu kadar basit bir işlemdir.

## Algoritmaları İfade Etmek



#### Algoritmalar şu şekilde gösterilebilir:

- doğal diller
  - ayrıntılı ve belirsiz
  - nadiren karmaşık veya teknik algoritmalar için kullanılır

#### pseudocode, flowcharts

- algoritmaları ifade etmek için yapısal yöntemler.
- doğal dilde ifadelerde belirsizliklerden kaçınır.
- belirli bir uygulama dilinden bağımsız

### programming languages

- algoritmaları bir bilgisayar tarafından yürütülebilecek biçimde ifade etmeyi amaçlayar
- algoritmaları belgelemek için kullanılabilir





Problem: Sıralanmamış bir listede en büyük elemanı bulmak

Fikir: Look at every number in the list, one at a time.

#### **Natural Language:**

- Listedeki ilk elemanın en büyük olduğunu varsay.
- Listenin sonuna kadar daha büyük bir sayı var mı diye ara.
- Liste tarama işlemi bittiğinde en son not edilen en büyük elemandır.

## Örnek:



#### **Pseudocode:**

```
Algorithm LargestNumber

Input: A non-empty list of numbers L.

Output: The largest number in the list L.

largest \leftarrow L_0

for each item in the list L_{i \ge 1}, do

if the item > largest, then

largest \leftarrow the item

return largest
```

## **Example:**

#### Flowchart:





# Algoritmanın Özellikleri



- Effectiveness (Etkinlik)
  - Talimatlar basit olmalı
  - Kalem ve kağıtla yazılabilir
- Definiteness (Kesinlik)
  - Talimatlar net
  - Anlamı tek olmalı
- Correctness (Doğruluk)
  - Algoritma doğru cevabı verir
  - Olası tüm durumlar için
- Finiteness (Sonluluk)
  - Algoritma makul sürede durmalı
  - Ve bir çıktı üretmelidir.

















- Bir algoritmanın complexity'sini (karmaşıklığı) çalışma
  - Algoritma ne kadar iyi?
  - Diğer algoritmalarla karşılaştırma işlemi nasıl yapılacak?
  - En iyi yazılabilecek algoritma bu mudur?

## **Analysis of Algorithms**



- Complexities
  - Space
    - Bit sayısı
    - Eleman sayısı
  - Time
    - Toplamda çalıştırılacak işlem sayısı
      - Modele göre değişir
      - RAM
      - Turing Machines

# Algoritmaların Run-Time (Çalışma-Zamanı) Analizi



- Algoritma karmaşıklığı, problemin boyutunu gösteren parametre n'nin bir bir fonksiyonu olarak hesaplanabilmektedir.
- Zaman karmaşıklığı, T (n), algoritmanın en önemli işlemi olan - temel işlem olarak adlandırılan – işlemin çalıştırılma sayısı olarak hesaplanabilir.
- Space (Alan) karmaşıklığı, S (n), genellikle algoritmanın yürütülmesi sırasında kullanılan bellek alanının büyüklüğü olarak hesaplanır.

## **Complexity'lerin Tipleri**



Worst case

$$T(n) = max_{|I|=n} \{T(I)\}$$

Average case

$$T(n) = \sum_{|I|=n} T(I).Prob(I)$$

Best case

$$T(n) = \min_{|I|=n} \{T(I)\}$$

## **Tablo Yöntemi**



- Tablo Metodu, bir algoritmanın karmaşıklığını hesaplamak için kullanılır
- Örnek: <u>Bir dizinin elemanlarını toplama</u>

|                  | steps/ex<br>ec | freq | total |
|------------------|----------------|------|-------|
| sum = 0          | 1              | 1    | 1     |
| for i = 1 to n   | 1              | n+1  | n+1   |
| sum = sum + a[i] | 1              | n    | n     |
| report sum       | 1              | 1    | 1     |
|                  |                |      | 2n+3  |

### **Tablo Metodu**



- Tablo Metodu, bir algoritmanın karmaşıklığını hesaplamak için kullanılır
- Örnek: <u>Bir dizinin elemanlarını toplama</u>

|                  | steps/ex<br>ec | freq | total |
|------------------|----------------|------|-------|
| sum = 0          | 1              | 1    | 1     |
| for i = 1 to n   | 1              | n+1  | n+1   |
| sum = sum + a[i] | 1              | n    | n     |
| report sum       | 1              | 1    | 1     |
|                  |                |      | 2n+3  |

Temel işlem nedir? Kaç defe işletilmiştir?

### **Tablo Metodu**



- Tablo Metodu, bir algoritmanın karmaşıklığını hesaplamak için kullanılır
- Örnek: <u>Bir dizinin elemanlarını toplama</u>

|                  | steps/ex<br>ec | freq | total |
|------------------|----------------|------|-------|
| sum = 0          | 1              | 1    | 1     |
| for i = 1 to n   | 1              | n+1  | n+1   |
| sum = sum + a[i] | 1              | n    | n     |
| report sum       | 1              | 1    | 1     |
|                  |                |      | 2n+3  |

Basic operation is executed n times and n is proportional to 2n+3





• Örnek:

#### Matris Toplama

*a, b, c* 'nin mxn boyutunda matrisler olduğunu varsayalım.

|                          | steps/ex | freq   | total    |
|--------------------------|----------|--------|----------|
|                          | ec       |        |          |
| for i = 1 to m           | 1        | m+1    | m+1      |
| for $j = 1$ to n         | 1        | m(n+1) | mn+m     |
| c[i,j] = a[i,j] + b[i,j] | 1        | mn     | mn       |
|                          |          |        | 2mn+2m+1 |
|                          |          |        |          |



**TABLE 2.1** Values (some approximate) of several functions important for analysis of algorithms

| n               | $\log_2 n$ | n        | $n \log_2 n$       | $n^2$     | $n^3$     | $2^n$               | n!                   |
|-----------------|------------|----------|--------------------|-----------|-----------|---------------------|----------------------|
| 10              | 3.3        | $10^{1}$ | $3.3 \cdot 10^{1}$ | $10^{2}$  | $10^{3}$  | $10^{3}$            | $3.6 \cdot 10^6$     |
| $10^{2}$        | 6.6        | $10^{2}$ | $6.6 \cdot 10^2$   | $10^{4}$  | $10^{6}$  | $1.3 \cdot 10^{30}$ | $9.3 \cdot 10^{157}$ |
| $10^{3}$        | 10         | $10^{3}$ | $1.0 \cdot 10^4$   | $10^{6}$  | $10^{9}$  |                     |                      |
| $10^{4}$        | 13         | $10^{4}$ | $1.3 \cdot 10^5$   | $10^{8}$  | $10^{12}$ |                     |                      |
| $10^{5}$        | 17         | $10^{5}$ | $1.7 \cdot 10^6$   | $10^{10}$ | $10^{15}$ |                     |                      |
| 10 <sup>6</sup> | 20         | $10^{6}$ | $2.0 \cdot 10^7$   | $10^{12}$ | $10^{18}$ |                     |                      |

#### Örnek



- Örneğin, 2^100'ü hesaplamak saniyede 10<sup>12</sup> işlem yapan bir bilgisayar için 4x10<sup>^10</sup> yıl alacaktır.
- 2<sup>1</sup>100 , 100! değerini hesaplamak için gereken süreden kısa, 100!'i hesaplamak ise dünya gezegeninin tahmini yaşından 4,5 milyar (4.5 .10<sup>9</sup>) yıl daha uzun sürecektir.
- 2<sup>n</sup> ve n! fonksiyonlarının büyüme sıraları arasında muazzam bir fark var.

### Algoritmaların Time (Zaman) Complexity'si (Karmaşıklığı)



- Best Case (En iyi durum)
- Worst Case (En Kötü Durum)
- Average Case (Ortalamada)

### **ROAD MAP**



#### **ROAD MAP**

- Matematiksel Altyapı
- Temel Veri Yapıları
  - Linear Data Structures
  - Graphs
  - Trees
- Algoritma nedir?
- Algoritma Analizi
- Farklı Problemler ve bunların analizi
- Çalışma Zamanı Fonksiyonları

### Önemli Problem Tipleri



- Sorting (Sıralama)
- Searching (Arama)
- String Processing (String İşleme)
- Graph Problems (Çizge Problemleri)
- Combinatorial Problems (Kombinasyon Problemleri)
- Geometric Problems (Geometrik Problemler)
- Numerical Problems (Nümerik Problemler)

### Searching



#### **Problem tanımı:**

• Bir listede aranan 'key"i bulmak.

# Lineer Arama (Sequential Search)



#### Yaklaşım

- 1. start with the first element
- 2. if the element is the search key return the position
- 3. otherwise continue with the next element
- 4. return fail if the end of list reached

#### **Lineer Arama**

5. return fail



#### Pseudo – code

Given A[1], ..., A[n] and search key

```
    i=1
    while i ≤ n
    if A[i] = key return i
    else i = i+1
```

best, worst and average caseleri nelerdir?





## Algoritmanın Zaman (Time) Karmaşıklığı (Complexity)'si:

- Best case (En iyi Durum)A[1] = key
- Worst case (En kötü Durum)
  - A[i] ≠ key for any key
    - Zamanı eleman sayısı ile orantılıdır.
    - Ardışıl aramanın zaman karmaşıklığı O(n)
- Average case (Ortalama Durum)
  - Tüm aramalar eş dağılımla gerçekleştiriliyorsa ~ n/2

# Insertion Sort (Eklemeli Sıralama)

#### Hedef

Verilen A[1] ... A[n], listesini sıralamak

#### Yaklaşım (j. index açısından bakıldığında)

- 1. The sequence A[1] is sorted
- 2. Suppose A[1]  $\leq$  A[2] ...  $\leq$  A[j-1] are already sorted
- 3. Pick up the next element and place it with its appropriate place

#### **Insertion Sort**



#### Pseudo code

```
    for j=2 to n
    key = A[j]
    i = j-1
    while i>0 and A[i]>key
    A[i+1] = A[i]
    i = i-1
    A[i+1] = key
```

#### **Insertion Sort**

#### • Analysis

| Allalysi  | <u>3</u>               |                          |
|-----------|------------------------|--------------------------|
| Step<br>1 | Cost<br>c <sub>1</sub> | <u>Time</u>              |
| 1         | C <sub>1</sub>         | n                        |
| 2         | $c_2$                  | n-1                      |
| 3         | $c_3$                  | n-1                      |
| 4         | C <sub>4</sub>         | $\sum_{j=2}^{n} t_j + 1$ |
| 5         | <b>C</b> <sub>5</sub>  | $\sum_{j=2}^{n} t_{j}$   |
| 6         | <b>C</b> <sub>6</sub>  | <i>j</i> ~               |
| 7         | C <sub>7</sub>         | n-1                      |







t<sub>i</sub> problemin örneğine göre değişmektedir (girdi)

#### **Best-case**

```
A sıralı olduğunda

t_j=0 for all j

T(n) = linear function in n

= O(n)
```





#### **Worst-case**

A tersten sıralı olduğunda

$$t_i = j$$
 for  $j=2,...,n$ 

$$\sum_{j=1}^{n} t_{j} = \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$





## Ortalama Durum zaman karmaşıklığı (Average-case)

Dizi rastgele bir şekilde oluşturulmuş olsun.

Where in A[1...j-1] will A[j] be inserted ?

$$t_j \approx \frac{j}{2}$$

Roughly half way i.e.

$$\sum_{j=1}^{n} t_{j} = \sum_{j=1}^{n} \frac{j}{2} = \frac{1}{4} (n^{2} + n)$$

$$T(n) \rightarrow quadratic$$

# Polynomial Değerlendirme (Evaluation)



<u>Verilen</u>:  $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0 x^0$ 

Amaç: evaluate f (y)

#### **Incremental Approach**

- 1. Sum =  $a_0$
- 2. for i = 1 to nadd  $a_i y^i$  to the sum

# Polynomial Evaluation (Polinom sonucu bulma)



#### Analiz

i<sup>th</sup> adımda, çarpma ve 1 toplama işlemi

$$T = \sum_{i=1}^{n} (i+1) + 1 = O(n^2)$$

#### İyileştirme

- Önceki adımlardan y<sup>i-1</sup> i biliyoruz.
- 2 çarpım& 1 toplama

$$T(n) = 3n$$





#### Daha da iyileştirme

$$P_n(x) = x(a_nx^{n-1} + ... + a_1) + a_0$$

1 çarpma& 1 toplama

$$T(n) = 2n$$