Dissertation Defense:

Improved Trial Wave Functions for Quantum

Monte Carlo Calculations of Nuclear Systems and

Their Applications

Cody L. Petrie Advisor: Kevin Schmidt

Arizona State University

May 6, 2019

- Motivation
- 2 Research
 - QMC Methods
 - Trial Wave Function
 - Alpha Formation in NS
- Conclusion
 - Conclusion

- Background
 - What is the problem we are trying to solve?
 - Where are we applicable?
 - Other methods
 - HF basis for other methods like AFDMC
 - Basis set methods such as . . .
 - No-core shell model
 - Coupled cluster
 - self-consistent Green's function
- Methods to solve the nuclear problem and why we use QMC
 - VMC
 - DMC
 - GFMC
 - Excitations up to ¹²C
 - AFDMC

- Trial wave function and why it's so important
 - Slater Dets (and Pfaffians)
 - Jastrow and linear correlations
 - · Results from previous papers showing the improvement
 - Quadratic correlations
 - ullet Results show with jas o lin comparison as well
 - ullet Show the preliminary results we have with $\chi {\rm EFT}$ potentials as well.
 - Performance scaling, both for xsede computers as well as linear vs. quadratic correlations.
- Other (future) correlations
 - Exponential correlations
 - Eigenvector discontinuity problem and square root matrix fix
 - Preliminary results

- Application to α -clustering
 - NS intro and why clustering is an interesting problem
 - Clustering is often put in by hand, but we can do it ab initio.
 - Stefano's original results
 - Results with quadratic correlations
- Conclusion
- Extra Slides
 - Add possible extra slides here when you think of them

Nuclear Many Body Problem

$$\langle H \rangle = \langle \Psi | H | \Psi \rangle = \int \Psi^*(\mathbf{R}) H \Psi(\mathbf{R}) d\mathbf{R}$$

$$H = \sum_{i=1}^{A} \frac{\mathbf{p}^2}{2m} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

Nuclear Many Body Methods

- There are a number of ways to solve this problem.
 - Hartree-Fock
 - Basis-set methods
 - No-core shell model
 - Coupled-cluster
 - Self consistent Green's function method
 - Quantum Monte Carlo
 - VMC
 - GFMC
 - AFDMC

Variational Monte Carlo

- VMC starts with a trial wave function which includes variable parameters.
- The variational principle guarantees

$$E_{V} = \frac{\int \psi_{T}^{*}(\mathbf{R}) H \psi_{T}(\mathbf{R}) d\mathbf{R}}{\int \psi_{T}^{*}(\mathbf{R}) \psi_{T}(\mathbf{R}) d\mathbf{R}} \ge E_{0}$$

We want this to look like this

$$E_V = \int f(\mathbf{R})P(\mathbf{R})d\mathbf{R} \approx \frac{1}{N}\sum_{n=1}^{N}f(\mathbf{R}_n)$$

Variational Monte Carlo

$$E_V = \int P(\mathbf{R}) E_L(\mathbf{R}) d\mathbf{R}$$

• We can do that if we multiply by $\Psi_T(\mathbf{R})\Psi_T^{-1}(\mathbf{R})$.

$$P(\mathbf{R}) = \frac{|\Psi_{\mathcal{T}}(\mathbf{R})|^2}{\int |\Psi_{\mathcal{T}}(\mathbf{R})|^2 d\mathbf{R}}, \quad E_L(\mathbf{R}) = \frac{\Psi_{\mathcal{T}}^*(\mathbf{R})H\Psi_{\mathcal{T}}(\mathbf{R})}{\Psi_{\mathcal{T}}^*(\mathbf{R})\Psi_{\mathcal{T}}(\mathbf{R})}$$

Now using Monte Carlo integration we can write

$$E_V pprox rac{1}{N} \sum_{n=1}^N E_L(\mathbf{R_n}),$$

where the \mathbf{R}_n are samples from $P(\mathbf{R})$.

Variational Monte Carlo

 The statistical error in the energy is then given in the typical way

$$\sigma_{E_V} = \sqrt{\frac{\langle E_L^2 \rangle - \langle E_L \rangle^2}{N}} \approx \sqrt{\frac{\left(\frac{1}{N} \sum_{n=1}^{N} E_L^2(\mathbf{R}_n)\right) - \left(\frac{1}{N} \sum_{n=1}^{N} E_L(\mathbf{R}_n)\right)^2}{N - 1}}$$

• We can then vary the parameters in the trial wave function and calculate this until we minimize the energy or statistical error, since $E_V \ge E_0$.

 Diffusion Monte Carlo uses a Green's function to diffuse in imaginary time to estimate the ground state energy and wave function based on a trial wave function.

$$H\Psi = i\hbar \frac{d\Psi}{dt} \xrightarrow{\tau = it/\hbar} H\Psi = -\frac{d\Psi}{d\tau}$$

Using separation of variables we can write

$$\Psi(\mathbf{R},\tau) = \sum_{n=0}^{\infty} c_n \phi_n(\mathbf{R}) e^{-\tau(E_n - E_0)}$$

• The long imaginary time limit of this goes to the ground state.

$$\lim_{\tau \to \infty} \Psi(\mathbf{R}, \tau) = c_0 \phi_0(\mathbf{R})$$

The propagated wave function can be written

$$\langle \mathbf{R}' | \Psi_{\mathcal{T}}(\tau) \rangle = \int d\mathbf{R} \langle \mathbf{R}' | e^{-(H-E_0)\tau} | \mathbf{R} \rangle \langle \mathbf{R} | \Psi_{\mathcal{T}}(0) \rangle$$

• Now we use $e^{-H\tau}=e^{-V\tau/2}e^{-T\tau}e^{-V\tau/2}+\mathcal{O}(\tau^3)$ and break up the propagator into small time steps $\Delta \tau = \tau/N$.

$$\langle \mathbf{R}_{N} | \Psi_{T}(\tau) \rangle = \int d\mathbf{R}_{1} \dots d\mathbf{R}_{N} \left[\prod_{i=1}^{N} G(\mathbf{R}_{i}, \mathbf{R}_{i-1}, \Delta \tau) \right] \langle \mathbf{R}_{0} | \Psi_{T}(0) \rangle$$

$$G(\mathbf{R}', \mathbf{R}, \Delta \tau) = \langle \mathbf{R}' | e^{-(H-E_{0})\Delta \tau} | \mathbf{R} \rangle$$

• In the small $\Delta \tau$ limit this propagator can be split up with the kinetic term being used to diffuse the walkers along a random path.

$$\langle \mathbf{R}' | e^{-T\Delta \tau} | \mathbf{R} \rangle = \left(\frac{m}{2\pi \hbar^2 \Delta \tau} \right)^{3A/2} e^{-m(\mathbf{R}' - \mathbf{R})^2/2\hbar^2 \Delta \tau}$$

 The potential term can then be used as a weight in a branching algorithm.

$$w(\mathbf{R}') = e^{-(V(\mathbf{R}') + V(\mathbf{R}) - 2E_0)\Delta\tau/2}$$

 Importance sampling improves the variance of the sampling and can be included with

$$G(\mathbf{R}',\mathbf{R},\Delta au)
ightarrow G(\mathbf{R}',\mathbf{R},\Delta au)rac{\langle\mathbf{R}|\Psi_I
angle}{\langle\mathbf{R}'|\Psi_I
angle}$$

Branching: Each walker can be deleted or multiply. The number of walkers that continues is equal to $\operatorname{int}(w(\mathbf{R}')+\xi)$, where ξ is a uniform random number from [0,1].

Figure: Reprinted from W.M.C. Foulkes et al. *Rev. Mod. Phys.*, 73:33-83, 2001.

Estimating Expectation Values

We want to solve something like this

$$\langle \mathcal{O}
angle = rac{\langle \Psi(au) | \, \mathcal{O} \, | \Psi(au)
angle}{\langle \Psi(au) | \Psi(au)
angle}.$$

In practice a linear extrapolation is used because $\mathcal{O}\Psi(\tau)$ is hard.

$$\langle \mathcal{O} \rangle \approx 2 \, \langle \mathcal{O} \rangle_{\text{mixed}} - \langle \mathcal{O} \rangle_{\text{VMC}}$$

$$\left\langle \mathcal{O}\right\rangle _{\text{mixed}}=\frac{\left\langle \Psi (\tau)\right|\mathcal{O}\left|\Psi _{\mathcal{T}}\right\rangle }{\left\langle \Psi (\tau)\right|\Psi _{\mathcal{T}}\right\rangle },\quad \left\langle \mathcal{O}\right\rangle _{\text{VMC}}=\frac{\left\langle \Psi _{\mathcal{T}}\right|\mathcal{O}\left|\Psi _{\mathcal{T}}\right\rangle }{\left\langle \Psi _{\mathcal{T}}\right|\Psi _{\mathcal{T}}\right\rangle }$$

In the large τ limit when $[\mathcal{O}, H] = 0$

$$\lim_{\tau \to \infty} \langle \mathcal{O} \rangle_{\mathsf{mixed}} = \langle \mathcal{O} \rangle$$

Estimating Error

Our energy estimates are correlated and so we estimate error using block averaging

Green's Function Monte Carlo

• GFMC follows DMC exactly for the spatial integrals, but performs the sums of 2^A spin and $\frac{A!}{Z!(A-Z)!}$ isospin states, for A nucleons with Z protons explicitly.

- AFDMC samples auxiliary fields to rotate the spins/isospins of the walkers.
- The spin/isospin dependent part of the potential is what is used in the spin/isospin dependent part of the propagator.

$$G_{SD}(R'S',RS,\Delta\tau) = \langle R'S' | e^{-V_{SD}\Delta\tau} | RS \rangle$$

$$V_{SD} = \sum_{p=2}^{6} \sum_{i < j} v_p(r_{ij}) \mathcal{O}_{ij}^p$$

• For v_6 , a truncation of the phenomenological Argonne v_{18} potential, the operators are $\sigma_i \cdot \sigma_j$, $\tau_i \cdot \tau_j$, $\sigma_i \cdot \sigma_j \tau_i \cdot \tau_j$, S_{ij} and $S_{ij}\tau_i \cdot \tau_j$, where $S_{ij} = 3\sigma_i \cdot \hat{r}_{ij}\sigma_j \cdot \hat{r}_{ij} - \sigma_i \cdot \sigma_j$

- To avoid explicitly doing the $2^A \frac{A!}{Z!(A-Z)!}$ sums over the spin-isospin states AFDMC writes the spin-isospin dependent propagator in terms of squared single particle operators.
- The spin-isospin dependent operators

$$e^{-V_{SD}\Delta \tau}$$

is sampled by using the Hubbard-Stratanovich transformation.

$$e^{-\frac{1}{2}\lambda O^2} = \frac{1}{\sqrt{2\pi}} \int dx e^{-\frac{x^2}{2} + \sqrt{-\lambda}xO}$$

• The potential can be written in terms of matrices that are made of the $v_p(r_{ij})$, are symmetric, and 0 if i = j.

$$V_{SD} = \frac{1}{2} \sum_{i\alpha j\beta} \sigma_{i\alpha} A^{\sigma}_{i\alpha j\beta} \sigma_{j\beta} + \frac{1}{2} \sum_{i\alpha j\beta} \sigma_{i\alpha} A^{\sigma\tau}_{i\alpha j\beta} \sigma_{j\beta} \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j + \frac{1}{2} \sum_{ij} A^{\tau}_{ij} \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j$$

 We can construct these matrices and then solve for their eigenvalues and eigenvectors.

$$\begin{split} &\sum_{j\beta} A^{\sigma}_{i\alpha j\beta} \psi^{\sigma}_{nj\beta} = \lambda^{\sigma}_{n} \psi^{\sigma}_{ni\alpha} \\ &\sum_{j\beta} A^{\sigma\tau}_{i\alpha j\beta} \psi^{\sigma\tau}_{nj\beta} = \lambda^{\sigma\tau}_{n} \psi^{\sigma\tau}_{ni\alpha} \\ &\sum_{j} A^{\tau}_{ij} \psi^{\tau}_{n,j} = \lambda^{\tau}_{n} \psi^{\tau}_{ni} \end{split}$$

 The potential can then be written in terms of the square of new single particle operators.

$$\begin{split} V_{SD} &= \frac{1}{2} \sum_{n=1}^{3A} (O_n^{\sigma})^2 \, \lambda_n^{\sigma} + \frac{1}{2} \sum_{\alpha=1}^{3} \sum_{n=1}^{3A} (O_{n\alpha}^{\sigma\tau})^2 \, \lambda_n^{\sigma\tau} + \frac{1}{2} \sum_{\alpha=1}^{3} \sum_{n=1}^{A} (O_{n\alpha}^{\tau})^2 \, \lambda_n^{\tau} \\ O_n^{\sigma} &= \sum_{j\beta} \sigma_{j\beta} \psi_{nj\beta}^{\sigma} \\ O_{n\alpha}^{\sigma\tau} &= \sum_{j\beta} \tau_{j\alpha} \sigma_{j\beta} \psi_{nj\beta}^{\sigma\tau} \\ O_{n\alpha}^{\tau} &= \sum_{j} \tau_{j\alpha} \psi_{nj}^{\tau} \end{split}$$

 Since we have squared single particle operators in the propagator we can now rewrite the propagator in terms of the Hubbard-Stratanovich transformation.

$$e^{-\frac{1}{2}\lambda O^2} = \frac{1}{\sqrt{2\pi}} \int dx e^{-\frac{x^2}{2} + \sqrt{-\lambda}xO}$$

• Since we have 15A operators (3A for O_n^{σ} , 9A for $O_{n\alpha}^{\sigma\tau}$, and 3A for $O_{n\alpha}^{\tau}$), the spin-isospin dependent part of the propagator becomes

$$G_{SD}(R'S',RS,\Delta\tau) = \prod_{n=1}^{15A} \frac{1}{\sqrt{2\pi}} \int dx_n e^{-\frac{x_n^2}{2}} e^{\sqrt{-\lambda_n \Delta \tau} x_n O_n}.$$

Hamiltonian

Based on meson exchange

- Argonne v₁₈ (NN)
- CD-Bonn (NN)
- Urbana UIX (NNN)
- Illinois (NNN)

Based on χ EFT expansion in momentum (up to N2LO)

Figure from R. Machleidt and D.R. Entem, *Chiral* effective field theory and nuclear forces, Phys. Rep. **503**, 1 (2011)

Hamilatonian - Argonne v6' (AV6')

- For this work I have used the NN AV6' potential with no 3N interaction, though I will be showing some preliminary results with the χ EFT NN and 3N potentials up to N2LO.
- First 6 operators of the AV18 potential

$$v_{ij} = \sum_{p=1}^{6} v_p(\mathbf{r}_{ij}) \mathcal{O}_{ij}^p$$

$$\mathcal{O}_{ij}^{p} = 1, \ \tau_{i} \cdot \tau_{j}, \ \sigma_{i} \cdot \sigma_{j}, \ \sigma_{i} \cdot \sigma_{j} \tau_{i} \cdot \tau_{j}, \ S_{ij}, \ S_{ij} \tau_{i} \cdot \tau_{j}$$

$$S_{ij} = 3\sigma_{i} \cdot \hat{r}_{ij} \sigma_{j} \cdot \hat{r}_{ij} - \sigma_{i} \cdot \sigma_{j}$$

Slater Determinant

- Properties:
 - Antisymmetric
 - Cluster Decomposable $|A + B\rangle = |A\rangle |B\rangle$

 $|B\rangle$

• The simplest wave function for a many-fermion system obeying these properties is a Slater determinant where $\phi_i(\mathbf{r}_i, s_i)$ are single particle nucleon states.

$$\psi_{\mathcal{T}} = \langle RS | \phi \rangle = \mathcal{A} \prod_{i=1}^{A} \phi_{i}(\mathbf{r}_{i}, s_{i}) = \frac{1}{A!} \det \phi_{i}(\mathbf{r}_{i}, s_{i})$$

 Short range correlations need to be put in by hand via Jastrow-like correlations.

$$|\psi_T\rangle = \prod_{i < j} f(r_{ij}) |\phi\rangle.$$

Spin Dependent Correlations

• Two spin dependent wave functions that obey these two properties are the exponentially correlated and symmetrized product wave functions, where \mathcal{O}_{ij}^p are the AV6 operators, $\sigma_i \cdot \sigma_j$, $\tau_i \cdot \tau_j$, $\sigma_i \cdot \sigma_j \tau_i \cdot \tau_j$, S_{ij} and $S_{ij} \tau_i \cdot \tau_j$, where $S_{ij} = 3\sigma_i \cdot \hat{r}_{ij} \sigma_j \cdot \hat{r}_{ij} - \sigma_i \cdot \sigma_j$.

$$|\psi_{\mathcal{T}}\rangle = \left[\prod_{i < j} f_c(r_{ij})\right] e^{\sum\limits_{i < j} \sum\limits_{p} f_p(r_{ij})\mathcal{O}_{ij}^p} |\phi\rangle$$

$$|\psi_{\mathcal{T}}\rangle = \left[\prod_{i < j} f_c(r_{ij})\right] \mathcal{S} \prod_{i < j} \left(1 + \sum_{p} f_p(r_{ij}) \mathcal{O}_{ij}^p\right) |\phi\rangle$$

 These two wave functions are the same up to second order except for commutator terms.

Expand to Linear Correlations

 Because of the cost for larger systems in 2007 they only included Jastrow correlations.

$$|\psi_{\mathcal{T}}\rangle = \left[\prod_{i < j} f_{\mathsf{c}}(r_{ij})\right] |\phi\rangle$$

- S. Gandolfi et al. Phys. Rev. Lett., 99, 022507, 2007.
- By 2014 they added spin-isospin correlations to improve overlap with tensor. This is a truncated expansion of either full wave function from before.

$$|\psi_{\mathcal{T}}\rangle = \left[\prod_{i < j} f_c(r_{ij})\right] \left(1 + \sum_{i < j} \sum_{p} f_p(r_{ij}) \mathcal{O}_{ij}^p\right) |\phi\rangle$$

S. Gandolfi et al. Phys. Rev. C., 90, 061306(R), 2014.

Compare Jastrow to Jastrow+Linear

Data taken from each paper respectively.

Symmetrized Product Wave Function

The logical next step was to keep more terms in the expansion.

$$|\psi_{T}\rangle = \left[\prod_{i < j} f_{c}(r_{ij})\right] \left[1 + \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} + \frac{1}{2} \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} \sum_{\substack{k < l \ ij \neq kl}} \sum_{q} f_{q}(r_{kl}) \mathcal{O}_{kl}^{q}\right] |\phi\rangle$$

Independent Pair Quadratic Correlations

Or it can be expanded to get independent pair quadratic terms

$$|\psi_{T}\rangle = \left[\prod_{i < j} f_{c}(r_{ij})\right] \left[1 + \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} + \sum_{i < j} \sum_{p} f_{p}(r_{ij}) \mathcal{O}_{ij}^{p} \sum_{k < l, \text{ip}} \sum_{q} f_{q}(r_{kl}) \mathcal{O}_{kl}^{q}\right] |\phi\rangle$$

Results - AFDMC

Table 1: Energy (*per nucleon) in MeV

System	Linear	IP Quadratic	Quadratic	Experimental
⁴ He	-27.14(4)	-27.19(3)	-27.11(3)	-28.296
¹⁶ O	-115.7(9)	-122.4(1.5)	-120.8(1.3)	-127.62
⁴⁰ Ca	-322(3)	-350(10)	-351(6)	-342.1
SNM*	-13.97(3)	-14.87(4)	-14.81(3)	

D. Lonardoni et al. Phys. Rev. C., 97, 044318, 2018.

Results - VMC

Quadratic Correlation Cost

	⁴ He	¹⁶ O	SNM(28)	⁴⁰ Ca
IP Quadratic	1.73	30.7	64.8	720.9
Quadratic	2.00	58.8	133.6	1473.9

Results - χ EFT up to N2LO - Preliminary

ADD RESULTS HERE

Placeholder

blah

Placeholder

blah