Marcin Mikuła

Aproksymacja

Do obliczeń użyłem języka Python na systemie Windows 10.

Funkcja do analizy:

$$f(x) = e^{-\sin(2*x)} + \sin(2*x) - 1$$

Wykres 1. Zadana funkcja

Eksperyment polegał na uruchomieniu programu który wykonywał obliczenia dla liczby węzłów [10, 15, 20, 25, 50, 100, 500], oraz stopni wielomianów [4, 6, 8, 10]. Rysowanie wykresów oraz obliczanie błędów odbywało się dla 1000 równoodległych punktów.

Liczba węzłów	Stopień wielomianu	Największy bezwzględny błąd	Suma kwadratów różnic
10	3	4.7884e-01	4.7065e+01
10	4	4.8418e-01	6.7248e+01
15	3	4.7555e-01	4.6690e+01
15	4	3.5392e-01	3.8244e+01
15	6	3.9534e-01	3.9100e+01
18	3	4.6746e-01	4.6579e+01
18	4	3.4438e-01	3.8123e+01
18	6	3.4884e-01	3.8139e+01
18	7	9.2473e-02	1.3686e+00
18	8	9.2473e-02	1.3686e+00
20	3	4.6554e-01	4.6539e+01
20	4	3.4174e-01	3.8077e+01
20	6	3.4219e-01	3.8077e+01
20	7	8.4278e-02	1.2872e+00
20	8	8.8810e-02	1.3007e+00
25	6	3.3773e-01	3.8007e+01
25	7	7.7065e-02	1.1822e+00
25	8	7.7065e-02	1.1822e+00
50	6	3.2981e-01	3.7915e+01
50	7	6.3754e-02	1.0434e+00
50	8	6.3754e-02	1.0434e+00
50	12	2.0308e-02	6.1946e-02
50	24	1.4365e-02	4.6807e-02
100	6	3.2584e-01	3.7892e+01
100	7	5.7075e-02	1.0086e+00
100	12	1.3186e-02	2.6846e-02
100	24	7.1828e-03	1.1702e-02
100	49	7.1826e-03	1.1702e-02

Tabela 1. Tabela błędów dla aproksymacji średniokwadratowej trygonometrycznej

Wykres 1. Funkcja aproksymująca dla 15 równoodległych węzłów oraz wielomianu 6 stopnia.

Wykres 2. Funkcja aproksymująca dla 50 równoodległych węzłów oraz wielomianu 6 stopnia.

Wykres 3. Funkcja aproksymująca dla 18 równoodległych węzłów oraz wielomianu 7 stopnia.

Wykres 4. Funkcja aproksymująca dla 100 równoodległych węzłów oraz wielomianu 7 stopnia.

Wykres 5. Funkcja aproksymująca dla 100 równoodległych węzłów oraz wielomianu 18 stopnia.

Wnioski:

Błędy pomiaru w przypadku aproksymacji trygonometrycznej są znacznie mniejsze od błędów dla aproksymacji algebraicznej.

Wzrost liczby węzłów oraz stopnia wielomianu aproksymacyjnego powoduje zmniejszanie się błędów obliczeniowych.