- 1. Se consideră triunghiul ABC în care AC = 3, BC = 4 iar $m(\hat{C}) = \frac{\pi}{3}$. Atunci: (6 pct.)
 - a) $AB = \sqrt{2}$; b) AB = 13; c) $AB = \sqrt{13}$; d) AB = 1; e) AB = 5; f) $AB = \sqrt{15}$.

Soluție. Aplicăm în triunghiul ABC teorema cosinusului pentru unghiul \hat{C} :

$$AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos \hat{C} \Leftrightarrow AB^2 = 9 + 16 - 24 \cdot \frac{1}{2} = 13 \Rightarrow AB = \sqrt{13}.$$

- 2. Să se determine parametrii $a, b \in \mathbb{R}$ știind că $\vec{w} = a\vec{u} + b\vec{v}$, unde $\vec{u} = \vec{i} \vec{j}$, $\vec{v} = \vec{i} + \vec{j}$ și $\vec{w} = 3\vec{i} \vec{j}$. (6 pct.)
 - a) a = 3, b = -1; b) a = -2, b = -1; c) a = -1, b = 2; d) a = 2, b = 1; e) a = 0, b = 1; f) a = 1, b = 2.

Soluţie. Înlocuind \vec{u} , \vec{v} , \vec{w} în prima egalitate și apoi identificând coeficienții vectorilor \vec{i} și respectiv \vec{j} , obținem $3\vec{i} - \vec{j} = a(\vec{i} - \vec{j}) + b(\vec{i} + \vec{j}) \Leftrightarrow \left\{ \begin{array}{l} a+b=3 \\ -a+b=-1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a=2 \\ b=1. \end{array} \right.$

- 3. Latura pătratului de arie 4 cm² are lungimea: (6 pct.)
 - a) $2\sqrt{2}$ cm; b) 2 cm; c) $\frac{1}{2}$ cm; d) 1 cm; e) $\sqrt{2}$ cm; f) 8 cm.

Soluţie. Latura pătratului este $\sqrt{4\text{cm}^2} = 2\text{cm}$.

- 4. Să se calculeze produsul $P = \sin 60^{\circ} \cdot \operatorname{tg} 45^{\circ} \cdot \cos 30^{\circ}$. (6 pct.)
 - a) $\frac{3}{4}$; b) 0; c) $\frac{\sqrt{3}}{4}$; d) $\frac{1}{2}$; e) $\frac{4}{3}$; f) 1.

Soluție. Înlocuind factorii din produs, obținem $P = \frac{\sqrt{3}}{2} \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{3}{4}$.

- 5. Simetricul C al punctului A(1,2) față de punctul O(0,0) este: (6 pct.)
 - a) C(1,2); b) C(2,1); c) $C(-\frac{1}{2},-1)$; d) C(-1,2); e) C(-1,-2); f) $C(\frac{1}{2},1)$.

Soluție. Condiția de simetrie este echivalentă cu proprietatea punctului O de a fi mijlocul segmentului AC. Deci punctul C satisface egalitatea $2 \cdot O = A + C \Leftrightarrow C = 2 \cdot O - A = (0,0) - (1,2) = (-1,-2)$.

- 6. Se dau vectorii $\vec{u} = 2\vec{i} + 3\vec{j}$ și $\vec{v} = \vec{i} + 2\vec{j}$. Atunci vectorul $\vec{u} + \vec{v}$ este: (6 pct.)
 - a) $\vec{i} + \vec{j}$; b) $3\vec{i} + 5\vec{j}$; c) $5\vec{i} + 3\vec{j}$; d) $2\vec{i} \vec{j}$; e) $3\vec{i} + 4\vec{j}$; f) $\vec{i} \vec{j}$.

Soluţie. Adunând coeficienţii corespunzători vectorilor \vec{i} respectiv \vec{j} , obţinem: $\vec{u}+\vec{v}=(2\vec{i}+3\vec{j})+(\vec{i}+2\vec{j})=(2+1)\vec{i}+(3+2)\vec{j}=3\vec{i}+5\vec{j}$.

- 7. Aflaţi valoarea parametrului $a \in \mathbb{R}$ pentru care vectorii $\vec{u} = \vec{i} 2\vec{j}$ şi $\vec{v} = -a\vec{i} + 3\vec{j}$ sunt perpendiculari. (6 pct.)
 - a) a = 0; b) a = 1; c) a = 6; d) a = -3; e) a = 2; f) a = -6.

Soluție. Perpendicularitatea celor doi vectori este echivalentă cu anularea produsului lor scalar:

$$\langle \vec{u}, \vec{v} \rangle = 0 \Leftrightarrow \langle \vec{i} - 2\vec{j}, -a\vec{i} + 3\vec{j} \rangle = 0 \Leftrightarrow 1 \cdot (-a) + (-2) \cdot 3 = 0 \Leftrightarrow a = -6.$$

- 8. În triunghiul ascuţitunghic ABC se cunosc: $m(\hat{A}) = 45^{\circ}$, $m(\hat{B}) = 60^{\circ}$ şi BC = 2. Atunci: (6 pct.)
 - a) AC = 1; b) AC = 3; c) $AC = \sqrt{6}$; d) AC = 4; e) $AC = \sqrt{2}$; f) AC = 2.

Soluţie. Aplicăm teorema sinusului în triunghiul ABC: $\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{A}} \Leftrightarrow \frac{2}{\sin 45^{\circ}} = \frac{AC}{\sin 60^{\circ}} \Rightarrow AC = \frac{2\sin 60^{\circ}}{\sin 45^{\circ}} = \frac{2\cdot\sqrt{3}/2}{\sqrt{2}/2} = \sqrt{6}$.

9. În triunghiul ABC se dau AB = AC = 5 și BC = 6. Atunci înălțimea dusă din A are lungimea: (6 pct.) a) 1; b) 8; c) 4; d) 5; e) 3; f) 2.

Soluție. Triunghiul ABC este isoscel, deci mediana AD corespunzătoare laturii BC ($D \in BC$, BD = DC) este și înălțime, deci $\widehat{ADC} = 90^{\circ}$. Observăm că $DC = \frac{BC}{2} = 3$. Aplicând Teorema lui Pitagora în triunghiul drepunghic ADC, rezultă $AD^2 = \sqrt{AC^2 - DC^2} = \sqrt{25 - 9} = 4$.

- 10. Laturile triunghiului ABC au lungimile 1, 1, $\sqrt{2}$. Atunci raza R a cercului circumscris triunghiului este: (6 pct.)
 - a) $\frac{1}{2}$; b) $\sqrt{2}$; c) $\frac{\sqrt{2}}{3}$; d) 1; e) $\frac{\sqrt{2}}{2}$; f) $\frac{1}{3}$.

Soluție. Cele trei lungimi din enunț sunt numere pitagoreice $(\sqrt{2}^2 = 1^2 + 1^2)$, deci triunghiul este dreptunghic, iar raza cercului circumscris este de lungime jumătate din cea a ipotenuzei, deci $\sqrt{2}/2$.

- 11. Să se determine valoarea lui $m \in \mathbb{R}$ pentru care dreapta de ecuație mx + y = 1 este paralelă cu dreapta 2x y = 3. (6 pct.)
 - a) $m = -\frac{1}{2}$; b) m = -1; c) $m = \frac{1}{2}$; d) m = 2; e) m = 1; f) m = -2.

Soluție. Paralelismul celor două drepte revine la proporționalitatea coefifienților celor două variabile din ecuațiile acestora: $\frac{m}{2} = \frac{1}{-1} \Leftrightarrow m = -2$.

- 12. Soluțiile din intervalul $(0,\pi)$ ale ecuației $\sin x + \sin 3x = 0$ sunt: (6 pct.)
 - a) $\{\frac{\pi}{2}\}$; b) $\{\frac{\pi}{12}\}$; c) $\{\frac{\pi}{8}\}$; d) $\{\frac{\pi}{2}, \frac{\pi}{4}\}$; e) $\{\frac{\pi}{6}\}$; f) $\{\frac{\pi}{3}, \frac{\pi}{4}\}$.

Soluție. Metoda 1. Folosind imparitatea funcției sinus, ecuația se rescrie $\sin x = \sin(-3x)$, deci

$$x \in \{k\pi + (-1)^k (-3x) | k \in \mathbb{Z}\} = \{k\pi + 3 \cdot (-1)^{k+1} \cdot x | k \in \mathbb{Z}\} = \{k\pi/4 | k \in \mathbb{Z}, \ k \text{ par}\} \cup \{k\pi/2 | k \in \mathbb{Z}, \ k \text{ impar}\} = \{k\pi/2 | k \in \mathbb{Z}\}.$$

Rezultă că soluțiile admisibile, care aparțin intervalului $(0,\pi)$ se rezumă la $\{\frac{\pi}{2}\}$. Metoda~2. Folosim formula $\sin a + \sin b = 2 \sin \frac{a+b}{2} \cos \frac{a-b}{2}$ și obținem: $2 \sin 2x \cos x = 0 \Leftrightarrow \{k\pi/2 | k \in \mathbb{Z}\} \cup \{(2k+1)\pi/2 | k \in \mathbb{Z}\}$. Soluțiile admisibile, care aparțin intervalului $(0,\pi)$, se rezumă la mulțimea $\{\frac{\pi}{2}\}$. Metoda~3. Folosim imparitatea funcției sinus și formula $\sin 3x = 3a - 4a^3$, unde $a = \sin x$. Obținem $a = -(3a - 4a^3) \Leftrightarrow 4a(a^2-1) = 0 \Leftrightarrow a \in \{-1,0,1\}$. Dar $x \in (0,\pi)$ implică a > 0, deci a = 1 este singura variantă admisibilă, care conduce la $\sin x = 1 \Rightarrow x = \frac{\pi}{2} \in (0,\pi)$.

- 13. Fie A(0,1), B(1,1) și C(1,0). Atunci aria triunghiului ABC este: (6 pct.)
 - a) 1; b) $\frac{1}{2}$; c) $\sqrt{2}$; d) $\frac{1}{3}$; e) $\frac{\sqrt{2}}{2}$; f) $\frac{2}{3}$.

Soluţie. Metoda 1. Aplicăm formula ariei triunghiului: $\mathcal{A} = \frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix} = \frac{1}{2}$. Metoda 2. Triunghiul reprezintă jumătate din pătratul OABC de arie 1, deci aria sa este $\frac{1}{2}$.

- 14. Aflați valoarea parametrului $m \in \mathbb{R}$ pentru care punctul P(1,m) aparține dreptei x+y=2. (6 pct.)
 - a) m = 2; b) m = 0; c) m = 1; d) m = -2; e) $m = \sqrt{2}$; f) m = -1.

Soluție. Punctul P aparține dreptei d.n.d. coordonatele sale satisfac ecuația acesteia, deci $1+m=2 \Rightarrow m=1$.

15. Dacă $\sin x = \frac{1}{2}$, $x \in (0, \frac{\pi}{2})$, atunci tg x este: (6 pct.)

a)
$$\frac{\sqrt{3}}{2}$$
; b) $\sqrt{3}$; c) $\frac{1}{\sqrt{3}}$; d) 1; e) $\frac{\sqrt{2}}{2}$; f) $\sqrt{2}$.

Soluție. Metoda 1. Există o unică soluție a ecuației $\sin x = \frac{1}{2}$ care aparține intervalului $(0, \frac{\pi}{2})$, anume $x = \frac{\pi}{6}$, deci $\operatorname{tg} x = \frac{1}{\sqrt{3}}$. Metoda 2. Folosind formula trigonometrică fundamentală, obținem $\cos x \in \{\pm\sqrt{1-\sin^2 x}\} = \{\pm\sqrt{1-\frac{1}{4}}\} = \{\pm\frac{\sqrt{3}}{2}\}$. Dar $x \in (0, \frac{\pi}{2})$, deci $\cos x > 0$ și prin urmare $\cos x = \frac{\sqrt{3}}{2}$, iar $\operatorname{tg} x = \frac{\sin x}{\cos x} = \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}$.