The PageRank Algorithm (Chapter 5)

Wojtek Kowalczyk plus slides

http://www.mmds.org/mmds/v2.1/ch05-linkanalysis2.pptx

Some history

- ☐ Internet in early 80': small, slow, local,
- ☐ Internet in early 90': growing, global, slow
 - newsgroups
 - mailing lists
 - bulletin boards
- "primitive" search engines:
 - Lycos
 - Excite
 - Netscape
 - Yahoo!
 - MSN
 - "hybrid": combinations of existing engines
- □ 1997: google.stanford.edu; 15 September 1997: domain google.com registered

The key to success: the PageRank algorithm

- Invented by Sergiey Brin and Larry Page in 1996 (Stanford University)
- Estimates "page importance" by analyzing the structure of links
- ☐ Some Rough Statistics (from August 29th, 1996)
 - Total indexable HTML urls: 75 Million
 - Total content downloaded: 207 gigabytes ...
 - BackRub is written in Java and Python and runs on several Sun Ultras and Intel Pentiums running Linux. The primary database is kept on a Sun Ultra II with 28GB of disk. Scott Hassan and Alan Steremberg have provided a great deal of very talented implementation help.
 Sergey Brin has also been very involved and deserves many thanks.
 - -Larry Page pagecs.stanford.edu
- □ By the end of 1998, Google had an index of about 60 million pages
- □ http://en.wikipedia.org/wiki/History_of_Google

The PageRank Algorithm (Ch. 5)

- How Google determines the importance of a page?
- ☐ A "random surfer" model:
 - visitors start their session at random pages
 - visitors walk along links at random
 - choices are made uniformly (each outgoing link has the same chance)
 - "page importance" = "frequency the surfer visits the page"
- ☐ It can be modeled by a Markov Process
 - transition matrix
 - iterative calculation of page probability distribution
 - solution = principal eigen vector of the transition matrix
- □ Nowadays a much more sophisticated model is used ...

The transition matrix

$$M = \begin{bmatrix} A & B & C & D \\ 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

Each column X lists probabilities of going to Y

v=[1/4, 1/4, 1/4]' Entries in each column sum up to 1 What is Mv? What is M(Mv)? M(M(v))?...

The transition matrix: iterating Mv

$$M = \begin{bmatrix} 0 & 1/2 & 1 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1/2 & 0 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} \begin{bmatrix} 9/24 \\ 5/24 \\ 5/24 \\ 5/24 \end{bmatrix} \begin{bmatrix} 15/48 \\ 11/48 \\ 11/48 \\ 11/48 \end{bmatrix} \begin{bmatrix} 11/32 \\ 7/32 \\ 7/32 \\ 7/32 \end{bmatrix} \dots \begin{bmatrix} 3/9 \\ 2/9 \\ 2/9 \\ 2/9 \end{bmatrix}$$

Convergence of the Markov process

If: the graph is strongly connected (i.e., there is a path between any two nodes) there are no "dead ends" (nodes with no links going out) then the sequence v, Mv, M(Mv), ... converges to v' such that v'=Mv'v' is the principal eigen vector of matrix M (principal = biggest eigen value) In practice, 50-70 iterations are sufficient ... even for huge M (billions x billions, sparse) ... For small M, v=Mv can be solved directly...

Dead-ends

Spider-traps

Teleporting

- ☐ At each step, decide:
 - with probability β (0< $\beta \le 1$) continue random walk
 - with probability (1- β) jump to any other node
- ☐ The corresponding update rule:

$$\mathbf{v'} = \beta \mathbf{M} \mathbf{v} + (\mathbf{1} - \beta) \mathbf{e} / \mathbf{n}$$
 (e is a vector of n 1's)

- \square β is usually 0.8 or 0.9
- "adding extra links": all problems solved (<u>really?</u>)

Teleporting: example (slide 9 continued...)

$$\beta = 0.8 = 4/5$$

$$\mathbf{v}' = \begin{bmatrix} 0 & 2/5 & 0 & 0 \\ 4/15 & 0 & 0 & 2/5 \\ 4/15 & 0 & 4/5 & 2/5 \\ 4/15 & 2/5 & 0 & 0 \end{bmatrix} \mathbf{v} + \begin{bmatrix} 1/20 \\ 1/20 \\ 1/20 \\ 1/20 \end{bmatrix}$$

$$\begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix} \begin{bmatrix} 9/60 \\ 13/60 \\ 25/60 \\ 13/60 \end{bmatrix} \begin{bmatrix} 41/300 \\ 53/300 \\ 153/300 \\ 53/300 \end{bmatrix} \begin{bmatrix} 543/4500 \\ 707/4500 \\ 2543/4500 \\ 707/4500 \end{bmatrix} \dots \begin{bmatrix} 15/148 \\ 19/148 \\ 95/148 \\ 19/148 \end{bmatrix}$$

Teleporting: dead ends (slide 8 continued...)

```
Beta=0.8
```



```
for i=1:20
v=Beta*M*v +(1-Beta)*ones(size(v))/length(v)
end
```

Teleporting: dead ends (slide 8 continued...)

Convergence after 20 iterations:

Iter: 0	1	2	3	10	20
0.2500	0.1500	0.1367	0.1207	0.1018	0.1014
0.2500	0.2167	0.1767	0.1571	0.1290	0.1284
0.2500	0.2167	0.1767	0.1571	0.1290	0.1284
0.2500	0.2167	0.1767	0.1571	0.1290	0.1284

Does it make sense?

- Why is sum(v) < 1? Surfers "die" at dead ends? Not exactly...
- Is sum(v) always >0 ? Yes: it is at least (1-Beta)
- What should be the case:
 - -p(A)=0.5*p(B)?
 - -p(A)=0.5*p(B)+(1-Beta)/4?
 - p(A)= Beta*0.5*p(B) + (1-Beta)/4? Check it!

Teleporting: dead-ends and spider traps

For graphs with no dead-ends "teleporting" works fine: the process converges to a vector v, such that sum(v)=1 and can be interpreted as "probabilities".

For graphs with dead-ends, the "teleporting" still works, but the sum(v) may be smaller than 1 (no probabilistic interpretation). Still, useful in practice (used in the original "Google" paper).

An alternative algorithm for handling dead-ends (read **Section 5.1.4**!)

- recursively remove dead ends and corresponding links,
- calculate of PageRank for the nodes of the remaining fragment of the graph,
- propagate computed values to the removed nodes.

Another alternative: when reaching a dead end jump the next node "uniformly at random with probability 1"

Example from 5.1.4

After removal of nodes E and C, calculate PageRank of A, B, D and set:

PageRank(C) = 1/2*PageRank(A)+1/2*PageRank(D)

PageRank(E) = PageRank(C)

Note that sum of PageRanks is now bigger than 1!

Implementation of PageRank

- Key ideas:
 - M is very sparse: say 10 links per page => 10 non-zeros in a column
 - Use "inverted indexing" to represent M: a list of <node, outdegree, children of the node>
 - keep on harddisk M and vector v_old
 - keep in RAM only v_new
 - update v_new in a single scan of M and v_old
- ☐ Some numbers:
 - n=1.000.000.000 (1 billion nodes)
 - RAM needed: 4GB (32bits per node)
 - harddisk: about 40GB (10xRAM)
 - a single scan: about 2-3 minutes
 - 50 iterations => 2-3 hours

Sparse Matrix Encoding

- ☐ Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk source node degree destination nodes

0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

- \square Assume enough RAM to fit v^{new} into memory
 - Store **v**^{old} and matrix **M** on disk
- □ 1 step of power-iteration is:

Initialize all entries of
$$\mathbf{v}^{\text{new}} = (\mathbf{1} - \beta) / \mathbf{N}$$

For each page i (of out-degree d_i):
Read into memory: i , d_i , $dest_1$, ..., $dest_{d_i}$, $v^{old}(i)$
For $j = 1...d_i$
 $\mathbf{v}^{\text{new}}(\text{dest}_j) += \beta \mathbf{v}^{\text{old}}(i) / d_i$

0	Vnew
1	
2	
2 3	
4	
4 5	
6	

source	degree	destination
--------	--------	-------------

0	3	1, 5, 6
1	4	17, 64, 113, 117
2	2	13, 23

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

In short: "column-wise" computations

When multiplying M by v we organize computations "by columns": "a single, linear scan through the harddisk"

- data is already organized in this way,
- •we access elements of "old v" one by one (a, b, c),
- outdegrees (one per column) are easy to find.

$$\begin{bmatrix} A & B & C \\ D & E & F \end{bmatrix} * \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} Aa + Bb + Cc \\ Da + Eb + Fc \\ Ga + Hb + Ic \end{bmatrix}$$

A3: Structure of wikipedia links

Go to https://zenodo.org/record/2539424 and fetch the file:

https://zenodo.org/record/2539424/files/enwiki.wikilink graph.2004-03-01.csv.gz?download=1

Investigate the graph:

- Dead ends
- Distribution of in-degrees
- Distribution of out-degrees of nodes
- Implement the page rank algorithm from slide 18
- Implement direct (sparse) matrix multiplication
- Compare results
- Is this graph strongly connected?

Data preprocessing (prep)

The data has the following layout:

page_id_from	page_title_from	page_id_to	page_title_to
12	Anarchism	34568	16th century
12	Anarchism	35416	1793

- ☐ Extract only the 1st and the 3rd column
- ☐ Convert page_id's into consecutive integers, in such a way that you can return back to the original numbering
- Both columns should use the same coding!
- ☐ Save the prepared data on HD

Exploratory data analysis (eda)

- Dead ends: find nodes with no outgoing edges. How many have you found?
- Distribution of in-degrees: for every node compute the number of incoming edges
- Distribution of out-degrees: for every node compute the number of outgoing edges
- Make nice & informative plots of both distributions
- What is the average out-degree and the average in-degree of the graph?

Estimate RAM requirements: (eda)

- How much RAM would you need to store the transition matrix M and the initial vector v in RAM? Assume double precision (64 bits per number).
- The same question assuming that you store M in a sparse matrix (in RAM)?
- 3. The same question, assuming that you use data structures as described on slide 17.

embed your answers in the notebook eda.ipynb

Implement PageRank algorithm (sparse)

- 1. Store both M (as a sparse matrix) and v (in RAM).
- 2. Run 25 iterations of the "classical" update rule from slide 10, with Beta=0.8.
- 3. Plot the MSE of the differences (25 numbers): v Mv
- 4. Assume that your computer has 1GB RAM and the average out-degree of a graph G is 15.

What is the maximal number of nodes of G such that your algorithm could be executed on your computer?

Implement PageRank algorithm from slide 18

- Store both M and v^{old} and v^{new} in RAM.
 (Normally M and v^{old} stored on the hard disk)
- 2. Implement the algorithm from slide 18. Run 25 iterations of this algorithm with Beta=0.8.
- 3. Plot the MSE of the differences (25 numbers): v Mv
- 4. How much time is needed to run a single iteration?
- 5. Have you obtained similar/identical results as in the previous task? What might be the source of eventual differences?

What to deliver?

Four Jupyter notebooks:

- prep.ipynb
- eda.ipynb
- sparse.ipynb
- PageRank.ipynb

that correspond to all the subtasks.

Your notebooks should read/write files from/to the same directory as your notebooks. We will test your programs in a directory which contains wikilink_graph.2004-03-01.csv