Correlation Matrix (signal)

Linear correlation coefficients in %														
D _s log(RFD)	7	-50	28	67	18	4	50	-4	32	58	50	100		100
$D_s \ln(\chi_{FD}^2)$	2	-4	9	52	7		8	-2	11	22	100	50		80
min[ln(lPχ²)]	7	-34	24	39	3	4	34	1	9	100	22	58		60
s(max[θ _{Ds h}])	6	-7	27	15	28	4	5	-26	100	9	11	32	_	40
max[DOCA]	-6	-7	5		-4	-3	-17	100	-26	1	-2	-4		20
min[ln(lPχ²)]	7	-32	20	29	2		100	-17	5	34	8	50		
t[ghostProb]	-1		-2	-3	-5	100		-3	4	4		4		0
$B_s A_{p_t}^{cone}$	3	-2	15	24	100	-5	2	-4	28	3	7	18		-20
$\Delta\chi^{f 2}_{ ext{add-track}}$	5	-28	20	100	24	-3	29		15	39	52	67		-40
$\chi^2_{ m DTF}$ /ndf	26	6	100	20	15	-2	20	5	27	24	9	28		-60
, In(1 - DIRA)	62	100	6	-28	-2		-32	-7	-7	-34	-4	-50		-80
B_s In(IP χ^2)	100	62	26	5	3	-1	7	-6	6	7	2	7		
	B_{s}	In(Ip	In (10 In	India	2 B _s	A _e sma	X[gho	daugi	maxii 11xem	S(max	daugi	In (X	09(F	-100
		/	(5)	UIRA)	" 'rack	t		Stpro	ters n	hin[In	$(\mathbf{p}_{\chi^2)}$	(Terson	nin[li	-100 PFD) P(IP _X ?)1