Rotating Frames

Adam Kelly (ak2316) June 11, 2021

Motion in Rotating Frames

Suppose that \mathcal{F} is an inertial frame, and \mathcal{F}' is rotating about the z axis with angular velocity $\boldsymbol{\omega} = \omega \mathbf{e}_z$ with respect to \mathcal{F} .

Suppose we have basis vectors $\{\mathbf{e}_i\}$ and $\{\mathbf{e}_i'\}$ in \mathcal{F} and \mathcal{F}' respectively. If a particle is at rest in \mathcal{F}' , then in \mathcal{F} its velocity is given by

$$\left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{F}} = \boldsymbol{\omega} \times \mathbf{r}.$$

Of course, this also applies to the basis vectors in \mathcal{F}' , with

$$\left(\frac{d\mathbf{e}_i'}{dt}\right)_{\mathcal{F}} = \boldsymbol{\omega} \times \mathbf{e}_i'.$$

Now for some vector **a**, we can write it in the $\{e'_i\}$ basis as

$$\mathbf{a} = \sum_{i} a'_{i}(t)\mathbf{e}'_{i}.$$

In the frame \mathcal{F}' , the basis vectors \mathbf{e}'_i are constant, and thus the derivative of \mathbf{a} is given by

$$\left(\frac{d\mathbf{a}}{dt}\right)_{\mathcal{F}'} = \sum_{i} \frac{da_i'(t)}{dt} \mathbf{e}_i'.$$

In the frame \mathcal{F}' however, the basis vectors $\{\mathbf{e}'_i\}$ are not constant, and we have

$$\left(\frac{d\mathbf{a}}{dt}\right)_{\mathcal{F}} = \sum_{i} \frac{da_i'(t)}{dt} \mathbf{e}_i' + \sum_{i} a_i'(t) \boldsymbol{\omega} \times \mathbf{e}_i' = \left(\frac{d\mathbf{a}}{dt}\right)_{\mathcal{F}'} + \boldsymbol{\omega} \times \mathbf{a}$$

Change of Frame Operator

Let $\mathcal F$ be an inertial frame, and $\mathcal F'$ be rotating relative to $\mathcal F$ with angular velocity $\boldsymbol \omega$. Then we have

$$\left(\frac{d}{dt}\right)_{\mathcal{F}} = \left(\frac{d}{dt}\right)_{\mathcal{F}'} + \boldsymbol{\omega} \times$$

Velocity and Acceleration

Using the change of frame operator, we can see that

$$\left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{F}} = \left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{F}'} + \boldsymbol{\omega} \times \mathbf{r},$$

and applying the operator again (and noting that $\dot{\omega}$ is the same in both frames), we have

$$\left(\frac{d^2\mathbf{r}}{dt^2}\right)_{\mathcal{F}} = \left(\frac{d^2\mathbf{r}}{dt^2}\right)_{\mathcal{F}'} + 2\boldsymbol{\omega} \times \left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{F}'} + \dot{\boldsymbol{\omega}} \times \mathbf{r} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}).$$

Force in the Rotating Frame

Since \mathcal{F} is an inertial frame, we have $m\left(d^2\mathbf{r}/dt^2\right)_{\mathcal{F}} = F$ by Newton's laws. This allows us to write down what the force appears to be in the frame \mathcal{F}' (as if the observer in the frame was trying to apply Newton's laws).

$$m\left(\frac{d^2\mathbf{r}}{dt^2}\right)_{\mathcal{F}'} = \mathbf{F} - 2m\boldsymbol{\omega} \times \left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{F}'} - m\dot{\boldsymbol{\omega}} \times \mathbf{r} - m\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}).$$

The additional terms on the right are known as fictitious forces, each with a different name.

- 1. Coriolis force. $-2m\boldsymbol{\omega} \times \left(\frac{d\mathbf{r}}{dt}\right)_{\mathcal{F}'}$.
- 2. Euler force. $-m\dot{\boldsymbol{\omega}} \times \mathbf{r}$.
- 3. Centrifugal force. $-m\boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r})$.