Scuola universitaria professionale della Svizzera italiana Bachelor di Ingegneria Informatica

SUPSI

Machine Learning Lezione 4 - Regressione Lineare: Approccio Generativo

Loris Cannelli, Ricercatore, IDSIA loris.cannelli@supsi.ch

IDSIA-SUPSI, Galleria 1, Manno

Capitolo 2 del libro A First Course in Machine Learning

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

Come generare i punti presenti in figura a partire dal nostro modello lineare?

Come generare i punti presenti in figura a partire dal nostro modello lineare?

- Come generare i punti presenti in figura a partire dal nostro modello lineare?
- Dovremmo traslare i punti generati da w^Tx

- Come generare i punti presenti in figura a partire dal nostro modello lineare?
- Dovremmo traslare i punti generati da w^Tx
- Possiamo semplicemente aggiungere uno shift

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

dove ϵ è uno scalare, positivo o negativo

- Come generare i punti presenti in figura a partire dal nostro modello lineare?
- Dovremmo traslare i punti generati da w^Tx
- Possiamo semplicemente aggiungere uno shift

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

dove ϵ è uno scalare, positivo o negativo

Potremmo anche modificare il modello lineare con uno scaling del tipo $f(\mathbf{x}; \mathbf{w}) = \epsilon \mathbf{w}^T \mathbf{x}$, ma quello additivo è più semplice da studiare per iniziare (un modello moltiplicativo di questo tipo descrive in maniera efficace per esempio come degrada la qualità dei pixel in un'immagine)

F

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

e

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

 \blacktriangleright Come scegliamo questo shift ϵ che vogliamo sommare al nostro modello lineare?

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

- ightharpoonup Come scegliamo questo shift ϵ che vogliamo sommare al nostro modello lineare?
- Dato che questo shift deve predirre un comportamento non noto a priori, un modo intuitivo di procedere e presupporre che sia una variabile aleatoria

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

- ightharpoonup Come scegliamo questo shift ϵ che vogliamo sommare al nostro modello lineare?
- Dato che questo shift deve predirre un comportamento non noto a priori, un modo intuitivo di procedere e presupporre che sia una variabile aleatoria
- Quello che dobbiamo fare, quindi, è definire le caratteristiche di questa variabile aleatoria

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

 \blacktriangleright L'assunzione tipica è che ϵ sia una viariabile aleatoria con distribuzione Gaussiana

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

 \blacktriangleright L'assunzione tipica è che ϵ sia una viariabile aleatoria con distribuzione Gaussiana

$$p(y|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}$$

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon$$

L'assunzione tipica è che ϵ sia una viariabile aleatoria con distribuzione Gaussiana

$$p(y|\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2}(y-\mu)^2\right\}$$

$$f(\mathbf{x}_n; \mathbf{w}) = \mathbf{w}^T \mathbf{x}_n + \epsilon_n \quad \forall n = 1, \dots, N$$

$$f(\mathbf{x}_n; \mathbf{w}) = \mathbf{w}^T \mathbf{x}_n + \epsilon_n \quad \forall \ n = 1, \dots, N$$

▶ Come abbiamo detto, ogni ϵ_n è una variabile aleatoria con distribuzione $p(\epsilon_n)$ Gaussiana

$$f(\mathbf{x}_n; \mathbf{w}) = \mathbf{w}^T \mathbf{x}_n + \epsilon_n \quad \forall n = 1, \dots, N$$

- Come abbiamo detto, ogni ϵ_n è una variabile aleatoria con distribuzione $p(\epsilon_n)$ Gaussiana
- Come parametri per la Guassiana, scegliamo per ora valori standard: $\mu=0, \sigma=1$

$$f(\mathbf{x}_n; \mathbf{w}) = \mathbf{w}^T \mathbf{x}_n + \epsilon_n \quad \forall \ n = 1, \dots, N$$

- ▶ Come abbiamo detto, ogni ϵ_n è una variabile aleatoria con distribuzione $p(\epsilon_n)$ Gaussiana
- \blacktriangleright Come parametri per la Guassiana, scegliamo per ora valori standard: $\mu=0,\sigma=1$
- $ightharpoonup \epsilon_1, \epsilon_2, \dots, \epsilon_N$ dovrebbero essere in qualche modo correlate tra di loro?

$$f(\mathbf{x}_n; \mathbf{w}) = \mathbf{w}^T \mathbf{x}_n + \epsilon_n \quad \forall \ n = 1, \dots, N$$

- Come abbiamo detto, ogni ϵ_n è una variabile aleatoria con distribuzione $p(\epsilon_n)$ Gaussiana
- Come parametri per la Guassiana, scegliamo per ora valori standard: $\mu=0, \sigma=1$
- $ightharpoonup \epsilon_1, \epsilon_2, \dots, \epsilon_N$ dovrebbero essere in qualche modo correlate tra di loro?
- Per semplicità assumiamo di no! Ha senso considerare un modello dove gli shift $\epsilon_1, \epsilon_2, \ldots, \epsilon_N$ sono indipendenti l'uno dall'altro

- Per le proprietò delle Guassiane: $t_n \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$

- Per le proprietò delle Guassiane: $t_n \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$

- Per le proprietò delle Guassiane: $t_n \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$

- Per le proprietò delle Guassiane: $t_n \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$

$$\sigma^2 = 0.05; \mathbf{w} = \begin{bmatrix} 36.416 \\ -0.0133 \end{bmatrix}; \mathbf{x}_n = \begin{bmatrix} 1 \\ 1980 \end{bmatrix}$$

$$\mu = 36.416 - 0.0133 * 1980 = 10.02$$

- Per le proprietò delle Guassiane: $t_n \sim \mathcal{N}(\mathbf{w}^\mathsf{T} \mathbf{x}_n, \sigma^2)$

Esempio

$$\sigma^2 = 0.05; \mathbf{w} = \begin{bmatrix} 36.416 \\ -0.0133 \end{bmatrix}; \mathbf{x}_n = \begin{bmatrix} 1 \\ 1980 \end{bmatrix}$$

$$\mu = 36.416 - 0.0133 * 1980 = 10.02$$

▶ Tempo di vittoria reale $t_{1980} = 10.25$

- Per le proprietò delle Guassiane: $t_n \sim \mathcal{N}(\mathbf{w}^T \mathbf{x}_n, \sigma^2)$

$$\sigma^2 = 0.05; \mathbf{w} = \begin{bmatrix} 36.416 \\ -0.0133 \end{bmatrix}; \mathbf{x}_n = \begin{bmatrix} 1 \\ 1980 \end{bmatrix}$$

- $\mu = 36.416 0.0133 * 1980 = 10.02$
- ▶ Tempo di vittoria reale $t_{1980} = 10.25$

$$t_n = f(\mathbf{x}_n; \mathbf{w}) + \epsilon_n \quad \epsilon_n \sim \mathcal{N}(0, \sigma^2)$$

$$t_n = f(\mathbf{x}_n; \mathbf{w}) + \epsilon_n \quad \epsilon_n \sim \mathcal{N}(0, \sigma^2)$$

Massimizzare la likelihood è uno dei concetti chiave del Machine Learning!

$$t_n = f(\mathbf{x}_n; \mathbf{w}) + \epsilon_n \quad \epsilon_n \sim \mathcal{N}(0, \sigma^2)$$

- Massimizzare la likelihood è uno dei concetti chiave del Machine Learning!
- Sfruttando le proprietà della Gaussiana e l'indipendenza degli shift, si dimostra analiticamente che il vettore ŵ ottimo è:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{t}$$

$$t_n = f(\mathbf{x}_n; \mathbf{w}) + \epsilon_n \quad \epsilon_n \sim \mathcal{N}(0, \sigma^2)$$

- ► Massimizzare la *likelihood* è uno dei concetti chiave del Machine Learning!
- Sfruttando le proprietà della Gaussiana e l'indipendenza degli shift, si dimostra analiticamente che il vettore ŵ ottimo è:

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{t}$$

⇒ lo stesso ottenuto nelle lezioni precedenti!

Quanto è valido il nostro modello?

Prendiamo un vettore $\mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ e 20 elementi (x_1, \dots, x_{20}) uniformemente distribuiti tra 0 e 1

Quanto è valido il nostro modello?

- ▶ Prendiamo un vettore $\mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ e 20 elementi (x_1, \dots, x_{20}) uniformemente distribuiti tra 0 e 1
- ▶ Otteniamo i corrispettivi $t_n = w_0 + w_1 x_n + \epsilon_n$, con $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ e $\sigma^2 = 0.25$

Quanto è valido il nostro modello?

- ▶ Prendiamo un vettore $\mathbf{w} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$ e 20 elementi (x_1, \dots, x_{20}) uniformemente distribuiti tra 0 e 1
- ▶ Otteniamo i corrispettivi $t_n = w_0 + w_1 x_n + \epsilon_n$, con $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ e $\sigma^2 = 0.25$

▶ Generiamo 10000 dataset secondo il modello descritto

- ▶ Generiamo 10000 dataset secondo il modello descritto
- Per ogni dataset facciamo regressione lineare per stimare ŵ

- ▶ Generiamo 10000 dataset secondo il modello descritto
- ightharpoonup Per ogni dataset facciamo regressione lineare per stimare $\hat{m{w}}$

- Generiamo 10000 dataset secondo il modello descritto
- lacktriangle Per ogni dataset facciamo regressione lineare per stimare $\hat{f w}$

- Generiamo 10000 dataset secondo il modello descritto
- Per ogni dataset facciamo regressione lineare per stimare ŵ

► Come è possibile vedere, non siamo troppo lontani dal vero modello. Né troppo in alto, né troppo in basso

- ▶ Generiamo 10000 dataset secondo il modello descritto
- Per ogni dataset facciamo regressione lineare per stimare ŵ

- Come è possibile vedere, non siamo troppo lontani dal vero modello. Né troppo in alto, né troppo in basso
- ▶ ⇒ Si può dimostrare che il nostro regressore lineare è unbiased!

- ► Generiamo 10000 dataset secondo il modello descritto
- Per ogni dataset facciamo regressione lineare per stimare ŵ

- Come è possibile vedere, non siamo troppo lontani dal vero modello. Né troppo in alto, né troppo in basso
- ▶ ⇒ Si può dimostrare che il nostro regressore lineare è unbiased!
- $\mathbb{E}[\hat{\mathbf{w}}] = \mathbf{w}$. Unbiased: ripetendo l'esperimento molte volte, la media dei risultati sarà sempre più vicina al valore vero

Di quanta variabilità soffre il nostro regressore lineare?

- Di quanta variabilità soffre il nostro regressore lineare?
- Queste sono informazioni contenute nella matrice di covarianza:

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1}$$

- Di quanta variabilità soffre il nostro regressore lineare?
- Queste sono informazioni contenute nella matrice di covarianza:

$$\operatorname{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

 La matrice di covarianza è una matrice quadrata con un numero di righe/colonne uguale alla dimensione di w

- Di quanta variabilità soffre il nostro regressore lineare?
- Queste sono informazioni contenute nella matrice di covarianza:

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1}$$

- La matrice di covarianza è una matrice quadrata con un numero di righe/colonne uguale alla dimensione di w
- Gli elementi sulla diagonale indicano di quanta variabilità soffre la rispettiva componente di ŵ

- Di quanta variabilità soffre il nostro regressore lineare?
- Queste sono informazioni contenute nella matrice di covarianza:

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1}$$

- La matrice di covarianza è una matrice quadrata con un numero di righe/colonne uguale alla dimensione di w
- ightharpoonup Gli elementi sulla diagonale indicano di quanta variabilità soffre la rispettiva componente di $\hat{\mathbf{w}}$
- Gli altri elementi della matrice danno informazioni di correlazione tra diverse componenti

- Di quanta variabilità soffre il nostro regressore lineare?
- Queste sono informazioni contenute nella matrice di covarianza:

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^\mathsf{T} \mathbf{X} \right)^{-1}$$

- ► La matrice di covarianza è una matrice quadrata con un numero di righe/colonne uguale alla dimensione di w
- Gli elementi sulla diagonale indicano di quanta variabilità soffre la rispettiva componente di ŵ
- Gli altri elementi della matrice danno informazioni di correlazione tra diverse componenti
 - Un valore vicino a 0 significa che due elementi sono indipendenti
 - Un valore positivo significa che se un valore aumenta, allora anche l'altro deve aumentare per non peggiorare la variabilità del modello
 - Un valore negativo significa che se un valore aumenta, allora l'altro deve diminuire per non peggiorare la variabilità del modello

Curvatura

Curvatura

Bassa variabilità→Forte curvatura

Curvatura

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\operatorname{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\operatorname{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

lacktriangle Abbiamo visto che il parametro $\hat{m{w}}$ ottimo è $\hat{w} = \left(m{X}^Tm{X}
ight)^{-1}m{X}^Tm{t}$

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\operatorname{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X}\right)^{-1}$$

- ightharpoonup Abbiamo visto che il parametro $\hat{\mathbf{w}}$ ottimo è $\hat{w} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{t}$
- Qual è la variabilità σ^2 ottima?

$$f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\operatorname{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X}\right)^{-1}$$

- Abbiamo visto che il parametro $\hat{m{w}}$ ottimo è $\hat{m{w}} = \left({m{\mathsf{X}}}^{\mathsf{T}} {m{\mathsf{X}}} \right)^{-1} {m{\mathsf{X}}}^{\mathsf{T}} {m{\mathsf{t}}}$
- Qual è la variabilità σ^2 ottima?
- ► Massimizzando la likelihood si ottiene $\hat{\sigma} = \frac{1}{N} \left(\mathbf{t}^\mathsf{T} \mathbf{t} \mathbf{t}^\mathsf{T} \mathbf{X} \hat{\mathbf{w}} \right)$

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

Se riprendiamo i dati dal nostro esempio con 10000 dataset e $\sigma^2=0.25$

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

ightharpoonup Se riprendiamo i dati dal nostro esempio con 10000 dataset e $\sigma^2=0.25$

Si ottiene:
$$cov[\hat{\mathbf{w}}] = \begin{bmatrix} 0.0638 & -0.0821 \\ -0.0821 & 0.1317 \end{bmatrix}$$

$$\operatorname{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

- lacktriangle Se riprendiamo i dati dal nostro esempio con 10000 dataset e $\sigma^2=0.25$
- Si ottiene: $cov[\hat{\mathbf{w}}] = \begin{bmatrix} 0.0638 & -0.0821 \\ -0.0821 & 0.1317 \end{bmatrix}$
- Se invece calcoliamo $\hat{\sigma}^2$ a partire dai dataset otteniamo $\hat{\sigma}^2 = 0.2080$ e $\text{cov}[\hat{\mathbf{w}}] = \begin{bmatrix} 0.0530 & -0.0683 \\ -0.0683 & 0.1095 \end{bmatrix} \text{ (valori in generale più bassi)}$

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

- lacktriangle Se riprendiamo i dati dal nostro esempio con 10000 dataset e $\sigma^2=0.25$
- Si ottiene: $cov[\hat{\mathbf{w}}] = \begin{bmatrix} 0.0638 & -0.0821 \\ -0.0821 & 0.1317 \end{bmatrix}$
- Se invece calcoliamo $\hat{\sigma}^2$ a partire dai dataset otteniamo $\hat{\sigma}^2 = 0.2080$ e $\text{cov}[\hat{\mathbf{w}}] = \begin{bmatrix} 0.0530 & -0.0683 \\ -0.0683 & 0.1095 \end{bmatrix} \text{ (valori in generale più bassi)}$
- Quando si ha a disposizione un grande dataset composto da S elementi, si può stimare empiricamente la matrice di covarianza:

$$\widehat{\operatorname{cov}}[\hat{\mathbf{w}}] \triangleq \frac{1}{S} \sum_{s=1}^{S} (\hat{w}_{s} - \hat{\mu}) (\hat{w}_{s} - \hat{\mu})^{T}$$

$$\hat{\mu} \triangleq \frac{1}{S} \sum_{s=1}^{S} \hat{\mathbf{w}}_{s}$$

$$\mathsf{cov}[\hat{\mathbf{w}}] = \sigma^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1}$$

- ightharpoonup Se riprendiamo i dati dal nostro esempio con 10000 dataset e $\sigma^2=0.25$
- Si ottiene: $cov[\hat{\mathbf{w}}] = \begin{bmatrix} 0.0638 & -0.0821 \\ -0.0821 & 0.1317 \end{bmatrix}$
- Se invece calcoliamo $\hat{\sigma}^2$ a partire dai dataset otteniamo $\hat{\sigma}^2 = 0.2080$ e $\text{cov}[\hat{\mathbf{w}}] = \begin{bmatrix} 0.0530 & -0.0683 \\ -0.0683 & 0.1095 \end{bmatrix} \text{ (valori in generale più bassi)}$
- Quando si ha a disposizione un grande dataset composto da S elementi, si può stimare empiricamente la matrice di covarianza:

$$\begin{split} \widehat{\mathsf{cov}}[\hat{\mathbf{w}}] &\triangleq \frac{1}{S} \sum_{s=1}^{S} (\hat{w}_{s} - \hat{\mu}) (\hat{w}_{s} - \hat{\mu})^{\mathsf{T}} \\ \hat{\mu} &\triangleq \frac{1}{S} \sum_{s=1}^{S} \hat{\mathbf{w}}_{s} \end{split}$$

In questo modo otteniamo $\widehat{\text{cov}[\hat{\mathbf{w}}]} = \begin{bmatrix} 0.0627 & -0.0809 \\ -0.0809 & 0.1301 \end{bmatrix}$ (valori più simili al vero, ma serve S elevato)

ightharpoonup $\hat{\sigma}^2$ è unbiased?

- ightharpoonup $\hat{\sigma}^2$ è unbiased?
- ► no!

- ightharpoonup $\hat{\sigma}^2$ è unbiased?
- ▶ no!
- ► Infatti:

$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2 \left(1 - \frac{D}{N} \right) \neq \sigma$$

- $ightharpoonup \hat{\sigma}^2$ è unbiased?
- ▶ no!
- ► Infatti:

$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2 \left(1 - \frac{D}{N} \right) \neq \sigma$$

D è la dimensionalità del vettore di dati x_n e N è il numero di dati che abbiamo nel nostro dataset per fare Machine Learning

- ightharpoonup $\hat{\sigma}^2$ è unbiased?
- ▶ no!
- ► Infatti:

$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2 \left(1 - \frac{D}{N} \right) \neq \sigma$$

- ▶ D è la dimensionalità del vettore di dati \mathbf{x}_n e N è il numero di dati che abbiamo nel nostro dataset per fare Machine Learning
- La formula dimostra che la stima $\hat{\sigma}^2$ è sempre minore del valore vero σ^2

- ightharpoonup $\hat{\sigma}^2$ è unbiased?
- ► no!
- ► Infatti:

$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2 \left(1 - \frac{D}{N} \right) \neq \sigma$$

- D è la dimensionalità del vettore di dati x_n e N è il numero di dati che abbiamo nel nostro dataset per fare Machine Learning
- La formula dimostra che la stima $\hat{\sigma}^2$ è sempre minore del valore vero σ^2
- La formula dimostra anche che più N è grande -più dati abbiamo- più bassa sarà la variabilità nella stima (come è facile pensare anche intuitivamente)

$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2 \left(1 - \frac{D}{N} \right) \neq \sigma$$

 $t_{\mathsf{new}} = \hat{\mathbf{w}}^\mathsf{T} \mathbf{x}_{\mathsf{new}}$

$$t_{\mathsf{new}} = \hat{\mathbf{w}}^\mathsf{T} \mathbf{x}_{\mathsf{new}}$$

Quanto è affidabile questa predizione?

$$t_{\text{new}} = \hat{\mathbf{w}}^T \mathbf{x}_{\text{new}}$$

- Quanto è affidabile questa predizione?
- E'possibile valutarne analiticamente la variabilità:

$$\sigma_{\mathsf{new}}^2 = \sigma^2 \mathbf{x}_{\mathsf{new}}^{\mathsf{T}} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{x}_{\mathsf{new}}$$

(a) $f(x) = 5x^3 - x^2 + x$ (b) lineare (c) cubico (polinomio di grado 3) - vero modello (d) polinomio di grado 6

(a) $f(x) = 5x^3 - x^2 + x$ (b) lineare (c) cubico (polinomio di grado 3) - vero modello (d) polinomio di grado 6

$$f(x) = 5x^3 - x^2 + x$$

- (a) variabilità polinomio di grado 3
- (b) variabilità polinomio di grado 6

