This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

This Page Blank (uspto)

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

02174370 A

(43) Date of publication of application: 05.07.90

(51) Int. CI

H04N 1/417 G06F 15/66

(21) Application number: 63328693 (71) Applicant:

NIPPON TELEGR & TELEPH

CORP <NTT>

(22) Date of filing: 26.12.88

(72) Inventor:

TONO TAKESHI IBARAKI HISASHI

(54) PICTURE CODING PROCESSING SYSTEM

(57) Abstract:

PURPOSE: To attain efficient difference picture coding by coding a difference from a picture predicted from a decoded picture of a component already coded and decoded and selecting the coded component so as to minimize the prediction error of the predicted picture.

CONSTITUTION: A coding component selection section 4 to select the component optimized for the coding at first is provided, a coding section 10 and a decoding section 11 coding and decoding the component are provided. Then a selection section 4 selecting the component estimated to minimize the prediction error of the picture predicted from the picture already decoded as the component coded next, a prediction section 5 predicting the selected component from already decoded picture, a difference device 8 taking the difference with the component coding the predicted picture and the coding section 10 coding the difference picture are provided. Thus, the coding efficiency is improved.

COPYRIGHT: (C)1990,JPO&Japio

This Page Blank (uspto)

⑲ 日本国特許庁(JP)◢

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

平2-174370

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)7月5日

H 04 N 1/417 G 06 F 15/66

330 B

7060-5C 8419-5B

審査請求 未請求 請求項の数 1 (全5頁)

図発明の名称 画像の符号化処理方式

②特 願 昭63-328693

袞

②出 願 昭63(1988)12月26日

⑫発明者東野

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

⑫発明者 茨木 久

東京都千代田区内幸町1丁目1番6号 日本電信電話株式

会社内

勿出 願 人 日本電信電話株式会社

東京都千代田区内幸町1丁目1番6号

⑭代 理 人 弁理士 森 田 寛

明 柳 割

 発明の名称 画像の符号化処理方式

2. 特許請求の顧用

各西素がN個の複数成分で表される西像の符号 化処理方式であって、

1番目(1 ≥ 2)に符号化する成分の決定においては、既に符号化、復号化済みのN-i個の成分の復号画像またはそれらの組み合わせを用い、既に復号化された画像からまだ符号化されていない成分を予測し、該推定予測誤差が吸小となる成分をi番目の符号化成分として選択し、該成分と該予測画像との差分を符号化する手段を有することを特徴とする画像の符号化処理方式。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は、各画素が複数の例えば色成分で扱さ

れる画像を蓄積し伝送するための画像の符号化処理方式に関し、特に、既に復号化された画像から予測される画像と符号化する成分との差分を符号化する際の符号化効率を上げるため、予測摂差が最小になると推定される成分を次に符号化する成分として選択し、既に符号化済みの成分の復号画像より、ある定められた手法に従って符号化される成分の予測値を生成し、該予測画像との差分を符号化する事により、高能率な符号化を可能にする画像の符号化処理方式に関する。

(従来技術)

従来、相関の高い成分からなる画像の符号化処理方式には例えば印刷用画像の符号化として、 * 適応的ベクトル量子化を用いた印刷用画像の圧晦 * (会津、高木、1986年度画像符号化シンポジウム)のようにCMYBkの相関を利用し、4×4のブロックをCMYBkの方向にも拡げ、16次元のブロックとしてベクトル量子化する技術がある。ベクトル量子化とは、複数の画素を一括し、

ベクトルを構成し、そのトルがとり得るパターンを、より少ないパターン数のベクトル匠子化で近により実施される。ベクトル匠子化では、より少ないパターンを示すインデックスを示すインデックスを近似では、近傍で似た画素が発生しやすい特徴をでは、パターン数を送少させている。当該従びては、ベクトルをCMYBkにまたがって放けては、ベクトルをCMYBkにまたがって放ける事で、1つの色成分内だけでなく、色成分間の相関も利用している。

また、 の副製版データの圧縮符号化に関する 検討。 (中國、安居院、他、1987年度画像符号化 シンポジウム) のように、CMYBkの内、CM YからYiQに変換してから、各成分独立に、G BTC、PCS、DCT-VQ等の従来の符号化 法を用いる技術がある。

(発明が解決しようとする課題)

しかしながら、前記前者の方法では、ベクトル 量子化という技術のためコードブックを作成する

(課題を解決するための手段)

前記目的を達成するために、本発明では、例えば、1番目に符号化するのに最も適した成分を選択する符号化成分選択部を確えると共に、該成分を符号化、復号化する符号化部、復号化部を確え、既に復号化されている画像から予測される成分をして選択する選択部と、ここで選択された成分を既に復号化されている画像から予測する予測部と、該予測画像と符号化すべき成分との差分をとる差分器と、該差分画像を符号化する符号化部とを確えている事を特徴とする。

(作用)

本発明の画像の符号化処理方式によれば、複数成分からなる画像の成分を直接符号化するのではなく、既に符号化、復号化されている成分の復号画像から予測される画像との差分を符号化するので、符号化効率が向上し、次に符号化すべき成分は核予測画像の予測誤差が最小となるような成分

のに非常に時間が さいった問題がある。この問題点に対して 要求される画像品質によってコードブックの量を減少させるといったような 解決手段があるが、印刷画像のような特に高品質 を要求されるような画像については通さない。

また、後者の方法では、Bk成分との間の相関 が利用されずに各成分を独立に符号化しているの で、符号化効率の面で問題があった。

を選択するので、効率の良い差分画像の符号化が 可能となる。

(発明の実施例)

以下、本発明の一実施例を図面を用いて具体的に説明する。

図は、本発明をC. M. Y. B k の 4 色成分からなる印刷用画像に応用した一実施例の符号化システム概略構成を示すプロック図である。

図において、1 はカラースキャナ、2 はフレームメモリ、3 は相関演算部、4 は符号化成分選択部、5 は予測画像生成部、6、7 は遅延器、8 は差分器、9 はスイッチ、10 は符号化部、11 は彼号化部、12 は加算器、13 は記録部である。

本実施例では、1番目に符号化する成分を選択する手法として、各成分間の相関の最も大きい成分を選択する手法をとり、2番目以降に符号化する成分を選択する手法として、復号化された成分やその組み合わせ間の相関が最も高い成分を予測画像の予測與差が最小になる成分と判断して、選

択する手法をとっている。

図に示すようは ラースキャナ 1 から入力された C. M. Y. B k の 4 成分はフレームメモリ 2 に 番えられる。相関演算部 3 では成分間の相関 が求められ、この相関をもとに符号化成分選択部 4 で符号化される成分が選択される。

及初に符号化される核成分はフレームメモリ2から符号化部 10 に送られ、符号化される。この時スイッチ9は開けられており、予測画像生成部5は働かない。

该符号化データは記録部 13 で記録される。更に、符号化データは復号化部 11 で復号化され、復号画像は再びフレームメモリ 2 に送られる。一復号画像とまだ符号化されていない 3 成分間の相関が相関演算部 3 で求められ、この相関が最も高い成分が 2 番目に符号化する成分として、符号化成分選択部 4 で選択される。

スイッチ 9 が閉じられ、該成分と既に復号化された成分とが予測画像生成部 5 に入力され、予測 画像生成パラメータが求められ、予測画像が生成

該差分画像が符号化部 10 で符号化され、記録部 13 で記録される。

該符号化データは復号化部 11 で復号化され、 該復号化データと、遅延器 7 で同期された予測画 像との和が加算器 12 で求められ、復号画像となってフレームメモリ 2 に送られる。

最後に符号化される成分と、3枚の復号画像が 予測画像生成部5に送られ、予測画像生成パラメ ータが求められ、予測画像が生成される。

核予測画像と、遅延器 6 で同期された最後に符 号化される成分との差分が差分器 8 で求められ、 該差分画像が符号化部 10 で符号化され、符号化 データが記録部 13 で記録される。

予測画像生成パラメータとは、予測画像と、符号化する画像との平均2乗誤差、すなわち差分画像の分散が最小になるように設定するもので、例えば2枚の復号画像(1、「2から符号化する画像(0の予測画像(0を生成する場合、パラメータをa、bとして、

 \hat{f} 0 (i, j) = a f1 (i, j) + b f2 (i, j)

される。この15. 予測面像生成パラメータは記録 部 13 で記しれる。

接予測画像と、遅延器 6 で同期した符号化される成分との差分が差分器 8 で求められ、接差分画像が符号化部 10 で符号化され、記録部 13 で記録される。

抜符号化データは復号化部 11 で復号化され、 遅延器 7 で同期された予測面像と加算器 12 で加算され、復号画像となってフレームメモリ 2 に転送される。

2 枚の復号画像と、その組み合わせから予測される画像との相関が相関演算部3で求められ、最も相関の高い成分が3番目に符号化される成分として符号化成分選択部4で選択される。

2 枚の復号画像と 3 番目に符号化される成分と が予測画像生成部 5 に送られ、予測画像生成パラ メータが求められ、予測画像が生成される。予測 画像生成パラメータは、記録部 13 で記録される。

該予測画像と、遅延器 6 で同期された 3 番目に 符号化される成分との差分が差分器 8 で求められ、

とする。以後、簡単のため (i, j) は省く。この 時、 [0 との平均 2 乗誤差 e は、

$$-2 b (0(2+2 a b (1(2+(0*)$$

ここで、 E (·) は期待値を表す。すなわち、

$$E (f1) = \frac{1}{N \cdot M} \sum_{i=1}^{N} \sum_{j=1}^{N} f1(i, j)$$

(N. Mはそれぞれ pixel, line数) となる。従って、E (f0*)、 B (f1*)、 E (f2*) は、各々の画像の2乗平均μ0*、μ1*、 μ2*となり、E (f0f1)、E (f0f2)、E (f1f2) は各々積和平均μ01、μ02、μ12となる。よって 上式は、

$$e = \mu 1^2 a^2 + \mu 2^2 b^2 - 2 \mu 01 a - 2 \mu 02 b$$

+ 2 \mu 12 a b + \mu 0^2

$$\frac{3 \text{ e}}{3 \text{ a}} = 2 \mu 1^2 \text{ a} + 2 \mu 12 \text{ b} - 2 \mu 01 = 0$$

$$\therefore \left[\begin{array}{ccc} \mu & 1^{2} & \mu & 12 \\ \mu & 1^{2} & \mu & 2^{2} \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] - \left[\begin{array}{c} \mu & 01 \\ \mu & 02 \end{array}\right]$$

従って.

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \mu 1^2 & \mu 12 \\ \mu 12 & \mu 2^2 \end{bmatrix} - \begin{bmatrix} \mu 01 \\ \mu 02 \end{bmatrix}$$

間の相関が小さいので独立に符号化し、他の成分の相関の高いBk成分のみ本発明による手法を用いてもよい。

符号化法には、ディスクリート・コサイン変換 (DCT) や、プロック・トランケーション・コーディング (BTC) や、ベクトル量子化法 (VQ)、或いは、カルーネン・レーベ (KL) 変換等が考えられる。

また実施例では、色成分について説明したが、 ランドサット画像データのように波長城で分割された多成分画像などにも適用できることはいうま でもない。

(発明の効果)

以上説明したように、本発明によれば、相関の 高いN個の色成分からなる画像の各成分間の差分 をとる事で、分散の小さい画像が得られ、接差分 画像を符号化する事で、効率の良い符号化ができ る。

また、符号化する成分を選択する際に、抜成分

実施例において、CMYBkの4色成分からなる印刷用画像の符号化処理方式について示したが、本発明は、2色成分からなる画像やRCB等の3色成分からなる画像、更に、C、M、Y、Bkの混色では影度が低下するため新たに特色を加えて5色以上にするといったような場合にも適用可能である。

さらに、実施例において、 1 番目に符号化する 成分の選択法として、各成分間の相関の認和を用 いたが、これ以外にも、各成分間の絶対値差分の 認和を用いる手法が考えられ、 2 番目以降の符号 化成分選択法には、各成分間の相関の高いものを 選択する手法をとったが、これ以外にも、実際に 予測画像を生成して、その予測誤差を求め、該予 測異差が最小になる成分を選択する手法等がある。

1 :

1:

また. C. M. YをY. I. Q変換して. Y. I. Q. B k とし. Y. I. Qについては各成分

と既に符号化、復号化された成分から予測される 予測画像との差分画像の分散の総和が最小になる よう選択する事で、全体として、符号化効率を上 げる事が可能となる。

4. 図面の簡単な説明

図は本発明の一実施例の画像の符号化処理方式のシステム構成を示すプロック図である。

1…カラースキャナ。

2…フレームメモリ.

3 …相関演算部,

4 …符号化成分選択部.

5 ... 予测画像生成部,

6. 7…遅延器.

8 … 差分器.

9.…スイッチ

10…符号化部.

11…復号化部.

12…加算器.

13…記錄部。

This Page Blank (uspto)