UNIT 5: REGRESSION

Regression Line Analysis:

Regression Analysis is the process of constructing a mathematical model or function that can be used to predict or determine one variable by another variable or other variables. The most elementary regression model is called **simple regression** or **bivariate regression** involving two variables in which one variable is predicted by another variable. In simple regression, the variable to be predicted is called the **dependent variable** and is designated as y. The predictor is called the **independent variable**, or explanatory variable, and is designated as x.

In simple regression analysis, only a straight-line relationship between two variables is examined.

Equation of Regression Line:

$$\hat{y} = b_0 + b_1 x$$

(note: Slope intercept equation of line is given by y = mx + c)

Where Slope (b₁) =
$$\frac{\sum [(x-\hat{y})\cdot(y-\hat{y})]}{\sum (x-\hat{y})^2}$$

And Intercept $(b_0) = \overline{y} - (b_1 \cdot \overline{x})$

Example 1: Find Least Square Regression Line for the following data:

х	5	12	9	15	7
у	16	6	8	4	7

Solution:

Here n = 5

$$-x = \frac{\sum x}{n} = \frac{5 + 12 + 9 + 15 + 7}{5} = \frac{48}{5} = 9.6$$

And
$$\bar{y} = \frac{\sum y}{n} = \frac{16+6+8+4+7}{5} = \frac{41}{5} = 8.2$$

Х	у	(x - x)	$(x - \bar{y}^2)$	уу	$(x-\bar{y}\cdot(y-\bar{y})$
5	16	5-9.6 =	21.16	16-8.2 = 7.8	-35.88
		-4.6			
12	6	2.4	5.76	-2.2	-5.28
9	8	-0.6	0.36	-0.2	0.12
15	4	5.4	29.16	-4.2	-22.68
7	7	-2.6	6.76	-1.2	3.12
$\sum x$	$\sum y$		$\sum (x - \bar{y})^2$		$\sum [(x - \bar{y} \cdot (y - \bar{y})]$
= 48	= 41		= 63.200		=-60.60

Now,

Slope (b₁) =
$$\frac{\sum[(x-\bar{y}\cdot(y-\bar{y})]}{\sum(x-\bar{y})^2} = \frac{-60.60}{63.200} = -0.959$$

And Intercept $(b_0) = \bar{y} - (b_1 \cdot \bar{x}) = 8.200 - ((-0.959) \cdot 9.60) = 8.2 - (-9.206)$

Therefore $b_0 = 17.406$

Therefore equation of regression line can be given by,

$$\hat{y} = b_0 + b_1 x$$

 \hat{y} = 17.406 – 0.959x

Example 2: Find Least Square Regression Line for the following data:

Х	140	119	103	91	65	29	24
у	25	29	46	70	88	112	128

RESIDUAL ANALYSIS:

- 1) Residual = $y \hat{y}$
- 2) Sum of Square Due to Error (SSE) = $\sum (y \hat{y}^2)$
- 3) Standard Error of Estimation (Se) = $\sqrt{\frac{SSE}{n-2}}$
- 4) Total Sum of Square (SST) = $\sum (y \bar{y}^2)$

Also, SST = SSE + SSR

- 5) Sum of Square of Regression (SSR) = $\sum (y-y^2)^2$
- 6) Coefficient of Determination (r^2) = $\frac{SSR}{SST}$

Here \(\mathbb{F} \) Mean of y and \(\mathbb{F} \) Predicated value of y from regression line

Example: Consider the following data:

х	5	12	9	15	7
у	16	6	8	4	7

Regression Line of this equation is y= 17.406 – 0.959x. Then find the following parameters

UNIT 5: REGRESSION

(i) Residual of each observation (ii) Standard Error of Estimation(Se) (iii) Sum of Square due to Error (SSE) (iv) Coefficient of Determination (v) Total Sum of Squares (vi) Sum of Square of Regression

Solution:

Х	У	^y= 17.406 − 0.959x	Residual	SSE	уу	SST
			<i>y</i> – <i>^y</i>	$(y - \hat{y}^2)$		$(y-\bar{y}^2)$
5	16	17.406 - ((0.959)(5))	16 –	11.492	16-8.2 = 7.8	60.840
		=12.610	12.610			
			=3.390			
12	6	5.898	0.102	0.010	-2.2	4.840
9	8	8.775	-0.775	0.601	-0.2	0.040
15	4	3.021	0.979	0.958	-4.2	17.640
7	7	10.693	-3.693	13.638	-1.2	1.440
$\sum x$	$\sum y$			$\sum (y - \hat{y}^2)$		$\sum (y - \bar{y}^2)$
= 48	= 41			= 26.699		= 84.800

х	у	^y= 17.406 – 0.959x	<i>y</i> - <i>y</i>	SSR
				(y) ²
5	16	17.406 - ((0.959)(5))	12.610 - 8.2 = 4.410	19.448
		=12.610		
12	6	5.898	-2.302	5.299
9	8	8.775	0.575	0.331
15	4	3.021	-5.179	26.822
7	7	10.693	2.493	6.215
$\sum x$	$\sum y$			∑(yy²
= 48	= 41			= 58.116

From the table:

1) Standard Error of Estimation(Se) =
$$\sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{26.699}{5-2}} = \sqrt{\frac{26.699}{3}} = 2.983$$

2) SSE =
$$\sum (y - \hat{y}^2 = 26.699)$$

3) SST =
$$\sum (y - \bar{y}^2 = 84.800)$$

4) SSR =
$$\sum (y-\bar{y}^2 = 58.116)$$

5) Coefficient of Determination (
$$r^2$$
) = $\frac{SSR}{SST}$ = $\frac{58.116}{84.800}$ = 0.685

Example 2: Consider the following data:

х	12	21	28	8	20
у	17	15	22	19	24

Regression line of this data is given by \hat{y} = 16.516 + 0.162x. Then determine the following parameters:

(1) y (18) (2) Residual of each observation (3) Standard Error of Estimation(Se) (4) Sum of Square due to Error (SSE) (5) Coefficient of Determination (6) Total Sum of Squares (7) Sum of Square of Regression

Solution:

$$(1)$$
 y (18) = $16.516 + 0.162(18) = $16.516 + 2.916 = 19.432$$

UNIT 5: REGRESSION

Example 3: Consider the following data:

х	61	63	67	69	70	74	76	81	86	91	95	97
У	4.28	4.08	4.42	4.17	4.48	4.30	4.82	4.70	5.11	5.13	5.64	5.56

Regression Line of this data is given by $\hat{y}= 1.57 + 0.0407x$. Evaluate Standard Error of estimation of this data:

Solution:

Here n = 12

х	У	ŷ= 1.57 + 0.0407x	Residual	SSE
			y -^y	$(y - \hat{y}^2)$
61	4.28	1.57 + 0.0407(61) = 4.053	4.28 - 4.053 = 0.227	0.052
63	4.08	4.134	-0.054	0.003
67	4.42	4.297	0.131	0.017
69	4.17	4.378	-0.208	0.043
70	4.48	4.419	0.061	0.004
74	4.30	4.582	-0.282	0.080
76	4.82	4.663	0.157	0.025
81	4.70	4.867	-0.167	0.028
86	5.11	5.070	0.040	0.002
91	5.13	5.274	-0.144	0.021
95	5.64	5.437	0.203	0.041
97	5.56	5.518	0.042	0.002
				$\sum (y - \hat{y}^2)$
				= 0.318

SSE =
$$\sum (y - \hat{y}^2 = 0.318)$$

Standard Error of Estimation(Se) =
$$\sqrt{\frac{\overline{SSE}}{n-2}} = \sqrt{\frac{0.318}{12-2}} = \sqrt{\frac{0.318}{10}} = 0.178$$

Example: Find equation of Regression Line and Coefficient of determination of the data:

х	10	14	28	18	22
у	17	19	20	23	27