Instituto Tecnológico y de Estudios Superiores de Monterrey

Procesamiento de imágenes médicas para el diagnóstico (Gpo 300)

MRI Activity

Carlos Enrique López Jiménez A01283855 Genaro Gallardo Bórquez A01382459 Claudia Esmeralda González Castillo A01411506 Jesus Eduardo Martinez Herrera A01283785 Mario Veccio Castro Berrones A00826824

MRI activity.

Open the simulator in https://phet.colorado.edu/en/simulations/mri

1. NMR

Place yourself in the tab *Simplified NMR*. Remember that the Larmour relationship relates the magnetic field to the resonant frequency:

$$v_L = \frac{\gamma}{2\pi} B_0$$

where v_L is the resonant frequency, $\frac{\gamma}{2\pi}$ is the gyromagnetic ratio and B_0 is the magnetic field.

Table1. Gyromagnetic ratios for different nuclei.

Nuclei	Gyromagnetic ratio	Nuclei	Gyromagnetic ratio
1H	42,58	65Cu	12,09
7Li	16,55	75As	7,291
9Be	5,984	77Se	8,118
11B	13,66	81Br	11,50
13C	10,71	87Rb	13,93
15N	4,314	93Nb	10,41
170	5,772	117Sn	15,17
19F	40.05	121Sb	10,19
23Na	11,42	1271	8,518
27AI	11,09	133Cs	5,584
29Si	8,458	195Pt	9,153
31P	17,24	199Hg	7,590
35CI	4,172	203TI	24,33
51V	11,19	207Pb	8,907
55Mn	10,50	209Bi	6,841
59Co	10,05		

Use the Larmour relationship and the gyromagnetic ratios of various nuclei shown in table 1 to complete table 2. Check your results in the simulation by setting the appropriate frequencies and main magnet field, take a screenshot of the nuclei emitting energy to include in the report. Try to find the last nuclei (????) by playing with the simulation and register the frequency at two different magnetic fields.

Table 2. Different settings to achieve energy emission.

Nuclei	Magnetic Field	Resonant Frequency	Magnetic Field	Resonant Frequency
Hydrogen	0.75	31.935	2.5	106.45
Nitrogen	2.5	10.785	0.75	3.2355
Sodium	1.5148	17.3	2.75	31.405
Carbon-13	1.75	18.7425	2.5	26.775
Oxygen	1.99	11.54	3.0	17.316
Sulfur	3.0	60	-	-
????	2.5		0.75	

Hydrogen

Nitrogen

Sodium

Carbon-13

Oxygen

Sulfur

???

2. MRI

Move to the Simplified MRI tab

a. Set the main magnet field to 1.0 Tesla, leave the gradient magnets in zeros, activate only show head, and show magnetic field (be sure that show atomic nuclei is deactivated), set the frequency in 43 MHz. Finally set the power to 50% and observe the flow and distribution of the emissions. After a while observing the emissions, click on add tumor, wait for around 7 seconds so the flow distribution stabilizes, look at how the emission changed and try to guess where the tumor is located.

Explain how the emission allowed you to find the correct location:

Después de desactivar la función de 'show atomic nuclei', pensábamos que se localiza el tumor en una sección inferior derecha sin embargo no es ahí. Se pensaba que estaba ahí ya que muestra cómo se oscurecen las ondas al pasar sobre ese punto. Como no teníamos seguridad de la respuesta usamos la función 'Show atomic nuclei' y vimos con mucha facilidad el punto en donde se encontraba el tumor en la esquina superior derecha de la cara.

b. Play with the main magnet field, frequency, and gradient magnets (both, horizontal and vertical) to try to obtain an emission focused mainly in the zone of the tumor (register your best guess, it doesn't need to be perfect). Answer the following questions.

Best guess: main magnet: __ horizontal gradient: __ vertical gradient: __ frequency: __ What happens when the horizontal gradient increases its magnitude? How does it affect the emissions?

El campo magnético se altera de manera que el campo disminuye en magnitud cerca del emisor horizontal y va aumentando conforme se va alejando del emisor.

What about vertical gradient?

El campo magnético también cambia sin embargo este cambia cerca de la parte superior y en la parte inferior es mayor. Es un poco más grande en magnitud en la parte superior derecha a comparación de la superior izquierda. Esto es sumamente relevante para cuando se quiere localizar un tumor.