BY JUSTIN WONG

# DO KNICK GAMES IMPACT CRIME RATES IN SURROUNDING AREAS2



## AGENDA

INTRODUCTION

**EXPLORATORY DATA ANALYSIS** 

IMPLICATIONS FOR STAKEHOLDERS

ETHICAL, LEGAL, SOCIETAL IMPLICATIONS

**CONCLUSION** 

# INTRO



As a sports fan, I'm really intrigued by what happens after sporting events. After seeing the chaos unfold on social media following games, I wanted to investigate this phenomenon further.

## HOW WE GET THERE



# TRACTABLE DATA

- The crime data from NYPD CompStat and game data from sources like ESPN are publicly available
- The dataset includes comprehensive crime statistics and detailed game information



#### **DATA RETRIVEL**

- In order to get GameDay data I utilized Selenium to web scrape ESPN for the 2023-2024 season
- In order to access crime data I
  was able to find an API posted
  by the NYPD filing crime data in
  2024



#### MERGING DATASETS

- To Merge the two different datasets, I performed an inner merge
- Any game day without an arrest will be dropped from the final dataset.





| 2025 Attendance |           | Home |         |        |            | Road |        |            | Overall |        |        |
|-----------------|-----------|------|---------|--------|------------|------|--------|------------|---------|--------|--------|
| RK              | TEAM      | GMS  | TOTAL   | AVG    | <u>PCT</u> | GMS  | AVG    | <u>PCT</u> | GMS     | AVG    | PCT    |
| 1               | Mavericks | 28   | 562,353 | 20,084 |            | 28   | 18,217 |            | 56      | 19,167 |        |
| 2               | 76ers     | 27   | 535,260 | 19,824 |            | 27   | 17,798 | 2669.7     | 54      | 18,811 | 5643.4 |
| 3               | NY Knicks | 29   | 574,548 | 19,812 |            | 25   | 18,545 |            | 54      | 19,225 |        |
| 4               | Bulls     | 29   | 573,474 | 19,774 |            | 26   | 18,001 | 2600.2     | 55      | 18,936 | 5786.2 |
| 5               | Nuggets   | 27   | 533,546 | 19,760 |            | 28   | 18,117 | 2818.3     | 55      | 18,924 | 5782.5 |
| 6               | Heat      | 23   | 453,444 | 19,714 |            | 30   | 18,074 | 3012.5     | 53      | 18,786 | 5531.6 |
| 7               | Cavaliers | 29   | 563,528 | 19,432 |            | 25   | 18,496 |            | 54      | 18,998 |        |





#### OLS Regression Results

| <u></u>           |          |             |                |           |                   |          |  |  |  |  |
|-------------------|----------|-------------|----------------|-----------|-------------------|----------|--|--|--|--|
| Dep. Variable:    | (        | Crime_Count | R-squared:     |           |                   | 0.035    |  |  |  |  |
| Model:            |          | OLS         | Adj. R-squ     | ared:     | 0.028             |          |  |  |  |  |
| Method:           | Lea      | ast Squares | F-statisti     | c:        | 5.285             |          |  |  |  |  |
| Date:             | Mon, 1   | L7 Feb 2025 | Prob (F-st     | atistic): | 0.00137           |          |  |  |  |  |
| Time:             |          | 20:52:08    | Log-Likeli     | hood:     | -1227.5           |          |  |  |  |  |
| No. Observations: |          | 440         | AIC:           |           | 2463.             |          |  |  |  |  |
| Df Residuals:     |          | 436         | BIC:           |           | 2479.             |          |  |  |  |  |
| Df Model:         |          | 3           |                |           |                   |          |  |  |  |  |
| Covariance Type:  |          | nonrobust   |                |           |                   |          |  |  |  |  |
|                   |          |             |                |           |                   |          |  |  |  |  |
|                   | coef     | std err     | t              |           | [0.025            | -        |  |  |  |  |
| const             | 9.3836   | 0.406       |                |           |                   |          |  |  |  |  |
| Attendance -3     | .803e-15 | 2.76e-15    | -1.378         | 0.169     | -9. <u>23e-15</u> | 1.62e-15 |  |  |  |  |
| Home/Away_Home    | 0.8507   | 0.390       | 2.180          | 0.030     | 0.084             | 1.618    |  |  |  |  |
| Win/Loss_Win      | 1.0926   | 0.402       | 2.715          | 0.007     | 0.302             | 1.883    |  |  |  |  |
| OT_Yes            | -1.3779  | 1.301       | -1.059         | 0.290     | -3.936            | 1.180    |  |  |  |  |
| Omnibus:          |          |             | <br>Durbin-Wat | son:      | =========         | 0.192    |  |  |  |  |
| Prob(Omnibus):    |          |             | Jarque-Ber     |           | 50.399            |          |  |  |  |  |
| Skew:             |          |             | Prob(JB):      | _ (/-     | 1.14e-11          |          |  |  |  |  |
| Kurtosis:         |          | 3.829       | Cond. No.      |           | 9.47e+17          |          |  |  |  |  |
|                   |          |             |                |           |                   |          |  |  |  |  |

## AREAS OF FOCUS

# IMPLICATIONS FOR STAKEHOLDERS

•Increased crime following major events may require law enforcement to allocate more resources to manage post-game situations, affecting staffing and budgeting priorities.

# ETHICAL, LEGAL, SOCIETAL IMPLICATIONS

•Analyzing crime data could raise concerns about profiling, biases in data collection, and how it might influence policy decisions or public perceptions of specific communities.



## CONCLUSION

- The results of the analysis are inconclusive at this stage, indicating the need for further data retrieval
- This analysis serves as a good start for recommendations on policy updates aimed at mitigating the potential impact of sporting events on crime rates



