

Aplicação de técnicas de aprendizagem profunda estruturada para diagnóstico de funcionamento de centrais fotovoltaicas.

David da Silva Moreira Freire

INICIAÇÃO À INVESTIGAÇÃO

MESTRADO EM ENGENHARIA ELETROTÉCNICA E COMPUTADORES

Orientador: Cláudio Domingos Martins Monteiro

December 31, 2022

Aplicação de técnicas de aprendizagem profunda estruturada para diagnóstico de funcionamento de centrais fotovoltaicas.

David da Silva Moreira Freire

MESTRADO EM ENGENHARIA ELETROTÉCNICA E COMPUTADORES

Resumo

Este documento ilustra o formato a usar em dissertações na Faculdade de Engenharia da Universidade do Porto. São dados exemplos de margens, cabeçalhos, títulos, paginação, estilos de índices, etc. São ainda dados exemplos de formatação de citações, figuras e tabelas, equações, referências cruzadas, lista de referências e índices. Este documento não pretende exemplificar conteúdos a usar. É usado o *Loren Ipsum* para preencher a dissertação.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam vitae quam sed mauris auctor porttitor. Mauris porta sem vitae arcu sagittis facilisis. Proin sodales risus sit amet arcu. Quisque eu pede eu elit pulvinar porttitor. Maecenas dignissim tincidunt dui. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec non augue sit amet nulla gravida rutrum. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nunc at nunc. Etiam egestas.

Donec malesuada pede eget nunc. Fusce portitior felis eget mi mattis vestibulum. Pellentesque faucibus. Cras adipiscing dolor quis mi. Quisque sagittis, justo sed dapibus pharetra, lectus velit tincidunt eros, ac fermentum nulla velit vel sapien. Vestibulum sem mauris, hendrerit non, feugiat ac, varius ornare, lectus. Praesent urna tellus, euismod in, hendrerit sit amet, pretium vitae, nisi. Proin nisl sem, ultrices eget, faucibus a, feugiat non, purus. Etiam mi tortor, convallis quis, pharetra ut, consectetuer eu, orci. Vivamus aliquet. Aenean mollis fringilla erat. Vivamus mollis, purus at pellentesque faucibus, sapien lorem eleifend quam, mollis luctus mi purus in dui. Maecenas volutpat mauris eu lectus. Morbi vel risus et dolor bibendum malesuada. Donec feugiat tristique erat. Nam porta auctor mi. Nulla purus. Nam aliquam.

Abstract

The increase in photovoltaic power plants has led to the need for effective methods for detecting and addressing component faults, which can have significant economic impacts. In this work, we will explore the current state of fault detection and state estimation tools in the field of PV systems, with a focus on understanding how these tools work and identifying their strengths and limitations. We will also propose improvements to existing approaches or develop a novel approach to address this issue. By examining the most successful tools to date and offering new solutions, we aim to help PV plant operators improve the reliability and efficiency of their systems.

Agradecimentos

Aliquam id dui. Nulla facilisi. Nullam ligula nunc, viverra a, iaculis at, faucibus quis, sapien. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Curabitur magna ligula, ornare luctus, aliquam non, aliquet at, tortor. Donec iaculis nulla sed eros. Sed felis. Nam lobortis libero. Pellentesque odio. Suspendisse potenti. Morbi imperdiet rhoncus magna. Morbi vestibulum interdum turpis. Pellentesque varius. Morbi nulla urna, euismod in, molestie ac, placerat in, orci.

Ut convallis. Suspendisse luctus pharetra sem. Sed sit amet mi in diam luctus suscipit. Nulla facilisi. Integer commodo, turpis et semper auctor, nisl ligula vestibulum erat, sed tempor lacus nibh at turpis. Quisque vestibulum pulvinar justo. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam sed tellus vel tortor hendrerit pulvinar. Phasellus eleifend, augue at mattis tincidunt, lorem lorem sodales arcu, id volutpat risus est id neque. Phasellus egestas ante. Nam porttitor justo sit amet urna. Suspendisse ligula nunc, mollis ac, elementum non, venenatis ut, mauris. Mauris augue risus, tempus scelerisque, rutrum quis, hendrerit at, nunc. Nulla posuere porta orci. Nulla dui.

Fusce gravida placerat sem. Aenean ipsum diam, pharetra vitae, ornare et, semper sit amet, nibh. Nam id tellus. Etiam ultrices. Praesent gravida. Aliquam nec sapien. Morbi sagittis vulputate dolor. Donec sapien lorem, laoreet egestas, pellentesque euismod, porta at, sapien. Integer vitae lacus id dui convallis blandit. Mauris non sem. Integer in velit eget lorem scelerisque vehicula. Etiam tincidunt turpis ac nunc. Pellentesque a justo. Mauris faucibus quam id eros. Cras pharetra. Fusce rutrum vulputate lorem. Cras pretium magna in nisl. Integer ornare dui non pede.

O Nome do Autor

"You should be glad that bridge fell down. I was planning to build thirteen more to that same design" Isambard Kingdom Brunel

Contents

1	Intro	oduction	1
2	Faul 2.1	It detection in Utility Scale PV Plants PV Plant's architecture and components	5 5
	2.2	Types of faults	6
	2.3	Modeling photovoltaic's physical behavior	7
		2.3.1 Five parameter model	8
	2.4	Anomaly detection algorithms	8
		2.4.1 Statistical Methodologies	8
		2.4.2 Machine Learning Methodologies	9
		2.4.3 Deep Learning Methodologies	9
3	Cap	ítulo Exemplo	11
	3.1	Introdução	11
	3.2	Secção Exemplo	11
		3.2.1 Exemplo de Figura	12
		3.2.2 Exemplo de Tabela	12
	3.3	Secção Exemplo	13
	3.4		13
4	Mais	s um Capítulo	15
	4.1	•	15
	4.2	Mais uma Secção	16
	4.3	Resumo ou Conclusões	17
5	Con	clusões e Trabalho Futuro	19
	5.1	Satisfação dos Objectivos	19
	5.2	Trabalho Futuro	20
A	Lore	en Ipsum	21
	A.1	•	21
	A.2		21
	A.3		22
	A.4	1	22

X CONTENTS

List of Figures

2.1	PV inverter topologies: (a) Central, (b) String, (c) Multi-string, (d) Module inte-	
	grated ?	6
2.2	Classification of faults in PV Systems, from ??	7
3.1	Arquitectura da Solução Proposta	12

xii LIST OF FIGURES

List of Tables

3.1	Tabela Exemp	lo.																																	13
J. I	rabeta Lacinp	10	 	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.

xiv LIST OF TABLES

Abreviaturas e Símbolos

ADT Abstract Data Type

ANDF Architecture-Neutral Distribution Format API Application Programming Interface

CAD Computer-Aided Design

CASE Computer-Aided Software Engineering
CORBA Common Object Request Broker Architecture
UNCOL UNiversal COmpiler-oriented Language

Loren Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed vehicula lorem

commodo dui

WWW World Wide Web

Chapter 1

Introduction

The XIX century marked a significant shift in the world's perception of energy resources as the desire to invest in renewable energy sources to power modern societies grew. This transition was driven by the need to reduce dependency on fossil fuels, mitigate the effects of global warming, and slow climate change. Solar photovoltaic energy is a desirable renewable energy source due to its abundance, accessibility, and environmental benefits. Renewable energy sources offer a range of benefits, including reduced greenhouse gas emissions, improved air quality, and increased energy security. While solar photovoltaic energy has proven to be both cost-efficient and environmentally friendly, it also comes with unprecedented challenges, such as its intermittent nature, low electrical inertia, complex forecasting, and geographic-dependent operating conditions. Despite these challenges, recent reports? show that the economic benefits of investing in renewable energy outweigh the complications, as there is an increasing global investment trend in these sources.

The general construction of PV farms, particularly on the utility-scale, has led to a need for effective maintenance and monitoring to ensure maximum efficiency and operational reliability. To achieve this, various algorithms and routines are used to monitor the state of PV farms and identify any potential issues that may arise. Fault detection is a crucial aspect of this process, as it allows PV farm operators to identify and address any problems that may occur quickly. Given the importance of maintaining high levels of operation, knowing if action is needed to restore or fix components from an anomalous scenario is desirable. By detecting faults and identifying the necessary steps, PV farm operators can prevent or minimize downtime and ensure optimal performance.

Integrating intermittent energy resources into modern electric grids has led to stricter requirements for connecting such power systems to ensure safe grid operating conditions. As a result, companies that own or plan to build photovoltaic farms must comply with these requirements and have adequate power electronics and monitoring/control capabilities. Failure to meet these requirements can result in sanctions or fines for the responsible party, as well as potential impacts on system availability, asset value, and disturbance propagation to the grid. To minimize these risks and maximize the value of their assets, companies may opt to implement fault detection and state estimation tools. These tools allow for the early detection and resolution of potential issues

2 Introduction

and can prevent or minimize downtime. The need to create or improve existing fault detection and state estimation tools, and the search for the most effective methodologies for addressing these issues, drive research in this field.

Having laid the basis for why there must be system behavior assessment in utility-scale PV plants, it is necessary to understand what business concepts are crucial to this field. In the course of this work, the presented topics will go over the following questions:

- What components mostly fail in photovoltaic power systems?
- What is the average frequency of faults?
- What fault detection/state estimation tools exist for photovoltaic power systems?
- What are the most successful ones?
- What's their structure? Are they mostly centralized or decentralized?
- What are their computational costs/efficiency?
- What is the expected magnitude of precision and confidence?
- Which key performance indicators can evaluate the success of these tools?
- What are their implementation difficulties?

With these questions uncovered, the main objective is to adapt or design a novel algorithm/approach to fault detection based on modern artificial intelligence solutions. However, this can be split up into finer goals:

- Identify and study existing fault detection tools for photovoltaic power systems.
- Adapt or develop a new tool.
- Apply and test the new tool in real case study PV assets.
- Validate the developed methodologies by comparison to reference tools.

Before reviewing state-of-the-art fault detection tools, types of failures in photovoltaic systems need to be understood: find which components usually fail, which ones fail more often, and how often. For this, it is necessary to understand such components' physical and electrical properties and the modeling techniques used to characterize them. There will be an assessment of utility-scale power plants architecture through literature, alongside the detection objective of state-of-the-art fault detection tools applied in this field. Then, there shall be an extensive analysis and review of what tools have been designed and used in this field. In this step, critical evaluation of the literature is a must for understanding the tool's scope, ease of implementation, and understanding that the data sets available for this work are compatible. Having selected the most prominent ones, they're

Introduction 3

to be qualitatively and quantitatively compared to each other in their application context so that the results allow objective evaluations. This process requires implementing these tools, following the guidelines in the respective article/book/report, verifying their metrics, and checking if the achieved results resemble the same as the literature suggests. It will require gathering data sets, which can either be artificially generated through simulation or provided by an enterprise that services photovoltaic plant owners.

There's a desire that, in the end, the developed work helps achieve an improved method for fault detection and state estimation in photovoltaic power systems, resulting in a production-ready software application agile enough to deploy for any PV assets. Depending on the new algorithm's characteristics, it could result in an approach capable of generalization and application to other engineering systems, benefiting more than just PV systems. No matter the chosen methodology, fault detection will, in most cases, result in an economic benefit, catastrophe prevention, and safety increase. Those are a few positive contributions that are possible for this work's outcome.

4 Introduction

Chapter 2

Fault detection in Utility Scale PV Plants

2.1 PV Plant's architecture and components

Utility-scale photovoltaic (PV) power plants are large-scale PV systems that are connected to the electrical grid and have installed capacities ranging from kilowatts peak (kWp) to megawatts peak (MWp). These systems typically consist of many PV panels interconnected through power electronics to aggregate and inject active power into the grid. The number and type of components in a PV power plant depend on the plant's scale and topology, with different configurations possible for large-scale applications, including central inverters, string inverters, and multi-string inverters? Understanding the architecture and components of PV power plants is important for designing, operating, and maintaining these systems, as it helps optimize their performance and reliability.

In figure ??, the fourth configuration presented (d) will not be considered for utility-scale plants due to its expensive nature. After DC/AC conversion, another voltage conversion step usually establishes the grid connection: an AC/AC transformer.

For completeness, the physical installation of PV modules can include solar tracking apparatuses, such as single and dual-axis trackers, which add to system complexity and change production behavior. Nonetheless, and turning the focus back toward the electrical components, the main ones are the following:

- Solar photovoltaic panels.
- · Electric cabling.
- Inverter(s) (mostly with Max Power Point Trackers).
- AC Transformer(s).
- Protection components (circuit breakers, fuses, surge protectors, etc.)

Figure 2.1: PV inverter topologies: (a) Central, (b) String, (c) Multi-string, (d) Module integrated ?.

Most of these components have intrinsic variables, such as voltage and current values, that can help determine their operation states. Given that the utility grids (and the associated electricity market) integrate large-scale PV assets, some of the before-mentioned components require constant monitoring and control, achieved with adequate embedded systems and sensor infrastructure? Thanks to the continuous advancements in communication technologies, namely in IoT (Internet Of Things), data acquisition is becoming faster, more reliable, and more precise. Not only is this fundamental for real-time asset assessment, but it also allows better training of prediction algorithms. However, on the industrial scale (in the order of MWp production), having sensors embedded in every PV module comes with a significant economical cost, and inverters are the components that usually possess monitoring capabilities.

2.2 Types of faults

Several types of faults can occur in utility-scale photovoltaic (PV) power plants, which can negatively impact the performance and reliability of the system, possibly causing safety hazards?. Some are challenging to detect and protect the electrical installation against, thus requiring more sophisticated detection algorithms?. According to?, these faults can mainly be classified into three categories: electrical, mechanical, and environmental. Electrical faults include issues such as short circuits, open circuits, and inverter failure, which can affect the PV panels' power output and the system's overall efficiency. Mechanical faults include issues such as broken panels, damaged cables, and defective inverters, which can lead to system downtime and reduced performance. Environmental faults include issues such as extreme weather events, such as hail or strong winds, which can damage the PV panels and other components?.

figures/chapter2/types_of_faults.pdf

Figure 2.2: Classification of faults in PV Systems, from ??.

Throughout the literature ?, some of the most studied faults in the context of fault detection are shading, module mismatch, soiling, short circuit (line to line and line to ground), open circuit, hot spot faults, and DC arc fault. Due to the difficulty of classifying some of these faults given their similarity (consequent effect in the system), it will be seen in further sections that most fault detection algorithms can only classify between two to five types of faults.

2.3 Modeling photovoltaic's physical behavior

Accurate modeling of photovoltaic (PV) modules is essential for characterizing their performance from the power converters' direct current (DC) side in a PV power plant. This information is critical for designing and optimizing PV power systems, as it allows for predicting the PV module's performance under different operating conditions, such as varying levels of solar irradiance and temperature. In addition, accurate PV module models are essential for state estimation and fault detection, as they can provide important information about the health and performance of the PV modules and allow for early identification of potential issues. Moreover, they can be used to optimize the control and operation of PV power systems, which can improve the overall efficiency and reliability of the system.

There are several state-of-the-art methods for modeling photovoltaic (PV) modules, which can be broadly categorized into two types: physical models and empirical models [1]. Physical models are based on the fundamental physical principles that govern the operation of PV modules and typically require detailed knowledge of the PV module's electrical and optical properties, such as its current-voltage (I-V) characteristics, spectral response, and temperature dependence [2]. These models can accurately predict the PV module's performance under a wide range of operating conditions, but they may be complex and computationally intensive to implement [3]. On the other hand, empirical models are based on experimental data and are typically simpler and easier to implement, but may not be as accurate as physical models, especially under conditions that differ significantly from those used to generate the experimental data [4]. Some examples of state-of-the-art physical models for PV modules include the single diode model [5], the two diode model [6], and the detailed balance model [7], while some examples of state-of-the-art empirical models include the P-V model [8] and the temperature correction model [9]. The choice of modeling method will depend on the specific application and the required level of accuracy and complexity; in some cases, a combination of physical and empirical models may be used [4].

If the need arises to model PV modules in this work, it is important to select a methodology that is simple enough that the module's datasheet characteristics are sufficient for accurate modeling. This is particularly important in the case of utility-scale PV systems, where detailed knowledge of the module's electrical and optical properties may not be readily available, and only datasheet

data may be used for modeling. Using a complex model that requires more detailed information may not be feasible in such cases, and a simpler model that relies on fewer input parameters may be more appropriate. The single-diode model seems appropriate for this use case, given the good trade-off between complexity and accuracy.

2.3.1 Five parameter model

The five-parameter model, also known as the P-V model or the five coefficient model, is based on experimental data and relatively simple to implement, making it a popular choice for PV performance modeling.

The P-V model represents the PV module's current-voltage (I-V) characteristics as a function of solar irradiance and temperature. The model is based on the following equation:

$$\mathbf{I} = \mathbf{I}_0 + I_p \mathbf{v} - I_s - I_s h$$

where I is the current generated by the PV module, I_0 is the darkcurrent, I_p visthe photovoltaic current, I_s is the series resistance.

The five parameters in the model are $I_0, I_p v, I_s, I_s h, and V_o c$, representing the dark current, photovoltaic current, series recircuit voltage of the PV module, respectively. These parameters can be determined from experimental data or measured directions.

Once the parameters have been determined, the P-V model can be used to predict the PV module's performance under a wide range of operating conditions, such as different levels of solar irradiance and temperature. However, it is worth noting that the accuracy of the P-V model may be limited, especially under conditions significantly different from those used to generate the experimental data.

2.4 Anomaly detection algorithms

The tools dedicated to fault detection and state estimation mostly come from mathematical/statistical methodologies, machine learning, and deep learning applications? Parting from the three general problem-solving principles mentioned, machine learning and deep learning are the most popular and successful ones for recent applications that ought to solve complex problems. Such potential has led to an interest in their implementation for the renewable energy sector.

2.4.1 Statistical Methodologies

Statistical methodologies usually look into historical data to find the characteristics of how samples relate to the population (interpolation). These methodologies yield good results in case studies of PV farms that have been logging data for a considerable time, suffering in the cases that don't. Therefore, they are limited in that it's required to have curated data sets of historical significance for relevant features of the studied systems.

2.4.2 Machine Learning Methodologies

Machine learning came to solve some of the complications referred to in the two past subjects, as neural networks (or other learning structures) are easily capable of modeling complex, non-trivial, and nonlinear relations between data. Still, they are as good as the training data, with many structures requiring many representative learning examples to achieve good results. Their output can also be very obfuscated, meaning that many methods don't allow a direct interpretation of the relationship between inputs and outputs: this "black-box" characteristic, specifically of neural networks, is seen as a disadvantage. Besides, extrapolating data remains a challenge when classically using these structures. Still, they have immense applications for PV systems, from MPP (Max Power Point) estimation to power forecasting, soiling, and fault prediction.

2.4.3 Deep Learning Methodologies

The field of deep learning branches off from machine learning, with the term "deep" referring to amplified machine learning structures that ought to understand data patterns. A simple example would be the design of an artificial neural network with multiple hidden layers, with the intuition that each of these "extra" layers achieves feature/pattern recognition in a cascade. They have been explored alongside machine learning techniques for PV systems, although the known disadvantage is a usually high computational cost and relatively tricky implementation.

While classical fault detection lies in the synchronous and direct evaluation of state estimation variables, fault prediction requires the input of time-series features. Although relatively simple, some classical time-series forecasting and analysis tools can be of great support to help design a fault prediction algorithm, such as Box-Jenkins methods and the Partial Auto-correlation function. Still, the majority of modern prediction tools comprise neural networks and variations. With this in mind, recent developments in the intelligent composition of learner structures spark some interest in the application to this field, such as the new deep learning technique named Cell Complex Neural Networks? Further investigation of such modern practices will unroll throughout the development of this work.

Chapter 3

Capítulo Exemplo

Neste capítulo apresentam-se exemplos de formatação de figuras e tabelas, equações e referências cruzadas.

Maecenas eleifend facilisis leo. Vestibulum et mi. Aliquam posuere, ante non tristique consectetuer, dui elit scelerisque augue, eu vehicula nibh nisi ac est. Suspendisse elementum sodales felis. Nullam laoreet fermentum urna.

3.1 Introdução

Apresenta-se de seguida um exemplo de equação, completamente fora do contexto:

$$CIF_1: F_0^j(a) = \frac{1}{2\pi \iota} \oint_{\gamma} \frac{F_0^j(z)}{z - a} dz$$
 (3.1)

$$CIF_2: F_1^j(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{F_0^j(x)}{x-a} dx$$
 (3.2)

Na Equação ?? lorem ipsum dolor sit amet, consectetuer adipiscing elit. Suspendisse tincidunt viverra elit. Donec tempus vulputate mauris. Donec arcu. Vestibulum condimentum porta justo. Curabitur ornare tincidunt lacus. Curabitur ac massa vel ante tincidunt placerat. Cras vehicula semper elit. Curabitur gravida, est a elementum suscipit, est eros ullamcorper quam, sed cursus velit velit tempor neque. Duis tempor condimentum ante. Nam sollicitudin. Vestibulum adipiscing, orci eu tempor dapibus, risus sapien porta metus, et cursus leo metus eget nibh.

Pellentesque rutrum, sapien at viverra facilisis, metus eros blandit sem, quis dictum erat metus eget erat. Vivamus malesuada dapibus nulla. Maecenas nec purus. Suspendisse auctor mattis augue. Phasellus enim nisi, iaculis sit amet, pellentesque a, iaculis in, dui. Integer risus.

3.2 Secção Exemplo

A arquitectura do visualizador assenta sobre os seguintes conceitos base (?):

• **Componentes** — Suspendisse auctor mattis augue *push*;

12 Capítulo Exemplo

Figure 3.1: Arquitectura da Solução Proposta

- **Praesent** Sit amet sem maecenas eleifend facilisis leo;
- **Pellentesque** Habitant morbi tristique senectus et netus.

3.2.1 Exemplo de Figura

É apresentado na Figura ?? da página ?? um exemplo de figura flutuante que deverá ficar no topo da página.

Loren ipsum dolor sit amet, consectetuer adipiscing elit. Praesent sit amet sem. Maecenas eleifend facilisis leo. Vestibulum et mi. Aliquam posuere, ante non tristique consectetuer, dui elit scelerisque augue, eu vehicula nibh nisi ac est. Suspendisse elementum sodales felis. Nullam laoreet fermentum urna.

Duis eget diam. In est justo, tristique in, lacinia vel, feugiat eget, quam. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Fusce feugiat, elit ac placerat fermentum, augue nisl ultricies eros, id fringilla enim sapien eu felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Sed dolor mi, porttitor quis, condimentum sed, luctus in.

3.2.2 Exemplo de Tabela

É apresentado na Tabela ?? um exemplo de tabela flutuante que deverá ficar no topo da página.

Loren ipsum dolor sit amet, consectetuer adipiscing elit. Praesent sit amet sem. Maecenas eleifend facilisis leo. Vestibulum et mi. Aliquam posuere, ante non tristique consectetuer, dui elit scelerisque augue, eu vehicula nibh nisi ac est. Suspendisse elementum sodales felis. Nullam laoreet fermentum urna.

Duis eget diam. In est justo, tristique in, lacinia vel, feugiat eget, quam. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Fusce feugiat, elit ac placerat fermentum, augue nisl ultricies eros, id fringilla enim sapien eu felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Sed dolor mi, porttitor quis, condimentum sed, luctus in.

3.3 Secção Exemplo

Iteração k de $f(x_n)$ k comentários -0.3 0.7 0 0.6 $\delta < \varepsilon$ 1 0.47102965 0.04883157 -0.53345964 2 0.49988691 -0.52246185 $\delta < \varepsilon$ 0.00228830 3 0.49999976 0.00005380 -0.523656 N 4 0.5 0.00000307 -0.52359743 7 $\delta < 10^{-8}$ 0.5 0.0 -0.52359878

Table 3.1: Tabela Exemplo

3.3 Secção Exemplo

Loren ipsum dolor sit amet, consectetuer adipiscing elit. Praesent sit amet sem. Maecenas eleifend facilisis leo. Vestibulum et mi. Aliquam posuere, ante non tristique consectetuer, dui elit scelerisque augue, eu vehicula nibh nisi ac est. Suspendisse elementum sodales felis. Nullam laoreet fermentum urna.

Duis eget diam. In est justo, tristique in, lacinia vel, feugiat eget, quam. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Fusce feugiat, elit ac placerat fermentum, augue nisl ultricies eros, id fringilla enim sapien eu felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Sed dolor mi, porttitor quis, condimentum sed, luctus in.

3.4 Resumo

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Fusce feugiat, elit ac placerat fermentum, augue nisl ultricies eros, id fringilla enim sapien eu felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Sed dolor mi, porttitor quis, condimentum sed, luctus in.

Chapter 4

Mais um Capítulo

Neste capítulo mostra-se apenas o formato da dissertação.

Ipsum dolor sit amet, consectetuer adipiscing elit. Praesent sit amet sem. Maecenas eleifend facilisis leo. Vestibulum et mi. Aliquam posuere, ante non tristique consectetuer, dui elit scelerisque augue, eu vehicula nibh nisi ac est. Suspendisse elementum sodales felis. Nullam laoreet fermentum urna.

4.1 Secção Exemplo

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Integer hendrerit commodo ante. Pellentesque nibh libero, aliquam at, faucibus id, commodo a, velit. Duis eleifend sem eget leo. Morbi in est. Suspendisse magna sem, varius nec, hendrerit non, tincidunt quis, quam. Aenean congue. Vivamus vel est sit amet sem iaculis posuere. Cras mollis, enim vel gravida aliquam, libero nunc ullamcorper dui, ullamcorper sodales lectus nulla sed urna. Morbi aliquet porta risus. Proin vestibulum ligula a purus. Maecenas a nulla. Maecenas mattis est vitae neque auctor tempus. Etiam nulla dui, mattis vitae, porttitor sed, aliquet ut, enim. Cras nisl magna, aliquet et, laoreet at, gravida ac, neque. Sed id est. Nulla dapibus dolor quis ipsum rhoncus cursus.

Etiam nisi est, dignissim sodales, fermentum id, pulvinar ac, eros. Duis id orci. Nam pretium nisl ac augue. Ut adipiscing magna eget est. Curabitur varius. Nulla facilisi. Pellentesque sit amet neque ac dui accumsan blandit. Donec mauris felis, egestas sit amet, convallis ac, dignissim quis, dolor. Maecenas cursus tortor vel leo. Quisque tristique. Nunc augue odio, tincidunt in, dapibus sed, ultricies sit amet, lorem. In hac habitasse platea dictumst. Praesent iaculis, lacus hendrerit tempor sodales, libero tellus aliquet orci, ut rhoncus massa lectus quis erat. Pellentesque quis dolor nec tortor rhoncus convallis. Aliquam erat volutpat. Fusce placerat, magna eu imperdiet lobortis, augue massa blandit turpis, a consectetuer quam arcu sit amet risus. Suspendisse potenti. Praesent sapien metus, interdum vitae, fermentum id, faucibus ut, lorem. Nunc iaculis purus id tortor. Aenean risus pede, laoreet ac, tristique sed, lobortis in, turpis.

Vestibulum et lorem in ligula viverra pharetra. Curabitur quis purus in urna facilisis bibendum. Pellentesque at arcu accumsan velit bibendum ornare. Praesent massa. Quisque dolor. In libero.

16 Mais um Capítulo

Vestibulum ac diam id leo feugiat blandit. Donec porta, tellus ac pellentesque molestie, felis mauris viverra lacus, sed dignissim purus justo eu justo. Proin iaculis, nunc eu volutpat volutpat, libero purus rutrum enim, id euismod lacus lorem nec augue. Donec hendrerit lacinia ante. Integer mollis vulputate orci. In pellentesque, metus pharetra elementum pharetra, est purus bibendum turpis, eu pretium sapien libero convallis odio. Cras sodales bibendum risus. Sed mattis nulla non leo. Nulla nunc. Phasellus egestas sodales massa. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Etiam mi.

4.2 Mais uma Secção

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque purus sapien, interdum ut, vestibulum a, accumsan ullamcorper, erat. Mauris a magna ut leo porta imperdiet. Donec dui odio, porta in, pretium non, semper quis, orci. Quisque erat diam, pharetra vel, laoreet ac, hendrerit vel, enim. Donec tristique luctus risus. Fusce dolor est, eleifend id, elementum sit amet, varius vitae, neque. Morbi at augue. Ut sem ligula, auctor vitae, facilisis id, pharetra non, lectus. Nulla lacus augue, aliquam eget, sollicitudin sed, hendrerit eu, leo. Suspendisse ac tortor. Mauris at odio. Etiam vehicula. Nam lacinia purus at nibh. Aliquam fringilla lorem ac justo. Ut nec enim. Nunc ornare, eros eu facilisis tristique, nisl lorem lacinia risus, non ullamcorper tellus urna et eros. Quisque eleifend tempus metus. Nunc ipsum.

Phasellus ullamcorper justo id risus. Nunc in leo. Mauris auctor lectus vitae est lacinia egestas. Nulla faucibus erat sit amet lectus varius semper. Praesent ultrices vehicula orci. Nam at metus. Aenean eget lorem nec purus feugiat molestie. Phasellus fringilla nulla ac risus. Aliquam elementum aliquam velit. Aenean nunc odio, lobortis id, dictum et, rutrum ac, ipsum. Aenean tellus magna, lacinia eget, bibendum ut, interdum sit amet, ipsum. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Mauris felis lacus, dapibus sit amet, pretium feugiat, aliquet non, purus. Aliquam elementum, diam quis porttitor gravida, sem sapien iaculis nulla, ut pharetra odio felis a metus. Nulla lacus ipsum, tristique ut, dapibus sed, mollis et, justo. Vivamus non ipsum sed ligula placerat ultrices. Maecenas dictum leo adipiscing mauris. Vestibulum tristique, lacus a consequat suscipit, nunc dui sollicitudin arcu, non interdum libero est eget tortor. Ut eget neque quis leo tempor dictum.

Quisque ullamcorper. Aliquam vel magna. Sed pulvinar dictum ligula. Sed ultrices dolor ut turpis. Vivamus sagittis orci malesuada arcu venenatis auctor. Proin vehicula pharetra urna. Aliquam egestas nunc quis nisl. Donec ullamcorper. Nulla purus. Ut suscipit lacus vitae dui. Mauris semper. Ut eget sem. Integer orci. Nam vitae dui eget nisi placerat convallis.

Sed id lorem. Proin gravida bibendum lacus. Sed molestie, urna quis euismod laoreet, diam dolor dictum diam, vitae consectetuer leo ipsum id ante. Integer eu lectus non mauris pharetra viverra. In feugiat libero ut massa. Morbi cursus, lorem sollicitudin blandit semper, felis magna pellentesque lacus, ut rhoncus leo neque at tellus. Sed mattis, diam eget eleifend tincidunt, ligula eros tincidunt diam, vitae auctor turpis est vel nunc. In eu magna. Donec dolor metus, egestas sit

17

amet, ultrices in, faucibus sed, lectus. Etiam est enim, vehicula pharetra, porta non, viverra vel, nunc. Ut non sem. Etiam nec neque. Sed rhoncus, justo id imperdiet pharetra, mi tellus accumsan neque, vitae volutpat tortor enim in odio. Nunc porta justo a lorem. Nulla hendrerit odio vitae dolor. Suspendisse eu nisl.

4.3 Resumo ou Conclusões

Proin vehicula pharetra urna. Aliquam egestas nunc quis nisl. Donec ullamcorper. Nulla purus. Ut suscipit lacus vitae dui. Mauris semper. Ut eget sem. Integer orci. Nam vitae dui eget nisi placerat convallis.

Chapter 5

Conclusões e Trabalho Futuro

Proin sed justo eu sapien eleifend elementum. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vivamus quam lacus, pharetra vel, aliquam vel, volutpat sed, nisl.

5.1 Satisfação dos Objectivos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam non felis sed odio rutrum ultrices. Donec tempor dolor. Vivamus justo neque, tempus id, ullamcorper in, pharetra non, tellus. Praesent eu orci eu dolor congue gravida. Sed eu est. Donec pulvinar, lectus et eleifend volutpat, diam sapien sollicitudin arcu, a sagittis libero neque et dolor. Nam ligula. Cras tincidunt lectus quis nunc. Cras tincidunt congue turpis. Nulla pede velit, sagittis a, faucibus vitae, porttitor nec, ante. Nulla ut arcu. Cras eu augue at ipsum feugiat hendrerit. Proin sed justo eu sapien eleifend elementum. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vivamus quam lacus, pharetra vel, aliquam vel, volutpat sed, nisl.

Nullam erat est, vehicula id, tempor non, scelerisque at, tellus. Pellentesque tincidunt, ante vehicula bibendum adipiscing, lorem augue tempor felis, in dictum massa justo sed metus. Suspendisse placerat, mi eget molestie sodales, tortor ante interdum dui, ac sagittis est pede et lacus. Duis sapien. Nam ornare turpis et magna. Etiam adipiscing adipiscing ipsum. Fusce sodales nisl a arcu. Cras massa leo, vehicula facilisis, commodo a, molestie faucibus, metus. Suspendisse potenti. Duis sagittis. Donec porta. Sed urna. Maecenas eros. Vivamus erat ligula, pharetra sit amet, bibendum et, fermentum sed, dolor. Nullam eleifend condimentum nibh. Integer leo nibh, consequat eget, mollis et, sagittis ac, felis. Duis viverra pede in pede. Phasellus molestie placerat leo. Praesent at tellus a augue congue molestie. Proin sed justo eu sapien eleifend elementum. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas.

5.2 Trabalho Futuro

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aliquam tempor tristique risus. Suspendisse potenti. Fusce id eros. In eu enim. Praesent commodo leo. Nullam augue. Pellentesque tellus. Integer pulvinar purus a dui convallis consectetuer. In adipiscing, orci vitae lacinia semper, sapien elit posuere sem, ac euismod ipsum elit tempus urna. Aliquam erat volutpat. Nullam suscipit augue sed felis. Phasellus faucibus accumsan est.

Aliquam felis justo, facilisis sit amet, bibendum ut, tempus ac, dolor. Sed malesuada. Nunc non massa. In erat. Nulla facilisi. Phasellus blandit, est in accumsan cursus, libero augue elementum leo, vitae auctor mauris nisl ac tortor. Cras porttitor ornare elit. Fusce at lorem. Sed lectus tortor, vestibulum id, varius a, condimentum nec, lectus. Maecenas in nisi et magna pretium aliquam. Pellentesque justo elit, feugiat nec, tincidunt a, dignissim vel, ipsum. Sed nunc. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam tempus rhoncus leo. Donec neque quam, cursus sit amet, ultricies varius, semper non, pede. Donec porttitor. Sed aliquet feugiat elit.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Phasellus tellus pede, auctor ut, tincidunt a, consectetuer in, felis. Mauris quis dolor et neque accumsan pellentesque. Donec dui magna, scelerisque mattis, sagittis nec, porta quis, nulla. Vivamus quis nisl. Etiam vitae nisl in diam vehicula viverra. Sed sollicitudin scelerisque est. Nunc dapibus. Sed urna. Nulla gravida. Praesent faucibus, risus ac lobortis dignissim, est tortor laoreet mauris, dictum pellentesque nunc orci tincidunt tellus. Nullam pulvinar, leo sed vestibulum euismod, ante ligula elementum pede, sit amet dapibus lacus tortor ac nisl. Morbi libero. Integer sed dolor ac lectus commodo iaculis. Donec ut odio.

Appendix A

Loren Ipsum

Depois das conclusões e antes das referências bibliográficas, apresenta-se neste anexo numerado o texto usado para preencher a dissertação.

A.1 O que é o Loren Ipsum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum (?).

A.2 De onde Vem o Loren?

Contrary to popular belief, Lorem Ipsum is not simply random text. It has roots in a piece of classical Latin literature from 45 BC, making it over 2000 years old. Richard McClintock, a Latin professor at Hampden-Sydney College in Virginia, looked up one of the more obscure Latin words, consectetur, from a Lorem Ipsum passage, and going through the cites of the word in classical literature, discovered the undoubtable source. Lorem Ipsum comes from sections 1.10.32 and 1.10.33 of "de Finibus Bonorum et Malorum" (The Extremes of Good and Evil) by Cicero, written in 45 BC. This book is a treatise on the theory of ethics, very popular during the Renaissance. The first line of Lorem Ipsum, "Lorem ipsum dolor sit amet...", comes from a line in section 1.10.32.

The standard chunk of Lorem Ipsum used since the 1500s is reproduced below for those interested. Sections 1.10.32 and 1.10.33 from "de Finibus Bonorum et Malorum" by Cicero are also reproduced in their exact original form, accompanied by English versions from the 1914 translation by H. Rackham.

22 Loren Ipsum

A.3 Porque se usa o Loren?

It is a long established fact that a reader will be distracted by the readable content of a page when looking at its layout. The point of using Lorem Ipsum is that it has a more-or-less normal distribution of letters, as opposed to using "Content here, content here", making it look like readable English. Many desktop publishing packages and web page editors now use Lorem Ipsum as their default model text, and a search for "lorem ipsum" will uncover many web sites still in their infancy. Various versions have evolved over the years, sometimes by accident, sometimes on purpose (injected humour and the like).

A.4 Onde se Podem Encontrar Exemplos?

There are many variations of passages of Lorem Ipsum available, but the majority have suffered alteration in some form, by injected humour, or randomised words which don't look even slightly believable. If you are going to use a passage of Lorem Ipsum, you need to be sure there isn't anything embarrassing hidden in the middle of text. All the Lorem Ipsum generators on the Internet tend to repeat predefined chunks as necessary, making this the first true generator on the Internet. It uses a dictionary of over 200 Latin words, combined with a handful of model sentence structures, to generate Lorem Ipsum which looks reasonable. The generated Lorem Ipsum is therefore always free from repetition, injected humour, or non-characteristic words etc.