ρυ	o vivo	enc	Vin	~)	ولو	2 /10	(m)	Q			
n	Marre		melog	رو	CO	nsk	in	,			
r	monen	V C	néhy.	æ	No		Pr	M	nda		

 $= \cos(0) - ||f|| \cdot d_2$

or
$$T' = T$$
, dence $JU_{T'} = -JU_{T}$
el $dr = dz$ (le fil a une longueur este).
donc on a bien:

$$E_{rm} = \frac{1}{2} m J_{m}^{2}$$

$$+ \frac{1}{2} M J_{m}^{2} + J_{m}(z)$$

$$= \frac{1}{2} m J_{m}^{2} + \frac{1}{$$

$$(p - p \dot{\phi}^2) = -T$$

$$m(p \dot{\phi} + 2p \dot{\phi}) = 0$$

$$M\ddot{g} = T' - Mg = M\ddot{p}$$

$$M\ddot{p} - p \dot{\phi}^2) + T' = -T + T'$$

$$m(p - p \dot{\phi}^2) + T' = 0$$

$$m(p - p \dot{\phi}^2) + Mg = 0$$

 $\frac{dL_{3}}{dt} = m\left(2\rho\rho\dot{Q} + \rho^{2}\dot{Q}\right)$ $(M+m)\tilde{\rho}\tilde{\rho}$ - mpp p2 $+mp^2\phi\phi$ + Mgp $= (M+m)\rho\rho$ $+ mp \phi (\dot{\rho} \phi + \dot{\rho} \dot{\phi}) + Map$

$$\frac{1}{2} = \frac{1}{2} \cdot \frac{1}$$

$$E_{m_2} = \frac{1}{2} \text{mnv}^2 + \text{mgh}$$

$$= \text{mg}(\cos \beta)(d+L)$$

$$E_{m_1} = 1 m v_0^2 + m g(\cos \lambda)(1) + d$$

$$\frac{1}{2} \text{ m } v_0^2 - \text{ nm } g(\cosh)(L) + d)$$

$$= -\text{nmg}(\cos \beta)(d+L)$$
On pose $a = \cos d = \cos \beta$.

$$\frac{1}{2} \text{ nm } v_0^2 - \text{nmg}(aL+d) = -\text{nmg}(a(d+L))$$

$$= \frac{1}{2} \text{ nm } v_0^2 = \text{nmg}(-ad-aL+aL+d)$$

$$= \frac{1}{2} \text{ nm } v_0^2 = \text{nmg}(ad+aL-aL+d)$$

$$= \frac{1}{2} \text{ nm } v_0^2 = 2g(ad+d)$$

$$= \frac{1}{2} \text{ nm } v_0^2 = 2g(ad+d)$$

$$= \frac{1}{2} \text{ nm } v_0^2 = 2g(ad+d)$$

$$\frac{1}{2} \operatorname{mn}^{2} - \operatorname{mg}(d+L) =$$

$$- \operatorname{mg} \cos \beta(d+L)$$

$$= \frac{1}{2} \operatorname{mn} \operatorname{vmox}^{2} = \operatorname{mg}(-\cos\beta(d+L) + d+L)$$

$$= \frac{1}{2} \operatorname{mn} \operatorname{vmox}^{2} = 2 \operatorname{rmg}(d+L)(1-\cos\beta)$$

$$= \frac{1}{2} \operatorname{mn}^{2} \operatorname{vmox}^{2} = \frac{1}{2} \operatorname{g}(d+L)(1-\cos\beta)$$

e) on multiple par
$$j$$
 des 2 coles

miss = - Gm n_T
 $(R_T + 3)^2$ $3 = d3$
 $(R_T + 3)^2$ $3 = d$

donc:

C

On pose
$$3 = 0$$

$$E = -\frac{6mMr}{R_{T}+H} = \frac{1}{2}mV_{max}^{2} - \frac{6mMr}{R_{T}}$$

C) $V_{max}^{2} = \left(\frac{-6mMr}{R_{T}+H} + \frac{6mMr}{R_{T}}\right)\frac{Q}{m}$

$$= -\frac{6mMr}{R_{T}+H} + \frac{6mMr}{R_{T}+H}\frac{Q}{m}$$

$$= -\frac{6mMr}{R_{T}+H}\frac{Q}{R_{T}+H}\frac{Q}{R_{T}+H}$$

$$= \frac{26Mr}{R_{T}+H}$$

