K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Low and High frequency respone of single stage amplifier

Q1. For the network of figure determine C_C such that lower -3 dB frequency is 15Hz, find $A_{V_{mid}}$

Given: $\beta=200,\,R_B=430\mathrm{k}\Omega,\,R_E=2.5\mathrm{k}\Omega,\,V_{CC}=10\mathrm{V},\,R_S=500\Omega,\,V_A=\infty$

Figure 1: Circuit 1

Solution:

Above circuit is common emitter voltage divider BJT Amplifier

DC Analysis:

Applying KVL to input loop of circuit 1:

$$-V_{BE} + V_{CC} - I_B R_B - I_E R_E = 0$$

$$I_C = \beta I_B$$

$$I_E = I_C + I_B$$

$$I_E = (1 + \beta)I_B$$

$$-V_{BE} + V_{CC} - I_B R_B - (1+\beta)I_B R_E = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (1+\beta)R_E}$$

$$I_B = \frac{10 - 0.7}{430 \times 10^3 + 201 \times 2.5 \times 10^3}$$

$$I_B = 9.9731 \mu A$$

$$I_C = \beta I_B$$

$$I_C = 1.9946 \mathrm{mA}$$

Small signal equivalent for C_C

Figure 2: Small signal equivalent circuit fo C_C

We know that
$$f_{LCC} = \frac{1}{2\pi R_{eq}C_C}$$

$$R_{eq} = R_i + R_o$$

$$R_o = R_B || (r_\pi + (\beta + 1)R_E)$$
 (: current through R_π is I_B , current through R_E is I_E also $I_E = (1 + \beta)I_B$)

$$R_i = R_s$$

 ${\bf Small\ signal\ parameters:}$

$$r_{\pi} = \frac{V_T}{I_{BQ}} = \frac{26 \times 10^{-3}}{9.9731 \times 10^{-6}} =$$
506.1950 Ω

$$g_m = \frac{I_{CQ}}{V_T} = \frac{1.9946 \times 10^{-3}}{26 \times 10^{-3}} = 76.7165 \text{ mA/V}$$

$$R_o = R_B || (R_\pi + (\beta + 1)R_E)$$

$$R_o = 430k||(2.607k + (201)2.5k)|$$

$$R_o = 430 \times 10^3 || (505.107 \times 10^3)$$

$$R_o = 232.268 \text{ k}\Omega$$

$$R_{eq} = R_i + R_o$$

$$R_{eq} = 500 + 232.268k\Omega$$

$$R_{eq} = \mathbf{232.768k}\Omega$$

$$f_{LCC} = \frac{1}{2\pi R_{eq} C_C}$$

$$C_C = \frac{1}{2\pi \times 232.768 \times 10^3 \times 15}$$

$$C_C = 45.583$$

Small signal equivalent circuit for A_{vmid} :

Figure 3: Small signal equivalent circuit for $A_{V_{mid}}$

$$\begin{split} A_{V_{mid}} &= \frac{V_o}{V_S} \\ A_{V_{mid}} &= \frac{V_o}{V_i} \times \frac{V_i}{V_S} \\ \frac{V_o}{V_i} &= \frac{-R_E}{\frac{1}{g_m} + R_E} = \frac{-2.5k}{\frac{1}{76.715mA/V} + 2.5k} \\ \frac{V_o}{V_i} &= -\mathbf{0.9948} \\ \frac{V_i}{V_S} &= \frac{Z_i}{Z_i + R_S} \\ Z_i &= R_o = 232.268k\Omega \\ \frac{V_i}{V_S} &= \frac{232.268 \times 10^3}{232.268 \times 10^3 + 500} \\ \frac{V_i}{V_S} &= \mathbf{0.9978} \\ A_{V_{mid}} &= (0.9978) \times (-0.9948) = -0.9926 \\ A_{V_{mid}} &\text{in dB} = 20 \log_{10}(|0.9926|) \\ A_{V_{mid}} &\text{in dB} = -\mathbf{64.301 \ mdB} \approx \mathbf{0} \end{split}$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows

Figure 4: Circuit Schematic

Figure 5: Circuit Schematic: Input Output Waveform

$\ \, {\bf Comparsion \ between \ simulated \ and \ theoretical \ values:}$

Parameters	Theoretical	Simulated
I_{CQ}	$1.974 \mathrm{mA}$	$1.994 \mathrm{mA}$
$A_{V_{mid}}$	0dB	$\approx 0 dB$
Lower cutoff frequency due to C_C	15.33Hz	15Hz

Table 1: Numerical 1

Q2. For the circuit shown, determine lower cutoff frequency and $A_{V_{mid}}$ Given: $V_P = -7V$, $r_d = \infty \Omega$, $R_S = 1k\Omega$, $R_G = 1M\Omega$, $R_D = 4.7k\Omega$, $R_L = 2.2k\Omega$, $R_{sig} = 10k\Omega$, $C_S = 2\mu F$, $C_C = 0.5\mu F$, $C_G = 0.01\mu F$, $V_{DD} = 20V$, $I_{DSS} = 8mA$

Figure 6: Circuit 2

Solution:

DC Analysis:-

Applying KVL to the input loop:-

$$V_{GS} = -I_D R_S$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$I_D = 8mA \left(1 - \frac{V_{GS}}{(-4)} \right)^2$$

$$V_{GS} = -8mA \left(1 + \frac{V_{GS}}{(-4)} + \frac{V_{GS}^2}{16} \right)^2 \times 1k\Omega$$

$$V_{GS} = -8 - 0.5V_{GS}^2 - 4V_{GS}$$

$$0.5V_{GS}^2 + 5V_{GS} + 8 = 0$$

Solving above quadratic equation, we get

$$V_{GS} = -2V$$
 or $V_{GS} = -8V$, We reject this value, as $(V_{GS} > V_P)$ $\therefore V_{GS} = -2.479V$

$$I_D = -\frac{V_{GS}}{R_S} = \frac{-2V}{1k\Omega} = 2.mA$$

$$I_D=2.065mA$$

Small-Signal parameters:-

$$\begin{split} g_{mo} &= \left| \frac{2I_{DSS}}{V_P} \right| = \frac{2 \times 8}{-4} = 2mA/V \\ g_m &= g_{mo} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 2 \times \left(1 - \frac{-2}{-4} \right) = 2 \ mA/V \\ g_m &= 2 \ mA/V \end{split}$$

Low frequeeny equivalent circuit for C_G :-

Figure 7: Small Signal low frequency equivalent circuit for C_G

$$R_{eq} = R_{sig} + R_G = 10k\Omega + 1M\Omega$$

$$f_{LCG} = \frac{1}{2\pi \times C_G \times R_{eq}} = \frac{1}{2\pi \times (10k + 1M) \times 0.1\mu F} = 15.76Hz$$

$$f_{LCC1} = 15.76Hz$$

Low frequency equivalent circuit for C_S :-

Figure 8: Small Signal low frequency equivalent circuit for C_S

$$\begin{split} R_{eq} &= R_S + \frac{1}{g_m} = (1k + \frac{1}{2mA/V}) = 333.33k\Omega \\ f_{LCS} &= \frac{1}{2\pi \times C_S \times R_{eq}} = \frac{1}{2\pi \times 333.33 \times 2\mu F} = 238.734Hz \\ f_{LCC2} &= 238.734Hz \end{split}$$

Low frequency equivalent circuit for C_C :-

Figure 9: Small Signal low frequency equivalent circuit for C_C

Since $V_S=0$; and also gate and source are open circuit \rightarrow : R_{sig} & R_G are ignored $R_{eq}=R_D+R_L=4.7\mathrm{k}+2.2\mathrm{k}=6.9\mathrm{k}$ $f_{LCC}=\frac{1}{2\pi\times C_C\times R_{eq}}=\frac{1}{2\pi\times 6.9k\times 0.5\mu F}=46.13Hz$

$$f_{L_{CC2}}=46.13Hz$$

Complete low frequency AC equivalent circuit:-

Figure 10: Complete low frequency AC equivalent circuit

Since,
$$f_{L_{CS}} > f_{L_{CC2}} > f_{LCC1}$$

\therefore Lower cut-off frequency = $f_{L_{CS}} = 238.73 Hz$

AC mid frequency equivalent circuit:-

Figure 11: AC mid frequency equivalent circuit

$$\begin{split} A_{V_{mid}} &= \frac{V_{out}}{V_{in}} = -g_m(r_d \mid\mid R_D \mid\mid\mid R_L \mid) \\ A_{V_{mid}} &= 26mA/V(\infty \mid\mid 4.7k \mid\mid\mid 2.2k \mid) = -2.99 \\ A_{V_{mid}} &= -2.99 \end{split}$$

Input Impedance:-

Input Impedance:-
$$A_{V_{mid}} \text{ with } R_{sig} = \frac{V_{out}}{V_S} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S}$$

$$\frac{V_{in}}{V_S} = \frac{R_G}{R_G + R_{sig}} = \frac{1M\Omega}{10k\Omega + 1M\Omega} = 0.999$$

$$A_{V_{mid}} \text{ with } R_{sig} = 0.99 \times 2.99 = -2.96$$

$$A_{V_{mid}} \text{ with } R_{sig} = -2.96$$

$$A_{V_{mid}} \text{ in } dB = 20log_{10}(2.96) = 9.42dB$$

$$A_{V_{mid}} \text{ in } dB = 5.818dB$$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 12: Circuit Schematic 1

Figure 13: Low frequency response of the circuit

Figure 14: Low frequency response for C_S

Figure 15: Low frequency response for C_G

Figure 16: Low frequency response for C_C

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ Values:}$

Parameters	Theoretical	Simulated
I_{DQ}	2mA	2mA
Lower cut-off frequency due to C_G	16.077Hz	15.76Hz
Lower cut-off frequency due to C_C	42.258Hz	46.13Hz
Lower cut-off frequency due to C_S	271.35Hz	238.73Hz
Overall cut-off frequency f_L	200.54Hz	238.73Hz
Mid-band Voltage gain A_V in dB	9.403dB	9.42dB

Table 2: Numerical 2

Q3. Find the complete frequency response of the circuit shown

Given: $V_P = -7V$, $r_d = \infty \Omega$, $R_S = 1k\Omega$, $R_G = 1M\Omega$, $R_D = 4.7k\Omega$, $R_L = 2.2k\Omega$, $R_{sig} = 10k\Omega$, $C_S = 2\mu F$, $C_C = 0.5\mu F$, $C_G = 0.01\mu F$, $V_{DD} = 20V$, $I_{DSS} = 8mA$, $C_{wi} = 5pF$, $C_{wo} = 6pF$, $C_{gd} = 2pF$, $C_{gs} = 4pF$, $C_{ds} = 0.5pF$

Figure 17: Circuit 3

Solution:

DC Analysis:-

Applying KVL to the input loop:-

$$V_{GS} = -I_D R_S$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$I_D = 8mA \left(1 - \frac{V_{GS}}{(-4)}\right)^2$$

$$V_{GS} = -8mA \left(1 + \frac{V_{GS}}{(-4)} + \frac{V_{GS}^2}{16} \right)^2 \times 1k\Omega$$

$$V_{GS} = -8 - 0.5V_{GS}^2 - 4V_{GS}$$

$$0.5V_{GS}^2 + 5V_{GS} + 8 = 0$$

Solving above quadratic equation, we get

$$V_{GS} = -2V$$
 or $V_{GS} = -8V$, We reject this value, as $(V_{GS} > V_P)$

$$\therefore V_{GS} = -2.479V$$

$$I_D = -\frac{V_{GS}}{R_S} = \frac{-2V}{1k\Omega} = 2.mA$$

$$I_D=2.065mA$$

Small-Signal parameters:-

$$\begin{split} g_{mo} &= \left| \frac{2I_{DSS}}{V_P} \right| = \frac{2 \times 8}{-4} = 2mA/V \\ g_m &= g_{mo} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 2 \times \left(1 - \frac{-2}{-4} \right) = 2 \ mA/V \\ g_m &= 2 \ mA/V \end{split}$$

Low frequency equivalent circuit for C_G :-

Figure 18: Small Signal low frequency equivalent circuit for C_G

$$R_{eq} = R_{sig} + R_G = 10k\Omega + 1M\Omega$$

$$f_{LCG} = \frac{1}{2\pi \times C_G \times R_{eq}} = \frac{1}{2\pi \times (10k + 1M) \times 0.1\mu F} = 15.76Hz$$

$$f_{LCC1} = 15.76Hz$$

Low frequency equivalent circuit for C_S :-

Figure 19: Small Signal low frequency equivalent circuit for \mathcal{C}_S

$$\begin{split} R_{eq} &= R_S + \frac{1}{g_m} = (1k + \frac{1}{2mA/V}) = 333.33k\Omega \\ f_{LCS} &= \frac{1}{2\pi \times C_S \times R_{eq}} = \frac{1}{2\pi \times 333.33 \times 2\mu F} = 238.734Hz \\ f_{LCC2} &= 238.734Hz \end{split}$$

Low frequency equivalent circuit for C_C :-

Figure 20: Small Signal low frequency equivalent circuit for C_C

Since $V_S=0$; and also gate and source are open circuit \rightarrow : R_{sig} & R_G are ignored $R_{eq}=R_D+R_L=4.7\mathrm{k}+2.2\mathrm{k}=6.9\mathrm{k}$ $f_{LCC}=\frac{1}{2\pi\times C_C\times R_{eq}}=\frac{1}{2\pi\times 6.9k\times 0.5\mu F}=46.13Hz$ $f_{L_{CC2}}=46.13Hz$

Complete low frequency AC equivalent circuit:-

Figure 21: Complete low frequency AC equivalent circuit

Since,
$$f_{L_{CS}} > f_{L_{CC2}} > f_{LCC1}$$

\therefore Lower cut-off frequency = $f_{L_{CS}} = 238.73 Hz$

AC mid frequency equivalent circuit:-

Figure 22: AC mid frequency equivalent circuit

$$\begin{split} A_{V_{mid}} &= \frac{V_{out}}{V_{in}} = -g_m(r_d \mid\mid R_D \mid\mid R_L \mid) \\ A_{V_{mid}} &= 26mA/V(\infty \mid\mid 4.7k \mid\mid 2.2k \mid) = -2.99 \\ A_{V_{mid}} &= -2.99 \\ \\ A_{V_{mid}} &\text{ with } R_{sig} &= \frac{V_{out}}{V_S} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_S} \\ \frac{V_{in}}{V_S} &= \frac{R_G}{R_G + R_{sig}} = \frac{1M\Omega}{10k\Omega + 1M\Omega} = 0.999 \\ A_{V_{mid}} &\text{ with } R_{sig} &= 0.99 \times 2.99 = -2.96 \\ A_{V_{mid}} &\text{ with } R_{sig} &= -2.96 \\ A_{V_{mid}} &\text{ in } dB &= 20log_{10}(2.96) = 9.42dB \\ A_{V_{mid}} &\text{ in } dB &= 5.818dB \\ \end{split}$$

High frequency equivalent circuit for entire circuit:-

Figure 23: High frequency equivalent circuit for entire circuit

$$C_{i} = C_{gs} + C_{mi} + C_{wi}$$

$$C_{mi} = C_{gd}(1 - A_{V_{mid}}) \qquad \text{(By Millers Theorem)}$$

$$C_{mi} = 2pF(1 - (-2.697))$$

$$C_{mi} = 7.93pF$$

$$C_{i} = 4pF + 7.93pF + 5pF = 16.93pF$$

$$C_{mo} = C_{gd}(1 - \frac{1}{A_{V_{mid}}}) \qquad \text{(By Millers Theorem)}$$

$$C_{mo} = 2pF(1 + \frac{1}{2.967})$$

$$C_{mo} = 2.674pF$$

$$C_{o} = 9.174pF$$

High frequeeny equivalent circuit for C_i :-

Figure 24: High frequency equivalent circuit for C_i

$$R_{eq} = R_{sig} \mid\mid R_G = 10 \text{k} \mid\mid 1 \text{M} = 9.9 \text{k}\Omega$$

$$f_{Hi} = \frac{1}{2\pi \times C_i \times R_{eq}} = \frac{1}{2\pi \times 9.9 \times 16.93} = 949.57 \text{KHz}$$

$$f_{Hi} = 949.57 \text{KHz}$$

\therefore Higher cut-off frequency = $f_{Hi} = 949.57 KHz$

High frequeeny equivalent circuit for C_o :-

Figure 25: High frequeeny equivalent circuit for C_o

$$R_{eq} = R_D \mid\mid R_L = 4.7 \text{k} \mid\mid 2.2 \text{K} = 1.498 \text{k}\Omega$$

$$f_{Ho} = \frac{1}{2\pi \times C_o \times R_{eq}} = \frac{1}{2\pi \times 1.498 k \times 9.174 pF} = 11.58 MHz$$

$$f_{Ho} = 11.58 MHz$$

\therefore Higher cut-off frequency = $f_{Ho} = 11.58 MHz$

We select $f_H = 949.57 KHz$ as the higher frequency of the circuit $f_{Ho} < f_{Hi}$

SIMULATED RESULTS:

Above circuit was simulated in LTSpice and results are presented below:

Figure 26: Circuit Schematic 1

Figure 27: Low frequency response of the circuit

Figure 28: Low frequency response for C_S

Figure 29: Low frequency response for C_G

Figure 30: Low frequency response for C_C

Figure 31: Complete frequency response of the circuit

Comparison of Theoretical and Simulated Values:

Parameters	Theoretical	Simulated
I_{DQ}	2mA	2mA
Lower cut-off frequency due to C_G	16.077Hz	15.76Hz
Lower cut-off frequency due to C_C	42.258Hz	46.13Hz
Lower cut-off frequency due to C_S	271.35Hz	238.73Hz
Overall cut-off frequency f_L	200.54Hz	238.73Hz
Overall cut-off frequency f_H	959.487KHz	949.57KHz
Mid-band Voltage gain A_V in dB	9.403dB	9.42dB

Table 3: Numerical 3
