German University in Cairo Media Engineering and Technology Prof. Dr. Slim Abdennadher

Semantic Web, May 2013 Practice Assignment8

Exercise 8-1

Let p, q and r be the following propositions:

- p: You get an A in the final exam.
- q: You do every excercise in the book.
- r: You get an A in this class.

Write the following formulas using p, q and r.

a) to get an A in this class, but you do not do every exercise in the book.

Solution:

 $p \wedge \neg q$

b) To get an A in this class, it is necessary for you to get an A on the final.

Solution:

 $r \to p$

c) Getting an A on the final and doing every exercise in the book is sufficient for getting an A in this class.

Solution:

$$(p \land q) \to r$$

Exercise 8-2

Solve the following questions

- a) Express the following statements in propositional logic:
 - Statement 1: Slim lives in Cairo.

Solution:

p

• Statement 2: Slim lives in Egypt.

Solution:

r

• Statement 3: If Slim lives in Cairo then he lives in Egypt.

Solution:

$$p \to r$$

b) Prove formally the following: Statement 3 and Statement 2 do not entail Statement 1.

Solution:

Through using resolution and trying to prove that Statement3, Statement 2 entail Statement1):

- 1. $\neg p \lor r$
- 2. r
- 3. \top (from 1 and 2)

This means that we cannot reach the empty set whic means that we cannot prove the statment and that it does not hold.

Exercise 8-3

Prove or disprove (by giving a counter example):

a) $\{\varphi 1, \varphi 2\} \models \psi$ if and only if $\varphi 1 \models \psi$ and $\varphi 2 \models \psi$.

Solution:

This statement is incorrect since it is not the case that if $\varphi 1 \models \psi$ and $\varphi 2 \models \psi$ then $\{\varphi 1, \varphi 2\}$. The counter example is whenever $\varphi 1 = p \rightarrow q$ and $\varphi 2 = p$ and $\psi = r$

b) Given sentences φ, ψ , then $\varphi \models \psi$ if and only if $\varphi \not\models \neg \psi$.

Solution:

The statement is incorrect since if $\varphi \not\models \neg \psi$ then this means that we can not derive \bot from $\{\varphi, \psi\}$. However, this does not make $\varphi \models \psi$ correct.

An example is the case where $\varphi = p$, $\psi = r$. In this case $\varphi \not\models \neg \psi$ holds since with the set $\{p, r\}$, we cannot reach a contradiction. However, also for the set $\{p, \neg r\}$, we cannot reach a constradiction. This means that $\varphi \models \psi$ does not hold which means that although $\varphi \not\models \neg \psi$ holds, $\varphi \models \psi$ does not hold which makes the initial statement incorrect.

c) If the sentence φ has no model, then $\varphi \models \psi$ for any sentence φ . Give an example for such a sentence φ .

Solution:

Such sentence can be $p \land \neg p$. Since such sentence produces \bot rightaway. Therefore to test whether $\varphi \models \psi$, we try to prove that $\varphi \land \neg \psi$ produces \bot which is true for any ψ . As for a model: $p = \top, r = \bot, q = \top$

d) Given sets of sentences M, M', with $M \subseteq M'$ and a sentence M, then $M \models \varphi$ if and only if $M' \models \varphi$.

Solution:

This statement is incorrect. A counter example is when $M = \{p\}$, $M' = \{p \to q, p\}$ and $\varphi = r$. As for a model: $p = \top, r = \bot, q = \top$

Exercise 8-4

Prove by means of the tableau method and resolution method that the following entailements are valid. If not give a counter example.

a) $\{p \lor q, \neg p\} \models q$

Solution:

Using Resolution: Trying to prove that $\{p \lor q, \neg p, \neg q \models \bot\}$

1.
$$p \lor q$$

$$2. \neg p$$

3.
$$\neg q$$

4.
$$q$$
 (From 1,2)

5.
$$\perp$$
 (From 3,4)

Using Semantic Tableau:

b)
$$\{p \to q, q\} \models p$$

Solution:

A counter example: $p = \bot, q = \top$

c)
$$\{p \to q\} \models \neg (q \to p)$$

Solution:

A counter example: $p = \bot, q = \bot$