Variabili (vettori e matrici) casuali

Variabile casuale (o aleatoria): Variabile che può assumere un insieme di valori ognuno con una certa probabilità

La variabile aleatoria rappresenta la popolazione in esame

- $\star X$ var. discreta \Rightarrow valori X_1, X_2, \ldots, X_N con prob. (p_1, p_2, \ldots, p_N)
- $\star X$ var. continua \Rightarrow valori in (a,b) con funzione di densità di prob. f=f(X)

Vettore (o matrice) casuale (o aleatorio): vettore (o matrice) i cui elementi sono variabili aleatorie

Il Valore atteso di una variabile aleatoria discreta X che può assumere i valori x_1, \ldots, x_n è

$$E[X] = \sum_{i=1}^{n} P_i x_i \qquad P_i = P(X = x_i)$$

(stessa cosa se *matrice* di variabili aleatorie)

Media, Varianza

Proprietà di
$$E[X]$$
: $E[X+Y] = E[X] + E[Y], \quad E[AXB] = AE[X]B$

Sia $X = [X_1, \dots, X_p]$ vettore casuale

Media:
$$\mu_i = E[X_i], \quad i = 1, ...p, \quad \boldsymbol{\mu}^T = [\mu_1, ..., \mu_p]$$

Varianza: (per componenti)

$$\sigma_{i,i} \equiv \sigma_i^2 = E[(X_i - \mu_i)^2] = \sum_{j=1}^p P(X_i = x_{i,j})(x_{i,j} - \mu_i)^2, \quad i = 1, \dots p$$

Covarianza tra le due variabili casuali X_i, X_j :

$$\sigma_{i,j} = E[(X_i - \mu_i)(X_j - \mu_j)], \quad i, j = 1, \dots, p$$

$$= \sum_{X_i, X_j} (x_i - \mu_i)(x_j - \mu_j) p_{i,j}(x_i, x_j)$$

 $p_{i,j}$ funzione di probabilità congiunta

In forma matriciale: matrice di varianza/covarianza della popolazione

$$\Sigma = Cov(X) = \begin{bmatrix} \sigma_{1,1} & \sigma_{1,2} & \cdots & \sigma_{1,p} \\ \sigma_{2,1} & \sigma_{2,2} & \cdots & \sigma_{2,p} \\ \vdots & \ddots & \ddots & \vdots \\ \sigma_{p,1} & \sigma_{p,2} & \cdots & \sigma_{p,p} \end{bmatrix} = E[(X - \boldsymbol{\mu})(X - \boldsymbol{\mu})^T]$$

 Σ è sim. definita positiva: $\mathbf{a}^T \Sigma \mathbf{a} > 0$ per ogni $\mathbf{a} \neq 0$ (autovalori di Σ sono reali e strettamente positivi)

Matrice di Correlazione della popolazione:

$$\boldsymbol{\rho} = (\rho_{i,j})$$
 $\rho_{i,j} = \frac{\sigma_{i,j}}{\sqrt{\sigma_{i,i}}\sqrt{\sigma_{j,j}}}$ simmetrica

- $\star X_1, X_2$ sono indipendenti $\Rightarrow \rho_{1,2} = 0$
- \star ρ misura la quantità di associazione lineare

Sia $\{\mathbf{X}_1^T, \mathbf{X}_2^T, \dots, \mathbf{X}_n^T\}$ campione di n osservazioni di vettori casuali

- \star Campione casuale: Se $\mathbf{X}_1^T, \mathbf{X}_2^T, \dots, \mathbf{X}_n^T$ sono osservazioni indipendenti di una stessa funzione densità composta $f(\mathbf{x}) = f(x_1, x_2, \dots, x_p)$
- ⇒ le misure da prove diverse non devono influenzarsi reciprocamente
- * Stimatore corretto: Una statistica \mathbf{a} è uno stimatore corretto (o unbiased) della variabile aleatoria $\boldsymbol{\alpha}$ se $E(\mathbf{a}) = \boldsymbol{\alpha}$

Supp. $\mathbf{X}_1^T, \mathbf{X}_2^T, \dots, \mathbf{X}_n^T$ osservazioni indipendenti di una popolazione con media $\pmb{\mu}$ e matrice di covarianza Σ

Statistiche campionarie:

- $\bar{\mathbf{X}}$ è uno stimatore corretto di $\boldsymbol{\mu}$: $E(\bar{\mathbf{X}}) = \mu$
- La Matrice di covarianza di $\bar{\mathbf{X}}$ è: $Cov(\bar{\mathbf{X}}) = \frac{1}{n}\Sigma$
- S_n stimatore distorto (biased) di Σ : $E(S_n) = \frac{n-1}{n} \Sigma$
- $\Rightarrow \frac{n}{n-1}S_n$ stimatore corretto (unbiased) di $\Sigma : E(\frac{n}{n-1}S_n) = \Sigma$

$$S = \frac{n}{n-1} S_n$$

La distribuzione normale multivariata

Richiamo dal caso univariato: funzione di densità

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \qquad -\infty < x < +\infty$$

 $\frac{1}{\sqrt{2\pi\sigma^2}}$ costante di normalizzazione (per Probabilità=1)

 μ media, σ^2 varianza della popolazione

 $\mathcal{N}(\mu, \sigma^2)$: insieme delle variabili casuali che seguono tale distribuzione

Estensione al caso multidimensionale

Osservazione:

$$\left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1}(x-\mu)$$

Nel caso di **x** vettore casuale:

$$(\mathbf{x} - \boldsymbol{\mu}) \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})^T$$
 $\boldsymbol{\mu} \in \mathbb{R}^p$ valore atteso di \mathbf{x}

Fattore di normalizzazione per funzione di densità: $\frac{1}{\sqrt{(2\pi)^p |\Sigma|}}$ $(|\Sigma| = \det \Sigma)$

$$\Rightarrow f(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^p |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})\Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})^T} - \infty < x_i < \infty$$

 $\mathcal{N}_p(\boldsymbol{\mu}, \Sigma)$ insieme delle variabili con f come funzione densità

Alcune proprietà

variabili casuali normali X_1, X_2 non sono correlate (Σ diagonale)

$$\Rightarrow f(\mathbf{x}) = f(x_1) \cdot f(x_2)$$

OSS: L'insieme delle x tali che

$$(\mathbf{x} - \boldsymbol{\mu}) \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})^T = c^2$$

con c costante è ellissoide centrato in $\boldsymbol{\mu}$ ed assi $\pm c\sqrt{\lambda_i}\mathbf{v}_i$

es.
$$\sigma_{1,2} = 0 \implies \frac{(x_1 - \mu_1)^2}{\sigma_{1,1}} + \frac{(x_2 - \mu_2)^2}{\sigma_{2,2}} = c^2$$

OSS: Se $\sigma_{1,1} = \sigma_{2,2}$ allora il valore di $\sigma_{1,2}$ cambia la forma del grafico

