MATH230: Tutorial Eight

Curry Howard Correspondence

Key ideas

- Write well-typed programs simple type theory,
- Interpret programs as proofs of propositions,
- Compare computation and proof-simplification.

Relevant lectures: Lectures x,y, and z Relevant reading: $L\exists \forall N$ Chapters 3,4

Hand in exercises:

Due Friday @ 5pm to the tutor, or to lecturer.

Discussion Questions

1. Show the following type is inhabited in the given local context:

$$f: P \to Q \vdash P \to (P \times Q)$$

2. Show the following type is inhabited in the given local context:

$$P \vdash \neg \neg P$$

3. Show the following type is inhabited in the given local context:

$$(P \times Q) + R \vdash (P + R) \times (Q + R)$$

Tutorial Exercises

1. This exercise breaks the proof that the following type is inhabited

$$\vdash (P \to Q) \to (\neg Q \to \neg P)$$

into steps to show what's happening when local variables are introduced.

- (a) Using local variables (much like temporary hypotheses) introduce as many terms as possible into the local context (left of the turnstile ⊢) to get a new sequent. Proof that this type is inhabited in the local context will ultimately lead to a proof that the original type is inhabited.
 - (!) Remember $\neg P \equiv P \rightarrow \bot$.
- (b) Prove the following type is inhabited in the stated syntax

$$f: P \to Q, \ q: \neg Q, \ p: P \vdash \bot$$

- (c) Extend the typing derivation above, through the use of λ abstraction, to a proof that the original type is inhabited.
- 2. Each sequent below defines a local context (terms to the left of the ⊢ turnstile) and a goal (the type on the right of the ⊢ turnstile) Using the terms of the local context, show that the goal is inhabited.
 - (a) $f: (P \times Q) \to R \vdash P \to (Q \to R)$
 - (b) $f: P \to (Q \to R) \vdash (P \times Q) \to R$
 - (c) $t: \neg P + \neg Q \vdash \neg (P \times Q)$
 - (d) $f : \neg (P+Q) \vdash \neg P \times \neg Q$
 - (e) $t: \neg P \times \neg Q \vdash \neg (P+Q)$
 - (f) $f: P \to Q, \ g: Q \to R \vdash P \to R$
 - (g) t: P+Q, $f: P \to R$, $g: Q \to S \vdash R+S$
 - (h) $f: P \to R$, $g: Q \to S$, $t: \neg R + \neg S \vdash \neg P + \neg Q$
 - (i) p:P, $f:\neg P \vdash \neg Q$
 - (j) $f: P \to Q, g: P \to \neg Q \vdash \neg P$
- 3. This exercise shows you an example of a general observation first made by William Tait, relating the simplifications of proofs and the process of computation in the λ -calculus.

Consider the following proof of the theorem

$$\frac{\overline{A \wedge B}}{\underline{B}} \stackrel{1}{\wedge E_R} \qquad \frac{\overline{A \wedge B}}{\underline{A}} \stackrel{1}{\wedge L} \\
\frac{B \wedge A}{A \wedge B \rightarrow B} \stackrel{A}{\wedge E_L} \\
\frac{B \wedge A}{A \wedge B \rightarrow B} \stackrel{\rightarrow}{\rightarrow}, 1$$

2

- (a) Determine the corresponding proof-object for this proof.
- (b) Why does the proof-object have a redex in it?

- (c) Perform the β -reduction on the proof object from (a).
- (d) What proof does the reduced proof-object correspond to?