

Laborübung 1

Elektroniklabor

Erstellt von Kefer Thomas Laichner Moritz

HTL Anichstraße Abteilung Wirtschaft und Betriebsinformatik

Inhaltsverzeichnis

Idee	3
Anwendungen	3
Neue Geräte	2
Aufbau	4
Grenzfrequenz	4
Zeigerdiagramm	5
Schaltung Hochpass	.6
Schaltung Tiefpass	9
Oszilloskop-Grafen	12

Idee

Die Idee der Laborübung war, den Aufbau und die elektrischen Eigenschaften von

einem Hoch- und Tiefpass zu analysieren. Die Schaltungen dienen dazu, dass nur

bestimmte Frequenzbereiche passieren können, bzw. Frequenzbereiche

herausgefiltert werden.

Anwendung

Hoch- und Tiefpässe finden in vielen Gebieten eine Rolle, etwa in der elektronisch-

verstärkten Akustik. Dort besteht ein direkter Zusammenhang mit der Tonfrequenz

und der Spannungs-Frequenz. Für tiefe Töne wird ein Tiefpass benötigt um eine gute

Akustik zu erzeugen. Selbiges trifft für hohe Töne mit Hochpässen zu. Weiters

existieren auch in der Musik "Mitteltöne" genannt, wo zu hohe und zu tiefe

Frequenzen "herausgeschnitten" werden und somit die dazwischen liegenden

Frequenzen passieren dürfen.

Neue Geräte

Oszilloskop: Dieses Gerät misst, genauso wie ein Multimeter die Spannung und die

Stromstärke, doch zeichnet es zusätzlich einen zeitlichen Verlauf auf und generiert

somit einen Graphen, der die gemessene Größe in Abhängigkeit der Zeit stellt. Damit

lassen sich auch digitale Signale und Funktionen analysieren und messen.

Frequenzgenerator: Dieses Gerät dient dazu eine Funktion zu generieren. Eine

Funktion ist eine Schwingung mit bestimmter Form (Sinus, Sägezahn, Rechteck) und

bestimmter Frequenz erzeugen. Somit ist dieses Gerät auch eine Spannungsquelle.

Seite 3 von 13 Elektroniklabor Kefer Thomas - Laichner Moritz

Aufbau

Als Widerstände wurden Potentiometer mit bestimmten, einrastenden Stellungen verwendet, zusammen mit einer C-Dekade. Die C-Dekade ist das Kondensator-Bauelement und wird beim Hochpass vor dem Ohm'schen Widerstand, bzw. beim Tiefpass nach dem Widerstand geschalten. Die Wechselspannung wurde mithilfe eines Funktionsgenerators erstellt, und betrug von Spitze zu Spitze (engl. Peek-to-Peek; abgekürzt: PP) 10V. Weiters wurde ein Oszilloskop angeschlossen, um Spannungen und Frequenzen messen zu können.

Benutzt wurden die Einstellungen wie folgt:

Eingangsspannung U1	10V Peek-to-Peek
Schwingungsform	Sinus
Kondensator	0,1 μF
Ohm'scher Widerstand	1 kΩ

Grenzfrequenz

Die Grenzfrequenz ist die Frequenz, an dem die Schaltung eine Phasenverschiebung von 45° aufweist. Die Formel dafür lautet $R=X_C$

Erweitern wir dies nun, folgt $R = \frac{1}{2\pi * f * c}$

Da die Frequenz gesucht ist, formen wir auf f_G um $f_G = \frac{1}{2\pi * R * C}$

Mit Einsetzen der Werte erhalten wir $f_G = \frac{1}{2\pi * 1 k\Omega * 0,1 \mu F} = 1591,55 Hz$

Zeigerdiagramm

Aus dem Zeigerdiagramm ist graphisch leicht ersichtlich, wie sich die Phasenverschiebung bei einer bestimmten Frequenz verhält. Im ausgeführten Diagramm bei der Grenzfrequenz von 1591,55Hz. Hierbei sollte die Phasenverschiebung 45° betragen. Achtung: Bei einem Winkel von 45° sind der Widerstand und der Blindwiderstand gleich groß!

Zur Berechnung des Winkels benötigen wir die Formel

 $U2=\sqrt{\Box}$ um die resultierende Spannung zu berechnen. Damit kann berechnet werden:

$$\varphi = atan(\frac{7,2 V}{7,2 V}) = atan(1) = 45^{\circ}$$

Schaltung Hochpass

Nach einem C-Bauteil folgt ein Widerstand, bzw die Erdung. Hier zu sehen ist auch der Anschluss an das Oszilloskop, an dem die Eingangsspannung und -Frequenz gemessen wird, sowie die Ausgangsspannung- und Frequenz.

Dabei ergaben Messwerte:

sich folgende

Anm.: Gerechnet sind die Werte $\frac{f}{f_G}$, v, v[dB]und $\varphi[\circ]$

f [Hz]	U1 [V]	U2 [V]	V	v[dB]	φ [°]	f/fg
100	10	0,64	0,06	-23,88	90,00	0,0628
200	10	1,24	0,12	-18,13	81,00	0,1257
300	10	1,80	0,18	-14,89	77,00	0,1885
400	10	2,40	0,24	-12,40	78,00	0,2513
500	10	2,90	0,29	-10,75	72,00	0,3142
600	10	3,60	0,36	-8,87	70,00	0,3770
700	10	4,20	0,42	-7,54	68,00	0,4398
800	10	4,40	0,44	-7,13	64,00	0,5027
900	10	5,00	0,50	-6,02	62,00	0,5655

1000	10	5,20	0,52	-5,68	59,00	0,6283
1100	10	5,80	0,58	-4,73	57,00	0,6912
1200	10	6,00	0,60	-4,44	55,00	0,7540
1300	10	6,20	0,62	-4,15	52,00	0,8168
1400	10	6,60	0,66	-3,61	50,00	0,8796
1500	10	6,80	0,68	-3,35	48,00	0,9425
1592,54						
9	10	7,00	0,70	-3,10	45,00	1,0000
1600	10	7,00	0,70	-3,10	44,00	1,0053
1700	10	7,40	0,74	-2,62	44,00	1,0681
1800	10	7,40	0,74	-2,62	41,00	1,1310
1900	10	7,60	0,76	-2,38	40,00	1,1938
2000	10	7,80	0,78	-2,16	37,00	1,2566
2100	10	7,90	0,79	-2,05	36,00	1,3195
2200	10	8,00	0,80	-1,94	34,00	1,3823
2300	10	8,20	0,82	-1,72	34,00	1,4451
2400	10	8,20	0,82	-1,72	32,00	1,5080
2500	10	8,40	0,84	-1,51	32,00	1,5708
2600 2700	10 10	8,40	0,84	-1,51	32,00	1,6336 1,6965
2800	10	8,60	0,86	-1,31	30,00	1,7593
2900	10	8,60	0,86	-1,31	29,00	1,8221
3000	10	8,80	0,88	-1,11	28,00	1,8850
3100	10	0,00	0,00	1,11	20,00	1,9478
3200	10		0,00			2,0106
3300	10		0,00			2,0735
3400	10		0,00			2,1363
3500	10	9,00	0,90	-0,92	21,00	2,1991
3600	10		0,00			2,2619
3700	10		0,00			2,3248
3800	10		0,00			2,3876
3900	10		0,00			2,4504
4000	10	9,20	0,92	-0,72	20,00	2,5133
4250	10		0,00			2,6704
4500	10		0,00			2,8274
4750	10		0,00			2,9845
5000	10	9,20	0,92	-0,72	20,00	3,1416
5500	10		0,00			3,4558

6000	10	9,40	0,94	-0,54	15,00	3,7699
6500	10		0,00			4,0841
7000	10		0,00			4,3982
8000	10	9,60	0,96	-0,35	11,00	5,0265
9000	10		0,00			5,6549
10000	10	9,60	0,96	-0,35	8,00	6,2832
15000	10	9,70	0,97	-0,26	6,00	9,4248
20000	10		0,00			12,5664
30000	10	9,80	0,98	-0,18	2,00	18,8496
50000	10	9,80	0,98	-0,18	0,00	31,4159

Amplitudendiagramm

Phasendiagram

Schaltung Tiefpass

Nach einem Widerstand folgt ein C-bauteil, bzw die Erdung. Hier zu sehen ist auch der Anschluss an das Oszilloskop, an dem die Eingangsspannung und -Frequenz gemessen wird, sowie die Ausgangsspannung- und Frequenz.

Dabei ergaben Messwerte:

Anm.: Gerechnet sind die Werte $\frac{f}{f_G}$, v, v[dB]und $\varphi[^\circ]$

f [Hz]	U1 [V]	U2 [V]	V	v [dB]	Phi [°]	f/fg
100	10	10,40	1,00	0,00	2,88	0,0628
200	10	10,40	1,00	0,00		0,1257
300	10	10,20	1,00	0,00		0,1885
400	10	10,00	0,98	-0,17		0,2513
500	10	9,90	0,97	-0,26	16,85	0,3142
600	10	9,70	0,95	-0,44		0,3770
700	10	9,40	0,92	-0,71		0,4398
800	10	9,20	0,90	-0,90		0,5027
900	10	9,00	0,88	-1,09		0,5655
1000	10	8,80	0,86	-1,28	31,39	0,6283

1100	10	8,40	0,82	-1,69		0,6912
1200	10	8,20	0,80	-1,90		0,7540
1300	10	8,00	0,78	-2,11		0,8168
1400	10	7,80	0,76	-2,33		0,8796
1500	10	7,60	0,75	-2,56	43,63	0,9425
1591,54						
9	10	7,20	0,72	-2,91	45,26	1,0000
1600	10	7,10	0,71	-3,03		1,0053
1700	10	7,00	0,69	-3,27		1,0681
1800	10	6,80	0,67	-3,52		1,1310
1900	10	6,70	0,66	-3,65		1,1938
2000	10	6,50	0,64	-3,91	50,11	1,2566
2100	10	6,20	0,61	-4,32		1,3195
2200	10	6,10	0,60	-4,47		1,3823
2300	10	6,00	0,59	-4,61		1,4451
2400	10	5,80	0,57	-4,90		1,5080
2500	10	5,60	0,55	-5,21	55,44	1,5708
2600	10	5,50	0,54	-5,36		1,6336
2700	10	5,40	0,53	-5,52		1,6965
2800	10	5,20	0,51	-5,85		1,7593
2900	10	5,10	0,50	-6,02		1,8221
3000	10	5,00	0,49	-6,19	59,62	1,8850
3100	10	4,80	0,47	-6,55		1,9478
3200	10	4,70	0,46	-6,73		2,0106
3300	10	4,60	0,45	-6,92		2,0735
3400	10	4,40	0,43	-7,30		2,1363
3500	10	4,40	0,43	-7,30	63,50	2,1991
3600	10	4,30	0,42	-7,50		2,2619
3700	10	4,20	0,41	-7,71		2,3248
3800	10	4,00	0,39	-8,13		2,3876
3900	10	4,00	0,39	-8,13		2,4504
4000	10	3,90	0,38	-8,35	67,97	2,5133
4250	10	3,60	0,35	-9,05		2,6704
4500	10	3,50	0,34	-9,29		2,8274
4750	10	3,40	0,33	-9,54		2,9845
5000	10	3,20	0,31	-10,07	75,60	3,1416
5500	10	2,90	0,28	-10,92		3,4558
6000	10	2,70	0,26	-11,54		3,7699

6500	10	2,50	0,25	-12,21		4,0841
7000	10	2,40	0,24	-12,57	78,62	4,3982
8000	10	2,00	0,20	-14,15	78,34	5,0265
9000	10	1,90	0,19	-14,60		5,6549
10000	10	1,80	0,18	-15,07	77,76	6,2832
15000	10	1,20	0,12	-18,59		9,4248
20000	10	0,90	0,09	-21,09		12,5664
30000	10	0,60	0,06	-24,61		18,8496
50000	10	0,40	0,04	-28,13		31,4159

Amplitudendiagramm

Phasendiagram

Oszilloskop-Grafen

Rechteckförmige Eingangsspannung

