HW₆

PB21111686_赵卓

T5

• R的值是0100

T8

•
$$E(p) = Np(1-p)^{N-1}$$

 $E'(p) = N(1-p)^{N-1} - Np(N-1)(1-p)^{N-2}$
 $= N(1-p)^{N-2}((1-p) - p(N-1))$
 $\therefore E'(p) = 0 \Rightarrow p_{max} = \frac{1}{N}$
• $E(p_{max}) = N\frac{1}{N}(1-\frac{1}{N})^{N-1} = (1-\frac{1}{N})^{N-1} = \frac{(1-\frac{1}{N})^N}{1-\frac{1}{N}}$
 $\lim_{N\to\infty} (1-\frac{1}{N}) = 1$
 $\lim_{N\to\infty} (1-\frac{1}{N})^N = \frac{1}{e}$
 $\therefore \lim_{N\to\infty} E(p_{max}) = \frac{1}{e}$

T11

- A在一个节点成功的概率 $p(A) = (1-p)^3 p$ ∴ A在第五个节点首次成功的概率 $p = (1-p(A))^4 p(A) = p(1-p)^3 (1-(1-p)^3 p)^4$
- A节点在时隙4的成功概率为 $p(A) = (1-p)^3 p$ B节点在时隙4的成功概率为 $p(B) = (1-p)^3 p$ C节点在时隙4的成功概率为 $p(C) = (1-p)^3 p$ D节点在时隙4的成功概率为 $p(D) = (1-p)^3 p$ 因此某个节点在时隙4成功概率 $p_{A,B,C,D} = p(A) + p(B) + p(C) + p(D) = 4p(1-p)^3$

$$p(A) + p(B) + p(C) + p(D) = 4p(1-p)^3$$

- 每个时隙出现成功的概率 $p_{succeed} = p_{A,B,C,D}$ 因此在时隙3中出现首个成功的概率 $p_{first-succeed-3} = (1-p_{succeed})^2 p_{succeed}$ = $4p(1-4(1-p)^3p)^2(1-p)^3$
- $\dot{\mathfrak{R}} = p_{succeed} = 4p(1-p)^3$

T23

• 总共9+2=11个结点以100Mps发送数据,因此最大总聚合吞吐量MAX=11*100Mps=1100Mps

T24

• 每个集线器的速率为100Mps,位于一个碰撞域中 因此最大聚合吞吐量为三个集线器和两台服务器的总和 即最大聚合吞吐量MAX = 3*100Mps + 2*100Mps = 500Mps

T25

• 由于将所有交换器都换成集线器,因此只有一个碰撞域,即最大聚合吞吐量MAX = 100Mps

T26

• 结果如下:

行为	交换机状态	链路包去向	说明
B向E发送一个帧	交换机获取与B的MAC地址对应的接口	A,C,D,E,F	由于交换机表为空, 所以交换机不知道E的MAC地址对应的接口
E向B回答一个帧	交换机获取与E的MAC地址对应的接口	В	交换机已经知道了与B的MAC地址对应的接口
A向B发送一个帧	交换机获取与A的MAC地址对应的接口	В	交换机已经知道了与B的MAC地址对应的接口
B向A回答一个帧	交换机状态保持不变	А	交换机已经知道了与A的MAC地址对应的接口