

Общероссийский математический портал

Н. Н. Красовский, О гладком сечении дисперсивной динамической системы, *Изв. вузов. Матем.*, 1957, номер 1, 167–173

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 176.52.29.84

5 марта 2023 г., 23:45:13

Н. Н. Красовский

О ГЛАДКОМ СЕЧЕНИИ ДИСПЕРСИВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЫ

Рассмотрим систему дифференциальных уравнений

$$\frac{dx_i}{dt} = X_i(x_1, ..., x_n) \quad (i = 1, ..., n), \tag{1}$$

где функции X_i определены в области G евклидова пространства E_n и в каждой ограниченной области $H_{\mu}(\overline{H}_{\mu} \subset G)$ удовлетворяют условиям *

$$|X_{l}(x_{1}'', \ldots, x_{n}'') - X_{l}(x_{1}', \ldots, x_{n}')| \leqslant L_{\mu} ||x'' - x'||,$$
 (2)

$$(x = \{x_1, ..., x_n\}, ||x|| = (x_1^2 + ... + x_n^2)^{1/2}, L_{\mu} = \text{const}, i = 1, ..., n).$$

При этих условиях точка $x_0 = \{x_{10}, \dots, x_{n0}\} \in G$ определяет единственное решение $x_i(x_{10}, \dots, x_{n0}, t)$ $(i = 1, \dots, n)$ (или сокращенно — $x(x_0, t)$), определенное в G при $t_1 < t < t_2$ $(t_1 < 0, 0 < t_2)$. Совокупность траекторий $x(x_0, t)$, заполняющих G, образует динамическую ность граектории $x(x_0, t)$, заполняющих G, образует ошнимическую систему ([1], стр. 26), если все траектории определены в G при $-\infty < t < \infty$, что и будем предполагать ниже. Введем обозначения: 1) $U(x_0, \delta)$ — множество точек $\|x - x_0\| < \delta$. 2) f[H, t] — множество точек $x(x_0, t)$ при $x_0 \in H$.

Динамическая система называется дисперсивной ([1] стр. 429), [2], если для любых точек x_0' , x_0'' из G существуют числа $\delta' > 0$, $\delta'' > 0$ и T такие, что $U(x_0'', \delta'') \cap f[U(x_0', \delta'), t]$ пусто при всех $|t| \gg T$. В теории дисперсивных систем, имеющей в частности приложения в задачах устойчивости по Ляпунову [3, 2], одно из центральных мест занимает проблема существования гладкого сечения. Многообразие $S \subseteq G$ называется сечением класса C° ($\circ = 1, 2, ...$) системы (1) [2], если: 1) S есть поверхность v(x) = const, где v - функция класса C в G **, 2) каждая траектория $x(x_0, t)$ при $x_0 \in G$ пересекает S в одной и только одной точке, 3) на S выполняется неравенство

$$\frac{dv\left(x\left(x_{0},t\right)\right)}{dt} = \sum_{i=1}^{n} \frac{dv}{dx_{i}} X_{i} \neq 0. \tag{3}$$

В работе [2] доказано, что дисперсивная система (1) имеет сечение S класса C^{σ} , если X_i имеют класс C^{σ} . В заметке [4] дано упрощенное доказательство этого факта. Цель настоящей заметки доказать существование сколь угодно гладкого сечения, предполагая

^{*} Символом \overline{H} будем обозначать замкнутую область H, символами $H_1 U H_2$, $H_1 \cap H_2$, $H_1 \setminus H_2$ — сумму, пересечение и разность множеств H_1 , H_2 — соответственно. ** T. е. υ имеет в области G непрерывные частные производные до σ -го порядка включительно.

лишь, что функции X_i удовлетворяют условиям (2). * (термин "сколь угодно гладкое сечение будем понимать в том смысле, что функция $m{v}$ имеет в области G производные всех порядков).

T e o p e м a. Дисперсивная динамическая система (1), где функции X_i удовлетворяют условиям (2), имеет сколь угодно гладкое сече-

Пусть дуга $x(x_0, t) \in H_{\mu}$ при Докажем сначала одну лемму.

 $0\leqslant t\leqslant T$ (H_{μ} — ограничена и $\overline{H}_{\mu}\subset G$). Лемма. Для любого $\gamma>0$ существует функция $V(x_1,\ldots,x_n)$, непрерывная в С вместе со всеми частными производными и удовлетворяющая условиям

$$V(x) = \mathbf{0} \text{ при } \|x - x(x_0, t)\| > \gamma \ (0 \leqslant t \leqslant T), \tag{4}$$

$$\frac{dV}{dt} = \sum_{i=1}^{n} \frac{dV}{dx_i} X_i > 0$$

при

$$\|\mathbf{x} - \mathbf{x}(x_0, t)\| < \alpha \ (0 \leqslant t \leqslant T) \text{ и } \mathbf{x} \text{ не } \in U[\mathbf{x}(x_0, T), \gamma]$$

$$(\alpha = \alpha(x_0) = \text{const}, \alpha > 0),$$
(5)

$$\frac{dV}{dt} \geqslant 0 \text{ при } x \in \{G \setminus U[x(x_0, T), \gamma]\}. \tag{6}$$

(Символ dV/dt в (5) и (6) означает полную производную по времени $dV[x(x_0,t)]/dt$ вдоль траектории $x(x_0,t)$).

Доказательство леммы. Дисперсивная система (1) не имеет, очевидно, особых точек и периодических решений, кроме того, величины dx_i/dt $(i=1,\ldots,n)$ в области H_{μ} равномерно ограничены, поэтому можно указать числа $\tau > 0$ и $\eta > 0$ (γ) такие, что $x(x_0,t) \in H_\mu$ при $-\tau \leqslant t \leqslant T + \tau$; $x(x_0,t) \in U[x(x_0,T),\gamma]$ при $T \leqslant t \leqslant T + \tau$; множество точек $\{\|x - x(x_0,t)\| < \eta$ при $T \leqslant t \leqslant T + \tau\}$ не пересекается с множеством точек $\{\|x - x(x_0,t)\| < \eta$ при $-\tau \leqslant t \leqslant T$ и x не $\{U[x(x_0, T), \gamma]\}^{**}$.

Рассмотрим многочлены $y(t) = \langle y_1(t), ..., y_n(t) \rangle$, удовлетворяющие неравенствам

$$||x(x_0, t) - y(t)|| < \varepsilon, \left| \frac{dx(x_0, t)}{dt} - \frac{dy}{dt} \right| < \varepsilon$$
 (7)

при $-\tau \leqslant t \leqslant T + \tau$, где оценка числа $\epsilon > 0$ будет дана ниже. Определим вспомогательную функцию w(x,t) формулами

$$w(x,t) = (t+\tau)^{p} \exp\{[(t+\tau)(t-T-\tau)]^{-1}\} \times \exp\{[\|x-y(t)\|^{2} \exp(-2Qt) - \beta^{2}]^{-1}\}$$
(8)

при

$$-\tau < t < T + \tau, \|x - y(t)\| < \beta \exp Qt, \tag{9}$$

$$w(x, t) = 0$$
 при остальных x и t . (10)

^{*} В работе [2] система (1) рассматривается с общей точки зрения на многообразии класса С. Метод доказательства, предложенный ниже, можно распространить

^{**} Будем полагать еще $\eta > 0$ столь малым, что η — окрестность дуги $x(x_0, t)$ (— $\tau \leqslant t \leqslant T + \tau$) лежит в H_μ , а η — окрестность $x(x_0, t)$ ($T \leqslant t \leqslant T + \tau$) — в $U[x(x_0, T), \gamma].$

Здесь

$$Q = 8n L_{\mu}$$
, $\beta = \frac{\eta}{2} \exp\left[-Q(T+\tau)\right]$,

р — целое число, удовлетворяющее неравенству

$$p > \frac{(T+\tau)^2}{\tau^2 \left(\frac{T}{2} + \tau\right)^2} + 8Q\left(1 + \frac{n}{\beta}\right) \exp^2 2Q(T+\tau). \tag{11}$$

Отметим свойства w(x,t), полагая, что в условиях $(7) \epsilon < \eta/2$. а) Функция w непрерывна и имеет непрерывные частные производные всех порядков при всех x и t. Действительно, в области (9) все функции, входящие в (8), этим свойством обладают, но и на границе области (9) эти функции также бесконечно дифференцируемы, так как функция

$$\varphi(r) = \exp\{[(r-a)(r-b)]^{-1}\}\ (a < r < b), \ \varphi(r) = 0 \ (r \le a, \ b \le r)$$

непрерывно дифференцируема по r произвольное число раз, что проверяется раскрытием неопределенностей при r=a+0 и r=b-0. b) w=0 при $\|x-x(x_0,t)\|>\gamma$ ($0\leqslant t\leqslant T$), что следует из (7), (8) и (9) по выбору β , η , ε . c) Производная $dw/dt=\sum (\partial w/\partial x_i)X_i+\partial w/\partial t$ удовлетворяет условиям

$$\frac{dw}{dt} > 0 \operatorname{при} \begin{pmatrix} \|x - x(x_0, t)\| < \alpha & (-\tau < t < T) \\ u & x \operatorname{He} \in U[x(x_0, T), \gamma], \alpha > 0 - \operatorname{const} \end{pmatrix}, \quad (12)$$

$$\frac{dw}{dt} \geqslant 0 \text{ при } x \text{ не } \in \{G \setminus U[x(x_0, T), \gamma]\},$$
 (13)

если только в в условиях (7) выбрано достаточно малым. Докажем это. В области (8) имеем

$$\frac{dw}{dt} = w \left\{ \frac{p}{t+\tau} + \frac{T-2t}{(t+\tau)^2 (t-T-\tau)^2} + \right.$$

$$+ 2 \left[Q \| x - y(t) \|^2 - \sum_{i=1}^{n} (x_i - y_i(t)) \left(\frac{dx_i}{dt} - \frac{dy_i(t)}{dt} \right) \exp\left(-2Qt \right) \times \right.$$

$$\times \left[\| x - y(t) \|^2 \exp\left(-2Qt \right) - \beta^2 \right]^{-2} \right\}. \tag{14}$$

Из неравенства (11) следует, что

$$\frac{dw}{dt} > \frac{pw}{2(t+\tau)} \text{ при } -\tau < t < T, \|x-y(t)\| \leqslant \frac{\beta}{2} \exp Qt.$$

Следовательно, если кроме «< 1/2 потребовать

$$\varepsilon < \frac{\beta}{4} \exp{(-2Q\tau)},$$

то при

$$\alpha = \frac{\beta}{4} \exp\left(-2Q\tau\right)$$

условие (13) будет выполнено.

Рассмотрим выражение

$$\psi = Q \|x - y(t)\|^{2} - \sum_{i=1}^{n} (x_{i} - y_{i}(t)) \left(\frac{dx_{i}}{dt} - \frac{dy_{i}(t)}{dt}\right)$$

$$-\tau < t < T, \frac{\beta}{2} \exp Qt < ||x - y(t)|| < \beta \exp Qt.$$
 (15)

Имеем оценку

$$\left|\frac{dx_{i}}{dt} - \frac{dy_{i}}{dt}\right| \leqslant \left|\frac{dx_{i}}{dt} - \frac{dx_{i}(x_{0}, t)}{dt}\right| + \left|\frac{dx_{i}(x_{0}, t)}{dt} - \frac{dy_{i}}{dt}\right| \leqslant$$

$$\leqslant |X_{i}(x) - X_{i}(x(x_{0}, t))| + \epsilon \leqslant L_{\mu} ||x - x(x_{0}, t)|| + \epsilon \leqslant$$

$$\leqslant \epsilon + L_{\mu} [\epsilon + \beta \exp Qt].$$

Следовательно, в области (15) имеем оценку

$$\psi \gg \frac{Q\beta^2}{4} \exp 2Qt - n\beta \exp Qt \left(\varepsilon + L_{\mu} \varepsilon + L_{\mu} \beta \exp Qt\right). \tag{16}$$

Из неравенства (16) по выбору Q следует, что при $\epsilon > 0$ достаточно малом и в области (15) будет dw/dt > 0, но последнее и означает, что выполняется условие (13). Итак, свойства а), b), c) функции w доказаны.

Перейдем теперь к построению функции V(x). Рассмотрим последовательность функций

$$z_{l}(x,t) = \frac{1}{l} \sum_{m=-\infty}^{m=\infty} w\left(x, t - \frac{m\theta}{l}\right) \ (l = 1, 2, ...)$$
 (17)

 $(\vartheta > 0$ — фиксированное число, l = 1, 2, ...). Очевидно, для функций z_l сохраняются свойства a), b), c) функций w. Более того, частные производные функций z_l ограничены равностепенно по l (каждая производная — своей постоянной). Действительно, если

$$\mid \partial^{\sigma}w/\partial x_{1}^{\sigma_{1}}...\partial x_{n}^{\sigma_{n}}\partial t^{\sigma_{n+1}}\mid < N_{\sigma}$$
, to $\mid \partial^{\sigma}z_{l}/\partial x_{1}^{\sigma_{1}}...\partial x_{n}^{\sigma_{n}}\partial t^{\sigma_{n+1}}\mid < K_{\sigma}N_{\sigma}$,

где K_{σ} не зависит от l, так как, хотя с ростом l число слагаемых в (17), отличных от нуля в данной точке, растет пропорционально l, сумма приобретает множитель 1/l. Аналогичным рассуждением проверяется для каждой точки x из области (12) существование постоянной $\Delta(x) > 0$ такой, что в этой точке

$$dz_l/dt > \Delta(x)$$
 при всех $l > l(x)$. (18)

Кроме того, функции $z_l(x,t)$ являются очевидно периодическими функциями t периода ϑ/l . Функции z_l и $\partial^\sigma z_l/\partial x_1^{\sigma_1}...\partial x_n^{\sigma_n}\partial t^{\sigma_{n+1}}$ образуют семейства $M(\sigma_1,\ldots,\sigma_{n+1})$ равномерно ограниченных и равностепенно непрерывных функций. В каждой подпоследовательности семейства $M(\sigma_1,\ldots,\sigma_{n+1})$ есть поэтому равномерно сходящаяся подпоследовательность. Следовательно, можно выделить диагональную подпоследовательность $z_k(k=l_v,v=1,2,\ldots)$ такую, что функции z_k и все их производные будут сходиться равномерно к некоторой функции V и ее производным *. Покажем, что функция V удовлетворяет условиям леммы. Действительно, так как период функций z_k , по времени равный ϑ/k , стремится к нулю с ростом k, то функция V не зависит от t, т. е. $V = V(x_1,\ldots,x_n)$. Из равномерной сходимости z_k и $\partial^\sigma z_k/\partial x_1^{\sigma_1}\ldots\partial x_n^{\sigma_n}\partial t^{\sigma_{n+1}}$ следует непрерывность и бесконечная дифференцируемость V. Выполнение условий (4), (5), (6) следует из заме-

^{*} Естественно, что мера равномерности сходимости для каждой последовательности $\partial^{\sigma} z_h / \partial x_1^{\sigma_1} ... \partial x_n^{\sigma_n} \partial t^{\sigma_n} + 1$ может оказаться своей.

чания, что V и dV/dt есть пределы функций z_k и dz_k/dt , которые в силу свойств a), b), c) этим условиям удовлетворяют, причем в силу (18) условие c) выполняется в каждой точке x из (12) равномерно по k, при всех достаточно больших k. Лемма доказана.

Доказательство теоремы. Пусть $\{G_m\}$ (m=1, 2, ...)— последовательность ограниченных областей, удовлетворяющих условиям: 1) $\overline{G}_m \subset G$, 2) $\overline{G}_m \subset G_{m+1}$, 3) $\lim G_m = G$ при $m \to \infty$, 4) для каждого k=1, 2, ... существует число T_k такое, что $f[\overline{G}_{2k}, t] \subset G_{2k+1}$ при $0 \le t \le T_k$ и $f[\overline{G}_{2k}, t] \cap \overline{G}_{2k}$ пусто при $t > T_k$ (последнее возможно именно вследствие дисперсивности системы.)

Пусть $x_0 \in G_1$. По лемме существует функция V(x), удовлетворяющая условиям (4)-(6), где $T=T_1$, и число $\gamma>0$ можно считать столь малым, что $U(x_0,\gamma) \subseteq G_2$, {множество $\|x-x(x_0,t)\| \leqslant \gamma$ при $0 \leqslant t \leqslant T_1$ $\subset \{f[G_2,t]$ при $0 \leqslant t \leqslant T_1\} \subseteq G_3$ и

$$U[x(x_0, T_1), \gamma] \subset f[G_2, T_1] \subset G_3$$
.

Вследствие компактности \overline{G}_1 существует конечное множество точек из \overline{G}_1 (которые обозначим $x_0^{(q)}(q=1,\ldots,N_1)$), удовлетворяющих перечисленным выше условиям, и таких, что

$$\overline{G}_1 \subset \bigcup_q U[\mathbf{x}_0^{(q)}, a_q] \subset G_2,$$

$$\{f[\overline{G}_1, t] \text{ при } 0 \leqslant t \leqslant T_1\} \subset \{$$
множество $\|x - x(x_0^{(q)}, t)\| < \alpha_q$ при $q = 1, ..., N_1, 0 \leqslant t \leqslant T_1\},$

где $\alpha_q = \alpha(x_0^{(q)})$ — число из условий (5) леммы для функции $V_q(x)$, соответствующей точке $x_0^{(q)}$. Тогда функция

$$\omega_1(x) = \sum_{q=1}^{N_1} V_q(x)$$

будет удовлетворять условиям $\omega_1=0$ вне G_3 , $d\omega_1/dt>0$ при

$$x \in \left[\{f[\overline{G}_1, t] \text{ при } 0 \leqslant t \leqslant T_1\} \setminus \left(\bigcup_q U[x(x_0^{(q)}, T_1), \gamma_q] \right) \right],$$

$$d\omega_1/dt\!\geqslant\!0$$
 при $oldsymbol{x}\!\in\!\left\{ar{G}\!\!\setminus\!\!\bigcup_q\!U[x(x_0^{(q)},\,T_1),\,\gamma_q]\!
ight\}.$

Дальнейшее построение функций $\omega_k(x)$ ($k=1,\,2,\,...$) проведем по индукции.

Пусть построена функция $\omega_k(x)$, удовлетворяющая условиям: А) Функция ω_k имеет в G непрерывные частные производные всех порядков, причем существуют постоянные $P_{\sigma m}$

$$(\sigma = 1, ..., k; m = 1, 2, ..., 2k),$$

удовлетворяющие неравенствам

$$\left| \frac{\partial^{\sigma} \omega_{k}}{\partial x_{1}^{\sigma_{1}} \dots \partial x_{n}^{\sigma_{n}}} \right| < \left[1 + \frac{1}{2} + \dots + \left(\frac{1}{2} \right)^{k-\sigma} \right] P_{\sigma m} \text{ при } x \in G_{m}.$$
 (19)

В) Существуют области F_k и $R_k \subseteq G_{2k+1}$, удовлетворяющие соотношениям: $d\omega_k/dt \geqslant 0$ при $x \in \{G_{2k+1} \setminus F_k\}$, причем $f[G_{2k}, T_k] \subseteq F_k, \overline{F}_k \subseteq R_k$ и $f[R_k, t] \cap \overline{G}_{2k}$ пусто при $t \geqslant 0$.

 $C)\;d\omega_k/dt>0$ при $x\in ar{G}_{2k-1}$ си окументивно или подраждения $x\in ar{G}_{2k-1}$

D) $d\omega_k/dt > d > 0$ при $x \in \{f[\overline{F}_{k-1}, t] \cap [G_{2k+1} \setminus F_k]$ (при $0 \leqslant t \leqslant T_k)\}$. Очевидно, функция ω_1 будет удовлетворять всем этим условиям, если положить

$$F_1 = \bigcup_q U[x(x_0^{(q)}, T_1), \gamma_q].$$

Покажем, что можно построить функцию ω_{k+1} , которая также будет удовлетворять условиям A(-D). Построим сначала две вспомогательных функции $\omega_{k+1}^{(1)}$ и $\omega_{k+1}^{(2)}$.

Функция $\omega_{k+1}^{(1)}$ строится так же, как строилась функция ω_1 , с той разницей, что вместо областей G_1 , G_2 и G_3 рассматриваются соответственно G_{2k+1} , G_{2k+2} , G_{2k+3} , а число T_1 заменяется числом T_{k+1} . Умножая построенную таким образом функцию на достаточно малый постоянный положительный множитель, можно еще добиться выполнения неравенств

$$\left| \frac{\partial^{\sigma} \omega_{k+1}^{(1)}}{\partial x_1^{\sigma_1} \dots \partial x_n^{\sigma_n}} \right| < \left(\frac{1}{2} \right)^{k+1-\sigma} P_{\sigma m} \ (\sigma = 1, \dots, k; \ m = 1, \dots, 2k)$$
 (20)

при $\boldsymbol{x} \in G_m$.

Функция $\omega_{k+1}^{(2)}$ строится следующим образом: Пусть $x_0 \in \overline{F}_k$. Положив, что $H_{\mu} = \langle f[R_k, t]$ при $0 < t < T_{k+1} \rangle$, $T = T_{k+1}$, построим функцию V(x), удовлетворяющую условиям леммы, причем $\gamma > 0$ будем считать столь малым, чтобы точки x, где $V(x) \neq 0$, лежали в области H_{μ} , а

$$U[x(x_0, T_{k+1}), \gamma] \subset f[G_{2k+2}, T_{k+1}].$$

Вследствие компактности \bar{F}_k можно выбрать конечное число

$$(q=1,\ldots,N_{k+1}^{(2)})$$

точек $x_0^{(q)} \in \vec{F}_k$ таких, что

$$\overline{F}_k \subset \left\{ \bigcup_q U[\widetilde{x}_0^{(q)}, \alpha(\widetilde{x}_0^{(q)})] \right\} \subseteq R_k,$$

{множество $\|x-x(\widetilde{x}_0^{(q)},t)\|\leqslant \widetilde{\gamma}_q$ при $q=1,\ldots,N_{k+1}^{(2)},\ 0\leqslant t\leqslant T_{k+1}\}$ \subset

$$\subset \langle f[R_k,t] \text{ при } t \geqslant 0 \rangle$$
, $\langle f[\overline{F}_k,t] \text{ при } 0 \leqslant t \leqslant T_{k+1} \rangle \subset 0$

$$\subset$$
{множество $\|x-x(\widetilde{x}_0^{(q)},t)\|$ $<$ $\alpha(\widetilde{x}_0^{(q)})$ при $q=1,\ldots,N_{k+1}^{(2)},$ $0\leqslant t\leqslant T_{k+1}$,

и удовлетворяющих условиям, указанным в предыдущей фразе. Положим теперь

$$\omega_{k+1}^{(2)} = Q_{k+1} \sum_{q=1}^{N_{k+1}^{(2)}} V_q^{(2)}(x) *.$$

По построению $\omega_{k+1}^{(2)}$ ясно, что $\omega_{k+1}^{(2)} = 0$ при $x \in G_{2k}$ и, кроме того, $d\omega_{k+1}^{(2)}/dt > 0$ при

$$x \in \left[\left\{ f\left[\overline{F}_{k}, t\right] \text{ при } 0 \leqslant t \leqslant T_{k+1} \right\} \setminus \left\{ \bigcup_{q} U\left[x\left(\widetilde{x}_{0}^{(q)}, T_{k+1}\right), \widetilde{\gamma}_{q}\right] \right\} \right].$$

^{*} Здесь $V_q^{(2)}$ — функции, соответствующие по лемме точкам $x_0^{(q)}$,

Теперь выберем постоянный множитель Q_{k+1} таким образом, чтобы в области

$$\{f[\overline{F}_k, t] \text{ при } 0 \leqslant t \leqslant T_{k+1}\} \setminus \{\bigcup_q U[x(\widehat{x}_0^{(q)}, T_{k+1}), \widehat{\gamma}_q]\}$$

выполнялось неравенство

$$d\omega_{k+1}^{(2)}/dt > d + M_k$$
,

где $M_k = \max |d\omega_k/dt|$ при $x \in G_{2k+1}$. Теперь нетрудно проверить, что функция $\omega_{k+1} = \omega_k + \omega_{k+1}^{(1)} + \omega_{k+1}^{(2)}$ удовлетворяет условиям A(-D), где следует заменить k на k+1. Итак, мы построили по индукции последовательность функций ω_k , удовлетворяющих условиям A(-D).

Последовательность ω_k , равно как и последовательности из частных производных, образуют (вследствие (19)) семейства равномерно ограниченных и равностепенно непрерывных функций. Поэтому можно выделить диагональную подпоследовательность ω_{k_v} , сходящуюся равномерно к некоторой функции $v_1(x_1, \dots, x_n)$, причем производные $\partial^{\omega} \omega_k / \partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}$ также сходятся равномерно к соответствующим производным функции v_1 .

Функция v_1 , как это ясно из ее построения, удовлетворяет усло-

ВИЯМ

$$d\mathbf{v}_1/dt = \sum (\partial v_1/\partial x_i) X_i > 0$$

при $x \in G$, причем на каждой траектории $x(x_0, t)$ есть точка $t = t_1$ такая, что $dv_1(x(x_0, t))/dt > d > 0$ при $t > t_1$, т. е. $v_1 \to \infty$ при $t \to \infty$ вдоль любой траектории.

Заменяя t на -t в системе (1) аналогичным путем, можно построить функцию $v_2(x)$, обладающую в силу системы (1), при замене

t на -t, теми же свойствами, что и v_1 , в силу (1).

Теперь очевидно, что поверхность v(x) = const, где $v = v_1 - v_2$ есть сколь угодно гладкое сечение S системы (1). В самом деле, вдоль любой траектории $x(x_0, t)$ функция v меняется монотонно, и при $t \to \infty$ имеем $v \to \infty$, а при $t \to -\infty$ имеем $v \to -\infty$, т. е. каждая траектория пересекает S в одной и только одной точке. Теорема доказана.

Уральский политехнический институт им. С. М. Кирова

Поступило 10 X 1957

ЛИТЕРАТУРА

1. В. В. Немыцкий, В. В. Степанов, Качественная теория дифференциальных уравнений, М. — Л., Гостехиздат, 1949. 2. Е. А. Барбашин, Метод сечений в теории динамических систем, Мат. сб., т. 29 (71), в. 2, 1951. 3. А. М. Лявунов, Общая задача об устойчивости движения, М. — Л., Гостехиздат, 1950. 4. Н. Н. Красовский, К вопросу об обращении теорем второго метода А. М. Лялунова исследования устойчивости движения, Усп. мат. наук., т. XI, в. 3 (69), 1956.