(1) a)
$$\varphi(z) = 3\sqrt{2}$$
, $z \in [0, i\infty)$, $\varphi(-1) = e^{\frac{i\pi}{3}}$

$$\varphi(1) = e^{\frac{i\pi}{3}} \frac{1}{11} e^{\frac{i\pi}{3}} = e^{\frac{i\pi}{3}}$$

$$\varphi(i-0) = e^{\frac{i\pi}{3}} \frac{1}{11} e^{\frac{i\pi}{3}} = e^{\frac{i\pi}{3}}$$

$$\varphi(i-0) = e^{\frac{i\pi}{3}} \frac{1}{11} e^{\frac{i\pi}{3}} = e^{\frac{i\pi}{3}}$$

5)
$$\varphi(z) = \ln z$$
, $z \in [0, +\infty]$, $\varphi(1-i0) = 0$
 $\varphi(z) = \ln \left| \frac{\varphi(z)}{\varphi(z)} \right| + i \operatorname{Somey} + \varphi(z_0)$
 $\varphi(z) = \ln \left| \frac{\varphi(z)}{\varphi(z)} \right| + i \operatorname{Somey} + \varphi(z_0)$
 $\varphi(z) = \ln \left| \frac{1}{z} + i \right| - 2\pi + 0 = -i \frac{2\pi}{z}$
 $\varphi(-i) = \ln \left| \frac{1}{z} + i \right| - \frac{\pi}{z} + 0 = -i \frac{\pi}{z}$

$$\sum_{z>Re} z = C^{-1} = \frac{5}{7} = \sum_{z=1}^{5} (1 + \frac{5}{2} + \cdots) = \frac{5}{7}$$

$$\Rightarrow T_1 = 2\pi i \cdot \frac{1}{2} = \pi i$$

The waryte, by K-200 renum ogher Tourd hyners zhount zh. marozu. Organizud buga Tgrat.

T.K. Mall nymen wordyn, k-nie remeno & Bramo Bonjuge

$$f(x) = \sqrt{12} + \sqrt{12}$$

$$f(x) = \sqrt{12}$$

$$f(x)$$

= algobamenono, nasa nymen mango a)

6 -1(2)= 2° (2-1)e

DLA N(1,1): For Low 2 + Dang(2-1) = 271 + 0 = 271 From 2 + Dang(2-1) = 0+271 = 27 From 2 + Dang(2-1) = 41 From 2 ang 2 + Dang(2-1) = 41

 $P_{1} = \frac{1}{2} \left[\frac{1}{2} \right] = \frac{1}{2}$ $P_{1} = \frac{1}{2} \left[\frac{1}{2} \right] = \frac{1}{2}$ $P_{2} = \frac{1}{2} \left[\frac{1}{2} \right] = \frac{1}{2}$ $P_{3} = \frac{1}{2} \left[\frac{1}{2} \right] = \frac{3\pi}{2}$ $= \frac{1}{2} \left[\frac{1}{2} \right] = \frac{1}{2}$

DU N(\frac{1}{2}):

\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\[\langle \frac{1}{2} \text{Lang}(\frac{2}{2} - 1) = \frac{2}{2} \\
\]

Problem 4.5. $\varphi(z) = \ln(1-z^2), \ \varphi(0) = -2\pi i$ $\varphi(z) = \ln[1-z)(1+z)$ $\varphi(z) = \ln[1-z)(1+z)$ $= \ln 3 - 3\pi i$ $2| \varphi(-i) = -2\pi i + \ln 3 + i(-\pi + \pi) = \ln 2 - 2\pi i$ $3| \varphi(-i) = -2\pi i + \ln 3 + i(-\pi + \pi) = \ln 2 - 2\pi i$ $3| \varphi(-i) = -2\pi i + \ln 3 + i(-\pi + \pi) = \ln 2 - 2\pi i$ $= \frac{1}{2} \ln 3 - \frac{11\pi}{6} i$