MAT 395/495

Scientific Data Analysis and Computing Summer 2020

Topic 9 Estimates of Mean and Errors

SIDDHA PIMPUTKAR

Relative frequency of measurements

Mean and Errors

Reading

Data Reduction and Error Analysis for the Physical Sciences by P.R. Bevington, D.K. Robinson, 3rd Ed.

Ch. 4 Estimates of Mean and Errors: pg. 51-71

An Introduction to Error Analysis by J.R. Taylor, 2nd Ed.

Ch 5. (later sections) Normal Distribution

Ch. 6 Rejection of Data

Ch. 7 Weighted Averages

Ch 12. The chi-squared test for a distribution

0.05

Probability of having a χ^2 less than χ_0^2

https://en.wikipedia.org/wiki/Chi-square distribution

Table D. The percentage probability $Prob_d(\tilde{\chi}^2 \ge \tilde{\chi}_o^2)$ of obtaining a value of $\tilde{\chi}^2 \ge \tilde{\chi}_o^2$ in an experiment with d degrees of freedom, as a function of d and $\tilde{\chi}_o^2$. (Blanks indicate probabilities less than 0.05%.)

								$\widehat{oldsymbol{\lambda}}$	2 0						
d	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0
1	100	48	32	22	16	11	8.3	6.1	4.6	3.4	2.5	1.9	1.4	0.5	0.2
2	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2		
3	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1			
4	100	74	41	20	9.2	4.0	1.7	0.7	0.3	0.1	0.1				
5	100	78	42	19	7.5	2.9	1.0	0.4	0.1						

\sim	2
ν	_
1	0

	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
1	100	65	53	44	37	32	27	24	21	18	16	14	12	11	9.4	8.3
2	100	82	67	55	45	37	30	25	20	17	14	11	9.1	7.4	6.1	5.0
3	100	90	75	61	49	39	31	24	19	14	11	8.6	6.6	5.0	3.8	2.9
4	100	94	81	66	52	41	31	23	17	13	9.2	6.6	4.8	3.4	2.4	1.7
5	100	96	85	70	55	42	31	22	16	11	7.5	5.1	3.5	2.3	1.6	1.0
6	100	98	88	73	57	42	30	21	14	9.5	6.2	4.0	2.5	1.6	1.0	0.6
7	100	99	90	76	59	43	30	20	13	8.2	5.1	3.1	1.9	1.1	0.7	0.4
8	100	99	92	78	60	43	29	19	12	7.2	4.2	2.4	1.4	0.8	0.4	0.2
9	100	99	94	80	62	44	29	18	11	6.3	3.5	1.9	1.0	0.5	0.3	0.1
10	100	100	95	82	63	44	29	17	10	5.5	2.9	1.5	0.8	0.4	0.2	0.1
11	100	100	96	83	64	44	28	16	9.1	4.8	2.4	1.2	0.6	0.3	0.1	0.1
12	100	100	96	84	65	45	28	16	8.4	4.2	2.0	0.9	0.4	0.2	0.1	
13	100	100	97	86	66	45	27	15	7.7	3.7	1.7	0.7	0.3	0.1	0.1	
14	100	100	98	87	67	45	27	14	7.1	3.3	1.4	0.6	0.2	0.1		
15	100	100	98	88	68	45	26	14	6.5	2.9	1.2	0.5	0.2	0.1		
16	100	100	98	89	69	45	26	13	6.0	2.5	1.0	0.4	0.1			
17	100	100	99	90	70	45	25	12	5.5	2.2	0.8	0.3	0.1			
18	100	100	99	90	70	46	25	12	5.1	2.0	0.7	0.2	0.1			
19	100	100	99	91	71	46	25	11	4.7	1.7	0.6	0.2	0.1			
20	100	100	99	92	72	46	24	11	4.3	1.5	0.5	0.1				
22	100	100	99	93	73	46	23	10	3.7	1.2	0.4	0.1				
24	100	100	100	94	74	46	23	9.2	3.2	0.9	0.3	0.1				
26	100	100	100	95	75	46	22	8.5	2.7	0.7	0.2					
28	100	100	100	95	76	46	21	7.8	2.3	0.6	0.1					
30	100	100	100	96	77	47	21	7.2	2.0	0.5	0.1					

	P									P							
v	0.99	0.98	0.95	0.90	0.80	0.70	0.60	0.50	ν 	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.001
1	0.00016	0.00063	0.00393	0.0158	0.0642	0.148	0.275	0.455	1	0.708	1.074	1.642	2.706	3.841	5.412	6.635	10.827
2	0.0100	0.0202	0.0515	0.105	0.223	0.357	0.511	0.693	2	0.916	1.204	1.609	2.303	2.996	3.912	4.605	6.908
3	0.0383	0.0617	0.117	0.195	0.335	0.475	0.623	0.789	3	0.982	1.222	1.547	2.084	2.605	3.279	3.780	5.423
4	0.0742	0.107	0.178	0.266	0.412	0.549	0.688	0.839	4	1.011	1.220	1.497	1.945	2.372	2.917	3.319	4.617
5	0.111	0.150	0.229	0.322	0.469	0.600	0.731	0.870	5	1.026	1.213	1.458	1.847	2.214	2,678	3.017	4.102
6	0.145	0.189	0.273	0.367	0.512	0.638	0.762	0.891	6	1.035	1.205	1.426	1.774	2.099	2.506	2.802	3.743
7	0.177	0.223	0.310	0.405	0.546	0.667	0.785	0.907	7	1.040	1.198	1.400	1.717	2.010	2.375	2.639	3.475
8	0.206	0.254	0.342	0.436	0.574	0.691	0.803	0.918	8 9	1.044 1.046	1.191 1.184	1.379 1.360	1.670 1.632	1.938 1.880	2.271 2.187	2.511 2.407	3.266 3.097
9	0.232	0.281	0.369	0.463	0.598	0.710	0.817	0.927	10	1.046	1.178	1.344	1.599	1.831	2.116	2.321	2.959
10	0.256	0.306	0.394	0.487	0.618	0.727	0.830	0.934									
11	0.278	0.328	0.416	0.507	0.635	0.741	0.840	0.940	11	1.048	1.173	1.330	1.570	1.789	2.056	2.248	2.842
12	0.298	0.348	0.436	0.525	0.651	0.753	0.848	0.945	12 13	1.049	1.168	1.318	1.546	1.752 1.720	2.004	2.185 2.130	2.742 2.656
13	0.316	0.367	0.453	0.542	0.664	0.764	0.856	0.949	14	1.049 1.049	1.163 1.159	1.307 1.296	1.524 1.505	1.692	1.959 1.919	2.130	2.580
14	0.333	0.383	0.469	0.556	0.676	0.773	0.863	0.953	15	1.049	1.155	1.287	1.487	1.666	1.884	2.039	2.513
15	0.349	0.399	0.484	0.570	0.687	0.781	0.869	0.956									
16	0.363	0.413	0.498	0.582	0.697	0.789	0.874	0.959	16	1.049	1.151	1.279	1.471	1.644	1.852	2.000	2.453
17	0.377	0.427	0.510	0.593	0.706	0.796	0.879	0.961	17 18	1.048 1.048	1.148 1.145	1.271 1.264	1.457 1.444	1.623 1.604	1.823 1.797	1.965 1.934	2.399 2.351
18	0.390	0.439	0.522	0.604	0.714	0.802	0.883	0.963	19	1.048	1.143	1.258	1.444	1.586	1.773	1.905	2.307
19	0.402	0.451	0.532	0.613	0.722	0.808	0.887	0.965	20	1.048	1.139	1.252	1.421	1.571	1.751	1.878	2.266
20	0.413	0.462	0.543	0.622	0.729	0.813	0.890	0.967									
22	0.434	0.482	0.561	0.638	0.742	0.823	0.897	0.970	22 24	1.047 1.046	1.134 1. 12 9	1.241 1.231	1.401 1.383	1.542 1.517	1.712 1.678	1.831 1.791	2.194 2.132
24 26	0.452 0.469	0.500 0.516	0.577 0.592	0.652 0.665	0.753	0.831	0.902 0.907	0.972	2 4 26	1.045	1.129	1.223	1.368	1.317	1.648	1.755	2.132
28	0.484	0.510	0.605	0.676	0.762 0.771	0.838 0.845	0.907	0.974 0.976	28	1.045	1.121	1.215	1.354	1.476	1.622	1.724	2.032
30	0.498	0.544	0.616	0.687	0.779	0.850	0.911	0.978	30	1.044	1.118	1.208	1.342	1.459	1.599	1.696	1.990
32	0.511	0.556	0.627	0.696	0.786	0.855	0.918	0.979	32	1.043	1.115	1.202	1.331	1.444	1.578	1.671	1.953
34	0.523	0.567	0.637	0.704	0.792	0.860	0.921	0.980	34	1.042	1.112	1.196	1.321	1.429	1.559	1.649	1.919
36	0.534	0.577	0.646	0.712	0.798	0.864	0.924	0.982	36	1.042	1.109	1.191	1.311	1.417	1.541	1.628	1.888
38	0.545	0.587	0.655	0.720	0.804	0.868	0.926	0.983	38	1.041	1.106	1.186	1.303	1.405	1.525	1.610	1.861
40	0.554	0.596	0.663	0.726	0.809	0.872	0.928	0.983	40	1.041	1.104	1.182	1.295	1.394	1.511	1.592	1.835
42	0.563	0.604	0.670	0.733	0.813	0.875	0.930	0.984	42	1.040	1.102	1.178	1.288	1.384	1.497	1.576	1.812
44	0.572	0.612	0.677	0.738	0.818	0.878	0.932	0.985	44	1.039	1.100	1.174	1.281	1.375	1.485	1.562	1.790
46	0.580	0.620	0.683	0.744	0.822	0.881	0.934	0.986	46	1.039	1.098	1.170	1.275	1.366	1.473	1.548	1.770
48	0.587	0.627	0.690	0.749	0.825	0.884	0.936	0.986	48	1.038	1.096	1.167	1.269	1.358	1.462	1.535	1.751
50	0.594	0.633	0.695	0.754	0.829	0.886	0.937	0.987	50	1.038	1.094	1.163	1.263	1.350	1.452	1.523	1.733
60	0.625	0.662	0.720	0.774	0.844	0.897	0.944	0.989	60	1.036	1.087	1.150	1.240	1.318	1.410	1.473	1.660
70	0.649	0.684	0.739	0.790	0.856	0.905	0.949	0.990	70	1.034	1.081	1.139	1.222	1.293	1.377	1.435	1.605
80	0.669	0.703	0.755	0.803	0.865	0.911	0.952	0.992	80	1.032	1.076	1.130	1.207	1.273	1.351	1.404	1.560
90	0.686	0.718	0.768	0.814	0.873	0.917	0.955	0.993	90	1.031	1.072	1.123	1.195	1.257	1.329	1.379	1.525
100	0.701	0.731	0.779	0.824	0.879	0.921	0.958	0.993	100	1.029	1.069	1.117	1.185	1.243	1.311	1.358	1.494
120	0.724	0.753	0.798	0.839	0.890	0.928	0.962	0.994	120	1.027	1.063	1.107	1.169	1.221	1.283	1.325	1.446
140	0.743	0.770	0.812	0.850	0.898	0.934	0.965	0.995	140	1.026	1.059	1.099	1.156	1.204	1.261	1.299	1.410
160	0.758	0.784	0.823	0.860	0.905	0.938	0.968	0.996	160	1.024	1.055	1.093	1.146	1.191	1.243	1.278	1.381
180	0.771	0.796	0.833	0.868	0.910	0.942	0.970	0.996	180	1.023	1.052	1.087	1.137	1.179	1.228	1.261	1.358
200	0.782	0.806	0.841	0.874	0.915	0.945	0.972	0.997	200	1.022	1.050	1.083	1.130	1.170	1.216	1.247	1.338

 $0 \qquad v \qquad x^2 \qquad x^2$

TABLE C.4 χ^2 distribution. Values of the reduced chi-square $\chi^2_{\nu} = \chi^2/\nu$ corresponding to the probability $P_{\chi}(\chi^2;\nu)$ of exceeding χ^2 versus the number of degrees of freedom ν

Example: A new casino game involves rolling 3 dice. The winnings are directly proportional to the total number of sixes rolled. Suppose a gambler plays the game 100 times, with the following observed counts:

# of Sixes	Number of Rolls
0	48
1	35
2	15
3	3

The casino becomes suspicious of the gambler and wishes to determine whether the dice are fair. What do they conclude?