2 Cálculo proposicional

Referências para esta parte do curso: capítulo 1 de [Mendelson, 1977], capítulo 3 de [Whitesitt, 1961].

Proposição

Proposições são sentenças afirmativas declarativas que não sejam ambígüas e que possuem a propriedade de serem ou verdadeiras ou falsas, mas não ambas.

Exemplos:

- . "Gatos têm quatro patas"
- \cdot "1 + 2 = 3"
- . "A Terra é quadrada"
- . "3 é um número primo"

Exemplos de sentenças que não são proposições:

- . "O que estou dizendo agora é mentira"
- . "Irá chover amanhã"
- . "Onde está a chave?"

Cálculo proposicional

 \acute{E} uma sub-área da álgebra da lógica que estuda um conjunto formal de regras que permitem a análise e manipulação de proposições.

Conectivos lógicos

Proposições simples podem ser concatenadas através de conectivos lógicos E, OU, NÃO para formar novas proposições compostas.

Exemplos: Das proposições "Fulano está cansado" e "Ciclano está cozinhando", pode-se formas as proposições "Fulano está cansado E Ciclano está cozinhando", ou "Fulano está cansado OU Ciclano está cozinhando", ou "Fulano NÃO está cansado".

Notações

Proposições serão representadas por letras como x, y, z, p, q, etc. Em geral, as letras que representam proposições simples são denominadas **variáveis** (lógicas).

Proposições têm valor lógico ou V (VERDADEIRO) ou F (FALSO).

Utilizaremos os seguintes símbolos para representar os conectivos lógicos:

Conectivo	símbolo
E	\wedge
OU	\vee
NÃO	Г

Os conectivos implicação condicional (\rightarrow) e bicondicional \leftrightarrow

Em adição aos três conectivos vistos acima, é comum também a utilização dos condicionais SE-ENTÃO (\rightarrow) e SE-E-SOMENTE-SE (\leftarrow) .

Para proposições x e y quaiquer, expressões do tipo "SE x ENTÃO y" são relativamente comuns, especialmente na matemática. No contexto de cálculo proposicional devemos nos limitar aos valores V e F. Nosso interesse é saber o valor da expressão $x \to y$. Parece razoável pensar que se x é V e y é V, então a expressão $x \to y$ é também V. Similarmente, se x é V e y é V, então v e v é v e v

Uma outra forma de encarar este condicional é pensar que partindo de uma verdade chegase a uma verdade. Então "partir de uma verdade e chegar a uma verdade" é verdadeiro enquanto "partir de uma verdade e chegar a uma falsidade" é falso. Já quando se parte de uma falsidade pode-se chegar tanto a uma verdade quanto a uma falsidade.

Representamos expressões do tipo "x se, e somente se, y" por $x \leftrightarrow y$. A expressão $x \leftrightarrow y$ é verdadeira quando x e y tomam o mesmo valor e é equivalente à expressão $(x \to y) \land (y \to x)$.

Expressão lógica

As proposições podem ser representadas por expressões envolvendo várias variáveis como em $x \wedge y$, $(x \wedge y) \vee \neg z$, etc. As regras para a formação de expressões são:

- (1) Qualquer variável (letra) representando uma proposição é uma expressão lógica
- (2) Se p e q são expressões lógicas, então $(\neg p)$, $(p \land q)$, $(p \lor q)$, $(p \to q)$ e $(p \leftrightarrow q)$ são expressões lógicas.

Exemplos: Alguns exemplos de expressões lógicas

$$(x \to (y \lor (z \land (\neg x))))$$
$$(x \land y \land z) \lor (\neg x \land \neg y \land \neg z)$$

Os parênteses servem para explicitar as precedências (da mesma forma com que estamos acostumados em relação às expressões aritméticas usuais).

Tabela-verdade

Da mesma forma que proposições simples podem ser ou verdadeiras ou falsas, proposições compostas podem também ser ou verdadeiras ou falsas. O valor-verdade de uma expressão que representa uma proposição composta depende dos valores-verdade das sub-expressões que a compõem e também a forma pela qual elas foram compostas.

Tabelas-verdade são diagramas que explicitam a relação entre os valores-verdade de uma expressão composta em termos dos valores-verdade das subexpressões e variáveis que a compõem. Mostramos a seguir as tabelas-verdade para os conectivos lógicos \neg , \wedge , e \vee . Suponha que x e y são duas variáveis lógicas.

A tabela-verdade lista todas as possíveis combinações de valores-verdade V e F para as variáveis envolvidas na expressão cujo valor lógico deseja-se deduzir. Assim, quando a expressão possui duas variáveis, sua tabela-verdade contém 4 linhas. Em geral, se uma expressão possui n variáveis, sua tabela-verdade contém 2^n linhas.

As tabelas-verdade dos condicionais SE-ENTÃO e SE-E-SOMENTE-SE são mostradas a seguir.

Tanto \rightarrow como \leftrightarrow podem ser expressos em termos dos demais conectivos. Por isso, eles poderiam ser considerados não necessários. Porém, a sua utilização é comum devido a conveniência para expressar certas proposições.

Exemplos de tabela-verdade

A tabela verdade da expressão $(x\vee (y\wedge z))\to y$ é mostrada a seguir

x	y	z	$y \wedge z$	$x \vee (y \wedge z)$	$(x \lor (y \land z)) \to y$
F	F	F	F	\mathbf{F}	V
\mathbf{F}	F	V	F	\mathbf{F}	V
\mathbf{F}	V	\mathbf{F}	F	${ m F}$	V
\mathbf{F}	V	V	V	V	V
V	F	\mathbf{F}	F	V	\mathbf{F}
V	F	V	F	V	${ m F}$
V	V	\mathbf{F}	F	V	V
V	V	V	V	V	V

A mesma tabela pode ser expressa em formas mais concisas, como as mostradas a seguir. Os números na última linha da tabela indicam a ordem na qual as respectivas colunas devem ser preenchidas.

(x	\vee	(y	\wedge	z))	\rightarrow	y	\boldsymbol{x}	y	z	(x)	\vee	(y	\wedge	z))	\rightarrow	y
F	F	F	F	F	V	F	F	F	F		F		F		V	
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	V	V	F	\mathbf{F}	F	V		\mathbf{F}		\mathbf{F}		V	
\mathbf{F}	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V	V	\mathbf{F}	V	\mathbf{F}		\mathbf{F}		\mathbf{F}		V	
\mathbf{F}	V	V	V	V	V	V	\mathbf{F}	V	V		V		V		V	
V	V	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F	V	F	\mathbf{F}		V		\mathbf{F}		F	
V	V	\mathbf{F}	\mathbf{F}	V	F	F	V	F	V		V		\mathbf{F}		F	
V	V	V	\mathbf{F}	\mathbf{F}	V	V	V	V	\mathbf{F}		V		\mathbf{F}		V	
V	V	V	\mathbf{F}	V	V	V	V	V	V		V		F		V	
1	3	1	2	1	4	1	1	1	1		3		2		4	

Exercício: Faça a tabela-verdade para as expressões:

a)
$$\neg (x \land y)$$

b)
$$\neg (x \lor y) \to z$$

c)
$$\neg((x \lor y) \to z)$$

d) $y \land \neg(x \lor y)$

Tautologias e contradições

Uma expressão é uma **tautologia** se ela toma valor V para todas as possíveis atribuições de valor V e/ou F para as variáveis presentes nela.

Exemplo: As expressões $x \to x$ e $x \lor \neg x$ são tautologias.

Uma expressão é uma **contradição** se ela toma valor F para todas as possíveis atribuições de valor V e/ou F para as variáveis presentes nela.

Exemplo: Se a expressão x é uma tautologia, então $\neg x$ é uma contradição. Similarmente, se x é uma contradição, então $\neg x$ é uma tautologia.

Exercício: Para cada expressão abaixo, responda se ela é uma tautologia, uma contradição ou nenhuma das duas.

a)
$$x \wedge \neg x$$

b)
$$(x \to y) \to y \to y$$

c)
$$(x \land \neg y) \lor (\neg x \land y)$$

d)
$$(x \lor y) \land (\neg x \lor y) \land (x \lor \neg y)$$

e)
$$(x \to (y \to z)) \leftrightarrow ((x \land y) \to z)$$

f)
$$((x \to y) \lor (y \to z)) \to (x \to (y \lor z))$$

Implicação e equivalência lógica

Dizemos que uma expressão x implica logicamente uma expressão y se, e somente se, cada atribuição de valor às variáveis que torna x verdadeira torna y verdadeira também. Utilizamos a notação $x \Rightarrow y$ para dizer que x implica logicamente y.

Teorema: Uma expressão x implica logicamente y se, e somente se, $x \to y$ é uma tautologia.

Prova: x implica logicamente y se, e somente se, sempre que x for verdadeira, y também o for. Portanto, x implica logicamente y se, e somente se, nunca se dá o caso em que x é verdadeira e y é falsa. Mas isto significa que a expressão $x \to y$ nunca é falsa, ou seja, que $x \to y$ é uma tautologia.

Duas expressões são **logicamente equivalentes** se a tabela-verdade delas forem iguais. Utilizamos a notação ⇔.

Teorema: $x \in y$ são logicamente equivalentes se, e somente se, $x \leftrightarrow y$ é uma tautologia.

Equivalências lógicas

- E1. Comutatividade
 - (a) $x \lor y \Leftrightarrow y \lor x$
 - (b) $x \wedge y \Leftrightarrow y \wedge x$
- E2. Associatividade
 - (a) $(x \lor y) \lor z \Leftrightarrow x \lor (y \lor z)$
 - (b) $(x \wedge y) \wedge z \Leftrightarrow x \wedge (y \wedge z)$

• E3. Distributividade

$$-$$
 (a) $x \wedge (y \vee z) \Leftrightarrow (x \wedge y) \vee (x \wedge z)$

- (b)
$$x \vee (y \wedge z) \Leftrightarrow (x \vee y) \wedge (x \vee z)$$

- E4. Idempotência
 - (a) $x \lor x \Leftrightarrow x$
 - (b) $x \wedge x \Leftrightarrow x$
- E5. Leis de absorção

$$-$$
 (a) $x \lor (x \land y) \Leftrightarrow x$

- (b)
$$x \wedge (x \vee y) \Leftrightarrow x$$

$$-$$
 (c) $(x \land y) \lor \neg y \Leftrightarrow x \lor \neg y$

$$-$$
 (d) $(x \lor y) \land \neg y \Leftrightarrow x \land \neg y$

• E6. Dupla negação

$$-$$
 (a) $\neg \neg x \Leftrightarrow x$

• E7. Leis de De Morgan

$$-$$
 (a) $\neg (x \lor y) \Leftrightarrow (\neg x \land \neg y)$

$$-$$
 (b) $\neg(x \land y) \Leftrightarrow (\neg x \lor \neg y)$

• E8. Tautologias e contradições

$$-$$
 (a) $(V \wedge x) \Leftrightarrow x$

$$-$$
 (b) $(V \lor x) \Leftrightarrow V$

$$-$$
 (c) $(F \wedge x) \Leftrightarrow F$

$$-$$
 (d) $(F \lor x) \Leftrightarrow x$

Exemplo: Vamos verificar a equivalência E7(a). Para isso montamos a tabela-verdade:

x	y	_	(x)	\vee	y)	\longleftrightarrow	$(\neg x$	\wedge	$\neg y)$
F	F	V		F		•	V	•	•
	V	F		V		V	V	-	F
V		F		V		V	F	F	
V	V	F		V		V	F	\mathbf{F}	F
1	1	3		2		4	2	3	2

Podemos ver que $\neg(x \lor y) \leftrightarrow (\neg x \land \neg y)$ é uma tatutologia. Ou ainda, podemos ver que o valor-verdade de $\neg(x \lor y)$ e $(\neg x \land \neg y)$ são iguais para todas as linhas da tabela. Logo, $\neg(x \lor y) \Leftrightarrow (\neg x \land \neg y)$.

Exercício: Mostre as equivalências E3(a), E5(a), E5(d), E8(a) e E8(c).

Outras equivalências

• E9. Contrapositivo

$$-x \rightarrow y \Leftrightarrow \neg y \rightarrow \neg x$$

• E10. Eliminação de condicionais

$$- (a) x \to y \Leftrightarrow \neg x \lor y$$
$$- (b) x \to y \Leftrightarrow \neg (x \land \neg y)$$

• E11. Eliminação de bicondicionais

$$- (a) x \leftrightarrow y \Leftrightarrow (x \land y) \lor (\neg x \land \neg y)$$

- (b)
$$x \leftrightarrow y \Leftrightarrow (\neg x \lor y) \land (\neg y \lor x)$$

Exercício: Mostre as equivalências E9, E10(a), E10(b), E11(a) e E11(b).

Exercício: Mostre que

a)
$$(x \land y) \lor (x \land \neg y) \leftrightarrow x$$

b)
$$(x \to y) \leftrightarrow (\neg y \to \neg x)$$
 (Prova por contradição)

Algumas implicações lógicas

• I1.
$$p \Rightarrow (p \lor q)$$

• I2.
$$(p \land q) \Rightarrow p$$

• I3.
$$(p \rightarrow c) \Rightarrow \neg p \ (c \text{ \'e uma contradição})$$

• I4.
$$[p \land (p \rightarrow q)] \Rightarrow q$$

• I5.
$$[(p \rightarrow q) \land \neg q] \Rightarrow \neg p$$

• I6.
$$[(p \lor q) \land \neg p] \Rightarrow q$$

• I7.
$$p \Rightarrow [q \rightarrow (p \land q)]$$

• I8.
$$[(p \leftrightarrow q) \land (q \leftrightarrow r)] \Rightarrow (p \leftrightarrow r)$$

• I9.
$$[(p \to q) \land (q \to r)] \Rightarrow (p \to r)$$

Exercício: Mostre as implicações I1, I3, I4, I6, I8 e I9.

Mais dois conectivos

Barra de Sheffer (Sheffer's stroke): Significando "não ambos verdadeiro", é definido pela seguinte tabela-verdade

$$\begin{array}{c|cccc} x & y & x|y \\ \hline F & F & V \\ F & V & V \\ V & F & V \\ V & V & F \end{array}$$

Negação conjunta (joint denial): Significando "nem um e nem outro", é definido pela seguinte tabela-verdade

$$\begin{array}{c|ccc} x & y & x \downarrow y \\ \hline F & F & V \\ F & V & F \\ V & F & F \\ V & V & F \end{array}$$

Exercício: Mostre que $\neg x \Leftrightarrow x | x \in \neg x \Leftrightarrow x \downarrow x$.

Exercício: Mostre que $x \lor y \Leftrightarrow (x|x)|(y|y)$ e $x \lor y \Leftrightarrow (x \downarrow x) \downarrow (y \downarrow y)$.

Redundâncias ou Sistemas adequados de conectivos

Toda expressão determina uma função-verdade que pode ser expressa via tabelas-verdade. Existem $2^{(2^n)}$ funções-verdade de n variáveis já que existem 2^n possíveis atribuições de valor-verdade para essas n variáveis e para cada uma dessas atribuições a função pode tomar valor V ou F.

Teorema: Toda função-verdade pode ser expressa por uma expressão envolvendo apenas os conectivos \lor , \land e \neg .

Um conjunto de conectivos é dito formar um **sistema adequado de conectivos** se toda função-verdade pode ser expressa por expressões que envolvem apenas conectivos do conjunto.

Os seguintes conjuntos são sistemas adequados de conectivos:

- a) $\{\vee, \wedge, \neg\}$
- b) $\{\vee,\neg\}$
- c) $\{\land, \neg\}$
- $d) \{\neg, \rightarrow\}$
- e) {|}
- $f) \{\downarrow\}$

Exemplo: As quatro funções-verdade de uma variável são :

Exercício: Liste todas as funções-verdade com duas variáveis.

Métodos de prova

As provas matemáticas com as quais lidamos todos os dias (?) são muito baseadas em elementos da lógica proposicional.

REFERÊNCIAS 16

Não é objetivo estudarmos métodos de prova neste curso, mas apenas para dar uma idéia, alguns métodos de prova são apresentados a seguir de forma informal.

Prova direta: É a situação típica em que temos um conjunto de hipóteses h_1, h_2, \ldots, h_n e queremos derivar uma conclusão c. Ou seja, queremos mostrar

$$h_1 \wedge h_2 \wedge \ldots \wedge h_n \Rightarrow c$$

Prova indireta: Temos a prova contrapositiva

$$\neg c \Rightarrow \neg (h_1 \land h_2 \land \ldots \land h_n)$$

e a prova por contradição

$$h_1 \wedge h_2 \wedge \ldots \wedge h_n \wedge \neg c \Rightarrow \text{uma contradição}$$

Observe ainda que

$$h_1 \wedge h_2 \wedge \ldots \wedge h_n \Rightarrow c$$

é equivalente a

$$(h_1 \Rightarrow c) \in (h_2 \Rightarrow c) \in \dots \in (h_n \Rightarrow c)$$

que leva-nos à prova por casos.

A idéia de **prova formal** pode ser expressa no contexto da lógica proposicional. Maiores detalhes podem ser obtidos, por exemplo, em [Ross and Wright, 1992].

Discussão

Quais semelhanças podemos ver entre a álgebra dos conjuntos e o cálculo proposicional?

. As operações /relações entre conjuntos e os conectivos e os condicionais, como mostrado na tabela a seguir.

Álgebra dos conjuntos	Cálculo proposicional
\cap	\wedge
\cup	V
c	П
\subseteq	\rightarrow
=	\longleftrightarrow

. As leis fundamentais dos conjuntos e as equivalências lógicas.

Referências

[Mendelson, 1977] Mendelson, E. (1977). Álgebra Booleana e Circuitos de Chaveamento. Mcgraw-Hill.

[Ross and Wright, 1992] Ross, K. A. and Wright, C. R. B. (1992). Discrete Mathematics. Prentice Hall, 3rd edition.

[Whitesitt, 1961] Whitesitt, J. E. (1961). Boolean Algebra and its Applications. Addison-Wesley.