Lecture 5: Policy Gradient Methods SUMS 707 - Basic Reinforcement Learning

Gabriela Moisescu-Pareja and Viet Nguyen

McGill University, Mila

February 18, 2021

Recap: Model-free control

- The generalized policy iteration blueprint:
 - Policy evaluation: TD or MC
 - Policy improvement: ϵ -greedy
- We perform computations for Q instead of V, as from the Bellman optimality equations:

$$T^*V(s) = \sup_{\mathbf{a} \in \mathcal{A}} \left\{ r(s, \mathbf{a}) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot | s, \mathbf{a})} \left[V(s') \right] \right\}$$

$$T^*Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot \mid s, a)} \left[\sup_{a' \in \mathcal{A}} Q(s', a') \right]$$

 The application of the Bellman optimality operator can be expressed as an expectation.

Model-free control

- ullet We saw that TD policy evaluation $+ \epsilon\text{-greedy} = \text{default SARSA}$ algorithm
- We also saw the Q-learing algorithm and its inherent off-policy nature, allowing us to evaluate the greedy policy while playing the ϵ -greedy policy
- These algorithms converge in the tabular setting

Recap: Iterative value function approximation and control

Big idea: approximate the true value function V^{π} by a differentiable parametric function $V(\cdot;\theta)\approx V^{\pi}$.

Define loss:

$$J(\theta) = \mathbb{E}_{\pi} \left[\left(V^{\pi}(s) - V(s; \theta) \right)^{2} \right]$$

Update direction:

$$\Delta \theta = \alpha \mathbb{E}_{\pi} \left[\left(V^{\pi}(s) - V(s; \theta) \right) \nabla_{\theta} V(s; \theta) \right]$$

• SGD updates essentially sample from the above:

$$\Delta\theta = \alpha \left(V^{\pi}(s) - V(s;\theta) \right) \nabla_{\theta} V(s;\theta)$$

We substitute V^{π} with the target of our choice (MC, TD, TD(λ)). When controlling, estimate Q^{π} instead.

Batch RL

- Our incremental methods are not very sample efficient
- We now seek the best fitting value function given the agent's experience (we imagine the agent to remember everything that it has done up until the current timestep)
- Recycle past experiences

Least Squares

Given our function approximation $V(s; \theta)$, we have a hypothetical dataset:

$$\mathcal{D} = \{(s_t, V_t^{\pi}) : t \in [T]\}$$

We want to find θ such that our estimate V best fits this dataset. This is exactly the problem setup of *least-squares*, we minimize the sum of squared errors:

$$LS(\theta) = \sum_{t=1}^{T} (V_t^{\pi} - V(s_t; \theta))^2$$

Finding a θ such $LS(\theta)$ is minimized is the idea behind Batch RL.

Experience replay

We store a dataset \mathcal{D} as defined previously,

- ullet We sample $(s,V^\pi)\sim \mathcal{D}$
- We update with stoch. grad. descent:

$$\Delta\theta = \alpha(V^{\pi} - V(s;\theta))\nabla_{\theta}V(s,\theta)$$

From theory: this process converges to the least squares solution:

$$\theta^\pi = \operatorname*{arg\,min}_\theta \mathit{LS}(\theta)$$

DQN

- Initialize Q to be a neural network. It's job is to approximate the true Q^* .
- ullet Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in \mathcal{D}
- Sample a batch $S = \{(s, a, r, s')\} \sim \mathcal{D}$
- ullet Compute Q-learning targets w.r.t. old, fixed parameters $heta^-$
- Optimize MSE between Q-network and Q-learning targets:

$$\mathit{MSE}(\theta_i) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \theta_i^-) - Q(s, a; \theta_i)\right)^2\right]$$

The expression $r + \gamma \max_{a'} Q(s', a'; \theta_i^-)$ is the *target* in our Q-learning algorithm!

