# LUNG CANCER PREDICTION





# PROBLEM STATEMENT WITH DOMAIN

- 1) LUNG CANCER PREDICTION. 2) BIO MEDICAL DOMAIN. 3) ITS BASED ON SUPERVISED LEARNING -MACHINE LEARNING (NUMBERS).
- 4)IT IS CLASSIFICATION
  (CATEGORICAL VALUE OF
  OUTPUT).

## SYMPTOMS

## Common symptoms:

#### CANCER DEVELOPMENT PROCESS



- Chest Pain
- Shortness of Breath
- Wheezing
- Coughing up Blood
- Chronic Fatigue

#### **QUESTION:**

DOES MACHINE LEARNING HAVE THE POTENTIAL TO CREATE NON INVASIVE INEXPENSIVE SCREENING TOOL TO PREDICT THOSE WHO WOULD NEED TO GO LDCT TESTING?

MACHINE LEARNING CAN CREATE NON-INVASIVE, AFFORDABLE SCREENING **TOOLS BY ANALYZING VARIOUS PATIENT** DATA TO IDENTIFY THOSE WHO NEED LDCT TESTING. IT IMPROVES RISK PREDICTION BY INTEGRATING DEMOGRAPHICS, MEDICAL HISTORY, AND LIFESTYLE FACTORS. THIS APPROACH **HELPS FOCUS RESOURCES ON HIGH-RISK** INDIVIDUALS, REDUCING UNNECESSARY TESTS AND ASSOCIATED COSTS. **OVERALL, IT ENHANCES SCREENING** ACCURACY AND EFFICIENCY.

## RETAINED VARIABLE WITH JUSTIFICATION

RETAINING THESE VARIABLES ENHANCES THE PREDICTION MODEL BY INCORPORATING A RANGE OF RISK FACTORS AND SYMPTOMS. KEY ELEMENTS LIKE AGE, SMOKING\_STATUS, AND COPD\_DIAGNOSES DIRECTLY INFLUENCE LUNG CANCER RISK.

ADDITIONAL FACTORS LIKE GENOMIC\_SEX, DAILY\_CIGARETTES, AND COUGHING PROVIDE CONTEXT AND REFINE RISK ASSESSMENT.

COMBINING THESE VARIABLES IMPROVES ACCURACY IN IDENTIFYING INDIVIDUALS WHO MAY NEED FURTHER TESTING.

## REMOVED VARIABLE WITH JUSTIFICATION

PATIENT\_ID IS AN IDENTIFIER WITH NO PREDICTIVE
VALUE FOR LUNG CANCER. ADOPTED\_STATUS,
NUMBER\_OF\_PREGNANCIES, AND MONTH\_OF\_BIRTH
LACK DIRECT RELEVANCE TO LUNG CANCER RISK.
YEAR\_OF\_BIRTH PROVIDES NO ADDITIONAL INSIGHT
BEYOND AGE. CONSTANT\_EXHAUSTION IS LESS
SPECIFIC AND RELEVANT COMPARED TO OTHER
SYMPTOMS AND RISK FACTORS IN PREDICTING LUNG
CANCER.

AS A DATA SCIENTIST YOU ARE A LOGICIAN
,MATHEMATISIAN, TECHNICIAN, ANALYST NAND U
NEED EPIDEMIOLOGISTS TO UNDERSTAND UR
ANALYSES .EPIDEMIOLOGIST USUALLY BUSY
INDIVIDUALS AND THEY DONT HAVE ALL THE TIME
IN THE WORLD.ONE ESSENTIAL SKILL THAT U
MUST ADHERE TO IS TO BE CONCISE AND
STRAIGHT TO THE POINT . FOCUS ON THE
ANSWERS ,NEEDED FOR EACH TASK AND PROVIDE
JUST ENOUGH WORDS FOR THE ANSWERS ONLY
.THERE IS NO NEED PROVIDE LENGTHY
DESCRIPTIONS OF ALGORITHMS AND METHODS
UNLESS U R ASKED TO DO

- RETAINED VARIABLES: AGE, SMOKING STATUS,
   COPD-CRITICAL FOR PREDICTING LUNG CANCER
   RISK.
- REMOVED VARIABLES: PATIENT ID, ADOPTED STATUS, PREGNANCIES—IRRELEVANT TO LUNG CANCER RISK.

#### Justification for retention or dropping the variable

| S.No | Variable              | Retain or Drop | Brief justification for retention or dropping                                                                                                           |
|------|-----------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | PATIENT-ID            | Drop           | Dropped due to data inaccuracies affecting the lung cancer prediction model's reliability.                                                              |
| 2    | GENOMIC SEX           | Retain         | Retained in the lung cancer prediction model as it significantly influences cancer risk and helps tailor treatment strategies.                          |
| 3    | AGE                   | Retain         | It is a key factor that strongly correlates with cancer risk and progression.                                                                           |
| 4    | BLOOD_TYPE            | Retain         | It may provide valuable insights into individual risk factors and disease progression.                                                                  |
| 5    | NUMBER_OF_SIBLINGS    | Retain         | It may help identify genetic and familial risk factors associated with cancer.                                                                          |
| 6    | YEAR_OF_BIRTH         | Drop           | Dropped in favor of using the available age, as age provides a more direct and accurate measure for the lung cancer prediction model.                   |
| 7    | ADOPTED_STATUS        | Drop           | Dropped from the lung cancer prediction model as it does not contribute<br>significantly to the prediction accuracy compared to other clinical factors. |
| 8    | NUMBER_OF_PREGNANCIES | Drop           | It does not have a significant impact on predicting lung cancer risk compared to other relevant factors.                                                |
| 9    | MONTH_OF_BIRTH        | Drop           | Dropped - as age provides sufficient predictive value for the lung cancer model.                                                                        |
| 10   | PARENT_ALIVE          | Retain         | It may provide insights into familial health patterns and genetic predispositions to cancer.                                                            |
| 11   | SMOKING_STATUS        | Retain         | smoking is a major risk factor that significantly influences cancer risk and progression.                                                               |
| 12   | DAILY_CIGARETTES      | Retain         | It quantifies smoking intensity, a critical factor in assessing lung cancer risk.                                                                       |
| 13   | YELLOW_SKIN           | Retain         | It may indicate jaundice, which can be associated with advanced disease or liver involvement.                                                           |
| 14   | ANXIETY               | Retain         | It may reflect overall health status and could impact patient outcomes and disease progression.                                                         |
| 15   | PEER_PRESSURE         | Retain         | It can influence lifestyle behaviors, such as smoking, which are relevant to cancer risk.                                                               |
| 16   | COPD_DIAGNOSES        | Retain         | Chronic obstructive pulmonary disease is a significant risk factor that can<br>indicate increased susceptibility to lung cancer.                        |

| 17 | Constant_Exhaustion   | Drop   | Its minimal impact on prediction accuracy compared to other clinical factors.                                                    |  |
|----|-----------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|--|
| 18 | FATIGUE               | Retain | It can be a symptom of underlying cancer and may provide insight into disease progression and patient health.                    |  |
| 19 | ALLERGY               | Retain | It may offer insights into immune system status and potential interactions with cancer risk factors.                             |  |
| 20 | WHEEZING              | Retain | It can be a symptom of respiratory issues and may indicate underlying lung pathology relevant to cancer risk.                    |  |
| 21 | ALCOHOL_CONSUMPTION   | Retain | Alcohol use is a known risk factor that can influence cancer development are progression.                                        |  |
| 22 | COUGHING              | Retain | It is a common symptom of lung issues and may indicate the presence or progression of lung cancer.                               |  |
| 23 | SHORTNESS_OF_BREATH   | Retain | It is a critical symptom that can signal lung abnormalities and potential cancer progression.                                    |  |
| 24 | SWALLOWING_DIFFICULTY | Retain | It can indicate advanced disease or metastasis affecting the esophagus or surrounding structures.                                |  |
| 25 | CHEST_PAIN            | Retain | It can be a significant symptom of lung cancer or related conditions, aiding in the assessment of disease presence and severity. |  |
| 26 | LUNG_CANCER           | Retain | It is the primary condition being predicted, directly informing the accuracy and relevance of the model's risk assessments.      |  |

## BEST MODEL WITH JUSTIFICATION THROUGH METRICS

| Metrics   | USE or      | Justification in relation to the success criteria       | Model   | Test  |
|-----------|-------------|---------------------------------------------------------|---------|-------|
| 1         | DONOT USE   |                                                         | Name    | Score |
| ACCURACY  | USE SVM     | SVM (0.82) is the best choice due to its high           | ANN     | 0.20  |
|           | to get best | accuracy and strong performance in predicting lung      |         |       |
|           | model       | cancer. KNN (0.79) is also effective but may struggle   | SVM     | 0.82  |
|           |             | with large datasets. Naive Bayes (0.56) has low         | KNN     | 0.79  |
|           |             | accuracy and is less suitable. ANN (0.20) performs      |         |       |
|           |             | poorly and is currently not a viable option. Prioritize | NB      | 0.56  |
|           |             | SVM for meeting your success criteria effectively.      |         |       |
| RECALL    | USE SVM     | KNN (0.94) is the best choice with the highest recall,  | ANN     | 0     |
|           | to get best | effectively identifying most positive cases. SVM        |         |       |
|           | model       | (0.92) also performs well in detecting positives.       | SVM     | 0.92  |
|           |             | Naive Bayes (0.58) has lower recall, missing many       |         |       |
|           |             | positive cases. ANN (0.00) fails to identify any        | KNN     | 0.94  |
|           |             | positives and is currently unsuitable. Prioritize KNN   |         |       |
|           |             | for the highest recall and best performance in          | NB      | 0.58  |
|           |             | detecting lung cancer.                                  |         |       |
| PRECISION | USE SVM     | Naive Bayes (0.88) has the highest precision,           | ANN     | 0     |
|           | to get best | effectively minimizing false positives, but has lower   | C) /h 4 | 0.05  |
|           | model       | recall. SVM (0.86) also offers high precision and       | SVM     | 0.86  |
|           |             | balances well with good recall. KNN (0.82) has          |         |       |
|           |             | slightly lower precision but compensates with high      | KNN     | 0.82  |
|           |             | recall. ANN (0.00) is unsuitable due to its extremely   |         |       |
|           |             | low precision. Prioritize Naive Bayes or SVM for the    | NB      | 0.88  |
|           |             | best precision in predicting lung cancer.               |         |       |
| F1 SCORE  | USE SVM     | SVM (0.89) has the highest F1 Score, showing the        | ANN     | 0     |
|           | to get best | best balance between precision and recall. KNN          | SVM     | 0.89  |
|           | model       | (0.88) also performs well with a high F1 Score. Naive   | 37171   | 0.03  |
|           |             | Bayes (0.70) has a lower F1 Score, indicating less      | KNN     | 0.88  |
|           |             | effective performance. ANN (0.00) is unsuitable due     | NB      | 0.70  |
|           |             | to its extremely low F1 Score. Prioritize SVM or KNN    | ND      | 0.70  |
|           |             | for the best overall balance in lung cancer             |         |       |
|           |             | prediction.                                             |         |       |

## MODELLING:CREATE PREDICTIVE CLASSIFICATION MODELS

| Algorithm<br>Name | Algorithm<br>Type   | Learnable<br>Parameters | Some Possible<br>Hyperparameters                                 | Imported Python Package to<br>use the algorithm                                                           |
|-------------------|---------------------|-------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| ANN               | Machine<br>Learning | 19<br>Parameters        | optimizer=adam,<br>loss=binary_crossentropy,<br>metrics=accuracy | From <u>tensorflow.keras</u> .models import Sequential, from <u>tensorflow.keras</u> .layers import Dense |
| svM               | Machine<br>Learning | 19<br>Parameters        | kernel-linear,<br>C-0.1, 1, 10, 100                              | from sklearn.svm import SVC                                                                               |
| KNN               | Machine<br>Learning | 19<br>Parameters        |                                                                  | from <u>sklearn.neighbors</u> import<br>KNeighborsClassifier                                              |
| NB                | Machine<br>Learning | 19<br>Parameters        |                                                                  | from <u>sklearn.naive</u> _bayes import<br>GaussianNB                                                     |

#### VARIABLE-ISSUE WITH MITIGATION

| Variable<br>Name | Issue Description                                     | Proposed<br>Mitigation    | Justification for used Mitigation                                                                  |
|------------------|-------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|
| Fatigue          | It shows not in dataframe during null values handling | To remove unwanted spaces | It having some space in letter <u>before</u> so, I used stripping for removing whitespace from the |
|                  |                                                       |                           | column names.                                                                                      |

## OUTPUT

| flease enter repective fields<br>SENOMIC SEX* |  |  |
|-----------------------------------------------|--|--|
|                                               |  |  |
| GE*                                           |  |  |
|                                               |  |  |
| LOOD TYPE*                                    |  |  |
|                                               |  |  |
| JUMBER OF SIBLINGS*                           |  |  |
| ARENT ALIVE*                                  |  |  |
|                                               |  |  |
| MOKING STATUS*                                |  |  |
|                                               |  |  |
| ALLY CIGARETTES*                              |  |  |
| 'ELLOW SKIN*                                  |  |  |
| ELLENA SKIN-                                  |  |  |
| ANXIETY*                                      |  |  |
|                                               |  |  |
| PEER PRESSURE*                                |  |  |
|                                               |  |  |
| COPD DIAGNOSES*                               |  |  |
| ATIGUE*                                       |  |  |
|                                               |  |  |
| ALLERGY*                                      |  |  |
|                                               |  |  |
| WHEEZING*                                     |  |  |
|                                               |  |  |
| ALCOHOL CONSUMPTION*                          |  |  |
| COUGHING*                                     |  |  |
|                                               |  |  |
| HORTNESS OF BREATH*                           |  |  |
|                                               |  |  |
| WALLOWING DIFFICULTY*                         |  |  |
| THEFT PAINS                                   |  |  |
| CHEST PAIN*                                   |  |  |
|                                               |  |  |

### **OUTCOME POSITIVE**

## Lung Cancer Prediction For the values

GENOMIC\_SEX:1

AGE:55

BLOOD\_TYPE:3

NUMBER\_OF\_SIBLINGS:1

PARENT\_ALIVE:1

SMOKING\_STATUS:2

DAILY\_CIGARETTES:26

YELLOW\_SKIN:1

ANXIETY:1

PEER\_PRESSURE:2

COPD\_DIAGNOSES:2

FATIGUE:2

ALLERGY:1
WHEEZING:1

ALCOHOL\_CONSUMPTION:2

COUGHING:2

SHORTNESS\_OF\_BREATH:2

SWALLOWING\_DIFFICULTY:1

CHEST\_PAIN:2

Output Lung Cancer prediction:

You will have Lung Cancer in the future: Positive

LC Predicition

### **OUTCOME NEGATIVE**

## Lung Cancer Prediction For the values

GENOMIC\_SEX:1

AGE:55

BLOOD\_TYPE:3

NUMBER\_OF\_SIBLINGS:1

PARENT\_ALIVE:1

SMOKING\_STATUS:2

DAILY\_CIGARETTES:10

YELLOW\_SKIN:1

ANXIETY:1

PEER\_PRESSURE:1

COPD\_DIAGNOSES:1

FATIGUE:2

ALLERGY:1

WHEEZING:2

ALCOHOL\_CONSUMPTION:2

COUGHING:1

SHORTNESS\_OF\_BREATH:1

SWALLOWING\_DIFFICULTY:1

CHEST\_PAIN:1

Output Lung Cancer prediction:

You will not have Lung Cancer in the future:Negative

LC Predicition

## <u>Advantages</u>

early Detection: An accuracy of 82% helps in identifying potential lung cancer cases early, improving treatment outcomes and survival rates.

Support for Professionals: It assists doctors by providing a reliable tool to highlight high-risk patients, complementing their clinical expertise.

Cost Reduction: Accurate predictions can minimize unnecessary tests, potentially lowering overall healthcare costs.



## WITH REGARDS VERGENA DEVI.C