Thunder Prediction

Bad weather classification

May 2, 2022 CivEng 290-002

Outline

- 1. Motivation
- 2. Data Preparation
- 3. Exploratory Data Analysis
- 4. Classification Methods
- 5. Future Improvements
- 6. Challenges

Motivation

Predict bad weathers to prepare for flight planning / trajectory optimization

Data Preparation

Raw Data

FEDERAL CLIMATE COMPLEX
DATA DOCUMENTATION
FOR
INTEGRATED SURFACE DATA
(ISD)

January 12, 2018

NOAA - National Centers for Environmental Information US Air Force - 14th Weather Squadron 151 Patton Avenue Asheville, NC 28801-5001 USA Time Range: 1901 - 2022

Granularity: Hourly

24*365 = 8760 observations / station / year

Variables: 79 Features, Sparse

Global Hourly Data

	STATION	DATE	SOURCE	LATITUDE	LONGITUDE	ELEVATION	NAME	REPORT_TYPE	CALL_SIGN	QUALITY_CONTROL	MW2	MW3	MW4	MW5
o	72243012960	2000-01- 01T00:00:00	3	29.98	-95.36	29.0	HOUSTON INTERCONTINENTAL AIRPORT, TX US	SY-MT	IAH	V020	NaN	NaN	NaN	NaN
1	72243012960	2000-01- 01T00:53:00	С	29.98	-95.36	29.0	HOUSTON INTERCONTINENTAL AIRPORT, TX US	FM-15	IAH	V020	NaN	NaN	NaN	NaN
							HOHOTON							

Data Cleaning

1. Select and Parse columns

['DATE','WND','CIG','VIS','TMP','DEW''AT1','AT2','AT3'] Single column contain multiple information Examples:

'WND': 999,9,C,0000,5 'AT1': MW,01,FG ,5

- 2. Replace "999" as NaN
- 3. Fill NaN forward & backward
- 4. Get binary values of AT (daily weather observation)
- 5. Generalize weather observation to 1 day (Assumption!)

Loop for selected stations over selected time, Concatenate Data Frames

Exploratory Data Analysis

Stations Overview - World

Stations Overview - US

Monthly Overview - Raw Data Heat Map

- Houston, TX area (~ 4.8 million samples)
- Missing Data until ~1995
- Less Data between 1995 ~ 2003

- Cleaned irrelevant and faulty data
- Removed repeating samples
- Data transformation
- Rebuild the data set for analysis

Monthly Overview - RAIN / THUNDER

Monthly Overview - FOG / TORNADO

Daily Overview - RAIN / THUNDER

Statistics over Yearly & Monthly Date

Statistics over Yearly & Monthly Date

Feature Importance in Bad Weather Report

• SLP: Sea Level Pressure

TMP: Temperature

VIS: Visible Distance

CIG: Ceiling Height

Bubble Map of Weathers (RAIN) - US

Color Gradient ~ Number of weathers occured

Bubble Map of Weathers (THUNDER) - US

TORNADO?

Color Gradient ~ Number of weathers occured

Bubble Map of Weathers - US

Bubble Map of Weathers - Houston Area

Classification Methods

Data

We select one station: Houston Airport

Time range: Year 2000 - 2022

Dataset shape: 309,428 observations

Train-Validation-Test Split: 70-15-15

Train+Val & Test Splits according to time (non-shuffle)

Train & Val split with shuffle

Supervised Learning

Baseline: Majority rule

18% thunders -> Predict all data as non-thunder

Baseline accuracy for test set is 0.798

Training data shape:

X: (215670, 13)

Y: (215670, 1)

X:

DATE: year,month,day,hour

Latitude, Longitude

Wind angle

Wind speed

Ceiling height

Visibility

Temperature

Dew point temperature

Sea level pressure

Y:

Thunder_binary

DATE_year	DATE_month	DATE_day	DATE_hour	LATITUDE	LONGITUDE	WND_angle	WND_speed	CIG_ceiling_height	VIS_distance	TMP_temp_celsius	DEW_temp_celsius	SLP_hectopascal
2005	7	27	14	29.98	-95.36	230.0	3.1	7620.0	16093.0	28.9	23.3	1016.6
2004	8	28	5	29.98	-95.36	190.0	1.5	22000.0	16093.0	26.0	24.0	1015.5
2006	10	18	23	29.98	-95.36	50.0	4.1	671.0	2414.0	25.0	23.0	1006.5

Model Comparison

	Model	Fitting time	Scoring time	Accuracy	Precision	Recall	F1_score	AUC_ROC
4	Random Forest	23.583221	0.611752	0.959531	0.966304	0.894381	0.957838	0.992388
1	Decision Tree	1.281843	0.026187	0.929693	0.879450	0.881624	0.929790	0.881624
5	K-Nearest Neighbors	0.408562	3.324306	0.836866	0.719312	0.655562	0.823084	0.795989
0	Logistic Regression	1.314030	0.020501	0.821422	0.410711	0.500000	0.740887	0.688961
2	Linear Discriminant Analysis	0.433447	0.031723	0.821422	0.410711	0.500000	0.740887	0.692926
6	Bayes	0.101537	0.028895	0.804331	0.638136	0.593777	0.785782	0.700893
3	Quadratic Discriminant Analysis	0.189265	0.034565	0.525873	0.493154	0.496627	0.497315	0.476229

Model Comparison - Training Set

Ensemble Method - Training Set

		Model	Accuracy	Precision	Recall	F1_score	AUC_ROC
	0	Ensebling_hard	0.80125	0.567992	0.058044	0.105324	not applicable
ϵ	1	Ensembling_soft	0.79875	0.506173	0.061358	0.109448	0.686952

Model Comparison - Without tuning

0 Baseline Majority 0.79844 1 Logistic Regression 0.79844 3 Linear Discriminant Analysis 0.79844 4 Quadratic Discriminant Analysis 0.79803 7 Bayes 0.77145 6 K-Nearest Neighbors 0.75826		Model	Accuracy
1 Logistic Regression 0.79844 3 Linear Discriminant Analysis 0.79844 4 Quadratic Discriminant Analysis 0.79803 7 Bayes 0.77145 6 K-Nearest Neighbors 0.75826	5	Random Forest	0.804481
3 Linear Discriminant Analysis 0.79844 4 Quadratic Discriminant Analysis 0.79803 7 Bayes 0.77145 6 K-Nearest Neighbors 0.75826	0	Baseline Majority	0.798449
4 Quadratic Discriminant Analysis 0.79803 7 Bayes 0.77145 6 K-Nearest Neighbors 0.75826	1	Logistic Regression	0.798449
7 Bayes 0.77145 6 K-Nearest Neighbors 0.75826	3	Linear Discriminant Analysis	0.798449
6 K-Nearest Neighbors 0.75826	4	Quadratic Discriminant Analysis	0.798039
	7	Bayes	0.771453
	6	K-Nearest Neighbors	0.758268
2 Decision Tree 0.70388	2	Decision Tree	0.703889

Future improvements

- Fine tunings according to validation set
 - Features selection
 - Parameters selection
- Detailed analysis
 - Confusion matrix visualize
- Other models
 - \circ NN
 - Time series
- Multiclass- MultiOutput classifiers

- Oversampling
 - Imbalanced data
- Model using more stations
 - Sampling, PCA
 - Computing power ?
- Various weather prediction/classification
 - Improve model to predict more various types of bad weather
- Different data source/format
 - Using global daily summary dataset

Challenges & Lessons learned

- Large file size when bulk downloading
- Data formats are messy, missing, sparse
 Parse & extract according to documentation
- Data preprocessing eating up RAM
 Preprocess each .csv then combine
- Data storing taking up enormous disk space
- SVM & NN takes long time to train
- Feasibility of the classification models

```
2013.tar.gz
               2021-02-05 13:50 4.2G
               2021-02-04 19:30 4.4G
2014.tar.gz
2015.tar.gz
               2021-02-04 19:13 4.5G
2016.tar.gz
               2021-02-04 19:51 4.5G
2017.tar.gz
               2020-12-07 00:21 4.6G
2018.tar.gz
               2020-12-06 08:51 4.6G
2019.tar.gz
               2020-10-24 01:16 4.7G
2020.tar.gz
               2021-02-28 07:25 4.6G
               2022-02-09 00:35 4.6G
2021.tar.gz
```

FEDERAL CLIMATE COMPLEX DATA DOCUMENTATION FOR INTEGRATED SURFACE DATA (ISD)

January 12, 2018

```
NOAA - National Centers for Environmental Information
                                                                US Air Force - 14th Weather Squadron
                                                                                                                                       151 Patton Avenue
                                                                                           Asheville, NC 28801-5001 USA
                                                                                       F = Form QMR/1001 - Weather Bureau city office (keyed data)
                                                                                               = Cooperative Network observation

    Data from Climate Data Modernization Program (CDMP) data source

                                                                                           M = Data from National Renewable Energy Laboratory (NREL) data source
N = NCAR / NCEl cooperative effort (various national datasets)
                                                                                             = Summary observation created by NCEI using hourly observations that may not share the same data source flag
                                             Note: Latitude, longitude, elevation, and call letters for some locations with data from multiple sources (see data source flag above) will sometimes vary within a data flie due to differences in the metadata from the originating source. This does not indicate that the station locations differ; only that the metadata have not yet been fully reflected in the data records.
                                                                     GEOPHYSICAL-POINT-OBSERVATION latitude coordinate
                                                                   The latitude conditate of a CECPHYSICAL-POINT-OBSERVATION where Southern Hemisphere is negative.

UNITS: Angular Degrees

SCALING FACTOR: 1000
                                                                     DOM: A general domain comprised of the numeric characters (0-9), a plus sign (+), and a minus sign (-).
+99999 = Missing
                                                                   1-41

GEOPHYSICAL-POINT-OBSERVATION longitude coordinate
The longitude coordinate of a GEOPHYSICAL-POINT-OBSERVATION where values west from 000000 to 179999 are signed negative.
MNI: -179999 MNC+180000 UNITS: Angular Degrees
SCALING FACTOR: 1000
                                                                   DOM: A general domain comprised of the numeric characters (0-9), a plus sign (+), and a minus sign (-), +999999 = Missing
                                                                     -46
GEOPHYSICAL-REPORT-TYPE code
The code that denotes the type of geophysical surface observation.
DOM: A specific domain comprised of the characters in the ASCII character set.
                                                                                         AERO = Aerological report
                                                                                         AUST = Dataset from Australia
AUTO = Report from an automatic station
                                                                                    AUTO - Report from an automatic station
BOOULS - Biogus report
BRAZ - Dataset from Brazil
COOPD - US Cooperative Network summary of day report
COOPD - US Cooperative Network summary of day report
COOPS - US Cooperative Network summary of day report
COOPS - US Cooperative Network summary of day report
COPS - US Cooperative Network report, with 5-minute reporting interval
CORIOS - Climate Reference Network report, with 5-minute reporting interval
CORIOS - Climate Reference Network report, with 5-minute reporting interval
                                                                                         FM.12 = SYNOP Report of surface observation form a fixed land station
                                                                                       FM-13 = SHIP Report of surface observation from a sea station 
FM-13 = SHIP Report of surface observation from a sea station 
FM-14 = SYNOP MOBIL Report of surface observation from a mobile land station 
FM-15 = METAR Avaision routine weather report
                                                                                      FB.15 = METAR Aviation regime weather report
FB.15 = PRICT AND STATE was a sentent report
FB.15 = PRICT AND STATE was a sentent report
FB.15 = PRICT AND STATE WAS A STATE WAS
                                                                                      MEXIC = Dataset from Mexico
NSRDB = National Solar Radiation Data Base
PCP15 = US 15-minute precipitation network report
PCP60 = US 60-minute precipitation network report
S-S-A = Synoptic, airways, and auto merged report
S-A-AU = Airways and auto merged report
S-AO = Airways and auto merged report
S-AO = Airways and auto merged report
S-AO = Airways and auto merged report
                                                                                       SAOSP = Airways special report (excluding record specials)
SHEF = Standard Hydrologic Exchange Format
SMARS = Supplementary airways station report
SOD = Surrmary of day report from U.S. ASOS or AWOS station
```


Thank you!

Any Questions?

