MATEMATIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy a hiba jelzése mellett az egyes részpontszámokat is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **elté- rő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 11. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 12. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 13. A vizsgafeladatsor II. B részében kitűzött 3 feladat közül csak 2 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

I.

1.		
$G \cap H = \{1; 2; 4\}$	1 pont	
$H \setminus G = \{8; 16\}$	1 pont	
Összesen:	2 pont	

2.		
980 (Ft)	2 pont	
Összesen:	2 pont	

3.	
x = 4096	2 pont $x = 4^6$
Összesen:	2 pont

4.		
$(9 \cdot 9 \cdot 8 =) 648$	2 pont	
Összesen:	2 pont	

6.		
$x \approx 3,322$	2 pont	
Összesen:	2 pont	

Megjegyzés: Ha a vizsgázó nem a megadott pontossággal kerekít vagy rosszul kerekít, akkor legfeljebb l pontot kaphat.

7.		
A: hamis		2 jó válasz esetén 1 pont,
B: igaz	2 pont	1 jó válasz esetén 0 pont
C: hamis	_	jár.
Összesen:	2 pont	

8.		
A sorozat differenciája: $d = -12$,	1 pont	
első tagja: $a_1 = a_4 - 3d =$	1 pont	$a_3 = 19, \ a_2 = 31$
= 43.	1 pont	
Összesen:	3 pont	

9.		
C és D	2 pont	1 jó válasz vagy 2 jó és 1 rossz válasz esetén 1 pont jár.
Összesen:	2 pont	

11.		
$x = \frac{\pi}{2} + k \cdot 2\pi \ (k \in \mathbf{Z})$	2 pont	
Összesen:	2 pont	

Megjegyzés: Az $x = 90^{\circ} + k \cdot 360^{\circ}$, illetve az $x = \frac{\pi}{2}$ válaszért 1 pont jár.

12.		
Az összes lehetséges húzás száma $\binom{5}{3}$ =	1 pont	A kihúzott számok sor- rendjét is figyelembe vé- ve: 5 · 4 · 3 =
= 10.	1 pont	= 60.
A kedvező esetek száma 1,	1 pont	$3 \cdot 2 \cdot 1 = 6$
így a kérdéses valószínűség $\frac{1}{10} = 0,1$.	1 pont	
Összesen:	4 pont	

II. A

13. a)		
$7 - 2x - 10 = \frac{x+6}{4} + \frac{2x+4}{4}$	1 pont	
$-2x - 3 = \frac{3x + 10}{4}$	1 pont	-12 - 8x = x + 6 + 2x + 4
x = -2	2 pont	
Ellenőrzés behelyettesítéssel vagy ekvivalenciára hivatkozással.	1 pont	
Összesen:	5 pont	

13. b)		
Az $x^2 - x - 2 = 0$ egyenlet gyökei: $x_1 = -1$ és $x_2 = 2$.	2 pont	
Mivel a másodfokú kifejezés főegyütthatója pozitív,	1 pont	Ez a pont jár egy megfe- lelő ábráért is.
így az egyenlőtlenség megoldáshalmaza: [-1; 2].	2 pont	$-1 \le x \le 2$
Összesen:	5 pont	

14. a)		
A húrtrapéz alapon fekvő szögei egyenlők.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A trapéz C -ből induló magasságát berajzolva $TB = 1,5$ (cm).		
A $2,5$ β T $1,5$ B	1 pont	
A BCT derékszögű háromszögben		
$\cos\beta = \frac{1.5}{2.5} = 0.6.$	1 pont	
Ebből $\beta = \alpha \approx 53,13^{\circ}$,	1 pont	
valamint $\gamma = \delta = 180^{\circ} - \beta \approx 126,87^{\circ}$.	1 pont	
Összesen:	5 pont	

14. b) első megoldás			
D 2 C m 2,5 m 2,5 T 1,5 B Az ABC háromszögben az AB oldalhoz tartozó magasság ugyanakkora, mint az ACD háromszögben a DC oldalhoz tartozó magasság.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.	
BCT háromszögben felírva a Pitagorasz-tételt: $m = \sqrt{2,5^2 - 1,5^2} = 2$ (cm).	1 pont*		
$T_{ABC} = \frac{5 \cdot 2}{2} = 5 \text{ (cm}^2\text{)}$	1 pont*		
$T_{ACD} = \frac{2 \cdot 2}{2} = 2 \text{ (cm}^2\text{)}$	1 pont*		
$\frac{T_{ABC}}{T_{ACD}} = \frac{5}{2}$	1 pont		
Összesen:	5 pont		

Megjegyzés: A *-gal jelölt 3 pontot az alábbi gondolatért is megkaphatja a vizsgázó:

11108/08/2001 11 Sunferent et permet de unideel Service une	1 12 1110811	up:::::5 tr + 12581251	
Így az <i>ABC</i> és <i>ADC</i> háromszögek területének aránya az <i>AB</i> és a <i>CD</i> oldal hosszának arányával egyenlő.	3 pont		

14. b) második megoldás		
$D \qquad 2 \qquad C$ $A \qquad 5 \qquad T \qquad 1,5 \qquad B$ A BCT háromszögben felírva a Pitagorasz-tételt: $m = \sqrt{2,5^2 - 1,5^2} = 2 \text{ (cm)}.$	1 pont	
$T_{ABC} = \frac{5 \cdot 2}{2} = 5 \text{ (cm}^2\text{)}$	1 pont	
$T_{ABCD} = \frac{(5+2)\cdot 2}{2} = 7 \text{ (cm}^2\text{)}$	1 pont	
$T_{ACD} = T_{ABCD} - T_{ABC} = 2 \text{ (cm}^2\text{)}$	1 pont	
$\frac{T_{ABC}}{T_{ACD}} = \frac{5}{2}$	1 pont	
Összesen:	5 pont	

14. b) harmadik megoldás		
180°-β D 2 C 2,5 2,5 A húrtrapéz szemközti szögei 180°-ra egészítik ki egymást.	1 pont	
$T_{ABC} = \frac{5 \cdot 2, 5 \cdot \sin \beta}{2}$	1 pont	
$T_{ACD} = \frac{2 \cdot 2.5 \cdot \sin(180^\circ - \beta)}{2} =$	1 pont	
$=\frac{2\cdot 2.5\cdot \sin\beta}{2}$	1 pont	
$\frac{T_{ABC}}{T_{ACD}} = \frac{5}{2}$	1 pont	
Összesen:	5 pont	

14. c) első megoldás		
Mivel a trapéz belső szögeinek összege 360°, így a		
négy ív hossza összesen egy 5 mm sugarú kör kerüle-	1 pont	
tével egyenlő.		
$K = 2 \cdot 5 \cdot \pi =$	1 pont	
$=10\pi \ (\approx 31,42) \text{ mm}.$	1 pont	
Összesen:	3 pont	

14. c) második megoldás			
A B	1 pont	Az ívek hossza összesen: $2 \cdot \frac{\beta}{360^{\circ}} \cdot 2 \cdot 5 \cdot \pi + + + 2 \cdot \frac{180^{\circ} - \beta}{360^{\circ}} \cdot 2 \cdot 5 \cdot \pi =$	
Az ívek hossza összesen: $\approx 2 \cdot \frac{53,13^{\circ}}{360^{\circ}} \cdot 2 \cdot 5 \cdot \pi + 2 \cdot \frac{126,87^{\circ}}{360^{\circ}} \cdot 2 \cdot 5 \cdot \pi \approx$	1 pont	$=2\cdot\frac{180^{\circ}}{360^{\circ}}\cdot2\cdot5\cdot\pi=$	
$\approx (2 \cdot 4,64 + 2 \cdot 11,07 =) 31,42 \text{ mm}.$	1 pont	$=10\pi$ mm.	
Összesen:	3 pont		

15. a)		
Az I. ajánlatban Péter havi fizetései egy 5000 differenciájú számtani sorozat egymást követő tagjai, ahol a sorozat első tagja 200 000. Az első 48 tag összegét kell kiszámolni.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$S_{48} = \frac{2 \cdot 200000 + 47 \cdot 5000}{2} \cdot 48 =$	1 pont	
= 15 240 000 (Ft).	1 pont	
Az II. ajánlatban Péter havi fizetései egy 1,02 hányadosú mértani sorozat egymást követő tagjai, ahol a sorozat első tagja 200 000. Az első 48 tag összegét kell kiszámolni.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$S_{48}' = 200000 \cdot \frac{1,02^{48} - 1}{1,02 - 1} \approx$	1 pont	
≈ 15 870 700 (Ft).	1 pont	
A II. ajánlatot érdemes választania.	1 pont	
Összesen:	7 pont	

15. b) első megoldás		
A 8 óra munkával töltött januári napok számát jelölje x , ekkor a 9 óra munkával eltöltött napok száma: $22 - (4 + 5 + 3 + x) = 10 - x$.	2 pont	
Továbbá a feladat szövege alapján $8 = \frac{4 \cdot 6 + 5 \cdot 7 + x \cdot 8 + (10 - x) \cdot 9 + 3 \cdot 10}{22},$	1 pont	
amiből $x = 3$.	2 pont	
Péter januárban 3 napon dolgozott 8 órát, és 7 napon dolgozott 9 órát (és ez megfelel a feladat feltételeinek).	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó a 11 lehetséges egész értéket $(0 \le x \le 10)$ kipróbálva helyes következtetésre jut, akkor ezért teljes pontszámot kapjon.

15. b) második megoldás		
Péter havi munkaideje (22 · 8 =) 176 óra.	1 pont	
Azon a 12 napon, amikor 6, 7 vagy 10 órát dolgozott, összesen $(4 \cdot 6 + 5 \cdot 7 + 3 \cdot 10 =)$ 89 órát dolgozott.	1 pont	
Tehát azon a 10 napon, amikor 8 vagy 9 órát dolgo- zott, összesen (176–89 =) 87 órát dolgozott.	1 pont	
Ha mind a 10 napon 8 (9) órát dolgozott volna, akkor összesen 80 (90) órát dolgozott volna, ami 7-tel kevesebb (3-mal több), mint 87.	2 pont	
Így Péter januárban 3 napon dolgozott 8 órát, és 7 napon dolgozott 9 órát (és ez megfelel a feladat feltételeinek).	1 pont	
Összesen:	6 pont	

II. B

16. a)		
A jó válaszok száma 35, a rossz válaszok száma 25.	1 pont	
A 10 diák összesen 60 választ adott, így 1 válasz 6°-nak felel meg a diagramon.	1 pont	Ezek a pontok járnak, ha
A jó válaszok számát egy 210°-os körcikk, a rossz válaszokat egy 150°-os körcikk szemlélteti.	1 pont	ezek a gondolatok csak a megoldásból derülnek ki.
jó válaszok 180° rossz válaszok 210° rossz válaszok	1 pont	
Összesen:	4 pont	

16. b)		
Ha az állítás igaz lenne, akkor a tanulók összesen $5+6+6+7+6+6=36$ pontot szereztek volna.	2 pont	
(A feladat szövege szerint összesen 35 pontot értek el, ezért) az állítás hamis.	1 pont	
Összesen:	3 pont	

16. c) első megoldás		
A mindhármuk által megoldott feladattal összesen	1 pont	
3 pontot szereztek.	1 point	
A pontosan kettejük által jól megoldott feladatok	1 pont	
száma $(3-1=) 2$, $(2-1=) 1$ és $(1-1=) 0$,	1 pont	
melyek összesen 4, 2, illetve 0 pontot érnek.	1 pont	
Az a két feladat, amit csak egy diák oldott meg he-	1 nont	
lyesen, 2 pontot ér,	1 pont	
így összesen $3 + 4 + 2 + 2 = 11$ pontot szereztek.	1 pont	
Összesen:	5 pont	

16. c) második megoldás		
(Írjuk egy Venn-diagram megfelelő részeibe a legalább két diák által jól megoldott feladatok számát.)		
Éva János		
2 1 1 Nóra	2 pont	
Azért a két feladatért, amit csak egy diák oldott meg helyesen, 2 pont jár.	1 pont	
Összesen $3 \cdot 1 + 2 \cdot 2 + 2 \cdot 1 + 2 = 11$ pontot szereztek.	2 pont	
Összesen:	5 pont	

16. d) első megoldás		
3 ⁶ = 729 különböző kitöltése van a tesztnek (összes eset száma).	1 pont	
A kedvező esetek számát úgy kapjuk, hogy az összes eset számából kivonjuk a kedvezőtlen esetek számát.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Egy válasz sem helyes $2^6 = 64$ esetben.	1 pont	
Legalább egy válasz helyes 729 – 64 = 665 esetben (kedvező esetek száma).	1 pont	
A kérdéses valószínűség $\frac{665}{729}$ (≈ 0.91).	1 pont	
Összesen:	5 pont	

16. d) második megoldás		
Annak valószínűsége, hogy egy válasz hibás: $\frac{2}{3}$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Annak valószínűsége, hogy mind a hat válasz hibás: $\left(\frac{2}{3}\right)^6$.	1 pont	P(n) jelölje annak a való- színűségét, hogy ponto- san n válasz jó. $P(1) \approx 0.2634$
Annak valószínűsége, hogy legalább egy válasz jó: $1 - \left(\frac{2}{3}\right)^6 \approx$	2 pont	$P(2) \approx 0.3292$ $P(3) \approx 0.2195$ $P(4) \approx 0.0823$ $P(5) \approx 0.0165$ $P(6) \approx 0.0014$
≈ 0,91.	1 pont	
Összesen:	5 pont	

17. a) első megoldás		
A háromszög súlypontjának koordinátái a csúcsok megfelelő koordinátáinak számtani közepe, így a $C(c_1;c_2)$ pontra:	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$0 = \frac{-3+3+c_1}{3}$, ahonnan $c_1 = 0$,	1 pont	
illetve $0 = \frac{-1 + 7 + c_2}{3}$, ahonnan $c_2 = -6$.	1 pont	
Összesen:	3 pont	

17. a) második megoldás		
Az AB szakasz felezőpontja: F(0; 3).	1 pont	
Mivel az origó a <i>CF</i> szakasz <i>C</i> -től távolabbi harmadolópontja,	1 pont	
így $C(0, -6)$.	1 pont	
Összesen:	3 pont	

17. b) első megoldás		
	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen oldja meg a fel- adatot.
(A grafikon egy egyenes.) Az egyenes meredeksége: $m = \frac{7 - (-1)}{3 - (-3)} = \frac{8}{6} = \frac{4}{3}$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó helyesen ol- vassa le az ábráról a me- redekséget.
A (3; 7) ponton átmenő $\frac{4}{3}$ meredekségű egyenes egyenlete: $y-7=\frac{4}{3}(x-3)$.	2 pont	A (-3; -1) ponton átmenő $\frac{4}{3}$ meredekségű egyenes egyenlete: $y+1=\frac{4}{3}(x+3)$.
A hozzárendelési utasítás: $x \mapsto \frac{4}{3}x + 3$.	1 pont	
Összesen:	5 pont	

17. b) második megoldás		
	1 pont	Ez a pont akkor is jár, ha a vizsgázó ábra nélkül helyesen oldja meg a fel- adatot.
(A grafikon egy egyenes.) A két adott pont által meghatározott szakasz felezőpontja az <i>y</i> tengelyen van,	1 pont	
$igy b = \frac{-1+7}{2} = 3.$	1 pont	
A keresett egyenes meredeksége: $m = \frac{7-3}{3-0} = \frac{4}{3}$.	1 pont	$m = \frac{1 - (-7)}{3 - (-3)} = \frac{8}{6} = \frac{4}{3}$
A hozzárendelési utasítás: $x \mapsto \frac{4}{3}x + 3$.	1 pont	
Összesen:	5 pont	

17. b) harmadik megoldás		
A lineáris függvényt $y = mx + b$ alakban keressük.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Behelyettesítés után: $ -1 = -3m + b $ $ 7 = 3m + b $	1 pont	
Ebből $b = 3$.	1 pont	
Ezt visszahelyettesítve: $m = \frac{4}{3}$.	1 pont	
A hozzárendelési utasítás: $x \mapsto \frac{4}{3}x + 3$.	1 pont	
Összesen:	5 pont	

17. b) negyedik megoldás		
(A grafikon egy egyenes.) A két adott ponton átmenő egyenes egyenletébe behelyettesítve:	2 nont	
(3-(-3))(y-(-1)) = (7-(-1))(x-(-3)).	2 pont	
6(y+1) = 8(x+3)	1 pont	
$y = \frac{4}{3}x + 3$	1 pont	
A hozzárendelési utasítás: $x \mapsto \frac{4}{3}x + 3$.	1 pont	
Összesen:	5 pont	

17. b) ötödik megoldás		
(A grafikon egy egyenes.) Az $A(-3; -1)$ és a $B(3; 7)$ pontokra illeszkedő egyenes egyenletét írjuk fel.	1 pont	
Az egyenes (egyik) irányvektora az \overrightarrow{AB} (6; 8) vektor.	1 pont	
Az egyenes egyenlete: $8x - 6y = -18$.	1 pont	
Ebből $y = \frac{4}{3}x + 3$.	1 pont	
A hozzárendelési utasítás: $x \mapsto \frac{4}{3}x + 3$.	1 pont	
Összesen:	5 pont	

17. c) első megoldás		
A kérdéses pontot <i>P</i> -vel jelölve (a Thalész-tétel meg-		Ezek a pontok akkor is
fordítása miatt) az ABP háromszög köré írt körének	1 pont	járnak, ha ezek a gondo-
átmérője az <i>AB</i> szakasz.		latok csak a megoldásból
A kör és az <i>x</i> tengely metszéspontja a <i>P</i> pont.	1 pont	derülnek ki.
A kör középpontja az AB szakasz felezőpontja:		
$\left(\frac{-3+3}{2}; \frac{-1+7}{2}\right) = (0;3).$	1 pont	
A kör sugara $r = \frac{AB}{2} = \frac{\sqrt{(-3-3)^2 + (-1-7)^2}}{2} = 5$.	1 pont	
A háromszög köré írható kör egyenlete: $x^2 + (y-3)^2 = 25$.	1 pont	
A kör x tengellyel való metszéspontját az $y = 0$ helyettesítéssel kapjuk, így $x^2 + 9 = 25$.	1 pont	
$x_1 = 4$	1 pont	
$x_2 = -4$	1 pont	
Tehát $P_1(4;0)$ és $P_2(-4;0)$.	1 pont	
Összesen:	9 pont	

Megjegyzések:

- 1. Ha a vizsgázó indoklás nélkül adja meg a P₁ és P₂ pontokat, akkor ezért 1-1 pontot kapjon.
- 2. Ha a vizsgázó egy ábra alapján (további indoklás nélkül) az AB átmérőjű kör segítségével adja meg a P₁ és P₂ pontokat, akkor ezért 4 pontot kapjon.
- 3. Ha számítással igazolja, hogy ezekből a pontokból derékszögben látszik az AB szakasz, akkor ezért további 1-1 pontot kapjon.

17. c) második megoldás		
A kérdéses pontot P -vel jelöljük. Mivel a P pont az x tengelyen van, így a második koordinátája 0. Legyen $P(x; 0)$.	1 pont	
$\overrightarrow{PA} = (-3 - x; -1) \text{ és } \overrightarrow{PB} = (3 - x; 7)$	2 pont	
\overrightarrow{PA} és \overrightarrow{PB} vektorok pontosan akkor merőlegesek egymásra, ha \overrightarrow{PA} és \overrightarrow{PB} vektorok skaláris szorzata 0.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$(-3-x)\cdot(3-x)+(-1)\cdot 7=0$	1 pont	
$x^2 - 9 - 7 = 0$	1 pont	
$x_1 = 4$	1 pont	
$x_2 = -4$	1 pont	
Tehát $P_1(4;0)$ és $P_2(-4;0)$.	1 pont	
Összesen:	9 pont	

18. a)		
Egy 11 cm oldalú kocka térfogata 1331 cm ³ .	1 pont	
Az oldallap magas- sága Pitagorasz- tétellel: $\sqrt{5^2-3^2}=4$.	1 pont	Az alaplap átlójának hossza $6 \cdot \sqrt{2}$.
A test <i>m</i> magassága Pitagorasz-tétellel: $m = \sqrt{4^2 - 3^2} = \sqrt{7} \ (\approx 2,65 \text{ cm}).$	1 pont	$m = \sqrt{5^2 - (3 \cdot \sqrt{2})^2} = \sqrt{7}$
$V_{\text{gúla}} = \frac{6^2 \cdot \sqrt{7}}{3} (= 12\sqrt{7} \approx 31,75 \text{ cm}^3).$	1 pont	
$\frac{1331}{V_{\text{gúla}}} \approx 41.9$	1 pont	
Egy kockából legfeljebb 41 gyertya önthető.	1 pont	
Összesen:	6 pont	

18. b)		
Az alaplapot kétféleképpen lehet kiszínezni.	1 pont	
Az oldallapok lehetnek ugyanolyan színűek, mindegyik kék, vagy mindegyik zöld (két eset).	1 pont	
Lehet három oldallap zöld és egy kék, vagy három oldallap kék és egy zöld (két eset).	1 pont	
Olyan festésből, amikor két oldallap zöld és két oldallap kék, szintén kétféle lehet, attól függően, hogy az ugyanolyan színű lapok szomszédosak vagy szemköztiek.	1 pont	

Az oldallapokat tehát hatféleképpen lehet kiszínezni.	1 pont	
Összesen 2·6 = 12-féle különböző színezés készíthető.	1 pont	
Összesen:	6 pont	

18. c) első megoldás		
(Ha az azonos színű lánggal égőket megkülönböztet-		
jük egymástól, akkor) Zsófi összesen $6 \cdot 5 \cdot 4 = 120$ -	1 pont	
féleképpen választhatja ki az első három gyertyát.		
A háromféle szín sorrendje 3! = 6-féle lehet.	1 pont	
Egy adott színsorrend esetén $2 \cdot 2 \cdot 2 = 8$ választási	1 nont	
lehetőség van,	1 pont	
így a kedvező esetek száma $6 \cdot 8 = 48$.	1 pont	
A kérdéses valószínűség $\frac{48}{120}$ (= 0,4).	1 pont	
Összesen:	5 pont	

18. c) második megoldás		
Tekintsük úgy, hogy Zsófi egyszerre veszi ki a do-		Ez a pont akkor is jár, ha
bozból az első három gyertyát, amit majd (valami-	1 pont	ez a gondolat csak a meg-
lyen sorrendben) meg fog gyújtani.		oldásból derül ki.
Összesen $\binom{6}{3}$ = 20 -féleképpen választhatja ki a	1 pont	
3 gyertyát.		
Minden fajtából kettő van a dobozban, így a kedvező		
esetek száma $\binom{2}{1} \cdot \binom{2}{1} \cdot \binom{2}{1} = 8$.	2 pont	
A kérdéses valószínűség $\frac{8}{20}$ (= 0,4).	1 pont	
Összesen:	5 pont	

18. c) harmadik megoldás		
Az első gyertya bármilyen színű lánggal éghet.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\frac{4}{5}$ annak a valószínűsége, hogy a második gyertya	1 pont	
más színű lánggal ég, mint az első.		
$\frac{2}{4}$ annak a valószínűsége, hogy a harmadik gyertya	1 pont	
más színű lánggal ég, mint az első kettő.		
A kérdéses valószínűség: $1 \cdot \frac{4}{5} \cdot \frac{2}{4} = \frac{2}{5} (= 0,4)$.	2 pont	
Összesen:	5 pont	