ECUACIONES DIFERENCIALES - EXAMEN FINAL

El teorema de Malgrange-Ehrenpreis

Guido Arnone

27 de diciembre de 2019

Recordemos que dado un abierto $U \subset \mathbb{R}^n$ y una distribución $T \in \mathcal{D}'(U)$, se define su *derivada débil* con respecto a cierta coordenada $i \in [n]$ por

$$\langle \partial_i T, \varphi \rangle := -\langle T, \partial_i \varphi \rangle.$$

Usando partes, esto coincide con la noción usual para funciones suaves: la derivada débil de una función suave coincide con la distribución que induce su derivada usual. Dado un polinomio $p = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{R}[X_1, \dots, X_n]$, se puede considerar el operador *operador diferencial parcial lineal con coeficientes constantes* asociado a p,

$$\mathcal{L} \colon \mathcal{D}' \longrightarrow \mathcal{D}'$$
$$T \mapsto \sum_{\alpha} c_{\alpha} D^{\alpha} T.$$

Se define también el operador adjunto formal de $\mathscr L$ como

$$\mathcal{L}^* \colon \mathcal{D}' \longrightarrow \mathcal{D}'$$

$$T \mapsto \sum_{\alpha} (-1)^{|\alpha|} c_{\alpha} D^{\alpha} T,$$

el cual satisface $\langle \mathcal{L}T, \varphi \rangle = \langle T, \mathcal{L}^*\varphi \rangle$ para todo $T \in \mathcal{D}'$ y $\varphi \in \mathcal{D}$. Análogamente se puede considerar la (co)restricción de \mathcal{L} y \mathcal{L}^* a $\mathcal{C}_c^{\infty}(U)$.

Una solución fundamental para \mathscr{L} es una distribución $T \in \mathscr{D}'$ que satisface la ecuación

$$\mathcal{L}T = \delta_0$$

con δ_0 la delta de Dirac. Esto es reminiscente a la ecuación de Laplace

$$\Delta u = 0$$
,

para la cual existe una solución $\Phi \in \mathscr{C}^2(\mathbb{R}^n \setminus \{0\})$ definida por

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log|x| & \text{si } n = 2\\ \frac{1}{n(n-2)\omega_{+}|x|^{n-2}} & \text{si } n \ge 3 \end{cases}$$

que «concentra toda la masa en el cero». De hecho, en el sentido distribucional Φ es una solución fundamental para el operador $-\Delta$. Sabemos también que si $f \in \mathscr{C}^2_c(\mathbb{R}^n)$, entonces la función $u := \Phi * f$ es de clase $\mathscr{C}^2(\mathbb{R}^n)$ y satisface la ecuación de Poisson,

$$-\Delta u = f$$
.

El objetivo de esta presentación es probar el teorema de Malgrange-Ehrenpreis, que garantiza la existencia de soluciones fundamentales para cualquier operador diferencial parcial lineal con coeficientes constantes no nulo. A partir de este resultado y extendiendo la noción de convolución al contexto de las distribuciones, como en el caso del laplaciano se puede concluir que toda ecuación de la forma

$$\mathcal{L}u = f \tag{1}$$

tiene una solución en \mathcal{D}' . De hecho, si f es suave la solución obtenida también lo es.

Sobre la Notación

Si $q = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{R}[X_1, \dots, X_n]$ es un polinomio de grado m, escribiremos

$$|q|_k = \max\{|c_\alpha| : |\alpha| = k\}$$

para cada $k \leq m$.

Dado $U \subset \mathbb{R}^n$, notaremos (,) y $\|\cdot\|$ al producto interno y norma de $L^2(U)$ respectivamente. Indicaremos el dominio sólo cuando no se deduzca del contexto.

La expresión «operador diferencial» y el símbolo \mathcal{L} referirán siempre a un operador diferencial parcial lineal (no nulo) con coeficientes constantes, y escribiremos q(D) al operador asociado a un polinomio $q \in \mathbb{R}[X_1, \ldots, X_n]$.

La desigualdad de Hörmander y soluciones en ${\cal L}^2$

El resultado de principal utilidad para relacionar las normas en L^2 de una función test y su imagen por un operador diferencial será el siguiente,

TEOREMA 1 (Hörmander). Sae $\Omega \subset \mathbb{R}^n$ un abierto acotado y $\mathcal{L} = p(D)$ un operador diferencial. Existe entonces C > 0 tal que

$$\|\mathscr{L}\varphi\| \ge C\|\varphi\|$$

para toda $\varphi \in \mathscr{C}_c^{\infty}(\Omega)$, y ésta depende sólamente de los términos de orden máximo de p y el diámetro de Ω .

Demostración. Notemos $\rho := \sup_{\Omega} \|x\|$. Para cada $j \in [[n]]$, definimos $p_j(D)$ como el operador diferencial que satisface la ecuación

$$p(D)(x_i\varphi) = x_i p(D)\varphi + p_i(D)\varphi$$

para toda función $\varphi\in\mathscr{C}_c^\infty(\mathbb{R}^n)$. Como dado α un multiíndice y $\varphi\in\mathscr{C}_c^\infty(\mathbb{R}^n)$ es

$$D^{\alpha}x_{j}\varphi = x_{j} \cdot \sum_{\beta \leq \alpha, \beta_{1} = 0} {\alpha \choose \beta} D^{\alpha - \beta} \varphi + \sum_{\beta \leq \alpha, \beta_{1} = 1} {\alpha \choose \beta} D^{\alpha - \beta} \varphi,$$

el operador $p_j(D)$ está bien definido y viene inducido por un polinomio, que notaremos p_j . Además, de la ecuación anterior se observa que $p_j(D)$ es cero si y sólo si p no tiene monomios que contengan a la variable X_j . Dicho de otra forma, el operador diferencial $p_j(D)$ es nulo si y sólo si «en p(D) no hay derivadas con respecto a la j-ésima variable».

De ser no nulo, el orden de p_j debe ser menor al de p, y existe $j \in [[n]]$ tal que p_j es de orden exactamente m-1 y $|p_j|_{m-1} \ge |p|_m$. Esto nos dice que para terminar la demostración alcanzaría probar que para todo $j \in [[n]]$ es

$$||p_j(D)\varphi|| \le 2mA||p(D)\varphi||. \tag{*}$$

En efecto, de valer (*) sería

$$\|(((p_{j_1})_{j_2})\cdots)_{j_k}(D)\varphi\| \le 2A\cdots 2(m-1)A2mA\|p(D)\varphi\| = m!(2A)^m\|p(D)\varphi\|$$

con $q = (((p_{j_1})_{j_2}) \cdots)_{j_k}$ de grado 0, así que

$$||q||_0 \ge \cdots \ge ||p||_m$$

y entonces

$$||p(D)\varphi|| \ge \frac{1}{m!(2A)^m}||q\varphi|| = \frac{1}{m!(2A)^m}||q||_0||\varphi|| \ge \frac{||p||_m}{m!(2A)^m}||\varphi||.$$

Para terminar, fijemos $j \in [[n]]$ y veamos (*) por inducción en m. Si m = 0, entonces $P_j(D)$ es nulo y la desigualdad se satisface. Supongamos ahora que m > 1 y el enunciado es cierto para polinomios de grado m - 1. La desigualdad junto con la definición de $p_j(D)$ implican

$$||p(D)(x_i\varphi)|| \le (2m+1)A||p(D)\varphi|| \tag{\Diamond}$$

para cualquier $i \in [[n]]$. Aplicando esto a p_j , se obtiene entonces

$$||p_j(D)(x_i\varphi)|| \le (2m-1)A||p_j(D)\varphi||.$$

Ahora, observemos¹ que

$$(p(D)(x_i\varphi), p_i(D)\varphi) = (x_ip(D)\varphi, p_i(D)\varphi) + ||p_i(D)\varphi||^2,$$

y entonces

$$||p_j(D)\varphi||^2 = (p(D)(x_j\varphi), p_j(D)\varphi) - (x_jp(D)\varphi, p_j(D)\varphi)$$

= $(p_j(D)^*(x_i\varphi), p(D)^*\varphi) - (x_ip(D)\varphi, p_j(D)\varphi).$

Aplicando (\Diamond) a $p_i(D)^*$ es

$$\begin{split} \|p_{j}(D)\varphi\|^{2} &\leq (2m-1)A\|p_{j}(D)^{*}\varphi\|\|p(D)^{*}\varphi\| + \|x_{j}p(D)\varphi\|\|p_{j}(D)\varphi\| \\ &\leq (2m-1)A\|p_{j}(D)\varphi\|\|p(D)\varphi\| + A\|p(D)\varphi\|\|p_{j}(D)\varphi\| \\ &= 2mA\|p_{j}(D)\varphi\|\|p(D)\varphi\|, \end{split}$$

lo que concluye la demostración.

A partir de esta desigualdad, se obtiene inmediatamente la existencia de soluciones de (1) en L^2 para abiertos acotados,

COROLARIO 1. Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado. Si $\mathcal{L} = p(D)$ es un operador diferencial, la ecuación

$$\mathcal{L}u = g$$

tiene solución en $L^2(\Omega)$ para toda $g \in L^2(\Omega)$. Más aún, existe una constante C > 0 que sólo depende de \mathcal{L} y Ω de forma que

$$||u|| \le C||g||$$

para cada $u, g \in L^2(\Omega)$ tales que $\mathcal{L}u = g$.

¹Usamos aquí que los operadores diferenciales conmutan entre sí, y en particular es $||q(D)\varphi||^2 = ||q(D)^*\varphi||^2$.

Demostración. Por la desigualdad de Hörmander, la (co)restricción de un operador diferencial a $\mathscr{C}_c^{\infty}(\Omega)$ resulta una función lineal inyectiva con inversa continua respecto de la norma en $L^2(\Omega)$. Notando $E := \operatorname{im} \mathscr{L}^*$, esto significa que el operador

$$(\mathcal{L}^*)^{-1}: \mathcal{L}^*\varphi \in E \mapsto \varphi \in L^2(\Omega)$$

está bien definido y resulta continua con respecto a la norma (en el caso de E, inducida) de $L^2(\Omega)$. Componiendo con el funcional representado por g, se obtiene un funcional

$$\eta: \mathscr{L}^* \varphi \in E \mapsto (\varphi, g) \in \mathbb{R},$$

que podemos extender de forma única a \overline{E} . Notemos $\widetilde{\eta}$ a su extensión. Como \overline{E} es un subespacio cerrado de $L^2(\Omega)$, es de Hilbert, y por el teorema de representación de Riesz existe $u \in \overline{E} \subset L^2(\Omega)$ tal que

$$\langle g, \varphi \rangle = (\varphi, g) = \widetilde{\eta}(\mathcal{L}\varphi) = (u, \mathcal{L}^*\varphi) = \langle u, \mathcal{L}^*\varphi \rangle = \langle \mathcal{L}u, \varphi \rangle$$

para toda $\varphi \in \mathscr{C}^{\infty}_{c}(\Omega)$. Vemos así que $\mathscr{L}u = g$.

Por último, dado que $\widetilde{\eta}$ es la extensión por densidad de η sabemos que $\|\widetilde{\eta}\|_{\overline{E}^*} = \|\eta\|_{E^*}$, y al u representar a $\widetilde{\eta}$ en definitiva es $\|u\| = \|\eta\|$. Como por definición es $\eta = (g, -) \circ (\mathcal{L}^*)^{-1}$, esto nos dice que

$$||u|| = ||\eta|| \le ||(\mathcal{L}^*)^{-1}||||g||,$$

así que podemos tomar $C = \|(\mathcal{L}^*)^{-1}\|$.

LA RELACIÓN ENTRE sop $\mathcal{L}u$

OBSERVACIÓN 1. Si $\mathcal{L} = p(D)$ es un operador diferencial y $\varepsilon > 0$, entonces

$$\widetilde{\mathscr{L}_{\varepsilon}}(\psi) = e^{\varepsilon x_1} \mathscr{L}(e^{-\varepsilon x_1} \psi)$$

es un operador diferencial. Basta verlo para $\mathscr{L}=D^{\alpha}$, pues la asignación $\mathscr{L}\mapsto\widetilde{\mathscr{L}_{\varepsilon}}$ es lineal. Procedemos por inducción en α_1 , donde el caso base es cierto pues $\widetilde{D^{(0,\alpha')}}=D^{(0,\alpha')}$. Si $\alpha_1>0$ y $\widetilde{D^{(\alpha_1-1,\alpha')}}=q(D)$

$$\begin{split} e^{\varepsilon x_1} D^{\alpha}(e^{-\varepsilon x_1} \psi) &= e^{\varepsilon x_1} D^{(\alpha_1 - 1, \alpha')} \left(\frac{\partial}{\partial x_1} (e^{-\varepsilon x_1} \psi) \right) \\ &= e^{\varepsilon x_1} D^{(\alpha_1 - 1, \alpha')} \left(-\varepsilon e^{-\varepsilon x_1} \psi + e^{-\varepsilon x_1} \frac{\partial}{\partial x_1} \psi \right) \\ &= e^{\varepsilon x_1} D^{(\alpha_1 - 1, \alpha')} (e^{-\varepsilon x_1} (-\varepsilon \psi)) + e^{\varepsilon x_1} D^{(\alpha_1 - 1, \alpha')} (e^{-\varepsilon x_1} \partial_1 \psi) \\ &= -\varepsilon q(D)(\psi) + q(D)(\partial_1 \psi) = -\varepsilon q(D)(\psi) + (X_1 q)(D)(\psi). \end{split}$$

Más todavía, los términos de orden mayor de $\widetilde{\mathscr{L}_{\varepsilon}}$ coinciden con los de \mathscr{L} pues

$$e^{\varepsilon x_1} D^{\alpha} (e^{-\varepsilon x_1} \varphi) = e^{\varepsilon x_1} \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\alpha} e^{-\varepsilon x_1} D^{\alpha - \beta} \varphi,$$

y el término de orden máximo de esta expresión es $e^{\varepsilon x_1}D^0e^{-\varepsilon x_1}D^\alpha\varphi = D^\alpha\varphi$. De este modo «podemos tomar la misma constante que para $\mathscr L$ en la desigualdad de Hörmander».

PROPOSICIÓN 1. Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado y $\mathscr{L} = p(D)$ un operador diferencial. Existe C' > 0 tal que para todo $\eta \in \mathbb{R}$ es

$$\int_{\Omega} e^{\eta x_1} |\mathcal{L}\varphi|^2 \ge C \int_{\Omega} e^{\eta x_1} |\varphi|^2$$

para toda $\varphi \in \mathscr{C}_c^{\infty}(\Omega)$.

Demostración. Sea C>0 una constante que satisfaga la desigualdad de Hörmander para \mathcal{L} . Por la observación anterior, podemos tomar C de forma que para cada $\eta \in \mathbb{R}$ poniendo $\varepsilon = \eta/2$ es

$$\|\widetilde{\mathscr{L}}_{\varepsilon}(e^{\varepsilon x_1}\varphi)\| \ge C\|e^{\varepsilon x_1}\varphi\|.$$

Elevando al cuadrado esta desiguadad, se obtiene precisamente que

$$\int_{\Omega} e^{\eta x_1} |\mathcal{L}\varphi|^2 \ge C \int_{\Omega} e^{\eta x_1} |\varphi|^2.$$

COROLARIO 2. Si $\mathcal{L} = p(D)$ es un operador diferencial y $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ es tal que $\mathcal{L}\varphi$ se anula en un semiespacio abierto H, entonces φ se anula en H.

Demostración. Veámoslo primero para $H_0 := \{x_1 > 0\}$. Basta ver que $\|\varphi\|_{H_0} = \|\varphi\|_{\Omega \cap H_0} = 0$. En efecto, si $\Omega \supset \operatorname{sop} \varphi$, por la Proposición 1 es

$$\begin{split} 0 &\leq C \int_{H_0 \cap \Omega} |\varphi|^2 \leq C \int_{H_0 \cap \Omega} e^{\eta x_1} |\varphi|^2 \leq \int_{\Omega} e^{\eta x_1} |\mathcal{L}\varphi|^2 - C \int_{H_0^c \cap \Omega} e^{\eta x_1} |\varphi|^2 \\ &= \int_{H_0^c \cap \Omega} e^{\eta x_1} |\mathcal{L}\varphi|^2 - C \int_{H_0^c \cap \Omega} e^{\eta x_1} |\varphi|^2, \end{split}$$

y el lado derecho tiende a cero cuando $\eta \to \infty$.

Si ahora H es un hiperplano cualquiera, rotando y trasladando obtenemos un difeomorfismo suave $\psi: \mathbb{R}^n \to \mathbb{R}^n$ que envía H_0 a H. Como sop $\mathcal{L}(\varphi \circ \psi) \subset \text{sop}(\mathcal{L}\varphi) \circ \psi$, sabemos que $\mathcal{L}\varphi \circ \psi$ se anula en H_0 , y por lo tanto así lo hace $\varphi \circ \psi$. Esto concluye la demostración.

COROLARIO 3. Sea $\mathcal{L} = p(D)$ un operador diferencial y $\varphi \in C_c^{\infty}(\mathbb{R}^n)$. Si $\mathcal{L}\varphi$ está soportada en $B_r(0)$, entonces φ está soportada en $B_r(0)$.

Demostración. Podemos escribir a $B_r(0)$ como intersección de semiespacios. En el complemento de cada uno, sabemos que $\mathcal{L}\varphi$ se anula, así que φ también lo hace.

PROPOSICIÓN 2. Sea $\mathcal{L} = p(D)$ un operador diferencial y $f \in L^2(\mathbb{R}^n)$ de soporte compacto. Si $\mathcal{L}f$ está soportada en $B_r(0)$, entonces f está soportada en $B_r(0)$.

Demostración. Basta ver que existen $(f_{\varepsilon})_{\varepsilon>0} \subset L^2(\mathbb{R}^n)$ tales que sop $f_{\varepsilon} \subset B_{r+\varepsilon}(0)$ y $f_{\varepsilon} \xrightarrow{L^2} f$. En tal caso, si $\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}^n)$ está soportada en un compacto $K \subset B_r(0)^c$, existe $\mu > 0$ tal que $K \subset B_{r+\mu}(0)^c$ y por lo tanto

$$(f,\varphi) = \lim_{\varepsilon \to 0} (f_{\varepsilon},\varphi) = 0$$

ya que sop $f_{\varepsilon} \cap K = \emptyset$ para $\varepsilon \ll \mu$.

Dado χ un núcleo regularizante, definimos $f_{\varepsilon} = f * \chi_{\varepsilon}$. Esto garantiza la convergencia: veamos para terminar que f_{ε} está soportada en $B_{r+\varepsilon}(0)$. Como éstas son ahora una funciones suaves, basta ver que $\mathscr{L}f_{\varepsilon}$ está soportada en $B_{r+\varepsilon}(0)$ para cada $\varepsilon > 0$. Por definición es

$$\mathscr{L}f * \chi_{\varepsilon}(z) = \langle \mathscr{L}f, \chi_{\varepsilon}(z - \cdot) \rangle = \langle f, \mathscr{L}^*\chi_{\varepsilon}(z - \cdot) \rangle = \langle f, (\mathscr{L}\chi_{\varepsilon})(z - \cdot) \rangle = f * (\mathscr{L}\chi_{\varepsilon})(z) = \mathscr{L}f_{\varepsilon}(z),$$

así que si $\mathcal{L} f_{\varepsilon}(z) \neq 0$ necesariamente sop $\chi_{\varepsilon}(z-\cdot) \subset B_{\varepsilon}(z)$ no puede estar contenido fuera de $B_r(0)$, y esto implica que $z \in B_{r+\varepsilon}(0)$.

Aproximación y soluciones en L^2_{loc}

DEFINICIÓN 1. Sean 0 < r < R y $\mathcal{L} = p(D)$ un operador diferencial. Notaremos

$$N_{r,R}^{\mathcal{L}} = \{ v |_{B_r(0)} : v \in L^2(B_R(0)), \ \mathcal{L}v = 0 \}$$

al subespacio de $L^2(B_r(0))$ que consiste de restringir funciones que anulan a \mathcal{L} en $L^2(B_R(0))$.

Lema 1. Sean 0 < r < R y $\mathcal{L} = p(D)$ un operador diferencial. Si $g \in (N_{r,R,\mathcal{L}})^{\perp}$, existe C > 0 tal que

$$|(\varphi, g)_{B_r(0)}| \le C ||\mathscr{L}\varphi||_{B_R(0)}$$

para toda $\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}^n)$.

Demostración. Si $\mathcal{L}\varphi = 0$ en $B_R(0)$, sabemos que $\varphi = 0$ allí y por lo tanto $(\varphi, g)_{B_r(0)} = 0$. Si no, sabemos que existe $\psi \in L^2(B_R(0))$ tal que $\mathcal{L}\psi = \mathcal{L}\varphi$. Además, existe C' > 0 independiente de ψ y φ tal que $\|\psi\|_{B_R(0)} \le C' \|\mathcal{L}\varphi\|_{B_R(0)}$. Como $g \in (N_{r,R,\mathcal{L}})^\perp$, es

$$(g,\varphi)_{B_r(0)} = (g,\varphi-\psi)_{B_r(0)} + (g,\psi)_{B_r(0)} = (g,\psi)_{B_r(0)}$$

y por lo tanto

$$|(\varphi,g)_{B_r(0)}| = |(g,\psi)_{B_r(0)}| \le ||g|| \cdot ||\psi||_{B_r(0)} \le ||g||C' \cdot ||\mathcal{L}\varphi||_{B_R(0)},$$

así que poniendo C = ||g||C' se obtiene la desigualdad.

Lema 2. Sean 0 < r < R y $\mathcal{L} = p(D)$ un operador diferencial. Dada $g \in (N_{r,R,\mathcal{L}})^{\perp}$, existe $w \in L^2(B_R(0))$ tal que

$$(\varphi, g)_{B_r(0)} = (\mathcal{L}\varphi, w)_{B_R(0)}$$

para toda $\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}^n)$.

Demostración. Consideremos $E = \{ \mathcal{L}\psi |_{B_R(0)} : \psi \in \mathscr{C}_c^{\infty}(\mathbb{R}^n) \}$ como subespacio de $L^2(B_R(0))$. El lema anterior nos dice que la aplicación

$$\eta:\mathcal{L}\varphi\in E\mapsto (\varphi,g)_{B_r(0)}\in\mathbb{R}$$

está bien definida, y más aún define un funcional continuo. En particular podemos extenderlo a un funcional $\widetilde{\eta}: \overline{E} \subset L^2(B_R(0)) \to \mathbb{R}$ y como éste es de Hilbert, por el teorema de representación de Riesz existe $w \in \overline{E} \subset L^2(B_R(0))$ tal que $\widetilde{\eta} \equiv (w, -)_{B_R(0)}$. Esto termina de probar que

$$(\varphi,g)_{B_r(0)}=\eta(\mathcal{L}\varphi)=(w,\mathcal{L}\varphi)_{B_R(0)}$$

para toda $\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}^n)$.

PROPOSICIÓN 3. Sean 0 < r < r' < R. Dado un operador diferencial $\mathcal{L} = p(D)$ y $v \in L^2(B_{r'}(0))$ tal que $\mathcal{L}v = 0$ en $B_{r'}(0)$, existe una sucesión $(v_i)_{i>1} \subset L^2(B_R(0))$ que satisface $\mathcal{L}v_i = 0$ en $B_R(0)$ y

$$v_j \xrightarrow{L^2(B_r(0))} v.$$

Demostración. Supongamos primero que v es suave y de soporte compacto. Notando

$$S = \{w|_{B_r(0)} : w \in L^2(B_R(0)), \ \mathcal{L}w = 0 \text{ en } B_R(0)\} \le L^2(B_r(0)),$$

basta ver que S es denso en $T := \langle S, \nu |_{B_r(0)} \rangle$. A su vez, para ello alcanza probar que un funcional $f : T \to \mathbb{R}$ que se anula en S es nulo. Un tal funcional se extiende a \overline{T} y por el teorema de representación de Riesz, existe cierta $g \in L^2(B_r(0))$ tal que $f \equiv (g, -)$.

En definitiva, es suficiente probar que si $g \in L^2(B_r(0))$ es tal que

$$(g, w)_{B_r(0)} = 0$$

para toda $w \in S$, entonces $(g, v)_{B_r(0)} = 0$. Por el Lema 2, sabemos que existe $w \in L^2(B_R(0))$ tal que $(\varphi, g)_{B_r(0)} = (\mathcal{L}\varphi, w)_{B_R(0)}$ para toda $\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}^n)$. Considerando las extensiones por cero $\widetilde{g}, \widetilde{w} \in L^2(\mathbb{R}^n)$ de g y w respectivamente, por definición es

$$\langle \mathcal{L}^* \widetilde{w}, \varphi \rangle = (\widetilde{w}, \mathcal{L}\varphi) = (w, \mathcal{L}\varphi)_{B_p(0)} = (g, \varphi)_{B_p(0)} = \langle g, \varphi \rangle$$

y por lo tanto $\mathcal{L}^*\widetilde{w} = \widetilde{g}$. Como \widetilde{g} tiene soporte en $B_r(0)$ y \widetilde{w} tiene soporte compacto, luego \widetilde{w} está soportada en $B_r(0)$. En particular w está soportada en $B_r(0)$, y como $\mathcal{L}v$ se anula allí, es

$$(v,g)_{B_r(0)} = (\mathcal{L}v,w)_{B_R(0)} = (\mathcal{L}v,w)_{B_r(0)} = 0.$$

Para terminar, veamos que el resultado sigue siendo cierto cuando v no es suave de soporte compacto. Convolucionando con χ_{ε} donde χ es una aproximación de la identidad, conseguimos $v_{\varepsilon} \to v$ en $L^2(B_R(0))$. Eventualmente para $\varepsilon \ll 1$ podemos achicar 2 r' de tal modo que $\mathscr{L}v_{\varepsilon}$ se anule en una bola de radio $\eta_{\varepsilon} \in (r,r']$, y aplicar el resultado para funciones suaves, consiguiendo así sucesiones $v_j^i \to v_{1/i}$ en $L^2(B_r(0))$ tales que $\mathscr{L}v_j^i = 0$ en $B_R(0)$ para cada $i \geq 1$. Ahora, para cada $i \geq 1$ existe $j_i \in \mathbb{N}$ tal que $\|v_{j_i}^i - v_{1/i}\| < 1/i$ y entonces

$$\|v - v_{j_i}^i\| \le \|v - v_{i/1}\| + \|v_{j_i}^i - v_{1/i}\| \le \|v - v_{i/1}\| + 1/i \to 0.$$

En consecuencia, la sucesión $(v^i_{ii})_{i\geq 1}$ satisface la condición buscada.

TEOREMA 2. Sea $\mathcal{L} = p(D)$ un operador diferencial. Dada $g \in L^2_{loc}(\mathbb{R}^n)$, existe $u \in L^2_{loc}(\mathbb{R}^n)$ tal que $\mathcal{L}^2_{loc}(\mathbb{R}^n)$ tal que

Demostración. Sea $u_1 \in L^2(B_2(0))$ una solución de $\mathscr{L}u = g$ allí. Inductivamente construiremos u_{k+1} del siguiente modo: tomamos una solución w de $\mathscr{L}u = g$ en $L^2(B_{k+2}(0))$, de forma que $\mathscr{L}(u_k - w) = 0$ en $B_{k+1}(0)$. Por la Proposición 3, existe $v \in L^2(B_{k+2}(0))$ tal que $\mathscr{L}v = 0$ y $||u_k - w - v||_{B_k(0)} < 1/2^k$. Definiendo $u_{k+1} := v + w$, la sucesión $(u_k)_{k \geq 1}$ satisface

- $\mathcal{L}u_k = g$ en $B_{k+1}(0)$, y
- $||u_{k+1}-u_k||_{B_{\nu}(0)}<1/2^k.$

²Como sop $\mathcal{L}\nu_{\varepsilon} = \sup \mathcal{L}\nu * \chi_{\varepsilon} = \sup \mathcal{L}\nu + B_{\varepsilon}(0) \text{ y } B_{r'}(0) \subset (\sup \mathcal{L}\nu)^{c}, \text{ entonces } B_{r'-\varepsilon}(0) \subset (\sup \mathcal{L}\nu_{\varepsilon})^{c}.$

Veamos que $(u_k)_{k\geq 1}$ es de Cauchy en $L^2_{loc}(\mathbb{R}^n)$. Fijemos $K\subset \mathbb{R}^n$ compacto. Existe entonces $k_0\in \mathbb{N}$ tal que $B_k(0)\supset K$ si $k>k_0$. Por lo tanto, si m>n>k es

$$\begin{split} \|u_m - u_n\|_K &\leq \|u_m - u_{m-1}\|_K + \dots + \|u_{n+1} - u_n\|_K \\ &\leq \|u_m - u_{m-1}\|_{B_m(0)} + \dots + \|u_{n+1} - u_n\|_{B_n(0)} \\ &\leq 1/2^{m-1} + \dots + 1/2^n \leq \sum_{j \geq n} 1/2^j, \end{split}$$

y esto tiende a cero si $n \to \infty$. Para terminar, veamos que $u := \lim_{k \to \infty} u_k$ satisface $\mathcal{L}u = g$. En efecto, si $\varphi \in \mathscr{C}_c^{\infty}(\mathbb{R}^n)$ entonces

$$\begin{split} \langle \mathcal{L}u, \varphi \rangle &= (u, \mathcal{L}^* \varphi)_{\operatorname{sop} \varphi} = \lim_{k \to \infty} (u_k, \mathcal{L}^* \varphi)_{\operatorname{sop} \varphi} = \lim_{k \to \infty} (u_k, \mathcal{L}^* \varphi)_{B_{k+1}(0)} \\ &= \lim_{k \to \infty} (g, \mathcal{L}^* \varphi)_{B_{k+1}(0)} = (g, \mathcal{L}^* \varphi) \\ &= \langle \mathcal{L}g, \varphi \rangle. \end{split}$$

EXISTENCIA DE SOLUCIONES FUNDAMENTALES Y CONSECUENCIAS

Lema 3. La función $H: \mathbb{R}^n \to \mathbb{R}$ definida por $H(x_1, \dots, x_n) = \prod_{i=1}^n \chi_{\{x_i > 0\}}$ es un elemento de $L^2_{loc}(\mathbb{R}^n)$ y satisface

$$\frac{\partial^n}{\partial x_1 \cdots \partial x_n} H = \delta_0.$$

Demostración. Si $\varphi \in \mathcal{D}$, es

$$\int_0^\infty \frac{\partial}{\partial x_i} \varphi(x_1, \dots, x_i, \dots, x_n) dx_i = \lim_{t \to \infty} \varphi(x_1, \dots, t_n) - \varphi(x_1, \dots, x_n) - \varphi(x_1, \dots, x_n)$$
$$= -\varphi(x_1, \dots, x_n),$$

ya que φ tiene soporte compacto. Por lo tanto, es

$$\left\langle \frac{\partial^n}{\partial x_1 \cdots \partial x_n} H, \varphi \right\rangle = \left\langle H, (-1)^n \cdot \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \varphi \right\rangle = (-1)^n \int_{\mathbb{R}^n} H \cdot \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \varphi \cdot dx_1 \cdots dx_n$$

$$= (-1)^n \int_0^\infty \cdots \int_0^\infty \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \varphi \cdot dx_1 \cdots dx_n$$

$$= (-1)^n (-1)^n \varphi(0, \dots, 0) = \varphi(0) = \langle \delta_0, \varphi \rangle.$$

TEOREMA 3 (Malgrange-Ehrenpreis). Todo operador diferencial parcial lineal no nulo con coeficientes constantes admite una solución fundamental.

Demostración. Sea $\mathcal{L}=p(D)$ un operador diferencial. Por el **Teorema 2**, existe $u\in L^2_{loc}(\mathbb{R}^n)$ tal que $\mathcal{L}^2_{u=H}$. Considerando la distribución $\frac{\partial^n}{\partial x_1\cdots\partial x_n}u$ se tiene efectivamente que

$$\mathscr{L}\left(\frac{\partial^n}{\partial x_1 \cdots \partial x_n} u\right) = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} \mathscr{L}u = \frac{\partial^n}{\partial x_1 \cdots \partial x_n} H = \delta_0.$$

8

◂

LEMA 4. Si $f \in \mathcal{D}$, entonces $\delta_0 * f = f$.

Demostración. Por definición, es

$$\delta_0 * f(x) = \langle \delta_0, f(x - \cdot) \rangle = \int_{\mathbb{R}^n} f(x - \cdot) d\delta_0 = f(x - 0) = f(x).$$

COROLARIO 4. Sea $f \in \mathcal{D}$ y $\mathcal{L} = p(D)$ un operador diferencial. Entonces la ecuación $\mathcal{L}u = f$ tiene una solución en \mathcal{D} .

Demostración. Sea s una solución fundamental para \mathcal{L} . Si ponemos u := s * f, esto define una función test y

$$\mathcal{L}(s*f) = (\mathcal{L}s)*f = \delta_0*f = f,$$

lo que concluye la demostración.

EJEMPLO 1. Notemos que el corolario anterior describe además como encontrar soluciones suaves a partir de una solución fundamental. Usemos esto para tratar un caso ya conocido: hallemos soluciones suaves a la ecuación

$$b_1 \cdot \frac{\partial u}{\partial x_1} + \dots + b_n \cdot \frac{\partial u}{\partial x_n} = \beta u + g \tag{2}$$

con $g \in \mathscr{C}_c^{\infty}(\mathbb{R}^n)$, $b = (b_1, \dots, b_n) \in \mathbb{R}$ y $\beta \in \mathbb{R}_{<0}$. Observemos que notando $p = \sum_{i=1}^n b_i X_i - \beta$ y $\mathscr{L} = p(D)$, la ecuación se puede rescribir como

$$\mathcal{L}u = g$$
.

Busquemos en primer lugar la solución fundamental del operador \mathscr{L} . Proponemos

$$\langle u, \varphi \rangle := \int_0^{+\infty} \varphi(tb) e^{\beta t} dt,$$

ya que

$$\begin{split} \langle \mathcal{L}u, \varphi \rangle &= \langle u, \mathcal{L}^* \varphi \rangle = -\sum_{i=1}^n b_i \int_0^{+\infty} \varphi_i(tb) e^{\beta t} dt + \beta \int_0^{\infty} \varphi(tb) e^{\beta t} dt \\ &= -\int_0^{+\infty} \left(\sum_{i=1}^n b_i \varphi_i(tb) \right) e^{\beta t} dt + \int_0^{\infty} \varphi(tb) \beta e^{\beta t} dt \\ &= -\int_0^{+\infty} \frac{d}{dt} \varphi(tb) e^{\beta t} + \varphi(tb) \frac{d}{dt} e^{\beta t} dt \\ &= -\int_0^{+\infty} \frac{d}{dt} (\varphi(tb) e^{\beta t}) dt = \varphi(tb) e^{\beta t} \bigg|_{+\infty}^0 = \varphi(0). \end{split}$$

para cada $\varphi \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{n})$. Por lo tanto, una solución para (2) es

$$v(x) = u * g(x) = \langle u, g(x - \cdot) \rangle = \int_0^{+\infty} g(x - tb)e^{\beta t} dt.$$

9

APÉNDICE: SOBRE LA CONVOLUCIÓN DE DISTRIBUCIONES

DEFINICIÓN 2. Sean $T \in \mathcal{D}'$ y $\varphi \in \mathcal{D}$. Se define la convolución de T y φ como

$$(T * \varphi)(x) := \langle T, \varphi(x - \cdot) \rangle.$$

DEFINICIÓN 3. Sea $T \in \mathcal{D}'(U)$ y $V \subset U$ un abierto. Decimos que T se anula en V si para toda $\varphi \in \mathcal{D}$ con sop $\varphi \subset V$ se tiene que $\langle T, \varphi \rangle = 0$.

DEFINICIÓN 4. El soporte de una distribución $T \in \mathcal{D}'(U)$ es el abierto maximal³ en V tal que T se anula en V^c .

TEOREMA 4 ([2], Theorem 4.1.1). Si $T \in \mathcal{D}'$ y $\varphi \in \mathcal{D}$, entonces $T * \varphi$ es una función suave de soporte compacto con sop $T * \varphi \subset \text{sop } T + \text{sop } \varphi$ y

$$D^{\alpha}(T * \varphi) = (D^{\alpha}T) * \varphi = T * (D^{\alpha}\varphi)$$

para todo multiíndice α .

REFERENCIAS

- [1] Jean-Pierre Rosay. A Very Elementary Proof of the Malgrange-Ehrenpreis Theorem. The American Mathematical Monthly, 1991.
- [2] Lars Hörmander. The Analysis of Linear Partial Differential Operators I. Springer, 1990.

 $^{^3}$ Esto está bien definido, y más aún se puede verificar que el soporte es el complemento de la unión de los abiertos donde T se anula.