# **Branch and Price with PySCIPOpt**

CO@Work 2024

Mohammed Ghannam & João Dionísio

Zuse Institute Berlin

# **Bin Packing**

- Need to store items in bins
- Items have weight and bins have capacity

4

Use minimum bins with items not exceeding their capacity





How can we formulate this?

Variable saying where each item is packed



- Variable saying where each item is packed
- Enforce all items are packed



- Variable saying where each item is packed
- Enforce all items are packed
- Variable saying whether a bin is being used



- Variable saying where each item is packed
- Enforce all items are packed
- Variable saying whether a bin is being used
- Minimize the number of used bins



# **Compact formulation and its poor scaling**

#### **DEMO**

### Why doesn't this work?



It doesn't seem complicated...

# Why doesn't this work?



#### **Extended Formulation: Modeling with Packings**

We need a new formulation. Let's change our perspective.

#### **Extended Formulation: Modeling with Packings**

We need a new formulation. Let's change our perspective.

Let's look at all the ways of doing this (packings) and choose the best combination.



#### What does a solution look like?



#### What does a solution look like?



Problem: There is an exponential number of packings.

#### What does a solution look like?



Problem: There is an exponential number of packings.

#### **Integer Master Problem**

For a list of all feasible packings  $\mathcal{P}$ ,  $a_i^p = 1$  if item  $i \in \mathcal{I}$  is in packing p.

$$\begin{aligned} & \min & & \sum_{p \in \mathcal{P}} z_p \\ & \text{s.t.} & & \sum_{p \in \mathcal{P}} a_i^p z_p = 1, \forall i \in \mathcal{I} \quad (\pi_i) \\ & & z_p \in \{\mathtt{0},\mathtt{1}\}, \forall p \in \mathcal{P} \end{aligned}$$

#### **Integer Master Problem**

For a list of all feasible packings  $\mathcal{P}$ ,  $a_i^p = 1$  if item  $i \in \mathcal{I}$  is in packing p.

$$\begin{aligned} & \min & & \sum_{p \in \mathcal{P}} z_p \\ & \text{s.t.} & & \sum_{p \in \mathcal{P}} \alpha_i^p z_p = 1, \forall i \in \mathcal{I} \quad (\pi_i) \\ & & z_p \in \{\mathsf{0}, \mathsf{1}\}, \forall p \in \mathcal{P} \end{aligned}$$

Problem: There is an exponential number of packings.

#### **Integer Master Problem**

For a list of all feasible packings  $\mathcal{P}$ ,  $a_i^p = 1$  if item  $i \in \mathcal{I}$  is in packing p.

$$\begin{aligned} & \min & & \sum_{p \in \mathcal{P}} z_p \\ & \text{s.t.} & & \sum_{p \in \mathcal{P}} \alpha_i^p z_p = 1, \forall i \in \mathcal{I} \quad (\pi_i) \\ & & z_p \in \{0,1\}, \forall p \in \mathcal{P} \end{aligned}$$

- Problem: There is an exponential number of packings.
- Solution: Branch and Price!

#### **Game Plan**

- 1. Solve the LP relaxation with Column Generation.
- 2. Embed in a branch-and-bound scheme to get optimal integer solution.
- 3. Improve our solver!

### First Step: Solving the LP relaxation



#### **Initial Columns**

We need to initialize the RMP with some packings.



Let's go with the simplest way of assigning one item per packing.

#### **Generating new columns**

$$\begin{aligned} & \min & & \sum_{p \in \mathcal{P}'} z_p \\ & \text{s.t.} & & \sum_{p \in \mathcal{P}'} a_i^p z_p = 1, \forall i \in \mathcal{I} \quad (\pi_i) \\ & & \text{o} \leq z_p \leq 1, \forall p \in \mathcal{P}' \end{aligned}$$

How can we know which columns to add?

#### **Generating new columns**

$$\begin{aligned} & \min & & \sum_{p \in \mathcal{P}'} z_p \\ & \text{s.t.} & & \sum_{p \in \mathcal{P}'} a_i^p z_p = 1, \forall i \in \mathcal{I} \quad (\pi_i) \\ & & \text{o} \leq z_p \leq 1, \forall p \in \mathcal{P}' \end{aligned}$$

How can we know which columns to add? Reduced Cost < 0

$$\begin{array}{c} \text{minimize} & \underbrace{\mathbf{1}}_{\text{obj. fn. coefficient}} - \sum_{i \in \mathcal{I}} a_i^p \pi_i \end{array}$$

$$\begin{array}{ll} \text{minimize} & \mathbf{1} - \sum_{i \in \mathcal{I}} a_i \pi_i \\ \\ \text{subject to} & \sum_{i \in \mathcal{I}} \mathbf{s}_i a_i \leq \mathbf{C} \\ \\ & a_i \in \{\mathtt{0},\mathtt{1}\}, \quad \forall i \in \mathcal{I} \end{array}$$

$$\begin{array}{ll} \text{minimize} & \mathbf{1} - \sum_{i \in \mathcal{I}} a_i \pi_i \\ \\ \text{subject to} & \sum_{i \in \mathcal{I}} s_i a_i \leq C \\ \\ & a_i \in \{\mathtt{0},\mathtt{1}\}, \quad \forall i \in \mathcal{I} \end{array}$$

$$\begin{array}{ll} \text{minimize} & \mathbf{1} - \sum_{i \in \mathcal{I}} a_i \pi_i \\ \\ \text{subject to} & \sum_{i \in \mathcal{I}} s_i a_i \leq C \\ \\ & a_i \in \{\mathtt{0},\mathtt{1}\}, \quad \forall i \in \mathcal{I} \end{array}$$

$$\min \mathbf{1} - \sum_{i \in \mathcal{I}} a_i \pi_i$$

$$\begin{array}{ll} \text{minimize} & 1-\sum_{i\in\mathcal{I}}a_i\pi_i\\ \\ \text{subject to} & \sum_{i\in\mathcal{I}}s_ia_i\leq C\\ & a_i\in\{\mathtt{0},\mathtt{1}\}, \quad \forall i\in\mathcal{I} \end{array}$$

$$\min 1 - \sum_{i \in \mathcal{I}} a_i \pi_i = 1 + \min - \sum_{i \in \mathcal{I}} a_i \pi_i$$

$$\begin{array}{ll} \text{minimize} & 1-\sum_{i\in\mathcal{I}}a_i\pi_i\\ \\ \text{subject to} & \sum_{i\in\mathcal{I}}s_ia_i\leq C\\ & a_i\in\{\mathtt{0},\mathtt{1}\}, \quad \forall i\in\mathcal{I} \end{array}$$

$$\min \mathbf{1} - \sum_{i \in \mathcal{I}} a_i \pi_i = \mathbf{1} + \min - \sum_{i \in \mathcal{I}} a_i \pi_i = \mathbf{1} - \max \sum_{i \in \mathcal{I}} a_i \pi_i = \mathbf{1} - \mathsf{Knapsack!}$$

# **How to implement this in SCIP?**



#### **Exercise 1**

Implement the solve\_knapsack function (exercise details in Day3/README.md)

## **Getting Integer Solutions**



### **Branching on master variables**

Branching on master variable *x* has 2 options:

- 1. x = 1: we force the packing. Very restrictive
- 2. x = 0: we forbid the packing. Not restrictive at all.



Leads to very unbalanced trees...

# **Ryan Foster Branching**

#### Here there are two options:

- Forbid two items from appearing in a new packing
- 2. Ensure that they appear in the same packing



# **Finding fractional pairs**

#### **Exercise 2**

Find the fractional pairs to branch on. Refer to the README for additional information.

# **Branching**

#### **Exercise 3**

Complete the branching rule in  $ryan\_foster.py$ 

### **Pricing problem with branching decisions**

#### **Exercise 4**

Enforce the branching decisions in the pricing problem

#### **PySCIPOpt break**

As an open-source solver, PySCIPOpt appreciates the help of its users!



It's your chance to be our 800th start:)



Many contributors started as users!

#### **Improving our solver!**

The next part is **self-paced**. We included some ideas in varying levels of difficulty to the README as bonus exercises.

Try to implement as many as you can!

# **Using integrality**

Given the integrality of the objective function, we can get better bounds.

Hint: use PySCIPOPt's setObjIntegral().

#### **Better initial solution**

One item per bin gives you the worst feasible solution.

Implement heuristics that find a better solution (closer to the optimal) and give them to the pricer.

# **Handling numerics**

Trying to run the code for many items (= 200) results in a loop.

Find out why and fix the problem.

Hint 1: Read the slide title.

Hint 2: Look at the reduced cost of the columns you are generating.

### **Speeding up pricing**

Especially if the pricing problem is difficult, it's a good idea to:

- 1. Solve it heuristically (only need to solve to optimality at final iteration)
- 2. Return multiple negative reduced cost columns

This way, the burden of the pricing rounds is reduced.

In the case of knapsack, there are also more efficient algorithms.

#### **Different-sized bins**

If bins have different sizes s, we need different pricing problems

$$\begin{array}{ll} \mathsf{1-maximize} & \sum_{i\in\mathcal{I}} a_i\pi_i \\ & \mathsf{subject\ to} & \sum_{i\in\mathcal{I}} \mathsf{s}_ia_i \leq \mathsf{C_s} \\ & a_i \in \{\mathsf{0},\mathsf{1}\}, \quad \forall i\in\mathcal{I} \end{array}$$

Implement this in your pricer (you also need to adapt the data generation in 'generator.py').

#### Lagrangian bound

Column generation might offer tighter bounds!

RMP optimal solval 
$$V_{RMP}^*$$
 +  $|\mathcal{B}|$  ×  $V_{PP}^*$   $\leq$   $V_{MP}^*$  PP optimal solval

Why is this true? Implement it in your pricer (hint: add a 'lowerbound' key to the dictionary return in the pricer).

How does this bound look with multiple pricing problems?