

Table des matières

Introduction		2
1	Problématique générale	2
2	Modèle complet	2
3	Décomposition réalisée	2
4	la manière de résoudre ces problèmes	3
5	les techniques d'amélioration mises en œuvre	3
6	les grandes lignes des résultats obtenus (taille des problèmes, temps de calcul)	3
7	Conclusion	3

Introduction

INTRO

1 Problématique générale

La problématique générale de l'article étudié est de développer un algorithme exact et une heuristique pour la résolution de grande instance du problème de localisation UHLPMA.

2 Modèle complet

Le modèle proposé par les auteurs pour le UHLPMA est :

$$\min \sum_{i \in H} f_i z_i + \sum_{k \in K} \sum_{e \in E_k} F_{ek} x_{ek}$$

tel que

$$\sum_{e \in E_k} x_{ek} = 1, \quad \forall k \in K \tag{1a}$$

$$\sum_{e \in E_k: i \in e} x_{ek} \le z_i, \quad \forall i \in H, \forall k \in K$$
 (1b)

$$x_{ek} \ge 0, \quad \forall k \in K, \forall e \in E_k$$
 (1c)

$$z_i \in \{0, 1\}, \quad \forall i \in H \tag{1d}$$

où H est l'ensemble des localisations possible pour un entrepôt, K est l'ensemble des biens qui doivent être acheminés, f_i est le coût fixe de l'installation de l'entrepôt $i \in H$, z_i est une variable binaire égale à 1 si un entrepôt est situé en i, et à 0 sinon, F_{ek} est le coût de transport non orienté pour un arc du graphe $e \in H \times H$ et un bien $k \in K$, et x_{ek} est un variable binaire égale à 1 si le bien $k \in K$ transite par l'arc $e \in H \times H$ et à 0 sinon.

Le coût de transport non orienté pour un arc $e=(i,j)\in H\times H$ est le minimum du coût de transport dans le sens $i\to j$ et du coût de transport dans le sens $j\to i$, c'est à dire $F_{ek}=\min\{F_{ijk};F_{jik}\}$

3 Décomposition réalisée

Problème primal:

$$\min \sum_{e \in E_k} \sum_{k \in K} F_{ek} x_{ek}$$

tel que

$$\sum_{e \in E_k} x_{ek} = 1, \quad \forall k \in K \tag{2a}$$

$$x_{ek} \ge 0, \quad \forall k \in K, \forall e \in E_k$$
 (2b)

$$\sum_{e \in E_k: i \in e} x_{ek} \le \hat{z}_i, \quad \forall i \in H, \forall k \in K$$
(2c)

(2d)

où \hat{z} est un vecteur fixé dans l'ensemble des vecteurs binaires associés aux variables z_i .

Problème dual:

$$\max \sum_{k \in K} \alpha_k - \sum_{i \in H} \sum_{k \in K} \hat{z}_i u_{ik}$$

tel que

$$\alpha_k - u_{e_1k} - u_{e_2k} \le F_{ek}, \quad \forall k \in K, \forall e \in E, |e| = 2$$
(3a)

$$\alpha_k - u_{e_1k} \le F_{ek}, \quad \forall k \in K, \forall e \in E, |e| = 1$$
 (3b)

$$u_i k \ge 0, \quad \forall i \in H, \forall k \in K$$
 (3c)

où $\alpha_k, k \in K$ sont les variables associées aux contraintes 2b et $u_{ik}, i \in H, k \in K$ les variables associées aux contraintes 2c

Problème maître :

$$\min \sum_{i \in H} f_i z_i + \eta$$

tel que

$$\eta \ge \sum_{k \in K} \alpha_k - \sum_{i \in H} \sum_{k \in K} z_i u_{ik}, \quad \forall (\alpha, u) \in P_D$$
(4a)

$$\sum_{i \in H} z_i \ge 1 \tag{4b}$$

$$z_i \in \{0, 1\}, \quad \forall i \in H \tag{4c}$$

- 4 la manière de résoudre ces problèmes
- 5 les techniques d'amélioration mises en œuvre
- 6 les grandes lignes des résultats obtenus (taille des problèmes, temps de calcul)
- 7 Conclusion

