Chapter 6: Single Source Shortest Path

Elements of Parallel Computing

Eric Aubanel

Example

Definitions

- ► **Shortest path** between two vertices of a graph: path that minimizes sum of edge weights
- ► **SSSP**: find shortest paths between source vertex all other vertices
- ▶ Diameter of graph: length of the longest shortest path between all pairs of vertices, ignoring weights
- ▶ **Scale-Free Graphs**: degree distribution follows a power law, that is, the number of vertices of degree d is $O(d^{-\lambda})$, where λ is a small constant.

Scale-Free Graph

SSSP Solution with Labelling

Input: Graph with vertices V(|V| = n) and edges E with weights C, source vertex s.

Output: *D*: distance between *s* and all other vertices. *P*: pointer to predecessor to each vertex in shortest path.

```
for i \leftarrow 0 to n-1 do D[i] \leftarrow \infty
D[s] \leftarrow 0, list \leftarrow \{s\}
while list \neq \emptyset do
      remove vertex i from list
      // Relax each out-edge of vertex i
      foreach edge e_{ii} \in E do
            if D[i] > D[i] + c_{ii} then
                  D[i] \leftarrow D[i] + c_{ii}, P[i] \leftarrow i
                  if i \notin \text{list then list} \leftarrow \text{list} \cup \{i\}
            end
      end
```

SSPP Strategies:

- ► Label-setting: in each iteration the distance value of a single vertex is permanently set
- Label-correcting: distance value of vertices may be updated multiple times

Data Structures

- Adjacency lists
- Adjacenty matrix
- Compressed sparse row: adjacency lists stored contiguously

Bellman-Ford Algorithm

Standard algorithm:

```
Initialize D for k \leftarrow 1 to n-1 do foreach edge \ e_{ij} \in E do if D[j] > D[i] + c_{ij} then D[j] \leftarrow D[i] + c_{ij} end end
```

Better to use label correcting algorithm above, with FIFO queue

Bellman-Ford Example

Queue	vertices updated
0(0)	
1(3), 2(1)	1, 2
2(1), 3(5)	3
3(5), 1(2), 4(6)	1, 4
1(2), 4(6), 5(6)	5
4(6), 5(6), 3(4)	3
5(6), 3(4), 6(8)	6
3(4), 6(8), 7(10)	7
6(8), 7(10), 5(5)	5
7(9), 5(5)	7
5(5)	
6(7)	6
7(8)	7

©2017 by Taylor & Francis Group, LLC.

Dijkstra's Algorithm

List algorithm, where list is a min-priority queue.

Queue	vertices updated
0(0)	
2(1), 1(3)	1, 2
1(2), 4(6)	1, 4
3(4), 4(6)	3
5(5), 4(6)	5
4(6), 6(7), 7(9)	6, 7
6(7), 7(9)	
7(8)	7

Complexity

- ▶ Bellman-Ford: O(|V||E|)
- ▶ Dijkstra: Min-priority queue takes $O(\log |V|)$ to update vertices and remove the minimum vertex, so $O((|V| + |E|) \log |V|)$ overall.
- ▶ In practice Bellman-Ford has lower runtime than complexity suggests, but no known average case
- Delta-Stepping algorithm is a compromise between Bellman-Ford and Dijkstra, and provides average-case linear complexity

Delta-Stepping

- Vertices placed into array B of buckets.
- ▶ Bucket *i* holds vertices with distance in the range $[i\Delta, (i+1)\Delta)$
- Each relaxation will place a vertex in one of the buckets, and may also move it from another bucket

Delta=5

B[0]	B[1]	vertices updated
0(0)		
1(3), 2(1)		1, 2
2(1)	3(5)	3
1(2)	3(5), 4(6)	1, 4
3(4)	4(6)	3
	4(6), 5(5)	5
	5(5), 6(8)	6
	6(7), 7(9)	6, 7
	7(8)	7

Delta Stepping Algorithm

Input: Graph with vertices V(|V| = n) and edges E with weights C, source vertex s.

Output: D: distance between s and all other vertices.

foreach $vertex\ v \in V$ do //classify edges as light or heavy

$$H[v] \leftarrow \{e_{vw} \in E \mid c_{vw} > \Delta\}$$

$$L[v] \leftarrow \{e_{vw} \in E \mid c_{vw} \leq \Delta\}$$

$$D[v] \leftarrow \infty$$

end

relax(s, 0)// places s in first bucket (B[0]) $i \leftarrow 0$

```
while B is not empty do
     R \leftarrow \emptyset
     while B[i] \neq \emptyset do
           Reg \leftarrow \{(w, D[v] + c_{vw}) \mid v \in B[i], e_{vw} \in L[v]\}
           R \leftarrow R \cup B[i]// remember vertices deleted
               from bucket
           B[i] \leftarrow \emptyset
           foreach (w, x) \in Reg do
                relax(w, x)
           end
     end
     Reg \leftarrow \{(w, D[v] + c_{vw}) \mid v \in R, e_{vw} \in H[v]\}
     foreach (w, x) \in Reg do
           relax(w.x)
     end
     i \leftarrow i + 1
end
```

```
// Relax edge to vertex w with candidate weight x // If accepted assign to appropriate bucket 

Procedure relax(w, x)

if x < D[w] then
B[\lfloor D[w]/\Delta \rfloor] \leftarrow B[\lfloor D[w]/\Delta \rfloor] \setminus \{w\}
B[\lfloor x/\Delta \rfloor] \leftarrow B[\lfloor x/\Delta \rfloor] \cup \{w\}
D[w] \leftarrow x
end
end
```

Task Decomposition

Bellman Ford, decompose:

- iterations of foreach loop (edges adjacent to a vertex)
- process contents of list in parallel

Dijkstra vs. Bellman Ford

- Dijkstra: only have independent tasks for relaxations of edges from one vertex
- ▶ Dijkstra: $|V| \log |V|$ depth and $O((|V| + |E|) \log |V|)$ work, so O(|E|/|V|) parallelism
- ▶ Bellman-Ford: in worst case, O(|V|) depth, O(|E||V|) work, and O(|E|) parallelism
- ▶ Delta-Stepping: tune Δ to balance parallelism and work-efficiency

Data Decomposition: Edge Partitions

