Durée: 30 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

BON COURAGE!

1. Au voisinage de 0 :

voisinage de 0:

$$(1) \Box \qquad \frac{1}{x-1} = 1 + \frac{1}{x} + \frac{1}{x^2} + o(\frac{1}{x^2})$$

$$(2) \Box \qquad \frac{1}{x-1} = \frac{1}{x} - \frac{1}{x^2} + o(x^2)$$

$$(3) \Box \qquad \frac{1}{x-1} = 1 + x + x^2 + o(x^2)$$

$$(4) \Box \qquad \frac{1}{x-1} = 1 - x + x^2 + o(x)$$

$$(4) \Box \qquad \text{argumentation of the property process process are expenses of the property of$$

- aucune des réponses précédentes n'est correcte. (5)
- 2. Soient A et B deux matrices réelles. Parmi les affirmations suivantes lesquelles sont vraies :
 - $A \cdot B$ est définit si et seulement si le nombre de lignes de A est égal au nombre de colonnes de B(1)
 - (2)si AB = AC, alors B = C
 - \square (3) si AB = 0, alors A = 0 ou B = 0
 - (4)on peut avoir $A \cdot B = \alpha$, avec $\alpha \in \mathbb{R}$
 - (5)aucune des réponses précédentes n'est correcte.
- 3. Soit $A \in M_3(\mathbb{R})$. Parmi les affirmations suivantes lesquelles sont vraies?
 - $det(A) = -det(A^T)$ (1)
 - Si on ajoute à la première ligne le double de la seconde, le déterminant est doublé. (2)
 - Si on ajoute à la première ligne de A la somme des autres, alors det(A) est inchangé. \Box
 - (4)Si une des lignes de A est combinaison linéaire des autres, alors |A| = 0.
 - (5)Si A est triangulaire, alors det(A) est le produit des coefficients diagonaux.
- 4. Une relation binaire R est une relation d'ordre dans un ensemble E si elle est :
 - (1)réflexive, symétrique et transitive
 - réflexive, antisymétrique et transitive (2)
 - \square (3) $\forall x \in E, \ xRx; \ \forall x, y \in E, \ (xRy \text{ et } yRx) \Rightarrow x = y; \ \ \forall x, y, z \in E, \ (xRy \text{ et } yRz) \Rightarrow xRz$
 - (4) $\forall x \in E, \ xRx; \ \forall x,y \in E, \ xRy \Rightarrow yRx; \ \ \forall x,y,z \in E, \ (xRy \ \text{et} \ yRz) \Rightarrow xRz$
 - (5)aucune des réponses précédentes n'est correcte.
- 5. Soit D(n) l'ensemble des diviseurs de n dans \mathbb{Z} et soit $n\mathbb{Z}$ l'ensemble des multiples de n. Parmi les affirmations suivantes, lesquelles sont vraies?
 - $D(0) = \mathbb{Z} \text{ et } 0\mathbb{Z} = \{0\}$ \Box
 - $D(1) = \mathbb{Z} \text{ et } 1\mathbb{Z} = \{1\}$ (2)
 - $\forall (a,b) \in \mathbb{Z}^2 : b|a \Leftrightarrow D(b) \subset D(a)$ \square
 - $\forall (a,b) \in \mathbb{Z}^2 : b | a \Leftrightarrow b \in a\mathbb{Z}$ (4)
 - aucune des réponses précédentes n'est correcte. (5)

6. $b a$ significant a sign	 b est diviseur de a b est multiple de a le reste de la division euclidienne de a par b est nul le reste de la division euclidienne de b par a est nul
7. Parmi le	s affirmations suivantes, lesquelles sont vraies?
(1) C (2) C (3) C (4) C (5) C	$ \forall (a,b) \in \mathbb{Z}^2 : b a \Leftrightarrow a \in b\mathbb{Z} $ $ \forall (a,b) \in \mathbb{Z}^2 : b a \Leftrightarrow \exists q \in \mathbb{Z} \ b = aq $ $ \forall (a,b) \in \mathbb{Z}^2 : b a \Leftrightarrow \forall q \in \mathbb{Z} \ a = bq $
8. Soit $a = {1 \choose 2}$ ${2 \choose 3}$ ${4 \choose 5}$	$a \wedge b = b \wedge r$ on peut avoir différentes valeurs pour r et q b a
9. Soient a et b deux entiers relatifs et $d = \operatorname{pgcd}(a, b)$.	
(1) \((2) \((3) \) \((4) \) \((5) \) \((5) \)	Il existe un couple $(u, v) \in \mathbb{Z}^2$ tels que $au + bv = 1$. Il existe un couple $(u, v) \in \mathbb{Z}^2$ tels que $au + bv = d$. Il existe un couple unique $(u, v) \in \mathbb{Z}^2$ tel que $au + bv = d$.
10. Soient a	b et c trois entiers relatifs. Parmi les affirmations suivantes, lesquelles sont vraies \widehat{z}
(1) \(\begin{aligned} (2) \(\begin{aligned} (3) \\ (4) \\ (5) \end{aligned} \end{aligned}	$\begin{array}{ll} \exists & a \wedge b = 1 \text{ et } a bc \Rightarrow b c \\ \exists & a \vee b = 1 \text{ et } a bc \Rightarrow b c \\ \exists & a \wedge b = 1 \text{ et } a bc \Rightarrow a c \end{array}$