EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele și specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \mathrm{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_P}$

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect. 1.Într-o destindere a unei mase constante de gaz ideal, densitatea acestuia:

- a. crește
- **b**. scade
- c. se menține constantă
- d. crește și apoi scade.

(3p)

- 2. Știind că simbolurile unităților de măsură sunt cele utilizate în manualele de fizică unitatea de măsură a energiei interne în S.I. poate fi exprimată prin relația:
- **a.** N·m²
- $b. N \cdot m$

c.
$$\frac{N \cdot m}{K}$$

d.
$$\frac{N \cdot m^2}{K}$$
 (3p)

3. O cantitate constantă de gaz ideal monoatomic $(C_V = \frac{3}{2}R)$ descrie o transformare care se reprezintă

într-un sistem de coordonate p-V ca în figura alăturată. Relaţia corectă dintre lucrul mecanic și căldura schimbate de gaz cu mediul exterior este:

a.
$$Q = \frac{3L}{2}$$

b.
$$Q = \frac{5L}{2}$$

c.
$$Q = 3L$$

d.
$$Q = \frac{7L}{2}$$

(2p)

4. Intr-o transformare ciclică o cantitate dată de gaz ideal primește căldura Q_1 și cedează căldura $Q_2 < 0$.

Raportul $\frac{L}{Q_1}$ poate fi scris sub forma:

$$\mathbf{a.} \frac{Q_1 + Q_2}{Q_4}$$

b.
$$\frac{Q_1 - Q_2}{Q_1}$$

c.
$$\frac{1-Q_2}{Q_1}$$

b.
$$\frac{Q_1 - Q_2}{Q_1}$$
 c. $\frac{1 - Q_2}{Q_1}$ **d.** $\frac{Q_2 - Q_1}{Q_1}$ (5p)

5. Utilizând notațiile din manualele de fizică, relația Robert - Mayer poate fi scrisă sub forma: **a.** $C_p + C_V = \frac{R}{\mu}$ **b.** $C_V - C_p = R$ **c.** $c_p - c_V = \frac{R}{\mu}$ **d.** $c_p - c_V = \frac{\rho_0 T_0}{\rho_0}$

$$a. C_p + C_V = \frac{R}{\mu}$$

b.
$$C_V - C_p = F_0$$

$$c. c_p - c_V = \frac{R}{\mu}$$

d.
$$c_p - c_V = \frac{\rho_0 T_0}{\rho_0}$$
 (2p)