

# Understanding Generative Adversarial Networks

Hao Dong

**Peking University** 



# Understanding Generative Adversarial Networks

Hao Dong

**Peking University** 



#### So far

- GAN is a couple of Generator and Discriminator; its training process is a min-max game as follows:
  - $\min_{G} \max_{D} V(D, G) = \min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{data}} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}} [\log (1 D(G(\boldsymbol{z}))]$ i.e.,  $p_{r}$
  - Theoretical guarantee: This min-max game has a global optimum for  $p_g=p_{data}$
  - However there remains some fundamental problems of GAN training.
- Note that when we say "manifold P" where P is indeed a probability distribution, we actually refer to the support set of distribution P.
- This lecture: Towards a solid understanding of GAN training.



#### Understanding Generative Adversarial Networks

#### Part 1:

problems: what and why • background knowledge • some solutions

Solid Understanding of GAN Training

- Improved Technique for Generator Loss
- Fundamental Problems of Two Types of GAN
- Wasserstein Distance
- A Temporal Solution

#### Part2:

a super solution



- Solid Understanding of GAN Training
  - Improved Technique for Generator Loss
  - Fundamental Problems of Two Types of GAN
  - Wasserstein Distance
  - A Temporal Solution
- Wasserstein GAN



#### Improved Technique for Generator Loss

- Vanilla Generator Loss:
  - Given  $\min_{G} \max_{D} V(D, G) = \min_{G} \max_{D} \mathbb{E}_{x \sim p_{data}} [\log D(x)] + \mathbb{E}_{z \sim p_z} [\log(1 D(G(z)))]$
  - If we deduce  $\mathcal{L}_D$  and  $\mathcal{L}_G$  directly from min-max equation, then we get:

• 
$$\mathcal{L}_D = -\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D(\boldsymbol{x})] - \mathbb{E}_{\boldsymbol{z} \sim p_z}[\log(1 - D(G(\boldsymbol{z})))]$$

• 
$$\mathcal{L}_G = E_{z \sim p_z}[\log(1 - D(G(z)))]$$
 (Vanilla GAN)

- In early training stage: Vanishing Gradient
  - D is easy to distinguish generated sample G(z) from real images x

6



- Improved Technique for Generator Loss
- If we deduce  $\mathcal{L}_G$  directly from min-max equation, then we get:

• 
$$\mathcal{L}_G = E_{z \sim p_z}[\log(1 - D(G(z)))]$$
 (Vanilla GAN)

#### Improved Generator Loss:



- Known  $|\nabla \log(A)| = |\frac{1}{A}|$  is significantly larger than  $|\nabla \log(1-A)| = |\frac{1}{A-1}|$
- It is the same:  $\mathcal{L}_{G}' = -E_{z \sim p_{z}}[\log(D(G(z)))]$  (Improved GAN)
  - Minimising  $\mathcal{L}_G$  is equivalent to minimise  $\mathcal{L}_G$ , while providing larger gradient for the generator in early-stage training.

$$G^* = \max_{G} \mathbb{E}_{\mathbf{z} \sim p_z} [\log D(G(\mathbf{z}))]$$
$$= \min_{G} \mathbb{E}_{\mathbf{z} \sim p_z} [\log(1 - D(G(\mathbf{z})))]$$



- Solid Understanding of GAN Training
  - Improved Technique for Generator Loss
  - Fundamental Problems of Two Types of GAN
  - Wasserstein Distance
  - A Temporal Solution
- Wasserstein GAN



- In the following slides, we denote GAN with improved generator loss as Improved GAN.
- Then we claim that these two types of GAN suffer from some fundamental problems respectively:
  - Vanilla GAN: Vanishing Gradient
  - Improved GAN: Mode collapse and Oscillations



- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Model Collapse
- An Empirical Observation v.s. Theoretical Induction:
  - What would happen if we just train D till converge?
    - Theoretically:

$$D^* = \frac{p_r}{p_g + p_r}$$

• 
$$L_G = -log4 + 2JS(p_r||p_g)$$

Empirically, no gradient for G: Why?

• 
$$D^*(x) = \begin{cases} 0 \text{ if } x \text{ sampled from } P_r \\ 1 \text{ if } x \text{ sampled from } P_g \end{cases}$$



•  $\nabla_x E_{z \sim p_z}[\log(1 - D^*(G(z)))] \approx 0$  (Gradient Vanishing)





- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Based on empirical observations, we can intuitively thinking:
  - In what case can we classify two manifolds totally?
    - Two manifolds can be separated?
  - Consider the extreme case:
    - When support sets of  $P_r$ ,  $P_g$  can be separated:
    - Then for any  $x \in P_r \cup P_g$ , there're only 2 cases:
      - Case 1:  $P_r(x) = 0$ ,  $P_q(x) \neq 0$
      - Case 2:  $P_r(x) \neq 0$ ,  $P_q(x) = 0$
    - In both case the  $JS(P_r||P_g) = 2 * \frac{1}{2} * log2 = log2$
    - So  $L_G = 2JS(P_r | | P_g) log 4 = 0$





- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Under the assumption that  $P_r$  and  $P_g$  can be separated, we can explain the reason.
  - But why?
- Firstly, it's reasonable to assume that  $P_r$  and  $P_g$  are low-dimension manifolds.
  - **Lemma 1.** Let  $g: \mathbb{Z} \to \mathcal{X}$  be a function composed by affine transformations and pointwise nonlinearities, which can either be rectifiers, leaky rectifiers, or smooth strictly increasing functions (such as the sigmoid, tanh, softplus, etc). Then,  $g(\mathbb{Z})$  is contained in a countable union of manifolds of dimension at most dim  $\mathbb{Z}$ . Therefore, if the dimension of  $\mathbb{Z}$  is less than the one of  $\mathbb{X}$ ,  $g(\mathbb{Z})$  will be a set of measure 0 in  $\mathbb{X}$ .
    - So  $P_g$  is low-dimension manifold.
  - There is strong.
- Empirical and theoretical evidence to believe that  $P_r$  is indeed extremely concentrated on a low dimensional manifold

## 和桌大学 PEKING UNIVERSITY

## Fundamental Problems of Two Types of GAN

- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Intuitively, when  $P_r$  and  $P_g$  are both low-dimensional, then they have "nearly no intersection" with a probability of 1.
  - The following lemma claim the same idea.
  - **Lemma 2.** Let  $\mathcal{M}$  and  $\mathcal{P}$  be two regular submanifolds of  $\mathbb{R}^d$  that don't have full dimension. Let  $\eta, \eta'$  be arbitrary independent continuous random variables. We therefore define the perturbed manifolds as  $\tilde{\mathcal{M}} = \mathcal{M} + \eta$  and  $\tilde{\mathcal{P}} = \mathcal{P} + \eta'$ . Then

 $\mathbb{P}_{\eta,\eta'}(\tilde{\mathcal{M}} \text{ does not perfectly align with } \tilde{\mathcal{P}}) = 1$ 



- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- Just as last section, we analyse the case when D is trained to optimum:

• 1) 
$$L_D = E_{x \sim P_r} [log(D^*(x))] + E_{x \sim P_g} [log(1 - D^*(x))] = 2JS(P_r | P_g) - log 4$$

• 2) 
$$KL(P_g||P_r) = E_{P_g} \left[ log \frac{\frac{P_g}{P_g + P_r}}{\frac{P_r}{P_g + P_r}} \right] = E_{x \sim P_g} \left[ log \frac{1 - D^*(x)}{D^*(x)} \right]$$
  
=  $E_{x \sim P_g} [1 - D^*(x)] - E_{x \sim P_g} [D^*(x)]$ 

Then implied by 1) and 2):

• 
$$L_G = E_{x \sim P_g}[-log D^*(x)] = KL(P_g||P_r) - E_{x \sim P_g}log(1 - D^*(x))$$
 [implied by 2.]  
=  $KL(P_g||P_r) - 2JS(P_g||P_r) + log 4 + E_{x \sim P_r}log D^*(x)$  [implied by 1.]

•  $min L_G = min KL(P_g||P_r) - 2JS(P_g||P_r)$ 

前后优化目标矛盾!



- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$ 
  - Rediculous? Note that if we want to minimise  $L_G$ , then we are "pulling"  $P_r$  and  $P_g$  closer and farther at the same time
  - This leads to the gradient oscillations







- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse





- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$
- $KL(P_g||P_r) = \int P_g(x)log\frac{P_g(x)}{P_r(x)}dx$ , there're two types of "error".
  - Err i.  $P_g(x) \rightarrow 0$ ,  $P_r(x) > 0$ , lack of "diversity"
  - Err ii.  $P_g(x) > 0$ ,  $P_r(x) \to 0$ , generate "fake" image
- Obviously, KL "punishes" type ii. more than type i.





- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$
- Further, to minimise  $-2JS(P_g||P_r)$ , Err i. is "encouraged" to be more severe.





- Vanilla GAN: Vanishing Gradient
- Improved GAN: Oscillations and Mode Collapse
- $min L_G = min KL(P_g||P_r) 2JS(P_g||P_r)$
- Mode collapse examples ...





- Vanilla GAN: Vanishing Gradient
- Improved GAN: *Mode collapse and Oscillations*



- Solid Understanding of GAN Training
  - Improved Technique for Generator Loss
  - Fundamental Problems of Two Types of GAN
  - Wasserstein Distance background for Wassertein GAN
  - A Temporal Solution
- Wasserstein GAN



#### Wasserstein Distance

- As we seen, the fundamental problem of (vanilla) GAN is due to the defects of JSD. Now
  we introduce a new distance.
- $W(P_r||P_g) = \inf_{\gamma \in \prod (P_g, P_r)} \mathbb{E}_{(x,y) \sim \gamma}[||x y||]$

where  $\prod(Pr,Pg)$  denotes all possible joints distributions that have marginals  $P_r$  and  $P_g$ 

 Wasserstein distance also goes by "earth mover's distance", the amount of "dirt" that needs to be moved to transport one distribution to the other.







## Wasserstein Distance

| $\gamma_1$ | (1 + 1 | = 2) |   |  |
|------------|--------|------|---|--|
| 1          | 1      | 2    | 2 |  |
| 3          | 4      | 6    | 7 |  |
| $\gamma_2$ | (3 + 3 | = 6) |   |  |
| 2          | 1      | 2    | 1 |  |
| 3          | 4      | 6    | 7 |  |



#### Wasserstein Distance

$$KL(P_1||P_2) = egin{cases} +\infty & ext{if } heta 
eq 0 \ 0 & ext{if } heta = 0 \end{cases}$$

$$JS(P_1||P_2) = egin{cases} \log 2 & ext{if } heta 
eq 0 \ 0 & ext{if } heta = 0 \end{cases}$$

$$W(P||Q) = \inf_{\gamma \in \prod(P,Q)} \mathbb{E}_{(x,y) \sim \gamma}[||x - y||] = |\theta|$$



- W-distance is "better" than JSD, and JSD is "better" than KLD.
- W-distance is a better way to measure the distance between two distributions when their support sets hardly have intersection.



- Solid Understanding of GAN Training
  - Improved Technique for Generator Loss
  - Fundamental Problems of Two Types of GAN
  - Wasserstein Distance
  - A Temporal Solution
- Wasserstein GAN



## A Temporal Solution: Before Wasserstein GAN

- Considering how to solve the gradient vanishing problem of Vanilla GAN
  - The problem comes from their having "nearly no intersection", due to low-dimension.
  - Idea: Add a " $\epsilon$ -ball" to each point in manifold, then a low-dimensional manifold "level-up" to full-dimensional manifold!
  - Method: Add a random vector with mean 0 and variance  $\epsilon$  to each point of  $P_r$  and  $P_g$





#### A Temporal Solution: Before Wasserstein GAN

- Relationship with Wasserstein distance
  - Let  $P_{r+\epsilon}$  and  $P_{g+\epsilon}$  denote the resulting manifolds respectively. Then by bounding the  $\epsilon$  and  $JS(P_{r+\epsilon}||P_{g+\epsilon})$ , we can bound  $W(P_r||P_g)$ :

**Theorem 3.3.** Let  $\mathbb{P}_r$  and  $\mathbb{P}_g$  be any two distributions, and  $\epsilon$  be a random vector with mean 0 and variance V. If  $\mathbb{P}_{r+\epsilon}$  and  $\mathbb{P}_{g+\epsilon}$  have support contained on a ball of diameter C, then  $\boxed{6}$ 

$$W(\mathbb{P}_r, \mathbb{P}_g) \le 2V^{\frac{1}{2}} + 2C\sqrt{JSD(\mathbb{P}_{r+\epsilon}||\mathbb{P}_{g+\epsilon})}$$
(6)



- Solid Understanding of GAN Training
  - Improved Technique for Generator Loss
  - Fundamental Problems of Two Types of GAN
  - Wasserstein Distance
  - A Temporal Solution
- Wasserstein GAN



- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Now we attempt to design a method to minimize the W-distance between  $P_r$  and  $P_g$

• 
$$W(P_r||P_g) = \inf_{\gamma \in \Pi(P_r, P_g)} \mathbb{E}_{(x,y) \sim \gamma}[||x - y||]$$

Obviously, calculating the above estimation is an intractable problem.



- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Now we attempt to design a method to minimize the W-distance between  $P_r$  and  $P_g$ 
  - Kantorovich-Rubinstein duality:

• 
$$W(P_r||P_g) = \frac{1}{K} \max_{||f||_L \le K} \mathbb{E}_{x \sim P_r} f(x) - \mathbb{E}_{x \sim P_g} f(x)$$

• For function f,  $||f||_L$  denotes its Lipschitz-constant.



- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- In particular, a real-valued function  $f: \mathbb{R}^n \to \mathbb{R}$  is called Lipschitz continuous if there exists a positive real constant K such that, for all  $x_1, x_2 \in \mathbb{R}^n$ :

• 
$$|f(x_1) - f(x_2)| \le K ||x_1 - x_2||$$

- If a function is derivable and its gradient is bounded
  - Then it is Lipschitz continuous





- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Further, consider two functions  $f_1$ ,  $f_2$  are both Lipschitz continuous, say with constants  $K_1$ ,  $K_2$ , then the composition is also Lipschitz:

• 
$$||f_1(f_2(x)) - f_1(f_2(y))|| \le K_1|f_2(x) - f_2(y)| \le K_1K_2||x - y||$$

 So if a neural network is composed of layers that Lipschitz continuous, then the network is Lipschitz continuous.



- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Now we introduce our new objective
  - To minimise  $W(P_r||P_g) = \frac{1}{K} \max_{||f||_L \le K} \mathbb{E}_{x \sim P_r} f(x) \mathbb{E}_{x \sim P_g} f(x)$
  - Equivalent to  $\min_{G} W(P_r || P_g) = \frac{1}{K} \min_{G} \max_{||f||_{L} \le K} \mathbb{E}_{x \sim P_r} f(x) \mathbb{E}_{x \sim P_g} f(x)$
  - Equivalent to  $\min_{G} W(P_r | | P_g) = \min_{G} \max_{||D||_L \le K} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$



- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- How to optimise this objective:  $\min_{G} W(P_r||P_g) = \min_{G} \max_{||D||_L \le K} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$ 
  - First step, fix G update D:  $\max_{|D||_{L} \le K} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
  - Second step, fix D update G:  $\min_{G} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
  - Obviously , the key is the first step: maximise  $\mathbb{E}_{x\sim P_r}D(x) \mathbb{E}_{x\sim P_g}D(x)$ , while keeping the condition that  $\big||D|\big|_L \leq K$



- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Idea: Updating D with  $\mathbb{E}_{x\sim P_r}D(x)-\mathbb{E}_{x\sim P_g}D(x)$ , then clip every weight in D to [-c,c] where c is a constant e.g. c=1
  - After clipping, as each weight in D's each layer is bounded, then there's theorem claim that each layer is Lipschitz continuous.
  - Since each layer of D is Lipschitz continuous, then there always exists a K, such that  $||f||_L \leq K$

## 和京大学 PEKING UNIVERSITY

- Kantorovich-Rubinstein duality
- Lipschitz Continuity
- Wasserstein GAN
- Algorithm:
  - 1. Sample a batch $\{x_1, x_2 ... x_n\}, \{z_1, z_2 ... z_n\}$
  - 2. fix G , update D with objective:  $\max_{D} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
  - 3.Clip every weight of *D* to [-1, 1]
  - 4. fix D, update G with objective:  $\min_{G} \mathbb{E}_{x \sim P_r} D(x) \mathbb{E}_{x \sim P_g} D(x)$
- Note that, we estimates  $\mathbb{E}_{x \sim P_g} D(x) \approx \frac{1}{n} \sum_{i=1}^n D(G(z_i))$ ,  $\mathbb{E}_{x \sim P_r} D(x) \approx \frac{1}{n} \sum_{i=1}^n D(x_i)$





- So ... WGAN is all you need?
- In practice ...
- LSGAN, WGAN-GP ...



## **Summary: Understanding GANs**

- Solid Understanding of GAN Training
  - Improved Technique for Generator Loss
  - Fundamental Problems of Two Types of GAN
  - Wasserstein Distance
  - A Temporal Solution
- Wasserstein GAN



## **Thanks**