DATA PREPROCESSING

Data Preprocessing

- Data preprocessing adalah proses persiapan dan transformasi data mentah menjadi format yang lebih sesuai untuk dianalisis.
- Proses ini bertujuan untuk memastikan kualitas data, menghilangkan kecacatan, dan mengatasi masalah yang mungkin timbul

Data Preprocessing

Mengapa Data Diproses Awal?

- Data dalam dunia nyata kotor
 - Tak-lengkap: nilai-nilai atribut kurang, atribut tertentu yang dipentingkan tidak disertakan, atau hanya memuat data agregasi
 - Misal, pekerjaan=""
 - Noisy: memuat error atau memuat outliers (data yang secara nyata berbeda dengan data-data yang lain)
 - Misal, Salary="-10"

Mengapa Data Diproses Awal?

- Tak-konsisten: memuat perbedaan dalam kode atau nama
 - Misal, Age="42" Birthday="03/07/1997"
 - Misal, rating sebelumnya "1,2,3", sekarang rating "A, B, C"
 - Misal, perbedaan antara duplikasi record
- Data yang lebih baik akan menghasilkan data mining yang lebih baik
- Data preprocessing membantu didalam memperbaiki presisi dan kinerja data mining dan mencegah kesalahan didalam data mining.

Mengapa Data Kotor?

- Ketaklengkapan data datang dari
 - Nilai data tidak tersedia saat dikumpulkan
 - Perbedaan pertimbangan waktu antara saat data dikumpulkan dan saat data dianalisa.
 - Masalah manusia, hardware, dan software
- Noisy data datang dari proses data
 - Pengumpulan
 - Pemasukan (entry)
 - Transmisi

Mengapa Data Kotor?

- Ketak-konsistenan data datang dari
 - Sumber data yang berbeda
 - Pelanggaran kebergantungan fungsional

Mengapa Pemrosesan Awal Data Penting?

- Kualitas data tidak ada, kualitas hasil mining tidak ada!
 - Kualitas keputusan harus didasarkan kepada kualitas data
 - Misal, duplikasi data atau data hilang bisa menyebabkan ketidak-benaran atau bahkan statistik yang menyesatkan.
 - Data warehouse memerlukan kualitas integrasi data yang konsisten
- Ekstraksi data, pembersihan, dan transformasi merupakan kerja utama dari pembuatan suatu data warehouse. Bill Inmon

Tugas Utama Pemrosesan Awal Data

- Pembersihan data (data yang kotor)
 - Mengisi nilai-nilai yang hilang,
 menghaluskan noisy data, mengenali atau menghilangkan outlier, dan memecahkan ketak-konsistenan
- Integrasi data (data heterogen)
 - Integrasi banyak database, banyak kubus data, atau banyak file
- Transformasi data (data detail)
 - Normalisasi dan agregasi

Tugas Utama Pemrosesan Awal Data

- Reduksi data (jumlah data yang besar)
 - Mendapatkan representasi yang direduksi dalam volume tetapi menghasilkan hasil analitikal yang sama atau mirip
- Diskritisasi data (kesinambungan atribut)
 - Bagian dari reduksi data tetapi dengan kepentingan khusus, terutama data numerik

Bentuk-Bentuk Dari Pemrosesan Awal Data

Pembersinan Data

Integrasi Data

Transformasi Data

Reduksi Data

- Integrasi data:
 - Mengkombinasikan data dari banyak sumber kedalam suatu simpanan terpadu
- Integrasi skema
 - Mengintegrasikan metadata dari sumber-sumber berbeda
- Pendeteksian dan pemecahan konflik nilai data
 - Untuk entitas dunia nyata yang sama, nilai-nilai atribut dari sumber-sumber berbeda adalah berbeda
 - Alasan yang mungkin: representasi berbeda, skala berbeda, misal berat bisa dalam pound atau kilogram

- Problem: integrasi skema heterogen
- Nama-nama tribut berbeda

cid	name	byear
1	Jones	1960
2	Smith	1974
3	Smith	1950

Customer-ID	state
1	NY
2	CA
3	NY

• Unit berbeda: Sales dalam \$, sales dalam Yen, sales dalam DM

- Problem: integrasi skema heterogen
- Skala berbeda: Sales dalam dollar versus sales dalam sen dollar

• Atribut turunan: Annual salary versus monthly salary

cid	monthlySalary
1	5000
2	2400
3	3000

cid	Salary
6	50,000
7	100,000
8	40,000

- Problem: ketak-konsistenan karena redundansi
- Customer dengan customer-id 150 punya 3 anak dalam relation1 dan 4 anak dalam relation2

cid	numChildren
1	3

cid	numChildren
1	4

• Komputasi annual salary dari monthly salary dalam relation1 tak cocok dengan atribut "annual-salary" dalam relation2

cid	monthlySalary
1	5000
2	6000

cid	Salary
1	60,000
2	80,000

Penanganan Redundansi Dalam Integrasi Data

- Data redundan sering terjadi saat integrasi dari banyak database
 - Atribut yang sama bisa memiliki nama berbeda dalam database berbeda
 - Atribut yang satu bisa merupakan suatu atribut "turunan" dalam tabel lainnya, misal, annual revenue
- Data redundan mungkin bisa dideteksi dengan analisis korelasi
- Integrasi data hati-hati dari banyak sumber bisa membantu mengurangi/mencegah redundansi dan ketak-konsistenan dan memperbaiki kecepatan dan kualitas mining

Penanganan Redundansi Dalam Integrasi Data

- Suatu atribut adalah redundan jika atribut tersebut bisa diperoleh dari atribut lainnya
- Analisis korelasi

$$r_{A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_A \sigma_B}$$

- Rata-rata A adalah $\overline{A} = \frac{\sum A}{A}$
- Deviasi standard A adalah $\sigma_A = \sqrt{\frac{\sum (A \overline{A})^2}{n-1}}$
- $R_{A,B} = 0$: A dan B saling bebas
- $R_{A,B} > 0$: A dan B berkorelasi positip $A \uparrow \leftrightarrow B \uparrow$
- $R_{A,B} < 0$: A dan B berkorelasi negatif $A \downarrow \leftrightarrow B \uparrow$

Transformasi Data

- Penghalusan: menghilangkan noise dari data
- Agregasi: ringkasan, konstruksi kubus data
- Generalisasi: konsep hierarchy climbing
- Normalisasi: diskalakan agar jatuh didalam suatu range kecil yang tertentu
 - Normalisasi min-max
 - Normalisasi z-score
 - Normalisasi dengan penskalaan desimal
- Konstruksi atribut/fitur
 - Atribut-atribut baru dibangun dari atribut-atribut yang ada

Transformasi Data: Normalisasi

Normalisasi min-max

$$v' = \frac{v - min_A}{max_A - min_A} (new _ max_A - new _ min_A) + new _ min_A$$

• Normalisasi z-score (saat Min, Max tak diketahui)

$$v' = \frac{v - mean_A}{stand _dev_A}$$

Normalisasi dengan penskalaan desimal

$$v' = \frac{v}{10^{j}}$$
 dimana j adalah integer terkecil sehingga Max(| v' |)<1