SUMMER PROJECT

JAIUNG JUN AND MATTHEW PISANO

Abstract.

1. Introduction

We will focus on Research Project 11 in [GK20]. The following are more specific directions that we plan to pursue.

Goal (8/1/2022).

- (1) Prove/disprove: for an oriented graph G, one always has $Pic(G) = \mathbb{Z} \times Jac(G)$, i.e., as a finitely generated abelian group, the rank of Pic(G) is 1.
- (2) Prove/disprove: for C_n , and $0 \le m \le n$, one can always find an orientation of C_n so that $Jac(C_n) = \mathbb{Z}_m$ (with the orientation).
- (3) Prove/disprove: for an oriented graph G, if $v_0 \in V(G)$ is a sink (or a source) and G' is the graph obtained by reserving the direction for all arrows adjacent to v_0 from G, then Jac(G) = Jac(G'). (Note: we believe that this should be true for at least some classes of graphs such as cyclic graphs.)
- (4) Prove/disprove: for an oriented planar graph G and its planar dual (should be defined) \hat{G} , one has $Jac(\hat{G}) = Jac(\hat{G})$.
- (5) Prove/disprove: for oriented graphs G_1, G_2 , let G be the graph obtained by gluing G_1 and G_2 along one vertex. Then $Jac(G) = Jac(G_1) \times Jac(G_2)$.

(6)

2. Preliminaries

3. Propositions

References

[CP18] Scott Corry and David Perkinson. Divisors and sandpiles, volume 114. American Mathematical Soc., 2018.

[GK20] Darren Glass and Nathan Kaplan. Chip-firing games and critical groups. In *A Project-Based Guide to Undergraduate Research in Mathematics*, pages 107–152. Springer, 2020.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT NEW PALTZ, NY 12561, USA *Email address*: junj@newpaltz.edu

STATE UNIVERSITY OF NEW YORK AT BINGHAMTON, NY 13902, USA *Email address*: pisanom1@newpaltz.edu

1

²⁰²⁰ Mathematics Subject Classification. 05C50, 05C76.

Key words and phrases. Jacobian of a graph, sandpile group, critical group, chip-firing game, gluing graphs, cycle graph, Tutte polynomial, Tutte's rotor construction.