HW #1

EEU 10		Jonathan 42 75104353
UY-thrographed c	th te	As t get to Multy, the value of Land of reach to a containt, 2) $\chi^2 \chi_1 + ta$ $\chi^2 = \delta_c$ $\chi^2 = \chi + ta$ $\chi^2 = \delta_c$ $\chi^2 = \chi + tb$ $\chi^2 = \chi^2 + tb$
(x x x x x x x x x x x x x x x x x x x	7.+to [1. 5'(7.+tb) 2.+tc [1. 5'(7.+tb) 2.+tc [1. 7.+tb] 3.+tc 5'70 + 5'40 2.+tc 7.+tb 3.+tc 7.+tc 7.+tb 7.+tc 7.+tc	(a) \(\frac{1}{2} = \frac{1}{2} \frac{1}{
They have area of the formate por the filter of the filter	course the equation for North	

1.

Perspective Projection:

Image:

Code Snippet:

```
for (t = 0.01; t < 10000.01; t += .01) //change the t range
    /*Modify the coefficiences according to questions*/
   float a = 0.0;
   float b = 1.0;
   float c = -1.0;
   float x0 = 0.5;
   float y0 = -1.0;
   float z0 = 0.0;
   float fprime = 1.0;
   x = x0 + t*a;
   y = y0 + t*b;
   z = z0 + t*c;
   /* Modify these according to the projection */
   xprime = fprime*x/z;
   yprime = fprime*y/z;
   plot_logical_point(xprime, yprime, image);
```

Orthographic Projection:

Image:


```
for (t = 0.01; t < 10000.01; t += .01) //change the t range
    /*Modify the coefficiences according to questions*/
    float a = 0.0;
    float b = 1.0;
    float c = -1.0;
    float x0 = 0.5;
    float y0 = -1.0;
    float z0 = 0.0;
    float fprime = 1.0;
    x = x0 + t*a;
   y = y0 + t*b;
    z = z0 + t*c;
    /* Modify these according to the projection */
   xprime = x;
   yprime = y;
   plot_logical_point(xprime, yprime, image);
}
```

2. Perspective Projection:

Image:


```
for (t = 0.01; t < 10000.01; t += .01) //change the t range
   /*Modify the coefficiences according to questions*/
   float a = 1.0;
   float b = 1.0;
   float x1 = 0.5;
   float x2 = -0.5;
   float y1 = -1.0;
   float y2 = -1.0;
   float z0 = -1.0; /*z0 = -1, -2, -3*/
   float fprime = 1.0;
   x = x1 + t*a;
   float x_hat = x2 + t*a;
   y = y1 + t*b;
   float y_hat = y2 + t*b;
   z = z0;
   /* Modify these according to the projection */
   xprime = fprime*x/z;
   yprime = fprime*y/z;
   float xprime hat = fprime*x hat/z;
   float yprime_hat = fprime*y_hat/z;
   plot_logical_point(xprime, yprime, image);
   plot_logical_point(xprime_hat, yprime_hat, image);
}
```

 $z_0 = -2$

Image:

Code Snippet:

Change value of z_0 to -2.

 $z_0 = -3$

Code Snippet:

Change the value of z_0 to -3.

Orthographic Projection:

Image:

$$z_0 = -1, -2, -3$$


```
for (t = 0.01; t < 10000.01; t += .01) //change the t range
    /*Modify the coefficiences according to questions*/
   float a = 1.0;
   float b = 1.0;
   float x1 = 0.5;
   float x2 = -0.5;
   float y1 = -1.0;
   float y2 = -1.0;
   float z0 = -1.0; /*z0 = -1, -2, -3*/
   float fprime = 1.0;
   x = x1 + t*a;
   float x_hat = x2 + t*a;
   y = y1 + t*b;
   float y_hat = y2 + t*b;
   z = z0;
   /* Modify these according to the projection */
   xprime = x;
   yprime = y;
    float xprime_hat = x_hat;
   float yprime_hat = y_hat;
   plot_logical_point(xprime, yprime, image);
   plot_logical_point(xprime_hat, yprime_hat, image);
```

Perspective Projection:

b = 0, c = 1

Image:

Code Snippet:

```
for (t = 0.01; t < 10000.01; t += .01) //change the t range
   /*Modify the coefficiences according to questions*/
   float b = 0; /*b = 0, 1, -1*/
   float c = 1.0; /*c = 1, -1*/
   float x1 = -1.0;
    float x2 = 1.0;
   float y0 = -1.0;
   float z0 = 0.0;
   float fprime = 1.0;
   x = x1;
    float x_hat = x2;
   y = y0 + t*b;
   float y_hat = y0 + t*b;
   z = z0 + t*c;
   float z_hat = z0 + t*c;
   /* Modify these according to the projection */
   xprime = fprime*x/z;
   yprime = fprime*y/z;
   float xprime_hat = fprime*x_hat/z;
   float yprime_hat = fprime*y_hat/z_hat;
   plot_logical_point(xprime, yprime, image);
   plot_logical_point(xprime_hat, yprime_hat, image);
```

b = 1, c = 1

b = -1, c = 1

Image:

b = 0, c = -1

Image:

b = 1, c = -1

$$b = -1, c = -1$$

Image:

Orthographic Projection:

b = 0

Image:


```
for (t = 0.01; t < 10000.01; t += .01) //change the t range
   /*Modify the coefficiences according to questions*/
   float b = 0; /*b = 0, 1, -1*/
   float c = 1.0; /*c = 1, -1*/
   float x1 = -1.0;
   float x2 = 1.0;
   float y0 = -1.0;
   float z0 = 0.0;
   float fprime = 1.0;
   x = x1;
   float x_hat = x2;
   y = y0 + t*b;
   float y_hat = y0 + t*b;
   z = z0 + t*c;
   float z_hat = z0 + t*c;
   /* Modify these according to the projection */
   xprime = x;
   yprime = y;
   float xprime_hat = x_hat;
   float yprime_hat = y_hat;
   plot_logical_point(xprime, yprime, image);
   plot_logical_point(xprime_hat, yprime_hat, image);
}
```

b = 1

Image:

b = -1

