

LOW VOLTAGE DUAL POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2096 is a dual power amplifier, which operates with 1.0V minimum supply voltage. The NJM2096 is suitable to small radio and head-phone stereo. The NJM2096 is resemble to the NJM2076, but two amplifiers are the same.

■ FEATURES

Low Operating Voltage

(1.0V min)

Minimum external components

• Low Operating Current

• Package Outline

DIP8, DMP8

Bipolar Technology

■ APPLICATION

• Head-phone Stereo, Portable Radio, Portable TV, Hand-carry Tele-communication Set.

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM 2096 D

NJM 2096 M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺	4.5	V	
Power Dissipation	P _D	(DIP8) 500 (DMP8) 300	mW	
Maximum Input Signal	V _{IN}	200	mVrms	
Operating Temperature Range	Topr	-20~+75	r	
Storage Temperature Range	Tstg	-40~+125	υ	

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V⁺=1.5V. R_L=16Ω)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{cc}	V _{IN} =Open		4.7	7	mA
Maximum Output Power	Pol	THD=10% D	15	20	_	mW
		M	15	17.5	l —	mW
Max. Output Power at Low Supply Voltage	Po	THD= 10% , V ⁺ = 1.0V		3	_	mW
Voltage Gain	Av	$V_{IN}=10 \text{mVrms}$	26.5	28	29.5	dB
Total Harmonic Distortion	THD	$P_O = 1 \text{mW}$	_	0.4	0.8	%
Ripple Rejection Ratio	RR	$Rg=00$, $V_r = 30 \text{mVrms}$. $F_r = 1 \text{kHz}$	25	35		dB
Input Resistance	R _{IN}		25	33	43	kΩ
Output Noise Voltage	V_{NO}	Rg=0Ω, A Curve	—	40	150	μV
Output Pin Voltage	Vo (DC)		0.62	0.70	0.77	v
Voltage Difference between Two Output Pins	$\Delta V_{O}(DC)$		_		50	mV

■ TEST CIRCUIT

TYPICAL APPLICATION

Stereo Head-Phone

■ NOTICE

(1) External PNP Transistor

Maximum output power becomes large with low saturation voltage transistor, and so select transistor of low saturation voltage. h_{FF} : 120

(2) External Frequency Compensation

Recommend tantalum capacitor with low tan δ (less than 0.25 at f=10kHz) and 2Ω resistor. Stable with large capacitor of less high frequency distortion and worse tan δ . For example: $1\mu F$. $\tan\delta \leq 0.6$

(3) Layout on PCB

Be careful to get maximum output power and low distortion set.

DIP/DMP: Signal ground has to be close to IC ground pin. Impedance of ground line must be low.