Série 12

Exercice 1. Dans un repère orthonormé, on donne $d: \frac{x-1}{3} = \frac{y+3}{7} = \frac{4-z}{5}$. Calculer la distance de d à chacun des axes de coordonnées (Ox), (Oy) et (Oz).

Exercice 2. Dans un repère orthonormé, on donne :

$$d: \begin{cases} x = -7 + 4t \\ y = -1 + t \\ z = 3 - t \end{cases}, t \in \mathbb{R} \text{ et } g: \begin{cases} x = 6 + 4t \\ y = 2 - 3t, t \in \mathbb{R}. \\ z = 10 + t \end{cases}$$

- a. Vérifier que d et g sont gauches.
- b. Calculer la distance δ entre d et g.
- c. Déterminer les équations paramétriques de la perpendiculaire commune à d et g, notée p, ainsi que les coordonnées de ses points d'intersection avec d et g.

Exercice 3. Dans un repère orthonormé, on donne $d: x+5=\frac{y+7}{2}=13-z$, A(-1,2,1), B(1,3,0) et C(3,5,2). Déterminer les coordonnées d'un point D sur d sachant que le tétraèdre ABCD est de volume 2.

Exercice 4. Dans un repère orthonormé, on donne A(2,2,-1), B(1,0,1) et C(1,-1,2) ainsi que :

$$d: \begin{cases} x = t \\ y = -1 + 2t, t \in \mathbb{R} & \text{et} \quad g: x - 2 = y + 2 = \frac{z}{2}. \\ z = -2 + t \end{cases}$$

- a. Vérifier que A, B, et C définissent un plan dont on donnera une équation cartésienne.
- b. Existe-t-il une droite p intersectant à la fois d et g, et dont la projection orthogonale sur (ABC) est la droite (AB)? Si oui, déterminer des équations paramétriques de p.

Exercice 5. Dans l'espace, on donne deux points A et B, ainsi que trois vecteurs \vec{u} , \vec{v} , \vec{w} linéairement indépendants. Montrer que la droite $d(A, \vec{u})$ intersecte le plan $\pi(B, \vec{v}, \vec{w})$ en un unique point I qu'on localisera depuis le point A.

Exercice 6. Soit $\delta > 0$ fixé. Dans l'espace, on donne un plan π passant par A et de vecteur normal \vec{n} , ainsi qu'une droite d non perpendiculaire à π dirigée par un vecteur \vec{u} . Localiser vectoriellement depuis le point A un point B sur π , sachant que (AB) est orthogonale à d et que B est à distance δ de A.

Exercice 7. Dans l'espace, on donne deux points A et B ainsi que deux vecteurs non colinéaires \vec{u} et \vec{v} . On note π le plan passant par A et dirigé par \vec{u} et \vec{v} . Localiser vectoriellement depuis le point A le symétrique orthogonal de B par rapport à π .

Exercice 8. Dans un repère orthonormé, on donne A(3,0,6) et :

$$d: \begin{cases} x = 2t \\ y = -1 + 3t, t \in \mathbb{R}. \\ z = 29 - 6t \end{cases}$$

Existe-t-il une droite g passant par A, orthogonale à d et à distance $\delta = 7$ de d? Si oui, donner des équations paramétriques d'une telle droite.

Éléments de réponse :

Ex. 1:
$$(Ox)$$
: $\frac{13}{\sqrt{74}}$, (Oy) : $\sqrt{\frac{17}{2}}$, (Oz) : $\frac{16}{\sqrt{58}}$.

Ex. 1:
$$(Ox)$$
: $\frac{13}{\sqrt{74}}$, (Oy) : $\sqrt{\frac{17}{2}}$, (Oz) : $\frac{16}{\sqrt{58}}$.

Ex. 2: b. $\delta = 9$, c. p : $\begin{cases} x = 1 + t \\ y = 1 + 4t \\ z = 1 + 8t \end{cases}$, $t \in \mathbb{R}$, $I(1, 1, 1)$, $J(2, 5, 9)$.

Ex. 3: $(0, 3, 8)$ et $(\frac{12}{5}, \frac{39}{5}, \frac{28}{5})$.

Ex. 4: p : $\begin{cases} x = 2 + t \\ y = 3 + 6t \\ z = 2t \end{cases}$, $t \in \mathbb{R}$

Ex. 5: $\overrightarrow{AI} = \frac{\overrightarrow{AB}, \overrightarrow{v}, \overrightarrow{w}}{|\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}|} \overrightarrow{u}$.

Ex. 6: $\overrightarrow{AB} = \pm \frac{\delta}{|\overrightarrow{n} \times \overrightarrow{w}|} \overrightarrow{n} \times \overrightarrow{u}$.

Ex. 3:
$$(0,3,8)$$
 et $(\frac{12}{5},\frac{39}{5},\frac{28}{5})$.

Ex. 4:
$$p: \begin{cases} x = 2 + t \\ y = 3 + 6t \\ z = 2t \end{cases}, t \in \mathbb{R}$$

Ex. 5:
$$\overrightarrow{AI} = \frac{[\overrightarrow{AB}, \overrightarrow{v}, \overrightarrow{w}]}{[\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}]} \overrightarrow{u}$$

Ex. 6:
$$\overrightarrow{AB} = \pm \frac{\delta}{\|\overrightarrow{n} \times \overrightarrow{u}\|} \overrightarrow{n} \times \overrightarrow{u}$$
.

Ex. 7:
$$\overrightarrow{AB'} = \overrightarrow{AB} - 2 \frac{[\overrightarrow{AB}, \vec{u}, \vec{v}]}{\|\vec{u} \times \vec{v}\|^2} \vec{u} \times \vec{v}$$
.

$$\mathbf{Ex. 7: } \overrightarrow{AB'} = \overrightarrow{AB} - 2 \frac{\overrightarrow{AB}, \overrightarrow{u}, \overrightarrow{v}}{\|\overrightarrow{u} \times \overrightarrow{v}\|^2} \overrightarrow{u} \times \overrightarrow{v}.$$

$$\mathbf{Ex. 8: } \begin{cases} x = 3 + 6t \\ y = 2t \\ z = 6 + 3t \end{cases}, \ t \in \mathbb{R} \text{ et } \begin{cases} x = 3 + 3t \\ y = -6t \\ z = 6 - 2t \end{cases}, \ t \in \mathbb{R}.$$