Direct Proof and Counterexample

CS 231 Dianna Xu

Vacuous proofs

• Consider an implication: $p \rightarrow q$

- If it can be shown that p is false, then the implication is always true
 - By definition of an implication/conditional

 Note that you are showing that the antecedent is false

Vacuous proof example

- Consider the statement:
 - All criminology majors in CS 231 are female
 - Rephrased: If you are a criminology major and you are in CS231, then you are female
- Since there are no criminology majors in this class, the antecedent is false, and the implication is true

Trivial proofs

• Consider an implication: $p \rightarrow q$

- If it can be shown that q is true, then the implication is always true
 - By definition of an implication

Note that you are showing that the consequent is true

Trivial proof example

- Consider the statement:
 - If you are in CS231 then you are human (domain is all people)

Since all people are human, the implication is true regardless

Direct proofs

- Consider an implication: $p \rightarrow q$
 - What if p is true, and q may or may not be true?
 - Show that if p is true, then q is true

 To perform a direct proof, assume that p is true, and show that q must be true

Definitions of Even and Odd

- *n* is even: $\exists k \in \mathbb{Z}$ such that n = 2k
- *n* is odd: $\exists k \in \mathbb{Z}$ such that n = 2k+1

Direct proof example

- Show that the square of an even number is an even number
 - Rephrased: *n* is even $\rightarrow n^2$ is even
- Proof:
 - -n is even: n = 2k, for some $k \in \mathbb{Z}$ (definition of even)
 - $-n^2 = (2k)^2 = 4k^2 = 2(2k^2)$
 - $-2k^2 \in \mathbb{Z}$
 - As n^2 is 2 times an integer, n^2 is even ■

Proving Existential Statements

- To prove a statement of the form
 - $-\exists x \in D, Q(x)$
- Constructive: find such an x
- Non-constructive:
 - show that the existence of an x that makes Q(x) true is guaranteed by an axiom or a previously proved theorem - no need to find one
 - assume that there is no such x and show a contradiction

Constructive Existence Proof Example

 Show that a square exists that is the sum of two other squares

$$-$$
 Proof:3² + 4² = 5² ■

 Show that a cube exists that is the sum of three other cubes

- Proof:
$$3^3 + 4^3 + 5^3 = 6^3$$

Non-constructive Existence Proof

- Prove that either 2x10⁵⁰⁰+15 or 2x10⁵⁰⁰+16 is not a perfect square
 - A perfect square is the square of an integer
- Proof:
 - The only two perfect squares that differ by 1 are 0 and 1
 - Thus, any other numbers that differ by 1 cannot both be perfect squares
 - Thus, a non-perfect square must exist in any set that contains two numbers that differ by 1
 - Note that we didn't need to specify which one!

Disproving Universal Statements

- Disproving a statement of the form:
 - $\forall x \in D, P(x) \rightarrow Q(x)$
- Equivalent to showing the negation is true:
 - $-\exists x \in D, P(x) \text{ and } \sim Q(x)$
 - Finding such an x is known as finding a counterexample

Disproof by Counterexamples

- Every positive integer is the square of another integer
 - √2 is not an integer \blacksquare
- If the sum of two integers is even, then one of them is even
 - -1+3=4

A note on counterexamples

- You can DISPROVE something by showing a single counter example
 - Find an example to show that something is not true
- You cannot PROVE something by example
- Example: prove or disprove that all numbers are even
 - Disproof by counterexample: 1 is not even
 - (Invalid) proof by example: 2 is even

Proving Universal Statements

Exhaustion: list all possibilities

Proof by Cases

 Show a statement is true by showing all possible cases are true

• Thus, you are showing a statement of the form: $(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q$

is true by showing that:

$$[(p_1 \lor p_2 \lor ... \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land ... \land (p_n \to q)]$$

Proof by cases example

- Prove that $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$
 - Note that $b \neq 0$
- Cases:
 - Case 1: $a \ge 0$ and b > 0
 - Then |a| = a, |b| = b, and
 - Case 2: $a \ge 0$ and b < 0
 - Then |a| = a, |b| = -b, and
 - Case 3: a < 0 and b > 0
 - Then |a| = -a, |b| = b, and
 - Case 4: a < 0 and b < 0
 - Then |a| = -a, |b| = -b, and

$$\left| \frac{a}{b} \right| = \frac{a}{b} = \frac{|a|}{|b|}$$

$$\left| \frac{a}{b} \right| = -\frac{a}{b} = \frac{a}{-b} = \frac{|a|}{|b|}$$

$$\left| \frac{a}{b} \right| = -\frac{a}{b} = \frac{-a}{b} = \frac{|a|}{|b|}$$

$$\left| \frac{a}{b} \right| = \frac{a}{b} = \frac{-a}{-b} = \frac{|a|}{|b|}$$

Control the Cases

- Make sure you get ALL the cases
 - The biggest mistake is to leave out some of the cases
- Don't list extra cases
 - We could have 9 cases in the last example
 - Positive
 - Negative
 - Zero
 - Those additional cases wouldn't have added anything to the proof

Proving Universal Statements

- Generalizing from the generic particular
 - show that every element of a set satisfies a certain property and that x is an element of such a set

Example

- If the sum of any two integers is even, so is their difference
 - Let m and n be particular but arbitrarily chosen integers such that m+n is even
 - $-m+n=2k, k \in \mathcal{Z}$
 - -m-n=m+n-2n=2k-2n=2(k-n)
 - $-k-n \in \mathbb{Z}$
 - -m-n is even

Mistakes in proofs

- Modus Badus
 - Fallacy of denying the hypothesis (inverse error)
 - Fallacy of affirming the conclusion (converse error)
- Proving a universal by example
 - You can only prove an existential by example!
- Disproving an existential by example
 - You can only disprove a universal by example!

Other Pointers

- Directions for writing Proofs
- Common mistakes
- How to get a proof started