BIOINFORMATICS PRACTICAL-1

Vineet Patel BS19B033

- **1.** Installed Emboss in Linux using Command line: sudo apt-get install jemboss.
- **2.** Use REVSEQ to find complementary strand

3. Screenshot of Python Code for complementary strand

```
In [1]: s =str(input("Enter Sequence:"))
s =list(s)
for i in range(len(s)):
    if s[i] == 'A':
        s[i] ="T"
    elif s[i] == "T":
        s[i] = "A"
    elif s[i] == "C":
        s[i] = "G"
    else:
        s[i] = "C"
print("Complimentary Sequence:","".join(s))
Enter Sequence:CTCGGATTTGTAAAGATCATGATCTCATACATAGTACCTAGCCATTG
Complimentary Sequence: GAGCCTAAACATTTCTAGTACTAGAGTATGTATCATGGATCGGTAAC
```

4. Protein Sequence

(i) protein sequence using Emboss

(ii) DNA sequence for given protein sequence

5. Code to find Protein sequence for given DNA Sequence

6. Code for finding the pattern. Position of match with **indexing starting from 1**

Similarly, "ACTA "was found once in given sequence at index 89.

7. Features of Emboss:

• **Dan**: used for calculating the melting temperature of a nucleic acid.

- **remap**: used to display the binding sites in each nucleotide sequence.
- **density**: used to draw density plot of a nucleic acid.
- **8.** Code for calculation of Average Base Stacking Energy:

- 9.
 - (i) For sequence ATATATATA:

Your input seq is:

Physicochemical Properties:

Properties	Scaleunit	Average value
Stacking energy	kcal/mol	1.8
Enthalpy	kcal/mol	6.04444
Entropy	cal/mol/K	16,6222
Flexibility_shift	kJ mol^-1 A^-2	2.53
Flexibility_slide	kJ mol^-1 A^-2	9.66333
Free energy	kcal/mol	0.65556
Melting Temperature	degree	48.0022
Mobility to bend towards major groove	mu	1.09778
Mobility to bend towards minor groove	mu	1.03333
Probability contacting nucleosome core	%	6.75556
Rise stiffness	kcal/mol angstroem	7.80778
Roll stiffness	kcal/mol degree	19.3333
Shift stiffness	kcal/mol angstroem	0.892222
Slide stiffness	kcal/mol angstroem	2.66111
Tilt stiffness	kcal/mol degree	28
Twist stiffness	kcal/mol degree	25.8889

Average Melting Temperature for ATATATAT: 48.0022 degree

(ii) For sequence GCGCGCGCGC:

Your input seq is:				
chemical Properties:				
Stacking energy	kcal/mol	1.75556		
Enthalpy	kcal/mol	11.0778		
Entropy	cal/mol/K	27.5556		
Flexibility_shift	kJ mol^-1 A^-2	6.49111		
Flexibility_slide	kJ mol^-1 A^-2	4.19778		
Free energy	kcal/mol	1.85889		
Melting Temperature	degree	107.867		
Mobility to bend towards major groove	mu	0.997778		
Mobility to bend towards minor groove	mu	1.20556		
Probability contacting nucleosome care	%	3.37778		
Rise stiffness	kcal/mol angstroem	8.06333		
Roll stiffness	kcal/mol degree	21.5556		
Shift stiffness	kcal/mol angstroem	1.14667		
Slide stiffness	kcal/mol angstroem	2.33889		
Tilt stiffness	kcal/mol degree	31.5556		
Twist stiffness	kcal/mol degree	20.1111		

Average Melting Temperature for GCGCGCGCC: 107.867 degrees

GC pairs have a higher stacking energy than AT pairs because they make three hydrogen bonds in water whereas AT only forms two hydrogen bonds that's why GC pair have high melting point.

10. Sequence: AAATGGCCCTA

		Your input seq is:
		AAATGGCCCTAA
cleotic	ide Content:	
Г		Nucleotide content in %
	AT_content	58.33333
	Adenine_content	41.666667
	Cytosine_content	25.000000
	GC_content GC	41.666667
	Guanine_content	16.666667
	Keto_GT_content	33,33333
	Purine_AG_content	58.33333
	Thymine_content	10.666697

AT Content: 58.333333 % GC Content: 41.666667 %