- 1. Demuestra por inducción que $2^n > n^2 \quad \forall n \in \mathbb{N}, n \ge 5.$
- 2. Demuestra por inducción que si $x \in \mathbb{R}, x > -1 \Rightarrow (1+x)^n \ge 1 + nx, \forall n \in \mathbb{N}.$
- 3. El *principio de cajas* dice que si queremos acomodar n+1 pelotas en n cajas, habrá al menos una caja con más de una pelota. Demuestra el principio de cajas por inducción sobre n.
- 4. Se define $S \subseteq \mathbb{N} \times \mathbb{N}$ como sigue: $(0,0) \in S$. Si $(m,n) \in S$, entonces $(m+2,n+3) \in S$. Demuestra por inducción sobre $n \ge 0$ que para todo $(m,n) \in S$, m+n es múltiplo de 5.
- 5. Demuestra por inducción que que para todos los valores $n, m \in \mathbb{N} \setminus \{0\}$, en un tablero de ajedrez de $2m \times n$ hay la misma cantidad de casillas blancas y negras.
- 6. Demuestra por inducción que si $n \ge 4$ entonces $2^n < n!$
- 7. Demuestra por inducción que:
 - (a) Todo número natural es par o impar (observa que para poder hacer esto no basta con probar sólo un caso base).
 - (b) n(n+1)(n+2) es múltiplo de 6 para cualquier $n \ge 1$. (Hint: usa el inciso anterior y suma 3(n+1)(n+2) a algo)
- 8. Demuestra por inducción que cualquier producto con costo mayor a 7 pesos se puede pagar con monedas de 5 y de 3 pesos (sí, aunque no existan). (Hint: aplica la hipóteis de inducción a n-2 (o n-3 según el caso), pero ojo, para poder hacer esto no basta con probar sólo un caso base).
- 9. Demuestra por inducción que $n \ge 1$ líneas distintas en el plano que pasan por el origen dividen el plano en 2n regiones.
- 10. Demuestra que la suma de los ángulos internos de un polígono regular de n lados es $(n-2)180^{\circ}$

Determinar si las siguientes son realaciones de equivalencia y, si lo son, describir las clases de equivalencia.

- 1. La relación R definida sobre \mathbb{Z}^2 , es decir, $R \subseteq \mathbb{Z} \times \mathbb{Z}$, como (a,b)R(c,d) si y sólo si ad = bc.
- 2. La relación R definida sobre \mathbb{Z}^2 , es decir, $R \subseteq \mathbb{Z} \times \mathbb{Z}$, como (a,b)R(c,d) si y sólo si a=c.
- 3. Sea $A = \{1, 2, 3, 4, 5\}$, definamos sobre $A \times A$ la relación siguiente: (a, b)R(c, d) si ad = bc.
- 4. La relación definida sobre \mathbb{Z} como $x \sim y$ si y sólo si x + y es par.
- 5. La relación definida sobre \mathbb{Z} como $x \sim y$ si y sólo si existe $k \in \mathbb{Z}$ tal que x = y + 5k.
- 6. La relación definida sobre \mathbb{Z} como $x \sim y$ si y sólo si 7 divide a x y.
- 7. La relación S definida sobre $A = [-1, 1] \subseteq \mathbb{R}$ como $(x, y) \in S$ si y sólo si $x^2 = y^2$.
- 8. La relación R definida sobre $B = \{1, 2, 3, 4\}$ como $T = \{(x, y) \in A^2 : x = y \lor x + y = 3\}$.
- 9. Sea $S = \{1, 2, 3, 4\}$, la relación R definida sobre S^2 donde (a, b)R(c, d) si y sólo si a + d = b + c.