

BEST MAN ADIE CO-

	1. An optical spectrometer component comprising:
ンり	BEST AVAILABLE Collimating optics disposed between the fiber optic input and
4	linear variable filter having
5	an etalon structure with
6	a tapered spacer region being tapered along a taper direction,
7	the linear variable tilter being affixed to
8	a linear optical detector array disposed along the taper direction.
1	The optical spectrometer of claim 1 wherein the collimating optics
2	comprise a magnifying lens and a collimating lens.
1	3. The optical spectrometer of claim 1 wherein the linear variable filter
2	has
3	a first reflector comprising a first plurality of high-index layers and a first
3 2)4	plurality of SiO ₂ layers, the first plurality of high-index layers alternating with the first
A.	plurality of SiO ₂ layers; and
N. T.	a second reflector comprising a second plurality of high-index layers and a
7	second plurality of SiO ₂ layers, the second plurality of high-index layers alternating with
8	the second plurality of SiO ₂ layers wherein the tapered spacer region comprises SiO ₂ .
1	4. The optical spectrometer of claim 3 wherein at least some layers of
2	the first plurality of high-index layers comprise Ta ₂ O ₅ .
1	5. The optical spectrometer of claim 3 wherein at least some layers of
2	the first plurality of high-index layers comprise Nb ₂ O ₅ .
1	6. The optical spectrometer of claim 1 wherein the linear variable filter
2	has a thermal stability of less than 50 parts per million per degree Centigrade of ambient
3	temperature change.
1	7. The optical spectrometer of claim 1 wherein the linear variable filter
2	has a thermal stability of less than 25 parts per million per degree Centigrade of ambient
3	temperature change.

~3,
ブぬ
γ',
252
q
Ū
Ü
į.
[]
Ō
řů.
i T
(2
T.
U
14
m
ļ.

	1	The optical spectrometer of claim i wherein the inical variable filter
	2	has a thermal stability of less than to parts per million per degree Centigrade of ambient
	3	temperature change.
	1	9. The optical spectrometer of claim 1 wherein the linear variable filter
	2	is a bandpass filter.
	1	10. The optical spectrometer of claim 1 wherein the linear variable filter
	2	is a band-edge filter.
	1	11. An optical spectrometer component comprising:
	2 2	a fiber optic input;
	3	a magnifying lens disposed to expand an optical signal from the fiber optic
	4	input to
a	5	a collimating lens, the collimating lens disposed to provide a light beam to
o	6	a linear variable bandbass filter having
ļ.L	7	an etalon structure with
<u>r</u>	8	a tapered spacer region being tapered along a taper direction
to Nu	9	the linear variable filter having a thermal stability of less than or equal to 50 parts per
ţO	10	million per degree Centigrade of ambient temperature change; and
## ### ###############################	11	a linear optical detector array disposed along the taper direction.
₽₹	1	12. The optical spectrometer of claim 11 wherein the optical detector
n	2	array has a length along the taper direction of less than or equal to 12 mm.
-	1	13. The optical spectrometer of claim 11 wherein the linear variable
	2	bandpass filter has a 50% bandwidth of less than or equal to about 0.6 nm at a center
	3	wavelength, the center wavelength being between about 1530-1600 nm.
	1	14. An optical spectrometer component comprising:
	2	a fiber optic input;
	3	a magnifying lens disposed to expand an optical signal from the fiber optic
	4	input to
	5	a collimating lens, the collimating lens disposed to provide a light beam to
	6	a linear variable bandpass filter having
	7	an etalon structure with

	8	a tapered spacer region being tapered along a taper direction,
	9	the linear variable filter having at thermal stability of less than or equal to 50 parts per
	10	million per degree Centigrade of ambient temperature change and a 50% bandwidth of less
	11	than or equal to about 0.6 nm at a center wavelength, the center wavelength being between
	12	about 1530-1600 nm; and
	13	a linear optical detector array disposed along the taper direction, the linear
	14	optical detector array having a length of less than or equal to 12 mm along the taper
	150	direction.
	J.K.	15. The optical spectrometer component of claim 14 wherein the linear
	2	optical detector array has at least 256 pixels.
	1	16. The optical spectrometer component of claim 14 wherein the linear
	2	optical detector array has at least about 512 pixels so as to provide a nominal resolution of
	3	the optical spectrometer component of about 3 Angstroms or less.
	1	17. A method of measuring an optical signal with an optical
	2	spectrometer, the method comprising:
	3	calibrating an optical spectrometer component having a linear variable filte
	4	with an etalon structure including at least one tapered spacer region and a detector array
Ü	5	having at least n detectors by
	6.	providing at least $3n$ calibration signals at $3n$ calibration
	7	wavelengths to the optical spectrometer component;
	8	measuring an output from each of the n detectors in response to each of the
u C	9	calibration signals with an analyzer;
ļ 4	10	storing the output from each of the n detectors at each of the calibration
	11	signals to create a calibration array;
	12	providing an optical input signal to the optical spectrometer component;
	13	measuring a second output from each of the <i>n</i> detectors; and
	14	reconstructing the optical input signal using the calibration array in an
	15	inverse transfer process to produce a reconstructed input signal.
	1	18. The method of claim 17 wherein the optical spectrometer
	2	component has a nominal resolution of X nm and the reconstructed input signal has an
	3	equivalent resolution of better than X/5 nm.

	•
1	19. The method of claim 17 wherein the optical spectrometer
2	component has a nominal resolution of less than or equal to 8 Angstroms, and the
3	calibration wavelengths are at intervals of about 0.5 Angstroms or less.
1	20. The method of claim 19 wherein the reconstructed output signal has
2	an effective resolution of less than about 1.6 Angstroms.
1	21. The method of claim 17 wherein the optical spectrometer
2	component comprises a detector array having at least 512 pixels and has a nominal
3	resolution of less than or equal to 3 Angstroms over an operating band of between about
4	1530-1600 nm.
1	22. A method of measuring an optical signal with an optical
2	spectrometer, the method comprising:
3	calibrating an optical spectrometer component having a linear variable filter
4	with an etalon structure including at least one tapered spacer region and a detector array
5	having at least n detectors to provide a nominal resolution of less than or equal to 8
6	Angstroms across an operating band of the optical spectrometer component, the operating
7	band lying within about 1530-1600 nm, by
8	providing a plurality of calibration signals to the optical
9	spectrometer component throughout the operating band at intervals of about 0.5
10	Angstroms;
11	measuring an output from each of the n detectors in response to each of the
12	calibration signals with an analyzer;
13	storing the output from each of the n detectors at each of the calibration
14	signals to create a calibration array;
15	providing an optical input signal to the optical spectrometer component;
16	measuring a second output from each of the n detectors; and
17	reconstructing the optical input signal using the calibration array in an
18	inverse transfer process to produce a reconstructed input signal having an effective
19	resolution of less than 1.6 Angstroms.
1	23. A method of monitoring an optical network, the method
2	comprising:

5

15

less;

3		calibrating an optical spectrometer having an optical detector with n
4	detectors and	a nominal resolution of X nm at at least $3n$ calibration wavelengths;
5		providing a plurality of optical signals on an optical transmission line;
6		coupling at least a portion of at least some of the plurality of optical signals
7	to the optical	spectrometer;
8		measuring the at least some of the plurality of optical signals with the
9	optical specti	ometer;
10		reconstructing the at least some of the plurality of optical signals using a
11	transfer func	ion to provide reconstructed signals having an effective resolution of at least
12	<i>X</i> /5 nm.	
1		24. The method of claim 23 wherein the monitoring of the optical
2	network is a	continuous monitoring of the optical network.
1	10	The method of claim 23 wherein the plurality of optical signals
2	carried on the	optical network are wavelength-division-multiplexed optical signals having
3	a nominal ch	annel spacing of less than or equal to about 200 GHz.

an output optical fiber;

V26.

an optical tap disposed between the input optical fiber and the output optical fiber and configured to couple a portion of at least some of the plurality of wavelength-division-multiplexed optical signals to

A optical transmission network comprising:

division-multiplexed optical signals having nominal channel spacing of about 200 GHz or

an input optical fiber configured to carry a plurality of wavelength-

an optical spectrometer component having

a linear variable filter including an etalon structure with at least one tapered spacer region being tapered along a taper direction, and

a detector array affixed to the linear variable filter; and an analyzer coupled to the optical spectrometer component so as to monitor each of the some of the plurality of optical signals.

add az