Blaze Foundations for Array Computing in Python

Mark Wiebe, Matthew Rocklin Continuum Analytics

introduction

Motivation

The NumPy NDArray and Pandas DataFrame are foundational data structures.

They support the ecosystem

Motivation

But they are restricted to memory.

This is ok for 95% of cases, what about the other 5%?

Computational Projects

- Many excellent streaming, out-of-core, or distributed alternatives exist
- NumPy-like
 - DistArray
 - SciDB
 - Elemental
 - PETSc, Trillinos
 - Biggus
 - ...
- Each approach is valid in a particular situation

Computational Projects

- Many excellent streaming, out-of-core, and distributed alternatives exist
- Pandas-like
 - PyTables
 - SQLAlchemy (Postgres, SQLite, MySQL, ...)
 - The HDFS world
 - Hadoop (Pig, Hive, ...)
 - Spark
 - Impala
- Each approach is valid in a particular situation

Data Projects

- Analogous collection exists in data storage techniques
 - CSV Accessible
 - JSON Pervasive, human readable
 - HDF5 Efficient access
 - BLZ Efficient columnar access
 - Parquet Efficient columnar access (HDFS)
 - PyTables HDF5 HDF5 + indices
 - HDFS Big!
 - SQL SQL!
 - ...
- Each approach is valid in a particular situation

Spinning up a new technology is expensive

Keeping up with the changing landscape frustrates data scientists

Foundations built to address these challenges must be adaptable

What is Blaze?

Blaze abstracts array and tabular computation

- Blaze expressions abstract compute systems
- Blaze data descriptors abstract data storage
- Datashape abstracts data-type systems

These abstractions enable interactions

abstract computation

Abstract Computation

Symbolic table expressions

```
>>> accounts = TableSymbol('accounts', '{id: int, name: string, balance: int}')
>>> deadbeats = accounts[accounts['balance'] < 0]['name']
>>> deadbeats
accounts[accounts['balance'] < 0]['name']</pre>
```

Computations on Python data types

Abstract Computation

• Symbolic table expressions

```
>>> accounts = TableSymbol('accounts', '{id: int, name: string, balance: int}')
>>> deadbeats = accounts[accounts['balance'] < 0]['name']
>>> deadbeats
accounts[accounts['balance'] < 0]['name']</pre>
```

Computations on Pandas DataFrames

Notebook Demo

uniform data

Data Projects

- Analogous collection exists in data storage techniques
 - CSV Accessible
 - JSON Pervasive, human readable
 - HDF5 Efficient access
 - BLZ Efficient columnar access
 - Parquet Efficient columnar access (HDFS)
 - PyTables HDF5 HDF5 + indices
 - HDFS Big!
 - SQL SQL!
 - ...
- Each approach is valid in a particular situation

Spinning up a new technology is expensive

Keeping up with the changing landscape frustrates data scientists

CSV

```
$ cat accounts.csv
id, name, balance
1, Alice, 100
2, Bob, -200
3, Charlie, 300
4, Denis, 400
5, Edith, -500
```

```
>>> csv = CSV('accounts.csv')
>>> csv.columns
['id', 'name', 'balance']
>>> csv.py[:3, ['name', 'balance']]
[('Alice', 100), ('Bob', -200), ('Charlie', 300)]
```


HDF5

```
$ h5dump -H accounts.hdf5
HDF5 "accounts.hdf5" {
GROUP "/" {
   DATASET "accounts" {
      DATATYPE H5T_COMPOUND {
          H5T_STD_I64LE "id";
          H5T_STRING {
             STRSIZE H5T_VARIABLE:
             STRPAD H5T_STR_NULLTERM;
>>> hdf5 = HDF5('accounts.hdf5', '/accounts')
>>> hdf5.columns
['id', 'name', 'balance']
>>> hdf5.py[:3, ['name', 'balance']]
[('Alice', 100), ('Bob', -200), ('Charlie', 300)]
```


SQL

```
>>> sql = SQL('postgresql://user:pass@hostname/', 'accounts')
>>> sql.columns
['id', 'name', 'balance']
>>> sql.py[:3, ['name', 'balance']]
[('Alice', 100), ('Bob', -200), ('Charlie', 300)]
```


Data API

- Data Descriptors support native Python access
 - Iteration: iter(csv)
 - Extension: csv.extend(...)
 - Item access: csv.py[:, ['name', 'balance']]
- Data Descriptors support chunked access
 - Iteration: csv.chunks()
 - Extension: csv.extend_chunks(...)
 - Item access: csv.dynd[:, ['name', 'balance']]

Data API

- Data Descriptors support native Python access
 - Iteration: iter(sql)
 - Extension: sql.extend(...)
 - Item access: sql.py[:, ['name', 'balance']]
- Data Descriptors support chunked access
 - Iteration: sql.chunks()
 - Extension: sql.extend_chunks(...)
 - Item access: sql.dynd[:, ['name', 'balance']]

Uniformity Facilitates User-Data Interaction

```
>>> csv.py[:3, ['name', 'balance']]
[('Alice', 100), ('Bob', -200), ('Charlie', 300)]
>>> json.py[:3, ['name', 'balance']]
[('Alice', 100), ('Bob', -200), ('Charlie', 300)]
>>> hdf5.py[:3, ['name', 'balance']]
[('Alice', 100), ('Bob', -200), ('Charlie', 300)]
>>> sql.py[:3, ['name', 'balance']]
[('Alice', 100), ('Bob', -200), ('Charlie', 300)]
```


Uniformity Facilitates Data-Data Interaction

CSV to SQL

>>> sql.extend(iter(csv))

• SQL to HDF5

>>> hdf5.extend_chunks(sql.chunks())

glue

Boundary Conditions

- There are boundaries between different compute and data backends
 - Naming conventions differ
 - Storage differs
- Need glue to help connect them
 - Uniform way to write the types
 - Efficient intermediate storage and transformation

Datashape

- Datashape provides an array type syntax
- Datashape can map to many backend type systems
 - Python Dynamic Types
 - NumPy DTypes
 - SQL Table Types
 - HDF5

Datashapes

Scalars

- bool
- int
- real
- complex

Arrays

```
- 100 * 50 * real
```

Tables

```
- var * {name: string, height: real, birthday: date}
```


LibDyND

- Provides data glue
 - Uses datashape type system
 - Understands many standard binary/text formats
- Array-oriented storage and compute
 - Similar to NumPy, but more general

Notebook Demo

Conclusion

- Abstractions facilitate interaction
- Blaze connects data scientists to a broader ecosystem
- Try it and get involved

\$ conda install -c mrocklin -c mwiebe blaze

blaze-dev@continuum.io

