中国科学院大学 工程管理与信息技术学院

2017 数据库技术课程计划及安排 (MSE)

1 教学目的

- (1) 学习数据库的基本理论及技术
- (2) 通过本课程的学习,目标是使学生能够:
 - 了解数据库技术在软件系统开发中的地位和作用。
 - 掌握相关的数据模型及数据库的相关技术(包括 DBMS 的事务管理、 查询处理及优化、并发控制等),并能够针对具体应用需求,设计数 据库系统。
 - 理解分布式数据库及并行数据库的相关基础理论和常用技术。
 - 理解并掌握数据库系统性能优化技术。
 - 了解特种数据库,并能够根据应用场景进行应用分析,拓展专业视野。

2 考试

- (1) 平时作业: 占30%
- (2) 期末考试: 占 70% (开卷)

3 学习方法

- (1) PowerPoint 内容多,信息量较大,希望作笔记,PPT 在课程网站上共享, 因此可重点记录对个人有启发的内容。
- (2) 条件允许最好能提前预习, 若工作时间紧, 课堂上要注意听讲。
- (3) 部分章节自学(较简单或较不重要的内容)。
- (4) 学生报告是研究生课程的特色,也是研究生教学的惯用方法,若时间允许适当增加。
- (5) 实践性内容(实验)在课上讲解课下完成。

4 学习材料

综合使用国内外最新教材

(1) 主教材:

《数据库系统概念》(Database System Concept),by Silberschatz etc. 机械工业出版社(中、英文)第 5 版,

高教出版社 英文 第5版

教材的 Ver.3 共 20 章, Ver.4 共 24 章, Ver5 共 29 章

学生可用 V4 或 V5 教材,讲课中以 V5 为基准,注意第 5 版和第 4 版的章 节持续有些变动(如 ER 图放到关系模型之后)。

(2) 辅助教材:

1)《数据库设计教程》

By Thomas M.Connolly etc.

机械工业出版社

2) 《数据库性能调优——原理与技术》

By Dennis shasha etc.

电子工业出版社

3) 其他学术文献或技术文档

电子教案将定期上传到学校"数据库技术"课程网站

5 课程安排

授课时间: 2017年11月19日 — 2018年1月14日 授课内容及顺序安排如下表:

技床内各及顺序女排如下衣: 									
授课 顺序	主题	授课内容	学时 分配	难度 系数	时间				
1	Topic 1	1. 课程介绍 (1)课程介绍 (2)课程安排 (3)课程目标 2. 绪论: (1)基本概念 (2)数据库系统的发展 (3)数据库系统概述(包括数据视图、数据库语言、数据模型、数据库设计、存储及查询、事务管理、性能优化等)	4	**	第 11 周 11.19				
	Topic 2	关系模型 (1)关系数据库的结构 (2)关系代数运算(基本、附加、扩展)							
2	Topic 3	数据库分析与设计: (1)数据库的设计过程 (2) E-R 模型 (3) Armstrong 公理系统 (4)函数依赖 (5) NF 理论 SQL 语言基础(自学) 实验布置: SQL 实验(SQL Server 2005/2008)	4	***	第 12 周 11.26				

		数据存储与索引:	4	****	第13周
3	Topic 4	(1) 存储与文件结构			12.3
4		(2) 索引与散列			
		查询处理及优化:	4	****	第14周
	Topic 5	(1) 查询算法及查询策略			12.10
		(2) 查询优化			
5		实验布置: 查询代价分析及优化实验			
		事务处理:	4	****	第15周
	Topic 6	(1) 事务			12.17
		(2) 并发控制			
		(3) 恢复系统▲			
		实验:基于某一 DBMS 写几个事务调试			
6	Topic 7	数据库系统体系结构	4	* * *	第16周
		(1) 集中式与分布式			12.24
		(2) 并行系统			
	Topic 8	(3) 分布式系统			
		并行数据库		****	
		(1) I/O 并行技术			
		(2) 查询并行			
		(3) 操作并行			
		(4) 并行系统设计▲			
7	Topic 9	选作实验: 模拟一个并行数据库系统			
		分布式数据库(7、8合并,略讲)	4	***	第18周
		(1) 数据存储			1.7
		(2) 分布式事务			
		(3)提交协议▲			
		(4) 并发控制▲			
		(5) 查询处理			
8	Topic 10	选作实验: 模拟一个分布式数据库系统			
		性能优化技术	4	***	第19周
		(1)性能调整			1.14
		(2) 基准			
		(3) 标准化			
		考试说明			
	选作实验:针对某一个数据库系统进行调优				
9		期末考试			学院
)					安排

说明:

- (1) 由于内容不均衡,上述表格仅仅是大致的划分,具体授课需要根据实际情况进行调整, 但是,授课内容的顺序基本保持不变。
- (2) Topic1~Topic3 在本科阶段学过,但不深入,尤其是 ER 模型介绍的不全面,Topic4~Topic10 是本科阶段没有深入探讨的内容,是研究生课程。Topic4~Topic6深入到DBMS内部研究实现机制,讲述数据库原理,内容较难。Topic7~Topic10 用于扩展知识面,开眼界。

- (3) 难度系数表示难度大或内容量大,仅针对多数同学,学生可以作为提示参考;
- (4) ▲角标表示超级难内容或不要求完全掌握的内容, 开眼界之用, 仅作了解即可;
- (5) 课程内容根据进度及学生基础情况可能进行调整,在课堂上强调说明;
- (6) 关于实验:根据实际情况,如果选课的人数多,实验室安排不开(空间小),课下完成,如果选课人数适当,则可以到教学实验室进行实验教学。另外,同学可以根据个人情况针对各个主题进行实验,不必拘泥于课程安排的实验。实验环境确定为: SQL Server 2005/2008,操作系统 Windows XP/7 等。
- (7) 期末考试具体时间注意学院通知。

6. 课程网站及其资源使用

- (1) 课程网站注册请使用实名,否则可能会被清理;
- (2) 课程提供的资料属内部资源,仅供选课研究生使用,请勿传播;
- (3) 作业通过课程网站提交。

7. 教师联系方式

赵亚伟, Email: zhaoyw@ucas.ac.cn

8. 关于电子教案的说明:

- (1)电子教案以 Silberschatz A.等编著的《数据库系统概念》(第 5 版)为基本教材,结合了作者在科研和教学中的心得体会,教案中引用了原著作中大量材料、图表,这是教案中必须的引用,在此对原著作者致谢。电子教案中也引用了在国内外会议、课堂,网络上学习到的一些资料。有些资料是人们共创、共享和共传的知识财富,一时难以查出最先出处。一并在此向引用内容的作者们致谢。
- (2) 电子教案共计 1000 页左右,随时修改增减。撰写电子教案过程中参考了四川大学唐常杰教授、中国人民大学孟晓峰教授的电子教案及 Microsoft SQL Server、Oracle 10g 及 IBM DB2 等相关技术文档,在此对上述参考资料的作者一并表示谢意。

中国科学院大学 工程科学学院 赵亚伟 2017年11月