

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Point Cloud Occupancy Grid Mapping
Geometric Inverse Sensor Models

Bastian Lampe

Institute for Automotive Engineering

Approach

- Geometric Inverse Sensor Models use geometry to derive occupancy information from measurements
- For each **point cloud** received from sensor:
 - 1. Eliminate **ground points**

Images: pixabay, ika

Approach

- Geometric Inverse Sensor Models use geometry to derive occupancy information from measurements
- For each point cloud received from sensor:
 - 1. Eliminate ground points

Images: pixabay, ika

Approach

- For each **point cloud** received from sensor:
 - 1. Eliminate ground points
 - 2. For all **obstacle points** k in point cloud:
 - Estimate occupancy probabilities of cells using **inverse sensor model** $p(o_k|z_k)$

Images: ika

RWTH AACHEN UNIVERSITY

Approach

Binary Bayes Filter:

- For each **point cloud** received from sensor:
 - 1. Eliminate ground points
 - 2. For all **obstacle points** *k* in point cloud:
 - Estimate occupancy probabilities of cells using **inverse sensor model** $p(o_k|z_k)$
 - **Combine** occupancy probabilities with previous probabilities $p(o_{k-1})$ using binary Bayes filter

 $p_k(o) = \frac{p(o_k|z_k) \cdot p(o_{k-1})}{p(o_k|z_k) \cdot p(o_{k-1}) + p(\bar{o}_k|z_k) \cdot p(\bar{o}_{k-1})}$

ges: ika

RWTH AACHEN UNIVERSITY

Approach

Binary Bayes Filter:

- For each **point cloud** received from sensor:
 - 1. Eliminate **ground points**
 - 2. For all **obstacle points** *k* in point cloud:
 - Estimate occupancy probabilities of cells using **inverse sensor model** $p(o_k|z_k)$
 - Combine occupancy probabilities with previous probabilities $p(o_{k-1})$ using binary Bayes filter

 $p_k(o) = \frac{p(o_k|z_k) \cdot p(o_{k-1})}{p(o_k|z_k) \cdot p(o_{k-1}) + p(\bar{o}_k|z_k) \cdot p(\bar{o}_{k-1})}$

mages: ika

Approach

Binary Bayes Filter:

- For each **point cloud** received from sensor:
 - 1. Eliminate ground points
 - 2. For all **obstacle points** k in point cloud:
 - Estimate occupancy probabilities of cells using **inverse sensor model** $p(o_k|z_k)$
 - Combine occupancy probabilities with previous probabilities $p(o_{k-1})$ using binary Bayes filter
 - 3. Combine measurement grid map with previous grid map using binary Bayes filter

 $p_k(o) = \frac{p(o_k|z_k) \cdot p(o_{k-1})}{p(o_k|z_k) \cdot p(o_{k-1}) + p(\bar{o}_k|z_k) \cdot p(\bar{o}_{k-1})}$

nages: ika