

Single Source Shortest Path(SSSP) Dijkstra's Algorithm

Week-11, Lecture-02

Course Code: CSE221

Course Title: Algorithms

Program: B.Sc. in CSE

Course Teacher: Tanzina Afroz Rimi

Designation: Lecturer

Email: tanzinaafroz.cse@diu.edu.bd

Shortest Path Problems

- What is shortest path?
 - <u>shortest length between two vertices</u> for an unweighted graph:
 - <u>smallest cost between two vertices</u> *for* a weighted graph:

Shortest Path Problems

- How can we find the shortest route between two points on a map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

Goal: find a shortest path between two vertices (cities)

Shortest Path Problems

- Input:
 - Directed graph G = (V, E)
 - Weight function $w : E \rightarrow R$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$
 • Shortest-path weight from **u** to **v**:

• Shortest path u to v is any path p such that $w(p) = \delta(u, v)$

Variants of Shortest Paths

Single-source shortest path

• G = (V, E) \Rightarrow find a shortest path from a given source vertex s to each vertex $v \in V$

Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

• Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v
- Solve the single-source problem

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Shortest-Path Representation

For each vertex $v \in V$:

- $d[v] = \delta(s, v)$: a shortest-path estimate
 - Initially, d[v]=∞
 - Reduces as algorithms progress
- $\pi[v]$ = **predecessor** of **v** on a shortest path from **s**
 - If no predecessor, $\pi[v] = NIL$
 - π induces a tree—shortest-path tree
- Shortest paths & shortest path trees are not unique

Initialization

Alg.: INITIALIZE-SINGLE-SOURCE(V, s)

- **1. for** each $v \in V$
- 2. do $d[v] \leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$

All the shortest-paths algorithms start with INITIALIZE-SINGLE-SOURCE

Dijkstra's Algorithm

- Single-source shortest path problem:
 - No negative-weight edges: $w(u, v) > 0 \forall (u, v) \in E$
- Maintains two sets of vertices:
 - S = vertices whose final shortest-path weights have already been determined
 - Q = vertices in V S: min-priority queue
 - Keys in Q are estimates of shortest-path weights (d[v])
- Repeatedly select a vertex $u \in V S$, with the minimum shortest-path estimate d[v]

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s)
- 2. S ← ∅
- 3. $Q \leftarrow V[G]$
- 4. while $Q \neq \emptyset$
- 5. **do** $u \leftarrow EXTRACT-MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. **for** each vertex $v \in Adj[u]$
- 8. do RELAX(u, v, w)

Example

Dijkstra's Pseudo Code

• Graph G, weight function w, root s

```
DIJKSTRA(G, w, s)
   1 for each v \in V
   2 do d[v] \leftarrow \infty
   3 \ d[s] \leftarrow 0
   4 S \leftarrow \emptyset > \text{Set of discovered nodes}
   5 \ Q \leftarrow V
   6 while Q \neq \emptyset
             \mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)
                  S \leftarrow S \cup \{u\}
                 for each v \in Adj[u]
                                                                            relaxing
                        do if d[v] > d[u] + w(u, v)
                                                                            edges
                                then d[v] \leftarrow d[u] + w(u, v)
```

Dijkstra (G, w, s)

- 1. INITIALIZE-SINGLE-SOURCE(V, s) $\leftarrow \Theta(V)$
- 2. S ← Ø
- 3. $Q \leftarrow V[G] \leftarrow O(V)$ build min-heap
- 4. while Q ≠ ∅ ← Executed O(V) times
- 5. **do u** \leftarrow EXTRACT-MIN(Q) \leftarrow O(IgV)
- 6. $S \leftarrow S \cup \{u\}$
- 7. **for** each vertex $v \in Adj[u]$
- 8. **do** RELAX($\mathbf{u}, \mathbf{v}, \mathbf{w}$) \leftarrow O(E) times; O(IgV)

Running time: O(VIgV + ElgV) = O(ElgV)

Dijkstra's Running Time

- Extract-Min executed | V | time
- Decrease-Key executed | E | time
- Time = $|V|T_{\text{Extract-Min}} + |E|T_{\text{Decrease-Key}}$
- T depends on different Q implementations

Q	T(Extract	T(Decrease-K	Total
	-Min)	ey)	
array	<i>O</i> (<i>V</i>)	<i>O</i> (1)	$O(V^2)$
binary heap	O(lg V)	O(lg V)	0(E lg V)
Fibonacci heap	O(lg V)	O(1) (amort.)	$O(V \lg V + E)$

Step1: Initializing Distance[][] using the Input Graph

	Α	В	С	D	E
Α	0	4	∞	5	∞
В	∞	0	1	∞	6
С	2	∞	0	3	∞0
D	∞	∞	1	0	2
E	1	oo.	•0	4	0

Step 2: Using Node A as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][A] + Distance[A][j])

	Α	В	С	D	E
Α	0	4	∞	5	∞0
В	∞0	?	?	?	?
С	2	?	?	?	?
D	∞	?	?	?	?
E	1	?	?	?	?

Step 3: Using Node B as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][B] + Distance[B][j])

	Α	В	С	D	E
Α	?	4	?	?	?
В	∞	0	1	•0	6
С	?	6	?	?	?
D	?	®	?	?	?
Е	?	5	?	?	?

	Α	В	С	D	E
Α	0	4	5	5	10
В	•0	0	1	•0	6
С	2	6	0	3	12
D	∞	•0	1	0	2
E	1	5	6	4	0

Step 4: Using Node C as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][C] + Distance[C][j])

	Α	В	С	D	E
Α	?	?	5	?	?
В	?	?	1	?	?
С	2	6	0	3	12
D	?	?	1	?	?
Е	?	?	6	?	?

	Α	В	С	D	E
Α	0	4	5	5	10
В	3	0	1	4	6
С	2	6	0	3	12
D	3	7	1	0	2
E	1	5	6	4	0

Step 5: Using Node D as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][D] + Distance[D][j])

	Α	В	С	D	E
Α	?	?	?	5	?
В	?	?	?	4	?
С	?	?	?	3	?
D	3	7	1	0	2
Е	?	?	?	4	?

	Α	В	С	D	E
Α	0	4	5	5	7
В	3	0	1	4	6
С	2	6	0	3	5
D	3	7	1	0	2
E	1	5	5	4	0

Step 6: Using Node E as the Intermediate node

Distance[i][j] = min (Distance[i][j], Distance[i][E] + Distance[E][j])

	Α	В	С	D	E
Α	?	?	?	?	7
В	?	?	?	?	6
С	?	?	?	?	5
D	?	?	?	?	2
E	1	5	5	4	0

	Α	В	С	D	E
Α	0	4	5	5	7
В	3	0	1	4	6
С	2	6	0	3	5
D	3	7	1	0	2
E	1	5	5	4	0

Step 7: Return Distance[][] matrix as the result

	Α	В	С	D	E
Α	0	4	5	5	7
В	3	0	1	4	6
С	2	6	0	3	5
D	3	7	1	0	2
E	1	5	5	4	0

Textbooks & Web References

- Text Book (Chapter 24)
- www.geeksforgeeks.org

Thank you & Any question?