Syntax Analysis, Parsing

if
$$+78$$
 else 0

Tokens: if, else, op (+,-), number, other

Parsing

- ▶ Every programming language has precise grammar rules that describe the syntactic structure of well-formed programs
 - ▶ In C, the rules states a program consists of functions, a function consist of declarations and statements, a statement consists of expressions, and so on.
- ► The task of a parser is to
- (a) **Obtains strings of tokens** from the lexical analyzer and **verifies** that the string follows **the rules of the source language**
- (b) Parser reports errors and sometimes recovers from it

- Type checking, semantic analysis and translation actions can be interlinked with parsing
- Implemented as a single module.

Parsing

- Two major classes of parsing
 - top-down and bottom-up
- ▶ Input to the parser is scanned from left to right, one symbol at a time.

$$\langle \mathbf{id}, 1 \rangle \langle = \rangle \langle \mathbf{id}, 2 \rangle \langle + \rangle \langle \mathbf{id}, 3 \rangle \langle * \rangle \langle 60 \rangle$$

- ➤ The syntax of programming language constructs can be specified by context-free grammars
- Grammars systematically describe the syntax of programming language constructs like expressions and statements.

$$stmt \rightarrow \mathbf{if} (expr) stmt \mathbf{else} stmt$$

Quick recall

Context free grammar

▶ A CFG is denoted as G = (N, T, P, S)

N: Finite set of non-terminals -- syntactic variables (stmt, expr)

 ${\cal T}$: Finite set of terminals ---- **Tokens**, basic symbols from which strings and programs are formed

S: The start symbol -- set of strings it generates is the **language** generated by the grammar

P: Finite set of productions -- specify the manner in which the **terminals and nonterminals can be combined** to form strings

Task of a parser

Output of the parser is some **representation of the parse tree** for the **stream of tokens as input,** that comes from the lexical analyzer.

- Top-down parser works for LL grammar
- Bottom-up parser works for LR grammars
- Only subclasses of grammars
 - But expressive enough to describe **most of the syntactic constructs** of modern programming languages.

Concentrate on parsing expressions

- Constructs that begin with keywords like while or int are relatively easy to parse
 - because the keyword guides the parsing decisions
- We therefore concentrate on expressions, which present more of challenge, because of the associativity and precedence of operators

Derivations

The construction of a parse tree can be conceptualized as derivations

Derivation: Beginning with the **start symbol**, each rewriting step **replaces a nonterminal** by the body of one of its **productions**.

$$\alpha A \beta \Rightarrow \alpha \gamma \beta$$
. $A \rightarrow \gamma$ is a production

If $S \stackrel{*}{\Rightarrow} \alpha$, where S is the start symbol of a grammar G, we say that α is a sentential form of G.

A sentence of G is a sentential form with **no nonterminals**.

The language L(G) generated by a grammar G is its **set of sentences**.

Derivations

The construction of a parse tree can be conceptualized as derivations

Beginning with the start symbol, each rewriting step replaces a nonterminal by the body of one of its productions. $\alpha A \beta \Rightarrow \alpha \gamma \beta$. $A \rightarrow \gamma$ is a production

Consider a grammar G

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathbf{id}$$

Derivation

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathbf{id} + E) \Rightarrow -(\mathbf{id} + \mathbf{id})$$

- Derivation of –(id+id) from start symbol E
- 2. -(id+id) is a sentence of G
- 3. At each step in a derivation, there are two choices to be made.
 - Which nonterminal to replace? : leftmost derivations
 - Accordingly we must choose a production

Derivations-- Rightmost derivations

Consider a grammar G

$$E \rightarrow E + E \mid E * E \mid - E \mid (E) \mid id$$

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

- Derivation of –(id+id) from E
- 2. –(id+id) is a sentence of G
- 3. At each step in a derivation, there are two choices to be made.
 - Which nonterminal to replace?
 - Accordingly we must pick a production → Rightmost derivations,

Parse trees

- A parse tree is a graphical representation of a derivation that exhibits
 - the order in which productions are applied to replace non-terminals
- ► The internal node is a non-terminal A in the head of the production
 - ► The children of the node are labelled, from left to right, by the symbols in the body of the production by which A was replaced during the derivation
- ▶ Same parse tree for leftmost and rightmost derivations

- 4 ロ > 4 個 > 4 差 > 4 差 > - 差 - 夕 Q @

Ambiguity

- A grammar that produces more than one parse tree for some sentence is said to be ambiguous
- An ambiguous grammar is one that produces more than one leftmost derivation or more than one rightmost derivation for the same sentence.

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

$$E \Rightarrow E + E \qquad E \Rightarrow E * E$$

$$\Rightarrow id + E \Rightarrow E + E * E$$

$$\Rightarrow id + E * E \Rightarrow id + E * E$$

$$\Rightarrow id + id * E \Rightarrow id + id * E$$

Two distinct leftmost derivations for the sentence id + id * id

Ambiguity

Two parse trees for id+id*id

Ambiguity
$$\begin{array}{ccc} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid id \end{array}$$

Unambiguous grammar

Two parse trees for id+id*id

- Top-down parsing can be viewed as the problem of
- Constructing a parse tree for the input string,
 - starting from the root and creating the nodes of the parse tree in preorder
- Top-down parsing can be viewed as finding a leftmost derivation for an input string

$$E \xrightarrow{lm} E \xrightarrow{$$

id+id*id

Derivation
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathbf{id}+E) \Rightarrow -(\mathbf{id}+\mathbf{id})$$

parse tree for - (+ id) ???

A grammar is *left recursive* if it has a nonterminal A such that there is a derivation $A \stackrel{+}{\Rightarrow} A\alpha$ for some string α . Top-down parsing methods cannot handle left-recursive grammars, so a transformation is needed to eliminate left

Left recursive

Non-Left recursive

Eliminating left recursion.

INPUT: Grammar G with no cycles or ϵ -productions.

OUTPUT: An equivalent grammar with no left recursion.

```
1) arrange the nonterminals in some order A_1,A_2,\ldots,A_n.

2) for ( each i from 1 to n ) {
3) for ( each j from 1 to i-1 ) {
4) replace each production of the form A_i \to A_j \gamma by the productions A_i \to \delta_1 \gamma \mid \delta_2 \gamma \mid \cdots \mid \delta_k \gamma, where A_j \to \delta_1 \mid \delta_2 \mid \cdots \mid \delta_k are all current A_j-productions
5) }
6) eliminate the immediate left recursion among the A_i-productions
7) }
```

Challenges:

At **each step** of a top-down parse, the key problem is that of **determining the production to be applied** for a nonterminal, say A.

- (a) **Recursive descent parsing**: May require **backtracking** to find the **correct A-production** to be applied
- (b) **Predictive parsing:** No backtracking! looking ahead at the input a fixed number of symbols (next symbols) LL(k), LL(1) grammars

Recursive-Descent Parsing

Nondeterministic

```
void A() {
      Choose an A-production, A \to X_1 X_2 \cdots X_k;
      for (i = 1 \text{ to } k) {
             if (X_i is a nonterminal)
                     call procedure X_i();
              else if (X_i equals the current input symbol a)
                     advance the input to the next symbol;
              else /* an error has occurred */;
                            Try other productions!
```

- (a) A recursive-descent parsing consists of a set of procedures, one for each nonterminal.
- (b) Execution begins with the procedure for the start symbol S,
- (c) Halts and announces success if S() returns and its procedure body scans the entire input string.
- (d) Backtracking: may require repeated scans over the input

input string
$$w = cad$$
,

Now, we expand A using the first alternative $A \rightarrow a \ b$

- We have a match for the second input symbol, a,
- So we advance the input pointer to d, the third input symbol
- Compare d against the next leaf, labeled b
 Failure !! Backtrack!

(c)

input string w = cad,

we must reset the input pointer to position ${\bf a}$

- The leaf a matches the second input symbol of w (i.e. a) and the leaf d matches the third input symbol d
- Since S() returns and we have scanned w and produced a parse tree for w,
- We halt and announce successful completion of parsing

Left Factoring

$$stmt \rightarrow$$
 if $expr$ then $stmt$ else $stmt$ | if $expr$ then $stmt$

$$A \to \alpha \beta_1 \mid \alpha \beta_2$$

$$A \to \alpha A'$$

 $A' \to \beta_1 \mid \beta_2$ Left factoring a grammar.

Challenges:

At **each step** of a top-down parse, the key problem is that of **determining the production to be applied** for a nonterminal, say A.

- (a) Recursive descent parsing: May require backtracking to find the correct A-production to be applied
- (b) **Predictive parsing:** No backtracking! **looking ahead** at the input a fixed number of symbols (**next symbols**) **LL(k)**, **LL(1)** grammars

Basic concept of Predictive parsing

One sentential form

S=> aXY....

Grammar productions

1. X-> **b**A...

First symbol

2. X->cP

Another sentential form S=> aXb

Grammar productions

1. X-> €

2. X->

We know that **b Follows X** in any sentential form

4.4.2 FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided by two functions, FIRST and FOLLOW, associated with a grammar G. During top-down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol. During panic-mode error recovery, sets of tokens produced by FOLLOW can be used as synchronizing tokens.

Define $FIRST(\alpha)$, where α is any string of grammar symbols, to be the set of terminals that begin strings derived from α . If $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then ϵ is also in $FIRST(\alpha)$. For example, in Fig. 4.15, $A \stackrel{*}{\Rightarrow} c\gamma$, so c is in FIRST(A).

For a preview of how FIRST can be used during predictive parsing, consider two A-productions $A \to \alpha \mid \beta$, where FIRST(α) and FIRST(β) are disjoint sets. We can then choose between these A-productions by looking at the next input symbol a, since a can be in at most one of FIRST(α) and FIRST(β), not both. For instance, if a is in FIRST(β) choose the production $A \to \beta$. This idea will

How to compute First(X)

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ϵ can be added to any FIRST set.

- 1. If X is a terminal, then $FIRST(X) = \{X\}$.
- 2. If X is a nonterminal and $X \to Y_1Y_2 \cdots Y_k$ is a production for some $k \ge 1$, then place a in FIRST(X) if for some i, a is in $\text{FIRST}(Y_i)$, and ϵ is in all of $\text{FIRST}(Y_1), \ldots, \text{FIRST}(Y_{i-1})$; that is, $Y_1 \cdots Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$. If ϵ is in $\text{FIRST}(Y_j)$ for all $j = 1, 2, \ldots, k$, then add ϵ to FIRST(X). For example, everything in $\text{FIRST}(Y_1)$ is surely in FIRST(X). If Y_1 does not derive ϵ , then we add nothing more to FIRST(X), but if $Y_1 \stackrel{*}{\Rightarrow} \epsilon$, then we add $\text{FIRST}(Y_2)$, and so on.
- 3. If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

- 1. FIRST(F) = FIRST(T) = FIRST(E) = {(, id}. To see why, note that the two productions for F have bodies that start with these two terminal symbols, id and the left parenthesis. T has only one production, and its body starts with F. Since F does not derive ϵ , FIRST(T) must be the same as FIRST(T). The same argument covers FIRST(T).
- 2. FIRST $(E') = \{+, \epsilon\}$. The reason is that one of the two productions for E' has a body that begins with terminal +, and the other's body is ϵ . Whenever a nonterminal derives ϵ , we place ϵ in FIRST for that nonterminal.
- 3. FIRST(T') = $\{*, \epsilon\}$. The reasoning is analogous to that for FIRST(E').

Basic concept of Predictive parsing

One sentential form

S=> aXY....

Grammar productions

1. X-> **b**A...

First symbol

2. X->cP

Another sentential form S=> aXh

Grammar productions

1. X-> €

2. X->

We know that **b Follows X** in any sentential form

FIRST and FOLLOW

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form; that is, the set of terminals a such that there exists a derivation of the form $S \stackrel{*}{\Rightarrow} \alpha A a \beta$, for some α and β , as in Fig. 4.15. Note that there may have been symbols between A and a, at some time during the derivation, but if so, they derived ϵ and disappeared. In addition, if A can be the rightmost symbol in some sentential form, then α is in FOLLOW(α); recall that α is a special "endmarker" symbol that is assumed not to be a symbol of any grammar.

How to compute Follow(A)

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set.

- 1. Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right endmarker.
- 2. If there is a production $A \to \alpha B\beta$, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

S-> xAyz y in Follow(A)

FOLLOW(E) = FOLLOW(E') = {),\$}. Since E is the start symbol, FOLLOW(E) must contain \$. The production body (E) explains why the right parenthesis is in FOLLOW(E). For E', note that this nonterminal appears only at the ends of bodies of E-productions. Thus, FOLLOW(E') must be the same as FOLLOW(E).

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid \epsilon \iff FIRST(E') = \{+, \epsilon\}$$

$$T \rightarrow F T'$$

$$T' \rightarrow *F T' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

FOLLOW(T) = FOLLOW(T') = {+,), \$}. Notice that T appears in bodies only followed by E'. Thus, everything except ϵ that is in FIRST(E') must be in FOLLOW(T); that explains the symbol +. However, since FIRST(E') contains ϵ (i.e., $E' \stackrel{*}{\Rightarrow} \epsilon$), and E' is the entire string following T in the bodies of the E-productions, everything in FOLLOW(E) must also be in FOLLOW(T). That explains the symbols \$ and the right parenthesis. As for T', since it appears only at the ends of the T-productions, it must be that FOLLOW(T') = FOLLOW(T).

FOLLOW(F) = {+,*,),\$}. The reasoning is analogous to that for T in point (5).

Follow(F)=Follow(T)

Predictive parsing

Challenges:

At **each step** of a top-down parse, the key problem is that of **determining the production to be applied** for a nonterminal, say A.

- (a) Recursive descent parsing: May require backtracking to find the correct A-production to be applied
- (b) **Predictive parsing:** No backtracking! **looking ahead** at the input a fixed number of symbols (**next symbols**) **LL(k)**, **LL(1)** grammars

Predictive parsing

Parsing table M

NON -		I	NPUT SYMI	3OL		
TERMINAL	id	+	*	()	\$
\overline{E}	$E \to TE'$			$E \to TE'$		
E'		E' o + TE'		1	$E' o \epsilon$	$E' o \epsilon$
T	T o FT'			T o FT'		ı
T'		$T' o \epsilon$	$T' \to *FT'$		$T' o \epsilon$	$T' \to \epsilon$
F	$F o \mathbf{id}$			F o (E)		

LL(1) grammar => avoid confusion!!

A grammar G is LL(1) if and only if whenever $A \to \alpha \mid \beta$ are two distinct productions of G, the following conditions hold:

First(α) and First(β) Disjoint sets

- 1. For no terminal a do both α and β derive strings beginning with \overline{a} .
- 2. At most one of α and β can derive the empty string.
- 3. If $\beta \stackrel{*}{\Rightarrow} \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A). Likewise, if $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then β does not derive any string beginning with a terminal in FOLLOW(A).

 ϵ is in FIRST(α). then FIRST(β) and FOLLOW(A) are disjoint sets.

Basic concept of Predictive parsing

One sentential form

S=> aXY....

Another sentential form S=> aXh

Grammar productions

1. X-> **b**A...

First symbol

2. X-> bY.....

Grammar productions

1. X->€

2. X->

3. X->bY....

We know that **b Follows X** in any sentential form Follow(X)=b

Parsing table M

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \to \alpha$ of the grammar, do the following:

1. For each terminal a in FIRST(A), add $A \to \alpha$ to M[A, a].

One sentential form S=> bAY....

Grammar productions

1. A-> **a**X...

First symbol

2. A->

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \to \alpha$ of the grammar, do the following:

- 1. For each terminal a in FIRST(A), add $A \to \alpha$ to M[A, a].
- 2. If ϵ is in FIRST(α) then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A,b]. If ϵ is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to M[A,\$] as well.

Input string w=abcd

One sentential form S=> aAb

Grammar productions

- 1. A-> α=>€
- 2. X->

We know that **b Follows A** in any sentential form Follow(A)=b

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \to \alpha$ of the grammar, do the following:

- 1. For each terminal a in FIRST(A), add $A \to \alpha$ to M[A, a].
- 2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A,b]. If ϵ is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to M[A,\$] as well.

If, after performing the above, there is no production at all in M[A,a], then set M[A,a] to **error** (which we normally represent by an empty entry in the table). \square

$$ightharpoonup$$
 production $E \to TE'$.

$$FIRST(TE') = FIRST(T) = \{(, id)\}$$

$$ightharpoonup$$
 Production $E' \to +TE'$

$$FIRST(+TE') = \{+\}$$

$$\implies E' \to \epsilon$$

$$FOLLOW(E') = \{), \$\}$$

NON -		I	NPUT SYMI	3OL		
TERMINAL	id	+	*	()	\$
\overline{E}	E o TE'			E o TE'		
E'		E' o + TE'			$E' o \epsilon$	$E' \to \epsilon$
T	$T \to FT'$]	T o FT'		ı
T'		$T' \to \epsilon$	$T' \to *FT'$	}	$T' o \epsilon$	$T' \to \epsilon$
F	$F o \mathbf{id}$			F o (E)		

$$T
ightarrow FT'$$
First(FT')={(,id}

$$\Rightarrow T' \rightarrow *FT'$$

First(*FT')={*}

$$T' \rightarrow \epsilon$$

Follow(T')={+,),\$}

E	\rightarrow	T E'
E'	\rightarrow	$+ T E' \mid \epsilon$
T	\rightarrow	F T'
T'	\rightarrow	$*FT' \mid \epsilon$
F	\rightarrow	$(E) \mid \mathbf{id}$

NON -		I	NPUT SYMI	BOL		
TERMINAL	id	+	*	()	\$
\overline{E}	E o TE'			$E \to TE'$		
E'		E' o + TE'			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \to FT'$)	T o FT'		ı
T'		$T' o \epsilon$	$T' \to *FT'$	}	$T' o \epsilon$	$T' \to \epsilon$
$oldsymbol{F}^{\scriptscriptstyle ext{T}}$	$F o \mathbf{id}$			F o (E)		

First((E))={(}

First(id)={id}

Example of Non-LL(1) grammar

- For every LL(1) grammar, **each parsing-table entry uniquely** identifies a production or signals an error.
- left-recursive or ambiguous grammars are not LL(1)

```
\begin{array}{ccc} S & \rightarrow & iEtSS' \mid a \\ S' & \rightarrow & eS \mid \epsilon \end{array}
                               if b
                                     then
                                       if b
                                              then
                                              а
                                         else
                                              а
```

Input string i b t i b t a e a

Example of Non-LL(1) grammar

Non -			Input	SYMBOL		
TERMINAL	a	b	e	i	t	\$
S	S o a			$S \rightarrow iEtSS'$		
S'			$S' \to \epsilon$ $S' \to eS$		_	$S' \to \epsilon$
E		E o b				

Predictive Parsing

- Non-recursive version
 - maintaining a stack explicitly, rather than implicitly via recursive calls

INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Initial configuration

STACK	INPUT
E\$	id + id * id\$

Predictive Parsing

INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Initial configuration

 $\frac{\text{STACK} \quad \text{INPUT}}{E\$ \quad \text{id} + \text{id} * \text{id}\$}$

The parser considers (i) the symbol on **top of the stack X**, and (ii) the current **input symbol a**.

- If **X** is a nonterminal, the parser chooses an X-production from **M**[**X**, **a**] of the parsing table.
- Otherwise, it checks for a match between the terminal X and current input symbol a.

NON -		I	NPUT SYMI	BOL		
TERMINAL	id	+	*	()	8
E	$E \rightarrow TE'$			$E \to TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \to FT'$		
T'		$T' \rightarrow \epsilon$	$T' \to *FT'$	}	$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F o \mathbf{id}$			$F \rightarrow (E)$		


```
INPUT SYMBOL
                                        id
                                     E \rightarrow TE'
                                                                   E \rightarrow TE'
                                              E' \rightarrow +TE'
                                     T \to FT'
                                      F \rightarrow id
                                                                   F \rightarrow (E)
set ip to point to the first symbol of w;
set X to the top stack symbol;
while (X \neq \$) { /* stack is not empty */
        if (X \text{ is } a) pop the stack and advance ip;
        else if (X \text{ is a terminal }) \text{ } error();
        else if (M[X,a] is an error entry ) error();
        else if (M[X,a] = X \rightarrow Y_1 Y_2 \cdots Y_k)
                 output the production X \to Y_1 Y_2 \cdots Y_k:
                 pop the stack:
                 push Y_k, Y_{k-1}, \ldots, Y_1 onto the stack, with Y_1 on top;
        set X_{\bullet} to the top stack symbol;
```

id + id * id

1	Non -		I	NPUT SYMI	BOL		
	TERMINAL	id	+	*	()	\$
	E	$E \rightarrow TE'$			$E \to TE'$		
	E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
	T	$T \to FT'$			$T \to FT'$		1
	T'		$T' \rightarrow \epsilon$	$T' \to *FT'$		$T' \rightarrow \epsilon$	$T' \to \epsilon$
	F	$F o \mathbf{id}$			$F \rightarrow (E)$		

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id\$	
	TE'\$	id + id * id\$	output $E o TE'$
	FT'E'\$	id + id * id\$	output $T \to FT'$
	$\mathbf{id}\ T'E'\$$	$\mathbf{id} + \mathbf{id} * \mathbf{id} $	$\text{output } F \to \mathbf{id}$
\mathbf{id}	T'E'\$	$+\operatorname{\mathbf{id}}*\operatorname{\mathbf{id}}\$$	match id
id	E'\$	+ id * id \$	output $T' o \epsilon$
id	+ TE'\$	$+\operatorname{\mathbf{id}}*\operatorname{\mathbf{id}}\$$	output $E' \to + TE'$
$\mathbf{id} \; + \;$	TE'\$	id*id\$	match +
$\mathbf{id} \; + \;$	FT'E'\$	id*id\$	output $T \to FT'$
$\mathbf{id} \; + \;$	$\mathbf{id}\ T'E'\$$	id*id\$	output $F o \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	T'E'\$	*id\$	match id
$\mathbf{id} + \mathbf{id}$	*FT'E'\$	*id\$	output $T' \to *FT'$
$\mathbf{id} + \mathbf{id} \ *$	FT'E'\$	id\$	$\mathrm{match} *$
$\mathbf{id} + \mathbf{id} \ *$	$\mathbf{id}\ T'E'\$$	id\$	output $F o \mathbf{id}$
$\mathbf{id} + \mathbf{id} * \mathbf{id}$	T'E'\$	\$	\mathbf{match} id
$\mathbf{id} + \mathbf{id} * \mathbf{id}$	E'\$	\$	output $T' \to \epsilon$
id + id * id	\$		output $E' o \epsilon$

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id	
	TE'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id} \$$	output $E \to TE'$
	FT'E'\$	$\mathbf{id} + \mathbf{id} * \mathbf{id} $	output $T \to FT'$
	$\mathbf{id}\ T'E'\$$	$\mathbf{id} + \mathbf{id} * \mathbf{id} $	output $F \to \mathbf{id}$
id	T'E'\$	+ id * id\$	match id
id	E'\$	+ id * id\$	$\text{output } T' \to \epsilon$
id	+ TE'\$	+ id * id\$	output $E' \rightarrow + TE$
id +	<i>TE'</i> \$	id * id	match +
id	1 1 L V	id ∗ id \$	Output I -7 II
$\mathbf{id} \; + \;$	$\mathbf{id}\ T'E'\$$	id*id\$	output $F o \mathbf{id}$
$\mathbf{id} + \mathbf{id}$	T'E'\$	* id \$	match id
id + id	*FT'E'\$	*id\$	output $T' \to *FT'$
$\mathbf{id} + \mathbf{id} \ *$	FT'E'\$	id\$	$\mathrm{match} *$
id + id *	$\mathbf{id}\ T'E'\$$	id\$	output $F o \mathbf{id}$
id + id * id	T'E'\$	\$	match id
id + id * id	E'\$	\$	output $T' \to \epsilon$
id + id * id	\$	\$	output $E' \to \epsilon$

Leftmost derivation

$$E \underset{lm}{\Rightarrow} TE' \underset{lm}{\Rightarrow} FT'E' \underset{lm}{\Rightarrow} \operatorname{id} T'E' \underset{lm}{\Rightarrow} \operatorname{id} E' \underset{lm}{\Rightarrow} \operatorname{id} + TE' \underset{lm}{\Rightarrow} \cdots$$

Predictive Parsing

The stack contains a sequence of grammar symbols

If w is the input that has been matched so far, then the stack holds a sequence of grammar symbols α such that

$$S \stackrel{*}{\underset{lm}{\Rightarrow}} w\alpha$$

$$E \underset{lm}{\Rightarrow} TE' \underset{lm}{\Rightarrow} FT'E' \underset{lm}{\Rightarrow} \operatorname{id} T'E' \underset{lm}{\Rightarrow} \operatorname{id} E' \underset{lm}{\Rightarrow} \operatorname{id} + TE' \underset{lm}{\Rightarrow} \cdots$$