الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: العلوم الفيزيائية الختبار في مادة: العلوم الفيزيائية

# على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

### التمرين الأول: (04 نقاط)

لدر اسة حركية التفاعل الكيميائي البطيء والتام بين الماء الأكسجيني  $H_2O_2(aq)$  ومحلول يود البوتاسيوم  $H_2O_2(aq)+I^-(aq)$  في وسط حمضي والمنمذج بالمعادلة:

$$H_2O_2(aq) + 2I^-(aq) + 2H_3O^+(aq) = I_2(aq) + 4H_2O(\ell)$$

مزجنا في بيشر عند اللحظة 0 و ورجة الحرارة 0 25° حجمًا  $V_1 = 100~mL$  من محلول الماء الأكسجيني t=0 من محلول يود البوتاسيوم تركيزه المولي تركيزه المولي  $V_2 = 100~mL$  مع حجم  $C_1 = 4.5 \times 10^{-2}~mo\,\ell\cdot L^{-1}$  من محلول يود البوتاسيوم تركيزه المولي  $c_2 = 6.0 \times 10^{-2}~mo\,\ell\cdot L^{-1}$  و بضع قطرات من محلول حمض الكبريت المركز  $c_2 = 6.0 \times 10^{-2}~mo\,\ell\cdot L^{-1}$ 

- 1-I اكتب المعادلتين النصفيتين للأكسدة والإرجاع.
- كميتي المادة  $n_0(H_2O_2)$  للماء الأكسجيني و  $n_0(I^-)$  لشوارد اليود في المزيج الابتدائي.
  - 3) أعد كتابة جدول التقدم للتفاعل وأكمله.

| لة التفاعل  | معاد   | $H_2O_2(aq) + 2I^-(aq) +$ | $-2H_3O^+(aq) = I$ | $I(aq) = I_2(aq) + 4H_2O(\ell)$ |     |  |  |
|-------------|--------|---------------------------|--------------------|---------------------------------|-----|--|--|
| حالة الجملة | التقدم | $(mo\ell) \rightarrow$    | ات المادة          | کمیــــــ                       |     |  |  |
| الابتدائية  | 0      |                           | 7.                 |                                 | ٦٠  |  |  |
| الانتقالية  | X      |                           | في                 |                                 | وفر |  |  |
| النهائية    | $x_f$  |                           | ;0                 | $3 \times 10^{-3}$              | 30  |  |  |

### - استنتج المتفاعل المحد.

الحجم من الحجم من  $I_2(aq)$  المتشكلة في لحظات زمنية مختلفة t، نأخذ في كل مرة نفس الحجم من المزيج التفاعلي ونضع فيه (ماء + جليد) وبضع قطرات من صمغ النشاء ونعايره بمحلول لثيوكبريتات الصوديوم المزيج التفاعلي ونضع فيه  $\left(2Na^+(aq)+S_2O_3^{2-}(aq)\right)$  معلوم التركيز .

معالجة النتائج المتحصل عليها مكنتنا من رسم المنحنى x = f(t) الممثل لتطور تقدم التفاعل الكيميائي المدروس في المزيج الأصلي بدلالة الزمن (الشكل-1).

1) أ- ما الهدف من إضافة الماء والجليد؟

ب- ضع رسمًا تخطيطيًا للتجهيز التجريبي المستخدم في عملية المعايرة.

2) أ- عرّف واكتب عبارة السرعة الحجمية للتفاعل.

ب- احسب السرعة الحجمية للتفاعل في

 $t_1 = 9 \min$  و  $t_0 = 0$ 

 $I^{-}(aq)$  عبر عن سرعة اختفاء شوارد

بدلالة السرعة الحجمية للتفاعل واحسب قيمتها

 $t_1$  في اللحظة



### التمرين الثاني: (04 نقاط)

يُستعمل البلوتونيوم 239 كوقود في المحطات النووية، عندما تُقذف نواته بنيترونات تتشطر إلى نواتين ونيترونات.  $^{239}_{94}Pu + ^1_0n \longrightarrow ^{102}_{42}Mo + ^{135}_{7}Te + x ^1_0n$  ينمذج أحد التفاعلات الممكنة لانشطار  $^{239}_{94}Pu$  بالمعادلة: . $\chi$  و Z قانوني الانحفاظ في التفاعلات النووية ثمّ عيّن قيمة Z و Z

2) أ- احسب الطاقة المحرّرة عن انشطار نواة واحدة من البلوتونيوم 239 واستنتج النقص في الكتلة  $\Delta m$  المكافئ.

ب- ضع مخططا طاقويا يمثل الحصيلة الطاقوية لتفاعل انشطار نواة

البلوتونيوم 239.

يستهلك مفاعل نووي كل يوم ((24h)) كتلة (3 من البلوتونيوم 239 قدر ها 35gاحسب الاستطاعة المتوسطة للمفاعل.

4) أ- ماذا يمثل المنحنى المقابل؟ (الشكل-2) و ما الفائدة منه؟ ب- أعد رسم المنحنى بشكل كيفي وحدّد عليه مواضع الأنوية التالية:  $\frac{135}{2}Te$   $\frac{102}{42}Mo$   $\frac{239}{94}Pu$ 

تعطى طاقة الربط لكل نكليون  $\frac{E_\ell}{\Lambda}$  للأنوية السابقة:

 $-rac{E_\ell}{A}(M\!e\!V/\!n\!u\!c\!l\!legar{e}\!c\!o\!n)$ 240 A الشكل - 2

 $^{135}_{7}Te:8,3MeV/nucl\'eon$   $^{102}_{42}Mo:8,6MeV/nucl\'eon$   $^{239}_{94}Pu:7,5MeV/nucl\'eon$  $1MeV = 1,6.10^{-13}J : N_A = 6,02.10^{23} mol^{-1} : 1u = 931,5 MeV / c^2$ 

### التمرين الثالث: (04 نقاط)

حققنا الدارة الكهربائية المتكونة من العناصر الكهربائية التالية:

 $R=50\Omega$  مولد توتر كهربائي ثابت E، وشيعة ذاتيتها E ومقاومتها  $R=10\Omega$ ، ناقل أومي مقاومته E وقاطعة E، موصولة على التسلسل (الشكلE).

t=0 غلق القاطعة K عند اللحظة



 $A^{(S)}$ 

الشكل-4

- 1) أ- أعد رسم الدارة الكهربائية وحدّد جهة التيار الكهربائي مع التّعليل. أعط عبارة شدة التيار الكهربائي  $I_0$  في النظام الدائم.
- لمشاهدة التوتر الكهربائي بين طرفي الناقل الأومي  $u_R = u_{BC}$  على شاشة راسم اهتزاز مهبطى ذي ذاكرة.
- أ- بيّن كيفية التوصيل براسم الاهتزاز المهبطي لمشاهدة تطور  $u_{BC}(t)$ ، مثّله كيفيًا بدلالة الزمن وما هو المقدار الفيزيائي الذي يُماثله في التطور؟
  - ب- جد المعادلة التفاضلية لتطور شدة التيار (i(t) المار في الدارة.
- ج- إنّ حل المعادلة التفاضلية السابقة هو  $i\left(t\right)=0,2(1-e^{-50t})$  حيث الزمن بالثانية s) وشدة التيار بالأمبير s). استنتج قيمة كل من t0 (ثابت الزمن) و t0 (بالأمبير t0). استنتج قيمة كل من t0 (ثابت الزمن) و
  - t = au د- اكتب العبارة اللحظية للطاقة المخزنة في الوشيعة واحسب قيمتها في اللحظة

### التمرين الرابع: (04 نقاط)

ر بنه المسلم ال

 $x \to \infty$ نقذف في اللحظة t=0 جسما صلبا S) نعتبره نقطة  $v_0$ مادية كتلتها  $v_0 = 0$  على مستو أفقي بسرعة ابتدائية  $v_0 = 0$ من النقطة  $v_0 = 0$  نحو النقطة  $v_0 = 0$ 

يخضع الجسم (S) أثناء حركته لقوى احتكاك تكافئ قوة معاكسة لجهة الحركة وثابتة الشدة f (الشكل-4).

- 2 (m/s)<sup>2</sup>
  2 (m/s)<sup>2</sup>
  5-ندشا
- (3) أ- مثّل القوى الخارجية المطبقة على مركز عطالة الجسم (S). v بتطبيق القانون الثاني لنيوتن بيّن أن المعادلة التفاضلية  $\frac{dv}{dt} = -\frac{f}{m}$  .

  - x المنحنى (الشكل 5) يُمثِّل تغيرات  $v^2$  بدلالة x المنحنى (الشكل 5) المنتتج قيمة السرعة الابتدائية  $v_0$  وشدة قوة الاحتكاك  $v_0$

 $.\overline{BD}=0.5m$  عيد E المستوي الأفقى E في النقطة E بسرعة  $V_B$  ليسقط في الموضع E حيث E عدد E يغادر الجسم (E) المستوي الأفقى E في النقطة E في المعلم (E) بعد مغادرته النقطة E في المعلم (E).

y = f(x) اكتب معادلة مسار الحركة

E وسرعة الجسم (S) في الموضع D

يعطى  $g=10m\cdot s^{-2}$  ، تهمل مقاومة الهواء ودافعة أرخميدس.

### التمرين التجريبي: (04 نقاط)

في حصة الأعمال التطبيقية، طلب الأستاذ من تلامذته تحضير محاليل مائية لأحد الأحماض الصلبة HA بتراكيز مولية مختلفة وقياس pH كل محلول في درجة الحرارة  $25^{\circ}C$ ، فكانت النتائج كالتالي:

| $c(mo\ell/L)$                                                                  | $1,0\cdot 10^{-2}$ | $5,0\cdot 10^{-3}$ | $1,0\cdot 10^{-3}$ | 5,0.10-4 | $1,0\cdot 10^{-4}$ |
|--------------------------------------------------------------------------------|--------------------|--------------------|--------------------|----------|--------------------|
| рН                                                                             | 3,10               | 3,28               | 3,65               | 3,83     | 4,27               |
| $\boxed{\left[H_{3}O^{+}\right]_{\acute{e}q}\left(mol\cdot L^{-1}\right)}$     |                    |                    |                    |          |                    |
| $oxed{A^-}_{\ell q} (mol \cdot L^{-1})$                                        |                    |                    |                    |          |                    |
| $[HA]_{\acute{e}q} (mol \cdot L^{-1})$                                         |                    |                    |                    |          |                    |
| $Log \frac{\left[A^{-} ight]_{_{\acute{e}q}}}{\left[HA ight]_{_{\acute{e}q}}}$ |                    |                    |                    |          |                    |

- V وحجمه C وحجمه الصلب C تركيزه المولي وحجمه C وحجمه العصل الصلب C وحجمه العصل العصل المولي C
  - 2) عرِّف الحمض HA حسب برونشتد واكتب معادلة تفاعله مع الماء.
    - 3) أكمل الجدول السابق.
  - PH المحلول المائي للحمض PH بدلالة الثابت  $pK_a$  للثنائية (4 المائي الحمض).

واكتب معادلته. 
$$pH=f\left(Log\,rac{\left[A^{\,-}
ight]_{\acute{e}q}}{\left[HA\,
ight]_{\acute{e}q}}
ight)$$
 واكتب معادلته. (5

ب- حدِّد بيانيا قيمة الثابت  $pK_a$  للثنائية  $(HA/A^-)$  ثم استنج صيغة الحمض HA من الجدول التالى:

| الثنائية | HCOOH / HCOO | $C_2H_5COOH/C_2H_5COO^-$ | $C_6H_5COOH/C_6H_5COO^-$ |
|----------|--------------|--------------------------|--------------------------|
| $pK_a$   | 3,8          | 4,87                     | 4,2                      |

ج- ربِّب هذه الأحماض حسب تزايد قوتها الحمضية مع التعليل.

### الموضوع الثاني

### التمرين الأول: (04 نقاط)

وضعنا في بيشر حجما  $V_0=250~mL$  من مادة مطهرة تحتوي على ثنائي اليود وضعنا في بيشر حجما  $V_0=250~mL$  من مادة مطهرة تحتوي على ثنائي اليود Zn(s) ثمّ أضفنا له عند درجة حرارة ثابتة، قطعة من معدن الزنك  $C_0=2.0\cdot 10^{-2}mo\,\ell\cdot L^{-1}$  . m=0.5g

التحول الكيميائي البطيء والتام الحادث بين ثنائي اليود والزنك ينمذج بتفاعل كيميائي معادلته:

$$Zn(s) + I_2(aq) = Zn^{2+}(aq) + 2I^{-}(aq)$$

متابعة التحول عن طريق قياس الناقلية النوعية  $\sigma$  للمزيج التفاعلي في لحظات زمنية مختلفة مكنتنا من الحصول على جدول القياسات التالي:

| $t(\times 10^2 s)$       | 0 | 1    | 2    | 4    | 6    | 8    | 10   | 12   | 14   | 16   |
|--------------------------|---|------|------|------|------|------|------|------|------|------|
| $\sigma(S \cdot m^{-1})$ | 0 | 0,18 | 0,26 | 0,38 | 0,45 | 0,49 | 0,50 | 0,51 | 0,52 | 0,52 |
| $x (mmo \ell)$           |   |      |      |      |      |      |      |      |      |      |

- 1) اشرح لماذا يمكن متابعة هذا التحول عن طريق قياس الناقلية النوعية.
  - 2) احسب كمية المادة الابتدائية للمتفاعلين.
    - 3) أنجز جدو لا لتقدم التفاعل الحادث.
  - x النقاعلي بدلالة النقدم  $\sigma$  المزيج التفاعلي بدلالة النقدم  $\sigma$  النقدم  $\sigma$

ب- أكمل الجدول السابق.

x = f(t) ج- ارسم المنحنى

أ- عرّف زمن نصف التفاعل  $t_{1/2}$  ثم عيّن قيمته.

 $t_{1}=1000$ s و  $t_{1}=400$ s و اللحظتين  $t_{1}=400$  و  $t_{2}=1000$ 

ج- فسر مجهرياً تطور السرعة الحجمية للتفاعل.

### التمرين الثاني: (04 نقاط)

 $\cdot$   $eta^-$ : المشع يحتوي على نظير السيزيوم المشع المشع لـــ $^{134}$ 

- 1) عرق ما يلى:
- النظير المشع.
- $eta^-$  الإشعاع –
- $^{134}Cs$  اكتب معادلة النشاط الإشعاعي للسيزيوم (2
- 3) من إحدى الموسوعات العلمية الخاصة بالبحث العلمي في الفيزياء النووية تم استخراج المنحنى A = f(t) والذي يعبّر عن تطور النشاط الإشعاعي A لمنبع مشع من السيزيوم 134 مماثل للمنبع السابق  $m_0$  كتلته  $m_0$ .



. au ما هي قيمة النشاط الإشعاعي في اللحظة au= au استنتج قيمة ثابت الزمن

ج- بيّن أن  $t_{1/2} = au \cdot \ln 2$  نصف العمر لنظير السيزيوم  $t_{1/2} = au \cdot \ln 2$  يعطى بالعلاقة:  $t_{1/2} = au$  واحسب قيمته.

د- احسب كتلة العينة  $m_0$  ثم بيّن أن الكتلة المتفككة (m'(t) من السيزيوم 134 تعطى بالعلاقة:

$$m'(t) = m_0(1 - e^{-\lambda t})$$

t الزمن m'(t) بدلالة الزمن m'(t)

يعطى الجدول المقابل و المستخرج من الجدول الدوري: 
$$N_A = 6.02 \cdot 10^{23} mo \, \ell^{-1} \label{eq:NA}$$

| <b>^</b>         |        |
|------------------|--------|
|                  |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
| <b>N</b>         |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
| <b>1</b>         |        |
| <b> </b>         |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
| 1                |        |
|                  |        |
|                  |        |
|                  |        |
|                  |        |
| 0 2<br>الشكل – 1 | t(ans) |

# Xe Cs Ba La Z 54 55 56 57

# E C $X_{1}$ $Y_{2}$ $X_{2}$ $X_{3}$ $Y_{4}$ $Y_{1}$ $Y_{2}$ $Y_{3}$ $Y_{4}$ $Y_{2}$ $Y_{3}$ $Y_{4}$ $Y_{4}$ $Y_{5}$ $Y_{6}$ $Y_{7}$ $Y_{8}$ $Y_{1}$ $Y_{1}$ $Y_{2}$ $Y_{3}$ $Y_{4}$ $Y_{5}$ $Y_{5}$ $Y_{6}$ $Y_{7}$ $Y_{1}$ $Y_{1}$ $Y_{1}$ $Y_{2}$ $Y_{3}$ $Y_{4}$ $Y_{5}$ $Y_{5}$ $Y_{6}$ $Y_{7}$ $Y_{7}$ $Y_{7}$ $Y_{8}$ $Y_{1}$ $Y_{1}$ $Y_{2}$ $Y_{3}$ $Y_{4}$ $Y_{5}$ $Y_{5}$ $Y_{6}$ $Y_{7}$ $Y_{$

## التمرين الثالث: (04 نقاط)

تتكون الدارة الكهربائية (الشكل-2) من مولد لتوتر كهربائي ثابت E، مكثفة سعتها C، ناقلين أوميين مقاومتهما  $R_1=1k$  و  $R_2=2k$  وبادلة  $R_1=1k$ 

 $Y_2$  توصل الدارة براسم اهتزاز مهبطي ذي مدخلين  $Y_1$  و

ا) نضع البادلة K في الوضع 1، ماذا يمثّل المنحنيان المشاهدان  $Y_2$  و  $Y_1$  لراسم الاهتزاز المهبطى؟

2) يظهر على شاشة راسم الاهتزاز المهبطي المنحنيان (a) و (b) و (lلشكل-3).

أ- ما هو المنحنى المعطى بالمدخل  $Y_1$  ؛ برر إجابتك.

- اكتب المعادلة التفاضلية الموافقة لتطور المقدار الفيزيائي الذي يمثله هذا المنحني.

ب- جد قيمة ثابت الزمن  $au_1$  للدارة.

C و E من عن قيمة كلأ من E و 3

t=0 احسب شدة التيار (t) احسب شدة التيار (t) احسب شدة التحظة  $t \geq 0.6 \, s$ 

5) بعد نهاية شحن المكثفة نضع البادلة K في الوضع 2 في لحظة نعتبرها مبدأ الأزمنة.

أ- احسب قيمة  $au_2$  للدارة في هذه الحالة وقارنها بقيمة  $au_1$  ، ماذا تستنتج؟



 $t= au_2$  بنعل جول في اللحظة الكهربائية المحولة في الناقل الأومي  $R_2$  بفعل جول في اللحظة -

### التمرين الرابع: (04 نقاط)

في مرجع جيومركزي نعتبر حركة الأقمار الاصطناعية دائرية حول مركز الأرض التي نفرض أنها كرة متجانسة كتلتها  $M_T$  ونصف قطرها R.

نقبل أن القمر الاصطناعي في مداره يخضع لقوة جذب الأرض  $ec{F}_{T/s}$  فقط.

1) أ- عرّف المرجع الجيومركزي.

ب- اكتب العبارة الشعاعية للقوة  $\vec{F}_{T/s}$  بدلالة G (ثابت الجذب العام)،  $m_s$  ، R ،  $m_s$  ،  $m_$ 

ج- استنتج عبارة  $\vec{a}$  شعاع تسارع حركة القمر الاصطناعي، ما طبيعة الحركة؟

2) الجدول التّالي يعطي بعض خصائص حركة قمرين اصطناعيين حول الأرض.

أ- أحد القمرين الاصطناعيين جيومستقرًا، عيّنه مع التعليل.

ب- احسب تسارع الجاذبية الأرضية (g) عند نقطة من مدار القمر الاصطناعي Alsat1. ماذا تستنتج؟

ج- بيِّن اعتمادًا على معطيات الجدول أنّ القانون الثالث لكبلر مُحقَّق.

 $M_{\scriptscriptstyle T}$  د استتج قيمة تقريبية للكتلة

1~jour=23h~56min ، R=6380~km ،  $G=6,67\times 10^{-11}~N\cdot m^2\cdot kg^{-2}$  : المعطيات : .  $g_0=9,8\,\mathrm{m}\cdot s^{-2}$  : تسارع الجاذبية عند سطح الأرض

| القمر الاصطناعي    | Alsat1 | Astra  |
|--------------------|--------|--------|
| $T(s)\times 10^3$  | 5,964  | 86,160 |
| $h(m) \times 10^6$ | 0,70   | 35,65  |

### التمرين التجريبي: (04 نقاط)

مزجنا عند اللحظة  $m_0=38,4\,g$  من حمض كربوكسيلي مزجنا عند اللحظة  $n_0=0,4\,mo\ell$  ، t=0 من حمض كربوكسيلي مزجنا عند اللحظة  $C_nH_{2n+1}-COOH$ 



قسمنا المزيج بالتساوي على عشرة أنابيب اختبار تسد بإحكام وتوضع في حمام مائي درجة حرارته ثابتة  $^{\circ}C$   $^{\circ}C$  (الشكل $^{-}$ 4).

- 1) اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث. - ما هي خصائص هذا التفاعل؟
- 2) قمنا بإجراء تجربة مكنتنا من قياس كمية مادة الأستر المتشكل في كل أنبوب خلال الزمن ورسم

الشكل-5). (الشكل  $n_{ester} = f(t)$ 

- أعط البروتوكول التجريبي الموافق.
- (3) أ- علما أن ثابت التوازن لتفاعل الأسترة المدروس هو K=4 . حدّد كمية مادة الحمض في المزيج الابتدائي.
- ب- جد الصيغة المجملة للحمض الكربوكسيلي واستنتج الصيغة نصف المفصلة للأستر وأعط اسمه النظامي.



= احسب مردود التفاعل وقارنه بمردود التفاعل لمزيج ابتدائي متساوي المولات، كيف تفسر ذلك؟ = التركيب المولي للمزيج التفاعلي في كل أنبوب عند اللحظة  $t = 120 \, \mathrm{min}$ 

 $M(O) = 16g \cdot mol^{-1}$  ;  $M(C) = 12g \cdot mol^{-1}$  ;  $M(H) = 1g \cdot mol^{-1}$  ;