Оптимизация экономического портфеля с использованием методов машинного обучения Бакалаврский диплом

Михаил Давыдов

ФПМИ МФТИ, кафедра дискретной математики

23 июня 2024 г.

Инвесторы вкладывают свои деньги в акции, и хотят использовать для распределения денег эффективные алгоритмы.

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 2 / 1°

Инвесторы вкладывают свои деньги в акции, и хотят использовать для распределения денег эффективные алгоритмы. Если инвестор изначально не обладает информацией о стоимости активов, то в качестве модели можно использовать модель многоруких бандитов

Инвесторы вкладывают свои деньги в акции, и хотят использовать для распределения денег эффективные алгоритмы. Если инвестор изначально не обладает информацией о стоимости активов, то в качестве модели можно использовать модель многоруких бандитов

• Есть n рычагов, i-ый рычаг соответствует какому-то распределению со средним m_i . Изначально распределения, как и средние, неизвестны.

Инвесторы вкладывают свои деньги в акции, и хотят использовать для распределения денег эффективные алгоритмы. Если инвестор изначально не обладает информацией о стоимости активов, то в качестве модели можно использовать модель многоруких бандитов

- Есть n рычагов, i-ый рычаг соответствует какому-то распределению со средним m_i . Изначально распределения, как и средние, неизвестны.
- При нажатии на *i*-ый рычаг выдается награда в соответствии с *i*-ым распределением.

Инвесторы вкладывают свои деньги в акции, и хотят использовать для распределения денег эффективные алгоритмы. Если инвестор изначально не обладает информацией о стоимости активов, то в качестве модели можно использовать модель многоруких бандитов

- ullet Есть n рычагов, i-ый рычаг соответствует какому-то распределению со средним m_i . Изначально распределения, как и средние, неизвестны.
- При нажатии на i-ый рычаг выдается награда в соответствии с i-ым распределением.
- ullet Задача найти $rg \max_{\mathbf{p} \in \Delta^n} \mathbf{p}^T \cdot \mathbf{m} = \sum_{i=1}^n p_i m_i$, где $\Delta^n = \{ \mathbf{p} = (p_1,...,p_n) : (\sum_{i=1}^n p_i = 1) \wedge (orall i \; p_i \geqslant 0) \}$, \mathbf{p} отвечает за долю от общих средств, вкладываемых в каждый актив на каждом шаге.

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 2/19

Инвесторы вкладывают свои деньги в акции, и хотят использовать для распределения денег эффективные алгоритмы. Если инвестор изначально не обладает информацией о стоимости активов, то в качестве модели можно использовать модель многоруких бандитов

- ullet Есть n рычагов, i-ый рычаг соответствует какому-то распределению со средним m_i . Изначально распределения, как и средние, неизвестны.
- При нажатии на i-ый рычаг выдается награда в соответствии с i-ым распределением.
- Равносильно нахождению рычага с наибольшим средним

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 2/19

Учет рисков

• Появляется дисперсия σ_i^2 .

Михаил Давыдов ФПМИ МФТИ 23 июня 2024 г. 3/19

Учет рисков

- Появляется дисперсия σ_i^2 .
- Задача найти

$$\underset{\mathbf{p} \in \Delta^n}{\operatorname{arg\,max}} \left(\mathbf{p}^T \cdot \mathbf{m} - \lambda \left(\mathbf{p}^T \right)^2 \cdot \sigma^2 \right) = \sum_{i=1}^n p_i m_i - \lambda \sum_{i=1}^n p_i^2 \sigma_i^2$$

где $\lambda > 0$ – коэффициент отвращения, или неприятия к риску.

Учет рисков

- Появляется дисперсия σ_i^2 .
- Задача найти

$$\underset{\mathbf{p} \in \Delta^n}{\operatorname{arg\,max}} \left(\mathbf{p}^T \cdot \mathbf{m} - \lambda \left(\mathbf{p}^T \right)^2 \cdot \boldsymbol{\sigma}^2 \right) = \sum_{i=1}^n p_i m_i - \lambda \sum_{i=1}^n p_i^2 \sigma_i^2$$

где $\lambda > 0$ – коэффициент отвращения, или неприятия к риску.

 В этой трактовке задачи вектор вероятностей может не сосредотачиваться в одном рычаге.

 Проанализировать известные подходы в классической задаче о многоруких бандитах на предмет применимости для распределений, отличных от нормального.

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 4/19

- Проанализировать известные подходы в классической задаче о многоруких бандитах на предмет применимости для распределений, отличных от нормального.
- Придумать алгоритмы и подходы для решения задачи о многоруких бандитах с учетом степени отвращения к риску.

- Проанализировать известные подходы в классической задаче о многоруких бандитах на предмет применимости для распределений, отличных от нормального.
- Придумать алгоритмы и подходы для решения задачи о многоруких бандитах с учетом степени отвращения к риску.
- Протестировать созданные подходы на степенных распределениях.

4/19

- Проанализировать известные подходы в классической задаче о многоруких бандитах на предмет применимости для распределений, отличных от нормального.
- Придумать алгоритмы и подходы для решения задачи о многоруких бандитах с учетом степени отвращения к риску.
- Протестировать созданные подходы на степенных распределениях.
- Оценить степень применимости оценки риска через дисперсию

lacktriangle Greedy и ϵ -greedy

$$A_t = \begin{cases} \arg\max_a \, Q_t(a), & \text{with probability } 1 - \epsilon, \\ a \text{ random action}, & \text{with probability } \epsilon. \end{cases}$$

Михаил Давыдов ФПМИ МФТИ 23 июня 2024 г. 5/19

lacktriangle Greedy и ϵ -greedy

$$A_t = \begin{cases} \arg\max_a \, Q_t(a), & \text{with probability } 1 - \epsilon, \\ a \text{ random action}, & \text{with probability } \epsilon. \end{cases}$$

 $oldsymbol{oldsymbol{0}}$ Стратегия с позитивной инициализацией ($orall a \; Q_t(a) = d, \; d > 0$)

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 5/19

 $lue{0}$ Greedy и ϵ -greedy

$$A_t = \begin{cases} \arg\max_a \, Q_t(a), & \text{with probability } 1 - \epsilon, \\ a \text{ random action}, & \text{with probability } \epsilon. \end{cases}$$

- $oldsymbol{Q}$ Стратегия с позитивной инициализацией ($orall a\ Q_t(a)=d,\ d>0$)
- Upper-Confidence Bound selection

$$A_t = \underset{a}{\operatorname{arg\,max}} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right], \ c > 0$$

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 5/19

lacktriangle Greedy и ϵ -greedy

$$A_t = \begin{cases} \arg\max_a \, Q_t(a), & \text{with probability } 1 - \epsilon, \\ a \text{ random action}, & \text{with probability } \epsilon. \end{cases}$$

- $oldsymbol{Q}$ Стратегия с позитивной инициализацией ($orall a\ Q_t(a)=d,\ d>0$)
- Upper-Confidence Bound selection

$$A_t = \underset{a}{\operatorname{arg\,max}} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right], \ c > 0$$

Gradient bandit

Михаил Давыдов ФПМИ МФТИ 23 июня 2024 г. 5/19

 $lue{0}$ Greedy и ϵ -greedy

$$A_t = \begin{cases} \arg\max_a \, Q_t(a), & \text{with probability } 1 - \epsilon, \\ a \text{ random action}, & \text{with probability } \epsilon. \end{cases}$$

- ② Стратегия с позитивной инициализацией ($\forall a \ Q_t(a) = d, \ d > 0$)
- Upper-Confidence Bound selection

$$A_t = \underset{a}{\operatorname{arg\,max}} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right], \ c > 0$$

Gradient bandit

В конце все алгоритмы были сравнены в зависимости от их гиперпараметров

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 5/19

Параметры

- ullet Стандартное нормальное (N(0,1) или t_∞)
- Распределение Стьюдента с дисперсией 1 и 3-мя степенями свободы t_3 (для единичной дисперсии распределение было домножено на $\sqrt{\frac{1}{3}}$)
- Распределение Стьюдента нормированное $t_{2.1}$ с 2.1 степенями свободы.
- ullet Распределение Стьюдента с 2-мя степенями свободы t_2
- ullet Распределение Коши t_1 (только в задаче без учета риска)

Результаты – ϵ -greedy

Результаты – финальное тестирование

Проделанные эксперименты позволяют судить о том, что Gradient bandits, ϵ -greedy и UCB – стратегии показывают высокую эффективность на степенных распределениях. UCB при этом лучшая из стратегий.

Результаты

 Разработаны градиентный жадный и алгоритмический жадный алгоритмы для вычисления

$$\underset{\mathbf{p} \in \Delta^n}{\operatorname{arg\,max}} \ = \sum_{i=1}^n p_i m_i - \lambda \sum_{i=1}^n p_i^2 \sigma_i^2$$

, при известных m_i и σ_i^2 , причем последний работает за $O(n \log n)$

Михаил Давыдов ФПМИ МФТИ 23 июня 2024 г. 10/19

Результаты

 Разработаны градиентный жадный и алгоритмический жадный алгоритмы для вычисления

$$\underset{\mathbf{p} \in \Delta^n}{\operatorname{arg\,max}} \ = \sum_{i=1}^n p_i m_i - \lambda \sum_{i=1}^n p_i^2 \sigma_i^2$$

, при известных m_i и σ_i^2 , причем последний работает за $O(n \log n)$

② Адаптированы стратегии ϵ -greedy, adaptive ϵ , positive initialization, UCB, gradient bandits.

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 10/19

Результаты

 Разработаны градиентный жадный и алгоритмический жадный алгоритмы для вычисления

$$\underset{\mathbf{p} \in \Delta^n}{\operatorname{arg\,max}} \ = \sum_{i=1}^n p_i m_i - \lambda \sum_{i=1}^n p_i^2 \sigma_i^2$$

, при известных m_i и σ_i^2 , причем последний работает за $O(n \log n)$

- ② Адаптированы стратегии ϵ -greedy, adaptive ϵ , positive initialization, UCB, gradient bandits.
- Создана стратегия с корректировкой дисперсии, переработана стратегия VDBE.

Михаил Лавылов ФПМИ МФТИ 23 июня 2024 г. 10/19

Метрики

• Среднее сожаление: чем ближе к 0, тем лучше. Если < 0, то алгоритм "переоценивает" себя.

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 11/19

Метрики

- Среднее сожаление: чем ближе к 0, тем лучше. Если < 0, то алгоритм "переоценивает" себя.
- ullet Среднее реальное сожаление: всегда ≥ 0 , чем ниже, тем лучше.

Михаил Давыдов ФПМИ МФТИ 23 июня 2024 г. 11/19

Метрики

- Среднее сожаление: чем ближе к 0, тем лучше. Если < 0, то алгоритм "переоценивает" себя.
- ullet Среднее реальное сожаление: всегда ≥ 0 , чем ниже, тем лучше.
- Процент оптимальных действий (чем выше, тем лучше):

$$\delta = 1 - \frac{1}{2} \sum_{i=1}^{n} |p_i - p_{i,max}|$$

11/19

Результаты – ϵ -greedy

Результаты – ϵ -greedy

Результаты – Причины плохих метрик для $t_{2.1}$

14/19

Результаты – Коррекция выборочной дисперсии

15/19

Жадная позитивная инициализация

Результаты – UCB и gradient bandits

ullet ϵ -greedy дает высокую эффективность для t_3 и t_∞

 Михаил Давыдов
 ФПМИ МФТИ
 23 июня 2024 г.
 18/19

- ullet ϵ -greedy дает высокую эффективность для t_3 и t_∞
- ullet Для улучшения метрик для $t_{2.1}$ можно использовать коррекцию дисперсии.

- ullet ϵ -greedy дает высокую эффективность для t_3 и t_∞
- ullet Для улучшения метрик для $t_{2.1}$ можно использовать коррекцию дисперсии.
- UCB даже без замены дисперсии устраняет разрыв между внутренней и внешней вероятностями в ϵ -greedy

Михаил Давыдов ФПМИ МФТИ 23 июня 2024 г. 18/19

- ullet ϵ -greedy дает высокую эффективность для t_3 и t_∞
- ullet Для улучшения метрик для $t_{2.1}$ можно использовать коррекцию дисперсии.
- UCB даже без замены дисперсии устраняет разрыв между внутренней и внешней вероятностями в ϵ -greedy
- ullet Gradient bandits показывают хорошие результаты и могут быть использованы при больших λ

- ullet ϵ -greedy дает высокую эффективность для t_3 и t_∞
- ullet Для улучшения метрик для $t_{2.1}$ можно использовать коррекцию дисперсии.
- UCB даже без замены дисперсии устраняет разрыв между внутренней и внешней вероятностями в ϵ -greedy
- ullet Gradient bandits показывают хорошие результаты и могут быть использованы при больших λ
- Оценка рисков через дисперсию при ν , близких к 2, слабоприменима

18/19

Заключение

В результате написания работы:

 Проанализированы известные подходы в классической задаче о многоруких бандитах на предмет применимости для распределений, отличных от нормального. По результатам UCB показывает себя лучше других алгоритов на всех распределениях.

Заключение

В результате написания работы:

- Проанализированы известные подходы в классической задаче о многоруких бандитах на предмет применимости для распределений, отличных от нормального. По результатам UCB показывает себя лучше других алгоритов на всех распределениях.
- Придуманы и адаптированы алгоритмы и подходы для решения задачи о многоруких бандитах с учетом степени отвращения к риску. Среди них: жадный алгоритм за $O(n\log n)$, жадный алгоритм через градиентный подъем, ϵ -greedy, UCB, gradient bandits.

Заключение

В результате написания работы:

- Проанализированы известные подходы в классической задаче о многоруких бандитах на предмет применимости для распределений, отличных от нормального. По результатам UCB показывает себя лучше других алгоритов на всех распределениях.
- Придуманы и адаптированы алгоритмы и подходы для решения задачи о многоруких бандитах с учетом степени отвращения к риску. Среди них: жадный алгоритм за $O(n\log n)$, жадный алгоритм через градиентный подъем, ϵ -greedy, UCB, gradient bandits.
- Протестированы созданные подходы на различных распределениях, получена высокая эффективность стратегий на распределениях Стьюдента с $\nu \geq 3$. Сделан вывод о слабой применимости оценки риска через дисперсию при ν , близких к 2.