

Analisi I - 13/6/24 - Prova Scritta (versione A)

Esercizio 1 (6 punti). Stabilire il carattere dell'integrale improprio

$$\int_{2}^{+\infty} \frac{e^{1/x^{\alpha}} - 1}{\sqrt[3]{x^{2} - 4}} \, dx$$

al variare del parametro $\alpha > 0$.

Detta f la funzione integranda, osserviamo che f(x) > 0 per ogni x > 2 e che f è illimitata per $x \to 2^+$. Quindi l'integrale è improprio rispetto ad entrambi gli estremi e risulterà convergente se e solo se gli integrali

$$I_1 = \int_2^3 \frac{e^{1/x^{\alpha}} - 1}{\sqrt[3]{x^2 - 4}} dx$$
 $I_2 = \int_3^{+\infty} \frac{e^{1/x^{\alpha}} - 1}{\sqrt[3]{x^2 - 4}} dx$

sono entrambi convergenti.

Per quanto riguarda I_1 , osserviamo che

$$\frac{e^{1/x^{\alpha}}-1}{\sqrt[3]{x^2-4}} = \frac{e^{1/x^{\alpha}}-1}{\sqrt[3]{(x-2)(x+2)}} = \frac{e^{1/x^{\alpha}}-1}{(x-2)^{1/3}(x+2)^{1/3}} \sim \frac{c}{(x-2)^{1/3}}, \qquad x \to 2^+,$$

dove c > 0 è una costante: pertanto, per il criterio del confronto asintotico l'integrale I_1 è convergente. Per quanto riguarda I_2 , ricordato che $e^t - 1 \sim t$ per $t \to 0$, si ha invece

$$\frac{e^{1/x^{\alpha}} - 1}{\sqrt[3]{x^2 - 4}} \sim \frac{1/x^{\alpha}}{x^{2/3}} = \frac{1}{x^{2/3 + \alpha}}, \qquad x \to +\infty.$$

Pertanto per il criterio del confronto asintotico I_2 è convergente se e solo se $2/3 + \alpha > 1$ cioè se e solo se $\alpha > 1/3$.

In conclusione, l'integrale assegnato converge se e solo se $\alpha > 1/3$.

Esercizio 2 (9 punti). Sia log il logaritmo naturale. Studiare la seguente funzione

$$f(x) = x^3 \left(\log|x| - 1\right)$$

rispondendo ai seguenti punti.

(2a) Dominio, eventuali simmetrie e periodicità.

Il dominio di $f \in \mathbb{R} \setminus \{0\}$ (a posteriori, però, ci si accorgerà che la funzione può essere prolungata per continuità in x = 0). La funzione è dispari.

(2b) Limiti agli estremi del dominio ed eventuali asintoti.

Poiché f è dispari, è sufficiente calcolare i limiti per $x \to +\infty$ e per $x \to 0^+$. Si ha

$$\lim_{x \to +\infty} f(x) = +\infty$$

e, per la gerarchia degli infiniti,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{\log |x|}{1/x^3} - x^3 \right) = 0.$$

Non vi sono dunque asintoti verticali (anzi, la funzione f può essere prolungata per continuità in x = 0 ponendo f(0) = 0) né orizzontali. Inoltre essendo

$$\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$$

non vi sono neanche asintoti obliqui.

(2c) Segno e zeri.

Per x > 0, si ha

$$f(x) > 0 \iff x^3(\log x - 1) > 0 \iff \log x > 1 \iff x > e.$$

Quindi, ricordato che f è dispari, deduciamo che f è positiva su $(-e,0) \cup (e,+\infty)$ e negativa su $(-\infty,e) \cup (0,e)$. I valori $x=\pm e$ sono zeri (inoltre, come già osservato al punto precendente, x=0 è un ulteriore zero se si intende f prolungata per continuità).

(2d) Derivata e intervalli di monotonia.

Per x > 0, si ha

$$f'(x) = x^2(3\log x - 2)$$

e dunque

$$f'(x) > 0 \iff \log x > \frac{2}{3} \iff x > e^{2/3}.$$

Ricordato che f è dispari, deduciamo che f è crescente su $(-\infty, -e^{2/3})$ e su $(e^{2/3}, +\infty)$ ed è descrescente su $(-e^{2/3}, e^{2/3})$.

(2e) Eventuali massimi e minimi.

Dall'analisi della monotonia, si deduce che $x=-e^{2/3}$ è un punto di massimo locale, mentre $x=e^{2/3}$ è un punto di minimo locale. Non vi sono né massimi né minimi globali.

(2f) Tracciare un grafico qualitativo di f.

