Week 9: Temporal difference learning

COMP90054 – Al Planning for Autonomy

Key concepts

- Q-learning and SARSA
- On-policy vs off-policy learning

Model-based vs Model-free

- Model-based: Know the transition probability $P_a(s'|s)$ and reward function r(s, a, s')
 - E.g: Value Iteration
- Model-free: Don't know the transition probability and reward function
 - E.g: SARSA, Q-learning

hday

Q-learning vs. SARSA

offline learning vs. online learning (next workshop).

	Max			get Q	of the next
Q-learning (Off-policy)		1	SARSA (On-policy)		action
$Q(s,a) = Q(s,a) + \alpha[r + \gamma]$	$\max_{a' \in A(s')} Q(s', a')$	-Q(s,a)	$Q(s,a) = Q(s,a) + \alpha[r + \gamma]$	$Q(s',\pi(s'))$	-Q(s,a)
Update rule: Not update based on the policy. Update Q-function based on the assumption that the next action would be the action with the maximum Q.			Update rule: Updated based on the policy. We know the action that it will execute next (whether it is best or not) when performing the update		
Optimistic: the greedy action policy may choose an action of		in fact, the			

- Learning from prior experience
- The main advantage of off-policy approaches is that they can use samples from sources other than their own policy.
- Learning on the job
- The main advantage of on-policy approaches is that they can learn optimal behaviour while operating in their environment.

Problem 2: Q-learning Q(Suarez, shoot)= -0.2

State	Pass	Shoot	Return	
Messi	-0.4	-0.8	-	
Suarez	-0.7	-0.2	-	
Scored	-	-	1.2	

In the next step of the episode, from the state 'Suarez', Suarez passes the ball to Messi. Show the Q-learning update for this action using a discount factor $\gamma = 0.9$ and learning rate $\alpha = 0.4$

Note: Assume that this is a model-free problem, so the transition probabilities are not accessible to your algorithm.

$$\frac{Q(s,a) = Q(s,a) + \alpha[r + \gamma \max_{a' \in A(s')}Q(s',a') - Q(s,a)]}{Q(s,a) = Q(s,a) + \alpha[r + \gamma \max_{a' \in A(s')}Q(s',a') - Q(s,a)]}$$

$$\frac{Q(s,a) = Q(s,a) + \alpha[r + \gamma \max_{a' \in A(s')}Q(s',a') - Q(s,a)]}{S}$$

$$\frac{S}{a}$$

$$\frac{S$$

Problen Q-1	SARSA		
	Pass	Shoot	Return
Messi	-0.4	-0.8	-
Suarez	-0.7	-0.2	-
Scored	_	_	1.2

Consider again being in the state 'Suarez', Suarez passes the ball to Messi and then Messi decides to shoot. Show the SARSA update for the Pass action using a discount factor $\gamma = 0.9$ and learning rate $\alpha = 0.4$ and assuming a' (the next action to be execute) is **Shoot**. Compare to the Q-learning update. What is different?

$$Q(s,a) = Q(s,a) + \alpha[r + \gamma Q(s',\pi(s')) - Q(s,a)]$$
Sugget $\frac{\gamma ass}{\alpha}$ Mussi $\frac{s nass}{\pi(s')}$

Q(Suarez, pass) = Q(Suarez, pass) +
$$\propto$$
[r(Suarez, pass, Messi) + \times Q(Messi, short)
= -0.7 + 0.4 [-1 + 0.9 ×(-0.8) - (-0.7)]