Sensitivity Analyses for Decision Modeling

Risha Gidwani, DrPH June 2014

Content

- Why sensitivity analyses?
- Modeling Uncertainty
 - One-way sensitivity Analyses
 - Tornado Diagrams
 - Scenario Analyses
 - Probabilistic Sensitivity Analyses

Output of a Decision Model

Type of Model	Output			
Budget Impact Model	Cost per strategy			
Cost Benefit Model	Net social benefit = Incremental Benefit (cost) – Incremental Costs			
Cost-Effectiveness Model	$ICER = rac{\Delta \ cost}{\Delta \ health \ effect}$			
Cost-utility Model	$ICER = \frac{\Delta \cos t}{\Delta QALYs}$			

Cost-effectiveness Model quadrants

Poll: Which quadrant represents a cost-effective strategy?

Cost-effectiveness Model quadrants

Quadrant I:

More costly and more effective(?)

Quadrant II:

More costly and less effective(No!)

Quadrant III:

Less costly and less effective(?)

Quadrant IV:

Less costly and more effective (Yes!)

Cost-effectiveness Model output

Variation in your ICER may cause your decision to change

Why sensitivity analysis?

- Evaluate how uncertainty in model <u>inputs</u> affects the model <u>outputs</u>
 - Base-case model → ICERs
 - Sensitivity Analyses → Variation in ICER

Statistical Analysis	Cost-Effectiveness Analysis			
Mean	ICER (Base-Case)			
Variation around Mean	Variation around ICER			

Varying point estimates

(TreeAge model)

General Approach, Sensitivity Analysis

- 1. Change model input
- 2. Recalculate ICER
- 3. If new ICER is substantially different from old ICER → model is sensitive to that parameter
 - In this case, it is very important to be accurate about this parameter!

Types of inputs

- Cost
- Health Effect
 - Life Years Saved
 - Utilities
 - Cases of Disease Avoided
 - Infections Cured
- Probabilities
- Discount Rate

Types of Uncertainty

Term	Models	AKA	Analagous term in regression	Example
Stochastic Uncertainty	Variation between identical patients	- First-order uncertainty - microsimulation	Error term	19% of Medicare beneficiaries readmitted to the hospital within 30 days. Person 1 = readmitted, Persons 2, 3, 4, 5 = not readmitted
Parameter Uncertainty	Uncertainty in estimation of parameter of interest	- Second-order uncertainty - PSA	Standard Error of the estimate	Toss a fair coin 100 times. You get 55 "heads" and 45 "tails"
Heterogeneity	Differences in patient characteristics	- Observed heterogeneity - variability	Beta-coefficients/test of sig. amongst different levels of a covariate	Drug is cost-effective for people with moderate disease, but is not cost-effective for people with mild or advanced disease

Briggs et al. 2012 Model Parameter Estimation and Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force – 6. *Value in Health*, 15: 835-842.

Types of Sensitivity Analyses

Types of Sensitivity Analyses

- One-way sensitivity Analyses
- Tornado Diagrams
- Scenario Analyses
- Probabilistic Sensitivity Analyses

Often Deterministic

Types of Sensitivity Analyses

■ **Deterministic** (**DSA**): model input is specified as <u>multiple point estimates</u> and varied manually

■ **Probabilistic** (**PSA**): model inputs are specified as a <u>distribution</u> and varied

DSA versus **PSA**

Example: Cost input, cost of outpatient visit

	DSA	PSA
Base case	\$100	\$100
Input	\$80, \$90, \$110, \$120	
Results	ICER A (when cost is \$80) ICER B (when cost is \$90) ICER C (when cost is \$110) ICER D (when cost is \$120)	The mean ICER when we vary the base-case using a normal distribution with a mean of \$100 and standard deviation of \$10 is X, using 1000 iterations

DSA, PSA and Model structure

	DSA	PSA
Markov Cohort	X	X
Individual-level Markov Model	X	X
Discrete-Event Simulation	X	X

Sensitivity Analyses in TreeAge

PE/DVT example

PE/DVT example – Hypothetical Probabilities

PE/DVT example – Hypothetical full inputs

Model results, with point estimates

One-Way Sensitivity Analyses

One-way sensitivity analysis

 Vary one input (parameter) at a time, and see how model results are affected

- Example: probability of AE_chemo
 - Base-case: 0.65
 - Sensitivity analysis: range from 40-80%
 - Run 5 models, each with the following input:
 - .040, 0.50, 0.60, 0.70, 0.80

Inputting variables to run a sensitivity analysis

- Best practice:
 - 1. Insert variables, not point estimates
 - Example: probability of AE, chemoprophylaxis
 - "0.65" (Point estimate)
 - "p_AE_chemo" (Variable)
 - 2. Then, define variables as:
 - Point estimates (DSA) or
 - Distributions (PSA)
 - Example: definition of probability of Adverse Event, chemoprophylaxis
 - Defining variable as a point estimate: "p_AE_chemo" = 0.65"
 - Defining variable as a distribution: "p_AE_chemo" = dist_AE_chemo"

PE/DVT example – Probabilities as Point Estimates

PE/DVT example — Probabilities as Variables and Variables defined as Point Estimates

One-way sensitivity analyses

Define your range

One-Way Sensit	ivity Analysis Se	tup				
Variable	Low value	High value	Intervals	Definitions	Correlations	
p_AE_chemo	0.4	0.8	4	[Treating Patients: 0		

Output, one-way sensitivity analyses

Sensitivity Cost Effectiveness Analysis								
p_AE_chemo	Strategy	Cost	Incr cost	Eff	Incr Eff	C/E	Incr C/E (ICER)	Dominance
⊡ 0.4								
	Mechanical Prophylaxis	296.00	0.00	0.97	0.00	303.96	0.00	
	Chemophrophylaxis	1072.00	776.00	0.90	-0.07	1187.50	-10919.58	(Dominated)
.÷. 0.5								
	Mechanical Prophylaxis	296.00	0.00	0.97	0.00	303.96	0.00	
	Chemophrophylaxis	1172.00	876.00	0.88	-0.09	1325.86	-9750.26	(Dominated)
.÷. 0.6								
	Mechanical Prophylaxis	296.00	0.00	0.97	0.00	303.96	0.00	
	Chemophrophylaxis	1272.00	976.00	0.87	-0.11	1470.22	-8985.25	(Dominated)
	Mechanical Prophylaxis	296.00	0.00	0.97	0.00	303.96	0.00	
	Chemophrophylaxis	1372.00	1076.00	0.85	-0.13	1620.99	-8445.76	(Dominated)
⊡ 0.8								
	Mechanical Prophylaxis	296.00	0.00	0.97	0.00	303.96	0.00	
i	Chemophrophylaxis	1472.00	1176.00	0.83	-0.15	1778.59	-8044.88	(Dominated)

Inputs for a one-way sensitivity analysis

- Can get range from 95% Confidence Interval reported
- Varying a parameter an arbitrary range,
 such as ± 50% -- not a great practice
 - This will demonstrate model sensitivity, but does not reflect uncertainty
- Expert Opinion

Series of One-way Sensitivity Analyses

- 1. Vary probability of chemoprophylaxisrelated adverse event
 - a. Compare these ICERs to base-case ICER
- 2. Vary cost of treating adverse event
 - a. Compare these ICERs to base-case ICER
- 3. Vary probability of death from PE/DVT
 - a. Compare these ICERs to base-case ICER
- 4. Etc.

Caution

- Generally, a series of one-way sensitivity analyses will underestimate uncertainty in a cost-effectiveness ratio:
 - The ICER is based off of multiple parameters, not just one
 - Here, you are assuming that uncertainty exists only in one parameter
 - Solution: Probabilistic Sensitivity Analyses!

But...

You should still do one-way sensitivity analyses!

Easy way to understand which parameters matter

Tornado diagrams

 Tell you which of your one-way sensitivity analyses had the greatest impact on model results

Bar: a one-way sensitivity analysis

Width of bar represents impact on model results

Conducting a tornado diagram

Tornado Diagram (Net Benefits)

Tornado Results (ICER) – recommended graph to view

Tornado diagram, text report -

Tornado Sensitivity Analysis - ICER Report							
VARIABLE_NAME	VARIABLE_RANGE	LOW_VALUE	HTGH_VALUE	SPREAD	SPREAD_SQR	RISK_PCT	CUMUL_PCT
p_PEDVT_mechan	0.01 to 0.3	-43639.51223	599.24346	44238.75569	1957067504.59758	35.90785	35.90785
p_AE_chemo	0.4 to 0.8	-10919.58067	-8044.87618	2874.70449	8263925.87916	0.15162	36.09902
p_PEDVT_chemo	0.01 to 0.4	-8755.5842	-7313.90762	1441.67658	2078431.34776	0.03813	35.94598
p_death_from_PEDVT	0.5 to 0.85	-8792.95107	-8565.56971	227.38136	51702.28401	0.00095	35.94693
p_death_from_PEDVT_and_AE	0.5 to 0.9	-8793.94024	-8635.18248	158.75776	25204.02665	0.00046	35.94739

- The high value for p_PEDVT_mechan results in chemoprophylaxis now being the preferred strategy
- Tells us we need to be more precise with our estimate of PE/DVT associated with mechanical prophylaxis
- Other variables don't impact out model conclusions

Limitations of Tornado diagrams

Just a series of one-way sensitivity analyses, with results presented on top of one another

■ There is not just uncertainty in one parameter — there is uncertainty in most, if not all, parameters

Scenario Analyses

Scenario analyses

- Interested in subgroups
 - Cost-effectiveness of chemical versus mechanical prophylaxis in 85+ only
 - Change risk of PE/DVT, risk of AE, risk of death from PE/DVT/AE
- Changes the <u>point estimate</u> of multiple parameters
- Do not incorporate uncertainty!

Probabilistic Sensitivity Analyses

Probabilistic sensitivity analysis

- Vary multiple parameters simultaneously
- Each variable comes from a *distribution*
- Model is run many times (1,000, 10,000, etc.)
 - Each model iteration plucks a value from that distribution and uses it as the model input

PSA

- Values are sampled with replacement!
- Values sampled based on their likelihood of occurrence

- Results (comparing strategy A to B):
 - Mean Cost_A & variation in Cost_A
 - Mean Cost_B & variation in Cost_B
 - Mean Health Effect_A & variation in Health Effect_A
 - Mean Health Effect_B & variation in Health Effect_B

Choosing distributions for your PSA – general guidance

Costs: log-normal, normal

Probabilities: beta

Utilities: beta

Inputting variables into your PSA

 Need to define variables in terms of distributions, rather than point estimates

Defining distributions in a PSA

Creating distribution-based definitions

1. Create the distribution: d_AE_chemo

Define the distribution in terms of its shape

- normal, beta, etc
- Define the parameters for that distribution
 - mean/variance, alpha/beta, etc.

2. Assign the distribution to a variable:

prob_AE_chemo = d_AE_chemo

Running a PSA

- Define all variables (model inputs) as distributions
- Determine your number of iterations

Ways to show uncertainty in the ICER

Cost-effectiveness planes (CE scatterplot)

Cost-effectiveness acceptability curve

Net benefits

CE Scatter Plot

"ICE Report"

Incremental CE Plot Report Chemophrophylaxis v. Mechanical Prophylaxis						
COMPONENT	QUADRANT	INCREFF	INCRCOST	INCRCE	FREQUENCY	PROPORTION
C1	IV	IE>0	IC<0	Superior	0	0
C2	I	IE>0	IC>0	ICER<50000.0	0	0
C3	III	IE<0	IC<0	ICER>50000.0	0	0
C4	I	IE>0	IC>0	ICER>50000.0	1	0.001
C5	III	IE<0	IC<0	ICER<50000.0	0	0
C6	II	IE<0	IC>0	Inferior	999	0.999
Indiff	origin	IE=0	IC=0	0/0	0	0

- In this hypothetical example (with entirely made-up data) Mechanical Prophylaxis is cost-effective compared to Chemo Prophylaxis 99.9% of the time
 - Costs less AND provides more health benefit

Cost-Effectiveness Plane, if in multiple quadrants

Incremental Cost-Effectiveness, Mechanical Prophylaxis v. Chemophrophylaxis

Ways one should <u>not</u> show uncertainty in the ICER

- Show only the numeric value of the ICER and Confidence Interval

$$ICER = \frac{Cost \, A - Cost \, B}{Effect \, A - Effect \, B} = \frac{-40,000}{-1} = \frac{\$40,000}{/QALY}$$

$$ICER = \frac{Cost \, A - Cost \, B}{Effect \, A - Effect \, B} = \frac{40,000}{1} = \frac{\$40,000}{/QALY}$$

Willingness to pay (WTP)

- Previously, I had to specify my WTP
- What if you don't know what that is?
 - Or different decision makers have different WTP?

- Use a <u>Cost-Effectiveness Acceptability Curve</u>
 - Percentage of iterations that favor each strategy, over a range of WTP

Cost-effectiveness acceptability curves – hypothetical

Net Benefits

- Combine information on costs, outcomes, and willingness to pay
 - Net Monetary Benefits

 Positive number indicates technology is costeffective

Use when you are very certain about your WTP

Net Monetary benefits

Net Monetary Benefits

$$NMB = (\Delta Effect * WTP) - \Delta Cost$$

(-0.11 * \$50,000) - \$1,057 = \$-6,557

TreeAge- Net Monetary benefits

3 ways to show uncertainty in the ICER

- 1. Cost-effectiveness planes/quadrant
- 2. Cost-effectiveness acceptability curve
- 3. Net monetary benefits (only if you are certain on your WTP)

How many iterations in a PSA?

- More distributions = more iterations
- Stop when the simulations generate mean values (without seeding) that are very similar

100 iterations

Monte Carlo C-E Statistics					
Attribute	Statistic	Mechanical Prophylaxis	Chemophrophyl.		
⊡ · Cost					
	Mean	297.80	1413.88		
	Std Deviation	13.17	919.06		
	Minimum	269.18	613.56		
	2.5%	278.24	620.09		
	10%	281.11	654.41		
	Median	295.40	1056.64		
	90%	315.54	2697.37		
	97.5%	324.32	3593.22		
	Maximum	336.49	5047.80		
	Size (n)	100.00	100.00		
	Variance	173.49	844673.03		
	Variance/Size	1.73	8446.73		
	SQRT[Varianc	1.32	91.91		
Eff					
	Mean	0.97	0.85		
: :					

PSA Summary

- Looks at model results when multiple sources of uncertainty are evaluated simultaneously
- Results presented in terms of:
 - C-E planes (quadrants)
 - C-E acceptability curves
 - Net Monetary Benefits
- Required in order to publish in a peerreviewed journal!

Joint Parameter Uncertainty

Joint Parameter uncertainty

The model will assume no covariance between parameters unless you specify otherwise

Accommodating Joint Parameter uncertainty

Define one variable in terms of the other

$$X = Y + (Y*0.2)$$

- Use a table to link variables, have PSA identify Index
 - Variable X = if(PSA = 1; Table 1[Index; 1]; 0.55)
 - Variable Y = if(PSA = 1; Table 1[Index; 2]; 0.65)

Index	X	Y
1	0.60	0.67
2	0.480	0.89
3	0.89	0.93

- If the PSA indicator is turned on:
 - go to Table 1, choose the row (Index) corresponding with the model cycle we are in and use the value in column 1
- otherwise, use a value of 0.55

SUMMARY

Summary

- All model inputs have uncertainty
- Test how this uncertainty affects model results
 - Do so by varying model inputs
- Tornado diagrams: first-pass understanding of the most important variables in your model
- Need to run a PSA in order to fully evaluate the combination of uncertainty in all/most model inputs on robustness of model results
 - Be careful to accommodate joint parameter uncertainty

References

General Overview:

Hunink M, Glasziou P, Siegel J, et al. "Chapter 11:
 Variability and Uncertainty" in <u>Decision Making in Health</u>
 and Medicine: Integrating Evidence and Values. Cambridge,
 UK: Cambridge Press, 2004. 339-363.

Best Practices:

Briggs et al. Model Parameter Estimation and Uncertainty: A
Report of the ISPOR-SMDM Modeling Good Research
Practices Task Force – 6. *Value in Health*, 2012, 15: 835842.

QUESTIONS?