Aprendizado de Máquina

Métricas para Classificação

Prof. Regis Pires Magalhães

regismagalhaes@ufc.br - http://bit.ly/ufcregis

		Actual Class y			
		Positive	Negative		
$h_{ heta}(x)$	Predicted positive outcome	True positive (TP)	False positive (FP)		
Predicted outcome	Predicted negative outcome	False negative (FN)	True negative (TN)		

	True condition		ndition			
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positive	cy (ACC) = + Σ True negative population
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	Σ Fals	ery rate (FDR) = e positive condition positive
condition	Predicted condition negative	False negative, Type II error	True negative False omission rate (FOR) = Σ False negative Σ Predicted condition negative		Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{\text{TPR}}{\text{FPR}}$	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Condition positive	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$(DOR) = \frac{LR+}{LR-}$	1 Recall + Trecision

Table of arrestynes	Table of error types		
Table of error types	True	False	
	Fail to reject	Correct inference (True Positive)	Type II error (False Negative)
Decision About Null Hypothesis (H ₀)	Reject	Type I error (False Positive)	Correct inference (True Negative)

- A type I error occurs when the null hypothesis (H_0) is true, but is rejected.
 - Hypothesis: "Adding water to toothpaste protects against cavities."
 - Null hypothesis (H_0) : "Adding water does not make toothpaste more effective in fighting cavities."
- A type II error occurs when the null hypothesis is false, but erroneously fails to be rejected.
 - Hypothesis: "Adding fluoride to toothpaste protects against cavities."
 - Null hypothesis (H0): "Adding fluoride to toothpaste has no effect on cavities."

Measure	Formula
ACC	(TP + TN) / (TP + TN + FN + FP)
ERR	(FP + FN) / (TP + TN + FN + FP)
SN, TPR, REC	TP / (TP + FN)
SP	TN / (TN + FP)
FPR	FP / (TN + FP)
PREC, PPV	TP / (TP + FP)
MCC	(TP * TN—FP * FN) / ((TP + FP)(TP + FN)(TN + FP)(TN + FN)) ^{1/2}
F _{0.5}	1.5 * PREC * REC / (0.25 * PREC + REC)
F ₁	2 * PREC * REC / (PREC + REC)
F ₂	5 * PREC * REC / (4 * PREC + REC)

ACC: accuracy; ERR: error rate; SN: sensitivity; TPR: true positive rate; REC: recall; SP: specificity; FPR: false positive rate; PREC: precision; PPV: positive predictive value; MCC: Matthews correlation coefficient; F: F score; TP: true positives; TN: true negatives; FP: false positives; FN: false negatives

Confusion Matrix

		Actual class			
		Cat	Dog	Rabbit	
be	Cat	5	2	0	
Predicted	Dog	3	3	2	
P. S	Rabbit	0	1	11	

Confusion Matrix

		Actual class				
		Cat	Non-cat			
b	Cat	5 True Positives	2 False Positives			
Predicted	Non-cat	3 False Negatives	17 True Negatives			

	·	A A
Coni	rusion	Matrix

		Actual class				
		Cat	Non-cat			
p	Cat	5 True Positives	2 False Positives			
Predicted class	Non-cat	3 False Negatives	17 True Negatives			

- Accuracy (Acurácia): Overall, how often is the classifier correct?
 - (TP+TN)/total = (5+17)/27
- Precision (Precisão): When it predicts yes, how often is it correct?
 - TP/predicted yes = 5/7
- Recall (Revocação) or True Positive Rate: When it's actually yes, how often does it predict yes?
 - TP/actual yes = 5/8
 - also known as "Sensitivity" or "Recall"
- F Score: This is a weighted average of the true positive rate (recall) and precision.

F-measure

The traditional F-measure or balanced F-score (F_1 score) is the harmonic mean of precision and recall:

$$F_1 = rac{2}{rac{1}{ ext{recall}} + rac{1}{ ext{precision}}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

$$F_{eta} = (1 + eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$$

 F_2 measure weighs recall higher than precision (by placing more emphasis on false negatives).

 $F_{0.5}$ measure weighs recall lower than precision (by attenuating the influence of false negatives).

Confusion Matrix

```
from sklearn import metrics

y = ['cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'dog', 'dog', 'dog', 'dog', 'dog', 'dog', 'dog', 'rabbit', 'rabbit', 'rabbit', 'rabbit', 'rabbit', 'rabbit', 'rabbit', 'rabbit', 'rabbit']

y_pred = ['cat', 'cat', 'cat', 'cat', 'cat', 'dog', 'dog', 'dog', 'cat', 'cat', 'dog', 'dog', 'rabbit', 'rabbit']

cm = metrics.confusion_matrix(y, y_pred, labels=['cat', 'dog', 'rabbit'])
print(cm)
```

Predicted class

		Actual class		
		Cat	Dog	Rabbit
D ₀	Cat	5	2	0
Predicted class	Dog	3	3	2
P. O	Rabbit	0	1	11

Accuracy

```
Predicted class

C d r Accuracy = (TP + TN) / Total

C [ 5 3 0] True Positive (TP) + True Negative (TN) = 19

C [ 2 3 1] Total = 27

Accuracy = 19 / 27 = 0.7037037037
```

```
metrics.accuracy_score(y, y_pred)
0.70370370370370372
```

```
accuracy = np.sum(np.diagonal(cm)) / np.sum(cm)
print(accuracy)
```

0.703703703704

Precision / Positive Predictive Value

```
Predicted class

C d r

Precision = TP/(TP + FP)

Series

C [ [ 5 3 0 ]

TP_{cat} = 5

TP<sub>cat</sub> + FP_{cat} = 5 + 2 = 7

Precision<sub>cat</sub> = 5/7 = 0.7142857143
```

Recall / True Positive Rate / Sensitivity

Revocação

```
Recall = TP / (TP + FN)
TP_{cat} = 5
TP_{cat} + FN_{cat} = 5 + 3 = 8
Recall_{cat} = 5 / 8 = 0.625
```

```
recall = cm[0,0] / np.sum(cm[0,:])
print(recall)
0.625
```

Classification report

Predicted class

```
Precision<sub>avg</sub> = (0.71 * 8 + 0.38 * 6 + 0.92 * 13) / 27 = 0.74
```

metrics.classification_report(y, y_pred)

	precision	recall	f1-score	support	
cat	0.71	0.62	0.67	8	
dog	0.38	0.50	0.43	6	
rabbit	0.92	0.85	0.88	13	
avg / total	0.74	0.70	0.72	27	

ROC CURVE EXAMPLES

ROC - Receiver Operating Characteristic

way to visualize the performance of a binary classifier.

ROC - Receiver Operating Characteristic

- Way to visualize the performance of a binary classifier.
- Commonly used graph that summarizes the performance of a classifier over all possible thresholds.
- It is generated by plotting the True Positive Rate (y-axis) against the False Positive Rate (x-axis) as you vary the threshold for assigning observations to a given class.

http://www.navan.name/roc/

Threshold = $0.5 \rightarrow$ classify everything above 0.5 as admitted and everything below 0.5 as not admitted, which is what most classification methods will do by default.

http://www.navan.name/roc/

http://www.navan.name/roc/

http://www.navan.name/roc/

Model Performance

Overlap is a measure of the model's ability to separate between success and failure.

With a strong model you can be confident of assigning a particular score to an outcome category.

With a weaker model, there is a large amount of overlap, so a particular score could mean that an outcome can be either good or bad with equal probability.

	A				В	
TP=63	FN=37	100		TP=77	FN=23	100
FP=28	TN=72	100		FP=77	TN=23	100
91	109	200		154	46	200
TPR = 0.6	3			TPR = 0.7	77	
FPR = 0.2	8			FPR = 0.7	77	
PPV = 0.6	9			PPV = 0.5	50	
F1 = 0.66 F1 = 0.61						
ACC = 0.6	8			ACC = 0.8	50	

	С					C'	
	TP=24	FN=76	100		TP=76	FN=24	100
	FP=88	TN=12	100		FP=12	TN=88	100
'	112	88	200		88	112	200
	TPR = 0.2	24			TPR = 0.7	76	
	FPR = 0.8	38			FPR = 0.1	12	
	PPV = 0.2	21			PPV = 0.8	36	
	F1 = 0.22			F1 = 0.81			
ACC = 0.18			ACC = 0.82				

AU ROC/AUC

AUC - Area Under the Curve

Problem with accuracy

- Problem when the cost of misclassification of the minor class samples are very high.
- If we deal with a rare but fatal disease, the cost of **failing to diagnose the disease of a sick person** (FN) is much higher than the cost of sending a healthy person to more tests (FP).

False Positive (FP)

- False Positive (FP) = False Alarm
 - A pregnancy test is positive, when in fact you aren't pregnant.
 - A cancer screening test comes back positive, but you don't have the disease.
 - A prenatal test comes back positive for Down's Syndrome, when your fetus does not have the disorder.
 - Virus software on your computer incorrectly identifies a harmless program as a malicious one.

False Negative (FN)

- A pregnancy test may come back negative even though you are in fact pregnant.
- A test for cancer might come back negative, when in reality you actually have the disease.
- Quality control: a defective item passes through the cracks.
- Software testing: a test designed to catch something has failed.
- Justice System: a guilty suspect is found "Not Guilty" and allowed to walk free.

Problems:

- false sense of security.
- potentially dangerous situations may be missed.

Log Loss

- Logarithmic Loss or Log Loss, works by penalising the false classifications.
- It works well for multi-class classification.
- When working with Log Loss, the classifier must assign probability to each class for all the samples.

$$LogarithmicLoss = \frac{-1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} * \log(p_{ij})$$

- N samples
- M classes
- y_{ij} indicates whether sample i belongs to class j or not
- p_{ij} indicates the probability of sample i belonging to class j

Log Loss

$$LogarithmicLoss = \frac{-1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} * \log(p_{ij})$$

- In order to calculate Log Loss the classifier must assign a probability to each class rather than simply yielding the most likely class.
- Log Loss has no upper bound and it exists on the range $[0, \infty)$.
- Log Loss nearer to o indicates higher accuracy.
- If the Log Loss is away from o then it indicates lower accuracy.
- In general, minimising Log Loss gives greater accuracy for the classifier.

Log loss, aka logistic loss or cross-entropy loss

```
sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, sample_weight=None, labels=None)
```

 loss function used in (multinomial) logistic regression and extensions of it

