Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing

Divyagna Bavikadi

Dyuman Aditya

Devendra Parkar

Paulo Shakarian

Graham Mueller

Chad Parvis

Gerardo I. Simari

40th International Conference on Logic Programming

Synthetic Movement generation

D. Chen, Y. Du, S. Xu, Y. -E. Sun, H. Huang and G. Gao, "Online Anomalous Taxi Trajectory Detection Based

on Multidimensional Criteria," 2021 International Joint Conference on Neural Networks (IJCNN)

Movement generation: How? Gaps?

Markov fine-grain

Seq2seq
Long term
Meeting constraints

Adversarial Scalability Explainability

What kind of movement?

What kind of movements?

Meet constraints

What kind of movements? Normal

(and stealth)

Historical and Generated Trajectories

Graph(4 locations), Agent trajectory, Goals

Singapore, Knoxville^, San Francisco, Los Angeles **Generated** normal **movement** instructions that meets **constraints**

Example Rules for Anomalous Movement Trajectory Identification

t20 t10 Observation O - constraints t80 Model Π **Abduction** - learned rules Logic Trajectory program Hypothesis *H*

Find $E \subseteq H$, such that $\Pi \cup E \cup O$ is consistent

Parsimony Requirement

- Exponential explanations
- Parsimony function is an aggregate truth values assigned using a logic program
- Value function maps movement to reals (confidence of abnormalcy)

Movemen

Fixpoint operator_[1] (Γ) for minimal model for a Π.

$$\Gamma(I)(a,t) = \sup(annoS \, et_{\Pi,I}(a,t))$$

 $value(\Gamma^*_{\Pi \cup E \cup O}(I_{\perp}))$

 $\Pi \cup E \cup O$

Framing Abduction as Search

- Abduction is intractable
- Domain structure doesn't allow teleportations
- H can only be facts- consistent with graph structure allows for search (DFS)
- But branching factor is still not low enough

Bounding parsimony to enable informed search

- Taking a subset of the program!
- Create a lower bound on the parsimony by taking a subset of the logic program
- →admissible and consistent heuristic

Theorem 4.1 For ground atom b, timepoint t, $\Pi' \subseteq \Pi$, and $I' \preceq I$, we have $\Gamma_{\Pi'}^*(I')(b,t) \sqsubseteq \Gamma_{\Pi}^*(I)(b,t)$

Search Strategy

 Required anomalous movement pattern can occur at any level of the path.

Leveraging Logic Program Modularity for Pruning

- Inferring from longer sequence is hard
- Π is modular. Value of each movement in the frontier is invariant
- Efficiently prune anomalous candidate steps in the search with A*
- Exact solution based on Π

Operationalizing the Theory: Ad-Hoc

Workflow

Empirical Verification

- A subset of the program gives a lower bound on the heuristic value
- DFS has exponential runtime in the worst case and does not scale to our problem.
- A* maintains solution quality with significant speedup.

Internal Test: Robustness to Anomaly Detection (AD)

 Anomaly Score with internal tests against ensemble of ML-based anomaly detectors (Y-axis shows multiple of relative anomaly ratio in training data)

Ad-Hoc Computation of Heuristic Function Provides Performance Improvement

Government Test: Probability of detection

- 9 bespoke anomaly detection algorithms by each government contractor
- Bulk of the distribution is below 0.4
- New blind scaled up sim-data is used

Thank You

- Generate realistic but synthetic human movement meeting constraints
- Deployed for independent government testing
- Efficient, robust to AD, scalable to large graphs
- Future: Parallelized architecture, improvised rules, neurosymbolic techniques..

Deployment

