■ 변량효과(random effect)모형과 혼합효과(mixed effect)모형

- 고정효과 모형(fixed effect model)
 - 요인의 수준이 실험자의 의도에 의해 조정 또는 결정되는 경우
 - 처리효과에 대한 가설검정의 결과는 분석에서 고려된 요인의 수준에
 대해서만 적용할 수 있음
- 변량효과 모형(random effect model)
 - 고려할 수 있는 요인의 수준에서 random하게 선택된 경우
 - 처리효과는 모수가 아니고 **확률변수로 취급**
 - \circ 처리효과의 분산에 대해 $\sigma_{ au}^2=0$ 인지를 검정함
 - 선택된 수준뿐만 아니라 **고려했던 모든 요인의 수준에 대해서도 결과를 확장**시킬 수 있음

○ 모형의 분류

- 모든 요인이 고정수준을 가지면 고정효과모형
- 모든 요인이 변량수준을 가지면 변량효과모형
- 일부 요인은 고정수준, 나머지는 변량수주을 가지면 혼합효과모형

□ 1 요인 변량효과 모형

- 두 종류의 모집단
 - ① 수준들의 모집단 Ω : 비교대상인 많은 수준들의 집합
 - 초등학생들의 학업성취도 비교 ⇒ 전국에 있는 모든 초등학교
 - \circ 표준상황: Ω 에서 수준평균은 $N(\mu,\sigma_{\mu}^2)$ 분포를 따름
 - 모든 학교의 평균 성적의 분포는 $N(\mu, \sigma_{\mu}^2)$
 - μ: 수준평균들의 평균(상수) ⇒ 모든 학교의 전체평균
 - \circ σ_{μ}^{2} : 수준평균들의 분산
 - ② 각 수준별 관측단위들의 모집단
 - 표준상황: 각 수준에서 반응변수는 정규분포를 따름
 - 그 평균은 다를 수 있으나 ⟨□ 학교마다 평균을 다를 수 있음
 - \circ 분산은 모든 수준에서 σ^2

○ 두 단계 추출

- ① 수준 추출
 - \circ 수준들의 모집단 Ω 에서 p개의 수준을 무작위 추출
 - \circ μ_i : i 번째 추출되는 수준들의 평균반응

$$\Rightarrow$$
 $\mu_i \sim \text{ iid } N(\mu, \sigma_\mu^2)$

- ② 관측단위 추출
 - \circ 추출되는 각 수준에서 n_i 개의 관측단위를 무작위로 추출(무작위 배정)

$$\circ N = \sum_{i=1}^{p} n_i$$

• i 번째 수준이 <u>추출되었다</u>고 할 때 그 평균반응이 μ_i^* 라고 하면, 그 수준에 대한 관측단위의 모집단에서 반응변수는 $N(\mu_i^*, \sigma^2)$ 를 따름

○ 1 요인 변량효과 분산분석 모형

 \bullet Y_{ij} : i 번째 추출 수준(학교)에서 j 번째 추출하는 관측단위(학생)의 반응변수

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, ..., p, j = 1, ..., n_i$$

- \circ $\mu_i \sim \mathrm{iid}\ N(\mu,\sigma_\mu^2)$: i 번째 추출수준의 수준평균
- \circ $\varepsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- \circ $\tau_i = \mu_i \mu$ 라고 하면

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \quad i = 1, ..., p, j = 1, ..., n_i$$

- $au_i \sim {\sf iid} \ N(0,\sigma_\mu^2)$
- 모든 au_i 와 $arepsilon_{ij}$ 는 서로 독립

● 모형의 특징

$$\circ \quad E(Y_{ij}) = E(\mu_i + \varepsilon_{ij}) = \mu$$

$$\circ \quad Var(Y_{ij}) = Var(\mu_i + \varepsilon_{ij}) = \sigma_{\mu}^2 + \sigma^2$$

↳ 어떤 학교가 추출될지 모르는 것에 대한 변동

$$\circ Y_{ij} \sim N(\mu, \sigma_{\mu}^2 + \sigma^2)$$

$$\circ \quad Cov(Y_{ij}, Y_{ik}) = Cov(\mu_i + \varepsilon_{ij}, \mu_i + \varepsilon_{ik}) = Var(\mu_i) = \sigma_{\mu}^2$$

- \Rightarrow 추출된 한 학교에서 추출된 두 학생의 성적의 공분산은 $\sigma_{\mu}^2 (\geq 0)$
 - ⇒ 한 학생의 성적이 높으면 다른 학생의 성적이 높은 경향이 있음
- \circ 분산 σ_{μ}^2 와 σ^2 를 variance components라고 함
 - ⇒ components of variance 또는 random effects 모형이라고 부름

○ 관심문제

- 특정 수준의 평균에는 관심이 없음
- 수준에 따라 평균반응이 다른가?
 - \Rightarrow μ_i 는 확률변수로 $\sigma_\mu^2>0$ 라는 것은 μ_i 가 다른 값을 가질 수 있음을 의미
- \circ 가설: $H_0: \sigma_\mu^2 = 0$ vs $H_1: \sigma_\mu^2 > 0$
- σ_{μ}^2 의 추정
- μ의 추정
- σ²의 추정
- $\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2}$ 의 추정

$$Var(Y_{ij}) = \sigma_{\mu}^2 + \sigma^2$$
 어느 학교인가? \downarrow 그 학교의 어느 학생인가?
$$Cov(Y_{ij}, Y_{ik}) = \sigma_{\mu}^2$$

$\sigma_{\mu}^2 + \sigma^2$	전체 분산	한 수준을 추출하고 그 수준에서 한 관측단위를 추출해서 반응변수 값을 얻을 때,
σ_{μ}^2	학교 간의 차이의 분산	수준평균의 분산이 차지하는 비율

$$\rho = \frac{Cov(Y_{ij}, Y_{ik})}{\sqrt{Var(Y_{ij})} \sqrt{Var(Y_{ik})}} = \frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2} + \sigma^{2}}$$

- \circ ρ 가 크다는 것은
 - 전체분산 중 수준평균의 분산이 차지하는 비율이 높음
 - 한 수준의 두 관측값의 상관관계가 높음

○ 분산분석

 \circ 가정: $arepsilon_{ij}^{iid}\sim N(0,\sigma^2)$, $au_i^i\sim N(0,\sigma_{ au}^2)$, au_i 와 $arepsilon_{ij}$ 는 독립

- $\circ \ \ \, H_0 \ : \ \, \sigma_{\tau}^2 = 0 \ \, \text{VS} \ \, H_1 \ : \ \, \sigma_{\tau}^2 > 0$
 - $\sigma_{\tau}^2 = 0$ 이라면, 모든 처리는 동일
 - $\sigma_{\tau}^2 > 0$ 이라면, 처리들 간에 변동이 있다는 것을 의미
- \circ 제곱합 등식 TSS = SSTR + SSE는 계속 사용

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	p-1	SSTR	MSTR	MSTR/MSE
오차	N-p	SSE	MSE	
전체	N-1	TSS		

$$\circ \quad E(MSTR) = \sigma^2 + n'\sigma_{\mu}^2 \,, \quad n' = (N - \sum n_i^2/N)/(p-1) \label{eq:energy}$$

- 모든 $n_i = n$ 이면 n' = n
- $n'\sigma_{\mu}^2 = E(MSTR) E(MSE)$

$$- \sigma_{\mu}^{2} = \frac{E(MSTR) - E(MSE)}{n'} \quad \Rightarrow \quad \hat{\sigma}_{\mu}^{2} = \frac{MSTR - MSE}{n'}$$

-
$$MSTR < MSE$$
이면 $\hat{\sigma}_{\mu}^2 < 0$ \Rightarrow $\hat{\sigma}_{\mu}^2 = 0$ 으로 고쳐 사용

● 무 4개를 무작위로 추출하여 잎에 포함된 칼슘함량을 4회씩 측정

종류	1	2	3	4	
	3.28	3.52	2.88	3.34	
	3.09	3.48	2.80	3.38	
	3.03	3.38	2.81	3.23	
	3.03	3.38	2.76	3.26	
합	12.43	13.76	11.25	13.21	50.65
평균	3.11	3.44	2.81	3.30	3.17

•
$$H_0$$
: $\sigma_{\tau}^2 = 0$ VS H_1 : $\sigma_{\tau}^2 > 0$

$$\circ$$
 $CT = 50.65^2/16 = 160.3389$

$$\circ$$
 $TSS = 3.28^2 + 3.52^2 + \dots + 3.26^2 - CT = 0.9676$

$$\circ SSTR = \frac{1}{4}(12.43^2 + \dots + 13.21^2) - CT = 0.8884$$

$$\circ$$
 $SSE = TSS - SSTR = 0.9676 - 0.8884 = 0.0792$

○ 분산분석표

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	3	0.8884	0.2961	44.9
오차	12	0.0792	0.0066	
전체	15	0.9676		

-
$$F_{0.01,3,12} = 5.95$$
 < 44.9 \Rightarrow 1% 유의수준에서 H_0 기각

○ 무에 따라 칼슘함량에 차이가 있음

μ의 추정

- $\circ \quad \mu = E(\mu_i)$
 - $\hat{\mu}_i = \overline{Y}_i$
 - $\hat{\mu} = \overline{Y}_i$ 의 평균 \Rightarrow 균형 자료이므로 $\hat{\mu} = \overline{Y}_i$ \Leftrightarrow 3.17
- σ^2 와 σ^2_{μ} 의 추정
 - \circ $\hat{\sigma}^2 = MSE \iff 0.0066$

$$\circ \hat{\sigma}_{\mu}^{2} = \frac{MSTR - MSE}{n'} \iff \frac{0.2961 - 0.0066}{4} = 0.0724$$

- $\frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2} + \sigma^{2}}$ 의 추정 $\leftarrow \frac{\widehat{\sigma_{\mu}^{2}}}{\widehat{\sigma_{\mu}^{2}} + \widehat{\sigma^{2}}} = \frac{0.0724}{0.0724 + 0.0066} = 0.916$
 - 칼슘 함량의 정도가 대부분 무 간의 차이에 의해 발생
 - 동일 무에서 추출된 칼슘의 함량의 상관계수는 0.916

□ 2 요인 변량효과 모형과 혼합효과 모형

● 반복이 없는 2요인 변량효과 모형

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

- $\circ \quad \alpha_i \sim \operatorname{iid} \ N(0,\sigma_\alpha^2) \,, \quad \beta_i \sim \operatorname{iid} \ N(0,\sigma_\beta^2) \,, \quad \varepsilon_{ij} \sim \operatorname{iid} \ N(0,\sigma^2)$
- \circ $\alpha_i, \beta_i, \varepsilon_{ij}$ 서로독립
- $\circ Var(Y_{ij}) = \sigma_{\alpha}^2 + \sigma_{\beta}^2 + \sigma^2$
- $\circ \quad \textit{Cov}\left(\left.Y_{ij}, Y_{ik}\right) = \textit{Cov}\left(\alpha_i, \alpha_i\right) = \sigma_{\alpha}^2 \text{,} \quad \textit{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\beta_j, \beta_j\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.Y_{ij}, Y_{kj}\right) = \textit{Cov}\left(\left.X_{ij}, Y_{kj}\right) = \sigma_{\beta}^2 \text{,} \quad \text{Cov}\left(\left.X_{ij}, Y_{kj}$

● 반복이 없는 2요인 혼합효과 모형(A: 고정, B: 변량)

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

- \circ $\alpha_i=\mu_i$. $-\mu$: 요인 A의 i 번째 처리효과 \Rightarrow $H_0:\alpha_1=\cdots=\alpha_a=0$
- \circ $\beta_j \sim \mathrm{iid}\ N(0,\sigma_\beta^2)$, $\varepsilon_{ij} \sim \mathrm{iid}\ N(0,\sigma^2)$, β_j 와 ε_{ij} 는 서로독립
- $\circ \quad E(Y_{ij}) = \mu + \alpha_i = \mu_i.$
- $\circ \quad Var(Y_{ij}) = \sigma_{\beta}^2 + \sigma^2$
- $\circ \quad Cov(Y_{ij}, Y_{ik}) = 0, \quad Cov(Y_{ij}, Y_{kj}) = Cov(\beta_j, \beta_j) = \sigma_\beta^2$

변인	EMS				
	Fixed	Random	Mixed		
А	$\sigma^2 + \frac{b}{a-1} \sum_i \alpha_i^2$	$\sigma^2 + b\sigma_{\alpha}^2$	$\sigma^2 + \frac{b}{a-1} \sum_i \alpha_i^2$		
В	$\sigma^2 + \frac{a}{b-1} \sum_j \beta_j^2$	$\sigma^2 + a\sigma_\beta^2$	$\sigma^2 + a\sigma_{\beta}^2$		
Error	σ^2	σ^2	σ^2		

● 반복이 있는 2요인 변량효과 모형에서의 관심문제

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$$

- $\circ \quad \alpha_i \sim \text{iid} \quad N(0,\sigma_\alpha^2) \text{,} \quad \beta_j \sim \text{iid} \quad N(0,\sigma_\beta^2) \text{,} \quad (\alpha\beta)_{ij} \sim \text{iid} \quad N(0,\sigma_{(\alpha\beta)}^2)$
- \circ 상호작용이 있는가? $ightharpoonup \sigma_{(lphaeta)}^2>0$
- \circ A 요인의 주효과가 있는가? $\Rightarrow \sigma_{\alpha}^2 > 0$
- \circ B 요인의 주효과가 있는가? \Rightarrow $\sigma_{eta}^2>0$
- \circ 분산요소 $\sigma_{\alpha}^2, \sigma_{\beta}^2, \sigma_{(\alpha\beta)}^2, \sigma^2$ 의 추정

● 반복이 있는 2요인 혼합효과 모형에서의 관심문제(A: 고정, B: 변량)

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}$$

- $\circ \quad \alpha_i = \mu(A_i) \mu = \mu_{i.} \mu, \beta_j \sim \text{ iid } \ N(0, \sigma_\beta^2) \text{ , } \ (\alpha\beta)_{ij} \sim \text{ iid } \ N(0, \sigma_{(\alpha\beta)}^2)$
- \circ 상호작용이 있는가? \Rightarrow $\sigma^2_{(\alpha\beta)}>0$
- \circ A 요인의 주효과가 있는가? \Rightarrow 하나 이상의 α_i 가 0이 아니다.
- \circ B 요인의 주효과가 있는가? $\sigma_{\beta}^2>0$
- \circ 분산요소 $\sigma_{\beta}^2, \sigma_{(\alpha\beta)}^2, \sigma^2$ 의 추정
- 고정수준 요인의 효과 추정과 비교

● 분산분석표

- 변량효과모형과 혼합효과모형의 제곱합, 자유도, 평균제곱은 고정효과모형의 경우와 같음
- EMS는 고정수준의 경우와 다르고 이에 따라 검정통계량도 달라짐

① 상호작용

- $\circ \ H_0: \sigma^2_{(\alpha\beta)} = 0 \ \text{vs} \ H_1: \sigma^2_{(\alpha\beta)} > 0$
- $\circ F = MS(AB)/MSE \sim F_{(a-1)(b-1),ab(n-1)}$
- 상호작용의 강약
 - $Var[(\widehat{\alpha \beta})_{ij}] > \widehat{\sigma}^2$ 이면 강한 것으로 보고 아니면 약한 것으로 봄

② 주효과 검정

 \circ $H_0:\sigma_{\alpha}^2=0$ vs $H_1:\sigma_{\alpha}^2>0$ (변량효과모형)

 \circ $H_0: \alpha_1 = \cdots = \alpha_a = 0$ vs $H_1:$ not H_0 (혼합모형)

변인	자유도	SS
Α	a-1	$nb\sum (\overline{Y}_{i} - \overline{Y}_{})^2$
В	b-1	$na\sum(\overline{Y}_{.j.}-\overline{Y}_{})^2$
(AB)	(a-1)(b-1)	$n\sum\sum(\overline{Y}_{ij.}-\overline{Y}_{i}-\overline{Y}_{.j.}+\overline{Y}_{})^2$
Error	ab(n-1)	$\sum\sum\sum\sum(Y_{ijk}-\overline{Y}_{ij.})^2$

변인	EMS		
[건 건	Fixed	Random	
A	$\sigma^2 + \frac{nb}{a-1} \sum_i \alpha_i^2$	$\sigma^2 + n\sigma_{(\alpha\beta)}^2 + nb\sigma_{\alpha}^2$	
В	$\sigma^2 + \frac{na}{b-1} \sum_j \beta_j^2$	$\sigma^2 + n\sigma_{(\alpha\beta)}^2 + na\sigma_{\beta}^2$	
(AB)	$\sigma^2 + \frac{n}{(a-1)(b-1)} \sum_{ij} (\alpha \beta)_{ij}^2$	$\sigma^2 + n\sigma_{(\alpha\beta)}^2$	
Error	σ^2	σ^2	

가설	검정통계량
$H_0:\sigma_{lpha}^2=0$ vs $H_1:\sigma_{lpha}^2>0$	
$H_0:\sigma_{\beta}^2=0$ vs $H_1:\sigma_{\beta}^2>0$	
$H_0:\sigma^2_{(\alpha\beta)}=0 \ \text{vs} \ H_1:\sigma^2_{(\alpha\beta)}>0$	