# Reasoning with Transformer-based Models: Deep Learning, but Shallow Reasoning

Chadi Helwe, Chloé Clavel and Fabian Suchanek

Télécom Paris, Institut Polytechnique de Paris

{firstname.lastname}@telecom-paris.fr





### **Motivation**

Transformer-based models do great on many NLP tasks.

```
Translation
Information
Information
ClassificationRole
Constituency Labeling Sense
Disambiguation Analysis
Summarization Prediction Extraction
Resolution Part-of-Speech
Recognition Entity
Relation
```

But, do they really understand natural language?

This survey paper discusses the performance of transformer-based models on different reasoning tasks.

# Known pitfalls for BERT-based models

## **Negation and Mispriming**

**Positive Statement:** *Marcel Oopa died in the city of [MASK]* 

**Target Answer:** Paris

BERT's Top-3 Predictions: Paris (-2.3) ; Lausanne (-3.3), Brussels (-3.3)

#### **Negation**

**Negative Statement:** *Marcel Oopa did not die in the city of [MASK]* 

**Target Answer:** Any city that is not Paris

BERT's Top-3 Predictions: Paris (-2.4) ; Helsinki (-3.5), Warsaw (-3.5)

#### **Mispriming**

Misprimed Statement: Yokohama? Marcel Oopa died in the city of [MASK]

**Target Answer:** Paris

BERT's Top-3 Predictions: Yokohama (-1.0) 🙁, Tokyo (-2.5), Paris (-3.0)



#### Pattern Heuristics and Word Order

#### **Pattern Heuristic**

**Statement:** The doctor was paid by the actor  $\rightarrow$  The doctor paid the actor.

Target Answer: Non Entailment
BERT's Prediction: Entailment 😕

#### **Word Order**

Statement: Paul loves Real Madrid

BERT's Prediction: Yes 😀

Modified Statement: Real Madrid loves Paul

BERT's Prediction: Yes 😕







# Do transformer-based models have deep reasoning capabilities?

Short answer: NO

# Reasoning with Transformer-based Models that Works

The strength of transformer-based models comes from two components: simple patterns in the training data, combined with background knowledge from the pretraining.

Thus, transformer-based models can perform well on tasks such as:

#### Horn Rule Reasoning

**Context:** Erin is young. Erin is not kind. If someone is young and not kind then they are big.

Question: Is Erin is big?
Expected Answer: Yes

#### **Simple Commonsense Reasoning**

Context: Ravens can [MASK]

**Expected Answer:** fly

#### **Simple Mathematical Reasoning**

Context: Calculate -841880142.544 + 411127

**Expected Answer:** -841469015.544

# Reasoning with Transformer-based Models that Fails

Transformer-based models fail on tasks where patterns and background-knowledge are absent, e.g.:

#### **Implicit Reasoning**

**Context:** David knows Mr. Zhang's friend Jack, and Jack knows David's friend Ms. Lin. Everyone of them who knows Jack has a master's degree, and everyone of them who knows Ms. Lin is from Shanghai.

**Question:** Who is from Shanghai and has a master's degree?

Options: (A) David (B) Jack (C) Mr. Zhang (D) Ms. Lin

#### **Adversarial Commonsense Reasoning**

Context: A prindag is smaller than a flurberg, so a flurberg is [MASK] likely to contain a prindag

**Expected Answer:** more

#### **Mathematical Word Reasoning**

**Context:** Jack had 8 pens and Mary had 5 pens. Mary gave 3 pens to Jack.

Question: How many pens does Jack have now?

**Expected Answer:** 8 + 3 = 11

Is there any task that transformer-based models cannot

solve, even if they are trained on a large dataset?

Short answer: YES

# Impossible Reasoning Tasks

Transformer-based models have theoretical limitations. The main limitations come from the fact that self-attention does not have the same level of expressiveness as recurrent models such as LSTMs. In particular, they cannot model two languages: Parity and Dyck-2.

To show the impact of these limitations on natural language we developed two tasks: Light Switch Task and Cake Task.

#### **Even Parity**

0011  $\rightarrow$  valid 010  $\rightarrow$  not valid

#### Light Switch Task 😞

**Context:** The light is off. I operate the light switch, and I eat a pizza, and I eat a pizza. Is the light on?

**Expected Answer:** Yes

#### Dyck-2 😞

 $([])[]() \rightarrow \text{valid}$  $([])[) \rightarrow \text{not valid}$ 

#### Cake Task 😞

Context: I make a cake. I add a peanut layer and I eat a chocolate layer.

Is the cake gone?

**Expected Answer:** No

## To Learn More



https://github.com/dig-team/FailBERT