Leandro Vendramin

Non-commutative algebra

Notes

Monday 28th February, 2022

Preface

The notes correspond to the master course Non-commutative Algebra of the Vrije Universiteit Brussel, Faculty of Sciences, Department of Mathematics and Data Sciences. The course is divided into thirteen two-hours lectures.

This version was compiled on Monday 28th February, 2022 at 10:45.

Leandro Vendramin Brussels, Belgium

Contents

1																														
2						 																 		 						7
3																														
4																														
5																														
6						 								•								 		 						31
Ref	ere	en	ıc	e	S	 				•				•	 					 •		 		 						37
Ind	ex																					 								39

List of topics

81	Group rings	1
§ 2	Kapanskly's problems	2
§3	The transfer map	8
§ 4	Passman's theorem	13
§5	More applications of the transfer	17
§7	Left-ordered groups	20
§9	Connel's theorem	26
§10	The Yang-Baxter equation	31

Lecture 1

§1. Group rings

Let K be a field and G be a group (written multiplicatively). Let K[G] be the vector space with basis $\{g:g\in G\}$. Then $\dim K[G]<\infty$ if and only if G is finite. The vector space K[G] is an algebra with multiplication

$$\left(\sum_{g\in G}\lambda_g g\right)\left(\sum_{h\in G}\mu_h h\right) = \sum_{g,h\in G}\lambda_g \mu_h(gh).$$

Exercise 1.1. Prove that $\mathbb{C}[\mathbb{Z}] \simeq \mathbb{C}[X, X^{-1}]$.

For $n \in \mathbb{Z}_{>1}$ let C_n be the cyclic group of order n.

Exercise 1.2. Let $n \in \mathbb{Z}_{>1}$. Prove that $\mathbb{C}[C_n] \simeq \mathbb{C}[X]/(X^n-1)$.

Exercise 1.3. Prove that if G and H are isomorphic groups, then $K[G] \simeq K[H]$.

In a similar way, if R is a commutative ring (with 1) and G is a group, then one defines the group ring R[G]. More precisely, R[G] is the set of finite linear combinations

$$\sum_{g \in G} \lambda_g g$$

where $\lambda_g \in R$ and $\lambda_g = 0$ for all but finitely many $g \in G$. One easily proves that R[G] is a ring with addition

$$\left(\sum_{g \in G} \lambda_g g\right) + \left(\sum_{g \in G} \mu_g g\right) = \sum_{g \in G} (\lambda_g + \mu_g)(g)$$

and multiplication

$$\left(\sum_{g\in G}\lambda_g g\right)\left(\sum_{h\in G}\mu_h h\right) = \sum_{g,h\in G}\lambda_g \mu_h(gh).$$

Moreover, R[G] is a left R-module with $\lambda(\sum_{g \in G} \lambda_g g) = \sum_{g \in G} (\lambda \lambda_g) g$.

Exercise 1.4. Let G be a group. Prove that if $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$, then $R[G] \simeq R[H]$ for any commutative ring R.

question: IP

Question 1.1 (Isomorphism problem). Let G and H be groups. Does $\mathbb{Z}[G] \simeq \mathbb{Z}[H]$ imply $G \simeq H$?

Despite the fact that there are several cases were the isomorphism problem has an affirmative answer (e.g. abelian groups, metabelian groups, nilpotent groups, nilpotent-by-abelian groups, simple groups, abelian-by-nilpotent groups), it is false in general. In 2001 Hertweck found a counterexample of order 2²¹97²⁸, see [5].

question:MIP

Question 1.2 (Modular isomorphism problem). Let p be a prime number. Let G and H be finite p-groups and let K be a field of characteristic p. Does $K[G] \simeq K[H]$ imply $G \simeq H$?

Question 1.2 has an affirmative answer in several cases. However, it is not true in general. This question recently answered by García, Margolis and del Río [2]. They found two non-isomorphic groups G and H both of order 512 such that $K[G] \simeq K[H]$ for all field K of characteristic two.

§2. Kapanskly's problems

Let G be a group and K be a field. If $x \in G \setminus \{1\}$ is such that $x^n = 1$, then, since

$$(1-x)(1+x+x^2+\cdots+x^{n-1})=0,$$

it follows that K[G] has non-trivial zero divisors. What happens in the case where G is torsion-free?

example:k[Z]

Example 2.1. Let $G = \langle x \rangle \simeq \mathbb{Z}$. Then K[G] has no zero divisors. Let $\alpha, \beta \in K[G] \setminus \{0\}$ and write $\alpha = \sum_{i \le n} a_i x^i$ with $a_n \ne 0$ and $\beta = \sum_{j \le m} b_j x^j$ with $b_m \ne 0$. Since the coefficient of x^{n+m} of $\alpha\beta$ is non-zero, it follows that $\alpha\beta \ne 0$.

A similar problem concerns units of group algebras. A unit $u \in K[G]$ is said to be **trivial** if $u = \lambda g$ for some $\lambda \in K \setminus \{0\}$ and $g \in G$.

Exercise 2.2. Prove that units of $\mathbb{C}[C_2]$ are trivial.

Exercise 2.3. Prove that $\mathbb{C}[C_5]$ has non-trivial units.

prob:dominio

Open problem 2.1 (Zero divisors). Let G be a torsion-free group. Is it true that K[G] is a domain?

We mention some intriguing problems, generally known as Kaplansky's problems.

prob:units

Open problem 2.2 (Units). Let G be a torsion-free group. Is it true that all units of K[G] are trivial?

The unit problem is still open for fields of characteristic zero. However, it was recently solved by Gardam [3] in the case of K the field of two elements. We will present Gardam's theorem as a computer calculation. We will use GAP [1].

Lemma 2.4. The group $G = \langle a, b : a^{-1}b^2a = b^{-2}, b^{-1}a^2b = a^{-2} \rangle$ is torsion-free. Moreover, the subgroup $N = \langle a^2, b^2, (ab)^2 \rangle$ is normal in G, free-abelian of rank three and $G/N \simeq C_2 \times C_2$.

Proof. We first construct the group.

```
gap> F := FreeGroup(2);;
gap> A := F.1;;
gap> B := F.2;;
gap> rels := [(B^2)^A*B^2, (A^2)^B*A^2];;
gap> G := F/rels;;
gap> a := G.1;;
gap> b := G.2;;
```

Now we construct the subgroup N generated by a^2 , b^2 and $(ab)^2$. It is easy to check that N is normal in G and that $G/N \simeq C_2 \times C_2$. It is even easier to do this with the computer.

```
gap> N := Subgroup(G, [a^2,b^2,(a*b)^2]);;
gap> IsNormal(G,N);
true
gap> StructureDescription(G/N);
"C2 x C2"
```

It is easy to check by hand that N is abelian, and not so easy to do it with the computer. For example,

$$b^{-2}a^2b^{-2} = b^{-1}a^{-2}b = (b^{-1}a^2b)^{-1} = (a^{-2})^{-1} = a^2$$
.

We use the computer to show that *N* is free abelian of rank three.

```
gap> AbelianInvariants(N);
[ 0, 0, 0 ]
```

Let us prove that G is torsion-free. Let $x = a^2$, $y = b^2$ and $z = (ab)^2$. Since (G : N) = 4, the group G decomposes as a disjoint union $G = N \cup aN \cup bN \cup (ab)N$. Let $g \in G$ be a non-trivial element of finite order. Since N is torsion-free, $g \in aN \cup bN \cup (ab)N$. Without loss of generality we may assume that $g \in aN$, so g = an for some $n \in N$. Let $\pi: G \to G/N$ be the canonical map. Since $g \notin N$ and $\pi(g) \in G/N \simeq C_2 \times C_2$,

$$\pi(g^2) = \pi(g)^2 = 1$$

so $g^2 \in N$ and hence $g^2 = 1$, as N is torsion-free. Thus

$$1 = g^2 = (an)^2 = (an)(an) = a^2(a^{-1}na)n = x(a^{-1}na)n.$$

Write $n = x^i y^j z^k$ for some $i, j, k \in \mathbb{Z}$. Then

$$a^{-1}na = (a^{-1}x^{i}a)(a^{-1}y^{j}a)(a^{-1}z^{k}a) = x^{i}t^{-j}z^{-k}$$

and hence $(a^{-1}na)n = x^{2i}$. Then it follows that $1 = g^2 = x(a^{-1}na)n = x^{2i+1}$, a contradiction.

Let *P* be the group generated by

$$a = \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The group P appears in the literature with various names. For us P will be the Promislow group. It is easy to check that there exists a surjective group homomorphism $G \to P$. Prove that $G \simeq P$.

thm:Gardam

Theorem 2.5 (Gardam). Let \mathbb{F}_2 be the field of two elements. Consider the elements $x = a^2$, $y = b^2$ and $z = (ab)^2$ of P and let

$$p = (1+x)(1+y)(1+z^{-1}), q = x^{-1}y^{-1} + x + y^{-1}z + z,$$

$$r = 1+x+y^{-1}z + xyz, s = 1 + (x+x^{-1}+y+y^{-1})z^{-1}.$$

Then u = p + qa + rb + sab is a non-trivial unit in $\mathbb{F}_2[P]$.

Proof. We claim that the inverse of u is the element $v = p_1 + q_1a + r_1b + s_1ab$, where

$$p_1 = x^{-1}(a^{-1}pa),$$
 $q_1 = -x^{-1}q,$ $r_1 = -y^{-1}r,$ $s_1 = z^{-1}(a^{-1}sa).$

We only need to show that uv = vu = 1. We will perform this calculation with GAP. We first need to create the group $P = \langle a, b \rangle$.

```
gap> a := [[1,0,0,1/2],[0,-1,0,1/2],[0,0,-1,0],[0,0,0,1]];;
gap> b := [[-1,0,0,0],[0,1,0,1/2],[0,0,-1,1/2],[0,0,0,1]];;
gap> P := Group([a,b]);
```

Now we create the group algebra F[P] and the embedding $P \hookrightarrow F[P]$. The field \mathbb{F}_2 will be GF (2) and the embedding will be denoted by f.

```
gap> R := GroupRing(GF(2),P);;
gap> f := Embedding(P, R);;
```

We first need the elements x, y and z that were defined in the statement.

```
gap> x := Image(f, a^2);;
```

§2 Kapanskly's problems

```
gap> y := Image(f, b^2);;
gap> z := Image(f, (a*b)^2);;
```

Now we define the elements p, q, r and s. Note that the identity of the group algebra R is One(R).

```
gap> p := (One(R)+x)*(One(R)+y)*(One(R)+Inverse(z));;
gap> r := One(R)+x+Inverse(y)*z+x*y*z;;
gap> q := Inverse(x)*Inverse(y)+x+Inverse(y)*z+z;;
gap> s := One(R)+(x+Inverse(x)+y+Inverse(y))*Inverse(z);
```

Rather than trying to compute the inverse of u we will show that uv = vu = 1. For that purpose we need to define p_1 , q_1 , r_1 and s_1 .

```
gap> p1 := Inverse(x)*p^Image(f, a);;
gap> q1 := -Inverse(x)*q;;
gap> r1 := -Inverse(y)*r;;
gap> s1 := Inverse(z)*s^Image(f, a);;
```

Now it is time to prove the theorem.

```
gap> u := p+q*a+r*b+s*a*b;;
gap> v := p1+q1*a+r1*b+s1*a*b;;
gap> IsOne(u*v);
true
gap> IsOne(v*u);
true
```

This completes the proof of the theorem.

Our proof of Theorem 2.5 is exactly as that of [3].

Exercise 2.6. Let p be a prime number and \mathbb{F}_p be the field of size p. Use the technique for proving Gardam's theorem to prove Murray's theorem on the existence on non-trivial units in $\mathbb{F}_p[P]$. Reference: arXiv:2106.02147.

Lecture 2

We now describe some very-well known open problems in the theory of group rings and the connection between them.

Definition 2.7. A ring R is **reduced** if for all $r \in R$ such that $r^2 = 0$ one has r = 0.

Integral domains and boolean rings are reduced. $\mathbb{Z}/8$ and $M_2(\mathbb{R})$ are not reduced.

Example 2.8. \mathbb{Z}^n with $(a_1, ..., a_n)(b_1, ..., b_n) = (a_1b_1, ..., a_nb_n)$ is reduced.

The structure of reduced rings is described by Andrunakevic–Rjabuhin's theorem. It states that a ring is reduced if and only if it is a subdirect products of domains. See [4, 3.20.5] for a proof.

prob:reducido

Open problem 2.3. Let G be a torsion-free group. Is it true that K[G] is reduced?

Recall that if R is a unitary ring, one proves that the Jacobson radical J(R) is the set of elements x such that $1 + \sum_{i=1}^{n} r_i x s_i$ is invertible for all n and all $r_i, s_i \in R$.

prob:J

Open problem 2.4 (Semisimplicity). Let G be a torsion-free group. It is true that $J(K[G]) = \{0\}$ if G is non-trivial?

Recall that an element e of a ring is said to be *idempotent* if $e^2 = e$. Examples of idempotents are 0 and 1 and these are known as the trivial idempotents.

pro:idempotente

Open problem 2.5 (Idempotents). Let G be a torsion-free group and $\alpha \in K[G]$ be an idempotent. Is it true that $\alpha \in \{0,1\}$?

Exercise 2.9. Prove that if K[G] has no zero-divisors and $\alpha \in K[G]$ is an idempotent, then $\alpha \in \{0,1\}$.

Exercise 2.10. Prove that $K[C_4]$ contains non-trivial zero divisors and every idempotent of $K[C_4]$ is trivial.

The problems mentioned are all related. Our goal is the prove the following implications:

$$2.4 \rightleftharpoons 2.2 \Longrightarrow 2.3 \Longleftrightarrow 2.1$$

We first prove that an affirmative solution to the Units Problem 2.2 yields a solution to Problem 2.3 about the reducibility of group algebras.

Theorem 2.11. Let K be a field of characteristic $\neq 2$ and G be a non-trivial group. Assume that K[G] has only trivial units. Then K[G] is reduced.

Proof. Let $\alpha \in K[G]$ be such that $\alpha^2 = 0$. We claim that $\alpha = 0$. Since $\alpha^2 = 0$,

$$(1-\alpha)(1+\alpha) = 1-\alpha^2 = 1$$
,

it follows that $1 - \alpha$ is a unit of K[G]. Since units of K[G] are trivial, there exist $\lambda \in K \setminus \{0\}$ and $g \in G$ such that $1 - \alpha = \lambda g$. We claim that g = 1. If not,

$$0 = \alpha^2 = (1 - \lambda g)^2 = 1 - 2\lambda g + \lambda^2 g^2$$

a contradiction. Therefore g = 1 and hence $\alpha = 1 - \lambda \in K$. Since K is a field, one concludes that $\alpha = 0$.

Exercise 2.12. What happens if *K* is a field of characteristic two?

We now prove that an affirmative solution to the Units Problem 2.2 also yields a solution to the Jacobson Semisimplicity Problem 2.4.

Theorem 2.13. Let G be a non-trivial group. Assume that K[G] has only trivial units. If |K| > 2 or |G| > 2, then $J(K[G]) = \{0\}$.

Proof. Let $\alpha \in J(K[G])$. There exist $\lambda \in K \setminus \{0\}$ and $g \in G$ such that $1 - \alpha = \lambda g$. We claim that g = 1. Assume $g \neq 1$. If $|K| \geq 3$, then there exist $\mu \in K \setminus \{0,1\}$ such that

$$1 - \alpha \mu = 1 - \mu + \lambda \mu g$$

is a non-trivial unit, a contradiction. If $|G| \ge 3$, there exists $h \in G \setminus \{1, g^{-1}\}$ such that $1 - \alpha h = 1 - h + \lambda g h$ is a non-trivial unit, a contradiction. Thus g = 1 and hence $\alpha = 1 - \lambda \in K$. Therefore $1 + \alpha h$ is a trivial unit for all $h \ne 1$ and hence $\alpha = 0$.

Exercise 2.14. Prove that if $G = \langle g \rangle \simeq \mathbb{Z}/2$, then $J(\mathbb{F}_2[G]) = \{0, g-1\} \neq \{0\}$.

§3. The transfer map

Now we prove that an affirmative solution to the Units Problem (Open Problem 2.2) yields a solution to Open Problem 2.1 about zero divisors in group algebras. The proof is hard and requires some preliminaries. We first need to discuss a group theoretical tool known as the *transfer map*.

If H is a subgroup of G, a **transversal** of H in G is a complete set of coset representatives of G/H.

lem:d

Lemma 3.1. Let G be a group and H be a subgroup of G of finite index. Let R and S be transversals of H in G and let $\alpha: H \to H/[H, H]$ be the canonical map. Then

$$d(R,S) = \prod \alpha(rs^{-1}),$$

where the product is taken over all pairs $(r,s) \in R \times S$ such that Hr = Hs, is well-defined and satisfies the following properties:

- 1) $d(R,S)^{-1} = d(S,R)$.
- 2) d(R,S)d(S,T) = d(R,T) for all transversal T of H in G.
- 3) d(Rg, Sg) = d(R, S) for all $g \in G$.
- 4) d(Rg,R) = d(Sg,S) for all $g \in G$.

Proof. The product that defines d(R,S) is well-defined since H/[H,H] is an abelian group. The first three claim are trivial. Let us prove 4). By 2),

$$d(Rg,Sg)d(Sg,S)d(S,R) = d(Rg,S)d(S,R) = d(Rg,R).$$

Since H/[H,H] is abelian, 1) and 3) imply that

$$d(Rg,Sg)d(Sg,S)d(S,R) = d(R,S)d(S,R)d(Sg,S) = d(Sg,S).$$

We are know ready to state and prove the theorem:

thm:transfer

Theorem 3.2. Let G be a group and H be a finite-index subgroup of G. The map

$$v: G \to H/[H,H], g \mapsto d(Rg,R),$$

does not depend on the transversal R of H in G and it is a group homomorphism.

Proof. The lemma implies that the map does not depend on the transversal used. Moreover, ν is a group homomorphism, as

$$v(gh) = d(R(gh), R) = d(R(gh), Rh)d(Rh, R) = d(Rg, R)d(Rh, R) = v(g)v(h)$$
. \square

The theorem justifies the following definition:

Definition 3.3. Let G be a group and H be a finite-index subgroup of G. The **transfer map** of G in H is the group homomorphism

$$v: G \to H/[H,H], \quad g \mapsto d(Rg,R),$$

of Theorem 3.2, where R is some transversal of H in G.

We need methods for computing the transfer map. If H is a subgroup of G and (G:H)=n, let $T=\{x_1,\ldots,x_n\}$ be a transversal of H. For $g\in G$ let

$$\nu(g) = \prod \alpha(xy^{-1}),$$

where the product is taken over all pairs $(x, y) \in (Tg) \times T$ such that Hx = Hy and $\alpha: H \to H/[H, H]$ is the canonical map. If we write $x = x_i g$ for some $i \in \{1, ..., n\}$, then $Hx_i g = Hx_{\sigma(i)}$ for some permutation $\sigma \in \mathbb{S}_n$. Thus

$$\nu(g) = \prod_{i=1}^{n} \alpha(x_i g x_{\sigma(i)}^{-1}).$$

The cycle structure of σ turns out to be important. For example, if $\sigma = (12)(345)$ and n = 5, then a direct calculation shows that

$$\prod_{i=1}^{5} \alpha \left(x_i g x_{\sigma(i)}^{-1} \right) = \alpha (x_1 g^2 x_1^{-1}) \alpha (x_3 g^3 x_3^{-1}).$$

This is precisely the content of the following lemma.

lem:transfer

Lemma 3.4. Let G be a group and H be a subgroup of index n. Let $T = \{t_1, \ldots, t_n\}$ be a transversal of H in G. For each $g \in G$ there exist $m \in \mathbb{Z}_{>0}$ and elements $s_1, \ldots, s_m \in T$ and positive integers n_1, \ldots, n_m such that $s_i^{-1} g^{n_i} s_i \in H$, $n_1 + \cdots + n_m = n$ and

$$\nu(g) = \prod_{i=1}^{m} \alpha(s_i^{-1} g^{n_i} s_i).$$

Proof. For each i there exist $h_1, \ldots, h_n \in H$ and $\sigma \in \mathbb{S}_n$ such that $gt_i = t_{\sigma(i)}h_i$. Write σ as a product of disjoint cycles, say

$$\sigma = \alpha_1 \cdots \alpha_m$$
.

Let $i \in \{1, ..., n\}$ and write $\alpha_i = (j_1 \cdots j_{n_i})$. Since

$$gt_{j_k} = t_{\sigma(j_k)}h_{j_k} = \begin{cases} t_{j_1}h_{j_k} & \text{si } k = n_i, \\ t_{j_{k+1}}h_{j_k} & \text{otherwise,} \end{cases}$$

then

$$\begin{split} t_{j_1}^{-1} g^{n_i} t_{j_1} &= t_{j_1}^{-1} g^{n_i-1} g t_{j_1} \\ &= t_{j_1}^{-1} g^{n_i-1} t_{j_2} h_{j_1} \\ &= t_{j_1}^{-1} g^{n_i-2} g t_{j_2} h_{j_1} \\ &= t_{j_1}^{-1} g^{n_i-2} t_{j_3} h_{j_2} h_{j_1} \\ &\vdots \\ &= t_{j_1}^{-1} g t_{j_{n_i}} h_{n_{i-1}} \cdots h_{j_2} h_{j_1} \\ &= t_{j_1}^{-1} t_{j_1} h_{j_{n_i}} \cdots h_{j_2} h_{j_1} \in H. \end{split}$$

Thus $s_i = t_{j_1} \in T$. It only remains to note that $\nu(g) = h_1 \cdots h_n$.

An application:

pro:center

Proposition 3.5. If G is a group such that Z(G) has finite index n, then $(gh)^n = g^n h^n$ for all $g, h \in G$.

Proof. Note that we may assume that $\alpha = \mathrm{id}$, as Z(G) is abelian. Let $g \in G$. By Lemma 3.4 there are positive integers n_1, \ldots, n_k such that $n_1 + \cdots + n_k = n$ and elements t_1, \ldots, t_k of a transversal of Z(G) in G such that

$$\nu(g) = \prod_{i=1}^{k} t_i g^{n_1} t_i^{-1}.$$

Since $g^{n_i} \in Z(G)$ for all $i \in \{1, ..., k\}$ (as $t_i g^{n_i} t_i^{-1} \in Z(G)$), it follows that

$$\nu(g) = g^{n_1 + \dots + n_k} = g^n.$$

Now Theorem 3.2 implies the claim.

For a group G we consider

$$\Delta(G) = \{ g \in G : (G : C_G(g)) < \infty \}.$$

Exercise 3.6. Prove that $\Delta(\Delta(G)) = \Delta(G)$.

A subgroup H of G is a **characteristic** subgroup of G if $f(H) \subseteq H$ for all $f \in \operatorname{Aut}(G)$. The center and the commutator subgroup of a group are characteristic subgroups. Every characteristic subgroup is a normal subgroup.

Exercise 3.7. Prove that if H is characteristic in K and K is normal in G, then H is normal in G.

Proposition 3.8. *If* G *is a group, then* $\Delta(G)$ *is a characteristic subgroup of* G.

Proof. We first prove that $\Delta(G)$ is a subgroup of G. If $x, y \in \Delta(G)$ and $g \in G$, then $g(xy^{-1})g^{-1} = (gxg^{-1})(gyg^{-1})^{-1}$. Moreover, $1 \in \Delta(G)$. Let us show now that $\Delta(G)$ is characteristic in G. If $f \in \operatorname{Aut}(G)$ and $x \in G$, then, since

$$f(gxg^{-1}) = f(g)f(x)f(g)^{-1},$$

it follows that $f(x) \in \Delta(G)$.

Exercise 3.9. Prove that if $G = \langle r, s : s^2 = 1, srs = r^{-1} \rangle$ is the infinite dihedral group, then $\Delta(G) = \langle r \rangle$.

Exercise 3.10. Let H and K be finite-index subgroups of G. Prove that

$$(G:H\cap K)\leq (G:H)(G:K).$$

Lecture 3

§4. Passman's theorem

pro:FCabeliano

Proposition 4.1. *If* G *is a torsion-free group such that* $\Delta(G) = G$ *, then* G *is abelian.*

Proof. Let $x, y \in G$ and $S = \langle x, y \rangle$. The group $Z(S) = C_S(x) \cap C_S(y)$ has finite index, say n, in S. By Proposition 3.5, the map $S \to Z(S)$, $s \mapsto s^n$, is a group homomorphism. Thus

$$[x, y]^n = (xyx^{-1}y^{-1})^n = x^ny^nx^{-n}y^{-n} = 1$$

as $x^n \in Z(S)$. Since G is torsion-free, [x, y] = 1.

lem:Neumann

Lemma 4.2 (Neumann). Let $H_1, ..., H_m$ be subgroups of G. Assume there are finitely many elements $a_{ij} \in G$, $1 \le i \le m$, $1 \le j \le n$, such that

$$G = \bigcup_{i=1}^{m} \bigcup_{j=1}^{n} H_i a_{ij}.$$

Then some H_i has finite index in G.

Proof. We proceed by induction on m. The case m = 1 is trivial. Let us assume that $m \ge 2$. If $(G: H_1) = \infty$, there exists $b \in G$ such that

$$Hb \cap \left(\bigcup_{j=1}^n H_1 a_{1j}\right) = \emptyset.$$

Since $H_1b \subseteq \bigcup_{i=2}^m \bigcup_{j=1}^n H_i a_{ij}$, it follows that

$$H_1a_{1k} \subseteq \bigcup_{i=2}^m \bigcup_{j=1}^n Ha_{ij}b^{-1}a_{1k}.$$

Hence G can be covered by finitely many cosets of H_2, \ldots, H_m . By the inductive hypothesis, some of these H_i has finite index in G.

We now consider a projection operator of group algebras. If G is a group and H is a subgroup of G, let

$$\pi_H: K[G] \to K[H], \quad \pi_H\left(\sum_{g \in G} \lambda_g g\right) = \sum_{g \in H} \lambda_g g.$$

If R and S are rings, a (R,S)-bimodule is an abelian group M that is both a left R-module and a right S-module and the compatibility condition

$$(rm)s = r(ms)$$

holds for all $r \in R$, $s \in S$ and $m \in M$.

Exercise 4.3. Let G be a group and H be a subgroup of G. Prove that if $\alpha \in K[G]$, then π_H is a (K[H], K[H])-bimodule homomorphism with usual left and right multiplications,

$$\pi_H(\beta\alpha\gamma) = \beta\pi_H(\alpha)\gamma$$

for all $\beta, \gamma \in K[H]$.

lem:escritura

Lemma 4.4. Let X be a left transversal of H in G. Every $\alpha \in K[G]$ can be written uniquely as

$$\alpha = \sum_{x \in X} x \alpha_x,$$

where $\alpha_x = \pi_H(x^{-1}\alpha) \in K[H]$.

Proof. Let $\alpha \in K[G]$. Since $\sup \alpha$ is finite, $\sup \alpha$ is contained in finitely many cosets of H, say x_1H, \ldots, x_nH , where each x_j belongs to X. Write $\alpha = \alpha_1 + \cdots + \alpha_n$, where $\alpha_i = \sum_{g \in x_i H} \lambda_g g$. If $g \in x_i H$, then $x_i^{-1}g \in H$ and hence

$$\alpha = \sum_{i=1}^{n} x_i (x_i^{-1} \alpha_i) = \sum_{x \in X} x \alpha_x$$

with $\alpha_x \in K[H]$ for all $x \in X$. For the uniqueness, note that for each $x \in X$ the previous exercise implies that

$$\pi_H(x^{-1}\alpha) = \pi_H\left(\sum_{y \in X} x^{-1}y\alpha_y\right) = \sum_{y \in X} \pi_H(x^{-1}y)\alpha_y = \alpha_x,$$

as

lem:ideal_pi

$$\pi_H(x^{-1}y) = \begin{cases} 1 & \text{si } x = y, \\ 0 & \text{si } x \neq y. \end{cases}$$

Lemma 4.5. Let G be a group and H be a subgroup of G. If I is a non-zero left ideal of K[G], then $\pi_H(I) \neq 0$.

Proof. Let X be a left transversal of H in G and $\alpha \in I \setminus \{0\}$. By Lemma 4.4 we can write $\alpha = \sum_{x \in X} x \alpha_x$ with $\alpha_x = \pi_H(x^{-1}\alpha) \in K[H]$ for all $x \in X$. Since $\alpha \neq 0$, there exists $y \in X$ such that $0 \neq \alpha_y = \pi_H(y^{-1}\alpha) \in \pi_H(I)$ ($y^{-1}\alpha \in I$ since I is a left ideal).

Another application:

Proposition 4.6. Let G be a group, H be a subgroup of G and $\alpha \in K[H]$. The following statements hold:

- 1) α is invertible in K[H] if and only if α is invertible in K[G].
- **2)** α is a zero divisor of K[H] if and only if α is a zero divisor of K[G].

Proof. If α is invertible in K[G], there exists $\beta \in K[G]$ such that $\alpha\beta = \beta\alpha = 1$. Apply π_H and use that π_H is a (K[H], K[H])-bimodule homomorphism to obtain

$$\alpha \pi_H(\beta) = \pi_H(\alpha \beta) = \pi_H(1) = 1 = \pi_H(1) = \pi_H(\beta \alpha) = \pi_H(\beta) \alpha.$$

Assume now that $\alpha\beta = 0$ for some $\beta \in K[G] \setminus \{0\}$. Let $g \in G$ be such that $1 \in \text{supp}(\beta g)$. Since $\alpha(\beta g) = 0$,

$$0 = \pi_H(0) = \pi_H(\alpha(\beta g)) = \alpha \pi_H(\beta g),$$

where $\pi_H(\beta g) \in K[H] \setminus \{0\}$, as $1 \in \text{supp}(\beta g)$.

lem:Passman

Lemma 4.7 (Passman). Let G be a group and $\gamma_1, \gamma_2 \in K[G]$ be such that $\gamma_1 K[G] \gamma_2 = 0$. Then $\pi_{\Delta(G)}(\gamma_1) \pi_{\Delta(G)}(\gamma_2) = 0$.

Proof. It is enough to show that $\pi_{\Delta(G)}(\gamma_1)\gamma_2 = 0$, as in this case

$$0 = \pi_{\Delta(G)}(\pi_{\Delta(G)}(\gamma_1)\gamma_2) = \pi_{\Delta}(\gamma_1)\pi_{\Delta(G)}(\gamma_2).$$

Write $\gamma_1 = \alpha_1 + \beta_1$, where

$$\alpha_{1} = a_{1}u_{1} + \dots + a_{r}u_{r},$$
 $u_{1}, \dots, u_{r} \in \Delta(G),$
 $\beta_{1} = b_{1}v_{1} + \dots + b_{s}v_{s},$ $v_{1}, \dots, v_{s} \notin \Delta(G),$
 $\gamma_{2} = c_{1}w_{1} + \dots + c_{t}w_{t},$ $w_{1}, \dots, w_{t} \in G.$

The subgroup $C = \bigcap_{i=1}^r C_G(u_i)$ has finite index in G. Assume that

$$0 \neq \pi_{\Delta}(\gamma_1)\gamma_2 = \alpha_1\gamma_2$$
.

Let $g \in \text{supp}(\alpha_1 \gamma_2)$. If v_i is a conjugate in G of some gw_j^{-1} , let $g_{ij} \in G$ be such that $g_{ij}^{-1}v_ig_{ij} = gw_j^{-1}$. If v_i and gw_j^{-1} are not conjugate, we take $g_{ij} = 1$.

For every $x \in C$ it follows that $\alpha_1 \gamma_2 = (x^{-1} \alpha_1 x) \gamma_2$. Since

$$x^{-1}\gamma_1x\gamma_2\in x^{-1}\gamma_1K[G]\gamma_2=0,$$

it follows that

Lecture 3

$$(a_1u_1 + \dots + a_ru_r)\gamma_2 = \alpha_1\gamma_2 = x^{-1}\alpha_1x\gamma_2 = -x^{-1}\beta_1x\gamma_2$$

= $-x^{-1}(b_1v_1 + \dots + b_sv_r)x(c_1w_1 + \dots + c_tw_t).$

Now $g \in \operatorname{supp}(\alpha_1 \gamma_2)$ implies that there exist i, j such that $g = x^{-1} v_i x w_j$. Thus v_i and $g w_j^{-1}$ are conjugate and hence $x^{-1} v_i x = g w_j^{-1} = g_{ij}^{-1} v_i g_{ij}$, that is $x \in C_G(v_i) g_{ij}$. This proves that

 $C \subseteq \bigcup_{i \in I} C_G(v_i) g_{ij}.$

Since C has finite index in G, it follows that G can be covered by finitely many cosets of the $C_G(v_i)$. Every $v_i \notin \Delta(G)$, so each $C_G(v_i)$ has infinite index in G, a contradiction to Neumann's lemma.

Theorem 4.8 (Passman). Let G be a torsion-free group. If K[G] is reduced, then K[G] is a domain.

Proof. Assume that K[G] is not a domain. Let $\gamma_1, \gamma_2 \in K[G] \setminus \{0\}$ be such that $\gamma_2 \gamma_1 = 0$. If $\alpha \in K[G]$, then

$$(\gamma_1 \alpha \gamma_2)^2 = \gamma_1 \alpha \gamma_2 \gamma_1 \alpha \gamma_2 = 0$$

and thus $\gamma_1\alpha\gamma_2=0$, as K[G] is reduced. In particular, $\gamma_1K[G]\gamma_2=0$. Let I be the left ideal of K[G] generated by γ_2 . Since $I\neq 0$, $\pi_{\Delta(G)}(I)\neq 0$ by Lemma 4.5 and hence $\pi_{\Delta(G)}(\beta\gamma_2)\neq 0$ for some $\beta\in K[G]$. Similarly, $\pi_{\Delta(G)}(\gamma_1\alpha)\neq 0$ for some $\alpha\in K[G]$. Since

$$\gamma_1 \alpha K[G] \beta \gamma_2 \subseteq \gamma_1 K[G] \gamma_2 = 0,$$

it follows that $\pi_{\Delta(G)}(\gamma_1 \alpha) \pi_{\Delta(G)}(\beta \gamma_2) = 0$ by Passman's lemma. Hence $K[\Delta(G)]$ has zero divisors, a contradictions since $\Delta(G)$ is an abelian group.

Lecture 4

§5. More applications of the transfer

§6. Bi-ordered groups

Based on Example 2.1 we will study some properties of groups.

Recall that a **total order** is a partial order in which any two elements are comparable. This means that a total order is a binary relation \leq on some set X such that for all $x, y, z \in X$ one has

1) $x \le x$.

pro:biordenableP1

- 2) $x \le y$ and $y \le z$ imply $x \le z$.
- 3) $x \le y$ and $y \le x$ imply x = y.
- 4) $x \le y$ or $y \le x$.

A set equipped with a total order is a **totally ordered set**.

Definition 6.1. A group *G* is **bi-ordered** if there exists a total order < in *G* such that x < y implies that xz < yz and zx < zy for all $x, y, z \in G$.

Example 6.2. The group $\mathbb{R}_{>0}$ of positive real numbers is bi-ordered.

Exercise 6.3. Let *G* be a bi-ordered group and $x, x_1, y, y_1 \in G$. Prove that x < y and $x_1 < y_1$ imply $xx_1 < yy_1$.

Exercise 6.4. Let *G* be a bi-ordered group and $g, h \in G$. Prove that $g^n = h^n$ for some n > 0 implies g = h.

Definition 6.5. Let G be a bi-ordered group. The **positive cone** of G is the set $P(G) = \{x \in G : 1 < x\}$.

Let us state some properties of positive cones.

Proposition 6.6. *Let G be a bi-ordered group and let P be its positive cone.*

- 1) P is closed under multiplication, i.e. $PP \subseteq P$.
- **2)** $G = P \cup P^{-1} \cup \{1\}$ (disjoint union).
- 3) $xPx^{-1} = P \text{ for all } x \in G$.

Proof. If $x, y \in P$ and $z \in G$, then, since 1 < x and 1 < y, it follows that 1 < xy. Thus $1 = z1z^{-1} < zxz^{-1}$. It remains to prove the second claim. If $g \in G$, then g = 1 or g > 1or g < 1. Note that g < 1 if and only if $1 < g^{-1}$, so the claim follows.

The previous proposition admits a converse statement.

pro:biordenableP2

Proposition 6.7. Let G be a group and P be a subset of G such that P is closed under multiplication, $G = P \cup P^{-1} \cup \{1\}$ (disjoint union) and $xPx^{-1} = P$ for all $x \in G$. Let x < y whenever $yx^{-1} \in P$. Then G is bi-ordered with positive cone is P.

Proof. Let $x, y \in G$. Since $yx^{-1} \in G$ and $G = P \cup P^{-1} \cup \{1\}$ (disjoint union), either $yx^{-1} \in P$ or $xy^{-1} = (yx^{-1})^{-1} \in P$ or $yx^{-1} = 1$. Thus either x < y or y < x or x = y. If x < y and $z \in G$, then zx < zy, as $(zy)(zx)^{-1} = z(yx^{-1})z^{-1} \in P$ and $zPz^{-1} = P$. Moreover, xz < yz since $(yz)(xz)^{-1} = yx^{-1} \in P$. To prove that P is the positive cone of G note that $x1^{-1} = x \in P$ if and only if 1 < x.

An important property:

pro:BOsintorsion

Proposition 6.8. *Bi-ordered groups are torsion-free.*

Proof. Let G be a bi-ordered group and $g \in G \setminus \{1\}$. If g > 1, then $1 < g < g^2 < \cdots$. If g < 1, then $1 > g > g^2 > \cdots$. Hence $g^n \ne 1$ for all $n \ne 0$.

The converse of the previous proposition does not hold.

Exercise 6.9. Let $G = \langle x, y : yxy^{-1} = x^{-1} \rangle$.

- 1) Prove that x and y are torsion-free.
- 2) Prove that G is torsion-free.
- 3) Prove that $G \simeq \langle a, b : a^2 = b^2 \rangle$.

Example 6.10. The torsion-free group $G = \langle x, y : yxy^{-1} = x^{-1} \rangle$ is not bi-ordered. If not, let P be the positive cone. If $x \in P$, then $yxy^{-1} = x^{-1} \in P$, a contradiction. Hence $x^{-1} \in P$ and $x = y^{-1}x^{-1}y \in P$, a contradiction.

thm:BO

Theorem 6.11. Let G be a bi-ordered group. Then K[G] is a domain such that only has trivial units. Moreover, if G is non-trivial, then $J(K[G]) = \{0\}$.

Proof. Let $\alpha, \beta \in K[G]$ be such that

$$\alpha = \sum_{i=1}^{m} a_i g_i, \qquad g_1 < g_2 < \dots < g_m, \qquad a_i \neq 0 \qquad \forall i \in \{1, \dots, m\},$$

$$\beta = \sum_{j=1}^{n} b_j h_j, \qquad h_1 < h_2 < \dots < h_n, \qquad b_j \neq 0 \qquad \forall j \in \{1, \dots, n\}.$$

$$\beta = \sum_{j=1}^{n} b_j h_j, \qquad h_1 < h_2 < \dots < h_n, \qquad b_j \neq 0 \qquad \forall j \in \{1, \dots, n\}.$$

§6 Bi-ordered groups

Then

$$g_1 h_1 \leq g_i h_i \leq g_m h_n$$

for all i, j. Moreover, $g_1h_1 = g_ih_j$ if and only if i = j = 1. The coefficient of g_1h_1 in $\alpha\beta$ is $a_1b_1 \neq 0$. In particular, $\alpha\beta \neq 0$. If $\alpha\beta = \beta\alpha = 1$, then the coefficient of g_mh_n in $\alpha\beta$ is a_mb_n . Hence m = n = 1 and therefore $\alpha = a_1g_1$ and $\beta = b_1h_1$ with $a_1b_1 = b_1a_1 = 1$ in K and $g_1h_1 = 1$ in G.

thm:Levi

Theorem 6.12 (Levi). Let A be an abelian group. Then A is bi-ordered if and only if A is torsion-free.

Proof. If A is bi-ordered, then A is torsion-free. Let us prove the non-trivial implication, so assume that A is torsion-free abelian. Let S be the class of subsets P of A such that $0 \in P$, are closed under the addition of A and satisfy the following property: if $x \in P$ and $-x \in P$, then x = 0. Clearly, $S \neq \emptyset$, as $\{0\} \in S$. The inclusion turns S into a partially ordered set and $\bigcup_{i \in I} P_i$ is an upper bound for the chain $\{P_i : i \in I\}$. By Zorn's lemma, S admits a maximal element $P \in S$.

Claim. If $x \in A$ is such that $kx \in P$ for some k > 0, then $x \in P$.

Let $Q = \{x \in A : kx \in P \text{ for some } k > 0\}$. We will show that $Q \in S$. Clearly, $0 \in Q$. Moreover, Q is closed under addition, as $k_1x_1 \in P$ and $k_2x_2 \in P$ imply $k_1k_2(x_1+x_2) \in P$. Let $x \in A$ be such that $x \in Q$ and $-x \in Q$. Thus $kx \in P$ and $l(-x) \in P$ for some l > 0. Since $klx \in P$ and $kl(-x) \in P$, it follows that klx = 0, a contradiction since A is torsion-free. Hence $x \in Q \subseteq P$.

Claim. If $x \in A$ is such that $x \notin P$, then $-x \in P$.

Assume that $-x \notin P$ and let $P_1 = \{y + nx : y \in P, n \ge 0\}$. We will show that $P_1 \in S$. Clearly, $0 \in P_1$ and P_1 is closed under addition. If $P_1 \notin S$, there exists

$$0 \neq y_1 + n_1 x = -(y_2 + n_2 x),$$

where $y_1, y_2 \in P$ and $n_1, n_2 \ge 0$. Thus $y_1 + y_2 = -(n_1 + n_2)x$. If $n_1 = n_2 = 0$, then $y_1 = -y_2 \in P$ and $y_1 = y_2 = 0$, so it follows that $y_1 + n_1x = 0$, a contradiction. If $n_1 + n_2 > 0$, then, since

$$(n_1+n_2)(-x) = y_1+y_2 \in P$$
,

it follows from the first claim that $-x \in P$, a contradiction. Let us show that $P_1 \in S$. Since $P \subseteq P_1$, the maximality of P implies that $x \in P = P_1$.

By Proposition 6.7, $P^* = P \setminus \{0\}$ is the positive cone of a bi-order in A. In fact, P^* is closed under addition, as $x, y \in P^*$ implies that $x + y \in P$ and x + y = 0 implies x = y = 0, as $x = -y \in P$. Moreover, $G = P^* \cup -P^* \cup \{0\}$ (disjoint union), as the second claim states that $x \notin P^*$ implies $-x \in P$.

Corollary 6.13. Let A be a non-trivial torsion-free abelian group. Then K[A] is a domain that only admits trivial units and $J(K[A]) = \{0\}$.

Proof. Apply Levi's theorem and Theorem 6.11.

Some exercises.

Exercise 6.14. Let N be a central subgroup of G. If N and G/N are bi-ordered, then G is bi-ordered. Prove with an example that N needs to be central, normal is not enough.

Exercise 6.15. Let G be a group that admits a sequence

$$\{1\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$$

such that each G_k is normal in G_{k+1} and each quotient G_{k+1}/G_k is torsion-free abelian. Prove that G is bi-ordered.

Exercise 6.16. Prove that torsion-free nilpotent groups are bi-ordered.

§7. Left-ordered groups

Definition 7.1. Un grupo G se dice **ordenable a derecha** si existe un orden total < en G tal que si x < y entonces xz < yz para todo $x, y, z \in G$.

Si G es un grupo ordenable a derecha, se define el cono positivo de G como el subconjunto $P(G) = \{x \in G : 1 < x\}$.

Exercise 7.2. Sea *G* un grupo ordenable a derecha con cono positivo *P*. Demuestre las siguientes afirmaciones:

- 1) P es cerrado por multiplicación.
- **2)** $G = P \cup P^{-1} \cup \{1\}$ (unión disjunta).

Exercise 7.3. Sea G un grupo y sea P un subconjunto cerrado por multiplicación y tal que $G = P \cup P^{-1} \cup \{1\}$ (unión disjunta). Demuestre que si se define x < y si y sólo si $yx^{-1} \in P$, entonces G es ordenable a derecha con cono positivo P.

Lemma 7.4. Sea G un grupo y sea N un subgrupo normal de G. Si N y G/N son ordenables a derecha, entonces G también lo es.

Proof. Como N y G/N son ordenables a derecha, existen los conos positivos P(N) y P(G/N). Sea $\pi: G \to G/N$ el morfismo canónico y sea

$$P(G) = \{x \in G : \pi(x) \in P(G/N) \text{ o bien } x \in N\}.$$

Dejamos como ejercicio demostrar que P(G) es cerrado por la multiplicación y que $G = P(G) \cup P(G)^{-1} \cup \{1\}$ (unión disjunta). Luego G es ordenable a derecha. \square

Para dar un criterio de ordenabilidad necesitamos un lema:

lemma:fq

Lemma 7.5. Sea G un grupo finitamente generado y sea H un subgrupo de índice finito. Entonces H es finitamente generado.

Proof. Supongamos que G está generado por $\{g_1, \ldots, g_m\}$ y supongamos que para cada i existe k tal que $g_i^{-1} = g_k$. Sea t_1, \ldots, t_n un conjunto de representantes de G/H. Para $i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}$, escribimos

$$t_i g_j = h(i, j) t_{k(i, j)}.$$

Vamos a demostrar que H está generado por los h(i, j). Sea $x \in H$. Escribamos

$$x = g_{i_1} \cdots g_{i_s}$$

$$= (t_1 g_{i_1}) g_{i_2} \cdots g_{i_s}$$

$$= h(1, i_1) t_{k_1} g_{i_2} \cdots g_{i_s}$$

$$= h(1, i_1) h(k_1, i_2) t_{k_2} g_{i_3} \cdots g_{i_s}$$

$$= h(1, i_1) h(k_1, i_2) \cdots h(k_{s-1}, g_{i_s}) t_{k_s},$$

donde
$$k_1, \ldots, k_{s-1} \in \{1, \ldots, n\}$$
. Como $t_{k_s} \in H$, $t_{k_s} = t_1 \in H$ y luego $x \in H$.

El siguiente teorema nos da un criterio de ordenabilidad a derecha:

Theorem 7.6. Sea G un grupo libre de torsión y finitamente generado. Si A es un subgrupo normal abeliano tal que G/A es finito y cíclico, entonces G es ordenable a derecha.

Proof. Primero observemos que si A es trivial, entonces G también es trivial. Supongamos entonces que $A \neq 1$. Como A tiene índice finito, es finitamente generado. Procederemos por inducción en la cantidad de generadores de A. Como G/A es cíclico, existe $x \in G$ tal que $G = \langle A, x \rangle$. Luego $[x, A] = \langle [x, a] : a \in A \rangle$ es un subgrupo normal de G tal que $A/C_A(x) \simeq [x, A]$ (pues $a \mapsto [x, a]$ es un morfismo de grupos $A \to A$ con imagen [x, A] y núcleo $C_A(x)$). Si $\pi : G \to G/[x, A]$, entonces $G/[x, A] = \langle \pi(A), \pi(x) \rangle$ y luego G/[x, A] es abeliano pues $[\pi(x), \pi(A)] = \pi[x, A] = 1$. Además G/[x, A] es finitamente generado pues G es finitamente generado. Como (G : A) = n y G no tiene torsión, $1 \neq x^n \in A$. Luego $x^n \in C_A(x)$ y entonces $1 \leq \operatorname{rank} C_A(x) < \operatorname{rank} A$ (si $\operatorname{rank} C_A(x) = \operatorname{rank} A$, entonces [x, A] sería un subgrupo de torsión de A, una contradicción pues $x \notin A$). Luego

$$rank[x, A] = rank(A/C_A(x)) \le rank A - 1$$

y entonces $rank(A/[x,A]) \ge 1$. Demostramos así que A/[x,A] es infinito y luego G/[x,A] es también infinito.

Como G/[x,A] es un grupo abeliano finitamente generado e infinito, existe un un subgrupo normal H de G tal que $[x,A] \subseteq H$ y $G/H \simeq \mathbb{Z}$. El subgrupo $B = A \cap H$ es abeliano, normal en H y cumple que H/B es cíclico (pues puede identificarse con un subgrupo de G/A). Como rank $B < \operatorname{rank} A$, la hipótesis inductiva implica que H es ordenable a derecha y luego G también es ordenable a derecha.

Exercise 7.7 (Malcev–Neumann). Sea G un grupo ordenable a derecha. Demuestre que K[G] no tiene divisores de cero ni unidades no triviales.

En 1973 Formanek demostró que la conjetura de los divisores de cero es verdadera para grupos super resolubles sin torsión. En 1976 Brown e independientemente Farkas y Snider demostraron que la conjetura es verdadera para grupos policíclicospor-finitos sin torsión.

Lecture 5

§8. Unique product groups

Sea G un grupo y sean $A, B \subseteq G$ subconjuntos no vacíos. Diremos que un elemento $g \in G$ es un producto único en AB si $g = ab = a_1b_1$ con $a, a_1 \in A$ y $b, b_1 \in B$ implica que $a = a_1$ y $b = b_1$.

Definition 8.1. Se dice que un grupo G tiene la **propiedad del producto único** si dados dos subconjuntos $A, B \subseteq G$ finitos y no vacíos existe al menos un producto único en AB.

Proposition 8.2. Si un grupo G es ordenable a derecha, entonces G tiene la propiedad del producto único.

Proof. Sean $A = \{a_1, \dots, a_n\} \subseteq G$ y $B \subseteq G$ ambos finitos y no vacíos. Supongamos que $a_1 < a_2 < \dots < a_n$. Sea $c \in B$ tal que a_1c es el mínimo del conjunto $a_1B = \{a_1b : b \in B\}$. Veamos que a_1c admite una única representación de la forma $\alpha\beta$ con $\alpha \in A$ y $\beta \in B$. Si $a_1c = ab$, entonces, como $ab = a_1c \le a_1b$, se tiene que $a \le a_1$ y luego $a = a_1$ y b = c.

Exercise 8.3. Demuestre que un grupo que satisface la propiedad del producto único es libre de torsión.

The converse does not hold. Promislow's group is a celebrated counterexample.

Theorem 8.4 (Promislow). The group $G = \langle a, b : a^{-1}b^2a = b^{-2}, b^{-1}a^2b = a^{-2} \rangle$ does not have the unique product property.

Proof. Let

$$S = \{a^2b, b^2a, aba^{-1}, (b^2a)^{-1}, (ab)^{-2}, b, (ab)^2x, (ab)^2, (aba)^{-1}, \\ bab, b^{-1}, a, aba, a^{-1}\}. \quad (5.1) \quad \boxed{\texttt{eq:Promislow}}$$

We use GAP and the representation $G \to GL(4, \mathbb{Q})$ given by

$$a \mapsto \begin{pmatrix} 1 & 0 & 0 & 1/2 \\ 0 & -1 & 0 & 1/2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & -1 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

to check that G does not have unique product property, as each

$$s \in S^2 = \{s_1 s_2 : s_1, s_2 \in S\}$$

admits at least two different decompositions of the form s = xy = uv for $x, y, u, v \in S$. We first create the matrix representations of a and b.

```
gap> a := [[1,0,0,1/2],[0,-1,0,1/2],[0,0,-1,0],[0,0,0,1]];; gap> b := [[-1,0,0,0],[0,1,0,1/2],[0,0,-1,1/2],[0,0,0,1]];;
```

Now we create a function that produces the set *S*.

```
gap> Promislow := function(x, y)
> return Set([
> x^2 * y
> y^2*x,
> x*y*Inverse(x),
> (y^2*x)^(-1),
> (x*y)^{(-2)},
> y,
> (x*y)^2*x
> (x*y)^2,
> (x*y*x)^{(-1)},
> y*x*y,
> y^{(-1)},
> x,
> x*y*x,
> x^(-1)
]);
end;;
```

So the set S of (5.1) will be Promislow (a,b). We now create a function that checks whether every element of a Promislow subset admits more than one representation.

```
gap> is_UPP := function(S)
> local 1,x,y;
> l := [];
> for x in S do
> for y in S do
> Add(1,x*y);
> od;
> od;
> if ForAll(Collected(1), x->x[2] <> 1) then
> return false;
> else
> return fail;
> fi;
> end;;
```

Finally, we check whether every element of S admits more than one representation.

```
gap> S := Promislow(a,b);;
gap> is_UPP(S);
false
```

This completes the proof.

There are other examples.

Definition 8.5. Se dice que un grupo G tiene la **propiedad del doble producto único** si dados dos subconjuntos $A, B \subseteq G$ finitos y no vacíos tales que |A| + |B| > 2 existen al menos dos productos únicos en AB.

theorem:Strojnowski

Theorem 8.6 (Strojnowski). Sea G un grupo. Las siguientes afirmaciones son equivalentes:

- 1) G tiene la propiedad del doble producto único.
- 2) Para todo subconjunto $A \subseteq G$ finito y no vacío, existe al menos un producto único en $AA = \{a_1a_2 : a_1, a_2 \in A\}$.
- 3) G tiene la propiedad del producto único.

Proof. La implicación (1) ⇒ (2) es trivial. Demostremos que vale (2) ⇒ (3). Si G no tiene la propiedad del producto único, existen subconjuntos $A, B \subseteq G$ finitos y no vacíos tales que todo elemento de AB admite al menos dos representaciones. Sea C = AB. Todo $c \in C$ es de la forma $c = (a_1b_1)(a_2b_2)$ con $a_1, a_2 \in A$ y $b_1, b_2 \in B$. Como $a_2^{-1}b_1^{-1} \in AB$, existen $a_3 \in A \setminus \{a_2\}$ y $b_3 \in B \setminus \{b_1\}$ tales que $a_2^{-1}b_1^{-1} = a_3^{-1}b_3^{-1}$. Luego $b_1a_2 = b_3a_3$ y entonces

$$c = (a_1b_1)(a_2b_2) = (a_1b_3)(a_3b_2)$$

son dos representaciones distintas de c en AB. pues $a_2 \neq a_3$ y $b_1 \neq b_3$.

Demostremos ahora que (3) \Longrightarrow (1). Si G tiene la propiedad del producto único pero no tiene la propiedad del doble producto único, existen subconjuntos $A,B\subseteq G$ finitos y no vacíos con |A|+|B|>2 tales que en AB existe un único elemento ab con una única representación en AB. Sean $C=a^{-1}A$ y $D=Bb^{-1}$. Entonces $1\in C\cap D$ y el elemento neutro 1 admite una única representación en CD (pues si 1=cd con $c=a^{-1}a_1\neq 1$ y $d=b_1b^{-1}\neq 1$, entonces $ab=a_1b_1$ con $a\neq a_1$ y $b\neq b_1$). Sean $E=D^{-1}C$ y $F=DC^{-1}$. Todo elemento de EF se escribe como $(d_1^{-1}c_1)(d_2c_2^{-1})$. Si $c_1\neq 1$ o $d_2\neq 1$ entonces $c_1d_2=c_3d_3$ para algún $c_3\in C\setminus\{c_1\}$ y algún $d_3\in D\setminus\{d_2\}$. Entonces $(d_1^{-1}c_1)(d_2c_2^{-1})=(d_1^{-1}c_3)(d_3c_2^{-1})$ son dos representaciones distintas para $(d_1^{-1}c_1)(d_2c_2^{-1})$. Si $c_2\neq 1$ o $d_1\neq 1$ entonces $c_2d_1=c_4d_4$ para algún $d_4\in D\setminus\{d_1\}$ y algún $c_4\in C\setminus\{c_2\}$ y entonces, como $d_1^{-1}c_2^{-1}=d_4^{-1}c_4^{-1}$, $(d_1^{-1}1)(1c_2^{-1})=(d_4^{-1}1)(1c_4^{-1})$. Como |C|+|D|>2, C o D contienen algún $c\neq 1$, y entonces $(1\cdot1)(1\cdot1)=(1\cdot c)(1\cdot c^{-1})$. Demostramos entonces que todo elemento de EF tiene al menos dos representaciones.

Exercise 8.7. Demuestre que si G es un grupo que satisface la propiedad del producto único, entonces K[G] tiene solamente unidades triviales.

En general es muy difícil verificar si un grupo posee la propiedad del producto único. Una propiedad similar es la de ser un grupo difuso. Si G es un grupo libre de torsión y $A \subseteq G$ es un subconjunto, diremos que A es antisimétrico si $A \cap A^{-1} \subseteq \{1\}$, donde $A^{-1} = \{a^{-1} : a \in A\}$. El conjunto de **elementos extremales** de A se define como $\Delta(A) = \{a \in A : Aa^{-1} \text{ es antisimétrico}\}$. Luego

$$a \in A \setminus \Delta(A) \iff$$
 existe $g \in G \setminus \{1\}$ tal que $ga \in A$ y $g^{-1}a \in A$.

Definition 8.8. Un grupo G se dice **difuso** si para todo subconjunto $A \subseteq G$ tal que $2 \le |A| < \infty$ se tiene $|\Delta(A)| \ge 2$.

Lemma 8.9. Si G es ordenable a derecha, entonces G es difuso.

Proof. Supongamos que $A = \{a_1, \dots, a_n\}$ y $a_1 < a_2 < \dots < a_n$. Vamos a demostrar que $\{a_1, a_n\} \subseteq \Delta(A)$. Si $a_1 \in A \setminus \Delta(A)$, existe $g \in G \setminus \{1\}$ tal que $ga_1 \in A$ y $g^{-1}a_1 \in A$. Esto implica que $a_1 \leq ga_1$ y $a_1 \leq g^{-1}a_1$, de donde se concluye que $1 \leq g$ y $1 \leq g^{-1}$, una contradicción. De la misma forma se demuestra que $a_n \in \Delta(A)$.

lemma:difuso=>2up

Lemma 8.10. Si G es difuso, entonces G tiene la propiedad del doble producto único.

Proof. Supongamos que *G* no tiene la propiedad del doble producto único. Existen entonces subconjuntos finitos $A, B \subseteq G$ con |A| + |B| > 2 tales que C = AB tiene a lo sumo un producto único. Luego $|C| \ge 2$. Como *G* es difuso, $|\Delta(C)| \ge 2$. Si $c \in \Delta(C)$, entonces *c* tiene una única expresión como c = ab con $a \in A$ y $b \in B$ (de lo contrario, si $c = a_0b_0 = a_1b_1$ con $a_0 \ne a_1$ y $b_0 \ne b_1$. Si $g = a_0a_1^{-1}$, entonces $g \ne 1$, $gc = a_0a_1^{-1}a_1b_1 = a_0b_1 \in C$ y además $g^{-1}c = a_1a_0^{-1}a_0b_0 = a_1b_0 \in C$. Luego $c \notin \Delta(c)$, una contradicción. □

Open problem 8.1. Find a non-diffuse group with the unique product property.

§9. Connel's theorem

When K[G] is prime? Connel's theorem gives a full answer to this natural question in the case where K is of characteristic zero.

If *S* is a finite subset of a group *G*, then we define $\widehat{S} = \sum_{x \in S} x$.

lemma:sumN

Lemma 9.1. Let N be a finite normal subgroup of G. Then $\widehat{N} = \sum_{x \in N} x$ is central in K[G] and $\widehat{N}(\widehat{N} - |N|1) = 0$.

Proof. Assume that $N = \{n_1, ..., n_k\}$. Let $g \in G$. Since $N \to N$, $n \mapsto gng^{-1}$, is bijective,

$$g\widehat{N}g^{-1} = g(n_1 + \dots + n_k)g^{-1} = gn_1g^{-1} + \dots + gn_kg^{-1} = \widehat{N}.$$

Since nN = N if $n \in N$, it follows that $n\widehat{N} = \widehat{N}$. Thus $\widehat{N}\widehat{N} = \sum_{j=1}^{k} n_j \widehat{N} = |N|\widehat{N}$. \square

Before proving Connel's theorem we need to prove two group theoretical results. The first one goes to Dietzman:

theorem:Dietzmann

Theorem 9.2 (Dietzmann). Let G be a group and $X \subseteq G$ be a finite subset of G closed by conjugation. If there exists n such that $x^n = 1$ for all $x \in X$, then $\langle X \rangle$ is a finite subgroup of G.

Proof. Let $S = \langle X \rangle$. Since $x^{-1} = x^{n-1}$, every element of S can be written as a finite product of elements of X. Fix $x \in X$. We claim that if $x \in X$ appears $k \ge 1$ times in the word s, then we can write s as a product of m elements of X, where the first k elements are equal to x. Suppose that

$$s = x_1 x_2 \cdots x_{t-1} x x_{t+1} \cdots x_m,$$

where $x_j \neq x$ for all $j \in \{1, ..., t-1\}$. Then

$$s = x(x^{-1}x_1x)(x^{-1}x_2x)\cdots(x^{-1}x_{t-1}x)x_{t+1}\cdots x_m$$

is a product of m elements of X since X is closed under conjugation and the first element is x. The same argument implies that s can be written as

$$s = x^k y_{k+1} \cdots y_m,$$

where each y_i belongs to $X \setminus \{x\}$.

Let $s \in S$ and write s as a product of m elements of X, where m is minimal. We need to show that $m \le (n-1)|X|$. If m > (n-1)|X|, then at least $x \in X$ appear n times in the representation of s. Without loss of generality, we write

$$s = x^n x_{n+1} \cdots x_m = x_{n+1} \cdots x_m$$

a contradiction to the minimality of m.

The second result goes back to Schur:

thm:Schur

Theorem 9.3 (Schur). Let G be a group. If Z(G) has finite index in G, then [G,G] is finite.

Proof. Let n = (G : Z(G)) and X be the set of commutators of G. We claim that X is finite, in fact $|X| \le n^2$. The map

$$\varphi: X \to G/Z(G) \times G/Z(G), \quad [x, y] \mapsto (xZ(G), yZ(G)),$$

is injective: if (xZ(G), yZ(G)) = (uZ(G), vZ(G)), then $u^{-1}x \in Z(G), v^{-1}y \in Z(G)$. Thus

$$[u, v] = uvu^{-1}v^{-1} = uv(u^{-1}x)x^{-1}v^{-1} = xvx^{-1}(v^{-1}y)y^{-1} = xyx^{-1}y^{-1} = [x, y].$$

Moreover, X is closed under conjugation, as

$$g[x,y]g^{-1} = [gxg^{-1}, gyg^{-1}]$$

for all $g, x, y \in G$. Since $G \to Z(G)$, $g \mapsto g^n$ is a group homomorphism, Lemma ?? implies that $[x, y]^n = [x^n, y^n] = 1$ for all $[x, y] \in X$. The theorem follows from applying Dietzmann's theorem.

Si G es un grupo, consideramos el subconjunto

$$\Delta^+(G) = \{x \in \Delta(G) : x \text{ tiene orden finito}\}.$$

lem:DcharG

Lemma 9.4. Si G es un grupo, entonces $\Delta^+(G)$ es un subgrupo característico de G.

Proof. Claramente $1 \in \Delta^+(G)$. Sean $x, y \in \Delta^+(G)$ y sea H el subgrupo de G generado por el conjunto C formado por los finitos conjugados de x e y. Si |x| = n y |y| = m, entonces $c^{nm} = 1$ para todo $c \in C$. Como C es finito y cerrado por conjugación, el teorema de Dietzmann implica que H es finito. Luego $H \subseteq \Delta^+(G)$ y en particular $xy^{-1} \in \Delta^+(G)$. Es evidente que $\Delta^+(G)$ es un subgrupo característico pues para todo $f \in \operatorname{Aut}(G)$ se tiene que $f(x) \in \Delta^+(G)$ si $x \in \Delta^+(G)$.

La segunda aplicación del teorema de Dietzmann es el siguiente resultado:

lem:Connel

Lemma 9.5. Sea G un grupo y sea $x \in \Delta^+(G)$. Existe entonces un subgrupo finito H normal en G tal que $x \in H$.

Dejamos la demostración como ejercicio ya que el muy similar a lo que hicimos en la demostración del lema 9.4.

thm:Connel

Theorem 9.6 (Connell). Supongamos que el cuerpo K es de característica cero. Sea G un grupo. Las siguientes afirmaciones son equivalentes:

- 1) K[G] es primo.
- 2) Z(K[G]) es primo.
- 3) G no tiene subgrupos finitos normales no triviales.
- **4**) $\Delta^+(G) = 1$.

Proof. Demostremos que $(1) \Longrightarrow (2)$. Como Z(K[G]) es un anillo conmutativo, probar que es primo es equivalente a probar que no existen divisores de cero no triviales. Sean $\alpha, \beta \in Z(K[G])$ tales que $\alpha\beta = 0$. Sean $A = \alpha K[G]$ y $B = \beta K[G]$. Como α y β son centrales, A y B son ideales de K[G]. Como AB = 0, entonces $A = \{0\}$ o $B = \{0\}$ pues K[G] es primo. Luego $\alpha = 0$ o $\beta = 0$.

Demostremos ahora que $(2) \Longrightarrow (3)$. Sea N un subgrupo normal finito. Por el lema 9.1, $\widehat{N} = \sum_{x \in N} x$ es central en K[G] y $\widehat{N}(\widehat{N} - |N|1) = 0$. Como $\widehat{N} \neq 0$ (pues K tiene característica cero) y Z(K[G]) es un dominio, $\widehat{N} = |N|1$, es decir: $N = \{1\}$.

Demostremos que (3) \Longrightarrow (4). Sea $x \in \Delta^+(G)$. Por el lema 9.5 sabemos que existe un subgrupo finito H normal en G que contiene a x. Como por hipótesis H es trivial, se concluye que x = 1.

Finalmente demostramos que $(4) \implies (1)$. Sean A y B ideales de K[G] tales que AB = 0. Supongamos que $B \neq 0$ y sea $\beta \in B \setminus \{0\}$. Si $\alpha \in A$, entonces, como

 $\alpha K[G]\beta \subseteq \alpha B \subseteq AB = 0$, el lema 4.7 de Passman implica que $\pi_{\Delta(G)}(\alpha)\pi_{\Delta(G)}(\beta) = 0$. Como por hipótesis $\Delta^+(G)$ es trivial, sabemos que $\Delta(G)$ es libre de torsión y luego $\Delta(G)$ es abeliano por el lema ??. Esto nos dice que $K[\Delta(G)]$ no tiene divisores de cero y luego $\alpha = 0$. Demostramos entonces que $B \neq 0$ implica que A = 0.

Theorem 9.7 (Connel). Sea K un cuerpo de característica cero y sea G un grupo. Entonces K[G] es artiniano a izquierda si y sólo si G es finito.

Proof. Si G es finito, K[G] es un álgebra de dimensión finita y luego es artiniano a izquierda. Supongamos entonces que K[G] es artiniano a izquierda.

Primero observemos que si K[G] es un álgebra prima, entonces por el teorema de Wedderburn K[G] es simple y luego G es el grupo trivial (pues si G no es trivial, K[G] no es simple ya que el ideal de aumentación es un ideal no nulo de K[G]).

Como K[G] es artiniano a izquierda, es noetheriano a izquierda por Hopkins–Levitzky y entonces, K[G] admite una serie de composición por el teorema \ref{Model} ?. Para demostrar el teorema procederemos por inducción en la longitud de la serie de composición de K[G]. Si la longitud es uno, $\{0\}$ es el único ideal de K[G] y luego K[G] es prima y el resultado está demostrado. Si suponemos que el resultado vale para longitud n y además K[G] no es prima, entonces, por el teorema de Connel, G posee un subgrupo normal G finito y no trivial. Al considerar el morfismo canónico G posee un subgrupo normal G finito y no trivial. Al considerar el morfismo canónico G posee un subgrupo normal G es artiniano a izquierda y tiene longitud G G0. Por hipótesis inductiva, G/G1 es un grupo finito y luego, como G1 también es finito, G2 es finito.

Lecture 6

§10. The Yang-Baxter equation

We now briefly discuss set-theoretic solutions to the Yang-Baxter equation.

Definition 10.1. A *set-theoretic solution* to the Yang–Baxter equation (YBE) is a pair (X,r), where X is a non-empty set and $r: X \times X \to X \times X$ is a bijective map that satisfies

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r),$$

where, if $r(x, y) = (\sigma_x(y), \tau_y(x))$, then

$$r \times \mathrm{id} \colon X \times X \times X \to X \times X \times X, \qquad (r \times \mathrm{id})(x, y, z) = (\sigma_x(y), \tau_y(x), z),$$
$$\mathrm{id} \times r \colon X \times X \times X \to X \times X \times X, \qquad (\mathrm{id} \times r)(x, y, z) = (x, \sigma_y(z), \tau_z(y)).$$

The solution (X,r) is said to be *finite* if X is a finite set.

Figure 6.1 The Yang-Baxter equation.

fig:braid

For $n \ge 2$, the *braid group* \mathbb{B}_n is defined as the group with generators $\sigma_1, \dots, \sigma_{n-1}$ and relations

$$\begin{split} \sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } 1 \leq i \leq n-2, \\ \sigma_i \sigma_j &= \sigma_j \sigma_i & \text{if } |i-j| > 1. \end{split}$$

Let (X,r) be a set-theoretic solution to the YBE. Write $X^n = X \times \cdots \times X$ (n-times). For i < n let $r_{i,i+1} = \mathrm{id}_{X^{i-1}} \times r \times \mathrm{id}_{X^{n-i-1}} : X^n \to X^n$. Then the map $\sigma_i \mapsto r_{i,i+1}$ extends to an action of \mathbb{B}_n on X^n .

Example 10.2. Let X be a non-empty set. Then (X, id) is a set-theoretic solution to the YBE.

Example 10.3. Let X be a non-empty set. Then (X,r), where r(x,y) = (y,x), is a set-theoretic solution to the YBE. This solution is known as the *trivial solution* over the set X.

By convention, we write

$$r(x, y) = (\sigma_x(y), \tau_y(x)).$$

Lem: YB Lemma 10.4. Let X be a non-empty set and $r: X \times X \to X \times X$ be a bijective map. Then (X,r) is a set-theoretic solution to the YBE if and only if

$$\sigma_x \sigma_y = \sigma_{\sigma_x(y)} \sigma_{\tau_y(x)}, \quad \sigma_{\tau_{\sigma_y(z)}(x)} \tau_z(y) = \tau_{\sigma_{\tau_y(x)}(z)} \sigma_x(y), \quad \tau_z \tau_y = \tau_{\tau_z(y)} \tau_{\sigma_y(z)}$$

for all $x, y, z \in X$.

Proof. We write $r_1 = r \times id$ and $r_2 = id \times r$. We first compute

$$r_1 r_2 r_1(x, y, z) = r_1 r_2(\sigma_x(y), \tau_y(x), z) = r_1(\sigma_x(y), \sigma_{\tau_y(x)}(z), \tau_z \tau_y(x))$$
$$= \left(\sigma_{\sigma_x(y)} \sigma_{\tau_y(x)}(z), \tau_{\sigma_{\tau_y(x)}(z)} \sigma_x(y), \tau_z \tau_y(x)\right).$$

Then we compute

$$r_2 r_1 r_2(x, y, z) = r_2 r_1(x, \sigma_y(z), \tau_z(y)) = r_2(\sigma_x \sigma_y(z), \tau_{\sigma_y(z)}(x), \tau_z(y))$$
$$= \left(\sigma_x \sigma_y(z), \sigma_{\tau_{\sigma_y(z)}(x)} \tau_z(y), \tau_{\tau_z(y)} \tau_{\sigma_y(z)}(x)\right)$$

and the claim follows.

If (X,r) is a set-theoretic solution, by definition the map $r: X \times X \to X \times X$ is invertible. By convention, we write

$$r^{-1}(x, y) = (\widehat{\sigma}_x(y), \widehat{\tau}_y(x)).$$

Note that this implies that

$$x = \widehat{\sigma}_{\sigma_x(y)} \tau_y(x), \quad y = \widehat{\tau}_{\tau_y(x)} \sigma_x(y).$$

It is easy to check that (X, r^{-1}) is a set-theoretic solution to the YBE. Thus Lemma 10.4 implies that the following formulas hold:

$$\widehat{\tau}_{\mathbf{y}}\widehat{\tau}_{\mathbf{x}} = \widehat{\tau}_{\tau_{\mathbf{y}}(\mathbf{x})}\widehat{\tau}_{\sigma_{\mathbf{x}}(\mathbf{y})}, \quad \widehat{\sigma}_{\mathbf{x}}\widehat{\sigma_{\mathbf{y}}} = \widehat{\sigma}_{\sigma_{\mathbf{x}}(\mathbf{y})}\widehat{\sigma}_{\tau_{\mathbf{y}}(\mathbf{x})}.$$

§10 The Yang-Baxter equation

Example 10.5. Let $X = \{1, 2, 3, 4\}$ and $r(x, y) = (\sigma_x(y), \tau_y(x))$, where

$$\sigma_1 = (132),$$
 $\sigma_2 = (124),$ $\sigma_3 = (143),$ $\sigma_4 = (234),$ $\tau_1 = (12)(34),$ $\tau_2 = (12)(34),$ $\tau_3 = (12)(34),$ $\tau_4 = (12)(34).$

Then *r* is invertible with $r^{-1}(x, y) = (\widehat{\sigma}_x(y), \widehat{\tau}_y(x))$ given by

$$\widehat{\sigma}_1 = (12)(34),$$
 $\widehat{\sigma}_2 = (12)(34),$ $\widehat{\sigma}_3 = (12)(34),$ $\widehat{\sigma}_4 = (12)(34),$ $\widehat{\tau}_1 = (142),$ $\widehat{\tau}_2 = (123),$ $\widehat{\tau}_3 = (243),$ $\widehat{\tau}_4 = (134).$

Definition 10.6. A *homomorphism* between the set-theoretic solutions (X,r) and (Y,s) is a map $f: X \to Y$ such that the diagram

$$\begin{array}{ccc}
X \times X & \xrightarrow{r} & X \times X \\
f \times f \downarrow & & \downarrow f \times f \\
Y \times Y & \xrightarrow{s} & Y \times Y
\end{array}$$

is commutative, that is $s(f \times f) = (f \times f)r$. An *isomorphism* of solutions is a bijective homomorphism of solutions.

Since we are interested in studying the combinatorics behind set-theoretic solutions to the YBE, it makes sense to study the following family of solutions.

Definition 10.7. We say that a set-theoretic solution (X,r) to the YBE is *non-degenerate* if the maps σ_X and τ_X are permutations of X.

By convention, a *solution* we will mean a non-degenerate **set-theoretic** solution to the YBE.

lem:LYZ

Lemma 10.8. Let (X,r) be a solution.

- 1) Given $x, u \in X$, there exist unique $y, v \in X$ such that r(x, y) = (u, v).
- 2) Given $y, v \in X$, there exist unique $x, u \in X$ such that r(x, y) = (u, v).

Proof. For the first claim take $y = \sigma_x^{-1}(u)$ and $v = \tau_y(x)$. For the second, $x = \tau_y^{-1}(v)$ and $u = \sigma_x(y)$.

The bijectivity of *r* means that any row determines the whole square. Lemma 10.8 means that any column also determines the whole square, see Figure 6.2.

Figure 6.2 Any row or column determines the whole square.

fig:braid

Example 10.9. If the map $(x, y) \mapsto (\sigma_x(y), \tau_y(x))$ satisfies the Yang–Baxter equation, then so does $(x, y) \mapsto (\tau_x(y), \sigma_y(x))$.

exa:Lyubashenko

Example 10.10. Let X be a non-empty set and σ and τ be bijections on X such that $\sigma \circ \tau = \tau \circ \sigma$. Then (X,r), where $r(x,y) = (\sigma(y),\tau(x))$, is a non-degenerate solution. This is known as the *permutation solution* associated with permutations σ and τ .

exa:Venkov

Example 10.11. Let G be a group. Then (G,r), where $r(x,y) = (xyx^{-1},x)$, is a solution.

Example 10.12. Let $n \ge 2$ and $X = \mathbb{Z}/(n)$ be the ring of integers modulo n. Prove that the map r(x, y) = (2x - y, x) satisfies the the set-theoretic YBE.

The following result was proved by Lu, Yan and Zhu.

thm:LYZ

Theorem 10.13 (Lu–Yan–Zhu). Let G be a group, $\xi: G \times G \to G$, $\xi(x,y) = x \triangleright y$, be a left action of the group G on itself as a set and $\eta: G \times G \to G$, $\eta(x,y) = x \triangleleft y$, be a right action of the group G on itself as a set. If the compatibility condition

$$uv = (u \triangleright v)(u \triangleleft v)$$

holds for all $u, v \in G$, then the pair (G, r), where

$$r: G \times G \to G \times G$$
, $r(u,v) = (u \triangleright v, u \triangleleft v)$

is a solution. Moreover, if r(x, y) = (u, v), then

$$r(x^{-1}, y^{-1}) = (u^{-1}, v^{-1}), \quad r(x^{-1}, u) = (y, v^{-1}), \quad r(y, y^{-1}) = (u^{-1}, x).$$

Proof. We write $r_1 = r \times id$ and $r_2 = id \times r$. Let

$$r_1r_2r_1(u, v, w) = (u_1, v_1, w_1), \quad r_2r_1r_2(u, v, w) = (u_2, v_2, w_2).$$

The compatibility condition implies that $u_1v_1w_1 = u_2v_2w_2$. So we need to prove that $u_1 = u_2$ and $w_1 = w_2$. We note that

$$u_1 = (u \triangleright v) \triangleright ((u \triangleleft v) \triangleright w), \qquad w_1 = (u \triangleleft v) \triangleleft w,$$

$$u_2 = u \triangleright (v \triangleright w), \qquad w_2 = (u \triangleleft (v \triangleright w)) \triangleleft (v \triangleleft w).$$

Using the compatibility condition and the fact that ξ is a left action,

$$u_1 = ((u \triangleright v)(u \triangleleft v)) \triangleright w = (uv) \triangleright w = u \triangleright (v \triangleright w) = u_2.$$

Similarly, since η is a right action,

$$w_2 = u \triangleleft ((v \triangleright w)(v \triangleleft w)) = u \triangleleft (vw) = (u \triangleleft v) \triangleleft w = w_1.$$

To prove that r is invertible we proceed as follows. Write r(u, v) = (x, y), thus $u \triangleright v = x$, $u \triangleleft v = y$ and uv = xy. Since

§10 The Yang-Baxter equation

$$(y \triangleright v^{-1})u = (y \triangleright v^{-1})(y \triangleleft v^{-1}) = yv^{-1} = x^{-1}u,$$

it follows that $y \triangleright v^{-1} = x^{-1}$, i.e. $v^{-1} = y^{-1} \triangleright x^{-1}$. Similarly,

$$v(u^{-1} \triangleleft x) = (u^{-1} \triangleright x)(u^{-1} \triangleleft x) = u^{-1}x = vy^{-1}$$

implies that $u^{-1} = y^{-1} \triangleleft x^{-1}$. Clearly $r^{-1} = \zeta(i \times i) r(i \times i) \zeta$, is the inverse of r, where $\zeta(x,y) = (y,x)$ and $i(x) = x^{-1}$.

Proposition 10.14. *Under the assumptions of Theorem 10.13, if* r(x, y) = (u, v)*, then*

$$r(v^{-1}, u^{-1}) = (v^{-1}, x^{-1}), \quad r(x^{-1}, u) = (v, v^{-1}), \quad r(v, v^{-1}) = (u^{-1}, x).$$

Proof. In the proof of Theorem 10.13 we found that the inverse of the map r is given by $r^{-1} = \zeta(i \times i) r(i \times i) \zeta$, where $\zeta(x, y) = (y, x)$ and $i(x) = x^{-1}$. Hence

$$r^{-1}(y^{-1},x^{-1}) = \zeta(i\times i)r(i\times i)\zeta(y^{-1},x^{-1}) = \zeta(i\times i)r(x,y) = (v^{-1},u^{-1}).$$

It follows that $r(v^{-1}, u^{-1}) = (y^{-1}, x^{-1})$. To prove the equality $r(x^{-1}, u) = (y, v^{-1})$ we proceed as follows. Since r(x, y) = (u, v), it follows that $x \triangleright y = u$. Then $x^{-1} \triangleright u = y$ and hence $r(x^{-1}, u) = (y, z)$ for some $z \in G$. Since xy = uv and $x^{-1}u = yz$, it immediately follows that $yt = yv^{-1}$. Then $z = v^{-1}$. Similarly one proves $r(v, y^{-1}) = (u^{-1}, x)$. \square

References

- 1. The GAP Group. GAP Groups, Algorithms, and Programming, Version 4.11.1, 2021.
- 2. D. García-Lucas, L. Margolis, and A. del Río. Non-isomorphic 2-groups with isomorphic modular group algebras. *J. Reine Angew. Math.*, 783:269–274, 2022.
- 3. G. Gardam. A counterexample to the unit conjecture for group rings. *Ann. of Math.* (2), 194(3):967–979, 2021.
- 4. B. J. Gardner and R. Wiegandt. *Radical theory of rings*, volume 261 of *Monographs and Textbooks in Pure and Applied Mathematics*. Marcel Dekker, Inc., New York, 2004.
- M. Hertweck. A counterexample to the isomorphism problem for integral group rings. Ann. of Math. (2), 154(1):115–138, 2001.

Index

Braid group, 31	Passman's lemma, 15
	Passman's theorem, 16
Cono positivo	Promislow's group, 3
de un grupo ordenable a derecha, 20	
Dietzmann's theorem, 27	Ring reduced, 7
Gardam's theorem, 4	
Group	Schur's theorem, 27
bi-ordered, 17	Solution, 31
Grupo	finite, 31
con la propiedad del producto único, 23	non-degenerate, 33
difuso, 26	trivial, 32
ordenable a derecha, 20	Subgroup
•	characteristic, 11
Idempotent, 7	
	Teorema
Lema	de Connel, 28
de Neumann, 13	de Malcev-Neumann, 22
Levi's theorem 19	de Strojonowski 25