Линейное программирование. Симплекс-метод

Линейное программирование — математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах *п*-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.

Определение. Задачей линейного программирования (ЗЛП) называется задача минимизации или максимизации линейной функции при линейных ограничениях на область изменения переменных.

Определение. Общей (стандартной) задачей линейного программирования называется задача нахождения максимума линейной целевой функции (линейной формы) вида:

$$f(x) = \sum_{j=1}^{n} c_j x_j = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n.$$

Задача, в которой фигурируют ограничения в форме неравенств, называется основной задачей линейного программирования (ОЗЛП)

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad (i = 1, 2, ..., m),$$

$$x_{i} \geq 0 \quad (j = 1, 2, ..., n).$$

Каждое из ограничений вида

$$a_{i1}x_1 + ... + a_{in}x_n \le b_i$$
, $(i = 1, 2, ..., m)$

задает полупространство. В пересечении все неравенства зададут некоторый многогранник, необязательно ограниченный.

Задача линейного программирования будет иметь канонический вид, если в основной задаче вместо первой системы неравенств имеет место система уравнений с ограничениями в форме равенства:

$$\sum_{i=1}^{n} a_{ij} x_j = b_i \quad (i = 1, 2, \dots, m).$$

Определение. Систему Ax = b назовем непрямыми ограничениями, систему $x \ge 0$ — прямыми ограничениями.

Определение. Допустимым множеством канонической задачи назовем множество $D = \{x \in \mathbb{R}^n | Ax = b, x \ge 0\}.$

Основную задачу можно свести к канонической путём введения дополнительных переменных.

Задачи линейного программирования наиболее общего вида (задачи со смешанными ограничениями: равенствами и неравенствами, наличием переменных, свободных от ограничений) могут быть приведены к эквивалентным ЗЛП (имеющим то же множество решений) заменами переменных и заменой равенств на пару неравенств.

Задачу нахождения максимума можно заменить задачей нахождения минимума, взяв коэффициенты c с обратным знаком.

Определение. Пусть M — выпуклое множество. Точка $x \in M$ называется угловой (крайней) точкой множества M, если не существует таких точек $x_1, x_2 \in M, x_1 \neq x_2$: $x = \lambda x_1 + (1 - \lambda)x_2$, при $\lambda \in (0, 1)$.

Симплекс-метод

Основным численным методом решения задач линейного программирования является cumnnekc-memod.

Термин «симплекс-метод» связан с тем историческим обстоятельством, что первоначально метод был разработан применительно к задаче линейного программирования, допустимое множество которой имело вид

$$X' = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1\}.$$

(Это множество именуется стандартным симплексом).

Геометрический смысл симплекс-метода состоит в переходе от исходной точки (называемой первоначальной) к некоторой смежной крайней точке (вершине) многогранника ограничений.

Симплекс-метод предназначен для решения задачи линейного программирования в канонической форме

$$\begin{cases} (c, x) \to max \\ Ax = b \\ x \ge 0, \end{cases}$$

где A – матрица размера $m \times n$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

Будем предполагать, что m < n и что в матрице A нет линейно зависимых строк, то есть rk(A) = m (если m > n, то в матрице A строки линейно зависимы, то есть можно привести к $m \le n$; если m = n и rk(A) = m, то не имеет места задача оптимизации, так как в этом случае точка, удовлетворяющая непрямым ограничениям, единственна).

Обозначим через $a_1, a_2, ..., a_n$ столбцы матрицы A.

Определение. Базисом матрицы A называется набор m линейно независимых столбцов $B = \{A_{j_1}, A_{j_2}, ..., A_{j_m}\}.$

Для удобства будем считать, что на первых m местах матрицы A расположены линейно независимые столбцы, образующие базис матрицы. Представим матрицу A в виде совокупности двух подматриц A=(B,N), где B — базис матрицы. Для получения x, удовлетворяющего системе непрямых ограничений, представим его в виде

$$x = \begin{pmatrix} x_B \\ x_N \end{pmatrix},$$

где x_B — вектор первых m координат; x_N — вектор (n-m) последних координат вектора x.

Систему непрямых ограничений можно представить в виде

$$Bx_B + Nx_N = b,$$

откуда

$$x_B = B^{-1}b - B^{-1}Nx_N.$$

По этой формуле будем вычислять вектор x_B , задавая произвольные значения компонентам вектора x_N , тем самым получим x, удовлетворяющий непрямым ограничениям.

Определение. Вектор x_B называется вектором базисных переменных, а вектор x_N — вектором небазисных переменных.

Определение. Базисным решением x системы непрямых ограничений, соответствующим базису B назовем частное решение системы алгебраических уравнений

$$Bx_B + Nx_N = b,$$

в котором $x_N = 0$.

При $x_N = 0$

$$x_B = \overline{x} = B^{-1}b.$$

То есть, при $B^{-1}b \ge 0$ x будет удовлетворять системе прямых ограничений x > 0.

Определение. Базисное решение x, удовлетворяющее системе прямых органичений $x \ge 0$, назовем допустимым базисным решением.

Определение. Базисное решение x называется вырожеденным, если вектор базисных переменных x_B имеет нулевые компоненты.

Теорема. $x \in D$ является допустимым базисным решением $3\Pi\Pi \Leftrightarrow x \in D$ является угловой точкой.

Доказательство. От противного.

Необходимость. Пусть

$$x = (x_1, x_2, ..., x_m, \underbrace{0, ..., 0}_{n-m})^T,$$

где $x_1 \ge 0, ..., x_m \ge 0$ — допустимое базисное решение ЗЛП. Необходимо доказать, что в этом случае невозможно представление в виде

$$x = \lambda x' + (1 - \lambda)x'',$$

где $x', x'' \in D$ и $0 < \lambda < 1$, другими словами, x — крайняя точка D.

Если x=0 — вырожденное допустимое базисное решение, то невозможность его представления в виде $x=\lambda x'+(1-\lambda)x''$, где $0<\lambda<1$ и $x'\neq x''$ — допустимые базисные решения, очевидна, то есть x=0 — крайняя точка области допустимых решений D.

Пусть допустимое базисное решение задачи $x \neq 0$. Докажем от противного: предположим, что точка x не является крайней точкой D, то есть существует $x' \neq x'' \in D$, где $x' = (x'_1, ..., x'_m, 0, ..., 0)^T$ и $x'' = (x''_1, ..., x''_m, 0, ..., 0)^T$, что $x = \lambda x' + (1 - \lambda)x''$, для любых $\lambda \in (0, 1)$.

В таком случае $Ax = \lambda Ax' + (1-\lambda)Ax'' = b$. Из допустимости x' и x'', то есть Ax' = b, Ax'' = b, следует, что A(x'-x'') = 0, где $0 = (0_1, ..., 0_m)^T$ — нулевой вектор. Следовательно,

$$\sum_{j=1}^{m} (x_j' - x_j'') A_j = 0,$$

где $A_j = (a_{1j}, ..., a_{mj})^T$ — вектор-столбец базисной матрицы B, т.е. получили тривиальную линейную комбинацию линейно зависимых вектор-столбцов $A_1, A_2, ..., A_m$ матрицы A (так как $x' - x'' \neq 0$). Противоречие с

тем, что x — допустимое базисное решение. Следовательно, всякому допустимому базисному решению соответствует крайняя точка из области допустимых решений D ЗЛП.

 \mathcal{A} остаточность. Докажем, что если x — крайняя точка из D, то x — допустимое базисное решение из D.

Предположим, что это не так, т.е. вектор x, являясь допустимым для нашей задачи, не является допустимым базисным решением. Представим x в виде $x=(x_1,x_2,...,x_k,0,...,0)^T$, где $x_j>0,\quad j=\overline{1,k}$ (номера индексов ненулевых координат). Тогда $A_1,A_2,...,A_k$ — линейно зависимые векторы и поэтому существует тривиальная линейная комбинация линейно зависимых векторов, то есть существуют $y_1,...,y_k\in\mathbb{R}$, не все одновременно равные нулю, что справделиво равенство

$$\sum_{j=1}^{k} y_j A_j = 0.$$

Расширим вектор $y^T = (y_1, ..., y_k)$ нулями до n-мерного. Значит,

$$Ay = 0, \quad y \neq 0.$$

Являясь допустимым, х удовлетворяет условию

$$Ax = b$$
.

Умножим обе части равенства Ay = 0 на некоторый параметр ε и сначала вычтем почленно Ay = 0 из Ax = b, затем сложим Ay = 0 и Ax = b:

$$A(x - \varepsilon y) = b$$
, $A(x + \varepsilon y) = b$.

Так как $x_j > 0$ $(j = \overline{1,k})$, то очевидно, что для последних систем уравнений при достаточно малом положительном ε должно выполняться условие $x \pm \varepsilon y \geq 0$. Тогда эти равенства означают, что n-мерные векторы

$$x' = x + \varepsilon y, \quad x'' = x - \varepsilon y$$

являются допустимыми решениями задачи. При этом из $x' = x + \varepsilon y$ и $x'' = x - \varepsilon y$ имеем x = (x' + x'')/2, что противоречит тому, что x — крайняя точка. Следовательно, x — допустимое базисное решение.

Следствие. Выпуклое множество $D=\{x\in\mathbb{R}^n|Ax=b,\ x\geq 0\}$ имеет конечное число крайних точек $\nu(D)\leq C_n^m=\frac{n!}{(n-m)!m!}.$

Доказательство. Максимальное число базисов, извлеченных из матрицы A, равно числу возможностей выбора m столбцов из n, т.е. C_n^m , и не все они — допустимые базисные решения.

■

Последовательность крайних точек в симплекс-методе выбирается таким образом, что целевая функция при переходе от точки x_k , соответствующей базису B_k , к точке x_{k+1} , соответствующей базису B_{k+1} , строго возрастает, т.е.

$$(c, x_k) < (c, x_{k+1}).$$

Суть симплекс-метода составляют 3 правила:

- 1. Правило оптимальности позволяет заключить, что x_k является решением задачи.
- 2. Правило отсутствия решения позволяет заключить, что ЗЛП не имеет решения.
- 3. Правило перехода к лучшей крайней точке указывает новую крайнюю точку x_{k+1} , для целевой функции которой выполняется строгое неравенство $(c, x_k) < (c, x_{k+1}).$

В каждом шаге симплекс-метода будет справедливо одно из правил. Так как число крайних точек конечно, то за определенное число шагов будет получено решение ЗЛП.

Процесс перехода к новому допустимому базисному решению

Рассмотрим представление целевой функции

$$c^T x = c_R^T \overline{x} - (c_R^T X - c_N^T) x_N,$$

где $B = \{A_1, A_2, ..., A_m\}$ — базис матрицы A;

 $\overline{x}=(\overline{x}_1,\overline{x}_2,...,\overline{x}_m)^T=B^{-1}b$ — вектор значений базисных переменных $\{x_{j_1},...,x_{j_m}\}$, r.e. $x_{j_i} = \overline{x_i}$, $i = \overline{1,m}$; $X = B^{-1}N = \{X_{m+1},...,X_j,...,X_n\}$;

$$X = B^{-1}N = \{X_{m+1}, ..., X_j, ..., X_n\};$$

 $X_j = B^{-1}a_j$ — координаты разложения небазисного вектор-столбца A_i по базису B.

Определение. Назовем *симплекс-разностью* для *j*-й переменной в базисе В величину

$$\Delta_j = c_B^T B^{-1} A_j - c_j = c_B^T X_j - c_j, \quad j = \overline{1, n}.$$

Симплекс-разность можно рассматривать как оценку вектора A_j при данном x_j допустимом базисном решении. Так как координаты разложения базисного вектор-столбца A_j по базису B — единичный вектор-столбец, т.е. $X_j = E_j (j=\overline{1,m})$ и $c_B^T E_j = c_j$, то симплекс-разности для базисных переменных — нулевые, а для небазисных — коэффициенты возрастания или убывания целевой функции (так как $x_N \geq 0$).

Значит, для возрастания целевой функции целесообразно увеличивать небазисные переменные с отрицательными симплекс-разностями. Выберем некоторую небазисную переменную x_t , $(t \in J_N - \text{множество индексов, соответствующих номерам небазисных вектор-столбцов <math>A_t$ матрицы A) и выясним вопрос, до какого значения ее можно увеличивать. Рассмотрим

$$x_B = B^{-1}b - B^{-1}Nx_N > 0.$$

При $x_t \ge 0$ и при всех остальных небазисных переменных, равных 0, должно выполняться условие

$$x_B = \overline{x} - X_t x_t > 0,$$

где $X_t = (x_{1t}, x_{2t}, ..., x_{mt})^T$. Решая эту систему неравенств относительно x_t , получим $x_{it}x_t \leq \overline{x}_i$, $x_t \leq \frac{\overline{x}_i}{x_{it}}$, где $x_{j_i} = \overline{x}_i$, откуда

$$x_t = \min_{x_{it} > 0} \left\{ \frac{\overline{x}_i}{x_{it}} \right\}, \quad \forall i = \overline{1, m}.$$

В случае, если все координаты вектора X_t отрицательные или нулевые $(x_{it} \leq 0, i = \overline{1,m})$, то x_t не ограничена сверху, то есть, бесконечно увеличивая x_t при отрицательной симплекс-разности, можно получить произвольно большое значение целевой функции и в этом случае ЗЛП не будет иметь решения.

Теорема (критерий неограниченности целевой функции, правило выявления отсутствия решения). Если для какого-нибудь допустимого базисного решения x существует хотя бы одна отрицательная симплекс-разность, т.е. $\Delta_t < 0 \quad (t \in J_N)$ такая, что для нее все коэффициенты разложения $X_t = B^{-1}A_t$ вектор-столбца A_t матрицы A по базису B не положительны $x_{it} \leq 0 \quad (i = \overline{1,m})$, то это означает, что целевая функция данной ЗЛП на максимум не ограничена сверху на допустимом множестве решений D, т.е.

$$c^T x = c_B^T \overline{x} - \Delta_t x_t \to +\infty.$$

Теорема. Пусть в матрице A размерности $m \times n(n > m)$ ЗЛП первые m столбцов образуют базис

$$B_0 = \{A_1, A_2, ..., A_k, ..., A_m\}.$$

Заменим в этом базисе вектор a_k некоторым вектором a_t $(t \in J_N)$ из матрицы A. Полученная система векторов:

$$B_1 = \{A_1, A_2, ..., A_{k-1}, A_t, A_{k+1}, ..., A_m\}$$

образует базис \Leftrightarrow в разложении вводимого вектора A_t по базису B_0 :

$$A_t = x_{1t}A_1 + \dots + x_{kt}A_k + \dots + x_{mt}A_m$$

коэффициент при заменяемом векторе A_k отличен от нуля $(x_{kt} \neq 0)$.

Доказательство.

 $Heo \delta xo dumocmb$. Покажем, что если система векторов B_1 — базис матрицы A, то в разложении A_t — $x_{kt} \neq 0$. Предположим, что это не так и $x_{kt} = 0$. Из соотношения

$$A_t = x_{1t}A_1 + ... + x_{kt}A_k + ... + x_{mt}A_m$$

следует, что коэффициент при A_t в тривиальной линейной комбинации

$$x_{1t}A_1 + \dots + x_{k-1,t}A_{k-1} - A_t + x_{k+1,t}A_{k+1} + \dots + x_{mt}A_m = 0$$

отличен от 0 (равен -1), то есть векторы B_1 линейно зависимы и, следовательно, не могут составлять базис матрицы A. Получили противоречие с тем, что B_1 — базис по условию теоремы. Значит, $x_{kt} \neq 0$.

 \mathcal{A} остаточность. Пусть $x_{kt} \neq 0$. Тогда система векторов B_1 — базис. Предположим, что это не так, то есть система векторов B_1 линейно зависима:

$$\alpha_1 A_1 + \alpha_2 A_2 + \dots + \alpha_{k-1} A_{k-1} + \alpha_k A_t + \alpha_{k+1} A_{k+1} + \dots + \alpha_m A_m = 0,$$

где не все $\alpha_i=0,\quad i=\overline{1,m}.$ Заметим, что коэффициент α_k при A_t не равен 0, так как иначе векторы системы B_0 были бы линейно зависимыми как содержащие $A_1,...,A_{k-1},A_{k+1},...,A_m$ — линейно-зависимую часть системы B_0 . Следовательно

$$A_{t} = -\frac{\alpha_{1}}{\alpha_{k}} A_{1} - \dots - \frac{\alpha_{k-1}}{\alpha_{k}} A_{k-1} - 0 \cdot A_{k} - \frac{\alpha_{k+1}}{\alpha_{k}} A_{k+1} - \dots - \frac{\alpha_{m}}{\alpha_{k}} A_{m}.$$

Но, по смыслу B_0 , справедливо разложение

$$A_t = x_{1t}A_1 + \dots + x_{kt}A_k + \dots + x_{mt}A_m.$$

Это значит, что для вектора A_t существует 2 различных разложения по базису B_0 (коэффициенты при A_k различны). Так как разложение по базису единственно, то предположение о линейной зависимости векторов B_1 неверно. Значит, векторы B_1 образуют базис.

Теорема об оптимальности допустимого базисного решения. Если для данного допустимого базисного решения все симплекс-разности Δ_k $(k=\overline{1,n})$ в текущем базисе неотрицательны, то это решение оптимальное.

Доказательство. Пусть для данного допустимого базисного решения $x = (\overline{x}, 0)^T = (x_1, x_2, ..., x_m, 0_{m+1}, ..., 0_n)^T$ и, следовательно, его базиса

$$B = \{A_1, A_2, ..., A_m\}$$

выполнены условия теоремы

$$\Delta_k = c_B^T B^{-1} A_k - c_k \ge 0, \quad k = \overline{1, n}.$$

Возьмем любое другое допустимое решение $y \ge 0$ (Ay = b) канонической ЗЛП. Умножим каждое из неравенств $c_B^T B^{-1} A_k - c_k \ge 0$ на компоненту вектора $y = (y_1, ..., y_n)^T$ с соответствующим номером, которая по условию неотрицательна, и просуммируем неравенства. В результате имеем

$$c_B^T B^{-1} A y - c^T y \ge 0.$$

По условию Ay = b. Из $c_B^T B^{-1} b = c_B^T \overline{x}$ получаем $c_B^T \overline{x} \ge c^T y$.

Алгоритм симплекс-метода

Дана ЗЛП в канонической форме с невырожденным допустимым базисным решением (выбираем такое):

$$\begin{cases} c^T x \to max \ (min), \\ Ax = b, \\ x = (\bar{x}_{j_1} \dots \bar{x}_{j_m}, 0_{j_{m+1}} \dots 0_{j_n})^T \ge 0. \end{cases}$$

Исходный базис этой задачи составят векторы:

$$B = \{A_{j_1}, \dots, A_{j_m}\}.$$

1. Инициализация

Нужно разложить по исходному базису небазисные вектор-столбцы матрицы A. Ищем координаты $X_j = B^{-1}A_j \ (j \in J_N)$, где J_N — множество номеров небазисных переменных. Разложения базисных вектор-столбцов и значения базисных переменных известны:

$$X_{j_i} = E_i = (0_1 \dots 0_{i-1}, 1_i, 0_{i+1} \dots 0_m)^T,$$

 $\bar{x} = B^{-1}b.$

2. Условие оптимальности

Если все $\Delta_j \geq 0 \ (\leq 0)$, то данное базисное решение **оптимально**. Процесс решения задачи окончен.

Иначе существует $\Delta_i < 0 \ (> 0)$. Переходим к шагу 3.

3. Условие отсутствия решения

Если существует $\Delta_j < 0 \ (>0)$: все координаты X_j не положительны, т.е. $x_{ij} \leq 0 \ (i=1,\ldots,m)$, то целевая функция **не ограничена** сверху (снизу) на допустимом множестве. Процесс решения задачи окончен. Иначе существует $x_{ij} > 0$. Переходим к шагу 4.

4. Итерация (Переход к новому базицу B')

$$\Delta_t = \max_{\Delta_j < 0} |\Delta_j|, \quad j = 1, \dots, n.$$

Соответствующая вектор-столбцу X_t небазисная переменная x_t вводится в базис. Вычислить отношения $\frac{\bar{x}_i}{x_{it}}$ для всех i, для которых $x_{it}>0$, и найти минимальное из этих отношений:

$$\frac{\bar{x}_k}{x_{kt}} = \min_{x_{it} > 0} \frac{\bar{x}_i}{x_{it}}, \quad i = 1, \dots, m.$$

Соответствующая k-й строке матрицы A текущая базисная переменная $x_{j_k} = \bar{x}_k$ обращается в нуль и выводится из базиса. t-я вводимая в базис переменная принимает значение $(x_{B'})_{t_k} = x_t = \bar{x}_k' = \frac{\bar{x}_k}{x_{kt}} > 0$. Переходим к новому базису B' путем замены вектора A_k вектором A_t :

$$\{B'\} = \{B \setminus A_k\} \cup \{A_t\}.$$

Переходим к шагу 2.