Activités Mentales

24 Août 2023

Résoudre l'inéquation

$$-7(2x+4)(15x-9) < 0$$

Résoudre l'inéquation

$$8(x-9)(-3x+10) > 0$$

Résoudre l'inéquation

$$13(7x-4)(-8x+4) \le 0$$

Résoudre l'inéquation

$$15(6x+13)(-15x-4) < 0$$

Résoudre l'inéquation

$$-7(-14x-1)(-3x-7) > 0$$

On pose $A(x) = -7(2x+4)(15x-9) = -7 \times f(x) \times g(x)$ avec f(x) = 2x+4 et g(x) = 15x-9.

- f est une fonction affine avec m=2>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=-2$.
- g est une fonction affine avec m=15>0. g est donc croissante sur \mathbb{R} . De plus $g(x)=0 \Leftrightarrow x=\frac{3}{5}$.

On rappelle que f(x) = 2x + 4 et g(x) = 15x - 9 et A(x) = -7(2x + 4)(15x - 9). Son tableau de signe est alors

x	$-\infty$		-2		$\frac{3}{5}$		+∞
-7		_		_		_	
f(x)		_	0	+		+	
g(x)		_		-	0	+	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de -7(2x+4)(15x-9) < 0 est

$$S =]-\infty; -2[\cup \left[\frac{3}{5}; +\infty \right[$$

On pose $A(x) = 8(x-9)(-3x+10) = 8 \times f(x) \times g(x)$ avec f(x) = x-9 et g(x) = -3x+10.

- f est une fonction affine avec m=1>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=9$.
- g est une fonction affine avec m=-3<0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{10}{3}$$
.

On rappelle que f(x) = x - 9 et g(x) = -3x + 10 et A(x) = 8(x - 9)(-3x + 10). Son tableau de signe est alors

x	$-\infty$		$\frac{10}{3}$		9		+∞
8		+		+		+	
f(x)		_		_	0	+	
g(x)		+	0	_	+	_	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de 8(x-9)(-3x+10) > 0 est

$$S = \left[-\infty; \frac{10}{3} \right] \cup 9; +\infty[$$

On pose $A(x) = 13(7x-4)(-8x+4) = 13 \times f(x) \times g(x)$ avec f(x) = 7x-4 et g(x) = -8x+4.

- f est une fonction affine avec m=7>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{4}{7}$.
- g est une fonction affine avec m=-8<0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{1}{2}$$
.

On rappelle que f(x) = 7x - 4 et g(x) = -8x + 4 et A(x) = 13(7x - 4)(-8x + 4). Son tableau de signe est alors

x	$-\infty$		$\frac{1}{2}$		$\frac{4}{7}$		+∞
13		+		+		+	
f(x)		_		_	0	+	
g(x)		+	0	_	+	_	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de $13(7x-4)(-8x+4) \le 0$ est

$$S = \left] -\infty; \frac{1}{2} \right] \cup \left[\frac{4}{7}; +\infty \right[$$

On pose
$$A(x) = 15(6x+13)(-15x-4) = 15 \times f(x) \times g(x)$$
 avec $f(x) = 6x+13$ et $g(x) = -15x-4$.

- f est une fonction affine avec m=6>0. f est donc croissante sur \mathbb{R} . De plus $f(x)=0 \Leftrightarrow x=\frac{-13}{6}$.
- g est une fonction affine avec m = -15 < 0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{-4}{15}$$
.

On rappelle que f(x) = 6x + 13 et g(x) = -15x - 4 et A(x) = 15(6x + 13)(-15x - 4). Son tableau de signe est alors

x	$-\infty$		$\frac{-13}{6}$		$\frac{-4}{15}$		+∞
15		+		+		+	
f(x)		-	0	+		+	
g(x)		+		+	0	-	
A(x)		-	0	+	0	-	

Finalement l'ensemble de solutions de 15(6x+13)(-15x-4) < 0 est

$$S = \left[-\infty; \frac{-13}{6} \right] \left[\cup \left[\frac{-4}{15}; +\infty \right]$$

On pose
$$A(x) = -7(-14x - 1)(-3x - 7) = -7 \times f(x) \times g(x)$$
 avec $f(x) = -14x - 1$ et $g(x) = -3x - 7$.

• f est une fonction affine avec m = -14 < 0. f est donc décroissante sur \mathbb{R} .

De plus
$$f(x) = 0 \Leftrightarrow x = \frac{-1}{14}$$
.

• g est une fonction affine avec m = -3 < 0. g est donc décroissante sur \mathbb{R} .

De plus
$$g(x) = 0 \Leftrightarrow x = \frac{-7}{3}$$
.

On rappelle que f(x) = -14x - 1 et g(x) = -3x - 7 et A(x) = -7(-14x - 1)(-3x - 7). Son tableau de signe est alors

x	$-\infty$		$\frac{-7}{3}$		$\frac{-1}{14}$		+∞
-7		_		-		_	
f(x)		+		+	0	_	
g(x)		+	0	-		_	
A(x)		_	0	+	0	_	

Finalement l'ensemble de solutions de -7(-14x-1)(-3x-7) > 0 est

$$S = \left[\frac{-7}{3}; \frac{-1}{14} \right[$$

