CS & IT ENGINEERING

Operating System

Deadlock

Lecture - 02

Recap of Previous Lecture

Topic

Reader-Writer Problem

Topic

Dining Philosopher Problem

Topic

Deadlock

Topics to be Covered

Topic

Deadlock

Topic

Deadlock Prevention

Topic

Deadlock Avoidance

Topic: Deadlock

If two or more processes are waiting for such an event which is never going to occur

Topic: Resource Allocation Graph

Denotes which process is using which resource and is waiting for which resource.

Allocation: - from resource instance to process

Request (wait): - from process resource

Topic: Resource Allocation Graph

Ex:- when all resources have single instance.

instances

Topic: Necessary Conditions for Deadlock

Deadlock can occur only when all following conditions are satisfied:

- 1. Mutual Exclusion
- 2. Hold & Wait
- 3. No-preemption
- 4. Circular Wait

Deadlock:- ex:-

	Hold	wait
P1	Harddisk	printer
P2	pinter	keyboard
P3	keyboard	Harddisk
	J	

1. Mutual Exclusion:

At a time one resource is used by only one pro

- 2. Hold & wait:

 Each deadlocked process must hold atleast one resource and should wait for atleast one resource.
- 3. No preemption:A resource which is allocated to a process can not be preempted.
- 4. <u>Circular wait:</u>
 Each deadlocked process must wait for each other in circular manner.

Topic: Recovery From Deadlock

- Make Sure that deadlock never occur
 - Prevent the system from deadlock or avoid deadlock
- 2. Allow deadlock, detect and recover
- 3. Pretend that there is no any deadlock = in all modern system.

Deallock prevention:	
Try to prevent atleast one of 4 nearsary Conditions for deedlock, to occur.	
1. Preventing <u>mutual</u> <u>Exclusion:</u>	
- make all processes independent - make all processes individually - not practice - Avail resources for each processes individually	a

2 Preventing Hold & wait:

each process must hold all required resources, or else
must wait for all required resources.

-> If some resources are acquired and other resources are not available; then process must release acquired resources and must wait for all resources.

Problems =>

A process may suffer from starvation if all required resources

are not available.

3. Preventing No pre-emption: Os allows preemption of resources from pr	cesses.
Problems:- 1. select of victim processes and resour	as unitability or
2. The victim process may suffer from 3. How many resources to be preempted.	starvation

4. Rieventing Cincular wait:

Each resource is given a unique number and each process is allowed to request resources in ascending order.

A process p can request for a resource R; while holding a resource R; only when i < j.

P3 Can not request for R1 while holding R3.

P3 must release R3 and should try to acquire R1 first.

Topic: Deadlock Avoidance

In deadlock avoidance, the OS tries to keep system in safe state

deadlock will never occur

unsafe state: - possibility of deadlock

Topic: Deadlock Avoidance

In deadlock avoidance, the OS tries to keep system in safe state

Topic: Deadlock Avoidance

In deadlock avoidance, the request for any resource will be granted if the resulting state of the system doesn't cause deadlock in the system.

Banker's Algorithm

2 mins Summary

Topic

Deadlock

Topic

Deadlock Prevention

Topic

Deadlock Avoidance

Happy Learning

THANK - YOU