Linear Graphs GCSE Questions

Q1. y = 5x - 4 is the equation of a straight line.

(a) Write down the gradient of the line y = 5x - 4

Answer(1)

(b) Write down the coordinates of the *y*-intercept of the line y = 5x - 4

Q2.

A sketch of 2x + 3y = 12 is shown.

(a) Work out the coordinates of R.

(b) Work out the coordinates of S.

Q3.

(a) Write down the equation of a straight line that is parallel to y = 5x + 6

(1)

(b) Find an equation of the line that is perpendicular to the line y = 5x + 6 and passes through the point (-2, 5).

Q4. Lines, A and B, intersect on the y-axis.

Line B intersects the x-axis at the point (6, 0).

The equation of line *A* is 4x + 3y + 12 = 0

Work out the equation of line B.

Λ.	
Answer	

(Total 4 marks)

Q5. The diagram shows a line ABCD.

A is the point (400, 920).

B is the point (250, 620).

The line cuts the y-axis at C and the x-axis at D.

Work out the coordinates of C and D.

$$D$$
 (......)

Q6. Two straight lines are shown.

Prove that the lines never meet.

(Total 3 marks)

Diagram NOT accurately drawn

The point A has coordinates (2, 5).

The point *B* has coordinates (4, 9).

The line **L** passes through the points *A* and *B*.

The equation of line **L** is y = 2x + 1

M is the midpoint of the line segment *AB*.

Find an equation of the line that is perpendicular to line $\bf L$ and passes through $\it M$.

(Total 4 marks)

*Q8. A is the point with coordinates (1, 3) B is the point with coordinates (4, -1) The straight line L goes through both A and B.

Is the line with equation 2y = 3x - 4 perpendicular to line L? You must show how you got your answer.

(Total 4 marks)

Q9.

In the diagram, *ABC* is the line with equation $y = -\frac{1}{2}x + 5$

AB = BC

D is the point with coordinates (-13, 0)

Find an equation of the line through A and D.

Answers

M1.(a) 5

B1

(b) (0, -4)

B1 [2]

M2.

(a) (0, 4)

B1

(b) (6, 0)

B2ft

[3]

М3.

Question	Working	Answer	Mark	Notes
(a)		y = 5x + c	1	B1 for $y = 5x + c$ oe $c \neq 6$
(b)	gradient = $-\frac{1}{m}$ = $-\frac{1}{5}$	$y = -\frac{1}{5}x + 4\frac{3}{5}$	3	M1 recognition that gradient = $-\frac{1}{m} = -\frac{1}{5}$ oe
	$y = -\frac{1}{5} + c x = -2, y = 5$ $5 = \frac{2}{5} + c$			M1 substitution of $x = -2$, $y = 5$ in $y = mx + c$ where $m = -\frac{1}{5}$, $\frac{1}{5}$ or -5
	$c = 5 - \frac{2}{5} = 4 \frac{3}{5}$ $y = -\frac{1}{5}x + 4 \frac{3}{5}$			A1 $y = -\frac{1}{5}x + 4\frac{3}{5}$ oe

M4.
$$3y + 12 = 0$$

M1

y = -4

A1

Gradient =
$$\frac{4}{6} \left(= \frac{2}{3} \right)$$

M1

$$y = \frac{2}{3}x - 4$$

oe

A1 ft

[4]

M5. Gradient = 2 or y = 2x + c

M1

Substituting x = 250, y = 620 or x = 400, y = 920

M1 dep

c = 120 or C = (0, 120)

A1

A1

M6. Right-angled triangle drawn above or below either line, with lengths indicatedorEither 2 and 6 or 3 and 9 used as a ratio or fraction

Correct substitution into gradient formula $\frac{y^2 - y^1}{x^2 - x^1}$... or inverted

Award for $\frac{1}{3}$ seen with no working

M1

 $\frac{2}{6}$ and $\frac{3}{9}$

A1

Both simplify to $\frac{1}{3}$ so lines parallel or have same gradient or

Equations are $y = \frac{1}{3}x + 2$ and $y = \frac{1}{3}x - 3$ hence lines are parallel or lines havesame gradient

A1

[3]

M7.

Question	Working	Answer	Mark	
		$y = -\frac{1}{2}x + \frac{17}{2}$	4	M1 for M = $\left(\frac{2+4}{2}, \frac{5+9}{2}\right)$ (= 3,7) M1 for gradient = $-\frac{1}{m}$ or $-\frac{1}{2}$ oe M1 (dep on 1 st M1) for substitution of x = "3", y = "7" into their equation A1 for $y = -\frac{1}{2}x + \frac{17}{2}$ oe

M8.

Question	Working	Answer	Mark	Notes
*	$2y = 3x - 4$ $y = \frac{3}{2}x - 2;$ $m = \frac{3}{2}$ $\frac{3 - 1}{1 - 4} = -\frac{4}{3}$ $\frac{3}{2} \times -\frac{4}{3} = -2$	No with reason	÷ 4	M1 for $\frac{3}{2}$ oe or $y = \frac{3}{2}x\left(-\frac{4}{2}\right)$ oe M1 for method to find gradient of AB , eg $\frac{3-1}{1-4}$ or $\frac{-1-3}{4-1}$ or $-\frac{4}{3}$ oe A1 for identifying gradients as $\frac{3}{2}$ oe and $-\frac{4}{3}$ oe C1 (dep on M1) for a conclusion with a correct reason, eg No as product of $\frac{3}{2}$ and $-\frac{4}{3}$ is not -1 , ft from their two gradients

M9.

PAPER: 5MB2H_01						
Question	Working	Answer	Mark	Notes		
		$y = \frac{10}{3}x + \frac{130}{3}$	5	B1 for stating B as (0, 5) or OB = 5 (could be written on the diagram) B1 for C as (10, 0) or OC = 10 (could be written on the diagram) or A is (-10, 10) or ft from their BC M1 gradient of $DA = \frac{10}{3}$ or $y = \frac{10}{3}x + c$ M1 for substitution of $x = -13$, $y = 0$ or $x = -10$, $y = 10$ in their equation A1 $y = \frac{10}{3}x + \frac{130}{3}$ oe		