EE6367: Topics in Data Storage and Communications

2023

Lecture 9: 25 September 2023

Instructor: Shashank Vatedka Scribe: Gautam Singh

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

9.1 Performance of DRIVE

We have seen that

$$\mathbf{R}\mathbf{x} \sim \text{Unif}\left(\mathbb{S}\left(\mathbf{0}, \|\mathbf{x}\|_{2}^{2}\right)\right).$$
 (9.1)

Consider

$$\mathbf{U} \triangleq \frac{\mathbf{Z}}{\|\mathbf{Z}\|_2} \tag{9.2}$$

where $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, 1)$. Then,

$$\mathbf{U} \sim \text{Unif}\left(\mathbb{S}\left(\mathbf{0}, 1\right)\right). \tag{9.3}$$

Notice that

$$f_{\mathbf{U}|\|\mathbf{Z}\|_{2}=r}\left(\mathbf{u}\right) = f_{\mathbf{U}}\left(u\right) = \begin{cases} \frac{1}{\operatorname{Ar}(\mathbb{S}(\mathbf{0},1))} & \|u\| = 1\\ 0 & \text{else} \end{cases}$$
(9.4)

so that \mathbf{U} and $\|\mathbf{Z}\|_2$ are statistically independent. Thus, from (9.2),

$$\mathbf{U} \|\mathbf{Z}\|_2 = \mathbf{Z} \tag{9.5}$$

$$\|\mathbf{U}\|_{1} \|\mathbf{Z}\|_{2} = \|\mathbf{Z}\|_{1} \tag{9.6}$$

$$\|\mathbf{U}\|_{1} = \frac{\|\mathbf{Z}\|_{2}}{\|\mathbf{Z}\|_{1}}.\tag{9.7}$$

Clearly, the 2-norm of ${\bf Z}$ and 1-norm of ${\bf U}$ are statistically independent.

Note that

$$\mathbb{E}\left[\left\|\mathbf{Z}\right\|_{1}^{2}\right] = \mathbb{E}\left[\left(\sum_{i=1}^{d}|Z_{i}|\right)^{2}\right]$$
(9.8)

$$= \mathbb{E}\left[\sum_{i=1}^{d} \sum_{j=1}^{d} |Z_i| |Z_j|\right]$$
 (9.9)

$$= \mathbb{E}\left[\sum_{i=1}^{d} |Z_i|^2 + \sum_{i=1}^{d} \sum_{j=1, j\neq i}^{d} |Z_i| |Z_j|\right]$$
(9.10)

$$= d + \sum_{i=1}^{d} \sum_{j=1, j \neq i} \mathbb{E}\left[|Z_i| |Z_j|\right]$$
(9.11)

$$= d + d(d-1)\frac{2}{\pi} \tag{9.12}$$

since

$$\mathbb{E}\left[|Z_i|\right] = \int_{-\infty}^{\infty} |z_i| \frac{e^{-\frac{z_i^2}{2}}}{\sqrt{2\pi}} dz_i \tag{9.13}$$

$$=2\int_{0}^{\infty} z_{i} \frac{e^{-\frac{z_{i}^{2}}{2}}}{\sqrt{2\pi}} dz_{i} \tag{9.14}$$

$$= \sqrt{\frac{2}{\pi}} \int_0^\infty e^{-y} dy = \sqrt{\frac{2}{\pi}}$$
 (9.15)

where we make the change of variables $y \triangleq \frac{z_1^2}{2}$. Using (9.12),

$$\mathbb{E}\left[\left\|\mathbf{U}\right\|_{1}^{2}\right] = \frac{\mathbb{E}\left[\left\|\mathbf{Z}\right\|_{1}^{2}\right]}{\left\|\mathbf{Z}\right\|_{2}^{2}} \tag{9.16}$$

$$= \frac{d+d(d-1)\frac{2}{pi}}{d} = 1 + (d-1)\frac{2}{\pi}$$
 (9.17)

Using (9.17), for any norm $\|\mathbf{x}\|_2^2$ and taking $d \to \infty$, we obtain

$$MSE = \left(1 - \frac{2}{\pi}\right) \|\mathbf{x}\|_2^2. \tag{9.18}$$

9.2 Generating a Uniform Rotation Matrix

We can generate

$$\mathbf{A}_{d\times d} \sim \mathcal{N}\left(0,1\right) \tag{9.19}$$

and perform Gram-Schmidt orthogonalization of take a QR-decomposition to obtain the orthonormal matrix Q.

Lemma 9.1. If **A** is a randomly generated $d \times d$ matrix with all entries drawn independently from the standard normal distribution, then $\mathbf{A} = \mathbf{Q}\mathbf{R}$ where \mathbf{Q} is a uniform rotation matrix.

9.3 Structured Random Rotation Matrices

It is costly to share $\mathcal{O}\left(d^2\right)$ bits. We present an alternate choice of **R** that does incur a higher MSE but shares less randomness. We define

$$\mathbf{R} \triangleq \frac{1}{\sqrt{d}} \mathbf{H}_l \mathbf{D} \tag{9.20}$$

where we assume that $d = 2^l$ for some nonnegative integer l and \mathbf{H}_l is the d-dimensional Walsh-Hadamard matrix, which is recursively defined as

$$\mathbf{H}_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \tag{9.21}$$

$$\mathbf{H}_{l} = \begin{pmatrix} \mathbf{H}_{l-1} & \mathbf{H}_{l-1} \\ \mathbf{H}_{l-1} & -\mathbf{H}_{l-1} \end{pmatrix}$$
(9.22)

and **D** is a diagonal matrix with iid Rademacher $\{1, -1\}$ entries.

Using this choice of **R**, the overall complexity reduces to $\mathcal{O}(d \log d)$ and the MSE is $\mathcal{O}(\|\mathbf{x}\|_2^2)$.

9.4 Unbiased Estimation in DRIVE

Claim 9.2. If **R** is a uniform random rotation and $s = \frac{\|\mathbf{x}\|_2}{\|\mathbf{R}\mathbf{x}\|_1}$, then DRIVE is unbiased.