Math1 Exercises

1 Symbolic Logic

Exercise 1.1. Show that the following propositions are tautology

a) $[(A \rightarrow B) \land (B \rightarrow C)] \rightarrow (A \rightarrow C)$.

Exercise 1.2. Which of the following propositions are tautology, contradiction

 $a) (p \vee q) \rightarrow (p \wedge q),$

 $d) \ q \to (q \to p),$

b) $(p \wedge q) \vee (p \rightarrow q)$,

 $e) \ (p \to q) \to q,$

 $c) p \to (q \to p),$

 $f) (p \wedge q) \leftrightarrow (q \updownarrow p).$

Exercise 1.3. Prove that

a) $A \leftrightarrow B$ and $(A \wedge B) \vee (\overline{A} \wedge \overline{B})$ are logically equivalent.

b) $(A \rightarrow B) \rightarrow C$ and $A \rightarrow (B \rightarrow C)$ are not logically equivalent.

Exercise 1.4. Find the negation p if

a) $p = "\forall \epsilon > 0, \exists \delta > 0 : \forall x, |x - x_0| < \delta, |f(x) - f(x_0)| < \epsilon."$

b) $p = \lim_{n \to +\infty} x_n = \infty \Leftrightarrow \forall M > 0, \exists N \in \mathbb{N} : \forall n \ge N, |x_n| > M.$

c) $p = \lim_{n \to +\infty} x_n = L \Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \ge N, |x_n - L| < \epsilon.$

2 Sets

Exercise 2.1. Let

$$A = \{x \in \mathbb{R} | x^2 - 4x + 3 \le 0\}, B = \{x \in \mathbb{R} | |x - 1| \le 1\},\$$

and

$$C = \{x \in \mathbb{R} | x^2 - 5x + 6 \le 0\}.$$

Compute $(A \cup B) \cap C$ and $(A \cap B) \cup C$.

Exercise 2.2. Let A, B, C be arbitrary sets. Prove that

a)
$$A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$$
.

b)
$$A \cup (B \setminus A) = A \cup B$$
.

c) If
$$(A \cap C) \subset (A \cap B)$$
 and $(A \cup C) \subset (A \cup B)$, then C .

- $d) A \setminus (A \setminus B) = A \cap B.$
- $e) \ (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B).$
- f) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- g) $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- h) Is it true that $(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$. If not, give a counterexample.

Exercise 2.3. Let A be a set with n elements. Determine the total number of subsets of A.

Exercise 2.4. How many numbers are not divisible by 3, 4, 5 between 1 and 1500?

3 Maps

Exercise 3.1. Let $f: X \to Y$. Prove that

$$a \ f(A \cup B) = f(A) \cup f(B), A, B \subset X$$

b $f(A \cap B) \subset f(A) \cap f(B)$, $A, B \subset X$. Give an example to show that the converse is not true.

c f is injective if and only if for any $A, B \subset X, f(A \cap B) = f(A) \cap f(B)$.

$$d f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B), A, B \subset Y$$

$$e^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B), A, B \subset Y$$

$$f f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B), A, B \subset Y$$

$$g A \subset f^{-1}(f(A)), A \subset X,$$

$$h B \supset f(f^{-1}(B)), B \subset Y.$$

Exercise 3.2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (2x,2y) and $A = \{(x,y) \in \mathbb{R}^2 | (x-4)^2 + y^2 = 4\}$. Find $f(A), f^{-1}(A)$.

Exercise 3.3. Which of the following maps are injective, surjective, bijective?

a)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = 3 - 2x$$
,

b)
$$f:(-\infty,0] \to [4,+\infty), f(x) = x^2 + 4$$

c)
$$f:(1,+\infty)\to(-1,+\infty), f(x)=x^2-2x$$

d)
$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{3\}, f(x) = \frac{3x+1}{x-1},$$

e)
$$f: [4, 9] \rightarrow [21, 96], f(x) = x^2 + 2x - 3$$
,

$$f)$$
 $f: \mathbb{R} \to \mathbb{R} f(x) = 3x - 2|x|,$

g)
$$f: (-1,1) \to \mathbb{R}, f(x) = \ln \frac{1+x}{1-x}$$
,

h)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) = \frac{1}{x}$$

$$i)$$
 $f: \mathbb{R} \to \mathbb{R}, g(x) = \frac{2x}{1+x^2}.$

Exercise 3.4. Let $f(x) = -x^2 - 2x + 3$.

- a) Find a such that $f: \mathbb{R} \to (-\infty, a]$ is surjective.
- b) Find b such that $f:[b,+\infty)\to(-\infty,3]$ is injective.

Exercise 3.5. Let X, Y, Z be sets and $f: X \to Y, g: Y \to Z$. Prove that

- a) if f is surjective and $g \circ f$ is injective, then g is injective,
- b) give an example to show that $g \circ f$ is injective, but g is not,
- c) if g is is injective and $g \circ f$ is surjective, then f is surjective,
- d) give an example to show that $g \circ f$ is surjective but f is not.

Exercise 3.6. Let $f: X \to Y$ be a map. Prove that

- a) f is surjective iff there exists $g: Y \to X$ such that $f \circ g = Id_Y$,
- b) f is injective iff there exists $g: Y \to X$ such that $f \circ g = \operatorname{Id}_X$.

Exercise 3.7. Let X be a set such that $\operatorname{card} X = n$. Find the total number of bijective from X to itself.

Exercise 3.8. Let X, Y be sets such that $\operatorname{card} X = m$, $\operatorname{card} Y = n$. Find the total number of maps from X to Y.

Exercise 3.9. Let X, Y be sets such that $\operatorname{card} X = m$, $\operatorname{card} Y = n$ and m < n. Find the total number of injective from X to Y.

Exercise 3.10. Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 2 & 1 & 5 & 7 & 6 & 9 & 10 & 8 \end{pmatrix},$$

and

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 1 & 2 & 5 & 7 & 6 & 9 & 8 & 10 \end{pmatrix}$$

- i) Compute σ^{-1} and $\tau \circ \sigma$.
- ii) Write σ, τ as a product of disjoint cycles.
- iii) Compute $sign(\sigma)$, $sign(\tau)$.

Exercise 3.11. Let |X| = n and f be a bijection from X to X. Prove that there exists $k \in \mathbb{N}$ such that $f^k = \operatorname{Id}_X$, where $f^k = f \circ f \cdots \circ f$ (k-times).

3

4 Binary relations

Exercise 4.1. Let X be a set and P(X) be the collection of all subsets of X. We define a relation \leq on P(X) as follow: $A \leq B \Leftrightarrow A \subset B$.

- a) Prove that this is an order relation on P(X).
- b) Is it a total order relation?
- c) Find the maximal and minimal element of P(X).

Exercise 4.2. Let \leq be an order relation on X. Prove the following statements.

- a) The greatest element, if exists, is unique.
- b) The least element, if exists, is unique.
- c) Find an example of (X, \leq) such that the greatest (least) element does not exist.
- d) If x is the greatest (least) element, then x is also a maximal (minimal) element.
- e) In totally ordered set, the terms maximal element and greatest element coincide.

Exercise 4.3. Let A, B be sets and \leq be a total order relation on B. Assume that $f: A \to B$ is a map. We define a relation on A as follow:

$$a_1 \leq a_2 \Leftrightarrow f(a_1) \leq f(a_2)$$
.

- a) Prove that if f is injective, then \leq is an order relation on A.
- b) Give an example to show that \leq is not an order relation on A.

Exercise 4.4. Let S be an order relation on $X \times X$. The inverse relation of S, denoted by S^{-1} , defined by $xS^{-1}y \Leftrightarrow ySx$. Prove that S^{-1} is an order relation.

Exercise 4.5. Let $X = \mathbb{N} \times \mathbb{N}$, where \mathbb{N} is the set of natural numbers. Consider a relation \sim on \mathbb{X} as follow $(a,b) \sim (c,d) \Leftrightarrow a+d=b+c$. Prove that \sim is an equivalent relation.

Exercise 4.6. Let \mathbb{Z} be the set of integers, $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$ and $X = \mathbb{Z} \times Z^*$. Consider a relation on X as follow $(a,b) \sim (c,d) \Leftrightarrow ad = bc$. Prove that this is an equivalent relation.

Exercise 4.7. Let S be an order relation on $X \times X$. The inverse relation of S, denoted by S^{-1} , defined by $xS^{-1}y \Leftrightarrow ySx$. Prove that S^{-1} is an order relation.

Exercise 4.8. Let R_1, R_2 be relations on \mathbb{Z} defined as follow

 xR_1y if x + y is an odd number, xR_2y if x + y is an even number

Determine whether R_1, R_2 are order or equivalence relations?

Exercise 4.9. Consider the relations R_1, R_2 on \mathbb{R}^2 as follow

$$(x_1, x_2)R_1(y_1, y_2) \Leftrightarrow x_1^2 + x_2^2 = y_1^2 + y_2^2,$$

$$(x_1, x_2)R_2(y_1, y_2) \Leftrightarrow x_1^1 + x_2^2 \le y_1^2 + y_2^2$$
.

Determine whether R_1, R_2 are order or equivalence relations?

Exercise 4.10. Consider the commutativity, associativity of the following binary operator * on \mathbb{R} and \circ on \mathbb{R}^2 and find the identity element, the inverse element.

- a) x * y := xy + 1,
- $b) \ x * y := \frac{1}{2}xy,$
- c) $x * y := |x|^y$.
- d) $(x_1, x_2) \circ (y_1, y_2) := (\frac{x_1 + y_1}{2}, \frac{x_2 + y_2}{2}).$

Exercise 4.11. Let X, Y be sets, $*: Y \times Y \to Y$ is a commutative, associative binary operator with identity element e and $f: X \to Y$ be an bijection. Consider the binary operator on X as follow: $x_1 \circ x_2 = f^{-1}(f(x_1) * f(x_2))$. Prove that \circ is a commutative, associative binary operator with identity element.

Exercise 4.12. Which of the following are groups?

- a) $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{N}, +), (\mathbb{Z}/n, +)...$
- b) $(\mathbb{Z}^* = \{\pm 1\}, \times), (\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \times), (\mathbb{R}^*, \times).$
- c) (S_n, \circ) , where S_n is the set of all permutations on n elements.
- d) $(m\mathbb{Z}, +)$, where $m\mathbb{Z} = \{n \in \mathbb{Z} | n \text{ is divisible by } m\}$.
- e) $(2^{\mathbb{Z}}, \times)$, where $2^{\mathbb{Z}} = \{2^n, n \in \mathbb{Z}\}.$
- f) $(P_n(X), +)$, where $P_n(X)$ is the all real polynomials of degree not exceeding n.

Exercise 4.13. Let X be arbitrary set and consider the binary operator $x * y = x, \forall x, y \in X$. Prove that (X,*) is a semigroup.

Exercise 4.14. Lett X be a semigroup with the multiplication.

- a) Prove that if $ab = ba \forall a, b \in X$, then $(ab)^n = a^n b^n, n > 1$.
- b) Let $a, b \in X$ such that $(ab)^2 = a^2b^2$. Can we conclude that ab = ba?

Exercise 4.15. Prove that

- a) $(\mathbb{Z}, +, \times), (\mathbb{Q}, +, \times)$ are commutative rings with identity.
- b) $(\mathbb{N}, +, \times)$ is not a ring.

c) $(\mathbb{Z}/n, +, \times)$ is a commutative ring with identity. ¹

Exercise 4.16. Let $X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$ and $Y = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$. Are X, Y rings with addition and multiplication?

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2},$$

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2},$$

Exercise 4.17. Prove that

- a) $(\mathbb{Q}, +, \times)$ is a field.
- b) The ring $(\mathbb{Z}, +, \times)$ is not a field.

Exercise 4.18. Let $X = \{a + b\sqrt{2} | a, b \in \mathbb{Z}\}$ and $Y = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$. Are X, Y fields with addition and multiplication?

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2},$$

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2},$$

Exercise 4.19. Find GCD(3195, 630), GCD(1243, 3124), GCD(123456789, 987654321)

Exercise 4.20. Find integers a, b such that 1243a + 3124b = 11.

Exercise 4.21. Presentation the following numbers by the base 6:

Exercise 4.22. Perform the following operations

a)
$$3145_{(7)} + 5436_{(7)}$$
,

$$c) 3142_{(7)} : 6_{(7)},$$

b)
$$6145_{(7)} - 5451_{(7)}$$
,

d)
$$3142_{(7)} \times 54_{(7)}$$
.

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	11	13	15
3	3	6	12	15	21	24
4	4	11	15	22	26	33
5	5	13	21	26	34	42
6	6	15	24	33	42	51

The multiplication table with base 7

Exercise 4.23. Write the following complex numbers in the canonical form.

it is called the multiplicative group of integers modulo n.

 $a) (1 + i\sqrt{3})^9,$

 $c) \frac{(1+i)^{21}}{(1-i)^{13}},$

b) $\sqrt[8]{1-i\sqrt{3}}$,

d) $(2+i\sqrt{12})^5(\sqrt{3}-i)^{11}$.

Exercise 4.24. Solve the following equations

a) $z^2 + z + 1 = 0$.

d) $z^6 - 7z^3 - 8 = 0$.

b) $z^2 + 2iz - 5 = 0$,

 $e) \frac{(z+i)^4}{(z-i)^4} = 1,$

c) $z^4 - 3iz^2 + 4 = 0$.

f) $z^8(\sqrt{3}+i)=1-i$.

Exercise 4.25. Prove that if $z + \frac{1}{z} = 2\cos\varphi$, then $z^n + \frac{1}{z^n} = 2\cos n\varphi$, $\forall n \in \mathbb{N}$.

Exercise 4.26. a) Find the sum of n-roots of the complex number 1.

b) Find the sum of n-roots of an arbitrary complex number $z \neq 0$.

c) Let $\epsilon_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k = 0, 1, \dots, n-1$. Compute $S = \sum_{k=0}^{n-1} \epsilon_k^m, (m \in \mathbb{N})$.

Exercise 4.27. Consider the equation $\frac{(z+1)^9-1}{z}=0$.

a) Solve the above equation.

b) Compute the moduli of the solutions.

c) Compute the product of its solutions and $\prod_{k=1}^{8} \sin \frac{k\pi}{9}$.

Exercise 4.28. Solve the following equation

a) $\overline{z^7} = \frac{1}{z^3}$,

b) $z^4 = z + \overline{z}$.

Exercise 4.29. Let x, y, z be complex numbers that satisfy |x| = |y| = |z| = 1. Compare the modulus of x + y + z and xy + yz + zx.