

Batch: $C-3$	Roll No.: 16010123217	
Name : DM	THANAGE .	
Course :	ρ Α	
Experiment / assignment / tutorial No		
	Signature of the Faculty with date	

	Different Microprocessor Configuration:
. #	Introduction:
	A microprocessor is the central unit that performs the instruction of a computer program. Over time, different configuration have been developed to meet specific computational needs, ranging
	from simple devices to high performance systems. Understanding these configuration helps optimize, efficiency, power and cost for various application.
	Multiple processors are used to perform tasks concurrently which allows for faster data processing, improved reliability and scalability.
	Uniprocessor systems, by contrast, rely on a single processor to execute tasks sequentially.
	Types of Multiprocessor Configuration:
(Symmetric multiprocessing CSMP): In SMP or tightly compted multiprocessing, the pro
	Single Instruction, Single Data Stream (SISD)
	This configuration uses a single processor to execute a single stream of instructions on data stored in a single memory unit. It represents the traditional uni-processor computer architecture.

Advantages: Simplicity: The architecture is simple and straight forward to implement. Disadvantages: Limited performance: Since only one instruction is executed at a time, it lacks the parallelism needed for high-performance computing. (2) Single Instruction, Multiple Data Stream (SIMD). Descript This configuration uses a single instruction to control the simultaneous execution of the same operation on multiple data elements. It employs multiple processing elements, with its associated data memory. Advantages: Efficiency for data-parallel tasks: This configuration uses excels in applications where the same operation needs to be performed on large datasets, such as image processing and scientific simulations. Disadvantages: Limited flexibility: It is less effective for tasks that require different instructions to be executed on different data elements.

Batch:	3 Roll No.: 16010123217	
Name :0	M THANAGE	
Course :		
Experiment / assignment / tutorial No.		
Grade:	Signature of the Faculty with date	

(2)	Multiple Instruction, Single Data Stream (MISD)
3	The all the institute of controller at data
	being transmitted to a set of processors, each
	being transmitted to a set of processors, each executing a different instruction sequence or the same data.
	the same data.
	Advantages:
	Parallel processing: MISD architecture allows
	for parallel processing, which can significantly
	improve processing speeds and throughput,
	Parallel processing: MISD architecture allows for parallel processing, which can significantly improve processing speeds and throughput, particularly in applications that involve massive
	data sets.
	Disadvantages:
	Impracticality: This configuration has never been implemented due to its inherent complexity
	been implemented due to its innesent complexity
	and limited practical applications.
4	Multiple Instruction, Multiple Data Structure (MIMD)
	This configuration teatures a set of processions
	that simultaneously execute different instruction
	sequence on different sets of data.
	•
	Fx: Symmetric Multiprocessors: (SMPs) and Non-Uniform
	Fx. Symmetric Multiprocessors: (SMPs) and Non-Uniform Memory Access (NUMA) systems.
	· · · · · · · · · · · · · · · · · · ·
	Advantages: High performance: MIMD allows for true parallel processing, enabling significant improvements for a wide range of
	parallel processing, enabling significant
	improvements for a wide sange of
	applications.
	Flexibility: It can handle diverse workloads as each processor can independently execute different programs.
	different amovement can independently execute
	programs.

	· Disadvantages: Complexity: Designing and managing MIMD systems can be complex, requiring sophisticated synchronization and communication mechanisms. Cost: Building and maintaining MIMD systems can be more expensive than simplex Configurations.
	•
•	
	•