Doner based imputation methods

with apllications in R

Aksel Thomsen (akt@dst.dk)

Statistics Denmark

2020/12/7

Outline

1. Theory

- Imputation in general (recap)
- Donor-based imputation methods

2. Practical

- Apply methods
- How to in R

Theory

General theory

• Item or **partiel** non-response

General theory

- Item or **partiel** non-response
- Donor vs model based
- Stochastic or deterministic
- Hot- or cold-deck

General theory

- Item or **partiel** non-response
- Donor vs model based
- Stochastic or deterministic
- Hot- or cold-deck
- Deductive (logical) imputation

Donor imputation

Two general approaches:

- 1. Nearest neighbor
 - KNN
 - Distance in multidimensional space
 - Predictive mean matching
- 2. Random draws (stratified)

Donor imputation

When is a donor good enough?

And can different donors be used for the same observations?

Donor imputation

When is a donor good enough?

And can different donors be used for the same observations?

3 cases:

1. Complete:

- All imputed variables complete for doner
- Same donor for all variables

2. Univariate

- Variables are imputed one by one
- Seperate donors for each variable

3. Multivariate

- Donor pool for each missingness value
- Same donor for all variables

KNN

- Find the K nearest neighbors
 - K = 1: Pure donor imputation
 - K > 1: "Average" of the donors

Predictive mean matching

- Mix between model and donor based imputation
- Method:
 - 1. Estimate a model predicting the missing variable(s)
 - 2. Form predictions for all observation
 - 3. Donor is the observation with the closest predicted value
- From here a KNN with K = 1
- A way to redefine a multidimensional problem into a one dimensional problem

Example: Linear prediction (1/2)

Example: Linear prediction (2/2)

Random draws

- Sequential or random
- With or without replacement or maximum donations per donor

Practical

Simulated LFS

```
library(tidyverse)
lfs <- read_csv("example.csv", col_types = "inffnn") %>%
   as.data.frame()
head(lfs)
```

id	age	gender	region	employed	hours
1	64	F	W	1	40
2	77	M	S	0	NA
3	83	F	S	NA	NA
4	24	F	W	1	40
5	65	F	N	1	40
6	42	M	E	0	NA

summary(lfs)

```
##
         id
                                 gender
                                        region
                                                  employed
                       age
##
   Min. : 1.0
                  Min. :18.00 F:259
                                        W:164
                                                Min. :0.0000
   1st Qu.:125.8
                                M:241 S:132
                                                1st Qu.:0.0000
##
                  1st Qu.:34.00
   Median :250.5
                  Median :47.00
                                        N: 81
                                              Median :1.0000
##
   Mean :250.5
                  Mean :49.55
                                        E:123
                                                Mean :0.6526
##
##
   3rd Qu.:375.2
                 3rd Qu.:65.00
                                                3rd Qu.:1.0000
##
   Max. :500.0
                  Max. :90.00
                                                Max. :1.0000
##
                                                NA's :51
   hours
##
   Min. :20.00
##
   1st Qu.:39.00
##
##
   Median :40.00
##
   Mean :37.24
   3rd Qu.:40.00
##
##
   Max. :40.00
##
   NA's :207
```

```
summary(lfs)
```

```
id
                                          region
                                                    employed
##
                                  gender
                        age
##
   Min.
        : 1.0
                   Min.
                          :18.00
                                 F:259
                                          W:164
                                                 Min.
                                                        :0.0000
                                  M:241
                                          S:132
##
   1st Qu.:125.8
                   1st Qu.:34.00
                                                  1st Qu.:0.0000
   Median :250.5
                   Median :47.00
                                                 Median :1.0000
##
                                          N: 81
   Mean
        :250.5
                   Mean :49.55
                                          E:123
                                                 Mean
                                                        :0.6526
##
##
   3rd Qu.:375.2
                  3rd Qu.:65.00
                                                  3rd Qu.:1.0000
##
   Max. :500.0
                   Max. :90.00
                                                  Max. :1.0000
##
                                                  NA's :51
       hours
##
   Min.
          :20.00
##
##
   1st Qu.:39.00
##
   Median :40.00
##
   Mean :37.24
   3rd Qu.:40.00
##
##
   Max. :40.00
##
   NA's :207
```

Partial non-response!

R Matrix

```
R <- lfs %>%
  mutate(across(-id, ~ negate(is.na)(.) %>% as.numeric()))
head(R)
```

id	age	gender	region	employed	hours
1	1	1	1	1	1
2	1	1	1	1	0
3	1	1	1	0	0
4	1	1	1	1	1
5	1	1	1	1	1
6	1	1	1	1	0

R %>% select(-id) %>% summarise_all(mean)

age	gender	region	employed	hours
1	1	1	0.898	0.586

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

Routing: employed = 0 => hours not asked (NA is valid)

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

Routing: employed = 0 => hours not asked (NA is valid)

Logical imputation: hours answered => the person is employed

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	265
1	TRUE	28
NA	FALSE	28
NA	TRUE	23

Routing: employed = 0 => hours not asked (NA is valid)

Logical imputation: hours answered => the person is employed

51 missing cells left

Simputation

- R package to make imputations easy, covers:
- Model based (optionally add [non-]parametric random residual)
 - linear regression
 - robust linear regression
 - ridge/elasticnet/lasso regression
 - CART models (decision trees)
 - Random forest
- **Multivariate** imputation
 - Imputation based on the expectation-maximization algorithm
 - missForest (=iterative random forest imputation)
- **Donor** imputation (including various donor pool specifications)
 - k-nearest neigbour (based on gower's distance)
 - sequential hotdeck (LOCF, NOCB)
 - random hotdeck
 - Predictive mean matching
- Other
 - (groupwise) median imputation (optional random residual)
 - Proxy imputation: copy another variable or use a simple transformation to compute imputed values.
 - Apply trained models for imputation purposes.

Imputation strategy

- 1. Deductive: If answered hours, then the person is employed.
- 2. Two step donor imputation:
 - 1. Employment: Predictive mean matching
 - 2. Hours: Random hot-deck donor

```
library(simputation)

lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0)
```

```
library(simputation)

lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0)

lfs_imp %>% count(employed, is.na(hours))
```

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	293
1	TRUE	28
NA	TRUE	23

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region)
```

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region)
```

lfs_imp %>% count(employed, is.na(hours))

employed	is.na(hours)	n
0	TRUE	165
1	FALSE	293
1	TRUE	42

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region) %>%
  impute_rhd(formula = hours ~ age + gender + region | employed)
```

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region) %>%
  impute_rhd(formula = hours ~ age + gender + region | employed)
lfs_imp %>% count(employed, is.na(hours))
```

employed	is.na(hours)	n
0	TRUE	165
1	FALSE	314
1	TRUE	21

lfs_imp %>% filter(employed==1, age==21)

id	age	gender	region	employed	hours
30	21	M	W	1	NA
79	21	F	S	1	40
97	21	M	S	1	40
265	21	F	W	1	40
357	21	F	S	1	31

lfs_imp %>% filter(employed==1, age==21)

id	age	gender	region	employed	hours
30	21	M	W	1	NA
79	21	F	S	1	40
97	21	M	S	1	40
265	21	F	W	1	40
357	21	F	S	1	31

No donors in the strata for id = 21

lfs_imp %>% filter(employed==1, age==21)

id	age	gender	region	employed	hours
30	21	M	W	1	NA
79	21	F	S	1	40
97	21	M	S	1	40
265	21	F	W	1	40
357	21	F	S	1	31

No donors in the strata for id = 21

"Easy" solution => Random donor in 10 year age group

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region) %>%
  impute_rhd(formula = hours ~ age + gender + region | employed) %>%
  mutate(age10 = age %/% 10) %>%
  impute_rhd(formula = hours ~ age10 | employed) %>%
  select(-age10)
```

```
lfs_imp <- lfs %>%
  impute_proxy(formula = employed ~ hours > 0) %>%
  impute_pmm(formula = employed ~ age + gender + region) %>%
  impute_rhd(formula = hours ~ age + gender + region | employed) %>%
  mutate(age10 = age %/% 10) %>%
  impute_rhd(formula = hours ~ age10 | employed) %>%
  select(-age10)
```

```
lfs_imp %>% count(employed, is.na(hours))
```

employed	is.na(hours)	n
0	TRUE	165
1	FALSE	335

New micro data

lfs_imp %>% anti_join(lfs, by = names(lfs_imp)) %>% slice_sample(n=10)

id	age	gender	region	employed	hours
388	33	M	W	1	40
258	43	F	W	1	40
188	54	M	N	1	40
447	68	M	W	1	40
223	31	M	E	1	22
437	41	M	S	1	40
58	65	M	W	1	34
419	48	M	S	1	40
114	86	F	E	0	NA
30	21	M	W	1	39

summary(lfs_imp)

```
##
         id
                                 gender
                                         region
                                                   employed
                                                                   hours
                       age
##
   Min. : 1.0
                  Min. :18.00
                                 F:259
                                         W:164
                                                 Min. :0.00
                                                               Min.
                                                                     :20
   1st Qu.:125.8
                  1st Qu.:34.00
                                 M:241
                                         S:132
                                                 1st Qu.:0.00
                                                               1st Qu.:39
##
   Median :250.5
                  Median :47.00
                                         N: 81
                                                 Median :1.00
                                                               Median :40
##
   Mean :250.5
                  Mean :49.55
                                         E:123
                                                 Mean :0.67
                                                               Mean
                                                                      :37
##
                  3rd Qu.:65.00
   3rd Qu.:375.2
                                                 3rd Qu.:1.00
##
                                                               3rd Qu.:40
##
   Max. :500.0
                  Max. :90.00
                                                 Max. :1.00
                                                               Max.
                                                                      :40
##
                                                               NA's
                                                                      :16
```

Alternative ML solution

```
lfs mf <- lfs %>%
  mutate(hours = if_else(employed == 0, 0, hours),
         employed = as.factor(as.character(employed))) %>%
  as.data.frame() %>%
  impute mf(formula = . - id ~ . - id) %>%
  mutate(employed = as.numeric(as.character(employed)),
         hours = if else(hours == 0, NA real , hours))
##
    missForest iteration 1 in progress...done!
##
    missForest iteration 2 in progress...done!
##
    missForest iteration 3 in progress...done!
##
    missForest iteration 4 in progress...done!
##
    missForest iteration 5 in progress...done!
    missForest iteration 6 in progress...done!
##
lfs mf %>% count(employed, is.na(hours))
```

employed	is.na(hours)	n
0	TRUE	156
1	FALSE	344

Questions?

(ressources next slide)

Ressources

Presentation: GitHub

EU / MEMOBUST: Handbook on imputation

CRAN Task View: Official Statistics & Survey Methodology

Mark van der loo: simputation: Simple Imputation

RStudio: Tidyverse collection of R packages

Awesome official statistics software: GSBPM & R packages