1 The Virtual Machine

This is a simplistic, purely register-based RISC¹ Virtual Machine implemented in C++.

1.1 Design & Overview

- Data & Instructions are stored in RAM², which is an array of bytes.
- In every cycle, the CU³ reads the byte specified by the instruction pointer from the RAM and interprets it as an instruction. Depending on the instruction, it also loads up to two additional parameters from the RAM.
- There are mainly three types of instructions:
 - jump instructions, affecting only the instruction counter. Some of them depend on the status of the ALU-flags.
 - ALU instructions (see below),
 - data moving instruction, i.e. instructions that copy data from RAM into a register (or vice-versa) or write a specific value into a register.

In Addition, there are two special instructions: NOP (0x10), which does nothing, and STP (0x00) which stops the execution of the VM.

- The ALU⁴ can perform the following basic arithmetical and logical operations:
 - add,
 - substract,
 - multiply,
 - integer divide,
 - bitwise shift left,
 - bitwise shift right,
 - bitwise logical and,
 - bitwise logical or.

For each operations, the operand(s) have to be in register A (and register B, if two operands are needed). The result is stored in register C. The operation does not modify registers A and B.

• The VM is executed strictly sequential and not pipelined.

Figure 1 shows all possible paths of data and instructions.

1.2 Implementation

1.3 Instruction Set

See table 1.

¹Reduced Instruction Set Computer

²Random Acess Memory

 $^{^3}$ Controll Unit

⁴Arithmetical Logical Unit

Figure 1: Schematic view of VM. Blue: data, green: control, adresses

Table 1: Overview of all Operations supported by the Virtual Machine

Machine	Assembly	Number of	Describtion		
Code	Command	Paramters			
0x00	STP	0	Stops the execution		
0x01	JMP	1	Unconditional jump		
0x02	$_{ m JGZ}$	1	Jump if $C > 0$		
0x03	$_{ m JOF}$	1	Jump if last Operation caused Overflow		
0x04	ADD	0	Computes C = A + B		
0x05	SUB	0	Computes $C = A - B$		
0x06	AND	0	Computes $C = A \& B$ (logical bitwise and)		
0x07	BOR	0	Computes $C = A \mid B$ (logical bitwise or)		
0x08	SHL	0	Shift A one bit to the left, store in C		
0x09	SHR	0	Shift A one bit to the right, store in C		
0x0A	LDA	1	Load value from adress in A		
0x0B	LDB	1	Load value from adress in B		
0x0C	LDC	1	Load constant value in C		
0x0D	LD0	0	Store 0 in B		
0x0E	STR	1	Store value from C in RAM		
0x0F	MOV	2	Copy value from first address to second address		
0x10	NOP	0	No operation		
0x11	_	_	Currently not used		
0x12	m JEZ	1	Jump if C = 0		
0x13	JNO	1	Jump if last operation caused no overflow		
0x14	MUL	0	Computes $C = A \cdot B$		
0x15	DIV	0	Computes $C = A \text{ div } B \text{ (integer division)}$		
0x16	_	_	Currently not used		
0x17	_	_	Currently not used		
0x18	_	_	Currently not used		
0x19	_	_	Currently not used		
0x1A	RLA	0	Reload value fom C into A		
0x1B	RLB	0	Reload value fom C into B		
0x1C	$_{ m LDM}$	0	Load maximum value into B		
0x1D	LD1	0	Load 1 into B		
0x1E		_	Currently not used		
0x1F	_	_	Currently not used		

Table 2: Overview of additional Operations supported by Assembler

Assembly	Number of	Describtion
Command	Paramters	
EAD	2	C = sum of both parameters
ESU	2	C = first parameter - second parameter
EMU	2	C = product of both parameters
EDI	2	C = first parameter div second parameter (integer division)
STC	2	store first parameter at variable given by second parameter in RAM
VAR	1	declares a variable
BEGIN	0	defines the beginning of code (can be used as a jump-label)
LABEL	1	defines a label that can be used as destination for a jump instruction
//	_	comment, lines beginning with // will be ignored by assembler

2 The Assembler

2.1 Implementation

2.2 Instruction Set

See table 2.

2.3 Example Program

Example program Prim.txt

```
// a test program that checkes if the value in test is prim
   // writes 1 to res if test is prim
3
   // writes 0 to res otherwise
   VAR test
   VAR max
5
6
   VAR counter
   VAR res
7
8
   BEGIN
9
   STC 13 test
10 STC 2 counter
11
  LDA test
12
  SHR
   // max = test/2, maximum number that needs to be checked
13
   STR max
14
15
   LABEL start
   // check if test/counter has remainder:
16
17
   LDA test
18 LDB counter
19 DIV
20 RLA
21 MUL
22 RLA
23 LDB test
24 SUB
25
   // if 0, no remainder: test is not prim
26 JEZ notprim
27
   // otherwise increase counter
28 LDA counter
29 LD1
30 ADD
  STR counter
31
32
   RLB
  // check if max is reached:
33
34 LDA max
35 SUB
36
   // counter < max: goto start
37 JGZ start
38
   // otherwise: test is prim
39 STC 1 res
40 JMP end
41 LABEL notprim
42 STC 0 res
43 LABEL end
  STP
44
```

Execution output of VM of program Prim:

Loading pr	ogram St	arting Vir	tual Machine						
cycle	ic	instr	src	dest	val	FLAGS	reg A	reg B	reg C
1	0	JMP		0XB			62	0	0
2	11	LDC	_	_	0XD		13	0	0
3	14	LD0	_	_	– i		13	0	0
4	15	ADD		_	– i	-G	13	0	13
5	16	STR	_	0X3	0XD	-G	13	0	13
6	19	LDC	_	_	0X2	-G	2	0	13
7 j	22	LD0		_	– i	-G	2	0	13
8 j	23	ADD		_	– i	-G	2	0	2
9	24	STR	_	0X7	0X2	-G	2	0	2
10	27	LDA	0X3	_	0XD	-G	13	0	2
11	30	SHR		_	– i	-G	13	0	6
12	31	STR	_	0X5	0X6	-G	13	0	6
13	34	LDA	0X3	_	0XD	-G	13	0	6
14	37	LDB	0X7	_	0X2	-G	13	2	6
15	40	DIV		_	– i	-G	13	2	6
16	41	RLA		_	– i	-G	6	2	6
17	42	MUL	_	_	– i	-G	6	2	12
18	43	RLA	_	_	- i	-G	12	2	12
19	44	LDB	0X3	_	0XD	-G	12	13	12
20	47	SUB	_	_	– i	-GO-	12	13	-1
21	48	JEZ		0X4E	- i	-GO-	12	13	-1
22	51	LDA	0X7	_	0X2	-GO-	2	13	-1
23	54	LD1		_	- i	-GO-	2	1	-1
24	55	ADD		_	- i	-G	2	1	3
25	56	STR	_	0X7	0X3	-G	2	1	3
26	59	RLB	_	_	- i	-G	2	3	3
27	60	LDA	0X5	_	0X6	-G	6	3	3
28	63	SUB	_	_	- j	-G	6	3	3
29	64	JGZ	_	0X22	- 1	-G	6	3	3
30	34	LDA	0X3	_	0XD	-G	13	3	3
31	37	LDB	0X7	_	0X3	-G	13	3	3
32	40	DIV	_	_	-	-G	13	3	4
33	41	RLA	_	_	-	-G	4	3	4
34	42	MUL	_	_	-	-G	4	3	12
35	43	RLA		_	_	-G	12	3	12
36	44	LDB	0X3	_	0XD	-G	12	13	12
37	47	SUB	_		-	-GO-	12	13	-1
38	48	JEZ	_	0X4E	-	-GO-	12	13	-1

39	51	LDA	0X7	_	0X3	-GO-	3	13	-1
40	54	LD1	_	_	_	-GO-	3	1	-1
41	55	ADD	_			-G	3	1	4
42	56	STR	_	0X7	0X4	-G	3	1	4
43	59	RLB	_	_	_	-G	3	4	4
44	60	LDA	0X5	_	0X6	-G	6	4	4
45	63	SUB	_	_	_	-G	6	4	2
46	64	$_{ m JGZ}$	_	0X22	-	-G	6	4	2
47	34	LDA	0X3	_	0XD	-G	13	4	2
48	37	LDB	0X7	_	0X4	-G	13	4	2
49	40	DIV	_	_	-	-G	13	4	3
50	41	RLA	_	_	-	-G	3	4	3
51	42	MUL	_	_	_	-G	3	4	12
52	43	RLA	_	_	_	-G	12	4	12
53	44	LDB	0X3	_	0XD	-G	12	13	12
54	47	SUB	_	_	_	-GO-	12	13	-1
55	48	JEZ	_	0X4E	_	-GO-	12	13	-1
56	51	LDA	0X7	_	0X4	-GO-	4	13	-1
57	54	LD1	_	_	_	-GO-	4	1	-1
58	55	ADD	_	_	- 1	-G	4	1	5
59	56	STR	_	0X7	0X5	-G	4	1	5
60	59	RLB	_	_	_	-G	4	5	5
61	60	LDA	0X5	_	0X6	-G	6	5	5
62	63	SUB	_	_	_	-G	6	5	1
63	64	$_{ m JGZ}$	_	0X22	_	-G	6	5	1
64	34	LDA	0X3	_	0XD	-G	13	5	1
65	37	LDB	0X7	_	0X5	-G	13	5	1
66	40	DIV	_	_	_	-G	13	5	2
67	41	RLA	_	_	_	-G	2	5	2
68	42	MUL	_	_	_	-G	2	5	10
69	43	RLA	_	_	_	-G	10	5	10
70	44	LDB	0X3	_	0XD	-G	10	13	10
71	47	SUB	_	_	_	-GO-	10	13	-3
72	48	JEZ	_	0X4E	_	-GO-	10	13	-3
73	51	LDA	0X7	_	0X5	–GO–	5	13	-3
74	54	LD1	_	_	_	-GO-	5	1	-3
75	55	ADD	_	_	_	-G	5	1	6
76	56	STR	_	0X7	0X6	-G	5	1	6
77	59	RLB	_	-	-	-G	5	6	6
78	60	LDA	0X5	_	0X6	-G	6	6	6
79	63	SUB	-	_	-	Z	6	6	0
80	64	JGZ	_	0X22	_	Z	6	6	0
	04	002		07122			0	O	3

	81 82 83 84 85 86 Machine terminat	67 70 71 72 75 86 5ed!	LDC LD0 ADD STR JMP STP	- - - - -	- - - 0X9 0X56	0X1 Z - Z - -G 0X1 -G - -G - -G	1 1 1 1 1	6 0 0 0 0	0 0 1 1 1 1	
	### STATISTICS #	/////								
	INSTRUCTION #									
∞	0 (STP) 0X1 (JMP) 0X2 (JGZ) 0X3 (JOF) 0X4 (ADD) 0X5 (SUB) 0X6 (AND) 0X7 (BOR) 0X8 (SHL) 0X9 (SHR) 0XA (LDA) 0XB (LDB) 0XC (LDC) 0XD (LDO) 0XE (STR) 0XF (MOV) 0X10 (NOP) 0X12 (JEZ) 0X13 (JNO) 0X14 (MUL) 0X15 (DIV) 0X1A (RLA) 0X1B (RLB) 0X1C (LDM) 0X1D (LDM)	1 2 4 0 7 8 0 0 0 0 1 13 8 3 3 8 0 0 0 4 0 4 0 4 0 4 0 4 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0								
	,									
	### END ###									