Computación paralela en la estimación de una fuente sismica, aplicación a microsismos en minería.

November 5, 2014

Resumen

Dado un conjunto de sismogramas se busca estima la fuente sismica puntual como una fuerza $\mathbf{F}(\mathbf{x}_0,t)$ reutilizando la inversión que desarrollamos con Matias Courdurier, además de ello, pretendo reutilizar lo anterior para estimar la fuente sismica sobre una vecindad de la estimación inicial del epicentro \mathbf{x}_0 , de esta manera estimar el sismo como un volumen de fuerza. luego sería posible para cada sismograma su descomposición como la suma de su onda P, S y de campo cercano (cosa que logré hacer pero solo para una fuente puntual).

Como el computo $\mathbf{F}(\mathbf{x}_i,t)$ donde $\mathbf{x}_i \in V$ y V una vecindad del epicentro puede llegar a ser muy costoso computacionalmente, pretendo reimplementar los algoritmos bajo conceptos de computación paralela, específicamente en **mpi4py** la cual es una implementación en python de \mathbf{MPI} .

- *Marco teórico
- **Ecuación diferencial elastica
- **Función de Green
- *Sismogramas
- ** Caracteristicas de un sismograma
- *Reconstruccion de la fuente
- **Algoritmo de inversión para un epicentro puntual (deconvolución)
- **Algoritmo de inversión para un opicentro volumétrico.
- **Descomposición de la onda P y onda S de un sismograma
- *Optimización del algoritmo mediante computación paralela resultados conclusiones bibliografía