

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICA INSTITUTO DE ESTADÍSTICA

Profesora: Reinaldo Arellano Ayudantes: Yoseph Barrera

Modelos Probabilisticos Ayudantías 2025

Ayudantía 3

- 1. Cada vez que se realiza un experimento, la probabilidad de ocurrencia de un suceso particular A es igual a 0.2. El experimento se repite de forma independiente hasta que ocurre A. ¿Cuál es la probabilidad de que sea necesaria una cuarta repetición?
- 2. Se dispone de 3 dados, D_1 , D_2 , D_3 . El dado D_1 es equilibrado, mientras que el dado D_2 está cargado hacia los números pares, con probabilidad de que salga número par p > 1/2, y el dado D_3 está cargado hacia los números impares, con probabilidad de que salga número par q < 1/2. El experimento consiste en elegir uno de los dados de acuerdo al siguiente mecanismo:
 - Se lanza una moneda no equilibrada con probabilidad de cara α .
 - Si sale cara, se selecciona el dado D_1 . Si sale sello, se selecciona uno de los dados D_2 o D_3 , cada uno con igual probabilidad.

Una vez elegido el dado, éste se lanza dos veces. Dibuje un diagrama de árbol para entender el problema propuesto.

- a) Calcule la probabilidad de que salga par en el primer lanzamiento del dado.
- b) Calcule la probabilidad de que haya sido seleccionado el dado D_1 , dado que en los dos lanzamientos se obtuvo un número par.
- 3. Un sistema C está formado por dos partes A y B. La parte A tiene tres componentes A_1 , A_2 y A_3 , mientras que la parte B tiene solo dos componentes B_1 y B_2 . Cada una de estas partes funciona cuando todas sus componentes lo hacen, mientras que el sistema completo funciona si alguna de sus dos partes lo hace.
 - La probabilidad de que cada componente de A funcione es 0.90, y dichas componentes funcionan de manera independiente entre sí. Por otro lado, dado que A funciona, cada componente de B funciona con probabilidad 0.95; y dado que A no funciona, cada componente de B funciona con probabilidad 0.80. Además, dado que A funciona, las componentes B_1 y B_2 funcionan de manera independiente entre sí; lo mismo ocurre si A no funciona.
 - a) ¿Cuál es la probabilidad de que A funcione?
 - b) ¿Cuál es la probabilidad de que B funcione?

- c) ¿Cuál es la probabilidad de que C funcione?
- 4. Sea el espacio de probabilidad (Ω, \mathcal{A}, P) , donde:

$$\Omega = \mathbb{R}^+, \quad \mathcal{A} = \{\emptyset, (0, \infty), (0, 1/4), [1/4, \infty)\}, \quad P(A) = \frac{2}{\pi} \int_A \frac{1}{1 + x^2} dx, \quad A \in \mathcal{A}$$

- a) Muestre que ${\mathcal A}$ es efectivamente una $\sigma\text{-\'algebra}.$
- b) Muestre que P es una medida de probabilidad.
- c) Si ahora se define:

$$A_1 = \{\emptyset, (0, \infty), [1/2, \infty)\}, \quad A_2 = \{\emptyset, (0, \infty)\}$$

¿Son \mathcal{A}_1 , \mathcal{A}_2 σ -álgebras de subconjuntos de \mathcal{A} ?