High Dimensional Covariance Matrix Estimation Using a Factor Model

Jinchi Lv

Marshall School of Business University of Southern California

Joint with Jianging Fan and Yingying Fan

http://www-rcf.usc.edu/~jinchilv

Radcliffe Workshop, November 10, 2007

Outline

- Introduction
- Factor-Model Based Estimation
- Theoretical Studies & Applications
- Simulation Studies

Covariance Matrix

Covariance matrix: fundamental & pervades financial econometrics.

- VaR:
- capital requirement & risk management;
- asset pricing;
- portfolio allocation;
- genetic networks & climatology.

Challenge of High Dimensionality

Estimating high-dimensional covariance matrices: challenging.

- 200 stocks;
- 20,200 parameters;
- 3-year daily returns, only about 750 samples.
- Estimating it accurately?!
- high-frequency data?

Dimensionality Reduction

Sample covariance matrix:

• problematic when p is large. (Johnstone 01.)

Dimensionality reduction:

- Factor models. (Engle&Watson, 81; Chamberlain&Rothschild, 83;
 Diebold&Nerlove, 89; Aguilar&West, 00; Stock&Watson, 05.)
- Sparsity & AR-models. (Bickel&Levina, 06; Pourahmadi, 00; Boik, 02; Wu&Pourahmadi, 03; Huang, Liu, Pourahmadi, 04; Li&Gui, 05.)
- Shrinkage & eigen-method. (Ledoit&Wolf, 04; Stein, 75; Eaton&Taylor, 91,94.)

Motivation: Multi-Factor Model

Multi-factor model: Ross (76) & Chamberlain, Rothschild (83).

Notation:

- $p = p_n \& K = K_n$;
- Y_i: excess return;
- f_1, \dots, f_K : factors.

Multi-factor model:

$$Y_i = b_{n,i1}f_1 + \cdots + b_{n,iK}f_K + \varepsilon_i, i = 1, \cdots, p.$$

- $\{\varepsilon_i\}$: idiosyncratic, uncorrelated given **f**;
- varies across n.

An Example: Fama-French 3-Factor Model

Fama-French 3-factor model:

- f₁: market portfolio;
- f₂: capitalization,

$$f_2 = 1/3(SV + SN + SG) - 1/3(BV + BN + BG);$$

• f_3 : book-to-market ratio,

$$f_3 = 1/2(SV + BV) - 1/3(SG + BG)$$
.

Model-Based Estimation: A Substitution Estimator

Multi-period

$$\mathbf{y}_t = \mathbf{B}_n \mathbf{f}_t + \boldsymbol{\varepsilon}_t, \quad t = 1, \cdots, n.$$

Covariance structure: $\Sigma = Bcov(f)B' + \Sigma_0$,

- Σ_0 : diagonal;
- p_n and K_n : growing.

Estimated covariance:

$$\widehat{\boldsymbol{\Sigma}} = \widehat{\boldsymbol{B}}\widehat{\text{cov}}(\boldsymbol{f})\widehat{\boldsymbol{B}}' + \widehat{\boldsymbol{\Sigma}}_0.$$

Sample covariance matrix: $\hat{\Sigma}_{sam}$.

Questions and Objectives

- Estimation error growing with p_n and K_n ?
- Impacts on portfolio allocation & risk management?
- Comparison with the sample covariance?
- When does factor approach gain substantially/marginally?

Choice of Norms

Frobenius norm: not appropriate, e.g. knowing ideally $\mathbf{B} = \mathbf{1}$ and $\operatorname{cov}(\varepsilon) = I_{p_n} \implies \|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\| = p_n |\widehat{\operatorname{var}}(f) - \operatorname{var}(f)|$.

New norm:
$$\|\mathbf{A}\|_{\mathbf{\Sigma}_n} = \rho_n^{-1/2} \|\mathbf{\Sigma}_n^{-1/2} \mathbf{A} \mathbf{\Sigma}_n^{-1/2}\|$$
,

- factor structure & diverging p_n ;
- $\bullet \ p_n^{1/2} \|\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}\|_{\boldsymbol{\Sigma}} = \{ \operatorname{tr}[\widehat{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{-1} I_{p_n}]^2 \}^{1/2};$
- entropy loss: $\operatorname{tr}(\widehat{\Sigma}\Sigma^{-1}) \log |\widehat{\Sigma}\Sigma^{-1}| p$.

A Surprising Fact

- $\widehat{\Sigma}$ and $\widehat{\Sigma}_{sam}$: same rate $O_P(n^{-1/2}p_nK_n)$ under Frobenius norm.
 - explicit;
 - K_n : constant or slowly growing;
 - Factor model does not help on estimating Σ;
 - Same rate in risk management: $\xi'_n \Sigma_n \xi_n$, variance of portfolio ξ_n .

Strength of Factor Structure I

Summary:

- Σ: invertible;
- Faster rate under norm $\|\cdot\|_{\Sigma}$ when $K_n = o(\sqrt{p_n})$; $K_n = O(1)$: $\widehat{\Sigma}$ is root-n-consistent when $p_n = O(n)$, whereas Σ_{sam} is root- n/p_n -consistent;
- Under Frobenius norm, $\widehat{\Sigma}^{-1}$ has a rate an order p_n/K_n faster than that of $\widehat{\Sigma}_{sam}^{-1}$.

Mean-Variance Optimal Portfolio

Mean-Variance Optimal Portfolio (Markowitz, 1952):

$$\min_{\boldsymbol{\xi} \in \mathbf{R}^{p_n}} \boldsymbol{\xi}' \boldsymbol{\Sigma}_n \boldsymbol{\xi}$$
 s.t. $\boldsymbol{\xi}' \mathbf{1} = 1$ and $\boldsymbol{\xi}' \boldsymbol{\mu}_n = \gamma_n$.

- γ_n : expected rate of return;
- closed-form solution, involving Σ_n^{-1} .

Questions:

- Impact on portfolio allocation?
- Performance of ∑_{sam}?

Strength of Factor Structure II

Summary:

- Optimal portfolio: an order p_n/K_n faster;
- Minimum-variance portfolio: same result.

Simulation: Fit Fama-French 3-Factor Model

Fama-French 3-factor model:

- 30 industry portfolios, 5/1/02-8/29/05 (n = 756);
- 30 estimated factor loading vectors:

μ_{f}		^{cov} f	
0.023558	1.2507	-0.034999	-0.20419
0.012989	-0.034999	0.31564	-0.0022526
0.020714	-0.20419	-0.0022526	0.19303
$\mu_{\mathbf{b}}$		covb	
$\frac{\mu_{f b}}{0.78282}$	0.029145	cov b 0.023873	0.010184
	0.029145 0.023873	V	0.010184 -0.006967

• SDs of 30 idiosyn. errors: ave. 0.6608, SD 0.3275 & min 0.1950.

Simulation Design

n & K fixed and p growing:

- Generate f from $\mathcal{N}(\mu_{\mathbf{f}}, \text{cov}_{\mathbf{f}})$, n = 756;
- *p* ∈ [16, 1000], increment 20;
- Generate $\mathbf{b_1}, \cdots, \mathbf{b_p}$ from $\mathcal{N}(\mu_{\mathbf{b}}, \text{cov}_{\mathbf{b}})$;
- Generate $\sigma_1, \dots, \sigma_p$ from a gamma distribution G(3.3586, 0.1876) conditioned on $[0.1950, \infty)$;
- Generate idiosyn. noise from $\mathcal{N}(0, \sigma_i^2)$;
- Get pseudo excess returns using $y = Bf + \varepsilon$.

Comparison of Performance

Comparison of $\widehat{\Sigma}$ and Σ_{sam} under different measures:

Estimation of Σ^{-1} under Frobenius Norm

Average and standard deviation of errors under the Frobenius norm over 500 simulations for $\widehat{\Sigma}^{-1}$ and $\widehat{\Sigma}^{-1}_{sam}$ against dimensionality.

Impact on Portfolio Allocation

Left: MSEs of estimated variances of optimal portfolios, $\gamma_n = 10\%$; Right: MSEs of estimated minimum variances over 500 simulations.

Impact on Risk Management

MSEs of estimated variances of the equally-weighted portfolio over 500 simulations.

Convergence Rates

Theorem 1. Under some regularity conditions and the Frobenius norm, we have $\|\widehat{\Sigma} - \Sigma\| = O_P(n^{-1/2}p_nK_n)$ and

$$\max_{1 \le k \le p_n} |\lambda_k(\widehat{\mathbf{\Sigma}}) - \lambda_k(\mathbf{\Sigma})| = o_P\{(p_n^2 K_n^2 \log n/n)^{1/2}\};$$

 $\widehat{\Sigma}_{\text{sam}}$ has the same rates.

Theorem 2. If
$$p_n = n^{\alpha}$$
 and $K_n = n^{\alpha_1}$, then $\|\hat{\Sigma} - \Sigma\|_{\Sigma} = O_P(n^{-\beta/2})$ with $\beta = \min(1 - 2\alpha_1, 2 - \alpha - \alpha_1)$, whereas $\hat{\Sigma}_{sam}$ has rate $O_P(n^{-\beta_1/2})$ with $\beta_1 = 1 - \max(\alpha, 3\alpha_1/2, 3\alpha_1 - \alpha)$.

Theorem 3. Under the Frobenius norm,

$$\|\widehat{\Sigma}^{-1} - \Sigma^{-1}\| = o_P\{(p_n^2 K_n^4 \log n/n)^{1/2}\}, \text{ an order } p_n/K_n \text{ smaller than } \|\widehat{\Sigma}_{\text{sam}}^{-1} - \Sigma^{-1}\|.$$

Asymptotic Normality

Theorem 4. Asymptotic normality of $\widehat{\Sigma}$ has been derived to facilitate statistical inferences, whereas in general $\widehat{\Sigma}_{\text{sam}}$ may have no asymptotic normality of the same kind when $p_n \to \infty$.

Impacts on Portfolio Management

Theorem 5 (Optimal portfolio).

$$\left|\widehat{\boldsymbol{\xi}}_n'\widehat{\boldsymbol{\Sigma}}_n\widehat{\boldsymbol{\xi}}_n - \boldsymbol{\xi}_n'\boldsymbol{\Sigma}_n\boldsymbol{\xi}_n\right| = o_P\{(p_n^4K_n^4\log n/n)^{1/2}\},$$

whereas the rate using Σ_{sam} is an order p_n/K_n worse.

Theorem 6 (Minimum-variance portfolio).

$$\left|\widehat{\boldsymbol{\xi}}_{ng}^{\prime}\widehat{\boldsymbol{\Sigma}}_{n}\widehat{\boldsymbol{\xi}}_{ng} - \boldsymbol{\xi}_{ng}^{\prime}\boldsymbol{\Sigma}_{n}\boldsymbol{\xi}_{ng}\right| = o_{P}\{(p_{n}^{4}K_{n}^{4}\log n/n)^{1/2}\},$$

whereas the rate using Σ_{sam} is an order p_n/K_n worse.

Theorem 7. Given a portfolio ξ_n with $\xi'_n \mathbf{1} = 1$ and $\xi_n = O(1)\mathbf{1}$, we have

$$\left|\xi_n'\widehat{\boldsymbol{\Sigma}}_n\xi_n-\xi_n'\boldsymbol{\Sigma}_n\xi_n\right|=o_P\{(p_n^4K_n^2\log n/n)^{1/2}\};$$

 $|\xi'_n \widehat{\Sigma}_{sam} \xi_n - \xi'_n \Sigma_n \xi_n|$ has the same rate. Moreover, if no short position, rate is $o_P \{ (p_n^2 K_n^2 \log n/n)^{1/2} \}$.

Conclusions

- We propose and study the use of the factor model to estimate high-dimensional covariance matrix.
- When dimensionality is high, the factor-model based estimator
 - significantly outperforms the sample covariance particularly in estimating the inverse;
 - significantly outperforms the sample covariance in portfolio allocation;
 - does not improve the performance of risk management.