Facilitating Irregular Applications on Many-core Processors

Da Li, Michela Becchi University of Missouri

naïve dynamic parallelism

7 | 326 | 9 | 21 | 46 | 234 | 22 | 14

234

Kernel Launch

on CPU

Multiple Kernel

Launches on GPU

Contributions

Many-core processors are considered relatively difficult to program, in that they require the programmer to be familiar with both parallel programming and the hardware features of these devices. Irregular applications are characterized by irregular and unpredictable memory access patterns, frequent control flow divergence, and runtime (rather than compile time) parallelism. My research focuses on addressing important issues related to the deployment of irregular computations on many-core processors. My contributions are in three directions:

- Unifying programming interfaces for many-core processors
- Runtime support for efficient execution of applications on irregular datasets
- Compiler support for efficient mapping of applications onto hardware

Unifying Programming Interfaces

	Application	Application & Graph Type	Attributes	Comp. pattern & arith. intensity	Best Speedup		
					m-CPU	GPU	Phi
	BFS	read-only static	Level (int)	Set level (simple& low)	2.5x	50x	3.5x
	PageRank	read-only static/dynamic	Rank (double)	Calculate Rank (intermediate & intermediate)	6.3x	6.5x	9x
	A-DFA	read-only static	Default Trans (int)	Compare trans. (complex, low)	8x	6x	45x
	DFA construction	read-write dynamic	Trans Table (int)	Compare Subset (complex, low)	6.5x	5.5x	4.3x

- Platform selection depends on application and graph type
- Unified programming interfaces facilitates fastprototyping

Adaptive Computing

3-d exploration space:

algorithm

hardware

working set representation

mapping method onto

Adaptive solution outperforms static ones

#pragma dp consldt(type) buffer([type, perBufferSize, totalSize]) work(varlist)

Parallelization Templates

Single Kernel Launch on GPU

Naïve dynamic parallelism incurs significant overhead, thus degrading the performance

Ib_{THRES} (load balancing threshold) also affects the performance

Workload Consolidation

Annotated CUDA source code

mapping

coarse-grained

(working elements-blocks)

fine-grained (working elements-threads)

algorithm

Generated CUDA kernel

Performance

- Compiler-assisted workload consolidation can improve the performance significantly
- Grid-level consolidation achieves better performance than warp- and block-level consolidation

Publications

- [1] Da Li, Michela Becchi, "Software Support for Regular and Irregular Applications in Parallel Computing", SC 2012.
- [2] Da Li, Michela Becchi, "Deploying Graph Algorithms on GPUs: an Adaptive Solution", IPDPS 2013.
- [3] Da Li, Srimat Chakradhar, Michela Becchi, "Grapid: a Compilation and Runtime Framework for Rapid Prototyping of Graph Applications on Many-core Processors", ICPADS 2014.
- [4] Da Li, Michela Becchi, "Designing Code Variants for Applications with Nested Parallelism on GPUs", GPU Technology Conference 2015.
- [5] Da Li, Hancheng Wu, Michela Becchi, "Nested Parallelism on GPU: Exploring Parallelization Templates for Irregular Loops and Recursive Computations", ICPP 2015.
- [6] Da Li, Hancheng Wu, Michela Becchi, "Exploiting Dynamic Parallelism to Efficiently Support Irregular Nested Loops on GPUs", COSMIC 2015.

This work has been supported by NSF awards CNS-1216756 and CCF-1452454 and by equipment donations from Nvidia Corporation.

Contact us: da.li@mail.missouri.edu

