1.	Suppose x is a tree having two subtree's as follows;
	2 n → root noede
- /10	△ → submees
, ·	We need to rebuild the subtree if a new node is added
	deleted and tree turns out to be imbalanced
	For rebuilding of subtre, we can use divide and conquer
	algorithm.
_	Divide and conquer algorithm puts the middle element from
	the list of nodes at the root and constructs left and right
	subtrees recursively
	This results in hight difference of the at most I between
	two existing subtrees.
_	Imbalance of subtrees can be measured by;
	$I(x) = \max \{0, \text{Size (left (x))} - \text{Size (right (n))} -1 \}$
	As the imbalance of the rebuilt subtree turns out to be zero
	and also the remainder of entire tree has O imbalance
	before rebuilding, the entire new tree has imbalance of 0

2.	I(x) = { size (left(x)) - size (night(x)) }
#	for deletion:
	1 If no rebuilding is needed:
	Actual cost = 0 (log size(T)) = 0 (height (T))
	AØ = O(1) → as no change in impalance
	: Amortized cost = 0 (log size (T))
	2) If rebuilding is needed:
	Actual cost = O(log n) + O(n)
	Imbalance after rebuilding could be at most
	OCn) instead of zero as original
	4¢ ≤ - ĉ size CT) + O(n)
	2.
	: After scaling 2;
-	Amortized cost of deletion = O (log size (t))
	= 0 (log h)
#	for Insertion:
	1) If No rebuilding is needed:
	Inhalance change of path from nout > new node
	would atmost height (T) < \beta log n
	$\Delta \phi = O(\beta \log n)$
	: Amortized cost = Actual cost + DO
	= O(log n)
	= 0 (log size (1))
	= O(log n) P.T.O.

2.	@ If Rebuilding is required:
	y
	Actual cost = O(logn) + O(n)
	= O(n) = O(size (+))
_	Imbalance needs to be calculated before insertion
_	Suppose insertion talces place in 1877 subtree of x
	without loss of generality where re is the root
	- height (left(n)) > height (night(n))
-	i.e. height (n) = 1+ height (left(n))
	As tree was balanced before inscrtion
	: height (left (n)) = \$ log size (left(a))
	After insertion, the tree is unbalanced;
	: plog size (2) = height (n)
_	As x is lowest point of imbalance, we have
	height (n) = height (left (n)) +1 < plog size (left (n))+1
	— ©
	Exponenting () 4 @ we get,
	Blog size (n) Blog size (left(n)) +1
	ploy size (n) ploy size (left(n)) +1 2 2
<u>.' .</u>	After insertion
	size (n) < 2 size (18ff(n))
	P.T-O.

	Before Insertion
	Size (n) + 1 < $2^{1/\beta}$ (size (left(n)) + 1) Size (n) < $2^{1/\beta}$ Size (left(n)) + ($2^{1/\beta}$ -1)
	Size (N) < 2" Size (186+ (N)) , 6 1/B
~	= 3(C (14 (x)) + (2"-1)
	We know, size (n) = size (left (n)) + size (right (n)) +1
	Size (might (ma)
	size (night (n)) = size (left (n)) - size (left (n)) - 1
	Size (right(n)) < $(2^{1/\beta}-1)$ size (left(n)) + $2^{1/\beta}-2$
	size (n'ght(n)) = size (left(n)) As 2118-27
	is negative
#	Before insertion;
	Imbalance I(n) = size (left (n)) -size (right (n))
	$I(n) \geq size(n) - \left(1 - \frac{1}{2^{1/\beta}}\right) size(n) - \frac{1}{2^{1/\beta}}$
	2 1/8 21/8
	$L(n) = (2^{-1/\beta} - 1)$ Size (n) +1
	$I(x) > (2^{1-1/\beta} - 1)$ Size (n)
#	After insertion
	I(N) = O(STEE(N))
	$\Delta \Phi = \phi \text{final} - \phi \text{before}$
	ΑΨ - Τ
	$= O(\operatorname{size}(x)) - \left[\frac{1-1}{2}\right] \operatorname{size}(x)$
	- U(Sice(A)) 2 - 1 Sice(A)

2.	2	ΔØ =	O (size	(n)) =	(n)			
		7						
	٠.	Amortized	Cost =	Achial	cost +	ΔØ		
		Amortized	Cos1- =	0(n)				

1	
4.	According to Professor Pinocchino;
•	height of Fibonacci heap with n number of nodes is
-	Octogn)
•	To prove that professort claim is wrong, we need to
	create an algonothm of Ribonacci heap which has
	only one tree with (n-1) nodes with empty fibonacti
	heap (FH). Later one node is being inserted into the
-	heap
•	Create Fibonacci Heap of height I with the robt key
	as R. Add elements as;
	(R-1) - Value less than aurent roots value
	(R+1) - value greater than current moti value
	(R-2) - value ress twice less than current roots
	value which is to be deleted
	(R-2) - remove node with key R-2
#	Pseudocode:
	Assume number of nodes in the tree is greater than 2
	Linear-heap (FH, R, n) // empty FH
	linear- heap (FH, R+1, n-1)
	Insert (FH, min (FH) + 1)
	Insert (FH, min (FH)-1)
	Tasext (FH, min(FH)-2)
	Deletemin (FH) // delete the node with min legy
	A = mil (FH). secondchild
	Decreasekey (A, min (FH) - 2) // decrease node's value by 2
	Deletemin (FH)
	return
	P-T-0

0_	#	Correctness:
-	_	Base Case ;
+		Hypothesis is correct for n=1 as Fibonacci heap
-		contains I tree with a linear chain of n nodes
1	#	Inductive process:
-	-	Assume that the above statement is is true for n=k
-	-	For n= k+1, the algorithm first creates a linear ch
		of k' nodes (inductive hypothesis) and then it adds
		2 new elements say x and y
		y - key which is to greater than minimum key
-	-	Finally it adds an element R whose value is small
-		than minimum key value
_		When R is removed, then their remains the chain of
_	1	K nodes containing x and y.
	1	As degree of x and y turns to zero, they are being collaborated. Now x becomes the root with the degree 1
_	Į	Thus, the chain of height 2 and chain of height le
		are consolidated.
_	-	By deleting y, we get linear chain with n nodes.
_	1	Hence, Fibonacci heap containing one tree with linear cha
	ş	of n nodes can be created from a sequence of fibonace

6.	@ FIB - HEAP - CHANGE - KEY (H, x, K)
	- this operation changes the key of node x to value 1
٦٠	Case 1 : 1< 2 x.1cey
	When value of k is less than value of x-leey then in
	that care we don't need to change anything and tobacina
	The subtree
•	Me can just perform DECREASE-KEY operation
•	Therefore, we just need to call FIB-HEAP-DECREASE-KEY
	(H, N, K)
	The amorticed cost 2 = 0(1)
	P.T.O.

2.	Case 2 : < = x. < ey
•	No need to do any operation when values are equal
	Amortized cost c=c -> 0(1)
3.	Case 3: k > x.1cey
•	When value of k is greater than x-key value then
	we need to the value of xikey to value k first
ø	чраак
•	After updating value of x-key, we need to put down
	the value of x-key (original) into the subtree with
	until minheap property is achieved
•	Basically, we first need to delete the node on and
	insert new node with the value equivalent to ik
;.	Amortized cost = O(logn) + O(1)
	= O(log n)
→	FIB-HEAP_CHANGE-KEY (H, x, k)
in the latest of	IR K = x. key then
	FIB-HEAPLDECREASE-KEY (H,M,K)
	Eisc
	FIB - HE AP- DELETE - KEY (H, x)
	FIB - HEAP - INSERT - KEY (n, k) / n = new node

6. 6 FIB_HEAP_PRUNE (н, т)
- We can delete no	des from leques, so no rearrange-
ments are necessi	ary, each single node deletion are
O(1)	
- Ammortized Analys	sis :
let (Di)= t(H)+	
s = min Cr	r, n[H]) // number of nodes
50,	deleted
(Di) - (Di-	1)=-s
: Amortized cost =	= Ci + (Di) - CD; -1)
	s * O(1) - s
	0 (s)