测度论导论 §1.3 习题

丁 珍 AND 程预敏

1. Solution of Ex 1.3.2

(Basic properties of the complex-valued simple integral). Let $f, g : \mathbb{R}^d \to \mathbb{C}$ be absolutely integrable simple functions.

(i) (*-linearity) We have

$$\operatorname{Simp} \int_{\mathbb{R}^d} f(x) + g(x) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x + \operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x \tag{1.1}$$

and

$$\operatorname{Simp} \int_{\mathbb{R}^d} cf(x) \, \mathrm{d}x = c \times \operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \tag{1.2}$$

for all $c \in \mathbb{C}$. Also we have

$$\operatorname{Simp} \int_{\mathbb{R}^d} \overline{f}(x) \, \mathrm{d}x = \overline{\operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x}. \tag{1.3}$$

证明. 我们首先考虑绝对收敛的实数值简单函数的情形, 即 $f,g:\mathbb{R}^d\to\mathbb{R}$. 由于 f,g 都是简单函数, 则 h=f+g 也是简单函数. 且

$$h_+ - h_- = (f_+ - f_-) + (g_+ - g_-).$$

由于 f,g 都是绝对收敛的简单函数,则易证上面的函数是绝对收敛的非负简单函数.且我们有

$$h_{+} + f_{-} + g_{-} = h_{-} + f_{+} + g_{+}. \tag{1.4}$$

根据非负简单函数积分的线性性, 我们有

$$\operatorname{Simp} \int_{\mathbb{R}^d} h_+(x) \, \mathrm{d}x + \operatorname{Simp} \int_{\mathbb{R}^d} f_-(x) \, \mathrm{d}x + \operatorname{Simp} \int_{\mathbb{R}^d} g_-(x) \, \mathrm{d}x =$$

$$\operatorname{Simp} \int_{\mathbb{R}^d} h_-(x) \, \mathrm{d}x + \operatorname{Simp} \int_{\mathbb{R}^d} f_+(x) \, \mathrm{d}x + \operatorname{Simp} \int_{\mathbb{R}^d} g_+(x) \, \mathrm{d}x.$$

将上式整理后, 就可以得到可加性 (1.1).

当 $c \ge 0 \in \mathbb{R}$ 时, 显然有

$$\operatorname{Simp} \int_{\mathbb{R}^d} cf(x) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} cf_+(x) \, \mathrm{d}x - \operatorname{Simp} \int_{\mathbb{R}^d} cf_-(x) \, \mathrm{d}x$$
$$= c \times \operatorname{Simp} \int_{\mathbb{R}^d} f_+(x) \, \mathrm{d}x - c \times \operatorname{Simp} \int_{\mathbb{R}^d} f_-(x) \, \mathrm{d}x$$
$$= c \times \operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x.$$

当 c = -1 时, 我们有

$$\operatorname{Simp} \int_{\mathbb{R}^d} -f(x) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} f_-(x) \, \mathrm{d}x - \operatorname{Simp} \int_{\mathbb{R}^d} f_+(x) \, \mathrm{d}x$$
$$= -1 \times \operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x.$$

根据上面两式, 不难证明 (1.2) 对所有 $c \in \mathbb{R}$ 成立. 同时, 根据复数值简单函数的积分定义, 不难将上面两个性质推导到复数值简单函数的情形.

当 f 是绝对收敛的复数值简单函数,且 $f = \sum_{i=1}^{n} c_i 1_{E_i}$ 时,易证

$$\operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = \sum_{i=1}^n c_i \cdot m(E_i). \tag{1.5}$$

这时我们有 $\overline{f} = \overline{\sum_{i=1}^n c_i 1_{E_i}} = \sum_{i=1}^n \overline{c_i} 1_{E_i}$, 且

$$\operatorname{Simp} \int_{\mathbb{R}^d} \overline{f}(x) \, \mathrm{d}x = \sum_{i=1}^n \overline{c_i} \cdot m(E_i) = \overline{\operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x}.$$

(ii) (Equivalence) If f and g agree almost everywhere, then we have $\operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x$.

证明. 我们首先考虑实数值简单函数的情形. 若 f 和 g 是几乎处处相等的绝对收敛的实数值简单函数,则 f_+ 和 g_+ 、 f_- 和 g_- 也几乎处处相等. 这时,根据非负简单函数的相等性,我们有

$$\operatorname{Simp} \int_{\mathbb{R}^d} f_+(x) \, \mathrm{d} x = \operatorname{Simp} \int_{\mathbb{R}^d} g_+(x) \, \mathrm{d} x, \quad \operatorname{Simp} \int_{\mathbb{R}^d} f_-(x) \, \mathrm{d} x = \operatorname{Simp} \int_{\mathbb{R}^d} g_-(x) \, \mathrm{d} x.$$

结合上式, 我们有 Simp $\int_{\mathbb{R}^d} f(x) dx = \text{Simp } \int_{\mathbb{R}^d} g(x) dx$.

当 f 和 g 是几乎处处相等的绝对收敛的复数值简单函数时, Re(f) 和 Re(g)、Im(f) 和 Im(g) 也几乎处处相等, 根据实数值简单函数的相等性, 可以得到 f 和 g 的积分值相等.

(iii) (Compatibility with Lebesgue measure) For any Lebesgue measurable E, one has Simp $\int_{\mathbb{R}^d} 1_E(x) dx = m(E)$.

证明. 显然, $1_E(x)$ 是非负简单函数, 根据非负简单函数的勒贝格测度的相容性, 可以得到这一结论. \Box

(iv) (Uniqueness) Show that the complex-valued simple integral

$$f \to \operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x$$

is the only map from the space $\operatorname{Simp}^{abs}(\mathbb{R}^d)$ of absolutely integrable simple functions to \mathbb{C} that obeys all of the above properties.

证明. 对于绝对收敛的复数值简单函数 f,考虑它的典范表示: $f = \sum_{i=1}^n c_i 1_{E_i}$,其中 c_i 各异且 E_i 不交. 若 $\sum_{j=1}^m s_j 1_{F_j}$ 也是 f 的一个典范表示. 易证在这两个表示中,m=n 且存在从 i 到 j 的一个双射 σ 使得 $s_{\sigma(i)} = c_i$, $F_{\sigma(i)} = c_i$ 也就是说,典范表示具有唯一性. 根据 $f_{\sigma(i)} = c_i$ 也就是说,典范表示具有唯一性. 根据 $f_{\sigma(i)} = c_i$ 也就是说,典范表示具有唯一性. 根据 $f_{\sigma(i)} = c_i$ 也就是说,

Simp
$$\int_{\mathbb{R}^d} f(x) dx = \sum_{i=1}^n c_i \cdot m(E_i)$$

根据典范表示和 Lebesgue 测度的唯一性, 我们可知, 绝对收敛的简单函数的简单积分具有唯一性.

2. Solution of Ex 1.3.4

Let $f: \mathbb{R}^d \to [0, +\infty]$. Show that f is a bounded unsigned measurable functions if and only if f is the uniform limit of bounded simple functions.

证明. (i) (充分性) 考虑 $\{f_n\}$ 是一致收敛到 f 的有界非负简单函数列. 显然, f 是非负函数. 根据 Lemma 1.3.9 (ii), f 是 Lebesgue 可测函数. 另一方面, 对于 $\epsilon = 1$, 存在 $n_1 \ge 1$ 使得

$$\sup_{x \in \mathbb{R}^d} |f_{n_1}(x) - f(x)| \le 1, \quad f(x) \le f_{n_1}(x) + 1, \quad \forall x \in \mathbb{R}^d.$$

令 M_{n_1} 是函数 f_{n_1} 的上界, 则 $f(x) \leq M_{n_1} + 1, \forall x \in \mathbb{R}^d$. 也就是说 f 是有界非负的可测函数.

(ii) (必要性) 考虑 f 是有界的非负可测函数, $M \in \mathbb{N}$ 是它的一个上界. 令 $\{f_n\}$ 是如下定义的函数序列:

$$f_n(x) = \sum_{m=0}^{2^n \times M} \frac{m}{2^n} \times 1_{\{\frac{m}{2^n} \le f(x) < \frac{m+1}{2^n}\}}, \quad n \in \mathbb{N}^+.$$

显然, 由于 f 是可测函数, 则 $f^{-1}([\frac{m}{2^n},\frac{m+1}{2^n}))$ 是 \mathbb{R}^d 中的可测集, 故 f_n 是有界简单函数, 且下列不等式成立:

$$\sup_{x \in \mathbb{R}^d} |f_n(x) - f(x)| \le \frac{1}{2^n}.$$

故, $\{f_n\}$ 是一致收敛到 f 的有界非负简单函数序列.

3. Solution of Ex 1.3.6

Let $f: \mathbb{R}^d \to [0, +\infty]$ be an unsigned measurable function. Show that the region $\mathcal{D} = \{(x, t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le f(x)\}$ is a measurable subset of \mathbb{R}^{d+1} .

证明. 我们首先考虑简单函数的情况. 任给可测集 E 上的示性函数 $1_E(x)$, 显然 $\mathcal{D}_E = \{(x,t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le 1_E(x)\}$ 是由 $E \times [0,1]$ 所生成的可测集. 由此, 任给简单函数 g(x), $\mathcal{D}_g = \{(x,t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le g(x)\}$ 是可测集.

对于任意非负可测函数 f, 我们记 $f^n(x) = \min(f(x), n)$. 令 $\{f_n\}$ 是如下定义的函数序列:

$$f_n(x) = \sum_{m=0}^{2^n \times n} \frac{m}{2^n} \times 1_{\left\{\frac{m}{2^n} \le f^n(x) < \frac{m+1}{2^n}\right\}}, \quad n \in \mathbb{N}^+.$$

由 Ex 1.3.4 的解 2, $\{f_n\}$ 是递增且有界的非负简单函数序列, 同时 f 是 f_n 的上确界. 记 $\mathcal{D}_n = \{(x,t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le f_n(x)\}$, 显然 \mathcal{D}_n 是 \mathbb{R}^{d+1} 上的递增可测集序列:

$$\mathcal{D}_n \subset \mathcal{D}_{n+1}, \quad \forall n \in \mathbb{N}^+.$$

根据单调收敛定理, $\lim_{n\to\infty}\mathcal{D}_n$ 是 \mathbb{R}^{d+1} 上的可测集, 记为 \mathcal{D}_∞ . 由于 f 是序列 $\{f_n\}$ 的上界, 故

$$\mathcal{D}_{\infty} \subset \mathcal{D}$$
.

另一方面, 由于 f 是序列 $\{f_n\}$ 的上确界, 故任给 $(x,t) \in \mathcal{D}$ (其中 t < f(x)), 存在 $N \in \mathbb{N}$ 使得任给 $n \ge N$, 有 $(x,t) \in \mathcal{D}_n \subset \mathcal{D}_\infty$. 故

$$(\mathcal{D} \setminus \{(x, f(x)) : x \in \mathbb{R}^d\}) \subset \mathcal{D}_{\infty}.$$

又 $m(\{(x, f(x)) : x \in \mathbb{R}^d\}) = 0$. 故 $m^*(\mathcal{D}\Delta\mathcal{D}_{\infty}) = 0$, \mathcal{D} 是可测集.

4. Solution of Ex 1.3.10

(Basic properties of the lower Lebesgue integral). Let $f,g:\mathbb{R}^d\to [0,+\infty]$ be unsigned functions (not necessarily measurable)

(i) (Compatibility with the simple integral) If f is simple, then we have $\underline{\int_{\mathbb{R}^d}} f(x) dx = \overline{\int_{\mathbb{R}^d}} f(x) dx = \overline{\int_{\mathbb{R}^d}} f(x) dx$.

证明. 根据下积分的定义, 令 h = f, h 显然是满足 $h(x) \le f(x)$ 条件的简单函数. 故

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \ge \operatorname{Simp} \int_{\mathbb{R}^d} h(x) \, \mathrm{d}x.$$

另一方面, 任给简单函数 $g(x) \le f(x)$, 显然有 $g(x) \le h(x)$ 成立, 故

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \le \operatorname{Simp} \int_{\mathbb{R}^d} h(x) \, \mathrm{d}x.$$

又由于 Simp $\int_{\mathbb{R}^d} h(x) dx = \text{Simp } \int_{\mathbb{R}^d} f(x) dx$. 则我们可以得到

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x.$$

同理,可以证明上积分的情况.

(ii) (Monotonicity) If $f \leq g$ pointwise almost everywhere, then we have $\underline{\int_{\mathbb{R}^d}} f(x) \, \mathrm{d}x \leq \underline{\int_{\mathbb{R}^d}} g(x) \, \mathrm{d}x$ and $\overline{\int_{\mathbb{R}^d}} f(x) \, \mathrm{d}x \leq \overline{\int_{\mathbb{R}^d}} g(x) \, \mathrm{d}x$.

证明. 任给简单函数 $h \leq f$, 显然有 $h \leq g$, 故

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \le \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x.$$

另一方面, 任给简单函数 $s \ge g$, 显然有 $s \ge f$, 故

$$\overline{\int_{\mathbb{R}^d}} f(x) \, \mathrm{d}x \le \overline{\int_{\mathbb{R}^d}} g(x) \, \mathrm{d}x.$$

(iii) (Homogeneity) If $c \in [0, +\infty)$, then $\int_{\mathbb{R}^d} cf(x) dx = c \int_{\mathbb{R}^d} f(x) dx$.

证明. 当 c=0 时, 上式显然成立, 我们接下来考虑 $c\neq 0$ 的情形. 任给简单函数 $h\leq f$, 显然有 $c\times h(x)\leq c\times f(x)$ 成立, 且 $c\times h(x)$ 也是简单函数. 故由 (i) 和 (ii), 我们有

$$\int_{\mathbb{R}^d} cf(x) \, \mathrm{d}x \geq \operatorname{Simp} \int_{\mathbb{R}^d} ch(x) \, \mathrm{d}x = c \times \operatorname{Simp} \int_{\mathbb{R}^d} h(x) \, \mathrm{d}x, \quad \forall h \leq f, h \text{ is Simple.}$$

也就是

$$\int_{\mathbb{R}^d} cf(x) \, \mathrm{d}x \ge c \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x. \tag{4.1}$$

另一方面, 任给简单函数 $h \le cf$, 显然有简单函数 $\frac{1}{c}h \le f$. 故, 我们有

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d} x \geq \mathrm{Simp} \int_{\mathbb{R}^d} \frac{1}{c} h(x) \, \mathrm{d} x = \frac{1}{c} \times \mathrm{Simp} \int_{\mathbb{R}^d} h(x) \, \mathrm{d} x, \quad \forall h \leq f, h \text{ is Simple.}$$

也就是

$$c\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \ge \int_{\mathbb{R}^d} cf(x) \, \mathrm{d}x. \tag{4.2}$$

结合 (4.1) 和 (4.2), 我们就得到了题设的结果.

(iv) (Equivalence) If f, g agree almost everywhere, then $\underline{\int_{\mathbb{R}^d}} f(x) dx = \underline{\int_{\mathbb{R}^d}} g(x) dx$ and $\overline{\int_{\mathbb{R}^d}} f(x) dx = \overline{\int_{\mathbb{R}^d}} g(x) dx$.

证明. 假设 f,g 在零测集 E 之外处处相等. 函数 m,M 由下式定义:

$$m(x) = M(x) = f(x), \quad \forall x \in \mathbb{R}^d \setminus E,$$

$$m(x) = 0$$
, $M(x) = +\infty$, $\forall x \in E$.

显然, 我们有 $m \le f, g \le M$. 任给简单函数 $h \le M$, 考虑下列简单函数 h':

$$h'(x) = h(x), \quad \forall x \in \mathbb{R}^d \setminus E,$$

$$h'(x) = 0, \quad \forall x \in E.$$

显然, 我们有 $h' \leq m$ 且 Simp $\int_{\mathbb{R}^d} h'(x) dx = \text{Simp } \int_{\mathbb{R}^d} h(x) dx$. 由此, 我们有

$$\int_{\mathbb{R}^d} m(x) \, \mathrm{d}x \ge \int_{\mathbb{R}^d} M(x) \, \mathrm{d}x.$$

由上式和 (ii), 我们可以得到 $\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x$. 同理, $\overline{\int_{\mathbb{R}^d}} f(x) \, \mathrm{d}x = \overline{\int_{\mathbb{R}^d}} g(x) \, \mathrm{d}x$ 也成立.

(v) (Superadditivity) $\int_{\mathbb{R}^d} f(x) + g(x) dx \ge \int_{\mathbb{R}^d} f(x) dx + \int_{\mathbb{R}^d} g(x) dx$.

证明. 任给两个简单函数 h_1, h_2 , 使得 $h_1 \leq f, h_2 \leq g$. 显然, $h_1 + h_2 \leq f + g$, 故我们有 $\int_{\mathbb{R}^d} f(x) + g(x) \, \mathrm{d}x \geq \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x + \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x$ 成立.

(vi) (Subadditivity of upper integral) $\overline{\int_{\mathbb{R}^d}} f(x) + g(x) dx \leq \overline{\int_{\mathbb{R}^d}} f(x) dx + \overline{\int_{\mathbb{R}^d}} f(x) dx$.

证明. 任给两个简单函数 h_1, h_2 , 使得 $h_1 \geq f, h_2 \geq g$. 显然, 我们有 $h_1 + h_2 \geq f + g$. 因此 $\overline{\int_{\mathbb{R}^d} f(x) + g(x) \, \mathrm{d}x} \leq \overline{\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x + \overline{\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x}.$

(vii) (Divisibility) For any measurable set E, one has $\int_{\mathbb{R}^d} f(x) dx = \int_{\mathbb{R}^d} f(x) 1_E(x) dx + \int_{\mathbb{R}^d} f(x) 1_{\mathbb{R}^d \setminus E}(x) dx$.

证明. 显然, $f(x) = f(x)1_E(x) + f(x)1_{\mathbb{R}^d \setminus E}(x)$, 故由 (v), 我们有

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \ge \int_{\mathbb{R}^d} f(x) 1_E(x) \, \mathrm{d}x + \int_{\mathbb{R}^d} f(x) 1_{\mathbb{R}^d \setminus E}(x) \, \mathrm{d}x. \tag{4.3}$$

另一方面, 任给简单函数 $h \leq f$, 有 $h(x) = h(x)1_E(x) + h(x)1_{\mathbb{R}^d \setminus E}(x)$ 成立, 且两者都是简单函数. 此外, 显然有下式成立:

$$\operatorname{Simp} \int_{\mathbb{R}^d} h(x) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} h(x) 1_E(x) \, \mathrm{d}x + \operatorname{Simp} \int_{\mathbb{R}^d} h(x) 1_{\mathbb{R}^d \setminus E}(x) \, \mathrm{d}x.$$

同时,我们有

$$h(x)1_E(x) \le f(x)1_E(x), \quad h(x)1_{\mathbb{R}^d \setminus E}(x) \le f(x)1_{\mathbb{R}^d \setminus E}(x), \quad \forall x \in \mathbb{R}^d.$$

由此,可以得到

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \le \int_{\mathbb{R}^d} f(x) 1_E(x) \, \mathrm{d}x + \int_{\mathbb{R}^d} f(x) 1_{\mathbb{R}^d \setminus E}(x) \, \mathrm{d}x. \tag{4.4}$$

结合 (4.3) 和 (4.4), 我们可以得到题设的结果.

(viii) (Horizontal truncation) As $n \to \infty$, $\int_{\mathbb{R}^d} \min(f(x), n) dx$ converges to $\int_{\mathbb{R}^d} f(x) dx$.

证明. 我们首先考虑 $\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = A < +\infty$ 的情形. 给定 $\epsilon > 0$, 存在非负有界简单函数 g 使得 $g \leq f$ 且

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x - \epsilon \le \operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x.$$

由于 g 有界, 则存在 $N \in \mathbb{N}$ 使得

$$\int_{\mathbb{R}^d} \min(g(x), n) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x, \quad \forall n \geq N.$$

由于单调性, 我们有

$$\begin{split} & \underbrace{\int_{\mathbb{R}^d} \min(f(x), n) \, \mathrm{d}x} \leq \underbrace{\int_{\mathbb{R}^d} \min(f(x), n+1) \, \mathrm{d}x} \leq \underbrace{\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x}, \quad \forall n \in \mathbb{N}, \\ & \underbrace{\int_{\mathbb{R}^d} \min(f(x), n) \, \mathrm{d}x} \geq \underbrace{\int_{\mathbb{R}^d} \min(g(x), n) \, \mathrm{d}x}, \quad \forall n \geq N. \end{split}$$

由 ϵ 的任意性, 我们就得到了题设的结果.

当 $\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = +\infty$ 时, 任给 M>0, 存在非负有界简单函数 g 使得 $g \leq f$ 且

$$\operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x \ge M.$$

由于 g 有界,则存在 $N \in \mathbb{N}$ 使得

$$\int_{\mathbb{R}^d} \min(g(x), n) \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x, \quad \forall n \ge N.$$

由于单调性, 我们有

$$\frac{\displaystyle\int_{\mathbb{R}^d} \min(f(x),n) \, \mathrm{d}x \leq \int_{\mathbb{R}^d} \min(f(x),n+1) \, \mathrm{d}x \leq \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x, \quad \forall n \in \mathbb{N},}{\displaystyle\int_{\mathbb{R}^d} \min(f(x),n) \, \mathrm{d}x \geq \int_{\mathbb{R}^d} \min(g(x),n) \, \mathrm{d}x, \quad \forall n \geq N.}$$

由 M 的任意性, 我们就得到了题设的结果.

(ix) (Vertical truncation) As $n \to \infty$, $\underline{\int_{\mathbb{R}^d}} f(x) 1_{|x| \le n} dx$ converges to $\underline{\int_{\mathbb{R}^d}} f(x) dx$. *Hint:* From Exercise 1.2.11 one has $m(E \cap \{x : |x| \le n\}) \to m(E)$ for any measurable set E.

证明. 我们首先考虑 $\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x = A < +\infty$ 的情形. 给定 $\epsilon > 0$, 存在非负且支撑有限的简单函数 g 使得 $g \le f$ 且

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}x - \epsilon \le \operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x.$$

由于 q 支撑有限,则存在 $N \in \mathbb{N}$ 使得

$$\int_{\mathbb{R}^d} g(x) 1_{|x| \le n} \, \mathrm{d}x = \operatorname{Simp} \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x, \quad \forall n \ge N.$$

由于单调性, 我们有

$$\frac{\int_{\mathbb{R}^d} f(x) 1_{|x| \le n} \, \mathrm{d}x}{\int_{\mathbb{R}^d} f(x) 1_{|x| \le n+1} \, \mathrm{d}x} \le \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x, \quad \forall n \in \mathbb{N},$$

$$\int_{\mathbb{R}^d} f(x) 1_{|x| \le n} \, \mathrm{d}x \ge \int_{\mathbb{R}^d} g(x) 1_{|x| \le n} \, \mathrm{d}x, \quad \forall n \ge N.$$

由 ϵ 的任意性, 我们就得到了题设的结果. 类似地, 可以证明 $\int_{\mathbb{R}^d} f(x) dx = +\infty$ 的情况.

(x) (Reflection) If f+g is a simple function that is bounded with finite measure support (i.e. it is absolutely integrable), then we have Simp $\int_{\mathbb{R}^d} f(x) + g(x) dx = \int_{\mathbb{R}^d} f(x) dx + \overline{\int_{\mathbb{R}^d} g(x)} dx$.

证明. 由于 f+g 是有界且支撑有限的简单函数, 且 f,g 都是非负函数, 则 f,g 都是有界且支撑有限的函数. 不失一般性, 我们假设 $f+g(x)=c\times 1_E(x)$, 其中 $c\in[0,+\infty]$ 且 E 是 \mathbb{R}^d 中的有界可测集. 对于任意可测集 $F\subset E$ 上的点 x, 我们有

$$f(x) + g(x) = c, \quad \forall x \in F,$$

$$\inf f(x) + \sup g(x) = c, \quad \forall x \in F.$$

故, 考虑 F 上的任意示性函数 $c_1 \times 1_F$, $c_2 \times 1_F$, 若 $c_1 \times 1_F \leq f$, $c_2 \times 1_F \geq g$, 我们有

$$\sup c_1 \times 1_F(x) + \inf c_2 \times 1_F(x) = c, \quad \forall x \in F.$$

由此, 对于任意 E 上的简单函数 $h_1 \le f, h_2 \ge g$, 我们有

$$\sup h_1(x) + \inf h_2(x) = c, \quad \forall x \in E.$$

考虑上、下积分的定义, 我们有

$$\operatorname{Simp} \int_{\mathbb{R}^d} f(x) + g(x) \, \mathrm{d}x = \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x + \overline{\int_{\mathbb{R}^d} g(x) \, \mathrm{d}x}.$$

类似地, 我们可以将 f+g 推广到更一般的非负简单函数的形式.

Do the horizontal and vertical truncation properties hold if the lower Lebesgue integral is replaced with the upper Lebesgue integral?

证明. 截断性质对于上积分也成立. 对于任意非负函数 f, 若其上积分不为无穷大, 则对于任意 $\epsilon > 0$ 存在非负简单函数 $g \geq f$, 使得

$$\overline{\int_{\mathbb{R}^d} (g(x) - f(x)) \, \mathrm{d}x} \le \epsilon.$$
(4.5)

对 g(x) 的截断函数列应用单调收敛定理, 可以得到题设的结果.

5. Solution of Ex 1.3.13

(Area interpretation of integral). If $f: \mathbb{R}^d \to [0, +\infty]$ is a measurable, show that $\int_{\mathbb{R}^d} f(x) \, dx$ is equal to the d+1-dimensional Lebesgue measure of the region $\mathcal{D} = \{(x,t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le f(x)\}$. (This can be used as an alternate, and more geometrically intuitive, definition of the unsigned Lebesgue integral; it is a more convenient formulation for establishing the basic convergence theorems, but not quite as convenient for establishing basic properties such as additivity.) (*Hint:* Use Exercise 1.2.22.)

证明. 由第 3 节 Ex 1.3.6 , 我们知道 \mathcal{D} 是可测集. 任给非负简单函数 q < f , 我们有

$$\mathcal{D}_q = \{(x, t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le g(x)\} \subset \mathcal{D}.$$

故我们有

$$m(\mathcal{D}) \ge \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x.$$

另一方面, 由于 $m(\mathcal{D}) = m(\mathcal{D}_{\infty})$, 所以, 对于任意 $\epsilon > 0$ 和 $m(\mathcal{D}) < +\infty$, 存在非负简单函数 $h \leq f$, 使得

Simp
$$\int_{\mathbb{R}^d} h(x) dx \ge m(\mathcal{D}) - \epsilon$$
.

故我们可以得到题设的结果. 当 $m(\mathcal{D}) = +\infty$ 时, 我们可以得到类似的结果.

6. Solution of Ex 1.3.16

(Linear change of variables). Let $f: \mathbb{R}^d \to [0, +\infty]$ be measurable, and let $T: \mathbb{R}^d \to \mathbb{R}^d$ be a invertible linear transformation. Show that $\int_{\mathbb{R}^d} f(T^{-1}(x)) dx = |\det T| \int_{\mathbb{R}^d} f(x) dx$, or equivalenctly, that $\int_{\mathbb{R}^d} f(Tx) dx = \left| \frac{1}{\det T} \right| \int_{\mathbb{R}^d} f(x) dx$.

证明. 由于 f 是可测函数,同时 T 是可逆线性变换,故 $f \circ T$ 是可测函数. 对于任意 \mathbb{R}^d 中的线性变换 $T \in \mathbb{GL}_d(\mathbb{R})$,其可以表示成有限个下列基础线性变换的乘积:

$$T_1(x_1, \dots, x_j, \dots, x_n) = (x_1, \dots, c \times x_j, \dots, x_n), \quad c \neq 0;$$

$$T_2(x_1, \dots, x_j, \dots, x_n) = (x_1, \dots, x_j + c \times x_k, \dots, x_n), \quad k \neq j;$$

$$T_3(x_1, \dots, x_j, \dots, x_k, \dots, x_n) = (x_1, \dots, x_k, \dots, x_j, \dots, x_n), \quad k \neq j.$$

显然,对于上述三种基础线性变换,我们有 $\det T_1 = c$, $\det T_2 = 1$, $\det T_3 = -1$. 考虑由单位标准正交基向量生成的 d-维 cube B 上的线性变换 T_1 (其中 m(B) = 1), 显然有

$$m(T_1(B)) = |\det T_1| m(B) = |c|.$$

同理可以证明,对于线性变换 T_2, T_3 ,我们有

$$m(T_2(B)) = |\det T_2| m(B) = 1 = |\det T_3| m(B) = m(T_3(B)).$$

对于线性变换 A, B, 有 $det(A \circ B) = det A \times det B,$ 所以对于有限个基础线性变换的乘积 T, 有

$$m(T(B)) = |\det T| m(B) = |\det T|.$$

同理, 可以证明, 将单位 cube B 换成可测集 E, 上式也依然成立:

$$m(T(E)) = |\det T| m(E). \tag{6.1}$$

记 $\mathcal{D} = \{(x,t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le f(x)\}, \mathcal{D}_T = \{(x,t) \in \mathbb{R}^d \times \mathbb{R} : 0 \le t \le f(Tx)\}.$ 由于 $T \in \mathbb{GL}_d(\mathbb{R}), \mathcal{D}, \mathcal{D}_T$ 在值域上的投影相同. 任给 $a < b \in \mathbb{R}^+$,考虑 [a,b) 在映射 $f \circ T$ 下的原象 $E_{[a,b)}$,显然有 $T^{-1}(E_{[a,b)})$ 是 [a,b) 在映射 f 下的原象. 同时,由 (6.1),有

$$m(T^{-1}(E_{[a,b)})) = \left| \frac{1}{\det T} \right| m(E_{[a,b)}).$$

由此, 我们可以得到

$$m(\mathcal{D}_T) = \left| \frac{1}{\det T} \right| m(\mathcal{D}),$$

也就是题设的结果.

7. Solution of Ex 1.3.17

(Compatibility with the Riemann integral). Let $f:[a,b]\to [0,+\infty]$ be Riemann integrable. If we extend f to \mathbb{R} be declaring f to equal zero outside of [a,b], show that $\int_{\mathbb{R}} f(x) dx = \int_a^b f(x) dx$.

证明. 由 Ex 1.1.25 的结论, 我们知道, 对于任意非负 Riemann 可积函数 f, 有

$$\int_{a}^{b} f(x) \, \mathrm{d}x = m^{2}(E),$$

其中, $E := \{(x,t): x \in [a,b]; 0 \le t \le f(x)\}$ 且 $m^2(\cdot)$ 表示二维 Jordan 测度. 另一方面, 由 Ex 1.3.13, 我们知道, 对于任意可测函数 f, 有

$$\int_{\mathbb{R}} f(x) \, \mathrm{d}x = m(\mathcal{D}).$$

由此,接下来我们只需要证明 Riemann 可积函数是可测函数. 已知,任意 Riemann 可积函数 f 是有限间断的连续函数,则 f 几乎处处是连续函数. 由 Ex 1.3.8 (i),我们知道连续函数是可测函数,又由 Lemma 1.3.9 (ii),连续函数也就是非负简单函数的点点极限,则原函数 f 是非负简单函数序列的的几乎处处的点点的极限. 故 Riemann 可积函数 f 是可测的.

8. Solution of Ex 1.3.24

Show that a function $f: \mathbb{R}^d \to \mathbb{C}$ is measurable if and only if it is pointwise almost everywhere limit of continuous functions $f_n: \mathbb{R}^d \to \mathbb{C}$. (*Hint:* If $f: \mathbb{R}^d \to \mathbb{C}$ is measurable and $n \geq 1$, show that there exists a continuous function $f_n: \mathbb{R}^d \to \mathbb{C}$ for which the set $\{x \in B(0,n): |f(x) - f_n(x)| \geq 1/n\}$ has measure at most $\frac{1}{2^n}$. You may find Exercise 1.3.25 below to be useful for this.) Use this (and Egorov's theorem, Theorem 1.3.26) to give an alternate proof of Lusin's theorem for arbitrary measurable functions.

- 证明. (i) 充分性. 设 $\{f_n\}$ 是连续函数序列, 且 $\{f_n\}$ 几乎处处点点收敛到函数 f. 由 Ex 1.3.8.(i) 和 (iv), 我们知道 $f_n: \mathbb{R}^d \to \mathbb{C}, \forall n \in \mathbb{N}$ 是可测函数, $\{f_n\}$ 的逐点收敛的函数极限 f 也是可测函数.
- (ii) 必要性. 设 $f: \mathbb{R}^d \to \mathbb{C}$ 是可测函数. 由 Ex 1.3.25.(ii), 对于任给 $\epsilon > 0$, 存在测度至多为 ϵ 的可测集 E, 使得函数 f 在 E 外是局部有界的. 由此, 对于任给 $\epsilon > 0$, 存在可测集 $E_n \in \mathbb{R}^d$ 且 $m(E_n) \leq \frac{\epsilon}{2n+1}$, 在集合 $B(0,n) \setminus E_n$ 上, 函数 f 是有界的. 记 g_n 为 f 在 B(0,n) 上的限制, 显然, g_n 在 $B(0,n) \setminus E_n$ 上是绝对可积的. 根据 Theorem 1.3.20.(iii), 在 $B(0,n) \setminus E_n$ 上, 存在连续函数 f_n , 使得

$$||g_n - f_n||_{L^1(\mathbb{R}^d)} \le \frac{1}{4^n}, \quad \forall n \ge 1.$$

则由 Theorem 1.3.28.(Lusin's Theorem) 的证明, 我们知道下列集合的测度至多是 $\frac{\epsilon}{2n}$:

$${x \in B(0,n) : |f(x) - f_n(x)| \ge \frac{1}{2^n}}.$$

更进一步地, 令 $n \to \infty$, 则 f_n 几乎处处点点收敛到函数 f.

(iii) Proof of Lusin's theorem. 由 (ii), 我们知道, 对于可测函数 f, 存在连续函数序列 $\{f_n\}$, 使得 $\{f_n\}$ 几乎处处点点收敛到函数 f. 对于任意 $\epsilon > 0$, 由 Egorov's Theorem, 存在测度至多为 ϵ 的可测集 E, 使得 $\{f_n\}$ 在 E 外局部一致收敛到 f. 由此, $\{f_n\}$ 在 E 外的任意有界可测集上一致收敛到 f, 则 $f|_{\mathbb{R}^d\setminus E}$ 在 $\mathbb{R}^d\setminus E$ 上连续.