## Bölüm 13

## Z Tanım Bölgesinde Luenberger Gözleyicisi

Durum uzay modeli

$$x(k) = Ax(k-1) + Bu(k-1), \quad y(k-1) = Cx(k-1)$$
(13.1)

olmak üzere Luenberger Gözleyicisi

$$\hat{x}(k) = A\hat{x}(k-1) + Bu(k-1) + L(y(k-1) - \hat{y}(k-1)), \quad \hat{y}(k-1) = C\hat{x}(k-1) \quad (13.2)$$

olarak tanımlanmaktadır. Burada sistem modelinin bir benzeri kullanılmaktadır, fakat ek bir terim olarak sistem çıkışı ve gözleyici çıkışı farkının L terimi ile çarpımı gözleyici durumlarına etki etmektedir. Bu etkinin seçilmesine gözleyici tasarımı denmektedir. Gözleyicinin amacı sistem durumlarını hesaplamaktır. Bu sebeple sistem durumları ve gözleyici durumları arasındaki fark, veya hata, e(k) olmak üzere

$$e(k) = x(k) - \hat{x}(k)$$
 (13.3)

olarak tanımlanır. Hatanın değişimi ise  $\Delta e(k)$  olmak üzere,

$$\begin{split} \Delta e(k) &= \Delta(x(k) - \hat{x}(k)) \\ &= \Delta x(k) - \Delta \hat{x}(k) \\ &= \frac{x(k) - x(k-1)}{T} - \frac{\hat{x}(k) - \hat{x}(k-1)}{T} \\ &= \frac{Ax(k-1) - x(k-1) - A\hat{x}(k-1) - L(y(k-1) - \hat{y}(k-1)) + \hat{x}(k-1)}{T} \\ &= \frac{Ae(k-1) - e(k-1) - LC(x(k-1) - \hat{x}(k-1))}{T} \\ &= \frac{Ae(k-1) - e(k-1) - LCe(k-1)}{T} \\ e(k) - e(k-1) &= (A - LC - I)e(k-1) \\ e(k) &= (A - LC)e(k-1) \end{split}$$

elde edilir. Elde edilen sistemin kararlı kılınması durumunda

$$e(k) \to 0$$

$$x(k) - \hat{x}(k) \to 0$$

$$x(k) \to \hat{x}(k)$$
(13.5)

olacağından, gözleyici çalışacaktır. Bunun için,

$$p_c(s) = det(sI - (A - LC))$$
(13.6)

ile elde edilen polinomun kutuplarının kararlı olacak şekilde seçilmesi gerekmektedir. Gözleyici katsayısı  ${\cal L}$ 

$$L = p_d(A) \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$(13.7)$$

ile seçilebilmektedir. Örnek olarak

$$\begin{bmatrix} x_1[k] \\ x_2[k] \end{bmatrix} = \begin{bmatrix} 1 & 0.1 \\ -0.1 & 0.95 \end{bmatrix} \begin{bmatrix} x_1[k-1] \\ x_2[k-1] \end{bmatrix} + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} u[k-1] 
y[k-1] = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1[k-1] \\ x_2[k-1] \end{bmatrix}$$
(13.8)

ile verilen sistem için gözleyici katsayısı

$$L = p_d(A) \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0.8 & 0.1750 \\ -0.175 & 0.7125 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0.1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1.75 \\ 7.125 \end{bmatrix}$$
(13.9)

olarak hesaplamaktır. Elde edilen Luenberger gözleyicisi Şekil 13.1 ile gösterilmektedir.



Şekil 13.1: Yay-kütle-damper sistemine ait gözleyici



Şekil 13.2: Yay-kütle-damper sistemine ait gözleyici yanıtı