CSE3421 Computer Architecture

Floating-point Arithmetic

Xiaodong Zhang

Representing Big (and Small) Numbers

□ What if we want to encode the approx. age of the earth? 4,600,000,000 or 4.6 x 10⁹ (scientific notation)

or the weight in kg of one a.m.u. (atomic mass unit)

There is no way we can encode either of the above in a 32-bit integer.

- □ Floating point representation (-1)^{sign} x F x 2^E
 - Still have to fit everything in 32 bits (single precision)

S	E (exponent)	F (fraction)
l bit 8 bits		23 bits

- The base (2, not 10) is hardwired in the design of the FPALU
- More bits in the fraction (F) or the exponent (E) is a trade-off between precision (accuracy of the number) and range (size of the number)

Exception Events in Floating Point

- Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field
- Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field

- One way to reduce the chance of underflow or overflow is to offer another format that has a larger exponent field
 - Double precision takes two MIPS words

 s E (exponent) F (fraction)

1 bit 11 bits 20 bits

F (fraction continued)

Biased notation in binary representation

- Besides 2's complement representation for negative and positive number, another one is called Biased Notation
- □ For a given sequence of bits, the biased notation uses the smallest number to represent the most negative value and the biggest number to resent the most positive value
- □ For 8-bit Exponent, we have 0-255 possibilities. 0 is used for true zero
 - □ 00000001 (1) is used to represent most negative number (-126)
 - ...
 - 01111110 (126) is the least negative number (-1)
 - 01111111 (127) is not used
 - □ 10000000 (128) is the least positive number (1)
 - ...
 - □ 11111110 (254) represents the most positive number (127)
 - □ 11111111 (255) is **not** used

Biased notation in binary representation (continued)

- "Bias" is the number to be subtracted from the normal value in the bit sequence to determine the real value
- □ IEEE 754 uses 127 as bias, thus
 - □ 00000001: 1-127=-126 is the most negative exponent
 - □ 11111110: 254-127 = 127 is the most positive exponent
- □ 8 bit exponent represents a number range of 0-255
 - 0 is used for true 0
 - 01111111 (127) is not used
 - □ 11111111 (255) is **not** used
 - a total of 254 values are represented (including 0):
 - 127 positive numbers and 126 negative numbers
- □ In contrast, 8-bit 2's compliment representation (256 values)
 - □ Range: -2^7 to $+2^7$ -1 = -128 to 127 (128 -numbers, and 127 +numbers)
 - 2 more negative numbers due to no unused bit sequence

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

- Most computers use IEEE 754: (-1)^{sign} x (1+F) x 2^{E-bias}
 - Formats for both single and double precision
 - ☐ F is stored in normalized format where the most significant bit in F is 1 (so there is no need to store it!) called the hidden bit
 - □ E is in biased notation where the bias is -127 for 8-bit of E (-1023 for double precision for 11-bits of E), the most negative is $00000001 = 2^{1-127} = 2^{-126}$ and the most positive is $111111110 = 2^{254-127} = 2^{+127}$
 - □ Binary bits for -E: E=-126 (1), E=-125(2), ... E=-1 (126)
 - □ Binary bits for +E: E= +127 (254), E=+126(253), ... E=+1(128)
- Examples (in normalized format)

An Explanation of the last example

EXAMPLE

ANSWER

Show the IEEE 754 binary representation of the number -0.75_{ten} in single and double precision.

The number -0.75_{ten} is also

$$-3/4_{\text{ten}}$$
 or $-3/2^{2}_{\text{ten}}$

It is also represented by the binary fraction

$$-11_{two}/2^{2}_{ten}$$
 or -0.11_{two}

In scientific notation, the value is

$$-0.11_{\text{two}} \times 2^0$$

and in normalized scientific notation, it is

$$-1.1_{\text{two}} \times 2^{-1}$$

The general representation for a single precision number is

$$(-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - 127)}$$

Subtracting the bias 127 from the exponent of $-1.1_{\text{two}} \times 2^{-1}$ yields

$$(-1)^1 \times (1 + .1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ \times 2^{(126-127)}$$

The single precision binary representation of -0.75_{ten} is then

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0
1 bit				8 b	its					23 bits																			

0 0

Now I

Con

Wha

31 30

The 1×2

How do we represent -3.75?

- □ 3 is 11 in binary number
- □ .75 is .11 in binary number
- \square -3.75 = -(3+0.75) => -11.11 in binary number
- □ To follow the IEEE 754 format, we shift one integer bit to left
- \square 3.75 = 1.111 * 2¹
- □ Sign = 1, E = 128 (for 1), F= 1110000..00
- **1** 111111110 **1**. 111000000...00

How do we represent 0.1 in floating point format?

- In integer world there is a one-to-one mapping between a decimal number and a binary number
- In floating point world, this one-to-one relationship may not always exist
- □ An example of existing: $3.75 = 1.111 * 2^{1}$
- \blacksquare How about 0.1 = 1.0 * 10⁻¹ (10 cents)?
- 0.1 in binary: 1/1010 = 0.000110011001100110011 ...
- □ In IEEE 754 format: 1.10011001100110011001101 * 2-4
- Hidden bit: 1, rounding bit: 1
- 10 cents can not be represented exactly in computer!

The usage of the unused number

- □ E= 11111111 (255) is not used
 - □ If F fraction is 0, and E=111111111, it represents infinity
 - If F fraction is non-zero, it represents an invalid number

IEEE 754 FP Standard Encoding

- Special encodings are used to represent unusual events
 - ± infinity for division by zero
 - NAN (not a number) for the results of invalid operations such as 0/0
 - True zero is the bit string all zero

Single Pre	ecision	Double Pred	Object		
E (8)	F (23)	E (11)	F (20+32=52)	Represented	
0000 0000	0	0000 0000	0	true zero (0)	
0000 0000	nonzero	0000 0000	nonzero	± denormalized number (±1.XYZ)	
+127 to -126	anything	+1023 to -1022	anything	± normalized floating point number	
1111 1111	+ 0 (S=0)	1111 1111	- 0 (S=1)	± infinity	
1111 1111	nonzero	1111 1111	nonzero	not a number (NaN)	

Number rounding inside a computer

If we do the following addition with only three significant decimal digits:

$$2.56 * 10^{0} + 2.34 * 10^{2}$$

- we must shift the smaller number to the right to align the exponents: 0.0256 * 10² + 2.34 * 10²
- Considering three significant digits, the computer addition of the floating part is: 0.02 + 2.34, and the result is 2.36 by missing two digits
- □ IEEE 754 keeps two extra bits called **guard** and **round** bits
 - With these two bits, we are able to do conduct:

$$0.0256 + 2.3400 = 2.3656$$

What happens if we still could not hold bits after shifting?

$$A = 5.01 * 10^{-1} + 2.34 * 10^{2} = 0.0050 + 2.34$$
 (missing 1 digit)

- □ IEEE 754 adds **sticky** bit, setting to 1 if 1s are shifted off
- □ if sticky bit = 0, round to nearest even A = 2.34, otherwise A = 2.35

Round to "nearest-even" in binary (IEEE 754)

Conditions to round

- If the least significant bit (LSB) is 0, round-up when bits beyond the LSB > 100...00 (>half), otherwise round-down (drop the bits)
- If the least significant bit (LSB) is 1, round-up when bits beyond the LSB >= 100...0₂ (>=half), otherwise round-down (drop the bits)
- Examples:
 - 10.00011 round to 10.00 (less than ½, 3<4)
 - 10.00110 round to 10.01 (greater than $\frac{1}{2}$, 6>4)
 - 10.11100 round to 11.00 (round up, 4=4)
 - 10.10100 round to 10.10 (round down, 4!>4)

Support for Accurate Arithmetic

- □ IEEE 754 FP rounding modes
 - □ Always round up (toward +∞)
 - □ Always round down (toward -∞)
 - Truncate
 - Round to nearest even
- Rounding (except for truncation) requires the hardware to include extra F bits during calculations
 - Guard bit used to provide one F bit to hold possible overflow nominalization
 - Round bit additional bit to improve rounding accuracy
 - Sticky bit used to support Round to nearest even decision; is set to a 1 whenever a 1 bit shifts (right) through it (e.g., when aligning F during addition/subtraction)

F = 1. xxxxxxxxxxxxxxxxxxxxxxxx GRS

Floating Point Addition Example

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- ☐ Step 1: Shift fractions with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
- □ Step 2: Add fractions after normalization (different signs) $1.0000 \times 2^{-1} + (-0.111) \times 2^{-1} = 1.0000 0.111 = 0.001$
- Step 3: Normalize sum (left shift), checking for exponent underflow $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = .. = 1.000 \times 2^{-4}$
- □ Step 4: The sum is already rounded, so we're done
- Step 5: Re-hide the hidden bit before storing

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

The hidden bit plus the floating point fraction < 1.999...

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G R and S
- Step 2: Add the resulting F2 to F1 to form F3
- □ Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Floating Point Multiplication Example

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- □ Step 0: Hidden bits restored in the representation above
- □ Step 1: Add the exponents: -1 + (-2) = -3

 Determine the sign: 1
- Step 2: Multiply the fractions1.0000 x 1.110 = 1.110000
- □ Step 3: Normalize the product, checking for exp over/underflow 1.110000 x 2⁻³ is already normalized
- □ Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

(F3 < 1.9999... * 1.9999...) \in [1,4)

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 127 = E3 also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift
 F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

MIPS Floating Point Instructions

■ MIPS has a separate Floating Point Register File (\$£0, \$£1, ..., \$£31) (whose registers are used in pairs for double precision values) with special instructions to load to and store from them by a coprocessor (cl)

```
lwcl $f1,54($s2) $f1 = Memory[$s2+54]
swcl $f1,58($s4) $memory[$s4+58] = $f1
```

■ And supports IEEE 754 single

```
add.s $f2,$f4,$f6 #$f2 = $f4 + $f6
```

and double precision operations

```
add.d $f2,$f4,$f6 #$f2||$f3=
$f4||$f5 + $f6||$f7
```

similarly for sub.s, sub.d, mul.s, mul.d, div.s, div.d

Frequency of Common MIPS Instructions

□ Only included those with >3% and >1%

	SPECint	SPECfp
addu	5.2%	3.5%
addiu	9.0%	7.2%
or	4.0%	1.2%
sll	4.4%	1.9%
lui	3.3%	0.5%
lw	18.6%	5.8%
SW	7.6%	2.0%
lbu	3.7%	0.1%
ped	8.6%	2.2%
bne	8.4%	1.4%
slt	9.9%	2.3%
slti	3.1%	0.3%
sltu	3.4%	0.8%

	SPECint	SPECfp
add.d	0.0%	10.6%
sub.d	0.0%	4.9%
mul.d	0.0%	15.0%
add.s	0.0%	1.5%
sub.s	0.0%	1.8%
mul.s	0.0%	2.4%
1.d	0.0%	17.5%
s.d	0.0%	4.9%
l.s	0.0%	4.2%
S.S	0.0%	1.1%
lhu	1.3%	0.0%

The frequency of reading (lw) is about 3 times more than writing (sw)