

Ayudantía 5

Calculo II - MAT1620

Francisco Salinas (fvsalinas@uc.cl)

Curvas de nivel: Las curvas de nivel de una función f de 2 variables, son las curvas cuyas ecuaciones son $f(x_1, x_2) = k$, donde k es una constante (en el rango de f).

Límite de funciones de varias variables: El límite de $f(x_1, x_2)$ cuando (x_1, x_2) tiende a (a_1, a_2) es L se escribe:

$$\lim_{(x_1, x_2) \to (a_1, a_2)} f(x_1, x_2) = L$$

No Existencia del límite: Si tomamos una trayectoria $C_1 \neq C_2$ y se cumple que si:

 $f(x_1, x_2)$ tiende a L_1 cuando (x_1, x_2) tiende a (a_1, a_2) a lo largo de C_1 $f(x_1, x_2)$ tiende a L_2 cuando (x_1, x_2) tiende a (a_1, a_2) a lo largo de C_2 Si $L_1 \neq L_2$ entonces no existe el límite anterior.

Continuidad: Una función de f de m variables, es continua en (a_1, a_2) si:

$$\lim_{(x_1, x_2) \to (a_1, a_2)} f(x_1, x_2) = f(a_1, a_2)$$

- 1. Determine el dominio de las siguientes funciones y grafíquelo.
 - a) $f(x) = \ln(9 x^2 9y^2)$
 - b) $f(x) = \arcsin(\frac{x}{x+y})$
 - c) $f(x) = \frac{\sqrt{y-x^2}}{1-x^2}$
- 2. Grafique las curvas de nivel de las siguientes funciones.
 - a) $f(x) = ye^x$
 - b) $f(x,y) = \sqrt{36 9x^2 4y^2}$
- 3. Grafique la siguiente función.

$$f(x,y) = e^{\sqrt{x^2 + y^2}}$$

- 4. Determine el límite, si es que existe, o demuestre que el límite no existe:
 - a) $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2+y^2}$
 - b) $\lim_{(x,y)\to(0,0)} \frac{x^7}{x^6+y^6}$
 - c) $\lim_{(x,y)\to(0,0)} \frac{x\sqrt{|y|}}{\sqrt{x^3+y^3}}$
 - d) $\lim_{(x,y)\to(0,0)} \frac{xy(x^2-y^2)}{x^4+y^4}$
 - e) $\lim_{(x,y)\to(0,0)} \frac{x^3 sen^2(y)}{x^2 + 2y^2}$
 - f) $\lim_{(x,y,z)\to(0,0,0)} \frac{(xy+yz^2+xz^2)}{x^2+y^2+z^2}$
- 5. Considere la función:

$$f(x,y) = \begin{cases} (x^2 + y^2)sen(\frac{1}{\sqrt{x^2 + y^2}}) & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

Analice la continuidad de f en \mathbb{R}^2 .

6. ¿Para qué valores del numero r es continua la siguiente función

$$f(x,y) = \begin{cases} \frac{(x+y+z)^r}{x^2+y^2+z^2} & si(x,y,z) \neq (0,0,0) \\ 0 & si(x,y,z) = (0,0,0) \end{cases}$$