

Modifying the trajectory of a drone following a reconfiguration of the airspace

Supervised by : Mr Daniel ZAPATA

Bastien GERMAN, Chouaib LAAOUINA, Guohao DAI, Maha DRISSI-EL BOUZAIDI, Mohammed-Amine JAAFARI, Othmane CHAOUCHAOU

Context of the project

- Increase in the use of drones :
 - surveillance
 - mapping
 - data collection
 - delivery...
- Any regulations?
 - yes, for civilians
 - unclear for large number of drones
 - or for automated / out of sight drones

A need for new regulations: U-Space project

The U-Space services

Graph of the readiness of U2 services

Chart of the U-Space services

Objectives and scope

Trajectory modification

Geofencing

Plan

- 1 Introduction
- 2 Work Organization and task planning
- 3 Development Tools and versioning
- 4 Algorithm
- 5 Demonstration
- 6 Conclusion

Work Organization and Task Planning

Development Cycle: Agile methodology (Scrum)

Development cycle

Parallelized Tasks Development of basic interface **Path Manual Airspace Configuration** and flight plans Tasks **Development of trajectory External** modification algorithm **Simulation Module**

Development Tools

Main development Language

- Simple
- Versatile
- Ease of development

GUI

PyQt was used as a framework for the GUI ,since the development was used with Python,PyQt was the optimal answer as it is a Python GUI library that creates rich and interactive interfaces for python applications .

API used to display interactive maps

Leaflet.js offers an easy to use

and interact with maps, it's also very

lightweight and fast, plus it has

great synergy with Qt channel , which enables us to visualize geospatial data

in PyQt applications.

Versioning

- Track and manage changes to our codebase.
- -Three main branches:
 - Master branch which holds the official release

history and the release tag that identifies the different releases.

- Dev branch contains all new features being developed and merged.
- Feat branch which spawns feature branches following a naming convention: feat/featureName.

Path Finding Algorithm

What is the A* Algorithm?

- A* is an extended BFS algorithm that finds the shortest path from a point A to a point B in a graph.
- A* is optimal.(gives the best solution).
- A* is complete(finds all the possible solutions).

How does the A* work?

It uses a heuristic function to estimate the cost of reaching the target node for example euclidean distance.

The algorithm maintains a priority queue to explore neighboring nodes in order of their estimated cost.

It avoids exploring already explored nodes and updates the priority of nodes with lower estimated cost.

The A* algorithm maintains a closure set to keep track of nodes that have already been explored and ensures that each node is explored only once.

Implementation of A* algorithm in a grid

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	3
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
2	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
3	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
4	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
5	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
6	0	S	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	d	(
7	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
8	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
9	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
10	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	(
11	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,

Visualization of the grid and the A* algorithm

Complexity

Metric	Complexity
Time	O(b^d)
Space	O(n)

Where:

b: branching factor (maximum number of successors for any node)

d: depth of the shortest path from start node to goal node

n: number of nodes explored in the search

Demonstration

Conclusion

Overall..

- A functional GUI
- Create drones' paths
- Create obstacles
- Simulate and control drones' flight in real time
- Modify drones' flight plan mid-flight

Future prospects

- Integration of a notification system
- Upgrading to a 3D map
- Simulation of multiple drones

Soft skills

- Communication
- Collaboration and conflict resolution
- Time management
- Flexibility

Thank you for your attention!