(1) Publication number: 0 562 833 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93302221.2

(22) Date of filing: 23.03.93

(f) Int. CI.⁵: **C07D 213/64,** C07D 401/12, C07D 405/12, C07D 413/12, C07D 417/12, C07D 409/12, A61K 31/44, A61K 31/495

(30) Priority: 23.03.92 JP 65324/92 21.04.92 JP 101392/92 02.07.92 JP 175707/92 28.12.92 JP 349035/92

(43) Date of publication of application: 29.09.93 Bulletin 93/39

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC
NL PT SE

(1) Applicant: SANKYO COMPANY LIMITED 5-1 Nihonbashi Honcho 3-chome Chuo-ku, Tokyo 103 (JP)

(72) Inventor: Fukumi, Hiroshi c/o Sankyo Company Limited, 2-58 Hiromachi 1-chome
Shinagawa-ku, Tokyo 140 (JP)
Inventor: Sugiyama, Mitsuo c/o Sankyo Company Limited, 2-58 Hiromachi 1-chome
Shinagawa-ku, Tokyo 140 (JP)
Inventor: Tabata, Keiichi c/o Sankyo Company Limited, 2-58 Hiromachi 1-chome
Shinagawa-ku, Tokyo 140 (JP)
Inventor: Kojima, Koichi c/o Sankyo Company Limited, 2-58 Hiromachi 1-chome

(4) Representative: Gibson, Christian John Robert et al MARKS & CLERK 57/60 Lincoln's Inn Fields London WC2A 3LS (GB)

Shinagawa-ku, Tokyo 140 (JP)

(54) Anti-ulcer pyridyloxy derivatives, their preparation and uses.

(i) :

$$R^1$$
 O A $NHCOR^2$ (1)

[wherein: R^1 is a cyclic amino group, or a dialkylamino group; R^2 is a group of formula -NHCHR $^3R^4$, wherein R^3 and R^4 are each alkyl, aryl or aralkyl, or together form a cycloalkyl group, or R^2 is an aromatic heterocyclic group, or a group of formula -B-S(O)_m- R^5 , wherein R^5 is a substituted alkyl group, or an aromatic heterocyclic group; B is an alkylene or alkylidene group; m is 0, 1 or 2; A is a group of formula -CH=CH- or -(CH $_2$)_n-, where n is 1, 2 or 3]; and salts thereof have valuable anti-ulcer activity.

The present invention relates to a series of new pyridyloxy derivatives which have the ability to inhibit the secretion of gastric juices and which may thus be used for the treatment and prevention of ulcers. The invention also provides methods and compositions using these new compounds for such treatment and prevention and processes for the preparation of these compounds.

Peptic ulcers are said to occur when there is an imbalance between factors which attack the gastrointestinal mucosa and factors which defend the gastrointestinal mucosa. The gastric juice is among the attacking factors. Accordingly, if its secretion could be inhibited, this would be useful for the prevention and therapy of ulcers.

Among the drugs so far proposed for the inhibition of gastric juice secretion, anticholinergic agents and histamine-H₂ receptor antagonists (such as cimetidine) have been widely used clinically and have had considerable success, although they are not free from disadvantages. For example, anticholinergic agents have exhibited a range of side effects, including inhibition of movement of the gastrointestinal tract, thirst, mydriasis and inhibition of sweating. Some of the histamine-H₂ receptor antagonists also have undesirable side effects on the central nervous system, and may also have an antagonistic effect on androgens. Moreover, it is thought that the histamine-H₂ receptor antagonists may weaken mucosal protecting factors after long-term administration, and recurrence of ulcers after withdrawal of these drugs has also been observed. Since recurrence is thought to be caused by a decrease in the protecting factors, a drug having the ability both to inhibit gastric juice secretion and to potentiate protecting factor activity would be highly desirable.

We have now discovered that a series of pyridyloxy derivatives having a certain specific and limited class of substituents has the desired combination of gastric juice secretion inhibitory activity, anti-ulcer activity and defence factor potentiating activity, and may therefore be used in the treatment and prevention of gastric ulcers.

A number of compounds having anti-ulcer activity and similar structures to the pyridyloxy derivatives of the present invention is known. Examples include Compound A (disclosed, for example, in European Patent Publication No. 404 949 or WO90/00544), Compound B (disclosed, for example, in Japanese Patent Kokai Application No. Hei-1-193247, Japanese Patent Kokai Application No. Sho-63-225371 and European Patent Publication No. 282 077) and Compound C (disclosed, for example, in Japanese Patent Kokai Application No. Hei-4-257581):

Compound A:

10

20

25

30

35

40

45

50

55

Compound B:

Compound C:

Compound C was disclosed after the priority dates hereof. The compounds of the present invention surprisingly have substantially better activities than these structurally similar compounds and have a combination of gastric juice secretion inhibitory, anti-ulcer and defence factor potentiating activities which these prior compounds do not possess. The compounds of the present invention are those compounds of formula (I):

$$R^1$$
 O A $NHCOR^2$ (1)

wherein:

5

10

15

20

25

30

R1 represents

a cyclic amino group having from 3 to 7 ring atoms, of which from 1 to 3 are nitrogen atoms, 0 or 1 is an oxygen atom or a sulphur atom, and the remainder are carbon atoms, or

a dialkylamino group in which each alkyl group is independently selected from alkyl groups having from 1 to 4 carbon atoms;

R² represents

a group of formula -NHCHR3R4, wherein

R³ and R⁴ are independently selected from alkyl groups having from 1 to 6 carbon atoms, aryl groups as defined below and aralkyl groups as defined below,

0

 R^3 and R^4 , together with the carbon atom to which they are attached, represent a cycloalkyl group having from 3 to 8 ring carbon atoms, which group is unsubstituted or is substituted by at least one substituent selected from substituents α ,

an aromatic heterocyclic group having 5 ring atoms, of which from 1 to 3 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents α and, in the case of substituents on nitrogen atoms, from substituents β ,

or a group of formula -B-S(O)_m-R⁵, wherein

 R^5 represents: a substituted alkyl group which has from 1 to 4 carbon atoms and which is substituted by at least one substituent selected from substituents γ ; or an aromatic heterocyclic group which has 5 or 6 ring atoms of which from 1 to 4 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents α and, in the case of substituents on nitrogen atoms, from substituents ϵ ,

B represents an alkylene or alkylidene group having from 1 to 6 carbon atoms, and m is 0, 1 or 2;

A represents a group of formula -CH=CH- or -(CH₂)_n-, where n is 1, 2 or 3;

said aryl groups are carbocyclic aromatic groups having from 6 to 10 ring carbon atoms which are unsubstituted or which are substituted by at least one substituent selected from substituents ζ ;

said aralkyl groups are alkyl groups which have from 1 to 4 carbon atoms and which are substituted by from 1 to 3 aryl groups as defined above;

substituents α are selected from: alkyl groups having from 1 to 4 carbon atoms; alkoxy groups having from 1 to 4 carbon atoms; hydroxy groups; halogen atoms; amino groups; monoalkyl- amino groups in which the alkyl part has from 1 to 4 carbon atoms; dialkylamino groups in which each alkyl part is independently selected from alkyl groups having from 1 to 4 carbon atoms; alkanoylamino groups having from 1 to 5 carbon atoms; aryl-carbonylamino groups in which the aryl part is as defined above; and aryl groups as defined above;

substituents β are selected from alkyl groups having from 1 to 4 carbon atoms;

substituents γ are selected from: hydroxy groups; alkanoyloxy groups having from 1 to 5 carbon atoms; substituted alkanoyloxy groups which have from 2 to 5 carbon atoms and which are substituted by at least one substituent selected from substituents δ ; arylcarbonyloxy groups in which the aryl part is as defined above; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has from 3 to 6 ring carbon atoms and is unsubstituted or is substituted by at least one substituent selected from substituents α ;

substituents δ are selected from: carboxy groups; alkoxycarbonyl groups in which the alkoxy part has from 1 to 4 carbon atoms; aryloxycarbonyl groups in which the aryl part is as defined above; and aryl groups as defined above;

substituents ε are selected from: alkyl groups having from 1 to 4 carbon atoms; and hydroxyalkyl groups having from 2 to 4 carbon atoms;

substituents ζ are selected from substituents α , provided that any aryl group in substituents α is not further substituted by an aryl group;

PROVIDED THAT, when m is 1, R5 represents; said substituted alkyl group having from 1 to 4 carbon atoms;

an aromatic heterocyclic group which has 5 ring atoms of which from 2 to 4 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted as defined above or an aromatic heterocyclic group which has 6 ring atoms of which from 1 to 4 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted as defined above; and pharmaceutically acceptable salts thereof.

The invention also provides a pharmaceutical composition for the treatment and prophylaxis of ulcerous conditions, which comprises an anti-ulcer compound in admixture with a pharmaceutically acceptable carrier or diluent, wherein the anti-ulcer compound is selected from compounds of formula (I) and pharmaceutically acceptable salts thereof.

The invention still further provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof as a pharmaceutical.

10

20

25

30

35

40

50

The present invention also provides processes for preparing these compounds, which are described in greater detail hereafter.

In the compounds of the present invention, where R¹ represents a cyclic amino group, this has from 3 to 7 ring atoms, including at least one nitrogen atom. In addition, there may be another 1 or 2 nitrogen atoms and/or an oxygen or sulphur atom. The group is attached to the methylene group forming part of the remainder of the molecule by means of a nitrogen atom. The group preferably has a single nitrogen atom, the remainder of the ring atoms being carbon. Examples of such groups include the 1-aziridinyl, 1-azetidinyl, 1-pyrrolidinyl, piperidino and 1-hexahydroazepinyl groups. Of these we prefer the 1-pyrrolidinyl and piperidino groups, more preferably the piperidino group.

Where R¹ represents a dialkylamino group or substituent α , β , ϵ or ζ represents an alkyl group, this alkyl group may be a straight or branched chain alkyl group having from 1 to 4 carbon atoms, and examples include the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and t-butyl groups, preferably the methyl, ethyl, propyl, isopropyl, butyl and sec-butyl groups, and most preferably the methyl or ethyl group.

In the case of the dialkylamino group represented by R1, the two alkyl groups may be the same or different, although they are preferably the same. Specific examples of dialkylamino groups include the dimethylamino, diethylamino, dipropylamino, disopropylamino, dibutylamino, dipentylamino, dihexylamino, methylethylamino and methylpropylamino, of which we prefer the dimethylamino, diethylamino and dipropylamino groups, especially the dimethylamino group.

Where R² represents a group of formula -NHCHR³R⁴, and R³ and/or R⁴ represents an alkyl group having from 1 to 6 carbon atoms, this may be a straight or branched chain group having from 1 to 6, preferably from 1 to 4, carbon atoms, and examples include the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, isopentyl, neopentyl, 2-methylbutyl, 1-ethylpropyl, 4-methylpentyl, 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 2-ethylbutyl, hexyl and isohexyl groups. Of these, we prefer the methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, pentyl and hexyl groups, and most prefer the methyl and ethyl groups.

Where R^2 represents a group of formula -NHCHR 3 R 4 , and R^3 and/or R^4 represents an aryl group, this has from 6 to 10, preferably 6 or 10, ring carbon atoms and may be unsubstituted or it may be substituted by one or more of substituents ζ , defined above and exemplified below. Specific examples of the unsubstituted aryl groups include the phenyl and naphthyl (1- or 2- naphthyl) groups, of which the phenyl group is preferred. The aryl ring may optionally have one or more substituents (preferably from 1 to 3 substituents, and more preferably 1 substituent). Examples of such substituents are given in more detail below, but the preferred substituents are alkyl groups having from 1 to 4 carbon atoms, alkoxy groups having from 1 to 4 carbon atoms, and halogen atoms (such as the fluorine, chlorine, bromine or iodine atoms). Preferred substituents are the methyl group, the methoxy group, the fluorine atom and the chlorine atom. The substituents are, in the case of substituted phenyl groups, preferably on the 4-position. Examples of preferred substituted phenyl groups include the 4-methylphenyl, 4-methoxyphenyl, 4-chlorophenyl and 4-fluorophenyl groups.

Where R^2 represents a group of formula -NHCHR 3 R 4 , and R^3 and/or R^4 represents an aralkyl group, the aryl part may be as exemplified above and the alkyl part may be any one of those alkyl groups having from 1 to 4 carbon atoms exemplified above. Preferably the aryl and alkyl parts of the aralkyl group together have from 7 to 11 carbon atoms. The aryl part of the aralkyl group may be substituted or unsubstituted, and, if substituted, the substituents are selected from substituents ζ defined above and exemplified below. However, the group is preferably unsubstituted. Examples of such aralkyl groups include the benzyl, phenethyl, 1-phenylethyl, 2-phenylpropyl, 3-phenylpropyl, 4-phenylbutyl and 1- and 2- naphthylmethyl groups, of which the benzyl, phenethyl and 1- and 2- naphthylmethyl groups are preferred, the benzyl group being most preferred.

Where R² represents a group of formula -NHCHR³R⁴, and R³ and R⁴, together with the carbon atom to which they are attached, represent a cycloalkyl group, this has from 3 to 8 ring carbon atoms, and examples include the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl and cyclooctyl groups, of which the

cyclopropyl, cyclobutyl and cyclopentyl groups are preferred, and the cyclopropyl and cyclobutyl groups are most preferred. The cycloalkyl ring may be substituted or unsubstituted, and, if substituted, it preferably has from 1 to 3, more preferably 1, substituents selected from substituents α . Examples of such substituents are given in more detail below, but the preferred substituents are alkyl groups having from 1 to 4 carbon atoms and alkoxy groups having from 1 to 4 carbon atoms. Of these, we prefer the methyl or ethyl group, but the cycloalkyl group is preferably unsubstituted.

Where R^2 represents an aromatic heterocyclic group, this has 5 ring atoms, of which from 1 to 3 are heteroatoms selected from oxygen, nitrogen and sulphur atoms. Where there is one hetero-atom, this may be any of the oxygen, nitrogen and sulphur atoms. Where there are two or three hetero-atoms, we prefer that all three or two should be nitrogen atoms and none or one should be an oxygen or sulphur atom. Examples of such groups include the furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, 1,2,3-, 1,2,4-, 1,2,5-, or 1,3,4-thiadiazolyl, and 1,2,3- or 1,2,4-triazolyl groups. Of these, the furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, pyrazolyl, imidazolyl and 1,2,3-thiadiazolyl groups are preferred, and the thienyl, thiazolyl, pyrrolyl, pyrazolyl and 1,2,3-thiadiazolyl groups are more preferred. We particularly prefer the thienyl, pyrrolyl and pyrazolyl groups. These groups may be unsubstituted or they may be substituted by one or more substituents. Where the substituent is on a carbon atom, it may be selected from substituents α , defined above and exemplified below. Where the substituent is on a nitrogen atom, it may be selected from substituents β , defined above and exemplified below. There is no particular limitation on the number of such substituents, except that the number of substitutable positions on 5-membered aromatic heterocyclic groups is 4, and from 1 to 4 such substituents are possible, from 1 to 3 being preferred and 1 or 2 being most preferred.

Examples of substituents α include:

alkyl groups having from 1 to 4 carbon atoms, as exemplified above;

alkoxy groups having from 1 to 4 carbon atoms, such as the methoxy, ethoxy, propoxy, isopropoxy, butoxy and isobutoxy groups, of which the methoxy and ethoxy groups are preferred;

hydroxy groups;

25

30

35

40

45

55

halogen atoms, such as the fluorine, chlorine, bromine and iodine atoms, of which the fluorine and chlorine atoms are preferred;

amino groups;

monoalkylamino groups in which the alkyl part has from 1 to 4 carbon atoms, such as the methylamino, ethylamino, propylamino, isopropylamino, butylamino and isobutylamino groups, preferably the methylamino and ethylamino groups;

dialkylamino groups in which each alkyl part is independently selected from alkyl groups having from 1 to 4 carbon atoms, such as those exemplified above in relation to the dialkylamino groups which may be represented by R1;

alkanoylamino groups having from 1 to 5 carbon atoms, such as the formamido, acetamido, propionamido, butyramido, valerylamino and isovalerylamino groups, preferably the acetamido or propionamido group; arylcarbonylamino groups in which the aryl part is as defined and exemplified above in relation to the aryl groups which may be represented by R³ and R⁴, particularly the benzamido group;

and aryl groups as defined and exemplified above in relation to the aryl groups which may be represented by R³ and R⁴, particularly the phenyl group.

Examples of substituents β are straight or branched chain alkyl groups having from 1 to 4 carbon atoms, and examples include the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and t-butyl groups, preferably the methyl, ethyl, propyl, isopropyl, butyl and sec-butyl groups, and most preferably the methyl or ethyl group.

Specific examples of such substituted and unsubstituted groups which may be represented by R² are given hereafter.

Where R^5 represents a substituted alkyl group, the alkyl moiety may be a straight or branched chain alkyl group having from 1 to 4 carbon atoms, and examples include the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and t-butyl groups, preferably the methyl, ethyl, propyl, isopropyl, butyl and sec-butyl groups, more preferably the ethyl or propyl group having a substituent at the 2-position, and most preferably the ethyl group having a substituent at the 2-position. The group is substituted by at least one, and preferably from 1 to 3, more preferably 1, substituent selected from substituents γ .

Examples of substituents γ include:

hydroxy groups;

alkanoyloxy groups having from 1 to 5 carbon atoms, such as the formoxy, acetoxy, propionyloxy, butyryloxy, valeryloxy and isovaleryloxy groups, preferably the acetoxy or propionyloxy group;

substituted alkanoyloxy groups which have from 2 to 5 carbon atoms and which are substituted by at

least one substituent selected from substituents δ , such as the acetoxy, propionyl- oxy, butyryloxy, valeryloxy and isovaleryloxy groups, preferably the acetoxy or propionyloxy group; examples of substituents δ are:

carboxy groups;

5

10

20

30

35

40

45

55

alkoxycarbonyl groups in which the alkoxy part has from 1 to 4 carbon atoms, such as the methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl and isobutoxycarbonyl groups, of which the methoxycarbonyl and ethoxycarbonyl groups are preferred;

aryloxycarbonyl groups in which the aryl part is as defined and exemplified above in relation to the aryl groups which may be represented by R³ and R⁴, particularly the phenoxycarbonyl group; and

aryl groups as defined and exemplified above in relation to the aryl groups which may be represented by R³ and R⁴, particularly the phenyl group;

especially, propionyloxy groups substituted at the 3-position by a carboxy, alkoxycarbonyl or aryloxycarbonyl group and acetoxy groups substituted by an aryl group;

arylcarbonyloxy groups in which the aryl part is as defined and exemplified above in relation to the aryl groups which may be represented by R3 and R4, particularly the benzoyloxy group;

and cycloalkylcarbonyloxy groups in which the cycloalkyl part has from 3 to 6 ring carbon atoms,, such as the cyclopropylcarbonyloxy, cyclobutylcarbonyloxy, cyclopentylcarbonyloxy and cyclohexylcarbonyloxy groups, which may be substituted or unsubstituted (preferably unsubstituted) and, if substituted, have one or more substituents selected from substituents α , preferably alkyl groups or alkoxy groups, as exemplified above, and more preferably methyl or ethyl groups; the cycloalkylcarbonyloxy group is preferably a cyclopentylcarbonyloxy or cyclohexylcarbonyloxy group.

Where R^5 represents an aromatic heterocyclic group, this has 5 or 6 ring atoms, of which from 1 to 4 are hetero-atoms selected from oxygen, nitrogen and sulphur atoms. Where there is only one hetero-atom, this may be any of the oxygen, nitrogen and sulphur atoms. However, where there are two, three or four hetero-atoms, it is preferred that 0 or 1 is an oxygen or sulphur atom and, where there are no oxygen or sulphur atoms, 1, 2, 3 or 4 are nitrogen atoms, or, where there is 1 oxygen or sulphur atom, 0, 1, 2 or 3 are nitrogen atoms. Examples of such groups include the furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, 1,2,3-, 1,2,4-, 1,2,5- or 1,3,4-oxadiazolyl, 1,2,3-, 1,2,4-, 1,2,5- or 1,3,4-thiadiazolyl, 1,2,3- or 1,2,4-triazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl and 1,2,3-, 1,2,4- or 1,3,5-triazinyl groups. Of these, we prefer the imidazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazolyl, 1,2,4-triazolyl, tetrazolyl, tetrazolyl, pyridyl and pyrimidinyl groups, more preferably the 1,3,4-oxadiazolyl, 1,2,4-triazolyl, tetrazolyl and pyrimidinyl groups may be unsubstituted or they may have one or more (preferably from 1 to 3) substituents selected from substituents α , in the case of substituents on nitrogen atoms. Examples of substituents α have been given above. Examples of substituents α are as follows:

alkyl groups having from 1 to 4 carbon atoms, such as those exemplified above in relation to substituents β; and

hydroxyalkyl groups having from 2 to 4 carbon atoms, such as the 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxybutyl, 3-hydroxybutyl and 4-hydroxybutyl groups; preferably a 2-hydroxyethyl or 3-hydroxypropyl group.

Specific examples of such substituted and unsubstituted groups which may be represented by R⁵ are given hereafter.

B can represent an alkylene or alkylidene group having from 1 to 6 carbon atoms. Examples include the methylene, ethylene, trimethylene, propylene, tetramethylene, 2-methyltrimethylene, pentamethylene and hexamethylene groups. Of these, we prefer the methylene, ethylene or trimethylene group, more preferably a methylene or trimethylene group.

Preferably m is 0 or 1, and most preferably m is 0.

Preferably A is a group of formula -CH=CH- or -CH₂CH₂-, and most preferably A is a group of formula -CH=CH-. Specific examples of preferred optionally substituted 5-membered aromatic heterocyclic groups containing from 1 to 3 hetero-atoms selected from oxygen, nitrogen and sulphur atoms, which may be represented by R² include the 2-furyl, 3-furyl, 3-methyl-2-furyl, 4-methyl-2-furyl, 5-methyl- 2-furyl, 2-methyl-3-furyl, 4-methyl-3-furyl, 5-methyl- 3-furyl, 5-chloro-2-furyl, 5-chloro-3-furyl, 3-amino-2-furyl, 5-amino-2-furyl, 3-acetamido-2-furyl, 5-phenyl-2-furyl, 5-(4-methylphenyl)-2-furyl, 5-(4-chlorophenyl)-2-furyl, 2,4-dimethyl-3-furyl, 2,5-dimethyl-3-furyl, 3-methyl-5-amino-2-furyl, 2-thienyl, 3-methyl-2-thienyl, 4-methyl-2-thienyl, 5-methyl-2-thienyl, 2-methyl-3-thienyl, 4-methoxy-2-thienyl, 4-methoxy-2-thienyl, 4-methoxy-2-thienyl, 4-methoxy-3-thienyl, 5-chloro-2-thienyl, 5-chloro-3-thienyl, 5-bromo-3-thienyl, 3-amino-2-thienyl, 5-amino-3-thienyl, 4-amino-3-thienyl, 3-acetamido-2-thienyl, 5-acetamido-3-thienyl, 4-acetamido-3-thienyl, 5-phenyl-2-thienyl, 5-(4-chlorophenyl)-2-thienyl, 3,4-dimethyl-2-thienyl, 3,5-dimethyl-2-thienyl, 3,5-dimethyl-2-thienyl,

thyl-2-thienyl, 4,5-dimethyl-2-thienyl, 2,4-dimethyl-3-thienyl, 2,5-dimethyl-3-thienyl, 4,5-dimethyl-3-thienyl, 5-methyl-2-amino-3-thienyl, 4-methyl-5-chloro-3-thienyl, 4,5-dichloro-2-thienyl, 2-amino-5-phenyl-3-thienyl, 2,4,5-trimethyl-3-thienyl, 2,5-dimethyl-4-amino-3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1-methyl-2-pyrrolyl, 3-methyl-2-pyrrolyl, 4-methyl-2-pyrrolyl, 5-methyl-2-pyrrolyl, 1-methyl-3-pyrrolyl, 2-methyl-3-pyrrolyl, 4-methyl-3pyrrolyl, 5-methyl-3-pyrrolyl, 4-methoxy-3-pyrrolyl, 4-hydroxy-3-pyrrolyl, 5-chloro-2-pyrrolyl, 5-chloro-3pyrrolyl, 3-amino-2-pyrrolyl, 4-amino-2-pyrrolyl, 3-acetamido-2-pyrrolyl, 4-acetamido-2-pyrrolyl, 4-phenyl-2pyrrolyl, 5-phenyl-2-pyrrolyl, 5-phenyl-3-pyrrolyl, 4-(4-methylphenyl)-2-pyrrolyl, 5-(4-methylphenyl)-2-pyrrolyl, 4-(4-methoxyphenyl)-2-pyrrolyl, 5-(4-methoxyphenyl)-2-pyrrolyl, 4-(4-fluorophenyl)-2-pyrrolyl, 5-(4-fluorophenyl)-2-pyrrolyl, 4-(4-chlorophenyl)-2-pyrrolyl, 5-(4-chlorophenyl)-2-pyrrolyl, 5-(4-methylphenyl)-3-pyrrolyl, 5-(4-methoxyphenyl)-3-pyrrolyl, 5-(4-fluorophenyl)-3-pyrrolyl, 5-(4-chlorophenyl)-3-pyrrolyl, 1,3-dimethyl-2-pyrrolyl, 1,4-dimethyl-2-pyrrolyl, 1,5-dimethyl-2-pyrrolyl, 3,4-dimethyl-2-pyrrolyl, 3,5-dimethyl-2-pyrrolyl, 4,5-dimethyl-2-pyrrolyl, 1,5-dimethyl-3-pyrrolyl, 2,4-dimethyl-3-pyrrolyl, 2,5-dimethyl-3-pyrrolyl, 1-methyl-4-hydroxy-3-pyrrolyl, 1-methyl-4-methoxy-3-pyrrolyl, 1-methyl-2-chloro-3-pyrrolyl, 4-methyl-5-chloro-3pyrrolyl, 1-methyl-5-amino-2-pyrrolyl, 3,4,5-trimethyl-2-pyrrolyl, 1,2,4-trimethyl-3-pyrrolyl, 1,4-dimethyl-5chloro-3-pyrrolyl, 1,4-dimethyl-5-bromo-3-pyrrolyl, 3,5-dimethyl-4-amino-2-pyrrolyl, 2-oxazolyl, 4-oxazolyl, 5oxazolyl, 2-methyl-4-oxazolyl, 5-methyl-2-oxazolyl, 2-methoxy-4-oxazolyl, 2-hydroxy-4-oxazolyl, 2-phenyl-4oxazolyl, 5-phenyl-2-oxazolyl, 2,5-dimethyl-4-oxazolyl, 2,4-dimethyl-5-oxazolyl, 5-methyl-2-phenyl-4-oxazolyl, 4-methyl-2-phenyl-5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 3-methyl-4-isoxazolyl, 4-methyl-3-isoxazolyl, 5methyl-3-isoxazolyl, 3-methoxy-4-isoxazolyl, 4-methoxy-3-isoxazolyl, 3-hydroxy-4-isoxazolyl, 3-hydroxy-5isoxazolyl, 4-hydroxy-3-isoxazolyl, 5-amino-4-isoxazolyl, 4-amino-3-isoxazolyl, 4-phenyl-3-isoxazolyl, 5-phenyl-3-isoxazolyl, 4-(4-methylphenyl)-3-isoxazolyl, 5-(4-methylphenyl)-3-isoxazolyl, 4,5-dimethyl-3-isoxazolyl, 5-methyl-4-hydroxy-3-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 4-methyl-2-thiazolyl, 5-methyl-2-thiazolyl, 2-methyl-4-thiazolyl, 5-methyl-4-thiazolyl, 2-methyl-5-thiazolyl, 4-methyl-5-thiazolyl, 2-methoxy-4-thiazolyl, 2-methoxy-5-thiazolyl, 2-hydroxy-4-thiazolyl, 2-hydroxy-5-thiazolyl, 5-chloro-2-thiazolyl, 2-chloro-4thiazolyl, 5-chloro-4-thiazolyl, 2-chloro-5-thiazolyl, 4-chloro-5-thiazolyl, 2-amino-4-thiazolyl, 5-amino-4-thiazolyl, 2-amino-5-thiazolyl, 2-acetamido-4-thiazolyl, 5-acetamido-4-thiazolyl, 2-acetamido-5-thiazolyl, 2-phenyl-4-thiazolyl, 2-phenyl-5-thiazolyl, 4,5-dimethyl-2-thiazolyl, 2,5-dimethyl-4-thiazolyl, 2,4-dimethyl-5-thiazolyl, 5-methyl-2-hydroxy-4-thiazolyl, 4-methyl-2-hydroxy-5-thiazolyl, 5-methyl-2-chloro-4-thiazolyl, 4-methyl-2-chloro-5-thiazolyl, 2-methyl-4-chloro-5-thiazolyl, 5-methyl-2-amino-4-thiazolyl, 2-methyl-5-amino-4-thiazolyl, 4-methyl-2-amino-5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-methyl-4-pyrazolyl, 3-methyl-4-pyrazolyl, 1-methyl-3-pyrazolyl, 4-methyl-3-pyrazolyl, 5-methyl-3-pyrazolyl, 1-methyl-5-pyrazolyl, 1-ethyl-4-pyrazolyl, 1-ethyl-3-pyrazolyl, 5-ethyl-3-pyrazolyl, 1-propyl-4-pyrazolyl, 1-propyl-3-pyrazolyl, 5-propyl-3-pyrazolyl, 1-butyl-4-pyrazolyl, 4-methoxy-3-pyrazolyl, 4-propoxy-3-pyrazolyl, 4-hydroxy-3-pyrazolyl, 4-chloro-3-pyrazolyl, 3-chloro-4-pyrazolyl, 4-bromo-3-pyrazolyl, 4-amino-3-pyrazolyl, 5-amino-3-pyrazolyl, 3-amino-4-pyrazolyl, 3-acetamido-4-pyrazolyl, 3-propionylamino-4-pyrazolyl, 4-acetamido-3-pyrazolyl, 5acetamido-3-pyrazolyl, 5-phenyl-3-pyrazolyl, 1,3-dimethyl-4-pyrazolyl, 1,5-dimethyl-4-pyrazolyl, 3,5-dimethyl-4-pyrazolyl, 1,4-dimethyl-3-pyrazolyl, 1,5-dimethyl-3-pyrazolyl, 4,5-dimethyl-3-pyrazolyl, 1,3-dimethyl-5pyrazolyl, 1,4-dimethyl-5-pyrazolyl, 1-methyl-4-methoxy-3-pyrazolyl, 5-methyl-4-hydroxy-3-pyrazolyl, 1-methyl-3-chloro-4-pyrazolyl, 1-methyl-5-chloro-4-pyrazolyl, 5-methyl-3-chloro-4-pyrazolyl, 1-methyl-4-chloro-3pyrazolyl, 5-methyl-4-chloro-3-pyrazolyl, 1-methyl-4-chloro-5-pyrazolyl, 1-methyl-3-amino-4-pyrazolyl, 1-methyl-5-amino-4-pyrazolyl, 5-methyl-3-amino-4-pyrazolyl, 1-methyl-3-acetamido-4-pyrazolyl, 1-methyl-5-acetamido-4-pyrazolyl, 3-methyl-5-acetamido-4-pyrazolyl, 1-methyl-5-amino-3-pyrazolyl, 5-methyl-4-amino-3pyrazolyl, 4-methyl-5-amino-3-pyrazolyl, 1,3,5-trimethyl-4-pyrazolyl, 1,4,5-trimethyl-3-pyrazolyl, 1,3,4-trimethyl-5-pyrazolyl, 1,3-dimethyl-4-chloro-5-pyrazolyl, 2-imidazolyl, 4-imidazolyl, 1-methyl-2-imidazolyl, 5-methyl-2-imidazolyl, 1-methyl-4-imidazolyl, 2-methyl-4-imidazolyl, 5-methyl-4-imidazolyl, 1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl, 5-methyl-1,2,3-oxadiazol-4-yl, 4-methyl-1,2,3-oxadiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,5-oxodiazol-3-yl, 4-methyl-1,2,5-oxadiazol-3-yl, 4-phenyl-1,2,5-oxadiazol-3-yl, 4-(4methylphenyl)-1,2,5-oxadiazol-3-yl, 1,3,4-oxadiazol-2-yl, 1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-5-yl, 5-methyl-1,2,3-thiadiazol-4-yl, 5-phenyl-1,2,3-thiadiazol-4-yl, 5-(4-methylphenyl)-1,2,3-thiadiazol-4-yl, 4-methyl-1,2,3-thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 4-methyl-1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-2-yl, 1,2,3-triazol-4-yl, 1-methyl-1,2,3-triazol-4-yl, 5-methyl-1,2,3-triazol-4-yl, 1,5-dimethyl-1,2,3-triazol-4-yl, 1,2,4-triazol-5-yl, 1-methyl-1,2,4-triazol-3-yl and 2-ethyl-4-methyl-1,2,3-triazol-5-yl groups.

Examples of more preferred such groups include: the 2-furyl, 3-furyl, 3-methyl-2-furyl, 4-methyl-2-furyl, 5-methyl-2-furyl, 5-methyl-3-furyl, 5-methyl-3-furyl, 5-methyl-3-furyl, 5-methyl-3-furyl, 5-methyl-3-thienyl, 5-methyl-3-thienyl, 5-methyl-3-thienyl, 5-methyl-3-thienyl, 5-chloro-2-thienyl, 5-chloro-3-thienyl, 3-amino-2-thienyl, 5-amino-2-thienyl, 2-amino-3-thienyl, 4-amino-3-thienyl, 3-acetamido-2-thienyl, 2-acetamido-3-thienyl, 4-acetamido-3-thienyl, 2-pyrrolyl, 3-pyr-

55

rolyl, 1-methyl-2-pyrrolyl, 3-methyl-2-pyrrolyl, 4-methyl-2-pyrrolyl, 5-methyl-2-pyrrolyl, 1-methyl-3-pyrrolyl, 2-methyl-3-pyrrolyl, 5-methyl-3-pyrrolyl, 5-methyl-3-pyrrolyl, 5-chloro-2-pyrrolyl, 5-chloro-3-pyrrolyl, 3-amino-2-pyrrolyl, 4-amino-2-pyrrolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-methyl-4-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 3-methyl-4-isoxazolyl, 4-methyl-3-isoxazolyl, 5-methyl-3-isoxazolyl, 5-methyl-4-thiazolyl, 5-methyl-4-thiazolyl, 5-methyl-5-thiazolyl, 4-methyl-5-thiazolyl, 5-methyl-2-thiazolyl, 5-chloro-4-thiazolyl, 5-methyl-4-pyrazolyl, 4-pyrazolyl, 4-pyrazolyl, 4-pyrazolyl, 1-methyl-4-pyrazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-methyl-4-pyrazolyl, 4-methyl-3-pyrazolyl, 5-methyl-3-pyrazolyl, 1-methyl-5-pyrazolyl, 1-methyl-5-pyrazolyl, 3-chloro-4-pyrazolyl, 4-amino-3-pyrazolyl, 5-amino-3-pyrazolyl, 3-amino-3-pyrazolyl, 3-acetamido-4-pyrazolyl, 2-imidazolyl, 4-imidazolyl, 1-methyl-2-imidazolyl, 5-methyl-2-imidazolyl, 1-methyl-4-imidazolyl, 2-methyl-4-imidazolyl, 5-methyl-4-imidazolyl, 1,2,3-thiadiazol-5-yl, 1,2,3-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 4-methyl-1,2,3-thiadiazol-3-yl and 1,3,4-thiadiazol-2-yl groups.

Examples of still more preferred such groups include: the 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 3-methyl-2-thienyl, 4-methyl-2-thienyl, 5-methyl-2-thienyl, 2-methyl-3-thienyl, 4-methyl-3-thienyl, 5-methyl-3-thienyl, 5-chloro-2-thienyl, 5-chloro-3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1-methyl-2-pyrrolyl, 3-methyl-2-pyrrolyl, 4-methyl-3-pyrrolyl, 5-methyl-3-pyrrolyl, 2-methyl-3-pyrrolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-methyl-4-thiazolyl, 5-methyl-4-thiazolyl, 2-methyl-5-thiazolyl, 4-methyl-5-thiazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-methyl-4-pyrazolyl, 3-methyl-4-pyrazolyl, 1-methyl-3-pyrazolyl, 4-methyl-3-pyrazolyl, 5-methyl-3-pyrazolyl, 5-methyl-3-pyrazolyl, 2-midazolyl, 4-imidazolyl, 3-chloro-4-pyrazolyl, 4-amino-3-pyrazolyl, 5-amino-3-pyrazolyl, 3-amino-4-pyrazolyl, 2-imidazolyl, 4-imidazolyl, 1,2,3-thiadiazol-4-yl 1,2,3-thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl and 1,2,4-thiadiazol-5-yl.

20

30

35

Examples of the most preferred such groups which may be represented by R² include: the 2-thienyl, 3-thienyl, 5-methyl-2-thienyl, 5-chloro-3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1-methyl-2-pyrrolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-methyl-4-pyrazolyl, 3-methyl-4-pyrazolyl, 5-methyl-3-pyrazolyl, 3-amino-4-pyrazolyl, 1,2,3-thiadiazol-4-yl groups and 1,2,3-thiadiazol-5-yl groups.

Specific examples of optionally substituted 5- or 6-membered aromatic heterocyclic groups having from 1 to 4 hetero-atoms selected from oxygen, nitrogen and sulphur atoms, which may be represented by R5 include: the 2-furyl, 3-furyl, 3-methyl-2-furyl, 4-methyl-2-furyl, 5-methyl-2-furyl, 2-methyl-3-furyl, 4-methyl-3furyl, 5-methyl-3-furyl, 5-chloro-2-furyl, 5-chloro-3-furyl, 3-amino-2-furyl, 5-amino-2-furyl, 3-acetamido-2-furyl yl, 5-acetamido-2- furyl, 5-phenyl-2-furyl, 5-(4-methylphenyl)-2-furyl, 5-(4-chlorophenyl)-2-furyl, 2,4-dimethyl-3-furyl, 2,5-dimethyl-3-furyl, 3-methyl-5-amino-2-furyl, 2-thienyl, 3-thienyl, 3-methyl-2-thienyl, 4-methyl-2-thienyl, 5-methyl-2-thienyl, 2-methyl-3-thienyl, 4-methyl-3-thienyl, 5-methyl-3-thienyl, 5-ethyl-2-thienyl, 4methoxy-2-thienyl, 4-methoxy-3-thienyl, 4-hydroxy-2-thienyl, 4-hydroxy-3-thienyl, 5-chloro-2-thienyl, 5chloro-3-thienyl, 5-bromo-3-thienyl, 3-amino-2-thienyl, 5-amino-2-thienyl, 2-amino-3-thienyl, 4-amino-3-thienyl nyl, 3-acetamido-2-thienyl, 5-acetamido-2-thienyl, 2-acetamido-3-thienyl, 4-acetamido-3-thienyl, 5-phenyl-2thienyl, 5-(4-methylphenyl)-2-thienyl, 5-(4-chlorophenyl)-2-thienyl, 3,4-dimethyl-2-thienyl, 3,5-dimethyl-2thienyl, 4,5-dimethyl-2-thienyl, 2,4-dimethyl-3-thienyl, 2,5-dimethyl-3-thienyl, 4,5-dimethyl-3-thienyl, 5-methyl-2-amino-3-thienyl, 4-methyl-5-chloro-3-thienyl, 4,5-dichloro-2-thienyl, 2-amino-5-phenyl-3-thienyl, 2,4,5-trimethyl-3-thienyl, 2,5-dimethyl-4-amino-3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1-methyl-2-pyrrolyl, 3-methyl-2-pyrrolyl, 4-methyl-2-pyrrolyl, 5-methyl-2-pyrrolyl, 1-methyl-3-pyrrolyl, 2-methyl-3-pyrrolyl, 4-methyl-3pyrrolyl, 5-methyl-3-pyrrolyl, 4-methoxy-3-pyrrolyl, 4-hydroxy-3-pyrrolyl, 5-chloro-2-pyrrolyl, 5-chloro-3pyrrolyl, 3-amino-2-pyrrolyl, 4-amino-2-pyrrolyl, 3-acetamido-2-pyrrolyl, 4-acetamido-2-pyrrolyl, 4-phenyl-2pyrrolyl, 5-phenyl-2-pyrrolyl, 5-phenyl-3-pyrrolyl, 4-(4-methylphenyl)-2-pyrrolyl, 5-(4-methylphenyl)-2-pyrrolyl, 4-(4-methoxyphenyl)-2-pyrrolyl, 5-(4-methoxyphenyl)-2-pyrrolyl, 4-(4-fluorophenyl)-2-pyrrolyl, 5-(4-fluorophenyl)-2-pyrrolyl, 4-(4-chlorophenyl)-2-pyrrolyl, 5-(4-chlorophenyl)-2-pyrrolyl, 5-(4-methylphenyl)-3-pyrrolyl, 5-(4-methoxyphenyl)-3-pyrrolyl, 5-(4-fluorophenyl)-3-pyrrolyl, 5-(4-chlorophenyl)-3-pyrrolyl, 1-(2-hydroxyethyl)-2-pyrrolyl, 1-(3-hydroxypropyl)-2-pyrrolyl, 1-(2-hydroxyethyl)-3-pyrrolyl, 1-(3-hydroxypropyl)-3pyrrolyl, 1,3-dimethyl-2-pyrrolyl, 1,4-dimethyl-2-pyrrolyl, 1,5-dimethyl-2-pyrrolyl, 3,4-dimethyl-2-pyrrolyl, 3,5dimethyl-2-pyrrolyl, 4,5-dimethyl-2-pyrrolyl, 1,5-dimethyl-3-pyrrolyl, 2,4-dimethyl-3-pyrrolyl, 2,5-dimethyl-3pyrrolyl, 1-methyl-4-hydroxy-3-pyrrolyl, 1-methyl-4-methoxy-3-pyrrolyl, 1-methyl-2-chloro-3-pyrrolyl, 4-methyl-5-chloro-3-pyrrolyl, 1-methyl-5-amino-2-pyrrolyl, 3,4,5-trimethyl-2-pyrrolyl, 1,2,4-trimethyl-3-pyrrolyl, 1,4-dimethyl-5-chloro-3-pyrrolyl, 1,4-dimethyl-5-bromo-3-pyrrolyl, 3,5-dimethyl-4-amino-2-pyrrolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-methyl-4-oxazolyl, 5-methyl-2-oxazolyl, 2-methoxy-4-oxazolyl, 2-hydroxy-4-oxazolyl, 2-phenyl-4-oxazolyl, 5-phenyl-2-oxazolyl, 2,5-dimethyl-4-oxazolyl, 2,4-dimethyl-5-oxazolyl, 5-methyl-2-phenyl-4-oxazolyl, 4-methyl-2-phenyl-5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 3-methyl-4-isoxazolyl, 4-me10

thyl-3-isoxazolyl, 5-methyl-3-isoxazolyl, 3-methoxy-4-isoxazolyl, 4-methoxy-3-isoxazolyl, 3-hydroxy-4-isoxazolyl, 3-hydroxy-5-isoxazolyl, 4-hydroxy-3-isoxazolyl, 5-amino-4-isoxazolyl, 4-amino-3-isoxazolyl, 4-phenyl-3isoxazolyl, 5-phenyl-3-isoxazolyl, 4-(4-methylphenyl)-3-isoxazolyl, 5-(4-methylphenyl)-3-isoxazolyl, 4,5-dimethyl-3-isoxazolyl, 5-methyl-4-hydroxy-3-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 4-methyl-2-thiazolyl, 5-methyl-2-thiazolyl, 2-methyl-4-thiazolyl, 5-methyl-4-thiazolyl, 2-methyl-5-thiazolyl, 4-methyl-5-thiazolyl, 2-methoxy-4-thiazolyl, 2-methoxy-5-thiazolyl, 2-hydroxy-4-thiazolyl, 2-hydroxy-5-thiazolyl, 5-chloro-2thiazolyl, 2-chloro-4-thiazolyl, 5-chloro-4-thiazolyl, 2-chloro-5-thiazolyl, 4-chloro-5-thiazolyl, 2-amino-4-thiazolyl, 5-amino-4-thiazolyl, 2-amino-5-thiazolyl, 2-acetamido-4-thiazolyl, 5-acetamido-4-thiazolyl, 2-acetamido-5-thiazolyl, 2-phenyl-4-thiazolyl, 2-phenyl-5-thiazolyl, 4,5-dimethyl-2-thiazolyl, 2,5-dimethyl-4-thiazolyl, 2,4-dimethyl-5-thiazolyl, 5-methyl-2-hydroxy-4-thiazolyl, 4-methyl-2-hydroxy-5-thiazolyl, 5-methyl-2-chloro-4-thiazolyl, 4-methyl-2-chloro-5-thiazolyl, 2-methyl-4-chloro-5-thiazolyl, 5-methyl-2-amino-4-thiazolyl, 2-methyl-5-amino-4-thiazolyl, 4-methyl-2-amino-5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-methyl-4-pyrazolyl, 3-methyl-4-pyrazolyl, 1-methyl-3-pyrazolyl, 4-methyl-3-pyrazolyl, 5-methyl-3-pyrazolyl, 1-methyl-5-pyrazolyl, 1-ethyl-4-pyrazolyl, 1-ethyl-3-pyrazolyl, 5-ethyl-3-pyrazolyl, 1-propyl-4-pyrazolyl, 1-propyl-3-pyrazolyl, 5-propyl-3-pyrazolyl, 1-butyl-4-pyrazolyl, 4-methoxy-3-pyrazolyl, 4-propoxy-3-pyrazolyl, 4-hydroxy-3-pyrazolyl, 4-chloro-3-pyrazolyl, 3-chloro-4-pyrazolyl, 4-bromo-3-pyrazolyl, 4-amino-3-pyrazolyl, 5amino-3-pyrazolyl, 3-amino-4-pyrazolyl, 3-acetamido-4-pyrazolyl, 3-propionylamino-4-pyrazolyl, 4-acetamido-3-pyrazolyl, 5-acetamido-3-pyrazolyl, 5-phenyl-3-pyrazolyl, 1-(2-hydroxyethyl)-3-pyrazolyl, 1-(3-hydroxypropyl)-3-pyrazolyl, 1-(2-hydroxyethyl)-4-pyrazolyl, 1-(3-hydroxypropyl)-4-pyrazolyl, 1-(2-hydroxyethyl)-5pyrazolyl, 1-(3-hydroxypropyl)-5-pyrazolyl, 1,3-dimethyl-4-pyrazolyl, 1,5-dimethyl-4-pyrazolyl, 3,5-dimethyl-4-pyrazolyl, 1,4-dimethyl-3-pyrazolyl, 1,5-dimethyl-3-pyrazolyl, 4,5-dimethyl-3-pyrazolyl, 1,3-dimethyl-5-pyrazolyl, 1,4-dimethyl-5-pyrazolyl, 1-methyl-4-methoxy-3-pyrazolyl, 5-methyl-4-hydroxy-3-pyrazolyl, 1-methyl-3-chloro-4-pyrazolyl, 1-methyl-5-chloro-4-pyrazolyl, 5-methyl-3-chloro-4-pyrazolyl, 1-methyl-4-chloro-3-pyrazolyl, 5-methyl-4-chloro-3-pyrazolyl, 1-methyl-4-chloro-5-pyrazolyl, 1-methyl-3-amino-4-pyrazolyl, 1-methyl-5-amino-4-pyrazolyl, 5-methyl-3-amino-4-pyrazolyl, 1-methyl-3-acetamido-4-pyrazolyl, 1-methyl-5-acetamido-4-pyrazolyl, 3-methyl-5-acetamido-4-pyrazolyl, 1-methyl-5-amino-3-pyrazolyl, 5-methyl-4-amino-3-pyrazolyl, 4-methyl-5-amino-3-pyrazolyl, 1,3,5-trimethyl-4-pyrazolyl, 1,4,5-trimethyl-3-pyrazolyl, 1,3,4-trimethyl-5-pyrazolyl, 1,3-dimethyl-4-chloro-5-pyrazolyl, 2-imidazolyl, 4-imidazolyl, 1-methyl-2-imidazolyl, 5-methyl-2imidazolyl, 1-methyl-4-imidazolyl, 2-methyl-4-imidazolyl, 5-methyl-4-imidazolyl, 1-ethyl-2-imidazolyl, 4-ethyl-2-imidazolyl, 1-(2-hydroxyethyl)-2-imidazolyl, 1-(3-hydroxypropyl)-2-imidazolyl, 4-amino-2-imidazolyl, 2-amino-4-imidazolyl, 5-amino-4-imidazolyl, 4-chloro-2-imidazolyl, 2-chloro-4-imidazolyl, 5-chloro-4-imidazolyl, 1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl, 5-methyl-1,2,3-oxadiazol-4-yl, 4-methyl-1,2,3-oxadiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,5-oxadiazol-3-yl, 4-methyl-1,2,5-oxadiazol-3-yl, 4-phenyl-1,2,5-oxadiazol-3-yl, 4-(4-methylphenyl)-1,2,5-oxadiazol-3-yl, 1,3,4-oxadiazol-2-yl, 5-methyl-1,3,4-oxadiazol-2-yl, 5-ethyl-1,3,4-oxadiazol-2-yl, 5-phenyl-1,3,4-oxadiazol-2-yl, 5-chloro-1,3,4-oxadiazol-2-yl, 5-amino-1,3,4-oxadiazol-2-yl, 5-acetamido-1,3,4-oxadiazol-2-yl, 1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-5-yl, 5-methyl-1,2,3-thiadiazol-4-yl, 5-phenyl-1,2,3-thiadiazol-4-yl, 5-(4-methylphenyl)-1,2,3-thiadiazol-4-yl, 4-methyl-1,2,3thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 4-methyl-1,2,5-thiadiazol-3yl, 1,3,4-thiadiazol-2-yl, 5-methyl-1,3,4-thiadiazol-2-yl, 5-ethyl-1,3,4-thiadiazol-2-yl, 5-phenyl-1,3,4-thiadiazol-2-yl, 5-chloro-1,3,4-thiadiazol-2-yl, 5-amino-1,3,4-thiadiazol-2-yl, 5-acetamido-1,3,4-thiadiazol-2-yl, 1,2,3-triazol-4-yl, 1-methyl-1,2,3-triazol-4-yl, 5-methyl-1,2,3-triazol-4-yl, 1,5-dimethyl-1,2,3-triazol-4-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1-methyl-1,2,4-triazol-3-yl, 1-methyl-1,2,4-triazol-5-yl, 5-methyl-1,2,4-triazol-3-yl, 5-ethyl-1,2,4-triazol-3-yl, 5-phenyl-1,2,4-triazol-3-yl, 1-(2-hydroxyethyl)-1,2,4-triazol-3-yl, 1-(3-hydroxypropyl)-1,2,4triazol-3-yl, 1-(2-hydroxyethyl)-1,2,4-triazol-5-yl, 1-(3-hydroxypropyl)-1,2,4-triazol-5-yl, 5-chloro-1,2,4-triazol-3-yl, 5-amino-1,2,4-triazol-3-yl, 5-acetamido-1,2,4-triazol-3-yl, 1,3-dimethyl-1,2,4-triazol-5-yl, 1,5-dimethyl-1,2,4-triazol-3-yl, 2-ethyl-4-methyl-1,2,3-triazol-5-yl, tetrazol-5-yl, 1-methyltetrazol-5-yl, 2-methyltetrazol-5yl, 1-ethyltetrazol-5-yl, 2-ethyltetrazol-5-yl, 1-phenyltetrazol-5-yl, 2-phenyltetrazol-5-yl, 1-(2-hydroxyethyl)tetrazol-5-yl, 2-(2-hydroxyethyl)tetrazol-5-yl, 1-(2-hydroxypropyl)tetrazol-5-yl, 2-(2-hydroxypropyl)tetrazol-5-yl, 1-(3-hydroxypropyl)tetrazol-5-yl, 2-(3-hydroxypropyl)tetrazol-5-yl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-methyl-2pyridyl, 4-methyl-2-pyridyl, 5-methyl-2-pyridyl, 6-methyl-2-pyridyl, 2-methyl-4-pyridyl, 3-methyl-4-pyridyl, 3chloro-2-pyridyl, 4-chloro-2-pyridyl, 5-chloro-2-pyridyl, 6-chloro-2-pyridyl, 2-chloro-3-pyridyl, 4-chloro-3pyridyl, 5-chloro-3-pyridyl, 6-chloro-3-pyridyl, 2-chloro-4-pyridyl, 3-chloro-4-pyridyl, 3-amino-2-pyridyl, 4-amino-2-pyridyl, 5-amino-2-pyridyl, 6-amino-2-pyridyl, 2-amino-3-pyridyl, 4-amino-3-pyridyl, 5-amino-3-pyridyl, 6amino-3-pyridyl, 2-amino-4-pyridyl, 3-amino-4-pyridyl, 3-hydroxy-2-pyridyl, 4-hydroxy-2-pyridyl, 5-hydroxy-2pyridyl, 6-hydroxy-2-pyridyl, 2-hydroxy-4-pyridyl, 3-hydroxy-, ...pyridyl, 3-phenyl-2-pyridyl, 4-phenyl-2-pyridyl, 5-phenyl-2-pyridyl, 6-phenyl-2-pyridyl, 2-phenyl-4-pyridyl, 3-phenyl-4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 4-methyl-2-pyrimidinyl, 5-methyl-2-pyrimidinyl, 2-methyl-4-pyrimidinyl, 5-methyl-4-pyrimidinyl, 6-methyl-4-pyrimidinyl, 2-methyl-5-pyrimidinyl, 4-methyl-5-pyrimidinyl, 4-phenyl-2-pyrimidinyl, 5-phenyl-2-

pyrimidinyl, 2-phenyl-4-pyrimidinyl, 5-phenyl-4-pyrimidinyl, 6-phenyl-4-pyrimidinyl, 2-phenyl-5-pyrimidinyl, 4phenyl-5-pyrimidinyl, 4-chloro-2-pyrimidinyl, 5-chloro-2-pyrimidinyl, 2-chloro-4-pyrimidinyl, 5-chloro-4pyrimidinyl, 6-chloro-4-pyrimidinyl, 2-chloro-5-pyrimidinyl, 4-chloro-5-pyrimidinyl, 4-amino-2-pyrimidinyl, 5amino-2-pyrimidinyl, 2-amino-4-pyrimidinyl, 5-amino-4-pyrimidinyl, 6-amino-4-pyrimidinyl, 2-amino-5-pyrimidinyl, 4-amino-5-pyrimidinyl, 4-acetamido-2-pyrimidinyl, 5-acetamido-2-pyrimidinyl, 2-acetamido-4-pyrimidinyl, 5-acetamido-4-pyrimidinyl, 6-acetamido-4-pyrimidinyl, 2-acetamido-5-pyrimidinyl, 4-acetamido-5-pyrimidinyl, 4,5-dimethyl-2-pyrimidinyl, 4,6-dimethyl-2-pyrimidinyl, 2,5-dimethyl-4-pyrimidinyl, 2,6-dimethyl-4-pyrimidinyl, 2,4-dimethyl-5-pyrimidinyl, 2,6-dimethyl-5-pyrimidinyl, 4-amino-5-hydroxy-2-pyrimidinyl, 4-amino-6hydroxy-2-pyrimidinyl, 2-amino-5-hydroxy-4-pyrimidinyl, 2-amino-6-hydroxy-4-pyrimidinyl, 2-amino-4-hydroxy-5-pyrimidinyl, 5-amino-2-hydroxy-4-pyrimidinyl, 6-amino-2-hydroxy-4-pyrimidinyl, 4-amino-2-hydroxy-5-pyrimidinyl, 4,5-diamino-2-pyrimidinyl, 4,6-diamino-2-pyrimidinyl, 2,5-diamino-4-pyrimidinyl, 2,6-diamino-4pyrimidinyl, 2,4-diamino-5-pyrimidinyl, 2,6-diamino-5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 4-methyl-3-pyridazinyl, 5-methyl-3-pyridazinyl, 6-methyl-3-pyridazinyl, 3-methyl-4-pyridazinyl, 5-methyl-4-pyridazinyl, 6methyl-4-pyridazinyl, 4-chloro-3-pyridazinyl, 5-chloro-3-pyridazinyl, 6-chloro-3-pyridazinyl, 3-chloro-4pyridazinyl, 5-chloro-4-pyridazinyl, 6-chloro-4-pyridazinyl, 4-hydroxy-3-pyridazinyl, 5-hydroxy-3-pyridazinyl, 6-hydroxy-3-pyridazinyl, 3-hydroxy-4-pyridazinyl, 5-hydroxy-4-pyridazinyl, 6-hydroxy-4-pyridazinyl, 4-amino-3-pyridazinyl, 5-amino-3-pyridazinyl, 6-amino-3-pyridazinyl, 3-amino-4-pyridazinyl, 5-amino-4-pyridazinyl, 6amino-4-pyridazinyl, 2-pyrazinyl, 3-amino-2-pyrazinyl, 5-amino-2-pyrazinyl, 6-amino-2-pyrazinyl, 3-hydroxy-2-pyrazinyl, 5-hydroxy-2-pyrazinyl, 6-hydroxy-2-pyrazinyl, 3,5-dihydroxy-2-pyrazinyl, 3,6-dihydroxy-2-pyrazinyl, 1,2,3-triazin-4-yl, 1,2,3-triazin-5-yl, 5-methyl-1,2,3-triazin-4-yl, 6-methyl-1,2,3-triazin-4-yl, 4-methyl-1,2,3-triazin-5-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-6-yl, 5-methyl-1,2,4-triazin-3-yl, 6-methyl-1,2,4-triazin-3-yl, 3-methyl-1,2,4-triazin-5-yl, 6-methyl-1,2,4-triazin-5-yl, 3-methyl-1,2,4-triazin-6-yl, 5-methyl-1,2,4-triazin-6-yl, 1,3,5-triazin-2-yl and 4-methyl-1,3,5-triazin-2-yl groups.

25

40

55

Examples of preferred such groups include: the 2-furyl, 3-furyl, 3-methyl-2-furyl, 4-methyl-2-furyl, 5-methyl-2-furyl, 2-methyl-3-furyl, 4-methyl-3-furyl, 5-methyl-3-furyl, 2-thienyl, 3-thienyl, 3-methyl-2-thienyl, 4methyl-2-thienyl, 5-methyl-2-thienyl, 2-methyl-3-thienyl, 4-methyl-3-thienyl, 5-methyl-3-thienyl, 5-ethyl-2thienyl, 4-methoxy-2-thienyl, 4-methoxy-3-thienyl, 3-amino-2-thienyl, 5-amino-2-thienyl, 2-amino-3-thienyl, 4-amino-3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 1-methyl-2-pyrrolyl, 3-methyl-2-pyrrolyl, 4-methyl-2-pyrrolyl, 5-methyl-2-pyrrolyl, 1-methyl-3-pyrrolyl, 2-methyl-3-pyrrolyl, 4-methyl-3-pyrrolyl, 5-methyl-3-pyrrolyl, 4-methoxy-3-pyrrolyl, 4-hydroxy-3-pyrrolyl, 5-chloro-2-pyrrolyl, 5-chloro-3-pyrrolyl, 3-amino-2-pyrrolyl, 4-amino-2-pyrrolyl, 3-acetamido-2-pyrrolyl, 4-acetamido-2-pyrrolyl, 4-phenyl-2-pyrrolyl, 5-phenyl-2-pyrrolyl, 5-phenyl-3-pyrrolyl, 4-(4-methylphenyl)-2-pyrrolyl, 5-(4-methylphenyl)-2-pyrrolyl, 4-(4-methoxyphenyl)-2-pyrrolyl, 5-(4-methoxyphenyl)-2-pyrrolyl, 4-(4-chlorophenyl)-2-pyrrolyl, 5-(4-chlorophenyl)-2-pyrrolyl, 5-(4-methylphenyl)-3pyrrolyl, 1-(2-hydroxyethyl)-2-pyrrolyl, 1-(3-hydroxypropyl)-2-pyrrolyl, 1-(2-hydroxyethyl)-3-pyrrolyl, 1-(3-hydroxyethyl)-3-pyrrolyl, 1-(3-hydroxyethyl)-3 droxypropyl)-3-pyrrolyl, 1,3-dimethyl-2-pyrrolyl, 1,4-dimethyl-2-pyrrolyl, 1,5-dimethyl-2-pyrrolyl, 3,4-dimethyl-2-pyrrolyl, 4,5-dimethyl-2-pyrrolyl, 1,5-dimethyl-3-pyrrolyl, 2,4-dimethyl-3-pyrrolyl, 2,5-dimethyl-3-pyrrolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-methyl-4-oxazolyl, 5-methyl-2-oxazolyl, 2-methoxy-4-oxazolyl, 2-hydroxy-4-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 3-methyl-4-isoxazolyl, 4-methyl-3-isoxazolyl, 5-methyl-3-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 4-methyl-2-thiazolyl, 5-methyl-2-thiazolyl, 2-methyl-4-thiazolyl, 5methyl-4-thiazolyl, 2-methyl-5-thiazolyl, 4-methyl-5-thiazolyl, 2-methoxy-4-thiazolyl, 2-methoxy-5-thiazolyl, 2-hydroxy-4-thiazolyl, 2-hydroxy-5-thiazolyl, 5-chloro-2-thiazolyl, 2-chloro-4-thiazolyl, 5-chloro-4-thiazolyl, 2chloro-5-thiazolyl, 4-chloro-5-thiazolyl, 2-amino-4-thiazolyl, 5-amino-4-thiazolyl, 2-amino-5-thiazolyl, 2-acetamido-4-thiazolyl, 5-acetamido-4-thiazolyl, 2-acetamido-5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 1-methyl-4-pyrazolyl, 3-methyl-4-pyrazolyl, 1-methyl-3-pyrazolyl, 4-methyl-3-pyrazolyl, 5-methyl-3-pyrazolyl, 1-methyl-5-pyrazolyl, 1-ethyl-4-pyrazolyl, 1-ethyl-3-pyrazolyl, 5-ethyl-3-pyrazolyl, 1-propyl-4-pyrazolyl, 1-propyl-3-pyrazolyl, 5-propyl-3-pyrazolyl, 1-butyl-4-pyrazolyl, 4-methoxy-3-pyrazolyl, 4-chloro-3-pyrazolyl, 3-chloro-4-pyrazolyl, 4-bromo-3-pyrazolyl, 4-amino-3-pyrazolyl, 5-amino-3-pyrazolyl, 3-amino-4pyrazolyl, 3-acetamido-4-pyrazolyl, 3-propionylamino-4-pyrazolyl, 4-acetamido-3-pyrazolyl, 5-acetamido-3pyrazolyl, 5-phenyl-3-pyrazolyl, 1-(2-hydroxyethyl)-3-pyrazolyl, 1-(3-hydroxypropyl)-3-pyrazolyl, 1-(2-hydroxyethyl) yethyl)-4-pyrazolyl, 1-(3-hydroxypropyl)-4-pyrazolyl, 1-(2-hydroxyethyl)-5-pyrazolyl, 1-(3-hydroxypropyl)-5pyrazolyl, 1,3-dimethyl-4-pyrazolyl, 1,5-dimethyl-4-pyrazolyl, 3,5-dimethyl-4-pyrazolyl, 1,4-dimethyl-3-pyrazolyl, 1,5-dimethyl-3-pyrazolyl, 4,5-dimethyl-3-pyrazolyl, 1,3-dimethyl-5-pyrazolyl, 1,4-dimethyl-5-pyrazolyl, 1-methyl-3-amino-4-pyrazolyl, 1-methyl-5-amino-4-pyrazolyl, 5-methyl-3-amino-4-pyrazolyl, 1-methyl-3acetamido-4-pyrazolyl, 1-methyl-5-acetamido-4-pyrazolyl, 3-methyl-5-acetamido-4-pyrazolyl, 1-methyl-5amino-3-pyrazolyl, 5-methyl-4-amino-3-pyrazolyl, 4-methyl-5-amino-3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, 1-methyl-2-imidazolyl, 5-methyl-2-imidazolyl, 1-methyl-4-imidazolyl, 2-methyl-4-imidazolyl, 5-methyl-4-imidazolyl, 1-ethyl-2-imidazolyl, 4-ethyl-2-imidazolyl, 1-(2-hydroxyethyl)-2-imidazolyl, 1-(3-hydroxypropyl)-2-imidazolyl, 4-amino-2-imidazolyl, 2-amino-4-imidazolyl, 5-amino-4-imidazolyl, 4-chloro-2-imidazoly, 2-chloro-45

10

15

25

30

35

45

55

imidazolyl, 5-chloro-4-imidazolyl, 1,2,3-oxadiazol-4-yl, 1,2,3-oxadiazol-5-yl, 5-methyl-1,2,3-oxadiazol-4-yl, 4methyl-1,2,3-oxadiazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,5-oxadiazol-3-yl, 4-methyl-1,2,5oxadiazol-3-yl, 4-phenyl-1,2,5-oxadiazol-3-yl, 1,3,4-oxadiazol-2-yl, 5-methyl-1,3,4-oxadiazol-2-yl, 5-ethyl-1,3,4-oxadiazol-2-yl, 5-phenyl-1,3,4-oxadiazol-2-yl, 5-chloro-1,3,4-oxadiazol-2-yl, 5-amino-1,3,4-oxadiazol-2-yl, 5-acetamido-1,3,4-oxadiazol-2-yl, 1,2,3-thiadiazol-4-yl, 1,2,3-thiadiazol-5-yl, 5-methyl-1,2,3-thiadiazol-4-yl, 5-phenyl-1,2,3-thiadiazol-4-yl, 4-methyl-1,2,3-thiadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 4-methyl-1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-2-yl, 5-methyl-1,3,4-thiadiazol-2-yl, 5ethyl-1,3,4-thiadiazol-2-yl, 5-phenyl-1,3,4-thiadiazol-2-yl, 5-chloro-1,3,4-thiadiazol-2-yl, 5-amino-1,3,4-thiadiazol-2-yl, 5-acetamido-1,3,4-thiadiazol-2-yl, 1,2,3-triazol-4-yl, 1-methyl-1,2,3-triazol-4-yl, 5-methyl-1,2,3triazol-4-yl, 1,5-dimethyl-1,2,3-triazol-4-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1-methyl-1,2,4-triazol-3-yl, 1methyl-1,2,4-triazol-5-yl, 5-methyl-1,2,4-triazol-3-yl, 5-ethyl-1,2,4-triazol-3-yl, 5-phenyl-1,2,4-triazol-3-yl, 1-(2-hydroxyethyl)-1,2,4-triazol-3-yl, 1-(3-hydroxypropyl)-1,2,4-triazol-3-yl, 1-(2-hydroxyethyl)-1,2,4-triazol-5yl, 1-(3-hydroxypropyl)-1,2,4-triazol-5-yl, 5-chloro-1,2,4-triazol-3-yl, 5-amino-1,2,4-triazol-3-yl, 5-acetamido-1,2,4-triazol-3-yl, 1,3-dimethyl-1,2,4-triazol-5-yl, 1,5-dimethyl-1,2,4-triazol-3-yl, tetrazol-5-yl, 1-methyltetrazol-5-yl, 2-methyltetrazol-5-yl, 1-ethyltetrazol-5-yl, 2-ethyltetrazol-5-yl, 1-phenyltetrazol-5-yl, 2-phenyltetrazol-5-yl, 2-methyltetrazol-5-yl, 2-methyltetraz zol-5-yl, 1-(2-hydroxyethyl)tetrazol-5-yl, 2-(2-hydroxyethyl)tetrazol-5-yl, 1-(2-hydroxypropyl)tetrazol-5-yl, 2-(2-hydroxypropyl)tetrazol-5-yl, 1-(3-hydroxypropyl)tetrazol-5-yl, 2-(3-hydroxypropyl)tetrazol-5-yl, 2-pyridyl, 3pyridyl, 4-pyridyl, 3-methyl-2-pyridyl, 4-methyl-2-pyridyl, 5-methyl-2-pyridyl, 6-methyl-2-pyridyl, 2-methyl-4pyridyl, 3-methyl-4-pyridyl, 3-chloro-2-pyridyl, 4-chloro-2-pyridyl, 5-chloro-2-pyridyl, 6-chloro-2-pyridyl, 2chloro-4-pyridyl, 3-chloro-4-pyridyl, 3-amino-2-pyridyl, 4-amino-2-pyridyl, 5-amino-2-pyridyl, 6-amino-2-pyridyl, 2-amino-4-pyridyl, 3-amino-4-pyridyl, 3-hydroxy-2-pyridyl, 4-hydroxy-2-pyridyl, 5-hydroxy-2-pyridyl, 6-hydroxy-2-pyridyl, 2-hydroxy-4-pyridyl, 3-hydroxy-4-pyridyl, 3-phenyl-2-pyridyl, 4-phenyl-2-pyridyl, 5-phenyl-2pyridyl, 6-phenyl-2-pyridyl, 2-phenyl-4-pyridyl, 3-phenyl-4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 4methyl-2-pyrimidinyl, 5-methyl-2-pyrimidinyl, 2-methyl-4-pyrimidinyl, 5-methyl-4-pyrimidinyl, 6-methyl-4-pyrimidinyl, imidinyl, 4-phenyl-2-pyrimidinyl, 5-phenyl-2-pyrimidinyl, 2-phenyl-4-pyrimidinyl, 5-phenyl-4-pyrimidinyl, 6-phenyl-4-pyrimidinyl, 4-chloro-2-pyrimidinyl, 5-chloro-2-pyrimidinyl, 2-chloro-4-pyrimidinyl, 5-chloro-4-pyrimidinyl, 6-chloro-4-pyrimidinyl, 4-amino-2-pyrimidinyl, 5-amino-2-pyrimidinyl, 2-amino-4-pyrimidinyl, 5-amino-4-pyrimidinyl, 6-amino-4-pyrimidinyl, 4-acetamido-2-pyrimidinyl, 5-acetamido-2-pyrimidinyl, 2-acetamido-4-pyrimidinyl, 5-acetamido-4-pyrimidinyl, 6-acetamido-4-pyrimidinyl, 4,5-dimethyl-2-pyrimidinyl, 4,6-dimethyl-2-pyrimidinyl, 2,5-dimethyl-4-pyrimidinyl, 2,6-dimethyl-4-pyrimidinyl, 4-amino-5-hydroxy-2-pyrimidinyl, 4-amino-6hydroxy-2-pyrimidinyl, 2-amino-5-hydroxy-4-pyrimidinyl, 2-amino-6-hydroxy-4-pyrimidinyl, 5-amino-2-hydroxy-4-pyrimidinyl, 6-amino-2-hydroxy-4-pyrimidinyl, 4,5-diamino-2-pyrimidinyl, 4,6-diamino-2-pyrimidinyl, 2,5-diamino-4-pyrimidinyl, 2,6-diamino-4-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, 4-methyl-3-pyridazinyl, 5methyl-3-pyridazinyl, 6-methyl-3-pyridazinyl, 3-methyl-4-pyridazinyl, 5-methyl-4-pyridazinyl, 6-methyl-4-pyridazinyl, 4-chloro-3-pyridazinyl, 5-chloro-3-pyridazinyl, 6-chloro-3-pyridazinyl, 3-chloro-4-pyridazinyl, 5chloro-4-pyridazinyl, 6-chloro-4-pyridazinyl, 4-hydroxy-3-pyridazinyl, 5-hydroxy-3-pyridazinyl, 6-hydroxy-3pyridazinyl, 3-hydroxy-4-pyridazinyl, 5-hydroxy-4-pyridazinyl, 6-hydroxy-4-pyridazinyl, 4-amino-3-pyridazinyl, 5-amino-3-pyridazinyl, 6-amino-3-pyridazinyl, 3-amino-4-pyridazinyl, 5-amino-4-pyridazinyl, 6-amino-4-pyridazinyl, 2-pyrazinyl, 3-methyl-2-pyrazinyl, 5-methyl-2-pyrazinyl, 6-methyl-2-pyrazinyl, 3-amino-2-pyrazinyl, 5amino-2-pyrazinyl, 6-amino-2-pyrazinyl, 3-hydroxy-2-pyrazinyl, 5-hydroxy-2-pyrazinyl, 6-hydroxy-2-pyrazinyl, 3,5-dihydroxy-2-pyrazinyl, 3,6-dihydroxy-2-pyrazinyl, 1,2,3-triazin-4-yl, 1,2,3-triazin-5-yl, 5-methyl-1,2,3-triazin-4-yl, 6-met hyl-1,2,3-triazin-4-yl, 4-met hyl-1,2,3-triazin-5-yl, 1,2,4-triazin-3-yl, 1,2,4-triazin-5-yl, 1,2,4-triazin-5zin-6-yl, 5-methyl-1,2,4-triazin-3-yl, 6-methyl-1,2,4-triazin-3-yl, 3-methyl-1,2,4-triazin-5-yl, 6-methyl-1,2,4-triazin-5-yl, 3-methyl-1,2,4-triazin-6-yl, 5-methyl-1,2,4-triazin-6-yl, 1,3,5-triazin-2-yl and 4-methyl-1,3,5-triazin-2-yl groups.

Examples of more preferred such groups include: the 2-imidazolyl, 4-imidazolyl, 1-methyl-2-imidazolyl, 5-methyl-2-imidazolyl, 2-methyl-4-imidazolyl, 5-methyl-4-imidazolyl, 5-methyl-4-imidazolyl, 4-chloro-2-imidazolyl, 2-chloro-4-imidazolyl, 5-chloro-4-imidazolyl, 1,3,4-oxadiazol-2-yl, 5-methyl-1,3,4-oxadiazol-2-yl, 5-ethyl-1,3,4-oxadiazol-2-yl, 5-acetamido-1,3,4-oxadiazol-2-yl, 5-acetamido-1,3,4-oxadiazol-2-yl, 5-acetamido-1,3,4-thiadiazol-2-yl, 5-acetamido-1,3,4-thiadiazol-2-yl, 5-chloro-1,3,4-thiadiazol-2-yl, 5-amino-1,3,4-thiadiazol-2-yl, 5-acetamido-1,3,4-thiadiazol-2-yl, 1,2,4-triazol-3-yl, 1-methyl-1,2,4-triazol-3-yl, 5-methyl-1,2,4-triazol-3-yl, 5-ethyl-1,2,4-triazol-3-yl, 5-phenyl-1,2,4-triazol-3-yl, 5-chloro-1,2,4-triazol-3-yl, 5-amino-1,2,4-triazol-3-yl, 5-acetamido-1,2,4-triazol-3-yl, tetrazol-5-yl, 1-methyltetrazol-5-yl, 1-ethyltetrazol-5-yl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-methyl-2-pyridyl, 4-methyl-2-pyridyl, 5-methyl-2-pyridyl, 6-methyl-2-pyridyl, 2-methyl-4-pyridyl, 3-chloro-2-pyridyl, 4-chloro-2-pyridyl, 5-chloro-2-pyridyl, 6-amino-2-pyridyl, 2-amino-4-pyridyl, 3-mino-4-pyridyl, 3-mino-4-pyr

hydroxy-4-pyridyl, 3-hydroxy-4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 4-methyl-2-pyrimidinyl, 5-methyl-2-pyrimidinyl, 5-methyl-4-pyrimidinyl, 5-methyl-4-pyrimidinyl, 6-methyl-4-pyrimidinyl, 4-chloro-2-pyrimidinyl, 5-chloro-2-pyrimidinyl, 5-chloro-4-pyrimidinyl, 6-chloro-4-pyrimidinyl, 4-amino-2-pyrimidinyl, 5-amino-4-pyrimidinyl, 5-amino-4-pyrimidinyl, 6-amino-4-pyrimidinyl, 5-acetamido-4-pyrimidinyl, 5-acetamido-4-pyrimidinyl, 5-acetamido-4-pyrimidinyl, 6-acetamido-4-pyrimidinyl, 4-amino-5-hydroxy-2-pyrimidinyl, 4-amino-6-hydroxy-2-pyrimidinyl, 5-amino-2-hydroxy-4-pyrimidinyl, 6-amino-2-hydroxy-4-pyrimidinyl, 4,5-diamino-2-pyrimidinyl, 4,6-diamino-2-pyrimidinyl, 2,5-diamino-4-pyrimidinyl and 2,6-diamino-4-pyrimidinyl groups.

Examples of still more preferred such groups include: the 2-imidazolyl, 4-imidazolyl, 1,3,4-oxadiazol-2-yl, 5-methyl-1,3,4-oxadiazol-2-yl, 1,3,4-thiadiazol-2-yl, 5-methyl-1,3,4-thiadiazol-2-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1-methyl-1,2,4-triazol-3-yl, 1-methyl-1,2,4-triazol-5-yl, 5-methyl-1,2,4-triazol-3-yl, tetrazol-5-yl, 1-methyltetrazol-5-yl, 2-pyridyl, 3-pyridyl, 3-methyl-2-pyridyl, 4-methyl-2-pyridyl, 5-methyl-2-pyridyl, 5-methyl-2-pyridyl, 5-amino-2-pyridyl, 4-methyl-2-pyridyl, 5-amino-2-pyridyl, 3-amino-4-pyridyl, 3-hydroxy-2-pyridyl, 4-hydroxy-2-pyridyl, 5-hydroxy-2-pyridyl, 4-methyl-2-pyrimidinyl, 5-pyrimidinyl, 4-methyl-2-pyrimidinyl, 5-methyl-2-pyrimidinyl, 2-methyl-4-pyrimidinyl, 5-methyl-4-pyrimidinyl, 5-methyl-4-pyrimidinyl, 5-methyl-4-pyrimidinyl, 5-amino-4-pyrimidinyl, 6-amino-4-pyrimidinyl, 4-amino-5-hydroxy-2-pyrimidinyl, 4-amino-6-hydroxy-2-pyrimidinyl, 2-amino-5-hydroxy-4-pyrimidinyl, 3-amino-2-hydroxy-4-pyrimidinyl, 3-amino-2-hydroxy-4-pyrimidinyl, 3-amino-2-hydroxy-4-pyrimidinyl, 3-amino-3-hydroxy-4-pyrimidinyl, 3-amino-3-hydroxy-3-pyrimidinyl, 3-amino-3-hydroxy-3-pyrimidinyl, 3-amino-3-hydroxy-3-pyrimidinyl, 3-amino-

Examples of the most preferred such groups include: the 1,3,4-oxadiazol-2-yl, 5-methyl-1,3,4-oxadiazol-2-yl, 1,3,4-thiadiazol-2-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl, 1-methyl-1,2,4-triazol-3-yl, 1-methyl-1,2,4-triazol-5-yl, 5-methyl-1,2,4-triazol-3-yl, 2-pyridyl, 3-pyridyl, 4-pyrimidinyl, 4-pyrimidinyl, 4-methyl-2-pyrimidinyl, 5-methyl-2-pyrimidinyl, 5-methyl-4-pyrimidinyl and 6-methyl-4-pyrimidinyl groups.

The compounds of the present invention can form salts. Where the compound contains a carboxy group, it can form a salt with a cation. Examples of such salts include: salts with an alkali metal, such as sodium, potassium or lithium; salts with an alkaline earth metal, such as barium or calcium; salts with another metal, such as magnesium or aluminium; ammonium salts; organic base salts, such as a salt with triethylamine, diisopropylamine, cyclohexylamine or dicyclohexylamine; and salts with a basic amino acid, such as lysine or arginine. Also, since the compounds of the present invention necessarily contain basic groups in their molecules, they can form acid addition salts. Examples of such acid addition salts include: salts with mineral acids, especially hydrohalic acids (such as hydrofluoric acid, hydrobromic acid, hydroiodic acid or hydrochloric acid), nitric acid, perchloric acid, carbonic acid, sulphuric acid or phosphoric acid; salts with lower alkylsulphonic acids, such as methanesulphonic acid, trifluoromethanesulphonic acid or ethanesulphonic acid; salts with arylsulphonic acids, such as benzenesulphonic acid or p-toluenesulphonic acid; salts with organic carboxylic acids, such as acetic acid, fumaric acid, tartaric acid, oxalic acid, maleic acid, malic acid, succinic acid, benzoic acid, mandelic acid, ascorbic acid, lactic acid, gluconic acid, citric acid or 2-(4-hydroxybenzoyl)benzoic acid; and salts with amino acids, such as glutamic acid or aspartic acid.

The compounds of the present invention may contain several asymmetric carbon atoms in their molecules, and can thus form optical isomers. Although these are all represented herein by a single molecular formula, the present invention includes both the individual, isolated isomers and mixtures, including racemates thereof. Where stereospecific synthesis techniques are employed or optically active compounds are employed as starting materials, individual isomers may be prepared directly; on the other hand, if a mixture of isomers is prepared, the individual isomers may be obtained by conventional resolution techniques.

Of the compounds of the present invention, we prefer those wherein R¹ represents a cyclic amino group having from 3 to 7 ring atoms, of which 1 is a nitrogen atom and the remainder are carbon atoms, or said dialkylamino group, more preferably those wherein R¹ represents a cyclic amino group having 5 or 6 ring atoms, of which 1 is a nitrogen atom and the remainder are carbon atoms, or said dialkylamino group, especially those wherein R¹ represents a 1-pyrrolidinyl, piperidino, dimethylamino or diethylamino group.

Another preferred class of compounds of the present invention are those wherein R² represents a group of formula -NHCHR³R⁴, wherein R³ and R⁴ are independently selected from:

alkyl groups having from 1 to 4 carbon atoms,

phenyl groups which are unsubstituted or have at least one substituent selected from substituents ζ , defined above, and

benzyl and phenethyl groups;

10

25

35

40

55

R3 and R4, together with the carbon atom to which they are attached, represent a cycloalkyl group having

from 3 to 6 ring carbon atoms,

An alternative preferred class of compounds of the present invention are those wherein R^2 represents an aromatic heterocyclic group having 5 ring atoms, of which 1 is a hetero-atom selected from nitrogen, oxygen and sulphur hetero-atoms, there are 0, 1 or 2 additional nitrogen hetero-atoms, and the remaining ring atoms are carbon atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents α and, in the case of substituents on nitrogen atoms, from substituents β , as defined above, and particularly those wherein said aromatic heterocyclic group is selected from furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, oxadiazolyl and thiadiazolyl groups, which are unsubstituted or are substituted as defined above.

A further alternative preferred class of compounds of the present invention are those wherein R^2 represents a group of formula $-B-S(O)_m-R^5$, wherein:

B represents an alkylene or alkylidene group having from 1 to 3 carbon atoms;

m is 0, 1 or 2; and

 R^{5} represents: a substituted alkyl group which has from 2 to 4 carbon atoms and which is substituted at its 2-position by at least one substituent selected from substituents γ ; or an aromatic heterocyclic group which has 5 or 6 ring atoms of which 1 is a hetero-atom selected from nitrogen, oxygen and sulphur hetero-atoms, there are 0, 1, 2 or 3 additional nitrogen hetero-atoms, and the remaining ring atoms are carbon atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents α and, in the case of substituents on nitrogen atoms, from substituents ϵ , as defined above.

We also especially prefer those compounds of the present invention wherein A represents a group of formula -CH=CH- or -(CH₂)_n-, where n is 1 or 2.

A more preferred class of compounds of the present invention are those wherein:

R1 represents a 1-pyrrolidinyl, piperidino, dimethylamino or diethylamino group;

25 R² represents

5

10

20

30

35

40

55

a group of formula -NHCHR3R4, wherein

R³ and R⁴ are independently selected from alkyl groups having from 1 to 4 carbon atoms, benzyl groups, phenethyl groups and phenyl groups which are unsubstituted or which are substituted by at least one substituent selected from methyl, methoxy, fluorine atoms and chlorine atoms,

or

 ${\sf R^3}$ and ${\sf R^4}$, together with the carbon atom to which they are attached, represent a cycloalkyl group having from 3 to 6 ring carbon atoms,

a furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, pyrazolyl, imidazolyl or thiadiazolyl group, which is unsubstituted or is substituted by at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^1 and, in the case of substituents on nitrogen atoms, from methyl and ethyl groups, or a group of formula -B-S(O)_m-R⁵, wherein

 R^5 represents: a substituted ethyl or propyl group which is substituted at its 2-position by at least one substituent selected from the group consisting of substituents γ^1 ; or an imidazolyl, 1,2,4-triazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazolyl, tetrazolyl, pyridyl or pyrimidinyl group which is unsubstituted or has at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^1 and, in the case of substituents on nitrogen atoms, from substituents ϵ^1 ,

B represents an alkylene or alkylidene group having from 1 to 3 carbon atoms,

and m is 0, 1 or 2;

A represents a group of formula -CH=CH- or -(CH₂)_n-, where n is 1 or 2;

substituents α^1 are selected from: methyl groups, ethyl groups, methoxy groups, ethoxy groups, hydroxy groups, chlorine atoms, amino groups; methylamino groups, ethylamino groups, dimethylamino groups, diethylamino groups, alkanoylamino groups having from 1 to 3 carbon atoms, phenyl groups, and substituted phenyl groups in which the substituent is selected from methyl groups, methoxy groups, chlorine atoms and fluorine atoms;

substituents γ^1 are selected from: hydroxy groups; alkanoyloxy groups having from 1 to 5 carbon atoms; substituted alkanoyloxy groups which have 3 or 4 carbon atoms and which are substituted by at least one substituent selected from carboxy, methoxycarbonyl and ethoxy- carbonyl groups; phenylacetoxy groups; benzoyloxy groups; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has from 3 to 6 ring carbon atoms:

substituents ϵ^1 are selected from: methyl groups, ethyl groups, and hydroxyalkyl groups having from 2 to 4 carbon atoms.

Still more preferred compounds of the present invention are those compounds of formula (I) and salts thereof, wherein:

 R^1 represents a 1-pyrrolidinyl or piperidino group; R^2 represents

a group of formula -NHCHR3R4, wherein

R3 and R4 are independently selected from methyl, ethyl, phenyl and benzyl groups,

or

R³ and R⁴, together with the carbon atom to which they are attached, represent a cycloalkyl group having from 3 to 5 ring carbon atoms,

a furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, pyrazolyl or 1,2,3-thiadiazolyl group, which is unsubstituted or is substituted by at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^2 and, in the case of substituents on nitrogen atoms, from methyl and ethyl groups,

or a group of formula -B-S(O)_m-R⁵, wherein

 R^5 represents: a substituted ethyl or propyl group which is substituted at its 2-position by at least one substituent selected from substituents γ^2 ; or a 1,2,4-triazolyl, 1,3,4-oxadiazolyl or pyrimidinyl group which is unsubstituted or has at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^3 and, in the case of substituents on nitrogen atoms, from methyl and ethyl groups,

B represents an alkylene or alkylidene group having from 1 to 3 carbon atoms,

and m is 0 or 1;

A represents a group of formula -CH=CH- or -(CH₂)₂-;

said substituents α^2 are selected from the group consisting of: methyl groups, ethyl groups, methoxy groups, ethoxy groups, hydroxy groups, chlorine atoms, amino groups, acetamido groups and phenyl groups;

substituents α^3 are selected from: methyl groups, ethyl groups, methoxy groups, ethoxy groups, hydroxy groups, chlorine atoms, amino groups, and acetamido groups;

substituents γ^2 are selected from: hydroxy groups; acetoxy groups; propionyloxy groups; substituted alkanoyloxy groups which have 3 or 4 carbon atoms and which are substituted by at least one substituent selected from carboxy, methoxycarbonyl and ethoxycarbonyl groups; phenylacetoxy groups; benzoyloxy groups; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has from 3 to 6 ring carbon atoms.

Yet more preferred compounds of the present invention are those compounds of formula (I) and salts thereof, wherein:

R¹ represents a piperidino group;

30 R² represents

10

15

20

25

35

40

50

a group of formula -NHCHR3R4, wherein

R3 and R4 are independently selected from methyl, ethyl, phenyl and benzyl groups,

or

R³ and R⁴, together with the carbon atom to which they are attached, represent a cycloalkyl group having 3 or 4 ring carbon atoms,

a thienyl, pyrrolyl, thiazolyl, pyrazolyl or 1,2,3-thiadiazolyl group, which is unsubstituted or is substituted by at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^4 and, in the case of substituents on nitrogen atoms, from methyl groups,

or a group of formula -B-S(O)_m-R⁵, wherein

B represents a methylene group and R⁵ represents: a substituted ethyl or propyl group which is substituted at its 2-position by at least one substituent selected from substituents γ^3 ;

or

B represents a trimethylene group and R⁵ represents: a 1,2,4-triazolyl, 1,3,4-oxadiazolyl or pyrimidinyl group which is unsubstituted or has at least one substituent selected, in the case of substituents on carbon atoms, from methyl, hydroxy and amino groups, and, in the case of substituents on nitrogen atoms, from methyl groups,

and m is 0;

A represents a group of formula -CH=CH-;

substituents α^4 are selected from: methyl groups, methoxy groups, hydroxy groups, chlorine atoms and amino groups;

substituents γ^3 are selected from: hydroxy groups; acetoxy groups; propionyloxy groups; substituted propionoyloxy groups which are substituted by at least one substituent selected from carboxy, methoxycarbonyl and ethoxycarbonyl groups; benzoyloxy groups; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has 5 or 6 ring carbon atoms.

The most preferred compounds of the present invention are those compounds of formula (I) and salts thereof, wherein:

R¹ represents a piperidino group;

R² represents:

a pyrazolyl group, which is unsubstituted or is substituted on a carbon atom by at least one amino substituent,

or a group of formula -B-S(O)_m-R⁵, wherein

B represents a methylene group and R⁵ represents: a substituted ethyl group which is substituted at its 2-position by at least one substituent selected from substituents hydroxy, acetoxy, propionyloxy, benzoyloxy, cyclopentylcarbonyloxy and cyclohexylcarbonyloxy groups;

or

B represents a trimethylene group and R⁵ represents: a 2-pyrimidinyl group; and m is 0;

A represents a group of formula -CH=CH-.

Examples of specific preferred compounds of the present invention are those compounds of formula (I-1), in which the substituents are as defined in Table 1, and those compounds of formula (I-1), in which the substituents are as defined in Tables 2 and 3.

15

5

10

$$R^1$$
 O A $NHCOR^2$ $(I-1)$

20

$$R^{1}$$

$$O A NHCO-B-S(O)_{m}R^{5}$$

25

In the Tables, the following abbreviations are used:

acetyl Ac azetidino Aze Azi aziridino 30 Boz benzoyl butyl Bu cBu cyclobutyl iBu isobutyl sBu 35 sec-butyl Byr butyryl iByr isobutyryl Βz benzyl Εt ethyl Etc ethoxycarbonyl Fo formyl Fur furyl Hp heptyl сНр cycloheptyl Hx hexyl сНх cyclohexyl ĪНх isohexyl Imidazo imidazolyl Isoxazo isoxazolyl Isothiazo isothiazolyl Ме methyl Mec methoxycarbonyl Naph naphthyl сОс cyclooctyl 55 Oxazo oxazolyl Oxadiazo oxadiazolyl Ph phenyl

phenoxycarbonyl

Phc

Pip piperidino Piv pivaloyl Pn pentyl cPn cyclopentyl . iPn isopentyl 5 nPn neopentyl Ē۲ propyl cyclopropyl cPr iPr isopropyl Prc propoxycarbonyl 10 Prn propionyl pyrrolyl Pyl Pymz pyrimidinyl 1-pyrrolidinyl Pyr Pyrazo pyrazolyl 15 Pyz pyridyl Tetrazo tetrazolyl thienyl Thi Thiazo thiazolyl thiadiazolyl 20 Thiadiazo Triazo triazolyl Val valeryl įVal isovaleryl.

25

30

35

40

45

50

55

Table 1

Cpd.	_		
No.	R ¹	A	R ²
1-1	Pip	CH=CH	2-Fur
1-2	Pip	CH=CH	3-Fur
1-3	Pip	CH=CH	4-Me-2-Fur
1-4	Pip	CH=CH	5-Me-2-Fur
1-5	Pip	CH=CH	2-Me-3-Fur
1-6	Pip	CH=CH	5-Me-3-Fur
1-7	Pip	CH=CH	5-C1-2-Fur
1-8	${\tt Pip}$	CH=CH	5-Cl-3-Fur
1-9	Pip	CH=CH	5-NH ₂ -2-Fur
1-10	Pip	CH=CH	5-AcNH-2-Fur
1-11	Pip	CH=CH	5-Ph-2-Fur
1-12	Pip	CH=CH	5-(4-MePh)-2-Fur
1-13	Pip	CH=CH	5-(4-ClPh)-2-Fur
1-14	Pip	CH=CH	3-Me-5-NH ₂ -2-Fur
1-15	Pip	CH=CH	2,4-diMe-3-Fur
1-16	Pip	CH=CH	2-Thi
1-17	Pip	CH=CH	3-Thi
1-18	Pip	CH=CH	3-Me-2-Thi
1-19	Pip	CH=CH	5-Me-2-Thi
1-20	Pip	CH=CH	2-Me-3-Thi
1-21	Pip	CH=CH	4-Me-3-Thi
1-22	Pip	CH=CH	5-Me-3-Thi
1-23	Pip	CH=CH	4-MeO-2-Thi
1-24	Pip	CH=CH	4-MeO-3-Thi
1-25	Pip	CH=CH	4-HO-2-Thi
1-26	Pip	CH=CH	4-HO-3-Thi
1-27	Pip	CH=CH	5-Et-2-Thi
1-28	Pip	CH=CH	5-C1-2-Thi

			
Cpd.			
No.	R ¹	A	R ²
·			·
1-29	Pip	CH=CH	5-C1-3-Thi
1-30	Pip """	CH=CH	5-Br-3-Thi
1-31	Pip	CH=CH	3-NH ₂ -2-Thi
1-32	Pip	CH=CH	5-NH ₂ -2-Thi
1-33	Pip	CH=CH	2-NH ₂ -3-Thi
1-34	Pip	CH=CH	4-NH ₂ -3-Thi
1-35	Pip	CH=CH	3-AcNH-2-Thi
1-36	Pip	CH=CH	4-AcNH-3-Thi
1-37	Pip	CH=CH	5-Ph-2-Thi
1-38	Pip	CH=CH	4,5-diMe-2-Thi
1-39	Pip	CH=CH	3,5-diMe-2-Thi
1-40	Pip	CH=CH	2,5-diMe-3-Thi
1-41	Pip	CH=CH	4,5-diMe-3-Thi
1-42	Pip	CH=CH	4,5-diCl-2-Thi
1-43	Pip	CH=CH	2-NH ₂ -5-Ph-3-Thi
1-44	Pip	CH=CH	4-NH ₂ -2,5-diMe-3-Th
1-45	Pip	CH=CH	2-Py1
1-46.	Pip	CH=CH	3-Pyl
1-47	Pip	CH=CH	1-Me-2-Pyl
1-48	Pip	CH=CH	3-Me-2-Pyl
1-49	Pip	CH=CH	4-Me-2-Pyl
1-50	Pip	CH=CH	2-Me-3-Pyl
1-51	Pip	CH=CH	5-Me-3-Pyl
1-52	Pip	CH=CH	3-NH ₂ -2-Pyl
1-53	Pip	CH=CH	4-NH ₂ -2-Pyl
1-54	Pip	CH=CH	3-AcNH-2-Pyl
1-55	Pip	CH=CH	5-Cl-2-Pyl
1-56	Pip	CH=CH	5-Cl-3-Pyl

5							
*	Cpd.						
	No.	R ¹	A	R ²			
10							
	1-57	Pip	CH=CH	4-Ph-2-Pyl			
	1-58	Pip	CH=CH	5-Ph-3-Pyl			
15	1-59	Pip	CH=CH	1-Me-4-MeO-3-Pyl			
	1-60	Pip	CH=CH	1-Me-4-HO-3-Pyl			
	1-61	Pip	CH=CH	3,5-diMe-2-Pyl			
00	1-62	Pip	CH=CH	4,5-diMe-2-Pyl			
20	1-63	Pip	CH=CH	1,3-diMe-2-Pyl			
	1-64	Pip	CH=CH	5-NH ₂ -1-Me-2-Pyl			
	1-65	Pip	CH=CH	4-NH ₂ -3,5-diMe-2-Pyl			
25	1-66	Pip	CH=CH	5-Br-1,4-diMe-3-Pyl			
	1-67	Pip	CH=CH	4-0xazo			
	1-68	Pip	CH=CH	5-0xazo			
30	1-69	Pip	CH=CH	2-0xazo			
	1-70	Pip	CH=CH	2-Me-4-0xazo			
	1-71	Pip	CH=CH	2-Ph-4-0xazo			
	1-72	Pip	CH=CH	5-Ph-2-Oxazo			
35	1-73	Pip	CH=CH	2-HO-4-0xazo			
	1-74	Pip	CH=CH	2,5-diMe-4-0xazo			
•	1-75	Pip	CH=CH	4-Me-2-Ph-5-Oxazo			
40	1-76	Pip	CH=CH	3-Isoxazo			
	1-77	Pip	CH=CH	4-Isoxazo			
	1-78	Pip	CH=CH	4-Me-3-Isoxazo			
4	1-79	Pip	CH=CH	5-Me-3-Isoxazo			
45	1-80	Pip	CH=CH	3-Me-4-Isoxazo			
	1-81	Pip	CH=CH	4-MeO-3-Isoxazo			
	1-82	Pip	CH=CH	4-HO-3-Isoxazo			
50	1-83	Pip	CH=CH	3-HO-4-Isoxazo			
	1-84	Pip	CH=CH	3-HO-5-Isoxazo			

Cpd.			
No.	R ¹	A	R ²
1-85	Pip	CH=CH	4-NH ₂ -3-Isoxazo
1-86	Pip	CH=CH	5-NH ₂ -4-Isoxazo
1-87	Pip	CH=CH	5-Ph-3-Isoxazo
1-88	Pip	CH=CH	4-Ph-3-Isoxazo
1-89	Pip	CH=CH	4,5-diMe-3-Isoxazo
1-90	Pip	CH=CH	4-HO-5-Me-3-Isoxazo
1-91	Pip	CH=CH	2-Thiazo
1-92	Pip	CH=CH	4-Thiazo
1-93	Pip	CH=CH	5-Thiazo
1-94	Pip	CH=CH	4-Me-2-Thiazo
1-95	Pip	CH=CH	2-Me-4-Thiazo
1-96	Pip	CH=CH	2-Me-5-Thiazo
1-97	Pip	CH=CH	2-MeO-4-Thiazo
1-98	Pip	CH=CH	2-MeO-5-Thiazo
1-99	Pip	CH=CH	2-HO-4-Thiazo
1-100	Pip	CH=CH	2-HO-5-Thiazo
1-101	Pip	CH=CH	2-Cl-5-Thiazo
1-102	Pip	CH=CH	5-Cl-2-Thiazo
1-103	Pip	CH=CH	2-NH ₂ -4-Thiazo
1-104	Pip	CH=CH	2-NH ₂ -5-Thiazo
1-105	Pip	CH=CH	5-NH ₂ -4-Thiazo
1-106	Pip	CH=CH	2-AcNH-4-Thiazo
1-107	Pip	CH=CH	5-AcNH-4-Thiazo
1-108	Pip	CH=CH	2-Ph-4-Thiazo
1-109	Pip	CH=CH	4,5-diMe-2-Thiazo
1-110	Pip	CH=CH	2-HO-5-Me-4-Thiazo
1-111	Pip	CH=CH	5-NH ₂ -2-Me-4-Thiazo
1-112	Pip	CH=CH	2 2-Cl-4-Me-5-Thiazo

Cpd.	1		2
No.	R ¹	A	R ²
	- · · · · · · · · · · · · · · · · · · ·		
1-113	Pip	CH=CH	3-Isothiazo
1-114	Pip	CH=CH	4-Isothiazo
1-115	Pip	CH=CH	3-Pyrazo
1-116	Pip	CH=CH	4-Pyrazo
1-117	Pip	CH=CH	1-Me-3-Pyrazo
1-118	Pip	CH=CH	1-Et-3-Pyrazo
1-119	Pip	CH=CH	1-Pr-3-Pyrazo
1-120	Pip	CH=CH	1-Me-4-Pyrazo
1-121	Pip	CH=CH	1-Et-4-Pyrazo
1-122	Pip	CH=CH	1-Pr-4-Pyrazo
1-123	Pip	CH=CH	1-Bu-4-Pyrazo
1-124	Pip	CH=CH	4-Me-3-Pyrazo
1-125	Pip	CH=CH	5-Me-3-Pyrazo
1-126	Pip	CH=CH	5-Et-3-Pyrazo
1-127	Pip	CH=CH	5-Pr-3-Pyrazo
1-128	Pip	CH=CH	5-Me-4-Pyrazo
1-129	Pip	CH=CH	4-MeO-3-Pyrazo
1-130	Pip	CH=CH	4-PrO-3-Pyrazo
1-131	Pip	CH=CH	4-HO-3-Pyrazo
1-132	Pip	CH=CH	4-Cl-3-Pyrazo
1-133	Pip	CH=CH	4-Br-3-Pyrazo
1-134	Pip	CH=CH	3-Cl-4-Pyrazo
1-135	Pip	CH=CH	4-NH ₂ -3-Pyrazo
1-136	Pip	CH=CH	5-NH ₂ -3-Pyrazo
1-137	Pip	CH=CH	3-NH ₂ -4-Pyrazo
1-138	Pip	CH=CH	4-AcNH-3-Pyrazo
1-139	Pip	CH=CH	5-AcNH-3-Pyrazo
1-140	Pip	CH=CH	3-AcNH-4-Pyrazo

5								
	Cpd. No.	R ¹	A	R ²				
10								
	1-141	Pip	CH=CH	3-EtCONH-4-Pyrazo				
	1-142	Pip	CH=CH	5-Ph-3-Pyrazo				
15	1-143	Pip	CH=CH	1,5-diMe-3-Pyrazo				
	1-144	Pip	CH=CH	1,4-diMe-3-Pyrazo				
	1-145	Pip	CH=CH	4,5-diMe-3-Pyrazo				
	1-146	Pip	CH=CH	3-Me-4-Pyrazo				
20	1-147	Pip	CH=CH	3,5-diMe-4-Pyrazo				
	1-148	Pip	CH=CH	1,5-diMe-4-Pyrazo				
	1-149	Pip	CH=CH	1,3-diMe-4-Pyrazo				
25	1-150	Pip	CH=CH	1,3-diMe-5-Pyrazo				
	1-151	Pip	CH=CH	3-Cl-5-Me-4-Pyrazo				
	1-152	Pip	CH=CH	3-Cl-1-Me-4-Pyrazo				
30	1-153	Pip	CH=CH	5-Cl-1-Me-4-Pyrazo				
30	1-154	Pip	CH=CH	4-Cl-1-Me-3-Pyrazo				
	1-155	Pip	CH=CH	4-C1-5-Me-3-Pyrazo				
	1-156	Pip	CH=CH	4-Cl-1-Me-3-Pyrazo				
35	1-157	Pip	CH=CH	3-NH ₂ -5-Me-4-Pyrazo				
	1-158	Pip	CH=CH	3-NH ₂ -1-Me-4-Pyrazo				
•	1-159	Pip	CH=CH	5-NH ₂ -1-Me-4-Pyrazo				
40	1-160	Pip	CH=CH	5-NH ₂ -4-Me-3-Pyrazo				
	1-161	Pip	CH=CH	5-NH ₂ -1-Me-3-Pyrazo				
	1-162	Pip	CH=CH	5-AcNH-1-Me-4-Pyrazo				
	1-163	Pip	CH=CH	4-NH ₂ -5-Me-3-Pyrazo				
45	1-164	Pip	CH=CH	4-HO-5-Me-3-Pyrazo				
	1-165	Pip	CH=CH	5-AcNH-3-Me-4-Pyrazo				
	1-166	Pip	CH=CH	1,3,5-triMe-4-Pyrazo				
· <i>50</i>	1-167	Pip	CH=CH	1,3,4-triMe-5-Pyrazo				
	1-168	Pip	CH=CH	4-Cl-1,3-diMe-5-Pyrazo				

Cpd.			
No.	R ¹	A	R ²
1-169	Pip	CH=CH	2-Imidazo
1-170	Pip	CH=CH	4-Imidazo
1-171	Pip	CH=CH	2-Me-4-Imidazo
1-172	Pip	CH=CH	1-Me-4-Imidazo
1-173	Pip	CH=CH	5-Me-4-Imidazo
1-174	Pip	CH=CH	5-Me-2-Imidazo
1-175	Pip	CH=CH	1-Me-2-Imidazo
1-176	Pip	CH=CH	1,2,3-Oxadiazo-5-yl
1-177	Pip	CH=CH	1,3,4-Oxadiazo-2-yl
1-178	Pip	CH=CH	1,2,3-Oxadiazo-4-yl
1-179	Pip	CH=CH	1,2,4-0xadiazo-5-yl
1-180	Pip	CH=CH	1,2,4-Oxadiazo-3-yl
1-181	Pip	CH=CH	1,2,5-Oxadiazo-3-yl
1-182	Pip	CH=CH	5-Me-1,2,3-Oxadiazo-4-yl
1-183	Pip	CH=CH	4-Me-1,2,5-Oxadiazo-3-yl
1-184	Pip	CH=CH	4-Ph-1,2,5-Oxadiazo-3-yl
1-185	Pip	CH=CH	1,2,3-Thiadiazo-4-yl
1-186	Pip	CH=CH	1,2,3-Thiadiazo-5-yl
1-187	Pip	CH=CH	1,3,4-Thiadiazo-2-yl
1-188	Pip	CH=CH	1,2,4-Thiadiazo-3-yl
1-189	Pip	CH=CH	1,2,4-Thiadiazo-5-yl
1-190	Pip	CH=CH	1,2,5-Thiadiazo-3-yl
1-191	Pip	CH=CH	4-Me-1,2,3-Thiadiazo-5-y
1-192	Pip	CH=CH	5-Me-1,2,3-Thiadiazo-4-yl
1-193	Pip	CH=CH	4-Me-1,2,5-Thiadiazo-3-yl
1-194	Pip	CH=CH	5-Ph-1,2,3-Thiadiazo-4-yl
1-195	Pyr	CH=CH	2-Fur
1-196	Pyr	CH=CH	3-Fur

				·
	Cpd.			
	No.	R ¹	A	R ²
)				
	1_107	D		
	1-197	Pyr	CH=CH	4-Me-2-Fur
	1-198	Pyr	CH=CH	2-Me-3-Fur
i	1-199	Pyr	CH=CH	2,4-diMe-3-Fur
	1-200	Pyr	CH=CH	2-Thi
	1-201	Pyr	CH=CH	3-Thi
	1-202	Pyr	CH=CH	3-Me-2-Thi
	1-203	Pyr	CH=CH	2-Me-3-Thi
	1-204	Pyr	CH=CH	4-Me-3-Thi
	1-205	Pyr	CH=CH	4-MeO-3-Thi
	1-206	Pyr	CH=CH	4-HO-2-Thi
	1-207	Pyr	CH=CH	5-Cl-3-Thi
	1-208	Pyr	CH=CH	3-NH ₂ -2-Thi
	1-209	Pyr	CH=CH	2-NH ₂ -3-Thi
	1-210	Pyr	CH=CH	3-AcNH-2-Thi
	1-211	Pyr	CH=CH	5-Ph-2-Thi
	1-212	Pyr	CH=CH	4,5-diMe-2-Thi
	1-213	Pyr	CH=CH	2,5-diMe-3-Thi
	1-214	Pyr	CH=CH	4,5-diCl-2-Thi
	1-215	Pyr	CH=CH	4-NH ₂ -2,5-diMe-3-Thi
	1-216	Pyr	CH=CH	2-Py1
	1-217	Pyr	CH=CH	3-Pyl
	1-218	Pyr	CH=CH	1-Me-2-Pyl
	1-219	Pyr	CH=CH	3-Me-2-Pyl
	1-220	Pyr	CH=CH	4-Me-2-Pyl
	1-221	Pyr	CH=CH	2-Me-3-Pyl
	1-222	Pyr	CH=CH	1-Me-4-MeO-3-Pyl
	1-223	Pyr	CH=CH	3,5-diMe-2-Pyl
	1-224	Pyr	CH=CH	•
	+ 44 7	EYL	Cn=Cn	1,3-diMe-2-Pyl

Cpd.	4		
No.	R ¹	A	R ²
	•		
1-225	Pyr	CH=CH	4-0xazo
1-226	Pyr	CH=CH	5-Oxazo
1-227	Pyr	CH=CH	2-Oxazo
1-228	Pyr	CH=CH	2-Me-4-0xazo
1-229	Pyr	CH=CH	5-Ph-2-0xazo
1-230	Pyr	CH=CH	2,5-diMe-4-Oxazo
1-231	Pyr	CH=CH	3-Isoxazo
1-232	Pyr	CH=CH	4-Isoxazo
1-233	Pyr	CH=CH	5-Me-3-Isoxazo
1-234	Pyr	CH=CH	3-Me-4-Isoxazo
1-235	Pyr	CH=CH	4-MeO-3-Isoxazo
1-236	Pyr	CH≓CH	4-HO-3-Isoxazo
1-237	Pyr	CH=CH	3-HO-5-Isoxazo
1-238	Pyr	CH=CH	5-H0-4-Isoxazo
1-239	Pyr	CH=CH	4-NH ₂ -3-Isoxazo
1-240	Pyr	CH=CH	5-Ph-3-Isoxazo
1-241	Pyr	CH=CH	4,5-diMe-3-Isoxazo
1-242	Pyr	CH=CH	4-HO-5-Me-3-Isoxazo
1-243	Pyr	CH=CH	2-Thiazo
1-244	Pyr	CH=CH	4-Thiazo
1-245	Pyr	CH=CH	5-Thiazo
1-246	Pyr	CH=CH	4-Me-2-Thiazo
1-247	Pyr	CH=CH	2-Me-5-Thiazo
1-248	Pyr	CH=CH	2-MeO-4-Thiazo
1-249	Pyr	CH=CH	2-MeO-5-Thiazo
1-250	Pyr	CH=CH	2-HO-5-Thiazo
1-251	Pyr	CH=CH	5-Cl-2-Thiazo
1-252	Pyr	CH=CH	2-NH ₂ -4-Thiazo
			4

Cpd.			
No.	R ¹	A	R ²
		· · · · · · · · · · · · · · · · · · ·	
1-253	Pyr	CH=CH	2-AcNH-4-Thiazo
1-254	Pyr	CH=CH	4,5-diMe-2-Thiazo
1-255	Pyr	CH=CH	2-HO-5-Me-4-Thiazo
1-256	Pyr	CH=CH	5-NH ₂ -2-Me-4-Thiazo
1-257	Pyr	CH=CH	3-Isothiazo
1-258	Pyr	CH=CH	4-Isothiazo
1-259	Pyr	CH=CH	3-Pyrazo
1-260	Pyr	CH=CH	4-Pyrazo
1-261	Pyr	CH=CH	1-Me-3-Pyrazo
1-262	Pyr	CH=CH	1-Et-3-Pyrazo
1-263	Pyr	CH=CH	1-Me-4-Pyrazo
1-264	Pyr	CH=CH	1-Et-4-Pyrazo
1-265	Pyr	CH=CH	4-Me-3-Pyrazo
1-266	Pyr	CH=CH	5-Me-3-Pyrazo
1-267	Pyr	CH=CH	5-Me-4-Pyrazo
1-268	Pyr	CH=CH	4-MeO-3-Pyrazo
1-269	Pyr	CH=CH	4-HO-3-Pyrazo
1-270	Pyr	CH=CH	4-Cl-3-Pyrazo
1-271	Pyr	CH=CH	4-NH ₂ -3-Pyrazo
1-272	Pyr	CH=CH	5-NH ₂ -3-Pyrazo
L-273	Pyr	CH=CH	3-NH ₂ -4-Pyrazo
L-274	Pyr	CH=CH	4-AcNH-3-Pyrazo
L-275	Pyr	CH=CH	5-Ph-3-Pyrazo
1-276	Pyr	CH=CH	1,5-diMe-3-Pyrazo
277	Pyr	CH=CH	1,4-diMe-3-Pyrazo
-278	Pyr	CH=CH	3,5-diMe-4-Pyrazo
279	Pyr	CH=CH	1,5-diMe-4-Pyrazo
-280	Pyr	CH=CH	1,3-diMe-4-Pyrazo

5		•		
	Cpd.			
	No.	R ¹	A	R ²
10				
	•	٠	•	
	1-281	Pyr	CH=CH	1,3-diMe-5-Pyrazo
	1-282	Pyr	CH=CH	3-Cl-5-Me-4-Pyrazo
15	1-283	Pyr	CH=CH	3-Cl-1-Me-4-Pyrazo
	1-284	Pyr	CH=CH	4-Cl-5-Me-3-Pyrazo
٠	1-285	Pyr	CH=CH	4-Cl-1-Me-3-Pyrazo
20	1-286	Pyr	CH=CH	3-NH ₂ -5-Me-4-Pyrazo
	1-287	Pyr	CH=CH	3-NH ₂ -1-Me-4-Pyrazo
	1-288	Pyr	CH=CH	5-NH ₂ -1-Me-4-Pyrazo
	1-289	Pyr	CH=CH	5-NH ₂ -4-Me-3-Pyrazo
25	1-290	Pyr	CH=CH	5-NH ₂ -1-Me-3-Pyrazo
	1-291	Pyr	CH=CH	5-NH ₂ -3-Me-3-Pyrazo
	1-292	Pyr	CH=CH	4-NH ₂ -5-Me-3-Pyrazo
30	1-293	Pyr	CH=CH	4-HO-5-Me-3-Pyrazo
	1-294	Pyr	CH=CH	1,3,5-triMe-4-Pyrazo
	1-295	Pyr	CH=CH	1,3,4-triMe-5-Pyrazo
•	1-296	Pyr	CH=CH	4-Cl-1,3-diMe-5-Pyrazo
35	1-297	Pyr	CH=CH	2-Imidazo
	1-298	Pyr	CH=CH	4-Imidazo
*	1-299	Pyr	CH=CH	1-Me-4-Imidazo
40	1-300	Pyr	CH=CH	5-Me-4-Imidazo
40	1-301	Pyr	CH=CH	5-Me-2-Imidazo
	1-302	Pyr	CH=CH	1-Me-2-Imidazo
	1-303	Pyr	CH=CH	1,2,3-Oxadiazo-5-yl
45	1-304	Pyr	CH=CH	1,2,4-Oxadiazo-5-yl
	1-305	Pyr	CH=CH	1,2,5-Oxadiazo-3-yl
	1-306	Pyr	CH=CH	5-Me-1,2,3-Oxadiazo-4-yl
50	1-307	Pyr	CH=CH	1,2,3-Thiadiazo-4-yl
50	1-308	Pyr	CH=CH	1,2,4-Thiadiazo-2-yl

_				
5	Cpd.			
	No.	R^{1}	A	R ²
*.	·	<u></u>		
10				
	1-309	Pyr	CH=CH	1,2,5-Thiadiazo-3-yl
	1-310	Pyr	CH=CH	4-Me-1,2,3-Thiadiazo-5-yl
15	1-311	Pyr	CH=CH	5-Ph-1,2,3-Thiadiazo-4-yl
	1-312	NMe ₂	CH=CH	2-Fur
	1-313	NMe ₂	CH=CH	3-Fur
	1-314	NMe ₂	CH=CH	4-Me-2-Fur
20	1-315	NMe ₂	CH=CH	2,4-diMe-3-Fur
	1-316	NMe ₂	CH=CH	2-Thi
	1-317	NMe ₂	CH=CH	3-Thi
25	1-318	NMe ₂	CH=CH	3-Me-2-Thi
	1-319	NMe ₂	CH=CH	2-Me-3-Thi
	1-320	NMe ₂	CH=CH	4,5-diMe-2-Thi
	1-321	NMe ₂	CH=CH	2-Pyl
30	1-322	NMe ₂	CH=CH	3-Pyl
	1-323	NMe ₂	CH=CH	1-Me-2-Pyl
•	1-324	NMe ₂	CH=CH	4-Me-2-Pyl
35	1-325	NMe ₂	CH=CH	2-Me-3-Pyl
	1-326	NMe ₂	CH=CH	3,5-diMe-2-Pyl
	1-327	NMe ₂	CH=CH	1,3-diMe-2-Pyl
40	1-328	NMe ₂	CH=CH	4-0xazo
	1-329	NMe ₂	CH=CH	5-0xazo
•	1-330	NMe ₂	CH=CH	2-0xazo
	1-331	NMe ₂	CH=CH	2-Me-4-Oxazo
45	1-332	NMe_2	CH=CH	2,5-diMe-4-0xazo
	1-333	$^{ m NMe}_2$	CH=CH	3-Isoxazo
	1-334	NMe ₂	CH=CH	4-Isoxazo
50	1-335	NMe ₂	CH=CH	5-Me-3-Isoxazo
	1-336	NMe ₂	CH=CH	4-Me0-3-Isoxazo

Cpd.			
No.	R ¹	A	R ²
1-337	NMe ₂	CH=CH	4-HO-3-Isoxazo
 1-338	NMe ₂	CH=CH	4,5-diMe-3-Isoxazo
1-339	NMe ₂	CH=CH	4-HO-5-Me-3-Isoxzo
1-340	NMe_2	CH=CH	2-Thiazo
1-341	NMe ₂	CH=CH	4-Thiazo
1-342	NMe ₂	CH=CH	5-Thiazo
1-343	NMe_2	CH=CH	4-Me-2-Thiazo
1-344	NMe ₂	CH=CH	2-Me-5-Thiazo
1-345	NMe ₂	CH=CH	2-MeO-4-Thiazo
1-346	NMe ₂	CH=CH	4,5-diMe-2-Thiazo
1-347	NMe ₂	CH=CH	3-Isothiazo
1-348	NMe ₂	CH=CH	4-Isothiazo
1-349	NMe ₂	CH=CH	3-Pyrazo
1-350	NMe ₂	CH=CH	4-Pyrazo
1-351	NMe ₂	CH=CH	1-Me-3-Pyrazo
1-352	NMe ₂	CH=CH	1-Me-4-Pyrazo
1-353	NMe ₂	CH=CH	4-Me-3-Pyrazo
1-354	NMe ₂	CH=CH	5-Me-3-Pyrazo
1-355	NMe ₂	CH=CH	5-Me-4-Pyrazo
1-356	NMe ₂	CH=CH	4-MeO-3-Pyrazo
1-357	NMe ₂	CH=CH	4-HO-3-Pyrazo
1-358	NMe ₂	CH=CH	3,5-diMe-4-Pyrazo
1-359	NMe ₂	CH=CH	1,3,5-triMe-4-Pyrazo
1-360	NMe ₂	CH=CH	1,3,4-triMe-5-Pyrazo
1-361	NMe ₂	CH=CH	2-Imidazo
1-362	NMe ₂	CH=CH	4-Imidazo
1-363	NMe ₂	CH=CH	5-Me-4-Imidazo
1-364	Azi	CH=CH	2-Fur

Cpd.	,	•	
No.	R^1	A	R ²
·			
1-365	Azi	CH=CH	3-Fur
1-366	Azi	CH=CH	4-Me-2-Fur
1-367	Azi	CH=CH	2-Thi
1-368	Azi	CH=CH	3-Thi
1-369	Azi	CH=CH	5-Me-2-Thi
1-370	Azi	CH=CH	2-Pyl
1-371	Azi	CH=CH	3-Pyl
1-372	Azi	CH=CH	1-Me-2-Pyl
1-373	Azi	CH=CH	4-Me-2-Pyl
1-374	Azi	CH=CH	4-0xazo
1-375	Azi	CH=CH	5-0xazo
1-376	Azi	CH=CH	2-0xazo
1-377	Azi	CH=CH	3-Isoxazo
1-378	Azi	CH=CH	4-Isoxazo
1-379	Azi	CH=CH	4-HO-3-Isoxazo
1-380	Azi	CH=CH	2-Thiazo
1-381	Azi	CH=CH	4-Thiazo
1-382	Azi	CH=CH	5-Thiazo
1-383	Azi	CH=CH	2-Me-5-Thiazo
1-384	Azi	CH=CH	3-Pyrazo
1-385	Azi	CH=CH	4-Pyrazo
1-386	Azi	CH=CH	1-Me-3-Pyrazo
1-387	Azi	CH=CH	4-Me-3-Pyrazo
1-388	Azi	CH=CH	5-Me-4-Pyrazo
1-389	Azi	CH=CH	4-NH ₂ -3-Pyrazo
1-390	Azi	CH=CH	3-NH ₂ -4-Pyrazo
1-391	Azi	CH=CH	3,5-diMe-4-Pyrazo
1-392	Azi	CH=CH	1,3,5-triMe-4-Pyrazo

5					
	Cpd.		•		. ,
	No.	R ¹	A	R ²	
10					
	1-393	Azi	CH=CH	2-Imidazo	
	1-394	Azi	CH=CH	4-Imidazo	
15	1-395	Azi	CH=CH	5-Me-4-Imidazo	•
	1-396	Aze	CH=CH	2-Fur	
•	1-397	Aze	CH=CH	3-Fur	
20	1-398	Aze	CH=CH	4-Me-2-Fur	
20	1-399	Aze	CH=CH	2-Thi	
	1-400	Aze	CH=CH	3-Thi	
•	1-401	Aze	CH=CH	5-Me-2-Thi	
25	1-402	Aze	CH=CH	2-Pyl	
	1-403	Aze	CH=CH	3-Pyl	
	1-404	Aze	CH=CH	1-Me-2-Pyl	
30	1-405	Aze	CH=CH	4-Me-2-Pyl	
	1-406	Aze	CH=CH	4-0xazo	
	1-407	Aze	CH=CH	5-0xazo	
•	1-408	Aze	CH=CH	2-0xazo	
35	1-409	Aze	CH=CH	3-Isoxazo	
	1-410	Aze	CH=CH	4-Isoxazo	
*	1-411	Aze	CH=CH	4-HO-3-Isoxazo	
40	1-412	Aze	CH=CH	2-Thiazo	
40	1-413	Aze	CH=CH	4-Thiazo	
*	1-414	Aze	CH=CH	5-Thiazo	
	1-415	Aze	CH=CH	2-Me-5-Thiazo	
45	1-416	Aze	CH=CH	3-Pyrazo	
	1-417	Aze	CH=CH	4-Pyrazo	
	1-418	Aze	CH=CH	1-Me-3-Pyrazo	
50	1-419	Aze	CH=CH	4-Me-3-Pyrazo	
	1-420	Aze	CH=CH	5-Me-4-Pyrazo	

Table 1 (cont.)

Cpd.			
No.	R^1	A	R ²
1-42	Aze	CH=CH	4-NH ₂ -3-Pyrazo
1-422	Aze	CH=CH	3-NH ₂ -4-Pyrazo
1-423	Aze	CH=CH	3,5-diMe-4-Pyrazo
1-424	Aze	CH=CH	1,3,5-triMe-4-Pyrazo
1-425	Aze	CH=CH	2-Imidazo
1-426	Aze	CH=CH	4-Imidazo
1-427	Aze	CH=CH	5-Me-4-Imidazo
1-428	Pip	CH=CH	1,2,3-Triazo-4-yl
1-429	Pip	CH=CH	1-Me-1,2,3-Triazo-4-yl
1-430	Pip	CH=CH	5-Me-1,2,3-Triazo-4-yl
1-431	Pip	CH=CH	1,5-diMe-1,2,3-Triazo-4-y
1-432	Pip	CH=CH	1,2,4-Triazo-5-yl
1-433	Pip	CH=CH	1-Me-1,2,5-Triazo-3-yl
1-434	Pyr	CH=CH	1,2,3-Triazo-4-yl
1-435	Pyr	CH=CH	1,2,4-Triazo-5-yl
1-436	NMe ₂	CH=CH	1,2,3-Triazo-4-yl
1-437	_	CH=CH	1,2,4-Triazo-5-yl
1-438		(CH ₂) ₃	2-Fur
1-439	Pip	(CH ₂) ₃	3-Fur
1-440	Pip	(CH ₂) ₃	4-Me-2-Fur
1-441	Pip	(CH ₂) ₃	2-Thi
1-442	Pip	(CH ₂) ₃	3-Thi
1-443	Pip	(CH ₂) ₃	5-Me-2-Thi
1-444	Pip	(CH ₂) ₃	2-Pyl
1-445	Pip	(CH ₂) ₃	3-Pyl
1-446	Pip	(CH ₂) ₃	1-Me-2-Pyl
1-447		(CH ₂) ₃	4-Me-2-Pyl
1-448	Pip	$(CH_2)_3$	3,5-diMe-2-Pyl

55

5					
Ĭ.	Cpd.	-			
	No.	R ¹	A	R ²	
10		 	· · · · · · · · · · · · · · · · · · ·		
	1-449	Pip	(CH ₂) ₃	4-0xazo	
	1-450	Pip	(CH ₂) ₃	5-0xazo	
15	1-451	Pip	(CH ₂) ₃	2-0xazo	
	1-452	Pip	(CH ₂) ₃	2-Me-4-Oxazo	
	1-453	Pip	(CH ₂) ₃	3-Isoxazo	
	1-454	Pip	(CH ₂) ₃	4-Isoxazo	
20	1-455	Pip	(CH ₂) ₃	5-Me-3-Isoxazo	
	1-456	Pip	(CH ₂) ₃	4-HO-3-Isoxazo	
	1-457	Pip	(CH ₂) ₃	2-Thiazo	
25	1-458	Pip	(CH ₂) ₃	4-Thiazo	
	1-459	Pip	(CH ₂) ₃	5-Thiazo	
	1-460	Pip	(CH ₂) ₃	2-Me-5-Thiazo	
	1-461	Pip	(CH ₂) ₃	3-Pyrazo	
30	1-462	Pip	(CH ₂) ₃	4-Pyrazo	
	1-463	Pip	(CH ₂) ₃	1-Me-3-Pyrazo	
	1-464	Pip	(CH ₂) ₃	1-Me-4-Pyrazo	
35	1-465	Pip	(CH ₂) ₃	4-Me-3-Pyrazo	
	1-466	Pip	(CH ₂) ₃	5-Me-3-Pyrazo	
	1-467	Pip	(CH ₂) ₃	5-Me-4-Pyrazo	
40	1-468	Pip	(CH ₂) ₃	4-NH ₂ -3-Pyrazo	
40	1-469	Pip	(CH ₂) ₃	5-NH ₂ -3-Pyrazo	
	1-470	Pip	(CH ₂) ₃	3-NH ₂ -4-Pyrazo	
	1-471	Pip	(CH ₂) ₃	3,5-diMe-4-Pyrazo	
45	1-472	Pip	(CH ₂) ₃	1,3,5-triMe-4-Pyrazo	
	1-473	Pip	(CH ₂) ₃	2-Imidazo	
	1-474	Pip	(CH ₂) ₃	4-Imidazo	
50	1-475	Pip	(CH ₂) ₃	5-Me-4-Imidazo	
	1-476	Pip	CH ₂ CH ₂	2-Fur	

Cpd.	1		2	•
No.	R ¹	A	R ²	
				•
1-477	Pip	CH ₂ CH ₂	3-Fur	
1-478	Pip	CH ₂ CH ₂	4-Me-2-Fur	
1-479	Pip	CH ₂ CH ₂	5-Me-2-Fur	
1-480	Pip	CH ₂ CH ₂	2-Me-3-Fur	
1-481	Pip	CH ₂ CH ₂	5-Me-3-Fur	
1-482	Pip	CH ₂ CH ₂	5-C1-2-Fur	
1-483	Pip	CH ₂ CH ₂	5-C1-3-Fur	
1-484	Pip	CH ₂ CH ₂	5-NH ₂ -2-Fur	
1-485	Pip	CH ₂ CH ₂	5-AcNH-2-Fur	
1-486	Pip	CH ₂ CH ₂	5-Ph-2-Fur	
1-487	Pip	CH ₂ CH ₂	5-(4-MePh)-2-Fur	
1-488	Pip	CH ₂ CH ₂	5-(4-ClPh)-2-Fur	
1-489	Pip	CH ₂ CH ₂	3-Me-5-NH ₂ -2-Fur	
1-490	Pip	CH ₂ CH ₂	2,4-diMe-3-Fur	
1-491	Pip	CH ₂ CH ₂	2-Thi	
1-492	Pip	CH ₂ CH ₂	3-Thi	
1-493	Pip	CH ₂ CH ₂	3-Me-2-Thi	
1-494	Pip	CH ₂ CH ₂	5-Me-2-Thi	
1-495	Pip	CH ₂ CH ₂	2-Me-3-Thi	
1-496	Pip	CH ₂ CH ₂	4-Me-3-Thi	
1-497	Pip	CH ₂ CH ₂	5-Me-3-Thi	
1-498	Pip	CH ₂ CH ₂	4-MeO-2-Thi	
1-499	Pip	CH ₂ CH ₂	4-MeO-3-Thi	
1-500	Pip	CH ₂ CH ₂	4-HO-2-Thi	
1-501	Pip	CH ₂ CH ₂	4-HO-3-Thi	
1-502	Pip	CH ₂ CH ₂	5-Et-2-Thi	
1-503	Pip	CH ₂ CH ₂	5-Cl-2-Thi	
1-504	Pip	CH ₂ CH ₂	5-Cl-3-Thi	

			·	,
Cpd.				
No.	R ¹	A	R ²	
			-	
1-505	Pip	CH ₂ CH ₂	5-Br-3-Thi	
1-506	Pip	CH ₂ CH ₂	3-NH ₂ -2-Thi	
1-507	Pip	CH ₂ CH ₂	5-NH ₂ -2-Thi	
1-508	Pip	CH ₂ CH ₂	2-NH ₂ -3-Thi	
1-509	Pip	CH ₂ CH ₂	4-NH ₂ -3-Thi	
1-510	Pip	CH ₂ CH ₂	3-AcNH-2-Thi	
1-511	Pip	CH ₂ CH ₂	4-AcNH-3-Thi	
1-512	Pip	CH ₂ CH ₂	5-Ph-2-Thi	
1-513	Pip	CH ₂ CH ₂	4,5-diMe-2-Thi	
1-514	Pip	CH ₂ CH ₂	3,5-diMe-2-Thi	
1-515	Pip	CH ₂ CH ₂	2,5-diMe-3-Thi	
1-516	Pip	CH ₂ CH ₂	4,5-diMe-3-Thi	
1-517	Pip	CH ₂ CH ₂	4,5-diCl-2-Thi	
1-518	Pip	CH ₂ CH ₂	2-NH ₂ -5-Ph-3-Thi	
1-519	Pip	CH ₂ CH ₂	4-NH ₂ -2,5-diMe-3-Thi	
1-520	Pip	CH ₂ CH ₂	2-Py1	
1-521	Pip	CH ₂ CH ₂	3-Pyl	
1-522	Pip	CH ₂ CH ₂	1-Me-2-Pyl	
1-523	Pip	CH ₂ CH ₂	3-Me-2-Pyl	
1-524	Pip	CH ₂ CH ₂	4-Me-2-Pyl	
1-525	Pip	CH ₂ CH ₂	2-Me-3-Pyl	
1-526	Pip	CH ₂ CH ₂	5-Me-3-Pyl	
1-527	Pip	CH ₂ CH ₂	3-NH ₂ -2-Py1	
1-528	Pip	CH ₂ CH ₂	4-NH ₂ -2-Pyl	
1-529	Pip	CH ₂ CH ₂	3-AcNH-2-Pyl	
1-530	Pip	CH ₂ CH ₂	5-Cl-2-Pyl	
1-531	Pip	CH ₂ CH ₂	5-Cl-3-Pyl	
1-532	Pip	CH ₂ CH ₂	4-Ph-2-Pyl	·
		_		

	Cpd.			
	No.	R ¹	A	R ²
			<u> </u>	
	1-533	Pip	CH ₂ CH ₂	5-Ph-3-Pyl
•	1-534	Pip -	CH ₂ CH ₂	1-Me-4-MeO-3-Pyl
	1-535	Pip	CH ₂ CH ₂	1-Me-4-HO-3-Pyl
	1-536	Pip	CH ₂ CH ₂	3,5-diMe-2-Pyl
	1-537	Pip	CH ₂ CH ₂	4,5-diMe-2-Pyl
	1-538	Pip	CH ₂ CH ₂	1,3-diMe-2-Pyl
	1-539	Pip	CH ₂ CH ₂	5-NH ₂ -1-Me-2-Pyl
	1-540	Pip	CH ₂ CH ₂	4-NH ₂ -3,5-diMe-2-Pyl
	1-541	Pip	CH ₂ CH ₂	5-Br-1,4-diMe-3-Pyl
	1-542	Pip	CH ₂ CH ₂	4-0xazo
	1-543	Pip	CH ₂ CH ₂	5-0xazo
	1-544	Pip	CH ₂ CH ₂	2-Oxazo
	1-545	Pip	CH ₂ CH ₂	2-Me-4-0xazo
	1-546	Pip	CH ₂ CH ₂	2-Ph-4-0xazo
	1-547	Pip	CH ₂ CH ₂	5-Ph-2-0xazo
	1-548	Pip	CH ₂ CH ₂	2-H0-4-0xazo
	1-549	Pip	CH ₂ CH ₂	2,5-diMe-4-Oxazo
	1-550	Pip	CH ₂ CH ₂	4-Me-2-Ph-5-Oxazo
	1-551	Pip	CH ₂ CH ₂	3-Isoxazo
	1-552	Pip	CH ₂ CH ₂	4-Isoxazo
	1-553	Pip	CH ₂ CH ₂	4-Me-3-Isoxazo
	1-554	Pip	Сн ₂ Сн ₂	5-Me-3-Isoxazo
	1-555	Pip	CH ₂ CH ₂	3-Me-4-Isoxazo
	1-556	Pip	Сн ₂ Сн ₂	4-MeO-3-Isoxazo
	1-557	Pip	CH ₂ CH ₂	4-HO-3-Isoxazo
	1-558	Pip	CH ₂ CH ₂	3-HO-4-Isoxazo
	1-559	Pip	CH ₂ CH ₂	3-HO-5-Isoxazo
	1-560	Pip	CH ₂ CH ₂	4-NH ₂ -3-Isoxazo

Cpd.			
No.	R ¹	Α	R ²
	:		
1-561	Pip	CH_2CH_2	5-NH ₂ -4-Isoxazo
1-562	Pip	CH ₂ CH ₂	5-Ph-3-Isoxazo
1-563	Pip	CH ₂ CH ₂	4-Ph-3-Isoxazo
1-564	Pip	CH ₂ CH ₂	4,5-diMe-3-Isoxazo
1-565	Pip	CH ₂ CH ₂	4-HO-5-Me-3-Isoxazo
1-566	Pip	CH ₂ CH ₂	2-Thiazo
1-567	Pip	CH ₂ CH ₂	4-Thiazo
1-568	Pip	CH ₂ CH ₂	5-Thiazo
1-569	Pip	CH ₂ CH ₂	4-Me-2-Thiazo
1-570	Pip	CH ₂ CH ₂	2-Me-4-Thiazo
1-571	Pip	CH ₂ CH ₂	2-Me-5-Thiazo
1-572	Pip	CH ₂ CH ₂	2-MeO-4-Thiazo
1-573	Pip	CH ₂ CH ₂	2-MeO-5-Thiazo
1-574	Pip	CH ₂ CH ₂	2-HO-4-Thiazo
1-575	Pip	CH ₂ CH ₂	2-H0-5-Thiazo
1-576	Pip	CH ₂ CH ₂	2-Cl-5-Thiazo
1-577	Pip	CH ₂ CH ₂	5-Cl-2-Thiazo
1-578	Pip	CH ₂ CH ₂	2-NH ₂ -4-Thiazo
1-579	Pip	CH ₂ CH ₂	2-NH ₂ -5-Thiazo
1-580	Pip	CH2CH2	5-NH ₂ -4-Thiazo
1-581	Pip	CH ₂ CH ₂	2-AcNH-4-Thiazo
1-582	Pip	CH ₂ CH ₂	5-AcNH-4-Thiazo
L-583	Pip	CH ₂ CH ₂	2-Ph-4-Thiazo
L-584	Pip	CH ₂ CH ₂	4,5-diMe-2-Thiazo
L-585	Pip	CH ₂ CH ₂	2-HO-5-Me-4-Thiazo
L-586 ·	Pip	CH ₂ CH ₂	5-NH ₂ -2-Me-4-Thiazo
L-587	Pip	CH ₂ CH ₂	2-C1-4-Me-5-Thiazo
L-588	Pip	CH ₂ CH ₂	3-Isothiazo

5					
	Cpd. No.	R ¹	A	R ²	· .
4					
10	•				
	1-589	Pip	CH ₂ CH ₂	4-Isothiazo	
	1-590	Pip	CH ₂ CH ₂	3-Pyrazo	
15	1-591	Pip	CH ₂ CH ₂	4-Pyrazo	
	1-592	Pip	CH ₂ CH ₂	1-Me-3-Pyrazo	•
	1-593	Pip	CH ₂ CH ₂	1-Et-3-Pyrazo	
20	1-594	Pip	CH ₂ CH ₂	1-Pr-3-Pyrazo	
20	1-595	Pip	CH ₂ CH ₂	1-Me-4-Pyrazo	
	1-596	Pip	CH ₂ CH ₂	1-Et-4-Pyrazo	
•	1-597	Pip	CH ₂ CH ₂	1-Pr-4-Pyrazo	
25	1-598	Pip	CH ₂ CH ₂	1-Bu-4-Pyrazo	•
	1-599	Pip	CH ₂ CH ₂	4-Me-3-Pyrazo	٠.
	1-600	Pip	CH ₂ CH ₂	5-Me-3-Pyrazo	
30	1-601	Pip	CH ₂ CH ₂	5-Et-3-Pyrazo	
	1-602	Pip	CH ₂ CH ₂	5-Pr-3-Pyrazo	٠
	1-603	Pip	CH ₂ CH ₂	5-Me-4-Pyrazo	
	1-604	Pip	CH ₂ CH ₂	4-MeO-3-Pyrazo	•
35	1-605	Pip	CH ₂ CH ₂	4-PrO-3-Pyrazo	
	1-606	Pip	CH ₂ CH ₂	4-HO-3-Pyrazo	•
	1-607	Pip	CH ₂ CH ₂	4-Cl-3-Pyrazo	
40	1-608	Pip	CH ₂ CH ₂	4-Br-3-Pyrazo	
	1-609	Pip	CH ₂ CH ₂	3-Cl-4-Pyrazo	•
•	1-610	Pip	CH ₂ CH ₂	4-NH ₂ -3-Pyrazo	
	1-611	Pip	CH ₂ CH ₂	5-NH ₂ -3-Pyrazo	
45	1-612	Pip	CH ₂ CH ₂	3-NH ₂ -4-Pyrazo	
	1-613	Pip	CH ₂ CH ₂	4-AcNH-3-Pyrazo	
	1-614	Pip	CH ₂ CH ₂	5-AcNH-3-Pyrazo	
50	1-615	Pip	CH ₂ CH ₂	3-AcNH-4-Pyrazo	

5				
	Cpd.	•		2
	No.	R ¹	A	R ²
10				
	1-616	Pip	CH ₂ CH ₂	3-EtCONH-4-Pyrazo
	1-617	Pip	CH ₂ CH ₂	5-Ph-3-Pyrazo
15	1-618	Pip	CH ₂ CH ₂	1,5-diMe-3-Pyrazo
	1-619	Pip	CH ₂ CH ₂	1,4-diMe-3-Pyrazo
	1-620	Pip	CH ₂ CH ₂	4,5-diMe-3-Pyrazo
00	1-621	Pip	CH ₂ CH ₂	3-Me-4-Pyrazo
20	1-622	Pip	CH ₂ CH ₂	3,5-diMe-4-Pyrazo
	1-623	Pip	CH ₂ CH ₂	1,5-diMe-4-Pyrazo
•	1-624	Pip	CH ₂ CH ₂	1,3-diMe-4-Pyrazo
25	1-625	Pip	CH ₂ CH ₂	1,3-diMe-5-Pyrazo
	1-626	Pip	CH ₂ CH ₂	3-C1-5-Me-4-Pyrazo
	1-627	Pip	CH ₂ CH ₂	3-C1-1-Me-4-Pyrazo
30	1-628	Pip	CH ₂ CH ₂	5-Cl-1-Me-4-Pyrazo
	1-629	Pip	CH_2CH_2	4-Cl-1-Me-3-Pyrazo
	1-630	Pip	CH ₂ CH ₂	4-Cl-5-Me-3-Pyrazo
	1-631	Pip	CH ₂ CH ₂	4-Cl-1-Me-3-Pyrazo
35	1-632	Pip	CH ₂ CH ₂	3-NH ₂ -5-Me-4-Pyrazo
	1-633	Pip	CH ₂ CH ₂	3-NH ₂ -1-Me-4-Pyrazo
	1-634	Pip	CH ₂ CH ₂	5-NH ₂ -1-Me-4-Pyrazo
40	1-635	Pip	CH ₂ CH ₂	5-NH ₂ -4-Me-3-Pyrazo
	1-636	Pip	CH_2CH_2	5-NH ₂ -1-Me-3-Pyrazo
	1-637	Pip	СH ₂ CH ₂	5-AcNH-1-Me-4-Pyrazo
	1-638	Pip	CH ₂ CH ₂	4-NH ₂ -5-Me-3-Pyrazo
45	1-639	Pip	CH ₂ CH ₂	4-HO-5-Me-3-Pyrazo
	1-640	Pip	CH ₂ CH ₂	5-AcNH-3-Me-4-Pyrazo
	1-641	Pip	CH ₂ CH ₂	1,3,5-triMe-4-Pyrazo
50	1-642	Pip	CH ₂ CH ₂	1,3,4-triMe-5-Pyrazo
	1-643	Pip	CH ₂ CH ₂	4-Cl-1,3-diMe-5-Pyrazo

Cpd.			
No.	R ¹	A	R ²
	·		
1-644	Pip	CH ₂ CH ₂	2-Imidazo
1-645	Pip	CH ₂ CH ₂	4-Imidazo
1-646	Pip	CH ₂ CH ₂	2-Me-4-Imidazo
1-647	Pip	CH ₂ CH ₂	1-Me-4-Imidazo
1-648	Pip	CH ₂ CH ₂	5-Me-4-Imidazo
1-649	Pip	CH ₂ CH ₂	5-Me-2-Imidazo
1-650	Pip	CH ₂ CH ₂	1-Me-2-Imidazo
1-651	Pip	CH ₂ CH ₂	1,2,3-0xadiazo-5-yl
1-652	Pip	CH ₂ CH ₂	1,3,4-Oxadiazo-2-yl
1-653	Pip	CH ₂ CH ₂	1,2,3-Oxadiazo-4-yl
1-654	Pip	CH ₂ CH ₂	1,2,4-0xadiazo-5-yl
1-655	Pip	CH ₂ CH ₂	1,2,4-0xadiazo-3-yl
1-656	Pip	CH ₂ CH ₂	1,2,5-Oxadiazo-3-yl
1-657	Pip	CH ₂ CH ₂	5-Me-1,2,3-Oxadiazo-4-yl
1-658	Pip	CH ₂ CH ₂	4-Me-1,2,5-Oxadiazo-3-yl
1-659	Pip	CH ₂ CH ₂	4-Ph-1,2,5-Oxadiazo-3-yl
1-660	Pip	CH ₂ CH ₂	1,2,3-Thiadiazo-4-yl
1-661	Pip	CH ₂ CH ₂	1,2,3-Thiadiazo-5-yl
1-662	Pip	CH ₂ CH ₂	1,3,4-Thiadiazo-2-yl
1-663	Pip	CH ₂ CH ₂	1,2,4-Thiadiazo-3-yl
1-664	Pip	CH ₂ CH ₂	1,2,4-Thiadiazo-5-yl
1-665	Pip	CH ₂ CH ₂	1,2,5-Thiadiazo-3-yl
1-666	Pip	CH ₂ CH ₂	4-Me-1,2,3-Thiadiazo-5-y
1-667	Pip	CH ₂ CH ₂	5-Me-1,2,3-Thiadiazo-4-y
1-668	Pip	CH ₂ CH ₂	4-Me-1,2,5-Thiadiazo-3-y
1-669	Pip	CH ₂ CH ₂	5-Ph-1,2,3-Thiadiazo-4-y
1-670	Pyr	CH ₂ CH ₂	2-Fur

5		<u> </u>		
•	Cpd.	R ¹	A	R ²
10		· · · · · · · · · · · · · · · · · · ·		
	1-671	Pyr	CH ₂ CH ₂	3-Fur
	1-672	Pyr	CH2CH2	4-Me=2-Fur
15	1-673	Pyr	CH ₂ CH ₂	2-Me-3-Fur
	1-674	Pyr	CH ₂ CH ₂	2,4-diMe-3-Fur
	1-675	Pyr	CH ₂ CH ₂	2-Thi
	1-676	Pyr	CH_2CH_2	3-Thi
20	1-677	Pyr	CH_2CH_2	3-Me-2-Thi
	1-678	Pyr	CH ₂ CH ₂	2-Me-3-Thi
	1-679	Pyr	CH_2CH_2	4-Me-3-Thi
25	1-680	Pyr	CH_2CH_2	4-MeO-3-Thi
	1-681	Pyr	CH ₂ CH ₂	4-HO-2-Thi
	1-682	Pyr	CH ₂ CH ₂	5-Cl-3-Thi
20	1-683	Pyr	CH_2CH_2	3-NH ₂ -2-Thi
30	1-684	Pyr	CH ₂ CH ₂	2-NH ₂ -3-Thi
	1-685	Pyr	CH ₂ CH ₂	3-AcNH-2-Thi
•	1-686	Pyr	CH ₂ CH ₂	5-Ph-2-Thi
35	1-687	Pyr	CH ₂ CH ₂	4,5-diMe-2-Thi
	1-688	Pyr	CH ₂ CH ₂	2,5-diMe-3-Thi
	1-689	Pyr	CH ₂ CH ₂	4,5-diCl-2-Thi
40	1-690	Pyr	CH ₂ CH ₂	4-NH ₂ -2,5-diMe-3-Thi
	1-691	Pyr	CH ₂ CH ₂	2-Pyl
	1-692	Pyr	CH ₂ CH ₂	3-Pyl
	1-693	Pyr	CH ₂ CH ₂	1-Me-2-Pyl
45	1-694	Pyr	CH ₂ CH ₂	3-Me-2-Pyl
	1-695	Pyr	CH ₂ CH ₂	4-Me-2-Pyl
	1-696	Pyr	CH ₂ CH ₂	2-Me-3-Pyl
50	1-697	Pyr	CH_2CH_2	1-Me-4-MeO-3-Pyl
	1-698	Pyr	CH_2CH_2	1-Me-4-HO-3-Pyl

5	Cpd.			
	No.	R ¹	A	R ²
10				
	1-699	Pyr	CH ₂ CH ₂	3,5-diMe-2-Pyl
	1-700	Pyr	CH ₂ CH ₂	1,3-diMe-2-Pyl
5	1-701	Pyr	CH ₂ CH ₂	4-Oxazo
-	1-702	Pyr	CH ₂ CH ₂	5-Oxazo
	1-703	Pyr	CH ₂ CH ₂	2-Oxazo
	1-704	Pyr	CH ₂ CH ₂	2-Me-4-0xazo
20	1-705	Pyr	CH ₂ CH ₂	5-Ph-2-0 xa zo
	1-706	Pyr	CH ₂ CH ₂	2,5-diMe-4-0xazo
	1-707	Pyr	CH ₂ CH ₂	3-Isoxazo
25	1-708	Pyr	CH ₂ CH ₂	4-Isoxazo
	1-709	Pyr	CH ₂ CH ₂	5-Me-3-Isoxazo
	1-710	Pyr	CH ₂ CH ₂	3-Me-4-Isoxazo
	1-711	Pyr	CH ₂ CH ₂	4-MeO-3-Isoxazo
30	1-712	Pyr	CH ₂ CH ₂	4-HO-3-Isoxazo
	1-713	Pyr	CH ₂ CH ₂	3-HO-5-Isoxazo
	1-714	Pyr	CH ₂ CH ₂	5-HO-4-Isoxazo
35	1-715	Pyr	CH ₂ CH ₂	4-NH ₂ -3-Isoxazo
	1-716	Pyr	CH ₂ CH ₂	5-Ph-3-Isoxazo
	1-717	Pyr	CH ₂ CH ₂	4,5-diMe-3-Isoxazo
40	1-718	Pyr	CH ₂ CH ₂	4-HO-5-Me-3-Isoxazo
ю	1-719	Pyr	CH ₂ CH ₂	2-Thiazo
	1-720	Pyr	CH ₂ CH ₂	4-Thiazo
	1-721	Pyr	CH ₂ CH ₂	5-Thiazo
15	1-722	Pyr	CH ₂ CH ₂	4-Me-2-Thiazo
	1-723	Pyr	CH ₂ CH ₂	2-Me-5-Thiazo
	1-724	Pyr	CH ₂ CH ₂	2-MeO-4-Thiazo
50	1-725	Pyr	CH ₂ CH ₂	2-MeO-5-Thiazo
-	1-726	Pyr	CH ₂ CH ₂	2-HO-5-Thiazo

	Cpd.			· · · · · · · · · · · · · · · · · · ·	
	No.	R ¹	A	R^2	
					·
	1-727	Pyr	CH ₂ CH ₂	5-Cl-2-Thiazo	
	1-728	Pyr	CH ₂ CH ₂	2-NH ₂ -4-Thiazo	
	1-729	Pyr	CH ₂ CH ₂	2-ACNH-4-Thiazo	•
	1-730	Pyr	CH ₂ CH ₂	4,5-diMe-2-Thiazo	
	1-731	Pyr	CH ₂ CH ₂	2-HO-5-Me-4-Thiazo	
	1-732	Pyr	CH ₂ CH ₂	5-NH ₂ -2-Me-4-Thiazo	
	1-733	Pyr	CH ₂ CH ₂	3-Isothiazo	
	1-734	Pyr	CH ₂ CH ₂	4-Isothiazo	
	1-735	Pyr	CH ₂ CH ₂	3-Pyrazo	
	1-736	Pyr	CH ₂ CH ₂	4-Pyrazo	
	1-737	Pyr	CH ₂ CH ₂	1-Me-3-Pyrazo	
	1-738	Pyr	CH ₂ CH ₂	1-Et-3-Pyrazo	
	1-739	Pyr	CH ₂ CH ₂	1-Me-4-Pyrazo	
	1-740	Pyr	CH ₂ CH ₂	1-Et-4-Pyrazo	
	1-741	Pyr	CH ₂ CH ₂	4-Me-3-Pyrazo	
	1-742	Pyr	CH ₂ CH ₂	5-Me-3-Pyrazo	
•	1-743	Pyr	CH ₂ CH ₂	5-Me-4-Pyrazo	
	1-744	Pyr	CH ₂ CH ₂	4-MeO-3-Pyrazo	
	1-745	Pyr	CH ₂ CH ₂	4-HO-3-Pyrazo	
	1-746	Pyr	CH ₂ CH ₂	4-Cl-3-Pyrazo	
	1-747	Pyr	CH ₂ CH ₂	4-NH ₂ -3-Pyrazo	
	1-748	Pyr	CH ₂ CH ₂	5-NH ₂ -3-Pyrazo	
	1-749	Pyr	CH ₂ CH ₂	3-NH ₂ -4-Pyrazo	
	1-750	Pyr	CH ₂ CH ₂	4-AcNH-3-Pyrazo	
	1-751	Pyr	CH ₂ CH ₂	5-Ph-3-Pyrazo	
	1-752	Pyr	CH ₂ CH ₂	1,5-diMe-3-Pyrazo	
	1-753	Pyr	CH ₂ CH ₂	1,4-diMe-3-Pyrazo	
	1-754	Pyr	CH ₂ CH ₂	3,5-diMe-4-Pyrazo	

Cpd.			
No.	R^1	A	R ²
·			·
1-755	Pyr	CH ₂ CH ₂	1,5-diMe-4-Pyrazo
1-756	Pyr	CH ₂ CH ₂	1,3-diMe-4-Pyrazo
1-757	Pyr	CH ₂ CH ₂	1,3-diMe-5-Pyrazo
1-758	Pyr	CH ₂ CH ₂	3-C1-5-Me-4-Pyrazo
1-759	Pyr	CH ₂ CH ₂	3-Cl-1-Me-4-Pyrazo
1-760	Pyr	CH ₂ CH ₂	4-Cl-5-Me-3-Pyrazo
1-761	Pyr	CH ₂ CH ₂	4-Cl-1-Me-3-Pyrazo
1-762	Pyr	CH ₂ CH ₂	3-NH ₂ -5-Me-4-Pyrazo
1-763	Pyr	CH2CH2	3-NH ₂ -1-Me-4-Pyrazo
1-764	Pyr	сн2сн2	5-NH ₂ -1-Me-4-Pyrazo
1-765	Pyr	CH ₂ CH ₂	5-NH ₂ -4-Me-3-Pyrazo
1-766	Pyr	CH ₂ CH ₂	5-NH ₂ -1-Me-3-Pyrazo
1-767	Pyr	сн ₂ сн ₂	5-NH ₂ -3-Me-4-Pyrazo
1-768	Pyr	CH2CH2	4-NH ₂ -5-Me-3-Pyrazo
1-769	Pyr	CH ₂ CH ₂	4-HO-5-Me-3-Pyrazo
1-770	Pyr	CH ₂ CH ₂	1,3,5-triMe-4-Pyrazo
1-771	Pyr	CH ₂ CH ₂	1,3,4-triMe-5-Pyrazo
1-772	Pyr	CH ₂ CH ₂	4-Cl-1,3-diMe-5-Pyrazo
1-773	Pyr	CH ₂ CH ₂	2-Imidazo
1-774	Pyr	CH ₂ CH ₂	4-Imidazo
1-775	Pyr	CH ₂ CH ₂	1-Me-4-Imidazo
1-776	Pyr	CH2CH2	5-Me-4-Imidazo
1-777	Pyr	CH ₂ CH ₂	5-Me-2-Imidazo
1-778	Pyr	CH ₂ CH ₂	1-Me-2-Imidazo
1-779	Pyr	CH ₂ CH ₂	1,2,3-0xadiazo-5-yl
1-780	Pyr	CH ₂ CH ₂	1,2,4-0xadiazo-5-yl
1-781	Pyr	CH ₂ CH ₂	1,2,5-0xadiazo-3-yl
1-782	Pyr	CH ₂ CH ₂	5-Me-1,2,3-Oxadiazo-4-yl

Cpd.			
No.	R ¹	A	R ²
		, .	
1-783	Pyr	CH ₂ CH ₂	1,2,3-Thiadiazo-4-yl
1-784	Pyr	CH ₂ CH ₂	1,2,4-Thiadiazo-3-yl
1-785	Pyr	CH ₂ CH ₂	1,2,5-Thiadiazo-3-yl
1-786	Pyr	CH ₂ CH ₂	4-Me-1,2,3-Thiadiazo-5-yl
1-787	Pyr	CH ₂ CH ₂	5-Ph-1,2,3-Thiadiazo-4-yl
1-788	NMe ₂	CH ₂ CH ₂	2-Fur
1-789	NMe ₂	CH ₂ CH ₂	3-Fur
1-790	NMe ₂	CH ₂ CH ₂	4-Me-2-Fur
1-791	NMe ₂	CH ₂ CH ₂	2,4-diMe-3-Fur
1-792	NMe ₂	CH ₂ CH ₂	2-Thi
1-793	NMe ₂	CH ₂ CH ₂	3-Thi
1-794	NMe ₂	CH ₂ CH ₂	3-Me-2-Thi
1-795	NMe ₂	CH ₂ CH ₂	2-Me-3-Thi
1-796	NMe ₂	CH ₂ CH ₂	4-MeO-3-Thi
1-797	NMe ₂	CH ₂ CH ₂	4,5-diMe-2-Thi
1-798	NMe ₂	CH ₂ CH ₂	2-Pyl
1-799	NMe ₂	CH ₂ CH ₂	3-Pyl
1-800	NMe ₂	сн2сн3	1-Me-2-Pyl
1-801	NMe ₂	Сн ₂ Сн ₂	4-Me-2-Pyl
1-802	NMe ₂	CH ₂ CH ₂	2-Me-3-Py1
1-803	NMe ₂	CH ₂ CH ₂	3,5-diMe-2-Pyl
1-804	NMe ₂	CH ₂ CH ₂	1,3-diMe-2-Pyl
1-805	NMe ₂	CH ₂ CH ₂	4-Oxazo
1-806	NMe ₂	CH ₂ CH ₂	5-Oxazo
1-807	NMe ₂	CH ₂ CH ₂	2-Oxazo
1-808	NMe ₂	CH ₂ CH ₂	2-Me-4-Oxazo
1-809	NMe ₂	CH ₂ CH ₂	2,5-diMe-4-0xazo
1-810	NMe ₂	CH ₂ CH ₂	3-Isoxazo

Cpd. No. R ¹ A R ² 10 1-811 NMe ₂ CH ₂ CH ₂ 4-Isoxazo 1-812 NMe ₂ CH ₂ CH ₂ 5-Me-3-Isoxazo 1-813 NMe ₂ CH ₂ CH ₂ 4-MeO-3-Isoxazo 1-814 NMe ₂ CH ₂ CH ₂ 4-HO-3-Isoxazo 1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxazo 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo 1-821 NMe ₂ CH ₂ CH ₂ 2-Me-5-Thiazo	
1-811 NMe ₂ CH ₂ CH ₂ 4-Isoxazo 1-812 NMe ₂ CH ₂ CH ₂ 5-Me-3-Isoxazo 1-813 NMe ₂ CH ₂ CH ₂ 4-MeO-3-Isoxazo 1-814 NMe ₂ CH ₂ CH ₂ 4-HO-3-Isoxazo 1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxazo 1-817 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxaz 1-818 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 5-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	٠.,
1-811 NMe ₂ CH ₂ CH ₂ 4-Isoxazo 1-812 NMe ₂ CH ₂ CH ₂ 5-Me-3-Isoxazo 1-813 NMe ₂ CH ₂ CH ₂ 4-MeO-3-Isoxazo 1-814 NMe ₂ CH ₂ CH ₂ 4-HO-3-Isoxazo 1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxazo 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	
1-812 NMe ₂ CH ₂ CH ₂ 5-Me-3-Isoxazo 1-813 NMe ₂ CH ₂ CH ₂ 4-MeO-3-Isoxazo 1-814 NMe ₂ CH ₂ CH ₂ 4-HO-3-Isoxazo 1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxazo 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 4-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	
1-812 NMe ₂ CH ₂ CH ₂ 5-Me-3-Isoxazo 1-813 NMe ₂ CH ₂ CH ₂ 4-MeO-3-Isoxazo 1-814 NMe ₂ CH ₂ CH ₂ 4-HO-3-Isoxazo 1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxaz 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 4-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	
1-813 NMe ₂ CH ₂ CH ₂ 4-MeO-3-Isoxazo 1-814 NMe ₂ CH ₂ CH ₂ 4-HO-3-Isoxazo 1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxaz 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 4-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	
1-814 NMe ₂ CH ₂ CH ₂ 4-HO-3-Isoxazo 1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxaz 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 4-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	•
1-815 NMe ₂ CH ₂ CH ₂ 4,5-diMe-3-Isoxazo 1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxaz 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 4-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	
1-816 NMe ₂ CH ₂ CH ₂ 4-HO-5-Me-3-Isoxaz 1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 4-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	•
1-817 NMe ₂ CH ₂ CH ₂ 2-Thiazo 1-818 NMe ₂ CH ₂ CH ₂ 4-Thiazo 1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	60
1-819 NMe ₂ CH ₂ CH ₂ 5-Thiazo 25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	
25 1-820 NMe ₂ CH ₂ CH ₂ 4-Me-2-Thiazo	
1-921 NMA CU CU 2-Mo-E-Thiaga	
1-821 NMe ₂ CH ₂ CH ₂ 2-Me-5-Thiazo	
1-822 NMe ₂ CH ₂ CH ₂ 2-MeO-4-Thiazo	
1-823 NMe ₂ CH ₂ CH ₂ 4,5-diMe-2-Thiazo	
1-824 NMe ₂ CH ₂ CH ₂ 3-Isothiazo	
1-825 NMe ₂ CH ₂ CH ₂ 4-Isothiazo	
1-826 NMe ₂ CH ₂ CH ₂ 3-Pyrazo	
35 1-827 NMe ₂ CH ₂ CH ₂ 4-Pyrazo	
1-828 NMe ₂ CH ₂ CH ₂ 1-Me-3-Pyrazo	
1-829 NMe ₂ CH ₂ CH ₂ 1-Me-4-Pyrazo	
1-830 NMe ₂ CH ₂ CH ₂ 4-Me-3-Pyrazo	
1-831 NMe ₂ CH ₂ CH ₂ 5-Me-3-Pyrazo	
1-832 NMe ₂ CH ₂ CH ₂ 5-Me-4-Pyrazo	
1-833 NMe ₂ CH ₂ CH ₂ 4-MeO-3-Pyrazo	
45 1-834 NMe ₂ CH ₂ CH ₂ 4-HO-3-Pyrazo	
1-835 NMe ₂ CH ₂ CH ₂ 3,5-diMe-4-Pyrazo	
1-836 NMe ₂ CH ₂ CH ₂ 1,3,5-triMe-4-Pyra	zo
1-837 NMe ₂ CH ₂ CH ₂ 1,3,4-triMe-5-Pyra	zo
1-838 NMe ₂ CH ₂ CH ₂ 2-Imidazo	

	······································		
Cpd.	_		·
No.	R ¹	A	R ²
			
1-839	NMe ₂	CH ₂ CH ₂	4-Imidazo
1-840	_	CH ₂ CH ₂	5-Me-4-Imidazo
1-843		CH ₂ CH ₂	2-Fur
1-842	Azi	CH ₂ CH ₂	3-Fur
1-843	Azi	CH ₂ CH ₂	4-Me-2-Fur
1-844	Azi	CH ₂ CH ₂	2-Thi
1-845	Azi	CH ₂ CH ₂	3-Thi
1-846	Azi	CH ₂ CH ₂	5-Me-2-Thi
1-847	Azi	CH ₂ CH ₂	2-Py1
1-848	Azi	CH ₂ CH ₂	3-Py1
1-849	Azi	CH ₂ CH ₂	1-Me-2-Pyl
1-850	Azi	CH ₂ CH ₂	4-Me-2-Pyl
1-851	Azi	CH ₂ CH ₂	4-0xazo
1-852	Azi	CH ₂ CH ₂	5-Oxazo
1-853	Azi	CH ₂ CH ₂	2-Oxazo
1-854	Azi	CH ₂ CH ₂	3-Isoxazo
1-855	Azi	CH ₂ CH ₂	4-Isoxazo
1-856	Azi	CH ₂ CH ₂	4-H0-3-Isoxazo
1-857	Azi	CH ₂ CH ₂	2-Thiazo
1-858	Azi	CH ₂ CH ₂	4-Thiazo
1-859	Azi	CH ₂ CH ₂	5-Thiazo
1-860	Azi	CH ₂ CH ₂	2-Me-5-Thiazo
1-861	Azi	CH ₂ CH ₂	3-Pyrazo
1-862	Azi	CH ₂ CH ₂	4-Pyrazo
1-863	Azi	CH ₂ CH ₂	1-Me-3-Pyrazo
1-864	Azi	CH ₂ CH ₂	4-Me-3-Pyrazo
1-865	Azi	CH ₂ CH ₂	5-Me-4-Pyrazo
1-866	Azi	CH ₂ CH ₂	4-NH ₂ -3-Pyrazo

Cpd.			
No.	R ¹	A	R ²
1-867	Azi	CH ₂ CH ₂	3-NH ₂ -4-Pyrazo
1-868	Azi	CH ₂ CH ₂	3,5-diMe-4-Pyrazo
1-869	Azi	CH ₂ CH ₂	1,3,5-triMe-4-Pyrazo
1-870	Azi	CH ₂ CH ₂	2-Imidazo
1-871	Azi	CH ₂ CH ₂	4-Imidazo
1-872	Azi	CH ₂ CH ₂	5-Me-4-Imidazo
1-873	Aze	CH ₂ CH ₂	2-Fur
1-874	Aze	CH ₂ CH ₂	3-Fur
1-875	Aze	CH ₂ CH ₂	4-Me-2-Fur
1-876	Aze	CH ₂ CH ₂	2-Thi
1-877	Aze	CH ₂ CH ₂	3-Thi
1-878	Aze	CH ₂ CH ₂	5-Me-2-Thi
1-879	Aze	CH ₂ CH ₂	2-Pyl
1-880	Aze	CH ₂ CH ₂	3-Pyl
1-881	Aze	CH ₂ CH ₂	1-Me-2-Pyl
1-882	Aze	CH ₂ CH ₂	4-Me-2-Pyl
1-883	Aze	CH ₂ CH ₂	4-0xazo
1-884	Aze	CH ₂ CH ₂	5-0 xaz o
1-885	Aze	CH ₂ CH ₂	2-0xazo
1-886	Aze	CH ₂ CH ₂	3-Isoxazo
1-887	Aze	CH ₂ CH ₂	4-Isoxazo
1-888	Aze	CH ₂ CH ₂	4-HO-3-Isoxazo
1-889	Aze	CH ₂ CH ₂	2-Thiazo
1-890	Aze	CH ₂ CH ₂	4-Thiazo
1-891	Aze	CH ₂ CH ₂	5-Thiazo
1-892	Aze	CH ₂ CH ₂	2-Me-5-Thiazo
1-893	Aze	CH ₂ CH ₂	3-Pyrazo
1-894	Aze	CH ₂ CH ₂	4-Pyrazo

_								
5	Cpd.	•	•					
	No.	R^1	A	R ²				
			<u> </u>	· · · · · · · · · · · · · · · · · · ·				
10								
	1-895	Aze	CH ₂ CH ₂	1-Me-3-Pyrazo				
15	1-896	Aze	CH ₂ CH ₂	4-Me-3-Pyrazo				
	1-897	Aze	Сн ₂ Сн ₂	5-Me-4-Pyrazo				
	1-898	Aze	CH ₂ CH ₂	4-NH ₂ -3-Pyrazo				
	1-899	Aze	CH ₂ CH ₂	3-NH ₂ -4-Pyrazo				
	1-900	Aze	CH ₂ CH ₂	3,5-diMe-4-Pyrazo				
20	1-901	Aze	CH ₂ CH ₂	1,3,5-triMe-4-Pyrazo				
	1-902	Aze	CH ₂ CH ₂	2-Imidazo				
•	1-903	Aze	CH ₂ CH ₂	4-Imidazo				
25	1-904	Aze	CH ₂ CH ₂	5-Me-4-Imidazo				
	1-905	Pip	CH ₂ CH ₂	1,2,3-Triazo-4-yl				
	1-906	Pip	CH ₂ CH ₂	1-Me-1,2,3-Triazo-4-yl				
30	1-907	Pip	CH ₂ CH ₂	5-Me-1,2,3-Triazo-4-yl				
	1-908	Pip	CH ₂ CH ₂	1,5-diMe-1,2,3-Triazo-4-yl				
	1-909	Pip	CH ₂ CH ₂	1,2,4-Triazo-5-yl				
,	1-910	Pip	CH ₂ CH ₂	1-Me-1,2,5-Triazo-3-yl				
35	1-911	Pyr	CH ₂ CH ₂	1,2,3-Triazo-4-yl				
	1-912	Pyr	CH ₂ CH ₂	1,2,4-Triazo-5-yl				
	1-913	NMe ₂	CH ₂ CH ₂	1,2,3-Triazo-4-yl				
40	1-914	NMe ₂	CH ₂ CH ₂	1,2,4-Triazo-5-yl				
	1-915	Pip	CH ₂	1,2,3-Triazo-4-yl				
	1-916	Pip	CH ₂	2-Fur				
	1-917	Pip	CH ₂	3-Fur				
45	1-918	Pip	CH ₂	4-Me-2-Fur				
	1-919	Pip	CH ₂	2,4-diMe-3-Fur				
	1-920	Pip	CH ₂	2-Thi				
50	1-921	Pip	CH ₂	3-Thi				
	1-922	Pip	CH ₂	3-Me-2-Thi				

5				
	Cpd.	R ¹	A	R ²
10				
	1-923	Pip	CH ₂	2-Me-3-Thi
	1-924	Pip	CH ₂	4-MeO-3-Thi
15	1-925	Pip	CH ₂	4,5-diMe-2-Thi
	1-926	Pip	CH ₂	2-Pyl
	1-927	Pip	CH ₂	3-Py1
	1-928	Pip	CH ₂	1-Me-2-Pyl
20	1-929	Pip	CH ₂	4-Me-2-Pyl
	1-930	Pip	CH ₂	2-Me-3-Pyl
:	1-931	Pip	CH ₂	3,5-diMe-2-Pyl
25	1-932	Pip	CH ₂	1,3-diMe-2-Pyl
	1-933	Pip	CH ₂	5-NH ₂ -1-Me-2-Pyl
	1-934	Pip	CH ₂	4-Oxazo
	1-935	Pip	CH ₂	5-Oxazo
30	1-936	Pip	CH ₂	2-Oxazo
	1-937	Pip	CH ₂	2-Me-4-0xazo
•	1-938	Pip	CH ₂	2,5-diMe-4-Oxazo
35	1-939	Pip	CH ₂	3-Isoxazo
	1-940	Pip	CH ₂	4-Isoxazo
	1-941	Pip	CH ₂	5-Me-3-Isoxazo
40	1-942	Pip	CH ₂	4,5-diMe-3-Isoxazo
40	1-943	Pip	CH ₂	2-Thiazo
	1-944	Pip	CH ₂	4-Thiazo
	1-945	Pip	CH ₂	5-Thiazo
45	1-946	Pip	CH ₂	2-Me-5-Thiazo
	1-947	Pip	CH ₂	4,5-diMe-2-Thiazo
	1-948	Pip	CH ₂	3-Isothiazo
- 50	1-949	Pip	CH ₂	4-Isothiazo
	1-950	Pip	CH ₂	3-Pyrazo

5				
	Cpd.	_		
	No.	R ¹	A	R ²
10				
	1-951	Pip	СH ₂	4-Pyrazo
	1-952	Pip	CH ₂	1-Me-3-Pyrazo
15	1-953	Pip	CH ₂	1-Me-4-Pyrazo
	1-954	Pip	CH ₂	4-Me-3-Pyrazo
	1-955	Pip	CH ₂	5-Me-3-Pyrazo
20	1-956	Pip	CH ₂	5-Me-4-Pyrazo
20	1-957	Pip	CH ₂	4-MeO-3-Pyrazo
	1-958	Pip	CH ₂	4-HO-3-Pyrazo
	1-959	Pip	CH ₂	4-Cl-3-Pyrazo
25	1-960	Pip	CH ₂	4-NH ₂ -3-Pyrazo
	1-961	Pip	CH ₂	5-NH ₂ -3-Pyrazo
	1-962	Pip	CH ₂	3-NH ₂ -4-Pyrazo
30	1-963	Pip	CH ₂	5-Ph-3-Pyrazo
00	1-964	Pip	CH ₂	3,5-diMe-4-Pyrazo
	1-965	Pip	CH ₂	3-NH ₂ -5-Me-4-Pyrazo
	1-966	Pip	CH ₂	5-NH ₂ -4-Me-3-Pyrazo
35	1-967	Pip	CH ₂	5-NH ₂ -3-Me-3-Pyrazo
	1-968	Pip	CH ₂	4-NH ₂ -5-Me-3-Pyrazo
	1-969	Pip	CH ₂	1,3,5-triMe-4-Pyrazo
40	1-970	Pip	CH ₂	1,3,4-triMe-5-Pyrazo
	1-971	Pip	CH ₂	2-Imidazo
	1-972	Pip	CH ₂	4-Imidazo
	1-973	Pip	CH ₂	5-Me-4-Imidazo
45	1-974	Pip	CH=CH	NH <u>i</u> Pr
	1-975	Pip	CH=CH	NH <u>s</u> Bu
	1-976	Pip	CH=CH	NH(1-MeBu)
50	1-977	Pip	CH=CH	NH(1,2-diMePr)
	1-978	Pip	CH=CH	NH(1-MePn)

	Cpd.		•		
	No.	R^1	A	R ²	
)					
	1-979	Pip	CH=CH	NH(1,3-diMeBu)	
	1-980	Pip	CH=CH	NH(1,2-diMeBu)	
5	1-981	Pip	CH=CH	NH(1-MeHx)	
	1-982	Pip	CH=CH	NH(1,4-diMePn)	
	1-983	Pip	CH=CH	NH(1-MeHp)	
)	1-984	Pip	CH=CH	NH(1,5-diMeHx)	
•	1-985	Pip	CH=CH	NH(1-EtPr)	
	1-986	Pip	CH=CH	NH(1-EtBu)	
	1-987	Pip	CH=CH	NH(1-Et-2-MePr)	
i	1-988	Pip	CH=CH	NH(1-EtPn)	
	1-989	Pip	CH=CH	NH(1-Et-3-MeBu)	
	1-990	Pip	CH=CH	NH(1-EtHx)	
)	1-991	Pip	CH=CH	NH(1-EtHp)	•
	1-992	Pip	CH=CH	NH(1-PrBu)	
	1-993	Pip	CH=CH	NH(1- <u>i</u> PrBu)	
	1-994	Pip	CH=CH	NH(1-PrPn)	
5	1-995	Pip	CH=CH	NH(1-PrHx)	
	1-996	Pip	CH=CH	NH(1-PrHp)	
	1-997	Pip	CH=CH	NH(1-BuPn)	
)	1-998	Pip	CH=CH	NH(1-PnHx)	·
	1-999	Pip	CH=CH	NH(1-HxHp)	
	1-1000	Pip	CH=CH	NH(1-PhEt)	
	1-1001	Pip	CH=CH	NH(1-NaphEt)	
i	1-1002	Pip	CH=CH	NH(1-PhPr)	
	1-1003	Pip	CH=CH	NH(1-PhBu)	
	1-1004	Pip	CH=CH	NHCHPh ₂	•
)	1-1005	Pip	CH=CH	NHCHPh (4-MePh)	
	1-1006	Pip	CH=CH	NHCHPh(4-MeOPh)	

Cpd.			
No.	R ¹	A	R ²
		<u> </u>	
1-1007	Pip	CH=CH	NHCHPh (4-FPh)
1-1008	Pip	CH=CH	NHCHPh (4-ClPh)
1-1009	Pip	CH=CH	NH(1-Me-2-PhEt)
1-1010	Pip	CH=CH	NH (1-Me-3-PhPr)
1-1011	Pip	CH=CH	NH(1-Et-2-PhEt)
1-1012	Pip	CH=CH	NH[1-Me-2-(4-MePh)Et]
1-1013	Pip	CH=CH	NH[1-Me-2-(4-MeOPh)Et
1-1014	Pip	CH=CH	NH[1-Me-2-(4-FPh)Et]
1-1015	Pip	CH=CH	NH[1-Me-2-(4-ClPh)Et]
1-1016	Pip	CH=CH	NH(1,2-diPhEt)
1-1017	Pip	CH=CH	NH(1-Bz-2-PhEt)
1-1018	Pip	CH=CH	NH <u>c</u> Pr
1-1019	Pip	CH=CH	NH <u>c</u> Bu
L-1020	Pip	CH=CH	NH <u>c</u> Pn
L-1021	Pip	CH=CH	NH <u>c</u> Hx
L-1022	Pip	CH=CH	NH <u>c</u> Hp
L-1023	Pip	CH=CH	NH <u>c</u> Oc
L-1024	Pyr	CH=CH	NH <u>i</u> Pr
L-1025	Pyr	CH=CH	NH <u>s</u> Bu
L-1026	Pyr	CH=CH	NH(1-MeBu)
L-102 7	Pyr	CH=CH	NH(1-MePn)
L-1028	Pyr	CH=CH	NH(1-MeHx)
-1029	Pyr	CH=CH	NH(1-MeHp)
-1030	Pyr	CH=CH	NH(1-EtPr)
-1031	Pyr	CH=CH	NH(1-EtBu)
-1032	Pyr	CH=CH	NH(1-EtPn)
-1033	Pyr	CH=CH	NH(1-PrBu)
-1034	Pyr	CH=CH	NH (1-BuPn)

Cpd.			
No.	R ¹	A	R ²
1-1035	Pyr	CH=CH	NH(1-PhEt)
1-1036	Pyr	CH=CH	NH(1-NaphEt)
1-1037	Pyr	CH=CH	NH(1-PhPr)
1-1038	Pyr	CH=CH	NHCHPh ₂
1-1039	Pyr	CH=CH	NHCHPh (4 - MePh)
1-1040	Pyr	CH=CH	NHCHPh (4-MeOPh)
1-1041	Pyr	CH=CH	NHCHPh (4 - FPh)
1-1042	Pyr	CH=CH	NHCHPh(4-ClPh)
1-1043	Pyr	CH=CH	NH(1-Me-2-PhEt)
1-1044	Pyr	CH=CH	NH[1-Me-2-(4-MePh)Et]
1-1045	Pyr	CH=CH	NH[1-Me-2-(4-MeOPh)Et]
1-1046	Pyr	CH=CH	NH[1-Me-2-(4-FPh)Et]
1-1047	Pyr	CH=CH	NH(1-Bz-2-PhEt)
1-1048	Pyr	CH=CH	NH <u>c</u> Pr
1-1049	Pyr	CH=CH	NH <u>c</u> Bu
1-1050	Pyr	CH=CH	NH <u>c</u> Pn
1-1051	Pyr	CH=CH	NH <u>c</u> Hx
1-1052	Pyr	CH=CH	NH <u>c</u> Hp
L-1053	Pyr	CH=CH	NH <u>c</u> Oc
L-1054	NMe ₂	CH=CH	NH <u>i</u> Pr
L-1055	NMe ₂	CH=CH	NH <u>s</u> Bu
1-1056	NMe ₂	CH=CH	NH(1-MeBu)
1-1057	NMe ₂	CH=CH	NH(1-MePn)
-1058	NMe ₂	CH=CH	NH(1-MeHx)
-1059	NMe ₂	CH=CH	NH(1-MeHp)
-1060	NMe ₂	CH=CH	NH(1-EtPr)
-1061	NMe ₂	CH=CH	NH(1-EtBu)
-1062	NMe ₂	CH=CH	NH(1-EtPn)

5				
	Cpd.	R ¹		_2
	No.	ĸ	A	R ²
0				
	1-1063	NMe ₂	CH=CH	NH(1-PrBu)
	1-1064	NMe ₂	CH=CH	NH(1-BuPn)
5	1-1065	NMe ₂	CH=CH	NH(1-PhEt)
	1-1066	NMe ₂	CH=CH	NH(1-NaphEt)
	1-1067	NMe ₂	CH=CH	NH(1-PhPr)
	1-1068	NMe ₂	CH=CH	NHCHPh ₂
0	1-1069	NMe ₂	CH=CH	NHCHPh(4-MePh)
	1-1070	NMe ₂	CH=CH	NHCHPh(4-MeOPh)
	1-1071	NMe ₂	CH=CH	NHCHPh(4-FPh)
5	1-1072	NMe ₂	CH=CH	NHCHPh(4-ClPh)
	1-1073	NMe ₂	CH=CH	NH(1-Me-2-PhEt)
	1-1074	NMe ₂	CH=CH	NH[1-Me-2-(4-MePh)Et]
10	1-1075	NMe ₂	CH=CH	NH[1-Me-2-(4-MeOPh)Et]
	1-1076	NMe_2	CH=CH	NH[1-Me-2-(4-FPh)Et]
	1-1077	NMe ₂	CH=CH	NH(1-Bz-2-PhEt)
	1-1078	NMe ₂	CH=CH	NH <u>c</u> Pr
35	1-1079	NMe ₂	CH=CH	NH <u>c</u> Bu
	1-1080	NMe ₂	CH=CH	NH <u>c</u> Pn
	1-1081	NMe ₂	CH=CH	NH <u>c</u> Hx
0	1-1082	NMe ₂	CH=CH	NH <u>c</u> Hp
	1-1083	NMe_	CH=CH	NH <u>c</u> Oc
	1-1084	Aze	CH=CH	NH <u>i</u> Pr
	1-1085	Aze	CH=CH	NH <u>s</u> Bu
5	1-1086	Aze	CH=CH	NH(1-MeBu)
	1-1087	Aze	CH=CH	NH(1-MePn)
	1-1088	Aze	CH=CH	NH(1-MeHx)
0	1-1089	Aze	CH=CH	NH(1-MeHp)
	1-1090	Aze	CH=CH	NH(1-EtPr)

	······			
Cpd.				•
No.	R ¹	A	R ²	
				·
1-1091	Aze	CH=CH	NH(1-EtBu)	
1-1092	Aze	CH=CH	NH(1-EtPn)	
1-1093	Aze	CH=CH	NH(1,2-diMePr)	
1-1094	Aze	CH=CH	NH(1-PhEt)	•
1-1095	Aze	CH=CH	NHCHPh	•
1-1096	Aze	CH=CH	NH(1-Me-2-PhEt)	
1-1097	Aze	CH=CH	NH(1,2-diPhEt)	
1-1098	Aze	CH=CH	NH <u>c</u> Pr	· . ·
1-1099	Aze	CH=CH	NH <u>c</u> Bu	-
1-1100	Aze	CH=CH	NH <u>c</u> Pn	
1-1101	Aze	CH=CH	NH <u>c</u> Hx	
1-1102	Aze	CH=CH	NH <u>c</u> Hp	
1-1103	Aze	CH=CH	NH <u>c</u> Oc	
1-1104	Azi	CH=CH	NH <u>i</u> Pr	
1-1105	Azi	CH=CH	NH <u>s</u> Bu	
1-1106	Azi	CH=CH	NH(1-MeBu)	
1-1107	Azi	CH=CH	NH(1-MePn)	
1-1108	Azi	CH=CH	NH(1-MeHx)	
1-1109	Azi	CH=CH	NH(1-MeHp)	•
1-1110	Azi	CH=CH	NH(1-EtPr)	
1-1111	Azi	CH=CH	NH(1-EtBu)	
1-1112	Azi	CH=CH	NH(1-EtPn)	
1-1113	Azi	CH=CH	NH(1,2-diMePr)	
1-1114	Azi	CH=CH	NH(1-PhEt)	
1-1115	Azi	CH=CH	NHCHPh ₂	
1-1116	Azi	CH=CH	NH(1-Me-2-PhEt)	•
1-1117	Azi	CH=CH	NH(1,2-diPhEt)	
1-1118	Azi	CH=CH	NH <u>c</u> Pr	

5	Cpd.	R ¹	A	R ²	
		-			
10	•	•			•
	1-1119	Azi	CH=CH	NH <u>c</u> Bu	
	1-1120	Azi	CH=CH	NH <u>c</u> Pn	
15	1-1121	Azi	CH=CH	NH <u>c</u> Hx	
	1-1122	Azi	CH=CH	NH <u>c</u> Hp	
	1-1123	Azi	CH=CH	NH <u>c</u> Oc	•
	1-1124	Pip	CH ₂ CH ₂	NH <u>i</u> Pr	
20	1-1125	Pip	CH ₂ CH ₂	NH <u>s</u> Bu	
	1-1126	Pip	CH ₂ CH ₂	NH(1-MeBu)	
	1-1127	Pip	CH ₂ CH ₂	NH(1,2-diMePr)	
25	1-1128	Pip	CH ₂ CH ₂	NH(1-MePn)	
	1-1129	Pip	CH ₂ CH ₂	NH(1,3-diMeBu)	
	1-1130	Pip	CH ₂ CH ₂	NH(1,2-diMeBu)	
	1-1131	Pip	CH ₂ CH ₂	NH(1-MeHx)	
30	1-1132	Pip	CH ₂ CH ₂	NH(1,4-diMePn)	
	1-1133	Pip	CH ₂ CH ₂	NH(1-MeHp)	
	1-1134	Pip	CH ₂ CH ₂	NH(1,5-diMeHx)	
35	1-1135	Pip	CH ₂ CH ₂	NH(1-EtPr)	
	1-1136	Pip	CH ₂ CH ₂	NH(1-EtBu)	
	1-1137	Pip	CH ₂ CH ₂	NH(1-Et-2-MePr)	
	1-1138	Pip	CH ₂ CH ₂	NH(1-EtPn)	
40	1-1139	Pip	CH ₂ CH ₂	NH(1-Et-3-MeBu)	
	1-1140	Pip	CH ₂ CH ₂	NH(1-EtHx)	
	1-1141	Pip	CH ₂ CH ₂	NH(1-EtHp)	
45	1-1142	Pip	CH ₂ CH ₂	NH(1-PrBu)	••.
	1-1143	Pip	CH ₂ CH ₂	NH(1- <u>i</u> PrBu)	
	1-1144	Pip	CH ₂ CH ₂	NH(1-PrPn)	
5 0	1-1145	Pip	CH ₂ CH ₂	NH(1-PrHx)	
50	1-1146	Pip	CH ₂ CH ₂	NH(1-PrHp)	
		-	22	(± ± ± ± ± ± p /	

5	Cpd.			
	No.	R ¹	A	R ²
10			<u> </u>	
	1-1147	Pip	CH ₂ CH ₂	NH(1-BuPn)
	1-1148	Pip	CH ₂ CH ₂	NH(1-PnHx)
15	1-1149	Pip	CH ₂ CH ₂	NH(1-HxHp)
	1-1150	Pip	CH ₂ CH ₂	NH(1-PhEt)
	1-1151	Pip	CH ₂ CH ₂	NH(1-NaphEt)
	1-1152	Pip	CH ₂ CH ₂	NH(1-PhPr)
20	1-1153	Pip	CH ₂ CH ₂	NH(1-PhBu)
	1-1154	Pip	CH ₂ CH ₂	NHCHPh ₂
	1-1155	Pip	CH ₂ CH ₂	NHCHPh (4 - MePh)
25	1-1156	Pip	CH ₂ CH ₂	NHCHPh (4-MeOPh)
	1-1157	Pip	CH ₂ CH ₂	NHCHPh (4-FPh)
	1-1158	Pip	CH ₂ CH ₂	NHCHPh(4-ClPh)
	1-1159	Pip	CH ₂ CH ₂	NH(1-Me-2-PhEt)
30	1-1160	Pip	CH ₂ CH ₂	NH(1-Me-3-PhPr)
	1-1161	Pip	CH ₂ CH ₂	NH(1-Et-2-PhEt)
	1-1162	Pip	CH ₂ CH ₂	NH[1-Me-2-(4-MePh)Et]
35	1-1163	Pip	CH ₂ CH ₂	NH[1-Me-2-(4-MeOPh)Et]
	1-1164	Pip	CH ₂ CH ₂	NH[1-Me-2-(4-FPh)Et]
	1-1165	Pip	CH ₂ CH ₂	NH[1-Me-2-(4-ClPh)Et]
40	1-1166	Pip	CH ₂ CH ₂	NH(1,2-diPhEt)
40	1-1167	Pip	CH ₂ CH ₂	NH(1-Bz-2-PhEt)
	1-1168	Pip	CH ₂ CH ₂	NH <u>c</u> Pr
	1-1169	Pip	CH ₂ CH ₂	NH <u>c</u> Bu
45	1-1170	Pip	CH ₂ CH ₂	NH <u>c</u> Pn
	1-1171	Pip	CH ₂ CH ₂	NH <u>c</u> Hx
	1-1172	Pip	CH ₂ CH ₂	NH <u>c</u> Hp
50	1-1173	Pip	СН ₂ СН ₂	NH <u>c</u> Oc
<i></i>	1-1174	Pyr	CH ₂ CH ₂	NH <u>i</u> Pr

Cpd.			
No.	R ¹	A	R ²
1-1175	Pyr	CH ₂ CH ₂	NH <u>s</u> Bu
1-1176	Pyr	CH2CH2	NH(1-MeBu)
1-1177	Pyr	CH ₂ CH ₂	NH(1-MePn)
1-1178	Pyr	CH ₂ CH ₂	NH(1-MeHx)
1-1179	Pyr	CH ₂ CH ₂	NH(1-MeHp)
1-1180	Pyr	CH ₂ CH ₂	NH(1-EtPr)
1-1181	Pyr	CH ₂ CH ₂	NH(1-EtBu)
1-1182	Pyr	CH ₂ CH ₂	NH(1-EtPn)
1-1183	Pyr	CH ₂ CH ₂	NH(1-PrBu)
1-1184	Pyr	CH ₂ CH ₂	NH(1-BuPn)
1-1185	Pyr	CH ₂ CH ₂	NH(1-PhEt)
1-1186	Pyr	CH ₂ CH ₂	NH(1-NaphEt)
1-1187	Pyr	CH ₂ CH ₂	NH(1-PhPr)
1-1188	Pyr	CH ₂ CH ₂	NHCHPh ₂
1-1189	Pyr	CH ₂ CH ₂	NHCHPh (4-MePh)
1-1190	Pyr	CH ₂ CH ₂	NHCHPh (4-MeOPh)
1-1191	Pyr	CH ₂ CH ₂	NHCHPh (4 - FPh)
1-1192	Pyr	CH ₂ CH ₂	NHCHPh (4-ClPh)
1-1193	Pyr	CH ₂ CH ₂	NH(1-Me-2-PhEt)
1-1194	Pyr	CH ₂ CH ₂	NH[1-Me-2-(4-MePh)Et]
1-1195	Pyr	CH_2CH_2	NH[1-Me-2-(4-MeOPh)Et]
1-1196	Pyr	CH ₂ CH ₂	NH[1-Me-2-(4-FPh)Et]
1-1197	Pyr	CH ₂ CH ₂	NH(1-Bz-2-PhEt)
1-1198	Pyr	CH ₂ CH ₂	NH <u>c</u> Pr
1-1199	Pyr	Сн ₂ Сн ₂	NH <u>c</u> Bu
1-1200	Pyr	CH ₂ CH ₂	NH <u>c</u> Pn
1-1201	Pyr	CH ₂ CH ₂	NH <u>c</u> Hx
1-1202	Pyr	CH ₂ CH ₂	ин <u>с</u> нр

5	· 			
٠	Cpd.			
	No.	R ¹	A	R ²
10	· .			
10	•	•		
	1-1203	Pyr	CH ₂ CH ₂	NH <u>c</u> Oc
	1-1204	NMe ₂	CH ₂ CH ₂	NH <u>i</u> Pr
15	1-1205	NMe ₂	CH ₂ CH ₂	NH <u>s</u> Bu
	1-1206	NMe ₂	Сн ₂ Сн ₂	NH(1-MeBu)
	1-1207	NMe ₂	CH ₂ CH ₂	NH(1-MePn)
20	1-1208	NMe ₂	CH ₂ CH ₂	NH(1-MeHx)
20	1-1209	$^{\mathrm{NMe}}_{2}$	CH ₂ CH ₂	NH(1-MeHp)
	1-1210	NMe ₂	CH ₂ CH ₂	NH(1-EtPr)
•	1-1211	NMe ₂	CH ₂ CH ₂	NH(1-EtBu)
25	1-1212	NMe ₂	CH ₂ CH ₂	NH(1-EtPn)
	1-1213	NMe ₂	CH ₂ CH ₂	NH(1-PrBu)
	1-1214	NMe ₂	CH ₂ CH ₂	NH(1-BuPn)
30	1-1215	NMe ₂	CH ₂ CH ₂	NH(1-PhEt)
30	1-1216	NMe ₂	CH2CH2	NH(1-NaphEt)
	1-1217	NMe ₂	СН ₂ СН ₂	NH(1-PhPr)
	1-1218	NMe ₂	CH ₂ CH ₂	NHCHPh ₂
35	1-1219	NMe ₂	СН ₂ СН ₂	NHCHPh (4-MePh)
	1-1220	NMe ₂	CH ₂ CH ₂	NHCHPh (4-MeOPh)
	1-1221	NMe ₂	CH ₂ CH ₂	NHCHPh (4-FPh)
40	1-1222	NMe ₂	CH ₂ CH ₂	NHCHPh(4-ClPh)
70	1-1223	NMe ₂	CH ₂ CH ₂	NH(1-Me-2-PhEt)
	1-1224	$^{ m NMe}_2$	CH ₂ CH ₂	NH[1-Me-2-(4-MePh)Et]
	1-1225	$^{\mathrm{NMe}}_{2}$	CH ₂ CH ₂	NH[1-Me-2-(4-MeOPh)Et]
45	1-1226	NMe_2	CH ₂ CH ₂	NH[1-Me-2-(4-FPh)Et]
	1-1227	NMe ₂	CH ₂ CH ₂	NH(1-Bz-2-PhEt)
	1-1228	NMe ₂	CH ₂ CH ₂	NH <u>c</u> Pr
50	1-1229	NMe ₂	CH ₂ CH ₂	NH <u>c</u> Bu
	1-1230	NMe ₂	CH ₂ CH ₂	NH <u>c</u> Pn

5	Cpd.			
	No.	R ¹	A	R ²
10				
	1-1231	NMe ₂	CH ₂ CH ₂	NH <u>c</u> Hx
	1-1232	NMe ₂	CH ₂ CH ₂	NН <u>с</u> Нр
15	1-1233	NMe ₂	CH ₂ CH ₂	NH <u>c</u> Oc
	1-1234	Aze	CH ₂ CH ₂	NH <u>i</u> Pr
	1-1235	Aze	CH ₂ CH ₂	NH <u>s</u> Bu
	1-1236	Aze	CH ₂ CH ₂	NH(1-MeBu)
20	1-1237	Aze	CH2CH2	NH(1-MePn)
	1-1238	Aze	CH ₂ CH ₂	NH(1-MeHx)
•	1-1239	Aze	CH ₂ CH ₂	NH(1-MeHp)
25	1-1240	Aze	CH ₂ CH ₂	NH(1-EtPr)
-	1-1241	Aze	CH ₂ CH ₂	NH(1-EtBu)
	1-1242	Aze	CH ₂ CH ₂	NH(1-EtPn)
	1-1243	Aze	CH ₂ CH ₂	NH(1,2-diMePr)
30	1-1244	Aze	CH ₂ CH ₂	NH(1-PhEt)
	1-1245	Aze	CH ₂ CH ₂	NHCHPh ₂
	1-1246	Aze	CH ₂ CH ₂	NH(1-Me-2-PhEt)
35	1-1247	Aze	CH ₂ CH ₂	NH(1,2-diPhEt)
	1-1248	Aze	CH ₂ CH ₂	NH <u>c</u> Pr
	1-1249	Aze	CH ₂ CH ₂	NH <u>c</u> Bu
	1-1250	Aze	CH ₂ CH ₂	NH <u>c</u> Pn
40	1-1251	Aze	CH ₂ CH ₂	NH <u>c</u> Hx
	1-1252	Aze	CH ₂ CH ₂	NH <u>c</u> Hp
	1-1253	Aze	CH ₂ CH ₂	NH <u>c</u> Oc
45	1-1254	Azi	CH ₂ CH ₂	NH <u>i</u> Pr
	1-1255	Azi	CH ₂ CH ₂	NH <u>s</u> Bu
	1-1256	Azi	CH ₂ CH ₂	NH(1-MeBu)
50	1-1257	Azi	CH ₂ CH ₂	NH(1-MePn)
50	1-1258	Azi	CH ₂ CH ₂	NH(1-MeHx)

Table 1 (cont.)

Cpd.			
No.	R ¹	A	R^2
	-		······································
1-1259	Azi	CH_2CH_2	NH(1-MeHp)
1-1260	Azi	CH ₂ CH ₂	NH(1-EtPr)
1-1261	Azi	CH ₂ CH ₂	NH(1-EtBu)
1-1262	Azi	CH ₂ CH ₂	NH(1-EtPn)
1-1263	Azi	CH ₂ CH ₂	NH(1,2-diMePr)
1-1264	Azi	CH ₂ CH ₂	NH(1-PhEt)
1-1265	Azi	CH ₂ CH ₂	NHCHPh ₂
1-1266	Azi	CH ₂ CH ₂	NH(1-Me-2-PhEt)
1-1267	Azi	CH ₂ CH ₂	NH(1,2-diPhEt)
1-1268	Azi	CH2CH2	NH <u>c</u> Pr
1-1269	Azi	CH ₂ CH ₂	NH <u>c</u> Bu
1-1270	Azi	CH2CH2	NH <u>c</u> Pn
1-1271	Azi	CH ₂ CH ₂	NH <u>c</u> Hx
1-1272	Azi	CH ₂ CH ₂	NH <u>c</u> Hp
1-1273	Azi	CH ₂ CH ₂	NH <u>c</u> Oc
1-1274	Pip	CH ₂	NH <u>i</u> Pr
1-1275	Pip	CH ₂	NH <u>s</u> Bu
1-1276	Pip	CH ₂	NH(1-MeBu)
1-1277	Pip	CH ₂	NH(1,2-diMePr)
1-1278	Pip	CH ₂	NH(1-MePn)
1-1279	Pip	CH ₂	NH(1,3-diMeBu)
1-1280	Pip	CH ₂	NH(1,2-diMeBu)
1-1281	Pip	CH ₂	NH(1-MeHx)
1-1282	Pip	· CH ₂	NH(1,4-diMePn)
1-1283	Pip	CH ₂	NH(1-MeHp)
1-1284	Pip	CH ₂	NH(1,5-diMeHx)
1-1285	Pip	CH ₂	NH(1-EtPr)
1-1286	Pip	CH ₂	NH(1-EtBu)

Cpd.		•	
No.	R ¹	A	R ²
	·	· · · · · · · · · · · · · · · · · · ·	
1-1287	Pip	CH ₂	NH(1-Et-2-MePr)
1-1288	- Pip	CH ₂	NH(1-EtPn)
1-1289	Pip	CH ₂	NH(1-Et-3-MeBu)
1-1290	Pip	CH ₂	NH(1-EtHx)
1-1291	Pip	СН ₂	NH(1-EtHp)
1-1292	Pip	CH ₂	NH(1-PrBu)
1-1293	Pip	СН ₂	NH(1- <u>i</u> PrBu)
1-1294	Pip	CH ₂	NH(1-PrPn)
1-1295	Pip	CH ₂	NH(1-PrHx)
1-1296	Pip	CH ₂	NH(1-PrHp)
1-1297	Pip	CH ₂	NH(1-BuPn)
1-1298	Pip	CH ₂	NH(1-PnHx)
1-1299	Pip	CH ₂	NH(1-HxHp)
1-1300	Pip	CH ₂	NH(1-PhEt)
1-1301	Pip	CH ₂	NH(1-NaphEt)
1-1302	Pip	CH ²	NH(1-PhPr)
1-1303	Pip	CH ₂	NH(1-PhBu)
1-1304	Pip	CH ₂	NHCHPh
1-1305	Pip	CH ₂	NHCHPh (4-MePh)
1-1306	Pip	CH ₂	NHCHPh (4-MeOPh)
L-1307	Pip	CH ₂	NHCHPh (4-FPh)
L-1308	Pip	CH ₂	NHCHPh (4-ClPh)
L-1309	Pip	CH ₂	NH(1-Me-2-PhEt)
L-1310	Pip	CH ₂	NH(1-Me-3-PhPr)
L-1311	Pip	CH ₂	NH(1-Et-2-PhEt)
L-1312	Pip	CH ₂	NH[1-Me-2-(4-MePh)Et]
1-1313	Pip	CH ₂	NH[1-Me-2-(4-MeOPh)Et]
1314	Pip	CH ₂	NH[1-Me-2-(4-FPh)Et]

5		· ·		
	Cpd.	R^1	A	R^2
10				
	1-1315	Pip	CH ₂	NH[1-Me-2-(4-ClPh)Et]
	1-1316	Pip	CH ₂	NH(1,2-diPhEt)
15	1-1317	Pip	CH ₂	NH(1-Bz-2-PhEt)
	1-1318	Pip	CH ₂	NH <u>c</u> Pr
	1-1319	Pip	CH ₂	NH <u>c</u> Bu
20	1-1320	Pip	CH ₂	NH <u>c</u> Pn
20	1-1321	Pip	CH ₂	NH <u>c</u> Hx
	1-1322	Pip	CH ₂	инснр
,	1-1323	Pip	CH ₂	NH <u>c</u> Oc
25	1-1324	Pip	(CH ₂) ₃	NH <u>i</u> Pr
	1-1325	Pip	(CH ₂) ₃	NH <u>s</u> Bu
	1-1326	Pip	(CH ₂) ₃	NH(1-MeBu)
30	1-1327	Pip	(CH ₂) ₃	NH(1-MePn)
	1-1328	Pip	(CH ₂) ₃	NH(1-MeHx)
	1-1329	Pip	(CH ₂) ₃	NH(1-MeHp)
	1-1330	Pip	(CH ₂) ₃	NH(1-EtPr)
35	1-1331	Pip	(CH ₂) ₃	NH(1-EtBu)
	1-1332	Pip	(CH ₂) ₃	NH(1-EtPn)
•	1-1333	Pip	(CH ₂) ₃	NH(1-PrBu)
40	1-1334	Pip	(CH ₂) ₃	NH(1-BuPn)
	1-1335	Pip	(CH ₂) ₃	NH(1-PhEt)
*	1-1336	Pip	(CH ₂) ₃	NH(1-NaphEt)
	1-1337	Pip	(CH ₂) ₃	NH(1-PhPr)
45	1-1338	Pip	(CH ₂) ₃	NHCHPh ₂
	1-1339	Pip	(CH ₂) ₃	NHCHPh (4-MePh)
	1-1340	Pip	(CH ₂) ₃	NHCHPh (4 - MeOPh)
50	1-1341	Pip	(CH ₂) ₃	NHCHPh (4-FPh)
	1-1342	Pip	(CH ₂) ₃	NHCHPh (4-ClPh)

Table 1 (cont.)

Cpd.			
No.	R ¹	Α	R ²
1-1343	Pip	(CH ₂) ₃	NH(1-Me-2-PhEt)
1-1344	Pip	(CH ₂) ₃	NH[1-Me-2-(4-MePh)Et]
1-1345	Pip	(CH ₂) ₃	NH[1-Me-2-(4-MeOPh)Et]
1-1346	Pip	(CH ₂) ₃	NH[1-Me-2-(4-FPh)Et]
1-1347	Pip	$(CH_2)_3$	NH(1-Bz-2-PhEt)
1-1348	Pip	$(CH_2)_3$	NH <u>c</u> Pr
L-1349	Pip	(CH ₂) ₃	NH <u>c</u> Bu
L-1350	Pip	(CH ₂) ₃	NH <u>c</u> Pn
L-1351	Pip	(CH ₂) ₃	NH <u>c</u> Hx
L-1352	Pip	(CH ₂) ₃	ИН <u>с</u> Нр
L-1353	Pip	(CH ₂) ₃	NH <u>c</u> Oc

Table 2

Cpd. No. R ¹ A B R Cpd. No. R ¹ A B R Check CH ₂	
2-1 Pip CH=CH CH ₂ 0 CH ₂ OH 2-2 Pip CH=CH CH ₂ 0 2-HOEt 2-3 Pip CH=CH CH ₂ 0 2-FOOEt 2-4 Pip CH=CH CH ₂ 0 2-FOOEt 2-5 Pip CH=CH CH ₂ 0 2-PrOEt 2-6 Pip CH=CH CH ₂ 0 2-ByrOEt 2-7 Pip CH=CH CH ₂ 0 2-ByrOEt 2-8 Pip CH=CH CH ₂ 0 2-WaloEt 2-9 Pip CH=CH CH ₂ 0 2-WaloEt 2-9 Pip CH=CH CH ₂ 0 2-WaloEt 2-11 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.AcO) Et 2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrOO) 2-13 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrOO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-PrC.PrOO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-PrC.PrOO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-PrC.PrOO) E 2-17 Pip CH=CH CH ₂ 0 2-(3-PrC.PrOO) E 2-18 Pip CH=CH CH ₂ 0 2-(3-PrC.PrOO) E 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrOO) E 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrOO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrOO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrOO) Et 2-21 Pip CH=CH CH ₂ 0 2-(3-PhPrOO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-1 Pip CH=CH CH ₂ 0 CH ₂ OH 2-2 Pip CH=CH CH ₂ 0 2-HOEt 2-3 Pip CH=CH CH ₂ 0 2-FOOEt 2-4 Pip CH=CH CH ₂ 0 2-ACOEt 2-5 Pip CH=CH CH ₂ 0 2-PrNOEt 2-6 Pip CH=CH CH ₂ 0 2-ByrOEt 2-6 Pip CH=CH CH ₂ 0 2-ByrOEt 2-7 Pip CH=CH CH ₂ 0 2-ByrOEt 2-8 Pip CH=CH CH ₂ 0 2-WalOEt 2-9 Pip CH=CH CH ₂ 0 2-WalOEt 2-9 Pip CH=CH CH ₂ 0 2-WalOEt 2-11 Pip CH=CH CH ₂ 0 2-(PhACO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.ACO) Et 2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrNO) 2-13 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrNO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-PrC.PrNO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-PrC.PrNO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-PrC.PrNO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-PrC.PrNO) E 2-17 Pip CH=CH CH ₂ 0 2-(3-PrC.PrNO) E 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrNO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrNO) Et 2-2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrNO) Et 2-2-20 Pip CH=CH CH ₂ 0 2-(4-MeBoZO) Et 2-2-23 Pip CH=CH CH ₂ 0 2-(4-FBoZO) Et	
2-2 Pip CH=CH CH ₂ 0 2-HOEt 2-3 Pip CH=CH CH ₂ 0 2-FOOEt 2-4 Pip CH=CH CH ₂ 0 2-FOOEt 2-5 Pip CH=CH CH ₂ 0 2-PrOOEt 2-6 Pip CH=CH CH ₂ 0 2-PrOOEt 2-7 Pip CH=CH CH ₂ 0 2-PrOOEt 2-8 Pip CH=CH CH ₂ 0 2-PrOOEt 2-9 Pip CH=CH CH ₂ 0 2-PrOOEt 2-9 Pip CH=CH CH ₂ 0 2-PrOOEt 2-10 Pip CH=CH CH ₂ 0 2-IBYOOEt 2-11 Pip CH=CH CH ₂ 0 2-IVALOEt 2-12 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-13 Pip CH=CH CH ₂ 0 2-(HOOC.ACO) Et 2-14 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrOO) 2-13 Pip CH=CH CH ₂ 0 2-(3-Proc.ProO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Proc.ProO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Proc.ProO) E 2-17 Pip CH=CH CH ₂ 0 2-(3-Proc.ProO) E 2-18 Pip CH=CH CH ₂ 0 2-(3-PhProO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhProO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhProO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhProO) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-2 Pip CH=CH CH ₂ 0 2-HOEt 2-3 Pip CH=CH CH ₂ 0 2-FOOEt 2-4 Pip CH=CH CH ₂ 0 2-FOOEt 2-5 Pip CH=CH CH ₂ 0 2-PrOOEt 2-6 Pip CH=CH CH ₂ 0 2-PrOOEt 2-6 Pip CH=CH CH ₂ 0 2-PrOOEt 2-7 Pip CH=CH CH ₂ 0 2-ByrOEt 2-8 Pip CH=CH CH ₂ 0 2-IByrOEt 2-8 Pip CH=CH CH ₂ 0 2-IValOEt 2-9 Pip CH=CH CH ₂ 0 2-IValOEt 2-9 Pip CH=CH CH ₂ 0 2-(PhACO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.ACO) Et 2-11 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrOO) 2-13 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrOO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-Pro.ProO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Pro.ProO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Pro.ProO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Pro.ProO) E 2-17 Pip CH=CH CH ₂ 0 2-(3-Phc.ProO) E 2-18 Pip CH=CH CH ₂ 0 2-(3-PhrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhrnO) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MePbcO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-3	
2-4 Pip CH=CH CH ₂ 0 2-AcOEt 2-5 Pip CH=CH CH ₂ 0 2-PrnOEt 2-6 Pip CH=CH CH ₂ 0 2-ByrOEt 2-7 Pip CH=CH CH ₂ 0 2-ByrOEt 2-8 Pip CH=CH CH ₂ 0 2-ByrOEt 2-8 Pip CH=CH CH ₂ 0 2-ByrOEt 2-9 Pip CH=CH CH ₂ 0 2-ValOEt 2-9 Pip CH=CH CH ₂ 0 2-ValOEt 2-10 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.AcO) Et 2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) 2-13 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-Frc.PrnO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-PhC.PrnO) E 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-21 Pip CH=CH CH ₂ 0 2-BozOEt 2-22 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-6 Pip CH=CH CH ₂ 0 2-ByrOEt 2-7 Pip CH=CH CH ₂ 0 2-iByrOEt 2-8 Pip CH=CH CH ₂ 0 2-iByrOEt 2-9 Pip CH=CH CH ₂ 0 2-ValOEt 2-9 Pip CH=CH CH ₂ 0 2-iValOEt 2-10 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.AcO) Et 2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) 2-13 Pip CH=CH CH ₂ 0 2-(3-Mec.PrnO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-Etc.PrnO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-17 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-6 Pip CH=CH CH ₂ 0 2-ByrOEt 2-7 Pip CH=CH CH ₂ 0 2-iByrOEt 2-8 Pip CH=CH CH ₂ 0 2-iByrOEt 2-9 Pip CH=CH CH ₂ 0 2-ValOEt 2-9 Pip CH=CH CH ₂ 0 2-iValOEt 2-10 Pip CH=CH CH ₂ 0 2-iValOEt 2-11 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-12 Pip CH=CH CH ₂ 0 2-(HOOC.AcO) Et 2-13 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) Ed 2-14 Pip CH=CH CH ₂ 0 2-(3-Etc.PrnO) Ed 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) Ed 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) Ed 2-17 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) Ed 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Ed 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Ed 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Ed 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Ed 2-21 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Ed 2-22 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Ed 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Ed 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Ed 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Ed	
2-7 Pip CH=CH CH ₂ 0 2-iByrOEt 2-8 Pip CH=CH CH ₂ 0 2-ValOEt 2-9 Pip CH=CH CH ₂ 0 2-iValOEt 2-9 Pip CH=CH CH ₂ 0 2-iValOEt 2-10 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.AcO) Et 2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) 2-13 Pip CH=CH CH ₂ 0 2-(3-Mec.PrnO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-Etc.PrnO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-17 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-18 Pip CH=CH CH ₂ 0 2-[3-Prc.PrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-[3-PrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PrnO) Et 2-21 Pip CH=CH CH ₂ 0 2-(3-PrnO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-9 Pip CH=CH CH ₂ 0 2-iValOEt 2-10 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.AcO) Et 2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) E 2-13 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-Mec.PrnO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-18 Pip CH=CH CH ₂ 0 2-(3-Phc.PrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-9 Pip CH=CH CH ₂ 0 2-iValOEt 2-10 Pip CH=CH CH ₂ 0 2-(PhAcO) Et 2-11 Pip CH=CH CH ₂ 0 2-(HOOC.AcO) Et 2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) 2-13 Pip CH=CH CH ₂ 0 2-(3-Mec.PrnO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-Mec.PrnO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
25	
2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) 2-13 Pip CH=CH CH ₂ 0 2-(3-Mec.PrnO) 2-14 Pip CH=CH CH ₂ 0 2-(3-Etc.PrnO) 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) 2-18 Pip CH=CH CH ₂ 0 2-[3-(4-MePhcO) 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	,
2-12 Pip CH=CH CH ₂ 0 2-(3-HOOC.PrnO) 2-13 Pip CH=CH CH ₂ 0 2-(3-Mec.PrnO) E 2-14 Pip CH=CH CH ₂ 0 2-(3-Etc.PrnO) E 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.PrnO) E 2-16 Pip CH=CH CH ₂ 0 2-(3-Phc.PrnO) E 2-18 Pip CH=CH CH ₂ 0 2-[3-(4-MePhcO) 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-14 Pip CH=CH CH ₂ 0 2-(3-Etc.Prn0) F 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.Prn0) F 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.Prn0) F 35 2-17 Pip CH=CH CH ₂ 0 2-[3-(4-MePhc0) CH=CH CH ₂ 0 2-[3-(4-MePhc0) CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-20 Pip CH=CH CH ₂ 0 2-BozOEt 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	Et
2-14 Pip CH=CH CH ₂ 0 2-(3-Etc.Prn0) F 2-15 Pip CH=CH CH ₂ 0 2-(3-Prc.Prn0) F 2-16 Pip CH=CH CH ₂ 0 2-(3-Prc.Prn0) F 35 2-17 Pip CH=CH CH ₂ 0 2-[3-(4-MePhc0) F 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-20 Pip CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBoz0) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBoz0) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-Fboz0) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-Fboz0) Et	it
2-16 Pip CH=CH CH ₂ 0 2-(3-Phc.Prn0) E 2-17 Pip CH=CH CH ₂ 0 2-[3-(4-MePhc0) 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrn0) Et 2-20 Pip CH=CH CH ₂ 0 2-BozOEt 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	it
2-17 Pip CH=CH CH ₂ 0 2-[3-(4-MePhcO) 2-18 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-19 Pip CH=CH CH ₂ 0 2-(3-PhPrnO) Et 2-20 Pip CH=CH CH ₂ 0 2-BozOEt 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	it
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	it.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PrnO]Et
2-20 Pip CH=CH CH ₂ 0 2-BozOEt 2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO)Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO)Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO)Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO)Et	
2-21 Pip CH=CH CH ₂ 0 2-(4-MeBozO) Et 2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et	
2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 45 2-24 Pip CH=CH CH ₂ 0 2-(4-ClBozO) Et	
2-22 Pip CH=CH CH ₂ 0 2-(4-MeOBozO) Et 2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-ClBozO) Et	
2-23 Pip CH=CH CH ₂ 0 2-(4-FBozO) Et 2-24 Pip CH=CH CH ₂ 0 2-(4-ClBozO) Et	
45 2-24 Pip CH=CH CH ₂ 0 2-(4-ClBozO)Et	
A A = - 1	
2 (21200)112	
2-26 Pip CH=CH CH_2 0 2-(\underline{c} BuCOO)Et	

55

50

5	Cnd	<u>.</u>				
	Cpd.	R^1	A	В	<u>m</u>	R ⁵
10						
	2-27	Pip	CH=CH	CH ₂	0	2 - (<u>c</u> PnCOO) Et
	2-28	Pip	CH=CH	CH ₂	0	2 = (<u>c</u> HxCOO) Et
15	2-29	Pip	CH=CH	CH ₂	0	2-HOPr
	2-30	Pip	CH=CH	CH ₂	0	2-FoOPr
	2-31	Pip	CH=CH	CH ₂	0	2-AcOPr
	2-32	Pip	CH=CH	CH ₂	0	2-PrnOPr
20	2-33	Pip	CH=CH	CH ₂	0	2-(3-HOOC.PrnO)Pr
	2-34	Pip	CH=CH	CH ₂	0	2-(3-Mec.PrnO)Pr
	2-35	Pip	CH=CH	CH ₂	0	2-(3-Etc.Prn0)Pr
25	2-36	Pip	CH=CH	CH ₂	0,	2-(3-Phc.PrnO)Et
	2-37	Pip	CH=CH	CH ₂	0	2-[3-(4-MePhcO)PrnO]Et
	2-38	Pip	CH=CH	CH ₂	0	2-(PhAcO)Pr
30	2-39	Pip	CH=CH	CH ₂	0	2-BozOPr
30	2-40	Pip	CH=CH	CH ₂	0	2-(<u>c</u> PnCOO)Pr
	2-41	Pip	CH=CH	CH ₂	0	2-(<u>c</u> HxCOO)Pr
	2-42	Pip	CH=CH	CH ₂	0	3-HOPr
35	2-43	Pip	CH=CH	CH ₂	0	3-FoOPr
	2-44	Pip	CH=CH	CH ₂	0	3-AcOPr
	2-45	Pip	CH=CH	CH ₂	0	3-PrnOPr
40	2-46	Pip	CH=CH	CH ₂	0	3-(3-HOOC.PrnO)Pr
	2-47	Pip	CH=CH	CH ₂	0	3-(3-Mec.Prn0)Pr
	2-48	Pip	CH=CH	CH ₂	0	3-(3-Etc.Prn0)Pr
	2-49	Pip	CH=CH	CH ₂	0	3-BozOPr
45	2-50	Pip	CH=CH	CH ₂	0	3 - (<u>c</u> PnCOO) Pr
	2-51	Pip	CH=CH	CH ₂	0	3 - (<u>c</u> HxCOO) Pr
	2-52	Pip	CH=CH	CH ₂	0	2-HOBu
50	2-53	Pip	CH=CH	CH ₂	0	2-AcOBu
	2-54	Pip	CH=CH	CH ₂	0	2-(3-HOOC.PrnO)Bu

5						
	Cpd.	1				F
	No.	R ¹	A	В	<u>m</u>	R ⁵
10					<u> </u>	
	2-55	Pip	CH=CH	CH ₂	0	2-BozOBu
	2-56	Pip	CH=CH	CH ₂	0	2 - (<u>c</u> HxCOO) Bu
15	2-57	Pip	CH=CH	$\operatorname{CH}_2^-\operatorname{CH}_2$	0	2-HOEt
	2-58	Pip	CH=CH	CH ₂ CH ₂	0	2-FoOEt
	2-59	Pip	CH=CH	CH ₂ CH ₂	0	2-AcOEt
20	2-60	Pip	CH=CH	CH ₂ CH ₂	0	2-PrnOEt
20	2-61	Pip	CH=CH	CH ₂ CH ₂	0	2-ValOEt
	2-62	Pip	CH=CH	CH ₂ CH ₂	0	2-(PhAcO)Et
	2-63	\mathtt{Pip}	CH=CH	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Et
25	2-64	Pip	CH=CH	CH ₂ CH ₂	0	2-(3-Mec.PrnO)Et
	2-65	Pip	CH=CH	CH ₂ CH ₂	0	2-(3-Etc.PrnO)Et
	2-66	Pip	CH=CH	CH ₂ CH ₂	0	2-(3-PhPrnO)Et
30	2-67	Pip	CH=CH	CH ₂ CH ₂	0	2-BozOEt
	2-68	Pip	CH=CH	CH ₂ CH ₂	0	2-(4-MeBozO)Et
	2-69	\mathtt{Pip}	CH=CH	CH ₂ CH ₂	0	2-(4-FBozO) Et
	2-70	Pip	CH=CH	CH ₂ CH ₂	0	2-(4-C1Boz0)Et
35	2-71	Pip	CH=CH	CH ₂ CH ₂	0	2-(<u>c</u> PrCOO)Et
	2-72	Pip	CH=CH	CH ₂ CH ₂	0 -	2-(<u>c</u> BuCOO)Et
	2-73	Pip	CH=CH	CH ₂ CH ₂	0	2 - (<u>c</u> PnCOO) Et
40	2-74	Pip	CH=CH	CH ₂ CH ₂	0	2-(<u>c</u> HxCOO)Et
	2-75	Pip	CH=CH	CH ₂ CH ₂	0	2-HOPr
•	2-76	Pip	CH=CH	CH ₂ CH ₂	0 -	2-FoOPr
	2-77	Pip	CH=CH	CH ₂ CH ₂	0	2-AcOPr
45	2-78	Pip	CH=CH	CH ₂ CH ₂	0	2-PrnOPr
	2-79	Pip	CH=CH	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Pr
	2-80	Pip	CH=CH	CH ₂ CH ₂	0	2-(3-Mec.PrnO)Pr
50	2-81	Pip	CH=CH	CH ₂ CH ₂	0	2-BozOPr
	2-82	Pip	CH=CH	CH ₂ CH ₂	0	2-(<u>c</u> PnCOO)Pr

						•
5	Cpd.	1				_
	No.	R ¹	A	B .	m	R ⁵
10						
	2-83	Pip	CH=CH	CH ₂ CH ₂	0	2-(<u>c</u> HxCOO)Pr
	2-84	Pip	CH=CH	CH ₂ CH ₂		3-HOPr
15	2-85	Pip	CH=CH	CH ₂ CH ₂	0	3-AcOPr
10	2-86	Pip	CH=CH	CH ₂ CH ₂	0	3-PrnOPr
	2-87	Pip	CH=CH	CH ₂ CH ₂	0	3-(3-HOOC.PrnO)Pr
	2-88	Pip	CH=CH	CH ₂ CH ₂	0	3-BozOPr
20	2-89	Pip	CH=CH	CH ₂ CH ₂	0	3 - (<u>c</u> PnCOO) Pr
	2-90	Pip	CH=CH	CH ₂ CH ₂	0	3 - (<u>c</u> HxCOO) Pr
:	2-91	Pip	CH=CH	CH ₂ CH ₂	0	2-HOBu
25	2-92	Pip	CH=CH	CH ₂ CH ₂	0	2-AcOBu
	2-93	Pip	CH=CH	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Bu
	2-94	Pip	CH=CH	CH ₂ CH ₂	0	2-BozOBu
	2-95	Pip	CH=CH	CH ₂ CH ₂	.0	2 - (<u>c</u> HxCOO) Bu
30	2-96	Pip	CH=CH	(CH ₂) ₃	0	2-HOEt
	2-97	Pip	CH=CH	(CH ₂) ₃	0	2-FoOEt
	2-98	Pip	CH=CH	(CH ₂) ₃	0	2-AcOEt
35	2-99	Pip	CH=CH	$(CH_2)_3$	0	2-PrnOEt
	2-100	Pip	CH=CH	(CH ₂) ₃	0 .	2-ByrOEt
	2-101	Pip	CH=CH	(CH ₂) ₃	0	2- <u>i</u> ByrOEt
	2-102	Pip	CH=CH	(CH ₂) ₃	0	2-ValOEt
40	2-103	Pip	CH=CH	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Et
	2-104	Pip	CH=CH	(CH ₂) ₃	0 -	2-(3-Mec.PrnO)Et
	2-105	Pip	CH=CH	(CH ₂) ₃	0	2-(3-Etc.PrnO)Et
45	2-106	Pip	CH=CH	(CH ₂) ₃	0	2 - (PhAcO) Et
	2-107	Pip	CH=CH	(CH ₂) ₃	0	2-BozOEt
	2-108	Pip	CH=CH	(CH ₂) ₃	0	2 - (4 - MeBozO) Et
50	2-109	Pip	CH=CH	(CH ₂) ₃	0	2-(4-MeOBozO)Et
	2-110	Pip	CH=CH	(CH ₂) ₃	0	2 - (4 - FBozO) Et

Cpd. No. R ¹ A B m R ⁵ 2-111 Pip CH=CH (CH ₂) ₃ 0 2-(4-ClBozO) Et 2-112 Pip CH=CH (CH ₂) ₃ 0 2-(cgPrCOO) Et 2-113 Pip CH=CH (CH ₂) ₃ 0 2-(cgBuCOO) Et 2-114 Pip CH=CH (CH ₂) ₃ 0 2-(cgBuCOO) Et 2-115 Pip CH=CH (CH ₂) ₃ 0 2-(cgBuCOO) Et 2-116 Pip CH=CH (CH ₂) ₃ 0 2-(cgBuCOO) Et 2-117 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-118 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-118 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-120 Pip CH=CH (CH ₂) ₃ 0 2-(3-HOOC. PrnO) Pr 2-121 Pip CH=CH (CH ₂) ₃ 0 2-(3-Etc. PrnO) Pr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-(cgHxCOO) Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC. PrnO) Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC. PrnO) Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(cgHxCOO) Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GeBxOBu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-BozOBt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt 2-138 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt 2-138 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt						
2-112 Pip CH=CH (CH ₂) ₃ 0 2-(cPrCOO)Et 2-113 Pip CH=CH (CH ₂) ₃ 0 2-(cPnCOO)Et 2-114 Pip CH=CH (CH ₂) ₃ 0 2-(cPnCOO)Et 2-115 Pip CH=CH (CH ₂) ₃ 0 2-(cPnCOO)Et 2-116 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-117 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-118 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-GPROOPP 2-120 Pip CH=CH (CH ₂) ₃ 0 2-GPROOPP 2-121 Pip CH=CH (CH ₂) ₃ 0 2-GPROOPP 2-122 Pip CH=CH (CH ₂) ₃ 0 2-GPROOPP 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPP 2-124 Pip CH=CH (CH ₂) ₃ 0 3-ACOPP 2-125 Pip CH=CH (CH ₂) ₃ 0 3-ACOPP 2-126 Pip CH=CH (CH ₂) ₃ 0 3-GPROOPP 2-127 Pip CH=CH (CH ₂) ₃ 0 3-GPROOPP 2-128 Pip CH=CH (CH ₂) ₃ 0 3-GPROOPP 2-129 Pip CH=CH (CH ₂) ₃ 0 3-GPROOPP 2-129 Pip CH=CH (CH ₂) ₃ 0 2-ROBU 2-130 Pip CH=CH (CH ₂) ₃ 0 2-ACOBU 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BOZOBU 2-133 Pip CH=CH (CH ₂) ₃ 0 2-BOZOBU 2-134 Pip CH=CH (CH ₂) ₃ 0 2-BOZOBU 2-135 Pip CH=CH (CH ₂) ₃ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-PROOEt		R ¹	A	В	m	R ⁵
2-112 Pip CH=CH (CH ₂) ₃ 0 2-(<u>c</u> PrCOO)Et 2-113 Pip CH=CH (CH ₂) ₃ 0 2-(<u>c</u> BuCOO)Et 2-114 Pip CH=CH (CH ₂) ₃ 0 2-(<u>c</u> PrCOO)Et 2-115 Pip CH=CH (CH ₂) ₃ 0 2-(<u>c</u> PrCOO)Et 2-116 Pip CH=CH (CH ₂) ₃ 0 2-(<u>c</u> PrCOO)Et 2-117 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-118 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-GrnOOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-GrnOOPr 2-120 Pip CH=CH (CH ₂) ₃ 0 2-GrnOOPr 2-121 Pip CH=CH (CH ₂) ₃ 0 2-GrnOOPr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-(<u>c</u> HxCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-GrNOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-GrNOC.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-GrNOC.PrnO)Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-GrNOC.PrnO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-134 Pip CH=CH (CH ₂) ₃ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt						
2-113 Pip CH=CH (CH ₂) ₃ 0 2-(cBuCOO)Et 2-114 Pip CH=CH (CH ₂) ₃ 0 2-(cPnCOO)Et 2-115 Pip CH=CH (CH ₂) ₃ 0 2-(cPnCOO)Et 2-116 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-117 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-118 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-120 Pip CH=CH (CH ₂) ₃ 0 2-Gooden PrnO)Pr 2-121 Pip CH=CH (CH ₂) ₃ 0 2-BozOPr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-CCHXCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-Gooden PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-Gooden PrnO)Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-129 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-134 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-135 Pip CH=CH (CH ₂) ₄ 0 2-Boodet 2-136 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-111	. Pip	CH=CH	(CH ₂) ₃	0	2-(4-ClBozO)Et
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-112	Pip	CH=CH	(CH ₂) ₃	0	2-(<u>c</u> PrCOO)Et
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-113	Pip	CH=CH	(CH ₂) ₃	0	2 - (<u>c</u> BuCOO) Et
2-116 Pip CH=CH (CH ₂) ₃ 0 2-HOPr 2-117 Pip CH=CH (CH ₂) ₃ 0 2-AcOPr 2-118 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2- (3-HOOC.PrnO) Pr 2-120 Pip CH=CH (CH ₂) ₃ 0 2- (3-Etc.PrnO) Pr 2-121 Pip CH=CH (CH ₂) ₃ 0 2- (3-Etc.PrnO) Pr 2-122 Pip CH=CH (CH ₂) ₃ 0 2- (6-Etc.PrnO) Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-126 Pip CH=CH (CH ₂) ₃ 0 3- (3-HOOC.PrnO) Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3- (3-Mec.PrnO) Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3- (6-Etc.PrnO) Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-HOEt 2-134 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-114	Pip	CH=CH	(CH ₂) ₃	0	2 - (<u>c</u> PnCOO) Et
2-117 Pip CH=CH (CH ₂) ₃ 0 2-AcOPr 2-118 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-(3-HOOC.PrnO)Pr 2-120 Pip CH=CH (CH ₂) ₃ 0 2-(3-Etc.PrnO)Pr 2-121 Pip CH=CH (CH ₂) ₃ 0 2-(GHxCOO)Pr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-(GHxCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-(GHxCOO)Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(GHxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOPu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GHxCOO)Bu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-115	Pip	CH=CH	(CH ₂) ₃	0	2-(<u>c</u> HxCOO)Et
2-118 Pip CH=CH (CH ₂) ₃ 0 2-PrnOPr 2-119 Pip CH=CH (CH ₂) ₃ 0 2-(3-HOOC.PrnO)Pr 2-120 Pip CH=CH (CH ₂) ₃ 0 2-(3-Etc.PrnO)Pr 2-121 Pip CH=CH (CH ₂) ₃ 0 2-BozOPr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-(CHxCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(CHxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-GEXCOO)Bu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GEXCOO)Bu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-116	Pip	CH=CH	(CH ₂) ₃	0	2-HOPr
2-119 Pip CH=CH (CH ₂) ₃ 0 2-(3-HOOC.PrnO)Pr 2-120 Pip CH=CH (CH ₂) ₃ 0 2-(3-Etc.PrnO)Pr 2-121 Pip CH=CH (CH ₂) ₃ 0 2-BozOPr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-(cHxCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-117	Pip	CH=CH	(CH ₂) ₃	0	2-AcOPr
2-120 Pip CH=CH (CH ₂) ₃ 0 2-(3-Etc.PrnO)Pr 2-121 Pip CH=CH (CH ₂) ₃ 0 2-BozOPr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-(<u>C</u> HxCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(<u>C</u> HxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GEXCOO)Bu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-118	Pip	CH=CH	(CH ₂) ₃	0	2-PrnOPr
2-121 Pip CH=CH (CH ₂) ₃ 0 2-BozOPr 2-122 Pip CH=CH (CH ₂) ₃ 0 2-(chxCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(chxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GozOBu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-119	Pip	CH=CH	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Pr
2-122 Pip CH=CH (CH ₂) ₃ 0 2-(chxCOO)Pr 2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-(chxCOO)Pr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(chxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-GOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GozOBu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-AcOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-120	Pip	CH=CH	(CH ₂) ₃	0	2-(3-Etc.PrnO)Pr
2-123 Pip CH=CH (CH ₂) ₃ 0 3-HOPr 2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(cHxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GixCOO)Bu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FoOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-AcOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-121	Pip	CH=CH	(CH ₂) ₃	0	2-BozOPr
2-124 Pip CH=CH (CH ₂) ₃ 0 3-AcOPr 2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(cHxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-GexOODBu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FoOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-AcOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-122	Pip	CH=CH	(CH ₂) ₃	0	2-(<u>c</u> HxCOO)Pr
2-125 Pip CH=CH (CH ₂) ₃ 0 3-(3-HOOC.PrnO)Pr 2-126 Pip CH=CH (CH ₂) ₃ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH (CH ₂) ₃ 0 3-BozOPr 2-128 Pip CH=CH (CH ₂) ₃ 0 3-(cHxCOO)Pr 2-129 Pip CH=CH (CH ₂) ₃ 0 2-HOBu 2-130 Pip CH=CH (CH ₂) ₃ 0 2-AcOBu 2-131 Pip CH=CH (CH ₂) ₃ 0 2-(3-HOOC.PrnO)Bu 2-132 Pip CH=CH (CH ₂) ₃ 0 2-BozOBu 2-133 Pip CH=CH (CH ₂) ₃ 0 2-(cHxCOO)Bu 2-134 Pip CH=CH (CH ₂) ₄ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FoOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-AcOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-123	Pip	CH=CH	(CH ₂) ₃	: 0	3-HOPr
2-126 Pip CH=CH $(CH_2)_3$ 0 3-(3-Mec.PrnO)Pr 2-127 Pip CH=CH $(CH_2)_3$ 0 3-BozOPr 2-128 Pip CH=CH $(CH_2)_3$ 0 3-(cHxCOO)Pr 2-129 Pip CH=CH $(CH_2)_3$ 0 2-HOBu 2-130 Pip CH=CH $(CH_2)_3$ 0 2-AcOBu 2-131 Pip CH=CH $(CH_2)_3$ 0 2-GozOBu 2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-124	Pip	CH=CH	(CH ₂) ₃	0	3-AcOPr
2-127 Pip CH=CH $(CH_2)_3$ 0 3-BozOPr 2-128 Pip CH=CH $(CH_2)_3$ 0 3- $(\underline{c}HxCOO)$ Pr 2-129 Pip CH=CH $(CH_2)_3$ 0 2-HOBu 2-130 Pip CH=CH $(CH_2)_3$ 0 2-AcOBu 2-131 Pip CH=CH $(CH_2)_3$ 0 2- $(3-HOOC.PrnO)$ Bu 2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2- $(\underline{c}HxCOO)$ Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-125	Pip	CH=CH	(CH ₂) ₃	0	3-(3-HOOC.PrnO)Pr
2-128 Pip CH=CH $(CH_2)_3$ 0 3- $(\underline{c}HxCOO)$ Pr 2-129 Pip CH=CH $(CH_2)_3$ 0 2-HOBu 2-130 Pip CH=CH $(CH_2)_3$ 0 2-AcOBu 2-131 Pip CH=CH $(CH_2)_3$ 0 2- $(3$ -HOOC.PrnO) Bu 2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2- $(\underline{c}HxCOO)$ Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-126	Pip	CH=CH	$(CH_2)_3$	0	3-(3-Mec.Prn0)Pr
2-129 Pip CH=CH $(CH_2)_3$ 0 2-HOBu 2-130 Pip CH=CH $(CH_2)_3$ 0 2-AcOBu 2-131 Pip CH=CH $(CH_2)_3$ 0 2- $(3$ -HOOC.PrnO)Bu 2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2- $(\underline{c}$ HxCOO)Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-127	Pip	CH=CH	(CH ₂) ₃	0	3-BozOPr
2-130 Pip CH=CH $(CH_2)_3$ 0 2-AcOBu 2-131 Pip CH=CH $(CH_2)_3$ 0 2-(3-HOOC.PrnO)Bu 2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2-(cHxCOO)Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-128	Pip	CH=CH	(CH ₂) ₃	0	3-(<u>c</u> HxCOO)Pr
2-131 Pip CH=CH $(CH_2)_3$ 0 2-(3-HOOC.PrnO)Bu 2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2-(<u>C</u> HxCOO)Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-129	Pip	CH=CH	$(CH_2)_3$	0	2-HOBu
2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2- $(\underline{c}HxCOO)$ Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-130	Pip	CH=CH	(CH ₂) ₃	0	2-AcOBu
2-132 Pip CH=CH $(CH_2)_3$ 0 2-BozOBu 2-133 Pip CH=CH $(CH_2)_3$ 0 2- $(\underline{c}HxCOO)$ Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FoOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-131	Pip	CH=CH	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Bu
2-133 Pip CH=CH $(CH_2)_3$ 0 2- $(\underline{c}HxCOO)$ Bu 2-134 Pip CH=CH $(CH_2)_4$ 0 2-HOEt 2-135 Pip CH=CH $(CH_2)_4$ 0 2-FOOEt 2-136 Pip CH=CH $(CH_2)_4$ 0 2-AcOEt 2-137 Pip CH=CH $(CH_2)_4$ 0 2-PrnOEt	2-132	Pip	CH=CH		0	2-BozOBu
2-134 Pip CH=CH (CH ₂) ₄ 0 2-HOEt 2-135 Pip CH=CH (CH ₂) ₄ 0 2-FOOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-ACOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-133	Pip	CH=CH		0	2 - (<u>c</u> HxCOO) Bu
2-135 Pip CH=CH (CH ₂) ₄ 0 2-FoOEt 2-136 Pip CH=CH (CH ₂) ₄ 0 2-AcOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-134	Pip	CH=CH	- •	0	2-HOEt
2-136 Pip CH=CH (CH ₂) ₄ 0 2-AcOEt 2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-135	Pip	CH=CH		0	2-FoOEt
2-137 Pip CH=CH (CH ₂) ₄ 0 2-PrnOEt	2-136	Pip	CH=CH		0	2-AcOEt
- •	2-137	Pip	CH=CH		0	2-PrnOEt
	2-138	Pip	CH=CH		0	2-(3-HOOC.PrnO)Et

5	Cpd.	· · ·				
	No.	R^1	A	В	<u>m</u>	R ⁵
10						
	2-139	Pip	CH=CH	(CH ₂) ₄	0	2-(3-Mec.PrnO)Et
	2-140	Pip	CH=CH	(CH ₂)	0	2-BozOEt
15	2-141		CH=CH	~ •	0	2-(<u>c</u> HxCOO) Et
	2-142	Pip	CH=CH	(CH ₂) ₄	. 0	2-HOPr
	2-143	Pip	CH=CH	-	0	2-AcOPr
	2-144	Pip	CH=CH	· - -	0	2-(3-HOOC.PrnO)Pr
20	2-145	Pip	CH=CH		0	2-BozOPr
	2-146	Pip	CH=CH	· - -	0	2-(<u>c</u> HxCOO)Pr
	2-147	Pip	CH=CH		0	3-HOPr
25	2-148	Pip	CH=CH	(CH ₂) ₄	0	3-AcOPr
	2-149	Pip	CH=CH	(CH ₂) ₄	0	3-(3-HOOC.PrnO)Pr
	2-150	Pip	CH=CH	(CH ₂) ₄	0	3-BozOPr
	2-151	Pip	CH=CH	(CH ₂) ₄	. 0	3 - (<u>c</u> HxCOO) Pr
30	2-152	Pip	CH=CH		0	2-HOBu
	2-153	Pip	CH=CH	(CH ₂) ₄	0	2-AcOBu
	2-154	Pip	CH=CH	(CH ₂) ₄	0	2-(3-HOOC.PrnO)Bu
35	2-155	Pip	CH=CH	(CH ₂) ₄	0	2 - (<u>c</u> HxCOO) Bu
	2-156	Pip	CH=CH	CH ₂ CH (Me) CH ₂	. 0	2-HOEt
	2-157	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-AcOEt
40	2-158	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-(3-HOOC.PrnO)Et
-10	2-159	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-BozOEt
	2-160	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-(<u>c</u> HxCOO)Et
	2-161	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-HOPr
45	2-162	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-Acopr
	2-163	Pip	CH=CH		0	2-BozOPr
	2-164	Pip	CH=CH	2 4	0	2-(<u>c</u> HxCOO)Pr
50	2-165	Pip	CH=CH	2	0	3-HOPr
	2-166	Pip	CH=CH	2	0	3-AcOPr

Table 2 (cont.)

5						
	Cpd.	_				
	No.	R ¹	A	В	<u>m</u>	R ⁵
10						·
	2-167	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	3-(3-HOOC.PrnO)Pr
	2-168	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	3-BozOPr
15	2-169	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	3 - (<u>c</u> HxCOO) Pr
	2-170	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-HOBu
	2-171	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-AcOBu
	2-172	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2-(3-Etc.PrnO)Bu
20	2-173	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	2 - (<u>c</u> HxCOO) Bu
	2-174	Pip	CH=CH	(CH ₂) ₅	0	2-HOEt
	2-175	Pip	CH=CH	(CH ₂) ₅	0	2-AcOEt
25	2-176	Pip	CH=CH	(CH ₂) ₅	. 0 .	2-(3-HOOC.PrnO)Et
	2-177	Pip	CH=CH	(CH ₂) ₅	0	2-BozOEt
	2-178	Pip	CH=CH	(CH ₂) ₅	0	2 - (<u>c</u> HxCOO) Et
30	2-179	Pip	CH=CH	(CH ₂) ₅	0	2-HOPr
	2-180	Pip	CH=CH	(CH ₂) ₅	. 0	2-AcOPr
	2-181	Pip	CH=CH	(CH ₂) ₅	0	2-(3-HOOC.PrnO)Pr
	2-182	Pip	CH=CH	(CH ₂) ₅	0	2-BozOPr
35	2-183	Pip		(CH ₂) ₅	0	2-(<u>c</u> HxCOO)Pr
	2-184	Pip	CH=CH	(CH ₂) ₅	0	3-HOPr
	2-185	Pip	CH=CH	(CH ₂) ₅	0	3-AcOPr
40	2-186	Pip	CH=CH	(CH ₂) ₅	.0	3-(3-HOOC.PrnO)Pr
	2-187	Pip	CH=CH	(CH ₂) ₅	0	3-BozOPr
	2-188	Pip	CH=CH	(CH ₂) ₅	0	3 - (<u>c</u> HxCOO) Pr
	2-189	Pip	CH=CH	(CH ₂) ₅	0	2-HOBu
45	2-190	Pip	CH=CH	(CH ₂) ₅	0	2-AcOBu
	2-191	Pip	CH=CH	(CH ₂) ₅	0	2-(3-HOOC.PrnO)Bu
	2-192	Pip	CH=CH	(CH ₂) ₅	0	2 - (<u>c</u> HxCOO) Bu
50	2-193	Pip	CH=CH	(CH ₂) ₆	0	2-HOEt
	2-194	Pip	CH=CH	(CH ₂) ₆	0	2-AcOEt

55

Cpd.	_				,
No.	R ¹	A .	В	<u>m</u>	R ⁵
2-195	Pip	CH=CH	(CH ₂) ₆	. 0	2-(3-HOOC.PrnO)Et
2-196	Pip	CH=CH	(CH ₂) 6	0	2 - (<u>c</u> HxCOO) Et
2-197	Pip	CH=CH	(CH ₂) 6	0	2-HOPr
2-198	Pip	CH=CH	(CH ₂) ₆	0	2-Acopr
2-199	Pip	CH=CH	(CH ₂)6	0	2-(3-HOOC.PrnO)Pr
2-200	Pip	CH=CH	(CH ₂) ₆	0	2-(<u>c</u> HxCOO)Pr
2-201	Pip	CH=CH	(CH ₂) 6	0	3-HOPr
2-202	Pip	CH=CH	(CH ₂) 6	0	3-AcOPr
2-203	Pip	CH=CH	(CH ₂) ₆	0	3-(3-HOOC.PrnO)Pr
2-204	Pip	CH=CH	(CH ₂) ₆	. 0	3-(<u>c</u> HxCOO)Pr
2-205	Pip	CH=CH	(CH ₂) ₆	0	2-HOBu
2-206	Pip	CH=CH	(CH ₂)6	.0	2-AcOBu
2-207	Pip	CH=CH	(CH ₂) 6	0	2-(3-HOOC.PrnO)Bu
2-208	Pip	CH=CH	(CH ₂) ₆	0	2 - (<u>c</u> HxCOO) Bu
2-209	Pyr	CH=CH	CH ₂	0	2-HOEt
2-210	Pyr	CH=CH	CH ₂	0	2-FoORt
2-211	Pyr	CH=CH	CH ₂	0	2-AcOEt
2-212	Pyr	CH=CH	CH ₂	. 0	2-PrnOEt
2-213	Pyr	CH=CH	CH ₂	0	2-(3-HOOC.PrnO)Et
2-214	Pyr	CH=CH	CH ₂	0	2-(3-Mec.Prn0)Et
2-215	Pyr	CH=CH	CH ₂	0	2-(3-Etc.Prn0)Et
2-216	Pyr	CH=CH	CH ₂	0	2-BozOEt
2-217	Pyr	CH=CH	CH ₂	. 0	2- (<u>c</u> PnCOO) Et
2-218	Pyr	CH=CH	CH ₂	0	2 - (<u>c</u> HxCOO) Et
2-219	Pyr	CH=CH	CH ₂	0	2-HOPr
2-220	Pyr	CH=CH	CH ₂	0	2-AcOPr
2-221	Pyr	CH=CH	CH ₂	0	2-(3-HOOC.PrnO)Pr
2-222	Pyr	CH=CH	CH ₂	0	2-BozOPr

·					
Cpd.	R ¹				R ⁵
No.	R-	A	В	<u>m</u>	R
 _			·		
2-223	Pyr	CH=CH	CH ₂	0	2 - (<u>c</u> HxCOO) Pr
2-224	Pyr	CH=CH	CH ₂	0	3-HOPr
2-225	Pyr	CH=CH	CH ₂	0	3-FoOPr
2-226	Pyr	CH=CH	CH ₂	0	3-AcOPr
2-227	Pyr	CH=CH	CH ₂	. 0	3-(3-HOOC.PrnO)Pr
2-228	Pyr	CH=CH	CH ₂	0	3-(3-Mec.PrnO)Pr
2-229	Pyr	CH=CH	CH ₂	0	3-BozOPr
2-230	Pyr	CH=CH	CH ₂	0	3 - (<u>c</u> HxCOO) Pr
2-231	Pyr	CH=CH	CH ₂	0	2-HOBu
2-232	Pyr	CH=CH	CH ₂	0	2-AcOBu
2-233	Pyr	CH=CH	CH ₂ CH ₂	0	2-HOEt
2-234	Pyr	CH=CH	CH ₂ CH ₂	0	2-AcOEt
2-235	Pyr	CH=CH	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Et
2-236	Pyr	CH=CH	CH ₂ CH ₂	0	2-(3-Mec.PrnO)Et
2-237	Pyr	CH=CH	CH ₂ CH ₂	0	2-BozOEt
2-238	Pyr	CH=CH	CH ₂ CH ₂	0	2 - (<u>c</u> PnCOO) Et
2-239	Pyr	CH=CH	CH ₂ CH ₂	0	2 - (<u>c</u> HxCOO) Et
2-240	Pyr	CH=CH	CH ₂ CH ₂	0	2-HOPr
2-241	Pyr	CH=CH	CH ₂ CH ₂	0	2-AcOPr
2-242	Pyr	CH=CH	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Pr
2-243	Pyr	CH=CH	CH2CH2	0	2 - (<u>c</u> HxCOO) Pr
2-244	Pyr	CH=CH	CH ₂ CH ₂	0	3-HOPr
2-245	Pyr	CH=CH	CH ₂ CH ₂	0	3-AcOPr
2-246	Pyr	CH=CH	CH ₂ CH ₂	0	3 - (<u>c</u> HxCOO) Pr
		CH=CH	CH ₂ CH ₂	0	2-HOBu
		CH=CH	CH ₂ CH ₂	0	2-AcOBu
		CH=CH	(CH ₂) ₃	0	2-HOEt
	Pyr	CH=CH	(CH ₂) ₃	0	2-AcOEt

Cpd.					
No.	R ¹	A	В	<u>m</u>	R ⁵
		· ,			
2-251	Pyr	CH=CH	(CH ₂) ₃	0	2-PrnOEt
2-252	Pyr	CH=CH	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Et
2-253	Pyr	CH=CH	(CH ₂) ₃	0	2-BozOEt
2-254	Pyr	CH=CH	(CH ₂) ₃	0	2- (<u>c</u> PnCOO) Et
2-255	Pyr	CH=CH	(CH ₂) ₃	0	2 - (<u>c</u> HxCOO) Et
2-256	Pyr	CH=CH	(CH ₂) ₃	0	2-HOPr
2-257	Pyr	CH=CH	(CH ₂) ₃	0	2-AcOPr
2-258	Pyr	CH=CH	(CH ₂) ₃	0	2-BozOPr
2-259	Pyr	CH=CH	(CH ₂) ₃	0	3-HOPr
2-260	Pyr	CH=CH	(CH ₂) ₃	0	3-AcOPr
2-261	Pyr	CH=CH	(CH ₂) ₃	0	3-(3-HOOC.PrnO)Pr
2-262	Pyr	CH=CH	(CH ₂) ₃	0	2-HOBu
2-263	Pyr	CH=CH	(CH ₂) ₃	0	2-AcOBu
2-264	Pyr	CH=CH	(CH ₂) ₄	. 0	2-HOEt
2-265	Pyr	CH=CH	(CH ₂) ₄	0	2-AcOEt
2-266	Pyr	CH=CH	(CH ₂) ₄	0	2-(3-HOOC.PrnO)Et
2-267	Pyr	CH=CH	(CH ₂) ₄	0	2 - (<u>c</u> HxCOO) Et
2-268	Pyr	CH=CH	(CH ₂) ₄	0	2-HOPr
2-269	Pyr	CH=CH	(CH ₂) ₄	0	2-AcOPr
2-270	Pyr	CH=CH	(CH ₂) ₄	. 0	3-HOPr
2-271	Pyr	CH=CH	(CH ₂) ₄	0	3-AcOPr
2-272	Pyr	CH=CH	(CH ₂) ₄	0	2-HOBu
2-273	Pyr	CH=CH	(CH ₂) ₄	0	2-AcOBu
2-274		CH=CH	CH ₂ CH (Me) CH ₂	0	2-HOEt
2-275	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	2-AcOEt
2-276		CH=CH	CH ₂ CH (Me) CH ₂	0	2-HOPr
2-277	_	CH=CH	CH ₂ CH (Me) CH ₂	0	2-AcOPr
2-278	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	3-HOPr

Table 2 (cont.)

Cpd.				_
No.	R ¹	A B	<u>m</u>	R ⁵
2-279	Pyr	CH=CH CH ₂ CH(Me)CH ₂	0	3-AcOPr
2-280	Pyr	CH=CH CH ₂ CH(Me)CH ₂	. 0	2-HOBu
2-281	Pyr	CH=CH CH ₂ CH(Me)CH ₂	0	2-AcOBu
2-282	Pyr	CH=CH (CH ₂) ₅	. 0	2-HOEt
2-283	Pyr	CH=CH (CH ₂) ₅	0	2-AcOEt
2-284	Pyr	CH=CH (CH ₂) ₅	0	2-HOPr
2-285	Pyr	CH=CH (CH ₂) ₅	0	2-AcOPr
2-286	Pyr	CH=CH (CH ₂) ₅	0	2- (<u>c</u> HxCOO) Pr
2-287	Pyr	CH=CH (CH ₂) ₅	0	3-HOPr
2-288	Pyr	CH=CH (CH ₂) ₅	0	3-AcOPr
2-289	Pyr	CH=CH (CH ₂) ₅	0	2-AcOBu
2-290	Pyr	CH=CH (CH ₂) ₆	0	2-HOEt
2-291	Pyr	CH=CH (CH ₂) ₆	0	2-AcOEt
2-292	Pyr	CH=CH (CH ₂) ₆	. 0	2-HOPr
2-293	Pyr	CH=CH (CH ₂) ₆	Ö	2-AcOPr
2-294	Pyr	CH=CH (CH ₂) ₆	0	3-HOPr
2-295	Pyr	CH=CH (CH ₂) ₆	0	3-AcOPr
2-296	Pyr	CH=CH (CH ₂) ₆	0	2-AcOBu
2-297	NMe ₂	CH=CH CH ₂	0	2-HOEt
2-298	NMe ₂	CH=CH CH ₂	. 0	2-AcOEt
2-299	NMe ₂	CH=CH CH ₂	0	2-PrnOEt
2-300	NMe ₂	CH=CH CH ₂	0	2-(3-HOOC.PrnO)E
2-301	NMe ₂	CH=CH CH ₂	0	2-(3-Mec.PrnO)Et
2-302	NMe ₂	CH=CH CH2	0	2-BozOEt
2-303	NMe ₂	CH=CH CH ₂	0	2-(<u>c</u> HxCOO)Et
2-304	NMe ₂	CH=CH CH ₂	0	2-HOPr
2-305	NMe ₂	CH=CH CH ₂	0	2-(<u>c</u> HxCOO)Pr
2-306	NMe ₂	CH=CH CH ₂	0	3-HOPr

55

5						
	Cpd.	R ¹	A	В	m	R ⁵
10						
	2-307	NMe ₂	CH=CH	CH ₂	0	3-AcOPr
	2-308	NMe ₂	CH=CH	CH ₂	0	2-HOBu
15	2-309	NMe ₂	CH=CH	CH ₂	0	2-AcOBu
	2-310	NMe ₂	CH=CH	CH ₂ CH ₂	. 0	2-HOEt
	2-311	NMe ₂	CH=CH	CH ₂ CH ₂	0	2-AcOEt
	2-312	NMe ₂	CH=CH	CH ₂ CH ₂	0	3-HOPr
20	2-313	NMe ₂	CH=CH	CH ₂ CH ₂	0	3-AcOPr
	2-314	NMe ₂	CH=CH	(CH ₂) ₃	0	2-HOEt
	2-315	NMe ₂	CH=CH	(CH ₂) ₃	0	2-AcOEt
25	2-316	NMe ₂	CH=CH	(CH ₂) ₃	0	2-PrnOEt
	2-317	NMe ₂	CH=CH	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Et
	2-318	NMe ₂	CH=CH	(CH ₂) ₃	0	2-BozOEt
20	2-319	NMe ₂	CH=CH	(CH ₂) ₃	0	2 - (<u>c</u> HxCOO) Et
30	2-320	NMe ₂	CH=CH	(CH ₂) ₃	0	2-(<u>c</u> PnCOO)Pr
	2-321	NMe ₂	CH=CH	(CH ₂) ₃	0.	2-(<u>c</u> HxCOO)Pr
	2-322	NMe ₂	CH=CH	(CH ₂) ₃	0	3-HOPr
35	2-323	NMe ₂	CH=CH	(CH ₂) ₃	0	3-AcOPr
	2-324	NMe ₂	CH=CH	(CH ₂) ₃	0	2-HOBu
	2-325	NMe ₂	CH=CH	(CH ₂) ₃	0	2-AcOBu
40	2-326	NMe ₂	CH=CH	(CH ₂) ₄	0	2-HOEt
	2-327	NMe ₂	CH=CH	(CH ₂) ₄	0	2-AcOEt
	2-328	NMe ₂	CH=CH	(CH ₂) ₄	0	3-HOPr
	2-329	NMe ₂	CH=CH	(CH ₂) ₄	0	3-AcOPr
45	2-330	NMe ₂		(CH ₂) ₄	0	2-AcOBu
	2-331	NMe ₂		CH ₂ CH (Me) CH ₂	0	
•	2-332	NMe_2		CH ₂ CH (Me) CH ₂		
50	2-333	NMe ₂	CH=CH	CH ₂ CH (Me) CH ₂		
	2-334	NMe ₂	CH=CH	CH ₂ CH (Me) CH ₂	0	2-AcOPr

5	Cpd.					
	No.	R^1	A	В	W	R ⁵
0					· · ·	
	2-335	NMe ₂	CH=CH	CH2CH (Me) CH2	0	3-AcOPr
	2-336	NMe ₂	CH=CH		0	2-AcOBu
5	2-337	NMe ₂	CH=CH		0	2-HOEt
	2-338	NMe ₂	CH=CH		0	2-AcOEt
	2-339	NMe ₂	CH=CH		0	3-HOPr
	2-340	NMe ₂	CH=CH	(CH ₂) ₅	0	3-AcOPr
)	2-341	NMe ₂	CH=CH		0	2-HOEt
	2-342	NMe ₂	CH=CH	·	0	2-AcOEt
	2-343	NMe ₂	CH=CH		0	3-HOPr
;	2-344	NMe ₂	CH=CH	_ -	0	3-AcOPr
	2-345	NEt ₂	CH=CH	CH ₂	0	2-HOEt
	2-346	NEt ₂	CH=CH	CH ₂	0	2-AcOEt
,	2-347	NEt ₂	CH=CH	CH ₂	0	2-PrnOEt
,	2-348	NEt ₂	CH=CH	CH ₂	. 0	2-(3-HOOC.PrnO)Et
	2-349	NEt ₂	CH=CH	CH ₂	0	2-BozOEt
	2-350	NEt ₂	CH=CH	CH ₂	0	2-(<u>c</u> HxCOO) Et
	2-351	NEt ₂	CH=CH	CH ₂	0	3-HOPr
	2-352	NEt ₂	CH=CH	CH ₂	0	3-AcOPr
	2-353	NEt ₂	CH=CH	CH ₂	0	3-(3-HOOC.PrnO)Pr
+	2-354	NEt ₂	CH=CH	CH ₂	. 0	3-BozOPr
	2-355	NEt ₂	CH=CH	CH ₂	0	3 - (<u>c</u> HxCOO) Pr
	2-356	NEt ₂	CH=CH	CH ₂	0	2-AcOBu
	2-357	NEt ₂	СН=СН	2	0 -	2-HOEt
i	2-358	NEt ₂		2 2	0	2-AcOEt
	2-359	NEt ₂	CH=CH	2 2	0	3-AcOPr
	2-360	NEt ₂	CH=CH	CH ₂ CH ₂	0	3-BozOPr
		4		4 4		

55

_	· .						
5	Cpd.	R ¹	A	В	m	R ⁵	
10	·		· · · · · · · · · · · · · · · · · · ·				
	2-361	NEt ₂	CH=CH	CH ₂ CH ₂	0	2-AcOBu	
	2-362	NEt ₂	CH=CH	(CH ₂) ₃	0	2-HOEt	
15	2-363	NEt ₂		(CH ₂) ₃	0	2-AcOEt	
15	2-364	NEt ₂		(CH ₂) ₃	. 0	3-HOPr	٠
	2-365	_		(CH ₂) ₃	0	3-AcOPr	÷
	2-366	NEt ₂		(CH ₂) ₃	0	2-AcOBu	
20	2-367	NEt ₂		(CH ₂) ₄	0	2-HOEt	
	2-368	NEt ₂		(CH ₂) ₄	0	2-AcOEt	
;	2-369	NEt ₂		(CH ₂) ₄	0	3-HOPr	
25	2-370	NEt ₂	CH=CH	(CH ₂) ₄	0	3-AcOPr	
	2-371	NEt ₂		(CH ₂) ₄	0	2-AcOBu	
	2-372	NEt ₂		CH ₂ CH (Me) CH ₂	0	2-HOEt	
	2-373	NEt ₂	CH=CH	CH ₂ CH (Me) CH ₂	0	2-AcOEt	
30	2-374	NEt ₂		CH ₂ CH (Me) CH ₂	0	2-HOPr	
	2-375	NEt ₂		CH ₂ CH (Me) CH ₂		2-AcOPr	
•	2-376	NEt ₂		CH ₂ CH (Me) CH ₂	0	3-HOPr	
35	2-377	NEt ₂	CH=CH	CH ₂ CH (Me) CH ₂	0	3-AcOPr	
	2-378	NEt ₂		(CH ₂) ₅	. 0	2-HOEt	
	2-379	NEt ₂	CH=CH	(CH ₂) ₅	0	2-AcOEt	
40	2-380	NEt ₂	CH=CH	(CH ₂) ₅	0	3-HOPr	
40	2-381	NEt2	CH=CH	(CH ₂) ₅	0	3-AcOPr	
	2-382	NEt ₂	CH=CH		0	2-AcOBu	
	2-383	_	CH=CH	2 3	0	2-HOEt	
45	2-384	_	CH=CH		0	2-AcOEt	
	2-385		CH=CH	(HC2) ₆	0	3-HOPr	
	2-386	_	CH=CH	(CH ₂) ₆	0	3-AcOPr	
· 50	2-387	_	CH=CH	(CH ₂) ₆	0		
	2-388	Azi		CH ₂	0	2-AcOEt	
				4	-		

_	<u> </u>					
5	Cpd.					
	No.	R^{1}	A	B.	<u>m</u>	R ⁵
	<u>.</u>					
10						
	2-389	Aze	CH=CH	CH ₂	0	2-AcOEt
	2-390	Pip	-CH=CH	CH ₂	1	2-HOEt
15	2-391	Pip	CH=CH	CH ₂	1	2-AcOEt
	2-392	Pip	CH=CH	CH ₂	1	2-PrnOEt
	2-393	Pip	CH=CH	CH ₂	· 1.	2-(3-HOOC.PrnO)Et
	2-394	Pip	CH=CH	CH ₂	1	2-(3-Mec.PrnO)Et
20	2-395	Pip	CH=CH	CH ₂	1	2-BozOEt
	2-396	Pip	CH=CH	CH ₂	1	2 - (<u>c</u> HxCOO) Et
	2-397	Pip	CH=CH	CH ₂	1	2-HOPr
25	2-398	Pip	CH=CH	CH ₂	1	2-FoOPr
	2-399	Pip	CH=CH	CH ₂	1	2-AcOPr
	2-400	Pip	CH=CH	CH ₂	1	2-(3-HOOC.PrnO)Pr
	2-401	Pip	CH=CH	CH ₂	1	2-(<u>c</u> HxCOO)Pr
30	2-402	Pip	CH=CH	CH ₂	1	3-HOPr
÷	2-403	Pip	CH=CH	CH ₂	1	3-AcOPr
	2-404	Pip	CH=CH	CH ₂	1	3-(3-HOOC.PrnO)Pr
35	2-405	Pip	CH=CH	CH ₂	1	3-BozOPr
	2-406	Pip	CH=CH	CH ₂	1	3-(<u>c</u> HxCOO)Pr
٠	2-407	Pip	CH=CH	CH ₂	1	2-HOBu
40	2-408	Pip	CH=CH	CH ₂	1	2-AcOBu
	2-409	Pip	CH=CH	CH ₂ CH ₂	1	2-HOEt
	2-410	Pip	CH=CH	CH ₂ CH ₂	1 ·	2-AcOEt
	2-411	Pip	CH=CH	CH ₂ CH ₂	1	2-(3-HOOC.PrnO)Et
45	2-412	Pip	CH=CH	CH2CH2	1	2-BozOEt
	2-413	Pip	CH=CH	CH ₂ CH ₂	1	2 - (<u>c</u> HxCOO) Et
	2-414	Pip	CH=CH	CH ₂ CH ₂	1	3-HOPr
50	2-415	Pip	CH=CH	CH2CH2	1	3-Acopr
	2-416	Pip	CH=CH	CH ₂ CH ₂	1	2-HOBu

Cpd.					
No.	R ¹	A	В	<u>m</u>	R ⁵
_					
2-417	Pip	CH=CH	CH ₂ CH ₂	1	2-AcOBu
2-418	Pip	CH=CH	(CH ₂) ₃	1	2-HOEt
2-419	Pip	CH=CH	(CH ₂) ₃	1	2-AcOEt
2-420	Pip	CH=CH	(CH ₂) ₃	1	2-PrnOEt
2-421	Pip	CH=CH	(CH ₂) ₃	1	2-(3-HOOC.PrnO)Et
2-422	Pip	CH=CH	(CH ₂) ₃	1	2-BozOEt
2-423	Pip	CH=CH	(CH ₂) ₃	1	2 - (<u>c</u> HxCOO) Et
2-424	Pip	CH=CH	(CH ₂) ₃	1	2-HOPr
2-425	Pip	CH=CH	(CH ₂) ₃	1	2-AcOPr
2-426	Pip	CH=CH	(CH ₂) ₃	1	2-(3-HOOC.PrnO)Pr
2-427	Pip	CH=CH	(CH ₂) ₃	1	2 - (<u>c</u> PnCOO) Pr
2-428	Pip	CH=CH	(CH ₂) ₃	1	2 - (<u>c</u> HxCOO) Pr
2-429	Pip	CH=CH	(CH ₂) ₃	1	3-HOPr
2-430	Pip	CH=CH	(CH ₂) ₃	. 1	3-AcOPr
2-431	Pip	CH=CH	(CH ₂) ₃	1	2-HOBu
2-432	Pip	CH=CH	(CH ₂) ₃	1	2-AcOBu
2-433	Pip	CH=CH	(CH ₂) ₄	1	2-HOEt
2-434	Pip	CH=CH	(CH ₂) ₄	1	2-AcOEt
2-435	Pip	CH=CH	(CH ₂) ₄	1	2 - (<u>c</u> HxCOO) Et
2-436	Pip	CH=CH	(CH ₂) ₄	1	2-HOPr
2-437	Pip	CH=CH	(CH ₂) ₄	1	2-AcOPr
2-438	Pip	CH=CH	(CH ₂) ₄	1	3-HOPr
2-439		CH=CH	(CH ₂) ₄	1	3-AcOPr
2-440	Pip	CH=CH	(CH ₂) ₄	1	2-AcOBu
2-441	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	2-HOEt
2-442	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	2-AcOEt
2-443	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	2-HOPr
2-444	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	2-AcOPr

. 5	Cpd.					
	No.	R ¹	A	В	<u>m</u>	R ⁵
10						
	2-445	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	3-AcOPr
	2-446	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	2-AcOBu
45	2-447	Pip	CH=CH	(CH ₂) ₅	. 1	2-HOEt
15	2-448	Pip	CH=CH	(CH ₂) ₅	1,	2-AcOEt
	2-449	Pip	CH=CH	(CH ₂) ₅	1	2-HOPr
	2-450	Pip	CH=CH	(CH ₂) ₅	1	2-AcOPr
20	2-451	Pip	CH=CH	(CH ₂) ₅	1	3-HOPr
	2-452	Pip	CH=CH	(CH ₂) ₅	1	3-AcOPr
	2-453	Pip	CH=CH	(CH ₂) ₅	1	2-AcOBu
25	2-454	Pip	CH=CH	(CH ₂) 6	1	2-HOEt
	2-455	Pip	CH=CH	(CH ₂) 6	1	2-AcOEt
	2-456	Pip	CH=CH	(CH ₂) 6	1	2-HOPr
	2-457	Pip	CH=CH	(CH ₂) 6	1	2-AcOPr
30	2-458	Pip	CH=CH	(CH ₂) 6	. 1	3-HOPr
	2-459	Pip	CH=CH	(CH ₂) 6	1	3-Acopr
	2-460	Pip	CH=CH	CH ₂	2	2-HOEt
35	2-461	Pip	CH=CH	CH ₂	2	2-AcOEt
	2-462	Pip	CH=CH	CH ₂	2	2-PrnOEt
	2-463	Pip	CH=CH	CH ₂	2	2-(3-HOOC.PrnO)Et
	2-464	Pip	CH=CH	CH ₂	2	2-BozOEt
40	2-465	Pip	CH=CH	CH ₂	2	2-(<u>c</u> HxCOO) Et
	2-466	Pip	CH=CH	CH ₂	. 2	3-HOPr
	2-467	Pip	CH=CH	CH ₂	2	3-AcOPr
45	2-468	Pip	CH=CH	CH ₂	2	3-(3-HOOC.PrnO)Pr
			CH=CH	4	2	3-BozOPr
			CH=CH	~	2	3-(<u>c</u> HxCOO)Pr
			СН=СН	-		2-AcOBu
50	2-472		CH=CH	4		2-HOEt

5						
•	Cpd.					
**	No.	R ¹	A	В	<u>m</u>	R ⁵
10				·		· · · · · · · · · · · · · · · · · · ·
	2-473	Pip	CH=CH	сн2сн2	2	2-AcOEt
	2-474	Pip	CH=CH	CH ₂ CH ₂	2	3-AcOPr
15	2-475	Pip	CH=CH		2	3-BozOPr
	2-476	Pip	CH=CH	~ ~	2	2-AcOBu
	2-477	Pip	CH=CH	(CH ₂) 3	2	2-HOEt
00	2-478	Pip	CH=CH	(CH ₂) 3	2	2-AcOEt
20	2-479	Pip	CH=CH	_	2	3-HOPr
	2-480	Pip	CH=CH	_	2	3-AcOPr
	2-481	Pip	CH=CH	_	2	2-AcOBu
25	2-482	Pip	CH=CH	(CH ₂) 4	2	2-HOEt
	2-483	Pip	CH=CH	(CH ₂) 4	2	2-AcOEt
	2-484	Pip	CH=CH	(CH ₂) 4	2	3-HOPr
30	2-485	Pip	CH=CH	(CH ₂) 4	2	3-AcOPr
00	2-486	Pip	CH=CH	(CH ₂) 4	2	2-AcOBu
	2-487	Pip	CH=CH	CH ₂ CH (Me) CH ₂	2	2-HOEt
	2-488	Pip	CH=CH	CH ₂ CH (Me) CH ₂	2	2-AcOEt
35	2-489	Pip	CH=CH	CH ₂ CH (Me) CH ₂	2	2-HOPr
	2-490	Pip	CH=CH	CH ₂ CH (Me) CH ₂	2	2-AcOPr
•	2-491	Pip	CH=CH	CH ₂ CH (Me) CH ₂	2	3-HOPr
40	2-492	Pip	CH=CH	CH ₂ CH (Me) CH ₂	2	3-AcOPr
	2-493	Pip	CH=CH	(CH ₂) ₅	2	2-HOEt
	2-494	Pip	CH=CH	(CH ₂) ₅	2	2-AcOEt
	2-495	Pip	CH=CH	(CH ₂) ₅	2	3-HOPr
45	2-496	Pip	CH=CH	(CH ₂) ₅	2	3-AcOPr
	2-497	Pip	CH=CH	(CH ₂) ₅	2	2-AcOBu
	2-498	Pip	CH=CH	(CH ₂) ₆	2	2-HOEt
50	2-499	Pip	CH=CH	(CH ₂) ₆	2	2-AcOEt
	2-500	Pip	CH=CH	(CH ₂) ₆	2	3-HOPr

5						
	Cpd. No.	R ¹	A	В	770	R ⁵
		1	A	D	<u>m</u>	K
10			· · · · · ·			
	2-501	Pip	CH=CH	(CH ₂) ₆	2	3-AcOPr
	2-502	Pip	CH=CH	(CH ₂) ₆	2	2-AcOBu
15	2-503	Pyr	CH=CH	CH ₂	1	2-AcOEt
	2-504	Pyr	CH=CH	CH ₂	1	2-AcOEt
	2-505	Pip	CH_2CH_2	CH ₂	0	сн ₂ он
20	2-506	Pip	CH ₂ CH ₂	CH ₂	0	2-HOEt
	2-507	Pip	CH ₂ CH ₂	CH ₂	0	2-FoOEt
	2-508	Pip	CH_2CH_2	CH ₂	0	2-AcOEt
	2-509	Pip	$\mathrm{CH_2CH_2}$	CH ₂	0	2-PrnOEt
25	2-510	Pip	CH_2CH_2	СН ₂	0	2-ByrOEt
	2-511	Pip	CH ₂ CH ₂	CH ₂	0	2- <u>i</u> ByrOEt
	2-512	Pip	CH ₂ CH ₂	CH ₂	0	2-ValOEt
30	2-513	Pip	CH_2CH_2	CH ₂	0	2- <u>i</u> ValOEt
	2-514	Pip	$\mathrm{CH_2CH_2}$	CH ₂	0	2 - (PhAcO) Et
	2-515	Pip	CH ₂ CH ₂	CH ₂	0	2-(HOOC.AcO)Et
0.5	2-516	Pip	CH_2CH_2	CH ₂	0	2-(3-HOOC.PrnO)Et
35	2-517	Pip	$\mathrm{CH_2CH_2}$	CH ₂	0	2-(3-Mec.Prn0)Et
	2-518	Pip	Сн ₂ Сн ₂	CH ₂	0	2-(3-Etc.Prn0)Et
•	2-519	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-Prc.Prn0)Et
40	2-520	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-Phc.Prn0)Et
	2-521	Pip	CH ₂ CH ₂	CH ₂	0	2-[3-(4-MePhcO)PrnO]Et
	2-522	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-PhPrnO)Et
45	2-523		CH ₂ CH ₂	CH ₂	0	2- (3-PhPrnO) Et
40	2-524	Pip	CH ₂ CH ₂	CH ₂	0	2-BozOEt
	2-525		CH ₂ CH ₂	CH ₂	0	2- (4-MeBozO) Et
	2-526	Pip	CH ₂ CH ₂	CH ₂	0	2-(4-MeOBozO)Et
50	2-527	Pip	CH ₂ CH ₂	CH ₂	0	2-(4-FBozO)Et

5						
*	Cpd.				,	•
	No.	R ¹	A	В	<u>m</u>	R ⁵
10				-	······	
	2-528	Pip	CH ₂ CH ₂	CH ₂	0	2-(4-ClBozO)Et
	2-529	Pip	CH ₂ CH ₂	CH ₂	0	2-(<u>c</u> PrCOO)Et
15	2-530	Pip	CH ₂ CH ₂	CH ₂	0	2 - (<u>c</u> BuCOO) Et
	2-531	Pip	CH ₂ CH ₂	CH ₂	0	2 - (<u>c</u> PnCOO) Et
	2-532	Pip	CH ₂ CH ₂	CH ₂	0	2 - (<u>c</u> HxCOO) Et
	2-533	Pip	CH ₂ CH ₂	CH ₂	0	2-HOPr
20	2-534	Pip	CH ₂ CH ₂	CH ₂	0	2-FoOPr
	2-535	Pip	CH ₂ CH ₂	CH ₂	0	2-AcOPr
	2-536	Pip	CH ₂ CH ₂	CH ₂	0	2-PrnOPr
25	2-537	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-HOOC.PrnO)Pr
	2-538	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-Mec.PrnO)Pr
	2-539	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-Etc.Prn0)Pr
30	2-540	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-Phc.PrnO)Et
00	2-541	Pip	CH ₂ CH ₂	CH ₂	O	2-[3-(4-MePhcO)PrnO]Et
	2-542	Pip	CH ₂ CH ₂	CH ₂	0	2-(PhAcO)Pr
	2-543	Pip	CH ₂ CH ₂	CH ₂	0	2-BozOPr
35	2-544	Pip	CH ₂ CH ₂	CH ₂	0	2 - (<u>c</u> PnCOO) Pr
	2-545	Pip	CH ₂ CH ₂	CH ₂	0	2-(<u>c</u> HxCOO)Pr
	2-546	Pip	CH ₂ CH ₂	CH ₂	0	3-HOPr
40	2-547	Pip	CH ₂ CH ₂	CH ₂	0	3-FoOPr
	2-548	Pip	CH ₂ CH ₂	CH ₂	0	3-AcOPr
	2-549	Pip	CH2CH2	CH ₂	0	3-PrnOPr
	2-550	Pip	CH ₂ CH ₂	CH ₂	0	3-(3-HOOC.PrnO)Pr
45	2-551	Pip	CH ₂ CH ₂	CH ₂	0	3-(3-Mec.PrnO)Pr
	2-552	Pip	CH ₂ CH ₂	CH ₂	0	3-(3-Etc.Prn0)Pr
	2-553	Pip	CH ₂ CH ₂	CH ₂	0	3-BozOPr
50	2-554	Pip	CH ₂ CH ₂	CH ₂	0	3-(<u>c</u> PnCOO)Pr
	2-555	Pip	CH ₂ CH ₂	CH ₂	0	3-(<u>c</u> HxCOO)Pr

•	O- 3					·
	Cpd. No.	R ¹	A	В	m	R ⁵
•						
	2-556	Pip	CH ₂ CH ₂	CH ₂	0	2-HOBu
	2-557	Pip	CH ₂ CH ₂	CH ₂	.0	2-AcOBu
	2-558	Pip	CH ₂ CH ₂	CH ₂	0	2-(3-HOOC.PrnO)Bu
	2-559	Pip	CH ₂ CH ₂	CH ₂	0	2-BozOBu
	2-560	Pip	CH ₂ CH ₂	CH ₂	0	2 - (<u>c</u> HxC00) Bu
	2-561	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-HOEt
	2-562	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-FoOEt
	2-563	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-AcOEt
	2-564	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-PrnOEt
	2-565	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-ValOEt
	2-566	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(PhAcO)Et
	2-567	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Et
	2-568	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(3-Mec.PrnO)Et
	2-569	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(3-Etc.PrnO)Et
	2-570	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(3-PhPrnO)Et
	2-571	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-BozOEt
	2-572	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(4-MeBozO)Et
	2-573	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(4-FBozO)Et
	2-574	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(4-ClBozO) Et
	2-575	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0.	2-(<u>c</u> PrCOO)Et
	2-576	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2 - (<u>c</u> BuCOO) Et
	2-577	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2 - (<u>c</u> PnCOO) Et
	2-578	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2 - (<u>c</u> HxCOO) Et
	2-579	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-HOPr
٠	2-580	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-FoOPr
	2-581	Pip		CH ₂ CH ₂	0	2-AcOPr
	2-582	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-PrnOPr
	2-583	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Pr

Cpd.	R ¹	A	В		R ⁵
		A		<u>m</u>	K
2-584	Pip	CH ₂ CH ₂	СН ₂ СН ₂	0	2-(3-Mec.PrnO)Pr
2-585	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-BozOPr
2-586	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(<u>c</u> PnCOO)Pr
2-587	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2 - (<u>c</u> HxCOO) Pr
2-588	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	3-HOPr
2-589	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	3-AcOPr
2-590	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	3-PrnOPr
2-591	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	3-(3-HOOC.PrnO)Pr
2-592	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	3-BozOPr
2-593	Pip	CH ₂ CH ₂	CH ₂ CH ₂	. 0	3-(<u>c</u> PnCOO)Pr
2-594	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	3-(<u>c</u> HxCOO)Pr
2-595	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-HOBu
2-596	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-AcOBu
2-597	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 .	2-(3-HOOC.PrnO)Bu
2-598	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2-BozOBu
2-599	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	2 - (<u>c</u> HxCOO) Bu
2-600	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-HOEt
2-601	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-FoOEt
2-602	Pip	CH ₂ CH ₂	$(CH_2)_3$	0	2-AcOEt
2-603	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-PrnOEt
2-604	Pip	CH2CH2	(CH ₂) ₃	0	2-ByrOEt
2-605	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2- <u>i</u> ByrOEt
2-606	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-ValOEt
2-607		CH2CH2	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Et
2-608		CH2CH2	$(CH_2)_3$	0	2-(3-Mec.PrnO)Et
		CH2CH2	(CH ₂) ₃	0	2-(3-Etc.PrnO)Et
		CH ₂ CH ₂	(CH ₂) ₃	0	2-(PhAcO)Et
2-611	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-BozOEt

5	Cnd					
	Cpd. No.	R ¹	A	В		R ⁵
	110.	K	A		m	K
10				 		
	2-612	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-(4-MeBozO)Et
	2-613	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-(4-MeOBozO)Et
15	2-614	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-(4-FBozO)Et
	2-615	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-(4-ClBozO)Et
	2-616	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-(<u>c</u> PrCOO)Et
	2-617	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> BuCOO) Et
20	2-618	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> PnCOO) Et
	2-619	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> HxCOO) Et
	2-620	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-HOPr
25	2-621	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-AcOPr
	2-622	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-PrnOPr
	2-623	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Pr
30	2-624	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-(3-Etc.PrnO)Pr
30	2-625	Pip	$\mathrm{CH_2CH_2}$	(CH ₂) ₃	0	2-BozOPr
	2-626	Pip	CH_2CH_2	(CH ₂) ₃	0	2-(<u>c</u> HxCOO)Pr
	2-627	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	3-HOPr
35	2-628	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	3-AcOPr
	2-629	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	3-(3-HOOC.PrnO)Pr
	2-630	Pip	CH_2CH_2	(CH ₂) ₃	0	3-(3-Mec.PrnO)Pr
40	2-631	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	3-BozOPr
	2-632	Pip	$\mathrm{CH_2CH_2}$	(CH ₂) ₃	0	3-(<u>c</u> HxCOO)Pr
	2-633	_	$\mathrm{CH_2CH_2}$	(CH ₂) ₃	0	2-HOBu
	2-634	Pip	CH_2CH_2	(CH ₂) ₃	0	2-AcOBu
45	2-635	Pip	CH_2CH_2	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Bu
			CH ₂ CH ₂		0	2-BozOBu
	2-637	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> HxCOO) Bu
50	2-638	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-HOEt
	2-639	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-FoOEt

5						
	Cpd.					
	No.	R^1	A	В	m	R ⁵
10						
	2-640	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-AcOEt
	2-641	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-PrnOEt
15	2-642	Pip		(CH ₂) ₄	0	2-(3-HOOC.PrnO)Et
	2-643	Pip	4	(CH ₂) ₄	0	2-(3-Mec.Prn0)Et
	2-644	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-BozOEt
	2-645	Pip		(CH ₂) ₄	0	2 - (<u>c</u> HxCOO) Et
20	2-646	Pip	CH ₂ CH ₂	$(CH_2^2)_4^4$	0	2-HOPr
	2-647	Pip		$(CH_2)_4$	0	2-AcOPr
	2-648	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-(3-HOOC.PrnO)Pr
25	2-649	Pip	CH ₂ CH ₂	(CH ₂) ₄	. 0	2-BozOPr
	2-650	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2 - (<u>c</u> HxCOO) Pr
	2-651	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	3-HOPr
	2-652	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	3-AcOPr
30	2-653	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	3-(3-HOOC.PrnO)Pr
	2-654	Pip	CH ₂ CH ₂	(CH ₂) ₄	. 0	3-BozOPr
	2-655	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	3 - (<u>c</u> HxCOO) Pr
35	2-656	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-HOBu
	2-657	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-AcOBu
	2-658	Pip	CH ₂ CH ₂	(CH ₂) ₄	0	2-(3-HOOC.PrnO)Bu
40	2-659	Pip	CH2CH2	(CH ₂) ₄	0	2 - (<u>c</u> HxCOO) Bu
40	2-660	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-HOEt
	2-661	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-AcOEt
	2-662	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-(3-HOOC.PrnO)Et
45	2-663		CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-BozOEt
	2-664		CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2 - (<u>c</u> HxCOO) Et
•	2-665		CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-HOPr
50	2-666		CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-AcOPr
	2-667	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-BozOPr

	Cpd.					
	No.	R ¹	A	В .	<u>m</u>	R ⁵
-			· · · · · ·			
	2-668	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2 - (<u>c</u> HxCOO) Pr
	2-669	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	3-HOPr
	2-670	Pip		CH ₂ CH (Me) CH ₂	0	3-AcOPr
	2-671	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	3-(3-HOOC.PrnO)I
	2-672	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	3-BozOPr
	2-673	Pip	CH2CH2	CH ₂ CH (Me) CH ₂	0	3 - (<u>c</u> HxCOO) Pr
	2-674	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-HOBu
	2-675	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	2-AcOBu
	2-676	Pip	~ ~	CH ₂ CH (Me) CH ₂	0	2-(3-Etc.PrnO)Bu
	2-677	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	, 0	2 - (<u>c</u> HxC00) Bu
	2-678	Pip	CH ₂ CH ₂	(CH ₂) ₅	0	2-HOEt
	2-679	Pip		(CH ₂) ₅	0	2-AcOEt
	2-680	Pip	CH ₂ CH ₂	(CH ₂) ₅	0	2-(3-HOOC.PrnO)E
	2-681	Pip		(CH ₂) ₅	. 0	2-BozOEt
	2-682	Pip	CH ₂ CH ₂	(CH ₂) ₅	. 0	2 - (<u>c</u> HxC00) Et
	2-683	Pip		(CH ₂) ₅	0	2-HOPr
	2-684	Pip	CH2CH2	(CH ₂) ₅	0	2-AcOPr
	2-685	Pip	CH2CH2	(CH ₂) ₅	0	2-(3-HOOC.PrnO)E
	2-686	Pip		(CH ₂) ₅	0	2-BozOPr
	2-687	Pip	CH ₂ CH ₂	(CH ₂) ₅	. 0	2-(<u>c</u> HxC00)Pr
	2-688	Pip	CH ₂ CH ₂	(CH ₂) ₅	0	3-HOPr
	2-689	Pip	CH ₂ CH ₂	(CH ₂) ₅	0	3-AcOPr
			CH ₂ CH ₂	(CH ₂) ₅	0	3-(3-HOOC.PrnO)E
			CH ₂ CH ₂	(CH ₂) ₅	0	3-BozOPr
	2-692	Pip	CH ₂ CH ₂	(CH ₂) ₅	0	3 - (<u>c</u> HxCOO) Pr
	2-693	Pip	CH ₂ CH ₂	(CH ₂) ₅	0	2-HOBu
			CH ₂ CH ₂	(CH ₂) ₅	0	2-AcOBu
			CH ₂ CH ₂	(CH ₂) ₅	0	2-(3-HOOC.PrnO)B

Cpd. No.	R ¹	A	В	W	R ⁵
2-696	Pip	CH ₂ CH ₂	(CH ₂) ₅	0	2 - (<u>c</u> HxCOO) Bu
		CH ₂ CH ₂	(CH ₂)	0	2-HOEt
		CH ₂ CH ₂	(CH ₂)6	0	2-AcOEt
2-699		CH ₂ CH ₂	(CH ₂) 6	0	2-(3-HOOC.PrnO)Et
2-700		CH ₂ CH ₂	(CH ₂) ₆	0	2-(<u>c</u> HxCOO)Et
2-701		CH ₂ CH ₂	(CH ₂)6	0	2-HOPr
2-702		CH ₂ CH ₂		0	2-AcOPr
		CH ₂ CH ₂	(CH ₂) ₆	0	2-(3-HOOC.PrnO)Pr
		CH ₂ CH ₂	(CH ₂) ₆	0	2- (<u>c</u> HxCOO) Pr
		CH ₂ CH ₂	(CH ₂)6	0	3-HOPr
		CH ₂ CH ₂	(CH ₂) ₆	0	3-AcOPr
		CH ₂ CH ₂	(CH ₂) ₆	0	3-(3-HOOC.PrnO)Pr
		CH ₂ CH ₂	(CH ₂) ₆	0	3-(<u>c</u> HxCOO)Pr
		CH ₂ CH ₂	(CH ₂) ₆	0	2-HOBu
2-710		CH ₂ CH ₂	(CH ₂)6	0	2-AcOBu
2-711		CH ₂ CH ₂	(CH ₂)6	0	2- (3-HOOC.PrnO)Bu
2-712		CH ₂ CH ₂	(CH ₂) ₆	0	2- (<u>c</u> HxC00) Bu
2-713	Pyr	CH ₂ CH ₂	CH ₂	0	2-HOEt
2-714		CH ₂ CH ₂	CH ₂	0	2-FoOEt
2-715		CH ₂ CH ₂	CH ₂	0	2-AcOEt
2-716		CH ₂ CH ₂	CH ₂	0	2-PrnOEt
2-717	Pyr	CH ₂ CH ₂	CH ₂	0	2-(3-HOOC.PrnO)Et
2-718	Pyr	CH ₂ CH ₂	CH ₂	0	2-(3-Mec.PrnO)Et
		CH2CH2	CH ₂	0	2-(3-Etc.PrnO)Et
		CH ₂ CH ₂	CH ₂	0	2-BozOEt
		CH ₂ CH ₂	CH ₂	0	2- (<u>c</u> PnCOO) Et
2-722		CH ₂ CH ₂	CH ₂	o	2-(<u>c</u> HxCOO)Et
2-723		CH ₂ CH ₂	CH ₂	0	2-HOPr

					···	
	Cpd. No.	R ¹	A	В	<u>m</u>	R ⁵
				,		
	2-724	Pyr	CH ₂ CH ₂	CH ₂	. 0	2-AcOPr
***	2- 7 25	Pyr	CH ₂ CH ₂	CH ₂	0	2-(3-HOOC.PrnO)Pr
	2-726	Pyr	CH ₂ CH ₂	CH ₂	0	2-BozOPr
	2-727	Pyr	CH ₂ CH ₂	CH ₂	0	2-(<u>c</u> HxCOO)Pr
	2-728	Pyr	CH ₂ CH ₂	CH ₂	0	3-HOPr
	2-729	Pyr	CH ₂ CH ₂	CH ₂	0	3-FoOPr
	2-730	Pyr	CH ₂ CH ₂	CH ₂	0	3-AcOPr
	2-731	Pyr	CH ₂ CH ₂	CH ₂	0	3-(3-HOOC.PrnO)Pr
	2-732	Pyr	CH ₂ CH ₂	CH ₂	0	3-(3-Mec.Prn0)Pr
	2-733	Pyr	CH ₂ CH ₂	CH ₂	0	3-BozOPr
	2-734	Pyr	CH ₂ CH ₂	CH ₂	0	3-(<u>c</u> HxCOO)Pr
	2-735	Pyr	CH ₂ CH ₂	сн ₂	0	2-HOBu
	2-736	Pyr	CH ₂ CH ₂	CH ₂	0	2-AcOBu
	2-737	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-HOEt
	2-738	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-AcOEt
	2-739	Pyr	CH ₂ CH ₂	CH2CH2	0	2-(3-HOOC.PrnO)Et
	2-740	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(3-Mec.Prn0)Et
	2-741	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-BozOEt
	2-742	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	. 0	2- (<u>c</u> PnCOO) Et
	2-743	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-(<u>c</u> HxCOO)Et
	2-744	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-HOPr
	2-745	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-AcOPr
			CH ₂ CH ₂	СН ₂ СН ₂	0	2-(3-HOOC.PrnO)Pr
			CH ₂ CH ₂	CH ₂ CH ₂	0	2-(<u>c</u> HxCOO)Pr
			CH ₂ CH ₂	CH ₂ CH ₂	0	3-HOPr
			CH ₂ CH ₂	CH ₂ CH ₂	0	3-AcOPr
	2-750		CH ₂ CH ₂	CH ₂ CH ₂	0	3-(<u>c</u> HxCOO)Pr
	2-751	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-HOBu

5	Cpd.					
	No.	R ¹	A	В	<u>m</u>	R ⁵
10					<u></u>	
	2-752	Pyr	СН ₂ СН ₂	CH ₂ CH ₂	0	2-AcOBu
	2-753	Pyr	CH2CH2	(CH ₂) ₃	0	2-HOEt
15	2-754	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-AcOEt
	2-755	Pyr	CH ₂ CH ₂	(CH ₂) ₃	. 0	2-PrnOEt
	2-756	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Et
	2-757	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-BozOEt
20	2-758	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> PnCOO) Et
	2-759	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> HxCOO) Et
	2-760	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-HOPr
25	2-761	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-AcOPr
	2-762	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-BozOPr
	2-763	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	3-HOPr
30	2-764	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	3-AcOPr
30	2-765	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	3-(3-HOOC.PrnO)Pr
	2-766	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0.	2-HOBu
	2-767	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-AcOBu
35	2-768	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	2-HOEt
	2-769	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	2-AcOEt
	2-770	Pyr	CH ₂ CH ₂	(CH ₂) 4	0	2-(3-HOOC.PrnO)Et
40	2-771	Pyr	CH ₂ CH ₂	(CH ₂) 4	. 0	2 - (<u>c</u> HxCOO) Et
	2-772	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	2-HOPr
	2-773	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	2-AcOPr
	2-774	Pyr		(CH ₂) ₄	0	3-HOPr
45	2 -7 75	Pyr	CH ₂ CH ₂	(CH ₂) 4	0	3-AcOPr
	2-776			(CH ₂) ₄	0	2-HOBu
	2-777		2 2	(CH ₂) ₄	0	2-AcOBu
50	2-778	Pyr		CH ₂ CH (Me) CH ₂	0	2-HOEt
	2-779	Pyr		CH ₂ CH (Me) CH ₂	0	2-AcOEt

5						
	Cpd.					•
	No.	R^{1}	A	В	<u>m</u>	R ⁵
10	. ———			·		
	•	·				
	2-780	Pyr	СH ₂ CH ₂	$\mathrm{CH}_2\mathrm{CH}\mathrm{(Me)}\mathrm{CH}_2$	0	2-HOPr
	2-781	Pyr	СН ₂ СН ₂	${ m CH}_2{ m CH}{ m (Me)}{ m CH}_2$	0	2-AcOPr
15	2-782	Pyr	CH ₂ CH ₂	${ m CH}_2{ m CH}({ m Me}){ m CH}_2$	0	3-HOPr
	2-783	Pyr	CH_2CH_2	CH ₂ CH (Me) CH ₂	0	3-AcOPr
	2-784	Pyr	CH_2CH_2	CH ₂ CH (Me) CH ₂	0	2-HOBu
20	2-785	Pyr	CH_2CH_2	$\mathrm{CH}_2\mathrm{CH}\mathrm{(Me)}\mathrm{CH}_2$	0	2-AcOBu
	2-786	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0	2-HOEt
	2-787	Pyr	Сн ₂ Сн ₂	(CH ₂) ₅	0	2-AcOEt
	2-788	Pyr	CH_2CH_2	(CH ₂) ₅	0	2-HOPr
25	2-789	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0	2-AcOPr
	2-790	Pyr	Сн ₂ Сн ₂	(CH ₂) ₅	0	2 - (<u>c</u> HxC00) Pr
	2-791	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0	3-HOPr
30	2-792	Pyr	CH_2CH_2	(CH ₂) ₅	0	3-AcOPr
00	2-793	Pyr	CH_2CH_2	(CH ₂) ₅	0	2-AcOBu
	2-794	Pyr	Сн ₂ Сн ₂	(CH ₂) ₆	Ō	2-HOEt
•	2-795	Pyr	CH_2CH_2	(CH ₂) ₆	0	2-AcOEt
35	2-796	Pyr	CH_2CH_2	(CH ₂) ₆	. 0	2-HOPr
	2-797	Pyr	CH_2CH_2	(CH ₂) ₆	0	2-AcOPr
	2-798 1	Pyr	CH_2CH_2	(CH ₂) ₆	0	3-HOPr
•	2-799 1	Pyr	CH ₂ CH ₂	(CH ₂) ₆	0	3-AcOPr
40	2-800 1	-	CH ₂ CH ₂	(CH ₂) ₆	0	2-AcOBu
4	2-801 1	MMe ₂	CH ₂ CH ₂	CH ₂	0	2-HOEt
			CH ₂ CH ₂	CH ₂	0	2-AcOEt
45		_	CH ₂ CH ₂	CH ₂	0	2-PrnOEt
		_	CH ₂ CH ₂	CH ₂	0	2-(3-HOOC.PrnO)Et
		_	CH ₂ CH ₂	CH ₂	0	2-(3-Mec.PrnO)Et
•			CH ₂ CH ₂	CH ₂	0	2-BozOEt
50	2-807 1	_		CH ₂	0	2 - (<u>c</u> HxCOO) Et
		4	4 4	L		

Cpd.	R ¹	A	В	<u>m</u> R ⁵
				
2-808	NMe ₂	CH2CH2	CH ₂	0 2-HOPr
2-809	NMe ₂	CH ₂ CH ₂	CH ₂	0 2-(<u>c</u> HxCOO)Pr
2-810	NMe ₂	CH ₂ CH ₂	CH ₂	0 3-HOPr
2-811	NMe ₂	CH ₂ CH ₂	CH ₂	0 3-AcOPr
2-812	NMe ₂	CH ₂ CH ₂	CH ₂	0 2-HOBu
2-813	NMe ₂	CH ₂ CH ₂	CH ₂	0 2-AcOBu
2-814	NMe ₂	CH ₂ CH ₂	CH ₂ CH ₂	0 2-HOEt
2-815	NMe ₂	CH ₂ CH ₂	CH ₂ CH ₂	0 2-AcOEt
2-816	NMe ₂	CH ₂ CH ₂	CH ₂ CH ₂	0 3-HOPr
2-817	_	CH ₂ CH ₂	CH ₂ CH ₂	0 3-AcOPr
2-818	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0 2-HOEt
2-819	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0 2-AcOEt
2-820	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0 2-PrnOEt
2-821	NMe ₂		(CH ₂) ₃	0 2-(3-HOOC.PrnO)Et
2-822	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0 2-BozOEt
2-823	NMe ₂		(CH ₂) ₃	0 2-(<u>c</u> HxCOO)Et
2-824	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0 2-(<u>c</u> PnCOO)Pr
2-825	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0 2-(<u>c</u> HxCOO)Pr
2-826		CH ₂ CH ₂	(CH ₂) ₃	0 3-HOPr
2-827		CH ₂ CH ₂	(CH ₂) ₃	0 3-AcOPr
2-828	_	CH ₂ CH ₂	(CH ₂) ₃	0 2-HOBu
2-829	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0 2-AcOBu
		CH ₂ CH ₂	(CH ₂) ₄	0 2-HOEt
		CH ₂ CH ₂		0 2-AcOEt
		CH ₂ CH ₂	(CH ₂) 4	0 3-HOPr
		CH ₂ CH ₂		0 3-AcOPr
2-834	_		(CH ₂) ₄	0 2-AcOBu
2-835	NMe ₂		CH ₂ CH (Me) CH ₂	0 2-HOEt

5					
	Cpd.	R ¹	A	В	<u>m</u> R ⁵
10					
	2-836	NMe ₂	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 2-AcOEt
	2-837	NMe ₂	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 2-HOPr
15	2-838	NMe ₂	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 2-AcOPr
	2-839	NMe ₂	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 3-AcOPr
	2-840	NMe ₂	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 2-AcOBu
	2-841	NMe ₂	CH ₂ CH ₂	(CH ₂) ₅	0 2-HOEt
20	2-842	NMe ₂	CH ₂ CH ₂	(CH ₂) ₅	0 2-AcOPr
	2-843	NMe ₂	CH ₂ CH ₂	(CH ₂) ₅	0 3-HOPr
	2-844	NMe ₂	CH ₂ CH ₂	(CH ₂) ₅	0 3-AcOPr
25	2-845	NMe ₂	CH ₂ CH ₂	(CH ₂) ₆	0 2-HOEt
	2-846	NMe ₂	CH ₂ CH ₂	(CH ₂) ₆	0 2-AcOEt
	2-847	NMe ₂	CH ₂ CH ₂	(CH ₂) 6	0 3-HOPr
•	2-848	NMe ₂	CH ₂ CH ₂	(CH ₂) ₆	0 3-AcOPr
30	2-849	Azi	CH ₂ CH ₂	CH ₂	0 2-AcOEt
	2-850	Aze	CH ₂ CH ₂	CH ₂	0 2-AcOEt
	2-851	Pip	(CH ₂) ₃	CH ₂	0 Сн ₂ он
35	2-852	Pip	(CH ₂) ₃	CH ₂	0 2-HOEt
	2-853	Pip	(CH ₂) ₃	CH ₂	0 2-FoOEt
	2-854	Pip	$(CH_2)_3$	CH ₂	0 2-AcOEt
40	2-855	Pip	(CH ₂) ₃	CH ₂	0 2-PrnOEt
40	2-856	Pip	(CH ₂) ₃	CH ₂	0 2-ByrOEt
	2-857	Pip	(CH ₂) ₃	CH ₂	0 2- <u>i</u> ByrOEt
	2-858	Pip	(CH ₂) ₃	CH ₂	0 2-ValOEt
45	2-859	Pip	(CH ₂) ₃	CH ₂	0 2- <u>i</u> ValOEt
	2-860	Pip	(CH ₂) ₃	CH ₂	0 2-(PhAcO)Et
-	2-861	Pip	(CH ₂) ₃	СН ₂	0 2-(HOOC.AcO)Et

50

_						
5	Cpd.	R ¹	A	В	<u>m</u>	. R ⁵
10						
	0.060	n .			_	
	2-862	Pip	(CH ₂) ₃	CH ₂	0	2-(3-HOOC.PrnO)Et
	2-863	Pip	(CH ₂) ₃	CH ₂	0	2 - (3 - Mec. PrnO) Et
15	2-864	Pip	(CH ₂) ₃	CH ₂	0	2-(3-Etc.PrnO)Et
	2-865	Pip	(CH ₂) ₃	CH ₂	0	2-(3-Prc.PrnO)Et
	2-866	Pip	(CH ₂) ₃	CH ₂	0	2-(3-Phc.PrnO)Et
20	2-867	Pip	(CH ₂) ₃	СH ₂	0	2-[3-(4-MePhcO)PrnO]Et
	2-868	Pip	(CH ₂) ₃	CH ₂	0	2 - (3 - PhPrnO) Et
	2-869	Pip	(CH ₂) ₃	CH ₂	0	2 - (3 - PhPrnO) Et
	2-870	Pip	(CH ₂) ₃	CH ₂	0	2-BozOEt
25	2-871	Pip	(CH2) ₃	CH ₂	0	2-(4-MeBozO)Et
•	2-872	Pip	(CH ₂) ₃	СН ₂	0	2 - (4-MeOBozO) Et
	2-873	Pip	(CH ₂) ₃	CH ₂	0	2 - (4 - FBozO) Et
20	2-874	Pip	(CH ₂) ₃	CH ₂	0	2-(4-ClBozO)Et
30	2-875	Pip	(CH ₂) ₃	CH ₂	0	2 - (<u>c</u> PrCOO) Et
	2-876	Pip	(CH ₂) ₃	CH ₂	0	2 - (<u>c</u> BuCOO) Et
	2-877	Pip	(CH ₂) ₃	CH ₂	0	2 - (<u>c</u> PnCOO) Et
35	2-878	Pip	(CH ₂) ₃	CH ₂	0	2 - (<u>c</u> HxCOO) Et
	2-879	Pip	(CH ₂) ₃	CH ₂	0	2-HOPr
	2-880	Pip	(CH ₂) ₃	CH ₂	0	2-FoOPr
	2-881	Pip	(CH ₂) ₃	CH ₂	0	2-AcOPr
40	2-882	Pip	(CH ₂) ₃	CH ₂	0	2-PrnOPr
•	2-883	Pip	(CH ₂) ₃	CH ₂	0	2-(3-HOOC.PrnO)Pr
	2-884	Pip	(CH ₂) ₃	CH ₂	0	2-(3-Mec.PrnO)Pr
45	2-885	Pip	(CH ₂) ₃	CH ₂	0	2-(3-Etc.PrnO)Pr
	2-886	Pip	(CH ₂) ₃	CH ₂	0	2-(3-Phc.Prn0)Et
	2-887	Pip	(CH ₂) ₃	CH ₂	0	2-[3-(4-MePhcO)PrnO]Et
50	2-888	Pip	$(CH_2)_3$	CH ₂	. 0	2-(PhAcO)Pr
50	2-889	Pip	$(CH_2)_3$	CH ₂	0	2-BozOPr

(Cpd.					
	No.	R ¹	A	В	<u>m</u>	R ⁵
2	-890	Pip	(CH ₂) ₃	CH ₂	0	2- (<u>c</u> PnCOO) Pr
2	891	Pip	(CH ₂) ₃	CH ₂	0	2 - (<u>c</u> HxCOO) Pr
2	-892	Pip	(CH ₂) ₃	CH ₂	0	3-HOPr
2	- 893	Pip	(CH ₂) ₃	CH ₂	0	3-FoOPr
2	894	Pip	(CH ₂) ₃	CH ₂	0	3-AcOPr
2	895	Pip	(CH ₂) ₃	CH ₂	0	3-PrnOPr
2	-896	Pip	(CH ₂) ₃	CH ₂	0	3-(3-HOOC.PrnO)Pr
2	897	Pip	(CH ₂) ₃	CH ₂	0	3-(3-Mec.PrnO)Pr
2	-898	Pip	(CH ₂) ₃	CH ₂	0	3-(3-Etc.PrnO)Pr
2	899	Pip	(CH ₂) ₃	CH ₂	0	3-BozOPr
2 ·	900	Pip	(CH ₂) ₃	CH ₂	0	3-(<u>c</u> PnCOO)Pr
2 -	901	Pip	(CH ₂) ₃	СН ₂	0	3 - (<u>c</u> HxCOO) Pr
2 ·	902	Pip	(CH ₂) ₃	CH ₂	0	2-HOBu
2 -	903	Pip	(CH ₂) ₃	CH ₂	0.	2-AcOBu
2 -	904	Pip	(CH ₂)3	CH ₂	0	2-(3-HOOC.PrnO)Bu
2 -	905	Pip	(CH ₂) ₃	CH ₂	0	2-BozOBu
2.	906	Pip	(CH ₂) ₃	CH ₂	0	2 - (<u>c</u> HxCOO) Bu
2 -	907	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-HOEt
2 -	908	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-FoOEt
2 -	909	Pip	(CH ₂) ₃	CH ₂ CH ₂	0.	2-AcOEt
2 -	910	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-PrnOEt
2-	911	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-ValOEt
2 -	912	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2- (PhAcO) Et
2-	913	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Et
2-	914	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-(3-Mec.PrnO)Et
2 -	915	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-(3-Etc.PrnO)Et
2 -	916	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-(3-PhPrnO)Et
2-	917	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-BozOEt
		_	4 5	4 4		

5	Cpd.	R ¹	A	В		R ⁵
•		**	A	Ь	<u>m</u>	K
10					·	
	2-918	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-(4-MeBozO)Et
	2-919	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2 - (4 - FBozO) Et
15	2-920	Pip		CH ₂ CH ₂	. 0	2-(4-ClBozO)Et
	2-921	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2 - (<u>c</u> PrCOO) Et
	2-922	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2 - (<u>c</u> BuCOO) Et
	2-923	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2 - (<u>c</u> PnCOO) Et
20	2-924	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2 - (<u>c</u> HxCOO) Et
	2-925	Pip		CH ₂ CH ₂	0	2-HOPr
	2-926	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-FoOPr
25	2-927	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-AcOPr
	2-928	Pip	$(CH_2)_3$	CH ₂ CH ₂	0	2-PrnOPr
	2-929	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Pr
	2-930	Pip	(CH ₂) ₃	CH2CH ₂	0	2-(3-Mec.Prn0)Pr
30	2-931	Pip	(CH ₂) ₃	CH2CH ₂	0	2-BozOPr
	2-932	Pip	$(CH_2)_3$	CH2CH ₂	0	2 - (<u>c</u> PnCOO) Pr
	2-933	Pip	(CH ₂) ₃	CH2CH ₂	0	2-(<u>c</u> HxCOO)Pr
35	2-934	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	3-HOPr
	2-935	Pip	$(CH_2)_3$	CH ₂ CH ₂	0	3-AcOPr
	2-936	Pip	$(CH_2)_3$	CH ₂ CH ₂	0	3-PrnOPr
40	2-937	Pip	$(CH_2)_3$	CH ₂ CH ₂	0	3-(3-HOOC.PrnO)Pr
₩.	2-938	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	3-BozOPr
	2-939	Pip	(CH ₂) ₃	CH ₂ CH ₂	. 0	3-(<u>c</u> PnCOO)Pr
	2-940	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	3 - (<u>c</u> HxCOO) Pr
45	2-941	Pip	(CH ₂) ₃	CH_2CH_2	0	2-HOBu
	2-942	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-AcOBu
	2-943	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Bu
50	2-944	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2-BozOBu
	2-945	Pip	(CH ₂) ₃	CH ₂ CH ₂	0	2 - (<u>c</u> HxCOO) Bu
		. –	4 3	2 2	-	·

	Cpd.	R ¹	A			•
			A	В	<u>m</u>	R ⁵
					·	
	2-946	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-HOEt
	2-947	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-FoOEt
	2-948	Pip		(CH ₂) ₃	0	2-AcOEt
	2-949	Pip	(CH ₂) ₃	(CH ₂) ₃	O	2-PrnOEt
	2-950	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-ByrOEt
	2-951	Pip		(CH ₂) ₃	0	2- <u>i</u> ByrOEt
	2-952	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-ValOEt
	2-953	Pip		(CH ₂) ₃	0	2-(3-HOOC.PrnO)Et
	2-954	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-(3-Mec.PrnO)Et
	2-955	Pip		(CH ₂) ₃	0	
	2-956	Pip	(CH ₂) ₃	(CH2) ₃	0	2-(PhAcO)Et
	2-957	Pip		(CH2) ₃	0	2-BozOEt
	2-958	Pip		(CH2) ₃	0	2-(4-MeBozO)Et
	2-959	Pip	(CH ₂) ₃	(CH2) ₃	0	2-(4-MeOBozO)Et
	2-960	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-(4-FBozO)Et
:	2-961	Pip	(CH ₂) ₃	(CH ₂) ₃	O	2-(4-ClBozO)Et
•	2-962		(CH ₂) ₃	$(CH_2)_3$	0	2 - (<u>c</u> PrCOO) Et
;	2-963	Pip	(CH ₂) ₃	(CH ₂) ₃	. 0	2 - (<u>c</u> BuCOO) Et
	2-964		(CH ₂) ₃	$(CH_2)_3$	0	2 - (<u>c</u> PnCOO) Et
,	2-965	Pip	(CH ₂) ₃	$(CH_2)_3$	0	2 - (<u>c</u> HxCOO) Et
	2-966		(CH ₂) ₃	(CH ₂) ₃	0	2-HOPr
	2-967	_	(CH ₂) ₃	(CH ₂) ₃	0	2-AcOPr
	2-968		(CH ₂) ₃	(CH ₂) ₃	. 0	2-PrnOPr
		Pip	(CH ₂) ₃	(CH ₂) ₃		2-(3-HOOC.PrnO)Pr
	2-970	Pip	(CH ₂) ₃	(CH ₂) ₃		2-(3-Etc.PrnO)Pr
1	2-971	Pip	(CH ₂) ₃	(CH ₂) ₃		2-BozOPr
			(CH ₂) ₃	(CH ₂) ₃		2 - (<u>c</u> HxCOO) Pr
	2-973		(CH ₂) ₃	(CH ₂) ₃	0	3-HOPr

Cpd.			·		
No.	R ¹	A	В	m	R ⁵
2-974	Pip	(CH ₂) ₃	(CH ₂) ₃	0	3-AcOPr
2-975	Pip	(CH ₂) ₃	(CH ₂) ₃	0	3-(3-HOOC.PrnO)Pi
2-976	Pip	(CH ₂) ₃	(CH ₂) ₃	0	3-(3-Mec.PrnO)Pr
2-977	Pip	(CH ₂) ₃	(CH ₂) ₃	0	3-BozOPr
2-978	Pip	(CH ₂) ₃	(CH ₂) ₃	0	3-(<u>c</u> HxCOO)Pr
2-979	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-HOBu
2-980	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2-AcOBu
2-981	Pip	(CH ₂) ₃	$(CH_2)_3$	0	2-(3-HOOC.PrnO)Bu
2-982	Pip	(CH ₂) ₃	(CH ₂) 3	0	2-BozOBu
2-983	Pip	(CH ₂) ₃	(CH ₂) ₃	0	2 - (<u>c</u> HxCOO) Bu
2-984	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2-HOEt
2-985	Pip	(CH ₂) ₃	(CH ₂) 4	0	2-FoOEt
2-986	Pip	(CH ₂) ₃	(CH ₂) ₄ :	0	2-AcOEt
2-987	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2-PrnOEt
2-988	Pip	(CH ₂) ₃	(CH ₂) ₄	. 0	2-(3-HOOC.PrnO)Et
2-989	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2-(3-Mec.PrnO)Et
2-990	Pip	(CH ₂) ₃	$(CH_2)_4$	0	2-BozOEt
2-991	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2 - (<u>c</u> HxCOO) Et
2-992	Pip	(CH ₂) ₃	$(CH_2)_4$	0	2-HOPr
2-993	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2-AcOPr
2-994	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2-(3-HOOC.PrnO)Pr
2-995	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2-BozOPr
-996	Pip	(CH ₂) ₃	(CH ₂) ₄	0	2-(<u>c</u> HxCOO)Pr
-997	Pip	(CH ₂) ₃	$(CH_2)_4$	0	3-HOPr
-998	Pip	(CH ₂) ₃	(CH ₂) ₄	0	3-AcOPr
-999	Pip	(CH ₂) ₃	(CH ₂) ₄	0	3-(3-HOOC.PrnO)Pr
-1000		(CH ₂) ₃	(CH ₂) ₄	0	3-BozOPr
-1001		(CH ₂) ₃	$(CH_2)_4$	0	3- (<u>c</u> HxC00) Pr

Cpd.					
No.	R ¹	A	В	m	R ⁵
2-1002	Din	(CII)	(CH)		2 VOD
2-1002	_	(CH ₂) ₃	(CH ₂) ₄	0	2 - HOBu
2-1003		43	(CH ₂) ₄	0	2-AcoBu
2-1004		. 4 3	(CH ₂) ₄	0	2-(3-HOOC. PrnO) Bu
2-1005		2 3	(CH ₂) ₄	0	2 - (<u>c</u> HxC00) Bu
		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-HOEt
2-1007		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-AcOEt
2-1008 2-1009		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-(3-HOOC. PrnO) Et
2-1009	_	(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-BozOEt
2-1010		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2 - (<u>c</u> HxCOO) Et
		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-HOPr
2-1012 2-1013		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-AcOPr
		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-BozOPr
2-1014		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-(<u>c</u> HxCOO)Pr
2-1015	_	(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	3-HOPr
2-1016		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0.	
2-1017		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	3-(3-HOOC.PrnO)Pr
2-1018		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	3-BozOPr
2-1019		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	3-(<u>c</u> HxCOO)Pr
2-1020	. –	(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-HOBu
2-1021		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2-AcOBu
2-1022	_	(CH ₂) ₃	CH_2CH (Me) CH_2	0	2-(3-Etc.PrnO)Bu
		(CH ₂) ₃	CH ₂ CH (Me) CH ₂	0	2 - (<u>c</u> HxCOO) Bu
		(CH ₂) ₃	(CH ₂) ₅	0	2-HOEt
		(CH ₂) ₃	(CH ₂) ₅	0	2-AcOEt
		(CH ₂) ₃	(CH ₂) ₅	0	2-(3-HOOC.PrnO)Et
2-1027	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-BozOEt
		(CH ₂) ₃	(CH ₂) ₅	0	2-(<u>c</u> HxCOO)Et
2-1029	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-HOPr

Cpd.					
No.	R ¹	A	В	<u>m</u>	R ⁵
		·			
2-1030	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-AcOPr
-1031	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-(3-HOOC.PrnO)Pr
2-1032	Pip		(CH ₂) ₅	0	2-BozOPr
2-1033	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-(<u>c</u> HxCOO)Pr
2-1034	Pip	(CH ₂) ₃	(CH ₂) ₅	0	3-HOPr
2-1035	Pip	(CH ₂) ₃	(CH ₂) ₅	0	3-AcOPr
2-1036	Pip	(CH ₂) ₃	(CH ₂) ₅	0	3-(3-HOOC.PrnO)Pr
2-1037	Pip	(CH ₂) ₃	(CH ₂) ₅	0	3-BozOPr
2-1038	Pip	(CH ₂) ₃	(CH ₂) ₅	0	3 - (<u>c</u> HxCOO) Pr
2-1039	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-HOBu
2-1040	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-AcOBu
2-1041	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-(3-HOOC.PrnO)Bu
2-1042	Pip	(CH ₂) ₃	(CH ₂) ₅	0	2-(<u>c</u> HxCOO)Bu
-1043	Pip	(CH ₂) ₃	(CH ₂) ₆	0.	2-HOEt
2-1044	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2-AcOEt
2-1045	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2-(3-HOOC.PrnO)Et
2-1046	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2-(<u>c</u> HxCOO)Et
2-104.7	Pip	(CH ₂) ₃	(CH ₂) 6	0	2-HOPr
2-1048	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2-AcOPr
2-1049	Pip	(CH ₂) ₃	(CH ₂) ₆	0 .	2-(3-HOOC.PrnO)Pr
2-1050	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2-(<u>c</u> HxCOO)Pr
2-1051	Pip	(CH ₂) ₃	(CH ₂) ₆	0	3-HOPr
2-1052	Pip	(CH ₂) ₃	(CH ₂) 6	0	3-AcOPr
2-1053	Pip	(CH ₂) ₃	(CH ₂) ₆	0	3-(3-HOOC.PrnO)Pr
2-1054	Pip	(CH ₂) ₃	(CH ₂)6	0	3-(<u>c</u> HxCOO)Pr
2-1055	Pip		(CH ₂) ₆	0	2-HOBu
2-1056	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2-AcOBu
2-1057	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2-(3-HOOC.PrnO)Bu

Cnd					
Cpd.	R^1	A	В	<u>m</u>	R ⁵
					
2-1058	Pip	(CH ₂) ₃	(CH ₂) ₆	0	2 - (<u>c</u> HxCOO) Bu
2-1059	Pip	CH ₂	CH ₂	0	2-HOEt
2-1060	Pip	CH ₂	СН ₂	0	2-FoOEt
2-1061	Pip	CH ₂	CH ₂	0	2-AcOEt
2-1062	Pip	CH ₂	CH ₂	0	2-PrnOEt
2-1063	Pip	CH ₂	CH ₂	0	2-(3-HOOC.PrnO)E
2-1064	Pip	CH ₂	CH ₂	0	2-(3-Mec.Prn0)Et
2-1065	Pip	CH ₂	CH ₂	0	2-(3-Etc.PrnO)Et
2-1066	Pip	CH ₂	CH ₂	0	2-BozOEt
2-1067	Pip	CH ₂	CH ₂	0	2 - (<u>c</u> PnCOO) Et
2-1068	Pip	CH ₂	CH ₂	0	2 - (<u>c</u> HxCOO) Et
2-1069	Pip	CH ₂	CH ₂	0	2-HOPr
2-1070	Pip	CH ₂	CH ₂	0	2-AcOPr
2-1071	Pip	CH ₂	CH ₂	. 0	2-(3-HOOC.PrnO)Pr
2-1072	Pip	CH ₂	CH ₂	0	2-BozOPr
2-1073	Pip	CH ₂	CH ₂	0	2-(<u>c</u> HxCOO)Pr
2-1074	Pip	CH ₂	CH ₂	0	3-HOPr
2-1075	Pip	CH ₂	CH ₂	0	3-FoOPr
2-1076	Pip	CH ₂	CH ₂	0	3-AcOPr
2-1077	Pip	CH ₂	CH ₂	0	3-(3-HOOC.PrnO)Pi
2-1078	Pip	CH ₂	CH ₂	0	3-(3-Mec.PrnO)Pr
2-1079	Pip	CH ₂	CH ₂	. 0	3-BozOPr
2-1080	Pip	CH ₂	CH ₂	0	3-(<u>c</u> HxCOO)Pr
2-1081	Pip	CH ₂	CH ₂	0	2-HOBu
2-1082	Pip	CH ₂	CH ₂	0	2-AcOBu
2-1083	Pip.	CH ₂	CH ₂ CH ₂	0	2-HOEt
2-1084	Pip	CH ₂	CH ₂ CH ₂	0	2-AcOEt
2-1085	Pip	CH ₂	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Et

_	, <u></u>					
5	Cpd.					
	No.	R ¹	A	. B	m	R ⁵
10						
	2-1086	Pip	CH ₂	СН ₂ СН ₂	0	2-(3-Mec.PrnO)Et
	2-1087	Pip	CH ₂	CH ₂ CH ₂	0	2-BozOEt
15	2-1088	Pip	CH ₂	CH ₂ CH ₂	. 0	2 - (<u>c</u> PnCOO) Et
	2-1089	Pip	CH ₂	CH ₂ CH ₂	0 -	2-(<u>c</u> HxCOO)Et
	2-1090	Pip	CH ₂	CH ₂ CH ₂	0	2-HOPr
	2-1091	Pip	CH ₂	CH ₂ CH ₂	0	2-AcOPr
20	2-1092	Pip	CH ₂	CH ₂ CH ₂	0	2-(3-HOOC.PrnO)Pr
	2-1093	Pip	CH ₂	CH ₂ CH ₂	0	2 - (<u>c</u> HxCOO) Pr
	2-1094	Pip	CH ₂	CH ₂ CH ₂	0	3-HOPr
25	2-1095	Pip	CH ₂	CH ₂ CH ₂	0	3-AcOPr
	2-1096	Pip	CH ₂	CH ₂ CH ₂	0	3-(<u>c</u> HxCOO)Pr
	2-1097	Pip	CH ₂	CH ₂ CH ₂	0	2-HOBu
	2-1098	Pip	CH ₂	CH ₂ CH ₂	0	2-AcOBu
30	2-1099	Pip	CH ₂	(CH ₂) ₃	. 0	2-HOEt
	2-1100	Pip	CH ₂	(CH ₂) ₃	0	2-AcOEt
•	2-1101	Pip	CH ₂	(CH ₂) ₃	Ö	2-PrnOEt
35	2-1102	Pip	CH ₂	(CH ₂) ₃	0	2-(3-HOOC.PrnO)Et
	2-1103	Pip	CH ₂	(CH ₂) ₃	0	2-BozOEt
	2-1104	Pip	CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> PnCOO) Et
	2-1105	Pip	CH ₂	(CH ₂) ₃	0	2 - (<u>c</u> HxCOO) Et
40	2-1106	Pip	$^{ ext{CH}}_2$	(CH ₂) ₃	0	2-HOPr
	2-1107	Pip	\mathtt{CH}_2	(CH ₂) ₃	.0	2-AcOPr
	2-1108	Pip	\mathtt{CH}_2	(CH ₂) ₃	0	2-BozOPr
45	2-1109	Pip	CH ₂	(CH ₂) ₃	0	3-HOPr
	2-1110	Pip	CH ₂	(CH ₂) ₃	0	3-AcOPr
	2-1111	Pip	СH ₂	(CH ₂) ₃	0	3-(3-HOOC.PrnO)Pr
· 50	2-1112	Pip	CH ₂	(CH ₂) ₃	0	2-HOBu
	2-1113	Pip	CH ₂	(CH ₂) ₃	0	2-AcOBu

Cpd.					
No.	R ¹	A	В	m	R ⁵
		·			
2-1114	Pip	CH ₂	(CH ₂) ₄	0	2-HOEt
2-1115	Pip	CH ₂	(CH ₂) ₄	0	2-AcOEt
2-1116	Pip	CH ₂	(CH ₂) ₄	0	2-(3-HOOC.PrnO)Et
2-1117	Pip	CH ₂	(CH ₂) ₄	0	2-(<u>c</u> HxCOO) Et
2-1118	Pip	CH ₂	(CH ₂) ₄	0	2-HOPr
2-1119	Pip	CH ₂	(CH ₂) ₄	0	2-AcOPr
2-1120	Pip	CH ₂	(CH ₂) ₄	0	3-HOPr
2-1121	Pip	CH ₂	(CH ₂) ₄	0	3-AcOPr
2-1122	Pip	CH ₂	(CH ₂) ₄	0	2-HOBu
2-1123	Pip	CH ₂	~ -	0	2-AcOBu
2-1124	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	2-HOEt
2-1125	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	2-AcOEt
2-1126	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	2-HOPr
2-1127	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	2-AcOPr
2-1128	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	3-HOPr
2-1129	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	3-AcOPr
2-1130	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	2-HOBu
2-1131	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	2-AcOBu
2-1132	Pip	CH ₂	(CH ₂) ₅	0	2-HOEt
2-1133	Pip	CH ₂	(CH ₂) ₅	0	2-AcOEt
2-1134	Pip	CH ₂	(CH ₂) ₅	0	2-HOPr
2-1135	Pip	CH ₂	(CH ₂) ₅	0	2-AcOPr
2-1136	Pip	CH ₂	(CH ₂) ₅	0	2-(<u>c</u> HxCOO)Pr
2-1137	Pip	CH ₂	(CH ₂) ₅	0	3-HOPr
2-1138	Pip	CH ₂	(CH ₂) ₅	0	3-AcOPr
2-1139	Pip	CH ₂	(CH ₂) ₅	0	2-AcOBu
2-1140	Pip	CH ₂	(CH ₂) ₆	0	2-HOEt
2-1141	Pip	CH ₂	(CH ₂) ₆	0	2-AcOEt

Table 2 (cont.)

	Cpd.					
	No.	R ¹	A	В	<u>m</u>	R ⁵
•			-		 	
	2-1142	Pip	CH ₂	(CH ₂) ₆	0	2-HOPr
	2-1143	Pip	CH ₂	(CH ₂) ₆	0	2-AcOPr
	2-1144	Pip	CH ₂	(CH ₂) 6	0	3-HOPr
	2-1145	Pip	CH ₂	(CH ₂) ₆	0	3-AcOPr
	2-1146	Pip	CH ₂	(CH ₂) 6	0	2-AcOBu
	2-1147	Pip	CH=CH	CH ₂	0	2 - (<u>n</u> PnCOO) Et
	2-1148	Pip	CH=CH	CH ₂	0	2-PivOEt
	2-1149	Pip	CH ₂	CH ₂	0	2 - (<u>n</u> PnCOO) Et
٠	2-1150	Pip	CH ₂	CH ₂	0	2-PivOEt
	2-1151	Pyr	CH=CH	CH ₂	0	2 - (<u>n</u> PnCOO) Et
	2-1152	Pyr	CH=CH	CH ₂	0	2-PivOEt

Table 3

				•		
5	Cpd.					
	No.	R ¹	A	В	m	R ⁵
10				·	·····	
	3-1	Pip	CH=CH	CH ₂	0	Imdazo-2-yl
	3-2	Pip	CH=CH	CH ₂	0	Imdazo-4-yl
15	3-3	Pip	CH=CH	CH ₂	0	1-Me-Imdazo-2-yl
10	3-4	Pip	CH=CH	CH ₂	0	1,3,4-0xadiazo-2-yl
	3 - 5	Pip	CH=CH	CH ₂	0	5-Me-1,3,4-Oxadiazo-2-yl
	3-6	Pip	CH=CH	CH ₂	0	1,3,4-Thiadiazo-2-yl
20	3 - 7	Pip	CH=CH	CH ₂	0	5-Me-1,3,4-Thiadiazo-2-yl
•	3-8	Pip	CH=CH	CH ₂	0	1,2,4-Triazo-3-yl
	3-9	Pip	CH=CH	CH ₂	0	1,2,4-Triazo-5-yl
25	3-10	Pip	CH=CH	CH ₂	0	1-Me-1,2,4-Triazo-3-yl
	3-11	Pip	CH=CH	CH ₂	0	1-Me-1,2,4-Triazo-5-yl
	3-12	Pip	CH=CH	CH ₂	0	5-Me-1,2,4-Triazo-3-yl
	3-13	Pip	CH=CH	CH ₂	0	Tetrazo-5-yl
30	3-14	Pip	CH=CH	CH ₂	. 0	1-Me-Tetrazo-5-yl
	3-15	Pip	CH=CH	CH ₂	0	Pyz-2-yl
	3-16	Pip	CH=CH	CH ₂	0	Pyz-3-yl
35	3-17	Pip	CH=CH	CH ₂	0	Pyz-4-yl
	3-18	Pip	CH=CH	CH ₂	0	3-Me-Pyz-2-y1
	3-19	Pip	CH=CH	CH ₂	. 0	2-Me-Pyz-4-yl
40	3-20	Pip	CH=CH	CH ₂	. 0	3-NHz-Pyz-2-yl
70	3-21	Pip	CH=CH	CH ₂	0	4-NH ₂ -Pyz-3-yl
	3-22	Pip	CH=CH	CH ₂	0	3-NH ₂ -Pyz-4-yl
	3-23	Pip	CH=CH	CH ₂	0	3-HO-Pyz-2-yl
45	3-24	Pip	CH=CH	CH ₂	0	2-HO-Pyz-4-yl
	3-25	Pip	CH=CH	CH ₂	0	Pymz-2-yl
	3-26	Pip	CH=CH	CH ₂	0	Pymz-4-yl
50	3-27	Pip	CH=CH	CH ₂	0	4-Me-Pymz-2-yl
	3-28	Pip	CH=CH	CH ₂	0	5-Me-Pymz-2-yl

EP 0 562 833 A1

Table 3 (cont.)

Cpd.		-			
No.	R ¹	A	В	m	R ⁵
					
3-29	Pip	CH=CH	CH ₂	0	2-Me-Pymz-4-yl
3 - 3 0	Pip	CH=CH	CH ₂	0 0	5-Me-Pymz-4-yl
3-31	Pip	CH=CH	CH ₂	0	6-Me-Pymz-4-yl
3-32	Pip	CH=CH	CH ₂	0	2-Me-Pymz-5-yl
3-33	Pip	CH=CH	CH ₂	0	4-NH ₂ -Pymz-2-yl
3-34	Pip	CH=CH	CH ₂	0	5-NH ₂ -Pymz-2-yl
3-35	Pip	CH=CH	CH ₂	0	2-NH ₂ -Pymz-4-yl
3-36	Pip	CH=CH	CH ₂	0	4-NH ₂ -5-HO-Pymz-2-yl
3-37	Pip	CH=CH	CH ₂	0	2-NH ₂ -5-HO-Pymz-4-yl
3-38	Pip	CH=CH	CH ₂	0	5-NH ₂ -2-HO-Pymz-4-yl
3-39	Pip	CH=CH	CH ₂ CH ₂	0	Imdazo-2-yl
3-40	Pip	CH=CH	CH ₂ CH ₂	0	Imdazo-4-yl
3-41	Pip	CH=CH	CH ₂ CH ₂	0	1-Me-Imdazo-2-yl
3-42	Pip	CH=CH	CH ₂ CH ₂	0	1,3,4-Oxadiazo-2-yl
3-43	Pip	CH=CH	CH ₂ CH ₂	0	5-Me-1,3,4-Oxadiazo-2-yl
3-44	Pip	CH=CH	CH ₂ CH ₂	0	1,3,4-Thiadiazo-2-yl
3-45	Pip	CH=CH	CH ₂ CH ₂	0	5-Me-1,3,4-Thiadiazo-2-yl
3-46	Pip	CH=CH	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
3-47	Pip	CH=CH	CH ₂ CH ₂	0	1,2,4-Triazo-5-yl
3-48	Pip	CH=CH	CH ₂ CH ₂	0	1-Me-1,2,4-Triazo-3-yl
3-49	Pip	CH=CH	CH ₂ CH ₂	0	1-Me-1,2,4-Triazo-5-yl
3-50	Pip	CH=CH	CH ₂ CH ₂	0	5-Me-1,2,4-Triazo-3-yl
3-51	Pip	CH=CH	CH ₂ CH ₂	0	Tetrazo-5-yl
3-52	Pip	CH=CH	CH ₂ CH ₂	0	1-Me-Tetrazo-5-yl
3-53	Pip	CH=CH	CH ₂ CH ₂	0	Pyz-2-yl
3-54	Pip	CH=CH	CH ₂ CH ₂	0	Pyz-3-yl
3-55	Pip	CH=CH	CH ₂ CH ₂	0	Pyz-4-yl
3-56	Pip	CH=CH	CH ₂ CH ₂	0	4-Me-Pyz-2-yl

EP 0 562 833 A1

Table 3 (cont.)

5	Cpd. No.	R ¹	A	В	m	R ⁵
10		·				
	3-57	Pip	CH=CH	CH ₂ CH ₂	0	2-Me-Pyz-4-yl
	3-58	Pip	CH=CH		0.	3-NH ₂ -Pyz-2-yl
15	3-59	Pip	CH=CH	CH ₂ CH ₂	0	-
,,,	3-60	Pip	CH=CH	CH ₂ CH ₂	0	3-HO-Pyz-2-yl
	3-61	Pip	CH=CH	CH ₂ CH ₂	0	2-HO-Pyz-4-yl
	3-62	Pip	CH=CH	CH ₂ CH ₂	0	Pymz-2-yl
20	3-63	Pip	CH=CH	CH ₂ CH ₂	0	Pymz-4-yl
	3-64	Pip	CH=CH	CH ₂ CH ₂	0	Pymz-5-yl
	3-65	Pip	CH=CH	CH ₂ CH ₂	. 0	4-Me-Pymz-2-yl
25	3-66	Pip	CH=CH	CH ₂ CH ₂	0	5-Me-Pymz-2-yl
	3-67	Pip	CH=CH	CH ₂ CH ₂	0	2-Me-Pymz-4-yl
	3-68	Pip	CH=CH	CH ₂ CH ₂	0	5-Me-Pymz-4-yl
	3-69	Pip	CH=CH	CH ₂ CH ₂	0	6-Me-Pymz-4-yl
30	3-70	Pip	CH=CH	CH ₂ CH ₂	. 0	4-NH ₂ -Pymz-2-yl
	3-71	Pip	CH=CH	CH ₂ CH ₂	0	5-NH ₂ -Pymz-2-yl
	3-72	Pip	CH=CH	CH ₂ CH ₂	0	2-NH ₂ -Pymz-4-yl
35	3 - 73	Pip	CH=CH	CH ₂ CH ₂	0	4-HO-Pymz-5-yl
	3-74	Pip	CH=CH	CH ₂ CH ₂	0	4-NH ₂ -5-HO-Pymz-2-yl
	3-75	Pip	CH=CH	CH ₂ CH ₂	. 0	2-NH ₂ -5-HO-Pymz-4-yl
40	3-76	Pip	CH=CH	CH ₂ CH ₂	. 0	5-NH ₂ -2-HO-Pymz-4-yl
40	3-77	Pip	CH=CH	(CH ₂) ₃	0	Imdazo-2-yl
	3-78	Pip	CH=CH	(CH ₂) ₃	0	Imdazo-4-yl
	3 - 79	Pip	CH=CH	(CH ₂) ₃	0	1-Me-Imdazo-2-yl
45	3-80	Pip	CH=CH	(CH ₂) ₃	0	2-Me-Imdazo-4-yl
	3-81	Pip	CH=CH	(CH ₂) ₃	0	1,3,4-Oxadiazo-2-yl
	3-82	Pip	CH=CH	(CH ₂) ₃	0	5-Me-1,3,4-Oxadiazo-2-yl
50	3-83	Pip	CH=CH	(CH ₂) ₃	0	5-Et-1,3,4-Oxadiazo-2-yl
	3-84	Pip	CH=CH	(CH ₂) ₃	0	5-NH ₂ -1,3,4-Oxadiazo-2-yl

```
5
        Cpd.
                  R^1
          No.
                                                               R^5
                                         В
                                                       \underline{\mathbf{m}}
10
        3-85
                  Pip
                          CH=CH
                                      (CH_2)_3
                                                       0 5-AcNH-1,3,4-Oxadiazo-2-yl
                  Pip
        3-86
                         CH=CH
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                       0 1,3,4-Thiadiazo-2-yl
                 Pip
15
        3-87
                         CH=CH
                                                       0 5-Me-1,3,4-Thiadiazo-2-yl
                                      (CH_2)_3
        3-88
                  Pip
                         CH=CH
                                                       0 5-NH<sub>2</sub>-1,3,4-Thiadiazo-2-yl
                                     (CH<sub>2</sub>)<sub>3</sub>
        3-89
                 Pip
                                     (CH<sub>2</sub>)<sub>3</sub>
                         CH=CH
                                                       0 1,2,4-Triazo-3-yl
        3-90
                 Pip
                         CH=CH
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                       0 1,2,4-Triazo-5-yl
20
        3-91
                 Pip
                         CH=CH
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                       0 1-Me-1,2,4-Triazo-3-yl
        3-92
                 Pip
                         CH=CH
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                       0 1-Me-1,2,4-Triazo-5-yl
       3-93
                                     (CH<sub>2</sub>)<sub>3</sub>
                 Pip
                         CH=CH
                                                       0 5-Me-1,2,4-Triazo-3-yl
25
       3-94
                 Pip
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                       0 5-Cl-1,2,4-Triazo-3-yl
                         CH=CH
       3-95
                 Pip
                         CH=CH
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                       0 5-NH<sub>2</sub>-1,2,4-Triazo-3-yl
       3-96
                 Pip
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                      0 5-AcNH-1,2,4-Triazo-3-yl
                         CH=CH
       3-97
                                     (CH<sub>2</sub>)<sub>3</sub>
                 Pip
                         CH=CH
30
                                                      0 Tetrazo-5-yl
       3-98
                Pip
                        CH=CH
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                      0 1-Me-Tetrazo-5-yl
       3-99
                 Pip
                        CH=CH
                                     (CH<sub>2</sub>)<sub>3</sub>
                                                      0 1-Et-Tetrazo-5-yl
       3-100 Pip
                                    (CH<sub>2</sub>)<sub>3</sub>
                        CH=CH
                                                      0 1-(2-HOEt)-Tetrazo-5-yl
35
       3-101 Pip
                        CH=CH
                                    (CH<sub>2</sub>)<sub>3</sub>
                                                      0 Pyz-2-yl
       3-102 Pip
                                    (CH<sub>2</sub>)<sub>3</sub>
                        CH=CH
                                                      0 Pyz-3-yl
       3-103 Pip
                        CH=CH
                                    (CH<sub>2</sub>)<sub>3</sub>
                                                      0 Pyz-4-yl
       3-104 Pip
                        CH=CH
                                    (CH<sub>2</sub>)<sub>3</sub>
40
                                                      0 3-Me-Pyz-2-yl
       3-105 Pip
                                    (CH<sub>2</sub>)<sub>3</sub>
                        CH=CH
                                                      0 5-Me-Pyz-2-yl
      3-106 Pip
                        CH=CH
                                    (CH<sub>2</sub>)<sub>3</sub>
                                                      0 2-Me-Pyz-4-yl
      3-107 Pip
                                    (CH<sub>2</sub>)<sub>3</sub>
                        CH=CH
                                                      0 3-Me-Pyz-4-yl
45
      3-108 Pip
                        CH=CH
                                    (CH<sub>2</sub>)<sub>3</sub>
                                                      0 3-C1-Pyz-2-yl
      3-109 Pip
                        CH=CH
                                    (CH<sub>2</sub>)<sub>3</sub>
                                                      0 3-C1-Pyz-4-yl
      3-110 Pip
                        CH=CH
                                    (CH<sub>2</sub>)<sub>3</sub>
                                                     0 3-NH<sub>2</sub>-Pyz-2-yl
      3-111 Pip
                                    (CH<sub>2</sub>)<sub>3</sub>
                        CH=CH
                                                     0 5-NH<sub>2</sub>-Pyz-2-yl
      3-112 Pip
                                    (CH<sub>2</sub>)<sub>3</sub>
                        CH=CH
                                                     0 4-NH<sub>2</sub>-Pyz-3-yl
```

Cpd.					
No.	R^1	A	В	<u>m</u>	R ⁵
					
3-113	Pip	CH=CH	(CH ₂) ₃	0	3-NH ₂ -Pyz-4-yl
3-114	Pip	CH=CH	(CH ₂) ₃	0	3-HO-Pyz-2-yl
3-115	Pip	CH=CH	(CH ₂) ₃	0	5-HO-Pyz-2-yl
3-116	Pip	CH=CH	(CH ₂) ₃	0	2-HO-Pyz-4-yl
3-117	Pip	CH=CH	(CH ₂) ₃	0	3-HO-Pyz-4-yl
3-118	Pip	CH=CH	(CH ₂) ₃	. 0	Pymz-2-yl
3-119	Pip	CH=CH	(CH ₂) ₃	0	Pymz-4-yl
3-120	Pip	CH=CH	(CH ₂) ₃	0	Pymz-5-yl
3-121	Pip	CH=CH	(CH ₂) ₃	0	4-Me-Pymz-2-yl
3-122	Pip	CH=CH	(CH ₂) ₃	0,	5-Me-Pymz-2-yl
3-123	Pip	CH=CH	(CH ₂) ₃	0	2-Me-Pymz-4-yl
3-124	Pip	CH=CH	(CH ₂) ₃	0	5-Me-Pymz-4-yl
3-125	Pip	CH=CH	(CH ₂) ₃	. 0	6-Me-Pymz-4-yl
3-126	Pip	CH=CH	(CH ₂) ₃	. 0	4-Cl-Pymz-2-yl
3-127	Pip	CH=CH	(CH ₂) ₃	0	2-Me-Pymz-4-yl
3-128	Pip	CH=CH	(CH ₂) ₃	0	4-NH ₂ -Pymz-2-yl
3-129	Pip	CH=CH	(CH ₂) ₃	0	5-NH ₂ -Pymz-2-yl
3-130	Pip	CH=CH	(CH ₂) ₃	- 0	2-NH ₂ -Pymz-4-yl
3-131	Pip	CH=CH	(CH ₂) ₃	0	5-NH ₂ -Pymz-4-yl
3-132	Pip	CH=CH	(CH ₂) ₃	0	4-AcNH-Pymz-2-yl
3-133	Pip	CH=CH	(CH ₂) ₃	0	2-AcNH-Pymz-4-yl
3-134	Pip	CH=CH	(CH ₂) ₃	0	4-NH ₂ -5-HO-Pymz-2-yl
3-135	Pip	CH=CH	(CH ₂) ₃	0	2-NH ₂ -5-HO-Pymz-4-yl
3-136	Pip	CH=CH	(CH ₂) ₃	0	4,6-diNH ₂ -Pymz-2-yl
3-137	Pip	CH=CH	(CH ₂) ₃	0	2,5-diNH ₂ -Pymz-4-yl
3-138	Pip	CH=CH	(CH ₂) ₄	0	Imdazo-2-yl
3-139	Pip	CH=CH	(CH ₂) ₄	0	1,3,4-Oxadiazo-2-yl
3-140	Pip	CH=CH	(CH ₂) ₄	0	1,3,4-thiadiazo-2-yl

5						
	Cpd.	_1				5
	No.	R ¹	A	В	<u>m</u>	R ⁵
0						
	3-141	Pip	CH=CH	(CH ₂) ₄	0	1,2,4-Triazo-3-yl
	3-142	Pip	CH=CH	(CH ₂) ₄	0 1	1,2,4-Triazo-5-yl
5	3-143	Pip	CH=CH	(CH ₂) ₄	0	Tetrazo-5-yl
	3-144	Pip	CH=CH	(CH ₂) ₄	0	Pyz-2-yl
	3-145	Pip	CH=CH	(CH ₂) ₄	0	Pyz-3-yl
	3-146	Pip	CH=CH	(CH ₂) 4	0	Pyz-4-yl
0	3-147	Pip	CH=CH	(CH ₂) ₄	0	Pymz-2-yl
	3-148	Pip	CH=CH	(CH ₂) ₄	0	Pymz-4-yl
	3-149	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	Imdazo-2-yl
5	3-150	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	1,3,4-0xadiazo-2-yl
	3-151	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	1,3,4-Thiadiazo-2-yl
	3-152	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-3-yl
	3-153	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-5-yl
0	3-154	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	Tetrazo-5-yl
	3-155	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	Pyz-2-yl
	3-156	Pip	CH=CH	CH ₂ CH (Me) CH ₂	. 0	Pyz-4-yl
5	3-157	Pip	CH=CH	CH ₂ CH (Me) CH ₂	0	Pymz-2-yl
	3-158	Pip	CH=CH	CH ₂ CH (Me) CH ₂	. 0	Pymz-4-yl
	3-159	Pip	CH=CH	(CH ₂) ₅	0	Imdazo-2-yl
0	3-160	Pip	CH=CH	(CH ₂) ₅	0	1,3,4-0xadiazo-2-yl
,	3-161	Pip	CH=CH	(CH ₂) ₅	0	1,3,4-Thiadiazo-2-yl
	3-162	Pip	CH=CH	(CH ₂) ₅	. 0	1,2,4-Triazo-3-yl
	3-163	Pip	CH=CH	(CH ₂) ₅	0	1,2,4-Triazo-5-yl
5	3-164	Pip	CH=CH	(CH ₂) ₅	0	Tetrazo-5-yl
	3-165	Pip	CH=CH	(CH ₂) ₅	0	Pyz-2-yl
	3-166	Pip	CH=CH	(CH ₂) ₅	0	Pyz-4-yl
)	3-167	Pip	CH=CH	(CH ₂) ₅	0	Pymz-2-yl
•	3-168	Pip	CH=CH	(CH ₂) ₅	0	Pymz-4-yl

5						
	Cpd.					
	No.	R^1	A	В	<u>m</u>	_R 5
10						·
	3-169	Pip	CH=CH	(CH ₂) ₆	. 0	Imdazo-2-yl
	3-170	Pip	CH=CH	(CH ₂) 6	0	1,3,4-0xadiazo-2-yl
15	3-171	Pip	CH=CH	(CH ₂)6	0	1,3,4-Thiadiazo-2-yl
	3-172	Pip	CH=CH	(CH ₂) ₆	0	1,2,4-Triazo-3-yl
	3-173	Pip	CH=CH	(CH ₂) ₆	0	1,2,4-Triazo-5-yl
20	3-174	Pip	CH=CH	(CH ₂) ₆	. 0	Tetrazo-5-yl
	3-175	Pip	CH=CH	(CH ₂) ₆	0	Pyz-3-yl
	3-176	Pip	CH=CH	(CH ₂) ₆	0	Pyz-4-yl
	3-177	Pip	CH=CH	(CH ₂) ₆	0	Pymz-2-yl
25	3-178	Pip	CH=CH	(CH ₂) ₆	0	Pymz-4-yl
	3-179	Pyr	CH=CH	CH ₂	0	Imdazo-2-yl
	3-180	Pyr	CH=CH	CH ₂	. 0	Imdazo-4-yl
30	3-181	Pyr	CH=CH	CH ₂	0	1,3,4-0xadiazo-2-yl
	3-182	Pyr	CH=CH	CH ₂	0	1,3,4-Thiadiazo-2-yl
	3-183	Pyr	CH=CH	CH ₂	0	1,2,4-Triazo-3-yl
35	3-184	Pyr	CH=CH	CH ₂	0	1,2,4-Triazo-5-yl
	3-185	Pyr	CH=CH	CH ₂	0	Tetrazo-5-yl
	3-186	Pye	CH=CH	CH ₂	0	Pyz-2-yl
	3-187	Pyr	CH=CH	CH ₂	. 0	Pyz-4-yl
40	3-188	Pyr	CH=CH	CH ₂	0	3-Me-Pyz-2-yl
	3-189	Pyr	CH=CH	CH ₂	0	2-Me-Pyz-3-yl
	3-190	Pyr	CH=CH	CH ₂	0	3-NH ₂ -Pyz-2-yl
45	3-191	Pyr	CH=CH	CH ₂	0	2-HO-Pyz-3-yl
	3-192	Pyr	CH=CH	CH ₂	0	Pymz-2-yl
	3-193	Pyr	CH=CH	СН ₂	0	Pymz-4-yl
	3-194	Pyr	CH=CH	CH ₂	0	4-Me-Pymz-2-yl
50	3-195	Pyr	CH=CH	CH ₂	0	5-Me-Pymz-2-yl
	3-196	Pyr	CH=CH	CH ₂	. 0	2-Me-Pymz-4-yl

Cpd.					
No.	R ¹	A	В	m	R ⁵
					<u> </u>
3-197	Pyr	CH=CH	CH ₂	0	6-Me-Pymz-4-yl
3-198	Pyr	CH=CH	CH ₂	0	4-NH ₂ -Pymz-2-yl
3-199	Pyr	CH=CH	СН ₂	0	4-HO-Pymz-2-yl
3-200	Pyr	CH=CH	CH ₂	0	4-NH ₂ -5-HO-Pymz-2-y
3-201	Pyr	CH=CH	CH ₂ CH ₂	0	Imdazo-2-yl
3-202	Pyr	CH=CH	CH ₂ CH ₂	. 0	Imdazo-4-yl
3-203	Pyr	CH=CH	CH ₂ CH ₂	0	1,3,4-0xadiazo-2-yl
3-204	Pyr	CH=CH	CH ₂ CH ₂	0	1,3,4-Thiadiazo-2-y
3-205	Pyr	CH=CH	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
3-206	Pyr	CH=CH	CH ₂ CH ₂	- 0	1,2,4-Triazo-5-yl
3-207	Pyr	CH=CH	CH ₂ CH ₂	0	Tetrazo-5-yl
3-208	Pyr	CH=CH	CH_2CH_2	0	Pyz-2-yl
3-209	Pyr	CH=CH	CH_2CH_2	: o	Pyz-4-yl
3-210	Pyr	CH=CH	CH ₂ CH ₂	. 0	3-Me-Pyz-2-yl
3-211	Pyr	CH=CH	CH ₂ CH ₂	. 0	3-NH ₂ -Pyz-2-yl
3-212	Pyr	CH=CH	CH ₂ CH ₂	0	3-HO-Pyz-2-yl
3-213	Pyr	CH=CH	CH ₂ CH ₂	0	Pymz-2-yl
3-214	Pyr	CH=CH	CH ₂ CH ₂	. 0	Pymz-4-yl
3-215	Pyr	CH=CH	CH ₂ CH ₂	. 0	Pymz-5-yl
3-216	Pyr	CH=CH	CH ₂ CH ₂	0	4-Me-Pymz-2-yl
3-217	Pyr	CH=CH	CH ₂ CH ₂	0	5-Me-Pymz-2-yl
3-218	Pyr	CH=CH	CH ₂ CH ₂	0	2-Me-Pymz-4-yl
3-219	Pyr	CH=CH	CH ₂ CH ₂	0	5-Me-Pymz-4-yl
3-220	Pyr	CH=CH	CH ₂ CH ₂	0	4-NH ₂ -Pymz-2-yl
3-221	Pyr	CH=CH	CH ₂ CH ₂	0	2-HO-Pymz-2-yl
3-222	Pyr	CH=CH	(CH ₂) ₃	0	Imdazo-2-yl
3-223	Pyr	CH=CH	(CH ₂) ₃	0	Imdazo-4-yl
3-224	Pyr	CH=CH	(CH ₂) ₃	. 0	1,3,4-0xadiazo-2-yl

	Cpd.					_
	No.	R ¹	A	В	<u>m</u>	R ⁵
	3-225	Pyr	CH=CH	$(CH_2)_3$	0	1,3,4-Thiadiazo-2-yl
**	3-226	Pyr	CH=CH	(CH ₂) 3	0	1,2,4-Triazo-3-yl
	3-227	Pyr	CH=CH	(CH ₂) ₃	0	1,2,4-Triazo-5-yl
	3-228	Pyr	CH=CH	(CH ₂) ₃	0	Tetrazo-5-yl
	3-229	Pyr	CH=CH	(CH ₂) ₃	0	Pyz-2-yl
	3-230	Pyr	CH=CH	(CH ₂) ₃	0	Pyz-3-yl
	3-231	Pyr	CH=CH	(CH ₂) ₃	0	Pyz-4-yl
	3-232	Pyr	CH=CH	(CH ₂) ₃	0	3-Me-Pyz-2-yl
	3-233	Pyr	CH=CH	(CH ₂) ₃	0	2-Me-Pyz-4-yl
	3-234	Pyr	CH=CH	(CH ₂) ₃	0	2-C1-Pyz-3-yl
	3-235	Pyr	CH=CH	(CH ₂) ₃	0	3-NH ₂ -Pyz-2-yl
	3-236	Pyr	CH=CH	(CH ₂) ₃	0	3-NH ₂ -Pyz-4-yl
	3-237	Pyr	CH=CH	(CH ₂) ₃	0	3-HO-Pyz-2-yl
	3-238	Pyr	CH=CH	(CH ₂) ₃	0	Pymz-2-yl
	3-239	Pyr	CH=CH	(CH ₂) ₃	0	Pymz-4-yl
	3-240	Pyr	CH=CH	(CH ₂) ₃	0	4-Me-Pymz-2-yl
	3-241	Pyr	CH=CH	(CH ₂) ₃	0	2-Me-Pymz-4-yl
	3-242	Pyr	CH=CH	(CH ₂) ₃	0	5-Me-Pymz-4-yl
	3-243	Pyr	CH=CH	(CH ₂) ₃	0	4-Me-Pymz-5-yl
	3-244	Pyr	CH=CH	(CH ₂) ₃	0	5-NH ₂ -Pymz-2-yl
	3-245	Pyr	CH=CH	(CH ₂) ₃	0	2-NH ₂ -Pymz-4-yl
	3-246	Pyr	CH=CH	(CH ₂) ₃	0	2-HO-Pymz-4-yl
	3-247	Pyr	CH=CH	(CH ₂) ₃	0	4-NH ₂ -5-HO-Pymz-2-yl
	3-248	Pyr	CH=CH	(CH ₂) ₃	0	2-NH ₂ -5-HO-Pymz-4-yl
	3-249	Pyr	CH=CH	(CH ₂) ₃	0	4,6-diNH ₂ -Pymz-2-yl
	3-250	Pyr	CH=CH	(CH ₂) ₄	0	Imdazo-2-yl
	3-251	Pyr	CH=CH	(CH ₂) ₄	0	1,3,4-Oxadiazo-2-yl
	3-252	Pyr	CH=CH	(CH ₂) ₄	0	1,3,4-Thiadiazo-2-yl

5						
	Cpd.	_				
	No.	R ¹	A	В	<u>m</u>	R ⁵
10	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
	3-253	Pyr	CH=CH	(CH ₂) ₄	0	1,2,4-Triazo-3-yl
	3-254	Pyr	CH=CH	(CH ₂) 4	0	1,2,4-Triazo-5-yl
15	3-255	Pyr	CH=CH	(CH ₂) ₄	0	Tetrazo-5-yl
	3-256	Pyr	CH=CH	(CH ₂) ₄	0	Pyz-2-yl
	3-257	Pyr	CH=CH	(CH ₂) ₄	. 0	Pyz-3-yl
	3-258	Pyr	CH=CH	(CH ₂) ₄	0	Pyz-4-yl
20	3-259	Pyr	CH=CH	(CH ₂) ₄	0	Pymz-2-yl
	3-260	Pyr	CH=CH	(CH ₂) ₄	0	Pymz-4-yl
	3-261	Pyr	CH=CH	(CH ₂) ₄	0	Pymz-5-yl
25	3-262	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	. 0	Imdazo-2-yl
	3-263	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	1,3,4-0xadiazo-2-yl
	3-264	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	1,3,4-Thiadiazo-2-yl
30	3-265	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-3-yl
30	3-266	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	.0	1,2,4-Triazo-5-yl
	3-267	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	Tetrazo-5-yl
	3-268	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	Pyz-2-yl
35	3-269	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	Pyz-3-yl
	3-270	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	Pymz-2-yl
	3-271	Pyr	CH=CH	CH ₂ CH (Me) CH ₂	0	Pymz-4-yl
40	3-272	Pyr	CH=CH	(CH ₂) ₅	0	Imdazo-2-yl
	3-273	Pyr	CH=CH	(CH ₂) ₅	0	1,3,4-Oxadiazo-2-yl
	3-274	Pyr	CH=CH	(CH ₂) ₅	0	1,3,4-Thiadiazo-2-yl
	3-275	Pyr	CH=CH	(CH ₂) ₅	0	1,2,4-Triazo-3-yl
45	3-276	Pyr	CH=CH	(CH ₂) ₅	0	1,2,4-Triazo-5-yl
	3-277	Pyr	CH=CH	(CH ₂) ₅	0	Tetrazo-5-yl
	3-278	Pyr	CH=CH	(CH ₂) ₅	0	Pyz-2-yl
50	3-279	Pyr	CH=CH	(CH ₂) ₅	0	Pyz-3-yl
	3-280	Pyr	CH=CH	(CH ₂) ₅	0	Pymz-2-yl
		_		4 5		• •

EP 0 562 833 A1

5	Cpd.					
	No.	R ¹	A	В	<u>m</u>	R ⁵
10				<u> </u>		
	3-281	Pyr	CH=CH	(CH ₂) ₅	0	Pymz-4-yl
	3-282	Pyr	CH=CH	(CH ₂) 6	0	Imdazo-2-yl
15	3-283	Pyr	CH=CH	(CH ₂) ₆	0	1,3,4-0xadiazo-2-yl
	3-284	Pyr	CH=CH	(CH ₂) ₆	0	1,3,4-Thiadiazo-2-yl
	3-285	Pyr	CH=CH	(CH ₂) ₆	0	1,2,4-Triazo-3-yl
	3-286	Pyr	CH=CH	(CH ₂) ₆	0	1,2,4-Triazo-5-yl
20	3-287	Pyr	CH=CH.	(CH ₂)6	0	Tetrazo-5-yl
	3-288	Pyr	CH=CH	(CH ₂) ₆	0	Pyz-2-yl
	3-289	Pyr	CH=CH	(CH ₂) ₆	0	Pyz-3-yl
25	3-290	Pyr	CH=CH	(CH ₂) ₆	0	Pymz-2-yl
	3-291	Pyr	CH=CH	(CH ₂) ₆	0	Pymz-4-yl
	3-292	NMe_2	CH=CH	CH ₂	0	Imdazo-2-yl
	3-293	NMe ₂	CH=CH	CH ₂	0	1,3,4-0xadiazo-2-yl
30	3-294	NMe ₂	CH=CH	CH ₂	.0	1,3,4-Thiadiazo-2-yl
	3-295	NMe ₂	CH=CH	CH ₂	0	1,2,4-Triazo-3-yl
	3-296	NMe ₂	CH=CH	CH ₂	0	1,2,4-Triazo-5-yl
35	3-297	NMe ₂	CH=CH	CH ₂	0	Tetrazo-5-yl
	3-298	NMe_2	CH=CH	CH ₂	0 .	Pyz-2-yl
	3-299	NMe ₂	CH=CH	CH ₂	0	3-Me-Pyz-2-yl
40	3-300	NMe_2	CH=CH	CH ₂	0	Pymz-2-yl
	3-301	NMe ₂	CH=CH	CH ₂	0	4-Me-Pymz-2-yl
	3-302	NMe ₂	CH=CH	CH ₂	0	6-Me-Pymz-4-yl
	3-303	NMe ₂	CH=CH	CH ₂ CH ₂	0	1,3,4-0xadiazo-2-yl
45	3-304	NMe ₂	CH=CH	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
	3-305	NMe ₂	CH=CH	CH ₂ CH ₂	0	1,2,4-Triazo-5-yl
	3-306	NMe ₂	CH=CH	CH ₂ CH ₂	0	Pyz-2-yl
50	3-307	NMe ₂	CH=CH	CH ₂ CH ₂	0	3-Me-Pyz-2-yl
	3-308	NMe ₂	CH=CH	CH ₂ CH ₂	0	Pymz-2-yl

5						
	Cpd. No.	R ¹	A	В	m	_R 5
10						
70						
	3-309	NMe ₂	CH=CH	CH ₂ CH ₂	0	Pymz-4-yl
	3-310	NMe ₂	CH=CH	CH ₂ CH ₂	0	4-Me-Pymz-2-yl
15	3-311	NMe ₂	CH=CH	CH ₂ CH ₂	0	2-Me-Pymz-4-yl
	3-312	NMe ₂	CH=CH	(CH ₂) ₃	0	Imdazo-2-yl
	3-313	NMe ₂	CH=CH	(CH ₂) ₃	0	Imdazo-4-yl
20	3-314	NMe ₂	CH=CH	(CH ₂) ₃	0	1,3,4-0xadiazo-2-yl
20	3-315	NMe ₂	CH=CH	(CH ₂) ₃	0	1,3,4-Thiadiazo-2-yl
•	3-316	NMe ₂	CH=CH	(CH ₂) ₃	0	1,2,4-Triazo-3-yl
	3-317	NMe ₂	CH=CH	(CH ₂) ₃	0	1,2,4-Triazo-5-yl
25	3-318	NMe ₂	CH=CH	(CH ₂) ₃	0	Tetrazo-5-yl
•	3-319	NMe ₂	CH=CH	(CH ₂) ₃	0	Pyz-2-yl
	3-320	NMe ₂	CH=CH	(CH ₂) ₃	0	Pymz-2-yl
	3-321	NMe ₂	CH=CH	(CH ₂) ₃	0	Pymz-4-yl
30	3-322	NMe ₂	CH=CH	(CH ₂) ₄	0	1,3,4-0xadiazo-2-yl
	3-323	NMe ₂	CH=CH	(CH ₂) ₄	0	1,2,4-Triazol-3-yl
	3-324	NMe ₂	CH=CH	(CH ₂) ₄	0	1,2,4-Triazo-5-yl
35	3-325	NMe ₂	CH=CH	(CH ₂) ₄	0	Tetrazo-5-yl
	3-326	NMe ₂	CH=CH	(CH ₂) ₄	0	Pyz-2-yl
	3-327	NMe ₂	CH=CH	(CH ₂) ₄	0	Pymz-2-yl
	3-328	NMe ₂	CH=CH	(CH ₂) ₄	0	Pymz-4-yl
40	3-329	NMe ₂	CH=CH	CH ₂ CH (Me) CH ₂	0	1,3,4-0xadiazo-2-yl
	3-330	NMe ₂	CH=CH	CH ₂ CH (Me) CH ₂	. 0	1,2,4-Triazo-3-yl
	3-331	NMe ₂	CH=CH	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-5-yl
45	3-332	NMe ₂	CH=CH	CH ₂ CH (Me) CH ₂	0	Pymz-2-yl
	3-333	NMe ₂	CH=CH	CH ₂ CH (Me) CH ₂	0	Pymz-4-yl
	3-334	NMe ₂	CH=CH	(CH ₂) ₅	0	1,3,4-0xadiazo-2-yl
	3-335	NMe ₂	CH=CH	(CH ₂) ₅	0	1,2,4-Triazo-3-yl
· 50	3-336	NMe ₂	CH=CH	(CH ₂) ₅	0	1,2,4-Triazo-5-yl
		4		. 4 5		•

EP 0 562 833 A1

Table 3 (cont.)

5						
	Cpd. No.	R ¹	A	В	<u>m</u>	R ⁵
10	· ·					
	3-337	NMe ₂	CH=CH	(CH ₂) ₅	0	Pymz-2-yl
	3-338	NMe ₂	CH=CH	(CH ₂) ₅	· · · · O	Pymz-4-yl
15	3-339	NMe ₂	CH=CH	(CH ₂) ₆	0	1,3,4-0xadiazo-2-yl
	3-340	NMe ₂	CH=CH	(CH ₂) ₆	0	1,2,4-Triazo-3-yl
	3-341	NMe ₂	CH=CH	(CH ₂) ₆	0	1,2,4-Triazo-5-yl
	3-342	NMe ₂	CH=CH	(CH ₂) ₆	0	Pymz-2-yl
20	3-343	NMe ₂	CH=CH	(CH ₂) ₆	0	Pymz-4-yl
	3-344	NEt ₂	CH=CH	CH ₂	0	1,3,4-0xadiazo-2-yl
	3-345	NEt ₂	CH=CH	CH ₂	0	1,2,4-Triazo-3-yl
25	3-346	NEt ₂	CH=CH	CH ₂	. 0	Pymz-2-yl
	3-347	NEt ₂	CH=CH	CH ₂ CH ₂	0	1,3,4-0xadiazo-2-yl
	3-348	NEt ₂	CH=CH	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
30	3-349	NEt ₂	CH=CH	CH ₂ CH ₂	0	Pymz-2-yl
50	3-350	NEt ₂	CH=CH	CH ₂ CH ₂	0	Pymz-4-yl
	3-351	NEt ₂	CH=CH	(CH ₂) ₃	0	Imdazo-2-yl
	3-352	NEt ₂	CH=CH	(CH ₂) ₃	. 0	Imdazo-4-yl
35	3-353	NEt ₂	CH=CH	(CH ₂) ₃	0	1,3,4-0xadiazo-2-yl
	3-354	NEt ₂	CH=CH	(CH ₂) ₃	0	1,3,4-Thiadiazo-2-yl
	3-355	NEt ₂	CH=CH	(CH ₂) ₃	0	1,2,4-Triazo-3-yl
10	3-356	NEt ₂	CH=CH	(CH ₂) ₃	0	1,2,4-Triazo-5-yl
	3-357	NEt ₂	CH=CH	(CH ₂) ₃	0	Tetrazo-5-yl
	3-358	NEt ₂	CH=CH	(CH ₂) ₃	0	Pyz-2-yl
	3-359	NEt ₂	CH=CH	(CH ₂) ₃	0	Pymz-2-yl
15	3-360	NEt ₂	CH=CH	(CH ₂) ₃	0	Pymz-4-yl
	3-361	NEt ₂	CH=CH	(CH ₂) ₄	0	1,3,4-Oxadiazo-2-yl
	3-362	NEt ₂	CH=CH	(CH ₂) ₄	0	1,2,4-Triazo-3-yl
50	3-363	NEt ₂	CH=CH	(CH ₂) ₄	0	Pymz-2-yl
	3-364	NEt ₂	CH=CH	(CH ₂) ₄	0	Pymz-4-yl
		-		4 T		

	•						
5	Cpd.	R ¹	A	В	m	R ⁵	
**							
10		•					
	3-365	NEt ₂	CH=CH	(CH ₂) ₅	0	1,3,4-0xac	liazo-2-yl
	3-366	NEt ₂	CH=CH	(CH ₂) ₅	. 0	1,2,4-Tria	zo-3-yl
15	3-367	NEt ₂	CH=CH	(CH ₂) ₅	0	Pymz-2-yl	
	3-368	NEt ₂	CH=CH	(CH ₂) ₅	0	Pymz-4-yl	
	3-369	NEt ₂	CH=CH	(CH ₂) ₆	0	1,3,4-0xad	liazo-2-yl
	3-370	NEt ₂	CH=CH	(CH ₂) ₆	0	1,2,4-Tria	zo-5-yl
20	3-371	NEt ₂	CH=CH	(CH ₂) ₆	0	Pymz-2-yl	_
	3-372	NEt ₂	CH=CH	(CH ₂)6	0	Pymz-4-yl	
	3-373	Azi	CH=CH	(CH ₂) ₃	0	1,2,4-Tria	zo-3-yl
25	3-374	Azi	CH=CH	(CH ₂) ₃	0	Pymz-2-yl	
	3-375	Aze	CH=CH	$(CH_2)_3$	0	1,2,4-Tria	.zo-3-yl
	3-376	Aze	CH=CH	(CH ₂) ₃	0	Pymz-2-yl	-
	3-377	Pip	CH=CH	CH ₂	1	Imdazo-2-y	1
30	3-378	Pip	CH=CH	CH ₂	1	1,3,4-0xad	iazo-2-yl
	3-379	Pip	CH=CH	CH ₂	1	1,3,4-Thia	diazo-2-yl
*	3-380	Pip	CH=CH	CH ₂	1	1,2,4-Tria	-
35	3-381	Pip	CH=CH	CH ₂	1	1,2,4-Tria	zo-5-yl
	3-382	Pip	CH=CH	CH ₂	. 1	Tetrazo-5-	_
	3-383	Pip	CH=CH	CH ₂	1	Pyz-2-yl	
40	3-384	Pip	CH=CH	CH ₂	1	3-Me-Pyz-2	-yl
40	3-385	Pip	CH=CH	CH ₂	1	Pymz-2-yl	_
	3-386	Pip	CH=CH	CH ₂	. 1	4-Me-Pymz-	2-yl
	3-387	Pip	CH=CH	CH ₂	1	6-Me-Pymz-	_
45	3-388	Pip	CH=CH	CH ₂ CH ₂	1	1,3,4-0xad	_
	3-389	Pip	CH=CH	CH ₂ CH ₂	1	1,2,4-Tria	-
	3-390	Pip	CH=CH	CH ₂ CH ₂	1	1,2,4-Tria	_
50	3-391	Pip	CH=CH	CH ₂ CH ₂		Pyz-2-yl	•
	3-392	Pip	CH=CH	CH ₂ CH ₂	1	3-Me-Pyz-2	-yl
				44		-	_

5	-					
	Cpd. No.	R ¹	A	В	m	R ⁵
10				·		
	3-393	Pip	CH=CH	CH2CH2	1	Pymz-2-yl
	3-394	Pip	CH=CH	CH ₂ CH ₂	1	Pymz-4-yl
15	3-395	Pip	CH=CH	CH ₂ CH ₂	1	4-Me-Pymz-2-yl
	3-396	Pip	CH=CH	CH ₂ CH ₂	1	2-Me-Pymz-4-yl
	3-397	Pip	CH=CH	(CH ₂) ₃	1	Imdazo-2-yl
	3-398	Pip	CH=CH	(CH ₂) ₃	1	Imdazo-4-yl
20	3-399	Pip	CH=CH	(CH ₂) ₃	1	1,3,4-Oxadiazo-2-yl
•	3-400	Pip	CH=CH	(CH ₂) ₃	1	1,3,4-Thiadiazo-2-yl
	3-401	Pip	CH=CH	(CH ₂) ₃	1	1,2,4-Triazo-3-yl
25	3-402	Pip	CH=CH	(CH ₂) ₃	1	1,2,4-Triazo-5-yl
	3-403	Pip	CH=CH	(CH ₂) ₃	1	Tetrazo-5-yl
	3-404	Pip	CH=CH	(CH ₂) ₃	1	Pyz-2-yl
30	3-405	Pip	CH=CH	(CH ₂) ₃	1	Pymz-2-yl
30	3-406	Pip	CH=CH	(CH ₂) ₃	1	Pymz-4-yl
	3-407	Pip	CH=CH	(CH ₂) ₄	1	1,3,4-Oxadiazo-2-yl
•	3-408	Pip	CH=CH	(CH ₂) ₄	1 .	1,2,4-Triazo-3-yl
35	3-409	Pip	CH=CH	(CH ₂) ₄	1	1,2,4-Triazo-5-yl
	3-410	Pip	CH=CH	(CH ₂) ₄	. 1	Tetrazo-5-yl
	3-411	Pip	CH=CH	(CH ₂) ₄	1	Pyz-2-yl
40	3-412	Pip	CH=CH	(CH ₂) ₄	1	Pymz-2-yl
	3-413	Pip	CH=CH	(CH ₂) ₄	1	Pymz-4-yl
	3-414	Pip	CH=CH	CH ₂ CH (Me) CH ₂	. 1	1,3,4-Oxadiazo-2-yl
	3-415	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	1,2,4-Triazo-3-yl
45	3-416	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	1,2,4-Triazo-5-yl
	3-417	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	Pymz-2-yl
	3-418	Pip	CH=CH	CH ₂ CH (Me) CH ₂	1	Pymz-4-yl
50	3-419	Pip	CH=CH	(CH ₂) ₅	1	1,3,4-Oxadiazo-2-yl
	3-420	Pip	CH=CH	(CH ₂) ₅	1	1,2,4-Triazo-3-yl

EP 0 562 833 A1

Table 3 (cont.)

Cpd.					
No.	R ¹	A	В	<u>m</u>	R ⁵
3-421	Pip	CH=CH	(CH ₂) ₅	1	1,2,4-Triazo-5-yl
3-422	Pip	CH=CH	(CH ₂) ₅	1	Pymz-2-yl
3-423	Pip	CH=CH	(CH ₂) ₅	1	Pymz-4-yl
3-424	Pip	CH=CH	(CH ₂) 6	1	1,3,4-0xadiazo-2-yl
3-425	Pip	CH=CH	(CH ₂) ₆	1	1,2,4-Triazo-3-yl
3-426	Pip	CH=CH	(CH ₂) 6	1	1,2,4-Triazo-5-yl
3-427	Pip	CH=CH	(CH ₂) ₆	1	Pymz-2-yl
3-428	Pip	CH=CH	(CH ₂) ₆	1	Pymz-4-yl
3-429	Pip	CH=CH	CH ₂	2	1,3,4-0xadiazo-2-yl
3-430	Pip	CH=CH	CH ₂	2	1,2,4-Triazo-3-yl
3-431	Pip	CH=CH	CH ₂	2	Pymz-2-yl
3-432	Pip	CH=CH	CH ₂ CH ₂	2	1,3,4-0xadiazo-2-yl
3-433	Pip	CH=CH	CH ₂ CH ₂	2	1,2,4-Triazo-3-yl
3-434	Pip	CH=CH	CH ₂ CH ₂	2	Pymz-2-yl
3-435	Pip	CH=CH	CH2CH2	2	Pymz-4-yl
3-436	Pip	CH=CH	(CH ₂) ₃	2	Imdazo-2-yl
3-437	Pip	CH=CH	$(CH_2)_3$	2	Imdazo-4-yl
3-438	Pip	CH=CH	(CH ₂) ₃	2	1,3,4-0xadiazo-2-yl
3-439	Pip	CH=CH	(CH ₂) ₃	2	1,3,4-Thiadiazo-2-y
3-440	Pip	CH=CH	(CH ₂) ₃	2	1,2,4-Triazo-3-yl
3-441	Pip	CH=CH	(CH ₂) ₃	2	1,2,4-Triazo-5-yl
3-442	Pip	CH=CH	(CH ₂) ₃	2	Tetrazo-5-yl
3-443	Pip	CH=CH	(CH ₂) ₃	2	Pyz-2-yl
3-444	Pip	CH=CH	(CH ₂) ₃	2	Pymz-2-yl
3-445	Pip	CH=CH	(CH ₂) ₃	2	Pymz-4-yl
3-446	Pip	CH=CH	(CH ₂) ₄	2	1,3,4-Oxadiazo-2-yl
3-447	Pip	CH=CH	(CH ₂) ₄	2	1,2,4-Triazo-3-yl
3-448	Pip	CH=CH	(CH ₂) ₄	2	Pymz-2-yl

5	Cpd.	4				r
	No.	R ^l	A	В	<u>m</u>	R ⁵
10						
	3-449	Pip	CH=CH	(CH ₂) ₄	2 1	Pymz-4-yl
	3-450	Pip	CH=CH	(CH ₂) ₅	2	1,3,4-0xadiazo-2-yl
15	3-451	Pip	CH=CH	(CH ₂) ₅	2	1,2,4-Triazo-3-yl
	3-452	Pip	CH=CH	(CH ₂) ₅	2 1	Pymz-2-yl
	3-453	Pip	CH=CH	(CH ₂) ₅	2 1	Pymz-4-yl
	3-454	Pip	CH=CH	(CH ₂)6	2 :	1,3,4-Oxadiazo-2-yl
20	3-455	Pip	CH=CH	(CH ₂)6	2 :	1,2,4-Triazo-5-yl
-	3-456	Pip	CH=CH	(CH ₂)6	2 1	Pymz-2-yl
	3-457	Pip	CH=CH	(CH ₂) ₆	2 1	Pymz-4-yl
25	3-458	Azi	CH=CH	(CH ₂) ₃	1 :	1,2,4-Triazo-3-yl
	3-459	Azi	CH=CH	(CH ₂) ₃	1 I	Pymz-2-yl
	3-460	Aze	CH=CH	(CH ₂) ₃	1 :	1,2,4-Triazo-3-yl
	3-461	Aze	CH=CH	(CH ₂) ₃	1 I	Pymz-2-yl
30	3-462	Pip	CH ₂ CH ₂	CH ₂	0 :	Imdazo-2-yl
	3-463	Pip	CH ₂ CH ₂	CH ₂	0	Imdazo-4-yl
	3-464	Pip	CH ₂ CH ₂	CH ₂	0 3	1-Me-Imdazo-2-yl
35	3-465	Pip	CH ₂ CH ₂	CH ₂	0 1	1,3,4-0xadiazo-2-yl
	3-466	Pip		CH ₂	0 5	5-Me-1,3,4-Oxadiazo-2-yl
	3-467	Pip	CH ₂ CH ₂	CH ₂	0 1	1,3,4-Thiadiazo-2-yl
	3-468	Pip	CH ₂ CH ₂	CH ₂	0 5	5-Me-1,3,4-Thiadiazo-2-yl
40	3-469	Pip	CH ₂ CH ₂	CH ₂	0 1	1,2,4-Triazo-3-yl
	3-470		CH ₂ CH ₂	CH ₂	0 .1	1,2,4-Triazo-5-yl
	3-471	Pip	CH ₂ CH ₂	CH ₂	0 1	l-Me-1,2,4-Triazo-3-yl
45	3-472	Pip		CH ₂	0 1	l-Me-1,2,4-Triazo-5-yl
	3-473		2 2	CH ₂		5-Me-1,2,4-Triazo-3-yl
	3-474		2 2	CH ₂		Tetrazo-5-yl
E C	3-475		CH ₂ CH ₂	CH ₂	0 1	- l-Me-Tetrazo-5-yl
50	3-476			CH ₂		Pyz-2-yl

5					
	Cpd.	1		_	5
	No.	R ¹	A	В	m R ⁵
10					
	3-477	Pip	CH ₂ CH ₂	CH ₂	0 Pyz-3-yl
	3-478	Pip	CH ₂ CH ₂	CH ₂	0 Pyz-4-yl
15	3-479	Pip	CH ₂ CH ₂	CH ₂	0 3-Me-Pyz-2-yl
	3-480	Pip	CH ₂ CH ₂	CH ₂	0 2-Me-Pyz-4-yl
	3-481	Pip	CH ₂ CH ₂	CH ₂	0 3-NH ₂ -Pyz-2-yl
20	3-482	Pip	CH ₂ CH ₂	CH ₂	0 4-NH ₂ -Pyz-3-yl
20	3-483	Pip	CH ₂ CH ₂	CH ₂	0 3-NH ₂ -Pyz-4-yl
	3-484	Pip	CH ₂ CH ₂	CH ₂	0 3-HO-Pyz-2-yl
	3-485	Pip	CH ₂ CH ₂	СH ₂	0 2-HO-Pyz-4-yl
25	3-486	Pip	CH ₂ CH ₂	CH ₂	0 Pymz-2-yl
	3-487	Pip	CH2CH2	CH ₂	0 Pymz-4-yl
	3-488	Pip	CH ₂ CH ₂	CH ₂	0 4-Me-Pymz-2-yl
30	3-489	Pip	CH ₂ CH ₂	CH ₂	0 5-Me-Pymz-2-yl
30	3-490	Pip	CH ₂ CH ₂	CH ₂	0 2-Me-Pymz-4-yl
	3-491	Pip	CH ₂ CH ₂	CH ₂	0 5-Me-Pymz-4-yl
	3-492	Pip	CH ₂ CH ₂	CH ₂	0 6-Me-Pymz-4-yl
35	3-493	Pip	CH ₂ CH ₂	CH ₂	0 2-Me-Pymz-5-yl
	3-494	Pip	CH ₂ CH ₂	CH ₂	0 4-NH ₂ -Pymz-2-yl
	3-495	Pip	CH ₂ CH ₂	CH ₂	0 5-NH ₂ -Pymz-2-yl
40	3-496	Pip	CH ₂ CH ₂	CH ₂	0 2-NH ₂ -Pymz-4-yl
70	3-497	Pip	CH ₂ CH ₂	CH ₂	0 4-NH ₂ -5-HO-Pymz-2-yl
	3-498	Pip	CH ₂ CH ₂	CH ₂	0 2-NH ₂ -5-HO-Pymz-4-yl
	3-499	Pip	CH ₂ CH ₂	CH ₂	0 5-NH ₂ -2-HO-Pymz-4-yl
45	3-500	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 Imdazo-2-yl
	3-501	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 Imdazo-4-yl
	3-502	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 1-Me-Imdazo-2-yl
50	3-503	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 1,3,4-0xadiazo-2-yl
	3-504	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 5-Me-1,3,4-Oxadiazo-2-yl

Cpd.					
No.	R ¹	A	В	<u>m</u>	R ⁵
3-505	Pip	СН ₂ СН ₂	CH ₂ CH ₂	0	1,3,4-Thiadiazo-2-yl
3-506	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	5-Me-1,3,4-Thiadiazo-2-y
3-507	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
3-508	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	1,2,4-Triazo-5-yl
3-509	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	1-Me-1,2,4-Triazo-3-yl
3-510	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	1-Me-1,2,4-Triazo-5-yl
3-511	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	5-Me-1,2,4-Triazo-3-yl
3-512	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	Tetrazo-5-yl
3-513	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	1-Me-Tetrazo-5-yl
3-514	Pip	CH ₂ CH ₂	CH ₂ CH ₂	. 0	Pyz-2-yl
3-515	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	Pyz-3-yl
3-516	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	Pyz-4-yl
3-517	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	4-Me-Pyz-2-yl
3-518	Pip	CH ₂ CH ₂	сн2сн2	0	2-Me-Pyz-4-yl
3-519	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	3-NH ₂ -Pyz-2-yl
3-520	Pip	CH ₂ CH ₂	CH ₂ CH ₂		3-NH ₂ -Pyz-4-yl
3-521	Pip	CH ₂ CH ₂	CH ₂ CH ₂		3-HO-Pyz-2-yl
3-522	Pip	CH ₂ CH ₂	CH ₂ CH ₂	. 0	2-HO-Pyz-4-yl
3-523	Pip	CH ₂ CH ₂	CH ₂ CH ₂		Pymz-2-yl
3-524	Pip		CH ₂ CH ₂	0	Pymz-4-yl
3-525	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	Pymz-5-yl
3-526	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0	4-Me-Pymz-2-yl
3-527	Pip	CH ₂ CH ₂	CH ₂ CH ₂		5-Me-Pymz-2-yl
3-528	Pip	CH ₂ CH ₂	CH ₂ CH ₂		2-Me-Pymz-4-yl
3-529	Pip	CH ₂ CH ₂	CH ₂ CH ₂		5-Me-Pymz-4-yl
3-530	Pip	CH ₂ CH ₂	CH ₂ CH ₂		6-Me-Pymz-4-yl
3-531	Pip	CH ₂ CH ₂	CH ₂ CH ₂		4-NH ₂ -Pymz-2-yl
3-532	Pip	CH ₂ CH ₂	CH ₂ CH ₂		5-NH ₂ -Pymz-2-yl

Cnd					-
Cpd. No.	R^1	_	ъ	m R ⁵	
NO.	. K	A	B	m R	
					-
3-533	Pip	CH ₂ CH ₂	СH ₂ CH ₂	0 2-NH ₂ -Pymz-4-yl	
3-534	Pip	CH ₂ CH ₂	Сн ₂ Сн ₂	0 4-HO-Pymz-5-yl	
3-535	Pip	CH ₂ CH ₂	СН ₂ СН ₂	0 4-NH ₂ -5-HO-Pymz-2-yl	
3-536	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 2-NH ₂ -5-HO-Pymz-4-yl	
3-537	Pip	CH ₂ CH ₂	CH ₂ CH ₂	0 5-NH ₂ -2-HO-Pymz-4-yl	
3-538	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 Imdazo-2-yl	
3-539	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 Imdazo-4-yl	
3-540	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 1-Me-Imdazo-2-yl	
3-541	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 2-Me-Imdazo-4-yl	
3-542	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 1,3,4-0xadiazo-2-yl	
3-543	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 5-Me-1,3,4-Oxadiazo-2	у:
3-544	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 5-Et-1,3,4-Oxadiazo-2	у:
3-545	Pip	CH ₂ CH ₂	$(CH_2)_3$	0 5-NH ₂ -1,3,4-Oxadiazo-2	2 - 3
3-546	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 5-AcNH-1,3,4-Oxadiazo	- 2
3-547	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 1,3,4-Thiadiazo-2-yl	
3-548	Pip	CH ₂ CH ₂	$(CH_2)_3$	0 5-Me-1,3,4-Thiadiazo-2	2 - 3
3-549	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 5-NH ₂ -1,3,4-Thiadiazo	-2
3-550	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 1,2,4-Triazo-3-yl	
3-551	Pip	СH ₂ CH ₂	(CH ₂) ₃	0 1,2,4-Triazo-5-yl	
3-552	Pip	СH ₂ CH ₂	(CH ₂) ₃	0 1-Me-1,2,4-Triazo-3-yl	Ļ
3-553	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 1-Me-1,2,4-Triazo-5-y	Ļ
3-554	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 5-Me-1,2,4-Triazo-3-yl	L
3-555	Pip	сн ₂ сн ₂	(CH ₂) ₃	0 5-Cl-1,2,4-Triazo-3-yl	L
3-556	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 5-NH ₂ -1,2,4-Triazo-3-y	<i>,</i> 1
3-557	Pip	CH ₂ CH ₂	(CH ₂) ₃	0 5-AcNH-1,2,4-Triazo-3-	
3-558		CH ₂ CH ₂	(CH ₂) ₃	0 Tetrazo-5-yl	_
3-559		CH ₂ CH ₂	(CH ₂) ₃	0 1-Me-Tetrazo-5-yl	
3-560		CH ₂ CH ₂	(CH ₂) ₃	0 1-Et-Tetrazo-5-yl	

5	Cpd.					
	No.	R ¹	A	В	<u>m</u>	R ⁵
10						
	3-561	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	1-(2-HOEt)-Tetrazo-5-yl
	3-562	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	Pyz-2-yl
15	3-563	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	Pyz-3-yl
	3-564	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	Pyz-4-yl
	3-565	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	3-Me-Pyz-2-yl
	3-566	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	5-Me-Pyz-2-yl
20	3-567	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	2-Me-Pyz-4-yl
	3-568	Pip	CH ₂ CH ₂	(CH ₂) ₃	0	3-Me-Pyz-4-yl
	3-569	Pip	CH ₂ CH ₂	(CH ₂) ₃		3-Cl-Pyz-2-yl
25	3-570	Pip	CH ₂ CH ₂	(CH ₂) ₃		3-Cl-Pyz-4-yl
	3-571	Pip	CH ₂ CH ₂	(CH ₂) ₃		3-NH ₂ -Pyz-2-yl
	3-572	Pip	CH ₂ CH ₂	(CH ₂) ₃		5-NH ₂ -Pyz-2-yl
	3-573	Pip	CH ₂ CH ₂	(CH ₂) ₃		4-NH ₂ -Pyz-3-yl
30	3-574	Pip	CH ₂ CH ₂	(CH ₂) ₃		3-NH ₂ -Pyz-4-yl
	3-575	Pip	CH ₂ CH ₂	(CH ₂) ₃		3-HO-Pyz-2-yl
	3-576	Pip	CH ₂ CH ₂	(CH ₂) ₃		5-HO-Pyz-2-yl
35	3-577	Pip	CH ₂ CH ₂	(CH ₂) ₃		2-HO-Pyz-4-yl
	3-578	Pip	CH ₂ CH ₂	(CH ₂) ₃		3-HO-Pyz-4-yl
	3-579	Pip	CH ₂ CH ₂	(CH ₂) ₃		Pymz-2-yl
	3-580	Pip	CH ₂ CH ₂	(CH ₂) ₃		Pymz-4-yl
40	3-581	Pip	CH ₂ CH ₂	(CH ₂) ₃		Pymz-5-yl
	3-582	Pip	CH ₂ CH ₂	(CH ₂) ₃		4-Me-Pymz-2-yl
	3-583	Pip	CH ₂ CH ₂	(CH ₂) ₃		5-Me-Pymz-2-yl
4 5	3-584	Pip	CH ₂ CH ₂	(CH ₂) ₃		2-Me-Pymz-4-yl
	3-585	Pip	CH ₂ CH ₂	(CH ₂) ₃		5-Me-Pymz-4-yl
	3-586	Pip	CH ₂ CH ₂	(CH ₂) ₃		6-Me-Pymz-4-yl
50	3-587	Pip	CH ₂ CH ₂	(CH ₂) ₃		4-Cl-Pymz-2-yl
∞	3-588	Pip	CH ₂ CH ₂	(CH ₂) ₃		2-Me-Pymz-4-yl

			_
Cpd.			
No. R	1 A	В	m R ⁵
3-589 P		(CH ₂) ₃	0 4-NH ₂ -Pymz-2-yl
3-590 P	Z Z.	(CH ₂) ₃	0 5-NH ₂ -Pymz-2-yl
3-591 P	Z. /.	(CH ₂) ₃	0 2-NH ₂ -Pymz-4-yl
3-592 P	4 4	(CH ₂) ₃	0 5-NH ₂ -Pymz-4-yl
3-593 P	ip CH2CH2	(CH ₂) ₃	0 4-AcNH-Pymz-2-yl
3-594 P	ip CH2CH2	(CH ₂) ₃	0 2-AcNH-Pymz-4-yl
3-595 P	ip CH ₂ CH ₂	(CH ₂) ₃	0 4-NH ₂ -5-HO-Pymz-2-
3-596 P	ip CH ₂ CH ₂	(CH ₂) ₃	0 2-NH ₂ -5-HO-Pymz-4-
3-597 P	ip CH ₂ CH ₂	(CH ₂) ₃	0 4,6-diNH ₂ -Pymz-2-y
3-598 P	ip CH ₂ CH ₂	(CH ₂) ₃	0 2,5-diNH ₂ -Pymz-4-y
3-599 P	ip CH ₂ CH ₂	(CH ₂) ₄	0 Imdazo-2-yl
3-600 P	ip CH ₂ CH ₂	(CH ₂) ₄	0 1,3,4-0xadiazo-2-y
3-601 P	ip CH ₂ CH ₂	(CH ₂) ₄	0 1,3,4-Thiadiazo-2-
3-602 P		(CH ₂) ₄	0 1,2,4-Triazo-3-yl
3-603 P	ip CH ₂ CH ₂	(CH ₂) ₄	0 1,2,4-Triazo-5-yl
3-604 P:		(CH ₂) ₄	0 Tetrazo-5-yl
3-605 P		(CH ₂) ₄	0 Pyz-2-yl
3-606 P		(CH ₂) ₄	0 Pyz-3-yl
3-607 Pi		(CH ₂) ₄	0 Pyz-4-yl
3-608 Pi		(CH ₂) ₄	0 Pymz-2-yl
3-609 Pi		(CH ₂) ₄	0 Pymz-4-yl
3-610 Pi		CH ₂ CH (Me) CH ₂	0 Imdazo-2-yl
3-611 Pi		CH ₂ CH (Me) CH ₂	0 1,3,4-Oxadiazo-2-y
3-612 Pi			0 1,3,4-Thiadiazo-2-
3-613 Pi	p CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 1,2,4-Triazo-3-yl
3-614 Pi		CH ₂ CH (Me) CH ₂	
	p CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 Tetrazo-5-yl
3-616 Pi		CH ₂ CH (Me) CH ₂	0 Pyz-2-yl

Cpd.	_			
No.	R ¹	A	В	<u>m</u> R ⁵
			· · · · · · · · · · · · · · · · · · ·	
3-617	Pip	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 Pyz-4-yl
 3-618			CH ₂ CH (Me) CH ₂	0 Pymz-2-yl
3-619		<i>L L</i>	CH ₂ CH (Me) CH ₂	0 Pymz-4-yl
3-620		4 4	(CH ₂) ₅	0 Imdazo-2-yl
3-621		4 4	(CH ₂) ₅	0 1,3,4-0xadiazo-2-y
3-622		4 4	(CH ₂) ₅	0 1,3,4-Thiadiazo-2-
3-623		2 2	(CH ₂) ₅	0 1,2,4-Triazo-3-yl
3-624		44	(CH ₂) ₅	0 1,2,4-Triazo-5-yl
3-625	_	4 4		0 Tetrazo-5-yl
3-626		4 4	(CH ₂) ₅	0 Pyz-2-yl
3-627		4 4	(CH ₂) ₅	0 Pyz-4-yl
3-628		4 4	(CH ₂) ₅	0 Pymz-2-yl
3-629		<i>Z Z</i>	(CH ₂) ₅	0 Pymz-4-yl
3-630		2 2	(CH ₂) ₅	0 Imdazo-2-yl
3-631		2 2	(CH ₂) ₆	-
3-632		2 Z	(CH ₂) ₆	0 1,3,4-0xadiazo-2-y
3-633		2 2	(CH ₂) ₆	0 1,3,4-Thiadiazo-2-
3-634		2 2	(CH ₂) ₆	0 1,2,4-Triazo-3-yl
3-635		CH ₂ CH ₂	(CH ₂) 6	0 1,2,4-Triazo-5-yl
3-636		2 2	(CH ₂) 6	0 Tetrazo-5-yl
3-637		2 2	(CH ₂) 6	0 Pyz-3-yl
3-638		CH ₂ CH ₂	(CH ₂) 6	0 Pyz-4-yl
3-639		CH ₂ CH ₂	(CH ₂) 6	0 Pymz-2-yl
		CH ₂ CH ₂	(CH ₂) 6	0 Pymz-4-yl
3-640		CH ₂ CH ₂	CH ₂	0 Imdazo-2-yl
3-641		CH ₂ CH ₂	CH ₂	0 Imdazo-4-yl
3-642		CH ₂ CH ₂	CH ₂	0 1,3,4-0xadiazo-2-y
3-643		CH ₂ CH ₂	CH ₂	0 1,3,4-Thiadiazo-2-y
3-644	ryr	CH ₂ CH ₂	CH ₂	0 1,2,4-Triazo-3-yl

	Cpd.	-				_
	No.	R ¹	A	В	<u>m</u>	R ⁵
			· .			
	3-645	Pyr	CH ₂ CH ₂	CH ₂	0	1,2,4-Triazo-5-yl
	3-646	Pyr	CH ₂ CH ₂	CH ₂	0	Tetrazo-5-yl
	3-647	Pyr	CH ₂ CH ₂	CH ₂	0	Pyz-2-yl
	3-648	Pyr	CH ₂ CH ₂	CH ₂	0	Pyz-4-yl
	3-649	Pyr	CH ₂ CH ₂	CH ₂	0	3-Me-Pyz-2-yl
	3-650	Pyr	CH ₂ CH ₂	CH ₂	0	2-Me-Pyz-3-yl
	3-651	Pyr	CH ₂ CH ₂	СH ₂	0	3-NH ₂ -Pyz-2-yl
	3-652	Pyr	CH ₂ CH ₂	СН ₂	0	2-HO-Pyz-3-yl
	3-653	Pyr	CH2CH2	CH ₂	0	Pymz-2-yl
	3-654	Pyr	CH ₂ CH ₂	CH ₂	0	Pymz-4-yl
	3-655	Pyr	CH2CH2	CH ₂	0	4-Me-Pymz-2-yl
	3-656	Pyr	CH ₂ CH ₂	CH ₂	0	5-Me-Pymz-2-yl
	3-657	Pyr	CH ₂ CH ₂	CH ₂	0	2-Me-Pymz-4-yl
	3-658	Pyr	CH ₂ CH ₂	CH ₂	0	6-Me-Pymz-4-yl
	3-659	Pyr	CH ₂ CH ₂	CH ₂	0	4-NH ₂ -Pymz-2-yl
	3-660	Pyr	CH ₂ CH ₂	CH ₂	0	4-HO-Pymz-2-yl
•	3-661	Pyr	CH ₂ CH ₂	CH ₂	0	4-NH ₂ -5-HO-Pymz-2-yl
	3-662	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	Imdazo-2-yl
	3-663	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	Imdazo-4-yl
	3-664	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	1,3,4-0xadiazo-2-yl
	3-665	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	1,3,4-Thiadiazo-2-yl
	3-666	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
	3-667	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	1,2,4-Triazo-5-yl
	3-668	Pyr		CH ₂ CH ₂	0	Tetrazo-5-yl
	3-669	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	Pyz-2-yl
	3-670	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	Pyz-4-yl
	3-671	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	3-Me-Pyz-2-yl
	3-672	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	3-NH ₂ -Pyz-2-yl

EP 0 562 833 A1

				•		
5	Cpd.					_
	No.	R ¹	A	В	<u>m</u>	R ⁵
10	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
	3-673	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	3-HO-Pyz-2-yl
	3-674	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	Pymz-2-yl
15	3-675	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	. 0	Pymz-4-yl
	3-676	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	Pymz-5-yl
	3-677	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	4-Me-Pymz-2-yl
	3-678	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	5-Me-Pymz-2-yl
20	3-679	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-Me-Pymz-4-yl
	3-680	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	5-Me-Pymz-4-yl
,	3-681	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	4-NH ₂ -Pymz-2-yl
25	3-682	Pyr	CH ₂ CH ₂	CH ₂ CH ₂	0	2-HO-Pymz-2-yl
	3-683	Pyr	CH ₂ CH ₂	(CH ₂) 3	0	Imdazo-2-yl
	3-684	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	Imdazo-4-yl
	3-685	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	1,3,4-0xadiazo-2-yl
30	3-686	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	1,3,4-Thiadiazo-2-yl
	3-687	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	1,2,4-Triazo-3-yl
	3-688	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	1,2,4-Triazo-5-yl
35	3-689	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	Tetrazo-5-yl
	3-690	Pyr	CH ₂ CH ₂	(CH ₂) ₃	. 0	Pyz-2-yl
	3-691	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	Pyz-3-yl
40	3-692	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	Pyz-4-yl
	3-693	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	3-Me-Pyz-2-yl
•	3-694	Pyr		(CH ₂) ₃	. 0	2-Me-Pyz-4-yl
	3-695	Pyr	CH ₂ CH ₂		0	2-Cl-Pyz-3-yl
45	3-696		CH ₂ CH ₂	(CH ₂) ₃	0	3-NH ₂ -Pyz-2-yl
	3-697		CH ₂ CH ₂	(CH ₂) ₃	0	3-NH ₂ -Pyz-4-yl
	3-698		CH ₂ CH ₂	$(CH_2)_3$	0	3-HO-Pyz-2-yl
50			CH ₂ CH ₂	(CH ₂) ₃	0	Pymz-2-yl
	3-700	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	Pymz-4-yl

5				•		
	Cpd.	R ¹	A	В	<u>m</u>	R ⁵
10		- · · · · · · · · · · · · · · · · · · ·				
	3-701	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	4-Me-Pymz-2-yl
	3-702		CH ₂ CH ₂	(CH ₂) ₃	0	2-Me-Pymz-4-yl
15	3-703	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	5-Me-Pymz-4-yl
	3-704	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	4-Me-Pymz-5-yl
,	3-705	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	5-NH ₂ -Pymz-2-yl
20	3-706	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-NH ₂ -Pymz-4-yl
20	3-707	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-HO-Pymz-4-yl
	3-708	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	4-NH ₂ -5-HO-Pymz-2-yl
	3-709	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	2-NH ₂ -5-HO-Pymz-4-yl
25	3-710	Pyr	CH ₂ CH ₂	(CH ₂) ₃	0	4,6-diNH ₂ -Pymz-2-yl
	3-711	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	Imdazo-2-yl
	3-712	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	1,3,4-Oxadiazo-2-yl
30	3-713	Pyr	$\mathrm{CH}_2\mathrm{CH}_2$	$(CH_2)_4$. 0	1,3,4-Thiadiazo-2-yl
30	3-714	Pyr	$\mathrm{CH_2CH_2}$	(CH ₂) ₄	0	1,2,4-Triazo-3-yl
	3-715	Pyr	CH_2CH_2	(CH ₂) ₄	0	1,2,4-Triazo-5-yl
	3-716	Pyr	$\mathrm{CH_2CH_2}$	(CH ₂) ₄	0	Tetrazo-5-yl
35	3-717	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	Pyz-2-yl
	3-718	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	Pyz-3-yl
•	3-719	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	Pyz-4-yl
	3-720	Pyr	СH ₂ CH ₂	(CH ₂) ₄	0	Pymz-2-yl
40	3-721	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	Pymz-4-yl
	3-722	Pyr	CH ₂ CH ₂	(CH ₂) ₄	0	Pymz-5-yl
	3-723	Pyr	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	Imdazo-2-yl
45	3-724	Pyr	сн ₂ сн ₂	CH ₂ CH (Me) CH ₂	O ₂	1,3,4-Oxadiazo-2-yl
	3-725	Pyr	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	1,3,4-Thiadiazo-2-yl
			CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-3-yl
			CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-5-yl
50	3-728			CH ₂ CH (Me) CH ₂	0	Tetrazo-5-yl

Table 3 (cont.)

-					
(Cpd.	1			
	No.	R ¹	A	В	m R ⁵
-					
	3 - 729	Pyr	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 Pyz-2-yl
3	3-730	Pyr	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 Pyz-3-yl
3	3-731	Pyr	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 Pymz-2-yl
3	3-732	Pyr	сн2сн2	CH ₂ CH (Me) CH ₂	0 Pymz-4-yl
3	3-733	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 Imdazo-2-yl
3	3-734	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 1,3,4-0xadiazo-2-yl
3	- 735	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 1,3,4-Thiadiazo-2-yl
3	-736	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 1,2,4-Triazo-3-yl
3	-737	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 1,2,4-Triazo-5-yl
3	-738	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 Tetrazo-5-yl
3	-739	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 Pyz-2-yl
3	-740	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 Pyz-3-yl
3	-741	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 Pymz-2-yl
3	-742	Pyr	CH ₂ CH ₂	(CH ₂) ₅	0 Pymz-4-yl
3	-743	Pyr	CH ₂ CH ₂	(CH ₂) ₆	0 Imdazo-2-yl
3	-744	Pyr	CH ₂ CH ₂	(CH ₂) ₆	0 1,3,4-0xadiazo-2-yl
3	-745	Pyr	CH ₂ CH ₂	(CH ₂) ₆	0 1,3,4-Thiadiazo-2-yl
	-746		CH ₂ CH ₂	(CH ₂) ₆	0 1,2,4-Triazo-3-yl
	-747		CH ₂ CH ₂	(CH ₂) ₆	0 1,2,4-Triazo-5-yl
3	-748	Pyr	CH ₂ CH ₂	(CH ₂) ₆	0 Tetrazo-5-yl
	-749		CH ₂ CH ₂	(CH ₂) ₆	0 Pyz-2-yl
	-750		CH ₂ CH ₂	(CH ₂) ₆	0 Pyz-3-yl
	- 751		CH ₂ CH ₂	(CH ₂) ₆	0 Pymz-2-yl
	-752		CH ₂ CH ₂	(CH ₂) ₆	0 Pymz-4-yl
		NMe ₂		CH ₂	0 Imdazo-2-yl
		NMe ₂		CH ₂	0 1,3,4-0xadiazo-2-yl
		NMe ₂	CH ₂ CH ₂	CH ₂	0 1,3,4-Thiadiazo-2-yl
		NMe ₂	CH ₂ CH ₂	CH ₂	0 1,2,4-Triazo-3-yl

Cod					
Cpd.	R ¹	A	В	m	R ⁵
			· · · · · · · · · · · · · · · · · · ·		
3-757	NMe ₂	CH ₂ CH ₂	СН ₂	0	1,2,4-Triazo-5-yl
3-758	NMe ₂	CH ₂ CH ₂	CH ₂	0	Tetrazo-5-yl
3-759	NMe ₂	CH ₂ CH ₂	CH ₂	0	Pyz-2-yl
3-760	NMe ₂	CH ₂ CH ₂	CH ₂	0	3-Me-Pyz-2-yl
3-761	NMe ₂	CH ₂ CH ₂	CH ₂	0	Pymz-2-yl
3-762	NMe ₂	CH ₂ CH ₂	CH ₂	0	4-Me-Pymz-2-yl
3-763	NMe ₂	CH ₂ CH ₂	CH ₂	0	6-Me-Pymz-4-yl
3-764	NMe ₂	CH ₂ CH ₂	$CH_2^2CH_2$	0	1,3,4-0xadiazo-2-yl
3-765	NMe ₂	CH ₂ CH ₂	CH_2CH_2	0	1,2,4-Triazo-3-yl
3-766	NMe ₂	CH ₂ CH ₂	CH ₂ CH ₂	0	1,2,4-Triazo-5-yl
3-767	NMe ₂	CH_2CH_2	CH_2CH_2	0	Pyz-2-yl
3-768	NMe ₂	CH ₂ CH ₂	CH ₂ CH ₂	0	3-Me-Pyz-2-yl
3-769	NMe ₂	CH ₂ CH ₂	CH_2CH_2	0	Pymz-2-yl
3-770	NMe ₂	CH ₂ CH ₂	CH ₂ CH ₂	0	Pymz-4-yl
3-771	NMe ₂	CH ₂ CH ₂	CH_2CH_2	0	4-Me-Pymz-2-yl
3-772	NMe ₂	CH ₂ CH ₂	CH_2CH_2	. 0	2-Me-Pymz-4-yl
3-773	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	Imdazo-2-yl
3-774	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	. 0	Imdazo-4-yl
3-775	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	1,3,4-0xadiazo-2-yl
3-776	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	1,3,4-Thiadiazo-2-yl
3 - 777	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	1,2,4-Triazo-3-yl
3-778	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	1,2,4-Triazo-5-yl
3-779	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	Tetrazo-5-yl
3-780	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	Pyz-2-yl
3-781	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	Pymz-2-yl
3-782	NMe ₂	CH ₂ CH ₂	(CH ₂) ₃	0	Pymz-4-yl
3-783	NMe ₂	CH ₂ CH ₂	(CH ₂) ₄	0	1,3,4-Oxadiazo-2-yl
3-784	NMe ₂	CH ₂ CH ₂	(CH ₂) ₄	0	1,2,4-Triazo-3-yl

				<u> </u>	
	Cpd.	R ¹	A	В	m R ⁵
10					
		· ·	 -		
	3-785 1	NMe ₂	CH ₂ CH ₂	(CH ₂) ₄	0 1,2,4-Triazo-5-yl
	3-786 1	NMe ₂	CH ₂ CH ₂	(CH ₂) ₄	0 Tetrazo-5-yl
5	3-787 1	NMe ₂	CH ₂ CH ₂	(CH ₂) ₄	0 Pyz-2-yl
	3-788 1	NMe ₂	CH ₂ CH ₂	(CH ₂) ₄	0 Pymz-2-yl
٠	3-789 1	NMe ₂	CH ₂ CH ₂	(CH ₂) ₄	0 Pymz-4-yl
0	3-790 1	NMe ₂	CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 1,3,4-Oxadiazo-2-yl
	3-791 I	NMe ₂		CH ₂ CH (Me) CH ₂	0 1,2,4-Triazo-3-yl
	3-792 1		CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 1,2,4-Triazo-5-yl
	3-793 1		CH ₂ CH ₂	CH ₂ CH (Me) CH ₂	0 Pymz-2-yl
5	3-794 1			CH ₂ CH (Me) CH ₂	0 Pymz-4-yl
	3-795 I		CH ₂ CH ₂	(CH ₂) ₅	0 1,3,4-Oxadiazo-2-y
	3-796 1		CH ₂ CH ₂	(CH ₂) ₅	0 1,2,4-Triazo-3-yl
	3-797 I		CH ₂ CH ₂	(CH ₂) ₅	0 1,2,4-Triazo-5-yl
0	3-798 I		CH ₂ CH ₂	(CH ₂) ₅	0 Pymz-2-yl
	3-799 I		CH ₂ CH ₂	(CH ₂) ₅	0 Pymz-4-yl
•	3-800 1		CH ₂ CH ₂	(CH ₂) ₆	0 1,3,4-0xadiazo-2-y
5	3-801 N		CH ₂ CH ₂	(CH ₂) 6	0 1,2,4-Triazo-3-yl
	3-802 N		CH ₂ CH ₂	(CH ₂) ₆	0 1,2,4-Triazo-5-yl
	3-803 N		CH ₂ CH ₂	(CH ₂) ₆	0 Pymz-2-yl
,	3-804 N	_	CH=CH	(CH ₂) ₆	0 Pymz-4-yl
0	3-805 A	4	CH2CH2	(CH ₂) ₃	0 1,2,4-Triazo-3-yl
	3-806 F	Azi	CH ₂ CH ₂	(CH ₂) ₃	0 Pymz-2-yl
	3-807 F	\ze	CH ₂ CH ₂	(CH ₂) ₃	0 1,2,4-Triazo-3-yl
	3-808 A		CH ₂ CH ₂	(CH ₂) ₃	0 Pymz-2-yl
5	3-809 E	Pip	CH ₂	CH ₂	0 Imdazo-2-yl
	3-810 F	-	CH ₂	CH ₂	0 1,3,4-0xadiazo-2-yl
	3-811 F	_	CH ₂	CH ₂	0 1,3,4-Thiadiazo-2-y
0	3-812 F	-	CH ₂	CH ₂	0 1,2,4-Triazo-3-yl
				-	

5						
	Cpd.					
	No.	R ¹	A	В	<u>m</u>	R ⁵
10						
	3-813	Pip	CH ₂	СН ₂	0	1,2,4-Triazo-5-yl
19.00	3-814	Pip	CH ₂	CH ₂	0	Tetrazo-5-yl
15	3-815	Pip	CH ₂	CH ₂	0	Pyz-2-yl
	3-816	Pip	CH ₂	CH ₂	0	3-Me-Pyz-2-yl
	3-817	Pip	CH ₂	CH ₂	0	Pymz-2-yl
	3-818	Pip	CH ₂	CH ₂	0	4-Me-Pymz-2-yl
20	3-819	Pip	CH ₂	CH ₂	0	6-Me-Pymz-4-yl
	3-820	Pip	CH ₂	CH ₂ CH ₂	0	1,3,4-Oxadiazo-2-yl
	3-821	Pip	CH ₂	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
25	3-822	Pip	CH ₂	CH ₂ CH ₂	0	1,2,4-Triazo-5-yl
	3-823	Pip	CH ₂	CH ₂ CH ₂	0	Pyz-2-yl
	3-824	Pip	CH ₂	CH ₂ CH ₂	0	3-Me-Pyz-2-yl
••	3-825	Pip	CH ₂	CH ₂ CH ₂	: 0	Pymz-2-yl
30	3-826	Pip	CH ₂	CH ₂ CH ₂	0	Pymz-4-yl
	3-827	Pip	CH ₂	CH ₂ CH ₂	0	4-Me-Pymz-2-yl
	3-828	Pip	CH ₂	CH ₂ CH ₂	0	2-Me-Pymz-4-yl
35	3-829	Pip	CH ₂	(CH ₂) ₃	0	Imdazo-2-yl
	3-830	Pip	CH ₂	(CH ₂) ₃	. 0	Imdazo-4-yl
	3-831	Pip	CH ₂	(CH ₂) ₃	0	1,3,4-Oxadiazo-2-yl
40	3-832	Pip	CH ₂	(CH ₂) ₃	0	1,3,4-Thiadiazo-2-yl
40	3-833	Pip	CH ₂	(CH ₂) ₃	0	1,2,4-Triazo-3-yl
	3-834	Pip	CH ₂	(CH ₂) ₃	0	1,2,4-Triazo-5-yl
	3-835	Pip	CH ₂	(CH ₂) ₃	. 0	Tetrazo-5-yl
45	3-836	Pip	CH ₂	(CH ₂) ₃	0	Pyz-2-yl
	3-837	Pip	CH ₂	(CH ₂) ₃	0	Pymz-2-yl
	3-838	Pip	CH ₂	(CH ₂) ₃	0	Pymz-4-yl
E 0	3-839	Pip	CH ₂	(CH ₂) ₄	0	1,3,4-0xadia20-2-yl
50	3-840	Pip	CH ₂	(CH ₂) 4	0	1,2,4-Triazo-3-yl

	Cpd.	R^1	A	В	m	R ⁵
					· · · · ·	
	3-841		CH ₂	(CH ₂) ₄	0	1,2,4-Triazo-5-yl
	3-842		CH ₂	(CH ₂) ₄	0	Tetrazo-5-yl
	3-843	_	CH ₂	(CH ₂) ₄	0	Pyz-2-yl
	3-844	_	\mathtt{CH}_2	(CH ₂) ₄	0	Pymz-2-yl
	3-845		CH ₂	(CH ₂) ₄	0	Pymz-4-yl
	3-846		CH ₂	$\mathrm{CH}_2\mathrm{CH}(\mathrm{Me})\mathrm{CH}_2$	0	1,3,4-Oxadiazo-2-
	3-847	_	CH ₂	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-3-yl
	3-848	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	1,2,4-Triazo-5-yl
	3-849	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	Pymz-2-yl
	3-850	Pip	CH ₂	CH ₂ CH (Me) CH ₂	0	Pymz-4-yl
	3-851	Pip	CH ₂	(CH ₂) ₅	0	1,3,4-0xadiazo-2-
	3-852	Pip	CH ₂	(CH ₂) ₅	0	1,2,4-Triazo-3-yl
	3-853	Pip	CH ₂	(CH ₂) ₅	0	1,2,4-Triazo-5-yl
	3-854	Pip	CH ₂	(CH ₂) ₅	0	Pymz-2-yl
	3-855	Pip	CH ²	(CH ₂) ₅	0	Pymz-4-yl
•	3-856	Pip	CH ₂	(CH ₂) ₆	0	1,3,4-Oxadiazo-2-
	3-857	Pip	CH ₂	(CH ₂) ₆	0	1,2,4-Triazo-3-yl
:	3-858	Pip	CH ₂	(CH ₂) ₆	0	1,2,4-Triazo-5-yl
	3-859	Pip	CH ₂	(CH ₂) ₆	0	Pymz-2-yl
	3-860	Pip	CH ₂	(CH ₂) ₆	0	Pymz-4-yl
-	3-861	Pip	(CH ₂) ₃	CH ₂	0	1,3,4-0xadiazo-2-
3	3-862	Pip	(CH ₂) ₃	CH ₂	0	1,2,4-Triazo-3-yl
3	3-863	Pip	(CH ₂) ₃	CH ₂	0	Pymz-2-yl
3	3-864	Pip		CH ₂ CH ₂	0	1,3,4-0xadiazo-2-
	3-865		(CH ₂) ₃	CH ₂ CH ₂	0	1,2,4-Triazo-3-yl
	3-866	_	(CH ₂) ₃	CH ₂ CH ₂	0	Pymz-2-yl
	3-867		(CH ₂) ₃	CH ₂ CH ₂	0	Pymz-4-yl
	3-868		(CH ₂) ₃	(CH ₂) ₃	0	Imdazo-2-yl

5			·			
	Cpd.	R ¹	A	В	m	R ⁵
10						
	3-869	Pip	(CH ₂) ₃	(CH ₂) ₃	. 0	Imdazo-4-yl
	3-870	Pip	(CH ₂) ₃	(CH ₂) 3		1,3,4-Oxadiazo-2-yl
15	3-871	Pip		(CH ₂) ₃	0	1,3,4-Thiadiazo-2-yl
	3-872	Pip		(CH ₂) ₃	0	1,2,4-Triazo-3-yl
	3-873	Pip		(CH ₂) ₃	0	1,2,4-Triazo-5-yl
	3-874	Pip		(CH ₂) ₃	0	Tetrazo-5-yl
20	3-875	Pip		(CH ₂) ₃	0	Pyz-2-yl
	3-876	Pip		(CH ₂) ₃	0	Pymz-2-yl
	3-877	Pip	(CH ₂) ₃	(CH ₂) ₃	0	Pymz-4-yl
25	3-878	Pip		(CH ₂) ₄	0	1,3,4-Oxadiazo-2-yl
	3-879	Pip	(CH ₂) ₃	(CH ₂) ₄	0	1,2,4-Triazo-3-yl
	3-880	Pip		(CH ₂)4	0	Pymz-2-yl
	3-881	Pip		(CH ₂) ₄	0	Pymz-4-yl
30	3-882	Pip		(CH ₂) ₅	0	1,3,4-Oxadiazo-2-yl
	3-883	Pip		(CH ₂) ₅	. 0	1,2,4-Triazo-3-yl
	3-884	Pip		(CH ₂) ₅	0	Pymz-2-yl
35	3-885	Pip	(CH ₂) ₃	(CH ₂) ₅	0	Pymz-4-yl
	3-886	Pip	(CH ₂) ₃	(CH ₂) ₆	. 0	1,3,4-0xadiazo-2-yl
	3-887	Pip		(CH ₂) ₆	0	1,2,4-Triazo-5-yl
	3-888		(CH ₂) ₃	(CH ₂)	0	Pymz-2-yl
40	3-889		$(CH_2)_3$	(CH ₂) ₆	0	Pymz-4-yl
	3-890		CH ₂	(CH ₂) ₃	. 0	1,2,4-Triazo-3-yl
	3-891		CH ₂	(CH ₂) ₃	0	_
45	3-892		CH ₂	(CH ₂) ₃	. 0	1,2,4-Triazo-3-yl
	3-893		CH ₂	(CH ₂) ₃	0	Pymz-2-yl

Of the compounds listed above, the following are preferred, that is to say Compounds No. 1-1, 1-5, 1-16, 1-17, 1-19, 1-28, 1-31, 1-45, 1-46, 1-47, 1-61, 1-82, 1-87, 1-92, 1-115, 1-116, 1-125, 1-137, 1-166, 1-185, 1-216, 1-260, 1-350, 1-462, 1-591, 1-612, 1-951, 1-974, 1-975, 1-976, 1-977, 1-981, 1-985, 1-1004, 1-1016, 1-1018, 1-1019, 1-1020, 1-1021, 1-1022, 1-1023, 1-1065, 1-1124, 1-1168, 1-1169, 1-1274, 2-2, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, 2-12, 2-20, 2-27, 2-28, 2-42, 2-44, 2-57, 2-59, 2-96, 2-98, 2-123, 2-209, 2-211, 2-212, 2-216, 2-217, 2-218, 2-297, 2-298, 2-390, 2-391, 2-392, 2-461, 2-482, 2-483, 2-493, 2-494, 2-506, 2-508, 2-509, 2-852, 2-854, 2-1059, 2-1061, 2-1147, 2-1148, 3-8, 3-14, 3-25, 3-79, 3-82, 3-86, 3-87, 3-89, 3-98, 3-100, 3-101, 3-103, 3-118, 3-119, 3-121, 3-136, 3-238, 3-405 and 3-579. More preferred compounds are Compounds No.

1-46, 1-116, 1-137, 1-591, 1-612, 1-974, 1-1019, 2-2, 2-4, 2-5, 2-6, 2-7, 2-9, 2-10, 2-12, 2-20, 2-27, 2-28, 2-209, 2-211, 2-212, 2-216, 2-217, 2-218, 2-390, 2-392, 2-1147, 2-1148, 3-118, 3-238 and 3-579.

The most preferred compounds of the present invention are Compounds No.:

- 1-116. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-4-carboxamide;
- 1-137. 3-amino-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-4-carboxamide;
- 2-2. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide;
- 2-4. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylthio)acetamide;
- 2-5. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-propionyloxyethylthio)acetamide;
- 2-6. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-butyryloxyethylthio)acetamide;
- 2-6. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-butyryloxyethylthio)acetamide; 2-7. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-isobutyryloxyethylthio)acetamide;
- 2-9. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-isovaleryloxyethylthio)acetamide;
- 2-10. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-phenylacetoxyethylthio)acetamide;
- 2-12. 2-{N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]carbamoylmethylthio}ethyl hydrogen succinate;
- 2-20. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-benzoyloxyethylthio)acetamide;
- 2-27. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-cyclopentylcarbonyloxyethylthio)acetamide:
- 2-28. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-cyclohexylcarbonyloxyethylthio)acetamide:
- 2-390. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylsulphinyl)acetamide;
 - 2-392. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-propionyloxyethylsulphinyl)acetamide;
 - 2-1147. N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-[2-(3,3-dimethylbutyryloxy)ethylthio)acetamide:
 - 2-1148. <u>N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-</u>2-butenyl]-2-[2-(2,2-dimethylpropionyloxy)ethylthio)acetamide;
- 3-118. \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-4-(2-pyrimidinylthio)butyramide; and pharmaceutically acceptable salts thereof.

The compounds of the present invention may be prepared by a variety of methods well known in the art for the preparation of compounds of this type. For example, they may be prepared by the following Reactions A to G:

Reaction A:

$$R^1$$
 O
 A
 NH_2
 $+$
 $NH_2CHR^3R^4$
 (III)
 (III)

55

5

10

15

20

25

30

35

40

45

Reaction B:

$$R^1$$
 $O=C=NCHR^3R^4$
 (II)
 (IV)

$$R^1$$
 O
 A
 $NHCONHCHR^3R^4$
 (Ia)

Reaction C:

$$R^{1}$$
 O
 A
 NH_{2}
 $+$
 $HOOC \cdot R^{2}a$
 (V)

$$R^{1}$$
 O
 A
 $NHCO-R^{2b}$
(Ib)

Reaction D:

- 50

Reaction E:

10

15

30

35

40

45

50

55

$$R^1$$
O
A
NHCOCH₂S(O)_m(CH₂)_(p+1)OH
(Id)

Reaction G:

In the above formulae:

R1, R2, R3, R4, R5, A, B and m are as defined above;

 R^{2a} represents any of the groups defined above for R^2 , except the groups of formula -NHCHR $^3R^4$ (wherein R^3 and R^4 are as defined above) and provided that any hydroxy group in the group represented by R^2 is protected; R^{2b} represents any of the groups defined above for R^2 , except the groups of formula -NHCHR $^3R^4$ (wherein R^3 and R^4 are as defined above);

R5a represents a hydroxyalkyl group having from 2 to 4 carbon atoms (with the proviso that the group must

include a moiety having the formula -CH₂OH);

10

15

20

25

30

40

55

R⁶ represents an alkyl group having from 1 to 3 carbon atoms and substituted with a carboxy or alkoxycarbonyl group having from 1 to 6 carbon atoms in the alkoxy moiety;

X represents a halogen atom, preferably a chlorine, bromine or iodine atom;

Y represents a hydrogen atom or an alkali metal atom, such as a lithium, sodium or potassium atom; and p is an integer from 1 to 3.

Where a hydroxy-protecting group is present, there is no particular limitation upon the nature of this group, and any such group well known in the field of organic chemistry may equally be used here. Typical examples of such groups include: cyclic ether groups, such as the tetrahydropyranyl, tetrahydrofuranyl and tetrahydrothiopyranyl groups; $tri(C_1-C_4alkyl)silyl$ or $di(C_1-C_4alkyl)$ arylsilyl groups, such as the trimethylsilyl, triethylsilyl, t-butyldimethylsilyl and methyldiphenylsilyl groups; methyl groups substituted with a methoxy, methylthio or trihaloethoxy group, such as the methoxymethyl, methylthiomethyl and 2,2,2-trichloroethoxymethyl groups; and aralkyl groups, such as the benzyl and diphenylmethyl groups. Of these, we particularly prefer the cyclic ether groups (particularly a tetrahydropyranyl group), the substituted silyl groups (particularly a trimethylsilyl or t-butyldimethylsilyl group) and the methoxymethyl group.

In Reaction A, a compound of formula (Ia), i.e. a compound of formula (I) in which R² represents a group of formula -NHCHR³R⁴ (wherein R³ and R⁴ are as defined above) is prepared by reacting a compound of formula (II) with a compound of formula (III) in the presence of carbonyldiimidazole in an inert solvent.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; amides, such as dimethylformamide, diethylformamide or dimethylacetamide; nitriles, such as acetonitrile; and sulphoxides, such as dimethyl sulphoxide. Of these, we prefer the halogenated hydrocarbons.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 100°C (more preferably from 0°C to 50°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 30 minutes to 10 hours (more preferably from 1 to 5 hours) will usually suffice.

After completion of the reaction, the desired compound can be recovered from the reaction mixture by conventional means. For example, one such recovery method comprises: distilling off the solvent from the reaction mixture or pouring the reaction mixture into water; extracting the mixture with a water-immiscible organic solvent; and distilling off the organic solvent, to leave the desired product as a residue. If necessary, the resulting product can be further purified by conventional means, such as recrystallisation, reprecipitation or the various chromatography techniques, notably column chromatography.

Reaction B comprises another method for preparing a compound of formula (Ia). In this reaction, a compound of formula (Ia) is prepared by reacting a compound of formula (II) with a compound of formula (IV) in an inert solvent.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; alcohols, such as methanol, ethanol or isopropanol; and nitriles, such as acetonitrile. Of these, we prefer the aromatic hydrocarbons or the halogenated hydrocarbons.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 100°C (more preferably from 0°C to 50°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 30 minutes to 10 hours (more preferably from 1 to 5 hours) will usually suffice.

After completion of the reaction, the desired compound can be recovered from the reaction mixture by conventional means. For example, one such recovery method comprises: distilling off the solvent from the reaction mixture or pouring the reaction mixture into water; extracting the mixture with a water-immiscible organic solvent; and distilling off the organic solvent, to leave the desired product as a residue. If necessary, the resulting

product can be further purified by conventional means, such as recrystallisation, reprecipitation or the various chromatography techniques, notably column chromatography.

In Reaction C, a compound of formula (Ib), that is a compound of formula (I) wherein R² represents R^{2b} (R^{2b} is as defined above) is prepared by reacting an amine derivative of formula (II) with a carboxylic acid compound of formula (V) or with a reactive derivative of the carboxylic acid, and, if desired, removing any hydroxy-protecting group.

5

10

15

20

25

30

35

40

55

The reaction of the amine of formula (II) with the carboxylic acid of formula (V) may be carried out in the presence or absence of a base and preferably in the presence of a condensing agent and of in an inert solvent.

There is no particular limitation upon the nature of the condensing agent used for the reaction, and any reagent capable of producing an amide bond from a carboxylic acid and an amine may be used. Examples of the preferred condensing agents which may be used include: dicyclohexylcarbodiimide (DCC); diethyl cyanophosphonate (DEPC); carbonyldiimidazole; diphenylphosphoryl azide (DPPA); 1-hydroxybenzotriazole in admixture with dicyclohexylcarbodiimide; or diethyl azodicarboxylate in admixture with triphenyl phosphine, Of these, we prefer either 1-hydroxybenzotriazole in admixture with dicyclohexylcarbodiimide or diethyl cyanophosphonate.

Examples of preferred bases which may be used include organic amines, such as trimethylamine, triethylamine, pyridine, dimethylamiline, \underline{N} -methylmorpholine or $4-(\underline{N},\underline{N})$ -dimethylamino)pyridine. Of these, we prefer triethylamine or N-methylmorpholine.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride, dichloroethane or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; esters, such as ethyl acetate or propyl acetate; amides, such as dimethylformamide, dimethylacetamide or hexamethylphosphoric triamide; and nitriles, such as acetonitrile. Of these, we prefer the ethers (particularly tetrahydrofuran), halogenated hydrocarbons (particularly methylene chloride), amides (particularly dimethylformamide) and esters (particularly ethyl acetate).

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -10°C to 50°C (more preferably from 0°C to 30°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 30 minutes to 24 hours (more preferably from 1 to 15 hours) will usually suffice.

Alternatively, the compound of formula (lb) can be prepared by converting a carboxylic acid of formula (V) to a reactive derivative thereof, and reacting an amine of formula (II) with the reactive derivative.

Examples of reactive derivatives of the carboxylic acid compound include: acid halides, such as the acid chloride or acid bromide; acid azides; reactive esters, such as esters with N-hydroxybenzotriazole or N-hydroxysuccinimide; acid anhydrides of the carboxylic acid used; and mixed acid anhydrides comprising monoalkyl carbonates in which the alkyl group has from 1 to 4 carbon atoms (such as monomethyl carbonate, monoethyl carbonate or monoisobutyl carbonate) or monoaryl carbonates (such as monophenyl carbonate or monotolyl carbonate). Of these, we prefer the mixed acid anhydrides with an alkyl carbonate. The reactive derivative of the carboxylic acid, typically an acid halide or an acid anhydride, can be prepared by conventional means. For example, they may be prepared by reacting a carboxylic acid of formula (V) with an appropriate halide (for example, thionyl chloride, thionyl bromide, acid chloride or acid bromide of the desired carboxylic acid, methyl chloroformate, ethyl chloroformate, isobutyl chloroformate, phenyl chloroformate or tolyl chloroformate) in an inert solvent (for example, methylene chloride, benzene or tetrahydrofuran) and, if necessary, in the presence of a base (for example, pyridine, triethylamine or dimethylaniline) in the temperature range from 20°C to 100°C for a period of from 1 to 20 hours. Other reactive derivatives, such as the acid amide or the reactive ester, can be prepared by reacting the carboxylic acid of formula (V) with an appropriate compound (for example, hydrogen azide, N-hydroxybenzotriazole or N-hydroxysuccinimide) in the same manner as described above in Reaction C for producing an amide bond, using a carboxylic acid of formula (V) and an amine of formula (II).

The reaction of the amine of formula (II) and the reactive derivative of the carboxylic acid of formula (V) is preferably carried out in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride, dichloroethane or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; and esters, such as ethyl acetate. Of these, we prefer the aromatic hydrocarbons or

ethers.

10

15

20

25

30

35

55

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -10°C to 50°C (more preferably from 0°C to 25°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 5 minutes to 20 hours (more preferably from 30 minutes to 10 hours) will usually suffice.

The reaction employed to remove the hydroxy-protecting group will, of course, vary depending upon the nature of the protecting group, but its removal may be achieved by conventional means well known in the field of organic chemistry.

For example, where the protecting group is a silyl group, it can be removed by reacting the corresponding compound with a base (for example, an alkali metal carbonate, such as sodium carbonate or potassium carbonate), an acid (for example, a mineral acid, such as hydrochloric acid or sulphuric acid, or an organic carboxylic acid, such as acetic acid or citric acid) or a fluoride (for example, an ammonium fluoride compound, such as tributylammonium fluoride) in an inert solvent.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: ethers, such as diethyl ether, tetrahydrofuran or dioxane; and alcohols, such as methanol or ethanol. Of these, we prefer the alcohols.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 50°C (preferably from 0°C to 30°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 5 minutes to 2 hours (more preferably from 20 minutes to 1 hour) will usually suffice.

Where the protecting group is a cyclic ether or a substituted methyl group, it can be removed by reacting the corresponding compound with an acid in an inert solvent. Examples of acids which may be used for this reaction include: mineral acids, such as hydrochloric acid, hydrobromic acid or sulphuric acid; and organic sulphonic acids, such as methanesulphonic acid, benzenesulphonic acid or toluenesulphonic acid. Of these, we prefer hydrochloric acid or toluenesulphonic acid.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride, dichloroethane or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; alcohols, such as methanol or ethanol; esters, such as ethyl acetate or propyl acetate; amides, such as dimethylformamide, dimethylacetamide or hexamethylphosphoric triamide; and nitriles, such as acetonitrile. Of these, we prefer the halogenated hydrocarbons or esters.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 100°C (more preferably from 20°C to 70°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 15 minutes to 5 hours (more preferably from 30 minutes to 2 hours) will usually suffice.

Where the protecting group is an aralkyl group, it can be removed by reacting the corresponding compound with hydrogen in an inert solvent in the presence of a catalyst for reduction. Examples of catalysts which may be used for reduction include: platinum oxide, platinum black, palladium-on-charcoal, and rhodium-on-charcoal. Of these, we prefer palladium-on-charcoal.

The hydrogen pressure used is normally in the range of from atmospheric pressure to 3 atmospheres pressure.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride, dichloroethane or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; alcohols, such as methanol or ethanol; esters, such

5

10

20

30

35

55

as ethyl acetate or propyl acetate; amides, such as dimethylformamide, dimethylacetamide or hexamethylphosphoric triamide; and nitriles, such as acetonitrile. Of these, we prefer the alcohols.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 100°C (more preferably from 10°C to 50°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 15 minutes to 5 hours (more preferably from 30 minutes to 2 hours) will usually suffice.

After completion of the reaction, the desired compound from each reaction can be recovered from the reaction mixture by conventional means. For example, one such method comprises: neutralising properly the reaction mixture; distilling off the solvent from the reaction mixture; or if necessary, after distilling off the solvent, pouring the reaction mixture into water; extracting the mixture with a water-immiscible organic solvent; and distilling off the solvent from the extract, to leave the desired product as a residue. If necessary, the resulting product can be further purified by conventional means, such as recrystallisation, reprecipitation or the various chromatography techniques, notably column chromatography.

In Reaction D, a compound of formula (Ic), that is a compound of formula (I) wherein R^2 represents a group of formula -B-S(O)_m-R⁵ (wherein R⁵, B and \underline{m} are as defined above), is prepared by reacting a compound of formula (VI) with a compound of formula (VII), normally in an inert solvent in the presence of a base and then, if desired, oxidising the resulting thioether compound.

There is no particular restriction on the nature of the base employed in this reaction, and any base may be used, provided that it has no adverse effect on any part of the molecule of the reagents. Examples of bases which may be used for the reaction include: alkali metal hydroxides, such as sodium hydroxide or potassium hydroxide; alkali metal carbonates, such as sodium carbonate or potassium carbonate; alkali metal hydrogencarbonates, such as sodium hydrogencarbonate or potassium hydrogencarbonate; and organic amines, such as trimethylamine, triethylamine, pyridine, dimethylamiline, \underline{N} -methylamine or 4- $(\underline{N},\underline{N}$ -dimethylamino)pyridine. Of these, we prefer the alkali metal hydroxides.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; alcohols, such as methanol, ethanol or isopropanol; amides, such as dimethylformamide diethylformamide or dimethylacetamide; nitriles, such as acetonitrile; and sulphoxides, such as dimethyl sulphoxide. Of these, we prefer the alcohols.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 100°C (more preferably from 0°C to 50°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 10 minutes to 5 hours (more preferably from 30 minutes to 2 hours) will usually suffice.

Oxidation can be conducted by oxidising the corresponding thioether compound with an oxidising reagent in an inert solvent. Examples of oxidising reagents which may be used for this reaction include: inorganic peroxides, such as hydrogen peroxide or periodic acid; peroxyaliphatic acids, such as peracetic acid or perpropionic acid; peroxyarylic acids, such as perbenzoic acid or <u>m</u>-chloroperbenzoic acid; and metal salts of peroxyphthalic acids, such as magnesium monoperoxyphthalate. Of these, we prefer the peroxyarylic acids.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride, dichloroethane or chloroform; and ethers, such as diethyl ether, tetrahydrofuran or dioxane. Of these, we prefer the halogenated hydrocarbons.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -30°C to 50°C (more preferably from -20°C to room temperature). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 10 minutes to 5 hours (more preferably from 30 minutes to 2 hours) will usually suffice.

In this reaction, a sulphinyl compound may be obtained by using about an equimolar of the oxidising re-

agent per mole of the thioether compound, and a sulphonyl compound may be obtained by using more than two moles of the oxidising reagent per mole of the thioether compound.

The corresponding thioether compounds of formula (lb), (ld) or (le) can be subjected to oxidation in a similar manner to that described above to afford the corresponding sulphinyl and sulphonyl compounds.

In the compounds of formula (Ic) where R⁵ represents a hydroxyalkyl group, if desired, the corresponding acyloxyalkyl compound can be prepared by acylating the hydroxy group.

Specifically, compounds of formula (Ic), wherein R^5 represents: a C_1 - C_5 alkanoyloxy group; a C_2 - C_5 alkoxycarbonyl, C_7 - C_{11} aryloxycarbonyl or C_6 - C_{10} aryl group; a C_7 - C_{11} aryloxycarbonyloxy group; or an alkyl group substituted with a C_3 - C_6 cycloalkylcarbonyloxy group, can be prepared by reacting a hydroxy compound with the corresponding carboxylic acid compound or with a reactive derivative thereof.

10

15

25

30

35

40

45

50

55

The reaction conditions used in the reaction of the hydroxy compound with the carboxylic acid compound are similar to those used, in the presence of a condensing agent, in Reaction C, described above.

Reaction of the hydroxy compound with a reactive derivative of the carboxylic acid compound is preferably conducted in an inert solvent in the presence or absence of a base.

There is no particular limitation upon the nature of the reactive derivative of the carboxylic acid used, provided that it is a compound capable of producing an ester compound by reaction with an alcohol compound, and it will, of course, depend on the nature of the group which it is desired to introduce. Examples of reactive derivatives which may be used for the reaction include; acid halides, such as acetyl chloride, propionyl chloride. valeryl chloride, valeryl bromide, isovaleryl chloride, methyl chloroformylacetate, ethyl 3-chloroformylpropionate, ethyl 4-chloroformylbutyrate, ethyl 5-chloroformylvalerate, phenylacetyl chloride, phenylpropionyl chloride, benzoyl chloride, toluoyl chloride, naphthoyl chloride, cyclopropanecarbonyl chloride, cyclobutanecarbonyl chloride, cyclopentanecarbonyl chloride, and cyclohexanecarbonyl chloride; acid anhydrides, such as acetic formic anhydride, acetic anhydride, propionic anhydride or benzoic anhydride; and mixed acid anhydrides of monoalkyl carbonates (in which the alkyl part has from 1 to 4 carbon atoms), such as monomethyl carbonate, monoethyl carbonate or monoisobutyl carbonate, or monoaryl carbonates, such as monophenyl carbonate or mono(methylphenyl) carbonate, and of the corresponding acids, such as acetic acid, propionic acid, phenylacetic acid, benzoic acid, cyclopentanecarboxylic acid or cyclohexanecarbonylic acid. Of these, we prefer the acid chlorides, acid anhydrides or mixed acid anhydrides comprising alkyl carbonates. These reactive derivatives of carboxylic acids can be prepared in the same manner as those of carboxylic acids described in Reaction C, described above.

There is no particular restriction on the nature of the base employed in this reaction, and any base may be used, provided that it has no adverse effect on any part of the molecule of the reagents. Examples of preferred bases which may be used for this reaction include: organic amines, such as trimethylamine, triethylamine, pyridine, dimethylamiline, N-methylmorpholine or 4-(N,N-dimethylamino)pyridine; and particularly preferably triethylamine or N-methylmorpholine. An excess of the organic amine can also serve as a solvent.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride, dichloroethane or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; esters, such as ethyl acetate or propyl acetate; amides, such as dimethylformamide, dimethylacetamide or hexamethylphosphoric triamide; and nitriles, such as acetonitrile. Of these, we prefer the ethers (particularly tetrahydrofuran) or esters (particularly ethyl acetate).

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -10°C to 50°C (more preferably from 0°C to 30°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 30 minutes to 24 hours will usually suffice.

Where R⁵ represents an alkyl group substituted with a carboxyl group, the corresponding compounds of formula (Ic) can be prepared by reacting a hydroxy compound with a cyclic carboxylic acid anhydride, such as succinic anhydride, glutaric anhydride or adipic anhydride (preferably succinic anhydride or glutaric anhydride).

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; halogenated hydrocarbons, es-

5

15

20

30

45

- 50

55

pecially halogenated aliphatic hydrocarbons, such as methylene chloride or chloroform; ethers, such as diethyl ether, tetrahydrofuran or dioxane; ketones, such as acetone or methyl ethyl ketone; amides, such as dimethylformamide, diethylformamide or dimethylacetamide; nitriles, such as acetonitrile; and sulphoxides, such as dimethyl sulphoxide. Of these, we prefer the ketones.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 100°C (more preferably from 0°C to 50°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 30 minutes to 8 hours (more preferably from 1 to 5 hours) will usually suffice.

The carboxylic acid compounds obtained above may be converted to the corresponding ester compounds by conventional esterification procedures, including reacting the carboxylic acid compound with a diazo compound, such as diazomethane, diazoethane, diazopropane, diazobutane or trimethylsilyldiazomethane in an inert solvent (preferably an ether, such as diethyl ether, tetrahydrofuran or dioxane), at about room temperature for a period of from 10 minutes to 2 hours.

After completion of the reaction, the desired compound prepared in this step can be recovered from the reaction mixture by conventional means. For example, one such technique comprises: neutralising properly the reaction mixture; distilling off the solvent from the reaction mixture or, if necessary, after distilling off the solvent from the reaction mixture into water; extracting the mixture with a water-immiscible organic solvent; and finally distilling off the solvent from the extract. Further, if necessary, the product can be purified by conventional means, for example, recrystallisation, reprecipitation or the various chromatography techniques, notably column chromatography.

Reaction E comprises an alternative method for preparing a compound of formula (Ic). In this reaction, a compound of formula (Ic) is prepared by reacting a compound of formula (VIII) with a compound of formula (IX) and, if desired, oxidising the thioether compound thus obtained. This step is carried out in a similar manner as those described above in Reactions C and D.

In Reaction F, a compound of formula (Id), that is, a compound of formula (I) wherein R^2 represents a group of formula $-CH_2S(O)_m(CH_2)_{p+1}OH$ (wherein \underline{m} and \underline{p} are as defined as above), is prepared by reacting a compound of formula (II) with a compound of formula (X), normally in an inert solvent.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: aromatic hydrocarbons, such as benzene, toluene or xylene; ethers, such as diethyl ether, tetrahydrofuran or dioxane; halogenated hydrocarbons, especially halogenated aliphatic hydrocarbons, such as methylene chloride or chloroform; and alcohols, such as methanol, ethanol or isopropanol. The reaction may also be carried out in the absence of a solvent.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 130°C (more preferably from 50°C to 100°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 30 minutes to 5 hours (more preferably from 1 to 2 hours) will usually suffice.

After completion of the reaction, the desired compound prepared in this step can be recovered from the reaction mixture by conventional means. For example, one such technique comprises: neutralising properly the reaction mixture; distilling off the solvent from the reaction mixture or, if necessary, after distilling off the solvent from the reaction mixture into water; extracting the mixture with a water-immiscible organic solvent; and finally distilling off the solvent from the extract. Further, if necessary, the product can be purified by conventional means, for example, recrystallisation, reprecipitation or the various chromatography techniques, notably column chromatography.

In Reaction G, a compound of formula (Ie), that is, a compound of formula (I) wherein R^2 represents a group of formula -B-S(O)_m- R^{5a} (wherein R^{5a} , B and \underline{m} are as defined above), can be prepared by reacting a compound of formula (XI) with a reducing reagent in an inert solvent.

Examples of reducing reagents which may be used include: borohydride compounds, such as lithium borohydride, sodium borohydride or sodium cyanoborohydride. Of these, we prefer sodium borohydride.

The reaction is normally and preferably effected in the presence of a solvent. There is no particular restriction on the nature of the solvent to be employed, provided that it has no adverse effect on the reaction or

on the reagents involved and that it can dissolve the reagents, at least to some extent. Examples of suitable solvents include: ethers, such as diethyl ether, tetrahydrofuran or dioxane; alcohols, such as methanol or ethanol; water; or a mixture of any two or more of these solvents. Of these, we prefer a mixture of an alcohol and an ether.

The reaction can take place over a wide range of temperatures, and the precise reaction temperature is not critical to the invention. In general, we find it convenient to carry out the reaction at a temperature of from -20°C to 100°C (more preferably from 0°C to 30°C). The time required for the reaction may also vary widely, depending on many factors, notably the reaction temperature and the nature of the reagents and solvent employed. However, provided that the reaction is effected under the preferred conditions outlined above, a period of from 1 to 24 hours (more preferably from 3 to 10 hours) will usually suffice.

After completion of the reaction, the desired compound prepared in this step can be recovered from the reaction mixture by conventional means. For example, one such technique comprises: neutralising properly the reaction mixture; distilling off the solvent from the reaction mixture or, if necessary, after distilling off the solvent from the reaction mixture into water; extracting the mixture with a water-immiscible organic solvent; and finally distilling off the solvent from the extract. Further, if necessary, the product can be purified by conventional means, for example, recrystallisation, reprecipitation or the various chromatography techniques, notably column chromatography.

The starting materials of formula (II) are known or can be prepared by any of several known methods (for example, as described Japanese Patent Kokai Application No. Sho 61-85365 or in an analogous manner).

The starting compounds of formulae (VI), (VIII) and (XI) can be prepared by reacting a compound of formula (II) with a compound of formula HOCO-B-X, HOCO-B-SY' or HOCO-B-SR6, in which: R6, B and X are as defined above; and Y¹ represents a hydrogen atom, an alkali metal, a C_2 - C_5 alkanoyl group (such as an acetyl, propionyl, butyryl or valeryl group, preferably an acetyl or propionyl group) or an aromatic acyl group in which the aromatic part has from 6 to 10 ring carbon atoms (such as a benzoyl, toluoyl or naphthoyl group, preferably a benzoyl group). These reactions may be carried out in a similar manner to those described in Reaction C described above. Where Y' represents an acyl group, the compound produced may, if desired, be subjected to hydrolysis using a base (for example, an alkali metal alkoxide, such as sodium methoxide or sodium ethoxide, or an alkali metal hydroxide, such as sodium hydroxide or potassium hydroxide) at a temperature of from -20°C to 80°C (more preferably from 0°C to 50°C) in an inert solvent (for example, an alcohol, such as methanol or ethanol) for a suitable period, for example from 5 minutes to 10 hours (more preferably from 10 minutes to 5 hours) to give a compound in which Y' is a hydrogen atom.

The pyridyloxy derivatives of the present invention have excellent histamine-H₂ receptor antagonist activity, and are therefore useful for the prevention and therapy of peptic diseases resulting from undesirable peptic secretion, such as gastric ulcers, duodenal ulcers, gastritis, esophagistis, gastric dispepsia and Zollinger-Ellison syndrome; they are also useful for the prophylaxis or treatment of gastric disease before surgery.

The compounds of the present invention may be administered in any conventional form known for use with compounds having this type of activity, the precise form depending on the patient and the preferred route of administration, as is well known in the art. For example, for oral administration they may be formulated as tablets, capsules, granules, powders or syrups; and for parentheral administration they may be formulated as injections. Depending on the formulation, the compounds of the present invention may be administered by themselves or in admixture with conventional additives, such as vehicles (for example lactose, mannitol, corn starch or crystalline cellulose), binders (for example cellulose derivatives, gum arabic or gelatin), disintegrating agents (for example calcium carboxymethylcelulose), lubricants (for example talc or magnesium stearate), stabilisers, corrigents, solvents for preparing injections (for example water, ethanol or glycerin). The dosage may vary depending on the age, condition and symptoms of the patient, as well as the nature and severity of the disorder being treated, however, the usual daily dosage for an adult human patient would be from 1 mg to 1000 mg (preferably from 10 mg to 500 mg), per day, which may be administered as a single dose or divided into several doses.

The activity of the compounds of the present invention is illustrated by the following Test Examples. In these, the compounds of the invention are identified by the number of the subsequent Example in which its preparation is illustrated. The prior art compounds A, B and C are as identified in the introductory portion of this specification.

TEST EXAMPLE 1

55

10

15

20

25

30

35

40

Atrial test in guinea pigs

The guinea pig right atrium in a spontaneous palpitation was excised, suspended in 40 ml of Krebs-

Henselite solution, and a tension of 1 g was loaded between the atrium preparation and a transducer. The solution was aerated at a fixed rate at 37°C. 10-5 M histamine was added, and the heart rate was recorded as control. A test compound was added to a concentration of 1 µg/ml and then, after 3 minutes, 10-6 M histamine was added, and the heart rate was again recorded. The inhibitory rate (R%) compared to the control group was calculated according to the following equation:

$$R = (1 - B/A) \times 100$$

where:

5

10

A: The heart rate of the control group

B: The heart rate of the group to which the drug was administered The results are shown in the following Table 4.

Table 4

anga ang ang ang ang ang ang ang ang ang	Compound of Example No.	% Inhibition
15	1	86
	2	90
	6	86
20	13	84
	17	83
	26	80
25	34	94
	37	99
	41	85
30	48	81
	A	68
	В	99
35	C	45

TEST EXAMPLE 2

40

50

55

Inhibition of gastric secretions

This test was carried out according to Shay's method [H. Shay: Gastroenterology 5, 43 (1945)] using male SD rats (5 weeks old). The rats were divided into groups, each group containing 5 rats. The animals were fasted for 24 hours before the beginning of the experiment. They were then anesthetised with ether, the abdominal region was opened, and the pylorus was ligated. A test compound suspended in a 0.5% w/v aqueous carboxymethylcellulose (CMC) solution was administered intraduodenally. After 4 hours, the rat was sacrificed by deep anesthesia with ether, and the stomach was excised. The gastric juice was removed, centrifuged for 15 minutes at 2500 rpm, and then 0.1 ml of the supernatant was taken out and titrated until the end point of neutralisation with a 0.01 N aqueous solution of sodium hydroxide, to determine the total gastric acidity. The amount of gastric acid secreted per hour (µEq/hr) was calculated, and the inhibition rate (R%) to the control group was calculated according to the following equation.

$$R = (1 - B/A) \times 100$$

where

- The gastric acid output of the control group (µEq/hr) A:
- The amount of gastric acid output of the drug administered group (µEq/hr) The results are shown in Table 5.

Table 5

Compound of Example No.	Dose (mg/kg)	% Inhibition
1	50	63
2	50	52
6	50	73
7	25	63
7	12.5	51
13	50	80
13	25	62
17	50	71
17	25	73
34	25	86
34	12.5	61
37	50	74
41	50	76
41	25	61
48	50	71
58	50	56
Α	50	-67
В	50	-40
С	50	56

TEST EXAMPLE 3

40 HCI - ethanol-induced ulcer test in rats

Male SD rats (6 to 8 weeks old) were fasted for 24 hours before the beginning of the experiment. Each was then administered orally with 1 ml of a 60% ethanol solution containing 150 mM of hydrogen chloride. After 1 hour, the stomach was excised. Into the stomach was injected 10 ml of a 0.5% formaldehyde solution, and the stomach was fixed for 20 minutes. The injured area (mm²) occuring on the surface of the gastric mucosa was measured, and the total injured area per rat was regarded as the injury index.

Test compounds and 0.5% CMC, as the control, were orally administered each at a dose of 0.1 ml/100 g, 60 minutes before treatment with the HCl - ethanol solution.

The ulcer formation inhibitory rate (R%) was calculated by the following equation.

 $R = (1 - B/A) \times 100$

where

- A: The injury index of the control group (mm²)
- B: The injury index of the drug administered group (mm²) The results are shown in the following Table 6.

55

50

5

10

15

20

25

30

35

Table 6

	Compound of Example No.	% Inhibition *)
	2	100
	7	61
15	13	87
	34	79
	48	78
<u> </u>	***************************************	
	A	39
	В	97
25	C	56

*) Dose: 50 mg/kg.

From these results, it can be seen that the compounds of the present invention strongly inhibit ulcer formation in our HCI - ethanol-induced ulcer model, and have a defence factor potentiating activity.

The invention is further illustrated by the following Examples, which illustrate the preparation of certain of the compounds of the present invention, and the subsequent Preparations, which illustrate the preparation of certain starting materials used in these Examples.

EXAMPLE 1

30

35

40 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide

 $0.20\,\mathrm{ml}$ of 2-mercaptoethanol was added to a solution of $0.24\,\mathrm{g}$ of 85% potassium hydroxide (i.e. potassium hydroxide of 85% purity) and $0.94\,\mathrm{g}$ of $N-[4-(4-\mathrm{piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-chloroacetamide (prepared as described in Preparation 1) in 20 ml of methanol, and the resulting mixture was stirred at room temperature for 1 hour. At the end of this time, the reaction mixture was concentrated by evaporation under reduced pressure. The concentrate was diluted with water, after which it was extracted with chloroform. The extract was concentrated by evaporation under reduced pressure, and the residue thus obtained was purified by column chromatography through silica gel, using a 1:9 by volume mixture of ethanol and chloroform as the eluent, to give 0.95 g (yield 90%) of the title compound as an oil.$

```
50 Nuclear Magnetic Resonance S
1.32 - 1.52 (2H, multiplet);
1.52 - 1.70 (4H, multiplet);
2.25 - 2.55 (4H, multiplet);
2.77 (2H, triplet, J = 6.3 Hz);
3.25 - 3.50 (1H, broad);
3.27 (2H, singlet);
3.44 (2H, singlet);
3.80 (2H, triplet, J = 6.3 Hz);
```

```
4.05 (2H, triplet, J = 6.1 Hz);

4.93 (2H, doublet, J = 6.8 Hz);

5.68 - 5.80 (1H, multiplet);

5.80 - 5.95 (1H, multiplet);

6.79 (1H, singlet);

6.90 (1H, doublet, J = 5.4 Hz).

7.08 - 7.28 (1H, broad);

8.06 (1H, doublet, J = 5.4 Hz).

Infrared Absorption Spectrum (CHCℓI₃), v<sub>max</sub> cm<sup>-1</sup>:

3360, 2920, 1650, 1610, 1415, 1400, 1295, 1285, 1030.
```

15

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylthio)acetamide

0.50~g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) was added to a mixture of 0.47 ml of acetic anhydride and 0.39 g of pyridine, and the resulting mixture was heated at 60° C for 2 hours. At the end of this time, the reaction mixture was poured into ice-water, after which a saturated aqueous solution of sodium hydrogencarbonate was added. The aqueous mixture was then extracted with chloroform. The extract was concentrated by evaporation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1:19 by volume mixture of methanol and methylene chloride as the eluent, to give 0.51 g (yield 91%) of the title compound as an oil.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.38 - 1.50 (2H, multiplet);
25
             1.50 - 1.70 (4H, multiplet);
             2.06 (3H, singlet);
             2.30 - 2.45 (4H, multiplet);
             2.79 (2H, triplet, J = 6.3 Hz);
             3.28 (2H, singlet);
30
             3.41 (2H, singlet);
             4.08 (2H, triplet, J = 6.3 Hz);
             4.23 (2H, triplet, J = 6.3 Hz);
             4.94 (2H, doublet, J = 6.8 Hz);
             5.62 - 5.74 (1H, multiplet);
35
             5.82 - 5.95 (1H, multiplet);
             6.74 (1H, singlet);
             6.88 (1H, doublet, J = 5.4 Hz);
             6.90 - 7.05 (1H, broad);
40
             8.06 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3370, 2920, 1735, 1660, 1610, 1515, 1415, 1400, 1295, 1285, 1025.
```

The hydrochloride of the title compound, melting at 198 - 208°C, was prepared by dissolving the compound obtained above in ethyl acetate, after which it was treated with an excess of a 4 N ethyl acetate solution of hydrogen chloride.

The oxalate of the title compound, melting at 127 - 133°C, was prepared by dissolving the title compound, obtained as described above, in acetone, after which an equimolar amount of oxalic acid was added, and crystals of the oxalate, which precipitated, were collected by filtration.

50 EXAMPLE 3

45

55

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(2-hydroxyethylthio)butyramide

Following a procedure similar to that described in Example 1, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 2-mercaptoethanol as starting materials, in relative proportions similar to those used in that Example, and carrying out the reaction at 80°C for 5 hours, the title compound was obtained in a 66% yield.

```
1.35 - 1.50 (2H, multiplet);
             1.50 - 1.75 (4H, multiplet);
             1.80 - 2.02 (2H, multiplet);
             2.30 - 2.50 (4H, multiplet);
             2.32 (2H, triplet, J = 7.0 Hz);
5
             2.50 - 2.65 (1H, singlet);
             2.59 (2H, triplet, J = 7.0 Hz);
             2.72 (2H, triplet, J = 6.7 Hz);
             3.44 (2H, singlet);
10
             3.68 - 3.80 (2H, multiplet);
             4.03 (2H, triplet, J = 6.8 Hz);
             4.93 (2H, doublet, J = 6.8 Hz);
             5.60 - 5.75 (1H, multiplet);
             5.75 - 5.90 (1H, multiplet);
             6.10 - 6.30 (1H, broad);
15
             6.76 (1H, singlet);
             6.90 (1H, doublet, J = 5.4 Hz);
             8.05 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3440, 2930, 1660, 1610, 1415, 1400, 1295, 1285, 1030.
20
```

25

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxypropylthio)acetamide

Following a procedure similar to that described in Example 1, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-chloroacetamide (prepared as described in Preparation 1) and 1-mercapto-2-propanol as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in an 89% yield.

```
30
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.25 (3H, doublet, J = 6.4 \text{ Hz});
             1.30 - 1.86 (1H, broad);
             1.38 - 1.49 (2H, multiplet);
             1.53 - 1.65 (4H, multiplet);
35
             2.31 - 2.43 (4H, multiplet);
             2.54 (1H, doublet of doublets, J = 8.3 \& 13.9 Hz);
             2.74 (1H, doublet of doublets, J = 3.4 \& 13.9 Hz);
             3.25 (1H, doublet, J = 16.1 Hz);
             3.29 (1H, doublet, J = 16.1 Hz);
             3.41 (2H, singlet);
40
             3.87 - 4.01 (1H, multiplet):
             4.06 (2H, doublet, J = 6.1 Hz);
             4.93 (2H, doublet, J = 6.8 Hz);
             5.65 - 5.77 (1H, multiplet);
             5.83 - 5.93 (1H, multiplet);
45
             6.75 (1H, singlet);
             6.89 (1H, doublet, J = 5.4 Hz);
             7.03 - 7.21 (1H, broad);
             8.05 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (liquid film), v_{max} cm<sup>-1</sup>:
50
             3293, 2935, 1648, 1613, 1560, 1421, 1403, 1301, 1290, 1039.
```

EXAMPLE 5

55 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(2-hydroxypropylthio)butyramide

Following a procedure similar to that described in Example 1, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 1-mercapto-2-propa-

nol as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in a 58% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.24 (3H, doublet, J = 6.6 Hz);
             1.38 - 1.50 (2H, multiplet);
             1.52 - 1.64 (4H, multiplet);
             1.84 - 2.04 (2H, multiplet);
             2.27 - 2.46 (6H, multiplet);
             2.46 (1H, doublet of doublets, J = 5.3 \& 13.9 Hz);
             2.59 (2H, triplet, J = 6.9 Hz);
             2.71 (1H, doublet of doublets, J = 3.3 \& 13.9 Hz);
             3.41 (2H, singlet);
             3.81 - 3.92 (1H, multiplet);
             4.03 (2H, triplet, J = 5.9 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
15
             5.78 - 5.91 (1H, multiplet);
             5.63 - 5.76 (1H, multiplet);
             6.06 - 6.22 (1H, broad);
             6.74 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
20
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (liquid film), v_{max} cm<sup>-1</sup>:
             3298, 2935, 1647, 1613, 1560, 1421, 1403, 1311, 1301, 1289, 1070.
```

25 EXAMPLE 6

30

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(2-acetoxyethylthio)butyramide

Following a procedure similar to that described in Example 2, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-4-(2-hydroxyethylthio)butyramide (prepared as described in Example 3) and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound, melting at 36 - 40°C, was obtained in an 80% yield.

```
Nuclear Magnetic Resonance Spectrum (CDCl<sub>3</sub>), δ ppm:
```

```
1.30 - 1.60 (2H, multiplet);
35
             1.60 - 1.80 (4H, multiplet);
             1.80 - 2.02 (2H, multiplet);
             2.06 (3H, singlet);
             2.32 (2H, triplet, J = 7.0 Hz);
             2.30 - 2.55 (4H, multiplet);
             2.62 (2H, triplet, J = 7.0 \text{ Hz});
40
             2.73 (2H, triplet, J = 6.8 Hz);
             3.46 (2H, singlet);
             4.04 (2H, triplet, J = 6.1 Hz);
             4.20 (2H, triplet, J = 6.8 Hz);
45
             4.93 (2H, doublet, J = 6.8 Hz);
             5.60 - 5.75 (1H, multiplet);
             5.77 - 5.90 (1H, multiplet);
             6.00 - 6.20 (1H, broad);
             6.75 (1H, singlet);
             6.92 (1H, doublet, J = 5.4 Hz);
50
             8.06 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3450, 2930, 1735, 1665, 1610, 1415, 1400, 1295, 1285, 1030.
```

5

10

35

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-propionyloxyethylthio)acetamide

0.09 ml of propionyl chloride was added to a mixture of 0.40 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) and 1.02 ml of pyridine, and the resulting mixture was allowed to stand at room temperature for 2 hours. At the end of this time, the reaction mixture was poured into ice-water, and a saturated aqueous solution of sodium hydrogencarbonate was added to the resulting mixture, after which it was extracted with chloroform. The extract was concentrated by evaporation under reduced pressure and the residue was purified by column chromatography through silica gel, using a 1:19 by volume mixture of methanol and ethyl acetate as the eluent, to give 0.39 g (yield 85%) of the title compound as an oil.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.14 (3H, triplet, J = 7.5 Hz);
             1.35 - 1.75 (6H, multiplet);
15
             2.30 - 2.60 (4H, multiplet);
             2.34 (2H, quartet, J = 7.5 Hz);
             2.79 (2H, triplet, J = 6.6 Hz);
             3.28 (2H, singlet);
20
             3.41 (2H, singlet);
             4.08 (2H, triplet, J = 6.6 Hz);
             4.25 (2H, triplet, J = 6.3 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
             5.63 - 5.69 (1H, multiplet);
25
             5.72 - 5.93 (1H, multiplet);
             6.73 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
             6.95 - 7.10 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
30
             3380, 2940, 1735, 1665, 1615, 1420, 1405, 1300, 1290, 1180.
```

The hydrochloride of the title compound, melting at 99 - 106°C, was prepared by dissolving the title compound, prepared as described above, in diethyl ether, after which the resulting solution was treated with an equimolar amount of a 4 N ethyl acetate solution of hydrogen chloride.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3 + CD₃OD), δ ppm:

```
1.10 (3H, triplet, J = 7.6 \text{ Hz});
             1.58 - 1.76 (2H, multiplet);
             1.76 - 1.94 (4H, multiplet);
             2.35 (2H, quartet, J = 7.6 Hz);
40
             2.84 (2H, triplet, J = 6.6 Hz);
             3.03 - 3.38 (4H, multiplet);
             3.24 (2H, singlet):
             3.99 (2H, triplet, J = 6.6 \text{ Hz});
             4.24 (2H, triplet, J = 6.6 Hz);
45
             4.26 (2H, singlet);
             4.99 (2H, doublet, J = 6.6 Hz);
             5.59 - 5.70 (1H, multiplet);
             5.76 - 5.86 (1H, multiplet);
             7.00 (1H, singlet);
50
             7.10 (1H, doublet, J = 5.0 \text{ Hz});
             8.25 (1H, doublet, J = 5.0 \text{ Hz}).
```

The dihydrochloride of the title compound, melting at 235 - 255°C, was prepared by dissolving the title compound, prepared as described above, in ethyl acetate, after which the resulting solution was treated with a molar excess of a 4 N ethyl acetate solution of hydrogen chloride.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3 + CD<sub>3</sub>OD), \delta ppm:
```

```
1.10 (3H, triplet, J = 7.6 Hz);
1.44 - 1.69 (2H, multiplet);
1.75 - 2.05 (4H, multiplet);
```

```
2.35 (2H, quartet, J = 7.6 Hz);

2.84 (2H, triplet, J = 6.6 Hz);

2.98-3.19 (2H, multiplet);

4.00 (2H, triplet, J = 5.9 Hz);

4.24 (2H, triplet, J = 6.6 Hz);

4.49 (2H, singlet);

5.18 (2H, doublet, J = 5.9 Hz);

5.66 - 5.88 (2H, multiplet);

7.48 (1H, doublet, J = 5.3 Hz);

7.66 (1H, singlet);

8.39 (1H, doublet, J = 5.3 Hz).
```

15

20

2-{N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]carbamoylmethylthio}ethyl hydrogen succinate

0.11 g of succinic anhydride was added to a solution of 0.4 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) in 10 ml of acetone, and the resulting mixture was stirred at room temperature for 3 hours. At the end of this time, the reaction mixture was concentrated by evaporation under reduced pressure, and the concentrate was purified by column chromatography through silica gel, using a 100 : 5 : 2 by volume mixture of methylene chloride, triethylamine and methanol as the eluent, to give 0.49 g of the triethylamine salt of the title compound in an 80% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.18 (9H, triplet, J = 7.3 \text{ Hz});
             1.40 - 1.55 (2H, multiplet);
25
             1.55 - 1.80 (4H, multiplet);
             2.40 - 2.60 (2H, multiplet);
             2.50 - 2.68 (4H, multiplet);
             2.78 (2H, triplet, J = 6.3 Hz);
30
             2.82 (6H, quartet, J = 7.3 Hz);
             3.50 (2H, singlet);
             4.08 (2H, triplet, J = 6.3 Hz);
             4.26 (2H, triplet, J = 6.3 Hz);
             4.40 - 5.10 (1H, broad);
35
             4.93 (2H, doublet, J = 7.2 Hz);
             5.66 - 5.75 (1H, multiplet);
             5.82 - 5.95 (1H, multiplet);
             6.79 (1H, singlet);
             6.87 (1H, doublet, J = 5.2 Hz);
40
             8.08 (1H, doublet, J = 5.2 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3380, 1735, 1660, 1610, 1415, 1400, 1295, 1285, 1160, 1030.
```

EXAMPLE 9

45

55

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-benzoyloxyethylthio)acetamide

 $0.24 \, \text{ml}$ of benzoyl chloride was added, whilst ice-cooling, to a mixture of $0.40 \, \text{g}$ of $\underline{\text{N}}$ -[4-(4-piperidinomethyl-2-pyridyloxy)- $\underline{\text{cis}}$ -2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) and 1.02 $\, \text{ml}$ of pyridine, and the resulting mixture was stirred at room temperature for 2 hours. At the end of this time, the mixture was concentrated by evaporation under reduced pressure. The concentrate was diluted with water and made alkaline by the addition of an aqueous ammonia solution, after which it was extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the concentrate was purified by column chromatography through silica gel, using a 1:40 by volume mixture of methanol and ethyl acetate as the eluent, to give 0.31 $\, \text{g}$ of the title compound in a 61% yield.

```
1.35 - 1.50 (2H, multiplet);
1.50 - 1.75 (4H, multiplet);
```

```
2.25-2.45 (4H, multiplet);
             2.94 (2H, triplet, J = 6.3 Hz);
             3.40 (2H, singlet);
             3.32 (2H, singlet);
             4.07 (2H, triplet, J = 6.3 Hz);
             4.49 (2H, triplet, J = 6.6 Hz);
             4.92 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.71 (1H, multiplet);
             5.81 - 5.88 (1H, multiplet);
             6.73 (1H, singlet);
10
             6.87 (1H, doublet, J = 5.3 Hz);
             7.40 - 7.62 (4H, multiplet);
             8.02 - 8.07 (3H, multiplet).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3390, 2940, 1720, 1665, 1615, 1275, 1170.
15
```

The dihydrochloride of the title compound, melting at 185 - 195°C, was prepared by dissolving the compound obtained above in ethyl acetate, after which the resulting solution was treated with a molar excess of a 4 N ethyl acetate solution of hydrogen chloride.

20 EXAMPLE 10

25

30

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-cyclohexylcarbonyloxyethylthio)acetamide

0.10 ml of ethyl chloroformate was added, whilst ice-cooling, to a solution of 0.13 ml of cyclohexanecarboxylic acid in 18 ml of ethyl acetate, and the resulting mixture was stirred at room temperature for 1 hour. At the end of this time, a solution of 0.40 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) in 4 ml of ethyl acetate was added to the reaction mixture, whilst ice-cooling. The reaction mixture was then stirred at room temperature for 1 hour, after which it was heated under reflux for 16 hours. At the end of this time, it was concentrated by evaporation under reduced pressure. The concentrate was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and ethyl acetate as the eluent, to give 0.18 g of the title compound in a 35% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.17 - 2.09 (16H, multiplet);
             2.23 - 2.47 (5H, multiplet);
             2.79 (2H, triplet, J = 6.3 Hz);
35
             3.28 (2H, singlet);
             3.42 (2H, singlet);
             4.08 (2H, triplet, J = 6.3 Hz);
             4.23 (2H, triplet, J = 6.3 Hz);
             4.94 (2H, doublet, J = 6.6 Hz);
40
             5.81 - 5.94 (1H, multiplet);
             5.62 - 5.74 (1H, multiplet);
             6.74 (1H, singlet);
             6.85 - 7.05 (1H, broad);
45
             6.89 (1H, doublet, J = 5.3 Hz);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3380, 2940, 1730, 1665, 1610, 1310, 1165.
```

50 EXAMPLE 11

55

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3-(2-hydroxyethylthio)propionamide

105 mg of sodium hydride (as a 55% w/w dispersion in mineral oil) were added, whilst ice-cooling and in an atmosphere of nitrogen, to a solution of 0.76 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3-mercaptopropionamide (prepared as described in Preparation 3) in 24 ml of dimethylformamide, and the resulting mixture was stirred at room temperature for 30 minutes. At the end of this time, 0.16 ml of ethylene chlorohydrin were added to the reaction mixture, whilst ice-cooling. The reaction mixture was stirred at room

temperature for 15 minutes, after which it was poured into ice-water and extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the residue thus obtained was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and methylene chloride as the eluent, to give 0.56 g of the title compound as an oil in a 65% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.38 - 1.50 (2H, multiplet);
             1.50 - 1.64 (4H, multiplet);
             1.55 - 2.10 (1H, broad);
             2.30 - 2 43 (4H, multiplet);
             2.49 (2H, triplet, J = 6.9 Hz);
10
             2.74 (2H, triplet, J = 5.9 Hz);
             2.88 (2H, triplet, J = 6.9 Hz);
             3.41 (2H, singlet);
             3.76 (2H, doublet of triplets, J = 5.3 \& 5.9 Hz);
             4.05 (2H, triplet, J = 6.3 Hz);
15
             4.93 (2H, doublet, J = 6.6 Hz);
             5.63 - 5.78 (1H, multiplet);
             5.78 - 5.90 (1H, multiplet);
             6.75 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
20
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3450, 2930, 1665, 1612, 1418, 1400, 1300, 1290, 1035.
```

25 EXAMPLE 12

30

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3-(2-acetoxyethylthio)propionamide

Following a procedure similar to that described in Example 2, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3-(2-hydroxyethylthio)propionamide (prepared as described in Example 11) and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in an 87% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.36 - 1.50 (2H, multiplet);
35
             1.50 - 1.63 (4H, multiplet);
             2.07 (3H, singlet);
             2.28 - 2.43 (4H, multiplet);
             2.48 (3H, triplet, J = 7.3 Hz);
             2.77 (2H, triplet, J = 6.9 Hz);
             3.41 (2H, singlet);
40
             4.05 (2H. triplet, J = 6.3 Hz):
             4.22 (2H, triplet, J = 6.9 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.76 (1H, multiplet);
45
             5.79 - 5.90 (1H, multiplet);
             6.17 - 6.40 (1H, broad);
             6.74 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
50
             3450, 2930, 1735, 1665, 1610, 1415, 1400, 1298, 1288, 1028.
```

EXAMPLE 13

55 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-4-carboxamide

A solution of 2.39 g of 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 1.08 g of 4-pyrazole-carboxylic acid in 40 ml of dry dimethylformamide was stirred for 5 minutes, whilst ice-cooling. 1.89 g of diethyl

cyanophosphonate and 1.65 ml of triethylamine were added to the mixture, and the resulting mixture was stirred at room temperature for 3 hours. At the end of this time, the reaction mixture was diluted with water and extracted with ethyl acetate. The extract was washed with a saturated aqueous solution of sodium hydrogencarbonate and then with a saturated aqueous solution of sodium chloride, after which it was dried over anhydrous magnesium sulphate. The solvent was then removed by distillation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and chloroform as the eluent, to give 1.65 g (yield 51%) of the title compound as a white powder, melting at 121 - 123°C.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
10
             1.38 - 1.52 (2H, multiplet);
             1.52 - 1.66 (4H, multiplet);
             2.32 - 2.48 (4H, multiplet);
             3.42 (2H, singlet);
             4.16 (2H, triplet, J = 5.6 Hz);
15
             4.95 (2H, doublet, J = 5.9 Hz);
             5.72 - 5.96 (2H, multiplet);
             6.74 (1H, singlet);
             6.81 (1H, broad triplet, J = 5.6 Hz);
             6.87 (1H, doublet, J = 5.3 Hz);
20
             7.99 (2H, singlet);
             8.03 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (KBr), v_{max} cm<sup>-1</sup>:
             2933, 1629, 1611, 1566, 1530, 1408, 1342, 1299.
```

25 EXAMPLE 14

30

5

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]thiophene-2-carboxamide

240 mg of 2-thiophenecarboxylic acid, 390 mg of $\underline{N},\underline{N}'$ -dicyclohexylcarbodiimide and 275 mg of 1-hydroxybenzotriazole were added to a solution of 485 mg of 4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenylamine in 10 ml of dry dimethylformamide, and the resulting mixture was stirred at room temperature for 17 hours. At the end of this time, the reaction mixture was mixed with ethyl acetate, and the urea which precipitated was removed by filtration. The filtrate was diluted with water and extracted with ethyl acetate. The extract was washed with a saturated aqueous solution of sodium hydrogencarbonate and then with a saturated aqueous solution of sodium chloride, after which it was dried over anhydrous magnesium sulphate. The solvent was then removed by distillation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1:19 by volume mixture of methanol and methylene chloride as the eluent, to give 499 mg (yield 73%) of the title compound as an oil.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.37 - 1.52 (2H, multiplet);
40
             1.52 - 1.65 (4H, multiplet);
             2.28 - 2.46 (4H, multiplet);
             3.41 (2H, singlet);
             4.22 (2H, triplet, J = 6.3 Hz);
45
             4.98 (2H, doublet, J = 6.6 Hz);
             5.73 - 5.85 (1H, multiplet);
             5.85 - 5.97 (1H, multiplet);
             6.56 (1H, broad singlet);
             6.74 (1H, singlet);
50
             6.89 (1H, doublet, J = 5.3 Hz);
             7.02 - 7.09 (1H, multiplet);
             7.46 (1H, doublet, J = 5.3 Hz);
             7.51 (1H, doublet, J = 4.0 \text{ Hz});
             8.03 (1H, doublet, J = 5.3 Hz).
55
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             2920, 1665, 1640, 1610, 1565, 1530, 1500, 1415, 1400, 1295, 1285.
```

The hydrochloride of the title compound, melting at 180 - 183°C, was prepared by dissolving the title compound obtained above in ethyl acetate, after which it was treated with an equimolar amount of an ethyl acetate

solution of hydrogen chloride.

EXAMPLE 15

10

5 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrrole-2-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 2-pyrrolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as colourless prisms, melting at 136 - 137°C, in an 80% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.39 - 1.51 (2H, multiplet);
            1.51 - 1.65 (4H, multiplet);
            2.33 - 2.48 (4H, multiplet);
            3.42 (2H, singlet);
15
            4.21 (2H, triplet, J = 6.4 Hz);
            4.98 (2H, doublet, J = 6.3 Hz);
             5.70 - 5.79 (1H, multiplet);
            5.83 - 5.92 (1H, multiplet);
            6.20 - 6.23 (1H, multiplet);
20
            6.25 - 6.36 (1H, broad);
            6.52 - 6.55 (1H, multiplet);
            6.75 (1H, singlet);
            6.88 - 6.93 (2H, multiplet);
25
            8.06 (1H, doublet, J = 4.9 Hz);
            9.51 - 9.75 (1H, broad).
          Infrared Absorption Spectrum (KBr), v_{max} cm<sup>-1</sup>:
             3242, 1641, 1561, 1524.
```

30 EXAMPLE 16

1,3,5-Trimethyl-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-4-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-<u>cis</u>-2-butenylamine and 1,3,5-trimethyl-4-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 75 - 77°C, in a 69% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.37 - 1.52 (2H, multiplet);
             1.52 - 1.69 (4H, multiplet);
40
             2.36 (3H, singlet);
             2.30 - 2.49 (4H, multiplet);
             2.46 (3H, singlet);
             3.44 (2H, singlet);
             3.71 (3H, singlet);
45
             4.19 (2H, triplet, J = 6.1 Hz);
             4.96 (2H, doublet, J = 6.4 Hz);
             5.75 - 5.91 (3H, multiplet);
             6.74 (1H, singlet);
50
             6.89 (1H, doublet, J = 4.9 Hz);
             8.00 (1H, doublet, J = 4.9 Hz).
          Infrared Absorption Spectrum (KBr), v<sub>max</sub> cm<sup>-1</sup>:
             3344, 2930, 1617, 1561, 1410.
```

55

5

3-Amino-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-4-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine and 3-amino-4-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 172 - 174°C, in a 38% yield.

```
Nuclear Magnetic Resonance Spectrum (hexadeuterated dimethyl sulphoxide), δ ppm:
```

```
1.32 - 1.45 (2H, multiplet);
10
             1.45 - 1.57 (4H, multiplet);
             2.26 - 2.44 (4H, multiplet);
             3.42 (2H, singlet);
             3.92 (2H, triplet, J = 5.9 Hz);
             4.92 (2H, doublet, J = 5.9 Hz);
15
             5.52 - 5.78 (2H, multiplet);
             6.72 (1H, singlet);
             6.92 (1H, doublet, J = 5.4 Hz);
             7.67 - 7.79 (1H, broad);
             7.88 (1H, broad triplet, J = 5.4 \text{ Hz});
20
             8.08 (1H, doublet, J = 5.4 \text{ Hz}).
          Infrared Absorption Spectrum (KBr), v_{max} cm<sup>-1</sup>:
             3229, 2934, 1616, 1529, 1399.
```

25 EXAMPLE 18

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-3-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 3-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 57% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.38 - 1.52 (2H, multiplet);
              1.52 - 1.65 (4H, multiplet);
35
              2.31 - 2.50 (4H, multiplet);
              3.43 (2H, singlet);
              4.21 (2H, triplet, J = 6.3 Hz);
              4.96 (2H, doublet, J = 6.6 Hz);
              5.77 - 5.99 (2H, multiplet);
40
              6.80 - 6.89 (3H, multiplet);
              7.21 - 7.31 (1H, broad);
             7.57 (1H, doublet, J = 2.0 \text{ Hz});
              8.08 (1H, doublet, J = 5.3 Hz).
           Infrared Absorption Spectrum (CHCl<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:
45
              2925, 1655, 1610, 1560 (shoulder), 1540.
```

EXAMPLE 19

50

$\underline{\hbox{5-Methyl-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]} pyrazole-3-carboxamide}$

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 5-methyl-3-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 93 - 95°C, in a 52% yield.

```
1.38 - 1.52 (2H, multiplet);
1.52 - 1.66 (4H, multiplet);
2.33 (3H, singlet);
```

```
2.31 - 2.48 (4H, multiplet);
             3.42 (2H, singlet);
             4.20 (2H, triplet, J = 6.4 Hz);
             4.96 (2H, doublet, J = 6.8 Hz);
             5.72 - 5.81 (1H, multiplet);
5
             5.83 - 5.93 (1H, multiplet);
             6.55 (1H, singlet);
             6.76 (1H, singlet);
             6.87 (1H, doublet, J = 5.4 Hz);
10
             7.06 - 7.20 (1H, broad);
             8.08 (1H, doublet, J = 5.4 Hz);
             10.37 - 10.93 (1H, broad).
          Infrared Absorption Spectrum (KBr), v<sub>max</sub> cm<sup>-1</sup>:
             3195, 2931, 1645, 1612, 1558.
```

15

20

EXAMPLE 20

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]furan-2-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis-</u>2-butenylamine and 2-furancarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in an 82% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.35 - 1.53 (2H, multiplet);
25
             1.53 - 1.80 (4H, multiplet);
             2.25 - 2.60 (4H, multiplet);
              3.48 (2H, singlet);
             4.22 (2H, triplet, J = 6.4 Hz);
             4.98 (2H, doublet, J = 6.8 Hz);
             5.70 - 5.82 (1H, multiplet);
30
             5.84 - 5.96 (1H, multiplet);
             6.49 (1H, doublet of doublets, J = 3.4 \& 2.0 Hz);
             6.58 - 6.72 (1H, multiplet);
             6.77 (1H, singlet);
35
             6.85 - 7.03 (1H, multiplet);
             7.11 (1H, doublet of doublets, J = 3.4 \& 1.0 Hz);
             7.43 (1H, triplet, J = 1.0 \text{ Hz});
             8.10 (1H, doublet, J = 5.3 \text{ Hz}).
          Infrared Absorption Spectrum (CHC \ell_3), \nu_{max} cm<sup>-1</sup>:
40
             3430 2930, 1655, 1610, 1595, 1518, 1475, 1415, 1400 1295, 1285.
```

EXAMPLE 21

5-Methyl-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]thiophene-2-carboxamide

45

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 5-methyl-2-thiophenecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound, melting at 71 - 73°C, was obtained in a 72% yield.

```
50

1.45 - 1.55 (2H, multiplet);
1.55 - 1.80 (4H, multiplet);
2.30 - 2.60 (4H, multiplet);
3.48 (2H, singlet);
4.20 (2H, triplet, J = 6.3 Hz);
4.97 (2H, doublet, J = 6.3 Hz);
5.78 - 5.82 (1H, multiplet);
5.82 - 5.93 (1H, multiplet);
6.20 - 6.35 (1H, broad);
```

```
6.72 (1H, doublet, J = 3.5 Hz);

6.78 (1H, singlet);

6.87 - 7.03 (1H, multiplet);

7.31 (1H, doublet, J = 3.5 Hz);

8.07 (1H, doublet, J = 5.4 Hz).

Infrared Absorption Spectrum (CHCl<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:

3430, 2920, 1640, 1505, 1415, 1400, 1295, 1285, 1032.
```

10

15

3-Amino-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]thiophene-2-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine and 3-amino-2-thiophenecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as colourless needles, melting at 138 - 140°C, in a 40% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.40 - 1.52 (2H, multiplet);
             1.52 - 1.65 (4H, multiplet);
             2.28 - 2.44 (4H, multiplet);
20
             3.41 (2H, singlet);
             4.17 (2H, triplet, J = 5.9 Hz);
             4.96 (2H, doublet, J = 5.9 Hz);
             5.60 (2H, broad singlet);
25
             5.67 - 5.94 (3H, multiplet);
             6.55 (1H, doublet, J = 5.3 Hz);
             6.74 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             7.12 (1H, doublet, J = 5.3 Hz);
30
             8.08 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (KBr), v_{max} cm<sup>-1</sup>:
             3300, 2935, 1617, 1560, 1525, 1402, 1313, 1299, 1291.
```

EXAMPLE 23

35

40

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]thiophene-3-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-<u>cis-2-butenylamine</u> and 3-thiophenecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 90% yield.

```
1.38 - 1.52 (2H, multiplet);
              1.52 - 1.65 (4H, multiplet);
             2.30 - 2.45 (4H, multiplet);
45
             3.41 (1H, singlet);
             4.22 (2H, triplet, J = 6.1 Hz);
             4.98 (2H, doublet, J = 6.4 Hz);
             5.73 - 5.93 (2H, multiplet);
             6.40 - 6.60 (1H, broad);
50
             6.74 (1H, singlet);
             6.87 (1H, doublet, J = 5.4 Hz);
             7.32 (1H, doublet of doublets, J = 5.2 \& 2.9 Hz);
             7.39 (1H, doublet, J = 5.2 \text{ Hz});
             7.85 (1H, doublet, J = 2.9 Hz);
55
             8.01 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             2930, 1655 (shoulder), 1645, 1610, 1560, 1535, 1500, 1415, 1400, 1285.
```

5

5-Chloro-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]thiophene-2-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 5-chloro-3-thiophenecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as colourless prisms, melting at 75 - 77°C, in a 54% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.38 - 1.52 (2H, multiplet);
10
             1.52 - 1.68 (4H, multiplet);
             2.30 - 2.42 (4H, multiplet);
             3.41 (2H, singlet);
             4.19 (2H, triplet, J = 6.1 Hz);
             4.97 (2H, doublet, J = 6.8 Hz);
15
             5.70 - 5.84 (1H, multiplet);
             5.84 - 5.95 (1H, multiplet);
             6.41 - 6.53 (1H, broad);
             6.74 (1H, singlet);
20
             6.88 (1H, doublet, J = 5.4 Hz);
             7.19 (1H, doublet, J = 2.0 Hz);
             7.62 (1H, doublet, J = 2.0 \text{ Hz});
             7.99 (1H, doublet, J = 5.4 \text{ Hz}).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3450, 2930, 1655, 1610, 1415, 1400, 1298, 1285, 1032.
25
```

EXAMPLE 25

30

5-Phenyl-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]isoxazole-3-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis-</u>2-butenylamine and 5-phenyl-3-isoxazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound, melting at 105 - 106°C, was obtained as colourless prisms in a 50% yield.

```
prisms in a 50% yield.
35
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.36 - 1.51 (2H, multiplet);
             1.51 - 1.67 (4H, multiplet);
             2.29 - 2.46 (4H, multiplet);
             3.43 (2H, singlet);
40
             4.27 (2H, triplet, J = 6.3 Hz);
             4.99 (2H, doublet, J = 6.6 Hz);
             5.72 - 5.82 (1H, multiplet);
             5.88 - 5.97 (1H, multiplet);
             6.75 (1H, singlet);
45
             6.91 (1H, doublet, J = 5.4 \text{ Hz});
             6.97 (1H, singlet);
```

7.13 - 7.27 (1H, broad); 7.44 - 7.55 (3H, multiplet); 7.75 - 7.84 (2H, multiplet); 8.12 (1H, doublet, J = 5.4 Hz).

Infrared Absorption Spectrum (KBr), v_{max} cm⁻¹: 3322, 2936, 1668, 1613, 1561, 1448.

EXAMPLE 26

55

50

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]thiazole-4-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridy-

loxy)-<u>cis</u>-2-butenylamine and 4-thiazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 68% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.36 - 1.52 (2H, multiplet);
             1.52 - 1.67 (4H, multiplet);
5
             2.24 - 2.53 (4H, multiplet);
             3.43 (2H, singlet);
             4.26 (2H, triplet, J = 6.4 Hz);
             4.98 (2H, doublet, J = 6.4 Hz);
             5.72 - 5.81 (1H, multiplet);
10
             5.86 - 5.96 (1H, multiplet);
             6.75 (1H, singlet);
             6.90 (1H, doublet, J = 5.4 Hz);
             7.40 - 7.58 (1H, broad);
             8.11 (1H, doublet, J = 5.4 Hz);
15
             8.18 (1H, doublet, J = 2.4 Hz);
             8.75 (1H, doublet, J = 2.4 Hz).
          Infrared Absorption Spectrum (liquid film), v_{max} cm<sup>-1</sup>:
             2936, 1664, 1611, 1560, 1540, 1481, 1420, 1403, 1313, 1288.
```

EXAMPLE 27

20

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-1,2,3-thiadiazole-4-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine and 1,2,3-thiadiazole-4-carboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as colourless needles, melting at 70 - 72°C, in a 52% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
30
             1.28 - 1.53 (2H, multiplet);
             1.53 - 1.82 (4H, multiplet);
             2.24 - 2.55 (4H, multiplet);
             3.46 (2H, singlet);
             4.35 (2H, triplet, J = 6.3 Hz);
35
             5.01 (2H, doublet, J = 6.3 Hz);
             5.75 - 5.87 (1H, multiplet);
             5.87 - 6.00 (1H, multiplet);
             6.77 (1H, singlet);
             6.85 - 7.00 (1H, multiplet);
             7.72 - 7.90 (1H, broad);
40
             8.13 (1H, doublet, J = 5.4 Hz);
             9.23 (1H, singlet).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3425, 2940, 1675, 1612, 1540, 1420, 1402, 1300, 1290, 1260, 1035.
```

EXAMPLE 28

45

N-{4-[4-(1-Pyrrolidinylmethyl)-2-pyridyloxy]-cis-2-butenyl}pyrazole-4-carboxamide

Following a procedure similar to that described in Example 13, but using 4-[4-(1-pyrrolidinylmethyl)-2-pyridyloxy]-cis-2-butenylamine and 4-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 57 - 61°C, in a 34% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
55 1.75 - 1.90 (4H, multiplet);
2.50 - 2.67 (4H, multiplet);
3.61 (2H, singlet);
4.17 (2H, triplet, J = 5.9 Hz);
```

```
4.95 (2H, doublet, J = 6.4 Hz);
5.69 - 5.92 (2H, multiplet);
6.72 (1H, broad triplet, J = 5.4 Hz);
6.77 (1H, singlet);
6.90 (1H, doublet, J = 5.4 Hz);
7.96 (2H, singlet);
8.04 (1H, doublet, J = 5.4 Hz).
Infrared Absorption Spectrum (KBr), v<sub>max</sub> cm<sup>-1</sup>:
2962, 1626, 1610, 1568, 1539, 1421, 1410, 1400.
```

10

15

EXAMPLE 29

N-{4-[4-(1-Pyrrolidinylmethyl)-2-pyridyloxy]-cis-2-butenyl}pyrrole-2-carboxamide

Following a procedure similar to that described in Example 13, but using 4-[4-(1-pyrrolidinylmethyl)-2-pyridyloxy]-<u>cis</u>-2-butenylamine and 2-pyrrolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 124 - 127°C, in a 64% yield.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.71 - 1.88 (4H, multiplet);
20
             2.43 - 2.61 (4H, multiplet);
             3.57 (2H, singlet);
             4.21 (2H, triplet, J = 6.3 Hz);
             4.97 (2H, doublet, J = 6.6 Hz);
             5.70 - 5.80 (1H, multiplet);
25
             5.83 - 5.94 (1H, multiplet);
             6.16 - 6.25 (1H, multiplet);
             6.30 - 6.42 (1H, broad);
             6.53 - 6.59 (1H, multiplet);
30
             6.88 - 6.96 (2H, multiplet);
             8.07 (1H, doublet, J = 5.3 \text{ Hz});
             9.67 - 9.92 (1H, broad).
          Infrared Absorption Spectrum (KBr), v_{max} cm<sup>-1</sup>:
             3252, 1637, 1617, 1561, 1528, 1428, 1423, 1401, 1307, 1029.
```

35

40

EXAMPLE 30

4-Hydroxy-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]isoxazole-3-carboxamide

375 mg of ethyl 4-hydroxy-3-isoxazolecarboxylate (prepared as described in Preparation 4) were added to a solution of 520 mg of 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine in 10 ml of toluene, and the resulting mixture was heated under reflux for 6 hours. At the end of this time, the solvent was removed by distillation under reduced pressure, and the residue was dissolved in ethyl acetate. The resulting solution was washed with a saturated aqueous solution of sodium hydrogencarbonate and then with a saturated aqueous solution of sodium chloride, after which it was dried over anhydrous magnesium sulphate. The solvent was then removed by distillation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1: 19 by volume mixture of methanol and ethyl acetate as the eluent, to give 228 mg (yield 31%) of the title compound as an oil.

```
50

1.33 - 1.50 (2H, multiplet);
1.50 - 1.65 (4H, multiplet);
2.25 - 2.46 (4H, multiplet);
3.42 (2H, singlet);
4.26 (2H, triplet, J = 6.6 Hz);
5.67 - 5.82 (1H, multiplet);
5.88 - 6.00 (1H, multiplet);
6.75 (1H, singlet);
```

```
6.90 (1H, doublet, J = 5.3 Hz);
7.25 - 7.42 (1H, broad);
8.13 (1H, doublet, J = 5.3 Hz);
8.22 (1H, singlet).
Infrared Absorption Spectrum (CHCℓ<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:
2930, 1680, 1610, 1560 (shoulder), 1550.
```

15

10 1-Methyl-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrrole-2-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 1-methyl-2-pyrrolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 76% yield.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.38 - 1.51 (2H, multiplet);
             1.51 - 1.65 (4H, multiplet);
             2.33 - 2.43 (4H, multiplet);
             3.42 (2H, singlet);
             3.94 (3H, singlet);
20
             4.16 (2H, triplet, J = 6.1 Hz);
             4.97 (2H, doublet, J = 6.8 Hz);
             5.71 - 5.83 (1H, multiplet);
             5.83 - 5.94 (1H, multiplet);
             6.06 (1H, doublet of doublets, J = 3.9 \& 2.2 Hz);
25
             6.14 - 6.24 (1H, broad);
             6.53 (1H, doublet of doublets, J = 7.8 & 2.2 Hz);
             6.69 - 6.73 (1H, multiplet);
             6.74 (1H, singlet);
30
             6.89 (1H, doublet, J = 5.2 Hz);
             8.04 (1H, doublet, J = 5.2 \text{ Hz}).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             2935, 1655 (shoulder), 1645, 1610, 1560, 1535, 1500, 1475, 1415, 1400.
```

The hydrochloride of the title compound, melting at 136 - 137°C, was prepared by dissolving the title compound, obtained as described above, in ethyl acetate, after which an ethyl acetate solution containing an equimolar amount of hydrogen chloride was added to the resulting solution.

EXAMPLE 32

40 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrrole-3-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine and 3-pyrrolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 74% yield.

```
Nuclear Magnetic Resonance Spectrum (CDCℓ<sub>3</sub>), δ ppm: 1.33 - 1.51 (2H, multiplet);
1.51 - 1.67 (4H, multiplet);
2.27 - 2.49 (4H, multiplet);
3.41 (2H, singlet);
4.18 (2H, triplet, J = 6.3 Hz);
4.96 (2H, doublet, J = 5.9 Hz);
5.69 - 5.94 (2H, multiplet);
```

6.42 (1H, broad singlet); 6.73 (2H, broad singlet); 6.87 (1H, doublet, J = 4.9 Hz);

6.17 - 6.33 (1H, broad);

7.33 (1H, broad singlet);

8.05 (1H, doublet, J = 4.9 Hz);

```
9.31 - 9.54 (1H, broad). Infrared Absorption Spectrum (CHC\ell_3), \nu_{\rm max} cm<sup>-1</sup>: 3470, 2930, 1635, 1610, 1560, 1510, 1415, 1400, 1310, 1295.
```

10

15

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-pyrimidinylthio)acetamide

163 mg of 2-mercaptopyrimidine were added to a solution of 116 mg of 85% potassium hydroxide and 484 mg of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-chloroacetamide (prepared as described in Preparation 1) in 10 ml of methanol, and the resulting mixture was stirred at room temperature for 7 hours. At the end of this time, the reaction mixture was concentrated by evaporation under reduced pressure, and the concentrate was mixed with water, after which it was extracted with ethyl acetate. The extract was freed from the solvent by distillation under reduced pressure. The residue thus obtained was recrystallized from ethyl acetate, to give 474 mg (yield 80%) of the title compound as a white powder, melting at 103 - 106°C.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.37 - 1.50 (2H, multiplet);
             1.52 - 1.64 (4H, multiplet);
             2.30 - 2.43 (4H, multiplet);
             3.40 (2H, singlet);
20
             3.82 (2H, singlet);
             4.29 (2H, triplet, J = 6.3 Hz);
             4.87 (2H, doublet, J = 5.9 Hz);
             5.52 - 5.65 (1H, multiplet);
25
             5.75 - 5.86 (1H, multiplet);
             6.70 (1H, singlet);
             6.87 (1H, doublet, J = 5.4 Hz);
             7.00 - 7.11 (1H, broad);
             7.02 (1H, doublet, J = 4.9 Hz);
30
             8.03 (1H, doublet, J = 5.4 Hz);
             8.53 (2H, doublet, J = 4.9 Hz).
          Infrared Absorption Spectrum (KBr), \nu_{\text{max}} cm<sup>-1</sup>:
             3333, 2940, 2920, 1643, 1560, 1552, 1524, 1397, 1316.
```

35 EXAMPLE 34

40

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(2-pyrimidinylthio)butyramide

2.78 g of 2-mercaptopyrimidine were added to a solution of 1.95 g of 85% potassium hydroxide and 9.03 g of \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) in 140 ml of methanol, and the resulting mixture was heated under reflux for 15 hours. At the end of this time, the reaction mixture was cooled, and the solvent was removed by distillation under reduced pressure. The resulting residue was mixed with water, and the aqueous mixture was extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the concentrate was purified by column chromatography through silica gel, using a 9:1 by volume mixture of ethyl acetate and methanol as the eluent, to give 10.1 g (yield 92%) of the title compound as an oil.

```
1.38 - 1.50 (2H, multiplet);
1.53 - 1.67 (4H, multiplet);
2.11 (2H, quintet, J = 7.2 Hz);
2.30 - 2.49 (6H, multiplet);
3.20 (2H, triplet, J = 7.2 Hz);
3.41 (2H, singlet);
4.06 (2H, doublet, J = 5.9 Hz);
4.93 (2H, doublet, J = 6.3 Hz);
5.64 - 5.73 (1H, multiplet);
5.80 - 5.89 (1H, multiplet);
6.27 - 6.41 (1H, broad);
```

```
6.73 (1H, singlet);
6.88 (1H, doublet, J = 5.1 Hz);
6.94 (1H, triplet, J = 4.9 Hz);
8.03 (1H, doublet, J = 5.1 Hz);
8.49 (2H, doublet, J = 4.9 Hz).
Infrared Absorption Spectrum (liquid film), v<sub>max</sub> cm<sup>-1</sup>:
3295, 2936, 1646, 1611, 1564, 1548, 1420, 1403, 1382, 1312, 1300, 1289.
```

The compound obtained as described above was dissolved in ethyl acetate, and an ethyl acetate solution containing an equimolar amount of hydrogen chloride was added to the resulting solution. The mixture was stirred at room temperature for 10 minutes, and then the solvent was removed by distillation under reduced pressure, to give the hydrochloride of the title compound, melting at 123 - 125°C.

EXAMPLE 35

5

20

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(4-methyl-2-pyrimidinylthio)butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 2-mercapto-4-methylpyrimidine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 70% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.40 - 1.56 (2H, multiplet);
             1.60 - 1.81 (4H, multiplet);
             2.10 (2H, quintet, J = 7.1 Hz);
25
             2.39 (2H, triplet, J = 7.1 \text{ Hz});
             2.44 (3H, singlet);
             2.35 - 2.70 (4H, multiplet);
             3.20 (2H, triplet, J = 7.1 \text{ Hz});
             3.55 (2H, singlet);
30
             4.05 (2H, triplet, J = 6.1 Hz);
             4.93 (2H, doublet, J = 6.3 Hz);
             5.64 - 5.73 (1H, multiplet);
             5.78 - 5.87 (1H, multiplet);
             6.25 - 6.37 (1H, broad);
35
             6.76 - 6.81 (2H, multiplet);
             6.98 (1H, singlet);
             8.08 (1H, triplet, J = 5.4 \text{ Hz});
             8.34 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             2930, 1660, 1610, 1570, 1560, 1540, 1415, 1325.
40
```

EXAMPLE 36

45

50

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(1-methylimidazol-2-ylthio)butyramide

Following a procedure similar to that described in Example 34, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 2-mercapto-1-methylimidazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 49% yield.

```
Nuclear Magnetic Resonance Spectrum (CDCl<sub>3</sub>), δ ppm:
```

```
1.36 - 1.50 (2H, multiplet);

1.50 - 1.62 (4H, multiplet);

2.03 (2H, quintet, J = 6.8 Hz);

2.30 - 2.46 (6H, multiplet);

3.08 (2H, triplet, J = 6.8 Hz);

3.41 (2H, singlet);

3.60 (3H, singlet);

4.04 (2H, triplet, J = 6.1 Hz);
```

```
4.93 (2H, doublet, J = 5.9 Hz);
5.63 - 5.73 (1H, multiplet);
5.76 - 5.91 (1H, multiplet);
6.72 (1H, singlet);
6.89 (1H, doublet, J = 5.4 Hz);
6.90 (1H, singlet);
7.01 (1H, singlet);
7.24 - 7.38 (1H, broad);
8.04 (1H, doublet, J = 5.4 Hz).

Infrared Absorption Spectrum (CHCℓ₃), v<sub>max</sub> cm⁻¹:
3250, 2940, 1660, 1610, 1560, 1420, 1290.
```

15

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(5-methyl-1,3,4-oxadiazol-2-ylthio)butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 2-mercapto-5-methyl-1,3,4-oxadiazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 79% yield.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.37 - 1.50 (2H, multiplet);
             1.50 - 1.65 (4H, multiplet);
             2.17 (2H, quintet, J = 7.3 Hz);
             2.31 - 2.41 (6H, multiplet);
25
             2.51 (3H, singlet);
             3.28 (2H, triplet, J = 7.3 Hz);
             3.41 (2H, singlet);
             4.04 (2H, triplet, J = 5.9 Hz);
30
             4.93 (2H, doublet, J = 6.6 Hz);
             5.64 - 5.75 (1H, multiplet);
             5.79 - 5.90 (1H, multiplet).
             6.39 - 6.54 (1H, broad);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
35
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3440, 2930, 1660, 1610, 1560, 1510, 1480, 1420.
```

40 EXAMPLE 38

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(1,3,4-thiadiazol-2-ylthio)butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyr-idyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 2-mercapto-1,3,4-thiadiazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in an 84% yield.

```
1.36 - 1.51 (2H, multiplet);
1.51 - 1.68 (4H, multiplet);
2.20 (2H, quintet, J = 7.3 Hz);
2.27 - 2.45 (6H, multiplet);
3.41 (2H, singlet);
3.43 (2H, triplet, J = 7.3 Hz);
55 5.63 - 5.73 (1H, multiplet);
5.78 - 5.89 (1H, multiplet);
6.34 - 6.51 (1H, broad);
6.73 (1H, singlet);
```

```
6.89 (1H, doublet, J = 5.3 Hz);
8.04 (1H, doublet, J = 5.3 Hz);
9.00 (1H, singlet).
Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
3350, 3300, 2940, 1660, 1610, 1560, 1510, 1420.
```

5

10

15

35

40

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(5-methyl-1,3,4-thiadiazol-2-ylthio)butyramide

Following a procedure similar to that described in Example 34, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 2-mercapto-5-methyl-1,3,4-thiadiazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 65 - 68°C, in a 78% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.37 - 1.51 (2H, multiplet);
             1.51 - 1.68 (4H, multiplet);
             2.16 (2H, quintet, J = 6.9 Hz);
             2.31 - 2.44 (6H, multiplet);
             2.71 (3H, singlet);
20
             3.35 (2H, triplet, J = 6.9 Hz);
             3.41 (2H, singlet);
             4.04 (2H, triplet, J = 5.9 Hz);
             4.94 (2H, doublet, J = 6.6 Hz);
25
             5.65 - 5.76 (1H, multiplet);
             5.77 - 5.90 (1H, multiplet);
             6.37 - 6.50 (1H, broad);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
30
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3450, 3300, 2940, 1660, 1610, 1560, 1510, 1420, 1300.
```

EXAMPLE 40

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(1,2,4-triazol-3-ylthio)acetamide

Following a procedure similar to that described in Example 33, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-chloroacetamide (prepared as described in Preparation 1) and 3-mercapto-1,2,4-triazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 65 - 67°C, in a 91% yield.

```
1.41 - 1.55 (2H, multiplet);
              1.55 - 1.67 (4H, multiplet);
45
              2.42 - 2.55 (4H, multiplet);
              3.47 (2H, singlet);
              3.77 (2H, singlet);
              4.00 (2H, triplet, J = 6.3 Hz);
              4.83 (2H, doublet, J = 6.8 Hz);
50
              5.71 - 5.80 (1H, multiplet);
              5.85 - 5.94 (1H, multiplet);
              6.73 (1H, singlet);
              6.85 (1H, doublet, J = 5.1 Hz);
              7.32 - 7.44 (1H, broad);
55
              8.06 (1H, doublet, J = 5.1 Hz);
              8.07 (1H, singlet).
           Infrared Absorption Spectrum (liquid film), v<sub>max</sub> cm<sup>-1</sup>:
              2935, 1652, 1612, 1560, 1421, 1403, 1301, 1288.
```

5

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(1,2,4-triazol-3-ylthio)butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 3-mercapto-1,2,4-triazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 87 - 89°C, in a 56% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.39 - 1.51 (2H, multiplet);
10
             1.54 - 1.65 (4H, multiplet);
             2.09 (2H, quintet, J = 7.0 Hz);
             2.33 - 2.50 (6H, multiplet);
             3.13 (2H, triplet, J = 7.0 Hz);
             3.44 (2H, singlet);
15
             4.06 (2H, triplet, J = 6.1 Hz);
             4.93 (2H, doublet, J = 6.4 Hz);
             5.69 - 5.82 (1H, multiplet);
             5.82 - 5.93 (1H, multiplet);
20
             6.75 (1H, singlet);
             6.89 (1H, doublet, J = 5.4 Hz);
             6.92 - 7.03 (1H, broad);
             8.03 (1H, singlet);
             8.04 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (KBr), v_{max} cm<sup>-1</sup>:
25
             2942, 2915, 1625, 1614, 1564, 1293, 1250, 1238.
```

EXAMPLE 42

35

30 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(1-methyltetrazol-5-ylthio)acetamide

Following a procedure similar to that described in Example 33, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-chloroacetamide (prepared as described in preparation 1) and 1-methyl-5-mercaptotetrazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 58 - 62°C, in an 87% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.35 - 1.50 (2H, multiplet);
             1.50 - 1.63 (4H, multiplet);
             2.27 - 2.44 (4H, multiplet);
             3.41 (2H, singlet);
40
             3.95 (3H, singlet);
             3.96 (2H, singlet);
             4.04 (2H, triplet, J = 5.9 Hz);
             4.90 (2H, doublet, J = 5.9 Hz);
45
             5.54 - 5.68 (1H, multiplet);
             5.78 - 5.89 (1H, multiplet);
             6.73 (1H, singlet);
             6.88 (1H, doublet, J = 5.9 Hz);
             8.05 (1H, doublet, J = 5.9 Hz).
50
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3300, 2950, 1730, 1670, 1610, 1560, 1400, 1290.
```

EXAMPLE 43

55 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(1-methyltetrazol-5-ylthio)butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyr-idyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 1-methyl-5-mercap-

totetrazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 70% yield.

```
1.38 - 1.50 (2H, multiplet);
             1.50 - 1.63 (4H, multiplet);
5
             2.13 - 2.24 (2H, quintet, J = 7.3 Hz);
             2.26 - 2.47 (6H, multiplet);
             3.40 (2H, triplet, J = 7.3 \text{ Hz});
             3.41 (2H, singlet);
             3.91 (3H, singlet);
10
             4.05 (2H, triplet, J = 5.3 Hz);
             4.94 (2H, doublet, J = 6.6 Hz);
             5.66 - 5.75 (1H, multiplet);
              5.80 - 5.89 (1H, multiplet);
15
             6.39 - 6.50 (1H, broad);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.2 Hz);
             8.03 (1H, doublet, J = 5.2 \text{ Hz}).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
20
              3450, 2925, 1660, 1610, 1560, 1510, 1410, 1290.
```

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

EXAMPLE 44

25

30

50

55

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-[1-(2-hydroxyethyl)tetrazol-5-ylthio]butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 1-(2-hydroxyethyl)-5-mercaptotetrazole as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 63% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.38 - 1.50 (2H, multiplet);
             1.50 - 1.63 (4H, multiplet);
             2.17 (2H, quintet, J = 6.8 Hz);
             2.33 - 2.60 (6H, multiplet);
35
             3.38 (2H, triplet, J = 6.8 \text{ Hz});
             3.49 (2H, singlet);
             4.01 (2H, triplet, J = 6.1 Hz);
             4.08 - 4.11 (2H, multiplet);
             4.34 - 4.38 (2H, multiplet);
40
             4.92 (2H, doublet, J = 6.4 Hz);
             5.67 - 5.87 (2H, multiplet);
             6.49 - 6.65 (1H, broad);
             6.79 (1H, singlet);
             6.93 (1H, doublet, J = 4.9 Hz);
45
             8.05 (1H, doublet, J = 4.9 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3300, 2940, 1660, 1610, 1560, 1510, 1420, 1400.
```

EXAMPLE 45

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(2-pyridylthio)butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 2-mercaptopyridine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 53% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm: 1.40 - 1.53 (2H, multiplet);
```

```
1.59 - 1.75 (4H, multiplet);
             2.07 (2H, quintet, J = 7.1 Hz);
             2.39 (2H, triplet, J = 7.1 \text{ Hz});
             2.33 - 2.60 (4H, broad);
             3.21 (2H, triplet, J = 7.1 \text{ Hz});
5
             3.51 (2H, singlet);
             4.07 (2H, triplet, J = 6.2 Hz);
             4.94 (2H, doublet, J = 6.3 Hz);
             5.63 - 5.75 (1H, multiplet);
             5.80 - 5.88 (1H, multiplet);
10
             6.58 - 6.69 (1H, broad);
             6.77 (1H, singlet);
             6.92 - 7.00 (2H, multiplet);
             7.17 (1H, triplet of doublets, J = 8.3 \& 1.0 Hz);
             7.46 (1H, doublet of triplets, J = 8.3 \& 2.0 Hz);
15
             8.07 (1H, doublet, J = 5.4 \text{ Hz});
             8.39 (1H, triplet of doublets, J = 4.9 \& 1.0 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             2945, 1660, 1655 (shoulder), 1610, 1580, 1560, 1415.
```

20

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(4-pyridylthio)butyramide

25 Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 4-mercaptopyridine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 33% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
30
             1.37 - 1.48 (2H, multiplet);
             1.54 - 1.63 (4H, multiplet);
             2.07 (2H, quintet, J = 7.2 Hz);
             2.25 - 2.39 (6H, multiplet);
             3.05 (2H, triplet, J = 7.2 Hz);
35
             3.41 (2H, singlet);
             4.04 (2H, triplet, J = 5.9 Hz);
             4.92 (2H, doublet, J = 6.6 Hz);
             5.63 - 5.75 (1H, multiplet);
             5.78 - 5.96 (1H, multiplet);
             6.15 - 6.27 (1H, broad);
40
             6.73 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
             7.13 (2H, doublet, J = 4.6 \text{ Hz});
             8.02 (1H, doublet, J = 5.3 Hz);
45
             8.37 (2H, doublet, J = 4.6 \text{ Hz}).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             2945, 1660, 1655 (shoulder), 1610, 1580, 1560, 1415, 1405, 1310, 1300, 1290.
```

EXAMPLE 47

50

55

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(4,6-diamino-2-pyrimidinylthio)butyramide

Following a procedure similar to that described in Example 34, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) and 4,6-diamino-2-mercaptopyrimidine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 48% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

1.39 - 1.50 (2H, multiplet);

```
1.55 - 1.67 (4H, multiplet);
             1.83 - 2.14 (4H, multiplet);
             2.30 - 2.47 (6H, multiplet);
             3.10 (2H, triplet, J = 6.8 Hz);
             3.45 (2H, singlet);
5
             3.99 - 4.09 (2H, multiplet);
             4.61 (2H, broad singlet);
             4.92 (2H, doublet, J = 6.8 Hz);
             5.24 (1H, singlet);
10
             5.63 - 5.72 (1H, multiplet);
             5.78 - 5.87 (1H, multiplet);
             6.12 - 6.23 (1H, broad);
             6.72 - 6.79 (1H, multiplet);
             6.91 (1H, doublet, J = 4.4 Hz);
15
             8.05 (1H, doublet, J = 4.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             2940, 1655, 1610, 1580, 1555, 1310.
```

20

30

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-N'-isopropylurea

A solution of 0.113 g of isopropylamine in 2 ml of methylene chloride was added to a solution of 0.31 g of carbonyldiimidazole in 5 ml of methylene chloride, and the resulting mixture was cooled with ice, after which a solution of 0.500 g of 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine in 5 ml of methylene chloride was added. The reaction mixture was stirred at room temperature for 2 hours, after which it was poured into ice-water and extracted with methylene chloride. The extract was dried over anhydrous magnesium sulphate, and the solvent was removed by distillation under reduced pressure. The residue was purified by column chromatography through silica gel, using a 1 : 20 by volume mixture of methanol and ethyl acetate as the eluent, to give 0.41 g (yield 62%) of the title compound as a white powder, melting at 90 - 92°C.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.13 (6H, doublet, J = 6.4 Hz);
             1.40 - 1.55 (2H, multiplet);
             1.55 - 1.90 (6H, multiplet);
35
             2.30 - 2.57 (4H, multiplet);
             3.49 (2H, singlet);
             3.80 - 3.90 (1H, multiplet);
             3.95 (2H, triplet, J = 5.9 Hz);
             4.10 - 4.30 (1H, broad);
             4.52 - 4.67 (1H, broad);
40
             4.91 (2H, doublet, J = 6.3 Hz);
             5.67 - 5.88 (2H, multiplet);
             6.80 (1H, singlet);
             6.92 (1H, doublet, J = 5.9 Hz);
45
             8.07 (1H, doublet, J = 5.9 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3430, 2920, 1655, 1605, 1555, 1520, 1410.
```

EXAMPLE 49

50

55

N-Diphenylmethyl-N'-[4-(4-piperidinomethyl)-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-<u>cis</u>-2-butenylamine and diphenylmethylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 69% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.37 - 1.42 (2H, multiplet);
1.42 - 1.70 (4H, multiplet);
```

```
2.28 - 2.57 (4H, multiplet);
             3.44 (2H, singlet);
             3.94 (2H, triplet, J = 5.9 Hz);
             4.86 (2H, doublet, J = 6.3 Hz);
             4.87 (1H, singlet);
             5.10 - 5.24 (1H, broad);
             5.58 - 5.70 (1H, multiplet);
             5.72 - 5.83 (1H, multiplet);
             5.97 (1H, doublet, J = 7.3 Hz);
             6.74 (1H, singlet);
10
             6.87 (1H, doublet, J = 5.4 Hz);
             7.13 - 7.42 (10H, multiplet);
             8.00 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3430, 2980, 2930, 1660, 1610, 1560, 1520, 1415, 1400, 1298, 1285.
15
```

N-(1-Methylpropyl)-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

20

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 1-methylpropylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 72 - 74°C, in an 80% yield.

```
25
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             0.90 \text{ (3H, triplet, J = 7.5 Hz);}
             1.11 (3H, doublet, J = 6.4 \text{ Hz});
             1.35 - 1.80 (6H, multiplet);
             2.33 - 2.60 (4H, multiplet);
30
             3.51 (2H, singlet);
             3.60 - 3.77 (1H, multiplet);
             3.95 (2H, triplet, J = 5.9 Hz);
             4.13-4.28 (1H, broad);
             4.54-4.69 (1H, broad);
             4.92 (2H, doublet, J = 6.5 Hz);
35
             6.67-6.88 (2H, multiplet);
             6.81 (1H, singlet);
             6.93 (1H, doublet, J = 5.4 Hz);
             8.07 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
40
             3430, 3350, 2920, 1655, 1610, 1558, 1525, 1415, 1400, 1340, 1298, 1285,
```

EXAMPLE 51

50

5 N-(1-Methylbutyl)-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 1-methylbutylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 66% yield.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
0.89 (3H, triplet, J = 7.1 Hz);

1.10 (3H, doublet, J = 6.4 Hz);

1.22 - 1.50 (6H, multiplet);

1.50 - 1.64 (4H, multiplet);

2.30 - 2.43 (4H, multiplet);

3.41 (2H, singlet);

3.67 - 3.82 (1H, multiplet);

3.95 (2H, triplet, J = 5.9 Hz);
```

15

N-(1-Met hylhexyl)-N'-[4-(4-piperidinomet hyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-<u>cis</u>-2-butenylamine and 1-methylhexylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 65% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
0.87 (3H, triplet, J = 6.6 Hz);
20
             1.10 (3H, doublet, J = 6.4 Hz);
             1.20 - 1.50 (10H, multiplet);
             1.50 - 1.67 (4H, multiplet);
             2.30 - 2.47 (4H, multiplet);
25
             3.42 (2H, singlet);
             3.64 - 3.80 (1H, multiplet);
             3.95 (2H, triplet, J = 6.1 Hz);
             4.07 - 4.20 (1H, broad doublet, J = 7.7 Hz);
             4.25 - 4.65 (1H, broad);
30
             4.92 (2H, doublet, J = 6.3 Hz);
             5.63 - 5.88 (2H, multiplet);
             6.74 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             8.05 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
35
             3430, 3350, 2930, 2850, 1655, 1610, 1560, 1528, 1415, 1400, 1310, 1298, 1285.
```

EXAMPLE 53

45

40 N-(1-Phenylethyl)-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 1-phenylethylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 62% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.45 (3H, doublet, J = 6.8 Hz);
1.50 - 1.74 (6H, multiplet);
2.30 - 2.43 (4H, multiplet);
3.41 (2H, singlet);
3.92 (2H, triplet, J = 5.6 Hz);
4.50 - 4.70 (2H, broad);
4.86 (2H, doublet, J = 6.3 Hz);
5.57 - 5.68 (1H, multiplet);
5.72 - 5.84 (1H, multiplet);
6.71 (1H, singlet);
6.86 (2H, doublet, J = 5.4 Hz);
7.19 - 7.37 (5H, multiplet);
8.01 (1H, doublet, J = 5.4 Hz).
```

```
Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>: 3440, 2980, 2930, 1660, 1610, 1558, 1525, 1415, 1400, 1298, 1285.
```

5

10

30

N-(1-Ethylpropyl)-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine and 1-ethylpropylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 82 - 84°C, in a 77% yield. Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
0.89 (6H, triplet, J = 7.3 Hz);
             1.22 - 1.78 (10H, multiplet);
             2.30 - 2.56 (4H, multiplet);
15
             3.49 (2H, singlet);
             3.96 (2H, triplet, J = 6.1 Hz);
             4.05 - 4.20 (1H, broad);
             4.57 - 4.68 (1H, broad);
             4.92 (2H, doublet, J = 6.3 Hz);
             5.65 - 5.88 (2H, multiplet);
20
             6.80 (1H, singlet);
             6.92 (1H, doublet, J = 5.3 Hz);
             8.07 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
25
             3440, 3370, 2960, 2930, 1655, 1622, 1540, 1528, 1418, 1400, 1300, 1285.
```

EXAMPLE 55

N-(1,2-Dimethylpropyl)-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 1,2-dimethylpropylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 73% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
0.87 (3H, triplet, J = 6.8 Hz);
35
             0.88 (3H, doublet, J = 6.8 Hz);
             1.05 (3H, doublet, J = 5.8 \text{ Hz});
             1.37 - 1.51 (2H, multiplet);
             1.51 - 1.82 (5H, multiplet);
             2.30 - 2.42 (4H, multiplet);
40
             3.56 (2H, singlet);
             3.56 - 3.71 (1H, multiplet);
             3.95 (2H, triplet, J = 6.1 Hz);
             4.20 (1H, broad doublet, J = 8.8 Hz);
45
             4.58 - 4.70 (1H, broad);
             4.92 (2H, doublet, J = 6.3 Hz);
             5.65 - 5.77 (1H, multiplet);
             5.77 - 5.88 (1H, multiplet);
             6.73 (1H, singlet);
50
             6.88 (1H, doublet, J = 5.4 Hz);
             8.04 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3440, 2930, 1660, 1610, 1560, 1525, 1415, 1400, 1308, 1300, 1285.
```

55

N-(1,2-Diphenylethyl)-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-cis-2-butenylamine and 1,2-diphenylethylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in an 80% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.37 - 1.54 (2H, multiplet);
             1.54 - 1.84 (4H, multiplet);
10
             2.32 - 2.62 (4H, multiplet);
             3.05 (2H, doublet, J = 6.8 Hz);
             3.52 (2H, singlet);
             3.85 (2H, triplet, J = 5.9 Hz);
             4.63 - 4.78 (1H, broad);
15
             4.83 (2H, doublet, J = 6.8 Hz);
             4.90 - 5.02 (1H, multiplet);
             5.52 - 5.62 (1H, multiplet);
             5.68 - 5.79 (1H, multiplet);
             6.74 - 6.87 (1H, broad);
20
             6.91 (1H, doublet, J = 5.3 Hz);
             7.00 - 7.08 (2H, multiplet);
             7.12 - 7.39 (8H, multiplet);
             8.02 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
25
             3450, 3010, 2950, 1668, 1615, 1560, 1528, 1420, 1408, 1300, 1290.
```

EXAMPLE 57

35

30 N-Cyclopropyl-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine and cyclopropylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 102 - 104°C, in a 60% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.51 - 1.59 (2H, multiplet);
             1.67 - 1.77 (2H, multiplet);
             1.36 - 1.82 (6H, multiplet);
40
             2.30 - 2.60 (4H, multiplet);
             3.49 (2H, singlet);
             4.04 (2H, triplet, J = 6.1 Hz);
             4.62 - 4.78 (1H, broad);
             4.94 (2H, doublet, J = 6.4 Hz);
45
             5.02 - 5.17 (1H, broad);
             5.67 - 5.90 (2H, multiplet);
             6.78 (1H, singlet);
             6.93 (1H, doublet, J = 5.4 Hz);
             8.07 (1H, doublet, J = 5.4 Hz).
50
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3430, 2990, 2930, 1642, 1610, 1560, 1528, 1415, 1400, 1298, 1285.
```

EXAMPLE 58

N-Cyclobutyl-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-cis-2-butenylamine and cyclobutylamine as starting materials, in relative proportions similar to those

used in that Example, the title compound was obtained as a white powder, melting at 130 - 132°C, in a 66% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.37 - 1.49 (2H, multiplet);
5
             1.52 - 1.88 (8H, multiplet);
             2.23 - 2.42 (6H, multiplet);
             3.41 (2H, singlet);
             3.95 (2H, triplet, J = 5.8 Hz);
             4.03 - 4.21 (1H, multiplet);
10
             4.50 - 4.68 (2H, multiplet);
             4.91 (2H, doublet, J = 6.4 Hz);
             5.62 - 5.74 (1H, multiplet);
             5.76 - 5.89 (1H, multiplet);
             6.74 (1H, singlet);
15
             6.88 (1H, doublet, J = 5.4 Hz);
             8.05 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3440, 2980, 2940, 1660, 1612, 1560, 1528, 1415, 1400, 1300, 1288, 1248.
```

20 EXAMPLE 59

N-Cyclopentyl-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-cis-2-butenylamine and cyclopentylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 121 - 124°C, in a 77% yield.

```
Nuclear Magnetic Resonance Spectrum (hexadeuterated dimethyl sulphoxide), δ ppm:
```

```
1.14 - 1.67 (12H, multiplet);
             1.67 - 1.82 (2H, multiplet);
30
             2.20 - 2.43 (4H, multiplet);
             3.45 (2H, singlet);
             3.72 (2H, triplet, J = 5.8 Hz);
             3.75 - 3.91 (1H, multiplet);
35
             4.86 (2H, doublet, J = 6.4 Hz);
             5.49 - 5.72 (2H, multiplet);
             5.77 (1H, triplet, J = 5.9 Hz);
             5.84 (2H, doublet, J = 7.3 Hz);
             6.71 (1H, singlet);
40
             6.92 (1H, doublet of doublets, J = 5.4 \& 1.0 Hz);
             8.07 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (KBr), v<sub>max</sub> cm<sup>-1</sup>:
             3318, 2935, 1618, 1584, 1561, 1426, 1409, 1301, 1041.
```

45 EXAMPLE 60

N-Cyclohexyl-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenylamine and cyclohexylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 131 - 132°C, in a 72% yield.

```
Nuclear Magnetic Resonance Spectrum (CDCl<sub>3</sub>), δ ppm:
```

```
0.99 - 1.21 (2H, multiplet);
1.25 - 1.50 (4H, multiplet);
1.52 - 1.75 (8H, multiplet);
1.85 - 1.97 (2H, multiplet);
2.30 - 2.42 (4H, multiplet);
```

```
3.40 (2H, singlet);

3.42 - 3.58 (1H, multiplet);

3.95 (2H, triplet, J = 5.8 Hz);

4.25 (1H, broad doublet, J = 7.8 Hz);

4.61 (1H, broad triplet, J = 5.9 Hz);

4.92 (2H, doublet, J = 6.8 Hz);

5.64 - 5.76 (1H, multiplet);

5.76 - 5.87 (1H, multiplet);

6.73 (1H, singlet);

6.87 (1H, doublet, J = 5.4 Hz);

8.04 (1H, doublet, J = 5.4 Hz).

Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:

3430, 3350, 2980, 2920, 2850, 1655, 1610, 1558, 1528, 1415, 1400, 1310, 1300, 1288.
```

N-Cycloheptyl-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-<u>cis</u>-2-butenylamine and cycloheptylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 89 - 91°C, in a 60% yield. Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.32 - 1.80 (16H, multiplet);
             1.82 - 2.00 (2H, multiplet);
25
             2.25 - 2.50 (4H, multiplet);
             3.43 (2H, singlet);
             3.64 - 3.80 (1H, multiplet);
             3.95 (2H, triplet, J = 5.9 Hz);
             4.29 (1H, broad doublet, J = 7.3 \text{ Hz});
30
             4.56 (1H, broad triplet, J = 5.4 Hz);
             4.92 (2H, doublet, J = 6.3 Hz);
             5.64 - 5.77 (1H, multiplet);
             5.77 - 5.88 (1H, multiplet);
             6.75 (1H, singlet);
35
             6.88 (1H, doublet, J = 5.4 Hz);
             8.05 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3430, 2920, 1655, 1610, 1558, 1520, 1413, 1400, 1308, 1298, 1285.
```

40 EXAMPLE 62

N-Cyclooctyl-N'-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]urea

Following a procedure similar to that described in Example 48, but using 4-(4-piperidinomethyl-2-pyridy-loxy)-<u>cis</u>-2-butenylamine and cyclooctylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 59% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.32 - 1,93 (20H, multiplet);
2.30 - 2.70 (4H, multiplet);
3.49 (2H, singlet);
3.68 - 3.86 (1H, multiplet);
3.94 (2H, triplet, J = 5.9 Hz);
4.27 - 4.43 (1H, broad);
4.52 - 4.67 (1H, broad);
4.91 (2H, doublet, J = 6.3 Hz);
5.65 - 5.88 (2H, multiplet);
6.80 (1H, singlet);
6.92 (1H, doublet, J = 5.3 Hz);
```

```
8.07 (1H, doublet, J = 5.3 Hz). Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>: 3440, 2930, 1655, 1610, 1560, 1525, 1415, 1400, 1310, 1300, 1288.
```

10

N-Isopropyl-N'-[3-(4-piperidinomethyl-2-pyridyloxy)propyl]urea

Following a procedure similar to that described in Example 48, but using 3-(4-piperidinomethyl-2-pyridyloxy)propylamine and isopropylamine as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 58 - 60°C, in a 50% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.14 (6H, doublet, J = 6.3 Hz);
             1.38 - 1.50 (2H, multiplet);
15
             1.52 - 1.64 (4H, multiplet);
             1.90 - 2.05 (2H, multiplet);
             2.37 (4H, triplet, J = 5.1 Hz);
             3.34 (2H, triplet of doublets, J = 6.3 \& 5.8 Hz).
             3.41 (2H, singlet);
20
             3.74 - 3,92 (1H, multiplet);
             4.19 (1H, broad doublet, J = 7.8 Hz);
             4.38 (2H, triplet, J = 5.8 Hz);
             4.70 - 4,82 (1H, broad);
             6.72 (1H, singlet);
25
             6.86 (1H, doublet, J = 5.4 Hz);
             8.04 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (CHC $\ell_3$), $\nu_{\text{max}}$ cm<sup>-1</sup>:
             3420, 3320, 2920, 1650, 1608, 1555, 1530, 1412.
```

30 EXAMPLE 64

35

N-[3-(4-Piperidinomethyl-2-pyridyloxy)propyl]-pyrazole-4-carboxamide

A solution of 1.0 g of 3-(4-piperidinomethyl-2-pyridyloxy)propylamine and 0.45 g of 4-pyrazolecarboxylic acid dissolved in 15 ml of dimethylformamide was stirred for 5 minutes, whilst ice-cooling, after which 734 mg of diethyl cyanophosphonate and 0.68 ml of triethylamine were added to the resulting mixture. The mixture was then stirred at room temperature for 3 hours, after which it was diluted with water, and the aqueous mixture was extracted with ethyl acetate. The extract was washed with a saturated aqueous solution of sodium hydrogencarbonate and then with a saturated aqueous solution of sodium chloride, and dried over anhydrous magnesium sulphate. The solvent was then removed by distillation under reduced pressure, and the resulting residue was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and chloroform as the eluent, to give 1.2 g (yield 85%) of the title compound as a white powder, melting at 117 - 119°C.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
45
              1.39 - 1.47 (2H, multiplet);
              1.50 - 1.62 (4H, multiplet);
              1.99 - 2.11 (2H, multiplet);
             2.34 - 2.44 (4H, multiplet);
              3.41 (2H, singlet);
50
              3.55 (2H, quartet, J = 5.9 Hz);
              4.42 (2H, triplet, J = 5.9 Hz);
             6.72 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
              7.16 (2H, broad triplet, J = 5.9 \text{ Hz});
55
             7.99 - 8.05 (2H, multiplet);
              8.05 (1H, doublet, J = 5.3 Hz).
           Infrared Absorption Spectrum (KBr), v<sub>max</sub> cm<sup>-1</sup>:
              3250, 2935, 1631, 1607, 1566, 1421, 1386, 1302, 1212.
```

5

N-[4-(4-Piperidinomethyl-2-pyridyloxy)butyl]-pyrazole-4-carboxamide

Following a procedure similar to that described in Example 64, but using 4-(4-piperidinomethyl-2-pyridyloxy)butylamine and 4-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 145 - 147°C, in a 71% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.39 - 1.50 (2H, multiplet);
10
             1.53 - 1.62 (4H, multiplet);
             1.71 - 1.92 (4H, multiplet);
             2.31 - 2.42 (4H, multiplet):
             3.41 (2H, singlet);
15
             3.49 (2H, doublet of doublets, J = 12.5 \& 6.6 Hz);
             4.29 (2H, doublet of doublets, J = 11.2 \& 6.1 Hz);
             6.36 - 6.42 (1H, broad);
             6.71 (1H, singlet);
             6.85 (1H, doublet, J = 5.3 Hz);
20
             7.96 (2H, singlet);
             8.05 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (KBr), v_{max} cm<sup>-1</sup>:
             3335, 2940, 1628, 1619, 1560, 1426, 1366, 1299, 992.
```

25 EXAMPLE 66

30

N-[5-(4-Piperidinomethyl-2-pyridyloxy)pentyl]-pyrazole-4-carboxamide

Following a procedure similar to that described in Example 64, but using 5-(4-piperidinomethyl-2-pyridyloxy)pentylamine and 4-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as a white powder, melting at 105 - 106°C, in a 57% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.42 - 1.60 (4H, multiplet);
             1.60 - 1.74 (6H, multiplet);
35
             1.76 - 1.88 (2H, multiplet);
             2.40 - 2.63 (4H, multiplet);
             3.43 (2H, quartet, J = 6.7 Hz);
             3.51 (2H, singlet);
40
             4.27 (2H, triplet, J = 6.3 Hz);
             6.15 - 6.25 (1H, broad);
             6.75 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
             7.96 (2H, singlet);
45
             8.07 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3460, 2930, 1640, 1610, 1570, 1418, 1320.
```

EXAMPLE 67

50

55

N-[3-(4-Piperidinomethyl-2-pyridyloxy)propyl]-2-(2-acetoxyethylthio)acetamide

67(a) N-[3-(4-Piperidinomethyl-2-pyridyloxy)propyl]-2-chloroacetamide

1.68 ml of triethylamine were added to a solution of 3.00 g of 3-(4-piperidinomethyl-2-pyridyloxy)propylamine in 60 ml of ethyl acetate, and the resulting mixture was cooled with ice, after which 0.96 ml of 2-chloroacetyl chloride was added. The reaction mixture was then stirred at room temperature for 1 hour, after which it was mixed with water and the aqueous mixture was extracted with ethyl acetate. The extract was concen-

trated by evaporation under reduced pressure, and the concentrate was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and ethyl acetate as the eluent, to give 3.40 g (yield 87%) of the title compound as an oil.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
              1.39 - 1.52 (2H, multiplet);
5
              1.52 - 1.66 (4H, multiplet);
             2.94 - 3.07 (2H, multiplet);
              2.33 - 2.44 (4H, multiplet);
              3.43 (2H, singlet);
10
              3.48 (2H, triplet of doublets, J = 6.6 \& 5.9 Hz);
              4.07 (2H, singlet);
              4.44 (2H, triplet, J = 5.9 Hz);
             6.76 (1H, singlet);
              6.89 (1H, doublet, J = 5.3 Hz);
15
             7.36 - 7.58 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHCl<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:
              3425, 2925, 1730, 1660, 1610, 1530, 1420.
```

20 67(b) N-[3-(4-Piperidinomethyl-2-pyridyloxy)propyl]-2-(2-hydroxyethylthio)acetamide

0.12 ml of 2-mercaptoethanol was added to a solution of 0.13 g of 85% potassium hydroxide and 0.50 g of N-[3-(4-piperidinomethyl-2-pyridyloxy)propyl]-2-chloroacetamide [prepared as described in step (a) above] in 10 ml methanol, and the resulting mixture was stirred at room temperature for 1 hour. At the end of this time, the reaction mixture was concentrated by evaporation under reduced pressure, the concentrate was mixed with water, and the resulting aqueous mixture was extracted with chloroform. The extract was concentrated by evaporation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1:9 by volume mixture of ethanol and chloroform as the eluent, to give 0.43 g (yield 77%) of the title compound as an oil.

```
30
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.38 - 1.52 (2H, multiplet);
             1.52 - 1.66 (4H, multiplet);
             1.95 - 2.09 (2H, multiplet);
             2.31 - 2.85 (4H, multiplet);
35
             2.79 (2H, triplet, J = 5.6 Hz):
             3.30 (2H, singlet);
             3.42 (2H, singlet);
             3.49 (2H, triplet of doublets, J = 6.6 \& 5.9 Hz);
             3.82 (2H, triplet, J = 5.6 Hz);
             4.42 (2H, triplet, J = 5.9 Hz);
40
             6.77 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
             7.48 - 7.66 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
45
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3350, 2925, 1650, 1610, 1560, 1520, 1420.
```

25

50

55

67(c) N-[3-(4-Piperidinomethyl-2-pyridyloxy)propyl]-2-(2-acetoxyethylthio)acetamide

 $0.49 \, \mathrm{g}$ of $N-[3-(4-\mathrm{piperidinomethyl-2-pyridyloxy)}$ propyl]-2-(2-hydroxyethylthio)acetamide [prepared as described in step (b) above] was added to a mixture of 0.48 ml of acetic anhydride and 0.43 ml of pyridine, and the resulting mixture was warmed at 60° C for 2 hours. At the end of this time, the reaction mixture was poured into ice-water and a saturated aqueous solution of sodium hydrogencarbonate was added to it. The resulting aqueous mixture was extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the concentrate was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and ethyl acetate as the eluent, to give 0.41 g (yield 75%) of the title compound as an oil.

```
1.37 - 1.51 (2H, multiplet);
             1.51 - 1.67 (4H, multiplet);
             1.93 - 2.09 (2H, multiplet);
             2.05 (3H, singlet);
             2.31 - 2.43 (4H, multiplet);
5
             2.80 (2H, triplet, J = 5.9 Hz);
             3.30 (2H, singlet);
             3.42 (2H, singlet);
             3.46 (2H, triplet of doublets, J = 6.6 \& 5.9 Hz);
             4.24 (2H, triplet, J = 6.6 Hz);
10
             4.42 (2H, triplet, J = 5.9 Hz);
             6.77 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
             7.38 - 7.54 (1H, broad);
15
             8.06 (1H, doublet, J = 5.3 \text{ Hz}).
           Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3375, 2925, 1740, 1660, 1610, 1520, 1420, 1220.
```

The title compound, prepared as described above, was dissolved in ethyl acetate, and a 4 N ethyl acetate solution of hydrogen chloride was added to the solution. The crystals which precipitated were collected by filtration, to give the hydrochloride of the title compound, melting at 121 - 128°C.

EXAMPLE 68

20

25

N-[3-(4-Piperidinomethyl-2-pyridyloxy)propyl]-2-(2-hydroxyethylthio)acetamide

A mixture of 0.38 g of 3-(4-piperidinomethyl-2-pyridyloxy)propylamine and 0.18 g of 1,4-oxathian-2-one was added to 10 ml of ethanol, and the resulting mixture was heated under reflux for 2 hours. At the end of this time, the reaction mixture was concentrated by evaporation under reduced pressure. The concentrate was mixed with water, and the resulting aqueous mixture was extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the concentrate was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and methylene chloride as the eluent, to give 0.49 g (yield 88%) of the title compound as an oil.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.38 - 1.52 (2H, multiplet);
35
             1.52 - 1.66 (4H, multiplet);
             1.95 - 2.09 (2H, multiplet);
             2.31 - 2.85 (4H, multiplet);
             2.79 (2H, triplet, J = 5.6 Hz);
             3.30 (2H, singlet);
40
             3.42 (2H, singlet);
             3.49 (2H, triplet of doublets, J = 6.6 \& 5.9 Hz);
             3.82 (2H, triplet, J = 5.6 Hz);
             4.42 (2H, triplet, J = 5.9 Hz);
             6.77 (1H, singlet);
45
             6.88 (1H, doublet, J = 5.3 Hz);
             7.48 - 7.66 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3350, 2925, 1650, 1610, 1560, 1520, 1420.
```

EXAMPLE 69

50

N-[4-(4-Piperidinomethyl-2-pyridyloxy)butyl]-2-(2-acetoxyethylthio)acetamide

55 69(a) N-[4-(4-Piperidinomethyl-2-pyridyloxy)butyl]-2-chloroacetamide

Following a procedure similar to that described in Example 67(a), but using 4-(4-piperidinomethyl-2-pyridyloxy)butylamine and 2-chloroacetyl chloride as starting materials, in relative proportions similar to those

used in that Example, the title compound was obtained as a white powder, melting at 59 - 63°C, in an 80% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.39 - 1.51 (2H, multiplet);
             1.51 - 1,66 (4H, multiplet);
5
             1.66 - 1,91 (4H, multiplet);
             2.31 - 2,44 (4H, multiplet):
             3.35 - 3,47 (2H, multiplet);
             3.41 (2H, singlet);
             4.05 (2H, singlet);
10
             4.31 (2H, triplet, J = 5.9 Hz);
             6.63 - 6.81 (1H, broad);
             6.71 (1H, singlet);
             6.87 (1H, triplet, J = 5.3 Hz);
             8.05 (1H, doublet, J = 5.3 Hz).
15
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3325, 2925, 1670, 1610, 1530, 1420.
```

20

69(b) N-[4-(4-Piperidinomethyl-2-pyridyloxy)butyl]-2-(2-hydroxyethylthio)acetamide

Following a procedure similar to that described in Example 67(b), but using 4-(4-piperidinomethyl-2-pyridyloxy)butyl-2-chloroacetamide [prepared as described in step (a) above] and 2-mercaptoethanol as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a quantitative yield.

```
25
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.38 - 1.50 (2H, multiplet);
             1.59 - 1.64 (4H, multiplet);
             1.64 - 1.91 (5H, multiplet);
             2.31 - 2.44 (4H, multiplet);
30
             2.77 (2H, triplet, J = 5.9 Hz);
             3.27 (2H, singlet);
             3.31 - 3.45 (2H, multiplet);
             3.41 (2H, singlet);
             3.81 (2H, triplet, J = 5.9 Hz);
35
             4.30 (2H, triplet, J = 5.9 Hz);
             6.74 (1H, singlet);
             6.86 (1H, doublet, J = 5.3 Hz);
             6.86 - 7.14 (1H, broad);
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
40
             3350, 2925, 1660, 1610, 1540, 1520, 1420, 1300,
```

69(c) N-[4-(4-Piperidinomethyl-2-pyridyloxy)butyl]-2-(2-acetoxyethylthio)acetamide

Following a procedure similar to that described in Example 67(c), but using N-[4-(4-piperidinomethyl-2-pyridyloxy)butyl]-2-(2-hydroxyethylthio)acetamide [prepared as described in step (b) above] and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in an 84% yield.

```
50

1.38 - 1.51 (2H, multiplet);
1.51 - 1.64 (4H, multiplet);
1.64 - 1.89 (4H, multiplet);
2.07 (3H, singlet);
2.31 - 2.44 (4H, multiplet);
55

2.79 (2H, triplet, J = 6.6 Hz);
3.27 (2H, singlet);
3.32 - 3.43 (2H, multiplet);
3.41 (2H, singlet);
```

```
4.24 (2H, triplet, J = 6.6 Hz);

4.31 (2H, triplet, J = 5.9 Hz);

6.70 (1H, singlet);

6.81 - 6.94 (1H, broad);

5 6.87 (2H, doublet, J = 5.3 Hz);

8.05 (1H, doublet, J = 5.3 Hz).

Infrared Absorption Spectrum (CHCl<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:

3375, 2925, 1740, 1660, 1610, 1560, 1520, 1420.
```

The title compound, prepared as described above, was dissolved in ethyl acetate, and a 4 N ethyl acetate solution of hydrogen chloride was added to the solution. The crystals which precipitated were collected by filtration, to give the hydrochloride of the title compound, melting at 91 - 98°C.

EXAMPLE 70

10

15 N-[5-(4-Piperidinomethyl-2-pyridyloxy)pentyl]-2-(2-acetoxyethylthio)acetamide

70(a) N-[5-(4-Piperidinomethyl-2-pyridyloxy)pentyl]-2-(2-hydroxyethylthio)acetamide

Following a procedure similar to that described in Example 68, but using 5-(4-piperidinomethyl-2-pyridy-loxy)pentylamine and 1,4-oxathian-2-one as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 78% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.37 - 2.00 (13H, multiplet);
             2.31 - 2.43 (4H, multiplet):
             2.77 (2H, triplet, J = 5.9 Hz);
25
             3.26 (2H, singlet);
             3.33 (2H, triplet of doublets, J = 6.6 \& 5.9 Hz);
             3.40 (2H, singlet);
             3.81 (2H, triplet, J = 5.9 \text{ Hz});
             4.26 (2H, triplet, J = 5.9 Hz);
30
             6.74 (1H, singlet);
             6.78 - 6.95 (1H, broad);
             6.84 (1H, triplet, J = 5.3 Hz);
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
35
             3375, 2925, 1660, 1610, 1560, 1520, 1420.
```

70(b) N-[5-(4-Piperidinomethyl-2-pyridyloxy)pentyl]-2-(2-acetoxyethylthio)acetamide

Following a procedure similar to that described in Example 67(c), but using N-[5-(4-piperidinomethyl-2-pyridyloxy)pentyl]-2-(2-hydroxyethylthio)acetamide [prepared as described in step (a) above] and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 90% yield.

```
45
             1.36 - 1.64 (10H, multiplet);
             1.72 - 1.86 (2H, multiplet);
             2.07 (3H, singlet);
             2.31 - 2.41 (4H, multiplet);
             2.79 (2H, triplet, J = 6.6 Hz);
50
             3.27 (2H, singlet);
             3.32 (2H, quartet, J = 6.6 Hz);
             4.19 - 4.31 (4H, multiplet);
             6.69 (1H, singlet);
             6.69-6.88 (1H, broad);
55
             6.85 (1H, doublet, J = 5.3 Hz);
             8.05 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3375, 2925, 1740, 1660, 1610, 1520, 1420.
```

5

N-[4-(4-Piperidinomethyl-2-pyridyloxy)butyl]-2-(2-propionyloxyethylthio)acetamide

Following a procedure similar to that described in Example 67(c), but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)butyl]-2-(2-hydroxyethylthio)acetamide [prepared as described in Example 69(b)] and propionic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in an 80% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.14 (3H, triplet, J = 7.3 Hz);
10
             1.35 - 1.88 (10H, multiplet);
             2.26 - 2.42 (4H, multiplet);
             2.35 (2H, quartet, J = 7.3 Hz);
             2.79 (2H, triplet, J = 6.3 Hz);
             3.27 (2H, singlet);
15
             3.32 - 3.43 (2H, multiplet);
             3.41 (2H, singlet);
             4.25 (2H, triplet, J = 6.3 Hz):
             4.30 (2H, triplet, J = 6.6 Hz);
20
             6.70 (1H, singlet);
             6.75 - 6.98 (1H, broad);
             6.86 (1H, doublet, J = 5.3 Hz);
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3375, 2925, 1730, 1660, 1610, 1560, 1520, 1420.
25
```

EXAMPLE 72

30

35

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-5-(2-acetoxyethylthio)pentanamide

72(a) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-5-chloropentanamide

Following a procedure similar to that described in Example 67(a), but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 5-chlorovaleryl chloride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 93% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.36 - 1.50 (2H, multiplet);
             1.50 - 1.63 (4H, multiplet);
             1.74 - 1.86 (4H, multiplet);
40
             2.18 - 2.28 (2H, multiplet);
             2.28 - 2.42 (4H, multiplet):
             3.41 (2H, singlet);
             3.50 - 3.59 (2H, multiplet);
             4.04 (2H, triplet, J = 5.9 Hz);
45
             4.93 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.74 (1H, multiplet);
             5.77 - 5.90 (1H, multiplet);
             5.92 - 6.20 (1H, broad);
             6.73 (1H, singlet);
50
             6.89 (1H, doublet, J = 5.3 Hz);
             8.03 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3450, 2950, 1660, 1610, 1560, 1510, 1400.
```

72(b) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-5-(methoxycarbonylmethylthio)pentanamide

344 mg of sodium hydride (as a 55% w/w dispersion in mineral oil) were added, whilst ice-cooling and in an atmosphere of nitrogen, to a solution of 0.35 ml of methyl thioglycolate in 90 ml of tetrahydrofuran, and the

resulting mixute was stirred at room temperature for 30 minutes. At the end of this time, it was cooled with ice, and a solution of 2.94 g of \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-5-chloropentanamide [prepared as described in step (a) above] in 30 ml of tetrahydrofuran was added dropwise to the mixture. The reaction mixture was then stirred at room temperature for 2 hours, after which the solvent was removed by distillation under reduced pressure. The residue was mixed with water, and the resulting aqueous mixture was extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1:19 by volume mixture of methanol and ethyl acetate as the eluent, to give 2.84 g (yield 89%) of the title compound as an oil.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.38 - 1.48 (2H, multiplet);
10
             1.48 - 1.87 (8H, multiplet);
             2.23 (2H, triplet, J = 7.3 Hz);
             2.32 - 2.46 (4H, multiplet);
             2.66 (2H, triplet, J = 7.3 Hz);
             3.23 (2H, singlet);
15
             3.42 (2H, singlet);
             3.75 (3H, singlet);
             4.05 (2H, triplet, J = 5.9 Hz);
             4.94 (2H, doublet, J = 6.6 Hz);
             5.63 - 5.76 (1H, multiplet);
20
             5.79 - 5.92 (1H, multiplet);
             5.95 - 6.18 (1H, broad);
             6.75 (1H, singlet);
             6.91 \text{ (1H, doublet, J = 5.3 Hz)}:
25
             8.05 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3450, 2925, 1730, 1660, 1610, 1560, 1510, 1400.
```

30

72(c) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-5-(2-hydroxyethylthio)pentanamide

0.21 g of sodium borohydride was added to a solution of 1.98 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-<math>cis-2-butenyl]-5-(methoxycarbonylmethylthio)pentanamide [prepared as described in step (b) above] in 40 ml of tetrahydrofuran, and 8 ml of methanol were added dropwise to the mixture, whilst ice-cooling; it was then stirred at room temperature for 3 hours. At the end of this time, the reaction mixture was concentrated by evaporation under reduced pressure, and the residue was mixed with water. The resulting aqueous mixture was extracted with ethyl acetate, and the extract was freed from the solvent by distillation under reduced pressure. The residue was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and methylene chloride as the eluent, to give 1.51 g (yield 63%) of the title compound as an oil.

```
40
             1.38 - 2.09 (11H, multiplet);
             2.22 (2H, triplet, J = 7.3 Hz);
             2.26 - 2.47 (4H, multiplet);
             2.54 (2H, triplet, J = 7.3 Hz);
             2.72 (2H, triplet, J = 5.9 Hz);
45
             3.41 (2H, singlet);
             3.72 (2H, triplet, J = 5.9 Hz);
             4.04 (2H, triplet, J = 5.9 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.75 (1H, multiplet);
50
             5.78 - 5.90 (1H, multiplet);
             5.97 - 6.19 (1H, broad);
             6.74 (1H, singlet);
             6.90 (1H, doublet, J = 5.3 Hz);
             8.04 (1H, doublet, J = 5.3 Hz).
55
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3450, 2925, 1660, 1610, 1560, 1510, 1420.
```

72(d) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-5-(2-acetoxyethylthio)pentanamide

Following a procedure similar to that described in Example 67(c), but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-5-(2-hydroxyethylthio)pentanamide [prepared as described in step (c) above] and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 92% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.36 - 1.86 (10H, multiplet);
             2.07 (3H, singlet);
             2.21 (2H, triplet, J = 7.3 Hz);
10
             2.30 - 2.47 (4H, multiplet);
             2.57 (2H, triplet, J = 7.3 Hz);
             2.73 (2H, doublet of doublets, J = 7.3 \& 6.6 Hz);
             3.41 (2H, singlet);
             4.03 (2H, triplet, J = 5.8 Hz);
15
             4.20 (2H, doublet of doublets, J = 7.3 \& 6.6 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
             5.58 - 5.76 (1H, multiplet);
             5.78 - 5.90 (1H, multiplet);
             5.95 - 6.16 (1H, broad);
20
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3375, 2950, 1660, 1610, 1560, 1520, 1420.
25
```

EXAMPLE 73

30

35

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-6-(2-acetoxyethylthio)hexanamide

73(a) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-6-bromohexanamide

Following a procedure similar to that described in Example 67(a), but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenylamine and 6-bromohexanoyl bromide as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in an 86% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.37 - 1.77 (10H, multiplet);
             1.82 - 1.95 (2H, multiplet);
             2.20 (2H, triplet, J = 7.3 \text{ Hz});
             2.28 - 2.43 (4H, multiplet);
40
             3.41 (2H, triplet, J = 5.3 Hz);
             4.04 (2H, triplet, J = 5.9 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.76 (1H, multiplet);
             5.78 - 5.90 (1H, multiplet);
45
             5.92 - 6.11 (1H, broad);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             8.03 (1H, doublet, J = 5.3 Hz).
50
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3350, 2925, 1660, 1610, 1560, 1510, 1420, 1300.
```

73(b) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-6-(2-hydroxyethylthio)hexanamide

Following a procedure similar to that described in Example 67(b), but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-6-bromohexanamide [prepared as described in step (a) above] and 2-mercaptoethanol as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in a 94% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.36 - 1.74 (12H, multiplet);
             1.63 - 2.19 (1H, broad);
             2.19 (2H, triplet, J = 7.3 Hz);
             2.29 - 2.45 (4H, multiplet);
             2.53 (2H, triplet, J = 7.3 Hz);
             2.71 (2H, triplet, J = 5.9 Hz);
             3.41 (2H, singlet);
             3.72 (2H, triplet, J = 5.9 Hz);
             4.03 (2H, doublet of doublets, J = 6.6 \& 5.9 Hz);
10
             4.92 (2H, doublet, J = 6.6 Hz);
             5.61 - 5.74 (1H, multiplet);
             5.77 - 5.89 (1H, multiplet);
             5.93 - 6.13 (1H, broad);
             6.73 (1H, singlet);
15
             6.89 (1H, doublet, J = 5.3 Hz);
             8.03 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3450, 2925, 1660, 1610, 1560, 1510, 1420.
```

73(c) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-6-(2-acetoxyethylthio)hexanamide

Following a procedure similar to that described in Example 67(c), but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-6-(2-hydroxyethylthio)hexanamide [prepared as described in step (b) above] and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in an 87% yield.

```
Nuclear Magnetic Resonance Spectrum (CDCl<sub>3</sub>), δ ppm:
             1.37 - 1.74 (12H, multiplet);
             2.07 (3H, singlet);
30
             2.19 (2H, triplet, J = 7.3 Hz);
             2.31 - 2.44 (4H, multiplet);
             2.56 (2H, triplet, J = 7.3 Hz);
             2.72 (2H, triplet, J = 7.3 Hz);
             3.41 (2H, singlet);
35
             4.03 (2H, doublet of doublets, J = 6.6 \& 5.9 Hz);
             4.20 (2H, triplet, J = 7.3 Hz);
             4.92 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.74 (1H, multiplet);
             5.78 - 5.90 (1H, multiplet);
40
             5.92 - 6.12 (1H, broad);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             8.03 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
45
             3450, 2925, 1740, 1660, 1610, 1560, 1510, 1420.
```

EXAMPLE 74

50

20

25

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(3-acetoxyethylthio)acetamide

74(a) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-chloroacetamide

0.54 ml of triethylamine was added to a solution of 1.00 g of 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine in 20 ml of ethyl acetate, and the resulting mixture was cooled. 0.31 ml of 2-chloroacetyl chloride were then added to the mixture. The reaction mixture was then stirred at room temperature for 1 hour, after which it was mixed with water, and the aqueous mixture was extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1: 19 by volume mixture of methanol and ethyl acetate as the eluent, to give 0.94

```
g (yield 73%) of the title compound as an oil.
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.37 - 1.50 (2H, multiplet);
             1.50 - 1.64 (4H, multiplet);
             2.30 - 2.43 (2H, multiplet);
             2.30 - 2.43 (4H, multiplet);
             3.41 (2H, singlet);
             4.06 (2H, singlet);
             4.11 (2H, triplet, J = 6.6 Hz);
             4.94 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.75 (1H, multiplet);
             5.84 - 5.97 (1H, multiplet);
             6.69 - 6.92 (1H, broad);
             6.74 (1H, singlet);
15
             6.88 (1H, doublet, J = 4.6 Hz);
             8.06 (1H, doublet, J = 4.6 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3420, 2920, 1665, 1610, 1525, 1400, 1285.
```

20

25

30

50

55

74(b) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(acetylthio)acetamide

A solution of 0.47 ml of thioacetic acid in 20 ml of tetrahydrofuran was added dropwise, whilst ice-cooling and in an atmosphere of nitrogen, to a suspension of 0.29 g of sodium hydride (as a 55% w/w dispersion in mineral oil) in 20 ml of tetrahydrofuran, and the resulting mixture was stirred at room temperature for 30 minutes. At the end of this time, a solution of 2.00 g of \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-chloroacetamide [prepared as described in step (a) above] in 20 ml of tetrahydrofuran was added dropwise to the mixture, whilst ice-cooling, after which it was stirred at room temperature for 30 minutes. The reaction mixture was then concentrated by evaporation under reduced pressure, the residue was mixed with water, and the resulting aqueous mixture was extracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the concentrate was purified by column chromatography through silica gel, using a 1 : 19 by volume mixture of methanol and ethyl acetate as the eluent, to give 1.72 g (yield 77%) of the title compound as an oil.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.39 - 1.50 (2H, multiplet);
35
             1.50 - 1.67 (4H, multiplet);
             2.32 - 2.43 (4H, multiplet);
             2.41 (3H, singlet);
             3.42 (2H, singlet);
             3.57 (2H, singlet);
             4.04 (2H, triplet, J = 5.9 \text{ Hz});
40
             4.93 (2H, triplet, J = 6.6 Hz);
             5.57 - 5.71 (1H, multiplet);
             5.81 - 5.91 (1H, multiplet);
             6.35 - 6.66 (1H, broad);
45
             6.75 (1H, singlet);
             6.90 (1H, doublet, J = 5.3 Hz);
             8.08 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3400, 2925, 1680, 1610, 1560, 1520, 1400.
```

74(c) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(3-hydroxypropylthio)acetamide

5 ml of a methanolic solution containing 0.26 g of a 28% w/v sodium methoxide solution were added, whilst ice-cooling, to a solution of 0.50 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(acetylthio)acetamide [prepared as described in step (b) above] in 5 ml of methanol, and the resulting solution was stirred for 20 minutes. At the end of this time, a solution of 0.11 ml of 3-chloro-1-propanol in 5 ml of methanol, was added, and the reaction mixture was heated under reflux for 5 hours. The solvent was then removed by distillation under reduced pressure. The residue thus obtained was mixed with water, and the aqueous mixture was ex-

tracted with ethyl acetate. The extract was concentrated by evaporation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1:9 by volume mixture of methanol and methylene chloride as the eluent, to give 0.42 g (yield 81%) of the title compound as an oil.

```
Nuclear Magnetic Resonance Spectrum (CDCl<sub>3</sub>), δ ppm:
             1.39 - 1.51 (2H, multiplet);
5
             1.51 - 1.66 (4H, multiplet);
             1.54 - 2.02 (4H, broad);
             1.84 (2H, triplet of doublets, 1 = 7.3 \& 5.9 Hz);
             2.32 - 2.45 (4H, multiplet);
             2.68 (2H, triplet, J = 7.3 Hz);
10
             3.24 (2H, singlet);
             3.41 (2H, singlet);
             3.73 (2H, triplet, J = 5.9 Hz);
             4.07 (2H, doublet of doublets, 1 = 6.6 \& 5.9 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
15
             5.61 - 5.78 (1H, multiplet);
             5.82 - 5.94 (1H, multiplet);
             6.76 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
20
             7.70 - 7.25 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
```

3375, 2950, 1660, 1610, 1560, 1520, 1420.

25 74(d) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(3-acetoxypropylthio)acetamide

Following a procedure similar to that described in Example 67(c), but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-(3-hydroxypropylthio)acetamide [prepared as described in step (c) above] and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in an 87% yield.

```
Nuclear Magnetic Resonance Spectrum (CDCl<sub>3</sub>), δ ppm:
```

```
1.38 - 1.51 (2H, multiplet);
             1.51 - 1.66 (4H, multiplet);
             1.91 (2H, triplet of doublets, J = 7.3 \& 5.9 Hz);
35
             2.05 (3H, singlet);
             2.31 - 2.43 (4H, multiplet);
             2.61 (2H, triplet, J = 7.3 \text{ Hz});
             3.23 (2H, singlet);
             3.41 (2H, singlet);
             4.03 - 4.20 (4H, multiplet);
40
             4.94 (2H, doublet, J = 6.6 Hz):
             5.60 - 5.77 (1H, multiplet);
             5.81 - 5.94 (1H, multiplet);
             6.74 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
45
             6.92-7.10 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3375, 2950, 1715, 1660, 1610, 1560, 1520, 1420.
```

The title compound, prepared as described above, was dissolved in ethyl acetate, and a 4 N ethyl acetate solution of hydrogen chloride was added to the resulting solution. The crystals which precipitated were collected by filtration, to give the hydrochloride of the title compound, melting at 110 - 124°C.

50

N-[4-(4-Dimethylaminomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylthio)acetamide

5 75(a) N-[4-(4-Dimethylaminomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide

Following a procedure similar to that described in Example 68, but using 4-(4-dimethylaminomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 1,4-oxathian-2-one as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in a 53% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
10
             1.61 - 2.27 (1H, broad singlet);
             2.26 (6H, singlet);
             2.77 (2H, triplet, J = 5.9 Hz);
             3.29 (2H, singlet);
             3.40 (2H, singlet);
15
             4.07 (2H, doublet of doublets, J = 6.6 \& 5.9 Hz);
             4.95 (2H, doublet, J = 6.6 Hz);
             5.61 - 5.73 (1H, multiplet);
             5.76 - 5.87 (1H, multiplet);
             6.76 (1H, singlet);
20
             6.89 (1H, doublet, J = 5.3 Hz);
             7.07 - 7.26 (1H, broad);
             8.08 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3400, 2975, 1660, 1610, 1560, 1520, 1420.
25
```

75(b) N-[4-(4-Dimethylaminomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylthio)acetamide

Following a procedure similar to that described in Example 67(c), but using \underline{N} -[4-(4-dimethylaminomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-(2-hydroxyethylthio)acetamide [prepared as described in step (a) above] and acetic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in a 58% yield.

```
Nuclear Magnetic Resonance Spectrum (CDCℓ<sub>3</sub>), δ ppm:
```

```
2.09 (3H, singlet);
35
              2.26 (6H, singlet);
             2.81 (2H, triplet, J = 6.6 Hz);
              3.30 (2H, singlet);
              3.40 (2H, singlet);
              4.10 (2H, doublet of doublets, J = 6.6 \& 5.9 Hz);
              4.26 (2H, triplet, \hat{J} = 6.6 \text{ Hz});
40
              4.96 (2H, doublet, J = 6.6 Hz);
              5.62 - 5.75 (1H, multiplet);
              5.82 - 5.96 (1H, multiplet);
              6.73 (1H, singlet);
              6.89 (1H, doublet, J = 5.3 Hz);
45
              6.90 - 7.13 (1H, broad);
              8.10 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHCl<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:
              3375, 2950, 2800, 1740, 1660, 1610, 1560, 1510, 1400.
```

EXAMPLE 76

30

50

55

N-{4-[4-(1-Pyrrolidinylmethyl)-2-pyridyloxy]-cis-2-butenyl}-2-(2-acetoxyethylthio)acetamide

Following a procedure similar to that described in Example 68, but using 4-[4-(1-pyrrolidinylmethyl)-2-pyridyloxy]-<u>cis</u>-2-butenylamine and 1,4-oxathian-2-one as starting materials, in relative proportions similar to those used in that Example, N-{4-[4-(1-pyrrolidinylmethyl)-2-pyridyloxy]-<u>cis</u>-2-butenyl}-2-(2-hydroxyethylthio)acetamide was obtained. This product was reacted with acetic anhydride in the same manner and same rel-

ative proportions as described in Example 67(c), to give the title compound in a 42% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.71 - 1.84 (4H, multiplet);
             2.07 (3H, singlet);
             2.46 - 2.57 (4H, multiplet);
             2.79 (2H, triplet, J = 6.3 Hz);
             3.28 (2H, singlet);
             3.58 (2H, singlet);
             4.08 (2H, triplet, J = 6.6 Hz);
             4.24 (2H, triplet, J = 6.3 Hz);
10
             4.94 (2H, doublet, J = 6.6 Hz);
             5.61 - 5.73 (1H, multiplet);
             5.81 - 5.94 (1H, multiplet);
             6.74 (1H, singlet);
             6.90 (1H, doublet, J = 5.3 Hz);
15
             6.90 - 7.09 (1H, broad);
             8.07 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3400, 2950, 2800, 1740, 1660, 1610, 1560, 1520, 1420.
```

EXAMPLE 77

20

25

30

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylsulfinyl)acetamide

 $77~\mu\ell$ of methanesulphonic acid was added to a solution of 0.50 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylthio)acetamide (prepared as described in Example 2) in 5.5 ml of 1,2-dichloroethane, and the resulting mixture was cooled to -10°C. 0.28 g of 3-chloroperoxybenzoic acid (purity: 80%) was then added, and the reaction mixture was stirred, whilst keeping the temperature in the range from -10°C to -5°C, for 2 hours. At the end of this time, it was washed with a 10% w/v aqueous solution of sodium hydrogensulphite, with a saturated aqueous solution of sodium hydrogencarbonate and with a saturated aqueous solution of sodium chloride, in that order. The solvent was then removed by distillation under reduced pressure, and the resulting residue was purified by column chromatography through silica gel, using a 1 : 9 by volume mixture of ethanol and chloroform as the eluent, to give 0.38 g (yield 73%) of the title compound as an oil.

```
35
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.37 - 1.49 (2H, multiplet);
             1.49 - 1.64 (4H, multiplet);
             2.09 (3H, singlet);
             2.31 - 2.42 (4H, multiplet);
             3.12 - 3.18 (2H, multiplet);
40
             3.39 (1H, doublet, J = 13.2 Hz);
             3.41 (2H, singlet);
             3.73 (1H, doublet, J = 13.2 Hz);
             4.10 (2H, triplet, J = 5.9 Hz);
             4.38 - 4.60 (2H, multiplet);
45
             4.93 (2H, doublet, J = 5.3 Hz);
             5.61 - 5.73 (1H, multiplet);
             5.79 - 5.90 (1H, multiplet);
             6.73 (1H, singlet);
50
             6.88 (1H, doublet, J = 5.3 Hz);
             7.05 - 7.24 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3400, 2950, 1740, 1670, 1610, 1560, 1410, 1310, 1220.
```

5

10

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylsulfonyl)acetamide

 $72 \,\mu \ell$ of methanesulphonic acid were added to a solution of 0.47 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylthio)acetamide (prepared as described in Example 2) in 5.5 ml of 1,2-dichloroethane. The resulting mixture was cooled to -10°C. 0.51 g of 3-chloroperoxybenzoic acid (purity: 80%) was added to the reaction mixture, which was then stirred at a temperature in the range from -10°C to -5°C for 2 hours. At the end of this time, the reaction mixture was washed with a 10% w/v aqueous solution of sodium hydrogensulphite, with a saturated aqueous solution of sodium hydrogencarbonate and with a saturated aqueous solution of sodium chloride, in that order, and then the solvent was removed by distillation under reduced pressure. The residue was purified by column chromatography through silica gel, using a 1:9 by volume mixture of ethanol and chloroform as the eluent, to give 0.40 g (yield 40%) of the title compound as an oil.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
15
             1.37 - 1.50 (2H, multiplet);
             1.50 - 1.70 (4H, multiplet);
             2.11 (3H, singlet);
             2.30 - 2.41 (4H, multiplet);
             3.41 (2H, singlet);
20
             3.55 (2H, triplet, J = 5.6 Hz);
             3.93 (2H, singlet);
             4.09 (2H, triplet, J = 5.6 Hz);
             4.93 (2H, doublet, J = 5.9 Hz);
             5.61 - 5.73 (1H, multiplet):
             5.80 - 5.93 (1H, multiplet);
25
             6.75 (1H, singlet);
             6.90 (1H, doublet, J = 5.3 Hz);
             7.32 - 7.43 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC \ell_3), \nu_{max} cm<sup>-1</sup>:
30
             3300, 2950, 1740, 1680, 1610, 1560, 1400, 1320.
```

EXAMPLE 79

40

35 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-[2-(3,3-dimethylbutyryloxy)ethylthio)acetamide

Following a procedure similar to that described in Example 7, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) and 3,3-dimethylbutyryl chloride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in an 83% yield.

```
1.02 (9H, singlet);
             1.37 - 1.50 (2H, multiplet);
             1.50 - 1.65 (4H, multiplet);
45
             2.21 (2H, singlet);
             2.31 - 2.43 (4H, multiplet);
             2.79 (2H, triplet, J = 6.6 Hz);
             3.28 (2H, singlet);
             3.41 (2H, singlet);
50
             4.08 (2H, triplet, J = 5.9 Hz);
             4.23 (2H, triplet, J = 6.6 Hz);
             4.94 (2H, doublet, J = 5.9 Hz);
             5.60 - 5.72 (1H, multiplet);
             5.81 - 5.93 (1H, multiplet);
55
             6.73 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
             6.92 - 7.10 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
```

```
Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>: 3375, 2925, 1730, 1660, 1610, 1560, 1520, 1400.
```

The title compound, prepared as described above, was dissolved in ethyl acetate and treated with an equivalent amount of a 4 N solution of hydrogen chloride in ethyl acetate to give the hydrochloride of the title compound, melting at 106 - 109°C.

EXAMPLE 80

10

15

35

40

45

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-[2-(2-methylpropionyloxy)ethylthio]acetamide

Following a procedure similar to that described in Example 7, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) and 2-methyl-propionyl chloride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in a 73% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.17 (6H, doublet, J = 7.3 Hz);
             1.37 - 1.52 (2H, multiplet);
             1.50 - 1.66 (4H, multiplet);
             2.31 - 2.44 (4H, multiplet);
             2.56 (1H, septet, J = 7.3 Hz);
20
             2.79 (2H, triplet, J = 6.6 Hz);
             3.28 (2H, singlet);
             3.42 (2H, singlet);
             4.08 (2H, triplet, J = 6.3 Hz);
             4.24 (2H, triplet, J = 6.6 Hz);
25
             4.94 (2H, doublet, J = 6.6 Hz);
             5.60 - 5.74 (1H, multiplet);
             5.81 - 5.93 (1H, multiplet);
             6.73 (1H, singlet);
             6.88 (1H. doublet. J = 5.3 Hz):
30
             6.93 - 7.07 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3375, 2925, 1730, 1660, 1610, 1560, 1520, 1400.
```

The title compound, prepared as described above, was dissolved in ethyl acetate and treated with an equimolar amount of a 4 N solution of hydrogen chloride in ethyl acetate to give the hydrochloride of the title compound, melting at 93 - 96°C.

EXAMPLE 81

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-[2-(2,2-dimethylpropionyloxy)ethylthio]acetamide

Following a procedure similar to that described in Example 7, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) and 2,2-dimethylpropionyl chloride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in a 63% yield.

```
1.20 (9H, singlet);
1.38 - 1.52 (2H, multiplet);
1.52 - 1.69 (4H, multiplet);
2.28 - 2.53 (4H, multiplet);
2.79 (2H, triplet, J = 6.6 Hz);
3.28 (2H, singlet);
3.45 (2H, singlet);
4.09 (2H, triplet, J = 6.6 Hz);
4.22 (2H, triplet, J = 6.6 Hz);
4.94 (2H, doublet, J = 6.6 Hz);
5.64 - 5.73 (1H, multiplet);
```

```
5.82 - 5.93 (1H, multiplet);
6.75 (1H, singlet);
6.91 (1H, doublet, J = 5.1 Hz);
6.93 - 7.09 (1H, broad);
8.07 (1H, doublet, J = 5.1 Hz).
Infrared Absorption Spectrum (CHCℓ<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:
3375, 2925, 1720, 1660, 1610, 1540, 1520, 1480, 1400.
```

The title compound, prepared as described above, was dissolved in ethyl acetate and treated with an equimolar amount of a 4 N solution of hydrogen chloride in ethyl acetate to give the hydrochloride of the title compound, melting at 93 - 97°C.

EXAMPLE 82

15

20

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-butyryloxyethylthio)acetamide

Following a procedure similar to that described in Example 7, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) and butyryl chloride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in an 88% yield.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
0.94 (3H, triplet, J = 7.3 Hz);
             1.34 - 1.78 (8H, multiplet);
             2.29 - 2.39 (4H, multiplet);
             2.30 (2H, triplet, J = 7.3 Hz);
25
             2.79 (2H, triplet, J = 6.6 Hz);
             3.28 (2H, singlet);
             3.41 (2H, singlet);
             4.08 (2H, doublet of doublets, J = 7.3 \& 6.6 Hz);
             4.24 (2H, triplet, J = 6.6 Hz);
             4.93 (2H, doublet, J = 7.9 Hz);
30
             5.60 - 5.78 (1H, multiplet);
             5.81 - 5.94 (1H, multiplet);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
35
             6.92 - 7.10 (1H, broad);
             8.07 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
             3400, 2950, 1740, 1660, 1610, 1560, 1520, 1420.
```

40 EXAMPLE 83

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylsulfinyl)acetamide

Following a procedure similar to that described in Example 77, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) as a starting material, in a relative proportion similar to that used in that Example, the title compound was obtained in a 63% yield.

```
1.34 - 1.50 (2H, multiplet);
1.50 - 1.64 (4H, multiplet);
1.76 - 1.98 (1H, broad);
2.28 - 2.45 (4H, multiplet);
3.10 (2H, triplet, J = 5.9 Hz);
3.41 (2H, singlet);
3.52 (2H, doublet, J = 13.9 Hz);
3.79 (1H, doublet, J = 13.9 Hz);
4.04 - 4.16 (4H, multiplet);
4.92 (2H, doublet, J = 6.6 Hz);
```

```
5.65 - 5.77 (1H, multiplet);

5.82 - 5.93 (1H, multiplet);

6.75 (1H, singlet);

6.88 (1H, doublet, J = 5.3 \text{ Hz});

7.15 - 7.34 (1H, broad);

8.06 (1H, doublet, J = 5.3 \text{ Hz}).

Infrared Absorption Spectrum (CHC\ell_3), \nu_{\text{max}} cm<sup>-1</sup>:

3300, 2925, 1730, 1670, 1610, 1560, 1420, 1400.
```

The title compound, prepared as described above, was dissolved in ethyl acetate and treated with an equimolar amount of a 4 N solution of hydrogen chloride in ethyl acetate to give the hydrochloride of the title compound, melting at 111 - 114°C.

EXAMPLE 84

5

10

20

15 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-propionyloxyethylsulfinyl)acetamide

Following a procedure similar to that described in Example 77, but using N-[4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenyl]-2-(2-propionyloxyethylthio)acetamide (prepared as described in Example 7) as a starting material, in a relative proportion similar to that used in that Example, the title compound was obtained in a 73% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.15 (3H, triplet, J = 7.3 Hz);
             1.34 - 1.50 (2H, multiplet);
             1.50 - 1.62 (4H, multiplet);
             2.28 - 2.42 (4H, multiplet);
25
             2.37 (2H, quartet, J = 7.3 Hz);
             3.15 (2H, triplet, J = 6.6 Hz);
             3.38 (1H, doublet, J = 14.2 Hz);
             3.41 (2H, singlet);
30
             3.73 (1H, doublet, J = 14.2 Hz);
             4.10 (2H, triplet, J = 6.6 Hz);
             4.39 - 4.61 (2H, multiplet);
             4.93 (2H, doublet, J = 6.6 Hz);
             5.60 - 5.72 (1H, multiplet);
35
             5.78 - 5.91 (1H, multiplet);
             6.73 (1H, singlet);
             6.88 (1H, doublet, J = 5.3 Hz);
             7.04 - 7.23 (1H, broad);
             8.06 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
40
             3300, 2925, 1740, 1670, 1610, 1560, 1420, 1400.
```

The title compound, prepared as described above, was dissolved in ethyl acetate and treated with an equimolar amount of a 4 N solution of hydrogen chloride in ethyl acetate to give the hydrochloride of the title compound, melting at 77 - 83°C.

EXAMPLE 85

45

55

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(4-pyrimidinylthio)butyramide

85(a) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(acetylthio)butyramide

0.50 g of sodium hydride (as a 55% w/w dispersion in mineral oil) was added to 80 ml of dimethylformamide under an atmosphere of nitrogen gas, and then 10 ml of a dimethylformamide solution containing 0.81 ml of thioacetic acid was added to the resulting mixture. The mixture was then stirred at room temperature for 30 minutes. At the end of this time, 30 ml of a dimethylformamide solution containing 3.79 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide (prepared as described in Preparation 2) were added to the mixture, and the mixture was stirred at room temperature for 2 hours. Ethyl acetate was then added to the reaction mixture, which was then washed with a saturated aqueous solution of sodium hydrogencarbon-

ate and water. The solvent was removed by distillation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a 1:19 by volume mixture of methanol and ethyl acetate as the eluent, to give 5.04 g (a quantitative yield) of the title compound as an oil.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.37 - 1.50 (2H, multiplet);
             1.50 - 1.63 (4H, multiplet);
             1.93 (2H, quintet, J = 7.3 \text{ Hz});
             2.26 (2H, triplet, J = 7.3 Hz);
             2.29 - 2.42 (4H, multiplet);
             2.91 (2H, triplet, J = 7.3 Hz);
10
             3.41 (2H, singlet);
             4.03 (2H, triplet, J = 5.9 Hz);
             4.93 (2H, triplet, J = 5.9 Hz);
             5.61 - 5.75 (1H, multiplet);
             5.78 - 5.89 (1H, multiplet);
15
             6.09 - 6.34 (1H, broad);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), \nu_{max} cm<sup>-1</sup>:
20
             3450, 3350, 2925, 2800, 1670, 1610, 1560, 1520, 1480, 1420, 1400.
```

85(b) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(4-pyrimidinylthio)butyramide

A solution of $1.00\,\mathrm{g}$ of $N-[4-(4-\mathrm{piperidinomethyl-2-pyridyloxy})-cis-2-butenyl]-4-(acetylthio)butyramide [prepared as described in step (a) above] in 10 ml of methanol was added to a mixture of <math>0.48\,\mathrm{g}$ of $28\%\,\mathrm{w/v}$ methanolic sodium methoxide and 5 ml of methanol, whilst ice-cooling, and the mixture was stirred at the same temperature for 20 minutes. At the end of this time, $0.28\,\mathrm{g}$ of 4-chloropyrimidine was added to the mixture and the mixture was heated under reflux for 2 hours. The solvent was then removed by evaporation under reduced pressure, and water was added to the resulting residue, which was then extracted with ethyl acetate. The solvent was removed from the extract by distillation under reduced pressure, and the residue was purified by column chromatography through silica gel, using a $1:9\,\mathrm{by}$ volume mixture of ethanol and chloroform as the eluent, to give $0.65\,\mathrm{g}$ (yield 60%) of the title compound as an oil.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.36 - 1.50 (2H, multiplet);
35
              1.50 - 1.65 (4H, multiplet);
              2.06 (2H, quintet, J = 7.3 Hz);
              2.29 - 2.43 (4H, multiplet);
              2.37 (2H, triplet, J = 7.3 Hz);
              3.24 (2H, triplet, J = 7.3 \text{ Hz});
40
              3.41 (2H, singlet);
              4.05 (2H, triplet, J = 5.9 Hz);
              4.93 (2H, doublet, J = 6.6 Hz);
              5.61 - 5.76 (1H, multiplet);
              5.78 - 5.90 (1H, multiplet);
45
              6.22 - 6.44 (1H, broad);
              6.73 (1H, singlet);
              6.88 (1H, doublet, J = 5.3 Hz);
              7.17 (2H, doublet, J = 5.3 Hz);
50
              8.03 (1H, doublet, J = 5.3 \text{ Hz});
              8.32 (1H, doublet, J = 5.3 \text{ Hz});
              8.91 (1H, singlet).
           Infrared Absorption Spectrum (CHCl<sub>3</sub>), v<sub>max</sub> cm<sup>-1</sup>:
              3450, 3300, 2925, 1660, 1610, 1570, 1520, 1440, 1420, 1380.
```

55

25

N-[4-(4-Dimethylaminomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-2-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-dimethylaminomethyl-2-pyr-idyloxy)-<u>cis-</u>2-butenylamine and 4-pyrazolecarboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 65% yield.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
2.27 (6H, singlet);

3.40 (2H, singlet);

4.22 (2H, triplet, J = 5.9 \text{ Hz});

4.99 (2H, doublet, J = 6.6 \text{ Hz});

5.71 - 5.94 (2H, multiplet);

6.47 (1H, broad singlet);

6.74 (1H, singlet);

6.89 (1H, doublet, J = 5.3 \text{ Hz});

7.97 (2H, singlet);

8.07 (1H, doublet, J = 5.3 \text{ Hz}).

Infrared Absorption Spectrum (CHC\ell_3), \nu_{\text{max}} cm<sup>-1</sup>:

3450, 3170, 2980, 2940, 1640, 1615, 1565, 1510, 1415 1400, 1290.
```

EXAMPLE 87

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3,5-dimethylpyrrole-2-carboxamide

25

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 3,5-dimethylpyrrole-2-carboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as crystals, melting 140 - 141°C, in a 58% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.37 - 1.48 (2H, multiplet);
             1.50 - 1.61 (4H, multiplet);
             2.23 (3H, singlet);
             2.26 (2H, singlet);
             2.30 - 2.42 (4H, multiplet);
35
             3.40 (2H, singlet);
             4.22 (2H, triplet, J = 5.6 Hz);
             4.96 (2H, doublet, J = 6.6 Hz);
             5.66 - 5.79 (3H, multiplet);
             5.82 - 5.92 (1H, multiplet);
40
             6.73 (1H, singlet);
             6.87 (1H, doublet, J = 5.3 Hz);
             8.04 (1H, doublet, J = 5.3 Hz);
             9.13 - 9.27 (1H, broad).
45
           Infrared Absorption Spectrum (KBr), v<sub>max</sub> cm<sup>-1</sup>:
             3249, 1612, 1525, 1410, 1272, 1035, 826.
```

EXAMPLE 88

50 N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-methylfuran-3-carboxamide

Following a procedure similar to that described in Example 13, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 2-methylfuran-3-carboxylic acid as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained as an oil in a 77% yield.

```
1.39 - 1.51 (2H, multiplet);
1.53 - 1.66 (4H, multiplet);
2.31 - 2.45 (4H, multiplet);
```

```
2.58 (3H, singlet);
             3.42 (2H, singlet);
             4.17 (2H, triplet, J = 6.4 Hz);
             4.97 (2H, doublet, J = 6.4 Hz);
5
             5.71 - 5.81 (1H, multiplet);
             5.83 - 5.93 (1H, multiplet);
             6.01 - 6.18 (1H, broad);
             6.41 (1H, doublet, J = 2.2 \text{ Hz});
             6.75 (1H, singlet);
10
             6.90 (1H, doublet, J = 5.4 Hz);
             7.23 (1H, doublet, J = 2.2 \text{ Hz});
             8.03 (1H, doublet, J = 5.4 Hz).
          Infrared Absorption Spectrum (liquid film), v_{max} cm<sup>-1</sup>:
             3325, 2936, 1636, 1611, 1561, 1523, 1420, 1402, 1301, 1290, 1039.
```

The title compound, prepared as described above, was dissolved in ethyl acetate and treated with an equimolar amount of a 4 N solution of hydrogen chloride in ethyl acetate to give the hydrochloride of the title compound, melting at 258 - 261°C (with decomposition).

EXAMPLE 89

15

20

25

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(2-pyrimidinylsulfinyl)butyramide

Following a procedure similar to that described in Example 77, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-4-(2-pyrimidinylthio)butyramide (prepared as described in Example 34) as a starting material, in a relative proportion similar to that used in that Example, the title compound was obtained as an oil in a 55% yield.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
```

```
1.37 - 1.50 (2H, multiplet);
             1.52 - 1.63 (4H, multiplet);
             1.99 - 2.12 (1H, multiplet);
30
             2.20 - 2.45 (7H, multiplet);
             3.10 - 3.32 (2H, multiplet);
             3.41 (2H, singlet);
             4.01 (2H, doublet, J = 6.3 Hz);
35
             4.91 (2H, doublet, J = 6.6 Hz);
             5.61 - 5.71 (1H, multiplet);
             5.78 - 5.87 (1H, multiplet);
             6.32 (1H, broad singlet);
             6.73 (1H, singlet);
40
             6.89 (1H, doublet, J = 5.3 Hz);
             7.41 (1H, triplet, J = 4.6 \text{ Hz});
             8.03 (1H, doublet, J = 5.3 Hz);
             8.89 (2H, doublet, J = 4.6 Hz).
          Infrared Absorption Spectrum (liquid film), v_{max} cm<sup>-1</sup>:
45
             3302, 2936, 1657, 1612, 1561, 1420, 1403, 1384, 1312, 1300, 1289, 1062, 1040, 753.
```

EXAMPLE 90

50

55

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-propionyloxyethylthio)acetamide

Following a procedure similar to that described in Example 2, but using \underline{N} -[4-(4-piperidinomethyl-2-pyridyloxy)- \underline{cis} -2-butenyl]-2-(2-hydroxyethylthio)acetamide (prepared as described in Example 1) and propionic anhydride as starting materials, in relative proportions similar to those used in that Example, the title compound was obtained in a 90% yield.

The nuclear magnetic resonance spectrum and the infrared spectrum of the title compound are identical with those of the compound prepared as described in Example 7.

PREPARATION 1

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-chloroacetamide

1.00 g of 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>- butenylamine was dissolved in 20 ml of ethyl acetate. 0.54 ml of triethylamine was added to the solution, and the resulting mixture was cooled in an ice bath. 0.31 ml of 2-chloroacetyl chloride was added, and the mixture was stirred for 1 hour at room temperature. At the end of this time, water was added, and the reaction mixture was extracted with ethyl acetate. The extract was condensed by evaporation under reduced pressure, and the residue was purified by silica gel chromatography, eluted with a 1 : 19 by volume mixture of methanol and ethyl acetate, to give 0.94 g (yield 73%) of the title compound as an oil.

```
Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.37 - 1.50 (2H, multiplet);
             1.50 - 1.64 (4H, multiplet);
15
             2.30 - 2.43 (2H, multiplet);
             3.41 (2H, singlet);
             4.06 (2H, singlet);
             4.11 (2H, triplet, J = 6.6 Hz);
             4.94 (2H, doublet, J = 6.6 Hz);
             5.62 - 5.75 (1H, multiplet);
20
             5.84 - 5.97 (1H, multiplet);
             6.69 - 6.92 (1H, broad);
             6.74 (1H, singlet);
             6.88 (1H, doublet, J = 4.6 Hz);
             8.06 (1H, doublet, J = 4.6 Hz).
25
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3420, 2920, 1665, 1610, 1525, 1400, 1285.
```

PREPARATION 2

30

35

10

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-chlorobutyramide

Following a procedure similar to that described in Preparation 1, but using 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenylamine and 4-chlorobutyryl chloride as starting materials, in relative proportions similar to those used in that Preparation, the title compound was obtained at a yield of 73%.

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

```
1.35 - 1.53 (2H, multiplet);
             1.53 - 1.78 (4H, multiplet);
             2.06 - 2.17 (2H, multiplet);
40
             2.33 - 2.41 (2H, multiplet);
             2.41 - 2.52 (4H, multiplet);
             3.50 (2H, singlet);
             3.61 (2H, triplet, J = 6.1 Hz);
             4.04 (2H, triplet, J = 6.1 Hz);
45
             4.93 (2H, doublet, J = 6.8 Hz);
             5.62 - 5.73 (1H, multiplet);
             5.77 - 5.89 (1H, multiplet);
             6.07 (1H, doublet, J = 4.9 Hz);
             6.08 - 6.26 (1H, broad);
50
             6.78 (1H, singlet);
             6.95 (1H, doublet, J = 4.9 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3440, 2920, 1660, 1610, 1415, 1295.
```

PREPARATION 3

10

35

40

N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3-mercaptopropionamide

3(a) N-[4-(4-Piperidinomethyl-2-pyridyloxy]-cis-2-butenyl]-3-(acetylthio)propionamide

1.00 g of 3-(acetylthio)propionic acid, 1.39 g of dicyclohexyl carbodiimide, 1.05 g of 1-hydroxybenzotriazole and 1.76 g of 4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis-</u>2-butenylamine were added to 45 ml of dimethylformamide, and the solution was stirred for 5 hours at room temperature. At the end of this time, ethyl acetate was added to the reaction mixture, insoluble matter was filtered off, and the filtrate was washed with a saturated aqueous solution of sodium hydrogencarbonate and then with water. The reaction mixture was then condensed by evaporation under reduced pressure, and the resulting residue was subjected to silica gel chromatography, eluted with a 1:19 by volume mixture of methanol and ethyl acetate, to give 1.27 g (yield 48%) of the title compound as an oil.

```
15
          Nuclear Magnetic Resonance Spectrum (CDC\ell_3), \delta ppm:
             1.30 - 1.50 (2H, multiplet);
             1.50 - 1.70 (4H, multiplet);
             2.28 - 2.44 (4H, multiplet);
             2.32 (3H, singlet);
             2.50 (2H, triplet, J = 6.9 Hz);
20
             3.16 (2H, triplet, J = 6.9 Hz);
             3.41 (2H, singlet);
             4.04 (2H, triplet, J = 6.3 Hz);
             4.93 (2H, doublet, J = 6.6 Hz);
25
             5.62 - 5.74 (1H, multiplet);
             5.78 - 5.90 (1H, multiplet);
             6.73 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
             8.03 (1H, doublet, J = 5.3 Hz).
30
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3440, 2930, 1675, 1610, 1415, 1400, 1310, 1295, 1285, 1140
```

3(b) N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3-(mercapto)propionamide

1.0 g of N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-3-(acetylthio)propionamide [prepared as described in step (a) above] and 0.49 g of a 28% w/v methanolic solution of sodium methoxide were added to 20 ml of methanol, whilst ice-cooling, and the mixture was stirred at the same temperature for 20 minutes. At the end of this time, 0.15 ml of acetic acid was added, and the solvent was removed by distillation under reduced pressure. The residue was dissolved in ethyl acetate, washed with water and condensed by evaporation under reduced pressure, to obtain 0.76 g (yield 85%) of the title compound as an oil.

Nuclear Magnetic Resonance Spectrum (CDCl₃), δ ppm:

```
1.37 - 1.50 (2H, multiplet);
             1.46 - 1.96 (1H, broad);
             1.50 - 1.65 (4H, multiplet);
45
             2.27 - 2.43 (4H, multiplet);
             2.51 (2H, triplet, J = 6.9 Hz);
             2.83 (2H, doublet of triplets, J = 6.9 & 7.9 Hz);
             3.41 (2H, singlet);
             4.06 (2H, triplet, J = 5.9 Hz);
50
             4.94 (2H, doublet, J = 6.6 Hz);
             5.63 - 5.77 (1H, multiplet);
             5.79 - 5.90 (1H, multiplet);
             6.74 (1H, singlet);
             6.89 (1H, doublet, J = 5.3 Hz);
55
             8.04 (1H, doublet, J = 5.3 Hz).
          Infrared Absorption Spectrum (CHC\ell_3), v_{max} cm<sup>-1</sup>:
             3450, 2940, 1665, 1612, 1418, 1400, 1300, 1290
```

PREPARATION 4

5

10

15

20

25

30

35

40

45

50

55

Ethyl 4-hydroxy-3-isoxazolecarboxylate

144 g of urea were added to 1 liter of a dimethylformam ide solution containing 72 g of ethyl 4-bromo-2-hydroxyimino-3-oxobutyrate. The reaction solution was heated for 15 minutes at 100°C and then cooled, after which water was added to the reaction solution, and the mixture was extracted with ethyl acetate. The extract was washed with dilute aqueous hydrochloric acid and with a saturated aqueous solution of sodium chloride, in that order, after which it was dried over anhydrous sodium sulphate. The solvent was then removed by distillation under reduced pressure, and a 1 : 1 by volume mixture of ethyl acetate and hexane was added to the residue, to remove insoluble materials. The solution thus obtained was purified by silica gel chromatography, eluted with a 1 : 4 by volume mixture of ethyl acetate and hexane, to give 19 g of the title compound, melting at 59 - 60°C (after recrystallisation from a mixture of ethyl acetate and hexane).

Nuclear Magnetic Resonance Spectrum (CDC ℓ_3), δ ppm:

1.42 (3H, triplet, J = 8.0 Hz);

4.48 (2H, quartet, J = 8.0 Hz);

6.72 (1H, broad);

8.32 (1H, singlet).

Infrared Absorption Spectrum (CHCl₃), v_{max} cm⁻¹:

3420, 1718, 1140.

Claims

1. A compound of formula (I):

$$R^{1}$$
 O
 A
 $NHCOR^{2}$
 (I)

wherein:

R1 represents

a cyclic amino group having from 3 to 7 ring atoms, of which from 1 to 3 are nitrogen atoms, 0 or 1 is an oxygen atom or a sulphur atom, and the remainder are carbon atoms, or

a dialkylamino group in which each alkyl group is independently selected from alkyl groups having from 1 to 4 carbon atoms;

R² represents

a group of formula -NHCHR3R4, wherein

R³ and R⁴ are independently selected from alkyl groups having from 1 to 6 carbon atoms, aryl groups as defined below and aralkyl groups as defined below,

OI

 R^3 and R^4 , together with the carbon atom to which they are attached, represent a cycloalkyl group having from 3 to 8 ring carbon atoms, which group is unsubstituted or is substituted by at least one substituent selected from substituents α ,

an aromatic heterocyclic group having 5 ring atoms, of which from 1 to 3 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents α and, in the case of substituents on nitrogen atoms, from substituents β ,

or a group of formula -B-S(O)_m-R⁵, wherein

 R^5 represents: a substituted alkyl group which has from 1 to 4 carbon atoms and which is substituted by at least one substituent selected from substituents γ ; or an aromatic heterocyclic group which has 5 or 6 ring atoms of which from 1 to 4 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents α and, in the case of substituents on nitrogen atoms, from substituents ϵ ,

B represents an alkylene or alkylidene group having from 1 to 6 carbon atoms,

and m is 0, 1 or 2;

5

10

15

20

25

30

35

40

45

50

55

A represents a group of formula -CH=CH- or -(CH₂)_n-, where <u>n</u> is 1, 2 or 3;

aryl groups are carbocyclic aromatic groups having from 6 to 10 ring carbon atoms which are unsubstituted or which are substituent selected from substituents ζ ;

aralkyl groups are alkyl groups which have from 1 to 4 carbon atoms and which are substituted by from 1 to 3 aryl groups as defined above;

substituents α are selected from: alkyl groups having from 1 to 4 carbon atoms; alkoxy groups having from 1 to 4 carbon atoms; hydroxy groups; halogen atoms; amino groups; monoalkyl- amino groups in which the alkyl part has from 1 to 4 carbon atoms; dialkylamino groups in which each alkyl part is independently selected from alkyl groups having from 1 to 4 carbon atoms; alkanoylamino groups having from 1 to 5 carbon atoms; arylcarbonylamino groups in which the aryl part is as defined above; and aryl groups as defined above:

substituents α are selected from alkyl groups having from 1 to 4 carbon atoms;

substituents γ are selected from: hydroxy groups; alkanoyloxy groups having from 1 to 5 carbon atoms; substituted alkanoyloxy groups which have from 2 to 5 carbon atoms and which are substituted by at least one substituent selected from substituents δ ; arylcarbonyloxy groups in which the aryl part is as defined above; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has from 3 to 6 ring carbon atoms and is unsubstituted or is substituted by at least one substituent selected from substituents α :

substituents δ are selected from: carboxy groups; alkoxycarbonyl groups in which the alkoxy part has from 1 to 4 carbon atoms; aryloxycarbonyl groups in which the aryl part is as defined above; and aryl groups as defined above;

substituents ε are selected from: alkyl groups having from 1 to 4 carbon atoms; and hydroxyalkyl groups having from 2 to 4 carbon atoms;

substituents ζ are selected from substituents α , provided that any aryl group in substituents α is not further substituted by an aryl group;

PROVIDED THAT, when \underline{m} is 1, R⁵ represents: said substituted alkyl group having from 1 to 4 carbon atoms; an aromatic heterocyclic group which has 5 ring atoms of which from 2 to 4 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted as defined above or an aromatic heterocyclic group which has 6 ring atoms of which from 1 to 4 are hetero-atoms selected from nitrogen, oxygen and sulphur hetero-atoms, said group being unsubstituted as defined above; and pharmaceutically acceptable salts thereof.

- 2. The compound of Claim 1, wherein R¹ represents a cyclic amino group having from 3 to 7 ring atoms, of which 1 is a nitrogen atom and the remainder are carbon atoms, or said dialkylamino group.
- 3. The compound of Claim 2, wherein R¹ represents a cyclic amino group having 5 or 6 ring atoms, of which 1 is a nitrogen atom and the remainder are carbon atoms, or said dialkylamino group.
- 4. The compound of Claim 3, wherein R¹ represents a 1-pyrroldinyl, piperidino, dimethylamino or diethylamino group.
 - 5. The compound of Claim 1, wherein R² represents a group of formula -NHCHR³R⁴, wherein R³ and R⁴ are independently selected from:

alkyl groups having from 1 to 4 carbon atoms,

phenyl groups which are unsubstituted or have at least one substituent selected from substituents ζ , defined in Claim 1, and

benzyl and phenethyl groups;

or

R³ and R⁴, together with the carbon atom to which they are attached, represent a cycloalkyl group having from 3 to 6 ring carbon atoms,

- 6. The compound of Claim 1, wherein R² represents an aromatic heterocyclic group having 5 ring atoms, of which 1 is a hetero-atom selected from nitrogen, oxygen and sulphur hetero-atoms, there are 0, 1 or 2 additional nitrogen hetero-atoms, and the remaining ring atoms are carbon atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents α and, in the case of substituents on nitrogen atoms, from substituents β, as defined in Claim 1.
- 7. The compound of Claim 6, wherein said aromatic heterocyclic group is selected from furyl, thienyl, pyrrolyl,

oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, imidazolyl, oxadiazolyl and thiadiazolyl groups, which are unsubstituted or are substituted as defined in Claim 6.

The compound of Claim 1, wherein R² represents a group of formula -B-S(O)_m-R⁵, wherein: 8.

B represents an alkylene or alkylidene group having from 1 to 3 carbon atoms;

m is 0, 1 or 2; and

R⁵ represents: a substituted alkyl group which has from 2 to 4 carbon atoms and which is substituted at its 2-position by at least one substituent selected from substituents γ ; or an aromatic heterocyclic group which has 5 or 6 ring atoms of which 1 is a hetero-atom selected from nitrogen, oxygen and sulphur heteroatoms, there are 0, 1, 2 or 3 additional nitrogen hetero-atoms, and the remaining ring atoms are carbon atoms, said group being unsubstituted or having at least one substituent selected, in the case of substituents on carbon atoms, from substituents a and, in the case of substituents on nitrogen atoms, from the group consisting of substituents ε, as defined in Claim 1.

- The compound of Claim 1, wherein A represents a group of formula -CH=CH- or -(CH₂)_n-, where n is 1 or 2.
 - 10. The compound of Claim 1, wherein:

R¹ represents a 1-pyrrolidinyl, piperidino, dimethylamino or diethylamino group; R² represents

a group of formula -NHCHR3R4, wherein

R3 and R4 are independently selected from alkyl groups having from 1 to 4 carbon atoms, benzyl groups, phenethyl groups and phenyl groups which are unsubstituted or which are substituted by at least one substituent selected from methyl, methoxy, fluorine atoms and chlorine atoms,

R3 and R4, together with the carbon atom to which they are attached, represent a cycloalkyl group having from 3 to 6 ring carbon atoms,

a furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, pyrazolyl, imidazolyl or thiadiazolyl group, which is unsubstituted or is substituted by at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^1 and, in the case of substituents on nitrogen atoms, from the group consisting of methyl and ethyl groups,

or a group of formula -B-S(O)_m-R⁵, wherein

R⁵ represents: a substituted ethyl or propyl group which is substituted at its 2-position by at least one substituent selected from the group consisting of substituents γ^1 ; or an imidazolyl, 1,2,4-triazolyl, 1,3,4-oxadiazolyl, 1,3,4-thiadiazolyl, tetrazolyl, pyridyl or pyrimidinyl group which is unsubstituted or has at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^1 and, in the case of substituents on nitrogen atoms, from substituents ε^1 ,

> B represents an alkylene or alkylidene group having from 1 to 3 carbon atoms, and m is 0, 1 or 2;

A represents a group of formula -CH=CH- or -(CH₂)_n-, where n is 1 or 2;

substituents α^1 are selected from: methyl groups, ethyl groups, methoxy groups, ethoxy groups, hydroxy groups, chlorine atoms, amino groups; methylamino groups, ethylamino groups, dimethylamino groups, diethylamino groups, alkanoylamino groups having from 1 to 3 carbon atoms, phenyl groups, and substituted phenyl groups in which the substituent is selected from methyl groups, methoxy groups, chlorine atoms and fluorine atoms;

substituents γ^1 are selected from: hydroxy groups; alkanoyloxy groups having from 1 to 5 carbon atoms; substituted alkanoyloxy groups which have 3 or 4 carbon atoms and which are substituted by at least one substituent selected from carboxy, methoxycarbonyl and ethoxy- carbonyl groups; phenylacetoxy groups; benzoyloxy groups; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has from 3 to 6 ring carbon atoms:

substituents ε1 are selected from: methyl groups, ethyl groups, and hydroxyalkyl groups having from 2 to 4 carbon atoms.

11. The compound of Claim 1, wherein:

R¹ represents a 1-pyrrolidinyl or piperidino group;

R² represents

a group of formula -NHCHR3R4, wherein

R3 and R4 are independently selected from methyl, ethyl, phenyl and benzyl groups,

208

5

10

15

20

25

30

35

40

45

50

R3 and R4, together with the carbon atom to which they are attached, represent a cycloalkyl group having from 3 to 5 ring carbon atoms,

a furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, pyrazolyl or 1,2,3-thiadiazolyl group, which is unsubstituted or is substituted by at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^2 and, in the case of substituents on nitrogen atoms, from the group

consisting of methyl and ethyl groups,

or a group of formula -B-S(O)_m-R⁵, wherein

R5 represents: a substituted ethyl or propyl group which is substituted at its 2-position by at least one substituent selected from substituents γ^2 ; or a 1,2,4-triazolyl, 1,3,4-oxadiazolyl or pyrimidinyl group which is unsubstituted or has at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^3 and, in the case of substituents on nitrogen atoms, from methyl and ethyl groups,

> B represents an alkylene or alkylidene group having from 1 to 3 carbon atoms, and m is 0 or 1;

A represents a group of formula -CH=CH- or -(CH₂)₂-; substituents α^2 are selected from: methyl groups, ethyl groups, methoxy groups, ethoxy groups, hydroxy groups, chlorine atoms, amino groups, acetamido groups and phenyl groups;

substituents α^3 are selected from: methyl groups, ethyl groups, methoxy groups, ethoxy groups, hydroxy groups, chlorine atoms, amino groups, and acetamido groups;

substituents γ^2 are selected from: hydroxy groups; acetoxy groups; propionyloxy groups; substituted alkanoyloxy groups which have 3 or 4 carbon atoms and which are substituted by at least one substituent selected from carboxy, methoxycarbonyl and ethoxycarbonyl groups; phenylacetoxy groups; benzoyloxy groups; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has from 3 to 6 ring carbon atoms.

12. The compound of Claim 1, wherein:

R¹ represents a piperidino group;

R² represents

a group of formula -NHCHR3R4, wherein

R³ and R⁴ are independently selected from methyl, ethyl, phenyl and benzyl groups,

R³ and R⁴, together with the carbon atom to which they are attached, represent a cycloalkyl group having 3 or 4 ring carbon atoms,

a thienyl, pyrrolyl, thiazolyl, pyrazolyl or 1,2,3-thiadiazolyl group, which is unsubstituted or is substituted by at least one substituent selected, in the case of substituents on carbon atoms, from substituents α^4 and, in the case of substituents on nitrogen atoms, from methyl groups,

or a group of formula -B-S(O)_m-R⁵, wherein

B represents a methylene group and R⁵ represents: a substituted ethyl or propyl group which is substituted at its 2-position by at least one substituent selected from substituents γ^3 ;

B represents a trimethylene group and R5 represents: a 1,2,4-triazolyl, 1,3,4-oxadiazolyl or pyrimidinyl group which is unsubstituted or has at least one substituent selected, in the case of substituents on carbon atoms, from methyl, hydroxy and amino groups, and, in the case of substituents on nitrogen atoms, from methyl groups,

and m is 0;

A represents a group of formula -CH=CH-;

substituents α^4 are selected from: methyl groups, methoxy groups, hydroxy groups, chlorine atoms and amino groups;

substituents γ^3 are selected from: hydroxy groups; acetoxy groups; propionyloxy groups; substituted propionoyloxy groups which are substituted by at least one substituent selected from carboxy, methoxycarbonyl and ethoxycarbonyl groups; benzoyloxy groups; and cycloalkylcarbonyloxy groups in which the cycloalkyl part has 5 or 6 ring carbon atoms.

13. The compound of Claim 1, wherein:

R¹ represents a piperidino group;

R² represents:

a pyrazolyl group, which is unsubstituted or is substituted on a carbon atom by at least one amino substituent,

209

5

10

15

20

25

30

35

40

45

50

EP 0 562 833 A1

or a group of formula -B-S(O)_m-R⁵, wherein

B represents a methylene group and R⁵ represents: a substituted ethyl group which is substituted at its 2-position by at least one substituent selected from substituents hydroxy, acetoxy, propionyloxy, benzoyloxy, cyclopentylcarbonyloxy and cyclohexylcarbonyloxy groups;

or

5

20

40

B represents a trimethylene group and R⁵ represents: a 2-pyrimidinyl group; and m is 0;

A represents a group of formula -CH=CH-.

- 14. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]pyrazole-4-carboxamide and pharmaceutically acceptable salts thereof.
 - 15. The compound of Claim 1, selected from 3-amino-N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-bute-nyl]pyrazole-4-carboxamide and pharmaceutically acceptable salts thereof.
- 16. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
 - 17. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-acetoxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
 - **18.** The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-propionyloxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
- 19. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-butyryloxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
 - 20. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-iso-butyryloxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
- 21. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-iso-valeryloxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
 - 22. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-phenylacetoxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
- 23. The compound of Claim 1, selected from 2-{N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]carbamoylmethylthio}ethyl hydrogen succinate and pharmaceutically acceptable salts thereof.
 - 24. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-ben-zoyloxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
 - 25. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-cy-clopentylcarbonyloxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
- **26.** The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenyl]-2-(2-cy-clohexylcarbonyloxyethylthio)acetamide and pharmaceutically acceptable salts thereof.
 - 27. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-hydroxyethylsulphinyl)acetamide and pharmaceutically acceptable salts thereof.
- 28. The compound of Claim 1, selected from N-[4-(4-piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-(2-propionyloxyethylsulphinyl)acetamide and pharmaceutically acceptable salts thereof.
 - 29. The compound of Claim 1, selected from N-[4-(4-Piperidinomethyl-2-pyridyloxy)-<u>cis</u>-2-butenyl]-2-[2-(3,3-dimethylbutyryloxy)ethylthio)acetamide and pharmaceutically acceptable salts thereof.
- 30. The compound of Claim 1, selected from N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-2-[2-(2,2-dimethylpropionyloxy)ethylthio)acetamide and pharmaceutically acceptable salts thereof.
 - 31. The compound of Claim 1, selected from N-[4-(4-Piperidinomethyl-2-pyridyloxy)-cis-2-butenyl]-4-(2-pyr-

imidinylthio)butyramide and pharmaceutically acceptable salts thereof.

- 32. A pharmaceutical composition for the treatment and prophylaxis of ulcerous conditions, which comprises an anti-ulcer compound in admixture with a pharmaceutically acceptable carrier or diluent, wherein the anti-ulcer compound is selected from compounds of formula (I) and pharmaceutically acceptable salts thereof, as claimed in Claim 1.
- 33. The use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, as a pharmaceutical.
- 34. A process for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof, as claimed in any one of Claims 1 to 31, which process comprises the steps:
 - (1) when R² represents a group of formula -NHCHR³R⁴ (in which R³ and R⁴ are as defined in claim 1), reacting a compound of formula (II):

$$R^1$$
 O
 A
 NH_2

20

5

10

15

(in which R¹ and A are as defined in claim 1) with either:

(a) a compound of formula (III):

NH₂CHR³R⁴ (III)

25

(in which R^3 and R^4 are as defined in claim 1) in the presence of carbonyldiimidazole; or (b) a compound of formula (IV):

O=C=NCHR3R4 (IV)

(in which R3 and R4 are as defined in claim 1);

30

35

(2) when R² represents the group R^{2b} (R^{2b} represents any of the groups represented by R², as defined in claim 1, except groups of formula -NHCHR³R⁴), reacting a compound of formula (II), as defined above, with a compound of formula (V) or a reactive derivative thereof:

(in which R^{2a} represents any of the groups defined in claim 1 for R², except groups of formula -NHCHR³R⁴, provided that any hydroxy group in the group represented by R² is protected) and, if desired, removing any hydroxy-protecting group:

- (3) when R^2 represents a group of formula CO-B-S(O)_m-R⁵ (in which R^5 , B and \underline{m} are as defined in claim 1),
 - (a) reacting a compound of formula (VI):

40

45

(in which R^1 , A and B are as defined in claim 1, and X represents a halogen atom) with a compound of formula (VII):

Y-S-R⁵ (VII)

50

(in which Y represents a hydrogen atom or an alkali metal and R⁵ is as defined in claim 1) in the presence of a base and, if desired, oxidizing the resulting thioether, and, if desired, acylating compounds in which R⁵ represents a hydroxyalkyl group; or

(b) reacting a compound of formula (VIII):

(in which R^1 , A and B are as defined in claim 1, and Y is as defined above) with a compound of formula (IX):

(in which X is as defined above, and R^5 is as defined in claim 1) and, if desired, oxidizing the thioether compound obtained;

(4) when R^2 represents a group of formula $-CH_2S(O)_m(CH_2)_{p+1}OH$ (in which \underline{m} and \underline{p} are as defined in claim 1), reacting a compound of formula (II), as defined above, with a compound of formula (X):

$$(CH_2)_{p}$$
 (X)

(in which m and p are as defined in claim 1); and

(5) when R^2 represents a group of formula -B-S(O)_m-R^{5a} (in which B and m are as defined in claim 1 and R^{5a} represents a hydroxyalkyl group having from 2 to 4 carbon atoms, with the proviso that the group must include a moiety having the formula -CH₂OH), reducing a compound of formula (XI):

(in which R¹, A, B and <u>m</u> are as defined in claim 1 and R⁶ represents an alkyl group having from 1 to 3 carbon atoms and substituted with a carboxy or alkoxycarbonyl group having from 1 to 6 carbon atoms in the alkoxy moiety); and

(6) optionally salifying any product obtained from steps (1) to (5), above.

50

5

10

15

20

25

30

35

40

45

EUROPEAN SEARCH REPORT

Application Number

93 30 2221

ategory	Citation of document with indication, where appropriate, of relevant passages EP-A-0 282 077 (FUJIREBIO KABUSHIKI KAISHA) 14 September 1988 *see whole document*		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5) C07D213/64 C07D401/12 C07D405/12 C07D413/12
D,Y				
D,Y	EP-A-0 404 949 (ZERIA PHARMACEUTICAL CO. LTD.) 2 January 1991 *see especially definition b for Z*		1-34	C07D417/12 C07D409/12 A61K31/44 A61K31/495
Y	EP-A-O 023 578 (SHIONOGI & CO. LTD.) 3 July 1979 *see especially definitions of R and compound nos 3,8 in Table 1, page 11*		1-34	
Y .	EP-A-0 302 422 (KYORIN PHARMACEUTICAL CO. LTD.) 8 February 1989 *see especially defintion of R2*		1-34	
Y	EP-A-O 214 823 (FUJIREBIO KABUSHIKI KAISHA) 18 March 1987 *see particularly examples 1,3, 9 and 18*		1-34	TECHNICAL FIELDS SEARCHED (Int. Cl.5)
D,P, Y	PATENT ABSTRACTS OF JAPAN vol. 17, no. 42 (C-1020)1993 & JP-A-42 57 581 (KYORIN PHARMACEUT. CO. LTD.) 11 September 1992 * abstract *		1-34	A61K
	The present search report has h	ocen drawn up for all claims		
<u> </u>	Place of search	Date of completion of the search		Exeminer
il	MUNICH	01 JUNE 1993		SCRUTON-EVANS I.
MUNICH CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier pate after the fil bother D : document o L : document o	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons A: member of the same patent family, corresponding	