TD 5 : Chaîne de Markov, filtration

Exercice 1:

Soit $(W_n)_{n\geqslant 1}$ une suite de v.a. i.i.d. à valeurs dans un espace mesurable (W, \mathcal{W}) et X_0 une v.a. indépendante de $(W_n)_{n\geqslant 1}$ de loi μ à valeurs dans un ensemble dénombrable E.

On définit la suite $(X_n)_{n\geqslant 0}$ par la formule de récurrence

$$X_{n+1} = \Phi(X_n, W_{n+1}), \ \forall n \geqslant 0,$$

où $\Phi: E \times W \to E$ est une application mesurable.

- 1. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov et en déterminer la matrice de transition.
- 2. Déterminer la matrice de transition dans le cas $W = E = \mathbf{Z}$ et $\Phi(x, w) = x + w$.
- 3. Déterminer la matrice de transition dans le cas $W = E = \mathbf{Z}$ et $\Phi(x, w) = (x + w)_+$.

Corrigé:

1. La suite $(X_n)_{n\geqslant 0}$ est une chaîne de Markov si il existe un noyau de transition P (ou matrice stochastique car on travaille sur un ensemble dénombrable) tel que pour tout $n\geqslant 0$ et tous $x_0,\ldots,x_{n+1}\in E$

$$\mathbf{P}[X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0] = P(x_n, x_{n+1}).$$

D'après la définition de X_{n+1} on a

$$\mathbf{P}[X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0] = \frac{\mathbf{P}[\Phi(x_n, W_{n+1}) = x_{n+1}, X_n = n, \dots, X_0 = x_0]}{\mathbf{P}[X_n = x_n, \dots, X_0 = x_0]}$$
$$= \mathbf{P}[\Phi(x_n, W_{n+1}) = x_{n+1}]$$

car W_{n+1} est indépendant de (X_0,\ldots,X_n) . La chaîne $(X_n)_{n\geqslant 0}$ est donc une μ -P chaîne de Markov avec

$$\forall x, y \in E, \quad P(x, y) = \mathbf{P} \left[\Phi(x, W_1) = y \right].$$

- 2. Si $W = E = \mathbf{Z}$ et $\Phi(x, w) = x + w$ alors d'après la question précédente $(X_n)_{n \geqslant 0}$ est une μ -P chaîne de Markov avec $P(x, y) = \mathbf{P}[x + W_1 = y] = \mathbf{P}[W_1 = y x] = \nu(y x)$ en notant ν la loi de W_1 .
- 3. Si $W=E=\mathbf{Z}$ et $\Phi(x,w)=(x+w)_+$ alors $(X_n)_{n\geqslant 0}$ est une μ -P chaîne de Markov avec $P(x,y)=\mathbf{P}[(x+W_1)_+=y]$. Donc en notant ν la loi de W_1 , on a

$$P(x,y) = \begin{cases} 0 & \text{si } y < 0 \\ \mathbf{P}[W_1 \leqslant -x] = \nu(] - \infty, -x]) & \text{si } y = 0 \\ \mathbf{P}[W_1 = y - x] = \nu(y - x) & \text{si } y > 0 \end{cases}$$

Exercice 2:

On lance un dé de manière répétitive. Parmi les suites aléatoires suivantes, lesquelles sont des chaînes de Markov ? Donner leur matrice de transition.

- 1. X_n le plus grand résultat obtenu après n lancers
- 2. N_n le nombre de 6 obtenus après n lancers
- 3. C_n le nombre de lancers à l'instant n depuis le dernier 6 ou depuis le départ tant qu'il n'y a pas eu de 6
- 4. $B_n = \sum_{k=0}^n N_k$

Corrigé

On modélise les résultats des jets successifs du dé par une suite $(U_n)_{n\geqslant 1}$ de v.a. *i.i.d.* de loi uniforme sur $E=\{1,2,3,4,5,6\}$.

1. Le plus grand résultat obtenu après n lancers est $X_n = \max(U_1, \dots, U_n)$ que l'on peut écrire aussi sous forme récurrente

$$\forall n \geqslant 0, \quad X_{n+1} = X_n \vee U_{n+1},$$

en posant $X_0 = 1$. D'après l'exercice précédent $(X_n)_{n \geqslant 0}$ est une chaîne de Markov sur E, et la matrice de transition est donnée pour tout $(x,y) \in E^2$ par $P(x,y) = \mathbf{P}[x \vee U_1 = y]$ i.e.

$$P = \frac{1}{6} \left(\begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 1 & 1 \\ 0 & 0 & 3 & 1 & 1 & 1 \\ 0 & 0 & 0 & 4 & 1 & 1 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{array} \right)$$

2. Le nombre de 6 obtenus après n lancers est $N_n = \sum_{k=1}^n \mathbf{1}_{\{U_k=6\}}$ ou encore $N_{n+1} = N_n + \mathbf{1}_{\{U_{n+1}=6\}}$, en posant $N_0 = 0$. Le processus $(N_n)_{n\geqslant 0}$ est donc une chaîne de Markov homogène sur \mathbf{N} de matrice de transition $P(x,y) = \mathbf{P}\left[x + \mathbf{1}_{\{U_1=6\}} = y\right]$ *i.e.*

$$\forall (x,y) \in \mathbf{N}^2, \quad P(x,y) = \begin{cases} 0 & \text{si } x > y \text{ ou } x < y - 1 \\ \frac{5}{6} & \text{si } x = y \\ \frac{1}{6} & \text{si } x = y - 1 \end{cases}$$

3. Le nombre de lancers depuis le dernier 6 (ou depuis le début tant qu'il n'y a pas eu de 6) peut se modéliser de la façon suivante : le compteur C_n est incrémenté de 1 sur l'événement $\{U_{n+1} < 6\}$ et remis à 0 sur l'événement $\{U_{n+1} = 6\}$. Donc

$$\forall n \geqslant 0, \quad C_{n+1} = C_n + \mathbf{1}_{\{U_n < 6\}} - C_n \mathbf{1}_{\{U_n = 6\}}, \quad C_0 = 0,$$

définit une P-chaîne de Markov sur \mathbf{N} avec $P(x,y) = \mathbf{P}\left[x + \mathbf{1}_{\{U_1 < 6\}} - x\mathbf{1}_{\{U_1 = 6\}} = y\right]$ i.e.

$$\forall (x,y) \in \mathbf{N}^2, \quad P(x,y) = \begin{cases} \frac{1}{6} & \text{si } y = 0, \text{ pour tout } x \in F \\ \frac{5}{6} & \text{si } y = x+1 \\ 0 & \text{si } y \neq x+1 \text{ et } y > 0 \end{cases}$$

4. On a $B_{n+1} = B_n + N_{n+1} = B_n + N_n + \mathbf{1}_{\{U_{n+1}=6\}}$. La suite $(B_n)_{n\geqslant 0}$ n'est pas une chaîne de Markov mais on peut montrer que le couple $(B_n, N_n)_{n\geqslant 0}$ est une chaîne de Markov. Ecrire précisément l'espace d'état, la matrice de transition et la loi initiale de cette chaîne.

Exercice 3:

Soit $(\Omega, \mathscr{F}, \mathbf{P})$ un espace de probabilité munit d'une filtration $\mathbf{F} = (\mathscr{F}_n)_{n \geqslant 0}$ et $(X_n)_{n \geqslant 0}$ une chaîne de Markov à valeurs dans E dénombrable, de loi initiale μ et de matrice de transition P.

Soit $F \subset E$, on note $\tau = \inf\{n \geqslant 0, X_n \in F\}$ le temps d'entrée dans F et on pose $Y_n = X_{n \wedge \tau}$. Montrer que $(Y_n)_{n \geqslant 0}$ est une chaîne de Markov et déterminer sa matrice de transition.

Corrigé:

Le processus $(Y_n)_{n\geqslant 0}$ vit dans E et est figé à sa valeur d'entrée dans F. En utilisant la partition, $\{Y_n\in F\}\cup\{Y_n\notin F\}$ on a

$$\mathbf{P}[Y_{n+1} = y \mid \mathscr{F}_n] = \mathbf{P}[Y_{n+1} = y, Y_n \in F \mid \mathscr{F}_n] + \mathbf{P}[Y_{n+1} = y, Y_n \notin F \mid \mathscr{F}_n],$$

or
$$\{Y_{n+1} = y, Y_n \in F\} = \{Y_n \in F, Y_n = y\}$$
 et $\{Y_{n+1} = y, Y_n \notin F\} = \{Y_n \notin F, X_{n+1} = y\}$, donc

$$\mathbf{P}[Y_{n+1} = y \mid \mathscr{F}_n] = \mathbf{1}_{\{Y_n \in F\}} \mathbf{1}_{\{Y_n = y\}} + \mathbf{1}_{\{Y_n \notin F\}} \mathbf{P}[X_{n+1} = y \mid \mathscr{F}_n],$$

= $\mathbf{1}_{\{Y_n \in F\}} \mathbf{1}_{\{Y_n = y\}} + \mathbf{1}_{\{Y_n \notin F\}} P(X_n, y),$
= $Q(Y_n, y).$

avec
$$Q(x,y) = \mathbf{1}_{\{x \in F\}} \mathbf{1}_{\{x=y\}} + \mathbf{1}_{\{x \notin F\}} P(x,y).$$

Exercice 4:

Soit (Ω, \mathscr{F}) un espace mesurable munit d'une filtration $\mathbf{F} = (\mathscr{F}_n)_{n \geqslant 0}$. On note τ et ν deux \mathbf{F} -temps d'arrêt ainsi que \mathscr{F}_{τ} et \mathscr{F}_{ν} leur tribu engendrée. Montrer les propriétés suivante

- (i) $\tau \vee \nu$, $\tau \wedge \nu$ et $\tau + \nu$ sont des **F**-temps d'arrêt,
- (ii) si $\tau = p$ alors $\mathscr{F}_{\tau} = \mathscr{F}_{p}$,
- (iii) si $\tau \leqslant \nu$ alors $\mathscr{F}_{\tau} \subset \mathscr{F}_{\nu}$,
- (iv) $\mathscr{F}_{\tau \wedge \nu} = \mathscr{F}_{\tau} \cap \mathscr{F}_{\nu}$,
- (v) $\{\tau < \nu\}$ et $\{\tau = \nu\}$ appartiennent à $\mathscr{F}_{\tau} \cap \mathscr{F}_{\nu}$.

Corrigé:

Cf. cours.

Exercice 5:

Une information prenant deux valeurs possibles (0 et 1, ou vrai et faux, etc.) est transmises à travers n intermédiaires indépendants. On suppose que chaque intermédiaire transmet l'information reçue de façon correcte avec une probabilité p (0 < p < 1) ou modifie l'information en son contraire avec probabilité 1 - p.

- 1. Introduire une chaîne de Markov $(X_n)_{n\geqslant 0}$ modélisant l'état de l'information après les différents intermédiaires.
- 2. Calculer la probabilité que l'information transmise par le dernier intermédiaire soit conforme à l'information initiale.

Corrigé:

1. On note X_n l'information donnée par l'intermédiaire n et X_0 l'information initiale. La dynamique de cette information dépend d'un aléatoire : l'intermédiaire transmet correctement l'information avec probabilité p. On modélise cela par une v.a. U_n de loi de Bernoulli de paramètre p, l'événement $\{U_n=1\}$ correspond à une transmission correct et $\{U_n=0\}$ à une transmission erronée. Les intermédiares sont indépendants donc la suite $(U_n)_{n\geqslant 1}$ est une suite i.i.d.

La dynamique des v.a. X_n est alors donnée par

$$\forall n \geq 0, \quad X_{n+1} = X_n \mathbf{1}_{\{U_n = 1\}} + (1 - X_n) \mathbf{1}_{\{U_n = 0\}},$$

et $(X_n)_{n\geqslant 0}$ est une P chaîne de Markov avec $P=\begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix}$.

2. On doit calculer $P[X_n = X_0]$. Or

$$\mathbf{P}[X_n = X_0] = \mathbf{P}[X_n = X_0 \mid X_0 = 1] \mathbf{P}[X_0 = 1] + \mathbf{P}[X_n = X_0 \mid X_0 = 0] \mathbf{P}[X_0 = 0]$$
$$= P^n(1, 1)p + P^n(0, 0)(1 - p).$$

Il faut donc calculer la puissance n-ième de la matrice P symétrique. On diagonalise P en trouvant les valeurs propres $\lambda_1 = 1$, $\lambda_2 = 2p - 1$ et les 2 vecteurs propres associés $v_1 = (1, 1)$ et $v_2 = (1, -1)$. On a donc

$$P = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & 2p - 1 \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array}\right)$$

d'où

$$P^n = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & (2p-1)^n \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{array}\right) = \frac{1}{2} \left(\begin{array}{cc} 1 + (2p-1)^n & 1 - (2p-1)^n \\ 1 - (2p-1)^n & 1 + (2p-1)^n \end{array}\right),$$

et $\mathbf{P}\left[X_n=X_0\right]=\frac{1+(2p-1)^n}{2}$. On peut remarquer que $\lim_{n\to+\infty}\mathbf{P}\left[X_n=X_0\right]=\frac{1}{2}$.

Exercice 6:

On considère d balles (d > 1) numérotées de 1 à d et réparties dans deux urnes A et B. L'état initial des urnes est de X_0 balles dans l'urne A et donc de $d - X_0$ balles dans l'urne B. Un changement d'état est modélisé de la façon suivante : « on tire un numéro de balle selon la loi uniforme sur $\{1, 2, \ldots, d\}$ et à un tirage i on déplace la balle numéro i d'une urne à l'autre. »

Le nombre de balles dans l'urne A après n changement d'états est noté X_n et la chaîne de Markov $(X_n)_{n\geqslant 0}$ est appelée chaîne d'Ehrenfest.

- 1. Déterminer la matrice de transition P de la chaîne $(X_n)_{n\geqslant 0}$? La chaîne est-elle homogène?
- 2. Si X_0 est distribuée suivant une loi binomiale $B(d, \frac{1}{2})$, déterminer la distribution de X_1 .
- 3. On suppose maintenant d=3. Calculer P, P^2 et P^3 . Si $\mu_0=(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$ est la loi initiale de la chaîne, déterminer les lois μ_1, μ_2 et μ_3 de X_1, X_2 et X_3 .

Corrigé:

1. L'espace des états est $E = \{0, 1, \dots, d\}$. On modélise les résultats des tirages par une suite $(U_n)_{n \ge 1}$ de v.a. i.i.d. uniforme sur $\{1, 2, \dots, d\}$. Alors

$$X_{n+1} = X_n + \mathbf{1}_{\{U_{n+1} \in B\}} - \mathbf{1}_{\{U_{n+1} \in A\}},$$

où l'événement $\{U_n \in B\}$ signifie que la balle de numéro U_n est dans B. La matrice de transition de la chaîne $(X_n)_{n\geqslant 0}$ est définie par $P_n(x,y)=\mathbf{P}\left[X_{n+1}=y\mid X_n=x\right]$. Donc il est clair que $P_n(x,y)=0$ si $y\notin\{x-1;x+1\}$ d'autre part

$$P_n(x,y) = \begin{cases} \mathbf{P} \left[U_{n+1} \in B \mid X_n = x \right] = \frac{x}{d} & \text{si } y = x - 1 \text{ et } x \geqslant 1, \\ \mathbf{P} \left[U_{n+1} \in A \mid X_n = x \right] = \frac{d-x}{d} & \text{si } y = x + 1 \text{ et } x \leqslant d - 1, \end{cases}$$

2. Supposons pour tout $x \in \{0, \dots, d\}$, $\mathbf{P}[X_0 = x] = \frac{C_d^x}{2^d}$. Alors

$$\mathbf{P}[X_1 = y] = \sum_{x=0}^{d} \mathbf{P}[X_0 = x] P(x, y)$$