МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации

Студент гр. 9382	 Савельев И.С.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Изучить режимы адресации в ассемблере и формирование исполняемого кода на практике.

Задание.

Вариант 8

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2 comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды трансляции. Необходимо закомментировать ДЛЯ прохождения составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения. Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и внести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.

- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Пример используемой программы приведен ниже.; Программа изучения режимов адресации процессора Intel X86

Исходный код программы.

```
EOL EOU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
DATA SEGMENT
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 28,27,26,25,21,22,23,24
vec2 DB 20,30,-20,-30,40,50,-40,-50
matr DB -8,-7,3,4,-6,-5,1,2,-4,-3,7,8,-2,-1,5,6
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
Main PROC FAR
    push DS
    sub AX,AX
    push AX
    mov AX, DATA
    mov DS,AX
; Регистровая
    mov ax,n1
    mov cx,ax
    mov bl,EOL
    mov bh, n2
; Прямая
```

```
mov mem2,n2
    mov bx,OFFSET vec1
    mov mem1,ax
; Косвенная
    mov al,[bx]
    ;mov mem3,[bx]
; Базированная
    mov al, [bx]+3
    mov cx, 3[bx]
; Индексная
    mov di,ind
    mov al, vec2[di]
    ;mov cx,vec2[di]
; С базированием и индексированием
    mov bx,3
    mov al,matr[bx][di]
    ;mov cx,matr[bx][di]
    ;mov ax,matr[bx*4][di]
; Bap 1
    mov ax, SEG vec2
    mov es, ax
    mov ax, es:[bx]
    mov ax, 0
; Bap 2
    mov es, ax
    push ds
    pop es
    mov cx, es:[bx-1]
    xchg cx,ax
; Bap 3
    mov di,ind
    mov es:[bx+di],ax
; Bap 4
    mov bp,sp
    mov ax,matr[bp+bx]
    mov ax,matr[bp+di+si]
    push mem1
    push mem2
    mov bp,sp
    mov dx,[bp]+2
    ret 2
Main ENDP
CODE ENDS
    END Main
```

Листинг исправленной программы.

Microsoft (R) Macro Assembler Version 5.10 10/12/20 22:10:2

1-1

```
= 0024
                                   EOL EQU '$'
       = 0002
                                   ind EQU 2
       = 01F4
                                   n1 EQU 500
       =-0032
                                   n2 EQU -50
                             AStack SEGMENT STACK
       0000
       0000 0000[
                             DW 12 DUP(?)
           5555
                   ]
       0018
                             AStack ENDS
       0000
                             DATA SEGMENT
       0000
              0000
                             mem1 DW 0
       0002
              0000
                             mem2 DW 0
                             mem3 DW 0
       0004
              0000
       0006
             1C 1B 1A 19 15 16
                                   vec1 DB 28,27,26,25,21,22,23,24
           17 18
       000E
             14 1E EC E2 28 32
                                   vec2 DB 20,30,-20,-30,40,50,-40,-50
           D8 CE
          0016
                                 03
                                      04
                                            FΑ
                                                  FΒ
                      F8
                           F9
                                                                   matr
                                                                          DB
-8, -7, 3, 4, -6, -5, 1, 2, -4, -3, 7, 8, -2, -1, 5, 6
           01 02 FC FD 07 08
           FE FF 05 06
       0026
                             DATA ENDS
       0000
                             CODE SEGMENT
                       ASSUME CS:CODE, DS:DATA, SS:AStack
                             Main PROC FAR
       0000
       0000
              1E
                                  push DS
       0001
              2B C0
                                  sub AX, AX
       0003
              50
                                  push AX
       0004
              B8 ---- R
                                  mov AX, DATA
       0007
              8E D8
                                  mov DS, AX
                        ; Регистровая
       0009
              B8 01F4
                                        mov ax, n1
       000C
              8B C8
                                  mov cx,ax
              B3 24
       000E
                                  mov bl,EOL
       0010
              B7 CE
                                  mov bh, n2
                        ; Прямая
              C7 06 0002 R FFCE
       0012
                                        mov mem2, n2
       0018
              BB 0006 R
                                  mov bx, OFFSET vec1
       001B
              A3 0000 R
                                  mov mem1,ax
                        ; Косвенная
       001E
              8A 07
                                  mov al,[bx]
```

```
;mov mem3,[bx]
                      ; Базированная
       0020 8A 47 03
                                     mov al, [bx]+3
       0023
             8B 4F 03
                                     mov cx,3[bx]
                      ; Индексная
             BF 0002
       0026
                                     mov di,ind
       0029
             8A 85 000E R
                                     mov al,vec2[di]
                          ;mov cx,vec2[di]
      Microsoft (R) Macro Assembler Version 5.10
10/12/20 22:10:2
                                                                Page
1-2
                      ; С базированием и индекси
                      рованием
       002D
             BB 0003
                                     mov bx,3
       0030
             8A 81 0016 R
                                     mov al,matr[bx][di]
                          ;mov cx,matr[bx][di]
                          ;mov ax,matr[bx*4][di]
                      ; Bap 1
       0034
             B8 ---- R
                                mov ax, SEG vec2
       0037
             8E C0
                                mov es, ax
       0039
             26: 8B 07
                                mov ax, es:[bx]
       003C
             B8 0000
                                    mov ax, 0
                      ; Bap 2
       003F
             8E C0
                                mov es, ax
       0041
             1E
                                push ds
       0042
             07
                                pop es
             26: 8B 4F FF
       0043
                                     mov cx, es:[bx-1]
       0047
                                xchg cx,ax
                      ; Bap 3
             BF 0002
       0048
                                     mov di,ind
       004B
             26: 89 01
                                mov es:[bx+di],ax
                      ; Bap 4
       004E
             8B EC
                           mov bp,sp
                      ; mov ax,matr[bp+bx]
                      ; mov ax,matr[bp+di+si]
                      ; push mem1
                     ; push mem2
       0058 8B EC
                                mov bp,sp
       005A 8B 56 02
                                     mov dx,[bp]+2
       005D CA 0002
                                     ret 2
       0060
                           Main ENDP
       0060
                           CODE ENDS
                          END Main
      Microsoft (R) Macro Assembler Version 5.10
10/12/20 22:10:2
```

Symbols-1

Segments and Groups:

Class		N a m e	Length Align (Combine
	ASTACK CODE DATA		0018 PARA STACK 0060 PARA NONE 0026 PARA NONE	
	Symbols:			
		Name	Type Value Att	r
	EOL		NUMBER 0024	
	IND		NUMBER 0002	
Length	MAIN		F PROC 0000	CODE
J	MATR		L BYTE 0016 DATA L WORD 0000 DATA	
	MEM2		L WORD 0002 DATA L WORD 0004 DATA	4
	N1		NUMBER 01F4 NUMBER -0032	
	VEC1 VEC2		L BYTE 0006 DATA L BYTE 000E DATA	
	@FILENAME		TEXT 0101h TEXT lab2 TEXT 510	

⁷⁹ Source Lines

47820 + 459440 Bytes symbol space free

- 0 Warning Errors
- 0 Severe Errors

Обработка результатов эксперимента.

Были закомментированы 7 ошибок.

mov mem3,[bx]

⁷⁹ Total Lines

¹⁹ Symbols

error A2052: Improper operand type

В ассемблере нельзя с помощью команды mov считать объекты из одного участка памяти и записать в другой. Для этого нужно использовать 2 команды mov и использовать регистры общего назначения, например АХ.

mov cx,vec2[di]

warning A4031: Operand types must match

Регистр сх занимает в памяти два байта, а переменная vec2 является массивом каждый элемент которого занимает в памяти один байт. Переменные между которыми происходит обмен данных должны занимать в памяти одинаковое количество места.

mov cx,matr[bx][di]

warning A4031: Operand types must match

Тоже предупреждение что и выше о не соответствие размерности операнд. cx 2 байта, а matr[bx][di] один байт.

mov ax,matr[bx*4][di]

error A2055: Illegal register value

Нельзя умножать 16-битные регистры

mov ax, matr[bp+bx]

error A2046 Multiple base registers

Нельзя использовать более одного регистра

mov ax,matr[bp+di+si]

error A2046 Multiple base registers

Нельзя использовать более одного регистра

push mem1

push mem2

Семантическая ошибка, для завершения программы и возвращения в DOS необходимо, чтобы вершина стека содержала смещение и сегмент начала PSP.

А если эти команды выполняться, то вершина стека содержит mem2 и mem1 и при выполнении команды ret 2 управление перейдет на адрес mem1:mem2 и программа не сможет корректно завершится.

Протокол работы на компьютере.

CS=1A0A, DS=19F5, ES=19F5, SS=1A05

Адрес команды	Символический код команды	16 - ричный код команды	Содержимое регистров и ячеек памяти	
			До выполнения	После выполнения
0000	PUSH DS	1E	SP=0018 STACK=+0 0000 IP=0000	SP=0016 STACK=+0 30B0 IP=0001
0001	SUB AX,AX	2BC0	AX=0000 IP=0001	AX=0000 IP=0003
0003	PUSH AX	50	AX=0000 SP=0016 STACK=+0 19F5 IP=0003	AX=0000 SP=0014 STACK=+0 0000 +2 19F5 IP=0004
0004	MOV AX, 1A07	B8071A	AX=0000 IP=0004	AX=1A07 IP=0007
0007	MOV DS,Ax	DS,AX	AX=1A07 DS= 19F5 IP=0007	AX=1A07 DS=1A07 IP=0009
0009	MOV AX,01F4	B8F401	AX=1A07 IP=0009	AX=01F4 IP=000C
000C	MOV CX,AX	8BC8	AX=01F4 CX=00A8 IP=000C	AX=01F4 CX=01F4 IP=000E

000E	MOV BL, 24	B324	BX=0000 IP=000E	BX=0024 IP=0010
0010	MOV BH,CE	B7CE	BX=0024 IP=0010	BX=CE24 IP=0012
0012	MOV [0002],FFCE	C7060200CE FF	IP=0012 DS[0002]=00 DS[0003]=00	IP=0018 DS[0002]=CE DS[0003]=FF
0018	MOV BX, 0006	BB0600	BX=CE24 IP=0018	BX=0006 IP=001B
001B	MOV [0000],AX	A30000	AX=01F4 IP=001B DS[0000]=00 DS[0001]=00	AX=01F4 IP=001E DS[0000]=F4 DS[0001]=01
001E	MOV AL,[BX]	8A07	AX=01F4 DS[BX]= DS[0006]=01 IP=001E	AX=011C DS[BX]= DS[0006]=01 IP=0020
0020	MOV AL,[BX+03]	8A4703	AX=011C DS[BX+03]= DS[0009]=19 IP=0020	AX=0119 DS[BX+03]= DS[0009]=19 IP=0023
0023	MOV CX,[BX+03]	8B4F03	CX=01F4 DS[BX+03]= DS[0009]=19 DS[000A]=15 IP=0023	CX=0804 DS[BX+03]= DS[0009]=19 DS[000A]=15 IP=0026
0026	MOV D1,0002	BF0200	DI=0000 IP=0026	DI=0002 IP=0029
0029	MOV AL,[000E+DI]	8A850E00	AX=0119 DS[000E+DI]= DS[0010]=EC IP=0029	AX=01EC DS[000E+DI]= DS[0010]=EC IP=002D
002D	MOV BX,0003	BB0300	BX=0006 IP=002D	BX=0003 IP=0030
0030	MOV AL,[0016+BX+DI]	8A811600	ES=19F5 AX=01EC IP=0037	ES=19F5 AX=01FB IP=0039
0034	MOV AX, 1A07	B8C230	AX=01FB ES=19F5 ES[BX]=ES[000 3]=FF	AX=1A07 ES=19F5 ES[BX]=ES[0003]=FF

			ES[0004]=00 IP=0039	ES[0004]=00 IP=003C
0037	MOV ES,AX	8EC0	AX=1A07 IP=003C	AX=1A07 IP=003F
0039	MOV AX,ES:[BX]	268B07	ES=1A07 AX=1A07 IP=003F	ES=1A07 AX=00FF IP=0041
003C	MOV AX,0000	B80000	AX=00FF IP=003C	AX=0000 IP=003F
003F	MOV ES,AX	8EC0	ES=1A07 AX=0000 IP=003F	ES=0000 AX=0000 IP=0041
0041	PUSH DS	1E	DS=1A07 SP=0014 STACK=+0 0000 +2 19F5 IP=0041	DS=1A07 SP=0012 STACK=+0 1A07 +2 0000 +4 19F55 IP=0042
0042	POP ES	07	SP=0012 ES=0000 STACK=+0 1A0 7 +2 0000 +4 19F55 IP=0042	SP=0014 ES=1A07 STACK=+0 0000 +2 19F55 IP=0043
0043	MOV CS,ES:[BX-01]	268B4FFF	CX=1519 ES=1A07 ES[BX-01]= ES[0002]=CE ES[0003]=FF IP=0043	CX=FFCE ES=1A07 ES[BX-01] =ES[0002]=CE ES[0003]=FF IP=0047
0047	XCHG AX,CX	91	AX = 0000 CX = FFCE IP=0047	AX=FFCE CX=0000 IP=0048
0048	MOV DI,0002	8BEC	DI=0002 IP=0048	DI=0002 IP=004B
004B	MOV ES:[BX+DI], AX	FF360000	ES=1A07 ES[BX+DI] = [0005]= 00 ES[0006] = 01 AX=FFCE IP=004B	ES=1A07 ES[0005] = CE ES[0006] = FF AX=FFCE IP=004E

004E	MOV BP,SP	FF360200	DS[0002] = CE DS[0003] = FF SP = 0014 IP=0054	DS[0002] = CE DS[0003] = FF SP = 0014 IP=0058
0050	MOV BP,SP	8BEC	SP=0014 BP=0014 IP=0058	SP=0014 BP=0014 IP=005A
0052	MOV DX,[BP+02]	8B5602	DX=0000 SS[BP+02] = SS[0012]=F4 SS[0013]=01 IP=005A	DX=19F5 SS[BP+02] = SS[0012]=F4 SS[0013] = 01 IP=005D
0055	RET FAR 0002	CA0200	CS=1A0A SP=0014 IP=005D STACK=+0 0000 +2 19F5	CS=1A0A SP=0018 IP=0000 STACK=+0 7244 +2 0000

Вывод.

В результате выполнения лабораторной работы были изучены режимы адресации в ассемблере и получены навыки по отладке программ.