注:周一下午5、6节

实验 1.6 运算放大电路及其信号处理电路的分析

实验目的:

通过本实验,了解运算放大器参数及特性,掌握信号处理电路原理及其设计方法。

实验原理:

1、运算放大器的特性及各参数的测量

运算放大器是应用广泛的集成电器,外接适当的反馈网络可组成各种类型的信号处理电路。

运算放大器的主要参数有开环电压增益 A_d ,共模抑制比 CMRR,输入阻抗 R_i 、输出阻抗 R_o ,上下截止频率 f_H 、 f_L ,以及单位增益带宽 f_C 。

理性运放的开环电压增益 A_d ,共模抑制比 CMRR,输入阻抗 R_i 以及上截止频率 f_H ,单位增益带宽 f_C 均为 ∞ ,而输出阻抗 R_o ,下截止频率 f_L 均为 0。

实验中运算放大器各参数测量方法如下:

① Ad 、 f_H 、 f_C 的测量

开环电压增益

$$A_{d} = \frac{V_{o}}{V_{i}} = \left(1 + \frac{R1}{R2}\right) \frac{V_{o}}{V1}$$

f_H: 当A_d下降为中频增益的 1/√2时的输入信号的频率

fc: 当A_d下降为1是输入信号的频率

② CMRR 的测量

差模信号增益 Ad≈R2/R1

共模信号增益 Ac=Vo/Vi

共模抑制比

CMRR=20lg
$$\left| \frac{Ad}{Ac} \right| = 20lg \left| \frac{R2}{R1} \frac{Vi}{Vo} \right|$$

③ ΔVo、 Δt的测量

转移速率
$$SR=\left|\frac{\Delta Vo}{\Delta t}\right|$$

ΔVo: 输出电压由 10%峰峰值至 90%峰峰值的电压差

Δt: 输出电压由 10%峰峰值至 90%峰峰值的时间差

2、信号处理电路

加法运算电路

$$Vo(t) = -\left(\frac{Rf}{R1}Vi1(t) + \frac{Rf}{R2}Vi2(t)\right)$$

积分运算电路

$$Vo(t) = Vo(0) - \frac{1}{RC} \int_0^t Vi(\tau) d\tau$$

微分运算电路

$$Vo(t) = -RC\frac{d}{dt}Vi(t)$$

3、有源滤波器

滤波器是一种频率选择系统,其频率响应只在特定的某段频率范围内具有较大的值,对于其他频率的信号有衰减作用。滤波器按功能可分为低通、高通、带通、带阻。根据组成元件可分为无源滤波器(含电容、电感等无源元件)和有源滤波器(含晶体管、运算放大器等有源器件)。

有源滤波器的优点是通带内有增益,对信号有放大作用,带负载能力强;缺点是不适合高频,高电压,大电流情况。

- 4、有源滤波器的设计(设计参数为截止频率 f_{C} 、阻带衰减斜率($dB/10f_{C}$)电路增益)
- 1) 根据阻带衰减斜率确定电路的阶数 N(N) 为奇数,则由一个一阶系统和 (N-1) /2 个二阶系统组成; N 为偶数,则由 N/2 个二阶系统构成; 2) 根据截止频率 f_C 选定电容数值 C; 3) 根据增益 A 和截止频率以及选定的电容 C,确定电路中 R 的值。

实验方法:

- 1、运算放大器特性分析
- (1)运算放大器开环增益与带宽测量:信号源:VAC(0Vdc,1Vac)。仿真设置:ACSweep/Noise:Logarithmic(Decade),Start(0.001Hz),End(100kHz),point/Decade(100)
- (2) 运算放大器共模抑制比测量信号源:信号源:正弦电压 VSIN VOFF=0V VAMPL=1V,FREQ=100Hz。仿真设置: TimeDomain(Transient):Run to 50ms Starting saving data(0ms),Maximum step(0.05ms)
- (3)运算放大器转移速率测量:信号源: VPULE

(V1=0V,V2=1V,TD=TR=TF=0us,PW=5us,PER=10us)。仿真设置: Time

Domain(Transient):Run to(100us),Starting saving data(0us),Maximum step(0.1us)

- 2、加法运算电路分析:信号源:VDC(Vi1=0.5Vdc,Vi2=0.25Vdc)。仿真设置:DC Sweep:Analysis type(DC Sweep),Option(Primary Sweep),Sweep Variable Voltage source Name(Vi1),Sweep type (Linear) Start(-2V) End(1.5V) Increment0.5V).
- 3、积分与微分电路瞬态分析: 信号源: VPULE(V1=-0.5V V2=0.5V TD=TR=TF=0us

PW=1ms,PER=2ms)。仿真设置: Time Domain(Transient):Run to(10ms),Starting saving data(0ms),Maximum step(0.01ms)

实验数据记录:

1、运算放大器特性分析

交流	开环增益			-3dB 带宽			增益带宽乘积	
分析	V _o /V1	A_d	A_d	f _H		A _d •f _H		
		(10 ⁵)	(dB)	(Hz) 5.0279		(MHz)		
	198.82	12.13	121.68			6.1		
瞬态	共模抑制比			转移速率			不失真幅度	
分析	V_{ipp}	V_{opp}	CMRR	$\triangle V_o$	∆t	SR	f	V_{opp}
	(V)	(mV)	(dB)	(V)	(us)	(V/us)	(kHz)	(V)
	2	62.82	90.05	0.814	1.666	0.489	20	8.597

2、加运算电路直流扫描分析

V _{i1} (V)	-2.0	-1.5	-1.0	-0.5	0.0	0.5	1.0	1.5
V _{i2} (V)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
理论 V。(V)	-17.5	-12.5	-7.5	-2.5	2.5	7.5	12.5	17.5
测量 V。(V)	-11.82	-11.82	-7.500	-2.500	2.499	7.499	11.816	11.826

3、积分与微分运算电路瞬态分析

积分	R ₁ (kΩ)	100	10	10	1000000
运算	R(Ω)	110	510	510	510
电路	V _{opp} (V)	20.671	4.837	///	///
	输出波形	///	见附图 7	见附图8	见附图 9
微分	$R_1(\Omega)$	560	560	2000	0.001
运算	R(kΩ)	5.1	11	11	11
电路	V _{opp} (V)	0.999	2.1538	///	///
	输出波形	///	见附图 11	见附图 12	见附图 13

4、有源滤波器电路交流扫描分析

滤波器	_	一阶	二阶		
	低通	高通	低通	高通	
增益	2	1	2	0.987	
А					
截止频率	10	10	10.161	10.161	

f _c (kHz)				
10 f _c 处衰减	-20.17	///	-40.2	///
(dB)				
0.1 fc 处衰减	///	-20	///	-40
(dB)				

实验数据分析

1、 放大器特性分析

由数据可以看出,虽然实际的集成运算放大器的开环差模电压增益并不 是理想的无穷大,但其值也是非常大的,所以在不精确的计算中可以当做无 穷大来计算。实验测得的其他各项数值均与其理论值相符。

2、加运算电路直流扫描分析

由数据可见在运算放大器的线性区,测量值与理论值是很接近的,但超 出了运算放大器的线性范围,所得结果就与理论值存在较大偏差。因此要保证运 算的准确性,应确保运算放大器工作在线性区。

3、 积分与微分运算电路瞬态分析

积分电路:输入为方波,侧理论上输出应为三角波。但是,在实际情况中,由于阻值的不同,呈现出各种不稳定的波形。在开始阶段,波形都呈现出下降的趋势,过了几个周期后才能稳定。这是由于实际积分电路为降低电路的直流增益,在积分电容上并联了电阻 R1,故实际电路输出表达式中含有 $e^{-\frac{t}{R1C}}$ 因子。因此电路在一段时间内有随时间衰减的趋势,而这个衰减的过渡时间由 $R_1\cdot C$ 决定。R1 越大,则过渡的时间越短,波形能更快的达到稳定。因此,第三个波形是最理想的。

微分电路:由于理想微分电路的阻尼因子 $\zeta \ll 1$,电路会出现难以衰减的高频振荡,所以在实际微分电路中,通常在电容 C 上串联小电阻 R_1 ,以增加电路的阻尼系数,降低电路的高频增益,使高频振荡迅速衰减,电路工作特性更理想。通过对不同阻值下波形的观察,发现 R_1 过小会引起输出出现震荡,而 R_1 过大则又会引起输出的失真。所以在实际电路中,为了保证理想的运算,应选取大小适中的 R_1 。

4、有源滤波器电路交流扫描分析

比较一阶高通和二阶高通的频响曲线可以看到,二阶高通的通频带要比一阶宽,通频带更为平缓,而过渡带要比一阶窄,也更为陡峭。可见在实际应用中二阶高通电路的滤波性能要好于一阶电路。可以推测滤波器的结束越高滤波性能越好。

附图:

1、运算放大器交流分析,测量开环增益、带宽

2、运算放大器瞬态分析,测量共模抑制比及 Vopp

3、运算放大器瞬态分析,测量转移速率

4、不失真幅度

5、加运算电路直流扫描分析

6、积分运算电路 R1=100k R=110

7、积分运算电路 R1=100k R=510

8、积分运算电路 R1=10k R=510

9、积分运算电路 R1=1000000k R=510

10、微分运算电路 R1=560 R=5.1k

11、微分运算电路 R1=560 R=11k

12、微分运算电路 R1=2000 R=11k

13、微分运算电路 R1=0.001 R=11k

14、一阶低通有源滤波器交流扫描分析

15、一阶高通有源滤波器交流扫描分析

16、二阶低通有源滤波器交流扫描分析

17、二阶高通有源滤波器交流扫描分析

