Devoir n°15 bis. Matrices stochastiques et modèle d'Ehrenfest

On note Δ l'ensemble des vecteurs $X = (x_1, ..., x_n) \in \mathbb{R}^n$ tels que $\sum_{i=1}^n x_i = 1$. On note $\Omega = (1, 1, ..., 1)$.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique ssi $\begin{cases} \text{les coefficients sont positifs, c'est-å-dire } \forall (i, j), \ a_{ij} \geq 0 \\ A\Omega = \Omega, \text{ c'est-å-dire ssi } \forall i, \sum_{j=1}^n a_{ij} = 1. \end{cases}$

1) a) Montrer que dans $\mathcal{M}_n(\mathbb{R})$, un produit de deux matrices stochastiques est stochastique.

b) Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique, il en est de même des puissances A^k , pour tout $k \in \mathbb{N}$.

(2) a) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique.

Montrer que toute valeur propre $\lambda \in \mathbb{C}$ de A est de module ≤ 1 , c'est-à-dire vérifie $|\lambda| \leq 1$.

Indication: Considérer X vecteur propre non nul, et la p-ième ligne de $AX = \lambda X$, où $|x_p| = \max_{1 \le i \le p} (|x_i|)$.

b) On suppose de plus $a_{ii} > 0$ pour tout $1 \le i \le n$. Montrer que 1 est la seule valeur propre de A de module 1.

Indication: Considérer à nouveau p tel que $|x_p|=\max_{1\leq i\leq p}(|x_i|)$. Et justifier que $|\lambda-a_{pp}|\leq \sum_{j\neq p}a_{pj}$.

3) Modèle d'Ehrenfest : Il s'agit d'un modèle utilisé dans l'étude des mouvements des molécules :

On suppose que M molécules sont contenues dans deux urnes.

On note N_0 la variable aléatoire donnant le nombre de molécules contenues dans la première urne.

A chaque unité de temps, une molécule est choisie au hasard et elle est changée d'urne avec une probabilité $\frac{1}{2}$.

On désigne par N_k le nombre de molécules contenues dans la première urne après k unités de temps.

On considère $X_k = (P(N_k = i))_{0 \leq i \leq M}$ le vecteur de \mathbb{R}^{M+1} donnant la loi de N_k .

On considérera la matrice $B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2M} & 0 & 0 & 0 \\ \frac{M}{2M} & \frac{1}{2} & \frac{2}{2M} & 0 & 0 \\ 0 & \frac{M-1}{2M} & \frac{1}{2} & \ddots & 0 \\ 0 & 0 & \ddots & \frac{1}{2} & \frac{M}{2M} \\ 0 & 0 & 0 & \frac{1}{2M} & \frac{1}{2} \end{pmatrix} \text{ d'ordre } M+1.$

Exprimer, en justifiant votre réponse, $P(N_{k+1}=i)$ en fonction des $P(N_k=j)$. On en déduit $X_{k+1}=BX_k$.

Montrer que $E(N_{k+1}) = \frac{1}{2} + \left(1 - \frac{1}{M}\right) E(N_k)$. En déduire la limite de $E(N_k)$ lorsque k tend vers $+\infty$.

La matrice ^tB est une matrice stochastique et vérifie les propriétés du 2).

On admet pour la suite que le polynôme caractéristique de B est scindé à racines simples dans $\mathbb{C}[X]$.

On considère le vecteur Z défini par $\forall i \in \{0, 1, ..., M\}, z_i = 2^{-M} {M \choose i}$.

Justifier que Z est l'unique vecteur appartenant à Δ et vérifiant BZ=Z.

Montrer que, quelle que soit la valeur de X_0 , on a : $\lim_{k\to+\infty} X_k = Z$. Retrouver le résultat du b).