

A. Tick (\checkmark) the correct option.

- 1. Algorithm is a _____ of steps to perform a task.
 - **G** c. Sequence
- 2. Which of the following is not a characteristic of algorithm?
 - **3** c. Compressibility
- 3. Which of the following statements is true?
 - **3** b. A decision box can have two exit points
- 4. Which of the following symbols will you use to represent addition of two numbers?
 - (F c. Process
- 5. Eating food is a process of
 - **3** c. Loop Construct

B. Write T for True and F for False.

- 1. An algorithm is a graphical representation of the steps used to solve a problem.
 - F (That's a flowchart, not an algorithm.)
- 2. A connector is used to connect two different parts of a flowchart.
 - (₹ T
- 3. The direction of flow of data in a flowchart is from bottom to top.
 - \mathcal{F} (It is from top to bottom or left to right.)
- 4. When an algorithm is executed, it should terminate after a certain or finite number of steps.
 - T
- 5. An algorithm can be converted into a program.
 - (F)

C Write the functions of the following Flowchart symbols:

- 1. **Start/Stop (Ellipse):** Indicates the beginning or end of a flowchart.
- 2. **Input/Output (Parallelogram):** Used to take input from the user or display output.
- 3. **Process (Rectangle):** Represents a process or action to be performed.
- 4. **Decision (Diamond):** Used to check a condition; has two outputs (Yes/No).
- 5. **Connector** (Circle): Connects two different parts of a flowchart.

D. Answer the following.

1. What do you understand by the term loops? How do you represent loops in algorithms and flowcharts? Explain with an example.

(F A **loop** is a process in which a set of instructions is repeated multiple times until a condition is met.

- In Algorithm: we use steps like "Repeat until condition" or "Go to Step X."
- **In Flowchart:** a decision box checks the condition, and arrows loop back to repeat steps.

Example (Print numbers 1 to 5):

- Algorithm:
 - 1. Start
 - 2. Set A = 1
 - 3. Print A
 - 4. A = A + 1
 - 5. If $A \le 5$, go to Step 3
 - 6. Stop
- Flowchart: A loop with a decision diamond checking if $A \le 5$.

2. State the significance of using a flowchart.

- Flowcharts provide a clear **visual representation** of problem-solving steps.
- They make it easier to **understand**, **analyze**, **and debug** algorithms.
- Help programmers to **communicate logic** effectively before coding.
- Reduce errors by planning properly.

3.Briefly explain the limitations of an algorithm.

- Writing an algorithm takes **time**.
- Difficult to represent **branching and loops** in simple text form.
- When there are **too many steps**, algorithms become lengthy and hard to understand.

4 Write an algorithm to find the area of a rectangular field.

Algorithm:

Step-1: Start

Step2: Take input length (L)

Step-3: Take input breadth (B)

Step-4: Area = $L \times B$

Step-5: Print Area

Step-6: Stop

Start

5. Draw a flowchart to check if a given letter is a vowel or not.

Algorithem (description):

Step-1: Start

Step-2: Input a letter

Step-3: Decision: check, is the letter = A, E, I, O, U (or a, e, i, o, u)?

Step-4: IF Yes \rightarrow Print "Vowel"

Step-5: IF No → Print "Not a vowel"

Step-6: Stop

Some extra questions

Fill in the Blanks (with Answers)

- 1. A set of instructions to solve a problem is called an **algorithm**.
- 2. A **flowchart** is the graphical representation of an algorithm.
- 3. The **ellipse** symbol is used to represent Start and Stop in a flowchart.
- 4. A <u>rectangle</u> is used to show processing in a flowchart.
- 5. A parallelogram is used to take input or display output in a flowchart.
- 6. A <u>diamond</u> shape in a flowchart is used to represent a decision.
- 7. An algorithm should always terminate after a **finite** number of steps.
- 8. Every algorithm must produce at least one **output**.
- 9. The arrows in a flowchart are called **flow lines**.
- 10. A **connector** is used to join two different parts of a flowchart.
- 11. The process of repeating steps in an algorithm is called a **loop**.
- 12. Eating food step-by-step is an example of a **loop construct**.
- 13. Writing an algorithm helps in finding and eliminating **errors** before coding.
- 14. Algorithms are not dependent on any computer <u>language</u>.
- 15. Flowcharts make it easier to <u>understand</u> the logic of a problem.
- 16. The first flowcharts were introduced by Frank Gilberth in 1921.
- 17. An algorithm is always written in a **step-by-step** manner.
- 18. A decision box in a flowchart has at least **two exit points**.
- 19. When a condition is checked in a flowchart, the two possible answers are <u>Yes</u> and **No**.
- 20. The three main steps in problem solving are: writing an algorithm, creating a flowchart, and converting it into a **program**.

Multiple Choice Questions (20)

- **1.** An algorithm is a:
- a) Diagram
- b) Flowchart
- c) Sequence of steps
- d) Program
- **3** Answer: c) Sequence of steps
- **2.** Which of the following is a graphical representation of an algorithm?
- a) Chart
- b) Flowchart
- c) Program
- d) Diagram
- (F Answer: b) Flowchart

♂ True	introduced flowcharts in 1921.
	data flows from bottom to top.
False (It flows to	op to bottom or left to right.)
17. Algorithms are	difficult to understand because they are written in computer code.
_	written in simple steps, language-independent.)
	by step is an example of a loop construct.
True	
19. Flowcharts use s	shapes and symbols to represent instructions.
	of algorithms is that writing them may take more time.
True	n algorithms is that writing them may take more time.
Extra Q	uestions and Answers (10)
. Define an algorit	hm.
☐ An algorithm is	a step-by-step sequence of instructions to solve a problem.
2. Write any two ch	aracteristics of an algorithm.
	t must end after finite steps.
(ii) Definiteness	 each instruction must be clear.
3. Which symbol is	used in a flowchart to represent input/output?
∄ A parallelogram	
I. What is the purpo	ose of a decision symbol in a flowchart?
To check a cond	ition and give outputs based on Yes/No.
5. Who introduced t	the first flowchart and in which year?
Frank Gilberth in	n 1921.
6. What are flow lin	nes used for in a flowchart?
☐ To show the dire	ection of the flow of instructions.
7. Give one advanta	age of writing an algorithm.
It helps find and	eliminate errors before converting it to a program.
3. Give one limitation	on of algorithms.
	ithm takes more time.
	teps involved in solving a problem using computers.
🖫 (i) Writing an alg	
🖫 (ii) Developing a	
͡ᢖ (iii) Converting i	into a program
	rt symbol is used to represent the start and end of a program?
An ellipse.	

Short-Answer Descriptive Questions (10)

1. What is an algorithm? Give an example.

(F) An algorithm is a step-by-step procedure to solve a problem. *Example:* To add two numbers:

- 1. Start
- 2. Input two numbers
- 3. Add the numbers
- 4. Display the sum
- 5. Stop

2. Write any three characteristics of a good algorithm.

(F) A good algorithm must have:

- 1. **Finiteness** it must end after a finite number of steps.
- 2. **Definiteness** instructions should be clear and unambiguous.
- 3. **Input/Output** it must have specified input and output.

3. What is a flowchart? Why is it used?

(F) A flowchart is a diagram that uses symbols to represent the steps of an algorithm. It is used because it makes the logic easier to understand and helps in finding errors before programming.

4. Explain the use of the decision symbol in a flowchart.

The decision symbol (diamond) is used to check conditions. It has two paths, usually labeled **Yes** and **No**, which help in choosing the correct flow of execution.

5. What are flow lines in a flowchart?

Flow lines are arrows that show the direction of the sequence of steps in a flowchart. They connect different symbols.

6. What is the difference between an algorithm and a flowchart?

(F) An algorithm is written in simple English step-by-step, while a flowchart is a graphical representation of an algorithm using symbols.

7. Mention one advantage and one disadvantage of flowcharts.

- (F) Advantage: Flowcharts make it easy to understand the logic of a problem.
- © Disadvantage: Flowcharts are time-consuming to draw and modify.

8. Who introduced flowcharts and when?

Flowcharts were first introduced by Frank Gilberth in 1921.

9. Why are algorithms important in computer programming?

(F) Algorithms help in solving problems step-by-step, making programming easier, systematic, and error-free.

10. Write the three main steps of problem solving using computers.

The three steps are:

- 1. Writing an algorithm
- 2. Developing a flowchart

3. Converting into a program

Long-Answer Descriptive Questions (10)

1. Explain the term algorithm. Write an algorithm to find the largest of two numbers.

(F) An algorithm is a step-by-step sequence of instructions designed to solve a problem.

Algorithm to find the largest of two numbers:

- 1. Start
- 2. Input two numbers A and B
- 3. If A > B, then Largest = A
- 4. Else Largest = B
- 5. Print Largest
- 6. Stop

2. Write the advantages and disadvantages of algorithms.

☐ Advantages:

- 1. Easy to understand as they use simple English.
- 2. Helps to detect errors before programming.
- 3. Can be used for any programming language.

Tolisadvantages:

- 1. Writing algorithms takes more time.
- 2. They cannot show the actual logic visually.
- 3. For complex problems, algorithms become lengthy.

3. What is a flowchart? Draw and explain the basic symbols used in flowcharts.

(3) A flowchart is a diagram that represents an algorithm using symbols and arrows.

Symbols:

• Ellipse (Oval): Start/Stop

• **Rectangle:** Processing

• Parallelogram: Input/Output

Diamond: DecisionArrow: Flow lines

4. Write the differences between algorithms and flowcharts.

(F Algorithm:

- 1. Written in step-by-step sentences.
- 2. Easy to write but difficult to visualize.
- 3. Language-independent.

(₹ Flowchart:

- 1. Represented using symbols.
- 2. Easier to understand visually.
- 3. Takes more time to draw and modify.

5. Write an algorithm and draw a flowchart to add two numbers.

☼ Algorithm:

- 1. Start
- 2. Input A and B
- 3. Sum = A + B
- 4. Print Sum
- 5. Stop

☞ Flowchart:

 $(Start \rightarrow Input A, B \rightarrow Process: Sum = A + B \rightarrow Output: Sum \rightarrow Stop)$

6. Write an algorithm and flowchart to check whether a number is even or odd.

☐ Algorithm:

- 1. Start
- 2. Input N
- 3. If N % 2 = 0, then print "Even"
- 4. Else print "Odd"
- 5. Stop

Flowchart:

(Start \rightarrow Input N \rightarrow Decision: N%2=0 \rightarrow Yes: Even, No: Odd \rightarrow Stop)

7. Explain the importance of flowcharts in problem solving.

© Flowcharts are important because:

- 1. They provide a clear visual understanding of logic.
- 2. Easy to detect mistakes before coding.
- 3. Saves time in debugging.
- 4. Acts as a blueprint for writing programs.
- 5. Can be used for documentation and training purposes.

8. Write an algorithm and flowchart to calculate the sum of the first 10 natural numbers.

☐ Algorithm:

- 1. Start
- 2. Set Sum = 0, i = 1
- 3. Repeat while $i \le 10$

$$\circ$$
 Sum = Sum + i

$$\circ$$
 $i = i + 1$

- 4. Print Sum
- 5. Stop

☞ Flowchart:

(Start \rightarrow Initialize Sum=0, i=1 \rightarrow Decision: i \leq 10 \rightarrow Yes \rightarrow Sum=Sum+i, i=i+1 \rightarrow Loop back \rightarrow No \rightarrow Print Sum \rightarrow Stop)

