Problem 1 (12). Show that the quotient map $S^1 \times S^1 \to S^2$ collapsing the subspace $S^1 \vee S^1$ point is not nullhomotopic by showing that it induces an isomorphism on H_2 . On the other hashow via covering spaces that any map $S^2 \to S^1 \times S^1$ is nullhomotopic.	
Proof.	
Problem 2 (14). A map $f: S^n \to S^n$ satisfying $f(x) = f(-x)$ for all x is called an even n Show that an even map $S^n \to S^n$ must have even degree, and that the degree must in fact be when n is even. When n is odd, show that there exist even maps of any given even degree. [Hi If f is even, it factors as a composition $S^n \to \mathbb{R}P^n \to S^n$. Using the calculation of $H_n(\mathbb{R}P^n)$ the text, show that the induced map $H_n(S^n) \to H_n(\mathbb{R}P^n)$ sends a generator to twice a general when n is odd. It may be helpful to show that the quotient map $\mathbb{R}P^n \to \mathbb{R}P^n/\mathbb{R}P^{n-1}$ induces isomorphism on H_n when n is odd.]	zero ints:) in ator
Proof.	
Problem 3 (20). For finite CW complexes X and Y, show that $\chi(X \times Y) = \chi(X)\chi(Y)$. Proof.	