Data Science Using R

Arvind R. Subramaniam

Assistant Member

Basic Sciences Division and Computational Biology Program

Fred Hutchinson Cancer Research Center

What you will learn over the next 3 lectures

- Loading, Transforming, Visualizing Tabular Data (Tidyverse)
 - readr
 - dplyr
 - ggplot2
- Working with High-Throughput Genomic Data (Bioconductor)
 - GenomicRanges
 - Biostrings
 - GenomicAlignments

Example Datasets

- Plate Reader Assay
- Flow Cytometry
- RNA-Seq

Raw Flow Cytometry Data

FSC.A	SSC.A	FITC.A	PE.Texas.Red.A	Time
79033	69338	9173	18690	3.02
101336	87574	13184	29886	3.04
51737	56161	3083	18324	3.06
79904	45085	9957	18099	3.08
124491	97305	15739	28730	3.09
54359	45015	6175	11918	3.11
64615	88989	11907	32413	3.13
109592	64132	12561	18824	3.15
58503	116384	11591	27629	3.19
38634	51511	7200	21930	3.21

 $5 \text{ cols} \times 2,720,000 \text{ rows}$

Flow Cytometry Analysis Using Tidyverse

Raw Deep Sequencing Data

TACCTGGTTGATCCTGCCAGTAGCATATGCTTGTCTAAAAANAAAAAAAA TCATTGATCATCGACACTTCGAACGCACTTGCGGCCCCGGGTAAAAAAA TCGCGCCGTCGGGCCAAAAAAAAAAAAAAAAAAAAAAGATCGGAAGAGCACAC 165,000,000 reads

Deep Sequencing Analysis Using Bioconductor

Deep Sequencing Analysis Using Bioconductor

Tidyverse Functions for Tabular Data

Import	Visualize	Transform
read_tsv	geom_point	select
	geom_line	filter
	facet_grid	arrange

□ Use tsv and csv file formats for tabular data

Tab Separated Values

```
strain mean_yfp mean_rfp mean_ratio se_ratio schp674 1270 20316 0.561 0.004 10×AAG CAAA schp675 3687 20438 1.621 0.036 10×AAG CCGC schp676 2657 20223 1.177 0.048 10×AAG CCAA schp677 3967 20604 1.728 0.03 10×AAG CCAC
```

Comma Separated Values

```
strain, mean_yfp, mean_rfp, mean_ratio, se_ratio, insert_sequence, kozak_r schp674, 1270, 20316, 0.561, 0.004, 10×AAG, CAAA schp675, 3687, 20438, 1.621, 0.036, 10×AAG, CCGC schp676, 2657, 20223, 1.177, 0.048, 10×AAG, CCAA schp677, 3967, 20604, 1.728, 0.03, 10×AAG, CCAC
```

Reading tabular data into R

```
library(tidyverse)

data <- read_tsv("tables/example_dataset_1.tsv")</pre>
```

Read tabular data into a DataFrame (tibble)

```
library(tidyverse)

data <- read_tsv("tables/example_dataset_1.tsv")

print(data, n = 5)</pre>
```

Gomment your code

```
# library to work with tabular data
library(tidyverse)

# read the tsv file into a tibble and
# assign it to the 'data' variable
data <- read_tsv("tables/example_dataset_1.tsv")

# display the contents of 'data'
print(data, n = 5)</pre>
```

Plotting a point graph

How do we show multiple experimental parameters?

strain	mea	n_ratio	insert_sequence	kozak_region
schp68	38 0.75	5	10×AGA	Α
schp68	34 1.43	7	10×AGA	В
schp69	00 1.54	1	10×AGA	С
schp68	37 2.00	4	10×AGA	D
schp68	36 2.12	1	10×AGA	E
schp68	35 2.89	3	10×AGA	F
schp68	3.52	2	10×AGA	G
schp68	3.42	4	10×AGA	Н
schp67	'9 1.14	9	10×AAG	A
schp67	'5 1.62	1	10×AAG	В
schp68	31 1.64	5	10×AAG	С
schp67	'8 1.90	6	10×AAG	D
schp67	7 7 1.72	8	10×AAG	E
schp67	'6 1.17	7	10×AAG	F
schp67	'4 0.56	1	10×AAG	G
schp68	0.51	9	10×AAG	Н

Plotting a point graph with color

Plotting a line graph

Plotting point and line graphs

'Faceting' - Plotting in multiple panels

Use the pipe %>% operator to chain commands

```
print(data, n = 3)
```

```
# A tibble: 16 x 7
  strain mean yfp mean rfp mean_ratio se_ratio insert_sequence kozak_region
  <chr>
             <int>
                      <int>
                                <dbl>
                                         <dbl> <chr>
                                                               <chr>
                     20754
1 schp688
             1748
                                 0.755
                                         0.066 10×AGA
2 schp684
             3294
                     20585
                                1.44
                                         0.021 10×AGA
                                1.54
3 schp690
              3535
                     20593
                                         0.018 10×AGA
# ... with 13 more rows
```

```
data %>%
  print(n = 3)
```

```
# A tibble: 16 x 7
  strain mean yfp mean_rfp mean_ratio se_ratio insert_sequence kozak_region
                      <int>
                                 <dbl>
                                         <dbl> <chr>
  <chr>
             <int>
                                                                <chr>
                      20754
                                 0.755
1 schp688
              1748
                                          0.066 10×AGA
                                                                Α
              3294
                      20585
                                 1.44
2 schp684
                                          0.021 10×AGA
              3535
3 schp690
                                 1.54
                      20593
                                          0.018 10×AGA
# ... with 13 more rows
```

Simple Data Manipulations – select columns

```
data %>%
  print(n = 2)
# A tibble: 16 x 7
  strain mean_yfp mean_rfp mean_ratio se_ratio insert_sequence kozak_region
                                    <dbl> <chr>
  <chr>
            <int>
                    <int>
                              <dbl>
                                                          <chr>
1 schp688
                    20754
            1748
                              0.755
                                      0.066 10×AGA
2 schp684
            3294
                              1.44
                    20585
                                      0.021 10×AGA
# ... with 14 more rows
data %>%
  select(strain, mean ratio, insert sequence, kozak region) %>%
  print(n = 2)
# A tibble: 16 x 4
  strain mean_ratio insert_sequence kozak_region
             <dbl> <chr>
  <chr>
                                 <chr>
             0.755 10×AGA
1 schp688
2 schp684
             1.44 10×AGA
# ... with 14 more rows
```

Simple Data Manipulations — filter rows

```
data %>%
  filter(kozak region == "A")
# A tibble: 2 x 7
 strain mean yfp mean rfp mean ratio se ratio insert sequence kozak region
 <chr>
            <int>
                    <int>
                              <dbl>
                                     <dbl> <chr>
                                                            <chr>>
1 schp688
                    20754
             1748
                              0.755
                                       0.066 10×AGA
2 schp679
             2528
                              1.15
                    19906
                                       0.056\ 10\times AAG
data %>%
  filter(kozak region == "A", insert sequence == "10×AGA")
# A tibble: 1 x 7
 strain mean_yfp mean_rfp mean_ratio se_ratio insert_sequence kozak_region
 <chr>
                    <int>
                               <dbl>
                                       <dbl> <chr>
                                                            <chr>
            <int>
1 schp688
             1748
                    20754
                              0.755
                                       0.066 10×AGA
                                                            Α
data %>%
  filter(kozak region == "A") %>%
  filter(insert sequence == "10×AGA")
# A tibble: 1 x 7
 strain mean yfp mean rfp mean ratio se ratio insert sequence kozak region
                                       <dbl> <chr>
 <chr>
            <int>
                    <int>
                               <dbl>
                                                            <chr>
1 schp688
            1748
                    20754
                              0.755
                                       0.066\ 10 \times AGA
                                                            Α
```

Simple Data Manipulations – arrange rows

```
data %>%
  arrange(mean_ratio)
```

```
# A tibble: 16 x 7
           mean_yfp mean_rfp mean_ratio se_ratio insert_sequence kozak_region
   strain
                                             <dbl> <chr>
   <chr>
              <int>
                        <int>
                                   <dbl>
                                                                    <chr>
                        19377
                                   0.519
 1 schp680
                                             0.01 10×AAG
                1117
                                                                    Н
 2 schp674
               1270
                        20316
                                   0.561
                                             0.004 10×AAG
                                                                    G
 3 schp688
                        20754
                                   0.755
                                             0.066 10×AGA
               1748
 4 schp679
                                   1.15
               2528
                        19906
                                             0.056 10×AAG
                        20223
                                   1.18
 5 schp676
                                             0.048 10×AAG
               2657
               3294
                        20585
 6 schp684
                                   1.44
                                             0.021 10×AGA
                                                                    В
 7 schp690
                        20593
                                   1.54
                                             0.018 10×AGA
                3535
 8 schp675
               3687
                        20438
                                             0.036 10×AAG
                                   1.62
                        20227
 9 schp681
               3705
                                   1.64
                                             0.021 10×AAG
10 schp677
                        20604
                                   1.73
                3967
                                             0.03 10×AAG
11 schp678
                                   1.91
               4378
                        20630
                                             0.01 10×AAG
                                                                    D
12 schp687
                        20860
                                   2.00
                                             0.021 10×AGA
               4658
                                                                    D
13 schp686
               5000
                        21171
                                   2.12
                                             0.023 10×AGA
14 schp685
               7379
                        22956
                                   2.89
                                             0.05 10×AGA
15 schp689
               8693
                        22649
                                   3.42
                                             0.125 10×AGA
                                                                    Н
                                   3.52
                                             0.11 10×AGA
16 schp683
                9365
                        23866
                                                                    G
```

What you learned today

Import	Visualize	Transform
read_tsv	geom_point	select
	geom_line	filter
	facet_grid	arrange