電磁気学 11/13 宿題

1. 電気容量が C_1 と C_2 の2つのコンデンサーがある. 初めに容量 C_1 のコンデンサーを電位差 V で充電する. このとき容量 C_1 のコンデンサーに蓄えられる静電エネルギーを求めよ. 次に,これを電源から切り放し,充電されていないもう一方のコンデンサーに並列につなぐと全体の静電エネルギーはどうなるか(p.61 図 1.45(b) 参照). 特に, $C_1 = 0.01[\mu F]$, $C_2 = 2.5[pF]$, V = 100[V] のときに,最終状態の静電エネルギー値はどうなるか.

2.	$p.62$ 図 $1.46(a)$ のように、面積 S の 2 枚の薄い導体極板を間隔が d_1 になるように平行に置き、一方に電荷 Q を他方に $-Q$ の電荷を与える、以下の問に答えよ、ただし、導体上の電荷密度は場所によらず一定であり、電界は両導体間にのみ存在するものとす
	る.
(a)	両極板の引き合う力を求めよ.

` '

(b) 極板に力を加えて間隔を d_2 まで拡げるとき、どれだけの仕事が必要か、

(c) p.62 図 1.46(b)のように、両極板間の電位差を常に V に保つようにして、極板間の間隔を d_1 から d_1 まで変化させるとき、どれだけの仕事が必要か.

3. 次の電界のエネルギー密度に関する式を示せ.

$$u = \frac{1}{2}\varepsilon E^2 = \frac{1}{2}DE \quad (J/m^3)$$