第三章 网络最优化简介

运输问题,最短路问题,最大流问题,最小成本流问题等有关网络最优 化通常应用于解决实际问题,并具有重要的经济意义。

就数学模型而言,它们是线性规划的几个重要特例。针对线性规划模型 已有多项式时间算法,因为网络模型的特殊数学结构,利用其结构特性 还可以设计出效率更高的求解算法。

125 / 185

3.1 运输模型

运输模型是一类特殊的线性规划,即从货源地(如生产厂家)装运货物 到目的地(如经销商仓库),其目标是确定运输表使得总运输成本最小 并满足供应和需求的限制条件。

运输模型可扩展应用于其他领域,包括投资控制,工作调度,人员指派 等。

SXC (USTC) OPERATIONS RESEARCH 2023-09 126 / 185

经典的运输问题:

工厂i的货物量 s_i , $i=1,2,\cdots,m$.

需求点j的需求量 d_i , $j = 1, 2, \dots, n$.

从工厂i到需求点j的单位货运费用cii及其发货量xii.

选取一个能使运输总费用达到最小的路径规划。

2023-09

127 / 185

SXC (USTC)

SXC (USTC)

运输问题的数学描述

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t. $\sum_{j=1}^{n} x_{ij} \leq s_{i}, i = 1, \dots, m$
 $\sum_{i=1}^{m} x_{ij} \geq d_{j}, j = 1, \dots, n$
 $x_{ij} \geq 0, \quad i = 1, \dots, m \quad j = 1, \dots, n.$ (40)

SXC (USTC) OPERATIONS RESEARCH 2023-09 129 / 185

Table: Mileage Chart

	Denver	Miami
Los Angeles	1000	2690
Detroit	1250	1350
New Orleans	1275	850

Table: Transportation Cost per Car

	Denver(j=1)	Miami(j = 2)
Los Angeles $(i = 1)$	\$80	\$215
Detroit(i = 2)	\$100	\$108
New Orleans $(i = 3)$	\$102	\$68

 SXC (USTC)
 OPERATIONS RESEARCH
 2023-09
 130 / 185

Table: MG Auto Transportation Model

	Denver		Miami		Supply
Los Angeles		80		215	
	<i>x</i> ₁₁		<i>X</i> ₁₂		1000
Detroit		100		108	
	x ₂₁		<i>x</i> ₂₂		1500
New Orleans		102		68	
	<i>x</i> ₃₁		<i>X</i> ₃₂		1200
Demand	2300		1400		

min
$$z = 80x_{11} + 215x_{12} + 100x_{21} + 108x_{22} + 102x_{31} + 68x_{32}$$

s.t. $x_{11} + x_{12} \le 1000$ (LosAngeles)
 $x_{21} + x_{22} \le 1500$ (Detroit)
 $x_{31} + x_{32} \le 1200$ (NewOreleans)
 $x_{11} + x_{21} + x_{31} \ge 2300$ (Denver)
 $x_{12} + x_{22} + x_{32} \ge 1400$ (Miami)
 $x_{jj} \ge 0, \ j = 1, 2, 3, \ j = 1, 2$

考虑产销平衡的情形, 即 $\sum_{i=1}^m s_i = \sum_{j=1}^n d_j$.

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{n} x_{ij} = s_{i}, i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = d_{j}, j = 1, \dots, n$$

$$x_{ij} \geq 0, \quad i = 1, \dots, m \quad j = 1, \dots, n.$$
(42)

运输问题的矩阵A形如:

<i>x</i> ₁₁	x_{12}		x_{1n}	x ₂₁	x ₂₂	 x_{2n}		x_{m1} x_{l}	n2		x _{mn}	
г 1	1		1									1
				1	1	 1						
							•	1	1		1	
1				1				1	-		1	
-	1			-	1			1	1			1
	1				1			•	1			
		÷								÷		İ
			1			- 1					1	

注意,这个矩阵并非行满秩,秩为 n+m-1,故可行基解最多有 n+m-1的大于0的分量。

SXC (USTC) OPERATIONS RESEARCH 2023-09 133 / 185

对于供大于求(或供低于求),我们可以通过添加冗余变量,变换为供需平衡。例如,若 $\sum_{i=1}^{m} s_i > \sum_{j=1}^{n} d_j$,可以假设存在额外的需求方 n+1,令 $c_{i,n+1}=0$, $i=1,2,\ldots,m$,以及 $d_{n+1}=\sum_{i=1}^{m} s_i - \sum_{j=1}^{n} d_j$,从而可以构造供需平衡运输模型。

定理

运输问题有可行解的充分必要条件是供需平衡,即 $\sum_{i=1}^m s_i = \sum_{j=1}^n d_j$ 。

Proof.

必要性显然。充分性: $\diamondsuit x_{ij} = rac{s_i d_j}{T}, T = \sum_{i=1}^m s_i$,可以验证此为可行解。

直接应用第二章的单纯形法,当然可以求解运输规划问题。然而,变量维度是*mn*,单纯性表太大,不易操作。我们这里针对运输模型的特点,设计新的单纯形法。

运输模型-表格作业法

运输问题的对偶

max
$$\sum_{i=1}^{m} s_{i}u_{i} + \sum_{j=1}^{n} d_{j}v_{j}$$

s.t. $u_{i} + v_{j} \leq c_{ij}$, $i = 1, \dots, m$, $j = 1, \dots, n$
 u_{i}, v_{i} 无限制 (43)

利用对偶关系: $c_{ii} - c_B^{\top} B^{-1} a_{ii} = c_{ii} - (u_i + v_i)$

对基变量 x_{ii} 而言, $u_i + v_i = c_{ii}$,即 $\sigma_{ii} = u_i + v_i - c_{ii} = 0$.

对非基变量 x_{ii} 而言,若 $\sigma_{ii} = u_i + v_i - c_{ii} \le 0$,已对偶可行(原问题最 优); 若 $\sigma_{ii} = u_i + v_i - c_{ii} > 0$,非对偶可行(原问题非最优),则引进基。

SXC (USTC) 2023-09 135 / 185

运输模型的单纯形法求解步骤:

- 1. 选取一组m + n 1个路径,作为初始可行基解(Northwest-Corner Starting Solution)。
- 2. 检验当前解是否可改进,如果可改进,则引进一个非基变量进行步3,否则停止。
- 3. 当把步2中挑选的变量引进时,确定哪个路径应当由基解中退出。
- 4. 调整其他基本路径的流量(满足可行性), 返回到步2.

我们将以例子来说明运输模型的单纯形算法。

SXC (USTC) 02/28/ATIONS RESIGNED 2023-09 136 / 185

Table: 某公司的运输表

	D(1)		D(2)		D(3)		D(4)		Supply
S(1)		10		2		20		11	
	<i>x</i> ₁₁		<i>x</i> ₁₂		<i>X</i> 13		<i>X</i> 14		15
S(2)		12		7		9		20	
	<i>X</i> 21		X ₂₂		X ₂₃		X ₂₄		25
S(3)		4		14		16		18	
	<i>x</i> ₃₁		<i>x</i> ₃₂		<i>X</i> 33		<i>X</i> 34		10
Demand	5		15		15		15		

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Table: 算法迭代1:(步骤1:)初始可行基解 (Northwest-Corner Starting Solution) 从左上角出发,令 $x_{11} = \min\{d_1, s_1\}$,然后向下或者右,使得原问题达到所有等式成立。这样便得到一个初始可行基解(蓝色值为可行变量)。

	D(1)		D(2)		D(3)		D(4)		Supply
S(1)		$c_{11} = 10$		2		20		11	
	$x_{11} = 5$		10						15
S(2)		12		7		9		20	
			5		15		5		25
S(3)		4		14		16		18	
- (- /									
- (-)							10		10

◆□▶◆□▶◆豆▶◆豆▶ 豆 めので

SXC (USTC) 0/25/04/10/15/25/25/25/25/25 2023-09 138 / 185

Table: 算法迭代1:(步骤2:). $\phi u_1 = 0$. 然后根据可行基解的对偶关系,解出所有 n + m - 1组等式 $u_i + v_j = c_{ij}$, 这里ij属于可行基解下标。这样得到所有的对偶变量值。对非基变量,计算 $(u_i + v_j) - c_{ij}$ (红色方框中的值),大于0的变量可以作为转轴,最大值作为入基变量。本例子中选取 x_{31} 作为入基变量。

	$v_1 = 10$		$v_2 = 2$		$v_3 = 4$		$v_4 = 15$		Supply
		$c_{11} = 10$		2		20		11	
$u_1 \equiv 0$	$x_{11} = 5$		10						15
						[-16]		[4]	
		12		7		9		20	
$u_2 = 5$			5		15		5		25
		$u_2 + v_1 - c_{21} = [3]$							
		4		14		16		18	
$u_3 = 3$							10		10
		[9]		[-9]		[-9]			
Demand	5		15		15		15		

Table: 算法迭代1: (步骤2:)(找回路) 从入基变量出发,寻找包含可行基解 的回路。本例中,回路为: $x_{31}, x_{34}, x_{24}, x_{22}, x_{12}, x_{11}, x_{31}$. 在该回路中,令入基 变量由 0 增加到值 θ . 并相应的更改回路中的其他值,使得原问题等式成立。

	$v_1 = 10$		$v_2 = 2$		$v_3 = 4$		$v_4 = 15$		Supply
		10		2		20		11	
$u_1 \equiv 0$	$5-\theta$		$10 + \theta$						15
						[-16]		[4]	
		12		7		9		20	
$u_2 = 5$			$5-\theta$		15		$5+\theta$		25
		[3]							
		4		14		16		18	
$u_3 = 3$	θ						$10-\theta$		10
		[9]		[-9]		[-9]			
Demand	5		15		15		15		

定义(回路)

我们将表中 $x_{i_1j_1}, x_{i_1j_2}, x_{i_2j_2}, x_{i_2,j_3}, \ldots, x_{i_s,j_s}, x_{i_s,j_1}$, $(i_1,i_2,\ldots,i_s$ 互不相同,且 $1 \leq i_k \leq m, j_1, j_2,\ldots,j_s$ 互不相同,且 $1 < j_k < m, 1 < k < s$) 形成的集合成为一个回路。

SXC (USTC) 2023-09 140 / 185

Table: 算法迭代1:(步骤3:)确定出基变量,令 θ 为使得不等式 $x_{ij} \geq 0$ 的最大值。本例中, $x_{1}1$ 和 x_{22} 处, $\theta = 5$ 相等,对应退化解。我们任选其中一个,让 x_{11} 出基。接着,更新对偶变量。

	$v_1 = 1$	v ₂ = 2		v ₃ = 4		v ₄ = 15		Supply
	10		2		20		11	
$u_1 \equiv 0$		15						15
	[-9]				[-16]		[4]	
	12		7		9		20	
$u_2 = 5$		0		15		10		25
	[-6]							
	4		14		16		18	
$u_3 = 3$	5					5		10
			[-9]		[-9]			
Demand	5	15		15		15		

Table: 算法迭代2: (步骤2-3:) 重复单纯形法第2, 3 步(确定入基变量,以及找回路)

	$v_1 = 1$	$v_2 = 2$		v ₃ = 4		v ₄ = 15		Supply
	10		2		20		11	
$u_1 \equiv 0$		$15-\theta$				heta		15
	[-9]				[-16]		[4]	
	12		7		9		20	
$u_2 = 5$		$0+\theta$		15		$10-\theta$		25
	[-6]							
	4		14		16		18	
$u_3 = 3$	5					5		10
			[-9]		[-9]			
Demand	5	15		15		15		

(USTC) 0/945/A10/A5 RESEARCH 2023-09 142/185

Table: 算法迭代3:(步骤2-3)所有 $u_i + v_j - c_{ij}$ 为负数,得到最优解

	$v_1 = -3$	v ₂ = 2		v ₃ = 4		v ₄ = 11		Supply
	10		2		20		11	
$u_1 \equiv 0$		5				10		15
	[-13]				[-16]			
	12		7		9		20	
$u_2 = 5$		10		15			[-4]	25
	[-10]							
	4		14		16		18	
$u_3 = 7$	5					5		10
			[-5]		[-5]			
Demand	5	15		15		15		

SXC (USTC) OPERATIONS RESEARCH 2023-09 143 / 185

网络模型

设G = (V, E)为有向图,其中V是节点的集合,E是边的集合。

有时把某个节点作为初始点s,另一个作为终点t而特殊对待。

各边 $e \in E$ 上赋有成本c(e)以及容量u(e), 且都取实数值。

由它们组成的|E|维相应向量分别记为

$$\mathbf{c} = (c(e)|e \in E), \quad \mathbf{u} = (u(e)|e \in E).$$

统括这些元素的 $\mathcal{N} = (G, s, t, \mathbf{c}, \mathbf{u})$ 称为网络。

4 □ Þ 1 ∰ Þ 1 Ē Þ 1 Ē Þ 1 Ē Þ 1 ♥ 9)((*)

3.2 最短路径问题

最短路径问题中,成本c(e)解释为边e的长度。最短路径问题的典型形式是:

在网络 $\mathcal{N}=(G,s,\mathbf{c})$ 中求出始点s到其它各点 $v\in V$ 的最短路径及其长度。

另外, 定义 $w \in V$ 到 $v \in V$ 的路径(path)

$$\pi = v_{i_0}(= w), v_{i_1}, \cdots, v_{i_k}(= v)$$

长度为

$$c(\pi) = \sum_{i=0}^{k-1} c(v_{i_j}, v_{i_{j+1}}).$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

145 / 185

SXC (USTC) OPERATIONS MESEARCH 2023-09

最短路径问题

当 \mathcal{N} 中没有长度为负的回路时,存在有从s到所有点v的最短路径,它们可用以s为根的最短路径树来表示。

求s到v的最短路径,只要沿着s到v的最短路径树的边走下去就行。

如何求得该最短路径树? 最短路径问题的模型算法?

最短路径问题

最短路径问题的线性规划描述:

min
$$\sum_{\substack{(i,j)\in E}} c_{ij}x_{ij}$$

s.t. $\sum_{\substack{s,(s,j)\in E}} x_{sj} = 1$
 $\sum_{\substack{k,(k,j)\in E}} x_{kj} - \sum_{\substack{k,(i,k)\in E}} x_{ik} = 0, \forall k \in V - \{s,t\}$ (44)
 $-\sum_{\substack{t,(i,t)\in E}} x_{it} = -1$
 $x_{ij} \ge 0, \forall (i,j) \in E$

SXC (USTC) OPERATIONS RESEARCH 2023-09 147 / 185

最短路径问题

最短路径问题的对偶为:

$$\max_{s.t.} (y_s - y_t)$$
s.t. $y_i - y_i \le c_{ii}, \quad \forall (i, j) \in E$ (45)

148 / 185

SXC (USTC) OPERATIONS RESEARCH 2023-09

最短路径问题的算法

一般网络的最短路径问题可以看成是一个线性规划模型(事实上是一个 更特殊的运输模型),可依据对偶性构造其求解算法。

暴力穷举法:由于可能的路径为指数多个,不是一个好方法。 如果基于动态规划的思想,可给出最短路径问题的强多项式时间算法。 以下仅说明具有代表性的算法之一:

Dijkstra's algorithm. 最短路径的性质: 若s到v的一条最短路径经过某个顶点c,即 $s \to c \to v$,那么这条路径上子路径 $s \to c$ 是s到c的最短路径。

SXC (USTC) OPERATIONS RESEARCH 2023-09 149 / 185

最短路径问题的算法

算法 DIJKSTRA

- 输入 有向图G = (V, E), 各边长度 $c : E \to \mathbb{R}_+$, 始点 $s \in V$.
- 输出 从始点到所有节点 $v \in V$ 的最短路径及其长度 $c^*(v)$.
- 步二 迭代: 选取一个满足 $d(v^*) = \min\{d(v) \mid v \in V X\}$ 的节 点 $v^* \in V X$.
- 步三 更新: $X := X \cup \{v^*\}$. 进一步对 $w \in V X$ 的各边 $e = (v^*, w) \in E$ 作如下更新:

$$d(w) := \min\{d(w), d(v^*) + d(v^*, w)\}.$$

步四 结束判定: 如果P = V则结束计算: 否则回到步二。

SXC (USTC) OPERATIONS RESIDENCE 2023-09 150 / 185

最短路径问题的算法

- 步一: 把图分为已访问节点 X 和未访问节点 V-X,并记录s到所有点的(临时)最短路径为 d(v). 对于已访问节点 $x\in X$, d(x)是s到x的最短路径;未访问节点 $y\in V-X$,d(y)叫做临时最短路径。
- ullet 步二详解:对于已访问节点集合X,我们寻找X的所有邻居节点中,到X距离最小的顶点。即 $v^*\in V-X$ 是问题 $\min_{x\in X,\,v\in V-X}(d(x)+w(x,v))$ 的解。

例

若我们有如下的图,已知s到所有X中所有顶点最短距离。对于 $u, v \in V - X$, 我们得到 p(v) = d(d) + w(d, v) = 9.

- 步三: 更新已访问集合 $X = X \cup \{v^*\}$, 更新临时距离 $d(w), w \in V X$.
- 步四: 当所有节点均访问过, 即 X = V时, 结束算法; 否则继续更新集合X。

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)