

Data Science & ML Course Lesson #7 Exploratory Data Analysis II

Ivanovitch Silva October, 2018

Agenda

- Case study: movie ratings, economic guide to picking a college major
- Histogram and Box Plots
- Wrapper from Pandas to Matplotlib

Update from repository

git clone https://github.com/ivanovitchm/datascience2machinelearning.git

Or

git pull

Case study: movie ratings

	FILM	RT_user_norm	Metacritic_user_nom	IMDB_norm	Fandango_Ratingvalue
0	Avengers: Age of Ultron (2015)	4.3	3.55	3.90	4.5
1	Cinderella (2015)	4.0	3.75	3.55	4.5
2	Ant-Man (2015)	4.5	4.05	3.90	4.5
3	Do You Believe? (2015)	4.2	2.35	2.70	4.5
4	Hot Tub Time Machine 2 (2015)	1.4	1.70	2.55	3.0

Frequency Distribution (sorted by **frequency** in **descending** order)

Value	Frequency		
4.1	16		
4.2	12		
3.9	12		
4.3	11		
3.7	9		
3.5	9		
4.5	9		
3.4	9		
3.6	8		
4.4	7		
4.0	7		
3.2	5		
2.9	5		
3.8	5		
3.3	4		
4.6	4		
3.0	4		
4.8	3		
3.1	3		
2.8	2		
27	2		

Frequency Distribution (sorted by unique value in ascending order)

Value	Frequency
2.7	2
2.8	2
2.9	5
3.0	4
3.1	3
3.2	5
3.3	4
3.4	9
3.5	9
3.6	8
3.7	9
3.8	5
3.9	12
4.0	7
4.1	16
4.2	12
4.3	11
4.4	7
4.5	9
4.6	4
4.8	3

Frequency Distribution

```
freq_counts = norm_reviews['Fandango_Ratingvalue'].value_counts()
sorted_freq_counts = freq_counts.sort_index()
```

Name: Fandango_Ratingvalue, dtype: int64 Name: Fandango_Ratingvalue, dtype: int64

Binning

Histogram in Matplotlib

Comparing histograms

Around 50% of user ratings fall in the 2 to 4 score range

Around 50% of user ratings fall in the 2 to 4 score range

Around 75% of user ratings fall in the 2 to 4 score range

Around 90% of user ratings fall in the 2 to 4 score range

Quartile and Box Plot

pandas $y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$


```
norm_reviews.Fandango_Ratingvalue.hist(bins=20, range=(0,5))
# option 2
norm_reviews.Fandango_Ratingvalue.plot(kind='hist', bins=20, range=(0,5))
```

option 1


```
norm_reviews.plot(kind='hist', bins=20, range=(0,5), alpha=0.3)
norm_reviews.plot(kind='hist', bins=20, range=(0,5), stacked=True)
```


norm_reviews.Fandango_Ratingvalue.plot(kind='box')
norm reviews.plot(kind='box',rot=90)

norm_reviews.plot(kind='scatter',x='RT_user_norm', y='Fandango_Ratingvalue')

The Economic Guide To Picking A College Major

By Ben Casselman

Filed under Higher Education

Get the data on GitHub

Using visualizations, we can start to explore questions from the dataset like:

- Do students in more popular majors make more money?
 - Using scatter plots
- How many majors are predominantly male? Predominantly female?
 - Using histograms
- Which category of majors have the most students?
 - Using bar plots

