Report_PS2

Problem1

- 1.1 采用 read.delim 函数读取 txt 文件中的数据。
- 1.2 因地震死亡总人数列表:

# A tibble: 155 x 2	
COUNTRY	TOT_DEATHS
<chr></chr>	<int></int>
1 AFGHANISTAN	<u>13</u> 069
2 ALBANIA	<u>3</u> 092
3 ALGERIA	<u>39</u> 308
4 ANTARCTICA	0
5 ANTIGUA AND BARBUDA	0
6 ARGENTINA	<u>22</u> 520
7 ARMENIA	<u>191</u> 890
8 ATLANTIC OCEAN	0
9 AUSTRALIA	12
10 AUSTRIA	<u>5</u> 040
# with 145 more row	VS

死亡人数前十名的国家:

# /	A tibble:	10 x	2
	COUNTRY	TOT	Γ_DEATHS
	<chr></chr>		<int></int>
1	CHINA		2 <u>074</u> 881
2	TURKEY		1 <u>074</u> 651
3	IRAN		1 <u>036</u> 676
4	SYRIA		<u>439</u> 224
-5	ITALY		<u>434</u> 865
-6	HAITI		<u>321</u> 224
-7	AZERBAIJ <i>A</i>	AN	<u>317</u> 219
8	JAPAN		<u>278</u> 137
9	ARMENIA		<u>191</u> 890
10	PAKISTAN		<u>148</u> 692

1.3 地震总数的时间序列:

从图中可以看到大型地震发生的频数从 1500 年之后明显上升。我认为几千年地壳状态的变化不足以解释地震次数迅速增加的情况,产生这样趋势的原因是 1500 年之前科技水平有限,导致很多地震并未被记录,是历史记载的原因,而非地球本身的原因。

1.4 函数应用举例: 以中国和日本为例:

按降序排列每个国家:

Country	eq_of_c	country			day
<chr></chr>		<int></int>	<1111 E>	<int></int>	<1/10 E>
1 CHINA		606	<u>1</u> 668	7	25
2 JAPAN		406	<u>2</u> 011	3	11
3 INDONES:	IA	394	<u>2</u> 004	12	26
4 IRAN		380	856	12	22
5 TURKEY		329	<u>1</u> 912	8	9
6 TURKEY		329	<u>1</u> 916	1	24
7 ITALY		326	<u>1</u> 915	1	13
8 USA		268	<u>1</u> 964	3	28
9 GREECE		264	365	7	21
10 GREECE		264	<u>1</u> 303	8	8
# with	152 more	rows			

Problem2

对风速数据进行筛选:由于研究的是风速大小变化,因此忽略掉前面对风向的探测数据。 对于风速的探测数据,首先去除风速大小为9999的缺失值,然后再筛选出质量码为1的数据即可。

深圳十年来月平均风速变化图:

从图中可以看到深圳 10 年来月平均风速有上升的趋势,但不明显。

Problem3

选取变量为水面叶绿素浓度。将水中和水底的数据去除,再数据类型转换过程中已经将 无效值自动以 NA 代替,因此不需要做额外的数据整理。得到水面叶绿素浓度的时间序列:

