$Mathematical\ Logic_Assignment_3$

Hongli SHEN

March 2024

Contents

1	For each formula, whether it is tautology, contradiction, or neither?	2
2	Whether the following logical equivalences are correct?	3
3	Whether the following logical consequences are correct?	3
4	Prove	4
5	Formalizing problems	4
6	Adequate Sets	4

1 For each formula, whether it is tautology, contradiction, or neither?

• It is tautology.

• It is contradiction.

• It is neither tautology nor contradiction.

• It is tautology.

• It is tautology.

2 Whether the following logical equivalences are correct?

- $(p \rightarrow (q \land (\neg q))) \equiv (p \rightarrow F) \equiv (\neg p)$ The original formula is correct
- $(p \lor q) \land (\neg p \to \neg q) \equiv (p \lor q) \land (q \to p) \equiv (p \lor q) \land (\neg q \lor p) \equiv (p \lor q) \land (p \lor \neg q) \equiv p \lor (q \land \neg q) \equiv p \lor F \equiv p$ The original formula is not correct.
- $((p \to q) \to q) \to q \equiv (\neg (\neg p \lor q) \lor q) \to q \equiv (p \land \neg q) \lor q \to q \equiv (q \lor p) \land (q \lor \neg q) \to q \equiv (q \lor p) \land q \equiv (\neg q \lor \neg p) \lor q \equiv (q \lor \neg q) \land (q \lor \neg p) \equiv q \lor \neg p \equiv p \to q$ The original formula is correct.
- $(p \to \neg q) \to r \equiv (\neg p \lor \neg q) \to r \equiv \neg (p \land q) \to r \equiv p \land q \lor r$ The original formula is correct.

3 Whether the following logical consequences are correct?

	p	q	$\neg p$	$\neg q$	$p \wedge \neg q$	$p \wedge q$	$p \land \neg q \to p \land q$
	1	1	0	0	0	1	1
•	0	0	1	1	0	0	1
	1	0	0	1	1	0	0
	0	1	1	0	0	0	1

The logical consequence is correct.

	p	q	$p \to q$	$\neg p$	$\neg q$	$\neg p \to \neg q$
	1	0	0	0	1	1
•	1	1	1	0	0	1
	0	0	1	1	1	1
	0	1	1	1	0	0

The logical consequence is not correct.

	p	q	$p \rightarrow q$	$\neg q$	$(p \to q) \land \neg q$	$\neg p$
	1	1	1	0	0	0
•	0	0	1	1	1	1
	1	0	0	1	0	0
	0	1	1	0	0	1

The logical consequence is correct.

	\overline{p}	q	r	$q \wedge r$	$p \to q \wedge r$	$p \rightarrow q$	$(p \to q) \to r$
	1	1	1	1	1	1	1
	1	1	0	0	0	1	0
	1	0	1	0	0	0	1
•	1	0	0	0	0	0	1
	0	1	1	1	1	1	1
	0	1	0	0	1	1	0
	0	0	1	0	1	1	1
	0	0	0	0	1	1	1

The logical consequence is not correct.

4 Prove

we need to find a truth valuation v under which all of the premises are true and the conclusion A is false.

- we can find a counter-example: $A^v = 1$, $B^v = 1$, $C^v = 0$. In this case, the left side is 1 but the right side is 0.
- we can find a counter-example: $A^v = 1$, $B^v = 0$, $C^v = 1$. In this case, the left side is 1 but the right side is 0.
- we can find a counter-example: $A^v = 1$, $B^v = 0$, $C^v = 0$. In this case, the left side is 1 but the right side is 0.

5 Formalizing problems

Let's assume that $A^v = 1$ represents A contains a treasure and $A^v = 0$ represents A contains a fatal trap. The same rule satisfies for B.

At least one of these two trunks contains a treasure can be written as (A ∨ B).
In A there's a fatal trap can be written as (¬A).
either both the inscriptions are true, or they are both false can be represented by the symbol ↔
In conclusion, we can formalize the puzzle in propositional logic as (A ∨ B) ↔ (¬A).

	\overline{A}	В	$A \vee B$	$\neg A$	$(A \vee B) \leftrightarrow (\neg A)$
	1	0	1	0	1
•	0	1	1	1	1
	1	1	1	0	0
	0	0	0	1	0

In conclusion, Aladdin can choose a trunk being sure that he will find a treasure and the trunk B should be open.

6 Adequate Sets

We know that $(p \to q)$ and $((\neg p) \lor q)$ are logically equivalent.

Hence, $((\neg p) \rightarrow q)$ and $(p \lor q)$ are logically equivalent.

Therefore, \vee can be definable in terms of \neg and \rightarrow .

According to **DeMorgan's Law**, $(p \wedge q)$ and $(\neg((\neg p) \vee (\neg q)))$ are logically equivalent.

Therefore, \wedge can also be definable in terms of \neg and \rightarrow .

We know that $\{\neg, \land, \lor\}$ is an adequate set of connectives.

So in conclusion, $\{\neg, \rightarrow\}$ is an adequate set of connectives.