1.
$$\lambda^3 - 12 \lambda^2 - 16 = 0$$

 $\lambda_1 = -2, \quad \lambda_2 = -2, \quad \lambda_3 = 4$

(1) when
$$\lambda_1 = \lambda_2 = -2$$
, eigenspace base $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

(2) when
$$\lambda_3 = 4$$
, eigenvector $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$

2.
$$(\begin{bmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{bmatrix})^{T} = \begin{bmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{bmatrix}$$

when
$$\lambda_1 = 1$$
, $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ when $\lambda = 2$, $\begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$

3. (a)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 $\lambda_1 = 1 \rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\lambda_2 = -1 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\lambda_1 = 1 \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\lambda_2 = 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $\lambda_1 = 1 \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\lambda_2 = 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

(c)
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 and $\theta = 90^{\circ} \rightarrow \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, have no eigenvalue

(d)
$$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
 λ is k, the eigenspace is \mathbb{R}^2

(e)
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$
 $\lambda = 1 \rightarrow \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

5. (a)
$$(\lambda - 3)(\lambda - 3)(\lambda - 5) = 0$$
, $\lambda = 3$ or 5

(b)
$$\lambda = 3$$
, rank = 1; $\lambda = 5$, rank = 2

6.
$$\det(\lambda I - A) = \lambda^3 - 6 \lambda^2 + 11 \lambda - 6 = 0 \rightarrow (\lambda - 1)(\lambda - 2)(\lambda - 3) = 0$$
 eigenvalues are $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$

$$\lambda_1 = 1 \rightarrow \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \lambda_2 = 2 \rightarrow \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{3}{2} \end{bmatrix}, \quad \lambda_3 = 3 \rightarrow \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

so A is diagonaliable.

For all eigenvalues, geormetric and algebraic multiplicity is 1

$$P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \frac{3}{2} & 3 \\ 1 & \frac{3}{2} & 4 \end{bmatrix}, P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

7.
$$A = P^{-1}BP \rightarrow B = PAP^{-1}$$
 $B = Q^{-1}CQ \rightarrow C = QBQ^{-1}$
 $\rightarrow C = Q(PAP^{-1}) Q^{-1} = (QP)A(P^{-1} Q^{-1}) = (QP)A(QP)^{-1},$
 QP is invertible, so A is similar to C

8. (a)
$$D = P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $A^{1000} = I$

(b)
$$A^{-1000} = I^{-1} = I$$

(c)
$$A^{2301} = A = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(c)
$$A^{2301} = A = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

(d) $A^{-2301} = A^{-1} = A = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

9.
$$A = PDP^{-1} = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & 1\\ -\frac{1}{2} & -\frac{1}{2} & -1\\ 0 & 0 & 1 \end{bmatrix}$$

10. (a)
$$A = I_n A I_n = I_n^{-1} A I_n$$
,

so any nxn matrix A is similar to itself.

- (b) zero matrix Onxn
- (c) it is not possible, they don't have same det