Homework 6

21-236 Mathematical Studies Analysis II

Name: Shashank Singh Email: sss1@andrew.cmu.edu

Problem 1

Let $\varphi : [a, b] \to \mathbb{R}^2$ parametrize γ , and let $\mathbf{h}_1, \mathbf{h}_2 : [a, b] \times [0, 1] \to \mathbb{R}^2$ such that, $\forall (s, t) \in [a, b] \times [0, 1]$, if (ρ, θ) is the polar representation of $\varphi(s)$ (i.e., $\varphi(s) = (\rho \cos \theta, \rho \sin \theta), \theta \in [0, 2\pi]$),

$$\mathbf{h_1}(s,t) = (\rho + t(r - \rho), \theta)$$

and

$$\mathbf{h_2}(s,t) = \left(1, \theta + t\left((2\pi\omega)\frac{(s-a)}{(b-a)} - \theta\right)\right),\,$$

where $\omega = \operatorname{ind}_{\gamma}(x_0, y_0)$. Then, let $\mathbf{h} : [a, b] \times [0, 1]$ such that, $\forall (s, t) \in [a, b] \times [0, 1]$,

$$\mathbf{h}(s,t) = \begin{cases} (x_0, y_0) + \mathbf{h}_1(s, 2t), & t \in [0, \frac{1}{2}] \\ (x_0, y_0) + \mathbf{h}_2(s, 2t - 1), & t \in [\frac{1}{2}, 1] \end{cases}.$$

Let γ_2 be the continuous closed curve parametrized by $\boldsymbol{\phi}:[a,b]\to\mathbb{R}^2$ such that, $\forall s\in[a,b],$ $\boldsymbol{\phi}(s)=(x_0,y_0)+(r\cos(\omega s),r\sin(\omega s)).$ Then, $\forall s\in[a,b],$ $\mathbf{h}(s,0)=\boldsymbol{\varphi}(s)$ and $\mathbf{h}(s,1)=\boldsymbol{\phi}(s),$ and, because $\sin 0=\sin(2\pi)$ and $\cos 0=\cos(2\pi)$ $\forall t\in[0,1],$ $\mathbf{h}(a,t)=\mathbf{h}(b,t).$ $\forall (s,t)\in[a,b]\times[0,\frac{1}{2}],$ $\mathbf{h}(s,t)$ is on the line segment from $\boldsymbol{\varphi}(s)\in U$ to $(x_0,y_0),$ and,

$$\forall (s,t) \in [a,b] \times [\frac{1}{2},1] \ \mathbf{h}(s,t) \in \partial B((x_0,y_0),r)$$

so that, since U is starshaped with respect to (x_0, y_0) and by choice of $r, \forall (s, t) \in [a, b] \times [0, 1]$, $h(s, t) \in U$.

Therefore, **h** is a homotopy from γ to γ_2 so that, since **g** is irrotational and of class C^1 , by Theorem 143,

$$\int_{\gamma} \mathbf{g} = \int_{\gamma_2} \mathbf{g}.$$

However, γ_2 is the union of ω identical curves parametrized by ψ , so that

$$\int_{\gamma} \mathbf{g} = \int_{\gamma_2} \mathbf{g} = \sum_{i=1}^{\omega} \int_{\gamma_1} \mathbf{g} = \operatorname{ind}_{\gamma} \int_{\gamma_1} \mathbf{g} \quad \blacksquare.$$

Problem 2

Let $\varphi : [a, b] \subseteq \mathbb{R} \to V$ be a parametrization of γ (with components $\varphi_1, \varphi_2, \varphi_3$), let γ_2 be the curve parametrized by $\varphi : [a, b] \to V$ such that, $\forall s \in [a, b]$,

$$\phi(s) = (\varphi_1(s), \varphi_2(s), 0),$$

and let $\mathbf{h}: [a,b] \times [0,1] \to V$ such that, $\forall (s,t) \in [a,b] \times [0,1]$,

$$\mathbf{h}(s,t) = (\varphi_1(s), \varphi_2(s), \varphi_3(s) - t\varphi_3(s)).$$

Note that, $\forall s \in [a, b]$, $\mathbf{h}(s, 0) = \boldsymbol{\varphi}(s)$ and $\mathbf{h}(s, 1) = \boldsymbol{\phi}(s)$, and, $\forall t \in [0, 1]$, $\mathbf{h}(a, t) = \mathbf{h}(b, t)$. Since \mathbf{h} is linear in t and $\boldsymbol{\varphi}$ is continuous (as γ is continuous), \mathbf{h} is continuous. Since $h_1 = \varphi_1$ and $h_2 = \varphi_2$, and $\boldsymbol{\varphi}$ has range in V, h has range in V. Therefore, \mathbf{h} is a homotopy from γ to γ_2 , and γ and γ_2 are homotopic in V. By Theorem 143, then, since \mathbf{g} is an irrotational field of class C^1 ,

$$\int_{\gamma} \mathbf{g} = \int_{\gamma_2} \mathbf{g}.$$

Note that γ_2 in \mathbb{R}^3 is the same curve as Π_{γ} is \mathbb{R}^2 , so that

$$\int_{\gamma_2} \mathbf{g} = \int_{\Pi_{\gamma}} \mathbf{g}.$$

By the result of Problem 1 above, since $U := \mathbb{R}^2 \setminus \{(0,0)\}$ is open and starshaped with respect to (0,0), and $\partial B((0,0),1) \subseteq U$,

$$\int_{\gamma} \mathbf{g} = \int_{\gamma_2} \mathbf{g} = \int_{\Pi_{\gamma}} \mathbf{g} = \operatorname{ind}_{\Pi_{\gamma}}(0,0) \int_{\gamma_1} \mathbf{g},$$

as γ_1 in \mathbb{R}^3 is the same curve as unit circle centered at the origin in \mathbb{R}^2 .

Problem 3

(a) Let $h: U \to \mathbb{R}^3$ such that, $\forall (x, y, z) \in U$,

$$h(x, y, z) = \frac{1}{2} \ln(x^2 + y^2).$$

Then, by the Quotient Rule,

$$\frac{\partial g_1}{\partial y}(x,y,z) = \frac{-xz(2y)}{(x^2+y^2)^2} = \frac{\partial g_2}{\partial x}(x,y,z).$$

Furthermore,

$$\frac{\partial g_1}{\partial z}(x,y,z) = \frac{x}{x^2 + y^2} = \frac{1}{2} \frac{2x}{x^2 + y^2} = \frac{\partial h}{\partial x}(x,y,z) = \frac{\partial g_3}{\partial x}(x,y,z),$$

and

$$\frac{\partial g_2}{\partial z}(x,y,z) = \frac{y}{x^2+y^2} = \frac{1}{2}\frac{2y}{x^2+y^2} = \frac{\partial h}{\partial y}(x,y,z) = \frac{\partial g_3}{\partial y}(x,y,z).$$

Thus, **g** is irrotational.

(b) $\forall (x, y, z) \in \mathbb{R}^3$, if z = 0, then $\mathbf{g}(x, y, z) = \mathbf{0}$. Thus, $\forall t \in [0, 2\pi]$, $\mathbf{g}(\varphi(t)) = \mathbf{0}$, so that, by definition of the curve integral,

$$\int_{\gamma} \mathbf{g} = \int_{0}^{2\pi} \sum_{i=1}^{3} 0 \cdot (\varphi_i'(t)) \ dt = 0. \quad \blacksquare$$

(c) Let γ be a piecewise C^1 closed, oriented curve with range $\Gamma \subseteq U$. By the result of Problem 2 above, since **g** is irrotational and C^1 ,

$$\int_{\gamma} \mathbf{g} = \operatorname{ind}_{\Pi_{\gamma}}((0,0)) \int_{\gamma_1} \mathbf{g},$$

where γ_1 is the closed curve parametrized by $\varphi(t) = (\cos t, \sin t, 0), t \in [0, 2\pi]$. Then, by the result of part (b) above,

$$\int_{\gamma} \mathbf{g} = \operatorname{ind}_{\Pi_{\gamma}}((0,0)) \cdot 0 = 0.$$

By Theorem 130, then, **g** is conservative.

(d) Let $f: U \to \mathbb{R}^3$ such that, $\forall (x, y, z) \in U$,

$$f(x, y, z) = \frac{z}{2}\ln(x^2 + y^2) - \frac{\ln 2}{2}.$$

Then,

$$\frac{\partial f}{\partial x}(x, y, z) = \frac{xz}{x^2 + y^2} = g_1(x, y, z)$$

$$\frac{\partial f}{\partial y}(x, y, z) = \frac{yz}{x^2 + y^2} = g_2(x, y, z)$$

$$\frac{\partial f}{\partial z}(x, y, z) = \frac{1}{2}\log(x^2 + y^2) = g_3(x, y, z)$$

(where $g_3 = h$ as defined in part (a). Furthermore, $f(1, 1, 1) = \frac{1}{2} \ln(1^2 + 1^2) - \frac{\ln 2}{2} = 0$, so that f has the desired properties.

Problem 4

(a) Case 1: (N = M) Let L be the Lipschitz constant of \mathbf{g} , and R be a rectangle with $E \subseteq R$ (such a rectangle exists because E is Peano-Jordan Measurable). Since meas E = 0, $\forall \delta = \frac{\epsilon}{L^M}$, there exists a partition P of R such that $U(\chi_E, P) < \delta$. Let $\epsilon > 0$, and let Q be a refinement of P such that each rectangle R in Q has diagonals of length no more than ϵ , with rectangles Q_1, Q_2, \ldots, Q_l . Since Q is a refinement of P, $U(\chi_E, Q) < \delta$. Since \mathbf{g} is Lipschitz, $\forall \mathbf{x}, \mathbf{y} \in R_i$, $\|\mathbf{g}(\mathbf{x}) - \mathbf{g}(\mathbf{x})\| < L\|\mathbf{x} - \mathbf{y}\|$, so that each $\mathbf{g}(Q_i)$ can be covered by a rectangle C_i of diagonal at

most $L\epsilon$; let S be a cover of $\mathbf{g}(E)$ of such rectangles. Then, $U(\chi_{\mathbf{g}(E)}, S) < L^M U(\chi_{\mathbf{g}(E)} < \epsilon$, so that $\int_S \chi_{\mathbf{g}(E)} = 0$ and thus meas $\mathbf{g}(E) = 0$, concluding this case.

Case 2: (N < M) Let

$$E' := \{ (\mathbf{x}, \mathbf{0}) \in \mathbb{R}^M : \mathbf{x} \in E \}.$$

If χ_E is integrable over R over some rectangle R with $E \subseteq R$, then, $\forall k \in \mathbb{N}$, $\chi_{E'}$ is integrable over the rectangle $R' := R \times [0,0]^{M-N} \subseteq \mathbb{R}^M$. In particular, since $\chi_{E'}$ is bounded and $\operatorname{meas}_M R' = 0$,

$$\int_{B'} \chi_{E'} = 0.$$

Let $\mathbf{f}: E' \to \mathbb{R}^M$ such that, $\forall \mathbf{y} = (\mathbf{x}, \mathbf{0}) \in E'$ $(\mathbf{x} \in E)$, $\mathbf{f}(\mathbf{y}) = \mathbf{g}(\mathbf{x})$. Then, \mathbf{f} is Lipschitz, and E' is Peano-Jordan Measurable with measure zero, so that, by the result of Case 1 above, $\mathbf{f}(E')$ is Peano-Jordan Measurable with measure zero. Therefore, since $\mathbf{f}(E') = \mathbf{g}(E)$, $\mathbf{g}(E)$ is Peano-Jordan Measurable with measure zero.

- (b) Since \mathbf{g} is of class C^1 , its derivative is continuous. Thus, since \overline{E} is compact, (it is clearly closed, and it is bounded because it is Peano-Jordan Measurable) and any continuous function on a compact domain is bounded, the derivative of \mathbf{g} is bounded on \overline{E} . Therefore, \mathbf{g} is Lipschitz over \overline{E} . By the result of part (a), then, $\mathbf{g}(E)$ is Peano-Jordan measurable with measure zero.
- (c) i. By the Inverse Function Theorem, $\forall \mathbf{x} \in E^{\circ}$, $\exists r > 0$ such that $B(\mathbf{x}, r) \subseteq E^{\circ}$ and $\mathbf{g}(B(\mathbf{x}, r))$ is open. Thus, if $\mathbf{x} \in E^{\circ}$, $\exists r_{\mathbf{x}} > 0$ such that $B(\mathbf{g}(\mathbf{x}, r_{\mathbf{x}})) \subseteq (\mathbf{g}(E))^{\circ}$. Therefore, $\mathbf{g}(\mathbf{x}) \in (\mathbf{g}(E))^{\circ}$, and so $\mathbf{g}(E^{\circ}) \subseteq (\mathbf{g}(E))^{\circ}$. Since \mathbf{g} is continuous, $\mathbf{g}(E) \subseteq \mathbf{g}(E)$. Thus,

$$\partial \mathbf{g}(E) = \overline{\mathbf{g}(E)} \backslash (\mathbf{g}(E))^{\circ} \subseteq \overline{\mathbf{g}(E)} \backslash \mathbf{g}(E^{\circ}) \subseteq \mathbf{g}(\overline{E}) \backslash \mathbf{g}(E^{\circ}) \subseteq \mathbf{g}(\partial E).$$

ii. Since E is Peano-Jordan measurable, by Theorem 177, ∂E is Peano-Jordan measurable with measure zero. Thus, by the result of part (b) above, $\mathbf{g}(\partial E)$ is Peano-Jordan measurable with measure zero. By the result of part i. above and Theorem 167,

$$\operatorname{meas} \partial \mathbf{g}(E) \leq \operatorname{meas} \mathbf{g}(\partial E) = 0,$$

so that meas $\partial \mathbf{g}(E) = 0$. Therefore, by Theorem 177, $\mathbf{g}(E)$ is Peano-Jordan measurable.