Diffusion with Pulsed NMR

Kyle Moe

Introduction

- Nuclear Magnetic Resonance (NMR)
 - Place atomic nuclei into background magnetic field B₀
 - \circ Apply circularly polarized perturbation field B₁
 - On resonance, nuclei precess around B₁
- Applications of this phenomenon
 - Magnetic Resonance Imaging (MRI)
 - Material properties
 - \blacksquare Rate of alignment with background magnetic field (T_1)
 - \blacksquare Rate of magnetization decay (T_2)
 - Diffusion coefficient (D) of material
 - Spectroscopy to reveal molecular structure

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/larmor.html

NMR Apply Perturbation Field B₁

 $\mathbf{B}_{eff}^* = B_I \hat{\mathbf{i}}^* + (B_0 - \omega/\gamma) \hat{\mathbf{k}}^*$

- Perpendicular to B₀
- Circularly polarized
- Oscillating at ω

In stationary frame

 π pulse $\to M_z \to -M_z$ 2π pulse $\to M_z \to M_z$

Measuring T₂ and D

 $M_{x,y}(t) = M_0 e^{-(\frac{1}{T_2} - \frac{\gamma^2 (\frac{\partial x}{\partial x, y})^2 D t^2}{12n^2})}$

Measuring the decay of spin echoes

Employ the following pulse sequence:

- Flip the spins into the x-y plane with $\pi/2$ pulse
- Retain spins in x-y plane with **n** number of π **pulses**

In rotating frame

Limitations of Experiment/Apparatus

- Highly non-uniform magnetic field
 - \circ Accurate T_2 measurements require suppression of Diffusion term
 - Gradient changes across width of sample
- Apparatus constraints
 - Maximum number of π pulses (99)
 - Limited frequency range of detector coil

Experimental Apparatus

Exploring Permanent Magnet

On resonance: $\omega = \gamma B_0$

- Tune TeachSpin NMR apparatus to this frequency
 - Use this frequency to derive B₀

- What is the utility of this?
 - Identify low-gradient regions
 - Identify regions of near-linear gradient

What does tuning to resonance mean?

Aliased frequency between larmor and applied frequencies

Aliased frequency approaches 0Hz on resonance

Measuring Decay (T₂)

Measurements made of echo peaks (V)

Delay time between peaks gives time (t)

Using a π -pulse sequence with many pulses, we can measure T₂ by assuming:

$$M_{x,y}(t) = M_0 e^{-t/T_2}$$

- Requires that Diffusion is suppressed
 - Low gradient region
 - High density of pulses

$$M_{x,y}(t) = M_0 e^{-(\frac{1}{T_2} - \frac{\gamma^2 (\frac{\partial \mathbf{X}_{0,z}}{\partial x}, \mathbf{X}_{Dt^2})t}{12n^2})t}$$

Measuring Diffusion Coefficient (D)

- Similar pulse sequence
 - \circ Fewer π -pulses
 - Larger gradient
- With known T₂ we can fit with D
 as the only unknown parameter

$$M_{x,y}(t) = M_0 e^{-(\frac{1}{T_2} - \frac{\gamma^2 (\frac{\partial B_{0,z}}{\partial x,y})^2 D t^2}{12n^2})t}$$

Magnetic Field Gradient Measurement

Assume T_2 measurement region has gradient of 0.

Gradient in diffusion region:

$$\left| \frac{\partial B_{0,z}}{\partial x, y} \right| = 2.6 \pm 0.2 \ gauss/cm^{\frac{2}{5}}$$

This value is used for all future diffusion measurements

T₂ and D of Water

Water has both a long T₂ and high D

Most of the uncertainty in D comes from uncertainty in the gradient

Substances of Complex Molecules

- Much thicker than water or isopropanol.
 - High viscosity means it is harder for molecules to diffuse through to regions of different magnetic field
- Decays are more complex
 - Biexponential*

$$M_{x,y}(t) = M_0 e^{-t/T_2}$$

$$\downarrow$$

$$M_{x,y}(t) = M_{0,1} e^{-t/T_{2,1}} + M_{0,2} e^{-t/T_{2,2}}$$

$$where M_{0,1} + M_{0,2} = M_0$$

3 in 1 Household Oil

Light Mineral Oil

*May be additional terms that are less prevalent

³ FL. OZ. (88.7mL)

Mineral Oil T, and D

$$M_{x,y}(t) = (M_{0,1}e^{-\frac{t}{T_{2,1}}} + M_{0,2}e^{-\frac{t}{T_{2,2}}})e^{-\frac{\gamma^2(\frac{\partial B_{0,z}}{\partial x,y})^2Dt^3}{12n^2}}$$

$$T_{2,1} = 9.4 \pm 0.1 \text{ ms}$$

 $T_{2,2} = 49.1 \pm 0.5 \text{ ms}$

D =
$$(2.5 \pm 0.6) * 10^{-7} \text{ cm}^2 \text{ s}^{-1}$$

D is much smaller than that of water.

3 in 1 T₂ and D

$$M_{x,y}(t) = (M_{0,1}e^{-\frac{t}{T_{2,1}}} + M_{0,2}e^{-\frac{t}{T_{2,2}}})e^{-\frac{\gamma^2(\frac{\partial B_{0,z}}{\partial x,y})^2Dt^3}{12n^2}}$$

$$T_{2,1} = 29 \pm 1 \text{ ms}$$

 $T_{2,2} = 131 \pm 5 \text{ ms}$

$$D = (4.8 \pm 0.8) * 10^{-7} \text{ cm}^2 \text{ s}^{-1}$$

Effect of Diffusion

 $D = (4.8 \pm 0.8) * 10^{-7} \text{ cm}^2 \text{ s}^{-1}$

D = $(2.0 \pm 0.3) * 10^{-5} \text{ cm}^2 \text{ s}^{-1}$

NMR Spectroscopy on Mineral Oil

Existence of Distinct Peaks

NMR as a Method of Measuring Diffusion

- From the results of this experiment, we can broadly say that NMR provides an effective means of measuring D
 - D of water was consistent
 - Low D -> less stark effect of diffusion
- Not all protons are the same
 - Need for bi-exponential fit for mineral oil and household oil
 - Local environments change interaction
 - Smaller molecules have longer T₂ from molecular tumbling

Further Work

- Identify exactly which protons in mineral oil contribute to each decay
- Explore broader range of materials
- Refine measurements of T_2 by reducing size of sample and find region of near-zero gradient
- Reduced sample size allows for linear gradient approximation to be more accurate as well
- Isopropanol is complex and may be characterized by more than one T₂
- D changes with temperature