(11)Publication number:

06-318926

(43) Date of publication of application: 15.11.1994

(51)Int.CI.

H04J 13/00 H04B 5/00

H04J ,11/00

(21)Application number: 06-011245

(71)Applicant: PHILIPS ELECTRON NV

(22)Date of filing:

02.02.1994

(72)Inventor:

CHOULY ANTOINE BRAJAL AMERICO

JOURDAN SABINE

(30)Priority

Priority number : 93 9301182

Priority date: 03.02.1993

Priority country: FR

(54) MULTI-USER SPREAD SPECTRUM COMMUNICATION SYSTEM

(57)Abstract:

PURPOSE: To provide a multi-user communication system for improving the reliability of transmission and increasing the communication capacity among users without complicating the system.

CONSTITUTION: For this multi-user communication system, means 12, 22, 12B and 22B for executing a spread spectrum coding technique SSC and the means 14n, 24n, 14Bn and 24Bn for executing the modulation technique of orthogonal frequency division multiplexing are combined. Thus, a data-processing mechanism and a data-obtaining mechanism are simplified, and the performance of an SSC system is reinforced. It is desirable that the system be used for a telephone communication system between mobile stations U1 and U2 and a base station B.

LEGAL STATUS

[Date of request for examination]

01.02.2001

[Date of sending the examiner's decision of rejection]

14.10.2003

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

2004-00710

[Date of requesting appeal against examiner's decision of

08.01.2004

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-318926

(43)公開日 平成6年(1994)11月15日

(51)Int.Cl.⁵

識別記号

厅内整理番号

FI

技術表示箇所

H 0 4 J 13/00 H 0 4 B 5/00

D 8949-5K

2116-5K

H 0 4 J 11/00

Z 8949-5K

審査請求 未請求 請求項の数10 OL (全 12 頁)

(21)出願番号

特願平6-11245

(22)出願日

平成6年(1994)2月2日

(31)優先権主張番号 9301182

(32)優先日

1993年2月3日

(33)優先権主張国

フランス (FR)

(71)出願人 593047378

フィリップス エレクトロニクス エヌ

オランダ国 5621 ピーエー アインドー

フェン フルーネヴァウツウェッハ 1番

(72)発明者 アントワーヌ チュリー

フランス国 75016 パリ スクワル ト

ルストイ 1番地

(74)代理人 弁理士 伊東 忠彦 (外1名)

最終頁に続く

(54)【発明の名称】 マルチユーザ拡散スペクトル通信システム

(57)【要約】

【目的】 本発明は、システムを複雑化することなく、 伝送の信頼性の向上と、ユーザ間の通信容量の増大が達 成されるマルチユーザ通信システムの提供を目的とす る。

【構成】 本発明のマルチユーザ通信システムは、拡散 スペクトル符号化技術SSCを実施する手段(12,2 2) (12B, 22B) と、直交周波数分割多重化OF DMの変調技術を実施する手段(14n, 24n)(1 4 B n, 2 4 B n) とを組み合わせる。これにより、デ ータ処理機構とデータ取得機構を単純化してSSCシス テムの性能を強化させ得る。本発明のシステムは、移動 局 (U_1, U_2) と基地局 (B) との間の電話通信シス テムに使用することが望ましい。

【特許請求の範囲】

【請求項1】 少なくとも一のトランシーバ基地局(B)と、該トランシーバ基地局を介して伝送チャネル(CHA1, CHA2)により相互に通信する複数のトランシーバユーザ局(U1, U2)とより成り、

- 該トランシーバユーザ局の各々の送信器端での伝送 メッセージを信号配置のシンボルに変換する変換手段 (10)、及び受信器端でのその逆の演算を実行する手 段(20)と、
- 該送信器端での拡散スペクトル符号化による符号で 該シンボルを符号化する符号化手段(12,12B)、 及び該受信器端での逆の演算を実行する復号化手段(2 2,22B)と、
- 符号化されたデータをチャネルを介して送信する手段(14)/受信する手段(24)とよりなるマルチューザ通信システムであって、

該送信する手段(14)/受信する手段(24)は直交 周波数分割多重化による多重搬送波変調手段(14n, 14m)(14Bn,14Bm)及び復調手段(24 n,24m)(24Bn,24Bm)から成ることを特 徴とするシステム。

【請求項2】 前記変調手段(14n,14m)(14Bn,14Bm)は、

- 符号化された伝送シンボル用の入力直列/並列変換 手段(50)と、
- 複数の搬送波により伝送される該シンボルに同時に フーリエ逆変換を適用する手段(52)と、
- エコーに対する保護シンボルを付加する手段(54)と、
- 並列/直列変換手段(56)と、
- シンボルブロックのフレームを構成し、特別なシンボルブロック (53) を付加する手段 (58) とから成る請求項1記載のシステム。

【請求項3】 前記フーリエ逆変換を適用する手段(52)は、時分割/周波数分割シンボルインターリービング手段(51)の後に置かれることを特徴とする請求項2記載のシステム。

【請求項4】 前記復調手段(24n, 24m) (24 Bn, 24Bm) は、

- サンプラー(63)と、
- 受信された変調されているデータ用の入力直列/並 列変換手段(66)と、
- 該受信された符号化されている信号を発生するようフーリエ変換を適用する手段(62)と、
- 並列/直列変換手段(60)とから成ることを特徴とする請求項1乃至3のうちいずれか1項記載のシステム。

【請求項5】 前記フーリエ変換を適用する手段(62)の後に、時分割/周波数分割シンボルデインターリービング手段(61)が置かれることを特徴とする請求

項4記載のシステム。

【請求項6】 前記復調手段(24n,24Bn)は、 自動利得制御手段から成ることを特徴とする請求項4又 は5記載のシステム。

【請求項7】 前記自動利得制御手段は、各搬送波上の前記受信されたシンボルに個々に影響を及ぼすことを特徴とする請求項6記載のシステム。

【請求項8】 前記基地局の前記復号化手段は、各ユーザに対するスペクトルを拡散させない手段から成り、該スペクトルを拡散させない手段は、別個の自動利得制御手段が後に置かれることを特徴とする請求項1乃至7のうちいずれか1項記載のシステム。

【請求項9】 請求項1乃至8のうちいずれか1項記載のシステムにおいて使用されるユーザ局。

【請求項10】 請求項1乃至8のうちいずれか1項記載のシステムにおいて使用される基地局。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、少なくとも一のトランシーバ基地局と、トランシーバ基地局を介して伝送チャネルにより相互に通信する複数のトランシーバユーザ局とより成り、トランシーバユーザ局の各々の送信器端での伝送メッセージを信号配置のシンボルに変換する変換手段、及び受信器端での逆の演算を実行する手段と、送信器端での拡散スペクトル符号化による符号でシンボルを符号化する符号化手段と、符号化されたデータをチャネルを介して送信/受信する手段とよりなるマルチユーザ通信システムに関する。

【0002】本発明は、トランシーバユーザ局にも係り、殊に、無線リンクにより確実に通信を行なう移動局、或いは、ケーブル、衛星又は他の手段を介して通信する固定局に関する。本発明は、移動局を相互に通信させる目的でメッセージを受信し、中継するための基地局にも関する。

[0003]

【従来の技術】ユーザ間の通信システムは、多くの基準を満たすべきであり、かかる基準の中で信頼性の基準は容易に満たされるべきである。従って、このようなシステムの設計者は、伝送メッセージの伝送に符号を利用することを志向する。高性能符号化システムは、符号分割多重アクセス(Code Division Multiple Access) CDM Aシステムである。このシステムは、信頼性、妨害への頑強性、干渉又は劣化への頑強性に有利であり、更に、ユーザ数がいくらでも容易に規模を合わせ得る。CDM Aシステムの本質は、周波数スペクトルの拡散にある。従って、符号化されて基本長Tsのビットにより構成されるメッセージは、基本長Tc、ここに、Tc=Ts/Lを有する擬似ランダムビットシーケンスが伝送前に乗算されている。パラメータLはシーケンスの周期であ

り、即ち、シーケンスのビット数である。各利用者は、 各自に割り当てられたシーケンスを持つ。基地局は全ユーザより発生される符号化されたメッセージを受信し、 これを復号化し、再符号化し、全ユーザに中継する。基 地局は情報を伝達し、即ち、メッセージの宛て先のユーザだけがそのメッセージを復号化し得るようにする。かかるシステムは、受信時にイコライザーを利用せざるを 得ず、このイコライザーはユーザ数の増加と共に複雑でする。実際上、多重伝送路の環境からエコーが発生する とき、特定のユーザのチャネルに関連するエコーは、一般的に他のユーザのチャネルからのエコーとは一致したい。かかるシステムの実際の性能は、かくして制限されている。一方、受信器は、受信されたメッセージを復号化し得るように各シーケンスの先頭を同期させる必要があるので、これが屡々問題を生じる。

【0004】上記のシステムは、例えば、J.G. PROAKIS による文献"ディジタル通信(Digital Communication s)"、第8章、pp.800-817、McGraw-Hill Book社出版(1989)、New Yorkに記載されている。

[0005]

【発明が解決しようとする課題】本発明の目的は、伝送の信頼性とユーザ間の通信容量を高めることである。本発明の更なる目的は、システムの性能を向上させる一方で、システムの複雑さが増大しないよう維持することである。

[0006]

【課題を解決するための手段】上記の目的は、冒頭の節 で定められた通信システムにより達成され、ここで、通 信手段は、直交周波数分割多重化による多重搬送波の変 調手段及び復調手段とから成る。かくして、多重伝送路 の環境により発生されたエコーの影響をうける信号を等 化させるイコライザーは、受信器端で利用される必要が ないことを利点とする。実際上、チェック間隔を含むブ ロックにより構成されている順次のフレーム形式に変調 された信号を組織化するとき、多重伝送路により発生さ れた全遅延を吸収することが可能である。各符号化シー ケンスの先頭の同期は、全ての同期機構が直交周波数分 割多重化により利用される同期機構により得られるので 全く問題がない。符号化シーケンスの選択の幅と符号化 シーケンスの数は遙かに増大する。伝送されるエネルギ ーは、チャネル上でかなり良好に周波数分割がなされる ので、このシステムは選択性フェージングに対して頑強 性を増す。更に、副ローブに含まれるエネルギーはかな り小さいので、このシステムは隣接するチェネルからの 妨害に対する感度が低下する。拡散スペクトル方式と多 重搬送波直交周波数分割多重化(OFDM)方式とを組 み合わせることにより、新しい性能と利点とが得られ

【0007】本発明によるシステムは、移動可能なトランシーバユーザ局と、少なくとも一の固定された基地局

とにより構成される。基地局は所謂セルを覆い、即ち、ある動作領域を有する。この動作領域の外側に、移動局がそのセルの領域を離れるときに中継を引き継ぐ別の基地局がある。本発明によれば、一つのセルのサイズを拡大し得る利点があるが、一方、従来においては、このサイズを拡大するためにはイコライザーをかなり複雑化させる必要があった。

【0008】各ユーザ局は、基地局に送信する送信手段と、そのユーザ局宛のメッセージだけを復号化する手段とから成る。基地局は、全ユーザ局に送信する送信手段と、全ユーザ局より送信されたメッセージを受信する受信手段と、ユーザ局間の通信トラフィックを管理する管理手段とから成る。

【0009】ユーザ局又は基地局の変調手段は:

- 符号化された伝送シンボル用の入力直列/並列変換 手段と、
- 複数の搬送波により伝送されるシンボルに同時にフーリエ逆変換を適用する手段と、
- エコーに対する保護シンボルを付加する手段と、
- 並列/直列変換手段と、
- シンボルブロックのフレームを構成し、特別なシンボルブロックを付加する手段とから成る。

【0010】上記の特別なシンボルは同期シンボル、サービスシンボル、チャネル評価シンボル又は他のシンボルであれば良い。同様に、復調手段は:

- サンプラーと、
- 受信された変調されているデータ用の入力直列/並 列変換手段と、
- 受信された符号化されている信号を発生するフーリエ変換を適用する手段と、
- 並列/直列変換手段(60)とから成る。

【0011】フーリエ逆変換を適用する手段は、時分割 /周波数分割シンボルインターリービング手段の後に置 かれてもよい。この場合、フーリエ変換を適用する手段 の後に、時分割/周波数分割シンボルデインターリービ ング手段が置かれる。一又は多数の自動利得制御モジュ ールは信号の減衰を考慮すべく受信器端に付加されても 良い。これらの受信器端でのモジュールは、送信器端で の符号化に利用されている擬似ランダムシーケンスを利 用する相関器の出力を処理しても良く、或いは、フーリ エ変換を適用する手段の出力での各搬送波に割り当てら れている符号化されたメッセージを処理しても良い。

【0012】本発明の異なる面及び他の面も明らかであり、以下に記載されている実施例を参照して説明されよう。

[0013]

【実施例】本発明は、その例に限定されることなく、添付図面を参照してより良く理解されるであろう。図10は、マルチユーザ通信システム(U_1 , U_2 ... U_k ... U_M)を概念的に示し、ここにMはユーザの全数

である。全ユーザは、双方向リンクを介して基地局Bと通信する。この基地局Bは2つのユーザ局を相互に通信させる中継として機能する。基地局はカバレッジエリアを有する。ユーザ局が移動局であると仮定すると、ユーザ局 U_2 (或いは多数のユーザ局)は、基地局 B_1 のカバレッジエリアから離れ得る。この場合、他の基地局 B_2 が通信の管理に関与する。従って、2つの基地局 B_1 と B_2 は、ユーザ局 U_1 (B_1 のカバレッジエリアに含まれる)とユーザ局 U_2 (B_2 のカバレッジエリアに含まれる)とを交信させるための管理情報信号を交換する。

【0014】任意のユーザ局で利用されている従来の処理の配列を図1に示す。送信器端(図1の(A))において、この配列は、

- 伝送メッセージMeを符号化し、それらを信号配置のシンボルSeに変換する符号化手段10と、
- 伝送シンボルSeを符号化する拡散スペクトル符号 化手段SSC12と、
- 上記のシンボルを表わすベースバンドのディジタルデータによって搬送波を変調する変調手段14との直列結合から成る。伝送は、チャネルCHA16を介して行なわれる。

【0015】メッセージMeを符号化する手段10は: - ソース符号化器SOUR. COD13が後に接続されたアナログ/ディジタル変換手段A/Dと、

- ー チャネル符号化器CHAN. COD. 15と、
- - 信号配置のディジタルデータに関する配置素子MA-PP17との直列結合から成る。

【0016】この信号配置は、QAM、QPSK、BPSK又は他の信号配置に関係していても良い。ソース符号化器13とチャネル符号化器15は、通信チャネルの特性に応じて利用されなくても良い。同様に、A/D変換器11とソース符号化器13は、メッセージMeがディジタル形式(リンク9)で与えられる場合、利用されなくても良い。逆に、変換器は、例えば移動ユーザ局からの電話通信に関する発話メッセージの場合、利用される。

【0017】ユーザ局は、更に、他のユーザ局から来る メッセージを基地局を介して受信する手段から成る。従って、ユーザ局は、更に:

- 受信された符号化されているシンボルScrを表わすベースバンドディジタルデータを抽出する復調手段24と、
- 符号化手段 1 2 により行なわれる演算の逆の演算を実行して、受信されたシンボル S r を復号化する復号化手段 S S C $^{-1}$ 2 2 2 2 3
- 送信器端での符号化手段 10 により行なわれる演算の逆の演算を実行して、受信されたシンボルSr に応じて、受信されたメッセージMr を復号化する復号化手段 20 とから成る。

【0018】復号化手段20は、直列に結合したチャネル復号化手段CHAN DECOD27と、ソース復号化手段SOUR. DECOD23と、ディジタル/アナログ変換手段D/A21とから成る。これらの手段は、その逆の符号化演算が送信器端で先に実行されている場合、存在する。本発明は、シンボルSeを表わすディジタルデータが伝送される場合の変調手段14と、送信器端で実行された演算の逆の演算を受信器端で実行して、受信された信号Srを抽出する復調手段24とに基本的に係る。

【0019】図2は、本発明による通信システムの回路図を示し、この通信システムは、基地局Bと、例えば、 U_1 と U_2 の2つのユーザ局とにより構成される。ユーザ局は同じ通信手段を有するので、以下では局 U_1 だけを詳細に説明するが、送信局が他の局と通信を行なう際、他の局は受信局として機能していることが理解されよう。

【0020】本発明によれば、拡散スペクトル符号化SSCは、多重搬送波の直交周波数分割多重化OFDM変調と組み合わされている。受信器端では、逆の演算が逆の順序で行なわれている。局 U_1 は、シンボルSeを生ずる符号化手段10を有する。このシンボルは、後にマルチプレクサOFDM14nと、多重搬送波変調器14mが接続されている拡散スペクトル符号化器SSC12で符号化され、そのディジタルデータが既に説明した如く送信される。

【002-1】伝送チャネルCHA-1により変化させられ 得る上記のデータは、データPmrとして基地局Bに到 達する。データPmrは、復調器DEMOD24Bmで 復調され、デマルチプレクシング手段OFDM-1で多重 分離されて、受信された符号化されているシンボルPc rを発生し、送信器端で実行される符号化とは逆のSS C-122Bの復号化は、復号化されたシンボルPを生ず る。かかるシンボルPは、次に、符号化手段SSC12 Bによって基地局で再符号化され、マルチプレクサOF DM14Bnにより多重化され、多重搬送波変調器14 Bmを介して中継される。伝送シンボルは、先のチャネ ルとは異なっていても良いチャネルCHA2を介して、 受信局として機能する他のユーザ局U2 に到達する。局 U₁ が他の送信局の受信局として機能する場合を想定す る。受信局は変調されたシンボルSmrを受信し、この シンボルは復調器DEMOD24mで復調され、デマル チプレクサOFDM⁻¹で多重分離されて受信された符号 化されているシンボルScrを生じ、次に、このシンボ ルは、送信器端で実行されたSSC符号化の逆の復号化 を行なう復号化手段 $SSC^{-1}22$ で復号化される。

【0022】基地局Bは、全ユーザ局から発生される全データを受信する。かかるデータは、同じ周波数帯域内のデータに重畳されて、基地局の入力に到達する。この基地局は通信を管理する。このため、局U1が局U2と

交信する際、基地局Bは、メッセージの宛て先のユーザ 局のシーケンス、又は送信するユーザ局のシーケンスの いずれかと共に伝送メッセージを再符号化し、基地局は 送信局に属するシーケンスを受信局に送信するので、受 信局はチャネルを介してそこに到達するメッセージを復 号化し得る。

【0023】図3及び図4は、本発明に実施されている 周知の拡散スペクトル符号化/復号化方式を示してい る。図3の(A)は、単一のソースから発生するメッセ ージに関して利用される拡散スペクトル符号化SSCの 原理の回路図である。このため、ベースバンドの信号配 置に含まれ、時間周期Tsを有するディジタルシンボル Seは、送信器端の掛算器30で周期的なシーケンス発 生器32eから発生する擬似ランダムシーケンスPNi が乗算される。このシーケンスは、各ユーザに対して変 わらなくても良い。その場合、シーケンス発生器はシー ケンスPNiを常時記憶するメモリでも良い。シーケン スPNiは周期Tcの2進のビット系列により構成さ れ、ここに、Ts = L. Tc である。パラメータしは、 シーケンスの周期を形成する。掛算器30の出力にある L個の符号化されたシンボルSceは、各シンボルSe に対応する。このシンボルは広帯域、即ち、拡散スペク トルされた周波数領域に変換されている。従来の技術に より、この符号化されたシンボルSceは、図1に示す 如く送信される。受信器端において、尚ベースバンドに 含まれ、受信された符号化されているシンボルScr は、このシンボルを送出する送信局により利用されたシ ーケンスと一致する擬似ランダムシーケンスPNiを発 生器32rから受信し、或いは、基地局が上記の如くシ ンボルを再符号化している場合、固有のシーケンスPN jを発生器32rから受信する相関器34に供給される (図3の(B))。相関器の出力は、概ね、符号化され ていない受信されたシンボルSrを発生する判定回路3 6に接続され、このシンボルSrが伝送されたシンボル Seを評価する。この復号化が判定復号化ではない場 合、判定素子36は利用されない。評価は後の処理段で 行なわれる。

【0024】図3は、任意のユーザ局で利用される機構を示す。図4は、かかるユーザ局と通信する基地局で利用される機構を示す。基地局は、送信部と受信部の両方から成る。送信部の素子が図4の(A)に概略的に示されている。種々のディジタル符号 S_e 1 ... S_e M が伝送され得る。これらのシンボルの各々は、各ユーザ局に対する擬似ランダムシーケンス $PN_{1...}$ PN_{M} 夫々により掛算器 30_1 ... 30_{j} ... 30_{M} 失々で乗算される。全出力は、加算器 35 に再び集められ、変調器を介しチャネルを用いて伝送される(図 1)。受信部は、図4の(B)に概略的に示されている。基地局に到達した全メッセージは、シンボルシーケンスに組み合わされ、復号化された S_c r となる。かか

るシンボルは、送信器端で利用されたシーケンスに一致する擬似ランダムシーケンス $PN_{i...}$ $PN_{j...}$ PN_{M} 夫々を受信する相関器 40_1 ... 40_j ... 40_M の集合に入力される。上記の如く、相関器の出力は、一般的に判定素子 42_1 ... 42_M の夫々に接続され、この判定素子は、伝送されたシンボルの各々の評解なる 2m を発生する。基地局は、タンス 2m を発生する。基地局は、ス 2m を発生する。基地局は、ス 2m を利用するユーザ局に向けられているシーケンス 2m を利用されているシーケンス 2m を用いて受信されたメッセージを再符号化しても良く、再符号化し、復号化で利用すべきシーケンスを受信局に伝送しても良い。

【0025】図3及び図4は、周知の拡散スペクトル符号化方式を示している。本発明によれば、送信器端にこの符号化の後に直交周波数分割多重化方式による多重搬送波変調段が付加され、受信器端に上記の多重搬送波変調段と逆の演算を行なう段が設けられている。図5は、OFDMマルチプレクサ14nの基本的な回路図の一例である。符号化器SSC12から発生し、符号化された伝送シンボルSceを表わすディジタルデータは、ブロック50で直列/並列変換が施される。並列データは、N個の並列出力信号を発生するN次元フーリエ逆変換計算素子FFT-152に入力される。

【0026】所定の時点で、並列出力信号はOFDMデータブロックの主要部を形成する。装置54は、チェック間隔に対応するデータをこのデータブロック主要部に追加する。この追加は、特定のデータを複写して行なう。図11は、OFDMデータブロックの構成に利用される機構を詳細に説明する図である。シンボルSeは一般的に複素値を有する。第1番目の線図は、符号化されているシンボルSeの状態のシーケンスを示す。シンボルSeの時間周期はTsである。様々なシンボル、例えば、 μ 個のシンボルを含むシーケンスは、1周期の時間が μ . Tsに相当すると想定される。

【0027】かかるシンボルSeは符号化器SSC12 (図2)を通過した後、符号化されたシンボルSceになる。従って、シンボルSeはL個のシンボルSceになる。 μ Tsの時間間隔に、 μ L個のシンボルSceが得られる。ブロック50 (図5)は、直列/並列変換を実行し、N次元フーリエ逆変換を実行するブロック52に入力する μ L個のシンボルを並列に発生するので、N=2k> μ Lであり、ここにkは整数である。従って、 μ L個のシンボルは、ブロック52の入力のいずれかの側に多数のL1=(N- μ L)/2個の"0"データが現われて終わる(参照符号X)。N- μ Lが奇数である場合、ブロックの先頭又は末尾に付加的なシンボルを与える。1周期 μ Tsの後に、N個のシンボルを発生し得

【0028】受信器端で受信されて変調されたシンボル Smrは、復調器24m(図2)により復調され、送信 器端で実行される処理と逆の処理を実行する装置OFD M⁻¹に入力される。装置24nは:

- ー ローパスフィルタ69と、
- タイミング1/T'cを有するサンプラー63と、
- N個の有効な信号を発生し、チェック間隔に受信されたKG 個のシンボルを取り除く直列/並列変換器 6 6 と、
- N個のシンボルブロックのシーケンスを発生するフーリエ変換用計算素子62と、
- 上記の μ L個のシンボルを処理し、受信されて符号 化されたシンボルS c r を処理する並列/直列変換器 6 0 との直列結合から成る(図 6)。これらのシンボルS c r は、上述の復号化器SSC $^{-1}$ 22、22Bに入力される(図 3、図 4 の(B))。

【0029】N個のシンボルブロックの最後は、 μ L個のシンボルを構成する中心部分だけが残るように取り除かれる。図12は、周波数に関してプロットされている伝送された信号のスペクトルパワー密度を示す。曲線70は、従来の拡散スペクトルシステムに対応し、曲線72は、拡散スペクトル方式と多重搬送波による伝送のための直交周波数分割多重化方式とが組み合わされた本発明によるシステムに対応する。水平軸のスケールは、信号の有効な帯域に関して正規化されたベースバンド周波数 F_n に対応する。垂直軸のスケールは、デシベル(dB)で表わされたスペクトル密度に対応する。単一搬送波に関して、スペクトル70は中央に最大のエネルギー

を示すが、そのエネルギーは有効な帯域で急速に減少することが着目される。一方、多重搬送波システムに関して、スペクトル72は矩形状であり、全搬送波に関して伝送されるエネルギーが信号の有効な帯域で一定に保たれることを示している。従って、伝送の信頼性は高められ、受信回路の複雑さが低減されたかなり良好な伝送チャネルが利用できる。多重搬送波システムに関する有効な帯域の外側のエネルギーよりも遙かに小さいことが着目される。

【0030】チャネルが多重伝送路の干渉をうけ得る場合、送信器端でシンボルをインターリーブし、受信器端でシンボルをデインターリーブすることが望ましい。図7の(A)は、図5に示す回路の変形例の回路図を示す。装置S/P50と装置FFT-152との間に周知の技術によりシンボルをインターリープするインターリーブ器ENT51が挿入されている。

【0031】一方、図7の(B)は、図6に示す回路の変形例の回路図を示す。装置FFT62と装置P/S60との間に送信器端で行なわれる演算の逆の演算を行なうデインターリーブ器ENT-161が挿入されている。上記のインターリービング/デインターリービング演算は、例えば、直接的な衛星リンクの場合には所望されない。

【0032】図5及び/又は7の(A)に示すOFDMマルチプレクサの回路図は、ユーザ局のOFDMマルチプレクサ14nの実施と、基地局のOFDMマルチプレクサ14Bnの実施に利用される。同様に、図6及び/又は7の(B)に示すデマルチプレクサの回路図は、ユーザ局のデマルチプレクサ24nの実施と、基地局のデマルチプレクサ24Bnの実施に利用される。

【0033】伝送チャネルは、受信された信号を変化させるフェージングをうける可能性がある。かかるフェージングは、周波数分割領域及び/又は時分割領域で生じる。従って、受信器端で自動利得制御を行なうことが望ましい。図8は、自動利得制御AGCを備えたユーザ局の受信部の主要部の回路図を示す。この回路図は図7に示す回路図に対応し、ここに、各搬送波に割り当てられ、デインターリーブ器61から発生する μ L個の信号の各々は、自動利得制御器(AGC)631 乃至 63μ Lにより発生されている。デインターリーブ器61がない場合、自動利得制御器(AGC)は、FFTブロック62の出力に配置される。

【0034】ユーザ局において、図3の(B)の相関器34と判定素子36との間に自動利得制御器(AGC)を挿入して、全体として自動利得制御を行なうことも可能である。図9は、自動利得制御AGCを備えた基地局の受信部の主要部の回路図を示す。この回路図は、図4に示す回路図に対応する。この場合、より良好な性能が、各相関器401万至40Mの出力に各ユーザに対す

=

る自動利得制御器 (AGC) 6 5 $_1$ 乃至 6 3 $_M$ を挿入してチャネル毎に生ずる不完全性を個々に訂正することにより得られる。

[0035]

【発明の効果】拡散スペクトル符号化と直交周波数分割 多重化による多重搬送波変調とを組み合わせることによ り様々な利点が得られる。拡散スペクトル符号化(SSC)が単独で利用される場合に必要とされる受信器端で の各シーケンスの先頭を同期させる必要がない。

【0036】多重搬送波変調の利用により、擬似ランダ ムシーケンスの選択の幅が著しく広がる。実際上、初期 時点以外の如何なる時点でも、利用されている擬似ラン ダムシーケンスの相互相関に関する差は許容されるが、 一方、拡散スペクトル符号化(SSC)が単独で利用さ れる場合はこの差は許容されていない。OFDM信号 は、フレームの形式で構成される。ユーザ局の各々は、 独自のフレームを有するので、受信器端の同期機構が単 純化される。更に、データブロック毎のチェック間隔を 利用することにより、多重伝送路に起因する遅延により 生じると想定されるのと同様に、送信器と受信器との間 の距離に応じて変わり得る伝播遅延により生じると想定 される全ての不確実性を処理し得るようになる。とりわ け、伝播遅延は基地局のカバレッジエリアと関連性があ る。チェック間隔の存在により、従来のSSC技術と比 較して、このカバレッジエリアを拡大させ得、利用され るソフトウェアを複雑化させることはない。従来のSS C技術の場合、かかる困難性を解決するためには、複雑 なイコライザーが不可避的に必要である。

【0037】更に、本発明によれば、エネルギーはチャネル全体にかなり均等に分布されるので、このシステムはフェージングへの抵抗性が増す。多重搬送波システムの副ローブのエネルギーは、単一搬送波システムの副ローブのエネルギーよりも遙かに小さい。

【図面の簡単な説明】

【図1】ユーザ局で機能する通信処理装置の回路図である。

【図2】本発明による通信システムの主要部の概略的な 回路図である。

【図3】(A)は周知の拡散スペクトル符号化に関する 原理の回路図であり、(B)はユーザ局で動作する関連 する復号化回路図である。

【図4】(A)は基地局で利用される周知の原理に基づく符号化回路図であり、(B)は復号化回路図である。

【図5】多重搬送波伝送と共に利用されるためのOFD Mマルチプレクサの回路図である。

【図6】OFDMデマルチプレクサの回路図である。

【図7】送信器端でシンボルをインターリーブする回路 のブロック図と、受信器端でシンボルをデインターリー ブする回路のブロック図である。 【図8】自動利得制御を含むユーザ局のデマルチプレクサの回路図である。

【図9】自動利得制御を含む基地局の復号化器の回路図である。

【図10】マルチユーザ通信システムの概要図である。

【図11】 μ T s 時間の間に互るシンボルの分布図である.

【図12】従来の拡散スペクトルシステムの周波数応答曲線と、本発明によるシステムの周波数応答曲線の図である

【符号の説明】

- 9 リンク
- 10 変換手段
- 11 A/D変換手段
- 12, 12B 符号化手段(SSC)
- 13 ソース符号化器 (SOUR. COD.)
- 14 送信手段
- 14n, 14m、14Bn, 14Bm 多重搬送波変 調手段
- 15 チャネル符号化器 (CHAN. COD.)
- 16 チャネル (CHA)
- 17 配置素子 (MAPP)
- 20 変換逆演算手段
- 21 D/A変換手段
- 22, 22B 復号化手段
- 23 ソース復号化手段 (SOUR. DECOD)
- 24 受信手段
- 24n, 24m、24Bn, 24Bm 多重搬送波復 調手段
- 27 チャネル復号化手段 (CHAN DECOD)
- 30, 301 ... 30j ... 30M 掛算器
- 32 e, 32 r シーケンス発生器
- 34,401...40j...40M 相関器
- 3 5 加算器
- 36, 421... 42j... 42M 判定素子
- 50,66 入力直列/並列変換手段(S/P)
- 51, 61 時分割/周波数分割シンボルインターリービング手段
- 52 フーリエ逆変換手段 (FFT⁻¹)
- 53 特別なシンボルブロック
- 54 保護シンボル付加手段 (PROT)
- 56,60 並列/直列変換手段(P/S)
- 58 特別なシンボルブロック付加手段 (FRAM E)
- 59 ローパスフィルタ(LPF)
- 62 フーリエ変換手段(FFT)
- 63 サンプラー
- 631, 632, ... 自動利得制御器 (AGC)

【図1】

.

【図2】

4

フロントページの続き

- (72)発明者 アメリコ ブラジャル フランス国 94290 ビユヌヴ ル ルワ リュ ジャンージャック ルソー 54番 地
- (72)発明者 サビィニ ジュルダン ... フランス国 91600ーサヴィジニィ シュ ル オルジュ, リュ カミーユ クローデ ル 5番地

~~~.