Unsupervised Learning K-Means

Houcine Senoussi

March 10, 2016

- Introduction
- 2 K-Means Clustering
- 3 Hierarchical Clustering
- 4 References

What is it about?

- Unsupervised learning also called clustering.
 - Data have no class attributes.
 - Objective : to find some intrinsic structure in the data.
 - Clustering: organizes data into similarity groups called clusters:
 - Data instances in the same cluster are similar to each other.
 - Data instances in different clusters are very different from each other.
- Clustering can be partitionnal or hierarchical.
- Similarity is measured by similarity/distance function.

Example

Applications

 Marketing: Segmentation. Partition customers into a small number of groups according to their similarities and design some marketing materials for each group.

K-Means Algorithm

- The best known partitionnal clustering algorithm.
- Simple and efficient.
- Input : Data records *D* and the number of clusters *k*.

K-Means Algorithm

- $D = \{x_1, x_2, ..., x_n\}.$
- $x_i = (x_{i1}, ..., x_{ip}).$
- In other words $x_i \in \mathbb{R}^p$.
- K Means partitions D into k clusters. Each cluster has a center (also called centroid).
- Centroid is the mean of all the data points in the cluster.

K-Means Algorithm

- Algorithm K-Means(k, D).
 - ① Choose *k* data points as the initial centroids (cluster centers).
 - 2 repeat
 - for each data point x ∈ D.
 Compute the distance from x to each centroid.
 Assign x to the closest centroid.
 - endfor.
 - Re-compute the centroid using the current cluster memberships.
 - 3 until the stopping criterion is met.

Principle

- Produces a nested sequence of clusters.
- This sequence can be represented by a tree :
 - Root : one cluster covering all the data.
 - Leaves: singleton clusters (data points).
- There are two main types of hierarchical clustering methods :
 - Bottom up (agglomerative) clustering (see below): builds the tree from the bottom level and merges the most similar clusters. The process continues until all data points are in a single cluster.
 - Top down (Divisive) clustering: starts with all the data points in one cluster (the root) and recursively splits clusters until singleton clusters are obtained.

Algorithm

- **Algorithm** Agglomerative(D).
 - Make each data point in the data set D a cluster.
 - ② Compute all pair-wise distances of $x_1, x_2, ..., x_n \in D$.
 - Repeat
 - Find two clusters that are nearest to each other.
 - Merge the two clusters form a new cluster c.
 - **3** Compte the distance from *c* to all other clusters.
 - Until there is only one cluster left.

Example

References

- Liu B. Web Data Mining. Springer. 2007, 532 pages.
- Witten I. H., Frank E., Hall M. A. Data Mining. Morgan Kaufmann Publishers. 2011, 628 pages.