Introduction to Reinforcement Learning

Jean Martinet, based on the course of Diane Lingrand

Polytech SI4 / EIT Digital DSC

2020 - 2021

Three main learning paradigms

Supervised learning

- Learn a mapping between inputs and outputs
- An oracle provides labelled examples of this mapping

Unsupervised learning

- Learn a structure in a data set (capture the distribution)
- No oracle

Reinforcement Learning

- Learn to behave
- Online learning
- Sequential decision making under uncertainty, control

General problem

Examples

Artificial problems

- Mazes, grid worlds
- Mountain car
- Inverted Pendulum
- Games :
 Backgammon, Chess,
 Atari, Go

Real world problems

- Man-Machine Interfaces
- Data center cooling
- Autonomous robotics

A classic toy example

- State
 - position
- Reward
 - +1 if end goal
 - -1 if end trap
 - -0.04 move cost in any case

- Transition rules
 - 4 directions : UP, DOWN, LEFT, RIGHT
 - probability of move success: 0.8
 - probability of failure, end up in lateral position: 0.1 for each
 - example : chosen action = UP
 - probability 0.8 to go UP
 - probability 0.1 to go LEFT
 - probability 0.1 to go RIGHT
 - external bouncing walls
- shortest path and reliability

About this class

- Second half of EIIN825 ECUE IA
- Six sessions (lectures, labs)
- Objectives
 - Understand the key concepts of RL, distinguish from other AI / ML
 - Know if a problem can be formulated as a RL problem and how
 - Implement standard RL algorithms
- Link to other courses
 - SI4 CVML, ...
- Prerequisites: Python proficiency, basics in probability and statistics
- Organisation
 - Material on LMS https://lms.univ-cotedazur.fr/course/view.php?id=1300
 - Slack channel #si4-ia
- Evaluation will give 50% of EIIN825 grade
 - Two assignments (individual / in groups) 30% each
 - First graded assignment TODAY!
 - One final written exam on May 20 10.30am-12pm 60%

Sequential decision making

- At each time step t, agent in state $s_t \in S$ executes action $a_t \in A$
- As a consequence, the agent reaches a new state s_{t+1} and receives from the environment a reward r_{t+1}
 - feedback that measures the success or failure of an agent's action
- The total reward (return, also called utility) at time step t is

$$G_t = r_{t+1} + r_{t+2} + \ldots + r_T$$

- Time horizon can be finite / infinite / indefinite
- Rather use a discounted return

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

- ullet Discount factor γ says how much you care of immediate/future
 - if $\gamma = 1$, get a reward on step 1000 is as good as on step 3
 - if $0 < \gamma \le 1$, more important to get rewards sooner
 - if $\gamma = 0$, only care for immediate reward, ignore future (myopic)

Sequential decision making

- Credit assignment problem
 - Rewards can be extremely delayed; how to select actions that lead to a certain outcome?
- A policy $\pi(a|s)$ is a mapping from states to probabilities of selecting each possible action optimal policy π^*
- The **state**-value function of s_t under π is the expected return

$$V^{\pi}(s_t) = \mathbb{E}_{\pi}[G_t|s_t] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t]$$

• The **action**-value function of taking a_t in s_t under π is

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi}[G_t|s_t, a_t] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t, a_t]$$

- Goal : select actions to maximise total expected future rewards
 - Requires to balance immediate and long term rewards
 - Requires a strategy balance exploration vs exploitation

Markov assumption

Andrey Andreyevich Markov (1856 - 1922) was a Russian mathematician "The future is independent of the past given the present"

$$p(s_{t+1}|s_t) = p(s_{t+1}|s_1, s_2, ..., s_t)$$

- only the present matters
- the state captures all relevant information from the past (if needed)
- stationary (rules do not change)

Markov Decision Process (MDP)

A Process is a Markov Process if it satisfies the Markovian property A Markov Reward Process is a MP with a reward at each state A Markov Decision Process is a MRP with decisions

- Formal description of an environment for decision making / RL
- Tuple {S, A, P, R, γ}
 - States : s_t
 - Action : at
 - Dynamics model (transitions) : $P(s_t, a_t, s_{t+1}) \sim p(s_{t+1}|s_t, a_t)$
 - **Reward model** : $R(s_t)$ immediate reward
 - Discount factor : γ

How to learn a policy?

- Brute force?
 - ullet evaluate all policies and return the best one : π^*
 - check your understanding : how many different policies?
- Dynamic programming when you know P and R
 - Policy iteration (evaluation+improvement), value iteration
- Monte Carlo methods
- Temporal Difference

"If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning."

Sutton and Barto, 2018.

Temporal difference

- ullet Init : agent assumes that the action value is 0 all (s_t,a_t) pairs
- Iterate: update the estimate using the observed difference between expected and actual (current) values
- ullet Remember the state-value function $V^\pi(s_t) = \mathbb{E}_\pi[G_t|s_t]$ with
 - $G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} \dots$
 - $G_t = r_{t+1} + \gamma(r_{t+2} + \gamma r_{t+3} + \gamma^2 r_{t+3} \dots)$
 - $G_t = r_{t+1} + \gamma G_{t+1}$
- Then

$$V^{\pi}(s_t) = \mathbb{E}_{\pi}[r_{t+1} + \gamma G_{t+1} | s_t]$$

 $V^{\pi}(s_t) = \mathbb{E}_{\pi}[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t]$

• The TD error δ_t is the difference between the *estimated* value of s_t and the *better estimate* $r_{t+1} + \gamma V^{\pi}(s_{t+1})$

$$\delta_t = r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

Q-learning

- On-policy versus off-policy methods
 - On-policy: evaluated and used to make decisions are the same
 - Off-policy: evaluated and used to make decisions are different
- Q-learning is an off-policy TD algorithm

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)]$$

- ullet Iteratively updates action-value using δ_t
- ullet α is the learning rate

Q-learning algorithm

- Build a Q-table of size $|S| \times |A|$, initial values are 0s
- Iterate episodes (a few hundreds)
 - Iterate steps in each episode
 - Select the best action a in state s, use the reward to update Q
 - Episode terminates when agent reaches a terminal state (or max iteration)

ϵ -greedy

- Used for choosing an action
 - ullet Trade-off between exploration and exploitation using ϵ value
- ullet starts at 1 (only exploration) then decreases (more exploitation)
- Choose a random number r between 0 and 1 (uniform distribution) :
 - if $r < \epsilon$: choose a random action (exploration)
 - if $r \ge \epsilon$: choose the best action = maximising Q value (exploitation)

Today's lab

- Consider a 1D grid with :
 - ullet one goal location (positive reward, e.g. +1)
 - one trap location (negative reward, e.g. -1)
 - a fixed move cost (e.g. -0.01)
 - deterministic actions (probability to go left when trying left is 1)
- Implement Q-learning from the equation
- Run your algorithm to determine the best policy
- Optional: extend to the 2D grid described in the classical toy example
- Notes :
 - Use Python and numpy only (gym next week)
 - Submit your solution at the end of the session, deadline 12.15pm.