

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) EP 0 708 099 A1

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:
24.04.1996 Bulletin 1996/17(51) Int Cl. 6: C07D 307/92, C07D 491/04,
C07C 233/18, C07C 275/22,
C07D 311/92, C07D 495/04,
C07D 493/04, A61K 31/34
// (C07D491/04, 311:00,
209:00),
(C07D495/04, 333:00, 311:00),
(C07D493/04, 311:00, 307:00)

(21) Numéro de dépôt: 95402331.3

(22) Date de dépôt: 19.10.1995

(84) Etats contractants désignés:
AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT
SE

- Depreux, Patrick
F-59280 Armentières (FR)
- LeClerk, Véronique
F-59100 Lille (FR)
- Alt Mansour, Hamid
F-59100 Roubaix (FR)
- Delagrange, Philippe
F-92130 Issy-les-Moulineaux (FR)
- Renard, Pierre
F-78000 Versailles (FR)

(30) Priorité: 21.10.1994 FR 9412581

(71) Demandeur: ADIR ET COMPAGNIE
F-92415 Courbevoie Cédex (FR)(72) Inventeurs:

- Lesieur, Daniel
F-59147 Gondrecourt (FR)

(54) Nouveaux composés amides tricycliques, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent

(57) Composés de formule (I):

dans laquelle:

- R¹ représente une chaîne (C₁-C₄) alkylène non substituée ou substituée par un radical choisi parmi alkyle, hydroxy, alkoxy carbonyle et carboxyle;
- R² représente un atome d'hydrogène ou un alkyle;
- R³ représente:
 - soit un groupement de formule R³¹

dans lequel n représente zéro ou un nombre entier de 1 à 3 et R⁵ représente un atome d'hydrogène, un alkyle non substitué ou substitué, un alcényle non substitué ou substitué, un alcynyle non substitué ou substitué, un cycloalkyle non substitué ou substitué, un dicycloalkylalkyle non substitué ou substitué; et X' représente un atome d'oxygène ou de soufre;

- soit un groupement de formule R³²:

dans lequel X représente un atome d'oxygène ou de soufre,
 m représente zéro ou un nombre entier de 1 à 3
 et R⁶ représente un radical choisi parmi les même valeurs que R⁵;

A représente une chaîne de formule -O-A¹- dans laquelle A¹ est une chaîne choisie parmi (C₂-C₅) alkylène, (C₂-C₅) alcénylène et (C₂-C₅) alcynylène; A¹ étant non substitué ou substitué par un ou plusieurs groupements choisis parmi alkyle, alkoxy, hydroxy et oxo.

Y formant avec le noyau benzo auquel il est lié un groupement Y¹ choisi parmi naphthalène, naphthalène partiellement hydrogéné, benzofurane, benzofurane partiellement hydrogéné, benzothiophène, benzothiophène partiellement hydrogéné, et indole; et leur application pour le traitement des troubles du système mélatoninergique.

Description

L'invention concerne de nouveaux composés amides tricycliques, leurs procédés de préparation et les compositions pharmaceutiques qui les contiennent.

De nombreuses études ont mis en évidence ces dix dernières années, le rôle capital de la mélatonine (5-méthoxy N-acétyl tryptamine) dans le contrôle du rythme circadien et des fonctions endocrines, et les récepteurs de la mélatonine ont été caractérisés et localisés.

Outre leur action bénéfique sur les troubles du rythme circadien (J. Neurosurg 1985, 63, pp 321-341) et du sommeil (Psychopharmacology, 1990, 100, pp 222-226), les ligands du système mélatoninergique possèdent d'intéressantes propriétés pharmacologiques sur le système nerveux central, notamment anxiolytiques et antipsychotiques (Neuropharmacology of Pineal Secretions, 1990, 8 (3-4), pp 264-272) et analgésiques (Pharmacopsychiat., 1987, 20, pp 222-223) ainsi que pour le traitement de la maladie de Parkinson (J. Neurosurg 1985, 63, pp 321-341) et d'Alzheimer (Brain Research, 1990, 528, pp 170-174). De même, ces composés ont montré une activité sur certains cancers (Melatonin - clinical Perspectives, Oxford University Press, 1988, page 164-165), sur l'ovulation (Science 1987, 227, pp 714-720), et sur le diabète (Clinical endocrinology, 1986, 24, pp 359-364).

Des composés permettant d'agir sur le système mélatoninergique sont donc pour le clinicien d'excellents médicaments pour le traitement des pathologies mentionnées précédemment.

La demanderesse a découvert de nouveaux composés amides tricycliques, de structure originale, montrant une très haute affinité pour les récepteurs mélatoninergiques et présentant, *in vitro* et *in vivo*, un grand intérêt pharmacologique et thérapeutique.

L'invention concerne plus particulièrement les composés de formule (I):

dans laquelle :

- R^1 représente une chaîne ($\text{C}_1\text{-}\text{C}_4$) alkylène non substituée ou substituée par un radical choisi parmi alkyle, hydroxy, alkoxy carbonyle et carboxyle ;
- R^2 représente un atome d'hydrogène ou un alkyle ;
- R^3 représente :
 - soit un groupement de formule R^{31}

dans lequel n représente zéro ou un nombre entier de 1 à 3 et R^5 représente un atome d'hydrogène, un alkyle non substitué ou substitué, un alcényle non substitué ou substitué, un alcynyle non substitué ou substitué, un cycloalkyle non substitué ou substitué, un dicycloalkylalkyle non substitué ou substitué ; et X' représente un atome d'oxygène ou de soufre :

soit un groupement de formule R^{32} :

dans lequel X représente un atome d'oxygène ou de soufre, m représente zéro ou un nombre entier de 1 à 3 et R^6 représente un radical choisi parmi les mêmes valeurs que R^5 :

- A représente une chaîne de formule $-\text{O}-\text{A}^1-$ dans laquelle A^1 est une chaîne choisie parmi ($\text{C}_2\text{-}\text{C}_5$) alkylène, ($\text{C}_2\text{-}\text{C}_5$) alcényle et ($\text{C}_2\text{-}\text{C}_5$) alcynyle : A^1 étant non substitué ou substitué par un ou plusieurs groupements choisis parmi alkyle, alkoxy hydroxy et oxo.

Y formant avec le noyau benzo auquel il est lié un groupement Y^1 choisi parmi naphtalène, naphtalène partiellement hydrogéné, benzofuranne, benzofuranne partiellement hydrogéné, benzothiophène, benzothiophène partiellement hydrogéné et indole :

étant entendu que :

- l'expression "substitué" affectant les termes "alkyle", "alcényle", et "alcynyle" signifie que ces groupements sont substitués par un ou plusieurs radicaux choisis parmi halogène, alkyle et alkoxy,
- l'expression "substitué" affectant le terme "cycloalkyle" ou "dicycloalkylalkyle" signifie que ces groupements sont substitués par un ou plusieurs radicaux choisis parmi : alkyle, alkoxy, hydroxy et le groupement o xo,
- les termes "alkyle" et "alkoxy" désignent des radicaux comportant de 1 à 6 atomes de carbone,
- les termes "alcényle" et "alcynyle" désignent des radicaux insaturés de 2 à 6 atomes de carbone,
- le terme "cycloalkyle" désigne un groupement de 3 à 8 atomes de carbone, saturé ou insaturé,

10

leurs énantiomères et diastéréoisomères,
et leurs sels d'addition à une base pharmaceutiquement acceptable.

Particulièrement, l'invention concerne :

15

- les composés de formule (I) dans laquelle R¹ représente une chaîne éthylène,
- les composés de formule (I) dans laquelle R² représente un atome d'hydrogène,
- les composés de formule (I) dans laquelle R³ représente un groupement de formule R₃₁,
- les composés de formule (I) dans laquelle R⁵ représente un alkyle,
- les composés de formule (I) dans laquelle R⁵ représente un groupement cycloalkyle,
- les composés de formule (I) dans laquelle R³ représente un groupement R³²,
- les composés de formule (I) dans laquelle R⁶ représente un alkyle,
- les composés de formule (I) dans laquelle R⁶ représente un cycloalkyle,
- les composés de formule (I) dans laquelle X est un atome d'oxygène,
- les composés de formule (I) dans laquelle X est un atome de soufre,
- les composés de formule (I) dans laquelle X' est un atome d'oxygène,
- les composés de formule (I) dans laquelle X' est un atome de soufre,
- les composés de formule (I) dans laquelle A¹ est une chaîne éthylène,
- les composés de formule (I) dans laquelle A¹ est une chaîne triméthylène,
- les composés de formule (I) dans laquelle A¹ est une chaîne tétraméthylène,
- les composés de formule (I) dans laquelle A¹ est une chaîne vinylène,
- les composés de formule (I) dans laquelle A¹ est une chaîne propenylène,
- les composés de formule (I) dans laquelle Y forme avec le noyau benzo auquel il est lié, un groupement naphtalène,
- les composés de formule (I) dans laquelle Y forme avec le noyau benzo auquel il est lié, un groupement tétrahydronaphthalène,
- les composés de formule (I) dans laquelle Y forme avec le noyau benzo auquel il est lié, un groupement indole.

Plus particulièrement, l'invention concerne :

40

- les composés de formule (I₁)

dans laquelle A, R¹, R² et R³ sont tels que définis dans la formule (I)
et les composés de formule (I₂)

45

dans laquelle A, R¹, R² et R³ sont tels que définis dans la formule (I).

Par exemple, l'invention concerne les composés de formule (I₃) :

10 dans laquelle A, R² et R³ sont tels que définis dans la formule (I) et les composés de formule (I₄)

20 dans laquelle A, R² et R³ sont tels que définis dans la formule (I).

25 Parmi les bases pharmaceutiquement acceptables que l'on peut utiliser pour former un sel d'addition avec les composés de l'invention, on peut citer à titre d'exemples et de façon non limitative, les hydroxydes de sodium, de potassium, de calcium, ou d'aluminium, les carbonates de métaux alcalins ou alcalinoterreux, et les bases organiques comme la triéthylamine, la benzylamine, la diéthanolamine, la tert-butylamine, la dicyclohexylamine, et l'arginine.

30 De façon particulière, les radicaux alkyles présents dans la formule (I) peuvent être choisis parmi méthyle, éthyle, n-propyle, isopropyle, n-butyle, isobutyle, sec-butyle, tert-butyle, pentyle, ou hexyle.

Les radicaux alkoxy présents dans la formule (I) peuvent être choisis parmi méthoxy, éthoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, et hexyloxy.

Les halogènes présents dans la formule (I) peuvent être choisis parmi le brome, le chlore, le fluor, et l'iode.

35 Les cycloalkyles présents dans la formule (I) peuvent être choisis parmi cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, cycloheptyle et cyclooctyle.

Les groupements alkylénés présents dans la formule (I) peuvent être choisis parmi éthylène, triméthylène, tétraméthylène et pentaméthylène.

40 L'invention concerne également le procédé de préparation des composés de formule (I) caractérisé en ce qu'on cyclise un composé de formule (II) :

dans laquelle R¹, R², R³, A¹ et Y ont la même définition que dans la formule (I) et Z¹ représente une fonction réactive, afin d'obtenir le composé de formule (I) correspondant.

50 dans laquelle R¹, R², R³ et Y sont tels que définis précédemment et A est tel que défini dans la formule (I). composés de formule (I) qui peuvent être, si on le désire.

- purifiés suivant une ou plusieurs méthodes de purification choisies parmi la cristallisation, la chromatographie sur gel de silice, l'extraction, la filtration, et le passage sur charbon ou résine.
- séparés, le cas échéant, sous forme pure ou sous forme de mélange, en leurs éventuels énantiomères ou diastéréoisomères,
- ou salifiés par une base pharmaceutiquement acceptable.

55 L'invention concerne également un procédé de préparation des composés de formule (I) caractérisé en ce qu'on

fait réagir un composé de formule (III):

10 dans laquelle A, R¹, R² et Y sont telles que définis dans la formule (I),

a) avec un chlorure d'acyle de formule (IV) :

dans laquelle n et R⁵ sont tels que définis dans la formule (I), ou avec l'anhydride (symétrique ou mixte) d'acide correspondant, ou bien avec de l'acide formique,

20 b) ou bien avec un isocyanate de formule (V) :

avec X, m et R⁶ tels que définis dans la formule (I)
afin d'obtenir, respectivement:

25 a) le composé de formule (I/b1) :

dans laquelle A, Y, R¹, R², R⁵ et n sont tels que définis précédemment,

35 ou b) le composé de formule (I/b2) :

dans laquelle A, Y, R¹, R², R⁶, X et m sont tels que définis précédemment,

les composés de formule (I/b1) et (I/b2) pouvant être, si on le désire,

45

- purifiés suivant une ou plusieurs méthodes de purification choisies parmi la cristallisation, la chromatographie sur gel de silice, l'extraction, la filtration, et le passage sur charbon ou résine,
- séparés, le cas échéant, sous forme pure ou sous forme de mélange, en leurs éventuels énantiomères ou diastéréoisomères,
- ou salifiés par une base pharmaceutiquement acceptable.

50

Le composé de formule (I) dans lequel R³¹ représente un groupement -CS-(CH₂)_n-R⁵ peut également être obtenu à partir du composé de formule (I) correspondant, dans lequel R³¹ représente un groupement -CO-(CH₂)_n-R⁵, qui est soumis à un réactif de thionation, par exemple le réactif de Lawesson.

55 L'invention concerne également la préparation de composés de formule (I/c1) :

dans laquelle R^1 , R^2 , R^3 et Y sont tels que définis dans la formule (I) et A^3 représente une chaîne ($\text{C}_2\text{-}\text{C}_5$) alkylène substituée par un radical hydroxy ou une chaîne ($\text{C}_2\text{-}\text{C}_5$) alcénylène.
caractérisé en ce que on réalise la réduction ménagée d'un composé de formule (I/c0) :

15

dans laquelle R^1 , R^2 , R^3 et Y sont tels que définis précédemment et A^2 représente une chaîne ($\text{C}_2\text{-}\text{C}_5$) alkylène substituée par un groupement oxo,
les composés de formule (I/c1) pouvant être, si on le désire,

20

- purifiés suivant une ou plusieurs méthodes de purification choisies parmi la cristallisation, la chromatographie sur gel de silice, l'extraction, la filtration, et le passage sur charbon ou résine.
- séparés, le cas échéant, sous forme pure ou sous forme de mélange, en leurs éventuels énantiomères ou diastéréoisomères.
- 25 - ou salifiés par une base pharmaceutiquement acceptable.

L'invention concerne également un procédé de préparation des composés de formule (I/d) cas particulier des composés de formule (I) :

35

dans laquelle Y , R^1 , R^2 et R^3 sont tels que définis dans la formule (I) et A^5 représente une chaîne ($\text{C}_2\text{-}\text{C}_5$) alkylène non substituée ou substituée par un radical ($\text{C}_1\text{-}\text{C}_6$) alkyle caractérisé en ce que un composé de formule (VI) :

45

dans laquelle Y , R^1 , R^2 et R^3 sont tels que définis précédemment et A^6 représente un radical ($\text{C}_2\text{-}\text{C}_5$) alcényle non substitué ou substitué par un radical ($\text{C}_1\text{-}\text{C}_6$) alkyle est soumis à une réaction de cyclisation,
les composés de formule (I/d) pouvant être, si on le désire,

50

- purifiés suivant une ou plusieurs méthodes de purification choisies parmi la cristallisation, la chromatographie sur gel de silice, l'extraction, la filtration, et le passage sur charbon ou résine.
- séparés, le cas échéant, sous forme pure ou sous forme de mélange, en leurs éventuels énantiomères ou diastéréoisomères,
- ou salifiés par une base pharmaceutiquement acceptable.

L'invention concerne également les composés de formule (VI) :

dans laquelle R¹, R², R³ et Y sont tels que définis dans la formule (I) et A⁶ représente un radical (C₂-C₅) alcényle non substitué ou substitué par un radical (C₁-C₆) alkyle, utiles comme intermédiaires de synthèse.

10 Les composés de formule (II) tels que décrits précédemment sont accessibles à l'homme du métier par réaction d'un composé de formule (II/a) :

dans laquelle R¹, R², R³ et Y sont tels que définis dans la formule (I), avec un composé de formule (II/b) :

dans laquelle A¹ a la même définition que dans la formule (I), Z² représente une fonction réactive éventuellement protégée et Z³ représente un groupement partant, par exemple un atome d'halogène ou un groupement tosyle. Par exemple Z² représente une fonction hydroxyle, carboxyle, une liaison double ou une liaison triple.

L'invention s'étend également aux composés de formule (II):

30 dans laquelle R¹, R², R³ et A¹ sont tels que définis dans la formule (I) et Z¹ représente une fonction réactive, utiles en tant qu'intermédiaires de synthèse.

Les matières premières utilisées dans les procédés précédemment décrits sont soit commerciales ou connues dans l'état de la technique, soit aisément accessibles à l'homme du métier selon des procédés bien connus dans la littérature. On se référera plus particulièrement, pour les composés de formule générale (II), aux descriptions du brevet EP 447 285 et de la demande de brevet EP 530 087.

35 Les composés de formule (I) possèdent des propriétés pharmacologiques très intéressantes pour le clinicien.

Les composés de l'invention et les compositions pharmaceutiques les contenant s'avèrent être utiles pour le traitement des troubles du système mélatoninergique.

40 L'étude pharmacologique des dérivés de l'invention a en effet montré qu'ils n'étaient pas toxiques, doués d'une très haute affinité sélective pour les récepteurs de la mélatonine et possédaient d'importantes activités sur le système nerveux central et en particulier, on a relevé des propriétés thérapeutiques sur les troubles du sommeil, des propriétés anxiolytiques, antipsychotiques, analgésiques ainsi que sur la microcirculation qui permettent d'établir que les produits de l'invention sont utiles dans le traitement du stress, des troubles du sommeil, de l'anxiété, des dépressions saisonnières, des pathologies cardiovasculaires, des insomnies et fatigues dues aux décalages horaires, de la schizophrénie, des attaques de panique, de la mélancolie, des troubles de l'appétit, de l'obésité, de l'insomnie, des troubles psychotiques, de l'épilepsie, de la maladie de Parkinson, de la démence sénile, des divers désordres liés au vieillissement normal ou pathologique, de la migraine, des pertes de mémoire, de la maladie d'Alzheimer, ainsi que les troubles de la circulation cérébrale. Dans un autre domaine d'activité, il apparaît que les produits de l'invention possèdent des propriétés d'inhibiteurs de l'ovulation, d'immunomodulateurs et qu'ils sont susceptibles d'être utilisés dans le traitement anticancéreux.

45 Les composés seront utilisés de préférence dans les traitements des dépressions saisonnières, des troubles du sommeil, des pathologies cardiovasculaires, des insomnies et fatigues dues aux décalages horaires, des troubles de l'appétit et de l'obésité.

50 Par exemple, les composés seront utilisés dans le traitement des dépressions saisonnières et des troubles du sommeil.

55 La présente invention a également pour objet les compositions pharmaceutiques contenant les produits de formule (I) ou le cas échéant un de leurs sels d'addition à une base pharmaceutiquement acceptable en combinaison avec un ou plusieurs excipients pharmaceutiquement acceptables.

Parmi les compositions pharmaceutiques selon l'invention, on pourra citer, plus particulièrement celles qui conviennent pour l'administration orale, parentérale, nasale, per-ou transcutanée, rectale, perlinguale, oculaire ou respiratoire et notamment les comprimés simples ou dragéifiés, les comprimés sublinguaux, les sachets, les paquets, les gélules, les glossettes, les tablettes, les suppositoires, les crèmes, les pommades, les gels dermatiques et les ampoules buvables ou injectables.

La posologie varie selon l'âge et le poids du patient, la voie d'administration, la nature de l'indication thérapeutique, ou des traitements éventuellement associés et s'échelonne entre 0.1 mg et 1 g par 24 heures en 1 ou 2 prises, plus particulièrement 1 à 100 mg, par exemple 1 à 10 mg.

Les exemples suivants illustrent l'invention, mais ne la limitent en aucune façon.

PREPARATION 1 : N-[2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL]ACETAMIDE

Stade A : N-[2-[7-(éthoxycarbonylméthoxy)napht-1-yl]éthyl]acétamide

Préparation 1
(Stade A)

Réactifs :

N-[2-(7-hydroxy-naphth-1-yl)éthyl]acétamide :	7 mmol (1.60 g)
Acétone anhydre :	30 cm ³
Carbonate de potassium :	14 mmol (1.93 g)
Bromoacétate d'éthyle :	10 mmol (1.67 g)

Mode opératoire :

Dissoudre le N-[2-(7-hydroxy-naphth-1-yl)éthyl]acétamide dans l'acétone anhydre, ajouter le carbonate de potassium et laisser sous agitation à reflux durant une demi-heure. Ajouter le bromoacétate d'éthyle goutte à goutte à l'aide d'une ampoule à brome et laisser sous agitation à reflux durant trois heures. Laisser refroidir, essorer le précipité, évaporer le filtrat à sec, et recristalliser.

Caractéristiques :

Rendement :	80 %
Solvant de recristallisation :	toluène/hexane (1/2)
Point de fusion :	95-97° C
Massé moléculaire :	315.355 g.mol ⁻¹ pour C ₁₂ H ₂₁ NO ₄

Microanalyse :

	% C	% H	% N
Calculé :	68,55	6,71	4,49
Trouvé :	68,26	6,57	4,71

Infra-rouge :

3300 cm ⁻¹	v N-H
2960-2860 cm ⁻¹	v C-H alkyles

Suite du Tableau sur la page suivante

(suite)

Infra-rouge :			
1735 cm ⁻¹		v C=O ester	
1620 cm ⁻¹		v C=O amide	

5

RMN (DMSO, d₆) 300 MHz :10 1,25 ppm triplet 3H Hf J_{f-e} = 7,10 Hz

15 1,85 ppm singulet 3H Hc

15 3,15 ppm triplet 2H Ha J_{a-b} = 6,80 Hz

3,35 ppm multiplet 2H Hb

4,20 ppm quadruplet 2H He

20 5,00 ppm singulet 2H Hd

7,20-7,35 ppm massif 3H H₂, H₃, H₆7,55 ppm doublet 1H H₈ J₈₋₆ = 2,15 Hz25 7,75 ppm doublet de doublet 1H H₄ J₄₋₃ = 7,40 Hz ; J₄₋₂ = 2,60 Hz7,85 ppm doublet 1H H₅ J₅₋₆ = 9,00 Hz

8,05 ppm triplet 1H N-H amide

Stade B : N-[2-[7-(carboxyméthoxy)napht-1-yl]éthyl]acétamide

30

préparation 1
(stade B)

35

40

Réactifs :

N-[2-[7-(éthoxycarbonylméthoxy)napht-1-yl]éthyl]acétamide :	5 mmol (1,57 g)
Solution aqueuse de soude à 10 % :	10 mmol (40 cm ³)

45 Mode opératoire :

Dans une fiole, introduire le N-[2-[7-(éthoxycarbonylméthoxy)-napht-1-yl]éthyl] acétamide et une solution aqueuse de soude à 10 % et laisser sous agitation à température ambiante jusqu'à dissolution. Refroidir dans un bain de glace et acidifier avec une solution d'acide chlorhydrique concentré. Essorer le précipité, laver à l'eau, sécher et recristalliser.

55

Caractéristiques :

Rensement :	70 %
Solvant de recristallisation :	éthanol 95°/eau (2/1)
Point de fusion :	181 - 184° C
Masse moléculaire :	296,311 g.mol ⁻¹ pour C ₁₆ H ₁₇ NO ₄ + 0,5 H ₂ O

Microanalyse :

5

	% C	% H	% N
Calculé	64,85	6,12	4,72

10

Trouvé	64,84	5,77	4,87
--------	-------	------	------

15

Infra-rouge :	
3320 cm ⁻¹	ν N-H amide
2920-2860 cm ⁻¹	ν C-H alkyles
2500 cm ⁻¹	ν CO ₂ H
1700 cm ⁻¹	ν C=O acide
1610 cm ⁻¹	ν C=O amide

20

25

30

RMN (DMSO, d ₆) 300 MHz				
1,80	ppm	singulet	3H	H _c
3,10	ppm	triplet	2H	H _a J _{a-b} = 7,15 Hz
3,35	ppm	quadruplet	2H	H _b
4,90	ppm	singulet	2H	H _d
7,30	ppm	massif	3H	H ₂ -H ₃ -H ₆
7,55	ppm	singulet	1H	H ₈
7,80	ppm	doublet	1H	H ₄ J ₄₋₃ = 7,15 Hz
7,90	ppm	doublet	1H	H ₅ J ₅₋₆ = 8,60 Hz
8,10	ppm	signal	1H	N-H
13,00	ppm	signal	1H	O-H acide disparait avec D ₂ O

PREPARATION 2: N-[2-(7-(PROPARGYLOXY)NAPHT-1-YL)ETHYL]ACETAMIDE

35

45

50

Réactifs :	
N-[2-(7-hydroxy-napht-1-yl)éthyl]acétamide :	5 mmol (1.15 g)
hydrure de sodium :	18.75 mmol (0.45 g)
tosylate de l'alcool propargylique :	20 mmol
diméthylformamide :	30 cm ³

Mode opératoire :

55

Dans un ballon tricol. introduire le N-[2-(7-hydroxy-napht-1-yl)-éthyl]acétamide, le diméthylformamide, ajouter l'hydrure de sodium par petites fractions, laisser sous agitation durant deux heures sous azote à température ambiante. Additionner le tosylate de l'alcool propargylique goutte à goutte à l'aide d'une ampoule à brome : laisser sous agitation durant une demi-heure, sous azote. Verser le mélange réactionnel dans l'eau sous agitation, extraire à l'acétate d'éthyle.

EP 0 708 099 A1

le, laver à l'eau, sécher sur du chlorure de calcium, filtrer, évaporer à sec et recristalliser le résidu.

Caractéristiques :	
Rendement :	59 %
Solvant de recristallisation :	Hexane/toluène (2/1)
Point de fusion :	87 - 89° C
Masse moléculaire :	267,313 g.mol ⁻¹ pour C ₁₇ H ₁₇ NO ₂

Microanalyse :			
	% C	% H	% N
Calculé :	76,37	6,41	5,24
Trouvé :	76,12	6,30	5,33

Infra-rouge :		
3270	cm ⁻¹	v N-H
3200	cm ⁻¹	v C=C-H
2100	cm ⁻¹	v C≡C
1620	cm ⁻¹	v C=O amide

RMN (DMSO, d_6) 300 MHz				
1,85	ppm	singulet	3H	H_c
3,15	ppm	triplet	2H	$H_a J_{a-b} = 6,70 \text{ Hz}$
3,30	ppm	multiplet	2H	H_b
3,60	ppm	singulet	1H	H_e
5,00	ppm	singulet	2H	H_d
7,20-7,35	ppm	massif	3H	H_2, H_3, H_6
7,65	ppm	singulet	1H	H_8
7,75	ppm	doublet	1H	$H_4 J_{4-3} = 7,40 \text{ Hz}$
7,85	ppm	doublet	1H	$H_5 J_{5-6} = 9,00 \text{ Hz}$
8,05	ppm	signal	1H	NH amide

En procédant de façon analogue, on obtient les préparations suivantes :

45

50

55

PREPARATION 3: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} PROPIONAMIDE

PREPARATION 4: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} BUTYRAMIDE

5 PREPARATION 5: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} ISOBUTYRAMIDE

PREPARATION 6: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} TRIFLUOROACETAMIDE

10 PREPARATION 7: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} FORMAMIDE

PREPARATION 8: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} PENTANAMIDE

15 PREPARATION 9: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} IODOACETAMIDE

PREPARATION 10: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} CYCLOPROPANE CARBOXAMIDE

PREPARATION 11: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} CYCLOBUTANE CARBOXAMIDE

20 PREPARATION 12: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} CYCLOPENTANE CARBOXAMIDE

PREPARATION 13: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} CYCLOHEXANE CARBOXAMIDE

PREPARATION 14: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} PROP-1-ENYL-CARBOXAMIDE

25 PREPARATION 15: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} N'-METHYLUREE

PREPARATION 16: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} N'-ETHYLUREE

30 PREPARATION 17: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} N'-n-PROPYLUREE

PREPARATION 18: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} N'-CYCLOPROPYLUREE

PREPARATION 19: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} N'-n-PROPYLTHIOUREE

35 PREPARATION 20: N-{2-[7-(CARBOXYMETHYLOXY)NAPHT-1-YL]ETHYL} N'-CYCLOPROPYLTHIOUREE

PREPARATION 21: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} PROPIONAMIDE

40 PREPARATION 22: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} BUTYRAMIDE

PREPARATION 23: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} ISOBUTYRAMIDE

PREPARATION 24: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} TRIFLUOROACETAMIDE

45 PREPARATION 25: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} FORMAMIDE

PREPARATION 26: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} PENTANAMIDE

50 PREPARATION 27: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} IODOACETAMIDE

PREPARATION 28: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} CYCLOPROPANE CARBOXAMIDE

PREPARATION 29: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} CYCLOBUTANE CARBOXAMIDE

55 PREPARATION 30: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} CYCLOPENTANE CARBOXAMIDE

PREPARATION 31: N-{2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL} CYCLOHEXANE CARBOXAMIDE

PREPARATION 32: N-[2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL]PROP-1-ENYLCARBOXAMIDE

PREPARATION 33: N-[2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL] N'-METHYLUREE

5 PREPARATION 34: N-[2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL] N'-ETHYLUREE

PREPARATION 35: N-[2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL] N'-PROPYLUREE

10 PREPARATION 36: N-[2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL] N'-CYCLOPROPYLUREE

PREPARATION 37: N-[2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL] N'-METHYLTHIOUREE.

15 PREPARATION 38: N-[2-[7-(PROPARGYLOXY)NAPHT-1-YL]ETHYL] N'-CYCLOPROPYLTHIOUREE

PREPARATION 39: 2-[7H-8,9-DIHYDROPYRANO[3,2-e]INDOLYL]ETHYLAMINE

Ce composé est décrit dans J. Med. Chem. 1992, 35, p. 3625-3632.

20 PREPARATION 40: N-[2-(8-ALLYL-7-HYDROXY-NAPHT-1-YL)ETHYL]ACETAMIDE

Stade A : BROMHYDRATE DE 2-(7-HYDROXYNAPHT-1-YL)ETHYLAMINE

Réactifs :

Chlorhydrate de 2-(7-méthoxy napht-1-yl)éthylamine :	58 mmol (13,8 g)
Solution aqueuse de HBr à 47 % :	390 mmol (46 cm ³)

Mode opératoire :

Dans un ballon de 250 cm³, on introduit le chlorhydrate d'éthylamine et la solution de HBr à 47 %. Le mélange est porté à reflux pendant 5 heures. Après refroidissement, le milieu réactionnel est filtré.

Caractéristiques :

Massé moléculaire : 268,16 g pour C₁₂H₁₄BrNO

45 aspect: solide blanc

Point de fusion : 174-175°C

Rf : 0,72 éluant : Méthanol-ammoniaque à 28 % (4 : 1)

Rendement : 80 %

Solvant de recristallisation : acétate d'éthyle/hexane (1/3)

50

Infra-rouge :		
3240-3460	cm ⁻¹	v OH
3040-3100	cm ⁻¹	v C=C torsion
2950-3060	cm ⁻¹	v CH
2720-2480	cm ⁻¹	v NH ₃ ⁺

55

5

RMN (DMSO, d6, δ) 80 MHz :				
3,0-3,4	ppm	massif	4H	H ₂ , H ₃
7,0-7,9	ppm	massif	6H	H aromatique
8,1	ppm	singulet	3H	H ₄
9,8	ppm	singulet	1H	H ₁

10

Microanalyse :			
	% C	% H	% N
Calculé :	53.75	5.26	5.22
Trouvé :	53.84	5.30	5.32

15

Stade B : N-[2-(7-HYDROXY NAPHT-1-YL) ETHYL]ACETAMIDE

30

Réactifs :

Bromhydrate de la 2-(7-hydroxy napht-1-yl)éthylamine	: 3.8 mmol (1.02 g)
Carbonate de sodium	: 8,5 mmol (0.90 g)
Chlorure d'acétyle	: 3,8 mmol (0,30 g)

35

Mode opératoire :

Dans une fiole de 50 cm³, dissoudre dans 5 cm³ d'eau le carbonate de sodium et sous agitation, ajouter le bromhydrate. Ajouter 20 cm³ d'acétate d'éthyle à la suspension obtenue, puis verser goutte à goutte le chlorure d'acétyle. Maintenir l'agitation pendant 30 minutes (la solution est limpide). Extraire la phase organique par de l'eau, puis par une solution aqueuse de HCl 1N, puis par de l'eau jusqu'à neutralité des eaux de lavage. Sécher la phase organique sur du sulfate de magnésium, la filtrer et sécher sous pression réduite.

40

Caractéristiques :

Masse moléculaire : 229.27 g pour C₁₄H₁₅BrNO₂

aspect: solide blanc

Point de fusion : 125-126°C

Rf : 0.32 éluant : Acétone/Toluène/Cyclohexane (4 / 4 / 2)

Rendement : 60 %

Solvant de recristallisation : eau

50

Infrarouge :

3340	cm ⁻¹	v OH
2980	cm ⁻¹	v CH
1460	cm ⁻¹	v CH ₃
1640	cm ⁻¹	v CO amide

RMN (CDCl_3 , δ) 80 MHz :

5 2,0 ppm singulet 3H H₅
 3,2 ppm triplet 2H H₂ J₂₋₃ = 7,1 Hz

10 3,6 ppm quintuplet 2H H₃ J₃₋₂ = 7,1 Hz ; J₃₋₄ = 7,1 Hz
 5,8 ppm signal 1H H₄
 7,0-7,9 ppm massif 6H H aromatiques
 9,8 ppm singulet 1H H₁

15

Microanalyse :			
	% C	% H	% N
Calculé :	73,34	6,59	6,11
Trouvé :	72,99	6,57	6,29

Stade C : N-2-(7-ALLYLOXY NAPHT-1-YL) ETHYLACETAMIDE**Réactifs :**

N-[2-(7-hydroxy naphth-1-yl)éthyl]acétamide :	20 mmol (5 g)
Carbonate de sodium :	50 mmol (6,63 g)
Bromure d'allyle :	30 mmol (3,63 g)

40 Mode opératoire :

Dissoudre le composé obtenu au stade précédent dans 100 cm³ d'acétone anhydre. Ajouter le carbonate de sodium et laisser sous agitation à reflux pendant 30 minutes. Ajouter goutte à goutte le bromure d'allyle. Laisser à reflux et sous agitation pendant 3 heures. Après refroidissement, filtrer le milieu réactionnel et sécher sous vide réduit le filtrat. L'huile obtenue est purifiée par chromatographie sur colonne.

45 Caractéristiques :

50 Masse moléculaire : 269,33 g pour C₁₇H₁₉NO₂
 aspect : huile
 Rf : 0,19 éluant : Acétone/Toluène/Cyclohexane (2/3/5)
 Rendement : 87 %

55 Infra-rouge :

3260 cm⁻¹ v NH amide

	2920-2840	cm^{-1}	$\nu \text{ CH}$
5	1635	cm^{-1}	$\nu \text{ CO amide}$
	1590	cm^{-1}	$\nu \text{ C=C}$

RMN (CDCl_3 , δ) 300 MHz:

10	1,90	ppm	singulet	3H	Hg	
	3,20	ppm	triplet	2H	He	$J_{\text{e-d}} = 7,00 \text{ Hz}$
	3,60	ppm	quintuplet	2H	Hd	
	4,70	ppm	doublet	2H	Hc	$J_{\text{c-b}} = 5,28 \text{ Hz}$
15	5,30	ppm	doublet	1H	Ha cis	$J_{\text{a-b}} = 10,46 \text{ Hz}$
	5,50	ppm	doublet	1H	Ha trans	$J_{\text{a-b}} = 17,30 \text{ Hz}$
	5,60	ppm	signal	1H	Hf	
20	6,15	ppm	multiplet	1H	Hb	
	7,15	ppm	doublet de doublet	1H	H6	$J_{\text{ortho}} = 8,90 \quad J_{\text{méta}} = 2,30$
	7,25	ppm	multiplet	2H	H2,3	
25	7,40	ppm	doublet	1H	H8	$J_{\text{ortho}} = 2,30$
	7,65	ppm	multiplet	1H	H3	
	7,75	ppm	doublet	1H	H5	$J_{\text{ortho}} = 8,30$

Microanalyse :			
	% C	% H	% N
Calculé :	75,80	7,11	5,20
trouvé :	75,75	7,15	5,20

Stade D : N-[2-(8-ALLYL 7-HYDROXY NAPHT-1-YL) ETHYL]ACETAMIDE

Réactifs :		
N-[2-(7-allyloxy naphth-1-yl) éthyl]acétamide :	7,4 mmol (2 g)	
N,N-diméthylaniline :		7,4 mmol (10 cm ³)

Mode opératoire :

Dissoudre le N-[2-(7-allyloxy naphth-1-yl) éthyl]acétamide dans la N,N-diméthylaniline, porter le milieu réactionnel à reflux (200°C) pendant 2 heures. Après refroidissement, ajouter 20 cm³ d'éther et extraire la phase organique par une solution aqueuse de soude 10 % puis par de l'eau. La phase aqueuse est ensuite acidifiée par une solution aqueuse HCl 6N et laissée sous agitation pendant quelques minutes. Filtrer le précipité obtenu.

Caractéristiques :

Massé moléculaire : 269,33 g.mol⁻¹ pour C₁₇H₁₉NO₂

aspect : solide jaune pâle

5 Rf : 0,38 éluant : Acétone/Toluène/Cyclohexane (4/4/2)

Point de fusion : 157-159°C

Rendement : 84 %

Solvant de recristallisation : cyclohexane

10

Infra-rouge :			
3280	cm ⁻¹	v NH amide	
2860-3000	cm ⁻¹	v CH	
1600	cm ⁻¹	v CO amide	

15

RMN (DMSO, d₆, δ) 300 MHz :

1,83	ppm	singulet	3H	Hh	
2,20	ppm	signal	2H	He	
3,25	ppm	signal	2H	Hf	
3,90	ppm	signal	2H	Hd	
4,65	ppm	doublet	1H	Hb trans	J _{b-c} = 17,2 Hz
4,95	ppm	doublet	1H	Hb cis	J _{b-c} = 8,8 Hz
6,05	ppm	multiplet	1H	Hc	
7,17	ppm	signal	1H	H6	
7,18	ppm	signal	1H	H3	J ₃₋₂ = 7,4 Hz ; J ₃₋₄ = 4,33 Hz
7,21	ppm	signal	1H	H2	J ₂₋₃ = 7,5 Hz
7,65	ppm	signal	1H	H4	J ₄₋₃ = 7,4 Hz
7,67	ppm	signal	1H	H5	J ₅₋₆ = 8,6 Hz
8,08	ppm	signal	1H	Hg	
9,60	ppm	singulet	1H	Ha échangeable dans D ₂ O	

40 PREPARATION 41 : N-[2-(8-ALLYL-7-HYDROXY-NAPHT-1-YL)ETHYL]N'-METHYLUREE**EXEMPLE 1: 2,3-DIHYDRO-3-OXO-4-(2-ACETAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE**

45

Exemple 1

50

Réactifs :	
N-(2-[7-(carboxyméthyoxy)-naphl-1-yl]éthyl)acétamide (préparation 1) : Acide polyphosphorique :	10 mmol (2,9 g) 30 g

Mode opératoire :

Introduire dans un ballon de 100 cm³ à col rodé, le N-[2-[7-(carboxyméthoxy)-napht-1-yl]-éthyl]acétamide et l'acide polyphosphorique, agiter à l'aide d'un agitateur mécanique à 85° C durant deux heures et demie. Laisser sous agitation durant une heure. Verser dans de l'eau glacée.

Extraire par l'acétate d'éthyle, laver la phase organique deux fois par une solution aqueuse de carbonate de sodium à 10 %, puis laver à l'eau, sécher sur le chlorure de calcium, filtrer et évaporer à sec. Le produit est purifié sur colonne avec gel de silice 60 Å en utilisant l'éluant acétone/toluène (1/1).

10

Caractéristiques :	
Rendement :	32 %
Solvant de recristallisation :	Hexane/toluène (2/1)
Point de fusion :	157 - 158° C
Masse moléculaire :	269,287 g.mol ⁻¹ pour C ₁₅ NO ₃

15

20

Microanalyse :			
	% C	% N	% N
Calculé :	71.35	5.61	5.20
Trouvé :	71.33	5.46	5.17

25

30

Infrarouge :			
3270	cm ⁻¹	ν N-H amide	
2920-2860	cm ⁻¹	ν C-H alkyle	
1685	cm ⁻¹	ν C=O cétonique	
1610	cm ⁻¹	ν C=O amide	

35

40

RMN (dMSO, d ₆) 300 MHz :				
1,75	ppm	singulet	3H	H _c
3,25	ppm	quadruplet	2H	H _b
3,60	ppm	triplet	2H	H _a , J _{a-b} = 6.60 Hz
7,45	ppm	massif	3H	H ₅ , H ₆ , H ₉
7,75	ppm	signal	1H	N-H
7,85	ppm	doublet	1H	H ₇ , J ₇₋₆ = 7.40 Hz
8,30	ppm	doublet	1H	H ₈ , J ₈₋₉ = 9.00 Hz

EXEMPLE 2: 2,3-DIHYDRO-3-HYDROXY-4-(2-ACETAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

45

Exemple 2

55

Réactifs :

2,3-dihydro-3-oxo-4-(2-acétamidoéthyl)-1-naphto[2,1-b]furanne (exemple 1) :	5 mmol (1,35 g)
Méthanol :	30 cm ³
Borohydrure de sodium :	10 mmol (0,32 g)

5

Mode opératoire :

10 Introduire dans une fiole à col rodé de 100 cm³, le 2,3-dihydro-3-oxo-4-(2-acétamidoéthyl)-1-naphto[2,1-b]furanne et le méthanol, ajouter le borohydrure de sodium (5 mmol) par petites fractions et laisser sous agitation. Au bout de deux heures, ajouter 5 mmol de borohydrure de sodium par petites fractions et laisser sous agitation toute la nuit à température ambiante. Evaporer à sec, reprendre par l'eau, acidifier par une solution d'acide chlorhydrique 6N. Essorer le précipité, le laver à l'eau jusqu'à neutralité de l'eau de lavage, le sécher et le recristalliser dans le toluène.

15

Caractéristiques :

Rendement :	51 %
Point de fusion :	153-156°C
Masse moléculaire :	271,303 g.mol ⁻¹ pour C ₁₆ H ₁₇ NO ₃

20

Microanalyse :

	% C	% H	% N
Calculé :	70,82	6,31	5,16
Trouvé :	70,61	6,28	5,04

25

Infra-rouge :

3250	cm ⁻¹	v O-H et N-H
1620	cm ⁻¹	v C=O amide

30

RMN (DMSO, d₆) 300 MHz :

1,80	ppm	singulet	3H	H _c
3,00-3,65	ppm	massif	4H	H _a , H _b
4,50	ppm	multiplet	2H	H ₂
5,60	ppm	doublet	1H	OH disparait avec D ₂ O J = 7,00
5,70	ppm	multiplet	1H	H ₃
7,20-7,35	ppm	massif	3H	H ₅ , H ₆ , H ₉
7,75	ppm	doublet	1H	H ₇ J ₇₋₆ = 7,85 Hz
7,90	ppm	doublet	1H	H ₈ J ₈₋₉ = 8,80 Hz
8,05	ppm	signal	1H	N-H amide

35

40

45

EXEMPLE 3: 4-(2-ACETAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

50

Exemple 3

55

Réactifs :

2,3-dihydro-3-oxo-4-(2-acétamidoéthyl)-1-naphto[2.1-b]furane (exemple 1) :	5 mmol (1,38 g)
Méthanol :	30 cm ³
Borohydrure de sodium :	20 mmol (0,76 g)

Mode opératoire :

10 Introduire dans un ballon de 100 cm³, le 2,3-dihydro-3-oxo-4-(2-acétamidoéthyl)-1-naphto[2.1-b]furane et le méthanol, ajouter 10 mmol de borohydrure de sodium par petites fractions sous agitation.
 Au bout de deux heures, ajouter 10 mmol de borohydrure de sodium par petites fractions sous agitation. Laisser sous agitation à température ambiante, acidifier par une solution d'acide chlorhydrique 6N, évaporer le méthanol, reprendre par l'eau, essorer le précipité, le laver à l'eau jusqu'à neutralité de l'eau de lavage, le sécher et le recristalliser dans le mélange toluène/hexane.

15

Rendement :	85 %
Point de fusion :	142 - 144°C
Massé moléculaire :	253,287 g.mol ⁻¹ pour C ₁₆ H ₁₅ NO ₂

Microanalyse :

	% C	% H	% N
Calculé :	75,80	5,96	5,53
Trouvé :	75,57	5,97	5,47

Infra-rouge :

3240	cm ⁻¹	v N-H amide
1625	cm ⁻¹	v C=O amide

RMN (DMSO, d₆) 300 MHz :

1,85	ppm	singulet	3H	H _c
3,40	ppm	multiplet	4H	H _a , H _b
7,50	ppm	multiplet	2H	H ₃ , H ₉
7,80-7,95	ppm	massif	4H	H ₅ , H ₆ , H ₇ , H ₈
8,20	ppm	multiplet	2H	H ₂ , NH

EXEMPLE 4: 5-(2-ACETAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE**Exemple 4**

EP 0 708 099 A1

Réactifs :	
N-{2-[7-(propargyloxy)-napht-1-yl]éthyl}acétamide (préparation 2)	: 10 mmol (2,67 g)
Triéthylène glycol	: 40 cm ³

5

Mode opératoire :

Introduire dans un ballon à bicol le N-{2-[7-(propargyloxy)-napht-1-yl]éthyl} acétamide et le triéthylène glycol.
 10 Chauffer à 160°-170° C sous azote et sous agitation durant cinq heures. Verser le mélange réactionnel dans l'eau glacée, extraire à l'acétate d'éthyle, laver à l'eau, sécher sur le chlorure de calcium, filtrer et évaporer à sec.
 Le produit est purifié sur colonne de silice 60 Å avec un éluant acétone/toluène (1/1).

Caractéristiques :	
Rendement :	23 %
Solvant de recristallisation :	toluène/hexane
Point de fusion :	se décompose à 113° C
Masse moléculaire :	267,313 g.mol ⁻¹ pour C ₁₇ H ₁₇ NO ₂

20

Microanalyse :			
	% C	% H	% N
Calculé :	76,37	6,41	5,24
Trouvé :	76,16	6,40	5,52

25

Infra-rouge :			
3250	cm ⁻¹	ν N-H	
2960-2840	cm ⁻¹	ν C-H alkyles	
1630	cm ⁻¹	ν C=O amide	

30

RMN (DMSO, d ₆) 300 MHz:				
1,80	ppm	singulet	3H	H _c
3,20	ppm	triplet	2H	H _a J _{a-b} = 6,80 Hz
3,40	ppm	multiplet	2H	H _b
4,65	ppm	doublet	2H	H ₂ J ₂₋₃ = 4,30 Hz
5,90	ppm	multiplet	1H	H ₃
7,10	ppm	doublet	1H	H ₄ J ₄₋₃ = 8,80 Hz
7,30	ppm	massif	3H	H ₆ ; H ₇ ; H ₁₀
7,70	ppm	doublet	1H	H ₈ J ₈₋₇ = 7,50 Hz
7,80	ppm	doublet	1H	H ₉ J ₉₋₁₀ = 9,80 Hz
8,10	ppm	signal	1H	N-H amide

35

40

45

50

55

EXEMPLE 5 : 3,4,5,6,7,8-HEXAHYDRO-5-(2-ACETAMIDOETHYL)-2H-1-NAPHTO[2,1-b] PYRANNE

Exemple 5

Réactifs :

5-2-acétamidoéthyl)-2H-1-naphtho[2,1-b]pyranne (exemple 4) :	2 mmol (5.34 mg)
Méthanol :	25 cm ³
Nickel de Raney :	quelques mg

Mode opératoire :

Dissoudre le 5-(2-acétamidoéthyl)-2H-1-naphtho[2,1-b]pyranne dans le méthanol. ajouter le nickel de Raney et agiter sous atmosphère d'hydrogène à pression ordinaire à température ambiante durant six heures. Filtrer. Evaporer à sec et recristalliser.

Caractéristiques :

Rendement :	55 %
Solvant de recristallisation :	toluène
Point de fusion :	117 - 118° C
Masse moléculaire :	273.361 g.mol ⁻¹ pour C ₁₇ H ₂₃ NO ₂

Microanalyse :

	% C	% H	% N
Calculé :	74,68	8,48	5,12
Trouvé :	74,46	8,39	5,16

Infra-rouge :

3240	cm ⁻¹	v N-H amide
2980-2800	cm ⁻¹	v C-H alkyles
1610	cm ⁻¹	v C=O amide

RMN (DMSO, d₆) 80 MHz

1,30-2,15	ppm	massif	11H	H _a , H _c , H ₃ , H ₆ , H ₇
2,35-2,80	ppm	massif	5H	H ₄ , H ₅ , H ₈
3,20	ppm	multiplet	2H	H _b
4,00	ppm	multiplet	2H	H ₂

6,50	ppm	doublet	1H	$H_{10} J_{10-9} = 9,20 \text{ Hz}$
6,75	ppm	doublet	1H	$H_9 J_{9-10} = 9,20 \text{ Hz}$
5 7,90	ppm	signal	1H	N-H amide

EXEMPLE 6 : 3,4-DIHYDRO-5-(2-ACETAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

Exemple 6

Réactifs :

5-(2-acétamidoéthyl)-2H-1-naphto[2,1-b]pyranne (exemple 4) :	2 mmol (534 mg)
Méthanol :	80 cm ³
Magnésium :	80 mmol (1,35 g)

Mode opératoire :

Dissoudre le 5-(2-acétamidoéthyl)-2H-1-naphto[2,1-b]pyranne dans le méthanol, refroidir à l'aide d'un bain de glace-sel. Ajouter le magnésium par petites fractions et laisser sous agitation à température ambiante durant 16 heures. Ajouter 30 cm³ d'une solution d'acide chlorhydrique 6N petit à petit, sous agitation. Laisser refroidir, extraire à l'éther, laver la phase organique à l'eau, sécher sur le sulfate de magnésium, filtrer et évaporer à sec.

Caractéristiques :

Rendement :	42 %
Solvant de recristallisation :	éther/éther de pétrole
Point de fusion :	137 - 139° C
Masse moléculaire :	291,849 g.mol ⁻¹ pour C ₁₇ H ₁₉ NO ₂ + 1,25 H ₂ O

Microanalyse :			
	% C	% H	% N
Calculé :	69,95	6,99	4,79
Trouvé :	70,00	6,63	4,75

Infra-rouge :

3240	cm ⁻¹	v N-H amide
2980-2800	cm ⁻¹	v C-H alkyles
1610	cm ⁻¹	v C=O amide

RMN (DMSO, d_6) 300 MHz :				
1,50-2,10	ppm	massif	5H	H_3, H_c
3,10-3,85	ppm	massif	6H	H_a, H_b, H_4
3,95	ppm	multiplet	2H	H_2
7,15-7,30	ppm	massif	3H	$H_6, H_7 = H_{10}$
7,65	ppm	doublet	1H	$H_8 J_{8-7} = 7.45 \text{ Hz}$
7,80	ppm	doublet	1H	$H_9 J_{9-10} = 9.90 \text{ Hz}$
8,10	ppm	signal	1H	N-H

EXEMPLES 7 A 114 :

En procédant comme dans les exemples 1 à 6 mais en utilisant les préparations appropriées, on obtient les composés des exemples suivants.

EXEMPLE 7 : 2,3-DIHYDRO-3-OXO-4-(2-PROPIONAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

EXEMPLE 8: 2,3-DIHYDRO-3-OXO-4-(2-BUTYRAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

5 EXEMPLE 9: 2,3-DIHYDRO-3-OXO-4-(2-ISOBUTYRAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

EXEMPLE 10: 2,3-DIHYDRO-3-OXO-4-(2-TRIFLUOROACETAMIDOETHYL)-1-NAPHTO [2,1-b]FURANNE

10 EXEMPLE 11: 2,3-DIHYDRO-3-OXO-4-(2-FORMAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

EXEMPLE 12: 2,3-DIHYDRO-3-OXO-4-(2-PENTANAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

15 EXEMPLE 13: 2,3-DIHYDRO-3-OXO-4-[2-(IODOACETAMIDO)ETHYL]-1-NAPHTO [2,1-b]FURANNE

EXEMPLE 14: 2,3-DIHYDRO-3-OXO-4-[2-(CYCLOPROPANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b]FURANNE

20 EXEMPLE 15: 2,3-DIHYDRO-3-OXO-4-[2-(CYCLOBUTANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b]FURANNE

EXEMPLE 16: 2,3-DIHYDRO-3-OXO-4-[2-(CYCLOPENTANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b]FURANNE

25 EXEMPLE 17: 2,3-DIHYDRO-3-OXO-4-[2-(CYCLOHEXANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b]FURANNE

EXEMPLE 18: 2,3-DIHYDRO-3-OXO-4-[2-(PROP-1-ENYL CARBOXAMIDO)ETHYL]-1-NAPHTO [2,1-b]FURANNE

EXEMPLE 19: 2,3-DIHYDRO-3-HYDROXY-4-(2-PROPIONAMIDOETHYL)-1-NAPHTO [2,1-b]FURANNE

30 EXEMPLE 20: 2,3-DIHYDRO-3-HYDROXY-4-(2-BUTYRAMIDOETHYL)-1-NAPHTO [2,1-b]FURANNE

EXEMPLE 21 : 2,3-DIHYDRO-3-HYDROXY-4-(2-ISOBUTYRAMIDOETHYL)-1-NAPHTO [2,1-b]FURANNE

35 EXEMPLE 22: 2,3-DIHYDRO-3-HYDROXY-4-(2-TRIFLUOROACETAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

EXEMPLE 23: 2,3-DIHYDRO-3-HYDROXY-4-(2-FORMAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

40 EXEMPLE 24: 2,3-DIHYDRO-3-HYDROXY-4-(2-PENTANAMIDOETHYL)-1-NAPHTO [2,1-b]FURANNE

EXEMPLE 25: 2,3-DIHYDRO-3-HYDROXY-4-[2-(IODOACETAMIDO)ETHYL]-1-NAPHTO[2,1-b]FURANNE

45 EXEMPLE 26: 2,3-DIHYDRO-3-HYDROXY-4-[2-(CYCLOPROPANE CARBOXAMIDO) ETHYL]-1 -NAPHTO[2,1-b] FURANNE

EXEMPLE 27: 2,3-DIHYDRO-3-HYDROXY-4-[2-(CYCLOBUTANE CARBOXAMIDO) ETHYL]-1-NAPHTO[2,1-b]FU-
RANNE

50 EXEMPLE 28: 2,3-DIHYDRO-3-HYDROXY-4-[2-(CYCLOPENTANE CARBOXAMIDO) ETHYL]-1-NAPHTO[2,1-b]
FURANNE

EXEMPLE 29: 2,3-DIHYDRO-3-HYDROXY-4-[2-(CYCLOHEXANE CARBOXAMIDO) ETHYL]-1-NAPHTO[2,1-b]FU-
RANNE

55 EXEMPLE 30: 2,3-DIHYDRO-3-HYDROXY-4-[2-(PROP-1-ENYL CARBOXAMIDO) ETHYL]-1-NAPHTO[2,1-b]FU-
RANNE

EXEMPLE 31: 4-(2-PROPIONAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

EXEMPLE 32: 4-(2-BUTYRAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

EXEMPLE 33: 4-(2-ISOBUTYRAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

5 EXEMPLE 34: 4-(2-TRIFLUOROACETAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

EXEMPLE 35: 4-(2-FORMAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

10 EXEMPLE 36: 4-(2-PENTANAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE

EXEMPLE 37: 4-[2-(IODOACETAMIDO)ETHYL]-1-NAPHTO[2,1-b]FURANNE

15 EXEMPLE 38: 4-[2-(CYCLOPROPANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b] FURANNE

EXEMPLE 39: 4-[2-(CYCLOBUTANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b] FURANNE

20 EXEMPLE 40: 4-[2-(CYCLOPENTANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b] FURANNE

EXEMPLE 41: 4-[2-(CYCLOHEXANE CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b] FURANNE

25 EXEMPLE 42 : 4-[2-(PROP-1-ENYL CARBOXAMIDO)ETHYL]-1-NAPHTO[2,1-b] FURANNE

EXEMPLE 43 : 5-(2-PROPIONAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

30 EXEMPLE 44 : 5-(2-BUTYRAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 45 : 5-(2-ISOBUTYRAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 46 : 5-(2-TRIFLUOROACETAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

35 EXEMPLE 47 : 5-(2-FORMAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 48 : 5-(2-PENTANAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

40 EXEMPLE 49 : 5-[2-(IODOACETAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b]PYRANE

EXEMPLE 50 : 5-[2-(CYCLOPROPANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b] PYRANE

45 EXEMPLE 51 : 5-[2-(CYCLOBUTANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b] PYRANE

EXEMPLE 52 : 5-[2-(CYCLOPENTANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b] PYRANE

50 EXEMPLE 53 : 5-[2-(CYCLOHEXANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b] PYRANE

EXEMPLE 54 : 5-[2-(PROP-1-ENYL CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b] PYRANE

EXEMPLE 55 : 3,4,5,6,7,8-HEXAHYDRO-5-(2-PROPIONAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

55 EXEMPLE 56 : 3,4,5,6,7,8-HEXAHYDRO-5-(2-BUTYRAMIDOETHYL)-2H-1-NAPHTO [2,1-b]PYRANNE

EXEMPLE 57 : 3,4,5,6,7,8-HEXAHYDRO-5-(2-ISOBUTYRAMIDOETHYL)-2H-1-NAPHTO [2,1-b]PYRANNE

EXEMPLE 58 : 3,4,5,6,7,8-HEXAHYDRO-5-(2-TRIFLUOROACETAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 59 : 3,4,5,6,7,8-HEXAHYDRO-5-(2-FORMAMIDOETHYL)-2H-1-NAPHTO [2,1-b]PYRANNE

EXEMPLE 60 : 3,4,5,6,7,8-HEXAHYDRO-5-(2-PENTANAMIDOETHYL)-2H-1-NAPHTO [2,1-b]PYRANNE

EXEMPLE 61 : 3,4,5,6,7,8-HEXAHYDRO-5-[2-(IDOACETAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 62 : 3,4,5,6,7,8-HEXAHYDRO-5-[2-(CYCLOPROPANE CARBOXAMIDO) ETHYL]-2H-1-NAPHTO[2,1-b] PYRANNE

5 EXEMPLE 63 : 3,4,5,6,7,8-HEXAHYDRO-5-[2-(CYCLOBUTANE CARBOXAMIDO) ETHYL]-2H-1-NAPHTO[2,1-b] PYRANNÉ

10 EXEMPLE 64 : 3,4,5,6,7,8-HEXAHYDRO-5-[2-(CYCLOPENTANE CARBOXAMIDO) ETHYL]-2H-1-NAPHTO[2,1-b] PYRANNE

EXEMPLE 65 : 3,4,5,6,7,8-HEXAHYDRO-5-[2-(CYCLOHEXANE CARBOXAMIDO) ETHYL]-2H-1-NAPHTO[2,1-b] PYRANNE

15 EXEMPLE 66 : 3,4,5,6,7,8-HEXAHYDRO-5-[2-(PROP-1-ENYL CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 67 : 3,4-DIHYDRO-5-(2-PROPIONAMIDOETHYL)-2H-1-NAPHTO[2,1-b] PYRANNE

20 EXEMPLE 68 : 3,4-DIHYDRO-5-(2-BUTYRAMIDOETHYL)-2H-1-NAPHTO[2,1-b] PYRANNE

EXEMPLE 69 : 3,4-DIHYDRO-5-(2-ISOBUTYRAMIDOETHYL)-2H-1-NAPHTO[2,1-b] PYRANNE

25 EXEMPLE 70: 3,4-DIHYDRO-5-(2-TRIFLUOROACETAMIDOETHYL)-2H-1-NAPHTO [2,1-b]PYRANNE

EXEMPLE 71 : 3,4-DIHYDRO-5-(2-FORMAMIDOETHYL)-2H-1-NAPHTO[2,1-b] PYRANNE

EXEMPLE 72: 3,4-DIHYDRO-5-(2-PENTANAMIDOETHYL)-2H-1-NAPHTO[2,1-b] PYRANNE

30 EXEMPLE 73: 3,4-DIHYDRO-5-[2-(IDOACETAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b] PYRANNE

EXEMPLE 74: 3,4-DIHYDRO-5-[2-(CYCLOPROPANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b]PYRANNE

35 EXEMPLE 75: 3,4-DIHYDRO-5-[2-(CYCLOBUTANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO [2,1-b]PYRANNE

EXEMPLE 76: 3,4-DIHYDRO-5-[2-(CYCLOPENTANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 77: 3,4-DIHYDRO-5-[2-(CYCLOHEXANE CARBOXAMIDO)ETHYL]-2H-1-NAPHTO [1,2-b]PYRANNE

40 EXEMPLE 78: 3,4-DIHYDRO-5-[2-(PROP-1-ENYL CARBOXAMIDO)ETHYL]-2H-1-NAPHTO[2,1-b]PYRANNE

EXEMPLE 79: N-[2-(2,3-DIHYDRO-3-OXO-1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL] N'-METHYLUREE

45 EXEMPLE 80: N-[2-(2,3-DIHYDRO-3-OXO-1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL] N'-ETHYLUREE

EXEMPLE 81: N-[2-(2,3-DIHYDRO-3-OXO-1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL] N'-n-PROPYLUREE

EXEMPLE 82: N-[2-(2,3-DIHYDRO-3-OXO-1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL] N'-CYCLOPROPYLUREE

50 EXEMPLE 83: N-[2-(2,3-DIHYDRO-3-OXO-1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL] N'-n-PROPYLTIOUREE

EXEMPLE 84: N-[2-(2,3-DIHYDRO-3-OXO-1-NAPHTO[2,1-b] FURANN-4-YL)ETHYL] N'-CYCLOPROPYLTIOUREE

55 EXEMPLE 85: N-[2-(2,3-DIHYDRO-3-HYDROXY-1-NAPHTO[2,1-b]FURANN-4-YL) ETHYL]N'-METHYLUREE

EXEMPLE 86: N-[2-(2,3-DIHYDRO-3-HYDROXY-1-NAPHTO[2,1-b]FURANN-4-YL) ETHYL]N'-ETHYLUREE

EXEMPLE 87: N-[2-(2,3-DIHYDRO-3-HYDROXY-1-NAPHTO[2,1-b]FURANN-4-YL) ETHYL]N'-PROPYLUREE

EXEMPLE 88 : N-[2-(2,3-DIHYDRO-3-HYDROXY-1-NAPHTO[2,1-b]FURANN-4-YL) ETHYL] N'-CYCLOPROPYLU-
RE

5 EXEMPLE 89 : N-[2-(2,3-DIHYDRO-3-HYDROXY-1-NAPHTO[2,1-b]FURANN-4-YL) ETHYL]N'-PROPYLTHIOU-
RE

10 EXEMPLE 90 : N-[2-(2,3-DIHYDRO-3-HYDROXY-1-NAPHTO[2,1-b]FURANN-4-YL) ETHYL]N'-CYCLOPROPYL-
THIOUREE

EXEMPLE 91 : N-[2-(1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL]N'-METHYLUREE

15 EXEMPLE 92 : N-[2-(1 -NAPHTO[2,1-b]FURANN-4-YL)ETHYL]N'-ETHYLUREE

EXEMPLE 93 : N-[2-(1 -NAPHTO[2,1-b]FURANN-4-YL)ETHYL]N'-PROPYLUREE

EXEMPLE 94 : N-[2-(1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL]N'-CYCLOPROPYLUREE

20 EXEMPLE 95 : N-[2-(1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL]N'-PROPYLTHIOUREE

EXEMPLE 96 : N-[2-(1-NAPHTO[2,1-b]FURANN-4-YL)ETHYL] N'-CYCLOPROPYL-THIOUREE

25 EXEMPLE 97 : N-[2-(2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL]N'-METHYLUREE

EXEMPLE 98 : N-[2-(2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL]N'-ETHYLUREE

EXEMPLE 99 : N-[2-(2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL]N'-n-PROPYLUREE

30 EXEMPLE 100 : N-[2-(2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-CYCLOPROPYLUREE

EXEMPLE 101 : N-[2-(2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-PROPYL THIOUREE

35 EXEMPLE 102 : N-[2-(2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL]N'-CYCLOPROPYLTHIOUREE

EXEMPLE 103 : N-[2-(3,4,5,6,7,8-HEXAHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL) ETHYL]N'-METHYLUREE

EXEMPLE 104 : N-[2-(2H-3,4,5,6,7,8-HEXAHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL) ETHYL]N'-ETHYLUREE

40 EXEMPLE 105 : N-[2-(3,4,5,6,7,8-HEXAHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL) ETHYL]N'-PROPYLUREE

EXEMPLE 106 : N-[2-(3,4,5,6,7,8-HEXAHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL) ETHYL]N'-CYCLOPROPY-
LUREE

45 EXEMPLE 107 : N-[2-(3,4,5,6,7,8-HEXAHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL) ETHYL]N'-PROPYLTHIOU-
RE

50 EXEMPLE 108 : N-[2-(3,4,5,6,7,8-HEXAHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL) ETHYL]N'-CYCLOPRO-
PYLTHIOUREE

EXEMPLE 109 : N-[2-(3,4-DIHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-METHYLUREE

EXEMPLE 110 : N-[2-(3,4-DIHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-ETHYLUREE

55 EXEMPLE 111 : N-[2-(3,4-DIHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-PROPYLUREE

EXEMPLE 112 : N-[2-(3,4-DIHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-CYCLOPROPYLUREE

EXEMPLE 113 : N-[2-(3,4-DIHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-PROPYLTHIOUREE

EXEMPLE 114 : N-[2-(3,4-DIHYDRO-2H-1-NAPHTO[2,1-b]PYRANN-5-YL)ETHYL] N'-CYCLOPROPYLTHIOUREE

5 EXEMPLE 115: N-[2-(7H-8,9-DIHYDROPYRANNO[3,2-e]INDOLYL)ETHYL]ACETAMIDE

Exemple 115

En procédant à une réaction d'acylation du composé de la préparation 39 avec le chlorure d'acétyle, on obtient le composé du titre.

EXEMPLES 116 A 118 :

20 En procédant comme dans l'exemple 115, mais en utilisant le chlorure d'acyle approprié, on obtient les composés des exemples suivants :

EXEMPLE 116: N-[2-(7H-8,9-DIHYDROPYRANNO[3,2-e]INDOLYL)ETHYL] PROPIONAMIDE

25 EXEMPLE 117 : N-[2-(7H-8,9-DIHYDROPYRANNO[3,2-e]INDOLYL)ETHYL] CYCLOPROPANECARBOXAMIDE

EXEMPLE 118: N-[2-(7H-8,9-DIHYDROPYRANNO[3,2-e]INDOLYL)ETHYL] CYCLOBUTYLCARBOXAMIDE

30 EXEMPLE 119 : 2,3-DIHYDRO-2-METHYL-4-(2-ACETAMIDOETHYL)-1-NAPHTO[2,1-b] FURANNE

Réactifs :

N-[2-(8-allyl-7-hydroxy-napht-1-yl)éthyl]acétamide (Préparation 40) :	3,7 mmol (1 g)
acide trifluoroacétique (99 %, d = 1,48) :	32 mmol (2,33 cm³)

Mode opératoire :

Dans une fiole de 50 cm³, dissoudre le composé de la préparation 40 dans l'acide trifluoroacétique et porter le mélange à reflux pendant 8h. Laisser refroidir. Evaporer le milieu à sec. Reprendre par de l'eau et extraire à l'acétate d'éthyle (3 x 10 cm³). Laver la phase organique par 2 x 2 cm³ d'une solution aqueuse de soude à 10 % puis à l'eau. Sécher la phase organique sur MgSO₄ et la porter à sec. Purifier sur une colonne de silice en utilisant comme éluant l'Acétone-Toluène-Cyclohexane.

55 Caractéristiques :

Masse moléculaire : 269,34 g pour C₁₇ H₁₉ NO₂
Aspect: solide blanchâtre

Point de fusion : 136°C

Rf : 0.32 éluant : Acétone/Toluène/Cyclohexane (4/4/2)

Rendement : 73 %

Solvant de recristallisation : Toluène/Cyclohexane (1/3)

Infra-rouge :			
3240 et 3050	cm ⁻¹	v NH amide	
2960-2840	cm ⁻¹	v CH alkyles	
1630	cm ⁻¹	v CO amide	
1000-1580	cm ⁻¹	v C=C aromatiques	

RMN (CDCl_3 , δ) 300 MHz:

1,54	ppm	doublet	3H	Ha	$J_{a-b} = 6,30 \text{ Hz}$
1,96	ppm	singulet	3H	Hg	
3,29	ppm	multiplet	2H	Hd	
3,40	ppm	doublet de doublet	1H	Hc' "cis"	$J = 7,6 \text{ Hz} ; J_{c'-b} = 7,7 \text{ Hz} ; J_{c'-c} = 15,2 \text{ Hz}$
3,56	ppm	multiplet	2H	He	
3,94	ppm	doublet de doublet	1H	Hc "trans"	$J_{c-b} = 9,2 \text{ Hz} ; J_{c-c'} = 15,2 \text{ Hz}$
5,05-5,07	ppm	massif	1H	Hb	
5,53	ppm	signal	1H	Hf	
7,08-7,23	ppm	massif	3H	H aromatiques : H5,6,9	
7,67-7,70	ppm	massif	2H	H aromatiques : H8,7	

EXEMPLE 120 : N-[2-(2,3-DIHYDRO-2-METHYL-1-NAPHTO[2,1-b]FURAN-4-YL)ETHYL] N'-METHYLUREE

En procédant comme dans l'exemple 119 mais en utilisant au départ le composé de la préparation 41, on obtient le produit du titre.

Point de fusion : 165-169°C.

EXEMPLES 121 A 130**EXEMPLE 121: N-[2-(7H-8,9-DIHYDRO-THIENO[3,2-1]BENZOPYRANN-1-YL)ETHYL] ACETAMIDE**

EXEMPLE 122 : N-[2-(7H-8,9-DIHYDRO-THIENO[3,2-f]BENZOPYRANN-9-YL)ETHYL] PROPIONAMIDE

EXEMPLE 123 : N-[2-(7H-8,9-DIHYDRO-THIENO[3,2-f]BENZOPYRANN-9-YL)ETHYL] CYCLOPROPYLCARBOAMIDE

EXEMPLE 124 : N-[2-(7H-8,9-DIHYDRO-THIENO[3,2-f]BENZOPYRANN-9-YL)ETHYL] CYCLOBUTYLCARBOAMIDE

EXEMPLE 125 : N-[2-(7H-8,9-DIHYDRO-THIENO[3,2-f]BENZOPYRANN-9-YL)ETHYL] TRIFLUOROACETAMIDE

EXEMPLE 126 : N-[2-(7H-8,9-DIHYDRO-FURO[3,2-f]BENZOPYRANN-1-YL)ETHYL] ACETAMIDE

EXEMPLE 127 : N-[2-(7H-8,9-DIHYDRO-FURO[3,2-f]BENZOPYRANN-1-YL)ETHYL] PROPIONAMIDE

EXEMPLE 128 : N-[2-(7H-8,9-DIHYDRO-FURO[3,2-f]BENZOPYRANN-1-YL)ETHYL] CYCLOPROPYLCARBOAMIDE

EXEMPLE 129 : N-[2-(7H-8,9-DIHYDRO-FURO[3,2-f]BENZOPYRANN-1-YL)ETHYL] CYCLOBUTYLCARBOAMIDE

EXEMPLE 130 : N-[2-(7H-8,9-DIHYDRO-FURO[3,2-f]BENZOPYRANN-1-YL)ETHYL] TRIFLUOROACETAMIDE

ETUDE PHARMACOLOGIQUE

EXEMPLE A : ETUDE DE LA TOXICITE AIGUE

La toxicité aiguë a été appréciée après administration orale à des lots de 8 souris (26 ± 2 grammes). Les animaux ont été observés à intervalles réguliers au cours de la première journée et quotidiennement pendant les deux semaines suivant le traitement. La DL_{50} , entraînant la mort de 50 % des animaux, a été évaluée.

La DL_{50} des produits testés est supérieure à 1000 mg.kg^{-1} pour les composés étudiés ce qui indique la faible toxicité des composés de l'invention.

EXEMPLE B : ETUDE DE LIAISON AUX RECEPTEURS DE LA MELATONINE

B1) ETUDE SUR DES CELLULES DE LA PARS TUBERALIS DE MOUTON

Les études de liaison aux récepteurs de la mélatonine des composés de l'invention ont été réalisées selon les techniques classiques sur les cellules de la pars tuberalis de mouton. La pars tuberalis de l'adénohypophyse est en effet caractérisée, chez les mammifères, par une haute densité en récepteurs de la mélatonine (Journal of Neuroendocrinology, 1 pp 1-4, 1989).

PROTOCOLE

1) Les membranes de pars tuberalis de mouton sont préparées et utilisées comme tissu cible dans des expériences de saturation pour déterminer les capacités et affinités de liaison pour la $2\text{-}^{125}\text{I}$ - iodomélatonine.

2) Les membranes de Pars tuberalis de mouton sont utilisées comme tissu cible, avec les différents composés à tester, dans des expériences de liaison compétitive par rapport à la 2-iodo-mélatonine.

Chaque expérience est réalisée en triple et une gamme de concentrations différentes est testée pour chaque composé.

Les résultats permettent de déterminer, après traitement statistique, les affinités de liaison du composé testé.

5 RESULTATS

Il apparaît que les composés de l'invention possèdent une très grande affinité pour les récepteurs de la mélatonine. En particulier, le composé de l'exemple 119 présente une affinité extrêmement puissante pour les récepteurs à la mélatonine, avec une IC_{50} de $6.9 \cdot 10^{-15}$ M.

10 B2) ETUDE SUR DES MEMBRANES DE CELLULES DU CERVEAU DE POULET (GALLUS DOMESTICUS)

Les animaux utilisés sont des poulets (*Gallus domesticus*) âgés de 12 jours. Ils sont sacrifiés entre 13 et 17 heures le jour de leur arrivée. Les cerveaux sont rapidement prélevés et congelés à - 200°C puis conservés à - 80°C. Les membranes sont préparées selon la méthode décrite par Yuan et Pang (*Journal of Endocrinology* 128, pages 475-482, 1991). La 2-[125 I] mélatonine est incubée en présence des membranes dans une solution tamponnée à pH 7.4 pendant 60 min à 25°C. A l'issue de cette période, la suspension membranaire est filtrée (Whatman GF/C). La radioactivité retenue sur le filtre est déterminée à l'aide d'un compteur à scintillation liquide Beckman® LS 6000.

Les produits utilisés sont :

- 2[125 I] mélatonine
- mélatonine
- composés de l'invention

En screening primaire, les molécules sont testées à 2 concentrations (10^{-7} et 10^{-5} M). Chaque résultat est la moyenne de 3 mesures indépendantes. Les molécules actives retenues d'après les résultats du screening primaire ont fait l'objet d'une détermination quantitative de leur efficacité (IC_{50}). Elles sont utilisées à 10 concentrations différentes.

Ainsi les valeurs d' IC_{50} trouvées pour les composés préférés de l'invention, qui correspondent aux valeurs de l'affinité montrent que la liaison des composés testés est très puissante.

EXEMPLE C : TEST DES QUATRE PLAQUES

Les produits de l'invention sont administrés par voie oesophagienne à des lots de dix souris. Un lot reçoit du sirop de gomme. 30 minutes après l'administration des produits à étudier, les animaux sont placés dans des habitats dont le plancher comprend quatre plaques métalliques. Chaque fois que l'animal passe d'une plaque à l'autre, il reçoit une légère décharge électrique (0.35 mA). Le nombre de passages est enregistré pendant une minute. Après administration, les composés de l'invention augmentent de façon significative le nombre de passages ce qui montre l'activité anxiolytique des dérivés de l'invention.

EXEMPLE D: COMPOSES DE L'INVENTION SUR LES RYTHMES CIRCADIENS D'ACTIVITE LOCOMOTRICE DU RAT

L'implication de la mélatonine dans l'entrainement, par l'alternance jour/nuit, de la plupart des rythmes circadiens physiologiques, biochimiques et comportementaux a permis d'établir un modèle pharmacologique pour la recherche de ligands mélatoninergiques.

Les effets des molécules sont testés sur de nombreux paramètres et en particulier sur les rythmes circadiens d'activité locomotrice qui représentent un marqueur fiable de l'activité de l'horloge circadienne endogène.

Dans cette étude, on évalue les effets de telles molécules sur un modèle expérimental particulier, à savoir le rat placé en isolement temporel (obscurité permanente).

PROTOCOLE

Des rats mâles Long Evans âgés de un mois sont soumis dès leur arrivée au laboratoire à un cycle lumineux de 12h de lumière par 24h (LD 12 : 12).

Après 2 à 3 semaines d'adaptation, ils sont placés dans des cages équipées d'une roue reliée à un système d'enregistrement afin de détecter les phases d'activité locomotrice et de suivre ainsi les rythmes nyctéméraux (LD) ou circadiens (DD).

Dès que les rythmes enregistrés témoignent d'un entraînement stable par le cycle lumineux LD 12 : 12, les rats sont mis en obscurité permanente (DD).

Deux à trois semaines plus tard, lorsque le libre-cours (rythme reflétant celui de l'horloge endogène) est clairement établi, les rats reçoivent une administration quotidienne de la molécule à tester.

5 Les observations sont réalisées grâce à la visualisation des rythmes d'activité :

- entraînement des rythmes d'activité par le rythme lumineux,
- disparition de l'entraînement des rythmes en obscurité permanente,
- entraînement par l'administration quotidienne de la molécule ; effet transitoire ou durable.

10

Un logiciel permet :

- de mesurer la durée et l'intensité de l'activité, la période du rythme chez les animaux en libre cours et pendant le traitement,
- de mettre éventuellement en évidence par analyse spectrale l'existence de composants circadiens et non circadiens (ultradiens par exemple).

RESULTATS

20 Il apparaît clairement que les composés de l'invention permettent d'agir de façon puissante sur le rythme circadien via le système mélatoninergique.

EXEMPLE E : ACTIVITE ANTIARYTHMIQUE

PROTOCOLE

(Ref : LAWSON J.W. et al. J. Pharmacol. Expert. Therap. 160:22-31, 1968)

La substance testée est administrée en intrapéritonéal à un groupe de 3 souris 30 min avant l'exposition à une anesthésie par le chloroforme. Les animaux sont ensuite observés pendant 15 min. L'absence d'enregistrement d'arythmies et de fréquences cardiaques supérieures à 200 battements / min (témoin : 400-480 battements / min) chez deux animaux au moins indique une protection significative.

EXEMPLE F : ACTIVITE ANTI-AGREGANTE PLAQUETTAIRE

PROTOCOLE

(Ref. : Bertele V. et al. Science. 220 : 517-519, 1983

Ibid, Eur. J. Pharmacol. 85 : 331-333, 1982)

Les composés de l'invention (100 µg/ml) sont testés pour leur capacité d'inhiber l'agrégation plaquettaire irréversible induite par l'arachidonate de sodium (50 µg/ml) dans du plasma de lapin enrichi en plaquettes.

Une inhibition de plus de 50 % de l'agrégation maximum indique une activité significative pour les composés de l'invention.

Ce test *in vitro* montre que les composés de l'invention sont de bons candidats pour le traitement des maladies cardiovasculaires, notamment les thromboses

45

EXEMPLE G : PROLONGATION DU TEMPS DE SAIGNEMENT

PROTOCOLE

50 (Ref. : Djana E. et al. Thrombosis Research. 15:191-197, 1979)

Butler K.D. et al. Thromb. Haemostasis. 47 : 46-49, 1982)

Les composés à tester sont administrés par voie orale (100 mg/kg) à un groupe de 5 souris 1h avant le sectionnement standardisé du bout de chaque queue (0,5 mm).

Les souris sont immédiatement suspendues verticalement, les queues étant immergées de 2 cm dans un tube à essai contenant une solution saline isotonique à 37°C.

Le temps requis pour que le saignement cesse pendant une période de 15 secondes est alors déterminé.

Une prolongation de plus de 50 % du temps de saignement relative à un groupe d'animaux contrôle est considérée comme significative pour les composés de l'invention.

Ce test *in vivo* confirme l'intérêt des composés de l'invention pour le traitement des pathologies cardiovasculaires puisque les composés de l'invention prolongent le temps de saignement.

EXEMPLE H : TEST D'HYPOXIE HYPOBARE

PROTOCOLE

(Ref. Gotti B., et Depoortere H., Circ. Cérébrale. Congrès de Circulation Cérébrale. Toulouse, 105-107, 1979)

Les composés à tester sont administrés par voie intrapéritonéale (100 mg/kg) à un groupe de 3 souris 30 minutes avant d'être placés dans une chambre à la pression hypobare de 20 cm Hg.

La prolongation du temps de survie par rapport à un groupe d'animaux traités avec le véhicule de plus de 100 % en absence d'effet dépresseur du système nerveux central indique une activité cérébroprotectrice des composés de l'invention.

15 EXEMPLE I : COMPOSITION PHARMACEUTIQUE : COMPRIMES

1000 comprimés dosés à 5 mg de 5-(2-acétamidoéthyl)-2H-1-naphlo[2.1-b]pyranne

20	5-(2-acétamidoéthyl)-2H-1-naphlo[2.1-b]pyranne	5 g
	Amidon de blé	20 g
	Amidon de maïs	20 g
	Lactose	30 g
25	Stéarate de magnésium	2 g
	Silice	1 g
	Hydroxypropylcellulose	2 g

Revendications

30 1. Composés de formule (I):

dans laquelle :

- R¹ représente une chaîne (C₁-C₄) alkylène non substituée ou substituée par un radical choisi parmi alkyle, hydroxy, alkoxy, carbonyle et carboxyle ;
- R² représente un atome d'hydrogène ou un alkyle ;
- R³ représente :

- soit un groupement de formule R³¹

dans lequel n représente zéro ou un nombre entier de 1 à 3 et R⁵ représente un atome d'hydrogène, un alkyle non substitué ou substitué, un alcényle non substitué ou substitué, un alcyne non substitué ou substitué, un cycloalkyle non substitué ou substitué, un dicycloalkylalkyle non substitué ou substitué ; et X' représente un atome d'oxygène ou de soufre ;

- soit un groupement de formule R³² :

5 dans lequel X représente un atome d'oxygène ou de soufre,
 m représente zéro ou un nombre entier de 1 à 3 et R⁶ représente un radical choisi parmi les même valeurs
 que R⁵;

- A représente une chaîne de formule -O-A¹- dans laquelle A¹ est une chaîne choisie parmi (C₂-C₅) alkylène, (C₂-C₅) alcénylène et (C₂-C₅) alcynylène ; A¹ étant non substitué ou substitué par un ou plusieurs groupements choisis parmi alkyle, alkoxy, hydroxy et o xo,
- 10 Y formant avec le noyau benzo auquel il est lié un groupement Y¹ choisi parmi naphthalène, naphthalène partiellement hydrogéné, benzofuraïne, benzofuranne partiellement hydrogéné, benzothiophène, benzothiophène partiellement hydrogéné, et indole ; étant entendu que :
- 15 l'expression "substitué" affectant les termes "alkyle", "alcényle", et "alcynyle" signifie que ces groupements sont substitués par un ou plusieurs radicaux choisis parmi halogène, alkyle et alkoxy,
- l'expression "substitué" affectant le terme "cycloalkyle" ou "dicycloalkylalkyle" signifie que ces groupements sont substitués par un ou plusieurs radicaux choisis parmi : alkyle, alkoxy, hydroxy et le groupement o xo,
- les termes "alkyle" et "alkoxy" désignent des radicaux comportant de 1 à 6 atomes de carbone,
- 20 - les termes "alcényle" et "alcynyle" désignent des radicaux insaturés de 2 à 6 atomes de carbone,
- le terme "cycloalkyle" désigne un groupement de 3 à 8 atomes de carbone, saturé ou insaturé,

leurs énantiomères et diastéréoisomères, et leurs sels d'addition à une base pharmaceutiquement acceptable.

- 25 2. Composé selon la revendication 1 qui est le 2,3-DIHYDRO-3-HYDROXY-4-(2-ACETAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE.
- 30 3. Composé selon la revendication 1 qui est le 2,3-DIHYDRO-2-METHYL-4-(2-ACETAMIDOETHYL)-1-NAPHTO[2,1-b]FURANNE.
- 35 4. Composé selon la revendication 1 qui est le 3,4-DIHYDRO-5-(2-ACETAMIDOETHYL)-2H-1-NAPHTO[2,1-b]PYRANNE.
- 5. Procédé de préparation des composés de formule (I) selon la revendication 1 caractérisé en ce qu'on cyclise un composé de formule (II):

40 dans laquelle R¹, R², R³, A¹ et Y ont la même définition que dans la revendication 1 et Z¹ représente une fonction réactive,
 afin d'obtenir le composé de formule (I) correspondant,

50 dans laquelle R¹, R², R³ et Y sont tels que définis précédemment et A est tel que défini dans la revendication 1, composés de formule (I) qui peuvent être, si on le désire,

- purifiés suivant une ou plusieurs méthodes de purification choisies parmi la cristallisation, la chromatographie sur gel de silice, l'extraction, la filtration, et le passage sur charbon ou résine,
- séparés, le cas échéant, sous forme pure ou sous forme de mélange, en leurs éventuels énantiomères ou diastéréoisomères,
- ou salifiés par une base pharmaceutiquement acceptable.

6. Composés de formule (II):

dans laquelle R¹, R², R³ et A¹ sont tels que définis dans la revendication 1 et Z¹ représente une fonction réactive, utiles en tant qu'intermédiaires de synthèse selon la revendication 5.

10 7. Procédé de préparation des composés de formule (I/d) cas particulier des composés de formule (I):

20 dans laquelle Y, R¹, R² et R³ sont tels que définis dans la revendication 1 et A⁵ représente une chaîne (C₂-C₅) alkylène non substituée ou substituée par un radical (C₁-C₆) alkyle caractérisé en ce que un composé de formule (VI) :

30 dans laquelle Y, R¹, R² et R³ sont tels que définis précédemment et A⁶ représente un radical (C₂-C₅) alcényle non substitué ou substitué par un radical (C₁-C₆) alkyle est soumis à une réaction de cyclisation, les composés de formule (I/d) pouvant être, si on le désire,

- purifiés suivant une ou plusieurs méthodes de purification choisies parmi la cristallisation, la chromatographie sur gel de silice, l'extraction, la filtration, et le passage sur charbon ou résine.
- séparés, le cas échéant, sous forme pure ou sous forme de mélange, en leurs éventuels énantiomères ou diastéréoisomères.
- ou salifiés par une base pharmaceutiquement acceptable.

35 8. Composés de formule (VI) :

45 dans laquelle, R¹, R², R³ et Y sont tels que définis dans la revendication 1 et A⁶ représente un radical (C₂-C₅) alcényle non substitué ou substitué par un radical (C₁-C₆) alkyle, utiles comme intermédiaires de synthèse selon la revendication 7.

50 9. Compositions pharmaceutiques contenant les produits de formule (I) selon la revendication 1 ou le cas échéant un de leurs sels d'addition à une base pharmaceutiquement acceptable en combinaison avec un ou plusieurs excipients pharmaceutiquement acceptables.

55 10. Compositions selon la revendication 9 utiles dans le traitement des troubles du système mélatoninergique.

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande
EP 95 40 2331

DOCUMENTS CONSIDERES COMME PERTINENTS					
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)		
Y	EP-A-0 286 516 (ADIR ET COMPAGNIE) * revendications * ---	1-10	C07D307/92 C07D491/04 C07C233/18		
Y	EP-A-0 286 515 (ADIR ET COMPAGNIE) * revendications * ---	1-10	C07C275/22 C07D311/92 C07D495/04		
Y	EP-A-0 562 956 (ADIR ET COMPAGNIE) * revendications * ---	6-8	C07D493/04 A61K31/34 //(C07D491/04, 311:00, 209:00), (C07D495/04, 333:00, 311:00), (C07D493/04, 311:00,307:00)		
D,Y	EP-A-0 530 087 (ADIR ET COMPAGNIE) * revendications * ---	6-8			
D,Y	EP-A-0 447 285 (ADIR ET COMPAGNIE) * revendications * -----	6-8			
DOMAINE TECHNIQUE RECHERCHE (Int.Cl.6)					
C07D C07C A61K					
Le présent rapport a été établi pour toutes les revendications					
Ilieu de la recherche	Date d'achèvement de la recherche	Examinateur			
LA HAYE	12 Décembre 1995	Chouly, J			
CATÉGORIE DES DOCUMENTS CITÉS					
X : particulièrement pertinent à lui seul	I : théorie ou principe à la base de l'invention				
Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie	E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date				
A : arrêté-plan technologique	D : cité dans la demande				
O : divulgation non écrite	L : cité pour d'autres raisons				
P : document intercalaire	& : membre de la même famille, document correspondant				

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- **BLACK BORDERS**

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

- **FADED TEXT OR DRAWING**
- **BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- **SKEWED/SLANTED IMAGES**
- **COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- **GRAY SCALE DOCUMENTS**

LINES OR MARKS ON ORIGINAL DOCUMENT

- **REFERENCE (S) OR EXHIBIT (S) SUBMITTED ARE POOR QUALITY**
- **OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image problem Mailbox.

THIS PAGE BLANK (USPTO)