

SOMMAIRE

SOMMAIRE	
1. PRÉSENTATION DU DOCUMENT	5
1.1 Ce que contient ce document	5
1.2 Ce que ne contient pas ce document	5
2. PRÉSENTATION DU PRODUIT	6
2.1 Dallage du produit	6
2.2 Modèle de donnée	6
2.2.1 Géométrie du point (x, y, z)	7
2.2.2 Intensité du signal retour	7
2.2.3 Échos (numéro et nombre)	8
2.2.4 Caractéristique du point	9
2.2.5 Canal du scanner	9
2.2.6 Sens de balayage du scanner	9
2.2.7 Fin d'axe de vol	10
2.2.8 Classe	10
2.2.8.1 Classe Sol (code 2)	10
2.2.8.2 Classe Végétation (codes 3,4 et 5)	10
2.2.8.3 Classe Bâtiment (code 6)	11
2.2.8.4 Classe Eau (code 9)	11
2.2.8.5 Classe Tablier de pont (code 17)	12
2.2.8.6 Classe Sursol pérenne (code 64)	12
2.2.8.7 Classe Artefact (code 65)	12
2.2.8.8 Classe Points Virtuels (code 66)	12
2.2.8.9 Classe Divers – bâtis (code 67)	13
2.2.8.10 Classe Non classé (code 1)	13
2.2.9 Donnée utilisateur	13
2.2.10 Angle de scan	13
2.2.11 ID de l'axe de vol	14
2.2.12 Temps absolu	14

3	. CARACTÉRISTIQUES TECHNIQUES	. 15
	3.1 Sources des données	. 15
	3.2 Extension géographique	. 15
	3.3 Références géodésiques	. 16
	3.3.1 Systèmes de référence	. 16
	3.3.2 Codes EPSG et IGNF	. 17
	3.4 Spécifications pour les acquisitions	. 17
	3.4.1 Contrôles réalisés sur les nuages de points bruts	. 17
	3.5 Spécifications pour les traitements de classification	. 18
	3.5.1 Contrôles réalisés sur la classification	. 18
	3.6 Paramètres de qualité	. 18
	3.6.1 Précision du nuage de point	. 18
	3.6.2 Exhaustivité de la classification optimisée	. 19
	3.6.2.1 Classe Bâtiment	. 19

1. PRÉSENTATION DU DOCUMENT

1.1 Ce que contient ce document

Ce document décrit en termes de contenu, de précision géométrique et de qualité sémantique, les caractéristiques du produit nuage de points LiDAR HD¹ version 1.0.

Le terme LiDAR HD fait référence au produit nuage de points LiDAR HD version 1.0 dans l'ensemble de ce document.

1.2 Ce que ne contient pas ce document

Ce document ne décrit pas le produit nuage de points LiDAR HD en termes de structure de livraison, laquelle est traitée dans un document appelé « Descriptif de livraison » (**DL_LiDAR_HD_1-0.pdf**) qui contient les informations suivantes :

- emprise de livraison;
- organisation des données;
- emprise de livraison.

Ce document ne présente pas les évolutions du produit ni celles de la documentation ; ces informations sont diffusées dans un document spécifique associé au produit et nommé « Suivi des évolutions » (**SE_LiDAR_HD.pdf**).

L'ensemble de ces documents est disponible sur le site **géoservices** de l'IGN, accessible en cliquant sur l'imagette ci-dessous.

Ce document n'est pas un manuel d'utilisation du produit nuage de points LiDAR HD.

Pour des compléments d'information, rejoindre la communauté LiDAR HD sur la plateforme

¹ **LiDAR** Haute Densité : *Light Detection And Ranging*. Système de mesure de terrain par balayage laser. Il est pris ici systématiquement au sens de LiDAR aéroporté : système permettant de mesurer la distance entre un point d'un avion et des points au sol.

2. PRÉSENTATION DU PRODUIT

Les nuages de points LiDAR HD sont des nuages de points acquis lors du programme LiDAR HD France entière diffusés au format binaire standard LAS (LAZ 1.4), respectant les spécifications de l'ASPRS (*American Society for Photogrammetry and Remote Sensing*); cliquer sur l'image pour y accéder :

2.1 Dallage du produit

Chaque bloc d'acquisition LiDAR HD (bloc carré de 50 km x 50 km en général) est découpé en dalles LAZ de 1 km x 1km.

Chaque dalle est diffusée dans le système légal de référence associé à son territoire (voir paragraphe 3.3 Références géodésiques).

2.2 Modèle de donnée

Chaque point du nuage possède les attributs suivants :

Attribut au sein des données	Point Data Record Format 6 (standard ASPRS)	Traduction	
Х	X	х	
У	Y	у	
Z	Z	Z	
intensity	Intensity	Intensité du signal retour	
return	Return Number	Numéro de l'écho	
number_of_return	Number of Returns (given pulse)	Nombre d'écho	
classification_flags	Classification Flags	Caractéristique du point	
scanner_channel	Scanner Channel	Canal du scanner	
scan_direction	Scan Direction Flag	Sens de balayage du scanner	
flight_line_edge	Edge of flight line	Fin d'axe de vol	
classification	Classification	Classe	
user_data	User Data	Donnée utilisateur	
angle	Scan Angle	Angle de scan	
point_source_id	Point Source ID	ID de l'axe de vol	
gps_time	GPS Time	Temps absolu	

2.2.1 Géométrie du point (x, y, z)

La géométrie d'un point est définie par trois attributs :

- X :
- y;
- Z.

Chaque point de la surface terrestre est d'abord projeté sur l'ellipsoïde selon la direction normale. Puis l'ellipsoïde est transformé en surface plane. Les coordonnées associées à cette surface plane sont des coordonnées cartésiennes bidimensionnelles calculées en fonction de la longitude et de la latitude :

- x pour l'abscisse;
- y pour l'ordonnée.

L'altitude d'un point de la surface topographique est, de manière très approchée, la distance entre le point et une surface de référence qui correspond approximativement au niveau moyen des mers. Plus rigoureusement l'altitude est définie par :

z pour l'altitude.

Les coordonnées projetées (x, y) et l'altitude (z) sont exprimées dans le système de référence légal de la zone géographique du produit (voir paragraphe 3.3 Références géodésiques).

2.2.2 Intensité du signal retour

C'est une valeur sans unité qui indique l'intensité (*intensity*) du signal retour lors de l'acquisition. Cette valeur est conditionnée par la calibration de l'instrument, l'angle d'incidence à la surface de l'objet rencontré et la nature de ce dernier. L'intensité est calibrée en fonction de l'appareil LiDAR et de l'acquisition. Les valeurs d'intensité peuvent donc être différentes selon les blocs.

Illustration d'un nuage de point colorisé par intensité

Le tableau ci-dessous présente les valeurs des intensités relatives en fonction des éléments détectés :

Valeur basse	Valeur intermédiaire	Valeur haute	
Goudron	Arbre	Herbe / Sable blanc	

Ainsi, sur du goudron la valeur de l'intensité sera basse, elle sera intermédiaire pour un arbre et haute pour l'herbe ou du sable blanc.

La valeur par défaut de l'intensité est **0** (absence d'intensité, représentée par un point noir).

2.2.3 Échos (numéro et nombre)

Une impulsion lumineuse provenant du LiDAR peut renvoyer plusieurs retours sur son trajet appelés « échos » (voir illustration ci-dessous).

Deux attributs distincts concernent les échos du point :

- le numéro de l'écho (*return*) : rang de l'écho retour du signal (1^{er}, 2nd, 3^{ème}, ... pour l'impulsion) ;
- le nombre d'échos (*number_of_returns*) : nombre d'écho retour total pour l'impulsion.

Écho unique :

1^{er} de plusieurs échos :

Écho intermédiaire :

Dernier écho :

La valeur par défaut du numéro d'écho est 0.

La valeur par défaut du nombre d'échos est 0.

2.2.4 Caractéristique du point

L'attribut *classification_flags* permet d'indiquer des caractéristiques spéciales associées au point. Cet attribut n'est pas forcément rempli dans la donnée finale. Les différentes valeurs sont :

Valeur	Nom (Name)	Traduction	Description
0	Synthetic	Synthétique	S'il est défini, ce point a été créé par une technique autre que la collecte LIDAR, telle que la numérisation à partir d'un modèle stéréo photogrammétrique ou en traversant une forme d'onde.
1	Key-point	Point clé	S'il est défini, ce point est considéré comme un point clé du modèle et ne doit donc généralement pas être retenu dans un algorithme d'amincissement.
2	Withheld	Retenu	S'il est défini, ce point ne doit pas être inclus dans un traitement (synonyme de « supprimé »).
3	Overlap	À cheval	S'il est défini, ce point se trouve dans la zone de chevauchement d'au moins deux bandes ou prises. La définition de ce bit n'est pas obligatoire mais permet de conserver la classification des points de chevauchement.

Extrait et traduction des spécifications LAS Version 1.4-R13 de l'ASPRS

2.2.5 Canal du scanner

L'attribut *scanner_channel*, lorsqu'il est renseigné, est utilisé pour indiquer le canal du scanner pour des systèmes multi-canaux. Jusqu'à quatre canaux peuvent être supportés.

Valeur	Description
0	Systèmes à canal unique.
1	
2	Systèmes multi-canaux.
3	

2.2.6 Sens de balayage du scanner

Le sens de balayage (*scan_direction*) indique la direction dans laquelle le miroir du laser se déplaçait au moment de l'impulsion de sortie.

Valeur	Description
0	sens de balayage négatif
1	sens de balayage positif*

^{*} Un sens de balayage positif est un mouvement de balayage du côté gauche vers le côté droit.

2.2.7 Fin d'axe de vol

Cet attribut représente la fin d'axe de vol (*flight_line_edge*). Si un point est à la fin d'un axe de vol, il aura une valeur de **1**, sinon la valeur sera de **0**.

	Valeur	r Description	
0 Valeur par défaut.		Valeur par défaut.	
Ī	1	Point à la fin d'un axe de vol.	

2.2.8 Classe

Attribut de classe du point :

- 8 classes respectant des valeurs prédéfinies des spécifications ASPRS ;
- 4 classes avec une valeur personnalisée (64, 65, 66 et 67).

Valeur	Description
1	Non classé
2	Sol
3	Végétation basse (0-50 cm)
4	Végétation moyenne (50 cm-1,50 m)
5	Végétation haute (+1,50 m)
6	Bâtiment
9	Eau
17	Tablier de pont
64	Sursol pérenne
65	Artefacts
66	Points virtuels
67	Divers - bâtis

2.2.8.1 Classe Sol (code 2)

La classe « Sol » contient l'ensemble des points situés à la surface du sol naturel ou artificiel, et donc à l'exception des objets décrits dans les autres classes ci-dessous. En particulier, les points situés sur des surfaces en eau ou sur des tabliers de ponts ne sont pas considérés comme appartenant à la classe sol.

La notion de terrain dégagé est fixée comme étant une zone :

- sans points végétation, bâtiment, eau ou sursol pérenne;
- telle que tous les points non classés soient à moins de 50 cm de points sol.

En terrain dégagé (en dehors des zones végétalisées ou bâties et des zones en eau), la densité moyenne des points de la classe sol est d'au moins de 10 pts/m² (pour autant que la densité du nuage de points brut le permette).

2.2.8.2 Classe Végétation (codes 3,4 et 5)

La classe « Végétation » comprend l'ensemble des arbres, arbustes, végétation basse (ex : garrigue, fougères, roselière, ...) du sursol. La végétation située au niveau du sol (hauteur inférieure à 20 cm non mesurable avec précision, typiquement l'herbe) est classée en « Sol ». Les classes de végétation comprennent également l'ensemble des arbres de culture (vergers, vignes), à l'exception des cultures annuelles susceptibles de disparaitre à un moment de l'année. Ces cultures annuelles sont classées en « Non classé ».

La végétation est scindée en 3 classes, selon sa hauteur par rapport au sol :

- entre 0 et 50 cm, elle figure dans la classe « Végétation basse » (code 3);
- entre 50 cm et 1 m 50, elle figure dans la classe « Végétation moyenne » (code 4);
- à plus de 1 m 50, elle figure dans la classe « Végétation haute » (code 5).

2.2.8.3 Classe Bâtiment (code 6)

Les toits et façades de bâtiment sont classés en classe « Bâtiment ». Est considérée comme bâtiment toute construction pérenne de superficie supérieure à $10~\text{m}^2$:

- à usage résidentiel;
- agricole (silos, serres, ...);
- industriel;
- commercial;
- religieux, sportif, ...

Le caractère pérenne d'un bâtiment ne pouvant être assuré avec l'analyse du nuage LiDAR, il figure dans cette classe des constructions légères, parfois sans murs, telles que des abris de jardin, à matériaux, à bestiaux, des carports, des bungalows (chantier, camping), des chapiteaux, des toiles de marchés, des stores, des pergolas, ...

Les monuments, châteaux, moulins, châteaux d'eau, phares, cheminées industrielles et remparts, fortifications font également partie de cette classe.

Les éléments suivants, présents sur ou à proximité immédiate des bâtiments sont en classe 6 :

- · les cheminées ;
- les lucarnes ;
- les verrières ;
- les balcons et terrasses (en saillie du bâtiment ou non).

Toutes les parties des bâtiments ruinés ou en construction ne possédant pas de toit sont traités comme des murs, donc dans le cas général (plus haut que large) en « Non classé ».

2.2.8.4 Classe Eau (code 9)

La classe « Eau » contient l'ensemble des points situés sur la surface des cours d'eau et plans d'eau ainsi que la mer ou l'océan. Cette classe ne décrit pas de manière exhaustive les plans d'eau.

2.2.8.5 Classe Tablier de pont (code 17)

Un pont est un ouvrage d'art enjambant un ou plusieurs éléments du réseau routier, ferré ou hydrographique. Figure dans la classe « Tablier de pont » tout point situé sur le tablier d'un pont, quelle que soit sa largeur, longueur ou le réseau qu'il enjambe. Ainsi, les passerelles (généralement à usage piétonnier) figurent dans cette classe « Tablier de pont ».

Sont classés dans la classe « Non classé » (1) les points sur les éléments de structure du pont tels que les piles et les parapets. Seuls les éléments de structure très hauts (situés à plus de 5 m du niveau du tablier) tels que des piliers, des haubans sont classés en « Sursol pérenne » (64).

Les passages aménagés en tunnel dans le sol (dont les buses, ouvertures dans le sol pour permettre généralement l'écoulement de l'eau) sont considérés comme constitutifs du sous-sol et à ce titre ne sont pas classés en Tablier de pont.

Les passages inférieurs sous des réseaux construits en remblai (digues, levées, talus) peuvent parfois prêter à confusion, lorsqu'un tablier de pont n'est pas aisément distinguable dans le nuage de points ou sur l'orthophotographie. Dans ces cas-là il s'agit de déterminer si l'ouvrage interrompt le remblai, auquel cas il sera considéré comme un pont, ou bien au contraire si c'est le remblai qui prédomine, auquel cas l'ouvrage sera considéré comme un conduit busé.

2.2.8.6 Classe Sursol pérenne (code 64)

La classe « Sursol pérenne » contient l'ensemble des éléments du sursol qui ne sont ni un bâtiment ni de la végétation ni un pont, identifiés comme pérennes et de nature à marquer le paysage.

Ce qui figure dans cette classe (liste non exhaustive) :

- les points « hauts » tels les éoliennes, les téléphériques, antennes de télécommunication, réseaux de distribution d'électricité (câbles et pylônes), caténaires, ...
- les éléments de ponts situés au-dessus du tablier (haubans, piliers, ...).

Ne figure pas dans cette classe :

- les véhicules de tout type ;
- les personnes, les animaux;
- les objets transitoires (grues de chantiers, tas de bois, de fumier, de betteraves, bottes de foin ou de paille, ...);
- les éléments trop petits pour être identifiés avec assurance.

2.2.8.7 Classe Artefact (code 65)

La classe « Artefact » contient l'ensemble des points, groupés spatialement ou non, dont la présence ne peut s'expliquer par le terrain.

2.2.8.8 Classe Points Virtuels (code 66)

La classe « Points Virtuels » contient les points artificiels qui ont été créés sous les ponts dans le but de retirer ces derniers dans les modèles numériques.

Seuls les « nuages de points optimisés » contiennent des points classés avec cette valeur.

2.2.8.9 Classe Divers - bâtis (code 67)

Au cours du processus de classification automatique réalisé par l'IGN, une classe de « Divers – bâtis » est isolée. Les groupes de points présents dans cette classe présentent des caractéristiques de bâtiments (surfaces planes, hautes, ...) mais ne passent pas la confirmation croisée de la BD TOPO® et du module de traitement par Intelligence Artificielle.

Ce qui figure dans cette classe (liste non exhaustive) :

- certains types de végétation (haies bien taillées, pins parasols, massifs proches d'habitation);
- des rochers et zones de ruptures de pentes ;
- des terrasses;
- des cabanes de chantiers, du stockage de matériaux, ainsi que des constructions de faibles surfaces;
- des bâtiments non visibles sur les photos aériennes et non présents dans la BD TOPO[®] car construits récemment;
- des morceaux de bâtiments bas (auvents par exemple);
- des caravanes et bungalows;
- · des bâtiments aux formes atypiques.

2.2.8.10 Classe Non classé (code 1)

Par construction, la classe « Non classé » contient le reste des points.

À titre d'exemple, y figurent les points situés sur des véhicules, des animaux ou êtres humains, objets provisoires, tas de bois, ...

<u>NB</u>: Dans le cas de données brutes LiDAR HD, l'attribut « Classe » a été conservé mais la valeur par défaut est fixée à « Non Classé » (1) ou « Artefact » (65) lorsque la présence ne peut s'expliquer par le terrain.

2.2.9 Donnée utilisateur

Cet attribut (*user_data*) est rempli selon le souhait de l'organisme qui acquiert les données. Il n'est pas soumis à une contrainte du cahier des charges.

2.2.10 Angle de scan

L'angle de scan (*angle*), exprimé en degré entier, représente l'angle entre le faisceau émis lors de l'acquisition du point et le 0° de l'instrument (correspondant à l'angle de roulis de l'avion).

Illustration de l'angle de scan

La valeur par défaut de l'angle de scan est 0.

2.2.11 ID de l'axe de vol

Cet attribut précise de quel axe de vol est issu le point mesuré. Un identifiant (*point_source_id*) est utilisé pour renseigner l'axe de vol se trouvant en métadonnée.

La valeur par défaut de l'axe de vol est 9999.

2.2.12 Temps absolu

La valeur du temps (*gps_time*) du point correspond au nombre de seconde écoulées depuis le 14/09/2011 à 00:00:00 UTC².

LiDAR HD – Version 1.0 – Descriptif de contenu des nuages de points LiDAR – Octobre 2023

² Universal Time Coordinated : Temps universel coordonné.

3. CARACTÉRISTIQUES TECHNIQUES

3.1 Sources des données

Les produits nuages de points LiDAR HD sont issus d'une acquisition aérienne LiDAR avec une densité d'au moins 10 impulsions au m² et 5 impulsions au m² au-dessus de 3200 m d'altitude.

3.2 Extension géographique

Les produits nuages de points LiDAR HD doivent couvrir toute la France métropolitaine et les DROM (Départements et Régions d'Outre-Mer sauf la Guyane) d'ici 2026. L'avancement de la production est consultable sur le site **qéoservices**: https://geoservices.ign.fr/lidarhd.

Les nuages de points LiDAR HD sont distingués en deux catégories :

- les « nuages de points classés », issus d'un processus très automatisé de classification internalisé (mêlant algorithmes IA³ et classiques), mis au point par l'IGN ;
- les « nuages de points optimisés », ces nuages ont fait l'objet de corrections interactives. Des points virtuels sont présents dans ces nuages (sous les ponts ou passages supérieurs), en vue de modéliser le sol sous ces objets.

Les contrôles réalisés sur ces deux types de nuages sont précisés au paragraphe 3.5.1 Contrôles réalisés sur la classification.

Catégories des nuages de points

³ Intelligence Artificielle.

3.3 Références géodésiques

Les systèmes de coordonnées planimétrique et altimétrique employés pour générer les grilles d'altitude sont fixés légalement par le décret n° 2000-1276 modifié du 26 décembre 2000 portant application de la loi n° 95-115 du 4 février 1995.

3.3.1 Systèmes de référence

Les données sont proposées de façon standard dans les systèmes légaux de référence suivants :

Zone		Systèsme géodésique	Ellipsoïde associé	Projection	Système altimétrique	Type d'altitudes
France continentale		RGF93		Lambert 93	IGN 1969	Normale
Corse		RGF93	IAG GRS 1980		IGN 1978C	
	Grande Terre - Basse Terre	RGAF09		UTM Nord fuseau 20	IGN 1988	Orthométrique
Guadeloupe	Marie-Galante				IGN 1988 MG	
Guadeloupe	La Désirade				IGN 1992 LD	
	Les Saintes				IGN 1988 LS	
Martinique		RGAF09		UTM Nord fuseau 20	IGN 1987	
La Réunion		RGR92	IAG GRS 1980	UTM Sud fuseau 40	IGN 1989	Orthométrique
Mayotte		RGM04		UTM Sud fuseau 38	SHOM 1953	

3.3.2 Codes EPSG et IGNF

Systèmes de référence géodésique EPSG⁴ et IGNF :

Zone		Code EPSG projection	Code IGNF projection	Code EPSG altitude	Code IGNF altitude
France continentale		2154	LAMB93 (RGF93LAMB93)	5720	IGN69
Corse		2104		5721	IGN78C
	Grande Terre - Basse Terre		RGAF09UTM20	5757	GUAD88
Guadeloupe	Marie-Galante	5490		5617	GUAD88MG
Guadeloupe	La Désirade			5618	GUAD92LD
	Les Saintes			5616	GUAD88LS
Martinique				5756	MART87
La Réunion		2975	RGR92UTM40S	5758	IREUN89
Mayotte		4471	RGM04UTM38S	5793	MAYO53

3.4 Spécifications pour les acquisitions

Lorsque des dalles du nuage de points intersectent une ou des emprises de zones interdites à la prise de vue aérienne, la donnée est retirée.

3.4.1 Contrôles réalisés sur les nuages de points bruts

Les vérifications faites comprennent notamment :

- le contrôle de la complétude du nuage ;
- le contrôle des attributs des points ;
- le contrôle géométrique de 1^{er} niveau (présence d'artefacts);
- le contrôle de la densité effective sur la base des éléments suivants :
 - o carte de densité avec une résolution de 4 m,
 - o la densité, calculée à partir des échos uniques et des derniers échos ;
- le contrôle géométrique de 2^{ème} niveau (présence de bruit);
- le contrôle de la conformité du recalage relatif ;
- le contrôle de la conformité de la précision planimétrique et altimétrique du nuage.

⁴ European Petroleum Survey Group : https://epsg.io.

3.5 Spécifications pour les traitements de classification

3.5.1 Contrôles réalisés sur la classification

Pour les nuages de points optimisés, les vérifications faites ont pour but de s'assurer :

- de l'intégrité, de l'exhaustivité des données, ainsi que de leur lisibilité et de leur complétude au regard de l'emprise prévue;
- que seul l'attribut classe a été modifié sur les points du nuage classé par rapport à ceux du nuage brut : aucune modification de géométrie, ou d'autre attribut de points n'est tolérée;
- que la densité de points sol est suffisante et ne présente pas de défaut d'homogénéité (en l'absence de raisons liées au terrain ou aux données brutes livrées);
- que la classification des points est conforme aux spécifications;
- que la modélisation du terrain est conforme aux spécifications.

Concernant la classification des points, des vérifications systématiques, sous forme de contrôles automatiques, semi-automatiques et par échantillonnage sont effectués.

Les contrôles par échantillonnage concernent 10 % des surfaces, sur des zones typiques et caractéristiques réparties sur le bloc.

Pour les nuages de points classés, les vérifications faites ont pour but de s'assurer :

- de l'intégrité, de l'exhaustivité des données, ainsi que de leur lisibilité et de leur complétude au regard de l'emprise prévue;
- que seul l'attribut classe a été modifié sur les points du nuage classé par rapport à ceux du nuage brut : aucune modification de géométrie, ou d'autre attribut de points n'est tolérée ;
- que la classification des points ne comporte pas d'erreurs majeures et ait bien été réalisée sur l'ensemble de la zone prévue.

3.6 Paramètres de qualité

3.6.1 Précision du nuage de point

Après acquisition des données LiDAR HD, un contrôle géométrique est réalisé à partir de points de contrôle afin d'assurer une précision minimum de :

- 50 cm d'EMQ en planimétrie;
- 10 cm d'EMQ en altimétrie.

Et une précision relative minimum de :

- 25 cm d'EMQ en planimétrie;
- 5 cm d'EMQ en altimétrie.

Est définit comme EMQ ou Erreur Moyenne Quadratique, le calcul statistique utilisé généralement, s'agissant de données géographiques, pour qualifier la précision d'un positionnement. Il s'agit de la mesure de la dispersion des observations autour de la valeur vraie (correspond à l'anglais *Root Mean Square* ou *rms*).

L'EMQ est le plus souvent exprimée en unité terrain.

3.6.2 Exhaustivité de la classification optimisée

3.6.2.1 Classe Bâtiment

La classification optimisée présente un taux d'exhaustivité⁵ de 99,5% des bâtiments (moins d'un bâtiment manquant sur 200 bâtiments réels). Sur les zones à enjeux⁶, le taux d'exhaustivité⁵ est de 99,9% (moins d'un bâtiment manquant sur 1000 bâtiments réels).

La référence pour le calcul est le nombre d'objets « bâtiments » de la BD TOPO[®] de plus de 10 m² et le taux d'exhaustivité⁵ est calculé sur un chantier complet.

Pour la définition de « bâtiment » dans le LiDAR HD voir 2.2.8.3 Classe Bâtiment (code 6).

⁵ <u>Exhaustivité</u> : Pour une classe donnée, rapport entre le nombre de points classés et le nombre de points disponibles.

 $^{^{6}}$ Zones à enjeux : Les zones à enjeux sont définies de la manière suivante :

les zones inondables, définies à partir des emprises dans lesquelles des MNT LiDAR ont été produits pour la DGPR entre 2010 et 2019;

[•] les zones urbaines : les zones urbaines sont définies au sens de la couche « Zone d'habitation » de la BD TOPO[®] d'importance **1**.