PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/3842
H01G 4/00, 4/005, 4/012, 4/008, 4/06, 4/20, 4/38, 7/00	A1	(43) International Publication Date: 16 October 1997 (16.10.9
(21) International Application Number: PCT/US9 (22) International Filing Date: 18 March 1997 (1		DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, F
(30) Priority Data: 08/630,030 9 April 1996 (09.04.96)	τ	Published With international search report.
(71) Applicant: THE BOARD OF TRUSTEES OF THE U SITY OF ARKANSAS [US/US]; 1123 South Univer enue, Little Rock, AR 72204 (US).		
(72) Inventor: SCHAPER, Leonard, W.; 1940 Pratt Drive teville, AR 72701 (US).	e, Faye	-
(74) Agent: METZGER, David, R.; Hill, Steadman & S Sears Tower, 85th floor, 233 South Wacker Drive, O IL 60606 (US).		
	•	

(54) Title: FLOATING PLATE CAPACITOR WITH EXTREMELY WIDE BAND LOW IMPEDANCE

(57) Abstract

A capacitor having a floating plate-shaped electrode (16), at least two patterned plate electrodes (20, 22) overlying the floating plate-shaped electrode (16), and a dielectric layer therebetween (24). The resulting structure exhibits high two-part insertion loss even at frequencies as high as 10 GHz. Notably, the capacitor exhibits an insertion loss of more than -40 dB over a range from 1 GHz to 10 GHz.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	tT.	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
	Denmark	LK	Sri Lanka	SE	Sweden		
DK BE	Estonia	LR	Liberia	SG	Singapore		
BE	Estonia	1214	Dicc. III		• •		

5

10

15

20

25

30

35

SPECIFICATION

TITLE

FLOATING PLATE CAPACITOR WITH EXTREMELY WIDE BAND LOW IMPEDANCE

BACKGROUND OF THE INVENTION

The present invention is directed to parallel plate capacitors as well as decoupling capacitors for semiconductor applications. More specifically, the invention is directed to discrete, low inductance capacitors typically used in decoupling applications.

The purpose of power distribution systems is to deliver stable, noise-free power to integrated circuits (ICs) and other devices. One way to express this quantitatively is that the power distribution impedance, as seen from a chip, must be less than some value, over whatever frequency range is of interest. The value is determined by the voltage drop or noise tolerance of the chip when it is drawing maximum current. For example, simply considering the DC drop allowed for a chip drawing 5A from a 5V supply with a 5% voltage tolerance, the total power distribution impedance seen by the chip must be less than $50m\Omega$. For AC noise, time domain equivalent circuit simulations are usually performed, since a wide range of frequencies is generated by digital circuitry. Simultaneous switching drivers generate di/dt noise, as has been exhaustively described elsewhere by H.B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Chapter 7, Addison-Wesley, 1990, incorporated herein by reference.

Capacitors have been used for decoupling, or bypassing AC noise on DC power supply circuits for many years. These capacitors can be thought of as

supplying localized energy storage for the varying current demands of circuitry, typically semiconductor circuits, and thus stabilizing the DC power.

At low frequencies, almost all capacitors are effective to decouple AC signals. Usually several capacitors are used on a printed circuit board to provide a very low impedance path for AC signals, while maintaining DC isolation. For example, tantalum electrolytic capacitors of 10 to 100 μ F might be used to provide maximum energy storage and low frequency decoupling for an entire circuit board, while ceramic chip capacitors of 0.1 μ F might be located next to every integrated circuit to provide a local path for grounding high frequency noise.

Such distributed capacitance schemes worked well when the clock frequencies of digital systems were relatively low, such as 10 to 20 MHz. However, as clock frequencies have increased to above 100 MHz, conventional capacitors are limited. The problem is that in reality, capacitors also exhibit inductance and resistance components, and this inductance becomes a problem at higher frequencies.

In that regard, a capacitor can be modeled as a series RLC circuit. The inductance is present because of the finite dimensions of the plates and the way in which the plates are connected to the remainder of a circuit, the later exerting a major influence at the higher frequencies. The limited dimensions of the conductors connecting the plates to the remainder of the circuit impart finite, though small, inductances. Even in capacitors of moderate sizes, the resulting inductance-capacitance (LC) combination can resonate at a fairly low frequency. For example, the typical 0.1 µF ceramic chip capacitor (measuring .12 inch by .06 inch) has a self-inductance of approximately 500 pH and is self resonant around 20 MHz. From DC to

around 20 MHz, the impedance decreases down to a level of 150 mOhms, but above 20 MHz, the impedance increases, and the capacitor loses its decoupling effectiveness. Stated in these terms, the capacitor can be thought of as a four terminal device, whose function is to prevent AC disturbance imposed on one set of terminals from being coupled to the other set of terminals. In microwave terms, this two port network must have a high insertion loss (S_{12}) between the two ports, to be effective.

Also detrimental to effective decoupling is the inductance between the IC (integrated circuit) chip itself and the printed circuit wiring board power distribution planes to which the decoupling capacitors are connected. This inductance arises from the leads of the chip package. Connecting many leads in parallel to power and ground connections does not totally eliminate this effect.

If large current swings are required by the IC circuitry, this residual inductance can cause unacceptable voltage drops and AC noise. To counteract this effect, decoupling capacitors have been included in IC circuit packages, often as discrete chip components, but sometimes as multiple planes with thin dielectric layers between them, which in effect form integral capacitors. This latter arrangement is particularly effective in multilayer ceramic packages such as pin grid arrays (PGAs), quad flat packs (QFPs) and ball grid arrays (BGAs).

In multichip modules (MCMs), the effect of the inductances of chip-to-substrate interconnections can be minimized by using multiple interconnections and careful design both in a wirebond and in a flip chip environment. Similarly, the intrinsic inductance and resistance of power distribution planes, either solid, perforated, or the new IMPS (interconnected mesh power

system), is extremely low, and does not determine the effectiveness of power distribution. My prior United States Patent Number 5,410,107 describes the IMPS.

Thus discrete decoupling capacitors are critical elements for reducing power distribution noise.

5

10

15

20

25

30

35

In MCM applications, there are three inductances to consider: interconnects between chip and substrate, substrate power and ground planes, and the inductance of the capacitor itself, including its connection to the power and ground planes.

It has long been known that the least inductive capacitor is a parallel plate capacitor with a large area. The ultimate low-inductance capacitor in MCM substrates is the parallel plate capacitor consisting of a thin layer of high dielectric constant material sandwiched between power and ground planes. However, these capacitors are expensive to fabricate and contribute significantly to substrate defects. The need to distribute multiple voltages (e.g., 3.3V, 5V, etc.) makes their use prohibitive in many applications.

In an earlier patent of mine, United States
Patent Number 4,675,717, there is described such a
capacitor in the context of a wafer-scale integrated
(WSI) assembly, built on silicon substrates, in which
the conductive silicon substrate forms the ground
plate of the capacitor and allows the easy growth of a
silicon dioxide dielectric layer. A metal layer
formed over the dielectric layer serves as the other
plate of the capacitor, in addition to serving as the
power distribution plane. Such integrated power
distribution and decoupling capacitor ombinations
have demonstrated low impedance characteristics
without inductive resonances to tens of gigahertz.
But again, such structures are expensive to produce,
and do not work with many sets of packaging materials.

Discrete capacitors are still required to handle the vast majority of decoupling applications.

Various manufacturers have made progress on reducing the inductance of discrete capacitors.

5

10

15

20

25

30

35

One such manufacturer, AVX Corporation, produces low-inductance capacitor arrays, designed in conjunction with IBM, in which multiple connections to the plates are made along one side of the unit or part, using solder bumps or thermocompression gold ball bonding. See, J. Galvagni, "Low Inductance Capacitors For Digital Computers," AVX Technical Information brochure, and AVX Corporation product brochure entitled "Low Inductance Capacitor Arrays," incorporated herein by reference. Such capacitors are made available under the designation AVX LICA -Low Inductance Decoupling Capacitor Arrays as an extension to IBM Corp.'s DCAP® decoupling capacitors. The AVX LICA are available in values from 30 to 150 nF. Custom designs incorporating multiple sections can be produced. Testing of these devices results in measurements of total inductance below 60 pH.

Another manufacturer, Murata, produces a very small capacitor (20 X 20 X 13 mil) having a capacitance of 10 or 2.2 nF. The contacts are on opposite 20 mil square faces. Though originally designed to be mounted with one face down and the other face wirebonded, it is possible to obtain even lower inductance by mounting the part with both terminals perpendicular to the plane of a substrate.

H. Hashimi and P. Sandborn have described what is referred to as a close attached capacitor (CAC) which is a unit that is mounted directly on the active area of an IC chip, and wirebonded to chip power and ground pads, to overcome inductance in the unit. See, H. Hashemi & P. Sandborn, "The Close Attached Capacitor: A solution to Switching Noise Problems," Proceedings

of the 42nd ECTC, 1992, pp. 573-582, incorporated herein by reference. Unfortunately, the wirebond connections are still significantly inductive, and the silicon-based capacitors are expensive.

5

Along other lines, there has been under development an integrated capacitor layer for printed wiring boards to simultaneously create many capacitors for radio frequency (RF) circuit applications as a replacement for discrete chip components. This layer uses patterned metal as a set of floating plates underneath an unpatterned deposited dielectric, above which a set of patterned metal plates including terminal pads is formed.

15

20

10

SUMMARY OF THE INVENTION

The present invention provides a new and novel capacitor structure and method for making same. The capacitor comprises an extremely low inductance floating plate capacitor which can be fabricated with as little as one patterning step. These devices can be fabricated in large quantity on sheet or roll material and subsequently excised by cutting or stamping.

25

These capacitors preferably are used in decoupling applications, which applications can advantageously utilize the low-inductance nature of the floating plate capacitor and its method of attachement. The extremely high insertion loss, i.e., decoupling effectiveness of these capacitors is maintained at frequencies exceeding 1 GHz, even over a wide band from about 1 GHz to 10 GHz.

30

In an embodiment, the invention provides a capacitor which does not exhibit a significant increase in impedance with increasing frequency after exhibiting an inductive resonance.

In an embodiment, the invention provides a capacitor which exhibits an average insertion loss of at least -40 dB at frequencies above 1 GHz.

In an embodiment, the invention provides a capacitor comprising a floating plate electrode, at least two patterned plate electrodes overlying the floating plate electrode, and a dielectric layer therebetween.

5

10

15

20

25

30

35

In an embodiment, the capacitor is effective to exhibit an insertion loss of at least -40 dB at frequencies from 1 to about 10 GHz.

In an embodiment, the floating plate electrode consists of a metal film (preferably aluminum or Ti-Cu) with a thickness of about 1000 Å to about 1 μm .

In an embodiment, the dielectric layer is selected from the group consisting of barium titanate, tantalum oxide, aluminum oxide, organic dielectrics and inorganic dielectrics.

In an embodiment, the dielectric layer is from about 2000 Å to about 1 μm thick.

In an embodiment, the at least two patterned plate electrodes are selected from the group consisting of metals, conductive inks and conductive pastes.

In an embodiment, the patterned plates comprise electroforms.

In an embodiment the invention provides an insulating layer on a face of the floating plate electrode opposite the at least two patterned plate electrodes.

In an embodiment, the insulating substrate is selected from the group consisting of oxidized metal, ceramic, silicon, glass and polymer.

In an embodiment, the invention provides a method of forming a capacitor comprising the steps of:

a) forming a floating plate electrode;

b) forming a dielectric layer over the floating plate electrode; and

c) forming at least two patterned plate electrodes on the dielectric layer in overlying relationship with respect to the floating plate electrode.

In an embodiment the invention provides a method of forming a capacitor comprising the steps of :

a) providing a metallic layer;

5

10

15

20

25

30

35

- b) providing a dielectric layer on one face of the metallic layer; and
- c) providing at least one pair of patterned electrodes on the dielectric layer on a side of the dielectric layer opposite the metallic layer.

In an embodiment, the invention further provides the step of providing an insulating layer on a face of the metallic layer opposite the dielectric layer.

In an embodiment, the step of providing the metallic layer with an insulating layer comprises providing a metallic layer and then oxidizing one side of the metallic layer until a sufficiently electrically insulating layer is formed.

In an embodiment, the metallic layer is aluminum.

In an embodiment, the metallic layer is a sheet
of aluminum foil.

In an embodiment, the dielectric layer comprises barium titanate, tantalum oxide, aluminum oxide, an organic dielectric or an inorganic dielectric.

In an embodiment, the step of providing the patterned plates can comprise sputtering plates onto the dielectric layer, photolithographically defining a metal, such as copper, onto the dielectric layer, screen printing a conductive ink or paste onto the dielectric layer, or electroplating an electroform in the dielectric layer.

In an embodiment, the step of providing the metallic layer comprises providing a rollform metallic material.

In an embodiment, the step of providing an insulating layer comprises applying an insulating layer to the rollform metallic material, e.g., by lamination, oxidation or other suitable application.

In an embodiment, a polymer sheet is coated with a metallic layer to provide the insulating layer and metallic layer, respectively.

These and other features and aspects of the invention are presented below with reference to the drawings in the following detailed description of the presently preferred embodiments.

15

20

25

30

35

10

5

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a cross sectional view of a capacitor embodying principles of the invention.

Figure 2 illustrates a plan view of the capacitor of Figure 1.

Figure 3 illustrates a plan view of a capacitor with multiple sets of patterned plates.

Figure 4 illustrates a plan view of a BGA package including a capacitor embodying principles of the invention.

Figure 5 illustrates a cross sectional view of the BGA package including a capacitor embodying principles of the invention of Figure 4.

Figure 6 illustrates a testing arrangement by means of which the results illustrated in Figure 7 were produced.

Figure 7 illustrates insertion loss curves, over a frequency range from 0 to 20 GHz, for various prior art capacitors and a capacitor embodying principles of the invention.

Figure 8 illustrates an insertion loss curve from 0 to 10 GHz for a capacitor embodying principles of the invention, with measurements made a different connection point.

Figure 9 illustrates insertion loss curves over a frequency range from 0 to 10 GHz for a 35 nF capacitor embodying principles of the invention and a 55 nF AVX capacitor.

5

10

15

20

25

30

35

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

As described above, the present invention provides discrete floating plate capacitors, manufactured with as little as one patterning step, preferrably for decoupling applications which can utilize the low-inductance nature of the inventive capacitors to advantage.

A floating plate capacitor 10 embodying principles of the invention is illustrated in Figures 1 and 2. There it can be seen that the floating plate capacitor 10 basically comprises two parallel plate capacitors 12 and 14 positioned side-by-side. The capacitors 12 and 14 have a common floating plate 16 supported on an insulating substrate 18, and separate patterned plates 20 and 22 positioned side-by-side above an interceding dielectric layer 24. Connections to the capacitor 10 are made via optional terminal pads 26 formed on the plates 20 and 22, as illustrated in Figure 2.

It will be appreciated that if the total area of the two capacitors 12 and 14 is A, there are effectively two capacitors connected in series, each having an area A/2. Thus, whatever capacitance C would be formed in area A/2, the resulting capacitance of the series connection of the capacitor pair is C/2. Since the capacitance of a single parallel plate

5

10

15

20

25

30

35

capacitor of area A would be 2C, it is clear that the floating plate capacitor 10 can only produce one-fourth of the capacitance of a parallel plate capacitor of the same area.

However, a floating plate capacitor of the invention is advantageous in that both of its terminals appear on the same side of the capacitor, to wit, the patterned plates 20 and 22. This creates an economy of manufacture and an extremely low inductance connection to circuitry external to the capacitor, such as a planar power distribution network.

With continued reference to Figures 1 and 2, a fabrication sequence of the capacitor 10 will be explained.

As shown in Figure 1, the fabrication sequence can begin with a large sheet of insulating material, such as ceramic, silicon, glass or polymer (including polymides), which then becomes the insulating substrate 18. A thin layer of a metal, such as aluminum, is applied to one side by sputtering, evaporation, or lamination, to form what will become the common floating plate 16. The layer 16 could be as thin as 1000 to 2000 Å and still provide sufficient low resistance, although larger capacitors may require a thickness of 1-2 μ m.

Next, a barrier layer, such as barium titanate, tantalum oxide, aluminum oxide, or other inorganic or organic dielectric is applied by appropriate means, such as sputtering, thereby to form the dielectric layer 24. This layer 24 might typically be 2000 Å to 1 μ m thick.

Next, one or more sets of patterned plates 18 and 20 are created on top of the dielectric 24. These plates 18 and 20 could consist of sputtered plates, photolith-ograpically defined areas of copper or other metals, screen printed areas of conductive inks or

pastes such as are used in polymer thick film circuitry, or electroplated forms. Optional capacitor terminal pads 26 are then provided on the plates 18 and 20, as necessary. An optional insulating covercoat could be similarly applied, leaving exposed only the sets of capacitor terminal pads 26, but in many cases this covercoat would be unnecessary.

5

10

15

20

25

30

35

Finally, the resulting large sheet-like structure would be sawn, die cut or stamped into individual capacitors 10, as appropriate in the circumstances.

Alternatively, the fabrication process could be performed in reel-to-reel fashion on polymer film. In such a process, the capacitors are formed on a continuous ribbon of polymer film that can be wound from one supply reel to another take-up reel. The polymer film could serve as the insulating substrate 18.

Yet another alternative fabrication process could be performed wherein a metal sheet or foil, such as aluminum, is used to form the floating plate of the one or more capacitors. The metal sheet could also be provided in a roll form, e.g., in reel to reel form. The metal could be anodized to form the dielectric layer by known chemical processes, thus eliminating any vacuum processing steps. Of course, the dielectric layer could be provided by any other process described above. An insulating layer could be applied to the back of the processed metal layer or formed by oxidizing the back of the metal layer before or after the formation of the dielectric layer, or the metal layer could be laminated to a supporting insulator, such as FR-4 hoard before or after the formation of the dielectric layer. Thereafter, the patterned plates would be formed on the dielectric layer according to any of the methods set forth above

5

10

15

20

25

30

35

(e.g., electroplated, photolithographically formed, made of pastes or inks, et cetera).

In any event, the resulting structure would have or has inherently low inductance, as would or do the interconnections. For example, the plates 18 and 20 could be attached to a power distribution system at many points with conductive epoxy or solder, with each connection exhibiting an inductance of less than 50 pH. If dictated by the geometry of the interconnects, the two floating plates 18 and 20 could be broken up into smaller plates, as illustrated in Figure 3, with some used for each polarity, with little increase in inductance.

It can be appreciated that in any of the foregoing fabrication processes, any need to pattern the dielectric layer is eliminated. Not patterning the dielectric layer removes the concern of having to use hydrofluoric acid (HF), or other environmentally dangerous manufacturing process.

Versions of the above described capacitors could be mounted on IC chips designed to accommodate them. In such a case, the capacitors would fit inside the wirebond I/O frame and provide low inductance energy storage and power distribution noise reduction. Instead of being wirebonded, as in Hashemi's and Sandborn's scheme, the capacitors could be epoxy attached to pads on the chip, with far lower inductance.

A particularly appealing application for the capacitors is as a replacement for the lid on PGA, BGA or QFP packages, as illustrated in Figures 3, 4 and 5. In Figures 3, 4 and 5, one such capacitor 30 is shown in a BGA package application 32. As can be seen, in this application, the conventional metal lid would be replaced by an appropriate rigid floating plate planar capacitor 30. In this embodiment, the capacitor 30

has two sets of patterned plates (i.e., four total) 34a-34d. This is best shown in Figure 3.

5

10

15

20

25

30

35

As the cross sectional view in Figure 5 shows, the typical BGA package already has three cavity levels: die attach surface 40, wirebond shelf 42, and lid attach shelf 44. In the top view illustrated in Figure 4, long connection pads 36a-36d located about edge 38, which are connected to power and ground planes (not illustrated) are provided on the lid attach shelf 44.

It can be appreciated that the configuration shown is for four patterned plates 34a-34d on the capacitor 30, in order to distribute the power and ground connnections more evenly. These patterned plates 34a-34d mate with the connection pads 36a-36d, respectively, via connection points 50 visible in Figure 3. The connection would be by suitable quantities and deposits of anisotropic adhesive, conducive/non-conductive preform, or dispensed sections of conductive and non-conductive epoxy. In any event, conductive contact would exist between the connection pads 36a-36d and the plates 34a-34d, and not over the portions of the lid attach shelf 44 separating the connection pads 36a-36d.

As the capacitor 30 is inside the package cavity, no overcoat would be required. Since multiple vias would be provided from the capacitor attach pads 36a-36d to the internal power and ground planes, extremely low inductance connections would result.

As mentioned above, even the best currently available low inductance chip capacitors of several nF are ineffective above several hundred MHz. That is to say, these capacitors exhibit excessive inductance above several hundred MHz, and thus are not suitable for applications above that range. In contrast, current indications are that capacitors embodying the

principles of the invention could provide more than 50 nF effective to several tens of GHz.

In Figure 6 there is illustrated a testing arrangement 100 utilized to produce the results illustrated in Figure 7. As can be seen, in the testing arrangement, the capacitors were tested as two port networks, as is typical in microwave device testing.

5

10

15

20

25

30

35

In the testing arrangement 100, a capacitor 108 is tested by applying a variable frequency power source 102 across one side of the patterned plates 110 and 112 of the capacitor 108, with a small 50 ohm resistor 104 appropriately positioned in series to provide a load. Coupled across the opposite side of the patterned plates 110 and 112 of the capacitor 108 is a suitable voltage measuring device 106.

In Figure 7 there is illustrated the result the measurement of insertion loss characteristics, over a wide frequency band, of several prior art capacitors mentioned above, as well as a capacitor embodying principles of the invention. The capacitors were a conventional ceramic chip capacitor of 10 nF, a Murata low inductance capacitor of 10 nF, an AVX LICA of 55 nF, and a capacitor embodying principles of the invention. In Table 1, below, the results of other measurements on prior art capacitors is presented.

For these measurements, capacitors were measured using an HP 4291A RF Impedance/Material Analyzer with low impedance probe head, an Alessi RM-06 probe station, and Cascade probe. For capacitors measured as in Figure 7, an HP 8510B network analyzer was used with GS and SG probes. Each system was calibrated at the probe tips with a Tektronix CAL93 calibration substrate. The probe has two terminals on a fine 150 $\mu\rm m$ (6 mil) pitch.

5

10

15

20

25

In order to connect to the fine pitch probe, and to avoid introducing additional parasitic inductions from interconnections, a novel probing technique was devised. In this technique, the capacitors were mounted on a glass plate with non-conductive epoxy, and then conductive epoxy was used to extend the terminals to the center of the top surface of the capacitor body. The epoxy, after application with a fine wire and curing, was polished by burnishing with a piece of alumina. The epoxy was extended over the entire top surface of the capacitor, leaving only a narrow gap between the resulting extended terminals. The 150 μ m (6 mil) pitch probe could then be applied to the epoxy terminals. To ensure good contact, the probe was worked back and forth under pressure to maximize the contact to the silver particles.

The insertion loss was measured for these capacitors over a frequency range from 0 to 10 GHz. Further, other data were taken for the prior art capacitors as described next.

With respect to the prior art capacitors, these capacitors, among others, also were measured from 1 MHz to 1.0 Ghz. The built in modeling capability of the HP 4291A RF Impedance/Material Analyzer was used to fit a series RLC circuit model to the measured response. The resonant frequency of the capacitor for the capacitors was determined. As a measure of the usefulness of the capacitor for decoupling, the range of frequencies over which the capacitor had an

impedance lower than 0.3Ω was obtained and is given in Table 1, below.

Device	Value nF	R mΩ	L pH	C nF	f _r MH2	f, MHz	f, MHz
1206	100	126	707	74	22	7	70
0805	10	315	413	8.0	94	-	1
0603	10	445	594	8.6	70	 	
0805	2.2	481	568	2.0	154	+	
0603	2.2	306	531	1.7	167	-	+
Murata	10	55	79	6.6	230	75	800
Murata	2.2	487	71	1.7	519	-	-
AVX	55	108	30	49	137	11	1500

Table 1. Summary of capacitor measurements

15

20

25

30

10

5

The data reveal the limitations of the prior art capacitors commonly used for decoupling applications. All of the conventional chip capacitors exhibit high intrinsic inductance, because of the configurations of their plates and terminations. The 0805 and 0603 devices tested had high series resistances. If several of them were used in parallel, as usually is the case, this theoretically would not be a problem, and they would decouple frequencies higher than the $0.1\mu F$ generally used. Of course, multiple $0.1\mu F$ devices can be used in an effort to "brute force" a low impedance at high frequencies, but on MCM substrates, with expensive real estate, multiple capacitors take up a lot of room, and it makes more sense to use a small low inductance capacitor.

With respect to the Murata devices, these devices have gold terminations on opposite square faces. The manufacturer recommends attaching one face to a substrate pad with conductive epoxy, and wirebonding

the top face to the other substrate terminal. This method degrades the performance of these devices by introducing the inductance of a wirebond. It is possible to mount this device with both termination faces vertical, by first using a dot of non-conductive epoxy to tack it down, and then applying conductive epoxy to the faces of the substrate pads. The resulting low inductance connections should give results similar to those achieved for these above measurements, which are better than the specifications given by the manufacturer of the devices.

With respect to the AVX LICA capacitor, it provides substantial capacitance with extremely low inductance over a fairly wide frequency range. However, it is difficult to mount, as its terminals are on the bottom. It was specially designed for IBM to be attached with flip chip solder bumps. Though versions are available with gold terminations, it is difficult to mount such a capacitor with conductive epoxy without shorting.

In Figure 7, the results of measurements using the HP 8510B Network Analyzer for certain capacitors are illustrated. These measurements were performed in view of the limitations of the HP 4291A in making accurate measurements above 1.8 GHz. The range of the HP 4291A only goes to 1.8 GHz, and the measurement accuracy decreases substantially above 1 GHz at impedances less than 1.0Ω .

Measurements made with one probe were very sensitive to probe force and wipe. Thus, the capacitors were treated as two-port networks, just like a four-point probe resistance measurement. It can be appreciated that since decoupling capacitors are used to keep the noise from one circuit out of other circuits measuring the insertion loss (S_{12}) is appropriate.

5

10

15

In these latter set of measurements, capacitors were measured by placing the probes at two locations along the top of the capacitor body, contacting the conductive epoxy. Because of the size difference of the capacitors, the distance between the probes varied in each case. Each probe was applied approximately 1/4 of the body width in from the edges.

It is important to note that the frequency range where these devices actually function as capacitors is a small fraction of the frequency range presented in Figure 7, except for the capacitor of the present invention. Thus, above 1 GHz, the impedance of these capacitors increases as the frequency increases, and the capacitors look more and more like resistors. The AVX LICA capacitor showed the best response below 2 GHz, but again, the response is not flat, and the increasing impedance effect can be seen to take place from less than 1 GHZ.

In contrast, the capacitor of the invention exhibits and is characterized by an insertion loss of 20 at least -40 db from 1 GHz to at least 10 GHz. fact, the graph shows that the capacitor of the invention exhibited and is characterized by an insertion loss of about at least -50 dB over that 25 Clearly above 2 GHz, the capacitor of the present invention exhibited higher insertion loss than the prior art capacitors. Because of the novel combination of the present capacitor, no inductive resonance is observed. Instead, at high frequencies, 30 the impedance is dominated by the resistive component of the R-L-C series equivalent circuit. This low resistance can be minimized by using appropriate metal thicknesses for the floating plate electrode and the two patterned plate electrodes, and by adjusting the 35 geometry and connection points of the patterned plate electrodes in an appropriate manner. The high

5

10

15

20

25

30

insertion loss for the capacitor of the invention is interpreted as indicating that the capacitor does not exhibit a significant increase in impedance between 1 GHz and 20 GHz.

In Figure 8 there are illustrated two different insertion loss curves for an 8 nF capacitor (as measured at low frequency, i.e., below 1 GHz) embodying principles of the invention. Curves A and B are plots taken at different measurement connections. Essentially, the pitch between the probes for Curve B was greater than that for Curve A (i.e., the probes were further apart for Curve B). The subject capacitor has a total area of 2 cm x 2 cm. The dielectric layer was made of SiO_2 with a dielectric constant of Er = 3.9. The plates were 1 μm thick.

In Figure 9, a direct insertion loss comparison between a 35 nF capacitor embodying principles of the invention and a 55 nF AVX capacitor is provided. The capacitor of the invention had an area of 2 cm x 2 cm. As can be seen, the capacitor embodying principles of the invention exhibited no inductive resonances.

Again, the curves for the capacitors embodying principles of the invention in Figures 8 and 9 indicate that the capacitors do not exhibit any significant increase in impedance between 1 GHz and 10 GHz.

It can be appreciated that modifications and changes to the foregoing embodiments may be possible without departing from the spirit and scope of the invention. It is intended that such modifications and changes be encompassed by the following claims.

IN THE CLAIMS:

A capacitor which exhibits no significant increase in impedance at frequencies from 1 GHz to 10
 GHz.

2. The capacitor of claim 1 being configured to exhibit an average insertion loss of at least $-40~\mathrm{dB}$ at frequencies above 1 GHz.

- 3. The capacitor of claim 2 being effective to exhibit an insertion loss of at least -50 dB at frequencies from 1 to about 10 GHz.
- 15 4. The capacitor of claim 1 comprising a floating plate electrode, at least two patterned plate electrodes overlying the floating plate electrode, and a dielectric layer therebetween.
- 5. The capacitor of claim 4, wherein the floating plate electrode consists of a metal film with a thickness of about 1000 Å to about 2 μm .
- 6. The capacitor of claim 4, wherein the floating plate electrode comprises a metal selected from the group consisting of aluminum and titanium copper alloy.
- 7. The capacitor of claim 4, wherein the
 dielectric layer is selected from the group consisting
 of barium titanate, tantalum oxide, aluminum oxide,
 organic dielectrics and inorganic dielectrics.
- 8. The capacitor of claim 4, wherein the dielectric layer is from about 2000 Å to about 1 μm thick.

9. The capacitor of claim 4, wherein the at least two patterned plate electrodes are selected from the group consisting of metals, conductive inks and conductive pastes.

5

25

- 10. The capacitor of claim 4, wherein the at least two patterned plate electrodes comprise electroforms.
- 11. The capacitor of claim 4 further comprising an insulating layer on a face of the floating plate electrode opposite the at least two patterned plate electrodes.
- 15 12. The capacitor of claim 11, wherein the insulating substrate is selected from the group consisting of oxidized metal, ceramic, silicon, glass and polymer.
- 20 13. A method of forming a capacitor comprising the steps of :
 - a) providing a metallic layer;
 - b) providing a dielectric layer on one face of the metallic layer; and
 - c) providing at least one pair of patterned electrodes on the dielectric layer on a face of the dielectric layer opposite the metallic layer.
- 14. The method of claim 13 further comprising
 the step of providing an insulating layer on a face of
 the metallic layer opposite the dielectric layer.
 - 15. The method of claim 14, wherein the step of providing the insulating layer comprises oxidizing one side of the metallic layer until a sufficiently electrically insulating layer is formed.

16. The method of claim 13, wherein the metallic layer is selected from the group consisting of aluminum or titanium copper alloy.

- 5 17. The method of claim 13, wherein the metallic layer is a sheet of aluminum foil.
- 18. The method of claim 13, wherein the dielectric layer is selected from the group consisting of barium titanate, tantalum oxide, aluminum oxide, an organic dielectric or an inorganic dielectric.
- 19. The method of claim 13, wherein the step of providing the patterned plates comprises sputtering a photolithographically defined metal onto the dielectric layer.
 - 20. The method of claim 13, wherein the step of providing the patterned plate electrodes comprises screen printing a conductive ink or paste onto the dielectric layer.
- 21. The method of claim 13, wherein the step of providing the metallic layer comprises providing a rollform metallic material.

20

30

- 22. The method of claim 21, comprising the further step of providing an insulating layer by applying an insulating layer to the rollform metallic material by lamination.
- 23. The method of claim 21, wherein the step of providing an insulating layer by applying an insulating layer to the rollform metallic material by oxidation.

24. The method of claim 13, wherein a polymer sheet is coated with a metallic layer to provide an insulating layer and the metallic layer, respectively.

- 5 25. An integrated circuit package comprising a capacitor as set forth in any of claims 1-12.
- 26. A decoupling capacitor effective to exhibit an insertion loss of at least -40 dB from about 1 GHz to about 10 GHz, comprising a floating plate electrode, at least two patterned plate electrodes overlying the floating plate electrode, and a dielectric layer therebetween.
- 27. A decoupling capacitor as set forth in claim 26, wherein an insulating layer is provided on a face of the floating plate electrode opposite the dielectric layer.
- 28. A decoupling capacitor as set forth in claim 27, wherein the insulating layer is selected from the group consisting of ceramic, silicon, glass and polymer.
- 29. A decoupling capacitor as set forth in claim 26, wherein the floating plate electrode has a thickness of about 1000 Å to 2 μm .
- 30. The decoupling capacitor of claim 26,
 wherein the dielectric layer is selected from the
 group consisting of barium titanate, tantalum oxide,
 aluminum oxide, organic dielectrics and inorganic
 dielectrics.

31. The decoupling capacitor of claim 26, wherein the dielectric layer is from about 2000 Å to about 1 μm thick.

- 5 32. The decoupling capacitor of claim 26, wherein the at least two patterned plate electrodes are selected from the group consisting of metals, conductive inks, conductive pastes and electroforms.
- 33. A method of forming a capacitor effective to exhibit no significant increase in impedance from about 1 GHz to about 10 GHz, comprising the steps of:
 - a) providing a metallic layer on one side of which is provided an insulating layer;
 - b) providing a dielectric layer on a side of the metallic layer opposite the insulating layer; and
 - c) providing at least one pair of patterned electrode son the dielectric layer on a side of the dielectric layer opposite the metallic layer.

20

15

34. The method of claim 33 further comprising the step of providing an insulating layer on a face of the metallic layer opposite the dielectric layer.

25

35. The method of claim 34, wherein the step of providing the insulating layer comprises oxidizing one side of the metallic layer until a sufficiently electrically insulating layer is formed.

- 36. The method of claim 33, wherein the metallic layer is selected from the group consisting of aluminum or titanium copper alloy.
- 35 37. The method of claim 33, wherein the metallic layer is a sheet of aluminum foil.

38. The method of claim 33, wherein the dielectric layer is selected from the group consisting of barium titanate, tantalum oxide, aluminum oxide, an organic dielectric or an inorganic dielectric.

5

39. The method of claim 33, wherein the step of providing the patterned plates comprises sputtering a photolithographically defined metal onto the dielectric layer.

10

40. The method of claim 33, wherein the step of providing the patterned plate electrodes comprises screen printing a conductive ink or paste onto the dielectric layer.

15

- 41. The method of claim 33, wherein the step of providing the metallic layer comprises providing a rollform metallic material.
- 42. The method of claim 41, comprising the further step of providing an insulating layer by applying an insulating layer to the rollform metallic material by lamination.
- 25 43. The method of claim 41, wherein the step of providing an insulating layer by applying an insulating layer to the rollform metallic material by oxidation.
- 30 44. The method of claim 33, wherein a polymer sheet is coated with a metallic layer to provide an insulating layer and the metallic layer, respectively.
 - 45. A device comprising power and ground planes, and a discrete decoupling capacitor effective to decouple current at frequencies above 2 GHz, said

capacitor comprising a floating plate, at least two patterned electrodes positioned overlying the floating plate, and a dielectric layer between the floating plate and the patterned electrodes, all electrical attachments to the capacitor being attached to the patterned electrodes.

- 46. The device of claim 45, wherein an insulating layer is provided on one face of the floating plate electrode opposite the dielectric layer.
- 47. The device of claim 45, wherein the insulating layer is selected from the group consisting of ceramic, silicon, glass and polymer.
 - 48. The device of claim 45, wherein the floating plate electrode has a thickness of about 1000 Å to 2 $\mu m\,.$

20

5

10

15

49. The device of claim 45, wherein the dielectric layer is selected from the group consisting of barium titanate, tantalum oxide, aluminum oxide, organic dielectrics and inorganic dielectrics.

25

50. The device of claim 45, wherein the dielectric layer of the capacitor is from about 2000 Å to about 1 μm thick.

51. The device of claim 45, wherein the at least two patterned plate electrodes of the capacitor are selected from the group consisting of metals, conductive inks, conductive pastes and electroforms.

52. The device of claim 45, wherein the metallic layer of the capacitor is made of a metal selected from the group consisting of aluminum and Ti-Cu alloy.

- 5 53. A method of forming a capacitor comprising the steps of:
 - (a) providing a sheet of metallic material effective to provide a floating plate electrode;
 - (b) forming a dielectric layer on one side of the metallic sheet;
 - (c) providing at least one pair of patterned electrodes on the dielectric layer on a side of the dielectric layer opposite the metallic sheet; and
 - (d) excising an area of the resulting structure encompassing the patterned plates.
 - 54. The method of claim 53, wherein the step of excising comprises die cutting the subject area from the resulting structure.

20

35

15

- 55. The method of claim 53, wherein the step of excising comprises dicing the subject area from the resulting structure.
- 25 56. The method of claim 53, wherein the step of excising comprises sawing the subject area from the resulting structure.
- 57. The method of claim 53, comprising the further step of forming terminal pads on the patterned plate electrodes.
 - 58. The method of claim 57, comprising the further step of overcoating the plate electrode, excluding the area occupied by the terminals, with an insulating layer.

59. A method of forming a capacitor comprising:

- (a) providing a sheet of insulating material;
- (b) depositing a metallic layer on one face of the insulating layer;
- 5 (c) forming a dielectric layer on the metallic layer;
 - (d) forming a least one pair of patterned plate electrodes on the dielectric layer; and
 - (e) excising an area of the resultant structure encompassing the patterned plate electrodes.

10

- 60. The method of claim 59, wherein the step of excising comprises die cutting the subject area from the resulting structure.
- 61. The method of claim 59, wherein the step of excising comprises dicing the subject area from the resulting structure.
- 20 62. The method of claim 59, wherein the step of excising comprises sawing the subject area from the resulting structure.
- 63. The method of claim 59, comprising the further step of forming terminal pads on the patterned plate electrodes.
- 64. The method of claim 63, comprising the further step of overcoating the plate electrode,
 30 excluding the area occupied by the terminals, with an insulating layer.

S. Married

PCT/US97/04300

2/6

5/6

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/04300

	CON OR CIMIDOW MATTED				
A. CLAS	SSIFICATION OF SUBJECT MATTER H01G 4/00, 4/005, 4/012, 4/008, 4/06, 4/20, 4/38, 7	/00	Ì		
tin of	Diseas Can Dates Cheet				
	International Patent Classification (IPC) or to both n	EUOIDI CIASSINCAUON AND II C			
	DS SEARCHED cumentation searched (classification system followed)	by classification symbols)			
	161/301.1, 301.2, 303-305, 311-313, 320, 321.1-321.				
Documentati NONE	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched		
Electronic d	ata base consulted during the international search (nam	ne of data base and, where practicable,	search terms used)		
NONE					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.		
X	US 4,947,286 A (KANEKO ET AL) (and 4.	07 AUGUST 1990, Figs.1	4,11-14,26-28, 33-34		
Y	·		5-10,15-25, 29- 32, 35-64		
Y	US 3,721,871 A (HERON) 20 MAR		4-64		
A	US 3,426,257 (YOUNGQUIST) 04	FEBRUARY 1969, Fig.3.	4-64		
Furt	her documents are listed in the continuation of Box C	. See patent family annex.			
	pocial categories of cited documents:	"I" later document published after the in- date and not in conflict with the appli	cation but cited to understand the		
"A" de	comment defining the general state of the art which is not considered to of particular relevance	principle or theory underlying the in	v colice		
-	rlier document published on or after the international filing date	"X" document of particular relevance; if considered novel or cannot be considered when the document is taken alone	ered to involve an inventive step		
l ci	ocument which may throw doubts on priority claim(s) or which is and to manblish the publication date of another citation or other	"Y" document of particular relevance; to	he claimed invention cannot be		
	ocial reason (so specified) ocument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other materials obvious to a person skilled in	s step when the document is ch documents, such combination		
.b. q	cease ocument published prior to the international filing date but later than	queriment member of the same bates a pend opvious to a betand service at			
	e priority date claimed actual completion of the international search	Date of mailing of the international se	carch report		
27 MAY		0 9 JUL 1997			
Name and Commissi Box PCT	mailing address of the ISA/US oner of Patente and Trademarks	Authorized officer BOT L. LEDYNH	15 fr		
	on, D.C. 20231	Telephone No. (703) 308-0225			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/04300

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
Claims Nos.: 1-3 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claims 1-3 do not have any searchable structure: They only claim a desirable result.					
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
This International Searching Authority found multiple inventions in this international application, as follows:					
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:					
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
Remark on Protest The additional search tees were accompanied by the applicant's protest. No protest accompanied the payment of additional search tees.					
The process of the payment of additional section leads.					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/04300

	A. CLASSIFICATION OF SUBJECT MATTER: US CL :
	361/301.1, 301.2, 303-305, 311-313, 320, 321.1-321.5, 328-330; 29/25.41, 25.42
Ì	
ļ	