

Electrical Units of Measure

- Electric Potential
 - The work done by a charged particle in the presence of an electrical field.
 - Derived Units Volt (E,V)
 (Joules per Coulomb)
 - AKA electro-motive force, voltage, potential differential

"A volt is defined as a difference of potential causing one coulomb of current to do one joule of work"

Electric potential energy is the amount of work required to move a charged particle from position B to position A.

SIERRA

MECH 10 Fundamentals of Electronics

Electrical Units of Measure

- Hydraulic Flow
 - The mass per unit time that passes a point in a closed system
 - Requires pressure potential, free molecules & flow path
- Derived Unit kilogram per second

Hydraulic Analogy

- Electrical Units of Measure
 - Electric Current
 - The charge per unit time that passes a point in a circuit
 - Requires electric potential, free electrons & current path
 - Derived Unit Ampere (I) = 1
 Coulomb per second (6.25 x 10¹⁸ electrons per second)

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Ohm's Law
 - Current in a circuit is directly proportional to the applied voltage

$$I = \frac{E}{R}$$

If voltage increases current must increase

Where

E = potential difference (Volts) 0.00

I = current (Amperes)

R = resistance (Ohms)

SIERRA

MECH 10 Fundamentals of Electronics

- Ohm's Law
 - Current in a circuit is inversely proportional to the circuit resistance

$$I = \frac{E}{R}$$

If resistance increases current must decrease

Where

E = potential difference (Volts) I = current (Amperes)

R = resistance (Ohms)

- Ohm's Law
 - Three Forms

$$I = \frac{E}{R}$$
 $E = IR$ $R = \frac{E}{I}$

Where

E = potential difference (Volts)

I = current (Amperes)

R = resistance (Ohms)

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

- Ohm's Law
 - Examples

•
$$R = 250\Omega$$

E = IR $I = \frac{E}{R}$ $R = \frac{E}{I}$

$$R \qquad I$$

$$E = IR = 20mA \times 250\Omega = 5.000V$$

Where

E = potential difference (Volts)

I = current (Amperes)

R = resistance (Ohms)

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Ohm's Law
 - Examples
 - E = 12V
 - $R = 250\Omega$
 - | | ?

$$E = IR$$
 $I = \frac{E}{R}$ $R = \frac{E}{I}$

$$I = \frac{12V}{250\Omega} = 48mA$$

Where

E = potential difference (Volts) I = current (Amperes)

R = resistance (Ohms)

SIERRA

MECH 10 Fundamentals of Electronics

- Ohm's Law
 - Examples
 - E = 10V
 - R = ?Ω
 - I = 141mA

$$E = IR$$
 $I = \frac{E}{R}$ $R = \frac{E}{I}$

$$R = \frac{E}{I} = \frac{10V}{141mA} = 70.92\Omega$$

Where

E = potential difference (Volts) I = current (Amperes)

R = resistance (Ohms)

- Ohm's Law
 - Voltage measurements (hydraulic analogy)
 - Pressure is the potential energy difference between two system points of interest.
 - Gage pressure system pressure referenced to atmospheric pressure (≈ 14.7 PSI)
 - Absolute pressure system pressure referenced to zero pressure

MECH 10 Fundamentals of Electronics

- Ohm's Law
 - Voltage measurements
 - Voltage is the potential energy difference between two circuit points of interest.
 - Ground referenced circuit voltage referenced to earth ground (always 0 volts)
 - Differential circuit voltage referenced to another circuit point

Ground Referenced

Differential

- Ohm's Law
 - Current measurements (hydraulic analogy)
 - Flow rate is amount of liquid flowing through a single flow path per unit time
 - Mass flow the mass per second (kg/sec)
 - Volumetric flow the volume per second (gallon/min)

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

- Ohm's Law
- Current measurements
 - Current is number of electrons per second flowing through a single conductor per unit time

• Lab 04 - Ohm's Law Validation

Learning Objectives

- Construct a simple circuit with source, load, control and conductors
- Measure electrical values using a digital voltmeter
- Use Ohm's Law to validate field measurements

		Points Possible
Documentation	Quality of documentation (neatness, clarity, spelling, grammar)	10
	Power supply characterization	5
	Resistor R1, R2 & R3 values recorded	5
	V _S & V _L values recorded	5
	Data Tables 1, 2 & 3 completed & accurate	15
	Conclusions complete and accurate	15
	Total	55