ПРИЈЕМНИ ИСПИТ ЗА УПИС НА МАТЕМАТИЧКИ ФАКУЛТЕТ Београд, 29.06.2022.

Време за рад је 180 минута.

2. Квадратна функција дата са $f(x) = ax^2 + bx + c$ је таква да важи f(-3) = 12, f(-1) = 6, f(2) = 12. Ако

(C) $[0, +\infty)$ D) $(-\infty, +\infty)$ E) $(-\infty, 0]$

N) не знам

1. Нека је f(x)=x-1 и g(x)=|x+1|. Скуп решења једначине $(f\circ g)(x)=(g\circ f)(x)$ је:

B) {0,1}

параметра a за које важи $|z_1| < |z_2|$ је:

A) $(0,+\infty)$

$\operatorname{cy} x_1$ и x_2 об	е нуле ове фун	кције, тада је x_1^3	$+x_2^3$ једнако	o:		
A) -19	B) -17	C) -7		D) 17	E) 19	$\mathbf{N})$ не знам
3. Реалних ре	ешења једначи	He $\sqrt{x+\sqrt{2x-1}}$	$+\sqrt{x-\sqrt{2x-2x^2}}$	$\frac{1}{1} = \sqrt{2}$ има:		
A) 0	B) 1	C) 2	D) 4	Е) беско	начно много	\mathbf{N}) не знам
	-				гврти и шести чл ви члан геометри	-
A) 1	B) 2	C) 3	D) 4	E) 5	N) не знам
5. Фигура у р		правоуглом Дек	артовом коој	одинатном сис	тему одређена са	$x^2 + y^2 \leqslant 1 + 2 x $
$(\mathbf{A}) 3\pi + 2$	B) $\frac{10}{3}\pi$	$+\sqrt{3}$ C)	$3\pi - 2$	D) $4\pi - 2$	$\mathbf{E)} 4\pi$	$\mathbf{N})$ не знам
6. Најмање по	озитивно реше	ье једначине 2 si	$n(2x - 70^{\circ}) =$	$3 { m tg} (x - 35^{\circ})$ пј	рипада интервалу	:
(A) $(0^{\circ}, 10^{\circ})$	B) [10°,	30°] C) (30	$^{\circ},45^{\circ})$ Γ	$(45^{\circ}, 60^{\circ}]$	E) $(60^{\circ}, 90^{\circ})$	N) не знам
7. Ако је <i>f</i> : ($[-3,\infty) o \mathbb{R}$ дес	финисана са $f(x)$	$= x + \log_2(3$	$(x^{2}+x^{2}+4^{x})+4^{x}$, онда	a je $f^{-1}\left(\frac{1}{4}\right) + f^{-1}$	¹ (7) једнако:
(A) 0	B) 2	C) $\frac{7}{4}$	D) $\frac{29}{4}$	E) f^{-1}	не постоји	$\mathbf{N})$ не знам
8. Најмањи п	озитиван реала	ан број r за који	је број $r \cdot (3$	$3\sqrt{3} - 4\sqrt{2}$) цес	je:	
	0				не постоји такво	r N) не знам
9. Целих бро	јева x за које :	важи $\frac{\log_4 x + 1}{ \log_2 x - 1 }$	> 1 има:			
A) 2	B) 3	(C) 13	D) 14	Е) беско	начно много	N) не знам
10. Дати су	комплексни бр	ројеви $z_1 = 1 + \frac{3}{2}$	$z_2 = 1 - 1$	\cdot ia , где је a $=$	≠ 0 реалан број.	Скуп вредности

 $(-\infty,-1) \cup (1,+\infty) \quad \textbf{B)} \quad (-1,0) \cup (0,1) \quad \textbf{C)} \quad (1,+\infty) \quad \textbf{D)} \quad (-\infty,0) \cup (0,+\infty) \quad \textbf{E)} \quad (0,1) \quad \textbf{N)} \text{ не знам }$

11. Посластичарница продаје n врста воћних и n+2 врсте млечних сладоледа. Ако на 175 начина можемо изабрати три различите врсте сладоледа од којих је бар једна воћна и бар једна млечна, онда је

12. У кутији се налазе црвене, плаве и беле куглице, од чега је 25% њих црвене боје, 40% плаве, а 98 беле боје. Ако 37,5% плавих куглица обојимо у бело, а затим 45% белих куглица обојимо у црвено, онда

D) 7

E) 9

N) не знам

n једнако:

B) 3

A) 1

Решења задатака

Задатак 1: Расписивање даје једначину |x+1|-1=|(x-1)+1|, односно |x+1|=|x|+1, што важи за $x\geqslant 0$. С

Задатак 2: Важи 9a-3b+c=12, a-b+c=6 и 4a+2b+c=12, одакле следи a=1, b=1, c=6. Зато је $x_1+x_2=-b/a=-1$ и $x_1x_2=c/a=6$, те $x_1^3+x_2^3=(x_1+x_2)((x_1+x_2)^2-3x_1x_2)=17$. Задатак се може брже урадити ако се примети да је f(x)-12=a(x+3)(x-2). **D**

Задатак 3: Неопходно је $x\geqslant 1/2$, а тада је $x\geqslant \sqrt{2x-1}$ због $(x-1)^2\geqslant 0$. Након квадрирања добијамо $x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-(2x-1)}=2$, одакле је x+|x-1|=1. За x>1 очигледно нема решења, док за $1/2\leqslant x\leqslant 1$ једначина увек важи, те су решења $x\in [1/2,1]$ и има их бесконачно много. **E**

Задатак 4: Ако је a тражени број, онда су чланови аритметичког низа облика a+(i-1)d, а геометријског $a\cdot t^{i-1}$ за неке d и t. Услов задатка даје at=a+3d и $at^2=a+5d$, одакле имамо $5at-5a=15d=3at^2-3a$, односно $3t^2-5t+2=0$ (јер је $a\neq 0$), те како је $t\neq 1$ (да бисмо сумирали геометријски низ мора бити |t|<1) имамо t=2/3. Како је $a(1+t+t^2+\dots)=12$, то следи a=12-12t=4. \mathbf{D}

Задатак 5: Неједнакост постаје $(|x|-1)^2+y^2\leqslant 2$ те је тражена фигура унија два круга полупречника $\sqrt{2}$ са центрима у (1,0) и (-1,0). Област у полуравни $x\geqslant 0$ састоји се од 3/4 круга и половине квадрата ивице $\sqrt{2}$, а све то треба дуплирати. Зато је тражена површина $2\cdot (\frac{3}{4}\cdot\sqrt{2}^2\pi+\frac{1}{2}\sqrt{2}^2)=3\pi+2$. **А**

Задатак 6: Једначина постаје $4\sin(x-35^\circ)\cos(x-35^\circ) = 3\sin(x-35^\circ)/\cos(x-35^\circ)$. Област дефинисаности је $x \neq 125^\circ + k \cdot 180^\circ, k \in \mathbb{Z}$. Ако је $\sin(x-35^\circ) = 0$, то имамо $x = 35^\circ + k \cdot 180^\circ, k \in \mathbb{Z}$. У супротном мора бити $\cos^2(x-35^\circ) = 3/4$, односно $\cos(x-35^\circ) = \pm\sqrt{3}/2$, одакле су решења $x = 65^\circ + k \cdot 180^\circ, k \in \mathbb{Z}$ и $x = 5^\circ + k \cdot 180^\circ, k \in \mathbb{Z}$. Најмање позитивно решење је 5° . А

Задатак 7: Функција f је строго растућа, као збир три такве функције, те постоји f^{-1} . Како је f(1) = 1 + 2 + 4 = 7 и f(-1) = -1 + 1 + 1/4 = 1/4, следи $f^{-1}(1/4) + f^{-1}(7) = -1 + 1 = 0$. **A**

Задатак 8: Како је $3\sqrt{3}-4\sqrt{2}<0$, мање r даје већи цео број, који највише може бити -1, а тада је $r=-1/(3\sqrt{3}-4\sqrt{2})=(4\sqrt{2}+3\sqrt{3})/5$. **A**

Задатак 9: Неопходно је x>0, док провером видимо да x=1 и x=2 нису решења, те је $x\geqslant 3$, због чега важи $\log_2 x - 1>0$. Једначина постаје $\log_4 x + 1>\log_2 x - 1$, односно $0<2+\log_4 x - \log_2 x = \log_4(16/x)$, што важи за x<16, тако да има 13 решења $x\in\{3,4,\ldots,15\}$. C

Задатак 10: Неједнакост је $\sqrt{1+1/a^2} < \sqrt{1+a^2}$ што даје $a^4 > 1$, односно |a| > 1. **A**

Задатак 11: Из услова задатка је 175 = $\binom{n}{2}(n+2) + n\binom{n+2}{2} = n^2(n+2)$. Једино природно решење је очигледно n=5. C

Задатак 12: На почетку, белих куглица је 98, што је 100% - 25% - 40% = 35%, одакле је укупан број куглица $98 \cdot 100/35 = 280$, од чега је $280 \cdot 25\% = 70$ црвено, а $280 \cdot 40\% = 112$ плаво. Најпре бојимо $112 \cdot 37,5\% = 42$ плавих куглица у бело, те сад имамо 98 + 42 = 140 белих куглица, а затим њих $140 \cdot 45\% = 63$ бојимо у црвено, тако да на крају добијамо 70 + 63 = 133 црвених куглица. **Е**

Задатак 13: Бројеви 2^1 , 2^2 , 2^3 , 2^4 , 2^5 , се редом завршавају цифрама, 2, 4, 8, 6, 2, што се периодично понавља са периодом 4. Зато се 2^k завршава цифром 6 ако је k дељиво са 4. Тражимо све $0 < x \le 2022$ који су дељиви са 4, а њих има |2022/4| = 505. В

Задатак 14: Очигледно је $2022! < 2022^{2022} < (22^3)^{2022} = 22^{6066} < 22^{(20^{20})} < 400^{(20^{20})} = 20^{(2 \cdot 20^{20})} < 20^{(20^{22})}$, док из $(1 + \frac{1}{10})^{10} = \sum_{k=0}^{10} \binom{10}{k} \frac{1}{10^k} < \sum_{k=0}^{10} 1 = 11$ следи $(1 + \frac{1}{10})^{20} < 11^2 < 400$, те је $22^{20} < 400 \cdot 20^{20} = 20^{22}$, одакле је $20^{(22^{20})} < 20^{(20^{22})}$. **E**

Задатак 15: Имамо $\cot(3\pi/2-x)= \tan x=4/3$, док се тражен број трансформише у $a=(\sin 2x+\sin 3x)/2$. У првом квадранту је $\sin x=\frac{\tan x}{\sqrt{1+\tan^2 x}}=\frac{4}{5}$ и $\cos x=\frac{1}{\sqrt{1+\tan^2 x}}=\frac{3}{5}$, одакле је $\sin 2x=2\sin x\cos x=24/25$, $\cos 2x=\cos^2 x-\sin^2 x=-7/25$, те $\sin 3x=\sin 2x\cos x+\cos 2x\sin x=44/125$, и коначно a=82/125. **D**

Задатак 16: Ако је x=VS:VM, а r полупречник основе купе (која има висину h=VS), онда мања купа (која има висину VM=h/x) има полупречник r/x, те има запремину $(r/x)^2\pi(h/x)/3=(r^2\pi h/3)/2$. Одавде је $x^3=2$, те $x=\sqrt[3]{2}$. В

Задатак 17: Како је AD=BC, то је $\lhd ABD=\lhd BDC=20^\circ$. Такође, $\lhd ADC=180^\circ-\lhd ABC=110^\circ$, јер је $\lhd ABC=\lhd ABD+\lhd CBD=20^\circ+50^\circ=70^\circ$, те добијамо $\lhd ADB=110^\circ-20^\circ=90^\circ$. **B**

Задатак 18: Имамо $x^{2022}+ax+b=(x^2-1)q(x)+2bx+a$, те заменом x=1 и x=-1 добијамо a+b+1=2b+a и -a+b+1=-2b+a, одакле је b=1 и a=2, што даје ab=2. ${\bf C}$

Задатак 19: Једначина је |(x-1)(x-21)|=a, док квадрирањем видимо да може имати највише 4 решења. Лева страна једначине је (x-1)(x-21) на $(-\infty,1]\cup[21,\infty)$, док је -(x-1)(x-21) на (1,21), при чему је екстремна вредност у оба случаја у 11, те је на сваком од интервала $(-\infty,1]$, [1,11], [11,21] и $[21,\infty]$ строго монотона. Због тога 4 решења постоје за $0< a<10^2=100$, те је целобројних a укупно 99. ${\bf C}$

Задатак 20: Сви понуђени одговори су већи од $1001 = 7 \cdot 11 \cdot 13$, те следеће треба проверити $11 \cdot 13 \cdot 17 = 2431$, док су сви понуђени одговори мањи од $13 \cdot 17 \cdot 19 = 4199$. **D**