

FUNDAÇÃO ESCOLA DE COMÉRCIO ÁLVARES PENTEADO – FECAP BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

ANALICE COIMBRA CARNEIRO

MARIAH ALICE PIMENTEL LÔBO PEREIRA

SOFIA BOTECHIA HERNANDES

VICTÓRIA DUARTE VIEIRA AZEVEDO

APLICAÇÃO DO POLINÔMIO DE TAYLOR NA MODELAGEM DE VARIÁVEIS RELACIONADAS À APLICAÇÃO WEB ARKANA E AO PROJETO LIDERANÇAS EMPÁTICAS

Trabalho apresentado à Fundação Escola de Comércio Álvares Penteado, São Paulo, durante o 2º semestre do Bacharelado em Ciência da Computação.

Orientadora: Prof. Cristina Machado Correa Leite

SÃO PAULO 2025

SUMÁRIO

1.	INTRODUÇÃO	. 3
	•	
2.	DESENVOLVIMENTO	4
3.	CONCLUSÃO	8

1. INTRODUÇÃO

No contexto do Projeto Interdisciplinar do Segundo Semestre do curso de Ciência da Computação, está sendo criada uma aplicação web cujo objetivo é aumentar a eficiência do credenciamento de gerenciamento de informações relativas ao Projeto Lideranças Empáticas, que é dirigido pelo Centro Universitário da FECAP.

Nesse sentido, esta aplicação visa gerar um apoio no que se refere ao controle de equipes, atividades, metas e resultados; auxiliando a coordenação e promovendo transparência no acompanhamento das ações.

Logo, esse documento tem o objetivo demonstrar como o cálculo de máximos e mínimos, permite analisar diferentes cenários e prever resultados para tomar decisões mais embasadas e estratégicas.

2. DESENVOLVIMENTO

Desenvolvimento das derivadas com a função hipotética

Na atividade anterior utilizamos a seguinte função:

$$f(x) = -60x^3 + 900x^2 - 3000x + 6000$$

A escolha de um polinômio permite a fácil derivação e integração, tornando-o ideal para a aplicação dos conceitos de cálculo.

Derivando a função f(x):

Primeira derivada

$$f'(x) = -60.3x^2 + 900.2x - 3000$$

$$f'(x) = -180x^2 + 1800x - 3000$$

- Segunda derivada

$$f''(x) = -180.2x + 1800$$

$$f''(x) = -360x + 1800$$

Encontrando os pontos críticos com o uso da 1º derivada

Utilizando a fórmula de bhaskara os pontos críticos podem ser determinados, sendo possível analisar o máximo e mínimo da função. Antes de tudo, a equação da primeira derivada foi simplificada e multiplicada por (-1) para o melhor entendimento durante a aplicação da fórmula de bhaskara. Sendo assim:

Antes:

$$f'(x) = -180x^2 + 1800x - 3000$$

Depois:

$$f'(x) = 3x^2 - 30x + 50$$

Na formúla de Bhaskara:

$$\frac{+30 \pm \sqrt{(900) - 4.3.50}}{2.3} \Rightarrow \frac{30 \pm \sqrt{300}}{6} \Rightarrow \frac{30 \pm 10\sqrt{3}}{6}$$

Para as raízes da equação:

$$x1 = \frac{30 - 10\sqrt{3}}{6} \div 2 \Rightarrow \frac{15 - 5\sqrt{3}}{3} \approx 2,11$$

$$x2 = \frac{30 + 10\sqrt{3}}{6} \div 2 \Rightarrow \frac{15 + 5\sqrt{3}}{3} \approx 7,89$$

Explicando a fundo:

A fórmula foi utilizada para entender os máximos e mínimos da equação, para calcularmos, é necessário colocar o resultado das raízes encontradas na segunda derivada. Assim: 0

$$f''(x) = -360x + 1800$$

 $x1 \Rightarrow f''(2,11) = -360. (2,12) + 1800 = 1036,8$
 $x2 \Rightarrow f''(7,89) = -360. (7,88) + 1800 = -1036,8$

Explicando o cálculo, o valor encontrado no X2 (\approx 2,1) representa o ponto mínimo de quilos arrecadados no terceiro mês, dentro do 1º semestre de 2025. O ponto máximo, representado no X1 (\approx 7,9), representa o ponto máximo que poderiam arrecadar no mês. Dessa forma, dentro do primeiro semestre a arrecadação atinge um valor mínimo por volta do terceiro mês e a partir deste ponto, passa a crescer até o final do semestre, sem atingir o ponto máximo.

Representação gráfica das derivadas

Para a primeira derivada:

$$f'(x) = 3x^2 - 30x + 50$$

Análise de sinais:

	x<2,11	2,11 <x<7,89< th=""><th>7,89</th></x<7,89<>	7,89
Sinais de y"	-	+	+
Variação de y'	7	7	1
Sinais de y'	+	-	+
Variação de y	1	`~	1
Concavidade de y			

Para a segunda derivada:

$$f''(x) = 6x - 30$$

Analise de y'

x<2,11	Concavidade para baixo	
x>2,11	Concavidade para cima	
x=2,11	Ponto mínimo	
x=5	Ponto de inflexão	
x=7,89	Ponto máximo	
x<2,11	Descrescente	
2,11 <x<7,89< th=""><th colspan="2">Crescente</th></x<7,89<>	Crescente	
x>7,89	Crescente	

3. CONCLUSÃO

Em suma, este trabalho demonstrou a aplicação do Polinômio de Taylor na modelagem de variáveis para a aplicação web Arkana e o Projeto Lideranças Empáticas, evidenciando como o cálculo de máximos e mínimos pode ser uma ferramenta valiosa para a análise de cenários e a previsão de resultados. Através da função hipotética escolhida, foi possível ilustrar o processo de derivação e a identificação de pontos críticos.

Primordialmente, a análise da primeira e segunda derivadas permitiu determinar os pontos de mínimo e máximo da função, que, no contexto do projeto, representam os valores mínimo e máximo de quilos arrecadados. Observou-se que a arrecadação atinge um valor mínimo por volta do terceiro mês do primeiro semestre de 2025 e, a partir desse ponto, cresce sem atingir o ponto máximo dentro do período analisado.

Além disso, a representação gráfica e a análise de sinais das derivadas forneceram uma compreensão visual e conceitual do comportamento da função, reforçando a importância do cálculo diferencial na tomada de decisões estratégicas. Conclui-se que a utilização dessas ferramentas matemáticas oferece um suporte robusto para a coordenação e o acompanhamento das ações do Projeto Lideranças Empáticas, promovendo transparência e auxiliando na otimização de resultados.