Feuille d'exercices 6. Réels, bornes supérieures.

Exercice 6.1: (niveau 1) Résoudre dans \mathbb{R} l'équation $\lfloor 2x+1 \rfloor = \lfloor x+4 \rfloor$.

Exercice 6.2: (niveau 1) Montrer que $\{q^2/q \in \mathbb{Q}\}$ est dense dans \mathbb{R}_+ .

Exercice 6.3: (niveau 1) Montrer que $\frac{\ln 2 + \ln 3}{\ln 5 + \ln 7}$ est irrationnel.

Exercice 6.4 : (niveau 1) Soient A et B deux parties non vides majorées de \mathbb{R} .

- $\mathbf{1}^{\circ}$) Démontrer que $(A \subset B) \Longrightarrow (\sup A \le \sup B)$.
- **2°)** Démontrer que $A \cup B$ est majorée et déterminer $\sup(A \cup B)$.
- $\mathbf{3}^{\circ}$) Démontrer que $A \cap B$ est majorée.

Quelle propriété peut-on établir reliant $\sup(A \cap B)$, $\sup A$ et $\sup B$?

Exercice 6.5: (niveau 1)

- 1°) Démontrer que la somme d'un rationnel et d'un irrationnel est un irrationnel.
- 2°) Démontrer que la racine carrée d'un irrationnel strictement positif est un irrationnel.
- 3°) Soient r, s deux rationnels positifs tels que \sqrt{r} et \sqrt{s} sont irrationnels. Démontrer que $\sqrt{r} + \sqrt{s}$ est irrationnel.

Exercice 6.6: (niveau 1)

Soit f une application continue de $\mathbb R$ dans $\mathbb R$ telle que $f|_{\mathbb Q}$ est croissante. Montrer que f est croissante.

Exercice 6.7: (niveau 2) Soit $a \in \mathbb{R}_+^*$. Déterminer si elle existe la limite de la suite $(E(a^n)^{\frac{1}{n}})_{n \in \mathbb{N}^*}$, où E désigne la partie entière.

Exercice 6.8: (niveau 2) Montrer que $\sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} = 4$.

Exercice 6.9: (niveau 2)

Soit $n \in \mathbb{N}$. Montrer que $\lfloor \sqrt{n} + \sqrt{n+1} \rfloor = \lfloor \sqrt{4n+1} \rfloor = \lfloor \sqrt{4n+2} \rfloor = \lfloor \sqrt{4n+3} \rfloor$.

Exercice 6.10 : (niveau 2) Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Montrer que $\lfloor nx \rfloor = \sum_{k=0}^{n-1} \lfloor x + \frac{k}{n} \rfloor$.

Exercice 6.11: (niveau 2)

Soit I un segment non vide de \mathbb{R} . Soit $f: I \longrightarrow \mathbb{R}$ une application continue. Montrer que, pour tout $\lambda \in f(I)$, $\lambda = f(\inf\{z \in I/f(z) = \lambda\})$.

Exercice 6.12: (niveau 2)

Soit $(a, b) \in \mathbb{R}^2$ avec a < b. Toutes les suites de cet exercice seront à valeurs dans [a, b]. Soit (x_n) une suite.

On pose $\limsup_{n\to+\infty} (x_n) = \lim_{n\to+\infty} \sup_{k\geq n} x_k$ et $\liminf_{n\to+\infty} (x_n) = \lim_{n\to+\infty} \inf_{k\geq n} x_k$.

Montrer que ces notions sont bien définies et que $\limsup(x_n) \ge \liminf(x_n)$. Soit (y_n) une seconde suite.

a) Montrer que si : $\forall n \in \mathbb{N} \quad x_n \leq y_n$, alors

 $\limsup(x_n) \leq \limsup(y_n) \text{ et } \liminf(x_n) \leq \liminf(y_n).$

b) Montrer que $\limsup(x_n + y_n) \leq \limsup(x_n) + \limsup(y_n)$ et que $\limsup(x_n) + \liminf(y_n) \leq \limsup(x_n + y_n)$.

c) On suppose que : $\forall n \in \mathbb{N} \quad x_n \geq 0$ et $y_n \geq 0$: Montrer que $\limsup(x_n)\liminf(y_n) \leq \limsup(x_ny_n) \leq \limsup(x_n)\limsup(y_n)$.

Exercice 6.13: (niveau 2) Soit $n \in \mathbb{N}^*$. On pose $F_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2}$. F_n peut-il être un nombre décimal?

Exercice 6.14 : (niveau 2) Montrer que $\{\sqrt{m} - \sqrt{n}/(n, m) \in \mathbb{N}^2\}$ est dense dans \mathbb{R} .

Exercice 6.15: (niveau 2) Soit $n \in \mathbb{N}^*$ et $(I_j)_{1 \leq j \leq n}$ une famille finie de n intervalles telle que $\bigcup_{1 \leq j \leq n} I_j$ est un intervalle. Montrer qu'il existe $\ell \in \mathbb{N}_n$ tel que $\bigcup_{1 \leq j \leq n} I_j$ est un

intervalle.

Cette propriété est-elle encore vraie avec une famille infinie d'intervalles?

Exercice 6.16: (niveau 2)

Soit E un ensemble non vide et $\mathcal{F} \subset \mathcal{P}(E)$ tel que $E \in \mathcal{F}$. Soit $P \subset E$. On pose $\mathcal{F}_P = \{A \in \mathcal{F} / P \subset A\}$.

- 1°) Montrer que \mathcal{F}_P admet une borne inférieure, notée \widehat{P} pour la relation d'inclusion sur $\mathcal{P}(E)$.
- 2°) Si $P \in \mathcal{F}$, montrer que $\widehat{P} = P$.
- **3**°) Montrer que pour tout $P \in \mathcal{P}(E)$, $\widehat{\widehat{P}} = \widehat{P}$.

Exercice 6.17: (niveau 3)

Soit A une partie non majorée de \mathbb{R}_+ . Montrer que $B = \bigcup_{n \in \mathbb{N}^*} \frac{1}{n} A$ est dense dans \mathbb{R}_+ .

Exercices supplémentaires

Exercice 6.18: (niveau 1)

Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ deux applications réelles bornées. Que peut-on dire de $\sup\{f(x)+g(x)/x \in \mathbb{R}\}$ vis-à-vis de $\sup\{f(x)/x \in \mathbb{R}\} + \sup\{g(x)/x \in \mathbb{R}\}$?

Exercice 6.19: (niveau 1)

Résoudre dans \mathbb{R} l'équation $\lfloor \sqrt{x^2 + 1} \rfloor = 2$.

Exercice 6.20: (niveau 1)

Démontrer que $\forall n \in \mathbb{N}, \ \exists (a_n, b_n) \in \mathbb{N}^2, \ (1 + \sqrt{5})^n = a_n + b_n \sqrt{5}.$

Exercice 6.21 : (niveau 1) On appelle nombre dyadique tout nombre rationnel de la forme $\frac{m}{2^k}$ où $m \in \mathbb{Z}$ et $k \in \mathbb{N}$. Montrer que l'ensemble des nombres dyadiques est dense dans \mathbb{R} .

Exercice 6.22: (niveau 2) Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, montrer que $\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$.

Exercice 6.23: (niveau 2)

Soit A une partie non vide bornée de \mathbb{R} .

Exprimer $\sup_{x,y\in A} |x-y|$ en fonction de $\sup(A)$ et $\inf(A)$.

Exercice 6.24: (niveau 2)

- 1°) Montrer que, pour tout $a, b \in \mathbb{R}_+^*$, $\frac{a}{b} + \frac{b}{a} \ge 2$.
- **2**°) Soit $n \in \mathbb{N}^*$. Déterminer la borne inférieure de $\{(a_1 + \dots + a_n)(\frac{1}{a_1} + \dots + \frac{1}{a_n}) / a_1, \dots, a_n \in \mathbb{R}_+^*\}.$

Exercice 6.25 : (niveau 2) Démontrer qu'il existe deux irrationnels a et b tels que a^b est un rationnel.

Exercice 6.26 : (niveau 2) On fixe k dans \mathbb{N}^* . Lorsque $n \in \mathbb{N}$ avec $n \geq k$, on note u_n le chiffre des unités de $\binom{n}{k}$ en base 10. Montrer que le réel $x = 0, u_k u_{k+1} u_{k+2} \cdots$ est

un rationnel (formellement, $x = \sum_{n=1}^{+\infty} \frac{u_{k+n-1}}{10^n}$).

Exercice 6.27 : (niveau 2) On munit $E = [0,1] \times [0,1]$ de l'ordre lexicographique. Montrez que toute partie non vide de E admet une borne supérieure. Ce résultat subsiste-t-il avec $E = [0,1] \times [0,1]$?

Exercice 6.28: (niveau 3) Montrer que $\{\cos(\ln(n)) / n \in \mathbb{N} \text{ avec } n \geq 2\}$ est dense dans [-1, 1].

Exercice 6.29: (niveau 3) On note G l'ensemble des applications f de classe C^1 de [0,1] dans \mathbb{R} telles que f(0)=0 et f(1)=1. Déterminer $\inf_{f\in G}\int_0^1|f'(x)-f(x)|\;dx$.

Exercice 6.30: (niveau 3)

- ${f 1}^{\circ}$) Lorsque A et B sont deux parties de \mathbb{R} , on dit qu'elles sont adjacentes si et seulement si
 - $-- \forall (a,b) \in A \times B, \ a \le b;$
 - $-\forall \varepsilon \in \mathbb{R}_{+}^{*}, \ \exists (a,b) \in \overline{A} \times B, \ b-a \leq \varepsilon.$

Montrer que la propriété de la borne supérieure est équivalente à la propriété suivante : Deux parties A, B de \mathbb{R} sont adjacentes si et seulement si il existe un unique $c \in \mathbb{R}$ tel que pour tout $(a, b) \in A \times B$, $a \le c \le b$.

2°) Montrer que la propriété de la borne supérieure est équivalent à la propriété suivante : Si $(u_n), (v_n)$ sont deux suites adjacentes de réels (c'est-à-dire que l'une est croissante, l'autre décroissante et que $u_n - v_n \underset{n \to +\infty}{\longrightarrow} 0$) alors elles convergent vers un même réel.