Changes from last revision

Date	User	Edits
12/28/2019		Specifications; Schematic and description of testbench; Design examples;

Subsystem or block descriptions

Design name	Clock Divider in TSMC 65nm CMOS
The Top-level cell name	TB_CK_Divider.scs
Designer	Shiyu Su
Tested & Documented By	Soumya Mahapatra
Organization	University of Southern California

Overview

This circuit block is a clock divide by 2 circuit which produces both the in-phase and quadrature-phase clock signals with half the frequency of that of the applied input differential sinusoidal signal. It comprises of two D-latches realized using current steering logic which contain a differential pair and a regenerative pair. These D-latches are connected in negative feedback in a master-slave configuration which results in a D-flip flop producing clock signals of half-frequency.

This clock divider is intended to produce a 6 GHz output clock signal for driving subsequent blocks employing current mode logic (CML).

Block Specifications and Compliance

Spec Name	Min	Max	Note
Output Frequency (GHz)	5.99	6.01	Input Frequency = 12 GHz
Output Clock High Voltage Level (mV)	600	900	\
Output Clock Low Voltage Level (mV)	200	300	\
Power Consumption (mW)	1	3	\

Block diagram

The block diagram representation of the design is as follows:

Figure 1: Architecture of the Clock Divider with AMPSE (X & Y denote the I & Q clock signals)

Main analog modules	Regression models				
Clock Divider	model_ckdiv65.json	reg_ ckdiv65h5	scX_ ckdiv65.pkl	scY_ ckdiv65.pkl	

Signal list

Figure 2: Symbol of the Top-Level of the Clock Divider

Signal Pins	Direction (I/O)	Type (supply, ground, analog current, analog voltage, digital voltage)	Max Voltage (core, IO or max voltage)	Specification
vdd	1	Supply	Core	Power Supply, 1.0 V
gnd	1	Ground	Core	Ground
CLK, CLKb	I	Analog voltage	Core	Differential Input Clock (sine, 12 GHz)
idiv_ctrl<2:0>	I	Digital voltage	Core	Bias Tail Current Control Bits
rst,rstb	1	Digital voltage	Core	Reset – active low signal for clock divider
D,Db	0	Analog voltage	Core	I- phase differential clock o/p
P,Pb	0	Analog voltage	Core	Q- phase differential clock o/p
vdiv	I	Analog voltage	Core	Setting Biasing Voltage of Tail Current

Design Hierarchy

The tabular description below corresponds to design hierarchy:

Category	Cell Name	Description	Figure
Clock_Divider	divby2_cml_latch	CML D-latch	Figure. A1
Clock_Divider	divby2_cml_tail	Tail Current Source of D- latch	Figure. A2

Test Bench

Figure 3: The Test Bench Used for the top-level Clock Divider

Cell Name	Note	
test_CK65	Transient simulation for 1. Output Clock Frequency 2. Output Clock High Value 3. Output Clock Low Value 4. Input Amplitude Requirement	DC simulation for: 1. Power Consumption

Simulations (test_ CK65):

Conditions/parameters	Values	Conditions/parameters	Values
Process corner	TT	idiv_ctrl<2:0>	111
Temperature(°C)	27	W_input_diff_pair (μm)	1
vdd(V)	1	W_intermediate_tail (µm)	4
Input amplitude(V)	100m	W_tail (µm)	2.5
Input common mode voltage	500m	Load Resistor (ohms)	560
vdiv	1	rst	0

After running several simulations in ADEXL, we obtain the dataset which was used for training the regressor. After that, we get the candidate values of the parameters and the list of the expected metrics per module in order to achieve the required specs and their given constraints. Three different design cases are explored and the results obtained are tabulated below:

Case 1: $F_{osc} = 6 GHz$

Clock Divider Parameters		Clock	Divider Metrics		
W_ip_diff (µm)	0.92	Overall Achieved Metrics	Generated using AMPSE	Rechecked using Cadence Virtuoso®	
W_int_tail (µm)	4.32	Power Consumption (W)	3.56m	3.204m	
W_tail (µm)	2.8	Output Amplitude High(V)	867.3m	848.1m	
Res (ohms)	568	Output Amplitude Low (V)	223.1m	206.7m	
LSB of I_ctrl	1	Output Frequency (GHz)	5.95	6.133	

Case 2: $F_{osc} = 9 \text{ GHz}$

Clock Divider Parameters		Clock	x Divider Metrics		
W_ip_diff (µm)	1.15	Overall Achieved Metrics	Generated using AMPSE	Rechecked using Cadence Virtuoso®	
W_int_tail (µm)	2.93	Power Consumption (W)	3.73m	3.145m	
W_tail (µm)	2	Output Amplitude High(V)	852.1m	836.3m	
Res (ohms)	487	Output Amplitude Low (V)	373.3m	329.8m	
LSB of I_ctrl	1	Output Frequency (GHz)	8.91	9.05	

Case 3: $F_{osc} = 12 \text{ GHz}$

Clock Divider Parameters		Clock Divider Metrics		
W_ip_diff (µm)	0.53	Overall Achieved Metrics	Generated using AMPSE	Rechecked using Cadence Virtuoso®
W_int_tail (µm)	3.5	Power Consumption (W)	3.183m	2.789m
W_tail (µm)	2	Output Amplitude High(V)	839.2m	824.5m
Res (ohms)	604	Output Amplitude Low (V)	294.1m	269.4m
LSB of I_ctrl	1	Output Frequency (GHz)	12.16	12.0

The resulted metrics out from Cadence seems to give a quite matched result from the AMPSE.

Figure 4: Tranisent Simulation for the top-level Clock Divider @ Fosc = 6 GHz

Figure 5: Tranisent Simulation for the top-level Clock Divider @ Fosc = 9 GHz

Figure 6: Tranisent Simulation for the top-level Clock Divider @ Fosc = 12 GHz

For plotting the input amplitude v/s input frequency characteristics of the clock divider circuit, parametric simulation was carried out to determine the minimum value of input amplitude which is required to make the clock divider work reliably to produce a half-frequency clock at the output.

Figure 7: Sensitivity Curve of the Clock Divider for different self-oscillation frequency

Figure 7: Design Space Exploration and achieved specs for different cases

TIME-EFFICIENCY OF AMPSE FOR THIS DESIGN:

- (1) **2175 points** for coarse search of different design self-oscillation frequencies (~ 12 secs each)
- (2) **4950 points** for fine optimization of specs around the desired design frequency (~ 30 secs each)

Total design time for exhaustive SPICE simulations = 2175*0.2 + 4950*0.5 min = 2910 min (for 1 design)

Total design time for AMPSE (regressor + AMPSE graphs) = 1 + 0.2 min = 1.2 min (for 1 design)

AMPSE is around 2400x more time-efficient than regular parametric-sweep based optimization!

Appendix

The schematics of the two modules used within the Clock Divider are shown below

Figure A.1: The Circuit Schematic of the D-latch

Figure A.2: The Circuit Schematic of the Tail Current Source

Figure A.3: The Graph Used to Model the Block

The error range of the Clock Divider Model:

Figure A.4: The Error in Different Metrics of the Clock Divider