Lecture 10

Instructor: Subrahmanyam Kalyanasundaram

19th September 2019

Plan

- ► Last class, we saw Graphs and BFS
- ► Today, we see proof of correctness of BFS

Graphs

Abstract Data Type

Graph (directed)

A (directed) graph G is a two tuple (V, E) where:

- ▶ *V* is a set of elements called "vertices".
- ▶ $E \subseteq V \times V$ is a binary relation. Elements in E are called "edges".

Note: There are several definitions and variants of graphs. Graphs are a way to study the relationships among a set of elements.

Example - directed graph

Consider:

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ (1, 3), (1, 4), (2, 4), (4, 6), (7, 2), (7, 5) \}$$

Example - directed graph

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ (1, 3), (1, 4), (2, 4), (4, 6), (7, 2), (7, 5) \}$$

Example - directed graph

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{ (1, 3), (1, 4),$$

$$(2, 4), (4, 6),$$

$$(7, 2), (7, 5) \}$$

The vertices can be drawn anywhere! The edges are what matter.

Graphs

Graph (undirected)

A (undirected) graph G is a two tuple (V, E) where:

- ▶ *V* is a set of elements called "vertices".
- \blacktriangleright *E* is a set of (unordered) pairs of vertices from *V*.

Example - undirected graph

$$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$E = \{\{1, 3\}, \{1, 4\}, \{2, 4\}, \{4, 6\}, \{7, 2\}, \{7, 5\}\}$$

Example - undirected graph

Example - undirected graph

(source: wikipedia.org)

Weighted graphs have a weight assigned to each edges using a weight function.

Definitions

- ▶ Neighbour of v: A vertex u such that $(v, u) \in E$ or $\{v, u\} \in E$
- ▶ Neighbourhood of v ($\mathcal{N}(v)$): The set of all neighbours of v
- ▶ Degree of v: Cardinality of $\mathcal{N}(v)$

In a directed graph, we can talk about in-neighbours, in-degree, out-neighbours, out-degree etc.

Data structure

Two standard data structures to represent graphs:

- Adjacency matrix
- Adjacency list

Adjacency Matrix

Γ	Α	1	2					7	8
1	1	0	0		1		0	0	0
1	2	0	0	0	1	0	0	0	0
1	3	0	0	0		0	0	0	0
1	4	0	0	0		0	1	0	0
ĺ	5	0	0	0	0	0	0	0	0
-	6	0	0	0	0	0	0	0	0
	7	0	1	0	0	1	0	0	0
	8	0	0	0	0	0	0	0	0]

$$A[u,v]=1\iff (u,v)\in E$$

Adjacency Matrix

[A	1			4	5	6	7	8
1	0	0	1	1			0	0
2	0	0	0	1			0	0
3	0	0		0	0			
4	0	0	0	0	0	1	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0		0	0	0
7	0	1	0	0	1	0	0	0
8	0	0	0	0	0	0	0	0

$$A[u,v] = 1 \iff (u,v) \in E$$

For an undirected graph:

- $\mathbf{v}, \mathbf{v} \in E \iff A[\mathbf{u}, \mathbf{v}] = A[\mathbf{v}, \mathbf{u}] = 1$
- The adjacency matrix for an undirected graph is a symmetric matrix

Adjacency Lists

Which representation to choose?

- ▶ Is $(u, v) \in E$?
- ► List all neighbours of *v*
- ► List all edges of *G*
- ► Add an edge (u, v) or $\{u, v\}$
- ▶ Delete an edge (u, v) or $\{u, v\}$

Breadth-first Search

The idea is to explore the graph "radially outward" from the source.

In each step, we expand our exploration by visiting the neighborhood of all explored vertices.

Algorithm 1 Breadth-first Search from vertex s 1: Color all vertices WHITE.

2: For all $u \in V$, $d[u] \leftarrow \infty$, $\pi[u] \leftarrow \text{NIL}$.

3:
$$d[s] \leftarrow 0$$
, color $[s] \leftarrow GRAY$.
4: Initialize queue $Q \leftarrow \emptyset$.

5: ENQUEUE
$$(Q, s)$$

6: while
$$Q \neq \emptyset$$
 do

$$u \leftarrow \mathsf{DEQUEUE}(Q)$$

for each
$$v \in \mathcal{N}(u)$$
 do

$$each \ v \in \mathcal{N}(v)$$

if
$$color(v) = WHITE$$
 then

 $d[v] \leftarrow d[u] + 1$

ENQUEUE(Q, v)

if
$$color(v) = W$$

 $color[v] \leftarrow G$

 $\pi[v] \leftarrow u$

 $color[u] \leftarrow BLACK.$

end if

end for

17: end while

10:

11:

12:

13:

14:

15:

16:

if
$$color(v) = WF$$

 $color[v] \leftarrow GF$

if
$$color(v) = WHI$$

 $color[v] \leftarrow GRA$

$$f \operatorname{color}(v) = WHITE \\ \operatorname{color}[v] \leftarrow \mathsf{GRAY}$$

$$r(v) = WHIT$$
 $r[v] \leftarrow GRAY$

Queue: \emptyset

Dequeued vertex: Queue: s

Dequeued vertex: s Queue: r g

Dequeued vertex: r Queue: g f

Dequeued vertex: g Queue: f a b

Dequeued vertex: f Queue: a b

Dequeued vertex: a Queue: b e d

Dequeued vertex: b Queue: e d c

Dequeued vertex: e Queue: d c j h i

Dequeued vertex: \boxed{d} Queue: \boxed{c} \boxed{j} \boxed{h} \boxed{i}

Dequeued vertex: c Queue: j h i

Dequeued vertex: j Queue: h i

Dequeued vertex: h Queue: i

Dequeued vertex: i Queue: \emptyset

Algorithm 2 Breadth-first Search from vertex s 1: Color all vertices WHITE.

2: For all $u \in V$, $d[u] \leftarrow \infty$, $\pi[u] \leftarrow \text{NIL}$.

3: $d[s] \leftarrow 0$, color[s] \leftarrow GRAY. 4: Initialize queue $Q \leftarrow \emptyset$.

e queue
$$Q \leftarrow \emptyset$$
.

6: while $Q \neq \emptyset$ do

$$u \leftarrow \mathsf{DEQUEUE}(Q)$$

for each $v \in \mathcal{N}(u)$ **do**

if
$$color(v) = WHITE$$
 then

10:

$$color[v] \leftarrow GRA$$
$$d[v] \leftarrow d[u] + 1$$

end if

end for

17: end while

if
$$color(v) = WHIII$$

 $color[v] \leftarrow GRAY$

ENQUEUE(Q, v)

 $\pi[v] \leftarrow u$

 $color[u] \leftarrow BLACK.$

$$r(v) = WHITE$$
 then $r[v] \leftarrow GRAY$

$$[v] \leftarrow \mathsf{GRAY}$$

- 5: ENQUEUE(Q, s)

11:

12:

13:

14:

15:

16:

Time Complexity of BFS

- ► Each enqueue/dequeue takes *O*(1) time.
- ► Total queue operations take O(|V|) time.
- ▶ Each list in the adj. list is scanned once. This requires total $\Theta(|E|)$. This is assuming the graph is provided using adjacency list.
- ▶ Initialization required $\Theta(|V|)$.
- ▶ Total running time is O(|V| + |E|).

Time Complexity of BFS

- ► Each enqueue/dequeue takes *O*(1) time.
- ► Total queue operations take O(|V|) time.
- ▶ Each list in the adj. list is scanned once. This requires total $\Theta(|E|)$. This is assuming the graph is provided using adjacency list.
- ▶ Initialization required $\Theta(|V|)$.
- ▶ Total running time is O(|V| + |E|).
- ▶ **Note:** The colors can be omitted. Instead, check if $d[v] = \infty$

Correctness of BFS

Notation: Let $\delta(s, v)$ denote the minimum number of edges on a path from s to v.

Theorem

Let G = (V, E) be a graph. When BFS is run on G from vertex $s \in V$:

- 1. Every vertex that is reachable from *s* gets discovered.
- 2. On termination, $d[v] = \delta(s, v)$ for all v.

We will first show (2).

Proof

Suppose, for the sake of contradiction, (2) does not hold. Let v be the vertex with smallest $\delta(s, v)$ such that $d[v] \neq \delta(s, v)$.

Claim 1: $d[v] \ge \delta(s, v)$

Choose a *shortest* path from s to v.

Let u be the vertex immmediately preceding v.

Then $\delta(s, v) = \delta(s, u) + 1 = d[u] + 1$.

So we have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Proof cont...

We have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consider the time step when u is dequeued.

- Case 1: v was white. The algo sets d[v] = d[u] + 1.
- This contradicts the eq above. ► Case 2: v is black.
- Then, v was dequeued before u. Claim 2: If v was dequeued before u, then $d[v] \le d[u]$.

Proof cont...

► Case 3: *v* was gray.

Vertex v was colored gray after dequeuing some vertex w earlier.

So d[v] = d[w] + 1.

By Claim 2, $d[w] \le d[u]$ since w was dequeued before u.

This gives: $d[v] = d[w] + 1 \le d[u] + 1$.

Exercise

Show (1) using (2). That is, given that $d[v] = \delta(s, v)$, show that every vertex reachable from s gets discovered.

Claim 3

Let $(u, v) \in E$. Then we have:

$$\delta(s,v) \leq \delta(s,u) + 1$$

Proof

If *u* is reachable from *s*, then:

Take the shortest path from s to u. Then take the edge (u, v).

This gives a path from *s* to *v*.

The shortest path from s to v can only be shorter than the above path.

Claim 1

$$\forall v \in V, d[v] \geq \delta(s, v)$$

Proof

Induction on the number of enqueue operations.

Hypothesis: same as claim.

Base case: The time when the first vertex enqueued.

The first vertex enqueued is *s*. At this time we have:

$$\forall v \in V \setminus \{s\}, d[v] = \infty$$

$$b d[s] = \delta(s,s) = 0.$$

Hence the claim holds for the base case.

Proof

Hypothesis: $\forall v \in V, d[v] \geq \delta(s, v)$

Step: A white (undiscovered) vertex v gets discovered while we are visiting a vertex u with $(u, v) \in E$.

From induction, we have: $d[u] \ge \delta(s, u)$.

The algorithm assigns $d[v] \leftarrow d[u] + 1$. So:

$$d[v] = d[u] + 1$$

$$\geq \delta(s, u) + 1$$

$$\geq \delta(s, v)$$

Last inequality follows from Claim 3.

Claim 2

If v was dequeued before u, then $d[v] \leq d[u]$.

We will show a stronger claim:

Claim 4

If at some point, the queue contained v_1, v_2, \ldots, v_r where v_1 was the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof of Claim 2:

Write down vertices in the order they went through the queue.

By claim 4 (a), the calculated d values for them are non-decreasing.

Vertex *v* will appear before *u* in this order.

Hence claim 2 follows.

Claim 4

If queue contains v_1, v_2, \ldots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof

Induction on number of queue operations.

Hypothesis: Same as claim. We show that the claim holds after every enqueue and dequeue.

Base case: The first queue operation - enqueuing *s*.

The claim trivially holds.

Claim 4

If queue contains v_1, v_2, \dots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof

Step:

Dequeue: After v_1 is dequeued, v_2 is the new head.

Part (a): From induction,

 $d[v_1] < d[v_2] < d[v_3] < \cdots < d[v_r].$

Hence (a) holds.

Part (b): From induction, $d[v_r] \le d[v_1] + 1$. And so:

$$d[v_r] \le d[v_1] + 1$$

$$\le d[v_2] + 1$$

Proof

Enqueue: When a vertex *v* is enqueued:

It was enqueued because:

- it was undiscovered so far.
- ▶ it was present in the adjacency list of a vertex *u* that was just dequeued.

Since *u* was the previous head of the list, from induction we have:

- $d[u] \leq d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r].$
- $| d[v_r] \leq d[u] + 1.$

We assign $d[v] \leftarrow d[u] + 1$ and then enqueue v. Hence, we have:

- ▶ $d[v_r] \le d[u] + 1 = d[v]$
- $b d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r] \leq d[v].$

Loop Invariant

Claim 4

If queue contains v_1, v_2, \ldots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \le d[v_2] \le \cdots \le d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Claim 4 is actually a loop invariant!

Another loop invariant

The queue *Q* consists of the set of GRAY vertices.