K. S. Rangasamy College of Technology

(Autonomous Institution affiliated to Anna University, Chennai)

CURRICULUM & SYLLABI

FOR

M.E. Engineering Design (For the batch admitted in 2022–2023)

R 2022

Accredited by NAAC with A++ Grade,
Approved by AICTE, Affiliated to Anna University, Chennai.

KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

VISION OF THE DEPARTMENT

• To be a leader in providing skill sets for globally competent Engineers, Researchers, Entrepreneurs and Managers in Mechanical Engineering domain.

MISSION OF THE DEPARTMENT

- To offer quality education through experiential learning using ICT tools and socially -relevant projects.
- To engage Faculty and Students in fundamental, heavy engineering and applied research related to energy, environment and safety concerns.
- To groom students to venture into successful entrepreneurs and managers.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Graduates of the programme will adapt to emerging technological challenges with core competence in mechanical engineering domain
- **PEO2:** Graduate of the programme will exhibit their technical knowledge and skills to secure suitable positions in any technological organizations and to become successful entrepreneurs
- **PEO3:** Graduates of the programme will pursue advanced studies in thrust areas of mechanical engineering to carryout scientific and industrial research to meet/satisfy current requirements in respective sectors ethically

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1:** Ability to individually carryout the STEM based (Science, Technology, Engineering, and Mathematics) research project.
- **PO2:** Ability to write, present and publish technical articles in reputed international/national conferences and journals.
- **PO3:** The skill developed by the student should be at a level of higher than the requirements in the appropriate bachelor program.
- **PO4:** Ability to acquire in depth knowledge of engineering design concepts and application of the same to solve complex engineering problems.
- **PO5:** Ability to find optimum safe and cost effective solutions in the development of mechanical systems taking into consideration sustainability, societal, environmental and public health aspects.
- **PO6:** Ability to support professional ethics and social responsibilities consistent with their roles as design engineers.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

Engineering Graduates will be able to:

- **PSO1:** Use modern tools in the design, analysis and manufacturing of mechanical components and systems.
- **PSO2:** Solve multidisciplinary problems in manufacturing and allied industries.
- **PSO3:** Adopt creative and innovative approaches to address real-time industrial challenges.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMMEOUTCOMES (POs)

The M.E. Engineering Design Programme outcomes leading to the achievement of the objectives are summarized in the following Table.

Programme Educational		Programme Outcomes									
Objectives	PO1	PO2	PO3	PO4	PO5	PO6					
PEO 1	3	2	3	3	2	1					
PEO 2	3	2	3	3	2	1					
PEO 3	3	2	3	3	2	1					

Contributions: 1- low, 2- medium, 3- high

Vasar	0	Course Name			F	20		
Year	Sem.	Course Name	1	2	3	4	5	6
	Computer Concepts Finite Elei Mechanic Advanced Research Audit Cou Research CAD Labo Computer I Advanced Integrated Programn Programn Programn Programn Audit Cou Managem Computer II Technical Presentat	Computer Applications in Design	3	3	2	2.4	2	1
		Concepts of Engineering Design	3	3	2.8	2.4	2.4	1.4
		Finite Element Methods in Mechanical Design	3	3	3	3	2.4	1.6
		Advanced Stress Analysis	3	2.6	2.4	2.2	2.2	2
	I	Research Methodology and IPR	3	3	2	2	2	2
		Audit Course I - English For Research Paper Writing	3	3	2	2.4	2.6	1
		CAD Laboratory	1	3	3	2	3	2
		Computer Aided Analysis Laboratory	3	3	3	2	3	2
		Advanced Vibrations and Acoustics	3		2.4	3	2	2
I		Integrated Product Development	3	3	3	2	3	2
		Programme Elective – I						
		Programme Elective – II						
		Programme Elective – III						
	Ш	Programme Elective – IV						
		Audit Course II - Disaster Management	3	3	2	2.4	2.6	1
		Computer Aided Analysis Laboratory	3	3	3	2	3	2
		Technical Report Preparation and Presentation	3	3	1	2	2.6	1
		Mini Project	3	2	1	2.4	2.6	1
		Programme Elective –V						
	III	Programme Elective –VI						
II		Project Work - Phase I	3	3	3	2	3	2
	IV	Project Work - Phase II	3	3	3	2	3	2

K.S. RANGASAMY COLLEGE OF TECHNOLOGY

Credit Distribution for M.E (ED) Programme -2022 -2023 Batch

S. No.	Catagory	(Credits Pe	r Semeste	r	Total	Percentage
3. NO.	Category	ı	II	III	IV	Credits	%
1	PC	19	07	-	-	26	36.11
2	PE	-	12	06	-	18	25
3	CG	-	04	08	16	28	38.88
4	AC	AC - I	AC - II	-	-	-	-
	Total	19	23	14	16	72	100

PC - PROFESSIONALCORE

PE - PROFESSIONALELECTIVES

CG - CAREER GUIDANCE COURSES

AC- AUDIT COURSES

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215 (An Autonomous Institution affiliated to Anna University)

CONCEIVE DEVELOP IMPLEMENT EXECUTE(CDIE)

PROFESSIONAL CORE COURSES (PC)

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-requisite
1.	60 PED 101	Computer Applications in Design	PC	3	3	0	0	3	CAD/CAM
2.	60 PED 102	Concepts of Engineering Design	PC	3	3	0	0	3	-NIL-
3.	60 PED 103	Finite Element Methods in Mechanical Design	PC	3	3	0	0	3	-NIL-
4.	60 PED 104	Advanced Stress Analysis	PC	3	3	0	0	3	Strength of Materials
5.	60 PED 001	Research Methodology and IPR	PC	3	3	0	0	3	-NIL-
6.	60 PED 1P1	CAD Laboratory	PC	4	0	0	4	2	-NIL-
7.	60 PED 1P2	Computer Aided Analysis Laboratory I	PC	4	0	0	4	2	CAD Laboratory
8.	60 PED 201	Advanced Vibrations and Acoustics	PC	3	3	0	0	3	-NIL-
9.	60 PED 202	Integrated Product Development	PC	3	3	0	0	3	-NIL-
10.	60 PED 2P1	Computer Aided Analysis Laboratory II	PC	4	0	0	4	2	Computer Aided Analysis Laboratory I

PROFESSIONAL ELECTIVES (PE) SEMESTER II, PROFESSIONAL ELECTIVE I

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С	Pre-requisite
1.	60PED E11	Advanced Machine Design	PE	3	3	0	0	3	Design of Machine Element
2.	60PED E12	Design for Manufacturing and Assembly	PE	3	3	0	0	3	-NIL-
3.	60PED E13	Mathematical Methods In Engineering	PE	3	3	0	0	3	-NIL-
4.	60PED E14	Fuels and Combustion	PE	3	3	0	0	3	-NIL-
5.	60PED E15	Bearing Design and Rotor Dynamics	PE	3	3	0	0	3	-NIL-

SEMESTER II, PROFESSIONAL ELECTIVE II

S.No.	Course Code	Course Title	Categor y	Contac t Periods	L	Т	Р	С	Pre-requisite
1.	60PED E21	Advanced Engineering Materials	PE	3	3	0	0	3	Engineering Material and Metallurgy
2.	60PED E22	Supply Chain Management	PE	3	3	0	0	3	-NIL-
3.	60PED E23	Analysis and Synthesis of Mechanisms	PE	3	3	0	0	3	-NIL-
4.	60PED E24	Instrumentation for Thermal Engineering	PE	3	3	0	0	3	-NIL-
5.	60PED E25	Advanced Internal Combustion Engines	PE	3	3	0	0	3	Fuels and Combustion

SEMESTER II, PROFESSIONAL ELECTIVE III

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С	Pre-requisite
1.	60PED E31	Tribology in Design	PE	3	3	0	0	3	-NIL-
2.	60PED E32	Robotics	PE	3	3	0	0	3	-NIL-
3.	60PED E33	Fracture Mechanics	PE	3	3	0	0	3	-NIL-
4.	60PED E34	Engine Pollution and Control	PE	3	3	0	0	3	Advanced Internal Combustion Engines
5.	60PED E35	Computational Fluid Dynamics	PE	3	3	0	0	3	-NIL-

SEMESTER II, PROFESSIONAL ELECTIVE IV

S.No.	Course Code	Course Title	Category	Contact Periods	اـ	T	P	C	Pre-requisite
1.	60PED E41	Multi-body Dynamics	PE	3	3	0	0	3	-NIL-
2.	60PED E42	Condition Based Monitoring	PE	3	3	0	0	3	-NIL-
3.	60PED E43	Optimization Techniques in Design	PE	3	3	0	0	3	-NIL-
4.	60PED E44	Alternative Fuels for IC Engines	PE	3	3	0	0	3	Engine Pollution and Control
5.	60PEDE45	Advanced Materials and Their Processing	PE	3	3	0	0	3	Advanced Engineering Materials

SEMESTER III, PROFESSIONAL ELECTIVE V

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-requisite
1.	60PED E51	Advanced Finite Element Method	PE	3	3	0	0	3	Finite Element Methods in Mechanical Design
2.	60PED E52	Advanced Metallurgy	PE	3	3	0	0	3	Advanced Materials and Their Processing
3.	60PED E53	Design of Material Handling Equipments	PE	3	3	0	0	3	-NIL-
4.	60PED E54	Advances in Casting and Welding Processes	PE	3	3	0	0	3	-NIL-
5.	60PED E55	Mechanics of Composite Materials	PE	3	3	0	0	3	-NIL-

SEMESTER III, PROFESSIONAL ELECTIVE VI

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-requisite
1.	60PED E61	Rapid Prototyping and Tooling	PE	3	3	0	0	3	-NIL-
2.	60PED E62	Design of Hydraulic and Pneumatic Systems	PE	3	3	0	0	3	-NIL-
3.	60PED E63	Applied Elasticity and Plasticity	PE	3	3	0	0	3	Advanced Stress Analysis
4.	60PED E64	Theory of Plates and Shells	PE	3	3	0	0	3	-NIL-
5.	60 PED E65	Materials Testing and Characterization Techniques	PE	3	3	0	0	3	-NIL-

AUDIT COURSES (AC)

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	C	Pre-requisite
1.	60 PAC 001	English For Research Paper Writing	AC	2	2	0	0	0	-NIL-
2.	60 PAC 002	Disaster Management	AC	2	2	0	0	0	-NIL-
3.	60 PAC 003	Constitution Of India	AC	2	2	0	0	0	-NIL-

CAREER GUIDANCECOURSES (CG)

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С	Pre-requisite
1.	60 PED 2P2	Technical Report Preparation and	CG	4	0	0	4	1	-NIL-
		Presentation							
2.	60 PED 2P3	Mini Project	CG	4	0	0	4	2	-NIL-
3.	60 PED 3P1	Project Work - Phase I	CG	16	0	0	16	80	Mini Project
4.	60 PED 4P1	Project Work - Phase II	CG	32	0	0	32	16	Project Work - Phase I

Rev. No.1/w.e.f. 19.01.2023 Passed in BoS Meeting held on 24/12/2022 Approved in Academic Council Meeting held on 07/01/2023

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215 (An Autonomous Institution affiliated to Anna University)

COURSES OF STUDY

(For the candidates admitted from 2022-2023 onwards)

SEMESTER I

S.No.	Course Code	Course Title	Category Contact Periods		L	Т	Р	С
1		Induction Programme	-	-	-	•	-	0
THEORY								
2.	60 PED 101	Computer Applications in Design	PC	3	3	0	0	3
3.	60 PED 102	Concepts of Engineering Design	PC	3	3	0	0	3
4.	60 PED 103	Finite Element Methods in Mechanical Design PC 3		3	0	0	3	
5.	60 PED 104	Advanced Stress Analysis	PC	3	3	0	0	3
6.	60 PED 001	Research Methodology and IPR	PC	3	3	0	0	3
7.	60 PAC 001	English For Research Paper Writing	AC	1	1	0	0	0
		PRACTICALS						
8.	60 PED 1P1	CAD Laboratory	PC	4	0	0	4	2
9.	60 PED 1P2	Computer Aided Analysis Laboratory I	PC	4	0	0	4	2
			Total	24	16	0	8	19

SEMESTER II

S.No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
		THEORY						
1.	60 PED 201	Advanced Vibrations and Acoustics	PC	3	3	0	0	3
2.	60 PED 202	Integrated Product Development	PC	3	3	0	0	3
3.	60 PED E1*	Programme Elective – I	PE	3	3	0	0	3
4.	60 PED E2*	Programme Elective – II	PE	3	3	0	0	3
5.	60 PED E3*	Programme Elective – III	PE	3	3	0	0	3
6.	60 PED E4*	Programme Elective – IV	PE	3	3	0	0	3
7.	60 PAC 002	Disaster Management	AC	1	1	0	0	0
		PRACTICALS						
8.	60 PED 2P1	Computer Aided Analysis Laboratory II	PC	4	0	0	4	2
9.	9. 60 PED 2P2 Technical Report Preparation and Presentation		CG	4	0	0	4	1
10.	60 PED 2P3	Mini Project CG		4	0	0	4	2
			Total	31	19	0	12	23

SEMESTER III

S.No.	Course Code	Course Title	Category	Contact Periods	L	Т	Р	С
	THEORY							
1.	60 PED E5*	Programme Elective –V	PE	3	3	0	0	3
2.	60 PED E6*	Programme Elective –VI	PE	3	3	0	0	3
		PRACTICALS						
3.	60 PED 3P1	Project Work - Phase I	CG	16	0	0	16	8
	•		Total	22	6	0	16	14

SEMESTER IV

S. No.	Course Code	Course Title	Category	Contact Periods	L	T	Р	С
	PRACTICALS							
1.	60 PED 4P1	Project Work - Phase II	CG	32	0	0	32	16
			Total	32	0	0	32	16

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE = 72

Note:

PC- Professional Core Courses; PE- Professional Elective Courses; CG-Career Guidance Courses; AC- Audit Courses.

- L: Lecture;
- T: Tutorial;
- P: Practical;
- C: Credit
- 1 Hour Lecture = 1 credit
- 2 Hours tutorial = 1 credit
- 2 Hours practical = 1 credit

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215

(An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2022-2023 onwards)

FIRSTSEMESTER

S. No.	Course Code	Name of the Course	Duration of Internal	Continuous End			Weightage of Marks Ouration of Internal Weightage of Marks Sem Ex		Minimum for Pass Semes Exar	s in End ester	
	Code	Course	Exam	Continuous Assessment	End Semester Exam	Max. Marks	End Semester Exam	Total			
			Т	HEORY		II.	1	I.			
1	60 PED 101	Computer Applications in Design	2	40	60	100	45	100			
2	60 PED 102	Concepts of Engineering Design	2	40	60	100	45	100			
3	60 PED 103	Finite Element Methods in Mechanical Design	2	40	60	100	45	100			
4	60 PED 104	Advanced Stress Analysis	2	40	60	100	45	100			
5	60 PED 001	Research Methodology and IPR	2	40	60	100	45	100			
6	60 PAC 001	English For Research Paper writing	2	100	-	100	-	-			
			PR	ACTICAL							
7	60 PED 1P1	CAD Laboratory	3	60	40	100	45	100			
8	60 PED 1P2	Computer Aided Analysis Laboratory I	3	60	40	100	45	100			

^{*}CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department wills put a process in place to ensure that the actual test paper follow the declared pattern.

^{**}End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for the award of terminal examination marks.

60 PED 101	Computer Applications in Design	Category	L	Т	Р	Credit
60 PED 101	Computer Applications in Design	PC	3	0	0	3

- To learn the basics of computer and systems in CAD aspects.
- To get familiarized with the computer graphics application in design.
- To introduce and work with discretized geometry in design of mechanical components and representations of shapes.
- To create solid modeling using graphical knowledge.
- To learn about Finite Element modeling and analysis.

Prerequisite

CAD/CAM

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Conceptualize the principles of CAD systems, implementation and its connections to CAM and CAE systems	Remember &					
	OAM and OAL systems						
CO2	Recognize 2D, 3D transformations and projection transformations	Remember & Analyze					
CO3	Get knowledge of various approaches of geometric modeling	Remember & Apply					
CO4	Comprehend mathematical representation of 2D and 3D entities	Remember & Apply					
CO5	Know basic fundamentals of FEM	Remember & Analyze					

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	2	2	2	1		
CO2	3	3	2	2	2	1		
CO3	3	3	2	3	2	1		
CO4	3	3	2	3	2	1		
CO5	3	3	2	2	2	1		
3- Strong;2-Medium;1-Some								

Assessment Pattern

Bloom's Category		s Assessment s (Marks)	Model Exam (Marks)	End Sem Examination
Bloom's Category	1	2	(Walks)	(Marks)
Remember	10	10	20	20
Understand	20	20	30	30
Apply	30	30	50	50
Analyze (An)	0	0	0	0
Evaluate (Ev)	0	0	0	0
Create (Cr)	0	0	0	0
Total	60	60	100	100

Syllabus

K. S. Rangasamy College of Technology–Autonomous R2022								
	60 F			er Application				
	Hours/		i.E. Engir	neering Desig	n Credit		/laximum	Marka
Semester	L Hours/	T	Р	Total hrs	Credit	CA	ES	Total
I	3	0	0	45	3	40	60	100
Introduction to Computer Graphics Fundamentals Computer Graphics Introduction, transformation of geometric models: translation, scaling, reflection, rotation, homogeneous representation, concatenated transformations; mappings of geometric models, translational mapping rotational mapping, general mapping, mappings as changes of coordinate system; inverse transformations and mapping. Curves and Surfaces Modeling								[9]
Projections of geometric models, orthographic projections, Geometric Modeling, Curve							[9]	
NURBS- Basi modeling, bot representation	colid Modeling cs- curves, lines, undary representat , Analytic Solid Mod d applications: mas	ion (B-re deling (AS	p), Cons M), other	structive Solid	Geometry ns; solid ma	r (CSG), anipulatio	sweep	[9]
Finite Element Modeling and Analysis Finite Element Analysis, finite element modeling, mesh generation mesh requirements, semiautomatic methods, fully automatic methods, System Simulation, Need of simulation, areas of applications, design and engineering applications in visual realism (Hidden – Line – Surface – solid removal algorithms shading - coloring), Introduction to parametric and variational geometry based software's and their principles						[9]		
Assembly mod property calcul	Parts and Product leling - interferences lations - mechanism e standards – IGES,	of position simulatio	ons and o n. Graphi	cs and comput	ting standar			[9]

	Total Hours: 45
Textbo	ook(s):
1.	William M Newman and Robert F Sproull., "Principles of Interactive Computer Graphics", McGraw Hill Book Co. Singapore, 2010.
2.	Ibrahim Zeid and Sivasubramanian, R., "CAD/CAM – Theory and Practice", Tata McGraw Hill Education Private Ltd., New Delhi, 2010.
Refere	ence(s):
1.	Donald Hearn and M Pauline Baker., "Computer Graphics", Prentice Hall Inc, New Delhi, 2006.
2.	David F. Rogers, James Alan Adams "Mathematical elements for computer graphics", 2nd Edition, TataMcGraw-Hill edition, 2010.
3.	Tirupathi R. Chandrupatla, "Introduction to Finite Elements in Engineering", Fourth Edition, Pearson, 2012.
4.	Bathe K.J., Cliffs, N.J. "Finite Element Procedures in Engineering Analysis", PHI Learning, Eastern Economy Editions, 2009.

Course Content and Lecture Schedule

S. No.	Topics	No. of hours
1.0	INTRODUCTION TO COMPUTER GRAPHICS FUNDAMENTALS	
1.1	Computer Graphics Introduction	1
1.2	Transformation of geometric models: translation, scaling	1
1.3	Reflection, rotation, homogeneous representation	1
1.4	concatenated transformations; mappings of geometric models	1
1.5	Translational mapping & rotational mapping	1
1.6	General mapping & changes of coordinate system	2
1.7	Inverse transformations and mapping.	2
2.0	CURVES AND SURFACES MODELING	
2.1	Projections of geometric models	2
2.2	Orthographic projections, Geometric Modeling,	2
2.3	Curve representation: Parametric representation of analytic curves, parametric	1
2.4	Representation of synthetic curves	2
2.5	Curve manipulations & Surface representation.	2

3.0	NURBS AND SOLID MODELING	
3.1	NURBS- Basics- curves, lines, arcs, circle and bi linear surface	2
3.2	Fundamentals of solid modeling, boundary representation (B-rep)	1
3.3	Constructive Solid Geometry (CSG), sweep representation	2
3.4	Analytic Solid Modeling (ASM)	1
3.5	Other representations; solid manipulations	1
3.6	Solid modeling based applications	1
3.7	Mass properties calculations, mechanical tolerancing etc.	1
4.0	FINITE ELEMENT MODELING AND ANALYSIS	
4.1	Finite Element Analysis, finite element modeling	2
4.2	Mesh generation mesh requirements	1
4.3	Semi-automatic methods, fully automatic methods, System	1
4.4	Simulation, Need of simulation, areas of applications	2
4.5	Design and engineering applications in visual realism(Hidden – Line – Surface – solid removal algorithms shading - coloring)	2
4.6	Introduction to parametric and variational geometry based software's and their principles	1
5.0	ASSEMBLY OF PARTS AND PRODUCT DATA EXCHANGE	
5.1	Assembly modeling	1
5.2	interferences of positions and orientation	2
5.3	Tolerances analysis – mass property calculations - mechanism simulation	2
5.4	Graphics and computing standards	1
5.5	Open GL Data Exchange standards	2
5.6	IGES, STEP etc-Communication standards.	1

Course Designer

 $Mr.D.Sathish - \underline{dsathish@ksrct.ac.in}$

60 DED 402	Concepts of Engineering	Category	L	Т	Р	Credit
60 PED 102	Design	PC	3	0	0	3

- To impart knowledge on design process and its requirements
- To learn mathematical modelling and geometric modelling techniques in design process
- To acquire knowledge on materials and the material selection for design process
- To learn various material processing techniques and their selection
- To know the legal, environmental and safety issues in design process

Pre-requisites

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explain the various design process involved in engineering design.	Understand, Apply & Analyze
CO2	Describe the various models and tools used in engineering design.	Understand, Apply & Analyze
CO3	Discuss the methods of material selection and materials in design.	Understand, Apply &Analyze
CO4	Analyze the various materials manufacturing process in design concepts.	Understand & Apply
CO5	Explain the legal, safety and environmental issues related with manufacturing and design.	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	3	3	2		
CO2	3	3	2	2	2	1		
CO3	3	3	3	2	2	1		
CO4	3	3	3	3	2	2		
CO5	3	3	3	2	3	1		
3- Strong;2-Medium;1-Some								

Assessment Pattern

Bloom's Category	Assess	tinuous ment Tests larks)	Model Exam (Marks)	End Sem Examination (Marks)	
	1 2			(warks)	
Remember (R)	10	10	10	10	
Understand (U)	10	10	10	10	
Apply (Ap)	20	20	40	40	
Analyze (An)	20	20	40	40	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

Syllabus

K.S.Rangasamy College of Technology – AutonomousR2022								
		60 PED		cepts of Er		Design		
		Hours/We		E. Engineeri			Maximum Mark	· •
Semester	L	T T	ек Р	Total hrs	Credit C	CA		
Comester	_	•			,		ES	Total
	3	0	0	45	3	40	60	100
Design Process The design process - need identification - design requirements - product life cycle-morphology of design steps of product design - conceptual design, embodiment design, detailed design - concurrent engineering - cad & cam, human factors in design.								[9]
design, mather – simulation fit geometric prog	problem s matical mo- nite differe ramming, s	solving, de deling, geo nce metho structural a	metric mod d, monte-d nd shape d	deling, finite carlo method	element m	odeling, ra	in engineering apid prototyping earch methods,	[9]
Material Selection and Materials in Design The classification and properties of engineering materials- material standards and specifications – methods of material selection – ashby chart and method of weight factors-derivation of material indices- use of material selection chart-Pugh selection method- selection with computed aided databases – design for brittle fracture- design for fatigue failure- design for corrosion resistance- designing with plastics.							[9]	
Material Processing in Design Classification of manufacturing processes and their role in design- factors determining the process selection- use of process selection chart and computerized database – design for manufacturing- design for forging and sheet metal forming-design for casting-design for machining, welding and assembly- design for residual stresses and heat treatment.						[9]		
Legal, Environmental and Safety Issues in Design and Quality Engineering The origin of laws- contracts - liability - tort law- product liability - design aspects of product liability- codes of ethics- solving ethical conflicts- design for environment - life cycle assessment - material recycling and remanufacture- design for safety - potential dangers and guidelines for design for safety-design for reliability failure mode effect analysis-robust design.							[9]	
							Total Hours:	45
Text Book(s):								

1.	George E. Dieter., "Engineering Design – A Materials and Processing Approach", McGraw Hill,
2	Karl T. Ulrich and Steven D. Eppinger., "Product Design and Development", McGraw Hill,
	International Edition, 2011.
Refe	rence(s):
1.	Pahl G andBeitz W., "Engineering Design", 3rd Edition, Springer – Verlag, NY, 2007.
2.	Ray M.S., "Elements of Engineering Design", Prentice Hall Inc., 1985.
3.	Suh. N. P., "The Principles of Design", Oxford University Press, NY, 1990.
4.	Atif Aziz, "Concepts in Engineering Design", New Age International Private Limited, 2017

Course Content and Lecture Schedule

	Topics	No. of hours
1.0	Design Process	
1.1	Introduction –Design Process and Need Identification	1
1.2	Design Requirements	1
1.3	Product Life Cycle	1
1.4	Morphology of Design Steps of Product Design	1
1.5	Conceptual Design, Embodiment Design&Detailed Design	2
1.6	Concurrent Engineering	1
1.7	CAD&CAM, Human Factors in Design	2
2.0	Tools in Engineering Design	•
2.1	Introduction &Creativity and problem solving	1
2.2	Decision theory, Modeling – Role of Models in Engineering Design	2
2.3	Mathematical Modeling, Geometric Modeling, finite element modeling	2
2.4	Rapid Prototyping – Simulation finite difference method, Monte-Carlo Method	2
2.5	Optimization – Search Methods, Geometric Programming, Structural and Shape Optimization	2
3.0	Material Selection and Materials in Design	•
3.1	The Classification and Properties of Engineering Materials	1
3.2	Material Standards and Specifications – Methods of Material Selection	1

3.3	Ashby chart and Method of Weight Factors- Derivation of Material Indice	2
3.4	Use of Material Selection Chart-Pugh Selection Method	1
3.5	Selection with Computed Aided Databases	1
3.6	Design for Brittle Fracture	1
3.7	Design for Fatigue Failure	1
3.8	Design for Corrosion Resistance- Designing with Plastics	2
4.0	Material Processing in Design	
4.1	Classification of Manufacturing Processes and their Role in Design	1
4.2	Factors Determining the Process Selection- Use of Process Selection Chart and Computerized Database	2
4.3	Design for Manufacturing	1
4.4	Design for Forging and Sheet Metal Forming	2
4.5	Design for Casting-Design for Machining, Welding and Assembly.	2
4.6	Design for Residual Stresses and Heat Treatment	1
5.0	Legal, Environmental and Safety Issues in Design and Quality Engineering	ıg
5.1	The Origin of Laws- Contracts - Liability – Tort Law	1
5.2	Product Liability – Design Aspects of Product Liability- Codes of Ethics	2
5.3	Solving Ethical Conflicts- Design for Environment	1
5.4	Life Cycle Assessment – Material Recycling and Remanufacture-Design for Safety	2
5.5	Potential Dangers and Guidelines for Design for Safety	2
5.6	Design for Reliability Failure Mode Effect Analysis-Robust Design	1

Course Designer

 $Dr.P.S.Sampath - \underline{sampathps@ksrct.ac.in}$

60 PED 103	Finite Element Methods in	Category	L	Т	Р	Credit
	Mechanical Design	PC	3	0	0	3

- To explore the mathematical theory involved in FEM
- To apply the various steps involved in FEM for solving 1-D problems
- To know the procedure and to solve two dimensional problems
- To implement computer to solve problems involving higher order elements
- To learn and solve linear, static and dynamic problems in Structural Mechanics.

Pre-requisites

-Nil-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Develop system level matrix equations from a given mathematical model of a problem following the Galerkin weighted residual method or principle of stationary potential.	Understand, Apply& Analyze
CO2	Formulate 1D bar, beam elements and apply them to solve 1-D structural mechanics problems.	Understand & Apply
CO3	Apply FEM for solving 2D structural mechanics problems with plane stress, plane strain and ax symmetric conditions	Understand &Apply
CO4	Implement Gauss-Legendre scheme of numerical integration to evaluate integrals for iso-parametric elements	Remember, Apply & Analyze
CO5	Obtain the fundamental frequency of natural vibration for bars and beams.	Understand & Apply

	_					
COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	2
CO2	3	3	3	3	2	2
CO3	3	3	3	3	2	1
CO4	3	3	3	3	2	1
CO5	3	3	3	3	3	2
3- Strong; 2-Me	edium; 2-Low					

Assessment Pattern

Bloom's Category		Assessment (Marks)	Model Exam	End Sem Examination(Marks)	
	1	2	(Marks)		
Remember (R)	10	10	20	20	
Understand (U)	10	10	20	20	
Apply (Ap)	20	20	30	30	
Analyse (An)	20	20	30	30	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

Syllabus

	K.S.Rangasamy College of Technology – AutonomousR2022								
		60	PED 103 - I				anical Design	1	
					. Engineering		T		
Se	mester		Hours/Weel		Total hrs	Credit			
	11100101	L	T	Р	P C CA C	E	Total		
	1	3	0	0	45	3	40	6	100
Fundamentals of FEM Introduction, Classification of problems – Dimensionality, time dependence, Boundary value problems, Initial value problems, Linear/Non-linear, etc., - Differential equation as the starting point for FEM, Finite element formulation, variational, weighted residual -Formulation of B.V.P.						[9]			
Step Elen	os in finite nents, Lo	element m	ethod, discr obal coord	inates, Noo	ypes of elem dal degrees	of freedor	Shape function 1 D problem 1eat Transfer	lems from	[9]
2-D	problem	s from S	tructural M		–Plane stre		olane strain of virtual work		[9]
Con	iputer im	•	n, higher		nents, Iso-pa o and three p		formulation- ation.	Coordinate	[9]
Dynamic Analysis Eigen-value problems – Natural vibration of bars and beams, Methods to find Eigen values and Eigenvectors-Introduction to transient field problems.						values and	[9]		
							7	ΓotalHours	45
	Book(s)								
1.	1. Chandrupatla and Belegundu "Introduction to Finite Elements in Engineering", Prentice Hall of India Pvt. Ltd. New Delhi, 4 th Edition, 2015.								
2	2 Reddy J N, "Finite Element Method", Tata McGraw Hill publishing Co Ltd, New Delhi, 3 rd Edition, 2006.								
Refe	Reference(s):								
1.	Logan I	Deryl L., "A	First Course	e in Finite E	lement Metho	od", Thoms	son Brook/Co	le, 5th Ed.20	12.
2.	Cook R	.D. "Conce	ots and App	lications of	Finite Eleme	nt Analysis	" Wiley, New	York, 4th Ed.	2007.

Bathe K.J., Cliffs, N.J. "Finite Element Procedures in Engineering Analysis", PHILearning, Eastern Economy Editions, 2009.
 Ross C T F., "Advanced Applied Finite Element Methods", Horwood Publishing, 1998.

Course Content and Lecture Schedule

S.No.	Topics	No.of hours
1.0	FUNDAMENTALS OF FEM	
1.1	Introduction, Classification of problems	1
1.2	Dimensionality, time dependence, Boundary value problems	1
1.3	Initial value problems, Linear/Non-linear, etc.	1
1.4	Differential equation as the starting point for FEM	2
1.5	Finite element formulation	1
1.6	Variational, weighted residual	1
1.7	Formulation of B.V.P	2
2.0	FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL PROBLEMS	
2.1	Steps in finite element method, discretization	1
2.2	Types of elements used, Shape functions, Linear Elements	2
2.3	Local and Global coordinates, Nodal degrees of freedom	2
2.4	1 D problems from Structural Mechanics -Bar and Beamproblems	2
2.5	Applications to Heat Transfer problems	2
3.0	FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS	
3.1	2-D problems from Structural Mechanics	1
3.2	Plane stress and plane strain problems	2
3.3	Axisymmetric problems	2
3.4	Symmetric forces and geometry	2
3.5	Principle of virtual work	2

4.0	ISO-PARAMETRIC FORMULATION	
4.1	Computer implementation	1
4.2	Higher order elements	2
4.3	Iso-parametric formulation	2
4.4	Coordinate transformation and Gauss quadrature	2
4.5	One, two and three point integration	2
5.0	DYNAMIC ANALYSIS	
5.1	Eigen-value problems	1
5.2	Natural vibration of bars and beams	2
5.3	Methods to find Eigen values	2
5.4	Methods to find Eigenvectors	2
5.5	Introduction to transient field problems	2

Course Designer

Mr.U.Vivek - viveku@ksrct.ac.in

60 DED 404	Advanced Street Analysis	Category	L	Т	Р	Credit
60 PED 104	Advanced Stress Analysis	PC	3	0	0	3

- To enable the students to provide fundamental theory of elasticity and energy methods for stress and strain analysis.
- To learn the theory of torsion and its analogies
- To acquire the concept of shear center in symmetrical and unsymmetrical bending
- To learn knowledge on pressurized cylinders and rotating disks
- To impart knowledge on method of computing contact stresses.

Pre-requisite

Strength of Materials

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know the concept of elasticity, and the difference between stress and strain.	Understand, Apply & Analyze
CO2	Apply basic field equations to torsion, bending and two dimensional energy methods.	Understand, Apply & Analyze
CO3	Solve problems in unsymmetrical bending and shear center.	Understand, Apply & Analyze
CO4	Calculate the stresses and deformation of the pressurized cylinders and rotating disc.	Understand & Apply
CO5	Apply principles of continuum mechanics to design a structure or component to achieve desired performance under realistic constraints.	Understand & Apply

Cos	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	3	2	3	2		
CO2	3	3	3	2	2	2		
CO3	3	3	2	3	2	2		
CO4	3	2	2	2	1	2		
CO5	3	3	2	2	3	2		
3- Strong;2-M	3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category		Assessment (Marks)	Model Exam	End Sem Examination(Marks)	
	1	2	(Marks)		
Remember (R)	5	5	15	15	
Understand (U)	5	5	15	15	
Apply (Ap)	30	30	40	40	
Analyze (An)	20	20	30	30	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

Syllabus

K. S. Rangasamy College of Technology–AutonomousR2022								
		60		Advanced Str		is		
				E. Engineerin				
Semester		Hours/Wee		Total hrs	Credit	N	Maximum Marks	
Ocinestei	L	Т	Р		С	CA	ES	Total
l	3	0	0	45	3	40	60	100
Theory of Elasticity Analysis of stress, Analysis of stain, Elasticity problems in two dimension and three dimensions, Mohr's circle for three dimensional stresses. Stress tensor, Air's stress function in rectangular and polar coordinates. Energy method for analysis of stress, strain and deflection, three theorem's - theorem of virtual work, theorem of least work, Castiglione's theorem, Rayleigh Ritz method, Galekin's method.					[9]			
beams subje	hear centre	for various ymmetrical	thin section loading-ker	ns - shear flows n of a section.	s. Stresses a	and Deflection	s in	[9]
Circumference subjected to	Stresses in Flat Plates and Curved Members Circumference and radial stresses – deflections - curved beam with restrained ends - closed ring subjected to concentrated load and uniform load - chain links and crane hooks. Solution of rectangular plates – pure bending of plates – deflection – uniformly distributed load – various end conditions.					[9]		
Theory of Torsion Torsion of prismatic bars of solid section and thin walled section. Analogies for torsion, membrane analogy, fluid flow analogy and electrical analogy. Torsion of conical shaft, bar of variable diameter, thin walled members of open cross section in which some sections are prevented from warping, Torsion of noncircular shaft					[9]			
Stresses in Rotating Members and Contact Stresses Radial and tangential stresses in solid disc and ring of uniform thickness and varying thickness allowable speeds. Methods of computing contact stress-deflection of bodies in point and line contact applications.					[9]			
						To	otal Hours	45
Text Book(s):							

1.	Richard Budynas, R. G., "Advance Strength and Applied Stress Analysis", 2 nd Edition, WCB/ McGraw Hill 2017.						
2.	Dally, J. W. and Riley W F., "Experimental Stress Analysis", 3 rd Edition, McGraw Hill International,1991.						
Refe	erence(s):						
1.	Sadd, Martin H., "Elasticity: Theory, applications and Numeric", 3 rd Edition, Academic Press 2014.						
2.	Boresi, A.P. and Chong K P., "Elasticity in Engineering Mechanics", 2 nd Edition, John Wiley & Sons, 1987.						
3.	Stephen Timoshenko, Goodier J N., "Theory of Elasticity" 3 rd edition, McGraw Hill publication, 2017						
4.	Stephen Timoshenko, "Advanced Strength of Materials", Vol. 1 and 2, 3 rd Edition, CBS Publishers and Distributors Pvt. Ltd., 2002.						

Course Contents and Lecture Schedule

S.No.	Topics	No.of hours
1.0	THEORY OF ELASTICITY	
1.1	Analysis of stress and stain	1
1.2	Elasticity problems in two dimension and three dimensions	1
1.3	Mohr's circle for three dimensional stresses	1
1.4	Stress tensor, Air's stress function in rectangular and polar coordinates	1
1.5	Energy method for analysis of stress, strain anddeflection	1
1.6	Three theorem's -theorem of virtual work, theorem ofleast work	2
1.7	Castiglione's theorem, Rayleigh Ritz method, Galekin's method	2
2.0	SHEAR CENTRE AND UNSYMMETRICAL BENDING	
2.1	Location of shear centre for various thin sections	2
2.2	shear flows in thin sections	2
2.3	Stresses and Deflections in beams subjected to unsymmetrical loading	3
2.4	kern of a section	2
3.0	STRESSES IN FLAT PLATES AND CURVED MEMBERS	
3.1	Circumference and radial stresses	1
3.2	Deflections - curved beam with restrained ends	1
3.3	Closed ring subjected to concentrated load and uniform load	1
3.4	Chain links and crane hooks	1
3.5	Solution of rectangular plates	1
3.6	Pure bending of plates	1
3.7	Deflection – uniformly distributed load	1

3.8	Various end conditions	2
4.0	THEORY OF TORSION	
4.1	Torsion of prismatic bars of solid section and thin walled section	2
4.2	Analogies for torsion, membrane analogy	1
4.3	Fluid flow analogy and electrical analogy	1
4.4	Torsion of conical shaft, bar of variable diameter	2
4.5	Thin walled members of open cross section in which some sections are prevented from warping	2
4.6	Torsion of noncircular shaft	1
5.0	STRESSES IN ROTATING MEMBERS AND CONTACT STRESSES	
5.1	Radial and tangential stresses in solid disc	1
5.2	Radial and tangential stresses in ring of uniform thickness	2
5.3	Varying thicknessallowable speeds	2
5.4	Methods of computing contact stress-deflection of bodies in point	2
5.5	Linecontact applications	2

Course Designer

 $Dr. V. P. Arthanaries war an - \underline{arthanaries war an @ksrct.ac.in}$

60 PED 001	Research Methodology and IPR	Category	L	Т	Р	Credit
		PC	3	0	0	3

- To understand the principles research process.
- To develop knowledge in analytical skills for collection of research data.
- To understand the procedure in the preparation of reports.
- To accomplish basic idea about the process involved in intellectual property rights.
- To enlighten the process of patent filling.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To understand the research process and design.	Remember, Understand & Apply
CO2	To gain the knowledge about sources and collection of research data	Remember, Understand & Analyze
CO3	To understand the procedure of data analysis and preparation of reports and checking plagiarism.	Remember, Understand & Analyze
CO4	To gain the knowledge on trade mark and functions of UNESCO in IPR.	Remember, Understand & Apply
CO5	To enlighten the benefits, E-filing and Examinations related to patents.	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	2	2	2	
CO2	3	3	2	2	2	2	
CO3	3	3	2	2	2	2	
CO4	3	3	2	2	2	2	
CO5	3	3	2	2	2	2	
3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem	
	1	1 2		Examination (Marks)	
Remember (R)	10	10	20	30	
Understand (U)	20	20	40	30	
Apply (Ap)	30	30	40	30	
Analyze (An)	0	0	0	10	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

Syllabus

	K.S. Rangasamy College of Technology – Autonomous R 2022							
60 PED 001- Research Methodology and IPR PED : M.E. Engineering Design								
		Hours/W		Total hrs	Credit		aximum Marks	
Semester	L	T	P	Total III	C	CA	ES	Total
I	3	0	0	45	3	40	60	100
Research Design Overview of research process and design, Use of Secondary and exploratory data to answer the research question, Qualitative research, Observation studies, Experiments and Surveys, selection of the Right Medium and Journal of publication, Translation of research.							[9]	
Data Collection Measurements Data - Preparin	Measure	ement Sca			nd Instrum	nents, Samplinç	g and methods.	[9]
Data Analysis and Reporting Overview of Multivariate analysis, Hypotheses testing and Measures of Association. Presenting Insights and findings using written reports and oral presentation. Checks for plagiarism, Falsification, Fabrication and Misrepresentation.							[9]	
Intellectual Property Rights Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance							[9]	
Patents Patents – objectives and benefits of patent, Concept, features of patent, Inventive step, Specification, Types of patent application, process E-filling, Examination of patent, Grant of patent, Revocation, Equitable Assignments, Licences, Licensing of related patents, patent agents, Registration of patent agents.						[9]		
							Total Hours:	45
Text Book(s): 1. David I.	Rainbrida	e "Intella	stual Drop	erty", Longma	an Oth Edit	ion 2012		
		-	•		-	*	n Methods", Tata N	/lcGraw Hill
	on, 11e (2				· 		•	

Rev. No.0/w.e.f. 01.08.22 Passed in BoS Meeting held on 20/07/22 Approved in Academic Council Meeting held on 23/07/2022

Refere	nce(s):				
1.	Chawla H S., "Introduction to Intellectual Property Rights", CBS PUB & DIST PVT Limited, INDIA, 2019.				
2.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade Secrets", Entrepreneur Press, 2007				
3.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools & techniques", Wiley, 2007				
4.	Arun K. Narasani, Kankanala K.C., Radhakrishnan V., "Indian Patent Law and Practice", Oxford University Press, 2010.				
5.	Richard Stim, "Patent, Copyright & Trademark - An Intellectual Property Desk Reference", NOLO Publishers, 2020.				
6.	The Institute of Company Secretaries of India, Statutory body under an Act of parliament, "Professional Programme Intellectual Property Rights, Law and practice", September 2013.				

Course Contents and Lecture Schedule

S.No.	Topics	No.of hours
1.0	Research Design	<u>.</u>
1.1	Overview of research process and design	1
1.2	Use of Secondary and exploratory data to answer the research question	2
1.3	Qualitative research	1
1.4	Observation studies	1
1.5	Experiments and Surveys	1
1.6	Selection of the Right Medium and Journal for publication	2
1.7	Translation of Research	1
2.0	Data Collection and Sources	1
2.1	Measurements, Measurement Scales	2
2.2	Questionnaires and Instruments	2
2.3	Sampling and methods	2
2.4	Data - Preparing, Exploring, examining and displaying	3
3.0	Data Analysis and Reporting	
3.1	Overview of Multivariate analysis	1
3.2	Hypotheses testing and Measures of Association	2
3.3	Presenting Insights	1
3.4	Findings using written reports and oral presentation	2
3.5	Checks for Plagiarism	1
3.6	Falsification	1

3.7	Fabrication, and Misrepresentation	1
4.0	Intellectual Property Rights	
4.1	Intellectual Property – The concept of IPR	1
4.2	Evolution and development of concept of IPR, IPR development process	2
4.3	Trade secrets, utility Models, IPR & Bio diversity	2
4.4	Role of WIPO and WTO in IPR establishments	1
4.5	Right of Property, Common rules of IPR practices	1
4.6	Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance	2
5.0	Patents	
5.1	Patents – objectives and benefits of patent, Concept, features of patent	2
5.2	Inventive step, Specification, Types of patent application	2
5.3	Process E-filling, Examination of patent	1
5.4	Grant of patent, Revocation	1
5.5	Equitable Assignments, Licences, Licensing of related patents	2
5.6	Patent agents, Registration of patent agents	1

Course Designers

Dr.A.Murugesan – <u>murugesana@ksrct.ac.in</u>

60 PED 1P1	CAD Laboratory	Category	L	Т	Р	Credit
		PC	0	0	4	2

- To apply basic concepts to develop construction (drawing) techniques
- To manipulate drawings through editing and plotting techniques
- To learn geometric construction and produce template drawings
- To understand and demonstrate dimensioning concepts and techniques
- To learn the use of Blocks, Design Center, and Tool Palettes.

Pre-requisite

- NIL-

Course Outcomes

On the successful completion of the course, students will be able to

001	Use the modern engineering tools necessary for engineering practice	Understand
CO1	Ose the modern engineering tools necessary for engineering practice	&Apply
CO2	Draw 2D part drawings, sectional views, and assembly drawings as per	Understand
CO2	standards.	&Apply
CO2	Create 3D Model on any CAD software	Understand
CO3	Create 3D Model on any CAD software	&Apply
CO4	Convert 3D solid models into 2D drawings and prepare different views,	Understand
CO4	sections, and dimensioning of part models.	&Apply
		Understand,
CO5	Examine interference to ensure that parts will not interfere.	Apply & Create
I		

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	3	3	2	3	2	
CO2	1	3	3	2	3	2	
CO3	1	3	3	2	3	2	
CO4	1	3	3	2	3	2	
CO5	1	3	3	2	3	2	
3- Strong;2-Medium;1-Some							

K.S. Rangasamy College of Technology – Autonomous R 2022								
60 PED 1P1 - CAD Laboratory								
	PED : M.E. Engineering Design							
Semester		Hours / Week			Credit	N	/laximum	Marks
Semester	L	Т	Р	Total hrs	С	CA	ES	Total
I	0	0	4	60	2	60	40	100

List of Experiments:

- 1. Part and Assembly of Flange Coupling
- 2. Part and Assembly of Universal Coupling
- 3. Part and Assembly of Bushed pin type flanged coupling
- 4. Part and Assembly of Knuckle Joint
- 5. Part and Assembly of Plummer Block
- 6. Part and Assembly of Connecting rod
- 7. Part and Assembly of Screw Jack
- 8. Part and Assembly of C-Clamp
- 9. Part and Assembly of Machine Vice
- 10. Part and Assembly of Foot-step bearing

Text book (s):

1 Butt N.D., "Machine Drawing", Charotar Publishing house Pvt. Ltd., 51st Edition, New

Course Designers

Dr. K.Raja - rajak@ksrct.ac.in

60 PED 1P2	Computer Aided Analysis	Category	L	Т	Р	Credit
60 PED IP2	Laboratory I	PC	0	0	4	2

- To develop the students to perform the structural analysis of 2D and 3D trusses
- To learn the students to perform structural analysis of beams
- To impart knowledge on torsion and bending analysis of bar and beam using CAE software.
- To develop the students to perform the stress analysis of plate, corner bracket
- To acquire skill to perform stress analysis of pressure vessel and cylinder using CAE software.

Pre-requisite

CAD Laboratory

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Perform the structural analysis of 2D and 3D trusses	Understand & Apply
CO2	Perform the structural analysis of beams	Understand & Apply
CO3	Perform the torsion and bending analysis of bar and beam	Understand & Apply
CO4	Perform the stress analysis of plate and corner bracket	Understand & Apply
CO5	Perform the stress analysis of cylindrical component	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	2
CO2	3	3	3	2	3	2
CO3	3	3	3	2	3	2
CO4	3	3	3	2	3	2
CO5	3	3	3	2	3	2
3- Strong; 2-Me	edium; 1-Some					

	K.	S. Rangasamy	College of Te	echnology – Au	tonomou	s R 2022		
		60 PED 1P	2- Computer A	Aided Analysis	Laborato	ry I		
		l	PED : M.E. En	gineering Desi	gn			
Semester		Hours / Week		Total hrs	Credit	N	/laximum	Marks
Semester	L	Т	Р	Total ilis	С	CA	ES	Total
I	0	0	4	60	2	60	40	100

List of Experiments:

- 1. Structural analysis of four bar truss under structural and thermal loading.
- 2. Structural analysis of 3D space truss.
- 3. Stress and deflection analysis of simply supported beam with different support conditions
- 4. Analysis of continuous beam with overhang and multiple loading conditions.
- 5. Torsion analysis of a stepped cantilever bar.
- 6. Bending analysis of a simply supported I beam.
- 7. Stress analysis of a rectangular plate with circular holes.
- 8. Stress analysis of corner bracket with plane stress condition.
- 9. Stress analysis of axi symmetric components.
- 10. Stress analysis of a long cylindrical pressure vessel using plane strain element.

Text book (s):

Chandrupatla and Belegundu "Introduction to Finite Elements in Engineering", Prentice Hall of India Pvt. Ltd. New Delhi, 4th Ed., 2015.

Course Designer

Mr.P.Prakash-pprakash@ksrct.ac.in

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215

(An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2022-2023 onwards)

SECOND SEMESTER

S.	Course	Name of the Course	Duration of	Weightage of Marks			Minimum Marks for Pass in End Semester Exam		
No.	Code	Name of the Course	Internal Exam	Continuous Assessment	End Semester Exam **	Max. Marks	End Semester Exam	Tota I	
	THEORY								
1	60 PED 201	Advanced Vibrations and Acoustics	2	40	60	100	45	100	
2	60 PED 202	Integrated Product Development	2	40	60	100	45	100	
3	60 PED E1*	Programme Elective – I	2	40	60	100	45	100	
4	60 PED E2*	Programme Elective – II	2	40	60	100	45	100	
5	60 PED E3*	Programme Elective – III	2	40	60	100	45	100	
6	60 PED E4*	Programme Elective – IV	2	40	60	100	45	100	
7	60 PAC 002	Disaster Management	2	100	-	100	-	-	
		F	PRACTICAL						
8	60 PED 2P1	Computer Aided Analysis Laboratory II	3	60	40	100	45	100	
9	60 PED 2P2	Technical Report Preparation and Presentation	3	100	-	100	-	-	
10	60 PED 2P3	Mini Project	3	100	-	100	-	-	

^{*}CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

^{**} End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for the award of terminal examination marks.

60 DED 204	Advanced Vibrations and	Category	L	Т	Р	Credit
60 PED 201	Acoustics	PC	3	0	0	3

- To impart knowledge on mechanical vibrations of single of freedom and continuous systems.
- To design systems to achieve the vibratory response, analyze and predict vibratory behavior of mechanical systems using multiple degrees of freedom.
- To interpret and solve acoustic engineering problems using analytical, modern computational and experimental methods.
- To understand the fundamentals of acoustics in engineering applications.
- To understand the principles in psychoacoustics used for Speech, mechanism of hearing, thresholds of the ear.

Pre-requisite

-Nil-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Predict response of a SDOF system, damped or undamped, subjected to simple arbitrary base or force excitations.	Understand, Apply & Analyze
CO2	Write differential equations of motion for MDOF systems, and through the technique of decoupling and orthogonal properties of natural modes.	Understand, Apply &Analyze
CO3	Obtain the Eigen-values and mode shapes of natural vibrations of beams and response to harmonic excitations using orthogonal properties of natural modes and to obtain natural frequencies and mode shapes.	Understand & Apply
CO4	Interpret and solve the acoustic engineering problems using analytical methods.	Understand & Apply
CO5	Apply principles of Psychoacoustics	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO 1	3		2	3	2	2
CO 2	3		3	3	2	2
CO 3	3		3	3	2	2
CO 4	3		2	3	2	2
CO 5	3		2	3	2	2

Bloom's Category		Assessment (Marks)	Model Exam	End Sem Examination(Marks)	
	1	2	(Marks)		
Remember (R)	10	10	30	30	
Understand (U)	20	20	30	30	
Apply (An)	30	30	30	30	
Analyze	0	0	10	10	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

K.S.Rangasamy College of Technology –Autonomous R2022								
		60 PED 2	201 - Advar	ced Vibration	s and Acou	stics		
Semester	I	Hours/Wee	ek	Total hrs	Credit	N	Maximum N	/larks
Semester	L	Т	Р	Total firs	С	CA	ES	Total
I	3	0	0	45	0	40	60	100
	rations, Re	sponse of		gree of freedor Solution (Duhan				[9]
freedom syst	of freedor ems, Eiger	m system: n values ar	s, Free, da nd Eigen ve	mped and for ctors, normal i	modes and	their propertie		[9]
Vibration of Continuous Systems Continuous Systems, Natural Vibrations of beams – Differential equation of motion, solution by the method of separation of variables, frequency parameter, natural frequencies and mode shapes, forced vibration of simply supported beam subjected to concentrated harmonic force at a point, Mode summation method, discretized models of continuous systems and their solutions using Rayleigh – Ritz method Vibration Control, Methods of vibration control, principle of superposition, Numerical and computer methods in vibrations: Rayleigh, Rayleigh-Ritz and Dunkerley's methods, matrix iteration method for Eigen-value calculations, Holzer's method.						[9]		
Fundamentals of Acoustics Plane acoustic waves, Sound speed, characteristic acoustic impedance of elastic media, sound intensity, dB scale, Transmission Phenomena, transmission from one fluid medium to another, normal incidence, reflection at the surface of a solid, standing wave patterns, Symmetric Spherical waves, near and far fields, simple models of sound sources, sound power, determination of sound power and intensity levels at a point due to a simple source.						[9]		
	chanism of ual loudne			of the ear – itch and timbr				[9]

	Total Hours 45
Tex	tt Book(s):
1.	Rao, S.S., "Mechanical Vibrations", Addison Wesley Longman, New York, 2012.
2.	Lawrence E. Kinsler and Austin R.Frey, "Fundamentals of acoustics", Wiley India Pvt. Ltd., New Delhi, 2009.
Ref	ference(s):
1.	Thomson, W.T., "Theory of Vibration with Applications", CBS Publishers and Distributors, New Delhi, 2002.
2.	Iyengar, R.N., "Elements of Mechanical Vibration", I K International Pub. House Pvt. Ltd., New Delhi, 2007.
3.	Graham S. Kelly and Shashidar K. Kudari., "Mechanical Vibrations", Tata McGraw Hill Pub. Ltd., ND, 2007.
4.	Michael Rettinger, "Acoustic Design and Noise Control", Vol. I & II, Chemical Pub.Co., New York, 1977.

S.No.	Topics	No.of hours
1.0	FUNDAMENTALS OF VIBRATION	
1.1	Transient Vibrations	1
1.2	Response of a single degree of freedom damped and undamped system to step excitation	2
1.3	Response of a single degree of freedom damped and undamped system to any arbitrary excitation	2
1.4	Convolution (Duhamel's) integral	2
1.5	Impulse response function	2
2.0	MULTI DEGREE OF FREEDOM SYSTEMS	
2.1	Multi degree of freedom systems	1
2.2	Free, damped and forced vibrations of two degree of freedom systems,	2
2.3	Eigen values and eigen vectors, normal modes and their properties,	2
2.4	Mode summation method	2
2.5	Use of lagrange's equations to derive the equations of motion	2
3.0	VIBRATION OF CONTINUOUS SYSTEMS	
3.1	Continuous Systems, Natural Vibrations of beams – Differential equation of motion,	1
3.2	Solution by the method of separation of variables, frequency parameter, natural frequencies and mode shapes	1
3.3	Forced vibration of simply supported beam subjected to concentrated harmonic force at a point, Mode summation method, discretized models of continuous systems and their solutions using Rayleigh – Ritz method,	2

3.4	Vibration Control, Methods of vibration control, principle of superposition, Numerical and computer methods in vibrations	2
3.5	Rayleigh, Rayleigh-Ritz and Dunkerley's methods	2
3.6	Matrix iteration method for Eigen-value calculations, Holzer's method	1
4.0	FUNDAMENTALS OF ACOUSTICS	
4.1	Plane acoustic waves, Sound speed, characteristic acoustic impedance of elastic media,	2
4.2	Sound intensity, dB scale, Transmission Phenomena, transmission from one fluid medium to another, normal incidence,	2
4.3	Reflection at the surface of a solid, standing wave patterns, Symmetric Spherical waves, near and far fields,	2
4.4	Simple models of sound sources, sound power	2
4.5	Determination of sound power and intensity levels at a point due to a simple source	1
5.0	PSYCHOACOUSTICS	
5.1	Speech, mechanism of hearing, thresholds of the ear	2
5.2	Sound intensity and frequency, loudness, equal loudness levels	2
5.3	Loudness, pitch and timbre	2
5.4	Beats	1
5.5	Masking by pure tones, masking by noise	2

Course Designers

Dr. K. Santhanam - santhanam@ksrct.ac.in

CO DED 202	Integrated Product Development	Category	L	Т	Р	Credit
60 PED 202	integrated Froduct Development	PC	3	0	0	3

- To understand the principles of generic development process; product planning; customer need analysis for new product design and development.
- To enhance the understanding of setting product specifications and generate, select, screen, and test concepts for new product design and development.
- To apply the principles of product architecture and the importance of industrial design principles and DFM principles for new product development.
- To expose the different Prototyping techniques, Design of Experiment principles to develop a robust design and importance to patent a developed new product.
- Applying the concepts of economics principles; project management practices in development of new product.

Pre-requisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply the principles of generic development process; product planning; customer need analysis for new product design and development.	Remember, Understand & Apply
CO2	Identify product specifications and generate, select, screen, test concepts for new product design and development.	Remember & Apply
CO3	Apply the principles of product architecture, industrial design and design for manufacturing principles in new product development.	Remember & Apply
CO4	Apply the adopt Prototyping techniques and Design of Experiment principles to develop a robust design and document a new product for patent.	Remember, Understand & Apply
CO5	Apply the engineering concepts on product development economics.	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	2
CO2	3	3	3	2	2	2
CO3	3	3	3	2	2	2
CO4	3	3	3	2	2	2
CO5	3	3	3	2	2	2
3- Strong;2-Me	dium;1-Some	•			•	•

Bloom's Category		ssessment Tests arks)	Model Exam	End Sem
	1	2	(Marks)	Examination (Marks)
Remember (R)	10	10	20	30
Understand (U)	20	20	40	30
Apply (Ap)	30	30	40	30
Analyze (An)	0	0	0	10
Evaluate (Ev)	0	0	0	0
Create (Cr)	0	0	0	0
Total	60	60	100	100

K.S.Rangasamy College of Technology – Autonomous R2022								
	60 PE			Product Deve neering Design	•			
	Hours	/Week	.c. Liigii		Credit	N	/laximum M	larks
Semester	L	Т	Р	Total hrs	С	CA	ES	Total
II.	3	0	0	45	3	40	60	100
Introduction to P	Introduction to Product Design						[9]	
Challenges of Pro	Successful Production Development - Process of Identif	- Product l	Developn	nent Processes				
Product Specific	ations, Concept G	eneration	, Selection	on and Testin	g			[9]
	and Final product oring - Concept Tes				oncept Gen	eration -	Concept	
Product Architec	ture and Industria	l Design						[9]
Platform Planning	Product Architecture – Implications and establishing the architecture – Delayed Differentiation – Platform Planning – Related system level design issues - Need and impact of industrial design - Industrial design process - management of the industrial design process - assessing the quality of industrial design.							
Design for Manu	facture, Prototypir	ng and Ro	bust Des	sign				[9]
DFM Definition - Estimation of Manufacturing cost- Reducing the component costs, costs of supporting function and assembly costs – Impact of DFM decision on other factors - Prototype basics - Principles of prototyping – Prototyping technologies - Planning for prototypes - Robust design – Robust Design Process.								
Product Development Economics and Managing Projects					[9]			
Economic Analysis – Elements of Economic Analysis - Understanding and representing tasks-Baseline Project Planning - Accelerating the project - Project execution – Postmortem project evaluation.								
						То	tal Hours	45
Textbook(s):								

1.	Karl T.Ulrich, Steven D.Eppinger, Anita Goyal, "Product Design and Development", McGraw –Hill Education (India) Pvt. Ltd, 4th Edition, 2012.
2.	Kevin N Otto, Kristin L Wood, "Product Design – Techniques in Reverse Engineering and NewProduct Development", Pearson Education, Inc, 2016
Refer	ence(s):
1.	Kenneth Crow, "Concurrent Engineering/Integrated Product Development". DRM Associates, 6/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.
2.	Stephen Rosenthal, "Effective Product Design and Development", Business One Orwin Homewood, 1992
3.	Stuart Pugh, "Total Design – Integrated Methods for successful Product Engineering", Addison Wesley Publishing, Neyourk, NY, 1991.

S.No.	Topics	No.of hours
1.0	INTRODUCTION TO PRODUCT DESIGN	
1.1	Characteristics of Successful Product development	1
1.2	Duration and Cost of Product Development	1
1.3	Challenges of Product Development	2
1.4	Product Development Processes and Organizations	2
1.5	Product Planning Process	2
1.6	Process of Identifying Customer Needs	1
2.0	PRODUCT SPECIFICATIONS, CONCEPT GENERATION, SELECTION AN	D TESTING
2.1	Establish Target	1
2.2	Final product specifications	2
2.3	Activities of Concept Generation	2
2.4	Concept Screening and Scoring	2
2.5	Concept Testing Methodologies	2
3.0	PRODUCT ARCHITECTURE AND INDUSTRIAL DESIGN	
3.1	Product Architecture – Implications and establishing the architecture	1
3.2	Delayed Differentiation and Platform Planning	1
3.3	Related system level design issues	1
3.4	Need and impact of industrial design	2
3.5	Industrial design process	2
3.6	Management of the industrial design process	1

3.7	Assessing the quality of industrial design	1
4.0	DESIGN FOR MANFACTURE, PROTOTYPING AND ROBUST DESIGN	
4.1	DFM Definition and Estimation of Manufacturing cost	2
4.2	Reducing the component costs, costs of supporting function and assembly costs	2
4.3	Impact of DFM decision on other factors, Prototype basics	2
4.4	Principles of prototyping, Prototyping technologies	2
4.5	Planning for prototypes, Robust design, Robust Design Process.	1
5.0	PRODUCT DEVELOPMENT ECONOMICS AND MANAGING PROJECTS	
5.1	Economic Analysis – Elements of Economic Analysis	2
5.2	Understanding and representing tasks	2
5.3	Baseline Project Planning - Accelerating the project	2
5.4	Project execution	1
5.5	Postmortem project evaluation	2

Course Designers

Mr.M.Moorthi - moorthi@ksrct.ac.in

60 DED E44	Advanced Machine Design	Category	L	Т	Р	Credit
60 PED E11	Advanced Machine Design	PC	3	0	0	3

- To impart knowledge on product development processes and organizations
- To study design concepts in order to enhance the design process
- To study behavior of engineering materials/components under fatigue and creep.
- To study statistical techniques and its applications in mechanical design
- To learn the Legal, Ethical Environmental and Safety Issues in Design and Quality Engineering

Pre-requisite

Design of Machine Element

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Realize that creativity, manufacturability, assembly, maintainability, emotions, reliability are also important aspects of design other than finding dimensions and stresses in the highly competitive, dynamic and customer centered market.	Understand, Apply & Analyse
CO2	Demonstrate the ability to identify needs of the customer and convert them into technical specifications of a product.	Understand, Apply & Analyse
CO3	Generate different ideas after identifying the need and determining the specifications and constraints of a product for a particular purpose.	Understand, Apply & Analyse
CO4	Understand the principals used while designing for manufacture, assembly, emotions and maintenance.	Understand & Apply
CO5	Know various methods of rapid prototyping the products to test and modify the designs.	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	1	2
CO2	3	2	3	2	1	2
CO3	3	3	2	2	1	2
CO4	3	2	3	2	1	2
CO5	3	3	3	2	1	2
3- Strong;2-Me	edium;1-Some		•		•	•

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem
	1	2	(IVIaIKS)	Examination(Marks)
Remember (R)	10	10	10	10
Understand (U)	10	10	10	10
Apply (Ap)	20	20	40	40
Analyze (An)	20	20	40	40
Evaluate (Ev)	0	0	0	0
Create (Cr)	0	0	0	0
Total	60	60	100	100

		K.S.			of Technolog			2	
			60 F		Advanced Ma E. Engineering		gn		
			Hours/Wee		Total hrs	Credit		Maximum Marks	<u> </u>
Seme	ster	L	Т	Р		С	CA	ES	Total
	II	3	0	0	45	3	40	60	100
Introdu Develop		cesses and	d organizatio	ons, Produ	ct Planning, Tl	he design pr	ocess.		[9]
Need lo	ion, creativ	on and pro vity method	ds, Concept		uct specificati ıman factors ir		t generation	and selection,	[9]
		sing and D acture, ass	_	ntenance, o	casting, forginç	g, sheet met	al forming an	d welding.	[9]
	•		ıre mode e	effect anal	ysis, strength	based reli	ability, paral	el and series	[9]
Design systems Legal, I Industri	for Relia s, robust d Ethical Er ial design:	lesign. nvironmen Design fo	tal and Saf r Emotion a	ety Issues	s in Design an	nd Quality E	ingineering	lesign, Human	[9]
Design systems Legal, I Industri behavio	for Relia s, robust d Ethical Er ial design: our in desig	lesign. nvironmen Design fo	tal and Saf r Emotion a	ety Issues	s in Design an	nd Quality E	ingineering	lesign, Human	
Design systems Legal, I Industri behavio	for Relia s, robust d Ethical Er ial design: our in design ok(s):	lesign. nvironmen Design fo gn, life cycl	ital and Saf r Emotion a le assessme	ety Issues and experi ent, materi	s in Design an ence, Introduc al recycling an	nd Quality E tion to retro d remanufac	ingineering fit and Eco o cture, Rapid F	lesign, Human Prototyping. Total Hours:	[9]
Design systems Legal, I Industri behavio	for Relia s, robust d Ethical Er ial design: our in design ok(s): George Prashar	lesign. nvironmen Design fo gn, life cycl E Dieter, "	tal and Saf r Emotion a le assessme Engineering	ety Issues and experient, materia	s in Design an ence, Introduc al recycling an McGraw Hill C	nd Quality E tion to retro d remanufac ompany, Ne	ingineering fit and Eco o cture, Rapid F w Delhi, 2016	lesign, Human Prototyping. Total Hours:	[9] 45
Design systems Legal, I Industri behavio	for Relia s, robust d Ethical Er ial design: our in design ok(s): George Prashar New De	lesign. nvironmen Design for gn, life cycl E Dieter, "International Kumar, "Internati	tal and Saf r Emotion a le assessme Engineering	ety Issues and experient, materia	s in Design an ence, Introduc al recycling an McGraw Hill C	nd Quality E tion to retro d remanufac ompany, Ne	ingineering fit and Eco o cture, Rapid F w Delhi, 2016	lesign, Human Prototyping. Total Hours:	[9] 45
Design systems Legal, I Industri behavio 1. 2	for Relia s, robust d Ethical Er ial design: our in design ok(s): George Prashar New De nce(s):	lesign. nvironmen Design for gn, life cycl E Dieter, "l t Kumar, ' lhi. 2012.	tal and Saf r Emotion a le assessme Engineering "Product De	ety Issues and experient, materia p Design", I	s in Design an ence, Introduc al recycling an McGraw Hill C	nd Quality E tion to retro d remanufac ompany, Ne ots and Usa	ingineering ofit and Eco of cture, Rapid F w Delhi, 2016 bility", Easter	lesign, Human Prototyping. Total Hours: S. In Economy Edi	[9] 45
Legal, Industribehavio	for Relia s, robust d Ethical Er ial design: our in design ok(s): George Prashar New De nce(s): Woodsor	lesign. nvironmen Design fo gn, life cycl E Dieter, "I nt Kumar, ' Ilhi. 2012.	tal and Saf r Emotion a le assessme Engineering "Product De	rety Issues and experient, materia g Design", I esign, Crea	s in Design an ence, Introduc al recycling an McGraw Hill Cativity, Concep	nd Quality E tion to retro d remanufac ompany, Ne ots and Usa	ingineering ofit and Eco of cture, Rapid F w Delhi, 2016 bility", Easter	lesign, Human Prototyping. Total Hours: S. In Economy Edi	[9] 45
Design systems Legal, I Industri behavio 1. 2 Referent	for Relia s, robust d Ethical Er ial design: our in design ok(s): George Prashar New De nce(s): Woodsor John J.C	lesign. nvironmen Design for gn, life cycl E Dieter, "lat Kumar, 'lhi. 2012. n T.T., "Intro.	tal and Saf r Emotion a le assessme Engineering "Product De oduction to Methods", W	Design", I esign, Crea	s in Design an ence, Introduct al recycling an McGraw Hill Contivity, Concept and Design", Moncionece, 1970.	ompany, Ne	ingineering fit and Eco octure, Rapid F w Delhi, 2016 bility", Easter	lesign, Human Prototyping. Total Hours: S. In Economy Edi	[9] 45

S.No.	Topics	No. of hours
1.0	INTRODUCTION	
1.1	Introduction to development processes and organizations	1
1.2	Development processes	2
1.3	Development organizations	2
1.4	Product Planning	2
1.5	Process Planning	2
2.0	THE DESIGN PROCESS	
2.1	Need Identification and problem definition	2
2.2	Product specification	1
2.3	Concept generation and selection	2
2.4	Evaluation, creativity methods	2
2.5	Concept testing, human factors in design	2
3.0	MATERIAL PROCESSING AND DESIGN	
3.1	Design for manufacture	2
3.2	Design for assembly	2
3.3	Maintenance	1
3.4	Casting, forging	2
3.5	Sheet metal forming and welding	2
4.0	RELIABILITY	
4.1	Design for Reliability	2
4.2	Failure mode effect analysis	2
4.3	Strength based reliability	1
4.4	Parallel and series systems	2
4.5	Robust design	2
5.0	LEGAL, ETHICAL ENVIRONMENTAL AND SAFETY ISSUES IN DESIGN AND QUAL ENGINEERING	İTY
5.1	Industrial design	2
5.2	Design for Emotion and experience	1
5.3	Introduction to retrofit and Ecodesign	1
5.4	Human behaviour in design	1
5.5	Life cycle assessment	1
5.6	Material recycling and remanufacture	1
5.7	Rapid Prototyping	2

Course Designers

Mr.B.Balaji - balajib@ksrct.ac.in

60 PED E12	Design for Manufacturing and	Category	L	Т	Р	Credit
60 PED E12	Assembly	PC	3	0	0	3

- To provide an overview of Design for Manufacturing and Assembly (DFMA) techniques
- To minimize product cost through design and process improvements.
- To introduce the concept and application for design for manufacturing and assembly to practicing designers and manufacturing engineers as well as design students
- To discuss various fundamentals of assembly and design recommendations for product development
- To learn how to reliability concepts to improve quality

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recognize the product development cycle	Remember & Apply
CO2	Know the manufacturing issues that must be considered in the mechanical engineering design process	Remember& Analyze
CO3	Know the principles of assembly to minimize the assembly time	Remember, Understand & Apply
CO4	Know the effect of manufacturing process and assembly operations on the cost of product (not included by others)	Remember& Apply
CO5	Be familiar with tools and methods to facilitate development of manufacture mechanical designs	Remember& Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	1	1
CO2	3	2	2	2	2	1
CO3	3	2	3	2	1	1
CO4	3	3	3	3	2	1
CO5	3	2	2	2	2	1
3- Strong;2-Me	edium;1-Some					

Bloom'sCategory		sessment Tests arks)	Model Exam	End Sem
	1	2	(Marks)	Examination (Marks)
Remember (R)	10	10	10	10
Understand (U)	10	10	10	10
Apply (Ap)	20	20	40	40
Analyze (An)	20	20	40	40
Evaluate (Ev)	0	0	0	0
Create (Cr)	0	0	0	0
Total	60	60	100	100

		K.S.			of Technolog			2	
			60 PED E		n for Manufact		ssembly		
			Hours/Wee		E. Engineering Total hrs	Credit		Maximum Mark	<u> </u>
Semes	ster	L	T	Р	Totalilis	C	CA	ES ES	Total
ļ .	II	3	0	0	45	3	40	60	100
Design,	ction Need Selection o	Identification Identification		lem Definit	ion, Concept 0	<u> </u>			[9]
Properti		eering Mat			terials – I, Sele hapes, Case S		erials – II, Cas	e Studies – I,	[9]
Selectio Bulk De Powder III.	formation P Metallurgy,	acturing Pr Processes, Design fo	Design for S	Sheet Metal	anufacturing Proce Forming Proce Selection of Ma	esses, Desig	n for Machinir	g, Design for	[9]
Design	for Assem for Assemb for Brazing	oly, Review			ses, Design for				
for Heat	t Treatment,			Tiol Adiles	sive bollding, L	Design for Jo	Jilling of Polyt	ners, Design	[9]
Design Design	for Reliabi	, Case-Stu lity lity, Failure	dies – IV		nalysis and Qu				[9]
Design Design	for Reliabi for Reliabil	, Case-Stu lity lity, Failure	dies – IV						
Design Design	for Reliabi for Reliabil Design, Des	, Case-Stu lity lity, Failure	dies – IV					Approach to	[9]
Design Design Robust	for Reliabi for Reliabil Design, Des	, Case-Stu lity lity, Failure sign for Op	dies – IV Mode and timization.	l Effect Ar		ality, Desigr	n for Quality,	Approach to Total Hours:	[9]
Design Design Robust	for Reliabi for Reliabil Design, Des Pk(s):	, Case-Stu lity lity, Failure sign for Op	dies – IV Mode and timization.	I Effect Ar	nalysis and Qu terials", 2nd Ec	ality, Desigr	n for Quality,	Approach to Total Hours:	[9] 45
Design Design Robust Textboo	for Reliabi for Reliabil Design, Design, Desig	, Case-Stu lity lity, Failure sign for Op T H., "Med E, "Enginee	e Mode and attimization.	I Effect Ar avior of Ma A Materia	nalysis and Qu naterials", 2nd Ed	ality, Desigr	n for Quality, and Press, 20 h", 4th Edition	Approach to Total Hours:	[9] 45 Y, 2008.
Design Design Robust Textboo 1. 2.	for Reliabi for Reliabil Design, Design, Design, Design, Design, Design, Design, Design, Dieter G. E. Swift, K. G. 2003.	, Case-Stu lity lity, Failure sign for Op T H., "Med E, "Enginee	e Mode and attimization.	I Effect Ar avior of Ma A Materia	nalysis and Qu naterials", 2nd Ed	ality, Desigr	n for Quality, and Press, 20 h", 4th Edition	Approach to Total Hours: 05. McGraw Hill, N	[9] 45 Y, 2008.
Design Design Robust Textboo 1. 2. 3.	for Reliabi for Reliabil Design, Design, Desig	, Case-Stulity lity, Failure sign for Op T H., "Med E, "Enginee and Booke	e Mode and animization. Chanical Beharing Design er, J D., "Pro	avior of Ma - A Materia	nalysis and Qu naterials", 2nd Ed	ality, Design dition, Wavelaing Approach	and Press, 20 h", 4th Edition	Approach to Total Hours: 05. , McGraw Hill, N' Edition, Elsevier	[9] 45 Y, 2008.

	JohnWiley, NY: Marcel Dekkar, 2010.
3.	Bralla J G, "Handbook of Product Design for Manufacture", McGraw Hill, NY, 1998.
4.	Ashby M F and Johnson K, "Materials and Design - The Art and Science of Material Selection in Product Design", 3rd Edition, Butterworth-Heinemann, 2014.

Topics	No. of hours					
Introduction	1					
Introduction Need Identification	2					
Problem Definition	1					
Concept Generation	2					
Evaluation	1					
Embodiment Design	1					
Selection of Materials and Shapes	2					
Material Consideration	•					
Properties of Engineering Materials	1					
Selection of Materials – I,	1					
Selection of Materials – II, Case Studies – I	2					
Selection of Shapes	1					
Co-selection of Materials and Shapes	2					
Case Studies – II.	2					
Design for Manufacture						
Selection of Manufacturing Processes,	1					
Review of Manufacturing Processes, Design for Casting	2					
Design for Bulk Deformation Processes, Design for Sheet Metal Forming Processes	2					
Design for Machining, Design for Powder Metallurgy, Design for Polymer Processing	2					
Selection of Materials and Processes, Case-Studies – III.	2					
Design for Assembly	•					
Design for Assembly, Review of Assembly Processes	2					
Design for Welding – I	1					
Design for Welding – II	1					
Design for Brazing and Soldering, Design for Adhesive Bonding	2					
Design for Joining of Polymers, Design for Heat Treatment,	2					
Case-Studies – IV	1					
Design for Reliability						
Design for Reliability	1					
Failure Mode and Effect Analysis and Quality	2					
Design for Quality	2					
Approach to Robust Design	2					
Design for Optimization	2					
	Introduction Introduction Need Identification Problem Definition Concept Generation Evaluation Embodiment Design Selection of Materials and Shapes Material Consideration Properties of Engineering Materials Selection of Materials – I, Selection of Materials – II, Case Studies – I Selection of Shapes Co-selection of Materials and Shapes Co-selection of Materials and Shapes Case Studies – II. Design for Manufacture Selection of Manufacturing Processes, Review of Manufacturing Processes, Design for Casting Design for Bulk Deformation Processes, Design for Sheet Metal Forming Processes Design for Machining, Design for Powder Metallurgy, Design for Polymer Processing Selection of Materials and Processes, Case-Studies – III. Design for Assembly Design for Assembly, Review of Assembly Processes Design for Welding – I Design for Welding – II Design for Brazing and Soldering, Design for Heat Treatment, Case-Studies – IV Design for Reliability Design for Reliability Pailure Mode and Effect Analysis and Quality Design for Quality Approach to Robust Design					

Course Designer

Dr.P.S.Sampath - sampathps@ksrct.ac.in

60 DED E42	Mathematical Methods In	Category	L	Т	Р	Credit
60 PED E13	Engineering	PC	3	0	0	3

- To introduce the basic concepts of probability and explain about standard distributions.
- To familiarize the students with various methods in hypothesis testing
- To design and analyze the statistical experiments
- To solve initial value problems for ordinary differential equations numerically.
- To Solve numerically partial differential equations of parabolic, elliptic and hyperbolic types with appropriate boundary and initial conditions encountered in engineering design

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Comprehend the concept of probability and apply the concepts of standard distributions and central limit theorem.	Remember, Understand & Apply
CO2	Test the statistical hypothesis using t, F and χ^2 distributions.	Understand & Analyze
CO3	Analyze the design of experiments using different methods.	Understand & Apply
CO4	Compute the solution for initial value problem using single step and multi-step methods.	Understand & Apply
CO5	Find the solution of PDE using boundary condition.	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	2	1
CO2	3	3	2	3	2	1
CO3	3	3	3	3	2	2
CO4	3	3	3	2	2	2
CO5	3	3	2	2	2	2

Bloom's Category		ssessment Tests arks)	Model Exam	End Sem	
	1	2	(Marks)	Examination (Marks)	
Remember (R)	10	10	10	10	
Understand (U)	10	10	20	20	
Apply (Ap)	20	20	40	40	
Analyze (An)	20	20	30	30	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

K.S. Rangasamy College of Technology – Autonomous R 2022							
60 PED E13 - Mathematical Methods In Engineering							
PED : M.E. Engineering Design							
Hours/Week Total hrs Credit Maximum Marks							
Semester L T P C CA ES	Total						
II 3 0 0 45 3 40 60							
Introduction to Probability Theory Probability theory and sampling distributions: basic probability theory – standard discrete and continuous distributions like Binomial, Poisson, Geometric distributions – Uniform, Exponential, Gamma and Normal distributions – central limit theorem and its significance.							
Testing of Hypothesis Small sample tests based on t, F and Type equation here.distributions – Contingency table (Test for Independency)– Goodness of fit – large sample.	[9]						
Design of Experiments (ANOVA) One way classification – Completely randomized design – Two way classification – Randomized block design – Latin square design – 2n factorial design.							
Ordinary Differential Equations Single step methods: Taylor's series method – Euler's and modified Euler's methods – Fourth order Runge – Kutta method for solving first order equations – Multistep methods: Milne's and Adam's predictor and corrector methods.	[9]						
Partial Differential Equations and Concepts in Solution to Boundary Value Problems Finite different solution of one dimensional heat equation by explicit method: Bender-Schmidt method – implicit method: Crank –Nicholson method – one dimensional wave equation – Laplace equation: Leibmann's iteration processes – Poisson equations.							
Total Hours:							
Text Book(s):							
1. Gupta, S.C, and Kapur, J.N., "Fundamentals of Mathematical Statistics", Sultan Chand, 9th Edition, Delhi, 1996.							
 Grewal B.S and Grewal J.S., "Numerical methods in Engineering and Science", 9th Edition, Kha Publishers, New Delhi, 2007. 							
Reference(s):							

1.	Gupta, S.C, and Kapur, J.N., "Fundamentals of Mathematical Statistics", Sultan Chand, 9th Edition, New Delhi, 1996.
2.	Kandasamy P., Thilakavathy K. and Gunavathy K., "Numerical Methods", 3rd Edition, S.Chand and Co., New Delhi, 2003
3.	Dr. Ameeya Kumar Nayak, Dr.Sanjeev Kumar, "Numerical methods", NPTEL online video courses.
4.	Probability and distributions – Nptel: nptel.ac.in/courses/105103140/2

S.No.	Topic	No. of Hours
1.0	Probability Theory	
1.1	Probability theory	1
1.2	Binomial distribution	1
1.3	Poisson distribution	1
1.4	Geometric distribution	1
1.5	Uniform distribution	1
1.6	Exponential distribution	1
1.7	Gamma distribution	1
1.8	Normal distribution	1
1.9	Central limit theorem	1
2.0	Testing of Hypothesis	
2.1	Introduction to Small sample	1
2.2	t test	1
2.3	F test	1
2.4	Application of t test and F test	1
2.5	Contingency table X2	1
2.6	Goodness of fit X2	1
2.7	Application of Chi-Square test	1
2.8	Large sample	1
2.9	Problems (large sample)	1
3.0	Design of Experiments (ANOVA)	
3.1	One way classification	1
3.2	Completely randomized design	1
3.3	Two way classification	2
3.4	Randomized block design	1
3.5	Latin square design	2
3.6	2 ⁿ factorial design	1
3.7	Application of (ANOVA)	1
4.0	Ordinary Differential Equations	
4.1	Single step methods	1
4.2	Taylor's series method	1

4.3	Euler's and modified Euler's methods	1
4.4	Fourth order Runge Kutta method	1
4.5	Multistep methods	1
4.6	Milne's predictor and corrector method	1
4.7	Adam's predictor and corrector method	1
4.8	Fourth order Runge Kutta method	1
4.9	Adam's predictor and corrector method	1
5.0	Partial Differential Equations and Concepts in Solution to Boundary Value Problems	
5.1	Finite different solution	1
5.2	one dimensional heat equation by explicit method	1
5.3	Bender-Schmidt method	1
5.4	Crank –Nicholson method	1
5.5	One dimensional wave equation	1
5.6	Laplace equation	1
5.7	Leibmann's iteration processes	1
5.8	Poisson equations	1
5.9	Poisson equations Problems	1

Course Designers

Dr.C.Chandran - <u>cchandran@ksrct.ac.in</u>

00 DED 514	Fuels and Combustion	Category	L	Т	Р	Credit
60 PED E14	rueis and Combustion	PC	3	0	0	3

- To study the types of fuels and its properties analysis methods.
- To study the various solid and liquid fuels and its purification methods.
- To analyze the properties of gases fuels.
- To understand the combustion characteristics of solid, liquid and gaseous fuels.
- To understand the working principle coal burning equipment

Pre-requisite

Thermal Engineering

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire knowledge about the types of fuels and its properties analysis methods.	Remember, Understand & Apply
CO2	Categorize the types of solid and liquid fuels from various sources.	Understand & Analyze
CO3	Estimate on gaseous fuel properties and Wobbe index.	Understand & Apply
CO4	Categorize the gaseous fuels based on composition, properties and combustion stoichiometry.	Understand & Apply
CO5	Categorize the types of coal burning equipments and burner combustion.	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	2	3	1	1		
CO2	3	3	2	3	1	1		
CO3	3	3	2	3	1	1		
CO4	3	3	2	2	1	1		
CO5	3	3	2	2	1	1		
3- Strong;2-Medium;1-Some								

Bloom's Category		sessment Tests arks)	Model Exam	End Sem	
	1 2		(Marks)	Examination (Marks)	
Remember (R)	10	10	10	10	
Understand (U)	10	10	10	10	
Apply (Ap)	20	20	40	40	
Analyze (An)	20	20	40	40	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

K.S. Rangasamy College of Technology – Autonomous R 2022								
		60		- Fuels and C				
		Hours/Wee		E. Engineering Total hrs	Design Credit		Maximum Marks	
Semester	L	T	P	Totallis	Credit	CA	ES	Total
II	3	0	0	45	3	40	60	Total
Introduction	3	0	U	45	3	40	00	1
Fuels-Types And Characteristics Of Fuels-Determination Of Properties Of Fuels-Fuels Analysis-Proximate and Ultimate analysis-Moisture Determination-Calorific Value- Gross & Net Calorific Values – Calorimetry- Dulong's Formula for Cv Estimation-Flue Gas Analysis –Orsat Apparatus- Fuel & Ash Storage & Handling.								[9]
Solid and Liquid Fuels Solid fuels Types – Coal Family – Properties – Calorific Values – ROM, DMMF, DAG AND Bone Dry Basis– Ranking – Bulk & Apparent Density – Storage – Washability –Coking & Caking Coals –Renewable Solid Fuels – Biomass – Wood Waste – Agro Fuels– Manufactured Solid Fuels. Liquid Fuels Types – Sources – Petroleum Fractions-Classification – Refining – Properties Of Liquid Fuels – Calorific Value, Specific Gravity, Flash & Fire Point, Octane Number, Cetane Number Etc., - Alcohols – Tar Sand Oil – Liquefaction Of Solid Fuels, flow test, smoke points, storage and handling							[9]	
Gaseous Fuels Classification – Composition & Properties – Estimation Of Calorific Value – Gas Calorimeter and sensor techniques- Rich and LeanGas – Wobbe Index – Natural Gas – Dry & Wet Natural Gas Stripped NG – Foul & Sweet NG – LPG –CNG – Methane – Producer Gas Gasifiers Water Gas – Town Gas – Coal Gasification –Gasification Efficiency – Non – Thermal Route – Biogas – Digesters – Reactions – Viability – Economics.							[9]	
 Calculations – Combustion. Med 	– Economics.							[9]

Coal Preparation System Coal Burning Equipment's – Types – Pulverized Coal Firing – Fluidized Bed Firing – Fixed Bed and Recycled Bed– Cyclone Firing – Spreader Stokers – Vibrating Grate Stokers Sprinkler Stokers, Travelling Grate Stokers. Oil Burners – Vaporizing Burners –Air Aspiration Gas Burners – Burners Classification According To Flame Structures –Factors Affecting Burners & Combustion -Environmental Considerations: Air pollution – Effects on Environment, Human Health etc. Principal pollutants – Legislative Measures – Methods of Emission control.						
	Total Hours:	45				
Text Bo	ok(s):					
1.	Samir S, "Fuels and Combustion", 3 rd Edition, CRC Press, 2010.					
2.	Maximilian L,Franz W and Avinash Kumar A, "Handbook of Combustion", Volume 4 (Solid fuels), Wiley-VCH. 2010.					
Referer	nce(s):					
1.	Bhatt B I, and Vora S M, "Stoichiometry", Tata McGraw-Hill Education, 2004.					
2. Gajendra Babu M K and Subramanian K A, "Alternative Transportation Fuels: Utilisation in Combustion Engines", CRC Press, 2013.						
3.	Arora, S. C., and Domkundwar, S., "A course in Power Plant Engineering", 8th Edition, Dhanpatraii Publications Ltd., New Delhi, 2016.					
4.	Rai,G.D. "Introduction to Power Plant Technology", 11th reprint, Khanna Publishers, 2013.					

S. No.	Topics	No. of hours
1.0	Introduction	
1.1	Fuels-Types And Characteristics Of Fuels	1
1.2	Determination Of Properties Of Fuels, Fuels Analysis	1
1.3	Proximate and Ultimate analysis, Moisture Determination	2
1.4	Calorific Value, Gross & Net Calorific Values, Calorimetry	2
1.5	Dulong's Formula for Cv Estimation, Flue Gas Analysis	2
1.6	Orsat Apparatus, Fuel & Ash Storage & Handling	1
2.0	Solid and Liquid Fuels	
2.1	Solid fuels Types, Coal Family, Properties, Calorific Values	2
2.2	ROM, DMMF, DAG AND Bone Dry Basis, Ranking, Bulk & Apparent Density	1
2.3	Storage, Washability, Coking, Caking Coals, Renewable Solid Fuels, Biomass, Wood Waste, Agro Fuels	2
2.4	Manufactured Solid Fuels. Liquid Fuels Types, Sources, Petroleum Fractions, Classification	1
2.5	Refining, Properties Of Liquid Fuels, Calorific Value, Specific Gravity, Flash, Fire Point	1
2.6	Octane Number, Cetane Number, Alcohols, Tar Sand Oil, Liquefaction of Solid Fuels	1
2.7	Flow test, smoke points, storage and handling	1

3.0	Gaseous Fuels	
3.1	Classification, Composition, Properties, Estimation of Calorific Value	2
3.2	Gas Calorimeter and sensor techniques, Rich and Lean Gas, Wobbe Index	2
3.3	Natural Gas, Dry & Wet Natural Gas Stripped NG, Foul & Sweet NG, LPG, CNG	1
3.4	Methane, Producer Gas Gasifiers Water Gas, Town Gas	2
3.5	Coal Gasification, Gasification Efficiency, Non, Thermal Route, Biogas	2
3.6	Digesters, Reactions, Viability, Economics	
4.0	Combustion	
4.1	Stoichiometry, Mass Basis & Volume Basis, Excess Air Calculation	2
4.2	Fuel and Flue Gas Compositions, Calculations, Rapid Methods, Combustion Processes	2
4.3	Stationary Flame Combustion Explosive Combustion. Mechanism of Combustion Ignition & Ignition Energy	2
4.4	Spontaneous Combustion, Flame Propagation	2
4.5	Solid, Liquid, Gaseous Fuels Combustion, Flame Temperature.	1
5.0	Coal Preparation System	
5.1	Coal Burning Equipment's – Types, Pulverized Coal Firing, Fluidized Bed Firing	2
5.2	Fixed Bed and Recycled Bed, Cyclone Firing, Spreader Stokers, Vibrating Grate Stokers Sprinkler Stokers, Travelling Grate Stokers	2
5.3	Oil Burners, Vaporizing Burners, Air Aspiration Gas Burners, Burners Classification According To Flame Structures	2
5.4	Factors Affecting Burners & Combustion, Environmental Considerations, Air pollution	1
5.5	Effects on Environment, Human Health, Principal pollutants	1
5.6	Legislative Measures, Methods of Emission control	1

Course Designers

Dr.A.Murugesan – <u>murugesana@ksrct.ac.in</u>

60 PED E15	Bearing Design and Rotor	Category	L	Т	Р	Credit
	Dynamics	PC	3	0	0	3

- To know about different types of bearings available for machine design and their operating principles
- To design hydrodynamic and hydrostatic bearing for given specifications and analyze the bearings for their performance
- To know the selection and design of rolling bearings for specific application
- To understand the bearing behavior under dynamic loading conditions
- To learn the computation and measurements of vibration behavior bearing

Pre-requisite

_

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire knowledge on classification and selection of bearings.	Remember, Understand & Apply
CO2	Design and perform analysis of fluid film bearing and foil/air bearings.	Remember, Understand & Apply
CO3	Analyse the stresses induced in the rolling bearing and predict the fatigue life.	Remember, Understand & Apply
CO4	Describe the dynamics of hydrodynamic bearing with different loading.	Remember, Understand & Apply
CO5	Explain the rotor dynamics and vibration for different design configurations.	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Me	edium;1-Some		•		•	

Bloom's Category	Continuous A (M	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

K.S. Rangasamy College of Technology – Autonomous R 2022								
				g Design and		amics		
		Hours/Wee		Engineering I	Credit		Maximum Mar	ke
Semester	L	T	P	Totalilis	C	CA	ES ES	Total
III	3	0	0	45	3	40	60	
Classification and Selection of Bearings Selection criteria-Dry and Boundary Lubrication Bearings-Hydrodynamic and Hydrostatic bearings- Electro Magnetic bearings-Dry bearings-Rolling Element bearings- Bearings for Precision Applications-Foil Bearings-Special bearings- Selection of plain Bearing materials –Metallic and Non- metallic bearings.							[9]	
Design and performance journal bearings of Heat and tempera curves-Design of	Design of Fluid Film Bearings Design and performance analysis of Thrust and Journal bearings – Full, partial, fixed and pivoted journal bearings design procedure-Minimum film thickness – lubricant flow and delivery – power loss, Heat and temperature distribution calculations- Design based on Charts & Tables and Experimental curves-Design of Foil bearings-Air Bearings- Design of Hydrostatic bearings-Thrust and Journal bearings- Stiffness consideration - flow regulators and pump design.							[9]
Selection and Design of Rolling Bearings Contact Stresses in Rolling bearings- Centrifugal stresses-Elasto hydrodynamic lubrication-Fatique life calculations- Bearing operating temperature- Lubrication- Selection of lubricants-Internal clearance – Shaft and housing fitMounting arrangements-Materials for rolling bearings- Manufacturing methods- Ceramic bearings-Rolling bearing cages-bearing seals selection.							[9]	
Dynamics of Hyd Hydrodynamic Lu thrust bearings -F Trajectory- Analys conditions.	brication e Rotating loa	quation for ads,altern	dynamic lo ating and	impulse loads	in journal b	oearings – Jo	urnal centre	[9]

Rotor Dynamics Rotor vibration and Rotor critical speeds- support stiffness on critical speeds- Stiffness and damping coefficients of journal bearings-computation and measurements of journal bearing coefficients - Mechanics of Hydro dynamic Instability- Half frequency whirl and Resonance whip-Design configurations of stable journal bearings.						
	Total Hours:	45				
Text Bo	ok(s):					
1.	Neale, M.J., "Tribology Hand Book", Butterworth Heinemann, United Kingdom 2001.					
2.	Cameron, A. "Basic Lubrication Theory", Ellis Herward Ltd., UK, 1983.					
Referen	ce(s):					
1.	Halling, J., "Principles of Tribology", Macmillian, 2010.					
2.	Williams J.A. "Engineering Tribology", Oxford University Press, 2005.					
3.	Basu, S.K., Sengupta, S.N & Ahuja, B.B., "Fundamentals of Tribology", Prentice –Hall of India Pvt Ltd, New Delhi, 2013.					
4.	Stachowiak, G. W., and Batchelor, A.W., "Engineering Tribology", Butterworth-Heinemann, UK,	2014.				

S.No.	Topics	No. of hours
1.0	Classification and Selection of Bearings	
1.1	Selection criteria-Dry and Boundary Lubrication Bearings	2
1.2	Hydrodynamic and Hydrostatic bearings-Electro Magnetic bearings	2
1.3	Dry bearings Rolling Element bearings- Bearings for Precision Applications	2
1.4	Foil Bearings-Special bearings- Selection of plain Bearing materials	2
1.5	Metallic and Non-metallic bearings	1
2.0	Design of Fluid Film Bearings	
2.1	Design and performance analysis of Thrust and Journal bearings	1
2.2	Full, partial, fixed and pivoted journal bearings design procedure	1
2.3	Minimum film thickness – lubricant flow and delivery – power loss, Heat and temperature distribution calculations	2
2.4	Design based on Charts & Tables and Experimental curves	1
2.5	Design of Foil bearings-Air Bearings- Design of Hydrostatic bearings-Thrust and Journal bearings	2
2.6	Stiffness consideration - flow regulators and pump design	2

3.0	Selection and Design of Rolling Bearings	
3.1	Contact Stresses in Rolling bearings- Centrifugal stresses	2
3.2	Elasto hydrodynamic lubrication-Fatigue life calculations- Bearing operating temperature- Lubrication	2
3.3	Selection of lubricants-Internal clearance – Shaft and housing fitMounting arrangements	2
3.4	Materials for rolling bearings- Manufacturing methods	2
3.5	Ceramic bearings-Rolling bearing cages-bearing seals selection	1
4.0	Dynamics of Hydrodynamic Bearings	
4.1	Hydrodynamic Lubrication equation for dynamic loadings	2
4.2	Squeeze film effects in journal bearings and thrust bearings	1
4.3	Rotating loads, alternating and impulse loads in journal bearings	1
4.4	Journal centre Trajectory	2
4.5	Analysis of short bearings under dynamic conditions	2
4.6	Finite difference solution for dynamic conditions	1
5.0	Rotor Dynamics	
5.1	Rotor vibration and Rotor critical speeds- support stiffness on critical speeds	2
5.2	Stiffness and damping coefficients of journal bearings-computation and measurements of journal bearing coefficients	2
5.3	Mechanics of Hydro dynamic Instability	2
5.4	Half frequency whirl and Resonance whip	2
5.5	Design configurations of stable journal bearings	1

Course Designer

Dr. K. Santhanam - santhanam@ksrct.ac.in

60 DED E24	Advanced Engineering Materials	Category	L	Т	Р	Credit
60 PED E21	Advanced Engineering Materials	PC	3	0	0	3

- To impart the basic concepts and difference between composite materials with conventional materials.
- To apply knowledge for finding failure envelopes and stress-strain plots of laminates.
- To analyse engineering materials such as polymers, metals, ceramics and composites
- To equip the students with the organizational, practical and computational skillsnecessary to carry out research in advanced materials engineering.
- To learn the economic consideration and recycling of materials.

Pre-requisite

Engineering Materials and Metallurgy

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Demonstrate an understanding of properties of Carbon nanotubes, structure and properties materials including multifunctional polymer nano composites.	Understand, Remember & Apply
CO2	Comprehend existence of imperfections and their effects on mechanical properties of materials and cause of failure.	Understand, Remember & Apply
CO3	Recognize and predict various types of failures using concept of fracture mechanics, creep and effect of impact.	Understand, Remember & Apply
CO4	Know Electrical, Thermal, Optical and Magnetic Properties of metals, ceramics, polymers and composites.	Understand, Remember & Apply
CO5	Know the economic considerations in usage and recycling of materials in human use.	Understand, Remember & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	3	1
CO2	3	2	3	3	3	1
CO3	3	2	3	3	2	1
CO4	3	2	3	2	2	1
CO5	3	2	3	2	2	1
3- Strong;2-Medium;1-Some						

Bloom's Category		sessment Tests arks)	Model Exam	End Sem Examination (Marks)	
	1	2	(Marks)		
Remember (R)	10	10	20	20	
Understand (U)	10	10	20	20	
Apply (Ap)	40	40	40	40	
Analyze (An)	20	20	20	20	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

K.S. Rangasamy College of Technology – Autonomous R 2022									
		60		- Advanced E	_ ·				
				: M.E. Engine					
		Hours/W		Total hrs	Credit		Maximum Marks		
Semester	L	Т	Р		С	CA	ES	Total	
 Nanomaterials	3	0	0	45	3	40	60	100	
Carbon nanotubes, structure and properties, chemistry of carbon nanotubes, graphite whiskers, cones and polyhedral crystals, nanocrystaline diamond, carbide derived carbon nanotubes in multifunctional polymer nano composites, Composites processing, micromechanics, shape memory alloys (SMAs), metallic foam, Plastics, polymeric materials (molecular viewpoint), microstructures in polymers, mechanical properties (macro view point) chemical and physical properties (macro view point), designing with plastics,, thermoplastic materials (commodity plastics), thermoplastic materials (engineering plastics), thermoset materials, elastomeric (rubber) materials, related processes, Environmental aspects of plastics.						n nanotubes in chanics, shape ular viewpoint), al and physical als (commodity	[9]		
Imperfections in Solids and Mechanical Properties of Metals, Dislocations and Strengthening Mechanisms Point defects. Theoretical yield point. Line defects and dislocations. Interfacial defects. Bulk or volume defects. Atomic vibrations; Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multi-axial stress. Yield criteria and macroscopic aspects of plastic deformation. Property variability and design factors, Diffusion mechanisms. Steady and non-steady state diffusion. Factors that influence diffusion. Non-equilibrium transformation and microstructure, Dislocation and plastic deformation.					[9]				
Fracture. Ductile Fatigue. Crack	Fractures and Creep Behavior Fracture. Ductile and brittle fracture. Fracture mechanics. Impact fracture. Ductile brittle transition. Fatigue. Crack initiation and propagation. Crack propagation rate. Creep. Generalized creep behavior. Stress and temperature effects.							[9]	

Applications and Processing of Metals and Alloys, Polymers, Ceramics, and composites Types of metals and alloys. Fabrication of metals. Thermal processing of metals. Heat treatment. Precipitation hardening. Types and applications of ceramics. Fabrication and processing of ceramics, Mechanical behaviour of polymers. Mechanisms of deformation and strengthening of polymers. Crystallization, melting and glass transition. Polymer types. Polymer synthesis and processing, Particle reinforced composites.					
Electrical, Thermal, Optical and Magnetic Properties and economic Considerations Electrical conduction - Semi conductivity - Super conductivity. Electrical conduction in ionic ceramics and in polymers - Dielectric behaviour - Ferro electricity - Piezoelectricity - Heat capacity - Thermal expansion - Thermal conductivity - Thermal stresses - Diamagnetism and Para magnetism - Ferromagnetism - Anti-ferromagnetism and ferrimagnetism. Influence of temperature on magnetic behaviour - Domains and Hysteresis, Basic concepts. Optical properties of metals and non-metals. Application of optical phenomena. Economic, Environmental and Social Issues of material usage - Economic considerations - Environmental and societal considerations - Recycling issues.					
	Total Hours:	45			
	ook(s):				
1.	William D. Callister, "Materials Science and Engineering", John Wiley & sons, 10 th Edition, 2018				
2.	Courtney, T H., "Mechanical Behavior of Materials", 2 nd Edition, Waveland Press, 2005.				
Refere	nce(s):				
1.	1. Smallman R E and Bishop R J, "Modern Physical Metallurgy and Material Engineering-Science, Process, Application", Elsevier, 6 th Edition, 1999				
2.	Private Limited, 2009.				
 Ashutosh Tiwari, Arul Murugan N, Rajeev Ahuja, "Advanced Engineering Materials and Modeling" Wiley-Scrivener Publishers, 2016. 					
4.	Srinivasan R., "Engineering Materials and Metallurgy", McGraw Hill Education, 2009.				

S. No.	Topics	No. of hours
1.0	Nanomaterials	
1.1	Carbon nanotubes, structure and properties, chemistry of carbon nanotubes, graphite whiskers, cones and polyhedral crystals	2
1.2	Nanocrystaline diamond, carbide derived carbon nanotubes in multifunctional polymer nano composites	1
1.3	Composites processing, micromechanics, shape memory alloys (SMAs), metallic foam, Plastics, polymeric materials (molecular viewpoint), microstructures in polymers	2
1.4	Mechanical properties (macro view point) chemical and physical properties (macro view point)	1
1.5	Designing with plastics, thermoplastic materials (commodity plastics), thermoplastic materials (engineering plastics)	2
1.6	Thermoset materials, elastomeric (rubber) materials, related processes, Environmental aspects of plastics	1
2.0	Imperfections in Solids and Mechanical Properties of Metals, Dislocations and Strengthening Mechanisms	

2.1	Point defects. Theoretical yield point. Line defects and dislocations. Interfacial defects. Bulk or volume defects. Atomic vibrations	2
2.2	Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multi-axial stress	2
2.3	Yield criteria and macroscopic aspects of plastic deformation. Property variability and design factors, Diffusion mechanisms	3
2.4	Steady and non-steady state diffusion. Factors that influence diffusion. Non-equilibrium transformation and microstructure, Dislocation and plastic deformation	2
3.0	Fractures and Creep Behavior	
3.1	Fracture, Ductile and brittle fracture, Fracture mechanics	1
3.2	Impact fracture, Ductile brittle transition and Fatigue	2
3.3	Crack initiation and propagation	2
3.4	Crack propagation rate and Creep	2
3.5	Generalized creep behavior, Stress and temperature effects	2
4.0	Applications and Processing of Metals and Alloys, Polymers, Ceramics and composites	
4.1	Types of metals and alloys. Fabrication of metals. Thermal processing of metals. Heat treatment	2
4.2	Precipitation hardening. Types and applications of ceramics	1
4.3	Fabrication and processing of ceramics	1
4.4	Mechanical behaviour of polymers	2
4.5	Mechanisms of deformation and strengthening of polymers. Crystallization, melting and glass transition	2
4.6	Polymer types. Polymer synthesis and processing, Particle reinforced composites	1
5.0	Electrical, Thermal, Optical and Magnetic Properties and economic Considerations	
5.1	Electrical conduction - Semi conductivity - Super conductivity	1
5.2	Electrical conduction in ionic ceramics and in polymers, Dielectric behaviour, Ferro electricity, Piezoelectricity, Heat capacity, Thermal expansion, Thermal conductivity	2
5.3	Thermal stresses, Diamagnetism and Para magnetism, Ferromagnetism, Anti - ferromagnetism and ferrimagnetism. Influence of temperature on magnetic behaviour	2
5.4	Domains and Hysteresis, Basic concepts. Optical properties of metals and non-metals. Application of optical phenomena. Economic	2
5.5	Environmental and Social Issues of material usage, Economic considerations, Environmental and societal considerations, Recycling issues	2

Course Designer

Dr.G.Venkatachalam - venkatachalam@ksrct.ac.in

Rev. No.0/w.e.f. 01.08.22 Passed in BoS Meeting held on 20/07/22 Approved in Academic Council Meeting held on 23/07/2022

60 DED E22	Supply Chain Management	Category	L	Т	Р	Credit
60 PED E22	Supply Chain Management	РС	3	0	0	3

- Explain the role of supply chain management in an organization.
- Identify the various aspects of supply chain management and the factors affecting them.
- Explain the relationship among various factors involved in planning, organising and controlling supply chain operations.
- Summarize the sourcing and inventory decisions involved in supply chain operations
- Explain the use of information technology in supply chain management

Pre-requisite

_

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To introduce the concepts and elements of supply chain management.	Remember,
COT		Understand & Apply
000	To understand supply chain network design aspects for various manufacturing	Remember,
CO2	and service sectors.	Understand & Apply
CO3	To understand the principle of demand and supply in supply chain	Remember,
003		Understand & Apply
CO4	To gain knowledge on the sourcing and inventory decisions in supply chain.	Remember,
CO4		Understand & Apply
CO5	To understand the concepts of supply chain information systems.	Remember,
003		Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Medium;1-Some						

Bloom's Category		Continuous Assessment Tests (Marks)			
	1	2			
Remember (R)	10	10	20		
Understand (U)	20	20	30		
Apply (Ap)	30	30	50		
Analyze (An)	0	0	0		
Evaluate (Ev)	0	0	0		
Create (Cr)	0	0	0		
Total	60	60	100		

K.S. Rangasamy College of Technology – Autonomous R 2022								
		60 PE		Supply Chain I		nt		
		Hours/Wee		. Engineering Total hrs	Credit		Maximum Mar	ks
Semester	L	T	Р	Totalins	C	CA	ES	Total
III	3	0	0	45	3	40	60	100
Introduction Supply Chain Management Introduction, Types of supply chains with and examples, Evolution of SCM concepts, Supply chain performance, Strategic Fit, Drivers of Supply Chain Performance – key decision areas – External Drivers of Change. Supply contracts – centralized vs. decentralized system						[9]		
Supply Chain Network Design Need for distribution network design- Factors affecting, Design options for distribution network. Network design decisions - Framework, factors influencing, Models of facility location and capacity allocation. Role of Transportation in supply chain, modes of transportation Modal Selection, Classification of carriers, Carrier Selection, Transportation Execution and Control. Food Mile Concept., design options.					[9]			
Demand and Supply in Supply Chain Forecasting in supply chain- Methods, Approach, Errors. Aggregate planning in supply chain- Problem, Strategies and Implementation. Predictable variability in supply chain, Managing supply and demand. Distribution strategies-direct shipment, traditional warehousing, cross docking, inventory pooling, transhipment, Choosing appropriate strategy, Milk Run Model.					[9]			
Sourcing and Inventory Decisions in Supply Chain Purchasing Vs Procurement Vs Strategic Sourcing, Item procurement importance matrix, Strategic Sourcing Methodology, Managing sourcing and procurement process, Supplier selection and evaluation, Bullwhip effect and its management, Economies of scale in supply chain- Cycle inventory, Estimation, Quantity discounts, Multiechelon cycle inventory. Uncertainty in supply chain- Safety inventory, Determination of appropriate level, Impact on uncertainity.				[9]				
Supply Chain and Information Systems Information in supply chain, Role of Information technology, IT framework in supply chain, Supplier and Customer relationship management. Role of e-business in supply chain, e-sourcing and e-procurement. Technology drivers in supply chain - Risk management.				[9]				
							Total Hours:	45
Text Book(s):								

1.	Chopra S. and Meihdl P., "Supply Chain Management- Strategy, Planning and Operations",
	Pearson Education Asia. 2007.
2.	Dougart L., Stock J. and Ellram L., "Logistic Management", Irwin McGraw Hill International
	Edition" 1998.
Referen	nce(s):
1.	Kaminsky S., "Design and Managing the Supply chain", McGraw Hill International Edition.
	2000.
2.	Raghuram G, and N.Rangaraj, "Logistics and Supply Chain Management -cases and
	concepts", McMilan India Pvt Ltd, New Delhi,. 2000.
3.	Sahay B.S. "Supply Chain Management: For Global Competitiveness", 2nd Edition, Macmillan,
	India Ltd, 2011.

Content and Lecture Schedule

S.No.	Topics	No. of hours
1.0	INTRODUCTION SUPPLY CHAIN MANAGEMENT	·
1.1	Introduction	1
1.2	Types of supply chains with and examples	1
1.3	Evolution of SCM concepts	1
1.4	Supply chain performance, Strategic Fit	1
1.5	Drivers of Supply Chain Performance – key decision areas	2
1.6	Supply contracts	1
1.7	External Drivers of Change – centralized vs. decentralized system	2
2.0	SUPPLY CHAIN NETWORK DESIGN	
2.1	Need for distribution network design	1
2.2	Factors affecting - Design options for distribution network	1
2.3	Network design decisions - Framework, factors influencing	1
2.4	Models of facility location and capacity allocation	1
2.5	Role of Transportation in supply chain	1
2.6	Modes of transportation Modal Selection,	1
2.7	Classification of carriers, Carrier Selection	1
2.8	Transportation Execution and Control	1
2.9	Food Mile Concept - design options.	1
3.0	DEMAND AND SUPPLY IN SUPPLY CHAIN	
3.1	Forecasting in supply chain- Methods, Approach, Errors.	1
3.2	Aggregate planning in supply chain- Problem	1
3.3	Strategies and Implementation	1

3.4	Predictable variability in supply chain	1					
3.5	Managing supply and demand	1					
3.6	Distribution strategies-direct shipment	1					
3.7	traditional warehousing, cross docking, inventory pooling	2					
3.8	Transhipment, choosing appropriate strategy, Milk Run Model	1					
4.0	SOURCING AND INVENTORY DECISIONS IN SUPPLY CHAIN						
4.1	Purchasing Vs Procurement Vs Strategic Sourcing	1					
4.2	Item procurement importance matrix, Strategic Sourcing Methodology	1					
4.3	Managing sourcing and procurement process	1					
4.4	Supplier selection and evaluation	1					
4.5	Bullwhip effect and its management, Economies of scale in supply chain	1					
4.6	Cycle inventory, Estimation, Quantity discounts	1					
4.7	Multiechelon cycle inventory. Uncertainty in supply chain	1					
4.8	Safety inventory	1					
4.9	Determination of appropriate level, Impact on uncertainty	1					
5.0	SUPPLYCHAIN AND INFORMATION SYSTEMS						
5.1	Information in supply chain	1					
5.2	Role of Information technology	1					
5.3	IT framework in supply chain	1					
5.4	Supplier and Customer relationship management	2					
5.5	Role of e-business in supply chain	1					
5.6	E-sourcing and E-procurement	1					
5.7	Technology drivers in supply chain - Risk management	2					

Course Designer

Mr. Ramesh C - rameshc@ksrct.ac.in

60 DED E22	Analysis and Synthesis of	Category	L	Т	Р	Credit
60 PED E23	Mechanisms	PC	3	0	0	3

- To develop a thorough understanding of the various mechanisms and its design and simulation with ability to effectively use the various mechanisms in real life problems.
- To impart knowledge on configuring and synthesizing mechanical systems
- To learn how to use kinematic geometry to design linkages
- To analyze the motion of planar and spherical four bar linkages
- To know the concepts of synthesizing coupler curve mechanism.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Develop analytical equations describing the relative position, velocity and acceleration of all moving links.	Understand, Remember & Apply
CO2	Select, configure, and synthesize mechanical components into complete systems.	Understand, Remember& Apply
CO3	Use kinematic geometry to formulate and solve constraint equations to design linkages for specified tasks.	Understand, Remember & Analyze
CO4	Formulate and analyze the movement of planar and spherical four-bar linkages.	Understand, Remember & Apply
CO5	Apply modern computer-based techniques in the selection, analysis and synthesis of components and their integration into complete mechanical	Understand, Remember & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	3	3	2
CO2	3	3	2	3	2	1
CO3	3	3	3	3	2	1
CO4	3	2	3	2	2	1
CO5	3	2	3	2	2	1
3- Strong;2-M	ledium;1-Some	•	1	•	•	1

Bloom's Category		sessment Tests arks)	Model Exam	End Sem Examination (Marks)	
	1	2	(Marks)		
Remember (R)	10	10	10	10	
Understand (U)	10	10	10	10	
Apply (Ap)	20	20	40	40	
Analyze (An)	20	20	40	40	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

K.S. Rangasamy College of Technology – Autonomous R 2022								
		60 PED E		sis and Synth .E. Engineerin		chanisms		
		Hours/Wee		Total hrs	Credit		Maximum Marks	
Semester	L	Т	Р		С	CA	ES	Tota
II	3	0	0	45	3	40	60	
Introduction Basic Concepts; Definitions and assumptions; planar and spatial mechanisms; kinematic pairs; degree of freedom; equivalent mechanisms; Kinematic Analysis of Planar Mechanisms. Review of graphical and analytical methods of velocity and acceleration analysis of kinematically simple mechanisms, velocity-acceleration, analysis of complex mechanisms by the normal acceleration and auxiliary-point methods						[9]		
Path Curvature Theory Curvature Theory: Fixed and moving centrodes, inflection circle, Euler-Savary equation, Bobillier constructions, cubic of stationary curvature, Ball's point, Applications in dwell mechanisms. [9]						[9]		
Kinematic Analysis Kinematic Synthesis of planar mechanisms, accuracy (precision) points, Chebesychev spacing, types of errors, Graphical synthesis for function generation and rigid body guidance with two, three and four accuracy points using pole method, centre and circle point curves, Analytical synthesis of four-bar and slider-crank mechanisms.						[9]		
Freudenstein's four-bar for pre	Synthesis of Four Bar Mechanisms Freudenstein's equation, synthesis for four and five accuracy points, compatibility condition, synthesis of four-bar for prescribed angular velocities and accelerations using complex numbers, three accuracy point synthesis using complex numbers.					[9]		
Synthesis of Coupler Curve Based Mechanisms Coupler Curves: Equation of coupler curve, Robert-Chebychev theorem, double points and symmetry. Kinematic Analysis of Spatial Mechanisms, Denavit-Hartenberg parameters, matrix method of analysis of spatial mechanisms.					[9]			
1000.1100.01						45		
Text Book(s):	- L		1 (17)	ti - O - th i	. 	M 0	L NI	
	<u> </u>		*			-	, NewYork, 1980.	
2. Hamilton H.Mabie,"Mechanisms and Dynamics of Machinery",John Wiley and sons NewYork, 1982								

Refere	nce(s):
1.	Tuttle S B,"Mechanisms for Engineering Design" John Wiley and sons New York, 1998
2.	Ghosh A and Mallik A K, "Theory of Machines and Mechanisms", Affiliated East-WestPress, New Delhi, 1988.
3.	Erdman A G and Sandor G N, "Mechanism Design – Analysis and Synthesis", (Vol. 1and 2), Prentice Hall India, 1988.
4.	ShigleyJ E and Uicker J J, "Theory of Machines and Mechanisms", 2nd Edition, McGraw-Hill, 1995.
5.	Robert L.Nortan ,"Design of Machinery",Tata McGraw Hill Edition,2001

S.No.	Topics	No.of hours
1.0	Introduction	
1.1	Basic Concepts; Definitions and assumptions; planar and spatial mechanisms	1
1.2	Kinematic pairs, degree of freedom	1
1.3	Equivalent mechanisms	1
1.4	Kinematic Analysis of Planar Mechanisms	1
1.5	Review of graphical and analytical methods of velocity and acceleration analysis of kinematically simple mechanisms	2
1.6	Velocity-acceleration, analysis of complex mechanisms by the normal acceleration and auxiliary-point methods	3
2.0	Path curvature theory	
2.1	Curvature Theory: Fixed and moving centrodes	2
2.2	Inflection circle, Euler-Savary equation	2
2.3	Bobillier constructions	1
2.4	Cubic of stationary curvature	1
2.5	Ball's point, Applications in dwell mechanisms	3
3.0	Kinematic analysis	
3.1	Kinematic Synthesis of planar mechanisms	1
3.2	Accuracy (precision) points, Chebesychev spacing,types of errors	1
3.3	Graphical synthesis for function generation	1
3.4	Rigid body guidance with two,three and four accuracy points using pole method, centre and circle point curves	2
3.5	Analytical synthesis of four-bar mechanisms	2
3.6	Analytical synthesis of slider-crank mechanisms	2

4.0	Synthesis of four bar mechanisms	
4.1	Freudenstein's equation	1
4.2	Synthesis for four and five accuracy points, compatibility condition	2
4.3	Synthesis of four-bar for prescribed angular velocities using complex numbers	2
4.4	Synthesis of four-bar for prescribed angular accelerations using complex numbers	2
4.5	Three accuracy point synthesis using complex numbers	2
5.0	Synthesis of Coupler Curve Based Mechanisms	
5.1	Coupler Curves: Equation of coupler curve	2
5.2	Robert-Chebychev theorem	1
5.3	Double points and symmetry	1
5.4	Kinematic Analysis of Spatial Mechanisms	2
5.5	Denavit-Hartenberg parameters	1
5.6	Matrix method of analysis of spatial mechanisms	2

Course Designers

Mr. S.Karthick - skarthick@ksrct.ac.in

60 PED E24	Instrumentation for Thermal	Category	L	Т	Р	Credit
	Engineering	PC	3	0	0	3

- To provide knowledge on various measuring instruments for thermal engineering.
- To gain the knowledge on Microprocessor and data acquisition system.
- To understand the various steps involved in error analysis and uncertainty analysis.
- To provide knowledge on advance measurement techniques.
- To understand the working principles of various types of analysis techniques.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire knowledge the static and experimental error on analysis on the measurement and reliability of instruments.	Remember & Apply
CO2	Describe the working principle of data logger used in data acquisition system and interfacing of hardware with software using microcomputer and intelligent	Remember & Apply
CO3	Categorize the types of instruments and sensors used for measurement of thermo physical properties.	Remember & Apply
CO4	Become skilled in telemetry in measurements and data analyst.	Remember & Apply
CO5	Become skilled in chromatography analysis.	Remember & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3	2	3	1	
CO2	3	3	3	2	2	1	
CO3	3	3	3	2	2	1	
CO4	3	3	3	2	2	1	
CO5	3	3	3	2	2	1	
3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem	
	1	1 2		Examination (Marks)	
Remember (R)	20	20	40	40	
Understand (U)	0	0	0	0	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

		K.	S. Rangasa	ımy Colleç	ge of Technolo	gy – Autor	omous R 202	22		
60 PED E24 - Instrumentation for Thermal Engineering										
PED : M.E. Engineering Design										
			Hours/Wee	ek	Total hrs	Credit	N	Maximum Marks		
Semes	ster	L	Т	Р		С	CA	ES	Total	
	I	3	0	0	45	3	40	60	100	
Fundam Static a Uncerta	ind dynam inty, Exper	ents of m nic, exper imental p	easuring in imental err lanning and	or analysi		and rando	m errors, Sta	of Instruments – atistical analysis, astruments.	[9]	
Data lo		acquisitio	n – use of		r error reductio c and electronic			puter interfacing,	[9]	
Measur	Measurement of Physical Quantities Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow, use of sensors for physical variables.						[9]			
Shadow sensors analyse	Advance Measurement Techniques and Analysis Shadowgraph, Schlieren, Interferometer, Laser Doppler Anemometer, Hot wire Anemometer, heat flux sensors, Telemetry in measurement, Orsat apparatus. Chemical thermal, magnetic and optical gas analysers, measurement of smoke, Dust and moisture, gas chromatography, spectrometry, measurement of pH, Review of basic measurement techniques.						[9]			
Uncertainty in measurements Errors in instruments, Analysis of experimental data and determination of overall uncertainties in experimental investigation, uncertainties in measurement of measurable parameters like pressure, temperature, flow etc. under various conditions.						[9]				
								Total Hours:	45	
Text Bo										
1.	Kumar D Delhi, 20		nanical Meas	surements	and Control" 4	thEdition, M	etro politan bo	ook company Pvt.	Ltd, New	
2.	Thomas									

	India, Noida, 2007
Refere	nce(s):
1.	Jain R.K., "Engineering Metrology", 21st Revised Edition, Khanna publishers, New Delhi, 2015.
2.	Nakra, B.C., Choudhry K.K., "Instrumentation, Measurements and Analysis", Tata McGraw Hill, New Delhi, 2nd Edition, 2003.
3.	Gupta S.C., "Engineering Metrology", 20thEdition, Dhanpat Rai Publications, New Delhi, 2007.
4.	Sawhney A.K., "A Course in Mechanical Measurements and Instrumentation" Dhanpat Rai Publications, 2004.
5.	Donald P. Eckman, "Industrial Instrumentation ", Wiley Eastern, 2004.

S.No.	Topics	No.of hours
1.0	Measurement Characteristics	
1.1	Fundamental elements of measuring instrument	1
1.2	Fundamental elements of measuring instrument, Instrument Classification, Characteristics of Instruments	2
1.3	Static and dynamic, experimental error analysis, Systematic and random errors	2
1.4	Statistical analysis, Uncertainty	1
1.5	Experimental planning and selection of measuring instruments	2
1.6	Reliability of instruments	1
2.0	Advancement in Measurements	
2.1	Data logging and acquisition	2
2.2	Use of sensors for error reduction, elements of microcomputer interfacing	2
2.3	Intelligent instruments in use	2
2.4	Pneumatic and hydraulic controllers	2
2.5	Electronic controllers	
3.0	Measurement of Physical Quantities	·
3.1	Measurement of thermo-physical properties	2
3.2	Instruments for measuring temperature	2
3.3	Instruments for measuring Pressure	2
3.4	Instruments for measuring flow	2
3.5	Use of sensors for physical variables	1

4.0	Advance Measurement Techniques and Analysis	
4.1	Shadowgraph, Schlieren, Interferometer, Laser Doppler Anemometer	1
4.2	Hot wire Anemometer, heat flux sensors, Telemetry in measurement	2
4.3	Orsat apparatus. Chemical thermal, magnetic and optical gas analysers	2
4.4	Measurement of smoke, Dust and moisture, gas chromatography	2
4.5	Spectrometry, measurement of PH	1
4.6	Review of basic measurement techniques	1
5.0	Uncertainty in measurements	
5.1	Errors in instruments, Analysis of experimental data	1
5.2	Determination of overall uncertainties in experimental investigation	2
5.3	Uncertainties in measurement of measurable parameters like pressure	2
5.4	Uncertainties in measurement of measurable parameters of temperature	2
5.5	Uncertainties in measurement of measurable parameters of flow	2

Course Designers

Mr. M.Moorthi - moorthi@ksrct.ac.in

60 DED E25	Advanced Internal Combustion Engines	Category	L	Т	Р	Credit
60 PED E25		PC	3	0	0	3

- To understand the principles of operation in IC engines and its components.
- To study the various stages of combustion in CI engines.
- To understand the concepts of engine simulation.
- To identify the alternative fuels in the existing IC engines.
- To study the latest technologies in engine management system.

Pre-requisite

Thermal Engineering

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Calculate optimum fuel air mixture and application of electronic injection system for complete combustion and stages of combustion in S.I engine.	Remember & Apply
CO2	Explain the different types of combustion chamber working principles in C.I engine and analysis the fuel spry and air motion in turbo charger and super charger.	Remember & Apply
CO3	Explain the simulation of various engine processes for S.I and C. engines using governing equations.	Remember & Apply
CO4	Apply the thermodynamic and fluid mechanic based models in engine simulation.	Remember & Apply
CO5	Describe the working principle of recent trends in I.C engine.	Remember & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	2	2	3	1	
CO2	3	2	2	2	2	1	
CO3	3	3	2	2	2	1	
CO4	3	3	3	2	3	1	
CO5	3	2	3	2	3	1	
3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem	
	1 2		(IVIaI KS)	Examination (Marks)	
Remember (R)	20	20	40	40	
Understand (U)	0	0	0	0	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

	K.S.		<u> </u>	of Technolog			2	•
		60 PED E2		ced Internal C E. Engineerin		Engines		
		Hours/Wee		Total hrs	Credit	N	Maximum Marks	
Semester	L	T	P	, otal ilio	C	CA	ES	Tota
II	3	0	0	45	3	40	60	
Fundamentals of I.C Engine Spark Ignition Engines, mixture requirements – Fuel – Injection systems – Monopoint, Multipoint injection, Direct injection – Stages of combustion – Normal and abnormal combustion – factors affecting knock – Combustion chambers.								[9
Combustion Techniques in C.I. Engine Compression ignition engines, Stages of combustion in C.I. Engine – Direct and indirect injection systems – Combustion chambers – Fuel spray behaviour – spray structure, spray penetration and evaporation – air motion – Introduction to turbo charging and supercharging.						[9		
Concepts of En Combustion modengine processe	deling, Basi	ic concepts					lation of various s.	[9
Alternative Fuels Alternative fuels, Alcohol, Hydrogen, Natural Gas Bio diesel, fuel cell. Other possible fuels and Liquefied Petroleum Gas- Properties, Suitability, Merits and Demerits as fuels, Engine Modifications. Dual fuel operation. Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction and Particulate Traps – Methods of measurement.						[9		
Recent Trends in I.C. Engine Recent trends, LHR engines, surface ignition concept and multi fuel engines, stratified charge and lean burn engines, performance and emission characteristics, merits and demerits -Lean Burn Engines – Stratified charge Engines – homogeneous charge compression ignition engines –Plasma Ignition – Zero Emission Vehicles, Engines for special applications – Mining, Defence, Off-highway -Tractor, Bulldozer etc. Submarines, Race car Engine systems, Flexible fuel systems. Surface ignition.						[9		
							Total Hours:	45
Text Book(s):								

1.	Ganesan V. "Internal Combustion Engines", Tata McGraw-Hill, New Delhi, 4th Edition, 2017.
2.	John B Heywood, "Internal Combustion Engine Fundamentals", 2nd Edition, McGraw Hill, 2018.
Refere	nce(s):
1.	Crouse W. H., Anglin D. L., "Automotive Mechanics", McGraw Hill Education Private Limited, New Delhi, 10th edition, 2017.
2.	Ramalingam K K, "Internal Combustion Engine Fundamentals", 3rd Edition, Scitech Publications, 2015.
3.	Heisler H., "Advanced Engine Technology", SAE International Publications, USA, 1998.
4.	Kirpal Singh, "Automobile Engineering", Vol. 1 & 2, Standard Publishers, New Delhi, 13th Edition, 2017.
5.	Srinivasan S., "Automotive Mechanics" McGraw Hill Education Private Limited, New Delhi, 2nd Edition, 2017.

S. No.	Topics	No.of hours
1.0	Fundamentals of I.C Engine	
1.1	Spark Ignition Engines, mixture requirements	1
1.2	Fuel, Injection systems, Monopoint, Multipoint injection	2
1.3	Direct injection, Stages of combustion	2
1.4	Normal and abnormal combustion	1
1.5	Factors affecting knock	2
1.6	Combustion chambers.	1
2.0	Combustion Techniques in C.I. Engine	<u>'</u>
2.1	Compression ignition engines, Stages of combustion in C.I. Engine	2
2.2	Direct and indirect injection systems, Combustion chambers	2
2.3	Fuel spray behaviour, spray structure	2
2.4	Spray penetration and evaporation, air motion	2
2.5	Introduction to turbo charging and supercharging.	1
3.0	Concepts of Engine Simulation	<u>'</u>
3.1	Combustion modeling, Basic concepts of engine simulation	2
3.2	Governing equations	2
3.3	Simulation of various engine processes for SI and CI Engines	2

3.4	Thermodynamic based models	1
3.5	Fluid mechanic based models.	2
4.0	Alternative Fuels	
4.1	Alternative fuels, Alcohol, Hydrogen, Natural Gas Bio diesel, fuel cell	1
4.2	Other possible fuels and Liquefied Petroleum Gas- Properties, Suitability, Merits and Demerits as fuels	2
4.3	Engine Modifications. Dual fuel operation. Pollutant – Sources	2
4.4	Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter	2
4.5	Methods of controlling Emissions, Catalytic converters, Selective Catalytic Reduction	1
4.6	Particulate Traps, Methods of measurement	1
5.0	Recent Trends in I.C. Engine	
5.1	Recent trends, LHR engines, surface ignition concept and multi fuel engines	1
5.2	Stratified charge and lean burn engines, performance and emission characteristics, merits and demerits	2
5.3	Lean Burn Engines – Stratified charge Engines – homogeneous charge compression ignition engines	2
5.4	Plasma Ignition, Zero Emission Vehicles, Engines for special applications	2
5.5	Mining, Defence, Off-highway -Tractor, Bulldozer etc. Submarines, Race car	1
5.6	Engine systems, Flexible fuel systems. Surface ignition	1

Course Designers

Mr. M.Moorthi - moorthi@ksrct.ac.in

60 DED E24	Tribology in Docign	Category	L	Т	Р	Credit
60 PED E31	Tribology in Design	PC	3	0	0	3

- To impart knowledge on theories of friction and wear
- To acquire the concept of surface interaction and measurement.
- To understand the properties of bearing material and lubricants.
- To understand the analytical behavior of hydrostatic and squeeze film lubrication
- To learn the different types of hydrodynamic bearings and design of bearings based on analytical /theoretical approach.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply theories of friction and wear to various practical situations by analysing the physics of the process.	Remember, Understand & Apply
CO2	Explain the various surface measurement techniques and effect of surface texture on tribological behavior of a surface.	Remember & Apply
CO3	Select materials and lubricants to suggest a tribological solution to particular situation.	Remember, Understand & Apply
CO4	Explain the hydrostatic and squeeze film lubrication.	Remember, Understand & Apply
CO5	Design a hydrodynamic bearing using various bearing charts.	Remember & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	2	2	3	1		
CO2	3	3	2	2	2	1		
CO3	3	3	2	2	2	1		
CO4	3	3	3	2	3	1		
CO5	3	3	3	2	3	1		
3- Strong;2-Me	3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem	
	1 2		(Warks)	Examination (Marks)	
Remember (R)	10	10	20	20	
Understand (U)	10	10	20	20	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

	K.S. Rangasamy College of Technology – Autonomous R 2022								
			6	0 PED E3	1 - Tribology i	in Design			
	PED : M.E. Engineering Design								
			Hours/Wee		Total hrs	Credit	N	Maximum Mar	ks
Semester		L	Τ	Р		С	CA	ES	Total
II		3	0	0	45	3	40	60	100
Friction and Wear Friction, theories of friction, Wear, types of wear, theories of wear, genesis of friction, instabilities and stick-slip motion.							abilities and	[9]	
Surface Int Friction col modification	ntrol, S	Surface te	xture and i	-	ent, wear pre	vention, Su	rface treatme	nts, surface	[9]
Tribological idealized be	Lubrication of Bearings Tribological properties of bearing materials and lubricants. Reynolds's equation and its limitations, idealized bearings, infinitely long plane pivoted and fixed show sliders, infinitely long and infinitely short (narrow) journal bearings, lightly loaded infinitely long journal bearing (Petroff's solution), Finite						nfinitely	[9]	
Hydrostatic Hydrostatic pin lubricati	, sque	eze film C	ircular and	rectangula	ar flat plates, v	variable and	l alternating lo	oads, piston	[9]
Elasto Hydrodynamic Lubrication Elasto-hydrodynamic lubrication – pressure viscosity term in Reynolds's equation, Hertz' theory, Ertel-Grubin equation, Design of hydrodynamic journal bearings lubrication of spheres, gear teeth and rolling element bearings, Air lubricated bearings, Tilting pad bearings.					[9]				
							T	otal Hours:	45
Text Book(
1. Al	1. Alastair, C. and Mc Ettles, C M., "Basic Lubrication Theory", Ellis Horwood, 1981.								
	2. Basu, S K., Sengupta, S N &Ahuja, B B., "Fundamentals of Tribology", Prentice –Hall of India Pvt Ltd New Delhi, 2005						Pvt Ltd,		
Reference	(s):								

1.	Stachowiak, G W. and Batchelor, A W., "Engineering Tribology", Butterworth- Heinemann, UK, 2005
2.	Majumdar, B C., "Introduction to Tribology of Bearings", S.Chand& Company Ltd., New Delhi, 2008.
3.	Stolarski, T A., "Tribology in Machine Design", Butterworth-Heinemann, UK, 2000.
4.	Cameron, A., "Basic Lubrication Theory", 3 rd Edition, Ellis Hardwoods Ltd., UK., 1983.

S. No.	Topics	No.of hours
1.0	Friction and Wear.	1
1.1	Friction applications	1
1.2	Theories of friction	2
1.3	Wear phenomena	1
1.4	Types of wear and theories of wear	2
1.5	Genesis of friction.	1
1.6	Instabilities and stick-slip motion.	2
2.0	Surface Interaction and Measurement	1
2.1	Friction control	2
2.2	Surface texture and measurement	2
2.3	Wear prevention, Surface treatments	3
2.4	Surface modifications, surface coating	2
3.0	Lubrication of Bearings	
3.1	Tribological properties of bearing materials and lubricants	1
3.2	Reynolds's equation and its limitations	2
3.3	Idealized bearings, infinitely long plane pivoted and fixed show sliders	2
3.4	Infinitely long and infinitely short (narrow) journal bearings	2
3.5	Lightly loaded infinitely long journal bearing (Petroff's solution), Finite Bearings	2
4.0	Hydrostatic and Squeeze Film Lubrication	
4.1	Hydrostatic application	2
4.2	Squeeze film Circular and rectangular flat plates	2

4.3	Variable and alternating loads	2
4.4	Piston pin lubrications	1
4.5	Application to journal bearings	2
5.0	Elasto Hydrodynamic Lubrication	
5.1	Elasto-hydrodynamic lubrication	1
5.2	Pressure viscosity term in Reynolds's equation	2
5.3	Hertz' theory, Ertel-Grubin equation	2
5.4	Design of hydrodynamic journal bearings lubrication of spheres	2
5.5	Gear teeth and rolling element bearings, Air lubricated bearings, Tilting pad bearings.	2

Course Designer

Dr.G.Mylsami - mylsamig@ksrct.ac.in

60 DED E32	Robotics	Category	L	Т	Р	Credit
60 PED E32	Kopolics	PC	3	0	0	3

- To understand the basic concepts associated with the design and functioning and applications of Robots.
- To learn about design of grippers, drives and control system in robots
- To impart knowledge on robot kinematics and robot programming.
- To understand the machine vision system in a robot
- To learn about the modelling and simulation for the automation of manufacturing plant

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Apply knowledge of mathematics, sciences and engineering	Remember & Apply
CO2	Identify the electrical, electronic and mechanical components and use of them design or machine elements and transmission system.	Remember & Apply
CO3	Know about the basic kinematics of robot and the different types of sensors used.	Remember & Apply
CO4	Understand the characteristics of robot languages and concept of robot cell layout	Remember & Apply
CO5	Study the different industrial applications of robot	Remember & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	3	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	3	1
CO5	3	3	3	2	3	1
3- Strong;2-Med	dium;1-Some					

Assessment Pattern

Bloom's Category		ssessment Tests arks)	Model Exam	End Sem
	1	2	(Marks)	Examination (Marks)
Remember (R)	20	20	40	40
Understand (U)	0	0	0	0
Apply (Ap)	40	40	60	60
Analyze (An)	0	0	0	0
Evaluate (Ev)	0	0	0	0
Create (Cr)	0	0	0	0
Total	60	60	100	100

	K.S	. Rangasar	ny Colleg	e of Technolo	gy – Auton	omous R 20	22	
			60 F	PED E32 - Rob	otics			
PED : M.E. Engineering Design Hours/Week Total hrs Credit Maximum Marks								
Semester	Hours/Week Total hrs Credit Maxin		Maximum Marks ES	Total				
II	3	0	0	45	3	40	60	100
Introduction		U		+5	<u> </u>	40	00	100
Basic Concepts s Systems i.e. R repeatability, dex Production Syste Advanced Autom	obot anat kterity, com m, Principle	omy, Clas npliance, R es and Stra	sification, CC devicategies of a	Associated personants, etc. Automation, Ba	oarameters ation - Con asic Elemen	i.e. resolu cept, Need, ts of an Auto	tion, accuracy, Automation in omated System,	[6]
Robot Grippers Types of Gripper for Robots:- Char sensors. Types o	acteristics	of sensing	devices, S	selections of se	nsors, Clas	sification and	applications of	[6]
Types of Drives, systems, Control System Control System Control Control System Co	Actuators I Systems Automation Idustries, (and its se -Types o on:- Indust Continuous	f Controll rial Cont Verses [lers, Introducti rol Systems, Discrete Contro	on to clos Process Ir ol, Compute	ed loop condustries Ve	ntrol - Control erses Discrete-	[7]
Kinematics Transformation matrices and their arithmetic, link and joint description, Denavit – Hartenberg parameters, frame assignment to links, direct kinematics, kinematics redundancy, kinematics calibration, inverse kinematics, solvability, algebraic and geometrical methods. Velocities and Static forces in manipulators:-Jacobians, singularities, static forces, Jacobian in force domain. Dynamics:- Introduction to Dynamics, Trajectory generations						[9]		
Machine Vision System Vision System Devices, Image acquisition, Masking, Sampling and quantisation, Image Processing Techniques, Noise reduction methods, Edge detection, Segmentation. Robot Programming: Methods of robot programming, lead through programming, motion interpolation, branching capabilities, WAIT, SIGNAL and DELAY commands, subroutines, Programming Languages: Introduction to various types such as RAIL and VAL II etc., Features of type and development of languages for recent robot systems.						[9]		
Modeling and Simulation for manufacturing Plant Automation Introduction, need for system Modeling, Building Mathematical Model of a manufacturing Plant, Modern Tools- Artificial neural networks in manufacturing automation, Al in manufacturing, Fuzzy decision and control, robots and application of robots for automation. Artificial Intelligence: Introduction to Artificial Intelligence, Al techniques, Need and application of Al. Other Topics in Robotics:- Socio-Economic aspect of robotisation, Economical aspects for robot design, Safety for robot and associated mass, New Trends & recent updates in robotics						[8]		
							Total Hours:	45
Text Book(s):								
					mming and	Applications	", 2nd Edition, Ta	a
McGraw Hill Education, New Delhi, 2012. 2. John J. Craig, "Introduction to Robotics (Mechanics and Control), Addison-Wesley, 3rd Edition, 2008								
2. John J. Reference(s):	Craig, "Intr	oduction to	Robotics (d Control), A	ddison-Wes	ley, 3rd Edition, 2	800

1.	Richard D.K, Thomas A.C., and Michael, N., "Robotic Engineering: An Integrated Approach", Prentice Hall India, 2nd edition, 2002
2.	Dorf, R C., "Handbook of Design, Manufacturing & Automation", John Wiley and Sons.
3.	David, W P., "Industrial Automation", John Wiley and Sons. 1989.
4.	AshitavaGhoshal, "Robotics-Fundamental Concepts and Analysis", Oxford University Press, Sixth impression, 2010

S.No.	Topics	No.of hours
1.0	Introduction	
1.1	Three laws, DOF, Misunderstood devices	1
1.2	Elements of Robotic Systems	1
1.3	Automation - Concept, Need, Automation in Production System	1
1.4	Principles and Strategies of Automation	1
1.5	Basic Elements of an Automated System, Advanced Automation Functions	1
1.6	Levels of Automations, Introduction to automation productivity.	1
2.0	Robot Grippers	
2.1	Types of Grippers, Design aspect for gripper	1
2.2	Force analysis for various basic gripper system. Sensors for Robots	1
2.3	Characteristics of sensing devices, Selections of sensors	1
2.4	Classification and applications of sensors. Types of Sensors	1
2.5	Need for sensors and vision system in the working and control of a robot	2
3.0	Drives and control systems	
3.1	Types of Drives, Actuators and its selection while designing a robot system	1
3.2	Types of transmission systems, Control Systems	1
3.3	Types of Controllers, Introduction to closed loop control	1
3.4	Control Technologies in Automation:- Industrial Control Systems	1
3.5	Process Industries Verses Discrete-Manufacturing Industries, Continuous Verses Discrete Control	1
3.6	Computer Process and its Forms. Control System Components such as Sensors, Actuators and others.	2

4.0	Kinematics	
4.1	Transformation matrices and their arithmetic link and joint description	2
4.2	Denavit – Hartenberg parameters	1
4.3	frame assignment to links, direct kinematics, kinematics redundancy	1
4.4	kinematics calibration, inverse kinematics, solvability, algebraic and geometrical methods	2
4.5	Velocities and Static forces in manipulators:-Jacobians, singularities, static forces, Jacobian in force domain	2
4.6	Dynamics:- Introduction to Dynamics , Trajectory generations	1
5.0	Machine Vision System	
5.1	Vision System Devices, Image acquisition, Masking, Sampling and quantisation	1
5.2	Image Processing Techniques, Noise reduction methods, Edge detection	1
5.3	Segmentation. Robot Programming: Methods of robot programming	2
5.4	lead through programming, motion interpolation, branching capabilities	2
5.5	WAIT, SIGNAL and DELAY commands, subroutines	1
5.6	Programming Languages: Introduction to various types such as RAIL and VAL II	1
5.7	Features of type and development of languages for recent robot systems.	1
6.0	Modeling and Simulation for manufacturing Plant Automation	
6.1	Introduction, need for system Modeling, Building Mathematical Model of a manufacturing Plant	2
6.2	Modern Tools- Artificial neural networks in manufacturing automation	1
6.3	Al in manufacturing, Fuzzy decision and control, robots and application of robots for automation	1
6.4	Artificial Intelligence: Introduction to Artificial Intelligence, AI techniques, Need and application of AI	2
6.5	Other Topics in Robotics:- Socio-Economic aspect of robotisation, Economical aspects for robot design	1
6.6	Safety for robot and associated mass, New Trends & recent updates in robotics	1

Course Designer

Mr. P. Tamilarasu - tamilarasup@ksrct.ac.in

60 DED E22	Fracture Mechanics	Category L	Т	Р	Credit	
60 PED E33	Fracture Mechanics	PC	3	0	0	3

- To impart knowledge on mechanics of cracked components of different modes by which these components fail under static load conditions.
- To acquire knowledge on mechanics of cracked components of different modes underfatigue load conditions
- To know the crack tip plasticity and their characteristics
- To learn the test methods for critical energy release rate, and stress intensity factor
- To understand the mechanism of fatigue failure

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Identity different modes of fracture failure and evaluate the crack resistance and their growth	Remember, Apply & Analyze
CO2	Identity different cracks with their stress intensity	Remember, Apply & Analyze
CO3	Manage singularity at crack tip using complex variable.	Remember, Apply & Analyze
CO4	Determine critical energy release rate, critical stress intensity factor and J-Integral	Remember, Apply & Analyze
CO5	Calculate the fatigue life of a component with or without crack in it.	Remember, Apply & Analyze

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	2	3	1		
CO2	3	3	3	2	2	1		
CO3	3	3	3	2	2	1		
CO4	3	3	3	2	3	1		
CO5	3	3	3	2	3	1		
3- Strong;2-Medium;1-Some								

Assessment Pattern

Bloom's Category		ssessment Tests arks)	Model Exam (Marks)	End Sem	
	1 2		(IVIaIKS)	Examination(Marks)	
Remember (R)	10	10	20	20	
Understand (U)	0	0	0	0	
Apply (Ap)	30	30	40	40	
Analyze (An)	20	20	40	40	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

		K.S. F			of Technolog		mous R 2022	2		
			6		3 - Fracture M					
PED : M.E. Engineering Design Hours/Week Total hrs Credit Maximum Mark								·lco		
Semes	ter	L	T T	P P	Total hrs	Credit C	CA			
II		3	0	•	45		40	60	Total 100	
	e of coli	•		0	0 45 3 40 60					
The geo	Elements of solid Mechanics The geometry of stress and strain, elastic deformation, plastic and elasto-plastic deformation - limit analysis – Airy's function – field equation for stress intensity factor							[9]		
Two dir approxin	Stationary Crack Under static Loading Two dimensional elastic fields – Analytical solutions yielding near a crack front – Irwin's approximation - plastic zone size – Dugdaale model – determination of J integral and its relation to crack opening displacement.						[9]			
Griffith a	Energy balance and Crack Growth Griffith analysis – stable and unstable crack growth –Dynamic energy balance – crack arrest mechanism –K1c test methods - R curves - determination of collapse load					[9]				
Empirica of chang	Fatigue Crack Growth Curve Empirical relation describing crack growth law – life calculations for a given load amplitude – effects of changing the load spectrum rain flow method– external factors affecting the K1c values leak before break analysis.					[9]				
Crack Ir	Applications of Fracture Mechanics Crack Initiation under large scale yielding – thickness as a design parameter – mixed mode fractures - crack instability in thermal and residual stress fields - numerical methods.						[9]			
	Total Hours:					45				
Text Boo	ok(s):									
1.							revised			
2.	KareHe	llan, "Introc	luction of F	racture Me	echanics", McC	Graw-Hill Bo	ok Company,	, 2005.		
Referen	ce(s):									

1.	Preshant Kumar, "Elements of Fracture Mechanics", Wheeler Publishing, 2013.
2.	TribikramKundu, "Fundamentals of Fracture Mechanics", Ane Books Pvt. Ltd. New Delhi/ CRC Press, 1 st Indian Reprint, 2013.
3.	Prasant Kumar, "Elements of Fracture Mechanics", McGraw Hill Education, 2009.
4.	Meguid S A., "Engineering Fracture Mechanics", Elsevier Applied Science, 1989.

S.No.	Topics	No. of hours
1.0	Elements of solid Mechanics	•
1.1	The geometry of stress and strain	2
1.2	Plastic and elasto-plastic deformation	2
1.3	Limit analysis	1
1.4	Airy's function	1
1.5	Field equation for stress intensity factor	2
2.0	Stationary Crack Under static Loading	
2.1	Two dimensional elastic fields	2
2.2	Analytical solutions yielding near a crack front	2
2.3	Irwin's approximation	1
2.4	Plastic zone size	1
2.5	Dugdaale model	1
2.6	Determination of J integral and its relation to crack opening	2
3.0	Energy balance and Crack Growth	
3.1	Griffith analysis	2
3.2	Stable and unstable crack growth	2
3.3	Dynamic energy balance	2
3.4	Crack arrest mechanism	1
3.5	K1c test methods	1
3.6	Determination of collapse load.	1

4.0	Fatigue Crack Growth Curve	
4.1	Empirical relation describing crack growth law	1
4.2	Life calculations for a given load amplitude	2
4.3	Effects of changing the load spectrum	2
4.4	Rain flow method	2
4.5	External factors affecting the K1c values	1
4.6	Leak before break analysis.	1
5.0	Applications of Fracture Mechanics	
5.1	Crack Initiation under large scale yielding	2
5.2	Thickness as a design parameter	2
5.3	Mixed mode fractures	2
5.4	Crack instability in thermal and residual stress field	2
5.5	Numerical methods.	1

Course Designer

Mr. M.Prasanth - prasanthm@ksrct.ac.in

60 PED E34	Engine Pollution and Control	Category	L	Т	Р	Credit
		PC	3	0	0	3

- To create an awareness on the various environmental pollution aspects and issues.
- To analyses the comprehensive insight into the pollution in engine and gas turbines.
- To impart knowledge on pollutant formation and control.
- To impart knowledge on various emission instruments and techniques.
- To understand the different types of driving cycles.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire knowledge about the atmospheric pollution due to automobile and stationary engines and effect of global warming.	Remember, Apply & Analyze
CO2	List out the types of pollutant and formation, to design the engine reducing the low emissions and noise.	Remember, Apply& Analyze
CO3	List out the types of measuring instruments used to measure engine exhaust emissions.	Remember, Apply& Analyze
CO4	Categorize the different types of emission control techniques used in IC engines.	Remember, Apply & Analyze
CO5	Describe the driving cycle with standard test procedure and national and international emissions standards.	Remember, Apply& Analyze

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3	2	3	1	
CO2	3	3	3	2	2	1	
CO3	3	3	3	2	2	1	
CO4	3	3	3	2	3	1	
CO5	3	3	3	2	3	1	
3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom'sCategory		sessment Tests arks)	Model Exam	End Sem Examination (Marks)	
	1	2	(Marks)		
Remember (R)	10	10	20	20	
Understand (U)	0	0	0	0	
Apply (Ap)	30	30	40	40	
Analyze (An)	20	20	40	40	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

		K.S. F	Rangasamy	College	of Technology	/ – Autonor	nous R 2022							
					gine Pollutio		rol							
					. Engineering									
			Hours/Wee		Total hrs	Credit		Maximum Mar						
Semes	ster	L	Т	Р		С	CA	ES	Tota					
I	•	3	0	0	45	3	40	60						
Atmosp	Pollution -Engines and Turbines Atmospheric pollution from Automotive and Stationary engines and gas turbines, Global warming— Greenhouse effect and effects of I.C. Engine pollution on environment.						[9]							
Formati emissio	n. Effects	des of nitro of Engine			e, hydrocarbo iables on Emis				[9]					
Non dis		nfrared gas			matography, cl ement and cor		scent analyse	er and flame	[9]					
Engine thermal control.	reactors,	nodificatior Water Inj	jection, cat	alytic conv	evaporative everters, applicate traps, NOx	ation of mid	croprocessor	in emission	[9]					
Transie	nt dynamo	ometer, Te	ion Standa st cells, Dri [,] nternational	ving cycles	s for emission i standards.	measureme	nt, chassis dy	/namometer,	[9]					
							•	Total Hours:	45					
Text Bo	ok(s):													
1.	Ganesh	an V, "Inte	rnal Combu	ıstion Engi	nes", Tata Mc0	Graw-Hill, 20)15.							
2.	Guy B.N	/lartin, "Aut	tomotive En	nission Co	ntrol", Academ	ic Press,200)7							
Refere	nce(s):													
1.	James I	D.Halderma	an and Jam	es Linder,	"Automotive F	uel and Em	ission Contro	l Systems", 20	11.					
2.	,						d, New							
3.	Springe	r and Patte	erson. "Engi	ne Emissi	on" Plenum Pr	occ 1000								
	Springer and Patterson, "Engine Emission", Plenum Press, 1990. Paul Degobert – Automobiles and Pollution – SAE International ISBN-1-56091-563- 3, 1991.													

S.No.	Topics	No. of hours
1.0	Pollution -Engines and Turbines	
1.1	Atmospheric pollution from Automotive and Stationary engines and	3
1.2	Gas turbines, Global warming	2
1.3	Greenhouse effect	2
1.4	Effects of I.C. Engine pollution on environment	2
2.0	Pollutant Formation	
2.1	Formation of oxides of nitrogen, carbon monoxide, hydrocarbon	2
2.2	Aldehydes and Smoke, Particulate emission	2
2.3	Effects of Engine Design -operating variables on Emission formation	3
2.4	Noise pollution	2
3.0	Emission Measurement	1
3.1	Non dispersive infrared gas analyser, gas chromatography	1
3.2	Chemiluminescent analyser	2
3.3	Flame ionization detector	2
3.4	Smoke meters	2
3.5	Noise measurement and control	2
4.0	Emission Control	1
4.1	Engine Design modifications, fuel modification, evaporative emission control	2
4.2	EGR, air injection, thermal reactors, Water Injection, catalytic converters	1
4.3	Application of microprocessor in emission control	2
4.4	Common rail injection system, Particulate traps, nox converters	2
4.5	SCR systems. GDI and HCCI concepts	2
5.0	Driving Cycles and Emission Standards	
5.1	Transient dynamometer, Test cells	2
5.2	Driving cycles for emission measurement	2
5.3	Chassis dynamometer, CVS system	2
5.4	National and International emission standards	3

Course Designer

Mr.M.Moorthi – moorthi@ksrct.ac.in

60 DED E25	Commutational Fluid Demande	Category	L	Т	Р	Credit
60 PED E35	Computational Fluid Dynamics	PC	3	0	0	3

- To develop the governing differential equation with boundary conditions.
- To develop conduction heat transfer for 1D, 2D and 3D governing equations.
- To solve the pressure of viscous flow through vorticity method.
- To formulate explicit & implicit algorithms for solving the Euler equations and Navier-Stokes equations.
- To understand the different types of models in fluid dynamics.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Formulate the governing differential equation and apply it for solving boundary value problems.	Remember& Apply
CO2	Solve the one dimensional conduction problem using study state condition	Remember & Apply
CO3	Estimate the pressure of viscous flow through Vorticity method.	Remember & Apply
CO4	Solve the one dimensional and two dimensional conduction problem by using finite element method.	Remember & Apply
CO5	Describe the different types of models in fluid dynamics.	Remember & Apply

Mapping with Programme Outcomes

3	2 2	2 2	2 2	3 2	1 1
3	2	2	2	2	1
_					
3	3	3	2	2	1
3	3	3	2	3	1
3	2	3	2	3	1
	3 3 Some	3 3 3 3 3 Some	3 3 3 3 3 3 3 Some	3 3 3 2 3 2 Some	3 3 3 2 3 3 3 2 3 Some

Assessment Pattern

Bloom's Category		ssessment Tests arks)	Model Exam	End Sem	
	1 2		(Marks)	Examination (Marks)	
Remember (R)	20	20	40	40	
Understand (U)	0	0	0	0	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

		K.S. F	Rangasamy	/ College	of Technolog	y – Autono	mous R 2022	2	
				E35 - Co	mputational F	luid Dynar			
					E. Engineering				
			Hours/Wee	ek	Total hrs	Credit	l	Maximum Mar	
Semes	ter	L	Т	Р		С	CA	ES	Total
II		3	0	0	45	3	40	60	100
Governing Differential Equation and Finite Difference Method Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.							[9]		
Steady	one-dime		nduction, T		hree dimensio sient Problems		state problem	s, Transient	[9]
Governi flow, Si difference	ng Equat mple Pro ce approa	ocedure of ach.	am Functio · Patankar		ity method, Do				[9]
Steady Unstead Incompr	Convection Heat Transfer and FEM Steady One-Dimensional and Two-Dimensional Convection – dimensional convection – Diffusion, Unsteady two-dimensional Introduction to finite element method – Solution of steady heat Incompressible flow– Simulation by FEM						[9]		
Algebrai		s – One eq			els, Standard a using standard		nd Low Reyno	olds number	[9]
							Т	otal Hours:	45
Text Bo									
1.					Computational	Fluid Flow a	and Heat Tran	sfer", Narosa	
2.	 Publishing House, New Delhi, 2013. 2. Ghoshdastidar, P.S., "Computational Fluid Dynamics and Heat Transfer" Cengage India Private Ltd., 1st Edition, 2017. 								
Referen	ice(s):								
1. Anderson, D.A., Tannehill, J.I., and Pletcher, R.H., "Computational Fluid Mechanic and Hear Transfer" Hemisphere Publishing Corporation, Newyork, USA, 2011.					nd Heat				
 Fletcher, C.A.J. "Computational Techniques for Fluid Dynamics -1: Fundamental and Genera Techniques", Springer – Verlag, 2006. 						General			
3.	Fletche	r, C.A.J. "C		nal Techni	ques for Fluid	Dynamics -	-2: Specific Te	echniques for	Different
4.					mics", Cambrid	lge Universi	ity, Press, 200)2.	
							- :		

S.No.	Topics	No. of hours
1.0	Governing Differential Equation and Finite Difference Method	
1.1	Classification, Initial and Boundary conditions	1
1.2	Initial and Boundary value problems	2
1.3	Finite difference method, Central	2
1.4	Forward, Backward difference	2
1.5	Uniform and non-uniform Grids	1
1.6	Numerical Errors, Grid Independence Test	1
2.0	Conduction Heat Transfer	,
2.1	Steady one-dimensional conduction	2
2.2	Two and Three dimensional steady state problems	2
2.3	Transient one dimensional problem	3
2.4	Two-dimensional Transient Problems	2
3.0	Incompressible Fluid Flow	1
3.1	Governing Equations, Stream Function	1
3.2	Vorticity method	2
3.3	Determination of pressure for viscous flow	2
3.4	Simple Procedure of Patankar and spalding	2
3.5	Computation of Boundary layer flow, Finite difference approach	2
4.0	Convection Heat Transfer and FEM	1
4.1	Steady One-Dimensional and Two-Dimensional Convection	2
4.2	Dimensional convection – Diffusion	1
4.3	Unsteady two-dimensional Introduction to finite element method	2
4.4	Solution of steady heat Incompressible flow	2
4.5	Simulation by FEM	2
5.0	Turbulence Models	

5.1	Algebraic models	2
5.2	One equation model, K-Models	2
5.3	Standard and High and Low Reynolds number models	2
5.4	Prediction of fluid flow	3
5.5	Heat transfer using standard codes	

Course Designer

Mr.M.Moorthi - moorthi@ksrct.ac.in

60 PED E41	Multi-body Dynamics	Category	L	Т	Р	Credit
		PC	3	0	0	3

- To present the basic theoretical knowledge of the Foundations of Multi-body Dynamics with applications to machine and structural dynamics.
- To build capability to carry out multi-body dynamic analysis of complex mechanisms
- To compute and assembly of mass matrix of planar system
- To acquire knowledge on kinematic analysis of rigid bodies and spatial system
- To know the procedure to compute the reaction forces

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Derive equations of motion for interconnected bodies in multi-body systems with three dimensional motion.						
CO2	Implement and analyze methods of formulating equations of motion for interconnected bodies.	Remember & Apply					
CO3	Write programs to solve constrained differential equations for analyzing multi-body Remember & Apply systems.						
CO4	Simulate and analyze all types of static and dynamic behaviors of the multi-body Remember & Apply systems including the kineto-static analysis.						
CO5	Lead team projects in academic research or the industry that require modeling and simulation of multi-body systems.	Remember & Apply					

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	3	2	1
CO3	3	3	2	3	2	1
CO4	3	3	2	3	3	1
CO5	3	3	2	2	3	1
3- Strong;2-M	edium;1-Some	•	•	•	•	•

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem Examination (Marks)	
	1 2		(IVIaIKS)	LAGIIIIIatioii (Marks)	
Remember (R)	20	20	40	40	
Understand (U)	0	0	0	0	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

K.S. Rangasamy College of Technology – Autonomous R 2022								
		6		1 - Multi-body				
	1			E. Engineering		1		
		Hours/Wee		Total hrs	Credit		Maximum Mai	
Semester	L	T	Р		С	CA	ES	Total
II	3	0	0	45	3	40	60	100
Introduction The method of constraints for planar kinematic analysis. Revolute, prismatic, gear and cam pairs are considered together with other 2 degrees-of-freedom types of constraints.						[4]		
The automatic as Iterative solution	Basic Principles for Analysis of Multi-Body Systems The automatic assembly of the systems of equations for position, velocity and acceleration analysis. Iterative solution of systems of non-linear equations. Geometry of masses. The principle of virtual work and Lagrange's equations					[5]		
Dynamics of plar planar generaliz applications of in problems. The n	Dynamics of Planar Systems Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. Numerical integration of first-order initial value problems. The method of Baumgarte for the solution of mixed differential-algebraic equations of motion. The use of coordinates partitioning, QR and SVD decomposition for the orthogonalization of constraints.					[9]		
Kinematics of Rigid Bodies in Space Reference frames for the location of a body in space. Euler angles and Euler parameters. The formula of Rodrigues. Screw motion in space. Velocity, acceleration and angular velocity. Relationship between the angular velocity vector and the time derivatives of Euler parameters.					[9]			
Kinematic Analysis of Spatial Systems Basic kinematic constraints. Joint definition frames. The constraints required for the description in space of common kinematic pairs (revolute, prismatic, cylindrical, and spherical). Equations of motion for systems with ball-and-socket					[9]			
Computation of Forces Computation of spatial generalized forces for external forces and for actuator-spring-damper element. Computation of reaction forces from Lagrange's multi- pliers					[9]			
							Γotal Hours:	45

Text Bo	ook(s):
1.	Wittenburg, J., "Dynamics of Systems of Rigid Bodies", Springer, 1977.
2.	Nikravesh, P.E., "Computer Aided Analysis of Mechanical Systems", Prentice-Hall Inc, 1988.
Refere	nce(s):
1.	Donald T. Greenwood, "Principles of Dynamics", 2nd Edition, Prentice Hall, 1987.
2.	Kane, T.R, Levinson, D.A., "Dynamics: Theory and Applications", McGraw-Hill Book Co., 2005.
3.	Rampalli. R, Ferrarotti. G,Hoffmann. M,"Why Do Multi-body System Simulation",NAFEMS Publications, January 2012
4.	E Roberson, R.E., Schwertassek, R., "Dynamics of Multibody Systems", Springer-Verlag, Berlin, 1988.
5.	Huston, R.L., "Multibody Dynamics", Butterworth-Heinemann, 1990.
6.	De Jalo n, J.C., Bayo, E., "Kinematic and Dynamic Simulation of Multibody Systems", Springer-Verlag, 1994.

S. No.	Topics	No. of hours
1.0	Introduction	
1.1	The method of constraints for planar kinematic analysis	1
1.2	Revolute, prismatic, gear	1
1.3	Cam pairs are considered together with other 2 degrees	1
1.4	Freedom types of constraints	1
2.0	Basic Principles for Analysis of Multi-Body Systems	
2.1	The automatic assembly of the systems of equations for position	1
2.2	Velocity and acceleration analysis	1
2.3	Iterative solution of systems of non-linear equations	1
2.4	Geometry of masses	1
2.5	The principle of virtual work and Lagrange's equations	1
3.0	Dynamics of Planar Systems	
3.1	Dynamics of planar systems. Systematic computation and assembly of mass matrix	1
3.2	Computation of planar generalized forces for external forces and for actuator- spring	2
3.3	Damper element. Simple applications of inverse and forward dynamic analysis	2
3.4	Numerical integration of first-order initial value problems. The method of Baumgarte for the solution of mixed differential-algebraic equations of motion	2
3.5	The use of coordinates partitioning, QR and SVD decomposition for the orthogonalization of constraints.	2
4.0	Kinematics of Rigid Bodies in Space	
4.1	Reference frames for the location of a body in space	2

4.2	Euler angles and Euler parameters. The formula of Rodrigues. Screw motion in space.	1
4.3	Velocity, acceleration and angular velocity	2
4.4	Relationship between the angular velocity vector	2
4.5	Time derivatives of Euler parameters	2
5.0	Kinematic Analysis of Spatial Systems	
5.1	Basic kinematic constraints. Joint definition frames	2
5.2	The constraints required for the description in space of common kinematic pairs	2
5.3	revolute, prismatic, cylindrical, and spherical	2
5.4	Equations of motion for systems with ball-and-socket	3
6.0	Computation of Forces	
6.1	Computation of spatial generalized forces for external forces	2
6.2	Actuator	2
6.3	Spring	1
6.4	Damper element	2
6.5	Computation of reaction forces from Lagrange's multi- pliers	2

Course Designer

Mr.M.Moorthi - moorthi@ksrct.ac.in

60 DED E42	Condition Based Monitoring	Category	L	Т	Р	Credit
60 PED E42	Condition based Monitoring	PC	3	0	0	3

- To understand the vibration condition monitoring techniques
- To learn the steps in signal processing and analysis
- To know the interpretation and application of Fourier transform
- To understand the use, selection and procedure for vibration monitoring
- To learn the design principles & applications, dynamic balancing and alignment of machinery.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Know and be able to explain the aim and the basics of CM and be aware of	Remember& Apply
COT	some methods and procedures applied for general CM;	
CO2	Appreciate and understand the basic idea behind vibration-based structural	Remember& Apply
CO2	health, monitoring and vibration-based condition monitoring, know the general	
CO3	Know the basics of Vibration of Linear Systems: time and frequency response,	Remember& Apply
003	resonance;	
004	Aware of some basic instrumentation used for machinery and structural	Remember& Apply
CO4	vibration-based monitoring;	
005	Aware of some basic faults in rotating machinery, their manifestation and	Remember& Apply
CO5	methods for detection and recognition: low frequency, medium frequency and	

COs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	3	2	2		
CO2	3	2	2	3	2	2		
CO3	3	3	3	3	2	1		
CO4	3	3	3	3	2	1		
CO5	3	3	3	2	2	1		
3- Strong;2-Medium;1-Some								

Assessment Pattern

Bloom's Category		ssessment Tests arks)	Model Exam (Marks)	End Sem	
	1	2	(IVIaIKS)	Examination (Marks)	
Remember (R)	20	20	40	40	
Understand (U)	0	0	0	0	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

		K.S. F	Rangasamy	College	of Technology	– Autonon	nous R 2022		
	60 PED E42 - Condition Based Monitoring								
PED : M.E. Engineering Design									
			Hours/Wee		Total hrs	Credit		Maximum Marl	KS
Semeste	er	L	Т	Р		С	CA	ES	Tota
II		3	0	0	45	3	40	60	
Introduct	-	6 1 101	., .	1 190					[9]
	The basic idea of health monitoring and condition monitoring of structures and machines. Virtual reality monitoring.							[~]	
		Processi							[9]
					y distribution,				
Fourier T			iai delisity i	unctions o	f commonly for	unu systems	s, spectrar an	aiysis.	
			forms inter	nretation :	and application	n to real sig	ınals Respor	se of linear	[9]
Basic idea of Fourier transforms, interpretation and application to real signals. Response of linear systems to stationary random signals: FRFs, resonant frequencies, modes of vibration.									
		Monitorin		, , , , , , , , , , , , , , , , , , ,	•	,			[0]
					nery condition		by vibration a	nalysis: Use	[9]
					res and instrur	nents.			
			Based Mon						[9]
					vibration analy				[0]
nealth mo	nitoring	technique	s, acoustic	emission,	oil debris and t	emperature	anaiysis, App	Total Hours:	45
Taut Daale	/-\-							Total Hours:	45
Text Book		0.5 "					4005		
					s", McGraw-Hil				
		, "Vibrator	y Condition	Monitoring	g of Machines"	, CRC Press	s, London, 20	00.	
Reference	,								
2	1. Iyengar, R.N., "Elements of Mechanical Vibration", I K International Pub. House Pvt. Ltd., New Delhi, 2007.								
2. Adams, M., "Rotating Machinery Analysis - From Analysis to Troubleshooting", New York, ISBN (8247-0258-1.						ISBN 0-			
								alysis and Pi	redictive
					Paperback ISBI				
4.	Hand B	ook of Cor	ndition Mon	itoring", El	sevier Science	, Amsterdar	n, 1996.		

S.No.	Tonico	No.of
5.NO.	Topics	hours
1.0	Introduction	
1.1	The basic idea of health monitoring	2
1.2	Condition monitoring of structures	3
1.3	Condition monitoring of machines	2
1.4	Virtual reality monitoring	2
2.0	Basics of Signal Processing	-
2.1	Study of periodic and random signals	2
2.2	Study of probability distribution and statistical properties	2
2.3	Study of auto and cross correlation	1
2.4	power spectral density functions of commonly found systems	2
2.5	spectral analysis of commonly found systems	2
3.0	Fourier Transform	,
3.1	Basic idea of Fourier transforms	1
3.2	interpretation and application to real signals	2
3.3	Response of linear systems to stationary random signals:	2
3.4	FRFs, resonant frequencies	2
3.5	modes of vibration	2
4.0	Vibration Based Monitoring	
4.1	Introduction to vibration	2
4.2	Vibration based monitoring	1
4.3	Machinery condition monitoring by vibration analysis	2
4.4	Use and selection of measurements	2
4.5	Analysis procedures and instruments	2
5.0	Applications of Vibration Based Monitoring	
5.1	Typical applications of condition monitoring	1
5.2	Vibration analysis to rotating machines using condition monitoring	2
5.3	Some other health monitoring techniques	2
5.4	Acoustic emission, oil debris	2
5.5	Temperature analysis and Applications	2

Course Designer

Dr.G.Mylsami – mylsamig@ksrct.ac.in

Rev. No.0/w.e.f. 01.08.22 Passed in BoS Meeting held on 20/07/22 Approved in Academic Council Meeting held on 23/07/2022

CO DED 542	Optimization Techniques in	Category	L	Т	Р	Credit
60 PED E43	Design	PC	3	0	0	3

- To enable the students to learn various optimization techniques.
- To know the techniques of linear programming
- To learn the procedures to solve Non-linear programming problems
- To apply the optimization techniques to design engineering components.
- To acquire knowledge on Genetic Algorithms to solve engineering problems

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Classify optimization problems.	Remember, Understand & Apply
CO2	Apply linear programming techniques to solve engineering problems.	Remember, Understand & Apply
CO3	Solve Non-Linear Programming problems.	Remember, Understand & Apply
CO4	Design mechanical elements like beams, columns, gears, shafts using optimization techniques.	Remember, Understand & Apply
CO5	Discuss Genetic Algorithms and solve engineering optimization problems.	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	1	2
CO2	3	3	2	2	1	2
CO3	3	3	2	2	2	1
CO4	3	3	2	2	2	1
CO5	3	3	2	2	2	2
3- Strong;2-Medium;1-Some						

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem	
	1	1 2		Examination (Marks)	
Remember (R)	10	10	20	20	
Understand (U)	10	10	20	20	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

	K.S. Rangasamy College of Technology – Autonomous R 2022								
			60 PED E		nization Techr	_	esign		
		1			. Engineering				
_			Hours/Wee		Total hrs	Credit		Maximum Mar	
Semes	ter	L	T	Р		С	CA	ES	Tota
I		3	0	0	45	3	40	60	
Introduc Introduc		timization,	classification	on of optim	ization problen	ns, classical	optimization	techniques.	[9]
Simplex	Programi method car's meth	and Du	ality in lir	ıear progı	ramming, sen	sitivity or	post-optimalit	ty analysis,	[9]
One dir methods	mensiona s.				and constraine	ed minimiza	ition, direct a	and indirect	[9]
			i nd Optim u Optimum de		nechanical ele	ments like	beams, colui	mns, gears,	[9]
	Algorith tion to G		orithms, O	perators, a	applications to	engineerin	g optimizatio	n problems.	[9]
							7	Total Hours:	45
Text Bo									
1.		•	"Engineerii New Delh	•	ation: Theory a	and Practice	", New Age In	iternational (P)
2.	2. Deb Kalyanamoy., "Optimization for Engineering Design: Algorithms and Examples", Prentice Hall of India, Pvt. Ltd., New Delhi, 2009.								
Referen	ice(s):								
1.	1. Johnson Ray, C., "Optimum Design of Mechanical Elements", John Wiley & Sons, New York, 1990.								
2.	Goldberg, D.E., "Genetic Algorithms in Search, Optimization and Machine", Barnen, Addison-Wesley, New York, 2005.								
3.	R.C. Johnson, "Optimum Design of Mechanical Elements", Willey, New York, 1980.								
4.	J. S. Arora, "Introduction to Optimum Design", McGraw Hill, New York, 4th Edition, 2012.								
5.	Duffin, R J., Peterson E L., and Zener, C., "Geometric Programming-Theory and Applications", Willey, New York, 2007.								

S. No.	Topics	No. of hours
1.0	Introduction	
1.1	Introduction to optimization	1
1.2	Classification of optimization problems	1
1.3	Structural optimization problem statement	1
1.4	Classification based on the objective function	1
1.5	Classification based on constraints	1
1.6	Classification based on objective and constraints	1
1.7	Classification based on the nature of optimization	1
1.8	Classical optimization techniques	1
1.9	Discretization of the "function" variable	1
2.0	Linear Programming	
2.1	Simplex method	2
2.2	Duality in linear programming	2
2.3	Linear Programming Model	1
2.4	Sensitivity or post-optimality analysis	2
2.5	Karmarkar's methods	2
3.0	Non-Linear Programming	
3.1	One dimensional minimization	2
3.2	Unconstrained and Constrained minimization	3
3.3	Direct and Indirect methods.	2
3.4	Non-Linear Programming Problems	1
3.5	Discretization of the "function" variable	1
4.0	Geometric Programming and Optimum Design	
4.1	Geometric programming	2
4.2	Optimum design of beams	2
4.3	Optimum design of columns	1
4.4	Optimum design of gears	2
4.5	Optimum design of shafts	2

5.0	Genetic Algorithms	
5.1	Introduction to Genetic Algorithms	2
5.2	Genetic Algorithms - Operators	2
5.3	Genetic Algorithms - Applications	2
5.4	Applications to engineering optimization problems	2
5.5	applications to engineering optimization problems	1

Course Designers

Mr. S. Karthikeyan – <u>karthikeyan.s@ksrct.ac.in</u>

60 PED E44	Alternative Fuels for IC Engines	Category	L	Т	Р	Credit
	Alternative Fuels for its Eligines	РС	3	0	0	3

- To understand the availability, suitability and properties for various alternative fuels.
- To gain the knowledge on types of liquid alternative fuels used for S.I. Engines.
- To understand the knowledge on types of liquid alternative fuels used for C.I. Engines.
- To analyse the performance and emission characteristics of various gaseous alternative fuels used for S.I. Engines.
- To investigate the performance and emission characteristics of various gaseous alternative fuels used for C.I. Engines.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Gain the knowledge about the availability and suitability of alternative fuels for IC engines.	Remember & Apply
CO2	Categorize the liquids fuels for SI engines and types of emission levels.	Remember & Apply
CO3	Categorize the fuels for diesel engine and types of fuel additives for low emissions.	Remember & Apply
CO4	Categorize the types of gaseous of fuels used in SI and CI engine and safety precautions.	Remember & Apply
CO5	Analyse the engine performance and emissions levels operated in duel fuel mode.	Remember & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	3	1
CO2	3	2	3	2	3	1
CO3	3	3	3	2	3	1
CO4	3	3	2	2	2	1
CO5	3	3	2	2	2	1
3- Strong;2-Medium;1-Some						

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem	
	1	1 2		Examination (Marks)	
Remember (R)	20	20	40	40	
Understand (U)	0	0	0	0	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

		K.S.			of Technolog			22	
			60 PED		ernative Fuel	•	gines		
		ı			E. Engineering				
•			Hours/We		Total hrs			Maximum Ma	
Seme	ster	L	Т	Р		С	CA	ES	Total
l		3	0	0	45	3	40	60	100
Availab Methan	Introduction Availability, Suitability, Properties, Merits and Demerits of Potential Alternative Fuels – Ethanol, Methanol, Diethyl ether, Dimethyl ether, Hydrogen, Liquefied Petroleum Gas, Natural Gas, Bio-gas and Bio-diesel.						[9]		
Require	ements, L				Neat form, R	eformed Fu	els, Storage	and Safety,	[9]
Require	Liquid Fuels for C.I. Engines Requirements, Utilisation techniques - Blends, Neat fuels, Reformed fuels, Emulsions, Dual fuelling, Ignition accelerators and Additives, Performance and emission characteristics.					[9]			
Hydrog	en, Comp		•		Petroleum gas s.	, and Bio ga	as in SI engir	nes – Safety	[9]
Gaseou Hydrog	us Fuels en, Bioga	for C.I. En s, Liquefie	gines	n gas, Coi	mpressed Nat	ural gas in (CI engines. D	Oual fuelling,	[9]
							Т	otal Hours:	45
Text Bo	ook(s):								
1.									
2.	2. Ramadhas, A. S., "Alternative Fuels for Transportation", CRC Press, 2012.								
Refere	nce(s):								
1.									
2.	Gerhard	,	lon Van Ge	rpen, Jarg	on Krahl, The	Biodiesel H	andbook, AO	CS Press Cha	ampaign,

Richard L Bechtold P.E., Alternative Fuels Guide book, Society of Automotive Engineers, 1997 ISBN 0-76-80-0052-1.
 Ayhan Demirbas, 'Biodiesel A Realistic Fuel Alternative for Diesel Engines', Springer- Verlag London Limited 2008, ISBN-13: 9781846289941.

Course Contents and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Introduction	
1.1	Availability, Suitability, Properties, Merits and Demerits of Potential Alternative Fuels	3
1.2	Ethanol, Methanol, Diethyl ether	2
1.3	Dimethyl ether, Hydrogen, Liquefied Petroleum Gas	2
1.4	Natural Gas, Bio-gas and Bio-diesel	2
2.0	Liquid Fuels for S.I. Engines	•
2.1	Requirements, Utilisation techniques	2
2.2	Blends, Neat form, Reformed Fuels	2
2.3	Storage and Safety	2
2.4	Performance and Emission Characteristics	3
3.0	Liquid Fuels for C.I. Engines	
3.1	Requirements, Utilisation techniques	2
3.2	Blends, Neat fuels, Reformed fuels	2
3.3	Emulsions, Dual fuelling	1
3.4	Ignition accelerators and Additives	2
3.5	Performance and emission characteristics	2
4.0	Gaseous Fuels for S.I. Engines	
4.1	Hydrogen, Compressed Natural gas	2
4.2	Liquefied Petroleum gas	2
4.3	Bio gas in SI engines	1
4.4	Safety Precautions	2
4.5	Engine performance and emissions	2
5.0	Gaseous Fuels for C.I. Engines	•
5.1	Hydrogen, Biogas, Liquefied Petroleum gas	2
5.2	Compressed Natural gas in CI engines	2
5.3	Dual fuelling	2
5.4	Performance characteristics	2
5.5	emission characteristics	1

Course Designers

Dr.A.Murugesan - murugesana@ksrct.ac.in

60 PED E45	Advanced Materials and Their	Category	L	Т	Р	Credit
	Processing	PC	3	0	0	3

- To impart knowledge on the structure, properties of engineering materials
- To acquire concept of fracture mechanism and its associated theories
- To select the suitable materials for various applications
- To know the significance of modern metallic materials and their application.
- To identify polymeric material structure and its properties

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Gain the knowledge about the behaviour of materials and strengthening mechanisms.	Remember & Apply
CO2	Understand the fracture behaviour and failure analysis of metallic materials.	Remember & Apply
CO3	Analyse the properties and select the materials for intended application.	Remember & Apply
CO4	Acquire knowledge on modern metallic materials and smart materials.	Remember & Apply
CO5	Describe polymeric material structure, production, properties and application.	Remember & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Me	dium;1-Some		•		•	•

Assessment Pattern

Bloom's Category		ssessment Tests arks)	Model Exam	End Sem	
	1 2		(Marks)	Examination (Marks)	
Remember (R)	20	20	40	40	
Understand (U)	0	0	0	0	
Apply (Ap)	40	40	60	60	
Analyze (An)	0	0	0	0	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

	K.	S. Rangasamy	/ College ·	of Technolog	y – Autono	IIIOUS R 2024	<u> </u>	
			- Advance	d Materials a	nd Their Pr			
				. Engineering				
Semes	ator I	Hours/Wee		Total hrs	Credit		Maximum Mar	
	_	T	P	45	С	CA	ES	Total
	our of Materials	0	0	45	3	40	60	100
Mechar real crys strength of tempo crystallin	nism of plastic d stals - Strengthe ening, poly phase erature, strain a ne material. Intro glasses.	eformation, rol ning mechanisi se mixture, pre nd strain rate o	ms, work h cipitation, on plastic	ardening, solid particle, fiber a behaviors - Su	d solution ha and dispers uper plastici	ardening, grai ion strengthe ty - Deforma	n boundary ning. Effect tion of non-	[9]
Griffith's brittle tripe to Deformation initiation parameters.	e Behaviour theory, stress in theory, stress in the same in the sa	steel - High te re mechanism ion mechanisr - Fracture of n	emperature maps - ms and F	e fracture, cre Fatigue, low Paris law - E	eep - Lars and high c ffect of su	son-Miller p cycle fatigue rface and m	parameter - test, crack netallurgical	[9]
Motivation strength resistant selection	on of Materials on for selection, , toughness, fati ce – Relationshi n with relevance	gue and creep p between mat to aero, auto,	 Selection erials sele 	n for surface di ction and proc	urability con essing - Cas	rosion and we se studies in	ear	[9]
Micro al Maragin Metallic	Metallic Materi loyed, High stre g steel - Interm glass - Quasi loys: Alloy desig	ngth low alloy (etallics, Ni an crystal. Advar	d Ti alumi nced Func	inides - Smart tional Alloys,	t materials,	shape mem	ory alloys -	
Polyme	etallic Materials eric materials - I es and coatings			periles.			c materials	[9]
	um Processes, s		properties	ructure - Prod and applicatio	ns of engin	eering polym	res, foams, ners - Non-	[9]
equilibri	· ·	s - Structure, p	properties	ructure - Prod and applicatio	ns of engin	eering polym s Condensati	res, foams, ners - Non-	
equilibri	ook(s):	s - Structure, p Single Crystal C	properties Growth, Ra	ructure - Prod and applicatio pid Solidification	ns of engir on, Inert Ga	eering polym s Condensati To	res, foams, ners - Non- ion otal Hours:	[9]
Text Bo	ook(s): Thomas H.Cou	s - Structure, p Bingle Crystal C urtney, "Mechai	oroperties Growth, Ra nical Beha	ructure - Prod and applicatio pid Solidification	ns of engin on, Inert Ga als ", McGra	eering polym s Condensati To	res, foams, ners - Non- ion otal Hours:	[9]
Text Bo	ook(s): Thomas H.Cou George E.Diete	s - Structure, p Bingle Crystal C urtney, "Mechai	oroperties Growth, Ra nical Beha	ructure - Prod and applicatio pid Solidification	ns of engin on, Inert Ga als ", McGra	eering polym s Condensati To	res, foams, ners - Non- ion otal Hours:	[9]
Text Bo 1. 2. Referen	ook(s): Thomas H.Cou George E.Diete	s - Structure, p Bingle Crystal C urtney, "Mechai	oroperties Growth, Ra nical Beha	ructure - Prod and applicatio pid Solidification	ns of engin on, Inert Ga als ", McGra	eering polym s Condensati To	res, foams, ners - Non- ion otal Hours:	[9]
Text Bo 1. 2. Referen	Thomas H.Cou George E.Dieto ace(s):	S - Structure, p Bingle Crystal C urtney, "Mechanica er, "Mechanica Trojan, P.K., "	oroperties Growth, Ra nical Beha Metallurg Engineerir	ructure - Prod and applicatio pid Solidification viour of Materion y ", McGraw H	ns of enginon, Inert Ga als ", McGra ill, 1988.	reering polyms Condensation To aw-Hill, 2nd Editions ", 4th	res, foams, ners - Non- ion otal Hours:	[9] 45 1999.
Text Bo 1. 2. Referen	Thomas H.Cou George E.Diete Ice(s): Flinn, R.A. and Charles J.A.,	s - Structure, p Single Crystal C urtney, "Mechar er, "Mechanica Trojan, P.K., " Crane, F.A.A	oroperties Growth, Ra nical Beha Metallurg Engineerir and Furne	ructure - Prod and applicatio pid Solidification viour of Materion y ", McGraw H	ns of enginon, Inert Ga als ", McGra ill, 1988.	reering polyms Condensation To aw-Hill, 2nd Editions ", 4th	res, foams, ners - Non- ion otal Hours:	[9] 45 1999.
Text Bo 1. 2. Referen	Thomas H.Cou George E.Dieto Ice(s): Flinn, R.A. and Charles J.A., Butterworth- H	s - Structure, p Bingle Crystal C urtney, "Mechanical er, "Mechanical Trojan, P.K., " Crane, F.A.A eiremann, 1997	oroperties Growth, Ra nical Beha Metallurg Engineerir and Furne	ructure - Prod and applicatio pid Solidification viour of Materic y ", McGraw Hang Materials ar ess, J.A.G., "	ns of enginon, Inert Ga als ", McGra ill, 1988. Ind their App Selection a	reering polyms Condensation To aw-Hill, 2nd Educations ", 4th and use of Educations to Education to E	res, foams, ners - Non- ion otal Hours: dition, 2005.	[9] 45 1999.
Text Bo 1. 2. Referen 1. 2.	Thomas H.Cou George E.Diete Ice(s): Flinn, R.A. and Charles J.A.,	s - Structure, p Bingle Crystal C urtney, "Mechanica er, "Mechanica Trojan, P.K., " Crane, F.A.A eiremann, 1993 ster, "Materials	oroperties Growth, Ra nical Beha Metallurg Engineerir and Furne 7. Science an	ructure - Prod and application pid Solidification viour of Materic y ", McGraw Hong Materials aress, J.A.G., "	ns of enginon, Inert Ga als ", McGra ill, 1988. Ind their App Selection a	reering polyms Condensations To aw-Hill, 2nd Edications ", 4th and use of Edward was sons, 10th Edward was ended to the condensation of the conde	res, foams, ners - Non- ion otal Hours: dition, 2005. Edition, Jaico, ingineering Macademic M	[9] 45 1999. aterials",

S.No.	Topics	No.of
0.110.	Торісэ	hours
1.0	Behaviour of Materials	
1.1	Mechanism of plastic deformation, role of dislocations, yield stress, shear strength of	2
1.1	perfect and real crystals - Strengthening mechanisms	2
1.2	Work hardening, solid solution hardening, grain boundary strengthening	1
1.3	Poly phase mixture, precipitation, particle, fiber and dispersion strengthening. Effect of	2
1.0	temperature,	
1.4	Strain and strain rate on plastic behaviors	1
1.5	Super plasticity - Deformation of non- crystalline material.	1
1.6	Introduction to metastable and functional alloys	1
1.7	Fundamental concepts of Bulk Metallic glasses.	1
2.0	Fracture Behavior	
2.1	Griffith's theory, stress intensity factor and fracture toughness - Toughening	2
۷.۱	mechanisms	
2.2	Larson-Miller parameter - Deformation and fracture mechanism maps - Fatigue	2
2.3	Low and high cycle fatigue test, crack initiation and propagation mechanisms and Paris	3
2.3	law - Effect of surface and metallurgical parameters on fatigue -	
2.4	Fracture of non-metallic materials, Failure analysis, sources of failure, procedure of	2
2.4	failure analysis	
3.0	Selection of Materials	
3.1	Motivation for selection, cost basis and service	1
3.2	Requirements - Selection for mechanical properties strength, toughness, fatigue and	2
3.2	сгеер	2
3.3	Selection for surface durability corrosion and wear resistance	2
3.4	Relationship between materials selection and processing - Case studies in materials	2
3.5	Selection with relevance to aero, auto, marine, machinery and nuclear applications.	2
4.0	Modern Metallic Materials	
4.4	Micro alloyed, High strength low alloy (HSLA) steel, Transformation induced plasticity	
4.1	(TRIP) steel,	2
4.2	Maraging steel - Intermetallics, Ni and Ti aluminides	1
4.3	Smart materials, shape memory alloys	1
4.4	Metallic glass - Quasi crystal. Advanced Functional Alloys	2
4.5	Soft and hard magnetic materials Superalloys	2

4.6	Alloy design, Microstructure and Properties	1
5.0	Non-Metallic Materials	
5.1	Polymeric materials - Formation of polymer structure	1
5.2	Production techniques of fibres, foams, adhesives and coatings	2
5.3	Structure, properties and applications of engineering polymers	2
5.4	Non-equilibrium Processes, Single Crystal Growth	2
5.5	Rapid solidification, inert gas condensation	2

Course Designer

Mr. S.Sakthivel - sakthivel_s@ksrct.ac.in

60 PAC 001	English For Research Paper	Category	L	Т	Р	Credit
00 PAC 001	Writing	PC	2	0	0	0

Objectives

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand that how to improve your writing skills and level of readability	Remember, Understand & Apply
CO2	Learn about what to write in each section	Remember, Understand & Apply
CO3	Understand the skills needed when writing a Title	Remember, Understand & Apply
CO4	Understand the skills needed when writing the Conclusion	Remember, Understand & Apply
CO5	Ensure the good quality of paper at very first-time submission	Remember, Understand & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Me	edium;1-Some					

Assessment Pattern

Bloom's Category	Continuous A (N	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

	K.S. I	Rangasam	y College	of Technolog	y – Autono	mous R 2022	2		
	6	00 PAC 00		sh for Resea		Writing			
	_		PED : M.E	E. Engineering	Design				
		Hours/We	ek	Total hrs	Credit	Maximum Mar		rks	
Semester	L	Т	Р		С	CA	ES	Total	
II	2	0	0	30	0	40	60	100	
Introduction to Planning and Pr Sentences, Bein	eparation,	Word Orde	er, Breakin					[6]	
Presentation Skills Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts, Introduction						[6]			
Title Writing Sk Key skills are ne are needed whe Methods, Result	eded when en writing a	an Introduc	tion, skills	needed when				[6]	
Result Writing Skills Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions						[6]			
Verification Ski Useful phrases, time submission	checking P	lagiarism, h	iow to ens	ure paper is as	good as it	could possibly	/ be the first	[6]	

	Total Hours: 30
Text Bo	pok(s):
1.	Adrian Wall work, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011
2.	Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006
Refere	nce(s):
1.	Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006
2.	Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998.
3.	Phill Williams, Advanced Writing skills for students of English, Rumian Publishers, 2018
4.	Sudhir S. Pandhye, English Grammar and Writing Skills, Notion Press, 2017.

S.No.	Topics	No.of hours
1.0	Introduction to Research Paper Writing	
1.1	Planning and Preparation, Word Order	2
1.2	Breaking up long sentences, Structuring Paragraphs and Sentences	1
1.3	Being Concise and Removing Redundancy	2
1.4	Avoiding Ambiguity and Vagueness	1
2.0	Presentation Skills	
2.1	Clarifying Who Did What, Highlighting Your Findings	2
2.2	Hedging and Criticizing	2
2.3	Paraphrasing and Plagiarism, Sections of a Paper	1
2.4	Abstracts, Introduction	1
3.0	Title Writing Skills	
3.1	Key skills are needed when writing a Title	1
3.2	Key skills are needed when writing an Abstract, key skills are needed when writing an Introduction	2
3.3	Skills needed when writing a Review of the Literature	2
3.4	Methods, results, discussion, conclusions, the final check	1
4.0	Result Writing Skills	
4.1	Skills are needed when writing the Methods	2
4.2	Skills needed when writing the Results	1
4.3	Skills are needed when writing the Discussion	1
4.4	Skills are needed when writing the Conclusions	2
5.0	Verification Skills	
5.1	Useful phrases	2
5.2	Checking Plagiarism	2
5.3	How to ensure paper is as good as it could possibly be the first time submission	2

60 BAC 002	Disaster Management	Category	L	Т	Р	Credit
60 PAC 002	Disaster Management	PC	2	0	0	0

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Ability to summarize basics of disaster	Remember, Understand & Apply
CO2	Ability to explain a critical understanding of key concepts in disaster risk reduction	Remember,
002	and humanitarian response.	Understand & Apply
CO3	Ability to illustrate disaster risk reduction and humanitarian response policy and	Remember,
003	practice from multiple perspectives.	Understand & Apply
CO4	Ability to describe an understanding of standards of humanitarian response and	Remember,
CO4	practical relevance in specific types of disasters and conflict situations.	Understand & Apply
CO5	Ability to develop the strengths and weaknesses of disaster management	Remember,
CO5	approaches	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	2	3	1	
CO2	3	3	2	2	3	1	
CO3	3	3	2	2	3	1	
CO4	3	3	2	3	2	1	
CO5	3	3	2	3	2	1	
3- Strong;2-Me	3- Strong;2-Medium;1-Some						

Assessment Pattern

Bloom's Category	Continuous A (M	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

	K.S.			e of Technol			022	
	60 PAC 002 – Disaster Management							
PED : M.E. Engineering Design Hours/Week Total hrs Credit Maximum Marks								
Semester		1	ек Р	i otal nrs				
	L	T	·		С	CA	ES	Total
	2	0	0	30	0	40	60	100
Introduction Disaster: Definit and Manmade D		•				ırd and Disas	ter; Natural	[6]
Repercussions of Disasters and Hazards Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.						d Famines, , Industrial	[6]	
Disaster Prone Areas In India Study of Seismic Zones; Areas Prone to Floods and Droughts, Landslides and Avalanches; Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami; Post- Disaster Diseases and Epidemics							[6]	
Disaster Preparedness and Management Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.						[6]		
Risk Assessment Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival.					[6]			
						Т	otal Hours:	30
Text Book(s):								

1.	Goel S. L., Disaster Administration and Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2009.			
2.	NishithaRai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company,2007.			
Refere	nce(s):			
1.	Sahni, Pardeepet.al.," Disaster Mitigation Experiences and Reflections", Prentice Hall of India, 2001.			
2.	Subramanian R,"Disaster Management", Vikas publishing Housing Pvt. Ltd., 2018.			
3.	Chu-huaKuei, Christian N Madu, Handbook of Disaster Management Risk Reduction & Management: Climate change and Natural Disaster, world scientific, 2017.			
4.	JankiAndharia, Disaster studies: Exploring Intersectional ties in Disaster Discourse, Springer, 2020.			

S.No.	Topics	No.of hours
1.0	Introduction	
1.1	Disaster: Definition, Factors and Significance	2
1.2	Difference between Hazard and Disaster	2
1.3	Natural and Manmade Disasters	2
1.4	Difference, Nature	2
1.5	Types and Magnitude	1
2.0	Repercussions of Disasters and Hazards	
2.1	Economic Damage, Loss of Human and Animal Life	2
2.2	Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones	2
2.3	Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches	2
2.4	Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents	1
2.5	Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts	2
3.0	Disaster Prone Areas In India	
3.1	Study of Seismic Zones	1
3.2	Areas Prone to Floods and Droughts	2
3.3	Landslides and Avalanches	2
3.4	Areas Prone to Cyclonic and Coastal Hazards with Special Reference To Tsunami	2
3.5	Post-Disaster Diseases and Epidemics	2

4.0	Disaster Preparedness and Management	
4.1	Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard	2
4.2	Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches	2
4.3	Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches	2
4.4	Application of Remote Sensing, Data from Meteorological and other Agencies	2
4.5	Media Reports: Governmental and Community Preparedness	1
5.0	Risk Assessment	
5.1	Disaster Risk: Concept and Elements	2
5.2	Disaster Risk Reduction, Global and National Disaster Risk Situation	2
5.3	Techniques of Risk Assessment	2
5.4	Global Co-Operation in Risk Assessment and Warning	2
5.5	People's Participation in Risk Assessment. Strategies for Survival	1

Course Designer

Mr. S.Sakthivel - <u>sakthivel s@ksrct.ac.in</u>

60 PAC 003	Comptitution Of India	Category	L	Т	Р	Credit
60 PAC 003	Constitution Of India	PC	2	0	0	0

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional. Role
 and entitlement to civil and economic rights as well as the emergence nation hood in the early years
 of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolutionin1917and its impact on the initial drafting of the Indian Constitution.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics.	Remember, Understand &Apply
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India	Remember, Understand &Apply
CO3	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.	Remember, Understand &Apply
CO4	Discuss the passage of the Hindu Code Bill of 1956.	Remember, Understand &Apply
CO5	Discuss the role and functioning of election commission of India.	Remember, Understand &Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Medium;1-Some						

Assessment Pattern

Bloom's Category		Continuous Assessment Tests (Marks)			
	1	2			
Remember (R)	10	10	20		
Understand (U)	20	20	30		
Apply (Ap)	30	30	50		
Analyze (An)	0	0	0		
Evaluate (Ev)	0	0	0		
Create (Cr)	0	0	0		
Total	60	60	100		

K.S. Rangasamy College of Technology – Autonomous R 2022								
				03 – Constitu		a		
				E. Engineering				
Compostor	_	Hours/Wee		Total hrs	Credit		Maximum Mark	
Semester	L	Т	Р		С	CA	ES	Total
II	2	0	0	30	0	40	60	100
History of Makin	•							[3]
History, Drafting (· · · · · · · · · · · · · · · · · · ·	<u> </u>		ing)				
Philosophy of Ti		Constitutio	n					[3]
Preamble, Salient	t Features							
Contours of Con	stitutional	Rights an	d Duties					
Fundamental Rig	ghts, Right	to Equali	ty, Right t	to Freedom, I	Right again	st Exploitatio	n, Right to	[6]
Freedom of Relig	gion, Cultu	ral and Edu	ucational F	Rights, Right to	o Constitutio	onal Remedie	es, Directive	
Principles of State Policy, Fundamental Duties.								
Organs of Gover	rnance							[6]
Parliament, Com	position, C	Qualification	s and Dis	squalifications,	Powers ar	nd Functions,	Executive,	
President, Gove	rnor, Coul	ncil of Mi	nisters, Ju	udiciary, Appo	ointment ar	nd Transfer	of Judges,	
Qualifications, Po	wers and F	unctions.						
Local Administra	ation							
District's Adminis	tration hea	ıd: Role an	d Importai	nce Municipali	ties: Introdu	iction. Mavor	and role of	
Elected Represe			•	•		•		[6]
Panchayat. Elect					-			
Organizational H					•			
officials, Importan	• (•	,, 3				
Election Commis			•					
Election Commission: Role and Functioning. Chief Election Commissioner and Election							nd Election	[6]
Commissioners - Institute and Bodies for the welfare of SC/ST/OBC and women.								
	Total Hours:							30
Text Book(s):								
1. The Cor	nstitution of	India, 1950) (Bare Act	i), Government	t Publication	ı .		

2.	Busi S N, Ambedkar B R, "Framing of Indian Constitution",1st Edition, 2015.							
Reference(s):								
1.	Jain, M P, "Indian Constitution Law", 7th Edition, Lexis Nexis,2014							
2.	Basu, D D, "Introduction to the Constitution of India", Lexis Nexis, 2015.							
3.	Bhansali S R., "Textbook on The Constitution of India", Universal Publishers, 2015							
4.	Jain, M P., "Outlines of Indian Legal and Constitutional History", Lexis Nexis, 2014							

S.No.	Topics			
1.0	History of Making of The Indian Constitution			
1.1	History	1		
1.2	Drafting Committee, (Composition & Working)	2		
2.0	Philosophy of The Indian Constitution			
2.1	Preamble, Salient Features	3		
3.0	Contours of Constitutional Rights and Duties			
3.1	Fundamental Rights, Right to Equality, Right to Freedom	1		
3.2	Right against Exploitation, Right to Freedom of Religion	1		
3.3	Cultural and Educational Rights	1		
3.4	Right to Constitutional Remedies	1		
3.5	Directive Principles of State Policy, Fundamental Duties	2		
4.0	Organs of Governance			
4.1	Parliament, Composition, Qualifications and Disqualifications	2		
4.2	Powers and Functions, Executive	1		
4.3	President, Governor, Council of Ministers	1		
4.4	Judiciary, Appointment and Transfer of Judges	1		
4.5	Qualifications, Powers and Functions	1		
5.0	Local Administration			
5.1	District's Administration head: Role and Importance Municipalities	1		
5.2	Introduction, Mayor and role of Elected Representative, CEO, Municipal Corporation	1		
5.3	Panchayat raj: Introduction, PRI: ZilaPanchayat. Elected officials and their roles	1		
5.4	CEO ZilaPanchayat: Position and role. Block level: Organizational Hierarchy (Different departments)	1		
5.5	Village level: Role of Elected and Appointed officials, Importance of grass root democracy	2		

Course Designer

Mr. S.Venkatesan – <u>venkatesans@ksrct.ac.in</u>

60 PED 2P1	Computer Aided Analysis	Category	L	Т	Р	Credit
	Laboratory II	ES	0	0	4	2

- To learn to perform the modeling and meshing of machine component
- To perform the analysis on helical spring deflection and modal analysis of beam
- To acquire knowledge to perform transient analysis using CAE software.
- To develop the students to perform the Design optimization of beam
- To impart knowledge on contact analysis and heat transfer analysis using CAE software.

Pre-requisite

Computer Aided Analysis Laboratory I

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Create the modeling of bearing block and connecting rod	Understand &Apply
CO2	Perform the axial deflection analysis of an open – coiled Helical spring	Understand &Apply
CO3	Perform the modal and transient analysis of cantilever beam	Understand &Apply
CO4	Perform the design optimization, drop test and contact analysis	Understand &Apply
CO5	Perform the steady state and transient heat transfer analysis.	Understand &Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	2	3	3	2	
CO2	3	2	2	3	3	2	
CO3	3	2	2	3	3	2	
CO4	3	2	2	3	3	2	
CO5	3	2	2	3	3	2	
3- Strong; 2-Medium; 1-Some							

K.S. Rangasamy College of Technology – Autonomous R 2022										
60 PED 2P1- Computer Aided Analysis Laboratory II										
PED : M.E. Engineering Design										
Samastar	Hours / Week			Total hrs	Credit	Max	kimum M	arks		
Semester	L	Т	Р	Total ilis	С	CA	ES	Total		
11	0	0	4	60	2	60	40	100		

List of Experiments

- 1. Solid model creation.
- 2. Transient analysis of cantilever beam.
- 3. Modal Analysis of Cantilever beam for natural Frequency determination.
- 4. Modal analysis of stepped shaft.
- 5. Buckling failure.
- 6. Harmonic analysis of guitar.
- 7. Steady state heat transfer analysis on composite wall.
- 8. Transient heat transfer analysis of slab.
- 9. Thermal stress analysis of a 2D component.
- 10. Radiation exchange between surfaces.

	radiation oxeriange between carraces.							
Text	Text book (s):							
1	Chandrupatla and Belegundu "Introduction to Finite Elements in Engineering", Prentice Hall of India Pvt. Ltd. New Delhi, 4 th Ed., 2015.							
2	Reddy J N, "Finite Element Method", Tata McGraw Hill publishing Co Ltd, New Delhi, 3rdEd., 2006.							
Reference(s):								
1	Logan Deryl L., "A First Course in Finite Element Method", Thomson Brook/Cole, 5 th Ed.2012.							
2	Cook R.D. "Concepts and Applications of Finite Element Analysis" Wiley, New York, 4th Ed. 2007.							
3	Bathe K.J., Cliffs, N.J. "Finite Element Procedures in Engineering Analysis", PHI Learning, Eastern Economy Editions, 2009.							
4	Ross C T F., "Advanced Applied Finite Element Methods", Horwood Publishing, 1998.							

Course Designer

Mr. P.Prakash - prakashp@ksrct.ac.in

60 DED 2D2	Technical Report Preparation	Category	L	Т	Р	Credit
60 PED 2P2	and Presentation	PC	0	0	4	1

- To provide exposure to the students to refer and read the research articles in referred journals and conference proceedings
- To learn to review the research articles and to find the research gap
- To improve the technical report writing and presentation skills of the students.
- To acquire strong communication skills to deliver their findings
- To provide exposure to use latest IT tools for presentation

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Collect the relevant literature such as national/international refereed journals selected topics of research.	Remember, Understand & Apply
CO2	Review the research articles of their interest	Remember, Understand & Apply
CO3	Write Technical reports to publish at national/international conference.	Remember, Understand & Apply
CO4	Develop strong communication skills to deliver their work in front of technically qualified audience.	Remember, Understand & Apply
CO5	Prepare and present report with latest IT tools	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	1	2	3	1	
CO2	3	3	1	2	3	1	
CO3	3	3	1	2	3	1	
CO4	3	3	1	2	2	1	
CO5	3	3	1	2	2	1	
3- Strong;2-Medium;1-Some							

Syllabus

K.S. Rangasamy College of Technology – Autonomous R 2022									
60 PED 2P2 - Technical Report Preparation and Presentation									
PED : M.E. Engineering Design									
	Hours/Week			Total hrs	Credit	Maximum Marks			
Semester	L	Т	Р		С	CA	ES	Total	
II	0	0	4	60	1	100	0	100	

Methodology

- Each student is allotted to a faculty of the department by the HOD
- By mutual discussions, the faculty guide will assign a topic in the general / subject area to the student
- The students have to refer the Journals and Conference proceedings and collect the published literature
- The student is expected to collect at least 20 such Research Papers published in the last 5 years
- Using OHP/Power Point, the student has to make presentation for 15-20 minutes followed by 10 minutes discussion
- The student has make two presentations, one at the middle and the other near the end of the semester
- The student has to write a Technical Report for about 30-50 pages (Title page, One page Abstract, Review of Research paper under various subheadings, Concluding Remarks and List of References). The technical report has to be submitted to the HOD one week before the final presentation, after the approval of the faculty guide.

	Week	Activity
	I	Allotment of Faculty Guide by the HoD
	II	Finalizing the topic with the approval of Faculty Guide
Execution	III-IV	Collection of Technical papers
	V-VI	Mid semester presentation
	VII-VIII	Report writing
	IX	Report submission
	X-XI	Final presentation

CA DED 2D2	Mini Droinet	Category	L	Т	Р	Credit
60 PED 2P3	Mini Project	PC	0	0	4	2

- To impart the practical knowledge to the students
- To make them to carry out the technical procedures in their project work
- To provide an exposure to the students to refer, read and review the research articles
- To write technical papers relevant to their project work and placing this as their beginning stage for their final presentation.
- To acquire strong communication skills to present among the audience.

Pre-requisite

-NIL-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Get an opportunity to work in actual industrial environment if they opt for internship.	Remember, Understand & Apply
CO2	Solve a live problem using software/analytical/computational tools.	Remember, Understand & Apply
CO3	Collect the literature relevant to their chosen area of interest	Remember, Understand &Apply
CO4	Learn to write technical reports.	Remember, Understand & Apply
CO5	Develop skills to present and defend their work in front of technically qualified audience	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	3	1
CO2	3	2	1	2	3	1
CO3	3	2	1	2	3	1
CO4	3	2	1	3	2	1
CO5	3	2	1	3	2	1
3- Strong;2-Medium;1-Some						

Syllabus

K.S. Rangasamy College of Technology – Autonomous R 2022									
	60 PED 2P3 - Mini Project								
	PED : M.E. Engineering Design								
	Hours/Week			Total hrs	Credit	N	laximum Mar	ks	
Semester	L	Т	Р		С	CA	ES	Total	
II	0	0	4	60	2	100	0	100	

Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215

(An Autonomous Institution affiliated to Anna University)

M.E. / M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2022-2023 onwards)

THIRD SEMESTER

S.	Course	Name of the Course	Duration of		Weightage of Marks					
No.	Code	Internal	Continuous Assessment *	End Semester Exam **	Max. Marks	End Semester Exam	Total			
			THEORY							
1	60 PED E5*	Programme Elective – V	2	40	60	100	45	100		
2	60 PED E6*	Programme Elective – VI	2	40	60	100	45	100		
	PRACTICAL									
3	60 PED3P1	Project Work - Phase I	3	100	-	100	-	-		

^{*}CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department wills put a process in place to ensure that the actual test paper follow the declared pattern.

^{**} End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to60marksfortheawardofterminalexaminationmarks

60 PED E51	Advanced Finite Element	Category	L	Т	Р	Credit
60 PED E31	Method	PC	3	0	0	3

- To formulate the advanced FE Plate and Shell elements
- To demonstrate use of FE formulation to solve dynamic problems
- To learn the concept of material and geometric Non-linearity
- To acquire knowledge and solve contact problems.
- To apply the h-refinement technique for convergence of results

Pre-requisite

Finite Element Analysis

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Formulate the Plate and Shell elements and solve the appropriate problems	Remember,
•	remarks the reaction of the distribution of the depth of	Understand & Apply
CO2	Calva dynamia vibratian problems using various numerical methods	Remember,
CO2	Solve dynamic vibration problems using various numerical methods	Understand & Apply
000	Calve the new linear weeklers in Metal Forming Dresses	Remember,
CO3	Solve the non-linear problems in Metal Forming Process	Understand & Apply
CO4	Madel and salve 2D frictionless contact problems	Remember,
CO4	Model and solve 2D frictionless contact problems	Understand & Apply
COF	Fatimate the arrars in FF model and apply the adaptive refinement	Remember,
CO5	Estimate the errors in FE model and apply the adaptive refinement	Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Medium;1-Some						

Assessment Pattern

Bloom's Category	Continuous As (Ma	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

	K.S. Rangasamy College of Technology – Autonomous R 2022									
	60 PED E51 - Advanced Finite Element Method									
	PED : M.E. Engineering Design									
			Hours/Wee		Total hrs	Credit		Maximum Marl		
Semes		L	T	Р		С	CA	ES	Total	
II		3	0	0	45	3	40	60		
Review and She Applicat	Bending of Plates and Shells Review of Elasticity Equations – Bending of Plates and Shells – Finite Element Formulation of Plate and Shell Elements - Conforming and Non-Conforming Elements – C ₀ and C ₁ Continuity Elements – Application and Examples.								[9]	
Direct F		n – Free,			ed Response lethods – Exai		Procedures	–Subspace	[9]	
Introduc	y – Geom	rative Tec			on-linearity – acement Form				[9]	
Conditio		enetrability	- Gap elem ntact proble		odelling conta	ct -Tangent	stiffness matr	ix and force	[9]	
			ive Refiner		nt with adaptivi	tv – Adaptive	e refinement.		[9]	
						-7		Total Hours:	45	
Text Bo	ok(s):									
1.	Bathe K.	J., and Cliff / Editions, 2		ite Elemen	t Procedures i	n Engineerin	ıg Analysis", F	PHI Learning,	Eastern	
2.	Reddy J	N, "Finite E	lement Met	thod", Tata	McGraw Hill p	oublishing Co	Ltd, New De	elhi, 3 rd Edition	2006.	
Referer	nce(s):									
1.	1. Zienkiewicz, O.C., and Taylor, R.L., "Finite Element Method: Volume 2 Solid Mechanics", 5 th Edition, Butterworth-Heinemann, Oxford, 2000.							dition,		
2.	2 nd Editio	on, John W	iley & Sons	Ltd., Engl	3., "Nonlinear F and, 2014.					
3.			avid.S, Mall ı, Wiley Pub		iel E Plesha, "0 013.	Concepts an	d Applications	s of Finite Eler	ment	

4.	Logan Deryl L., "A First Course in Finite Element Method", Thomson Brook/Cole, 5 th Ed.2012.
5.	Ross C T F., "Advanced Applied Finite Element Methods", Horwood Publishing, 1998.

S.No.	Topics	No.of hours
1.0	Bending of Plates and Shells	
1.1	Review of Elasticity Equations	1
1.2	Bending of Plates and Shells	2
1.3	Finite Element Formulation of Plate and Shell Elements	2
1.4	Conforming and Non-Conforming Elements	2
1.5	C₀ and C₁ Continuity Elements	1
1.6	Application and Examples.	1
2.0	Dynamic Problems	
2.1	Direct Formulation	2
2.2	Free, Transient and Forced Response	2
2.3	Solution Procedures –Subspace Iterative Technique	2
2.4	Houbolt, Wilson	1
2.5	Newmark Methods	2
3.0	Non-Linear Problems	
3.1	Introduction – Iterative Techniques	1
3.2	Material non-linearity – Elasto Plasticity	2
3.3	Plasticity– Visco Plasticity – Geometric	2
3.4	Non linearity – large displacement Formulation	2
3.5	Application in Metal Forming Process	2
4.0	Contact Problems	
4.1	Condition of impenetrability	2
4.2	Gap elements for modelling contact	2
4.3	Tangent stiffness matrix	2
4.4	Force vectors for 2D frictionless contact problems.	3
5.0	Error Estimates and Adaptive Refinement	
5.1	Error norms and Convergence rates	3
5.2	h-refinement with adaptivity	3
5.3	Adaptive refinement.	3

Course Designer

Mr. M.Moorthi – moorthi@ksrct.ac.in

60	PED E52	Advanced Metallurgy	Category	L	Т	Р	Credit
00	PED E32	Advanced Metandigy	PC	3	0	0	3

- To analyze the Structure of materials at different levels, basic concepts of crystalline materials.
- To explain the concept of phase, phase diagram and understand the basic terminologies associated with metallurgy.
- To learn the heat treatment processes and its effects on material properties
- To explain features, classification, applications of newer class materials like smart materials, piezoelectric materials, biomaterials, composite materials etc.
- To learn the methods of fabrication of composite materials

Pre-requisite

Engineering Materials and Metallurgy

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Demonstrate understanding of various aspects of crystal and lattice structure and their imperfection.	Remember, Understand & Apply
CO2	Recognize and identify the phases in metallic materials and their effect on their properties.	Remember, Understand & Apply
CO3	Comprehend the process of heat treatment of different nonferrous alloys and tool steel and decide a heat treatment to acquire their desired properties.	Remember, Understand & Apply
CO4	Demonstrate acquisition of knowledge of composites, ceramics, orthodental and biomaterials.	Remember, Understand & Apply
CO5	Know the recent developments in the field and understand modern research material.	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	2	3	1	
CO2	3	3	2	2	3	1	
CO3	3	3	2	2	3	1	
CO4	3	3	2	3	2	1	
CO5	3	3	2	3	2	1	
3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category		Continuous Assessment Tests (Marks)			
	1	2			
Remember (R)	10	10	20		
Understand (U)	20	20	30		
Apply (Ap)	30	30	50		
Analyze (An)	0	0	0		
Evaluate (Ev)	0	0	0		
Create (Cr)	0	0	0		
Total	60	60	100		

	K.S. I			of Technology		nous R 2022		
		60		 Advanced I 				
				. Engineering			Maximum Marl	
		Hours/We		Total hrs	Credit			
Semester	L	Т	Р		С	CA	ES	Total
III	3	0	0	45	3	40	60	100
Aspects of Ph planes (Miller'	Physical State of Metals Aspects of Physical Metallurgy: Crystal structure, systems and Barvias lattices, Indexing of lattice planes (Miller's Indices), Indexing of lattice directions, Co-ordination Number (Ligency), Density calculations and imperfections in crystals.							[9]
Phases of Metals Study of Equilibrium diagrams for Fe-C systems, Cu - Bronze alloys i.e. Cu:Zn, Cu:Sn, Cu:Al etc., Developments in metallic materials like HSLA state, maraging steels, dual phased steels, creep resisting steels, materials for high and low temperature applications, Nimerics, Inconels, Haste Alloys etc., Al, Ni alloys, Ti, Mg alloys.						[9]		
	Heat Treatment Heat Treatment of Nonferrous alloys, Heat Treatment of Tool steels.						[9]	
Modern Mater Orthodental m sports materia	aterials, Bio r	naterial, Pr	osthetic ma	aterials, Nano	materials, su	uperconductin	g materials,	[9]
Composites, c	Fabrication of Composites Composites, ceramics, cermets, shape memory alloys their manufacturing techniques, advantages and limitations. Surface coatings and their tribological aspects. PVD, CVD, IVD ion implantation					[9]		
	Total Hours:						45	
Text Book(s):							1	
1. Khanr 2000.	1. Khanna, O.P., "A Text Book of Material Science and Metallurgy", Dhanpat Rai and Sons, New Delhi,							
1995	n F. Smith, "F	rinciples of	Material S	cience and En	gineering", N	McGraw-Hill B	look Co., New	Delhi,
Reference(s):								

1.	Gupta, R.B., "Material Science", Satya Publications, 4 th Edition, New Delhi, 1980.
2.	William D. Callister, Jr, "Material Science and Engineering an Introduction", John Wiley and Sons Inc.1989.
3.	Brandes, E.A., and Brook, G.B., "Smithells Metals Reference Book", Butterworth Heinemann.
4.	Lawrence H. Van Vlack, "Elements of Material Science and Engineering", Addison Wesley Publishing Company.1989.
5.	Donald L. Wise, "Biomaterials and Bioengineering Handbook", 1st edition, Marcel Dekker Inc.2000

Rev. No.0/w.e.f. 01.08.22

S.No.	Topics	No. of hours
1.0	Physical State of Metals	
1.1	Aspects of Physical Metallurgy	2
1.2	Crystal structure	1
1.3	Systems and Barvias lattices	2
1.4	Indexing of lattice planes	1
1.5	Indexing of lattice directions	1
1.6	Co-ordination Number (Ligency)	1
1.7	Density calculations and imperfections in crystals	1
2.0	Phases of Metals	
2.1	Study of Equilibrium diagrams for Fe-C systems	2
2.2	Cu - Bronze alloys i.e. Cu:Zn, Cu:Sn, Cu:Al	1
2.3	Developments in metallic materials like HSLA state	1
2.4	Maraging steels, dual phased steels	1
2.5	Creep resisting steels	1
2.6	Materials for high and low temperature applications	1
2.7	Nimerics, Inconels, Haste Alloys	1
2.8	Al, Ni alloys, Ti, Mg alloys.	1
3.0	Heat Treatment	
3.1	Heat Treatment of Nonferrous alloys	5
3.2	Heat Treatment of Tool steels	4

4.0	Modern Materials	
4.1	Orthodental materials	2
4.2	Bio material	1
4.3	Prosthetic materials	1
4.4	Nano materials	2
4.5	Superconducting materials	2
4.6	Sports materials	1
5.0	Fabrication of Composites	1
5.1	Composites	1
5.2	Ceramics, cermets, shape memory alloys their manufacturing techniques	2
5.3	Advantages and limitations of ceramics, cermets, shape memory alloys	2
5.4	Surface coatings and their tribological aspects	2
5.5	PVD, CVD, IVD ion implantation method	2

Course Designer

Mr. P. Tamilarasu – tamilarasup@ksrct.ac.in

60 PED E53	Design of Material Handling	Category	L	Т	Р	Credit
	Equipments	PC	3	0	0	3

- To impart knowledge on the need and application of different material handling techniques, equipment's used in common use and in industrial sector.
- To prepare the students to design the hoist
- To learn the mechanism of hoisting gears, design and its application
- To acquire knowledge on conveyors, types and application
- To know the design procedures of elevators for material transport.

Pre-requisite

_

Course Outcomes

On the successful completion of the course, students will be able to

CC	O 1	Classify various types of material handling equipment and their applications.	Remember, Understand & Apply
CC	02	Design the chain drive, rope drive systems and their attachments in material handling equipment.	Remember, Understand & Apply
CC	О3	Design various hoisting gear mechanisms and to select the motor ratings for power drive in the material handling equipment.	Remember, Understand & Apply
CC	O 4	Design the belt, screw conveyor, pneumatic and vibratory conveyor for material transportation.	Remember, Understand & Apply
CC	O5	Design the bucket, cage elevators, escalators and fork lift truck.	Remember, Understand & Apply

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	2	3	1	
CO2	3	3	2	2	3	1	
CO3	3	3	2	2	3	1	
CO4	3	3	2	3	2	1	
CO5	3	3	2	3	2	1	
3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category	Continuous A (M	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

	K.S. Rangasamy College of Technology – Autonomous R 2022							
60 PED E53 - Design of Material Handling Equipments								
PED : M.E. Engineering Design							alea.	
Semester		Hours/Wee	ek P	Total hrs	Credit C	Maximum Mai		
	L				_	CA	ES	Total
III	3	0	0	45	3	40	60	100
Materials Handling Equipment Intraplant transporting facilities - types - Principle groups of material handling equipment – Types of material handling equipment – Choice of material handling equipment - General characteristics - applications.							[9]	
Welded and Load handlin	Design of Hoist Welded and roller chains - Hemp and steel wire ropes - pulleys, pulley systems, sprockets and drums - Load handling attachments - Forged hooks and eye hooks - Crane grabs - Electric lifting magnets - Grabbing attachments - Ladles - Arresting gear and Brakes.						[9]	
Hoisting Gear Drives of Hoisting gear - Hand and power drives – Traveling gear - Rail traveling mechanism - Cantilever and monorail cranes – Trackless travelling mechanisms - Slewing, jib and luffing gear - Selecting the motor ratings - Cogwheel drive.					[9]			
Conveyors Types - Belt conveyor - Pneumatic conveyor - Screw conveyor - apron conveyor - Vibratory conveyor - Design and applications.					[9]			
Elevators Bucket elevators - design - Loading and bucket arrangements - Cage elevators - Shaft way, guides, counter weights, hoisting machine, safety devices – Fork lift truck – Escalators					[9]			
								45
Text Book(s	s):							
1. Rudenko, N., "Materials handling equipment", Peace publications, Mascow, 2000.								
2. Spivakovsy, A.O and Dyachkov, V.K., "Conveying Machines", Volumes I and II, MIR Publishers, 1985.					s, 1985.			
Reference(s):								
1. Ale	1. Alexandrov, M., "Materials Handling Equipments", MIR Publishers, 1981.							
	Ray Siddhartha., "Introduction to Material Handling", New age International, 2007.							
						ns.2007.		
	,		,		,,,,,,	,	F	,

4.	Fayed, M.E., and Thomas S.S., "Mechanical conveyors", Selection and operation", 1st edition, CRC press, 1996.
5.	"Design Data Book", Compiled by P.S.G. College of Technology, Kalaikathir Achchagam, Coimbatore, 2011.

S.No.	Topics	No.of hours
1.0	Materials Handling Equipment	
1.1	Intra plant transporting facilities	2
1.2	Intra plant Principle of material handling equipment	1
1.3	Groups of material handling equipment	2
1.4	Types of material handling equipment	1
1.5	Choice of material handling equipment	1
1.6	General characteristics of material handling equipment	1
1.7	Applications of material handling equipment	1
2.0	Design of Hoist	
2.1	Welded and roller and Hemp and steel wire ropes	2
2.2	Pulleys, pulley systems and sprockets and drums	2
2.3	Load handling attachments and Forged hooks and eye hooks	2
2.4	Crane grabs and Electric lifting magnets	1
2.5	Grabbing attachments and Ladles - Arresting gear and Brakes	2
3.0	Hoisting Gear	<u> </u>
3.1	Drives of Hoisting gear	1
3.2	Hand and power drives	1
3.3	Traveling gear - Rail traveling mechanism	2
3.4	Cantilever and monorail cranes	1
3.5	Trackless travelling mechanisms	1
3.6	Slewing, jib and luffing gear	1
3.7	Selecting the motor ratings - Cogwheel drive	2

4.0	Conveyors	
4.1	Types of Belt conveyor	2
4.2	Pneumatic conveyor	2
4.3	Screw and apron conveyor	2
4.4	Vibratory conveyor Design and applications	3
5.0	Elevators	
5.1	Bucket elevators design	1
5.2	Design of Loading and bucket arrangements	2
5.3	Design of Shaft way, guides, counter weights hoisting machine	2
5.4	Safety devices and Fork lift truck Design	2
5.5	Escalators and Cage elevators	2

Dr.G.Mylsami – mylsamig@ksrct.ac.in

60 PED E54	Advances in Casting and	Category	L	Т	Р	Credit
00 PED E34	Welding Processes	PC	3	0	0	3

- To impart knowledge on foundry layout and design characteristics.
- To study the metallurgical concepts and applications of casting process.
- To acquire knowledge on advancements in casting and CAD of casting
- To learn the welding metallurgy and heat treatment effects
- To understand the recent welding process and their application

Pre-requisite

-Nil-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Demonstrate the principle and design considerations in casting.	Remember, Understand & Apply
CO2	Identify the phases in metallic materials, castability and their defects.	Remember, Understand & Apply
CO3	Comprehend the trends and layout in foundry.	Remember, Understand & Apply
CO4	Demonstrate the weldability of metals, heat treatment and their effects.	Remember, Understand & Apply
CO5	Describe the recent welding techniques and their application.	Remember, Understand & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Me	edium;1-Some					

Assessment Pattern

Bloom's Category		ssessment Tests larks)	Model Exam (Marks)
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

				of Technology				
	60 F	PED E54 - /		in Casting an Engineering		Processes		
		Hours/Wee		Total hrs	Credit		Maximum Mar	ks
Semester	L	Т	Р		С	CA	ES	Total
III	3	0	0	45	3	40	60	100
Casting Design Heat transfer bet solidification and							or directional	[9]
Casting Metallur Solidification of solidification — I Babbit alloy and (pure metal Degasification							[9]
Recent Trends i Shell moulding, Continuous castii Layout of mecha foundry – Compu	precision ng, Counter nized found	investment gravity lov dry – sand	casting, v pressure reclamatio	CO ₂ moulding casting, Squee	eze casting	and semisolio	d processes.	[9]
Welding Metallu Heat affected Zor Mg , Cu ,Zircon embrittlement – solidification - Ar weld joint design	ne and its c ium and tit Lamellar te nalysis of s	haracteristi anium allo aring – Re tresses in	ys – Carb sidual stre welded str	on Equivalent ess – Distortion ructures – pre	of Plain ar n and its co	nd alloy stee ontrol . Heat	ls Hydrogen transfer and	[9]
Recent Trends in Friction welding, induction welding welding – Electrobrazing and sold and vapour phastransport vehicles	friction sti g – ultraso o slag weld ering techr se solderin	nic welding ding narrov niques – in g. Overvie	g – electro v gap, hyb duction, di w of auto	on beam weldi orid twin wire p resistance, o	ng – Laser active TIG diffusion pro	beam weldi – Tandem M cesses – Ho	ng –Plasma IIG- modern ot gas, wave	[9]
'							Total Hours:	45
Text Book(s):								ı

1.	Jain P.L., "Principles of Foundry Technology", Tata McGraw-Hill Publishers, 2013.
2.	Carrry B., "Modern Welding Technology", Prentice Hall Pvt Ltd.6 th Edition, 2004
Referen	ce(s):
1.	"Casting - ASM Handbook", Vol 15, 2011.
2.	"Welding Brazing & Soldering - ASM Handbook" Vol.6, 2003.
3.	Srinivasan N.K., "Welding Technology", Khanna Tech Publishers, 2002.
4.	Heineloper & Rosenthal, "Principles of Metal Casting", Tata McGraw Hill, 2005.
5.	Parmer R.S., "Welding Engineering and Technology", Khanna Publishers, 2002.
6.	Cornu. J., "Advanced welding systems", Volumes I, II and III, Jaico Publishers, 2011.

S.No.	Topics	No.of hours
1.0	Casting Design	
1.1	Heat transfer between metal and mould	2
1.2	Design considerations in casting	2
1.3	Designing for directional solidification and minimum stresses	3
1.4	principles and design of gating and risering	2
2.0	Casting Metallurgy	1
2.1	Solidification of pure metal and alloys	2
2.2	Shrinkage in cast metals – progressive and directional solidification	2
2.3	Degasification of the melt-casting defects	3
2.4	Castability of steel , Cast Iron, Al alloys, Babbit alloy and Cu alloy	2
3.0	Recent Trends in Casting and Foundry Layout	1
3.1	Shell moulding, precision investment casting, CO ₂ moulding	1
3.2	Centrifugal casting, Die casting, Continuous casting	2
3.3	Counter gravity low pressure casting, Squeeze casting and semisolid processes	2
3.4	Layout of mechanized foundry – sand reclamation	2
3.5	Material handling in foundry pollution control in foundry	1
3.6	Computer aided design of casting	1
4.0	Welding Metallurgy and Design	1
4.1	Heat affected Zone and its characteristics	1

4.2	Weldability of steels, cast iron, stainless steel, aluminium, Mg , Cu ,Zirconium and titanium alloys	2
4.3	Carbon Equivalent of Plain and alloy steels Hydrogen embrittlement	2
4.4	Lamellar tearing – Residual stress – Distortion and its control	1
4.5	Heat transfer and solidification - Analysis of stresses in welded structures	1
4.6	Pre and post welding heat treatments – weld joint design	1
4.7	Welding defects – Testing of weldment	1
5.0	Recent Trends in Welding	
5.1	Friction welding, friction stir welding – explosive welding – diffusion bonding	1
5.2	High frequency induction welding – ultrasonic welding – electron beam welding	1
5.3	Laser beam welding –Plasma welding – Electro slag welding narrow gap, hybrid twin wire active TIG	2
5.4	Tandem MIG- modern brazing and soldering techniques – induction, dip resistance, diffusion processes	2
5.5	Hot gas, wave and vapour phase soldering. Overview of automation of welding in aerospace	2
5.6	Nuclear, surface transport vehicles and under water welding.	1

Mr.M.Moorthi-moorthi@ksrct.ac.in

CO DED ESS	Mechanics of Composite	Category	L	Т	Р	Credit
60 PED E55	Materials	PC	3	0	0	3

- To comprehend the mechanics of composite materials on macroscopic and microscopic level
- To know the elastic behaviour and stress-strain plots of composite lamina
- To apply knowledge for finding failure mechanism based on failure theories in a lamina
- To know the elastic behaviour and stress-strain plots of composite laminates
- To know the design methodology for structural composite materials.

Pre-requisite

Engineering Materials and Metallurgy

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Interpret the basic concepts and difference between composite materials with conventional materials.	Understand, Remember & Apply
CO2	Recognize role of constituent materials in defining the average properties and response of composite materials on macroscopic level.	Understand, Remember & Apply
CO3	Develop the macro-mechanical failure theories for unidirectional Lamina	Understand, Remember & Apply
CO4	Apply knowledge for finding failure envelopes and stress-strain plots of laminates.	Understand, Remember & Apply
CO5	Design the structural composite materials against laminate failure	Understand, Remember & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	3	3	1
CO2	3	2	3	3	3	1
CO3	3	2	3	3	2	1
CO4	3	2	3	2	2	1
CO5	3	2	3	2	2	1

Assessment Pattern

Bloom's Category		sessment Tests arks)	Model Exam (Marks)	End Sem	
	1	1 2		Examination (Marks)	
Remember (R)	10	10	10	10	
Understand (U)	10	10	10	10	
Apply (Ap)	20	20	40	40	
Analyze (An)	20	20	40	40	
Evaluate (Ev)	0	0	0	0	
Create (Cr)	0	0	0	0	
Total	60	60	100	100	

	K.S.			of Technolog				
		60 PED I		nanics of Com		erials		
	1	11		E. Engineering			Maximum Marks	
Semester		Hours/Wee		Total hrs	Credit			
	L	Т	Р		С	CA	ES	Total
<u>II</u>	3	0	0	45	3	40	60	100
Classification limitations of	composite m	e materials, aterials, Si	gnificance	eristics of con andobjectives Introduction to	of compos	ite materials,	Science and	[9]
Micromechan composite ma		nina propert -strain relat	ies, Const ons, Relat	ion between m			ties of typical ing constants,	[9]
Micromechan		; failure m		s, Macro-med s failure theori		ength paramo	eters, Macro-	[9]
Basic assumplayer within a		al Laminatio					rain relation of s, Analysis of	[9]
Types of fail Micromechan	ics of progress	analysis ar sive failure;	nd safety Progressi		e laminate f	ailure, Design	ric laminates, methodology	[9]
							Total Hours:	45
Text Book(s)								
1. Kaw	and Autar K, '	"Mechanics	of Compos	site Materials",	CRC Press	, 2nd Edition,	2006.	
2. Rob	ert M Jones, "I	Mechanics o	of Compos	ite Materials ",	CRC Press,	2nd Edition, 2	2015.	
Reference(s)								

1.	Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures", University Press, 2004.
2.	Isaac M. Daniels, Orilshai, "Engineering Mechanics of Composite Materials", Oxford University Press,
	2006.
3.	Bhagwan D. Agarwal, Lawrence J. Broutman, "Analysis and Performance of Fiber Composites", John
	Wiley and Sons, Inc. 2017.
4.	Krishnan K. Chawla., "Composite materials: Science and Engineering", Springer Publishers, 2010

S.No.	Topics	No.of hours
1.0	Introduction and Characteristics	
1.1	Classification of composite materials, Characteristics of composites	2
1.2	Overview of advantage and limitations of composite materials	2
1.3	Significance and objectives of composite materials	2
1.4	Science and technology, current status and future prospectus	2
1.5	Introduction to Laminate composite	1
2.0	Elastic Behavior of Unidirectional Lamina	
2.1	Micromechanics, Basic lamina properties	2
2.2	Constituent materials and properties, Properties of typical composite materials	2
2.3	Stress-strain relations,	2
2.4	Relation between mathematical and engineering constants	2
2.5	Transformation of stress, strain and elastic parameters.	1
3.0	Strength of Unidirectional Lamina	
3.1	Micromechanics of failure; failure mechanisms	3
3.2	Macro-mechanical strength parameters	2
3.3	Macro-mechanical Failure theories	2
3.4	Applicability of various failure theories	2
4.0	Elastic Behavior of Laminate	
4.1	Basic assumptions, Classical Lamination theory	2
4.2	Strain-displacement relations	1
4.3	Stress-strain relation of layer within a laminate	1

4.4	Force and moment resultant	2
4.5	General load–deformation relations	2
4.6	Analysis of different types of laminates	1
5.0	Stress and Failure Analysis of Laminates	
5.1	Types of failures	1
5.2	Stress analysis and safety factors for first ply failure of symmetric laminates	2
5.3	Micromechanics of progressive failure; Progressive and ultimate laminate failure	2
5.4	Design methodology for structural composite materials	2
5.5	Design requirements and design failure criteria	2

Dr. K. Santhanam - santhanam@ksrct.ac.in

60 PED E61	Panid Prototyning and Tooling	Category	L	Т	Р	Credit
00 PED E01	Rapid Prototyping and Tooling	PC	3	0	0	3

- To describe product development, conceptual design and classify rapid prototyping systems.
- To learn the operating principles, capabilities and limitations of liquid and solid based systems.
- To learn the operating principles of powder based additive manufacturing system.
- To learn the concepts of reverse engineering.
- To select and use correct CAD formats in rapid tooling.

Pre-requisite

-Nil-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe product development, conceptual design and classify rapid prototyping systems and its applications.	Understand, Apply & Analyse
CO2	Identify The process of photopolymers, photo polymerization, layering technology, laser and laser scanning.	Understand, Apply & Analyse
CO3	Applying of measurement and scaling technique for prototype manufacturing	Understand, Apply & Analyse
CO4	Identify the Rapid Prototyping Data Formats	Understand & Apply
CO5	Realize the application of Rapid prototyping and rapid tooling technologies for product development.	Understand & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1

Assessment Pattern

Bloom's Category	Continuous A (M	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

	K.S. R			of Technology				
		60 PED		oid Prototypin		ng		
		Hours/Wee		Total hrs	Credit		Maximum Mar	ke
Semester	L	T	Р	Totaliis	C	CA	ES ES	Tota
III	3	0	0	45	3	40	60	
Introduction to R Need for the time Rapid Prototyping classification of RI	e compress g, Advantaç	sion in prod ges and Li		•	•	•		[9]
Rapid Prototypin Fused deposition Solid Ground Cur (SLR) systems: Filedetails, Application Process parameter Principle of Opera	n Modeling ing: Princip Process pa ins. Selecti ers, Data pi tion, LOM r	(FDM): Pole of operal rameters, ive Laser of reparation f	tion, Mach Process of Sintering (for SLS, a	nine details, A letails, Data F (SLS): Types pplications. La	pplications. Preparation, of machine minated Ob	Stereo Lithog Data files, a s, Principle	graphic Resin and Machine of operation,	[9]
Concept Modele Concept modeler Printer, JP syster applications.	s – Princip						•	[9]
Direct rapid toolin Copper polyamide						cast Process,	[9]	

Softwar	e for Rapid Tooling	
STL File software accuracy Allied pr modifica	es, Over view of Solid view, Magics, mimics, magics communicator, etc, Internet based is, Collaboration tools. Rapid Manufacturing- Process optimization — Factors influencing process — Vacuum Casting, Surface Digitizing, Surface Generation from point cloud, Surface tion, data transfer to solid models - Applications in Aerospace Industry, Automotive Industry, Industry, Coin Industry, Medical and Bioengineering field.	[9]
	Total Hours:	45
Text Bo	ook(s):	
1.	Chua C.K., Leong K.F. and Lim C.S,"Rapid Prototyping: Principles and Applications", 3rd Edition World Scientific, New Jersey, 2010.	on,
2.	Pham D.T. and Dimov S.S., "Rapid Manufacturing", 1 st Edition, Springer-Verlag, London, 201	1.
Referen	ce(s):	
1.	Frank W. Liou, "Rapid Prototyping and Engineering Applications", CRC Press, 2008.	
2.	Jacobs P.F., "Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography", McG	raw-Hill,
	New York, 2010	
3.	Wohlers Terry, "Wohlers Report 2014", Wohlers Associates, 2014.	
4.	Frank W. Liou, "Rapid Prototyping and Engineering Applications", CRC Press, 2008	

S. No.	Topics	No. of hours
1.0	INTRODUCTION TO RAPID PROTOTYPING	110013
1.1	Introduction	1
1.2	Need for the time compression in product development	1
1.3	History of RPT systems	1
1.4	Fundamentals of Rapid Prototyping	1
1.5	Advantages and Limitations of Rapid Prototyping	1
1.6	,Growth of RPT industry	2
1.7	Classification of RPT systems	2
2.0	RAPID PROTOTYPING METHODS	
2.1	Fused deposition Modeling (FDM): Principle, Process Parameters	1
2.2	Path generation, Applications	1
2.3	Solid Ground Curing: Principle of operation	1
2.4	Machine details, Applications	1
2.5	Stereo Lithographic Resin (SLR) systems: Process parameters, Process details,	1
2.6	Data Preparation, Data files, and Machine details, Applications	1
2.7	Selective Laser Sintering (SLS): Types of machines, Principle of operation,	1
2.8	Process parameters, Data preparation for SLS, applications	1
2.9	Laminated Object Manufacturing (LOM): Principle of Operation, LOM materials, Process	1

	details, Applications			
3.0	CONCEPT MODELERS			
3.1	Concept modelers – Principle	1		
3.2	Thermo jet printer	1		
3.3	Sander's model market	1		
3.4	3-D Printer	1		
3.5	Genisys Xs Printer	1		
3.6	JP system	1		
3.7	Object Quadra System	1		
3.8	Laser Engineered Net Shaping	2		
4.0	RAPID TOOLING			
4.1	Indirect Rapid Tooling- Silicone rubber tooling	1		
4.2	Aluminum filled epoxy tooling, Spray metal tooling	1		
4.3	Direct rapid tooling- Direct Accurate clear epoxy solid injection molding	1		
4.4	Quick cast Process	1		
4.5	Copper polyamide	1		
4.6	Direct metal laser sintering (DMLS)	1		
4.7	ProMetal tooling	1		
4.8	Sand Casting Tooling,Laminate tooling	1		
4.9	Soft tooling v/s Hard tooling	1		
5.0	SOFTWARE FOR RAPID TOOLING			
5.1	STL Files, Over view of Solid view	1		
5.2	Magics, mimics	1		
5.3	Rapid Manufacturing- Process optimization	1		
5.4	Factors influencing accuracy, Data preparation Errors, Part building Errors, Errors in	2		
J.7	finishing, Influence of part orientation			
5.5	Allied process – Vacuum Casting, Surface Digitizing, Surface Generation from point	1		
5.5	cloud	'		
5.6	Surface modification, data transfer to solid models	1		
5.7	Applications in Aerospace Industry, Automotive Industry, Jewelry Industry, Coin Industry, Medical and Bioengineering field.	2		

Mr. M. Prasath - prasathm@ksrct.ac.in

60 PED E62	Design of Hydraulic and	Category	L	Т	Р	Credit
	Pneumatic Systems	PC	3	0	0	3

- To impart knowledge on the science, use and application of hydraulics system as fluid power in Industry.
- To acquire the concept of control and regulation elements in hydraulic system
- To learn the procedure to design hydraulic circuits for different application
- To study the fundamentals of pneumatic system and circuits
- To understand the procedure for installation, maintenance and design of special circuits

Pre-requisite

-Nil-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Select and apply the use of rotary and linear actuators.	Remember, Understand & Apply
CO2	Choose the different types of control and regulation elements.	Remember, Understand & Apply
CO3	Design the various industrial circuits in hydraulic systems.	Remember, Understand & Apply
CO4	Design the various pneumatic system and circuits.	Remember, Understand & Apply
CO5	Diagnose the faults and implement the maintenance measures.	Remember, Understand & Apply

Mapping with Programme Outcomes

CO1	2				PO5	PO6
	3	3	2	2	3	1
CO2	3	3	2	2	3	1
CO3	3	3	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1

Assessment Pattern

Bloom's Category	Continuous A	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

Syllabus

	K.S. Rangasamy College of Technology – Autonomous R 2022								
60 PED E62- Design of Hydraulic and Pneumatic Systems PED : M.E. Engineering Design									
			Hours/We		Total hrs	Credit		Maximum Ma	rke
Seme	ester	L	T	Р	Totaliiis	C	CA	ES ES	Total
	III	3	0	0	45	3	40	60	100
Oil Hydraulic Systems and Hydraulic Actuators Hydraulic Power Generators – Selection and specification of pumps, pump characteristics. Linear and Rotary Actuators – selection, specification and characteristics. Hydrostatic drives, types, selection.								stics. Linear	[9]
Pressu		ction and	Flow contr		- Relief valves c servo valves		urn and safe	ty valves –	[9]
Hydraulic Circuits Reciprocation, quick return, sequencing, synchronizing circuits - accumulator circuits - industrial circuits - press circuits - hydraulic milling machine - grinding, planning, copying, - forklift, earth mover circuits- design and selection of components - safety and emergency mandrels								[9]	
Pneumatic Systems and Circuits Pneumatic fundamentals - control elements, pneumatic sensors - logic circuits - switches - fluidic logic circuits - Sequential circuits - Cascade methods - step counter method Karnaugh - Veitch map.									
fluidic	logic circu								[9]
fluidic Veitch Install Pneum - hydro	logic circu map. ation, Mai natic equip	its - Seque intenance oments- se	and Spec	its -Casca ial Circuit	de methods -	step counte	er method application -i	Karnaugh - fault finding	[9]
fluidic Veitch Install Pneum - hydro	logic circu map. lation, Mai natic equip p pneuma	its - Seque intenance oments- se	and Spec	its -Casca ial Circuit	de methods - s ts - design cal	step counte	er method application -f C, Low cost a	Karnaugh - fault finding	
fluidic Veitch Install Pneum - hydro Roboti	logic circu map. lation, Mai natic equip p pneuma	its - Seque intenance oments- se	and Spec	its -Casca ial Circuit	de methods - s ts - design cal	step counte	er method application -f C, Low cost a	Karnaugh - fault finding utomation -	[9]
fluidic Veitch Install Pneum - hydro Roboti	logic circu map. lation, Mai natic equip p pneuma ic circuits.	its - Seque intenance ments- se tic circuits	and Spec lection of c - use of m	its -Casca ial Circuit component icroproces	de methods - s ts - design cal	step counte culations – encing - PL0	er method application - C, Low cost a	Karnaugh - fault finding utomation -	[9]
fluidic Veitch Install Pneum - hydro Roboti	logic circumap. ation, Mainatic equipo pneuma ic circuits. cook(s): Antony E	intenance intenance ments- se tic circuits	and Spec lection of c - use of m	its -Cascadial Circuit component croproces	de methods - s ts - design cal sors for seque	step counter culations – encing - PLC earson Educ	application -1 C, Low cost a	Karnaugh - fault finding utomation -	[9]
fluidic Veitch Install Pneum - hydro Roboti Text B 1. 2.	logic circumap. ation, Mainatic equipo pneuma ic circuits. cook(s): Antony E	intenance intenance ments- se tic circuits	and Spec lection of c - use of m	its -Cascadial Circuit component croproces	de methods - s ts - design cal sors for seque	step counter culations – encing - PLC earson Educ	application -1 C, Low cost a	Karnaugh - fault finding utomation -	[9]
fluidic Veitch Install Pneum - hydro Roboti Text B 1. 2.	logic circumap. lation, Mainatic equipo pneuma ic circuits. look(s): Antony E Srinivasa	intenance intenance iments- se tic circuits Espossito, an, R., "Hy	and Spec lection of c - use of m "Fluid Pow draulic and	its -Cascar ial Circuit component icroproces er with Ap	de methods - s ts - design cal sors for seque	step counted culations – encing - PLo earson Educ fata McGrav	application -1 C, Low cost a T eation, 2011.	Karnaugh - fault finding utomation - otal Hours:	[9]
fluidic Veitch Install Pneum - hydro Roboti Text B 1. 2. Refere	logic circumap. lation, Mainatic equipo pneuma ic circuits. look(s): Antony E Srinivasa ence(s): Dudley A	intenance oments- se tic circuits Espossito, an, R., "Hy	and Spec lection of c - use of m "Fluid Pow draulic and	ial Circuit component icroproces er with Ap I Pneumat	s ts - design cal sors for seque	step counted culations – encing - PLO carson Education E	application -fC, Low cost a T cation, 2011. v Hill, 2009.	fault finding utomation - otal Hours:	[9]
fluidic Veitch Install Pneum - hydro Roboti Text B 1. 2. Referent	logic circumap. lation, Mainatic equipo pneuma ic circuits. look(s): Antony E Srinivasa ence(s): Dudley A Andrew	intenance intenance iments- se tic circuits Espossito, an, R., "Hy A. Pease a Parr, "Hydi	and Spec lection of c - use of m "Fluid Pow draulic and nd John J. raulic and I	its -Cascarial Circuit component icroproces er with Ap I Pneumat Pippengel	de methods - s ts - design cal sors for seque plications", Pe ic Controls", T	step counted culations – encing - PLO carson Education at a McGrave power", Prepublishing	application -1 C, Low cost a T eation, 2011. w Hill, 2009. entice Hall, 19 House, 1999	fault finding utomation - otal Hours:	[9]

S. No.	Topics	
1.0	OIL HYDRAULIC SYSTEMS AND HYDRAULIC ACTUATORS	
1.1	Hydraulic Power Generators	1
1.2	Selection and specification of pumps	1
1.3	Pump characteristics	1

4.4	Lincon Astrotono polastico and analification	1
1.4	Linear Actuators – selection and specification	
1.5	Linear Actuators- characteristics.	1
1.6	Rotary Actuators- selection and specification	1
1.7	Rotary Actuators- characteristics.	1
1.8	Hydrostatic drives- types and selection	2
2.0	CONTROL AND REGULATION ELEMENTS	
2.1	Pressure control valves	2
2.2	Direction control valves	2
2.3	Flow control valves	1
2.4	Relief valves	1
2.5	Non-return valves	1
2.6	Actuation System	1
2.7	Proportional Electro hydraulic servo valves.	1
3.0	HYDRAULIC CIRCUITS	<u>, </u>
3.1	Reciprocation and quick return circuits	1
3.2	Sequencing & Synchronizing circuits	1
3.3	Accumulator circuits	1
3.4	Industrial circuits- press circuits	1
3.5	Hydraulic milling machine	1
3.6	Grinding, planning, copying	1
3.7	Forklift and earth mover circuits	1
3.8	Design and selection of components	1
3.9	Safety and emergency mandrels	1
4.0	PNEUMATIC SYSTEMS AND CIRCUITS	·
4.1	Pneumatic fundamentals	1
4.2	Control elements and pneumatic sensors	1
4.3	Logic circuits and switches	1
4.4	Fluidic logic circuits	1
4.5	Sequential circuits	1

4.6	Cascade methods	1
4.7	K-V Mapping methods	1
4.8	Step counter method	1
4.9	Classic methods	1
5.0	INSTALLATION, MAINTENANCE AND SPECIAL CIRCUITS	
5.1	Pneumatic equipments	1
5.2	Selection of components	1
5.3	Design calculations and application	2
5.4	Fault finding - hydro pneumatic circuits	1
5.5	Use of microprocessors for sequencing	1
5.6	PLC	1
5.7	Low cost automation	1
5.8	Robotic circuits	1

Mr.P.Prakash— pprakash@ksrct.ac.in

60 PED E63	Annella d'Elandalta and Blandalta	Category	L	Т	Р	Credit
00 PED E03	Applied Elasticity and Plasticity	PC	3	0	0	3

- To understand the concept of stress, strain analysis and its applications.
- To learn constitutive equations to solve two dimensional problems
- To impart knowledge on computation of membrane and contact stresses
- To acquire the concept of plasticity under microscopic and macroscopic descriptions
- To analyse the effect of plastic strain in hydrostatic and deviatoric components

Pre-requisite

-Nil-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Express the various stresses and strains.	Remember,
COT	Express the various stresses and strains.	Understand & Apply
CO2	Resolve the problems related with constitutive equations.	Remember,
002	Resolve the problems related with constitutive equations.	Understand & Apply
CO3	Discuss the membrane stresses and method of computing contact stresses.	Remember,
CO3	Discuss the membrane stresses and method of computing contact stresses.	Understand & Apply
CO4	Describe the microscopic and macroscopic plastic flow and stress strain curves.	Remember,
CO4	Describe the microscopic and macroscopic plastic now and stress strain curves.	Understand & Apply
CO5		Remember,
003	Explain the various effects on the plastic strain analysis.	Understand & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	2	2	3	1	
CO2	3	3	2	2	3	1	
CO3	3	3	2	2	3	1	
CO4	3	3	2	3	2	1	
CO5	3	3	2	3	2	1	
3- Strong;2-Medium;1-Some							

Assessment Pattern

Bloom's Category	Continuous A (M	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

	K.S. Rangasamy College of Technology – Autonomous R 2022								
			60 PED		lied Elasticity		city		
			Hours/Wee		Engineering Total hrs	Design Credit		Maximum Marl	40
Semes	ster	L	T	P P	Total IIIS	Credit	CA	ES	Total
I		3	0	0	45	3	40	60	100
Analysi Stress equation	s of Stres at a points	ss and Strant, stress	ain tensor, str	ess trans	formations, pr strains, strain- strain gauges.	incipal stre	sses, octahe	dral stress,	[9]
Genera	ı, boundai	generalized	Hooke's la is, two dime	w, equatio ensional pr	ons of elasticity oblems in recta	r, formulatio angular and	n of the gene polar co-ordir	ral elasticity nates, Airy's	[9]
Membra geomet	ne stress ry of conta		mmetric sh s, notation		onial stress an ing of terms, e				[9]
	flow and i n of yield				descriptions, sace in principa				[9]
Prandtl- and uni- plastic	axial tens potential,	id Levy-Mis ion. Plane	strain defo	mation-str	ation in plane ess tensor, hy ain rates and	drostatic an	d deviatoric c	omponents,	[9]
							•	Total Hours:	45
Text Bo	ok(s):								
1.	Timoshe Edition, 1		and Good	ier, J. N.,	"Theory of Ela	asticity", Mo	Graw Hill Into	ernational Edi	tions, 3 rd
2.	Chakrak	oarthy, J., "	Theory of F	lasticity", I	ՈcGraw Hill Co	o, 1987.			

Refere	nce(s):
1.	Durelli, A. J., Phillips, E. A and Tsao, C. H, "Introduction to the Theoretical and Experimental Analysis of Stress and Strain", McGraw Hill, New York, 1958.
2.	Sadhu Singh. "Theory of Elasticity", Khanna Publishers, New Delhi 1988.
3.	Dieter G. E., "Mechanical Metallurgy", McGraw Hill, 1988.
4.	Johnson, W. and Mellor, P. B., "Engineering Plasticity", Van Nostrant Reinhold, 1983.
5.	Boresi, A. P, Schmidt, R. J and Sidebottom, O. M., "Advanced Mechanics of Materials", John Wiley and Sons, Inc., 5 th Edition, 1993.

S.No.	Topics	No. of hours
1.0	Analysis of Stress and Strain	
1.1	Stress at a point, stress tensor,	2
1.2	Stress transformations, principal stresses,	1
1.3	Equations of equilibrium, strain tensor,	2
1.4	Principal strains, strain-displacement relations	1
1.5	Compatibility conditions,	1
1.6	Measurement of surface strains using strain gauges.	2
2.0	Constitutive Equations	
2.1	General theory, generalized Hooke's law, equations of elasticity,	2
2.2	Formulation of the general elasticity problem, boundary conditions	3
2.3	Two dimensional problems in rectangular	2
2.4	Polar co-ordinates, Airy's stress function.	2
3.0	Membrane and Contact Stresses	
3.1	Membrane stresses in axisymmetric shells	1
3.2	Meridonial stress and circumferential stress,	2
3.3	Introduction, geometry of contact surfaces	2
3.4	Notation and meaning of terms, expressions for principal stresses	2
3.5	Method of computing contact stresses.	2
4.0	Plasticity	,

4.1	Plastic flow and its microscopic	2
4.2	Macroscopic descriptions, stress-strain curves of real materials	2
4.3	Definition of yield criterion	1
4.4	Concept of a yield surface in principal stress space	2
4.5	Yield criteria, Tresca, Von Mises.	2
5.0	Plastic Strain Analysis	
5.1	Prandtl-Reuss and Levy-Mises equations,	1
5.2	Deformation in plane stress-yielding of thin sheet in biaxial and uniaxial tension	2
5.3	Plane strain deformation-stress tensor, hydrostatic and deviatoric components,	2
5.4	Plastic potential, plastic instability, effect of strain rates	2
5.5	Temperature effects on flow stress. Introduction to slip line theory.	2

Dr.G.Venkatachalam - <u>venkatachalam@ksrct.ac.in</u>

60 PED E64	Theory of Plates and Shells	Category	L	Т	Р	Credit
00 PED E04	Theory of Flates and Shells	PC	3	0	0	3

- To impart knowledge on the behavior of plates and shell elements
- To learn classical theory and computation of principal stress and strain
- To understand the formulation of governing equations for buckling of plates
- To frame the governing equation for vibration of rectangular plates
- To analyze thin elastic shells of revolution under axisymmetric loads shells

Pre-requisite

-Nil-

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recognize the concept of energy principles and variation methods of elasticity.	Remember, Understand
001	principles and variation methods of charactery.	& Apply
CO2	Compute the principal stresses and strains by using classical theory.	Remember, Understand
002	Compute the principal stresses and strains by using classical theory.	& Apply
CO3	Perform buckling analysis of rectangular plates under compressive forces	Remember, Understand
003	using Navier and Levy's solution.	& Apply
CO4	Describe the concepts of vibration in plates	Remember, Understand
004	Describe the concepts of vibration in plates	& Apply
CO5	Evaluate the elastic properties of shells and axisymmetric loads shells with	Remember, Understand
CO3	double curvature.	& Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	3	1
CO2	3	2	2	2	3	1
CO3	3	2	2	2	3	1
CO4	3	3	2	3	2	1
CO5	3	3	2	3	2	1
3- Strong;2-Me	dium;1-Some					

Assessment Pattern

Bloom's Category	Continuous A (M	Model Exam (Marks)	
	1	2	
Remember (R)	10	10	20
Understand (U)	20	20	30
Apply (Ap)	30	30	50
Analyze (An)	0	0	0
Evaluate (Ev)	0	0	0
Create (Cr)	0	0	0
Total	60	60	100

	K.S. F			of Technolog			2	
		60 PI		heory of Plat		lls		
		Hours/We		E. Engineerinç Total hrs			Maximum Mar	rleo
Semester	L	Hours/we	ек Р	Total firs	Credit C	CA	Maximum Mar ES	Total
			·	45	_			
III	3	0	0	45	3	40	60	100
General Introd Review of equa of motions- co principles and variational oper principle of min	ntions of elas onstitutive re variational rator –function	elations- tr methods i onals- Eule	ansformati n elasticity r Lagrange	ion of stress y- virtual wor	es, strains k-external a	and stiffnes and internal	s – energy virtual work	[9]
Classical Theory Plates as struct theory- displace polar coordinate conditions and classical theory used and their of the conditions are conditions.	etural element ement fields es- bounda loading- sy r- finite elem	nts- stress and strair ry conditio ymmetrical nent analys	ns- equations – beno and asyn is(element	ons of equilibr ding of rectar nmetrical ben	ium in Carte ngular plates ding of circ	esian coordin s with variou ular plates-li	nates and in is boundary mitations of	[9]
Buckling Analy Buckling of sin solution- biaxia supported on conditions- ger various elemen	nply support I compression two opposit neral formula	ed plates on of a plate edges- ation- finite	under com e- uniaxia Levy's so element	l compression lution- bucklir analysis(elem	of a plate- ng of plates entary treati	buckling of p with variou	lates simply s boundary	[9]
Vibration of PI Governing equa simply supporte solution - vibra vibration of plat element analys capabilities- no	ations for na ed on all edg tion of plate es with gen sis (elemen	ges - vibrati s with diffe eral bounda tary treatm	on of plate rent bound ary condition	es with two pa dary condition ons - transient	raliel sides s s – Rayleigh ∶analysis of	simply suppor n - Ritz meth rectangular p	ted - Levy's od - Natural blates - finite	[9]

Classifi displace analytic shells spheric	cation of shell surfaces - geometric properties of shells of revolution - general strain ement relations for shells of revolution - stress resultants - equations of motion of thin shells cal solution for thin cylindrical shells - membrane theory - flexure under axisymmetric loads with double curvature- geometric considerations - equations of equilibrium - bending of all shells - vibration of cylindrical shells - finite element analysis (elementary treatment only; sion of various elements used and their capabilities- not for examination).	[9]
	Total Hours:	45
Text Bo	ook(s):	
1.	Baskar, K and Varadan, T. K., "Plates- Theories and Applications", Ane Books Pvt. Ltd., N 2013.	ew Delhi,
2.	Timoshenko, S., "Theory of Plates and Shells", McGraw Hill, 1990.	
Refere	nce(s):	
1.	Timoshenko, S and Krieger, S.W., "Theory of Plates and Shells", McGraw Hill Book Comp. York, 1990.	any, New
2.	Reddy, J.N., "Theory and Analysis of Elastic Plates and Shells", C.R.C.Press, NY, USA, 21, 2006.	nd Edition,
3.	Szilard, R., "Theories and Applications of Plate Analysis: Classical Numerical and En Methods", Wiley, 2004.	gineering
4.	Chandrashekhara, K., "Theory of Plates", University Press, Hyderabad, 2001.	

S.No.	Topics	No. of
		hours
1.0	General Introduction	
1.1	Review of equations of elasticity- kinematics, compatibility equations, stress measures	2
1.2	Equations of motions- constitutive relations- transformation of stresses, strains and stiffness	1
1.3	Energy principles and variational methods in elasticity	2
1.4	Virtual work-external and internal virtual work variational operator	1
1.5	Functionals- Euler Lagrange equations- energy principles- Hamilton's principle	1
1.6	Principle of minimum total potential– applications	2
2.0	Classical Theory of Plates	
2.1	Plates as structural elements- stress and moment resultants- assumptions made in the classical theory- displacement fields and strains	2
2.2	Equations of equilibrium in Cartesian coordinates and in polar coordinates- boundary conditions	2
2.3	Bending of rectangular plates with various boundary conditions and loading	2
2.4	Symmetrical and asymmetrical bending of circular plates-limitations of classical theory	1

2.5	Finite element analysis(elementary treatment only; discussion of various elements	2						
2.0	used and their capabilities- not for examination)							
3.0	Buckling Analysis of Rectangular Plates							
3.1	Buckling of simply supported plates under compressive forces- governing equations	1						
3.2	The Navier solution- biaxial compression of a plate- uniaxial compression of a plate	2						
3.3	Buckling of plates simply supported on two opposite edges- Levy's solution-	2						
3.3	buckling of plates with various boundary conditions							
3.4	General formulation- finite element analysis	2						
3.5	Discussion of various elements used and their capabilities- not for examination	2						
4.0	Vibration of Plates							
4.1	Governing equations for natural flexural vibrations of rectangular plates	2						
4.2	Natural vibrations of plates simply supported on all edges - vibration of plates with							
4.2	two parallel sides simply supported							
12	Levy's solution - vibration of plates with different boundary conditions – Rayleigh -							
4.3	Ritz method							
4.4	Natural vibration of plates with general boundary conditions - transient analysis of	2						
7.7	rectangular plates	۷						
4.5	Finite element analysis (elementary treatment only; discussion of various elements	2						
4.0	used and their capabilities- not for examination).	2						
5.0	Analysis of Thin Elastic Shells of Revolution							
5.1	Classification of shell surfaces - geometric properties of shells of revolution	1						
5.2	General strain displacement relations for shells of revolution - stress resultants	1						
5.3	Equations of motion of thin shells analytical solution for thin cylindrical shells	2						
5.4	Membrane theory - flexure under axisymmetric loads shells with double curvature-	2						
J. T	geometric considerations	۷						
5.5	Equations of equilibrium - bending of spherical shells - vibration of cylindrical shells	1						
5.6	Finite element analysis (elementary treatment only; discussion of various elements	2						
5.0	used and their capabilities- not for examination)							

Mr.M.Moorthi - moorthi@ksrct.ac.in

60 PED E65	Materials Testing and	Category	L	Т	Р	Credit
60 PED E63	Characterization Techniques	ES	3	0	0	3

- To be knowledgeable in microstructure evaluation, crystal structure analysis
- To know the basic principle of electron microscopy
- To study the chemical, thermal analysis
- To learn about the static and dynamic mechanical testing methods.

Prerequisite:

Strength of Materials, Engineering Materials and Metallurgy

Course Outcomes:

On the successful completion of the course, students will be able to

CO1	Have knowledge about in microstructure evaluation, crystal structure analysis	Understand & Apply
CO2	Acquire knowledge in electron microscopy	Understand & Apply
CO3	Be knowledgeable in chemical and thermal analysis	Understand & Apply
CO4	Acquire knowledge in static mechanical testing methods.	Understand & Apply
CO5	Acquire knowledge in dynamic mechanical testing methods.	Understand & Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	1	3	2	3	2				
CO2	2	3	3	2	2	2				
CO3	3	3	2	3	2	2				
CO4	2	1	2	2	1	2				
CO5	3	3	2	2	3	2				
3- Strong; 2-Medium;	3- Strong; 2-Medium; 1-Low									

Assessment Pattern

Bloom's Category	Continuous Assess	ment Tests(Marks)	End Semester
Bloom's Category	1	2	Examination(Marks)
Remember	10	10	30
Understand	40	40	50
Apply	10	10	20
Analyse	0	0	0
Evaluate	0	0	0
Create	0	0	0
Total	60	60	100

		K.S.I	Rangasamy	/ College	of Technolog	y – Autono	mous R2022			
		60 PEI	D E65 - Mat		sting and Cha		on Technique	s		
			Hours / Wee		E. Engineering	Credit	Ma	aximum Marks		
Sem	ester		T	<u>к</u> Р	Total hrs	Credit	CA	ES ES	Total	
	II	3	0	0	45	100				
					40	3	40	60	100	
Principle Polarizat numbers Bragg's Diffracto structure	Micro and Crystal Structure Analysis Principles of Optical Microscopy – specimen Preparation Techniques – Polishing and Etching – Polarization techniques – Quantitative Metallography - Estimation of grain size – ASTM grain size numbers – Microstructure of Engineering Materials – Elements of Crystallography – X-ray diffraction – Bragg's law – Techniques of X-ray Crystallography – Debye – Scherer Camera – Geiger Diffractometer – Analysis of diffraction patterns – Inter planer spacing – Identification of crystal structure, elements of electron diffraction.									
Interaction preparat Electron – Atomic	ion – ima Microsco force mic	ectron beauging techi py – Constructions	niques – B truction and <u>Constructio</u>	F & DF - Working	Transmissio SAD – Elector SEM – varion	tron probe ous imaging	microanalysis techniques –	Scanning	[9]	
Basic p spectron Spectros	rinciples, netry, Aug scopy (FT al therma	ger spectro IR) - Pro	amd appl oscopy, Se ton induce	condary lo d X-ray er	of X-Ray specting Calorimetry	troscopy, Foscopy, Dif	ourier transfo ferential therr	orm Infra red mal analysis,	[9]	
Hardnes proof str	s – Brinel ess- Torsi	ion test – I	Rockwell a Ductility me	asuremen	nardness test - t – Impact test etallic and con	t – Charpy 8	& Izod – DWT		[9]	
Fatigue LCF tes	– Low an ts – Crac	d High cy	studies - (g beam & pla t – LM param				[9]	
								Total Hours:	45	
1	Culity B.I	D., Stock S	S.R& Stock	S., Elemei	nts of X ray Dif	ffraction, (3r	d Edition). Pro	entice Hall, 20	01	
2	-	ayana A. \	V. K., Testir	ng of meta	llic materials, (2nd Edition), BS publicat	ions, 2007.		
Referen										
1.	1. Goldsten,I.J., Dale.E., Echin.N.P.& Joy D.C., Scanning Electron Microscopy & X ray- Micro Analysis, (2nd Edition), Plenum Publishing Corp., 2000									
2.	Davis J.F	R., Tensile	testing, 2 nd	Edition, A	SM Internation	nal, 2004.				
3.	Morita S.	, Wiesend	anger R., a	nd Meyer	E., "Non-conta	ct Atomic F	orce Microsco	py" Springer,	2002.	
4.	ASM har	nd book – ľ	Materials ch	aracteriza	tion, Vol-10, 2	004.				

S.No.	Topics						
1.0	Micro and Crystal Structure Analysis						
1.1	Principles of Optical Microscopy, specimen Preparation Techniques, Polishing and Etching	2					
1.2	Polarization techniques , Quantitative Metallography	1					
1.3	Estimation of grain size, ASTM grain size numbers, Microstructure of Engineering Materials	2					
1.4	Elements of Crystallography, X-ray diffraction, Bragg's law, Techniques of X-ray Crystallography	1					
1.5	Debye, Scherer Camera , Geiger Diffractometer	1					
1.6	Analysis of diffraction patterns, Inter planer spacing	1					
1.7	Identification of crystal structure, elements of electron diffraction.	1					
2.0	Electron Microscopy						
2.1	Interaction of Electron beam with materials – Transmission electron microscopy – Specimen preparation	2					
2.2	Imaging techniques – BF & DF – SAD – Electron probe microanalysis	2					
2.3	Scanning Electron Microscopy – Construction and Working of SEM	3					
2.4	Various imaging techniques – Applications – Atomic force microscopy - Construction and Working of AFM – Applications	2					
3.0	Chemical and Thermal Analysis						
3.1	Basic principles, Practice amd applications of X-Ray spectrometry	1					
3.2	Wave dispersive X-Ray spectrometry, Auger spectroscopy, Secondary Ion mass spectroscopy	2					
3.3	Fourier transform Infra red Spectroscopy (FTIR) - Proton induced X-ray emission spectroscopy	2					
3.4	Differential thermal analysis, differential thermal analysis	2					
3.5	Differential scanning Calorimetry (DSC) and Thermo Gravity metric Analysis (TGA).	2					
4.0	Mechanical Testing – Static Tests						
4.1	Hardness – Brinell, Vickers Rockwell and micro hardness test – Tensile test	2					
4.2	Stress – Strain plot – proof stress- Torsion test	1					
4.3	Ductility measurement	1					
4.4	Impact test – Charpy & Izod	2					

4.5	DWTT – Fracture toughness test	2
4.6	Codes and standards for testing metallic and composite materials.	1
5.0	Mechanical Testing – Dynamic Tests	
5.1	Fatigue – Low and High cycle fatigues	1
5.2	Rotating beam & plate bending HCF tests	2
5.3	S_N curve – LCF tests – Crack growth studies	2
5.4	Creep test – LM parameters – AE test	2
5.5	Modal analysis – Applications of dynamic test.	2

Dr.V.P.Arthanarieswaran – arthanarieswaran@ksrct.ac.in

	K.S.Rangasamy College of Technology – Autonomous R 2022											
	60 PED 3P1 – Project Work - Phase I											
PED : M.E. Engineering Design												
Compostor		Hours / Wee	k	Total hrs	Credit	Credit Maximum Ma		rks				
Semester	L	Т	Р	Total ilis	С	CA	ES	Total				
III	0	0	16	60	8	100	-	100				
Objective(s)	 To impart the practical knowledge to the students To make them to carry out the technical procedures in their project work To provide an exposure to the students to refer, read and review the research articles To learn different computational/experimental techniques To perform experiments/tests and to learn how to work in research 											
Course Outcomes	At the end of the course, the students will be able to 1. Survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research. 2. Use different experimental techniques/different software/ computational/analytical tools. 3. Design and develop an experimental set up/ equipment/test rig. 4. Conduct tests on existing set ups/equipment and draw logical conclusions from the results after analyzing them. 5. Work in a research environment or in an industrial environment.											

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M.E/M. Tech. The examination shall consist of the preparation of report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiners panel set by Head and PG coordinator. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.

	K.S.Ran	gasamy	College o	f Technolog	gy – Autono	mous R20	22		
60 PED 4P1 – Project Work - Phase II PED : M.E. Engineering Design									
		PE	D : M.E. E	ngineering [Design				
Semester	Hours	s / Week		Total hrs	Credit	M	aximum Ma	arks	
	L	Т	Р		С	CA	ES	Total	
IV	0	0	32	60	16	40	60	100	
Objective(s)	 To enable and strengthen the students to carry out the project on their own and to implement their innovative ideas To forefront the risk issues and to retrieve the hazards by adopting suitable assessment methodologies and staring it to global To make them to carry out the technical procedures in their project work To learn different computational/experimental techniques To perform experiments/tests and to learn how to work in research environment 								
Course Outcomes	1. Developeople 2. Design 3. Conduresults 4. Write the level.	 people working in diversified field will. 2. Design and develop an experimental set up/ equipment/test rig. 3. Conduct tests on existing set ups/equipment and draw logical conclusions from the results after analyzing them. 4. Write technical reports and research papers to publish at national and international level. 							

It is a continuation of Project work started in semester III. He has to submit the report in prescribed format and also present a seminar. The dissertation should be presented in standard format as provided by the department. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion. The report must bring out the conclusions of the work and future scope for the study. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc. as decided by the Head and PG coordinator. The candidate has to be in regular contact with his guide.

