Vector Space

Vector Space

vector space is a set V of column vectors (or row vectors) with properties:

- contains zero vector
- if contains v and w, then contains cv + dw (c and d are constant)

 \mathbb{R}^n represents all column vectors with n component

Subspace

subspace is a vector space in \mathbb{R}^n

2. Column Space and Nullspace

Column Space of A

let
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix}$$

A is a subspace of \mathbb{R}^4

find b for Ax = b have solution x

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

a useful approach is choosing solution x first and find corresponding b

x are coefficient in a linear combination of columns of A all their linear combination form a subspace called column space $\mathcal{C}(A)$ therefore Ax = b is solvable when b is in $\mathcal{C}(A)$

the solution may not form a subspace when it does not pass through origin

Null Space of A

the null space N(A) of a matrix A is collection of all solution to Ax = 0

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A(cx) = cAx = c(0) = 0$$

therefore N(A) = cx is collection of all solution, c is random constant

3. Solving Ax = 0

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}$$

apply elimination to A

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U$$

the rank r of U is the number of pivots it has, which is 2

the column with pivot: $\begin{bmatrix} \boxed{1} \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ \boxed{1} \\ 0 \end{bmatrix}$ are pivot column

the column with no pivot: $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$ are free column

the x corresponding to free column: x_2 , x_4 can be randomly assigned the number of free column is n-r

Reduced Row Echelon Form

in rref, pivot column will have all 0 except the pivot

$$U = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R \ (rref)$$

change column order of R to put pivot columns together

$$R = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1 & 0} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \boxed{2 & -2} \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$$

where I is identical matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ with r column, $F = \begin{bmatrix} 2 & -2 \\ 0 & 2 \end{bmatrix}$ with n-r column

$$RN = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} N = 0$$

$$\Rightarrow \boxed{N = c \begin{bmatrix} -F \\ I \end{bmatrix}}$$

N has n-r columns and I is modified to n-r columns

example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$N(A) = c \begin{bmatrix} -F \\ I \end{bmatrix} = c \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

4. Solving Ax = b

use augmented matrix to present Ax = b

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 2 & 4 & 6 & 8 & b_2 \\ 3 & 6 & 8 & 10 & b_3 \end{bmatrix}$$

apply the elimination

$$[A|b] = \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 2 & 4 & 6 & 8 & b_2 \\ 3 & 6 & 8 & 10 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 0 & 0 & 2 & 4 & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}$$

find a particular x_p to fit the equation

(for convenience, we can assign free variables with 0 and 1 and find pivot) find N(A), written as x_n

$$A(x_n + x_p) = Ax_n + Ax_p = \mathbf{0} + \mathbf{b} = \mathbf{b}$$

therefore $x_n + x_p$ is the complete solution for Ax = b

Number of Rank

• full column rank $r = n \Rightarrow$ no free variables

$$R = \begin{bmatrix} I \\ \mathbf{0} \end{bmatrix}$$

 x_p has either 0 or 1 solution

• full row rank (n > m) $r = m \Rightarrow \text{free variables} = n - r$

$$R = \begin{bmatrix} I & F \end{bmatrix}$$

Ax = b is solvable for every b and has infinite solution

• full rank $r = m = n \Rightarrow A$ is invertible

$$R = I$$

Ax = b is solvable for every b and has 1 solution

5. Linearity

Linear Independence

vectors
$$v_1,v_2,v_3\cdots v_n$$
 are linear independent if and only if $t_1=t_2=\cdots=t_n$ for $t_1v_1+t_2v_2+\cdots+t_nv_n=0$

Dimension

vectors $v_1,v_2,v_3\cdots v_n$ can at most span a n dimensional space \mathbb{R}^n if $v_1,v_2,v_3\cdots v_n$ are linear independent

when C(A) is a space: $\dim C(A) = r$ $\dim N(A) = n - r$

Basis

basis of a space \mathbb{R}^n is a sequence of vector $v_1, v_2, v_3 \cdots v_n$ the basis are independent and span to form the space

6. Four Fundamental Subspaces

$m \times n$ matrix A

Left Null Space

left null space $N(A^T)$ is collection of y satisfying $A^Ty=0$ $A^Ty=0 \Rightarrow y^TA=0$, therefore called left null space

$$EA = R \Rightarrow [A_{m \times n} | I_{m \times n}] \rightarrow [R_{m \times n} | E_{m \times n}] \Rightarrow E$$
 if A is invertible matrix, then $y^T = E$