(a) $-L(\neg(\neg A)) \rightarrow A$

(1)

1. $(A \rightarrow (B \rightarrow A))$

..... {AS1 (A \rightarrow (B \rightarrow A)), A = A, B = B}

 $2. \ (A \rightarrow ((B \rightarrow A) \rightarrow A)) \rightarrow ((A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A))$

..... $\{AS2 (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\}, A = A, B = (B \rightarrow A), C = A\}$

 $3. (A \rightarrow (B \rightarrow A)) \rightarrow (A \rightarrow A)$

...... {From 1 and 2 by MP}

4. $(A \rightarrow A)$

..... {From 1 and 3 by MP}

 $5. ((B \to C) \to ((A \to B) \to C)) \to ((A \to B) \to (A \to C)))) \to (((B \to C) \to (A \to C)))$ $\to ((B \to C) \to ((A \to B) \to (A \to C))))$

 $\dots \{AS2\ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))), A = (B \rightarrow C), B = (A \rightarrow B), C = C\}$

 $6. ((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))) \rightarrow ((B \rightarrow C) \rightarrow ((A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow C)))))$

..... {AS1 $(A \rightarrow (B \rightarrow A)), A = (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)), B = (B \rightarrow C)}$

7. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$

..... $\{AS2 (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))\}, A = A, B = B, C = C\}$

 $8. ((B \rightarrow C) \rightarrow ((A \rightarrow (B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))))$

..... {From 6 and 7 by MP}

 $9. ((B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))) \rightarrow ((B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$

..... {From 5 and 8 by MP}

10. $(B \rightarrow C) \rightarrow (A \rightarrow (B \rightarrow C))$

..... {AS1 (A \rightarrow (B \rightarrow A)), A = (B \rightarrow C), B = A}

11. $(B \rightarrow C) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

..... {From 9 and 10 by MP}

 $12. \left(\left(\left(\neg B \right) \to \left(\neg A \right) \right) \to \left(A \to B \right) \right) \to \left(\left(\left(\neg A \right) \to \left(\left(\neg B \right) \to \left(\neg A \right) \right) \to \left(\left(\neg A \right) \to \left(A \to B \right) \right) \right)$

..... {From 11, $A = (\neg A)$, $B = ((\neg B) \rightarrow (\neg A))$, $C = (A \rightarrow B)$ }

13. $(((\neg B) \rightarrow (\neg A)) \rightarrow (A \rightarrow B))$

..... {AS3 (((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A)), A = B, B = A}

14. $((\neg A) \rightarrow ((\neg B) \rightarrow (\neg A)) \rightarrow ((\neg A) \rightarrow (A \rightarrow B))$

..... {From 12 and 13 by MP}

15. $((\neg A) \rightarrow ((\neg B) \rightarrow (\neg A)))$

..... {AS1 (A \rightarrow (B \rightarrow A)), A = (\neg A), B = (\neg B)}

16. $(\neg A) \rightarrow (A \rightarrow B)$

..... {From 14 and 15 by MP}

 $17. ((\neg(\neg A)) \rightarrow ((\neg(\neg A)) \rightarrow A) \rightarrow (((\neg(\neg A)) \rightarrow (\neg(\neg A))) \rightarrow ((\neg(\neg A)) \rightarrow A))$

 $\dots \{AS2 (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))), A = (\neg(\neg A)), B = (\neg(\neg A)), C = A\}$

18. $(((\neg A) \rightarrow (\neg(\neg A)))) \rightarrow ((\neg(\neg A)) \rightarrow A)) \rightarrow (((\neg(\neg A)) \rightarrow ((\neg(\neg A)) \rightarrow ((\neg(\neg A)))))) \rightarrow ((\neg(\neg A)) \rightarrow ((\neg(\neg A)) \rightarrow A)))$

...... {From 11, $A = (\neg(\neg A))$, $B = (\neg A) \rightarrow (\neg(\neg(\neg A)))$, $C = ((\neg(\neg A)) \rightarrow A)$ }

```
19. (((\neg A) \rightarrow (\neg (\neg A)))) \rightarrow ((\neg (\neg A)) \rightarrow (\neg A)))
                                                          ..... {AS3 (((\negA) \rightarrow (\negB)) \rightarrow (B \rightarrow A)), A = (\negA), B = (\neg(\negA)))}
20. \left( (\neg(\neg A)) \to ((\neg A) \to (\neg(\neg(A)))) \right) \to ((\neg(\neg A)) \to ((\neg(\neg A)) \to A))
                                                                                                          ..... {From 18 and 19 by MP}
21. ((\neg(\neg A)) \rightarrow ((\neg(\neg A)) \rightarrow (\neg(\neg(\neg A))))
                                                                                     ..... {From 16, A = (\neg(\neg A)), B = (\neg(\neg(A)))}
22. (\neg(\neg A)) \rightarrow ((\neg(\neg A)) \rightarrow A)
                                                                                                          ...... {From 20 and 21 by MP}
23. ((\neg(\neg A)) \rightarrow (\neg(\neg A))) \rightarrow ((\neg(\neg A)) \rightarrow A)
                                                                                                          ..... {From 17 and 22 by MP}
24. ((\neg(\neg A)) \rightarrow (\neg(\neg A)))
                                                                                                             ..... {From 4, A = (\neg(\neg A))}
25. (\neg(\neg A)) \rightarrow A
                                                                                                          ..... {From 23 and 24 by MP}
Show that \{(\neg(\neg A))\} \vdash LA
1. (\neg(\neg A))
                                                                                                                             ..... {Premise}
2. (\neg(\neg A)) \rightarrow (A \rightarrow (\neg(\neg A)))
                                                                                   ..... {AS1 (A \rightarrow (B \rightarrow A)), A = (\neg(\negA)), B = A}
3. A \rightarrow (\neg(\neg A))
                                                                                                             ..... {From 1 and 2 by MP}
4. (\neg(\neg A)) \rightarrow A
                                                                                                              ..... {From 3, A = (\neg(\neg A))}
5. A
                                                                                                             ..... {From 1 and 4 by MP}
By using the deduction theorem, we have:
I-LA \rightarrow (\neg(\neg A))
(b) -LA \rightarrow (\neg(\neg A))
(1)
1. (\neg(\neg(\neg A))) \rightarrow (\neg A)
                                                                                                               ..... {From (a), A = (\neg A)}
2. ((\neg(\neg(\neg A))) \rightarrow (\neg A)) \rightarrow (A \rightarrow (\neg(\neg A)))
                                                            ..... {AS3 (((\negA) \rightarrow (\negB)) \rightarrow (B \rightarrow A)), A = (\neg(\negA)), B = (\negA)}
3. A \rightarrow (\neg(\neg A))
                                                                                                             ..... {From 1 and 2 by MP}
Show that \{A\} \mid -L(\neg(\neg A))
1. A
```

..... {Premise}

$$2. A \rightarrow ((\neg(\neg A)) \rightarrow A)$$

$$3. (\neg(\neg A)) \rightarrow A$$

$$4. A \rightarrow (\neg(\neg A))$$

$$5. (\neg(\neg A))$$

$$5. (\neg(\neg A))$$

$$5. (\neg(\neg A))$$

$$6. (\neg(\neg A))$$

$$9. (\neg(\neg A)$$

 $6. B \rightarrow C$

..... {AS3 $((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A), A = C, B = B$ }

..... {From 4 and 5 by MP}

7. C

..... {From 2 and 6 by MP}

By using the deduction theorem, we have: $I-L(\neg B) \rightarrow (B \rightarrow C)$

$-L((\neg C) \to (\neg B)) \to (B \to C)$

(1)

1.
$$((\neg C) \rightarrow (\neg B)) \rightarrow (B \rightarrow C)$$

..... {AS3 $((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A), A = C, B = B$ }

Show that
$$\{((\neg C) \rightarrow (\neg B)), B\} \vdash HB C$$

1. $(\neg C) \rightarrow (\neg B)$

..... {Premise}

2. B

$$4. (\neg(\neg A)) \rightarrow A$$

$$5. ((\neg C) \rightarrow (\neg B)) \rightarrow (B \rightarrow C)$$

..... {AS3
$$((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A), A = C, B = B$$
}

6. B
$$\rightarrow$$
 C

..... {From 1 and 5 by MP}

7. C

..... {From 2 and 6 by MP}

By using the deduction theorem, we have:

$$|-L((\neg C) \rightarrow (\neg B)) \rightarrow (B \rightarrow C)$$

(e)
$$-L(B \rightarrow C) \rightarrow ((\neg C) \rightarrow (\neg B))$$

(1)

1.
$$(\neg(\neg A)) \rightarrow A$$

..... {From (a)}

2. $(B \rightarrow C) \rightarrow ((\neg C) \rightarrow (\neg B))$

..... {AS3
$$((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A), A = (\neg B), B = (\neg C)$$
}

Show that
$$\{(B \rightarrow C), (\neg C)\}$$
 |-HB (¬B)

1. B \rightarrow C

..... {Premise}

2. ¬C

..... {Premise}

4.
$$(\neg(\neg A)) \rightarrow A$$
 (From (a))
5. $(B \rightarrow C) \rightarrow ((\neg C) \rightarrow (\neg B))$ (AS3 $((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A)$, $A = \neg B$, $B = \neg C$)
6. $(\neg C) \rightarrow (\neg B)$ (From 1 and 5 by MP)
7. $\neg B$ (From 2 and 6 by MP)
By using the deduction theorem, we have:
$$\begin{vmatrix} -L & B \rightarrow C \\ -L & B \rightarrow C \end{vmatrix} \rightarrow ((\neg C) \rightarrow (\neg B))$$
(f)
$$\begin{vmatrix} -L & B \rightarrow ((\neg C) \rightarrow (\neg B)) \\ -L & B \rightarrow ((\neg C) \rightarrow (\neg B)) \end{vmatrix}$$
(1)
$$(2)$$
Show that $\{B, (\neg C)\} \end{vmatrix} - L (\neg(B \rightarrow C))$
1. $\neg C$ (Premise)
3. $((B \rightarrow C) \rightarrow C) \rightarrow ((\neg C) \rightarrow (\neg B \rightarrow C))$ (AS3 $((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A)$, $A = \neg B$, $B = (B \rightarrow C)$, $B = \neg C$)
4. $B \rightarrow ((B \rightarrow C) \rightarrow B)$ (AS1 $(A \rightarrow (B \rightarrow A))$, $A = B$, $B = (B \rightarrow C)$)
5. $(B \rightarrow C) \rightarrow B$ (AS2 $((A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$, $A = (B \rightarrow C)$, $B = B$, $C = C$)
7. $(X \rightarrow (B \rightarrow X)) \rightarrow ((X \rightarrow (B \rightarrow X)) \rightarrow ((X \rightarrow B) \rightarrow (A \rightarrow C)))$, $A = (A \rightarrow (B \rightarrow X))$, $A = B$, $B = (B \rightarrow X)$, $C = X$]
9. $(X \rightarrow (B \rightarrow X)) \rightarrow (X \rightarrow X)$ (AS2 $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)))$, $A = X$, $B = (B \rightarrow X)$, $C = X$]
9. $(X \rightarrow (B \rightarrow X)) \rightarrow (X \rightarrow X)$ (From 7 and 9 by MP)
10. $(X \rightarrow X)$ (From 7 and 9 by MP)
11. $(B \rightarrow C) \rightarrow (B \rightarrow C)$ (From 6 and 11 by MP)
13. $(B \rightarrow C) \rightarrow C$ (From 6 and 11 by MP)

14.
$$(\neg C) \rightarrow (\neg (B \rightarrow C))$$

..... {From 3 and 13 by MP}

15. \neg (B \rightarrow C)

..... {From 1 and 14 by MP}

By using the deduction theorem, we have:

$$I-L B \rightarrow ((\neg C) \rightarrow (\neg (B \rightarrow C)))$$

(g) \vdash L (B \rightarrow C) \rightarrow (((\neg B) \rightarrow C) \rightarrow C)

(1)

(2)

Show that $\{((\neg B) \rightarrow C), (B \rightarrow C)\}$ |-L C

1.
$$((\neg B) \rightarrow C)$$

..... {Premise}

 $2. (B \rightarrow C)$

..... {Premise}

$$3. (\neg B) \rightarrow ((\neg C) \rightarrow (\neg B))$$

..... {AS1 (A
$$\rightarrow$$
 (B \rightarrow A)), A = (\neg B), B = (\neg C)}

$$4. ((\neg C) \rightarrow (\neg B)) \rightarrow (B \rightarrow C)$$

..... {AS3
$$((\neg A) \to (\neg B)) \to (B \to A), A = C, B = B$$
}

$$5. (\neg C) \rightarrow (\neg B)$$

...... {From 1 and 3 by MP}

$$6. ((\neg C) \rightarrow (\neg B)) \rightarrow (B \rightarrow C)$$

..... {AS3
$$((\neg A) \rightarrow (\neg B)) \rightarrow (B \rightarrow A), A = C, B = B$$
}

7. B
$$\rightarrow$$
 C

..... {From 4 and 5 by MP}

8. C

..... {From 2 and 6 by MP}

By using the deduction theorem, we have:

$$|-L(B \rightarrow C) \rightarrow (((\neg B) \rightarrow C) \rightarrow C)$$

7.2

(a) $-HBA \rightarrow (B \rightarrow (A \land B))$

(1)

1.

(2)

Show that $\{A, B\} \vdash HB (A \land B)$

1. A

..... {Premise} 2. B {Premise} $3. A \rightarrow (A \rightarrow A)$ {AS $(A \to (B \to A)), A = A, B = A$ } $4. A \rightarrow A$ {From 1 and 3 by MP} $5. (A \rightarrow A) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow (A \land B))$ {AS $(A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C)), A = A, B = A, C = B$ } 6. $(A \rightarrow B) \rightarrow (A \rightarrow (A \land B))$ {From 4 and 5 by MP} 7. B \rightarrow (A \rightarrow B) {AS $(A \to (B \to A)), A = B, B = A$ } $8. A \rightarrow B$ {From 2 and 7 by MP} $9. A \rightarrow (A \land B)$ {From 6 and 8 by MP} 10. (A \wedge B) {From 1 and 9 by MP} By using the deduction theorem, we have: $-HBA \rightarrow (B \rightarrow (A \land B))$ $-HB((A \land B) \leftrightarrow (B \land A))$ (1) (2) (i) Show that \vdash HB ((A \land B) \rightarrow (B \land A)) 1. $(A \land B)$ {Premise} 2. $(A \land B) \rightarrow B$ {AS (A \land B) \rightarrow B} $3. (A \land B) \rightarrow A$ {AS $(A \land B) \rightarrow A$ } 4. B {From 1 and 2 by MP} 5. A {From 1 and 3 by MP} 6. B \rightarrow (A \rightarrow B)

```
..... {AS A \rightarrow (B \rightarrow A), A = B, B = A}
7. A \rightarrow B
                                                                                                     ..... {From 4 and 6 by MP}
8. A \rightarrow (A \rightarrow A)
                                                                                     ..... {AS (A \to (B \to A)), A = A, B = A}
9. A \rightarrow A
                                                                                                     ..... {From 5 and 8 by MP}
10. (A \rightarrow B) \rightarrow ((A \rightarrow A) \rightarrow (A \rightarrow (B \land A))
                                             ..... \{AS (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C)), A = A, B = B, C = A\}
11. (A \rightarrow A) \rightarrow (A \rightarrow (B \land A)
                                                                                                    ..... {From 7 and 10 by MP}
12. A \rightarrow (B \land A)
                                                                                                    ..... {From 9 and 11 by MP}
13. (B ∧ A)
                                                                                                    ..... {From 5 and 12 by MP}
By using the deduction theorem, we have:
\vdashHB ((A \land B) \rightarrow (B \land A))
(ii) Show that \vdashHB ((B \land A) \rightarrow (A \land B))
1. (B \wedge A)
                                                                                                                    ..... {Premise}
2. (B \wedge A) \rightarrow B
                                                                                                      ..... {AS (B \land A) \rightarrow B}
3. (B \land A) \rightarrow A
                                                                                                      ..... {AS (B \land A) \rightarrow A}
4. B
                                                                                                     ..... {From 1 and 2 by MP}
5. A
                                                                                                     ..... {From 1 and 3 by MP}
6. B \rightarrow (A \rightarrow B)
                                                                                       ..... {AS A \to (B \to A), A = B, B = A}
7. A \rightarrow B
                                                                                                     ..... {From 4 and 6 by MP}
8. A \rightarrow (A \rightarrow A)
                                                                                     ..... {AS (A \rightarrow (B \rightarrow A)), A = A, B = A}
9. A \rightarrow A
                                                                                                     ..... {From 5 and 8 by MP}
10. (A \rightarrow A) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow (A \land B))
```

..... $\{AS(A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C)), A = A, B = A, C = B\}$

```
11. (A \rightarrow B) \rightarrow (A \rightarrow (A \land B)
                                                                                                ..... {From 9 and 10 by MP}
12. A \rightarrow (A \land B)
                                                                                                ..... {From 7 and 11 by MP}
13. (A ∧ B)
                                                                                                ..... {From 5 and 12 by MP}
By using the deduction theorem, we have:
\vdashHB ((B \land A) \rightarrow (A \land B))
(iii) Show that \vdashHB ((A \land B) \leftrightarrow (B \land A))
1. (A \land B) \rightarrow (B \land A)
                                                                                                                ..... {From (i)}
2. (B \wedge A) \rightarrow (A \wedge B)
                                                                                                               ..... {From (ii)}
3.((A \land B) \rightarrow (B \land A)) \rightarrow (((B \land A) \rightarrow (A \land B)) \rightarrow ((A \land B) \leftrightarrow (B \land A)))
                                       ..... \{AS(A \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow (A \leftrightarrow B)), A = A \land B, B = B \land A\}
4. ((B \land A) \rightarrow (A \land B)) \rightarrow ((A \land B) \leftrightarrow (B \land A))
                                                                                                  ..... {From 1 and 3 by MP}
5. (A \land B) \leftrightarrow (B \land A)
                                                                                                  ..... {From 2 and 4 by MP}
Above all, \vdashHB ((A \land B) \leftrightarrow (B \land A))
(c) \vdashHB (A \lor B) \leftrightarrow (B \lor A)
(1)
(2)
(i) Show that \{(A \lor B)\} –HB (B \lor A)
1.(A \lor B)
                                                                                                                ..... {Premise}
2. A \rightarrow (B \lor A)
                                                                                   ..... {AS B \rightarrow (A \lor B), A = B, B = A}
3. B \rightarrow (B \lor A)
                                                                                   ..... {AS A \rightarrow (A \lor B), A = B, B = A}
4. \ (A \rightarrow (B \ \lor \ A)) \rightarrow ((B \rightarrow (B \ \lor \ A)) \rightarrow ((A \ \lor \ B) \rightarrow (B \ \lor \ A)))
                                  ..... {AS (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)), A = A, B = B, C = B \lor A}
5. (B \rightarrow (B \lor A)) \rightarrow ((A \lor B) \rightarrow (B \lor A))
```

```
..... {From 2 and 4 by MP}
6. (A \lor B) \rightarrow (B \lor A)
                                                                                                 ..... {From 3 and 5 by MP}
7. (B \vee A)
                                                                                                 ..... {From 1 and 6 by MP}
By using the deduction theorem, we have:
\vdashHB ((A \lor B) \rightarrow (B \lor A))
(ii) Show that \{(B \lor A)\} –HB (A \lor B)
1. (B \vee A)
                                                                                                               ..... {Premise}
2. A \rightarrow (A \lor B)
                                                                                  ..... {AS A \rightarrow (A \lor B), A = A, B = B}
3. B \rightarrow (A \lor B)
                                                                                  ..... {AS B \rightarrow (A \lor B), A = A, B = B}
4. \ (A \rightarrow (A \ \lor \ B)) \rightarrow ((B \rightarrow (A \ \lor \ B)) \rightarrow ((B \ \lor \ A) \rightarrow (A \ \lor \ B)))
                                   \dots \{AS (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \ \lor \ B) \rightarrow C)), A = A, B = B, C = A \ \lor \ B\}
5. (B \rightarrow (A \lor B)) \rightarrow ((B \lor A) \rightarrow (A \lor B))
                                                                                                 ..... {From 2 and 4 by MP}
6. (B \vee A) \rightarrow (A \vee B)
                                                                                                 ..... {From 3 and 5 by MP}
7. (A \vee B)
                                                                                                 ..... {From 1 and 6 by MP}
By using the deduction theorem, we have:
\vdashHB ((B \lor A) \rightarrow (A \lor B))
(iii) Show that \vdashHB ((A \lor B) \leftrightarrow (B \lor A))
1. (A \lor B) \rightarrow (B \lor A)
                                                                                                               ..... {From (i)}
2. (B \vee A) \rightarrow (A \vee B)
                                                                                                              ..... {From (ii)}
3.\left((B \ \lor \ A) \rightarrow (A \ \lor \ B)\right) \rightarrow \left(((A \ \lor \ B) \rightarrow (B \ \lor \ A)\right) \rightarrow \left((B \ \lor \ A) \leftrightarrow (A \ \lor \ B)\right))
                                       ..... {AS (A \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow (A \leftrightarrow B)), A = B \lor A, B = A \lor B}
4. ((A \lor B) \rightarrow (B \lor A)) \rightarrow ((B \lor A) \leftrightarrow (A \lor B))
                                                                                                 ..... {From 2 and 3 by MP}
5. (B \vee A) \leftrightarrow (A \vee B)
                                                                                                 ..... {From 1 and 4 by MP}
Above all, \vdashHB ((A \lor B) \leftrightarrow (B \lor A))
```

(d)
$$\vdash$$
 HB (A \rightarrow B) \rightarrow ((C \lor A) \rightarrow (C \lor B))

(1)

1.

Show that
$$\{(A \rightarrow B), (C \lor A)\}$$
 \vdash HB $(C \lor B)$

1. $(A \rightarrow B)$

...... {Premise}

2. $(C \lor A)$

...... {AS $(A \rightarrow B) \rightarrow ((B \rightarrow (C \lor B)) \rightarrow (A \rightarrow (C \lor B)))$

...... {AS $(A \rightarrow B) \rightarrow ((B \rightarrow (C \lor B)) \rightarrow (A \rightarrow (C \lor B)))$

4. $((B \rightarrow (C \lor B)) \rightarrow (A \rightarrow (C \lor B)))$

...... {From 1 and 3 by MP}

5. $(A \rightarrow B) \rightarrow (C \lor B)$

...... {From 4 and 5 by MP}

7. $(C \rightarrow (C \lor B)) \rightarrow ((A \rightarrow (C \lor B)) \rightarrow ((C \lor A) \rightarrow (C \lor B)))$

...... {From 4 and 5 by MP}

8. $(C \rightarrow (C \lor B)) \rightarrow ((A \rightarrow (C \lor B)) \rightarrow ((C \lor A) \rightarrow (C \lor B)))$

...... {AS $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)), A = C, B = A, C = C \lor B}$

8. $(C \rightarrow (C \lor B)) \rightarrow ((C \lor A) \rightarrow (C \lor B))$

...... {AS $(A \rightarrow C) \rightarrow ((C \lor B))$

...... {AS $(A \rightarrow C) \rightarrow ((C \lor B))$

...... {From 7 and 8 by MP}

10. $(C \lor A) \rightarrow (C \lor B)$

...... {From 6 and 9 by MP}

11. $(C \lor B)$

...... {From 6 and 9 by MP}

By using the deduction theorem, we have:

$$\vdash$$
HB (A \rightarrow B) \rightarrow ((C \lor A) \rightarrow (C \lor B))

(e) \vdash HB (A \lor (B \lor C)) \leftrightarrow ((A \lor B) \lor C))

(1)

1.

(2)

(f)
$$\vdash$$
 HB (A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C))

(1)

1.

(2)

(g)
$$\vdash$$
 HB (A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))

(1)

1.

(2) (i) Show that
$$\{(A \land (B \lor C))\}$$
 |-HB $((A \land B) \lor (A \land C))$ 1. $(A \land (B \lor C))$

..... {Premise}

2.
$$(A \land (B \lor C)) \rightarrow A$$

..... {AS (A
$$\land$$
 B) \rightarrow A, A = A, B = B \lor C}

3.
$$(A \land (B \lor C)) \rightarrow (B \lor C)$$

..... {AS
$$(A \land B) \rightarrow B, A = A, B = B \lor C$$
}

```
4. A
                                                                                                            ..... {From 1 and 2 by MP}
5. (B \( \subset \) C)
                                                                                                            ..... {From 1 and 3 by MP}
6. A \rightarrow (B \rightarrow A)
                                                                                             ..... {AS A \rightarrow (B \rightarrow A), A = A, B = B}
7. A \rightarrow (C \rightarrow A)
                                                                                              ..... {AS A \rightarrow (B \rightarrow A), A = A, B = C}
8. (B \rightarrow A)
                                                                                                            ..... {From 4 and 6 by MP}
9. (C \rightarrow A)
                                                                                                            ..... {From 4 and 7 by MP}
10. B \rightarrow (B \rightarrow B)
                                                                                              ..... {AS A \rightarrow (B \rightarrow A), A = B, B = B}
11. (B \rightarrow (B \rightarrow B)) \rightarrow (B \rightarrow B)
                                                                           ..... {AS (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B), A = B, B = B}
12. (B \rightarrow B)
                                                                                                          ..... {From 10 and 11 by MP}
13. C \rightarrow (C \rightarrow C)
                                                                                             ..... {AS A \rightarrow (B \rightarrow A), A = C, B = C}
14. (C \rightarrow (C \rightarrow C)) \rightarrow (C \rightarrow C)
                                                                           ..... {AS (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B), A = C, B = C}
15. (C \rightarrow C)
                                                                                                         ..... {From 13 and 14 by MP}
16. (B \rightarrow A) \rightarrow ((B \rightarrow B) \rightarrow (B \rightarrow (A \land B)))
                                               ..... {AS (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C))), A = B, B = A, C = B}
17. (C \rightarrow A) \rightarrow ((C \rightarrow C) \rightarrow (C \rightarrow (A \land C)))
                                               ..... {AS (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C))), A = C, B = A, C = C}
18. (B \rightarrow B) \rightarrow (B \rightarrow (A \land B))
                                                                                                           ..... {From 8 and 16 by MP}
19. (C \rightarrow C) \rightarrow (C \rightarrow (A \land C))
                                                                                                          ..... {From 9 and 17 by MP}
20. B \rightarrow (A \land B)
                                                                                                         ..... {From 12 and 18 by MP}
21. C \rightarrow (A \land C)
                                                                                                         ..... {From 15 and 19 by MP}
22. a. (A \land B)
                                                                                                          ..... {From 5 and 20 by MP}
      or b. (A \land C)
                                                                                                           ..... {From 5 and 21 by MP}
23. (A \land B) \rightarrow ((A \land B) \lor (A \land C))
                                                                         ..... {AS (A \rightarrow (A \lor B)), A = A \land B, B = A \land C}
24. (A \land C) \rightarrow ((A \land B) \lor (A \land C))
                                                                          ..... {AS (B \rightarrow (A \lor B)), A = A \land B, B = A \land C}
```

```
25. (A \wedge B) \vee (A \wedge C)
                                                                                 ..... {From 22.a and 23 by MP}
     or (A \land B) \lor (A \land C)
                                                                                 ..... {From 22.b and 23 by MP}
By using the deduction theorem, we have:
\vdashHB ((A \land (B \lor C)) \rightarrow ((A \land B) \lor (A \land C)))
(ii) Show that \{((A \land B) \lor (A \land C))\} |-HB (A \land (B \lor C))
(1) First we can show that \{(A \land B)\} –HB (B \lor C)
1. (A \land B)
                                                                                                  ..... {premise}
2. (A \land B) \rightarrow B
                                                                        \dots {AS (A \land B) \rightarrow B, A = A, B = B}
3. B
                                                                                     ..... {From 1 and 2 by MP}
4. B \rightarrow (B \lor C)
                                                                       ..... {AS (A \rightarrow (A \lor B)), A = B, B = C}
5. (B \( \subset \) C)
                                                                                     ..... {From 3 and 4 by MP}
By using the deduction theorem, we have:
I-HB ((A \land B) \rightarrow (B \lor C))
② Then we can show that \{((A \land B) \lor (A \land C))\} \vdash HB (A \land (B \lor C))
1. (A \land B) \rightarrow (B \lor C)
                                                                                                 ..... {From ①}
2.((A \land B) \rightarrow A) \rightarrow (((A \land B) \rightarrow (B \lor C)) \rightarrow ((A \land B) \rightarrow (A \land (B \lor C))))
                        ..... {AS (A \rightarrow B) \rightarrow ((A \rightarrow C) \rightarrow (A \rightarrow (B \land C))), A = A \land B, B = A, C = B \lor C}
3. (A \land B) \rightarrow A
                                                                        ..... {AS (A \land B) \rightarrow A, A = A, B = B}
4.((A \land B) \rightarrow (B \lor C)) \rightarrow ((A \land B) \rightarrow (A \land (B \lor C)))
                                                                                     ..... {From 2 and 3 by MP}
5. (A \land B) \rightarrow (A \land (B \lor C))
                                                                                     ..... {From 1 and 4 by MP}
6. (A \land (B \lor C))
                                                                                     ..... {From 3 and 5 by MP}
By using the deduction theorem, we have:
\vdashHB (((A \land B) \lor (A \land C)) \rightarrow (A \land (B \lor C)))
(iii) Show that \vdashHB (A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))
1. ((A \land (B \lor C)) \rightarrow ((A \land B) \lor (A \land C)))
                                                                                                 ..... {From (i)}
2. (((A \land B) \lor (A \land C)) \rightarrow (A \land (B \lor C)))
```

```
..... {From (ii)}
```

3.
$$((A \land (B \lor C)) \rightarrow ((A \land B) \lor (A \land C))) \rightarrow ((((A \land B) \lor (A \land C))) \rightarrow (A \land (B \lor C))) \rightarrow ((A \land (B \lor C))) \rightarrow ((A \land (A \land B) \lor (A \land C)))$$

...... $\{AS (A \rightarrow B) \rightarrow ((B \rightarrow A) \rightarrow (A \leftrightarrow B)), A = ((A \land (B \lor C)) \rightarrow ((A \land B) \lor (A \land C))), B = (((A \land B) \lor (A \land C)) \rightarrow (A \land (B \lor C)))\}$
4. $\{AS (A \land B) \lor (A \land C)\} \rightarrow \{A \land (B \lor C)\} \rightarrow ((A \land (B \lor C))) \rightarrow ((A \lor (B \lor C))) \rightarrow ((A \lor (B \lor C))) \rightarrow ((A \lor (B$

4. ((((A
$$\land$$
 B) \lor (A \land C)) \rightarrow (A \land (B \lor C))) \rightarrow ((A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C)))

..... {From 1 and 3 by MP}

5.
$$(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$$

..... {From 2 and 4 by MP}

Above all, \vdash HB (A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))

12011327 刘乐奇