Especificação de Sistemas e SysML

Centro de Informática - Universidade Federal de Pernambuco Engenharia da Computação Kiev Gama kiev@cin.ufpe.br

Slides elaborados pelos professores Marcio Cornélio e Kiev Gama

O autor permite o uso e a modificação dos slides para fins didáticos

Modelagem de sistema

- A modelagem de sistema auxilia o analista a entender a funcionalidade do sistema
 - Modelo => visão simplificada e abstrata de um sistema
 - Foco no que é importante
- Modelos são usados para melhorar a comunicação com os clientes.
- Modelos podem ser executáveis!
 - Exs.: Especificações formais e testes

Modelagem de sistema

- Modelos diferentes apresentam o sistema a partir de perspectivas diferentes. Ex:
 - Perspectiva externa
 - Contexto ou ambiente do sistema
 - Perspectiva de interação
 - Interações entre sistema e ambiente ou entre componentes do sistema
 - Perspectiva estrutural
 - Organização do sistema e a estrutura dos dados que ele processa
 - Perspectiva comportamental
 - Comportamento dinâmico do sistema e como ele responde a eventos

Modelos de contexto

- Usados para ilustrar o contexto operacional de um sistema
- Mostram, em particular, elementos com os quais o sistema interagirá
- Pode ser difícil determinar os limites do sistema
 - Falta de compreensão
 - Requisitos bem definidos e validados podem mitigar este problema

O contexto do sistema de um caixa eletrônico

Linguagens de Modelagem

- Demais tipos de modelos categorizados por Sommerville (Interação, Comportamental, Estrutural) são cobertos por linguagens de modelagem
- Notação padronizada
 - UML (Unified Modeling Language)
 - padrão de fato para modelagem de software
 - SysML (Systems Modeling Language)
 - derivação do UML voltada p/ sistemas

Modelagem de sistema

- Modelos são mais úteis se escritos em uma Linguagem de Modelagem
- Engenharia de sistemas baseada em modelos
 - Aplicação da modelagem para apoiar diversas atividades (requisitos, análise, projeto, verificação e valicação) da engenharia de sistemas

Vantagens

- Auxilia no gerenciamento do desenvolvimento de sistemas complexos
- Conhecimento compartilhado entre equipe e stakeholders
- Reduz riscos permitindo validar requisitos e design
- Separação de preocupações através de várias visões de modelos integrados
- Permite rastreabilidade através de modelos hierárquicos
- Facilita análise de requisitos e mudanças no design do projeto
- Reduz ambiguidades
- Transferência de conhecimento através da captura do design de sistemas existentes

Modelagem de vários níveis do sistema

SysML – Linguagem Unificada de Modelagem

Linguagem de modelagem de uso para aplicações de engenharia de sistemas.

- Não explicita como a modelagem deve ser conduzida
- Permite a modelagem através de diferentes perspectivas

Não é uma metodologia nem uma ferramenta!

Diagramas

Diagramas

Estrutura dos diagramas SysML

- Cada diagrama possui um frame
- O contexto do diagrama é exibido no cabeçalho
 - Tipo (act, bdd, ibd, sd)
 - Tipo do elemento
 - Nome do elemento
- Descrição do diagrama

Diagrama de Pacotes

- Usado para organizar o modelo
 - Agrupa elementos em um namespace
- Modelos podem ser organizados de várias formas
 - Por hierarquia do sistema
 - Por tipo de diagrama

Pacotes

Diagrama de definição de blocos

- Elementos estruturais básicos
- Conceito unificado para descrever a estrutura de um elemento do sistema
 - (Sub)sistema
 - Hardware
 - Software
 - Dado
 - Procedimento
 - Prédio
 - Pessoa

- «block»
 BrakeModulator

 allocatedFrom
 «activity»Modulate
 BrakingForce

 values

 DutyCyclα Percentage
- Diferentes compartimentos para descrever características
 - Propriedades (parts, references, values, ports)
 - Operações
 - Constraints
 - Alocações de/para outros elementos do modelo
 - Requisitos
 - Compartimentos definidos pelo usuário

Diagrama de Definição de Blocos

- Definem relações entre blocos
 - Composição
 - Associação
 - Especialização
- Captura propriedades
- Pode ser reusado em vários contextos

Diagrama de Definição de Blocos

Diagrama de bloco interno

- Descreve a estrutura interna de um bloco em termos de propriedades e conectores
- Expressa interconexão entre partes
- Enquanto o bdd representa a definição (equivalente a um "tipo de objeto"), o ibd ilustra o uso de um bloco (verde) no contexto (azul) de um bloco no qual ele faz parte

Diagrama de bloco interno

Diagrama de Bloco Interno

Diagrama de Requisitos

- Representa requisitos do sistema
 - Inclui um id e um texto como propriedades
 - Pode ter propriedades definidas pelo usuário
 - Pode ter categorias definidas pelo usuário (funcional, interface, não funcional, etc)
- Pode descrever relações (verified by, satisfied by)

Diagrama de Requisitos

Diagrama de Casos de Uso

Diagrama de Sequência

- Representa fluxo de controle
- Descreve interação entre partes
- Possui mecanismos para representar cenários mais complexos
 - opt (condicional com 1 alternativa)
 - alt (condicional com 2 ou mais alternativas)
 - loop (repetição)
 - break (aborta execução do resto do fluxo no contexto)
 - critical (execução atômica)
 - **—** ...

Diagrama de Sequência

Diagrama de Atividades

- Modelam atividades, a ordem em que são realizadas e dependências entre elas
 - Podem também indicar entradas e saídas das atividades
- Úteis para modelar fluxos de trabalho
- Exemplos:
 - Sequência de passos da descrição de um requisito
 - Processos dentro de uma empresa

Diagrama de Atividades

Diagrama de Atividades

Diagrama paramétrico

- Usado para exprimir constraints entres valores de propriedades
 - Dá suporte para análise
 - Facilita identificação de propriedades críticas de performance
- O bloco <<constraint>> captura equações
 - Eventual análise/execução da equação é feita por ferramenta e não no SysML
- Diagrama representa o uso das constraints em um contexto de análise

par [Block] Straight Line Vehicle Dynamics [Value Bindings] v.b.abs.m1.duty cycle: % v.mass : Kg v.c.t.friction : N v.b.r.braking force : N tf: N | tl: % bf: N m:Ka f:N e1 : Braking Force e2 : Acceleration Equation Equation $\{f=(tf*bf)*(1-tI)\}$ a:m/sec*2 a:m/sec^2 e4: Distance Equation $\{v=dx/dt\}$ e3: Velocity Equation v:m/sec v:m/sec {a=dv/dt} x:m t:sec t:sec v.position : m clk.time: sec

Contraints definidas em diagrama de blocos

Diagrama paramétrico ilustrando sistemas de equações interligados com as propriedades dos blocos

Diagrama de Máquina de estado

- Modelam o comportamento do sistema em resposta aos eventos externos e internos
- Mostram os estados do sistema como nós e os eventos como arestas entre estes nós.
 - Quando um evento ocorre, o sistema muda de um estado para um outro.
- Statecharts são usados para representar os modelos de máquina de estados na SysML

Diagrama de Máquina de estado

Referências complementares

SOMMERVILLE, I. Engenharia de Software. 9^a. Ed. São Paulo: Pearson Education, 2011. Capítulo 5 (modelagem de sistemas)

S. Friedenthal, A. Moore, R. Steiner. A Practical Guide to SysML: The Systems Modeling Language. 2ed. 2011

Martin Fowler e Kendall Scott, *UML Essencial*. 3ª Edição, Bookman Companhia Ed., 2004.

Bom livro de referência, i.e., para tirar dúvidas sobre a notação UML

Tutoriais SysML:

http://www.sysmlforum.com/sysml-tutorials/

Ferramentas:

http://www.sysmlforum.com/sysml-tools/

