Лекция 1: †

2 Sept

Глава 1

Функциональные последовательности и ряды

1.1 Равномерная и поточечная сходимости

Определение 1: Поточечная сходимость

Пусть определена последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$, и $f \colon E \to \mathbb{R}(\mathbb{C})$. Тогда говорят, что f_n сходится к f поточечно $(f_n \to f)$, если

$$\forall x \in E : \lim_{n \to \infty} f_n(x) = f(x).$$

То есть для любого $x \in E$ и любого $\varepsilon > 0$ существует $N_{(x,\varepsilon)}$ такое, что

$$\forall n > N : |f_n(x) - f(x)| < \varepsilon.$$

Замечание. Это определение можно обобщить куда угодно, где есть мера. В данном курсе под E обычно подразумевается подмножество \mathbb{R}^n .

Определение 2: Равномерная сходимость

Пусть определена последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$, и $f \colon E \to \mathbb{R}(\mathbb{C})$. Тогда говорят, что f_n сходится к f равномерно на E $(f_n \rightrightarrows f)$, если для любого $\varepsilon > 0$ существует $N_{(\varepsilon)}$ такое, что

$$\forall n > N \ \forall x \in E \colon |f_n(x) - f(x)| < \varepsilon.$$

Пример 1.1.1. Рассмотрим функции $f_n(x) = x^n$ на отрезке (0,1). Так как $\forall x \in (0,1)$: $x^n \to_{n\to\infty} 0$, $f_n \to f \equiv 0$. Но $f_n \not\rightrightarrows 0$, потому что, например, для $\varepsilon = \frac{1}{2}$ каким бы ни было N для всех n > N можно взять такое x рядом с единицей, что $|x^n - 0| > \frac{1}{2}$.

Утверждение. $f_n \rightrightarrows f$ на E равносильно тому, что

$$\sup_{x \in E} |f_n(x) - f(x)| \stackrel{n \to \infty}{\longrightarrow} 0.$$

Ремарка. Если мы смотрим на множество непрерывных функций на компакте C(K), где норма

$$||f||_{C(K)} = \max_{x \in K} |f(x)|,$$

то из поточечной сходимости следует равномерная:

$$f_n \to f \Longrightarrow \|f_n - f\| \to 0 \Longleftrightarrow f_n \rightrightarrows f$$
 на K .

Аналогично будет с множеством ограниченных функций на $E(l^{\infty}(E))$ с нормой

$$||f||_{\infty} = \sup_{x \in E} |f(x)|.$$

Определение 3: Равномерная ограниченность

Последовательность функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$ называется равномерно ограниченной на E, если существует такое M, что

$$\forall x \in E \ \forall n \in \mathbb{N} \colon |f_n(x)| \leqslant M.$$

Пример 1.1.2. Пусть $f_n \in C(K)$. Тогда равномерная ограниченность $\{f_n\}$ равносильна ограниченности по норме, то есть все функции содержатся в некотором шаре с центром в нуле.

Свойства.

- 0. Из равномерной сходимости следует поточечная
- 1. Если для всех $x \in E$ выполнено

$$|f_n(x) - f(x)| \leqslant a_n,$$

где $\{a_n\}$ — последовательность, стремящаяся к нулю при $n \to \infty$, то f_n равномерно сходится к f на E.

2. Если существует ε_0 и $x_n \in E$ для всех n такие, что

$$|f_n(x_n) - f(x_n)| \geqslant \varepsilon_0,$$

то f_n не сходится равномерно κ f на E.

3. Пусть $\{f_n\} \rightrightarrows f$ на E и $\{g_n\}$ равномерно ограничена на E. Тогда $f_n g_n \rightrightarrows 0$.

Доказательство.

$$\sup_{x \in E} |f_n(x)g_n(x)| \leqslant M_{g_n} \cdot \sup_{x \in E} |f_n(x)| \xrightarrow{n \to \infty} 0.$$

4. **Критерий Коши**. Пусть $f_n \colon E \to \mathbb{R}(\mathbb{C})$. f_n равномерно сходится на E, согда¹ для любого положительного ε существует N, что

$$\forall n, m > N \ \forall x \in E \colon |f_n(x) - f_m(x)| < \varepsilon.$$

Доказательство.

 $\boxed{1\Longrightarrow 2}$ Запишем определение равномерной сходимости на E для $\frac{\varepsilon}{2}$:

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in E \quad |f_n(x) - f(n)| < \frac{\varepsilon}{2}.$$

Тогда для любых n, m > N

$$|f_m(x) - f(x)_n| \le$$

$$\le |f_m(x) - f(x)| + |f_n(x) - f(x)| \le$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $2 \Longrightarrow 1$ Из условия Коши получаем, что для всех $x \in E$ последовательность $f_n(x)$ фундаметальна. Следовательно, существует предел $f(x) := \lim_{n \to \infty} f_n(x)$.

Устремим $m \to \infty$. Тогда

$$|f_n(x) - f(x)| \le \varepsilon.$$

По определению равномерной сходимости получаем, что $f_n \rightrightarrows f$ на E.

П

¹С этого момента буду писать «согда» вместо «тогда и только тогда, когда», чтобы упростить формулировки

5. Пусть E — метрическое пространство. Рассмотрим последовательность непрерывных в точке $x \in E$ функций $f_n \colon E \to \mathbb{R}(\mathbb{C})$. Если $f_n \rightrightarrows f$ на E, то f тоже непрерывна в точке a.

Доказательство. Проверим, что

$$\lim_{x \to a} f(x) = f(a).$$

А именно, для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что

$$\forall x \in E \quad \rho(x, a) < \delta \Longrightarrow |f(x) - f(a)| < \varepsilon.$$

Используем равномерную сходимость: для любого $\varepsilon > 0$ существует N такое, что

$$\forall n > N \ \forall x \in E \quad |f_n(x) - f(x)| < \frac{\varepsilon}{3}.$$
 (1.1.1)

Так как f_n непрерывна в точке a, можем записать определение для $\frac{\varepsilon}{3}$ и заодно взять n>N:

$$\exists \delta > 0 \colon \forall x \in E \quad \rho(x, a) < \delta \Longrightarrow |f_n(x) - f_n(a)| \leqslant \frac{\varepsilon}{3}.$$

Используем два полученых неравенства:

$$|f(x) - f(a)| \leqslant$$

$$\leqslant |f(x) - f_n(x)| +$$

$$+|f_n(x) - f_n(a)| +$$

$$+|f_n(a) - f_n(a)| <$$

$$< \frac{\varepsilon}{3} * 3 = \varepsilon$$

6. Теорема Стокса-Зайделя. Пусть $f_n \in C(E)$. Если $f_n \rightrightarrows f$, то f непрерывна на E.

Доказательство. Следствие из 5[прошлого свойства].

1.2 Равномерные и поточечные сходимости рядов

Определение 4: Функционоальный ряд

Рассмотрим функции $u_n \colon E \to \mathbb{R}(\mathbb{C})$. Тогда

$$\sum_{n=1}^\infty u_n(x)$$
 — функциональный ряд, $S_n(x) = \sum_{k=1}^n u_k(x)$ — частичная сумма ряда.

Если S_n сходится к S поточечно, то говорят, что ряд сходится поточечно. Если S_n сходится к S равномерно, то говорят, что ряд сходится равномерно.

$$r_n = S(x) - S_n(x)$$
 — остаток ряда.

Замечание. Если рассматриваемые функции ограничены $(u_n \in C(K))$, то $\sum_{n=1}^{\infty} u_n$ — ряд в нормированном пространстве, поэтому сходимость в C(K) равносильна тому, что $\|S_n - S\|_{C(K)} \to 0$. Это в свою очередь равносильно тому, что S_n сходится равномерно к S на K.

Свойства.

- 1. $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E, согда $r_n \rightrightarrows 0$ на E.
- 2. **Критерий Коши**. $\sum_{n=1}^{\infty} u_n(x)$ равномерно сходится на E, согда для всех $\varepsilon > 0$ существует такое N, что

$$\forall m > N \ \forall p \in \mathbb{N} \ \forall x \in E : \left| \sum_{k=m+1}^{m+p} u_k(x) \right| = |S_{m+p} - S_m| < \varepsilon.$$

3. Необходимое условие равномерной сходимости ряда. $Ecnu \sum_{n=1}^{\infty} u_n(x)$ сходится равномерно на E, то u_n равномерно сходится κ 0.

Доказательство. По критерию Коши для p = 1.

4. Признак сравнения. Пусть $u_n, v_n \colon E \to \mathbb{R}^2$ и для всех $x \in E$ выполнено неравенство $|u_n(x)| \leqslant v_n(x)$ Если $\sum_{n=1}^{\infty} v_n(x)$ сходится равномерно на E, то $\sum_{n=1}^{\infty} u_n(x)$ тоже сходится равномерно на E.

Доказательство. Обозначим частичные суммы

$$S_n(x) = \sum_{k=1}^n u_k(x), \quad C_n(x) = \sum_{k=1}^n v_k(x).$$

Заметим, что

$$|S_m(x) - S_n(x)| \le \sum_{k=n+1}^m v_k(x) \le |C_m(x) - C_n(x)|.$$

Так как $\sum_{n=1}^{\infty} v_n(x)$ равномерно сходится, можно воспользоваться критерием Коши и получить, что последний модуль меньше ε при m,n>N и $x\in E$. Тогда можем применить критерий Коши для $\sum_{n=1}^{\infty} u_n(x)$.

²Здесь на лекции u_n, v_n были определены как $E \to \mathbb{R}(\mathbb{C})$, но случае \mathbb{C} не понятно сравнение комплексного и вещественного числа в следующем неравенстве