Draw self-diffusion, inter diffusion, vacancy diffusion, grain boundary diffusion, surface diffusion, and pipe diffusion.

ANSWER>>>

SELF DIFFUSION

Atoms at time t = 0

at time t = t0

INTER DIFFUSION

Initially

finally

VACANCY DIFFUSION

GRAIN BAUNDARY DIFFUSION

SURFACE DIFFUSION

PIPE DUSSION

Q2) Write expression of Fick's First and Second Laws of diffusion and state all parameters involved.

ANSWER>>>

Fick's First Law of diffusion

$$J = -D \frac{dC}{dx}$$

dC / dx is Concentration gradient.

The constant of proportionality D is the diffusion coefficient.

J is the steady-state diffusion.

Fick's Second Law of diffusion

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

The left side term denotes rate of change of Concentration.

The constant of proportionality D is the diffusion coefficient

Q3) Discuss in short the solution of Fick's Second Law of diffusion using Gaussian error function.

ANSWER>>>

Solutions to this Second Fick's Law (concentration in terms of both position and time) are possible when physically meaningful boundary conditions are specified.

- 1. Before diffusion, any of the diffusing solute atoms in the solid are uniformly distributed with concentration of CO.
- 2. The value of x at the surface is zero and increases with distance into the solid.
- 3. The time is taken to be zero the instant before the diffusion process begins.

These boundary conditions are simply stated as

For
$$t = 0$$
, $C = C0$ at $0 <= x <= infinity$

For t = 0, C = Cs (the constant surface concentration) at x = 0

C = C0 at x = infinity.

Application of these boundary conditions to Equation 5.4b yields the solution

$$\frac{C_x - C_0}{C_s - C_0} = 1 - \operatorname{erf}\left(\frac{x}{2\sqrt{Dt}}\right)$$

where Cx represents the concentration at depth x after time t. The expression $erf(x/2 \ sqrt(\ D\ t\))$ is the Gaussian error function.

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-y^2} dy$$

where has been replaced by the x/2 sqrt (Dt).

On supposing that it is desired to achieve some specific concentration of solute, C1, in an alloy; the left-hand side of Equation Ficks Second Law becomes.

$$\frac{C_1 - C_0}{C_s - C_0} = \text{constant} \qquad \frac{x}{2\sqrt{Dt}} = \text{constant} \qquad \frac{x^2}{Dt} = \text{constant}$$

Q4) Note any five applications of the diffusion.

ANSWER>>>

Applications of Diffusion:

- i) Diffusion is fundamental to phase changes e.g. -iron to α -iron.
- ii) Joining of materials by diffusion bonding e.g. welding, brazing soldering galvanizing and metal cladding.
- iii) Important in heat treatment like homogenizing treatment of casting, recovery, recrystallization and precipitation of phases.
- iv) Production of strong bodies by powder metallurgy.
- v) Surface treatment of steels e.g. case hardening.
- Q5) List the factors affecting diffusivity.

ANSWER>>>

FACTORS THAT INFLUENCE DIFFUSION

- a) Diffusing Species
- b) Temperature
- c) Activation Energy
- d) Diffusion Mechanism
- e) Microstructure
- Q6) Compute number of kg of hydrogen that pass per hour through a 5 mm thick sheet with an area of 0.20 m² at 500 $\stackrel{\triangle}{\triangle}$ C. Let, diffusion coefficient of 1.0 x 10^8 m²/s, conc. at the high and low pressure sides are 2.4 and 0.6 kg of hydrogen per m³ and the steady-state conditions. [Ans. 2.592 x 10^{-3} kg/h]

ANSWER>>>

Q7) Steel sheet, 1.5 mm thick has nitrogen atmospheres on both sides at 1200 \triangle C with steady-state condition. D is 6 x 10^{-11} m²/s, and J is 1.2 x 10^{-7} kg/m²-s. Concentration of nitrogen in the steel at high-pressure surface is 4 kg/m³. How far into the sheet from this high-pressure side will the concentration be 2.0 kg/m³. Assume linear conc. profile. [Ans. 1 m]

Aus 7.	J = 1.2 x 10 + kg/m2 s
_	D = 6x 10" m2s
	J = D [CH - CL] length
	length
	1.2 x 10 = 6 x 10 " 9 - 2]
-	TX
	x = 1mm (Aug)

Q8) Nitrogen from a gaseous phase is to be diffused into pure iron at 700 \triangle C. If the surface concentration is maintained at 0.1 wt% N, what will be the concentration 1 mm from the surface after 10 h? The diffusion coefficient for nitrogen in iron at 700 \triangle C is 2.5 x 10-11 m2/s. [Ans. $C_X = 0.04564$ wt% N]

	Payeris.
Aus8.	time = 10 hour
	D = 2.5 ×10 m2/5
	it is the problem for unsteady call
	$C_{x}-C_{0} = 1-ext\left(\frac{x}{\sqrt{Dt} \times 2}\right)$
	$\frac{\chi}{2 \times \sqrt{Dt}} = \frac{1 \times 10^{-3}}{2 \times \sqrt{10 \times 60 \times 60 \times 2.5 \times 10^{-11}}}$ $= 0.52304$
	at Z = lef(2) 0.5 0.5205 0.55 0.5633
	interpolation
	0.5-0.55 = 0.5-0.52704
	0.5205-0.5633 0.5205 -×
	1.16822 Lo.5205-x'] = 0.02704
	Z = 0.54364
	erf(z) = 0.54364
	Cx-Co = 0.45635
	Co = 0 concentration at as
	$Cx = 0.1 \times 0.45635$
	= 0.045635 N

Q9) Cite the values of the diffusion coefficients for the inter-diffusion of carbon in both α -iron (BCC) and α -iron (FCC) at 900°C. Which is larger? Explain why this is the case.

Aus 9.	$\log D = \log D_0 - Qd\left(\frac{L}{T}\right) \frac{L}{2.3R}$
	For [BCC] . Fe & carbons
	$p_0 = 7.7 \times 10^{-6}$
	Qd= 87400
	log D = log [1.1×10-6] - 87400 [1 19.122 [500+273]
	log D = -10 + 0.1448600
	D = 10-10 x 1.3959 m2/sec
	log For [15 FCC]
	Rog A = log 2.3 x 10 5 - (14800) 1
	$\frac{11737 (8.314)(2.3)}{\sum_{x=10^{-12} \times 10^{0.76} 379}}$
	$\approx 10^{-12} \times 10^{0.76} 3.79$
	D = 5.804 x 10-12 m2/sec
	The diffusion cof coofficient of BCC are more
-	thom FCC. This is because BCC has
	lower density due to not which more instrusetial
É	Exite hence the rate of deflection is more.
	P.F. of BCC < P.F. of FCC

Q10) At what temperature will the diffusion coefficient for the diffusion of copper in nickel have a value of 6.5 x 10^{-17} m²/s. Use the diffusion data from Table given in book. [Ans. 879°C]

ANSWER>>>

	$\lambda = 6.5 \times 10^{17} \text{ m/s}^2$
Aus 10.	D = 6.9 XIV m/s
	diffusion of an in Nickel
	D. = 2.7 × 10-5
	Q = 256000
	lu D = lu Do - 1 (Qo)
	RT
	0.2 (0.2 -5) = -0.
	log D = log (2.7 x 105) = - lo
	2.3 R.T
	-16.1870 + 4.5686 = -256000
	2.3×8.314T
	$T = 256 \times 10^3 \times 1$
	2.3 x 8.314 11.6184
	T = 1152.27K
	T = 879°C (Aus)

Submitted by-AYUSH SHARMA 20193002 ME 2