Revue de la Filière Mathématiques

[Épreuves orales des concours]

Algèbre

1. [P] · Soient
$$m, M, r \in \mathbb{N}$$
, avec $r \ge 3$, $k_0, ..., k_M \in \mathbb{Z}$ tels que $\sum_{i=0}^{M} k_i r^i = \sum_{i=0}^{m} r^i$. Montrer que $\sum_{i=0}^{M} |k_i| \ge m + 1$.

- **2.** [L] Pour $n \in \mathbf{N}^*$, on note $c_n := |\mathcal{P} \cap [[0,n]]|$, où \mathcal{P} désigne l'ensemble des nombres premiers. On note $r_n := \prod_{p \in \mathcal{P}, p \mid n!} p$.
- a) Montrer que $r_n = O(4^n)$ quand n tend vers + ∞ .
- **b)** Montrer que $(c_n)^{c_n} = O(r_n)$ quand n tend vers $+ \infty$.
- c) En déduire que $c_n = O\left(\frac{n}{\ln n}\right)$ quand n tend vers + ∞ .
- **3.** [SR] *a)* On note φ la fonction indicatrice d'Euler. Redémontrer que $\varphi(mn) = \varphi(m)\varphi(n)$ pour tous m, n dans \mathbf{N}^* premiers entre eux (on dit que φ est arithmétiquement multiplicative), redonner la formule explicite pour $\varphi(n)$, et enfin calculer $\sum_{d|n} \varphi(d)$ pour tout $n \ge 1$.
- **b)** Soit m, n dans \mathbf{N}^* . Exprimer $\varphi(mn)$ en fonction de $\varphi(m)$, $\varphi(n)$, $\varphi(m \wedge n)$ et $m \wedge n$.
- **c)** Pour $n \in \mathbf{N}^*$, on note d_n le nombre de diviseurs premiers de n, puis $\mu(n) := (-1)^{d_n}$ si n n'est pas divisible par le carré d'un nombre premier, et enfin $\mu(n) := 0$ dans le cas contraire. Montrer que μ est arithmétiquement multiplicative, et calculer $\sum_{d\mid n} \frac{\mu(d)}{d}$ pour tout $n \in \mathbf{N}^*$.
- **4.** [PLSR] Soit n et m dans \mathbf{N}^* . On munit \mathbf{C} de sa structure canonique d'espace euclidien.
- **a)** Expliciter les ϕ dans $\mathcal{O}(\mathbf{C})$ tels que $\phi(U_n) = U_n$. On note D_{2n} l'ensemble ainsi formé. C'est un sous-groupe de $\mathcal{O}(\mathbf{C})$.
- **b)** Dénombrer les morphismes de groupes de D_{2m} vers D_{2n} .
- **c)** Montrer que tout automorphisme du groupe \mathcal{S}_3 est de la forme $g{
 ightarrow}aga^{ ext{-}1}$ pour un $a\in\mathcal{S}_3$.
- **5.** [SR] On fixe un corps \mathbf{K} et on pose $H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}, (a, b, c) \in \mathbf{K}^3 \right\}$
- a) Montrer que H est un sous-espace affine de dimension 3 de $\mathcal{M}_3(\mathbf{K})$.
- **b)** Montrer que H est un sous-groupe de $GL_3(\mathbf{K})$, et en déterminer le centre (c'est-à-dire l'ensemble des éléments qui commutent avec tous les éléments de H).

c) On note
$$L = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}, (a, b, c) \in \mathbf{K}^3 \right\}.$$

On définit \star par $A \star B = A + B + \frac{1}{2}(AB - BA)$ pour A et B dans L. Montrer que (L, \star) est un groupe et que l'exponentielle définit un isomorphisme de groupes de L vers H.

- **d)** Calculer A^n pour $A \in H$ et $n \in \mathbb{N}$.
- e) On prend K = $\mathbb{Z}/2\mathbb{Z}$. Montrer que H est isomorphe au groupe des isométries vectorielles de \mathbb{R}^2 qui stabilisent le carré $C := \{(1,0),(0,1),(-1,0),(0,-1)\}.$
- 6. [L] · On prend pour K l'un des corps R ou C.
- a) Déterminer les éléments de $GL_n(\mathbf{K})$ qui commutent avec tous les autres.
- **b)** Étant donné $n \in \mathbb{N}^*$, on note $\mathbb{P}^n(\mathbb{K})$ l'ensemble quotient de $\mathbb{K}^{n+1} \setminus \{0\}$ pour la relation de colinéarité entre vecteurs. On choisit un élément ∞ hors de **K**. Montrer que l'on définit une bijection de **P**¹ (**K**) sur **K** ∪{∞} en associant à la classe de (a,b) le nombre $\frac{a}{b}$ si $b\neq 0$, et ∞ si b=0.
- c) On note PGL $_n(\mathbf{K})$ le quotient de $\mathrm{GL}_n(\mathbf{K})$ par la relation d'équivalence définie comme suit : $P \sim Q \Leftrightarrow \exists \alpha \in \mathbf{K}^*$: $P = \alpha Q$. Montrer qu'il existe une unique structure de groupe sur PGL $_n$ (**K**) faisant de la projection canonique $P \rightarrow [P]$ un morphisme de $GL_n(\mathbf{K})$ dans $PGL_n(\mathbf{K})$. On munit $PGL_n(\mathbf{K})$ de cette structure de groupe dans toute la suite de l'énoncé.
- **d)** Montrer que, pour $P \in GL_n(\mathbf{K})$ et $X \in \mathbf{K}^n$, la classe de colinéarité du vecteur PX ne dépend que de la classe de P modulo ~ et de la classe de colinéarité de X. On obtient ainsi une fonction ρ : PGL $_n(\mathbf{K}) \times \mathbb{P}^{n-1}(\mathbf{K})$ $\to \mathbb{P}^{n-1}(\mathbf{K})$ envoyant systématiquement le couple ([P],[X]) sur [PX]. On notera $g.x := \rho(g,x)$ pour $g \in \mathsf{PGL}_n(\mathbf{K})$ et $x \in \mathbb{P}^{n-1}(\mathbf{K})$.
- e) Soit $g \in PGL_2(\mathbf{K})$ représenté par la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Montrer que, via l'identification de la question **b**) entre $\mathbb{P}^1(\mathbf{K})$ et $\mathbf{K} \cup \{\infty\}$, l'application $x \mapsto g.x$ s'identifie à l'homographie $\rho_g: z \in \mathbf{K} \cup \{\infty\} \mapsto \frac{az+b}{cz+d} \in \mathbf{K} \cup \{\infty\}$, en convenant que $\frac{az+b}{cz+d} = \infty$ si $z \in \mathbf{K}$ et cz + d = 0, $\frac{a\infty+b}{c\infty+d} = \frac{a}{c}$ si $c \in \mathbf{K}^*$, et $\frac{a\infty+b}{c\infty+d} = \infty$ si c = 0.
- f) Soit a, b, c des éléments distincts de $\mathbb{P}^1(\mathbf{K})$, et a',b',c' des éléments distincts de $\mathbb{P}^1(\mathbf{K})$. Montrer qu'il existe g \in PGL₂(**K**) tel que (a',b',c') = (g.a,g.b,g.c).
- g) Pour $x \in \mathbb{P}^1$ (K), on note $S_x := \{g \in PGL_2(K) : g.x = x\}$. Expliciter $S_0, S_\infty, S_0 \cap S_\infty$ et $S_0 \cap S_\infty \cap S_1$ (avec l'identification précédente entre $\mathbf{K} \cup \{\infty\}$ et $\mathbb{P}^1(\mathbf{K})$).
- h) Montrer que, dans le groupe PGL₂(C), tout élément d'ordre 2 est conjugué à l'élément dont l'homographie associée est *z*→- *z*.
- 7. [L] On note **Z** [$i\sqrt{2}$] = $\left\{a+ib\sqrt{2}, (a,b)\in\mathbf{Z}^2\right\}$. a) Montrer que **Z**[$i\sqrt{2}$] est un sous-anneau de **Q**.
- **b)** Montrer que l'anneau $A := \mathbf{Z}[i\sqrt{2}]$ est euclidien, c'est-à-dire qu'il existe une fonction $N : \mathbf{Z}[i\sqrt{2}] \to \mathbf{N}$ telle que, pour tout $(a,b) \in A \times (A \setminus \{0\})$, il existe un couple $(q,r) \in A^2$ tel que a = bq + r et N(r) < N(b).
- c) Énoncer et démontrer un théorème d'existence et d'unicité d'une décomposition en facteurs irréductibles dans $\mathbf{Z}[i\sqrt{2}]$.
- **8.** [PLSR] \cdot Pour $\sigma \in \mathcal{S}_n$, on note $\epsilon(\sigma)$ sa signature et $\nu(\sigma)$ son nombre de points fixes. Calculer
- **9.** [P]. Déterminer les inversibles de $(\mathbb{Z}/n\mathbb{Z})[X]$.

- **10.** [PLSR] On munit \mathbb{R}^n de la norme euclidienne canonique. Une partie A de \mathbb{R}^n est un L-groupe si c'est un sous-groupe de \mathbb{R}^n tel que Vect(A) = \mathbb{R}^n et, pour tous $x \in \mathbb{R}^n$ et $r \in \mathbb{R}^{+^*}$, $A \cap \overline{B}(x,r)$ est fini.
- a) Que dire dans le cas n = 1?
- **b)** Soit $e = (e_1, ..., e_n)$ une base de \mathbb{R}^n .

On pose $L_e = \{a_1e_1 + \cdots + a_ne_n, (a_1,...,a_n) \in \mathbf{Z}^n\}.$

- *i)* Montrer que L_e est un L-groupe.
- ii) Soient e et e' deux bases de \mathbb{R}^n . À quelles conditions a-t-on $L_e = L_{e'}$?
- **11.** [PLSR] On note $SL_n(\mathbf{R})$ le groupe des matrices de déterminant 1 de $\mathcal{M}_n(\mathbf{R})$. Soit $\varphi : SL_2(\mathbf{R}) \to GL_n(\mathbf{R})$ un morphisme de groupes. Montrer que φ est à valeurs dans $SL_n(\mathbf{R})$.
- **12.** [L] Soient H l'ensemble des nombres complexes de partie imaginaire strictement positive, $G = SL_2(\mathbf{R})$.

Pour
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$$
 et $z \in H$, on pose $g.z = \frac{az+b}{cz+d}$.

- a) Montrer que, si $z \in H$ et $g \in G$, alors $g.z \in H$. Montrer que, si $z \in H$ et $(g,g') \in G^2$, alors g'.(g.z) = g'g.z.
- **b)** Soient $K = SO_2(\mathbf{R})$, A le sous-groupe de G constitué des matrices de la forme $\begin{pmatrix} x & 0 \\ 0 & \frac{1}{x} \end{pmatrix}$ avec $x \in \mathbf{R}^{+*}$,

 ${\it N}$ le sous-groupe de ${\it G}$ constitué des matrices de la forme $\left(egin{array}{cc} 1 & \lambda \ 0 & 1 \end{array}
ight)$ avec ${\it \lambda}\in{\it R}$. Montrer que, si ${\it g}\in{\it G}$, ${\it g}$ s'écrit de façon unique kan avec $(k,a,n) \in K \times A \times N$.

- Ind. Considérer g(i) si $g \in G$.
- **13.** [L] \cdot Si G est un groupe, on note sub(G) l'ensemble des sous-groupes de G. Soit G,H deux groupes finis de cardinaux premiers entre eux. Montrer que $|sub(G \times H)| = |sub(G)| \times |sub(H)|$.
- **14.** a) Soit $(a_n)_{n\geq 1}$ une suite d'éléments de \mathbf{R}^+ telle que : $\forall n,p\in \mathbf{N}^*$, $a_{n+p}\leq a_n+a_p$. Montrer que la suite de
- terme général a_{n} converge vers $\inf\left\{\frac{a_{k}}{k}, k \in \mathbf{N}^{*}\right\}$. **b)** Soient G un groupe multiplicatif, S une partie génératrice finie de G stable par passage à l'inverse. Pour $x \in G$, on pose $L_{S}(x) = \min\{n \in \mathbf{N}; \exists (s_{1}, \ldots, s_{n}) \in S^{n}, x = s_{1} \cdots s_{n}\}$. Pour Φ endomorphisme de G, on pose $\Lambda_{S}(\Phi) = \max\{L_{S}(\Phi(x)), x \in S\}$. Montrer que la suite de terme général $\frac{1}{n}\ln(\Lambda_{S}(\Phi^{n}))$ tend vers une limite ne dépendant pas de S.
- 15. [L] · Si A est un anneau commutatif et I un idéal de A, on dit que I est premier si A \ I est stable par multiplication, que I est maximal si le seul idéal de A contenant strictement I est A.
- a) Montrer que tout idéal maximal est premier.
- **b)** Soient $n \ge 3$ un nombre premier, $A = \mathbf{Z}[e^{2i\pi/n}]$. Montrer que tout idéal premier de A est maximal.
- **16.** [SR] a) Soient A un anneau commutatif et M un idéal de A. Montrer que M est maximal (au sens de l'inclusion) parmi les idéaux de A différents de A si et seulement si l'ensemble $\{a + M, a \in A\}$ est muni d'une structure naturelle de corps (par exemple, (a + M) + (b + M) = (a + b) + M...). On considère désormais $A = C^0([0,1], \mathbf{R})$.
- **b)** Pour $x_0 \in [0, 1]$, on pose $M(x_0) = \{f \in A, f(x_0) = 0\}$.

Montrer que $M(x_0)$ est un idéal maximal de A.

- c) Soit I un idéal de A tel que $\bigcap_{f \in I} f^{1}(\{0\}) = \emptyset$. Montrer que I = A.
- d) Caractériser les idéaux maximaux de A.
- **17.** [Rennes, concours étudiant]
- a) Soit $P \in \mathbf{C}[X]$ tel que $\{x \in \mathbf{N}; P(x) \in \mathbf{Q}\}$ soit infini. Montrer que $P \in \mathbf{Q}[X]$.
- **b)** Soient P et Q dans $\mathbb{C}[X] \setminus \{0\}$ avec $deg(P) \le deg(Q)$, $F = \frac{P}{Q}$, $\alpha \in \mathbb{C}$ tel que $Q(\alpha) \ne 0$. Montrer qu'il existe $P_1 \in \mathbb{Q}[X]$ de degré strictement inférieur à celui de P tel que $\frac{F(X) F(\alpha)}{X \alpha} = \frac{P_1}{Q}$.
- *c*) Soit $F \in C(X)$ telle que $\{x \in N; F(x) \in Q\}$ soit infini. Montrer que $F \in Q(X)$.
- **18.** [PLSR] Soit $n \in \mathbf{N}^*$.
- **a)** Montrer qu'il existe $P_n \in \mathbf{R}[X]$ tel que $\forall \theta \in \mathbf{R}$, $\sin(4n\theta) = \cos(\theta)\sin(\theta)P_n(\cos^2(\theta))$.
- **b)** Calculer $\prod_{k=1}^{2n-1}\cos\!\left(\frac{4k\pi}{n}\right)$, puis $\prod_{k=1}^{2n-1}\cos\!\left(\frac{(2k-1)\pi}{n}\right)$.
- **19.** [L] Soit $P \in \mathbb{R}[X]$ de degré n > 0. Montrer que P est simplement scindé sur \mathbf{R} si et seulement si $\forall i \in [[1, n-1]]$, $\forall x \in \mathbf{R}, (P^{(i)}(x))^2 P^{(i-1)}(x) P^{(i+1)}(x) > 0$.
- **20.** [L] **a)** Montrer que $cos(\pi/8)$ n'est pas rationnel.
- b) Montrer qu'un entier algébrique rationnel est entier.
- **c)** Déterminer l'ensemble des $q \in \mathbf{Q}$ tels que $\cos(q\pi)$ est rationnel.
- **21.** [L] · Soit p un nombre premier, dont on note $p = \overline{a_n a_{n-1}} \overline{a_0}^{10}$ l'écriture décimale. Montrer que le polynôme $P = \sum_{k=0}^{n} a_k X^k$ est irréductible dans $\mathbf{Z}[X]$.
- **22.** [SR] Soient $a \in \mathbf{Z}$ et $n \in \mathbf{N}^*$. On définit la suite $(P_k)_{0 \le k \le n}$ par :

$$P_0 = 1 \text{ et, pour } k \in \{1,...,n\}, P_k(X) = \frac{1}{k!} \prod_{l=0}^{k-1} (X - (a + l)).$$

- a) i) Montrer que $(P_0,...,P_n)$ est une base de $\mathbf{C}_n[X]$.
- *ii*) Montrer que $\forall k \in [[0,n]], \forall i \in \mathbb{Z}, P_k(i) \in \mathbb{Z}$.
- **b)** Soit $P \in \mathbf{C}_n[X]$ un polynôme prenant des valeurs entières en n + 1 entiers consécutifs.

Montrer que $P(i) \in \mathbf{Z}$ pour tout entier $i \in \mathbf{Z}$.

- c) Le résultat précédent est-il préservé si les n + 1 entiers ne sont plus supposés consécutifs ?
- **d)** Caractériser les polynômes P tels que $P(\mathbf{Z}) \subset \mathbf{Z}$.

23. [L] On pose
$$\Phi_1(X) = X - 1$$
 et pour tout $n \ge 2$, $\Phi_n(X) = \frac{X^n - 1}{\prod_{\substack{d \mid n \\ d < n}} \Phi_d(X)}$.

a) Montrer que
$$\Phi_n(X) = \prod_{\substack{0 \leqslant k \leqslant n \\ k \land n = 1}} (X - e^{\frac{2ik\pi}{n}}).$$

- **b)** Montrer que $\Phi_n(X) \in \mathbf{Z}[X]$.
- c) Montrer que, pour p et q deux nombres premiers distincts, Φ_{pq} est à coefficients dans $\{0, \pm 1\}$.
- d) Donner le coefficient en X^7 dans Φ_{105} .
- **24.** [L] Soit p un nombre premier. On pose $\Phi_p(X) = \frac{X^p 1}{X 1}$.
- a) Montrer que Φ_p est irréductible dans $\mathbf{Q}[X]$.
- **b)** On note $\zeta = e^{\frac{2i\pi}{p}}$. Montrer que, si $Q \in \mathbf{Q}[X]$ et $R \in \mathbf{Q}[X]$ vérifient $Q(\zeta) = R(\zeta)$, alors Φ_p divise le polynôme $Q \in \mathbf{Q}[X]$.
- *c*) Montrer que l'ensemble $\mathbf{Q}[\zeta]$ défini par $\{P(\zeta), P \in \mathbf{Q}_{p-1}[X]\}$ est un corps.
- **d)** Montrer que, si $Q \in \mathbf{Q}[X]$ et $R \in \mathbf{Q}[X]$ vérifient $Q(\zeta) = R(\zeta)$, alors, pour tout entier k non multiple de p, $Q(\zeta^k) = R(\zeta^k)$.
- **e)** Soit $(a_0, \ldots, a_{p-1}) \in \mathbf{Q}^p$. On pose $C = \begin{pmatrix} a_0 & a_1 & \cdots & a_{p-1} \\ \vdots & \ddots & \ddots & \vdots \\ & & & \ddots & \vdots \\ a_2 & & \ddots & a_1 \\ a_1 & a_2 & \cdots & a_0 \end{pmatrix}$.

Montrer que, si la matrice *C* est inversible, alors son inverse est de la même forme.

- 25. [L] a) Déterminer les inversibles de Z[X].
- **b)** Si $P \in \mathbf{Z}[X] \setminus \{0\}$, on note C(P) le pcgd des coefficients de P. Montrer que, pour P et Q dans $\mathbf{Z}[X] \setminus \{0\}$, c(PQ) = c(P)c(Q).
- c) Caractériser les irréductibles de $\mathbf{Z}[X]$. Montrer que tout élément de $\mathbf{Z}[X] \setminus \{0\}$ s'écrit de façon unique à l'ordre près comme produit d'irréductibles de $\mathbf{Z}[X]$ et d'un inversible de $\mathbf{Z}[X]$.
- **26.** [L] On admet que tout polynôme de $C[X_0,...,X_{n-1}]$ se factorise de manière unique comme produit de polynômes irréductibles.

Calculer le déterminant
$$D = \begin{bmatrix} X_0 & X_{n-1} & X_{n-2} & \cdots & X_1 \\ X_1 & X_0 & X_{n-1} & & X_2 \end{bmatrix}$$

- **27.** [L] **a)** Montrer qu'il existe une unique suite $(L_n)_{n\in\mathbb{N}}$ d'éléments de $\mathbb{C}[X,Y]$ telle que $L_n(a+b,ab)=a^n+b^n$ pour tout $n\in\mathbb{N}$ et tout $(a,b)\in\mathbb{C}^2$.
- **b)** Expliciter L_3 .
- **c)** Soit $(p, q) \in \mathbb{C}^2$. On considère le polynôme $P := X^3 pX q$. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{C}^2$ tel que $L_3(X, \alpha\beta) \alpha^3 \beta^3 = P(X)$.
- **28.** [SR] On fixe un entier $n \ge 2$. On note G_n l'ensemble des polynômes de la forme $\sum_{k=1}^{n-1} a_k X^k$ où (a_1, \ldots, a_{n-1}) $\in \mathbb{C}^{n-1}$ et $a_1 \ne 0$.

- a) Pour P, Q dans G_n , montrer qu'il existe un unique $T \in G_n$ tel que X^n divise $P \cdot Q \cdot T$; on note alors $P \cdot Q \cdot T$.
- **b)** Montrer que (G_n, \cdot) est un groupe et que son élément neutre est X.

29. [PLSR] · Soit
$$d \in \mathbf{N}^*$$
, et $0 < a_1 < ... < a_d$ des entiers.

On pose
$$P_n = \prod_{k=1}^d (X - na_k) - 1$$
 pour tout $n \in \mathbf{N}^*$.

- a) Montrer que, pour n assez grand, P_n est scindé à racines simples sur \mathbf{R} .
- **b)** Pour tout $n \ge 1$ pour lequel P_n est scindé à racines simples sur \mathbf{R} , et tout $k \in [[1,d]]$, on note $x_n^{(k)}$ la k-ième racine de P_n dans l'ordre croissant. Déterminer, pour n'importe quel $k \in [[1,d]]$, un équivalent de $x_n^{(k)}$ lorsque $n \to +\infty$.
- c) Montrer que P_n est irréductible dans $\mathbf{Z}[X]$ pour tout $n \ge 1$.
- **30.** [SR] Soit a, b deux réels, et $n \ge 3$ un entier impair. Étudier, en fonction de n, a et b, le nombre de racines réelles de $X^n + aX + b$.

31. [SR] Si
$$P \in \mathbf{R}[X]$$
 et $n \in \mathbf{N}^*$, soit $A_P^n = \prod_{i=0}^{n-1} (P - i)$.

- a) Montrer qu'il existe une unique forme linéaire L sur $\mathbf{R}[X]$ telle que $\forall n \in \mathbf{N}, L(A_X^n) = 1$.
- **b)** Pour $n \in \mathbf{N}$, calculer $\sum_{k=0}^{+\infty} \frac{k^n}{k!}$. Expliciter le cas n=3.
- **32.** [P] Soient $n \in \mathbf{N}^*$, **K** un corps et $(\lambda_1, ..., \lambda_n) \in \mathbf{K}^n$. À quelle condition existe-t-il $M = (M_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{K})$ telle que $M^2 = M$ et que $\forall i \in \{1,...,n\}$, $M_{i,j} = \lambda_i$?
- **33.** [L] Soient $n \ge 2$, \mathcal{T}_n l'ensemble des matrices diagonales de $\mathcal{M}_n(\mathbf{C})$ dont les coefficients diagonaux sont dans U, \mathcal{S}_n l'ensemble des matrices de permutation. On pose \mathcal{N}_n = $\{AB; A \in \mathcal{T}_n, B \in \mathcal{S}_n\}$.
- a) Montrer que \mathcal{N}_n est un sous-groupe de $GL_n(\mathbf{C})$.

On note \mathcal{N}_n ' le commutant de \mathcal{N}_n et \mathcal{N}_n " le commutant de \mathcal{N}_n '.

- **b)** Montrer que \mathcal{N}_n " = \mathcal{M}_n (**C**).
- **34.** [L] Pour $\sigma \in \mathcal{S}_n$, on note P_σ la matrice de permutation associée. On note \mathcal{D}_n l'ensemble des matrices diagonales complexes de taille n dont les coefficients sont de module égal à 1. L'ensemble $G = \{P_\sigma D P_\sigma; \sigma \in \mathcal{S}_n, \ D \in \mathcal{D}_n\}$ est-il un sous-groupe de $GL_n(\mathbf{C})$?
- **35.** [L] Soit \mathcal{A} une sous-algèbre de $\mathcal{M}_n(\mathbf{C})$ telle que, pour toute $M \in \mathcal{A}$, $\overline{M}^T \in \mathcal{A}$. Soient \mathcal{A} ' le commutant de \mathcal{A} et \mathcal{A} " le commutant de \mathcal{A} '. Montrer que \mathcal{A} " = \mathcal{A} .
- **36.** [P] Soient E un R-espace vectoriel de dimension finie et G un sous-groupe fini de GL(E). Montrer que si F un sous-espace vectoriel de E stable par tous les éléments de G alors F possède un supplémentaire stable par tous les éléments de G.
- **37.** [L] Soient $n \in \mathbf{N}^*$ et $(a_0,...,a_{n-1}) \in \mathbf{C}^n$. Calculer le déterminant de la matrice $(a_{i+j-2})_{1 \le i,j \le n}$ où i+j-2 est pris modulo n.

38. [PLSR] Soit
$$P_1,...,P_r$$
 dans $\mathcal{M}_n(\mathbf{R})$ vérifiant $\forall (i,j) \in \{1,...,r\}^2, P_i P_j = \delta_{i,j} P_i$ et $\sum_{i=1}^r P_i = I_n$. Soit $\lambda_1,...,\lambda_r$ des réels

distincts. On pose
$$A := \sum_{i=1}^{n} \lambda_i P_i$$

Montrer que, pour toute matrice $B \in \mathcal{M}_n(\mathbf{R})$, il existe une matrice $K \in \mathcal{M}_n(\mathbf{R})$ telle que $B = \sum_{i=1}^n P_i B P_i + AK - KA$.

- **39.** [PLSR] · Soit $A \in \mathcal{M}_n(\mathbf{C})$. On note $q \in [[0,n]]$ la multiplicité de 0 dans le polynôme caractéristique de A.
- a) Montrer l'existence et l'unicité de $X \in \mathcal{M}_{q}(\mathbf{C})$ telle que AX = XA, $A^{q+1}X = A^{q}$ et XAX = X.
- **b)** Que dire si $A \in \mathcal{M}_n(\mathbf{R})$?
- c) L'application φ qui, à $A \in \mathcal{M}_n(\mathbf{C})$, associe la matrice X définie en question a) est-elle continue ?
- **d)** Soit (A_k) une suite convergente de matrices de $\mathcal{M}_n(\mathbf{C})$. Donner une condition nécessaire et suffisante sur (A_k) pour que $\lim_{k\to\infty} \varphi(A_k) = \varphi\Big(\lim_{k\to\infty} A_k\Big)$.
- **40.** [PLSR] · Soient $n \in \mathbf{N}^*$ impair, A et B dans $\mathcal{M}_n(\mathbf{R})$ telles que AB = BA. Montrer que A + iB admet un vecteur propre réel.
- **41.** [PLSR] Soit $P \in \mathbf{C}[X]$. On pose $F = P(X)^2$.
- a) Montrer que l'application $f: A \in \mathcal{M}_n(\mathbf{C}) \mapsto F(A)$ n'est pas surjective.
- **b)** Montrer qu'il existe $N \in \mathcal{M}_n(\mathbf{C})$ telle que $f^1(\{N\})$ soit infini.
- **c)** Montrer qu'il existe un ensemble E dense dans $\mathcal{M}_n(\mathbf{C})$ tel que, pour tout $M \in E$, $|f^1(\{M\})|$ est fini et indépendant de M.
- **42.** [SR] Soient $p \in \mathbf{N}^*$, **K** un sous-corps de **C**, $A \in \mathcal{M}_p(\mathbf{K})$. On dit que A est toute puissante sur le corps **K** (TP**K**) si, pour tout $n \in \mathbf{N}^*$, il existe $B \in \mathcal{M}_p(\mathbf{K})$ telle que $B^n = A$.
- a) Traiter le cas p = 1 pour K = C, R, Q.
- **b)** On suppose que $\chi_A = \prod_{i=1}^{\kappa} (X \lambda_i)^{\alpha_i}$ où les λ_i sont distincts dans **K** et les α_i dans **N**^{*}.
- *i)* Montrer qu'il existe $N_1,...,N_k$ nilpotentes telles que A soit semblable à une matrice diagonale par blocs avec comme blocs diagonaux $\lambda_1 I_{\alpha_1} + N_1,...,\lambda_k I_{\alpha_k} + N_k$.
- *ii)* Montrer que A est TP**K**si et seulement si les $\lambda_i I_{\alpha_i} + N_i$ le sont.

On dit que $M \in \mathcal{M}_p(\mathbf{K})$ est unipotente si M - I_p est nilpotente et on note $\mathcal{U}_p(\mathbf{K})$ l'nsemble des matrices unipotentes de $\mathcal{M}_p(\mathbf{K})$.

Pour
$$A \in \mathcal{U}_p(\mathbf{K})$$
, on pose $In(A) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} (A - I_p)^n$.

- **c)** Justifier la définition de In(A) pour $A \in \mathcal{U}_p(\mathbf{K})$. Montrer que exp est une bijection de $\mathcal{N}_p(\mathbf{K})$ sur $\mathcal{U}_p(\mathbf{K})$.
- d) Montrer que les matrices unipotentes sont TPK.

43. [PLSR] Étant donné des nombres complexes $a_1, ..., a_n$, calculer le déterminant de

$$M = \begin{pmatrix} a_1 & a_2 & \cdots & \cdots & a_n \\ a_n & a_1 & \cdots & \cdots & a_{n-1} \\ & & \ddots & & & \\ \vdots & & & \ddots & & \\ a_2 & a_3 & \cdots & & a_1 \end{pmatrix}$$

- **44.** [PLSR] · *a)* Quelle est la dimension maximale d'une sous-algèbre de $\mathcal{M}_n(\mathbf{C})$ engendrée par une matrice nilpotente ?
- **b)** Soient $m \in \mathbf{N}^*$, $A_1,...,A_m$ des matrices nilpotentes de $\mathcal{M}_n(\mathbf{C})$ qui commutent deux à deux, \mathcal{A} la sous-algèbre de $\mathcal{M}_n(\mathbf{C})$ engendrée par $A_1,...,A_m$. Montrer que la dimension de \mathcal{A} est majorée par n $(n-\min\{\operatorname{rg}(A_i); 1 \leqslant i \leqslant m\})$.
- **45.** [PLSR] · Déterminer tous les morphismes d'algèbres de $\mathcal{C}^{\infty}(\mathbf{R}, \mathbf{R})$ vers $\mathcal{M}_{n}(\mathbf{R})$.
- **46.** [PLSR]· On note E l'ensemble des suites $u \in \mathbf{C^N}$ de carré sommable. On fixe $a \in \mathbf{C^*}$ et $b \in \mathbf{C}$, et on considère l'opérateur $T_{a,b}: u \in E \longrightarrow (au_{n+1} + bu_n)_{n \in \mathbf{N}}$. Déterminer les $\lambda \in \mathbf{C}$ tels que $T_{a,b}$ λ id ne soit pas bijectif.
- **47.** [PLSR] Soit G l'ensemble des matrices de la forme $\begin{pmatrix} a & -b \\ \overline{b} & \overline{a} \end{pmatrix}$ où $(a,b) \in \mathbb{C}^2$ et $|a|^2 + |b|^2 = 1$.
- a) Vérifier que G est un sous-groupe de $GL_2(\mathbf{C})$.
- **b)** Un sous-groupe H de G est dit distingué dans G si, pour tout $(h,g) \in H \times G$, $ghg^{-1} \in H$. Montrer que G possède exactement un sous-groupe distingué autre que G et $\{I_2\}$.
- **48.** [PLSR] Soit $n \in \mathbb{N}^*$. On note $G_n = (\mathbb{Z}/2\mathbb{Z})^n$ avec sa structure de groupe produit. On note $V := \mathcal{F}(G_n, \mathbb{R})$ avec sa structure naturelle de \mathbb{R} -espace vectoriel.
- a) Déterminer la dimension de V .
- **b)** Pour $x \in G_n$, on note v_x la fonction indicatrice du singleton $\{x\}$. Pour x,y dans G_n , on note $x \sim y$ pour signifier que la liste y x a exactement un terme non nul. On définit un endomorphisme ψ de V par $\psi(v_x) = \sum_{i=1}^n v_i v_i$

 $\sum_{y \in G_n, y \sim x}$ v_y . Montrer que ψ est diagonalisable.

- c) Montrer que tout morphisme de groupes de $(G_n, +)$ vers (\mathbf{R}^*, \times) est un vecteur propre de ψ .
- **49.** [P] · **a)** Montrer que si n est impair alors $\mathcal{A}_n(\mathbf{R})$ ne contient aucune matrice inversible.

b) On suppose n pair. On note $I = \{(i,j) \in \mathbb{N}^2 : 1 \le i < j \le n\}$. Montrer qu'il existe une fonction polynomiale $P : \mathbb{R}^I \to \mathbb{R}$ telle que $det(A) = P^2((a_{i,j})_{(i,j) \in I})$ pour tout $A \in \mathcal{A}_n(\mathbb{R})$.

- **50.** [P] · Soit E un espace euclidien, G un sous-groupe fini d'ordre n > 1 de $\mathcal{O}(E)$, et v un vecteur unitaire de E tel que $\|g(v) v\|^2 < \frac{2n}{n-1}$ pour tout $g \in G$. Montrer qu'il existe un vecteur $w \in E \setminus \{0\}$ tel que g(w) = w pour tout $g \in G$.
- **51.** [PLSR] Soient A_1 et A_2 dans $\mathcal{M}_2(\mathbf{R})$. Montrer l'équivalence entre les conditions suivantes :
- i) Toute combinaison linéaire de A_1 et A_2 est diagonalisable ;
- ii) une, et une seule, des propriétés suivantes est vraie :
- toute combinaison linéaire non nulle de A_1 et A_2 admet deux valeurs propres réelles distinctes ;

- les matrices A_1 et A_2 sont codiagonalisables ;
- $ilde{\it iii}$) il existe $S\in \mathcal{S}_2^{++}(R)$ telle que, pour toute combinaison linéaire A de A_1 et A_2 , on ait $SA\in \mathcal{S}_2$ (R).
- **52.** [SR] · Soient $n \in \mathbf{N}^*$, $\mathcal{A}_n(\mathbf{R})$ le sous-espace de $\mathcal{M}_n(\mathbf{R})$ des matrices antisymétriques.
- Si 1 n'appartient pas au spectre de $B \in \mathcal{M}_n(\mathbf{R})$, on pose $f(B) = (I_n B)(I_n + B)^{-1}$.
- **a)** Si $A \in \mathcal{A}_n(\mathbf{R})$, montrer que 1 n'est pas valeur propre de A.
- **b)** Soit $A \in \mathcal{A}_n(\mathbf{R})$. Montrer que f(A) est dans $SO_n(\mathbf{R})$ et que 1 n'est pas valeur propre de f(A).
- c) Examiner la réciproque de la propriété démontrée dans la question précédente.
- **d)** Soit $A \in \mathcal{A}_n(\mathbf{R})$. Que vaut f(f(A))? Que peut-on en déduire?
- e) Expliciter f(A) pour n = 2.
- f) Déduire de ce qui précède le théorème de réduction des matrices antisymétriques pour n pair.
- **53.** [P] · Soient $A,B \in \mathcal{M}_n(\mathbf{R})$ telles qu'il existe $U \in \mathcal{M}_n(\mathbf{C})$ telle que $U\overline{U}^T = I_n$ et $A = UB\overline{U}^T$. Montrer qu'il existe $O \in \mathcal{O}_n(\mathbf{R})$ telle que $A = OBO^T$.
- **54.** Soient $A \in \mathcal{S}_n(\mathbf{R})$ et M_i la matrice obtenue en supprimant la i-ième ligne et i-ième colonne de A. On note $\lambda_1 \le \cdots \le \lambda_n$ les valeurs propres de A et $\mu_1 \le \cdots \le \mu_{n-1}$ les valeurs propres de M_i . Montrer que $\lambda_1 \le \mu_1 \le \lambda_2 \le \mu_2 \le \cdots \le \mu_{n-1} \le \lambda_n$.
- **55.** [PLSR] Pour $A \in \mathcal{S}_n(\mathbf{R})$, soit $\lambda_1(A) \ge \cdots \ge \lambda_n(A)$ le spectre ordonné de A. Pour A et B dans $\mathcal{S}_n(\mathbf{R})$, i et j dans $\{1, ..., n\}$ tels que $i + j \le n 1$, comparer $\lambda_{i+j-1}(A + B)$ et $\lambda_i(A) + \lambda_j(B)$.
- **56.** [P] · Soit $P(X) = a_{2n}X^{2n} + \cdots + a_1X + a_0 \in \mathbf{R}[X]$ avec $a_{2n} \neq 0$. Montrer que la fonction associée à P est positive sur \mathbf{R} si et seulement s'il existe $A = (A_{i,j})_{0 \le i,j \le n} \in \mathcal{S}_{n+1}^+(\mathbf{R})$ telle que $a_k = \sum_{i+j=k} A_{i,j}$ pour $k \in [[0,2n]]$.
- **57.** [PLSR] Soient $A \in \mathcal{A}_n(\mathbf{R})$, $B \in \mathcal{S}_n^+(\mathbf{R})$. On suppose qu'il existe $K \in \mathcal{S}_n(\mathbf{R})$ telle que le spectre de KA AK + B soit inclus dans \mathbf{R}^{+^*} . Montrer qu'il existe $c, C \in \mathbf{R}^{+^*}$ tels que : $\forall t \in \mathbf{R}^+$, $\left|\left|e^{-t(A+B)}\right|\right|_{op} \leq C e^{-ct}$, où \mathbb{H}_{op} est la norme subordonnée à la norme euclidienne canonique sur \mathbf{R}^n .
- **58.** [PLSR] Soient (E,\langle,\rangle) un espace vectoriel euclidien et $u\in\mathcal{L}(E)$ un endomorphisme symétrique. On munit $\mathcal{L}(E)$ de la norme subordonnée \mathbb{H}_{op} . Soient F un sous-espace vectoriel et A_F l'ensemble des projecteurs d'image F.

Montrer que l'ensemble $\{\|u\circ p-p\circ u\|_{\mathrm{op}}, p\in A_F\}$ admet un minimum.

- **59.** [P] · Soit $n \in \mathbb{N}^*$. Déterminer les fonctions f de $S_n(\mathbb{R})$ dans \mathbb{R}^{+*} possédant les propriétés suivantes :
- pour $S \in S_n(\mathbf{R})$ et $O \in \mathcal{O}_n(\mathbf{R})$, $f(O^TSO) = f(S)$;
- il existe une famille $(f_{i,j})_{1 \le i \le j \le n}$ de fonctions de **R** dans **R** telle que :

$$\forall S = (S_{i,j})_{1 \leq i,j \leq n} \in S_n(\mathbf{R}), f(S) = \prod_{1 \leq i \leq j \leq n} f_{i,j}(S_{i,j}).$$

60. [P] · L'espace \mathbb{R}^n est muni de sa structure euclidienne canonique et $\mathcal{M}_n(\mathbb{R})$ de la norme subordonnée. Soit $\varepsilon > 0$. Montrer qu'il existe $\delta > 0$ tel que : pour tous $n,d \in \mathbb{N}^*$, pour toutes matrices $A, B \in \mathcal{O}_n(\mathbb{R})$ vérifiant $A^d = I_n$ et $\|A^kB - BA^k\| \le \delta$ pour tout $k \in \mathbb{N}$, il existe une matrice $B_1 \in \mathcal{O}_n(\mathbb{R})$ telle que $\|B_1 - B\| \le \varepsilon$ et $AB_1 = B_1A$.

61. [PLSR] Soit
$$A$$
, B dans $S_n(\mathbf{R})$, et $k \in \mathbf{N}^*$. Montrer que $tr((AB)^{2^k}) \le tr((A^2B^2)^{2^{k-1}})$.

- **62.** [SR] Soit $A \in S_n(\mathbf{R})$ et $X_0 \in \mathbf{R}^n \setminus \{0\}$. Pour $k \in \mathbf{N}$, on pose $V_k := V \ ect(A^iX_0)_{0 \le i \le k}$.
- **a)** Montrer qu'il existe $k_0 \in \mathbb{N}$ tel que $\forall k \in [[0,k_0]]$, $dimV_k = k + 1$ et $\forall k > k_0, V_k = V_{k_0}$.
- **b)** On définit par récurrence $(v_i)_{0 \le i \le k_0}$ par $v_0 = \frac{1}{\|X_0\|} X_0$, $\widetilde{v_j} := Av_{j-1} \sum_{i=0}^{j-1} \langle Av_{j-1}, v_i \rangle \ v_i$ pour tout $j \in [[1, k_0]]$, $v_j = \frac{1}{\|\widetilde{v_j}\|} \widetilde{v_j}$. Montrer que cette famille est bien définie et est une base orthonormale de V_{k_0} .
- c) Montrer que $\widetilde{v_j}$ $Av_{j-1} \in V$ $ect(v_{j-1}, v_{j-2})$ pour tout $j \in [[1, k_0]]$, où $v_{-1} := 0$.
- **d)** On définit la matrice $T \in S_{k_0+1}(\mathbf{R})$ par $t_{i,i} = \langle Av_i, v_i \rangle$, $t_{i,i+1} = t_{i+1,i} = \|\widetilde{v_{i+1}}\|$ et $t_{i,j} = 0$ pour tout couple $(i,j) \in [0,k_0]$ $]^2$ tel que |i-j| > 1. Montrer que T a le même spectre que l'endomorphisme induit par $X \mapsto AX$ sur V_{k_0} .
- **63.** [SR] On note III la norme euclidienne standard sur $\mathcal{M}_n(\mathbf{R})$.
- a) Préciser la dimension de $S_n(\mathbf{R})$.
- **b)** Montrer que $S_n^+(\mathbf{R})$ est un convexe fermé de $S_n(\mathbf{R})$, et préciser son intérieur dans $S_n(\mathbf{R})$.
- c) Soit $A \in \mathcal{S}_n(\mathbf{R})$. Montrer qu'il existe un unique $P \in \mathcal{S}_n^+(\mathbf{R})$, que l'on déterminera, tel que : $\forall M \in \mathcal{S}_n^+(\mathbf{R})$, $\parallel A P \parallel \leq \parallel A M \parallel$.
- **64.** [L] Soit $A \in \mathcal{S}_n(\mathbf{R})$, et a,b deux réels strictement positifs tels que aI_n A et A bI_n soient positives. Soit X, Y dans \mathbf{R}^n tels que $\langle X,Y\rangle$ = 0. Montrer que : $\langle X,AY\rangle^2 \le \left(\frac{a-b}{a+b}\right)^2 \langle X,AX\rangle \langle Y,AY\rangle$.
- **65.** [PLSR] Pour $A \in \mathcal{M}_n(\mathbf{R})$, on note C(A) sa comatrice. Soit U,V deux vecteurs unitaires de \mathbf{R}^n . On note P et Q les matrices canoniquement associées aux projections orthogonales sur $\{U\}^\perp$ et $\{V^\perp\}$, respectivement. Montrer que $C(P)C(Q)C(P) = \langle U,V^\perp \rangle^2$ C(P).
- **66.** [L] Une matrice H de $\mathcal{M}_n(\mathbf{C})$ est dite hermitienne lorsque, pour tout $(i,j) \in [[1,n]]^2$, $h_{i,j} = \overline{h_{j,i}}$ et une telle matrice est dite positive (resp. définie positive) lorsque toutes ses valeurs propres sont réelles positives (resp. réelles strictement positives).
- **a)** Déterminer les formes linéaires f sur $\mathcal{M}_n(\mathbf{C})$ telles que $f(I_n) = 1$ et $f(H) \in \mathbf{R}_+$ pour toute $H \in \mathcal{M}_n(\mathbf{C})$ hermitienne positive.
- **b)** Déterminer les formes linéaires f sur $\mathcal{M}_n(\mathbf{C})$ telles que $f(I_n) = 1$ et $f(H) \in \mathbf{R}_+^*$ pour toute $H \in \mathcal{M}_n(\mathbf{C})$ hermitienne définie positive.
- **67.** [SR]· Soit $A \in \mathcal{M}_{n,p}(\mathbf{R})$.
- a) Justifier que AA^T est diagonalisable à valeurs propres positives.

On note $\sigma_1 \ge \cdots \ge \sigma_r > 0$ ses valeurs propres non nulles (avec multiplicité), et $S(A) = (\sqrt{\sigma_1}, ..., \sqrt{\sigma_r})$.

- **b)** Comparer S(A) à $S(A^T)$.
- c) Montrer qu'il existe U dans $\mathcal{O}_n(\mathbf{R})$ et V dans $\mathcal{O}_p(\mathbf{R})$ telles que $U^TAV = R = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, avec D = diag $(\sigma_1, ..., \sigma_r)$, où $S(A) = (\sigma_1, ..., \sigma_r)$.

d) On considère $A^* = V R^* U^T$, avec $R^* = \begin{pmatrix} D^{-1} & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{p,n}(\mathbf{R})$. Interpréter géométriquement les matrices AA^* et A^*A , en commençant par examiner le cas particulier où A est inversible.

Analyse

- **68.** [SR] On munit \mathbb{R}^n des normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_{2}$.
- a) Montrer: $\forall x \in \mathbb{R}^n$, $\|x\|_{\infty} \leq \|x\|_2 \leq \sqrt{n} \|x\|_{\infty}$.
- **b)** Soit $A \in \mathcal{M}_n(\mathbf{R})$. On suppose que $\forall x \in \mathbf{R}^n$, $\|x\|_{\infty} \leq \|Ax\|_2$. Montrer qu'il existe x non nul tel que \sqrt{n} $\|x\|_{\infty} \leq \|Ax\|_2$.
- c) Soit $x \in \mathbb{R}^n$. Montrer que, pour $1 , <math>||x||_{p'} \le ||x||_{p}$.
- **69.** [PLSR] · On fixe un entier $n \ge 1$.
- a) Déterminer les plus petites constantes C et C' telles que $\forall X \in \mathbb{R}^n$, $\|X\|_2 \leq C \|X\|_{\infty}$ et $\|X\|_{\infty} \leq C' \|X\|_2$.
- **b)** Soit $A \in \mathcal{M}_n(\mathbf{R})$ telle que $\forall X \in \mathbf{R}^n$, $\|AX\|_2 \ge \|X\|_{\infty}$. Montrer qu'il existe $X \in \mathbf{R}^n$ telle que $\|AX\|_2 \ge \sqrt{n} \|X\|_{\infty}$.
- **c)** Pour deux espaces vectoriels normés E et F de dimension finie, et $f \in \mathcal{L}(E,F)$, on note $\|f\| = \sup_{x \in E, \|x\|_E = 1} \|f(x)\|_F$. Lorsque dimE = dimF, on note
- $\textit{d(E, F)} = \inf \big\{ \|f\| \times \|f^{-1}\|, f \in \mathcal{L}(E,F) \text{ isomorphisme} \big\}.$
- Déterminer d(E, F) lorsque $E = \mathbb{R}^n$ est muni de \mathbb{H}_2 , et $F = \mathbb{R}^n$ muni de \mathbb{H}_{∞} .
- **70.** [PLSR] Soit $n \in \mathbf{N}^*$.
- a) Montrer que l'ensemble des polynômes de degré n simplement scindés sur \mathbf{C} est un ouvert de $\mathbf{C}_n[X]$.
- **b)** Pour $t \in \mathbf{C}$, on pose $P_t = X^n tX 1$. Montrer qu'il existe n fonctions continues x_1, \ldots, x_n définies sur un
- voisinage V de 0 dans \mathbf{C} , à valeurs dans \mathbf{C} , telles que, si $t \in V$, $P_t = \prod_{i=1}^{n} (X x_i(t))$.
- 71. [P] · Soit $f: x \in \mathbf{R}^* \mapsto 2x \frac{1}{x}$. On pose $K = \bigcap_{n \in \mathbf{N}} f^n([-1,1])$.
- Montrer que K est un compact d'intérieur vide, sans point isolé, et que f(K) = K.
- **72.** [P] · On note $\mathcal{B}([0,1], \mathbf{R})$ l'espace des fonction bornées de [0,1] dans \mathbf{R} , et $\mathcal{C}([0,1], \mathbf{R})$ celui des fonctions continues. On munit ces espaces de la norme infinie.
- Montrer qu'il n'existe pas d'application linéaire continue T de $\mathcal{B}([0,1], \mathbf{R})$ dans $\mathcal{C}([0,1], \mathbf{R})$ telle que $\forall f \in \mathcal{C}([0,1], \mathbf{R})$, T(f) = f.
- **73.** [PLSR] Soit $f: X \in \mathcal{M}_n(\mathbf{C}) \to 2X X^2 \in \mathcal{M}_n(\mathbf{C})$. On note Γ l'ensemble des $Y \in \mathcal{M}_n(\mathbf{C})$ qui sont limite d'une suite de la forme $(f^k(X))_{k \in \mathbf{N}}$ avec $X \in \mathcal{M}_n(\mathbf{C})$.
- a) Déterminer Γ.
- **b)** Pour Y \in Γ , déterminer les $X \in \mathcal{M}_n(\mathbf{C})$ telles que $f^k(X) \longrightarrow_{k \to +\infty} Y$.
- **74.** [PLSR] Soit $m \in \mathbf{N}^*$. Pour $u \in \mathcal{L}(\mathbf{Q}^m)$, on pose $\Psi_u(X) = \prod_{\lambda \in \operatorname{Sp}_{\mathbf{C}}(u)} (X \lambda)$.

Étudier la bonne définition et la convergence de la suite (u_n) d'endomorphismes de \mathbf{Q}^m définie par $u_0 = u$ et

- $u_{n+1} = u_n \Psi_u(u_n) \cdot \Psi'_u(u_n)^{-1} \text{ pour } n \in \mathbb{N}.$
- **75.** [SR] On munit $GL_n(\mathbf{C})$ de la norme subordonnée à la norme \mathbb{H}_{∞} . Déterminer le plus petit a>0 tel qu'il existe un sous-groupe non trivial de $GL_n(\mathbf{C})$ inclus dans la boule fermée $B(I_n, a)$.
- **76.** [P] Soient *E* un espace euclidien et *A* une partie bornée non vide de *E*. Montrer qu'il existe une unique boule fermée de rayon minimal contenant *A*.
- 77. [SR] Soit III une norme sur \mathbb{R}^n . On munit $\mathcal{M}_n(\mathbb{R})$ de la norme d'opérateur définie par : $\forall A \in \mathcal{M}_n(\mathbb{R})$, $\|A\| = \sup_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|$.
- a) i) Montrer que, pour $A \in \mathcal{M}_n(\mathbf{R})$ et $x \in \mathbf{R}^n$, $||Ax|| \le ||A|| \cdot ||x||$.
- *ii)* Montrer que, pour $A,B \in \mathcal{M}_n(\mathbf{R})$, $\|AB\| \le \|A\| \cdot \|B\|$.
- **b)** Pour $M \in \mathcal{M}_n(\mathbf{R})$, on pose $\rho(M) = \sup\{|\lambda|, \lambda \in \operatorname{Sp}(A)\}$.
- Montrer que, pour $A \in \mathcal{M}_n(\mathbf{R})$, $\|A\|_2 = \sqrt{\rho(A^T A)}$.
- c) Soient $A \in GL_n(\mathbf{R})$, $b,b' \in \mathbf{R}^n$ non nuls et $X,X' \in \mathbf{R}^n$ solutions de AX = b et AX' = b'. Montrer que $\frac{\|X X'\|}{\|X\|} \le C(A)\frac{\|b b'\|}{\|b\|}$, où $C(A) = \|A\| \cdot \|A^{-1}\|$.
- d) L'inégalité précédente est-elle optimale ?
- e) On considère $A \in \mathcal{M}_n(\mathbf{R})$ la matrice de terme général donné par $a_{i,j} = 1$ si i = j, -1/2 si |j i| = 1 et 0 sinon.
- *i)* Montrer que la matrice *A* est symétrique définie positive et donner ses éléments propres.
- ii) Calculer C(A) et en donner un équivalent lorsque $n \to +\infty$.

Commenter.

- **78.** [PLSR] Soit $n \in \mathbf{N}^*$. On munit \mathbf{R}^n d'une norme $\mathbb{I}\mathbb{I}$ et l'espace $\mathcal{L}(\mathbf{R}^n, \mathbf{R})$ de la norme d'opérateur associée. Montrer qu'il existe une base de vecteurs unitaires de \mathbf{R}^n dans laquelle les formes linéaires coordonnées sont unitaires.
- **79.** [P] Soit $(A_n)_{n\geq 1}$ une suite de matrices de déterminant 1 dans $\mathcal{M}_2(\mathbf{R})$, ainsi qu'une norme arbitraire N sur $\mathcal{M}_2(\mathbf{R})$. On suppose que $(A_n)_{n\geq 1}$ est bornée. On considère, pour tout $k\geq 1$, la matrice produit $B_k=A_kA_{k-1}\cdots A_1$. On suppose enfin que $\frac{1}{n}$ $InN(B_n)$ tend vers un réel $\gamma>0$ lorsque n tend vers $+\infty$.

Montrer qu'il existe un vecteur non nul v de \mathbb{R}^2 tel que $\frac{1}{n}$ $\ln \|B_n v\|_2$ tende vers - γ lorsque n tend vers + ∞ .

- **80.** [L] On fixe un nombre premier p. On rappelle que v_p désigne la fonction de valuation p-adique sur $Z \setminus \{0\}$.
- a) Pour $r = \frac{a}{b}$ un rationnel avec a,b entiers, on pose $\|r\| = p^{\nu_p(a)-\nu_p(b)}$ si $a\neq 0$, et $\|r\| := 0$ sinon. Montrer que la quantité ainsi définie ne dépend effectivement que de r et non du couple (a,b) envisagé.
- **b)** Montrer que $\|\|$ vérifie $\|r + s\| \le max(\|r\|, \|s\|) \le \|r\| + \|s\|$ pour tous r,s dans \mathbf{Q} , que $\| r\| = \|r\|$ pour tout $r \in \mathbf{Q}$, que $r \in \mathbf{Q}$ pour tout $r \in \mathbf{Q}$, que $r \in \mathbf{Q}$ pour tout $r \in \mathbf{Q}$, que $r \in \mathbf{Q}$ pour tout $r \in \mathbf{Q}$, que $r \in \mathbf{Q}$ pour tout $r \in$
- c) Une suite $(a_n)_{n\geq 0}$ à termes dans **Q** est dite *de Cauchy* lorsque, pour tout réel $\varepsilon > 0$, il existe un entier $n_0 \geq 0$ tel que $\|a_n a_m\| \leq \varepsilon$ pour tous $n \geq n_0$ et $m \geq n_0$. Montrer que si une telle suite ne tend pas vers 0, alors elle est à termes non nuls à partir d'un certain rang et la suite inverse $(1/a_n)_n$ est de Cauchy.
- **d)** Montrer que l'ensemble \mathcal{C}_p des suites de Cauchy à termes dans ${\bf Q}$ est un sous-anneau de ${\bf Q}$ $^{f N}$.
- **e)** Deux suites de Cauchy $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ sont dites équivalentes lorsque leur différence converge vers 0.

Montrer que l'on définit ainsi une relation d'équivalence sur $\mathbf{Q}^{\mathbf{N}}$. On considère l'ensemble quotient \mathbf{Q}_p de l'ensemble des suites de Cauchy par cette relation d'équivalence. Montrer qu'il existe une unique structure d'anneau sur \mathbf{Q}_p qui fasse de la projection canonique de C_p dans \mathbf{Q}_p un morphisme d'anneaux.

- f) Montrer que Q_p est un corps, et mettre en évidence un unique morphisme injectif de \mathbf{Q} dans Q_p .
- **g)** Soit $(a_n)_{n\geq 0}$ une suite de Cauchy à termes dans Q. On appelle norme de a le réel :
- $N(a) := \lim_{n \to +\infty} \sup\{\|a_k\|; k \ge n\}$. Montrer que deux suites de Cauchy équivalentes ont la même norme, et en déduire une fonction $\|\|$ sur Q_p telle que $N(a) = \|[a]\|$ pour toute suite de Cauchy a à termes dans Q, dont on note [a] la classe pour la relation d'équivalence précédente. Vérifier que $N(x + y) \le \max(N(x), N(y))$ pour tous x,y dans Q_p , que N(-x) = N(x) pour tout $x \in Q_p$, et enfin que N est positive et ne s'annule qu'en l'élément nul de \mathbf{Q}_p .
- **h)** Soit $\sum a_n$ une série à termes dans Q_p . Montrer qu'elle converge au sens de N si et seulement si $(a_n)_{n \in \mathbb{N}}$ converge vers 0 au sens de N.
- i) Le corps **R** est-il isomorphe au corps \mathbf{Q}_p ?
- **81.** [PLSR] Soit u une suite réelle. Déterminer une condition nécessaire et suffisante pour qu'il existe une réindexation de u qui soit monotone à partir d'un certain rang.
- **82.** [PLSR] Soient $d \ge 1$, et $A,B \in \mathcal{M}_d(\mathbf{C})$. Montrer $\left(e^{\frac{A}{n}}e^{\frac{B}{n}}\right)^n \longrightarrow_{n \to +\infty} \exp(A + B)$.
- **83.** [P] Pour $x \in \mathbb{R}$, on note [x] le plus petit entier relatif supérieur ou égal à x. On définit une suite $u \in (\mathbb{N}^*)^{\mathbb{N}}$ par $u_0 = 1$, $u_n = 2u_{n-1}$ pour tout entier $n \ge 2$ qui est une puissance de 2, $u_n = [(u_{n-1})^3]$ pour tout entier $n \ge 3$ qui est une puissance de 3, et enfin $u_n = u_{n-1}$ pour tout autre entier naturel $n \ge 1$. Montrer que u tend vers $+ \infty$.
- **84.** [SR] **a)** Soient $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ deux suites de réels > 0. On suppose que, à partir d'un certain rang, $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$. Que dire des séries de termes généraux a_n et b_n ?
- **b)** Soit $(a_n)_{n\geq 0}$ une suite de réels > 0. On suppose que $\frac{a_{n+1}}{a_n} = 1 + \frac{\alpha}{n} + o(\frac{1}{n})$ avec $\alpha > -1$. Montrer que la série diverge.
- c) Que dire si $\alpha < -1$?
- **85.** [PLSR] Si $a = (a_n)_{n \in \mathbb{Z}}$ est une famille sommable de complexes, on pose $\|a\| = \sum_{n \in \mathbb{Z}} |a_n|$.

Si $a = (a_n)_{n \in \mathbb{Z}}$ et $b = (b_n)_{n \in \mathbb{Z}}$ sont deux familles sommables de complexes, on pose : $\forall n \in \mathbb{Z}$, $(a * b)_n = \sum_{k \in \mathbb{Z}} a_k b_{n-k}$.

- a) Montrer que a * b est bien définie, sommable, et que ∥a * b∥≤∥a∥×∥b∥.
- b) Montrer que * est commutative, associative. Déterminer un élément neutre pour *.

Si $a = (a_n)_{n \in \mathbb{Z}}$ est sommable, on pose, pour $z \in U$, $f_a(z) = \sum_{n \in \mathbb{Z}} a_n z^n$.

- c) Montrer que f_a est continue sur le disque unité fermé D.
- **d)** Si a est inversible pour *, montrer que f_a ne s'annule pas sur D.
- e) On suppose que la suite a est à support fini et que f_a ne s'annule pas sur U. Montrer que a est inversible pour la loi \cdot .

86. [P] Soit $(a_n)_{n\geq 1}$ une suite d'éléments de]0,1[. Donner une condition nécessaire et suffisante pour que, pour

tout
$$x \in]0,1[$$
, il existe une permutation σ de \mathbf{N}^* telle que $x = \sum_{n=1}^{\infty} \frac{a_{\sigma(n)}}{2^n}$.

- 87. Soient a, b, $c \in \mathbb{R}$ et $f: x \mapsto 4ax^3 + 3bx^2 + 2cx$. Montrer qu'il existe $x \in [0,1]$ tel que f(x) = a + b + c.
- **88.** [L] Donner une fonction $f: \mathbf{R} \to \mathbf{R}$ continue en tout point de $\mathbf{R} \setminus \mathbf{Q}$ et discontinue en tout point de \mathbf{Q} .
- 89. [SR] a) Rappeler la formule de Taylor avec reste intégral, en déduire l'inégalité de Taylor-Lagrange.
- **b)** Soient $n \in \mathbb{N}^*$ et f une fonction de classe C^n tels que f et $f^{(n)}$ soient bornées sur \mathbb{R} . Montrer que, si $1 \le k \le n 1$, $f^{(k)}$ est bornée sur \mathbb{R} .
- c) On reprend les hypothèses de la question b) avec n = 2.

Montrer que
$$\|f\|_{\infty} \le \sqrt{2\|f\|_{\infty}\|f''\|_{\infty}}$$
.

- **d)** On reprend les hypothèses de la question **b)** . Montrer que, pour tout entier k tel que $1 \le k \le n 1$, $\|f^{(k)}\|_{\infty} \le 2$ $\frac{k(n-k)}{n} \|f\|_{\infty} \frac{n-k}{n} \|f^{(n)}\|_{\infty} \frac{k}{n}$.
- **90.** [SR] Soit $f: \mathbb{R}^{+^*} \to \mathbb{R}^{+^*}$ de classe \mathbb{C}^{∞} telle que $\lim_{x \to 0} f(x) = \lim_{x \to +\infty} f(x) = 0$ et dont la dérivée n-ième s'annule en un unique $x_n > 0$ pour tout entier $n \ge 1$.
- a) Montrer que la suite $(x_n)_{n \in \mathbb{N}^*}$ est strictement croissante.
- **b)** Montrer que $\lim_{x\to 0} x^n f^{(n)}(x) = 0$ pour tout entier $n \in \mathbb{N}$.
- c) Soit $g: x \in \mathbb{R}^{+^*} \mapsto \frac{f(x)}{x}$. Montrer, pour $n \in \mathbb{N}$, l'existence de $(c_{n,p})_{0 \le p \le n} \in \mathbb{R}^{n+1}$ tel que $g^{(n)}(x) = \sum_{p=0}^{\infty} c_{n,p} = \frac{f^{(n-p)}(x)}{x^{p+1}}$. Montrer alors que $(-1)^n g^{(n)}$ est strictement positive sur \mathbb{R}^{+^*} .
- **91.** [PLSR] On fixe un entier $n \ge 2$. On note E l'ensemble des fonctions f de classe C^{n-1} de [0,1] dans [-1, 1] qui sont aussi de classe C^n par morceaux et vérifient $|f^{(n)}(t)| \le 1$ en tout point t où $f^{(n)}$ est définie.
- a) Montrer que E est une partie convexe de l'espace vectoriel des fonctions de [0,1] dans R.
- **b)** Un élément f de E est dit extrémal lorsque, pour tout $(g,h) \in E^2$ tel que $f = \frac{g+h}{2}$, on a g = h = f. Si $f \in E$, on pose $F_f = \{x \in [0,1] \ ; \ |f(x)| = 1\}$. Si $t \in F_f$, on définit m_t par les conditions $m_t = k$ si $f(t) = \cdots = f^{(k-1)}(t) = 0$ et $f^{(k)}(t) \neq 0$ si $k \leq n 1$, et $m_t = n 1$ lorsque $f(t) = \cdots = f^{(n-1)}(t) = 0$.

Montrer que si
$$f \in E$$
 est extrémal alors $\sum_{t \in [0,1]} m_t \ge n$.

- c) Montrer que, si $f \in E$ est extrémal, alors $|f^{(n)}(t)| = 1$ en tout point t de [0,1] où $f^{(n)}$ est définie.
- **92.** [L] Soient I un intervalle ouvert de \mathbb{R} , f et g deux fonctions de I dans \mathbb{R} dont l'ensemble des points de continuité est dense dans I. Montrer que f et g ont un point de continuité commun.
- **93.** [P] · Déterminer les fonctions $f: \mathbf{R} \to \mathbf{R}$ continues et bornées telles que, pour tout $x \in \mathbf{R}, \frac{1}{4}$ $(f(x+1)+f(x-1)+f(x+\pi)+f(x-\pi)) = f(x)$.
- **94.** [P] · Soit f une fonction de classe C^1 de [0,1] dans \mathbf{R} telle que $(f(x),f'(x))\neq (0,0)$ pour $x\in [0,1]$. Déterminer la limite, lorsque δ tend vers 0^+ , de $\frac{1}{\delta}\int_0^1 1_{|f(t)|<\delta}|f'(t)|dt$.

95. [L] Soit
$$f \in C^0([0,1], \mathbb{R})$$
 telle que $\forall (x,y) \in [0,1]^2, x \ f(y) + y \ f(x) \le 1$. Montrer que $\int_0^1 f(x) \ dx \le \frac{\pi}{4}$.

96. [L] Soit
$$f \in C^0([-\pi,\pi], \mathbb{R})$$
 monotone et continue par morceaux. On pose, pour $n \in \mathbb{Z}$, $c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$. Montrer que la suite $(nc_n(f))_{n \in \mathbb{Z}}$ est bornée.

97. [SR] Calculer
$$\int_0^{+\infty} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt dx.$$

98. [L] · Soit
$$f \in C^0(\mathbb{R}^+, \mathbb{R})$$
 strictement décroissante telle que $f(x) \to 0$ quand $x \to +\infty$.

Montrer que
$$\int_0^{+\infty} \frac{f(x) - f(x+1)}{f(x)} dx = +\infty.$$

99. [P] Déterminer les suites croissantes
$$u$$
 à termes positifs telles que, pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ continue et intégrable, on ait $u_n \int_{\mathbb{R}} |f(x + 1/n) - f(x)| dx \longrightarrow_{n \to +\infty} 0$.

100. [SR] Soit
$$(a,b) \in \mathbb{R}^2$$
 tel que $a \ge b > 0$.

100. [SR] Soit
$$(a,b) \in \mathbb{R}^2$$
 tel que $a \ge b > 0$.
a) Montrer que $1 \le \frac{a+b}{2\sqrt{ab}} \le \sqrt{\frac{a}{b}}$, puis que $0 \le \frac{\frac{a+b}{2} - \sqrt{ab}}{\frac{a+b}{2} + \sqrt{ab}}$.

b) On pose
$$I(a, b) = \int_{-\infty}^{+\infty} \frac{dx}{\sqrt{(x^2 + a^2)(x^2 + b^2)}}$$
. Calculer $I(a, a)$, puis démontrer que $I(a, b) = I\left(\frac{a+b}{2}, \sqrt{ab}\right)$.

c) On définit deux suites réelles
$$(a_n)_{n\geq 0}$$
 et $(b_n)_{n\geq 0}$ par $a_0=a,b_0=b$ et, pour $n\in \mathbb{N}$, $a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=\sqrt{a_nb_n}$. Étudier la convergence de $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$.

101. Soit
$$f \in C^0$$
 (]0,1], **R**) décroissante. On pose $r_n = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$ et $I(x) = \int_x^1 f(t) dt$ pour $n \in \mathbb{N}^+$ et $x \in]0, 1]$.

- a) Montrer que, pour tout $n \in \mathbb{N}^*$, $I\left(\frac{1}{n}\right) + \frac{1}{n}f(1) \le r_n \le I\left(\frac{f^*}{n}\right) + \frac{1}{n}f\left(\frac{1}{n}\right)$.
- **b)** Trouver une condition suffisante pour que (r_n) converge.

c) Soit
$$f: x \mapsto \frac{x^2-1}{4} - \frac{1}{2} \ln x$$
. Calculer r_n et en déduire la limite de $\frac{n!^{1/n}}{n}$ sans utiliser Stirling.

102. [P] Soient
$$f \in C^0(\mathbb{R}^+, \mathbb{R})$$
 de carré intégrable et $g: x \mapsto f(x) - 2e^{-x} \int_0^x e^t f(t) dt$. Montrer que $\int_0^{+\infty} g^2 = \int_0^{+\infty} f(t) dt$.

103. [SR] · Soit
$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
 continue et intégrable sur \mathbb{R}^+ telle que $\int_{\mathbb{R}^+} f = 1$.

On pose
$$g(x) = \int_{x}^{+\infty} f(t)dt$$
 pour $x \ge 0$.

a) Montrer que
$$\int_0^{+\infty} g = \int_0^{+\infty} x f(x) dx$$
 (dans $\overline{\mathbf{R}}$).

On suppose à présent que f est décroissante.

- **b)** Montrer qu'il existe un unique $m \in \mathbb{R}^+$ tel que $\int_0^m f(x)dx = \frac{1}{2}$.
- c) Montrer que $\int_0^{+\infty} xf(x)dx \ge m$.

104. [P] · Déterminer l'ensemble des fonctions réelles qui sont limites uniformes sur [-1,0] d'une suite de polynômes à coefficients positifs.

105. [SR] Pour
$$N \in \mathbf{N}^*$$
, on pose $g_N : x \in \mathbf{R} \setminus \mathbf{Z} \mapsto \sum_{n=-N}^{N} \frac{1}{x+n}$

- a) Montrer que $(g_N)_{N \in \mathbb{N}}$ converge simplement sur $\mathbb{R} \setminus \mathbb{Z}$. On note g sa limite.
- b) Montrer que g est continue.
- c) Montrer que g est impaire, 1-périodique et vérifie l'équation fonctionnelle :

$$\forall x \in \mathbf{R} \setminus \mathbf{Z}, \ g(x) = \frac{1}{2} (g(x/2) + g((x + 1)/2)).$$

d) Montrer que $g(x) = \pi \cot(\pi x)$ pour tout $x \in \mathbb{R} \setminus \mathbb{Z}$.

106. [L] · On considère une suite $(\lambda_n)_{n \in \mathbb{N}}$ de réels positifs telle $\sum e^{-\lambda_j t}$ converge pour tout t > 0. On suppose

en outre que
$$\sum_{i=0}^{\infty} e^{-\lambda_i t} t_{t\to 0} + Bt^a$$
 pour des réels $B > 0$ et $a > 0$.

On note E l'espace des fonctions $f: \mathbb{R}^+ \to \mathbb{R}$ continues par morceaux et telles que $t \mapsto f(t)$ e^t soit bornée, et pour $f \in E$ on note $N(f) = \sup_{t \in \mathbb{R}_+} |f(t)| e^t$. On admet que (E,N) est un espace vectoriel normé.

Pour $f \in E$ et $t \in \mathbb{R}_+^*$, on note $L_t(f) = \sum_{j=0}^{+\infty} f(\lambda_j t) t^a$. On note F le sous-espace vectoriel de E engendré par les f_k : $t \mapsto \exp(-kt)$, pour $k \in \mathbb{N}^*$.

Pour
$$f \in E$$
, on note $L_0(f) = \frac{B}{\Gamma(a)} \int_0^{+\infty} f(t) t^{a-1} dt$ où $\Gamma(a) := \int_0^{+\infty} t^{a-1} e^{-t} dt$.

- a) Montrer que L_t est bien définie, linéaire et continue sur E.
- **b)** Montrer que L_0 est bien définie, linéaire, continue et que $L_t(f) \longrightarrow_{t \to 0^+} L_0(f)$ pour tout $f \in \overline{F}$.
- **c)** Pour x > 0, on note $N_x := |\{j \in \mathbf{N}^*, \lambda_j \le x\}|$. Montrer que $N_x \sim x \to +\infty$ $B \frac{x^a}{a\Gamma(a)}$

107. [SR] · Soit a,b deux réels tels que $a \in]0,1[$, b > 1 et ab > 1.

On pose
$$f_{a,b}: x \mapsto \sum_{n=1}^{+\infty} a^n \cos(b^n \pi x)$$
 et $\alpha = \frac{\ln a}{\ln b}$.

- **a)** Montrer que $f_{a,b}$ est définie sur ${\bf R}$, bornée et continue.
- **b)** Montrer que $f_{a,b}(x) = \sum_{n=1}^{\infty} b^{-n\alpha} \cos(b^n \pi x)$ pour tout réel x.
- c) Montrer qu'il existe un réel C>0 tel que $\forall (x,y)\in \mathbf{R}^2, |f_{a,b}(x)-f_{a,b}(y)|\leq C|x-y|^{\alpha}$.

d) Soit
$$n \in \mathbb{N}$$
 et $x \in \mathbb{R}$. Calculer $\int_{x-h}^{x+h} f_{a,b}(t) \cos(b^n \pi t) dt$ pour $h = 2b^{-n}$.

108. [PLSR] On pose
$$p(n) = \left| \left\{ (k_1, ..., k_N) \in (\mathbf{N}^*)^N; N \in \mathbf{N}^*, k_1 + \cdots + k_N = n \right\} \right| \text{ pour } n \in \mathbf{N}^*$$
, et $p(0) = 1$. Montrer que, pour $|z| < 1$, $\sum_{n=0}^{+\infty} p(n) z^n = \prod_{k=1}^{1} \frac{1}{1-z^k}$.

109. [PLSR] Pour
$$z \in \mathbf{C}$$
 tel que $|z| < 1$, on pose $f(z + 1) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n} z^n$.

a) Soient $u, v \in \mathbf{C}$ tels que |u| < 1, |v| < 1 et |u + v + uv| < 1.

Montrer que f((1 + u)(1 + v)) = f(1 + u) + f(1 + v).

b) Soit $h(X) = (X - a_1)...(X - a_n) \in \mathbf{C}[X]$ avec $a_1,...,a_n$ non nuls.

Montrer que
$$\frac{1}{2\pi} \int_0^{2\pi} \ln|h(re^{it})| dt = \ln|h(0)| + \ln\frac{r}{|a_1...a_n|}$$
 pour $r > 3\max(|a_1|,...,|a_n|)$.

110. [L] Soit $(a_n)_{n \in \mathbb{N}}$ une suite réelle décroissante, positive et de limite nulle telle que la suite $(a_n - a_{n+1})_{n \in \mathbb{N}}$ soit également décroissante.

Montrer que, pour tous
$$n \in \mathbb{N}$$
 et $x \in [0,1]$, $\sum_{k=2n}^{+\infty} (-1)^{k+1} a_k x^k \le x^{2n} \sum_{k=2n}^{+\infty} (-1)^{$

111. [L] Soient $C(x) = \sum_{k=0}^{+\infty} c_k x^k$ et $D(x) = \sum_{k=0}^{+\infty} d_k x^k$ les sommes de deux séries entières à coefficients réels de rayon de convergence infini.

Soit a > 0 avec $a \ne 1$. On suppose que, pour tout entier naturel $n \in \mathbf{N}$, $C(a^n) = D(a^n)$.

- a) On suppose que $c_k = d_k$ à partir d'un certain rang. A-t-on C = D ?
- **b)** On suppose $a \in]0,1[$. Montrer que C = D.
- c) Donner un exemple de séries entières distinctes C et D, et de a > 1 pour lesquels la propriété est vérifiée.
- **d)** On suppose que a>1 et qu'il existe $r\in]0,1[$ tel que $c_k< r^{k^2}$ et $d_k< r^{k^2}$ pour tout entier $k\in \mathbb{N}$. Montrer que C=D.

112. [SR] · Pour
$$x \in [-1,1[$$
, on pose $L(x) = -\int_0^x \frac{\ln(1-t)}{t} dt$.

- a) Justifier la bonne définition de L sur [-1,1] et montrer que L est prolongeable par continuité en 1.
- \boldsymbol{b}) Déterminer le développement en série entière de L en 0 et préciser son rayon de convergence.
- **c)** Calculer *L*(1).
- **d)** Exprimer à l'aide de L la somme $\sum_{n=1}^{+\infty} \frac{1}{2^n n^2}$.
- e) Exprimer L(x) + L(-x). Qu'en déduire?

113. [PLSR] Soient $f(z) = \sum_{n=0}^{\infty} a_n z^n$ la somme d'une série entière de rayon de convergence infini et $P \in \mathbf{C}$ [X] un polynôme de degré $k \in \mathbf{N}^*$.

Montrer l'existence d'une série entière de rayon de convergence infini et de somme g, et d'un polynôme $Q \in \mathbf{C}$ k-1[X] tel que $\forall z \in \mathbf{C}$, f(z) = g(z) P(z) + Q(z).

- **114.** [SR] Soit a une suite réelle convergeant vers un réel *l*≠0.
- a) Déterminer le rayon de convergence de $\sum_{n=1}^{\infty} \frac{a_n}{n} z^n$
- **b)** Déterminer la limite, quand t tend vers 1⁻, de $\frac{1}{\ln(1-t)}\sum_{n=1}^{+\infty}\frac{a_n}{n}t^n$.
- c) On pose $b_n := \sum_{k=1}^n a_k$. On suppose que $\sum a_n$ converge. Déterminer les rayons de convergence des séries entières $\sum_{n \ge 1} \frac{a_n}{n!} z^n$ et $\sum_{n \ge 1} \frac{b_n}{n!} z^n$. On note G et H leurs sommes respectives.
- e) Exprimer G' à l'aide de H et H'.
- f) Exprimer $\int_0^{+\infty} G(x) e^{-x} dx$ en fonction de $\sum_{n=1}^{+\infty} a_n$.
- **115.** [P] · Soit $f : \mathbf{R} \setminus \mathbf{Z} \to \mathbf{R}$ une fonction 1-périodique intégrable sur]0,1[.
- a) Soit $n \in \mathbb{N}^*$ et $\theta \in \mathbb{R}$. Montrer qu'il existe une subdivision $(a_0,...,a_N)$ de [0,1] telle que chacune des

intégrales $\int_{a_i}^{a_{i+1}} \left(\sum_{k=0}^{n-1} f(t + k\theta)^2 \right)^{1/2} dt$ soit bien définie.

On admet alors que leur somme ne dépend pas du choix de la subdivision envisagée, et on la note $\int_0^1 \left(\sum_{k=0}^{n-1} f(t+k\theta)^2\right)^{1/2} dt$.

- **b)** Soit $\theta \in \mathbf{R}$. Déterminer la limite, quand n tend vers + ∞ , de $\frac{1}{n} \int_0^1 (\sum_{k=0}^{n-1} f(t + k\theta)^2)^{1/2} dt$.
- **116.** [SR] Soit $d \in \mathbf{N}^*$. On munit \mathbf{R}^d de la norme euclidienne canonique. Soit [a,b[un intervalle de \mathbf{R} , $(f_n)_{n \geq 0}$ une suite de fonctions de [a,b[dans \mathbf{R}^d continues par morceaux. On suppose que (f_n) converge uniformément sur tout compact vers $f: [a,b[\to \mathbf{R}^d]$. On suppose de plus qu'il existe $g: [a,b[\to \mathbf{R}^d]$ intégrable telle que $: \forall n \in \mathbf{N}$, $\forall t \in [a,b[$, $\|f_n(t)\| \leq g(t)$.
- **a)** Montrer que $\int_a^b f$ et $\int_a^b f_n$, pour $n \in \mathbf{N}$, convergent. Montrer que $\int_a^b f_n \longrightarrow_{n \to +\infty} \int_a^b f$.
- **b)** On pose $f_n: t \in \mathbb{R}^+ \mapsto \left(1 \frac{t^2}{n}\right)^n 1_{t \in [0,\sqrt{n}]}$. Montrer que (f_n) converge uniformément sur tout compact vers une fonction f que l'on déterminera. Montrer que $\int_0^{+\infty} f_n \to \int_0^{+\infty} f$.

- c) Donner une expression exacte de $\int_0^{+\infty} f_n$ et retrouver la limite à l'aide de Stirling.
- **d)** Montrer la convergence uniforme de (f_n) à l'aide du théorème de Dini (et en le démontrant dans le cas général).

117. [L] **a)** Montrer que
$$\forall u \in]-1, 1[, \sum_{n=0}^{+\infty} \frac{\binom{2n}{n}}{4^n} u^{2n} = \frac{1}{\sqrt{1-u^2}}]$$

- **b)** Montrer que l'application $f: x \in [-1,1] \mapsto \int_0^{\infty} ln((\cos(t) + x)^2) dt$ est constante. On pourra poser $x = \cos(u)$ avec $0 \le u \le \pi$.
- c) Que déduit-on des deux questions précédentes ?

118. [L] Soit $f : \mathbf{R} \to \mathbf{C}$ continue et π -périodique.

Sous réserve d'existence, on définit, pour $\phi \in [-\pi, \pi]$ et $t \in \mathbb{R}$,

$$I_t(\mathbf{f})(\phi) = \int_{-\pi}^{\phi} \frac{f(\theta)}{(1 - \cos(\theta - \phi))^{t - \frac{1}{2}}} d\theta + \int_{\phi}^{\pi} \frac{f(\theta)}{(1 - \cos(\theta - \phi))^{t - \frac{1}{2}}} d\theta.$$

- a) Pour quelles valeurs de t la quantité $l_t(f)(\phi)$ est-elle définie quelle que soit $f: \mathbf{R} \to \mathbf{C}$ continue π -périodique et quel que soit $\phi \in [-\pi, \pi]$?
- **b)** Calculer, pour les réels t et ϕ en lesquels elle est définie, la quantité $I_t(1)(\phi)$ en fonction de $\int_0^1 x^{-t} (1-x)^{-\frac{1}{2}} dx$.
- c) Montrer que $I_t(t)$ est continue pour tout réel t < 1.

119. [L] On pose
$$P(z,\theta) = \frac{1 - |z|^2}{|e^{i\theta} - z|^2}$$
 pour $z \in \mathbf{C} \setminus \mathbf{U}$ et $\theta \in [-\pi,\pi]$.

- a) Calculer $\int_{-\pi}^{\pi} P(z,\theta) d\theta$ pour |z| < 1.
- **b)** Soit $f: S_1 \to \mathbf{R}$ continue sur $S_1 = \{z \in \mathbf{C}, |z| \le 1\}$.

On pose
$$P(f)(z) = f(z)$$
 si $|z| = 1$ et $P(f)(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(e^{i\theta}) P(z,\theta) d\theta$ si $|z| < 1$.

Montrer que P(f) est continue sur S_1 .

120. [PLSR] Soit $f: \mathbf{R} \to \mathbf{R}$ continue et de limite nulle en $\pm \infty$.

a) Justifier qu'est correctement définie la fonction

$$u: (t, x) \in \mathbb{R}^*_+ \times \mathbb{R} \longrightarrow \frac{1}{\sqrt{4\pi t}} \int_{\mathbb{R}} \exp\left(-\frac{(x-y)^2}{4t}\right) f(y) \, dy.$$

- **b)** Montrer que u est prolongeable en une fonction uniformément continue sur $\mathbf{R}_+ \times \mathbf{R}$.
- **121.** [P] · Soit $f: \mathbb{R} \to \mathbb{R}^+$ continue à support compact d'intégrale 1. Déterminer les fonctions $g: \mathbb{R} \to \mathbb{R}$ continues bornées telles que $\forall x \in \mathbb{R}, g(x) = \int_{\mathbb{R}} f(t) g(x t) dt$.
- **122.** [PLSR] · Soit $A \in \mathcal{M}_n(\mathbf{C})$. Soit $r \in \mathbf{R}_+^*$ tel que A n'ait pas de valeur propre de module r.

Donner une interprétation simple de la matrice $M(r) := \frac{1}{2\pi} \int_{-\pi}^{\pi} r e^{i\theta} (re^{i\theta} I_n - A)^{-1} d\theta$ en fonction de la matrice A (on montrera en particulier que M(r) est un projecteur).

123. [L] On note E l'espace vectoriel des fonctions continues et intégrables de \mathbb{R} dans \mathbb{C} . Pour $f \in E$, on note $\hat{f} : x \mapsto \int_{\mathbb{R}} f(t) e^{-ixt} dt$. On admet que $\hat{f}(x) = 2\pi f(-x)$ pour tout $f \in E$ tel que $\hat{f} \in E$. Déterminer les complexes λ tels que l'équation $\hat{f} = \lambda f$ ait une solution non nulle $f \in E \setminus \{0\}$.

Ind. On pourra introduire le sous-espace vectoriel S des fonctions $f: \mathbf{R} \to \mathbf{C}$ de classe C^{∞} telles que $f^{(p)}(x) = x \to \pm \infty$ $O(|x|^{-n})$ pour tout $(n,p) \in \mathbf{N}^2$.

- **124.** [L] *a)* Soit $x \in \mathbb{R}^{+^*}$. Montrer que $\varepsilon \mapsto \int_{-x}^{-\varepsilon} \frac{e^{-x-t}}{t} dt + \int_{\varepsilon}^{+\infty} \frac{e^{-x-t}}{t} dt$ possède une limite finie en 0^+ , que l'on notera I(x).
- b) Déterminer un équivalent de I en 0+.
- **125.** [SR] · *a)* Montrer que la suite de terme général $\sum_{k=1}^{1} \frac{1}{k}$ ln(n) converge vers un réel strictement positif noté
- γ . On pose $\Gamma(x) := \int_0^{+\infty} t^{x-1} e^{-t} dt$ pour x > 0.
- **b)** Montrer que Γ est une fonction de classe \mathcal{C}^1 sur \mathbf{R}_+^* .
- c) Montrer que $\Gamma'(1) = \int_0^{+\infty} ln(t) e^{-t} dt$.
- d) Établir successivement les expressions suivantes pour $\Gamma'(1)$:
- $\Gamma'(1) = \lim_{y \to 0^+} \left[\int_y^{+\infty} \frac{e^{-x}}{x} dx + \ln y \right] = \int_0^{+\infty} e^{-x} \left[\frac{1}{x} \frac{1}{1 e^{-x}} \right] dx.$
- e) Montrer que $\Gamma'(1) + \sum_{k=1}^{n} \frac{1}{k} = n \rightarrow +\infty$ $\int_{0}^{+\infty} \frac{e^{-u} e^{-(n+1)u}}{u} du + o(1)$, et conclure que $\Gamma'(1) = -\gamma$.
- **126.** [L] Soit $A \in \mathcal{M}_2(\mathbf{R})$ et (*) l'équation différentielle X'(t) = AX(t). En discutant suivant la matrice A, donner l'allure des solutions de (*).
- **127.** [SR] Soit $A \in \mathcal{M}_n(\mathbf{C})$. Soit \blacksquare une norme sur \mathbf{C}^n
- a) Déterminer $E_+ = \{x \in \mathbb{C}^n; e^{tA}x \longrightarrow_{t \to +\infty} 0\}$ et $E_- = \{x \in \mathbb{C}^n; e^{tA}x \longrightarrow_{t \to -\infty} 0\}$.
- **b)** Si E^+ = \mathbf{C}^n , montrer qu'existe $(C, \delta) \in \mathbf{R}^{+*2}$ tel que $\forall x \in \mathbf{C}^n$, $\|e^{tA}x\| \le Ce^{-\delta t}\|x\|$.
- c) On fait l'hypothèse de b) . Soit B une application continue de \mathbf{R}^+ dans $\mathcal{M}_n(\mathbf{C})$ tendant vers 0 en $+\infty$. Montrer que les solutions de l'équation différentielle x'(t) = (A + B(t))x(t) tendent vers 0 en $+\infty$.
- **128.** [SR] Soient $\lambda > 0$, T > 0 et $a \in \mathcal{C}(\mathbf{R}^+, \mathbf{R}^*)$.

On suppose l'existence de $\alpha > 0$ tel que $\forall T > T$, $\sup_{t \in]0, T} \frac{1}{t} \int_0^t u^2 \ a(u) du < \alpha$.

- a) Énoncer le théorème de Cauchy linéaire.
- On admet que l'équation différentielle $x' = \lambda + a(t)x^2$ admet une unique solution sur \mathbf{R}^+ s'annulant en 0.

- **b)** On suppose que 1 > $4\alpha\lambda$. Soit $T^* > T$. On pose $r: t \in]0, T^*[\mapsto \sup_{s \in]0, t[} \frac{x(s)}{s}$.
- i) Montrer que r est positive, continue et prolongeable par continuité en 0.
- ii) Montrer qu'il existe $\mu < \alpha$ tel que $\forall t \in]0, T^*[, r(t) < \lambda + \mu r^2(t)]$.
- iii) Montrer que, soit x est bornée, soit $T^* = +\infty$.
- **129.** [PLSR] Soit a < 2 un réel, et $u : \mathbf{R}_+^* \times \mathbf{R} \to \mathbf{R}$ une fonction de classe \mathcal{C}^3 . On suppose que u(t, 0) = u(t, 1) = 0 pour tout t > 0, et $\partial_1 u(t,x) = (\partial_2)^2 u(t,x) + a u(t,x)$ pour tout $(t, x) \in \mathbf{R}_+^* \times \mathbf{R}$. Montrer, pour tout $k \in [0,3]$, que $\int_0^1 ((\partial_2)^k u(t,x))^2 dx \longrightarrow_{t \to +\infty} 0$.
- **130.** [L] · Soit $n \in \mathbb{N}^*$. On considère des fonctions dérivables $y_1, ..., y_n$ et des réels $a_{i,j} \in \mathbb{R}_+^*$ tels que, pour tout $1 \le i \le n$, $y_i' = \sum_{j=1}^n a_{i,j} y_j$ et $\lim_{t \to +\infty} y_i(t) = 0$. Montrer que $(y_1, ..., y_n)$ est liée.
- **131.** [SR] · On munit **R** d'une structure de groupe de loi notée ·, et de neutre noté e. On suppose que la fonction f définie sur \mathbf{R}^2 par $f(x,y) = x \cdot y$ est de classe \mathcal{C}^1 .
- a) Rappeler la définition de la différentielle d'une fonction $f: \mathbf{R}^n \to \mathbf{R}$ différentiable.
- **b)** Montrer que $\forall (x,y) \in \mathbb{R}^2$, $\partial_2 f(x + y,e) = \partial_2 f(x,y) \partial_2 f(y,e)$.
- c) Montrer l'existence de $\Phi: \mathbf{R} \to \mathbf{R}$ un \mathcal{C}^1 -difféomorphisme tel que $\Phi(x \to y) = \Phi(x) + \Phi(y)$ pour tout $(x, y) \in \mathbf{R}^2$. Ind. On pourra chercher Φ sous la forme $\Phi(x) = a \int_e^x \frac{\mathrm{d}t}{\partial_2 f(t,e)}$.
- **132.** [PLSR] Soient $A = (A_{i,j})_{1 \le i,j \le n} \in \mathcal{S}_n^{++}(\mathbf{R}), D = \text{Diag}(A_{1,1},...,A_{n,n}), b \in \mathbf{R}^n \text{ et } f \text{ la fonction de } \mathbf{R}^n \text{ dans } \mathbf{R} \text{ telle que } \forall x \in \mathbf{R}^n, f(x) = \frac{1}{2}\langle Ax, x \rangle \langle b, x \rangle$
- a) Montrer que f a un unique point critique, qui est un minimum global.
- **b)** Montrer que $D \in GL_n(\mathbf{R})$.
- **c)** Soient $(a_k)_{k\geq 0}$ une suite réelle, $(x_k)_{k\geq 0}$ une suite d'éléments de \mathbf{R}^n telle que, pour tout $k\in \mathbf{N}$, $x_{k+1}=x_k+\alpha_k D^{-1}(b-Ax_k)$. Si $k\in \mathbf{N}$, soit $w_k=D^{-1}(b-Ax_k)$. Déterminer le signe de $\langle \nabla f(x_k),w_k\rangle$.
- **d)** On suppose que x_k n'est pas point critique de f. Montrer qu'il existe un unique réel β_k en lequel $t \in \mathbf{R} \mapsto f(x_k + tw_k)$ est minimal.
- **e)** On suppose qu'aucun des x_k n'est point critique de f et que, pour tout $k \in \mathbb{N}$, $\alpha_k = \beta_k$. Montrer que $(x_k)_{k \ge 0}$ converge.
- **133.** [PLSR] Soit $f: \mathbf{R}^n \to \mathbf{R}$ de classe \mathcal{C}^{∞} . On suppose que $\sum_{k=1}^{\partial^2 f} \partial x_k^2 \geq 0$. Montrer que la restriction de f à la boule unité fermée pour \mathbb{H}_2 admet un maximum, atteint en un point de la sphère unité.
- **134.** [L] Soit $f: \mathbb{R}^n \to \mathbb{R}$ continue et minorée. On note \mathbb{II} la norme euclidienne standard sur \mathbb{R}^n .
- **a)** Soit $\lambda > 0$, $\varepsilon > 0$ et $x_0 \in \mathbb{R}^n$. Montrer que $g: x \mapsto f(x) + \frac{\varepsilon}{\lambda} ||x x_0||$ admet un minimum sur \mathbb{R}^n .
- **b)** On suppose f différentiable. Montrer que pour tout $\varepsilon > 0$ il existe $y_{\varepsilon} \in \mathbb{R}^n$ tel que $f(y_{\varepsilon}) \leq \inf(f) + \varepsilon$ et

$$\|\nabla f(y_{\varepsilon})\| \leq \sqrt{\varepsilon}$$
.

- **135.** [PLSR] Soient $f: \mathbf{R}^n \to \mathbf{R}$ de classe C^1 et $L \in \mathbf{R}^{+*}$. Montrer l'équivalence entre i) f est convexe et son gradient est L-lipschitzien.
- ii) $\forall x, y \in \mathbb{R}^n$, $\langle \nabla f(x) \nabla f(y), x y \rangle \ge \frac{1}{L} \| \nabla f(x) \nabla f(y) \|^2$.
- **136.** [PLSR] On pose $V: x \in \mathbf{R}^n \mapsto \det \left(x_i^{j-1}\right)_{1 \le i, j \le n}$. On note B la boule unité fermée de \mathbf{R}^n pour la norme euclidienne standard, S la sphère unité, et H l'hyperplan d'équation $x_1 + \cdots + x_n = 0$. Montrer que V possède un maximum sur B, atteint en un point de $S \cap H$.
- **137.** [P] · Montrer que la fonction $S \in S_n(\mathbf{R}) \rightarrow tr(e^S)$ est convexe.

Géométrie

- **138.** [PLSR] *a)* Soit un polygone régulier à *n* sommets inscrit dans un cercle de rayon 1. Calculer le produit des longueurs des cordes reliant un sommet fixé à tous les autres.
- **b)** Pour α et β réels, on pose $E = \{ \alpha \zeta + \beta \zeta^{-1}, \ \zeta \in \mathbb{U} \}$.

Montrer que les points d'affixe dans *E* décrivent une ellipse.

c) On s'intéresse à l'image des racines $n^{\text{lèmes}}$ de l'unité par le paramétrage précédent.

Calculer le produit des longueurs des cordes reliant l'une de ces images à toutes les autres.

- **139.** [P] Soient $d \in \mathbf{N}^*$, S une partie de \mathbf{R}^d de cardinal $\geq d + 2$. Montrer qu'il existe deux parties disjointes A et B de S telles que $Conv(A) \cap Conv(B) \neq \emptyset$.
- **140.** [PLSR] Une partie bornée P de \mathbb{R}^n est un polyèdre si et seulement s'il existe $y_1, ..., y_m \in \mathbb{R}^n$ et $\alpha_1, ..., \alpha_m$ \in **R** tels que P = $\{x \in \mathbf{R}^n; \forall i \in \{1,\ldots,m\}, \ \langle x,y_i \rangle \leqslant \alpha_i \}$. Si P est un polyèdre, on dit que $x \in P$ est un sommet de P si et seulement si, pour tout $y,z \in P$, on a y+z
- = 2x si et seulement x = y = z.

Montrer qu'un polyèdre a un nombre fini de sommets.

- **141.** [L] · a) Soit $n \ge 3$. Si $A = (A_1, ..., A_n)$ est un n-uplet de points du plan, on note $T(A) = (B_1, ..., B_n)$, où B_i désigne, si $1 \le i \le n$, le milieu de $[A_{i}, A_{i+1}]$ (en convenant que $A_{n+1} = A_1$). Étudier la convergence de la suite $(T^k(A))_{k>0}$.
- b) Même question en fixant un élément α de]0,1[et en considérant que, pour tout i, B_i est le barycentre de $((A_i, \alpha), (A_{i+1}, 1 - \alpha)).$
- **142.** [L] On se place dans \mathbb{R}^2 . Les éléments de \mathbb{Z}^2 sont les points entiers. On appelle polygone entier un polygone dont les sommets sont des points entiers. Montrer que l'aire d'un polygone entier est égale à $i + \frac{k}{2}$ - 1 où i est le nombre de points entiers à l'intérieur (strict) du polygone et k le nombre de points entiers sur le \bar{b} ord du polygone.
- **143.** [PLSR] Soient *E* un espace euclidien, *A* une partie bornée non vide de *E*, *d* le diamètre de *A*, *x* un point de l'enveloppe convexe de $A, n \in \mathbf{N}^*$.

Montrer qu'il existe $(x_1,...,x_n) \in A^n$ tel que $||x - \frac{1}{n} \sum_{i=1}^n x_i|| \le \frac{d}{\sqrt{n}}$.

144. [L] a) Soit $(a,b,c,d,e,f) \in \mathbb{R}^6$ tel que $(a,b,c)\neq 0$. On considère la partie \mathcal{C} de \mathbb{R}^2 définie par l'équation $ax^2 + ax^2 + ax$ $bxy + cy^2 + dx + ey + f = 0$. On suppose que C contient trois points non alignés et n'est pas incluse dans la réunion de deux droites. Montrer que, dans un repère orthonormal approprié, C possède une équation de l'une des trois formes suivantes : $\frac{X^2}{\alpha^2} + \frac{Y^2}{\beta^2} = 1$ (ellipse), $\frac{X^2}{\alpha^2} - \frac{Y^2}{\beta^2} = 1$ (hyperbole) ou $2pX - Y^2 = 0$ (parabole).

b) On considère un (vrai) triangle ABC de \mathbb{R}^2 . On note A' (respectivement, B', C') le milieu de [B, C] (respectivement, de [C,A], de [A,B]). Montrer qu'une et une seule ellipse contient A', B', C' et est tangente à la droite (BC) (respectivement à (CA), à (AB)) en A' (respectivement en B', en C').

Probabilités

145. Une urne comporte n bulletins. On effectue des tirages avec remise de loi uniforme. Déterminer l'espérance M_n du nombre de tirages nécessaires pour avoir vu tous les bulletins. Donner un équivalent de M_n .

146. [PLSR] Soient $n \in \mathbf{N}^*$ et $(A_{i,j})_{1 \le i,j \le n}$ des variables aléatoires i.i.d. suivant la loi de Bernoulli de paramètre 1/2. Calculer l'espérance de $det(A - A^T)$ où A est la matrice $(A_{i,j})$.

- **147.** [SR] On note $C_{n,k}$ le nombre de permutations de S_n qui ont k cycles à supports disjoints dans leur décomposition (en comptant les points fixes comme des cycles de longueur 1). **a)** Calculer $C_{n,n}$ et $C_{n,1}$.
- **b)** Montrer la relation de récurrence $C_{n+1,k} = nC_{n,k} + C_{n,k-1}$
- c) On note X_n la variable aléatoire qui donne le nombre de cycles d'une permutation tirée aléatoirement et de façon uniforme dans S_n . Calculer la série génératrice de X_n .
- **d)** Soient $(Y_i)_{1 \le i \le n}$ des variables de Bernoulli indépendantes avec, pour $i \in \{1,...,n\}$, $Y_i \sim \mathcal{B}(1/i)$. Montrer que $X_n \sim S_n$ où $S_n = Y_1 + \cdots + Y_n$.
- e) Calculer $\mathbf{E}(S_n)$ et $\mathbf{V}(S_n)$. Que dire de ces valeurs lorsque $n \to +\infty$?
- f) Étudier la convergence en probabilité de la suite $\left(\frac{X_n}{\ln n}\right)_{n\in\mathbb{N}^*}$.
- **g)** On pose $Z_n = \sum_{k=1}^n k Y_k$. Exprimer, pour $\lambda > 0$, $\lim_{n \to +\infty} \mathbf{E} \left(\exp \left(-\lambda \frac{Z_n}{n} \right) \right)$ sous forme d'intégrale.
- **148.** [SR] On définit la fonction de Moebius $\mu: \mathbf{N}^* \to \{0,1,-1\}$ par $\mu(1) = 1$, $\mu(n) = 0$ pour tout $n \ge 1$ divisible par le carré d'un nombre premier, et $\mu(n) = (-1)^{d_n}$ pour tout autre entier $n \ge 1$, où d_n est le nombre de diviseurs premiers de n.
- a) Montrer que, pour tout $n \ge 2$, $\sum_{d|n} \mu(d) = 0$ (où la somme est étendue aux diviseurs *positif*s de n).
- **b)** Soit $\alpha \in]0,1[$. Soit X_{α} , Y_{α} deux variables aléatoires indépendantes suivant la loi géométrique de paramètre α . On note $q_k(\alpha) = \mathbf{P}(k \text{ divise } X_{\alpha})$ pour $k \in \mathbf{N}^*$.

Déterminer lim $_{\alpha \to 0^+}q_k(\alpha)$.

- c) On note $f(\alpha) := \mathbf{P}(X_{\alpha} \wedge Y_{\alpha} = 1)$. Montrer que $f(\alpha) = \sum_{d=1}^{+\infty} \mu(d) \ q_d(\alpha)^2$.
- 149. [SR] Soit $\alpha \in]$ 1,1[. On pose $f_{\alpha}: x \in \mathbb{R} \setminus \{-1/\alpha\} \longrightarrow \underbrace{x + \alpha}_{1 + \alpha x}$.

Soit u le suite définie par récurrence par u_0 = 0 et u_{n+1} = $f_{\alpha}(u_n)$ pour tout entier $n \in \mathbb{N}$.

a) Étudier les variations et les points fixes de f_{α} .

Que dire de la limite éventuelle de la suite u selon la valeur de α ?

b) Exprimer le terme général de la suite u en fonction de α et étudier sa limite.

- **c)** Soit $(\alpha_n)_{n \in \mathbb{N}}$ une suite réelle à valeurs dans] 1,1[. On pose $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = f_{\alpha_n}(u_n)$. Que dire de la limite de u?
- **d)** Soit $(\alpha_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires i.i.d. à valeurs dans] 1,1[. Que dire de la limite de u?
- **150.** [SR] · Soit $a \in [0,1]$. Pour $z \in [0,1]$, on pose $\varphi_a(z) = 1 (1 z)^a$.
- a) Montrer l'existence d'une variable aléatoire X_a valeurs dans \mathbf{N}^* telle que
- $\varphi_a(z) = \mathbf{E}(z^{X_a}) \text{ pour } z \in [0,1].$
- **b)** Soit $(A_n)_{n\in \mathbf{N}}$ une famille d'événements indépendants de l'espace probabilisé $(\Omega, \mathcal{T}, \mathbf{P})$ telle que $\forall k \in \mathbf{N}^*$, $\mathbf{P}(A_k) = \frac{a}{k}$. Montrer que X_a suit la même loi que la variable aléatoire définie sur $(\Omega, \mathcal{T}, \mathbf{P})$ par $I(\omega) = \inf\{n \in \mathbf{N}^*, \ \omega \in A_n\}$.
- **c)** Soit (*E*) l'équation $\forall z \in [0,1], \ \varphi_a(z) = z \ \varphi(\varphi_a(z))$ d'inconnue φ , fonction génératrice d'une variable aléatoire.
- i) Montrer que, si $a = \frac{1}{2}$, l'équation (E) admet une unique solution.
- ii) Montrer que, si $a = \frac{1}{3}$, l'équation (E) n'a pas de solution.
- **151.** [PLSR] \cdot **a)** Soit $n \ge 1$, $\sigma > 0$ et $X_1, ..., X_n$ des variables aléatoires réelles telles que $\forall t \in \mathbb{R}$, $\forall i \in [[1, n]], \mathbf{E}(e^{tX_i}) \le e^{t^2\sigma^2/2}$. Montrer qu'il existe un réel C > 0, indépendant de n et σ , tel que $\mathbf{E}(\max_{1 \le i \le n} |X_i|) \le C\sigma$ $\sqrt{\ln(2n)}$.
- **b)** Soit X une variable aléatoire à valeurs dans Z. On suppose qu'il existe un réel $\alpha > 0$ tel que $\forall k \in Z$, $P(X = k) = \alpha e^{-k^2/2}$. Montrer que $\forall t \in R, E(e^{tX}) \le e^{t^2/2}$.
- **152.** [PLSR] Soit X une variable aléatoire à valeurs dans \mathbf{N} . On suppose qu'il existe C > 0 tel que $\forall n \in \mathbf{N}$, $\mathbf{P}(X = n) = \frac{e^{-n^2}}{C}$. Montrer que, pour $t \in [-1,1]$, $\mathbf{E}(e^{tX}) \le e^{4t^2}$.
- **153.** [PLSR] *a)* Soient $X_1,...,X_n$ des variables aléatoires réelles discrètes centrées admettant un moment d'ordre 2. Montrer que la matrice $(cov(X_i,X_j))_{1 \le i,j \le n}$ est symétrique positive.
- **b)** Soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires réelles discrètes centrées, admettant un moment d'ordre 2, et telles que $cov(X_i, X_j)$ ne dépende que de i j. On suppose que $\mathbf{V}(X_0) > 0$ et $cov(X_n, X_0) \longrightarrow_{n \to +\infty} 0$.

Montrer que, pour tout $n \in \mathbf{N}^*$, la matrice $(\operatorname{cov}(X_i, X_j))_{1 \le i, j \le n}$ est symétrique définie positive.

- **154.** [PLSR] · Soient f une fonction de **Z** dans **R**, $(X_k)_{k\geq 1}$ une suite de variables aléatoires réelles discrètes admettant un moment d'ordre 2, ayant toutes m pour espérance et telles que, si $(k, l) \in \mathbb{N}^{+2}$, Cov $(X_k, X_l) = f(|k l|)$.
- **a)** On suppose que $\frac{1}{n}\sum_{k=1}^{n}f(k)\to 0$. Pour $n\in \mathbf{N}^*$, soit $Y_n=\frac{1}{n}\sum_{k=1}^{n}X_k$. Montrer que $(Y_n)_{n\geq 1}$ converge en probabilité vers m.
- **b)** On suppose que la suite $(f(k))_{k\geq 0}$ est sommable. Montrer que la suite $(n\mathbf{V}(Y_n))_{n\geq 1}$ converge vers un nombre réel à préciser.
- **155.** [PLSR] On construit une permutation aléatoire σ de \mathfrak{S}_n de la manière suivante.
- On choisit d'abord x dans [[1,n]] aléatoirement en suivant la loi uniforme, et on pose $\sigma(1) := x$.
- Si $\sigma(1)$ ≠ 1, on choisit de même y dans [[1,n]]\{ $\sigma(1)$ } et on pose $\sigma(\sigma(1))$:= y. Puis si $\sigma(\sigma(1))$ ≠1, on choisit z aléatoirement dans [[1,n]]\{ $\sigma(1)$, $\sigma^2(1)$ } etc. On a ainsi obtenu un entier $k \in [[1,n]]$ tel que 1, $\sigma(1)$, ..., $\sigma^{k-1}(1)$

soient distincts, et $\sigma^k(1) = 1$.

– Si k < n, on répète le processus en construisant aléatoirement une permutation de [[1, n]] \ {1, $\sigma(1), ..., \sigma^{k-1}(1)$ }.

Tous les tirages aléatoires sont supposés indépendants. Montrer que la permutation σ ainsi contruite suit la loi uniforme sur \mathfrak{S}_n .

156. [L] On considère une suite de variables aléatoires réelles (X_i) i.i.d. On suppose X_1 d'espérance finie avec

 $\mathbf{E}(X_1) > 0$. Pour $n \in \mathbf{N}^*$, on note $S_n = \sum_{k=1}^n X_k$. Montrer que $\mathbf{P}(\forall n \in \mathbf{N}^*, S_n > 0) > 0$.

- **157.** [PLSR] Soit $n \in \mathbf{N}^*$. On prend deux variables aléatoires indépendantes X, Y suivant la loi uniforme sur **Z** $/n\mathbf{Z}$. Déterminer la probabilité de l'événement (XY = 0).
- **158.** [PLSR] · Soit n,m deux entiers naturels tels que $n \ge m$. On note A l'ensemble des injections de [[1, m]] dans [[1,n]]. On note B l'ensemble des surjections de [[1,n]] dans [[1,m]]. Comparer $\frac{|A|}{\left| 1,n\right|^{\left[1,m\right]}}$ à

 $\frac{|B|}{\|[1,m]^{[1,n]}\|}.$

- Ind. Considérer l'ensemble \mathcal{P} des m-listes $(P_1,...,P_m)$ de parties non vides partitionnant [[1,n]], l'ensemble E des parties à m éléments de [[1,n]], et dénombrer de deux façons différentes les couples $((P_1,...,P_m),A)$ dans lesquels $(P_1,...,P_m) \in \mathcal{P}$, $A \in E$, et $A \cap P \neq \emptyset$ pour tout $i \in [[1,m]]$.
- **159.** [P] Soit *X* une variable aléatoire réelle discrète centrée. Montrer l'équivalence entre les trois conditions suivantes :
- i) il existe a > 0 tel que $\forall \lambda \in \mathbf{R}, \mathbf{E}(e^{\lambda X}) \le e^{a\lambda^2}$,
- ii) il existe b > 0 tel que $\forall t > 0$, $\mathbf{P}(|X| \ge t) \le 2e^{-bt^2}$,
- *iii*) il existe c > 0 tel que $\mathbf{E}(e^{cX^2}) < +\infty$.
- **160.** [SR] Soit $(\lambda, c) \in]0, 1[^2$. On se donne, sur un espace probabilisé, une suite $(X_n)_{n \in \mathbb{N}}$ de variables aléatoires, toutes à valeurs dans [0,1] et vérifiant les conditions suivantes :

i) $X_0 = c$;

ii) pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$, $P(X_{n+1} = \lambda + (1 - \lambda)X_n | X_n = x) = x$ et $P(X_{n+1} = (1 - \lambda)X_n | X_n = x) = 1 - x$.

Pour $n \in \mathbf{N}$ et $p \in \mathbf{N}$, on note $u_n(p) := \mathbf{E}(X_n^p)$.

- a) Montrer que pour tout $n \in \mathbb{N}$, il existe un ensemble $A_n \subset [0,1]$ de cardinal au plus 2^n tel que $\mathbb{P}(X_n \in A_n) = 1$.
- **b)** Montrer que $u_n(1) = c$ pour tout $n \in \mathbb{N}$.
- c) Montrer qu'il existe $\lambda_2 \in \mathbf{R}_+^*$ tel que $\forall n \in \mathbf{N}, |u_n(2) c| \le e^{-\lambda_2 n}$.
- **d)** Montrer que $(1 \lambda)^{p-1}(1 + (p 1)\lambda)$ ∈]0, 1[pour tout $p \ge 2$.
- **e)** Montrer que pour tout $p \ge 2$, il existe $\lambda_p > 0$ tel que $u_n(p) c^{--} n \to +\infty$ $O(e^{-\lambda_p n})$.
- **161.** [SR] *a)* Soit $n \ge 2$ et $k \in [[1,n]]$. Dénombrer les manières de choisir k nombres dans [[1,n]] sans prendre deux nombres consécutifs.
- **b)** On installe n couples, constitués d'un homme et d'une femme, autour d'une table ronde, en alternant hommes et femmes. Montrer que la probabilité que personne ne soit assis à côté de son partenaire est : p_n =

$$\left| \frac{1}{n!} \sum_{k=0}^{n} (-1)^{k} \frac{2n}{2n-k} {2n-k \choose k} (n-k)! \right|.$$

c) Déterminer la limite de (p_n) quand n tend vers + ∞.

162. [PLSR] *a)* Montrer qu'il existe une constante C>0 telle que, pour toute variable aléatoire discrète X à valeurs dans [0,1] non presque sûrement nulle, on dispose de l'inégalité $\sup_{t\geqslant 0} t \, \mathbf{P}(X\geq t) \geq C \, \frac{\mathbf{E}(X)}{\ln(2/\mathbf{E}(X))}$. *b)* Montrer qu'il existe une constante C'>0 et une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires à valeurs dans [0, 1], non presque sûrement nulles, telle que $(\mathbf{E}(X_n))_{n\in\mathbb{N}}$ converge vers 0 et $\forall n\in\mathbb{N}$, $\sup_{t\geqslant 0} t \, \mathbf{P}(X_n\geq t) \leq C' \, \frac{\mathbf{E}(X_n)}{\ln(2/\mathbf{E}(X_n))}$.

[Épreuves orales des concours]

[<]