Linear Algebra

[KOMS119602] - 2022/2023

12.2 - Linear Transformation

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 13 (December 2022)

Learning objectives

After this lecture, you should be able to:

1. explain various properties of each of linear transformations in a vector space.

Properties of Matrix Transformations

(page 270 of Elementary LA Applications book)

Compositions of matrix transformation

Let:

- T_A : a matrix transformation from \mathbb{R}^n to \mathbb{R}^k
- T_B : a matrix transformation from \mathbb{R}^k to \mathbb{R}^m

Let $\mathbf{x} \in \mathbb{R}^n$, and defines transformation:

$$\mathbf{x} \xrightarrow{T_A} T_A(\mathbf{x}) \xrightarrow{T_B} T_B(T_A(\mathbf{x}))$$

defines the transformation from \mathbb{R}^n to \mathbb{R}^m .

It is called the composition of T_B with T_A and is denoted by $T_B \circ T_A$. So:

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x}))$$

Compositions of matrix transformation

The composition is a matrix transformation, since:

$$(T_B \circ T_A)(\mathbf{x}) = T_B(T_A(\mathbf{x})) = B(T_A(\mathbf{x})) = B(A\mathbf{x}) = (BA)\mathbf{x}$$

meaning that the result of the composition to \mathbf{x} is obtained by multiplying \mathbf{x} with BA on the left.

This is denoted by:

$$T_B \circ T_A = T_{BA}$$

Composition of three transformations

Compositions can be defined for any finite succession of matrix transformations whose domains and ranges have the appropriate dimensions. For instance, given:

$$T_A: \mathbb{R}^n \to \mathbb{R}^k, T_B: \mathbb{R}^k \to \mathbb{R}^\ell, T_C: \mathbb{R}^\ell \to \mathbb{R}^m$$

we can define the composition:

$$(T_C \circ T_B \circ T_A) : \mathbb{R}^n \to \mathbb{R}^m$$

by:

$$(T_C \circ T_B \circ T_A)(\mathbf{x}) = T_C(T_B(T_A(\mathbf{x})))$$

It can be shown that this is a matrix transformation with standard matrix *CBA*, and:

$$T_C \circ T_B \circ T_A = T_{CBA}$$

Notation

We can write the standard matrix for transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ without specifying the name of the standard matrix.

It is often written as [T].

For instance,

- $T(\mathbf{x}) = [T]\mathbf{x}$
- $[T_2 \circ T_1] = [T_2][T_1]$
- $[T_3 \circ T_2 \circ T_1] = [T_3][T_2][T_1]$

Composition is not commutative

Example

Let:

- $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection about the line y = x;
- $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto the y-axis.

Geometrically, both transformations have different effect on x

Composition is not commutative (cont.)

Algebraically, we can compute:

$$[T_1 \circ T_2] = [T_1][T_2] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$[T_2 \circ T_1] = [T_2][T_1] = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Clearly, $[T_1 \circ T_2] \neq [T_2 \circ T_1]$.

Composition of rotation is commutative

Example

Given:

$$\mathcal{T}_1: \mathbb{R}^2 o \mathbb{R}^2$$
 and $\mathcal{T}_2: \mathbb{R}^2 o \mathbb{R}^2$

the matrix operators that rotate vectors about the origin through the angles θ_1 and θ_2 respectively.

So, the operation:

$$T_2 \circ T_1(\mathbf{x}) = T_2(T_1(\mathbf{x}))$$

first rotates x through the angle θ_1 , then rotates $T_1(\mathbf{x})$ through the angle θ_2 .

Hence, $(T_2 \circ T_1)(\mathbf{x})$ defines rotation of \mathbf{x} through the angle $\theta_1 + \theta_2$.

Composition of rotation is commutative (cont.)

In this case, we have:

$$[T_1] = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{bmatrix} \text{ and } [T_2] = \begin{bmatrix} \cos \theta_2 & -\sin \theta_2 \\ \sin \theta_2 & \cos \theta_2 \end{bmatrix}$$

We show that: $[T_2 \circ T_1] = [T_1][T_1]$

$$[T_2 \circ T_1] = \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix}$$

Furthermore:

$$\begin{split} [T_2][T_1] &= \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{bmatrix} \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix} \\ &= \begin{bmatrix} \cos\theta_2\cos\theta_1 - \sin\theta_2\sin\theta_1 & -(\cos\theta_2\sin\theta_1 + \sin\theta_2\cos\theta_1) \\ \sin\theta_2\cos\theta_1 + \cos\theta_2\sin\theta_1 & -\sin\theta_2\sin\theta_1 + \cos\theta_2\cos\theta_1 \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta_1 + \theta_2) & -\sin(\theta_1 + \theta_2) \\ \sin(\theta_1 + \theta_2) & \cos(\theta_1 + \theta_2) \end{bmatrix} \\ &= [T_2 \circ T_1] \end{split}$$

It can be easily seen that $[T_2 \circ T_1] = [T_1 \circ T_2]$ (hence, commutative).

Exercise

Read Example 3 and Example 4 (page 272-273)

One-to-one matrix transformation

A matrix transformation $T_A\mathbb{R}^n \to \mathbb{R}^m$ is said to be one-to-one if T_A maps distinct vectors (points) in \mathbb{R}^n into distinct vectors (points) in \mathbb{R}^m .

Equivalent statements:

- T_A is one-to-one if $\forall \mathbf{b}$ in the range of A, there is exactly one vector $\mathbf{x} \in \mathbb{R}^n$, s.t. $T_A \mathbf{x} = \mathbf{b}$.
- T_A is one-to-one if the equality $T_A(\mathbf{u}) = T_A(\mathbf{v})$ implies that $\mathbf{u} = \mathbf{v}$.

Examples: one-to-one and not one-to-one transformations

Rotation operators on \mathbb{R}^2 are one-to-one.

since distinct vectors that are rotated through the same angle have distinct images.

The orthogonal projection of \mathbb{R}^2 onto the x-axis is not one-to-one.

since it maps distinct points on the same vertical line into the same point.

▲ Figure 4.10.6 Distinct vectors \mathbf{u} and \mathbf{v} are rotated into distinct vectors $T(\mathbf{u})$ and $T(\mathbf{v})$.

▲ Figure 4.10.7 The distinct points P and Q are mapped into the same point M.

Kernel and range

If $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation, then the set of all vectors in RR^n that T_A maps into 0 is called the kernel of T_A and is denoted by $\ker(T_A)$, i.e.:

$$\ker(T_A) = \{\mathbf{x} \in \mathbb{R}^n \text{ s.t. } A\mathbf{x} = \mathbf{0}\}$$

The set of all vectors in \mathbb{R}^m that are images under this transformation of at least one vector in \mathbb{R}^n is called the range of T_A and is denoted by $R(T_A)$, i.e.:

$$R(T_A) = \{ \mathbf{b} \in \mathbb{R}^m \text{ s.t. } \exists \mathbf{x} \in \mathbb{R}^n, \text{ where } A\mathbf{x} = \mathbf{b} \}$$

In brief:

$$ker(T_A) = null \text{ space of } A$$

 $R(T_A) = column \text{ space of } A$

Matrix - linear system - transformation

Let A be an $(m \times n)$ matrix.

Three ways of viewing the same subspace of \mathbb{R}^n :

- Matrix view: the null space of A
- **System view:** the solution space of Ax = 0
- Transformation view: the kernel of T_A

Three ways of viewing the same subspace of \mathbb{R}^m :

- Matrix view: the column space of A
- **System view:** all $\mathbf{b} \in \mathbb{R}^m$ for which $A\mathbf{x} = \mathbf{b}$ is consistent
- Transformation view: the range of T_A

Exercise

Read Example 5 and Example 6 on page 275.

One-to-one matrix operator

Let $T_A : \mathbb{R}^n \to \mathbb{R}^n$ be a one-to-one matrix operator. So, A is invertible.

The inverse operator or the inverse of T_A is defined as:

$$T_{A^{-1}}: \mathbb{R}^n \to \mathbb{R}^n$$

In this case:

$$T_A(T_{A^{-1}}(\mathbf{x})) = AA^{-1}\mathbf{x} = I\mathbf{x} = \mathbf{x}$$
 or, equivalently $T_A \circ T_{A^{-1}} = T_{AA^{-1}} = T_I$
 $T_{A^{-1}}(T_A(\mathbf{x})) = A^{-1}A\mathbf{x} = I\mathbf{x} = \mathbf{x}$ or, equivalently $T_{A^{-1}} \circ T_A = T_{A^{-1}A} = T_I$

 T_A maps $\mathbf x$ to $\mathbf w$ and $T_{A^{-1}}$ maps $\mathbf w$ back to $\mathbf x$, i.e., $T_{A^{-1}}(\mathbf w) = T_{A^{-1}}(T_A(\mathbf x)) = \mathbf x$

Exercise

Read Example 7 and Example 8 on page 276.

Conclusion

THEOREM 4.10.2 Equivalent Statements

If A is an $n \times n$ matrix, then the following statements are equivalent.

- (a) A is invertible.
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (c) The reduced row echelon form of A is I_n .
- (d) A is expressible as a product of elementary matrices.
- (e) $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- (f) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- (g) $\det(A) \neq 0$.
- (h) The column vectors of A are linearly independent.
- (i) The row vectors of A are linearly independent.
- (j) The column vectors of A span \mathbb{R}^n .
- (k) The row vectors of A span \mathbb{R}^n .
- (1) The column vectors of A form a basis for \mathbb{R}^n .
- (m) The row vectors of A form a basis for \mathbb{R}^n .
- (n) A has rank n.
- (o) A has nullity 0.
- (p) The orthogonal complement of the null space of A is \mathbb{R}^n .
- (q) The orthogonal complement of the row space of A is $\{0\}$.
- (r) The kernel of T_A is $\{0\}$.
- (s) The range of T_A is \mathbb{R}^n .
- (t) T_A is one-to-one.

Geometry of Matrix Operators on \mathbb{R}^2

(page 280 of Elementary LA Applications book)

to be continued...

Rotated

Sheared horizontally

Compressed horizontally

Exercise

Given a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which is multiplication by an invertible matrix. Determine the image of:

- 1. A straight line
- 2. A line through the origin
- 3. Parallel lines
- 4. The line segment joining points P and Q
- 5. Three points lie on a line

Task:

Divide yourselves into 5 groups, and examine each of the question!

Exercises

Question 1

Given a transformation matrix:

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

Find the image of line y = 2x + 1 under the transformation.

Question 2

Given a transformation matrix:

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$$

Find the image of the unit square on the *first quadrant* under the transformation.

Exercises

Determine the image of the unit square under the following transformation:

- Reflection about the y-axis
- Reflection about the x-axis
- Reflection about the line y = x
- Rotation about the origin through a positive angle θ
- Compression in the x-direction with factor k with 0 < k < 1
- Compression in the y-direction with factor k with 0 < k < 1
- Expansion in the x-direction with factor k with k > 1
- Expansion in the y-direction with factor k with k > 1
- Shear in the x-direction with factor k with k > 0
- Shear in the x-direction with factor k with k < 0
- Shear in the y-direction with factor k with k > 0
- Shear in the y-direction with factor k with k < 0

This is the end of slide...