Séries Temporais

Thiago Tavares Lopes Lucas de Bona Sartor

13 dezembro 2024

Sumário

1	Introdução	1
2	Análise da Série Temporal 2.1 Análise Descritiva	3
3	Modelo Final	4
4	Análise de Resíduos	4
5	Análise de Previsão	6
6	Conclusão	7

1 Introdução

O ouro é um ativo financeiro para exportação, investimentos de longo prazo, consumo industrial e câmbio de moedas estrangeiras. Segundo The Gold Bullion Company, o Brasil ocupa o 7° lugar no balanço mundial de oferta e demanda de ouro, com este contexto foi feito uma análise da série histórica do preço de comercialização do ouro(em quilogramas) entre os anos de 2013 a 2023. O *Dataset* utilizado pode ser acesso neste link.

A Figura 1, apresenta a série temporal da precificação mensal do ouro para os anos de 2013 até 2023. Em primeiro momento, de forma visual, nota-se que a série não possui sazonalidade, por conseguinte podemos observar um aumento significativo no preço do ouro entre 2019 a 2021.

Figura 1: Precificação mensal do Ouro - 2013 à 2023

A Figura 2 apresenta a os resultados de Funcação de Autocorrelação e a Função de Autocorrelação Parcial.

Figura 2: FAC e FACP

2 Análise da Série Temporal

Neste seção são apresentados os resultados da análise descritiva da série temporal.

2.1 Análise Descritiva

2.2 Resultados de Tendência Determinística

A Tabela 1 apresenta os resultados dos testes aplicados para verificar a presença de tendência determinística nos dados. Foram utilizados os testes Cox Stuart, Cox Stuart Trend, Mann-Kendall Trend, Mann-Kendall e KPSS para tendência. Em todos os casos, o p-valor obtido foi 0,0, indicando a rejeição da hipótese nula de ausência de tendência determinística. Com base nesses resultados, conclui-se que os dados analisados apresentam uma tendência clara e significativa.

Tabela 1: Teste de Tedência determinística

Teste	p-valor	Conclusão
Cox Stuart	0.0	Tendência
Cox Stuart Trend	0.0	Tendência
Mann-Kendall Trend	0.0	Tendência
Mann-Kendall	0.0	Tendência
KPSS Test for Trend	0.0	Tendência

2.3 Resultados de Tedência Estocástica - Raiz Unitária

A Tabela 2 apresenta os resultados dos testes de raiz unitária aplicados para avaliar a estacionaridade dos dados. Os testes utilizados foram: Augmented Dickey-Fuller, Phillips-Perron e KPSS. Para os testes Augmented Dickey-Fuller e Phillips-Perron, os p-valores encontrados foram 0,3553 e 0,5252, respectivamente, indicando a não rejeição da hipótese nula de presença de raiz unitária. Já no teste KPSS, o p-valor obtido foi 0,0100, levando à rejeição da hipótese nula de estacionaridade. Com base nos resultados, conclui-se que os dados apresentam uma tendência, não sendo estacionários em nível.

Tabela 2	2: Teste	de Raiz	Unitária

Teste	p-valor	Conclusão
Augmented Dickey-Fuller	0.3553	Tendência
Phillips-Perron Unit Root	0.5252	Tendência
KPSS Test for Level	0.0100	Tendência

2.4 Testes de Sazonalidade

A Tabela 3 apresenta os resultados dos testes estatísticos realizados para verificar a presença de sazonalidade nos dados. Foram aplicados dois testes: o teste de Kruskal-Wallis e o teste de Friedman. O p-valor obtido no teste de Kruskal-Wallis foi de 0,9991, enquanto no teste de Friedman foi de 0,8554. Em ambos os casos, os p-valores são significativamente superiores ao nível de significância comumente adotado ($\alpha=0.05$). Assim, não se rejeita a hipótese nula de ausência de sazonalidade, indicando que os dados analisados não apresentam evidências de comportamento sazonal.

Tabela 3: Teste de Sazonalidade

Teste	p-valor	Conclusão
Kruskall Wallis	0.9991	Não Sazonal
Friedman rank	0.8554	Não sazonal

3 Modelo Final

Para a série original foi aplicado um modelo de suavização exponencial. Temos que o estrutura do modelo da seguinte forma:

$$\mu_t = \ell_{t-1} + \phi b_{t-1}$$

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \epsilon_t$$

$$b_t = \phi b_{t-1} + \beta \epsilon_t$$

Por conseguinte, a estrutura do modelo apresenta componentes multiplicativo para o erro (M), tendência aditiva suavizada (Ad) e ausência de sazonalidade (N). O modelo apresenta os seguintes parâmetros de suavização: $\alpha = 0.9999$ e $\beta = 0.0933$ e $\phi = 0.8$.

Ademais, s
s estados iniciais estimados foram l=1677.808 para o nível e b=-26.0755 para tedência. O desvio padrão dos erros σ é igual a 0.0326 indicando uma boa adequação do modelo da série.

A Tabela 4 apresenta os resultados de medidas de acurácia do modelo, ou seja, são informações de qualidade do ajuste. Temos os seguinte valores: AIC=1500.932, RMSE de 46,02785 e um MAE de 36,68431, O erro percentual médio (MPE) foi de 0,0639%, e o erro percentual absoluto médio (MAPE) foi de 2,55%, por último o erro padronizado absoluto médio (MASE) foi de 0,2698. Esses valores sugerem que o modelo é parcimonioso e bem ajustado à série.

Tabela 4: Medidas de Precisão

Medida	Valor
AIC	1500.932
RMSE	46.02785
MAE	36.68431
MPE	0.06388472
MAPE	2.550386
MASE	0.2698339

4 Análise de Resíduos

Neste seção são apresentados os resultados da análise dos resíduos do modelo para série. Primeiramente, foi feito o teste de Box-Pierce com lag 10 e com $\alpha=5\%$, para avaliar a presenção de autocorrelação dos resíduos. Por conseguinte, o p-valor obtido foi de 0.08726, não rejeitamos a hipótese nula de que os resíduos são independentes, ou seja, não há correlação significativa dos resíduos.

A Figura 3 apresenta os resultados gráficos da análise de resíduos. O gráfico superior mostra a série de resíduos ao longo do tempo e evidencia que eles estão em torno de zero, sem a presença de tendências ou padrões, isto sugere que o modelo conseguiu capturar adequadamente a estrutura da série temporal. Ademais, O gráfico de autocorrelação (ACF) dos resíduos, apresentado no canto inferior esquerdo, revela que a maioria dos coeficientes de autocorrelação está dentro dos intervalos de confiança, indicando a ausência de autocorrelação significativa nos resíduos. Essa conclusão é corroborada pelo resultado do teste de Box-Pierce, cujo p-valor não rejeita a hipótese nula de independência dos resíduos. Além disso, o histograma dos resíduos, no canto inferior direito, mostra uma distribuição aproximadamente simétrica e próxima de uma normal, com uma curva de densidade sobreposta confirmando esse comportamento. Esses resultados apontam para a adequação do modelo ETS(M,Ad,N), já que os resíduos não apresentam padrões significativos, são independentes e possuem uma distribuição compatível com as suposições do modelo.

Por último, a Figura 4 apresenta o gráfico QQ-Plot e avalia a normalidade dos resíduos do modelo ETS(M,Ad,N). Nota-se que os pontos estão majoritariamente alinhados com a linha de referência, indicando que os resíduos

Figura 3: Resíduos

seguem, em grande parte, uma distribuição normal. Por cosneguinte, algumas discrepâncias são visíveis nas extremidades, mas estão dentro da faixa de confiança. Esses resultados reforçam a adequação do modelo, pois a normalidade dos resíduos é uma suposição importante para validação de modelos de séries temporais.

Figura 4: Resíduos Modelo MAdN

5 Análise de Previsão

Nesta seção são apresentados os resultados da previsão para valores futuros da série. O gráfico 5 mostra as previsões realizadas pelo modelo ETS(M,Ad,N) para a série temporal eme studo, juntamente com os intervalos de confiança. Observa-se que as previsões seguem a tendência recente da série, indicando que o modelo conseguiu captar adequadamente o comportamento da série temporal.

A faixa sombreada em azul e cinza ao redor das previsões representa os intervalos de confiança de 80% e 95%, respectivamente. Essa incerteza aumenta com o horizonte de previsão, o que é esperado devido à menor precisão em previsões de longo prazo.

De maneira geral, o modelo ETS(M,Ad,N) fornece previsões coerentes com os dados históricos e apresenta intervalos de confiança que refletem a variabilidade da série, sendo uma ferramenta confiável para análise prospectiva.

Forecasts from ETS(M,Ad,N)

Figura 5: Previsão dos Valores para o Modelo MAdN

6 Conclusão