Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 2

Željko Butković

Sinusni signal

Za mjerenje, testiranje i rad elektroničkim sklopova i sustava → standardni signali određenih valnih oblika (sinusni, pravokutni, trokutasti ili pilasti)
Spektar sinusnog signala → sadrži samo jednu frekvenciju

vremenski odziv

ski odziv spektar

$$u(t) = U_m \sin \omega_0 t$$

$$f_0 = \omega_0/(2\pi)$$

Oscilatori

Oscilatori → sklopovi koji generiraju napone periodičkih valnih oblika

Dvije grupe

- sinusni ili harmonijski oscilatori → generiraju sinusne napone → koriste pozitivnu povratnu vezu
- □ relaksacijski oscilatori → generiraju periodičke napone ostalih valnih oblika → (astabili, komparatori)

Blok shema sinusnog oscilatora

Povratni signal x_f vraća se na ulaz pojačala s pozitivnim predznakom

$$A(j\omega) = \frac{X_{iz}}{X_a}, \quad \beta(j\omega) = \frac{X_f}{X_{iz}}, \quad x_a = x_{ul} + x_f$$

$$A_f(j\omega) = \frac{X_{iz}}{X_{ul}} = \frac{A(j\omega)}{1 - \beta(j\omega)A(j\omega)} = \frac{A(j\omega)}{1 - T(j\omega)}$$

Barkhausenov kriterij osciliranja

Na frekvenciji osciliranja ω_a

$$1 - T(j\omega_o) = 0 \quad \to \quad A_f(j\omega_o) = \frac{X_{iz}}{X_{ul}} = \frac{A(j\omega_o)}{0} = \infty$$

Bez prisutnosti ulaznog signala, uz $x_{ul} = 0$, na izlazu oscilatora dobiva signal x_{iz} . Energiju izlaznog signala osigurava istosmjerni izvor napajanja.

Barkhausenov kriterij osciliranja $\rightarrow T(j\omega_o) = \beta(j\omega_o) A(j\omega_o) = 1$

dva uvjeta osciliranja

- 1. $\angle T(j\omega_o) = 0^\circ \rightarrow$ prolaskom kroz pojačalo i granu povratne veze signal se na ulaz pojačala mora vratiti s istom fazom
- 2. $|T(j\omega_o)| = 1 \rightarrow \text{prolaskom kroz pojačalo i granu povratne veze signal se na ulaz pojačala mora vratiti s istom amplitudom$

RC-oscilatori

U *RC*-oscilatorima frekvencijski selektivna povratna veza sastoji se od otpornika i kondenzatora.

Koriste se za generiranje sinusnih napona frekvencijskog područja od 10-tak herca do nekoliko megaherca.

Primjeri:

- Oscilator s Wienovim mostom
- Oscilator s faznim pomakom

Oscilator s Wienovim mostom (1)

A-grana \rightarrow operacijsko pojačalo s otpornicima R_1 i R_2

eta-grana ightarrow dva spoja otpornika R i kondenzatora C
ightarrow impedancije Z_1 i Z_2

Negativna povratna veza s otpornicima R_2 i $R_1 \rightarrow$ određuje pojačanje pojačala

Pozitivna povratna veza s impedancijama Z_1 i $Z_2 \rightarrow$ uzrokuje oscilacije.

Oscilator s Wienovim mostom (2)

$$\beta(j\omega) = \frac{U_f}{U_{iz}} = \frac{Z_2}{Z_1 + Z_2} = \frac{\frac{R}{1 + j\omega RC}}{R + \frac{1}{j\omega C} + \frac{R}{1 + j\omega RC}} = \dots = \frac{1}{3 + j\left(\omega RC - \frac{1}{\omega RC}\right)}$$

Oscilator s Wienovim mostom (3)

Na frekvenciji osciliranja $\omega_o \to \angle T(j\omega_o) = \angle \beta(j\omega_o) A_V = 0^\circ \to \beta(j\omega_o)$ je pozitivan realan broj \to imaginarni član $\beta(j\omega_o)$ jednak je nuli

$$\omega_o RC - \frac{1}{\omega_o RC} = 0 \rightarrow \omega_o = \frac{1}{RC} \rightarrow f_0 = \frac{1}{2\pi RC}$$

$$\beta(j\omega_o) = 1/3$$

za
$$|T(j\omega_o)| = 1 \rightarrow A_V = \frac{1}{\beta(j\omega_o)} = 3 \rightarrow R_2 = 2R_1$$

Oscilator s Wienovim mostom – stabilizacija amplitude

Primjer 7.1

U oscilatoru s Wienovim mostom sa slike zadano je: $R=10~\mathrm{k}\Omega$, $R_1=10~\mathrm{k}\Omega$ i $R_2=22~\mathrm{k}\Omega$. Probojni napon Zenerovih dioda $U_Z=5~\mathrm{V}$, a napon koljena propusno polariziranih dioda $U_\gamma=0.7~\mathrm{V}$. Operacijsko pojačalo je idealno. Odrediti

- a) kapacitet kondenzatora C uz koji će frekvencija osciliranja biti $f_o = 1 \text{ kHz}$,
- b) amplitudu izlaznog napona.

Primjer 7.2 (1)

oscilacija. Na frekvenciji

Za oscilator s Wienovim mostom sa slike zadano je: $R_G=1~{\rm M}\Omega$, $R_D=1~{\rm k}\Omega$, $R_S=200~\Omega$, $R=1~{\rm k}\Omega$ i $C=10~{\rm n}F$. Odrediti frekvenciju osciliranja, te minimalne strmine spojnih FET-ova $g_{m1}=g_{m2}=g_m$ potrebne za održavanje

osciliranja impedancija kondenzatora C_D zanemarivo je mala. Zanemariti porast struja odvoda s naponom u_{DS} u području zasićenja.

Primjer 7.2 (2)

β-grana

A-grana

Oscilator s faznim pomakom (1)

A-grana → pojačalo sFET-om u spojuzajedničkog uvoda

β-grana → trostruka CR-mreža

Oscilacije → na

frekvenciji na kojoj *CR*-mreža unosi

fazni pomak od 180°

Oscilator s faznim pomakom (2)

Oscilator s faznim pomakom (3)

Na frekvenciji osciliranja $\omega_o \to \angle \beta(j\omega_o) = 180^\circ \to \beta(j\omega_o)$ je negativan realan broj \to imaginarni član $\beta(j\omega_o)$ jednak je nuli

$$\frac{6}{\omega_o RC} - \frac{1}{(\omega_o RC)^3} = 0 \quad \rightarrow \quad \omega_o = \frac{1}{\sqrt{6}RC} \quad \rightarrow \quad f_o = \frac{\omega_o}{2\pi} = \frac{1}{2\pi\sqrt{6}RC}$$

$$\beta(j\omega_o) = \frac{1}{1 - \frac{5}{(\omega_o RC)^2}} = -\frac{1}{29} \rightarrow |A_V| \ge 29$$

Oscilator s faznim pomakom s operacijskim pojačalom

$$A_V = \frac{U_{iz}}{U_a} = -\frac{R_2}{R}$$

$$|A_V| \ge 29 \quad \rightarrow \quad R_1 \ge 29 R$$

Oscilator s faznim pomakom – stabilizacija amplitude

LC-oscilatori

- LC-oscilatori koriste se za generiranje sinusnih napona viših frekvencija do nekoliko stotina megaherca.
- Frekvencijski selektivna povratna veza je rezonantni krug sastavljen od kondenzatora i zavojnica.
- Zbog boljih visokofrekvencijskih svojstava, kao aktivne komponente za formiranje A-grane LC-oscilatora koriste se diskretni bipolarni ili unipolarni tranzistori.

Primjeri:

- Colpittsov oscilator
- Hartleyev oscilator
- Oscilatori s kristalom

Opći oblik *LC*-oscilatora (1)

β-grana

A-grana

spoj oscilatora

$$A_{V} = \frac{U_{iz}}{U_{a}} = -A_{v} \frac{Z_{T}}{R_{iz} + Z_{T}} \qquad Z_{T} = Z_{2} \| (Z_{1} + Z_{3}) = \frac{Z_{2}(Z_{1} + Z_{3})}{Z_{1} + Z_{2} + Z_{3}}$$

$$A_{V} = -A_{v} \frac{Z_{2}(Z_{1} + Z_{3})}{R_{iz}(Z_{1} + Z_{2} + Z_{3}) + Z_{2}(Z_{1} + Z_{3})} \qquad \beta = \frac{U_{f}}{U_{iz}} = \frac{Z_{1}}{Z_{1} + Z_{3}}$$

Opći oblik LC-oscilatora (2)

$$\beta A_V = -A_v \frac{Z_1 Z_2}{R_{iz} (Z_1 + Z_2 + Z_3) + Z_2 (Z_1 + Z_3)}$$

U grani povratne veze \rightarrow kondenzatori i zavojnice \rightarrow $Z_1 = jX_1$, $Z_2 = jX_2$, $Z_3 = jX_3$ \rightarrow $X = -1/\omega C$ ili $X = \omega L$

$$\beta A_V = A_v \frac{X_1 X_2}{j R_{iz} (X_1 + X_2 + X_3) - X_2 (X_1 + X_3)}$$

Na frekvenciji osciliranja $\omega_o \to \angle \beta(\omega_o) \, A_V(\omega_o) = \text{pojačanje } \beta(\omega_o) \, A_V(\omega_o)$ je pozitivan realan broj \to imaginarni član $\beta(\omega_o) \, A_V(\omega_o)$ jednak je nuli

$$X_1 + X_2 + X_3 = 0$$

Opći oblik *LC*-oscilatora (3)

$$\beta(\omega_o) A_V(\omega_o) = A_V \frac{X_1 X_2}{-X_2 (X_1 + X_3)} = -A_V \frac{X_1}{X_1 + X_3}$$
$$X_1 + X_3 = -X_2 \quad \to \quad \beta(\omega_o) A_V(\omega_o) = A_V \frac{X_1}{X_2}$$

 X_1 i X_2 su istog predznaka, a X_3 je suprotnog predznaka Ako su Z_1 i Z_2 kapaciteti Z_3 je induktivitet i obrnuto.

$$\left| \beta(\omega_o) A_V(\omega_o) \right| = 1 \rightarrow A_{\text{vmin}} = \frac{X_2}{X_1}$$

Colpittsov oscilator

$$X_1 = -1/\omega C_1$$
, $X_2 = -1/\omega C_2$, $X_3 = \omega L_3$

Na frekvenciji osciliranja ω_o \to

$$-\frac{1}{j\omega_o C_1} - \frac{1}{j\omega_o C_2} + j\omega_o L_3 = 0$$

$$f_o = \frac{1}{2\pi\sqrt{L_3}}\sqrt{\frac{1}{C_1} + \frac{1}{C_2}}$$

$$A_{v} = g_{m} r_{d} \rightarrow g_{m} \ge \frac{C_{1}}{r_{d} C_{2}}$$

Hartleyev oscilator

$$X_1 = \omega L_1$$
, $X_2 = \omega L_2$, $X_3 = -1/\omega C_3$

Na frekvenciji osciliranja $\omega_o \rightarrow$

$$j\omega_o L_1 + j\omega_o L_2 - \frac{1}{j\omega_o C_3} = 0$$

$$f_o = \frac{1}{2\pi\sqrt{C_3(L_1 + L_2)}}$$

$$A_{v} = g_{m} r_{d} \rightarrow g_{m} \ge \frac{L_{2}}{r_{d} L_{1}}$$

Piezoelektrični kristal (1)

Istosmjerni napon uzrokuje u piezoelektričnom kristalu naprezanja i deformacije → mehaničke vibracije → kristal oscilira na svojoj mehaničkoj rezonantnoj frekvenciji → mehaničke vibracije proizvode na krajevima kristala izmjenični napon.

Kristal se električki ponaša kao rezonantni RLC-krug vrlo malog serijskog otpora, odnosno visokog faktora dobrote.

Piezoelektrični kristal (2)

Zanemarenjem malog otpora r iz nadomjesne sheme.

$$Z(j\omega) = \left(j\omega L + \frac{1}{j\omega C_s}\right) \left\| \frac{1}{j\omega C_p} \right\|$$

$$Z(j\omega) = \frac{-j}{\omega C_p} \frac{\omega^2 - \omega_s^2}{\omega^2 - \omega_p^2}$$

$$\omega_{s} = \frac{1}{\sqrt{LC_{s}}} \qquad \omega_{p} = \frac{1}{\sqrt{L\frac{C_{s}C_{p}}{C_{s} + C_{p}}}}$$

rezonantne frekvencije $\rightarrow \omega_p > \omega_s$

 $C_{\rm s} << C_p \rightarrow \omega_p$ i $\omega_{\rm s}$ razlikuju se za manje od 1%.

Oscilatori s kristalom

Zamjenom zavojnice L_3 u Colpittsovom oscilatoru s kristalom \rightarrow Pierceov oscilator

$$f_o = \frac{1}{2\pi} \sqrt{\frac{1}{LC_s} + \frac{1}{L} \frac{1}{C_p + \frac{C_1C_2}{C_1 + C_2}}} \approx \frac{1}{\sqrt{LC_s}} = \frac{\omega_s}{2\pi}$$

Pierceov oscilator s CMOS invertorom

