```
# Importing Libraries:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
# for displaying all feature from dataset:
pd.pandas.set option('display.max columns', None)
import os, types
import pandas as pd
from botocore.client import Config
import ibm boto3
def iter (self): return 0
# The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
# You might want to remove those credentials before you share the notebook.
cos client = ibm boto3.client(service name='s3',
    ibm api key id='L98UVbsm7b3 7zIa2z6yS-mEkgRaYiCuS WER6MMiN-E',
    ibm auth endpoint="https://iam.cloud.ibm.com/oidc/token",
    config=Config(signature version='oauth'),
    endpoint url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
bucket = 'ckdprediction-donotdelete-pr-uosytmsjavw7pn'
object key = 'kidney disease.csv'
body = cos client.get object(Bucket=bucket,Key=object key)['Body']
# add missing iter method, so pandas accepts body as file-like object
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType( __iter__, body )
dataset = pd.read csv(body)
```

Top 5 records: dataset.head()

	id	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc	sod	pot	hemo	pcv	WC	rc	htn
0	0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0	36.0	1.2	NaN	NaN	15.4	44	7800	5.2	yes
1	1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN	18.0	8.0	NaN	NaN	11.3	38	6000	NaN	no
2	2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	53.0	1.8	NaN	NaN	9.6	31	7500	NaN	no
3	3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	56.0	3.8	111.0	2.5	11.2	32	6700	3.9	yes
4	4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0	26.0	1.4	NaN	NaN	11.6	35	7300	4.6	no
4																				•

```
# Dropping unneccsary feature :
dataset = dataset.drop('id', axis=1)
# Shape of dataset:
dataset.shape
     (400, 25)
# Cheaking Missing (NaN) Values:
dataset.isnull().sum()
                         9
     age
     bp
                        12
                        47
     sg
     al
                        46
                        49
     su
```

rbc	152
рс	65
pcc	4
ba	4
bgr	44
bu	19
SC	17
sod	87
pot	88
hemo	52
pcv	70
WC	105
rc	130
htn	2
dm	2
cad	2
appet	1
pe	1
ane	1
classification	0
dtype: int64	

Description: dataset.describe()

age	bp	sg	al	su	bgr	bu	sc	sod	pot

Datatypes:
dataset.dtypes

age	float64
bp	float64
sg	float64
al	float64
su	float64
rbc	object
рс	object
рсс	object
ba	object
bgr	float64
bu	float64
sc	float64
sod	float64
pot	float64
hemo	float64
pcv	object
МС	object
rc	object
htn	object
dm	object
cad	object
appet	object
pe	object
ane	object
classification	object
dtype: object	

dataset.head()

```
sg al su
age
                            rbc
                                      рс
                                                pcc
                                                           ba
                                                                bgr
                                                                       bu
                                                                           SC
                                                                                sod
                                                                                      pot hemo pcv
                                                                                                       WC
                                                                                                             rc htn
                                                                                                                      dm ca
     80.0 1.020 1.0
                                   normal notpresent notpresent 121.0
                                                                     36.0
                                                                         1.2
                                                                               NaN
                                                                                           15.4
                                                                                                     7800
                                                                                                            5.2
48.0
                     0.0
                           NaN
                                                                                    NaN
                                                                                                 44
                                                                                                                yes
                                                                                                                     yes
                                                                                                                          n
     50.0 1.020 4.0 0.0
                                   normal notpresent notpresent
                                                                    18.0 0.8
                                                                               NaN
                                                                                    NaN
                                                                                           11.3
 7.0
                           NaN
                                                                NaN
                                                                                                     6000
                                                                                                           NaN
                                                                                                                 no
                                                                                                                      no
                                                                                                                          n
62.0 80.0 1.010 2.0 3.0 normal
                                   normal notpresent notpresent 423.0 53.0 1.8
                                                                               NaN NaN
                                                                                            9.6
                                                                                                 31
                                                                                                     7500
                                                                                                           NaN
                                                                                                                 no ves
                                                                                                                          n
```

```
dataset['rbc'].value counts()
                 201
     normal
     abnormal
                  47
     Name: rbc, dtype: int64
dataset['rbc'] = dataset['rbc'].replace(to replace = {'normal' : 0, 'abnormal' : 1})
dataset['pc'].value counts()
     normal
                 259
     abnormal
                  76
     Name: pc, dtype: int64
dataset['pc'] = dataset['pc'].replace(to replace = {'normal' : 0, 'abnormal' : 1})
dataset['pcc'].value counts()
     notpresent
                   354
                    42
     present
     Name: pcc, dtype: int64
dataset['pcc'] = dataset['pcc'].replace(to_replace = {'notpresent':0,'present':1})
dataset['ba'].value_counts()
```

```
374
     notpresent
                    22
     present
     Name: ba, dtype: int64
dataset['ba'] = dataset['ba'].replace(to replace = {'notpresent':0,'present':1})
dataset['htn'].value counts()
            251
     no
            147
     ves
     Name: htn, dtype: int64
dataset['htn'] = dataset['htn'].replace(to replace = {'yes' : 1, 'no' : 0})
dataset['dm'].value counts()
              258
     no
              134
     ves
     \tno
                3
     \tyes
                2
     yes
     Name: dm, dtype: int64
dataset['dm'] = dataset['dm'].replace(to replace = {'\tyes':'yes', ' yes':'yes', '\tno':'no'})
dataset['dm'] = dataset['dm'].replace(to replace = {'yes' : 1, 'no' : 0})
dataset['cad'].value counts()
             362
     no
     yes
              34
     \tno
               2
     Name: cad, dtype: int64
```

```
dataset['cad'] = dataset['cad'].replace(to replace = {'\tno':'no'})
dataset['cad'] = dataset['cad'].replace(to replace = {'yes' : 1, 'no' : 0})
dataset['appet'].unique()
     array(['good', 'poor', nan], dtype=object)
dataset['appet'] = dataset['appet'].replace(to replace={'good':1,'poor':0,'no':np.nan})
dataset['pe'].value counts()
            323
     no
             76
     yes
     Name: pe, dtype: int64
dataset['pe'] = dataset['pe'].replace(to replace = {'yes' : 1, 'no' : 0})
dataset['ane'].value counts()
            339
     no
             60
     yes
     Name: ane, dtype: int64
dataset['ane'] = dataset['ane'].replace(to replace = {'yes' : 1, 'no' : 0})
dataset['classification'].value counts()
     ckd
               248
     notckd
               150
     ckd\t
                 2
     Name: classification, dtype: int64
```

```
dataset['classification'] = dataset['classification'].replace(to_replace={'ckd\t':'ckd'})

dataset["classification"] = [1 if i == "ckd" else 0 for i in dataset["classification"]]

dataset.head()
```

	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc	sod	pot	hemo	pcv	WC	rc	htn	dm	cad	appet	pe	ar
0	48.0	80.0	1.020	1.0	0.0	NaN	0.0	0.0	0.0	121.0	36.0	1.2	NaN	NaN	15.4	44	7800	5.2	1.0	1.0	0.0	1.0	0.0	0
1	7.0	50.0	1.020	4.0	0.0	NaN	0.0	0.0	0.0	NaN	18.0	8.0	NaN	NaN	11.3	38	6000	NaN	0.0	0.0	0.0	1.0	0.0	0
2	62.0	80.0	1.010	2.0	3.0	0.0	0.0	0.0	0.0	423.0	53.0	1.8	NaN	NaN	9.6	31	7500	NaN	0.0	1.0	0.0	0.0	0.0	1
3	48.0	70.0	1.005	4.0	0.0	0.0	1.0	1.0	0.0	117.0	56.0	3.8	111.0	2.5	11.2	32	6700	3.9	1.0	0.0	0.0	0.0	1.0	1
4	51 0	80 N	1 010	20	0 0	0 0	0.0	0 0	0 0	106 0	26 በ	1 4	NaN	NaN	11 6	35	7300	46	0 0	0 0	0 0	1 0	0 0	N

Datatypes: dataset.dtypes

age	float64
bp	float64
sg	float64
al	float64
su	float64
rbc	float64
рс	float64
рсс	float64
ba	float64
bgr	float64
bu	float64
sc	float64
sod	float64
pot	float64
hemo	float64

```
object
     pcv
                        object
     WC
                        object
     rc
     htn
                       float64
                       float64
     dm
                       float64
     cad
                       float64
     appet
                       float64
     pe
                       float64
     ane
     classification
                         int64
     dtype: object
dataset['pcv'] = pd.to numeric(dataset['pcv'], errors='coerce')
dataset['wc'] = pd.to_numeric(dataset['wc'], errors='coerce')
dataset['rc'] = pd.to numeric(dataset['rc'], errors='coerce')
# Datatypes:
dataset.dtypes
                       float64
     age
                       float64
     bp
                       float64
     sg
                       float64
     al
                       float64
     su
                       float64
     rbc
                       float64
     рс
                       float64
     рсс
                       float64
     ba
                       float64
     bgr
                       float64
     bu
                       float64
     SC
                       float64
     sod
                       float64
     pot
                       float64
     hemo
                       float64
     pcv
                       float64
     WC
                       float64
     rc
                       float64
     htn
                       float64
     dm
```

cad float64
appet float64
pe float64
ane float64
classification int64

dtype: object

Description: dataset.describe()

	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	
count	391.000000	388.000000	353.000000	354.000000	351.000000	248.000000	335.000000	396.000000	396.000000	356.000000	381.00
mean	51.483376	76.469072	1.017408	1.016949	0.450142	0.189516	0.226866	0.106061	0.055556	148.036517	57.42
std	17.169714	13.683637	0.005717	1.352679	1.099191	0.392711	0.419431	0.308305	0.229351	79.281714	50.50
min	2.000000	50.000000	1.005000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	22.000000	1.50
25%	42.000000	70.000000	1.010000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	99.000000	27.00
50%	55.000000	80.000000	1.020000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	121.000000	42.00
75%	64.500000	80.000000	1.020000	2.000000	0.000000	0.000000	0.000000	0.000000	0.000000	163.000000	66.00
max	90.000000	180.000000	1.025000	5.000000	5.000000	1.000000	1.000000	1.000000	1.000000	490.000000	391.00
4											

Cheaking Missing (NaN) Values:

dataset.isnull().sum().sort_values(ascending=False)

rbc	152
rc	131
WC	106
pot	88
sod	87
pcv	71
рс	65

```
52
     hemo
     su
                        49
                        47
     sg
     al
                        46
                        44
     bgr
                        19
     bu
                        17
     SC
     bp
                        12
                         9
     age
     ba
     pcc
     htn
     dm
                         2
                         2
     cad
                         1
     appet
                         1
     pe
                         1
     ane
     classification
     dtype: int64
dataset.columns
     Index(['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr', 'bu',
            'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
            'appet', 'pe', 'ane', 'classification'],
           dtvpe='object')
features = ['age', 'bp', 'sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'bgr', 'bu',
           'sc', 'sod', 'pot', 'hemo', 'pcv', 'wc', 'rc', 'htn', 'dm', 'cad',
           'appet', 'pe', 'ane'l
for feature in features:
    dataset[feature] = dataset[feature].fillna(dataset[feature].median())
dataset.isnull().any().sum()
```

0

```
plt.figure(figsize=(24,14))
sns.heatmap(dataset.corr(), annot=True, cmap='YlGnBu')
plt.show()
```


dataset.drop('pcv', axis=1, inplace=True)

pc - 0.1 0.16 -0.37 0.56 0.19 0.38 1 0.52 0.33 0.25 0.34 0.16 -0.17 0.16 -0.41 -0.42 0.11 -0.38 0.29 0.2 0.17 -0.27 0.35 0.26 0.38

dataset.head()

	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc	sod	pot	hemo	WC	rc	htn	dm	cad	appet	pe	ane	cla
0	48.0	80.0	1.020	1.0	0.0	0.0	0.0	0.0	0.0	121.0	36.0	1.2	138.0	4.4	15.4	7800.0	5.2	1.0	1.0	0.0	1.0	0.0	0.0	
1	7.0	50.0	1.020	4.0	0.0	0.0	0.0	0.0	0.0	121.0	18.0	8.0	138.0	4.4	11.3	6000.0	4.8	0.0	0.0	0.0	1.0	0.0	0.0	
2	62.0	80.0	1.010	2.0	3.0	0.0	0.0	0.0	0.0	423.0	53.0	1.8	138.0	4.4	9.6	7500.0	4.8	0.0	1.0	0.0	0.0	0.0	1.0	
3	48.0	70.0	1.005	4.0	0.0	0.0	1.0	1.0	0.0	117.0	56.0	3.8	111.0	2.5	11.2	6700.0	3.9	1.0	0.0	0.0	0.0	1.0	1.0	
4	51 0	80 O	1 010	20	0 0	0.0	0 0	0.0	0 0	106 0	26 0	1 4	138 0	4 4	11 6	7300 0	4 6	0.0	0 0	0.0	1 0	0 0	0 0	•

Target feature:

sns.countplot(dataset['classification'])

```
/opt/conda/envs/Python-3.9/lib/python3.9/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as
  warnings.warn(
  <AxesSubplot:xlabel='classification', ylabel='count'>
```

250 -200 -

Independent and Dependent Feature:

X = dataset.iloc[:, :-1]

y = dataset.iloc[:, -1]

X.head()

	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc	sod	pot	hemo	WC	rc	htn	dm	cad	appet	pe	ane
0	48.0	80.0	1.020	1.0	0.0	0.0	0.0	0.0	0.0	121.0	36.0	1.2	138.0	4.4	15.4	7800.0	5.2	1.0	1.0	0.0	1.0	0.0	0.0
1	7.0	50.0	1.020	4.0	0.0	0.0	0.0	0.0	0.0	121.0	18.0	8.0	138.0	4.4	11.3	6000.0	4.8	0.0	0.0	0.0	1.0	0.0	0.0
2	62.0	80.0	1.010	2.0	3.0	0.0	0.0	0.0	0.0	423.0	53.0	1.8	138.0	4.4	9.6	7500.0	4.8	0.0	1.0	0.0	0.0	0.0	1.0
3	48.0	70.0	1.005	4.0	0.0	0.0	1.0	1.0	0.0	117.0	56.0	3.8	111.0	2.5	11.2	6700.0	3.9	1.0	0.0	0.0	0.0	1.0	1.0
4	51.0	80.0	1.010	2.0	0.0	0.0	0.0	0.0	0.0	106.0	26.0	1.4	138.0	4.4	11.6	7300.0	4.6	0.0	0.0	0.0	1.0	0.0	0.0

```
from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
model=ExtraTreesClassifier()
```

model.fit(X,y)

Feature Importance:

```
plt.figure(figsize=(8,6))
ranked_features=pd.Series(model.feature_importances_,index=X.columns)
ranked_features.nlargest(24).plot(kind='barh')
plt.show()
```


ranked_features.nlargest(8).index

X.tail()

y.head()

1

	sg	htn	hemo	dm	al	appet	rc	рс
39	5 1.020	0.0	15.7	0.0	0.0	1.0	4.9	0.0
39	6 1.025	0.0	16.5	0.0	0.0	1.0	6.2	0.0
39	7 1.020	0.0	15.8	0.0	0.0	1.0	5.4	0.0
39	8 1.025	0.0	14.2	0.0	0.0	1.0	5.9	0.0
39	9 1.025	0.0	15.8	0.0	0.0	1.0	6.1	0.0

```
1  1
2  1
3  1
4  1
Name: classification, dtype: int64

# Train Test Split:
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=0.3, random_state=33)

print(X_train.shape)
print(X_test.shape)

(280, 8)
```

Importing Performance Metrics:

(120, 8)

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

```
# RandomForestClassifier:
from sklearn.ensemble import RandomForestClassifier
RandomForest = RandomForestClassifier()
RandomForest = RandomForest.fit(X train,y train)
# Predictions:
y pred = RandomForest.predict(X test)
# Performance:
print('Accuracy:', accuracy score(y test,y pred))
print(confusion matrix(y test,y pred))
print(classification report(y test,y pred))
     Accuracy: 0.975
     [[55 3]
     [ 0 62]]
                   precision
                                recall f1-score
                                                   support
                0
                        1.00
                                  0.95
                                            0.97
                                                         58
                        0.95
                1
                                  1.00
                                            0.98
                                                         62
                                            0.97
                                                        120
         accuracy
        macro avg
                        0.98
                                  0.97
                                            0.97
                                                        120
     weighted avg
                        0.98
                                  0.97
                                            0.97
                                                        120
# AdaBoostClassifier:
from sklearn.ensemble import AdaBoostClassifier
AdaBoost = AdaBoostClassifier()
AdaBoost = AdaBoost.fit(X train,y train)
# Predictions:
y_pred = AdaBoost.predict(X_test)
# Performance:
print('Accuracy:', accuracy_score(y_test,y_pred))
```

```
print(confusion matrix(y test,y pred))
print(classification_report(y_test,y_pred))
     Accuracy: 0.975
     [[55 3]
      [ 0 62]]
                                recall f1-score
                   precision
                                                    support
                0
                                  0.95
                                                         58
                        1.00
                                             0.97
                1
                        0.95
                                  1.00
                                             0.98
                                                         62
                                             0.97
                                                        120
         accuracy
                                            0.97
        macro avg
                        0.98
                                  0.97
                                                        120
     weighted avg
                        0.98
                                  0.97
                                             0.97
                                                        120
# GradientBoostingClassifier:
from sklearn.ensemble import GradientBoostingClassifier
GradientBoost = GradientBoostingClassifier()
GradientBoost = GradientBoost.fit(X train,y train)
# Predictions:
y pred = GradientBoost.predict(X test)
# Performance:
print('Accuracy:', accuracy score(y test,y pred))
print(confusion matrix(y test,y pred))
print(classification report(y test,y pred))
     Accuracy: 0.975
     [[55 3]
     [ 0 62]]
                   precision
                                recall f1-score
                                                    support
                                                         58
                0
                        1.00
                                  0.95
                                             0.97
                        0.95
                1
                                  1.00
                                             0.98
                                                         62
                                             0.97
                                                        120
         accuracy
        macro avg
                        0.98
                                   0.97
                                             0.97
                                                        120
```

```
weighted avg 0.98 0.97 0.97 120
```

```
import pickle
pickle.dump(RandomForest, open("chronic_kidney_disease_prediction_model.pkl", 'wb'))
```

#install necessary libraries for ibm deployment
!pip install -U ibm-watson-machine-learning

```
Requirement already satisfied: ibm-watson-machine-learning in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (1.0.257)
Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learn
Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-lear
Requirement already satisfied: importlib-metadata in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-ma
Requirement already satisfied: pandas<1.5.0,>=0.24.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson
Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-lear
Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learni
Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-lea
Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-machine-learn
Requirement already satisfied: ibm-cos-sdk==2.11.* in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-watson-m
Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos
Requirement already satisfied: imespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-s
Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from i
Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-
Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24
Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24
Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from python-dateutil<3.0.0,>
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests->ibm-watso
Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from reques-
Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from importlib-metadata->ib
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from packagi
```

```
from ibm watson machine learning import APIClient
import json
import numpy as np
wml credentials={
    "apikey":"11jScmIG2pnHq56Rj-Gs46EJ1U LXOyFAGtFyWd7Ca6V",
    "url": "https://us-south.ml.cloud.ibm.com"
wml client=APIClient(wml credentials)
wml client.spaces.list()
     Note: 'limit' is not provided. Only first 50 records will be displayed if the number of records exceed 50
                                           NAME
                                                      CREATED
     c6205b3d-f891-4d0f-a099-beb38bc6dd82 CKD space 2022-11-14T16:37:31.378Z
SPACE ID="c6205b3d-f891-4d0f-a099-beb38bc6dd82"
wml client.set.default space(SPACE ID)
     'SUCCESS'
wml client.software specifications.list()
     NAME
                                    ASSET ID
                                                                          TYPE
     default_py3.6
                                    0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base
     kernel-spark3.2-scala2.12
                                    020d69ce-7ac1-5e68-ac1a-31189867356a base
     pytorch-onnx 1.3-py3.7-edt
                                    069ea134-3346-5748-b513-49120e15d288 base
     scikit-learn 0.20-py3.6
                                    09c5a1d0-9c1e-4473-a344-eb7b665ff687 base
     spark-mllib_3.0-scala_2.12
                                    09f4cff0-90a7-5899-b9ed-1ef348aebdee base
```

pytorch-onnx rt22.1-py3.9	0b848dd4-e681-5599-be41-b5f6fccc6471	base
ai-function_0.1-py3.6	0cdb0f1e-5376-4f4d-92dd-da3b69aa9bda	base
shiny-r3.6	0e6e79df-875e-4f24-8ae9-62dcc2148306	base
tensorflow_2.4-py3.7-horovod	1092590a-307d-563d-9b62-4eb7d64b3f22	base
pytorch_1.1-py3.6	10ac12d6-6b30-4ccd-8392-3e922c096a92	base
tensorflow 1.15-py3.6-ddl	111e41b3-de2d-5422-a4d6-bf776828c4b7	base
autoai-kb_rt22.2-py3.10	125b6d9a-5b1f-5e8d-972a-b251688ccf40	base
runtime-22.1-py3.9	12b83a17-24d8-5082-900f-0ab31fbfd3cb	base
scikit-learn_0.22-py3.6	154010fa-5b3b-4ac1-82af-4d5ee5abbc85	base
default_r3.6	1b70aec3-ab34-4b87-8aa0-a4a3c8296a36	base
pytorch-onnx 1.3-py3.6	1bc6029a-cc97-56da-b8e0-39c3880dbbe7	base
kernel-spark3.3-r3.6	1c9e5454-f216-59dd-a20e-474a5cdf5988	base
<pre>pytorch-onnx_rt22.1-py3.9-edt</pre>	1d362186-7ad5-5b59-8b6c-9d0880bde37f	base
tensorflow_2.1-py3.6	1eb25b84-d6ed-5dde-b6a5-3fbdf1665666	base
spark-mllib_3.2	20047f72-0a98-58c7-9ff5-a77b012eb8f5	base
tensorflow_2.4-py3.8-horovod	217c16f6-178f-56bf-824a-b19f20564c49	base
runtime-22.1-py3.9-cuda	26215f05-08c3-5a41-a1b0-da66306ce658	base
do_py3.8	295addb5-9ef9-547e-9bf4-92ae3563e720	base
autoai-ts_3.8-py3.8	2aa0c932-798f-5ae9-abd6-15e0c2402fb5	base
tensorflow_1.15-py3.6	2b73a275-7cbf-420b-a912-eae7f436e0bc	base
kernel-spark3.3-py3.9	2b7961e2-e3b1-5a8c-a491-482c8368839a	base
pytorch_1.2-py3.6	2c8ef57d-2687-4b7d-acce-01f94976dac1	base
spark-mllib_2.3	2e51f700-bca0-4b0d-88dc-5c6791338875	base
<pre>pytorch-onnx_1.1-py3.6-edt</pre>	32983cea-3f32-4400-8965-dde874a8d67e	base
spark-mllib_3.0-py37	36507ebe-8770-55ba-ab2a-eafe787600e9	base
spark-mllib_2.4	390d21f8-e58b-4fac-9c55-d7ceda621326	base
autoai-ts_rt22.2-py3.10	396b2e83-0953-5b86-9a55-7ce1628a406f	base
xgboost_0.82-py3.6	39e31acd-5f30-41dc-ae44-60233c80306e	base
pytorch-onnx_1.2-py3.6-edt	40589d0e-7019-4e28-8daa-fb03b6f4fe12	base
pytorch-onnx_rt22.2-py3.10	40e73f55-783a-5535-b3fa-0c8b94291431	base
default_r36py38	41c247d3-45f8-5a71-b065-8580229facf0	base
autoai-ts_rt22.1-py3.9	4269d26e-07ba-5d40-8f66-2d495b0c71f7	base
autoai-obm_3.0	42b92e18-d9ab-567f-988a-4240ba1ed5f7	base
pmml-3.0_4.3	493bcb95-16f1-5bc5-bee8-81b8af80e9c7	base
spark-mllib_2.4-r_3.6	49403dff-92e9-4c87-a3d7-a42d0021c095	base
xgboost_0.90-py3.6	4ff8d6c2-1343-4c18-85e1-689c965304d3	base
pytorch-onnx_1.1-py3.6	50f95b2a-bc16-43bb-bc94-b0bed208c60b	base
autoai-ts_3.9-py3.8	52c57136-80fa-572e-8728-a5e7cbb42cde	base
spark-mllib_2.4-scala_2.11	55a70f99-7320-4be5-9fb9-9edb5a443af5	base
spark-mllib_3.0	5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9	base
autoai-obm_2.0	5c2e37fa-80b8-5e77-840f-d912469614ee	base

```
spss-modeler 18.1
                                   5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b base
     cuda-py3.8
                                   5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e base
     autoai-kb 3.1-py3.7
                                   632d4b22-10aa-5180-88f0-f52dfb6444d7 base
     pytorch-onnx_1.7-py3.8 634d3cdc-b562-5bf9-a2d4-ea90a478456b base
     Note: Only first 50 records were displayed. To display more use 'limit' parameter.
#then we need to save and deploy our model
import sklearn
sklearn. version
     '1.0.2'
MODEL NAME='Demo ckd'
DEPLOYMENT NAME='CKD predict'
DEMO MODEL=RandomForest
#WE NEED TO SET DEFAULT PYTHON VERSION
software spec uid=wml client.software specifications.get id by name('runtime-22.1-py3.9')
model props={
    wml client.repository.ModelMetaNames.NAME:MODEL NAME,
   wml client.repository.ModelMetaNames.TYPE:'scikit-learn 1.0',
    wml client.repository.ModelMetaNames.SOFTWARE SPEC UID: software spec uid
model details=wml client.repository.store model(
       model=DEMO MODEL,
       meta props=model props,
       training data=X train,
       training target=y train
model details
```

```
{'entity': {'hybrid pipeline software specs': [],
       'label column': 'classification',
       'schemas': {'input': [{'fields': [{'name': 'sg', 'tvpe': 'float64'},
           {'name': 'htn', 'type': 'float64'},
           {'name': 'hemo', 'type': 'float64'},
           {'name': 'dm', 'type': 'float64'},
           {'name': 'al', 'type': 'float64'},
           {'name': 'appet', 'type': 'float64'},
           {'name': 'rc', 'type': 'float64'},
           {'name': 'pc', 'type': 'float64'}],
          'id': '1',
          'type': 'struct'}],
        'output': []},
       'software spec': {'id': '12b83a17-24d8-5082-900f-0ab31fbfd3cb',
        'name': 'runtime-22.1-py3.9'},
       'type': 'scikit-learn 1.0'},
      'metadata': {'created at': '2022-11-14T17:05:42.393Z',
       'id': 'bd42b039-02cd-47f2-89e8-b40dc77c3585',
       'modified at': '2022-11-14T17:05:47.177Z',
       'name': 'Demo ckd',
       'owner': 'IBMid-66300432UH',
       'resource key': '804f00d2-f193-49c7-a320-25b2ba2446f9',
       'space id': 'c6205b3d-f891-4d0f-a099-beb38bc6dd82'},
      'system': {'warnings': []}}
model id=wml client.repositorv.get model id(model details)
model id
     'bd42b039-02cd-47f2-89e8-b40dc77c3585'
deployment props={
    wml client.deployments.ConfigurationMetaNames.NAME:DEPLOYMENT NAME,
    wml client.deployments.ConfigurationMetaNames.ONLINE:{}
```

```
deployment=wml client.deployments.create(
  artifact_uid=model_id,
  meta_props=deployment_props
   Synchronous deployment creation for uid: 'bd42b039-02cd-47f2-89e8-b40dc77c3585' started
   initializing
   Note: online url is deprecated and will be removed in a future release. Use serving urls instead.
   ready
   Successfully finished deployment creation, deployment uid='435db472-41e3-47a9-9b94-9bb7d6130a88'
```

Colab paid products - Cancel contracts here

