Final Year Project Titles for DMAS (June 2022)

Contents

1	Ms Aida Adha Binti Mohd Jamil	2
2	Dr Avik De	3
3	Puan Azimah Binti Mohd	3
4	Dr Chen Huey Voon	4
5	Prof. Dr Chia Gek Ling	5
6	Dr Chong Zhi Lin	5
7	Dr Denis Wong Chee Keong	7
8	Dr Goh Yong Kheng	8
9	Dr Goh Yann Ling	9
10	Ms Hii Siew Chen	9
11	Mr Kuang Kee Seng	10
12	Dr Koh Siew Khew	11
13	Ms Lee Yap Jia	12
14	Dr Liew How Hui	13
15	Ms. Ng Jing Wen	14
16	Dr Ng Kooi Huat	15
17	Dr Ng Wei Shean	16
18	Dr Ong Poh Hwa	16
19	Dr Pang Sook Theng	17
20	Dr Pan Wei Yeing	17

21 Mr. Phoon Sheong Wei	18
22 Dr Qua Kiat Tat	18
23 Dr Sim Hong Seng	19
24 Dr Tan Wei Lun	19
25 Mr Tan Zong Ming	20
26 Dr Teoh Lay Eng	21
27 Ms Wong Kuan Wai	22
28 Dr Wong Wai Kuan	22
29 Dr Wong Voon Hee	22
30 Dr Yap Lee Ken	2 4
31 Dr Yeo Heng Giap Ivan	24
32 Dr Yong Chin Khian	25

1 Ms Aida Adha Binti Mohd Jamil

Lecturer:	Ms Aida Adha Binti Mohd Ja	amil
	(aidaadha@utar.edu.my)	
Areas of Interest:	Statistics, Data Analysis	
Project Title 1:	Survival Analysis on Clinical Data	
Supplement Knowledge:	Applied Statistical Models	
Outline:	This project is to analyze clinical data in order to	de-
	scribe factors associated with trends over time in	the
	persistence and survival rates. The suitable haz	zard
	model has to be fitted and clinical outcomes are de	ter-
	mined to be used to monitor the efficiency of treatme	nts.
Preparation:	R programming	
Project Title 2:	Missing Data Imputation on Environmental Data	
Supplement Knowl-	Applied Statistical Models	
edge:		
Outline:	The pattern of missing data and techniques will be	de-
	termined to estimate the missing observation. The fi	ind-
	ing of this study will propose a feasible method of	im-
	puting missing values in any real dataset.	
Preparation:	R programming, or Python	

2 Dr Avik De

Lecturer:	Dr Avik De (avikde@utar.edu.my)
Areas of Interest:	Relativity & Gravity, Differential Geometry
Project Title 1:	Investigating symmetric teleparallel gravity
Supplement Knowl-	Calculus I and II
edge:	
Outline:	We will look for solutions of the field equations in sym-
	metric teleparallelism, mostly for perfect fluid.
Preparation:	Differentiation and plotting in mathematical software.
Project Title 2:	Investigating Rastall gravity theories
Supplement Knowl-	Calculus I and II
edge:	
Outline:	We will discuss about Rastall gravity theories starting
	from general relativity and investigate this theory and
	its generalizations.
Preparation:	Differentiation and plotting in mathematical software.

3 Puan Azimah Binti Mohd

Lecturer:	Puan Azimah Binti Mohd (azimah@utar.edu.my)
Areas of Interest:	Process Control and Quality Improvement & Opera-
	tional Research
Project Title 1:	Internal Complaints System using Quality Function De-
	ployment (Qfd)
Supplement Knowl-	Statistical Quality Control
edge:	
Outline:	This research was applied to improve the quality of ser-
	vices in company in order to help the services to be
	delivered more effectively and efficiently by translating
	customer requirements into operational requirements of
	the organization.
Preparation:	Basic Microsoft Excel coding
Project Title 2:	An insertion heuristic algorithm for solving the bi-
	objective transportation problem
Supplement Knowl-	Operational Research I & Operational Research II
edge:	
Outline:	The findings of this study are significant to help in dis-
	tribution management to identify a set of routes that
	service all the demand points within their time windows
	at the minimum cost and risk using an insertion heuris-
	tic algorithm.
Preparation:	Basic Microsoft Excel coding

4 Dr Chen Huey Voon

Lecturer:	Dr Chen Huey Voon(chenhv@utar.edu.my)
Areas of Interest:	Algebra and Combinatorics
Project Title 1:	Non-negative Matrix Factorization and its applications
Supplement Knowl-	Linear algebra
edge:	
Outline:	There are many different ways to calculate the non-
	negative matrix factorization. In this project, we study
	the various calculation methods and the applications of
	non-negative matrix factorization.
Preparation:	Some background in linear algebra and programming
	skill
Project Title 2:	Exhaustion Numbers of subsets of finite groups
Supplement Knowl-	Algebra and Combinatorics
edge:	
Outline:	We shall generate the numerical data that satisfied the
	conditions of exhaustion number of subsets of finite
	groups. After that, we need to prove some results in
	this area.
Preparation:	Some background in algebra and programming skill
Project Title 3:	Total Labelling of graphs
Supplement Knowl-	Discrete Mathematics and Combinatorics
edge:	
Outline:	We shall generate the numerical data that satisfied the
	conditions of total labelling. After that, we need to
	prove some results in this area.
Preparation:	Some background in graph theory and programming
	skill

5 Prof. Dr Chia Gek Ling

Lecturer:	Prof. Dr Chia Gek Ling (chiagl@utar.edu.my)
Areas of Interest:	Graph Theory and Combinatorial Designs
Project Title 1:	On Self-Complementary Magic Squares
Supplement Knowl-	UECM1303 Discrete Mathematics
edge:	
Outline:	A magic square of order n is a square array of integers
	from $1, 2,, n^2$ such that the sum of the entries in each
	row, each column and each diagonal is a constant. The
	first part of the project deals with the constructions of
	magic squares of given orders. The second part deals
	with a class magic squares in which the complementary
	magic square is equivalent to itself.
Preparation:	Analytical reasoning.
Project Title 2:	On Power Domination in Graphs
Supplement Knowl-	UECM2313 Graph Theory
edge:	
Outline:	Given an electric power system S , one wishes to place
	as few number of measuring devices as possible (for eco-
	nomic reason) to S and at the same time keeping the
	system under monitored. This problem, known as the
	Power Dominating Set Problem, can be formulated as a
	variation of the well-known dominating set problem in
	graph theory. This project involves the investigation on
	the power dominating set with minimum cardinality for
	several well-known families of graphs.
Preparation:	Analytical reasoning and basic knowledge in graph the-
	ory.

6 Dr Chong Zhi Lin

Lecturer:	Dr Chong Zhi Lin (chongzl@utar.edu.my)
Areas of Interest:	Statistical Quality Control
Project Title 1:	Design of the Shewhart Median Scheme Based on the Percentile-Based Approach when the Process Parame- ters are Unknown
Background Knowledge:	UECM2293 Statistical Quality Control

Outline: Preparation:	Quality of services and products is vitally viewed in the current competitive and challenging business environment. To ensure high-quality services and products, Statistical Process Control (SPC) is widely applied. The Shewhart median (\tilde{X}) scheme is a good substitute to the Shewhart mean (\bar{X}) scheme. The rationale is because compared to the Shewhart \tilde{X} scheme, the Shewhart \bar{X} scheme is not robust to contamination, outliers, and even slight deviation from the normality assumption. The Percentile-Based (PL) approach allows the design of control schemes where practitioners can ensure the desired conditions on in-control (IC) and out-of-control (OOC) run length (RL) performances are satisfied with chosen probabilities. In other words, using the PL approach, we can guarantee the IC and OOC RL performances with desired probabilities. Note that in real-life situation, the process parameters are usually unknown, hence it would be interesting to study the Shewhart \tilde{X} scheme based on the PL approach when the process parameters are unknown.
Project Title 2:	Performance comparison of the Max-EWMA Scheme
	and Other Schemes based on the Expected Average Run
Background Knowl-	Length criterion UECM2293 Statistical Quality Control
Background Knowledge:	OECM2293 Statistical Quanty Control
Outline:	Control charting techniques for monitoring the mag-
	nitude and frequency of an event are important in
	many industries. Recently, the maximum exponentially
	weighted moving average (Max-EWMA) chart is pro-
	posed for jointly monitoring the magnitude and fre-
	quency of an event at the same time. The Max-EWMA
	chart's statistic is based on the maximum of the abso-
	lute values of two EWMA statistics - one for controlling
	the magnitude and the other for the frequency of an
	event. The Max-EWMA scheme in the literature is de-
	sign based on the Average Run Length (ARL) criterion.
	However, in practical situation, the shift sizes are usually
	unknown. In this research, we design the Max-EWMA scheme based on the Expected Average Run Length cri-
	terion to account for unknown shift sizes situation, and
	compare this scheme with other competing schemes.
Preparation:	Knowledge in programming and control chart, R pro-
1 Toportoni.	gramming
	9

7 Dr Denis Wong Chee Keong

Lecturer:	Dr Denis Wong Chee Keong (deniswong@utar.edu.my)
Areas of Interest:	Cryptography
Project Title 1:	Cryptographic Primitives in E-Voting System based on
	Blockchain Technology
Supplement Knowl-	UECM3383 Cryptology, UECM3373 Introduction to
edge:	Coding Theory
Outline:	Study and construct cryptographic primitives such as
	PKE, DSA, ZKP, etc use in E-Voting system based on
	blockchain technology.
Preparation:	UECM3383 Cryptology, UECM3373 Introduction to
	Coding Theory
Project Title 2:	Heritage Building Preservation with Blockchain Tech-
	nology
Supplement Knowl-	UECM3383 Cryptology
edge:	
Outline:	Preform a thorough survey on Malaysia heritage build-
	ing preservation's works and propose a system to im-
	prove current practice.
Preparation:	UECM3383 Cryptology

8 Dr Goh Yong Kheng

Lecturer:	Dr Goh Yong Kheng (gohyk@utar.edu.my)
Areas of Interest:	Statistical mechanics, computational finance, bioinformatics
Project Title 1:	Numerical simulation of Swift-Hohenberg equation
Supplement Knowledge:	Numerical analysis, partial differential equations, Python
Outline:	The Swift-Hohenberg is a 2D partial differential equation that exhibit patterns formation under different parameters. In this project, student are expected to review the equation and solve it numerically by using psedospectral method. Student then could explore different patterns formed by changing different parameters and non-linear noise.
Preparation:	try out some Python tutorials, find and read information on Swift-Hohenberg equations.
Project Title 2:	Probability distribution construction via Deep Learning
Supplement Knowledge:	Python, taken predictive modelling or data mining
Outline:	The idea is to use Generative Adversarial Network (GAN) to construct the marginal and conditional probability of some events from data. GAN is a deep learning algorithm. When given a set of sample data, GAN will be able to generate data that is similar to the input sample. In recent years there were operations in cyberspace to crackdown media generated from the DeepFake algorithm. This DeepFake is an example of a GAN application. Other applications of GAN are in recommender systems and artist styles classification. The idea of the algorithm is the competition between two AI entities: a generator and a discriminator. One tries to generate artificial data, and one tries to uncover the imposters. Once the algorithm is trained, the generator will be able to generate artificial samples that are similar enough to the input data. In this project we would like to try out if this method if it can help to construct probability distributions from sample data non-parametrically.
Preparation:	Be familiarize scikit-learn and tensorflow. Revision on probability distributions.

9 Dr Goh Yann Ling

Lecturer:	Dr Goh Yann Ling (gohyl@utar.edu.my)
Areas of Interest:	Applied Statistics, Applied Mathematics
Project Title 1:	Curve Fitting in Industry
Supplement Knowl-	probability and statistics, linear regression
edge:	
Outline:	The research project requires some understanding in
	least squares regression. Student will learn how to fit
	the "best" polynomial through a set of uncertain data
	points and evaluate the validity of the results.
Preparation:	Strong background in linear regression, good program-
	ming skill.
Project Title 2:	Big Data Analysis in Business
Supplement Knowl-	probability and statistics
edge:	
Outline:	In the project, the student will conduct the data analy-
	sis in business and provide interpretations for the final
	conclusions.
Preparation:	Good programming skill

10 Ms Hii Siew Chen

Lecturer:	Ms Hii Siew Chen (hiisc@utar.edu.my)
Areas of Interest:	Statistical Quality Control, Applied Statistics
Project Title 1:	A study of robust statistics in analyzing data.
Supplement Knowl-	Students must have strong robust statistics knowledge.
edge:	
Outline:	An introduction to robust statistics and will study some
	methods in analyzing data. Meeting with supervisor for
	further discussion.
Preparation:	Good R-programming skill.
Project Title 2:	A study of a specific control chart in various areas.
Supplement Knowl-	Students must have strong statistical quality control
edge:	knowledge.
Outline:	An introduction to a specific control chart and a study
	of its application. The details will be discussed when
	meeting with supervisor.
Preparation:	Good R-programming skill.

11 Mr Kuang Kee Seng

Lecturer:	Mr Kuang Kee Seng (kuangks@utar.edu.my)
Areas of Interest:	Mathematical Theory of Investment, Universal Portfolio
Project Title 1:	Universal Portfolio generated by some positive definite
	matrices
Supplement Knowl-	None
edge:	
Outline:	The student will be introduce with basic theory of uni-
	versal portfolio and some basic stock trading investment
	strategies. Meet supervisor for more detail.
Preparation:	Basic Microsoft Excel coding. Matlab would be helpful.
Project Title 2:	Universal Portfolio generated by some probability dis-
	tribution functions
Supplement Knowl-	None
edge:	
Outline:	The student will be introduce with basic theory of uni-
	versal portfolio and some basic stock trading investment
	strategies. Meet supervisor for more detail. Meet super-
	visor for more detail.
Preparation:	Basic Microsoft Excel coding. Matlab would be helpful.

12 Dr Koh Siew Khew

Lecturer:	Dr Koh Siew Khew (kohsk@utar.edu.my)
Areas of Interest:	Statistics, Queueing Theory, Machine Learning, Markov
	Chain
Project Title 1:	Home Activities Pattern Analysis
Supplement Knowl-	Probability and Statistics
edge:	
Outline:	In this project, the activities of living alone elderly will
	be analyzed and those activities that could never hap-
	pened will be identified. The work could be extended
	to anomaly detection to help in monitoring the elderly's
	health condition.
Preparation:	Python/ Java
Project Title 2:	Health Anomalies Detection
Supplement Knowl-	Probability and Statistics
edge:	
Outline:	Data collected on daily activities using evolving tech-
	nology will be processed and analyzed. Basic statistical
	measures and graphical representations will be calcu-
	lated and created in order to get better insight about
	the data set. A system will then be designed to detect
	anomaly performed by the individual.
Preparation:	Python/ Java
Project Title 3:	Maintenance of Queueing Systems with deterioration
Supplement Knowl-	Stochastic Processes, Fundamental of Queueing Theory
edge:	
Outline:	This project will study a system in which the server
	would deteriorate due to random shocks and hence find
	the specified maintenance level such that the long run
	average cost is minimized.
Preparation:	Python/ Java

13 Ms Lee Yap Jia

Lecturer:	Ms Lee Yap Jia (yjlee@utar.edu.my)
Areas of Interest:	Universal Portfolio
Project Title 1:	Investment Strategies by the Reverse Kullback-Leibler
	Divergence Universal Portfolio
Supplement Knowl-	Information Theory and Portfolio Theory
edge:	
Outline:	This project aims to produce good investment strategies
	by studying the empirical performance in the real stock
	market of universal portfolio.
Preparation:	Microsoft Excel (VBA), R Programming (RStudio)
Project Title 2:	Universal Portfolio Generated by the Kullback-Leibler
	and Chi-Square Divergences
Supplement Knowl-	Information Theory and Portfolio Theory
edge:	
Outline:	This project aims to explore and discuss more applica-
	tions of minimum distance methods in generating uni-
	versal portfolio.
Preparation:	Microsoft Excel (VBA), R Programming (RStudio)

14 Dr Liew How Hui

Lecturer:	Dr Liew How Hui (liewhh@utar.edu.my)
Areas of Interest:	Computers and Mathematics
Project Title 1:	Mathematics of 2D Modelling
Supplement Knowl-	UECM1703 Introduction to Scientific Computing
edge:	
Outline:	This project will explore the mathematics related to 2D
	modelling, which is used in typesetting and Calculus
	(e.g. the drawing of function graph). The methodol-
	ogy will involve the identification of mathematical rep-
	resentations and operations related to 2D graphics and
	the various mathematical techniques to generate 2D pat-
Preparation:	terns. https://en.wikipedia.org/wiki/2D_computer_graphics
-	- 11
Project Title 2: Supplement Knowl-	Mathematics of Typesetting with Troff UECM1703 Introduction to Scientific Computing
edge:	OECM1705 Introduction to Scientific Computing
Outline:	This project will explore the mathematics related to ty-
O donne.	pography, which analyses the mathematical representa-
	tion behind vector fonts (and bitmap fonts) and the sim-
	ple and advanced mathematics in breaking paragraphs
	into lines. The methodology will involve the analysis of
	truetype and opentype fonts and the decision tree for
	unicode paragraph breaking.
Preparation:	https://en.wikipedia.org/wiki/Typography and
1 Toparation.	installing GNU/Linux (https://ubuntu.com/ or
	https://linuxmint.com/)
Project Title 3:	Computer Proving in Elementary Real Analysis
Supplement Knowl-	Discrete Mathematics, C Programming, Real Analysis
edge:	
Outline:	Logic is the foundation of mathematics. Logic is sup-
	posed to be coded in symbols. In this project, we will
	investigate how to encode real analysis in a computer
	program called Coq. Coq is a computer program that
	allows us to prove mathematics using intuinistic (and
	classical) logic.
Preparation:	Study Coq (the book "Interactive Theorem Proving
	and Program Development Coq'Art: The Calculus
	of Inductive Constructions" by Yves Bertot, Pierre
	Castéran can be found in the library and also look at https://coq.inria.fr/)
I	1100ps.//COq.11111a.11/)

Project Title 4:	Computer Algebra System based on C-like Language
Supplement Knowl-	Willingness to learn modern C++ language
edge:	
Outline:	Investigate and extend the algorithms used in C++-
	based computer algebra system such as Math-
	omatic (https://github.com/mfillpot/mathomatic),
	Yacas (http://www.yacas.org/), Xcas (http://www-
	fourier.ujf-grenoble.fr/ parisse/giac.html) etc.
Preparation:	C++11 / Java and reading books on computer algebra.

15 Ms. Ng Jing Wen

Lecturer:	Ms. Ng Jing Wen (ngjw@utar.edu.my)
Areas of Interest:	Statistical Quality Control
Project Title 1:	An Exponentially Weighted Moving Average (EWMA)
	Control Chart to monitor process median
Background Knowl-	UECM2293 Statistical Quality Control
edge:	
Outline:	The fundamental principle of a control chart is to dis-
	cover irregular incidents as early as possible and to as-
	sess the effectiveness and sustainability of an industrial
	production. The sensitivity of the traditional Shewhart
	control chart in detection of large process shift is high
	but the detection for small process shift is low. For cases
	with the focus on the detection of small process mean shifts, EWMA chart are chosen as an effective replace-
	ment of the traditional control chart. In this project,
	we will study the use of EWMA median chart when the
	process running for some times and the dataset might
	contains outlying values
Preparation:	MS Excel / SAS / R programming
Project Title 2:	Design of the synthetic chart to monitor process median
	based on ranked set sampling
Background Knowl-	UECM2293 Statistical Quality Control
edge:	
Outline:	In this project, we will study the use of ranked set sam-
	pling in the construction of synthetic chart. The run
	length performance of synthetic chart based on simple
	random sampling (SRS) and ranked set sampling (RSS)
	is compared. An example is also given to demonstrate
	how the chart is constructed in the real-life situation.
Preparation:	MS Excel / SAS / R programming

16 Dr Ng Kooi Huat

Lecturer:	Dr Ng Kooi Huat (khng@utar.edu.my)
Areas of Interest:	Statistical Process Control, Time Series Forecasting,
	Applied Statistical Modelling, Data Analysis etc.
Project Title 1:	Change Point Detection in Financial Time Series Fore-
	casting.
Supplement Knowl-	Elementary Statistics, Time Series Analysis, Applied
edge:	Statistical Model etc.
Outline:	Change point analysis prevents the omission of relevant
	data as well as the forecasting that may be based on ir-
	relevant data. The project demonstrates that the change
	point techniques may increase the accuracy of forecasts.
Preparation:	Knowledge of R Programming.
Software:	R Programming or Other Statistical Softwares.
Project Title 2:	Monitoring of Contaminated Data Using Robust Con-
	trol Charts
Supplement Knowl-	Elementary Statistics, Statistical Process Control etc.
edge:	
Outline:	In this project, we investigate the advantage of using
	control charts based on robust statistics. Through the
	use of Monte Carlo simulations, we compare these charts
	in terms of its robustness and performance.
Preparation:	Knowledge of R Programming.
Software:	R Programming or Other Statistical Softwares.

17 Dr Ng Wei Shean

Lecturer:	Dr Ng Wei Shean (ngws@utar.edu.my)
Areas of Interest:	Linear Algebra
Project Title 1:	Interpolative decomposition and its applications
Supplement Knowl-	Interpolative decomposition, some programming skill
edge:	
Outline:	Study the structure of the decomposition and find its
	applications. Investigate and/or improvised the algo-
	rithms used.
Preparation:	Read about interpolation decomposition and learn at
	least one programming language.
Project Title 2:	Compound-commuting mappings on skew-Hermitian
	matrices
Supplement Knowl-	Linear Algebra
edge:	
Outline:	Classify compound commuting mappings on skew-
	Hermitian matrices
Preparation:	Strengten the background of Linear Algebra by exten-
	sive reading

18 Dr Ong Poh Hwa

Lecturer:	Dr Ong Poh Hwa (ongph@utar.edu.my)
Areas of Interest:	Graph Theory
Project Title 1:	Self-clique Graphs
Supplement Knowl-	Discrete Mathematics, Graph Theory
edge:	
Outline:	This project will study the characterization of all con-
	nected self-clique graphs with given clique sizes. After
	that, we need to find some graphs with certain clique
	sizes.
Preparation:	None.
Project Title 2:	On Isomorphisms of Cayley Graphs
Supplement Knowl-	Discrete Mathematics, Graph Theory
edge:	
Outline:	This project will study the isomorphism problems of
	Cayley graphs and some enumeration results on Cay-
	ley graphs. After that, we need to prove some results in
	this area.
Preparation:	None.

19 Dr Pang Sook Theng

Lecturer:	Dr Pang Sook Theng (pangst@utar.edu.my)
Areas of Interest:	Universal Portfolio , Mathematics Education
Project Title 1:	Comparative analysis of the performace of universal
	portfolios during COVID 19 Pandemic
Supplement Knowl-	Have knowledge in investment strategy
edge:	
Outline:	Using different investment strategy in maximizing the
	return
Preparation:	knowledge in Matlab, Excel or Python.
Project Title 2:	Impact of lockdown on learning status of undergradu-
	ate students during COVID-19 pandemic in a private
	universiti in Malaysia.
Supplement Knowl-	Knowledge in statistics.
edge:	
Outline:	Differential the method in analyzing the data.
Preparation:	knowledge in any statistical software

20 Dr Pan Wei Yeing

Lecturer:	Dr Pan Wei Yeing (panwy@utar.edu.my)
Areas of Interest:	Computers and Mathematics
Project Title 1:	Analyzing investment performance
Supplement Knowl-	Probability and Statistics
edge:	
Outline:	The proposed title is to analyze the return on an invest-
	ment portfolio. The investment performance is analyzed
	by using the risk-adjusted performance measures over a
	specific period of time.
Preparation:	Knowledge in programming, i.e. R, Python or Java
Project Title 2:	Predicting medical expenses by using a machine learning
	model
Supplement Knowl-	Probability and Statistics
edge:	
Outline:	The proposed title is to predict medical expenses by us-
	ing a machine learning model. Basic statistical measures
	and graphical representations will be used to observe the
	relationships of variables. A model will be formed to
	predict the medical expenses.
Preparation:	Knowledge in programming, i.e. R, Python, or Java

21 Mr. Phoon Sheong Wei

Lecturer:	Mr. Phoon Sheong Wei (swphoon@utar.edu.my)
Areas of Interest:	Universal Portfolio
Project Title 1:	Type I Reciprocal of Price Relatives Universal Portfolio
Supplement Knowl-	None
edge:	
Outline:	This project will study the empirical stock performance
	of Type I reciprocal of price relative universal portfolio.
	Few positive definite matrices will be used in generating
	the universal portfolio. Please meet the supervisor for
	more detail.
Preparation:	Microsoft Excel (VBA) or R
Project Title 2:	Mahalanobis universal portfolio generated by $(2k+1)$ -
	bandwidth Toeplitz matrix
Supplement Knowl-	None
edge:	
Outline:	This project will study how the Toeplitz matrix will af-
	fect the performance of the Mahalanobis universal port-
	folio. Please meet the supervisor for more detail.
Preparation:	Microsoft Excel (VBA) or R

22 Dr Qua Kiat Tat

Lecturer:	Dr Qua Kiat Tat (quakt@utar.edu.my)
Areas of Interest:	Ring theory
Project Title 1:	On fine clean rings
Supplement Knowl-	Fundamentals of Linear Algebra
edge:	
Outline:	The main purpose of this study is to investigate proper-
	ties of fine clean rings.
Preparation:	Good algebra background
Project Title 2:	On fine clean graph rings
Supplement Knowl-	Fundamentals of linear algebra, graph theory
edge:	
Outline:	The main purpose of this study is to investigate proper-
	ties of fine clean rings and its graph representation.
Preparation:	Moderate algebra and graph theory background and
	able to do some simple programming.

23 Dr Sim Hong Seng

Lecturer:	Dr Sim Hong Seng (simhs@utar.edu.my)
Areas of Interest:	Optimization Techniques and Applications
Project Title 1:	Physics Informed Neural Network for Solving Nonlinear
	Partial Differential Equations
Supplement Knowl-	Calculus I and II, Linear Algebra, Numerical Methods,
edge:	Ordinary Differential Equations.
Outline:	Optimization techniques will be incorporated in the
	Physics Informed Neural Network in solving nonlinear
	partial differential equations. The efficiency of the mod-
	ified method will be compared with some existing meth-
	ods in terms of number of iterations and computational
	time.
Preparation:	MATLAB / Python
Project Title 2:	Solving of Linear System using Optimization Techniques
Supplement Knowl-	Calculus I and II, Linear Algebra, Numerical Methods
edge:	
Outline:	Optimization techniques will be modified in order to
	solve linear system of equations. The efficiency of the
	modified method will be compared with some existing
	methods in terms of number of iterations and computa-
	tional time.
Preparation:	MATLAB / Python

24 Dr Tan Wei Lun

Lecturer:	Dr Tan Wei Lun(tanwl@utar.edu.my)
Areas of Interest:	Rainfall Modeling, Environmental Statistics, Markov
	Chain, Hidden 'Markov Chain
Project Title 1:	Parameter Estimation for Generalized Extreme Value in
	extreme rainfall analysis.
Supplement Knowl-	Knowledge in Statistics
edge:	
Outline:	In this project, we will determine the best method to es-
	timate parameters of Generalized Extreme Value (GEV)
	distribution on extreme rainfall data.
Preparation:	Matlab or R-programming
Project Title 2:	Markov chain model for daily rainfall
Supplement Knowl-	Stochastic Processes
edge:	
Outline:	In this project, we will demonstrates the application
	of Markov chain model to study the rainfall pattern in
	Malaysia.
Preparation:	Matlab or R-programming

25 Mr Tan Zong Ming

Lecturer:	Mr Tan Zong Ming (tanzm@utar.edu.my)
Areas of Interest:	Applied Statistics, Financial Mathematics
Project Title 1:	Research on Stock Analysis and Trading Strategies
Supplement Knowl-	Financial Statement Analysis, Mathematics Statis-
edge:	tic/Predictive Modelling/Statistical Decision
Outline:	Fundamental and Technical analysis on selected pub-
	lic listed company. Construct model to evaluate the
	public listed company thus estimate the entry and exit
	price. Monitor the stock price and suggest short-term
	and long-term stock trading strategics.
Preparation:	Microsoft Excel or any other programming software
Project Title 2:	Research on Candle Stick chart for stock trading
Supplement Knowl-	Statistics
edge:	
Outline:	Build Candle Stick chart based on stock price and/or
	trading volume. Construct model that consists of deci-
	sion tree that can provide any decision or trading strate-
	gics. Compare the performance of the model with other
	existing technical analysis tools.
Preparation:	Microsoft Excel or any other programming software

26 Dr Teoh Lay Eng

ay Eng (teohle@utar.edu.my)
s Research (transportation system)
ental Analysis for Electric Bus Operational System
s Research
e to the worldwide environmental concern in particular on
ange and global warming, it is of utmost vital to capture
nmental performance of transportation system. Corre-
y, this project aims to perform environmental analysis in electric buses. In order to do this, student is required
ine total energy consumption, emission and noise level of
ing electric buses, by considering heterogeneous bus fleet.
ying the best performing electric bus, a proper fleet plan-
be carried out in determining the required bus size and
o support the entire operating system. It is anticipated
environmental analysis and fleet planning are beneficial
o the bus operators (in terms of cost saving) but also to
nment in reducing total pollutants.
indamental skills in performing statistical analysis as well
ying optimization approaches for the relevant problem-
· · · · · · · · · · · · · · · · · · ·
ning for Electric Bus under Uncertainty
s research
se to the global environmental issue and fossil oil de-
concern, electric bus has been proposed as one of the
transports in green mobility. Correspondingly, a proper-
deet planning (in terms of demand and supply analysis)
required to assure an environmental-friendly operation
bus. Thus, this project aims to perform demand and
alysis (for fleet planning purposes) in operating electric
er uncertainty. To do this, student is required to model
g demand level appropriately (demand aspect) so that
ponding fleet planning decision-making (supply aspect)
ade at a desired level for heterogeneous bus fleet. It is d that the fleet planning will reveal useful insights, espe-
ne bus operators, in providing a sustainable and profitable
is operation.
indamental skills in performing statistical analysis as well
ying optimization approaches for the relevant problem-
-

27 Ms Wong Kuan Wai

Lecturer:	Ms Wong Kuan Wai (wongkw@utar.edu.my)
Areas of Interest:	Cryptography, information security
Project Title 1:	Study of cascading chaotic systems
Supplement Knowl-	Cryptology
edge:	
Outline:	The student will study existing chaotic systems and ap-
	ply cascading method to enhance the chaotic behaviors
	of the chaotic systems.
	Meet supervisor for more details.
Preparation:	Matlab
Project Title 2:	Chaotic based Image Encryption Scheme
Supplement Knowl-	Cryptology
edge:	
Outline:	The student will be introduced with some basic image
	encryption techniques and the application of chaotic sys-
	tem in the design.
	Meet supervisor for more details.
Preparation:	Matlab

28 Dr Wong Wai Kuan

Lecturer:	Dr Wong Wai Kuan (wongwk@utar.edu.my)
Areas of Interest:	Applied Statistics, Statistical Quality Control
Project Title 1:	Goodness-of-fit tests
Supplement Knowl-	Probability and Statistics II
edge:	
Outline:	Goodness-of-fit tests are used to test whether the data
	follows a certain distribution. This project will study
	some goodness-of-fit tests. Power comparison will be
	made among the goodness-of-fit tests studied.
Preparation:	Knowledge in programming.
Project Title 2:	Statistical control charts
Supplement Knowl-	Probability and Statistics II
edge:	
Outline:	The construction of control charts is based on the as-
	sumption that the data is normally distributed. This
	project will study selected control chart(s) when the
	data is not normally distributed.
Preparation:	Knowledge in programming.

29 Dr Wong Voon Hee

Lecturer:	Dr Wong Voon Hee (wongvh@utar.edu.my)
Areas of Interest:	Statistical Quality Control (SQC), Data Analytics
Project Title 1:	An Improved Voice-to-Text Transcription for Business Solutions
Supplement Knowl-	Completed industrial training at SunLife Malaysia Assurance
edge:	Berhad
Outline:	Sun Life Malaysia is looking for the speech analytics solutions to
	boost the customers' engagement, to offer better customer services
	and to enhance the business outcomes. To achieve a "bionic" model
	that seamlessly combines human advisors and automated solutions.
Preparation:	MS Excel / Python / R Programming
Project Title 2:	Customer Lifetime Value Model for Business Solutions
Supplement Knowl-	Completed industrial training at SunLife Malaysia Assurance
edge:	Berhad
Outline:	Sun Life Malaysia has strived to strengthen their clients' portfolio
	by acquiring and retaining the most potential profitable clients. In
	order for this to be happened, current and potential clients had
	to be clearly classified in a way that not only specified how much
	would a client value in the near future, but also in the long run,
	until its relationship with the company lasted. Customer Lifetime
	Value (CLV) would be the solution to measure clients according to their potential monetary value over various periods of time. The
	main objective of this project was to apply survival model into one
	of the CLV model.
Preparation:	MS Excel / Python / R Programming
Project Title 3:	Operational Research Binary Integer Programming
Supplement Knowl-	Completed industrial training at SunLife Malaysia Assurance
edge:	Berhad
Outline:	Sun Life Malaysia is planning to build a collection optimization en-
	gine to maximize the collection effort. To make the most of each
	individual customer contact by determining how business variables
	– e.g., resource and budget constraints, contact policies, the like-
	lihood that customers will respond and more that will affect out-
	comes. The system / engine can help in choosing which customers
	to target to maximize profitability, boost response rates, etc., while
	taking into account customer preferences, propensities, profitabil-
	ity, costs, contact policies and other goals.
Preparation:	MS Excel / Python / R Programming

30 Dr Yap Lee Ken

Lecturer:	Ms Yap Lee Ken (lkyap@utar.edu.my)
Areas of Interest:	Numerical Analysis
Project Title 1:	Numerical Solutions for Delay Differential Equations
Supplement Knowl-	Numerical methods, C Programming
edge:	
Outline:	We shall derive numerical methods for solving delay dif-
	ferential equations. The C-program will be compiled to
	test the efficiency of the numerical methods.
Preparation:	Strong background in numerical analysis and good pro-
	gramming skill.
Project Title 2:	Block Hybrid Collocation Methods for the Numerical
	Solution of Fourth Order Ordinary Differential Equa-
	tions
Supplement Knowl-	Numerical methods, C Programming, Matematica
edge:	
Outline:	We shall derive numerical methods for solving fourth
	order ordinary differential equations. The derivation in-
	volves interpolation and collocation of basic polynomial.
	The C-program will be compiled to test the efficiency of
	the numerical methods.
Preparation:	Strong background in numerical analysis and good pro-
	gramming skill.

31 Dr Yeo Heng Giap Ivan

Lecturer:	Dr Yeo Heng Giap Ivan (yeohg@utar.edu.my)
Areas of Interest:	Operations Research
Project Title 1:	A Batch Shipment Inventory Model With Time-varying
	Demand
Supplement Knowl-	Calculus
edge:	
Outline:	This project aims to develop a mathematical model of an
	inventory system that satisfies a time-varying demand
	function over a finite planning horizon by shipping out
	the finished product in batches.
Preparation:	Learn programming skills using Excel or Matlab.
Project Title 2:	Computer Simulation of Truels
Supplement Knowl-	None
edge:	
Outline:	This project aims to develop computer simulation of tru-
	els. Several rules will be consider, i.e. sequential fixed
	order, sequential random order, finite bullets, infinite
	bullets.
Preparation:	Learn programming skills using Excel or Matlab.

32 Dr Yong Chin Khian

Lecturer:	Dr Yong Chin Khian (yongck@utar.edu.my)
Areas of Interest:	Applied Statistics and Financial Economics
Project Title 1:	Analyzing PCFCCE using Bayesian Network
Supplement Knowl-	Probability and Statistics I & II or Statistical Inference,
edge:	Design of Experiments
Outline:	This project will analyze Partially Confounded Factorial
	Conjoint Choice Experiments using Baysian Network.
Project Title 2:	Assessing Consumers' Behavior Using PCFCCE
Supplement Knowl-	Probability and Statistics I & II or Statistical Inference,
edge:	Design of Experiments
Outline:	This project will use Partially Confounded Factorial
	Conjoint Choice Experiments to asses consumers' be-
	havior toward certain products.
Project Title 3:	Valuing Equity-Linked death benefits
Supplement Knowl-	Financial Economics II or Derivative Security and Life
edge:	Contingencies
Outline:	This project use the Option Pricing and Actuarial
	Present Value to price equity-linked death benefits.
Project Title 4:	Parameters Estimation for CIR Model
Supplement Knowl-	Probability and Statistics I & II, Financial Economics
edge:	II or Derivative Security
Outline:	This project will use Kalman Filter to estimate the pa-
	rameters in CIR Model.
Project Title 5:	Estimating Limited Fluctuation Credibility Using Exact
	Distribution
Supplement Knowl-	Probability and Statistics I & II, Credibility Theory
edge:	
Outline:	This project will use certain non-normal distribution to
	estimated the expected number of claims for full credi-
	bility.
D : + T:-1 . 0	M. I. II. MOMO
Project Title 6:	Modelling Claims Using MCMC
Supplement Knowl-	Probability and Statistics I & II, Credibility Theory and
edge:	Stochastic Processes.
Outline:	This project will use Markov Chain Monte Carlo simulation to action at all lives a remaining
D : + W:-1 =	lation to estimated claims premiums.
Project Title 7:	Using GARCH Models to Estimate CTE
Supplement Knowl-	Probability and Statistics I & II, Applied Stat Models,
edge:	Loss Models This project will evaluate the performance of CARCH.
Outline:	This project will evaluate the performance of GARCH
	(genralized Auto Regressive Conditional Hetrocedastic)
	models in modelling daily Conditional Tail Expectation(CTE) of certain portfolios.
	tion(O 1 12)or certain portionos.

Project Title 8:		Interval Estimate of Credibility
Supplement	Knowl-	Probability and Statistics I & II, Credibility
edge:		
Outline:		This project will find the confidence interval of the vari-
		ance hypothetical means of the Buhlmann models.