1. Consider the differential equation:

$$\frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) + \lambda u(x,y) = 0 \quad (1)$$

in the strip $\{(x,y) \mid 0 < y < \pi, -\infty < x < \infty\}$ with boundary conditions

$$u(x,0) = 0, \ u(x,\pi) = 0.$$
 (2)

Find all bounded solutions of the boundary value problem (1),(2) when

- (a) $\lambda = 0$,
- (b) $\lambda > 0$
- (c) $\lambda < 0$.

Solution

We assume u(x,y) = X(x)Y(y), and separate variables to get

$$0 = X''Y + XY'' + \lambda XY \ \Rightarrow \ \frac{Y''}{Y} = -\frac{X'' + \lambda X}{X} = \mu$$

for some constant μ . The boundary conditions on Y, namely, $Y(0) = Y(\pi) = 0$, imply that $Y = \sin(ky)$ with $\mu_k = -k^2$ for $k \ge 1$ integral. The equation that X then satisfies

$$X'' + (\lambda - k^2)X = 0,$$

subject to the condition that X(x) be bounded on $-\infty < x < \infty$. Such nontrivial solutions only exist when $\lambda \ge k^2$. It follows that, if $\lambda \ge 1$,

$$u(x,y) = \sum_{1 \le k \le \sqrt{\lambda}} c_k X_k(x) \sin(ky)$$

for some constants c_k . Otherwise, the only bounded solution is the trivial solution $u \equiv 0$.

2. Let $C^2(\overline{\Omega})$ be the space of twice continuously differentiable functions in the bounded smooth closed domain $\overline{\Omega} \subset \mathbb{R}^2$. Let $u_0(x,y)$ be the function that minimizes the functional

$$D(u) = \iint_{\Omega} \left(\left(\frac{\partial u}{\partial x}(x,y) \right)^2 + \left(\frac{\partial u}{\partial y}(x,y) \right)^2 + f(x,y)u(x,y) \right) dx dy + \int_{\partial \Omega} a(s)u(x(s),y(s))^2 ds,$$

where f(x,y) and a(s) are given continuous functions and ds is the arclength element on $\partial\Omega$.

Find the differential equation and the boundary condition that u_0 satisfies.

Solution

If $u = u_0$ minimizes D, then $g(\epsilon) = D(u + \epsilon v)$ must have vanishing derivative at $\epsilon = 0$ for all $v \in C^2(\overline{\Omega})$. We have

$$g(\epsilon) = D(u + \epsilon v) = \int_{\Omega} \left(|\nabla (u + \epsilon v)|^2 + f(u + \epsilon v) \right) + \int_{\partial \Omega} a(u + \epsilon v)^2,$$

so we compute

$$g'(0) = \int_{\Omega} (2\nabla u \cdot \nabla v + fv) + \int_{\partial\Omega} 2auv$$
$$= \int_{\Omega} (-2\Delta u + f) v + \int_{\partial\Omega} (2au + \nabla u \cdot \nu) v.$$

For g'(0) to vanish for all v, we'd thus require $\Delta u = \frac{1}{2}f$ on Ω and $2au + \partial u/\partial \nu = 0$ on $\partial\Omega$.

3. Let $f(x_1, x_2)$ be a continuous function with compact support. Define

$$u(x_1, x_2) = \frac{1}{2\pi} \iint_{\mathbb{R}^2} \frac{f(y_1, y_2)}{z - w} dy_1 dy_2$$

where $z = x_1 + ix_2$, $w = y_1 + iy_2$. Prove that

$$\frac{\partial u}{\partial x_1} + i \frac{\partial u}{\partial x_2} = f(x_1, x_2) \text{ in } \mathbb{R}^2.$$

Solution

By a change of variables,

$$u(x_1, x_2) = \frac{1}{2\pi} \iint \frac{f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2.$$

Due to the integrability of the integrand near 0, we can say that

$$u(x_1, x_2) = \lim_{\epsilon \searrow 0} \frac{1}{2\pi} \iint_{|z| \ge \epsilon} \frac{f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2.$$

We thus compute, for $\epsilon > 0$, using integration by parts (and keeping in mind that f vanishes for large |z|),

$$\begin{split} &\frac{\partial}{\partial x_1} \left(\frac{1}{2\pi} \iint_{|z| \ge \epsilon} \frac{f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2 \right) \\ &= \frac{1}{2\pi} \iint_{|z| \ge \epsilon} \frac{\frac{\partial}{\partial x_1} f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2 \\ &= -\frac{1}{2\pi} \iint_{|z| \ge \epsilon} \frac{\frac{\partial}{\partial z_1} f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2 \\ &= -\frac{1}{2\pi} \int_{|z| = \epsilon} f(x_1 - z_1, x_2 - z_2) \frac{1}{z_1 + iz_2} \cdot \nu_1 ds_{z_1, z_2} \\ &+ \frac{1}{2\pi} \iint_{|z| \ge \epsilon} f(x_1 - z_1, x_2 - z_2) \frac{\partial}{\partial z_1} \frac{1}{z_1 + iz_2} dz_1 dz_2. \end{split}$$

Now

$$\frac{\partial}{\partial z_1} \frac{1}{z_1 + iz_2} = -\frac{1}{(z_1 + iz_2)^2},$$

while, since $\nu_1 = -z_1/\epsilon$ (the inward normal) and $z_1^2 + z_2^2 = \epsilon^2$ on $|z| = \epsilon$,

$$\frac{1}{z_1 + iz_2} \cdot \nu_1 = \frac{z_1 - iz_2}{z_1^2 + z_2^2} \cdot \left(-\frac{z_1}{\epsilon}\right) = -\frac{z_1^2}{\epsilon^3}.$$

We thus obtain

$$\frac{\partial}{\partial x_1} \left(\frac{1}{2\pi} \iint_{|z| \ge \epsilon} \frac{f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2 \right)$$

$$= \frac{1}{2\pi \epsilon^3} \int_{|z| = \epsilon} f(x_1 - z_1, x_2 - z_2) z_1^2 ds_{z_1, z_2}$$

$$- \frac{1}{2\pi} \iint_{|z| \ge \epsilon} f(x_1 - z_1, x_2 - z_2) \frac{1}{(z_1 + iz_2)^2} dz_1 dz_2.$$

A similar derivation gives

$$i\frac{\partial}{\partial x_2} \left(\frac{1}{2\pi} \iint_{|z| \ge \epsilon} \frac{f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2 \right)$$

$$= \frac{1}{2\pi\epsilon^3} \int_{|z| = \epsilon} f(x_1 - z_1, x_2 - z_2) z_2^2 ds_{z_1, z_2}$$

$$+ \frac{1}{2\pi} \iint_{|z| \ge \epsilon} f(x_1 - z_1, x_2 - z_2) \frac{1}{(z_1 + iz_2)^2} dz_1 dz_2,$$

and so

$$\left(\frac{\partial}{\partial x_1} + i\frac{\partial}{\partial x_2}\right) \left(\frac{1}{2\pi} \iint_{|z| \ge \epsilon} \frac{f(x_1 - z_1, x_2 - z_2)}{z_1 + iz_2} dz_1 dz_2\right)$$

$$= \frac{1}{2\pi\epsilon} \int_{|z| = \epsilon} f(x_1 - z_1, x_2 - z_2) ds_{z_1, z_2}$$

$$\to f(x_1, x_2)$$

as $\epsilon \searrow 0$. The claim then follows:

$$\frac{\partial u}{\partial x_1} + i \frac{\partial u}{\partial x_2} = f(x_1, x_2).$$

4. Consider the boundary value problem on $[0, \pi]$:

$$y''(x) + p(x)y(x) = f(x), \quad 0 < x < \pi,$$
 (1)
 $y(0) = 0, \quad y'(\pi) = 0.$ (2)

Find the smallest λ_0 such that the boundary value problem (1),(2) has a unique solution whenever $p(x) > \lambda_0$ for all x. Justify your answer.

Solution

Denote by L the linear differential operator defined by Ly = y'' + py, with the given boundary conditions. Then it is easy to see that L is self-adjoint in the usual L^2 -inner product (because of the boundary conditions on y):

$$(Ly, z) = \int (y'' + py)z = \int y(z'' + pz) = (y, Lz),$$

hence the eigenfunctions of L form an orthogonal basis, demonstrating existence of a solution to (1),(2). Uniqueness requires that the null space of L be trivial. Suppose Ly = 0. Then

$$0 = (Ly, y) = \int (y'' + py)y = \int (py^2 - (y')^2);$$

If $p \leq 0$, then we'd be able to conclude that y = 0, and we'd get uniqueness.

5. Consider the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ y > 0, \ -\infty < x < \infty \ \ (1)$$

with the boundary condition

$$\frac{\partial u}{\partial y}(x,0) - u(x,0) = f(x),$$

where $f(x) \in C_0^{\infty}(\mathbb{R}^1)$. Find a bounded solution u(x,y) of (1),(2) and show that $u(x,y) \to 0$ when $|x| + y \to \infty$.

Solution

[F06.4]

- 6. Consider the first-order system $u_t u_x = v_t + v_x = 0$ in the diamond-shaped region -1 < x + t < 1, -1 < x t < 1. For each of the following boundary value problems, state whether this problem is well-posed. If it is well-posed, find the solution.
 - (a) $u(x,t) = u_0(x+t)$ on x-t=-1, $v(x-t) = v_0(x-t)$ on x+t=-1.
 - (b) $v(x,t) = v_0(x+t)$ on x-t=-1, $u(x-t) = u_0(x-t)$ on x+t=-1.

Solution

We note that the characteristics for u lie on x + t = const, while the characteristics for v lie on x - t = const.

- (a) The initial condition curves for u and v lie nontangentially (in fact, orthogonally) to their respective characteristic curves, hence this is well-posed, with solutions $u(x,t) = u_0(x+t)$ and $v(x,t) = v_0(x-t)$.
- (b) The initial condition curves for u and v lie along their respective characteristic curves, hence this is not well-posed.
- 7. For the two-point boundary value problem $Lf = f_{xx} f$ on $-\infty < x < \infty$ with $\lim_{x\to\infty} f(x) = \lim_{x\to-\infty} f(x) = 0$, the Green's function G(x,x') solves $LG = \delta(x-x')$, in which L acts on the variables x.
 - (a) Show that G(x, x') = G(x x').
 - (b) For each x', show that

$$G(x, x') = \begin{cases} a_{-}e^{x}, & \text{for } x < x' \\ a_{+}e^{-x}, & \text{for } x' < x \end{cases},$$

in which a_{\pm} are functions that depend only on x'.

- (c) Using (a), find the x' dependence of a_{\pm} .
- (d) Finish finding G(x, x') by using the jump conditions to find the remaining unknowns in a_{\pm} .

Solution

(a) By the definition of G,

$$f(x') = \int L(G(\cdot, x'))(x)f(x)dx = \int G(x, x')(Lf)(x)dx.$$

Now consider $(x, x') \mapsto G(x - x', 0)$. By changing variables,

$$\int G(x - x', 0)(Lf)(x)dx = \int G(y, 0)(Lf)(y + x')dy = \int G(y, 0)L(f \circ \tau_{x'})(y)dy,$$

where $\tau_{x'}$ denotes the shift map $y \mapsto y + x'$ (and it commutes with L, justifying the last equality). But by the first set of equalities, it follows that

$$\int G(y,0)L(f \circ \tau_{x'})(y)dy = (f \circ \tau_{x'})(0) = f(x'),$$

i.e.,

$$\int G(x,x')(Lf)(x)dx = \int G(x-x',0)(Lf)(x)dx,$$

and since this is true for all f, we find that G(x, x') = G(x - x', 0) = G(x - x'). Alternatively, one can note that

$$\int G_x(x,x')(Lf)(x)dx = -\int G(x,x')(Lf')(x)dx$$

$$= -f'(x')$$

$$= -\frac{d}{dx'} \int G(x,x')(Lf)(x)dx$$

$$= -\int G_{x'}(x,x')(Lf)(x)dx,$$

so that $G_x + G_{x'} = 0$, hence G(x, x') = G(x - x').

(b) Since

$$L(G(\cdot, x'))(x) = \delta(x - x') = 0$$

for x away from x', G(x,x') must satisfy $G_{xx}(x,x') - G(x,x') = 0$ for x < x' and x > x'. The general solution is $C_1(x')e^x + C_2(x')e^{-x}$, and the decay requirements of G(x,x') at $x = \pm \infty$ dictates that

$$G(x, x') = \begin{cases} a_{-}(x')e^{x}, & x < x' \\ a_{+}(x')e^{-x}, & x > x' \end{cases}.$$

(c) From (a),

$$G(x,x') = G(x-x',0) = \begin{cases} a_{-}(0)e^{x-x'}, & x-x' < 0 \\ a_{+}(0)e^{-(x-x')}, & x-x' > 0 \end{cases}$$

so we find that $a_{\pm}(x') = a_{\pm}(0)e^{\pm x'}$.

(d) We have that

$$f(x') = \int_{-\infty}^{\infty} G(x - x')(Lf)(x)dx = \lim_{\epsilon \searrow 0} \int_{|x - x'| > \epsilon} G(x - x')(f''(x) - f(x))dx.$$

We compute

$$\int_{|x-x'|>\epsilon} G(x-x')(f''(x)-f(x))dx
= -G(x-x')f'(x)|_{x'-\epsilon}^{x'+\epsilon} + \int_{|x-x'|>\epsilon} G'(x-x')(-f'(x)-f(x))dx
= G(-\epsilon)f'(x'-\epsilon) - G(\epsilon)f'(x'+\epsilon) + \int_{|x-x'|>\epsilon} G'(x-x')(-f'(x)-f(x))dx.$$

We desire the above boundary term to vanish (in the limit as $\epsilon \searrow 0$), hence we require G to be continuous at 0, hence $a_{-}(0) = a_{+}(0)$. We continue applying integration by parts one more time:

$$\int_{|x-x'|>\epsilon} G'(x-x')(-f'(x)-f(x))dx = G'(x-x')f(x)|_{x'-\epsilon}^{x'+\epsilon}
= G'(\epsilon)f(x'+\epsilon) - G'(-\epsilon)f(x'-\epsilon)
= -a_{+}(0)e^{-\epsilon}f(x'+\epsilon) - a_{-}(0)e^{\epsilon}f(x'-\epsilon).$$

We desire this boundary term to tend to f(x') as $\epsilon \searrow 0$, giving $a_{+}(0) + a_{-}(0) = -1$. It follows that $a_{\pm}(0) = -1/2$, and

$$G(x - x') = \begin{cases} -\frac{1}{2}e^{x - x'}, & x < x' \\ -\frac{1}{2}e^{-(x - x')}, & x > x' \end{cases} = -\frac{1}{2}e^{-|x - x'|}.$$

8. For the ODE

$$u_t = u - v^2;$$

$$v_t = v - u^2;$$

do all of the following:

- (a) Find all stationary points.
- (b) Analyze their type.
- (c) Show that u=v is an invariant set for this ODE, i.e., if u(0)=v(0), then u(t)=v(t) for all t.
- (d) Draw the phase plane for this system.

Solution

- (a) Let $F(u,v) = (u-v^2,v-u^2)$. Then a stationary point $(u,v)^*$ satisfies $F((u,v)^*) = 0$, hence $(u,v)^* \in \{(0,0),(1,1)\}$.
- (b) We compute

$$DF(u,v) = \begin{pmatrix} 1 & -2v \\ -2u & 1 \end{pmatrix}.$$

• $(u,v)^* = (0,0)$. The sole eigenvalue of

$$DF(0,0) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

is $\lambda = 1$. Thus, (0,0) is an unstable node.

• $(u,v)^* = (1,1)$. The eigenvalues of

$$DF(1,1) = \left(\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right)$$

are $\lambda_{\pm} = 1 \pm 2$. The corresponding eigenvalues are

$$v_{\pm} = \begin{pmatrix} 1 \\ \mp 1 \end{pmatrix}$$
.

Thus, (1,1) is a saddle.

(c) Let w = u - v. Then it is easy to get that w satisfies

$$w_t = (1 + u + v)w.$$

If w(0) = 0, then by uniqueness, w(t) = 0 for all t. In other words, if u(0) = v(0), then u(t) = v(t) for all t.

(d)

9. Consider the initial value problem

$$u_{tt} = \Delta u$$

for $x \in \mathbb{R}^d$ and t > 0, and with $u(x,0) = u_0(x)$, $u_t(x,0) = u_1(x)$, in which $u_0(x) = u_1(x) = 0$ for $|x| > R_1$ and $|x| > R_2$. For d = 2 and d = 3, find the largest set $\Omega_0 \subset \{x \in \mathbb{R}^d, t > 0\}$ on which u = 0 for any choice of u_0 .

Solution

Let $R = \max\{R_1, R_2\}$. First consider d = 2. The domain of a dependence for a point $(x_0, t_0) \in \mathbb{R}^2 \times \mathbb{R}$ is the interior of the disc $|x - x_0| \le t_0$ in \mathbb{R}^2 . Thus, the largest set Ω_0 on which we can be sure that u = 0 is $\Omega_0 = \{(x, t) \in \mathbb{R}^2 \times \mathbb{R} \mid |x| > R + t\}$. On the other hand, for the case d = 3, the domain of dependence for a point $(x_0, t_0) \in \mathbb{R}^3 \times \mathbb{R}$ is the surface of the sphere $|x - x_0| = t_0$ in \mathbb{R}^3 . Thus, the largest set Ω_0 on which we can be sure that u = 0 is $\Omega_0 = \{(x, t) \in \mathbb{R}^3 \times \mathbb{R} \mid |x| > R + t$ or $|x| < t - R\}$.