2014 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

х	-2	-2 < x < -1	-1	-1 < x < 1	1	1 < <i>x</i> < 3	3
f(x)	12	Positive	8	Positive	2	Positive	7
f'(x)	-5	Negative	0	Negative	0	Positive	1/2
g(x)	-1	Negative	0	Positive	3	Positive	1
g'(x)	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

- 5. The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f', g, and g' for various values of x are given in the table above.
 - (a) Find the x-coordinate of each relative minimum of f on the interval [-2, 3]. Justify your answers.
 - (b) Explain why there must be a value c, for -1 < c < 1, such that f''(c) = 0.
 - (c) The function h is defined by $h(x) = \ln(f(x))$. Find h'(3). Show the computations that lead to your answer.
 - (d) Evaluate $\int_{-2}^{3} f'(g(x))g'(x) dx$.