Flow Matching

Samy Braik

April 30, 2025

We start by defining a probability density path $p:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$ meaning that for each time $t,\,p_t$ is density function i.e. $\int p_t(x)dx=1$.

A simple example of such a path is a path p interpolating two density p_0 and p_1 with $p_t = tp_1 + (1-t)p_0$

Figure 1: A probability path interpolating $\mathcal{N}(0,0.2)$ and $\mathcal{U}([0,1])$

Next we introduce a core object, a time dependant vector field $v:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$ which can be used to construct a map $\phi:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$, called a flow, by the following ODE

$$\frac{d}{dt}\phi_t(x) = v_t(\phi_t(x))$$

$$\phi_0(x) = x$$
(1)

The link between the flow and the probability path is given by the change of variables formula

$$p_t(x) = q(\phi_t^{-1}(x)) \det \left[\frac{\partial \phi_t^{-1}}{\partial x}(x) \right]$$
 (2)

This coincides with the normalizing framework.

Given a target probability path p_t and a corresponding v_t vector field, the naïve flow matching loss is

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t, p_t(x)}[\|v_t^{\theta}(x) - v_t(x)\|^2]$$
(3)

But we don't have acces to v_t and p_t . To address this problem and given a particular data sample x_1 , we introduce conditional probability path $p_t(x|x_1)$ such that $p_0(x|x_1) = q(x)$ at time t = 0 and designed