Introduction To Algorithms

Generated by Doxygen 1.8.1.2

Tue Jul 24 2012 11:36:15

Contents

1	Introduction to Algorithms 1																			
2	Data	Structu	ure Index																	3
	2.1	Data S	tructures									 	 		 					3
3	File	Index																		5
	3.1	File Lis	st									 	 		 					5
4	Data	Structu	ure Docur	mer	ntatio	n														7
	4.1	Maxtag	Struct Re	efer	ence							 	 		 					7
		4.1.1	Detailed	Des	script	tion						 	 		 					7
		4.1.2	Field Doo	cum	nenta	tion						 	 		 					7
			4.1.2.1	m	axlf							 	 		 					7
			4.1.2.2	m	axrt .							 	 		 					7
			4.1.2.3	m	axsu	m .						 	 		 					7
5	File	Docume	entation																	9
	5.1	Chapte	er 2/Sort.h	ı File	e Ref	eren	се					 	 		 					9
		5.1.1	Detailed	Des	script	tion						 	 		 					9
		5.1.2	Function	n Do	cume	entat	ion					 	 		 					9
			5.1.2.1	in	sertic	on_s	ort					 	 		 					9
			5.1.2.2	m	erge							 	 		 					10
			5.1.2.3	m	erge_	_sort	t					 	 		 					10
			5.1.2.4	re	everse	e_ins	ertic	on_s	ort			 	 		 					10
			5.1.2.5	se	electio	on_s	ort					 	 		 					10
	5.2	Chapte	er 4/matrix	k.h F	File R	efere	ence					 	 		 					10
		5.2.1	Detailed	Des	script	tion						 	 		 					10
		5.2.2	Function	n Do	cume	entat	ion					 	 		 					11
			5.2.2.1	SC	quare	_ma	.trix_	mul	tiply	٠.		 	 		 					11
	5.3	Chapte	er 4/maxar	rray.	.h File	e Ref	ferer	nce				 	 		 					11
		5.3.1	Detailed	Des	script	tion						 	 		 					11
		5.3.2	Typedef I	Doc	cume	ntatio	on .					 	 		 					12

ii CONTENTS

	5.3.3	Function	Documentation	12
		5.3.3.1	max_crossing_sub	12
		5.3.3.2	max_subarray	12
		5.3.3.3	max_subarray_linear	12
		5.3.3.4	max_subarray_quadratic	13
5.4	Chapte	er 5/randor	m.h File Reference	13
	5.4.1	Detailed	Description	13
	5.4.2	Function	Documentation	13
		5.4.2.1	randomized_hire_assistant	13
5.5	Chapte	er 6/heap.h	n File Reference	13
	5.5.1	Detailed	Description	14
	5.5.2	Function	Documentation	14
		5.5.2.1	build_max_heap	14
		5.5.2.2	heapsort	14
		5.5.2.3	max_heapify	14
		5.5.2.4	min_heapify	14
5.6	Chapte	er 7/quicks	ort.h File Reference	15
	5.6.1	Detailed	Description	15
	5.6.2	Function	Documentation	15
		5.6.2.1	partition	15
		5.6.2.2	quicksort	15
		5.6.2.3	quicksort_algo	16
		5.6.2.4	randomized_partition	16
		5.6.2.5	randomized_quicksort	16
		5.6.2.6	randomized_quicksort_algo	16
5.7	Chapte	er 8/linear.l	h File Reference	17
	5.7.1	Detailed	Description	17
	5.7.2	Function	Documentation	17
		5.7.2.1	countingSort	17
		5.7.2.2	findMaxForCountingSort	17
5.8	Chapte	er 9/media	ns.h File Reference	17
	5.8.1	Detailed	Description	18
	5.8.2	Function	Documentation	18
		5.8.2.1	randomized_select	18
		5.8.2.2	randomized_select_algo	18
		5.8.2.3	select	19
		5.8.2.4	select_algo	19

Introduction to Algorithms

The Algorithms are all written in C.

Compilation with these flags is error/warning free:

-Wall -Wextra -std=c99 -pedantic

Algorithms not yet implemented

- · Chapter 4
 - Strassen multiplication
 - Non square matrix multiplication
- Chapter 6:
 - Priority queue
- Chapter 7:
 - Hoare Partition
- · Chapter 8:
 - Radix sort
 - Bucket sort

Side Notes

Doxygen documentation is being written.

2	Introduction to Algorithms

Data Structure Index

2.1	Data Structures
Here a	are the data structures with brief descriptions:

4 Data Structure Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

Chapter 2/Sort.n	
Sorting Algorithms	9
Chapter 4/matrix.h	
Matrix Multiplication	10
Chapter 4/maxarray.h	
Maximum subarray Algorithms	11
Chapter 5/random.h	
Randomize Array	13
Chapter 6/heap.h	
Heap/Heapsort related algorithms	13
Chapter 7/quicksort.h	
Quicksort Algorithms	15
Chapter 8/linear.h	
Sorting in linear time algorithms	17
Chapter 9/medians.h	
Select element in array according to rank in linear time	17

6 File Index

Data Structure Documentation

4.1 Maxtag Struct Reference

#include <maxarray.h>

Data Fields

- int maxlf
- · int maxrt
- int maxsum

4.1.1 Detailed Description

<Struct containing 2 indexs and the sum of array[maxlf] to array[maxrt]

4.1.2 Field Documentation

4.1.2.1 int maxlf

Left index of the maximum subarray

4.1.2.2 int maxrt

Right index of the maximum subarray

4.1.2.3 int maxsum

Sum of the elements from array[maxlf] to [maxrt]

The documentation for this struct was generated from the following file:

• Chapter 4/maxarray.h

Data Structure Documentatio

File Documentation

5.1 Chapter 2/Sort.h File Reference

Sorting Algorithms.

Functions

```
    void insertion_sort (int *array, int size)
    Insertion Sort.
```

• void reverse_insertion_sort (int *array, int size)

Insertion Sort in decreasing order.

void selection_sort (int *array, int size)

Selection Sort.

• void merge (int *array, int I, int m, int h)

Merges and sorts 2 subarrays.

void merge_sort (int *array, int I, int h)
 Merge Sort.

5.1.1 Detailed Description

Sorting Algorithms.

Author

Ruggero Dalo

5.1.2 Function Documentation

5.1.2.1 void insertion_sort (int * array, int size)

Insertion Sort.

Parameters

array	Array to be sorted
size	Elements in the array

5.1.2.2 void merge (int * array, int I, int m, int h)

Merges and sorts 2 subarrays.

Parameters

array	Array to be sorted
1	Low/Left index
m	Medium/Middle index
h	High/Right index

5.1.2.3 void merge_sort (int * array, int I, int h)

Merge Sort.

Parameters

array	Array to be sorted
1	Low/Left index
h	High/Right index

5.1.2.4 void reverse_insertion_sort (int * array, int size)

Insertion Sort in decreasing order.

Parameters

Ī	array	Array to be sorted
ſ	size	Elements in the array

5.1.2.5 void selection_sort (int * array, int size)

Selection Sort.

Parameters

array	Array to be sorted
size	Elements in the array

5.2 Chapter 4/matrix.h File Reference

Matrix Multiplication.

Functions

• void square_matrix_multiply (int *A, int *B, int *C, int size) Square matrix multiplication.

5.2.1 Detailed Description

Matrix Multiplication.

Author

Ruggero Dalo

5.2.2 Function Documentation

5.2.2.1 void square_matrix_multiply (int * A, int * B, int * C, int size)

Square matrix multiplication.

Parameters

A	First Matrix
В	Second Matrix
С	Multiplication result matrix
size	Number of colomns/rows of matrix A and B

5.3 Chapter 4/maxarray.h File Reference

Maximum subarray Algorithms.

```
#include <stdio.h>
#include <stdlib.h>
```

Data Structures

struct Maxtag

Typedefs

• typedef struct Maxtag Max

Functions

• Max * max_crossing_sub (int *array, int I, int h)

Finds maximum sum of elements crossing the (I+h)/2 index.

• Max * max_subarray (int *array, int I, int h)

Recursive funtion.

• void max_subarray_quadratic (int *array, int size, Max *result)

Brute force solution to the max sub array problem.

• void max_subarray_linear (int *array, int size, Max *result)

Kadane's algorithm.

5.3.1 Detailed Description

Maximum subarray Algorithms.

Author

Ruggero Dalo

5.3.2 Typedef Documentation

5.3.2.1 typedef struct Maxtag Max

<Struct containing 2 indexs and the sum of array[maxlf] to array[maxrt] Name of the struct:

5.3.3 Function Documentation

5.3.3.1 Max* max_crossing_sub (int * array, int I, int h)

Finds maximum sum of elements crossing the (I+h)/2 index.

Parameters

array	Integer Array
1	Low/Left index
h	High/Right index

Returns

Pointer to a Max struct containing index and sum of the maximum subarray found in array[l]-array[h]

Warning

The Returned memory address must be free'd to avoid memory leaks

5.3.3.2 Max* max_subarray (int * array, int l, int h)

Recursive funtion.

Parameters

array	Integer Array
1	Low/Left index
h	High/Right index

Returns

Pointer to a Max struct containing index and sum of the maximum subarray found in array[i]-array[h]

Warning

The Returned memory address must be free'd to avoid memory leaks

5.3.3.3 void max_subarray_linear (int * array, int size, Max * result)

Kadane's algorithm.

Parameters

array	Integer Array
size	Elements in the array
*result	Pointer to an already allocated structure where the result is stored

5.3.3.4 void max_subarray_quadratic (int * array, int size, Max * result)

Brute force solution to the max sub array problem.

Parameters

array	Integer Array
size	Elements in the array
*result	Pointer to an already allocated structure where the result is stored

5.4 Chapter 5/random.h File Reference

Randomize Array.

```
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
```

Functions

• void randomized_hire_assistant (int *array, int size)

5.4.1 Detailed Description

Randomize Array.

Author

Ruggero Dalo

5.4.2 Function Documentation

5.4.2.1 void randomized_hire_assistant (int * array, int size)

A new array (B) will be initialized with random values. B[i] = key, array[i] = value. B is then sorted and array is modified accordingly.

Parameters

array	input array
size	Elements in the array

5.5 Chapter 6/heap.h File Reference

Heap/Heapsort related algorithms.

```
#include <stdio.h>
```

Functions

void max_heapify (int *array, int heap_size, int index)

- void min_heapify (int *array, int heap_size, int index)
- void build_max_heap (int *array, int size)
- void heapsort (int *array, int size)

5.5.1 Detailed Description

Heap/Heapsort related algorithms.

Author

Ruggero Dalo

5.5.2 Function Documentation

5.5.2.1 void build_max_heap (int * array, int size)

Starting at the last parent node it heapifyes the array

Parameters

array	Array to be Heapifyed
size	Elements in the array

5.5.2.2 void heapsort (int * array, int size)

Heapsort

Parameters

array	Array to be Heapifyed
size	Elements in the array

5.5.2.3 void max_heapify (int * array, int heap_size, int index)

Checks parent and children nodes and the biggest element is saved in the parent node. Recursively calls it self on the exchanged children.

Parameters

array	Array to be Heapifyed
heap_size	Heap size
index	Position in the array

5.5.2.4 void min_heapify (int * array, int heap_size, int index)

Checks parent and children nodes and the smallest element is saved in the parent node. Recursively calls it self on the exchanged children.

Parameters

array	Array to be Heapifyed
heap_size	Heap size
index	Position in the array

5.6 Chapter 7/quicksort.h File Reference

Quicksort Algorithms.

```
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
```

Functions

• int partition (int *array, int I, int h)

Partions the array around the pivot.

• void quicksort_algo (int *array, int I, int h)

Quicksort.

void quicksort (int *array, int size)

Quicksort wrapper funtion.

• int randomized_partition (int *array, int I, int h)

Partions the array around a random pivot.

void randomized_quicksort_algo (int *array, int I, int h)

Randomized Quicksort.

• void randomized_quicksort (int *array, int size)

Randomized Quicksort wrapper funtion.

5.6.1 Detailed Description

Quicksort Algorithms.

Author

Ruggero Dalo

5.6.2 Function Documentation

5.6.2.1 int partition (int * array, int l, int h)

Partions the array around the pivot.

Parameters

array	Array to be sorted
1	Low/Left index
h	High/Right index

Returns

Returns index of the pivot

5.6.2.2 void quicksort (int * array, int size)

Quicksort wrapper funtion.

Parameters

array	Array to be sorted
size	Elements in the array

5.6.2.3 void quicksort_algo (int * array, int I, int h)

Quicksort.

Parameters

array	Array to be sorted
1	Low/Left index
h	High/Right index

Note

Using the wrapper funtion, quicksort, is recommended.

5.6.2.4 int randomized_partition (int * array, int I, int h)

Partions the array around a random pivot.

Parameters

array	Array to be sorted
1	Low/Left index
h	High/Right index

Returns

Returns index of the pivot

5.6.2.5 void randomized_quicksort (int * array, int size)

Randomized Quicksort wrapper funtion.

Parameters

array	Array to be sorted
size	Elements in the array

5.6.2.6 void randomized_quicksort_algo (int * array, int l, int h)

Randomized Quicksort.

Parameters

array	Array to be sorted
1	Low/Left index
h	High/Right index

Note

Using the wrapper funtion, randomized_quicksort, is recommended.

5.7 Chapter 8/linear.h File Reference

Sorting in linear time algorithms.

```
#include <stdio.h>
```

Functions

- int findMaxForCountingSort (int *array, int size)
- void countingSort (int *array, int *sorted, int size, int max)

5.7.1 Detailed Description

Sorting in linear time algorithms.

Author

Ruggero Dalo

5.7.2 Function Documentation

5.7.2.1 void countingSort (int * array, int * sorted, int size, int max)

Sorts tha array with help from an auxiliary array of size equal to the maximum element in array

Parameters

array	Array to be sorted
sorted	Pointer to an already initialized array of size equal to the one to be sorted
size	Elements in the array
max	Maximum element in the array

5.7.2.2 int findMaxForCountingSort (int * array, int size)

Finds maximum integer in the array

Parameters

array	Array to be scanned
size	Elements in the array

Returns

Maximum element

5.8 Chapter 9/medians.h File Reference

Select element in array according to rank in linear time.

Functions

- int select_algo (int *array, int I, int h, int i)
- int select (int *array, int size, int rank)
- int randomized_select_algo (int *array, int I, int h, int i)
- int randomized select (int *array, int size, int rank)

5.8.1 Detailed Description

Select element in array according to rank in linear time.

Author

Ruggero Dalo

5.8.2 Function Documentation

5.8.2.1 int randomized_select (int * array, int size, int rank)

Rank 1 = smallest element in the array

Rank Size = biggest element in the array

Rank < 1 or Rank > size is not defined.

Parameters

array	Array to be scanned
size	Elements in the array
rank	Desired rank

Returns

Integer with the specified rank

5.8.2.2 int randomized_select_algo (int * array, int I, int h, int i)

Uses randomized_partion algorithm from quicksort

Parameters

array	Array to be scanned
1	Low/Left index
h	High/Right index
i	Desired rank

Returns

Integer of rank i

Note

Using the wrapper funtion, randomized_select, is recommended.

5.8.2.3 int select (int * array, int size, int rank)

Rank 1 = smallest element in the array

Rank Size = biggest element in the array

Rank < 1 or Rank > size is not defined.

Parameters

array	Array to be scanned
size	Elements in the array
rank	Desired rank

Returns

Integer with the specified rank

5.8.2.4 int select_algo (int * array, int l, int h, int i)

Uses partion algorithm from quicksort

Parameters

array	Array to be scanned
1	Low/Left index
h	High/Right index
i	Desired rank

Returns

Integer of rank i

Note

Using the wrapper funtion, select, is recommended.

Index

health areas have	manus auda annon anno directio de
build_max_heap	max_subarray_quadratic, 12
heap.h, 14	maxlf
Chapter 2/Cort b. 0	Maxtag, 7
Chapter 2/Sort.h, 9	maxrt
Chapter 4/matrix.h, 10	Maxtag, 7
Chapter 4/maxarray.h, 11	maxsum
Chapter 5/random.h, 13	Maxtag, 7
Chapter 6/heap.h, 13	Maxtag, 7
Chapter 7/quicksort.h, 15	maxlf, 7
Chapter 8/linear.h, 17	maxrt, 7
Chapter 9/medians.h, 17	maxsum, 7
countingSort	medians.h
linear.h, 17	randomized_select, 18
,	
findMaxForCountingSort	randomized_select_algo, 18
linear.h, 17	select, 18
,	select_algo, 19
heap.h	merge
build_max_heap, 14	Sort.h, 9
heapsort, 14	merge_sort
max_heapify, 14	Sort.h, 10
min_heapify, 14	min_heapify
	heap.h, 14
heapsort	
heap.h, 14	partition
insertion_sort	quicksort.h, 15
Sort.h, 9	,
301t.11, 9	quicksort
linear.h	quicksort.h, 15
	quicksort.h
countingSort, 17	partition, 15
findMaxForCountingSort, 17	quicksort, 15
matrix.h	•
	quicksort_algo, 16
square_matrix_multiply, 11	randomized_partition, 16
Max	randomized_quicksort, 16
maxarray.h, 12	randomized_quicksort_algo, 16
max_crossing_sub	quicksort_algo
maxarray.h, 12	quicksort.h, 16
max_heapify	
heap.h, 14	random.h
max_subarray	randomized_hire_assistant, 13
maxarray.h, 12	randomized_hire_assistant
max_subarray_linear	random.h, 13
maxarray.h, 12	randomized_partition
max subarray quadratic	quicksort.h, 16
maxarray.h, 12	randomized_quicksort
maxarray.h	quicksort.h, 16
Max, 12	randomized quicksort algo
max_crossing_sub, 12	quicksort.h, 16
	•
max_subarray, 12	randomized_select
max_subarray_linear, 12	medians.h, 18

INDEX 21

```
randomized_select_algo
    medians.h, 18
reverse\_insertion\_sort
    Sort.h, 10
select
    medians.h, 18
select_algo
    medians.h, 19
selection_sort
    Sort.h, 10
Sort.h
    insertion_sort, 9
    merge, 9
    merge_sort, 10
    reverse_insertion_sort, 10
    selection_sort, 10
square_matrix_multiply
    matrix.h, 11
```