构造选讲

王蔚澄

2025年2月8日

构造题

前言

通常来说,构造题只要求给出一个满足要求的解,但其考察的范围广泛,包括图论,数学,甚至仅需要观察力.今天将对构造题做一些讨论.

CF1630A

问题

对 $n=2^m (n \geq 4)$, 给定 $0 \leq k \leq n-1$, 将 $0,\ldots,n-1$ 分成 n/2 组 $(a_1,b_1),\ldots,(a_{n/2},b_{n/2})$, 满足 $\sum_{i=1}^{n/2}a_i\&b_i=k$. 其中 & 表示 按位与.

图论模型 000

抽屉原理

GYM 102900B

问题

给定两张 $n \times m$ 的扫雷地图 A, B, 每个位置可以是雷或者空地, 每个空地会标上周围八相邻格子中雷的个数. 你可以反转 A 中的 $\lfloor nm/2 \rfloor$ 个格子, 你的目标是让 A 和 B 的所有格子中数的和相同.

增量构造

前言

类似于数学归纳法的思想,每次从前一个结果加一个元素.或者 反过来, 每次删一个元素递归.

这两种几乎是本质相同的.

ICPC WF24 A

问题

给 n 个定义域域均在 [0, M] 的非负分段线性函数, 你要给每个函数分配一个区间, 使得每个函数的区间的下方面积 \geq 总的下方面积的 n 分之一.

 $n \le 5000$, 每个函数都存在一个点 > 0.

ICPC WF14 A

问题

给定 n, 一开始在 1 到 2n 号位置有字母 B A B A \cdots B A, -2n+1 到 0 号位置空着,每次操作你可以选择相邻的两个字母移动到两个相邻的空位上,你的目标是最后得到连续的 A \cdots AB \cdots B, 可以不从 1 号位置开始。你需要找到最短的操作序列。 3 < n < 100

如果一个联通有向图每个点都入度等于出度,则这个图有欧拉回路.如果只存在一个点入度比出度大一,另一个点入度比出度小一,其他点都入度等于出度,则这个图有欧拉路径.

如果一个联通有向图每个点都入度等于出度,则这个图有欧拉回路.如果只存在一个点入度比出度大一,另一个点入度比出度小一,其他点都入度等于出度,则这个图有欧拉路径.

如果一个联通无向图每个点度数都是偶数,则这个图有欧拉回路.如果只存在两个点度数是奇数,其他点度数都是偶数,则这个图有欧拉路径.

如果一个联通有向图每个点都入度等于出度,则这个图有欧拉回路.如果只存在一个点入度比出度大一,另一个点入度比出度小一,其他点都入度等于出度,则这个图有欧拉路径.

如果一个联通无向图每个点度数都是偶数,则这个图有欧拉回路. 如果只存在两个点度数是奇数,其他点度数都是偶数,则这个图 有欧拉路径.

在求非欧拉图的欧拉路径时,可以先补一条边变成欧拉回路,然后最后再去掉.

UOJ 670

问题

给定 n 个长度 ≤ 2 的字符串,每个字符串可以翻转,你需要排列字符串的顺序,使得最后拼接得到一个回文串。 $n < 5 \times 10^5$.

QOJ 5434

问题

给定 n, 构造一个长为 n 的 01 串, 包含最多的本质不同子串. $n \le 2 \times 10^5$.

前言

QOJ 5434

问题

给定 n, 构造一个长为 n 的 01 串, 包含最多的本质不同子串. $n \le 2 \times 10^5$.

Hint

一个显然的上界是 $\sum_{i=1}^{n} \min(2^{i}, n-i+1)$.

劉论模型 ○○○

网络流

GYM103855A

问题

有 n 个宝石,每个宝石的颜色是红,黑之一. 一开始每个宝石都分别在一个袋子里,接下来有 m 次操作:

- 合并宝石 *i* 和 *j* 所在的袋子.
- 丢弃宝石 i.
- 发现宝石 i 所在的袋子里有至少 r 个红色宝石和至少 b 个 黑色宝石.

你需要构造一组合法的宝石颜色,或报告无解.

 $n \le 2000, m \le 4000.$

NOI2020 制作菜品

问题

有 n 种原材料,第 i 种原材料有 d_i 克,你需要做 m 道菜,每道菜 都要恰好 k 克, 且最多使用两种原材料. 保证 $\sum d_i = m \times k$, 你 需要构造一种做菜方案, 或报告无解,

 $n \le 500, n-2 \le m \le 5000, k \le 5000, 10$ 组多测. 子任务: m > n - 1.

NOI2020 制作菜品

问题

有 n 种原材料, 第 i 种原材料有 d_i 克, 你需要做 m 道菜, 每道菜 都要恰好 k 克, 且最多使用两种原材料. 保证 $\sum d_i = m \times k$, 你 需要构造一种做菜方案, 或报告无解,

n < 500, n - 2 < m < 5000, k < 5000, 10 组多测. 子任务: m > n - 1.

Hint

当 m=n-1 时, 总是有解. 当 $m \ge n$ 时, 总有 $\max d_i \ge k$, 如 此重复即可化归为 m=n-1 的情形.

问题

给定 v_1, \ldots, v_n , 你需要构造一个长为 2n 的序列 a_1, \ldots, a_{2n} , 且 $1 \sim n$ 的每个数都出现两次, 设 i 出现的位置为 x_i, y_i , 满足 $1 \leq x_i \leq n < y_i \leq 2n$.

且对所有 i, 满足 a_{x_i}, \ldots, a_{y_i} 中最小的出现偶数次的数是 v_i . $n \leq 2 \times 10^5$, 10 组多测.

问题

给定 v_1, \ldots, v_n , 你需要构造一个长为 2n 的序列 a_1, \ldots, a_{2n} , 且 $1 \sim n$ 的每个数都出现两次, 设 i 出现的位置为 x_i, y_i , 满足 $1 \le x_i \le n < y_i \le 2n$.

且对所有 i, 满足 a_{x_i}, \ldots, a_{y_i} 中最小的出现偶数次的数是 v_i . $n < 2 \times 10^5$. 10 组多测.

Hint

很显然 $v_i < i$. 事实上, 这是充要条件.

问题

给定 v_1, \ldots, v_n , 你需要构造一个长为 2n 的序列 a_1, \ldots, a_{2n} , 且 $1 \sim n$ 的每个数都出现两次, 设 i 出现的位置为 x_i, y_i , 满足 $1 \le x_i \le n < y_i \le 2n$.

且对所有 i, 满足 a_{x_i}, \ldots, a_{y_i} 中最小的出现偶数次的数是 v_i . $n < 2 \times 10^5$. 10 组多测.

Hint

很显然 $v_i \leq i$. 事实上, 这是充要条件. 考虑从小往大加数, 大的数不会对小的数的答案造成影响,

问题

有 n 个塔排成一排,第 i 个塔的高度是 h_i ,如果两个塔 i,j 满足 $\max(h_i,h_j)>\max_{i< k< j}h_k$,他们之间可以通信.

给定 a_1, \ldots, a_n , a_i 表示可以和第 i 个塔通信的塔的个数. 你需要构造一组满足条件的 h_i .

保证数据有解, $n \le 5 \times 10^5$.

问题

有 n 个塔排成一排, 第 i 个塔的高度是 h_i , 如果两个塔 i, j 满足 $\max(h_i, h_j) > \max_{i < k < j} h_k$, 他们之间可以通信.

给定 a_1, \ldots, a_n, a_i 表示可以和第 i 个塔通信的塔的个数. 你需要 构造一组满足条件的 h_i .

保证数据有解, $n < 5 \times 10^5$.

Hint

考虑第一个塔, 它会和一个前缀和所有前缀最大值通信, 然后依 次类推.