# Welcome

Applied Data Engineering with Databricks



# Learning Objectives

- 1. Build relational tables and ELT pipelines designed for the Lakehouse
- 2. Write Databricks-native code to incrementally process ever-expanding (streaming) data with ease
- 3. Design pipelines that store and delete personal identifiable information (PII) securely for data governance and compliance
- 4. Use best practices for developing, troubleshooting, and promoting code on Databricks
- Implement best practices for balancing costs and latency in data pipelines
- 6. Schedule, orchestrate, and monitor production Databricks code



#### < INSERT SLACK CHANNEL INFORMATION>

### Welcome!

Your Instructor - Your Name

**PHOTO** 

in /in/profile

*⊗* databricks

#### Welcome!

Let's get to know you 💎

- Name
- Role and team
- Motivation for attending
- Favorite mobile app



#### Course Tools







Lecture

TA Help + Discussion

Lab Notebooks

Breakout

Resources

Solutions

Rooms

http://databricks.link/class-4390-slack



# Agenda



# Module 1 - Architecting for the Lakehouse

- Course Intro & Overview
- Adopting the Lakehouse Architecture
- The Lakehouse Medallion Architecture
- Setting Up Tables
- Optimizing Data Storage
- Clone for Development and Disaster Recovery
- Delta Lake Atomicity and Durability
- Delta Lake Isolation with Optimistic Concurrency
- Streaming Design Patterns
- Multiplex vs. Singleplex Design



# Module 2 - Managing Data in Motion

- Making Ingestion Easy with Delta Lake
- Auto Load Data to Multiplex Bronze
- Promoting Data to Silver
  - Incremental Processing from Multiplex Bronze
  - Deduplication with Incremental Processing
  - Quality Enforcement
- Slowly Changing Dimension Tables
- Propagating Changes with Delta Lake & Change Data Feed
- Streaming Joins and Statefulness
- Making Data Available for Analytics



# Module 3 - Privacy in the Lakehouse

- PII & Regulatory Compliance
- Pseudonymized PII Lookup Table
- Storing PII Securely
- Managing ACLs for the Enterprise Lakehouse
- De-identified PII Access
- Propagating Deletes with Change Data Feed
- Deleting at Partition Boundaries



# Module 4 - Troubleshooting Performance Issues

- The Spark UI
  - Assessment
  - Review
- The 5 Most Common Performance Problems Condensed
  - Storage
  - Serialization
  - Skew
  - Spill
  - Shuffles
- Designing Clusters for High Performance
  - Prescriptions for Cloud-Specific VM Types
  - Cluster Configurations Scenarios



#### Module 5 - Databricks in Production

- Promoting Code with Databricks Repos
  - Refactoring to a Relative Import
  - Committing, Merging, and Pulling Changes
- Managing Costs and Latency with Incremental Workloads
  - Controlling Latency in Structured Streaming Workloads
  - Efficient Structured Streaming
- Orchestration and Scheduling with Multi-Task Jobs
- Using the CLI
- Monitoring



# Project Introduction



Design and implement a multi-pipeline multi-hop architecture to enable the Lakehouse paradigm.



# Our Company





Structured, Semi-Structured and Unstructured Data



# Adopting the Lakehouse Architecture



# Multi-hop Pipeline

#### Source:

Files or integrated systems

#### Bronze:

Raw data and metadata

#### Silver:

Validated data with atomic grain

#### Gold:

Refined, aggregated data







#### Recommendations for Success with Lakehouse

- All writes use Delta Lake
- All tables should be in the metastore
- Each layer in its own database
- Each layer using its own cloud object storage
- Advertise features:
  - Column prefixes: p\_, z\_, b\_, etc.
  - DB & tables suffixes: \_bronze, \_hist, \_etl, \_t, etc



#### Cloud Blockers to Avoid

- Make sure region and cloud preferences are established before writing/migrating production data
- Try to colocate compute to storage
- Identify the necessary quota for operation in each account
- Identify conflicts due to regulatory requirements
- Identify existing infrastructure in undesired regions



# The Lakehouse Medallion Architecture



# Bronze Layer



## Ingest Bronze

- Typically just a raw copy of ingested data
- Should be append only
- Can be incremental or batch appended
- Can contain additional metadata
- Creates a replayable history of the data





# Optimize Bronze

- spark.sql("OPTIMIZE table")
- Develop an optimized schedule based on
  - Ingest periodicity
  - Downstream requirements



- Ingest clusters are often oversized for this task
- See the Optimize Helpers in the Playbook
- If later Z-Ordering, don't use optimize-writes or auto-compact
- Compute stats, not just for the whole table, but also for key columns
   analyze table compute statistics for columns joinKey1, joinKey2





# Processing Deletes

- The source\_delete != lakehouse\_delete
- Soft-deletes are more valuable
- Hard-deletes may be required by regulatory processes



# Silver Layer



# What is the Silver Layer?

- Preserves grain of original data (no aggregation)
- Eliminates duplicate records
- Production schema enforced
- Data quality checks passed
- Corrupt data quarantined
- Data stored to support production workloads
- Optimized for long-term retention and ad-hoc queries



# Why is the Silver Layer important?

- Replaces non-curated "data lake"
  - Data is clean
  - Transactions have ACID guarantees
- Represents full history of business action modeled
  - Each record processed is preserved
  - All records can be efficiently queried
- Reduces data storage complexity, latency, and redundancy
  - Built for both ETL throughput AND analytic query performance



#### Schema Considerations

- Choose the correct precision for numeric values
- Use proper datetime types
- Flatten nested fields
- Eliminate case-sensitive field names
- Order matters



#### Schema Enforcement & Evolution

- Enforcement prevents bad records from entering table
  - Mismatch in type or field name
- Evolution allows new fields to be added
  - Useful when schema changes in production/new fields added to nested data
  - Cannot use evolution to remove fields
- Historic records also have field no-write "appended"
  - Change is to metadata only, managed by Delta Log
  - All previous records will show newly added field as Null



## Streaming Deduplication

- dropDuplicates operator removes all duplicate rows from a DataFrame
  - For streaming operations, set a watermark to avoid state explosion
- A Delta Lake insert-only merge prevents records with duplicate keys from being processed
- Streaming operations combine this with foreachBatch



#### Delta Lake Constraints

- Check NOT NULL or arbitrary boolean condition
- Throws exception on failure

ALTER TABLE tableName ADD CONSTRAINT constraintName

CHECK fieldName > '99';



## Alternative Quality Check Approaches

- Use boolean filters to identify rows that violate constraints
- Quarantine data by filtering non-compliant data to alternate location
- Warn without failing by writing additional fields with constraint check results to Delta tables



# Mapping Bronze to Silver

- Consider using a new bucket/storage account
- Start with a new database, e.g. dw\_silver
- Implement the mappings to transform Bronze to Silver
  - Where the implementation will most likely get behind
  - The #1 reason is not having near-perfectly defined mappings 1.
- Demonstrate best practices for CDC datasets
  - Only the current data is active in the Silver layer
  - Historical records are properly annotated with a terminal timestamp



## Standard optimizations

- Design and implement proper partitioning strategies
  - Based on each persona's specific use cases
  - Validate both file and partition sizes
  - Partition by values with a low cardinality
- Design and implement Z-Ordering & optimization strategies
  - Based on each persona's specific use cases
  - To accept upserts from Bronze
  - To deliver specific resources to Gold
  - Index by values with a high cardinality



#### Metadata

- Design for Silver & Gold, start to implement now
- Good metadata can aid in developing validations later
- For example, columnar metadata can define an enumerated set of valid values
- Examples of where to store metadata include:
  - Column Comments
  - Table Properties
  - The Unity Catalog \*\*



# Gold Layer



# Upon Completing Silver...

- You have a fully documented inventory of each table to be replicated
- A complete design of what the Gold layer will consist of including:
  - Which tables are customer facing
  - Which tables will be created as Type-2
  - How much historical data will be presented
  - Which historical tables will have a "current-only" version of the dataset
  - If the volume of history warrants a history-specific DB such as dw\_gold\_hist
  - How the data will be partitioned and z-ordered to meet specific use cases



# Creating the Gold Layer

- Unlike Bronze or Silver, you must use a new bucket/storage account
  - ETL can put heavy load on systems e.g. throttled by the cloud provider
  - Provides additional security capabilities
- Start with two to four new databases
  - \*\_gold Only for views
  - \*\_gold\_t Only for final tables upon which views are built
  - \*\_gold\_etl Only for ETL tables used to produced gold\_t tables
  - \*\_gold\_hist Like, dw\_gold, this is views only, but of historical tables only
- Employ an intentional table nomenclature:
  - city\_t, trx\_curr\_t, trx\_hist\_t for storage tables not customer facing
  - city, trx\_curr, trx\_hist for views customer facing

# Setting up Security

- Create each database with an ACL cluster using SQL statements
- Validate proper ownership of the DB before continuing <a>1</a>
  - Future tables will inherit ownership
  - Precludes extra work required when tables are created before security is setup
- Consumer groups should be explicitly denied access to the
   \*\_bronze, \*\_silver, \*\_gold\_etl, and \*\_gold\_t databases
- Consumer groups should be explicitly granted select and read\_metadata to the \*\_gold and \*\_hist\_gold databases



#### Create the Gold Views

- Create one view for EVERY Gold table
- This should be done in the \*\_gold and \*\_gold\_hist databases
- Do not use select \* when defining the source columns 1
- Table columns must be explicitly mapped to view columns and re-aliased
- Predicates must be replicated in the view definitions to ensure predicates are pushed down to the underlying data sources



# Notebook: Setting Up Tables



# Notebook: Optimizing Data Storage



# Clone for Development and Disaster Recovery



# Clones:

- Create a replica of a target table
- At a point in time
- In a specific destination location

#### **Basic Details**

- Metadata is replicated
  - Schema
  - Constraints
  - Column descriptions
  - Statistics
  - Partitioning
- Clones have separate lineage
  - Changes to cloned table due not affect the source
  - Changes to the source during or after cloning are not reflected in the clone



#### Shallow Clones

- Zero-copy cloning
  - Only metadata is copied
  - Points to original data files
- Inexpensive and fast
- Not self-contained
  - Depend on sourced data files
  - If source data files are removed, shallow clone may break





# Making Changes to the Shallow Clone

- Inserts to the cloned table write new data files
  - Files are recorded in the cloned table directory
- Updates, deletes, and optimizations also write new data files
  - Allows for easy testing without risking prod data







# Removing Source Files

- Changes to the source table mark data files as no longer valid
- Vacuuming the source table will permanently remove these data files
- References to source data files will cause queries on the clone table to fail





### Deep Clones

- Data is copied alongside metadata
- Copy is optimized, transactional, and robust
- Incrementally copies data files





# Incremental Cloning

- Only newly written data files are copied
- Updates, deletes, and appends are automatically applied
- Data files will be identical in both tables after cloning



# History and Time Travel

- Clones have separate versioning
  - History begins at version 0
  - New version recorded with updates (including incremental clone)
  - Metadata tracks source table version.
- Clones can have separate retention settings
  - Delta Lake default settings are tuned for performance
  - Increase log retention and deleted file retention for archiving
  - Clone copies source table properties, so will need to reset after each incremental clone



# Notebook: Using Clone with Delta Lake



# Delta Lake Atomicity and Durability



# Delta Lake brings ACID to object storage

- Atomicity
- Consistency
- Isolation
- Durability





# Delta Lake provides ACID guarantees scoped to tables



# Problems solved by ACID

- Hard to append data
- 2. Modification of existing data difficult
- 3. Jobs failing mid way
- 4. Real-time operations hard
- 5. Costly to keep historical data versions



# Durability with Delta Lake

- All write operations commit data changes as Parquet files
- Transactions committed using JSON log files
- Stored in a nested directory
- Inherits the durability guarantees of the file system



# Cloud-based object storage

- Infinitely scalable
- Affordable
- Availability: > 99.9%
- Durability: > 99.99999999%



# The Anatomy of Delta Lake Atomicity

#### Data Files

- Parquet files
- Written continuously throughout transaction
- All data modifications create new parquet files

#### Transaction Log

- JSON files
- Written once as transaction completes
- Indicates added and removed data files, plus metadata



# The Anatomy of Delta Lake Atomicity

```
/path/to/table/
                                            (with partitions)
delta log/
- part-0000.snappy.parquet
                                            /path/to/table/
- part-0001.snappy.parquet
                                             _delta_log/
                                             - date=2020-01-01/
                                             - date=2020-01-02/
/path/to/table/ delta log/
- 0000.json
  0001.json
                                            /path/to/table/date=2020-01-01/
  0002.json
                                             part-0000.snappy.parquet
                                             - part-0001.snappy.parquet
  0010.parquet
```



#### Makes every operation transactional

```
/path/to/table/_delta_log/
- 0000.json
- 0001.json
- 0002.json
- ...
- 0010.parquet
```



#### Makes every operation transactional



#### Makes every operation transactional

```
/path/to/table/_delta_log/
- 0000.json
- 0001.json Remove part-0001.snappy.parquet
- 0002.json Add part-0003.snappy.parquet
- ...
- 0010.parquet
```



#### Makes every operation transactional

```
/path/to/table/_delta_log/
- 0000.json
- 0001.json
- 0002.json
- ...
- 0010.parquet
- 0010.json
- 0011.json
```



# Inside the Transaction Log

- txn
- add
- remove
- metaData
- protocol
- commitInfo



# Inside the Transaction Log - add

- path
- partitionValues
- size
- modificationTime
- stats



# Inside the Transaction Log - remove

- path
- deletionTimestamp



# Inside the Transaction Log - metaData

- schemaString
- partitionColumns
- format
- createdTime



# Isolation with Optimistic Concurrency Control



#### What is Isolation?

- Determines when and how transactions become visible to other users and systems
- Concerned with concurrency effects
- Exists as a spectrum, referred to as "isolation levels"
- Typically defined at database level
- Delta Lake defines isolation at the table level



### **Concurrent Transactions**





#### Read Phonomena

#### Dirty reads

Data modified by another concurrent transaction is returned instead of the valid state.

#### Non-repeatable reads

Multiple results are returned for a single row due to changes made in a concurrent transaction.

#### Phantom reads

Data added or deleted by a concurrent transaction is also read.



#### Read Phonomena

#### Dirty reads

Data modified by another concurrent transaction is returned instead of the valid state.

#### Non-repeatable reads

Multiple results are returned for a single row due to changes made in a concurrent transaction.

#### Phantom reads

Data added or deleted by a concurrent transaction is also read.

Lax





#### **Traditional Isolation Levels**

|                      | Read<br>uncommitted | Read committed | Repeatable reads | Serializable |
|----------------------|---------------------|----------------|------------------|--------------|
| Dirty reads          |                     | <b>✓</b>       | <b>✓</b>         | <b>✓</b>     |
| Non-repeatable reads |                     |                | <b>✓</b>         | <b>✓</b>     |
| Phantoms             |                     |                |                  | <b>✓</b>     |



#### Delta Lake WriteSerializable

- Relaxes strict serial guarantees to increase throughput
- Append operations will never conflict or block concurrent execution
- Default in Delta Lake



# Optimistic Concurrency Control

- 1. Read
- 2. Write
- 3. Validate and commit



#### **Concurrent Transactions**





#### Write Conflicts

|                               | INSERT          | UPDATE, DELETE,<br>MERGE INTO | OPTIMIZE     |
|-------------------------------|-----------------|-------------------------------|--------------|
| INSERT                        | Cannot conflict |                               |              |
| UPDATE, DELETE,<br>MERGE INTO | Cannot conflict | Can conflict                  |              |
| OPTIMIZE                      | Cannot conflict | Can conflict                  | Can conflict |



























# Notebook: Streaming Design Patterns



# Multiplex vs. Singleplex Design



# Singleplex Ingestion





#### Singleplex streaming

 Multiple streams on one cluster, one per source event type / topic e.g.:



Deploy x of these streams on a single cluster, reading from x queues (1 per event type)



#### Multiplex Ingestion





#### Demultiplexing

- Data streamed into pub/sub with heterogeneous subjects
- Simplifies source stream architecture
- Data consumed from heterogeneous topics into raw Delta Table (in the "Bronze" layer), maintaining source message schema
- Delta table is then "demuxed", separating messages by a category (like event type), schemas applied, then written to a target Delta table (in the "Silver" layer)



# Multiplex streaming (push Delta up)



Multiplex all event types through an initial stream that converts to Delta with limited schema (1 stream on dedicated cluster)



Why use a bronze layer?



#### Kafka as Bronze

- Data retention limited by Kafka; expensive to keep full history
- All processing happens on ingest
- If stream gets too far behind, data is lost
- Cannot recover data (no history to replay)





#### Delta Lake Bronze



### Is multiplex better than singleplex?

#### Not necessarily

- Domain Driven Design
- Less driver resource contention



# **databricks**