Statistical Analysis of the ToothGrowth Data

Arun K Viswanathan January 17, 2015

Overview

This report analyzes the ToothGrowth dataset in R.

Summary of the Tooth Growth dataset

The *Tooth Growth* dataset in R shows the effect of Vitamin C on tooth growth in guinea pigs. The data provides is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic acid).

The data contains three variables:

Variable	Data Type	Description
len	numeric	Tooth length
supp	factor	Supplement type (VC or OJ)
dose	numeric	Dose in milligrams

The dataset contains a total of 60 observations. Here's a summary of the raw data.

```
data <- transform(ToothGrowth, dose = as.factor(dose))
summary(data)</pre>
```

```
##
                              dose
         len
                     supp
           : 4.20
                             0.5:20
##
   \mathtt{Min}.
                     OJ:30
   1st Qu.:13.07
                     VC:30
                             1 :20
  Median :19.25
                             2 :20
##
  Mean
           :18.81
## 3rd Qu.:25.27
## Max.
           :33.90
```

The plot below shows the tooth growth ranges for each supplement at each dosage level.

```
library(ggplot2)
g <- ggplot(data, aes(x = supp, y = len, fill = dose)) + geom_boxplot() +
    facet_grid(. ~ dose) +
    ggtitle("Tooth Growth by Supplement Type") +
    xlab("Supplement") + ylab("Length of Tooth Growth") +
    guides(fill = guide_legend(title = "Dose"))
print(g)</pre>
```


Tooth growth analysis by supplement

Assuming that the tooth growth data is *iid*, the 95% confidence intervals for tooth growth for each supplement can be computed with the code below. The plots show the tooth growth for each supplement as a histogram.

```
conf <- lapply(split(data, data$supp), function(dataForSupp) {</pre>
    lens <- dataForSupp$len</pre>
    mean(lens) + c(-1, 1) * qnorm(0.975) * sd(lens) / sqrt(length(lens))
analysis <- lapply(names(conf), function(supp) {</pre>
    lens <- data[data$supp == supp, "len"]</pre>
    h <- hist(lens, xlim = range(data$len), ylim = range(0, 10),
              main = paste0("Histogram of tooth growth with ", supp),
              xlab = "Tooth Growth", ylab = "Frequency", col = "lightyellow2")
    xfit <- seq(min(lens), max(lens), length = 40)</pre>
    yfit <- dnorm(xfit, mean = mean(lens), sd = sd(lens))</pre>
    yfit <- yfit * diff(h$mids[1:2]) * length(lens)</pre>
    lines(xfit, yfit, col = "darkgreen", lt = 1, lw = 3)
    abline(v = mean(lens), col = "darkred", lt = 2, lw = 2)
    abline(v = conf[[supp]], col = "darkred", lt = 1, lw = 3)
    axis(1, font = 2, at = conf[[supp]], labels = sprintf("%2.2f", conf[[supp]]))
    pasteO("For supplement ", supp, ", the tooth growth is between ",
           sprintf("%2.2f", conf[[supp]][1]), " and ",
           sprintf("%2.2f", conf[[supp]][2]), " with 95% confidence.")
    })
```

Histogram of tooth growth with OJ

Tooth Growth **Histogram of tooth growth with VC**

For supplement OJ, the tooth growth is between 18.30 and 23.03 with 95% confidence. For supplement VC, the tooth growth is between 14.01 and 19.92 with 95% confidence. It can be clearly seen that orange juice (OJ) produces greater tooth growth compared to ascorbic acid (VC).

Tooth growth analysis by dose

Assuming that the tooth growth data is iid, the 95% confidence intervals for tooth growth for each dose can be computed with the code below. The plots show the tooth growth for each dose as a histogram.

```
conf <- lapply(split(data, data$dose), function(dataForDose) {</pre>
    lens <- dataForDose$len</pre>
    mean(lens) + c(-1, 1) * qnorm(0.975) * sd(lens) / sqrt(length(lens))
    })
analysis <- lapply(names(conf), function(dose) {</pre>
    lens <- data[data$dose == dose, "len"]</pre>
    h <- hist(lens, breaks = 8, xlim = range(data$len), ylim = range(0, 6.5),
              main = paste0("Histogram of tooth growth with dose ", dose, "mg"),
              xlab = "Tooth Growth", ylab = "Frequency", col = "lightyellow2")
    xfit <- seq(min(lens), max(lens), length = 40)</pre>
    yfit <- dnorm(xfit, mean = mean(lens), sd = sd(lens))</pre>
    yfit <- yfit * diff(h$mids[1:2]) * length(lens)</pre>
    lines(xfit, yfit, col = "darkgreen", lt = 1, lw = 3)
    abline(v = mean(lens), col = "darkred", lt = 2, lw = 2)
    abline(v = conf[[dose]], col = "darkred", lt = 1, lw = 3)
    axis(1, font = 2, at = conf[[dose]], labels = sprintf("%2.2f", conf[[dose]]))
    paste0("For dose ", dose, "mg, the tooth growth is between ",
           sprintf("%2.2f", conf[[dose]][1]), " and ",
           sprintf("%2.2f", conf[[dose]][2]), " with 95% confidence.")
    })
```

Histogram of tooth growth with dose 0.5mg

Histogram of tooth growth with dose 1mg

Histogram of tooth growth with dose 2mg

For dose 0.5mg, the tooth growth is between 8.63 and 12.58 with 95% confidence. For dose 1mg, the tooth growth is between 17.80 and 21.67 with 95% confidence. For dose 2mg, the tooth growth is between 24.45 and 27.75 with 95% confidence. It can be clearly seen that increasing the dose increases the tooth growth.