- ✓ 第一件事, 图卷积与卷积有啥不同?
 - *❷* 看起来好像都是利用周围的特征
 - ❷ 但是在图中每个点的邻居是不确定的

❤ 图中常见任务

∅ 节点分类,对每个节点进行预测,不同点是否有连接预测

❷ 整个图分类, 部分图分类等, 不同子图是否相似, 异常检测等

✓ 如何获取特征呢?

別再绞尽脑汁各种套路一顿想了,交给神经网络神经网络就得了

❷ 通常交给GCN两个东西就行: 1.各节点输入特征; 2.网络结构图

Semi-supervised learning

∅ 用少量标签也能训练

✓ GCN的基本思想

♂针对橙色节点, 计算它的特征: 平均其邻居特征(包括自身)后传入神经网络

❤ 网络层数

❷ 这个跟卷积类似,GCN也可以做多层,每一层输入的还是节点特征

❤ 图中基本组成

Ø G就是咱们的图

Ø D是各个节点的度

	Α	В	C	D	E
Α	0	0	0	0	1
В	0	0	0	1	1
C	0	0	0	1	1
D	0	1	1	0	1
E	1	1	1	1	0

Adjacency matrix A

	Α	В	С	D	E
Α	1	0	0	0	0
В	0	2	0	0	0
С	0	0	2	0	0
D	0	0	0	3	0
E	0	0	0	0	4

Degree matrix D

Α	-1.1	3.2	4.2
В	0.4	5.1	-1.2
С	1.2	1.3	2.1
D	1.4	-1.2	2.5
E	1.4	2.5	4.5

Feature vector X

✓ 特征计算方法

❷ 其实就是邻接矩阵与特征矩阵进行乘法操作,表示聚合邻居信息

✓ 一点小问题

arrho 光想着别人,没考虑自己呢: $ilde{A}=A+\lambda I_N$

∅ 加上自己就可以啦

❷ 但是还有木有啥问题呢?

	Α	В	C	D	Ε				
A	0	0	0	0	1	1	0	0	0
3	0	0	0	1	1	0	1	0	0
	0	0	0	1	1	0	0	1	0
)	0	1	1	0	1	0	0	0	1
Ε	1	1	1	1	0	0	0	0	0

Adjacency matrix A

Identity matrix I

New Adjacency matrix A

✓ 度矩阵也要变一变

 \mathcal{O} 其实就是对度矩阵进行 $\tilde{D}^{^{-}}\{-1\}$ 这样就相当于平均的感觉了

✓ 矩阵scale

❷ 但是这一步就够了吗?

New Adjacency matrix \widetilde{A}

Feature vector X

 \widetilde{D}^{-1}

"Sum of neighbors" matrix

ダ 矩阵scale

❷ 那么列咋办呢?同理

C DE -1.1 3.2 4.2 1/2 1 0 0 0 0 5.1 0.4 -1.2 1/3 0 0 0 1 0 1/3 0 1.2 1.3 2.1 0 0 0 1.4 -1.2 2.5 1/4 0 0 0 1.4 2.5 4.5 0 1/5 New adjacency matrix \widetilde{A} Feature vector X \widetilde{D}^{-1}

❷ 所以咱们现在的公式:

$$ilde{D}^{-1} ilde{A} ilde{D}^{-1}X$$

ダ 矩阵scale

 $ot\hspace{-1pt} \mathscr{O}$ 好像有点亏,要不咱们这么整吧: $ilde{D}^{-1/2} ilde{A} ilde{D}^{-1/2} X$

❤ 我的理解

② 现在有小红和小绿两个人 $\frac{1}{\sqrt{\deg(v_i)} \cdot \sqrt{\deg(v_j)}} = \hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}}$ (

❷ 当计算小红的特征的时候,它只跟小绿有关系

Ø 那小绿继承了300亿,小红也是? $√{\deg(v_i)} \cdot √{\deg(v_j)}$ 会把其关系的权重变的很小,因为小绿的度很大

✅ 基本公式

❷ 例如完成一个十分类任务的,F就为10表示输出层

Ø 其中 $\hat{A} = \tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}$ 就是咱们刚才说的分别对左右都进行了归一化

✓ GCN的层数

❷ 理论上来说肯定越大越好

❷ 但是实际的图中可能不需要那么多

❷ 在社交网络中,只需6个人你可以认识全世界

✓ GCN的层数

