COMP 472 Project 2 Naive Bayes Classifier

Matteo Esposito¹, Matthew Liu², and Kabir Soni³

Introduction & Technical Details 1

This project was developed using python 3.7.4 64-bit.

1.1 Files

The file structure of our project is as follows:

Table 1. Files in project 1

Directory	Filename	Usage					
out/	*	Trace and evaluation files for each run.					
out_BYOM/	*	Trace and evaluation files for each BYOM run.					
src/	utils.py	Helper functions for I/O and input parsing.					
	NBClassifier.py	Naive Bayes Classifier class. A collection of method					
		used to implement Naive Bayes Classification.					
	Ngram.py	Ngram class, used in all classifications.					
	BYOM.py	Personalized model class.					
	main.py	Reading training set, training classifier, predicting lan-					
		guages on test set and writing out results.					

Packages 1.2

We used a total of 7 packages in our project, 5 existing, along with our 2 internal packages (board and node).

1. Existing

- shutil and os: Folder and file management in the creation and deletion of output folders for our search and solution files.
- math: Calculating log base 10 probabilities as part of the score function of each tweet.
- copy: Used to create deep copies in the initialization of ngrams in the NBClassifier class.

 $^{^1\ 40024121\ \}mathrm{matteoesposito97@gmail.com}$

 $^{^2~40029238~{\}tt matthew.jx.liu@gmail.com}$ $^3~40033019~{\tt kabirsoni524@gmail.com}$

- 2 M. Esposito et al.
 - decimal.Decimal: Used to format the probability output for the trace file.
 - string: Used to populate vocabulary 1 and 2 with ascii characters.

2. Internal

- NBClassifier: Class that is used to represent the classifier, which takes a vocabulary selection, ngram size, delta/smoothing value and train/test file links.
- Ngram: Class used to represent the Ngram used in the NBClassifier class.

1.3 NBClassifier and Ngram Classes

The **Ngram** class will be used in the NBClassifier class. It allows for a concise way to store a language, count/frequency table, probability table and language probability. This class stores the probability calculation, smoothing and language probability methods which are called in the train method of NBClassifier.

The **NBClassifier** class will have as main attributes a language, count table, probability table and size (n), which will all be stored in a size-n Ngram. It will also hold a language probability. It is from the NBClassifier object in main.py that we will call the train and predict methods.

Note on vocabulary creation: Vocabularies 0 and 1 are generated by combining ascii character sets from the string library. Vocabulary 3 is created by... Matt add something here that talks about the creation of vocab2 for Ngrams

2 Dataset Impact & Analysis

In our exploratory data analysis we assess 2 characteristics of the test sets, namely tweet length and language frequency.

2.1 Tweet Length

Rounding down all tweets with length larger than 150 charaters down to 150 (as they make up less than 0.5% of the observations), we get the following capped tweet length distribution curves for the provided and demo test sets of tweets.

The main observation we can notice from the overlayed distribution plots is that the demo test set contains a greater proportion of large tweets (tweets with length over ~ 70 characters). The effect this could have on the accuracy of our classifications is that we are introducing a larger amount of unigrams, bigrams and trigrams from the tweet being assessed by the classifier and therefore introducing the potential for a greater amount of incorrectly labelled character patterns.

2.2 Language Frequency

Generating a frequency table of the languages in the provided test dataset we observe the following:

4 M. Esposito et al.

```
orig_test.lang.value_counts()
```

```
es 3926
pt 2020
en 505
eu 376
ca 75
gl 1
```

We notice that there is a single observation in the 'gl' class. This will have an effect on our precision, recall and f1 values. In the case where we do not correctly classify that observation into the 'gl' class, our true positive value for the gl class will be 0, making precision and recall also 0 and yielding an f1 value of 0/0 (which we set to 0 in this case).

Generating a frequency table of the languages in the demo test dataset we observe the following:

```
demo_test.lang.value_counts()
```

```
es 4572
ca 1387
gl 504
en 483
pt 96
```

We notice that there are no observation in the 'eu' class. Every classification of a test tweet into the 'eu' class will result in a direct increase in the number of false positives, affecting our validation metrics negatively (decreasing precision and f1).

3 Our Model (BYOM)

Kabir

4 Result & Experiment Analysis

Check in appendix for all necessary confusion matrices

5 Team Responsibilities

The breakdown of tasks were as follows:

1. Matteo Esposito

- Project structure
- NBClassifier & Ngram class
- utility functions utils.py
- 2. Matthew Liu
 - NBClassifier & Ngram class
 - utility functions utils.py
- 3. Kabir Soni
 - Personalized model (BYOM)

References

1. S.J. Russel, P. Norvig: Artificial Intelligence: A Modern Approach. 3rd edn. Pearson, Harlow (1994)

6 Appendices

6.1 Appendix A - Confusion Matrices (Given Test Dataset test-tweets-given.txt)

Table 2. Cross tabulation of predictions, $V=0, n=1, \delta=0$

				Predi	cted		
		ca	en	es	eu	gl	pt
	ca	24	3	44	1	1	2
	en	7	287	205	11	0	6
Actual	es	44	140	3635	63	3	88
Actual	eu	3	16	107	253	0	1
	gl	0	0	1	0	0	0
	pt	16	62	1365	11	1	600

Table 3. Cross tabulation of predictions, $V = 1, n = 2, \delta = 0.5$

				Predi	cted		
		ca	en	es	eu	gl	pt
	ca	59	1	14	0	0	1
	en	8	443	50	7	0	8
Actual	es	110	66	3584	84	41	88
Actual	eu	5	6	41	323	0	5
	gl	0	0	0	0	0	1
	pt	61	23	397	8	38	1528

Table 4. Cross tabulation of predictions, $V=1, n=3, \delta=1$

				Predi	icted	l	
		ca	en	es	eu	gl	pt
	ca	53	1	21	0	0	0
	en	4	386	121	1	0	4
Actual	es	10	15	3918	6	1	23
Actual	eu	5	4	140	230	0	1
	gl	0	0	1	0	0	0
	pt	16	8	480	0	1	1550

Table 5. Cross tabulation of predictions, $V=2, n=2, \delta=0.3$

				Pred	icteo	ł	
		ca	en	es	eu	gl	pt
	ca	62	1	12	0	0	0
	en 9 438 60 7 es 70 55 3721 5	7	0	2			
Actual	es	70	55	3721	57	11	59
Actual	eu	4	8	51	311	0	6
	gl	0	0	0	0	0	1
	pt	47	20	340	6	14	1628

Table 6. Cross tabulation of predictions (BYOM), $V=1, n=2, \delta=0.5$

				Pred	icted	l	
		ca	en	es	eu	gl	pt
	ca	51	1	23	0	0	0
	en	3	406	102	2	0	3
Actual	es	11	16	3914	7	0	25
Actual	eu	2	4	109	264	0	1
	gl	0	0	1	0	0	0
	pt	17	9	412	0	2	1615

$\textbf{6.2} \quad \textbf{Appendix B - Confusion Matrices (Demo \ Dataset \ \texttt{test5.txt)} }$

Table 7. Cross tabulation of predictions, $V=0, n=1, \delta=0$

			Predicted						
		ca	en	es	eu	gl	pt		
	ca	418	52	868	5	5	43		
	en	7	299	171	2	0	4		
Actual	es	51	164	4217	20	5	132		
Actual	gl	7	8	441	1	8	41		
	pt	0	5	61	10	0	20		

Table 8. Cross tabulation of predictions, $V=1, n=2, \delta=0.5$

			064 23 256 7 9 32 34 380 59 2 0 8 150 99 4072 32 107 129				
		ca	en	es	eu	gl	pt
	ca	1064	23	256	7	9	32
	en	34	380	59	2	0	8
Actual	es	150	99	4072	32	107	129
Actual	gl	19	9	266	4	122	86
	pt	4	1	19	1	2	69

Table 9. Cross tabulation of predictions, $V=1, n=3, \delta=1$

			Pr	edicte	ed		
		ca	en	es	eu	gl	pt
	ca	1041	4	338	0	0	8
	en	21	329	131	0	0	2
Actual	es	20	40	4480	1	6	42
Actual	gl	3	1	452	0	19	31
	pt	2	0	29	0	0	65

Table 10. Cross tabulation of predictions, $V = 2, n = 2, \delta = 0.3$

			P	redict	ed		
		ca	en	es	eu	gl	pt
	ca	1107	18	239	7	2	18
	en	29	374	72	1	0	7
Actual	es	114	84	4227	20	52	92
Actual	gl	11	6	326	1	106	56
	pt	1	0	18	1	0	76

Table 11. Cross tabulation of predictions (BYOM), $V = 1, n = 2, \delta = 0.5$

			Predicted						
		ca	en	es	eu	gl	pt		
	ca	1071	7	305	0	0	8		
Actual	en	22	342	116	0	0	3		
	es	19	44	4465	1	13	47		
Actual	gl	4	2	415	0	42	43		
	pt	2	0	25	0	0	69		

6.3 Appendix C - Miscellaneous Code

Confusion Matrix

Distribution Plot

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

orig_test = pd.read_csv(f'input/test-tweets-given.txt', delimiter="\t", \names=('id','user','lang','tweet'))
demo_test = pd.read_csv(f'input/test5.txt', delimiter="\t", names=('id',\names','lang','tweet'))

fig, ax = plt.subplots(figsize=(10,6))

# Cap data at tweet length of 150 and create individual plots.
orig_test['tlen'] = orig_test['tweet'].apply(len)
orig_test['tlen-capped'] = np.where(orig_test['tlen'] > 150, 150, \name orig_test['tlen'])
sns.distplot(orig_test.tlen_capped, ax=ax, label="Original Test Data")
```