

CS-11xx:ArhCalc

Lecţia 5:

Aritmetica pentru calculator - I

G Stefănescu — Universitatea București

Arhitectura sistemelor de calcul, Sem.1 Octombrie 2016—Februarie 2017

După: D. Patterson and J. Hennessy, Computer Organisation and Design

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Aritmetica pentru calculator

Subiecte: Intrebări la care vom căuta răspuns sunt:

- Cum se reprezintă numerele întregi, în particular cele negative?
- Cum se *operează* cu ele *în calculator*?
- Care este *cel mai mare număr* reprezentabil în calculator?
 Ce se întâmplă dacă prin operare se obţin *numere mai mari*?
- Cum se operează cu *numere raționale* ori *reale*?
- Cum se adună, scad, înmulțesc, și împart numerele în hardware?
- Ce a fost cu defectul de la Pentium?
- Etc.

Numere naturale

Numere naturale:

• Numerele naturale se reprezintă uzual în baza 10, e.g.,

$$2005 = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 5 \times 10^0$$

• Reprezentarea în *baza 2* este similară, e.g., numărul anterior se reprezintă astfel

$$\begin{aligned} 2005_{\texttt{zece}} &= 11111010101_{\texttt{doi}} \\ &= 1 \times 2^{10} + 1 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 \\ &\quad + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \end{aligned}$$

• Pozițiile se notează de la dreapta la stânga, i.e.,

..Numere naturale

Numere naturale (cont.)

• Cuvintele MIPS au 32 de biţi, deci teoretic putem reprezenta numerele de la 0 la $2^{32} - 1 (= 4.294.967.295_{zece})$, e.g.

- Dacă prin operații aritmetice (e.g., înmulțire) se depășește limita maximă $2^{32} 1$ se spune că apare *overflow* (*depășire*).
- Hardware-ul poate fi făcut fie *să detecteze* overflow-ul, fie *să-l ignore*.

Numere intregi

Numere intregi:

- Numerele întregi se reprezintă cu semn și magnitudine.
- Dacă semnul ar fi un bit separat, zero ar avea două reprezentări (± 0) , generând confuzie...
- Se preferă următoare reprezentare prin complementul la 2

..Numere intregi

Numere intregi (cont.)

Valoarea numerelor cu semn se obţine aplicând direct formula

$$x_{31} \times (-2^{31}) + x_{30} \times 2^{30} + x_{29} \times 2^{29} + \dots + x_0 \times 2^0$$

- Alternativ, când $x_{31} = 1$ magnitudinea se obține *complementând* față de 2 pozițiile 30-0 și *adăugând 1*.
- La load (încărcare):
 - dacă se operează cu *operatori cu semn (signed)*, se face *extensia semnulul*, completând toate pozitiile libere din față (dacă sunt) cu semnul, pentru a păstra valoarea;
 - dacă se lucrează cu *operatori fără semn (unsigned)* se completează cu 0.
- La fel, operațiile de comparare pot da rezultate diferite dacă operatorii sunt considerați cu semn, ori fără.

..Numere intregi

Numere intregi (cont.) Exemple de operații

• Dacă regiştri \$s0,\$s1 conţin

```
1111 1111 1111 1111 1111 1111 1111 1111 Şİ
0000 0000 0000 0000 0000 0000 0000
```

instrucțiunile

```
slt $t0,$s0,$s1;  # comparare cu semn
sltu $t0,$s0,$s1;  # comparare fara semn
```

setează pe \$t0 cu 1 în primul caz (-1 < 1) şi cu 0 în al doilea $(2^{32} - 1 > 1)$.

..Numere intregi

Numere intregi (cont.) Trucuri de operare rapidă:

- Negarea unui număr:
 - Negarea unui număr se obține complementând toți biții 31-0 și adăugând 1.
- Extensia cu semn și negarea comută:

Dacă *neg* este funcția de negare și $ex_{m\to n}$ extensia cu semn de la *m* la *n* biți, atunci $neg(ex_{m\to n}(p)) = ex_{m\to n}(neg(p))$.

• Reprezentări hexazecimale:

Numerele $0, 1, \ldots, 9, 10, 11, 12, 13, 14, 15$ au *reprezentările hexazecimale* $0, 1, \ldots, 9, a, b, c, d, e, f$, respectiv.

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Adunare si scadere

Adunare si scadere:

• Adunare: Adunarea se face uzual:

Algoritmul este ilustrat în desen, incluzând cifrele de transfer:

• *Scădere*: Folosind reprezentare cu complement, scăderea se reduce la adunare:

..Adunare si scadere

Depasire (overflow):

• Se pot obține depășiri în următoarele condiții:

Operatie	Operand A	Operand B	Rezultat indicand overflow
A+B	≥ 0	≥ 0	< 0
A+B	< 0	< 0	≥ 0
A-B	≥ 0	< 0	< 0
A-B	< 0	≥ 0	≥ 0

- Operaţiile add, addi, sub produc excepţii la depăşire.
- Operațiile addu, addiu, subu nu produc excepții la depășire.

..Adunare si scadere

Depasire (cont.)

- MPIS nu are teste condiționale pentru depăşire, dar astfel de teste pot fi simulate.
- Exemplu: Pentru a detecta *overflow la adunare cu semn* codul poate fi următorul:

```
addu $t0,$t1,$t2;
                                        # $t0 = suma (fara semn)
xor $t3,$t1,$t2;
                                      # verifica semnele $t1,$t2
slt $t3,$t3,$zero;
                                  # $t3 = 1, daca difera semnele
                                     # $t1,$t2 - semne diferite;
bne $t3,$zero, No_overflow;
                                                 # n-am overflow
    $t3,$t0,$t1;
                                   # verifica semnele $t1, suma;
xor
                               # $t3 negativ, daca sunt diferite
slt $t3,$t3,$zero;
                             # $t3 = 1, daca semnul sumei difera
    $t3,$zero, Overflow;
                                                   # am overflow
bne
                      # ($t1,$t2 semne egale, suma semn diferit)
```


Operatii aritmetice MIPS

Operatii aritmetice MIPS (Legenda: A = Instructiune aritmetica):

Tip	Instructiune	Exemple	Semantica	Comentarii
A	add	add \$s1,\$s2,\$s3	\$s1=\$s2+\$s3	3 operanzi;
				overflow detectat
A	subtract	sub \$s1,\$s2,\$s3	\$s1=\$s2-\$s3	3 operanzi;
				overflow detectat
A	add	addi \$s1,\$s2,100	\$s1=\$s2+100	+ constanta;
	immediate			overflow detectat
A	add unsigned	addu \$s1,\$s2,\$s3	\$s1=\$s2+\$s3	3 operanzi;
				overflow nedetectat
A	subtract	subu \$s1,\$s2,\$s3	\$s1=\$s2-\$s3	3 operanzi;
	unsigned			overflow nedetectat
A	add immedi-	addiu	\$s1=\$s2+100	+ constanta;
	ate unsigned	\$s1,\$s2,100		overflow nedetectat
A	move to co-	mfc0 \$s1,\$epc	\$s1=\$epc	copiaza reg. EPC si
	procesor reg-			alti registri pentru re-
	ister			zolvarea exceptiei

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Operatii pe biti

Shift-uri:

- Se *deplasează* conținutul unui registru cu *un număr de poziții într-o direcție*, pozițiile *vide* completându-se cu *0*-uri.
- Exemplu: Prin deplasare la stânga cu 8 poziții registrul

```
0000 0000 0000 0000 0000 0000 1101

devine

0000 0000 0000 0000 0000 1101 0000 0000
```

• In MIPS denumirile sunt

```
sll (shift left logical)
şi, dual,
srl (shift right logical).
```


MIPS - operatii logice

Instructiuni logice:

• sll reg1, reg2, const (shift left logical)

Semantică: Se deplasează conținutul registrului reg2 cu const poziții la stânga, iar rezultatul se pune în reg1.

Cod maşină (constanta se codifică în câmpul shamt):

0 0	reg1	reg2	cons	0
-----	------	------	------	---

• srl reg1, reg2, const (shift right logical)

Semantică: Se deplasează conținutul registrului reg2 cu const poziții la dreapta, iar rezultatul se pune în reg1.

Cod: 0 0 reg1 reg2 cons 2

..Operatii pe biti

Operatii logice pe biti:

- Se pot face operații logice AND, OR *bit-cu-bit*, fie cu doi operatori în registri (anume and, or), fie cu un operator în registru și o constantă dată ca valoare imediată (anume andi, ori).
- Exemplu: Dacă regiştrii cu operatori conțin

rezultatul lui AND este

```
0000 0000 0000 0000 0000 1100 0000 0000.
```

- Unul din operatori poate fi privit ca o *masca*: păstrează anumite poziții din celălalt operator (unde el are 1), restul devine 0.
- Rezultatul lui OR este

```
0000 0000 0000 0000 0011 1101 0000 0000.
```


MIPS - operatii logice

Instructiuni logice (cont.)

and reg1, reg2, reg3 (and)

Semantică: reg1 = reg2 AND reg3 (bit-cu-bit)

Cod:

reg2

req3

req1

36

or reg1, reg2, reg3 (or)

Semantică: $reg1 = reg2 \ OR \ reg3 \ (bit-cu-bit)$

Cod:

reg2

reg3

req1

37

MIPS - operatii logice

Instructiuni logice (cont.)

• andi reg1, reg2, const (and immediate)

Semantică: reg1 = reg2 *AND* const (bit-cu-bit)

Cod:

12

reg2

reg1

const

• ori reg1, reg2, const (or immediate)

Semantică: $reg1 = reg2 \ OR \ const \ (bit-cu-bit)$

Cod:

13

reg2

reg1

const

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Unitatea aritmetica si logica

ALU (Arithmetic and Logic Unit):

- *ALU* (*unitatea aritmetica si logica*) este zona principala de calcul din computer.
- In ALU sunt efectuate atât *operațiile aritmetice* (adunare, scădere, înmulțire, împărțire), cât și *operațiile logice* (shift-uri, AND, OR).
- Circuitele necesare sunt pur *combinaţionale* (i.e., nu necesită memorie).
- Cum MIPS are cuvinte pe 32 biţi, folosim *ALU de lărgime 32*.

ALU pe 1 bit

ALU pe 1 bit: Operațiile logice (AND, OR, NOT, IF_ZERO) se realizează direct, fiind reprezentate în hardware:

1. AND gate $(c = a \cdot b)$

a	b	c = a · b
0	0	0
0	1	0
1	0	0
1	1	1

2. OR gate (c = a + b)

а	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

3. Inverter $(c = \bar{a})$

a	c = ā
0	1
1	0

4. Multiplexor (if d = 0, c = a; else c = b)

d	С
0	a
1	b

..ALU pe 1 bit

ALU pe 1 bit (cont.)

• Operațiile logice AND și OR pot fi cuplate într-o *unitate logică* pe 1 bit pentru {AND, OR} ca în figură

• Semnalul de control pentru multiplexor Operation selectează ce operație AND ori OR se execută.

Adunare

Adunare:

• La adunare, folosim cifrele de transfer CarryIn şi CarryOut.

• Pasul de bază folosește un modul ca în figură, cu tabela de

adevăr alăturată:

а	b	CarryIn	CarryOut	Suma
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 Notând ci = CarryIn, co = CarryOut, forma normală cu sume de produse pentru CarryOut este

$$co = \overline{a} \cdot b \cdot ci + a \cdot \overline{b} \cdot ci + a \cdot b \cdot \overline{ci} + a \cdot b \cdot ci$$

Adunare

Adunare (cont.)

• O formula redusă echivalentă pentru CarryOut este

$$co = b \cdot ci + a \cdot ci + a \cdot b$$

• Formula rezultă se translatează în următorul circuit

• Analog se obţine un circuit pentru Sum.

..ALU pe 1 bit

ALU pe 1 bit (cont.)

- Circuitele de mai sus pentru CarryIn şi Sum dau un circuit pentru modulul +.
- Impreună cu ALU precedent pentru {AND, OR}, găsim o *uni*tate aritmetică-logică pe 1 bit pentru {AND, OR, +}

ALU pe 32 biti:

- Folosim 32 de ALU-uri pe 1 bit de tip {AND, OR, +}, conectate ca în figură.
- Sumatorul rezultat conectând CarryOut-ul unui modul la CarryIn-ul modului următor se numeşte *ripple-carry adder* (sumator cu transport succesiv).
- Pentru sumator, CarryIn-ul modului 0 este 0, iar CarryOut-ul modului 31 se ignoră (aici).

Adaugam scaderea:

- Scăderea a b se reduce la adunarea lui a cu -b.
- Cu reprezentarea numerelor negative prin complementul la doi, -b se obţine inversând biţii lui b şi adunând 1.

• In hardware:

- biţi inversaţi se obţin cu un multiplexor, folosind controlul Binvert ce alege între b şi \overline{b} ;
- adunarea lui 1 se realizează simplu, *setând* CarryIn-*ul modului inițial 0 la 1* (nu la 0).
- Figura descrie un *ALU pe 32 biti pentru* {AND, OR, +, -}.

Adaugam "set on less than": Rezultatul c al comenzii slt c, a, b (i.e., 1 dacă a < b, altfel 0) se obține astfel:

- Observăm că $(a-b) < 0 \Leftrightarrow a < b$, deci compararea lui a cu b se reduce la a compara cu 0 diferența a-b.
- Rezultatul testului este 1 dacă a b este negativ, altfel 0, deci c este exact bitul de semn al lui a b.
- Folosim o "intrare" nouă (temporară) Less pentru toate modulele, care va produce biţii rezultatului comenzii; ulterior ea va fi conectata la rezultatul unui calcul intern.
- Bitul (cel mai semnificativ) de la modului 31 de la a-b va fi directionat la intrarea Less a modului 0, restul biţilor Less fiind 0.

Nota: In prezenta overflow-ului, trebuiesc facute mici modificari.

ALU pe 1 bit cu Less:

- Multiplexorul are o intrare nouă Less, pentru slt.
- In circuitul final, "intrarea" Less va dispare, fiind calculată din a, b.

ALU pe 1 bit cu overflow (nedetaliat) și extensia pentru cel mai semnificativ bit:

- Circuitul adaugă detectarea celui mai semnificativ bit Set.
- Se va folosi în ultima veriga a circuitului final (pentru modului 31).

ALU pe 32 biti:

- cu set on less than
- și detecție de overflow.

ALU pe 32 biti cu *test la zero*:

adăugăm testul dacă rezultatul este zero (folosit la instrucţiunile condiţionale)

CS-11xx / Arhitectura sistemelor de calcul, Sem.1 / G Stefanescu

ALU pe 32 biti (final)

ALU pe 32 biti final:

• Liniile de control combină Binvert şi CarryIn în Bnegate. Tabela de comandă este:

Bnegate	Operation	Function
0	00	and
0	01	or
0	10	add
1	10	subtract
1	11	set on less than

• Obţinem *ALU final pe 32 biţi*, notat simbolic

..ALU pe 32 biti (final)

Comentarii:

- In componenta finală a,b,Result au câte 32 de biţi, ALU Operation are 3, iar Zero, Overflow, CarryOut câte 1 bit.
- Formal, tipul nu diferențiază intrările (ori ieşirile) între ele, e.g.,

$$ALU: 32+32+3 \rightarrow 1+32+1+1$$

- ... dar, conceptual, o componentă are două direcții ortogonale: una de *calcul* și una de *control* (ori *interacție*).
- In ALU de mai sus, *calea de calcul* este relația $(a,b) \mapsto$ Result.
- Partea de *control de intrare* indică ce operație are loc în procesarea curentă; partea de *control de ieșire* conține indicații despre excepții ori pentru controlul altor componente.

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Adunare rapida:

- Operațiile de bază (adunare, etc.) se execută de un număr imens de ori. Pot fi executate mai rapide?
- Relativ la adunare, metoda carry-ripple anterioară este pur secvențială: modului k+1 așteaptă CarryOut-ul de la modulul k spre a-l folosi drept CarryIn-ul său.
- O metodă de eficientizare ar fi să *operăm în paralel* și să *an-ticipăm deplasările* (cifrele de transport).

Adunare rapida cu hardware infinit:

• Fie *ci*, *co* prescurtări pentru CarryIn, CarryOut. Avem formulale de calcul

$$ci_{1} = co_{0} = b_{0} \cdot ci_{0} + a_{0} \cdot ci_{0} + a_{0} \cdot b_{0}$$

$$ci_{2} = co_{1} = b_{1} \cdot ci_{1} + a_{1} \cdot ci_{1} + a_{1} \cdot b_{1}$$

$$= b_{1} \cdot (b_{0} \cdot ci_{0} + a_{0} \cdot ci_{0} + a_{0} \cdot b_{0}) + a_{1} \cdot (b_{0} \cdot ci_{0} + a_{0} \cdot ci_{0} + a_{0} \cdot b_{0}) + a_{1} \cdot b_{1}$$

$$= b_{1} \cdot b_{0} \cdot ci_{0} + b_{1} \cdot a_{0} \cdot ci_{0} + b_{1} \cdot a_{0} \cdot b_{0} + a_{1} \cdot b_{0} \cdot ci_{0} + a_{1} \cdot a_{0} \cdot ci_{0} + a_{1} \cdot a_{0} \cdot b_{0} + a_{1} \cdot b_{1}$$

Si aşa mai departe...

• Teoretic, cu hardware "infinit" putem obține rezultatul direct cu un circuit pe 2 nivele (folosind câte porți vrem).

Sumator cu carry-lookahead:

• Observăm că

$$ci_{k+1} = a_k \cdot b_k + (a_k + b_k) \cdot ci_k$$

deci este util să introducem notațiile

$$g_k = a_k \cdot b_k$$
$$p_k = a_k + b_k$$

 $(g_k \text{ este deplasare } generat \breve{a}, p_k \text{ este deplasare } propagat \breve{a}).$

• Pentru 4 biţi avem:

$$ci_{1} = g_{0} + p_{0} \cdot ci_{0}$$

$$ci_{2} = g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot ci_{0}$$

$$ci_{3} = g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot ci_{0}$$

$$ci_{4} = g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1} + p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0} + p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} \cdot ci_{0}$$

Sumator carry-lookahead (cont.)

- Analogie de tip apă-şiconducte privind generarea şi propagarea deplasărilor.
- c_k este 1 când un g_i este
 1 şi toţi p_j dintre i şi k
 sunt 1
 (un bit de deplasare este
 generat şi apoi propagat)

CS-11xx / Arhitectura sistemelor de calcul, Sem.1 / G Stefanescu

Sumator carry-lookahead (cont.)

- Putem aplica procedura de mai sus la un nivel superior de abstracție folosing *grupuri de biți*.
- Pentru un grup de 4 biţi, formulele sunt un pic mai complicate. *Propagările* pe blocuri sunt:

$$P_{0} = p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0};$$

$$P_{1} = p_{7} \cdot p_{6} \cdot p_{5} \cdot p_{4};$$

$$P_{2} = p_{11} \cdot p_{10} \cdot p_{9} \cdot p_{8};$$

$$P_{3} = p_{15} \cdot p_{14} \cdot p_{13} \cdot p_{12};$$

Generările pe blocuri sunt:

$$G_{0} = g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1} + p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}$$

$$G_{1} = g_{7} + p_{7} \cdot g_{6} + p_{7} \cdot p_{6} \cdot g_{5} + p_{7} \cdot p_{6} \cdot p_{5} \cdot g_{4}$$

$$G_{2} = g_{11} + p_{11} \cdot g_{10} + p_{11} \cdot p_{10} \cdot g_{9} + p_{11} \cdot p_{10} \cdot p_{9} \cdot g_{8}$$

$$G_{3} = g_{15} + p_{15} \cdot g_{14} + p_{15} \cdot p_{14} \cdot g_{13} + p_{15} \cdot p_{14} \cdot p_{13} \cdot g_{12}$$

Sumator carry-lookahead (cont.)

• Analogie de tip apă-şiconducte privind generarea şi propagarea deplasărilor pe *grupuri de biți*.

Sumator cu carry-lookahead:

• Ecuațiile finale pentru deplasări pe blocuri de 4 biți sunt similare, dar folosesc generările și propagările pe blocuri P, G:

$$Ci_{1} = G_{0} + P_{0} \cdot Ci_{0}$$

$$Ci_{2} = G_{1} + P_{1} \cdot G_{0} + P_{1} \cdot P_{0} \cdot Ci_{0}$$

$$Ci_{3} = G_{2} + P_{2} \cdot G_{1} + P_{2} \cdot P_{1} \cdot G_{0} + P_{2} \cdot P_{1} \cdot P_{0} \cdot Ci_{0}$$

$$Ci_{4} = G_{3} + P_{3} \cdot G_{2} + P_{3} \cdot P_{2} \cdot G_{1} + P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0} + P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot Ci_{0}$$

Sumator cu carry-lookahead:

- In fine, desenul arată schema finală a sumatorului.
- Exemplul prezintă cazul unui sumator pe 16 biţi format din 4 ALU pe 4 biţi.

Sumator cu carry-lookahead: Analiză:

- Să considerăm cazul unui sumator cu 16 biţi.
- In cazul secvenţial (ripple-carry adder), sunt necesare 16 adunări, fiecare necesitând 2 nivele de logică (porti AND, apoi OR). Deci timpul este de $16 \times 2 = 32$ unităţi.
- Cu carry-lookahead adder:
 - 1 nivel de logică este folosit pentru p_k, g_k ;
 - 2 nivele de logică în Carry-lookahead pentru C_k ;
 - 2 nivele de logică în fiecare ALU (pentru rezultatul final).
- Obţinem, în principiu, un sumator de 32/5 = 6.4 ori mai rapid.

Nota: Sa notam ca sumatorul carry-lookahead este mai rapid, dar necesita mult mai multe porti, in particualar porti AND si OR generalizate.

Aritmetica pentru calculator

Cuprins:

- Numere (cu si fara semn)
- Adunare si scadere
- Operatii logice
- Unitatea aritmetica si logica
- Adunare rapida
- Inmultire
- Impartire
- Operatii cu numere reale
- Concluzii, diverse, etc.

Partea II

A se insera...