§9.2 偏导数

要求: 熟练掌握多元函数偏导数计算

9.2.1 偏导数的定义与计算

回顾: 一元函数y = f(x)导数定义

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

导数 $f'(x_0)$ 是函数 y 在点 x_0 处的变化率.

对二元函数z = f(x,y),我们也相应研究函数z对变量x(或y)的变化率,这就引出了一个新概念.

先介绍二元函数增量概念:

$$\Delta z_x = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$$
 称为函数对 x 的偏增量
$$\Delta z_y = f(x_0, y_0 + \Delta y) - f(x_0, y_0)$$
 称为函数对 y 的偏增量

定义9.4 (P179) 如果
$$\lim_{\Delta x \to 0} \frac{\Delta z_x}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

存在,则此极限值称为函数z = f(x,y)在点 (x_0,y_0) 处对x的偏导数

记为
$$f_x(x_0, y_0)$$
或 $z_x \Big|_{\substack{x=x_0 \ y=y_0}}$ 或 $\frac{\partial z}{\partial x}\Big|_{(x_0, y_0)}$

同理,可定义函数z = f(x,y)在点 (x_0,y_0) 处对y的偏导数

$$f_{y}(x_{0}, y_{0}) = \lim_{\Delta y \to 0} \frac{f(x_{0}, y_{0} + \Delta y) - f(x_{0}, y_{0})}{\Delta y}$$

如果函数z = f(x,y)在D内每点(x,y)处的偏导数都存在,则函数对x,y的偏导数统称为函数对x或对y的偏导数.

记号: $f_x(x_0,y_0)$ 是求函数在 (x_0,y_0) 点的偏导函数值;

记号: $f_x(x,y)$ 是求函数在(x,y)点的偏导函数. 都称为<mark>求偏导数</mark>.

从定义看出,求函数的偏导数要用到一元函数的求导公式,对 某一自变量求偏导时,其余变量看作常量.

例9.5 (P180)求下列函数的偏导数: $(1) z = y^2 \sin x$

解 (1)对x求偏导时,把y看作常量,得 $\frac{\partial z}{\partial x} = y^2 \cos x$

对 y 求偏导时,把 x 看作常量,得 $\frac{\partial z}{\partial y} = 2y \sin x$

(2), (3) 自己做

练习: 已知 $z = x^2 + (xy)^2 + a^2$, 求 z_x, z_y .

例9.6 (P180)求函数 $f(x,y) = x^2 + y^2 - 3xy$ 在点(1,3)处的偏导数.

分析:与一元函数一样,计算导数值 $f'(x_0)$,先求导函数f'(x),再计算导函数值 $f'(x)\Big|_{x=x_0}$

解
$$f_x = 2x - 3y$$
, $\iint f_x(1,3) = 2 \times 1 - 3 \times 3 = -7$
 $f_y = 2y - 3x$, $\iiint f_y(1,3) = 2 \times 3 - 3 \times 1 = 3$

练习:

1. 求下列函数的偏导数

(1)
$$z = x^2 \sin 2y$$
 (2) $z = \ln(x^2y^3)$

2. 设 $z = x^y (x > 0, x \ne 1)$, 求证: $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{1}{\ln x} \frac{\partial z}{\partial y} = 2z$

偏导数的几何意义

在z = f(x, y)函数中,若固定 $y = y_0$ 则得 $z = f(x, y_0)$,此时z是自变量为x的一元函数. 从几何上看,它是曲面 z = f(x, y)与平面 $y = y_0$ 相交的一条曲线 L_x : $\begin{cases} z = f(x, y), \\ y = y_0 \end{cases}$

偏导数 $f_x(x_0, y_0)$ 是一元函数 $z = f(x, y_0)$ 在点 x_0 处的导数,由一元函数导数的几何意义可知, $f_x(x_0, y_0)$ 表示曲线 L_x 在点 $M_0(x_0, y_0, f(x_0, y_0))$ 处的切线 M_0T_x 对 x 轴的斜率,即 $f_x(x_0, y_0) = \tan \alpha$,其中 α 为切线 M_0T_x 与 x 轴正方向的夹角.

9.2.2 高阶偏导数

如果 $\frac{\partial z}{\partial x} = f_x(x,y)$, $\frac{\partial z}{\partial y} = f_y(x,y)$ 还可导,则称它们的偏

导数为z = f(x,y)的二阶导数.

注意: 二元函数的一阶偏导数有两个, 二阶偏导数有四个

一阶偏导函数 $\frac{\partial z}{\partial x} = f_x(x,y)$ 有两个二阶偏导:

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = f_{xx} \left(x, y \right) \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = f_{xy} \left(x, y \right)$$

同理: 一阶偏导函数 $\frac{\partial z}{\partial y} = f_y(x,y)$ 也有两个二阶偏导:

$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = f_{yx} \left(x, y \right) \qquad \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = f_{yy} \left(x, y \right)$$

 f_{xy} , f_{yx} 称混合二阶偏导数,可以证明,当 f_{xy} 与 f_{yx} 都连续时, $f_{xy} = f_{yx}$,即混合二阶偏导数求导与先后次序无关.

例9.7 (P180) 求函数 $z = x^3y^2 - 2x^2y^3$ 的二阶偏导数.

注意: 题目要求二阶偏导数是指所有二阶偏导数.

解 先计算一阶偏导 $z_x = 3x^2y^2 - 4xy^3$, $z_y = 2x^3y - 6x^2y^2$ 再计算二阶偏导 $z_{xx} = 6xy^2 - 2y^3$, $z_{xy} = 6x^2y - 12xy^2$ $z_{yx} = z_{xy} = 6x^2y - 12xy^2$, $z_{yy} = 2x^3 - 12x^2y$

高阶偏导数的计算就是按步就班,一阶一阶的算下去,

注意: 不要少算了某些偏导数.

练习: (1) 设
$$z = x \ln(xy)$$
, 求 $\frac{\partial^3 z}{\partial x^2 \partial y}$.

作业:

P181 1. (1), (3), (4), (7), (8)

2. (1)

4.

预习 9.3节

§9.3 全微分

要求: 熟练掌握多元函数全微分计算

回顾: 一元函数y = f(x)微分定义

增量
$$\Delta y = f(x + \Delta x) - f(x) = f'(x) \Delta x + \alpha \Delta x$$

 $f'(x)\Delta x$ 称为函数 y = f(x)的微分,记作 dy = f'(x)dx

对二元函数z = f(x,y),前面给出了偏增量概念,现在定义 全增量 z = f(x,y)的全增量记为 Δz

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

$$dz = f_x(x, y)\Delta x + f_y(x, y)\Delta y$$

通常记作
$$dz = f_x(x, y)dx + f_y(x, y)dy$$

称为函数在(x,y)处关于 Δx 与 Δy 的全微分.

全微分概念可以推广到更多元函数的情形.

三元函数 u = f(x, y, z)

$$du = f_x(x, y,z)dx + f_y(x, y,z)dy + f_z(x, y,z)dz$$

例 9.9 计算下列函数的全微分:

(1)
$$z = 3x^2y - y^5$$
; (2) $u = x + e^{xy} + \sin\frac{z}{2}$

解(1)
$$\frac{\partial z}{\partial x} = 6xy$$
, $\frac{\partial z}{\partial y} = 3x^2 - 5y^4$

$$dz = f_x(x, y)dx + f_y(x, y)dy = 6xydx + (3x^2 - 5y^4)dy$$

解(2)
$$\frac{\partial u}{\partial x} = 1$$
, $\frac{\partial u}{\partial y} = xe^{xy}$, $\frac{\partial u}{\partial z} = \frac{1}{2}\cos\frac{z}{2}$

$$du = dx + xe^{xy}dy + \frac{1}{2}\cos\frac{z}{2}dz$$

例 9.10 (P183) 计算 $z = xy^2$ 在点(2,-1)处当 $\Delta x = 0.01$ 和 $\Delta y = -0.01$ 时的全增量 Δz 和全微分 dz.

这个例题主要分清用什么公式计算,

全增量
$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

全微分
$$dz = f_x(x, y)dx + f_y(x, y)dy$$

作业:

P181 1. (1), (3), (4), (7), (8)

2. (1)

4.

作业:

*P*183 1. (1), (6),(7)

3.

预习 9.4节