

'Prueba Bimestral ii' Matemáticas 11°

Germán Avendaño Ramírez Lic. Matemáticas U.D., M.Sc. U.N.

Responda las preguntas en el cuadro de respuestas rellenando el óvalo completamente.

Debe hacer sus procedimientos en una hoja aparte.

Nombres:	, curso:	, fecha:
1. Una población de seres vivos se duplica cada ci para una población inicial de 100 individuos es:		
	$p = 100 \cdot 2^{(t/4)}$	
donde t representa el tiempo transcurrido en año	os y p el número de individuos	de la población.
De acuerdo con la situación, ¿cuáles son los valo	res de t para los cuales la pobl	lación duplica?
A. $\{1, 2, 3, 4, \ldots\}$ B. $\{1, 2, 4, 8, \ldots\}$	C. $\{4, 8, 12, 16, \dots\}$	D. {100, 200, 300, 400,}
Responda las preguntas 2 a 4 de acuerdo con la siguiente información 2. El siguiente gráfico representa la posición respecto al tiempo de un cuerpo durante 12 segundos. El movimiento en tres intervalos de 4 segundos cada uno.		t(s)
Respecto al movimiento realizado por el cuer- po en el intervalo de 4 a 8 segundos, podemos afirmar que		

- A. el cuerpo parte de la posición 4 y recorre con velocidad constante 8 metros.
- B. el cuerpo permanece en reposo, ya que mantiene la misma posición, mientras transcurren los 4 segundos.
- C. el cuerpo cambia la dirección del movimiento y recorre 4 metros más en una superficie plana.
- D. el cuerpo recorre 4 metros con velocidad constante en 8 segundos.
- 3. Según la gráfica, se puede inferir que la velocidad del cuerpo en el transcurso de 8 a 12 segundos fue negativa, lo cual indica que
 - A. el cuerpo disminuyó la velocidad que venía manteniendo en el intervalo de 4 a 8 segundos.
 - B. el cuerpo se devolvió seis metros más, desde el punto de partida.
 - C. el cuerpo redujo el espacio recorrido durante los cuatro segundos respecto a los intervalos anteriores.
 - D. el cuerpo recorrió la misma distancia, pero empleó más tiempo que en los intervalos anteriores.
- 4. En el intervalo de 12 a 16 segundos se produjo un movimiento representado por la función: $f(t) = \frac{3}{4}t 15$. La interpretación de este movimiento realizado por el cuerpo es

- A. el cuerpo recorrió tres metros durante los cuatro segundos
- B. el cuerpo incrementó su velocidad en 5 metros por cada segundo
- C. el cuerpo retrocedió 15 metros durante el intervalo de tiempo.
- D. el cuerpo disminuyó su velocidad en dos metros durante los cuatro segundos.

5. Sean

- **P** la gráfica de la función $y = x^2 2x + 3$
- **Q** la gráfica de la función $y = x^2 + 2x + 1$

Considere las siguientes afirmaciones suponiendo que P y Q están trazadas en el mismo sistema de coordenadas

I P y Q coinciden

IV P está más arriba que Q

- II P está a la izquierda de Q
- III \mathbf{P} está a la derecha de \mathbf{Q}

V P está más abajo que Q

De las anteriores afirmaciones es o son verdaderas

- B. II v V C. II v IV D. III v IV
- 6. Una compañía de taxis cobra una tarifa de \$3.000 por el primer kilómetro o fracción de kilómetro recorrida y \$1.000 por cada kilómetro o fracción adicional. ¿Cuál de las siguientes gráficas representa la relación entre el costo de un viaje y y el número de kilómetros recorridos x?

- 7. Una recta que **no** intercepta al eje \mathbf{x} en el punto x=2 tiene por ecuación (recuerde que sobre el eje x, y vale 0)
 - A. x 2y = 4
 - B. 3x + y 6 = 0

- C. x 3y = 2
- D. 5x 4y = 10
- 8. Sea $f(x) = \frac{x+2}{2x}$. Considere las siguientes afirmaciones:
 - I f(x) = 0 sólo si x = -2

III f(3x) = 3f(x)

II $f(x+1) = f(x) + \frac{1}{2}$

IV Si f(x) = 1, entonces x = 2

De las anteriores afirmaciones son verdaderas

- A. I y III B. II y IV C. II y III D. I y IV

9. Una raíz real de una función f es un número real r que satisface f(r)=0. Observando las siguientes gráficas, de las raíces de las funciones f, g y h se puede afirmar que

- A. f y h tienen una raíz real en común
- C. f y g tienen una raíz real en común

B. g tiene cuatros raíces reales

- D. h tiene una raíz real
- 10. Se dice que una función f es creciente si $f(x_1) < f(x_2)$ siempre que $x_1 < x_2$ para números reales cualesquiera x_1 y x_2 . Entre las siguientes gráficas, la que representa una función creciente es

11. Observe las gráficas de las funciones f y g que se presentan a continuación.

De las siguientes afirmaciones

- I f(4) = g(4) = 0
- II $f \ge g$ tienen el mismo dominio
- III f(t) > g(t)

IV fy ginterceptan el eje \boldsymbol{x} en un único punto

V g(x) > f(x) para todo x en el intervalo [-4, 4]

Es o son verdaderas

A. I y II B. II y IV C. solamente II D. solamente IV

La probabilidad de un evento, se calcula así:

 $P(A) = \frac{\text{número de veces que ocurre A}}{\text{número de elementos del espacio muestral}}$

12. Al lanzar una vez un par de dados, la probabilidad de que salgan dos números consecutivos es:

A. $\frac{10}{21}$ B. $\frac{5}{21}$ C. $\frac{10}{36}$ D. $\frac{5}{36}$

13. En una bolsa se tienen 3 bolas rojas, 4 bolas blancas y 4 bolas azules. Se saca una bola al azar y ésta es de color azul. Si esta bola no se devuelve a la urna, ahora es más probable sacar al azar una bola que una bola

A. blanca - azul B. azul - blanca C. roja - azul D. azul - roja

14. Un grupo de estudiantes construyó una ruleta. Después de jugar todo el día con ella y registrar los resultados, concluyó que la mayoría de las veces se detuvo en un número par y en pocas ocasiones en una región sombreada.

¿Cuál fue la ruleta construída por los estudiantes?

- 15. En el noticiero de la noche anterior se anunció que había un 20 % de probabilidades de que lloviera y en realidad no llovió. Con relación a la afirmación del noticiero, usted diría no llovió porque:
 - A. era uno de los sucesos posibles y era el que tenía mayor probabilidad. Habría error si se dijera que la probabilidad era del 100 % y no sucediera lo que se predecía.
 - B. es un error cuantificar la ocurrencia de un fenómeno del cual no se conocen todas las variables que lo determinan.
 - C. la probabilidad sólo mide la posibilidad de ocurrencia de un suceso, más no la certeza de su ocurrencia.
 - D. tal vez los que calcularon el dato se equivocaron o el periodista se equivocó y leyó un 20 % de probabilidades de que lloviera cuando era un $20\,\%$ de probabilidades de que no lloviera.

La siguiente gráfica muestra la relación entre la velocidad de un molino y el tiempo de fun- cionamiento en un día.

- 16. El molino aumentó más rápidamente su velocidad entre
 - A. la hora 2 y la hora 3
 - B. 3 y la hora 3,5
 - C. 3,5 y la hora 4,5
 - D. 4,5 y la hora 6
- 17. ¿Qué expresión representa la relación entre la velocidad (v) y el tiempo (t) durante la primera hora y

18. ¿Cuánto tiempo transcurre, desde el momento en que el molino empieza a disminuir su velocidad por primera vez, hasta cuando vuelve a aumentarla?

Tiempo (horas)

'elocidad (en miles de revoluciones por minuto

C. 3,5 horas. D. 6 horas. A. 0,5 horas. B. 1,5 horas.