CSE 6220/CX 4220 Introduction to HPC

Lecture 12: Sample Sort

Helen Xu hxu615@gatech.edu

Slide credits mostly to Prof. Srinivas Aluru, with major contributions from Patrick Flick

Regular vs Irregular Algorithms

- Regular algorithms (e.g., bitonic sort) the same amount of data / work on each processor
- Irregular algorithms (e.g., sample sort) have variable amounts of data / work on each processor.

Trading Some Computation for Communication

- To use parallel computing in practice, we want to mitigate the communication cost relative to the "ideal" parallel algorithm time T_1/p .
- Computation time is relatively cheap compared to communication.
- •Idea: Do some extra computation in exchange for communication.

$$1 < \mu < \tau$$

Recap: Bitonic Sorting

Second term is not ideal - may dominate for large p

Comp. Time

$$O\left(\frac{n}{p}\log\frac{n}{p} + \frac{n}{p}\log^2 p\right)$$

010 011 100 101 110

• Comm. Time

$$O\left(\tau\log^2p + \mu\frac{n}{p}\log^2p\right)$$

Also shows up in the communication time

Lower Bounds for Parallel Sorting

How would you prove lower bounds on communication / computation?

(serial sorting lower bound in the comparison model is $\Omega(n \lg n)$)

Hint: bound computation via n, p bound communication via τ, μ, n, p

Lower Bounds for Parallel Sorting

- Sequential sorting lower bound
 - Comparison based sorting (using only <, > , ==)
 - Sorting n elements requires at least $\Omega(n \log n)$ comparisons
- Distributed memory parallel sorting
 - Assuming $\frac{n}{p}$ elements per processor
 - Worst-case: all $\frac{n}{p}$ elements belong to other processes
 - Average case: $\frac{n}{p} \left(1 \frac{1}{p} \right) = \Theta \left(\frac{n}{p} \right)$
 - Thus any sorting algorithm has communication complexity at least:

$$\Omega\left(\mu\frac{n}{p}\right)$$

- Lower bound:
 - Computation $\Omega\left(\frac{n\log n}{p}\right)$
 - Communication $\Omega\left(\mu \frac{n}{p}\right)$

Lower Bounds for Parallel Sorting

- Lower bound for distributed memory parallel sort:
 - Computation: $\Omega\left(\frac{n\log n}{p}\right)$
 - Communication: $\Omega\left(\mu \frac{n}{p}\right)$
- Bitonic Sort:
 - Computation: $O\left(\frac{n}{p}\log\frac{n}{p} + \frac{n}{p}\log^2 p\right)$
 - Communication: $O\left(\log^2 p\left(\tau + \mu \frac{n}{p}\right)\right) \implies \log^2 p \times \text{data movements}$
- Can we do better?
 - Can we somehow determine which processor each element should go to?

Ideal case: everyone gets equal blocks from everyone, and the blocks happen to be in order

Parallel Quicksort

- 1. Pick pivot and broadcast $O(\log p(\tau + \mu))$
- 2. Partition locally $O\left(\frac{n}{p}\right)$
- 3. Re-arrange partitions $O\left(\tau + \mu \frac{n}{p}\right)$
- 4. Split processors and recurse
- 5. If p = 1, locally sort

Best/expected case (assuming no imbalance):

- $O(\log p)$ iterations before local sort
- Computation: $O\left(\frac{n}{p}\log p + \frac{n}{p}\log \frac{n}{p}\right) = O\left(\frac{n\log n}{p}\right)$
- Communication: $O\left(\tau \lg^2 p + \mu \frac{n}{p} \log p\right)$

Worst case:

• Much worse!

Lower bounds:

Computation = $\Omega((n \lg n)/p)$

Communication = $\Omega((\mu n)/p)$

Could also use the same RNG

Parallel Quicksort

- 1. Pick pivot and broadcast $O(\log p(\tau + \mu))$
- 2. Partition locally

- $O\left(\frac{n}{p}\right)$
- 3. Re-arrange partitions
- $O\left(\tau + \mu \frac{n}{p}\right)$
- 4. Split processors and recurse
- 5. If p = 1, locally sort

Best/expected case (assuming no imbalance):

- $O(\log p)$ iterations before local sort
- Computation: $O\left(\frac{n}{p}\log p + \frac{n}{p}\log \frac{n}{p}\right) = O\left(\frac{n\log n}{p}\right)$
- Communication: $O\left(\tau \lg^2 p + \mu \frac{n}{p} \log p\right)$

Worst case:

• Much worse!

Lower bounds:

Computation = $\Omega((n \lg n)/p)$

Communication = $\Omega((\mu n)/p)$

Could also use the same RNG

Parallel Quicksort

- 1. Pick pivot and broadcast $O(\log p(\tau + \mu))$
- 2. Partition locally
- $O\left(\frac{n}{p}\right)$
- 3. Re-arrange partitions
- $O\left(\tau + \mu \frac{n}{p}\right)$
- 4. Split processors and recurse
- 5. If p = 1, locally sort

Ideally, choose the global median

Best/expected case (assuming no imbalance):

- $O(\log p)$ iterations before local sort
- Computation: $O\left(\frac{n}{p}\log p + \frac{n}{p}\log \frac{n}{p}\right) = O\left(\frac{n\log n}{p}\right)$
- Communication: $O\left(\tau \lg^2 p + \mu \frac{n}{p} \log p\right)$

Worst case:

Much worse!

Lower bounds:

Computation = $\Omega((n \lg n)/p)$

Communication = $\Omega((\mu n)/p)$

Could also use the same RNG

Parallel Quicksort

- 1. Pick pivot and broadcast $O(\log p(\tau + \mu))$
- 2. Partition locally
- $O\left(\frac{n}{p}\right)$
- 3. Re-arrange partitions
- $O\left(\tau + \mu \frac{n}{p}\right)$
- 4. Split processors and recurse
- 5. If p = 1, locally sort

Ideally, choose the global median

Best/expected case (assuming no imbalance):

- $O(\log p)$ iterations before local sort
- Computation: $O\left(\frac{n}{p}\log p + \frac{n}{p}\log \frac{n}{p}\right) = O\left(\frac{n\log n}{p}\right)$
- Communication: $O\left(\tau \lg^2 p + \mu \frac{n}{p} \log p\right)$

Worst case:

Much worse!

Can we lower this log p?

Sample sort - first attempt

Attempt:

- 1. Sort locally
- 2. Pick p-1 random samples globally (like quicksort)
- 3. Split local sequence into p segments according to samples
- 4. All-to-all communication
- 5. Locally merge p sequences

$$O\left(\frac{n}{p}\log\frac{n}{p}\right)$$
$$O\left(p\log p\right)$$

Problem: worst-case load imbalance up to $\Omega(n)$

Sample sort

- 1. Sort locally
- 2. Find p-1 "good" splitters
- 3. Split local sequence into p segments according to splitters
- 4. Many-to-many communication
- 5. Locally merge p sequences

$$O\left(\frac{n}{p}\log\frac{n}{p}\right)$$

Good splitters:

- Each processor should receive at most $m \le c \frac{n}{p}$ elements in Step 4.
 - where $c \ge 1$ is a small constant
- Finding splitters should not be too expensive (complexity)

Sample sort

1. Sort locally

 $O\left(\frac{n}{p}\log\frac{n}{p}\right)$

- Find p-1 "good" splitters
- Split local sequence into
 p segments according to splitters
- 4. Many-to-many communication
- 5. Locally merge p sequences

$$O\left(\tau p + \mu \frac{n}{p}\right)$$

$$O\left(\frac{n}{p}\log p\right)$$

- Each processor should receive at most $m \le c \frac{n}{p}$ elements in Step 4.
 - where $c \ge 1$ is a small constant
- Finding splitters should not be too expensive (complexity)

Sample sort

Ideally

- 1. Sort locally
- 2. Find p-1 "good" splitters
- deterministic

 3. Split local sequence into p segments according to splitters
 - 4. Many-to-many communication
 - 5. Locally merge p sequences

$O\left(\frac{n}{p}\log\frac{n}{p}\right)$

$$O\left(\tau p + \mu \frac{n}{p}\right)$$

$$O\left(\frac{n}{p}\log p\right)$$

How to efficiently merge p sequences?

Good splitters:

- Each processor should receive at most $m \le c \frac{n}{p}$ elements in Step 4.
 - where $c \ge 1$ is a small constant
- Finding splitters should not be too expensive (complexity)

Tournament merge

Suppose we have lists l_1, l_2, \ldots, l_p that we want to merge into one big list L.

The size of the sum of lists is bounded by $\sum_{i=1}^{p} |l_i| = O(n/p)$.

How can we do it in time $O((n/p)\lg p)$? (ignoring communication, assume the list are already located on one processor.)

Lower bounds:

Computation = $\Omega((n \lg n)/p)$

Communication = $\Omega((\mu n)/p)$

Sample sort

Ideally

- 1. Sort locally
- 2. Find p-1 "good" splitters
- deterministic

 3. Split local sequence into
 p segments according to splitters
 - 4. Many-to-many communication
 - 5. Locally merge p sequences

$O\left(\frac{n}{p}\log\frac{n}{p}\right)$

$$O\left(\tau p + \mu \frac{n}{p}\right)$$

$$O\left(\frac{n}{p}\log p\right)$$

How to efficiently merge p sequences?

Good splitters:

- Each processor should receive at most $m \le c \frac{n}{p}$ elements in Step 4.
 - where $c \ge 1$ is a small constant
- Finding splitters should not be too expensive (complexity)

How to find "good" splitters?

Oversampling in sample sort

Finding "good" splitters by regular sampling

- Pick p − 1 equally spaced elements from the local sorted array on each processor (called local splitters from here onwards)
- 2. Sort all p(p-1) local splitters using bitonic sort
- 3. Pick p-1 global splitters: From the sorted local splitter array, pick last local splitter on each processor (excl. last processor)
- 4. Allgather global splitters

Idea: choose more than p, sort them, and choose "good" ones

$$S_0, S_1, \dots, S_{p-1}$$
 from sorted $S_{0,1}, \dots, S_{0,p-1}, S_{1,0}, \dots, S_{1,p-1}, \dots, S_{p,p-1}$

Initial element distribution:

Local sort and choose local splitters:

Partition elements according to global splitters:

	p_0							p_1								p_2							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Proving even load distribution

Theorem: Each processor receives at most 2n/p elements.

Proof: Number of local splitters contained in the elements received in each processor is p-1.

Let s_i denote number of these local splitters that originally came from P_i ($\sum s_i = p - 1$).

Maximum number of elements that came from $P_i < (s_i + 1) \frac{n}{p^2}$

Total number of elements received by a processor

$$< \sum_{i=0}^{p-1} (s_i + 1) \frac{n}{p^2}$$

$$= \sum_{i=0}^{p-1} s_i \frac{n}{p^2} + \sum_{i=0}^{p-1} 1 \frac{n}{p^2}$$

$$= (p-1) \frac{n}{p^2} + p \frac{n}{p^2} < \frac{2n}{p}$$

Sampling "good" splitters

Finding "good" splitters by regular sampling

- 1. Pick p-1 equally spaced elements (local splitters) on each processor
- 2. Sort all p(p-1) local splitters using bitonic sort
- 3. Pick p-1 global splitters: last local splitter on each processor (excl. last)
- 4. Allgather global splitters

What is the complexity of selecting the global splitters?

Bitonic sort for n > p:

Computation:
$$O\left(\frac{n}{p}\log\frac{n}{p} + \frac{n}{p}\log^2 p\right)$$

Computation:
$$O\left(\frac{n}{p}\log\frac{n}{p} + \frac{n}{p}\log^2 p\right)$$

Communication: $O\left(\left(\tau + \mu\frac{n}{p}\right)\log^2 p\right)$

Sampling "good" splitters

Finding "good" splitters by regular sampling

- 1. Pick p-1 equally spaced elements (local splitters) on each processor
- 2. Sort all p(p-1) local splitters using bitonic sort
- 3. Pick p-1 global splitters: last local splitter on each processor (excl. last)
- 4. Allgather global splitters

Complexity:

• Bitonic sort $n = O(p^2)$:

Computation: $O(p \log^2 p)$

Communication: $O((\tau + \mu p) \log^2 p)$

 $O(\tau \log p + \mu p)$ Allgather:

Bitonic sort for n > p:

Computation:

 $O\left(\frac{n}{p}\log\frac{n}{p} + \frac{n}{p}\log^2 p\right)$ $O\left(\left(\tau + \mu\frac{n}{p}\right)\log^2 p\right)$ Communication:

Sample sort complexity

Sample sort

- 1. Sort locally
- 2. Find p-1 "good" splitters
- 3. Split local sequence into p segments according to splitters
- 4. Many-to-many communication
- 5. Locally merge p sequences

$$O\left(\frac{n}{p}\log\frac{n}{p}\right)$$

$$O\left(\tau p + \mu \frac{n}{p}\right)$$
 $O\left(\frac{n}{p}\log p\right)$

Computation:
$$O\left(\frac{n}{p}\log\frac{n}{p} + \frac{n}{p}\log p + p\log^2 p\right) = O\left(\frac{n\log n}{p} + p\log^2 p\right)$$

Communication:
$$O\left(\tau p + \mu \frac{n}{p} + (\tau + \mu p)\log^2 p\right) = O\left(\tau p + \mu \left(\frac{n}{p} + p\log^2 p\right)\right)$$

Optimal for $n > p^2 \log^2 p$.