

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 DISCRETE MATHEMATICAL STRUCTURE

SEMESTER - 1

ma		3 Hours	1
шс	٠	3 Hours	-1

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

Cho	ose tl	he correct alternatives for any t	en of t	he following: $10 \times 1 = 10$				
i)		l set is the subset of	en or c	$10 \times 1 = 10$				
.,	a)	universal set	b)	universe of discourse				
	c)	every set	d)	none of these.				
ii)	Cardinality of the power set of a non-empty set A is							
	a)	2 A	b)	2 A				
	c)	A ²	d)	none of these.				
iii)	A pa	artial order relation is						
	a)	always antisymmetric	b)	sometimes antisymmetric				
	c)	irreflexive	d)	none of these.				
iv)	Degrees contributed by a oop to a vertex in a graph G is							
	a)	2	b)	1				
	c)	0	d)	none of these.				
v)	A si	mple graph						
	a)	does not possess a loop	b)	must possess a loop				
	· c)	is necessarily a multigraph	d)	is necessarily a pseudograph.				
vi)	The	relation ⊂ is						
	a)	irreflexive	b)	antisymmetric				
·	c)	asymmetric	d)	all of these.				

vii) If $f: X \to Y$ and $g: Y \to Z$ are injective, then $g \circ f$ is

- a) injective
- b) surjective
- c) invertible
- d) none of these.

viii) $\{a, b\} \le V_T \text{ and } S \in V_N, \text{ then } S \to ab \text{ is a}$

- a) type-0 grammar
- b) type-1 grammar
- c) type-2 grammar
- d) type-3 grammar.

ix) Minimum height of an n-vertex binary tree is

a) $\frac{n-1}{2}$

- b) $\frac{n+1}{2}$
- c) $\lceil \log_2(n+1) 1 \rceil$
- d) $\lfloor \log_2(n+1) 1 \rfloor$.

x) Let A be a set with 10 distinct elements. How many different binary relations on A are there?

a) 100

b) 100²

c) 2 100

d) none of these.

xi) Hasse diagram is given below:

This is a

a) Poset

b) Toset

c) Lattice

d) none of these.

xii) Six boys and four girls can sit in a row in

a) 6! × 4! ways

b) $2 \times 6! \times 4!$ ways

c) 2 24 ways

d) none of these.

1919

- xiii) Let |A| = |B| = n, where |A| denotes number of elements of A. Then the number of bijective mappings from A to B is
 - a) 1

b) n'

c) n!

d) can't be said.

- xiv) Let $f: Z \to Z$ given by f(x) = 2x, $x \in Z$. Then
 - a) f is injective but not surjective b)

f is surjective but not injective

c) f is bijective

d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. Define distributive lattice. Prove that in a distributive lattice

$$(a \wedge b) \vee (b \wedge c) \vee (c \wedge a) = (a \vee b) \wedge (b \vee c) \wedge (c \vee a).$$

- 3. Prove that number of vertices of odd degree in a graph G = (V, E) is always even.
- 4. Find the particular solution of the difference equation :

$$a_{r+2} - 5a_{r+1} + 6a_r = 5^r$$

- 5. Prove that the number of circular permutations of n different objects is (n-1)!
- Define adjacency matrix of a simple graph G = (V, E). Write down the adjacency matrix for the following undirected graph:

Use mathematical induction to prove that $(3^n + 7^n - 2)$ is divisible by 8, here $n \ge 1$.

1919

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

3 + 6 + 6

8. a) Determine the union of the following two fuzzy sets:

$$A = \left\{ \frac{4}{0 \cdot 1}, \frac{6}{0 \cdot 5}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 7} \right\} \text{ and } B = \left\{ \frac{0}{0 \cdot 4}, \frac{2}{0 \cdot 6}, \frac{4}{1}, \frac{6}{1}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 5} \right\}.$$

- b) Show that the mapping $f: R \{\sqrt{2}\} \to R$ defined by $f(x) = \frac{x}{x^2 2}$, $x \neq \sqrt{2}$ is surjective but not injective.
- c) A simple graph with n vertices and k components can have at most (n-k)(n-k+1)/2 edges.
- 9. a) Design an FA which accepts the language $L = \{ w/w \text{ has both an even number of 0's and even number of 1's over alphabet } \Sigma = \{ 0, 1 \} \}.$
 - b) Design an FA which accepts set of strings containing exactly four 1's in every string over alphabet $\Sigma = \{0, 1\}$.
 - c) Convert the following NFA into DFA.

5 + 4 +

- 10. a) Given the recurrence relation $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$ and the initi conditions $a_0 = 2$, $a_1 = 5$ and $a_2 = 15$, find the solution.
 - b) Find solution for the recurrence relation $a_n = 6a_{n-1} 9a_{n-2}$ with initical conditions $a_0 = 1$ and $a_1 = 6$.

- 11. a) If P(S) is the power set of a set S and \bigcup and \bigcap are taken as the join and meet, prove that $\{P(S), \subseteq\}$ is a lattice.
 - b) Define partially ordered set. Can you say all partially ordered sets are lattice? Justify.
 - c) Give an example of a relation ρ on A (described by you) which is symmetric and transitive but not reflexive with justification. 5+6+4
- 12. a) State Dijkstra's algorithm for shortest path problem.
 - b) Use Dijkstra's algorithm to find the shortest path between the vertices from s to z in the following graph.

5 + 10

13. Write short notes on any three of the following:

 3×5

- a) Bipartite graph
- b) DFA
- c) NFA
- d) Moore machine
- e) Mealy machine.

END