

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Campo Mourão Curso de Bacharelado em Ciência da Computação

Disciplina: Sistemas Operacionais - BCC34G

Professor responsável: Rodrigo Campiolo

Simulação dos algoritmos de escalonamento: Round-Robin, Shortest Job First e Prioridade Dinâmica

Enzo Dornelles Italiano - 2044595 Henrique Souza Marcuzzo - 2046334 Matheus Henrique Batistela - 2046423

Turma: IC4A

28 de Setembro de 2019

1. Introdução

O trabalho consiste em desenvolver algoritmos que simulam o escalonamento de processos, como ocorreria em um processador, utilizando das técnicas Round-Robin, Shortest Job First com previsão e preempção, e Prioridade dinâmica com retroalimentação.

2. Implementação

2.1. Principais Estruturas

Durante a implementação dos algoritmos, o princípio fundamental que utilizamos, foi a de construir uma rotina para cada unidade de tempo, assim a dividimos em duas partes, a rotina de um processo em execução, e a rotina para os processos que estavam em espera ou bloqueado.

Com isso seria possível manter a mesma estrutura para todos os três algoritmos, modificando partes pontuais para que se adequasse ao funcionamento de cada técnica.

2.2. Etapas mais importantes

Para que fosse possível simular um processador trabalhando com algum método de escalonamento, necessitamos saber a quantidade de processos que deveríamos operar, para eventualmente o programa ser finalizado.

Sabendo que haveria processos ainda a serem processados, foi possível tratar o momento em que os processos iriam chegar a lista de prontos e se houvesse um processo em I/O, o momento em que este também retornaria para a lista de prontos. Havendo algumas variações para os tipos de algoritmos que fossem preemptivos, e logo dependiam de algum tipo de organização nesta lista.

E por fim, o processo que estivesse sendo executado, necessitava apenas checar se este estava no momento de sair para I/O, se havia terminado, ou em alguns casos se já havia comprido todo seu quantum.

3. Produção de estatísticas e diagrama de Gantt

3.1. Captura de dados

Para gerar a fonte de dados necessária para a análise, foram adicionadas na estrutura do BCP, listas e variáveis que armazenam diversos estados e valores quantitativos dos processos durante a execução, como por exemplo o tempo de espera e tempo de bloqueio.

Tais dados foram processados de forma a produzir os resultados exigidos.

3.2. Diagrama de Gantt

Para produzir o diagrama de Gantt, foi necessário guardar na estrutura utilizada, o ínicio e o fim de cada entrada do processo no processador e também de suas saídas para I/O.

Realizando o tratamento adequado, obteve-se todos os instantes em que o processo foi executado, e a duração em cada instante, o mesmo vale para seus bloqueios (I/O). Assim, as informações foram moldadas em tuplas (a,b) e passadas para as funções da biblioteca matplotlib, responsável pela plotagem do diagrama.

Por final, obtemos este resultado:

Processo 8 Processo 7 Processo 5 Processo 2 Processo 1 Processo 0 0 2 4 6 8 10 12 14 16 18 2022 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Diagrama de Grantt

Figura 1 - Modelo do diagrama de Gantt

Ciclos de CPU

Referências

Mazieiro, Carlos A. (2019). Sistemas Operacionais: Conceitos e Mecanismos. GeeksforGeeks (2019). Shortest Job First CPU Scheduling with predicted burst time. Disponível em:

<https://www.geeksforgeeks.org/shortest-job-first-cpu-sched uling-with-predicted-burst-time/>. Acessado em Outubro, 2019.