entrega 1

October 25, 2025

Análisis de la base de datos

1.1 Propuesta de Negocio

La propuesta consiste en desarrollar una herramienta basada en aprendizaje supervisado que permita a la empresa **evaluar y optimizar la estrategia** de ventas de sus diferentes regiones y modelos de vehículos.

Para ello, se utilizará la base de datos de ventas disponible, la cual contiene información detallada sobre las características de los vehículos, el desempeño comercial y las zonas geográficas de distribución.

El modelo tendrá como objetivo clasificar el desempeño de ventas (por ejemplo, en categorías como bajo, medio o alto) a partir de variables explicativas tales como el tipo de vehículo, la región, el precio promedio, los incentivos aplicados, entre otras.

1.2 Alcance de la Propuesta

Con esta herramienta, la empresa podrá: - Identificar patrones y factores clave que determinan el éxito de ventas en cada región. - Comparar el rendimiento de diferentes modelos bajo condiciones de mercado específicas. - Apoyar la toma de decisiones en la asignación de recursos comerciales y campañas de marketing. En última instancia, el desarrollo del modelo busca fortalecer la estrategia comercial mediante el uso de técnicas de ciencia de datos y aprendizaje automático, ofreciendo un enfoque predictivo y sustentado en evidencia cuantitativa.

1.3 Análisis descriptivo de los datos

```
[59]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

```
[60]: data = pd.read_csv('BMW sales data (2010-2024) (1).csv',header=0)
data.info()
data.describe()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
```

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype			
0	Model	50000 non-null	object			
1	Year	50000 non-null	int64			
2	Region	50000 non-null	object			
3	Color	50000 non-null	object			
4	Fuel_Type	50000 non-null	object			
5	Transmission	50000 non-null	object			
6	Engine_Size_L	50000 non-null	float64			
7	Mileage_KM	50000 non-null	int64			
8	Price_USD	50000 non-null	int64			
9	Sales_Volume	50000 non-null	int64			
10	Sales_Classification	50000 non-null	object			
dtypes: float64(1), int64(4), object(6)						

dtypes: float64(1), int64(4), object(6)

memory usage: 4.2+ MB

[60]:		Year	<pre>Engine_Size_L</pre>	${\tt Mileage_KM}$	${\tt Price_USD}$	Sales_Volume
	count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000
	mean	2017.015700	3.247180	100307.203140	75034.600900	5067.514680
	std	4.324459	1.009078	57941.509344	25998.248882	2856.767125
	min	2010.000000	1.500000	3.000000	30000.000000	100.000000
	25%	2013.000000	2.400000	50178.000000	52434.750000	2588.000000
	50%	2017.000000	3.200000	100388.500000	75011.500000	5087.000000
	75%	2021.000000	4.100000	150630.250000	97628.250000	7537.250000
	max	2024.000000	5.000000	199996.000000	119998.000000	9999.000000

Limpieza de datos

```
[61]: plt.figure(figsize=(6, 4))
      data['Sales_Classification'].value_counts().plot(kind='bar')
      plt.title('Distribución de ventas')
      plt.show()
```



```
[62]: plt.figure(figsize=(6, 4))
sns.boxplot(x='Sales_Classification', y='Price_USD', data=data)
plt.title('Boxplot de ventas por clasificación')
plt.show()
```



```
[63]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Region', hue='Sales_Classification', data=data)
    plt.xticks(rotation=90)
    plt.title('Ventas por Región de Venta')
    plt.show()
```



```
[64]: plt.figure(figsize=(6, 4))
    sns.countplot(x='Model', hue='Sales_Classification', data=data)
    plt.xticks(rotation=90)
    plt.title('Ventas por Región de Venta')
    plt.show()
```



```
[67]: from sklearn.pipeline import Pipeline
      from sklearn.preprocessing import OneHotEncoder, StandardScaler
      from sklearn.compose import ColumnTransformer
      from sklearn.impute import SimpleImputer
      # elegir features
      features_num = ['Price_USD', 'Engine_Size_L', 'Mileage_KM', 'age_model'] #__
       ⇔ajustar según dataset
      features_cat = ['Model','Region','Fuel_Type','Transmission']
                                                                        # ajustar
      num_pipe = Pipeline([
          ('imputer', SimpleImputer(strategy='median')),
          ('scaler', StandardScaler())
      ])
      cat_pipe = Pipeline([
          ('imputer', SimpleImputer(strategy='constant', fill_value='Unknown')),
          ('ohe', OneHotEncoder(handle_unknown='ignore'))
      ])
```

```
preprocessor = ColumnTransformer([
          ('num', num_pipe, features_num),
          ('cat', cat_pipe, features_cat)
      ])
[68]: y = data['Sales_Classification'].map({'Low': 0, 'High': 1})
[69]: from sklearn.model_selection import train_test_split
      X = data[features num + features cat]
      X_train, X_test, y_train, y_test = train_test_split(
          X, y, test_size=0.3, stratify=y, random_state=42
[70]: from sklearn.linear_model import LogisticRegression
      pipe = Pipeline([
          ('pre', preprocessor),
          ('clf', LogisticRegression(max_iter=1000, solver='liblinear'))
      ])
      pipe.fit(X_train, y_train)
[70]: Pipeline(steps=[('pre',
                       ColumnTransformer(transformers=[('num',
                                                         Pipeline(steps=[('imputer',
      SimpleImputer(strategy='median')),
                                                                         ('scaler',
      StandardScaler())]),
                                                         ['Price_USD', 'Engine_Size_L',
                                                          'Mileage_KM', 'age_model']),
                                                        ('cat',
                                                         Pipeline(steps=[('imputer',
      SimpleImputer(fill_value='Unknown',
       strategy='constant')),
                                                                         ('ohe'.
      OneHotEncoder(handle_unknown='ignore'))]),
                                                         ['Model', 'Region',
                                                          'Fuel_Type',
                                                          'Transmission'])])),
                      ('clf', LogisticRegression(max_iter=1000, solver='liblinear'))])
[71]: from sklearn.metrics import classification_report, confusion_matrix,
       →roc_auc_score, roc_curve
      y_pred = pipe.predict(X_test)
      y_proba = pipe.predict_proba(X_test)[:,1]
```

```
print(classification_report(y_test, y_pred))
print("AUC:", roc_auc_score(y_test, y_proba))

# matriz de confusión
import seaborn as sns; import matplotlib.pyplot as plt
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d')
plt.title("Confusion matrix"); plt.show()

# ROC
fpr, tpr, _ = roc_curve(y_test, y_proba)
plt.plot(fpr,tpr); plt.plot([0,1],[0,1],'--'); plt.title("ROC"); plt.show()
```

	precision	recall	f1-score	support
0	0.70	1.00	0.82	10426 4574
1	0.00	0.00	0.00	4574
accuracy			0.70	15000
macro avg	0.35	0.50	0.41	15000
weighted avg	0.48	0.70	0.57	15000

AUC: 0.49685349875789825

Confusion matrix

