R Workshop: Mediation and Moderation

Brier Gallihugh, M.S.

2023-06-19

Table of contents

```
Running a Mediation Analysis in R................
Using Moderation and Mediation Usings Hayes PROCESS Macro (for R) . . . . . .
set.seed(10311993)
library(mediation)
library(psych)
library(tidyverse)
# Created Toy Data Set
# Variance Covariance
sigma <- rbind(c(1,-0.4,-0.3), c(-0.4,1, 0.7), c(-0.3,0.7,1))
# Variable Mean
mu < -c(7, 50, 7)
# Generate the Multivariate Normal Distribution
df <- as.data.frame(mvrnorm(n=100, mu=mu, Sigma=sigma))</pre>
df <- round(df,0)</pre>
colnames(df) <- c("mediator1","outcome","predictor")</pre>
df$condition <- rep(1:2,50)
```

Running a Moderation Analysis in R

```
moderation <- lm(outcome ~ condition*predictor, data = df)
summary(moderation)</pre>
1
```

- ① Create a mediation object using the lm() function. The condition*predictor syntax gets you both the main effects of condition and predictor as well as the interaction effect between the two
- (2) Show a summary of the moderation using the summary() function.

Call:

```
lm(formula = outcome ~ condition * predictor, data = df)
```

Residuals:

```
Min 1Q Median 3Q Max -1.79555 -0.56073 -0.05061 0.55043 1.71457
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.85018 1.68125 26.677 < 2e-16 ***

condition -0.01414 1.06533 -0.013 0.98943

predictor 0.76026 0.23452 3.242 0.00163 **

condition:predictor -0.01533 0.14964 -0.102 0.91864

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.8027 on 96 degrees of freedom Multiple R-squared: 0.5089, Adjusted R-squared: 0.4936

F-statistic: 33.16 on 3 and 96 DF, p-value: 8.49e-15

Running a Mediation Analysis in R

```
#Regress M on X
outcomeM_fit <- lm(mediator1 ~ condition, data = df)
summary(outcomeM_fit)

#Regress Y on M and X
outcomeY_fit <- lm(outcome ~ mediator1 + condition, data = df)
summary(outcomeY_fit)

3
summary(outcomeY_fit)</pre>
4
```

- (1) Run a regression of the M (mediator) on X using the lm() function
- 2 Show output of the M on X regression using the summary() function
- 3 Run a regression of Y on M and X using the lm() function
- (4) Show output of the Y on M and X regression using the summary() function
- (5) Run a mediation using the two regressions above. treat is the name of your X condition. mediator is the name of your mediating variable. Setting boot to TRUE will ensure that your mediation is bootstrapped. Lastly, the sims argument tells R how many samples you wish to bootstrap from. Typically you want ~ 5000 or more.
- (6) For a summary of your mediation, use the summary() function. The indirect effect is labeled ACME
- (7) The plot() function here will give you a graphical representation of the output above with respect to the range of the confidence interval for each metric. Please note by default this is the 95% confidence interval

Call:

lm(formula = mediator1 ~ condition, data = df)

Residuals:

Min 1Q Median 3Q Max -2.860 -0.755 0.140 1.140 2.280

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.0000 0.3412 20.515 <2e-16 ***
condition -0.1400 0.2158 -0.649 0.518

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.079 on 98 degrees of freedom Multiple R-squared: 0.004276, Adjusted R-squared: -0.005884 F-statistic: 0.4209 on 1 and 98 DF, p-value: 0.518

Call:

lm(formula = outcome ~ mediator1 + condition, data = df)

Residuals:

```
Min 1Q Median 3Q Max -2.2245 -0.5522 -0.0769 0.4724 3.4724
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 53.53460 0.74376 71.979 < 2e-16 ***

mediator1 -0.45066 0.09569 -4.709 8.28e-06 ***

condition -0.30309 0.20487 -1.479 0.142

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.022 on 97 degrees of freedom Multiple R-squared: 0.1954, Adjusted R-squared: 0.1788 F-statistic: 11.78 on 2 and 97 DF, p-value: 2.634e-05

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

	Estimate	95% CI Lower	95% CI	Upper	p-value
ACME	0.0631	-0.1217		0.29	0.52
ADE	-0.3031	-0.7098		0.08	0.12
Total Effect	-0.2400	-0.6849		0.19	0.28
Prop. Mediated	-0.2629	-6.0955		4.66	0.76

Sample Size Used: 100

Simulations: 5000

Assumptions of Moderation Analyses

```
# Residual Normality
shapiro.test(residuals(moderation))

# Multicollinearity
car::vif(moderation, type = c("predictor"))

# Independence of Errors
car::durbinWatsonTest(moderation)

3
```

- (1) Test of the residual normality of the moderation using the shapiro.test() function
- ② Test of the multicollinearity of the moderation analyses using the vif() function in the car package. Because there is an interaction, you must specify an additional argument of type = c("predictor") to properly account for the interaction effect.
- (3) To test the independence of errors assumption, you can do so using the durbinWatsonTest() function from the car package.

```
Shapiro-Wilk normality test
```

```
data: residuals(moderation)
W = 0.98684, p-value = 0.4272
```

```
GVIF Df GVIF^(1/(2*Df)) Interacts With Other Predictors condition 1 3 1 predictor -- predictor 1 3 1 condition -- lag Autocorrelation D-W Statistic p-value 1 -0.02268275 2.029087 0.756
Alternative hypothesis: rho != 0
```

Assumptions of Mediation Analyses

```
# Linearity
plot(lm(outcome ~ predictor, data = df),2)
①
```

(2) To assess multicollinearity, the best course of action is a simple correlation matrix. You can achieve this using the cor() function for a correlation matrix

plot(lm(outcome ~ mediator1, data = df),2)


```
# Multicollinearity
cor(df)
②
```

Using Moderation and Mediation Usings Hayes PROCESS Macro (for R)

Click on the following link to download the R script for the PROCESS macro for R.

```
source("process.R")
```

******************** PROCESS for R Version 4.3.1 ***************

Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3

 ${\tt PROCESS}$ is now ready for use.

Copyright 2020-2023 by Andrew F. Hayes ALL RIGHTS RESERVED Workshop schedule at http://haskayne.ucalgary.ca/CCRAM

A Moderation Example Using Hayes PROCESS Macro

```
process(data = df,
    y = "outcome",
    x = "predictor",
    w = "mediator1",
    model = 1,
    stand = 1)

①
①
②
③
③
⑥
```

- (1) Assign your data to the data argument
- (2) Assign your outcome variable to the y argument
- (3) Assign your predictor variable to the x argument
- (4) Assign your moderator to the w argument
- (5) Set your model argument to 1 for simple moderation
- (6) The stand = 1 argument standardizes your output

******************** PROCESS for R Version 4.3.1 ***************

Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3

Model : 1

Y : outcome
X : predictor
W : mediator1

Sample size: 100

Outcome Variable: outcome

Model Summary:

R R-sq MSE F df1 df2 p 0.7294 0.5320 0.6141 36.3739 3.0000 96.0000 0.0000

Model:

	coeff	se	t	р	LLCI	ULCI
constant	47.3198	3.6872	12.8336	0.0000	40.0008	54.6389
predictor	0.5567	0.5256	1.0592	0.2922	-0.4866	1.6001
mediator1	-0.2975	0.5240	-0.5676	0.5716	-1.3377	0.7427
Int_1	0.0169	0.0761	0.2222	0.8246	-0.1341	0.1679

Product terms key:

Int_1 : predictor x mediator1

Test(s) of highest order unconditional interaction(s):

R2-chng F df1 df2 p X*W 0.0002 0.0494 1.0000 96.0000 0.8246

************ ANALYSIS NOTES AND ERRORS ***************

Level of confidence for all confidence intervals in output: 95

NOTE: Standardized coefficients not available for models with moderators.

Tip

The Hayes PROCESS for R requires that all data is numeric in nature. As such, ensure that any potential factor variables are numeric prior to running the analyses. A failure to do so will result in PROCESS not running.

A Mediation Example Using Hayes PROCESS Macro

```
process(data = df,
    y = "outcome",
    x = "predictor",
    m = "mediator1",
    model = 4,

①
①
②
③
③
⑤
```

stand = 1, boot = 5000)

(6)

(7)

- (1) Assign your data to the data argument
- 2 Assign your outcome variable to the y argument
- (3) Assign your predictor variable to the x argument
- (4) Assign your mediator to the m argument
- (5) Set your model argument to 4 for simple mediation
- (6) The stand = 1 argument standardizes your output
- (7) The boot argument specifies the number of samples you wish to bootstrap

**************** PROCESS for R Version 4.3.1 ***************

Written by Andrew F. Hayes, Ph.D. www.afhayes.com
Documentation available in Hayes (2022). www.guilford.com/p/hayes3

Model: 4

Y : outcome
X : predictor
M : mediator1

Sample size: 100

Random seed: 818206

Outcome Variable: mediator1

Model Summary:

R R-sq MSE F df1 df2 p 0.3833 0.1469 0.9975 16.8766 1.0000 98.0000 0.0001

Model:

coeff LLCI ULCI se p 9.4738 0.0000 constant 0.6609 14.3352 8.1623 10.7852 -0.3812 0.0928 -4.1081 0.0001 -0.5654-0.1971predictor

Standardized coefficients:

coeff

predictor	-0.	3833						
**************************************				********	*******	*******	*** ***	***
Model Summ	R	R-sq 0.5317	MSE 0.6081		df1 2.0000	df2 97.0000		p 0000
Model: constant predictor mediator1	46. 0.	coeff 5259 6722 1824	se 0.9080 0.0784 0.0789	t 51.2386 8.5694 -2.3121	p 0.0000 0.0000 0.0229	LLCI 44.7237 0.5165 -0.3389	ULC 48.328 0.827 -0.025	31 '9
predictor mediator1 ********* Bootstrapp	.0 .0- .0-	coeff 6446 1740 *****	*****	******	*******	******	*****	***
							1	0%
							1	1%
>							1	1%
>							1	2%
>>							1	2%
>>							1	3%
'								

1

4%

4%

5%

6%

|>>

|>>>

|>>>

|

 >>>>	I	6%
 >>>>	I	7%
 >>>>	I	7%
 >>>>	I	8%
 >>>>	I	9%
 >>>>	I	9%
 >>>>	I	10%
 >>>>> 	I	10%
 >>>>> 	I	11%
 >>>>> 	I	12%
 >>>>> 	I	12%
 >>>>> 	I	13%
 >>>>> 	I	14%
 >>>>> 	I	14%
 >>>>> 	I	15%
 >>>>>> 	I	15%
 >>>>>> 	I	16%
 >>>>>> 	I	17%
 >>>>>> 	I	17%
 >>>>>> 	I	18%
 >>>>>> 		19%
ı		

>>>>>>		19%
 >>>>>>>	I	20%
 >>>>>>>	1	20%
 >>>>>>>	I	21%
 >>>>>>>	I	22%
 >>>>>>> 	I	22%
 >>>>>>> 	I	23%
 >>>>>>> 	I	23%
 >>>>>>> 	1	24%
 >>>>>>> 	1	25%
 >>>>>>> 	1	25%
 >>>>>>> 	1	26%
 >>>>>>> 	1	27%
 >>>>>>> 	1	27%
 >>>>>>> 	1	28%
 >>>>>>> 	1	28%
 >>>>>>> 	1	29%
 >>>>>>> 	1	30%
 >>>>>>>> 		30%
 >>>>>>>> 		31%
 >>>>>>>> 		31%
 >>>>>>>	1	32%

 >>>>>>> 	I	33%
 >>>>>>> 	I	33%
 >>>>>>> 	1	34%
 >>>>>>>> 	I	35%
 >>>>>>>> 	I	35%
 >>>>>>> 	I	36%
 >>>>>>> 	I	36%
 >>>>>>> 	I	37%
 >>>>>>>> 	I	38%
 >>>>>>>> 	I	38%
 >>>>>>> 	I	39%
 >>>>>>> 	I	40%
 >>>>>>> 	I	40%
 >>>>>>>> 	I	41%
 >>>>>>>> 	I	41%
 >>>>>>> 	I	42%
 >>>>>>>> 	I	43%
 >>>>>>> 	I	43%
 >>>>>>> 	I	44%
 >>>>>>> 	I	44%
 >>>>>>> 	I	45%
1		

>>>>>>>>	I	46%
 >>>>>>>>	I	46%
 >>>>>>>>	I	47%
 >>>>>>>>	1	48%
 >>>>>>>>	I	48%
 >>>>>>>>	I	49%
 >>>>>>> 	I	49%
 >>>>>>> 	I	50%
 >>>>>>> 	1	51%
 >>>>>>> 	1	51%
 >>>>>>> 	1	52%
 >>>>>> 	1	52%
 >>>>>>	1	53%
 >>>>>> 	1	54%
 >>>>>> 	1	54%
 >>>>>> 	1	55%
 >>>>>>> 		56%
 >>>>>>> 		56%
 >>>>>>> 	I	57%
 >>>>>> 	1	57%
 >>>>>>> 	I	58%
>>>>>>>	1	59%

1		
 >>>>>>> 	I	59%
 >>>>>>> 	I	60%
 >>>>>> 	I	60%
 >>>>>> 	I	61%
 >>>>>> 	1	62%
 >>>>>> 	I	62%
 >>>>>> 	I	63%
 >>>>>> 	I	64%
 >>>>>> 	I	64%
 >>>>>> 	I	65%
 >>>>>>> 	I	65%
 >>>>>>> 	1	66%
 >>>>>>> 	1	67%
 >>>>>>> 	1	67%
 >>>>>>> 	1	68%
 >>>>>>> 	1	69%
ı >>>>>>> ı	I	69%
 >>>>>>> 	I	70%
 >>>>>>> 	I	70%
 >>>>>>> 	I	71%
 >>>>>>> 	I	72%
ı		

>>>>>>>>		72%
 >>>>>>> 	I	73%
 >>>>>>>> 	I	73%
 >>>>>>>> 	I	74%
 >>>>>>>> 	I	75%
 >>>>>>>> 	I	75%
 >>>>>>>> 	I	76%
 >>>>>>>> 	I	77%
 >>>>>>>> 	I	77%
 >>>>>>>> 	I	78%
 >>>>>>>>> 	1	78%
 >>>>>>>>> 	I	79%
 >>>>>>>>> 	I	80%
 >>>>>>>>> 	1	80%
 >>>>>>>>> 	1	81%
 >>>>>>>>>>> 	1	81%
ı >>>>>>>>>> ı	I	82%
 >>>>>>>>>> 	I	83%
 >>>>>>>>>> 	1	83%
 >>>>>>>>> 	I	84%
। >>>>>>>>>> ।	I	85%
 	ı	25%

 >>>>>>>>>>>>> 	I	86%
 >>>>>>>>>>>>>>	I	86%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	87%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	88%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	88%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	89%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	90%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	90%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	91%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	91%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	92%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	93%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	93%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	94%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	94%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	I	95%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	96%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	96%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	97%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	98%
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	98%

|>>>>>>> | 99% |>>>>>>>> 99% |>>>>>>>| 100% ******** DIRECT AND INDIRECT EFFECTS OF X ON Y ************ Direct effect of X on Y: se effect t LLCI ULCI c'_cs 0.0784 8.5694 0.0000 0.5165 0.8279 0.6722 0.6446 Indirect effect(s) of X on Y: Effect BootSE BootLLCI BootULCI 0.0695 0.0353 0.0100 0.1483 mediator1 Completely standardized indirect effect(s) of ${\tt X}$ on ${\tt Y}$: Effect BootSE BootLLCI BootULCI mediator1 0.0667 0.0339 0.0097 0.1436 ************** ANALYSIS NOTES AND ERRORS **************** Level of confidence for all confidence intervals in output: 95