Lec 16 贪婪算法、最小生成树

Graphs (review)

set V of vertices (singular: vertex)
 set E⊆V×V of edges

Undirected Graph: É contains unordered pairs

$$|E| = O(|V|^2)$$

if G is connected (连通的), |E| > |V|-1

Graph Representations

· adjacency matrix of G=(V,E), where $V=\{1,2,\cdots,n\}$, is the nxn matrix A given by $A[i,j]=\{1,if(i,j)\in E\}$

V	I	2	3	4
	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

 $\theta(|v|^2)$ storage \Rightarrow dense representation

sparse

· adjacency list of $V \in V$ is the list Adj[v] of vertices adjacent to V

Handshaking Lemma (undirected graph)

$$\sum_{V \in V} degree(V) = 2|E|$$

for undirected graphs => adjancy list representation uses O(M+IEI) storage

结点也占据存储

it is basically the same thing asymptotically for digraphs

Minimum Spanning Trees

input: connected undirected graph G=(V,E) with weight function w.E-k for simplicity, assume all edge weights are distinct output: a spanning tree T (connects all the vertices) at minimum weight $W(T) = \sum_{(u,v) \in T} w(u,v)$

Example:

Optional Substructure

MST T: (other edges in the graph will not be shown)

remove an arbitrary edge (u,v) in the MST T

then T is partitioned into two subtrees T1. T2

Theorem.

To 1s MST for
$$G_1 = (V_1, E_1)$$
,

 G_1 is a subgraph of G_2 induced by the vertices in T_1 , i.e.

 $V_1 = \text{vertices in } T_1$, $E_1 = \{(x, y) \in E, x, y \in V_1\}$

Similarly for T_2

proof: Cut & Paste $W(T) = W(u,v) + W(T_1) + W(T_2)$ if Ti is better than Ti for Gi, then T' = {(u,v)} UTi UTz would be better than T for G conflication! Overlapping Subproblems? YES! Can we use Dynamic Programming? but it turns out that MST exhibits a powerful property that, we call, the hallmark for greedy algorithms Hallmark for Greedy Algorithms (这是可应用某算法的证据) greedy-choice property: a locally optimal choice is globally optimal Theorem: let T be MST of G=(V,E), and let $A\subseteq V$ suppose $(u,v)\in E$ is the least weight edge connecting A to V-Athen, (u,v) e T Proof: suppose (u,v) & T Cut & Paste 0 e A @ EV-A consider unique simple path from u to V in T, swap (u.v) with the first edge on this path that connects a vertex in A to a vertex in V-A a lower weight spanning tree than T, resulting a contradiction

Prim's Algorithm

idea: to maintain V-A as a priority queue Q,
to key each vertex in Q with the weight of the least-weight edge
(vt.赋值)
connecting it to a vertex in A

pseudo-code:

$$Q \leftarrow V \quad (A \leftarrow \emptyset)$$

 $V. \text{key} \leftarrow \infty \quad \forall V \in V$
 $S. \text{key} \leftarrow 0 \quad \text{for arbitrary } S \in V$

while
$$Q \neq \emptyset$$
do $u \leftarrow \text{Extract-Min}(Q)$
for each $v \in \text{Adj}[u]$
do if $v \in Q$ and $w(u,v) < v.\text{key}$
then $v.\text{key} \leftarrow w(u,v)$

$$T[v] \leftarrow u \quad (陰含)-介降低键值的操作)$$

at the end. {(V. T[V])} forms MST

Example:

Analysis

handshaking $\Rightarrow \theta(E)$ implicit decrease keys

time = $\theta(M-1_{Exact-Min}+1E1-T_{Decrease-keys})$