ANALYSIS 2

1. Integrals (Chapter 5)

Nguyễn Anh Tú

natu@hcmiu.edu.vn

CONTENTS

- 1 Indefinite Integrals
- 2 Definite Integrals
- 3 Properties of Definite Integrals
- 4 Mean Value Theorem for Integrals
- 5 Fundamental Theorem of Calculus
- 6 Substitution (Change of Variables)
- Integration by Parts
- 8 Partial Fractions
- Trigonometric Integrals
- Trigonometric Substitution
- Improper Integrals
- Numerical methods

Section 1

Indefinite Integrals

Antiderivatives

Antiderivatives

Let f and F be functions defined on (a, b), such that F'(x) = f(x), for all $x \in (a, b)$. Then F is called an *antiderivative* of f on (a, b).

Remarks: If F(x) is an antiderivative of f(x) then F(x) + C is also an antiderivative of f(x). These are all antiderivatives of f.

Example

- The antiderivative of $f(x) = x^2$ is $x^3/3 + C$.
- A particle moves on a straight line with its acceleration given by a(t) = 6t + 4. If the initial velocity is v(0) = 6 cm/s and the initial position is s(0) = 9 cm. Find its position function.

Lemma

Let F be a differentiable function on (a, b) such that F'(x) = 0 for all $x \in (a, b)$. Then F(x) is constant on (a, b).

Proof. Take any two points $x_1 \neq x_2$ in (a, b). Then by the Mean Value Theorem for derivatives, there exists $c \in (a, b)$ such that

$$F'(c) = \frac{F(x_2) - F(x_1)}{x_2 - x_1}.$$

Since by hypothesis, F'(c) = 0, we obtain $F(x_1) = F(x_2)$.

Theorem

Suppose F and G are two antiderivatives of f on (a, b). Then there is constant C so that G(x) = F(x) + C on (a, b).

Proof. Let
$$H(x) = G(x) - F(x)$$
, then $H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0$ on (a, b) . By the previous lemma $H(x) = C$, that is $G(x) = F(x) + C$ on (a, b) .

Indefinite Integrals

Definition

We call the collection of all antiderivatives of f the *indefinite integral* of f, denoted by

$$\int f(x)dx.$$

If F is an antiderivative of f then

$$\int f(x)dx = F(x) + C.$$

Indefinite Integrals

• Powers: For $a \neq -1$

$$\int x^a dx = \frac{x^{a+1}}{a+1} + C$$

a = -1:

$$\int \frac{1}{x} dx = \ln|x| + C$$

• Exponentials: Suppose $a \neq 1$, then

$$\int a^x dx = \frac{a^x}{\ln a} + C.$$

In particular,

$$\int e^{x}dx = e^{x} + C.$$

Indefinite Integrals of Trigonometric Functions

$$\int \sin x dx = -\cos x + C, \qquad \int \cos x dx = \sin x + C,$$

$$\int \tan x dx = -\ln|\cos x| + C, \qquad \int \cot x dx = \ln|\sin x| + C,$$

$$\int \sec^2 x dx = \tan x + C, \qquad \int \csc^2 x dx = -\cot x + C,$$

$$\int \sec x \tan x dx = \sec x + C, \qquad \int \csc x \cot x dx = -\csc x + C,$$

$$\int \sec x dx = \ln|\sec x + \tan x| + C, \qquad \int \frac{dx}{1 + x^2} = \arctan x + C$$

$$\int \csc x dx = -\ln|\csc x + \cot x| + C, \qquad \int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C$$

Section 2

Definite Integrals

Definite Integrals

• Motivation: Find area of the region S lying under the graph of a nonnegative continuous function f(x), above the x-axis and between the vertical lines x = a and x = b.

 Main idea: approximate S by unions of rectangles whose areas are easy to calculate.

Partitions

• We use n+1 points

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

to divide [a, b] into n closed subintervals $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$ with width $\Delta x_i = x_i - x_{i-1}$.

- The set $P = \{x_0, x_1, ..., x_{n-1}, x_n\}$ is called a partition of [a, b].
- Most commonly, we use **regular partitions** with $\Delta x_i = (b-a)/n$, for all i=1,...,n.

Definite Integrals - Definition

• The norm of partition *P* is

$$||P|| = \max_{1 \le i \le n} \Delta x_i$$

• Partition Q is a refinement of partition P if $P \subset Q$.

Riemann sums

- For each $i=1,\ldots,n$ choose $c_i\in [x_{i-1},x_i]$. Let $c=\{c_1,\ldots,c_n\}$.
- The Riemann sum of f with respect to P and c is

$$R(f, P, c) = \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

• For any choice of c,

$$L(f, P) \leq R(f, P, c) \leq U(f, P),$$

where

$$U(f,P) = \sum_{i=1}^{n} \Delta x_i \sup_{[x_{i-1},x_i]} f(x),$$

$$L(f,P) = \sum_{i=1}^{n} \Delta x_i \inf_{[x_{i-1},x_i]} f(x).$$

Definite Integrals

Example

Find the area under $y = x^2$ from 0 to 1

- Width of rectangles = $\frac{1}{4}$
- Heights = $\left(\frac{1}{4}\right)^2$, $\left(\frac{2}{4}\right)^2$, $\left(\frac{3}{4}\right)^2$, $\left(\frac{4}{4}\right)^2$
- Using the right-end points:

$$R_4 = \frac{1}{4} \left[\left(\frac{1}{4} \right)^2 + \left(\frac{2}{4} \right)^2 + \left(\frac{3}{4} \right)^2 + \left(\frac{4}{4} \right)^2 \right] = \frac{15}{32} = 0.46875$$

• Using the left-end points:

$$L_4 = \frac{1}{4} \left[\left(\frac{0}{4} \right)^2 + \left(\frac{1}{4} \right)^2 + \left(\frac{2}{4} \right)^2 + \left(\frac{3}{4} \right)^2 \right] = \frac{7}{32} = 0.21875$$

Approximation with 8 rectangles

(a) Using left endpoints

(b) Using right endpoints

leads to better estimate

$$L_8 = 0.2734375, \quad R_8 = 0.3984375$$

• In general,

$$R_n = \frac{1}{n} \left[\left(\frac{1}{n} \right)^2 + \left(\frac{2}{n} \right)^2 + \dots + \left(\frac{n}{n} \right)^2 \right]$$
$$= \frac{1}{n^3} (1^2 + 2^2 + \dots + n^2) = \frac{(n+1)(2n+1)}{6n^2}.$$

$$L_n = \frac{1}{n} \left[\left(\frac{0}{n} \right)^2 + \left(\frac{1}{n} \right)^2 + \dots + \left(\frac{n-1}{n} \right)^2 \right]$$
$$= \frac{1}{n^3} (1^2 + 2^2 + \dots + (n-1)^2) = \frac{(n-1)(2n-1)}{6n^2}.$$

• Since R_n and L_n approach $\frac{1}{3}$ as n increase,

$$A = \frac{1}{3}$$
.

Here are the approximations corresponding to various n, the number of small intervals.

n	L_n	R_n
10	0.2850000	0.3850000
20	0.3087500	0.3587500
30	0.3168519	0.3501852
50	0.3234000	0.3434000
100	0.3283500	0.3383500
1000	0.3328335	0.3338335

Note that R_{1000} and L_{1000} agree to 2 decimal places and their average $\frac{L_{1000}+R_{1000}}{2}=0.3333335$ is correct to 6 decimal places.

Remark: Since x^2 is an increasing function,

$$L_n < A < R_n$$
.

Properties of Upper/Lower Riemann Sums

Lemma

If Q is a refinement of P then

$$L(f,P) \leq L(f,Q) \leq U(f,Q) \leq U(f,P).$$

Corollary

For any partitions P and Q,

$$L(f,P) \leq U(f,Q).$$

Theorem

There exists at least one real number I so that

$$L(f, P) \le I \le U(f, P)$$

for any P.

Definite Integrals

Definition

If there is *only one* number *I* so that

$$L(f, P) \le I \le U(f, P)$$

for any partition P, then we say f is integrable on [a,b]. I is called the definite integral of f on [a,b],

$$I=\int_a^b f(x)dx.$$

Theorem

If f is integrable on [a, b] then

$$\int_{a}^{b} f(x)dx = \lim_{\|P\| \to 0} R(f, P, c)$$

Terminology:

- \int : integral sign
- f(x): integrand
- a: lower limit, b: upper limit.

Remarks:

- $\int_a^b f(x)dx$ is a number
- It doesn't depend on x. In fact, we can use any letter in place of x

$$\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(r)dr$$

Signed area

- If f positive on [a, b] then I is the area under the graph of f.
- If f negative on [a, b] then I is minus of the area.
- In general, I is called the signed area of the region bounded by the graph of f.

Example

Consider

$$\int_0^3 (x^3 - 6x) dx$$

- Find the Riemann sum R(f, P, c) where P is the regular partition and c are the right end points, i.e. $c_i = x_i$.
- Calculate the limit to find the integral

Solution:

- Width $\Delta x = 3/n$
- End points $x_0 = 0/n$, $x_1 = 3/n$, $x_2 = 6/n$, . . . , so the right end points are:

$$c_i = 3i/n, i = 0, ..., n$$

Thus,

$$R_{n} = \frac{3}{n} \sum_{i=1}^{n} \left[\left(\frac{3i}{n} \right)^{3} - 6 \left(\frac{3i}{n} \right) \right]$$

$$= \frac{81}{n^{4}} \sum_{i=1}^{n} i^{3} - \frac{54}{n^{2}} \sum_{i=1}^{n} i$$

$$= \frac{81}{n^{4}} \left(\frac{n(n+1)}{2} \right)^{2} - \frac{54}{n^{2}} \frac{n(n+1)}{2}$$

$$= \frac{81(n+1)^{2}}{4n^{2}} - \frac{27(n+1)}{n}.$$

Since

$$\lim_{n\to\infty} R_n = \frac{81}{4} - 27 = -\frac{27}{4},$$

we obtain

$$\int_{0}^{3} (x^{3} - 6x) dx = -\frac{27}{4}.$$

Example

Use the midpoints, i.e. $c_i = \frac{x_{i-1} + x_i}{2}$, with n = 5 to approximate

$$\int_1^2 \frac{1}{x} dx.$$

Solution:

- End points: 1, 1.2, 1.4, 1.6, 1.8, 2
- Mid points: 1.1, 1.3, 1.5, 1.7, 1.9
- Width $\Delta x = 1/5$

$$\int_{1}^{2} \frac{1}{x} dx \approx \Delta x \left[f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9) \right]$$

$$= \frac{1}{5} \left(\frac{1}{1.1} + \frac{1}{1.3} + \frac{1}{1.5} + \frac{1}{1.7} + \frac{1}{1.9} \right)$$

$$\approx 0.691908$$

Section 3

Properties of Definite Integrals

Properties of Definite Integrals

Reversing limits changes the sign of the integral:

$$\int_a^b f(x)dx = -\int_b^a f(x)dx.$$

Additivity:

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx,$$

for any a, b, c.

Properties of Definite Integrals

- $\int_a^b c dx = c(b-a)$, where c is a constant
- Linearity:

$$\int_{a}^{b} \left[\alpha f(x) + \beta g(x)\right] c dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx,$$

where α, β are constants.

• Comparison: If $f(x) \ge 0$ for $a \le x \le b$ then

$$\int_a^b f(x)dx \ge 0.$$

Properties of Definite Integrals

• If $f(x) \ge g(x)$ for $a \le x \le b$ then

$$\int_a^b f(x)dx \ge \int_a^b g(x)dx.$$

• If $m \le f(x) \le M$ for $a \le x \le b$ then

$$m(b-a) \leq \int_a^b f(x)dx \leq M(b-a).$$

• If *a* < *b* then

$$\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx.$$

Even and odd functions

• f is odd, i.e. f(x) = -f(-x) for all x, then

$$\int_{-a}^{a} f(x) dx = 0$$

• f is even, i.e. f(x) = f(-x) for all x, then

$$\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$

Section 4

Mean Value Theorem for Integrals

Mean Value Theorem

Definition

If f is integrable on [a, b] then the average value or mean value of f on [a, b] is

$$\bar{f} = \frac{1}{b-a} \int_a^b f(x) dx.$$

The MVT states that a *continuous* function attains its mean value on the interval.

Theorem

If f is continuous on [a, b] there exists $c \in [a, b]$ so that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx.$$

Mean Value Theorem

Proof:

• Since f is continuous on [a, b], it attains max and min on [a, b], i.e. there exist $p, q \in [a, b]$ such that

$$f(p) = m = \min_{x \in [a,b]} f(x),$$

$$f(q) = M = \max_{x \in [a,b]} f(x).$$

We have

$$m \leq \frac{1}{b-a} \int_a^b f(x) dx \leq M.$$

- By the Intermediate Value Theorem, the continuous function f takes every values between f(p) = m and f(q) = M.
- In particular, there exists $c \in [a, b]$ so that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx.$$

Section 5

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus

- FTC gives a quick way to compute definite integrals, without using Riemann sums.
- It shows that Integration and Differentiation are inverse operations, they 'cancel' each other.

Area function

Given f(x) integrable on [a, b], the area function of f on [a, b] is

$$G(x) = \int_a^x f(t)dt.$$

Fundamental Theorem of Calculus

Part 1

If f is continuous then the area function G(x) is an antiderivative of f(x)

$$G'(x) = f(x).$$

In other words,

$$\frac{d}{dx}\int_{a}^{x}f(t)dt=f(x).$$

Part 2

If f is continuous on [a, b] then

$$\int_a^b f(x)dx = F(b) - F(a),$$

where F is any antiderivative of f.

Fundamental Theorem of Calculus

Example

Find derivative of Fresnel function

$$S(x) = \int_0^x \sin(\pi t^2/2) dt.$$

Example

Find the area under graph $y = x^2$ from 0 to 1.

Solution: $F(x) = x^3/3$ is an antiderivative of x^2 . By FTC part 2

$$A = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1$$
$$= \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}.$$

Proof of FTC part 1

Fixed $\epsilon > 0$. Since f is continuous at c, there exists $\delta > 0$ so that

$$|x-c|<\delta \implies |f(x)-f(c)|<\epsilon.$$

Thus, if $|x - c| < \delta$

$$\left| \frac{G(x) - G(c)}{x - c} - f(c) \right| = \frac{1}{|x - c|} \left| \int_{c}^{x} (f(t) - f(c)) dt \right|$$

$$\leq \frac{1}{|x - c|} |x - c| \max_{t \in [c, x]} |f(t) - f(c)|$$

$$\leq \frac{1}{|x - c|} |x - c| \epsilon dt = \epsilon.$$

This implies that

$$\lim_{x \to c} \frac{G(x) - G(c)}{x - c} = f(c).$$

It follows that G'(c) = f(c).

Proof of FTC part 2

Let $G(x) = \int_a^x f(t)dt$ be the area function. By FTC part 1, G is an antiderivative of f. We know that two antiderivatives of f differ by a constant, hence

$$F(x) = G(x) + C.$$

Therefore,

$$F(b) - F(a) = G(b) - G(a) = \int_a^b f(x) dx.$$

We have

$$\int_{1}^{9} \frac{2t^{2} + t^{2}\sqrt{t} - 1}{t^{2}} dt = \int_{1}^{9} (2 + t^{1/2} - t^{-2}) dt$$
$$= 2t + \frac{t^{3/2}}{3/2} - \frac{t^{-1}}{-1} \Big|_{1}^{9} = 32\frac{4}{9}.$$

What is wrong with this calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = -x^{-1} \Big|_{-1}^{3} = -\frac{4}{3}.$$

- The FTC can only be applied to continuous functions
- $1/x^2$ has infinite discontinuity at 0, so the FTC is not applicable.

Generalization of FTC part 1

Theorem

If u and v are differentiable and

$$F(x) = \int_{u(x)}^{v(x)} f(t)dt,$$

then

$$F'(x) = f(v(x))v'(x) - f(u(x))u'(x).$$

Note: The FTC part 1 is a special case where u(x) = a and v(x) = x.

Example

Find derivative of

$$F(x) = \int_3^{x^2} \ln(t^3 + 4) dt$$

and

$$G(x) = \int_{2x}^{5} \tan(\cos(u) - 4) du$$

Solution:

$$F'(x) = 2x \ln(x^6 + 4)$$

and

$$G'(x) = -2\tan(\cos(2x) - 4)$$

Section 6

Substitution (Change of Variables)

Substitution

Theorem

If u is differentiable and f is continuous then

$$\int f(u(x))u'(x)dx = \int f(u)du.$$

Proof: We need to show if F(u) is an antiderivative of f(u) then

$$\int f(u(x))u'(x)dx = F(u(x)) + C.$$

By the Chain Rule

$$\frac{d}{dx}F(u(x))=F'(u(x))u'(x)=f(u(x))u'(x).$$

Hence,

$$\int f(u(x))u'(x)dx = F(u(x)) + C.$$

$$\int 2x\sqrt{x^2+1}dx.$$

- Apply the theorem to $f(u) = \sqrt{u}$ and $u(x) = x^2 + 1$.
- We have $f(u(x))u'(x) = 2x\sqrt{x^2 + 1}$.
- So

$$\int 2x \sqrt{x^2 + 1} dx = \int \sqrt{u} du = \frac{2}{3} u^{3/2} + C.$$

• Substitute u by $x^2 + 1$ we get

$$\int 2x\sqrt{x^2+1}dx = \frac{2}{3}(x^2+1)^{3/2} + C.$$

Find $\int x^3 \cos(x^4 + 2) dx$

- $u = x^4 + 2$,
- $du = 4x^3 dx \implies dx = \frac{1}{4x^3} du$
- Hence,

$$\int x^3 \cos(x^4 + 2) dx = \int x^3 \cos(u) \frac{1}{4x^3} du$$

$$= \frac{1}{4} \int \cos(u) du \quad (\text{No } x \text{ any more})$$

$$= \frac{1}{4} \sin u + C$$

$$= \frac{1}{4} \sin(x^4 + 2) + C$$

The steps

- Find an u that can simplify the formula of the integrand.
- Write dx in terms of du and possibly x.
- Get rid of the remaining appearances of x.

Compute $\int \sqrt{2x+1} dx$

- Find u: u = 2x + 1
- $du = 2dx \rightarrow dx = \frac{1}{2}du$

$$\int \sqrt{2x+1} dx = \int \sqrt{u} \cdot \frac{1}{2} du$$

$$= \frac{1}{3} u^{3/2} + C$$

$$= \frac{1}{3} (2x+1)^{3/2} + C$$

Compute $\int \sqrt{x^2 + 1} x^5 dx$

- $u = x^2 + 1$
- $du = 2xdx \rightarrow dx = \frac{1}{2x}du$
- Thus,

$$\int \sqrt{x^2 + 1} x^5 dx = \int \sqrt{u} x^5 \frac{1}{2x} du$$
$$= \frac{1}{2} \int x^4 \sqrt{u} du$$

• Write x^4 in terms of u

$$x^4 = (x^2 + 1 - 1)^2 = (u - 1)^2$$

Thus,

$$\frac{1}{2} \int \sqrt{u} (u-1)^2 du = \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2}) du$$

$$= \frac{1}{7} u^{7/2} - \frac{2}{5} u^{5/2} + \frac{1}{3} u^{3/2} + C$$

$$= \frac{1}{7} (x^2 + 1)^{7/2} - \frac{2}{5} (x^2 + 1)^{5/2}$$

$$+ \frac{1}{3} (x^2 + 1)^{3/2} + C$$

Substitution for Definite Integrals

Theorem

If u' is continuous on [a, b] and f is continuous, then

$$\int_a^b f(u(x))u'(x)dx = \int_{u(a)}^{u(b)} f(u)du$$

Note: The limits change from (a, b) to (u(a), u(b))

Example

Evaluate
$$\int_1^2 \frac{dx}{(3-5x)^2}$$

- u = 3 5x and $du = -5dx \to dx = -\frac{1}{5}du$
- $x = 1 \rightarrow u = -2, x = 2 \rightarrow u = -7$
- We obtain

$$\int_{1}^{2} \frac{dx}{(3-5x)^{2}} = -\frac{1}{5} \int_{2}^{-7} \frac{du}{u^{2}} = -\frac{1}{5u} \Big|_{-2}^{-7} = \frac{1}{14}$$
Emil. edu. vn)

1. Integrals

Fall 2022

Section 7

Integration by Parts

Integration by Parts

Theorem

If u and v are differentiable then

$$\int u dv = uv - \int v du.$$

- Recall that du = u'(x)dx and dv = v'(x)dx.
- Example: if $u(x) = x^2$, $v(x) = \sin x$ then we get

$$\int x^2 \cos x dx = x^2 \sin x - \int 2x \sin x dx.$$

Integration by Parts - Proof

By the product rule,

$$[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x).$$

Taking integration gives

$$u(x)v(x)+C=\int [u'(x)v(x)+u(x)v'(x)]dx.$$

Rearranging terms, we get

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx.$$

$$\int x \sin x dx$$

- u = x, $dv = \sin x dx$
- du = dx, $v = -\cos x$

•

$$\int x \sin x dx = x(-\cos x) - \int (-\cos x) dx$$
$$= -x \cos x + \int \cos x dx$$
$$= -x \cos x + \sin x + C$$

Find ∫ In *xdx*

- $u = \ln x$, dv = dx
- $du = \frac{1}{x}dx$, v = x

$$\int \ln x dx = x \ln x - \int x \frac{1}{x} dx$$
$$= x \ln x - x + C$$

Evaluate $I = \int e^x \sin x dx$

- $u = \sin x$, $dv = e^x dx$
- $du = \cos x dx$, $v = e^x$

$$I = e^x \sin x - \int e^x \cos x dx$$

Integral by parts once more

- $u = \cos x$, $dv = e^x dx$
- $du = -\sin x dx$, $v = e^x$

$$I = e^{x} \sin x - \left[e^{x} \cos x + \int e^{x} \sin x dx\right]$$
$$= e^{x} (\sin x - \cos x) - I$$

Sc

$$2I = e^x(\sin x - \cos x) + C$$

or

$$I = \frac{1}{2}e^{x}(\sin x - \cos x) + C$$

Calculate $I_n = \int x^n e^{-x} dx$

- $u = x^n$, $dv = e^{-x} dx$
- $du = nx^{n-1}dx$, $v = -e^{-x}$

Integrating by parts, we get

$$I_n = -x^n e^{-x} + n \int x^{n-1} e^{-x} dx$$

= $-x^n e^{-x} + n I_{n-1}$.

We can use this repeatedly to calculate I_n for any n. Note that

$$I_0 = -e^{-x} + C.$$

Change of Variable for Definite Integrals

If u and v are differentiable then

$$\int_a^b u(x)v'(x)dx = u(x)v(x)\big]_a^b - \int_a^b v(x)u'(x)dx.$$

• Example: if $u(x) = x^2$, $v(x) = \sin x$ then

$$\int_0^{\pi} x^2 \cos x dx = x^2 \sin x \Big]_0^{\pi} - \int_0^{\pi} 2x \sin x dx.$$

Calculate $I = \int_0^1 \arctan x dx$

• Let $u = \arctan x$, then dv = dx hence v = x. As $du = \frac{dx}{1+x^2}$, we get

$$I = x \arctan x \Big|_{0}^{1} - \int_{0}^{1} \frac{x}{1 + x^{2}} dx$$
$$= \frac{\pi}{4} - \int_{0}^{1} \frac{x}{1 + x^{2}} dx$$

• Let $t = 1 + x^2$ then dt = 2xdx. Thus,

$$\int_0^1 \frac{x}{1+x^2} dx = \frac{1}{2} \int_1^2 \frac{dt}{t} = \frac{1}{2} \ln|t| \Big|_1^2 = \frac{\ln 2}{2}$$

We obtain

$$I = \frac{\pi}{4} - \frac{\ln 2}{2}$$

Section 8

Partial Fractions

Partial Fractions

Consider an integral of the form

$$\int \frac{P(x)}{Q(x)} dx,$$

where P(x), Q(x) are polynomials.

- Long division reduces it to the case degree of P < degree of Q.
- Then one can write $\frac{P(x)}{Q(x)}$ as sum of simpler terms, call partial fractions.
- The exact form of partial fractions depend on Q(x).

Evaluate

$$\int \frac{x^3 + 3x^2}{x^2 + 1} dx$$

Divide

$$\frac{x^3 + 3x^2}{x^2 + 1} = x + 3 - \frac{x + 3}{x^2 + 1}$$

$$\int \frac{x^3 + 3x^2}{x^2 + 1} dx = \int (x+3)dx - \int \frac{x+3}{x^2 + 1} dx$$
$$= \frac{1}{2}x^2 + 3x - \frac{1}{2}\ln(x^2 + 1)$$
$$- 3\arctan x + C$$

Factorization of Q(x)

Any polynomial Q(x) can be factored as product of

- linear factors of the form (ax + b)
- irreducible quadratic factors

$$(ax^2 + bx + c)$$
 where $b^2 - 4ac < 0$

I.e.

$$Q(x) = a \prod_{i=1}^{k} (x + b_i)^{n_i} \prod_{j=1}^{l} (x^2 + c_j x + d_j)^{m_j}.$$

Here the b_i 's are distinct, i.e. $b_i \neq b_j$ for $i \neq j$. Similarly, the quadratic factors $x^2 + c_j x + d_j$'s are distinct.

Linear factors of Q

If Q(x) has a linear factor $(ax + b)^n$ then the partial fraction decomposition of $\frac{P(x)}{Q(x)}$ contains the terms

$$\frac{A_1}{(ax+b)}+\frac{A_2}{(ax+b)^2}+\cdots+\frac{A_n}{(ax+b)^n}.$$

Here A_1, \ldots, A_n are real numbers.

Example: The partial fraction decomposition of $\frac{x^4+1}{(x-1)^3(x+1)^2}$ has the form

$$\frac{x^4+1}{(x-1)^3(x+1)^2} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2}.$$

Write as sum of partial fractions

$$\frac{x+5}{x^2+x-2}$$

Solution: Factorization of Q: $x^2 + x - 2 = (x - 1)(x + 2)$ Form of partial fraction decomposition

$$\frac{x+5}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}.$$

Multiplying both sides with Q to get

$$x + 5 = A(x + 2) + B(x - 1)$$

Put in suitable values of x;

•
$$x = 1 \implies 6 = 3A$$
 so $A = 2$

•
$$x = -2 \implies 3 = -3B$$
 so $B = -1$

Find

$$I = \int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx$$

Solution:

· Long division gives

$$\frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} = x + 1 + \frac{4x}{x^3 - x^2 - x + 1}$$

- Factorzing $Q: x^3 x^2 x + 1 = (x 1)^2(x + 1)$
- Form of partial fraction decomposition

$$\frac{4x}{(x-1)^2(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$$

Multipling with Q to get

$$4x = A(x-1)(x+1) + B(x+1) + C(x-1)^2$$

for all x.

- Substituting special values of x:
 - $x = 1 \implies B = 2$
 - $x = -1 \implies C = -1$
 - $x = 0 \implies A = 1$
- We obtain

$$I = \int \left[x + 1 + \frac{1}{x - 1} + \frac{2}{(x - 1)^2} - \frac{1}{x + 1} \right] dx$$
$$= \frac{x^2}{2} + x + \ln|x - 1| - \frac{2}{x - 1} - \ln|x + 1| + C.$$

Irreducible quadratic factors of Q

If Q(x) has an irreducible quadratic factor

$$ax^2 + bx + c$$
 where $b^2 - 4ac < 0$

then the partial fraction decomposition contains the term

$$\frac{Ax+B}{ax^2+bx+c}$$

Example: The partial fraction decomposition of $\frac{x^3+1}{(x-1)^2(4x^2+4x+3)}$ has the form

$$\frac{x^3+1}{(x-1)^2(4x^2+4x+3)} = \frac{A_1}{x-1} + \frac{A_2}{(x-1)^2} + \frac{B_1x+B_2}{(4x^2+4x+3)}.$$

Find

$$I = \int \frac{3x + 2}{x^3 + 2x^2 + 2x} dx$$

Solution:

- Factorizing $Q(x) = x(x^2 + 2x + 2)$
- Form of partial fraction decomposition:

$$\frac{3x+2}{x(x^2+2x+2)} = \frac{A}{x} + \frac{Bx+C}{x^2+2x+2}$$

Multiplying with Q to get

$$3x + 2 = A(x^2 + 2x + 2) + (Bx + C)x.$$

- Choose $x = 0 \implies A = 1$.
- Comparing coefficients of $x^2 \implies B = -1$.
- Comparing coefficients of $x \implies C = 1$.

We get

$$I = \int \left[\frac{1}{x} + \frac{-x+1}{x^2 + 2x + 2} \right] dx$$

$$= \ln|x| + \int \frac{-(x+1) + 2}{(x+1)^2 + 1} dx$$

$$= \ln|x| - \frac{1}{2}\ln(x^2 + 2x + 2) + 2\arctan(x+1) + C$$

The last equality is easy to check using the substitution u = x + 1.

Section 9

Trigonometric Integrals

Trigonometric Integrals

We will consider the following two types of integrals

$$\int \sin^n x \cos^m x dx \text{ and } \int \tan^n x \sec^m x dx.$$

The following will be used frequently

$$\sin^2 x + \cos^2 x = 1$$

$$\cos(2x) = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

$$\sin(2x) = 2\sin x \cos x.$$

$$\sec^2 x = \tan^2 x + 1$$

$$\sec' x = \sec x \tan x$$

$$\tan' x = \sec^2 x = \tan^2 x + 1$$

$\int \sin^n x \cos^m x dx$

• If m = 2k + 1 is odd: Let $u = \sin x$, then

$$\int \sin^n x \cos^{2k+1} x dx = \int u^n (1 - u^2)^k du.$$

• If n = 2k + 1 is odd: Let $u = \cos x$, then

$$\int \sin^{2k+1} x \cos^m x dx = -\int (1-u^2)^k u^m du.$$

• If both m = 2k and n = 2l are even: use half-angle formula to reduce the powers

$$\int \sin^{2k} x \cos^{2l} x dx = \frac{1}{2^{k+l}} \int (1 - \cos(2x))^k (1 + \cos(2x))^l dx.$$

• Find $I = \int \sin^2 x \cos^3 x dx$. Solution: Let $u = \sin x$. Then

$$I = \int u^2 (1 - u^2) du = \frac{1}{3}u^3 - \frac{1}{5}u^5 + C$$
$$= \frac{1}{3}\sin^3 x - \frac{1}{5}\sin^5 x + C.$$

• Find $I = \int \sin^2 x \cos^2 x dx$. *Solution:*

$$I = \frac{1}{4} \int (1 - \cos 2x)(1 + \cos 2x) dx$$

$$= \frac{1}{4} \int (1 - \cos^2(2x)) dx$$

$$= \frac{1}{4} \int (1 - \frac{1}{2}(1 + \cos(4x))) dx$$

$$= \frac{1}{8}x - \frac{1}{32}\sin(4x) + C.$$

$\int tan^n x sec^m x dx$

1 If n = 2k + 1 is odd: Let $u = \sec x$, then

$$\int \tan^n x \sec^m x dx = \int \tan^{2k} x \sec^{m-1} x \sec x \tan x dx$$
$$= \int (u^2 - 1)^k u^{m-1} du.$$

2 If m = 2k is even: Let $u = \tan x$, then

$$\int \tan^n x \sec^m x dx = \int \tan^n x \sec^{2k-2} x \sec^2 x dx$$
$$= \int u^n (u^2 + 1)^{k-1} du.$$

$\int \tan^n x \sec^m x dx$

3 If m = 2k + 1 is odd and n = 2l is even: Let $u = \sin x$, then

$$\int \tan^n x \sec^m x dx = \int \frac{\sin^{2l} x}{\cos^{2k+2l+1} x} = \int \frac{u^{2l}}{(1-u^2)^{k+l+1}} du.$$

Example: Find $I = \int \sec^6 x \tan^4 x dx$

- $I = \int \sec^4 x \tan^4 x \sec^2 x dx$
- Let $u = \tan x$, then $du = \sec^2 x dx$, hence

$$I = \int (\tan^2 x + 1)^2 \tan^4 x \sec^2 x dx$$

$$= \int (u^2 + 1)^2 u^4 du = \frac{u^9}{9} + \frac{2u^7}{7} + \frac{u^5}{5} + C$$

$$= \frac{\tan^9 x}{9} + \frac{2\tan^7 x}{7} + \frac{\tan^5 x}{5} + C$$

Find $I = \int \sec^3 x \tan^5 x dx$

- $I = \int \sec^2 x \tan^4 x \sec x \tan x dx$
- Let $u = \sec x$, then $du = \sec x \tan x dx$, hence

$$I = \int \sec^2 x (\sec^2 x - 1)^2 \sec x \tan x dx$$

$$= \int u^2 (u^2 - 1)^2 du$$

$$= \frac{u^7}{7} - 2\frac{u^5}{5} + \frac{u^3}{3} + C$$

$$= \frac{\sec^7 x}{7} - 2\frac{\sec^5 x}{5} + \frac{\sec^3 x}{3} + C.$$

Section 10

Trigonometric Substitution

Trigonometric Substitutions

- Used to get rid of the square root $\sqrt{Ax^2 + Bx + C}$ of a quadratic polynomial of x.
- Any quadratic polynomial of x can be put in the form $\pm (ax + b)^2 + c$.
- Thus, by the change of variable u = ax + b, we reduce to one of the following three cases
 - $\sqrt{d^2 u^2}$, let $x = d \sin t$.
 - $\sqrt{d^2 + x^2}$, let $x = d \tan t$.
 - $\sqrt{x^2 d^2}$, let $x = d \sec t$.

Find
$$I = \int \frac{dx}{x^2 \sqrt{x^2 + 4}}$$

- Let $x = 2 \tan \theta$, then $dx = 2 \sec^2 \theta d\theta$
- Thus,

$$I = \int \frac{2 \sec^2 \theta d\theta}{4 \tan^2 \theta 2 \sec \theta} = \frac{1}{4} \int \frac{\sec \theta}{\tan^2 \theta} d\theta = \frac{1}{4} \int \frac{\cos \theta}{\sin^2 \theta} d\theta$$

• Let $t = \sin \theta$ then

$$I = \frac{1}{4} \int \frac{dt}{t^2} = \frac{1}{4} (-\frac{1}{t}) + C = -\frac{1}{4 \sin \theta} + C$$

Since

$$\tan\theta=\frac{x}{2}$$

implies

$$\sin\theta = \frac{x}{\sqrt{x^2 + 4}},$$

we get

$$I = -\frac{\sqrt{x^2 + 4}}{4x} + C$$

Find
$$I = \int \frac{xdx}{\sqrt{3 - 2x - x^2}}$$

Complete the square

$$3-2x-x^2=4-(x+1)^2$$

• Let u = x + 1 then

$$I = \int \frac{u-1}{\sqrt{4-u^2}} du$$

• Let $u = 2 \sin \theta$ then

$$I = \int \frac{2\sin\theta - 1}{2\cos\theta} 2\cos\theta d\theta = -2\cos\theta - \theta + C$$
$$= -\sqrt{3 - 2x - x^2} - \sin^{-1}(\frac{x+1}{2}) + C.$$

Here we have used $2\cos\theta = \sqrt{4-u^2}$ and $\theta = \sin^{-1}(u/2)$.

Section 11

Improper Integrals

Improper Integrals of Type 1 (Infinite Intervals)

Integrals over infinite intervals are improper call integrals of Type 1.

• If f is continuous on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx.$$

• If f is continuous on $[-\infty, b)$, then

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$
• If $f(x)$ is continuous on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx.$$

Note: An improper integral is called convergent if it exists as a finite number, and divergent otherwise.

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{y \to \infty} \int_{1}^{y} \frac{1}{x^{2}} dx$$
$$= \lim_{y \to \infty} \left(1 - \frac{1}{y} \right) = 1$$

p-integrals of Type 1

For $0 < a < \infty$,

$$\int_a^\infty x^{-p} dx = \left\{ \begin{array}{ll} \frac{a^{1-p}}{p-1} & \text{if } p > 1 \\ \infty & \text{if } p \leq 1 \end{array} \right.$$

Evaluate

1
$$I = \int_0^\infty e^{-x/2} dx$$
.

$$\int_0^\infty \frac{2x-1}{e^{3x}} dx$$

Solution:

By definition

$$I = \lim_{b \to \infty} \int_0^b e^{-x/2} dx = \lim_{b \to \infty} (2 - 2e^{-b/2}) = 2.$$

2 Using integration by parts, we obtain:

$$\int_0^\infty \frac{2x - 1}{e^{3x}} dx = \lim_{t \to \infty} \int_0^t (2x - 1)e^{-3x} dx$$
$$= \lim_{t \to \infty} \left(\frac{1 - 2t}{3e^{3t}} - \frac{2}{9e^{3t}} - \frac{1}{9} \right)$$

Therefore, $I = -\frac{1}{0}$.

Evaluate

$$\int_0^\infty x e^{-x} dx.$$

6
$$\int_0^\infty \cos x dx$$
.

Improper Integrals of Type 2

Another type of improper integral arises when the integrand has a vertical asymptote at a point within the interval of integration. These are called improper integrals of Type 2.

- If f is continuous on (a, b] and discontinuous at a, then $\int_{a}^{b} f(x)dx = \lim_{c \to a^{+}} \int_{a}^{b} f(x)dx.$
- If f is continuous on [a, b) and discontinuous at b, then

$$\int_{a}^{b} f(x)dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x)dx.$$

• If f(x) is discontinuous at c, where a < c < b, and continuous on $[a, c) \cup (c, b]$, then

$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx.$$

$$\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx = \lim_{t \to 2^{+}} \int_{t}^{5} \frac{1}{\sqrt{x-2}} dx$$

$$= \lim_{t \to 2^{+}} 2\sqrt{x-2} \Big|_{t}^{5}$$

$$= \lim_{t \to 2^{+}} (2\sqrt{3} - 2\sqrt{t-2}) \Big|_{0}^{1} = 2\sqrt{3} \Big|_{1}^{2} = 2\sqrt{3}.$$

p-integral of Type 2

For $0 < a < \infty$,

$$\int_0^a x^{-p} dx = \begin{cases} \frac{a^{1-p}}{1-p} & \text{if } p < 1\\ \infty & \text{if } p \ge 1 \end{cases}$$

Evaluate

$$I = \int_0^1 \ln x dx.$$

Solution:

$$I = \lim_{c \to 0^{+}} \int_{c}^{1} \ln x dx = \lim_{c \to 0^{+}} (x \ln x - x) \Big|_{c}^{1}$$

$$= -1 - \lim_{c \to 0^{+}} (c \ln c - c) = -1 - \lim_{c \to 0^{+}} \frac{\ln c}{1/c}$$

$$\stackrel{\text{L'Hôpital}}{=} -1 - \lim_{c \to 0^{+}} \frac{1/c}{-(1/c^{2})} = -1 - 0 = -1$$

Example

Evaluate $\int_0^3 \frac{dx}{x-1}$ if it exists.

Solution: The integrand $\frac{1}{x-1}$ has an infinite discontinuity at x=1, so by definition

$$\int_0^3 \frac{dx}{x-1} = \int_0^1 \frac{dx}{x-1} + \int_1^3 \frac{dx}{x-1}$$

Since

$$\int_0^1 \frac{dx}{x-1} = \lim_{t \to 1^-} \int_0^t \frac{dx}{x-1} = \lim_{t \to 1^-} \ln|x-1||_0^t = -\infty.$$

Thus, $\int_0^1 \frac{dx}{x-1}$ diverges and hence $\int_0^3 \frac{dx}{x-1}$ diverges.

Exercises

Evaluate the following integrals

$$\int_0^3 \frac{dx}{(x-1)^{2/3}}.$$

$$\int_0^1 \frac{dx}{x^2}.$$

5
$$\int_0^1 x(\ln x)^2 dx$$
.

Comparison Theorems

- Many integrals can not be compute explicitly (e.g. e^{-x^2} , $\frac{\sin x}{x}$, $\cos(x^2)$, etc.)
- To determine the convergence of an integral, most often we compare it to a simpler, explicitly computable integral.

Theorem I

Let f and g be continuous on (a, b), and $0 \le f(x) \le g(x)$ for $x \in (a, b)$.

• If $\int_a^b g(x)dx$ converges then $\int_a^b f(x)dx$ also converges, and

$$\int_a^b f(x)dx \le \int_a^b g(x)dx.$$

• If $\int_a^b f(x)dx$ diverges then $\int_a^b g(x)dx$ diverges.

Comparison Theorems

Theorem II

Let f and g be continuous on (a, b), and $|f(x)| \le g(x)$ for $x \in (a, b)$.

• If $\int_a^b g(x)dx$ converges then $\int_a^b f(x)dx$ also converges, and

$$\left| \int_a^b f(x) dx \right| \le \int_a^b g(x) dx.$$

• If $\int_a^b f(x)dx$ diverges then $\int_a^b g(x)dx$ diverges.

Comparison Theorems

Example

Show that

$$I = \int_0^\infty e^{-x^2} dx$$

converges.

- Try to compare with integral of e^{-x}
- but $e^{-x^2} \le e^{-x}$ only for $x \ge 1$
- so compare to e^{-x+1} :

$$e^{-x^2} \le e^{-x+1}, \forall x > 0.$$

Determine whether the following integral converges or diverges

$$I = \int_0^\infty \frac{dx}{\sqrt{x + x^3}}.$$

This is improper integral of both types

$$I = \int_0^1 \frac{dx}{\sqrt{x + x^3}} + \int_1^\infty \frac{dx}{\sqrt{x + x^3}} =: I_1 + I_2$$

On
$$(0,1]$$
: $\sqrt{x+x^3} > \sqrt{x}$, so $I_1 < \int_0^1 \frac{dx}{\sqrt{x}} = 2$. On $[1,\infty)$: $\sqrt{x+x^3} > \sqrt{x^3}$, so $I_2 < \int_1^\infty \frac{dx}{x^{3/2}} = 2$. Thus, I converges.

Exercises

• Let p < 1. Compute

$$\int_0^1 \frac{\ln x}{x^p} dx.$$

 Using the Comparison Test together with integration by parts to show

$$\int_{1}^{\infty} \frac{\sin x}{x} dx$$

and

$$\int_{1}^{\infty} \cos(x^2) dx$$

converge.

Exercises

Determine whether each integral is convergent or divergent.

$$1. \int_1^\infty \frac{\sin^2 x}{x^2 + 1} dx.$$

$$2. \int_0^\infty x e^{-x^2} dx.$$

$$3. \int_1^\infty \frac{x+1}{x^2+2x} dx.$$

4.
$$\int_{1}^{\infty} \frac{\ln x}{x} dx.$$

$$\mathbf{5.} \int_{-\infty}^{\infty} \frac{dx}{4x^2 + 4x + 5}.$$

Section 12

Numerical methods

Midpoint Rule

The Riemann sum with

$$c_i = \frac{x_{i-1} + x_i}{2} = a + (i - \frac{1}{2})h, i = 1, 2, \dots, n$$

is

$$M_n = h[f(c_1) + f(c_2) + \cdots + f(c_n)].$$

Theorem

If f'' is continuous on [a, b] and $|f''(x)| \leq K$ then

$$\left|\int_a^b f(x)dx - M_n\right| \leq \frac{K(b-a)^3}{24n^2}.$$

How large should n be to guarantee that the Midpoint Rule approximation for $\int_{1}^{2} \frac{1}{x} dx$ is accurate to within 10^{-4} ? *Solution:*

- $|f''(x)| = |\frac{2}{x^3}|$. So $|f''(x)| \le 2$ on [1, 2]
- Error is at most $\frac{2}{24n^2}$
- This is less than 10^{-4} if $n^2 > \frac{2}{24 \times 10^{-4}}$, or n > 29
- Take *n* = 30

Trapezoid Rule

Divide [a, b] into n equal subintervals of length $h = \frac{b-a}{n}$ by $x_i = a + ih$, i = 0, ..., n. Then approximate the graph of f between x_i and x_{i+1} by the straight line connecting $(x_i, f(x_i))$ and $(x_{i+1}, f(x_{i+1}))$.

Trapezoid Rule

- Let $y_i = f(x_i)$
- Area of trapezoid on $[x_i, x_{i+1}]$

$$h^{\frac{y_i+y_{i+1}}{2}}$$

• Sum of areas of trapezoids is

$$T_n = h\left(\frac{y_0 + y_1}{2} + \frac{y_1 + y_2}{2} + \dots + \frac{y_{n-1} + y_n}{2}\right)$$

= $h\left(\frac{1}{2}y_0 + y_1 + \dots + y_{n-1} + \frac{1}{2}y_n\right)$.

Theorem

If f'' is continuous on [a, b] and $|f''(x)| \leq K$ then

$$\left| \int_a^b f(x) dx - T_n \right| \leq \frac{K(b-a)^3}{12n^2}.$$

How large should *n* be to guarantee that the Trapezoidal approximation for $\int_{1}^{2} \frac{1}{x} dx$ is accurate to within 10^{-4} ?

- The error is at most $\frac{2}{12n^2}$
- For this to be less than 10^{-4} is equivalent to $n^2 > \frac{1}{6 \times 10^{-4}}$ or n > 40.8
- Take *n* = 41

Simpson Rule

- Use quadratic functions through 3 points $(x_{i-1}, f(x_{i-1}))$, $(x_i, f(x_i))$ and $(x_{i+1}, f(x_{i+1}))$ to approximate f.
- This leads to

$$\int_{x_{i-1}}^{x_{i+1}} f(x) dx \approx \frac{h}{3} (y_{i-1} + 4y_i + y_{i+1})$$

Simpson Rule

Thus, if *n* is even, $\int_a^b f(x)dx$ can be approximated by

$$S_n = \frac{h}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n)$$
$$= \frac{h}{3}(\sum y_{end} + 4\sum y_{odd} + 2\sum y_{even})$$

Theorem

Suppose $|f^{(4)}(x)| \leq K$ on [a, b], then

$$|\int_a^b f(x)dx - S_n| \leq \frac{K(b-a)^5}{180n^4}.$$

Simpson Rule

Example

Find *n* so that the error of approximating $\int_{1}^{2} \frac{1}{x} dx$ using the Simpson rule is less than 10^{-4} .

Solution:

- Since $f^{(4)}(x) = \frac{24}{x^5}$, K = 24
- Need $n^4 > \frac{24}{108 \cdot 10^{-4}}$ or n > 6.866...
- Take n = 8.

Problem Set 1

- 5.2: 6, 8,10
- 5.3: 10, 14
- 5.4: 10, 14, 22
- 5.5: 16, 22, 36, 48, 50
- 5.6: 6, 9, 12, 14, 16, 27, 30
- 5.7: 4, 6, 8, 10, 12, 16, 18, 32, 26, 28, 36
- 5.10: 7, 8, 14, 19, 27, 31, 32, 62