R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

R-CNN Region proposal + CNN

Region Proposal

localizing objects with a deep network

- ? localization as a regression problem
- Szegedy에 의해 잘 작동하지 않음을 증명

- ? sliding-window detector
- 5개의 convolutional layers 모델 기술적 문제 발생

Region Proposal

"recognition using regions"

successful for both object detection and semantic segmentation

Selective Search

Initial Segmentation

efficient graph-based image segmentation

Merging the Segmentations

hierachical grouping algorithm

$$s(r_i, r_j) = a_1 s_{colour}(r_i, r_j) + a_2 s_{texture}(r_i, r_j) + a_3 s_{size}(r_i, r_j) + a_4 s_{fill}(r_i, r_j),$$

Color, Texture, Size, Fill 가중합 픽셀의 유사도 계산

Warp

tightest square with context B

object proposal을 CNN input size로 isotropically(등방적) 조정

tightest square without context

기존의 object proposal을 둘러싼 image content 제외

object proposal을 CNN input size로 anisotropically(비등방적) 조정

additional image context 추가

context padding "p"

Top row: p = 0
Bottom row: p = 16

CNN

AlexNet Supervised pre-training

Domain-specific fine-tuning

pre-trained the CNN on a large dataset (ILSVRC2012 classification)

using image-level annotations only

the CNN's ImageNet- specific 1000-way classification layer randomly initialized (N + 1)-way classification layer (N is the number of object classes, plus 1 for background)

CNN

region proposals

≥ 0.5 IoU overlap
with a ground-truth box

positives

for that box's class

the rest as negatives

background

Bounding-Box Regression

$$\begin{split} P^{i} &= (P_{x}^{i}, P_{y}^{i}, P_{w}^{i}, P_{h}^{i}) & \qquad \qquad G = (G_{x}, G_{y}, G_{w}, G_{h}) \\ \hat{G}_{x} &= P_{w} d_{x}(P) + P_{x} & \qquad \qquad t_{x} = (G_{x} - P_{x})/P_{w} \\ \hat{G}_{y} &= P_{h} d_{y}(P) + P_{y} & \qquad \qquad t_{y} = (G_{y} - P_{y})/P_{h} \\ \hat{G}_{w} &= P_{w} \exp(d_{w}(P)) & \qquad \qquad t_{w} = \log(G_{w}/P_{w}) \\ \hat{G}_{h} &= P_{h} \exp(d_{h}(P)). & \qquad \qquad t_{h} = \log(G_{h}/P_{h}). \\ d_{*}(P) &= \hat{w}_{*}^{T} \phi_{5}(P^{i}) & \qquad \qquad \star \\ & \qquad \qquad w_{\star} = \underset{\hat{\mathbf{w}}_{\star}}{\operatorname{argmin}} \sum_{i}^{N} (t_{\star}^{i} - \hat{\mathbf{w}}_{\star}^{T} \phi_{5}(P^{i}))^{2} + \lambda \|\hat{\mathbf{w}}_{\star}\|^{2}. \\ (y - \hat{y})^{2} & \qquad \qquad \end{split}$$

Conclusion

bottom-up region proposals

in order to localize and segment objects, high-capacity convolutional neural networks에 bottom-up region proposals 적용

training large CNNs

a paradigm for training large CNNs when labeled training data is scarce

pre-train the network

fine-tune the network

image classification

with abundant data
with supervision

detection

the target task
where data is scarce

Conclusion

computation time

2000개의 region proposal 각각 CNN 수행 CNN 연산 X 2000 만큼의 수행 시간

end-to-end learning

CNN, SVM, Bounding Box Regression(3가지의 model) → multi-stage pipelines SVM, Bounding Box Regression 에서 학습한 결과로 CNN 업데이트 불가

$$Int(C) = maxw(e)$$

$$Dif(C_i, C_j) = min \ w(v_i, v_j)$$

$$D(C_i, C_j) = \begin{cases} true & Dif(C_i, C_j) > min(Int(C_i), Int(C_j)) \\ false & otherwise \end{cases}$$

$$Dif(C_i,C_j) > \min(Int(C_i),Int(C_j))$$

$$Dif(C_i, C_j) > min(Int(C_i) + \frac{k}{|C_i|}, Int(C_j) + \frac{k}{|C_j|})$$

$$Dif(C_i, C_j) = false$$

$$if \ Dif(C_i, C_j) \leq min(Int(C_i) + \frac{k}{|C_i|}, Int(C_j) + \frac{k}{|C_j|})$$