The PDF-version result output of First Assignment

Zekun Ge

		_	_		4	
1	Marian	han	af.	atra	danta	
ı	. Num	Dei	OΙ	Stu	uems	

We could see that there are 340823 student applicants.

2. Number of schools

There are 898 distinct schools.

3. Number of programs

There are 32 different programs.

4. Number of choices

There are 5546 different choices.

5. Number of missing test score

There are 179887 missing test score.

6. Number of applying to the same school

There are 5546 applicants who apply to the same school.

(2) Exercise TWO

# schoolco	de choice	ID	score a	agey	m	ale choicepgm	jssdistrict	rankplace	rank
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230518	288	15	1	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture
# 10101	10101Agriculture	230756	288	14	0	Agriculture	Accra Metropolita	n 3	10101Agriculture

(the following part is attached to the right side of the above chart)

# cutoff_	Low to Top	quality_Average	Score size_Number of Admission	X.y	schoolname
#	288	309.0889	45	3247	
#	288	309.0889	45	3560	
#	288	309.0889	45	6031	
#	288	309.0889	45	3881	
#	288	309.0889	45	408	EBENEZER SENIOR HIGH
					SCHOOL, DANSOMAN

#	288	309.0889		45	2881	
#	288	309.0889		45	328	EBENEZER SENIOR HIGH.
						SCHOOL, DANSOMAN
#	288	309.0889		45	453	EBENEZER SENIOR HIGH.
						SCHOOL, DANSOMAN
#	288	309.0889	45	590	EBENEZER SENIOR HI	GH. SCHOOL, DANSOMAN
#	288	309.0889	45	552	EBENEZER SENIOR HI	GH. SCHOOL, DANSOMAN
#	288	309.0889	45	3887		
#	288	309.0889	45	472	EBENEZER SENIOR HI	GH. SCHOOL, DANSOMAN
#	288	309.0889	45	3247		
#	288	309.0889	45	3560		
#	288	309.0889	45	6031		
#	288	309.0889	45	3881		
#	288	309.0889	45	408	EBENEZER SENIOR HI	GH. SCHOOL, DANSOMAN
#	288	309.0889	45	2881		
#	288	309.0889	45	328	EBENEZER SENIOR HI	GH. SCHOOL, DANSOMAN
#	288	309.0889	45	453	EBENEZER SENIOR H	IGH. SCHOOL, DANSOMAN

(the following part is attached to the right side of the above chart)

#	sssdistrict	ssslong	ssslat
#	Accra Metro	NA	NA
#	Accra Metro	NA	NA
#	Accra Metro	NA	NA
#	Accra Metro	NA	NA
#	Accra Metropolita	n -0.19711	53 5.607396
#	Accra Metro	NA	NA
#	Accra Metropolita	n -0.19711	53 5.607396
#	Accra Metropolita	n -0.19711	53 5.607396
#	Accra Metropolita	n -0.19711	53 5.607396
#	Accra Metropolita	n -0.19711	53 5.607396
#	Accra Metro	NA	NA

- # Accra Metropolitan -0.1971153 5.607396
- # Accra Metro NA NA
- # Accra Metropolitan -0.1971153 5.607396
- # Accra Metro NA NA
- # Accra Metropolitan -0.1971153 5.607396
- # Accra Metropolitan -0.1971153 5.607396

(3) Exercise Three

#	sssdistrict sss	long	ssslat	X_{1}	point_x	point_y	Dist
# 1029181	Kpando 0.2	673851	6.896852	1 0.	2076307	6.375762	36.27809
# 1029182	Kpando 0.2	673851	6.896852	1 0.	2076307	6.375762	36.27809
# 1029183	South Dayi	NA	NA	1 0.	2076307	6.375762	NA
# 1029184	Ho Municipal 0	.526142	2 6.71760	7 1	0.207630	7 6.375762	2 32.22676
# 1029185	Asuogyaman	NA	NA	1 0.	2076307	6.375762	NA
# 1029186	Kpando	NA	NA	1 0.2	2076307	6.375762	NA
# 1029187	South Dayi	NA	NA	1 0.	2076307	6.375762	NA
# 1029188	Kpando 0.2	673851	6.896852	1 0.	2076307	6.375762	36.27809
# 1029189	Ho Municipal	NA	NA	1 0.	2076307	6.375762	NA
# 1029190	Kpando 0.2	673851	6.896852	1 0.	2076307	6.375762	36.27809
# 1029191	South Dayi	NA	NA	1 0.	2076307	6.375762	NA
# 1029192	Kpando	NA	NA	1 0.	.2076307	6.375762	NA
# 1029193	South Dayi	NA	NA	1 0.	2076307	6.375762	NA
# 1029194	Kpando 0.2	673851	6.896852	1 0.	2076307	6.375762	36.27809
# 1029195	Kpando 0.2	673851	6.896852	1 0.	2076307	6.375762	36.27809
# 1029196	Kpando	NA	NA 1	0.20	76307 6.3	375762	NA
# 1029197	South Dayi	NA	NA 1	0.20	76307 6.3	375762	NA
# 1029198	Kpando 0.2	673851	6.896852	1 0.	2076307	6.375762	36.27809
# 1029199	South Dayi	NA	NA 1	0.20	76307 6.3	375762	NA
# 1029200	Kpando	NA	NA 1	0.20	76307 6.3	375762	NA

(4) Exercise Four

Rank_The Lowest_To_Highest

- 1. rankplace == 1
 - Cutoff mean = 279.8704
 - $Cutoff_sd = 57.34419$
 - Quality mean = 306.5762
 - $Quality_sd = 50.57871$
 - $Size_mean = 93.04011$
 - $Size_sd = 54.78786$
- 2. rankplace == 2
 - Cutoff mean = 277.1518
 - Cutoff sd = 50.97056
 - $Quality_mean = 302.9698$
 - Quality sd = 44.17802
 - $Size_mean = 93.68101$
 - $Size_sd = 54.99501$
- 3. rankplace == 3
 - Cutoff mean = 262.9438
 - $Cutoff_sd = 43.62898$
 - $Quality_mean = 290.079$
 - $Quality_sd = 37.06944$
 - $Size_mean = 91.81311$
 - Size sd = 55.59272
- 4. rankplace == 4
 - $Cutoff_mean = 250.1061$

$$Cutoff_sd = 37.67753$$

$$Quality_mean = 278.8267$$

$$Quality_sd = 31.49667$$

Size
$$mean = 88.3362$$

$$Size_sd = 56.27731$$

5. rankplace == 5

Cutoff mean =
$$211.1775$$

$$Cutoff_sd = 7.996356$$

Quality mean =
$$252.9305$$

$$Quality_sd = 13.02076$$

$$Size_mean = 68.32309$$

$$Size_sd = 48.39169$$

6. rankplace == 6

Cutoff mean =
$$211.2391$$

Cutoff
$$sd = 8.093442$$

$$Quality_mean = 250.225$$

$$Quality_sd = 11.02465$$

Size mean =
$$59.26986$$

Size
$$sd = 46.24914$$

Score The Lowest To Highest

1. Quantiles = 0.25

$$Cutoff_mean = 217.7775$$

$$Cutoff_sd = 14.31949$$

$$Quality_mean = 252.3234$$

$$Quality_sd = 12.39697$$

$$Size_mean = 74.88889$$

$$Size_sd = 14.31949$$

2. Quantiles = 0.5

$$Cutoff_mean = 229.8652$$

Cutoff
$$sd = 22.6533$$

$$Quality_mean = 262.2342$$

$$Quality_sd = 17.99262$$

$$Size_mean = 82.09206$$

Size
$$sd = 55.48278$$

3. Quantiles = 0.75

$$Cutoff_mean = 244.708$$

Cutoff
$$sd = 32.35489$$

$$Quality_mean = 274.8775$$

Quality
$$sd = 26.4583$$

Size mean =
$$87.61462$$

Size
$$sd = 56.53001$$

3. Quantiles = 1.00

Cutoff mean =
$$266.5514$$

Cutoff
$$sd = 51.04901$$

Quality mean =
$$294.2175$$

$$Quality_sd = 44.18152$$

Size mean =
$$90.61314$$

$$Size_sd = 55.32259$$

(5) Exercise Five

See the detailed information at R code.

(6) Exercise Six

```
6.1
```

Here betay_x1 approaches 1.26, which is very close to 1.2.

6.3

When coding by hand:

head(beta_All)

[,1]

2.4907098

x1 1.1976226

x2 -0.8970514

x3 0.0875850

When using lm():

All_model\$coefficients

(Intercept) x1 x2 x3

2.4907098 1.1976226 -0.8970514 0.0875850

The corresponding results are exactly the same.

6.4

sqrt(diag(vcov_beta_hat))

x1 x2 x3

 $\# \ 0.040620200 \ \ 0.017358550 \ \ 0.002876599 \ \ 0.021694530$

(7) Exercise Seven

7.1.1

Linear Probability Model by optimization

alpha beta1 beta2 beta3 sigma

 $\#\ 0.886603815\ 0.146120426\ -0.102847063\ -0.008958128\ 0.334971033$

```
Linear Probability Model by lm()
  unname(coef(reg OLS))
#[1] 0.885823611 0.146193985 -0.102832042 -0.008053057
The corresponding results are exactly the same.
7.1.2
Probit Model by optimization
  reg probit op$par
# (Intercept)
                                           x3
                  x1
                               x2
# 3.04273899 1.17235283 -0.90546035 -0.01124978
Probit Model by glm()
  unname(coef(reg probit))
#[1] 3.04273897 1.17235282 -0.90546040 -0.01124978
The corresponding results are approximately the same.
7.1.3
Logit Model by optimization
  summary(reg logit OP, order = "convcode")
#
               X.Intercept.
                               x1
                                          x2
                                                       x3
    BFGS
                5.4265418 2.1005953 -1.6185076 -0.01963006
Logit Model by glm()
  coef(reg_logit)
# (Intercept)
                  x1
                               x2
                                          x3
\# 5.42654014 \ \ 2.10059417 - 1.61850702 - 0.01963017
The corresponding results are approximately the same.
7.2
reg OLS <- lm(ydum \sim 1 + x1 + x2 + x3)
coef(reg OLS)
```

```
(Intercept)
                        x1
                                      x2
                                                     x3
                  0.146193985 -0.102832042 -0.008053057
# 0.885823611
reg probit \leq- glm(ydum \sim 1 + x1 + x2 + x3, family = binomial(link = "probit"))
coef(reg probit)
# (Intercept)
                      x1
                                   x^2
                                                x3
# 3.04273897
                  1.17235282 -0.90546040 -0.01124978
reg logit <- glm(ydum \sim 1 + x1 + x2 + x3, family = binomial(link = "logit"))
coef(reg logit)
# (Intercept)
                                                x3
                       x1
                                   x^2
# 5.42654014
                 2.10059417 -1.61850702 -0.01963017
#/ The coefficients between probit regression and logit model are quite similar
```

- #/ However, the OLS coefficients are smaller than the corresponding logit and probit figures.
- #/ But for all these three models, the coefficient of each individual variable in any model remains negative or positive simultaneously.
- # For simplicity, I will use the variable "x1" as an example.
- #/ OLS Estimation
- #/ The coefficients of "x1" means that, holding other variables constant, one unit increase of x1 will lead to approximately 14% increase of ydum.
- #/ probit Estimation and logit Estimation
- #/ The coefficients of "x1" means nothing in either probit model or logit model.
- #/ It only tells that, holding other variables constant, a positive "x1" coefficient means that an increase in the "x1" predictor leads to an increase in the predicted "ydum" probability
- #/ Significance

#/ In each individual regression model, the coefficients of "Interpret", "x1", "x2" are statistically significant at 0.1% significance level. However, the coefficient of "x3" in each regression remains statistical insignificant.

(8) Exercise Eight

```
8.1
  marginal effects Estimation probit(reg probit)
# probit marginal.effects
# x1
        0.14380827
# x2
        -0.11106954
# x3
        -0.00137997
  marginal effects Estimation logit(reg logit)
# logit marginal.effects
# x1
        0.147623207
# x2
       -0.113743625
# x3
       -0.001379547
Using Packages as a double check:
  Marginal effect in the Probit Model
Marginal Effects:
          dF/dx Std. Err.
                                        z P>|z|
x1 0.1438083 0.0043633 32.9588 <2e-16 *** x2 -0.1110695 0.0004427 -250.8900 <2e-16 ***
                                 -0.2413 0.8093
x3 -0.0013805 0.0057218
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  Marginal effect in the Logit Model
Marginal Effects:
dF/dx Std. Err. z P>|z|
x1 0.1440309 0.0072635 19.8293 <2e-16 ***
x2 -0.1109758 0.0044587 -24.8900 <2e-16 ***
x3 -0.0013465 0.0057815 -0.2329 0.8158
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
8.2
```

For simplicity, I use "mfx" package and "margins" package simultaneously.

Standard error of the marginal effects in the Probit Model

summary(margins(reg_probit))

```
factor AME SE z p lower upper x1 0.1438 0.0044 32.6602 0.0000 0.1352 0.1524 x2 -0.1111 0.0004 -247.7190 0.0000 -0.1119 -0.1102 x3 -0.0014 0.0057 -0.2419 0.8089 -0.0126 0.0098
```

Standard error of the marginal effects in the Logit Model

summary(margins(reg logit))

```
factor
             AME
                      SE
                                 Z
                                                  lower
                                                           upper
                                          p
                   0.0044
                             32.6564
                                        0.0000
                                                 0.1354
    x1
           0.1440
                                                          0.1527
#
   x2
                   0.0004 -246.8795
          -0.1110
                                        0.0000
                                                -0.1119 -0.1101
    х3
          -0.0013
                   0.0057
                             -0.2359
                                        0.8135
                                                -0.0125
```