Fuerzas centrales

1.1 Fuerzas centrales

Una fuerza central es aquella que depende únicamente de la distancia entre dos puntos. Es decir que si se tienen dos puntos $\boldsymbol{x},\boldsymbol{y}$, separados una distancia $r=|\boldsymbol{r}|=|\boldsymbol{x}-\boldsymbol{y}|$, una fuerza central \boldsymbol{F} verifica

$$F(x, y) = F(r) \hat{r},$$
 $\hat{r} = \frac{r}{r}$

de manera que la información sobre la dirección de la misma (\hat{r}) está establecida en la recta que une \boldsymbol{x} con \boldsymbol{y} mientras que su módulo es una función escalar F(r).

punto, y es una función vectorial tomar vector y da vector, que resulta finalmente más simple porque se sabe de antemano la dirección de la salida –en la dirección de la recta que une los puntos–.

Comentario de que fijo un

Figura 1.1

Esto implica, al ser una fuerza dependiente de una sola coordenada, que siempre es posible obtener un potencial a partir de ella, es decir que existe V(r)

tal que

$$F(r) = -\frac{\partial V}{\partial r}.$$

Entonces, para una partícula libre el lagrangiano se puede escribir en coordenadas esféricas (r,θ,ϕ) como

$$\mathcal{L} = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin(\theta)^2 \dot{\phi}^2 \right)$$

El momento angular \boldsymbol{L} se conserva puesto que $\boldsymbol{\tau}=\boldsymbol{x}\times\boldsymbol{F}=0$. Como es $\boldsymbol{L}=\boldsymbol{x}\times\boldsymbol{p}=\boldsymbol{x}\times\boldsymbol{m}$ $\dot{\boldsymbol{x}}=cte$ entonces se sigue que $\boldsymbol{r},\boldsymbol{p}$ se hallan contenidos en el mismo plano.

Puedo pedir, sin pérdida de generalidad, que $\theta=\pi/2$ (se sitúa la partícula en el plano xy) y entonces se tienen dos grados de libertad,

$$\mathcal{L} = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - V(r). \label{eq:lagrangian}$$

Como ϕ es cíclica se tiene

$$\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = L = mr^2 \dot{\phi} \tag{1.1}$$

que no es otra cosa que la conservación del momento angular (la primera ecuación de movimiento). Esa información puede ser llevada al lagrangiano,

$$\mathcal{L} = \frac{1}{2}m\dot{r}^2 + \left[\frac{L^2}{2mr^2} - V(r)\right]$$
 (1.2)

donde el último corchete será lo que llamaremos un potencial efectivo 1 $V_{\rm eff},$ y el lagrangiano adopta la forma

$$\mathcal{L} = \frac{1}{2} m \dot{r}^2 + V_{\text{eff}}(r). \label{eq:loss_eff}$$

Digamos que el potencial efectivo sería todos aquellos términos que no tienen la forma de la energía cinética (cuadrática en velocidades). Notemos que ahora el lagrangiano depende solamente de r; el problema ha resulado para un único grado de libertad.

Dado el sistema elegido (movimiento plano en xy) ahora el p_ϕ es el L total; en cambio, de haber elegido otro plano el p_ϕ sería el L_z .

Hay que elaborar bastante aquí: la fuerza central implica la simetría esférica porque tomado como origen de coordenadas uno de los dos puntos x o y, la fuerza por otro punto que se halle a la misma distancia r tendrá la misma magnitud. Además, el torque de la fuerza respecto a ese origen será nulo puesto que son paralelos $r \vee F$. Anoté en la carpeta: el lagrangiano es un potencial de superficies equipotenciales esféricas, entonces se conserva el momento angular.

 $^{^1}$ Debido a la conservación del momento angular la parte de la energía dependiente de ϕ , o mejor dicho debida a la rotación en ϕ se ha podido expresar en términos de r; entonces pasa a formar parte del potencial.

La ecuación de Euler-Lagrange para el lagrangiano (1.2) resulta en

$$m\ddot{r} - \frac{L^2}{mr^3} + \frac{\partial V}{\partial r} = 0.$$

Integrando esta ecuación se llega a la conservación de la energía pero podemos utilizar el hecho de saber que la misma se conserva y escribir su expresión explícita

$$E = T - V = \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} + V(r). \tag{1.3}$$

A partir de estas constantes L, E tengo dos ecuaciones de primer orden (1.1) y (1.3). Se han podido *ahorrar* dos integraciones: la integral de \ddot{r} para obtener \dot{r} y la integral de $\ddot{\phi}$ para hallar $\dot{\phi}$.

Desde la ecuación (1.3) se puede integrar directamente la trayectoria r=r(t) según

$$\frac{dr}{dt} = \sqrt{\frac{2}{m} \left(E - \frac{L^2}{2mr^2} - V(r) \right)},$$

o bien

$$\int_{t_i}^{t_f} dt = \int_{r(t_i)}^{r(t_f)} \frac{dr}{\sqrt{\frac{2}{m}(E - \frac{L^2}{2mr^2} - V(r))}},$$

integral que en principio siempre tiene solución. A partir de la ecuación (1.1) se puede obtener la trayectoria en el espacio físico $r=r(\phi)$, o equivalentemente $\phi=\phi(r)$.

$$\frac{d\phi}{dt} = \frac{d\phi}{dr}\dot{r} = \frac{L}{mr^2}$$

e incorporando de la (1.3) la expresión de \dot{r} se puede llegar a

$$\int_{\phi_i}^{\phi_f} d\phi = \int_{r(\phi_i)}^{r(\phi_f)} \frac{L}{\sqrt{2mr^4\left(E - \frac{L^2}{2mr^2} - V(r)\right)}} dr$$

y la resolución total del problema dependerá de la forma V(r).

En el gráfico bajo estas líneas ilustramos muchas de las características de la física del problema de fuerzas centrales.

Embellecer un poco las expresiones por el aspecto odd de las raíces y todo eso.

1.2 Solución a partir de las ecuaciones de Euler-Lagrange

$$m\ddot{r} - \frac{L^2}{mr^3} - \frac{\partial V}{\partial r} = 0$$

Figura 1.2

$$\begin{split} d\phi &= \frac{L}{mr^2} dt &\longrightarrow \frac{\partial \phi}{\partial r} \frac{\partial r}{\partial t} = \frac{L}{mr^2} \\ &\frac{d}{t}(\dot{r}) = \frac{L}{mr^2} \frac{d}{\phi}(\dot{r}) \\ &m \frac{d^2 r}{dt^2} - \frac{L^2}{mr^3} = -\frac{\partial V}{\partial r} \\ &\frac{L}{r^2} \frac{d}{\phi} \left(\frac{dr}{dt}\right) - \frac{L^2}{mr^3} = -\frac{dV}{dr} \\ &\frac{L}{r^2} \frac{d}{\phi} \left(\frac{L}{mr^2} \frac{dr}{d\phi}\right) - \frac{L^2}{mr^3} = -\frac{dV}{dr} \end{split}$$

y acá probamos el conveniente cambio de variables

$$\begin{split} U &= \frac{1}{r} \qquad dU = -\frac{1}{r^2} dr \qquad \frac{dU}{d\phi} = -\frac{1}{r^2} \frac{dr}{d\phi} = -U^2 \frac{dr}{d\phi} \\ &\qquad U^2 L \frac{d}{d\phi} \left\{ -\frac{L}{m} \frac{dU}{d\phi} \right\} - \frac{L^2}{mr^3} U^3 = F(1/U) \\ &\qquad -\frac{U^2 L^2}{m} \frac{d^2 U}{d\phi^2} - \frac{L^2}{mr^3} U^3 = F(1/U) \\ &\qquad -\frac{U^2 L^2}{m} \left[\frac{d^2 U}{d\phi^2} + U \right] = F(1/U) \\ &\qquad \left[\frac{d^2 U}{d\phi^2} + U \right] = -\frac{F(1/U)m}{U^2 L^2}. \end{split}$$

o bien

En el caso del potencial de Kepler será

$$\left[\frac{d^2U}{d\phi^2}+U\right]=-\frac{Km}{L^2},$$

es decir que el miembro derecho es una constante. Sale fácil entonces.

1.3 Velocidad areolar

$$\dot{\phi} = \frac{L}{mr^2}$$

De la figura puede verse que

Figura 3.3

$$A = \frac{1}{2}r^2d\phi$$

y entonces

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\phi}{dt} = \frac{1}{2}r^2\dot{\phi} = \frac{1}{2}\frac{L}{m} = cte.$$

1.4 Las fuerzas centrales y las leyes de Kepler

Tenemos

$$\int d\phi = \int \frac{(L/Mr^2)}{\sqrt{\frac{2}{m}(E-V_{\text{eff}})}} dr \qquad \frac{d^2U}{d\phi^2} + U = -\frac{F(1/U)m}{U^2L^2} \quad U = 1/r$$

que es simétrica respecto a ϕ y $-\phi.$ Esto determina una simetría orbital si tomamos

$$U(\phi = 0) = U_0 \qquad \frac{dU}{d\phi} \Big|_{\phi = 0} = 0$$

lo cual significa que U_0 es un extremo (punto apsidal).

Calculemos ahora el ángulo que recorre una oscilación completa,

$$\Delta\phi = 2\int_{r_m}^{r_M} \frac{(L/Mr^2)}{\sqrt{\frac{2}{m}(E-V_{\text{eff}})}} dr$$

Si $\Delta \phi = 2q$ siendo $q = (m/n)\pi$ son $m, n \in \mathbb{Z}$ entonces

$$\Delta \phi = 2 \frac{m}{n} \pi$$

$$\frac{m}{n} = \frac{2\pi}{\Delta \phi}$$

y esto significaría que la órbita se cierra.

La ecuación a resolver es

$$\frac{d^2U}{d\phi^2} + \left(U - \frac{km}{L^2}\right) = 0.$$

Si consideramos una nueva variable

$$\beta = U - \frac{km}{L^2}$$

la anterior pasa a

$$\frac{d^2\beta}{d\phi^2} + \beta = 0$$

y es fácil ver que la solución es

$$\beta = A\cos(\phi - \phi_0),$$

o bien

$$U(\phi) = \frac{km}{L^2} + A\cos(\phi - \phi_0),$$
 (4.1)

donde A,ϕ_0 son constantes. Ahora bien, la expresión (4.1) es la solución general, necesitamos proveer las condiciones iniciales para fijar A,ϕ_0 . Propongamos $\phi_0=0$ punto apsidal. Luego podemos utilizar r_m,r_M lo cual determina U_m,U_M respectivamente, cuyos valores son

$$U_m^M = \frac{km}{L^2} \left(1 \pm \sqrt{1 + \frac{2EL^2}{k^2 m}} \right)$$

y esto nos permite fijar A. Incorporando esto en (4.1) y recordando que $U(\phi)=1/r$ se tiene

$$\frac{1}{r} = \frac{km}{L^2} \left(1 + \sqrt{1 + \frac{2EL^2}{k^2 m}} \cos(\phi) \right),$$

Eligiendo el punto $\phi_0=0$ obtenemos una elipse como la de arriba.

que no es otra cosa que la ecuación de una elipse en coordenadas polares con origen en un foco. Veámoslo.

Las elipses verifican

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \sigma^2 = a^2 - b^2$$

donde σ es la semi-distancia focal. Definiendo $\sigma/a \equiv \varepsilon$ (la excentricidad) se puede expresar

$$b = a\sqrt{1 - \varepsilon^2}$$

Figura 4.4

Por otro lado, usando el teorema del coseno para el triángulo definido en la Figura 4.4 es

$$s^2 = (2\sigma)^2 + r^2 - 4\sigma r \cos(\pi - \phi)$$

y como s+r es la distancia que se mantiene constante e igual, entre otras, a 2a se sigue que

$$(2a - r)^2 = 4\sigma^2 + r^2 + 4\sigma r \cos(\phi)$$

cuya simplificación conduce a

$$\frac{1}{r} = \frac{1 + \varepsilon \cos(\phi)}{a(1 - \varepsilon)} = \frac{a}{b^2} \left(1 + \varepsilon \cos(\phi) \right)$$

la cual es la ecuación de una elipse.

Entonces en resumen, las leyes de Kepler son

1. Los planetas giran en órbitas elípticas con el Sol en uno de sus focos. Esto es común de los potenciales del tipo

$$V \propto 1/r$$

Falta el sistema de coordenadas en el foco f'. Revisar quién es EL.

Acá hay que hacer un laburo muy importante.

2. El radio vector recorre áreas iguales en tiempos iguales

$$\delta A = \frac{1}{2}r^2\delta\phi \longrightarrow \frac{dA}{dt} = \frac{r^2}{2}\dot{\phi} = \frac{L}{2m}(cte.)$$

Esto es una característica de todo potencial central.

 El cubo del semieje mayor de la órbita de un planeta es proporcional al cuadrado del período empleado en recorrerla. La ecuación anterior, que da la velocidad areolar, se puede integrar como

$$\int dA = \frac{L}{2m} \int dt$$

que conduce a

$$\pi ab = \frac{L}{2m}\tau \longrightarrow a = \frac{L\tau}{2\pi bm},$$

y luego, como $km/L^2 = a/b^2$ llegamos a

$$a^3 = \frac{k}{m} \frac{1}{4\pi^2} \, \tau^2 = \frac{GM}{4\pi^2} \tau^2$$

y esto es independiente de la masa del planeta.

Como a depende de L se tiene que dependiendo de la energía E tendré órbitas como las ilustradas debajo todas las cuales tienen la misma energía

$$a=\frac{1}{2}(r_M+r_m)=-\frac{k}{2E}$$

Para una elipse con el sistema coordenado en el centro se tiene

$$\frac{1}{r^2} = \frac{1}{b^2}(1-\varepsilon^2\cos^2(\phi))$$

Trabajamos más con la elipse,

$$\begin{split} r_M + r_m &= 2a \\ E &= \frac{L^2}{2mr^2} - \frac{k}{r} \qquad E - \frac{L^2}{2m}U^2 - kU = 0 \\ \frac{1}{r_{m,M}} &= \frac{\frac{2mkE}{L^2} \mp \sqrt{\left(\frac{2mkE}{L^2}\right)^2 + \frac{8mE}{L^2}}}{2} \end{split}$$

Esto estaba en la carpeta pero no lo entiendo bien del todo. Tal vez ilustración de la elipse con el sistema coordenado en el origen.

$$\frac{1}{r_{m,M}} = \frac{mEk}{L^2} \left(1 \pm \sqrt{1 - \frac{2L^2}{mEk^2}}\right)$$

y acá constatamos que representa una elipse; es decir que las órbitas son elípticas.

EJEMPLO 4.1 Problema 1 de central forces

Conviene pasarlo a un problema equivalente para una partícula *masa reducida* en términos del centro de masa.

$$\begin{split} E &= \frac{M}{2}V_{cm}^2 + \frac{\mu}{2}(\dot{r}^2 + r^2\dot{\theta}^2) + V(r) \\ \tau &= \frac{2\pi R}{R\dot{\theta}} \end{split}$$

$$E=\frac{1}{2}\mu(\dot{r}^2+r^2\dot{\theta}^2)+\frac{K}{r}$$

Al detenerlas,

$$E=-\frac{K}{r}$$

y al rearrancar

$$E = \frac{1}{2}\mu\dot{r}^2 - \frac{K}{r}$$

Para la integración le pongo el signo negativo puesto que corresponde a la situación física correcta

$$\frac{dr}{d\tau} = -\sqrt{\frac{2}{\mu}\left(E + \frac{K}{r}\right)}$$

Integración a ambos miembros lleva a

$$\int_{0}^{\tau} dt = -\int_{R}^{0} \frac{dr}{\sqrt{\frac{2}{\mu} \left(E + \frac{K}{r}\right)}}$$

o bien a

$$\tau' = \sqrt{\frac{\mu}{2}} \sqrt{\frac{R}{K}} \int_{R}^{0} \sqrt{\frac{r}{R-r}} dr$$

Con el cambio de variables $U=\sqrt{R-r}$ que lleva al diferencial

$$dU = \frac{-dr}{2\sqrt{R-r}}$$

la integral resulta en

$$2\left(\frac{\mu R}{2K}\right)\int_0^{\sqrt{R}}\sqrt{R-U^2}dU = 2\left(\frac{\mu R}{2K}\right)\left(\frac{U\sqrt{R-U^2}}{2} + \frac{R}{2}\,\sin\left(\frac{U}{\sqrt{R}}\right)\right)$$

que se ha buscado en tablas. Luego,

$$\tau' = \sqrt{\frac{\mu R}{2K}} \frac{R\pi}{2}$$

y las ecuaciones de Newton,

$$\frac{K}{R^2} = \mu R \dot{\theta}^2$$

de la cual se puede despejar $\dot{\theta}$ para obtener

$$\tau = 2\pi R \sqrt{\frac{\mu R}{K}}$$

de manera que

$$\frac{\tau}{\tau'} = 4\sqrt{2}$$
.

EJEMPLO 4.2 Problema 4 de central forces

Consideramos un potencial de la forma

$$V(r) = \frac{K}{r^2}$$

que es un potencial repulsivo puesto que

$$F(r) = -\frac{\partial V}{\partial r} = \frac{2K}{r^3}$$

implica que aleja a la partícula. Como es central, conserva $L=mr^2\dot{\theta}$ se puede escribir la energía como

$$E = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{K}{r^2} = \frac{m\dot{r}^2}{2} + \left(\frac{\ell}{2mr^2} + \frac{K}{r^2}\right)$$

Luego,

$$\dot{r} = \sqrt{\frac{2E}{m} - \frac{2L}{2m^2r^2} - \frac{2K}{mr^2}}$$

y entonces

$$mr^2\sqrt{\frac{2E}{m} - \frac{2L}{2m^2r^2} - \frac{2K}{mr^2}}\frac{d\theta}{dr} = L$$

de manera que

$$\int_{0}^{\theta} d\theta = \frac{L}{\sqrt{2m}} \int_{r_{0}}^{r} \frac{dr}{r^{2} (E - L/(2mr^{2}) - K/r^{2})^{1/2}}$$

Con el cambio de variables U=1/r

$$\theta = -\frac{L}{\sqrt{2m}} \int_{1/r_0}^{1/r} \frac{dU}{[E - U^2(L/(2m) + K)]^{1/2}}$$

Integrada da

$$\theta = \frac{L}{m\sqrt{2Km + \frac{L^2}{m^2}}} \left(\text{acos} \left[\frac{\sqrt{2Km + L^2/(m^2)}}{r_0\sqrt{2E/m}} \right] - \text{acos} \left[\frac{\sqrt{2Km + L^2/(m^2)}}{r\sqrt{2E/m}} \right] \right).$$

Tomo r_0 punto de retorno

$$E = \left(\frac{L^2}{2mr_0^2} + \frac{K}{r_0^2}\right)$$

y entonces

$$\begin{aligned} r_0 &= \sqrt{\frac{L}{2mE} + \frac{K}{E}} \\ \theta &= \frac{L}{m\sqrt{2Km + \frac{L^2}{m^2}}} \arccos\left(\frac{r_0}{r}\right) \end{aligned}$$

y se puede despejar

$$r = \frac{r_0}{\cos(\theta m/L\sqrt{2Km+L^2/m^2})}$$

1.5 Vector de Runge-Lenz

Para el problema de Kepler también se conserva una cantidad llamada *vector* de Runge-Lenz definido como

$$\boldsymbol{R} = \boldsymbol{v} \times \boldsymbol{l} - \alpha \frac{\boldsymbol{x}}{x}.$$

Luego, si le tomamos la derivada temporal, resulta

$$\frac{d\mathbf{R}}{dt} = \left(\frac{d\mathbf{v}}{dt} \times \mathbf{l}\right) + \left(\mathbf{v} \times \frac{d\mathbf{l}}{dt}\right) - \alpha \frac{\mathbf{v}}{x} + \frac{\alpha}{x^2} \frac{dx}{dt} \mathbf{x}$$

donde el último se puede poner en términos de la velocidad si utilizamos la regla de la cadena así

$$\frac{d|\boldsymbol{x}|}{dt} = \frac{d|\boldsymbol{x}|}{dx_i} \frac{dx_i}{dt} = \nabla(|\boldsymbol{x}|) \cdot \boldsymbol{v} \qquad i = 1, 2, 3$$

Luego, cada componente i-ésimo del gradiente de la norma del vector de posición tiene (en coordenadas cartesianas) la misma forma; tomando como ejemplo el i=1

$$\frac{d|\mathbf{x}|}{dx_1} = \frac{d\sqrt{x_1^2 + x_2^2 + x_3^2}}{dx_1} = \frac{x_1}{|\mathbf{x}|},$$

de manera que

$$\nabla(|\boldsymbol{x}|) = \frac{\boldsymbol{x}}{x} = \hat{x},$$

el gradiente de la norma del vector es su dirección. Entonces, volviendo a la ecuación original resulta

$$\frac{d\boldsymbol{R}}{dt} = \left(\frac{d\boldsymbol{v}}{dt} \times \boldsymbol{l}\right) + \left(\boldsymbol{v} \times \frac{d\boldsymbol{l}}{dt}\right) - \alpha \frac{\boldsymbol{v}}{x} + \alpha \boldsymbol{x} \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}}{x^3}\right)$$

Dado que ${m l}={m x} imes m{m v}$ el segundo término en la anterior expresión desaparece y nos queda

$$\frac{d\boldsymbol{R}}{dt} = \left(\frac{d\boldsymbol{v}}{dt} \times [\boldsymbol{x} \times m\boldsymbol{v}]\right) - \alpha \frac{\boldsymbol{v}}{x} + \alpha \; \boldsymbol{x} \left(\frac{\boldsymbol{x} \cdot \boldsymbol{v}}{x^3}\right)$$

$$\frac{d\boldsymbol{V}}{dt}\times(\boldsymbol{x}\times m\boldsymbol{v})+\boldsymbol{V}\times\left(\frac{d\boldsymbol{r}}{dt}\times m\boldsymbol{v}+\boldsymbol{r}\times m\frac{d\boldsymbol{v}}{dt}\right)$$

pero como $\frac{d\boldsymbol{r}}{dt}\times m\boldsymbol{v}=0$ resulta lo que resulta.

Figura 5.5

El vector de Runge-Lenz siempre apunta en la misma dirección dada su Mejorar la figura! constancia (ver figura).

Aparentemente esto tiene que dar nulo pero no lo estaría viendo.

Este título es provisorio

Escribo T = E - V

$$r_{max}mv^2 = 2Er_{max} + 2\alpha$$

pero

$$\begin{split} r_{max} &= \frac{2El^2\alpha}{\alpha^2 m (1-\varepsilon)} = \frac{-1}{\alpha} \frac{b^2\alpha}{\alpha^2 (1-\varepsilon)} \\ r_{max} &= -(1+\varepsilon)\alpha \end{split}$$

$$b^2 = a^2(1 - \varepsilon^2)$$

EJEMPLO 5.1 Vector de Runge-Lenz en órbitas elípticas

Sabemos que el vector de Runge-Lenz tiene la forma

$$\boldsymbol{A} = \boldsymbol{V} \times \boldsymbol{L} - \alpha \frac{\boldsymbol{x}}{x}$$

y cumple

$$\frac{dA}{dt} = 0$$

Veamos qué expresión tiene el módulo $A \equiv |{m A}|$. Tomando el producto escalar

$$\boldsymbol{A}\cdot\boldsymbol{x} = Ar\cos\theta = (\boldsymbol{V}\times\boldsymbol{L})\cdot\boldsymbol{x} - \alpha\frac{\boldsymbol{x}\cdot\boldsymbol{x}}{x}$$

y reescribiendo (ciclicidad del producto vectorial)

$$(oldsymbol{V} imes oldsymbol{L}) \cdot oldsymbol{x} = oldsymbol{L} \cdot (oldsymbol{r} imes oldsymbol{v}) = oldsymbol{L} \cdot rac{oldsymbol{L}}{m} = rac{L^2}{m}$$

y entonces

$$\alpha r \left(1 + \frac{A}{\alpha} \cos \theta \right) = \frac{L^2}{m}$$

pero como $(1 + \varepsilon \cos \theta) = p/r$ es la excentricidad se tiene $A = \varepsilon \alpha$.

1.6 Orbitas de potenciales centrales

$$V(r)=-\frac{\alpha}{r}$$

$$V(r) = \frac{kr^2}{2}$$

Estos dos casos dan órbitas cerradas. Pero hay otros potenciales interesantes. El potencial de Yukawa

$$V(r) = -\frac{\mathrm{e}^{-\lambda r}}{r^{\alpha}}$$

Figura 6.6 Algunas curvas de potenciales anarmónicos r^{α} .

que es aproximadamente como un potencial coulombiano apantallado ($\alpha=1,\lambda=0$). Otro es el oscilador no armónico

$$V(r) = r^{\alpha}$$

Algunos casos se muestran bajo estas líneas Da órbita que no se cierra en un billar elíptico.

Figura 6.7

1.7 Reducción del problema de dos cuerpos a uno equivalente

Para dos partículas de masas m_1 y m_2 sometidas a una fuerza central

$${\pmb F}_{21} = F(r) \hat{r}_{21} \qquad \qquad F(r) = -\frac{dV(r)}{dr} \label{eq:force}$$

siendo $x \equiv |\boldsymbol{x}_2 - \boldsymbol{x}_1|$ la distancia relativa.

La energía del sistema será de la forma $E=T_1+T_2+V(r)$ pero se puede expresar según $E=T_{cm}+T_{rel}+V(r)$; es decir separando la energía cinética en

Figura 7.8

el aporte del centro de masa más un aporte que depende de la distancia relativa entre los cuerpos. De modo idéntido para el momento angular podemos pasar de $L_{total} = L_{cm} + L_{spin}$ donde el momento angular de spin es el referido al movimiento en torno al centro de masas.

Consideramos el siguiente sistema de coordenadas,

$$r \equiv |\boldsymbol{r}_2 - \boldsymbol{r}_1|$$
 $\dot{r} \equiv |\dot{\boldsymbol{r}}_2 - \dot{\boldsymbol{r}}_1|$

donde el sistema centro de masas es

$$egin{aligned} m{R}_{cm} &= rac{m_1 m{r}_1 + m_2 m{r}_2}{m_1 + m_2} & M m{V}_{cm} &= m_1 m{v}_1 + m_2 m{v}_2 \ & 0 &= m_1 m{r}_1' + m_2 m{r}_2' \end{aligned}$$

que provocan

$$m{r}_1' = -rac{m_2}{m_1}m{r}_2' \qquad m{r}_2' = -rac{m_1}{m_2}m{r}_1'$$

dando unas r relativas

$$\mathbf{r} = \mathbf{r}_1' - \mathbf{r}_2' = -\frac{m_1 + m_2}{m_1} \mathbf{r}_2' = -\frac{m_1 + m_2}{m_2} \mathbf{r}_1'.$$
 (7.1)

Luego, como la energía se conserva (el $V_{cm}=cte$.) podemos escribir

$$\begin{split} E &= \frac{1}{2} m_1 \dot{\boldsymbol{r}}_1^2 + \frac{1}{2} m_2 \dot{\boldsymbol{r}}_2^2 + V(r) \\ E &= \frac{1}{2} m_1 (\dot{\boldsymbol{R}} + \dot{\boldsymbol{r}}_1')^2 + \frac{1}{2} m_2 (\dot{\boldsymbol{R}} + \dot{\boldsymbol{r}}_2')^2 + V(r) \\ E &= \frac{1}{2} m_1 (\boldsymbol{V})^2 + \frac{1}{2} m_1 (\dot{\boldsymbol{r}}_1')^2 + \frac{1}{2} m_2 (\boldsymbol{V})^2 + \frac{1}{2} m_2 (\dot{\boldsymbol{r}}_2')^2 + V(r) \\ E &= \frac{1}{2} M \boldsymbol{V}^2 + \frac{1}{2} \frac{m_2^2}{m_1} \dot{\boldsymbol{r}}_2'^2 + \frac{1}{2} m_2 \dot{\boldsymbol{r}}_2'^2 + V(r) \end{split}$$

Revisar y consolidar toda la notación aquí, que está mezclada.

Figura 7.9 Sistema coordenado para la reducción del problema de dos cuperpos al de uno equivalente.

$$E = \frac{1}{2} M {\pmb V}^2 + \frac{1}{2} \frac{m_2 m_1}{M} \dot {\pmb r}^2 + V(r). \label{eq:energy}$$

Pero como E y la \boldsymbol{V} se conservan, se tiene

$$e \equiv E - \frac{1}{2}M\boldsymbol{V}^2 = \frac{1}{2}\mu\dot{\boldsymbol{x}}^2 + V(r)$$

donde e es una cantidad conservada que podemos llamar la energía reducida[?].

Este último \boldsymbol{x} es un vector distancia relativa. Es un problema equivalente para la partícula centro de masas.

Figura 7.10

Podemos considerar ahora los momentos angulares de las partículas respecto de este sistema centro de masas. Así

$$\boldsymbol{l}_1' = \boldsymbol{x}_1' \times \boldsymbol{p}_1 \qquad \qquad \boldsymbol{l}_2' = \boldsymbol{x}_2' \times \boldsymbol{p}_2'$$

y sus módulos verifican

$$|\mathbf{l}_1'| = x_1^{2'} m_1 \dot{\theta}$$
 $|\mathbf{l}_2'| = x_2^{2'} m_2 \dot{\theta}$

de manera que

$$\ell = (x_1^{2'}m_1 + x_2^{2'}m_2)\dot{\theta} = \mu r^2\dot{\theta}$$
 (7.2)

es el momento angular de spín para este sistema. Nótese que a partir de (7.1) se puede expresar las x_i' (i=1,2) en términos de r.

Luego, en coordenadas polares en el centro de masa resulta

$$e = \frac{1}{2}\mu(\dot{r}^2 + r^2\dot{\phi}^2) + V(r),$$

o bien, usando (7.2),

$$e = \frac{1}{2}\mu\dot{r}^2 + \frac{\ell^2}{2ur^2} + V(r)$$

que no es otra cosa que el problema de fuerza central para un cuerpo de masa μ .

Diremos que la *distancia relativa* describe una elipse. Las trayectoria reales en el espacio físico son dos elipses confocales. Por supuesto dejan de cumplirse las leyes de Kepler en este caso.

Si como solución proponemos

$$V(r) = -\frac{\alpha}{r}$$

tendré $r=r(\phi)$ una elipse, que es lo que describe el r relativo. Se descompondrá el movimiento según las ecuaciones de transformación

$$m{r}_1' = -rac{m_2}{m_1+m_2}m{r}$$
 Elipse de dirección contraria a $m{r}$
$$m{r}_2' = rac{m_1}{m_1+m_2}m{r}$$
 Elipse de dirección igual a $m{r}$

Tendremos dos elipses confocales como muestra la figura bajo estas líneas En este caso ya dejan de cumplirse las leyes de Kepler

$$\frac{d\mathcal{A}}{dt} = \frac{\ell}{2\mu} \qquad a^3 \sim \tau^2$$

para la órbita relativa.

$$\frac{\pi ab}{\tau} = \frac{\ell}{2\mu}$$

Figura 7.11

$$b = \frac{\ell}{\sqrt{\alpha \mu}} a^{1/2} \qquad \frac{a}{b} = \frac{\mu \alpha}{\ell^2}$$
$$\frac{\pi a^{3/2}}{\sqrt{\alpha \mu} \tau} = \frac{1}{2\mu}$$

y entonces ahora se ve que no es independiente de las masas y no se puede simplificar $\sqrt{\mu\alpha}$ con μ como ocurría en un movimiento elíptico tradicional (bajo potencial gravitatorio). Entonces no es válida la ley de Kepler.

1.8 Dispersión

Consideramos la dispersión de un haz de partículas de cierta energía cinética por un centro dispersor, ver ilustración.

$$d\sigma = \frac{dN}{n}$$

donde dN es el número de partículas dispersadas entre χ y $\chi+d\chi$ y n es el número de partículas emitidas por tiempo y por área. De esta forma $d\sigma$ tiene unidades de área.

Figura 8.12

Consideramos d centro dispersor con simetría esférica (cilíndrica basta). Usamos como suposiciones que todo lo que emerge entre $\rho+d\rho$ - ρ es dispersado entre $\chi+d\chi$ - χ , y que se conservan tanto E como ${\bf L}$.

Figura 8.13

El anillo se dispersa en un sector esférico. Entonces podemos establecer las siguientes conclusiones para el anillo entre $\rho + d\rho$ - ρ , a saber

$$A = \pi((\rho + d\rho)^2 - \rho^2) \longrightarrow A \approx 2\pi\rho \, d\rho,$$

entonces

$$d\sigma = \frac{2\pi\rho\,d\rho I}{I}$$

donde ρ es el parámetro de impacto y I el número de partículas por unidad de tiempo y área. Finalmente

$$d\sigma = 2\pi\rho(\chi) \left| \frac{d\rho}{d\chi} \right| d\chi$$

Como se conservan la energía y el momento angular

$$E = \frac{1}{2} m V_{\infty}^2 \qquad L = m \rho V_{\infty}^2$$

En general se desconoce V(r).

Figura 8.14

Se puede calcular el ángulo φ_0 de acuerdo a

$$\chi = \pi - 2\varphi_0,$$

donde

$$\begin{split} \varphi_0 &= \int_{r_m}^{\infty} \frac{L/mr^2}{\sqrt{\frac{2}{m}(E-V_{\text{eff}})}} dr \\ \chi &= \pi - 2\varphi_0(\rho) \end{split}$$

e invertimos desde la última ecuación.

Veamos el caso de una esfera maciza. En general los cuerpos duros equivalen a un potencial del tipo

$$V = \begin{cases} \infty & \text{cuerpo} \\ 0 & \text{fuera} \end{cases}$$

$$\chi = \pi - 2\varphi_0$$

$$\sin(\varphi_0) = \frac{\rho}{a} \qquad d\rho = -a\frac{1}{2}\cos\left(\frac{\pi - \chi}{2}\right)$$

$$d\sigma = 2\pi a^2 \sin\left(\frac{\pi - \chi}{2}\right) \frac{1}{2}\cos\left(\frac{\pi - \chi}{2}\right) d\chi$$

y entonces

$$d\sigma = 2\pi a^{2} \sin\left(\frac{\pi}{2}\right) \frac{1}{2} \cos\left(\frac{\pi}{2}\right) d\chi$$
$$d\sigma = \frac{\pi}{2} a^{2} \sin(\pi - \chi) d\chi = \frac{\pi}{2} a^{2} \sin(\chi) d\chi$$

Figura 8.15

y como hay que integrar χ de 0 a π

$$\int_0^\pi \frac{\pi}{2} a^2 \sin(\chi) d\chi = \pi a^2$$

En el caso de los cuerpos duros la sección eficaz es la sombra de los mismos.

Sobre el ángulo sólido

$$\Omega = extsf{Area}/r^2$$
 $d\Omega = 2\pi \sin(\chi) d\chi$ $\Omega = 4\pi$ para la esfera.

1.9 Dispersión por dos cuerpos

Consideramos el caso de un cuerpo que se fracciona en dos (creo?) Desde

Figura 9.16

el centro de masa

$$P_1 + P_2 = 0$$

 $m_1 v_1 + m_2 v_2 = 0$

definimos una velocidad relativa

$$oldsymbol{v} \equiv oldsymbol{v}_2 - oldsymbol{v}_1 = oldsymbol{v}_2 \left(rac{m_1 + m_2}{m_1}
ight).$$

Figura 9.17

Con respecto a la energía,

$$\begin{split} \frac{1}{2}M\boldsymbol{V}_{cm}^2 + e_{int} &= \frac{1}{2}m_1\boldsymbol{v}_1^2 + \frac{1}{2}m_2\boldsymbol{v}_2^2 + e_{int1} + e_{int2} + \frac{1}{2}M\boldsymbol{V}_{cm}^2 \\ &\qquad \qquad \frac{1}{2}m_1\boldsymbol{v}_1^2 + \frac{1}{2}m_2\boldsymbol{v}_2^2 = e_{int} - e_{int1} - e_{int2} = \Delta e \end{split}$$

y pasando todo en términos de la velocidad relativa

$$\frac{1}{2}\frac{m1m2}{m_1 + m_2}v = \Delta e$$

entonces

$$v = \sqrt{\frac{2\Delta e}{\mu}}.$$

El problema es evidentemente plano.

$$\begin{split} \boldsymbol{V}_{1}^{L} &= \boldsymbol{V}_{cm} + \boldsymbol{V}_{1}' &\longrightarrow (\boldsymbol{V}_{1}^{L} - \boldsymbol{V}_{cm}) = \boldsymbol{V}_{1}' \\ &V_{1}^{L^{2}} - V_{cm} - 2\boldsymbol{V}_{1}^{L^{2}}\boldsymbol{V}_{cm} = V_{1}^{2} \\ &V_{1x}^{L^{2}} + V_{1y}^{L^{2}} - V_{cm} - 2V_{1x}^{L^{2}}V_{cm} = V_{1}^{2} \\ &(V_{1x}^{L} - V_{cm})^{2} + V_{1y}^{L^{2}} = V_{1}^{2} \end{split}$$

que es una circunferencia.

$$\tan(\theta) = \frac{V_1 \sin(\chi)}{V_{cm} + V_1 \cos(\chi)}$$

Esto tiene dos raíces $\chi_{1,2}$ si $V_{cm} > V_1$.

Figura 9.18

Si $V_{cm} > V_1$ hay una sola V de las partículas.

Si $V_{cm} < V_1$ hay partículas emitidas hacia atrás vistas desde L.

Si pensamos en una distribución isótropa de partículas, desde el centro de masa

$$e = \frac{1}{2} m_1 V_1^2$$

$$V_L^2 = V_1^2 + V_{cm}^2 - 2 V_1 V_{cm} \cos(\pi - \chi)$$

a iguales V_1, V_{cm} se tienen variables V_L, χ , entonces

$$\begin{split} dV_L^2 &= -2V_1V_{cm}\sin(\chi)d\chi\\ \frac{dV_L^2}{2V_1V_{cm}} &= \sin(\chi)d\chi\\ d\sigma &= 2\pi\rho|\frac{d\rho}{d\chi}|d\chi\\ d\Omega &= 2\pi\sin(\chi)d\chi\\ \frac{d\Omega}{4\pi} &= \frac{1}{2}\sin(\chi)d\chi\\ \frac{d\Omega}{4\pi} &= \frac{d(V_L^2)}{4V_1V_{cm}} = \frac{1}{2}\frac{d(1/2m_1V_L^2)}{m_1V_1V_{cm}} \end{split}$$

Figura 9.19

1.10 Scattering

Tenemos dos suposiciones básicas:

- Interacción elástica.
- Conservación de energía y de momento.

Figura 10.20

Desde el centro de masa se tienen:

$$P = P_1 + P_2 = 0$$
 $r \equiv r_2 + r_1$ $V \equiv V_2 - V_1$

donde los últimos son las posiciones y velocidades relativas.

$$\begin{split} E &= \frac{1}{2} M \pmb{V}_{cm}^2 + \frac{1}{2} \mu \pmb{V}^2 + V(r) \\ m_1 \pmb{V}_1 + m_2 \pmb{V}_2 &= 0 \qquad m_1 \pmb{V}_1 = -\frac{m_2}{m_1} \pmb{V}_2. \end{split}$$

Figura 10.21

En términos de las velocidades relativas

$$m{V}_2 = rac{m_1}{m_1 + m_2} m{V} \qquad m{V}_1 = -rac{m_2}{m_1 + m_2} m{V}$$

Se puede escribir la energía cinética del siguiente modo

$$\begin{split} T &= \frac{1}{2} m_1 \boldsymbol{V}_{1-in}^2 + \frac{1}{2} m_2 \boldsymbol{V}_{2-in}^2 = \frac{1}{2} M \boldsymbol{V}_{cm}^2 + \frac{1}{2} m_1 \boldsymbol{V}_{1-cm}^2 + \frac{1}{2} m_2 \boldsymbol{V}_{2-cm}^2 \\ & T - \frac{1}{2} M \boldsymbol{V}_{cm}^2 \equiv t = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \boldsymbol{V}^2 = \frac{1}{2} \mu \boldsymbol{V}^2 \\ & \boldsymbol{V}_1^L = \boldsymbol{V}_{cm} - \frac{m_2}{M} \boldsymbol{V} \qquad \boldsymbol{V}_2^L = \boldsymbol{V}_{cm} - \frac{m_1}{M} \boldsymbol{V} \\ & \boldsymbol{p}_1^L = m_1 \boldsymbol{V}_{cm} - \mu \boldsymbol{V} = m_1 \frac{\boldsymbol{P}}{M} - \mu \boldsymbol{V} \\ & \boldsymbol{p}_2^L = m_2 \boldsymbol{V}_{cm} + \mu \boldsymbol{V} = m_2 \frac{\boldsymbol{P}}{M} + \mu \boldsymbol{V} \end{split}$$

Donde

Figura 10.22

$$\begin{split} \boldsymbol{V}_{cm} + \boldsymbol{V}_1 &= \boldsymbol{V}_1^L \\ \boldsymbol{p}_2^L &= \frac{m_2}{M} \boldsymbol{P} + \mu \boldsymbol{V} \hat{\boldsymbol{n}} \qquad \boldsymbol{p}_1^L &= \frac{m_1}{M} \boldsymbol{P} - \mu \boldsymbol{V} \hat{\boldsymbol{n}} \end{split}$$

$$\frac{m_2}{M}\mathbf{P} + \frac{m_1}{M}\mathbf{P} = \mathbf{P} = \mathbf{p}_2^L + \mathbf{p}_1^L$$
$$\tan(\theta_2) = \frac{P_1 \sin(\chi)}{(m_2/M)P + P_1 \cos(\chi)}$$

1.11 Dispersión por potenciales infinitos

La idea es que sabiendo ρ (parámetro de impacto) quiero saber qué ángulo χ se desvían las partículas incidentes.

Figura 11.23

$$\begin{split} \phi_0 + \alpha &= \frac{\pi}{2} \qquad 2\phi_0 + \alpha + \beta = \pi \qquad \phi_0 + \beta = \frac{\pi}{2} \\ \alpha &= \beta \qquad 2\alpha = 2\beta = \chi \\ \frac{d\rho}{dz} &= \tan{(\beta)} = \tan{\left(\frac{\chi}{2}\right)} \\ \tan{\left(\frac{\chi}{2}\right)} &= \frac{d\rho}{dz} = \frac{d\rho/dz}{dz/d\theta} \end{split}$$

con θ variable paramétrica. Donde $\rho=\rho(z)$ es la función que da la curva roja (el perfil del cuerpo dispersor).