1 集合の対等と濃度

1.1

- (1.6) $cardA = \mathfrak{m}$ である集合 A をとると, A 上の恒等写像は A からへの単射だから $\mathfrak{m} \leq \mathfrak{m}$.
- (1.8) $cardA=\mathfrak{m},$ $cardB=\mathfrak{n},$ $cardC=\mathfrak{p}$ である集合 A, B, C をとると、単射 $f:A\to B,$ $g:B\to C$ がとれる. $g\circ f$ は A から C への単射なので $\mathfrak{m}\leq\mathfrak{p}.$

1.2

 $X \subset Y \subset Z$ より単射 $f: X \to Y, g: Y \to Z$ が, $X \sim Z$ より全単射 $h: Z \sim X$ がとれる. このとき $h \circ g$, $f \circ h$ はそれぞれ $X \to Y, Y \to Z$ の単射なので Bernstein の定理より $X \sim Y, Y \sim Z$.

1.3

S を $\mathbb R$ の開区間 O を含むような $\mathbb R$ の部分集合とする. O から S への標準単射, S から $\mathbb R$ への標準単射を考えると $cardO \leq cardS$ かつ $cardS \leq card\mathbb R$ であり、しかも $cardO = \mathbb R$ なので Bernstein の定理より $cardS = \mathbb R$.

1.4

 $b \in B$ をとると単射 $f: A \to (A \times B)$ を各 $a \in A$ に対して f(a) = (a,b) と定義できるので $card(A \times B) \ge A$.

1.5

選択公理により各 $\lambda \in \Lambda$ に対して $f(\lambda) \in A_{\lambda}$ となるように写像 $f: \Lambda \to \bigcup_{\lambda \in \Lambda} A_{\lambda}$ をとれる. $\lambda_1, \lambda_2 \in \Lambda$ が $\lambda_1 \neq \lambda_2$ ならば $f(\lambda_1) \in A_{\lambda_1}$ かつ $f(\lambda_2) \in A_{\lambda_2}$ だが $A_{\lambda_1} \cap A_{\lambda_2} = \phi$ なので $f(\lambda_1) \neq f(\lambda_2)$ であるから f は単射. よって $card\left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right) \geq card\Lambda$.

1.6

選択公理により $a\in\prod_{\lambda\in\Lambda}A_\lambda$ がとれる. 集合族 $(B_\lambda)_{\lambda\in\Lambda}=(B_\lambda)_{\lambda\in\Lambda}-a_\lambda)$ を定義すると各 $\lambda\in\Lambda$ に対して $B_\lambda\neq\phi$ なので、選択公理により $a'\in\prod_{\lambda\in\Lambda}B_\lambda$ をとれる. このような b は各 $\lambda\in\Lambda$ に対して $b_{\lambda_0}\neq a_{\lambda_0}$ であり、また $b\in\prod_{\lambda\in\Lambda}A_\lambda$ とみなせる. このとき写像 $f:\Lambda\to\prod_{\lambda\in\Lambda}A_\lambda$ を各 $\lambda_0\in\Lambda$ に対して

$$f(\lambda_0)_{\lambda} = \begin{cases} a_{\lambda} & (\lambda \neq \lambda_0) \\ b_{\lambda} & (\lambda = \lambda_0) \end{cases}$$

となるように定めると, f は単射であるから $card(\prod_{\lambda \in \Lambda} A_{\lambda}) \geq cardA$.

A から B への全射を f とする. この f に付随する同値関係を R とすると, A/R から B への全単射が存在する (一章 (6.4) とその直後の考察より). よって A/R と B は対等.

1.8

 $B_0=-1,1$ なので正整数 n に対して $A_n=B_n=\{\pm 2^{-n}\}$. ゆえに $A_*=\{2^{-n}|n\in\mathbb{N}\},\ B_*=\{2^{-n}|n\in\mathbb{N}\}$ いし $\{0\}\}$. よって $F:A\to B$ は各 a に対して

$$F(a) = \begin{cases} a & (a \notin A_*) \\ 2a & (a \in A_*) \end{cases}$$

2 可算集合. 非可算集合

2.1

S を可算集合の無限部分集合とする. S は可算集合の部分集合より $cardS \leq \Im$. S は無限集合より $S \geq \mathfrak{a}$. よって Bernstein の定理より $cardS = \mathfrak{a}$.

2.2

 $S=\mathbb{Q}-\{0\}$ は可算集合だから S から A への全単射 f が存在する. S の部分集合族 $(B_n)_{n\in\mathbb{N}}$ を各 $n\in\mathbb{N}$ に対して $B_n=\{rac{q}{p}|p$ と q は互いに素な整数. $p\geq 1\}$ と定義する. この $(B_n)_{n\in\mathbb{N}}$ は S の部分集合族として $(\mathrm{i})(\mathrm{ii})(\mathrm{iii})$ を満たすことを示す. 各 $n\in\mathbb{N}$ に対して $\{rac{1}{n}+n_0\}_{n_0\in\mathbb{N}}\in B_n\in S$ なので B_n は可算集合. 0 でない 任意の有理数 x に対してただ一つの B_n が存在して $x\in B_n$ なので $S=\bigcup_{n=1}^\infty$ かつ $n\neq n'\Rightarrow A_n\cap A_{n'}=\phi$. よって $(A_n)_{n\in\mathbb{N}}$ を各 $n\in\mathbb{N}$ に対して $A_n=f(B_n)$ と定義するとこれに対しても A の部分集合族としてもち ろん $(\mathrm{i})(\mathrm{ii})(\mathrm{iii})$ が成り立つ.

2.3

有理数 a, b を端点とする開区間 (a, b) 全体の集合は明らかに集合 $A = \{(a,b) \in \mathbb{Q} \times \mathbb{Q} | a < b\}$ と対等. $\mathbb{N} \sim \{(0,n) \in \mathbb{Q} \times \mathbb{Q} | n \in \mathbb{N}\} \subset A \subset \mathbb{Q} \times \mathbb{Q} \sim \mathbb{Q}$ なので A は可算集合.

2.4

 $\mathfrak J$ の各元は有理数を含む.選択公理より写像 $f:\mathfrak J\to\mathbb Q$ が存在して各 $I\in\mathfrak J$ に対して $f(I)\in I$ が成り立つ. $\mathfrak J$ は互いに素なので f が単射だから $card\mathfrak J\leq card\mathbb Q$, すなわち $\mathfrak J$ はたかだか可算.

 $\Lambda = \mathbb{N} \cup \{0\}$ とすると Λ は可算集合. \mathfrak{A} の部分集合族 $(A_n)_{n \in \Lambda}$ を各 $n \in \Lambda$ に対して $A_n = \{S \in \mathfrak{A} | cardS = n\}$ として定義する. 各 $n \in \Lambda$ に対して A_n が空でない有限集合なので $\mathfrak{A} = \bigcup_{n=0}^{\infty} A_n$ は可算集合.

2.6

有理整数を係数とする多項式の全体を A とする.写像 $h:A\to\mathbb{N}$ を $f(x)=\sum_{k=0}^n a_k x^k\in A (a_n\neq 0, n\geq 1)$ に対して $h(f)=n+\sum_{k=0}^n |a_k|$ と定める.h(f) の各項は非負なので $m\in\mathbb{N}$ に対して, $h^{-1}(m)$ は有限集合 になる. $h^{-1}(m)$ の各元 f に対する方程式 f(x)=0 の根は高々 n 個なので $h^{-1}(m)$ の元のから得られる方程式の根の全体の和集合 B_m は有限集合.よって代数的数全体の集合は $\bigcup_{m\in\mathbb{N}} B_m$ なので可算集合.

2.7

S を無理数全体の集合とする。S が有限集合とすると $\mathbb{R}=S\cup\mathbb{Q}$ が可算集合となり矛盾するので cardS は無限集合。S の可算部分集合 P をとる。P は可算なので $P\cup\mathbb{Q}$ も可算であり全単射 $f':P\to P\cup\mathbb{Q}$ が存在する。よって写像 $f:S\to\mathbb{R}$ を各 $x\in S$ に対して

$$f(x) = \begin{cases} f'(x) & x \in P \\ x & x \notin P \end{cases}$$

と定義すると f は全単射であるから $cardS = \aleph$.

3 濃度の演算

3.1

濃度 $\mathfrak{m}, \mathfrak{n}, \mathfrak{p}, \mathfrak{m}', \mathfrak{n}'$ に対して $\mathfrak{m} \leq \mathfrak{m}', \mathfrak{n} \leq \mathfrak{n}'$ が成り立っているとする. $cardA = \mathfrak{m}, cardB = \mathfrak{n}, cardC = \mathfrak{p}, cardA' = \mathfrak{m}', cardB' = \mathfrak{n}'$ となる集合 A, B, C, A', B' をとっておく.

- $(3.1) \ \mathfrak{m} + \mathfrak{n} = card(A \cup B) = card(B \cup A) = \mathfrak{n} + \mathfrak{m}.$
- $(3.2) \ (\mathfrak{m} + \mathfrak{n}) + \mathfrak{p} = card(A \cup B \cup C) = \mathfrak{n} + (\mathfrak{m} + \mathfrak{p}).$
- (3.3) $\mathfrak{m} + 0 = card(A \cup \phi) = cardA = \mathfrak{m}$.
- (3.4) $A \cup B$ から $A' \cup B'$ への包含写像をとれるので $\mathfrak{m} + \mathfrak{n} = card(A \cup B) \leq card(A' \cup B') = \mathfrak{n}' + \mathfrak{m}'$.
- (3.5) $A \times B \ni (a,b) \to (b,a) \in B \times A$ は全単射なので $\mathfrak{mn} = card(A \times B) = card(B \times A) = \mathfrak{nm}$.
- (3.6) $(\mathfrak{mn})\mathfrak{p} = card(A \times B \times C) = \mathfrak{m}(\mathfrak{np})$
- (3.7) $\mathfrak{m} \cdot 0 = card(A \times \phi) = card\phi = 0$
- 一元集合 $\{a\}$ をとると $A \times \{a\} \ni (x,a) \to x \in A$ が全単射となるので $\mathfrak{m} \cdot 1 = card(A \times \{a\}) = cardA = \mathfrak{m}$.
- (3.8) $A \times B$ から $A' \times B'$ への包含写像をとれるので $\mathfrak{mn} \leq \mathfrak{m}'\mathfrak{n}'$.
- $(3.9) (A \cup B) \times C = (A \times C) \cup (B \times C) \ \sharp \ \emptyset \ (\mathfrak{m} + \mathfrak{n})\mathfrak{p} = \mathfrak{m}\mathfrak{p} + \mathfrak{n}\mathfrak{p}.$

3.2

全単射 $f:A \to A', g:B \to B'$ をとると全単射 $A \times B \ni (x,y) \to (f(x),g(y)) \in A' \times B'$ を構成できる.

集合 A,B,A',B' を $cardA=\mathfrak{m},cardB=\mathfrak{n},cardA'=\mathfrak{m}',cardB'=\mathfrak{n}',A\subset A',B\subset B'$ となるよう定義 する. $n'\geq 1$ より $a\in B$ がとれる. 写像 $F:B^A\to B'^{A'}$ を各 $f\in B^A$ に対して

$$F(f)(x) = \begin{cases} f(x) & (x \in A) \\ a & (x \notin A) \end{cases}$$

となるよう定めれば F は単射なので $\mathfrak{n}^{\mathfrak{m}} \leq \mathfrak{n}'^{\mathfrak{m}'}$.

3.4

$$2^{\mathfrak{c}} = 2^{\mathfrak{a}\mathfrak{c}} = (2^{\mathfrak{a}})^{\mathfrak{c}} = \mathfrak{c}^{\mathfrak{c}}$$
. 一方 $\mathfrak{a}^{\mathfrak{c}} = \mathfrak{a}^{\mathfrak{a}\mathfrak{c}} = (\mathfrak{a}^{\mathfrak{a}})^{\mathfrak{c}} = \mathfrak{c}^{\mathfrak{c}}$.

3.5

 $cardA=\mathfrak{m}, cardB=leph_0$ となるよう互いに素な集合 A,B をとる. B は $A\cup B$ の可算部分集合であり $A\cup B-B=A$ は無限集合なので定理 6 より $\mathfrak{m}+leph_0=card(A\cup B)=card(A)=\mathfrak{m}.$

3.6

- (a) $\aleph^{\mathfrak{n}} = \aleph_0^{\aleph_0 \mathfrak{n}} = \aleph_0^{\aleph_0} = \aleph$.
- (b) $f \leq f + \mathfrak{n}$ は明らか.

$$\mathfrak{n} + \mathfrak{f} \le \mathfrak{f} + \mathfrak{f} = 2\mathfrak{f} = 2^1 \cdot 2^{\aleph} = 2^{1+\aleph} = 2^{\aleph} = \mathfrak{f}.$$

(c) nf > f は明らか.

$$\mathfrak{nf} \le \mathfrak{ff} = \mathfrak{f}^2 = (2^{\aleph})^2 = 2^{2\aleph} = 2^{\aleph} = \mathfrak{f}.$$

- $(d) f^n \geq f$ は明らか.
- $f^{\mathfrak{n}} = 2^{\aleph \mathfrak{n}} = 2^{\aleph} = f.$
- (e) $2^{\mathfrak{f}} < \mathfrak{n}^{\mathfrak{f}}$ は明らか.

3.7

 $A=\mathbb{R}$ の場合を示せば、全単射による A_{λ} の像を考えることにより一般の A に対しても示される. $\Lambda=[0,1)$ とし、 $A_{\lambda}=\{n+\lambda|n\in\mathbb{Z}\}$ とすれば \mathbb{R} は条件 (i)(ii)(iii) を満たす.

3.8

各非負整数 n に対して $A_n = S \subset \mathbb{R} | cardS = n$ とする.このとき $cardA_0 = 1$, $cardA_n = \aleph(n \geq 1)$ であることを示す.まず $A_0 = \{\{\}\}$, $cardA_1 = card\{\{x\}|x \in \mathbb{R}\} = \aleph$ である. $cardA_n = \aleph$ ならば $\aleph \leq cardA_n \leq cardA_{n+1} \leq card(A_n \times \mathbb{R}) = \aleph$ であり $cardA_{n+1} = \aleph$ なので数学的帰納法により示される.よって \mathbb{R} の有限部分集合全体の集合の濃度は $card\bigcup_{n>0} A_n = 1 + \aleph \times \aleph = \aleph$.

A の有限部分集合全体の集合を $\mathfrak B$ とする. $\mathfrak B$ は前問と同様にして $card\mathfrak B$ であることが分かる. また, $\mathfrak A$ は 各 $n\in\mathbb N$ に対して (n) を含むので無限集合である. A の部分集合全体の集合は $\mathfrak A\cup\mathfrak B$ であるが, この濃度は \aleph であるから, 定理 6 により $card\mathfrak A=\aleph$ である.