数学实验 exp9 实验报告

计 65 赖金霖 2016011377

5

取 $\alpha = 0.05$ 。

(1)

选择 x1 和 x2, 计算得 s=4.6484823252393985, 且系数的置信区间均不包含零点;

选择 x1 和 x3,计算得 s=5. 622452826419641,且 x3 的系数置信区间包含零点;选择 x2 和 x3,计算的 s=5. 0408331181362,且 x3 的系数置信区间包含零点。综上可知,选择 x1 和 x2 作为变量,是三者中最好的模型。

(2)

选择 x1、x2、x3 作为自变量,进行线性回归,计算得 s=4.5897784444326195,比单纯 x1 和 x2 要小。然而,x3 的系数的置信区间为[-0.00057, 0.00210],它的引入看上去不合理,减小的 s 可能是因为过拟合导致的。

所以,最好的模型还是只选择 x1 和 x2 作为自变量。

(3)

在这一模型下, 残差如下(以 4s 为区间宽度):

可以看出,第8个和第20个数据是异常点,取出之后,残差如下:

最终模型为 $y=\beta_0+\beta_1x_1+\beta_2x_2$, 其中 β_0 , β_1 , β_2 如下:

系数	估计值	置信区间
βο	-35. 709	[-45. 212, -26. 207]
β 1	1. 602	[0.782, 2.423]
β 2	3. 393	[1. 228, 5. 557]

10

(1)

取 $\alpha = 0.05$ 。

仅以 x1 和 x2 作为自变量进行线性回归,得 s= 9.251641618339645。

由于有把握认为 y 与 x2 之间有线性关系,所以可以固定 x2 的次数,增加 x1 的次数,看 s 的变化情况:

x1 最高次	1	2	3	4
S	9. 252	1. 803	1. 628	1. 671
备注	系数均可信		大于2次项系数	数不可信

当最高次数从 1 变为 2 时,s 的值剧烈减少,所以可以认为 y 与 x1 有 2 次关系。 (2)

以 x1, $x1^2$, x2, x1*x2 为自变量进行线性回归,得 s=1.803, x1*x2 的系数不可信;以 x1, $x1^2$, x2, $x1^2*x2$ 为自变量进行线性回归,得 s=1.791, $x1^2*x2$ 的系数不可信。

故可以认为 x1 与 x2 之间没有交互效应。

最终模型为 y= β₀+ β₁x₁+ β₂x₁²+ β₃x₂, 其中 β₀, β₁, β₂, β₃如下:

系数	估计值	置信区间
βο	-62. 349	[-73. 373, -51. 324]
β 1	0. 840	[0.400, 1.279]
β 2	0. 037	[0.033, 0.041]
β 3	5. 685	[5. 265, 6. 104]

11

由于 python 没有对应工具, 所以只能手动调参。

取 $\alpha = 0.05$ 。

(1) 测试各变量次数。

分别以 x1; x1 和 x1²; x1 和 x1²和 x1³位自变量,进行线性回归。

x1 最高次	1	2	3
S	7. 947	7. 027	7. 198
备注	系数均可信		系数不可信

分别以 x2; x2 和 $x2^2$; x2 和 $x2^2$ 和 $x2^3$ 位自变量,进行线性回归。

x1 最高次	1	2	3
S	14. 599	_	_
备注	系数不可信	S。 ^T S。矩阵奇异	

分别以 x3; x3 和 $x3^2$; x3 和 $x3^2$ 和 $x3^3$ 位自变量,进行线性回归。

x1 最高次	1	2	3
S	14. 892	15. 209	15. 585
备注	系数不可信		

故暂时以 x1 和 x1²为基础变量(s 值已加粗)。

(2) 测试相关性(策略为在当前变量和一次变量上乘其他变量)

加入 x1*x2, 得 s=6.298, 系数均可信, 保留。

加入 x1*x3, 得 s=5.953, 系数不可信, 舍弃。

加入 x2*x3, 得 s=6.400, 系数不可信, 舍弃。

加入 x1*x1*x2, 得 s=6.416, 系数不可信, 舍弃。

加入 x1*x1*x3, 得 s=5.532, 系数可信, 保留。

(3) 迭代尝试舍弃的变量(由于是手动做的,不一定符合 stepwise 策略)

加入 x2, 得 s=5.683, 系数不可信, 舍弃。

加入 x3, 得 s=4.313, 系数可信, 保留。

加入 x3*x3, 得 s=4.294, 系数不可信, 舍弃。

加入 x1*x3, 得 s=4.263, 系数不可信, 舍弃。

加入 x2*x3, 得 s=4.348, 系数不可信, 舍弃。

加入 x1*x1*x2, 得 s=4.364, 系数不可信, 舍弃。

加入 x2, 得 s=4.437, 系数不可信, 舍弃。

结束(最终 s=4.313)。

最终模型为 $y=\beta_0+\beta_1x_1+\beta_2x_1^2+\beta_3x_3+\beta_4x_1*x_2+\beta_5x_1^2x_3$, 其中 β_0 , β_1 , β_2 , β_3 , β_4 , β_5 如下:

系数	估计值	置信区间
βο	52. 680	[42. 041, 63. 320]
β 1	-10. 748	[-13. 748, -7. 748]
β 2	0.810	[0. 536, 1. 083]
β 3	25. 064	[10. 791, 39. 338]
β 4	0. 955	[0.408, 1.502]
β_5	-0. 597	[42. 041, 63. 320]

阅读报告

本文的主要内容是应用多种统计模型对1994~1998中国股票数据进行拟合和预测。方法主要参考了Ou and Penman 和 Abarbanell and Bushee 两篇工作,简记为OP和AB。

论文首先采用 OP 方法, 使用 37 个财务变量对 EPS 是否增加进行 logistic

$$y = log \frac{P}{1-P} = \theta^T \mathbf{X}$$

回归。模型如下:

而由于每年的资本环境不同,所以 θ 会随年份改变。这五年一共得到4个模型,在 α =0.05时,这些模型都是有效的(p值可信)。

采用 OP 方法仅能定性分析,论文进而通过 AB 方法尝试定量分析。AB 方法通

$$y = \triangle EPS = b_0 + \sum_{i=1}^{11} b_i S_i$$

过 11 个"基本信号"对 EPS 的增量进行分析:

实验显示,这个模型在七年间的三组数据上均有效,准确率在85%、90%、95%的置信区间内都达到85%以上。这11个"基本信号"里,除3和5外,都至少被选择一次,验证了这些变量的预测能力。

论文将针对美国股市的分析方法引入国内,验证了国内公司财务报表对股市表现的预测性。值得思考的是,部分公司是否会学来这套方法,调整报表使得有更好的预测值?此外,我认为文章创新点不够多,0P方法的37个变量和AB方法的11个变量都是从其他论文中挑出来的。如果能针对中国股市选择一些更适合的新变量,可能会得到更好的结果。

代码可在 https://github.com/1116924/math_exp/tree/master/exp9 下找到。 吐槽:本次作业对 python 选手过于不友好,已做好挂科准备。