Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	<i>Date</i> :

ACTIVITE de FORMATION

CISCO PACKET TRACER: SIMULATION DU FONCTIONNEMENT D'UN RESEAU INFORMATIQUE Cisco | Networking Academy* Cisco Packet Tracer

CO	NDITIONS	D'EXER	CICE - M	oyens et Re	ssources		1OXAT	OMIE	
@		A B C			IK.	1 🖂	2	3	4
Internet	Logiciel	Doc.	PC	Outillages	Matériels				
	\boxtimes								

ON DEMANDE		CRITERE D'EVALUA	ATION
L'objectif est de répondre au cahier d vidéosurveillance de l'Hôtel SIFOTEL	•	Vous serez évalué sur l réponses fournies, la rig manipulations et votre a de cette activité.	gueur de vos
DUREE :	<u>LIEU :</u>	Préparation Forma	ation Habilitation
	Atelier	Electr	ique
heures			
		B0V	B1V
NOTE:			
	/ 20		

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

CISCO PACKET TRACER SIMULATION DE RESEAUX INFORMATIQUE

1. Objectifs - Mise en situation

Packet Tracer est un logiciel développé par Cisco pour faire des plans d'infrastructure de réseau locaux en temps réel et voir toute les possibilités d'un réseau et sa future mise en œuvre.

L'objectif principal de ce TP est la maitrise du logiciel et la réalisation de divers réseaux pour découvrir le fonctionnement des différents éléments constituant un réseau informatique.

Pour réaliser ces tâches, vous disposez d'informations sur le serveur de la section http://bill ou http://192.168.222.22.

> Installez les logiciels : Packet Tracer et VLC

2. Premier pas : HelloWorld

hello world: (familier). Anglicisme qui signifie bonjour tout le monde et désignant un programme informatique trivial qui ne contient qu'une seule instruction : dire bonjour à l'utilisateur. Le code source de ce programme est souvent utilisé dans l'apprentissage de la programmation.

- Regardez la vidéo : « 1^{er} réseau »
- > Réalisez, à l'aide de la vidéo, votre premier réseau sous Packet Tracer :

Réalisez l'adressage IP suivant le plan d'adressage suivant :

Poste	Adresse IP	Masque de sous-réseau
PC0	192.168.0.2	255.255.255.0
PC1	192.168.0.5	255.255.255.0
PC2	192.168.0.9	255.255.255.0
PC3	192.168.1.2	255.255.255.0

Réalisez les tests nécessaires pour valider la communication ou non entre 2 postes.

Communica les po		Commande à passer :	Depuis le poste	Résultats de la commande
PC0	PC1			
PC0	PC2			
PC0	PC3			
PC1	PC2			
PC1	PC3			
PC2	РС3			

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

⇒ Pourquoi la communication avec le poste PC3 est-elle impossible ? La lecture du dossier technique sur les réseaux informatiques peut être nécessaire.

Proposez et tester l'utilisation d'autres 'adresses IP/Masque de sous réseau' pour permettre la communication entre le poste PC3 et les autres postes.

'Adresse/Masque' proposés :

> Nous allons travailler uniquement avec PC1 et PC2. Modifiez les adresses IP et masque de sous réseau des PC1 et PC2 en suivant les paramètres du tableau :

Expérimentation n°	PC1	PC2
1	10.12.130.21 / 255.0.0.0	10.33.33.33 / 255.0.0.0
2	111.111.222.222 / 255.255.0.0	111.111.111.111 / 255.255.0.0
3	180.12.200.1 / 255.255.240.0	180.12.100.2 / 255.255.240.0
4	1.2.3.4 / 255.0.0.0	1.33.3.4 / 255.0.0.0
5	172.30.0.25 / 255.255.255.128	172.30.0.1 / 255.255.255.128
6	126.1.1.1 / 255.192.0.0	126.111.111.111 / 255.192.0.0

- > Pour chaque expérimentation, complétez les tableaux suivant :
- Un document présentant la conversion binaire/décimal est présent en annexe mais vous pouvez aussi utiliser la calculatrice pour complétez le tableau

										PC	1															
Adresse IP																										_
																				Ļ						L.
Masque de sous réseau	H		l			1	1									1		1	Ī			l			Ι	
Adresse réseau =		1		l	l	1								l				T	1		1 	1 T	1	l		
'IP' AND 'Masque'																										
										PC	:2															
Adresse IP		1	1	1	1	1			ı		l	l	1	- 1			1	1	1		I	1	1	1	1	
Masque de sous réseau																		T								
Adresse réseau =		_		-	1	-															I		_	1		
'IP' AND 'Masque'																										

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	<i>Date</i> :

Expérimentation n°2																				_	_	_	
									PC:	1													
Adresse IP			1 1			1			ı							1	1			_	_	_	
																						<u> </u>	
Masque de sous réseau																,							
Wasque de sous resedu																						<u> </u>	
Adresse réseau =																							
'IP' AND 'Masque'																							
									PC	2													
Advance ID																							
Adresse IP																							
Masque de sous réseau																							
Adresse réseau =																							
'IP' AND 'Masque'																							
Y'a-t-il communication entre	e PC	:1 €	et P	C2	?				•		'	'											

						١	PC1															
Adresse IP												1					1			1		Т
Masque de sous réseau								1	1	 	1							 	 T	<u> </u>		 Т
Adresse réseau = 'IP' AND 'Masque'							T	1							Ī				T	I	T	<u> </u>
						١	PC2		•						·	•						
Adresse IP																						 T
Masque de sous réseau								T										1	<u> </u>	I		T
Adresse réseau = 'IP' AND 'Masque'	<u> </u>							1			1								T	<u> </u>		<u>—</u> Т

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

Expérimentation n°4																						_	_	_	
								PO	1																
Adresse IP						1	1	1		1			1									_		_	
																							Ш		L
Masque de sous réseau								_		,							,	,					, ,		
Widsque de 30d3 l'esedd																									
Adresse réseau =																									
'IP' AND 'Masque'																									
								P	2																
Advance																									
Adresse IP																									
Masque de sous réseau																									
Adresse réseau =								1																	
'IP' AND 'Masque'																									
Y'a-t-il communication entre	e PC	:1 €	t P	C2	?		•					•	•	•	•		•		<u> </u>	•	<u> </u>				

						PC1																		
Adresse IP																						T	$\overline{\top}$	Т
Masque de sous réseau						 		 	1				1		 	1	1				1	<u>т</u> Т	 	 Т
Adresse réseau = 'IP' AND 'Masque'					1		Ī	T	1	+	Ī	T		Ī	Ī		Ī		Ī		1	<u>т</u> Т	<u>—</u> Т	<u> </u>
						PC2		•			•			•	•			•					•	
Adresse IP																						T		 T
Masque de sous réseau									T									-	1			T	_ T	T
Adresse réseau = 'IP' AND 'Masque'							1	<u>_</u>	1			<u> </u>	1		1				<u>. </u>	l		<u>-</u> Т	T	<u>—</u> Т

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
<i>Nom</i> :	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	<i>Date</i> :

périmentation n°6																					
								F	PC1												
Adresse IP			1	Ι	I			T				<u> </u>	1								
Masque de sous réseau				<u> </u>	1	 	 					1	<u> </u>	<u> </u>	1	 	I				
Adresse réseau = 'IP' AND 'Masque'					Ī							Ī									
								F	PC2												
Adresse IP																					
Masque de sous réseau						l						1	1								
Adresse réseau = 'IP' AND 'Masque'					Ī							Ī									
-t-il communication entre	PC1	et	PC	2 ?			•	•		•	•		•	•	•		•				

- > Téléchargez le logiciel 'TCPIP.exe' et utilisez-le pour vérifier les résultats que vous avez obtenus précédemment.
- > Complétez les phrases suivantes :

Une adresse IP permet	un ordinateur dans le réseau.
Pour que plusieurs ordinateurs puissent communiquer, il f	faut :
Que leurs adresses IP soient	·
Que leurs adresses réseau soient	
Pour calculer l'adresses réseau, l'opération a effectuée est	t:
Adresse IP Masque de sous réseau	= Adresse réseau.

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

3. <u>Utilisation de concentrateurs (hubs) et commutateurs (switchs)</u>

> Réalisez le réseau suivant :

- Configurez les stations pour qu'elles aient toutes des adresses IP contenu dans le réseau 192.168.3.0 (masque : 255.255.255.0)
- > Utilisez le mode simulation pour visualiser le trajet d'une information entre PC1 et PC2. (voir vidéo sur le mode simulation)
- > Donnez la principale différence de fonctionnement entre un concentrateur (hub) et commutateur (switch)

Ajoutez un autre switch et hub au réseau et vérifier (à l'aide du mode simulation) la différence de fonctionnement entre un hub et un switch.

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

4. Utilisation d'un point d'accès Wifi

> Réalisez le réseau suivant :

Configurez les 2 stations et le point d'accès sans-fil à l'aide du tableau suivant :

Configuration IP									
Poste	Adresse IP	Masque de sous réseau							
PC0	10.1.1.1	255.0.0.0							
Laptop0	10.2.2.2	255.0.0.0							
	Configuration \	Vifi							
SSID	PacketWifi								
Canal	8								
Type de cryptage	WEP								
Clé WEP	ABCDEABCDE								

- > Testez la bonne communication entre les 2 stations.
- > Ajoutez plusieurs portables et configurez-les pour qu'ils puissent communiquer ensemble. Complétez le plan d'adressage ci-dessous.

Configuration IP											
Poste	Adresse IP	Masque de sous réseau									
Laptop1											
Laptop2											
Laptop3											

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
<i>Nom</i> :	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	<i>Date</i> :

5. Réseau salle JJ000 : Adressage fixe et dynamique

> Réalisez la simulation du réseau informatique de la salle JJ000 :

- Configurez les paramètres réseau des stations sachant qu'elles appartiennent toutes au réseau 192.168.1.0/255.255.255.0
- Vérifiez le bon fonctionnement du réseau en testant quelques stations
- Donnez les inconvénients d'utiliser ce type d'adressage (adresse fixée à l'avance).

Regardez la vidéo 'Serveur DHCP' puis ajoutez un serveur DHCP au réseau permettant l'attribution automatique des adresses IP.

Paramètres du serveu	ır DHCP
Adresse IP de départ	10.4.4.1
Masque de sous réseau	255.0.0.0
Passerelle par défaut	10.0.0.1
Serveur DNS	10.0.0.2

- > Configurez les stations et vérifiez le bon fonctionnement du serveur DHCP
- ⇒ Donnez les avantages d'utiliser ce type d'adressage (adresse attribuée par un serveur).

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

6. Premier routage

Regardez la vidéo 'Routage simple' Réalisez le réseau suivant : Réseau: 192.168.0.0/255.255.255.0 Réseau: 10.0.0.0/255.0.0.0 PC-PT PC2 PC-PT PCO Hub-PT Router-PT Hub-PT Hub0 Router0 Hub1 PC-PT PC3 PC-PT PC1 FastEthernet1/0:192.168.0.1

- > Vérifiez la bonne communication entre les 2 réseaux.
- ⇒ Donnez le rôle du routeur dans le réseau précédent.

FastEthernet0/0: 10.0.0.1

Visualisez, à l'aide du mode simulation, le parcours de l'information partant du PC3 à destination PC1.

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

7. Routage statique

Réalisez le réseau suivant :

- La liaison est une liaison série DTE
- Il faut sur une des deux interfaces séries positionnez l'horloge sur une valeur correcte (Clock Rate : 4 000 000).
- Testez la bonne communication entre PC0 et PC1. S'il n'y pas de communication possible, utilisez le mode simulation pour voir à partir de quels éléments la communication n'est plus possible.

> Ajoutez dans la table de routage (Routing Static) les entrées suivantes :

Router0	Router1	
Réseau 3.0.0.0	Réseau 1.0.0.0	
Masque 255.0.0.0	Masque 255.0.0.0	
Prochain pas 2.0.0.2	Prochain pas 2.0.0.1	
Explication : on spécifie au routeur que	Explication : on spécifie au routeur que	
pour communiquer avec le réseau	pour communiquer avec le réseau	
3.0.0.0/255.0.0.0, il faut envoyer	1.0.0.0/255.0.0.0, il faut envoyer	
l'information à l'élément 2.0.0.2.	l'information à l'élément 2.0.0.1.	

- Vérifiez la bonne communication entre les stations.
- ⇒ Donnez les inconvénients du routage statique (routes définies par l'utilisateur)

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

8. Routage dynamique

> Réalisez le réseau suivant :

- Les liaisons entre routeurs sont des liaisons fibres optiques (Fiber)
- Configurez chacun des éléments en vous aidant schéma précédent :
- > Ajoutez les entrées suivantes dans la table RIP (Routing RIP) :

Routeur0	Routeur1	Routeur2	Routeur3	Routeur4
192.168.0.0	1.0.0.0	3.0.0.0	4.0.0.0	2.0.0.0
1.0.0.0	2.0.0.0	4.0.0.0	5.0.0.0	5.0.0.0
3.0.0.0				172.16.0.0

- Explications: Pour les routeurs, la table RIP définit les réseaux sur lesquels les informations de routage sont diffusées. En clair, le routeur0 diffuse (sur toutes ses interfaces) les numéros de réseau sur lesquels il est connecté. Et vu que tous les autres routeurs font de même, chacun sait qui est connecté sur qui et chacun sait où diffuser l'information.
- > Testez la bonne communication entre PC0 et PC1. Utilisez le mode simulation pour savoir par quel chemin (route) l'information circule.
- Mettez hors tension le routeur1 et testez la communication entre PC0 et PC1.
- ⇒ Par quelle route l'information circule-t-elle ?

⇔	Donnez les avantages d'un protocole de diffusion d'information de routage automatique (RIP).

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

9. Annexes

9.1. Conversion binaire/décimale

I/ Introduction au binaire

Dans le monde des humains, nous avons que 10 chiffres (*allant de 0 à 9*), c'est ce qui s'appelle le **codage décimal**. Cependant, dans le monde électrique, il n'y a que 2 chiffres (*le 0 et le 1*). Et ça, c'est ce qui s'appelle le **codage binaire**.

Si il n'y a que deux chiffres en électronique, c'est parce qu'il n'y a que 2 états électriques possible. En effet, dans les systèmes électriques soit il y a un signal ou alors il n'y en a pas.

Si on devait prendre une analogie du binaire, on pourrait dire d'un verre d'eau: qu'il est **plein** (*valeur binaire 1*) ou qu'il est **vide** (*valeur binaire 0*).

II/ Listes des premiers nombres en binaire

Lorsque l'ont compte en binaire, il ne faut pas oublier qu'on utilise que des 0 et des 1. Pour réussir à compter en binaire facilement, il faut penser aux compteurs dans les voitures. Je m'explique: lorsque l'ont est rendus à 9 sur les *unités*, alors le chiffre des **décimales** est incrémenté (*il augmente de 1*), et le chiffre des **unités** retourne à zéro.

La seule différence dans notre cas, c'est qu'avec le système binaire on ne va pas jusqu'à 9, mais jusqu'à 1.

Voici un tableau des premiers nombres binaire:

Décimal	Binaire
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

Pour écrire rapidement cette table des premiers nombres binaires, vous pouvez utiliser une astuce facile.

En analysant uniquement la colonne des chiffres binaires rouge dans la table ci-dessous, on peut voir qu'elle passe de 0 à 1, un coup sur deux. Et dans la colonne des chiffres binaires en vert, on peut voir que ça passe de 0 à 1, deux coups sur quatre. Ce n'est pas évident de l'expliquer, mais si vous avez compris le principe vous pouvez rédiger cette table facilement.

Décimal	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

III/ Convertir du binaire en décimal

Avant tout, voici comment décomposer un nombre décimal:

$$37.508 = 3x10.000 + 7x1000 + 5x100 + 0x10 + 8x1$$

 $37.508 = 3x10^4 + 7x10^3 + 5x10^2 + 0x10^1 + 8x10^0$

Comme un exemple vaut mieux qu'un long discours, voici maintenant la méthode pour convertir un nombre décimal en binaire:

$$\begin{array}{l} 1010\ 0111_{(binaire)} = 1x2^7 + 0x2^6 + 1x2^5 + 0x2^4 + 0x2^3 + 1x2^2 + 1x2^1 + 1x2^0 \\ 1010\ 0111_{(binaire)} = 1x2^7 + 1x2^5 + 1x2^2 + 1x2^1 + 1x2^0 \\ 1010\ 0111_{(binaire)} = 2^7 + 2^5 + 2^2 + 2^1 + 2^0 \\ 1010\ 0111_{(binaire)} = 128 + 32 + 4 + 2 + 1 \\ 1010\ 0111_{(binaire)} = 167_{(décimal)} \end{array}$$

Vous l'avez compris le nombre "1010 0111" (en binaire) est égal à "167" en décimal.

Académie de LYON	BAC PRO Système Electronique Numérique	2SEN
Nom:	Cisco Packet Tracer : Simulation du fonctionnement d'un réseau informatique	Date :

IV/ Convertir du décimal en binaire

Pour faire une conversion d'un nombre décimal en un nombre binaire, il faut retrouver combien on a de puissance de deux il y a dans un nombre.

On a vu tout à l'heure que 167_(décimal) était équivalent à 1010 0111_(binaire). Essayons de faire la démarche inverse, en cherchant la valeur de 167 en binaire.

- Dans 167 on a 0 fois 256 (256 = 28)
 - o On va maintenant essayer de voir avec la puissance inférieure.
- Dans 167 on a 1 fois 128 (128 = 2⁷)
 - o On retire donc 128 à la valeur 167. Ce qui donne: 167-128 = 39
- Dans 39 on a 0 fois 64 (64 = 2⁶)
 - o On passe alors à la puissance inférieure.
- Dans 39 on a 1 fois 32 (32 = 2^5)
 - o On fait comme tout à l'heure, on retire 32 à 39, soit: 39-32 = 7
- Dans 7 on a 0 fois 16 (16 = 2⁴)
- Dans 7 on a 0 fois 8 $(8 = 2^3)$
- Dans 7 on a 1 fois 4 $(4 = 2^2)$
 - o **7-4 = 3**
- Dans 3 on a 1 fois 2 $(2 = 2^1)$
 - o 3-2 = 1
- Dans 1 on a 1 fois 1 (1 = 2°)

En utilisant cette méthode on trouve que 167_(décimal) est égal à 1010 0111_(binaire).