Eine Woche, ein Beispiel 9.10 ramified covering: alg curve case

Today we are going to move out of the world of RS, trying to switch from cplx alg geo to number theory. The pictures become less intuitive; on the other hand, more interesting phenomenons will appear during the journey.

- I alg curve viewed as stack quotient

- 2. ramified covering for alg curve/IR
 3. Frobenius for alg curve/IR
 4. complexify is a ramified covering by non geometrical connected spaces
 5. alg curves and function fields
- - · Correspondence
 - Valuations
- 6. alg curve over IFp. miscellaneous.

I alg curve viewed as stack quotient

This table can clarify many confusions during the study of varieties over non alg close fields.

Rmk Spec C over IR is not geo connected!

When we take the base change, there are no difference for C-pts. However, when we try to count C-pts on the fiber of X/R of form Spec C, then we see a pair of C-pts.

E.g. Let's work on Air = Spec IR[x]. As a set.

Spec
$$IR[x] = \{(x-a) \mid a \in IR \} \cup \{(x^2+bx+c) \mid b,c \in IR \} \cup \{(o)\}$$

 $= IR \cup H \cup \{(o)\}$
 $A_{IR}(IR) = Mor_{IR-olg}(IR[x], IR) = IR$
 $A_{IR}(C) = Mor_{IR-olg}(IR[x], C) = C = A_{C}(C)$

One gets a $\Gamma_{\mathbb{R}}$ -action on $A_{\mathbb{R}}(\mathbb{C})$ by $x \longmapsto \tau \circ x$. Observe that $MaxSpec\ |R[x] = A'_{IR}(C)/_{\Gamma_{IR}}$ $A'_{IR}(IR) = A'_{IR}(C)^{\Gamma_{IR}}$ as a set, so we can view A'_{IR} as the quotient stack of A'_{IR} quotienting out

Tir-action.

E.x. Work out the same results for AIF, . E.p., shows that

$$A_{F_p}(F_p) = F_p$$
 $A_{F_p}(F_p) = F_p = A_{F_p}(F_p)$
 $A_{F_p}(F_p) = A_{F_p}(F_p)/F_p$
 $A_{F_p}(F_p) = A_{F_p}(F_p)/F_p$

Ex. For an (sm) alg curve X over & (In general, X: f.t. over a field x), try to show that $X(\kappa) = X(\kappa^{\text{sep}})^{\Gamma_{\kappa}}$ Iclosed pts of X = $X(x^{sep})/\Gamma_{k}$

by Hilbert's Nullstellensatz.

e.p., for x: closed pt of X,

 $Stab_{x}(\Gamma_{x}) = \Gamma_{x'} \iff fiber at x = Spec x'$.

	/A/R	A'c /c	Ac/R
MaxSpec	RUH	C	C 2 cplx conj
IR-pts	R	_	ø
C-pts	C	C	CUCT
$\Gamma_{IR} = G_0(G_{IR})$	trivial on pts & fcts	no action	see orange arrows

2. ramified covering for alg curve/IR

Many examples we worked on RS can be reused in this setting.

E.g. $f: A_{IR} \rightarrow A_{IR}$ $f(z) = z^3$

 $f: A_{IR} \longrightarrow A_{IR}$ $f(z) = z^3 - 3z$

∫ f

Let's focus on the case
$$f: A_{\mathbb{R}} \longrightarrow A_{\mathbb{R}}$$
 $f(z) = z^3 - 3z$

$$f(z) = z^3 - 3z$$

classical picture

split:
$$f^{-1}(o) = \text{Spec } IR \text{ LI Spec } IR \text{ LI Spec } IR$$

$$f^{-1}((z^2+1)) = \text{Spec } C \text{ LI Spec } C \text{ LI Spec } C$$

$$(partially) \text{ inert: } f^{-1}(18) = \text{Spec } C \text{ LI Spec } IR$$

$$generic \text{ point: } f^{-1}((o)) = \text{Spec } IR(z^1)$$

$$ramified: f^{-1}(2) = \text{Spec } IR \text{ LI Spec } IR$$

algebraic picture

$$A_{iR}'$$
 $R[\omega] \omega^{3}-3\omega$
 A_{iR}'
 $R[z] z$

split:
$$\mu = (z)$$
, $f^{*}(\mu) | R[\omega] = (\omega^{3} - 3\omega) = (\omega)(\omega - J_{3})(\omega + J_{3})$

$$= \mu, \quad \mu, \quad \mu, \quad \mu_{3}, \quad f^{-1}(\mu) = [\mu_{1}, \mu_{2}, \mu_{3}]$$

$$= \mu, \quad \mu_{4}, \quad \mu_{5}, \quad f^{-1}(\mu) = [\mu_{1}, \mu_{2}, \mu_{3}]$$

$$= \mu, \quad \mu_{5}, \quad$$

Ex. Try to work out the case $f: A_{\mathbb{R}} \longrightarrow A_{\mathbb{R}}$

 $f(z) = Z^3 + 3Z$.

R picture

ilR picture

The ramification pt is outside IR.
This is not a Galois covering.

3. Frobenius for alg curve/IR

$$Gal(\kappa(q)/\kappa(p)) = \begin{cases} \frac{7}{2} \\ \frac{7}{2} \\ \frac{7}{2} \end{cases}$$
 if $\kappa(q) = C$, $\kappa(p) = R$ otherwise.

When E/F is Galois, Spec OE/Spec OF unramified at F,

$$Gal(x_{Q}/k_{(p)}) \cong Gal(E/F)_{q} \leq Gal(E/F)$$

$$Frob_{q} \xrightarrow{} Frob_{q}$$
is a subgp of $Gal(E/F) \cong Aut(Spv(E)/Spv(F))$ Now, just view $Spv(E) \in AlgCurve_{k}$.

For
$$p=(z+1)$$
, $q=(\omega^2+1)$,
 $Gal(x(q)/k(p)) \cong Gal(E/F)q \leq Gal(E/F)$

$$\{1,\tau\}$$

$$\{1,\tau\}$$

$$\{1,\tau\}$$

Therefore,
$$Frob_{(z+1)} = \tau \cdot IP_{IR} \longrightarrow IP_{IR}$$
, where $\tau(\mathbb{C}) \cdot \mathbb{C}[P'] \longrightarrow \mathbb{C}[P'] \qquad \omega \longmapsto -\omega$

Not the conjugation but I(C) | in coincides with the cplx conj

E.g.
$$G_{m,|R|} \neq |R[\omega] = R[(\frac{z^{+}/2^{3-\psi}}{2})^{\pm 1}] + 2 + \frac{1}{2} = 1 - 1$$

$$A_{|R|} \neq \frac{1}{2} - |R[z]$$

For
$$P = (z)$$
, $Q = (\omega^2 + 1)$,

$$Gal(x(q)/k(p)) \cong Gal(E/F)q \leq Gal(E/F)$$

$$11 \qquad 11 \qquad 11$$

$$11 \qquad 11 \qquad 11$$
Therefore, $Fvob_{(z+1)} = \tau \colon P_{iR} \longrightarrow P_{iR}$, where
$$\tau(C) \colon CP' \longrightarrow CP' \qquad \omega \longmapsto \overline{\omega}$$
Not the conjugation, but $\tau(C)|_{S'}$ coincides with the cplx conj

For $f:A_{\mathbb{R}} \longrightarrow A_{\mathbb{R}}$ is not Galois at all, so

For $f:A_{\mathbb{R}} \longrightarrow A_{\mathbb{R}}$ $z \longmapsto z^3$, p = (z-1), $q = (\omega^2 + \omega + 1)$, $Gal(\kappa(q)/\kappa(p)) \not\cong Gal(E/F)q'' \leq Gal(E/F)'' \neq \mathbb{Z}/3\mathbb{Z}$

We will discuss about $C(z^{\frac{1}{3}})/R(z)$ in section 4.

Claim. For p odd prime, any deg p extension of IR(x) is not Galois. Proof given by Zhuoni Chi:

Proof given by Zhuoni Chi:

If not, suppose F/IR(x) is a deg p Galois extension, we get the field extension tower in $\overline{IR}(x)$:

 $\begin{array}{c|c}
F & F \\
F & F
\end{array}$ $\begin{array}{c|c}
F & C(x) \\
\hline
IR(x) & 2
\end{array}$

where $Gal(E/F) \triangleleft Gal(E/IR(x))$ is a normal subgp of order 2. One gets $Gal(E/IR(x)) \longrightarrow S_p \subset \{T, S_pT, ..., S_p^{p-1}T\}$

Injection if σ fix T, S_pT , then σ fix S_p , then σ = Id.

Since # Gal(E/|R(x)) = 2p, $Gal(E/|R(x)) \cong D_p$ or $\mathbb{Z}/_{2p}\mathbb{Z}$. Since $Gal(E/|R(x)) \leq S_p$, $Gal(E/|R(x)) \cong D_p$. However, D_p has no order 2 normal subap, contradiction!

Q. For F/IR(x) Galois extension, is Gal(F/IR(x)) generated by its order 2 elements? Is Gal(F/IR(x)) generated by all Frobenius elements? I call it as the "weaked version of Chebotarev's density theorem for P'IR". We could not expect the density theorem to be true in the real case, since in S; case the order 3 conj class can never be reached by a single Frob.

 \Box

Possible direct and brutal method to this question: use the result in this link: math.stackexchange.com/questions/318690/absolute-galois-group-of-mathbbrt