深圳大学实验报告

课程名称:_	大学物理实验(一))
实验名称:_	杨氏模量的测量	
学 院:_	数学科学学院	
指导教师 <u>:</u>	郭树青	
报告人:	刘俊熙组号:	18
学号 <u>20231</u>	93004 实验地点 <u> 致</u> 原	送楼 209
实验时间:_	年4月23	_目
提交时间:_	2024年4月30日	

1

一、实验目的

- 1. 了解材料的杨氏模量概念和测量方法
- 2. 学会用光杠杆放大法测量长度的微小变化
- 3. 学习逐差法处理数据

二、实验原理

1. 杨氏模量

假设一根横截面积为S,长为L的材料,在大小为F的力的拉压下,伸缩短了 $\triangle L$

图 1 拉压示意图

应力 $\frac{F}{S}$: 横截面积为S的物体收到外力F的作用并处于平衡态时,物体内部单位面积上引起的内力

应变 $\frac{\Delta L}{L}$:单位长度上的伸长量,表征物体受外力作用时产生变化大小的物理量

实验表明,弹性限度内,应力与应变是成正比例关系,比例系数称之为杨氏模量,用E表示。

$$\frac{F}{S} = E \frac{\Delta L}{L}$$

整理得:

$$E = \frac{FL}{S\Lambda L}$$

2. 测量方法

己知:

$$E = \frac{FL}{S\Delta L}$$

$$S = \frac{\pi d^2}{4}$$

其中:

- F: 可由实验中钢丝下面悬挂的砝码的重力给出
- L: 可由米尺测量
- d: 为细铁丝的直径可用螺旋测微仪测量
- ΔL: 是一个微小长度变化量

本实验利用光杠杆的光学放大作用实现对金属丝微小伸长量 AL 的间接测量。

图 2 将微小的伸长量 ΔL 放大为竖尺上的位移 1

由图,有:

$$\tan \theta = \frac{\Delta L}{b}$$
$$\tan 2\theta = \frac{l}{D}$$

由于 $2\theta \ll 5^{0}$,有:

$$\theta = \frac{\Delta L}{b}$$

$$2\theta = \frac{l}{D}$$

从而:

$$\Delta L = \frac{lb}{2D}$$

$$\frac{l}{\Delta L} = \frac{2D}{b} = \beta$$

其中 β 为光杠杆放大率。

$$E = \frac{8FLD}{\pi d^2 bl}$$

三、实验仪器:

图 3 杨氏模量测定仪 1

图 4 杨氏模量测定仪 2

杨氏模量测定仪

螺旋测微计 (仪器误差: ±0.004mm)

游标卡尺 (仪器误差: ±0.02mm)

米尺 (仪器误差: ±1mm)

砝码 (仪器误差: ±1g)(沧海校区用)

标尺 (仪器误差: ±0.5mm)

待测金属丝

接码 米尺 米尺 千分尺 卡尺 禄尺
$$\frac{\Delta E}{E} = \sqrt{\left(\frac{\Delta F}{F}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{2\Delta d}{d}\right)^2 + \left(\frac{\Delta b}{b}\right)^2 + \left(\frac{\Delta l}{l}\right)^2}$$

四、实验内容:

1 调节仪器 (光杠杆、望远镜)

- 1.1 调整望远镜水平,光杠杆平面镜竖直;
- 1.2 调整望远镜与光杠杆平面镜高度相同;
- 1.3 沿望远镜外侧边沿上方使凹口、瞄准星面镜在同一直线上,左、右移动望远镜在镜子里找到竖直尺的像;若找不到,可微调镜子的角度,直到找到为止;
- 1.4 旋动望远镜目镜,使十字叉丝清晰;
- 1.5 旋动聚焦手轮,直到看清竖直尺的像。

2 记录金属丝伸长变化

- 2.1 逐次加一个砝码,在望远镜中读对应标尺的位置,共7次;
- 2.2 然后将所加砝码逐次去掉,并读取相应读数。

加砝码	$r_{_0}$	$r_{_1}$	<i>r</i> ₂	<i>r</i> 3	$r_{_4}$	1 5	r ₆	r,
减砝码	<i>r</i> ′ (r_1'	r,'	r_{3}^{\prime}	$r_{_4}^{\prime}$	r,'	r,	
平均值	$\overline{r_{_0}}$	$\overline{r_{_1}}$	\overline{r}_{2}	\overline{r}_{3}	$\overline{r_{_4}}$	\overline{r}_{5}	$\overline{r_{_{6}}}$	r,

2.3 用逐差法计算每增减4个砝码,钢丝的伸长量。

$$l_{1} = r_{4} - r_{0}$$

$$l_{2} = r_{5} - r_{1}$$

$$l_{3} = r_{6} - r_{2}$$

$$l_{4} = r_{7} - r_{3}$$

	1	2	3	4	平均
I_i					

- 3 测量金属丝长度 L、平面镜与标尺之间的距离 D, 金属丝直径 d, 光杠杆常数 b。
 - 3.1 用钢卷尺测量 L 和 D (L 、D 测一次)
 - 3.2 在钢丝上选不同部位用螺旋测微计测量 d (测 5 次)
 - 3.3 取下光杠杆在展开的白纸上同时按下三个尖脚的位置,用直尺作出光杠杆后脚尖到前两尖脚连线的垂线,用游标卡尺测出 b。

4 注意事项

- 4.1 实验系统调好后,一旦开始测量,在实验过程中不能对系统的任何一部分进行调整,否则,所有数据将重新再测。
- 4.2 加减砝码时要轻拿轻放,系统稳定后才能读取刻度尺,读数过程中不要按压桌面。
- 4.3 光杠杆后脚尖不能接触钢丝。
- 4.4 注意维护钢丝的平直状态,在钢丝两端夹点外测量直径,避免伸长部分扭折。

五、数据记录: (原始数据再抄一份附在这部分)

组号: ___18 __ ; 姓名_刘俊熙

2. 记录金属丝伸长变化

单位: cm

加砝码	0.00	0.95	1.65	2.40	3.10	3.85	4.50	5.30
减砝码	0.10	0.90	1.60	2.30	3.05	3.75	4.45	
平均值	0.05	0.93	1.63	2.35	3.08	3.80	4.48	5.30

3. 测量金属丝长度 L、平面镜与标尺之间的距离 D,金属丝直径 d,光杠杆常数 b

	1	2	3	4	5	初始值	平均值
d(mm)	0.515	0.510	0.520	0.515	0.495	-0.075	0.586

L(cm)	D(cm)	b(cm)	d(mm)	F(N)
55.50	186.40	6.210	0.586	98.0

六、数据处理

对于所测的竖尺位移数据,用逐差法计算每增减4个砝码,竖尺的位移:

$$l_1 = r_4 - r_0$$

$$l_2 = r_5 - r_1$$

$$l_3 = r_6 - r_2$$

$$l_4 = r_7 - r_3$$

得到:

	l_1	l_2	l_3	l_4	Ī
1	2.30	2.15	2.18	2.13	2.19

由公式得:

$$E = \frac{8(4F)LD}{\pi d^2 bl} = \frac{8 \times 4 \times 98.0 \times 0.5550 \times 1.8640}{3.14159 \times 0.000586 \times 0.000586 \times 0.0621 \times 0.0219} = 2.21 \times 10^{11} (Pa)$$

以下计算杨氏模量的不确定度.

$$\frac{\Delta E}{E} = \sqrt{\left(\frac{\Delta F}{F}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{2\Delta d}{\overline{d}}\right)^2 + \left(\frac{\Delta l}{\overline{l}}\right)^2 + \left(\frac{\Delta b}{b}\right)^2}$$

$$\Delta F = \Delta F_B = \Delta m \cdot g = \frac{1}{\sqrt{3}} \cdot g = 0.00058g = 0.0057N$$

$$\frac{\Delta F}{F} = \frac{0.0057}{1000} = 0.0006$$
N

$$\Delta L = \Delta L_g = \frac{1}{\sqrt{3}} = 0.58 \text{mm}$$

$$\frac{\Delta L}{L} = \frac{0.58}{0.5550} = 0.0010 \text{mm}$$

$$\Delta D = \Delta D_g = \frac{1}{\sqrt{3}} = 0.58 \text{mm}$$

$$\frac{\Delta D}{D} = \frac{0.58}{1860} = 0.0003 \text{ lmm}$$

$$\Delta b = \Delta b_B = \frac{0.02}{\sqrt{3}} = 0.012 \text{mm}$$

$$\frac{\Delta b}{b} = \frac{0.012}{6.210} = 0.00019 \text{mm}$$

$$\Delta d_A = \sqrt{\frac{\sum_{i=1}^{L} (N_i - \bar{N})^2}{k(k-1)}} = \sqrt{\frac{3.7 \times 10^{-4}}{4 \times 5}} = 0.0043 \text{mm}$$

$$\Delta d = \sqrt{\Delta d_A^2 + \Delta d_B^2} = \sqrt{0.0043^2 + 0.0023^2} = 0.0049 \text{mm}$$

$$\frac{\Delta d}{d} = \frac{0.004}{0.586} = 0.0083 \text{mm}$$

$$\Delta I_A = \sqrt{\frac{\sum_{l=1}^{L} (N_l - \bar{N})^2}{k(k-1)}} = \sqrt{\frac{0.018}{3 \times 4}} = 0.39 \text{mm}$$

$$\Delta I_B = \frac{0.5}{\sqrt{3}} = 0.28 \text{mm}$$

$$\Delta I = \sqrt{\Delta I_A^2 + \Delta I_B^2} = \sqrt{0.39^2 + 0.28^2} = 0.48 \text{mm}$$

$$\frac{\Delta I}{I} = \frac{0.48}{21.9} = 0.0219 \text{mm}$$

$$\frac{\Delta E}{E} = \sqrt{\left(\frac{\Delta F}{F}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{2\Delta d}{d}\right)^2 + \left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta b}{D}\right)^2} = \sqrt{(0.0006)^2 + (0.0010)^2 + (0.00031)^2 + (2 \times 0.0083)^2 + (0.0219)^2 + (0.00019)^2} = \sqrt{(2 \times 0.0083)^2 + (0.0219)^2} = 0.027$$

=0.027

$$\Delta E = E \times \frac{\Delta E}{E} = 2.21 \times 10^{11} \times 0.027 = 5.97 \times 10^{9} \,\text{Pa} = 0.06 \times 10^{11} \,\text{Pa}$$

故

$$E = 2.21(6) \times 10^{11} Pa$$

七、实验结果与总结

7.1 结果陈述

在本次杨氏模量测量实验中,我们按照实验步骤,逐步完成了仪器的调节、金属丝伸长变化的记录、 金属丝长度、直径以及光杠杆常数的测量。通过对实验数据的处理和分析,我们得出了以下测量结果和 结论。

我们测量了金属丝的长度 L、平面镜与标尺之间的距离 D、金属丝直径 d 以及光杠杆常数 b。这些测量结果为后续计算提供了必要的数据支持。同时记录了加减砝码过程中金属丝伸长变化的数据,并计算了平均值。通过逐差法计算每增减 4 个砝码时钢丝的伸长量,我们发现伸长量与所加砝码的重量呈正比关系,这与杨氏模量的定义和理论预期相符。

基于以上实验数据,我们得出了杨氏模量的测量结果。通过比较实验值与理论值,我们发现实验值与理论值之间存在一定的误差,这可能是由于实验过程中的操作误差、仪器误差以及环境因素的影响所致。然而,在允许的误差范围内,我们的实验结果与理论值相符合,从而验证了杨氏模量概念和测量方法的正确性。

综上所述,通过本次实验,我们成功测量了金属丝的杨氏模量,并验证了杨氏模量概念和测量方法 的正确性。实验结果与理论预期相符,为我们对材料力学性质的理解提供了实验依据。

7.2、 实验总结

本次实验利用了光杠杆法放大了微小值,以便测量。毫无疑问这是非常巧妙的方法。但是,在实际操作的过程中,我们也发现了这一方法的难处,即需要保证系统的稳定。在实验过程中,我不止一次因为在操作过程中因为失误改变了平面镜的位置和角度,导致测量的结果产生非常大的偏差,并且无法复位回先前的状态。唯一的解决方案为重新矫正系统,重测所有数据。这花费了我不少时间。所以,在做实验的时候,千万要小心,动作幅度不宜过大,避免实验人为因素导致误差的产生。

八、思考题

①各种不同长度用不同仪器测量是如何考虑的? 为什么?

对于不同长度的测量,我们考虑使用不同仪器的原因主要在于精度和适用量程的考虑。较短的长度通常可以使用精确度高但测量范围较小的仪器,如千分尺或游标卡尺。而对于较长的长度,则需要使用测量范围大但可能精度稍低的仪器,如卷尺或激光测距仪。这样选择是为了在满足测量精度的同时,也能适应不同的测量需求。

②本实验中哪个物理量的测量误差对结果影响最大? 试做具体讨论。

根据不确定度的计算结果,l的不确定度为 0.219mm,数量级为 10^{-2} ,其他物理量的不确定度数量级

均为 10^{-3} 及更小,综合来说, l 的测量误差对结果的影响最大。									
指-	指导教师批阅意见:								
成组	绩评定:								
	预习	操作及记录		思考题	报告整体				
	(20	(40分)	数据处理与结果陈述 30 分	10 分	印象	总分			
	分)	(10),			1. 20.				