Synge Theorem and Corollaries

JiangZao*

November 16, 2024 9:34pm

4 Abstract

Introduced the basic concepts concerning Synge Theorem and the prove of main theorems.

Keywords: Riemannian Geometry, Differential manifold, Space form, Synge Theo rem

9 1 Introduction

1

3

- When I was doing exercises in Riemannian Geometry, some well known results are found,
- which are helpful to have an inner sight into Riemannian Geometry, but hard to remember.
- Hence, I have to write them down for reviewings in the future. Every covering map in this
- paper, we automatically admit that the covering spaces and base spaces are connected
- and locally path-connected, and thus path connected (Why?).

15 2 Space Form

- Definition 2.1. act in a totally discontinuous manner
- Let (M,g) be a Riemannian manifold. We say group G (some homeomorphisms of M)
- acts in a totally discontinuous manner on M, if for every x in M, there is an
- neighbourhood of x denoted by U, such that for all $g \neq e \in G$, $g(U) \cap U = \emptyset$.
- Remark 2.1. Since G is a group, for any $g_1, g_2 \in G$, $g_1^{-1} \circ g_2(U) \cap U = \emptyset$. Thus
- $g_1(U) \cap g_2(U) = \emptyset.$

^{*}Sun Yat-Sen University, Guang Zhou, China. Email: Jiangzmath@outlook.com.

Definition 2.2. Covering transformation, deck transformation

Let (Y_1, p_1) and (Y_2, p_2) are covering spaces of topology space $Y, F: Y_1 \to Y_2$ is called a covering transformation if $p_2 \circ F = p_1$ and F is continous. Directly from the definition we have F is a covering map. So if F is an injection, then the it's a homeomorphism when we call F a covering isomorphism.

If F is a automorphism, which means $Y_1 = Y_2 = Y$, $p_1 = p_2 = p$, then we call it a deck transformation of (Y, p). And Deck(Y, p) is all the deck transformations on (Y, p) which forms a group.

30 Definition 2.3. Regular covering map

A map π is a covering map, and in addition for every $x \in M$, any two elements $x_1 \neq x_2$ in $\pi^{-1}(\{x\})$, there is a deck transformation f such that $f(x_1) = x_2$, which means $Deck(\widetilde{M})$ acts transitively on $\pi^{-1}(\{x\})$.

The group action is discrete and free means that trajectories of G are discrete and there is no fix points for every $g \in G$. G acts transitively means that Gx = M. Then for any G acts freely and transitively, there is a natural projection $\pi: M \to M/G$.

Theorem 2.1. Let M be a connected and locally path-connected topology space, and G be the set of homeomorphisms that acts in a totally discontinuous manner on M, then the quotion map $\pi: M \to M/G$ is a regular covering map. And homeomorphisms in G is consisted of deck transformations.

Proof. Clearly that π is continuous and surjective. For any given $x \in M$, there is an open set U in M, such that $g(U) \cap U = \emptyset$ for any $g \in G$. Then $\widetilde{U} = \pi^{-1}(\pi(U))$ is a open set in M, decomposite \widetilde{U} by the union of it's componets. That is $\widetilde{U} = \bigcup_{\alpha \in I} U_{\alpha}$.

Since G acts in a totally discontinuous manner on U, U_{α} doesn't intersect each other. And because elements in M/G are trajectories of G's action on U, we have $U_{\alpha} = \alpha(U)$ and $U_e = U$, where e is the identity of G. Thus U_{α} is homeomorphic to each other, π is a identity from U to [U]. So π is a regular covering map. And every $\alpha \in G$ is a deck transformation.

Given a deck transformation σ such that it maps a given element $a \in U$ to $\sigma(a) \in U_{\alpha}$, and $\pi(x) = \pi \sigma(x)$ for any $x \in M$. Since $a, \sigma(a) \in \pi^{-1}(a)$, there is a g in G that maps a to $\sigma(a)$. Then $\sigma \circ g$ and $g \circ \sigma$ are deck transformations on G with at least one fix point each, but every deck transformation with one fix point is a identity [Why?]. Hence $\sigma \in G$. The prove is completed.

• Universal covering map is a covering map such that $\pi_1(\widetilde{M}) = e$.

- A regular covering map also means that $\pi_*(\pi_1(\widetilde{M}))$ is a normal subgroup of $\pi_1(M)$
- Theorem 2.2. Let \widetilde{M} be the universal covering of M. If $\pi_1(M)$ is not $\{e\}$, then $\pi^{-1}(x)$
- have cardinality at least 2. More generaly, cardinality of $\pi^{-1}(x)$ is equal to the cardi-
- nality of $\pi_1(M)$, since number of sheets of a covering map is equal to the lagrange index
- 59 $[\pi_*(\pi_1(\widetilde{M}))\pi_1(M)]$ (Why? prove it by the remark below).
- And any given $x_1 \neq x_2 \in \pi^{-1}(x)$, there exists a unique deck transformation σ on \widetilde{M}
- such that $\sigma(x_1) = x_2$.
- $\pi_*: \pi_1(\widetilde{M}, \widetilde{x}_0) \to \pi_1(M, x_0)$ is injective.
- 63 Theorem 2.3. (Differential Geometry Xu senlin Page. 395) M has a universal
- 64 covering space, then the covering space is unique up to the equivalence of covering isomor-
- 65 phism. M is semi-locally simply connected, then M has a universal covering space.
- Theorem 2.4. (Xu Senlin Page.395) Let (\widetilde{M}, p) is a universal covering of M. And
- given $x_1, x_2 \in \widetilde{M}$, $p(x_i) = x, i = 1, 2$. Then there is a unique deck transformation \widetilde{h} such
- 68 that $\widetilde{h}(x_1) = x_2$
- Theorem 2.5. (Do Carmo Riemannian Geometry page 165) Let (M,g) be a
- 70 complete Riemannian manifold with constant sectional curvature $K(i.e.\ a\ space\ form),$
- vithout loss of generality K is chosen to be -1, 0 or 1. Then M is isometric to \widetilde{M}/Γ ,
- where \widetilde{M} is the universal covering space of M, Γ is a subgroup of isometries which acts
- in a totally discontinuous manner on \widetilde{M} , actually it's the group of deck transformations
- on \widetilde{M} and the metric on \widetilde{M} is induced from the covering map $\pi:\widetilde{M}\to\widetilde{M}/\Gamma$.

75 Remark 2.2.

- Now the covering map is regular. [prove it]
- If the fiber of an universal covering map of M has finite cardinality, then the fundamental group of M is finite.

79 3 Fix Point

- 80 Definition 3.1. (orientation)
- 81 Theorem 3.1. (Kobayashi Transformation groups in Differential Geometry
- page.63) Let M be a compact orientable manifold with positive sectional curvature. Let
- 83 f be an isometry of M.

- If dim(M) is even and f is orientation preserving, then f has a fix point.
- If dim(M) is odd and f is orientation-inversing, then f has a fix point. 85

Proof. 86

- **Theorem 3.2.** (Kobayashi page.65) Synge Theorem let (M, g) be a compact Rieman-87 nian manifold positive sectional curvature, worth noting that every compact Riemannian manifold is complete by Hopf-Rinow theorem. 89
- if dim(M) is even and orientable, then M is simply connected. 90
- if dim(M) is odd, then M is orientable 91

99

- **Proof.** If dim(M) is even and orientable, then we consider it's universal covering M, 92 with $\pi: M \to M$ is the covering map, we choose the orientation of M which forces π is 93 orientation preserving. And the metric on \widetilde{M} is π^*q which is locally isometric to M. 94
- We now have every deck transformation (i.e. covering transformation) f on M is 95 orientation preserving. Since for every $x \in \widetilde{M} = \pi \circ f = \pi$, then $(d\pi)_{f(x)} \circ (df)_x = (d\pi)_x$. 96 Then they must have fix points, but every covering transformation must have no fix points, 97 and the proof is at following. 98
- If $f(x_1) = x_2, x_1 \neq x_2, \pi(x_1) = \pi(x_2)$ and there is a fix point x of f, then we lift the paths from x to x_1 , and x to x_2 . By the uniqueness of lifting, the two lifting curves should 100 be identical, which contradicts $x_1 \neq x_2$. 101