Fast Fourier Transform

Polynomial Multiplications and Fast Fourier Transform

Polynomial Multiplication

- Problem: Given two polynomials p(x) and q(x) with degree d-1, compute its product r(x)=p(x)q(x).
- Each polynomial is encoded by its coefficients:

$$-p(x) = \sum_{i=0}^{d-1} a_i x^i \to (a_0, a_1, \dots, a_{d-1})$$

$$-q(x) = \sum_{i=0}^{d-1} b_i x^i \rightarrow (b_0, b_1, \dots, b_{d-1})$$

Need to compute

$$r(x) = \sum_{i=0}^{2d-2} c_i x^i$$
 where $c_i = \sum_{k=0}^{i} a_k b_{i-k}$

• Naïve computation: $O(d^2)$

Polynomial Multiplication

Given
$$p(x) = \sum_{i=0}^{d-1} a_i x^i$$
 and $q(x) = \sum_{i=0}^{d-1} b_i x^i$
Compute $r(x) = \sum_{i=0}^{2d-2} c_i x^i$ where $c_i = \sum_{k=0}^{i} a_k b_{i-k}$

• Class Discussion: Can we do better than $O(d^2)$?

Divide and Conquer

- Adapt Karatsuba Algorithm
- Assume d is an integer power of 2.
- Write $p(x) = p_1(x) + p_2(x) \cdot x^{\frac{d}{2}}$ where $p_1(x) = a_0 + a_1 x + \dots + a_{\frac{d}{2}-1} x^{\frac{d}{2}-1}$ and $p_2(x) = a_{\frac{d}{2}} + a_{\frac{d}{2}+1} x + \dots + a_{d-1} x^{\frac{d}{2}-1}$
- Similarly, write $q(x) = q_1(x) + q_2(x) \cdot x^{\frac{d}{2}}$
- Then, $r = p_1q_1 + (p_1q_2 + p_2q_1)x^{\frac{d}{2}} + p_2q_2x^d$. We need to compute p_1q_1 , $(p_1q_2 + p_2q_1)$, p_2q_2

Adapting Karatsuba Algorithm

- Need to compute p_1q_1 , p_2q_2 , and $p_1q_2 + p_2q_1$
- $(p_1q_2 + p_2q_1) = (p_1 + p_2)(q_1 + q_2) p_1q_1 p_2q_2$
- Compute
 - p_1q_1
 - $-p_2q_2$
 - $-(p_1+p_2)(q_1+q_2)$
- One size-d multiplication \rightarrow Three size- $\frac{d}{2}$ multiplications
- Time Complexity

$$T(d) = 3T\left(\frac{d}{2}\right) + O(d) \implies T(d) = O\left(d^{\log_2 3}\right)$$

Fast Fourier Transform (FFT)

In this lecture, we will learn a new divide and conquer algorithm with time complexity O(d log d)!

- Fast Fourier Transform (FFT)
- Polynomial Interpolation
- Complex Numbers

Another Interpretation of A Polynomial

Polynomial Interpolation

• Represent a polynomial p(x) of degree d-1 by d points $(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), ..., (\alpha_{d-1}, p(\alpha_{d-1}))$

where $\alpha_0, \alpha_1, \dots, \alpha_{d-1}$ are distinct.

Framework for FFT

- Interpolation Step (FFT):
 - Choose 2d-1 distinct numbers $\alpha_0, \alpha_1, ..., \alpha_{2d-2}$, and
 - compute the values of $p(\alpha_0), p(\alpha_1), ..., p(\alpha_{2d-2}), q(\alpha_0), q(\alpha_1), ..., q(\alpha_{2d-2})$
- Multiplication Step:
 - For each i = 0,1,...,2d-2, compute $r(\alpha_i) = p(\alpha_i)q(\alpha_i)$
 - Obtain interpolation for r(x): $(\alpha_0, r(\alpha_0)), (\alpha_1, r(\alpha_1)), ..., (\alpha_{2d-2}, r(\alpha_{2d-2}))$
- Recovery Step (inverse FFT):
 - Recover $(c_0, c_1, ..., c_{2d-2})$, the polynomial $r(x) = \sum_{i=0}^{2d-2} c_i x^i$, from the interpolation obtained in the previous step.

Framework for FFT

$$p(x) = a_0 + a_1 x + \dots + a_{d-1} x^{d-1}$$

$$q(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}$$

Interpolation Step (FFT)

Recovery Step (Inverse FFT)

$$(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), \dots, (\alpha_{2d-2}, p(\alpha_{2d-2}))$$
$$(\alpha_0, q(\alpha_0)), (\alpha_1, q(\alpha_1)), \dots, (\alpha_{2d-2}, q(\alpha_{2d-2}))$$

 $(\alpha_0, r(\alpha_0)), (\alpha_1, r(\alpha_1)), \dots, (\alpha_{2d-2}, r(\alpha_{2d-2}))$

 Γ Multiplication Γ $r(\alpha_i) = p(\alpha_i)q(\alpha_i)$

Before we move on...

• Let's prove that d distinct points can indeed uniquely determine a polynomial of degree d-1.

Interpolation Theorem. Given d points $(x_0, y_0), (x_1, y_1), ... (x_{d-1}, y_{d-1})$ such that $x_i \neq x_j$ for any $i \neq j$, there exists a unique polynomial p(x) with degree at most d-1 such that $p(x_i) = y_i$ for each i.

Proof of Interpolation Theorem

• Let $p(x) = \sum_{t=0}^{d-1} a_t x^t$. We have $y_i = \sum_{t=0}^{d-1} a_t x_i^t$ for each i.

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{d-1} \end{bmatrix} = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{d-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{d-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{d-1} & x_{d-1}^2 & \cdots & x_{d-1}^{d-1} \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{d-1} \end{bmatrix}$$

- We want to show: $(a_0, a_1, ..., a_{d-1})$ satisfying the above equation is unique.
- The yellow matrix is a Vandermonde matrix with determinant $\prod_{0 \le i < j \le d-1} (x_j x_i)$, which is nonzero given $x_i \ne x_j$.
- Uniqueness is proved: $y = Xa \implies a = X^{-1}y$

Step 1: Interpolation

Interpolation Step (FFT):

Choose 2d-1 distinct numbers $\alpha_0, \alpha_1, ..., \alpha_{2d-2}$, and compute the values of $p(\alpha_0), p(\alpha_1), ..., p(\alpha_{2d-2}), q(\alpha_0), q(\alpha_1), ..., q(\alpha_{2d-2})$

Interpolation Step

- Interpolation Step (FFT):
 - Choose 2d-1 distinct numbers $\alpha_0, \alpha_1, ..., \alpha_{2d-2}$, and
 - compute the values of $p(\alpha_0)$, $p(\alpha_1)$, ..., $p(\alpha_{2d-2})$, $q(\alpha_0)$, $q(\alpha_1)$, ..., $q(\alpha_{2d-2})$

- Computing each $p(\alpha_i)$ or $q(\alpha_i)$ requires O(d) time.
- We need to compute 4d 2 of them.
- Overall time complexity: $O(d^2)$.
- Can we do faster by divide and conquer?

Some Notations

- Let D = 2d 1.
- Assume D is an integer power of 2.

- Interpolation Step (FFT):
 - Choose *D* distinct numbers $\alpha_0, \alpha_1, ..., \alpha_{D-1}$, and
 - compute the values of $p(\alpha_0), p(\alpha_1), ..., p(\alpha_{D-1}), q(\alpha_0), q(\alpha_1), ..., q(\alpha_{D-1})$

A Naïve Divide and Conquer Algorithm

- "Left-right decomposition": $p(\alpha_i) = p_1(\alpha_i) + p_2(\alpha_i) \cdot \alpha_i^{\frac{2}{2}}$
- Compute $p_1(\alpha_i)$ and $p_2(\alpha_i)$ recursively.
- Time complexity: $T(D) = 2T\left(\frac{D}{2}\right) + O(1) \Longrightarrow T(D) = O(D)$
- No faster than direct computation!
- Reason: no sophistication in it! We merely compute the D-1 additions in different order...

Lesson we learned

- Computing each $p(\alpha_i)$ requires O(D) time.
 - We need to compute D-1 additions, and there is no way to simplify it!
- We need to choose $\alpha_0, \alpha_1, ..., \alpha_{D-1}$ in a clever way so that, for example, $p(\alpha_0)$ and $p(\alpha_1)$ can be computed together!

An Idea to Compute $p(\alpha_0)$ and $p(\alpha_1)$ Together

Instead of the "left-right decomposition", we use "even-odd decomposition":

$$p(x) = p_e(x^2) + x \cdot p_o(x^2)$$

where

$$p_e(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{D-2} x_{\frac{D-2}{2}}^{\frac{D-2}{2}}$$

$$p_o(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{D-1} x_{\frac{D-2}{2}}^{\frac{D-2}{2}}$$

• Choose α_0 and α_1 such that $\alpha_1=-\alpha_0$. We have $p_e(\alpha_0^2)=p_e(\alpha_1^2)$ and $p_o(\alpha_0^2)=p_o(\alpha_1^2)$

An Idea to Compute $p(\alpha_0)$ And $p(\alpha_1)$ Together

$$p(\alpha_0) = p_e(\alpha_0^2) + \alpha_0 \cdot p_o(\alpha_0^2)$$

$$p(\alpha_1) = p_e(\alpha_1^2) + \alpha_1 \cdot p_o(\alpha_1^2) = p_e(\alpha_0^2) - \alpha_0 \cdot p_o(\alpha_0^2)$$

Two size-D computations \rightarrow four two size- $\frac{D}{2}$ computations, great!

A Divide and Conquer Attempt

- 1. Choose $\alpha_0, \alpha_1, ..., \alpha_{D-1}$ such that $\alpha_0 = -\alpha_1, \alpha_2 = -\alpha_3, ..., \alpha_{D-2} = -\alpha_{D-1}$.
- 2. Compute $p_e(\alpha_0^2), p_e(\alpha_2^2), ..., p_e(\alpha_{D-2}^2)$ and $p_o(\alpha_0^2), p_o(\alpha_2^2), ..., p_o(\alpha_{D-2}^2)$ recursively.
- 3. For each i = 0,1,...,D-1, compute $p(\alpha_i) = p_e(\alpha_i^2) + \alpha_i \cdot p_o(\alpha_i^2)$.
- Let T(D) be the time complexity for computing $p(\alpha_0), p(\alpha_1), ..., p(\alpha_{D-1})$.
- Step 2 above requires $2T\left(\frac{D}{2}\right)$ time.
- Step 3 above require O(D) time.
- Overall time complexity: $T(D) = 2T(\frac{D}{2}) + O(D) \Longrightarrow T(D) = O(D\log D)$

Are We Done?

- 1. Choose $\alpha_0, \alpha_1, ..., \alpha_{D-1}$ such that $\alpha_0 = -\alpha_1, \alpha_2 = -\alpha_3, ..., \alpha_{D-2} = -\alpha_{D-1}$.
- 2. Compute $p_e(\alpha_0^2)$, $p_e(\alpha_2^2)$, ..., $p_e(\alpha_{D-2}^2)$ and $p_o(\alpha_0^2)$, $p_o(\alpha_2^2)$, ..., $p_o(\alpha_{D-2}^2)$ recursively.
 - 3. For each i=0,1,...,D-1, compute $p(\alpha_i)=p_e(\alpha_i^2)+\alpha_i\cdot p_o(\alpha_i^2)$.

NO!

To compute $p_e(\alpha_0^2)$, $p_e(\alpha_2^2)$, ..., $p_e(\alpha_{D-2}^2)$ "recursively", we need that

and so on...

We need complex numbers!

Complex Numbers

- z = a + bi
 - a: real part
 - b: imaginary part
 - $-i = \sqrt{-1}$: imaginary unit
- Polar form: $z = r(\cos \theta + i \sin \theta)$
 - r: the length of the 2-dimensional vector (a, b)
 - θ : the angle between the vector (a, b) and the x-axis (the real axis)
- Euler's formula: $z = r(\cos \theta + i \sin \theta) = r \cdot e^{\theta i}$

Squares and Square Roots of Unit Length Complex Numbers

- The square of $e^{\theta i}$ is $e^{2\theta i}$: we have just rotated $e^{\theta i}$ by an angle θ .
- Two complex numbers of unit length opposite to each other have the same square:

$$(e^{(\theta+\pi)i})^2 = e^{2\theta i} \cdot e^{2\pi i} = e^{2\theta i} = (e^{\theta i})^2$$

• The square roots of $e^{\theta i}$ are $e^{\frac{\theta}{2}i}$ and $e^{\left(\frac{\theta}{2}+\pi\right)i}$

Example for D = 8

Example for D = 8

$$\omega_{0}=1, \qquad \omega_{1}=e^{\frac{\pi}{4}i}, \qquad \omega_{2}=e^{\frac{\pi}{2}i}, \qquad \omega_{3}=e^{\frac{3\pi}{4}i}$$
 $\omega_{4}=e^{\pi i}, \qquad \omega_{5}=e^{\frac{5\pi}{4}i}, \qquad \omega_{6}=e^{\frac{3\pi}{2}i}, \qquad \omega_{7}=e^{\frac{7\pi}{4}i}$

Interpolation: Putting Together

Algorithm 1: Fast Fourier Transform

```
FFT(p,\omega): // p is a polynomial of degree D-1 and \omega=e^{\frac{2\pi}{D}i}
1. if \omega = 1, return (p(1));
2. p_e(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{D-2} x^{\frac{D-2}{2}}
3. p_o(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{D-1} x^{\frac{D-2}{2}}
4. (p_e(\omega^0), p_e(\omega^2), \dots, p_e(\omega^{D-2})) \leftarrow \mathsf{FFT}(p_e, \omega^2);
5. (p_o(\omega^0), p_o(\omega^2), \dots, p_o(\omega^{D-2})) \leftarrow \mathsf{FFT}(p_o, \omega^2);
6. for t = 0, 1, ..., D - 1:
7. p(\omega^t) = p_e(\omega^{2t}) + \omega^t \cdot p_o(\omega^{2t})
8. endfor
9. return (p(\omega^0), p(\omega^1), ..., p(\omega^{D-1}));
```

Time Complexity for Interpolation Step

- Let T(D) be the time complexity for computing $FFT(p,\omega)$, where p has degree D-1.
- We have $T(D) = 2T(\frac{D}{2}) + O(D) = O(D \log D)$.
- Interpolation step requires $T(D) = O(d \log d)$ time.

Framework for FFT

$$p(x) = a_0 + a_1 x + \dots + a_{d-1} x^{d-1}$$

$$q(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}$$

Interpolation Step

 $O(d \log d)$

$$(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), \dots, (\alpha_{2d-2}, p(\alpha_{2d-2}))$$
$$(\alpha_0, q(\alpha_0)), (\alpha_1, q(\alpha_1)), \dots, (\alpha_{2d-2}, q(\alpha_{2d-2}))$$

Recovery Step (Inverse FFT)

 $(\alpha_0, r(\alpha_0)), (\alpha_1, r(\alpha_1)), \dots, (\alpha_{2d-2}, r(\alpha_{2d-2}))$

Multiplication $r(\alpha_i) = p(\alpha_i)q(\alpha_i)$

Step 2: Multiplication

Multiplication Step:

For each i=0,1,...,2d-2, compute $r(\alpha_i)=p(\alpha_i)q(\alpha_i)$ Obtain interpolation for r(x): $(\alpha_0,r(\alpha_0)),(\alpha_1,r(\alpha_1)),...,(\alpha_{2d-2},r(\alpha_{2d-2}))$

It's easy! Just compute it one-by-one...

- For each i = 0, 1, ..., 2d 2, compute $r(\alpha_i) = p(\alpha_i)q(\alpha_i)$
- Time complexity: O(d)

Framework for FFT

$$p(x) = a_0 + a_1 x + \dots + a_{d-1} x^{d-1}$$

$$q(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}$$

Interpolation Step (FFT)

 $O(d \log d)$

$$(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), \dots, (\alpha_{2d-2}, p(\alpha_{2d-2}))$$
$$(\alpha_0, q(\alpha_0)), (\alpha_1, q(\alpha_1)), \dots, (\alpha_{2d-2}, q(\alpha_{2d-2}))$$

$$(\alpha_0, r(\alpha_0)), (\alpha_1, r(\alpha_1)), \dots, (\alpha_{2d-2}, r(\alpha_{2d-2}))$$

Step 3: Recovery

Recovery Step (inverse FFT):

Recover $(c_0, c_1, ..., c_{2d-2})$, the polynomial $r(x) = \sum_{i=0}^{2d-2} c_i x^i$, from the interpolation obtained in the previous step.

We Have Interpolation of r(x) Now...

• We have $(1, r(1)), (\omega, r(\omega)), (\omega^2, r(\omega^2)), \dots, (\omega^{D-1}, r(\omega^{D-1})),$ where $\omega = e^{\frac{2\pi}{D}i}$.

$$\begin{bmatrix} r(1) \\ r(\omega) \\ r(\omega^{2}) \\ \vdots \\ r(\omega^{D-1}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{D-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(D-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{D-1} & \omega^{2(D-1)} & \cdots & \omega^{(D-1)(D-1)} \end{bmatrix} \cdot \begin{bmatrix} c_{0} \\ c_{1} \\ c_{2} \\ \vdots \\ c_{D-1} \end{bmatrix}$$

What we want...

Complex Matrices Recap

- The complex conjugate of z = a + bi is z = a bi.
- Given two complex vectors $\mathbf{a}, \mathbf{b} \in \mathbb{C}^n$, their inner product is $\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=1}^n \overline{a_i} \cdot b_i$
- a, b are orthogonal if $\langle \mathbf{a}, \mathbf{b} \rangle = 0$; a, b are orthonormal if $\langle \mathbf{a}, \mathbf{b} \rangle = 0$ and $\langle \mathbf{a}, \mathbf{a} \rangle = \langle \mathbf{b}, \mathbf{b} \rangle = 1$.
- A square matrix A is an orthonormal (unitary) matrix if every pair of its columns is orthonormal.
 - If columns are pairwise orthonormal, so are the rows.
- Conjugate transpose of A, denoted by A^* , is defined as $(A^*)_{i,j} = \overline{A_{j,i}}$.
- If A is an orthonormal, then A is invertible and $A^{-1} = A^*$.

Let's come back...

• We have $(1, r(1)), (\omega, r(\omega)), (\omega^2, r(\omega^2)), \dots, (\omega^{D-1}, r(\omega^{D-1})),$ where $\omega = e^{\frac{2\pi}{D}i}$.

$$\begin{bmatrix} r(1) \\ r(\omega) \\ r(\omega^{2}) \\ \vdots \\ r(\omega^{D-1}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{D-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(D-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{D-1} & \omega^{2(D-1)} & \cdots & \omega^{(D-1)(D-1)} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ c_{2} \\ \vdots \\ c_{D-1} \end{bmatrix}$$

$$A(\omega)$$

 $A: \mathbb{C} \to \mathbb{C}^{D \times D}$ is a function.

Proposition. $\frac{1}{\sqrt{D}}A(\omega)$ is orthonormal for $\omega = e^{\frac{2\pi}{D}i}$.

Proof.

• Let \mathbf{c}_i , \mathbf{c}_j be two arbitrary columns of $\frac{1}{\sqrt{D}}A(\omega)$.

$$\langle \mathbf{c}_i, \mathbf{c}_j \rangle = \sum_{k=1}^D \frac{1}{D} \cdot \overline{\omega^{(k-1)(i-1)}} \cdot \omega^{(k-1)(j-1)} = \frac{1}{D} \sum_{k=1}^D \omega^{(k-1)(j-i)}$$

- If i = j, we have $\langle \mathbf{c}_i, \mathbf{c}_j \rangle = \frac{1}{D} \sum_{k=1}^{D} \omega^0 = 1$;
- If $i \neq j$, then $\langle \mathbf{c}_i, \mathbf{c}_j \rangle = \frac{1}{D} \sum_{i=1}^{D} \omega^{(k-1)(j-i)} = \frac{1}{D} \frac{1 \omega^{(j-i)D}}{1 \omega^{j-i}} = 0$
- Thus, $\frac{1}{\sqrt{D}}A(\omega)$ is orthonormal.

Inverting $A(\omega)$...

- Theorem. If A is an orthonormal, then A is invertible and $A^{-1} = A^*$.
- Proposition. $\frac{1}{\sqrt{D}}A(\omega)$ is orthonormal for $\omega = e^{\frac{2\pi}{D}i}$.
- We have

$$A(\omega)^{-1} = \left(\sqrt{D} \cdot \frac{1}{\sqrt{D}} \cdot A(\omega)\right)^{-1} = \frac{1}{\sqrt{D}} \left(\frac{1}{\sqrt{D}} \cdot A(\omega)\right)^{-1} = \frac{1}{\sqrt{D}} \left(\frac{1}{\sqrt{D}} \cdot A(\omega)\right)^{-1} = \frac{1}{D} A(\omega)^*$$

Therefore,

$$(A(\omega)^{-1})_{i,j} = \frac{1}{D} \overline{(A(\omega))_{j,i}} = \frac{1}{D} \cdot \omega^{-(i-1)(j-1)} = \frac{1}{D} (\omega^{-1})^{(i-1)(j-1)},$$

which implies

$$A(\omega)^{-1} = \frac{1}{D} \cdot A(\omega^{-1}).$$

Putting
$$A(\omega)^{-1} = \frac{1}{D} \cdot A(\omega^{-1})$$
 back

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{D-1} \end{bmatrix} = \frac{1}{D} \cdot A(\omega^{-1}) \cdot \begin{bmatrix} r(1) \\ r(\omega) \\ r(\omega^2) \\ \vdots \\ r(\omega^{D-1}) \end{bmatrix}$$

- This is very similar to the first step!
- Let s(x) be a polynomial with coefficients $r(1), r(\omega), ... r(\omega^{D-1})$. Can we just apply FFT (s, ω^{-1}) ?
- $(\omega^{-1}, \omega^{-2}, ..., \omega^{-(D-1)})$ is just the same as $(\omega^{1}, \omega^{2}, ..., \omega^{(D-1)})$ with a clockwise orientation!
- Yes, we can just apply $FFT(s, \omega^{-1})!$

Framework for FFT

$$p(x) = a_0 + a_1 x + \dots + a_{d-1} x^{d-1}$$

$$q(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}$$

Interpolation Step (FFT)

 $O(d \log d)$

$$(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), \dots, (\alpha_{2d-2}, p(\alpha_{2d-2}))$$
$$(\alpha_0, q(\alpha_0)), (\alpha_1, q(\alpha_1)), \dots, (\alpha_{2d-2}, q(\alpha_{2d-2}))$$

Recovery Step (Inverse FFT) $O(d \log d)$

$$(\alpha_0, r(\alpha_0)), (\alpha_1, r(\alpha_1)), \dots, (\alpha_{2d-2}, r(\alpha_{2d-2}))$$

Putting 3 Steps Together

Putting Three Steps Together

Algorithm 2: Polynomial multiplication by FFT

```
Multiply(p,q): //p,q are two polynomials with degrees at most d
1. let D be the smallest integer power of 2 such that d \leq \frac{D}{2};
2. let \omega=e^{\frac{2\pi}{D}i};
3. (p_0, p_1, ..., p_{D-1}) \leftarrow \text{FFT}(p, \omega); // where p_i = p(\omega^i)
4. (q_0, q_1, ..., q_{D-1}) \leftarrow \text{FFT}(q, \omega); // where q_i = q(\omega^i)
5. for each t = 0,1,...,D-1: compute r_t \leftarrow p_t \cdot q_t
6. let s(x) = \sum_{t=0}^{D-1} r_t x^t
7. (c_0, c_1, ..., c_{D-1}) \leftarrow \text{FFT}(s, \omega^{-1});
8. let r(x) = \sum_{t=0}^{D-1} \frac{c_t}{D} x^t;
 9. return r_i
```

Overall Time Complexity

$$O(d \log d) + O(d) + O(d \log d) = O(d \log d)$$

Recap

Three Steps:

$$p(x) = a_0 + a_1 x + \dots + a_{d-1} x^{d-1}$$

$$q(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}$$

Interpolation Step (FFT)

Recovery Step (Inverse FFT)

$$(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), \dots, (\alpha_{2d-2}, p(\alpha_{2d-2}))$$
$$(\alpha_0, q(\alpha_0)), (\alpha_1, q(\alpha_1)), \dots, (\alpha_{2d-2}, q(\alpha_{2d-2}))$$

 $(\alpha_0, r(\alpha_0)), (\alpha_1, r(\alpha_1)), \dots, (\alpha_{2d-2}, r(\alpha_{2d-2}))$

Multiplication
$$\Gamma$$

 $r(\alpha_i) = p(\alpha_i)q(\alpha_i)$

Step 1: Interpolation

- Naïve computation: $O(d^2)$
- Even-odd decomposition: $p(x) = p_e(x^2) + x \cdot p_o(x^2)$
- "Tree structure" for α_i , α_i^2 , α_i^4 , ..., α_i^D
- Choose $\alpha_i = \omega^i$ where $\omega = e^{\frac{2\pi}{D}i}$
- FFT to compute $\mathbf{p} = A(\omega) \cdot \mathbf{a}$ and $\mathbf{q} = A(\omega) \cdot \mathbf{b}$

$$p(x) = a_0 + a_1 x + \dots + a_{d-1} x^{d-1}$$
$$q(x) = b_0 + b_1 x + \dots + b_{d-1} x^{d-1}$$

$$(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), \dots, (\alpha_{2d-2}, p(\alpha_{2d-2}))$$
$$(\alpha_0, q(\alpha_0)), (\alpha_1, q(\alpha_1)), \dots, (\alpha_{2d-2}, q(\alpha_{2d-2}))$$

Step 2: Multiplication

• Just perform 2d - 1 normal complex number multiplications.

$$(\alpha_0, p(\alpha_0)), (\alpha_1, p(\alpha_1)), \dots, (\alpha_{2d-2}, p(\alpha_{2d-2}))$$
$$(\alpha_0, q(\alpha_0)), (\alpha_1, q(\alpha_1)), \dots, (\alpha_{2d-2}, q(\alpha_{2d-2}))$$

 $(\alpha_0, r(\alpha_0)), (\alpha_1, r(\alpha_1)), \dots, (\alpha_{2d-2}, r(\alpha_{2d-2}))$

 Γ Multiplication Γ $r(\alpha_i) = p(\alpha_i)q(\alpha_i)$

Step 3: Recovery

- We have $\mathbf{r} = A(\omega) \cdot \mathbf{c}$, and we want to recover \mathbf{c} from \mathbf{r} and $A(\omega)$.
- Nice property of A: $A(\omega)^{-1} = \frac{1}{D} \cdot A(\omega^{-1})$
- Thus, $\mathbf{c} = \frac{1}{D} \cdot A(\omega^{-1}) \cdot \mathbf{r}$, and we can compute $A(\omega^{-1}) \cdot \mathbf{r}$ by FFT again.

$$r(x) = p(x) \cdot q(x)$$

= $c_0 + c_1 x + \dots + c_{2d-2} x^{2d-2}$

Polynomial Multiplications vs Integer Multiplications

•
$$23341 = 2 \times 10^4 + 3 \times 10^3 + 3 \times 10^2 + 4 \times 10 + 1$$

$$p(x) = 2x^4 + 3x^3 + 3x^2 + 4x + 1$$

- Polynomials and integers are similar!
- Perhaps the only difference in multiplications is "carry".
- FFT-based algorithms for integer multiplications:
 - Schonhage-Strassen (1971): $O(n \log n \log \log n)$
 - Furer (2007): $O(n \log n \log^* n)$
 - Harvey and van der Hoeven (2019): $O(n \log n)$