7.3 The hydrogen atom

Slides: Video 7.3.1 Multiple particle wavefunctions

Text reference: Quantum Mechanics for Scientists and Engineers

Chapter 10 introduction and Section 10.1

Multiple particle systems

How should we tackle this problem of two particles, electron and proton?

We start by generalizing the Schrödinger equation writing generally for time-independent problems $\hat{H}\psi=E\psi$

where now we mean that the Hamiltonian \hat{H} is the operator representing the energy of the entire system and ψ is the wavefunction representing the state of the entire system

Multiple particle wavefunctions

```
For the hydrogen atom
  there are two particles
     the electron and the proton
Each of these has a set of coordinates
 associated with it
  x_{e'} y_{e'} and z_{e'} for the electron and
  x_{p'} y_{p'} and z_p for the proton
The wavefunction will therefore in general be
   a function of all six of these coordinates
```


7.3 The hydrogen atom

Slides: Video 7.3.3 Solving the hydrogen atom problem

Text reference: Quantum Mechanics for Scientists and Engineers

Sections 10.2 – 10.3 (up to "Bohr radius and Rydberg energy")

Hamiltonian for the hydrogen atom

```
The electron and proton each have a mass
  m_e and m_p respectively
We expect
  kinetic energy operators
     associated with each of these masses
  potential energy
     from the electrostatic attraction of
      electron and proton
```

Hamiltonian for the hydrogen atom

Hence, the Hamiltonian becomes

$$\hat{H} = -\frac{\hbar^2}{2m_e} \nabla_e^2 - \frac{\hbar^2}{2m_p} \nabla_p^2 + V(|\mathbf{r}_e - \mathbf{r}_p|)$$

where we mean
$$\nabla_e^2 \equiv \frac{\partial^2}{\partial x_e^2} + \frac{\partial^2}{\partial y_e^2} + \frac{\partial^2}{\partial z_e^2}$$

and similarly for ∇_p^2 and $\mathbf{r}_e = x_e \mathbf{i} + y_e \mathbf{j} + z_e \mathbf{k}$ is the position vector of the electron coordinates and similarly for \mathbf{r}_p

Hamiltonian for the hydrogen atom

The Coulomb potential energy $V(|\mathbf{r}_e - \mathbf{r}_p|) = -\frac{e^2}{4\pi\varepsilon_o|\mathbf{r}_e - \mathbf{r}_p|}$ depends on the distance

 $|\mathbf{r}_e - \mathbf{r}_h|$ between the electron and proton coordinates which is important in simplifying the solution

The Schrödinger equation can now be written explicitly

$$\left[-\frac{\hbar^2}{2m_e} \nabla_e^2 - \frac{\hbar^2}{2m_p} \nabla_p^2 + V(|\mathbf{r}_e - \mathbf{r}_p|) \right] \psi(x_e, y_e, z_e, x_p, y_p, z_p)
= E\psi(x_e, y_e, z_e, x_p, y_p, z_p)$$

The potential here is only a function of $|\mathbf{r}_e - \mathbf{r}_p|$ the separation of the electron and proton

We could choose a new set of six coordinates in which three are the relative positions

$$x = x_e - x_p$$
 $y = y_e - y_p$ $z = z_e - z_p$

i.e., a relative position vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ from which we obtain

$$r = \sqrt{x^2 + y^2 + z^2} = \left| \mathbf{r}_e - \mathbf{r}_p \right|$$

What should we choose for the other three coordinates?

The position **R** of the center of mass of two masses is the same as

the balance point of a light-weight beam with the two masses at opposite ends and so is

the weighted average of the positions of the two individual masses

$$\mathbf{R} = \frac{m_e \mathbf{r}_e + m_p \mathbf{r}_p}{M}$$

where M is the total mass $M = m_e + m_p$

Now we construct the differential operators we need

in terms of these coordinates

With

$$\mathbf{R} = X\mathbf{i} + Y\mathbf{j} + Z\mathbf{k}$$

then for the new coordinates in the *x* direction we have

$$X = \frac{m_e x_e + m_p x_p}{M} \quad x = x_e - x_p$$
 and similarly for the *y* and *z* directions

Using the standard method of changing partial derivatives to new coordinates

and fully notating the variables held constant the first derivatives in the *x* direction become

$$\frac{\partial}{\partial x_e}\bigg|_{x_p} = \frac{\partial X}{\partial x_e}\bigg|_{x_p} \frac{\partial}{\partial X}\bigg|_{x} + \frac{\partial x}{\partial x_e}\bigg|_{x_p} \frac{\partial}{\partial x}\bigg|_{x} = \frac{m_e}{M} \frac{\partial}{\partial X}\bigg|_{x} + \frac{\partial}{\partial x}\bigg|_{x}$$
and similarly

$$\frac{\partial}{\partial x_p}\bigg|_{x} = \frac{\partial X}{\partial x_p}\bigg|_{x} \frac{\partial}{\partial X}\bigg|_{x} + \frac{\partial X}{\partial x_p}\bigg|_{x} \frac{\partial}{\partial X}\bigg|_{x} = \frac{m_p}{M} \frac{\partial}{\partial X}\bigg|_{x} - \frac{\partial}{\partial x}\bigg|_{x}$$

The second derivatives become

$$\frac{\partial^{2}}{\partial x_{e}^{2}}\Big|_{x_{p}} = \frac{\partial}{\partial x_{e}}\Big|_{x_{p}} \left(\frac{\partial}{\partial x_{e}}\Big|_{x_{p}}\right) = \frac{m_{e}}{M} \frac{\partial}{\partial x_{e}}\Big|_{x_{p}} \frac{\partial}{\partial X}\Big|_{x} + \frac{\partial}{\partial x_{e}}\Big|_{x_{p}} \frac{\partial}{\partial x}\Big|_{X}$$

$$= \left(\frac{m_{e}}{M}\right)^{2} \frac{\partial^{2}}{\partial X^{2}}\Big|_{x} + \frac{\partial^{2}}{\partial x^{2}}\Big|_{X} + \frac{m_{e}}{M} \left(\frac{\partial}{\partial x}\Big|_{X} \frac{\partial}{\partial X}\Big|_{X} + \frac{\partial}{\partial X}\Big|_{X} \frac{\partial}{\partial x}\Big|_{X}\right)$$

and similarly

$$\left. \frac{\partial^{2}}{\partial x_{p}^{2}} \right|_{x} = \left(\frac{m_{p}}{M} \right)^{2} \frac{\partial^{2}}{\partial X^{2}} \bigg|_{x} + \frac{\partial^{2}}{\partial x^{2}} \bigg|_{X} - \frac{m_{p}}{M} \left(\frac{\partial}{\partial x} \bigg|_{X} \frac{\partial}{\partial X} \bigg|_{X} + \frac{\partial}{\partial X} \bigg|_{X} \frac{\partial}{\partial x} \bigg|_{X} \right)$$

So

dropping the explicit statement of variables held constant

$$\frac{1}{m_e} \frac{\partial^2}{\partial x_e^2} + \frac{1}{m_p} \frac{\partial^2}{\partial x_p^2} = \frac{m_e + m_h}{M^2} \frac{\partial^2}{\partial X^2} + \left(\frac{1}{m_e} + \frac{1}{m_p}\right) \frac{\partial^2}{\partial x^2}$$

$$= \frac{1}{M} \frac{\partial^2}{\partial X^2} + \frac{1}{\mu} \frac{\partial^2}{\partial x^2}$$

where μ is the so-called reduced mass $\mu = \frac{m_e m_p}{m_e + m_p}$

The same kinds of relations can be written for each of the other Cartesian directions

so if we define

$$\nabla_{\mathbf{R}}^2 \equiv \frac{\partial^2}{\partial X^2} + \frac{\partial^2}{\partial Y^2} + \frac{\partial^2}{\partial Z^2} \text{ and } \nabla_{\mathbf{r}}^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

we can write the Hamiltonian in a new form with center of mass coordinates

$$\hat{H} = -\frac{\hbar^2}{2M} \nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{2\mu} \nabla_{\mathbf{r}}^2 + V(\mathbf{r})$$

which now allows us to separate the problem

To separate the six-dimensional differential equation using these coordinates

next, presume the wavefunction can be written

$$\psi(\mathbf{R},\mathbf{r}) = S(\mathbf{R})U(\mathbf{r})$$

Substituting this form in the Schrödinger equation with

the Hamiltonian
$$\hat{H} = -\frac{\hbar^2}{2M} \nabla_{\mathbf{R}}^2 - \frac{\hbar^2}{2\mu} \nabla_{\mathbf{r}}^2 + V(\mathbf{r})$$
 we obtain

$$-U(\mathbf{r})\frac{\hbar^{2}}{2M}\nabla_{\mathbf{R}}^{2}S(\mathbf{R})+S(\mathbf{R})\left[-\frac{\hbar^{2}}{2\mu}\nabla_{\mathbf{r}}^{2}+V(\mathbf{r})\right]U(\mathbf{r})=ES(\mathbf{R})U(\mathbf{r})$$

With
$$-U(\mathbf{r})\frac{\hbar^2}{2M}\nabla_{\mathbf{R}}^2 S(\mathbf{R}) + S(\mathbf{R}) \left[-\frac{\hbar^2}{2\mu}\nabla_{\mathbf{r}}^2 + V(\mathbf{r}) \right] U(\mathbf{r}) = ES(\mathbf{R})U(\mathbf{r})$$

then dividing by $S(\mathbf{R})U(\mathbf{r})$ and moving some terms

$$-\frac{1}{S(\mathbf{R})}\frac{\hbar^{2}}{2M}\nabla_{\mathbf{R}}^{2}S(\mathbf{R}) = E - \frac{1}{U(\mathbf{r})} \left[-\frac{\hbar^{2}}{2\mu}\nabla_{\mathbf{r}}^{2} + V(\mathbf{r}) \right]U(\mathbf{r}) = E_{CoM}$$

The left hand side depends only on ${f R}$ and the right hand side depends only on ${f r}$ so both must equal a "separation" constant which we call E_{CoM}

Hence we have two separated equations

$$-\frac{\hbar^2}{2M}\nabla_{\mathbf{R}}^2 S(\mathbf{R}) = E_{CoM}S(\mathbf{R})$$
 Center of mass motion

$$\left[\left[-\frac{\hbar^2}{2\mu} \nabla_{\mathbf{r}}^2 + V(\mathbf{r}) \right] U(\mathbf{r}) = E_H U(\mathbf{r}) \quad \text{Relative motion} \right]$$

where
$$E_H = E - E_{CoM}$$

We can now solve these separately

Center of mass motion

$$-\frac{\hbar^2}{2M}\nabla_{\mathbf{R}}^2 S(\mathbf{R}) = E_{CoM}S(\mathbf{R})$$

is the Schrödinger equation for a free particle of mass *M* with wavefunction solutions

$$S(\mathbf{R}) = \exp(i\mathbf{K} \cdot \mathbf{R})$$

and eigenenergies

$$E_{CoM} = \frac{\hbar^2 K^2}{2M}$$

This is the motion of the entire hydrogen atom as a particle of mass M

Relative motion equation

The other equation

$$\left[-\frac{\hbar^2}{2\mu}\nabla_{\mathbf{r}}^2 + V(\mathbf{r})\right]U(\mathbf{r}) = E_H U(\mathbf{r})$$

corresponds to the "internal" relative motion of the electron and proton and will give us the internal states i.e., the orbitals and energies of the hydrogen atom

7.3 The hydrogen atom

Slides: Video 7.3.5 Informal solutions for the relative motion

Text reference: Quantum Mechanics for Scientists and Engineers

Section 10.3 ("Bohr radius and Rydberg energy")

We presume that the hydrogen atom will have some characteristic size which is called the Bohr radius a_o . We expect that the "average" potential energy strictly, its expectation value will therefore be

$$\langle E_{potential} \rangle \approx -\frac{e^2}{4\pi\varepsilon_0 a_0}$$

For a reasonable smooth wavefunction $\psi(\mathbf{r})$ of size $\sim a_o$ the second spatial derivative will be

$$\sim \frac{\left[-\psi(0)/a_o\right] - \left[\psi(0)/a_o\right]}{2a_o}$$

$$\sim -\psi(0)/a_o^2$$

Note this is only meant to a rough estimate only within some moderate factor

Remembering that for a mass μ the kinetic energy operator is $-(\hbar^2/2\mu)\nabla^2$

The "average" kinetic energy will therefore be

$$\langle E_{kinetic} \rangle \approx \frac{\hbar^2}{2\mu a_o^2}$$

Now, in the spirit of a "variational" calculation we adjust the parameter a_o to get the lowest value of the total energy

Such variational approaches can be justified rigorously as approximations for the lowest energy

With our very simple model, the total energy is

$$\langle E_{total} \rangle = \langle E_{kinetic} \rangle + \langle E_{potential} \rangle \approx \frac{\hbar^2}{2\mu a_o^2} - \frac{e^2}{4\pi \varepsilon_o a_o}$$

The total energy is a balance between

```
the potential energy
```

which is made lower (more negative) by choosing a_o smaller

and the kinetic energy

which is made lower (less positive) by making a_o larger

For this simple model

$$\langle E_{total} \rangle = \langle E_{kinetic} \rangle + \langle E_{potential} \rangle \approx \frac{\hbar^2}{2\mu a_o^2} - \frac{e^2}{4\pi\varepsilon_o a_o}$$

differentiation shows that the choice of a_o that minimizes the energy overall is

$$a_o = \frac{4\pi\varepsilon_o\hbar^2}{e^2\mu} \cong 0.529 \text{ Å} = 5.29 \text{ x } 10^{-11}\text{m}$$

which is the standard definition of the Bohr radius We therefore see that the hydrogen atom is approximately 1 Å in diameter

With this choice of a_o

the corresponding total energy of the state is

$$\langle E_{total} \rangle = -\frac{\hbar^2}{2\mu a_o^2} = -\frac{\mu}{2} \left(\frac{e^2}{4\pi\varepsilon_o \hbar} \right)^2$$

We can usefully define the "Rydberg" energy unit

$$Ry = \frac{\hbar^2}{2\mu a_o^2} = \frac{\mu}{2} \left(\frac{e^2}{4\pi\varepsilon_o \hbar} \right)^2 \approx 13.6 \text{ eV}$$

in which case $\langle E_{total} \rangle = -Ry$

Though we have produced

the Bohr radius

$$a_o = \frac{4\pi\varepsilon_o\hbar^2}{e^2\mu} \cong 0.529 \text{ Å} = 5.29 \text{ x } 10^{-11}\text{m}$$

and the Rydberg
$$Ry = \frac{\hbar^2}{2\mu a_o^2} = \frac{\mu}{2} \left(\frac{e^2}{4\pi\varepsilon_o \hbar} \right)^2 \simeq 13.6 \text{ eV}$$

by informal arguments

they will turn out to be rigorously meaningful

The energy of the lowest hydrogen atom state is -Ry

