Assignment 18

Rubeena Aafreen

Download the latex-tikz codes from

https://github.com/rubeenaafreen20/EE5609/tree/master/Assignment18

1 Problem

(UGC June 2018, 76)

Let V be an inner product space and S be a subset of V. Let \overline{S} denote the closure of S in V with respect to the topology induced by the metric given by the inner product. Which of the following statements are true?

- 1) $S = (S^{\perp})^{\perp}$
- 2) $\underline{S} = (S^{\perp})^{\perp}$ 3) $span(S) = (S^{\perp})^{\perp}$ 4) $S^{\perp} = ((S^{\perp})^{\perp})^{\perp}$

2 OUTLINE

Orthogonal Complement	orthogonal to S is called the orthogonal complement of S :	
	$S^{\perp} = \{ \mathbf{x} \in \mathbf{V} : \langle \mathbf{x}, \mathbf{y} \rangle = 0, \forall \mathbf{y} \in S \}$	
Closure of subset	closure of a set \mathcal{S} is the set of all limits of points from \mathcal{S} Let \mathcal{S} be a subset of an inner product space V . Then closure of \mathcal{S} satisfies, $\overline{\mathcal{S}} = \{ y \in V \colon \text{ there exist } x_n \in \mathcal{S} \text{ such that } x_n \to y \}$	
Projection Theorem	Let $\mathcal S$ be a closed subspace of a finite dimensional vector space $\mathbf V$, then, Every $\mathbf x \in \mathcal S$ can be expressed as, $ \mathbf x = \mathbf u + \mathbf v, \text{ where,} \\ \mathbf u \in \mathcal S, \mathbf v \in \mathcal S^\perp $	
Theorem	If \mathcal{S}_1 and \mathcal{S}_2 are subsets of \mathbf{V} and $\mathcal{S}_1\subseteq\mathcal{S}_2$, then $\mathcal{S}_2^\perp\subseteq\mathcal{S}_1^\perp\ .$	

TABLE 1: Definitions and results used

3 Solution

Given	Let S be any set, then S^{\perp} is the set of all vectors that are perpendicular to all elements of S We will check if S^{\perp} is a subspace (1) Closed on Addition Let $\mathbf{u}, \mathbf{v} \in S^{\perp}$, then, for $\mathbf{x} \in \mathbf{V}$, $< \mathbf{x}, \mathbf{u} + \mathbf{v} > = < \mathbf{x}, \mathbf{u} > + < \mathbf{x}, \mathbf{v} > = 0$ $\Rightarrow \mathbf{u} + \mathbf{v} \in S^{\perp}$ (2) Closed on Multiplication Let $\mathbf{u} \in S^{\perp}$, then, for $\mathbf{x} \in \mathbf{V}$ and scalar $\alpha \in \mathbb{F}$, $< \mathbf{x}, \alpha \mathbf{u} > = \alpha^* < \mathbf{x}, \mathbf{u} > = 0$ $\Rightarrow \alpha \mathbf{u} \in S^{\perp}$ Therefore, S^{\perp} is a subspace Therefore, $(S^{\perp})^{\perp}$ is also a subspace
	Checking the options
$S = (S^{\perp})^{\perp}$	We have, $S^{\perp} = \{x \in \mathbf{V}: \langle x, y \rangle = 0, \forall y \in S\}$ $\Rightarrow (S^{\perp})^{\perp} = \{x \in \mathbf{V}: \langle x, y \rangle = 0, \forall y \in S\}$ Let $\mathbf{s} \in S$, then $\langle \mathbf{s}, \mathbf{v} \rangle = 0, \forall \mathbf{v} \in S^{\perp}$ $\Rightarrow \mathbf{s} \in (S^{\perp})^{\perp}$ Therefore, $S \subseteq (S^{\perp})^{\perp} \qquad \dots (1)$ We have proved that $(S^{\perp})^{\perp}$ is a subspace But, S is a subset of \mathbf{V} and is not necessarily a subspace. Therefore, this option is false .
$\overline{S} = (S^{\perp})^{\perp}$	Similarly, \overline{S} is a subset of V and is not necessarily a subspace. Therefore, this option is false .
$\overline{span(S)} = (S^{\perp})^{\perp}$	Let \mathbf{v} is a limit of some $\mathbf{v_i}$ such that $\mathbf{v_i} \in span(S)$ $\implies \mathbf{v} \in \overline{span(S)}$ Now, Since, $\mathbf{v_i} \in span(S)$,

$$\implies \mathbf{v_i} = \sum \beta_j \mathbf{s_j}, \quad \mathbf{s_j} \in \mathcal{S}$$
 Let $\mathbf{w} \in \mathcal{S}^{\perp}$,
$$\implies \langle \mathbf{w}, \mathbf{s_j} \rangle = 0$$

$$\Longrightarrow < \mathbf{w}, \mathbf{s_j} >= 0$$

Now,

$$\langle \mathbf{w}, \mathbf{v_i} \rangle = \sum \beta_j \langle \mathbf{w}, \mathbf{s_j} \rangle = 0$$

Therefore,

 $\mathbf{w} \perp \mathbf{v_i}$, hence,

$$\mathbf{w} \perp \mathbf{v}$$

$$\implies \underbrace{\mathbf{v} \in (S^{\perp})^{\perp}}_{span(S)} \subseteq (S^{\perp})^{\perp}$$

Therefore, this option is **false**.

However, if we assume that V is a finite dimensional space, which implies, V is a hilbert space, then we have,

...(2)

for
$$\mathbf{x} \in (\mathcal{S}^{\perp})^{\perp}$$
,

$$\mathbf{x} = \mathbf{u} + \mathbf{v}, \quad \mathbf{u} \in \overline{span(S)}, \mathbf{v} \perp \overline{span(S)}$$

Now,

$$\langle \mathbf{x}, \mathbf{u} \rangle = 0$$

$$\Rightarrow \langle \mathbf{u} + \mathbf{v}, \mathbf{v} \rangle = 0$$

$$\Rightarrow \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle = 0$$

$$\Rightarrow ||\mathbf{v}|| = 0$$

$$\Rightarrow \mathbf{v} = 0$$

$$\Rightarrow \mathbf{x} = \mathbf{u} \in \overline{span(S)}$$

$$\Rightarrow (S^{\perp})^{\perp} \subseteq \overline{span(S)} \qquad \dots (3)$$

From (2) and (3),

 $\overline{span(S)} = (S^{\perp})^{\perp}$ if **V** is a hilbert space.

$$\mathcal{S}^{\perp} = \left(\left(\mathcal{S}^{\perp} \right)^{\perp} \right)^{\perp}$$

From (1), we have,

$$S \subseteq (S^{\perp})^{\perp}$$

$$\implies S^{\perp} \subseteq ((S^{\perp})^{\perp})^{\perp} \qquad \dots (4)$$

We know that,
$$\mathcal{S}_2^\perp \subseteq \mathcal{S}_1^\perp$$
 Therefore.

Therefore,

$$\left(\left(\mathcal{S}^{\perp} \right)^{\perp} \right)^{\perp} \subseteq \mathcal{S}^{\perp} \qquad \dots (5)$$

From (4) and (5), we have,

$$\mathcal{S}^{\perp} = \left(\left(\mathcal{S}^{\perp} \right)^{\perp} \right)^{\perp}$$

Therefore, this option is **True**.

TABLE 2: Solution

4 Conclusion

$S = (S^{\perp})^{\perp}$	false.
$\overline{S} = (S^{\perp})^{\perp}$	false.
$\overline{span(S)} = (S^{\perp})^{\perp}$	false
$\mathcal{S}^{\perp} = \left(\left(\mathcal{S}^{\perp} \right)^{\perp} \right)^{\perp}$	True.

TABLE 2: Conclusion