Divide and Conquer Method

Dr. Raghunath Reddy M

Dept. of Computer Science Engineering, Bennett University, Greater Noida

January 29, 2020

Dr. R Reddy M

Divide and Conquer Method

Closest pair of points

Problem Definition

Input: Let $P = \{p_1, p_2, \dots, p_n\}$ be a set of points in the plane where each $p_i = (x_i, y_i)$ for real numbers x_i and y_i .

Output: Find a pair of points p_i and p_j such that the Euclidean distance between p and p_j , $d(p_i, p_j)$ is minimum.

Brute-force algorithm

Check all possible ${}^{n}C_{2}$ pairs and pick the best one.

Time : $O(n^2)$

Question

Can we do it in better time, like $O(n \log n)$ -time?

How to achieve?

- Find the closest pair among the points in the "left half" of P,
- Find the closest pair among the points in the "right half" of P, and

How to achieve?

- Find the closest pair among the points in the "left half" of P,
- Find the closest pair among the points in the "right half" of P, and
- use the information to get the overall solution in O(n)-time.

How to achieve?

- Find the closest pair among the points in the "left half" of P,
- Find the closest pair among the points in the "right half" of P, and
- use the information to get the overall solution in O(n)-time.
- As the sizes of left and right halves are almost the same, we have

$$T(n) = 2T(n/2) + O(n)$$

Thus, $T(n) = O(n \log n)$

How to achieve?

- Find the closest pair among the points in the "left half" of P,
- Find the closest pair among the points in the "right half" of P, and
- use the information to get the overall solution in O(n)-time.
- As the sizes of left and right halves are almost the same, we have

$$T(n) = 2T(n/2) + O(n)$$

Thus, $T(n) = O(n \log n)$

Main task

How to get the overall solution in O(n)-time when we have the solutions of left and right halves.

- For any set of points $P' \subseteq P$, let
 - P'_x be the points in P' sorted in the increasing x-coordinates, and
 - P'_{ν} be the points in P' sorted in the increasing y-coordinates.

- For any set of points $P' \subseteq P$, let
 - P'_x be the points in P' sorted in the increasing x-coordinates, and
 - P'_{ν} be the points in P' sorted in the increasing y-coordinates.

Lemma 0.1.

For any given set $P' \subseteq P$, one can obtain P'_x and P'_y in $O(n \log n)$ time.

- For any set of points $P' \subseteq P$, let
 - P'_x be the points in P' sorted in the increasing x-coordinates, and
 - P'_{v} be the points in P' sorted in the increasing y-coordinates.

Lemma 0.1.

For any given set $P' \subseteq P$, one can obtain P'_x and P'_y in $O(n \log n)$ time.

• Further, let P_x and P_y be the sets of points in P which are sorted with respect to x-coordinate and y-coordinate respectively.

- For any set of points $P' \subseteq P$, let
 - P'_{x} be the points in P' sorted in the increasing x-coordinates, and
 - P'_{ν} be the points in P' sorted in the increasing y-coordinates.

Lemma 0.1.

For any given set $P' \subseteq P$, one can obtain P'_{x} and P'_{y} in $O(n \log n)$ time.

- Further, let P_x and P_y be the sets of points in P which are sorted with respect to x-coordinate and y-coordinate respectively.
- Closest-Pair(P)
 - Construct P_x and P_y ($O(n \log n)$ -time)
 - $(p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)$

Setting up the recursion

Figure: Points sorted with respect to *x*-coordinates.

Question

How to split the problem into two (almost) equal size sub-problems ?

How to split into two sub-problems

Figure: Vertical line / splits the input into two equal halves.

Figure: Two new set of points Q (left half) and R (right half).

Figure: Two new set of points Q (left half) and R (right half).

Question?

What is the time to compute Q and R.

Figure: Two new set of points Q (left half) and R (right half).

Question?

What is the time to compute Q and R.

Ans: O(n)

Q is the collection of first $\lceil n/2 \rceil$ points in P_x and R is the collection of last $\lfloor n/2 \rfloor$ points in P_x .

Figure: Two new set of points Q (left half) and R (right half).

Question?

What is the time to compute Q and R.

Ans: O(n)

Q is the collection of first $\lceil n/2 \rceil$ points in P_x and R is the collection of last $\lfloor n/2 \rfloor$ points in P_x .

Four new sets of points

Define Q_x , Q_y , R_x , and R_y as before.

Next step

Suppose we have obtained the closest pairs in Q and R, by recursively solving the sub-problems.

Figure: Solutions of Q and R given in red color.

- Closest-Pair-Rec (P_x, P_y)
 - If $|P_x| \leq 3$ then
 - find the closest pair by measuring all pairwise distances and return the pair.
 - Else

- Closest-Pair-Rec (P_x, P_y)
 - If $|P_x| \leq 3$ then
 - find the closest pair by measuring all pairwise distances and return the pair.
 - Else
 - Construct Q_x , Q_y , R_x , R_y (O(n)-time)
 - $(q_0^*, q_1^*) = \mathsf{Closest}\text{-}\mathsf{Pair}\text{-}\mathsf{Rec}(Q_{\mathsf{x}}, Q_{\mathsf{y}})$
 - $(r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)$

- Closest-Pair-Rec (P_x, P_y)
 - If $|P_x| \leq 3$ then
 - find the closest pair by measuring all pairwise distances and return the pair.
 - Else
 - Construct Q_x , Q_y , R_x , R_y (O(n)-time)
 - $(q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)$
 - $(r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)$
 - $(p_0^*, p_1^*) = \text{CombineQR}(q_0^*, q_1^*, r_0^*, r_1^*)$
 - Return (p_0^*, p_1^*)

Time complexity?

- Closest-Pair-Rec (P_x, P_y)
 - If $|P_x| \leq 3$ then
 - find the closest pair by measuring all pairwise distances and return the pair.
 - Else
 - Construct Q_x , Q_y , R_x , R_y (O(n)-time)

 - $(r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)$
 - $(p_0^*, p_1^*) = \text{CombineQR}(q_0^*, q_1^*, r_0^*, r_1^*)$
 - Return (p_0^*, p_1^*)

Time complexity?

T(n) = 2T(n/2) + f(n) where f(n) depends on the time taken by the function CombineQR(.....).

What should be the goal

- Closest-Pair-Rec (P_x, P_y)
 - If $|P_x| \leq 3$ then
 - find the closest pair by measuring all pairwise distances and return the pair.
 - Else
 - Construct Q_x , Q_y , R_x , R_y (O(n)-time)
 - $ullet (q_0^*,q_1^*) = \mathsf{Closest} ext{-Pair-Rec}(Q_{\scriptscriptstyle X},Q_{\scriptscriptstyle Y})$
 - $(r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)$
 - $(p_0^*, p_1^*) = \text{CombineQR}(q_0^*, q_1^*, r_0^*, r_1^*)$
 - Return (p_0^*, p_1^*)

Time complexity?

T(n) = 2T(n/2) + f(n) where f(n) depends on the time taken by the function CombineQR(.....).

What should be the goal

f(n) should be O(n) to get $T(n) = O(n \log n)$.

Combined solution

• Let $\delta = \min\{\delta_q, \delta_r\}$.

Combined solution

• Let $\delta = \min\{\delta_q, \delta_r\}$.

Question

Are there points $q \in Q$ and $r \in R$ such that $d(q, r) < \delta$?

Some observations about closest pair

Some observations about closest pair

• Suppose that there are two points $q \in Q$ and $r \in R$ such that $d(q,r) < \delta$. Then,

Figure: The strip may contain many points.

Figure: The strip may contain many points.

Set of points inside the strip

Let $S \subseteq P$ be the set of all points inside the strip of width 2δ around line I.

Figure: The strip may contain many points.

Set of points inside the strip

Let $S \subseteq P$ be the set of all points inside the strip of width 2δ around line I.

 Compute S_y, the points in S sorted in increasing order with respect to the y-coordinates.

Figure: The strip may contain many points.

Set of points inside the strip

Let $S \subseteq P$ be the set of all points inside the strip of width 2δ around line I.

 Compute S_y, the points in S sorted in increasing order with respect to the y-coordinates.

Lemma 0.2.

There exists $q \in Q$ and $r \in R$ such that $d(q, r) < \delta$ if and only if there exist $s, s' \in S$ for which $d(s, s') < \delta$.

Some interesting result about s and s'

Lemma 0.3.

If $s, s' \in S$ have the property that $d(s, s') < \delta$, then s and s' are within 15 positions of each other in the sorted list S_y .

Algo for CombineQR(....)

• CombineQR $(q_0^*, q_1^*, r_0^*, r_1^*)$

Algo for CombineQR(.....)

- CombineQR $(q_0^*, q_1^*, r_0^*, r_1^*)$
 - ullet $\delta_q=d(q_0^*,q_1^*)$ and $\delta_r=d(r_0^*,r_1^*)$
 - $\delta = \min\{\delta_q, \delta_r\}$
 - x^* = the x-coordinate of the rightmost point in Q
 - $S = \text{points in } P \text{ within } \delta \text{ distance from } x = x^* \text{ } (O(n) \text{-time}).$

Algo for CombineQR(.....)

- CombineQR $(q_0^*, q_1^*, r_0^*, r_1^*)$
 - ullet $\delta_q=d(q_0^*,q_1^*)$ and $\delta_r=d(r_0^*,r_1^*)$
 - $\delta = \min\{\delta_q, \delta_r\}$
 - x^* = the x-coordinate of the rightmost point in Q
 - $S = \text{points in } P \text{ within } \delta \text{ distance from } x = x^* \text{ } (O(n) \text{-time}).$
 - Construct S_v (O(n)-time)
 - For each point $s \in S_y$, compute the distance from s to each of next 15 points in S_y (O(n)-time)
 - Let s, s' be the pair achieving minimum of these distances (O(n)-time)

Algo for CombineQR(.....)

- CombineQR $(q_0^*, q_1^*, r_0^*, r_1^*)$
 - $\delta_q = d(q_0^*, q_1^*)$ and $\delta_r = d(r_0^*, r_1^*)$
 - $\delta = \min\{\delta_a, \delta_r\}$
 - x^* = the x-coordinate of the rightmost point in Q
 - $S = \text{points in } P \text{ within } \delta \text{ distance from } x = x^* \text{ } (O(n) \text{-time}).$
 - Construct S_v (O(n)-time)
 - For each point $s \in S_v$, compute the distance from s to each of next 15 points in S_v (O(n)-time)
 - Let s, s' be the pair achieving minimum of these distances (O(n)-time)
 - If $d(s,s') < \delta$ then
 - Return (s, s')
 - Else if $\delta_a < \delta_r$ then
 - Return (q_0^*, q_1^*)
 - Else Return (r_0^*, r_1^*)

Lemma 0.4.

CombineQR($q_0^*, q_1^*, r_0^*, r_1^*$) takes O(n) time to return the solution.