DEVOIR À LA MAISON N°8

EXERCICE 1.

On considère la fonction $f: x \in \mathbb{R}_+ \mapsto 1 - \sqrt{x}$ ainsi la suite $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = \frac{1}{4}$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.

- **1.** Montrer que pour tout $x \in [0, 1]$, $f(x) \in [0, 1]$.
- **2.** Montrer que $u_n \in [0, 1]$ pour tout $n \in \mathbb{N}$.
- **3.** Déterminer le sens de variation de f et de $f \circ f$ sur [0, 1].
- **4.** Montrer que f possède un unique point fixe α sur [0,1] et déterminer celui-ci.
- **5.** Montrer que $u_0 \leqslant \alpha$.
- **6.** Montrer que pour tout $n \in \mathbb{N}$, $u_{2n} \leq \alpha$.
- 7. Montrer que $u_0 \le u_2$. En déduire que la suite $(u_{2n})_{n \in \mathbb{N}}$ est croissante puis qu'elle converge.
- **8.** Montrer que les points fixes de $f \circ f$ sur [0, 1] sont $0, \alpha$ et 1.
- 9. En déduire la limite de la suite $(u_{2n})_{n\in\mathbb{N}}$, puis la convergence et la limite de la suite $(u_{2n+1})_{n\in\mathbb{N}}$ et enfin la convergence et la limite de la suite $(u_n)_{n\in\mathbb{N}}$.

Problème 1 –

On donne
$$e \approx 2,72$$
, $\frac{1}{\sqrt{e}} \approx 0,61$, $\sqrt{2} \approx 1,41$ et $\ln(3) \approx 1,10$.

Partie I - Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}

$$\forall x \in \mathbb{R}, \ f(x) = 3xe^{-x^2} - 1$$

- 1. Étudier les variations de f sur $\mathbb R$ ainsi que les limites aux bornes du domaine de définition. Donner le tableau de variations de f. Préciser les branches infinies de la courbe représentative $\mathcal C_f$ de f ainsi qu'une symétrie de celle-ci.
- 2. Donner l'équation de la tangente à C_f au point d'abscisse 0. Etudier la position de la courbe de C_f par rapport à cette tangente.
- 3. Donner l'allure de la courbe C_f . On fera également figurer les asymptotes et la tangente des questions précédentes.
- **a.** Justifier que f admet un développement limité en 0 à tout ordre.
 - **b.** Donner le développement limité de f en 0 à l'ordre 5.

Partie II - Étude d'une équation différentielle

Soient $n \in \mathbb{N}^*$ et E_n l'équation différentielle $xy' - (n-2x^2)y = n-2x^2$. On note H_n l'équation différentielle homogène associée à E_n .

- **1.** Résoudre H_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- **2.** En déduire les solutions de E_n sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .
- 3. Donner toutes les fonctions de classe \mathcal{C}^1 sur \mathbb{R} solutions de E_n sur \mathbb{R} . On distinguera les cas n=1 et $n\geqslant 2$.

Partie III - Étude de deux suites

On suppose désormais dans cette partie que $n \ge 2$. Soit f_n la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \ f_n(x) = 3x^n e^{-x^2} - 1$$

- **1.** Quel est le signe de $f_n(0)$ et de $f_n(1)$?
- 2. Étudier les variations de f_n sur \mathbb{R}_+ . Donner la limite de f_n en $+\infty$. En déduire que f_n s'annule exactement deux fois sur \mathbb{R}_+ en deux réels notés u_n et v_n vérifiant $u_n < 1 < v_n$.
- 3. Quelle est la limite de $(\nu_n)_{n\geqslant 2}$?
- **4. a.** Exprimer $e^{-u_n^2}$ en fonction de u_n^n .
 - **b.** En déduire le signe de $f_{n+1}(u_n)$.
 - **c.** Déduire de ce qui précède la monotonie de $(u_n)_{n\geqslant 2}$.
 - **d.** Montrer que la suite $(u_n)_{n\geqslant 2}$ est convergente. On note l sa limite.
- **5.** Soit g_n définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^*, \ g_n(x) = \ln(3) + n \ln(x) - x^2$$

- a. Soit $t \in \mathbb{R}_+^*$. Montrer que $g_n(t) = 0$ si et seulement si $f_n(t) = 0$.
- **b.** On suppose $l \neq 1$. Trouver une contradiction en utilisant ce qui précède. Conclusion ?
- **c.** Soit la suite $(w_n)_{n\geqslant 2}$ définie par

$$\forall n \geqslant 2, \ w_n = u_n - 1$$

Trouver en utilisant un développement limité de $g_n(1+w_n)=g_n(u_n)$ un équivalent simple de w_n .