Ful	l Name:		

MATHEMATICS Specialist Units 3 & 4

Test 4 – Integration Chapters 13, 14 and 23

Semester 2 2017

Section One - Calculator Free

Time allowed for this section

Working time for this section: 35 minutes Marks available: 35 marks

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: Nil

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

1. (10 marks)

(a) Find
$$\int tan^2 4x dx$$
 using a suitable trigonometric formula. [2]

(b) Find
$$\int (4x+6)(2x+1)^5 dx$$
 using a suitable substitution. [4]

(c) Find
$$\int \frac{x+4}{(x+2)(x+1)} dx$$
 using partial fractions. [4]

- 2. (9 marks)
 - (a) Determine the volume of the solid formed when the area in the first quadrant and enclosed by $y = x^2$, the line y = 3 and the y-axis is rotated through one revolution about the y-axis.

 [4]

(b) The area in the first quadrant enclosed by the curve $y=\frac{1}{x^2}$, the lines x=1, x=k, k>1 and the x-axis is rotated 360° about the x-axis. If the volume of the solid generated is $\frac{21\pi}{64}$ units³ determine the value of the constant k. [5]

3. (8 marks)

(a) Determine
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} cos^3 x \ dx \text{ using the substitution } u = sinx.$$
 [4]

(b) Show that
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x - \cos x}{\sin x + \cos x} dx = \frac{1}{2} \ln 2$$
 [4]

4. (8 marks)

(a) Use the substitution
$$tan\theta = x + 2$$
 to determine $\int \frac{4}{x^2 + 4x + 5} dx$ [4]

(b) Find $\int (\sin 2x + \cos 2x)\cos 2x \ dx$

[4]

Full	Name:		

MATHEMATICS Specialist Units 3 & 4

Test 4 – Integration
Chapters 13, 14 and 15

Semester 2 2017

Section Two - Calculator Assumed

Time allowed for this section

Working time for this section: 20 minutes Marks available: 20 marks

10

Material required/recommended for this section

To be provided by the supervisor

This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens, pencils, pencil sharpener, eraser, correction fluid, ruler, highlighters

Special items: drawing instruments, templates, notes on one unfolded sheet of A4 paper,

and up to three calculators satisfying the conditions set by the Curriculum

Council for this course.

Important note to candidates

No other items may be used in this section of the examination. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

5. (4 marks)

The area enclosed by the x-axis, the lines x=1 and x=4 and the curve $y=1+\sqrt{x}$ is rotated 360° about the x-axis. Calculate the volume of the solid generated to an accuracy of two decimal places.

6. (6 marks)

(a) Find
$$\int \frac{5x^2 - 10x - 3}{(x+1)(x-1)^2} dx$$
 using partial fractions. [3]

(b) Hence express
$$\int_2^5 \frac{5x^2 - 10x - 3}{(x+1)(x-1)^2} dx$$
 as a single logarithm. [3]