

Lecture 5: Scalable PCA for Dimensionality Reduction

COM6012: Scalable ML by Haiping Lu

YouTube Playlist: https://www.youtube.com/c/HaipingLu/

Week 5 Contents / Objectives

Scalability Problem of PCA

PCA via SVD

Scalable PCA in Spark

Software Development Life Cycle

Week 5 Contents / Objectives

Scalability Problem of PCA

PCA via SVD

Scalable PCA in Spark

Software Development Life Cycle

Motivation of Dimensionality Reduction

- Raw data: complex and high-dimensional
- Assumption: they lie on a low-dimensional subspace
 - Axes of this subspace → representation of the data
 - Simpler, more compact, showing interesting patterns

Utilities of Dimensionality Reduction

- Discover hidden correlations/topics
- Remove redundant/noisy features
- Interpretation and visualisation
- Easier storage and processing of the data

owners-icebergs-blog-image-300x300.jpg (resettogrow.com)

<u>1*KvKlx9OnlxdoTfNxWKAY g.ipeg</u> (480×320) (medium.com)

Interpreting and Translation
Blog: Image (wordpress.com)

PCA > Variance Maximisation

- Input: *n d*-dimensional data points
- PCA algorithm
 - $X_0 \leftarrow n \times d$ data matrix, data point \rightarrow row vector x_i
 - X: subtract mean x from each row vector x_i in X_0
 - $\Sigma \leftarrow X^TX$: Gramian/scatter matrix for X
 - Find eigenvectors and eigenvalues of Σ
 - U ($d \times r$) \leftarrow the top r eigenvectors (PCs)
- PCA features for y: U^Ty (dimension: $d \rightarrow r$)
 - Zero correlations, ordered by variance

Scalability Problem of PCA

- Input dimensionality → scatter matrix
 - Images: $100 \times 100 \rightarrow 10^4$; $1000 \times 1000 \rightarrow 10^6$
 - Scatter matrix Σ is of size d^2
 - $d = 10^4 \rightarrow \Sigma$ size 10^8
 - $d = 10^6 \rightarrow \Sigma \text{ size} = 10^{12}$
- Alternative: Singular Value Decomposition (SVD)
 - Efficient algorithms available
 - Often need just top r eigenvectors

Week 5 Contents / Objectives

Scalability Problem of PCA

PCA via SVD

Scalable PCA in Spark

Software Development Life Cycle

Singular Value Decomposition (SVD)

$$\mathbf{A}_{[n \times d]} = \mathbf{U}_{[n \times r]} \, \mathbf{\Sigma}_{[r \times r]} \, (\mathbf{V}_{[d \times r]})^{\mathrm{T}}$$

- A: $n \times d$ matrix
- r: the rank of the matrix
- U: $n \times r$ matrix, column orthonormal, $U^TU = I$
- $\Sigma : r \times r$ diagonal matrix, strength of each factor
- V: $d \times r$ matrix, column orthonormal, $V^TV = I$

$$\begin{bmatrix} A \\ n \times d \end{bmatrix} = \begin{bmatrix} \widehat{V} \\ n \times r \end{bmatrix} \begin{bmatrix} \widehat{\Sigma} \\ r \times r \end{bmatrix} \begin{bmatrix} \widehat{V}^T \\ r \times d \end{bmatrix}$$

$$U \qquad \qquad \Sigma \qquad V^T$$

$$n \times n \qquad \qquad n \times d \qquad d \times d$$

08/03/2021

SVD ←→ Eigen-decomposition

- SVD gives
 - $X = U \Sigma V^T$
- Eigen-decomposition gives
 - $B = X^TX = W \Lambda W^T$
- U, V, W: orthonormal \rightarrow U^TU = I, V^TV = I, W^TW = I
- Σ , Λ : diagonal
- Relationship:
 - $XX^T = U \Sigma V^T (U \Sigma V^T)^T = U \Sigma V^T (V \Sigma TU^T) = U \Sigma^2 U^T$
 - $X^TX = V \Sigma^T U^T (U \Sigma V^T) = V \Sigma \Sigma^T V^{T} = V \Sigma^2 V^T$
 - $B = X^TX = W \wedge W^{T} = V \Sigma^2 V^T$

PCA via SVD

- $X_0 \leftarrow n \times d$ data matrix, data point \rightarrow row vector x_i
- X: subtract mean x from each row vector x_i in X_0
- U Σ V^T \leftarrow SVD of X
- The top r right singular vectors V of $X \rightarrow$ the PCs
- The singular values in Σ = the square roots of the eigenvalues of X^TX

Example on a Document x Term

Term Document	data	information	retrieval	brain	lung
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR1	0	0	0	3	3
MED-TR1	0	0	0	1	1

- d = 5 but $r=2 \rightarrow$ two bases [1 1 1 0 0] & [0 0 0 1 1]
- U: document-to-concept similarity matrix
- V: term-to-concept similarity matrix
- Σ : its diagonal elements \rightarrow strength of each concept

1 . 1		•
INTAR	pretat	nOn
Π	JIClai	
		· · ·

Term Document	data	information	retrieval	brain	lung
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR1	0	0	0	3	3
MED-TR1	0	0	0	1	1

doc-to-concept similarity matrix retrieval CS-concept brain inf. MD-concept data strength of CS-concept CS-concept X X term-to-concept similarity matrix

SVD – Dimensionality Reduction

• To reduce the dimensionality further (3 zero singular

Week 5 Contents / Objectives

Scalability Problem of PCA

PCA via SVD

Scalable PCA in Spark

Software Development Life Cycle

Three PCA APIs in Spark MLlib

- DataFrame-based API <u>PCA</u> (<u>source code</u>, <u>Scala doc</u>)
 - pyspark.ml.feature.PCA(k=None, inputCol=None, outputCol=None)
- RDD-based API <u>RowMatrix</u> (<u>source code</u>, <u>Scala doc</u>)
 - computePrincipalComponents(k)
 - Scalable: computeSVD(k, computeU=False, rCond=1e-09)

```
@Since("1.6.0")
465
        def computePrincipalComponentsAndExplainedVariance(k: Int): (Matrix, Vector) = {
          val n = numCols().toInt
467
          require(k > 0 && k <= n, s"k = k out of range (0, n = n")
          if (n > 65535) {
470
            val svd = computeSVD(k)
471
            val s = svd.s.toArray.map(eigValue => eigValue * eigValue / (n - 1))
472
           val eigenSum = s.sum
473
            val explainedVariance = s.map(_ / eigenSum)
474
```

SVD in Spark MLlib (RDD)

- U: $m \times k$; $\Sigma : k \times k$; V: $n \times k$
- Assumption: n (dimensionality) < m (# samples)
- Different methods based on computational cost
 - If n is small (n<100) or k is large compared with n (k>n/2), compute A^TA first and then compute its top eigenvalues and eigenvectors locally on the driver
 - Otherwise, compute $(A^TA)v$ in a distributive way and send it to ARPACK to compute (A^TA) 's top eigenvalues/eigenvectors on the driver node

Selection of SVD Computation

```
if (n < 100 | (k > n / 2 && n <= 15000)) {
               // If n is small or k is large compared with n, we better compute the Gramian matrix first
               // and then compute its eigenvalues locally, instead of making multiple passes.
336
               if (k < n / 3) {
337
                 SVDMode.LocalARPACK
               } else {
                 SVDMode.LocalLAPACK
340
341
342
             } else {
               // If k is small compared with n, we use ARPACK with distributed multiplication.
               SVDMode.DistARPACK
            case "local-svd" => SVDMode.LocalLAPACK
            case "local-eigs" => SVDMode.LocalARPACK
            case "dist-eigs" => SVDMode.DistARPACK
348
            case => throw new IllegalArgumentException(s"Do not support mode $mode.")
```

Week 5 Contents / Objectives

Scalability Problem of PCA

PCA via SVD

Scalable PCA in Spark

Software Development Life Cycle

Software and Changes

- A virtue of software: relatively easy to change
 - Otherwise, it might as well be hardware
- Planning for change
 - Good comments describe meaning of code to facilitate and reduce the cost of software maintenance
 - Modularity help manage change because modules help to isolate and localize change

Phased Development

- Reduce cycle time, deliver in pieces, let users have some functionality while developing the rest
- Two or more systems in parallel
 - The operational/production system in use by customers
 - The development system to replace the current release

Iterative/Incremental Development

- Incremental: partition a system by functionality
 - Early release: small, functional subsystem
 - Later releases: add functionality
- Iterative: improve overall system in each release

iterative.jpg (902×539) (lehigh.edu)

Lifecycle Phases

- Inception: rationale, scope, and vision
- Elaboration: "Design/Details"
 - detailed requirements and high-level analysis/design
- Construction "Do it"
 - build software in increments, tested and integrated, each satisfying a subset of the requirements
- Transition "Deploy it"
 - beta testing, performance tuning, and user training
- Phases: NOT the classical requirements/ design/coding/implementation processes
- Phases iterate over many cycles

Phases: Iterative & Incremental

Work on Your Project

- Get a small subset or a reduced version to study, develop, debug, and test
- Break down big/difficult problem into smaller/easier sub-steps (avoid black-box debugging)
- Be structured, organised, and logical
- Keep good documentation
- Get help online (e.g. search) and keep the references

Randy Pausch quote: Engineering isn't about perfect solutions; it's about doing the best... (azquotes.com)

Acknowledgement & References

- Acknowledgement
 - Some slides are adapted from the <u>MMDS book</u> slides and the slides on software process life cycles by <u>Glenn</u> <u>Blank</u>
- References
 - Chapter 11 of the MMDS book