EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa «antigo»

Duração da prova: 120 minutos

Reserva

2001

(não usada)

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui nove questões de escolha múltipla.
- O Grupo II inclui quatro questões de resposta aberta, algumas delas subdivididas em alíneas, num total de dez.

Grupo I

- As nove questões deste grupo são de escolha múltipla.
- Para cada uma delas são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- 1. Seja f uma função de domínio \mathbb{R} , estritamente crescente.

Qual das seguintes afirmações é necessariamente verdadeira?

- **(A)** A função f não pode ter mais do que um zero.
- **(B)** A função f tem contradomínio \mathbb{R} .
- (C) O gráfico da função f tem a concavidade voltada para cima.
- **(D)** O gráfico da função f é simétrico em relação ao eixo das ordenadas.
- 2. Para um certo número real a, o gráfico da função g, definida por $g(x) = ax^2 + 3$, tem, no ponto de abcissa 1, uma recta tangente com declive 4.

Qual é o valor de a?

- **(A)** 4
- **(B)** 2
- (C) $\frac{1}{2}$ (D) $\frac{3}{2}$
- 3. Considere uma função h, **contínua** em $\mathbb{R}\backslash\{-3\}$, tal que:

$$\lim_{x \to -\infty} h(x) = 5 \qquad \lim_{x \to -3} h(x) = -\infty \qquad \lim_{x \to +\infty} h(x) = 0$$

Qual das seguintes afirmações é verdadeira?

- (A) O gráfico da função h não tem assimptotas verticais.
- **(B)** O gráfico da função h não tem assimptotas horizontais.
- **(C)** A função h tem mínimo absoluto.
- **(D)** A equação h(x) = 2 tem pelo menos uma solução.

4. Num referencial o.n. Oxyz, considere a superfície esférica de equação $x^2 + y^2 + z^2 = 1$

> Um ponto P desloca-se sobre o diâmetro que está contido no eixo Oz.

> Para cada posição do ponto P, considere o cone, inscrito na superfície esférica, que tem por base o círculo cujo centro é o ponto $\ P$ e que tem por vértice o ponto (0,0,1).

Seja f a função que faz corresponder, à $\cot c$ do ponto P, o $\operatorname{volume}\ V$ do referido cone.

Qual dos seguintes gráficos pode ser o da função f?

(B)

(C)

(D)

- 5. Na figura estão representados, em referencial o.n. xOy:
 - um rectângulo de comprimento 10 e largura 6, centrado na origem do referencial;
 - uma elipse inscrita nesse rectângulo.

Quais são as coordenadas dos focos dessa elipse?

(A)
$$(2,0)$$
 e $(-2,0)$

(B)
$$(4,0)$$
 e $(-4,0)$

(C)
$$(0,2) \in (0,-2)$$

(D)
$$(0,4) \in (0,-4)$$

6. Considere, num referencial o.n. Oxyz, as superfícies esféricas definidas pelas equações $x^2 + (y-2)^2 + z^2 = 2$ e $x^2 + (y-3)^2 + z^2 = 2$

A intersecção destas superfícies esféricas é ...

(A) um ponto.

(B) uma circunferência.

(C) o conjunto vazio.

- (D) um segmento de recta.
- 7. Num referencial o.n. Oxyz, um plano α é perpendicular ao plano xOz. Qual das seguintes pode ser uma equação do plano α ?

(A)
$$z = x + 2$$

(B)
$$z = x + y$$

(C)
$$z=y$$

(D)
$$y = 2$$

8. Uma estante tem oito prateleiras. Pretende-se expor, nessa estante, seis peças de porcelana: duas jarras iguais e quatro pratos diferentes.

De quantas maneiras podem ser expostas as seis peças nas oito prateleiras, de tal modo que não fique mais do que uma peça em cada prateleira?

(A)
$${}^{8}C_{2} \times {}^{6}A_{4}$$

(B)
$${}^{8}A_{2} \times 4!$$

(C)
$${}^8C_2 \times {}^8A_4$$

(D)
$${}^{8}A_{2} \times {}^{6}C_{4}$$

9. Considere seis pontos distintos $(A, B, C, D, E \in F)$, pertencentes a uma circunferência.

Escolhidos três desses pontos ao acaso, qual é a probabilidade de eles definirem um triângulo que contenha o lado [AB]?

(A)
$$\frac{1}{6}$$

(B)
$$\frac{1}{5}$$
 (C) $\frac{1}{4}$

(C)
$$\frac{1}{4}$$

(D)
$$\frac{1}{3}$$

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Considere a função, de domínio \mathbb{R}^+ , definida por $f(x) = \frac{\ln x}{x}$ (In designa logaritmo de base e)

Utilize métodos exclusivamente analíticos para resolver as três alíneas seguintes:

- **1.1.** Estude a função f quanto à existência de assimptotas verticais.
- **1.2.** Investigue se a função f tem máximo e, em caso afirmativo, determine-o.
- **1.3.** Considere ainda a função g, de domínio \mathbb{R}^+ , definida por $g(x)=\frac{1}{2\,x}$ Determine os valores de x para os quais se verifica $f(x)\leq g(x)$ Apresente o conjunto solução na forma de intervalo de números reais.
- 2. Na figura,
 - [ABCD] é um quadrado de lado 1;
 - [AHB], [BGC], [CFD] e [DEA] são triângulos rectângulos iguais;
 - x designa a amplitude do ângulo HBA.

2.1. Mostre que a área da superfície sombreada é dada, em função de x, por

$$f(x) = 1 - \operatorname{sen}(2x) \qquad \left(x \in \left] 0, \frac{\pi}{4} \right] \right)$$

2.2. Calcule $f\left(\frac{\pi}{4}\right)$ e interprete geometricamente o valor obtido (deve incluir, na sua interpretação, a figura que se obtém para $x=\frac{\pi}{4}$).

- **3.** Um saco contém sete bolas, numeradas de 1 a 7, indistinguíveis ao tacto. Retiram-se sucessivamente, de forma aleatória, **duas** bolas do saco, repondo-se a primeira bola antes de se retirar a segunda.
 - **3.1.** Qual é a probabilidade de os números saídos serem ambos pares? Apresente o resultado na forma de fracção.
 - **3.2.** Qual é a probabilidade de saírem dois números cuja soma seja igual a quatro? Apresente o resultado na forma de fracção.
- **4.** Na figura está representado, em referencial o.n. Oxyz, um sólido formado por um paralelepípedo rectângulo [ABCDEFGH] e uma pirâmide [ABCDV].

A base [EFGH] do paralelepípedo está contida no plano xOy e a base da pirâmide coincide com a face superior do paralelepípedo.

A aresta [GF] está contida no eixo Oy.

Uma equação da superfície esférica com centro $A(1,1,1)\,$ e que contém $\,G\,$ é

$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 11$$

- **4.1.** Verifique que o ponto H tem coordenadas (1, -2, 0)
- **4.2.** Mostre que uma equação do plano AGH é y-3z+2=0
- **4.3.** Designando por $\,c\,$ a cota do ponto V, mostre que o volume do sólido é $\,2+c\,$

Formulário

$$sen(2x) = 2 \cdot sen x \cdot cos x$$

$$\cos\left(2x\right) = \cos^2 x - \sin^2 x$$

Volume da Pirâmide $= \frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

FIM

COTAÇÕES

	Cada resposta certa	- 3
	Nota: Um total negativo neste grupo vale 0 (zero) pontos.	
rupo	II	<i>'</i>
	1. 1.1. 13 1.2. 13 1.3. 13	39
	2	22
	3.1	22
	4.1. 12 4.2. 12 4.3. 12	36