

Table of Contents

- Data
- **02** Methods
- O3 Final results and analysis
- 04 Conclusion

Dataset: "World Happiness Report"

Dataset of reported global happiness score with 21 associated features by various countries between 2005-2024.

- Source: kaggle.com
- Size: 4000x24 (n=4000 p=24)
- **Training data**: selected dataset from years <u>2005</u> (earliest)

Dataset included the following features:

y-label

Country, Year, Happiness_Score GDP_per_Capita, Social_Support, Healthy_Life_Expectancy,

Freedom, Generosity, Corruption_Perception, Unemployment_Rate, Education_Index,

Population,Urbanization_Rate,Life_Satisfaction,Public_Trust,Mental_Health_Index,

Income_Inequality,Public_Health_Expenditure,Climate_Index,Work_Life_Balance,

Internet_Access,Crime_Rate,Political_Stability,Employment_Rate

Features

Important Feature Data Types

- **Happiness_Score**: float between the scale of 1-10 (label)
- **Statistical Data** ie GDP_per_Capita, Health_Life_Expectancy, Population
- Scaled ratings (between 0-1) ie Social Support, Freedom, Public Trust

OI Removing Data

Removed all datasets that had null values. (not much change)

Data Cleaning

02

Binary conversion

- Wanted binary labels (low/high happiness levels)
- Threshold: 0.5

03

Features excluded

- Country
- Year
- Happiness_Score (label)

Finalized dataset sorted into dictionary <u>organized</u> <u>by year</u>.

2005 dataset used as training data.

Our goal Identify the best feature that can closely predict high happiness levels.

Method: We want to find lowest entropy -> highest gain = best feature

Then what? Compare predicted and actual gain values to determine predicted accuracy.

- Assume best_feature consistent throughout all datasets
- Calculate gain of best feature for each year

Predicted value

pred_gain = total_entropy - feature_entropy

Calculate for all years

difference = (actual_gain - pred_gain)**2

To Summarize...

Main Takeaways

- Public Health Expenditure most directly impact happiness level for 2005 ONLY
 - Gain values not really high
- Predictions overemphasize the gain value of the feature.
- We should not use gain and entropy to predict best features.

Future Works

- Implement bootstrapping or random sampling

 (randomly select predictive data, select smallest RSS iteration)
- Including a larger dataset (more years)

