PC	E Midterm Z	. Topics	and	0
	Practice pro	Wem s		
_	The heat			
S	$(x,t) = \frac{1}{4\pi kt}$ ation of the	e - 4kt	and	
approxim	ation of the	delta fu	nition.	
Practice pro	Wems. D Wh	te down -	the definit	ion
of an a	proximation of	the delta	function.	
② 2.4.8	5, HW6 # Solving The	2, #3.	Show that the $J_{+}(x) = S(x)$	t), t>0}
Topu 2	Solving The	heat equa	tion on T	the
whole lin	10.			
Prartice pro	Mems: 2.4.14.	Z.4.16, Z.4.	17. Z. 4. 18	(HW6)
Topin 3	Toloing the he	at equation	and the	
Wave of	Solving the he pation on th	e half li	ne nich.	the
homozenes	nus Dinchlot B	C. or N	leumam B.	C
	n B.C. (6			
Kraitie pro	Mems: 0 3.1 (2) HN	1, HW	/ # 1.	

3) 3.1.4 HW7 #4 (which is basically the same as $\frac{3.25}{3.1.5}$) 9 HW8 #2, part (1) (b) 3.2.1, 3.2.6. Topie 4 Solving the heat equation and the vare equation on a finite internal [a, b] with homogeneous Directlet B.C. or Neumann B.C or Robin B.C. on a and on b.

(2 × 3 × 3 = 18 problems) Method 1. By the extension method. Practice problems: HW7#3, 3.2.8, 3.2.9. HW7#6, HW8#3 Method 2: By separation of variables. The eigenvalue problem. Pratie problems: All of HW9 HW10 #1, #2. Orthogonal system of functions and Topis 5.

and Former series. Practice problems: HW10 #3. Topie 6 Duhamel's principles for the heat egnation and the wave egnation. Practice problems: HW7#7, HW8 #2 Topie 7 The maximum principle for the heat equation. Practice problems: D State both the weak and the strong maximum principle for the heat ② Z.3.3, Z.3.4, Z.3.6.