CWU Table Item #: 0191 (1 column)

```
Negalux N18, a diphenylamine diazonium resin from PCAS
NDP02 =
           diazo resin No. 8 from FAIRMOUNT CHEMICAL
          methyl methacrylate, ADS-MONOMER 01 (82/18) copolymer
NDP03 =
NDP04 =
          homopolymer of ADS-MONOMER 01
NDP05 =
          hydroxyethylacrylate, ADS-MONOMER 01 (80/20)
          copolymer
NDP06 =
          methyl methacrylate, ADS-MONOMER 01 (80/20)
           copolymer
NDP07 =
          N-isopropyl-acrylamide, ADS-MONOMER 01 (80/20)
           copolymer
NDP08 =
          N-isopropyl-acrylamide, ADS-MONOMER 01 (85/15)
           copolymer
NDP09 =
          N-t-butyl-acrylamide, ADS-MONOMER 01 (75/25)
           copolymer
NDP10 =
          N-t-butyl-acrylamide, ADS-MONOMER 01 (70/30)
           copolymer
NDP11 =
          hydroxyethyl methacrylate, 2-propenoic acid, 2-methyl-,2-
           [{[(2-nitrophenyl)methoxy]carbonyl}amino]ethyl ester, ADS-
           MONOMER 01 (85/10/5) terpolymer
NDP12 =
          hydroxyethyl methacrylate, ADS-MONOMER 01 (95/5)
           copolymer
NDP13 =
          hydroxyethyl methacrylate, ADS-MONOMER 01 (97/3)
           copolymer
NDP14 =
          hydroxyethyl methacrylate, ADS-MONOMER 01 (90/10)
           copolymer
NDP15 =
          hydroxyethyl methacrylate, ADS-MONOMER 01 (80/20)
          copolymer
NDP16 =
          methyl methacrylate, ADS-MONOMER 01 (40/60)
          copolymer
NDP17 =
          methyl methacrylate, ADS-MONOMER 01 (60/40) copolymer
NDP18 =
          phenyl methacrylate, ADS-MONOMER 01 (40/60) copolymer
NDP19 =
          3-methacryloxypropyltriisopropylsilane, methyl
          methacrylate, ADS-MONOMER 01 (10/70/20) copolymer
NDP20 =
          2-propenoic acid 2-phosphonooxy)ethyl ester, methyl
          methacrylate, ADS-MONOMER 01 (2/80/18) copolymer
          acrylic acid, ADS-MONOMER 01 (80/20) copolymer
NDP22 =
          4-(2-acryloyloxyethoxy)phenyl 2-hydroxy-2-propyl ketone,
          methyl methacrylate, ADS-MONOMER 01 (10/70/20)
          copolymer
NDP23 =
          acrylonitrile, methyl methacrylate, ADS-MONOMER 01
          (10/70/20) copolymer
NDP24 =
          ADS-MONOMER 06, methyl methacrylate,
          ADS-MONOMER 01 (5/80/15) copolymer
          ADS-MONOMER 07, methyl methacrylate,
          ADS-MONOMER 01 (3/82/15) copolymer
          methyl methacrylate, ADS-MONOMER 02 (80/20)
          copolymer
          methyl methacrylate, ADS-MONOMER 03 (80/20)
          copolymer
          methyl methacrylate, ADS-MONOMER 05 (75/25)
          copolymer
NDP29 =
          methyl methacrylate, ADS-MONOMER 04 (80/20)
          copolymer
NDP30 =
          methyl methacrylate, ADS-MONOMER 01
          (ammonium salt) (80/20) copolymer
NDP31 =
          methyl methacrylate, ADS-MONOMER 01
          (tetramethylammonium salt) (80/20) copolymer
NDP32 =
          methyl methacrylate, ADS-MONOMER 01
          (tetraethylammonium salt) (80/20) copolyment
NDP33 =
          hydroxyethyl methacrylate, ADS-MONOMER 01 (85/15)
          copolymer
NDP34 =
          condensation product of 4-diazodiphenylamine sulphate and
          formaldehyde
          condensation product of 4-diazodiphenylamine toluene
          sulphonate and formaldehyde
NDP36 =
          condensation product of 4-diazodiphenylamine
          tetrafluoroborate and formaldehyde
```

+T1 + HZ, 1/32

!+TL,1 NDP01 +32 ? +TL,6 Negalux N18, a diphenylamine diazonium resin from PCAS?

!NDP02 +32 ? diazo resin No. 8 from FAIRMOUNT CHEMICAL?

!NDP03 +32 ? methyl methacrylate, ADS-MONOMER 01 (82/18) copolymer?

```
DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 04 — 7/18/2003 - 8:02:47 AM
!NDP04 +32 ? homopolymer of ADS-MONOMER 01?
!NDP05 +32 ? hydroxyethylacrylate, ADS-MONOMER 01 (80/20)?
!? copolymer?
!NDP06 +32 ? methyl methacrylate, ADS-MONOMER 01 (80/20)?
!? copolymer?
!NDP07 +32 ? N-isopropyl-acrylamide, ADS-MONOMER 01 (80/20)?
!? copolymer?
!NDP08 +32 ? N-isopropyl-acrylamide, ADS-MONOMER 01 (85/15)?
!? copolymer?
!NDP09 +32 ? N-t-butyl-acrylamide, ADS-MONOMER 01 (75/25)?
!? copolymer?
!NDP10 +32 ? N-t-butyl-acrylamide, ADS-MONOMER 01 (70/30)?
!? copolymer?
!NDP11 +32 ? hydroxyethyl methacrylate, 2-propenoic acid, 2-methyl-,2-?
!? +8 +55 +8 (2-nitrophenyl)methoxy+9 carbonyl+56 amino+9 ethyl ester, ADS-?
!? MONOMER 01 (85/10/5) terpolymer?
!NDP12 +32 ? hydroxyethyl methacrylate, ADS-MONOMER 01 (95/5)?
!? copolymer?
!NDP13 +32 ? hydroxyethyl methacrylate, ADS-MONOMER 01 (97/3)?
!? copolymer?
!NDP14 +32 ? hydroxyethyl methacrylate, ADS-MONOMER 01 (90/10)?
!? copolymer?
!NDP15 +32 ? hydroxyethyl methacrylate, ADS-MONOMER 01 (80/20)?
!? copolymer?
!NDP16 +32 ? methyl methacrylate, ADS-MONOMER 01 (40/60)?
!? copolymer?
!NDP17 +32 ? methyl methacrylate, ADS-MONOMER 01 (60/40) copolymer?
!NDP18 +32 ? phenyl methacrylate, ADS-MONOMER 01 (40/60) copolymer?
!NDP19 +32 ? 3-methacryloxypropyltriisopropylsilane, methyl?
!? methacrylate, ADS-MONOMER 01 (10/70/20) copolymer?
!NDP20 +32 ? 2-propenoic acid 2-phosphonooxy)ethyl ester, methyl?
!? methacrylate, ADS-MONOMER 01 (2/80/18) copolymer?
!NDP21 +32 ? acrylic acid, ADS-MONOMER 01 (80/20) copolymer?
!NDP22 +32 ? 4-(2-acryloyloxyethoxy)phenyl 2-hydroxy-2-propyl ketone,?
!? methyl methacrylate, ADS-MONOMER 01 (10/70/20)?
!? copolymer?
!NDP23 +32 ? acrylonitrile, methyl methacrylate, ADS-MONOMER 01?
!? (10/70/20) copolymer?
```

```
DA: data54 —— MD: 6/23/2003 —— N: 5,790,513 —— F: 04 —— 7/18/2003 - 8:02:47 AM
!NDP24 +32 ? ADS-MONOMER 06, methyl methacrylate,?
!? ADS-MONOMER 01 (5/80/15) copolymer?
!NDP25 +32 ? ADS-MONOMER 07, methyl methacrylate,?
!? ADS-MONOMER 01 (3/82/15) copolymer?
!NDP26 +32 ? methyl methacrylate, ADS-MONOMER 02 (80/20)?
!? copolymer?
!NDP27 +32 ? methyl methacrylate, ADS-MONOMER 03 (80/20)?
!? copolymer?
!NDP28 +32 ? methyl methacrylate, ADS-MONOMER 05 (75/25)?
!NDP29 +32 ? methyl methacrylate, ADS-MONOMER 04 (80/20)?
!? copolymer?
!NDP30 +32 ? methyl methacrylate, ADS-MONOMER 01?
!? (ammonium salt) (80/20) copolymer?
!NDP31 +32 ? methyl methacrylate, ADS-MONOMER 01?
!? (tetramethylammonium salt) (80/20) copolymer?
!NDP32 +32 ? methyl methacrylate, ADS-MONOMER 01?
!? (tetraethylammonium salt) (80/20) copolymer?
!NDP33 +32 ? hydroxyethyl methacrylate, ADS-MONOMER 01 (85/15)?
!? copolymer?
!NDP34 +32 ? condensation product of 4-diazodiphenylamine sulphate and?
!? formaldehyde?
!NDP35 +32 ? condensation product of 4-diazodiphenylamine toluene?
!? sulphonate and formaldehyde?
!NDP36 +32 ? condensation product of 4-diazodiphenylamine?
!? tetrafluoroborate and formaldehyde+TZ,1/32 ?
!+PS
```

Item character count = 2770

CWU Table Item #: 0232 (1 column)

```
PQD01 =
              AZ 7217, a positive working photoresist from CLARIANT
PQD02 =
              2-diazo-1-naphthol-5-sulfonic acid sodium salt
PQD03 =
              1-diazo-2-naphthol-4-sulfonic acid sodium salt
PQD04 =
              2-diazo-1-naphthol-5-(4'-methyl-phenylsulphonate)
PQD05 =
              2-diazo-1-naphthol-5-phenylsulphonate
PQD06 =
              bis(6'-diazo-5'-oxy-5'-sulphonate naphthalene)-2,4-
              benzophenone
PQD07 =
              2-diazo-1-oxy-(2'-benzotriazolyl-4'-methyl-phenyl)-5-
              sulphonate naphthalene
```

-continued

```
PQD08 =
         partial esterification product of 1,2-naphthoquinone (2)
         diazide-5-sulfonyl chloride and a p-t-butylphenol-
         formaldehyde copolymer
PQD09 =
         partial esterification product of 1,2-naphthoquinone
         diazide-5-sulfonyl chloride and a cresol formaldehyde
         polymer
PQD10 =
         partial esterification product of 1,2-naphthoquinone (2)
         diazide-5-sulfonylchloride and a p-cresol-formaldehyde
PQD11 =
         partial esterification product of 1,2-naphthoquinone (2)
         diazide-5-sulfonyl chloride and a p-t-butylphenol-
         formaldehyde copolymer
+T1 + HZ, 1/32
!+TL,1 PQD01 +32 ? +TL,7 AZ 7217, a positive working photoresist from CLARIANT?
!PQD02 +32 ? 2-diazo-1-naphthol-5-sulfonic acid sodium salt?
!PQD03 +32 ? 1-diazo-2-naphthol-4-sulfonic acid sodium salt?
!PQD04 +32 ? 2-diazo-1-naphthol-5-(4+40 -methyl-phenylsulphonate)?
!PQD05 +32 ? 2-diazo-1-naphthol-5-phenylsulphonate?
!PQD06 +32 ? bis(6+40 -diazo-5+40 -oxy-5+40 -sulphonate naphthalene)-2,4-?
!? benzophenone?
!PQD07 +32 ? 2-diazo-1-oxy-(2+40 -benzotriazoly1-4+40 -methyl-phenyl)-5-?
!? sulphonate naphthalene?
!PQD08 +32 ? partial esterification product of 1,2-naphthoquinone (2)?
!? diazide-5-sulfonyl chloride and a p-t-butylphenol-?
!? formaldehyde copolymer?
!PQD09 +32 ? partial esterification product of 1,2-naphthoquinone?
!? diazide-5-sulfonyl chloride and a cresol formaldehyde?
!? polymer?
```

!PQD10 +32 ? partial esterification product of 1,2-naphthoquinone (2)?

!PQD11 +32 ? partial esterification product of 1,2-naphthoquinone (2)?

!? diazide-5-sulfonylchloride and a p-cresol-formaldehyde?

!? diazide-5-sulfonyl chloride and a p-t-butylphenol-?

Item character count = 999

!? formaldehyde copolymer+TZ,1/32 ?

!? resin?

!+PS

CWU Table Item #: 0272 (1 column)

```
Support
         Composition
         subbing layer consisting of 79.1% LATEX01; 18.6% KIESELSOL™ 100F; 0.5% MERSOLAT™ H;
  01
         and 1.9% ULTRAVON ™ W
  02
         surface treated with a corona discharge
         surface treated with an glow discharge
         subbing layer consisting of a first layer of 79.1%
         LATEX01; 18.6% KIESELSOL ™ 100F;
         0.5% MERSOLAT ™ H; and 1.9% ULTRAVON ™ W;
         and an outermost layer consisting of 49% gelatin,
         44% KIESELSOL ™ 300F, 1.72% ULTRAVON ™ W,
         0.86% ARKOPAL ™ N060, 2.86% hexylene glycol, 1.43%
         trimethylol propane and 0.13% polymethyl methacylate, a
         3 µm matting agent.
         subbing layer consisting of 77.2% of LATEX02; 5.8% of
         LATEX03; 1.3% HORDAMER ™ PE02
         and 14.6% PAREZ RESIN™ 613.
         subbing layer consisting of a first layer of 85.6% of LATEX0I, 9.5% of KTESELSOL ^{TM} 100F,
         2.5% of PEDOT/PSS, 0.5% of MERSOLAT ™ 76H and 1.9% ULTRAVON ™ W; and an
         outermost layer consisting of 49% gelatin, 44% KIESELSOL ™ 300F, 1.72% ULTRAVON ™ W,
         0.86% ARKOPAL ™ N060, 2.86% 2-methyl-2,4-pentanediol
         1.43% trimethylol propane and 0.13% polymethyl methacylate
         3 μm matting agent.
 07
         subbing layer consisting of 79.8% LATEX02; 19.9%
         KIESELSOL™ 100F; and 0.3% ARKOPON™ T
         subbing layer consisting of 75.0% LATEX01,
         9.0% LATEX03 and 16.0% KIESELSOL ™ 100F
```

+T1 + HZ, 1/32

- !+HC,1 Support? +HL,6 ?
- !nr.? Composition+HZ,1/32 ?
- !+TC,1 01? +TL,6 subbing layer consisting of 79.1% LATEX01; 18.6%?
- !? KIESELSOL+12 +198 +0 100F; 0.5% MERSOLAT+12 +198 +0 H;?
- !? and 1.9% ULTRAVON+12 +198 +0 W?
- !02? surface treated with a corona discharge?
- !03? surface treated with an glow discharge?
- !04? subbing layer consisting of a first layer of 79.1%?
- !? LATEX01; 18.6% KIESELSOL+12 +198 +0 100F;?
- !? 0.5% MERSOLAT+12 +198 +0 H; and 1.9% ULTRAVON+12 +198 +0 W;?
- !? and an outermost layer consisting of 49% gelatin,?
- !? 44% KIESELSOL+12 +198 +0 300F, 1.72% ULTRAVON+12 +198 +0 W,?
- !? 0.86% ARKOPAL+12 +198 +0 N060, 2.86% hexylene glycol, 1.43%?
- !? trimethylol propane and 0.13% polymethyl methacylate, a?
- !? 3 +82 m matting agent.?
- !05? subbing layer consisting of 77.2% of LATEX02; 5.8% of?
- !? LATEX03; 1.3% HORDAMER+12 +198 +0 PE02?
- !? and 14.6% PAREZ RESIN+12 +198 +0 613.?
- !06? subbing layer consisting of a first layer of 85.6% of?
- !? LATEX01, 9.5% of KTESELSOL+12 +198 +0 100F,?
- !? 2.5% of PEDOT/PSS, 0.5% of MERSOLAT+12 +198 +0 76H and?
- !? 1.9% ULTRAVON+12 +198 +0 W; and an?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 04 — 7/18/2003 - 8:02:47 AM 6

- !? outermost layer consisting of 49% gelatin, 44%?
- !? KIESELSOL+12 +198 +0 300F, 1.72% ULTRAVON+12 +198 +0 W,?
- !? 0.86% ARKOPAL+12 +198 +0 N060, 2.86% 2-methyl-2,4-pentanediol?
- !? 1.43% trimethylol propane and 0.13% polymethyl methacylate?
- !? 3 +82 m matting agent.?
- !07? subbing layer consisting of 79.8% LATEX02; 19.9%?
- !? KIESELSOL+12 +198 +0 100F; and 0.3% ARKOPON+12 +198 +0 T?
- !08? subbing layer consisting of 75.0% LATEX01,?
- !? 9.0% LATEX03 and 16.0% KIESELSOL+12 +198 +0 100F+TZ,1/32 ?

!+PS

Item character count = 1305

CWU Table Item #: 0331 (2 columns)

TABLE 7

	SAMPLE					
	xxv	XXVI	XXVII	XXVIII	XXIX	xxx
INGREDIENT [g]						
1.2% aq. PEDOT/PSS dispersion	16.7	16.7	16.7	16.7	16.7	16.7
2% aq. sol. of ZONYL ™ FSO 100	0.50	0.50	0.50	0.50	0.50	0.50
N-methyl-pyrrolidinone	2.50	2.50	2.50	2,50	2.50	2.50
2.5% aqueous NH ₄ OH solution	0.45	0.45	0.45	0.45	0.45	0.45
15.16% aq. solution of NDP06	0.66					_
17.03% aq. solution of NDP07*	_	0.59	_		_	
18.34% aq. solution of NDP08*		_	0.54	_		_
16.8% ag. solution of NDP09*		_	_	0.59		
17.39% aq. solution of NDP10*		_	_	_	0.57	_
16.63% aq. solution of NDP11*	_		_			0.60
deionized water	29.19	29.26	29.31	29,26	29.28	29.25
COVERAGE						
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200
NDP06 [mg/m ²]	100		_	_		_
NDP07 [mg/m ²]		100		_	_	_
NDP08 [mg/m ²]			100	_	_	
NDP09 [mg/m ²]	_		_	100		
NDP10 [mg/m ²]		_	_		100	
NDP11 [mg/m ²]						100
ZONYL FSO 100 [mg/m ²]	8	8	8	8	8	8

^{*}solution in water/isopropanol 40/60 by volume

+T2 TABLE 7+HZ,1/41

!+HC,17 +UZ,17/41 SAMPLE?

!+HC,17 XXV? +HC,21 XXVI? +HC,25 XXVII? +HC,29 XXVIII? +HC,33 XXIX? +HC,37 XXX+HZ,1/41

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ? +TA,17 ? +TA,21 ? +TA,25 ? +TA,29 ? +TA,33 ? +TA,37

!1.2% aq. PEDOT/PSS dispersion? 16.7? 16.7? 16.7? 16.7? 16.7?

!2% aq. sol. of ZONYL+12 +198 +0 FSO 100? 0.50? 0.50? 0.50? 0.50? 0.50? 0.50?

DA: data54 —— MD: 6/23/2003 —— N: 5,790,513 —— F: 04 —— 7/18/2003 - 8:02:47 AM !N-methyl-pyrrolidinone? 2.50? 2.50? 2.50? 2.50? 2.50? 2.50? !2.5% aqueous NH+HD 4+L OH solution? 0.45? 0.45? 0.45? 0.45? 0.45? +13 ? !17.03% ag. solution of NDP07*? +13 ? 0.59? +13 ? +13 ? +13 ? +13 ? !18.34% ag. solution of NDP08*? +13 ? +13 ? 0.54? +13 ? +13 ? +13 ? !16.8% ag. solution of NDP09*? +13 ? +13 ? +13 ? 0.59? +13 ? +13 ? !17.39% aq. solution of NDP10*? +13 ? +13 ? +13 ? +13 ? 0.57? +13 ? !16.63% aq. solution of NDP11*? +13 ? +13 ? +13 ? +13 ? +13 ? 0.60? !deionized water? 29.19? 29.26? 29.31? 29.26? 29.28? 29.25? !+UZ,1/7 COVERAGE? !PEDOT/PSS +8 mg/m+HU 2+L +9 ? 200? 200? 200? 200? 200? 200? !NDP06 +8 mg/m+HU 2+L +9 ? 100? +13 ? +13 ? +13 ? +13 ? +13 ? !NDP07 +8 mg/m+HU 2+L +9 ? +13 ? 100? +13 ? +13 ? +13 ? +13 ? !NDP08 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? 100? +13 ? +13 ? +13 ? !NDP09 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? 100? +13 ? +13 ? !NDP10 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? +13 ? 100? +13 ? !NDP11 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? +13 ? +13 ? 100? !ZONYL FSO 100 +8 mg/m+HU 2+L +9 ? 8? 8? 8? 8? 8? 8+TZ,1/41 ? !+L6 *solution in water/isopropanol 40/60 by volume !+PS

Item character count = 983

CWU Table Item #: 0344 (2 columns)

TABLE 8

			SA1	MPLE		
PROPERTY	xxv	XXVI	XXVII	XXVIII	XXIX	xxx
R _s (Ω/square) of coated layer before patterning	3.2×10^{3}	4.5×10^{3}	3.4×10^{3}	3.8×10^{3}	3.2×10^{3}	2.9×10^{3}
R _s (Ω/square) of non- exposed areas after exposure and processing	>4.0 × 10 ⁷					
$R_s(\Omega)$ square) of exposed areas after exposure and processing	1.5 × 10 ⁴	1.8 × 10 ⁴	1.5 × 10 ⁴	1.5 × 10 ⁴	1.0 × 10 ⁴	1.2 × 10 ⁴
R _s ratio non-exposed/ exposed areas	>2700	>2200	>2700	>2700	>4000	>3300

+T2 TABLE 8+HZ,1/41

!+HC,11 +UZ,11/41 SAMPLE?

!+HL,1 PROPERTY? +HL,11 XXV? +HL,16 XXVI? +HL,21 XXVII? +HL,26 XXVIII? +HL,31 XXIX?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 04 — 7/18/2003 - 8:02:47 AM

8

+HL,36 XXX+HZ,1/41 ?

!+TL,1 R+HD s+L (+106 /square) of coated? +TL,11 3.2 +33 +0 10+HU 3? +TL,16 4.5 +33 +0
10+HU 3? +TL,21 3.4 +33 +0 10+HU 3? +TL,26 3.8 +33 +0 10+HU 3? +TL,31 3.2 +33 +0 10+HU
3? +TL,36 2.9 +33 +0 10+HU 3?

!layer before patterning?

!R+HD s+L (+106 /square) of non-? +22 4.0 +33 +0 10+HU 7? +22 4.0 +33 +0 10+HU 7?

!exposed areas after?

!exposure and?

!processing?

!R+HD s+L (+106 /square) of? 1.5 +33 +0 10+HU 4? 1.8 +33 +0 10+HU 4? 1.5 +33 +0 10+HU 4? 1.5 +33 +0 10+HU 4? 1.0 +33 +0 10+HU 4? 1.2 +33 +0 10+HU 4?

!exposed?

!areas after?

!exposure?

!and processing?

!R+HD s +L ratio non-exposed/? +22 2700? +22 2700? +22 2700? +22 2700? +22 4000? +22 3300? !exposed areas+TZ,1/41 ?

!+PS

Item character count = 547

CWU Table Item #: 0346 (1 column)

TABLE 9

composition of the coating dispersions						
	SAMPLE					
	XXXI	XXXII	XXXIII	xxxiv		
INGREDIENT						
1.2% aq. dispersion of PEDOT/PSS	16.7	16.7	16.7	16.7		
2% aq. solution of ZONYL™ PSO 100	0.50	0.50	0.50	0.50		
N-methyl-pyrrolidinone	2.50	2.50	2.50	2.50		
2.5% aqueous NH ₄ OH solution	0.45	0.45	0.45	0.45		
15.16% aq. solution of NDP06	0.66					
15.9% aq. solution of NDP12*	_	0.63				
15.9% aq. solution of NDP13*		_	0.63			
15.9% aq. solution of NDP14*		_	_	0.63		
deionized water COVERAGE	29.19	29.22	29.22	29.22		
PEDOT/PSS [mg/m ²]	200	200	200	200		
NDP06 [mg/m ²]	100		_	_		
NDP12 [mg/m ²]		100	_	_		

TABLE 9-continued

composition of the coating dispersions							
	SAMPLE						
	XXXI	XXXII	XXXIII	XXXIV			
NDP13 [mg/m ²] NDP14 [mg/m ²]	_	_	100	100			
ZONYL PSO 100 [mg/m²]	8	8	8	8			

^{*}solution in water/isopropanol 40/60 by volume

+T1 TABLE 9+HZ,1/32

!+HC,1 +UZ,8/25 composition of the coating dispersions?

!+HC,15 +UZ,15/32 SAMPLE?

!+HC,15 XXX1? +HC,19 XXXII? +HC,23 XXXIII? +HC,28 XXXIV+HZ,1/32 ?

!+TL,1 +UZ,1/8 INGREDIENT? +TA,15 ? +TA,19 ? +TA,23 ? +TA,28 ?

!1.2% aq. dispersion of? 16.7? 16.7? 16.7?

!PEDOT/PSS?

!2% aq. solution of? 0.50? 0.50? 0.50? 0.50?

!ZONYL+12 +198 +0 PSO 100?

!N-methyl-pyrrolidinone? 2.50? 2.50? 2.50? 2.50?

!2.5% aqueous NH+HD 4+L OH solution? 0.45? 0.45? 0.45? 0.45?

!15.16% aq. solution of NDP06? 0.66? +13 ? +13 ? +13 ?

!15.9% aq. solution of NDP12*? +13 ? 0.63? +13 ? +13 ?

!15.9% aq. solution of NDP13*? +13 ? +13 ? 0.63? +13 ?

!15.9% aq. solution of NDP14*? +13 ? +13 ? +13 ? 0.63?

!deionized water? 29.19? 29.22? 29.22? 29.22?

!+UZ,1/7 COVERAGE?

!PEDOT/PSS +8 mg/m+HU 2+L +9 ? 200? 200? 200? 200?

!NDP06 +8 mg/m+HU 2+L +9 ? 100? +13 ? +13 ? +13 ?

!NDP12 +8 mg/m+HU 2+L +9 ? +13 ? 100? +13 ? +13 ?

!NDP13 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? 100? +13 ?

!NDP14 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? 100?

!ZONYL PSO 100 +8 mg/m+HU 2+L +9 ? 8? 8? 8? 8+TZ,1/32 ?

!+L6 *solution in water/isopropanol 40/60 by volume

!+PS

TABLE 10

	SAMPLE					
PROPERTY	XXXI	XXXII	XXXIII	XXXIV		
$R_s(\Omega/\text{square})$ of coated layer before patterning	2.8×10^{3}	1.9×10^{3}	1.6×10^3	1.8×10^3		
R _s (Ω/square) of non- exposed areas after exposure and processing	>4.0 × 10 ⁷	>4.0 × 10 ⁷	>4.0 × 10 ⁷	1.6 × 10 ⁸		
$R_s(\Omega/\text{square})$ of exposed areas after exposure and processing	1.0×10^4	3.6×10^{3}	4.5×10^{3}	4.2×10^{3}		
Resistance ratio non- exposed/exposed areas	$>4 \times 10^3$	$>1.1 \times 10^3$	>9 × 10 ³	3.8×10^4		
Optical resolution of lines [µm]	8	4	40	4		
Optical resolution of spaces µm]	>70	6	6	6		

+T1 TABLE 10+HZ,1/32

!+HC,12 +UZ,12/32 SAMPLE?

!+HL,1 PROPERTY? +HL,12 XXXI? +HL,17 XXXII? +HL,22 XXXIII? +HL,27 XXXIV+HZ,1/32 ?

!+TL,1 R+HD s+L (+106 /square) of coated? +TL,12 2.8 +33 +0 10+HU 3? +TL,17 1.9 +33 +0

10+HU 3? +TL,22 1.6 +33 +0 10+HU 3? +TL,27 1.8 +33 +0 10+HU 3?

!layer before patterning?

!R+HD s+L (+106 /square) of non-? +22 4.0 +33 +0 10+HU 7? +22 4.0 +33 +0 10+HU 7? +22 4.0 +33 +0 10+HU 7? 1.6 +33 +0 10+HU 8?

!exposed areas after?

!exposure and processing?

!R+HD s+L (+106 /square) of exposed? 1.0 +33 +0 10+HU 4? 3.6 +33 +0 10+HU 3? 4.5 +33 +0 10+HU 3? 4.2 +33 +0 10+HU 3?

!areas after exposure and?

!processing?

!Resistance ratio non-? +22 4 +33 +0 10+HU 3? +22 1.1 +33 +0 10+HU 3? +22 9 +33 +0 10+HU 3? 3.8 +33 +0 10+HU 4?

!exposed/exposed areas?

!Optical resolution of? 8? 4? 40? 4?

!lines +8 +82 m+9 ?

!Optical resolution of? +22 70? 6? 6? 6?

!spaces +82 m+9 +TZ, 1/32 ?

!+PS

TABLE 11

composition of the coating dispersions							
	SAMPLE						
	xxxv	XXXVI	XXXVII	XXXVIII	XXXIX	XL	
INGREDIENT [g]							
1.2% aq. PEDOT/PSS dispersion 2% aq. sol. ZONYL ™ FSO 100 2.5% aqueous NH₄OH solution 15.9% solution of NDP15* 17.6% solution of NDP20* 17.4% solution of NDP21* 14.02% solution of NDP23* 14.36% solution of NDP27* 18.81% solution of NDP32* deionized water COVERAGE	16.7 0.50 0.50 0.63 ————————————————————————————————————	16.7 0.50 0.50 	16.7 0.50 0.50 	16.7 0.50 0.50 0.72 31.58	16.7 0.50 0.50 — — — — 0.70 — 31.60	16.7 0.50 0.50 	
PEDOT/PSS [mg/m ²] NDP15 [mg/m ²] NDP20 [mg/m ²] NDP21 [mg/m ²] NDP23 [mg/m ²] NDP27 [mg/m ²] NDP32 [mg/m ²] NDP32 [mg/m ²] ZONYL FSO 100 [mg/m ²]	200 100 — — — — — 8	200 100 — — — — 8	200 ———————————————————————————————————	200 — — — 100 — 8	200 — — — — 100 — 8	200 — — — — 100 8	

^{*}solution in water/isopropanol 40/60 by volume

+T2 TABLE 11+HZ,1/44

!+HC,1 +UZ,14/31 composition of the coating dispersions?

!+HC,18 +UZ,18/44 SAMPLE?

!+HC,18 XXXV? +HC,22 XXXVI? +HC,26 XXXVII? +HC,31 XXXVIII? +HC,36 XXXIX? +HC,40 XL+HZ,1/44 ?

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ? +TA,18 ? +TA,22 ? +TA,26 ? +TA,31 ? +TA,36 ? +TA,40 ?

!1.2% aq. PEDOT/PSS dispersion? 16.7? 16.7? 16.7? 16.7? 16.7?

!2% aq. sol. ZONYL+12 +198 +0 FSO 100? 0.50? 0.50? 0.50? 0.50? 0.50? 0.50?

!2.5% aqueous NH+HD 4+L OH solution? 0.50? 0.50? 0.50? 0.50? 0.50?

!15.9% solution of NDP15*? 0.63? +13 ? +13 ? +13 ? +13 ? +13 ?

!17.6% solution of NDP20*? +13 ? 0.57? +13 ? +13 ? +13 ? +13 ?

!17.4% solution of NDP21*? +13 ? +13 ? 0.58? +13 ? +13 ? +13 ?

!14.02% solution of NDP23*? +13 ? +13 ? +13 ? 0.72? +13 ? +13 ?

!14.36% solution of NDP27*? +13 ? +13 ? +13 ? +13 ? 0.70? +13 ?

!18.81% solution of NDP32*? +13 ? +13 ? +13 ? +13 ? +13 ? 0.53?

!deionized water? 31.67? 31.73? 31.72? 31.58? 31.60? 31.77?

!+UZ,1/7 COVERAGE?

!PEDOT/PSS +8 mg/m+HU 2+L +9 ? 200? 200? 200? 200? 200? 200?

!NDP15 +8 mg/m+HU 2+L +9 ? 100? +13 ? +13 ? +13 ? +13 ? +13 ?

!NDP20 +8 mg/m+HU 2+L +9 ? +13 ? 100? +13 ? +13 ? +13 ? +13 ?

!NDP21 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? 100? +13 ? +13 ? +13 ?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 04 — 7/18/2003 - 8:02:47 AM

12
!NDP23 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? 100? +13 ? +13 ?
!NDP27 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? 100? +13 ?
!NDP32 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? +13 ? 100?
!ZONYL FSO 100 +8 mg/m+HU 2+L +9 ? 8? 8? 8? 8? 8? 8+TZ,1/44 ?
!+L6 *solution in water/isopropanol 40/60 by volume
!+PS

Item character count = 948

CWU Table Item #: 0371 (2 columns)

TABLE 12

	SAMPLE					
PROPERTY	xxxv	xxxvi	XXXVII	XXXVIII	XXXIX	XL
processing liquid R _s (Ω/square) of coated layer before patterning	$\frac{B}{7.5 \times 10^6}$	$\frac{B}{3.4 \times 10^6}$	B 1.9 × 10 ⁶	A 4.5 × 10 ⁶	A 6.5 × 10 ⁶	A 8.0 × 10 ⁶
$R_s(\Omega)$ square) of non- exposed areas after exposure and processing	>4.0 × 10 ⁷	>4.0 × 10 ⁷	8.6 × 10 ⁶	>4.0 × 10 ⁷	>4.0 × 10 ⁷	>4.0 × 10 ⁷
R _s (Ω/square) of exposed areas after exposure and processing	4.5×10^6	2.1 × 10 ⁶	8.2 × 10 ⁶	5.7 × 10 ⁶	2.7 × 10 ⁶	4.0×10^{6}
R _s ratio non-exposed/ exposed areas	>8.9	>19.0	1.0	>7.0	>14.8	>10
Optical resolution of lines [µm]	4	4	4	4	4	4
Optical resolution of spaces [µm]	6	6	6	6	6	4
R _s (Ω/square) of non- exposed areas after processing and enhancement	9.0 × 10 ⁸	1.2 × 10 ⁹	1.1×10^7	4.3×10^{12}	5.4 × 10 ¹⁰	4.5×10^{12}
$R_s(\Omega/\text{square})$ of exposed areas after exposure, processing and enhancement	9.1×10^{3}	9.5 × 10 ³	2.7 × 10 ⁴	3.8 × 10 ⁴	4.0×10^{3}	5.9×10^3
R _s ratio non- exposed/exposed areas after enhancement	9.9 × 10 ⁴	1.3 × 10 ⁵	400	1.13 × 10 ⁸	1.35 × 10 ⁷	7.6 × 10 ⁸

+T2 TABLE 12+HZ,1/42

!+HC,12 +UZ,12/42 SAMPLE?

!+HL,1 PROPERTY? +HL,12 XXXV? +HL,17 XXXVI? +HL,22 XXXVII? +HL,27 XXXVIII? +HL,32 XXXIX?
+HL,37 XL+HZ,1/42 ?

!+TL,1 processing liquid? +TL,12 B? +TL,17 B? +TL,22 B? +TL,27 A? +TL,32 A? +TL,37 A?
!R+HD s+L (+106 /square) of coated? 7.5 +33 +0 10+HU 6? 3.4 +33 +0 10+HU 6? 1.9 +33 +0
10+HU 6? 4.5 +33 +0 10+HU 6? 6.5 +33 +0 10+HU 6? 8.0 +33 +0 10+HU 6?

!layer before patterning?

!R+HD s+L (+106 /square) of non-? +22 4.0 +33 +0 10+HU 7? +22 4.0 +33 +0 10+HU 7? 8.6 +33 +0 10+HU 6? +22 4.0 +33 +0 10+HU 7? +22 4.0 +33 +0 10+HU 7?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 04 — 7/18/2003 - 8:02:47 AM !exposure and processing? !R+HD s+L (+106 /square) of exposed? 4.5 +33 +0 10 + HU 6? 2.1 +33 +0 10 + HU 6? 8.2 +33 +010+HU 6? 5.7 +33 +0 10+HU 6? 2.7 +33 +0 10+HU 6? 4.0 +33 +0 10+HU 6? !areas after exposure and? !processing? !R+HD s +L ratio non-exposed/? +22 8.9? +22 19.0? 1.0? +22 7.0? +22 14.8? +22 10? !exposed areas? !Optical resolution of? 4? 4? 4? 4? 4? 4? !lines +8 +82 m+9 ? !Optical resolution of? 6? 6? 6? 6? 6? 4? !spaces +8 +82 m+9 ? !R+HD s+L (+106 /square) of non-? 9.0 +33 +0 10+HU 8? 1.2 +33 +0 10+HU 9? 1.1 +33 +0 10+HU 7? 4.3 +33 +0 10+HU 12? 5.4 +33 +0 10+HU 10? 4.5 +33 +0 10+HU 12? !exposed areas after? !processing and? !enhancement? !R+HD s+L (+106 /square) of exposed? 9.1 +33 +0 10+HU 3? 9.5 +33 +0 10+HU 3? 2.7 +33 +0 10+HU 4? 3.8 +33 +0 10+HU 4? 4.0 +33 +0 10+HU 3? 5.9 +33 +0 10+HU 3? !areas after exposure,? !processing and? !enhancement? !R+HD s +L ratio non-? 9.9 +33 +0 10+HU 4? 1.3 +33 +0 10+HU 5? 400? 1.13 +33 +0 10+HU

8? 1.35 +33 +0 10+HU 7? 7.6 +33 +0 10+HU 8?

!exposed/exposed areas?

!after enhancement+TZ,1/42 ?

!+PS

Item character count = 1076

CWU Table Item #: 0392 (1 column)

composition of PEDOT/PSS-containing coating dispersions

TABLE 13

	SAMPLE		_
	XLI	XLII	
INGREDIENT [g]			
1.2% aqueous dispersion of PEDOT/PSS	125	500	
Z6040	1.0	1.0	
2% aqueous solution of ZONYL ™ FSO 100	1.5	1.5	

TABLE 13-continued

composition of PEDOT/PSS-containing coating dispersions

	SA	MPLE
	XLI	XLII
N-methyl-pyrrolidinone deionized water COVERAGE [mg/m²]	50 825	50 450
PEDOT/PSS ZONYL™ FSO 100	100 2	400 8

+T1 TABLE 13+HZ,1/32

!+HC,1 +UZ,4/29 composition of PEDOT/PSS-containing coating dispersions?

!+HC,23 +UZ,23/32 SAMPLE?

!+HC,-23_XLT?_+HC,26 XLII+HZ,1/32 ?

!\(\tau_1\), 3 +UZ, 1/9\) INGREDIENT +8 g+9 ? +TA, 23 ? +TA, 26 ?

!1.2% aqueous dispersion of PEDOT/PSS? 125? 500?

!Z6040? 1.0? 1.0?

!2% aqueous solution of ZONYL+12 +198 +0 FSO 100? 1.5? 1.5?

!N-methyl-pyrrolidinone? 50? 50?

!deionized water? 825? 450?

!+UZ,3/13 COVERAGE +8 mg/m+HU 2+L +9 ?

!PEDOT/PSS? 100? 400?

!ZONYL+12 +198 +0 FSO 100? 2? 8+TZ,1/32 ?

!+PS

Item character count = 342

Folder character count = 10302

1

CWU Table Item #: 0393 (1 column)

TABLE 14

composition of the coating dispersion	ons
INGREDIENT	SAMPLE XLIII
1.2% aqueous dispersion of PEDOT/PSS	300
PQD01	100
1% aqueous solution of ZONYL ™ FSO 100	40
N-methyl-pyrrolidinone	560

+T1 TABLE 14+HZ,1/32

!+HC,1 +UZ,8/25 composition of the coating dispersions?

!+HL,3 ? +HC,22 SAMPLE?

!INGREDIENT? XLIII+HZ,1/32 ?

!+TL,3 1.2% aqueous dispersion of PEDOT/PSS? +TA,22 300?

!PQD01? 100?

!1% aqueous solution of ZONYL+12 +198 +0 FSO 100? 40?

!N-methyl-pyrrolidinone? 560+TZ,1/32 ?

!+PS

Item character count = 211

CWU Table Item #: 0421 (1 column)

TABLE 17

	SAMPLE			
	LI (COMP)	LII	LIII	
INGREDIENT [g]				
1.2% aq. PEDOT/PSS dispersion	41.7	41.7	41.7	
2% aq. sol. of ZONYL TM FSO 100	1	1	1	
N-methyl-pyrrolidinone	_	_		
BADS01	_	0.125	0.25	
2.5% aqueous NH ₄ OH solution	2.28	2.48	2.33	
deionized water COVERAGE	55.02	54.70	54.72	
PEDOT/PSS [mg/m ²]	200	200	200	
BADS01 [mg/m ²]		50	100	
ZONYL ™ FSO 100 [mg/m²]	8	8	8	

+T1 TABLE 17+HZ,1/32

!+HC,17 +UZ,17/32 SAMPLE?

!+HC,17 LI (COMP)? +HC,24 LII? +HC,28 LIII+HZ,1/32 ?

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ?

!+TL,1 1.2% aq. PEDOT/PSS dispersion? +TA,17 41.7? +TA,24 41.7? +TA,28 41.7?

!2% aq. sol. of ZONYL+12 +198 +0 FSO 100? 1? 1? 1?

!N-methyl-pyrrolidinone? +TC +13 ? +TC +13 ? +TC +13 ?

!BADS01? +13 ? +TA 0.125? +TA 0.25?

DA: data54 —— MD: 6/23/2003 —— N: 5,790,513 —— F: 05 —— 7/18/2003 - 8:02:52 AM

!2.5% aqueous NH+HD 4+L OH solution? +TA 2.28? 2.48? 2.33?

!deionized water? 55.02? 54.70? 54.72?

!+UZ,1/7 COVERAGE?

!PEDOT/PSS +8 mg/m+HU 2+L +9 ? 200? 200? 200?

!BADS01 +8 mg/m+HU 2+L +9 ? +TC +13 ? 50? 100?

!ZONYL+12 +198 +0 FSO 100 +8 mg/m+HU 2+L +9 ? +TA 8? 8? 8+TZ,1/32 ?

!+PS

Item character count = 397

CWU Table Item #: 0431 (1 column)

TABLE 18

		SAMPLE	
	LI (COMP)	LII	LIII
R _s of non-exposed layer un- rinsed with water [Ω/square]	3.2×10^{6}	1.4×10^{6}	6.3 × 10 ⁴
R_s of non-exposed layer rinsed with water [Ω /square]	1.5×10^{10}	7.1×10^{11}	2.0×10^{14}
R_s of exposed layer unrinsed with water [Ω /square]	3.0×10^{6}	4.8×10^{6}	4.5×10^{5}
R _s of exposed layer rinsed with water [Ω/square]	$7.9 \times 10^{14^{\circ}}$	2.0×10^{6}	4.5×10^5
R _s ratio for exposed layer to unex-posed layer after rinsing with water	_	3.6×10^5	4.4×10^8
Optical resolution [µm]	none	4-6	4-6
bubbles in surface of large exposed areas		yes	yes
surface resistivity of exposed layer treated with water $[\Omega/\text{square}]$ and conductivity enhanced		1.4×10^3	2.1×10^3

^{*}exposed layer removed

+T1 TABLE 18+HZ,1/32

!+HC,14 +UZ,14/32 SAMPLE?

!+HC,14 LI (COMP)? +HC,20 LII? +HC,26 LIII+HZ,1/32 ?

!+TL,1 R+HD s +L of non-exposed layer un-? +TC,14 3.2 +33 +0 10+HU 6? +TC,20 1.4 +33 +0

10+HU 6? +TC,26 6.3 +33 +0 10+HU 4?

!rinsed with water +8 +106 /square+9 ?

!R+HD s +L of non-exposed layer rinsed? +HU +11 +L 1.5 +33 +0 10+HU 10? +HU +11 +L 7.1

+33 +0 10+HU 11? +HU +11 +L 2.0 +33 +0 10+HU 14?

!with water +8 +106 /square+9 ?

!R+HD s +L of exposed layer unrinsed? 3.0 +33 +0 10+HU 6? 4.8 +33 +0 10+HU 6? 4.5 +33 +0 10+HU 5?

!with water +8 +106 /square+9 ?

!R+HD s +L of exposed layer rinsed? +HU +11 +11 +L 7.9 +33 +0 10+HU 14*? 2.0 +33 +0 10+HU 6? 4.5 +33 +0 10+HU 5?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 05 — 7/18/2003 - 8:02:52 AM

!with water +8 +106 /square+9 ?

!R+HD s +L ratio for exposed layer to? +13 ? 3.6 +33 +0 10 +HU 5? 4.4 +33 +0 10 +HU 8? !unex-posed layer after rinsing?

!with water?

!Optical resolution +8 +82 m+9 ? none? 4+14 6? 4+14 6?

!bubbles in surface of large? +13 ? yes? yes?

!exposed areas?

!surface resistivity of exposed? +13 ? 1.4 +33 +0 10+HU 3? 2.1 +33 +0 10+HU 3?

!layer treated with water?

!+8 +106 /square+9 +0 and conductivity?

!enhanced+TZ,1/32 ?

, !+L6 *exposed layer removed

!+PS

Item character count = 765

CWU Table Item #: 0441 (1 column)

TABLE 19

composition of the coating dispersions								
	SAMPLE							
	LIV	LV	LVI	LVII				
INGREDIENT [g]								
1.2% aq. dispersion of PEDOT/ PSS	16.7	16.7	16.7	16.7				
1% solution of BADS01	7.5		_					
1% solution of BADS03	_	7.5	9.0	10.0				
2.5% aqueous NH ₄ OH solution	1.1	1.0	0.8	1.0				
15.9% solution of NDP33 in water/isopropanol 40/60 by volume	0.16	0.16	0.38	_				
2% aq. solution of ZONYL ™ FSO 100	0.5	0.5	0.5	0.5				
N-methyl-pyrrolidinone	_	_	_	_				
deionized water	24.04	24.14	22.63	21.8				
pH	3.71	3.85	3.65	3.67				
COVERAGE [mg/m ²]								
PEDOT/PSS	200	200	200	200				
BADS01	75		_	_				
BADS03		75	90	100				
NDP33	25	25	60					
ZONYL FSO 100	10	10	10	10				

+T1 TABLE 19+HZ, 1/32

!+HC,1 +UZ,8/25 composition of the coating dispersions?

!+HC,16 +UZ,16/32 SAMPLE?

!+HC,16 LIV? +HC,20 LV? +HC,24 LVI? +HC,28 LVII+HZ,1/32 ?

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ?

!+TL,1 1.2% aq. dispersion of PEDOT/? +TA,16 16.7? +TA,20 16.7? +TA,24 16.7? +TA,28

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 05 — 7/18/2003 - 8:02:52 AM

16.7?

!PSS?

!1% solution of BADS01? 7.5? +TC +13 ? +TC +13 ? +TC +13 ?

!1% solution of BADS03? +TC +13 ? +TA 7.5? +TA 9.0? +TA 10.0?

!2.5% aqueous NH+HD 4+L OH solution? +TA 1.1? 1.0? 0.8? 1.0?

!15.9% solution of NDP33 in? 0.16? 0.16? 0.38? +TC +13 ?

!water/isopropanol 40/60 by volume?

!2% aq. solution of ZONYL+12 +198 ? 0.5? 0.5? 0.5? +TA 0.5?

!FSO 100?

!N-methyl-pyrrolidinone? +TC +13 ? +TC +13 ? +TC +13 ? +TC +13 ?

!deionized water? +TA 24.04? +TA 24.14? +TA 22.63? +TA 21.8?

!pH? 3.71? 3.85? 3.65? 3.67?

!+UZ,1/11 COVERAGE +8 mg/m+HU 2+L +9 ?

!PEDOT/PSS? 200? 200? 200? 200?

!BADS01? 75? +TC +13 ? +TC +13 ? +TC +13 ?

!BADS03? +TC +13 ? +TA 75? +TA 90? +TA 100?

!NDP33? +TA 25? 25? 60? +TC +13 ?

!ZONYL FSO 100? 10? 10? 10? +TA 10+TZ,1/32 ?

+PS

Item character count = 671

CWU Table Item #: 0451 (1 column)

TABLE 21

compo	sition of th	e coating	dispersion	s				
	SAMPLE							
	LVIII	LIX	LX	LXI	LXII			
INGREDIENT [g]								
1.2% aq. dispersion of PEDOT/PSS	41.7	41.7	41.7	41.7	41.7			
2% aq. solution of ZONYL TM FSO 100	1	1	1	1	1			
BADS01	0.125	0.15	0.175	0.2	0.225			
15.9% sol. of NDP15 in water/isopropanol (40/60 by volume)	7.86	6.3	4.7	3.14	1.471			
N-methyl- pyrrolidinone	_		_	_	_			
2.5% aqueous NH₄OH solution	1.24	1.24	1.24	1.24	1.24			
deionized water	48.08	49.16	51.19	52.72	54.36			
pH	3.25	3.34	3.38	3.1	3.28			
COVERAGE [mg/m ²]								
PEDOT/PSS	200	200	200	200	200			
BADS01	50	60	70	80	90			
NDP15	50	40	30	20	9			

TABLE 21-continued

com	position of the coating dispersions								
		SAMPLE							
	LVIII	LIX	LX	LXI	LXII				
ZONYL FSO 100	8	8	8	8	8				

+T1 TABLE 21+HZ,1/32

!+HC,1 +UZ,8/25 composition of the coating dispersions?

!+HC,12 +UZ,12/32 SAMPLE?

!+HC,12 LVIII? +HC,16 LIX? +HC,20 LX? +HC,24 LXI? +HC,28 LXII+HZ,1/32 ?

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ?

!+TL,1 1.2% aq. dispersion? +TA,12 41.7? +TA,16 41.7? +TA,20 41.7? +TA,24 41.7? +TA,28
41.7?

!of PEDOT/PSS?

!2% aq. solution of? 1? 1? 1? 1? 1?

!ZONYL+12 +198 +0 FSO 100?

!BADS01? 0.125? 0.15? 0.175? 0.2? 0.225?

!15.9% sol. of NDP15? 7.86? 6.3? 4.7? 3.14? 1.471?

!in water/isopropanol?

!(40/60 by volume)?

!N-methyl-? +TC +13 ? +TC +13 ? +TC +13 ? +TC +13 ? +TC +13 ?

!pyrrolidinone?

!2.5% aqueous NH+HD 4+L OH? +TA 1.24? +TA 1.24? +TA 1.24? +TA 1.24? +TA 1.24?

!solution?

!deionized water? 48.08? 49.16? 51.19? 52.72? 54.36?

!pH? 3.25? 3.34? 3.38? 3.1? 3.28?

!+UZ,1/11 COVERAGE +8 mg/m+HU 2+L +9 ?

!PEDOT/PSS? 200? 200? 200? 200? 200?

!BADS01? 50? 60? 70? 80? 90?

!NDP15? 50? 40? 30? 20? 9?

!ZONYL FSO 100? 8? 8? 8? 8? 8+TZ,1/32 ?

!+PS

Item character count = 645

CWU Table Item #: 0452 (1 column)

+T1 TABLE 20+HZ,1/32

!+HC,18 +UZ,18/32 SAMPLE?

!+HL,1 PROPERTY? +HC,18 LIV? +HC,22 LV? +HC,25 LVI? +HC,28 LVII+HZ,1/32 ?

!+TL,1 Differentiation after processing? +TC,18 YES? +TC,22 YES? +TC,25 YES? +TC,28 YES?

!between exposed and non-exposed areas?

!R+HD s +L (+106 /square) of coated layer before? 9.3 +33 ? 1.3 +33 ? 1.5 +33 ? 1.6 +33 ?

!patterning? 10+HU 6? 10+HU 7? 10+HU 7? 10+HU 7?

!R+HD s +L (+106 /square) of large non-exposed? 3.1 +33 ? 4.0 +33 ? 5.0 +33 ? 5.0 +33 ?

!areas after conductivity upgrading? 10+HU 13? 10+HU 13? 10+HU 14? 10+HU 14?

!R+HD s +L (+106 /square) of large exposed areas? 3.3 +33 ? 5.5 +33 ? 4.1 +33 ? 3.3 +33

!after exposure, processing and? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3?

!conductivity upgrading?

!R+HD s +L ratio non-exposed/exposed areas? 9.4 +33 ? 7.3 +33 ? 1.2 +33 ? 1.5 +33 ?

!after conductivity upgrading? 10+HU 9? 10+HU 9? 10+HU 11? 10+HU 11?

!optical resolution? 4 +82 m? 4 +82 m? 4 +82 m? 4 +82 m+TZ,1/32 ?

!+PS

Item character count = 661

CWU Table Item #: 0465 (1 column)

TABLE 22

	SAMPLE					
PROPERTY	LVIII	LIX	LX	LXI	LXII	
Differentiation after processing between exposed and non-exposed	YES	YES	YES	YES	YES	
areas R_s (Ω /square) of coated layer	1.3 ×	1.1 ×	4.1 ×	4.1 ×	9.1 ×	

TABLE 22-continued

•	SAMPLE						
PROPERTY	LVIII	LIX	LX	LXI	LXII		
before patterning	10 ⁷	10 ⁷	10 ⁶	10 ⁶	105		
R_s (Ω /square) of large non-exposed	5.2 ×	2.6 ×	1.5 ×	2.0 ×	5.8 ×		
areas after conductivity upgrading	1015	1015	10 ¹⁵	1015	1015		
R_s (Ω /square) of exposed areas	1.8 ×	3.2 ×	1.4 ×	1.9 ×	3.6 ×		
after exposure, processing and conductivity upgrading	10 ³	10 ³	10 ³	10 ³	10 ³		
R _s ratio non-exposed/exposed areas	2.9 ×	8.1 ×	1.1 ×	1.1 ×	1.6 x		
after conductivity upgrading	1012	1011	1012	1012	1012		
bubbles in large areas?	no	no	no	yes	yes		

+T1 TABLE 22+HZ,1/32

!+HC,17 +UZ,17/32 SAMPLE?

!+HL,1 PROPERTY? +HC,17 LVIII? +HC,20 LIX? +HC,23 LX? +HC,26 LXI? +HC,29 LXII+HZ,1/32

!+TL,1 Differentiation after processing? +TC,17 YES? +TC,20 YES? +TC,23 YES? +TC,26 YES?
+TC,29 YES?

!between exposed and non-exposed?

!areas?

!R+HD s +L (+106 /square) of coated layer? 1.3 +33 ? 1.1 +33 ? 4.1 +33 ? 4.1 +33 ? 9.1 +33 ?

!before patterning? 10+HU 7? 10+HU 7? 10+HU 6? 10+HU 6? 10+HU 5?

!R+HD s +L (+106 /square) of large non-exposed? 5.2 +33 ? 2.6 +33 ? 1.5 +33 ? 2.0 +33 ? 5.8 +33 ?

!areas after conductivity upgrading? 10+HU 15? 10+HU 15?

!after exposure, processing and? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3?

!R+HD s +L ratio non-exposed/exposed areas? 2.9 +33 ? 8.1 +33 ? 1.1 +33 ? 1.1 +33 ? 1.6 +33 ?

!after conductivity upgrading? 10+HU 12? 10+HU 11? 10+HU 12? 10+HU 12? 10+HU 12? 10+HU 12? !bubbles in large areas+48 ? no? no? yes? yes+TZ,1/32 ? !+PS

Item character count = 718

CWU Table Item #: 0470 (1 column)

4	n	h	

composition of the coating dispersions								
	SAMPLE							
	LXIII	LXIV	LXV	LXVI	LXVII			
INGREDIENT [g]								
1.2% aq. dispersion of PEDOT/PSS	16.7	16.7	16.7	16.7	16.7			
2% aq. solution of ZONYL TM FSO 100	0.5	0.5	0.5	0.5	0.5			
2.5% aqueous NH ₄ OH solution	0.5	0.5	0.5	0.5	0.5			
1% aq. solution of BADS01	_	2.5	5.0	7.5	10.0			
15.9% solution of NDP15 water/isopro- panol 40/60 by volume	0.63	0.47	0.32	0.16	_			
N-methyl-pyrrolidinone		_	_					
deionized water	31.7	29.3	27.0	24.6	22.3			
pH COVERAGE [mg/m ²]	3.3	3.3	3.3	3.3	3.3			
PEDOT/PSS	200	200	200	200	200			
BADS01	0	25	50	75	100			
NDP15	100	75	50	25	0			
ZONYL FSO 100	10	10	10	10	10			

+T1 TABLE 23+HZ,1/32

!+HC,1 +UZ,8/25 composition of the coating dispersions?

!+HC,12 +UZ,12/32 SAMPLE?

!+HC,12 LXIII? +HC,16 LXIV? +HC,20 LXV? +HC,24 LXVI? +HC,28 LXVII+HZ,1/32 ?

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ?

!+TL,1 1.2% aq. dispersion of? +TA,12 16.7? +TA,16 16.7? +TA,20 16.7? +TA,24 16.7? +TA,28

16.7?

!PEDOT/PSS?

!2% aq. solution of? 0.5? 0.5? 0.5? 0.5?

!ZONYL+12 +198 +0 FSO 100?

!2.5% aqueous NH+HD 4+L OH? 0.5? 0.5? 0.5? 0.5? 0.5?

!solution?

!1% aq. solution of? +TC +13 ? 2.5? 5.0? 7.5? 10.0?

!BADS01?

!15.9% solution of? +TA 0.63? 0.47? 0.32? 0.16? +TC +13 ?

!NDP15 water/isopro-?

!panol 40/60 by volume?

!N-methyl-pyrrolidinone? +TC +13 ? +TC +13 ? +TC +13 ? +TC +13 ? +TC +13 ?

!deionized water? +TA 31.7? +TA 29.3? +TA 27.0? +TA 24.6? +TA 22.3?

!pH? 3.3? 3.3? 3.3? 3.3?

!+UZ,1/11 COVERAGE +8 mg/m+HU 2+L +9 ?

!PEDOT/PSS? 200? 200? 200? 200? 200?

!BADS01? 0? 25? 50? 75? 100?

!NDP15? 100? 75? 50? 25? 0?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 05 — 7/18/2003 - 8:02:52 AM

!ZONYL FSO 100? 10? 10? 10? 10? 10+TZ,1/32 ?

!+PS

Item character count = 662

CWU Table Item #: 0482 (1 column)

TABLE 24

	SAMPLE						
PROPERTY	LXIII	LXIV	LXV	LXVI	LXVII		
Exposure time [s]	100	100	100	100	300		
Differentiation after processing between exposed and non-exposed areas	YES	YES	YES	YES	YES		
R_s (Ω /square) of coated layer	9.0 ×	1.1 ×	1.4 ×	9.0 ×	1.0 ×		
before patterning	10 ⁶	10 ⁷	107	106	106		
R_s (Ω /square) of large non-exposed	1.7 ×	1.5 ×	1.2 ×	5.5 x	3.5 x		
areas after processing and conductivity upgrading	107	10 ⁶	10 ⁵	1014	1014		
R_s (Ω /square) of exposed areas	1.4 ×	8.2 ×	5.5 ×	7.4 ×	7.8 ×		
after exposure, processing and conductivity upgrading	104	10 ³	10 ³	10 ³	10 ³		
R _s ratio non-exposed/exposed areas	1.2 ×	1.8 ×	1.1 ×	7.4 ×	4.5 ×		
after conductivity upgrading	10^{3}	10 ²	10 ²	1010	10 ¹⁰		
Optical resolution of lines [µ]	4	4	4	4	4		
Optical resolution of spaces [µ]	4	4	4	4	4		
bubbles in large areas?	no	no	no	no	yes		

+T1 TABLE 24+HZ,1/32

!+HC,16 +UZ,16/32 SAMPLE?

!+HL,1 PROPERTY? +HC,16 LXIII? +HC,19 LXIV? +HC,22 LXV? +HC,25 LXVI? +HC,28 LXVII+HZ,
1/32 ?

!+TL,1 Exposure time +8 s+9 ? +TC,16 100? +TC,19 100? +TC,22 100? +TC,25 100? +TC,28 300? !Differentiation after processing? YES? YES? YES? YES?

!between exposed and non-exposed?

!areas?

!R+HD s +L (+106 /square) of coated layer? 9.0 +33 ? 1.1 +33 ? 1.4 +33 ? 9.0 +33 ? 1.0 +33 ?

!before patterning? 10+HU 6? 10+HU 7? 10+HU 6? 10+HU 6?

!R+HD s +L (+106 /square) of large non-exposed? 1.7 +33 ? 1.5 +33 ? 1.2 +33 ? 5.5 +33 ? 3.5 +33 ?

!areas after processing and? 10+HU 7? 10+HU 6? 10+HU 5? 10+HU 14? 10+HU 14? !conductivity upgrading?

!R+HD's +L (+106 /square) of exposed areas? 1.4 +33 ? 8.2 +33 ? 5.5 +33 ? 7.4 +33 ? 7.8 +33 ?

!after exposure, processing and? 10+HU 4? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3?

!R+HD s +L ratio non-exposed/exposed areas? 1.2 +33 ? 1.8 +33 ? 1.1 +33 ? 7.4 +33 ? 4.5

DA: data54 —— MD: 6/23/2003 —— N: 5,790,513 —— F: 05 —— 7/18/2003 - 8:02:52 AM

+33 ?

!after conductivity upgrading? 10+HU 3? 10+HU 2? 10+HU 2? 10+HU 10? 10+HU 10?
!Optical resolution of lines +8 +82 +9 ? +10 4? +10 4? +10 4? +10 4? +10 4?
!Optical resolution of spaces +8 +82 +9 ? +10 4? +10 4? +10 4? +10 4? +10 4?
!bubbles in large areas+48 ? no? no? no? yes+TZ,1/32 ?
!+PS

Item character count = 867

CWU Table Item #: 0500 (2 columns)

TABLE 27

	SAMPLE					
	LXXV	LXXVI	LXXVII	LXXVIII	LXXIX	LXXX
Support nr. LAYER 1 [g]	1	1	1	3	3	3
15.9% sol. NDP14 in water/isopropanol (40/60 by vol.)	0.63	0.63	0.63	0.63	0.63	0.63
2% aq. sol. ZONYL FSO 100 deionized water OUTERMOST LAYER 2 [g]	0.5 48.87	0.5 48.87	0.5 48.87	0.5 48.87	0.5 48.87	0.5 48.87
1.2% aq. PEDOT/PSS disp. 2% aq. sol. ZONYL FSO 100 2.5% aqueous NH ₄ OH	16.7 0.5 0.4	16.7 0.5 0.4	16.7 0.5 0.4	16.7 0.5 0.4	16.7 0.5 0.4	16.7 0.5 0.4
Z6040 15.9% sol. NDP14 in water/ isopropanol (40/60 by vol.)	0.07 —	0.63	0.63	0.07	0.63	0.4
N-methyl-pyrrolidinone deionized water pH	2.5 29.83 3.4	— 31.77 3.4	2.5 29.27 3.4	2.5 29.83 3.4	31.77 3.4	2.5 29.27 3.4
COVERAGE [mg/m²] LAYER 1						
NDP14 ZONYL FSO 100 OUTERMOST LAYER 2 [mg/m ²]	100 10	100 10	100 10	100 10	100 10	100 10
PEDOT/PSS 3-glycidoxypropyl- trimethoxysilane	200 70	200	200 —	200 70	200	200
NDP14 ZONYL FSO 100	10	100 10	100 10	10	100 10	100 10

+T2 TABLE 27+HZ,1/42

!+HC,16 +UZ,16/42 SAMPLE?

!+HL,1 ? +HC,16 LXXV? +HC,20 LXXVI? +HC,24 LXXVII? +HC,29 LXXVIII? +HC,34 LXXIX? +HC,38

LXXX+HZ, 1/42 ?

!+TL,1 Support nr.? +TA,16 1? +TA,20 1? +TA,24 1? +TA,29 3? +TA,34 3? +TA,38 3?

!+UZ,1/7 LAYER 1 +8 g+9 ?

!15.9% sol. NDP14 in water/? 0.63? 0.63? 0.63? 0.63? 0.63?

!isopropanol (40/60 by vol.)?

4 !2% aq. sol. ZONYL FSO 100? 0.5? 0.5? 0.5? 0.5? 0.5?

```
DA: data54 —— MD: 6/23/2003 —— N: 5,790,513 —— F: 05 —— 7/18/2003 - 8:02:52 AM
!deionized water? 48.87? 48.87? 48.87? 48.87? 48.87? 48.87?
!+UZ,1/13 OUTERMOST LAYER 2 +8 g+9 ?
!1.2% aq. PEDOT/PSS disp.? 16.7? 16.7? 16.7? 16.7? 16.7?
!2% aq. sol. ZONYL FSO 100? 0.5? 0.5? 0.5? 0.5? 0.5? 0.5?
!2.5% aqueous NH+HD 4+L OH? 0.4? 0.4? 0.4? 0.4? 0.4? 0.4?
!Z6040? 0.07? +TC +13 ? +TC +13 ? 0.07? +TC +13 ? +TC +13 ?
!15.9% sol. NDP14 in water/? +TC +13 ? +TA 0.63? +TA 0.63? +TC +13 ? +TA 0.63? +TA 0.63?
!isopropanol (40/60 by vol.)?
!N-methyl-pyrrolidinone? +TA 2.5? +TC +13 ? 2.5? +TA 2.5? +TC +13 ? 2.5?
!deionized water? 29.83? +TA 31.77? 29.27? 29.83? +TA 31.77? 29.27?
!pH? 3.4? 3.4? 3.4? 3.4? 3.4?
!COVERAGE +8 mg/m+HU 2+L +9 ?
!+UZ,1/11 LAYER 1?
!NDP14? 100? 100? 100? 100? 100? 100?
!ZONYL FSO 100? 10? 10? 10? 10? 10? 10?
!+UZ,1/16 OUTERMOST LAYER 2 +8 mg/m+HU 2+L +9 ?
!PEDOT/PSS? 200? 200? 200? 200? 200?
!3-glycidoxypropyl-? 70? +TC +13 ? +TC +13 ? 70? +TC +13 ? +TC +13 ?
!trimethoxysilane?
!NDP14? +TC +13 ? +TA 100? +TA 100? +TC +13 ? +TA 100? +TA 100?
!ZONYL FSO 100? +TA 10? 10? 10? +TA 10? 10? 10+TZ,1/42 ?
!+PS
```

Item character count = 1014

Folder character count = 6611

CWU Table Item #: 0511 (2 columns)

TABLE 28

1			SAN	1PLE	·	
	LXXV	LXXVI	LXXVII	LXXVIII	LXXIX	LXXX
Support nr.	1	1	1	3	3	3
R _s of non-exposed areas	4.5 ×	1.7 ×	5.3 ×	4.9 ×	1.3 ×	4.0 ×
unrinsed with water [Ω/square]	10 ³	10 ⁷	10 ³	10 ³	10 ⁷	10 ³
R, of non-exposed areas	3.7 ×	>4.0 ×	6.3 ×	1.2 ×	>4.0 x	1.55 ×
rinsed with water [Ω/square]	10 ⁵	10 ⁷	10 ⁶	1013	10 ⁷	1013
R _s of expoed areas	8.5 ×	3.4 ×	2.2 ×	3.0 ×	3.3 ×	1.3 ×
rinsed with water [Ω/square]	10 ³	10 ⁶ .	10 ⁴	104	106	104
R _s ratio of exposed	43.5	>11.8	2.9	4.0 ×	>12.1	1.2 ×
areas to unexposed areas after processing with water				108		109
R_s (Ω /square) of large		8.5 ×	_	_	1.38 ×	_
non-exposed areas after total processing including conductivity apgrading		1012			10 ¹³	
R_s (Ω /square) of	-	2.9 ×			4.5 ×	_
exposed areas after exposure, processing and conductivity upgrading		104			104	
R _s ratio of exposed	_	2.9 ×	_		3.1 ×	
areas to unexposed areas after processing and conductivity upgrading		108			108	
Optical resolution [µm]		6	6	_	6	6

,+T2 TABLE 28+HZ,1/38

+33 ?

विकास है। उन्

!+HC,12 +UZ,12/38 SAMPLE?

!+HC,12 LXXV? +HC,16 LXXVI? +HC,20 LXXVII? +HC,25 LXXVIII? +HC,30 LXXIX? +HC,34 LXXX+HZ,1/38 ?

!+TL,1 Support nr.? +TC,12 1? +TC,16 1? +TC,20 1? +TC,25 3? +TC,30 3? +TC,34 3?
!R+HD s +L of non-exposed areas? 4.5 +33 ? 1.7 +33 ? 5.3 +33 ? 4.9 +33 ? 1.3 +33 ? 4.0

!unrinsed with water? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3? 10+HU 3?

!R+HD s +L of non-exposed areas? 3.7 +33 ? +22 4.0 +33 ? 6.3 +33 ? 1.2 +33 ? +22 4.0 +33 ? 1.55 +33 ?

!rinsed with water? 10+HU 5? 10+HU 7? 10+HU 6? 10+HU 13? 10+HU 7? 10+HU 13? !+8 +106 /square+9 ?

!R+HD s +L of expoed areas? 8.5 +33 ? 3.4 +33 ? 2.2 +33 ? 3.0 +33 ? 3.3 +33 ? 1.3 +33 ?

!rinsed with water? 10+HU 3? 10+HU 6? 10+HU 4? 10+HU 4? 10+HU 6? 10+HU 4? !+8 +106 /square+9 ?

!R+HD s +L ratio of exposed? 43.5? +22 11.8? 2.9? 4.0 +33 ? +22 12.1? 1.2 +33 ? !areas to unexposed? ? ? ? 10+HU 8? ? 10+HU 9?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 06 — 7/18/2003 - 8:02:56 AM !areas after processing? !with water? !R+HD s +L (+106 /square) of large? +13 ? 8.5 +33 ? +13 ? +13 ? 1.38 +33 ? +13 ? !non-exposed areas after? ? 10+HU 12? ? ? 10+HU 13? !total processing? !including conductivity? !upgrading? !R+HD s +L (+106 / square) of? +13 ? 2.9 +33 ? +13 ? +13 ? 4.5 +33 ? +13 ?!exposed areas after? ? 10+HU 4? ? ? 10+HU 4? !exposure, processing? !and conductivity? !upgrading? !R+HD s +L ratio of exposed? +13 ? 2.9 +33 ? +13 ? +13 ? 3.1 +33 ? +13 ? !areas to unexposed? ? 10+HU 8? ? ? 10+HU 8? !areas after processing? !and conductivity? !upgrading? !Optical resolution +8 +82 m+9 ? +13 ? 6? 6? +13 ? 6? 6+TZ,1/38 ?

Item character count = 1031

CWU Table Item #: 0551 (1 column)

TABLE 31

		SA	MPLE		
	LXXXIX	хc	XCI	XCII	XCIII
INGEDIENT [g]					
1,2% aq. PEDOT/PSS dispersion	41.7	41.7	41.7	41.7	41.7
2% aq. sol. of ZONYL ™ FSO 100	1	1	1	1	1
N-methyl-pyrrolidinone	5	_	5		5
diethylene glycol	_	_	_	5	
BADS01	0.25	_	_	_	_
BADS02	_	0.25	0.25	0.25	
1% ag. solution of BADS03		_	_	_	25
deionized water	51.15	57.0	52.05	52.05	26.4
2.5% aqueous NH₄OH	0.9	_	_		0.9
pH COVERAGE	2.6-2.8		_	_	2.31
PEDOT/PSS [mg/m ²]	200	200	200	200	200
BADS01 [mg/m ²]	100	_	_		_
BADS02 [mg/m ²]	_	100	100	100	
BADS03 [mg/m ²]	_	_		_	100
ZONYL ™ FSO 100 [mg/m ²]	8	8	8	8	8

⁺T1 TABLE 31+HZ,1/32

```
DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 06 — 7/18/2003 - 8:02:56 AM
!+HC,15 +UZ,15/32 SAMPLE?
!+HC,15 LXXXIX? +HC,20 XC? +HC,23 XCI? +HC,26 XCII? +HC,29 XCIII+HZ,1/32 ?
!+TL,1 +UZ,1/8 INGEDIENT +8 g+9 ? +TC,15 ? +TC,20 ? +TC,23 ? +TC,26 ? +TC,29 ?
!1,2% aq. PEDOT/PSS? 41.7? 41.7? 41.7? 41.7?
!dispersion?
!2% aq. sol. of ZONYL+12 +198 +0 FSO? 1? 1? 1? 1? 1?
!100?
!N-methyl-pyrrolidinone? 5? +13 ? 5? +13 ? 5?
!diethylene glycol? +13 ? +13 ? +13 ? 5? +13 ?
!BADS01? 0.25? +13 ? +13 ? +13 ? +13 ?
!BADS02? +13 ? 0.25? 0.25? 0.25? +13 ?
!1% ag. solution of BADS03? +13 ? +13 ? +13 ? +13 ? 25?
!deionized water? 51.15? 57.0? 52.05? 52.05? 26.4?
!2.5% aqueous NH+HD 4+L OH? 0.9? +13 ? +13 ? +13 ? 0.9?
!pH? 2.6+14 2.8? +13 ? +13 ? +13 ? 2.31?
!+UZ,1/7 COVERAGE?
!PEDOT/PSS +8 mg/m+HU 2+L +9 ? 200? 200? 200? 200? 200?
!BADS01 +8 mg/m+HU 2+L +9 ? 100? +13 ? +13 ? +13 ? +13 ?
!BADS02 +8 mg/m+HU 2+L +9 ? +13 ? 100? 100? 100? +13 ?
!BADS03 +8 mg/m+HU 2+L +9 ? +13 ? +13 ? +13 ? +13 ? 100?
!ZONYL+12 +198 +0 FSO 100 +8 mg/m+HU 2+L +9 ? 8? 8? 8? 8? 8+TZ,1/32 ?
```

Item character count = 618

!+PS

CWU Table Item #: 0561 (1 column)

TABLE 32

	SAMPLE							
	LXXXIX	хc	XCI	XCII	XCIII			
R _s of exposed layer untreated with water [Ω/square]	1.6 × 10 ⁵	8.6 × 10 ⁶	4.6 × 10⁵	2.1 × 10 ⁵	3.7 × 10 ⁵			
R _s of exposed layer rinsed with water [Ω/square]	6.1 × 10 ⁵	2.5 × 10 ^{14*}	2.0 × 10 ⁸	4.6 × 10 ⁶	2.6×10^{6}			
R _s of non-exposed layer unrinsed with water [Ω/square]	1.2 × 10 ⁴	9.2 × 10 ⁵	5.3×10^3	2.9 × 10 ⁵	1.4 × 10 ⁴			
R _s of non-exposed layer rinsed with water [Ω/square]	1.6 × 10 ⁴	2.5 × 10 ^{14*}	1.2 × 10 ⁴	2.1 × 10 ⁶	2.3 × 10 ⁴			
R _* ratio of exposed layer to unexposed layer after rinsing with water	38	1.0	16,666	2.2	113			

TABLE 32-continued

		SAMPLE		
LXXXIX	хс	XCI	XCII	XCIII

*layer is completely removed when surface resistivity 1s $10^{14} \Omega$ /square

+T1 TABLE 32+HZ,1/32

!+HC,11 +UZ,11/32 SAMPLE?

!+HC,11 LXXXIX? +HC,16 XC? +HC,20 XCI? +HC,24 XCII? +HC,28 XCIII+HZ,1/32 ?

!+TL,1 R+HD s +L of exposed layer? +TC,11 1.6 +33 ? +TC,16 8.6 +33 ? +TC,20 4.6 +33 ?

+TC,24 2.1 +33 ? +TC,28 3.7 +33 ?

!untreated with water? 10+HU 5? 10+HU 5? 10+HU 5? 10+HU 5? 10+HU 5?

!+8 +106 /square+9 ?

!R+HD s +L of exposed layer? 6.1 +33 ? 2.5 +33 ? 2.0 +33 ? 4.6 +33 ? 2.6 +33 ?

!rinsed with water? 10+HU 5? 10+HU 14*? 10+HU 8? 10+HU 6? 10+HU 6?

!+8 +106 /square+9 ?

!R+HD s +L of non-exposed? 1.2 +33 ? 9.2 +33 ? 5.3 +33 ? 2.9 +33 ? 1.4 +33 ?

!layer unrinsed with? 10+HU 4? 10+HU 5? 10+HU 3? 10+HU 5? 10+HU 4?

!water +8 +106 /square+9 ?

!R+HD s +L of non-exposed? 1.6 +33 ? 2.5 +33 ? 1.2 +33 ? 2.1 +33 ? 2.3 +33 ?

!layer rinsed with water? 10+HU 4? 10+HU 14*? 10+HU 4? 10+HU 6? 10+HU 4?

!+8 +106 /square+9 ?

!R+HD s +L ratio of exposed? 38? 1.0? 16,666? 2.2? 113?

!layer to unexposed?

!layer after rinsing with?

!water+TZ,1/32 ?

!+L6 *layer is completely removed when surface resistivity 1s 10+HU 14 +L +106 /square !+PS

Item character count = 686

Folder character count = 2335

CWU Table Item #: 0281 (2 columns)

TABLE 1

			SA	MPLE			
	I (COMP)	II	Ш	IV	v	VI	VII
INGREDIENT [g]							
1.2% aqueous dispersion of PEDOT/PSS	417	417	417	417	417	417	417
0.25% aqueous solution of NDP01		100	250	500	_	_	
0.25% aqueous solution of NDP02				_	100	250	500
LATEX01	8.3	_		_	_	_	_
2% aqueous solution of ZONYL ™ FSO 100	10	10	10	10	10	10	10
N-methyl-pyrrolidinone	50	50	50	50	50	50	50
deionized water COVERAGE [mg/m²]	514.7	423	273	23	423	423	423
PEDOT/PSS	200	200	200	200	200	200	200
NDP01	_	10	25	50			
NDP02		-		_	10	25	50
LATEX01	100	_		_	_	_	_
ZONYL™ FSO 100	8	8	8	8	8	8	8

+T2 TABLE 1+HZ,1/43

!+HC,20 +UZ,20/43 SAMPLE?

!+HC,20 I (COMP)? +HC,25 II? +HC,28 III? +HC,31 IV? +HC,34 V? +HC,37 VI? +HC,40 VII+HZ,1/43 ?

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ? +TA,20 ? +TA,25 ? +TA,28 ? +TA,31 ? +TA,34 ? +TA,37 ? +TA,40 ?

!1.2% aqueous dispersion of PEDOT/PSS? 417? 417? 417? 417? 417? 417?

!0.25% aqueous solution of NDP01? +13 ? 100? 250? 500? +13 ? +13 ? +13 ?

!0.25% aqueous solution of NDP02? +13 ? +13 ? +13 ? +13 ? 100? 250? 500?

!LATEX01? 8.3? +13 ? +13 ? +13 ? +13 ? +13 ?

!2% aqueous solution of ZONYL+12 +198 +0 FSO 100? 10? 10? 10? 10? 10? 10? 10?

!N-methyl-pyrrolidinone? 50? 50? 50? 50? 50? 50? 50?

!deionized water? 514.7? 423? 273? 23? 423? 423? 423?

!+UZ,1/11 COVERAGE +8 mg/m+HU 2+L +9 ?

!PEDOT/PSS? 200? 200? 200? 200? 200? 200?

!NDP01? +13 ? 10? 25? 50? +13 ? +13 ? +13 ?

!NDP02? +13 ? +13 ? +13 ? +13 ? 10? 25? 50?

!LATEX01? 100? +13 ? +13 ? +13 ? +13 ? +13 ?

!ZONYL+12 +198 +0 FSO 100? 8? 8? 8? 8? 8? 8? 8+TZ,1/43 ?

!+PS

TABLE 2

				SAMPLE			
PROPERTY	I (COMP)	II	III	IV	v	VI	VII
R _s differentiation between exposed and non-exposed areas after processing	no	yes	yes	yes	yes	yes	yes
R_s (Ω /square) of coated layer before patterning	730	760	650	980	490	620	1500
R _s (Ω/square) of the non- exposed areas after exposure and processing	-	5 × 10 ⁴					
R _s (Ω/square) of the non- exposed areas after exposure and thorough rubbing during processing	_	>1010	>1010	>1010	>1010	>10 ¹⁰	>1010
R_s (Ω /square) of the exposed areas after exposure and processing	730	850	650	960	480	630	1500

+T2 TABLE 2+HZ, 1/44

!+HC,15 +UZ,15/44 SAMPLE?

!+HL,1 PROPERTY? +HC,15 I (COMP)? +HC,20 II? +HC,24 III? +HC,28 IV? +HC,32 V? +HC,36
VI? +HC,40 VII+HZ,1/44 ?

!+TL,1 R+HD s +L differentiation between? +TC,15 no? +TC,20 yes? +TC,24 yes? +TC,28 yes? +TC,32 yes? +TC,36 yes? +TC,40 yes?

!exposed and non-exposed areas?

!after processing?

!R+HD s +L (+106 /square) of coated layer? 730? 760? 650? 980? 490? 620? 1500? !before patterning?

!R+HD s +L (+106 / square) of the non-? +13 ? 5 +33 +0 10+HU 4? 5 +33 +0 10+HU 4?

!exposed areas after exposure?

!and processing?

!R+HD s +L (+106 /square) of the non-? +13 ? +22 10+HU 10? +22 10+HU 10?

!exposed areas after exposure?

!and thorough rubbing during?

!processing?

!R+HD s +L (+106 /square) of the exposed? 730? 850? 650? 960? 480? 630? 1500?

!areas after exposure and?

!processing+TZ,1/44 ?

!+PS

CWU Table Item #: 0300 (2 columns)

TABLE 3

	•				composition of the coating dispersions									
SAMPLE														
VIII (COMP)	IX	x	XI	XII	XIII	XIV								
417	417	417	417	417	417	417								
_	1.5	3.7	7.1	14.2	28.4	56.8								
8.3				_										
10	10	10	10	10	10	10								
50	50	50	50	50	50	50								
514.7	522	519	516	509	495	466								
					•									
200	200	200	200	200	200	200								
_	10	25	50	100	200	400								
100	_	_	_		_									
8	8	8	8	8	8	8								
	8.3 10 50 514.7	417 417 - 1.5 8.3 - 10 50 50 514.7 522 200 200 - 10 100 -	VIII (COMP) IX X 417 417 417 - 1.5 3.7 8.3 10 10 10 50 50 50 514.7 522 519 200 200 200 - 10 25 100	VIII (COMP) IX X XI 417 417 417 417 — 1.5 3.7 7.1 8.3 — — — 10 10 10 10 50 50 50 50 514.7 522 519 516 200 200 200 200 — 10 25 50 100 — — —	VIII (COMP) IX X XI XII 417 417 417 417 417 - 1.5 3.7 7.1 14.2 8.3 - - - - - 10 10 10 10 10 50 50 50 50 50 514.7 522 519 516 509 200 200 200 200 200 - 10 25 50 100 100 - - - -	VIII (COMP) IX X XI XII XIII 417<								

+T2 TABLE 3+HZ,1/43

!+HC,1 +UZ,14/30 composition of the coating dispersions?

!+HC,16 +UZ,16/43 SAMPLE?

!+HC,16 VIII (COMP)? +HC,23 IX? +HC,26 X? +HC,29 XI? +HC,34 XII? +HC,37 XIII? +HC,40 XIV+HZ,1/43 ?

!+TL,1 INGREDIENT +8 g+9 ? +TA,16 ? +TA,23 ? +TA,26 ? +TA,29 ? +TA,34 ? +TA,37 ? +TA,40 ?

!1.2% aq. PEDOT/PSS dispersion? 417? 417? 417? 417? 417? 417?

!17% solution of NDP03 in? +13 ? 1.5? 3.7? 7.1? 14.2? 28.4? 56.8?

!isopropanol/water (60/40)?

!LATEX01? 8.3? +13 ? +13 ? +13 ? +13 ? +13 ?

!2% aq. sol. ZONYL+12 +198 +0 FSO 100? 10? 10? 10? 10? 10? 10? 10?

!N-methyl-pyrrolidinone? 50? 50? 50? 50? 50? 50? 50?

!deionized water? 514.7? 522? 519? 516? 509? 495? 466?

!+UZ,1/7 COVERAGE?

!PEDOT/PSS +8 mg/m+HU 2+L +9 ? 200? 200? 200? 200? 200? 200? 200?

!NDP03 +8 mg/m+HU 2+L +9 ? +13 ? 10? 25? 50? 100? 200? 400?

!LATEX01 +8 mg/m+HU 2+L +9 ? 100? +13 ? +13 ? +13 ? +13 ? +13 ? +13 ?

!ZONYL+12 +198 +0 FSO 100? 8? 8? 8? 8? 8? 8? 8+TZ,1/43 ?

!+PS

TABLE 4

property	VIII (COMP)	IX	x	ΧI	XII	XIII	XIV
R _s differentiation between exposed and non-exposed areas after processing	no	yes	yes	yes	yes	yes	yes
R_s (Ω /square) of coated layer before patterning	760	689	739	790	1100	1600	5500
R _s (Ω/square) of the non- exposed areas after exposure and processing	_	>105	>105	>105	>105	>105	>105
exposure and processing R_s (Ω /square) of the non-exposed areas after exposure and thorough	_	>1010	>1010	>1010	>1010	>1010	>10 ¹⁰
rubbing during processing R_s (Ω /square) of exposed areas after exposure and processing	760	1344	1375	1360	2100	2400	22000

· +T2 TABLE 4+HZ,1/39

!+HL,1 property? +HC,13 VIII (COMP)? +HC,20 IX? +HC,23 X? +HC,26 XI? +HC,29 XII? +HC,32
XIII? +HC,35 XIV+HZ,1/39 ?

!+TL,1 R+HD s +L differentiation between? +TC,13 no? +TC,20 yes? +TC,23 yes? +TC,26 yes? +TC,29 yes? +TC,32 yes? +TC,35 yes?

!exposed and non-exposed?

!areas after processing?

!R+HD s +L (+106 /square) of coated? 760? +11 689? +11 739? +11 790? 1100? 1600? +11 5500?

!layer before patterning?

!R+HD s +L (+106 / square) of the non-? +13 ? +22 10+HU 5? +22 10+HU 5?

!exposed areas after?

!exposure and processing?

!R+HD s +L (+106 / square) of the non-? +13 ? +22 10+HU 10? +22 10+HU 10?

!exposed areas after?

!exposure and thorough?

!rubbing during processing?

!R+HD s +L (+106 /square) of exposed? 760? 1344? 1375? 1360? 2100? 2400? 22000?

!areas after exposure and?

!processing+TZ,1/39 ?

!+PS

TABLE 5

		ompos	ition of	the coating	ng dispe	rsions						
		SAMPLE										
	XV	XVI	XVII	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV		
INGREDIENT [g]									·/			
Support nr.	1	1	1	2	3	4	5	6	7	8		
1.2% aqueous dispersion of PEDOT/PSS	417	417	417	417	417	417	417	417	417	417		
17.8% aq. sol. of NDP04	7	14	21	14	14	14	14	14	14	14		
2% aqueous solution of ZONYL ™ FSO 100	10	10	10	10	10	10	10	10	10	10		
N-methyl-pyrrolidinone	50	50	50	50	50	50	50	50	50	50		
deionized water COVERAGE	516	509	502	509	509	509	509	509	509	509		
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200	200	200	200	200		
NDP04 [mg/m ²]	50	100	150	100	100	100	100	100	100	100		
ZONYL FSO 100 [mg/m ²]	8	8	8	8	8	8	8	8	8	8		

+T2 TABLE 5+HZ, 1/46

!+HC,1+UZ,15/32 composition of the coating dispersions?

!+HC,13 +UZ,13/46 SAMPLE?

!+HC,13 XV? +HC,16 XVI? +HC,19 XVII? +HC,22 XVIII? +HC,26 XIX? +HC,29 XX? +HC,32 XXI?

+HC,35 XXII? +HC,38 XXIII? +HC,42 XXIV+HZ,1/46 ?

!+TL,1 INGREDIENT +8 g+9 ? +TA,13 ? +TA,16 ? +TA,19 ? +TA,22 ? +TA,26 ? +TA,29 ? +TA,32

? +TA,35 ? +TA,38 ? +TA,42 ?

!Support nr.? 1? 1? 1? 2? 3? 4? 5? 6? 7? 8?

!of PEDOT/PSS?

!17.8% aq. sol. of NDP04? 7? 14? 21? 14? 14? 14? 14? 14? 14? 14?

!ZONYL+12 +198 +0 FSO 100?

!deionized water? 516? 509? 502? 509? 509? 509? 509? 509? 509?

!+UZ,1/7 COVERAGE?

!ZONYL FSO 100 +8 mg/m+HU 2+L +9 ? 8? 8? 8? 8? 8? 8? 8? 8? 8? 8. 4TZ,1/46 ?

!+PS

	SAMPLE										
PROPERTY	ΧV	XVI	XVII	XVIII	XIX	XX	XXI	XXII	XXIII	XXIV	
Support nr R _s (Ω/square) of coated layer before	11.7×10^3	1 5.2 × 10 ³	1 1.5 × 10 ⁴	3.8×10^3	3.8 × 10 ³	4 1.8 × 10 ⁵	5 4.1×10^3	6 2.5 × 10 ⁵	7 4.0×10^3	8 9.7 × 10 ³	
patterning R _s (Ω/square) of non-exposed areas after exposure and	2.4 × 10 ⁵	4.2 × 10 ⁵	6.3 × 10 ⁵	6.5×10^{12}	6.2×10^{12}	9.9 × 10 ⁸	3.8×10^{12}	9.0 × 10 ⁶	9.6 × 10 ⁵	1.1 × 10 ⁵	
processing R _s (\Omega/square) of exposed areas after exposure		7.2×10^3	~	5.6×10^3	6.1×10^3	2.4 × 10 ⁵	6.1×10^{3}	3.4×10^{5}	6.9×10^3	2.2 × 10 ⁴	
R _s (Ω/square) of exposed areas after exposure and processing	4.8 × 10 ⁴	1.6 × 10 ⁴	1.5×10^{5}	1.2×10^4	1.2 × 10 ⁴	1.0 × 10 ⁶	1.1×10^4	1.2×10^6	4.8×10^{5}	5.1 × 10 ⁴	
R _s ratio non- exposed/exposed areas	5	26.3	4.2	5 × 10 ⁸	5 × 10 ⁸	990	4×10^8	7.5	2.0	2.2	

+T2 TABLE 6+HZ, 1/64

!+HC,12 +UZ,12/64 SAMPLE?

!+HL,1 PROPERTY? +HC,12 XV? +HC,17 XVI? +HC,22 XVII? +HC,28 XVIII? +HC,33 XIX? +HC,38
XX? +HC,43 XXI? +HC,48 XXII? +HC,54 XXIII? +HC,59 XXIV+HZ,1/64 ?

!+TL,1 Support nr? +TC,12 1? +TC,17 1? +TC,22 1? +TC,28 2? +TC,33 3? +TC,38 4? +TC,43
5? +TC,48 6? +TC,54 7? +TC,59 8?

!R+HD s +L (+106 /square) of? 1.7 +33 +0 10+HU 3? 5.2 +33 +0 10+HU 3? 1.5 +33 +0 10+HU 4? 3.8 +33 +0 10+HU 3+11 ? 3.8 +33 +0 10+HU 3+11 ? 1.8 +33 +0 10+HU 5? 4.1 +33 +0 10+HU 3+11 ? 2.5 +33 +0 10+HU 5? 4.0 +33 +0 10+HU 3? 9.7 +33 +0 10+HU 3?

!coated layer before?

!patterning?

!R+HD s +L (+106 /square) of? 2.4 +33 +0 10+HU 5? 4.2 +33 +0 10+HU 5? 6.3 +33 +0 10+HU 5? 6.5 +33 +0 10+HU 12? 6.2 +33 +0 10+HU 12? 9.9 +33 +0 10+HU 8? 3.8 +33 +0 10+HU 12? 9.0 +33 +0 10+HU 6? 9.6 +33 +0 10+HU 5? 1.1 +33 +0 10+HU 5?

!non-exposed areas?

!after exposure and?

!processing?

!R+HD s +L (+106 /square) of? +13 ? 7.2 +33 +0 10+HU 3? +13 ? 5.6 +33 +0 10+HU 3+11 ? 6.1 +33 +0 10+HU 3+11 ? 2.4 +33 +0 10+HU 5? 6.1 +33 +0 10+HU 3+11 ? 3.4 +33 +0 10+HU 5? 6.9 +33 +0 10+HU 3? 2.2 +33 +0 10+HU 4?

!exposed areas after?

!exposure?

!R+HD s +L (+106 /square) of? 4.8 +33 +0 10+HU 4? 1.6 +33 +0 10+HU 4? 1.5 +33 +0 10+HU 5? 1.2 +33 +0 10+HU 4+11 ? 1.2 +33 +0 10+HU 4+11 ? 1.0 +33 +0 10+HU 6? 1.1 +33 +0 10+HU 4+11 ? 1.2 +33 +0 10+HU 6? 4.8 +33 +0 10+HU 5? 5.1 +33 +0 10+HU 4?

!exposed areas after?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 07 — 7/18/2003 - 8:03:00 AM

!exposure and processing?

!R+HD s +L ratio non-? 5? 26.3? 4.2? +11 +12 5 +33 +0 10+HU 8+11 ? +11 +12 5 +33 +0 10+HU 8+11 ? 990? +11 +12 4 +33 +0 10+HU 8+11 ? 7.5? 2.0? 2.2?

!exposed/exposed areas+TZ,1/64 ?

!+PS

Item character count = 910

CWU Table Item #: 0400 (2 columns)

TABLE 15

				SAMPLE			
	XLIV	XLV	XLVI	XLVII	XLVIII	XLIX	L
INGREDIENT [g]							
1.2% aqueous dispersion of PEDOT/PSS	41.7	41.7	41.7	41.7	41.7	41.7	41.7
2% aqueous solution of ZONYL ™ FSO 100	1	1	1	1	1	1	1
N-methyl-pyrrolidinone	_		_	_		_	
BADS01	_	0.125	0.25	0.25	0.375	0.50	_
BADS02		_		_	_		0.25
deionized water COVERAGE	57.30	57.18	57.05	57.05	56.93	56.80	57.05
PEDOT/PSS [mg/m ²]	200	200	200	200	200	200	200
BADS01 [mg/m ²]		50	100	100	150	200	100
% by weight of BADS01 w.r.t. PEDOT/PSS	0	25	50	50	75	100	_
ZONYL TM FSO 100 [mg/m²]	8	8	8	8	8	8	8

+T2 TABLE 15+HZ,1/42

!+HC,14 +UZ,14/42 SAMPLE?

!+HC,14 XLIV? +HC,18 XLV? +HC,22 XLVI? +HC,26 XLVII? +HC,30 XLVIII? +HC,34 XLIX? +HC,38 L+HZ,1/42 ?

!+TL,1 INGREDIENT +8 g+9 ? +TA,14 ? +TA,18 ? +TA,22 ? +TA,26 ? +TA,30 ? +TA,34 ? +TA,38 ?

!1.2% aqueous dispersion? 41.7? 41.7? 41.7? 41.7? 41.7? 41.7?

!of PEDOT/PSS?

!2% aqueous solution of? 1? 1? 1? 1? 1? 1? 1?

!ZONYL+12 +198 +0 FSO 100?

!N-methyl-pyrrolidinone? +13 ? +13 ? +13 ? +13 ? +13 ? +13 ?

!BADS01? +13 ? 0.125? 0.25? 0.25? 0.375? 0.50? +13 ?

!BADS02? +13 ? +13 ? +13 ? +13 ? +13 ? 0.25?

!deionized water? 57.30? 57.18? 57.05? 57.05? 56.93? 56.80? 57.05?

!+UZ,1/7 COVERAGE?

!PEDOT/PSS +8 mg/m+HU 2+L +9 ? 200? 200? 200? 200? 200? 200? 200?

BADS01 +8 mg/m+HU 2+L +9 ? +13 ? 50? 100? 100? 150? 200? 100?

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 07 — 7/18/2003 - 8:03:00 AM

!% by weight of BADS01? 0? 25? 50? 50? 75? 100? +13 ?

!w.r.t. PEDOT/PSS?

!ZONYL+12 +198 +0 FSO 100 +8 mg/m+HU 2+L +9 ? 8? 8? 8? 8? 8? 8? 8? 8+TZ,1/42 ?

Item character count = 592

CWU Table Item #: 0411 (2 columns)

TABLE 16

				SAMPLE			
	XLIV	XLV	XLVI	XLVII	XLVIII	XLIX	L
BADS01 [mg/m ²]		50	100	100	150	200	
R _s of non-exposed layer untreated with water [Ω/square]	3.3×10^6	1.5 × 10 ⁶	6.2 × 10 ⁴	4.5 × 10 ⁴	6.9×10^3	1.1 × 10 ⁴	2.7×10^{6}
R _s of non-exposed layer	4.7×10^{8}	1.1×10^{9}	1×10^{12}	5.0×10^{12}	1.0×10^{13}	1.4×10^{14}	25 × 10 ¹⁴
rinsed with water [Ω/square]			1.3×10^{14}	7.3×10^{13}	1.0 1.10	1.1 × 10	2.5 × 10
R _s of exposed layer untreated with water [Ω/square]	3.0×10^{6}	1.1 × 10 ⁶	1.7 × 10 ⁵	9.0 × 10 ⁴	2.6 × 10 ⁴	3.7×10^4	1.0 × 10 ⁷
R _s of exposed layer rinsed with water [Ω/square]	3.5×10^8	9.7 × 10 ⁵	1.5×10^5	9.9 × 10 ⁴	4.1 × 10 ⁴	4.1×10^4	3.6 × 10 ⁸
ratio of exposed layer	1.3	1134	7×10^{6}	5×10^{7}	2.4×10^{8}	3.4×10^{9}	6.9×10^{6}
to unexposed layer after rinsing with water			9×10^8	7.3×10^9		J	0.5 X 10
R_s of exposed layer after rinsing with water $[\Omega/\text{square}]$ and conductivity enhancement	-	1.4 × 10 ³	1.6×10^3	1.7×10^3	3.3×10^3	2.7×10^{3}	1.0 × 10 ⁶

+T2 TABLE 16+HZ,1/49

!+HC,12 +UZ,12/49 SAMPLE?

!+HC,12 XLIV? +HC,17 XLV? +HC,22 XLVI? +HC,28 XLVII? +HC,34 XLVIII? +HC,39 XLIX? +HC,44 L+HZ,1/49 ?

!+TL,1 BADS01 +8 mg/m+HU 2+L +9 ? +TC,12 +13 ? +TC,17 50? +TC,22 100? +TC,28 100? +TC,34 150? +TC,39 200? +TC,44 +13 ?

!R+HD s +L of non-exposed layer? 3.3 +33 +0 10+HU 6? 1.5 +33 +0 10+HU 6? 6.2 +33 +0 10+HU 4+11 +L +12 ? 4.5 +33 +0 10+HU 4+11 +L +12 ? 6.9 +33 +0 10+HU 3+11 ? 1.1 +33 +0 10+HU 4+11 ? 2.7 +33 +0 10+HU 6+11 ?

!untreated with water?

!+8 +106 /square+9 ?

!R+HD s +L of non-exposed layer? 4.7 +33 +0 10+HU 8? 1.1 +33 +0 10+HU 9? +11 +12 1 +33 +0 10+HU 12+L /? 5.0 +33 +0 10+HU 12+L /? 1.0 +33 +0 10+HU 13? 1.4 +33 +0 10+HU 14? 2.5 +33 +0 10+HU 14?

!rinsed with water? ? ? 1.3 +33 +0 10+HU 14+L +12 ? 7.3 +33 +0 10+HU 13+L +12 ?

DA: data54 —— MD: 6/23/2003 —— N: 5,790,513 —— F: 07 —— 7/18/2003 - 8:03:00 AM

!+8 +106 /square+9 ?

!R+HD s +L of exposed layer? 3.0 +33 +0 10+HU 6? 1.1 +33 +0 10+HU 6? 1.7 +33 +0 10+HU 5+11 +L +12 ? 9.0 +33 +0 10+HU 4+11 +L +12 ? 2.6 +33 +0 10+HU 4+11 ? 3.7 +33 +0 10+HU 4+11 ? 1.0 +33 +0 10+HU 7+11 ?

!untreated with water?

!+8 +106 /square+9 ?

!R+HD s +L of exposed layer? 3.5 +33 +0 10+HU 8? 9.7 +33 +0 10+HU 5? 1.5 +33 +0 10+HU 5+11 +L +12 ? 9.9 +33 +0 10+HU 4+11 +L +12 ? 4.1 +33 +0 10+HU 4+11 ? 4.1 +33 +0 10+HU 4+11 ? 3.6 +33 +0 10+HU 8+11 ?

!rinsed with water?

!+8 +106 /square+9 ?

!ratio of exposed layer? 1.3? 1134? +11 +12 7 +33 +0 10+HU 6+L /+HU +11 ? +11 +12 5 +33 +0 10+HU 7+L /+HU +11 ? 2.4 +33 +0 10+HU 8+11 ? 3.4 +33 +0 10+HU 9+11 ? 6.9 +33 +0 10+HU 6+11 ?

!to unexposed layer? ? ? +11 +12 9 +33 +0 10+HU 8+11 +L +12 ? 7.3 +33 +0 10+HU 9+11 +L +12 ?

!after rinsing with?

!water?

!R+HD s +L of exposed layer? +13 ? 1.4 +33 +0 10+HU 3? 1.6 +33 +0 10+HU 3+11 +L +12 ? 1.7 +33 +0 10+HU 3+11 +L +12 ? 3.3 +33 +0 10+HU 3+11 ? 2.7 +33 +0 10+HU 3+11 ? 1.0 +33 +0 10+HU 6+11 ?

!after rinsing with?

!water +8 +106 /square+9 +0 and?

!conductivity?

!enhancement+TZ,1/49 ?

!+PS

Item character count = 1064

CWU Table Item #: 0490 (2 columns)

TABLE 25

		SAMPLE								
	LXVIII	LXIX	LXX	LXXI	LXXII	LXXIII	LXXIV			
Support nit. LAYER 1	1	1	1	1	3	3	3			
NDP04 [mg/m²] OUTERMOST LAYER 2 [mg/m²]	100	100	100	100	100	100	100			

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 07 — 7/18/2003 - 8:03:00 AM

TABLE 25-continued

	-			SAME	LE		
	LXVIII	ĹXIX	LXX	LXXI	LXXII	LXXIII	LXXIV
PEDOT/PSS	200	200	200	200	200	200	200
Z6040	200	70	_	_	200	70	_
NDP04	_	_	_	100	_	_	100
N-methyl-pyrrolidinone	2500	2500	2500	_	2500	2500	2500

+T2 TABLE 25+HZ,1/41

!+HC,16 +UZ,16/41 SAMPLE?

!+HC,16 LXVIII? +HC,20 LXIX? +HC,23 LXX? +HC,26 LXXI? +HC,29 LXXII? +HC,33 LXXIII? +HC,37 LXXIV+HZ,1/41 ?

!+TL,1 Support nr.? +TA,16 1? +TA,20 1? +TA,23 1? +TA,26 1? +TA,29 3? +TA,33 3? +TA,37
3?

!+UZ,1/6 LAYER 1?

!NDP04 +8 mg/m+HU 2+L +9 ? 100? 100? 100? 100? 100? 100? 100?

!+UZ,1/16 OUTERMOST LAYER 2 +8 mg/m+HU 2+L +9 ?

!PEDOT/PSS? 200? 200? 200? 200? 200? 200?

!Z6040? 200? 70? +13 ? +13 ? 200? 70? +13 ?

!NDP04? +13 ? +13 ? +13 ? 100? +13 ? +13 ? 100?

!N-methyl-pyrrolidinone? 2500? 2500? 2500? +13 ? 2500? 2500? 2500+TZ,1/41 ? !+PS

Item character count = 339

CWU Table Item #: 0491 (2 columns)

TABLE 26

				SAMPLE	_		
	LXVIII	LXIX	LXX	LXXI	LXXII	LXXIII	LXXIV
Support nr.	1	1	1	1	3	3	3
Exposure times [s]	100	150	150	100	100	150	150
R _s of non-exposed areas unrinsed with water [Ω/square]	1.2×10^4	4.2×10^3	6.0×10^3	2.6×10^7	1.5 × 10⁴	3.0×10^{3}	3.2×10^{5}
R_s of non-exposed areas rinsed with water $[\Omega/\text{square}]$	6.2×10^{12}	>4.0 × 10 ⁷	>4.0 × 10 ⁷	3.2×10^{13}	4.6×10^{12}	>4.0 × 10 ⁷	1.2×10^{13}
R_s of exposed areas rinsed with water $[\Omega/square]$	1.1×10^{5}	2.7×10^4	3.0×10^4	1.13×10^7	1.5 × 10 ⁵	2.1×10^3	1.0×10^{5}
R _s ratio of exposed areas to unexposed areas after rinsing with water	5.6 × 10 ⁷	>1.5 × 10 ³	>1.3 × 10 ³	2.8 × 10 ⁶	3.1×10^7	>1.9 × 10 ⁴	1.2 × 10 ⁸
Resolution [µm]	_	6	_	6	10	_	6

DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 07 — 7/18/2003 - 8:03:00 AM

!+HC,12 +UZ,12/48 SAMPLE?

!+HC,12 LXVIII? +HC,17 LXIX? +HC,22 LXX? +HC,27 LXXI? +HC,33 LXXII? +HC,38 LXXIII? +HC,43 LXXIV+HZ,1/48 ?

!+TL,1 Support nr.? +TC,12 +10 1? +TC,17 +10 1? +TC,22 +10 1? +TC,27 +10 1? +TC,33 +10 3? +TC,38 +10 3? +TC,43 +10 3?

!Exposure times +8 s+9 ? 100? 150? 150? 100? 100? 150? 150?

!R+HD s +L of non-exposed areas? 1.2 +33 +0 10+HU 4+11 ? +11 4.2 +33 +0 10+HU 3? +11 6.0 +33 +0 10+HU 3? 2.6 +33 +0 10+HU 7+11 ? 1.5 +33 +0 10+HU 4+11 ? +11 3.0 +33 +0 10+HU 3? 3.2 +33 +0 10+HU 5+11 ?

!unrinsed with water?

!+8 +106 /square+9 ?

!R+HD s +L of non-exposed areas? 6.2 +33 +0 10+HU 12? +22 4.0 +33 +0 10+HU 7? +22 4.0 +33 +0 10+HU 7? 3.2 +33 +0 10+HU 13? 4.6 +33 +0 10+HU 12? +22 4.0 +33 +0 10+HU 7? 1.2 +33 +0 10+HU 13?

!rinsed with water?

!+8 +106 /square+9 ?

!R+HD s +L of exposed areas? 1.1 +33 +0 10+HU 5+11 ? +11 2.7 +33 +0 10+HU 4? +11 3.0 +33 +0 10+HU 4? 1.13 +33 +0 10+HU 7+11 +L +11 ? 1.5 +33 +0 10+HU 5+11 ? +11 2.1 +33 +0 10+HU 3? 1.0 +33 +0 10+HU 5+11 ?

!rinsed with water?

!+8 +106 /square+9 ?

!R+HD s +L ratio of exposed? 5.6 +33 +0 10+HU 7+11 ? +22 1.5 +33 +0 10+HU 3? +22 1.3 +33 +0 10+HU 3? 2.8 +33 +0 10+HU 6+11 ? 3.1 +33 +0 10+HU 7+11 ? +22 1.9 +33 +0 10+HU 4? 1.2 +33 +0 10+HU 8+11 ?

!areas to unexposed?

!areas after rinsing?

!with water?

!Resolution +8 +82 m+9 ? +13 ? +10 6? +13 ? +10 6? +11 10 ? +13 ? +10 6+TZ,1/48 ? !+PS

Item character count = 786

Folder character count = 6846

CWU Table Item #: 0530 (2 columns)

TABLE 29

	SAMPLE							
	LXXXI (COMP)	LXXXII	LXXXIII	LXXXIV	LXXXV	LXXXVI	LXXXVII	LXXXVIII
INGREDIENT [g]								
1.2% aq. PEDOT/PSS dispersion	41.7	41.7	41.7	41.7	41.7	41.7	41.7	41.7
2% aq. solution of ZONYL™ FSO 100	1	1	1	1	1	1	1	1
N-methyl- pyrrolidinone	5	5	5	5	5	5	5	5
BADS02	0	0.025	0.0625	0.125	_	0.25	0.25	0.5
1% aq. sol. BADS02	_		_	-	21.8			
deionized water	51.02	51.00	50.96	50.90	21.5	50.99	51.15	51.12
2.5% aqueous NH ₄ OH	1.28	1.28	1.28	1.28	9.0	1.06	0.9	0.68
pH COVERAGE [mg/m²]	3.41	3.3	3.17	3.45	3.26	3.53	2.6–2.8	3.55
PEDOT/PSS	200	200	200	200	200	200	200	200
BADS02	0	10	25	50	87*	100	100	200
ZONYL™ FSO 100	8	8	8	8	8	8	8	8

 $^{*2.0 \}times 10^{-4} \text{ mol/m}^2$

+T2 TABLE 29+HZ, 1/52

!+HC,11 +UZ,11/52 SAMPLE?

!+HC,11 LXXXI? +HC,16 ? +HC,21 ? +HC,26 ? +HC,31 ? +HC,36 ? +HC,41 ? +HC,46 ?

!(COMP)? LXXXII? LXXXIII? LXXXIV? LXXXVI? LXXXVII? LXXXVIII+HZ,1/52 ?

!+TL,1 +UZ,1/9 INGREDIENT +8 g+9 ? +TA,11 ? +TA,16 ? +TA,21 ? +TA,26 ? +TA,31 ? +TA,36

? +TA,41 ? +TA,46 ?

!1.2% aq. PEDOT/PSS? 41.7? 41.7? 41.7? 41.7? 41.7? 41.7? 41.7?

!dispersion?

!2% aq. solution of? 1? 1? 1? 1? 1? 1? 1? 1?

!ZONYL+12 +198 +0 FSO 100?

!N-methyl-? 5? 5? 5? 5? 5? 5? 5?

!pyrrolidinone?

!BADS02? 0? 0.025? 0.0625? 0.125? +13 ? 0.25? 0.25? 0.5?

!1% aq. sol. BADS02? +13 ? +13 ? +13 ? +13 ? 21.8? +13 ? +13 ? +13 ?

!deionized water? 51.02? 51.00? 50.96? 50.90? 21.5? 50.99? 51.15? 51.12?

!2.5% aqueous NH+HD 4+L OH? 1.28? 1.28? 1.28? 1.28? 9.0? 1.06? 0.9? 0.68?

!pH? 3.41? 3.3? 3.17? 3.45? 3.26? 3.53? +TC 2.6+14 2.8? 3.55?

!+UZ,1/11 COVERAGE +8 mg/m+HU 2+L +9 ?

!PEDOT/PSS? 200? 200? 200? +TC 200? 200? +TA 200? 200?

!BADS02? 0? 10? 25? 50? +10 87*? 100? 100? 200?

!ZONYL+12 +198 +0 FSO 100? 8? 8? 8? 8? +10 8? 8? 8? 8+TZ,1/52 ?

!+L6 *2.0 +33 +0 10+HU +31 4 +L mo1/m+HU 2+L

!+PS

🍿 Item character count = 722

CWU Table Item #: 0542 (2 columns)

TABLE 30

	SAMPLE							
	LXXXI (COMP)	LXXXII	LXXXIII	LXXXIV	LXXXV	LXXXVI	LXXXVII	LXXXVIII
BADS02 [mg/m ²] R _s of exposed layer unrinsed with water [Ω/square]	0 2.2×10^3	10 1.9 × 10 ⁴	25 1.5 × 10 ⁵	50 1.5 × 10 ⁶	87 5.3 × 10 ⁶	100 7.8 × 10 ⁶	100 1.0 × 10 ⁷	200 2.0×10^7
R_s of exposed areas rinsed with water $[\Omega/square]$	2.9×10^3	3.4 × 10 ⁴	4.9 × 10 ⁵	7.2×10^6	6.7×10^7	1.1 × 10 ⁸	1.5×10^8	1.1 × 10 ⁸
R_s of non- exposed areas un- rinsed with H_2O [Ω /square]	2.1×10^3	2.5×10^3	3.3×10^{3}	5.9×10^3	6.2×10^3	1.2 × 10 ⁴	1.3 × 10 ⁴	6.5 × 10 ⁴
R _s of non- exposed areas rinsing with water [Ω/square]	2.7×10^{3}	3.8×10^{3}	5.1×10^3	1.1 × 10 ⁴	6.2×10^3	2.1 × 10 ⁴	1.8 × 10 ⁴	1.4 × 10 ⁵
R _s ratio of exposed areas to unexposed areas after rinsing with water	1.1	8.95	96.1	654.5	10806	5238	8333	785.7

+T2 TABLE 30+HZ,1/50

!+HC,9 +UZ,9/50 SAMPLE?

!+HC,9 LXXXI? +HC,14 ? +HC,19 ? +HC,24 ? +HC,29 ? +HC,34 ? +HC,39 ? +HC,44 ?

!(COMP)? LXXXII? LXXXII!? LXXXIV? LXXXVI? LXXXVII? LXXXVIII+HZ,1/50 ?

!+TL,1 BADS02 +8 mg/m+HU 2+L +9 ? +TC,9 0? +TC,14 10? +TC,19 25? +TC,24 50? +TC,29 87? +TC,34 100? +TC,39 100? +TC,44 200?

!R+HD s +L of exposed? 2.2 +33 +0 10+HU 3? 1.9 +33 +0 10+HU 4? 1.5 +33 +0 10+HU 5? 1.5 +33 +0 10+HU 6? 5.3 +33 +0 10+HU 6? 7.8 +33 +0 10+HU 6? 1.0 +33 +0 10+HU 7? 2.0 +33 +0 10+HU 7?

!layer unrinsed?

!with water?

!+8 +106 /square+9 ?

!R+HD s +L of exposed? 2.9 +33 +0 10+HU 3? 3.4 +33 +0 10+HU 4? 4.9 +33 +0 10+HU 5? 7.2 +33 +0 10+HU 6? 6.7 +33 +0 10+HU 7? 1.1 +33 +0 10+HU 8? 1.5 +33 +0 10+HU 8? 1.1 +33 +0 10+HU 8?

!areas rinsed?

!with water?

!+8 +106 /square+9 ?

!R+HD s +L of non-? 2.1 +33 +0 10+HU 3? 2.5 +33 +0 10+HU 3? 3.3 +33 +0 10+HU 3? 5.9 +33

```
DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 08 — 7/18/2003 - 8:03:05 AM
+0 10+HU 3? 6.2 +33 +0 10+HU 3? 1.2 +33 +0 10+HU 4? 1.3 +33 +0 10+HU 4? 6.5 +33 +0 10+HU
!exposed areas un-?
!rinsed with H+HD 2+L O?
!+8 +106 /square+9 ?
!R+HD s +L of non-? 2.7 +33 +0 10+HU 3? 3.8 +33 +0 10+HU 3? 5.1 +33 +0 10+HU 3? 1.1 +33
+0 10+HU 4? 6.2 +33 +0 10+HU 3? 2.1 +33 +0 10+HU 4? 1.8 +33 +0 10+HU 4? 1.4 +33 +0 10+HU
!exposed areas?
!rinsing with water?
!+8 +106 /square+9 ?
!R+HD s +L ratio of? 1.1? 8.95? 96.1? 654.5? 10806? 5238? 8333? 785.7?
!exposed areas to?
!unexposed areas?
!after rinsing?
!with water+TZ,1/50 ?
!+PS
```

Item character count = 867

Folder character count = 1589

CWU Table Item #: 0150 (2 columns)

	λ _{max} [nm]	absorption of a 25 ppm solution in water	·
BADS01	308	0.785	O = S - OH $O = S - OH$
BADS02	308	1.568	HO S N N [Na ⁺] ₂
BADS03		~	O = S = OH $O = S = OH$ $O = S$

+T2 +HZ, 1/48

!+HC,1 ? +HC,6 ? +HC,9 absorption? +HC,15 ?

!? ? of a 25 ppm?

!? +80 +HD max? solution?

!? +8 nm+9 ? in water+HZ,1/48 ?

!+TC,1 ? +TC,6 ? +TC,9 ? +TC,15 ?

!BADS01 ? 308? 0.785? +GET,0001 ?

!+0

!BADS02? 308? 1.568? +GET,0002 ?

1+0

!BADS03? ? +13 ? +GET,0003 +TZ,1/48 ?

DA: data54 —— MD: 6/23/2003 —— N: 5,790,513 —— F: 31 —— 7/18/2003 - 8:03:08 AM **2**

!+PS

Item character count = 140

CWU Table Item #: 0170 (2 columns)

ADS-MONOMER 01

$$0 \\ \begin{array}{c} H_2C \\ N \\ \end{array} \\ \begin{array}{c} N \\ N \end{array} \\ \begin{array}{c} SO_3H \\ Na^+ \end{array}$$

ADS-MONOMER 02

ADS-MONOMER 03

ADS-MONOMER 04

-continued

ADS-MONOMER 05 ADS-MONOMER 06 Na+ ADS-MONOMER 07 $\left[Na^{+}\right] _{2}$

+T2 +HZ,1/40

!+TC,1 ? +TC,11 ?

!ADS-MONOMER 01? +GET,0004 ?

!+0

!ADS-MONOMER 02? +GET,0005 ?

!+0

!ADS-MONOMER 03? +GET,0006 ?

!ADS-MONOMER 04? +GET,0007 ?

!ADS-MONOMER 05? +GET,0008 ?

```
DA: data54 — MD: 6/23/2003 — N: 5,790,513 — F: 31 — 7/18/2003 - 8:03:08 AM

!+0
!ADS-MONOMER 06? +GET,0009 ?
!+0
!ADS-MONOMER 07? +GET,0010 +TZ,1/40 ?
!+PS
```

Item character count = 148

Folder character count = 288