February 19, 2015

TA: Cristian Hernandez cahernandez3@wisc.edu

Exercise 3.14

$$\hat{\beta}_{n+1} = \left(\begin{bmatrix} X_n \\ x'_{n+1} \end{bmatrix}' \begin{bmatrix} X_n \\ x'_{n+1} \end{bmatrix} \right)^{-1} \begin{bmatrix} X_n \\ x'_{n+1} \end{bmatrix}' \begin{bmatrix} y_n \\ y_{n+1} \end{bmatrix}$$

$$= (X'_n X_n + x'_{n+1} x_{n+1})^{-1} (X_n' y_n + x_{n+1} y_{n+1})$$

$$= [(X_n' X_n)^{-1} - (X_n' X_n)^{-1} x_{n+1} (1 + x'_{n+1} (X_n' X_n)^{-1} x_{n+1})^{-1} x'_{n+1} (X_n' X_n)^{-1}] \cdot (X_n' y_n + x_{n+1} y_{n+1})$$

$$(\because \text{By using Woodbury matrix identity (A.2)})$$

$$= (X_n' X_n)^{-1} X_n' y_n + (X_n' X_n)^{-1} x_{n+1} y_{n+1} - \frac{(X_n' X_n)^{-1} x_{n+1} x'_{n+1} (X_n' X_n)^{-1}}{(1 + x'_{n+1} (X_n' X_n)^{-1} x_{n+1})} \cdot (X_n' y_n + x_{n+1} y_{n+1})$$

$$= \hat{\beta}_n + \frac{1}{(1 + x'_{n+1} (X_n' X_n)^{-1} x_{n+1})} (X_n' X_n)^{-1} x_{n+1} (y_{n+1} - x'_{n+1} \hat{\beta}_n)$$

Exercise 3.18

From (3.37) $\hat{\beta}_{(-i)} = \hat{\beta} - (1 - h_{ii})^{-1} (X'X)^{-1} x_i \hat{e}_i$. Thus $\hat{\beta}_{-i} = \hat{\beta}$ when $x_i = 0$ or $\hat{e}_i = 0$. In words, if the observation y_i is exactly on the regression line (so that the predicted value $(x_i'\hat{\beta})$ and the actual value (y_i) are same), then excluding the observation does not change the coefficient. Excluding an observation which has $x_i = 0$ also does not change the OLS coefficient.

Exercise 3.21

Table 1 summarizes the regression results for the sub-sample of white-male-hispanics with regional and marital status dummies.

Exercise 4.1

 $\mathbb{E}(\mathbf{x}_i\mathbf{x}_i')$ is the population mean of the matrix $\mathbf{x}_i\mathbf{x}_i'$, and $\frac{1}{n}\sum_i^n\mathbf{x}_i\mathbf{x}_i'$ is its sample analogs of the unknown population mean. As sample size n increase, sample mean $\frac{1}{n}\sum_i^n\mathbf{x}_i\mathbf{x}_i'$ converges in probability to $\mathbb{E}(\mathbf{x}_i\mathbf{x}_i')$ by the WLLN under $\mathbb{E}||\mathbf{x}_i\mathbf{x}_i'|| < \infty$

Exercise 4.2

False. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)'$, $\hat{e} = (\hat{e}_1, \dots, \hat{e}_n)'$, $\mathbf{x}^2 = (x_1^2, \dots, x_n^2)'$. For OLS residual vector \hat{e} , \mathbf{x} and \hat{e} are orthogonal, i.e. $\mathbf{x}'\hat{e} = 0$. In general, this does not imply $\mathbf{x}^{2'}\hat{e} \neq 0$ unless \mathbf{x} and \mathbf{x}^2 are linearly dependent, i.e., \mathbf{x} are constant vectors $(1, \dots, 1)'$

Table 1: OLS Estimates	Result for wage 1	regression: All	white male h	spanics	(n = 4230)

Variables	ln(Wage per hours)		
Education	0.088		
Experience	0.028		
Experience squared/100	-0.037		
Regional dummy			
Northeast	0.062		
South	-0.068		
West	0.020		
Marital Status dummy			
Married	0.178		
Widowed	0.243		
Divorced	0.079		
Separated	0.017		
Constant	1.192		
R^2	0.249		
observations	4230		

Counter example: $n = 3, \{(y_i, x_i)\} = \{(7, 2), (4, 3), (8, 4)\}.$ $\hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2} = 2, \hat{e}_1 = 3, \hat{e}_2 = -2, \hat{e}_3 = 0.$ Here $\sum x_i \hat{e}_i = 0$, but $\sum \mathbf{x}_i^2 \hat{e}_i = -6$

Exercise 4.3

Proof is similar to the proof of theorem 4.6.1.1 in the lecture notes. Clearly, $\tilde{\beta}$ is linear in \mathbf{y} , and unbiased estimator of β since $\mathbb{E}(\tilde{\beta}|X) = (X'D^{-1}X)^{-1}X'D^{-1}\mathbb{E}(\mathbf{y}|X) = \beta$. The variance of $\tilde{\beta}$ is

$$\operatorname{var}(\tilde{\beta}|X) = \operatorname{var}((X'D^{-1}X)^{-1}X'D^{-1}y|X)$$
$$= (X'D^{-1}X)^{-1}X'D^{-1}DD^{-1}X(X'D^{-1}X)^{-1} = (X'D^{-1}X)^{-1}$$

For any linear estimator $\bar{\beta} = A'\mathbf{y}$, let A be any $n \times k$ function of X such that $A'X = I_k$. $\bar{\beta}$ unbiased if (and only if) $A'X = I_k$, since $\mathbb{E}(\bar{\beta}|X) = A'\mathbb{E}(y|X) = A'X\beta$. The variance of $\bar{\beta}$ is

$$\operatorname{var}(\bar{\beta}|X) = A'\operatorname{var}(\mathbf{y}|X)A = A'DA,$$

where
$$D = \mathbb{E}(\mathbf{e}\mathbf{e}'|X) = \operatorname{diag}(\sigma_1^2, \cdots, \sigma_n^2)$$
.

To show that $\tilde{\beta}$ is best linear unbiased estimator, it is sufficient to show that the difference $\operatorname{var}(\bar{\beta}|X) - \operatorname{var}(\tilde{\beta}|X)$ is positive semi-definite. Set $C = A - D^{-1}X(X'D^{-1}X)^{-1}$. Note that $X'C = \mathbf{0}$. Then

$$\begin{array}{lll} \mathrm{var}(\bar{\beta}|X) - \mathrm{var}(\tilde{\beta}|X) & = & A'DA - (X'D^{-1}X)^{-1} \\ & = & (C + D^{-1}X(X'D^{-1}X)^{-1})'D(C + D^{-1}X(X'D^{-1}X)^{-1}) - (X'D^{-1}X)^{-1} \\ & = & C'DC + C'DD^{-1}X(X'D^{-1}X)^{-1} + (X'D^{-1}X)^{-1}X'D^{-1}DC \\ & + & (X'D^{-1}X)^{-1}X'D^{-1}DD^{-1}X(X'D^{-1}X)^{-1} - (X'D^{-1}X)^{-1} \\ & = & C'DC \\ & = & (D^{1/2}C)'(D^{1/2}C) \end{array}$$

where $D^{1/2} = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$. The last term is positive semi-definite (see appendix (A.8)).

Exercise 4.4

(a) $\mathbb{E}(\tilde{\beta}|X) = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\mathbb{E}(\mathbf{y}|X) = \beta$

(b) $\operatorname{var}(\tilde{\beta}|X) = (X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\operatorname{var}(\mathbf{y}|X)\Omega^{-1}X(X'\Omega^{-1}X)^{-1} = \sigma^2(X'\Omega^{-1}X)^{-1}$. The last equality holds since $\operatorname{var}(\mathbf{y}|X) = \operatorname{var}(\mathbf{e}|X) = \sigma^2\Omega$.

(c)

$$\widehat{\mathbf{e}} = \mathbf{y} - X\widetilde{\beta}$$

$$= y - X(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}\mathbf{y}$$

$$= M_1\mathbf{y}$$

$$= M_1(X\beta + \mathbf{e})$$

$$= M_1\mathbf{e}$$

The last equality holds since $M_1X = X - X(X'\Omega^{-1}X)^{-1}(X'\Omega^{-1}X) = \mathbf{0}$ (d)

$$M_1'\Omega^{-1}M_1 = (I - X(X'\Omega^{-1}X)^{-1}X'\Omega^{-1})'\Omega^{-1}(I - X(X'\Omega^{-1}X)^{-1}X'\Omega^{-1})$$

$$= \Omega^{-1} - 2\Omega^{-1}X(X'\Omega^{-1}X)^{-1}X'\Omega^{-1} + \Omega^{-1}X(X'\Omega^{-1}X)^{-1}(X'\Omega^{-1}X)^{-1}(X'\Omega^{-1}X)X'\Omega^{-1}$$

$$= \Omega^{-1} - \Omega^{-1}X(X'\Omega^{-1}X)^{-1}X'\Omega^{-1}$$

(e) Note that
$$\mathbb{E}(s^2|X) = \frac{1}{n-k}\mathbb{E}(\hat{\mathbf{e}}'\Omega^{-1}\hat{\mathbf{e}}|X) = \frac{1}{n-k}\mathbb{E}(e'M_1\Omega^{-1}M_1e|X)$$
 by using (c).

$$\mathbb{E}(e'M_1\Omega^{-1}M_1e|X) = \mathbb{E} \left(\operatorname{tr}(e'M_1\Omega^{-1}M_1e)|X \right) \quad (tr(c) = c \text{ for scalar c})$$

$$= \mathbb{E} \left(\operatorname{tr}(M_1\Omega^{-1}M_1ee')|X \right) \quad (\text{using properties of trace})$$

$$= \operatorname{tr} \left(\mathbb{E}(M_1\Omega^{-1}M_1ee'|X) \right) \quad (\text{trace and expectation are linear operator})$$

$$= \operatorname{tr} \left(M_1\Omega^{-1}M_1\mathbb{E}(ee'|X) \right) \quad (M_1, \Omega \text{ are function of } X)$$

$$= \operatorname{tr} \left(M_1\Omega^{-1}M_1\sigma^2\Omega \right)$$

$$= \sigma^2 \operatorname{tr}(I_n - \Omega^{-1}X(X'\Omega^{-1}X)^{-1}X') \quad (\text{using}(d))$$

$$= \sigma^2 (n - \operatorname{tr}((X'\Omega^{-1}X)^{-1}(X'\Omega^{-1}X))) = \sigma^2 (n - k)$$

Thus, $\mathbb{E}(s^2|X) = \frac{1}{n-k}\mathbb{E}(e'M_1\Omega^{-1}M_1e|X) = \sigma^2$.

(f) In this (heteroskedastic) linear regression model with known Ω , s^2 is unbiased estimator, so it is fairly reasonable estimator for σ^2 .

Exercise 4.5

(a) Note that $\tilde{\beta}$ is a unbiased linear estimator. Under homoskedastic regression model, OLS is the best linear unbiased estimator by Gauss-Markov Theorem (Theorem 4.6.1.1). $\tilde{\beta}$ would be a good estimator if model is not homoskedastic. If we consider following transformation, $\tilde{y} = W^{1/2}y, \tilde{X} = W^{1/2}X$ where $W^{1/2} = \text{diag}(w_1^{1/2}, \dots, w_n^{1/2})$, then $\tilde{\beta} = (\tilde{X}'\tilde{X})^{-1}(\tilde{X}\tilde{y})$ is OLS estimator of \tilde{y} on \tilde{X} .

From this intuition we guess $\tilde{\beta}$ would be a good estimator when transformed linear regression model is homoskedastic.

(b) By Theorem 4.6.1.2 and exercise 4.3, $\tilde{\beta}$ is the best unbiased linear estimator under $\mathbb{E}(e'e|X)=W^{-1}=(\mathrm{diag}(w_1,\cdots,w_n))^{-1}$, i.e., $\mathbb{E}(e_i^2|x_i)=w_i^{-1}=x_{ji}^2$

Exercise 4.6

$$\mathbb{E}(\bar{\sigma}^2|X) = \frac{1}{n} \sum_{i=1}^n (1 - h_{ii})^{-1} \mathbb{E}(\hat{e}_i^2|X)$$

$$= \frac{1}{n} \sum_{i=1}^n (1 - h_{ii})^{-1} (1 - h_{ii}) \sigma^2 \quad \text{(use (4.16) in the homoskedastic regression model)}$$

$$= \sigma^2$$