University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik Ganapathy

On the Statistics of Character Table of S_n

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik Ganapathy

University of Michigan

Last update March 4, 2024

Motivations

University of Michigan LoG(M)

Tony Zhang,
Atharva
Kulkarni,
Arnav Shah
Mentors:
Sarah Peluse,
Karthik
Ganapathy

Definition

The character of group element $g \in G$ is, $\chi(g) = Tr(\rho(g))$ where $\rho: G \to GL_n(\mathbf{C})$ is the group representation.

- Character values capture the different behaviors of different conjugacy classes, just like a "periodic table" for symmetric groups.
- Vector spaces with symmetries are fundamental objects which show up in math, physics, etc.
- We aim to improve upon existing algorithms to compute higher order character tables of S_n and analyze various statistics of them.

	(1,1,1)	(2,1)	(3)			
(3)	1	1	1	-		
(2,1)	2	0	-1			
(1,1,1)	1	-1	4.	< = > < = >	1	990

Character Table of S6

University of Michigan LoG(M)

Tony Zhang,
Atharva
Kulkarni,
Arnav Shah
Mentors:
Sarah Peluse,
Karthik
Ganapathy

1	1	1	1	1	1	1	1	1	1	1
5	1	1	-1	2	0	-1	1	-1	0	-1
9	3	1	3	0	0	0	-1	1	-1	0
10	2	-2	-2	1	-1	1	0	0	0	1
5	1	1	-3	-1	1	2	-1	-1	0	0
16	0	0	0	-2	0	-2	0	0	1	0
10	-2	-2	2	1	1	1	0	0	0	-1
5	-1	1	3	-1	-1	2	1	-1	0	0
9	-3	1	-3	0	0	0	1	1	-1	0
5	-3	1	1	2	0	-1	-1	-1	0	1
1	-1	1	-1	1	-1	1	-1	1	1	-1

Table: Character Value Table of S6

Creating Character Tables using Partitions

University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik Ganapathy

Definition

A partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of a natural number n is a decreasing sequence $\lambda_1 \geq \dots \geq \lambda_k$ of natural numbers that sums to n.

- A natural bijective correspondence exists between partitions of n and conjugacy classes of S_n .
- Similarly, there is a bijective correspondence between partitions of n and irreducible representations of S_n .
- Thus, for every natural number *n*, we can create character tables with rows and columns indexed by the partitions of *n*.

Frobenius Formula

University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik Ganapathy

Theorem (Frobenius Formula (adapted from Zhao))

- Given an integer partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ of n, let χ^{λ} be the corresponding irreducible character of S_n .
- Let χ^{λ}_{μ} be short for the value of χ^{λ} at any g with cycle type μ , denote $l_j = \lambda_j + k j$, and i_j the number of times j appears in μ , so $\sum_i i_j j = n$
- We have the following Frobenius Formula: $\chi^{\lambda}_{\mu} = coeff. \ of \ x_1^{l_1} x_2^{l_2} \cdots x_k^{l_k} \ in \ \Delta(x) P_{\mu}(x)$ where $\Delta(x) = \prod_{1 \leq i < j \leq k} (x_i x_j),$ $P_{\mu}(x) = \prod_j P_j(x_1, \cdots, x_k)^{i_j}, \ and$ $P_i(x_1, \cdots, x_k) = x_1^j + \cdots + x_k^j \ is \ the \ j-th \ power \ sum.$

Young Diagram

University of Michigan LoG(M)

Tony Zhang,
Atharva
Kulkarni,
Arnav Shah
Mentors:
Sarah Peluse,
Karthik
Ganapathy

Definition

A Young diagram corresponding to a partition $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_k)$ where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$ is a diagram of "boxes" which has λ_1 boxes in the first row, λ_2 boxes in the second row, \cdots , λ_k boxes in the k-th row.

Example: the Young diagram corresponding to $\lambda = (4, 3, 2, 1)$

Hooks

University of Michigan LoG(M)

- The hook h in the Young diagram of λ consists of the box b together with all the boxes directly to its right and directly below it.
- The hook length, I(h), is the number of boxes contained in the hook.
- The height of the hook, ht(h), is one less than the number of rows that contain a box of h.
- Border strip, bs(h), is the connected region of boundary boxes running from the rightmost to the bottom-most box of h.

Murnaghan-Nakayama Rule

University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik Ganapathy

Theorem (The Murnaghan–Nakayama rule (adapted from Peluse & Soundarajan))

Let n and t be positive integers, with $t \le n$. Let $\sigma \in S_n$ be of the form $\sigma = \tau \cdot \rho$, where ρ is a t-cycle, and τ is a permutation of S_n with support disjoint from ρ . Let λ be a partition of n. Then

$$\chi_{\sigma}^{\lambda} = \sum_{h \in \lambda, \, \ell(h) = t} (-1)^{ht(h)} \chi_{\tau}^{\lambda \setminus bs(h)}.$$

Notion of Abacus [Peluse and Soundarajan]

University of Michigan LoG(M)

- An abacus is a bi-infinite sequence of 0's and 1's beginning with an infinite sequence of 1's and ending with an infinite sequence of 0's.
- E.g.:

$$\ldots, 1, \ldots, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, \ldots, 0, \ldots$$

- Now, an abacus has a one-to-one correspondence with a partition.
- For a given partition of an integer *n*, we can draw its corresponding Young diagram and trace its border starting from the bottom-left corner to the top-right corner.
- When we move horizontally and vertically, we denote it as a 0 or 1, respectively. This process can be easily reversed as well.

Example

University of Michigan LoG(M)

- As an illustration, consider the partition (4,2,1) of 7
- Following Figure 10, tracing its border as previously mentioned, we move right once, up once, right once, up once, right twice, and lastly up once.
- Our string obtained will be 0,1,0,1,0,0,1 and the corresponding abaci will be:

$$\dots, 1, \dots, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, \dots, 0, \dots$$

Heatmap of character table for n = 6

University of Michigan LoG(M)

Figure: Heatmap of Character Table for $n = 6^{1}$

¹See the program

More heatmaps!

University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik

Figure: Heatmap of Character Table for $n = 8^2$

More heatmaps!

University of Michigan LoG(M)

Figure: Heatmap of Character Table for $n = 12^{3}$

More heatmaps!

University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik

Figure: Heatmap of Character Table for n=20 (truncated ± 500) ⁴

Number of Zeroes

University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik Ganapathy

Figure: Number of Zero Entries in the Character Table of Symmetric Groups

Density of Zeroes Increasing?

University of Michigan LoG(M)

Tony Zhang,
Atharva
Kulkarni,
Arnav Shah
Mentors:
Sarah Peluse,
Karthik
Ganapathy

Figure: Density of Zero Entries in the Character Table of Symmetric Groups

Distribution of Values In a Column

University of Michigan LoG(M)

Figure: Distribution of Size of Character Values of First Column of S19

Next Steps

University of Michigan LoG(M)

- Analyze the column associated with the staircase partition, as it has no repeated parts and its entries are generally smaller
- Look at the moments of the entries in the character table to see if they resemble some well known distribution

Bibliography

University of Michigan LoG(M)

Tony Zhang, Atharva Kulkarni, Arnav Shah Mentors: Sarah Peluse, Karthik Ganapathy

Persi Diaconis.

Group representations in probability and statistics.

Lecture Notes-Monograph Series, 11:i–192, 1988.

Sarah Peluse and Kannan Soundararajan.

Divisibility of character values of the symmetric group by prime powers, 2023.

Yufei Zhao.

Young tableaux and the representations of the symmetric group.

01 2008.