Unicamp [Matéria] [Professor]

TÍTULO Subtítulo

Erik Yuji Goto

Campinas 2020

Sumário

1	Conceitos Iniciais 3					
	1.1	Velocidade Instântanea	3			
	1.2	Aceleração Instântanea	3			
	1.3	Velocidade Angular	3			
	1.4	Aceleração Angular	3			
2	Mo	vimento Retilíneo da Partícula	3			
3	Mo	viento Curvilíneo da Partícula	4			
	3.1	Coordenadas Cartesianas	4			
	3.2	Coordenadas Normal-Tangencial	4			
	3.3	Coordenadas Polares	4			
4	Mo	Movimento Circular 5				
5	Movimento Curvilíneo Espacial da Partícula 5					
	5.1	Coordenadas Cartesianas	5			
	5.2	Coordenadas Cilíndricas	6			
	5.3	Coordenadas Esféricas	7			
6	Tra	Transformações de Coordenadas 7				
7	Mo	vimento Relativo	8			
	7.1	Plano - Eixos de Referência em Translação	8			
	7.2	Plano - Eixos de Referência em Rotação	8			
	7.3	Plano - Eixos de Referência em Movimento Geral	9			
8	Propriedades de Inércia de Corpos Rígidos 9					
	8.1	Posição do Centro de Massa de um Corpo Rígido	9			
	8.2	Posição do Centro de Massa de corpos de geometria composta	9			
	8.3	Momento de inércia de massa de um corpo rígido em relação a um eixo.	10			
	8.4	Raio de giração	10 11			
	8.5	Momentos de inércia de massa expressos em coordenadas cartesianas	11			
	8.6	Momentos de inércia de corpos de geometria composta	12			
	8.7	Momentos de inércia de massa em relação a um eixo orientado arbitraria-				
		mente. Produtos de inércia	12			
	8.8	Teorema dos Eixos Paralelos para momentos de inércia e produtos de				
		inércia expressos em coordenadas cartesianas	13			
	8.9	Eixos principais de inércia e momentos principais de inércia	13			
9	Dinâmica dos Corpos rígidos					
	9.1	Quantidade de movimento linear e quantidade de movimento angular de	1 5			
	0.9	corpos rígidos	15			
	9.2 9.3	Equações de Newton-Euler	15 16			
	9.3 9.4	Equações de Newton-Euler para corpos rígidos em movimento de translação Equações de Newton-Euler para corpos rígidos em movimento plano	16			
	J.4	9.4.1 Equações de Newton-Euler para corpos rigidos em movimento piano 9.4.1 Equações de Newton-Euler para o movimento plano de rotação ba-	10			
		ricêntrica	16			

	9.4.2	Equações de Newton-Euler para o movimento plano de rotação não	
		baricêntrica	17
9.5	Equaç	ões de Newton-Euler para corpos rígidos em movimento tridimensional	17
	9.5.1	Equações de Newton-Euler para corpos rígidos em movimento tri-	
		dimensional de rotação em torno de um eixo fixo	17

1 Conceitos Iniciais

1.1 Velocidade Instântanea

$$\vec{v(t)} = \frac{d\vec{r}}{dt} \left[\frac{m}{s} \right]$$

1.2 Aceleração Instântanea

$$a(\vec{t})_m = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{d^2t} \left[\frac{m^2}{s}\right]$$

1.3 Velocidade Angular

$$\omega = \frac{d\theta}{dt} \left[\frac{rad}{s} \right]$$
$$\vec{\omega} = \dot{\theta} \hat{k}$$

1.4 Aceleração Angular

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} \left[\frac{rad}{s^2} \right]$$
$$\vec{\alpha} = \ddot{\omega} \hat{k}$$

2 Movimento Retilíneo da Partícula

Figura 1: Movimentos retilíneos

3

$$1. \ v(t) = v_0 + at$$

2.
$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$

3.
$$\boldsymbol{v}^2(\boldsymbol{x}) = \boldsymbol{v}_0^2 + 2\boldsymbol{a}(\boldsymbol{x} - \boldsymbol{x}_0)$$
 - Torricelli

$$4. \ x(t) = x_0 + vt$$

3 Moviento Curvilíneo da Partícula

3.1 Coordenadas Cartesianas

Figura 2: Cartesianas

1.
$$\vec{v}(t) = \dot{x}(t)\vec{i} + \dot{y}(t)\vec{j}$$

2.
$$\vec{a}(t) = \ddot{x}(t)\vec{i} + \ddot{y}(t)\vec{j}$$

3.2 Coordenadas Normal-Tangencial

Figura 3: Normal-tangencial

$$1. \ \vec{v}(t) = v(t)\hat{i}_t$$

$$2. \ \vec{a}(t) = \frac{dv}{dt}\hat{i}_t + \frac{v^2}{\rho}\hat{i}_n$$

3.3 Coordenadas Polares

1.
$$\vec{v}(t) = \dot{r}\vec{i}_r + r\dot{\theta}\vec{i}_\theta$$

2.
$$\vec{a}(t) = (\ddot{r} - r\dot{\theta}^2)\vec{i}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{i}_{\theta}$$

Figura 4: Polares

4 Movimento Circular

$$\vec{v} = (r\omega)\vec{i}_{\theta}$$

$$\vec{a} = (-r\omega^{2})\vec{i}_{r} + (r\alpha)\vec{i}_{\theta}$$

$$ou$$

$$\vec{v} = \vec{\omega} \times \vec{r}$$

$$\vec{\alpha} = \vec{\alpha} \times \vec{r} - \omega^{2}\vec{r}$$

5 Movimento Curvilíneo Espacial da Partícula

5.1 Coordenadas Cartesianas

Figura 5: Cartesianas

Vetor posição

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$
 [m]:

$$\|\vec{r}(t)\| = \sqrt{x^2(t) + y^2(t) + z^2(t)}$$
 [m]:

Vetor velocidade

$$\vec{v}(t) = \dot{x}(t)\vec{i} + \dot{y}(t)\vec{j} + \dot{z}(t)\vec{k} \quad \lceil m/s \rceil$$

$$\left\| \vec{v}\left(t\right) \right\| = \sqrt{\dot{x}^{2}\left(t\right) + \dot{y}^{2}\left(t\right) + \dot{z}^{2}\left(t\right)} \quad [\text{m/s}];$$

Vetor aceleração

$$\vec{a}(t) = \ddot{x}(t)\vec{i} + \ddot{y}(t)\vec{j} + \ddot{z}(t)\vec{k}$$
 [m/s²]:

$$\left\|\vec{a}\left(t\right)\right\| = \sqrt{\left.\vec{x}^{2}\left(t\right) + \vec{y}^{2}\left(t\right) + \vec{z}^{2}\left(t\right)\right.} \quad \left[\text{m/s}^{2}\right].$$

Figura 6: Cartesianas

5.2 Coordenadas Cilíndricas

Figura 7: Cilíndricas

1.
$$\vec{v} = \dot{r}\vec{i}_r + r\dot{\theta}\vec{i}_\theta + \dot{z}\vec{k}$$

2.
$$\vec{a} = (\ddot{r} - \dot{r}\dot{\theta}^2)\vec{i_r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{i_\theta} + \ddot{z}\vec{k}$$

5.3 Coordenadas Esféricas

Figura 8: Esféricas

1.
$$\vec{v} = \dot{R}\vec{i_R} + R\dot{\theta}cos\phi\vec{i_\theta} + R\dot{\phi}\vec{i_\phi}$$

2.

$$\vec{\alpha} = \alpha_{\scriptscriptstyle R} \, \vec{i}_{\scriptscriptstyle R} + \alpha_{\scriptscriptstyle \theta} \, \vec{i}_{\scriptscriptstyle \theta} + \alpha_{\scriptscriptstyle \phi} \, \vec{i}_{\scriptscriptstyle \phi} \, ; \label{eq:alpha_eq}$$

$$a_{R} = \ddot{R} - R\dot{\phi}^{2} - R\dot{\theta}^{2}\cos^{2}\phi;$$

 $a_{\theta} = R \, \dot{\theta} \cos \phi + 2 \, \dot{R} \, \dot{\theta} \cos \phi - 2 \, R \, \dot{\theta} \, \dot{\phi} \, \sin \phi \, ; \label{eq:attention}$

$$a_{\phi} = R \, \ddot{\phi} + 2 \, \dot{R} \, \dot{\phi} + R \, \dot{\theta}^2 \, sen\phi \cos\phi \, ; \label{eq:approx}$$

$$\|\vec{a}\| = \sqrt{a_R^2 + a_\theta^2 + a_\phi^2}$$
.

6 Transformações de Coordenadas

7 Movimento Relativo

7.1 Plano - Eixos de Referência em Translação

Figura 9: Cilíndricas

1.
$$\vec{r}_p = \vec{r}_A + \vec{r}_{P/A}$$

2.
$$\vec{v}_p = \vec{v}_A + \vec{v}_{P/A}$$

$$3. \ \vec{a}_p = \vec{a}_A + \vec{a}_{P/A}$$

7.2 Plano - Eixos de Referência em Rotação

Figura 10: Cilíndricas

1.
$$\vec{v}_p|_{OXY} = \vec{\dot{r}}_P|_{Oxy} + \vec{\Omega} \times \vec{r}_P$$

2.
$$\vec{a}_P|_{OXY} = \vec{r}_P|_{Oxy} + \vec{\Omega} \times \vec{r}_p - \vec{\Omega}^2 \vec{r}_P + 2\vec{\Omega} \times \vec{r}_P|_{Oxy}$$

7.3 Plano - Eixos de Referência em Movimento Geral

Figura 11: Cilíndricas

- 1. $\vec{v}_P|_{OXY} = \vec{r}_A|_{OXY} + \vec{r}_{P/A}|_{Axy} + \vec{\Omega} \times \vec{r}_{P/A}$
- 2. $\vec{a}_P|_{OXY} = \vec{r}_A|_{OXY} + \vec{r}_{P/A}|_{Axy} + \vec{\Omega} \times \vec{r}_{P/A} \vec{\Omega}^2 \vec{r}_{P/A} + 2\vec{\Omega} \times \vec{r}_{P/A}|_{Axy}$

8 Propriedades de Inércia de Corpos Rígidos

8.1 Posição do Centro de Massa de um Corpo Rígido

$$x_G = \frac{1}{m} = \int_{vol} x dm \tag{1}$$

$$y_G = \frac{1}{m} = \int_{vol} y dm \tag{2}$$

$$z_G = \frac{1}{m} = \int_{vol} z dm \tag{3}$$

8.2 Posição do Centro de Massa de corpos de geometria composta

Figura 12: Corpos compostos

$$\vec{r}_G = \frac{1}{m} \sum_{i=1}^n m_i \vec{r}_{G_i} \tag{4}$$

8.3 Momento de inércia de massa de um corpo rígido em relação a um eixo. Raio de giração

Figura 13: Momentos de inércia

O momento de inércia de massa do corpo rígido em relação ao eixo indicado é definido segundo:

$$J_{OO'} = \int_{vol} r^2 dm \tag{5}$$

Nos casos em que o corpo é constituído de um material uniforme, a densidade ρ é constante em todo seu volume a equação fica:

$$J_{OO'} = \rho \int_{vol} r^2 dV \tag{6}$$

O raio de giração de massa do corpo rígido em relação ao eixo OO', designado por $k_{OO'}$, é definido sob a forma:

$$k_{OO'} = \sqrt{\frac{J_{OO'}}{m}} \Leftrightarrow J_{OO'} = k_{OO'}^2 m \tag{7}$$

8.4 Teorema dos Eixos Paralelos para os momentos de inércia de massa

Figura 14: Ilustração de um corpo rígido e dois eixos paralelos entre si, sendo um deles baricêntrico.

Note que, um dos eixos precisa serbaricêntrico, passando pelo CG.

Segundo o Teorema dos Eixos Paralelos:

$$J_{AA'} = J_{OO'} + d^2m (8)$$

$$k_{AA'}^2 = k_{OO'}^2 + d^2 (9)$$

Sendo "d" a distância perpendicular entre os dois eixos.

8.5 Momentos de inércia de massa expressos em coordenadas cartesianas

Caso o corpo rígido seja constituído de um material uniforme, com densidade ρ constante sobre seu volume, seus momentos de inércia podem ser expressas sob a forma:

$$J_x = \rho \int_{vol} (y^2 + z^2) dV$$
 (10)

$$J_y = \rho \int_{vol} (x^2 + z^2) dV \tag{11}$$

$$J_z = \rho \int_{vol} (y^2 + x^2) dV \tag{12}$$

No Apêndice B do Rade tem uma tabela com as propriedades do momento de inércia de alguns sólidos comuns.

8.6 Momentos de inércia de corpos de geometria composta

Figura 15: Ilustração de um sólido composto pela associação de várias partes

$$J_x = J_x|_{P1} + J_x|_{P2} + \dots + J_x|_{Pn}$$
(13)

$$J_y = J_y|_{P1} + J_y|_{P2} + \dots + J_y|_{Pn}$$
(14)

$$J_z = J_z|_{P1} + J_z|_{P2} + \dots + J_z|_{Pn}$$
(15)

8.7 Momentos de inércia de massa em relação a um eixo orientado arbitrariamente. Produtos de inércia

Considerando a figura, desejamos expressar o momento de inércia de massa do corpo rígido em relação ao eixo OO', orientado arbitrariamente, em função dos momentos de inércia J_x , J_y e J_z , relativos aos eixos coordenados x, y e z. Nesta figura, o vetor $\vec{u} = u_x \vec{i} + u_y \vec{j} + u_z \vec{k}$ é o vetor unitário na direção do eixo OO'.

Figura 16: Imagem que ilustra a determinação do momento de inércia de um corpo rígido em relação a um eixo orientado arbitrariamente

$$J_{OO'} = J_x u_x^2 + J_y u_y^2 + J_z u_z^2 - 2P_{xy} u_x u_y - 2P_{xz} u_x u_z - 2P_{yz} u_y u_z$$
 (16)

Onde,

$$P_{xy} = \int_{vol} xydm \tag{17}$$

$$P_{xz} = \int_{vol} xzdm \tag{18}$$

$$P_{yz} = \int_{vol} yzdm \tag{19}$$

Em forma matricial temos:

$$J_{OO'} = \begin{bmatrix} u_x & u_y & u_z \end{bmatrix} \begin{bmatrix} J_x & -P_{xy} & -P_{xz} \\ -P_{xy} & J_y & -P_{yz} \\ -P_{xz} & -P_{yz} & J_z \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$
(20)

8.8 Teorema dos Eixos Paralelos para momentos de inércia e produtos de inércia expressos em coordenadas cartesianas

Figura 17: Ilustração de um corpo rígido e dois sistemas de referência, sendo um deles baricêntrico

Teorema dos Eixos Paralelos para os momentos de inércia expressos em coordenadas cartesianas:

$$J_x = J_{x'} + (y_G^2 + z_G^2)m (21)$$

$$J_y = J_{y'} + (z_G^2 + x_G^2)m (22)$$

$$J_z = J_{z'} + (y_G^2 + x_G^2)m (23)$$

Teorema dos Eixos Paralelos para os produtos de inércia em coordenadas cartesianas:

$$P_{xy} = P_{x'y'} + x_G y_G m \tag{24}$$

$$P_{xz} = P_{x'z'} + x_G z_G m \tag{25}$$

$$P_{yz} = P_{y'z'} + y_G z_G m \tag{26}$$

8.9 Eixos principais de inércia e momentos principais de inércia

Sempre podemos encontrar um sistema triortogonal de eixos em relação aos quais todos os *produtos de inércia são nulos* simultaneamente. Neste caso, o tensor de inércia resulta ser uma matriz diagonal.

Os eixos em relação aos quais os produtos de inércia são nulos são chamados Eixos Principais de Inércia (EPI), e os momentos de inércia em relação a estes eixos são denominados Momentos Principais de Inércia (MPI).

Para encontrar Eixos Principais de Inércia e os Momentos Principais de Inércia é necessário calcular os autovetores e autovalores:

$$([J_{xyz}] - \lambda_i[I_3])\{v_i\} = \{0\}$$
(27)

- \bullet Os autovalores λ_i correspondem aos valores dos três momentos principais de inércia, que designaremos por J_x , J_y , J_z .
- Os autovetores $\{v_i\}$ são os vetores cujas componentes são os cossenos diretores dos três eixos principais de inércia, em relação ao sistema de referência Oxyz.

9 Dinâmica dos Corpos rígidos

9.1 Quantidade de movimento linear e quantidade de movimento angular de corpos rígidos

$$\vec{L} = m\vec{v}_G \tag{28}$$

$$\vec{H}_O = \int_{vol} \vec{r} \times \vec{v} dm \tag{29}$$

$$\vec{H}_G = \int_{vol} \vec{r'} \times \vec{v'} dm \tag{30}$$

Figura 18: Ilustração de um corpo rígido e de dois sistemas de referência

Usando o tensor de inércia conseguimos calcular o momento angular:

$$\{H_G\} = [J_{Gx'y'z'}]\{\omega\} \tag{31}$$

E, também temos:

$$\vec{H}_O = \vec{H}_G + m(\vec{r}_G \times \vec{v}_G) \tag{32}$$

9.2 Equações de Newton-Euler

$$\sum \vec{F} = \dot{\vec{L}} = m\vec{a}_G \tag{33}$$

$$\sum \vec{M}_O = \dot{\vec{H}}_O \tag{34}$$

$$\sum \vec{M}_G = \dot{\vec{H}}_G \tag{35}$$

As equações acima, estendidas para um corpo livre, são conhecidas como Equações de Newton-Euler. Como as Equações 34 e 35 não são independentes entre si, dentre as Equações 33 a 35 geralmente opta-se por utilizar apenas as Equações 33 e 35.

9.3 Equações de Newton-Euler para corpos rígidos em movimento de translação

$$\sum \vec{F} = m\vec{a}_G \tag{36}$$

$$\sum \vec{M}_G = \vec{0} \tag{37}$$

Um corpo estará em translação quando o momento resultante dos esforços externos em relação ao centro de massa for nulo. Esta condição implica que nos casos em que houver apenas forças externas aplicadas ao corpo rígido, a linha de ação da resultante destas forças deve passar pelo centro de massa do corpo.

9.4 Equações de Newton-Euler para corpos rígidos em movimento plano

Figura 19: Corpo rígido realizando movimento plano

Os produtos de inércia que envolvem o eixo perpendicular ao plano de referência são nulos (Pxz = Pyz = 0, Px'z' = Py'z' = 0). Portanto a quantidade de movimento angular em relação ao centro de massa G é:

$$\{H_G\} = \begin{bmatrix} J_{x'} & -P_{x'y'} & 0\\ -P_{x'y'} & J_{y'} & 0\\ 0 & 0 & J_{z'} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \omega \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ J_{z'}\omega \end{bmatrix}$$
(38)

Ou.

$$\vec{H}_G = J_{z'}\omega\vec{k} \tag{39}$$

Equações de Euler:

$$\sum \vec{F} = m\vec{a}_G \tag{40}$$

$$\sum \vec{M}_G = J_{z'} \alpha \vec{k} \tag{41}$$

9.4.1 Equações de Newton-Euler para o movimento plano de rotação baricêntrica

Entendemos por rotação baricêntrica o caso de movimento plano em que, devido à existência de restrições cinemáticas, o corpo rígido gira em torno de um eixo perpendicular ao plano de referência que passa pelo seu centro de massa.

$$\sum \vec{F} = 0 \tag{42}$$

$$\sum \vec{M}_G = J_{z'} \alpha \vec{k} \tag{43}$$

9.4.2 Equações de Newton-Euler para o movimento plano de rotação não baricêntrica

A rotação não baricêntrica é o caso de movimento plano em que, devido à existência de restrições cinemáticas, o corpo rígido gira em torno de um eixo perpendicular ao plano de referência que passa por um ponto O não coincidente com seu centro de massa.

As equações de Newton Euler assumem as seguintes formas:

$$\sum \vec{F} = m\alpha \vec{k} \times \vec{OG} - m\omega^2 \vec{OG} \tag{44}$$

$$\sum \vec{M}_O = J_z \alpha \vec{k} \tag{45}$$

De acordo com o Teoremas dos Eixos Paralelos para os momentos de inércia de massa:

$$J_z = J_{z'} + m|\vec{OG}|^2 \tag{46}$$

9.5 Equações de Newton-Euler para corpos rígidos em movimento tridimensional

9.5.1 Equações de Newton-Euler para corpos rígidos em movimento tridimensional de rotação em torno de um eixo fixo

Figura 20: Corpo rígido desenvolvendo movimento tridimensional de rotação em torno de um eixo fixo

$$\{H_O\} = [J_{OXYZ}]\{\omega\} \tag{47}$$

Pelo teorema dos eixos paralelos:

$$[J_{OXYZ}] = \begin{bmatrix} J_{x'} & -P_{x'y'} & -P_{x'z'} \\ -P_{x'y'} & J_{y'} & -P_{y'z'} \\ -p_{x'z'} & -P_{y'z'} & J_{z'} \end{bmatrix} + m \begin{bmatrix} Y_G^2 + Z_G^2 & -X_G Y_G & -X_G Z_G \\ -X_G Y_G & X_G^2 + Z_G^2 & -Y_G Z_G \\ -X_G Z_G & -Y_G Z_G & X_G^2 + Y_G^2 \end{bmatrix}$$
(48)

Ao derivar $\{H_O\}$, temos a seguinte relação

$$\sum \{M_O\} = [J_{OX_1Y_1Z_1}] \frac{d\{\omega\}}{dt} |_{Ox_1y_1z_1} + \{\omega\} \times \{H_O\}$$
 (49)

E para as forças

$$\sum F = ma_G \tag{50}$$