Сравнение моделей для регрессии

Эксперименты с California Housing, Diabetes и Ames Housing

Автор:Карпович Лидия

2025

Цель эксперимента

- Оценка качества различных моделей регрессии
- Сравнение классических и бустинговых моделей
- Использование Монте-Карло бутстрэппинга для оценки устойчивости
- Включение нейросетевых моделей с MC Dropout

Данные

- California Housing: задачи ценообразования недвижимости
- Diabetes: медицинские данные для предсказания прогресса заболевания
- Ames Housing: расширенный датасет с характеристиками домов

Используемые методы

- Линейные модели: Ridge, Lasso, ElasticNet
- Градиентные бустинги: XGBoost, CatBoost
- Нейросети: MLP с MC Dropout
- Разделение данных на обучение и тест (80/20)
- Метрики оценки: MSE, R², MAE

Результаты: California Housing

Модель	MSE (без MK)	R² (без МК)	МАЕ (без МК)	MSE (с МК бутстрэп)	R² (с МК бутстрэп)	МАЕ (с МК бутстрэп)
Ridge	0.5559	0.5758	0.5332	0.5533	0.5778	0.5320
Lasso	0.6796	0.4814	0.6222	0.6793	0.4816	0.6223
ElasticNet	0.6359	0.5148	0.5970	0.6356	0.5150	0.5970
XGBoost	0.2952	0.7747	0.3710	0.2895	0.7791	0.3667
CatBoost	0.2995	0.7714	0.3753	0.2985	0.7722	0.3737
MLP MC	0.2710	0.7932	0.3489	_	_	_

Вывод: Лучшие результаты по всем метрикам показал MLP с MC Dropout, что свидетельствует о высокой эффективности нейросетевых подходов с оценкой неопределенности. Градиентные бустинги XGBoost и CatBoost также продемонстрировали высокую точность, значительно превосходя классические линейные модели.

Результаты: Diabetes

Модель	MSE (без MK)	R² (без МК)	МАЕ (без МК)	MSE (с МК бутстрэп)	R² (с МК бутстрэп)	МАЕ (с МК бутстрэп)
Ridge	2892.01	0.4541	42.81	2912.28	0.4503	42.97
Lasso	2884.62	0.4555	42.81	2932.43	0.4465	42.87
ElasticNet	2866.46	0.4590	42.87	2869.64	0.4584	42.98
XGBoost	2959.46	0.4414	44.11	2767.80	0.4776	42.61
CatBoost	2661.58	0.4976	41.92	2650.49	0.4997	41.67

Вывод: Для датасета диабета CatBoost показал наилучшие результаты с обеими стратегиями обучения. Градиентный бустинг и CatBoost явно превосходят классические линейные модели. Применение бутстрэп-оценки неопределенности улучшает метрики у XGBoost и CatBoost.

Результаты: Ames Housing

Модель	MSE (без MK)	R² (без МК)	МАЕ (без МК)	MSE (с МК бутстрэп)	R² (с МК бутстрэп)	МАЕ (с МК бутстрэп)
Ridge	1,323,203,244	0.8275	19,653.54	1,016,075,814	0.8675	18,685.20
Lasso	1,323,518,314	0.8274	19,745.11	1,119,915,462	0.8540	19,034.46
ElasticNet	1,064,945,854	0.8612	19,897.09	957,268,260	0.8752	18,855.29
XGBoost	713,142,656	0.9070	17,363.73	758,048,803	0.9012	16,759.46
CatBoost	789,392,922	0.8971	17,638.15	825,543,384	0.8924	17,647.80

Вывод: На датасете Ames Housing наилучшие показатели достигаются градиентным бустингом XGBoost и CatBoost, значительно превосходящими линейные модели. Интересно, что бутстрэпная оценка неопределённости приводит к небольшому ухудшению MSE и R^2 у бустингов, но снижению MAE в случае XGBoost.

Анализ и выводы

- Нейросетевой MLP с MC Dropout показал лучшие результаты на California Housing, демонстрируя потенциал современных подходов с оценкой неопределенности.
- Градиентные бустинги (XGBoost, CatBoost) стабильно показывают высокую точность и устойчивы к переобучению на всех датасетах.
- Классические линейные модели уступают бустингам и нейросетям, но иногда дают адекватные базовые решения.
- Применение бутстрэп-методов и MC Dropout улучшает стабильность и качество оценки метрик, особенно для бустингов и нейросетей.
- Для некоторых датасетов (например, Ames Housing) улучшения метрик с бутстрэпом варьируются и требуют дальнейшего изучения.