## 3 抽样分布

- 3.1 引言: 概率论如何认识随机现象的数量规律
- 3.2 概率分布界定
- 3.3 正态分布
- 3.4 T分布
- 3.5 F分布
- 3.6 抽样与抽样分布











#### □ 大数定律的基本思想

- > 当试验或观察的次数逐渐增大时,
  - 某随机事件出现的频率m/n逐渐趋近于该随机事件 发生的概率p,即

$$\lim_{n\to\infty}\frac{m}{n}=p_{\,\circ}$$

• 大量随机事件发生结果  $X_1, X_2, \dots, X_n$ 的均值  $\overline{X}$  渐趋近于这些结果的期望值  $\mu$ ,即

$$\lim_{n\to\infty} \overline{x} = \mu,$$

其中,
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
,  $\mu = E(X)_{\circ}$ 

- > 保险的运作机制:风险集中
  - 保险的必要性: 风险管理者通过风险集中将其风险转移给集体,但为节省交易成本,就需保险公司作为风险集中的纽带(否则风险单位之间必须两两签订协议)。风险管理者购买保险,其实就是参与大量风险单位的风险集中活动,保险公司就是这些大量风险单位的集体,这样风险管理者就可将其风险向保险公司转移;
  - 保险的可能性:保险公司所承担的风险是大量风险单位组成的集体的风险,而只要风险单位足够多,集体的期望损失将趋于确定(大数定律),这样保险公司只需承担较小的风险,收取的保费只需用于确定的损失赔偿及其他费用的开支。

- □ 中心极限定理的基本思想及应用
  - > 当试验或观察的次数逐渐增大时,
    - 大量随机事件结果  $X_1, X_2, \dots, X_n$  的均值逐渐趋近于一个正态分布,即  $\overline{x} \sim N(\mu, \sigma^2/n)$

其中, 
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
,  $\mu = E(X)$ ,  $\sigma^2 = D(X)$ 。

- > 为样本统计量的抽样分布形式提供了理论基础
  - 根据中心极限定理,在样本容量足够大时,从任 意概率分布总体中抽取的随机样本的均值将近似 服从均值为  $\mu$ 、方差为  $\sigma^2/n$  的正态分布。
- 为大量的统计分析和应用提供了理论基础和关键结论

## 3.2 概率分布界定

#### □ 随机变量的概率分布

- > 离散型随机变量的概率分布
  - 定义: 以函数、表格、图形形式描述随机变量的可能取值及其相应概率的一种表达方式。

函数形式:  $P\{X = x_k\} = p_k, k = 1, 2, \dots, n$ 

表格形式:

| X | $x_1$ | $x_2$ | <br>$x_k$ | <br>$x_n$ |
|---|-------|-------|-----------|-----------|
| p | $p_1$ | $p_2$ | <br>$p_k$ | <br>$p_n$ |

图形形式:



- ➤ 连续型随机变量的概率密度函数 (PDF)
  - 定义: 对于任意实数x, 存在一个非负函数f(x), 使得随机变量X的分布函数F(X) 满足:

$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t)dt,$$

则f(x)为随机变量X的概率密度函数。



● 具有如下性质:

(1) 
$$f(x) \ge 0$$
;  
(2)  $P\{a < X \le b\} = \int_{a}^{b} f(x)dx$ ,特别地,  $\int_{-\infty}^{+\infty} f(x)dx = 1$ ;  
(3)  $F'(x) = f(x)$ 。



- 连续随机变量的常用分布:
  - (1) 均匀分布: 若随机变量X的概率密度函数为:

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \exists \dot{\mathbb{R}} \end{cases};$$

(2) 指数分布: 若随机变量X的概率密度函数为:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0 \\ 0, \cancel{\exists} \dot{\mathbf{r}} \end{cases}, \quad \lambda > 0;$$

(2) 正态分布: 若随机变量X的概率密度函数为:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ \sigma > 0.$$

#### □ 随机变量的累积分布函数(CDF)

- > 累积分布函数的概念
  - 若X为一个随机变量,对任意实数x,则随机变量的累积分布函数为:

$$F(x) = P\{X \le x\}$$

- > 累积分布函数的性质
  - 对任意实数X,  $0 \le F(x) \le 1$ ;
  - 若a<b, 则  $F(a) \le F(b)$ ;
  - $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$ ,  $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$ ;

- > 离散型随机变量的累积分布函数
  - 函数形式:

$$F(x) = \sum_{k: x_k \le x} p_k$$

- > 连续型随机变量的累积分布函数
  - 函数形式:

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

# 离散型

# 连续型

1. 分布列: 
$$p_n = P(X=x_n)$$

2. 
$$F(x) = \sum_{x_i \le x} P(X = x_i)$$

2. 
$$F(x) = \int_{-\infty}^{x} f(t)dt$$

3. 
$$F(a+0) = F(a); P(a < X \le b) = F(b) - F(a).$$

- 4. 点点计较
- 5. F(x)为阶梯函数。

$$F(a-0) \neq F(a)$$
.

4. 
$$P{X=a} = 0$$

$$F(a-0)=F(a).$$

#### □ 应用实例:资产收益的概率分布





从图可看出,Stable和NIG分布对沪深300收益率序列拟合较好,比HYP和GAU均更好,GAU最差。

- □ 金融资产收益分布特征的一些共识
  - > 非正态性。
  - > 资产收益分布的典型统计特征:
    - (1) 非对称性; (2) 尖峰; (3) 厚尾
  - ▶ 适用的分布类型:稳定分布、t分布
  - > 资产收益分布实证研究的未来方向:
    - 由股票市场向外汇市场、债券市场、基金市场等进行拓展,研究资产收益分布函数的具体形式及其主要特征;
    - 研究不同时间标度(周、月、季、年)的资产收益分布函数之间的 关系以及资产收益序列各具体特征(如偏度、峰度等)之间的关系 ,并对此进行建模和解释;
    - 资产收益分布的应用性研究,包括对基于某种分布形式的资本市场理论以及风险管理研究;
    - 资产收益序列的各种行为规律(如周内效应、月份效应、小公司效 应等)及其建模

#### 3.3 正态分布

#### □ 普通正态分布

- ▶ 普通正态分布的定义
  - 若连续型随机变量X的概率密度函数和累积分布函数分别为:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt,$$

其中, $\mu$ 、 $\sigma > 0$  为常数, $-\infty < x < \infty$ ,则称随机变量X服从正态分布,记为

$$x \sim N(\mu, \sigma^2)$$
 .

● 正态分布  $N(\mu, \sigma^2)$  的概率分布函数曲线和累积分布函数曲线分别为:



#### ▶ 普通正态分布的性质

- 若  $X\sim N(\mu,\sigma^2)$  , 则随机变量X的性质有:
  - (1) X的均值为:  $E(X) = \mu$
  - (2) X的方差为:  $\sigma_X^2 = E[(X \mu)^2] = \sigma^2$
- 概率密度函数值非负, 即为  $f(x) \ge 0$ ;
- 概率密度曲线以x轴为渐近线,即为  $\exists x \to \infty$ 时, $f(x) \to 0$
- 概率密度函数曲线是关于均值对称的钟形曲线;



均值控制曲线的对称(中心)位置; 方差控制曲 线的陡峭程度。



#### □ 标准正态分布

● 若将普通正态分布中的均值取为**0**,方差取为**1**,则普通正态分布转化为标准正态分布,记为 Z~N(0,1), 其概率密度函数和累积分布函数分别为:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$



$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt ,$$



- 标准正态分布 N(0,1) 具有如下性质:
  - (1)  $\phi(x)$  具有各阶导数;
  - (2)  $\phi(-x) = \phi(x)$ ;
  - (3)  $\phi(x)$  在  $(-\infty,0]$  递增,而在  $(0,+\infty)$ 递减;

$$f'(x) = \frac{\mu - x}{\sqrt{2\pi}\sigma^3} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$$

(4)  $\phi(x)$  在-1和1处有两个拐点;

$$f''(x) = \frac{(x-\mu)^2 - \sigma^2}{\sqrt{2\pi}\sigma^3} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty$$

(5) 以x轴为渐近线:  $\lim_{x\to\infty} \phi(x) = 0$ ;

(6) 
$$\Phi(-x) = 1 - \Phi(x);$$



(7) 标准正态分布 Y~N(0,1与普通正态分布 X~N( $\mu$ ,  $\sigma$ <sup>2</sup>) 的对应关系:



(7) 若n个相互独立的随机变量X<sub>1</sub>、X<sub>2</sub>、…、Xn均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和X构成一新的随机变量,其分布称为卡方分布(chisquare distribution),记为 $V \sim \chi^2(n_2)$ :

$$f(x|\nu) = \frac{x^{(\nu-2)/2}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}$$

其中, $x \ge 0$ , v > 0为自由度参数, $\Gamma(\cdot)$ 为伽玛函数。



#### 伽玛函数 $\Gamma(x)$ 定义为:

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt, \quad x > 0$$

台蓉

#### □ 标准正态分布的上α分位点

● 若X~N(0,1),则满足条件  $P\{X>z_{\alpha}\}=\alpha,0<\alpha<1 \implies P\{X<-z_{\alpha}\}=\alpha$  的点  $z_{\alpha}$  的为标准正态分布的上 $\alpha$ 分位点。



左图可以看出, $P\{X>z_{1-\alpha}\}=1-\alpha$  即  $P\{X< z_{1-\alpha}\}=\alpha$  ,因此, $z_{1-\alpha}=-z_{\alpha}$ 

计算标准正态分布的右侧**2.5%**分位点的代码为:

- Excel: NORM.INV(1-0.025,0,1)
- MATLAB: norminv(1-0.025, 0, 1)
- Python: st.norm.ppf(1-0.025, 0, 1)



Entries in the table give the area under the curve to the left of the z value. For example, for z = -.85, the cumulative probability is .1977.

| z    | .00   | .01   | .02   | .03   | .04   | .05   | .06    | .07   | .08   | .09   |
|------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
| -3.0 | .0013 | .0013 | .0013 | .0012 | .0012 | .0011 | .0011  | .0011 | .0010 | .0010 |
| -2.9 | .0019 | .0018 | .0018 | .0017 | .0016 | .0016 | .0015  | .0015 | .0014 | .0014 |
| -2.8 | .0026 | .0025 | .0024 | .0023 | .0023 | .0022 | .0021  | .0021 | .0020 | .0019 |
| -2.7 | .0035 | .0034 | .0033 | .0032 | .0031 | .0030 | .0029  | .0028 | .0027 | .0026 |
| -2.6 | .0047 | .0045 | .0044 | .0043 | .0041 | .0040 | .0039  | .0038 | .0037 | .0036 |
| -2.5 | .0062 | .0060 | .0059 | .0057 | .0055 | .0054 | .0052  | .0051 | .0049 | .0048 |
| -2.4 | .0082 | .0080 | .0078 | .0075 | .0073 | .0071 | .0069  | .0068 | .0066 | .0064 |
| -2.3 | .0107 | .0104 | .0102 | .0099 | .0096 | .0094 | .0091  | .0089 | .0087 | .0084 |
| -2.2 | .0139 | .0136 | .0132 | .0129 | .0125 | .0122 | .0119  | .0116 | .0113 | .0110 |
| -2.1 | .0179 | .0174 | .0170 | .0166 | .0162 | .0158 | .0154  | .0150 | .0146 | .0143 |
| -2.0 | .0228 | .0222 | .0217 | .0212 | .0207 | .0202 | .0197  | .0192 | .0188 | .0183 |
| -1.9 | .0287 | .0281 | .0274 | .0268 | .0262 | .0256 | .02.50 | .0244 | .0239 | .0233 |
| -1.8 | .0359 | .0351 | .0344 | .0336 | .0329 | .0322 | .0314  | .0307 | .0301 | .0294 |
| -1.7 | .0446 | .0436 | .0427 | .0418 | .0409 | .0401 | .0392  | .0384 | .0375 | .0367 |
| -1.6 | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485  | .0475 | .0465 | .0455 |
| -1.5 | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594  | .0582 | .0571 | .0559 |
| -1.4 | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721  | .0708 | .0694 | .0681 |
| -1.3 | .0968 | .0951 | .0934 | .0918 | .0901 | .0885 | .0869  | .0853 | .0838 | .0823 |
| -1.2 | .1151 | .1131 | .1112 | .1093 | .1075 | .1056 | .1038  | .1020 | .1003 | .0985 |
| -1.1 | .1357 | .1335 | .1314 | .1292 | .1271 | .1251 | .1230  | .1210 | .1190 | .1170 |
| -1.0 | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1446  | .1423 | .1401 | .1379 |
| 9    | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685  | .1660 | .1635 | .1611 |
| 8    | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949  | .1922 | .1894 | .1867 |
| 7    | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236  | .2206 | .2177 | .2148 |
| 6    | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546  | .2514 | .2483 | .2451 |
| 5    | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877  | .2843 | .2810 | .2776 |
| 4    | .3446 | .3409 | .3372 | .3336 | .3300 | .3264 | .3228  | .3192 | .3156 | .3121 |
| 3    | .3821 | .3783 | .3745 | .3707 | .3669 | .3632 | .3594  | .3557 | .3520 | .3483 |
| 2    | .4207 | .4168 | .4129 | .4090 | .4052 | .4013 | .3974  | .3936 | .3897 | .3859 |
| 台分布  | .4602 | .4562 | .4522 | .4483 | 大学管理学 | 院 黄伯蓉 | .4364  | .4325 | .4286 | .4247 |
| 0    | .5000 | .4960 | .4920 | .4880 | .4840 | .4801 | .4761  | .4721 | .4681 | .4641 |



Entries in the table give the area under the curve to the left of the z value. For example, for z = 1.25, the cumulative probability is .8944.

| z   | .00   | .01   | .02   | .03         | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|
| .0  | .5000 | .5040 | .5080 | .5120       | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| .1  | .5398 | .5438 | .5478 | .5517       | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| .2  | .5793 | .5832 | .5871 | .5910       | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| .3  | .6179 | .6217 | .6255 | .6293       | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| .4  | .6554 | .6591 | .6628 | .6664       | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| .5  | .6915 | .6950 | .6985 | .7019       | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| .6  | .7257 | .7291 | .7324 | .7357       | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| .7  | .7580 | .7611 | .7642 | .7673       | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| .8  | .7881 | .7910 | .7939 | .7967       | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| .9  | .8159 | .8186 | .8212 | .8238       | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485       | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708       | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907       | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082       | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236       | .9251 | .9265 | .9279 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370       | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484       | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582       | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664       | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732       | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |
| 2.0 | .9772 | .9778 | .9783 | .9788       | .9793 | .9798 | .9803 | .9808 | .9812 | .9817 |
| 2.1 | .9821 | .9826 | .9830 | .9834       | .9838 | .9842 | .9846 | .9850 | .9854 | .9857 |
| 2.2 | .9861 | .9864 | .9868 | .9871       | .9875 | .9878 | .9881 | .9884 | .9887 | .9890 |
| 2.3 | .9893 | .9896 | .9898 | .9901       | .9904 | .9906 | .9909 | .9911 | .9913 | .9916 |
| 2.4 | .9918 | .9920 | .9922 | .9925       | .9927 | .9929 | .9931 | .9932 | .9934 | .9936 |
| 2.5 | .9938 | .9940 | .9941 | .9943       | .9945 | .9946 | .9948 | .9949 | .9951 | .9952 |
| 2.6 | .9953 | .9955 | .9956 | .9957       | .9959 | .9960 | .9961 | .9962 | .9963 | .9964 |
| 2.7 | .9965 | .9966 | .9967 | .9968       | .9969 | .9970 | .9971 | .9972 | .9973 | .9974 |
| 2.8 | .9974 | .9975 | .9976 | .9977       | .9977 | .9978 | .9979 | .9979 | .9980 | .9981 |
| 2.9 | .9981 | .9982 | 中9982 | <b>学學</b> 到 | 里學院   | 黄磐蓉   | .9985 | .9985 | .9986 | .9986 |
| 3.0 | .9987 | .9987 | .9987 | .9988       | .9988 | .9989 | .9989 | .9989 | .9990 | .9990 |
|     |       |       |       |             |       |       |       |       |       |       |

- □ 标准正态分布概率的计算
  - ▶ 问题1
    - 若 Y~N(0,1),则 P{Y ≤ b} = ?



解决方法: 直接查询标准正态分布表, 或利用统计分析软件求得。

#### ▶ 问题2

• 若 Y~N(0,1), 则  $P\{a < Y \le b\} = ?$ 



解决方法: 先变换  $P\{a < Y \le b\} = P\{Y \le b\} - P\{Y < a\}$ ,然后查询标准正态分布表,或利用统计分析软件求得。

#### > 问题3

若 Y~N(0,1),则 P{|Y| ≤ a} = ?



解决方法: 先变换  $P\{|Y| \le a\} = 2(0.5 - P\{Y \le -a\})$ , 然后查询标准正态分布表,或利用统计分析软件求得。

● 常用概率值(3σ原则): 若 Y~N(0,1),则

$$P{| Y | \le 1.000} =$$
 $P{| Y | \le 1.645} =$ 
 $P{| Y | \le 1.960} =$ 
 $P{| Y | \le 2.000} =$ 
 $P{| Y | \le 2.576} =$ 
 $P{| Y | \le 3.000} =$ 



#### □ 普通正态分布概率的计算

- ▶ 问题
  - 若  $X \sim N(\mu, \sigma^2)$  ,则  $P\{a < X \le b\} = ?$
  - 若  $X \sim N(\mu, \sigma^2)$  且  $P\{\mu < X \le a\} = p$ ,则 a = ?

#### ▶ 解决方法

- 方法1: 直接利用概率密度函数的积分即可求得;
- **方法2**: 首先,正态标准化,然后,查询标准正态 分布函数表即可求得。
- 方法3: 利用统计分析软件求得。

#### □ 计算练习:

- ▶ 例3.3.1:
  - 设 X ~ N(0, 1), 求 P(X>-1.96), P(|X|<1.96)。
- ▶ 例3.3.2:
  - 设 X ~ N(0, 1), P(X≤b) = 0.9515, P(X≤a)
     = 0.04947, 求 a、b。
- ▶ 例3.3.3:
  - 砂随机变量X ~N (0,1), 试求: (1).
     P{1≤X<2}; (2). P{-1<X<2}.</li>
- ➤ 例3.3.4:
  - 设随机变量X ~N(2,9), 试求: (1).
     P{1≤X<5}; (2). P{|X-2|>6}; (3). P{X>0}

## 3.3 正态分布(续)

#### ▶ 例3.3.5:

● 设 X ~ N(10, 4), 求P(10<X<13), P(|X-10|<2)。

#### ▶ 例3.3.6:

● 设 X ~ N( $\mu$ ,  $\sigma^2$ ), P(X ≤-5) = 0.045, P(X ≤3) = 0.618, 求  $\mu$  及  $\sigma$ 。

#### ➤ 例3.3.7:

● 公司人事主管部门对2 500名经理的年薪进行了调查,发现所有经理的平均年薪及其标准差分别为51 800元和730.30元,则某位经理的平均年薪在51 300至52 300元之间的概率是多少?

## 3.3 正态分布(续)

- ▶ 例3.3.8:
  - 某类资产的平均价值等于500 000元,标准差为 15 000元,则属于该类的某项资产价值在485 000至530 000元之间的概率为多少?
- ▶ 例3.3.9: 项目设备生产是否采用外包决策
  - 若某项目建设正需一批设备,而且项目组经过分析发现,若自行生产,则机器设备年租金为100 000元,若采用外包生产,则单位外包成本为700元。但是,单位原材料成本(LC)、单位工资成本(MC)以及自行生产的年产量(P)等3个变量是不确定的,通过经验发现,它们分别服从如下的正态分布: LC~N(200,100), MC~N(400,25), P~N(900,10000)。

那么,项目经理要求你利用蒙特卡罗模拟方法提供定

量决策依据。

#### MATLAB概率分布函数动态演示界面: disttool





f = normpdf(X,mu,sigma);%计算均值为 mu、标准差为 sigma 的正态分布概率密度函数在 X 处的取值。 F = normcdf(X,mu,sigma);%计算均值为 mu、标准差为 sigma 的正态分布累积分布函数在 X 处的取值。 u = norminv(P, mu,sigma);%计算均值为 <math>mu、标准差为 sigma 的正态分布累积分布逆函数在 P 处的取值。

f = normpdf(-2:2,1,10); F = normcdf(-2:2,1,10); u = norminv(1-0.05,0,1); %分别计算均值为 1、标准差为 10 的正态分布概率分布函数值、累积分布函数值、标准正态分布的上侧 0.05 分位数。

```
例3.3.1:
              设 X ~ N(0, 1), 求
                      P(X>-1.96), P(|X|<1.96)
 \mathbf{H}: P(X>-1.96) = 1-\Phi(-1.96) = 1-(1-\Phi(1.96))
                      =\Phi(1.96)=0.975 (查表得)
       P(|X|<1.96) = 2 \Phi(1.96)-1 = 2 \times 0.975-1 = 0.95
 Excel代码:
 p1=1-NORMSDIST(-1.96)
 p2=NORMSDIST(1.96)-NORMSDIST(-1.96)
 MATLAB代码:
 p1=1-cdf('Normal',-1.96,0,1); %或者p1=1-normcdf(-1.96,0,1);
 p2=cdf('Normal',1.96,0,1)-cdf('Normal',-1.96,0,1); %或者
  p2=normcdf(1.96,0,1)-normcdf(-1.96,0,1);
 Python代码:
 import scipy.stats as st
 p1=1-st.norm.cdf(x=-1.96, loc=0, scale=1) #st.norm.sf(x=-1.96, loc=0, scale=1)
 p2=st.norm.cdf(x=1.96, loc=0, scale=1)-st.norm.cdf(x=-1.96, loc=0, scale=1)
```

# 例3.3.2: 设 $X \sim N(0, 1)$ , $P(X \le b) = 0.9515$ , $P(X \le a) = 0.04947$ , 求a, b.

**解**: 
$$\Phi(b) = 0.9515 > 1/2,$$

$$\Phi(a) = 0.0495 < 1/2$$
,

所以 
$$a < 0$$
,  $\Phi(-a) = 0.9505$ , 反  
查表得:  $\Phi(1.65) = 0.9505$ ,

#### Excel代码:

a=NORM.INV(0.9515,0,1)

b=NORM.INV(0.04947,0,1)

#### MATLAB代码:

a = norminv(0.9515, 0, 1);

b = norminv(0.04947, 0, 1);

#### Python代码:

import scipy.stats as st

a = st.norm.ppf(q=0.9515, loc=0, scale=1)

b = st.norm.ppf(q=0.04947, loc=0, scale=1)

**例3.3.3:** 设随机变量 $X \sim N(0,1)$ ,试求:

(1). 
$$P\{1 \le X < 2\}$$
; (2).  $P\{-1 < X < 2\}$ .

解: (1). 
$$P{1 \le X < 2} = \Phi(2) - \Phi(1) = 0.97725 - 0.84134 = 0.1359$$

(2). 
$$P\{-1 \le X < 2\} = \Phi(2) - \Phi(-1) = \Phi(2) - [1 - \Phi(1)]$$
  
= 0.97725 - 1 + 0.84134= 0.81859

#### Excel代码:

p1=NORMSDIST(2)-NORMSDIST(1)

p2==NORMSDIST(2)-NORMSDIST(-1)

#### MATLAB代码:

p1 = normcdf(2,0,1) - normcdf(1,0,1)

p2 = normcdf(2,0,1) - normcdf(-1,0,1)

### Python代码:

import scipy.stats as st

p1=st.norm.cdf(x=2, loc=0,scale=1)- st.norm.cdf(x=1, loc=0,scale=1)

p2= st.norm.cdf(x=2, loc=0, scale=1)- st.norm.cdf(x=-1, loc=0, scale=1)- st.norm.cdf

**例3.3.4:** 设随机变量 $X \sim N(2, 9)$ ,试求: (1).  $P\{1 \le X < 5\}$ ; (2).  $P\{|X - 2| > 6\}$ ; (3).  $P\{X > 0\}$ .

解: (1). 
$$P\{1 \le X < 5\} = F(5) - F(1) = \Phi(\frac{5-2}{3}) - \Phi(\frac{1-2}{3})$$
  
=  $\Phi(1) - \Phi\left(-\frac{1}{3}\right) = \Phi(1) + \Phi\left(\frac{1}{3}\right) - 1$   
=  $0.84134 + 0.62930 - 1 = 0.47064$ 

(2). 
$$P\{|X-2| > 6\} = 1 - P\{|X-2| \le 6\} = 1 - P\{-6 \le X - 2 \le 6\}$$
  
 $= 1 - P\{-4 \le X \le 8\} = 1 - \left[\Phi(\frac{8-2}{3}) - \Phi(\frac{-4-2}{3})\right]$   
 $= 1 - \left[\Phi(2) - \Phi(-2)\right] = 2 \times \left[1 - \Phi(2)\right]$   
 $= 2 \times (1 - 0.97725) = 0.0455$ 

(3). 
$$P\{X>0\} = 1 - P\{X \le 0\} = 1 - \Phi(\frac{0-2}{3}) = 1 - \Phi\left(-\frac{2}{3}\right)$$
 $\Phi(\frac{2}{3}) = 0.7486$ 

43

```
Excel代码:
```

```
p1= NORMDIST(5,2,3,TRUE)-NORMDIST(1,2,3,TRUE)
p2 = NORMDIST(-6,0,3,TRUE)-1+NORMDIST(6,0,3,TRUE)
p3 = 1-NORMDIST(0,2,3,TRUE)
MATLAB代码:
p1=cdf('Normal',5,2,3)-cdf('Normal',1,2,3) %或者p1=normcdf(5,2,3)-
normcdf(1,2,3)
p2=1-cdf('Normal',8,2,3)+cdf('Normal',-4,2,3) %或者p2=1-
normcdf(8,2,3)+normcdf(-4,2,3);
p3=1-cdf('Normal',0,2,3) %或者p2=1-normcdf(0,2,3)
Python代码:
import scipy.stats as st
p1=st.norm.cdf(x=5, loc=2, scale=3)-st.norm.cdf(x=1, loc=2, scale=3)
p2=st.norm.cdf(x=-6, loc=0, scale=3)+1-st.norm.cdf(x=6, loc=0, scale=3)
p3=1-st.norm.cdf(x=0, loc=0, scale=3)
```

例3.3.5: 设X~N(10,4), 求 P(10<X<13), P(|X-10|<2).

解: 
$$P(10 < X < 13) = \Phi(1.5) - \Phi(0) = 0.9332 - 0.5 = 0.4332$$
  
 $P(|X - 10| < 2) = P(8 < X < 12) = 2\Phi(1) - 1 = 0.6826$ 

#### Excel代码:

p1= NORMDIST(13,10,2,TRUE)-NORMDIST(10,10,2,TRUE)

p2= NORMDIST(2,0,2,TRUE)- NORMDIST(-2,0,2,TRUE)

#### MATLAB代码:

p1=cdf('Normal',13,10,2)-cdf('Normal',10,10,2) %或者 p1=normcdf(13,10,2)-normcdf(10,10,2)

p2=1-cdf('Normal',2,0,2)+cdf('Normal',-2,0,2) % 或者p2=1-normcdf(2,0,2)+normcdf(-2,0,2);

#### Python代码:

import scipy.stats as st

p1=st.norm.cdf(x=13, loc=10,scale=2)-st.norm.cdf(x=10, loc=10,scale=2)
p2=st.norm.cdf(x=2, loc=0,scale=2) -st.norm.cdf(x=-2, loc=0,scale=2)

# 例3.3.6: 设 $X \sim N(\mu, \sigma^2)$ , $P(X \le -5) = 0.045$ , $P(X \le 3) = 0.618$ , 求 $\mu$ 及 $\sigma$ .

$$\begin{cases} \frac{5+\mu}{\sigma} = 1.69 \\ \frac{3-\mu}{\sigma} = 0.3 \end{cases} \qquad \begin{cases} \mu = 1.76 \\ \sigma = 4 \end{cases}$$

#### Excel代码:

a=NORM.INV(0.045,0,1)

b=NORM.INV(0.618,0,1)

#### MATLAB代码:

a = norminv(0.045, 0, 1)

b = norminv(0.618, 0, 1)

## Python代码:

import scipy.stats as st

a = st.norm.ppf(q=0.045, loc=0, scale=1)

b = st.norm.ppf(q=0.618, loc=0, scale=1)

# 例3.3.7:

$$P\{51300 < x \le 52300\} =$$

$$P\{\frac{51300-51800}{730.30}<\frac{x-\mu}{\sigma_x}\leq \frac{52300-51800}{730.30}\}=P\{-0.6847< z\leq 0.6847\}$$

$$= 2 \times (P\{z \le 0.6847\} - 0.5) = 2 \times (0.7533 - 0.5) = 0.5066$$

#### Excel代码:

p= NORMDIST(52300, 51800, 730.3,TRUE)-NORMDIST(51300, 51800, 730.3,TRUE)

或CDF.NORMAL(52300,51800,730,30)-CDF.NORMAL(51300,51800,730,30)

#### MATLAB代码:

x\_down=51300; x\_up=52300; x\_bar=51800; standard\_deviation=730.3; p=cdf('Normal',x\_up,x\_bar,standard\_deviation)-cdf('Normal', x\_down, x\_bar, standard\_deviation);

#### Python代码:

import scipy.stats as st

st.norm.cdf(x=52300, loc=51800, scale=730.3)-st.norm.cdf(x=51300,

## 例3.3.8:

$$P{485000 < x \le 530000} =$$

$$P\{\frac{485000-500000}{15000}<\frac{x-\mu}{\sigma_x}\leq \frac{530000-500000}{15000}\}=P\{-1< z\leq 2\}$$

$$= P\{z \le 2\} - (1 - P\{z \le 1\}) = 0.97725 - (1 - 0.8413) = 0.8186$$

#### Excel代码:

p= NORMDIST(530000, 500000, 15000,TRUE)-NORMDIST(485000, 500000, 15000, TRUE)

或CDF.NORMAL(530000, 500000, 15000)- CDF.NORMAL(485000, 500000, 15000)

#### MATLAB代码:

x\_down= 485000; x\_up= 530000; x\_bar= 500000; standard\_deviation= 15000;

p=cdf('Normal',x\_up,x\_bar,standard\_deviation)-cdf('Normal', x\_down, x\_bar, standard\_deviation);

#### Python代码:

import scipy.stats as st

st.norm.cdf(x= 530000, loc= 500000, scale= 15000)-st.norm.cdf(x= 485000,  $\frac{1}{100}$   $\frac{$ 

## 蒙特卡罗模拟法(MC, Monte Carlo Simulation)

## □ 基本原理

在假定变量服从某概率分布函数条件下,利用计算机和抽样技术为该变量模拟一系列随机数,然后计算出该变量小于等于某给定值的概率,或直接计算目标变量的结果。

## □ 基本步骤

- 构建各变量的概率分布;
- 生成大量随机数,一般在1000个以上;
- 计算目标变量的大量取值;
- ▶ 输出分析(比如,计算最小值、最大值、均值、标准差、概率等)。



# 蒙特卡罗模拟法(续)

- ▶ (3)利用各风险变量产生的所有随机数计算状态变量的大量取值,并进行统计分析(如计算最小值、最大值、均值和标准差等);
- ▶ (4)根据分析结果,绘制概率分布和累积概率分布 曲线,比如,基于正态分布的累积概率曲线;
- > (5) 依据累积概率曲线评估其风险状况;
- ▶ (6)也可利用模拟数据和实际数据对概率模型进行 修正,并在实践中不断完善。

## □ 常用于模拟的概率分布模型

均匀分布、正态分布、对数正态分布、指数分布、极值分布、三角分布、β分布、泊松分布等。

# 例3.3.9:

第1步:首先,模拟年产量P、单位原材料成本MC和单位工资成本LC的1000个随机数,然后,根据成本公式计算年可变成本和总成本,如下表A、B、C、D、E例所示(仅显示前5个和最后5个)。

#### 自行生产年总成本的模拟结果:

|      | A          | В           | С                | D                     | E                         | F                          |  |  |
|------|------------|-------------|------------------|-----------------------|---------------------------|----------------------------|--|--|
| 1    | 年产量 P      |             | 单位工<br>资成本<br>MC | 年可变成本<br>VC=P*(LC+MC) | 自行生产: 总成本<br>TC=VC+100000 | 小于等于B<br>列显示数<br>值的概率<br>P |  |  |
| 2    | 1127.1227  | 214.4094    | 403.851          | 696854.7682           | 796854.7682               | 1.000                      |  |  |
| 3    | 1132.4832  | 206. 9711   | 405.186          | 693257.8113           | 793257.8113               | 0.999                      |  |  |
| 4    | 1159.4934  | 198.9097    | 398.326          | 692491.0958           | 792491.0958               | 0.998                      |  |  |
| 5    | 1112.5198  | 222. 4671   | 399.058          | 691458.4307           | 791458.4307               | 0.997                      |  |  |
| 6    | 1160.1664  | 199. 2945   | 395.191          | 689701.8688           | 789701.8688               | 0.996                      |  |  |
| 997  | 636. 2901  | 9 184. 294  | 402.97           | 71 373670.91          | 6 473670.916              | 0.005                      |  |  |
| 998  | 630.9787   | 74 192, 275 | 3 395.9          | 4 371151.151          | 471151.1511               | 0.004                      |  |  |
| 999  | 619.7155   | 6 195. 606  | 7 392.2          | 9 364328.426          | 88 464328. 4268           | 0.003                      |  |  |
| 100  | 0 604.9599 | 92 198. 471 | 4 401.94         | 12 363225.797         | 72 463225. 7972           | 0.002                      |  |  |
| 1003 | 1 593.7840 | 05 184. 589 | 1 394. 99        | 94 344147.148         | 37 444147.1487            | 0.001                      |  |  |

#### 外包年总成本的模拟结果:

|      | _ , _ ,, , | 1 11 12 4 12 11 11 | • • •                 |
|------|------------|--------------------|-----------------------|
|      | A          | В                  | С                     |
|      | 年产量<br>P   | 外包:总成本<br>TC=P*700 | 小于等于E<br>列显示数<br>值的概率 |
| 1_   |            |                    | P                     |
| 2    | 1180.28    | 826199.11          | 1.0000                |
| 3    | 1160.17    | 812116.49          | 0.9990                |
| 4    | 1159.49    | 811645.37          | 0.9980                |
| 5    | 1149.91    | 804935.12          | 0.9970                |
| 6    | 1145.47    | 801830.83          | 0.9960                |
| 997  | 633.46     | 443424.44          | 0.0050                |
| 998  | 630.98     | 441685.12          | 0.0040                |
| 999  | 619.72     | 433800.89          | 0.0030                |
| 1000 | 604.96     | 423471.94          | 0.0020                |
| 1001 | 593.78     | 415648.83          | 0.0010                |



第2步: 计算所有年总成本值以下对应的累积概率曲线 ,如上图所示。从分析结果可看出,应选择外包方式 成本更低。

## > 项目成本蒙特卡罗模拟



## > 项目进度蒙特卡罗模拟







#### MATLAB代码:

```
%% 模拟LC、MC和P的正态分布随机数(1000行1列)
LC = normrnd(200, 10, 1000, 1);
MC = normrnd(400,5, 1000, 1);
P = normrnd(900, 100, 1000, 1);
%% 计算自行生产的总成本和外包生产的总成本
TC1=P.*(LC+MC)+100000; % 自行生产总成本
TC2=P*700; %外包总成本
%% 计算累积概率值
sort1=sort(TC1); sort2=sort(TC2); Prob=0.001:0.001:1;
%%绘制总成本与累积概率关系曲线
figure('Color','W');
plot(sort1, Prob, sort2, Prob, 'r-.', 'Linewidth',2);
xlabel('总成本'); ylabel('累积概率');
legend('自行生产','外包生产','Location', 'SouthEast');
```

```
Python代码:
#--- 模拟LC、MC和P的正态分布随机数(1000行1列)
import numpy.random as nprS
LC = npr.normal(loc=200,scale=10,size=1000)
MC = npr.normal(loc=400, scale=5, size=1000)
P = npr.normal(loc=900, scale=100, size=1000)
#---计算自行生产的总成本和外包生产的总成本
TC1=P*(LC+MC)+100000 #自行生产总成本
TC2=P*700: #外包总成本
#--- 计算累积概率值
import numpy as npS
sort1=np.sort(TC1); sort2=np.sort(TC2); Prob=np.linspace(0.001,1,1000);
#--- 绘制总成本与累积概率关系曲线
import matplotlib; matplotlib.__version__
#matplotlib.use('Qt5Agg') #matplotlib.use('?') #matplotlib.get_backend() #如果显示不出
 图片,则运行该语句
import matplotlib.pyplot as plt #导入pyplot模块
plt.rcParams['font.sans-serif']='Simhei' #以黑体字体正常显示中文
plt.rcParams['axes.unicode_minus']=False #用于正常显示坐标轴,
fig, ax = plt.subplots() ##显性创建figure对象(创建图 figure 和 坐标系 axes), 然后在
 坐标系中添加图形和相关元素,也可独立创建: #fig=plt.figure()创建画布;
 ax=plt.axes()创建坐标轴
ax.plot(sort1,Prob, label='自行生产'); ax.plot(sort2,Prob, color='r', label='外包');
                                                                   57
 ax.legend(); plt.show(); plt.xlabel('总成本'); plt.ylabel('累积概率')
```

## 3.4 T分布

## □ T 分布界定

## ➤ T分布定义

设 $X \sim N(0,1)$ ,  $Y \sim \chi^2(n)$ , 且X = Y相互独立,则称变量:

$$t = \frac{X}{\sqrt{Y/n}}$$

所服从的分布为自由度为 n的 t 分布,又称学生氏分布,记为t~t(n)。

➤ T分布的概率密度函数

$$h(t) = \frac{\Gamma[(n+1)/2]}{\Gamma(n/2)\sqrt{n\pi}} (1 + \frac{t^2}{n})^{-\frac{n+1}{2}} - \infty < t < \infty$$

➤ T分布的概率密度曲线



#### ➤ T分布的性质

- 具有自由度为n的t分布 $t \sim t(n)$ ,其数学期望与方差为: E(t) = 0,D(t) = n/(n-2)(n > 2);
- T分布的密度函数关于t=0对称;
- 当n充分大时,T分布趋近于正态分布,即为

,或者,
$$\lim_{n\to\infty}h(t)=\frac{1}{\sqrt{2\pi}}e^{-t^2/2}$$
 $t\sim N(0,1)$ 





## □ T分布的分位点

- ightharpoonup T分布的上 $\alpha$ 分位点定义:
  - 对于给定 $\alpha$ ,  $0<\alpha<1$ , 称满足条件:

$$p\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t)dt = \alpha$$

的点 $t_{\alpha}(n)$ 。

T分布的上α分位点图示



- T分布的上α分位点性质
  - $\bullet \quad t_{1-\alpha}(n) = -t_{\alpha}(n)$
- ➤ 计算自由度为15的T分布上侧0.025分位点
  - $\hat{\underline{\tau}}$ :  $t_{0.025}(15) = 2.131$
  - 近似: 当n>45时,对于常用的 $\alpha$ 的值,可用正态 近似,即为 $t_{\alpha}(n) \approx z_{\alpha}$
  - Excel代码: T.INV(1-0.025,15)
  - MATLAB代码: tinv(1-0.025, 15)
  - Python代码:

import scipy.stats as st st.t.ppf(1-0.025, 15)



Entries in the table give t values for an area or probability in the upper tail of the t distribution. For example, with 10 degrees of freedom and a .05 area in the upper tail,  $t_{.05}=1.812$ .

| Degrees    | Area in Upper Tail |       |                  |        |        |        |  |  |  |  |  |  |  |  |
|------------|--------------------|-------|------------------|--------|--------|--------|--|--|--|--|--|--|--|--|
| of Freedom | .20                | .10   | .05              | .025   | .01    | .005   |  |  |  |  |  |  |  |  |
| 1          | 1.376              | 3.078 | 6.314            | 12.706 | 31.821 | 63.656 |  |  |  |  |  |  |  |  |
| 2          | 1.061              | 1.886 | 2.920            | 4.303  | 6.965  | 9.925  |  |  |  |  |  |  |  |  |
| 3          | .978               | 1.638 | 2.353            | 3.182  | 4.541  | 5.841  |  |  |  |  |  |  |  |  |
| 4          | .941               | 1.533 | 2.132            | 2.776  | 3.747  | 4.604  |  |  |  |  |  |  |  |  |
| 5          | .920               | 1.476 | 2.015            | 2.571  | 3.365  | 4.032  |  |  |  |  |  |  |  |  |
| 6          | .906               | 1.440 | 1.943            | 2.447  | 3.143  | 3.707  |  |  |  |  |  |  |  |  |
| 7          | .896               | 1.415 | 1.895            | 2.365  | 2.998  | 3.499  |  |  |  |  |  |  |  |  |
| 8          | .889               | 1.397 | 1.860            | 2.306  | 2.896  | 3.355  |  |  |  |  |  |  |  |  |
| 9          | .883               | 1.383 | 1.833            | 2.262  | 2.821  | 3.250  |  |  |  |  |  |  |  |  |
| 10         | .879               | 1.372 | 1.812            | 2.228  | 2.764  | 3.169  |  |  |  |  |  |  |  |  |
| 11         | .876               | 1.363 | 1.796            | 2.201  | 2.718  | 3.106  |  |  |  |  |  |  |  |  |
| 12         | .873               | 1.356 | 1.782            | 2.179  | 2.681  | 3.055  |  |  |  |  |  |  |  |  |
| 13         | .870               | 1.350 | 1.771            | 2.160  | 2.650  | 3.012  |  |  |  |  |  |  |  |  |
| 14         | .868               | 1.345 | 1.761            | 2.145  | 2.624  | 2.977  |  |  |  |  |  |  |  |  |
| 15         | .866               | 1.341 | 1.753            | 2.131  | 2.602  | 2.947  |  |  |  |  |  |  |  |  |
| 16         | .865               | 1.337 | 1.746            | 2.120  | 2.583  | 2.921  |  |  |  |  |  |  |  |  |
| 17         | .863               | 1.333 | 1.740            | 2.110  | 2.567  | 2.898  |  |  |  |  |  |  |  |  |
| 18         | .862               | 1.330 | 1.734            | 2.101  | 2.552  | 2.878  |  |  |  |  |  |  |  |  |
| 19         | .861               | 1.328 | 1.729            | 2.093  | 2.539  | 2.861  |  |  |  |  |  |  |  |  |
| 20         | .860               | 1.325 | 1.725            | 2.086  | 2.528  | 2.845  |  |  |  |  |  |  |  |  |
| 21         | .859               | 1.323 | 1.721            | 2.080  | 2.518  | 2.831  |  |  |  |  |  |  |  |  |
| 22         | .858               | 1.321 | 1.717            | 2.074  | 2.508  | 2.819  |  |  |  |  |  |  |  |  |
| 23         | .858               | 1.319 | 1.714            | 2.069  | 2.500  | 2.807  |  |  |  |  |  |  |  |  |
| 24         | .857               | 1.318 | 1.711            | 2.064  | 2.492  | 2.797  |  |  |  |  |  |  |  |  |
| 25         | .856               | 1.316 | 1.708            | 2.060  | 2.485  | 2.787  |  |  |  |  |  |  |  |  |
| 26         | .856               | 1.315 | 1.706            | 2.056  | 2.479  | 2.779  |  |  |  |  |  |  |  |  |
| 27         | .855               | 1.314 | 1.703            | 2.052  | 2.473  | 2.771  |  |  |  |  |  |  |  |  |
| 28         | .855               | 1.313 | 1.701            | 2.048  | 2.467  | 2.763  |  |  |  |  |  |  |  |  |
| 29         | .854               | 1.311 | 1.699            | 2.045  | 2.462  | 2.756  |  |  |  |  |  |  |  |  |
| 30         | .854               | 1.310 | 1.697            | 2.042  | 2.457  | 2.750  |  |  |  |  |  |  |  |  |
| 31         | .853               | 1.309 | 1.696            | 2.040  | 2.453  | 2.744  |  |  |  |  |  |  |  |  |
| 抽样分        | .853               | 1.309 | 上兴 年 1 694 生 公 声 | 2.037  | 2.449  | 2.738  |  |  |  |  |  |  |  |  |
|            | .853               | 1.308 | 大学管理等 医黄诒容       | 2.035  | 2.445  | 2.7393 |  |  |  |  |  |  |  |  |
| 34         | .852               | 1.307 | 1.691            | 2.032  | 2.441  | 2.728  |  |  |  |  |  |  |  |  |

# 3.5 F分布

## □ F分布界定

- ➤ F分布的定义
  - 设 $U \sim \chi^2(n_1), V \sim \chi^2(n_2)$ ,U与V相互独立,则称随机变量

$$F = \frac{U/n_1}{V/n_2}$$

服从自由度为 $n_1$ 及  $n_2$ 的F分布, $n_1$ 称为第一(分子)自由度, $n_2$ 称为第二(分母)自由度,记作  $F\sim F(n_1,n_2)$  , 易知,  $\frac{1}{F}=\frac{V/n_2}{U/n_1}\sim F(n_2,n_1)$ 。

- ▶ F分布的概率密度函数

$$\phi(y) = \begin{cases} \frac{\Gamma(\frac{n_1 + n_2}{2})}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})} (\frac{n_1}{n_2})^{\frac{n_1}{2}} (y)^{\frac{n_1}{2} - 1} (1 + \frac{n_1}{n_2} y)^{-\frac{n_1 + n_2}{2}} & y > 0\\ 0 & y \le 0 \end{cases}$$

### ➤ F分布的概率密度曲线



#### ➤ F分布的性质

- F分布的数学期望为:  $E(F) = \frac{n_2}{n_2-2}$ ,  $n_2 > 2$ ;
- $\bullet$  它的数学期望并不依赖于第一自由度 $n_1$ 。

## □ F分布的分位点

- $> F(n_1, n_2)$  分布的上α分位点定义
  - 对于给定的 $\alpha$ ,  $0 < \alpha < 1$ , 称满足条件

$$p\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{\infty} \phi(y) dy = \alpha$$

的点 $F_{\alpha}(n_1, n_2)$ 。

ightharpoonup  $F(n_1, n_2)$  分布的上 $\alpha$ 分位点图示



ightharpoonup  $F(n_1, n_2)$ 分布的上α分位点性质

$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$

- ▶ 计算分子和分母自由度分别为4和8的F分布上侧 0.025分位点

  - Excel代码: F.INV(1-0.025,4,8)
  - MATLAB代码: finv(1-0.025, 4, 8)
  - Python代码:

import scipy.stats as st
st.f.ppf(1-0.025,4,8)



Entries in the table give  $F_{\alpha}$  values, where  $\alpha$  is the area or probability in the upper tail of the F distribution. For example, with 4 numerator degrees of freedom, 8 denominator degrees of freedom, and a .05 area in the upper tail,  $F_{.05} = 3.84$ .

| Denominator<br>Degrees | Area in<br>Upper |         |         |         |         |         |         |         |         | Num era | itor Degre | es of Freed | lom     |         |         |         |         |         |         |
|------------------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------|-------------|---------|---------|---------|---------|---------|---------|---------|
| of Freedom             | Tail             | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10         | 15          | 20      | 25      | 30      | 40      | 60      | 100     | 1000    |
| 1                      | .10              | 39.86   | 49.50   | 53.59   | 55.83   | 57.24   | 58.20   | 58.91   | 59.44   | 59.86   | 60.19      | 61.22       | 61.74   | 62.05   | 62.26   | 62.53   | 62.79   | 63.01   | 63.30   |
|                        | .05              | 161.45  | 199.50  | 215.71  | 224.58  | 230.16  | 233.99  | 236.77  | 238.88  | 240.54  | 241.88     | 245.95      | 248.02  | 249.26  | 250.10  | 251.14  | 252.20  | 253.04  | 254.19  |
|                        | .025             | 647.79  | 799.48  | 864.15  | 899.60  | 921.83  | 937.11  | 948.20  | 956.64  | 963.28  | 968.63     | 984.87      | 993.08  | 998.09  | 1001.40 | 1005.60 | 1009.79 | 1013.16 | 1017.76 |
|                        | .01              | 4052.18 | 4999.34 | 5403.53 | 5624.26 | 5763.96 | 5858.95 | 5928.33 | 5980.95 | 6022.40 | 6055.93    | 6156.97     | 6208.66 | 6239.86 | 6260.35 | 6286.43 | 6312.97 | 6333.92 | 6362.80 |
| 2                      | .10              | 8.53    | 9.00    | 9.16    | 9.24    | 9.29    | 9.33    | 9.35    | 9.37    | 9.38    | 9.39       | 9.42        | 9.44    | 9.45    | 9.46    | 9.47    | 9.47    | 9.48    | 9.49    |
|                        | .05              | 18.51   | 19.00   | 19.16   | 19.25   | 19.30   | 19.33   | 19.35   | 19.37   | 19.38   | 19.40      | 19.43       | 19.45   | 19.46   | 19.46   | 19.47   | 19.48   | 19.49   | 19.49   |
|                        | .025             | 38.51   | 39.00   | 39.17   | 39.25   | 39.30   | 39.33   | 39.36   | 39.37   | 39.39   | 39.40      | 39.43       | 39.45   | 39.46   | 39.46   | 39.47   | 39.48   | 39.49   | 39.50   |
|                        | .01              | 98.50   | 99.00   | 99.16   | 99.25   | 99.30   | 99.33   | 99.36   | 99.38   | 99.39   | 99.40      | 99.43       | 99.45   | 99.46   | 99.47   | 99.48   | 99.48   | 99.49   | 99.50   |
| 3                      | .10              | 5.54    | 5.46    | 5.39    | 5.34    | 5.31    | 5.28    | 5.27    | 5.25    | 5.24    | 5.23       | 5.20        | 5.18    | 5.17    | 5.17    | 5.16    | 5.15    | 5.14    | 5.13    |
|                        | .05              | 10.13   | 9.55    | 9.28    | 9.12    | 9.01    | 8.94    | 8.89    | 8.85    | 8.81    | 8.79       | 8.70        | 8.66    | 8.63    | 8.62    | 8.59    | 8.57    | 8.55    | 8.53    |
|                        | .025             | 17.44   | 16.04   | 15.44   | 15.10   | 14.88   | 14.73   | 14.62   | 14.54   | 14.47   | 14.42      | 14.25       | 14.17   | 14.12   | 14.08   | 14.04   | 13.99   | 13.96   | 13.91   |
|                        | .01              | 34.12   | 30.82   | 29.46   | 28.71   | 28.24   | 27.91   | 27.67   | 27.49   | 27.34   | 27.23      | 26.87       | 26.69   | 26.58   | 26.50   | 26.41   | 26.32   | 26.24   | 26.14   |
| 4                      | .10              | 4.54    | 4.32    | 4.19    | 4.11    | 4.05    | 4.01    | 3.98    | 3.95    | 3.94    | 3.92       | 3.87        | 3.84    | 3.83    | 3.82    | 3.80    | 3.79    | 3.78    | 3.76    |
|                        | .05              | 7.71    | 6.94    | 6.59    | 6.39    | 6.26    | 6.16    | 6.09    | 6.04    | 6.00    | 5.96       | 5.86        | 5.80    | 5.77    | 5.75    | 5.72    | 5.69    | 5.66    | 5.63    |
|                        | .025             | 12.22   | 10.65   | 9.98    | 9.60    | 9.36    | 9.20    | 9.07    | 8.98    | 8.90    | 8.84       | 8.66        | 8.56    | 8.50    | 8.46    | 8.41    | 8.36    | 8.32    | 8.26    |
|                        | .01              | 21.20   | 18.00   | 16.69   | 15.98   | 15.52   | 15.21   | 14.98   | 14.80   | 14.66   | 14.55      | 14.20       | 14.02   | 13.91   | 13.84   | 13.75   | 13.65   | 13.58   | 13.47   |
| 5                      | .10              | 4.06    | 3.78    | 3.62    | 3.52    | 3.45    | 3.40    | 3.37    | 3.34    | 3.32    | 3.30       | 3.324       | 3.21    | 3.19    | 3.17    | 3.16    | 3.14    | 3.13    | 3.11    |
|                        | .05              | 6.61.   | 5.79    | 5.41    | 5.19    | 5.05    | 4.95    | 4.88    | 4.82    | 4.77    | 4.74       | 4.62        | 4.56    | 4.52    | 4.50    | 4.46    | 4.43    | 4.41    | 4.37    |
|                        | .025             | 10.01   | 8.43    | 7.76    | 7.39    | 7.15    | 6.98    | 6.85    | 6.76    | 6.68    | 6.62       | 6.43        | 6.33    | 6.27    | 6.23    | 6.18    | 6.12    | 6.08    | 6.02    |
|                        | .01              | 16.26   | 13.27   | 12.06   | 11.39   | 10.97   | 10.67   | 10.46   | 10.29   | 10.16   | 10.05      | 9.72        | 9.55    | 9.45    | 9.38    | 9.29    | 9.20    | 9.13    | 9.03    |

|                        |                  |              |              | -            |              |              |              |              |               |               |                   |              |              |              |              |              |              |              |              |
|------------------------|------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Denominator<br>Degrees | Area in<br>Upper |              |              |              |              |              |              |              |               |               |                   | of Freedon   |              |              |              |              |              |              |              |
| of Freedom             | Tail             | 1            | 2            | 3            | 4            | 5            | 6            | 7            | 8             | 9             | 10                | 15           | 20           | 25           | 30           | 40           | 60           | 100          | 1000         |
| 6                      | .10              | 3.78         | 3.46         | 3.29         | 3.18         | 3.11         | 3.05         | 3.01         | 2.98          | 2.96          | 2.94              | 2.87         | 2.84         | 2.81         | 2.80         | 2.78         | 2.76         | 2.75         | 2.72         |
|                        | .05              | 5.99         | 5.14         | 4.76         | 4.53         | 4.39         | 4.28         | 4.21         | 4.15          | 4.10          | 4.06              | 3.94         | 3.87         | 3.83         | 3.81         | 3.77         | 3.74         | 3.71         | 3.67         |
|                        | .025             | 8.81         | 7.26         | 6.60         | 6.23         | 5.99         | 5.82         | 5.70         | 5.60          | 5.52          | 5.46              | 5.27         | 5.17         | 5.11         | 5.07         | 5.01         | 4.96         | 4.92         | 4.86         |
|                        | .025             | 13.75        | 10.92        | 9.78         | 9.15         | 8.75         | 8.47         | 8.26         | 8.10          | 7.98          | 7.87              | 7.56         | 7.40         | 7.30         | 7.23         | 7.14         | 7.06         | 6.99         | 6.89         |
| -                      |                  |              |              |              |              |              |              |              |               |               |                   |              |              |              |              |              |              |              |              |
| 7                      | .10              | 3.59         | 3.26         | 3.07         | 2.96         | 2.88         | 2.83         | 2.78         | 2.75          | 2.72          | 2.70              | 2.63         | 2.59         | 2.57         | 2.56         | 2.54         | 2.51         | 2.50         | 2.47         |
|                        | .05              | 5.59         | 4.74         | 4.35         | 4.12         | 3.97         | 3.87         | 3.79         | 3.73          | 3.68          | 3.64              | 3.51         | 3.44         | 3.40         | 3.38         | 3.34         | 3.30         | 3.27         | 3.23         |
|                        | .025             | 8.07         | 6.54         | 5.89         | 5.52         | 5.29         | 5.12         | 4.99         | 4.90          | 4.82          | 4.76              | 4.57         | 4.47         | 4.40         | 4.36         | 4.31         | 4.25         | 4.21         | 4.15         |
|                        | .01              | 12.25        | 9.55         | 8.45         | 7.85         | 7.46         | 7.19         | 6.99         | 6.84          | 6.72          | 6.62              | 6.31         | 6.16         | 6.06         | 5.99         | 5.91         | 5.82         | 5.75         | 5.66         |
| 8                      | .10              | 3.46         | 3.11         | 2.92         | 2.81         | 2.73         | 2.67         | 2.62         | 2.59          | 2.56          | 2.54              | 2.46         | 2.42         | 2.40         | 2.38         | 2.36         | 2.34         | 2.32         | 2.30         |
|                        | .05              | 5.32         | 4.46         | 4.07         | 3.84         | 3.69         | 3.58         | 3.50         | 3.44          | 3.39          | 3.35              | 3.22         | 3.15         | 3.11         | 3.08         | 3.04         | 3.01         | 2.97         | 2.93         |
|                        | .025             | 7.57         | 6.06         | 5.42         | 5.05         | 4.82         | 4.65         | 4.53         | 4.43          | 4.36          | 4.30              | 4.10         | 4.00         | 3.94         | 3.89         | 3.84         | 3.78         | 3.74         | 3.68         |
|                        | .01              | 11.26        | 8.65         | 7.59         | 7.01         | 6.63         | 6.37         | 6.18         | 6.03          | 5.91          | 5.81              | 5.52         | 5.36         | 5.26         | 5.20         | 5.12         | 5.03         | 4.96         | 4.87         |
| 9                      | .10              | 3.36         | 3.01         | 2.81         | 2.69         | 2.61         | 2.55         | 2.51         | 2.47          | 2.44          | 2.42              | 2.34         | 2.30         | 2.27         | 2.25         | 2.23         | 2.21         | 2.19         | 2.16         |
|                        | .05              | 5.12         | 4.26         | 3.86         | 3.63         | 3.48         | 3.37         | 3.29         | 3.23          | 3.18          | 3.14              | 3.01         | 2.94         | 2.89         | 2.86         | 2.83         | 2.79         | 2.76         | 2.71         |
|                        | .025             | 7.21         | 5.71         | 5.08         | 4.72         | 4.48         | 4.32         | 4.20         | 4.10          | 4.03          | 3.96              | 3.77         | 3.67         | 3.60         | 3.56         | 3.51         | 3.45         | 3.40         | 3.34         |
|                        | .01              | 10.56        | 8.02         | 6.99         | 6.42         | 6.06         | 5.80         | 5.61         | 5.47          | 5.35          | 5.26              | 4.96         | 4.81         | 4.71         | 4.65         | 4.57         | 4.48         | 4.41         | 4.32         |
| 10                     | .10              | 3.29         | 2.92         | 2.73         | 2.61         | 2.52         | 2.46         | 2.41         | 2.38          | 2.35          | 2.32              | 2.24         | 2.20         | 2.17         | 2.16         | 2.13         | 2.11         | 2.09         | 2.06         |
| 10                     | .05              | 4.96         | 4.10         | 3.71         | 3.48         | 3.33         | 3.22         | 3.14         | 3.07          | 3.02          | 2.98              | 2.85         | 2.77         | 2.73         | 2.70         | 2.66         | 2.62         | 2.59         | 2.54         |
|                        | .025             | 6.94         | 5.46         | 4.83         | 4.47         | 4.24         | 4.07         | 3.95         | 3.85          | 3.78          | 3.72              | 3.52         | 3.42         | 3.35         | 3.31         | 3.26         | 3.20         | 3.15         | 3.09         |
|                        | .01              | 10.04        | 7.56         | 6.55         | 5.99         | 5.64         | 5.39         | 5.20         | 5.06          | 4.94          | 4.85              | 4.56         | 4.41         | 4.31         | 4.25         | 4.17         | 4.08         | 4.01         | 3.92         |
| 11                     | .10              | 3.23         | 2.86         | 2.66         | 2.54         | 2.45         | 2.39         | 2.34         | 2.30          | 2.27          | 2.25              | 2.17         | 2.12         | 2.10         | 2.08         | 2.05         | 2.03         | 2.01         | 1.98         |
| 11                     | .05              | 4.84         | 3.98         | 3.59         | 3.36         | 3.20         | 3.09         | 3.01         | 2.95          | 2.90          | 2.85              | 2.72         | 2.65         | 2.60         | 2.57         | 2.53         | 2.49         | 2.46         | 2.41         |
|                        | .025             | 6.72         | 5.26         | 4.63         | 4.28         | 4.04         | 3.88         | 3.76         | 3.66          | 3.59          | 3.53              | 3.33         | 3.23         | 3.16         | 3.12         | 3.06         | 3.00         | 2.96         | 2.89         |
|                        | .01              | 9.65         | 7.21         | 6.22         | 5.67         | 5.32         | 5.07         | 4.89         | 4.74          | 4.63          | 4.54              | 4.25         | 4.10         | 4.01         | 3.94         | 3.86         | 3.78         | 3.71         | 3.61         |
| 10                     | 10               | 2.10         |              |              |              |              | 2.22         |              |               | 2.21          |                   |              |              | 2.02         | 2.01         | 1.00         |              |              |              |
| 12                     | .10<br>.05       | 3.18<br>4.75 | 2.81<br>3.89 | 2.61<br>3.49 | 2.48<br>3.26 | 2.39<br>3.11 | 2.33<br>3.00 | 2.28<br>2.91 | 2.24<br>2.85  | 2.21<br>2.80  | 2.19<br>2.75      | 2.10<br>2.62 | 2.06<br>2.54 | 2.03<br>2.50 | 2.01<br>2.47 | 1.99<br>2.43 | 1.96<br>2.38 | 1.94<br>2.35 | 1.91<br>2.30 |
|                        | .025             | 6.55         | 5.10         | 4.47         | 4.12         | 3.89         | 3.73         | 3.61         | 3.51          | 3.44          | 3.37              | 3.18         | 3.07         | 3.01         | 2.47         | 2.43         | 2.85         | 2.80         | 2.73         |
|                        | .023             | 9.33         | 6.93         | 5.95         | 5.41         | 5.06         | 4.82         | 4.64         | 4.50          | 4.39          | 4.30              | 4.01         | 3.86         | 3.76         | 3.70         | 3.62         | 3.54         | 3.47         | 3.37         |
|                        |                  |              |              |              |              |              |              |              |               |               |                   |              |              |              |              |              |              |              |              |
| 13                     | .10              | 3.14         | 2.76         | 2.56         | 2.43         | 2.35         | 2.28         | 2.23         | 2.20          | 2.16          | 2.14              | 2.05         | 2.01         | 1.98         | 1.96         | 1.93         | 1.90         | 1.88         | 1.85         |
|                        | .05              | 4.67         | 3.81         | 3.41         | 3.18         | 3.03         | 2.92         | 2.83         | 2.77          | 2.71          | 2.67              | 2.53         | 2.46         | 2.41         | 2.38         | 2.34         | 2.30         | 2.26         | 2.21         |
|                        | .025             | 6.41         | 4.97         | 4.35         | 4.00         | 3.77         | 3.60         | 3.48         | 3.39          | 3.31          | 3.25              | 3.05         | 2.95         | 2.88         | 2.84         | 2.78         | 2.72         | 2.67         | 2.60         |
|                        | .01              | 9.07         | 6.70         | 5.74         | 5.21         | 4.86         | 4.62         | 4.44         | 4.30          | 4.19          | 4.10              | 3.82         | 3.66         | 3.57         | 3.51         | 3.43         | 3.34         | 3.27         | 3.18         |
| 14                     | .10              | 3.10         | 2.73         | 2.52         | 2.39         | 2.31         | 2.24         | 2.19         | 2.15          | 2.12          | 2.10              | 2.01         | 1.96         | 1.93         | 1.99         | 1.89         | 1.86         | 1.83         | 1.80         |
|                        | .05              | 4.60         | 3.74         | 3.34         | 3.11         | 2.96         | 2.85         | 2.76         | 2.70          | 2.65          | 2.60              | 2.46         | 2.39         | 2.34         | 2.31         | 2.27         | 2.22         | 2.19         | 2.14         |
|                        | .025             | 6.30         | 4.86         | 4.24         | 3.89         | 3.66         | 3.50         | 3.38         | 3.29          | 3.21          | 3.15              | 2.95         | 2.84         | 2.78         | 2.73         | 2.67         | 2.61         | 2.56         | 2.50         |
|                        | .01              | 8.86         | 6.51         | 5.56         | 5.04         | 4.69         | 4.46         | 4.28         | 4.14          | 4.03          | 3.94              | 3.66         | 3.51         | 3.41         | 3.35         | 3.27         | 3.18         | 3.11         | 3.02         |
| 15                     | .10              | 3.07         | 2.70         | 2.49         | 2.36         | 2.27         | 2.21         | 2.16         | 2.12          | 2.09          | 2.06              | 1.97         | 1.92         | 1.89         | 1.87         | 1.85         | 1.82         | 1.79         | 1.76         |
|                        | .05              | 4.54         | 3.68         | 3.29         | 3.06         | 2.90         | 2.79         | 2.71         | 2.64          | 2.59          | 2.54              | 2.40         | 2.33         | 2.28         | 2.25         | 2.20         | 2.16         | 2.12         | 2.07         |
|                        | .025             | 6.20         | 4.77         | 4.15         | 3.80         | 3.58         | 3.41         | 3.29         | 3.20          | 3.12          | 3.06              | 2.86         | 2.76         | 2.69         | 2.64         | 2.59         | 2.52         | 2.47         | 2.40         |
| <del>1.1.</del> -      | <b>洋分</b> 帶      | 8.68         | 6.36         | 5.42         | 4.89         | 4.56         | 4,32         | 」大学          | 章 <b>⊉</b> 9€ | 院 <b>3署</b> 诺 | <del>点</del> 3.80 | 3.52         | 3.37         | 3.28         | 3.21         | 3.13         | 3.05         | 2.98         | 2.88         |
| 1田/                    | 十九年              |              |              |              |              |              | Д. П         | 1八子          | 3 垤子          | 元 共 4         | 1谷                |              |              |              |              |              |              | / 0          |              |

## 3.6 抽样与抽样分布

- □ 从样本到总体的推断
  - ▶ 推断统计的概念
    - 按照一定程序和规则从总体中抽取部分单位进行 观察,根据被抽取单位的数量特征,运用一定方 法对总体信息做出具有一定可靠程度的估计和判 断。
    - 谚语: "你不必吃完整头牛,才知肉是老的!"

总体 ----- 总体规律(理论分布)?





样本 ----- 样本统计量值

## 3.6 抽样与抽样分布(续)

### 推断统计分析过程



#### > 需要推断统计的情况

- 推断统计的目的就是利用样本对总体进行认识, 当出现下列情况时,需要抽样调查:
- (1) 当研究对象是无限总体时;
- (2) 当进行破坏性或消耗性的检查时;
- (3) 当进行成本太高的调查时;
- (4) 当需对全面调查进行验证、补充和修正时;
  - (5) 当用于生产质量控制时;
- (6)当对某些总体的假设进行检验,判断真伪, 为决策服务时。

#### □ 抽样方法

- ➤ 简单随机抽样 (Simple Random Sampling)
  - 定义:将所有总体单位编制成抽样框,然后采用抽签或随机数表从中抽取样本单位。对于有限总体,必须保证每个总体单位被抽中的概率相同,对于无限总体,必须保证每个总体单位的抽取是相互独立。
  - **3种方法**: (1) 人工抽签; (2) 随机数; (3) 利用软件直接进行抽样。
  - 适合情况:比较适合于规模不大、总体内部差异小的情况。
  - 地位: 简单随机抽样是其他抽样调查组织形式的基础。

- 随机数表(Random Numbers):由一连串的 0,1,2,3,4,5,6,7,8,9这些数字组成,且满足下列两个 条件: (1)表中任一位置的数字,其为0-9中任何一个数字的概率相同; (2)不同位置的数字之间是独立的,就是说,知道表某一部分是些什么数字,不会提供你任何关于其他部分是些什么数字的信息。
- 如何从随机数表中进行简单随机抽样:
- 第1步,根据数据编写代码,要求: (1)所有代码位数相同,保证所有个体都有相同的中选概率; (2)代码尽可能短(一般地,1-10用1位,11-100用2位,101-1000用3位,…);
- 第2步,任意选择随机数起点,沿行或沿列读取随机数,选取符合条件的代码,重复代码只选一个。

- 利用Excel进行简单随机抽样:
  - (1) 产生随机数:工具/数据分析/随机数发生器/各项设置/确定。
  - (2) 抽样:工具/数据分析/抽样/各项设置/确定。
  - (3) 例: <u>CJW顾客满意得分</u>的简单随机抽样(抽取 30样本单位)。

- ➤ 等距抽样 (Systematic Sampling)
  - 定义:将总体单位按照某一有关或无关标志进行排序,然后在规定的范围内随机选择某一起点并按照一套规则(如按一定的间隔)进行抽取样本单位。
  - 等距抽样的最简单形式:



● 示例: 生产流水线的产品抽检; 访问顾客等。

#### ➤ 分层抽样(Stratified Sampling)

- 定义:根据总体单位的某属性把总体划分为若干层,然后对每层进行简单随机抽样,所有层被抽取总体单位组成样本。
- 分层原则: 层内方差尽量小, 层间方差尽量大。



#### ➤ 整群抽样 (Cluster Sampling)

- 定义:将总体划分为若干个相互独立的群,然后 所有的群实行简单随机抽样,被抽取的群包含的 总体单位组成样本。
- 划群原则: 群内方差尽量大, 群间方差尽量小。



● 示例:对大学生的调查。

#### ➤ 多阶段抽样(Multi-stage Sampling)

- 多阶段抽样是分层抽样和整群抽样的结合,即先 进行多个整群抽样,然后进行分层抽样。
- 示例: 从某省1000多万户农户中抽取1000户调查 生产性投资情况。可分为以下4个阶段:
  - (1) 从省的所有县中随机抽取5个县;
  - (2) 从抽中的5个县中各随机抽取4个乡;
  - (3) 从抽中的4个乡中各随机抽取5个村;
  - (4) 从抽中的100个村各随机抽取10个户。



- ▶ 抽样调查应用示例: 2015年全国1%人口抽样调查
  - **调查对象:** 以现有人口+本户户籍外出人口作为 调查对象,不调查港、澳、台及外籍人员。
  - **调查内容:** "住户项目"和"个人项目"两大项。"住户项目"主要调查住户的人口和住房方面的主要内容,共12个调查项目; "个人项目"主要调查个人的性别、年龄、民族、受教育程度、迁移流动、就业、社会保障、婚姻、生育、身体健康状况等指标,共32个调查项目。
  - 广东省样本:采用二阶段、分层、概率比例、整群抽样等方法抽样,全省共抽中乡、镇、街道1620个,中选村(居)委会12184个,中选调查小区13038个,调查的常住人口约326万人,户数约125万户。

#### ▶ 问题:

分层抽样和整群抽样分别在什么情况下才能取得 最佳效果?

#### ▶ 其他抽样方法——非概率抽样

- 方便抽样:按照方便取得为原则来抽取所需样本单位的一种非概率抽样方法,等;
- 判断抽样:根据调查人员的判断来抽取认为具有 代表性的样本单位的一种非概率抽样方法,
- 示例:对购物中心消费者满度的调查;对包装箱中的桔子质量的检查;对本科生生活习惯的调查等。

#### □ 样本统计量是随机变量

- 从一个总体可抽取出多个具有相同样本容量的样本,每个样本都可计算出一个样本均值,因此,从一个总体可计算出多个样本均值。样本均值。 会随着样本的改变而改变。在简单随机抽样下,每个样本均值 *xi* 出现的概率是相等的。
- 从某公司中随机抽取30个员工,调查平均收入,得到  $\bar{x}_1$  = 2000 元; 再从该公司中抽取另一个30个员工,又得到  $\bar{x}_2$  = 2010 元; .....,一直重复这样的程序,可得到一系列样本均值的不同取值  $\bar{x}_1$ 、 $\bar{x}_2$ 、...、 $\bar{x}_m$ 。而且根据这些值可绘制直方图。
- 问题:不同的样本容量n将会对样本均值的直方图 形状产生什么样的影响?

 从公司所有员工中抽出50个大小为30的样本。画 出50个样本均值的直方图,长方形高度代表50个 样本中有多少样本均值落在长方形底部范围内。



● 同前面一样,改变的只是样本容量由30个增加为 100个员工。样本个数仍为50个。与前面的直方 图相比,直方图变得更窄(更集中)!更接近于 总体均值,样本均值的方差(变异性)更小!



- **样本均值抽样分布实例分析:** EAI管理人员年薪 (1) 总体数据描述统计分析:
- 总体观察值数目N=2500, 总体均值 $\mu=51800$ , 总体标准差 $\sigma=4000$ 
  - (3) 分析要求:
- 从总体数据中随机抽取样本容量分别为30,100,500的500个样本,绘制样本均值的直方图,对比三个样本容量下的样本均值的均值和标准差,并思考样本容量对它们的影响以及它们与总体均值和标准差的联系。



抽样分布 中山大学管理学院 黄诒蓉

#### □ 样本均值的均值和标准差

设总体X的均值为 $\mu$ ,方差为 $\sigma^2$ , $X_1, X_2, \cdots, X_n$ 是来自总体的一个样本,则样本均值 $\bar{X}$ 和样本方差 $S^2$ 有

$$E(\overline{X}) = \mu,$$
 $D(\overline{X}) = \sigma^2/n,$ 
 $E(S^2) = \sigma^2$ 

- 样本均值的均值
  - 样本均值的均值等于总体均值, 即  $E(\bar{x}) = \mu$  。
- 样本均值的标准差
  - 对有限总体,  $\sigma_{\bar{x}} = \sqrt{\frac{N-n}{N-1}} (\frac{\sigma}{\sqrt{n}})$
  - 其中,N为总体单位数,n为样本容量, $\sigma$  为总体标准差,通常用样本标准差估计, $\sqrt{(N-n)/(N-1)}$  为有限总体修正系数。
  - 对无限总体(或满足  $n/N \le 0.05$  的有限总体),

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

#### □ 样本均值的抽样分布

- ▶ 定义
  - 样本均值抽样分布: 所有可能取值的概率分布。
- 样本均值的抽样分布:总体分布、总体方差已知 设 $X_1, X_2, ..., X_n$  是来自正态总体  $N(\mu, \sigma^2)$  的样本, $\bar{X}$  是样本均值,则有  $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ ,



即 
$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N$$
 (0,1)

当n取不同值时,样本 均值 x 的分布

中山入子目珄学院 黄诒蓉

▶ 样本均值的抽样分布: 总体分布已知、总体方差未知

设 $X_1, X_2, ..., X_n$ 是取自正态总体  $N(\mu, \sigma^2)$ 

的样本,  $\bar{X}$  和  $S^2$  分别为样本均值和样本方差,则有

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

- ▶ 样本均值的抽样分布: 大样本
  - 当样本为大样本(即样本容量n不小于30)
     时,样本均值的抽样分布都近似为正态分布,即:

$$\bar{x} \sim N(\mu_{\bar{x}}, \sigma_{\bar{x}}^2)$$

或者,

$$\bar{x} \sim N(\mu_{\bar{x}}, s_{\bar{x}}^2)$$

- 样本均值的抽样分布:小样本,总体服从方差已知的 正态分布
  - 当样本为小样本(即样本容量n小于30), 而且总体服从方差已知的正态分布时,样 本均值的抽样分布近似为正态分布,即:

$$\bar{x} \sim N(\mu_{\bar{x}}, \sigma_{\bar{x}}^2)$$

- 样本均值的抽样分布:小样本,总体服从方差未知的 正态分布
  - 当样本为小样本(即样本容量n小于30), 而且总体服从方差未知的正态分布时,样 本均值的抽样分布近似为学生t分布,即:

$$\frac{\bar{X} - \mu_{\bar{x}}}{S_{\bar{x}}} \sim t(n-1)$$

- 样本均值的抽样分布: 小样本,总体分布未知
  - 当总体不服从(或不近似服从)正态分布 ,样本为小样本时,样本均值的抽样分布 形式难以确定,一般需通过增大样本容量 来解决。

- > 示例: 计算样本均值落在总体均值某范围的概率
  - EAI公司人事主管部门对2500名经理的年薪进行了调查,发现所有经理的平均年薪及其标准差分别为51800美元和4000美元。假如从2500名经理中随机抽取30名调查,人事主管请你:
  - (1) 计算抽出的30名经理的平均年薪在51300至52300美元的概率是多少?
  - (**2**) 比较在样本容量分别为30,100,500情况下介于51300和52300之间的概率。

#### > 样本方差的抽样分布

设 $X_1, X_2, ..., X_n$ 是来自正态总体  $N(\mu, \sigma^2)$  的样本, $\bar{X}$ 和 $S^2$ 分别为样本均值和样本方差,则有

(1) 
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

(2)  $\bar{X}$ 与 $S^2$ 独立

当n取不同值时,

$$\frac{(n-1)S^2}{\sigma^2}$$
 的分布



| 对象   | 目标   | 条件            | 形式  |              | 备注 |
|------|------|---------------|-----|--------------|----|
| 样本均值 | 均值   | 无             |     |              |    |
|      | 标准差  | 无限总体或n/N≤0.05 |     |              |    |
|      |      | 的有限总体         |     |              |    |
|      |      | 有限总体          |     |              |    |
|      | 抽样分布 |               | 大样本 | 小样本且总体服从正态分布 |    |
|      |      | 总体标准差已知       |     |              |    |
|      |      | 总体标准差未知       |     |              |    |

# 概率分布的主要问题回顾

- □ 1. 正态分布的 "3σ原则"
- □ 2. 总体分布、样本分布和抽样分布的含义
- □ 3. 概率抽样与非概率抽样的涵义和具体形式
- □ 4. 抽样调查的概念、目的和原因
- □ 5. 样本均值的均值、方差和抽样分布形式