Command Reference: VariableLagK()

Lag and attenuate (route) a time series with parameters that vary by rate

Version 11.12.04, 2016-09-16

The VariableLagK() command can be used to lag and attenuate an input time series, resulting in a new time series. The command is commonly used to route an instantaneous (not mean) regular interval streamflow time series through a stretch of river (reach). For example, route 5-minute or 1-hour instantaneous streamflows measured as cubic feet per second, where the interval for data typically depends on the travel time in the reach and the analysis/modeling framework. Lag and K routing is a common routing method that combines the concepts of:

- 1. Lagging the inflow to simulate travel time in a reach and,
- 2. Attenuating the wave to simulate the storage-outflow relationship for the reach (see **Figure 1**).

Figure 1: Lag and K Routing

At its fundamental level, the method solves the continuity equation using an approach similar to Muskingum routing (assuming that the Muskingum parameter representing wave storage is negligible). The governing equation for this routing method is given as:

$$Q_{in} - Q_{out} = \frac{\Delta S}{\Delta t}$$

where:

 Q_{in} = instantaneous inflow [rate] lagged appropriately,

 Q_{out} = instantaneous outflow [rate] lagged appropriately,

 ΔS = change in storage in the reach [volume],

 Δt = time difference (time series interval)

The relationship assumes an outflow-storage relationship of the form:

$$S = k \cdot Q_{out}$$

where:

k = attenuation for the outflow [time].

To ensure accurate results, k should be larger or equal to $\Delta t/2$. For discrete time steps these relationships translate into:

$$O_2 = \frac{I_1 + I_2 + \frac{2S_1}{\Delta t} - O_1}{\frac{2k}{\Delta t} + 1}, \qquad k \ge \frac{\Delta t}{2}$$

where:

 I_1 and I_2 are the lagged inflows into the reach at the previous and current time step, respectively,

 O_1 and O_2 are the outflows out of the reach at the previous and current time step, respectively, S_I is the storage within the reach at the previous time step, defined as $S_I = k \cdot O_I$, and Δt is the time difference between the two time steps (time series interval)

Values for Lag and K can usually be established by comparing routed flows to downstream observations. Alternatively, the Lag can be estimated using the reach length and wave speed in the reach. Without any other information, K can be set to Lag/2.

The above discussion applies where the Lag and K parameters are single values (as implemented in the LagK () command). However, there are cases where the values vary by flow, which is handled by this command. The approach that is implemented is an adaptation of that described in National Weather Service River Forecast System LAG/K documentation:

- http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/24lagk.pdf
- http://www.nws.noaa.gov/ohd/hrl/nwsrfs/users manual/part5/ pdf/533lagk.pdf

VariableLagK States

States can be saved to a table during analysis using the StateSaveDateTime and StateSaveInterval parameters, as long as state table parameters are also provided. States are saved at any date/time of processing that match the requested save date/time. State values in the state table are saved as a JSON string, as illustrated in the following example (line breaks inserted for readability):

```
"lagInterval": "3Hour",
    "units": "CMS",
    "currentLaggedInflow": "1.0",
    "currentOutflow": ".4966",
    "currentStorage": "11.92",
    "qtLag": [ 0.0, 1.0, 11.93 ]
}
```

The following table explains the meaning of the states:

VariableLagK States

Parameter	Description	Default
currentLaggedInflow	The lagged inflow corresponding to the state save date/time.	0
currentOutflow	The outflow corresponding to the state save date/time.	0
currentStorage	The storage corresponding to the state save date/time.	0
lagInterval	The interval between qtLag values, which matches the input time series interval. This interval can be used as a check to confirm that states that were saved can be used later.	Assumed to be data interval for input time series.
qtLag	An array of QT lagged flows, where the last value corresponds to the save date/time and the first value is earliest in time. The number of values depends on the largest lag value from input. If specified with the InitialQTLag parameter the values will be positioned at the end of the internal array, with zeros filling earliest values if necessary.	0 for all values
units	Data units for states, which can be used to check against VariableLagK command that is attempting to use the states.	Assumed to be consistent with input time series.

The saved states can then be used to restart the analysis, as follows:

- Output period The output period used to create the output time series is defined by the OutputStart and OutputEnd parameters. If not specified, the full time series period (or global output period) is used.
- **Date/time for initial states** The date/time corresponding to OutputStart is used to retrieve states that have been previously saved to the state table.
- **Initialize states** States are initialized for the algorithm as follows:
 - o If the state table should be used to initialize states
 (InitializeStatesFromTable=True), get the initial states from the state table
 by matching the StateTableObjectID, OutputStart, and
 TableStateNameColumn (for example state name of VariableLagK).
 - o If no states have been saved in the state table, then the initial values will be set to the values from parameters InitialLaggedInflow, InitialOutflow, InitialStorage, and InitialQTLag.
 - o If no initial states are specified, the values will default to zero. This will cause a start-up condition that will converge to accurate routed output after several intervals.

The following dialog is used to edit the command and illustrates the syntax for the command:

VariableLagK() Command Editor Showing Input Time Series Parameter

VariableLagK() Command Editor Showing Analysis Parameters

ViriableLagK_Analysis

ViriableLagK StatesInput

ViriableLagK_StatesOutput

Input Time Series Analysis Parameters	States (Input) States (Output) States (Table) Output Time Series
	can be specified to ensure continuity with previous processing runs. sble, in which case OutputStart is used to look up the states.
' '	sed if no state table, or states are not found in the table. ,t0 where t0 corresponds to OutputStart and intervals proceed backward from t0.
Initialize states from table?: False ▼	Optional - use if states available (default=False).
Initial lagged inflow:	Optional - initial lagged inflow state (default=0).
Initial outflow:	Optional - initial outflow state (default=0).
Initial storage:	Optional - initial storage state (default=0).
Initial QT lag values:	Optional - separate values by commas (default=0 for all).

VariableLagK() Command Editor Showing Input State Parameters

Input Time Series Analysis Parameters States (Input) States (Output) States (Table) Output Time Series

Output states can be written to the state table by this command to allow a future restart.

Output states will be written at date/times as specified by the following parameters.

Any matching date/time, when compared to the processing date/time, will trigger saving states to the state table.

Saving states using an interval of day will save at midnight and interval of hour will save at minute=0.

State save date/time:

Optional (default=no states saved).

Optional (default=save only on StateSaveDateTime).

VariableLagK() Command Editor Showing Output State Parameters

VariableLagK() Command Editor Showing State Table Parameters

VariableLagK() Command Editor Showing Output Parameters

ViriableLagK_Output

The command syntax is as follows:

VariableLagK(Parameter=Value,...)

Command Parameters

Parameter	Description	Default
TSID	Identifier or alias for the time series to be routed. It is assumed that this series describes an instantaneous flow. Due to the lagging, the first data values required for the computation of O_2 are not available within this time series	None – must be specified.
	and are therefore set to values set in the InflowStates parameter. Can be specified with \${Property}.	
FlowUnits	The units of the flow data specified in the Lag and K tables. These units must be compatible with the time series units. The table values will be converted to the time series units if the units are not the same. Can be specified with \${Property}.	None – must be specified.
LagInterval	The base interval for the time data specified in the Lag and K tables. The interval must be compatible with the time series base interval. The table values will be converted to the time series time interval if the intervals are not the same. For example, table data specified in Hour base interval will be converted to Minute if the time series being routed contains NMinute data.	None – must be specified.
Lag	Flow value and lag time pairs to control routing. The units of the data values are as specified by the FlowUnits parameter (see above). The units of the lag are time as specified by the LagInterval parameter. The Lag value is not required to be evenly divisible by the time step interval; values in the time series between time steps will be linearly interpolated. Can be specified with \${Property}. Use commas and semi-colons to separate values, for example:	None – must be specified.

Parameter	Description	Default
K	Flow value and K time pairs to control routing. The	None – must be
	attenuation factor K is applied to the wave. The units of K	specified.
	are time as specified by the LagInterval parameter.	
	Can be specified with \${Property}. Use commas and	
	semi-colons to separate values, for example:	
	1	
	100.0,5;200.0,10	
OutputStart	The starting date/time for the output time series. States	Full input time
	will be initialized relative to this date/time, which is	series period is
	referred to as t_0 . Can be specified with $\{Property\}$.	processed.
OutputEnd	The ending date/time for the output time series. Can be	Full input time
	specified with \${Property}.	series period is
		processed.
Initialize	Indicate whether to initialize states from the state table	False
StatesFromTable	(can be specified with \${Property}):	
	• False – do not attempt to initialize states from the	
	state table, in which case the following parameters are	
	used to initialize, if specified	
	• True – attempt to initialize states from the state table	
	and if states are not found, use the following	
	parameters to initialize, if specified	
Initial	Initial state value for lagged inflow. Can be specified	0
LaggedInflow	using \${Property}.	
InitialOutflow	Initial state value for outflow. Can be specified using	0
	\${Property}.	
InitialStorage	Initial state value for storage. Can be specified using	0
	\${Property}.	
InitialQTLag	Comma-delimited list of initial QT Lag array values. The	0 for all values.
	order of the values is earliest to latest. The array can	
	specify up to (Lag/multiplier) + 1 values (1 is for	
	bounding end point). For example, a 10 minute time	
	series data interval with a LAG of 30 must be provided	
	with $30/10 + 1 = 4$ inflow state values. Specifying values	
	that are not consistent with the Lag and K parameters will	
	result in oscillation. Can be specified with	
StateSave	\${Property}. Specify a date/time string, for example YYYY-MM-DD	Do not sava
DateTime	HH for a date/time to save states. The precision of the	Do not save states.
Ducciine	date/time should be consistent with time series interval.	states.
	Can be specified with \${Property}.	
StateSave	Specify an interval to save states:	Do not save
Interval	Hour – save states when hour is zero	states.
StateTableID	 Day – save states at midnight of each day The table identifier for the state table. Can be specified 	Default states are
StateTableID	_	used.
StateTable	using \${Property}.	Will not be used
ObjectIDColumn	State table column name for object ID, used to the computation unit with states. For example, the object ID	to lookup states.
ONJECCIDCOIMILI	computation unit with states. For example, the object ID	to lookup states.

Parameter	Description	Default
	might be a stream reach identifier or location. Can be	
	specified with \${Property}.	
StateTable	The object identifier, used to match the row in the state	Will not be used
ObjectID	table. Can be specified with \${Property}.	to lookup states.
StateTable	State table column containing state date/time. Can be	Required for
DateTimeColumn	specified with \${Property}.	table.
StateTable	State table column containing state name. Can be	Will not be used
NameColumn	<pre>specified with \${Property}.</pre>	to lookup states.
StateTable	State table column containing state value. Can be	Required for
ValueColumn	specified with \${Property}.	table.
StateTable	Name of the state in the StateTableNameColumn for	Will not be used
StateName	states, used to match rows. The text should match that of	to lookup states.
	the VariableLagK States section above. Can be	
	specified with \${Property}.	
NewTSID	Identifier for the new (routed) time series. This is	None – must be
	required to ensure that the internal identifier for the time	specified.
	series is unique and accurate for the data. The interval of	
	the identifier must be the same as for the time series	
	specified by TSID. Can be specified with	
	\${Property}.	
Alias	The alias that will be assigned to the new time series,	No alias will be
	which can use \${Property} and \${ts:Property}.	assigned.

A sample command file is as follows (commands to read time series are omitted):

```
# Test routing at 3 hour interval
StartLog(LogFile="Results/Test_VariableLagK_3hr.TSTool.log")
# Read NWSCard input file
ReadNwsCard(InputFile="Data\3HR INPUT.SQIN", Alias="Inflow")
# Route using the same routing parameters used in the mcp3 input deck
# (metric units: Lag(hrs) K(hrs) Q(cms)
# Lag
# K
    24.0
          200.0 12.0 600.00
                                     9.0 1500.0
                                                   42.0 3000.0
    24.0 200.0 12.0 600.00
                                     9.0 1500.0
                                                  42.0 3000.0
NewTable (TableID="StateTable",
Columns="ObjectID, string; DateTime, datetime; StateName; String; StateValue; string")
SetProperty(PropertyName="VariableLagKObjectID",PropertyType=String,
 PropertyValue="TestSegment")
VariableLagK (TSID="Inflow", FlowUnits="CMS", LagInterval="Hour",
 Lag="200,24.0;600,12.0;1500,9.0;3000,42.0",
  K="200,24.0;600,12.0;1500,9.0;3000,42.0",InitializeStatesFromTable=False,
  StateTableID="StateTable", StateTableObjectIDColumn="ObjectID",
  StateTableObjectID="${VariableLagKObjectID}",StateTableDateTimeColumn="DateTime",
  StateTableNameColumn="StateName",StateTableValueColumn="StateValue",
 NewTSID="TestLoc..SQIN.3Hour.routed",Alias="Outflow")
```

ObjectID	DateTime	StateName	StateValue
TestSegment	1990-11-02 00	VariableLagK	["lagInterval": "3Hour", "units": "CMS", "currentLaggedInflow": 0.0, "currentOutflow": 0.0, "currentStorage": 0.0, "qtLag": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
TestSegment	1990-11-03 00	VariableLagK	["laginterval": "3Hour", "units": "CMS", "currentLaggedinflow": 11.93, "currentOutflow": 7.415515985836011, "currentStorage": 177.97238366006428, "qtLag": [0.0, 6.435,
TestSegment	1990-11-04 00	VariableLagK	["lagInterval": "3Hour", "units": "CMS", "currentLaggedInflow": 12.03, "currentOutflow": 10.040801421159498, "currentStorage": 240.97923410782795, "qtLag": [11.93, 11.]
TestSegment	1990-11-05 00	VariableLagK	["laginterval": "3Hour", "units": "CMS", "currentLaggedinflow": 8.88, "currentOutflow": 10.783676044172008, "currentStorage": 258.80822506012817, "qtLag": [12.03, 12.6
TestSegment	1990-11-06 00	VariableLagK	["laginterval": "3Hour", "units": "CMS", "currentLaggedinflow": 8.51, "currentOutflow": 8.72874743484584, "currentStorage": 209.48993843630015, "qtLag": [8.88, 8.195,
TestSegment	1990-11-07 00	VariableLagK	["laginterval": "3Hour", "units": "CMS", "currentLaggedinflow": 10.56, "currentOutflow": 9.940258684899021, "currentStorage": 238.56620843757656, "qtLag": [8.51, 9.155,
TestSegment	1990-11-08 00	VariableLagK	["laginterval": "3Hour", "units": "CMS", "currentLaggedinflow": 7.78, "currentOutflow": 9.778865038323875, "currentStorage": 234.692760919773, "qtLag": [10.56, 10.39,
TestSegment	1990-11-09 00	VariableLagK	{ "lagInterval": "3Hour", "units": "CMS", "currentLaggedInflow": 7.68, "currentOutflow": 7.9865472501999655, "currentStorage": 191.6771340047992, "gtLag": [7.78, 7.36,

Output State Table

ViriableLagK_StateTable_Out

This page is intentionally blank.