1 Maxima, Minima and Saddle points

Single variable Case: Given a single variable function

$$y = f(x)$$
.

• Stationary (Critical) points:

• Loc max, Loc min:

• Second order derivative test:

• Global(Absolute) Max, Global(Absolute) Min:

Two-variable Case: Given a two-variable function

$$z = f(x, y).$$

• Stationary Points:

• Loc Maxima, Loc Minima:

• Saddle points:

Question: How to find local maxma and local minima?

Question: Determine the nature of stationary points?

Example $z = y^2 - x^2$. Find extreme values of z.

Example $z = xy - x^2 - y^2 - 2x - 2y + 4$. Find extreme values of z.

we say f has a local maximum at (a, b) if for all points (x, y) near (a, b), $f(a, b) \ge f(x, y)$.

we say f has a local minimum at (a, b) if for all points (x, y) near (a, b), $f(a, b) \leq f(x, y)$.

For a given region Ω , f has global maximum at (a, b) if for any $(x, y) \in \Omega$, $f(a, b) \ge f(x, y)$.

For a given region Ω , f has global minimum at (a, b) if for any $(x, y) \in \Omega$, $f(a, b) \leq f(x, y)$.

How to find local maximum and local minimum for a given function? Hence, if f takes local maximum or local minimum at (a,b), then (a,b) must be a stationary point. Be aware that the converse may not be true.

Definition A point (a, b) is called a saddle point if there exists two path l_1 and l_2 passing through (a, b) such that f(x, y) along l_1 has local maximum at (a, b), f(x, y) along l_1 has local minimum at (a, b).