5

10

WHAT IS CLAIMED IS:

1. A compound of formula I and pharmaceutically acceptable salts thereof

O || A-NH-C-NH-B I

wherein A is a heteroaryl selected from the group consisting of

wherein R^1 is selected from the group consisting of C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl;

B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0-3 and each X is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -C(O)R⁵, -NO₂, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NR⁵C(O)OR^{5'}, -NR⁵C(O)R^{5'}, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₇-C₂₄ alkaryl, C₃-C₁₃ heteroaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₄-C₂₃ alkheteroaryl and -Y-Ar;

20

25

B.L.

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

wherein R^5 and R^5 are independently selected from H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_5 - C_{14} aryl and up to per-halosubstituted C_5 - C_{13} heteroaryl,

wherein Y is $-O_7$, $-S_7$, $-N(R^5)_7$, $-(CH_2)_m$, $-C(O)_7$, $-CH(OH)_7$, $-(CH_2)_mO_7$, $-(CH_2)_mS_7$, $-(CH_2)_mN(R^5)_7$, $-O(CH_2)_m$, $-CHX^a_7$, $-CX^a_7$, $-S_7$ - $-(CH_2)_m$ and $-N(R^5)(CH_2)_m$, $-CHX^a_7$, $-CX^a_7$, $-S_7$ - $-(CH_2)_m$, and $-N(R^5)(CH_2)_m$, $-CHX^a_7$, $-CX^a_7$, $-S_7$ - $-(CH_2)_m$, and $-N(R^5)(CH_2)_m$, $-CHX^a_7$, $-CX^a_7$, $-S_7$ - $-(CH_2)_m$, and $-N(R^5)(CH_2)_m$, $-CHX^a_7$, $-CX^a_7$, $-S_7$ - $-(CH_2)_m$, and $-N(R^5)(CH_2)_m$, $-CX^a_7$

Ar is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^5$, $-C(O)NR^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5R^5$, $-NR^5C(O)OR^5$, $-NR^5C(O)OR^5$, $-NR^5C(O)R^5$, $-C_{10}$ alkyl, $-C_{10}$ alkyl, $-C_{10}$ alkyl, $-C_{10}$ alkyl, $-C_{10}$ alkyl, substituted $-C_{10}$

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR⁵C(O)R^{5'} and -NR⁵C(O)OR^{5'}, and

wherein R^2 is C_6 - C_{14} aryl, C_3 - C_{14} heteroaryl, substituted C_6 - C_{14} aryl or substituted C_3 - C_{14} heteroaryl,

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, and V_n ,

wherein n = 0-3 and each V is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -C(O)R⁵,

-NR⁵C(O)OR⁵, -SO₂R⁵, -SOR⁵, -NR⁵C(O)R⁵, -NO₂, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{24} alkheteroaryl, substituted C_1 - C_{10} alkyl, substituted C_3 - C_{10} cycloalkyl, substituted C_6 - C_{14} aryl, substituted C_3 - C_{13} heteroaryl, substituted C_7 - C_{24} alkaryl and substituted C_4 - C_{24} alkheteroaryl,

15

10

20

25

10

B1 cont

where if V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R^{5'}, -OR⁵, -SR⁵,

-NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and -NO₂;

wherein R⁵ and R⁵ are each independently as defined above.

2. A compound of claim 1, wherein R^2 is substituted or unsubstituted phenyl or pyridinyl, and the substituents for R^2 are selected from the group consisting of halogen, up to per-halosubstitution and V_n , wherein n=0-3, and each V is independently selected from the group consisting of substituted and unsubstituted C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{10} aryl, $-NO_2$, $-NH_2$, -C(O)- C_1 - $_6$ alkyl, -C(O)N- $(C_{1-6}$ alkyl), -O- C_1 - $_6$ alkyl, -NHC(O)H, -NHC(O)OH, $-N(C_1$ - $_6$ alkyl)-NHC(O)- $-C_1$ - $-C_0$ alkyl, -NHC(O)- $-C_1$ - $-C_0$ - $-C_1$ - $-C_0$

wherein if V is a substituted group, it is substituted by one or more halogen, up to per-halosubstitution.

3. A compound of claim 2, wherein B is up to a tricyclic aromatic ring structure selected from the group consisting of

Bats

10

15

20

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein

h = 0-3 and

each X is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^5$, $-C(O)R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5C(O)OR^5$, $-NR^5C(O)R^5$, -NR

wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -NO₂, -NR⁵C(O)R^{5'}, -NR⁵C(O)OR^{5'} and halogen up to per-halosubstitution;

wherein R^5 and $R^{5'}$ are independently selected from H, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_5 - C_{14} aryl and up to per-halosubstituted C_5 - C_{15} heteroaryl,

wherein Y is - O-, -S-, -N(R⁵)-, -(CH₂)_{-m}, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -(CH₂)_mS-, -(CH₂)_mN(R⁵)-, -O(CH₂)_m-, -CHX^a-, -CX^a₂-, -S-(CH₂)_m- and -N(R⁵)(CH₂)_m-, m = 1-3, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halo substitution and optionally substituted by Z_{n1} , wherein nl is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^5$, $-C(O)R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5C(O)OR^5$,

-NR⁵C(O)R⁵, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NO₂, NR⁵R⁵,

30 -NR 5 C(O)R 5 ' and -NR 5 C(O)OR 5 '.

4. A compound of claim 1, wherein B is

Bot

5

10

15

wherein

Y is selected from the group consisting of -O-, -S-, $-CH_2$ -, $-SCH_2$ -, $-CH_2$ S-, -CH(OH)-, -C(O)-, $-CX^a_2$, $-CX^aH$ -, $-CH_2O$ - and $-OCH_2$ -,

X^a is halogen,

Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution;

Q¹ is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n1 are as defined in claim 1, and s = 0 or 1.

5. A compound of claim 4, wherein

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to perhalosubstitution,

Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo substitution, or Y-Q¹ is phthalimidinyl substituted or unsubstituted by halogen up to per-halo substitution, and

Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1-C_{10} -alkyl or C_3-C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_3-C_{10} -alkyl, C_3-C_6 -cycloalkyl and C_6-C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen or up to perhalosubstitution.

6. A compound of claim 1, wherein R^1 is t-butyl and R^2 is unsubstituted or substituted phenyl.

25

- 7. A compound of claim 4, wherein Q is phenyl, Q¹ is phenyl or pyridinyl, Y is -O-, -S- or -CH₂-, and X and Z are independently Cl, F, NO₂ or CF₃.
 - 8. A compound of claim 7, wherein R¹ is t-butyl.
 - 9. A compound of claim 1 of the formula

wherein B and R² are as defined in claim 1.

- 10. A compound of claim 9, wherein R^2 is selected from substituted and unsubstituted members of the group consisting of phenyl and pyridinyl, wherein if R^2 is a substituted group, it is substituted by one or more of the substituents selected from the group consisting of halogen and W_n , wherein n = 0-3, and W is selected from the group consisting of $-NO_2$, $-C_1$ -3 alkyl, $-NH(O)CH_3$, $-CF_3$, $-OCH_3$, -F, -Cl, $-NH_2$, $-SO_2CH_3$, pyridinyl, phenyl, up to per-halosubstituted phenyl and C_1 - C_6 alkyl substituted phenyl.
 - 11. A compound of claim 1 of the formula

wherein B and R² are as defined in claim 1.

12.. A compound of claim 11, wherein R² is selected from substituted and unsubstituted members of the group consisting of phenyl and pyridinyl, wherein if R² is a substituted group, it is substituted by one or more substituents selected from the

group consisting of halogen and W_n , wherein n=0-3, and W is selected from the group consisting of -NO₂, -C₁-3 alkyl, -NH(O)CH₃, -CF₃, -OCH₃, -F, -Cl, -NH₂, -SO₂CH₃, pyridinyl, phenyl, up to per-halosubstituted phenyl and C₁-C₆ alkyl substituted phenyl.

13. A compound of claim 1 of the formula

wherein B and R² are as defined in claim 1.

- 14. A compound of claim 13, wherein R^2 is selected from substituted and unsubstituted members of the group consisting of phenyl and pyridinyl, wherein if R^2 is a substituted group, it is substituted by one or more substituents selected from the group consisting of halogen and W_n , wherein n=0-3, and W is selected from the group consisting of -NO₂, -C₁-3 alkyl, -NH(O)CH₃, -CF₃, -OCH₃, -F, -Cl, -NH₂, -SO₂CH₃, pyridinyl, phenyl, up to per-halosubstituted phenyl and C₁-C₆ alkyl substituted phenyl.
- 15. A method for the treatment of disease mediated by raf kinase, comprising administering a compound of formula I or a pharmaceutically acceptable salt thereof:

wherein A is a heteroaryl selected from the group consisting of

wherein R^1 is selected from the group consisting of C_3 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_1 - C_{10} alkyl and up to per-halosubstituted C_3 - C_{10} cycloalkyl;

8³ cont

10

15

20

B is a substituted or unsubstituted, up to tricyclic, aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 5- or 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to per-halosubstitution, and X_n ,

wherein n is 0-3 and each X is independently selected from the group consisting of -CN, CO_2R^5 , $-C(O)NR^5R^{5'}$, $-C(O)R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5R^{5'}$, $-NR^5C(O)OR^5'$, $-NR^5C(O)R^5'$,

where X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵R⁵, -NO₂, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and halogen up to per-halosubstitution;

wherein R⁵ and R^{5'} are independently selected from H, C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ heteroaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to per-halosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ heteroaryl, wherein Y is - O-, -S-, -N(R⁵)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)-_mO-, -(CH₂)-_mS-, -(CH₂)-_mN(R⁵)-, -O(CH₂)-, -CHX^a-, -CX^a-, -S-(CH₂)-, and -N(R⁵)(CH₂)-,

m = 1-3, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^5$, $-C(O)NR^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5R^5$, $-NR^5C(O)OR^5$, $-NR^5C(O)CR^5$, $-NR^5C(O)CR^5$, $-NR^5C(O)CR^5$, $-NR^5C(O)CR^5$, $-NC^5C(O)CR^5$, $-NC^5C(O)CC^5$, alkaryl, $-C^5C(O)CCC^5$, alkaryl and substituted $-C^5C(O)CCC^5$, alkaryl and substi

wherein if Z is a substituted group, it is substituted by the one or more substituents independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R⁵, -OR⁵, -SR⁵, -NO₂, -NR⁵R⁵, -NR⁵C(O)R⁵ and -NR⁵C(O)OR⁵, and

25

wherein R^2 is C_6 - C_{14} aryl, C_3 - C_{14} heteroaryl, substituted C_6 - C_{14} aryl or substituted C_3 - C_{14} heteroaryl,

wherein if R^2 is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, and V_{nx}

wherein n=0-3 and each V is independently selected from the group consisting of -CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NR⁵R^{5'}, -C(O)R⁵,

-NR⁵C(O)OR⁵, -SO₂R⁵, -SOR⁵, -NR⁵C(O)R⁵, -NO₂, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{24} alkheteroaryl, substituted C_1 - C_{10} alkyl, substituted C_3 - C_{10} cycloalkyl, substituted C_6 - C_{14} aryl, substituted C_3 - C_{13} heteroaryl, substituted C_7 - C_{24} alkaryl and substituted C_4 - C_{24} alkheteroaryl,

where V is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of halogen, up to perhalosubstitution, -CN, -CO₂R⁵, -C(O)R⁵, -C(O)NR⁵R⁵, -NR⁵R⁵, -OR⁵, -SR⁵, -NR⁵C(O)R⁵, -NR⁵C(O)OR⁵ and -NO₂,

wherein R⁵ and R⁵ are each independently as defined above.

16. A method as in claim 15, wherein R^2 is selected from substituted or unsubstituted members of the group consisting of phenyl and pyridinyl, and the substituents for R^2 are selected from the group consisting of halogen, up to perhalosubstituition and V_n , wherein n=0-3, and each V is independently selected from the group consisting of substituted and unsubstituted C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{10} aryl, -NO₂, -NH₂, -C(O)-C₁- $_6$ alkyl, -C(O)N-(C₁- $_6$ alkyl)₂, -C(O)NH-C₁- $_6$ alkyl, -NHC(O)H, -NHC(O)OH, -N(C₁- $_6$ alkyl)C(O)-C₁- $_6$ alkyl, -NHC(O)-C₁- $_6$ alkyl, -NHC(O)O-C₁- $_6$ alkyl, -S(O)-C₁- $_6$ alkyl and -SO₂-C₁- $_6$ alkyl,

wherein if V is a substituted group, it is substituted by one or more halogen, up to per-halosubstitution.

10

17. A method as in claim 15, wherein B is up to a tricyclic aromatic ring structure selected from the group consisting of

which is substituted or unsubstituted by halogen, up to per-halosubstitution, and wherein

n = 0-3 and

5

each X is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^5$, $-C(O)R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5C(O)OR^5$, $-NR^5C(O)R^5$, -NR

10

wherein if X is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)R^5$, $-C(O)NR^5R^5$, $-OR^5$, $-SR^5$, $-NR^5R^5$, $-NO_2$, $-NR^5C(O)R^5$, $-NR^5C(O)OR^5$ and halogen up to per-halosubstitution;

15

wherein R^5 and R^5 are independently selected from H, C_1 C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to per-halosubstituted C_1 - C_{10} alkyl, up to per-halosubstituted C_3 - C_{10} cycloalkyl, up to per-halosubstituted C_5 - C_{14} aryl and up to per-halosubstituted C_5 - C_{13} heteroaryl,

10

15

20

25

 $-(CH_2)_mS-, -(CH_2)_mN(R^5)-, -O(CH_2)_m-, -CHX^a-, -CX^a_2-, -S-(CH_2)_m- \ and \ -N(R^5)(CH_2)_m-, -CHX^a-, -CX^a_2-, -S-(CH_2)_m-, -CHX^a-, -CX^a_2-, -CX^a_2-,$ m = 1-3, and X^a is halogen; and

Ar is a 5- or 6-member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur which is unsubstituted or substituted by halogen up to per-halosubstitution and optionally substituted by Z_{n1}, wherein nl is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^5$, $-C(O)NR^5R^5$, $-C(O)R^5$, $-NO_2$, $-OR^5$, $-SR^5$, $-NR^5R^5$, $-NR^5C(O)OR^5$, -NR⁵C(O)R⁵, C_1 - C_{10} alkyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} heteroaryl, C_7 - C_{24}

alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein if Z is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of –CN, -CO₂R⁵, -C(O)NR⁵R^{5'}, -OR⁵, -SR⁵, -NO₂, -NR⁵R^{5'}, -NR5C(O)R5 and -NR5C(O)OR5.

18. A method of claim 15, wherein B is

$$-Q^{\frac{1}{2}}Z_{n}$$

wherein

Y is selected from the group consisting of -O-, -S-, -CH₂-, -SCH₂-, -CH₂S-, -CH(OH)-, -C(O)-, -CX $^{a}_{2}$, -CX a H-, -CH $_{2}$ O- and $^{\downarrow}$ OCH $_{2}$ -,

X^a is halogen.

Q is a six member aromatic structure containing 0-2 nitrogen, substituted or unsubstituted by halogen, up to per-halosubstitution;

Q1 is a mono- or bicyclic aromatic structure of 3 to 10 carbon atoms and 0-4 members of the group consisting of N, O and S, unsubstituted or unsubstituted by halogen up to per-halosubstitution,

X, Z, n and n1 are as defined in claim 15, and s = 0 or 1.

19. A method as in claim 18, wherein

Q is phenyl or pyridinyl, substituted or unsubstituted by halogen, up to perhalosubstitution,

By conf

Q¹ is selected from the group consisting of phenyl, pyridinyl, naphthyl, pyrimidinyl, quinoline, isoquinoline, imidazole and benzothiazolyl, substituted or unsubstituted by halogen, up to per-halo substitution, or Y-Q¹ is phthalimidinyl substituted or unsubstituted by halogen up to per-halo substitution, and

Z and X are independently selected from the group consisting of $-R^6$, $-OR^6$ and $-NHR^7$, wherein R^6 is hydrogen, C_1 - C_{10} -alkyl or C_3 - C_{10} -cycloalkyl and R^7 is selected from the group consisting of hydrogen, C_3 - C_{10} -alkyl, C_3 - C_6 -cycloalkyl and C_6 - C_{10} -aryl, wherein R^6 and R^7 can be substituted by halogen or up to perhalosubstitution.

10

- 20. A method as in claim 18, wherein Q is phenyl, Q^1 is phenyl or pyridinyl, Y is -O-, -S- or -CH₂-, and X and Z are independently Cl, F, NO₂ or CF₃.
- 21. A method as in claim 15, which comprises administering a compound of one of the formulae

wherein B and R² are as defined in claim 15.

5.b C8

- 23. A method as in claim 15, comprising administering an amount of compound of formula I effective to inhibit raf.
- 24. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
- 25. A pharmaceutical composition comprising a compound of claim 2 and a pharmaceutically acceptable carrier.

The first of the f