Resampling Bootstrap Method

- Introduction
- The Bootstrap Method
- 3 Bootstrap Estimation of Standard Error
- 4 Bootstrap Estimation of Bias
- 5 Bootstrap Confidence Interval

- Introduction
- 2 The Bootstrap Method
- 3 Bootstrap Estimation of Standard Error
- Bootstrap Estimation of Bias
- Bootstrap Confidence Interval

Introduction

- In the chapter of simulation, we learn how we can do simulations when the underlying distributions are known.
- What if the underlying distributions are not known (all we have is just the data)?

Example (Law School)

A random sample of 15 law schools was selected. The average score on law school admission test (LSAT) and the average undergraduate grade-point average (GPA) for each school were recorded in a file, lawschool.csv.

We are interested in the correlation coefficient ρ , which can be estimated by the sample correlation coefficient r. Find the estimate of the standard error of r.

- Note that, we have small data and the underlying distribution of LSAT and SAT both are unknown.
- We could use (Nonparametric) Bootstrap Method to estimate the standard error of r!

Bootstrap Method (Intro)

- The (nonparametric) Bootstrap Method was introduced in 1979 by Efron.
- It is a class of nonparametric Monte Carlo methods that estimate the distribution of an estimator by resampling.
- Resampling methods treat an observed sample as a finite population.
- Random samples are generated or resampled from the observed/original sample.
- These random samples are used to estimate population characteristics and make inferences about the sampled population.
- Non-parametric bootstrap methods are often used when the distribution of the target population is not specified (hence the name nonparametric); the sample is the only information available.
- The distribution of the finite population represented by the sample can be regarded as a pseudo-population with similar characteristics as the true population.

Difference Between Simulation and Bootstrap

- Simulation generates samples from completely specified distribution.
- Parametric bootstrap: fits/estimates a distribution for the given sample, $f(x, \alpha)$, and then generates random samples from this fitted distribution.
- Nonparametric bootstrap: does not fit any distribution to the given sample, just generates random samples from the empirical distribution of the sample.
 - Empirical distribution:

$$f_n(x) = \begin{cases} 1/n, & x = x_1, x_2, x_3, ..., x_n; \\ 0, & \text{otherwise} \end{cases}$$

Empirical cumulative distribution

$$F_n(t) = P(x \le t) = \frac{\text{number of } x \text{'s} \le t}{n}.$$

- Introduction
- 2 The Bootstrap Method
- 3 Bootstrap Estimation of Standard Error
- 4 Bootstrap Estimation of Bias
- 5 Bootstrap Confidence Interval

Typically

- The BM is typically is used to find
 - Standard errors for estimators;
 - confidence intervals for unknown parameters;
 - p-values for test statistics under a null hypothesis.
- It helps to estimate quantities associated with the sampling distribution of estimators and test statistics.
- ullet Useful when standard assumptions invalid, e.g. n small, data not normal.

The Bootstrap Method (BM)

• Suppose θ is the parameter of interest (θ could be a vector), and $\hat{\theta}$ is an estimator of θ .

For example:

- lacktriangledown heta could be the population mean μ and $\hat{ heta}$ could be $ar{X}$.
- heta could be the population correlation between two variables, ho, and $\hat{ heta}$ could be the sample correlation from a random sample, r.
- We would want to estimate the sampling distribution of the estimators, $F_{\hat{\theta}}$. BM is used in the estimation steps to derive the bootstrap estimate of $F_{\hat{\theta}}$.

Steps of the Bootstrap Estimation

- (A) For each bootstrap replicate, indexed b = 1, 2, ..., B:
 - A.1 generate bootstrap sample $x^{*(b)} = x_1^*, x_2^*, ..., x_n^*$ by sampling with replacement from the observed sample $x_1, x_2, ..., x_n$. This is the nonparametric part. This step is different for parametric boostrap in slide 11.
 - A.2 compute the value of the estimator from bth bootstrap sample $x^{*(b)}$, which is denoted as $\hat{\theta}^{*(b)}$.
- (B) At the end of (A), we have

$$\hat{\theta}^{*(1)}, \hat{\theta}^{*(2)}, ..., \hat{\theta}^{*(B)}.$$

The boostrap estimate (BE) of $F_{\hat{\theta}}$ is then the empirical distribution of these replicates.

• (C) The BE $F_{\hat{\theta}}$ is used to estimate the standard error, bias and confidence interval of an estimator (in the following sections).

Notes on Parametric Bootstrap

- When the distribution of the population (where sample was collected) is unknown, we might estimate that distribution from the observed sample, say $f_X(x,\alpha)$.
- In the step A.1 of nonparametric bootstrap, we replace sampling with replacement from original sample by sampling from $f_X(x,\alpha)$.
- For example, we estimate that the sample was collected from a population with distribution $f_X(x,\alpha)$ where α is the parameter (could be a vector).
 - We then estimate α by $\hat{\alpha}$ based on the observed sample $x_1, x_2, ..., x_n$. One could use MLE at this step.
- We then generate the bootstrap sample $x^{*(b)}=x_1^*,x_2^*,...,x_n^*,\ b=1,...,B$ by simulating from $f_X(x,\hat{\alpha})$.

- Introduction
- 2 The Bootstrap Method
- 3 Bootstrap Estimation of Standard Error
- 4 Bootstrap Estimation of Bias
- 5 Bootstrap Confidence Interval

Standard Error of an Estimator in General

• Variables $X_1, X_2, ..., X_n$ has the observed values as $x_1, x_2, ..., x_n$.

• θ is the parameter of interest. Its estimator is $\hat{\theta}(X_1, X_2, ..., X_n)$ which is a function of $X_1, X_2, ..., X_n$.

• From the observed sample, an estimate value of θ is $\hat{\theta}(x_1, x_2, ..., x_n)$. We would want to estimate the SE of this estimation.

Bootstrap Estimation of SE of an Estimator

• The bootstrap estimate of the SE is the sample standard deviation of the bootstrap replicates $\hat{\theta}^{*(1)}, \hat{\theta}^{*(2)}, ..., \hat{\theta}^{*(B)}$, which is

$$\hat{\operatorname{se}}(\hat{\theta}) = \sqrt{\frac{1}{B-1} \sum_{b=1}^{B} (\hat{\theta}^{*(b)} - \overline{\hat{\theta}^*})^2}$$

where
$$\overline{\hat{\theta}^*} = \frac{1}{B} \sum_{b=1}^{B} \hat{\theta}^{*(b)}$$
.

Law School Example (1)

Example of Law School in slide 4.

```
> law = read.csv("C:/Data/lawschool.csv"); law
   LSAT
         GPA
1
    576 3.39
    635 3.30
3
    558 2.81
4
    578 3.03
5
    666 3.44
6
    580 3.07
    555 3.00
8
    661 3.43
9
    651 3.36
10
    605 3.13
11
    653 3.12
12
    575 2.74
13
    545 2.76
    572 2.88
14
```

594 2.96

15

Law School Example (2)

```
> attach(law)
> cor(LSAT, GPA) \# r = 0.776
[1] 0.7763745
> #set.seed(999)
> # NONPARAMETRIC BOOTSTRAP
> R <- 1000 # number of bootstrap replicates;
> n <- length(GPA) # sample size
> theta.b <- numeric(R) # storage for boostrap estimates
> for (b in 1:R) {
+ # for each b, randomly select the indices, sampling with replacement
      i <- sample(1:n, size=n, replace=TRUE)</pre>
     LSATb <- LSAT[i] # i is a vector of indices
+
+ GPAb <- GPA[i]
+ theta.b[b] <- cor(LSATb, GPAb)
+ }
> sd(theta.b)
```

So the bootstrap estimate of the standard error of r is as the output above.

[1] 0.1395574

The boot Function in R

```
> library(boot)
> bcor <- function(data, bindex){</pre>
   return(cor(data[bindex,1], data[bindex,2]))
+ }
> boot.cor <- boot(law, statistic=bcor, R=1000)</pre>
> # Obtain the bias and standard error
> boot.cor
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = law, statistic = bcor, R = 1000)
Bootstrap Statistics:
     original bias std. error
t1* 0.7763745 -0.005277963 0.1366259
```

https://cran.r-project.org/web/packages/boot/boot.pdf

- Introduction
- 2 The Bootstrap Method
- Bootstrap Estimation of Standard Error
- 4 Bootstrap Estimation of Bias
- **5** Bootstrap Confidence Interval

Bootstrap Estimation of Bias

- $\hat{\theta}$ is the estimator of θ .
- The bias of the estimator $\hat{\theta}$ for θ is:

$$\mathsf{bias}(\hat{\theta}) = E[\hat{\theta} - \theta] = E[\hat{\theta}] - \theta.$$

• The boostrap estimate of the bias of an estimator $\hat{\theta}$ is the difference between the mean of the boostrap replicates $\hat{\theta}^{*(1)}, \hat{\theta}^{*(2)}, ..., \hat{\theta}^{*(B)}$ and $\hat{\theta}$, i.e.,

$$\widehat{\mathsf{bias}}(\hat{\theta}) = \overline{\hat{\theta}}^* - \hat{\theta}$$

where $\overline{\hat{\theta}^*}=\frac{1}{B}\sum_{b=1}^B\hat{\theta}^{*(b)}$ and $\hat{\theta}$ is the estimate computed from the original sample.

Law School Example

Boostrap estimate of bias

```
> theta.hat = cor(LSAT, GPA) # value computed from original sample
> B <- 1000 # n = 15 from previous code
> theta.b <- numeric(B)# storage for boostrap estimates
> for (b in 1:B) {
 i <- sample(1:n, size=n, replace=TRUE)</pre>
+ LSATb <- LSAT[i]
+ GPAb <- GPA[i]
+ theta.b[b] <- cor(LSATb, GPAb)
+ }
> bias <- mean(theta.b)- theta.hat
> bias
[1] -0.005170202
```

Alternatively, we can have the result from boot function.

- Introduction
- 2 The Bootstrap Method
- Bootstrap Estimation of Standard Error
- 4 Bootstrap Estimation of Bias
- 5 Bootstrap Confidence Interval

Some Types of Bootstrap Confidence Interval

- The basic bootstrap CI
- The percentile bootstrap CI
- The normal bootstrap CI
- The studentized bootstrap CI
- The adjusted bootstrap percentile CI

We introduce the first three types.

The Basic Bootstrap Confidence Interval

 The quantiles of the bootstrap samples are used to determine the confidence limits.

 \bullet The $100(1-\alpha)\%$ confidence limits for the basic bootstrap confidence interval are

$$\left(2\hat{\theta} - \hat{\theta}_{1-\alpha/2}^*, \quad 2\hat{\theta} - \hat{\theta}_{\alpha/2}^*\right)$$

where $\hat{\theta}^*_{\alpha/2}$ is the α sample quantile from the empirical distribution function of the replicates $\hat{\theta}^*$.

 A 95% basic bootstrap CI for the correlation coefficient in the Law School is presented as an example.

The Basic Bootstrap CI for Law School Example

```
> R = 2000 # larger for estimating confidence interval
> theta.b = numeric(R)
> alpha = 0.05; CL = 100*(1-alpha)
> for (b in 1:R) {
+ i <- sample(1:n, size=n, replace=TRUE)
+ LSATb <- LSAT[i]
+ GPAb <- GPA[i]
+ theta.b[b] <- cor(LSATb, GPAb)
+ }
> low = quantile(theta.b, alpha/2)
> high = quantile(theta.b, 1 - alpha/2)
> cat("A",CL,"% basic confidence interval is ",
      2*theta.hat - high, 2*theta.hat - low, "\n")
A 95 % basic confidence interval is 0.5936548 1.107248
```

The Percentile Bootstrap Confidence Interval

• $\hat{\theta}^{*(1)}, \hat{\theta}^{*(2)}, ..., \hat{\theta}^{*(B)}$ are bootstrap replicates of the statistics $\hat{\theta}$.

• From the empirical distribution function of the replicates, compute the $\alpha/2$ quantile $\hat{\theta}^*_{\alpha/2}$ and the and the $1-\alpha/2$ quantile $\hat{\theta}^*_{1-\alpha/2}$.

• The $100(1-\alpha)\%$ percentile bootstrap CI for θ is defined as

$$\Big(\hat{\theta}_{\alpha/2}^*,\quad \hat{\theta}_{1-\alpha/2}^*\Big).$$

The Percentile Bootstrap CI for Law School Example

```
> low <- quantile(theta.b, alpha/2)
> high <- quantile(theta.b, 1-alpha/2)
> CL <- 100*(1-alpha)
> cat("A",CL,"% bootstrap CI is", low, high,"\n")
A 95 % bootstrap CI is 0.4455005 0.9590942
```

The Normal Bootstrap Confidence Interval

• The normal bootstrap CI constructs the CI based on the assumption that the distribution of the estimator is normally distributed.

$$\hat{\theta} \sim N(\theta + \mathsf{bias}, \mathsf{variance})$$

where we then can estimate θ by the value of $\hat{\theta}$ form the original sample. bias is estimated using bootstrap replicates $\hat{\theta}^{*(1)}, \hat{\theta}^{*(2)}, ..., \hat{\theta}^{*(B)}$, and variance is the sample variance of $\hat{\theta}^{*(1)}, \hat{\theta}^{*(2)}, ..., \hat{\theta}^{*(B)}$.

• The $100(1-\alpha)\%$ normal bootstrap CI for θ is then defined as

$$\left(\hat{\theta} - \mathsf{bias} \pm z_{(1-\alpha/2)} \times \sqrt{\mathsf{variance}}\right).$$

The Normal Bootstrap CI for Law School Example

```
> bias = mean(theta.b) - theta.hat
> se = sd(theta.b)
> low <- theta.hat - bias - 1.96*se
> high <- theta.hat - bias + 1.96*se
> cat("A",CL,"% bootstrap CI is",
+ low, high,"\n")
A 95 % bootstrap CI is 0.5183496 1.05845
```

Bootstrap Confidence Interval by boot.ci

```
> library(boot)
> bcor <- function(data, bindex){</pre>
+ return(cor(data[bindex,1], data[bindex,2]))
+ }
> boot.cor <- boot(law, statistic=bcor, R=2000)</pre>
To get all three types of CI, we specify the 3 types.
> boot.ci(boot.cor,type=c("basic","perc","norm"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates
CALL:
boot.ci(boot.out = boot.cor, type = c("basic", "perc", "norm"))
Intervals:
Level Normal
                             Basic
                                                   Percentile
95% (0.5291, 1.0399) (0.5941, 1.0718) (0.4809, 0.9587
Calculations and Intervals on Original Scale
                                            ◆□ ト ◆□ ト ◆ 亘 ト ◆ 亘 ・ 夕 Q ○
```