(EEE)

ELECTRICAL AND ELECTRONICS ENGINEERING

INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(EEE)

Set Code :	T2
Booklet Code :	В

Note: (1) Answer all questions.

(1) 4 cosA sinB cosC

(3) 4 cosA cosB cosC

(2) Each question carries I mark. There are no negative marks.

If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$

- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

(2) 4 sinA cosB sinC

(4) 4 sinA sinB sinC

MATHEMATICS

2.	The principa	l solution of T	anx = 0	S				
	(1) $x = n\pi$,	$n \in \mathbb{Z}$			(2)	x=0		
	(3) $x = (2n + 1)^n$	1) $\pi/2$, $n \in \mathbb{Z}$			(4)	$x = n\pi + \alpha$	n∈Z	
3.	The value of	Tan-1 (2) + Ta	n-1 (3) is			×		
	$(1) \frac{\pi}{4}$	(2)	$\frac{\pi}{2}$		(3)	$\frac{\pi}{3}$. (4)	$\frac{3\pi}{4}$
		19						
4.	If the sides o	of a right angle	triangle	are in	A.P., th	en the ratio	of its side:	s is
	(1) 1:2:3	No. of the contract of the con	2:3:4			3:4:5		4:5:6
5.	The value of	$r.r_1.r_2.r_3$ is	gie.					
	(1) Δ^2		Δ-2		(3)	Δ^{-3}	(4)	Δ^4
						*		
6.	$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3}$	=.						*
	(1) $\frac{1}{}$	(2)	1		(3)	$\frac{1}{n}$	(4)	1

7	15 6	L-5	A +1	the realise	of angle A	1 :-
1.	II $a=0$.	p=5, c=	9, then	i ine value	or angle F	1 13

- (1) cos⁻¹ (2/9)
- (2) cos⁻¹ (2/5)
- (3) $\cos^{-1}(7/9)$ (4) $\cos^{-1}(1/3)$

The polar form of complex number 1-i is

- (1) $\sqrt{2}e^{-i\pi/4}$
- $(2) \quad \sqrt{2} e^{i\pi/4}$
- (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

9. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) ω^2
- (3) 1
- (4) 0

10. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

11. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

12. The radius of the circle
$$\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$$
 is

- (1) 2c

- (4) c

13. The parametric equations of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 are

- (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$

14. The equation of the directrix of the parabola
$$2x^2 = -7y$$
 is

- (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0

15. The condition for a straight line
$$y = mx + c$$
 to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- (1) c = a/m
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

16.
$$\underset{x \to 1}{Lt} \frac{\sqrt{5x-4} - \sqrt{x}}{x-1}$$
 is

- (1) 3
- (2) . 2

17.
$$\log i =$$

- (1) $\pi/2$
- (3) $i\pi/2$

18.
$$\frac{d}{dx}[\log_7 X] =$$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^e$ (4) $\frac{1}{x} \log_7^e$

$$19. \quad \frac{d}{dx}[2\cosh x] =$$

- (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$20. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

21. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$ (4) $\sqrt{\frac{x}{v}}$

22. The derivative of e^x with respect to \sqrt{x} is

- $(1) \quad \frac{2\sqrt{x}}{e^x} \qquad (2) \quad 2\sqrt{x}e^x \qquad (3) \quad \frac{e^x}{2\sqrt{x}}$

- 23. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

 - (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99
- (4) x 20y = 101
- 24. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is
 - (1) $\frac{\pi}{4}$
- (2) $tan^{-1}(2)$
- (3) tan⁻¹(3)

- 25. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial v^3} =$
 - (1) $6(x^3+y^3)$ (2) $6x^3y^3$
- (3) $6x^3$

- 26. $\int \csc x dx =$
 - (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

- 27. $\int_{0}^{\frac{\pi}{2}} \cos^{11} x \, dx =$

 - (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$

- 28. [f'(x).[f(x)]'' dx =
 - (1) $\frac{[f(x)]^{n-1}}{n-1} + C$ (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

- $29. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$
 - (1) $Tan^{-1}(\sqrt{x+6})+C$

(2) $2Tan^{-1}(\sqrt{x+6})+C$

(3) $Tan^{-1}(x+7)+C$

(4) $2Tan^{-1}(x+7)+C$

Set Code: **Booklet Code:**

- $\int \tan^{-1} x \, dx =$
 - (1) $x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$ (2) $\frac{1}{1+x^2} + C$

(3) $x^2 . Tan^{-1}x + C$

(4) $x.Tan^{-1}x - \log \sqrt{1+x^2} + C$

- 31. $\int \frac{dx}{1+e^{-x}} =$
 - (1) $\log (1+e^{-x}) + C$ (3) $e^{-x} + C$

- $32. \quad \int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$
 - (1) 0
- (2) 1
- (3) 2

- 33. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 34. The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3

- 35. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{5}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- 36. The family of straight lines passing through the origin is represented by the differential equation
- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

Set Code :

Booklet Code:

- 37. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 38. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y \cdot e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 39. The complementary function of $(D^3+D^2+D+1)y = 10$ is

 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$ (2) $C_1 \cos x + C_2 \sin x + C_3 e^{x}$ (3) $C_1 + C_2 \cos x + C_3 \sin x$ (4) $(C_1 + C_2 x + C_3 x^2) e^{x}$
 - $(3) \quad C_1 + C_2 \cos x + C_3 \sin x$
- 40. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

- 41. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 =$
 - (1) 3I
- (2) 91
- (3) 27I
- (4) 81I
- 42. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
- (2) 2
- (3) 3
- 43. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

44. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1 .
- (2) 2
- (3) 3
- 45. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 46. If $\frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{B}{r ai}$ then A = _____, B = _____.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 47. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to
 - (1) A,

- (2) 2A, (3) 4A, (4) 4A₁
- 48. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π

- 49. If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0
- . (3) 2

- 50. The value of $\sin 78^{\circ} + \cos 132^{\circ}$ is
 - (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

Set Code :	T2
Booklet Code :	В

PHYSICS

51.	The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the follow					
	correct?					

(1) Force varies with time in a quadratic manner.

(2) Force is time-dependent.

(3) The velocity of the particle is proportional to time.

(4) The displacement of the particle is proportional to t. .

52. A shell of mass m moving with a velocity ν suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

(1) v

(2) 2v

(3) 3v/4

53. The velocity of a freely falling body after 2s is

(1) 9.8 ms⁻¹

(2) 10.2 ms⁻¹

(3) 18.6 ms⁻¹

(4) 19.6 ms⁻¹

54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

 $(2) \quad \frac{\pi u^4}{g^2} \qquad \qquad (3) \quad \frac{\pi u^2}{g^4} \qquad \qquad (4) \quad \frac{\pi u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

(1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

(1) In the backward direction on the front wheel and in the forward direction on the rear wheel

(2) In the forward direction on the front wheel and in the backward direction on the rear wheel

(3) In the backward direction on both the front and the rear wheels

(4) In the forward direction on both the front and the rear wheels

Set Code :	T2
oklet Code :	В

							4		10	Se	t Code :
	. 9									Booklet	Code :
57.	In a	perfectly ine	lastic col	lision, th	e two b	odies			7.4		
	(1)	strike and e	xplode	(* 0)	22 24 2	(2)	explo	de with	nout stril	cing	
	(3)	implode and	d explode		et (E	(4)	combi	ne and	l move to	ogether	
58.	Und	er the action er is	of a cons	tant forc	e, a part	icle is	experie	ncing	a consta	nt accele	ration, t
	(1)	zero				(2)	positiv	/e			
	(3)	negative				(4)	increa	sing u	niformly	with tim	ne
	AMORES:	**				+.					
59.	Con	sider the foll	owing tw	o statem	ents:			31			
	A:	Linear mon	nentum o	f a syster	n of par	ticles	is zero.				
	B:	Kinetic ene	rgy of a s	system of	f particle	es is z	ero.				
	Then	i									
	(1)	A implies B	& B imp	lies A						19	
	(2)	A does not i	mply B &	B does	not imp	ly A					
	(3)	A implies B	but B do	es not im	ply A						19
	(4)	A does not i	mply B b	ut B imp	lies A		100				2/0
60.		ngine develo	•			mucl	h time v	vill it t	ake to li	ft a mass	of 200
	(1)	4s	(2)	5s		(3)	8s		(4)	10s	
61.	Ifas	pring has tin	ne period	T, and is	cut into	n equ	al parts	, then	the time	period w	ill be
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$		(3)	пΤ	**	(4)	Τ	
62.	Whe	n temperatur	e increas	es, the fr	equency	ofat	uning fo	ork			
	(1)	increases								91	
	(2)	decreases	5/0						- 5		
	(3)	remains san	ne .								
	(4)	increases or	decrease	s depend	ling on t	he ma	terials				
						1-B					

Set Code :	T2
Booklet Code :	В

63.	Ifa	simple harm	onic motio	on is repi	resented	by $\frac{a}{a}$	$\frac{d^2x}{dy^2} + \alpha x = 0,$	its time p	eriod i	s	
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα		(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$		
64.		inema hall ha total absorpt				equi	red to have i	reverberat	ion tin	ne of 1.5	seconds.
	(1)	850 w-m ²	55		80	(2)	82.50 w-m	2			(e)
	(3)	8.250 w-m ²				(4)					
65.	Toa	bsorb the sou	nd in a ha	ll which	of the fol	lowi	ng are used		*		
	(1)	Glasses, sto				(2)		rtains			
	(3)	Polished su	rfaces				Platforms				*;
66.	IfN	represents av	agadro's r	number, t	hen the n	umb	er of molecu	ıles in 6 gı	m of hy	drogen	at NTP is
	(1)		(2)			(3)			N/6	diogen	ut 111 13
67.	The	mean transla	tional kine	etic energ	gy of a pe	erfec	t gas molecu	le at the to	empera	ture T k	C is
	10	$\frac{1}{2}kT$						(4)			. 1
68.	Tho	amount of ho	at airean ta	o bodes				, , , 100	10.20	7	n - A
00.	(1)	amount of he water equiva		a body v							
	(3)	specific hea					thermal hea temperature				20
	(3)	specific nea	•			(+)	temperature	gradient		4.0	8 9
69.	Duri abso	ng an adiabat lute temperat	ic process ure. The ra	the preatio Cp/C	ssure of a	a gas	is found to	be propor	tional	to the cu	be of its
	(1)	$\frac{3}{2}$	(2)	4 .	(3)	2	(4)	5 3		
					is.		***	- 4			
		183		e e	12-	В	t N (W)				

Set Code :	T2
Booklet Code :	В

70	01. 11		C1 :-	:1-		
/0.	Cladding I	n the optical	Hoer is	mainiy	usea	ш

- (1) to protect the fiber from mechanical stresses
- (2) to protect the fiber from corrosion
- (3) to protect the fiber from mechanical strength
- (4) to protect the fiber from electromagnetic guidance

71.	Two quantities A and B are related by the relation $A/B = m$ where m is linear mass density	and A is
	force. The dimensions of B will be	

- same as that of latent heat (1)
- same as that of pressure (2)
- same as that of work
- same as that of momentum

- (1) [ML²T²I²]
- (2) [ML-2T4]
- (3) $[M^{-1}L^{3}T^{3}I]$

73. If
$$l$$
, m and n are the direction cosines of a vector, then

(1)
$$l + m + n = 1$$

(1)
$$l+m+n=1$$
 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$

3)
$$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} =$$

(4)
$$lmn = 1$$

- (1) 0°
- (2) 90°
- (3) 45°
- (4) 60°

- (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west
- (2) zero
- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

Set Code :	T2
Booklet Code :	В

CHEMISTRY

76.	Pota	Potassium metal and potassium ions										
	(1)	both react wit	h water		(2)	have the same	numbe	er of protons				
	(3)	both react wit	h chlor	ine gas	(4)	have the same	electro	onic configuration	n			
77.	standard flask. 10 ml of this solution were pip water into 100 ml of solution. The concentra				etted	out into another	flask ar	nd made up with o solution now is	ml in a			
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M				
78.	Con	centration of a	1.0 M s	solution of phosp	horic	acid in water is						
		0.33 N		1.0 N		2.0 N	(4)	3.0 N				
79.	Whi	ich of the follov	ving is	a Lewis acid?								
	(1) Ammonia			(2)	Berylium chloride .							
	(3)	Boron trifluo	ride	2	(4)	Magnesium ox	cide					
80.	Whi	ich of the follow	wing co	nstitutes the com	pone	nts of a buffer s	olution	1?				
00.	(1)			nd potassium hyd								
	(2)	Sodium aceta	te and a	cetic acid				6				
	(3)	Magnesium s	ulphate	and sulphuric aci	d				*			
	(4)	Calcium chlo	ride and	d calcium acetate		10						
		10.00	9.5									
81.			A CONTRACTOR OF THE PROPERTY O	an electrolyte?	(2)	, A. 4.		D - 11'				
	(1)	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine				
82.		culate the Standard-Cu/Cu ⁺² = $(-)$ 0.		of the cell, Cd	/Cd ⁺²	//Cu ⁺² /Cu given			4V and			
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V				
83.	Asc	olution of nicke	l chlori	de was electroly	sed u	sing Platinum e	lectrod	es. After electro	lysis,			
	(1)			ted on the anode		Cl, gas will be liberated at the cathode						
	(3)		-	ed at the anode				ted on the cathod				
	. ,	20	1		14-R	g.						

Set Code :	T2
Booklet Code :	

									Booklet Code : B
84.	Whi	ch of the follow	ving me	tals will ur	ndergo	oxid	ation fastest?		:#
	(1)		(2)		14	(3)		(4)	Iron
85.	Whi	ch of the follow	ving car	nnot be use	d for th	he ste	erilization of dri	nking	water?
	(1)	Ozone				(2)	Calcium Oxyc	hlorid	e
	(3)	Potassium Ch	loride			(4)	Chlorine water	•	
86.		ater sample sho				g/litro	e of magnesium	sulpha	te. Then, its hardness
	.(1)	1.0 ppm	(2)	1.20 ppm		(3)	0.60 ppm	(4)	2.40 ppm
87.	Soda	a used in the L-	S proce	ess for softe	ening o	f wa	ter is, Chemical	ly.	•
	(1)	sodium bicart	onate			(2)			
	(3)	sodium carbo	nate			(4)	sodium hydro	cide (4	0%)
88.	The	process of cem	entatio	n with zinc	powde	er is k	cnown as		
	(1)	sherardizing	(2)	zincing		(3)	metal cladding	(4)	electroplating
89.	Carr	osion of a meta	al is fas	test in					
	(1)	rain-water	(2)	acidulated	water	(3)	distilled water	(4)	de-ionised water
00	W/L:	ah af tha fallar	vina is	n thermose	t nolvn	ner?	E 2		
90.		ch of the follow	vilig is	a tilerinose	t polyn	(2)	PVC		
	(1)	Polystyrene				3351	Urea-formalde	hvda i	ecin.
	(3)	Polythene			*	(4)	Orea-Iorinaide	ilyucı	CSIII
91.	Che	mically, neopre	ne is						
	*	polyvinyl benz			IJ.	(2)	polyacetylene		
	(3)	polychloropre			1		poly-1,3-butad	iene) (*
92.	Vulc	anization invol	ves hea	ting of raw	rubber	with			
	(1)	selenium elen				(2)	elemental sulp	hur	
		Seletifulli Cicii	CIL			(-,			

Set Code :	T2
Booklet Code :	

93.	Petr	ol largely contain	ins			-		2						
	(1)	a mixture of ur	isatura	ted hydrocarbor	ns C ₅ -	C ₈								
	(2)	(2) a mixture of benzene, toluene and xylene												
	(3) a mixture of saturated hydrocarbons C ₁₂ - C ₁₄													
	(4)	a mixture of sa	turate	d hydrocarbons	C ₆ - C ₈	Ref.								
94.	Whi	ch of the follow	ing ga	ses is largely res	sponsil	ole for acid-rain								
	(1)	SO ₂ & NO ₂			(2)	CO ₂ & water va	apour							
	(3)	CO ₂ &N ₂			(4)	N ₂ & CO ₂								
95.	BOI	O stands for												
,,,	(1) Biogenetic Oxygen Demand				(2)	Biometric Oxy	gen D	emand						
10.40	(3)	Biological Oxy			(4)	Biospecific Oxygen Demand								
								•						
96.	The	valency electron	nic cor	figuration of Pl	hospho	rous atom (At.N	No. 15)) is						
		$3s^2 3p^3$	(2)	$3s^1 3p^3 3d^1$	(3)	$3s^23p^23d^1.$	(4)	3s1 3p2 3d2						
97.	Ane	element 'A' of At	.No.12	combines with	an eler	nent 'B' of At.N	o.17.7	The compoun	d formed is					
	(1)	covalent AB			(3)	covalent AB ₂	(4)	ionic AB						
98.	The	number of neut	rons ni	resent in the ator	m of	Ba ¹³⁷ is								
90.		56	(2)	137		193	(4)	81						
99.	Hvd	lrogen bonding i	n wate	r molecule is re	sponsi	ble for		1						
	(1)	decrease in its			(2)	increase in its	degree	of ionization	n .					
		increase in its			(4)	decrease in its	boilin	g point						
100	In th	ne HCl molecule	the b	onding between	hydro	gen and chlorine	is							
100.		purely covalen			(3)	polar covalent	(4)	complex co	oordinate					
						38		7.						

ELECTRICAL AND ELECTRONICS ENGINEERING

101.	In a given	below circuit	at resonance	I is equal to
IVI.	ma given	ociow circuit	, at resonance	is equal to

- (1) 0A
- (2) 10A
- (3) 5A
- (4) 0.5 A

102. An alternating current has a peak value of 2A. If its Peak Factor is $\sqrt{2}$ and its form factor is

$$\frac{\pi}{2\sqrt{2}}$$
, then its average value is

- (1) $\frac{8}{\pi}A$ (2) $\frac{4}{\pi}A$ (3) $\frac{\pi}{2}A$ (4) $\frac{\pi}{4}A$

103. The power factor of an incandescent bulb is

- (1) 0.8 lagging
- (2) 0.8 leading
- (3) unity

104. The power factor of a circuit comprising resistance R and reactance X in series is

(1)
$$\frac{R}{\sqrt{R^2 + X^2}}$$
 (2) $\frac{X}{\sqrt{R^2 + X^2}}$ (3) $\frac{R}{R^2 + X^2}$ (4) $\frac{X}{R^2 + X^2}$

$$(2) \quad \frac{X}{\sqrt{R^2 + X^2}}$$

$$(3) \quad \frac{R}{R^2 + X^2}$$

$$(4) \quad \frac{X}{R^2 + X^2}$$

105. The working principle of a Transformer is

(1) Electromagnetism

(2) Conduction

(3) Energy transfer

(4) Mutual induction

106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and R1 = 0.1 Ω when referred to secondary is

- (1) 150Ω
- (2) 0.02Ω
- (3) 0.004Ω
- (4) 2.5Ω

107. What is load at which maximum efficiency occurs in case of a 100 kVA transformer with iron loss of 1 kW and full load copper loss of 2 kW

- (1) 100 kVA
- (2) 70.7 kVA
- 50.5 kVA $(3\cdot)$
- (4) 25.2 kVA

17-B

(EEE)

									Set Co	de: T2
							7.9		Booklet Co	
									6	
108.	In h	gh frequency tra	nsfor	mers, the r	nateri	al use	d for core is			
	(1)	Ferrite	(2)	Iron		(3)	Cast iron	. (4)	Silica	
109.	Buc	hholz relay is use	ed to							8 8
	(1)	identify faults								
	(2)	rectify the fault	t							
		trip-off connec		when fault	exist	s			i.	
	(4)	clears the fault							1.0	
							125 42		121 5 6 7 7 7 7 7	
110.		ribution transfor			ned to	keep	core losses mi	nimum	and coppe	r losses are
		ively less import The primary of s			d are e	nergiza	ed for all the 24 h	ours in	a day and co	re loss occur
	(1)	throughout the	lay wh	anstormers nile copper	loss o	ccur o	nly when the sec	ondary	is supplying	the load
	(2)	To ensure maxi	mum	All-day ef	ficien	су	N 548			
10	(3)	Greater core lo								
	(4)	Greater core lo	sses v	vill heat up	the c	oil of t	he transformer	rapidly		
							*			
111.	Whi	ch one of the fo	llowir	ng method	s give	s mor	e accurate resul	t for d	etermination	of voltage
		lation of an alter						•		
	(1)	MMF method				(2)	Synchronous i	mpeda	nce method	
	(3)	Potier triangle	metho	od		(4)	ASA method			
							* -		14	
112.	Hyd	rogen is used in	large	alternators	main	ly to				
	(1)	reduce distortion	on of v	waveform		(2)	cool the mach	ine		
	(3)	strengthen the	magne	etic field		(4)	reduce eddy c	urrent	losses	
112	The	frequency of em	faen	erated in a	n 8-nc	ole alte	rnator running	at 900	rpm is	
115.		2000년 1월 1일		120 Hz	no pe		90 Hz		60 Hz	
	(1)	50 Hz	(2)	120 HZ		(3)	30 HZ	(-)	00112	
114.		angle between s		onously ro	tating	stator	flux and rotor p	oles of	a synchrono	ous motor is
		Synchronizing		Slip	150	(3)	Power factor	(4)	Torque	
		852					*			
						18-B				(EEE)

Set Code :	T2
Booklet Code :	В

115.						nical angle and ving relation is t		he number of	poles of a
	(1)	$\theta_e = P \times \theta_m$			(2)	$\theta_{\rm e} = (P/2) \times \theta_{\rm m}$			
	(3)	$\theta_{e}^{}=\theta_{m}^{}/P$			(4)	$\theta_e = P/\theta_m$			×
116.		essential condi	tion for	parallel operati	on of tv	vo single phase t	transfo	rmers is that th	ney should
	(1)	Polarity	(2)	KVA rating ·	(3)	Voltage ratio	(4)	Percentage i	mpedance
117.	The	V-curve of a sy	nchron	ous motor is a p	olot of				
	(1)			stator power fac					
0	(2)			rotor current at		ds		18	
	(3)		versus	rotor currents v	when po	ower delivered i	is cons	tant	
				power delivere	_				
	. ,								
118.	roto	r resistance is 0	.25 ohn		n exter	of 0.03 when d nal resistance 0. torque?		•	
	(1)	0.03	(2)	0.06	(3)	0.09	(4)	0.1	
119.	The	torque develop	ed in a	three phase indi	uction r	notor depends o	n .		
	(1)	Stator flux an	d rotor	current	(2)	stator flux and stator current			
	(3)	stator current	and rot	or flux	(4)	rotor current a	nd rote	or flux	
120.	A si	ngle phase ac ir	nduction	n motor is not s	elf star	ting because it h	nas		
		No slip				rotor is short of		ed	
	(3)	high intertia			(4)	absence of rota	ating n	nagnetic field	
		1370			100.000				
121.	A si	ngle phase wind	ling in a	single phase m	otor pr	oduces			
	(1)	an alternating	magnet	ic field	(2)	a stationary ma	agnetic	field	2.7
	(3)	a rotating mag	netic fi	eld	(4)	a steady magne	etic fie	ld	
				¥0.00					

122.	Und	er no-load cond	itions	, power factor of	an in	duction motor is	about		
	(1)	0.2 lag	(2)	0.9 lag	(3)	Unity	(4)	0.5 lead	10
123.	Ofa	ll the plants, min	imum	quantity of fuel	used i	s required in	. plan	t.	
	(1)	Diesel power	(2)	Steam	(3)	Hydro-electric	(4)	Nuclear	
124.	The	overall efficienc	y (η)	of a Thermal Pov	wer St	ation is			
		η_{boiler}				$\eta_{\text{generator}} \times \eta_{\text{turbine}}$	(4)	$\eta_{\text{turbine}} \times \eta$	1 _{boiler}
125.	The	effect of water h	amme	r can be minimiz	ed by	using .	ż		
	(1)	Spill way	(2)	Anvil	(3)	Surge Tank	(4)	Draft tub	e
126.	In a	diesel power pla	nt susj	pended impuritie	s in th	e fuel are remove	ed by		
	(1)	Cyclone separa	tors		(2)	Electrostatic se	parat	ors	
	(3)	Fabric filters	93		(4)	Strainer			
127.		rupturing capaci					745	X 7. 14	
	(1)	Ampere	(2)	Volt-Ampere	(3)	Watt	(4)	Volt	
128.	A ci	rcuit breaker is e	ssenti	allv					
		An arc extingui					201		
	(2)	A current interr		device	2				
	(3)	A power factor							
	(4)			zing the effect of	trans	ients			
129.	Mho	relay normally	is used	d for protection of	of				
	(1)	Long transmiss	ion lir	nes					
	(2)	Medium Transn	nissio	n lines					0
	(3)	Short transmiss	ion li	nes					
	(4)	No length crite	rion	*					

				Set Code: T2
				Booklet Code : B
130). The	e scheme adopted for bus-bar protection	n is	
	(1)	spilt-phase protection	(2)	differential protection
	(3)	over current protection	(4)	reverse power protection
131	. Du	e to the ferrari effect on long overhead	llines	<u> </u>
	(1)	receiving end voltage is less than sen	ding v	voltage
	(2)	receiving end voltage is more than se	nding	voltage
	(3)	receiving end voltage is equal to send	ling v	oltage
	(4)	receiving end voltage is not effected		
132	. Cor	rona occurs between two transmission	lines v	when they are
	(1)		(2)	· · · · · · · · · · · · · · · · · · ·
	(3)	having high potential difference	(4)	
133	. Sur	ge impedence of a transmission line is	given	by
	(1)	$\sqrt{(L/C)}$ (2) $\sqrt{(C/L)}$	(3)	\sqrt{LC} (4) $1\sqrt{LC}$
134.	The	general distance for short transmissio	n line	is
	(1)	less than 80 km	(2)	80 km-250 km
	(3)	more than 250 km	(4)	150 km-300 km
135.	The	resistance of the line	6	(13)
	(1)	increases with increase in frequency	(2)	decreases with increase in frequency
	(3)	is independent of frequency		increases with decrease in frequency
136.	In H	VDC Transmission System AC is conve	erted t	o DC using
		Rectifier (2) Inverter	(3)	

(3) 11 KV

137. Suspension type insulators are used for voltages beyond

(2) 400 V

(1) 220 V

(4) 33 KV

									Set	Code:	T2
					*			38	Booklet	Code:	B
138.	Pow	er Factor of	Indu	strial	loads is general	lly					
	(1)	Unity		(2)	Leading	(3)	Lagging	(4)	Zero		
139.	Pole	mounted to	ansfo	ormer	stations are me	ant for					
	(1)	Primary tr	ansm	ission	1	(2)	Primary dist	ribution			
	(3)	Secondary	tran	smissi	on .	(4)	Secondary d	istributio	on .		
140.	Tran	smission li	nes ai	re tran	sposed to						
	(1)	Reduce co	pper	loss							
	(2)	Reduce sk	in ef	fect						6. 0. 5.	
	(3)	Prevent in	terfe	rence	with communic	ation l	ines				
	(4)	Present sh	ort ci	ircuit	between condu	ctors					
-				-							
141.	The	units for sp	ecific	ener	gy consumption	n relate	d to traction i	s			17
	- 1	Watt - Ho	111		Watt - Hour				•		
	(1)	Tonne - k		(2)	km	(3)	Joules/Sec	(4)	Watt		
								*			
142.	In K	ando system	n of	track	electrification_	-	is conver	ted into			
	(1)	single pha	se, do	;		(2)	dc, single ph	ase	60		
	(3)	single pha	se, th	ree ph	nase	(4)	three phase,	single pl	nase		
143.					ed of 60 kmph b			ch are 6	km apart.	The act	ual run
	time	is	if		luration of stop						
	(1)	60 sec		(2)	360 sec	(3)	240 sec	(4)	300 sec	-	
144.	Ave	rage speed o	of a tr	ain is	dependent on						
	(1)	Distance b	etwee	en two	stops & run tim	e	¥		20		
	(2)	Run time	& sto	p time	•						

(3) Stop time & acceleration(4) Acceleration & deceleration

Set Code :	T2
Booklet Code :	

145	. The	e electric motor used for traction work	shoul	d have	
		Low starting torque	(2)		
	(3)				
146.	Tra	ctive effort of an electric locomotive c	an be	increased by	
	(1)	Increasing the supply voltage		5455 OV W	
	(2)	Increasing the speed			
	(3)	Increasing the dead weight over the d	riving	axles	
	(4)	Using high rating motors			
147.	Trac	ctive effort required for a train going do	wn fr	om an upgradiant is	
	(1)	less than tractive effort on level track		· Committee Comm	
20	(2)	more than tractive effort on level trac	ck		
	(3)	equal to the tractive effort on level tr	ack	**	
	(4)	independent of mass of the train			
148.	The	area under speed-time curve of a train	repres	ents	
	(1)	average speed	(2)	average acceleration	
	(3)	distance travelled	(4)	average velocity	
149.	As t	he number of wire guage increases the	cross	sectional area of wire	
	(1)	increases	(2)	remains same	
	(3)	becomes neglible	(4)	decreases	
150.	Whi	ch of the following wiring is not visible	e outsi	de?	
	(1)	conduit wiring	(2)	cleat wiring	29
	(3)	casing and capping wiring	(4)	concealed wiring	
151.	Resi	stance of earth system of power station	ns sho	uld not exceed the limit of	
	(1)	0.5 ohms (2) 2 ohms	(3)	1 ohms (4) 5 ohms	

Set Code :	T2
Booklet Code :	

152. In e	lectrical insta	llations t	he fuse is alw	vays conn	ected in		wire.	
	earth		neutral		phase	(4)	ground	
153. The	transistor use	ed in amp	lifier circuits	operates	in			
(1)	Active region	on		(2)	Saturation reg	gion		
(3)	Cut off region	on		(4)	Reverse region	on		
154. The	gain of an am	plifier is	given by the	following	formula			
(1)	G(dB) = 10	log (p _{in} /p	out)	(2)	G(dB) = 10 le	og (pout)		
(3)	G(dB) = 10	log (p _{out} /	p _{in})	(4)	G(dB) = 10 l	og (p _{in})		
155. The	number of die	odes that	are used in ha	alf wave 1	ectifier and fu	ll wave t	oridge rec	tifier
(1)	1,2	(2)	1,4	(3)	2,4	(4).	2,1	
	average voltag Iz is	ge of a ful	l wave rectifie	er fed fron	an ac source o	f peak vo	oltage, V _m	and t
50F							oltage, V _m	and:
50F (1)	Iz is	(2)	$2V_{\rm m}/\pi$	(3)	$V_m/\sqrt{2}$			and
50H (1) 157. In a	Hz is V_m/π	(2)	$2V_{\rm m}/\pi$	(3) yer is ligh	$V_m/\sqrt{2}$	(4)		and
50F (1) 157. In a (1)	Iz is V_m/π transistor whi	(2) ich of the (2)	$2V_m/\pi$ following la	(3) yer is ligh	$V_m/\sqrt{2}$	(4)	V _m /2	and
50F (1) 157. In a (1) 158. Zen	Iz is V_{m}/π transistor white	(2) ich of the (2)	$2V_m/\pi$ following la	(3) yer is ligh	V _m /√2 ntly doped Drain	(4)	V _m /2	and:
50F (1) 157. In a (1) 158. Zen (1)	Iz is V_m/π transistor which is transistor which is the condition of th	(2) ich of the (2) lates (2)	2V _m /π following la Collector Current	(3) yer is ligh (3)	V _m /√2 ntly doped Drain Resistance	(4)	V _m /2 Base	and i
50F (1) 157. In a (1) 158. Zen (1)	Iz is V _m /π transistor white Emitter ter diode regulation Voltage	(2) ich of the (2) lates (2) coscillation	2V _m /π following la Collector Current	(3) yer is ligh (3) (3)	V _m /√2 ntly doped Drain Resistance	(4)	V _m /2 Base	and
50F (1) 157. In a (1) 158. Zen (1) 159. The (1)	Iz is V _m /π transistor white Emitter ter diode regulated Voltage frequency of	(2) ich of the (2) lates (2) coscillation (2)	$2V_m/\pi$ following la Collector Current on of wein br $2 \pi RC$	(3) yer is ligh (3) (3)	V _m /√2 Itly doped Drain Resistance	(4)	V _m /2 Base	and i

Set Code :	
Booklet Code :	В

161.	The	2's complemen	t of the	e number 1001	1100 is				5
	(1)	0110 0011	(2)	0110 0100	(3)	1001 1100	(4)	1001 1101	
162.	The	bolean expressi	on for	NOR gate with	inputs	A and B is		*	
	(1)	A+B	(2)	AB	(3)	A+B	(4)	$\overline{A+B}$	
163.	A D	AC with 8 input	bits h	asr	resolutio	on compared wit	h DA	C with 4 input bits.	
	(1)	High	(2)	Same	(3)	Low	(4)	Infinite	
164.	The	power electroni	c devi	ce, Silicon Cor	ntrolled	Rectifier has			
	(1)	Two junctions	and th	ree layers	(2)	Three junction	s and	three layers	
	(3)	Three junction	s and i	four layers	(4)	Two junctions	and tw	o layers	
165.	Whi	ch one of the fo	llowin	g is a bidirection	onal Co	ntrolled switch			
	(1)	Thyristor	(2)	Triac	(3)	GTO	(4)	Diac	
166.	Ifth	e gate current of	an SC	R is increased,	its forv	vard break over	voltag	e V _{BO} will	
	(1)	Increase	(2)	Decrease	(3)	Not be affected	1 (4)	Be infinity	
167.	Ìn ar	UJT triggering	circui	t for SCR, puls	ses are g	enerated at		of UJT.	
	(1)	Emitter (E)	(2)	Base 1 (B1)	(3)	Base 2(B2)	(4)	B1-B2	
168.	In a l	half wave contro	olled re	ectifier feeding	R-L lo	ad, the range of	firing	angle of thyristor is	
	(1)	$0 \le \alpha \le 180^{\circ}$	(2)	$90 \le \alpha \le 180^\circ$	(3)	$0 \le \alpha \le 90^{\circ}$	(4)	$0 \le \alpha \le 360^{\circ}$	
69.		DC output volta	ge, V _o	of a basic chop	per circ	uit with input vo	oltage	V _{in} and duty cycle,	δis
	(1)	$V_o = V_{in} \times \delta$	(2)	$V_o = V_i / \delta$	(3)	$V_o = V_{in}/(1-\delta)$	(4)	$V_o = V_{in}$	

Set Code:	T2
Booklet Code :	В

170. An.	AC regulator p	provides								
(1)	Variable free	quency, fix	xed mag	gnitudeA	C					
(2)	Fixed freque	ency, varia	ble mag	gnitude A	C					
(3)	Fixed freque	ency, fixed	l magni	tude AC						
(4)	Variable free	quency, va	riable n	nagnitude	AC					
171. The	output voltag	e of a sing	gle phas	e bridge	inver	ter is				
(1)	Square wave				(2)	Sinusoida	l wave			
(3)	Constant de			8	(4)	Triangula	rwave			
172. Two	quadrant ope	ration of	de moto	or can be	obtai	ned if it is	fed from a			
(1)	Uncontrolle						rolled conv	ertor		
(3)	Half wave co	onvertor					trolled con			
173. For	controlling the	e speed of	fa 3 nh	ase induc	tion	motor V/fr	atio is mair	· ntained co	nstant fo)r
(1)		1 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1	p.i.		(2)			itumed co	iotalit 10	
(3)	Varying the a		X _e			Variable r				
174. 805	I microcontro	ller has		data line	es an	d	address	lines.		4.5
	16, 8	(2)				8, 16		16, 20		
175. Whi	ch of the follo	wing inst	ruction	is not a d	lata tı	ansfer inst	ruction?			
	XCH	-	PUSH			ADD		MOV		
76. Inter	mal memory o	of 8051 m	icro co	ntroller o	consi	sts of				
(1)	128 bytes of F	RAM, 2 K	bytes o	fROM						
(2)	4 K bytes of	RAM, 12	8 bytes	of ROM						
(3)	2 K bytes of F		•							
(4)	128 bytes of								2.2	

Set Code :	T2
Booklet Code :	В

177. The	highest price	rity interre	upt is							
(1)	TF1	(2)	IE1		(3)	TF0	(4)	IE0		
178. Perc	entage Volt	age regula	tion of a	transmis	ssion	line is given b	у			
(1)	$(E_s-E_r)/E_r^*$	100		- 5	(2)	$(E_r - E_s)/E_r * 10$	00			*1 1
(3)	$(E_s-E_r)/E_s$	100			(4)	$(E_r - E_s)/E_s * 1$	00			
179. In a	main line se	ervice of e	lectric tra	action sy	stem		11			
(1)	Distance b	etween tw	o stops is	very sm	nall					
(2)	Acceleration	on and reta	rdation p	eriods a	re sm	all				
(3)	Free runnin	ng and coa	sting peri	ods are	short					
(4)	Acceleration	on and reta	rdation p	eriods a	re lor	ng				8 1
180. For	SCR, dv/dt p	rotection	is achieve	ed by co	nnect	ing	-			
(1)	L in series	with SCR			(2)	RL in series v	with SC	R		
(3)	RC in serie	s with SCI	ι.		(4)	RC in paralle	l with S	CR	* -	
181. The	effective res	istance be	tween ter	minals A	A and	B in the below	v figure	is		xi
	r						Ü			
(2)	2r	4		W-	•	В		-		
(3)	3r		vyv	LAND	w.					
(4)	4r			,,	,					
						0.000			and Taxo	
182. If I b unit		, C be the	capacitan	ce and V	be the	ne potential dif	ference:	s, the I/C	V will ha	ive the
(1)	Time	(2)	Power		(3)	Frequency	(4)	Reactiv	e Power	
183. In a s	series R-C ci	rcuit excit	ed by a D	C volta	ge E,	the initial curr	ent is		100	
9997	E					E		C		
(1)	R	(2)	0	*	(3)	C	(4)	$\overline{\mathbf{E}}$		
				27	-В					(EEE)

184	The strength o	of electromagnet	can	be increased	by
104.	THE SHEHRIH C	n electionnagnet	Can	oc mercuseu	0,

- (1) Decreasing the length of the conductor (2) Increasing the length of the conductor
- (3) Increasing the number of turns
- Decreasing the number of turns (4)

185. Tesla is a unit of

- (1) Flux
- (2) Field strength (3) Current
- (4) Flux density

186. According to joule's law heat produced by an electric current is proportional to

- (1) square of the resistance
- square of the current (2)

(3) potential difference

square of the time

187. The Thevenin's equivalent resistance R_{th} for given below network is

- (1) Γ_{Ω}
- $(2) \cdot 2 \Omega$
- (3) 4Ω
- (4) Infinity

188. In a differential compound generator, the series field turns are provided on

- (1) Armature
- (2) Commutator
- (3) Interpole
- (4) Main pole

189. The function of the commutator in a dc machine is

- (1) to change alternating current to direct current
- (2) to improve commutation
- (3) for easy speed control
- (4) to change alternating voltage to direct voltage

190. If N is the speed and P is number of poles, then the frequency of induced e.m.f in DC generator will be

Set Code :	T2
Booklet Code :	В

191.	The demagnetizing flux in dc generator						
	(1)	Increases e.m.f	(2)	Decreases e.m.f			
	(3)	Increases speed	(4)	Decreases speed			
192.		be the torque and I the armature cu	rrent for	a dc series motor, the	n which of the following		
	(1)	$T_a \alpha I_a$ (2) $T_a \alpha (1/I_a)$	(3)	$T_a \alpha(I_a^2) \qquad (4)$	$T_a \alpha (1/I_a)^2$		
193.	Wha	at will happen if the back e.m.f of a D	C motor	vanishes suddenly			
	(1)	The motor will stop	(2)	The motor will continue to run			
	(3)	The armature may burn	(4)	The motor will run n	oisy		
				2 X			
194.	The mechanical power developed by a DC motor is equal to						
	(1)	Power input + losses		Back e.m.f × armature current			
	(3)	Power output × losses	(4)	Power output × effic	ciency		
195.	_	lecting saturation, if current taken entage increase in its torque is	by a seri	ies motor is increased	d from 10A to 12A, the		
	(1)	20% (2) 44%	(3)	30.5% (4)	16.6%		
196.	Dvn	amometer type instrument have		2	*		
		Cramped scale at the beginning	(2)	Cramped at the end			
		Cramped at the middle	(4)	Uniform scale			
	(-)		()		31.1		
197.	To measure a signal of 10 mV at 75 Hz, which one of the following instrument can be used						
	(1)	cathode ray oscilloscope	(2)	VIVM			
	(3)	Moving Iron voltmeter	(4)	digital multimeter			
198.	Whi	ch one of the following a passive tra	nsducer				
	(1)	piezolectric (2) thermocouple	e (3)	photovoltaic cell	(4) LVDT		

Set Code : T2

Booklet Code : B

199	The voltage coi	l of a single phase	house energy meter

- (1) is highly resistive
- (2) is highly inductive
- (3) is highly capacitive
- (4) has a phase angle equal to load power factor angle

200. The effective value of a triangular wave is

(1) Max. value

(2) $\sqrt{3}$ (Max. value)

(3) $\frac{\sqrt{3}}{\text{Max, value}}$

(4) $\frac{\text{Max. value}}{\sqrt{3}}$