Práctica 1 - Representación de la información

Sistemas Digitales

Segundo Cuatrimestre 2024

Ejercicio 1

- a) Utilizando el método del cociente, expresar en bases 2, 3 y 5 los números 33₁₀ y 511₁₀.
- b) Expresar en decimal los números 1111₂, 1111₇ y CAFE₁₆.
- c) Expresar 17_8 en base 5 y BABA₁₃ en base 6.
- d) Pasar $(1010\ 1110\ 1010\ 1101)_2$, $(1111\ 1011\ 0010\ 1100\ 0111)_2$ y $(0\ 0110\ 1001)_2$ a base 4, 8 y 16 agrupando bits.¹
- e) Expresar en decimal los números 0x142536 y 0xFCD9, y pasar a base 16 los números 7848_{10} y 46183_{10} .²

Ejercicio 2 Realizar las siguientes sumas de precisión fija, sin convertir a decimal. Indicar en cada caso si hubo acarreo.

Ejercicio 3 ¿Puede suceder en alguna base que la suma de dos números de precisión fija tenga un acarreo mayor que 1? Exhibir un ejemplo o demostrar lo contrario.

Ejercicio 4 Sean los siguientes numerales binarios de ocho dígitos: $r = (1011\ 1111)_2$, $s = (1000\ 0000)_2$ y $t = (1111\ 1111)_2$, ¿qué números representan si asumimos que son codificaciones de enteros en complemento a 2? ¿Y si fueran codificaciones en signo+magnitud?

Ejercicio 5 Codificar los siguientes números en base 2, usando la precisión y forma de representación indicada en cada caso. Comparar los resultados.

- 0_{10} \longrightarrow usando 8 bits, notación signo+magnitud y notación complemento a 2.
- -1_{10} \longrightarrow usando 8 y 16 bits, en ambos casos notación complemento a 2 y signo+magnitud.
- 255_{10} \longrightarrow usando 8 bits notación sin signo y 16 bits notación complemento a 2.
- -128_{10} \longrightarrow usando 8 y 16 bits, en ambos casos notación complemento a 2.
- 128_{10} \longrightarrow usando 8 bits notación sin signo y 16 notación complemento a 2.

Ejercicio 6 ¿Puede alguna cadena binaria de k dígitos, interpretada en complemento a 2, representar un número que no puede ser representado por una cadena de la misma longitud pero utilizando signo+magnitud? ¿Y al revés?

¹los espacios cada cuatro dígitos binarios se incluyen por claridad.

²La notación "0x" indica base hexadecimal.

Ejercicio 7 Interpretar los operandos y resultados de las sumas del ejercicio 2 como representaciones de enteros en complemento a 2 y, para cada una de ellas, indicar cuáles son correctas y cuáles no, y en cuáles se evidencia una condición de *overflow*.

Ejercicio 8 ¿Cómo acomodaría esta suma de números hexadecimales de 4 dígitos en notación complemento a 2, para que en ningún momento se produzca *overflow*?

$$7744_{16} + 5499_{16} + 6788_{16} + AB68_{16} + 88BD_{16} + 9879_{16} = 0003_{16}$$

Ejercicio 9 Dar ocho pares de números tales que la suma de las representaciones de cada par en complemento a dos de 4 bits provoque lo siguiente:

- 1) No se produzca acarreo ni overflow.
- 2) Se produzca acarreo pero no overflow.
- 3) Se produzca acarreo y overflow.
- 4) No se produzca acarreo pero sí overflow.
- 5) Se produzca acarreo y el resultado sea cero.
- 6) No se produzca acarreo y el resultado sea cero.
- 7) El resultado sea negativo y se produzca overflow.
- 8) El resultado sea negativo y no se produzca overflow.

Ejercicio 10 La función $SignExt_n$ convierte números de k bits en números de k+n bits de la siguiente manera:

$$SignExt_n(b_{k-1}...b_0) = \begin{cases} 0...0b_{k-1}...b_0 & \text{si } b_{k-1} = 0\\ 1...1b_{k-1}...b_0 & \text{si } b_{k-1} = 1 \end{cases}$$

Mostrar que para todo número x de k bits, x y $SignExt_n(x)$ representan el mismo número si se los interpreta en notación complemento a 2 de k y k + n bits respectivamente.

Ejercicio 11 Represente los números 2, -5 y θ en notación complemento a dos de 4 bits de longitud. Luego:

- a) invierta los bits de cada representación obtenida e indique a qué número representa en el mismo sistema;
- b) a partir de lo realizado en el punto anterior, proponga un método para obtener la representación en complemento a 2 del inverso aditivo de un número dada la representación de ese número en el mismo sistema.

Ejercicio 12 Diremos que un sistema de representación de números como cadenas binarias de longitud fija es *biyectivo* si no admite más de una representación para cada número y toda cadena disponible es utilizada para representar algún numero.

Decidir si la siguiente afirmación es verdadera o falsa: "No es posible dar con un sistema que represente números con signo utilizando cadenas binarias de longitud fija que sea *biyectivo*, tenga una representación para el cero y donde la cantidad de números positivos y negativos representados sea la misma". Justificar.

Ejercicio 13 Dar un ejemplo de un sistema de representación biyectivo en el que la cantidad de números positivos y negativos representados es la misma.