МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА Механико-математический факультет

Конспект лекций по теории чисел

7-ой семестр, осень 2017 г., 4-ый курс, первый поток

Лектор: Олег Николаевич Герман

Предисловие

Внимание! Это не курс лекций и не методичка, а всего лишь конспект, набранный в вёрстке LATEX и не претендующий на окончательную истину. В данном документе не исключены опечатки. Использовать на свой страх и риск. Авторы не несут ответственности за успешность подготовки по данному материалу, а также за его использование в качестве "шпоры".

Данный конспект по теории чисел состоит из 14-ти лекций, прочитанных Олегом Николаевичем Германом — доцентом кафедры теории чисел. Курс был прочитан на 7-ом семестре четвёртого курса мехмата МГУ осенью 2017 года.

Весь конспект был подготовлен и заТ_ЕХан студентами Артемием Соколовым, группа 405 (нечётные лекции) и Артемием Геворковым, группа 402 (чётные лекции). За основу был взят конспект Юлии Зайцевой. Также в перспективе планируется добавить решения всех упражнений из курса.

Данная версия документа была скомпилирована 24 января 2018 г. Последняя версия .PDF, а также все исходные файлы всегда будут доступны в репозитории: (ссылка на Github). Если найдена ошибка или опечатка — пожалуйста, сообщите нам.

Спасибо Юлии Зайцевой, Виталию Лобачевскому, Всеволоду Гусеву, Кириллу Сосову, Сергею Джунусову, Айку Эминяну, Александру Думаревскову и команде Алгебрача за поиск ошибок и помощь в оформлении данного материала.

Весь курс будет состоять из трех больших частей:

1. Асимптотический закон распределения простых чисел:

$$\pi(x) = \sum_{p \leqslant x} 1 \sim \frac{x}{\ln x}.$$

- 2. Теорема Дирихле о простых числах в арифметических прогрессиях: Если (l,m)=1, то существует бесконечное количество таких простых p, что $p\equiv l \mod m$.
- 3. Теоремы о том, что e и π иррациональные и трансцендентные числа.

Содержание

1	Аси	мптотический закон распределения простых чисел	5
	1.1	Игры с $\pi(x), \theta(x), \psi(x)$	5
	1.2	Оценки Чебышева	6
	1.3	Дзета-функция Римана	7
	1.4	Воспоминания из былых времен	7
	1.5	Преобразование Абеля	10
2	Teo	рема Дирихле о простых числах в арифметических прогрессиях	16
	2.1	Свойства характеров	16
	2.2	<i>L</i> -функции Дирихле	18
3	Дис	офантовы приближения	23
	3.1	Основные сведения	23
	3.2	Иррациональность e и π	26
	3.3	Трансцендентность числа e	27
4	Алі	гебраические и трансцендентные числа	28
	4.1	Основные сведения	28
	4.2	Целые алгебраические числа	29

4.3	Конечные расширения $\mathbb Q$	30
4.4	Нормальные расширения	32
4.5	Трансцендентность π	34

1 Асимптотический закон распределения простых чисел

Замечание. Впредь, если мы будем писать сумму вида $\sum_{...p...}$..., то мы будем иметь в виду, что p – простое число.

1.1 Игры с $\pi(x), \theta(x), \psi(x)$

Изучение распределения простых чисел непосредственно связано с изучением следующих функций:

- $\pi(x) = \sum_{p \leqslant x} 1$ количество простых чисел, не превосходящих x;
- $\theta(x) = \sum_{p \leqslant x} \ln p = \ln \left(\prod_{p \leqslant x} p \right) \theta$ -функция Чебышева;
- $\psi(x) = \sum_{p^{\alpha} \leqslant x} \ln(p) = \sum_{p \leqslant x} \left[\frac{\ln(x)}{\ln(p)} \right] \ln(p) = \ln\left(\operatorname{HOK}(1, 2, \dots, [x])\right) \psi$ -функция Чебышева.

Как эти функции связаны? Оказывается, следующим соотношением:

Лемма 1.1.

$$\underline{\overline{\lim}} \frac{\theta(x)}{x} = \underline{\overline{\lim}} \frac{\psi(x)}{x} = \underline{\overline{\lim}} \frac{\pi(x)}{x/\ln(x)}, \quad x \to \infty.$$

Доказательство. Заметим, что

$$\theta(x) \leqslant \psi(x) \leqslant \sum_{p \leqslant x} \left[\frac{\ln(x)}{\ln(p)} \right] \ln(p) = \ln(x) \sum_{p \leqslant x} 1 = \pi(x) \ln(x)$$
$$\frac{\overline{\lim}}{x} \frac{\theta(x)}{x} \leqslant \underline{\overline{\lim}} \frac{\psi(x)}{x} \leqslant \underline{\overline{\lim}} \frac{\pi(x)}{x/\ln x}$$

Будем рассматривать простые числа на отрезке $[x^{\alpha}, x]$ для некоторого фиксированного $0 < \alpha < 1$. Тогда

$$\theta(x) = \left(\sum_{p \leqslant x} \ln(p)\right) \geqslant \left(\sum_{x^{\alpha} \left(\ln(x^{\alpha}) \sum_{x^{\alpha}
$$\frac{\theta(x)}{x} > \alpha \left(\frac{\pi(x)}{x/\ln x} - \frac{\ln(x)}{x^{1-\alpha}}\right) \quad \forall 0 < \alpha < 1.$$$$

Тогда для любого $\alpha \in (0,1)$ получаем, что $\overline{\lim} \frac{\theta(x)}{x} \geqslant \overline{\lim} \alpha \frac{\pi(x)}{x/\ln x}$.

Значит
$$\underline{\overline{\lim}} \frac{\theta(x)}{x} \geqslant \underline{\overline{\lim}} \frac{\pi(x)}{x/\ln x}$$
.

1.2 Оценки Чебышева

Теорема 1.2 (Оценки Чебышева). Существуют a, b > 0 такие, что

$$a\frac{x}{\ln(x)} \leqslant \pi(x) \leqslant b\frac{x}{\ln(x)}.$$

Перед доказательством этой теоремы сформулируем и докажем несколько вспомогательных лемм.

Лемма 1.3.

$$\prod_{p \leqslant n} p \leqslant 4^n.$$

Доказательство. Будем доказывать методом математической индукции по n.

База. При n = 2, 3 утверждение верно.

Переход. Если n=2k – четно, то видно, что $\prod_{p\leqslant 2k} p = \prod_{p\leqslant 2k-1} p\leqslant 4^{2k-1}\leqslant 4^{2k}$.

Если n=2k-1 – нечетное, то по предложению индукции $\prod_{p\leqslant n}p=\left(\prod_{p\leqslant k}p\right)\left(\prod_{k< p\leqslant 2k-1}p\right)\leqslant 4^k4^{k-1}=$

 4^n . Заметим, что $\prod_{k , т.к. каждое такое простое число входит в числи-$

тель, но не входит в знаменатель. Поэтому \prod_{k

Следствие 1. $\theta(n) < n \ln(4)$.

Следствие 2. $\theta(x) < x \cdot 3 \ln(2)$.

Доказательство. Пусть $n-1 < x \leqslant n$. Тогда $\theta(x) \leqslant \theta(n) < n \ln(4) < (x+1) \ln 4 \leqslant x \cdot 3 \ln 2$.

Лемма 1.4. $K := HOK(1, 2, \dots, 2n+1) > 4^n$

Доказательство. Рассмотрим $I=\int_0^1 x^n (1-x)^n dx$. Поскольку на отрезке [0,1] величина x(1-x) не превосходит $\frac{1}{4}$, то $I<\frac{1}{4^n}$.

Заметим, что $x^n(1-x)^{\frac{4}{n}}=a_nx^n+\ldots+a_{2n}x^{2n}$ – многочлен с целыми коэффициентами. Тогда $I=\frac{a_n}{n+1}+\ldots+\frac{a_{2n}}{2n+1},$ и $K\cdot I\in\mathbb{Z}.$ Причём K и I оба больше нуля, т.е. $K\cdot I\geqslant 1.$ Откуда следует, что $K\geqslant \frac{1}{I}>4^n.$

Следствие 3. $\psi(2n+1) > n \ln(4)$.

Следствие 4. $\psi(x) > x \frac{\ln(2)}{2} \ npu \ x \ge 6$.

Доказательство. Пусть $2n+1\leqslant x<2n+3$. Тогда $\psi(x)\geqslant \psi(2n+1)>n\ln(4)>\frac{x-3}{2}\ln 4=(x-3)\ln(2)\geqslant x\frac{\ln(2)}{2}$.

Доказательство. (Теоремы 1.2.)

Применим следствия 2 и 4. Тогда при $x\geqslant 6$ выполнено $\frac{\theta(x)}{x}<3\ln 2, \frac{\psi(x)}{x}>\frac{\ln 2}{2}$. Учитывая Лемму 1.1 получаем, что $\overline{\lim}\frac{\pi(x)}{x/\ln x}\leqslant 3\ln 2$ и $\underline{\lim}\frac{\pi(x)}{x/\ln x}\geqslant \frac{\ln 2}{2}$.

Теорема 1.5 (Асимптотический Закон Распределения Простых Чисел).

$$\pi(x) \sim \frac{x}{\ln x}.$$

1.3 Дзета-функция Римана

Положим при Re(s) > 1

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Будем писать $s = \sigma + it$. Мы докажем, что $\zeta(s)$ – аналитическая функция на Re(s) > 1, и аналитически продолжим её на Re(s) > 0 (можно и на всю \mathbb{C} , будет единственный полюс в точке 1).

Теорема 1.6 (Гипотеза Римана). *Нетривиальные нули* ζ -функции лежат на прямой $\text{Re}(s) = \frac{1}{2}$.

Отступление:

Предположим, что p_1, p_2, \dots, p_r – все простые. Тогда $\sum_{k=0}^{\infty} \frac{1}{p_j^k} = \frac{1}{1 - \frac{1}{p_j}}$. Следовательно,

$$\sum_{(k_1,\ldots,k_r)} rac{1}{p_1^{k_1}\ldots p_r^{k_r}} = \prod_{j=1}^r rac{1}{1-rac{1}{p_j}}$$
 — сходится.

Но слева – сумма гармонического ряда. Противоречие.

1.4 Воспоминания из былых времен

Теорема 1.7 (Вейерштрасса). Пусть в области Ω функции $f_n(s)$ аналитичны и ряд $\sum_{n=1}^{\infty} f_n(s)$ сходится равномерно (по Ω). Тогда он сходится к функции f(x), аналитической в Ω , причём $f'(s) = \sum_{n=1}^{\infty} f'_n(s)$ – также сходится равномерно.

Признак (Вейерштрасса). Если в Ω справедливо $|f_n(s)| < c_n$, $u \sum_{n=1}^{\infty} c_n$ сходится, то ряд $\sum_{n=1}^{\infty} f_n(s)$ равномерно сходится в Ω .

Определение 1.4.1. Функция $f: \mathbb{N} \to \mathbb{C}$ называется $apu \phi$ метической функцией. Если $f \not\equiv 0$ и f(ab) = f(a)f(b) для любых a, b таких, что (a, b) = 1, то функция называется мультипликативной. А если равенство f(ab) = f(a)f(b) выполнено для абсолютно всех $a, b \in \mathbb{N}$, то функция называется

вполне мультипликативной.

Сверткой Дирихле двух арифметических функций f(n) и g(n) является функция

$$(f * g)(n) = (g * f)(n) = \sum_{k|n} f(k)g\left(\frac{n}{k}\right)$$

 Φ ормула обращения Мебиуса гласит, что если F=f*1, то $f=F*\mu$, где $\mu(n)$ – функция Мебиуса 1

Определение 1.4.2. Рядом Дирихле называется ряд вида $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$, где $a_n \in \mathbb{Z}$.

Несложно видеть, что если
$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$
, а $G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$, то $F(s)G(s) = \sum_{n=1}^{\infty} \frac{(f*g)(n)}{n^s}$.

Заметим, что $1=\sum_{n=1}^{\infty}\frac{a_n}{n^s}$, где $a_1=1$, а остальные $a_i=0, (i\neq 1)$. Хотим найти "обратную" функцию к $\zeta(s)$.

Известно, что $\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}$, где $\mu(n)$ – функция Мёбиуса.

Теорема 1.8. Пусть Re(s) > 1. Тогда:

1) ряд $\sum_{n=1}^{\infty} \frac{1}{n^s}$ сходится абсолютно и задаёт аналитическую функцию $\zeta(s)$;

2)
$$\zeta'(s) = -\sum_{n=1}^{\infty} \frac{\ln(n)}{n^s};$$

3)
$$\zeta(s) \neq 0$$
 и $\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$, где $\Lambda(n) = \begin{cases} \ln(p), & n=p^k, \ k \geqslant 1, \\ 0, & \textit{иначе} \end{cases}$ – функция Мангольдта.

Доказательство.

Пункт 1): Обозначим $s = \sigma + it$. Тогда $\left| \frac{1}{n^s} \right| = \frac{1}{n^\sigma}$, $\sigma > 1$ — таким образом, абсолютная сходимость есть. При этом в области $\Omega_\delta = \{s \in \mathbb{C} \mid \operatorname{Re}(s) > 1 + \delta\}$, $\delta > 0$, сходимость будет равномерной, ибо $\left| \frac{1}{n^s} \right| = \frac{1}{n^\sigma} < \frac{1}{n^{1+\delta}}$, а ряд $\sum_{n=1}^\infty \frac{1}{n^{1+\delta}}$ сходится. Но тогда по признаку Вейерштрасса $\sum_{n=1}^\infty \frac{1}{n^s}$ равномерно сходится в Ω_δ . По теореме 1.7 сумма ряда является аналитичной в Ω_δ (каждая $\frac{1}{n^s}$ является целой функцией s). И это справедливо для всех δ .

Пункт 2): По теореме 1.7 в каждой $\Omega_{\delta}: \left(\frac{1}{n^{s}}\right)' = \left(e^{-s \ln n}\right)'$. Далее очевидно.

Пункт 3): Заметим, что в области Ω_{δ} :

$$\left|\frac{\Lambda(n)}{n^s}\right| = \frac{\Lambda(n)}{n^{\sigma}} \leqslant \frac{\ln n}{n^{\sigma}} < \frac{\ln(n)}{n^{1+\delta}},$$

$${}^{1}\mu(n) = \begin{cases} 1, n = 1, \\ 0, \exists p^{2} | n, \\ (-1)^{r}, n = p_{1} \dots, p_{r}. \end{cases}$$

а мы знаем, что ряд $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^{1+\delta}}$ сходится. Тогда по признаку Вейерштрасса $\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$ сходится в Ω_{δ} равномерно. По теореме 1.7 сходится к аналитической функции, причём абсолютно. Перемножим два абсолютно сходящихся ряда:

$$\left(\sum_{k=1}^{\infty} \frac{1}{k^s}\right) \left(\sum_{l=1}^{\infty} \frac{\Lambda(l)}{l^s}\right) = \sum_{k,l=1}^{\infty} \frac{\Lambda(l)}{(kl)^s} = \sum_{n=1}^{\infty} \frac{\sum_{l|n} \Lambda(l)}{n^s} = \sum_{n=1}^{\infty} \frac{\ln(n)}{n^s} = -\zeta'(s).$$

$$((*) \text{ пусть } n=p_1^{\alpha_1}\dots p_r^{\alpha_r}, \text{ тогда } \sum_{l|n}\Lambda(l)=\sum_{j=1}^r\left(\sum_{\beta_j=1}^{\alpha_j}\Lambda\left(p_j^{\beta_j}\right)\right)=\sum_{j=1}^r\ln\left(p_j^{\alpha_j}\right)=\ln(n)).$$

Итак, при Re(s) > 1 имеем

$$-\zeta'(s) = \zeta(s) \cdot \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

Из аналитичности всех функций: пусть s_0 – ноль $\zeta(s)$ кратности k > 0, тогда s_0 – ноль $\zeta'(s)$ кратности k - 1. Так как мы перемножаем две функции, то их кратности должны складываться. Значит, k - 1 = k+нечто неотрицательное. Получаем противоречие. Почему кратность обязательно конечна? Предположим противное, пусть она бесконечна и тогда $\zeta(s)|_{\text{Re}(s)>1} \equiv 0$ – противоречие.

Лемма 1.9. Пусть f – вполне мультипликативная функция, ряд $\sum_{n=1}^{\infty} f(n)$ абсолютно сходится и

$$S = \sum_{n=1}^{\infty} f(n)$$
. Тогда

$$S = \prod_{p} (1 - f(p))^{-1}.$$

Доказательство. Положим $S(x) = \prod_{p \leqslant x} (1 - f(p))^{-1}$, покажем, что $S(x) \xrightarrow{x \to \infty} S$. Заметим, что из мультипликативности f следует f(1) = 1 и что |f(n)| < 1 при $n \geqslant 2$ (т.к. иначе $f(n^k) = f(n)^k \not\to 0$, а члены ряда обязаны $\to 0$ из его абсолютной сходимости). Далее, при простом $p: \frac{1}{1-f(p)} = 0$

$$\sum_{k=0}^{\infty} f(p)^k = \sum_{k=0}^{\infty} f(p^k).$$
 Следовательно, $S(x) = \prod_{p \leqslant x} (1 - f(p))^{-1} = \prod_{p \leqslant x} \sum_{k=0}^{\infty} f(p^k) = \sum_{\substack{n \in \mathbb{N}: \\ \forall p \mid n}} f(n)$ (такие n

зовутся "
$$x$$
-гладкими"). Стало быть, $|S - S(x)| = \left| \sum_{\substack{n \in \mathbb{N}: \\ \exists p \mid n \ p > x}} f(n) \right| \leqslant \sum_{\substack{n \in \mathbb{N}: \\ \exists p \mid n \ p > x}} |f(n)| \leqslant \sum_{n > x} |f(n)| \stackrel{x \to \infty}{\Longrightarrow} 0$ (т.к. последний ряд – хвост сходящегося).

Теорема 1.10 (формула Эйлера). Пусть Re(s) > 1. Тогда

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1}.$$

Доказательство. Возьмём (и положим) $f(n) = \frac{1}{n^s}$ и применим лемму 1.9. Тогда

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1}.$$

Лемма 1.11. $\psi(x) = \sum_{n \leqslant x} \Lambda(n)$ (ну. m.e. $\psi(n) - \psi(n-1) = \Lambda(n)$).

Доказательство. Следует из определений $\psi(x)$ и $\Lambda(n)$.

1.5 Преобразование Абеля

Лемма 1.12. (Преобразование Абеля) Пусть $\{a_n\}_{n\in\mathbb{N}}$ – последовательность комплексных чисел. Пусть $g(x)\in C^1([1;\infty),\mathbb{C}), A(x)=\sum_{n\le x}a_n$. Тогда для любого $N\in\mathbb{R}$ выполнено

$$\sum_{n \leqslant N} a_n g(n) = A(N)g(N) - \int_1^N A(x)g'(x)dx.$$

Доказательство.

$$A(N)g(N) - \sum_{n \leqslant N} a_n g(n) = \sum_{n \leqslant N} a_n (g(N) - g(n)) = \sum_{n \leqslant N} a_n \int_n^N g'(x) dx.$$

Положим $\varphi_n(x) = a_n$, если $x \geqslant n$ или 0, если x < n. Тогда

$$\sum_{n\leqslant N} a_n \int_n^N g'(x) dx = \sum_{n\leqslant N} \int_1^N \varphi_n(x) g'(x) dx = \int_1^N \left(\sum_{n\leqslant N} \varphi_n(x) \right) g'(x) dx = \int_1^N A(x) g'(x) dx.$$

Теорема 1.13.

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_{1}^{+\infty} \frac{\{x\}}{x^{1+s}} dx,$$

причем интеграл в правой части сходится в полуплоскости Re(s) > 0 и задает аналитическую функцию.

Доказательство. При $\mathrm{Re}(s)>1$ выполнено $\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$. Используя преобразование Абеля с параметрами $a_n=1$ и $g(x)=\frac{1}{r^s}$ получим, что

$$\sum_{n=1}^{N} \frac{1}{n^s} = N \frac{1}{N^s} + s \int_1^N \frac{[x]}{x^{1+s}} = \frac{1}{N^{s-1}} + s \left(\int_1^N \frac{1}{x^s} - \int_1^N \frac{\{x\}}{x^{1+s}} \right) =$$

$$= \frac{1}{N^{s-1}} + s \left(\frac{1}{s-1} - \frac{1}{(s-1)N^{s-1}} - \int_1^N \frac{\{x\}}{x^{1+s}} \right) = 1 + \frac{1}{s-1} - \frac{1}{(s-1)N^{s-1}} - s \int_1^N \frac{\{x\}}{x^{1+s}}.$$

Поскольку $s=\sigma+it$, где $\sigma>1$, и $|N^{s-1}|=N^{\sigma-1}$, то при $N\to\infty$ третье слагаемое стремится к 0, а последнее стремится к несобственному интегралу в условии теоремы. Итак, при Re(s)>1 выполнено равенство

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_{1}^{\infty} \frac{\{x\}}{x^{1+s}} dx.$$

Как только мы докажем, что этот интеграл задает аналитическую функцию в Re(s) > 0, мы получим две функции, которые аналитичны в Re(s) > 0 и совпадают в Re(s) > 1, откуда будет следовать, что они совпадают везде².

Положим

$$f_n(s) = \int_n^{n+1} \frac{\{x\}}{x^{s+1}} dx = \int_n^{n+1} \frac{x-n}{x^{s+1}} dx = \int_n^{n+1} \frac{1}{x^s} dx - n \int_n^{n+1} \frac{1}{x^{s+1}} dx.$$

Первый интеграл аналитичен³ в \mathbb{C} , второй отличается от первого просто сдвигом на 1. Таким образом, $f_n(s)$ аналитична в \mathbb{C} . При $\mathrm{Re}(s) = \sigma > \delta > 0$ получим, что

$$|f_n(s)| \leqslant \int_n^{n+1} \frac{dx}{x^{1+\sigma}} \leqslant \frac{1}{n^{1+\sigma}} < \frac{1}{n^{1+\delta}}$$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^{1+\delta}}$ сходится, то по признаку Вейерштрасса ряд $\sum_{n=1}^{\infty} f_n(s)$ сходится равномерно, поэтому задает аналитическую функцию.

Следствие 5. У функции $\zeta(s)$ полюс первого порядка с вычетом 1, поскольку $\underset{1}{\operatorname{Res}} \frac{1}{s-1} = 1$.

Лемма 1.14. При Re(s) > 1 выполнено

$$\frac{\zeta'(s)}{\zeta(s)} = -s \int_1^\infty \frac{\psi(x)}{x^{1+s}} dx.$$

Доказательство. При Re(s) > 1 имеем

$$\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}$$

Используя преобразование Абеля с параметрами $a_n = \Lambda(n), g(x) = \frac{1}{x^s}$ и тот факт, что $\sum_{n \leqslant x} \Lambda(n) = \psi(x)$ получим, что

$$\sum_{n=1}^{N} \frac{\Lambda(n)}{n^s} = \frac{\psi(N)}{N^s} + s \int_{1}^{N} \frac{\psi(x)}{x^{1+s}} dx.$$

Поскольку мы знаем, что у отношения $\frac{\psi(x)}{x}$ верхний и нижний пределы ограничены, то при $\mathrm{Re}(s)>1$ $\frac{\psi(N)}{N^{1+s}}\to 0$ при $N\to\infty$.

Таким образом, при $N \to \infty$ пределы выражений $\sum_{n=1}^N \frac{\Lambda(n)}{n^s}$ и $s \int_1^N \frac{\psi(x)}{x^{1+s}} dx$ существуют и равны, откуда следует утверждение леммы.

Лемма 1.15. Пусть $0 < r < 1, \varphi \in \mathbb{R}$. Тогда

$$|(1-r)^3(1-re^{i\varphi})^4(1-re^{2i\varphi})| \le 1.$$

Доказательство. Положим $M = |(1-r)^3(1-re^{i\varphi})^4(1-re^{2i\varphi})|$. Тогда

$$\ln M = 3 \ln |1 - r| + 4 \ln |1 - re^{i\varphi}| + \ln |1 - re^{2i\varphi}| = \text{Re} \left(3 \ln(1 - r) + 4 \ln(1 - re^{i\varphi}) + \ln(1 - re^{2i\varphi}) \right) = 2 \ln |1 - r| + 4 \ln |1 - re^{i\varphi}| + \ln |1 - re^{2i\varphi}| = 2 \ln |1 - r| + 4 \ln |1 - re^{2i\varphi}| + \ln |1 - re^{2i\varphi}| = 2 \ln |1 - r| + 4 \ln |1 - re^{2i\varphi}| + \ln |1 - re^{2i\varphi}| = 2 \ln |1 - r| + 4 \ln |1 - re^{2i\varphi}| + \ln |1 - re^{2i\varphi}| = 2 \ln |1 - r| + 4 \ln |1 - re^{2i\varphi}| + \ln |1 - re^{2i\varphi}| = 2 \ln |1 - r| + 4 \ln |1 - re^{2i\varphi}| + 2 \ln |1 - re^{2i\varphi}| + 2$$

²Теорема единственности

³При $s \neq 1$ это просто разность степеней, а почему есть аналитичность в точке s = 1? Упражнение!

$$=-\sum_{n=1}^{\infty}\frac{r^n}{n}\operatorname{Re}\left(3+4e^{in\varphi}+e^{2in\varphi}\right)=-\sum_{n=1}^{\infty}\frac{r^n}{n}\left(\cos 2n\varphi+4\cos n\varphi+3\right)=-\sum_{n=1}^{\infty}\frac{r^n}{n}2\left(\cos n\varphi+1\right)^2\leqslant 0.$$

Следовательно, $M \leqslant 1$.

Лемма 1.16. При $s = \sigma + it, \sigma > 1$ выполнено неравенство

$$|\zeta^3(\sigma)\zeta^4(\sigma+it)\zeta(\sigma+2it)| \geqslant 1.$$

Доказательство. Положим $r=\frac{1}{p^{\sigma}}, e^{i\varphi}=p^{-it}$. Применим лемму 1.15 и формулу Эйлера 1.10.

Теорема 1.17. $\zeta(1+it) \neq 0$ при всех $t \in \mathbb{R} \setminus \{0\}$.

Доказательство. Предположим противное: пусть $\zeta\left(1+it_{0}\right)=0$. Тогда при $\sigma\to1+:$

$$\zeta^3(\sigma)\zeta^4\left(\sigma+it_0\right)\zeta\left(\sigma+2it_0\right)=O\left(\frac{1}{(\sigma-1)^3}(\sigma-1)^4\cdot 1\right)=O_{\sigma\to 1}(\sigma-1).$$
 (Т.к. $\zeta(\sigma)\to +\infty$ при $\sigma\to 1+$, точнее, $\zeta(\sigma)=O\left(\frac{1}{\sigma-1}\right)$ ибо полюс порядка 1; $\zeta\left(1+it_0\right)=0$ $\xrightarrow{\text{из мультипл.}} \zeta\left(\sigma+it_0\right)=O(\sigma-1)$;

 $\zeta\left(1+2it_{0}\right)$ – какая-то константа, полюса там нет из аналитичности функции в $\mathrm{Re}(s)>0$ везде, кроме 1). Итак, получили $\zeta^{3}(\sigma)\zeta^{4}\left(\sigma+it_{0}\right)\zeta\left(\sigma+2it_{0}\right)=O_{\sigma\to1}(\sigma-1)$, но по Лемме 1.16 её модуль $\geqslant 1$ при любом $\sigma>1$. Противоречие.

(Из Леммы 1.16 также можно ещё одним способом получить, что в полуплоскости Re(s) > 1 у ζ -функции нет корней: если бы существовал корень $s = \sigma + it$, то $|\zeta^3(\sigma)\zeta^4(s)\zeta(\sigma + 2it)| \geqslant 1$, противоречие).

Лемма 1.18. $\frac{\zeta'(s)}{\zeta(s)} + \frac{1}{s-1}$ аналитична при $\operatorname{Re}(s) \geqslant 1$.

Доказательство. Знаем, что при Re(s)>1 оба слагаемых – аналитические функции. Мы также доказали, что $\zeta(s)=\frac{f(s)}{s-1}$, где f(s) точно аналитична при Re(s)>0 и $f(s)\neq 0$ при $\text{Re}(s)\geqslant 1$. Отсюда следует, что $\frac{\zeta'(s)}{\zeta(s)}=\frac{f'(s)}{f(s)}-\frac{1}{s-1}$, где f аналитична при Re(s)>0, а значит, что f' тоже. В $\text{Re}(s)\geqslant 1$ у знаменателя нет нулей.

Положим $F(s) := -\frac{1}{s} \frac{\zeta'(s)}{\zeta(s)} - \frac{1}{s-1}.$

Лемма 1.19. Справедливы следующие утверждения

1) F(s) аналитична в $Re(s) \geqslant 1$.

2)
$$F(s) = \int_{1}^{+\infty} \frac{\psi(x) - x}{x^{1+s}} dx \ npu \ \text{Re}(s) > 1.$$

Доказательство. По порядку.

$$1) \ F(s) = -\frac{1}{s} \left(\frac{\zeta'(s)}{\zeta(s)} + \frac{s}{s-1} \right) = -\frac{1}{s} \left(\frac{\zeta'(s)}{\zeta(s)} + \frac{1}{s-1} + 1 \right) - -\frac{1}{s} \ \text{аналитичен по Лемме 1.18}.$$

2) При $\mathrm{Re}(s) > 1$ $\frac{\zeta'(s)}{\zeta(s)} = -s \int_1^{+\infty} \frac{\psi(x) dx}{x^{1+s}}, \frac{1}{s-1} = \int_1^{+\infty} \frac{dx}{x^s}$. Оба интеграла сходятся абсолютно, поэтому можно их складывать:

$$F(s) = \int_{1}^{+\infty} \frac{\psi(x)dx}{x^{1+s}} - \int_{1}^{+\infty} \frac{dx}{x^{s}} = \int_{1}^{+\infty} \frac{\psi(x) - x}{x^{1+s}} dx.$$

Теорема 1.20. В интегральном представлении F(s) можно перейти к пределу в Re(s) > 1, т.е.

$$F(1) = \int_{1}^{+\infty} \frac{\psi(x) - x}{x^2} dx.$$

Лемма 1.21. Если интеграл $\int_{1}^{+\infty} \frac{\psi(x) - x}{x^2} dx$ сходится (это будет следовать из Теоремы 1.20), то $\psi(x) \sim x$.

Доказательство. Возьмём $\varepsilon > 0$:

$$\int_{x}^{(1+\varepsilon)x} \frac{\psi(u) - u}{u^2} du \geqslant \varepsilon x \frac{\psi(x) - (1+\varepsilon)x}{(1+\varepsilon)^2 x^2} = \frac{\varepsilon}{(1+\varepsilon^2) x^2} \left(\frac{\psi(x)}{x} - (1+\varepsilon) \right).$$

Из сходимости интеграла слева при фиксированном ε получаем $\int_x^{(1+\varepsilon)x} \frac{\psi(u)-u}{u^2} du \xrightarrow{x\to\infty} 0$. Следовательно, $\overline{\lim}_{x\to\infty} \frac{\varepsilon}{(1+\varepsilon)^2} \left(\frac{\psi(x)}{x}-(1+\varepsilon)\right) \leqslant 0$ при фиксированном ε . Отсюда $\overline{\lim}_{x\to\infty} \frac{\psi(x)}{x} \leqslant 1+\varepsilon$, а т.к. это верно для любого x, то $\overline{\lim}_{x\to\infty} \frac{\psi(x)}{x} \leqslant 1$. И наоборот, меняя знак неравенства, получаем $\overline{\lim}_{x\to\infty} \frac{\psi(x)}{x} \geqslant 1-\varepsilon$, а т.к. это верно для любого ε , то $\overline{\lim}_{x\to\infty} \frac{\psi(x)}{x} \geqslant 1$.

Доказательство. (Теоремы 1.20).

Положим $F_T(s) = \int_1^T \frac{\psi(x) - x}{x^{1+s}} dx$, T > 1. Поскольку $\int_n^{n+1} \frac{dx}{x^s}$ – целая функция, т.к. $\psi(x)$ на отрезке [n, n+1] постоянна, то $\int_1^T \frac{\psi(x) - x}{x^{1+s}} dx$ является суммой целых функций вида $\int_n^{n+1} \frac{dx}{x^s} \Rightarrow F_T(s)$ – целая. Нужно показать, что $F_T(1) \to F(1)$ при $T \to \infty$. По определению предела, возьмём $\varepsilon > 0$ и рассмотрим следующий интеграл

$$I(T) = \frac{1}{2\pi i} \int_{\Gamma} (F(1+s) - F_T(1+s)) T^s \left(\frac{s}{R^2} + \frac{1}{s}\right) ds, \ R = \frac{1}{\varepsilon}.$$

F(s) аналитична в $\mathrm{Re}(s)\geqslant 1\Rightarrow F(1+s)$ аналитична в $\mathrm{Re}(s)\geqslant 0$. То есть, она аналитична на отрезке [-iR,iR] (см. $Puc.\ 1$). Если F(s) аналитична в точке, то она аналитична в некоторой окрестности этой точки. Применяя это к каждой точке нашего отрезка, получаем его покрытие открытыми кругами и выделяем конечное подпокрытие по компактности [-iR,iR]. Теперь выбираем h так, чтобы прямоугольник был внутри объединения кругов, т.е. чтобы F(1+s) была аналитична на нарисованном контуре $(h=h(\varepsilon))$.

Значит, в I(T) : F(1+s) — аналитична в области (по построению), $F_T(1+s)$ — везде целая, T^s — целая (экспонента), $\frac{s}{R^2}$ — целая, $\frac{1}{s}$ — полюс порядка 1 в нуле. Следовательно, по теореме Коши о вычетах

$$I(T) = (F(1) - F_T(1)) T^0 = F(1) - F_T(1).$$

Лемма 1.22.

При $\sigma = \operatorname{Re}(s) > 0$: $|F(1+s) - F_T(1+s)| \leqslant A \frac{T^{-\sigma}}{\sigma};$ при $\sigma = \operatorname{Re}(s) < 0$: $|F_T(1+s)| \leqslant A \frac{T^{-\sigma}}{-\sigma},$ где A такое, что $\left| \frac{\psi(x)}{x} - 1 \right| \leqslant A$ при $x \geqslant 1$.

Доказательство.

$$\sigma > 0: \quad |F(1+s) - F_T(1+s)| = \left| \int_T^{+\infty} \frac{\psi(x) - x}{x^{2+s}} dx \right| \leqslant A \int_T^{+\infty} \frac{dx}{x^{1+\sigma}} = A \frac{T^{-\sigma}}{\sigma};$$

$$\sigma < 0: \quad |F_T(1+s)| = \left| \int_1^T \frac{\psi(x) - x}{x^{2+s}} dx \right| \leqslant A \int_1^T \frac{dx}{x^{1+\sigma}} = A \frac{T^{-\sigma}}{-\sigma}.$$

Лемма 1.23. $Ecnu |s| = R, mo \frac{s}{R^2} + \frac{1}{s} = \frac{2 \operatorname{Re}(s)}{R^2}$

Доказательство.

$$\frac{s}{R^2} + \frac{1}{s} = \frac{1}{R} \left(\frac{s}{R} + \frac{R}{s} \right) = \frac{1}{R} \cdot 2 \operatorname{Re} \left(\frac{s}{R} \right) = \frac{2 \operatorname{Re}(s)}{R^2}.$$

Лемма 1.24. При T>1 и $x\in\mathbb{R}$ выполнено $xT^{-x}\leqslant \frac{1}{e\ln(T)}$.

Доказательство. Считаем производную $(xT^{-x})' = (1-x\ln(T))T^{-x}$. Она обращается в 0 в точке $x_0 = \frac{1}{\ln(T)}$. Ну и несложно видеть, что функция при $x < x_0$ возрастает, при $x > x_0$ убывает, значит максимум значения функции равен $\frac{1}{\ln(T)}T^{-\frac{1}{\ln(T)}} = \frac{1}{e\ln(T)}$.

Положим
$$\Gamma_1 = \Gamma \cap \{s \in \mathbb{C} | \operatorname{Re}(s) \geqslant 0\}, \ \Gamma_2 = \Gamma \cap \{s \in \mathbb{C} | \operatorname{Re}(s) \leqslant 0\}.$$
 Тогда $I(T) = I_1(T) + I_2(T) = \frac{1}{2\pi i} \int_{\Gamma_1} \ldots + \frac{1}{2\pi i} \int_{\Gamma_2} \ldots$

По Лемме 1.22

$$|I_1(t)| \leqslant \frac{1}{2\pi} \int_{\Gamma_1} A \frac{T^{-\sigma}}{\sigma} T^{\sigma} \frac{2\sigma}{R^2} ds = \frac{1}{2\pi} \frac{2A}{R^2} = A\varepsilon$$

$$I_2(T) = I_3(T) - I_4(T) = \frac{1}{2\pi i} \int_{\Gamma_2} F(1+s) T^{\sigma} \left(\frac{s}{R^2} + \frac{1}{s} \right) ds - \frac{1}{2\pi i} \int_{\Gamma_2} F_T(1+s) T^{\sigma} \left(\frac{s}{R^2} + \frac{1}{s} \right) ds.$$

По Лемме 1.22, $I_4(T)$ оценивается точно так же, как и $I_1(T)$, только надо заменить контур Γ_1 на Γ_3 . Это можно сделать, так как у подынтегральной функции нет полюсов вне контура $\Gamma_3 \cup \Gamma_2$ (полюс только 0). Таким образом, $|I_4(T)| \leq A\varepsilon$.

Осталось оценить
$$I_3(T) = \int_{\Gamma_2} F(1+s)T^s \left(\frac{s}{R^2} + \frac{1}{s}\right).$$

Заметим, что

1. на малых дугах
$$\left|T^{s}\left(\frac{s}{R^{2}}+\frac{1}{s}\right)\right|=\frac{2\sigma}{R^{2}}T^{\sigma}\underset{\text{Лемма 1.23}}{=}\frac{2\sigma T^{-|\sigma|}}{R^{2}}\underset{\text{Лемма 1.24}}{\leqslant}\frac{2}{R^{2}}\frac{1}{e\ln(T)};$$

2. на вертикальном отрезке $T^{s} = T^{-h}$;

3. на
$$\Gamma_2$$
 верно $|F(1+s)\left(\frac{s}{R^2}+\frac{1}{s}\right)|\leqslant C=C(\varepsilon)$ – не зависит от $T.$

Следовательно, $I_3(T) \to 0$ при $T \to +\infty$. То есть, $\exists T_0(\varepsilon) : \forall T > T_0$ выполняется $|I_3(T)| < \varepsilon$. Итак, $|I(T)| \leqslant |I_1(T)| + |I_4(T)| + |I_3(T)| \leqslant A\varepsilon + A\varepsilon + \varepsilon = (2A+1)\varepsilon$. Теорема 1.20 \Rightarrow Лемма 1.21. Леммы 1.1 и 1.21 \Rightarrow Теорема 1.5 – АЗРПЧ.

2 Теорема Дирихле о простых числах в арифметических прогрессиях

Теорема 2.1 (Дирихле). Пусть $l, m \in \mathbb{Z}, (l, m) = 1, m \geqslant 2$. Тогда существует бесконечно много простых p таких, что $p \equiv l$.

Замечание. При фиксированном m таких прогрессий ровно $\varphi(m)$ штук.

Число простых до x в этой прогрессии на самом деле $\frac{1}{\varphi(m)} \frac{x}{\ln x}$, то есть эти простые распределены по прогрессии равномерно. Но доказывать мы это, конечно же, не будем.

2.1 Свойства характеров

Определение 2.1.1. Пусть $m \in \mathbb{N}, m \geqslant 2$. Функция $\chi : \mathbb{Z} \to \mathbb{C}$ называется *числовым характером* (Дирихле) по модулю m, если

- 1. $\forall a \in \mathbb{Z}$ выполняется $\chi(a+m) = \chi(a)$;
- 2. $\chi(a) = 0 \Leftrightarrow (a, m) \neq 1$;
- 3. $\chi(ab) = \chi(a)\chi(b)$.

Замечание. Несложно провести биекцию $\chi: \mathbb{Z} \to \mathbb{C} \leftrightarrow \overline{\chi}: \mathbb{Z}_m^* \to \mathbb{C}^*$.

Замечание. $|\chi(a)|=0$, если $(a,m)\neq 1;1$, иначе. Для начала заметим, что $\chi(1)=\chi(1\cdot 1)=\chi(1)^2$, и поскольку $\chi(1)\neq 0$, то $\chi(1)=1$. Вспомним, что если (a,m)=1, то $a^{\varphi(m)}\equiv 1$ (Малая теорема Ферма). Тогда $\chi(a)^{\varphi(m)}=\chi(a^{\varphi(m)})=\chi(1)=1$. Таким образом, мы получили, что $\chi(a)\in {}^{\varphi(m)}\sqrt{1}$.

Вспомним теорему с первого курса: \mathbb{Z}_m^* циклическая $\Leftrightarrow m=1,2,4,p^k,2p^k$ для простого p. ⁴

Предложение 2.2. \mathbb{Z}_m^* разлагается в прямое произведение циклических групп.

Лемма 2.3. Пусть η_1, \ldots, η_r – произвольный набор корней из 1 степеней d_1, \ldots, d_r соответственно $(m.e. \ \eta_i^{d_i} = 1)$. Тогда $\exists ! \chi : \ \chi(g_i) = \eta_i$.

Доказательство. Для (a,m)=1 полагаем $\chi(a)=\eta_1^{\alpha_1}\dots\eta_r^{\alpha_r}$, где $\overline{a}=\overline{g}_1^{\alpha_1}\dots\overline{g}_r^{\alpha_r}$. Для $(a,m)\neq 1$ полагаем $\chi(a)=0$. Достаточно проверить, что если (a,m)=1, (b,m)=1, то $\chi(ab)=\chi(a)\chi(b)$. Пусть $\overline{a}=\overline{g}_1^{\alpha_1}\dots\overline{g}_r^{\alpha_r}$, $\overline{b}=\overline{g}_1^{\beta_1}\dots\overline{g}_r^{\beta_r}$, $\overline{c}=\overline{g}_1^{\gamma_1}\dots\overline{g}_r^{\gamma_r}$, где $0\leqslant \alpha_i,\beta_i,\gamma_i\leqslant d_1-1,\ i=1\dots r$. Тогда $\gamma_i\equiv\alpha_i+\beta_i\ (\mathrm{mod}\ d_i)$. Следовательно, т.к. η_i – корень из 1 степени d_i , получаем

$$\chi(a)\chi(b) = \eta_1^{\alpha_1} \dots \eta_r^{\alpha_r} \cdot \eta_1^{\beta_1} \dots \eta_r^{\beta_r} = \eta_1^{\gamma_1} \dots \eta_r^{\gamma_r} = \chi(ab).$$

Лемма 2.4. Если $a \not\equiv 1 \pmod{m}$, то $\exists \chi : \chi(a) \not\equiv 1$.

⁴Это эквивалентно наличию первообразного корня по искомому модулю

Доказательство. Очевидно из Леммы 2.3: если $(a,m) \neq 1$, то все характеры подходят; если (a,m) = 1, то $\overline{a} = \overline{g}_1^{\alpha_1} \dots \overline{g}_r^{\alpha_r} \pmod{m}, \ 0 \leqslant \alpha_i \leqslant d_i - 1$. Т.к. $a \not\equiv 1 \pmod{m}$, то $\exists \alpha_i \neq 0$, можно положить, что это $\alpha_1 > 0$.

Положим $\chi(g_1) = \eta_1 = e^{\frac{2\pi i}{d_1}}, \chi(g_j) = \eta_j = 1, \ \forall j = 2, \dots, r.$ Тогда, т.к. по Лемме 2.3 характер существует, то $\chi(a) = e^{\frac{2\pi i}{d_1}\alpha_1} \neq 1$.

Определение 2.1.2. Характер χ_0 , где $\chi_0(a) = \begin{cases} 1, & (a,m) = 1, \\ 0, & (a,m) \neq 1 \end{cases}$ называется главным характером.

Ясно, что $\chi \cdot \chi_0 = \chi$, где операция \cdot – поточечное перемножение функций. Для любого χ существует обратное $\chi^{-1}: \ \chi^{-1}(a) = \begin{cases} \chi(a)^{-1}, & \chi(a) \neq 0, \\ 0, & \chi(a) = 0. \end{cases}$ В общем, ясно, что характеры образуют группу.

Задача 2.1. Доказать, что группа характеров изоморфна \mathbb{Z}_m^* .

Характеров по модулю m ровно $\varphi(m)$ штук (следует из Леммы 2.3, $d_1 \dots d_r = |\mathbb{Z}_m^*| = \varphi(m)$).

Лемма 2.5. Справедливы следующие равенства

1)
$$\sum_{a=1}^{m} \chi(a) = \begin{cases} \varphi(m), & \textit{ecau } \chi = \chi_0, \\ 0, & \textit{uhave.} \end{cases}$$

2)
$$\sum_{\chi} \chi(a) = \begin{cases} \varphi(m), & \textit{ecau } a \equiv 1 \pmod{m}, \\ 0, & \textit{unave.} \end{cases}$$

Доказательство. По порядку.

- 1) Если $\chi = \chi_0$, то всё понятно. Если $\chi \neq \chi_0$, то $\exists b \in \mathbb{Z}: \ \chi(b) \neq 0, \ 1.$ Положим $s = \sum_{a=1}^m \chi(a)$, тогда $s\chi(b) = \sum_{a=1}^m \chi(ab) = \sum_{a=1}^m \chi(a) = s \Rightarrow s = 0.$
- 2) Если $a \equiv 1 \pmod m$, то всё понятно. Если $(a,m) \neq 1$, то сумма из нулей равна нулю (действительно). Если (a,m) = 1 и $a \not\equiv 1 \pmod m$, то по Лемме 2.4 можно взять характер $\chi_1: \chi_1(a) \neq 0$, 1. Положим $s = \sum_{\chi} \chi(a)$, тогда $s\chi_1(a) = \sum_{\chi} \chi(a)\chi_1(a) = \sum_{\chi} \chi(a) = s \Rightarrow s = 0$.

Следствие 6. Если $\chi \neq \chi_0$, то $\left| \sum_{n=1}^m \chi(n) \right| \leqslant \varphi(m)$.

2.2 *L*-функции Дирихле

Пусть $m \geqslant 2$, χ – характер по модулю m.

Определение 2.2.1. $L(s,\chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}$ называется L-функцией Дирихле.

Лемма **2.6**. $\Pi pu \operatorname{Re}(s) > 1$

1) Ряд $\sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ сходится абсолютно, задаёт аналитическую функцию;

2)
$$L'(s, \chi) = -\sum_{n=1}^{\infty} \frac{\chi(n) \ln(n)}{n^s};$$

3)
$$L(s, \chi) \neq 0$$
 $u \frac{L'(s, \chi)}{L(s, \chi)} = -\sum_{n=1}^{\infty} \frac{\chi(n)\Lambda(n)}{n^s}$.

Доказательство. Доказательство этой теоремы очень схоже с доказательством теоремы 1.8. Напомним, что $s=\sigma+it$.

- 1) $\left| \frac{\chi(n)}{n^s} \right| \leqslant \frac{1}{n^{\sigma}} \Rightarrow$ сходится абсолютно при $\sigma > 1$. Но для аналитичности предела нам необходима равномерная сходимость. В области $\Omega_{\delta} = \{ \operatorname{Re}(s) > 1 + \delta \} \left| \frac{\chi(n)}{n^s} \right| \leqslant \frac{1}{n^{\sigma}} \leqslant \frac{1}{n^{1+\delta}}$ общий член сходящегося ряда. значит, по признаку Вейерштрасса в Ω_{δ} наша последовательность равномерна. Следовательно, по теореме 1.7 (Вейерштрасса) ряд сходится к аналитической функции.
- 2) В первом пункте мы воспользовались теоремой Вейерштрасса, которая, в частности, гласит, что наш ряд можно почленно дифференцировать.

$$3) \ L(s,\chi) \cdot \sum_{n=1}^{\infty} \frac{\chi(n)\Lambda(n)}{n^s} = \sum_{k=1}^{\infty} \frac{\chi(k)}{k^s} \sum_{n=1}^{\infty} \frac{\chi(n)\Lambda(n)}{n^s} = \sum_{k,n\in\mathbb{N}} \frac{\chi(k)\chi(n)\Lambda(n)}{(kn)^s} = \sum_{k,n\in\mathbb{N}} \frac{\chi(n)\Lambda(n)}{(kn)^s} = \sum_{k,n\in\mathbb{N}}$$

Итак, получили
$$L(s,\,\chi)\cdot\sum_{n=1}^{\infty}rac{\chi(n)\Lambda(n)}{n^s}=-L'(s,\,\chi).$$

Если s_0 — ноль порядка $\overset{n-1}{k} \in \mathbb{N}$, то порядок нуля левой части будет больше или равен 0, т.к. мы умножаем на некую аналитическую функцию. Но порядок нуля правой части равен k-1. Противоречие.

Осталось показать, почему $L(s,\chi)\not\equiv 0$: $\left|\sum_{n=2}^\infty\right|\leqslant \sum_{n=2}^\infty \frac{1}{n^\sigma}=\frac{1}{\alpha^\sigma}\sum_{n=2}^\infty \frac{1}{\left(\frac{n}{2}\right)^\sigma}$ – первый множитель

стремится к 0, второй множитель ограничен некой константой $C \Rightarrow \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = 1 + \sum_{n=2}^{\infty} \frac{\chi(n)}{n^s}$.

Второе слагаемое по модулю стремится к 0 при $\sigma \to \infty$. Следовательно, $L(s,\chi) \neq 0$ для некоторого s.

Лемма 2.7. $\Pi pu \operatorname{Re}(s) > 1$ выполнено

$$L(s,\chi) = \prod_{p} \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}.$$

Доказательство. Поскольку функция $\frac{\chi(p)}{p^s}$ вполне мультипликативна, то по лемме 1.9 все следует.

Следствие 7.

$$L(s, \chi_0) = \zeta(s) \prod_{p|m} \left(1 - \frac{1}{p^s}\right).$$

Доказательство. Подставим $\chi = \chi_0$. χ — характер по модулю $m \Rightarrow \chi(p) = 0 \Leftrightarrow p|m$. $\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1}$, однако это представление верно только при $\mathrm{Re}(s) > 1$. Равенство везде следует из аналитичности L-функции, ζ -функции и $\left(1 - \frac{1}{p^s}\right)$.

Замечание. Обобщенная гипотеза Римана звучит, что с некоторой оговоркой все нули L-функции Дирихле лежат на $\mathrm{Re}(s)=\frac{1}{2}.$

Следствие 8. $B \ \mathrm{Re}(s) > 0 \ y \ L(s,\chi_0)$ ровно один полюс в s=1 порядка 1 с вычетом $\frac{\varphi(m)}{m}$, и в $\{\mathrm{Re}(s)>0\}\setminus\{1\}$ функция $L(s,\chi_0)$ аналитична.

Доказательство. Вспомним, что $\varphi(m)=m\prod_{p\mid m}\left(1-\frac{1}{p}\right)$. У $\zeta(s)$ вычет в 1 равен 1, и функция $\left(1-\frac{1}{p^s}\right)$ аналитична в 1.

Лемма 2.8. $\mathit{Ecnu}\ \chi \neq \chi_0,\ \mathit{mo}\ \mathit{L}(s,\chi)$ аналитична $\mathit{npu}\ \mathrm{Re}(s) > 0$ (то есть полюс пропадает!).

Доказательство. Применим преобразование Абеля к $a_n = \chi(n), g(x) = \frac{1}{x^s}$. Тогда $A(x) = \sum_{n \leqslant x} a_n = \sum_{n \leqslant x} \chi(n)$, и используя следствие 6 $|A(x)| \leqslant \varphi(m)$.

$$\sum_{n=1}^{N} \frac{\chi(s)}{n^s} = A(N) \frac{1}{N^s} + s \int_{1}^{N} \frac{A(x)}{x^{s+1}} dx.$$

Так как $|A(N)|\leqslant arphi(m)$, то первое слагаемое стремится к 0 при $N\to\infty$ и $\mathrm{Re}(s)>0$.

Рассмотрим
$$\int_1^N \frac{A(x)}{x^{1+s}} = \sum_{n=1}^{N-1} \varphi_n(s)$$
, где $\varphi_n(s) = \int_n^{n+1} \frac{A(x)}{x^{1+s}}$ – аналитическая в \mathbb{C}^5

Покажем, что ряд $\sum_{n=1}^{\infty} \varphi_n(s)$ задает аналитическую функцию в $\mathrm{Re}(s)>0$. При $\mathrm{Re}(s)>\delta>0$

$$|\varphi_n(s)|\leqslant \int_n^{n+1}\frac{\varphi(m)}{x^{1+\sigma}}dx\leqslant \frac{\varphi(m)}{n^{2+\sigma}}<\frac{\varphi(m)}{n^{2+\delta}} \text{ - общий член сходящегося ряда}\Rightarrow$$

⁵Упражнение!

 $\sum_{n=1}^{\infty}$ сходится равномерно при $\mathrm{Re}(s)>\delta\Rightarrow$ по теореме Вейерштрасса ряд сходится к аналитической функции.

Тогда в предыдущем равенстве

$$\sum_{n=1}^{N} \frac{\chi(n)}{n^s} = A(N) \frac{1}{N^s} + s \int_{1}^{N} \frac{A(x)}{x^{1+s}} dx$$

первое слагаемое стремится к 0, а второе сходится к аналитической функции, значит и вся сумма стремится к аналитической функции.

Лемма 2.9. При $\chi \neq \chi_0$ выполнено $L(1,\chi) \neq 0$.

Доказательство.

Случай 1: $\chi^2 \neq \chi_0$. По лемме 1.15 из I части

$$|(1-r)^3(1-re^{i\varphi})^4(1-re^{2i\varphi})| \leqslant 1$$
 при $0 < r < 1$.

Положим $r=rac{1}{p^{\sigma}}, e^{i arphi}=\chi(p)$ для каждого простого p.

Тогда при $\sigma > 1$:

$$|L^{3}(\sigma,\chi_{0})L^{4}(\sigma,\chi)L(\sigma,\chi^{2})| = \prod_{p} \left| \left(1 - \frac{\chi_{0}(p)}{p^{\sigma}} \right)^{3} \left(1 - \frac{\chi(p)}{p^{\sigma}} \right)^{4} \left(1 - \frac{\chi^{2}(p)}{p^{\sigma}} \right) \right|^{-1} \geqslant 1.$$

Поскольку $\chi^2 \neq \chi_0$, то у $L(\sigma,\chi^2)$ в 1 есть значение. Предположим, что $L(1,\chi)=0$. Тогда $L(\sigma,\chi)=O(\sigma-1)$ при $\sigma\to 1+0$.

При этом $L(\sigma,\chi_0)=O(\frac{1}{\sigma-1})$ при $\sigma\to 1+0$ – полюс порядка 1.

 $L(\sigma,\chi^2) = O(1)$, т.к. $\chi^2 \neq \chi_0$. Отсюда $|L^3(\sigma,\chi_0)L^4(\sigma,\chi)L(\sigma,\chi^2)| = O(\frac{1}{(\sigma-1)^3}(\sigma-1)^4 \cdot 1) = O(\sigma-1)$ при $\sigma \to 1+0$, т.е. $\to 0$, что противоречит неравенству выше.

Случай 2: $\chi^2 = \chi_0$.

Заметим, что если рассуждать похожим образом, то мы получим O(1), и ничего не выйдет.

Пусть $L(1,\chi)=0$. Рассмотрим $F(s)=\zeta(s)L(s,\chi)$. Первая функция дает в точке 1 имеет полюс порядка 1, а вторая в точке 1 дает ноль порядка 1, значит она аналитична при $\mathrm{Re}(s)>1$. Докажем, что

1) ряд
$$F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$
 сходится абсолютно при $\text{Re}(s) > 1$, причем $F^{(k)}(s) = (-1)^k \sum_{n=1}^{\infty} \frac{\ln(n)^k a_n}{n^s}$,

- 2) $a_n \ge 0$,
- 3) $a_{r^2} \geqslant 1, \forall r \in \mathbb{N},$
- 4) $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ расходится при $s = \frac{1}{2}$.

Π ункт 1):

Надо доказать, что $\sum_{n=1}^{\infty} \frac{|a_n|}{n^s}$ сходится при $\operatorname{Re}(s) > 1$. При $\operatorname{Re}(s) > 1 + \delta, \delta > 0$ выполнено $\frac{a_n}{n^s} \leqslant \frac{|a_n|}{n^{\sigma}} < 1$

 $\frac{|a_n|}{n^{1+\delta}}$ – общий член сходящегося ряда. Следовательно, по признаку Вейерштрасса ряд $\sum_{n=1}^{\infty} \frac{a_n}{n^s}$ сходится

равномерно. Но тогда по Теореме 1.7 Вейерштрасса этот ряд задаёт аналитическую функцию, причём его можно почленно дифференцировать.

 Π ункт 2):

$$a_n = \sum_{d|n} \chi(d) = \prod_{j=1}^r \sum_{\beta_j=0}^{\alpha_j} \chi(p_j)^{\beta_j} = \prod_{j=1}^r a_{n_j},$$
 где $a_{n_j} = 1 + \chi(p_j) + \dots + \chi(p_j)^{\alpha_j} = \begin{cases} 1, & \chi(p_j) = 0, \\ \frac{1 - \chi(p_j)^{1 + \alpha_j}}{1 - \chi(p_j)}, & \chi(p_j) \neq 0, 1, \\ 1 + \alpha_j, & \chi(p_j) = 1. \end{cases}$

То есть

$$a_{n_j} = \begin{cases} 1 + \alpha_j, & \chi(p_j) = 1, \\ 1, & \chi(p_j) = 0 \text{ или } \chi(p_j) = -1, a_j \vdots 2, \\ 0, & \chi(p_j) = -1, \alpha_j \not / 2. \end{cases}$$

Из того, что $a_{n_i} \geqslant 0$, следует $a_n \geqslant 0$.

Пункт 3): Очевидно из 2).

Пункт 4): Следует из 2) и 3).

F(s) аналитична в $\mathrm{Re}(s)>0$, поэтому в круге |s-2|<2 на вещественной прямой выполняется

$$F(\sigma) = \sum_{k=0}^{\infty} \frac{F^{(k)}(2)}{k!} (\sigma - 2)^k = \sum_{k=0}^{\infty} \frac{(\sigma - 2)^k}{k!} \sum_{n=1}^{\infty} (-1)^k \frac{(\ln n)^k a_n}{n^2} = \sum_{k=0}^{\infty} \frac{(2 - \sigma)^k}{k!} \sum_{n=1}^{\infty} \frac{(\ln n)^k a_n}{n^2} = \sum_{n=1}^{\infty} \frac{a_n}{n^2} \sum_{k=0}^{\infty} \frac{(\ln n)^k (2 - \sigma)^k}{k!} = \sum_{n=1}^{\infty} \frac{a_n}{n^2} n^{2-\sigma} = \sum_{n=1}^{\infty} \frac{a_n}{n^{\sigma}}.$$

В частности, при $\sigma = \frac{1}{2}$: $F\left(\frac{1}{2}\right) = \sum_{n=1}^{\infty} \frac{a_n}{n^{\frac{1}{2}}}$. Но мы доказали, что он расходится. Противоречие. \square

Доказательство. (теоремы Дирихле). При $\mathrm{Re}(s) > 1 - \frac{L'(s,\chi)}{L(s,\chi)} = \sum_{r=1}^{\infty} \frac{\Lambda(n)\chi(n)}{n^s}$.

Пусть далее $s=\sigma\in\mathbb{R},\,s>1.$ $\Lambda(n)=egin{cases} \ln p,&n=p^k,\,k\geqslant 1,\\ 0,&\text{иначе}. \end{cases}$ Тогда

$$-\frac{L'(s,\chi)}{L(s,\chi)} = \sum_{p} \frac{\ln p\chi(p)}{p^s} + \sum_{p} \sum_{k=2}^{\infty} \frac{\ln p \cdot \chi\left(p^k\right)}{p^{ks}}$$

(первое слагаемое для n=p, второе – для $n=p^k$). Покажем, что второе слагаемое ограничено константой, не зависящей от s при s>1:

$$\left|\sum_{p}\sum_{k=2}^{\infty}\frac{\ln p\cdot\chi\left(p^{k}\right)}{p^{ks}}\right|\leqslant\sum_{p}\sum_{k=2}^{\infty}\frac{\ln p}{p^{ks}}=\sum_{p}\ln p\frac{1/p^{2}}{1-1/p}\leqslant2\sum_{p}\frac{\ln p}{p^{2}}<2\sum_{n}\frac{\ln n}{n^{2}}<\infty.$$

Итак, для любого характера χ по модулю m:

$$\sum_{p} \frac{\chi(p) \ln p}{p^{s}} = -\frac{L'(s, \chi)}{L(s, \chi)} + O(1). \tag{*}$$

Поскольку (l,m)=1, то $\exists v\in\mathbb{Z}:vl\equiv 1\pmod m$ (т.е. обратный). Домножим (*) на $\chi(v)$ и просуммируем по всем характерам:

$$\sum_{p} \frac{\ln p}{p^s} \sum_{\chi} \chi(pv) = -\sum_{\chi} \chi(v) \frac{L'(s,\chi)}{L(s,\chi)} + O(1),$$

$$\sum_{\chi} \chi(pv) = \begin{cases} 0, & pv \not\equiv 1 \pmod{m}, \\ \varphi(m), & pv \equiv \pmod{m}. \end{cases}$$

Ho $pv \equiv 1 \pmod{m}$, следовательно, $p \equiv l \pmod{m}$ т.к. $pl \equiv 1 \pmod{m}$. Значит,

$$\sum_{p \equiv l \pmod{m}} \frac{\ln p}{p^s} = -\frac{1}{\varphi(m)} \sum_{\chi} \chi(v) \frac{L'(s, \chi)}{L(s, \chi)} + O(1).$$

Перейдём к пределу при $s \to 1+$. Если $p \equiv l \pmod m$ конечное количество, то слева предел конечен. Докажем, что правая часть стремится к бесконечности (т.е в левой части бесконечное число слагаемых):

При
$$\chi \neq \chi_0$$
 $\frac{L'(s,\chi)}{L(s,\chi)} = O(1)$ при $s \to 1+$.

При $\chi = \chi_0$ $L(s, \chi) = \frac{f(s)}{s-1}$, где f(s) аналитична в 1 и $f(1) \neq 0$. Значит,

$$\frac{L'(s,\,\chi_0)}{L(s,\,\chi_0)} = -\frac{1}{s-1} + \frac{f'(s)}{f(s)} = -\frac{1}{s-1} + O(1) \xrightarrow{\text{при } s \to 1+} \infty.$$

То есть мы показали, что правая часть стремится к бесконечности при $s \to 1+$. Следовательно,

$$\sum_{p \equiv l \pmod{m}} \frac{\ln p}{p^s} = \frac{1}{\varphi(m)(s-1)} + O(1).$$

Из последнего равенства можно, в частности, получить, что $\sum_{p} \frac{\ln p}{p^s} = \frac{1}{s-1} + O(1)$.

3.1 Основные сведения

Пусть $\theta \in \mathbb{R}$. Насколько маленькой можно сделать разность $|\theta - \frac{p}{q}|$ так, чтобы $|\theta - \frac{p}{q}| < f(a)$ (p и q – не простые).

Характеристика θ : насколько хорошо она приближается $\frac{p}{q}$. Мы знаем, что существуют нерациональные числа $(\sqrt{2},\sqrt{3},\dots)$. Легко доказать, что корни многочленов с целыми коэффициентами (алгебраические числа) не будут рациональными. Например, у многочлена $x^2-x-1=0$ корень $\varphi=\frac{1+\sqrt{5}}{2}$, а у него корни имею вид $\frac{\text{делитель}-1}{\text{делитель}1}\in\{\pm 1\}-\pm 1$ оба не корни. А вдруг все числа алгебраические? Нет, алгебраических чисел счётное количество. Это доказал Ли-

А вдруг все числа алгебраические? Нет, алгебраических чисел счётное количество. Это доказал Лиувилль через теорию приближений: он показал, что алгебраические числа не могут приближаться "слишком хорошо". Т.е. для алгебраических чисел не найдётся такой f, для которой будет бесконечно много решений.

Утверждение 3.1. Если
$$\theta=\frac{a}{b}\in\mathbb{R}$$
, то $\forall \frac{p}{q}\in\mathbb{Q}\backslash\{0\}$ такая, что $\left|\theta-\frac{p}{q}\right|>\frac{1/b}{q}$.

Доказательство.
$$\left| \frac{a}{b} - \frac{p}{q} \right| = \frac{|aq - bp|}{bq} \geqslant \frac{1}{bq}$$
, т.к. $|aq - bp| \in \mathbb{Z} \neq 0$.

Теорема 3.1 (Дирихле о приближении).

Пусть
$$\theta \in \mathbb{R}, T \in \mathbb{N}$$
. Тогда $\exists \frac{p}{q} \in \mathbb{Q} : \left| \theta - \frac{p}{q} \right| < \frac{1}{qT}, \ 1 \leqslant q \leqslant T$.

Доказательство.

Хотим: $|q\theta - p| < \frac{1}{T}$. Можно считать, что $\theta \in [0, 1)$, потом просто прибавить целую часть.

Рассмотрим числа $\{n\theta\}$, $n=0,1,\ldots,T$. Разобьём отрезок [0,1] на полуинтервалы $\left[\frac{k}{T},\frac{k+1}{T}\right)$, $k=0,1,\ldots,T-1$ (т.е на T равных). По принципу Дирихле $\exists n_1,n_2: (n_1-n_2)\theta-([n_1\theta]-[n_2\theta])<\frac{1}{T}$. Остаётся положить $q=n_1-n_2, \ p=[n_1\theta]-[n_2\theta]; \ q\geqslant 1, \ q\leqslant T$ (т.е. $n_1,\ n_2\leqslant T$).

Следствие 9. Если $\theta \in \mathbb{R} \backslash \mathbb{Q}$, то неравенство $|\theta - \frac{p}{q}| < \frac{1}{q^2}$ имеет бесконечно много решений в $\frac{p}{q} \in \mathbb{Q}$.

Доказательство. От противного: пусть $\frac{p_1}{q_1},\dots,\frac{p_k}{q_k}$ – все решения $\left|\theta-\frac{p}{q}\right|<\frac{1}{q^2}$. Положим $\delta=\min_i\left|\theta-\frac{p_i}{q_i}\right|>0,\ T=\lceil\frac{1}{\delta}\rceil$ (любое $T>\frac{1}{\delta}$). По теореме 3.1 Дирихле $\exists \frac{p}{q},\ q\leqslant T:\ \left|\theta-\frac{p}{q}\right|<\frac{1}{qT}\leqslant\frac{1}{q^2}$. Т.е. $\frac{p}{q}$ должно быть среди $\frac{p_i}{q_i}$. Но $\left|\theta-\frac{p}{q}\right|<\frac{1}{qT}<\frac{\delta}{q}\leqslant\delta$, т.е. оно ближе, чем наименьшее δ . Противоречие.

Мера иррациональности числа $\theta = \sup_s: \ \{ \left| \theta - \frac{p}{q} \right| < \frac{1}{q^s}$ имеет бесконечно много решений $\frac{p}{q} \}.$

В качестве $\frac{p}{q}$ можно брать подходящие дроби в разложении θ в цепную дробь.

Определение 3.1.1. Иррациональное число θ называется плохо приближаемым, если $\exists C = C(\theta) > 0$ такое, что $\forall \frac{p}{q}$ выполняется $\left| \theta - \frac{p}{q} \right| \geqslant \frac{C}{q^2}$.

Известно (существует такая теорема), что число плохо приближаемо тогда и только тогда, когда неполные частные при разложении в цепную дробь ограничены. Например, для квадратичной иррациональности неполные частные периодичны 6 , а значит и ограничены, т.е. квадратичные иррациональности плохо приближаемы.

Отныне и далее мы будем подразумевать, что θ – вещественное число, а α – комплексное.

Определение 3.1.2. Число $\alpha \in \mathbb{C}$ называется алгебраическим, если существует ненулевой многочлен f(x) с рациональными (или целыми) коэффициентами такой, что $f(\alpha) = 0$. Такой многочлен f(x) называется аннулирующим многочленом для числа α .

Определение 3.1.3. Степенью алгебраического числа $\deg \alpha$ называется минимальная степень аннулирующего многочлена.

Теорема 3.2 (Лиувилля). Пусть θ – вещественное алгебраическое число степени d. Тогда $\exists C = C(\theta) > 0$ такое, что для любого $\frac{p}{q} \in \mathbb{Q} \setminus \{0\}$ справедливо $\left| \theta - \frac{p}{q} \right| \geqslant \frac{C}{q^d}$, или, другими словами, $\mu(\theta) \leqslant d$.

Пусть далее $\theta \notin \mathbb{Q}$. Рассмотрим многочлен f(x) степени d с целыми коэффициентами такой, что $f(\theta) = 0$.

⁶Теорема Лагранжа с 1-го курса

Заметим, что для любого $\frac{p}{q} \in \mathbb{Q}$ выполнено $f\left(\frac{p}{q}\right) \neq 0$. Действительно, так как иначе бы многочлен $\frac{f(x)}{x-\frac{p}{q}}$ был бы аннулирующим многочленом для α степени d-1.

Поскольку f(x) с целыми коэффициентами, то $q^d f\left(\frac{p}{q}\right) \in \mathbb{Z} \Rightarrow \left|q^d f\left(\frac{p}{q}\right)\right| \geqslant 1 \Rightarrow \left|f\left(\frac{p}{q}\right)\right| \geqslant \frac{1}{q^d}$.

Если $\left|\theta - \frac{p}{q}\right| \geqslant 1$, то для любого $\left|\frac{p}{q}\right| \left|\theta - \frac{p}{q}\right| \geqslant \frac{1}{q^d}$.

Пусть теперь $\left|\theta-\frac{p}{q}\right|<1,$ т.е. $\frac{p}{q}\in [\theta-1,\theta+1].$ Тогда

$$\left|\frac{1}{q^d} \leqslant \left| f\left(\frac{p}{q}\right) \right| = \left| f\left(\frac{p}{q}\right) - f\left(\theta\right) \right| = \left| \left(\frac{p}{q} - \theta\right) f'(\xi) \right| \leqslant M \cdot \left| \theta - \frac{p}{q} \right|, \text{ где } M = \max_{[\theta - 1, \theta + 1]} \left| f'(x) \right|.$$

Таким образом, $\left|\theta-\frac{p}{q}\right|\geqslant \frac{1}{Mq^d}$, и искомое $C=\min(1,\frac{1}{M})$.

Определение 3.1.4. Если $\theta \in \mathbb{R}$ таково, что $\forall n \in \mathbb{N}$ неравенство $\left| \theta - \frac{p}{q} \right| < \frac{1}{q^n}$ имеет бесконечное количество решений в $\frac{p}{q} \in \mathbb{Q}$, то число θ называется *луивиллевым* (= число Луивилля). Числа, не являющиеся луивиллевыми, называются $\partial uo \phi a n mo b u m u$.

Предложение 3.3. Луивиллевы числа трансцендентны.

Доказательство. Предположим противное, т.е. пусть θ алгебраическое. Тогда для него верна теорема Луивилля, а именно

$$\exists C>0: \forall rac{p}{q}\in \mathbb{Q}\setminus\{0\}$$
 выполнено $\left|\theta-rac{p}{q}
ight|\geqslant rac{C}{q^d}.$

Тогда при $n\geqslant d$ из неравенства $\left|\theta-\frac{p}{q}\right|<\frac{1}{q^{n+1}}$ следует, что $q\leqslant\frac{1}{C}.$

Кроме того, $|q\theta - p| \le 1 \Rightarrow |p| \le 1 + q|\theta| < 1 + \frac{|\theta|}{C}$.

То есть числа q и p ограничены, значит и количество решений. Противоречие.

Пример 3.1. Число $\theta = \sum_{n=0}^{\infty} \frac{1}{2^{n!}}$ – луивиллево.

 \mathcal{L} оказательство. Пусть $m \in \mathbb{N}$. Рассмотрим $N \geqslant m$. Обозначим через $\frac{p}{q} = \sum_{r=1}^N \frac{1}{2^{n!}}$. Тогда $\left|\theta - \frac{p}{q}\right| = \sum_{r=1}^N \frac{1}{2^{n!}}$.

$$\sum_{n=N+1}^{\infty} \frac{1}{2^{n!}} \leqslant 2 \cdot \frac{1}{2^{(N+1)!}} = \frac{2}{q^{N+1}} \leqslant \frac{1}{q^N} \leqslant \frac{1}{q^m}.$$

Таким образом, неравенство $\left|\theta-\frac{p}{q}\right|\leqslant \frac{1}{q^m}$ имеет бесконечное число решений. \square

Кругозора ради добавим, что существует следующая очень сложная

Теорема 3.4 (Туэ-Зигеля-Рота). Пусть θ – иррациональное алгебраическое число. Тогда $\forall \varepsilon>0$ такое, что $\exists C = C(\theta, \varepsilon)$, что для любых $\frac{p}{a} \in \mathbb{Q}$ справедливо

$$\left|\theta - \frac{p}{q}\right| \geqslant \frac{C}{q^{2+\varepsilon}} = \frac{2}{q^{N+1}} \leqslant \frac{1}{q^N} \leqslant \frac{1}{q^m}.$$

Таким образом, неравенство $\left| \theta - \frac{p}{q} \right| \leqslant \frac{1}{q^m}$ имеет бесконечное количество решений.

3.2Иррациональность e и π

Теорема 3.5. $e \notin \mathbb{Q}$.

$$\mathbb{N} \ni \sum_{n=q+1}^{\infty} \frac{q!}{n!} = \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \dots < \sum_{k=1}^{\infty} \frac{1}{(q+1)^k} \leqslant 1.$$

Получаем противоречие.

Tеорема 3.6. $\pi \notin \mathbb{Q}$.

Доказательство. Пусть $\pi = \frac{p}{q}, p, q \in \mathbb{N}$. Положим $f_n(x) = q^n \frac{x^n (\pi - x)^n}{n!} = \frac{x^n (q - px)^n}{n!} = \frac{q(x)}{n!}$, где $g(x) \in \mathbb{Z}[x].$

Рассмотрим $I_n = \int_0^{\pi} f_n(x) \sin(x) dx$, $I_n \ge 0$.

Положим $F_n(x) = f_n(x) - f_n''(x) + f_n^{(4)}(x) + \dots = \sum_{i=0}^{\infty} (-1)^k f_n^{(2k)}(x).$

Поскольку $f_n(x) = f_n(\pi - x)$, то $f_n^{(k)}(x) = f_n^{(k)}(\pi - x)$ для четных k. Из этого мы видим, что $F_n(x) = F_n(\pi - x).$

Заметим, что $(F'_n(x)\sin x - F_n(x)\cos x)' = f_n(x)\sin x$. $I_n = (F'_n(x)\sin x - F_n(x)\cos x)_0^{\pi} = F_n(0) + F_n(\pi)$.

$$|f(x)\sin x| \leqslant \frac{b^n \left(\frac{\pi}{2}\right)^{2n}}{n!} \to 0$$
 при $n \to \infty$,

$$I_n = 2F_n(0) = 2\sum_{k=0}^{\infty} (-1)^k f^{(2k)}(0) \in \mathbb{Z}.$$

Итак, последовательность $\{I_n\}$ положительна, целочисленна, и стремится к нулю, в чём и заключается противоречие.

3.3 Трансцендентность числа e

Теорема 3.7. Число е трансцендентно.

Доказательство. Предположим противное: пусть $\exists a_0,\dots,a_m\in\mathbb{Z}: \sum_{k=0}^m a_k e^k=0$, где не все $a_k=0$.

Считаем, что $(a_0, \ldots, a_m) = 1$. Ортогональным дополнением к (a_0, \ldots, a_m) является полуплоскость Π , проходящая через $(1, e, e^2, \ldots, e^m)$. При этом в гиперплоскости можно выбрать базис из целочисленных векторов.

Разбиваем все точки \mathbb{Z}^{m+1} на параллельные слои \mathbb{Z}^m (любое $b \in \mathbb{Z}^{m+1}$ лежит в слое с номером $\langle a,b \rangle$). Расстояние между слоями одинаковое и (при условии, что $(a_0,\ldots,a_m)=1$) оно равно $\Delta = \frac{1}{\sqrt{a_0^2 + a_1^2 + \cdots + a_m^2}}$. Построим последовательность $\mathcal{B}^{(n)} \in \mathbb{Z}^{m+1}$ такую, что

- 1) расстояние от $\mathcal{B}^{(n)}$ до $\langle (1, e, e^2, \dots, e^m) \rangle$ меньше Δ
- 2) точка $\mathcal{B}^{(n)}$ не лежит в Π .

Напомним, что $\int_0^\infty x^k e^{-x} dx = \Gamma(k+1) = k!$ Тогда можно брать $\int_0^\infty f(x) e^{-x} dx$ для многочленов f. Положим $f_n(x) = \frac{x^{n-1}(x-1)^n \dots (x-m)^n}{(n-1)!}$. Возьмём $\mathcal{B}_k^{(n)} = \int_0^{+\infty} f_n(x+k) e^{-x} dx, \ k=0,\dots,m$.

Покажем, что $\mathcal{B}_0^{(n)}e^k - \mathcal{B}_k^{(n)} \xrightarrow{n \to \infty} 0$:

При k = 0 это просто 0. Пусть $k \neq 0$: $\left| \mathcal{B}_0^{(n)} e^k - \mathcal{B}_k^{(n)} \right| = \left| e^k \int_0^\infty f_n(x) e^{-x} dx - \int_0^\infty f_n(x+k) e^{-x} dx \right| = e^k \left| \int_0^\infty f_n(x) e^{-x} dx - \int_k^\infty f_n(y) e^{-y} dy \right| = e^k \left| \int_0^k f_n(x) e^{-x} dx \right| \leqslant e^m m \frac{m^{n+nm-1}}{(n-1)!} = \frac{e^m m^{m(n+1)}}{(n-1)!} \xrightarrow{n \to \infty} 0.$

То есть $\mathcal{B}_0^{(n)} \left(1, e, e^2, \dots, e^m\right)^T - \mathcal{B}^{(n)} \xrightarrow{n \to \infty} 0$. Следовательно, последовательность точек $\mathcal{B}^{(n)}$ стремится к прямой $\langle \left(1, e, e^2, \dots, e^m\right) \rangle$ и, начиная с некоторого n, расстояние станет меньше Δ .

Покажем теперь, что $\mathcal{B}_k^{(n)} \in \mathbb{Z}$, где $k=0,\ldots,m$:

При k=0:

$$\mathcal{B}_0^{(n)} = \frac{1}{(n-1)!} \sum_k \left[\text{коэффициент в } x^{n-1} (x-1)^n \dots (x-m)^n \text{ при } x^k \right] \cdot \int_0^\infty x^k e^{-x} dx = 1$$

$$= \frac{1}{(n-1)!} \left((-1)^{mn} m!^n (n-1)! + A_n n! + \dots + A_N N! \right) \equiv (-1)^{mn} m!^n \mod n.$$

При $k \geqslant 1$:

$$\mathcal{B}_k^{(n)} = \int_0^{+\infty} f_n(x+k)e^{-x}dx = \sum_j \left[$$
коэффициент в $\frac{(x+k)^{n-1}(x+k-1)^n\dots x^n\dots}{(n-1)!}$ при $x^j\right]\cdot j! = 1$

 $\frac{1}{(n-1)!} \left(C_n n! + C_{n+1} (n+1)! + \dots + C_N N! \right) \equiv 0 \mod n.$

Покажем, наконец, что для бесконечно многих $n \sum_{k=0}^m a_k \mathcal{B}_k^{(n)} \neq 0$ (то есть, что $\mathcal{B}^{(n)} \notin \Pi$):

$$\sum_{k=0}^{m} a_k \mathcal{B}_k^{(n)} \equiv a_0 (-1)^{mn} m!^n \pmod{n}.$$

Тогда при $(n, a_0 m!) = 1$, где $a_0 m!$ – некоторое фиксированное число, ряд будет не равен нулю.

4 Алгебраические и трансцендентные числа

4.1 Основные сведения

Множество алгебраических чисел будем обозначать А.

Пусть $f(x) \in \mathbb{Q}[x]$, $f(\alpha) = 0$, $\deg f = \deg \alpha$. Тогда f(x) неприводим над \mathbb{Q} . Следовательно, если $g(x) \in \mathbb{Q}[x]$, $g(\alpha) = 0$, $\deg g = \deg \alpha (= \deg f)$, то $HOД(f(x), g(x)) = h(x) \in \mathbb{Q}[x]$, при этом $h(\alpha) = 0 = \deg h = \deg f$, то есть, если $h|f, h|g, \deg h = \deg f = \deg f$ то они три все пропорциональны.

Определение 4.1.1. Унитарный многочлен $p_{\alpha}(x) \in \mathbb{Q}[x]$ называется минимальным многочленом α , если $p_{\alpha}(\alpha) = 0$ и $\deg p_{\alpha} = \deg \alpha$.

Оказывается, что A – алгебраически замкнутое поле, т.е. корень многочлена с алгебраическими коэффициентами тоже будет алгебраическим числом.

Для доказательства нам сначала понадобятся несколько лемм.

Теорема 4.1 (О симметрических многочленах).

 $\Pi y cm \circ R$ – accoulum u B ho e коммут ат и в но е кольцо с единицей и без делителей нуля.

 $\Pi ycmv\ f\left(x_1,\ldots,x_m
ight)\in R\left[x_1,\ldots,x_m
ight]$ – симметрический многочлен.

Тогда $\exists g(x_1, \dots x_m) \in R[x_1, \dots, x_m] : f(x_1, \dots, x_m) = g(s_1(x_1, \dots, x_m), \dots, s_m(x_1, \dots, x_m)),$ где $s_k(x_1, \dots, x_m) - k$ -ый симметрический многочлен.

Лемма 4.2. Пусть $f(x,y) \in R[x,y]$. Тогда $\exists g(x,y_1,\ldots,y_m) \in R[x,y_1,\ldots,y_m]: f(x,y_1)\cdot\ldots\cdot f(x,y_m) = g(x,s_1(y_1,\ldots,y_m),\ldots,s_m(y_1,\ldots,y_m)).$

Доказательство. $f(x,y_1) \cdot ... \cdot f(x,y_m) \in R[x][y_1,\ldots,y_m]$, т.е. он симметричный по y_1,\ldots,y_m над R[x]. По Теореме 4.1 существует искомый многочлен g, причём g – многочлен от (x,y_1,\ldots,y_m) над g. \square

Лемма 4.3. Пусть $f(x,y) \in \mathbb{Q}[x,y], \alpha \in \mathbb{A}, \deg \alpha = n, \alpha_1 = \alpha, \alpha_2, \dots, \alpha_n$ - корни $p_{\alpha}(x)^7$. Тогда $F(x) = \prod_{k=1}^n f(x,\alpha_k) \in \mathbb{Q}[x].$

Доказательство. Применим Лемму 4.2:

$$\prod_{k=1}^{n} f(x, \alpha_k) = g\left(s_1\left(\alpha_1, \dots, \alpha_n\right), \dots, s_n\left(\alpha_1, \dots, \alpha_n\right)\right).$$

По теореме Виета все $s_i(\alpha_1,\ldots,\alpha_n)$ выражаются через коэффициенты многочлена p_α и, следовательно, $s_i(\alpha_1,\ldots,\alpha_n)\in\mathbb{Q}$.

Теорема 4.4. \mathbb{A} – *поле*.

Доказательство. Пусть $\alpha, \beta \in \mathbb{A}$. Хотим проверить что $\{\alpha@\beta|@\in\{+,-,/,\cdot\}\}$.

Сложение:

Рассмотрим $F_1(x) = \prod_{k=1}^m p_{\alpha}(x - \beta_k)$, где $\beta_1 = \beta$, β_2, \dots, β_m – корни $p_{\beta}(x)$. Тогда по Лемме 4.3: $F_1(x) \in \mathbb{Q}[x]$. При этом $F_1(\alpha + \beta) = \dots + p_{\alpha}(\alpha) + \dots = 0$. Вычитание:

⁷Они попарно различны как корни любого неприводимого многочлена f(x). Иначе бы у f'(x) и f(x) был этот корень общим, но $\deg(f') < \deg(f)$ – противоречие с неприводимостью.

Если β – алгебраическое, то алгебраическим будет и $-\beta$. Тогда $\alpha - \beta$ – тоже алгебраическое. Ну или так: $F_2(x) = \prod_{k=1} p_{\alpha}(x+\beta) \in \mathbb{Q}[x], F_2(\alpha-\beta) = 0.$

Деление:

$$F_3(x) = \prod_{k=1}^m p_\alpha(x\beta_k) \in \mathbb{Q}[x], F_3\left(\frac{\alpha}{\beta}\right) = 0.$$

Умножение:
$$F_4(x) = \prod_{k=1}^{k=1} \beta_k^m p_\alpha \left(\frac{x}{\beta_k}\right) \in \mathbb{Q}[x], F_4(\alpha\beta) = 0.$$

Целые алгебраические числа 4.2

Определение 4.2.1. Алгебраическое число α называется *целым алгебраическим*, если $p_{\alpha}(x) \in \mathbb{Z}[x]$. Множество всех целых алгебраических чисел обозначим через $\mathbb{Z}_{\mathbb{A}}$.

• Пусть $\alpha \in \mathbb{Q}$. Тогда $\alpha \in \mathbb{Z}_{\mathbb{A}} \Leftrightarrow \alpha \in \mathbb{Z}$. Пример 4.1.

- $\sqrt{2} \in \mathbb{Z}_{\mathbb{A}}$
- $a, b, d \in \mathbb{Z} \Rightarrow a + b\sqrt{d}\mathbb{Z}_{\mathbb{A}}$
- $\frac{1+\sqrt{5}}{2} \in \mathbb{Z}_{\mathbb{A}}$

Определение 4.2.2. Многочлен $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ называется *прими*mивным, если $(a_n, a_{n-1}, \ldots, a_1, a_0) = 1$.

Лемма 4.5 (Гаусса). Произведение примитивных многочленов примитивно.

Доказательство. Пусть $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_1 x + a_0, g(x) = b_m x^m + b_{m-1} x^{m-1} + b_1 x + b_0.$ А также рассмотрим $h(x) = f(x)g(x) = c_{m+n}x^{m+n} + \ldots + c_1x + c_0$. Пусть существует простое p такое, что $p|c_k, \forall 0 \leq k \leq m+n$.

Пусть $r = \min k | a_k p, s = \min k | b_k p$.

Тогда
$$c_{r+s}=\sum_{i+j=r+s}^{r+s}a_ib_j\equiv a_rb_s\not\equiv 0\mod p$$
, т.е. $p\not\mid c_{r+s}$. Получаем противоречие. \square

Теорема 4.6. Если существует унитальный многочлен $f(x) \neq 0 \in \mathbb{Z}[x]: f(\alpha) = 0$, то $\alpha \in \mathbb{Z}_{\mathbb{A}}$.

Доказательство. $p_{\alpha}(x)|f(x)$ в $\mathbb{Q}[x]$, т.е. $\exists g(x) \in \mathbb{Q}[x]: f(x) = g(x)p_{\alpha}(x)$.

Покажем, что $g(x), p_{\alpha}(x) \in \mathbb{Z}[x]$.

Пусть A, B – НОК знаменателей коэффициентов g(x) и $p_{\alpha}(x)$ соответственно. Тогда Ag(x) и $Bp_{\alpha}(x)$ – примитивные многочлены.

$$ABf(x)=Ag(x)Bp_{\alpha}(x)$$
 — примитивный многочлен по лемме 4.5 Гаусса. Тогда $AB=1\Rightarrow A=B=1$.

Лемма 4.7. Пусть $f(x,y) \in \mathbb{Z}[x,y]$. Пусть $\alpha = \alpha_1, \ldots, \alpha_n$ – сопряженные к $\alpha \in \mathbb{Z}_{\mathbb{A}}$. Тогда F(x) = $\prod f(x,\alpha_i) \in \mathbb{Z}[x].$

Доказательство. Аналогично доказательству леммы 4.3.

Доказательство. Пусть $\alpha, \beta \in \mathbb{Z}_{\mathbb{A}}$. Пусть $\alpha = \alpha_1, \dots, \alpha_n$ – сопряженные к $\alpha, \beta = \beta_1, \dots, \beta_m$ – сопряженные к β . Тогда, по Лемме 4.7:

$$F_1(x) = \prod_{i=1}^m p_{\alpha}(x - \beta_i) \in \mathbb{Z}[x],$$

$$F_2(x) = \prod_{i=1}^m p_{\alpha}(x + \beta_i) \in \mathbb{Z}[x],$$

$$F_3(x) = \prod_{i=1}^m \beta_i^{\deg p_\alpha} p_\alpha(x/\beta_i) \in \mathbb{Z}[x].$$

Тогда все три многочлена унитарны и $F_1(\alpha + \beta) = F_2(\alpha - \beta) = F_3(\alpha\beta) = 0$. Применив Теорему 4.6, получаем условие теоремы.

Задача 4.1. $\forall \alpha \in \mathbb{A} \ \exists d \in \mathbb{Z} \ make, \ umo \ d\alpha \in \mathbb{Z}_{\mathbb{A}}.$

4.3 Конечные расширения Q

Пусть $\alpha_1, ..., \alpha_n$ – произвольные алгебраические числа.

Определение 4.3.1. $\mathbb{Q}(\alpha_1, \dots, \alpha_n) = \{ \frac{f(\alpha_1, \dots, \alpha_n)}{g(\alpha_1, \dots, \alpha_n)} \mid | f, g \in \mathbb{Q}[x_1, \dots, x_n], g(\alpha_1, \dots, \alpha_n) \neq 0 \} - pacuupehue \mathbb{Q}, порожденное <math>\alpha_1, \dots, \alpha_n$.

Задача 4.2. Доказать, что $\mathbb{Q}(\alpha_1,\ldots,\alpha_n)$ – минимальное по включению поле, содержащее $u\ \mathbb{Q},\ u\ \alpha_1,\ldots,\alpha_n.$

Лемма 4.9. Пусть $E = \mathbb{Q}(\theta)$, $\deg(\theta) = n$. Тогда любой элемент $\alpha \in E$ однозначно представим в виде $\alpha = c_0 + c_1\theta + \ldots + c_{n-1}\theta^{n-1}$, $c_i \in \mathbb{Q}$.

Доказательство.

Докажем существование: рассмотрим $\alpha = \frac{f(\theta)}{g(\theta)} \in E$. Заметим, что поскольку $g(\theta) \neq 0$, то $(p_{\theta}(x), g(x)) = 1$. т.е. $\exists u(x), v(x) \in \mathbb{O}[x]$: $u(x)p_{\theta}(x) + v(x)g(x) = 1$

1, т.е. $\exists u(x), v(x) \in \mathbb{Q}[x]: \ u(x)p_{\theta}(x) + v(x)\overset{\Im C}{g(x)} = 1.$ Тогда $u(\theta)p_{\theta}(\theta) + v(\theta)g(\theta) = 1.$ Отсюда $\frac{1}{g(\theta)} = v(\theta)$ и, стало быть, $\alpha = f(\theta)v(\theta).$

Положим h(x) = f(x)v(x). Поделим h(x) с остатков на $p_{\theta}(x) : h(x) = q(x)p_{\theta}(x) + r(x)$, $\deg r(x) < \deg \theta$. Тогда $\alpha = h(\theta) = r(\theta)$, $\deg r(x) < n$, $r(x) \in \mathbb{Q}[x]$.

Докажем единственность: пусть $\alpha = c_0 + c_1 \theta + \ldots + c_{n-1} \theta^{n-1} = d_0 + d_1 \theta + d_{n-1} \theta^{n-1}$. Тогда

 $(c_0-d_0)+(c_1-d_1)\theta+\ldots+(c_{n-1}-d_{n-1})\theta^{n-1}=0$ – обнуляющий многочлен θ степени не более $\deg(\theta-1)$.

Следовательно, по определению $\deg(\theta)$: $\forall i: c_i = d_i$.

Таким образом, $\mathbb{Q}(\theta)$ – линейное пространство над \mathbb{Q} размерности n с базисом $1,\theta,\dots,\theta^{n-1}$.

Теорема 4.10 (О примитивном элементе). Пусть $E = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$. Тогда $\exists \theta \in E : E = \mathbb{Q}(\theta)$.

Определение 4.3.2. Такое θ называется *примитивным элементом* E (над \mathbb{Q}).

Следствие 10. Любое конечное расширение $\mathbb Q$ является конечномерным пространством над $\mathbb Q$.

Определение 4.3.3. Размерность E как линейного пространства над \mathbb{Q} называется *степенью рас- ширения*. Обозначается $[E:\mathbb{Q}]$.

Обозначим $\mathbb{Z}_E = E \cap \mathbb{Z}_{\mathbb{A}}, \, \mathbb{Z}_{\mathbb{O}} = \mathbb{Z}.$

Доказательство. (теоремы 4.10)

Достаточно доказать для двух чисел: $E = \mathbb{Q}(\xi, \eta)$.

Пусть $\xi_1 = \xi, \xi_2, \dots, \xi_m$ — сопряженное к ξ , $\eta_1 = \eta, \eta_2, \dots, \eta_l$ — сопряженное к η . Возьмём $c \in \mathbb{Q}$: все числа $\xi_i + c\eta_j$ попарно различны. Положим $\theta = \xi + c\eta$, утверждается, что θ — искомое. Обозначим $K = \mathbb{Q}(\theta)$, тогда $\mathbb{Q} \subset K \subset E$ — расширение полей. Покажем, что $\xi, \eta \in K$ — отсюда будет следовать, что $E \subset K$, т.е. E = K.

Рассмотрим $p_{\xi}(x)$, $p_{\eta}(x)$, пусть $f(x) = p_{\xi}(\theta - cx)$, где $\theta \in K$, $c \in \mathbb{Q}$, $p_{\xi} \in \mathbb{Q}[x]$. Тогда $f(x) \in K[x]$. Заметим, что

$$f(\eta) = p_{\xi}(\theta - c\eta) = p_{\xi}(\xi) = 0$$
, т.е. η – корень $f(x)$.

Так как f и p_{η} оба имеют коэффициенты из K, то рассмотрим $d(x) = \text{HOД}(f(x), p_{\eta}(x))$. Ясно, что $d(\eta) = 0 \Rightarrow (x - \eta)|d(x); p_{\eta}(x)$ имеет корни $\eta_1, \eta_2, \dots, \eta_l$. Поэтому, $d \subset \{\eta_1, \eta_2, \dots, \eta_l\}$.

Пусть $d(\eta_i) = 0$. Так как d|f, то $f(\eta_i) = 0$, но $f(\eta_i) = p_{\xi}(\theta - c\eta_i)$. То есть, $\theta - c\eta_i = \xi_j$ для некоторого j (корни p_{ξ}), но $\theta = \xi_j + c\eta_i$ только когда i = j = 1. Следовательно, η – единственный корень d(x). Так как d делит p_{η} , и у p_{η} нет кратных корней, то $d(x) = x - \eta$. Но $d(x) \in K[x] \Rightarrow \eta \in K$. Тогда $\xi = \theta - c\eta \in K$, ведь $\theta \in K$ (по определению K), $c \in \mathbb{Q}$, $\eta \in K$.

Теорема 4.11.

Поле \mathbb{A} алгебраически замкнуто. То есть, если $f(x) \in \mathbb{A}[x]$, то $\exists \beta \in \mathbb{A} : f(\beta) = 0$.

Доказательство. Пусть $f(x) = \alpha_n x^n + \dots + \alpha_1 x + \alpha_0 \in \mathbb{A}[x]$. Так как \mathbb{A} – поле, то не теряя общности можно считать, что $\alpha_n = 1$. Рассмотрим $E = \mathbb{Q}(\alpha_1, \dots, \alpha_{n-1}, \alpha_n)$. По теореме 4.10 о примитивном элементе: $E = \mathbb{Q}(\theta)$ для некоторого θ , $\deg(\theta) = m$. Тогда $\alpha_i = r_i(\theta)$, где $r_i(x) \in \mathbb{Q}[x]$, $\deg(r_i) \leqslant m - 1$. То есть

$$f(x) = x^n + r_{n-1}(\theta)x^{n-1} + \dots + r_1(\theta)x + r_0(\theta).$$

Пусть $\theta_1, \theta_2, \dots, \theta_m$ – все сопряжены к θ . Рассмотрим

$$F(x) = \prod_{j=1}^{m} \left[x^{n} + r_{n-1}(\theta_j) x^{n-1} + \dots + r_1(\theta_j) + r_0(\theta_j) \right],$$

заметим, что $f(x,y) = x^n + r_{n-1}(y)x^{n-1} + \dots + r_1(y) + r_0(y) \in \mathbb{Q}[x,y]$. По лемме 4.3: $F(x) \in \mathbb{Q}[x]$, при этом f(x)|F(x) в $\mathbb{C}[x]$. Следовательно, все корни f(x) лежат в \mathbb{A} .

4.4 Нормальные расширения

Определение 4.4.1. Пусть E – конечное расширение поля \mathbb{Q} . Отображение $\sigma \colon E \to \mathbb{C}$ называется вложением, если это инъективный гомоморфизм полей.

Теорема 4.12. Если $[E:\mathbb{Q}]=n$, то существует ровно n различных вложений E в \mathbb{C} . При этом, если $E=\mathbb{Q}(\theta)$ и θ_1,\ldots,θ_m – все сопряжены κ θ , то отображение $\sigma\colon E\to\mathbb{C}$ ($\alpha\cdot r(\theta)\mapsto r(\theta_i)$, где $r(x)\in\mathbb{Q}[x]$) является вложением E в \mathbb{C} .

Доказательство. Покажем, что любое $\alpha \in E$ при вложении переходит в какое-то своё сопряжённое: Пусть σ – вложение. Тогда $0 \neq \sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1) \Rightarrow \sigma(1) = 1$.

Тогда $\sigma(k) = \sigma(1+1+\dots+1) = \sigma(1)+\sigma(1)+\dots+\sigma(1) = k, \ \sigma(-1)+\sigma(1) = \sigma(0) = 0 \ \Rightarrow \ \sigma(-1) = -1.$ Значит, $\forall k \in \mathbb{Z} \ \sigma(k) = k.$

Далее, $\forall k \in \mathbb{N}$ $\sigma(k)\sigma\left(\frac{1}{k}\right) = \sigma(1) = 1$, откуда $\forall k \in \mathbb{Q}$ $\sigma(k) = k$. Стало быть, если $f \in \mathbb{Q}[x]$, то $\forall \alpha \in E$ $\sigma(f(\alpha)) = f(\sigma(\alpha))$. В частности, $p_{\alpha}(\sigma(\alpha)) = \sigma(p_{\alpha}(\alpha)) = \sigma(0) = 0 \Rightarrow \sigma(\alpha)$ – сопряжённое к α . Возьмём $\alpha = \theta$, тогда $\sigma: \theta \mapsto \theta_i$, где i зависит от σ . И тогда $\forall r(x) \in \mathbb{Q}[x]: \sigma(r(\theta)) = r(\sigma(\theta)) = r(\theta_i)$. Пусть $\sigma_i: E \to \mathbb{C}$ ($\alpha = r(\theta) \mapsto r(\theta_i)$). Почему это вложение?

Пусть $\alpha, \beta \in E$, $\alpha = r(\theta), \beta = s(\theta), r(x), s(x) \in \mathbb{Q}[x], \deg(r) \leqslant n - 1, \deg(s) \leqslant n - 1.$

 $\alpha + \beta = (r+s)(\theta), \alpha \cdot \beta = u(\theta),$ где u(x) – остаток от деления r(x)s(x) на $p_{\theta}(x)$. Аналогично, $r(\theta_i)s(\theta_i) = u(\theta_i)$.

Тогда

$$\sigma_i(\alpha) + \sigma_i(\beta) = r(\theta_i) + s(\theta_i) = (r+s)(\theta_i) = \theta_i((r+s)(\theta)) = \sigma_i(\alpha + \beta).$$

$$\sigma_i(\alpha)\sigma_i(\beta) = r(\theta_i)s(\theta_i) = u(\theta_i) = \sigma_i(u(\theta)) = \sigma_i(r(\theta)s(\theta)) = \sigma_i(\alpha\beta).$$

Если $\sigma_i(\alpha) = 0$ для некоторого $\alpha \neq 0$, то $1 = \sigma_i(1 = \sigma_i(\alpha)\sigma_i(\alpha^{-1}) = 0$. Противоречие.

Теорема 4.13. Пусть $[E:\mathbb{Q}] = n, \sigma_1, \ldots, \sigma_n$ – все вложения E в $\mathbb{C}, \alpha \in E, \deg(\alpha) = d$. Тогда d|n и множество $\{\sigma_1(\alpha), \ldots, \sigma_n(\alpha)\}$ состоит из всех сопряжений к α , каждое из которых повторяется $\frac{n}{d}$ pas.

Доказательство. $\alpha = r(\theta), r(x) \in \mathbb{Q}[x], \deg(r) \leqslant n-1$. Рассмотрим $F(x) = \prod_{i=0}^{n} (x - \sigma_i)(\alpha)$. Тогда

$$F(x) = \prod_{i=1}^n (x-r(\theta_i))$$
 и по лемме 4.3 $F(x) \in \mathbb{Q}[x] \Rightarrow p_{\alpha}(x)|F(x)$. Пусть k максимальное такое, что

 $p_{\alpha}^k(x)|F(x)$. Рассмотрим $\frac{F(x)}{p_{\alpha}^k(x)}=g(x)\in\mathbb{Q}[x]$. Если у g есть корни (если $g\not\equiv const$), то его корни – какие-то сопряжённые с α . Следовательно, $p_{\alpha}(x)|g(x)$ – противоречие с максимальностью k. Значит, $g(x)=1,\ F(x)=p_{\alpha}^k(x),\ n=kd$.

Следствие 11. $\sigma(\alpha) = \alpha$ при всех вложениях E в $\mathbb{C} \iff \alpha \in \mathbb{Q}$.

Доказательство.

- (⇐) Очевидно.
- (\Rightarrow) Из теоремы 4.13.

Определение 4.4.2. Если для любого вложения σ расширения E справедливо $\sigma(E) = E$, то E называется *нормальным*.

Лемма 4.14. Пусть E – конечное расширение \mathbb{Q} , σ – вложение E в C. Пусть $\sigma(E)\subset E$. Тогда $\sigma(E)=E$.

Доказательство. E – конечномерное линейное пространство над \mathbb{Q} , $\sigma: E \to E$ – линейное отображение с нулевым ядром. Следовательно, $\dim \sigma(E) = \dim E$ и $\sigma(E) = E$.

Пример 4.2. • $\mathbb{Q}(\sqrt{2})$ – нормально;

• $\mathbb{Q}(\sqrt[3]{2})$ – не нормально.

Теорема 4.15. Пусть $E = \mathbb{Q}(\alpha_1, \dots, \alpha_m)$ и пусть все сопряженные ко всем α_i лежат в E. Тогда E – нормально.

Доказательство. Пусть $\alpha \in E$. Тогда $\alpha = \frac{f(\alpha_1, \dots, \alpha_m)}{g(\alpha_1, \dots, \alpha_m)}, f, g \in \mathbb{Q}[x_1, \dots, x_m]$. Если σ – вложение E в \mathbb{C} , то $\sigma(\alpha) = \frac{f(\sigma(\alpha_1), \dots, \sigma(\alpha_m))}{g(\sigma(\alpha_1), \dots, \sigma(\alpha_m))} \in E$. Таким образом, $\sigma(E) \subset E$. Применяя лемму 4.14 получаем, что $\sigma(E) = E$, т.е. E нормально.

Если E нормально, то все вложения E в \mathbb{C} – автоморфизмы E. Можно брать их композиции, существует обратный элемент. Получается группа автоморфизмов E, называемой *группой Галуа*.

Пример 4.3. Группа Галуа $\mathbb{Q}(\sqrt{2})$ изоморфна \mathbb{Z}_2 .

Пусть E – конечное расширение $\mathbb{Q}, [E:\mathbb{Q}] = n, \sigma_1, \ldots, \sigma_n$ – все вложения E в \mathbb{C} .

Определение 4.4.3. Для каждого $\alpha \in E$ нормой относительно E называется величина $N(\alpha) = \prod_{i=1}^n \sigma_i(\alpha).$

Пример 4.4. $E = \mathbb{Q}(\sqrt{2}): N(\alpha + \beta\sqrt{2}) = (\alpha + \beta\sqrt{2})(\alpha - \beta\sqrt{2}) = \alpha^2 - 2\beta^2$.

Теорема 4.16.

- 1. Ecnu $\alpha \in E$ u $p_{\alpha}(x) = x^d + \ldots + a_1 x + a_0$, mo $N(\alpha) = (-1)^n a_0^{\frac{n}{d}}$.
- 2. Если $\alpha \in E$, то $N(\alpha) \in \mathbb{Q}$. Если $\alpha \in \mathbb{Z}_E = \mathbb{Z}_{\mathbb{A}} \cap E$, то $N(\alpha) \in \mathbb{Z}$.
- 3. $N(\alpha) = 0 \Leftrightarrow \alpha = 0$.
- 4. $N(\alpha\beta) = N(\alpha)N(\beta), \ N(\frac{\alpha}{\beta}) = \frac{N(\alpha)}{N(\beta)}.$

Доказательство.

- 1. Следует из теоремы 4.13 и теоремы Виета.
- 2. Следует из первого пункта.
- 3. Следует из определения вложения.
- 4. Следует из определения вложения.

4.5 Трансцендентность π

Теорема 4.17 (Линдемана-Вейерштрасса). Пусть $\alpha_0, \ldots, \alpha_m$ – различные алгебраические числа. Тогда $e^{\alpha_0}, \ldots, e^{\alpha_m}$ линейно независимы (ЛНЗ) над \mathbb{A} .

Теорема 4.18 (Об экспоненциальной линейной форме). Пусть $\alpha_0, \ldots, \alpha_m \in \mathbb{A}, a_0, \ldots, a_m \in \mathbb{A}$. Пусть $A(x) = \sum_{k=0}^m a_k e^{\alpha_k x} = \sum_{l=0}^\infty \left(\sum_{k=0}^\infty a_k \frac{\alpha_k^l}{l!}\right) x^l \in \mathbb{Q}[[x]] \setminus \{0\}$. Тогда $A(1) \neq 0$.

Теорема 4.19. $4.18 \Rightarrow 4.17$.

Доказательство. Нужно показать, что $A(1) \neq 0$. Тогда мы применим 4.18 и получим, что $\forall a_0, \dots, a_m$ $A(1) \neq 0$, т.е. линейная комбинация $e^{\alpha_0}, \dots, e^{\alpha_m}$ не 0, и утверждение теоремы выполнено. Можно считать, что все $a_0, \dots, a_m \neq 0$.

Тогда $A(x) = \sum_{k=0}^m a_k e^{\alpha_k x} \neq 0$, т.к. вронскиан W

$$W(e^{\alpha_0 x, \dots, \alpha_m x}) = \begin{vmatrix} e^{\alpha_0 x} & e^{\alpha_1 x} & \dots & e^{\alpha_m x} \\ \alpha_0 e^{\alpha_0 x} & \alpha_1 e^{\alpha_1 x} & \dots & \alpha_m e^{\alpha_m x} \\ \dots & \dots & \dots & \dots \\ \alpha_0^m e^{\alpha_0 x} & \alpha_1^m e^{\alpha_1 x} & \dots & \alpha_m^m e^{\alpha_m x} \end{vmatrix} = \exp\left(\left(\sum_{k=0}^m \alpha_k\right) x\right) V(\alpha_0, \dots, \alpha_m) \neq 0,$$

где $V(x_1,\ldots,x_m)$ является Вандермондом для чисел x_1,\ldots,x_m .

Почему $A(x) \in \mathbb{Q}[[x]]$? Рассмотрим нормальное расширение E поле \mathbb{Q} , содержащее $a_0, \ldots, a_m, \alpha_0, \ldots, \alpha_m$. (Например, можно взять все сопряженные к ним и добавить к \mathbb{Q} , по теореме 4.15 будет нормальное расширение).

Пусть $[E:\mathbb{Q}] = \eta, \sigma_1, \dots, \sigma_{\eta}$ – все автоморфизмы E над \mathbb{Q} . Тогда A(x) = E[[x]]. Определим $\sigma_1, \dots, \sigma_{\eta}$ на E[[x]] так:

$$\sigma_i : \sum_{l=0}^{\infty} \gamma_l x^l \mapsto \sum_{l=0}^{\infty} \sigma_i(\gamma_l) x^l$$

$$\sigma_i(A(x)) = \sum_{l=0}^{\infty} \left(\sum_{l=0}^{\infty} \sigma_i(a_k) \frac{\sigma_i(\alpha_k)^l}{l!} \right) x^l = \sum_{l=0}^{m} \sigma_i(a_k) e^{\sigma_i(\alpha_k)x} = A_i(x)$$

Поскольку $A(x) \neq 0$, то $A_i(x) \neq 0$.

Рассмотрим
$$B(x) = \prod_{i=1}^{\eta} A_i(x) \in E[[x]], B(x) \not\equiv 0.$$

Заметим, что

$$\sigma_i(B(x)) = \sigma_i \left(\prod_{i=1}^{\eta} A_i(x) \right) = \prod_{i=1}^{\eta} \sigma(A_i(x)) = \prod_{i=1}^{\eta} \sigma_i(\sigma_j(x)) = \prod_{i=1}^{\eta} \sigma_j(A_i(x)) = B(x) \Rightarrow B(x) \in \mathbb{Q}[[x]].$$

$$B(x) = \prod_{i=1}^{\eta} \sum_{k=0}^{n} \sigma_i(a_k) e^{\sigma_i(\alpha_k)x} = \sum_{l=0}^{L} b_l e^{\beta_l x}.$$

По Теореме 4.18 $B(1) \neq 0$. Тогда $B(1) = \prod_{j=1}^{n} A_j(1) \neq 0 \Rightarrow \forall j \ A_j(1) \neq 0$. А для тождественного σ_j имеем $A_j(x) = A(x)$ получаем, что $A(1) \neq 0$.

Лемма 4.20. Пусть $b_0, \ldots, b_m, \beta_0, \ldots, \beta_m \in \mathbb{C}$, пусть $\sum_{k=0}^m b_k e^{\beta_k} = 0$. Рассмотрим многочлен f(x) = 0 $f_n(x) = (x - \beta_0)^n (x - \beta_1)^{n+1} \dots (x - \beta_m)^{n+1}, \ nycmb \ g(x) = \frac{1}{n!} \sum_{i \in I} f^{(n)}(x)$ (c некоторого l они все станут равны нулю). Тогда

$$\left|\sum_{k=0}^m b_k g(\beta_k)\right| \leqslant \frac{c^{n+1}}{n!}, \quad \text{ide } c = c(b_0, \dots, b_m, \beta_0, \dots, \beta_m) \text{ - he sasucum om } n.$$

Доказательство. Положим $F(x) = \sum_{l>0} f^{(l)}(x)$. Нужно доказать, что $\left|\sum_{l=0}^m b_k F(\beta_k)\right| \leqslant c^{n+1}$. Заметим,

что $F(0)e^{\beta_k} - F(\beta_k) = e^{\beta_k} \int_0^{\beta_k} e^{-z} f(z) dz$ (по частям).

Домножим на
$$b_k$$
 и просуммируем по k от 0 до m :
$$F(0) \sum_{k=0}^m b_k e^{\beta_k} - \sum_{k=0}^m b_k F(\beta_k) = \sum_{k=0}^m \left[b_k \int_0^{\beta_k} e^{\beta_k - z} f(z) dz \right] - \text{хотим оценить модуль правой части.}$$

$$\left| \sum_{k=0}^{m} \left[b_k \int_0^{\beta_k} e^{\beta_k - z} f(z) dz \right] \right| \leqslant \sum_{k=0}^{m} |b_k| e^r \cdot (2r)^{(m+1)(n+1)} \leqslant c^{n+1}, \text{ где } r = \max_{0 \leqslant k \leqslant m} |\beta_k|$$

для
$$c = (2r)^{m+1}e^r \cdot \max\left(1, \sum_{k=0}^m |b_k|\right).$$

Доказательство. (теоремы об экспоненциальной линейной форме (Т.Э.Л.Ф.)).

Пусть E – нормальное расширение поля \mathbb{Q} , содержащее $a_0,\ldots,a_m,\alpha_0,\ldots,\alpha_m,\ [E:\mathbb{Q}]=\nu,\sigma_1,\ldots,\sigma_{\nu}$ – все автоморфизмы E над \mathbb{Q} (аналогично доказательству теоремы 4.19 о Т.Э.Л. Φ . \Rightarrow Т.Л.-В.). Можно считать, что $a_0, \ldots, a_m \in \mathbb{Z}_A \ (\in \mathbb{Z}_E)$, так как существует $d \in \mathbb{Z} \setminus \{0\}$ такое, что все $da_0, da_1, \ldots, da_m \in \mathbb{Z}$ \mathbb{Z}_A . От замены то, что дано, и то. что требуется доказать, не поменяется.

Пусть $d \in \mathbb{N}$ – такое, что $d\alpha_0, d\alpha_1, \ldots, d\alpha_m \in \mathbb{Z}_E$. Предположим противное: пусть A(1) = 0. Тогда продлеваем наши автоморфизмы $\sigma_1, \dots, \sigma_{\nu}$ на E[[x]] как в доказательстве теоремы о Т.Э.Л. $\Phi \Rightarrow$ Т.Л.-В. То есть можно рассматривать $(\sigma_i A)(x)$.

Так как $A(x) \in \mathbb{Q}[[x]]$, то $(\sigma_i A)(x) = A(x) \ \forall i = 1, 2, \dots, \nu$. Следовательно, $\sum_{i=0}^{m} \sigma_i(a_k) e^{\sigma_i(\alpha_k)x} =$ $(\sigma_i A)(x) = A(x)$, T.e.

$$\sum_{k=0}^{m} \sigma_i(a_k) e^{\sigma_i(\alpha_k)} = A(1) = 0, \quad i = 1, 2, \dots, \nu.$$

Положим $f(x) = f_n(x) = (x - \alpha_0)^n (x - \alpha_1)^{n+1} \dots (x - \alpha_m)^{n+1}, g(x) = g_n(x) = \frac{1}{n!} \sum_{l > 1} f^{(l)}(x)$. Положим

$$I=I_n=d^{m(n+1)}\sum_{k=0}^m a_kg(lpha_k)$$
. Покажем, что $I\in\mathbb{Z}_E$:

$$I = \sum_{k=0}^{m} a_k \sum_{l \geqslant n} d^{m(n+1)} \frac{1}{n!} f^{(l)}(\alpha_k) = \sum_{k=0}^{m} a_k \cdot (\text{целое алгебраическое число}), \text{ т.к. } d^{m(n+1)} f(x) = d^{-n} h(dx),$$

где
$$h(t) = (t - d\alpha_0)^n (t - d\alpha_1)^{n+1} \dots (t - d\alpha_m)^{n+1}$$
 (т.е. $h(t) \in \mathbb{Z}_E$). Следовательно, $d^{m(n+1)} \frac{1}{l!} f^{(l)}(\alpha_k) = (t - d\alpha_0)^n (t - d\alpha_1)^{n+1} \dots (t - d\alpha_m)^{n+1}$

35

$$d^{-n+l} \frac{1}{l!} h^{(l)}(d\alpha_k) \in \mathbb{Z}_E$$
 при $l \leqslant n$. Далее,

$$I = d^{m(n+1)} \frac{1}{n!} f^{(n)}(\alpha_0) + (n+1) \sum_{k=0}^m \sum_{l \ge n+1} a_k \frac{l!}{(n+1)!} d^{m(n+1)} \frac{1}{l!} f^{(l)}(\alpha_k) = a_0 \prod_{k=1}^m (d\alpha_0 - d\alpha_k)^{n+1} + (n+1)J,$$

где $J \in \mathbb{Z}_E$

Следовательно,
$$I \in \mathbb{Z}_E$$
, причём $I \neq 0$, если $\left(n+1, N\left(a_0\prod_{k=1}^m(d\alpha_0-d\alpha_k)\right)\right)=1.$

Таких n бесконечно много: n+1 – простое, $\to \infty$. Но тогда и $\sigma_i(I) \in \mathbb{Z}_E$ и $\sigma_i(I) \neq 0$ при "хороших"n.

Ho
$$\sigma_i(I) = d^{m(n+1)} \sum_{k=0}^m \sigma_i(a_k) g_i(\sigma_i(\alpha_k))$$
, где $f_i(x) = (\sigma_i f)(x) = (x - \sigma_i(\alpha_0))^n (x - \sigma_i(\alpha_1))^{n+1} \dots (x - \sigma_i(\alpha_n))^n (x - \sigma_i(\alpha_n))^{n+1} \dots (x - \sigma_i(\alpha_$

 $\sigma_i(\alpha_m))^{n+1}, g_i(x) = (\sigma_i g)(x) = \frac{1}{n!} \sum_{l \geqslant n} f_i^{(l)}(x)$. Применим Лемму 4.20 для $b_k = \sigma_i(a_k), \beta_i = \sigma_i(\alpha_k), i = 1, 2, \dots, \nu$. Получим

$$|\sigma_i(I)| \leqslant d^{m(n+1)} \frac{c_i^{n+1}}{n!} \leqslant \frac{c^{n+1}}{n!}, \text{ где } c = d^m \max_i(c_i).$$

Итак, все $\sigma_i(I) \in \mathbb{Z}_E$, $\sigma_i(I) \neq 0$ при "хороших" $n, \sigma_i(I) \to 0$ при $n \to \infty$.

Следовательно, $N(I)=\prod_{i=1}^r\sigma_i(I)\to 0$ при $n\to\infty$ и $N(I)\ne 0$ при "хороших"n. Но $N(I)\in\mathbb{Z}!$ Противоречие.

Следствие 12 (из теоремы Л.-В.). Если $\alpha \in \mathbb{A} \setminus \{0\}$, то $e^{\alpha} \notin \mathbb{A}$.

Доказательство. Пусть $\alpha_0=0,\ \alpha_1=\alpha.$ По теореме Л.-В. $e^{\alpha_0}=1$ и $e^{\alpha_1}=e^{\alpha}$ линейно независимы над $\mathbb A$.

Следствие 13. Число π – трансцендентно.

Доказательство. Предположим противное. Тогда $\alpha_0 = 0$, $\alpha_1 = i\pi$. По теореме Л.–В. $e^{\alpha_0} = 1$, $e^{\alpha_1} = -1$ линейно независимы над \mathbb{A} , но они линейно зависимы. Противоречие.

Следствие 14. $\mathit{Ecnu}\ \alpha \in \mathbb{A} \backslash \{1\},\ \mathit{mo}\ \ln(\alpha) \not\in \mathbb{A}.$

Следствие 15. Если $\alpha \in \mathbb{A} \setminus \{0\}$, то $\sin(\alpha)$, $\cos(\alpha)$, $\operatorname{tg}(\alpha) \notin \mathbb{A}$.

 \mathcal{A} оказательство. $\sin(\alpha) = \frac{1}{2i}e^{i\alpha} - \frac{1}{2i}e^{-i\alpha}$. $i\alpha \neq -i\alpha$ и принадлежит $\mathbb{A} \Rightarrow \text{для } 0, i\alpha, -i\alpha$ по теореме \mathcal{A} .—В. $1, e^{i\alpha}, e^{-i\alpha}$ ЛНЗ, а если бы $\sin(\alpha) \in \mathbb{A}$, то это было бы \mathcal{A} З.

Следствие 16. Если $\beta_1, \ldots, \beta_k \in \mathbb{A}$ ЛНЗ над \mathbb{Q} , то $e^{\beta_1}, \ldots, e^{\beta_k}$ – алгебраически независимы над \mathbb{A} .

Доказательство. Пусть $f(x_1,\ldots,x_k)\in\mathbb{A}[x_1,\ldots,x_k]$. Тогда $f(e^{\beta_1},\ldots,e^{\beta_k})=\sum_{(n_1,\ldots,n_k)}a_{n_1\ldots n_k}e^{n_1\beta_1+\ldots+n_k\beta_k}=:\alpha_{n_1\ldots n_k}$ — все попарно различны, т.к. β_1,\ldots,β_k ЛНЗ над \mathbb{Q} . По

теореме Л.–В. $e^{n_1\beta_1+...+n_k\beta_k}$ ЛНЗ над \mathbb{A} , следовательно, вся сумма не обращается в ноль.