Lecture No. 07

Concept: Consider the following matrix equations $\begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} =$

$$\begin{bmatrix} 5 \\ 8 \end{bmatrix} \text{ and } \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Figure 7.1: Matrix Transformation

7.1 Transformation

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m . The set \mathbb{R}^n is called the **domain** of T, and \mathbb{R}^m is called the **codomain** of T. The notation $T: \mathbb{R}^n \to \mathbb{R}^m$ indicates that the domain of T is \mathbb{R}^n and the codomain is \mathbb{R}^m . For \mathbf{x} in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the image of \mathbf{x} (under the action of T). The set of all images $T(\mathbf{x})$ is called the range of T.

Figure 7.2: Domain and codomain

Matrix Transformation: For each \mathbf{x} in \mathbb{R}^n , $T(\mathbf{x})$ is computed as $A\mathbf{x}$, where A is an $m \times n$ matrix.

For simplicity, we sometimes denote such a matrix transformation by $\mathbf{x} \mapsto A\mathbf{x}$. Observe that the domain of T is \mathbb{R}^n when A has n columns and the codomain of T is \mathbb{R}^m when each column of A has m entries. The range of T is the set of all linear combinations of the columns of A, because each image $T(\mathbf{x})$ is of the form $A\mathbf{x}$.

Example: $A = \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix}$ then find the transformation defined by the given matrix.

Solution: The order of the matric is 2×4 , thus matrix gives a transformation from \mathbb{R}^4 to \mathbb{R}^2 .

Example: Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$ and

define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

- 1. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation.
- 2. Find an \mathbf{x} in \mathbb{R}^2 whose image under T is \mathbf{b} .
- 3. Is there more than one \mathbf{x} whose image under T is \mathbf{b} ?
- 4. Determine if \mathbf{c} is in the range of the transformation T.

Solution: 1.
$$T(\mathbf{u}) = \begin{bmatrix} 5 \\ 1 \\ -9 \end{bmatrix}$$
.

2. Solve $T(\mathbf{x}) = \mathbf{b}$ for \mathbf{x} , i.e., solve $A\mathbf{x} = \mathbf{b}$, the augmented matrix of the system is

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1.5 \\ 0 & 1 & -0.5 \\ 0 & 0 & 0 \end{bmatrix}$$

Which shows that the system has a unique solution and there is one unique vector in \mathbb{R}^2 , i.e., $x_1 = 1.5$ and $x_2 = -0.5$ such that **b** is the under the given transformation.

Figure 7.3: Image of **b** under matrix transformation

3. No there is one and only one \mathbf{x} such that $T(\mathbf{x}) = \mathbf{b}$ holds.

4. Solve $T(\mathbf{x}) = \mathbf{c}$ for \mathbf{x} , i.e., solve $A\mathbf{x} = \mathbf{c}$, the augmented matrix of the system is

$$\begin{bmatrix} 1 & -3 & 3 \\ 3 & 5 & 2 \\ -1 & 7 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 14 & -7 \\ 0 & 4 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 14 & -7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -35 \end{bmatrix}$$
 which

shows that the system is inconsistent, hence there doesn't exist any \mathbf{x} such that $T(\mathbf{x}) = \mathbf{c}$ holds.

Example: Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -3 \\ 2 & -5 & 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -6 \\ -4 \\ -5 \end{bmatrix}$. Find a vector \mathbf{x} such that

 $T(\mathbf{x}) = A\mathbf{x} = \mathbf{b}$ satisfy. Is such an \mathbf{x} is unique?

Solution: The augmented matrix is

$$\begin{bmatrix} 1 & -2 & 3 & -6 \\ 0 & 1 & -3 & -4 \\ 2 & -5 & 6 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3 & -6 \\ 0 & 1 & -3 & -4 \\ 0 & -9 & 12 & -17 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 3 & -6 \\ 0 & 1 & -3 & -4 \\ 0 & 0 & -15 & -53 \end{bmatrix}.$$

The above augmented matrix in echelon form shows that the system has a unique solution.

Example: If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ projects points

in \mathbb{R}^3 onto x_1x_2 -plane because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}.$$

Figure 7.4: Projection transformation

Example: The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$.

Figure 7.5: Shear transformation

Figure 7.6: Another example of shear transformation

Shear transformations appear in physics, geology, and crystallography.

7.2 Linear Transformation

A transformation (or mapping) T is linear if

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u} , \mathbf{v} in the domain of T;
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all scalars c and all \mathbf{u} in the domain of T.

Remark: We know that a given matrix A of order $m \times n$ satisfies the following properties

- 1. $A(\mathbf{u} + \mathbf{v}) = A(\mathbf{u}) + A(\mathbf{v})$ and
- 2. $T(c\mathbf{u}) = cT(\mathbf{u})$.

Every matrix transformation is a linear transformation.

Remark: If T is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0}$$
, and, $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$

for all vectors \mathbf{u}, \mathbf{v} in the domain of T and scalars c, d.

Example: Let T be a linear transformation such that $T(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}$ and

$$T(\begin{bmatrix} 0 \\ 2 \end{bmatrix}) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
. Find the image of $\begin{bmatrix} 5 \\ 9 \end{bmatrix}$ under the linear transformation T .

Example: Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps

 \mathbf{x} into $x_1\mathbf{u} + x_2\mathbf{v}$ where $\mathbf{u} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$. Find a matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for each \mathbf{x} .

Contraction and Dilation: Given a scalar r, the mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = r\mathbf{x}$. The mapping T is called a contraction when $0 \le r \le 1$ and a dilation if r > 1.

Figure 7.7: Contraction and dilation

Example: Define a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T(\mathbf{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}.$$

Find the images under T of $\mathbf{u} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} + \mathbf{v} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$.

Figure 7.8: Image under linear transformation

7.3 Some Practice Problems

Question: Let $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -3 \\ 2 & -5 & 6 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -6 \\ -4 \\ -5 \end{bmatrix}$. Find a vector \mathbf{x} such that

 $T(\mathbf{x}) = A\mathbf{x}$ satisfy. Is such an \mathbf{x} is unique?

Question: Define $T: \mathbb{R} \to \mathbb{R}$ by T(x) = mx + b.

- 1. Show that T is a linear transformation when b = 0.
- 2. Find a property of a linear transformation that is violated when $b \neq 0$.

Question: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$(i) T(\mathbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, (ii) T(\mathbf{x}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Describe geometrically what T does to each vector in \mathbb{R}^2 .

CHAPTER 8

Lecture No. 08

Question: Define $T: \mathbb{R} \to \mathbb{R}$ by T(x) = mx + b.

- 1. Show that T is a linear transformation when b = 0.
- 2. Find a property of a linear transformation that is violated when $b \neq 0$.

Solution: 1. Check the two conditions of linear transformation.

2. The first property of the linear transformation is not satisfied. Verify

Identity Matrix:
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2\times 2}$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3\times 3}$, $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4\times 4}$.

Example: The columns of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose

T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that

$$T(\mathbf{e}_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$.

With no additional information, find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 .

Solution: Let $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ then we can write

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = x_1 \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + x_2 \left[\begin{array}{c} 0 \\ 1 \end{array}\right].$$

Since T is a linear transformation then we have

$$T(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]) = x_T(1\left[\begin{array}{c} 1 \\ 0 \end{array}\right]) + x_2 T(\left[\begin{array}{c} 0 \\ 1 \end{array}\right])$$

and thus

$$T(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]) = x_1 \left[\begin{array}{c} 5 \\ -7 \\ 2 \end{array}\right] + x_2 \left[\begin{array}{c} -3 \\ 8 \\ 0 \end{array}\right] = \left[\begin{array}{cc} 5 & -3 \\ -7 & 8 \\ 2 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right].$$

Consequently, we can say that $A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2)].$

Figure 8.1: The I_2 columns

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
, for all \mathbf{x} in \mathbb{R}^n .

In fact, A is the $m \times n$ matrix whose jth column is he vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbb{R}^n :

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \dots \ T(\mathbf{e}_n)].$$

Remark: The matrix A such that $T(\mathbf{x}) = A\mathbf{x}$, is called a matrix of transformation for T.

Example: Assume that T is a linear transformation. Find the standard matrix of T

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^4$, $T(\mathbf{e}_1) = (3, 1, 3, 1)$, and $T(\mathbf{e}_2) = (-5, 2, 0, 0)$, where $\mathbf{e}_1 = (1, 0)$ and $\mathbf{e}_2 = (0, 1)$.
- 2. $T: \mathbb{R}^3 \to \mathbb{R}^2$, $T(\mathbf{e}_1) = (1,4)$, and $T(\mathbf{e}_2) = (-2,9)$, and $T(\mathbf{e}_3) = (3,-8)$ where \mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_3 are the columns of the 3×3 identity matrix.

Solution: 1. The standard matrix of linear transformation is

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2)] = \begin{bmatrix} 3 & -5 \\ 1 & 2 \\ 3 & 0 \\ 1 & 0 \end{bmatrix}$$

2. The standard matrix of linear transformation is

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ T(\mathbf{e}_3)] = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 9 & -8 \end{bmatrix}.$$

Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ , with counterclockwise rotation for a positive angle. We could show geometrically that such a transformation is linear. Find the standard matrix A of this transformation.

8.1 Finding the matrix of transformation of a linear transformation defined geometrically

:

Figure 8.2: The I_2 columns and rectangle

Reflection about a line: You have to understand reflection about a line see the lecture in which I have explained this concept.

Reflection through the x_1 -axis:

Figure 8.3: Reflection about x_1 -axis

The matrix of Transformation: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ Reflection through the x_2 -axis:

Figure 8.4: Reflection about x_2 -axis

8.1. Finding the matrix of transformation of a linear transformation defined geometrically

54

The matrix of Transformation: $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ Reflection through the line $x_2 = x_1$:

Figure 8.5: Reflection about the line $x_2 = x_1$

The matrix of Transformation: $\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]$ Reflection through the line $x_2=-x_1$:

Figure 8.6: Reflection about the line $x_2 = -x_1$

The matrix of Transformation: $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ Reflection through the origin:

The matrix of Transformation: $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Horizontal / Vertical contraction and expansion:

Figure 8.7: Horizontal and vertical contraction and expansion

The matrix of Transformations: $\begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$ Horizontal / Vertical Shears:

Figure 8.8: Horizontal and vertical shears

The matrix of Transformations: $\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$

Projections:

Projection onto x_1 -axis:

Figure 8.9: Projection on x_1 -axis and x_2 -axis

Projection onto x_2 -axis:

The matrix of Transformations: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Example: Assume that T is a linear transformation. Find the standard matrix of T when

- 1. T is a vertical shear transformation that maps \mathbf{e}_1 into $\mathbf{e}_1 3\mathbf{e}_2$ and leaves \mathbf{e}_2 unchanged.
- 2. T is a horizontal shear transformation that maps \mathbf{e}_2 into $\mathbf{e}_2 + 2\mathbf{e}_1$ and leaves \mathbf{e}_1 unchanged.

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

Remark: T is onto if codomain of $T = \mathbb{R}^m$.

Figure 8.10: Onto mapping

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one to one** if each **b** is the image of at most one **x** in \mathbb{R}^n .

Figure 8.11: One to one transformation

Example: Let T be the linear transformation whose standard matrix is

$$A = \left[\begin{array}{rrrr} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{array} \right]$$

Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? Is T a one to one mapping?

Solution: Let $\mathbf{b} \in \mathbb{R}^3$ be arbitrary element then we have to check the system of linear equations $A\mathbf{x} = \mathbf{b}$. For given A the augmented matrix is

$$\left[\begin{array}{ccccc} 1 & -4 & 8 & 1 & b_1 \\ 0 & 2 & -1 & 3 & b_2 \\ 0 & 0 & 0 & 5 & b_3 \end{array}\right].$$

The augmented matrix is in echelon form and for every **b** the system $A\mathbf{x} = \mathbf{b}$ has solution (indeed not unique, verify).

T is not one to one map. Can you justify.

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T, then

- 1. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- 2. T is one to one if and only if the columns of A are linearly independent.

Example: Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-one linear transformation. Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

Solution: The matrix of transformation is

$$[T(\mathbf{e}_1 \ T(\mathbf{e}_2))] = \begin{bmatrix} 3 & 1 \\ 5 & 7 \\ 1 & 3 \end{bmatrix}$$

clearly the columns of the matrix are linearly independent and hence the transformation is one to one.

The transformation T is not onto. Can you justify?

8.2 Some Practice Problems

Question: Assume that T is a linear transformation. Find the standard matrix of T

1.
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(\mathbf{e}_1) = (3,0,3)$, and $T(\mathbf{e}_2) = (2,1,5)$, where $\mathbf{e}_1 = (1,0)$ and $\mathbf{e}_2 = (0,1)$.

- 2. $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(\mathbf{e}_1) = (1,4,0)$, and $T(\mathbf{e}_2) = (-2,0,2)$, and $T(\mathbf{e}_3) = (0,3,5)$ where \mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_3 are the columns of the 3×3 identity matrix.
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 + 2\mathbf{e}_1$ and leaves \mathbf{e}_1 unchanged and then reflects points through the line $x_2 = -x_1$
- 4. $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 -axis and then reflects points through the line $x_2 = x_1$.

Question: Show that T is a linear transformation by finding a matrix that implements the mapping

- 1. $T(x_1, x_2) = (x_1 + 4x_2, 0, x_1 3x_2, x_1).$
- 2. $T(x_1, x_2, x_3, x_4) = 3x_1 + 4x_3 2x_4$.