Department of Mathematics and Physics

Course: MATH 1117-05

Title: Calculus I Credit Hours: 4

Instructor: Daniel Cicala

Email: dcicala@newhaven.edu

Semester: Spring 2020 Classroom: KAPL 203

Meeting Times: MWF 10:50–12:05

Office: Maxcy 323

Office Hours: MW 9-10 // WF 1-2 // F 1-3

§ II: Instructors Addendum For MATH 1117-05 Calculus I

Disclaimer

I reserve the right to make changes to this syllabus. All changes will be announced in a timely manner through email or classroom announcements.

Department Syllabus

This is the instructor portion of the syllabus. See the department syllabus, located in

Blackboard > Syllabus

for department policies and resources.

Textbook

Calculus: Early Transcendentals, by Briggs, Cochran, Gillett, Pearson, 3e, ISBN 978-0-13-476364-45.

This text is not required because it will not be explicitly referenced, though its use is encouraged to supplement learning.

Worksheets

During each lecture, students will complete a worksheet to be handed in at the end of class. It will be graded for completeness, not correctness. Worksheets are worth 10% of your total grade.

Exercises

Each lesson has an associated set of exercises which students will have one week to complete two attempts. The exercises can be found and completed in the

Blackboard > Course Contents

Exercises contribute 15% of your total grade.

Homework

The instructor will select one or two questions from each section. Students will write detailed answers to these questions which are to be graded on both the correctness *and on the quality of writing*. These are expected to be submitted as a "final draft". Handwriting is acceptable. While initial drafts need not be submitted, students are encouraged to seek feedback on early drafts during office hours. An example homework assignment is provided in

Blackboard > Syllabus

Homework contributes 15% of your total grade.

Exams

There are two exams during the semester and one final exam. All exams are closed notes and closed books. Calculators and other electronics are also not allowed. Any attempt to cheat will be dealt with according to the misconduct code. Students found to have violated the rules governing academic integrity will receive a 0 grade on the associated exam and may be subject to further penalties as allowed by the University. Each midterm exam contributes 15% your total grade. The final exam contributes 30% of the total grade.

Scoring and Course Grades

The letter grade is based on the student's total point score for the semester. The class letter grade is assigned based on

Points	Grade	
97.5–100.0	A +	
92.5–97.5	A	
90.0-92.5	A –	
87.5–90.0	B +	
82.5-87.5	В	
80.0-82.5	В –	

Points	Grade	
77.5–80.0	C +	
72.5-77.5	C	
70.0-72.5	C -	
67.5–70.0	D +	
62.5-67.5	D	
60.0-62.5	D-	
0–60	F	

Grade Calculation

The total grade will be calculated using the formula

0.10(worksheets) +0.15(exercises) +0.15(homework) +0.30(midterm exams) +0.30(final exam)

Course Outline Schedule

Spring 2020 classes are from Wednesday 22 Jan 2020 to Wednesday 13 May 2020. The last day to drop classes without any financial penalty is Wednesday 29 Jan 2020, and the last day to withdraw from the class, i.e., to request a **W** grade is prior to Tuesday 24 Mar 2020. All requests for a W must be sent to the registrar.

The following is a tentative schedule. The exam dates are also noted on the schedule. These dates are subject to change; this includes the exams.

Dates	Monday	Wednesday	Friday
Week 1	no class	class intro	functions
Week 2	inverse functions	algebra of functions	limits graphically
Week 3	limits analytically	more limits	continuity
Week 4	chapter 2 wrapup	derivative intro	derivative as function
Week 5	derivative rules	more derivative rules	trig derivatives
Week 6	derivative applications	exam review	exam 1
Week 7	chain rule	implicit differentiation	deriving log, exp, arctrig
Week 8	related rates	chapter 3 wrapup	extrema
Week 9	no class	no class	no class
Week 10	mean value theorem	graphing functions 1	graphing functions 2
Week 11	optimization	linear approx.	l'hopital
Week 12	antiderivatives	exam review	exam 2
Week 13	area under curves	definite integrals	FTC
Week 14	working w integrals	substitution	instructor topics
Week 15	instructor topics	instructor topics	instructor topics
Week 16	final review	reading day	no class
Final Exam	Tuesday 12 May 2020		