WEEK 7 SOLUTIONS INDUCTION I

February 23, 2021

1. Prove that for all $n \in \mathbb{N}$, $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$.

Solution:

Proof. We proceed by induction on n. P(n) is the statement $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$.

Base case: We want to prove P(0), that is, that $\sum_{i=0}^{0} 2^i = 2^{0+1} - 1$. The left hand side is $\sum_{i=0}^{0} 2^i = 2^0 = 1$, while the right hand side is $2^{0+1} - 1 = 2 - 1 = 1$. So both sides are equal and P(0) is true.

Induction step: Let $n \in \mathbb{N}$ and assume that P(n) is true, that is, that $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ (this is the induction hypothesis).

We want to prove that P(n+1) is true, that is, $\sum_{i=0}^{n+1} 2^i = 2^{n+2} - 1$

We see that

$$\sum_{i=0}^{n+1} 2^i = \sum_{i=0}^n 2^i + 2^{n+1}$$

$$= 2^{n+1} - 1 + 2^{n+1}$$

$$= 2 \cdot 2^{n+1} - 1$$

$$= 2^{n+2} - 1$$

by induction hypothesis

as desired. Thus by the principle of mathematical induction, for all $n \in \mathbb{N}$, $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$.

2. Let $x \in \mathbb{R}$ with x > -1. Prove that for all $n \in \mathbb{N}$, $1 + nx \le (1 + x)^n$. (Hint: at some point, you might want to consider two cases, one where $x \ge 0$, and one where -1 < x < 0.)

Solution:

Proof. We proceed by induction on n. P(n) is the statement $1 + nx \le (1 + x)^n$.

Base case: We want to prove P(0), that is, $1 + 0x \le (1 + x)^0$. The left hand side is 1 + 0x = 1, while the right hand side is $(1 + x)^0 = 1$. So both sides are equal and P(0) is true.

Induction step: Let $n \in \mathbb{N}$ and assume that P(n) is true, that is, that $1 + nx \leq (1 + x)^n$ is true (this is the induction hypothesis).

We want to prove that P(n+1) is true, that is, $1+(n+1)x \leq (1+x)^{n+1}$.

Examining the left hand side, we have

$$1 + (n+1)x = 1 + nx + x$$

$$\leq (1+x)^n + x$$

by induction hypothesis

On the other hand, the right hand side is equal to

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x) = (1+x)^n + x \cdot (1+x)^n,$$

where we distribute over the parentheses for the second equality.

So it's enough for me to prove that $(1+x)^n + x \le (1+x)^n + x \cdot (1+x)^n$. Cancelling the $(1+x)^n$ from both sides, we can see that it's actually enough for us to show that $x \le x \cdot (1+x)^n$.

Now, we split into two cases:

Case 1: $x \ge 0$. Then $(1+x)^n \ge (1+0)^n \ge 1$. Since x is positive, multiplying x by a number that's at least 1 will either keep it the same or increase it, so it is true that $x \le x \cdot (1+x)^n$.

Case 2: -1 < x < 0. Then 0 < 1 + x < 1, so $0 < (1 + x)^n < 1$. Multiplying x by a number between 0 and 1 will decrease its absolute value. However, since x is negative, decreasing the absolute value means that you are increasing the number. So $x \le x \cdot (1 + x)^n$.

Since in both cases, we found that $x \leq x \cdot (1+x)^n$, we are done. This proves that P(n+1) is true, and so by the principle of mathematical induction, for $x \in \mathbb{R}$ with x > -1, and for all $n \in \mathbb{N}$, $1 + nx \leq (1+x)^n$.

- 3. Recall that $\frac{d^n}{dx^n}f(x)$ means that you take the derivative of f(x) n times. Prove that for all $n \in \mathbb{N}$, $\frac{d^n}{dx^n}(xe^x) = (n+x)e^x$. (Hint: use the product rule.)
- 4. Consider an $n \times n$ grid of squares. For example, here's a picture of a 3×3 grid:

Within an $n \times n$ grid, how many squares can you find? For example, in the 3×3 case, there are nine 1×1 squares, four 2×2 squares, and one 3×3 square, so there are 14 squares total.

Write your answer as a summation, and use induction to prove that this summation is $\frac{n(n+1)(2n+1)}{6}$.

- 5. (Challenge) Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
 - (a) Prove that there is a real number a such that f(n) = an for all $n \in \mathbb{N}$.
 - (b) Deduce that f(n) = an for all $n \in \mathbb{Z}$.
 - (c) Deduce that f(x) = ax for all $x \in \mathbb{Q}$.