

Cones, rectifiability, and SIOs

Damian Dąbrowski

Universitat Autònoma de Barcelona, Barcelona Graduate School of Mathematics (BGS-Math)

Thanks to support from MDM-2014-0445.

Cones

Given $x \in \mathbb{R}^d$, $V \in G(d, m)$, $\alpha \in (0, 1)$, set

$$K(x, V, \alpha) = \{ y \in \mathbb{R}^d : \operatorname{dist}(y, x + V) < \alpha | y - x | \}.$$

Cones

Given $x \in \mathbb{R}^d$, $V \in G(d, m)$, $\alpha \in (0, 1)$, set

$$K(x, V, \alpha, r) = K(x, V, \alpha) \cap B(x, r).$$

Tangent planes

A plane $W \in G(d, n)$ is a **tangent plane** to E at x if for all $\alpha \in (0, 1)$ there exists r > 0 such that

$$E \cap K(x, W^{\perp}, \alpha, r) = \emptyset.$$

Cones and Lipschitz graphs

Easy to show: $E \subset \mathbb{R}^d$ is a subset of an n-dimensional Lipschitz graph iff there exists $V \in G(d, d-n)$, $\alpha \in (0,1)$, such that

$$x \in E \implies E \cap K(x, V, \alpha) = \varnothing.$$

Rectifiability

Rectifiable sets and measures

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

Rectifiable sets and measures

A set $E \subset \mathbb{R}^d$ is *n*-rectifiable if there exists a countable number of *n*-dimensional Lipschitz graphs Γ_i such that

$$\mathcal{H}^n\left(E\setminus\bigcup_i\Gamma_i\right)=0.$$

A measure μ on \mathbb{R}^d is n-rectifiable if it is of the form

$$\mu = f\mathcal{H}^n|_E$$

for some *n*-rectifiable $E \subset \mathbb{R}^d$ and $f \in L^1_{loc}(E)$.

4

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

$$\mathcal{H}^n(F \cap \Gamma) = 0.$$

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

We say that $F \subset \mathbb{R}^d$ is **purely** n**-unrectifiable** if for every Γ -Lipschitz image of \mathbb{R}^n

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

5

We say that $F \subset \mathbb{R}^d$ is purely n-unrectifiable if for every Γ -Lipschitz image of \mathbb{R}^n

$$\mathcal{H}^n(F\cap\Gamma)=0.$$

Any set of finite \mathcal{H}^n measure can be decomposed into a rectifiable and purely unrectifiable part.

Applications in:

· boundedness of singular integral operators,

- · boundedness of singular integral operators,
- · study of removable sets for bounded analytic functions,

- · boundedness of singular integral operators,
- · study of removable sets for bounded analytic functions,
- optimal regularity of domains that ensure L^p solvability of the Dirichlet problem,

- · boundedness of singular integral operators,
- · study of removable sets for bounded analytic functions,
- optimal regularity of domains that ensure L^p solvability of the Dirichlet problem,
- · study of singular sets of harmonic maps, free boundaries...

Approximate tangent planes

A plane $W \in G(d, n)$ is an approximate tangent plane to E at X if for all $\alpha \in (0, 1)$

$$\lim_{r\to 0}\frac{\mathcal{H}^n(E\cap K(x,W^\perp,\alpha,r))}{r^n}=0.$$

Approximate tangents characterize rectifiability

Theorem (Federer '47)

Let $E \subset \mathbb{R}^d$, $\mathcal{H}^n(E) < \infty$. Then E is n-rectifiable iff for \mathcal{H}^n -a.e. $x \in E$ there is a unique approximate tangent plane to E at x, i.e. for all α

$$\lim_{r\to 0}\frac{\mathcal{H}^n(E\cap K(x,W^\perp,\alpha,r))}{r^n}=0.$$

Approximate tangents characterize rectifiability

Theorem (Federer '47)

Let $E \subset \mathbb{R}^d$, $\mathcal{H}^n(E) < \infty$. Then E is n-rectifiable iff for \mathcal{H}^n -a.e. $x \in E$ there is a unique approximate tangent plane to E at x, i.e. for all α

$$\lim_{r\to 0}\frac{\mathcal{H}^n(E\cap K(x,W^\perp,\alpha,r))}{r^n}=0.$$

Analogous result holds for μ satisfying $0 < \Theta^{n,*}(\mu, x) < \infty$,

$$\Theta^{n,*}(\mu, x) = \limsup_{r \to 0} \frac{\mu(B(x, r))}{r^n}, \qquad \Theta^n_*(\mu, x) = \liminf_{r \to 0} \frac{\mu(B(x, r))}{r^n}.$$

8

Approximate tangents characterize rectifiability

Theorem (Federer '47)

Let $E \subset \mathbb{R}^d$, $\mathcal{H}^n(E) < \infty$. Then E is n-rectifiable iff for \mathcal{H}^n -a.e. $x \in E$ there is a unique approximate tangent plane to E at x, i.e. for all α

$$\lim_{r\to 0}\frac{\mathcal{H}^n(E\cap K(x,W^\perp,\alpha,r))}{r^n}=0.$$

Analogous result holds for μ satisfying $0 < \Theta^{n,*}(\mu, x) < \infty$,

$$\Theta^{n,*}(\mu,x) = \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^n}, \qquad \Theta^n_*(\mu,x) = \liminf_{r \to 0} \frac{\mu(B(x,r))}{r^n}.$$

Fact

$$\mu$$
 is rectifiable \Rightarrow $0 < \Theta^{n,*}(\mu, x) = \Theta^n_*(\mu, x) < \infty$ a.e.

Conical energy

Let $V \in G(d, d-n)$, $\alpha \in (0,1)$, $1 \le p < \infty$. The (V, α, p) conical energy of E at $x \in E$ up to scale R > 0 is

$$\mathcal{E}_{E,p}(x,V,\alpha,R) = \int_0^R \left(\frac{\mathcal{H}^n(E \cap K(x,V,\alpha,r))}{r^n} \right)^p \frac{dr}{r}.$$

Conical energy

Let $V \in G(d, d-n)$, $\alpha \in (0,1)$, $1 \le p < \infty$. The (V, α, p) conical energy of E at $x \in E$ up to scale R > 0 is

$$\mathcal{E}_{E,p}(x,V,\alpha,R) = \int_0^R \left(\frac{\mathcal{H}^n(E \cap K(x,V,\alpha,r))}{r^n} \right)^p \frac{dr}{r}.$$

More generally: for a Radon measure μ on \mathbb{R}^d define

$$\mathcal{E}_{\mu,p}(x,V,\alpha,R) = \int_0^R \left(\frac{\mu(K(x,V,\alpha,r))}{r^n}\right)^p \frac{dr}{r}.$$

9

Rectifiability implies finite energy

Theorem (D. '20)

Let $1 \le p < \infty$. Suppose μ is n-rectifiable. Then, for μ -a.e. x there is $V_x \in G(d,d-n)$ such that for all $\alpha \in (0,1)$

$$\mathcal{E}_{\mu,p}(x,V_x,\alpha,1) = \int_0^1 \left(\frac{\mu(K(x,V_x,\alpha,r))}{r^n}\right)^p \frac{dr}{r} < \infty.$$

Finite energy implies rectifiability

Theorem (D. '20)

Let $1 \le p < \infty$. Suppose μ is a Radon measure satisfying $0 < \Theta^{n,*}(\mu,x)$ and $\Theta^{n}_{*}(\mu,x) < \infty$. Assume that for μ -a.e. x there is $V_{x} \in G(d,d-n)$ and $\alpha \in (0,1)$ such that

$$\mathcal{E}_{\mu,p}(x,V_{x},\alpha,1) = \int_{0}^{1} \left(\frac{\mu(K(x,V_{x},\alpha,r))}{r^{n}} \right)^{p} \frac{dr}{r} < \infty.$$

Then, μ is n-rectifiable.

Finite energy implies rectifiability

Theorem (D. '20)

Let $1 \le p < \infty$. Suppose μ is a Radon measure satisfying $0 < \Theta^{n,*}(\mu,x)$ and $\Theta^{n}_{*}(\mu,x) < \infty$. Assume that for μ -a.e. x there is $V_{x} \in G(d,d-n)$ and $\alpha \in (0,1)$ such that

$$\mathcal{E}_{\mu,p}(x,V_{x},\alpha,1) = \int_{0}^{1} \left(\frac{\mu(K(x,V_{x},\alpha,r))}{r^{n}} \right)^{p} \frac{dr}{r} < \infty.$$

Then, μ is n-rectifiable.

Finite energy implies rectifiability

Theorem (D. '20)

Let $1 \le p < \infty$. Suppose μ is a Radon measure satisfying $0 < \Theta^{n,*}(\mu,x)$ and $\Theta^{n}_{*}(\mu,x) < \infty$. Assume that for μ -a.e. x there is $V_{x} \in G(d,d-n)$ and $\alpha \in (0,1)$ such that

$$\mathcal{E}_{\mu,p}(x,V_x,\alpha,1) = \int_0^1 \left(\frac{\mu(K(x,V_x,\alpha,r))}{r^n}\right)^p \frac{dr}{r} < \infty.$$

Then, μ is n-rectifiable.

Question

 $0 < \Theta^{n,*}(\mu, x), \ \Theta^n_*(\mu, x) < \infty,$ approximate tangents exist a.e. $\stackrel{?}{\Longrightarrow}$ μ is rectifiable

$$\mu$$
 is rectifiable \Rightarrow $\mathcal{E}_{\mu,p} < \infty$ a.e.

Follows easily from a result of Tolsa:

Theorem (Tolsa '15)

$$\mu$$
 is rectifiable $\Rightarrow \int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty$ a.e.

$$\mu$$
 is rectifiable \Rightarrow $\mathcal{E}_{\mu,p} < \infty$ a.e.

Follows easily from a result of Tolsa:

Theorem (Tolsa '15)

$$\mu$$
 is rectifiable $\Rightarrow \int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty$ a.e.

Not difficult:

$$\mathcal{E}_{\mu,1}(x,V,\alpha,1) = \int_0^1 \frac{\mu(K(x,V,\alpha,r))}{r^n} \frac{dr}{r} \lesssim \int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty,$$

$$\mu$$
 is rectifiable \Rightarrow $\mathcal{E}_{\mu,p} < \infty$ a.e.

Follows easily from a result of Tolsa:

Theorem (Tolsa '15)

$$\mu$$
 is rectifiable $\Rightarrow \int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty$ a.e.

Not difficult:

$$\mathcal{E}_{\mu,1}(x,V,\alpha,1) = \int_0^1 \frac{\mu(K(x,V,\alpha,r))}{r^n} \frac{dr}{r} \lesssim \int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty,$$

and

$$\mathcal{E}_{\mu,p}(\mathsf{X},\mathsf{V},\alpha,1) \leq \Theta^{n,*}(\mu,\mathsf{X})^{p-1} \, \mathcal{E}_{\mu,1}(\mathsf{X},\mathsf{V},\alpha,1).$$

12

$$0 < \Theta^{n,*}(\mu, x), \ \Theta^n_*(\mu, x) < \infty,$$
 $\Longrightarrow \mu$ is rectifiable $\mathcal{E}_{\mu,p} < \infty$ a.e.

- · a corona decomposition result,
- · prove the theorem assuming additionally $\Theta^{n,*}(\mu,x)<\infty$,
- show that

$$0 < \Theta^{n,*}(\mu, x), \ \Theta^n_*(\mu, x) < \infty, \\ \mathcal{E}_{\mu, p} < \infty \ \text{a.e.} \qquad \Longrightarrow \qquad \Theta^{n,*}(\mu, x) < \infty.$$

13

Big pieces of Lipschitz graphs

Big pieces of Lipschitz graphs

We say that $E \subset \mathbb{R}^d$ has big pieces of Lipschitz graphs (BPLG) if there exists $C, L, \kappa > 0$ such that

• it is AD-regular, i.e. for $x \in E$, 0 < r < diam(E)

$$C^{-1}r^n \le \mathcal{H}^n(E \cap B(x,r)) \le Cr^n,$$

• for all balls B centered at E, 0 < r(B) < diam(E), there exists a Lipschitz graph Γ , Lip $(\Gamma) \le L$, such that

$$\mathcal{H}^n(E \cap B \cap \Gamma) \geq \kappa r(B)^n$$
.

Big pieces of Lipschitz graphs

Characterizing BPLG using conical energy

Theorem (D. '20)

Suppose $E \subset \mathbb{R}^d$ is AD-regular, $1 \le p < \infty$. Then E has BPLG iff there exist $\alpha, \kappa, M > 0$, such that the following holds.

Characterizing BPLG using conical energy

Theorem (D. '20)

Suppose $E \subset \mathbb{R}^d$ is AD-regular, $1 \le p < \infty$. Then E has BPLG iff there exist $\alpha, \kappa, M > 0$, such that the following holds.

For all balls B centered at E, $0 < r(B) < \operatorname{diam}(E)$, there exists a set $G_B \subset E \cap B$ with $\mathcal{H}^n(G_B) \geq \kappa r(B)^n$, and a direction $V \in G(d, d-n)$, such that for all $x \in G_B$

$$\mathcal{E}_{E,p}(x,V,\alpha,r(B)) = \int_0^{r(B)} \left(\frac{\mathcal{H}^n(E \cap K(x,V,\alpha,r))}{r^n} \right)^p \frac{dr}{r} \leq M.$$

We will call the condition above big pieces with bounded energy (BPBE).

Proof of "E has BPBE \Rightarrow E has BPLG"

$$E \text{ has BPBE} \Rightarrow E \text{ has BPLG}$$

Can be reduced to

Theorem (Martikainen-Orponen '18)

Suppose $E \subset \mathbb{R}^d$ is AD-regular. Then E has BPLG iff there exist $\kappa, M > 0$, such that the following holds.

For all balls B centered at E, 0 < r(B) < diam(E), there exists a set $G_B \subset E \cap B$ with $\mathcal{H}^n(G_B) \geq \kappa r(B)^n$, and a direction $V_B \in G(d,n)$, such that for a.e. $W \in \mathbf{B}(V_B,\kappa)$ we have $(\pi_W)_*(\mathcal{H}^n|_{G_B}) \in L^2(W)$, and

$$\int_{\mathsf{B}(\mathsf{V}_{\mathsf{B}},\kappa)} \|(\pi_{\mathsf{W}})_* (\mathcal{H}^n|_{\mathsf{G}_{\mathsf{B}}})\|_{L^2(\mathsf{W})}^2 \ d\gamma_{d,n}(\mathsf{W}) \leq \mathsf{Mr}(\mathsf{B})^n.$$

Bounded mean energy condition

Definition

We will say that an AD-regular set E satisfies the bounded mean energy condition if there exist $\alpha > 0, M > 1$, and for a.e. $x \in E$ there exists $V_x \in G(d, d-n)$, such that:

for all balls B centered at E, 0 < r(B) < diam(E),

$$\begin{split} \int_{E\cap B} \mathcal{E}_{E,p}(x,V_x,\alpha,r(B)) \; d\mathcal{H}^n(x) \\ &= \int_{E\cap B} \int_0^{r(B)} \left(\frac{\mathcal{H}^n(E\cap K(x,V_x,\alpha,r))}{r^n} \right)^p \frac{dr}{r} d\mathcal{H}^n(x) \leq Mr(B)^n. \end{split}$$

Bounded mean energy condition

Definition

We will say that an AD-regular set E satisfies the bounded mean energy condition if there exist $\alpha > 0, M > 1$, and for a.e. $x \in E$ there exists $V_x \in G(d, d - n)$, such that:

for all balls B centered at E, 0 < r(B) < diam(E),

$$\begin{split} \int_{E \cap B} \mathcal{E}_{E,p}(x, V_x, \alpha, r(B)) \ d\mathcal{H}^n(x) \\ &= \int_{E \cap B} \int_0^{r(B)} \left(\frac{\mathcal{H}^n(E \cap K(x, V_x, \alpha, r))}{r^n} \right)^p \frac{dr}{r} d\mathcal{H}^n(x) \le Mr(B)^n. \end{split}$$

Easy: BME \Rightarrow BPBE. In particular, BME \Rightarrow BPLG.

Bounded mean energy condition

Definition

We will say that an AD-regular set E satisfies the bounded mean energy condition if there exist $\alpha > 0, M > 1$, and for a.e. $x \in E$ there exists $V_x \in G(d, d - n)$, such that:

for all balls B centered at E, 0 < r(B) < diam(E),

$$\begin{split} \int_{E\cap B} \mathcal{E}_{E,p}(x,V_x,\alpha,r(B)) \; d\mathcal{H}^n(x) \\ &= \int_{E\cap B} \int_0^{r(B)} \left(\frac{\mathcal{H}^n(E\cap K(x,V_x,\alpha,r))}{r^n} \right)^p \frac{dr}{r} d\mathcal{H}^n(x) \leq Mr(B)^n. \end{split}$$

Easy: BME \Rightarrow BPBE. In particular, BME \Rightarrow BPLG. But the converse is not true!

Question

How to modify BME to get a characterization of BPLG or UR? Replace V_x by $V_{x,r}$?

Singular integral operators

Given a Radon measure μ , $f \in L^2(\mu)$, and a kernel K(x,y) set

$$T_{\mu}f(x) = \int K(x,y)f(y) \ d\mu(y).$$

Given a Radon measure μ , $f \in L^2(\mu)$, a kernel K(x,y), and $\varepsilon > 0$ set

$$T_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} K(x,y)f(y) \ d\mu(y).$$

Given a Radon measure μ , $f \in L^2(\mu)$, a kernel K(x,y), and $\varepsilon > 0$ set

$$T_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} K(x,y)f(y) \ d\mu(y).$$

We say that T_{μ} is bounded on $L^{2}(\mu)$ if $\|T_{\mu,\varepsilon}\|_{L^{2}(\mu)\to L^{2}(\mu)}$ are bounded uniformly in ε .

Given a Radon measure μ , $f \in L^2(\mu)$, a kernel K(x,y), and $\varepsilon > 0$ set

$$T_{\mu,\varepsilon}f(x) = \int_{|x-y|>\varepsilon} K(x,y)f(y) \ d\mu(y).$$

We say that T_{μ} is bounded on $L^{2}(\mu)$ if $\|T_{\mu,\varepsilon}\|_{L^{2}(\mu)\to L^{2}(\mu)}$ are bounded uniformly in ε .

Examples

- Cauchy transform $C_{\mu}f(z) = \int_{\mathbb{C}} \frac{f(w)}{z-w} d\mu(w)$,
- n-dimensional Riesz transform

$$\mathcal{R}_{\mu}f(x) = \int_{\mathbb{R}^d} \frac{x-y}{|x-y|^{n+1}} f(y) \ d\mu(y).$$

SIOs and rectifiability

Question

Given a "nice" kernel K, what are the measures μ such that T_{μ} is bounded on $L^2(\mu)$?

SIOs and rectifiability

Question

Given a "nice" kernel K, what are the measures μ such that T_{μ} is bounded on $L^{2}(\mu)$?

Denote by $\mathcal{K}^n(\mathbb{R}^d)$ the class of kernels of the form K(x,y)=k(x-y), where $k:\mathbb{R}^d\to\mathbb{R}$ are smooth, odd, and satisfy

$$|\nabla^{j} k(x)| \le C_{j} |x|^{-n-j}, \quad j = 0, 1, 2, \dots$$

SIOs and rectifiability

Question

Given a "nice" kernel K, what are the measures μ such that T_{μ} is bounded on $L^{2}(\mu)$?

Denote by $\mathcal{K}^n(\mathbb{R}^d)$ the class of kernels of the form K(x,y)=k(x-y), where $k:\mathbb{R}^d\to\mathbb{R}$ are smooth, odd, and satisfy

$$|\nabla^{j} k(x)| \le C_{j} |x|^{-n-j}, \quad j = 0, 1, 2, \dots$$

Theorem (David-Semmes '91)

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then,

for all
$$K \in \mathcal{K}^n(\mathbb{R}^d)$$
 \Leftrightarrow μ is uniformly T_μ is bounded on $L^2(\mu)$ \Leftrightarrow rectifiable.

David-Semmes conjecture

David-Semmes conjecture

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \Leftrightarrow \mu$ is uniformly rectifiable.

David-Semmes conjecture

David-Semmes conjecture

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \iff \mu$ is uniformly rectifiable.

True for n=1 (Mattila-Melnikov-Verdera 1996) and n=d-1 (Nazarov-Tolsa-Volberg 2012).

David-Semmes conjecture

David-Semmes conjecture

Suppose μ is n-AD-regular measure on \mathbb{R}^d . Then, \mathcal{R}_{μ} is bounded on $L^2(\mu) \iff \mu$ is uniformly rectifiable.

True for n=1 (Mattila-Melnikov-Verdera 1996) and n=d-1 (Nazarov-Tolsa-Volberg 2012).

Question

If we only assume that $\mu(B(x,r)) \leq Cr^n$, what are the necessary/sufficient conditions for boundedness of \mathcal{R}_{μ} ?

BPBE with p = 1 and SIOs

Theorem (Chang-Tolsa '17)

Let μ be a Radon measure on \mathbb{R}^d satisfying $\mu(B(x,r)) \leq Cr^n$. Suppose that μ satisfies the BPBE conditions with p=1, i.e. there exist constants $\alpha, \kappa, M>0$, such that: for all balls B there exists a set $G_B\subset B$ with $\mu(G_B)\geq \kappa\,\mu(B)$, and a direction $V_B\in G(d,d-n)$, such that for all $x\in G_B$

$$\mathcal{E}_{\mu,1}(x, V_B, \alpha, r(B)) \leq M.$$

Then, for all $K \in \mathcal{K}^n(\mathbb{R}^d)$ we have T_μ bounded on $L^2(\mu)$.

BPBE with p = 2 and SIOs

Theorem (D. '20)

Let μ be a Radon measure on \mathbb{R}^d satisfying $\mu(B(x,r)) \leq Cr^n$. Suppose that μ satisfies the BPBE conditions with p=2, i.e. there exist constants $\alpha, \kappa, M>0$, such that: for all balls B there exists a set $G_B\subset B$ with $\mu(G_B)\geq \kappa\,\mu(B)$, and a direction $V_B\in G(d,d-n)$, such that for all $x\in G_B$

$$\mathcal{E}_{\mu,2}(x,V_B,\alpha,r(B)) \leq M.$$

Then, for all $K \in \mathcal{K}^n(\mathbb{R}^d)$ we have T_μ bounded on $L^2(\mu)$.

BPBE with p = 2 and SIOs

Theorem (D. '20)

Let μ be a Radon measure on \mathbb{R}^d satisfying $\mu(B(x,r)) \leq Cr^n$. Suppose that μ satisfies the BPBE conditions with p=2, i.e. there exist constants $\alpha, \kappa, M>0$, such that: for all balls B there exists a set $G_B\subset B$ with $\mu(G_B)\geq \kappa\,\mu(B)$, and a direction $V_B\in G(d,d-n)$, such that for all $x\in G_B$

$$\mathcal{E}_{\mu,2}(x,V_B,\alpha,r(B)) \leq M.$$

Then, for all $K \in \mathcal{K}^n(\mathbb{R}^d)$ we have T_μ bounded on $L^2(\mu)$.

This is strictly stronger than the result of Chang and Tolsa:

$$\int_0^R \left(\frac{\mu(K(x,V,\alpha,r))}{r^n}\right)^2 \frac{dr}{r} \le \int_0^R \frac{\mu(K(x,V,\alpha,r))}{r^n} \frac{\mu(B(x,r))}{r^n} \frac{dr}{r}$$
$$\le C \int_0^R \frac{\mu(K(x,V,\alpha,r))}{r^n} \frac{dr}{r}.$$

Corona decomposition

Main lemma

Let μ be a compactly supported Radon measure on \mathbb{R}^d satisfying $\mu(B(x,r)) \leq Cr^n$. Assume further that for some $V \in G(d,d-n)$, $\alpha \in (0,1)$, we have

$$\mathcal{E}_{\mu,p}(\mathbb{R}^d) = \int \mathcal{E}_{\mu,p}(\mathsf{X},\mathsf{V},\alpha,\infty) \ d\mu(\mathsf{X}) < \infty.$$

Then, there exists a decomposition $\mathcal{D}_{\mu} = \bigcup_{R \in \mathsf{Top}} \mathsf{Tree}(R)$, and a corresponding family of Lipschitz graphs $\{\Gamma_R\}_{R \in \mathsf{Top}}$, satisfying:

Corona decomposition

Main lemma

Let μ be a compactly supported Radon measure on \mathbb{R}^d satisfying $\mu(B(x,r)) \leq Cr^n$. Assume further that for some $V \in G(d,d-n)$, $\alpha \in (0,1)$, we have

$$\mathcal{E}_{\mu,p}(\mathbb{R}^d) = \int \mathcal{E}_{\mu,p}(\mathsf{X},\mathsf{V},\alpha,\infty) \ d\mu(\mathsf{X}) < \infty.$$

Then, there exists a decomposition $\mathcal{D}_{\mu} = \bigcup_{R \in \mathsf{Top}} \mathsf{Tree}(R)$, and a corresponding family of Lipschitz graphs $\{\Gamma_R\}_{R \in \mathsf{Top}}$, satisfying:

- (i) Lipschitz constants of Γ_R are uniformly bounded,
- (ii) μ -almost all of $R \setminus \bigcup_{Q \in Stop(R)} Q$ is contained in Γ_R ,
- (iii) for all $Q \in \text{Tree}(R)$ we have $\Theta_{\mu}(2B_Q) \lesssim \Theta_{\mu}(2B_R)$
- (iv) we have the packing condition

$$\sum_{R \in \mathsf{Top}} \Theta_{\mu}(2\mathsf{B}_R)^p \mu(R) \lesssim \mu(\mathbb{R}^d) + \mathcal{E}_{\mu,p}(\mathbb{R}^d).$$