日本国特許庁 JAPAN PATENT OFFICE

REC'D 15 JAN 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年12月18日

出願番号 Application Number:

特願2002-367293

[ST. 10/C]:

[JP2002-367293]

出 願 人 Applicant(s):

昭和電工株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年10月17日

【書類名】 特許願

【整理番号】 1025247

平成14年12月18日

【あて先】 特許庁長官 太田 信一郎 殿

【国際特許分類】 C04B 35/46

H01G 4/12

【発明の名称】 チタン酸バリウムおよびそれを用いた電子部品

【請求項の数】 4

【発明者】

【住所又は居所】 千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式

会社 研究開発センター内

【氏名】 白川 彰彦

【発明者】

【住所又は居所】 千葉県千葉市緑区大野台1丁目1番1号 昭和電工株式

会社 研究開発センター内

【氏名】 横内 仁

【特許出願人】

【識別番号】 000002004

【氏名又は名称】 昭和電工株式会社

【代理人】

【識別番号】 100077517

【弁理士】

【氏名又は名称】 石田 敬

【電話番号】 03-5470-1900

【選任した代理人】

【識別番号】 100092624

【弁理士】

【氏名又は名称】 鶴田 準一

【発明が解決しようとする課題】

本発明は、電子機器の小型化を可能とする小型のコンデンサに必要な薄膜の誘電体磁器を形成可能な、粒径が小さく、不要な不純物が少なく、電気的特性の優れたチタン酸バリウム及びそれを用いた電子部品を提供することである。

[0011]

【課題を解決するための手段】

本発明者らは、前述の課題を鋭意検討した結果、塩基性化合物の存在するアルカリ性溶液中で、酸化チタンゾルとバリウム化合物を反応させ、反応後、塩基性化合物を気体として除去し、焼成することにより、従来の製造方法では得ることができなかった欠陥が無く微細なチタン酸バリウムを得られることを見いだし、発明を完成した。

[0012]

すなわち、本発明は、

- (1) Sn, Zr, Ca, Sr, Pb, La, Ce, Mg, Bi, Ni, Al, Si, Zn, B, Nb, W, Mn, Fe, Cu, 及びDyからなる群より選ばれた少なくとも一種の元素をBaTiO3に対して5mol%未満(0mol%を含む)含むチタン酸バリウムであって、粒内に水酸基或いは水酸基が脱離したことに起因する欠陥が存在しない湿式合成チタン酸バリウム。
- (2) チタン酸バリウムが、粉体である前項(1) 記載のチタン酸バリウム。
- (3)前項(1)または(2)に記載のチタン酸バリウムを用いた誘電体磁器。
- (4)前項(3)に記載の誘電体磁器を用いたコンデンサ。

[0013]

【発明の実施の形態】

以下、本発明を詳しく説明する。

本発明のチタン酸バリウムは、湿式合成法により得られ粒内に水酸基或いは水酸基が脱離したことに起因する欠陥が存在しないという特徴を有する。

[0014]

チタン酸バリウムに存在する水酸基は赤外分光分析法により3500cm-1付近のピークとして検出されるが、粒内の水酸基以外に表面に存在する水酸基も同時

に検出される。しかし、表面に存在する水酸基は700℃より低い温度で脱離する事がわかった。従って、予め700℃で熱処理後、赤外分光分析を行うことで誘電率を低下させる粒子内部の水酸基を検出することが出来る。

また、水酸基の脱離に伴う欠陥はTEM観察(好ましくは粒子を薄膜化して観察する)により検出される直径1nm以上の空孔(ボイド)をいう。特開平11-273986号公報の図3中記号22で表されるボイドと同じである。図1に比較例で作成したチタン酸バリウム粉末のTEM写真(実際には150、000倍で撮影したが、添付図面では縮小している)を示すが、粒子内部に泡のように見える空孔(ボイド)が認識でき、これが水酸基の脱離に伴う欠陥である。

$[0\ 0\ 1\ 5]$

ここで本発明のチタン酸バリウムとは、一般式ABO3で表されるペロブスカイト型化合物であり、AをBaが、BをTiが共に占めたBaTiO3をいう。ただしSn, Zr, Ca, Sr, Pb, La, Ce, Mg, Bi, Ni, Al, Si, Zn, B, Nb, W, Mn, Fe, Cu, 及びDyからなる群より選ばれた少なくとも一種の元素をBaTiO3に対して5mol%未満含んでも良い。

[0016]

粒内に水酸基或いは水酸基が脱離したことに起因する欠陥が存在しないため誘電率が大きくなる。

[0017]

このようなチタン酸バリウムは、粒径が小さく、かつ、誘電率が高く電気的特性の優れたものであり、これから得られる誘電体磁器等の誘電材料を用いることにより積層セラミックコンデンサ等の小型の電子部品が得られ、さらにこれらを電子機器に用いることにより、電子機器の小型化、軽量化が可能となる。

[0018]

一般に電子機器の小型化のためには、BET比表面積が $0.1 \text{ m}^2/\text{g}$ より小さいと粒径が大きすぎ有効ではなく、 $0.1 \text{ m}^2/\text{g}$ よりBET比表面積が大きいと有効である。

[0019]

次に本発明の製造方法について説明する。

本発明で用いられる酸化チタンゾルは、特に制限はないが、ブルーカイト型結晶を含有する酸化チタンを含有するものが望ましい。ブルーカイト型結晶を含有するものであればブルーカイト型の酸化チタン単独、またはルチル型やアナターゼ型の酸化チタンを含んでもよい。ルチル型やアナターゼ型の酸化チタンを含む場合、酸化チタン中のブルーカイト型酸化チタンの割合は特に制限はないが、通常、1~100質量%であり、好ましくは10~100質量%、より好ましくは50~100質量%である。これは、溶媒中において酸化チタン粒子が分散性に優れたものとするためには、不定形よりも結晶性であることが単粒化しやすいことから好ましく、特にブルーカイト型酸化チタンが分散性に優れているためである。この理由は明らかではないが、ブルーカイト型がルチル型、アナターゼ型よりもゼータ電位が高いことと関係していると考えられる。

[0020]

ブルーカイト型結晶を含有する酸化チタン粒子の製造方法は、アナターゼ型酸化チタン粒子を熱処理してブルーカイト型結晶を含む酸化チタン粒子を得る製造方法や、四塩化チタン、三塩化チタン、チタンアルコキシド、硫酸チタン等のチタン化合物の溶液を中和したり、加水分解したりすることによって、酸化チタン粒子が分散した酸化チタンゾルとして得る液相での製造方法等がある。

[0021]

ブルーカイト型結晶を含有する酸化チタン粒子を原料として、チタン酸バリウム粒子を製造する方法としては、その粒子の粒径が小さく分散性に優れていることから、チタン塩を酸性溶液中で加水分解して酸化チタンゾルとして得る方法が好ましい。すなわち、75~100℃の熱水に四塩化チタンを加え、75℃以上であって溶液の沸点以下の温度で、塩素イオン濃度をコントロールしながら四塩化チタンを加水分解して、酸化チタンゾルとしてブルーカイト型結晶を含有する酸化チタン粒子を得る方法(特開平11-043327号公報)や、75~100℃の熱水に四塩化チタンを加え、硝酸イオン、燐酸イオンのいずれか一方または双方の存在下に、75℃以上であって溶液の沸点以下の温度で、塩素イオン、硝酸イオンおよび燐酸イオンの合計の濃度をコントロールしながら四塩化チタンを加水分解して、酸化チタンゾルとしてブルーカイト型結晶を含有する酸化チタ

[0022]

こうして得られたブルーカイト型結晶を含有する酸化チタン粒子の大きさは、 1次粒子径が通常5~50nmである。これは、50nmを越えると、これを原料として製造したチタン酸バリウム粒子の粒径が大きくなり、誘電材斜、圧電材料等の機能材料には適さないものとなる。5nm未満では、酸化チタン粒子を製造する工程での取り扱いが困難である。

[0023]

本発明の製造方法において、チタン塩を酸性溶液中で加水分解して得られた酸化チタンゾルを用いる場合は、得られたゾル中の酸化チタン粒子の結晶型には制限はなく、ブルーカイト型に限定されるものではない。

[0024]

四塩化チタンや硫酸チタン等のチタン塩を酸性溶液中で加水分解すると、中性やアルカリ性の溶液中で行うよりも反応速度が抑制されるので粒径が単粒化し、分散性に潰れた酸化チタンゾルが得られる。また、塩素イオン、硫酸イオン等の陰イオンが、生成した酸化チタン粒子の内部に取り込まれにくいので、チタン酸バリウム粒子を製造した際にその粒子への陰イオンの混入を低減することができる。

[0025]

一方、中性やアルカリ性の溶液中で加水分解すると、反応速度が大きくなり、 初期に多くの核発生が起こる。そのため、粒径は小さいが分散性が悪い酸化チタンゾルとなり、粒子が鬘状に凝集してしまう。このような酸化チタンゾルを原料として、チタン酸バリウム粒子を製造した場合、得られた粒子は粒径が小さくても、分散性が悪いものとなる。また、陰イオンが酸化チタン粒子の内部に混入しやすくなり、その後の工程でこれらの陰イオンを除去することが難しくなる。

[0026]

チタン塩を酸性溶液中で加水分解し酸化チタンゾルを得る方法は、溶液が酸性 に保持される方法であれは特に制限はないが、四塩化チタンを原料とし、還流冷 却器を取り付けた反応器内で加水分解し、その際発生する塩素の逸出を抑制し、

[0027]

また、原料のチタン塩の酸性溶液中の濃度は $0.01\sim5\,\mathrm{mol/L}$ であることが好ましい。これは、濃度が $5\,\mathrm{mol/L}$ を越えると、加水分解の反応速度が大きくなり、粒径が大きく分散性の悪い酸化チタンゾルが得られるためであり、 $0.01\,\mathrm{mol/L}$ 未満では、得られる酸化チタン濃度が少なくなり生産性が悪くなるためである。

[0028]

本発明の製造方法で用いられるバリウム化合物は、水溶性であることが好ましく、通常、水酸化物、硝酸塩、酢酸塩、塩化物等である。また、これらは1種類単独で用いてもよく、2種以上の化合物を任意の比率で混合して用いてもよい。 具体的には、例えば、水酸化バリウム、塩化バリウム、硝酸バリウム、酢酸バリウム等が用いられる。

[0029]

本発明のチタン酸バリウムは、ブルーカイト型結晶を含有する酸化チタン粒子とバリウム化合物を反応させる方法、またはチタン塩を酸性溶液中で加水分解して得られた酸化チタンゾルとバリウム化合物を反応させる方法で製造することができる。

[0030]

反応の条件として塩基性化合物の存在するアルカリ性溶液中で反応させることが望ましい。溶液のpHは、好ましくは11以上であり、より好ましくは13以上であり、特に好ましくは14以上である。pHを14以上とすることで、より粒径の小さなチタン酸バリウム粒子を製造することができる。反応溶液は、例えば、有機塩基化合物を添加してpH11以上のアルカリ性を保つのが望ましい。

[0031]

添加する塩基性化合物としては特に制限はないが、焼成温度以下で、かつ、大気圧下または減圧下で、蒸発、昇華、及び/または熱分解により気体となる物質が好ましく、例えば、TMAH(水酸化テトラメチルアンモニウム)、コリン等を好ましく用いることができる。水酸化リチウム、水酸化ナトリウム、水酸化カ

リウム等のアルカリ金属水酸化物を添加すると、得られたチタン酸バリウム粒子 中にアルカリ金属が残存してしまい、成形し、焼結し、誘電材料、圧電材料等の 機能材料とした際にその特性が劣る可能性があるので、水酸化テトラメチルアン モニウム等の前記塩基性化合物を添加することが好ましい。

さらに、反応溶液中の炭酸基(炭酸種としてCO2、H2CO3、HCO3-、及 びCO3²-を含む)の濃度を制御することにより、誘電率の大きいチタン酸バリ ウムを安定に製造することが出来る。

反応溶液中の炭酸基の濃度(CO2換算値。以下、特に断りの無い限り同様で ある。)は、好ましくは500質量ppm以下でありより好ましくは1~200 質量ppmであり、特に好ましくは1~100質量ppmである。炭酸基の濃度 がこの範囲外では誘電率の大きいチタン酸バリウムが得られないことがある。

[0032]

また、反応溶液においては、酸化チタン粒子または酸化チタンゾルの濃度が、 0. 1~5 m o 1/Lであり、バリウムを含む金属塩の濃度が金属酸化物に換算 して、0.1~5mo1/Lになるように調製されることが好ましい。

さらに、Sn, Zr, Ca, Sr, Pb, La, Ce, Mg, Bi, Ni, A l, Si, Zn, B, Nb, W, Mn, Fe, Cu, 及びDyからなる群より選 ばれた少なくとも一種の元素との化合物を、反応後のチタン酸バリウム中にこれ らの元素が、BaTiO3に対して5mol%未満含まれるように添加しても良 い。これらの元素は、例えばコンデンサを製造する場合、その温度特性などの特 性が希望するの特性となるように、種類や添加量を調整すればよい。

[0033]

このように調製されたアルカリ溶液を、撹拌しながら常圧において、通常、4 0℃~溶液の沸点温度、好ましくは80℃~溶液の沸点温度に加熱保持し、反応 させる。反応時間は通常、1時間以上であり、好ましくは4時間以上である。

一般的にはここで、反応終了後のスラリーを電気透析、イオン交換、水洗、酸 洗浄、浸透膜、などを用いる方法で不純物イオンを除去することが行なわれるが 、不純物イオンと同時にチタン酸バリウムに含まれるバリウムもイオン化し一部 溶解するため、所望の組成比への制御性が悪く、また結晶に欠陥が生じるため誘

[0034]

反応終了後のスラリーを、焼成する事により本発明の粒子を得ることができる。焼成では、チタン酸バリウム粒子の結晶性を向上させるとともに、不純物として残存している塩素イオン、硫酸イオン、燐酸イオン等の陰イオンや、水酸化テトラメチルアンモニウム等の塩基性化合物等を、蒸発、昇華、及び/または熱分解により気体として除去することができ、通常、300~1200℃で行われる。焼成雰囲気は特に制限はなく、通常、大気中で行われる。

[0035]

焼成前に、取り扱い等の必要に応じて、固液分離を行っても良い。固液分離としては、例えば、沈降、濃縮、濾過、及び/または乾燥等の工程が含まれる。沈降、濃縮、濾過工程では、沈降速度を変える、あるいは濾過速度を変えるために、凝集剤や分散剤を用いても良い。乾燥工程は、液成分を蒸発または昇華する工程であり、例えば、減圧乾燥、熱風乾燥、凍結乾燥等の方法が用いられる。

[0036]

さらに、室温〜焼成温度の温度範囲で、大気圧下または減圧下であらかじめ塩 基性化合物等を気体として除去してから焼成を行なっても良い。

[0037]

このようにして製造されるチタン酸バリウムは、粒内に水酸基或いは水酸基が脱離したことに起因する欠陥が存在しない電気的特性に優れたものである。前述のように、水酸基は赤外分光分析法により3500cm-1付近のピークとして検出されるが、予め700℃で熱処理後赤外分光分析を行うことで誘電率を低下させる粒子内部の水酸基を検出することが出来る。また、水酸基の脱離に伴う欠陥はTEM観察により直径1nm以上の空孔(ボイド)として検出される。

従来公知のチタン酸バリウムでは薄膜化して丁寧に観察すると、殆ど全部の粒子に空孔が存在するが、100個のうちに約5個以下程度は空孔が存在しない粒子が存在する場合がある。しかし、本発明の実施例のチタン酸バリウムでは数100個を調べたが水酸基の脱離に伴う欠陥(空孔)は全く観察されなかった。即

[0038]

【実施例】

以下、本発明を実施例および比較例をあげて具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。

実施例1:

四塩化チタン(住友チタニウム製:純度99.9%) 濃度が0.25mol/Lの水溶液を還流冷却器つきの反応器に投入し、塩素イオンの逸出を抑制し、酸性に保ちながら沸点付近まで加熱した。その温度で60分間保持して四塩化チタンを加水分解し、酸化チタンゾル得た。得られた酸化チタンゾルの一部を110℃で乾燥し理学電機(株)製X線回折装置(RAD-B ローターフレックス)で結晶型を調べた結果ブルーカイト型酸化チタンであることがわかった。

水酸化バリウム八水和物(バライト工業製)126gと、水酸化テトラメチルアンモニウム20質量%水溶液(セイケム昭和製)に炭酸ガスを吹き込み炭酸基濃度60質量ppm(CO2換算値。以下、特に断りの無い限り同様である。)とした水溶液456gとを加えpHを14とし、還流冷却器付きの反応器で95℃に加熱した。前記ゾルを沈降濃縮して得た酸化チタン濃度15質量%のゾル213gを反応器に7g/分の速度で滴下した。

液温を110℃まで上昇し攪拌を続けながら4時間保持して反応を行い得られたスラリーを50℃まで放冷した後、濾過を行った。濾過残渣を300℃で5時間乾燥し微粒子粉体を得た。反応に用いた酸化チタン量と水酸化バリウム量から算出される理論収量に対する実収量の割合は99.8%であった。この粉体を結晶化するため大気雰囲気下において880℃で2時間保持した。このときの昇温速度は毎分20℃とした。

[0039]

この粉体のX線回折を理学電機(株)製X線回折装置(RAD-B ローター

フレックス)で調べた結果、得られた粉体はペロブスカイト型のBaTiO3であることがわかった。X線回折強度からリートベルト解析によりc/a比を求めたところ1.0104であった。BET法で求めた比表面積Sは7.1 m²/gであった。試料に含まれる炭酸基の量をBIORAD製赤外分光分析装置(FTS6000)により定量した。炭酸基が全て炭酸バリウムであるとすると約1 質量%に相当する量であった。同時に格子内水酸基に対応する3500 c m⁻¹付近の急峻な吸収ピークは現れなかった。

[0040]

実施例2:

実施例 1 と同様にしてペロブスカイト型のB a T i O_3 を得た。ただし、6 0 0 \mathbb{C} で 2 時間保持することで結晶化した。実施例 1 と同様にして調べたところ比表面積は 2 5 m^2/g 、c / a 比は 1 . 0 0 3 2 であった。この試料を 7 0 0 \mathbb{C} で熱処理した以外は実施例 1 と同様に赤外分光分析を行った。その結果、格子内水酸基に対応する 3 5 0 0 c m^{-1} 付近の急峻な吸収ピークは現れなかった。

[0041]

実施例3:

実施例 1 と同様にしてペロブスカイト型のB a T i O_3 を得た。ただし、9 5 0 \mathbb{C} で 2 時間保持することで結晶化した。実施例 1 と同様にして調べたところ比表面積は 4 . 1 m^2/g 、 c / a の比は 1 . 0 1 0 6 であった。この試料を実施例 1 と同様に赤外分光分析を行った。その結果、格子内水酸基に対応する 3 5 0 0 c m^{-1} 付近の急峻な吸収ピークは現れなかった。T E M 観察を 2 5 万倍で行ったが水酸基が脱離したことに起因する欠陥は観察されなかった。

[0042]

実施例4:

実施例 1 と同様にしてペロブスカイト型のB a T i O_3 を得た。ただし、1 2 0 0 $\mathbb C$ で 2 時間保持することで結晶化した。実施例 1 と同様にして調べたところ比表面積は 0 . 5 m 2 /g、c/a 比は 1 . 0 1 1 0 であった。この試料を実施例 1 と同様に赤外分光分析を行った。その結果、格子内水酸基に対応する 3 5 0 0 c m $^{-1}$ 付近の急峻な吸収ピークは現れなかった。T EM観察を 2 5 万倍で行っ

たが水酸基が脱離したことに起因する欠陥は観察されなかった。

[0043]

実施例5:

[0044]

実施例6:

TMAH水溶液の代わりに炭酸基濃度 7.5 質量 p.p.mのコリン水溶液を用いた以外は実施例 1 と同様の操作でチタン酸バリウムを合成した。理論収量に対する実収量の割合は 9.9%であった。 8.80 で 2 時間保持することにより結晶化させた試料に関して実施例 1 と同様に調べたところ比表面積は $7 m^2/g$ 、 c / a 比は 1.0103 であった。この試料を実施例 1 と同様に赤外分光分析を行った。その結果、格子内水酸基に対応する 3.500 c m - 1 付近の急峻な吸収ピークは現れなかった。

[0045]

実施例7:

実施例1で合成したブルーカイト型酸化チタンゾルの代わりに市販のアナターゼ型酸化チタンゾル(石原産業製STS-02)を用いた以外は実施例1と同様の操作でチタン酸バリウムを合成した。理論収量に対する実収量の割合は99.8%であった。880℃で2時間保持することにより結晶化させた試料に関して実施例1と同様に調べたところ比表面積は7.7 m²/g、c/a比は1.0071であった。この試料を実施例1と同様に赤外分光分析を行った。その結果、格子内水酸基に対応する3500cm-1付近の急峻な吸収ピークは現れなかった

実施例8:

実施例9:

炭酸基含有量 6 0 質量 p p mのTMA Hの代わりに炭酸基含有量 2 1 5 質量 p p mのTMA Hを用いた以外は実施例 1 と同様の操作でチタン酸バリウムを合成した。理論収量に対する実収量の割合は 9 9 . 7%であった。 8 8 0 ℃で 2 時間保持することにより結晶化させた試料に関して実施例 1 と同様に調べたところ比表面積は 7 . 5 m²/g、c/a 比は 1 . 0 0 9 2 であった。この試料を実施例 1 と同様に赤外分光分析を行った。その結果、格子内水酸基に対応する 3 5 0 0 c m-1付近の急峻な吸収ピークは現れなかった。

実施例10:

実施例11:

実施例 1 で合成したブルーカイト型酸化チタンゾルの代わりに市販のアナターゼ型酸化チタンゾル(石原産業製ST-02)を用いた以外は実施例 1 と同様の操作でチタン酸バリウムを合成した。理論収量に対する実収量の割合は99.8%であった。880 で 2 時間保持することにより結晶化させた試料に関して実施例 1 と同様に調べたところ比表面積は $7.7m^2/g$ 、c/a 比は1.007

実施例 1 と同様にしてペロブスカイト型のB a T i O_3 微粒子粉体を得た。この粉体を3 0 0 \mathbb{C} で 2 時間保持することで結晶化した。実施例 1 と同様にして調べたところ比表面積は4 5 m^2/g 、c / a 比は 1 . 0 0 0 0 であった。この試料を実施例 1 と同様に赤外分光分析を行った。その結果、格子内水酸基に対応する 3 5 0 0 c m^{-1} 付近の急峻な吸収ピークは現れなかった。

[0046]

比較例1:

蓚酸水溶液を攪拌しながら80℃に加熱しそこに $BaCl_2$ と $TiCl_4$ の混合水溶液を滴下し蓚酸チタニルバリウムを得た。得られた試料から塩素を除去するため水洗を行なった後、これを950℃で熱分解することにより $BaTiO_3$ を得た。実施例1と同様に調べたところ比表面積は $4m^2/g$ 、c/a比は1.0088であった。この試料に含まれる炭酸基の量を赤外分光分析装置で定量したところ炭酸バリウムに換算すると8質量%存在することがわかった。不純物として働く炭酸基が大量に生成するため正方晶化率が高くならない。同時に格子内水酸基に対応する3500 cm^{-1} 付近に急峻な吸収ピークが存在した。すなわち誘電材料としての誘電特性に劣ることが推測される。

[0047]

比較例2:

実施例1で合成したブルーカイト型酸化チタンゾル667gと水酸化バリウム 八水和物592g(Ba/Tiモル比1.5)とイオン交換水を1Lとを3Lの オートクレーブに入れた後、150℃で1時間保持することで飽和蒸気圧下で水 熱処理を行った。得られた試料中に含まれる過剰なバリウムを水洗後、800℃ で2時間保持することにより結晶化させた。実施例1と同様に調べたところ比表面積は6.9 m^2/g 、c/a比は1.0033であった。前記式より算出された c/a比1.0081より小さいことがわかった。この試料を赤外分光分析装置で評価したところ3500cm⁻¹付近に格子内水酸基の急峻な吸収がみられた

。水熱合成法では格子内に水酸基を持ち込むために正方晶化率が低くなると推測 される。

[0048]

比較例3:

TMAHを添加しないこと以外は実施例1と同様の操作でチタン酸バリウムを合成した。このときのpHは10.2であった。理論収量に対する実収量の割合は86%であった。pHが低くなると収率が下がり実用的でないことがわかった。

[0049]

比較例4:

TMAHの代わりにKOHを用いた以外は実施例1と同様の操作でチタン酸バリウムを合成した。理論収量に対する実収量の割合は99.9%であった。濾過した試料を水洗しK濃度を100ppmとした。この試料を800℃で2時間保持することにより結晶化させた試料に関して実施例1と同様に調べたところ比表面積は $9m^2/g$ 、c/a比は1.0030であった。この試料を赤外分光分析装置で評価したところ3500cm $^{-1}$ 付近に格子内水酸基の急峻な吸収がみられた。またBa/Tiモル比が洗浄前より0.007小さくなったことからKと同時にBaが溶出することが示唆された。

比較例5:

炭酸基濃度 6.0 質量 p.p.mの TMAHの代わりに炭酸基濃度 1.0.0 0 質量 p.p.mの TMAHを用いた以外は実施例 1 と同様の操作でチタン酸バリウムを合成した。理論収量に対する実収量の割合は 9.4%であった。 8.80%で 2 時間保持することにより結晶化させた試料に関して実施例 1 と同様に調べたところ比表面積は $8.3m^2/g$ 、 c/a 比は 1.0058 であった。

[0050]

【発明の効果】

湿式合成法により得られ粒内に水酸基或いは水酸基が脱離したことに起因する 欠陥が存在しないチタン酸バリウムは、粒径が小さく、かつ、誘電率が高く電気 的特性の優れたものであり、これから得られる誘電体磁器等の誘電材料を用いる

【書類名】

図面

【図1】

200nm

【書類名】 要約書

【要約】

【課題】 電子機器の小型化を可能とする小型のコンデンサに必要な薄膜の誘電体磁器を形成可能な、粒径が小さく、不要な不純物が少なく、電気的特性の優れたチタン酸バリウム及びその製造方法を提供すること。

【解決手段】 Sn, Zr, Ca, Sr, Pb, La, Ce, Mg, Bi, Ni, Al, Si, Zn, B, Nb, W, Mn, Fe, Cu, 及びDyからなる群より選ばれた少なくとも一種の元素をBaTiO3に対して5mol%未満(0mol%を含む)含むチタン酸バリウムであって、粒内に水酸基或いは水酸基が脱離したことに起因する欠陥が存在しない湿式合成チタン酸バリウム。そのチタン酸バリウムを用いた誘電体磁器、それを用いたコンデンサ。

【選択図】 図1

特願2002-367293

出願人履歴情報

識別番号

[000002004]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月27日

新規登録

東京都港区芝大門1丁目13番9号

昭和電工株式会社