# Chem 195: Problem Set 3

Michael Stephen Chen February 11, 2016

- i. See ho.m for all my added comments
- ii. The following are the calculated energies for the 9 lowest energy levels. To reprodue these results, run the first section of HOConverge1D.m

| Level | $Energy(\epsilon)$ |
|-------|--------------------|
| 0     | 0.5001             |
| 1     | 1.5021             |
| 2     | 2.5176             |
| 3     | 3.5944             |
| 4     | 4.8016             |
| 5     | 6.2846             |
| 6     | 8.0551             |
| 7     | 10.4124            |
| 8     | 13.4974            |

iii. Below is a plot showing the convergence of energy levels with increasing number of basis functions K. Qualitatively, it appears that convergence is achieved for the lowest nine levels around K=15



i.

$$\begin{split} H\psi &= \left[ -\frac{1}{2} \left( \frac{d^2}{dx^2} + \frac{d^2}{dy^2} \right) + \frac{1}{2} (x^2 + y^2) \right] (\psi_x \psi_y) \\ &= \frac{1}{2} \left( -\frac{d^2}{dx^2} + x^2 \right) (\psi_x \psi_y) + \frac{1}{2} \left( -\frac{d^2}{dy^2} + y^2 \right) (\psi_x \psi_y) \\ &= \psi_y \left[ \frac{1}{2} \left( -\frac{d^2}{dx^2} + x^2 \right) \psi_x \right] + \psi_x \left[ \frac{1}{2} \left( -\frac{d^2}{dy^2} + y^2 \right) \psi_y \right] \\ &= \psi_y E_x \psi_x + \psi_x E_y \psi_y \\ &= (E_x + E_y) \psi_x \psi_y \end{split}$$

ii. The following is the equation for the energy of the 2D-HO given  $n_x$  and  $n_y$  where  $n_x, n_y \in \mathbb{N}$ 

$$E = E_x + E_y$$
  
=  $(n_x + 1/2) + (n_y + 1/2)$   
=  $n_x + n_y + 1$ 

An enumeration of the first couple energy states  $n=n_x+n_y$  is presented below. In general the number of degeneracies is equivalent to n+1

| n | $n_x$ | $n_y$ | $Energy(\epsilon)$ |
|---|-------|-------|--------------------|
| 0 | 0     | 0     | 1                  |
| 1 | 1     | 0     | 2                  |
|   | 0     | 1     |                    |
| 2 | 1     | 1     | 3                  |
|   | 2     | 0     |                    |
|   | 0     | 2     |                    |

Below is the code from harmOsc2DEnergies.m

```
function [energ, wf] = harmOsc2DEnergies(K, alpha, space)
    n = (sqrt(K) - 1) / 2;
   % Problem 3 part (i), enumerating the bases
    k = -n*space:space:n*space;
    k_{sqr} = zeros(length(k)^2, 2);
    i = 1;
    for x = -n*space:space:n*space
        for y = -n*space:space:n*space
            k_{-}sqr(i, :) = [x, y];
            i = i + 1;
        end
    end
   % Problem 3 part(ii), calculating the matrix elements
    num_pts = length(k_sqr);
    S = zeros(num_pts, num_pts);
   H = zeros(num_pts, num_pts);
    for ia = 1:num_pts
        xA = k_sqr(ia, 1);
        yA = k_sqr(ia, 2);
        for ib = 1:num_pts
            xB = k_sqr(ib, 1);
            yB = k_sqr(ib, 2);
            x_diff2 = (xA - xB)^2;
            y_diff2 = (yA - yB)^2;
            xP2 = ((xA + xB) / 2)^2;
            yP2 = ((yA + yB) / 2)^2;
            S(ia, ib) = (pi/2*alpha) * exp(-alpha*x_diff2/2 - alpha*y_diff2/2);
            H(ia, ib) = (S(ia, ib)/2) * ...
                (2*alpha - alpha^2*(x_diff2 + y_diff2) + 1/(2*alpha) + xP2 + yP2);
        end
    end
   % Problem 3 part(iii), solving for eigenvalues/eigenfns
    [wf, D] = eig(S\backslash H);
    energ = diag(D);
    for i = 1: size(wf, 2)
        c = wf(:, i);
        norm = 1/sqrt(c'*S*c);
        wf(:, i) = c * norm;
    end
end
```

i. Below are the calculated energies for the 45 lowest energy eigenstatess for K=49 basis fns. The results can be reproduced by running the first section of HOConverge2D.m. The result for the ground state and the first excited statess are fairly close to the theoretical values of 1 and 2, respectively. Also we can see the degeneracy of the first excited state. However with increasing energy levels the calculated value deviate more and more.

| index | $Energy(\epsilon)$ |
|-------|--------------------|
| 1     | 1.0036             |
| 2     | 2.0291             |
| 3     | 2.0291             |
| 4     | 3.0545             |
| 5     | 3.1434             |
| 6     | 3.1434             |
| 7     | 4.1688             |
| 8     | 4.1688             |
| 9     | 4.5276             |
| 10    | 4.5276             |
| 11    | 5.2831             |
| 12    | 5.5531             |
| 13    | 5.5531             |
| 14    | 6.2278             |
| 15    | 6.2278             |
| 16    | 6.6674             |
| 17    | 6.6674             |
| 18    | 7.2532             |
| 19    | 7.2532             |
| 20    | 8.0516             |
| 21    | 8.3675             |
| 22    | 8.3675             |
| 23    | 8.6903             |
| 24    | 8.6903             |
| 25    | 9.7158             |
| 26    | 9.7158             |
| 27    | 9.7518             |
| 28    | 9.7518             |
| 29    | 10.8301            |
| 30    | 10.8301            |
| 31    | 11.4519            |
| 32    | 11.7807            |
| 33    | 11.7807            |
| 34    | 12.2143            |
| 35    | 12.2143            |
| 36    | 12.8061            |
| 37    | 12.8061            |
| 38    | 13.9145            |
| 39    | 13.9145            |
| 40    | 13.9205            |
| 41    | 13.9205            |
| 42    | 15.3047            |
| 43    | 15.3047            |
| 44    | 16.3770            |
| 45    | 17.0049            |

ii. To reproduce the figure below, please run the second section of HOConverge2D.m. It appears as though K=225 basis are necessary for convergence of the first 9 energy levels for the 2D HO.



- iii. Given that for the 1D HO we needed around 15 basis fns and we needed apprximately  $15^2 = 225$  basis fns for a 2D HO, we would probably need  $15^3 = 3375$  basis fns for the first 9 energy levels to converge for a 3D HO. So in general the dimensionality of the wavefn  $\psi(x_1, x_2, ..., x_N)$  will require roughly  $c^N$  basis functions, where c is some constant intrinsic to the problem at hand, or in another words the number of basis functions scale exponentially with the dimensionality of the wavefn/equation we are solving for.
- iv. Therefore with N-electron problems in 3D where we have 3N coordinates, the computational expense should be  $O(c^{3N})$ . So the computational expense grows very quickly with increasing number of electrons, making such calculationss slow/infeasible for large N.

### Problem 5

The wavefunctions were calculated using K=25 basis sets. To reproduce the following, run the file HOWavefnPlot.m



