CSE 152 Introduction to Computer Vision Homework 0

Instructions:

• Total points: 100

 $\bullet\,$ Please submit your solution to Gradescope.

• Due: 11:59 pm, Thursday, Oct 11, 2018

- 1. [12 points] Given two bases of $P(x)_3$: $1, x, x^2, x^3$ and $1, 1+x, (1+x)^2, (1+x)^3$.
 - (a) [4 points] Find the invertible linear transformation matrix from basis $1, x, x^2, x^3$ to $1, 1+x, (1+x)^2, (1+x)^3$.
 - (b) [4 points] Find the invertible linear transformation matrix from basis $1, 1+x, (1+x)^2, (1+x)^3$ to $1, x, x^2, x^3$.
 - (c) [4 points] Find the coordinates of $a_3x^3 + a_2x^2 + a_1x + a_0$ with respect to the basis $1, 1 + x, (1 + x)^2, (1 + x)^3$

2. [12 points] **A** is a 3×3 real symmetric matrix, and $\mathbf{A}^2 + 2\mathbf{A} = \mathbf{0}$. Given $rank(\mathbf{A}) = 2$, find all the eigenvalues of **A**.

- 3. [20 points] Suppose that \mathbf{u} is an n-dimensional column vector of unit length in \mathbf{R}^n , and let \mathbf{u}^T be its transpose. Then $\mathbf{u}\mathbf{u}^T$ is a matrix. Consider the $n \times n$ matrix $\mathbf{A} = \mathbf{I} \mathbf{u}\mathbf{u}^T$.
 - (a) [6 points] Describe the action of the matrix A geometrically.
 - (b) [6 points] Give the eigenvalues of A.
 - (c) [4 points] Describe the null space of A.
 - (d) [4 points] What is A^2 ?

4. [10 points] Suppose A^+ is the pseudo inverse of matrix $A = [3 \ 4]^T$. Find A^+ and A^+A and AA^+ .

- 5. [12 points] In homogeneous system,
 - (a) [4 points] Please write down the 4×4 matrix S that scales by a constant c.
 - (b) [4 points] Multiply ST and also TS, where T is translation by (1,4,3).
 - (c) [4 points] To blow up the picture around the center point (1, 4, 3), would you use **vST** or **vTS**?

6. [10 points] Suppose

$$\frac{\partial \mathbf{A}}{\partial \mathbf{X}} = \begin{bmatrix} 2xy & y^2 & y \\ x^2 & 2xy & x \end{bmatrix}, \mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}$$

Find

 $\frac{\partial^2 \mathbf{A}}{\partial \mathbf{X}^2}$

.

7. [10 points] From the formula $\mathbf{AC}^T = (\det \mathbf{A})\mathbf{I}$ show that $\det \mathbf{C} = (\det \mathbf{A})^{n-1}$.

8. [14 points] Suppose T is a linear transformation on linear space V. If $T^k(\mathbf{a}) \neq \mathbf{0}$, and $T^n(\mathbf{a}) = \mathbf{0}$ (n > k). Show that $\mathbf{a}, T(\mathbf{a}), ..., T^k(\mathbf{a})$ are linearly independent.