Rudin's Principles of Mathematical Analysis, 3rd ed Connor Baker, May 2017

Basic Topology - Selected Exercises

5. Construct a bounded set of real numbers with exactly three limit points.

Proof. The point p is a limit point of $\{\frac{1}{n}:n\in\mathbb{N}\}$ if $\forall r>0,N_r(p)\cap E$ has infinitely many points.

Claim: Zero is a limit point of $\{\frac{1}{n} : n \in \mathbb{N}\}.$

For zero, $N_r(0) = \{x : d(x,0) < r\} = \{x : |x-0| < r\} = \{x : -r < x < r\} = (-r,r)$. Since $(r,r) \subseteq \mathbb{R}, \forall r > 0$, there are uncountably infinitely many points and $(r,r) \cap \{\frac{1}{n} : n \in \mathbb{N}\}$ has infinitely many points.

It is important to note that we can shift the location of this limit point. Consider the set $\{\frac{1}{n}+1:n\in\mathbb{N}\}$. For the same reasons above we can see that the limit point here is one.

In general, we can make a bounded set of real numbers with exactly $p, p \in \mathbb{Z}^+$, limit points with the set

$$\bigcup_{k=0}^{p} \{ \frac{1}{n} + k : n \in \mathbb{N} \}.$$

So, if we want three limit points, our set is as

$$\left\{\frac{1}{n}:n\in\mathbb{N}\right\}\bigcup\left\{\frac{1}{n}+1:n\in\mathbb{N}\right\}\bigcup\left\{\frac{1}{n}+2:n\in\mathbb{N}\right\}.$$

6.	. Let E' be th	e set of all limi	t points of a set I	E. Prove tha	at E' is closed.	Prove that E ar	E have the same
	limit points.	(Recall that \bar{E}	$E = E \cup E'$.) Do .	E and E' al	ways have the	same limit point	s?
	1	`	/		v	•	

Proof.

- 7. Let A_1, A_2, A_3, \ldots be subsets of a metric space.
 - (a) If $B_n = \bigcup_{i=1}^n A_i$, prove that $\bar{B}_n = \bigcup_{i=1}^n \bar{A}_i$, for $n = 1, 2, 3, \dots$
 - (b) If $B = \bigcup_{i=1}^{\infty} A_i$, prove that $\bar{B} \supset \bigcup_{i=1}^{\infty} \bar{A}_i$.

Show, by an example, that this inclusion can be proper.

Proof.

8. Is every point of every open set $E \subset \mathbb{R}^2$ a limit po \mathbb{R}^2 .	int of E ? Answer the same question for closed sets in
Proof.	

- 9. Let E° denote the set of all interior points of a set E.
 - (a) Prove that E° is always open.
 - (b) Prove that E is open if and only if $E^{\circ} = E$.
 - (c) If $G \subset E$ and G is open, prove that $G \subset E^{\circ}$.
 - (d) Prove that the complement of E° is the closure of the complement of E.
 - (e) Do E and \bar{E} always have the same interiors?
 - (f) Do E and E° always have the same closures?

Proof. \Box