AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF THE CLAIMS

1. (Currently Amended) A gray scale column driver for a thick an alternating current dielectric electroluminescent display, comprising:

a counter receiving <u>video signal</u> gray level data from an incoming video signal and in response counting for a time interval proportional to said gray level data; and

a non linear <u>analogue</u> voltage ramp generator connected to said counter, said non linear <u>analogue</u> voltage ramp generator outputting a ramping voltage <u>for application</u> to <u>that is used during driving of</u> columns of said <u>dielectric electroluminescent</u> display during said time interval, wherein said ramping voltage, <u>between its start and peak</u>, conforms to a curve having <u>an inverted s-shape</u>, with an initial convex portion followed by a concave portion <u>so as to compensate for luminance versus voltage characteristics</u> of said thick dielectric electroluminescent display, wherein said initial convex portion conforms to a negative second derivative with respect to said time interval, and said concave portion conforms to a positive second derivative with respect to said time interval, said ramping voltage determining the maximum voltage of alternating polarity driving pulses applied to the columns of said dielectric electroluminescent display.

2. Cancelled

- 3. (Currently Amended) The gray scale column driver of claim 1, wherein said counter is an 8-bit counter for delineating said time interval to fully define 256 gray levels.
- 4. (Currently Amended) The gray scale column driver of claim 1, wherein said ramping voltage, for a negative row voltage applied to said dielectric electroluminescent display.

is $V_{g neg}(t_m - t)$ expressed as a function of the difference between the time t_m for the ramping voltage to reach a maximum luminance voltage value V_m at the end of said time interval, and wherein said ramping voltage, for a positive row voltage <u>applied to said dielectric electroluminescent display</u>, is $V_{g pos}(t)$, where $V_{g pos}(t) = V_m - V_{g neg}(t_m - t)$ and said gray level data is converted to complement valves.

- 5. (Currently Amended) The gray scale column driver of claim 4, wherein said non linear <u>analogue</u> voltage ramp generator further comprises an integrator circuit and at least two current sources generating and applying different currents to said integrator circuit such that when a first one of said current sources is connected to said integrator circuit a first segment <u>said convex portion</u> of said ramping voltage is generated, when both of said current sources are connected in parallel to said integrator circuit a <u>second segment a transition portion</u> of said ramping voltage <u>between said convex portion and said concave portion</u> is generated, and when the <u>a</u> second one of said current sources is connected to said integrator circuit a <u>final segment said concave portion</u> of said ramping voltage is generated.
- 6. (Previously Presented) The gray scale column driver of claim 5, wherein said first one of said current sources generates a current that decreases during said time interval, and said second one of said current sources generates a current that increases during said time interval.
- 7. (Previously Presented) The gray scale column driver of claim 5, wherein said at least two current sources are time-dependent voltage feedback controlled current sources.
- 8. (Withdrawn) The gray scale column driver of claim 5, wherein said at least two current sources are constant current sources.

- 9. (Currently Amended) The gray scale column driver of claim 5, wherein said non linear <u>analogue</u> voltage ramp generator further comprises a threshold control circuit for controlled switching <u>between said two</u> of said at least two current sources.
- 10. (Currently Amended) The gray scale column driver of claim 5, wherein said non linear <u>analogue</u> voltage ramp generator further comprises a frame polarity control circuit selecting between said ramping voltage for [[a]] <u>said</u> positive row voltage and said ramping voltage for [[a]] <u>said</u> negative row voltage.
- 11. (Currently Amended) The gray scale column driver of claim 5, wherein said <u>at least</u> <u>two</u> current sources further include control inputs controlling <u>curvature</u> <u>the shape</u> of said <u>first and second segments</u> <u>convex and concave portions</u> respectively.
- 12. (Currently Amended) The gray scale column driver of claim 9, wherein said threshold control circuit further includes a control input setting a transition voltage between said first and second segments convex and concave of said ramping voltage.
- 13. Cancelled
- 14. Cancelled
- 15. Cancelled