Errores

Alejandro Zubiri

Thu Nov 14 2024

Contents

	Redondeos 1.1 Reglas	4
2	Cálculo de error absoluto y relativo	2
	Operaciones con errores 3.1 Suma y resta	

Redondeos 1

Acción de reemplazar un número por otro con menos dígitos

1.1 Reglas

- 1. Los n primeros dígitos se mantienen y se descarta el resto. Rellenamos con ceros.
- 2. Si los dígitos descartados forman un número menor a 5, entonces los dígitos conservados no cambian (redondeo por defecto). Si es mayor, el último de los dígitos conservados aumenta en 1.
- 3. Si es igual a 5, no hay regla general, pero **nosotros** sumaremos 1.

2 Cálculo de error absoluto y relativo

El error de redondeo es el que resulta al sustituir un cierto número p por su forma redondeada \hat{p} .

El error absoluto de aproximación a p: $E_A(\hat{p}) = |p - \hat{p}|$. Error relativo de aproximación: $E_r(\hat{p}) = \frac{|p-\hat{p}|}{|p|}$. Cuando no tenemos el valor real, aproximamos:

$$E_r(\hat{p}) \approx \frac{E_A(\hat{p})}{|\hat{p}|}$$
 (1)

El error relativo porcentual es:

$$\epsilon_r(\hat{p}) = E_r(\hat{p}) \cdot 100\% \tag{2}$$

Cifras significativas. Aquellas situadas a la derecha del primer dígito nu nulo.

Definición. Sea \hat{p} una aproximación de p:

$$\hat{p} = \pm (\alpha \cdot 10^m + \alpha_2 \cdot 10^{m-1} + \dots)$$
(3)

 α_n es una cifra significativa válida cuando el error absoluto sea:

$$E_A(\hat{p}) \le 0.5 \cdot 10^{m-n+1} \tag{4}$$

Podemos afirmar que α_n es CSV si:

$$E_r(\hat{p}) \leq \frac{0.5}{(\alpha_n+1)\cdot 10^{n-1}} \qquad \text{Utilizamos esta cuando vamos de CSV a E_r}$$

Si α_n es la última CSV de \hat{p} , entonces:

$$E_A(\hat{p}) = 0.5 \cdot 10^{m-n+1} \tag{5}$$

3 Operaciones con errores

3.1 Suma y resta

- Localizar los números con mayor error absoluto
- Redondear los restantes, reteniendo un dígito más que en los redondeados anteriormente
- Sumamos o restamos los valores
- Redondeamos y descartamos el último obtenido
- Tomamos como error absoluto la suma de errores absolutos de los números menos exactos más el error absoluto del redondeo
- Sacamos E_r con la fórmula
- \bullet Sacamos el número de CSVs con E_A

3.2 Multiplicación

- Localizar los números con menos CSVs
- Redondear el resto, reteniendo uno más
- Operamos con los valores sin errores
- Redondear el resultado, reteniendo tantos dígitos como cifras exactas había en el operando menos exacto
- E_r con la suma de errores relativos
- \bullet E_A a partir de error relativo
- E_A para hallar los CSVs