

DỮ LIỆU MẢNG VÀ KỸ THUẬT XỬ LÝ

NHẬP MÔN LẬP TRÌNH

GVHD: Trương Toàn Thịnh

- Mång một chiều
- Tham số hàm có dạng là mảng một chiều
- Một số kỹ thuật trên mảng một chiều
- Mång hai chiều
- Tham số hàm có dạng là mảng hai chiều
- Một số kỹ thuật trên mảng hai chiều
- Chuỗi kí tự

- Là dãy của các phần tử có cùng kiểu dữ liêu
- Hình ảnh mảng một chiều

_	0	1	2	3	4	5	6	7	8
	9	8	7	6	5	4	3	2	1
Ī	<100×	<102×	<u>/10/\</u>	<106×	<100×	<110×	∠11 2 \	~11 <i>1</i> \	<u>/116\</u>

- Mång tên a, có 9 phần tử
- Chỉ số tính từ 0 tới 8

a

Cú pháp truy cập tới giá trị từng phần tử:
 a[<chỉ số>], ví dụ a[0] sẽ là 9.

3

short

- Để tạo một mảng tĩnh ta cần các thông tin:
 - Kiểu của mỗi phần tử
 - Tên biến mảng tĩnh một chiều
 - Số lượng các phần tử mảng (kích thước mảng)
- Cú pháp

```
<a href="mainger: center"><kiểu_dữ_liệu> tên_mảng[kích_thước]</a>
```

• Ví dụ:

bo nho chua 12x4=48byte lien tuc

- int thang[12]: mảng tên thang chứa 12 phần tử kiểu int
- double a[5]: mång tên a chứa 5 phần tử kiểu double

Ví dụ

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	#define N 50
3	<pre>void arrayIntInput(int a[N], int& n){</pre>
4	while(1){
5	printf("Nhap so phan tu can dung < %d", N);
6	scanf("%d", &n);
7	if($n < 0 \parallel n > N$) printf("Xin nhap lai\n");
8	else break;
9	}
10	for(int $i = 0$; $i < n$; $i++$){
11	printf("Nhap a[%d]: ", i); scanf("%d", &a[i]);
12	}}

- Chỉ mục không chỉ là hằng số mà còn là biểu thức
- Ví dụ:

```
int a[10], x = 2, y = 3;
a[(x + y)/2 + 1] = 5; //a[3] = 5
```

- Không được phép gán hai mảng trực tiếp
- Ví dụ:

```
#define N 50
int a[N], b[N];
a = b;//Sai
```

- Cần dùng vòng lặp để gán lần lượt từng phần tử:
- Ví dụ
 for(int i = 0; i < N; i++)
 a[i] = b[i];

- Với mảng một chiều ta có thể nhập đơn lẻ từng phần tử
- Ví dụ:
 int a[2];
 scanf("%d", &a[0]);
 scanf("%d", &a[1]);
- Nên dùng vòng lặp để nhập dữ liệu mảng
- Ví dụ:
 int a[2];
 for(int i = 0; i < 2; i++)
 scanf("%d", &a[i]);

- Với mảng một chiều ta có thể xuất đơn lẻ từng phần tử
- Ví dụ:

```
//...;
printf("%d", a[0]);
printf("%d", a[1]);
```

- Nên dùng vòng lặp để xuất dữ liệu mảng
- Ví dụ:

```
//...;
for(int i = 0; i < 2; i++)
printf("%d", a[i]);
```

- Một số cách khởi gán cho mảng một chiều
- Ví dụ

```
int a[5] = {1,2,3,4,5};
int a[5] = {1,2,3};
int a[5] = {0};
int a[] = {1,2,3}
```

- Dùng toán tử sizeof xác định số phần tử
- Ví dụ

```
int a[] = \{1,2,3\}, n;

n = sizeof(a)/sizeof(a[0]); => n=12/4=3

for(int i = 0; i < n; i++)

printf("%od", a[i]);
```

- Truyền mảng một chiều cho hàm
 - Khi truyền mảng một chiều có N phần tử cho hàm thì bản chất ta chỉ truyền địa chỉ của phần tử đầu tiên
 - Địa chỉ của phần tử đầu tiên có thể biểu diễn bằng kí hiệu &a[0] hay a.
 - Giả sử ta có mảng một chiều tĩnh tên là 'a' thì kí hiệu a chính là biến địa chỉ hằng.
 - Lưu ý: a là địa chỉ của a[0] nhưng không cần ghi ký hiệu '&'.

• Truyền mảng một chiều cho hàm

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	#define N 50
3	<pre>void arrayIntInput(int a[N], int& n){}</pre>
4	<pre>void arrayIntOutput(int a[N], int n){</pre>
5	for(int i = 0; i < n; i++)
6	printf("%d", a[i]);
7	}
8	void main(){
9	int b[N], m;
10	arrayIntInput(b, m);
11	arrayIntOutput(b, m);
12	}

&b -> <10> địa chỉ b đang giữ, ấn địa chỉ con trỏ tĩnh b Luu ý: $\&b \neq b = \&b[0]$ $&a \neq a = &a[0]$ n là con trỏ bị giấu địa chỉ, n &n \neq &m giữ địa chỉ m arrayIntInput <10> < 500 > a <100> <???> <10> m <???> < 500> main <10> <14>

truyền địa chỉ của biến đầu tiên của

- Mång một chiều
- Tham số hàm có dạng là mảng một chiều
- Một số kỹ thuật trên mảng một chiều
- Mång hai chiều
- Tham số hàm có dạng là mảng hai chiều
- Một số kỹ thuật trên mảng hai chiều
- Chuỗi kí tự

- Sắp xếp
 - Thuật toán đổi chỗ trực tiếp ("exchange sort")
 - Đơn giản dễ viết
 - Kém hiệu quả khi kích thước dữ liệu lớn
 - Phù hợp với mức độ nhập môn

Dòng	Mô tả
1	<pre>void Sapxep(int a[], int n){</pre>
2	for(int $i = 0$; $i < n - 1$; $i++$){
3	for(int $j = i + 1$; $j < n$; $j++$){
4	$if(a[i] > a[j]) \{int temp = a[i]; a[i] = a[j]; a[j] = temp; \}$
5	}
6	}}

Sắp xếp

i = 0	\mathbf{a}_0	a_1	\mathbf{a}_2	a_3	a_4	a_5	a_6	\mathbf{a}_7
1-0	9	6	3	5	8	2	1	4
j=1	6	9						
j=2	3	9	6					
j=3	3	9	6	5				
j=4	3	9	6	5	8			
j=5	2	9	6	5	8	3		
j=6	1	9	6	5	8	3	2	_
j = 7	1	9	6	5	8	3	2	4

Sắp xếp

i = 1	\mathbf{a}_0	a_1	\mathbf{a}_2	a_3	a_4	a_5	a_6	a_7
1 - 1	1	9	6	5	8	3	2	4
j=2	1	6	9					
j=3	1	5	9	6				
j=4	1	5	9	6	8			
j=5	1	3	9	6	8	5		
j=6	1	2	9	6	8	5	3	
j = 7	1	2	9	6	8	5	3	4
i = 6	\mathbf{a}_0	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	a_4	\mathbf{a}_{5}	a_6	a_7
1 - 0	1	2	3	4	5	6	9	8
j = 7	1	2	3	4	5	6	8	9

Thêm phần tử vào mảng: Thêm số nguyên
x vào mảng n phần tử tại vị trí k.

Dòng	Mô tả
1	bool Chen(int a[], int &n, int x, int k){
2	if($k < 0 \parallel k > n$) return false;
3	for(int $i = n - 1$; $i \ge k$; i)
4	a[i+1] = a[i];
5	a[k] = x;
6	n++;
7	return true;
8	}

• Xóa một phần tử trong mảng: Xóa phần tử tại vị trí k của mảng n phần tử. k

Dòng	Mô tả
1	<pre>void Xoa(int a[], int &n, int k){</pre>
2	if($k < 0 \parallel k > n$) return;
3	for(int $i = k$; $i < n - 1$; $i++$) $a[i] = a[i + 1]$;
4	n; }

• Xóa một phần tử trong mảng không duy trì thứ tư 0 1 2 3 4 5

Dòng	Mô tả
1	void Xoa(int a[], int &n, int k){
2	if($k < 0 \parallel k > n$) return;
3	a[k] = a[n - 1];
4	n; }

Tách dữ liệu từ một mảng cho hai mảng

Dòng	Mo	o tå		
1	vo	id Tachchanle(int a[], int n, int c[], int &k, int l[], int &h){	8	<pre>void main(){</pre>
2	k	= h = 0;	9	int y[5], z[5], ny, nz;
3	fo	or(int $i = 0$; $i < n$; $i++$){	10	int $x[] = \{1, 2, 3, 4\}, nx = 4;$
4		f(a[i] % 2 == 0) c[k++] = a[i];	11	Tachchanle(x, nx, y, ny, z, nz);
5		else $l[h++] = a[i];$	12	}
6	}			
7	}			
		?? <10> < 10>	<3 <9 c <7	0>
		<50> 1 3	<50 1	
		?? <90> 1 2 3 4	<11 	

Tách đôi dữ liệu từ một mảng

Dòng	M	ô tả		
1	VC	id Tachdoi(int a[], int n, int b[], int &k, int c[], int &h){	6	void main(){
2	k	$\mathbf{x} = \mathbf{h} = 0;$	7	int y[5], z[5], ny, nz;
3	f	or(int $i = 0$; $i < n/2$; $i++$) $b[k++] = a[i]$;	8	int $x[] = \{1, 2, 3, 4, 5\}, nx = 5;$
4	f	or(int $j = n/2$; $j < n$; $j++$) $c[h++] = a[j]$;	9	Tachdoi(x, nx, y, ny, z, nz);
5	}		10	}

• Ghép hai mảng vào một mảng

Dòng	Μά	tå		
1	VO	d GhepNoi(int a[], int &n, int b[], int k, int c[], int h){	6	void main(){
2	n	=0;	7	int $y[] = \{1, 2\}, z[] = \{3, 4, 5\};$
3	fc	r(int i = 0; i < k; i++) a[n++] = b[i];	8	int $ny = 2$, $nz = 3$, nx , $x[5]$;
4	fc	r(int j = 0; j < h; j++) a[n++] = c[j];	9	GhepNoi(x, nx, y, ny, z, nz);
5	}		10	}

• Ghép xen kẻ hai mảng vào một mảng

Dòng	Μά	tå	??	<35> <75
1	Voi	d GhepXK(int a[], int &n, int b[], int k, int c[], int h){	<10> y ??	<90> b <50
2	n	= 0; int $i = 0$, $j = 0$;	<50> Z	<10>
3	W	hile($(i \le k) \&\& (j \le h)$){	??	<50>
4		f(n % 2 == 0) a[n++] = b[i++];	<90>x	3 4 5
5		else $a[n++] = c[j++];$		<90>
6	}			1 3 2 4 5
7	W	hile(i < k) a[n++] = b[i++];		<40>
8	W	hile(j < h) $a[n++] = c[j++];$		\[\frac{2}{k} \] <80>
9	}			h ³
				??

<115>

<30>

< 70>

- Mång một chiều
- Tham số hàm có dạng là mảng một chiều
- Một số kỹ thuật trên mảng một chiều
- Mång hai chiều
- Tham số hàm có dạng là mảng hai chiều
- Một số kỹ thuật trên mảng hai chiều
- Chuỗi kí tự

- Là ma trận (**bảng**) của các phần tử có cùng kiểu dữ liệu
- Hình ảnh mảng hại chiệu

0	9	8	7
1	6	5	4
2	3	2	1

- Mảng hai chiều tên a, có 9 phần tử
- Chỉ số tính dòng từ 0 tới 2, chỉ số cột từ 0 tới 2
- Cú pháp truy cập tới giá trị từng phần tử: a[<chỉ số dòng>][<chỉ số cột>], ví dụ a[0][1] sẽ là 8.

- Để tạo một mảng tĩnh hai chiều ta cần các thông tin:
 - Kiểu của mỗi phần tử
 - Tên biến mảng tĩnh hai chiều
 - Số dòng và cột ma trận (kích thước ma trận)
- Cú pháp <kiểu_dữ_liệu> tên_mảng[kích_thước_dòng][kích_thước_cột]
- Vi du:

 12x11x4byte = [quá trời] byte => [50][50] is ok
 - int a[12][11]: mång tên a chứa 12 × 11 phần tử kiểu
 int
 - double a[5][5]: mång tên a chứa 5 × 5 phần tử kiểu double

Ví dụ

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	#define MaxRow 20
3	#define MaxCol 20
4	<pre>void main(){</pre>
5	int a[MaxRow][MaxCol], mRow, nCol, i, j;
6	printf("mRow = "); scanf("%d", &mRow);
7	printf("nCol = "); scanf("%d", &nCol);
8	for($i = 0$; $i < mRow$; $i++$){
9	for(j = 0; j < nCol; j++)
10	scanf("%d", &a[i][j]);
11	}
12	}

- Chỉ mục không chỉ là hằng số mà còn là biểu thức
- Ví du:

```
int a[7][7], x = 2, y = 3;
a[y - x][y + x] = 5; //a[1][5] = 5
```

- Không được phép gán hai mảng trực tiếp
- Ví dụ:

```
#define R 50

#define C 50

int a[R][C], b[R][C];

a = b;//Sai
```

- Cần dùng vòng lặp để gán lần lượt từng phần tử:
- Ví dụ

```
for(int i = 0; i < R; i++)
for(int j = 0; j < C; j++)
a[i][j] = b[i][j];
```

- Với mảng hai chiều ta có thể nhập đơn lẻ từng phần tử
- Ví dụ:

```
int a[2][2];
scanf("%d", &a[0][1]);
scanf("%d", &a[1][0]);
```

- Nên dùng vòng lặp để nhập dữ liệu mảng hai chiều
- Ví dụ:

```
int a[2][2];
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
scanf("%d", &a[i][j]);</pre>
```

- Với mảng hai chiều ta có thể xuất đơn lẻ từng phần tử
- Ví dụ:

```
//...;
printf("%d", a[0][1]);
printf("%d", a[1][0]);
```

- Nên dùng vòng lặp để xuất dữ liệu mảng hai chiều
- Ví dụ:

```
//...;
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
printf("%d", a[i][j]);
```

- Một số cách khởi gán cho mảng hai chiều
- Ví dụ

```
int a[10][2] = \{\{1,2\}, \{2,4\}, \{3,6\},
\{4,7\},\{8,9\},\{2,1\},\{6,5\},\{3,8\},\{4,9\},
\{1,1\}\};
 int a[10][2] = \{1, 2, 2, 4, 3, 6, 4, 7, 8, 9, ...
                  2, 1, 6, 5, 3, 8, 4, 9, 1, 1};
 int a[3][2] = \{1,2,3,4,5\}; //Các phần tử
        //thiếu sẽ tự động có giá trị zero
```

- Truyền mảng hai chiều cho hàm
 - Chỉ truyền tên mảng tại nơi gọi hàm
 - Trong định nghĩa và khai báo hàm ta chỉ khai báo rõ số lượng cột
 - C xem mảng hai chiều là một mảng các mảng một chiều

```
Ví dụ:
```

• Truyền mảng hai chiều cho hàm

Dòng	Mô tả
1	#include <stdio.h></stdio.h>
2	#define M 20
3	#define N 30
4	<pre>void array2DIntInput(int b[][N], int& m, int& n){</pre>
5	scanf("%d", &m); // Nhập số dòng
6	scanf("%d", &n); // Nhập số cột
7	for(int $i = 0$; $i < m$; $i++$){
8	for(int $j = 0$; $j < n$; $j++$){
9	scanf("%d", &b[i][j]);
10	}
11	}
12	}

• Truyền mảng hai chiều cho hàm

Dòng	Mô tả
1	//
2	<pre>void array2DOutput(int a[][N], int m, int n){</pre>
3	for(int $i = 0$; $i < m$; $i++$){
4	for(int $j = 0$; $j < n$; $j++$)
5	printf("%d", a[i][j]);
6	printf("\n");
7	}
8	}
9	void main(){
10	int a[M][N], m, n;
11	array2DInput(a, m, n);
12	array2DOutput(a, m, n);}

- Mång một chiều
- Tham số hàm có dạng là mảng một chiều
- Một số kỹ thuật trên mảng một chiều
- Mång hai chiều
- Tham số hàm có dạng là mảng hai chiều
- Một số kỹ thuật trên mảng hai chiều
- Chuỗi kí tự

Sắp xếp tăng

Dòng	Mô tả
1	<pre>void sapxeptang(int a[][20], int d, int c) {</pre>
2	for (int i=0; i <d*c;i++) td="" {<=""></d*c;i++)>
3	for (int j=0; j <d*c;j++) td="" {<=""></d*c;j++)>
4	$if(a[i/c][i\%c] < a[j/c][j\%c])$ {
5	int tmp = a[i/c][i%c];
6	a[i/c][i%c] = a[j/c][j%c];
7	a[j/c][j%c] = tmp ;
8	}
9	}
10	}
11	}

Ví dụ:

 $\begin{array}{ccc}
26 & 12 \\
15 & \rightarrow 56 \\
89 & 89
\end{array}$

Chép nội dung dòng k vào dòng h

Dòng	Mô tả
1	<pre>void ChepDong(int a[][20], int m, int n, int k, int h) {</pre>
2	if(k<1 k>= m h<1 h>= m) return;
3	for (int i = 0; i <n; i++)="" td="" {<=""></n;>
4	a[h][i] = a[k][i];
5	}
6	}

Ví dụ xét ma trận (chép nội dung dòng 0 vào dòng 2)

$$2612$$
 2612
 $1589 \rightarrow 1589$
 1467 2612

• Chép nội dung cột k vào cột h

Dòng	Mô tả
1	void ChepCot(int a[][20], int m, int n, int k, int h) {
2	if(k<1 k>=n h<1 h>=n) return;
3	for (int i = 0; i <m; i++)="" td="" {<=""></m;>
4	a[i][h] = a[i][k];
5	}
6	}

Ví dụ xét ma trận (chép nội dung cột 0 vào cột 3)

$$2612$$
 2612
 $1589 \rightarrow 1581$
 1467 1461

Hoán vị nội dung dòng k và dòng h

Dòng	Mô tả
1	<pre>void HoanViDong(int a[][20], int m, int n, int k, int h) {</pre>
2	int i, temp;
3	if(k == h) return;
4	for $(i = 0; i < n; i++)$ {
5	temp = a[k][i];
6	a[k][i] = a[h][i];
7	a[h][i] = temp;
8	}
9	}

Ví dụ xét ma trận (hoán vị nội dung dòng 0 và dòng 2)

$$\begin{array}{ccc}
2612 & 1467 \\
1589 & \rightarrow & 1589 \\
1467 & 2612
\end{array}$$

Hoán vị nội dung cột k và cột h

Dòng	Mô tả
1	void HoanViCot(int a[][20], int m, int n, int k, int h) {
2	int i, temp;
3	if(k == h) return;
4	for (i = 0; i < m; i++) {
5	temp = a[i][k];
6	a[i][k] = a[i][h];
7	a[i][h] = temp;
8	}
9	}

Ví dụ xét ma trận (hoán vị nội dung cột 0 và cột 3)

$$2612$$
 2612
 $1589 \rightarrow 9581$
 1467 7461

Loại bỏ dòng k (không duy trì thứ tự)

Dòng	Mô tả
1	void LoaiBoDong(int a[][20], int &m, int n, int k) {
2	if((k < 0) (k >= m)) return;
3	$if(k != m - 1){$
4	ChepDong(a, m, n, $m - 1$, k);
5	m;
6	}
7	}

Loại bỏ dòng k (duy trì thứ tự)

Dòng	Mô tả	
1	<pre>void LoaiBoDong(int a[][20], int &m, int n, int k) {</pre>	
2	$if((k < 0) \parallel (k >= m)) return;$	
3	$if(k == m - 1) \{ m; return; \}$	
4	int $b[20][20]$, $t = 0$;	
5	for(int $i = 0$; $i < m$; $i++$){	
6	if(i == k) continue;	
7	for(int $j = 0$; $j < n$; $j++$) $b[t][j] = a[i][j]$;	
8	t++;	
9	}	
10	for(int $i = 0$; $i < t$; $i++$)	
11	for(int $j = 0$; $j < n$; $j++$)	
12	a[i][j] = b[i][j];	
13	m; }	

5 7 8 2 1

- Đổ ngược lại từ $b \rightarrow a$

26127 26127

 $14673 \rightarrow 14673$

57821 57821

57821

40

Loại bỏ dòng k (duy trì thứ tự)

Dòng	M	ô tả	Ví dụ xét ma trận (loại bỏ dòng 1)
1	Vo	id LoaiBoDong(int a[][20], int &m, int n, int k) {	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2	i	((k < 0) (k >= m)) return;	$\begin{bmatrix} m \\ 14673 \\ 57821 \end{bmatrix}$
3	f	or(int $i = k$; $i < m - 1$; $i++$) {	57821
4		for(int $j = 0$; $j < n$; $j++$) {	======Ý tưởng=======
5		a[i][j] = a[i + 1][j];	- Xác định dòng cần loại bỏ (k = 1) 2 6 1 2 7
6		}	15898
7	}		1 4 6 7 3
8	n	n;	57821
9	}		- Chuyển dữ liệu các dòng sau k lên
			$\begin{bmatrix} 26127 & 26127 & 26127 \end{bmatrix}$

26127 26127 26127 $15898 \rightarrow 14673 \rightarrow 14673$ 14673 14673 57821 5 7 8 2 1 5 7 8 2 1 57821

Loại bỏ dòng k (duy trì thứ tự)

Dòng	Mô	tå
1	voi	LoaiBoDong(int a[][20], int &m, int n, int k) {
2	if((k < 0) (k >= m)) return;
3	fo	$c(int i = k; i < m - 1; i++) {$
4		HoanViDong(a, m, n, i, i + 1);
5	}	
6	m-	-;
7	}	

Ví dụ xét ma trận (loại bỏ dòng 1)

- Xác định dòng cần loại bỏ (k = 1)

2 6 1 2 7 1 5 8 9 8 1 4 6 7 3

57821

Hoán chuyển dữ liệu k với các dòng dưới
26127 26127 26127
15898 → 14673 → 14673
14673 15898 57821
57821 57821 15898

- Mång một chiều
- Tham số hàm có dạng là mảng một chiều
- Một số kỹ thuật trên mảng một chiều
- Mång hai chiều
- Tham số hàm có dạng là mảng hai chiều
- Một số kỹ thuật trên mảng hai chiều
- Chuỗi kí tự

- Là mảng các phần tử kiểu char
- Kết thúc mảng là kí tự '\0'
- Cách khai báo và định nghĩa giá trị:
 - o char s[] = "Nguyen Van A";
 - Mảng kí tự tên s có 13 phần tử (gồm 12 phần tử nội dung + phần tử '\0')
 - o char s[] = {'h', 'e', 'l', 'l', 'o' };
- Cách nhập/xuất mảng kí tự
 - char s[30];
 - // tự bỏ 'enter' ra khỏi stdin & tự gắn '\0' vào cuối
 - gets_s(s);
 - printf("%s\n", s);

- Một số hàm tiện ích trong <string.h>
 - strlen(char*): trả ra số lượng kí tự của chuỗi
 - char s[30];
 - gets_s(s);
 - printf("%d", strlen(s));

- strcat(char* dest, char* src): nối hai chuỗi dest và src lại với nhau, hàm trả ra địa chỉ chuỗi dest.
 - char s[30], t[30], *kq;
 - gets_s(s); gets_s(t);
 - kq = strcat(s, t);
 - printf("%s", kq)

kq H i w o r l d C

- Một số hàm tiện ích trong <string.h>
 - strchr(const char* src, int ch): trả ra con trỏ đến vị trí đầu tiên của chuỗi src chứa ký tự ch
 - // con trỏ trỏ tới hằng: không thay đổi được giá trị
 - const char *s = "He world";
 - // hằng con trỏ (char* const s): thay # h e | w o r | char*
 - int ch = 101;
 - char* c = strchr(s, ch); c e
 - if(c != NULL) printf("%c", *c);
 - strstr(const char* mainStr, const char* subStr): trả ra con trỏ
 đến vị trí đầu tiên của chuỗi subStr trong chuỗi mainStr.
 - char *s = "hello world", *t = "world";
 - t w o r 0
 - char *kq = strstr(s, t);• H = I I
 - if (kq!=NULL)

printf("%s", kq);

q w o r l d

W

- Một số hàm tiện ích trong <string.h>
 - strtok(char* s, char* delim): tách các 'từ' trong chuỗi s (việc tách dựa vào chuỗi delim). Mỗi lần gọi hàm này trả ra con trỏ trỏ tới 'từ' tách ra

```
char *s = "They are dogs, cats. The dogs";
char *sep = ",.";
char* w = strtok(s, sep);
while(w!=NULL){
printf("%s\n", w);
w = strtok(NULL, sep);
}
```

- Phân biệt con trỏ hằng và hằng con trỏ
 - Con trỏ hàng: const char* s;
 - · Ví dụ:
 - char m = 'M', n = 'N';
 - const char* s = &m;
 - $*_S = n; // L\tilde{o}i$
 - s = &n; // OK
 - Hằng con trỏ: char* const s;
 - · Ví dụ:
 - char m = 'M', n = 'N';
 - char* const s = &m;
 - $*_S = n; // OK$
 - $s = \&n; // L\tilde{o}i$

• Bài tập 1:

- Xây dựng hàm nhập và xuất mảng một chiều các số nguyên
- Xây dựng hàm tính tổng các phần tử chẵn trong mảng một chiều
- Xây dựng hàm tính tích các phần tử tại vị trí lẻ trong mảng một chiều

BÀI TẬP

- Bài tập 2:
 - Xây dựng hàm nhập và xuất màng hai chiều
 - Xây dựng hàm xoay biên trái của ma trận

