

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/12, 15/18, 15/19		A1	(11) International Publication Number: WO 99/55865 (43) International Publication Date: 4 November 1999 (04.11.99)
 (21) International Application Number: PCT/NZ99/00051 (22) International Filing Date: 29 April 1999 (29.04.99) (30) Priority Data: 09/069,726 29 April 1998 (29.04.98) US 09/188,930 9 November 1998 (09.11.98) US (71) Applicant: GENESIS RESEARCH AND DEVELOPMENT CORPORATION LIMITED [NZ/NZ]; 1 Fox Street, Parnell, Auckland (NZ). (72) Inventors: STRACHAN, Lorna; 11/50 Livingstone Street, Coxs Bay, Auckland (NZ). SLEEMAN, Matthew; 19 Derwent Crescent, Titirangi, Auckland (NZ). WATSON, James, Douglas; 769 Riddell Road, St Heliers, Auckland (NZ). ONRUST, Rene; 21 Duart Avenue, Mt Albert, Auckland (NZ). KUMBLE, Anand; 4 Stanton Terrace, Lynfield, Auckland (NZ). MURISON, James, Greg; 24 Calgary Street, Sandringham, Auckland (NZ). (74) Agents: BENNETT, Michael, Roy et al.; Russell McVeagh West-Walker, Mobil on the Park, 157 Lambton Quay, Wellington (NZ).		 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
 (54) Title: POLYNUCLEOTIDES ISOLATED FROM SKIN CELLS AND METHODS FOR THEIR USE (57) Abstract Isolated polynucleotides encoding polypeptides expressed in mammalian skin cells are provided, together with expression vectors and host cells comprising such isolated polynucleotides. Methods for the use of such polynucleotides and polypeptides are also provided.			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

**POLYNUCLEOTIDES ISOLATED FROM SKIN CELLS AND METHODS FOR
THEIR USE**

5

Technical Field of the Invention

This invention relates to polynucleotides encoding polypeptides, polypeptides expressed in skin cells, and their use in therapeutic methods.

10

Background of the Invention

The skin is the largest organ in the body and serves as a protective cover. The loss of skin, as occurs in a badly burned person, may lead to death owing to the absence of a barrier against infection by external microbial organisms, as well as loss of body 15 temperature and body fluids.

Skin tissue is composed of several layers. The outermost layer is the epidermis which is supported by a basement membrane and overlies the dermis. Beneath the dermis is loose connective tissue and fascia which cover muscles or bony tissue. The skin is a self-renewing tissue in that cells are constantly being formed and shed. The 20 deepest cells of the epidermis are the basal cells, which are enriched in cells capable of replication. Such replicating cells are called progenitor or stem cells. Replicating cells in turn give rise to daughter cells called 'transit amplifying cells'. These cells undergo differentiation and maturation into keratinocytes (mature skin cells) as they move from the basal layer to the more superficial layers of the epidermis. In the process, 25 keratinocytes become cornified and are ultimately shed from the skin surface. Other cells in the epidermis include melanocytes which synthesize melanin, the pigment responsible for protection against sunlight. The Langerhans cell also resides in the epidermis and functions as a cell which processes foreign proteins for presentation to the immune system.

30 The dermis contains nerves, blood and lymphatic vessels, fibrous and fatty tissue. Within the dermis are fibroblasts, macrophages and mast cells. Both the epidermis and dermis are penetrated by sweat, or sebaceous, glands and hair follicles. Each strand of

hair is derived from a hair follicle. When hair is plucked out, the hair re-grows from epithelial cells directed by the dermal papillae of the hair follicle.

When the skin surface is breached, for example in a wound, the stem cells proliferate and daughter keratinocytes migrate across the wound to reseal the tissues. The 5 skin cells therefore possess genes activated in response to trauma. The products of these genes include several growth factors, such as epidermal growth factor, which mediate the proliferation of skin cells. The genes that are activated in the skin, and the protein products of such genes, may be developed as agents for the treatment of skin wounds. Additional growth factors derived from skin cells may also influence growth of other cell 10 types. As skin cancers are a disorder of the growth of skin cells, proteins derived from skin that regulate cellular growth may be developed as agents for the treatment of skin cancers. Skin derived proteins that regulate the production of melanin may be useful as agents which protect skin against unwanted effects of sunlight.

Keratinocytes are known to secrete cytokines and express various cell surface 15 proteins. Cytokines and cell surface molecules are proteins which play an important role in the inflammatory response against infection and also in autoimmune diseases affecting the skin. Genes and their protein products that are expressed by skin cells may thus be developed into agents for the treatment of inflammatory disorders affecting the skin.

Hair is an important part of a person's individuality. Disorders of the skin may 20 lead to hair loss. Alopecia areata is a disease characterized by the patchy loss of hair over the scalp. Total baldness is a side effect of drug treatment for cancer. The growth and development of hair are mediated by the effects of genes expressed in skin and dermal papillae. Such genes and their protein products may be usefully developed into agents for the treatment of disorders of the hair follicle.

25 New treatments are required to hasten the healing of skin wounds, to prevent the loss of hair, enhance the re-growth of hair or removal of hair, and to treat autoimmune and inflammatory skin diseases more effectively and without adverse effects. More effective treatments of skin cancers are also required. There thus remains a need in the art for the identification and isolation of genes encoding proteins expressed in the skin, 30 for use in the development of therapeutic agents for the treatment of disorders including those associated with skin.

Summary of the Invention

The present invention provides polypeptides expressed in skin cells, together with polynucleotides encoding such polypeptides, expression vectors and host cells comprising such polynucleotides, and methods for their use.

In specific embodiments, isolated polynucleotides are provided that comprise a DNA sequence selected from the group consisting of: (a) sequences recited in SEQ ID NO: 1-14, 45-48, 64-68, 77-89, 118, 119, 198-231, 239-249, 254-274, 349-372 and 399-405; (b) complements of the sequences recited in SEQ ID NO: 1-14, 45-48, 64-68, 77-89, 118, 119, 198-231, 239-249, 254-274, 349-372 and 399-405; (c) reverse complements of the sequences recited in SEQ ID NO: 1-14, 45-48, 64-68, 77-89, 118, 119, 198-231, 239-249, 254-274, 349-372 and 399-405; (d) reverse sequences of the sequences recited in SEQ ID NO: 1-14, 45-48, 64-68, 77-89, 118, 119, 198-231, 239-249, 254-274, 349-372 and 399-405; (e) sequences having a 99% probability of being the same as a sequence of (a)-(d); and (f) sequences having at least 50%, 75% or 90% identity to a sequence of (a)-(d).

In further embodiments, the present invention provides isolated polypeptides comprising an amino acid sequence selected from the group consisting of: (a) sequences provided in SEQ ID NO: 120-197, 275-348, 373-398 and 406-409; and (b) sequences having at least 50%, 75% or 90% identity to a sequence provided in SEQ ID NO: 120-197, 275-348, 373-398 and 406-409, together with isolated polynucleotides encoding such polypeptides. Isolated polypeptides which comprise at least a functional portion of a polypeptide comprising an amino acid sequence selected from the group consisting of: (a) sequences provided in SEQ ID NO: 120-197, 275-348, 373-398 and 406-409; and (b) sequences having 50%, 75% or 90% identity to a sequence of SEQ ID NO: 120-197, 275-348, 373-398 and 406-409 are also provided.

In related embodiments, the present invention provides expression vectors comprising the above polynucleotides, together with host cells transformed with such vectors.

30 In a further aspect, the present invention provides a method of stimulating keratinocyte growth and motility, inhibiting the growth of epithelial-derived cancer cells,

inhibiting angiogenesis and vascularization of tumors, or modulating the growth of blood vessels in a subject, comprising administering to the subject a composition comprising an isolated polypeptide, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (a) sequences provided in SEQ ID NO: 187, 196, 342, 343, 5 395, 397, and 398; and (b) sequences having at least 50%, 75% or 90% identity to a sequence provided in SEQ ID NO: 187, 196, 342, 343, 395, 397, and 398.

Methods for modulating skin inflammation in a subject are also provided, the methods comprising administering to the subject a composition comprising an isolated polypeptide, wherein the polypeptide comprises an amino acid sequence selected from 10 the group consisting of: (a) sequences provided in SEQ ID NO: 338 and 347; and (b) sequences having at least 50%, 75% or 90% identity to a sequence provided in SEQ ID NO: 338 and 347. In an additional aspect, the present invention provides methods for stimulating the growth of epithelial cells in a subject. Such methods comprise administering to the subject a composition comprising an isolated polypeptide including 15 an amino acid sequence selected from the group consisting of: (a) sequences provided in SEQ ID NO: 129 and 348; and (b) sequences having at least 50%, 75% or 90% identity to a sequence provided in SEQ ID NO: 129 and 348. In yet a further aspect, methods for inhibiting the binding of HIV-1 to leukocytes, for the treatment of an inflammatory disease or for the treatment of cancer in a subject are provided, the methods comprising 20 administering to the subject a composition comprising an isolated polypeptide including an amino acid sequence selected from the group consisting of: (a) sequences provided in SEQ ID NO: 340, 344, 345 and 346; and (b) sequences having at least 50%, 75% or 90% identity to a sequence provided in SEQ ID NO: 340, 344, 345 and 346.

As detailed below, the isolated polynucleotides and polypeptides of the present 25 invention may be usefully employed in the preparation of therapeutic agents for the treatment of skin disorders.

The above-mentioned and additional features of the present invention, together with the manner of obtaining them, will be best understood by reference to the following more detailed description. All references disclosed herein are hereby incorporated herein 30 by reference in their entirety as if each was incorporated individually.

Brief Description of the Drawings

Fig. 1 shows the results of a Northern analysis of the distribution of huTR1 mRNA in human tissues. Key: He, Heart; Br, Brain; Pl, Placenta; Lu, Lung; Li, Liver; 5 SM, Skeletal muscle; Ki, Kidney; Sp, Spleen; Th, Thymus; Pr, Prostate; Ov, Ovary.

Fig. 2 shows the results of a MAP kinase assay of muTR1a and huTR1a. MuTR1a (500ng/ml), huTR1a (100ng/ml) or LPS (3pg/ml) were added as described in the text.

Fig. 3 shows the stimulation of growth of neonatal foreskin keratinocytes by 10 muTR1a.

Fig. 4 shows the stimulation of growth of the transformed human keratinocyte cell line HaCaT by muTR1a and huTR1a.

Fig. 5 shows the inhibition of growth of the human epidermal carcinoma cell line A431 by muTR1a and huTR1a.

15 Fig. 6 shows the inhibition of IL-2 induced growth of concanavalin A-stimulated murine splenocytes by KS2a.

Fig. 7 shows the stimulation of growth of rat intestinal epithelial cells (IEC-18) by a combination of KS3a plus apo-transferrin.

Fig. 8 illustrates the oxidative burst effect of TR-1 (100 ng/ml), muKS1 20 (100 ng/ml), SDF1 α (100 ng/ml), and fMLP (10 μ M) on human PBMC.

Figure 9 shows the chemotactic effect of muKS1 and SDF-1 α on THP-1 cells.

Figure 10 shows the induction of cellular infiltrate in C3H/HeJ mice after intraperitoneal injections with muKS1 (50 μ g), GV14B (50 μ g) and PBS.

25 Figure 11 demonstrates the induction of phosphorylation of ERK1 and ERK2 in CV1/EBNA and HeLa cell lines by huTR1a.

Figure 12 shows the huTR1 mRNA expression in HeLa cells after stimulation by muTR1, huTR1, huTGF α and PBS (100 ng/ml each).

Figure 13 shows activation of the SRE by muTR1a in PC-12 (Fig. 13a) and HaCaT (Fig. 13b) cells.

Figure 14 shows the inhibition of huTR1a mediated growth on HaCaT cells by an antibody to the EGF receptor.

Detailed Description of the Invention

In one aspect, the present invention provides polynucleotides that were isolated from mammalian skin cells. As used herein, the term "polynucleotide" means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and RNA molecules, both sense and anti-sense strands. The term comprehends cDNA, genomic DNA, recombinant DNA and wholly or partially synthesized nucleic acid molecules. A polynucleotide may consist of an entire gene, or a portion thereof. A gene is a DNA sequence that codes for a functional protein or RNA molecule. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all operable anti-sense fragments. Anti-sense polynucleotides and techniques involving anti-sense polynucleotides are well known in the art and are described, for example, in Robinson-Benion et al., "Anti-sense Techniques," *Methods in Enzymol.* 254(23):363-375, 1995; and Kawasaki et al., *Artific. Organs* 20 (8):836-848, 1996.

Identification of genomic DNA and heterologous species DNAs can be accomplished by standard DNA/DNA hybridization techniques, under appropriately stringent conditions, using all or part of a cDNA sequence as a probe to screen an appropriate library. Alternatively, PCR techniques using oligonucleotide primers that are designed based on known genomic DNA, cDNA and protein sequences can be used to amplify and identify genomic and cDNA sequences. Synthetic DNAs corresponding to the identified sequences and variants may be produced by conventional synthesis methods. All the polynucleotides provided by the present invention are isolated and purified, as those terms are commonly used in the art.

In specific embodiments, the polynucleotides of the present invention comprise a DNA sequence selected from the group consisting of sequences provided in SEQ ID NO: 1-119, 198-274, 349-372 and 399-405, and variants of the sequences of SEQ ID NO: 1-119, 198-274, 349-372 and 399-405. Polynucleotides that comprise complements of such DNA sequences, reverse complements of such DNA sequences, or reverse

sequences of such DNA sequences, together with variants of such sequences, are also provided.

The definition of the terms "complement," "reverse complement," and "reverse sequence," as used herein, is best illustrated by the following example. For the sequence 5' AGGACC 3', the complement, reverse complement, and reverse sequence are as follows:

complement	3' TCCTGG 5'
reverse complement	3' GGTCCT 5'
reverse sequence	5' CCAGGA 3'.

In another aspect, the present invention provides isolated polypeptides encoded, or partially encoded, by the above polynucleotides. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a polynucleotide which comprises a partial isolated DNA sequence provided herein. In specific embodiments, the inventive polypeptides comprise an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NO: 120-197, 275-348, 373-398 and 406-409, as well as variants of such sequences.

Polypeptides of the present invention may be produced recombinantly by inserting a DNA sequence that encodes the polypeptide into an expression vector and expressing the polypeptide in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, insect, yeast, or a mammalian cell line such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof.

In a related aspect, polypeptides are provided that comprise at least a functional portion of a polypeptide having an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NO: 120-197, 275-348, 373-398, 406-409,

and variants thereof. As used herein, the "functional portion" of a polypeptide is that portion which contains the active site essential for affecting the function of the polypeptide, for example, the portion of the molecule that is capable of binding one or more reactants. The active site may be made up of separate portions present on one or 5 more polypeptide chains and will generally exhibit high binding affinity.

Functional portions of a polypeptide may be identified by first preparing fragments of the polypeptide by either chemical or enzymatic digestion of the polypeptide, or by mutation analysis of the polynucleotide that encodes the polypeptide and subsequent expression of the resulting mutant polypeptides. The polypeptide 10 fragments or mutant polypeptides are then tested to determine which portions retain biological activity, using, for example, the representative assays provided below.

Portions and other variants of the inventive polypeptides may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using 15 techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is 20 commercially available from suppliers such as Perkin Elmer/Applied BioSystems, Inc. (Foster City, California), and may be operated according to the manufacturer's instructions. Variants of a native polypeptide may be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (Kunkel, T., *Proc. Natl. Acad. Sci. USA* 82:488-492, 1985). Sections of DNA sequence 25 may also be removed using standard techniques to permit preparation of truncated polypeptides.

In general, the polypeptides disclosed herein are prepared in an isolated, substantially pure, form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure, and most preferably at least about 99% pure. In 30 certain preferred embodiments, described in detail below, the isolated polypeptides are

incorporated into pharmaceutical compositions or vaccines for use in the treatment of skin disorders.

As used herein, the term "variant" comprehends nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more 5 nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant sequences (polynucleotide or polypeptide) preferably exhibit at least 50%, more preferably at least 75%, and most preferably at least 90% identity to a sequence of the present invention. The percentage identity is determined by aligning the two sequences 10 to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100.

Polynucleotide or polypeptide sequences may be aligned, and percentage of 15 identical nucleotides in a specified region may be determined against another polynucleotide or polypeptide, using computer algorithms that are publicly available. Two exemplary algorithms for aligning and identifying the similarity of polynucleotide sequences are the BLASTN and FASTA algorithms. The alignment and similarity of polypeptide sequences may be examined using the BLASTP and algorithm. BLASTX and FASTX algorithms compare nucleotide query sequences translated in all reading 20 frames against polypeptide sequences. The BLASTN, BLASTP and BLASTX algorithms are available on the NCBI anonymous FTP server (<ftp://ncbi.nlm.nih.gov>) under /blast/executables/. The FASTA and FASTX algorithms are available on the Internet at the ftp site <ftp://ftp.virginia.edu/pub/>. The FASTA algorithm, set to the default parameters described in the documentation and distributed with the algorithm, may be 25 used in the determination of polynucleotide variants. The readme files for FASTA and FASTX v1.0x that are distributed with the algorithms describe the use of the algorithms and describe the default parameters. The use of the FASTA and FASTX algorithms is also described in Pearson, WR and Lipman, DJ, "Improved Tools for Biological Sequence Analysis," *PNAS* 85:2444-2448, 1988; and Pearson WR, "Rapid and Sensitive 30 Sequence Comparison with FASTP and FASTA," *Methods in Enzymology* 183:63-98, 1990.

The BLASTN algorithm version 2.0.4 [Feb-24-1998], set to the default parameters described in the documentation and distributed with the algorithm, is preferred for use in the determination of polynucleotide variants according to the present invention. The BLASTP algorithm version 2.0.4, set to the default parameters described in the documentation and distributed with the algorithm, is preferred for use in the determination of polypeptide variants according to the present invention. The use of the BLAST family of algorithms, including BLASTN, BLASTP and BLASTX is described at NCBI's website at URL <http://www.ncbi.nlm.nih.gov/BLAST/newblast.html> and in the publication of Altschul, Stephen F., *et al.*, "Gapped BLAST and PSI-BLAST: a new 5 generation of protein database search programs," *Nucleic Acids Res.* 25:3389-3402, 1997.
10

The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to the E values and percentage identity for polynucleotides: Unix running command with default parameters thus: blastall -p blastn -d embldb -e 10 -G 0 -E 0 -r 1 -v 30 -b 30 -i queryseq -o results; and parameters are: -p 15 Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -r Reward for a nucleotide match (blastn only) [Integer]; -v Number of one-line descriptions (V) [Integer]; -b Number of alignments to show (B) [Integer]; -i Query File [File In]; -o BLAST report Output File [File Out]
20 Optional. The following running parameters are preferred for determination of alignments and similarities using BLASTP that contribute to the E values and percentage identity for polypeptides: blastall -p blastp -d swissprotdb -e 10 -G 1 -E 11 -r 1 -v 30 -b 30 -i queryseq -o results; and the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -v Number of one-line descriptions (v) [Integer]; -b Number of alignments to show (b) [Integer]; -I Query File [File In]; -o BLAST report Output File [File Out]
25 Optional.

The "hits" to one or more database sequences by a queried sequence produced by 30 BLASTN, BLASTP, FASTA, or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of

sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.

The percentage similarity of a polynucleotide or polypeptide sequence is determined by aligning polynucleotide and polypeptide sequences using appropriate algorithms, such as BLASTN or BLASTP, respectively, set to default parameters; identifying the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the present invention; and then multiplying by 100 to determine the percentage similarity. By way of example, a queried 5 polynucleotide having 220 nucleic acids has a hit to a polynucleotide sequence in the EMBL database having 520 nucleic acids over a stretch of 23 nucleotides in the alignment produced by the BLASTN algorithm using the default parameters. The 23 nucleotide hit includes 21 identical nucleotides, one gap and one different nucleotide. The percentage identity of the queried polynucleotide to the hit in the EMBL database is 10 thus 21/220 times 100, or 9.5%. The similarity of polypeptide sequences may be 15 determined in a similar fashion.

The BLASTN and BLASTX algorithms also produce "Expect" values for 20 polynucleotide and polypeptide alignments. The Expect value (E) indicates the number of hits one can "expect" to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a significance threshold for determining whether the hit to a database indicates true similarity. For 25 example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the sequences then have a probability of 90% of being the same. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the BLASTN algorithm. E values for polypeptide sequences may be 30 determined in a similar fashion using various polypeptide databases, such as the SwissProt database.

According to one embodiment, "variant" polynucleotides and polypeptides, with reference to each of the polynucleotides and polypeptides of the present invention, preferably comprise sequences having the same number or fewer nucleic or amino acids than each of the polynucleotides or polypeptides of the present invention and producing an E value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a variant polynucleotide or polypeptide is any sequence that has at least a 99% probability of being the same as the polynucleotide or polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or BLASTX algorithms set at the default parameters. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or fewer nucleic acids than a polynucleotide of the present invention that has at least a 99% probability of being the same as the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN algorithm set at the default parameters. Similarly, according to a preferred embodiment, a variant polypeptide is a sequence having the same number or fewer amino acids than a polypeptide of the present invention that has at least a 99% probability of being the same as the polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTP algorithm set at the default parameters.

Variant polynucleotide sequences will generally hybridize to the recited polynucleotide sequences under stringent conditions. As used herein, "stringent conditions" refers to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65 °C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65 °C.

As used herein, the term "x-mer," with reference to a specific value of "x," refers to a polynucleotide or polypeptide, respectively, comprising at least a specified number ("x") of contiguous residues of: any of the polynucleotides provided in SEQ ID NO: 1-119, 198-274, 349-372 and 399-405; or any of the polypeptides set out in SEQ ID NO: 120-197, 275-348, 373-398 and 406-409. The value of x may be from about 20 to about 600, depending upon the specific sequence.

Polynucleotides of the present invention comprehend polynucleotides comprising at least a specified number of contiguous residues (x -mers) of any of the polynucleotides identified as SEQ ID NO: 1-119, 198-274, 349-372 and 399-405, or their variants. Polypeptides of the present invention comprehend polypeptides comprising at least a specified number of contiguous residues (x -mers) of any of the polypeptides identified as SEQ ID NO: 120-197, 275-348, 373-398, and 406-409. According to preferred embodiments, the value of x is at least 20, more preferably at least 40, more preferably yet at least 60, and most preferably at least 80. Thus, polynucleotides of the present invention include polynucleotides comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mer; or a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide provided in SEQ ID NO: 1-119, 198-274, 349-372 and 399-405 or a variant of one of the polynucleotides provided in SEQ ID NO: 1-119, 198-274, 349-372, and 399-405. Polypeptides of the present invention include polypeptides comprising a 20-mer, a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mer; or a 300-mer, 400-mer, 500-mer or 600-mer of a polypeptide provided in SEQ ID NO: 120-197, 275-348, 373-398, and 406-409, or a variant of one of the polynucleotides provided in SEQ ID NO: 120-197, 275-348, 373-398, and 406-409.

The inventive polynucleotides may be isolated by high throughput sequencing of cDNA libraries prepared from mammalian skin cells as described below in Example 1. Alternatively, oligonucleotide probes based on the sequences provided in SEQ ID NO: 1-119, 198-274, 349-372, and 399-405 can be synthesized and used to identify positive clones in either cDNA or genomic DNA libraries from mammalian skin cells by means of hybridization or polymerase chain reaction (PCR) techniques. Probes can be shorter than the sequences provided herein but should be at least about 10, preferably at least about 15 and most preferably at least about 20 nucleotides in length. Hybridization and PCR techniques suitable for use with such oligonucleotide probes are well known in the art (see, for example, Mullis, *et al.*, *Cold Spring Harbor Symp. Quant. Biol.*, 51:263, 1987; Erlich, ed., *PCR Technology*, Stockton Press: NY, 1989; (Sambrook, J, Fritsch, EF and Maniatis, T, eds., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring

Harbor Laboratory Press, Cold Spring Harbor: New York, 1989). Positive clones may be analyzed by restriction enzyme digestion, DNA sequencing or the like.

In addition, DNA sequences of the present invention may be generated by synthetic means using techniques well known in the art. Equipment for automated synthesis of oligonucleotides is commercially available from suppliers such as Perkin Elmer/Applied Biosystems Division (Foster City, California) and may be operated according to the manufacturer's instructions.

Since the polynucleotide sequences of the present invention have been derived from skin, they likely encode proteins that have important roles in growth and development of skin, and in responses of skin to tissue injury and inflammation as well as disease states. Some of the polynucleotides contain sequences that code for signal sequences, or transmembrane domains, which identify the protein products as secreted molecules or receptors. Such protein products are likely to be growth factors, cytokines, or their cognate receptors. Several of the polypeptide sequences have more than 25% similarity to known biologically important proteins and thus are likely to represent proteins having similar biological functions.

In particular, the inventive polypeptides have important roles in processes such as: induction of hair growth; differentiation of skin stem cells into specialized cell types; cell migration; cell proliferation and cell-cell interaction. The polypeptides are important in the maintenance of tissue integrity, and thus are important in processes such as wound healing. Some of the disclosed polypeptides act as modulators of immune responses, especially since immune cells are known to infiltrate skin during tissue insult causing growth and differentiation of skin cells. In addition, many polypeptides are immunologically active, making them important therapeutic targets in a whole range of disease states not only within skin, but also in other tissues of the body. Antibodies to the polypeptides of the present invention and small molecule inhibitors related to the polypeptides of the present invention may also be used for modulating immune responses and for treatment of diseases according to the present invention.

In one aspect, the present invention provides methods for using one or more of the inventive polypeptides or polynucleotides to treat disorders in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human.

In this aspect, the polypeptide or polynucleotide is generally present within a pharmaceutical composition or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. Vaccines may
5 comprise one or more of the above polypeptides and a non-specific immune response amplifier, such as an adjuvant or a liposome, into which the polypeptide is incorporated.

Alternatively, a vaccine or pharmaceutical composition of the present invention may contain DNA encoding one or more polypeptides as described above, such that the polypeptide is generated *in situ*. In such vaccines and pharmaceutical compositions, the
10 DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, and bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminator signal). Bacterial delivery systems involve the administration of a bacterium (such as
15 *Bacillus-Calmette-Guerin*) that expresses an immunogenic portion of the polypeptide on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other poxvirus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic, or defective, replication competent virus. Techniques for incorporating DNA into such expression systems are well known in the
20 art. The DNA may also be "naked," as described, for example, in Ulmer, *et al.*, *Science* 259:1745-1749, 1993 and reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

Routes and frequency of administration, as well as dosage, will vary from
25 individual to individual. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intradermal, intramuscular, intravenous, or subcutaneous), intranasally (e.g., by aspiration) or orally. In general, the amount of polypeptide present in a dose (or produced *in situ* by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg per
30 kg of host, and preferably from about 100 pg to about 1 µg per kg of host. Suitable dose

sizes will vary with the size of the patient, but will typically range from about 0.1 ml to about 5 ml.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will 5 vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax, or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed. Biodegradable 10 microspheres (e.g., polylactic galactide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of adjuvants may be employed in the vaccines derived from this invention to non-specifically enhance the immune response. Most adjuvants contain a 15 substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a non-specific stimulator of immune responses, such as lipid A, *Bordetella pertussis*, or *M. tuberculosis*. Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Freund's Complete 20 Adjuvant (Difco Laboratories, Detroit, Michigan), and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, New Jersey). Other suitable adjuvants include alum, biodegradable microspheres, monophosphoryl lipid A, and Quil A.

The polynucleotides of the present invention may also be used as markers for tissue, as chromosome markers or tags, in the identification of genetic disorders, and for the design of oligonucleotides for examination of expression patterns using techniques 25 well known in the art, such as the microarray technology available from Synteni (Palo Alto, California). Partial polynucleotide sequences disclosed herein may be employed to obtain full length genes by, for example, screening of DNA expression libraries using hybridization probes or PCR primers based on the inventive sequences.

The polypeptides provided by the present invention may additionally be used in 30 assays to determine biological activity, to raise antibodies, to isolate corresponding ligands or receptors, in assays to quantitatively determine levels of protein or cognate

corresponding ligand or receptor, as anti-inflammatory agents, and in compositions for skin, connective tissue and/or nerve tissue growth or regeneration.

Example 1

5 ISOLATION OF cDNA SEQUENCES FROM SKIN CELL EXPRESSION LIBRARIES

The cDNA sequences of the present invention were obtained by high-throughput sequencing of cDNA expression libraries constructed from specialized rodent or human skin cells as shown in Table 1.

10 Table 1

	<u>Library</u>	<u>Skin cell type</u>	<u>Source</u>
	DEPA	dermal papilla	rat
	SKTC	keratinocytes	human
	HNFF	neonatal foreskin fibroblast	human
15	MEMS	embryonic skin	mouse
	KSCL	keratinocyte stem cell	mouse
	<u>TRAM</u>	<u>transit amplifying cells</u>	<u>mouse</u>

These cDNA libraries were prepared as described below.

20 cDNA Library from Dermal Papilla (DEPA)

Dermal papilla cells from rat hair vibrissae (whiskers) were grown in culture and the total RNA extracted from these cells using established protocols. Total RNA, isolated using TRIzol Reagent (BRL Life Technologies, Gaithersburg, Maryland), was used to obtain mRNA using a Poly(A) Quik mRNA isolation kit (Stratagene, La Jolla, California), according to the manufacturer's specifications. A cDNA expression library was then prepared from the mRNA by reverse transcriptase synthesis using a Lambda ZAP cDNA library synthesis kit (Stratagene).

cDNA Library from Keratinocytes (SKTC)

Keratinocytes obtained from human neonatal foreskins (Mitra, R and Nikoloff, B in *Handbook of Keratinocyte Methods*, pp. 17-24, 1994) were grown in serum-free KSFM (BRL Life Technologies) and harvested along with differentiated cells (10^8 cells). Keratinocytes were allowed to differentiate by addition of fetal calf serum at a final

concentration of 10% to the culture medium and cells were harvested after 48 hours. Total RNA was isolated from the two cell populations using TRIzol Reagent (BRL Life Technologies) and used to obtain mRNA using a Poly(A) Quik mRNA isolation kit (Stratagene). cDNAs expressed in differentiated keratinocytes were enriched by using a
5 PCR-Select cDNA Subtraction Kit (Clontech, Palo Alto, California). Briefly, mRNA was obtained from either undifferentiated keratinocytes ("driver mRNA") or differentiated keratinocytes ("tester mRNA") and used to synthesize cDNA. The two populations of cDNA were separately digested with *Rsa*I to obtain shorter, blunt-ended molecules. Two tester populations were created by ligating different adaptors at the
10 cDNA ends and two successive rounds of hybridization were performed with an excess of driver cDNA. The adaptors allowed for PCR amplification of only the differentially expressed sequences which were then ligated into T-tailed pBluescript (Hadjeb, N and Berkowitz, GA, *BioTechniques* 20:20-22 1996), allowing for a blue/white selection of cells containing vector with inserts. White cells were isolated and used to obtain plasmid
15 DNA for sequencing.

cDNA library from human neonatal fibroblasts (HNFF)

Human neonatal fibroblast cells were grown in culture from explants of human neonatal foreskin and the total RNA extracted from these cells using established protocols. Total RNA, isolated using TRIzol Reagent (BRL Life Technologies,
20 Gaithersburg, Maryland), was used to obtain mRNA using a Poly(A) Quik mRNA isolation kit (Stratagene, La Jolla, California), according to the manufacturer's specifications. A cDNA expression library was then prepared from the mRNA by reverse transcriptase synthesis using a Lambda ZAP cDNA library synthesis kit (Stratagene).

cDNA library from mouse embryonic skin (MEMS)

25 Embryonic skin was micro-dissected from day 13 post coitum Balb/c mice. Embryonic skin was washed in phosphate buffered saline and mRNA directly isolated from the tissue using the Quick Prep Micro mRNA purification kit (Pharmacia, Sweden). The mRNA was then used to prepare cDNA libraries as described above for the DEPA library.

30 cDNA library from mouse stem cells (KSCL) and transit amplifying (TRAM) cells

Pelts obtained from 1-2 day post-partum neonatal Balb/c mice were washed and

incubated in trypsin (BRL Life Technologies) to separate the epidermis from the dermis. Epidermal tissue was disrupted to disperse cells, which were then resuspended in growth medium and centrifuged over Percoll density gradients prepared according to the manufacturer's protocol (Pharmacia, Sweden). Pelleted cells were labeled using
5 Rhodamine 123 (Bertонcello I, Hodgson GS and Bradley TR, *Exp Hematol.* 13:999-1006, 1985), and analyzed by flow cytometry (Epics Elite Coulter Cytometry, Hialeah, Florida). Single cell suspensions of rhodamine-labeled murine keratinocytes were then labeled with a cross reactive anti-rat CD29 biotin monoclonal antibody (Pharmingen, San Diego, California; clone Ha2/5). Cells were washed and incubated with anti-mouse
10 CD45 phycoerythrin conjugated monoclonal antibody (Pharmingen; clone 30F11.1, 10ug/ml) followed by labeling with streptavidin spectral red (Southern Biotechnology, Birmingham, Alabama). Sort gates were defined using listmode data to identify four populations: CD29 bright rhodamine dull CD45 negative cells; CD29 bright rhodamine bright CD45 negative cells; CD29 dull rhodamine bright CD45 negative cells; and CD29
15 dull rhodamine dull CD45 negative cells. Cells were sorted, pelleted and snap frozen prior to storage at -80°C. This protocol was followed multiple times to obtain sufficient cell numbers of each population to prepare cDNA libraries. Skin stem cells and transit amplifying cells are known to express CD29, the integrin $\beta 1$ chain. CD45, a leucocyte specific antigen, was used as a marker for cells to be excluded in the isolation of skin
20 stem cells and transit amplifying cells. Keratinocyte stem cells expel the rhodamine dye more efficiently than transit amplifying cells. The CD29 bright, rhodamine dull, CD45 negative population (putative keratinocyte stem cells; referred to as KSCL), and the CD29 bright, rhodamine bright, CD45 negative population (keratinocyte transit amplifying cells; referred to as TRAM) were sorted and mRNA was directly isolated
25 from each cell population using the Quick Prep Micro mRNA purification kit (Pharmacia, Sweden). The mRNA was then used to prepare cDNA libraries as described above for the DEPA library.

cDNA sequences were obtained by high-throughput sequencing of the cDNA libraries described above using a Perkin Elmer/Applied Biosystems Division Prism 377
30 sequencer.

Example 2CHARACTERIZATION OF ISOLATED cDNA SEQUENCES

The isolated cDNA sequences were compared to sequences in the EMBL DNA database using the computer algorithms FASTA and/or BLASTN. The corresponding predicted protein sequences (DNA translated to protein in each of 6 reading frames) were compared to sequences in the SwissProt database using the computer algorithms FASTX and/or BLASTP. Comparisons of DNA sequences provided in SEQ ID NO: 1-119 to sequences in the EMBL DNA database (using FASTA) and amino acid sequences provided in SEQ ID NO: 120-197 to sequences in the SwissProt database (using FASTX) were made as of March 21, 1998. Comparisons of DNA sequences provided in SEQ ID NO: 198-274 to sequences in the EMBL DNA database (using BLASTN) and amino acid sequences provided in SEQ ID NO: 275-348 to sequences in the SwissProt database (using BLASTP) were made as of October 7, 1998. Comparisons of DNA sequences provided in SEQ ID NO: 349-372 to sequences in the EMBL DNA database (using BLASTN) and amino acid sequences provided in SEQ ID NO: 373-398 to sequences in the SwissProt database (using BLASTP) were made as of January 23, 1999.

Isolated cDNA sequences and their corresponding predicted protein sequences were computer analyzed for the presence of signal sequences identifying secreted molecules. Isolated cDNA sequences that have a signal sequence at a putative start site within the sequence are provided in SEQ ID NO: 1-44, 198-238, 349-358, and 399. The cDNA sequences of SEQ ID NO: 1-6, 198-199, 349-352, 354, and 356-358 were determined to have less than 75% identity (determined as described above), to sequences in the EMBL database using the computer algorithms FASTA or BLASTN, as described above. The predicted amino acid sequences of SEQ ID NO: 120-125, 275-276, 373-380, and 382 were determined to have less than 75% identity (determined as described above) to sequences in the SwissProt database using the computer algorithms FASTX or BLASTP, as described above.

Further sequencing of some of the isolated partial cDNA sequences resulted in the isolation of the full-length cDNA sequences provided in SEQ ID NO: 7-14, 200-231, and 372. The corresponding predicted amino acid sequences are provided in SEQ ID NO: 126-133, 277-308, and 396, respectively. Comparison of the full length cDNA

sequences with those in the EMBL database using the computer algorithm FASTA or BLASTN, as described above, revealed less than 75% identity (determined as described above) to known sequences. Comparison of the predicted amino acid sequences provided in SEQ ID NO: 126-133 and 277-308 with those in the SwissProt database using the computer algorithms FASTX or BLASTP, as described above, revealed less than 75% identity (determined as described above) to known sequences.

Comparison of the predicted amino acid sequences corresponding to the cDNA sequences of SEQ ID NO: 15-23 with those in the EMBL using the computer algorithm FASTA database showed less than 75% identity (determined as described above) to known sequences. These predicted amino acid sequences are provided in SEQ ID NO: 134-142.

Further sequencing of some of the isolated partial cDNA sequences resulted in the isolation of full-length cDNA sequences provided in SEQ ID NO: 24-44 and 232-238. The corresponding predicted amino acid sequences are provided in SEQ ID NO: 143-163 and 309-315, respectively. These amino acid sequences were determined to have less than 75% identity, determined as described above to known sequences in the SwissProt database using the computer algorithm FASTX.

Isolated cDNA sequences having less than 75% identity to known expressed sequence tags (ESTs) or to other DNA sequences in the public database, or whose corresponding predicted protein sequence showed less than 75% identity to known protein sequences, were computer analyzed for the presence of transmembrane domains coding for putative membrane-bound molecules. Isolated cDNA sequences that have either one or more transmembrane domain(s) within the sequence are provided in SEQ ID NO: 45-63, 239-253, 359-364, 400-402. The cDNA sequences of SEQ ID NO: 45-48, 239-249, 359-361, and 363 were found to have less than 75% identity (determined as described above) to sequences in the EMBL database, using the FASTA or BLASTN computer algorithms. Their predicted amino acid sequences provided in SEQ ID NO: 164-167, 316-326, 383, 385-388 and 407-408 were found to have less than 75% identity, determined as described above, to sequences in the SwissProt database using the FASTX or BLASTP database.

Comparison of the predicted amino acid sequences corresponding to the cDNA sequences of SEQ ID NO: 49-63 and 250-253 with those in the SwissProt database showed less than 75% identity (determined as described above) to known sequences. These predicted amino acid sequences are provided in SEQ ID NO: 168-182 and 5 327-330.

Using automated search programs to screen against sequences coding for molecules reported to be of therapeutic and/or diagnostic use, some of the cDNA sequences isolated as described above in Example 1 were determined to encode predicted protein sequences that appear to be family members of known protein families. A family 10 member is here defined to have at least 25% identity in the translated polypeptide to a known protein or member of a protein family. These cDNA sequences are provided in SEQ ID NO: 64-76, 254-264, 365-369, and 403, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 183-195, 331-341, 389-393 and 409, respectively. The cDNA sequences of SEQ ID NO: 64-68, 254-264, and 365-369 show 15 less than 75% identity (determined as described above) to sequences in the EMBL database using the FASTA or BLASTN computer algorithms. Similarly, the amino acid sequences of SEQ ID NO: 183-195, 331-341, and 389-393 show less than 75% identity to sequences in the SwissProt database.

The likely utility for each of the proteins encoded by the DNA sequences of SEQ 20 ID NO: 64-76, 254-264, 365-369, and 403, based on similarity to known proteins, is provided below:

Table 2
FUNCTIONS OF NOVEL PROTEINS

P/N SEQ ID NO:	A/A SEQ. ID NO.	SIMILARITY TO KNOWN PROTEINS
64 372	183 396	Slit, a secreted molecule required for central nervous system development
65	184	Immunoglobulin receptor family. About 40% of leucocyte membrane polypeptides contain immunoglobulin superfamily domains
66 403	185 409	RIP protein kinase, a serine/threonine kinase that contains a death domain to mediate apoptosis
67	186	Extracellular protein with epidermal growth factor domain capable of stimulating fibroblast proliferation
68	187	Transforming growth factor alpha, a protein which binds epidermal growth factor receptor and stimulates growth and mobility of keratinocytes
69	188	DRS protein which has a secretion signal component and whose expression is suppressed in cells transformed by oncogenes
70	189	A33 receptor with immunoglobulin-like domains and is expressed in greater than 95% of colon tumors
71	190	Interleukin-12 alpha subunit, component of a cytokine that is important in the immune defense against intracellular pathogens. IL-12 also stimulates proliferation and differentiation of TH1 subset of lymphocytes
72	191	Tumor Necrosis Factor receptor family of proteins that are involved in the proliferation, differentiation and death of many cell types including B and T lymphocytes.
73	192	Epidermal growth factor family proteins which stimulate growth and mobility of keratinocytes and epithelial cells. EGF is involved in wound healing. It also inhibits gastric acid secretion.
74	193	Fibronectin Type III receptor family. The fibronectin III domains are found on the extracellular regions of cytokine receptors
75	194	Serine/threonine kinases (STK2_HUMAN) which participate in cell cycle progression and signal transduction
76	195	Immunoglobulin receptor family
254	331	Receptor with immunoglobulin-like domains and homology to A33 receptor which is expressed in greater than 95% of colon tumors
255	332	Epidermal growth factor family proteins which stimulate growth and mobility of keratinocytes and epithelial cells. EGF is involved in wound healing. It also inhibits gastric acid secretion.

P/N SEQ ID NO:	A/A SEQ. ID NO.	SIMILARITY TO KNOWN PROTEINS
256	333	Serine/threonine kinases (STK2_HUMAN) which participate in cell cycle progression and signal transduction
257	334	Contains protein kinase and ankyrin domains. Possible role in cellular growth and differentiation.
258	335	Notch family proteins which are receptors involved in cellular differentiation.
259	336	Extracellular protein with epidermal growth factor domain capable of stimulating fibroblast proliferation.
260	337	Fibronectin Type III receptor family. The fibronectin III domains are found on the extracellular regions of cytokine receptors.
261	338	Immunoglobulin receptor family
262	339	ADP/ATP transporter family member containing a calcium binding site.
263	340	Mouse CXC chemokine family members are regulators of epithelial, lymphoid, myeloid, stromal and neuronal cell migration and cancers, agents for the healing of cancers, neurodegenerative diseases, wound healing, inflammatory autoimmune diseases like psoriasis, asthma, Crohns disease and as agents for the prevention of HIV-1 of leukocytes
264	341	Nucleotide-sugar transporter family member.
365	389	Transforming growth factor betas (TGF-betas) are secreted covalently linked to latent TGF-beta-binding proteins (LTBPs). LTBPs are deposited in the extracellular matrix and play a role in cell growth or differentiation.
366	390	Integrins are Type I membrane proteins that function as laminin and collagen receptors and play a role in cell adhesion.
367	391	Integrins are Type I membrane proteins that function as laminin and collagen receptors and play a role in cell adhesion.
368	392	Cell wall protein precursor. Are involved in cellular growth or differentiation.
369	393	HT protein is a secreted glycoprotein with an EGF-like domain. It functions as a modulator of cell growth, death or differentiation.

These isolated sequences thus encode proteins that influence the growth, differentiation and activation of several cell types. They may usefully be developed as

agents for the treatment and diagnosis of skin wounds, cancers, growth and developmental defects, and inflammatory disease.

The polynucleotide sequences of SEQ ID NO: 77-117, 265-267, and 404-405 are differentially expressed in either keratinocyte stem cells (KSCL) or in transit amplified cells (TRAM) on the basis of the number of times these sequences exclusively appear in either one of the above two libraries; more than 9 times in one and none in the other (Audic S. and Claverie J-M, *Genome Research*, 7:986-995, 1997). The sequences of SEQ ID NO: 77-89, 265-267, and 365-369 were determined to have less than 75% identity to sequences in the EMBL and SwissProt databases using the computer algorithm FASTA or BLASTN, as described above. The proteins encoded by these polynucleotide sequences have utility as markers for identification and isolation of these cell types, and antibodies against these proteins may be usefully employed in the isolation and enrichment of these cells from complex mixtures of cells. Isolated polynucleotides and their corresponding proteins exclusive to the stem cell population can be used as drug targets to cause alterations in regulation of growth and differentiation of skin cells, or in gene targeting to transport specific therapeutic molecules to skin stem cells.

Example 3

ISOLATION AND CHARACTERIZATION OF THE HUMAN HOMOLOG OF muTR1

The human homolog of muTR1 (SEQ ID NO: 68), obtained as described above in Example 1, was isolated by screening 50,000 pfu's of an oligo dT primed HeLa cell cDNA library. Plaque lifts, hybridization, and screening were performed using standard molecular biology techniques (Sambrook, J, Fritsch, EF and Maniatis, T, eds., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor: New York, 1989). The determined cDNA sequence of the isolated human homolog (huTR1) is provided in SEQ ID NO: 118, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 196. The library was screened using an [α ³²P]-dCTP labeled double stranded cDNA probe corresponding to nucleotides 1 to 459 of the coding region within SEQ ID NO: 118.

The polypeptide sequence of huTR1 has regions similar to Transforming Growth Factor-alpha, indicating that this protein functions like an epidermal growth factor (EGF).

This EGF-like protein will serve to stimulate keratinocyte growth and motility, and to inhibit the growth of epithelial-derived cancer cells. This novel gene and its encoded protein may thus be used as agents for the healing of wounds and regulators of epithelial-derived cancers.

5 Analysis of RNA transcripts by Northern Blotting

Northern analysis to determine the size and distribution of mRNA for huTR1 was performed by probing human tissue mRNA blots (Clontech) with a probe comprising nucleotides 93-673 of SEQ ID NO: 118, radioactively labeled with $[\alpha^{32}\text{P}]\text{-dCTP}$.
10 Prehybridization, hybridization, washing and probe labeling were performed as described in Sambrook, *et al.*, *Ibid.* mRNA for huTR1 was 3.5-4kb in size and was observed to be most abundant in heart and placenta, with expression at lower levels being observed in spleen, thymus prostate and ovary (Fig. 1).

The high abundance of mRNA for huTR1 in the heart and placenta indicates a
15 role for huTR1 in the formation or maintenance of blood vessels, as heart and placental tissues have an increased abundance of blood vessels, and therefore endothelial cells, compared to other tissues in the body. This, in turn, demonstrates a role for huTR1 in angiogenesis and vascularization of tumors. This is supported by the ability of
20 Transforming Growth Factor-alpha and EGF to induce *de novo* development of blood vessels (Schreiber, *et al.*, *Science* 232:1250-1253, 1986) and stimulate DNA synthesis in endothelial cells (Schreiber, *et al.*, *Science* 232:1250-1253, 1986), and their over-expression in a variety of human tumors.

Purification of muTR1 and huTR1

Polynucleotides 177-329 of muTR1 (SEQ ID NO: 268), encoding amino acids
25 53-103 of muTR1 (SEQ ID NO: 342), and polynucleotides 208-360 of huTR1 (SEQ ID NO: 269), encoding amino acids 54-104 of huTR1 (SEQ ID NO: 343), were cloned into the bacterial expression vector pProEX HT (BRL Life Technologies), which contains a bacterial leader sequence and N-terminal 6xHistidine tag. These constructs were transformed into competent XL1-Blue *E. coli* as described in Sambrook et al., *Ibid.*

30 Starter cultures of these recombinant XL1-Blue *E. coli* were grown overnight at 37°C in Terrific broth containing 100 µg/ml ampicillin. This culture was spun down and

used to inoculate 500 ml culture of Terrific broth containing 100 µg/ml ampicillin. Cultures were grown until the OD₅₉₅ of the cells was between 0.4 and 0.8, whereupon IPTG was added to 1 mM. Cells were induced overnight and bacteria were harvested by centrifugation.

5 Both the polypeptide of muTR1 (SEQ ID NO: 342; referred to as muTR1a) and that of huTR1 (SEQ ID NO: 343; referred to as huTR1a) were expressed in insoluble inclusion bodies. In order to purify the polypeptides muTR1a and huTR1a, bacterial cell pellets were re-suspended in lysis buffer (20 mM Tris-HCl pH 8.0, 10 mM beta mercaptoethanol, 1 mM PMSF). To the lysed cells, 1% NP40 was added and the mix
10 incubated on ice for 10 minutes. Lysates were further disrupted by sonication on ice at 95W for 4 x 15 seconds and then centrifuged for 15 minutes at 14,000 rpm to pellet the inclusion bodies.

15 The resulting pellet was re-suspended in lysis buffer containing 0.5% w/v CHAPS and sonicated on ice for 5-10 seconds. This mix was stored on ice for 1 hour, centrifuged at 14,000 rpm for 15 minutes at 4 °C and the supernatant discarded. The pellet was once more re-suspended in lysis buffer containing 0.5% w/v CHAPS, sonicated, centrifuged and the supernatant removed as before. The pellet was re-suspended in solubilizing buffer (6 M Guanidine HCl, 0.5 M NaCl, 20 mM Tris HCl, pH 8.0), sonicated at 95 W for 4 x 15 seconds and then centrifuged for 20 minutes at 14,000 rpm and 4 °C to remove debris. The supernatant was stored at 4 °C until use.
20

25 Polypeptides muTR1a and huTR1a were purified by virtue of the N-terminal 6x Histidine tag contained within the bacterial leader sequence, using a Nickel-Chelating Sepharose column (Amersham Pharmacia, Uppsala, Sweden) and following the manufacturer's recommended protocol. In order to refold the proteins once purified, the protein solution was added to 5x its volume of refolding buffer (1 mM EDTA, 1.25 mM reduced glutathione, 0.25 mM oxidised glutathione, 20 mM Tris-HCl, pH 8.0) over a period of 1 hour at 4 °C. The refolding buffer was stirred rapidly during this time, and stirring continued at 4 °C overnight. The refolded proteins were then concentrated by ultrafiltration using standard protocols.

Biological Activities of Polypeptides muTR1a and huTR1a

muTR1 and huTR1 are novel members of the EGF family, which includes EGF, TGF α , epiregulin and others. These growth factors are known to act as ligands for the EGF receptor. The pathway of EGF receptor activation is well documented. Upon 5 binding of a ligand to the EGF receptor, a cascade of events follows, including the phosphorylation of proteins known as MAP kinases. The phosphorylation of MAP kinase can thus be used as a marker of EGF receptor activation. Monoclonal antibodies exist which recognize the phosphorylated forms of 2 MAP kinase proteins – ERK1 and ERK2.

10 In order to examine whether purified polypeptides of muTR1a and huTR1a act as a ligand for the EGF receptor, cells from the human epidermal carcinoma cell line A431 (American Type Culture Collection, No. CRL-1555, Manassas, Virginia) were seeded into 6 well plates, serum starved for 24 hours, and then stimulated with purified muTR1a or huTR1a for 5 minutes in serum free conditions. As a positive control, cells were 15 stimulated in the same way with 10 to 100 ng/ml TGF-alpha or EGF. As a negative control, cells were stimulated with PBS containing varying amounts of LPS. Cells were immediately lysed and protein concentration of the lysates estimated by Bradford assay. 15 μ g of protein from each sample was loaded onto 12% SDS-PAGE gels. The proteins were then transferred to PVDF membrane using standard techniques.

20 For Western blotting, membranes were incubated in blocking buffer (10mM Tris-HCl, pH 7.6, 100 mM NaCl, 0.1% Tween-20, 5% non-fat milk) for 1 hour at room temperature. Rabbit anti-Active MAP kinase pAb (Promega, Madison, Wisconsin) was added to 50 ng/ml in blocking buffer and incubated overnight at 4 °C. Membranes were washed for 30 mins in blocking buffer minus non-fat milk before being incubated with 25 anti rabbit IgG-HRP antibody, at a 1:3500 dilution in blocking buffer, for 1 hour at room temperature. Membranes were washed for 30 minutes in blocking buffer minus non-fat milk, then once for 5 minutes in blocking buffer minus non-fat milk and 0.1% Tween-20. Membranes were then exposed to ECL reagents for 2 min, and then autoradiographed for 5 to 30 min.

30 As shown in Fig. 2, both muTR1a and huTR1a were found to induce the phosphorylation of ERK1 and ERK2 over background levels, indicating that muTR1 and

huTR1 act as ligands for a cell surface receptor that activates the MAP kinase signaling pathway, possibly the EGF receptor. As shown in Fig. 11, huTR1a was also demonstrated to induce the phosphorylation of ERK1 and ERK2 in CV1/EBNA kidney epithelial cells in culture, as compared with the negative control. These assays were 5 conducted as described above. This indicates that huTR1a acts as a ligand for a cell surface receptor that activates the MAP kinase signaling pathway, possibly the EGF receptor in HeLa and CV1/EBNA cells.

The ability of muTR1a to stimulate the growth of neonatal foreskin (NF) keratinocytes was determined as follows. NF keratinocytes derived from surgical 10 discards were cultured in KSFM (BRL Life Technologies) supplemented with bovine pituitary extract (BPE) and epidermal growth factor (EGF). The assay was performed in 96 well flat-bottomed plates in 0.1 ml unsupplemented KSFM. MuTR1a, human transforming growth factor alpha (huTGF α) or PBS-BSA was titrated into the plates and 1 \times 10³ NF keratinocytes were added to each well. The plates were incubated for 5 days 15 in an atmosphere of 5% CO₂ at 37⁰C. The degree of cell growth was determined by MTT dye reduction as described previously (*J. Imm. Meth.* 93:157-165, 1986). As shown in Fig. 3, both muTR1a and the positive control human TGF α stimulated the growth of NF keratinocytes, whereas the negative control, PBS-BSA, did not.

The ability of muTR1a and huTR1a to stimulate the growth of a transformed 20 human keratinocyte cell line, HaCaT, was determined as follows. The assay was performed in 96 well flat-bottomed plates in 0.1 ml DMEM (BRL Life Technologies) supplemented with 0.2% FCS. MuTR1a, huTR1a and PBS-BSA were titrated into the plates and 1 \times 10³ HaCaT cells were added to each well. The plates were incubated for 5 days in an atmosphere containing 10% CO₂ at 37⁰C. The degree of cell growth was 25 determined by MTT dye reduction as described previously (*J. Imm. Meth.* 93:157-165, 1986). As shown in Fig. 4, both muTR1a and huTR1a stimulated the growth of HaCaT cells, whereas the negative control PBS-BSA did not.

The ability of muTR1a and huTR1a to inhibit the growth of A431 cells was 30 determined as follows. Polypeptides muTR1a (SEQ ID NO: 342) and huTR1a (SEQ ID NO: 343) and PBS-BSA were titrated as described previously (*J. Cell. Biol.* 93:1-4, 1982) and cell death determined using the MTT dye reduction as described previously

(*J. Imm. Meth.* 93:157-165, 1986). Both muTR1a and huTR1a were found to inhibit the growth of A431 cells, whereas the negative control PBS-BSA did not (Fig. 5).

These results indicate that muTR1 and huTR1 stimulate keratinocyte growth and motility, inhibit the growth of epithelial-derived cancer cells, and play a role in angiogenesis and vascularization of tumors. This novel gene and its encoded protein may thus be developed as agents for the healing of wounds, angiogenesis and regulators of epithelial-derived cancers.
5

Upregulation of huTR1 and mRNA expression

HeLa cells (human cervical adenocarcinoma) were seeded in 10 cm dishes at a
10 concentration of 1×10^6 cells per dish. After incubation overnight, media was removed and replaced with media containing 100 ng/ml of muTR1, huTR1, huTGF α , or PBS as a negative control. After 18 hours, media was removed and the cells lysed in 2 ml of TRIzol reagent (Gibco BRL Life Technologies, Gaithersburg, Maryland). Total RNA was isolated according to the manufacturer's instructions. To identify mRNA levels of
15 huTR1 from the cDNA samples, 1 μ l of cDNA was used in a standard PCR reaction. After cycling for 30 cycles, 5 μ l of each PCR reaction was removed and separated on a 1.5% agarose gel. Bands were visualized by ethidium bromide staining. As can be seen from Fig. 12, both mouse and human TR1 up-regulate the mRNA levels of huTR1 as compared with cells stimulated with the negative control of PBS. Furthermore, TGF α
20 can also up-regulate the mRNA levels of huTR1.

These results indicate that TR1 is able to sustain its own mRNA expression and subsequent protein expression, and thus is expected to be able to contribute to the progression of diseases such as psoriasis where high levels of cytokine expression are involved in the pathology of the disease. Furthermore, since TGF α can up-regulate the
25 expression of huTR1, the up-regulation of TR1 mRNA may be critical to the mode of action of TGF α .

Serum response element reporter gene assay

The serum response element (SRE) is a promoter element required for the regulation of many cellular immediate-early genes by growth. Studies have demonstrated
30 that the activity of the SRE can be regulated by the MAP kinase signaling pathway. Two cell lines, PC12 (rat pheochromocytoma – neural tumor) and HaCaT (human transformed

keratinocytes), containing eight SRE upstream of an SV40 promotor and luciferase reporter gene were developed in-house. 5×10^3 cells were aliquoted per well of 96 well plate and grown for 24 hours in their respective media. HaCaT SRE cells were grown in 5% fetal bovine serum (FBS) in D-MEM supplemented with 2mM L-glutamine (Sigma, St. Louis, Missouri), 1mM sodium pyruvate (BRL Life Technologies), 0.77mM L-asparagine (Sigma), 0.2mM arginine (Sigma), 160mM penicillin G (Sigma), 70mM dihydrostreptomycin (Roche Molecular Biochemicals, Basel, Switzerland), and 0.5 mg/ml geneticin (BRL Life Technologies). PC12 SRE cells were grown in 5% fetal bovine serum in Ham F12 media supplemented with 0.4 mg/ml geneticin (BRL Life Technologies). Media was then changed to 0.1% FBS and incubated for a further 24 hours. Cells were then stimulated with a titration of TR1 from 1 $\mu\text{g}/\text{ml}$. A single dose of basic fibroblast growth factor at 100 ng/ml (R&D Systems, Minneapolis, Minnesota) or epidermal growth factor at 10 ng/ml (BRL Life Technologies) was used as a positive control. Cells were incubated in the presence of muTR1 or positive control for 6 hours, washed twice in PBS and lysed with 40 μl of lysis buffer (Promega). 10 μl was transferred to a 96 well plate and 10 μl of luciferase substrate (Promega) added by direct injection into each well by a Victor² fluorimeter (Wallac), the plate was shaken and the luminescence for each well read at 3x1 sec Intervals. Fold induction of SRE was calculated using the following equation: Fold induction of SRE = Mean relative luminescence of agonist/Mean relative luminescence of negative control.

As shown in Fig. 13, muTR1 activates the SRE in both PC-12 (Fig. 13a) and HaCaT (Fig. 13b) cells. This indicates that HaCaT and PC-12 cells are able to respond to muTR1 protein and elicit a response. In the case of HaCaT cells, this is a growth response. In the case of PC-12 cells, this may be a growth, a growth inhibition, differentiation, or migration response. Thus, TR1 may be important in the development of neural cells or their differentiation into specific neural subsets. TR1 may also be important in the development and progression of neural tumors.

Inhibition by the EGF receptor assay

The HaCaT growth assay was conducted as previously described, except that modifications were made as follows. Concurrently with the addition of EGF and TR1 to the media, anti-EGF Receptor (EGFR) antibody (Promega, Madison, Wisconsin) or

negative control antibody, mouse IgG (PharMingen, San Diego, California), were added at a concentration of 62.5 ng/ml.

As seen in Fig. 14, an antibody which blocks the function of the EGFR inhibits the mitogenicity of TR1 on HaCaT cells. This indicates that the EGFR is crucial for 5 transmission of the TR1 mitogenic signal on HaCaT cells. TR1 may bind directly to the EGF receptor. TR1 may also bind to any other members of the EGFR family – ErbB-2, -3, and/or -4 – that are capable of heterodimerizing with the EGFR.

Sequence of splice variant of huTR1, huTR1 β

A variant of huTR1 was isolated from the same library as huTR1 (SEQ ID 10 NO: 118), following the same protocols. This sequence is a splice variant of huTR1 and consists of the ORF of huTR1 minus amino acids 87 to 137. This has the effect of deleting the third cysteine residue of the EGF motif and the transmembrane domain. However, cysteine residue 147 (huTR1 ORF numbering) may replace the deleted 15 cysteine and thus the disulphide bridges are likely not affected. Therefore, huTR1 β is a secreted form of huTR1. It functions as an agonist or an antagonist to huTR1 or other EGF family members, including EGF and TGF α . The determined nucleotide sequence of the splice variant of TR1, referred to as huTR1 β , is given in SEQ ID NO: 371 and the corresponding predicted amino acid sequence is SEQ ID NO: 395.

Example 4

20 IDENTIFICATION, ISOLATION AND CHARACTERIZATION OF DP3

A partial cDNA fragment, referred to as DP3, was identified by differential display RT-PCR (modified from Liang P and Pardee AB, *Science* 257:967-971, 1992) using mRNA from cultured rat dermal papilla and footpad fibroblast cells, isolated by standard cell biology techniques. This double stranded cDNA was labeled with [α^{32} P]- 25 dCTP and used to identify a full length DP3 clone by screening 400,000 pfu's of an oligo dT-primed rat dermal papilla cDNA library. The determined full-length cDNA sequence for DP3 is provided in SEQ ID NO: 119, with the corresponding amino acid sequence being provided in SEQ ID NO: 197. Plaque lifts, hybridization and screening were performed using standard molecular biology techniques.

Example 5ISOLATION AND CHARACTERIZATION OF THE
HUMAN HOMOLOG OF muKS15 Analysis of RNA transcripts by Northern Blotting

Northern analysis to determine the size and distribution of mRNA for muKS1 (SEQ ID NO: 263) was performed by probing murine tissue mRNA blots with a probe consisting of nucleotides 268-499 of muKS1, radioactively labeled with [α^{32} P]-dCTP. Prehybridization, hybridization, washing, and probe labeling were performed as described in Sambrook, *et al.*, *Ibid.* mRNA for muKS1 was 1.6 kb in size and was observed to be most abundant in brain, lung, muscle, and heart. Expression could also be detected in lower intestine, skin, and kidney. No detectable signal was found in testis, spleen, liver, thymus, stomach.

Human homologue of muKS1

15 MuKS1 (SEQ ID NO: 263) was used to search the EMBL database (Release 50, plus updates to June, 1998) to identify human EST homologues. The top three homologies were to the following ESTs: accession numbers AA643952, HS1301003 and AA865643. These showed 92.63% identity over 285 nucleotides, 93.64% over 283 nucleotides and 94.035% over 285 nucleotides, respectively. Frame shifts were identified 20 in AA643952 and HS1301003 when translated. Combination of all three ESTs identified huKS1 (SEQ ID NO: 270) and translated polypeptide SEQ ID NO: 344. Alignment of muKS1 and huKS1 polypeptides indicated 95% identity over 96 amino acids.

Bacterial expression and purification of muKS1 and huKS1

25 Polynucleotides 269-502 of muKS1 (SEQ ID NO: 271), encoding amino acids 23-99 of polypeptide muKS1 (SEQ ID NO: 345), and polynucleotides 55-288 of huKS1 (SEQ ID NO: 272), encoding amino acids 19-95 of polypeptide huKS1 (SEQ ID NO: 346), were cloned into the bacterial expression vector pET-16b (Novagen, Madison, Wisconsin), which contains a bacterial leader sequence and N-terminal 6xHistidine tag. These constructs were transformed into competent XL1-Blue *E. coli* as described in 30 Sambrook et al., *Ibid.*

- Starter cultures of recombinant BL 21 (DE3) *E. coli* (Novagen) containing SEQ ID NO: 271 (muKS1a) and SEQ ID NO: 272 (huKS1a) were grown in NZY broth containing 100 µg/ml ampicillin (Gibco-BRL Life Technologies) at 37°C. Cultures were spun down and used to inoculate 800 ml of NZY broth and 100 µg/ml ampicillin.
- 5 Cultures were grown until the OD₅₉₅ of the cells was between 0.4 and 0.8. Bacterial expression was induced for 3 hours with 1 mM IPTG. Bacterial expression produced an induced band of approximately 15kDa for muKS1a and huKS1a.

MuKS1a and huKS1a were expressed in insoluble inclusion bodies. In order to purify the polypeptides, bacterial cell pellets were re-suspended in lysis buffer (20 mM Tris-HCl pH 8.0, 10 mM βMercaptoethanol, 1 mM PMSF). To the lysed cells, 1% NP-40 was added and the mix incubated on ice for 10 minutes. Lysates were further disrupted by sonication on ice at 95 W for 4 x 15 seconds and then centrifuged for 10 minutes at 18,000 rpm to pellet the inclusion bodies.

The pellet containing the inclusion bodies was re-suspended in lysis buffer containing 0.5% w/v CHAPS and sonicated for 5-10 seconds. This mix was stored on ice for 1 hour, centrifuged at 14000 rpm for 15 minutes at 4°C and the supernatant discarded. The pellet was once more re-suspended in lysis buffer containing 0.5% w/v CHAPS, sonicated, centrifuged, and the supernatant removed as before. The pellet was re-suspended in solubilizing buffer (6 M guanidine HCl, 0.5 M NaCl, 20 mM Tris-HCl pH 8.0), sonicated at 95W for 4 x 15 seconds and centrifuged for 10 minutes at 18000 rpm and 4°C to remove debris. The supernatant was stored at 4°C. MuKS1a and huKS1a were purified by virtue of the N-terminal 6x histidine tag contained within the bacterial leader sequence, using a Nickel-Chelating sepharose column (Amersham Pharmacia, Uppsala, Sweden) and following the manufacturer's protocol. Proteins were purified twice over the column to reduce endotoxin contamination. In order to re-fold the proteins once purified, the protein solution was dialysed in a 4 M-2 M urea gradient in 20 mM tris-HCl pH 7.5 + 10% glycerol overnight at 4°C. The protein was then further dialysed 2x against 2 litres of 20 mM Tris-HCl pH 7.5 + 10% glycerol.

Peptide sequencing of muKS1 and huKS1

30 Bacterially expressed muKS1 and huKS1 were separated on polyacrylamide gels and induced bands of 15 kDa were identified. The predicted size of muKS1 is 9.4 kDa.

To obtain the amino acid sequence of the 15 kDa bands, 20 µg recombinant muKS1 and huSK1 was resolved by SDS-PAGE and electroblotted onto Immobilon PVDF membrane (Millipore, Bedford, Massachusetts). Internal amino acid sequencing was performed on tryptic peptides of muKS1 and huKS1 by the Protein Sequencing Unit at the University 5 of Auckland, New Zealand.

The determined amino acid sequences for muKS1 and huKS1 are given in SEQ ID NOS: 397 and 398, respectively. These amino acid sequences confirmed that the determined sequences are identical to that predicted from the cDNA sequences. The size discrepancy has previously been reported for other chemokines (Richmond A, 10 Balentien E, Thomas HG, Flaggs G, Barton DE, Spiess J, Bordoni R, Francke U, Derynck R, "Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin," *EMBO J.* 7:2025-2033, 1988; Liao F, Rabin RL, Yannelli JR, Koniaris LG, Vanguri P, Farber JM, "Human Nig chemokine: biochemical and functional characterization," 15 *J. Exp. Med.* 182:1301-1314, 1995). The isoelectric focusing point of these proteins was predicted to be 10.26 using DNASIS (HITACHI Software Engineering, San Francisco, California).

Oxidative burst assay

Oxidative burst assays were used to determine responding cell types. 1×10^7 20 PBMC cells were resuspended in 5 ml HBSS, 20mM HEPES, 0.5% BSA and incubated for 30 minutes at 37°C with 5 µl 5 mM dichloro-dihydrofluorescein diacetate (H₂DCFDA, Molecular Probes, Eugene, Oregon). 2×10^5 H₂DCFDA-labeled cells were loaded in each well of a flat-bottomed 96 well plate. 10 µl of each agonist was added simultaneously into the well of the flat-bottomed plate to give final concentrations of 25 100 ng/ml (fMLP was used at 10 µM). The plate was then read on a Victor² 1420 multilabel counter (Wallac, Turku, Finland) with a 485 nm excitation wavelength and 535 nm emission wavelength. Relative fluorescence was measured at 5 minute intervals over 60 minutes.

A pronounced respiratory burst was identified in PBMC with a 2.5 fold difference 30 between control treated cells (TR1) and cells treated with 100 ng/ml muKS1 (Fig. 8).

Human stromal derived factor-1 α (SDF1 α) (100 ng/ml) and 10 μ M formyl-Met-Leu-Phe (fMLP) were used as positive controls.

Chemotaxis assay

Cell migration in response to muKS1 was tested using a 48 well Boyden's chamber (Neuro Probe Inc., Cabin John, Maryland) as described in the manufacturer's protocol. In brief, agonists were diluted in HBSS, 20mM HEPES, 0.5% BSA and added to the bottom wells of the chemotactic chamber. THP-1 cells were re-suspended in the same buffer at 3×10^5 cells per 50 μ l. Top and bottom wells were separated by a PVP-free polycarbonate filter with a 5 μ m pore size for monocytes or 3 μ m pore size for lymphocytes. Cells were added to the top well and the chamber incubated for 2 hours for monocytes and 4 hours for lymphocytes in a 5% CO₂ humidified incubator at 37°C. After incubation, the filter was fixed and cells scraped from the upper surface. The filter was then stained with Diff-Quick (Dade International Inc., Miami, Florida) and the number of migrating cells counted in five randomly selected high power fields. The results are expressed as a migration index (the number of test migrated cells divided by the number of control migrated cells).

Using this assay, muKS1 was tested against T cells and THP-1 cells. MuKS1 induced a titratable chemotactic effect on THP-1 cells from 0.01 ng/ml to 100 ng/ml (Fig. 9). Human SDF1 α was used as a positive control and gave an equivalent migration. MuKS1 was also tested against IL-2 activated T cells. However, no migration was evidence for muKS1 even at high concentrations, whereas SDF-1 α provided an obvious titratable chemotactic stimulus. Therefore, muKS1 appears to be chemotactic for THP-1 cells but not for IL-2 activated T cells at the concentrations tested.

Full length sequence of muKS1 clone

The nucleotide sequence of muKS1 was extended by determining the base sequence of additional ESTs. Combination of all the ESTs identified the full-length muKS1 (SEQ ID NO: 370) and the corresponding translated polypeptide sequence in SEQ ID NO: 394.

Analysis of human RNA transcripts by Northern blotting

Northern blot analysis to determine the size and distribution of mRNA for the human homologue of muKS1 was performed by probing human tissue blots (Clontech,

Palo Alto, California) with a radioactively labeled probe consisting of nucleotides 1 to 288 of huKS1 (SEQ ID NO: 270). Prehybridization, hybridization, washing, and probe labeling were performed as described in Sambrook, *et al.*, *Ibid.* mRNA for huKS1 was 1.6 kb in size and was observed to be most abundance in kidney, liver, colon, small intestine, and spleen. Expression could also be detected in pancreas, skeletal muscle, placenta, brain, heart, prostate, and thymus. No detectable signal was found in lung, ovary, and testis.

Analysis of human RNA transcripts in tumor tissue by Northern blotting

Northern blot analysis to determine distribution of huKS1 in cancer tissue was 10 performed as described previously by probing tumor panel blots (Invitrogen, Carlsbad, California). These blots make a direct comparison between normal and tumor tissue. mRNA was observed in normal uterine and cervical tissue but not in the respective tumor tissue. In contrast, expression was up-regulated in breast tumor and down-regulated in normal breast tissue. No detectable signal was found in either ovary or ovarian tumors.

15 *Injection of bacterially expressed muKS1a into nude mice*

Two nude mice were anaesthetised intraperitoneally with 75 µl of 1/10 dilution of Hypnorm (Janssen Pharmaceuticals, Buckinghamshire, England) in phosphate buffered saline. 20ug of bacterially expressed muKS1a (SEQ ID NO: 345) was injected subcutaneously in the left hind foot, ear and left-hand side of the back. The same volume 20 of phosphate buffered saline was injected in the same sites but on the right-hand side of the same animal. Mice were left for 18 hours and then examined for inflammation. Both mice showed a red swelling in the ear and foot sites injected with the bacterially expressed protein. No obvious inflammation could be identified in either back site. Mice were culled and biopsies taken from the ear, back and foot sites and fixed in 3.7% formal saline. Biopsies were embedded, sectioned and stained with Haemotoxylin and eosin. Sites injected with muKS1a had a marked increase in polymorphonuclear granulocytes, whereas sites injected with phosphate buffered saline had a low background infiltrate of polymorphonuclear granulocytes.

Injection of bacterially recombinant muKS1 into C3H/HeJ mice

30 Eighteen C3H/HeJ mice were divided into 3 groups and injected intraperitoneally with muKS1, GV14B, or phosphate buffered saline (PBS). GV14B is a bacterially

expressed recombinant protein used as a negative control. Group 1 mice were injected with 50 µg of muKS1 in 1 ml of PBS; Group 2 mice were injected with 50 µg of GV14B in 1 ml of PBS; and Group 3 mice with 1 ml of PBS. After 18 hours, the cells in the peritoneal cavity of the mice were isolated by intraperitoneal lavage with 2 x 4 ml washes
5 with harvest solution (0.02% EDTA in PBS). Viable cells were counted from individual mice from each group. Mice injected with 50 µg of muKS1 had on average a 3-fold increase in cell numbers (Fig. 10).

20 µg of bacterial recombinant muKS1 was injected subcutaneously into the left hind foot of three C3H/HeJ mice. The same volume of PBS was injected into the same
10 site on the right-hand side of the same animal. After 18 hours, mice were examined for inflammation. All mice showed a red swelling in the foot pad injected with bacterially recombinant KS1. From histology, sites injected with muKS1 had an inflammatory response of a mixed phenotype with mononuclear and polymorphonuclear cells present.

Chemokines are a large superfamily of highly basic secreted proteins with a broad
15 number of functions (Baggiolini, *et al.*, *Annu. Rev. Immunol.*, 15:675-705, 1997; Ward,
et al., *Immunity*, 9:1-11, 1998; Horuk, *Nature*, 393:524-525, 1998). The polypeptide sequences of muKS1 and huKS1 have similarity to CXC chemokines, suggesting that this protein will act like other CXC chemokines. The *in vivo* data from nude mice supports this hypothesis. This chemokine-like protein may therefore be expected to stimulate
20 leukocyte, epithelial, stromal, and neuronal cell migration; promote angiogenesis and vascular development; promote neuronal patterning, hemopoietic stem cell mobilization, keratinocyte and epithelial stem cell patterning and development, activation and proliferation of leukocytes; and promotion of migration in wound healing events. It has recently been shown that receptors to chemokines act as co-receptors for HIV-1 infection
25 of CD4+ cells (Cairns, *et al.*, *Nature Medicine*, 4:563-568, 1998) and that high circulating levels of chemokines can render a degree of immunity to those exposed to the HIV virus (Zagury, *et al.*, *Proc. Natl. Acad. Sci. USA* 95:3857-3861, 1998). This novel gene and its encoded protein may thus be usefully employed as regulators of epithelial, lymphoid, myeloid, stromal, and neuronal cells migration and cancers; as agents for the
30 treatment of cancers, neuro-degenerative diseases, inflammatory autoimmune diseases

such as psoriasis, asthma and Crohn's disease for use in wound healing; and as agents for the prevention of HIV-1 binding and infection of leukocytes.

We have also shown that muKS1 can promote a quantifiable increase in cell numbers in the peritoneal cavity of C3H/HeJ mice injected with muKS1. Furthermore,
5 we have shown that muKS1 can induce an oxidative burst in human peripheral blood mononuclear cells and migration in the human monocyte leukemia cell line, THP-1, suggesting that monocyte/macrophages are one of the responsive cell types for KS1. In addition to this, we demonstrated that huKS1 was expressed at high levels in a number of non-lymphoid tissues, such as the colon and small intestine, and in breast tumors. It was
10 also expressed in normal uterine and cervical tissue, but was completely down-regulated in their respective tumors. It has recently been shown that non-ELR chemokines have demonstrated angiostatic properties. IP-10 and Mig, two non-ELR chemokines, have previously been shown to be up-regulated during regression of tumors (Tannenbaum CS, Tubbs R, Armstrong D, Finke JH, Bukowski RM, Hamilton TA, "The CXC Chemokines
15 IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor," *J. Immunol.* 161: 927-932, 1998), with levels of expression inversely correlating with tumor size (Kanegane C, Sgadari C, Kanegane H, Teruya-Feldstine J, Yao O, Gupta G, Farber JM, Liao F, Liu L, Tosato G, "Contribution of the CXC Chemokines IP-10 and Mig to the antitumor effects of IL-12," *J. Leuko. Biol.* 64: 384-392, 1998).
20 Furthermore, neutralizing antibodies to IP-10 and Mig would reduce the anti-tumor effect, indicating the contribution these molecules make to the anti-tumor effects. Therefore, it is expected that in the case of cervical and uterine tumors, KS1 would have similar properties.

The data demonstrates that KS1 is involved in cell migration showing that one of
25 the responsive cell types is monocyte/macrophage. The human expression data in conjunction with the *in vitro* and *in vivo* biology demonstrates that this molecule may be a useful regulator in cell migration, and as an agent for the treatment of inflammatory diseases, such as Crohn's disease, ulcerative colitis, and rheumatoid arthritis; and cancers, such as cervical adenocarcinoma, uterine leiomyoma, and breast invasive ductal
30 carcinoma.

Example 6CHARACTERIZATION OF KS2

KS2 contains a transmembrane domain and may function as either a membrane-bound ligand or a receptor. Northern analysis indicated that the mRNA for KS2 was
5 expressed in the mouse keratinocyte cell line, Pam212, consistent with the cDNA being identified in mouse keratinocytes.

Mammalian Expression

To express KS2, the extracellular domain was fused to the amino terminus of the constant domain of immunoglobulinG (Fc) that had a C-terminal 6xHistidine tag. This
10 was performed by cloning polynucleotides 20-664 of KS2 (SEQ ID NO: 273), encoding amino acids 1-215 of polypeptide KS2 (SEQ ID NO: 347), into the mammalian expression vector pcDNA3 (Invitrogen, NV Leek, Netherlands), to the amino terminus of the constant domain of immunoglobulinG (Fc) that had a C-terminal 6xHistidine tag. This construct was transformed into competent XL1-Blue *E. coli* as described in
15 Sambrook et al., *Ibid*. The Fc fusion construct of KS2a was expressed by transfecting Cos-1 cells in 5 x T175 flasks with 180 µg of KS1a using DEAE-dextran. The supernatant was harvested after seven days and passed over a Ni-NTA column. Bound KS2a was eluted from the column and dialysed against PBS.

The ability of the Fc fusion polypeptide of KS2a to inhibit the IL-2 induced
20 growth of concanavalin A stimulated murine splenocytes was determined as follows. A single cell suspension was prepared from the spleens of BALB/c mice and washed into DMEM (GIBCO-BRL) supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, 0.77 mM L-asparagine, 0.2 mM L-arginine, 160 mM penicillin G, 70 mM dihydrostreptomycin sulfate, 5×10^{-2} mM beta mercaptoethanol and 5% FCS (cDMEM).
25 Splenocytes (4×10^6 /ml) were stimulated with 2 ug/ml concanavalin A for 24 hrs at 37°C in 10% CO₂. The cells were harvested from the culture, washed 3 times in cDMEM and resuspended in cDMEM supplemented with 10 ng/ml rhuIL-2 at 1×10^5 cells/ml. The assay was performed in 96 well round bottomed plates in 0.2 ml cDMEM. The Fc fusion polypeptide of KS2a, PBS, LPS and BSA were titrated into the plates and 1×10^4
30 activated T cells (0.1 ml) were added to each well. The plates were incubated for 2 days in an atmosphere containing 10% CO₂ at 37°C. The degree of proliferation was

determined by pulsing the cells with 0.25 uCi/ml tritiated thymidine for the final 4 hrs of culture after which the cells were harvested onto glass fiber filtermats and the degree of thymidine incorporation determined by standard liquid scintillation techniques. As shown in Fig. 6, the Fc fusion polypeptide of KS2a was found to inhibit the IL-2 induced growth 5 of concanavalin A stimulated murine splenocytes, whereas the negative controls PBS, BSA and LPS did not.

This data demonstrates that KS2 is expressed in skin keratinocytes and inhibits the growth of cytokine induced splenocytes. This suggests a role for KS2 in the regulation of skin inflammation and malignancy.

10

Example 7

Characterization of KS3

KS3 encodes a polypeptide of 40 amino acids (SEQ ID NO: 129). KS3 contains a signal sequence of 23 amino acids that would result in a mature polypeptide of 17 amino 15 acids (SEQ ID NO: 348; referred to as KS3a).

KS3a was prepared synthetically (Chiron Technologies, Victoria, Australia) and observed to enhance transferrin-induced growth of the rat intestinal epithelial cells IEC-18 cells. The assay was performed in 96 well flat-bottomed plates in 0.1 ml DMEM (GIBCO-BRL Life Technologies) supplemented with 0.2% FCS. KS3a (SEQ ID NO: 348), apo-Transferrin, media and PBS-BSA were titrated either alone, with 20 750 ng/ml Apo-transferrin or with 750 ng/ml BSA, into the plates and 1×10^3 IEC-18 cells were added to each well. The plates were incubated for 5 days at 37°C in an atmosphere containing 10% CO₂. The degree of cell growth was determined by MTT dye reduction as described previously (*J. Imm. Meth.* 93:157-165, 1986). As shown in 25 Fig. 7, KS3a plus Apo-transferrin was found to enhance transferrin-induced growth of IEC-18 cells, whereas KS3a alone or PBS-BSA did not, indicating that KS3a and Apo-transferrin act synergistically to induce the growth of IEC-18 cells.

This data indicates that KS3 is epithelial derived and stimulates the growth of epithelial cells of the intestine. This suggests a role for KS3 in wound healing, protection 30 from radiation- or drug-induced intestinal disease, and integrity of the epithelium of the intestine.

SEQ ID NOS: 1-409 are set out in the attached Sequence Listing. The codes for polynucleotide and polypeptide sequences used in the attached Sequence Listing confirm to WIPO Standard ST.25 (1988), Appendix 2.

All references cited herein, including patent references and non-patent references,
5 are hereby incorporated by reference in their entireties.

Although the present invention has been described in terms of specific embodiments, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the appended claims.

10

We claim:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (1) the sequences recited in SEQ ID NO: 1-119, 198-274, 5 349-372, and 399-405; (2) complements of the sequences recited in SEQ ID NO: 1-119, 198-274, 349-372, and 399-405; (3) reverse complements of the sequences recited in SEQ ID NO: 1-119, 198-274, 349-372, and 399-405; (4) reverse sequences of the sequences recited in SEQ ID NO: 1-119, 198-274, 349-372, and 399-405; (5) sequences having at least a 99% probability of being the same as a sequence selected from any of 10 the sequences in (1)-(4), above, as measured by the computer algorithm BLASTP using the running parameters described above; and (6) nucleotide sequences having at least 50% identity to any of the sequences in (1)-(4), above, as measured by the computer algorithm BLASTP using the running parameters and identity test defined above.
- 15 2. An expression vector comprising an isolated polynucleotide of claim 1.
3. A host cell transformed with an expression vector of claim 2.
4. An isolated polypeptide comprising an amino acid sequence selected from 20 the group consisting of: (1) sequences provided in SEQ ID NO: 120-197, 275-348, 373-398, and 406-409; (2) sequences having at least a 99% probability of being the same as a sequence of SEQ ID NO: 120-197, 275-348, 373-398, and 406-409, as measured by the computer algorithm BLASTP using the running parameters described above; and (3) sequences having at least 50% identity to a sequence provided in SEQ ID NO: 25 120-197, 275-348, 373-398, and 406-409, as measured by the computer algorithm BLASTP using the running parameters and identity test defined above.
- 30 5. An isolated polynucleotide encoding a polypeptide of claim 4.
6. An expression vector comprising an isolated polynucleotide of claim 5.

7. A host cell transformed with an expression vector of claim 6.

8. An isolated polypeptide comprising at least a functional portion of a polypeptide having an amino acid sequence selected from the group consisting of:
5 (1) sequences provided in SEQ ID NO: 120-197, 275-348, 373-398, and 406-409;
(2) sequences having at least a 99% probability of being the same as a sequence of SEQ
ID NO: 120-197, 275-348, 373-398, and 406-409, as measured by the computer
algorithm BLASTP using the running parameters described above; and (3) sequences
having at least 50% identity to a sequence provided in SEQ ID NO: 120-197, 275-348,
10 373-398, and 406-409, as measured by the computer algorithm BLASTP, using the
running parameters and identity test defined above.
15

9. A method for stimulating keratinocyte growth and motility in a patient,
comprising administering to the patient a composition comprising an isolated
polypeptide, the polypeptide comprising an amino acid sequence of claim 4.
15

10. The method of claim 9, wherein the polypeptide comprises an amino acid
sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO:
187, 196, 342, 343, 397 and 398; (2) sequences having at least about 50% identity to a
20 sequence of SEQ ID NO: 187, 196, 342, 343, 397 and 398 as measured by the computer
algorithm BLASTP, using the running parameters and identity test defined above.
25

11. A method for inhibiting the growth of cancer cells in a patient, comprising
administering to the patient a composition comprising an isolated polypeptide, the
polypeptide comprising an amino acid sequence of claim 4.
25

12. The method of claim 11, wherein the polypeptide comprises an amino acid
sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO:
187, 196, 342, 343, 397 and 398; and (2) sequences having at least 50% identity to a
30 sequence of SEQ ID NO: 187, 196, 342, 343, 397, and 398, as measured by the computer
algorithm BLASTP, using the running parameters and identity test defined above.
35

13. A method for modulating angiogenesis in a patient, comprising administering to the patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

5

14. A method of claim 13, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 187, 196, 342, 343, 397 and 398; and (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 187, 196, 342, 343, 397 and 398 as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

10 15. A method for inhibiting angiogenesis and vascularization of tumors in a patient, comprising administering to a patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

15

16. The method of claim 15, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 187, 196, 342, 343, 397, and 398; and (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 187, 196, 340, 342-346, 397, and 398, as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

20 25 17. A method for modulating skin inflammation in a patient, comprising administering to the patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

18. The method of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 338 and 347; and (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 338 and 347 as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

19. A method for stimulating the growth of epithelial cells in a patient, comprising administering to the patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

5

20. The method of claim 19, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 129 and 348; and (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 129 and 348 as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

10

21. A method for inhibiting the binding of HIV-1 to leukocytes in a patient, comprising administering to the patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

15

22. A method of claim 21, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 340, 344, 345 and 346; (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 340, 344, 345 and 346 as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

20

23. A method for treating an inflammatory disease in a patient, comprising administering to the patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

25

24. The method of claim 23, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 340, 344, 345 and 346; and (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 340, 344, 345 and 346 as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

30

25. A method for treating cancer in a patient, comprising administering to the patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

5 26. The method of claim 25, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 340, 344, 345 and 346; and (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 340, 344, 345 and 346 as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

10

27. A method for treating neurological disease in a patient, comprising administering to the patient a composition comprising an isolated polypeptide, the polypeptide comprising an amino acid sequence of claim 4.

15

28. The method of claim 27, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of: (1) a sequence provided in SEQ ID NO: 187, 196, 340, 342-346, and 395; and (2) sequences having at least 50% identity to a sequence of SEQ ID NO: 187, 196, 340, 342-346, and 395, as measured by the computer algorithm BLASTP, using the running parameters and identity test defined above.

20

1/14
Figure 1Distribution of human TAK1 mRNA in human tissues

2/14

Figure 2

3/14
Figure 3

4/14
Figure 4

5/14
Figure 5

6/14
Figure 6

Key: Br, Brain; Th, Thymus; Sk, Skin; Ht, Heart; Lg, Lung; Spl, Spleen; Sth, Stomach; Kdy, Kidney; Lr, Liver; LI, Lower intestine; Ts, Testis; Mle, Muscle.

Br Th Sk Ht Lg Spl Sth Kdy Lr LI Mle

7/14
Figure 7

8/14

Figure 8

9/14

Figure 9

10/14

Figure 10

11/14

Figure 11

Cell Line	Cells stimulated with	
	PBS	Hu TR1
CV1/EBNA	—	← ERK1/2
HeLa	—	← ERK1/2

12/14

Figure 12

mu and huTR1 upregulate huTR1 mRNA expression in HeLa cells

HeLa cells stimulated with

PBS muTR1 huTR1 huTGF α

huTR1 mRNA

Actin mRNA

13/14

Figure 13A**Figure 13B**

14/14

Figure 14

TR1 growth of HaCat cells is inhibited by an antibody to the EGF receptor

SEQUENCE LISTING

<110>

Watson, James D.
 Strachan, Lorna
 Sleeman, Matthew
 Onrust, Rene
 Murison, James Greg
 Kumble, Anand

<120> Compositions isolated from skin cells
 and methods for their use

<130> 11000.1011PCT

<160> 409

<170> FastSEQ for Windows Version 3.0

<210> 1
 <211> 696
 <212> DNA
 <213> Rat

<400> 1

aattccggcac	gaggccgagg	cgggcaggca	ccagccagag	cagctggcg	cagacagtgc	60
gaccgagaca	gttggaccga	gacagtcgaa	cggtctaaca	gggcctggct	tgcctacctg	120
gcagctgcac	ccggtccttt	tcccagagct	ggttctgtgg	gtcaacatgg	tccccgtctt	180
cctccgtct	ctgctgctac	tttgtagggcc	tgcgcctgtg	gtggcctact	ctgtgtccct	240
cccgccctcc	tccctggagg	aagtggccgg	cagtggggaa	gctgagggtt	tttcagcctc	300
ttccccaaac	ctgctgcccgc	cccgactcc	agccttcagt	cccacaccag	ggaggaccca	360
gcccacagct	ccggtcggcc	ctgtgcacc	caccaacctc	ctggatggga	tcgtggactt	420
cttccgccag	tatgtgatgc	tcattgcgtt	ggggggctcg	ctgacccttc	tcatcatgtt	480
catagtcgtc	gcggcactca	tcacgcgcca	gaagcacaag	gccacagct	actacccgtc	540
ctctttcccc	aaaaagaagt	atgtggacca	gagagacccgg	gctggggggc	cccatgcctt	600
cagcgaggtc	cctgacaggg	cacctgacag	ccggcaggaa	gaggccctgg	acttcttcca	660
gcagctccag	gctgacattc	tggcttgcta	ctcaga			696

<210> 2

<211> 475
 <212> DNA
 <213> Rat

<400> 2

cggtatcgat	aagttgata	tcgaattcct	gcaggtcgac	actagtggat	ccaaagaatt	60
cggcacgaga	aaataaccaa	ccaaacaaac	tttcctcttc	ccgctagaaa	aaacaaattc	120
ttaaggatg	gagctgtct	actgggtttt	gctgtgcctc	ctgttaccac	tcacctccag	180
gacccagaag	ctgcccacca	gagatgagga	actttttcag	atgcagatcc	gggataaggc	240
attgtttcac	gattcatccg	tgattccaga	tggagctgaa	atcagcagtt	acctatttag	300
agatacacct	agaaggattt	tcttcatggt	tgaggaagat	aacacccac	tgtcagtcac	360
agtgacacct	tgtgatgcgc	ctttggaaatg	gaagcttagc	ctccaggagc	tgcctgagga	420
gtccagtgca	gatgggtcag	gtgacccaga	accacttgac	cagcagaagc	agcag	475

<210> 3

<211> 381
 <212> DNA
 <213> Human

<220>

<400> 3

ctggagatcc	tggggatcca	ggtgatccc	gtagaaccag	gcagattgt	tgttagatgac	60
tggcttgta	ggttagtctt	cgttccactg	gacaggaaa	gcttcaaact	tgggctctgc	120
cgtccagaaa	ggttgtttt	cagaagact	tcctttcct	cactttctt	taatttcttc	180
ctttccatga	attacttat	tggatccata	atattatcat	catttttagt	tttgtcagat	240
ggagacacta	cagttctcc	atcttccatg	tcatcttcat	ctgtgttaaa	ccacatctct	300
tcttcatctt	ctagtgtctg	gcatctcttc	gatatctgtg	attcctcaaa	atggAACGCA	360
tactgtcaag	tttgggggta	a				381

<210> 4

<211> 311
 <212> DNA
 <213> Human

<400> 4

agcgtggtcg	cggccgaggt	actacagact	ttgtgataag	gctgaagctt	ggggcatcg	60
cctagaaaacg	gtggccacag	ctgggggttgt	gacctcggtg	gccttcatgc	tcactctccc	120
gatcctcg	tgcaaggtgc	aggactccaa	caggcggaaa	atgctgccta	ctcagttct	180
cttcctcctg	ggtgtgttgg	gcatcttgg	cctcaccttc	gccttcatca	tcggactgga	240
cgggagcaca	ggggcccacac	gcttcttct	cttgggatc	ctttttcca	tctgcttctc	300
ctgcctgctg	g					311

<210> 5

<211> 514
 <212> DNA
 <213> Mouse

<400> 5

ctggagctcg	cgcgcctgca	ggtcgacact	agtggatcca	aagcttaaaa	gagactccac	60
ccactccagt	agaccgggga	ctaaaacaga	aattctgaga	aagcagcaag	aagcagaaga	120
aataagctatt	tcacagcagt	aacagaagct	acctgctata	ataaaagacct	caacactgct	180
gaccatgatc	agcccagcct	ggagccttct	cctcatcg	actaaaattt	ggctgttctt	240
ccaagtggca	cctctgtcag	ttgtggctaa	atccgtc	tctgtatgtc	gctgtgacgc	300
aggcttcatt	tactgtaa	atcgctctct	gacatccatt	ccagtggaa	ttccggagga	360
tgctacaaca	ctctaccc	agaacaacca	aataaacaat	gttgggatc	cttccgattt	420
gaagaacttg	ctgaaagatc	aaagaatata	cctataccac	aacagtttag	atgaattccc	480
taccaac	ccaaagtatg	tcaaagat	at			514

<210> 6

<211> 1059
 <212> DNA
 <213> Mouse

<400> 6

ggcacgagcc	tgctgcctc	ttgcagacag	gaaagacatg	gtctctgcgc	ccggatcc	60
cagaagctca	tggggagcc	cagactggca	gccttgc	tgtctctccc	gtactgctc	120
atcgccctcg	ctgtgtctc	tcgggttgc	tgccc	tcggagttg	gaccagccac	180
tgtctctgg	cctaccgtgt	ggataaacgt	tttgc	ttcagtgggg	ctgg	240
ctcttggta	ggaaatctaa	aagtcc	aaatttgaag	actattggag	gcacaggaca	300
ccagcatc	tccagaggaa	gctgttagc	agcc	tgtctgagga	aagccatcga	360
atttccatcc	cctcc	catctcc	agaggc	ac	gcacaaaag	420
tcagctgcag	aaggaagaga	acatctcc	gaagc	gggt	tgaggac	480
gaatttcc	ttgat	gttgc	gggt	actat	tc	540
cccaaggc	gtgtgc	cccc	gggt	tc	tc	600
cctttgata	ccc	cc	actat	tc	tc	660
cttctcc	catgtgc	agagg	gggt	tc	tc	720
aagtgc	tcc	actgc	actt	tc	tc	780
ttcactgact	acagcc	aatc	ctgg	tc	tc	840

aaactggagg cctccctctg ctggaggcag gacccactca caccctgcga aacccttccc	900
aacgcacag cacaggagtc agaaggatgg tatatactgg agaatgtgga cttgcacccc	960
cagctctctt ttaagttctc atttgaaaac agcagccacg ttgaatgtcc ccaccagagt	1020
ggctctctcc catcctggac tgtgagcatg gataccag	1059

<210> 7

<211> 861

<212> DNA

<213> Rat

<400> 7

gaattcggca cgagaggaga gaaagagaag tgtgcacaaa gaaacttgta ttattattaa	60
ttagcaccta gcttgggtgt gtctgataca ccaccaagta gtaattgtg aaaaaacgaa	120
gaagaaaaaa aaaaaacaaa aaaaccaaac agtgggtact caaataagat aggagaaaaa	180
tgagagaaca gacccagttc tcgacccttg cttctcaagg tccctccacc aggctgccaa	240
agcaagatgg tggctctg atccagtcag tattctttt acctttttt ttaatctcca	300
ggtttgggtt caggctccca tattcatacc ctggctcatt tagcttccc tcatgttgc	360
ggttctctg tccctcacc ccttactctc cccactgata ttcttcccag tcaagactgt	420
ggctctggaa gaaatatcca ccatttgtagt agctgatgtt ctgtagatcg taatgtgaa	480
gcgcgtgggtg tccctgggtgg cagaatact cctgttattac tctggtagat aggtgtctcc	540
tgatagactc cctggccctt gtcatgggt gtttctaga ggcagactaa gacaggagtc	600
aaaaaagatt tagaggaagg agctgagggaa agaaagacag ttgtgggagg aaaatcaagt	660
tctactcagg atccccggatgt tttctgtaga ttagattgg aatgtgtcca taacagagag	720
gccagtgaga gacatccccca aggacctgcc aggcttccct tcgctccagg aagacgcacc	780
atcaactcaaa aggggtttcc tagaaagaaa gacaagtgcac taaaaaaatc tgccagtggg	840
ttcttgaagt catcgaacct a	861

<210> 8

<211> 398

<212> DNA

<213> Mouse

<400> 8

gtcaccagca aagggtggaaa caaattctt gaaggactct gacagccctg ggtctccaag	60
gctgtggga ccagtcttag cctcttggta caagtggtag gaatgtgaat ctttgcgacc	120
agggggatca gaaatggggct ctcatttc tgggtctgc ccagtccttc caggtgggct	180
cttcgttagcc ctgggggtggta tttccctt cttccacaga gatgctttt ctctgcatac	240
catgtctgtct ggtttcccat aatctccctc aaacccacac caccctccac tgaggctcag	300
ccccagagcc atgaaaactc ccaccagttt ccaggataga gtctggacag .aactggggcc	360
ctgggtgcca agtgggtgaaa aaaggaatgg ccccccctg	398

<210> 9

<211> 1060

<212> DNA

<213> mouse

<220>

<400> 9

agaacattcg agaatatgtt cgggtggatga tggattggat tggctttgcg atcttcattgg	60
cagcagaaac cttcacagac atcttcattt cctgggtccgg cccacggatt ggcaggccat	120
gggggtggga agggcctcac caccaccc accggccctc tggctcacac aaaccctcc	180
ccttgcttac acacaggttc ccgtttttt acgagttcaa gatggctttt gtgctgtggc	240
tgctctcacc ttacaccaag gggccagcc tggcttaccg aaagttgtc caccatccc	300
tatccgcaca tgagaaggag atcgacgcatt gtatcgtgcg ggcacaaaggag cgcaatcgatg	360
aaaccatgct cagtttggg aagcgagcc tcaacatgcg tgcctcagct gctgtgcagg	420
ctgctaccaa gagtcacggc gctctagctg gaaggctacg gagtttctct atgcaagacc	480
tgcgtcttat ccctgacacc cctgtcccca cctaccaaga tccctctac ctggaaagacc	540
aggtaccccg acgttagaccc cctattggat accggccagg cggcctgcag ggcagtgaca	600
cagaggatga gtgttggtca gacaatgaga ttgtccccca gccacctgtt cggccccgag	660

agaaggctct	aggccgcagc	cagagccttc	gggtggtcaa	gaggaagcca	ttgactcgag	720
agggcacctc	acgctccctg	aaggtcgaa	ccccaaaaaa	ggccatgcc	tcagacatgg	780
acagcttagag	tctgcagatt	gaggccacct	tacctctgga	gccagcaggg	gaccttcgc	840
tgctacacca	gctaccgggg	ttctgcctcg	tctggcttgc	gcctaaatgg	cacatggcgt	900
ggtacccctgc	acagggagac	attcaactgta	ccaaagcagc	ccaggcctgg	ggectattta	960
ttgccttctt	ctgccttttgc	ctttctcaga	catgggacca	gagccccacc	agtccctacc	1020
gacgaaacca	aaagtccaaac	cagctgttt	cattccttct			1060
<210>	10					
<211>	353					
<212>	DNA					
<213>	mouse					
<400>	10					
ggaaagtcat	ctacctgctg	gtggcctcca	tcagagccgg	gagatctcca	ctgtgtgtat	60
ggagaccgca	ttgatagctt	actctttcc	tgaactacag	gatgaaggcc	atggctctga	120
gccttaggagc	aagcccagtg	cttgctttc	tcctctctgg	gtacagtgtat	ggttaccaag	180
tgtgttagtag	gttgcggaa	aaagtgcctc	agtttctgaa	ctagaactac	agctctgtct	240
gccttagcac	agacaggcgt	tgtctcattc	cttcacactg	ccctacccat	gcatgactcg	300
tccgcttatt	gagggggcagg	tgagtcatct	gagatgttat	ttgaaacatg	aga	353
<210>	11					
<211>	969					
<212>	DNA					
<213>	mouse					
<400>	11					
cggcacgaga	gagttatgtaa	ccagagtctt	agagaagtca	ctgagaaaaag	aatccagaaaa	60
caaagagacc	gacaagggtg	agctgacccgt	gagggaccga	ttcccagcct	atttcaccaa	120
tcttgtctcc	atcatcttca	tgatcgctgt	gacatttgca	atcgctctcg	gagttatcat	180
ctataagaatc	tccacagctg	cagccttggc	catgaactcc	tccccgtctg	tgcggtccaa	240
catccgggtt	acagtcacgg	ccaccgctgt	tatcatcaac	ctcggtgtca	tcattctgt	300
ggatgaagtt	tacggctgca	ttgccaggtg	gctcaccaa	attggtgagt	gccatgtgca	360
ggacacgata	ggcagcatgg	gccttagggca	ggggcagcct	tgaagtgggc	agcctggtca	420
cagaactgtg	gtctgtccca	acttccctg	gcctggcctg	gctgtgagtg	gctagcagct	480
ggcacagtca	gtaccgtatg	tctctctca	gaggtccaa	agacagagaa	gagctttgag	540
gagaggctaa	ccttcaaggc	cttccctgtc	aagtttgtga	actcttacac	tcccatcttc	600
tatgtcgctt	tcttcaaaagg	ccggtttgc	ggtcggcccc	gtgactacgt	gtacatcttc	660
cgctcttcc	ggatggagga	gtgtgcccc	ggggctgtcc	tcatggagct	ctgtatccag	720
ctgagcatca	ttatgtctggg	caagcagcta	atccagaaca	atctttcga	gattggcatc	780
ccgaagatga	aaaagttcat	ccgctacctg	aagtcgcga	gacagagccc	ctcagaccgt	840
gaagagtagc	tgaagcggaa	gcagcgttat	gagttggact	tcaacctcga	acctttcgcc	900
ggcctcacgc	cccgagtacat	ggaaatgatc	attcagttcg	gctttgtcac	cctgtttgtt	960
gcgtcccttc						969
<210>	12					
<211>	1411					
<212>	DNA					
<213>	mouse					
<400>	12					
ggcacgaggc	aacttggaca	ctaaagctag	gtaccaggct	gttagtttac	atgagttcaa	60
aattcagggtc	agggtctctg	aaatggagtc	tgaattttaa	agctttggcc	tctcatgtga	120
ataatacata	tgtcatgtgt	catttgaata	gttctcgatc	cacacacttt	gtatttctct	180
aagtgttaacg	catgtgttagt	gggtgggtgt	agtatgtattt	ctccgtcttt	cttggggaa	240
tgtttggact	tgtgcacgtg	tgcacatgtg	tgtgtgtgtg	tgtgtgtgt	tgtgtgtgt	300
tgtgtatgg	ctccctgtggc	tatgtgcatg	tgccatgtgg	gtgtgtgtgc	ttgtggggcc	360
cagaggttag	gtaccttcc	ctatcttcc	accctgggtgg	tttttgggttt	tttttgggttt	420
gttttggacc	aggtctatca	ctgataagct	aggttggatg	gcttctgaga	agagtctgcc	480
tctctgtccc	cctgcccccty	ctccccccag	ccctcagggtt	acagataagt	gccacaagtc	540
cttgccttt	caagtagcct	ctagggatcc	aggctcatat	ccttgcgtt	actgactgag	600

ccacacctca	gctcccttag	ccccgttttta	cacgtaact	ttgtctcctg	tctatgcctg	660
ctcttttcag	tgacccttc	cgttttcctt	tcactctttt	ctctgaatag	atttgggtgc	720
gagagactat	tatcatatgg	atgcataaaat	atcatctgca	aagtcaatcg	cagggaaagac	780
ttagagtctc	tttagcttta	tgactgtaaa	ggatccgct	tcttgcatt	gattcagctt	840
ttttgccatt	gatcctttat	tagagatcaa	tttaggtcg	atacaagac	cttggctggg	900
ccctgagggt	ctatctcagg	ctaggccc	agggtctate	tcaggctagg	ccctgagggt	960
ctatctcagg	atagatggat	ttaactgctt	ttctcaagac	getttaactc	tctcggtgaa	1020
ttcttttaa	acttttaatt	gacattgtac	ttgcattctt	atggaaaca	gggtgaccca	1080
cacacatgt	tacacaggta	cacacacagt	caggtcagca	tagctggtat	tttgttgttt	1140
atgtgggga	cagttagt	ggtattgtt	ttgcactgtg	ctgtggaaaca	ttggaaaacc	1200
ttatctgatg	gtgaccctgt	gcctactaac	agccctact	aggatacatt	ttggagtctc	1260
tggcaaccac	aattttgctc	tatccatg	agtccagcat	ctctactact	gcatagaagt	1320
aaaaaaaaaa	aaaaaaaaact	cgagagta	tctagagcgg	ccgcgggccc	cccctcgagg	1380
tcgacggtat	cgataagctt	gatatcaat	t			1411

<210> 13

<211> 888

<212> DNA

<213> mouse

<400> 13

ggcacagag	gaccttgacc	gacatccaga	ccacgggacc	cgactggatg	tctcacccctg	60
ccccgtcagg	cctgtccct	tccaaaacag	gcacttctgt	cacaggatac	tttttttttt	120
aacttaaatt	tgcgggggg	aggggagcag	ttctagttcc	atgaggcaca	aatggaggtc	180
aaagagcaac	ttgcccgtatgt	ctcttcctc	ctcccaactgt	gtgggtagta	ggaattgaat	240
caggttatcg	atcttggggc	tgagccatct	ctgtggccca	cagagcactt	atatgtggtt	300
acttgttgc	ctcacattgt	cagtgtacag	cttggtggcc	tttgtactg	gcatgtctg	360
tgacactgtt	gtgataaaaa	tgttgtatgag	tttacacaaa	tctagtaaat	tgaacccaag	420
agccaagtgt	gggggtgtac	ccttaattcc	agcactttgg	gggcaagttc	aggtagttct	480
ctgaatttga	gagcctctg	ccccacatag	tgagttccat	ggctgcgtag	ttgcaaaaga	540
acaccaacac	cttccccca	caaataaaat	tgtactgaag	gtcacagtc	gagaagcat	600
agcaaggatg	gtctgtctga	ccccctctg	tgcacttctg	tagaccttagc	cccggtgtct	660
aaatggagtc	tgtttttagc	acctgcact	gactgtctgt	ctccaccctg	acccgcctt	720
tcctgatccc	agattgtct	aactttgacc	aaaatgggac	ttaattggag	ttgtgattgg	780
katgttcatt	gattnaaatgt	gtcttttaca	ttttaaggaa	actaaccctt	tggtaagaa	840
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	888

<210> 14

<211> 547

<212> DNA

<213> mouse

<400> 14

gaattccggca	cgagcctaaa	tgctgggatt	aaaggcgtgc	gccactactg	ccaggctgtt	60
tttttttttt	tttttttttt	attatgtatc	tgccagacaa	agagatgtcc	ttttgggtgc	120
aaaagtccacc	caatgttga	agtcactata	ttttagtgc	tctgtactg	atacacaat	180
aaaacttcc	attatggata	atacattatc	tattattat	tatctcttgc	tcattttgc	240
aatttctgt	ctgactccc	agttgagttac	aagggtcctt	ttgggtttt	ccaaggatct	300
tgaggttaca	tgaatttgct	gtatgtatgc	tttggaaagca	ttgtatggag	gcctgaggt	360
tatggcct	gagagcagag	ttttaaaat	agacccgtct	ggaaaagcta	gctggagctt	420
ctgactactt	tagaaaggca	ctgtttgaag	cacaggccat	gaagtaagac	ttgcttct	480
gttaaattga	ggtttttgc	tttttaaggat	cwttagtgc	tagagatttc	ctacat	540
tgtggtt						547

<210> 15

<211> 318

<212> DNA

<213> Rat

<400> 15

ctgacatgaa gccccctaag acccaaagat tggttcctgc tgtgacatgc ctaccatgtg 60

gccacttctt	catgtcctct	ggcttgcct	ggctctgtggc	tctgttcaca	ccaccctgtc	120
aaagtcatag	gccaaaaaag	ctgcctcaaa	gacgctgctg	aaaaagactc	agtttcggaa	180
taaacatgtc	caagaccggg	gtctgggtt	gacggacatc	aaagctgagg	atgtggttct	240
tgaacatcg	agctactgct	cagcaagggc	tcgggagaga	aacttgctg	gagaggtcct	300
aggcatatgt	cactccat					318

<210> 16
<211> 856
<212> DNA
<213> Rat

<400> 16

gaattccggca	cgagcggcac	gagcggcccc	gaagggggct	gcacgggcga	cttggcggcg	60
atggctcgag	ctccggcgcc	gacgacgggt	gcccggaggcg	gcccgtcc	ctccttctcc	120
tcctggctt	ggggccggcg	gtgatccgag	ctggcggccg	cgccccccck	atgagactgt	180
tggcgggctg	gctgtgcctg	agcctggcgt	ccgtgtggct	ggcgcggarg	atgtggacgc	240
tgcggagccc	gctctccgc	tctctgtacg	tgaacatgac	tagcggccct	ggcgggcccag	300
cggcggccac	cggcggcggg	aaggacacgc	accagtggta	tgtgtgcaac	agagagaaaat	360
tatgcaatc	acttcagtct	gtctttgttc	agagttatct	tgaccaagga	acacagatct	420
tcttaacaa	cagcattgag	aatctggct	ggctgtttat	ccaactctat	cattcttttg	480
tatcatctgt	tttaccctg	tttatgtcta	gaacatctat	taacgggttg	ctaggaagag	540
gctccatgtt	tgtgttctca	ccagatcagt	ttcagagact	gcttaaaatt	aatccggact	600
ggaaaaaccca	tagacttctt	gathtaggtg	ctggagatgg	agaagtcacg	aaaatcatga	660
gccctcattt	tgaagaaatt	tatgccactg	aacttctga	aacaatgatc	tggcagctcc	720
agaagaagaa	atacagagtg	cttggtataa	atgaatggca	gaatacaggg	ttccagttatg	780
atgtcatcg	ctgcttaaat	ctgctggatc	gctgtgatca	gcctctgaca	ttgttaaaag	840
atatcagaat	gtcttg					856

<210> 17
<211> 349
<212> DNA
<213> Rat

<400> 17

ccaaagaatt	cggcacgagg	cggtctggga	tggggcccc	catggacccg	acccatggtg	60
gcccggcagc	ccggcgcgtg	cggtgggctc	tggcgtggc	ctcgctggcc	gggctattgc	120
tgagcggct	ggcgggtgct	ctccccaccc	tggggcccg	ctggcggcgc	caaaaaccccg	180
agccggccgc	ctcccgccacc	cgctcgctgc	tgcggacgc	cgcttcgggc	cagctgcgc	240
tggagtagcgg	cttccaccccc	gatgcgggtgg	cctgggctaa	cctcaccaac	gccatccgcg	300
agactgggtg	ggcctatctg	gacctggca	caaatggcag	ctacaagt		349

<210> 18
<211> 1057
<212> DNA
<213> Rat

<220>

<400> 18

cctgcaggaa	gggtggccccc	cagtatcggt	tcccccaaaa	cccttgcgtg	aatgacaggt	60
gtacctcccg	cagagagttac	atggagatca	actgtcccag	ggctgttaggg	aaaagcctgt	120
aatgggacac	tccctccgc	tgcagggtca	cactagtgg	tccaaagaat	tgcgcacgag	180
gcggaaagcag	ccgcaggat	ggcggctgcc	atggcgctgg	gtttatcggt	gctgttgctg	240
gtgctagtgg	ggcaggggctg	ctgtggccgc	gtggagggcc	cacgcgacag	cctgcgagag	300
gaactcgta	tcactccgt	gccttccggc	gacgtggccg	ccacattcca	gttccgcacg	360
cgttggatt	ccgatctgca	gcgggaagga	gtgtcccatt	acaggtcttt	ccctaaagcc	420
ctgggacagt	tgtatctccaa	gtactctctg	cgggagctac	acctgtcatt	cacgcaaggc	480
ttttggagga	cccgatactg	ggggccaccc	ttcctgcagg	ctccatcagg	tgcagagctc	540
tgggtctgg	tccaagacac	tgtcacagat	gtggataagt	cttggaaagga	gctcgtat	600
gtcctctcag	ggatcttctg	cgcgtccctc	aacttcatcg	actccaccaa	taccgtcact	660

ccccacagcct	cottcaaacc	tctggggctg	gccaatgaca	ctgaccacta	cttcctgcgc	720
tatgtgtgc	tgcccccggga	ggtcgtctgc	accgagaatc	tcacgccgtg	gaagaagctc	780
ctgcccgtta	gttccaaaggc	agggctgtcc	gtgctactga	aagcagatcg	attgttccac	840
accaggattacc	actcccaggc	agtgcatac	cggccaatct	gcagaaaatgc	tcactgcacc	900
agtatctctt	ggggactgag	gcagaccctt	tcagttgtct	ttgatgcctt	catcacccgga	960
caggggaaga	aagaggcctg	tccattggca	tctcagagcc	tagtttatgt	ggacatcaca	1020
ggctacagcc	aggacaacga	aacactggag	gtgagca			1057

<210> 19

<211> 750

<212> DNA

<213> Rat

<400> 19

ggcacgagcg	geatctcaag	ctgctgcaag	caggactgag	cactaccaga	gcagcaacct	60
cggtatggccc	tggacgtggc	acgcgcgggg	cacagaggca	agaagacttg	atgaagcctc	120
tcttccaaac	ccatatccag	aaagaacgtat	ttagatgaca	gttttttagaa	aggtgaccac	180
catgatctcc	tggatgtctt	tggcctgtgc	ccttccgtgt	gctgctgacc	caatgcttgg	240
tgccttgc	cgcaggact	tccagaaggg	tggcctcaa	ctgggtgtca	gtctgcctgg	300
tcccaaggc	ccacctggcc	ctccaggagc	accaggatcc	tcaggaatgg	tggaaagaat	360
gggttttctt	gttaaggatg	gccaagacgg	ccaggacgga	gaccgagggg	acagtggaga	420
agaaggtcca	cctggcagga	caggcaaccc	aggaaaaacaa	ggaccacaaagg	gcaaagctgg	480
ggccatttggg	agagcgggtc	ctcgaggacc	caagggggtc	agtggtaccc	ccggaaaca	540
tggtataccg	ggcaagaagg	gacctaaggg	caagaaaggg	gaacctggc	tcccaggccc	600
ctgttagctgc	gcaagttagcc	gagccaaatgc	ggcctttcg	gtggcggtaa	ccaagagttt	660
ccacacgttgc	cgactgcccc	tcaagtttga	caagattctg	atgaatgagg	gaggccacta	720
caatgcatacc	agtggcaagt	tcgtctgcag				750

<210> 20

<211> 849

<212> DNA

<213> Rat

<400> 20

gataatycgg	sacgagggggc	cgccgagtcc	cgccgggtcg	gtgttagctcg	ctgcccacgc	60
tgcgacgctc	gtgggtgccc	tgttcgctt	ttccctgtcta	cttcagtgc	ccgctgcagc	120
tccggccctcg	ggtctgacgc	gccacagcat	ggcttccgt	ttggaggagt	tgcagaaaga	180
cctagaagag	gtcaaagtgc	tgcggaaaaa	gtccactagg	aaaagactac	gtgatactct	240
tacaaatgaa	aaatccaaga	ttgagacgga	actaaggaac	aagatgcagc	agaagtcaca	300
gaagaaaacca	gaatttgata	atgaaaagcc	agctgctgt	tttgcttc	ttacaacagg	360
gtacactgtg	aaaatcagta	attatggatg	ggatcagtca	gataagttt	tgaaaatcta	420
cattacttta	actggagttc	atcaggttcc	tgctgagaat	gtgcaagttac	acttcacaga	480
gaggtcattt	gatcttttg	taaaaaaccc	caatggcaag	aattactcca	tgattgtgaa	540
caatcttttgc	aaaccttatct	ctgtggaaag	cattcaaaa	aaagtcaaga	ctgatacagt	600
tattatccta	tgttagaaaga	aagcagaaaa	cacacgtgg	gactactaa	ctcaggtgga	660
aaaagaatgc	aaagagaaaa	aaaagccttc	ctacgacact	gaggcagatc	ctagtgggg	720
attaatgaat	gttctaaaga	aaatttatga	agatggagat	gatgacatga	agcgaaccat	780
taataaaagcg	ttgggtgaaat	cccgagagaa	gcaagccagg	gaagacacag	aattcctgca	840
ccccgggggg						849

<210> 21

<211> 312

<212> DNA

<213> Human

<400> 21

ttcgagcggc	cgccccgggc	ggtaccagca	catgctgtgg	tgatgcttgt	ttgtgttccc	60
acctcactca	cactcagccc	tggcatctcc	tctcctggct	ctgtttgagt	ggcagcgtca	120
atggcccttc	tgctctggag	ctcgccctcg	tggctgtca	agtagtcttc	ctcactaaca	180
gtagaggact	cacagtcatg	gggcttgcgc	tctgccttgc	ctctgcgggc	atctctgggt	240
ccaggtccgc	cttcctggga	gtacctcgcc	cgcgaccaac	gctaatcaag	cttacatcgata	300

ccgtcgacct cg 312

<210> 22
<211> 1023
<212> DNA
<213> mouse

<400> 22

gcgccggcccg	ggggactcac	atccccgg	ccccctccg	ccccacgcgg	ctgggccatg	60
gacgcagat	ggtgggcagt	agtggta	cttcactcc	cttccttgg	agcagggtgga	120
gagtca	ccccctcc	gcagtc	ccttgg	acacagctgt	ggcttccg	180
aatgttagcg	gctatgccag	ctttatggta	cctggctacc	tcctggtgca	gtacttaaga	240
cggaagaact	acctggagac	aggcagggtt	ctctgttcc	ccctggtcaa	agcctgtgt	300
tttggcaatg	agcccaaggc	tcctgatgag	gttcttgg	ctccgcggac	agagacagcg	360
gaatccaccc	cgtttggca	ggtcctgaag	ctggcttct	gtgcctcg	tctccagggt	420
tcctatctga	cttggggcat	actgcaggaa	agagtgtatga	ctggcagcta	cggggccaca	480
gccacatcac	caggagagca	tttcacagac	tcccagtttc	tgggtgtat	gaaccgtgt	540
ctggcgctgg	tttgtggcagg	cctctactgt	gtcctgcgc	agcagcccg	tcatgtgt	600
cccatgttacc	ggtactcctt	tgccagtc	tcaaatgtgc	ttagcagtc	gtgcaggat	660
gaagcaacta	agttcgtag	cttcctacc	cagggtgt	cgaaggcc	caagggtatc	720
cctgtcatga	tgatggaaa	gctgggttcc	cgccgcagct	atgaacactg	ggaataac	780
actgcggcc	teatccat	tggagtgagc	atgttttctt	tatccagtg	accagagcc	840
agaagcttcc	cagccaccac	actctctggc	ttggtcctac	tggcaggct	tattgtttc	900
gacagcttca	cctcaaaattt	gcaggatgcc	ctgtttgcct	ataagatgtc	atcggtgcag	960
atgatgtttg	gggtcaattt	atttcctgt	ctttcacag	taggtca	actggaaacag	1020
ggg						1023

<210> 23
<211> 997
<212> DNA
<213> mouse

<400> 23

ggcacgagga	cttctgttag	tacttgc	tggcggtggc	tgagcaaccg	gtctcaccag	60
catgtctgc	ctgtgcctgt	atgtgccc	cgccggggcg	gctcagactg	agttccagta	120
ctttgagtcc	aaggggctt	ctgccc	gagct	gaaatccatc	ttcaaaactca	180
ccccctctaa	gagttctcca	cataccgcca	atggaa	agcag	aaaattgtgc	240
caaggacctt	gatgggcaac	tggacttga	agagtttga	cattac	ccttccaaagatcatga	300
aaaaaaactg	aggetgggt	tcaagagtct	ggacaaaaag	aatgatggc	gaatcgatgc	360
tcaggagatc	atgcagtc	tgcgggac	gggtgtcaag	atctcg	gaacggcg	420
gaagattctt	aagagcatgg	ataagaatgg	cacatgacc	atcgactg	acgagtgg	480
ggactaccac	ctctgtcacc	ctgtggagaa	catcccggag	atcatc	ctgtact	540
ctcgacgatc	ttcgatgtcg	gtgagaatct	gacagtccc	gatgagttc	cagtggagga	600
gaggcagacg	gggatgtgg	ggaggcac	ggtggcag	ggtggggcag	gggcagttc	660
cagaacactgc	actgcccccc	tggacact	gaagggtct	atgcaggtcc	atgcctcc	720
cagcaacaac	atgtgcate	tagtggatt	cacacagat	atcgaga	ggggagccaa	780
gtcactctgg	cggggcaacg	gcatcaat	cctcaaattt	gcccctg	cgcccatcaa	840
attcatggca	tatgagcaga	tgaaacggct	tgtcggt	gatcaggaga	cgctgaggat	900
ccacgaaagg	cttgcggcag	gtccttgg	cgagccatt	gcccagagta	gcatctaccc	960
aatggaggtt	ctgaagaccc	aatggcc	ctggaaa			997

<210> 24
<211> 529
<212> DNA
<213> Rat

<400> 24

aaagcttcca	tcctcaacat	gccactagt	acgacactct	tctacgcctg	cttctatcac	60
tacacggagt	cccgaggggac	cttcagc	ccagtcaacc	tgaagaaaac	attcaagatc	120
ccagacagac	agtatgtgct	gacagc	ccttgc	gctgcgcgg	ccaagctt	180
gatgtcgacg	cottgttca	cacaaagaac	tgg	ttgggtt	acaccaagaa	240

attggctcc	atcgagttgt	ggaaaattttg	cacaagaaca	gtgccccctgt	ccagatattg	300
caggaatatg	tcaatctggt	ggaagatgtg	gacacaaaagt	tgaactttagc	cactaaggttc	360
aagtgcctatg	atgttgcata	tgatacttgc	cgagacctga	aggatcgta	acagttgttt	420
gcatacagga	gcaaagtaga	taaaggatct	gctgaggaag	agaaaaatcga	tgtcatctc	480
agcagctcgc	aaattcgtatg	gaagaactaa	ggttcttttg	ctaccccaga		529

<210> 25
<211> 1230
<212> DNA
<213> Rat

<400> 25

agaatttcgg	cacgaggcca	tggctggttg	ggcgaaaaaa	gagctctcg	tcctgaaccc	60
gctcggtcg	ctgtggctgt	tgctggccgc	cgcccttctg	ctcgactgc	tgctgcagct	120
ggcgcccccc	aggctgtac	cgagctgcgc	gtcttccag	gacctcatcc	gctacggaa	180
gaccaagcag	tccggctcgc	ggcgcccccc	cgtctgcagg	gccttcgacg	cccccaagag	240
gtactttct	cacttctacg	tcgtctcagt	gttatggaaat	ggctccctgc	tctggttct	300
gtctcagtc	ctgttcctgg	gagcggcgtt	tccaagctgg	cttgggctt	tgctcagaac	360
tcttggggtc	acgcagttcc	aagccctggg	gatggagtcc	aaggcttctc	ggataacaagc	420
aggcgagctg	gctctgtcta	cottcttagt	gttgggttcc	ctctgggtcc	atagtcttcg	480
gagactcttc	gagtgtttct	acgtcagcgt	cttctctaac	acggccattc	acgtcggtca	540
gtactgttcc	gggctggct	actatgtctt	tgttggctgt	accgtactga	gccaagtggcc	600
catgaatgac	aagaacgtgt	acgctctggg	gaagaatcta	ctgctacaag	ctcggtggtt	660
ccacatcttgc	ggaatgtatga	tgttcttctgt	gtcctctggcc	catcagtata	agtggccacgt	720
cattctcagc	aatctcagga	gaaataagaa	aggtgtggtc	atccactgtcc	agcacagaaat	780
cccccttggaa	gactgggtcg	agtatgtgtc	ttctgttaac	taccttagcag	agctgatgat	840
ctacatctcc	atggctgtca	ccttcgggtt	ccacaacgtt	acctgggtggc	tgttgggtgac	900
ctatgtcttc	ttcagccaag	ctttgtctgc	gttcttcaac	cacaggttct	acaaaagcac	960
atttgtgtcc	tacccaaagc	ataggaaagc	tttcccccgt	tttctgtttt	gaacaggctt	1020
tatggtaag	agcgcagccc	agggtacagg	ttcccttctt	cgagacgtt	agacaggctg	1080
aagtacactt	tctgcagctg	ggcgcccccc	ggctgttacc	gagctgcgcg	ctcttccagg	1140
acctcatccg	ctacggaaag	accaaggagt	ccggctcg	gcggcccccc	gtctgcagcc	1200
cgqqqqatcc	actagttcta	gagcggccgg				1230

<210> 26
<211> 393
<212> DNA
<213> Rat

<400> 26

```

ggcagcaaga agcaaccgcg aagcttaggag tctgtcagcg agggcagggg ctgcctgggtt 60
ggggtaggag tgggagcagg gccagcagga gggctcgagg aagccatcca aagcgagcag 120
ctgggagagc tggggagccg ggaagggcct acagactaca agagaggatc ctggcgctcg 180
ggccttcctgg gtcatcacca tgaggccact tcttgccttg ctgcttctgg gtctggcatc 240
aggctctctt cctctggacg acaacaagat cccccagcctg tgccccgggc agccccggcct 300
cccaggcaca ccaggccacc acggcagcga aggcctgcct ggccgtgacg gcctgatggc 360
cgcgacgggtg caccggaggt ccggggagaga aac 393

```

<210> 27
<211> 778
<212> DNA
<213> Rat

<400> 27

ctcgaggatcg	acactagtgg	atccaaagat	tcggcacgag	ataaggcaca	tttgcttcatt	60
aaaataaaaaa	aaaaggaaat	ttacttagcc	gcatgtcagt	cacccaaattt	ttgagtgtac	120
aaatgaaatg	aaaaacattt	attacacaaa	tttaattaca	attctagggaa	ataaaacatgc	180
aaatcagatg	gagctcaatc	tgcaggcgt	gatcctctcc	ccctggtttgc	cagtctgtgc	240
acctccctgga	ttcgccccg	accaggcagt	cagaggcctg	gctcttgca	gcaggaggat	300
cactgttcta	aagaacagcg	tcacatttag	cgcatctggc	gtagtagcag	tttttaaacac	360
tttgcgcagg	tgcctccctt	ccccccacccg	cgctttgtta	ggctcacctc	tctaaatctc	420

tgccttcctc	gcacagtaag	tgacctctcc	atgacaaaagg	gccccccagac	agcagttata	480
aatcaatgtg	tttgggttt	gttggttgt	ttgtttgtt	ttaaagaaaaa	acccggccat	540
gcttgggtgc	acttgcctt	aatagttagcg	cttggtagac	agaggcaagc	ggttctctgt	600
aagttaagg	ccagcctgg	ctacacagtg	agaccgggtc	tcaaaaaacaa	aacaacaaaa	660
aacaactcct	attgaatcca	ctacaggaag	ggggggcgcg	gatcaactgtc	tgcaaactaa	720
agtgacttga	gctcctgtca	cagccttcc	agcaaggca	agcttcttta	ttagttat	778

<210> 28
 <211> 1123
 <212> DNA
 <213> Rat

<400> 28						
ggggccccc	tcgagtcgac	gktatcgata	agcttgat	cgaattcctg	cagggtcgaca	60
ctagtggatc	caaagaattc	ggcacgagcc	tgaggcgact	acgggtcgccc	tgccgggtgc	120
cgggtgccta	cagccccat	cagctcccc	ggggagatc	tgccgatttgc	tcacgagcca	180
tgctcaggag	gcagctcg	ttgtggcacc	tgctggctt	gttttccctc	ccattttgcc	240
tgtgtcaaga	tgaatacatg	gagtctccac	aagctggagg	actgccccca	gactgcagca	300
agtgttgcca	tggagattat	ggattccgt	gttaccaagg	gccccctgg	cccccagg	360
ctcctggcat	tccaggaaac	catggaaaca	atggaaataa	cgagccact	ggccacgaag	420
ggggccaaagg	tgagaaagga	gacaaaggcg	acctggggcc	tccgggggaa	cgggggcagc	480
atggcccaa	aggatagaag	ggatacccg	gggtgccacc	agagctgcag	attgcgttca	540
tggcttcct	agcgactc	ttcagcaatc	agaacagtgg	cattatctt	agcagtgtt	600
agaccaacat	tggaaacttc	ttcgatgtca	tgactggtag	atttggggcc	cccgatcatc	660
gcgtgtat	tttcaccc	agcatgtga	agcatgagga	cgtggaggaa	gtgtatgt	720
accttatgca	caatggtaac	acggtgttca	gcatgtacag	ctatgaaaca	aaggaaaat	780
cagatacatc	cagcaaccat	gcagtgc	agttggccaa	aggagatgaa	gtctggctaa	840
gaatggca	cgtgccc	catggggacc	accagcgctt	ctctaccc	gcaggctt	900
tgcttttta	aactaagtga	tgaggaagtc	aggatagctc	catgctaagg	gcgatttgat	960
ggtgagctag	ggttggtag	atctgaggg	tgttggagtt	ggcttctt	atggagtatt	1020
taactgttac	attggtcaca	ctgctactc	ttctaatggc	ataccat	tgttgat	1080
tttagggct	aggaagaata	gaccacaagg	taatattccc	aga		1123

<210> 29
 <211> 849
 <212> DNA
 <213> Rat

<400> 29						
aattcggcac	gaggtgc	ccggccgg	gggatggagc	tgcctgc	gaacttgaag	60
gttattctcc	tgttca	gtgttgaca	acctgggg	gttgg	ctcagg	120
tatgcttgg	gcaactt	tatcctgg	ctgggt	tgggtgt	cccagg	180
ctctgtt	gtcatt	tg	ttctgg	ttgttgg	ccacat	240
tatctacatt	agcat	actca	agcg	tttgg	tcctgg	300
cggcatgg	atctt	tgctgt	tgcc	tttgg	tcgtgc	360
tgcaccgg	agcg	tgag	ccccc	tttgg	gttacc	420
gaacatag	tcc	actc	tttgg	tttgg	atcttct	480
ctggaga	agg	tttgg	gggt	tttgg	tcgagacc	540
ggccca	cag	act	tttgg	tttgg	ctggcctt	600
ctggcc	at	ctt	tttgg	tttgg	tttgg	660
cctaatt	cat	tttgg	tttgg	tttgg	tttgg	720
gttgg	tttgg	tttgg	tttgg	tttgg	tttgg	780
gttca	tttgg	tttgg	tttgg	tttgg	tttgg	840
gaccc	tttgg	tttgg	tttgg	tttgg	tttgg	849

<210> 30
 <211> 1015
 <212> DNA
 <213> Rat

<220>

<400> 30

gaattcggca	cgagggagca	agaagcaacc	cgaagctagg	agtctgtcag	cgagggcagg	60
ggctgcctgg	ttggggtagg	agtgggagca	ggccacag	gagggtctga	ggaagccatt	120
caaagcgagc	agctgggaga	gctggggagc	cggaaaggc	ctacagacta	caagagagga	180
tcctggcgta	tgggcctcct	gggtcatcac	catgaggcca	cttcttgc	tgctgttct	240
gggtctggca	tcaggetctc	ctccctctgg	cgacaacaag	atccccagcc	tgtgtcccgg	300
gcagccccgc	ctcccaaggca	caccaggcca	ccacggcagc	caaggcctgc	ctggccgtga	360
cggccgtat	ggccgcgacg	gtgcacccgg	agctccgg	gagaaaggcg	agggccggag	420
accgggacta	cctggggccac	gtggggagcc	cggccgcgt	ggagaggcag	gacctgtggg	480
ggctatcgaa	cctgcgggggg	agtgtctgg	gcccccacga	tcagccttca	gtgccaagcg	540
atcagagagc	cgggtacctc	cgccagccga	cacaccccta	cccttcgacc	gtgtgtct	600
caatgagcag	ggacattacg	atgccactac	cgccaagttc	acctgccaag	tgcctgggt	660
ctactactt	gtctgtccatg	ccactgtcta	ccggccagc	ctacagttt	atcttgtcaa	720
aaatggccaa	tccatagctt	ctttcttcca	gtttttggg	gggtggccaa	agccagccctc	780
gctctcaggg	ggtgcgatgg	tgaggctaga	acctgaggac	caggtatggg	ttcaggtggg	840
tgtgggtat	tacattggca	tctatgccag	cataaaaaca	gacagtacct	tctctggatt	900
tctcgctat	tctgactggc	acagcccc	agtcttcgt	taaaaatacag	tgaacccgga	960
gctggactt	gctcctagtg	gagggtgtga	cattggcca	gcgcgcatac	cagga	1015

<210> 31

<211> 452

<212> DNA

<213> Human

<400> 31

ttcgagcggc	cgcccgccca	ggttgaaact	ttagaaagaa	gagccggag	gatgtattgg	60
ttgttaggaa	aatgttaggct	accagtagaa	aatgacattc	tctattaata	agatctgagg	120
tgcgacacac	ataattgtcc	caattttaa	gattgatggg	gagcatgaag	catttttta	180
atgtgttggc	aggccccatt	aaatgcataa	actgcatagg	actcatgtgg	tctgaatgt	240
ttttagggct	ttcttggaa	tgtcttgaca	gagaacctca	gctggacaaa	gcagccttga	300
tctgagttag	ctaactgaca	caatgaaact	gtcaggcatg	tttctgtcc	tctcttggc	360
tctttctgc	tttttaacag	gtgtctcag	tcagggagga	caggttgact	gtggtagtc	420
caggacacca	aggcctactg	cactcgggaa	cc			452

<210> 32

<211> 434

<212> DNA

<213> mouse

<400> 32

accaccaagc	agatggaatg	ctggcacacc	catgcacctg	catggcgtca	caggtggaa	60
attgttaaaa	aattgacatc	agaaatattt	acagaaatag	atacctgttt	gaataaaagt	120
agagatgaaa	tttttctaa	acttcaaccg	aagcttagat	gcacattagg	tgacatggaa	180
agtccctgtgt	ttgcacttcc	tgtactgtt	aagcttgaac	cccatgttga	aagctcttt	240
acatattctt	tttcttggaa	ttttgaatgt	tccattgtg	gacaccagta	ccaaaacagg	300
tgtgtgaaga	gtctggtcac	ctttaccaat	attgttctgt	agtggcatcc	actcaatgt	360
gcccattttg	gtccatgtaa	cagctgcaac	agtaaatcac	aaataagaaa	aatgggttt	420
gaaagagcgt	cgcc					434

<210> 33

<211> 903

<212> DNA

<213> mouse

<400> 33

ctgcaacaag	gctgttggtt	cctctccaaat	gggctccagt	gaagggctcc	tgggcctggg	60
ccctggccccc	aatggtcaca	gtcacccgt	gaagaccca	ctgggtggcc	agaaacgcag	120
tttttcccac	ctgctggccct	cacctgagcc	cagcccagag	ggcagctacg	tggccagca	180
ctcccaaggc	ctcgccggcc	actacgcgg	ctcctacctg	aagcgaaaga	ggatttcta	240
aggggtcgac	accagagatg	ctccaaggc	ctgcaccaag	ttgctttgg	ttttttctg	300
gtatttgcgt	tttctggat	tttattttta	ttatgtcctt	tctttggta		360

atagagaaaat	ctctgaaaaa	gactttgtg	accaaccagc	tggagctaa	ggaatgtggg	420
gtatctgggg	ccacaccatt	acctgtggc	ttgtctctgg	agccaaaccc	tgcagcctta	480
agagagaggg	gcctgacctg	ctctcttcc	ctcccttagct	ccaggcctcc	tctctgcct	540
cgtcactcct	gtgttctggc	ctcttgagtg	ccttggagg	tgtctctgac	ctgtgaggat	600
cagagacagt	ccccgtttt	aaacttcac	aattgacttt	tatccctt	tctaattttt	660
attatttttt	aaaacaacca	ggatgattat	cacatctact	cccccatocg	tccagaaaaag	720
ccccaaattt	attccattcag	ggtctggcct	gccaggctc	tatccacat	gtgcaggttc	780
caacagctt	accctattct	cttcccagtc	atctgctga	ggtatagctg	tctcatgccc	840
ctgcctgcct	attctggcca	gtaccctaag	ccccaaagatc	tccagccct	gccccagtat	900
cct						903

<210> 34

<211> 1359

<212> DNA

<213> mouse

<220>

<221> unsure

<222> (644)...(644)

<400> 34

caaagaattc	ggcacgagac	cggcctca	atgtctgcca	ttttcaattt	tcagagtctg	60
ttgactgtaa	tcttgcgtct	tatatgtaca	tgtgtttata	tccgatccct	ggcacccagc	120
atccctggaca	gaaataaaaac	tggactattt	ggaatatttt	ggaagtgtgc	ccgaatttggg	180
gaacgcaga	gtcccttatgt	cgccatatgc	tgtatagtga	tggccttcag	catectttc	240
atacagtagc	tttggaaaact	accagcatgt	gcttgtctatc	agactgtaaa	caaggacttg	300
cctccagaaa	ataatggaa	aatggtaa	gccatttgc	tctgaacatg	aatggagata	360
aacttcaaga	tgtgttctc	tattttatg	ctattggacc	aatggatgt	atgaataatt	420
aagatgtaac	aggtaatc	acaggaatgt	gattgtatcc	atcaacctca	gttctctcac	480
tccagttatta	cattctgaa	atgtcattct	gttgtgtcag	gactgtttt	cataaggttc	540
ttcgggcacg	aagttagaaac	ccagtggcaa	atttcaaggc	tcctttgact	agggcttcaa	600
aataatgtct	tcacagaatg	gtacctctag	cgactgtct	atnttattt	agaaaaaaaac	660
ttgttctatt	tttgttgtt	ttactgttct	tatggattgc	attcatattt	aaaccctttg	720
gattgtaac	cagagtacct	ctattctgg	caaattccgc	agtttattac	aggtgtttaa	780
agtattttaa	acaaaactct	gaatttctt	agtttagccta	agagttggt	tctagtcaca	840
aagatacagc	tgccacactg	tgacgaagag	caccttagaa	agaaaagcag	caagtggcg	900
gtgagcaagt	aagcaccgtg	cagtctcgt	gcaagtaagc	accgtgcagt	cttcgttctc	960
tgtagcttg	tcttccaaat	agaacgtcca	tcgttagttac	ccaaagggtgg	tatgggtgg	1020
gttcttaatg	cagtgtttta	agtctagtgt	atgttctgtc	agcttgaact	ggaatctctc	1080
ttgttaactt	gtagggttata	aacatatctc	atatctgtt	tagtctgggt	actatgtct	1140
aagtacattt	cagcttgac	acagaatgtg	aatagacgaa	tatcaaagga	tacttacaag	1200
tttgtatcca	acatttcttc	aggttcagct	gaaaatcagt	tactgtttca	aaacaaaagag	1260
gaattaaatc	ctagctgaaa	actatacata	gcatttatta	attaattact	gggtttaact	1320
gctctttta	aaagttgaa	aaaaaaaaaa	aaaaactcg			1359

<210> 35

<211> 797

<212> DNA

<213> mouse

<400> 35

aattccggcac	gaggctagtc	gaatgtccgg	gctgcggacg	ctgctggggc	tggggctgt	60
ggttcgggc	tgcgcctgc	cacgggtcat	cagccagcag	agtgtgtgtc	gtcaaggcc	120
catctggtgg	ggaacacacgc	gccggggctc	ggagaccatg	gcggggcgctg	cggtgaagta	180
cttaagttagc	gaggaggctc	aggccgtgga	ccaagagctt	ttaacgagt	atcagttcag	240
cgtggatcaa	ctcatggagc	tggccgggtt	gagctgtgcc	acggctattt	ccaaggctta	300
tccccccacg	tctatgtcca	agagtcccc	gactgtcttgc	gtcatctgt	gccccggaaa	360
taacggaggg	gatgggctgg	tctgtgcgcg	acacctcaaa	ctttttgggtt	accagccaac	420
tatctattac	ccaaaaagac	ctaacaagcc	cctcttact	gggcttagtga	ctcagtgta	480
gaaaatggac	attccattcc	ttgggtgaaat	gccccagag	gatgggatgt	agagaaggaa	540
aaccctagcg	gaatccaacc	agacttactc	atctca	cgccacccaa	gaagtctgca	600

actcacttta ctggccgata tcattacctt	gggggtcgct ttgtaccacc	tgctctagag	660
aagaagtacc agctgaacct	gccatcttac cctgacacag	agtgtgtcta ccgtctacag	720-
taaggaggt gggtaggcag	gattctaat aaagacttgg	tactttctgt cttgaaaaaa	780
aaaaaaaaaa aaactcg			797

<210> 36
<211> 896
<212> DNA
<213> mouse

<400> 36			
ttaagggttt cagactttat ttcatggtat	ttgacattga cacatactga	gttagtaaca	60
agataccatg cagetcctc tagcctcgga	tcaccgaagc	aggaagaagg	120
cccattcccg attgtcttag	tttgtctccc	aatgtgctgg	180
agaaggcagat gnatgcttca	gtttcagtc	ttttggctc	240
tgtacctgtc ctggctgga	ccctgggcag	taactgtcac	300
ttacaatgga ccaactgagg	gatgccctca	tattagacca	360
aaaccaggaa tgaccgcact	tccacatcg	aaatcaaaca	420
tggtaggag cctggctagg	tatctttag	agatggatgc	480
aagcaatgga ggtcagccac	accctatcg	gatgcactcc	540
gaagtggtt aggccagctg	aaggccagtc	agggcaactt	600
ttccagcctc cggggacagg	caaacacatt	ttgggaagta	660
tcagttttt gatatcacag	tattgtcaca	gggagcactg	720
gtgaggctgg cctcagcac	acacaggaga	gcagcttaag	780
atgttacttg gttaatgaa	ggccccctca	accccaacag	840
agtttcacc caattacaca	ttaataaacac	acaacagtg	896

<210> 37
<211> 501
<212> DNA
<213> mouse

<400> 37			
ctgcagggtcg acactagtgg atccaaagaa	ttcggcacga	gaatcatggc	60
tggaaaaaggc ttgttaggtgt	cgggcttttt	gccctagccc	120
cagcatcggtt ctatatgct	actaacagaa	aaggaaagatg	180
gttcttcaga cacttctggc	ctttgcagtt	acctgttatg	240
gagttcaaaag acatggatgc	cacttcagaa	ttaaaaata	300
aatcacccat cttttatgt	gtttaaccat	cgtggcgcag	360
gcaacaaatt ctcaaaccct	agatgcattt	tcctctaata	420
tttgactcac tgcgcgcgtt	agcttttac	catcggttcaa	480
agtattggag ttgggggtgt	a	gttacgaaag	501

<210> 38
<211> 766
<212> DNA
<213> mouse

<400> 38			
gcagcaccca ggcacaaagcg	caccaggcac	cgcacacagac	60
ggcgtactgg agegagccga	gcagagcaga	gagaggcgtg	120
cggggggcat ccccccggccg	ccgcacgcac	aggccggcgc	180
ccacccggcc cctccggcca	gcatgaggct	cctggcggcc	240
ggcgtgtgc gcctcgccgc	tggacgggtc	caagtgttaag	300
gatccgctac agcgacgtga	agaagcttga	aatgaagccaa	360
gaagatggtt atcgaccca	ccaaagagca	tgttcaaggt	420
ctgcacccta agctgcagag	caccaaacgc	ttcatcaagt	480
aagcgccagg tctacgaaga	atagggttga	cgatcatgga	540
tgagagactt cagcagagga	cttgcagat	taaaaataaa	600
ataagacaaa ttatatattt	ctatgaagct	cttcttacca	660
tagctgtgtg tgaaaggctt	ccagatgtga	gatccagctc	720
		gcctgcgcac	
		cagacttcat	

tacaagtggc ttttgctgg gcgggtggcg gggggcgaaaaa ggacctt

766

<210> 39
<211> 480
<212> DNA
<213> mouse

<400> 39

```

ggcacgagga agccctttcc catggaaagca cactctagga gagagaaggc ctctgggctc 60
cgccctggcc ggcattatga atgcagtggg gtcagtggt ggtggatgtg tgcgttgggt 120
tggctttctt tttagtttt ttacttttt agtttagttt gtcttttcc ttcccccaata 180
aatcattctc acatgttcc atgtttgttt ctgagaggtg ggggctcaaa tgcgtatagaaa 240
gtaggcccca gtccataagg aggtgtgaac acacccctt actgttatac acccatttga 300
caggaacgcc caggagggg gggggagggg aagaggtgag ttctgcacag tcggacattt 360
ctgttgcattt tgcatgttta atatagacgt tcctgtcgat ccttgggaga tcatggcett 420
cagatatgca cacgacccctt gaattgtgcc tactaattat agcaggggac ttgggtaccc 480

```

<210> 40

<211> 962
<212> DNA
<213> mouse

<400> 40

```

ggcacgagat tagccgctcc tcagcccagc aaatcccca ctcatcatgc ttccctctgc 60
cattcatctc tcttcattc ccctgtctg catcctgatg agaaaactgtt tggttttaa 120
aatgtatgcc acagaatcc ttattcaca tgtggtaaa cctgtcccg cacacccag 180
cagcaacagc accctgaatc aagccaggaa tggaggcagg catttcagta gcactggact 240
ggatcgaaac agtcgagttc aagtgggctg cagggaaactg cggtccacca aatacatttc 300
ggacggccag tgccaccagca tcagccctct gaaggagctg gtgtgcgcgg gcgagtgctt 360
gccccctgccc gtgcctccca actggatcgg aggaggctac ggaacaaagt actggagccg 420
gaggagctct caggagtggc ggtgtgtcaa cgacaagacg cgccacccaga ggatccagct 480
gcagtgtcag gacggcagca cgccgcaccta caaaaatcacc gtggtcacgg cggtcaagtg 540
caagaggatc acccgtcagc acaacggatc cagccacacaa ttgtaaaagcg tgtcgcacgc 600
caagcccccc cagcaccacaa gagagcggaa gagaggccgc aaatccagca agcacatct 660
gagcttagacc tggactgact aggaaggatc tgcatacccg atttgattgc ttggaaagact 720
ctctctcgag cctggccattg ctctttccct acttggaaagt atatgttttgc tgctttgatc 780
aagcccaagca ggctgtccctt ctgtggact agcttttctt ttgcaagtgt ctcaagatgt 840
aatgagtgtt ttgcagtgaa agccaggcat cctgttagttt ccatccccc ccccatccca 900
gtcattttttt taaaaggcacc tgatgtcgtca ttctgttaca gttaaaaaaaaaaaaaaa 960
aa

```

<210> 41
<211> 794
<212> DNA
<213> mous

<400> 41

ggcacgaggc	tagtcgaatg	tccgggctgc	ggacgctgt	ggggctgggg	ctgctggttg	60
cgggctcgcg	cctgccacgg	gtcatcagcc	agcagagtgt	gtgtcgtgca	aggcccatct	120
ggtggggAAC	acagcgccgg	ggctcgaga	ccatggcg	cgctcggtg	aagtacttaa	180
gtcaggagga	ggctcaggcc	gtggaccaag	agtttttaa	cgagtatcag	ttcagegtgg	240
atcaactcat	ggagctggcc	gggttgagct	gtgccacggc	tattgccaag	gctttatcccc	300
ccacgtctat	gtccaagagt	cccccgactg	tcttggtcat	ctgtggcccc	ggaaataaacg	360
gaggggatgg	gcttgtctgt	gcgcgacacc	tcaaacttt	tgttaccag	ccaactatct	420
attaccccaa	aagacctaac	aagcccctct	tcactgggt	atgtactcag	tgtcagaaaaa	480
tggacattcc	tttccttgggt	gaaatcccccc	cagaggatgg	gatgttagaga	agggaaacccc	540
tagcggaatc	caaccagact	tactcatctc	actgacggca	cccaagaagt	ctgcaactca	600
ctttactggc	cgatatcatt	accttgggggg	tcgtttgtt	ccacctgttc	tagagaagaa	660
gtaccagctg	aacctgccccat	cttacccttga	cacagagtgt	gtctaccgtc	tacagtaagg	720
gagggtgggtt	ggcaggattc	tcaataaaaga	cttggtactt	tctgtcttga	aaaaaaaaaaa	780
aaaaaaaaact	cgag					794

<210> 42
<211> 1152
<212> DNA
<213> mouse

<400> 42

ggcacgagct	tccaggccc	tgccacccaa	ataagtctgg	ccctagcctc	aactctctct	60
caggctggc	cacaggaago	tgctgactgg	ccacttgaca	ccctccccct	aaagctaatg	120
tctgtacta	tagggaggtt	agcacttttt	ctaattggaa	ttcttcetgt	tcctgtggcc	180
ccatccctca	cccgcttctt	gcctggacca	gatacatgca	gccttttct	ccagcacagc	240
ctttccctga	gcctggaggtt	agggcagagt	ttagagggtg	ggctaagtgt	atgtttcat	300
gtatgcattc	atgcctgtga	gtgtgtggct	tgctgtcggt	tcctctggga	tcccaagcca	360
cgcggtctt	ccctctgttag	atgggtcctg	ggttctatca	cctgcttatt	tatgtacgag	420
gttgggggtt	ggaccagggg	tgggttatt	gtctctttgt	aaggaagtat	gtgtcgaaaa	480
tgacacgagg	ctaagccccg	gaaacccccg	gagacagcac	tgcataagaa	actgggttcc	540
magactgcag	agggagctgc	acttttggtt	tgaccaaaaa	caaaaaacaa	aacaaaacaa	600
aaacaaaaca	aaaataactc	tgaaggcggg	gaggataccc	aagcctgatg	cctgagagga	660
gtccctagac	ttcagcaact	ccgctgegtg	gcctgagccc	agcgggaggg	atggggagag	720
aattttttgg	agtccgtgcc	tgtgggggc	agtccctgac	cttcagctga	agcagtgttt	780
tttgggtgcc	ctcacccctgc	actacttgac	cttggggctc	tgagttatctc	ctgtgcacag	840
gagaagctcc	tgcaccagaa	agcaccaar	sccmtggcac	cccatcttac	tccactctcc	900
ccagggactc	ccaggtggga	actgctgtgg	cagtggctc	agcccgacaa	gacactgcca	960
accctgtctc	ctggcattgg	gctccggctc	taccccccac	agcagggcga	ggccccggcct	1020
tetcagccta	gcaccacctg	tccccgagtc	ttctcagctt	gcccatcatt	ctcgccggccc	1080
acacaggtga	cagtcccaag	tagataacct	ccatggaca	agttgggtgt	tgccttaccc	1140
gcctgcccag	cc					1152

<210> 43
<211> 446
<212> DNA
<213> mouse

<400> 43

ggcacgagct	ttagtctgg	gtgctgaaa	taatagtatg	cactatccct	gcctggcatg	60
tttgggtttt	aatgtgact	ggtgttttgc	ctgatgtgt	atacttgtga	agatgtcaga	120
actcctggag	ctggagttag	agacaatgg	gagctgcctt	gtggatgtg	ggaattgaac	180
ccagggcttc	ttggagaaata	accagtgtc	ttaaccacta	agccatctca	acagccccaa	240
attatttttt	taataagtgg	cctcggtcat	gttgtcttaa	tcagagcgat	agaaaaagtaa	300
ctaataataga	ttatattatg	attcagggtgg	cttaatggta	tatgcatgaa	tttagtagtaa	360
aacaagaact	agggccagca	agtggcttaa	gggtgcctgc	taaccatctc	agccacctga	420
tttcagtctc	caggaaccac	acagtgc				446

<210> 44
<211> 391
<212> DNA
<213> mouse

<400> 44

ggcacgagcc	cacgtctatg	ttcacccctcg	ttgttctgggt	aatcaccatc	gtcatctgtc	60
tctggccacgt	ctgctttgg	cacttcaa	acccatgtc	ccacaactac	aagattgaac	120
acacagagac	agatgcccgt	agctccagaa	gtaatggacg	gccccccact	gctggcgctg	180
tccccaaatc	tgcgaaatac	atcgctcagg	tgctgcagga	ctcagaggggg	gacggggacg	240
gagatggggc	tcctggggac	tcaggcgatg	agccccatc	gtcccttcc	caagacgagg	300
agttgtat	gcctcctgat	ggcctcacgg	acacagactt	ccagtcatgc	gaggacagcc	360
tcatagagaa	ttagattcac	cagtaagggg	t			391

<210> 45
<211> 516
<212> DNA
<213> Rat

<400> 45
 cctccctgtct ctgctgctac ttgtgaggcc tgccctgtg gtggcctact ctgtgtccct 60
 cccggcctcc ttctggagg aagtggggg cagtgggaa gctgagggtt cttcagcctc 120
 ttccccaagc ctgctgccgc cccggactcc agcctcagt cccacaccag ggaggaccca 180
 gcccacagct ccggctggcc ctgtgccacc caccaacctc ctggatggga tcgtggactt 240
 cttcccgccag tatgtgatgc tcattgcgtt ggtggctcg ctgaccttc tcatcatgtt 300
 catagtctgc gccgcactca tcacgcgcca gaagcacaag gccacagcct actaccgc 360
 ctcttcccc gaaaagaagt atgtggacca gagagacccg gctggggggc cccatgc 420
 cagcgaggc cctgacaggg cacctgacag ccggcaggaa gagggcctgg acttctcca 480
 gcagctccag gctgacattc tggcttgcta ctcaga 516

<210> 46
 <211> 306
 <212> DNA
 <213> mouse

<400> 46
 gtcaccagca aaggtggaaa caaattcttt gaaggactct gacagccctg ggtctccaag 60
 gctgctggga ccagtcttag cctcttgcgtt caagtggtag gaatgtgaat ctttgcgacc 120
 agggggatca gaaatggggt ctcccatttc tgggtctgc ccagtccctc caggtgggt 180
 cttcgttagcc ctgggggtgga ttttccctt cttccacaga gatgctttt ctctgcatac 240
 catgtctgtt ggttcccaa aatctccgc aaacccacac caccctccac tgaggctc 300
 ccccaag 306

<210> 47
 <211> 439
 <212> DNA
 <213> mouse

<400> 47
 gaaaaactcgc aggacgctca ctggacagct tgggctttt tcagttgatt ttatggttt 60
 catcttctc ttctctttt tctgtttttt gttccctttt cccctttcc tggtgagaaa 120
 gcacatatta ctgagccatt gcaagcaatg ggaggggtcc acaatgacac acacacacac 180
 acacacacac atacacatac acacaccccc gagacagtgc cagagctaac agcctacatg 240
 tgtatttgg ccaaacttgg aaaataggtt tccttctcg ttttgcttcc agcctttat 300
 ttgcaagtga tcttccatgc agtatgaaac atgcagacag cactggagtg tggcaagagt 360
 gagctgccc cacaagtctc tcggggatgt tgtactctt ttttgttta cagtatcatg 420
 gctgttacat ctactggtc 439

<210> 48
 <211> 159
 <212> DNA
 <213> mouse

<220>
 <221> unsure
 <222> (3) ... (3)

<400> 48
 cangtacgct cactggaaaca gcttgggctt ttttcagttt attttatggt ttgcacatctt 60
 ctctttctct ttctctgttt cttgtttccc tttcccttt tcctgggtgag aaagcacata 120
 ttactgagcc attgcaagca atgggagggg tccacaatg 159

<210> 49
 <211> 465
 <212> DNA
 <213> Rat

<400> 49
 gtgcctccg ccgggtcgaa atggagctgc ctggcgtgaa cttgaagggtt attctcctgg 60

ttcactggct gttgacaacc tggggctgct tggcggttc aggccttat gcttggggca	120
acttcactat cctggccctg ggtgctgtgg gctgtggccc agcgggactc tggtgatgcc	180
attggcatgt ttcttgggtgg ctgggttgc accatcttcc tggacattat ctacattagc	240
atcttctact caagcggtgc cggtggggac actggccgct tcagtgcggg catggccatc	300
ttcagcttc tgcgtcaagg cttcttcctg ctgcctcgct taccacatgc accgggcagc	360
gagggggta gctcccgctc cgctcggtt tcttcggacc ttctcaggaa catagtgcct	420
accagacaat tgactcgta gactcacctg cagacccct tgcaa	465

<210> 50
<211> 337
<212> DNA
<213> Rat

<220>

<400> 50	
ctcgtccga aatcgccaga gcgtcgctcc tgcgtgtgg gnctaagctg gnccnctgtg	60
gnatcgctt cagcgncgtgg ggagtgtatca tgcgtataat gctcggtata ttttcaatg	120
tccattctgc tgcgtgttatt tagnatgtcc cttcacaga gaaagattt nagaacggcc	180
ctcagaacat atacaacctg tacgagaag tcagctacaa ctgtttcatc gccgcgggccc	240
tctacccctt ctcggggggc ttctccctt gcnagttcg tctcaataag cgcaaggaat	300
acatggtgcg ctagagcgna gtccnactct cccatt	337

<210> 51
<211> 371
<212> DNA
<213> Rat

<220>
<221> unsure
<222> (80) ... (80)

<221> unsure
<222> (312) ... (312)

<221> unsure
<222> (319) ... (319)

<221> unsure
<222> (353) ... (354)

<400> 51	
gatgcgcctt ggagccgact gggctgcggc ctgcgcctt tggcccttcc ggcgaccgag	60
ctgcgccttc cttccagcn ggcgaattca gccccacgg ctgtggctt accggAACCC	120
gtacgtgaag gcggaataact tccccacccgg ccccatgttt gtcatgtct ttctcaccccc	180
actgcgcctg atcttccttcg ccaagttctt gaggaaagct gacgcggacc gacagcgagc	240
aagcctgcct cgctgccagg cttgccttag cgctaaatgg tgcgtttacc aacatcataa	300
gactgtatgt gngcaaggnc acggccaaat tgcttcattt gagtgtttccc cgnnccggat	360
tgcccatct t	371

<210> 52
<211> 228
<212> DNA
<213> Rat

<400> 52

tcccgccggc gtcatgacgg ctgcgggtttt ctttgggtgc gccttcatcg ctttcggggcc	60
cgcgccttc ctttacgtct tcaccatcgc cactgatcct ttgcgatca tcttcctcat	120
cgcgcgtggc ttcttcgtt tgggtgtctt gctgtttcg tctgtttctt ggttccttagt	180
gagagtcatc actgacaaca gagatggacc agtacagaat tacctgct	228

<210> 53
<211> 361
<212> DNA
<213> Human

<400> 53

cgtggacact	gctgaggaat	gataccgagt	ggtaggtcag	aagaagatgc	tgtgaacacc	60
aggactttaa	tcttatgctt	aaaaatgcca	gatgttgc	gggggacaac	ttgtatcttt	120
ctagcagcag	atctgtagtt	tgtatagcct	caacaacaat	tttaaataag	atggagaata	180
aattatttag	gggacttaggc	tatatgcatt	tgccttcate	cacccatgtt	tattaagaat	240
catttgctt	aataatacca	agactaaagca	ccataaccaa	gaaataactaa	tgtaaaagatt	300
gtttcttgg	tcaggaatgg	ttaattcttc	aacgttggta	tgataatgat	aacttggttt	360
g						361

<210> 54
<211> 403
<212> DNA
<213> Human

<220>

<400> 54

ttgcgtggc	gccccggagg	tgtctgttcc	caggagtcc	tcggcggtc	ttgtgtcagt	60
ggcctgatcg	cgtatgggac	aaaggcgca	gtcgagagga	aactgttgc	tctcttcata	120
ttggcgatcc	tgttgtgc	cctggcattt	ggcagtgtt	cagtgcactc	ttctgaacct	180
gaagtcagaa	ttcctgagaa	taatcctgt	aagggttcc	gtgcctactc	gggctttct	240
tctcccgtg	tggagtggaa	gtttgacca	ggagacacca	ccagactcgt	ttgctataat	300
aacaagatca	cagttccta	tgaggacccg	gtgaccttct	tgccaactgg	tatcaccttc	360
aagtccgtga	cacggaaaga	cactggaca	tacacttgta	tgg		403

<210> 55
<211> 413
<212> DNA
<213> Human

<400> 55

tagcgtggc	gccccggagg	tacgactcgg	tgctcgccct	gtcccgccc	ttgcaggcca	60
ctcgagccct	aatgggtggc	tccctgtgc	tggcttcc	ggccatgtt	gtggccacg	120
tgggcatgaa	gtgcacgcgc	tgtggggag	acgacaaagt	gaagaaggcc	cgtatagcc	180
tgggtggagg	cataattttc	atcgtggcag	gtttgccgc	cttggtagct	tgctctgtt	240
atggccatca	gattgtcaca	gactttata	acccttgc	ccctaccaac	attaagtatg	300
agtttggccc	tgccatctt	attggctgg	cagggctgc	cctagtc	ctgggaggt	360
cactgtctcc	tgttcctgtc	ctgggataa	gagcaggc	gggtacactgc	ccg	413

<210> 56
<211> 452
<212> DNA
<213> Human

<400> 56

ttcgagcggc	ccccggggca	ggttgaaact	ttagaaagaa	gagccgggag	gatgtattgg	60
ttgttaggaa	aatgttaggc	accagtagaa	aatgacattc	tctattaata	agatctgagg	120
tgcgcacac	ataattgtcc	caattttaa	gattgtgg	gagcatgaag	cattttttta	180
atgtgttggc	aggccccatt	aatgcataa	actgcattgc	actcatgtt	tctgaatgt	240
tttttagggct	ttctggaaat	tgtcttgaca	gagaacctca	gctggacaaa	gcagccttga	300
tctgagtgag	ctaactgaca	caatgaaact	gtcaggcatg	tttctgtcc	tctctgtgc	360
tctttctgc	tttttaacag	gtgttccag	tcagggagga	caggttact	gtggtgagtc	420
caggacacca	aggcctactg	cactcggaa	cc			452

<210> 57

<211> 190
 <212> DNA
 <213> Rat

<220>

<400> 57

ttcgcggccc ngtcgacggc attggcaa at agtcaaacct gggaa gtaaaa aagcaaaacc	60
aaaaacaaaa ccaaagaaac aaactaaaac aaaacaagaa aaaccaacat ttcttcatt	120
cagtgtgcaa catatataaa acagaataac taactctaca ggcagtatgt cgacgcggcc	180
gcgttattcg	190

<210> 58

<211> 413
 <212> DNA
 <213> mouse

<400> 58

ctgcaacaag gctgttggtt cctctccat gggctccagt gaagggctcc tgggcctggg	60
ccctggggccc aatggtcaca gtcacctgct gaagacccca ctgggtggcc agaaacgcag	120
tttttccac ctgctgcct cacctgagcc cagcccaagag ggcagctacg tgggcctagca	180
ctccccagggc ctccggccgact ac tacgcgga ctcttacctg aagcggaaaga ggattttcta	240
aggggtcgac accagagatg ctccaaggc ctgcaccaag ttgcttttg gtttttctg	300
gtattttgtt ttctggat ttatttttta ttattttttta taatgtccctt tctttggta	360
atagagaaat ctctgcaaaa gactttgctg accaaccagc tggagctcaa gga	413

<210> 59

<211> 325
 <212> DNA
 <213> mouse

<220>

<221> unsure
 <222> (213) ... (213)

<221> unsure

<222> (223) ... (223)

<221> unsure

<222> (227) ... (227)

<221> unsure

<222> (243) ... (243)

<400> 59

ggtatcaccc aggcccactt atccatctac agcgagtagt atggcggcct tccttgtaac	60
aggctttttc ttttctctct tcgtgggtct tggatggaa cccaggcct tgtttaggcc	120
tgacaaggct ctgcccctga gctgtccaa gcccacctcc ctctgtgtac aaagctccct	180
tcttgggtga ccaacatctt cctgtctttg agnaaccagg ggnncagnatg ggagccaccc	240
agnagttaat taaaccaggt tcatcggag tttgctgaaa tgttaagcat actctgttct	300
agagaggggag tgaagaaagg ggcca	325

<210> 60

<211> 372
 <212> DNA
 <213> mouse

<400> 60

ggccagcagg accgcggta tgagccctcg caggtgtcaa caaggctcaa ggagcaggat	60
ggatctcgat gtggtaaca tggatgtat tgccgggtggg accctggcca ttccaaatcct	120
ggcattttgtt gcgttcccttcc tccctgtggcc ttccagcactg ataagaatct attattggta	180

ctggccgagg acactggca tgcaagttcg ctacgcacac catgaggact atcagttctg	240
ttactccctc cggggcaggc caggacacaa gccatccatc cttatgtccc atggattctc	300
cgcacacaaa ggacatgtgg ctcagegtgg ccaagttctt tccccaaaga acctgcactt	360
tggctgtgtg ga	372
<210> 61	
<211> 363	
<212> DNA	
<213> mouse	
<220>	
<221> unsure	
<222> (15)...(15)	
<400> 61	
gggcgcgcag gcgggnaccgg tggccggcgg gctgctgctg gctaattggc acaggactgc	60
gggcccgcac atggactgtc ctgtgcagcc cgaattccag cctcggttta gccaggcaca	120
ccaagagctt tccacccaaag aagccccctcc aagcaactgac catgtctatt atggaccaca	180
gccccaccac cgggggtggta acggtcattt tcatttcattt cgcctatgtt gcccggggg	240
gcttgatcctt gggctgtgg tgcttacatgc ggctgcagcg catcagccag tcagaggatg	300
aggagagcat cgtgggtgat ggcgagacaa aggagccctt ttactgtgc agtactctgc	360
taa	363
<210> 62	
<211> 399	
<212> DNA	
<213> mouse	
<400> 62	
aagggtccctg aagttagttt ttgcataaaa tacttcattt ttggcttcaa tgtcatattt	60
tggtttttgg gaataacgtt tcttggaaatc ggactgtggg cgtggaaatga aaaaggtgtc	120
ctctccaaaca tctcgccat caccgaccc ggtggctttt acccagtgtg gctttccctc	180
tgagtggcca gcccggccct gagctctgtc aatgacatcc aaggagaaaa tgaggttaat	240
gagagacatt aattaaacac tccctcaccc caccgcacca aaccaggatgg gttcttctga	300
tattctggaa tactctggcc tatgttttat gtttatttct ttttaatcg gttgtatttt	360
ggtctttttt tttcttcttc ttttctttt gtcacaaaa	399
<210> 63	
<211> 399	
<212> DNA	
<213> mouse	
<220>	
<400> 63	
caaagccac tggtaggctcc gctgaggtag cgattgtgtt atttctggc atctgcata	60
tagtggctttt aaccatccctg ggctactgtt tcttcaagaa ccaaagaaa gaattccaca	120
gtcccccgtca ccacccaccc cccacaccc cgacgtccac tggggccacc acagaggaca	180
cagacacccctt ggtctataat cacacaaccc agcctctctg agcctgggac tcttgcagtt	240
cttaccagggt cctgcttgc aagacagaag cttagaacatgg gaaaaacttg gggaccagac	300
tcttcctacc tctttccctgg gcataacttac gctgtctcag aagacagatc tctggccctc	360
tcgcaggagt ctcagctgca ctcaggccag ttccctgggg	399
<210> 64	
<211> 2481	
<212> DNA	
<213> Rat	
<400> 64	
gaactgtatc tggatggaa ccagtttaca ctgggtccca aggaactctc caactacaaa	60
catttaacac ttatagactt aagtaacaac agaataagca ccctttccaa ccaaagcttc	120

<210> 65
<211> 3008
<212> DNA
<213> mouse

<220>

<400> 65

tagacggag	cctgtggcta	caagccactc	agcctgatga	cggccggccac	tataacctgtg	60
ttccccagca	tggcttctg	catccacagt	cagctctgc	ctatctact	gtgctctacc	120
cagccccagg	gacagtcatg	cctcccgaga	caccctgc	cactggcatg	cgtggggta	180
tccgggtgtcc	ggttcgtgct	aatccccac	tactgttgt	cacctggacc	aaagacggac	240
aggccttgca	gctggacaag	ttccctggct	ggtcctggg	cccagaaggt	tccctcatca	300
ttgcccctgg	aatggggat	gccttggag	aatactcctg	cacccctac	aacagtottg	360
gtactgctgg	accctccct	gtgacccggg	tgctgctaa	ggctccccgg	gtttttatag	420
accagccaa	ggaagaatat	ttccaagaag	tagggggaa	gctactcatc	ccgtgctccg	480
cccggggaga	ccctccctct	attgtcttt	gggccaaggt	ggggccgggg	ctgcagggcc	540
aggccccagg	ggacagcaac	aacagcctcg	tccttcgacc	cctgaccaag	gaggccccagg	600
gacgatggaa	atgcagtgcc	agcaatgtg	tagccctgt	gaccacttcc	accaatgtat	660
atgtgctagg	caccagcccc	catgtcgta	ccaatgtgtc	tgtggtacct	ttacccaagg	720
gtgccaatgt	ctcttggag	cctggcttgc	atgggtggcta	tctgcagaga	ttcagtgtct	780

ggtataaccc	actagccaag	cgtcctgacc	gagcccacca	tgactggta	tctctggctg	840
tgcctatcg	ggctacacac	ctcctagtgc	caggcgtca	ggctcacg	cagtatcagt	900
tcagtgtct	tgtcagaat	aagctggca	gtggccctt	cagttagatt	gtcctgtcta	960
taccagaagg	gttcctacc	acaccggctg	ccccctggct	gcctgcaacc	aggagcagag	1020
tgtgagcctg	acttcccacg	tggagagaag	atcagaggcg	gatcctggcg	cagacgtttt	1080
cggtggcgtc	gggcagccct	gcgcgcattc	atcaggcagg	cagcttaggat	gctcacaagg	1140
accgccacgc	ccaagaagca	gactccaccc	acaacaccag	ccaatacagg	ctggggcagg	1200
agacctggta	gctgtgtgcg	ggaggggtac	acctccaggc	cggaaagtgg	gatgttggct	1260
acgttgctgg	ggtaactgac	gtagctatca	gcgaaggcca	cgaggcgaaa	ctcatagaga	1320
acgtccttga	tgaggccagg	caccagcagc	tggatttctg	tgcccgccac	accttggtcc	1380
aggatctccc	agccttggga	gccttgcgt	ccctccagga	tgtagccatc	cagcctccca	1440
gggatgagtt	ctgggggatc	cctctgatct	tctctccacg	tgaaaagtca	ggctcacact	1500
ctgctcttgg	ttcaggcagc	cctgacagcg	tgaccaagtt	caagctcaa	ggctccccag	1560
ttcccatctt	acgcccagat	ctgctctgg	gggagcctgc	tcgaccgcct	agccctcacc	1620
cggtttcttcc	acttggccgg	ggacccttac	cattagagcc	catttgcagg	ggcccagatg	1680
ggcgctttgt	gatgggaccc	actgtggccc	cctcacaaga	aaagttatgt	ctggagcgcc	1740
cagaacctcg	gacccctcg	aaacgcttgg	cccagtcctt	tgactgttag	agtagcagcc	1800
ccagtgggtt	cccacaaccc	ctctgcattt	cagacatcag	ccccgtgggg	cagccttgg	1860
cagccgtgc	tagcccccta	ccaggcttccag	gaccctgtt	ccagttatctg	agccttaccct	1920
tcttccgaga	gatgaatgtg	gacggggact	ggccacactt	tgaggagccc	acgcctgttt	1980
cggttcaaa	attcatggat	agtcaagccc	tgcctccact	atctttctt	ccaccaccag	2040
actcacctcc	tgcataatctc	agggcaagtg	cttcctggga	cactgtatgg	ggtcggggtc	2100
tcctcagagc	cccccttacac	agctttgtct	gattggactc	tgaggggagcg	ggtcttgcgg	2160
ggccttctt	ctgctgcccc	tcgttgttag	ctcaccagcc	agagcatggg	aggggcaagc	2220
gcctccttcc	tgcgccttcc	ctcacagccc	cctccgcagg	ggaagctacc	tcagttccact	2280
ccaggagaca	caaagcagct	ggggccagtg	gcccccgaaa	ggtggccccc	caagggaaaca	2340
tgtggtgaca	gtcacaaaaaa	ggaggaacca	cctctgttgg	tgagaactat	aatgggatt	2400
cggaattcccc	aggggacatg	gagctgttag	agacctggca	cccaggttt	gccaggttctc	2460
ggaccatcc	tgaacttgag	ccagagtttg	gtgtcaagac	tccagaggag	agctgtctcc	2520
tgaacccaaac	ccacgcgtcc	ggcccccgagg	cccgcgtgtc	tgcccttcgg	gaggaattcc	2580
tagtttccg	cagacgcagg	gatgttacca	ggggccggct	accagcttat	cagcagtcca	2640
tcttccatccc	tgaacaggct	actctgttat	gagcccgctt	agtgtgaaac	taagaaaggc	2700
ttatatggat	ttgcaaaagga	gtccaagact	ttggctccaa	gctggggtac	tgcccttacc	2760
tctctgtgtc	tccgtggccct	ggtggtaggc	ttgagttagc	ttggatata	gttggatgt	2820
ctgactcttt	aatttggat	gggagctgaa	caggaatgtg	tgtgtgtgt	tgtgtgtgt	2880
tgtgtgtgt	tgtgtgcgcg	cgcaagcga	agcgcgagtt	cgaaagtgt	gtttatggtg	2940
tgggtgcagg	ttttttttt	ttaaaaaaca	ggtgataat	aatgtttgg	aaccgttaaa	3000
aaaaaaaaa						3008

<210> 66

<211> 1888

<212> DNA

<213> mouse

<220>

<221> unsure

<222> (1690) ... (1690)

<221> unsure

<222> (1755) ... (1755)

<221> unsure

<222> (1864) ... (1864)

<400> 66

aaagtggagg	gcgagggccg	ggcccggtgg	gctctggggc	tgctgcgcac	cttcgacgcc	60
ggcgaattcg	caggctggga	gaaggtgggc	tcggccggct	tcggccaggt	gtacaagggt	120
cgcctatgtc	acttggaaagac	gtggctcg	atcaagtgt	cgcccagtct	gcacgtcgac	180
gacagggaaac	aatggagct	cctggagaa	gctaagaaga	tggagatg	caagttccga	240
tacattctac	ctgtgtacgg	catatgc	gaaacctgtcg	gcttggtcat	ggagtacatg	300
gagacaggct	ccctggagaa	gctgctggcc	tcagagccat	tgcccttgg	cctgcgttt	360

cgcacatgtgc	acgagacagc	cgtgggcatg	aacttctgc	attgcatgtc	tccgccactg	420
ctgcacctag	acctgaagcc	agcgaacatc	ttgctggatg	cccactacca	aatgtcaaga	480
tttcttgact	ttgggctggc	caagtcaat	ggcatgtccc	actctcatga	cctcagcatg	540
gatggcctgt	tttgtacaat	cggctaccc	cctccagagc	gaattcgtga	gaagagccgc	600
ttgtttgaca	ccaaacatga	tgtatacagc	ttcgccattg	tgatctgggg	tgtgcttaca	660
cagaataatc	catttgcaga	tgaaaagaac	atcctacaca	tcatgatgaa	agtggtaaag	720
ggccaccgccc	cagagctgcc	acccatctgc	agacccccggc	cgcgtgcctg	tgccagcctg	780
atagggctca	tgcAACCGGTG	ctggcatgca	gaccCACAGG	tgCGGCCAC	cttccaagaa	840
attacccctg	aaacagaaga	cTTTGTGAG	aAGCCTGATG	AGGAGGTTGAA	AGACCTGGCT	900
catgagccag	gCGAGAAAAG	CTCTCTAGAG	TCCAAGAGTG	AGGCCAGGCC	CGAGTCCTCA	960
cgcctcaagc	gGCCTCTGC	TCCCCCTTC	GATAACGACT	GCAGTCTCTC	CGAGTTGCTG	1020
tcacagttgg	ACTCTGGGAT	CTTCCCAAGA	CTCTGAAAG	GCCCCGAAGA	GCTCAGCCGA	1080
agttcctctg	AATGCAAGCT	CCCACATGTC	AGCAGTGGCA	AGGAGCTCTC	GGGGGTGTCC	1140
tcagttgact	CAGCCTTTG	CTCCAGAGGA	TCGCTGTAC	TGTCTTTGA	GCAGGGAAAGCT	1200
tcaacaggcg	ACTTGGGCC	CACAGACATC	CAGAAGAAGA	AGCTAGTGGA	TGCCATCATA	1260
tcaggggaca	CCAGCAGGCT	GATGAAGATC	CTACAGCCCC	AAGATGTGGA	CTTGGTTCTA	1320
gacagcagt	CCAGCCTGCT	GCACCTGGCT	GTGGAGGCCG	GACAGGAGGA	GTGTGTCAAG	1380
tggctgtgc	TAAACATGC	CAACCCCAAC	CTGACCAACA	GGAAGGGCTC	TACACCCTG	1440
catatggctg	TGGAGCGGAA	GGGACGTGGA	ATTGTTGAGC	TACTGCTAGC	CCGGAAAGACC	1500
agtgtcaatg	CCAAGGATGA	AGACCGATGG	ACTGCCCTGC	ACTTGTGAGC	CCAAAATGGG	1560
gatgaaggcc	AGCCACAAGGC	TGCTGCTAGA	GAAGAATGCT	TCTGTCAATG	AGGTGGACTT	1620
tgagggccga	ACACCCATGC	ATGTAGCCTG	CCAGCATGGA	CAGGAGAACAA	TTGTGCGCAC	1680
cctgtccgn	CGTGGTGTGG	ATGTGGCCT	GCAGGGAAAG	GATGCTGTG	TGCCTCTGCA	1740
ctatgtcgc	TGCANGGCCA	CCTTCCCATT	GTAAAGCTGC	TAGCCAAGCA	GCCTGGGTG	1800
agtgtgaatg	CCCAAGACACT	AACGGGAGGA	CACCTGACC	TGCTGTTCAA	AGGGCATT	1860
accngtggct	CGCATTCTCA	TTGACCTG				1888

<210> 67
<211> 1260
<212> DNA
<213> Rat

<400> 67

gtcg	CTTTGGGTAT	CAGATGGATG	AAGGCAACCA	GTGTGTGGAT	GTGGACGAGT	60
gtgcgacaga	TTCAACACCAG	TGCAACCCCTA	CCCAGATCTG	TATCAACACG	GAAGGAGGGT	120
acacctgctc	CTGCACTGAT	GGGTACTGGC	TTCTGGAAGG	GCAGTGCCTA	GATATTGATG	180
aatgtcgcta	TGGTTACTGC	CAGCAGCTCT	GTGCGAATGT	TCTGGATCC	TATTCTGT	240
cgtgtAACCC	TGGCTTCACC	CTCAACGATG	ATGGAAGGTC	TTGCCAAGAT	GTGAACGAGT	300
gtgaaactga	GAACCCCTGT	GTCAGACCT	GCCTCAACAC	CTATGGTTCT	TTCATCTGCC	360
gctgtgaccc	AGGATATGAA	CTGGAGGAAG	ATGCACTTCA	CTGCAGTGT	ATGGATGAGT	420
gcagcttctc	CGAGTTCCTC	TGTCAACATG	AGTGTGTGAA	CCAGCCGGC	TCTATCTCT	480
gctcatgccc	TCCAGGCTAC	GTCTTGTGG	AAGATAACCG	AAGCTGCCAG	GATATCAATG	540
aatgtgagca	CCCGAACAC	ACATGCACTC	CCCTGCAGAC	TTGCTACAAAT	CTGCAAGGGG	600
gettccaaatg	TATCGACCCC	ATCGTCTGCG	AGGAGCCTTA	TCTGCTGATT	GGGGATAACC	660
gctgtatgt	CCCTGCTGAG	AATACTGGCT	GCAGGGACCA	GCCATTCACT	ATCTGTT	720
gggacatgga	TGTGGTATCA	GGACGCTCTG	TTCTGCTGA	CATCTTCCAG	ATGCAAGCAA	780
cgaccccata	CCCTGGCGCC	TATTACATT	TCCAGATCAA	ATCTGGGAAC	GAGGGTCGAG	840
agttctacat	GCGGCAAACA	GGGCCTATCA	GTGCCACCC	GGTGTGACAA	CGCCCCATCA	900
aagggcctcg	GGACATCCAG	CTGGACTTGG	AGATGATCAC	CGTCACACT	GTCATCAACT	960
tcagaggcag	CTCCGTGATC	CGACTGCGGA	TATACTGTGTC	CCAGTATCCG	TTCTGAGCCT	1020
cggggttaagg	CCTCTGACAC	TGCCTTTAC	CACGCCGAGG	GACAGGAGGA	GAGAAGAAC	1080
ccaaacgaggg	ACAGGAGGA	AGAAGAAACC	AGCAAGAATG	AGAGCGAGAC	AGACATTGCA	1140
ccttcctgc	TGAACATCTC	CCTGGGGCAT	CACCTAGCA	TCCTGACCC	TACCTGTACT	1200
atcgaaact	GTCACTCTGA	AGGACACCAT	GCCCCAGTTC	CTATGATGCA	GTAGTATCCA	1260

<210> 68
<211> 1729
<212> DNA
<213> mouse

<400> 68

gaattcgcgc	cgagcagaat	atggctctgg	gggttctgat	agcagtctgc	ctcttgttca	60
aaggcaatgaa	ggcagcactg	agcgaagaag	cagagggtat	ccctccatgc	acagcacacg	120
agagcaactg	gacatttaac	aacaccgaa	ctgactacat	agaagaacct	gtagctctga	180
agttctctca	tccttgctg	gaagaccata	atagttactg	cattaatgg	gcatgtgc	240
tccaccatga	gctgaagcaa	gccatttgc	gatgcttac	tggttatacg	ggacaacgat	300
gtgagcattt	gaccctaact	tcgtatgctg	tggattctt	tgaaaaatac	attgcgattg	360
ggattggcgt	cggattgcta	attagtgc	ttcttgcgt	cttctattgc	tacataagaa	420
aaaggtgtat	aaatctgaaa	tcaccctaca	tcatctgc	tggagggagc	ccattgtgag	480
accttataag	acatagtcat	caagccattt	gtcaaaagcc	acagggaaatc	caatggagat	540
ctttggatga	tacaaaatgt	gataagctaa	cttggaaaata	atggtggtt	gggtcacaat	600
gcagtaactg	accattggtt	cttagcttt	gtcatcg	ggtgccatgg	aagctatggg	660
aatagctac	agtaacagaa	gccaagttca	ctacccttct	tggggttgc	tgttgggtgg	720
ttgttgcac	tgcaggaaga	tttgttctat	acttctgacc	atctcagatg	tgaatttca	780
tttaattgt	tttctactac	acatcaatca	agtccaaatg	atgcatttc	cgggttcttc	840
gggcactcaa	catttgggc	cacccgcctc	gatggaccta	atagcaaagt	atctgtc	900
atggaaattt	agggaaattt	gtatcaattt	ttagatgaaa	acagtgaatg	tctcagctcc	960
tttagtgcac	caaagatgca	ttacaccta	accactaaaa	gaaaatggaa	tatccaaggc	1020
agcataatc	ctaccgcgt	ggtgacaaca	gtttgcaaaac	ttcattcatg	tagtttgaa	1080
gaagcagata	aatttctgag	gactgaaagt	cacctggaca	gcagatccag	agcaggccaa	1140
ggtagctgt	tccttatatcg	accataaaagc	ctgtgtggc	tcatctgtcc	cctgtatgtt	1200
ttgcctatca	tctcagcc	acattggaa	actcacactt	gttattccatc	gcttgaactg	1260
aagttcgaca	attcacctaa	tgactaaaag	cttacaattt	ttccccaaaat	atataggAAC	1320
aacagcatgt	ggaatgtaac	catttttttga	cgtgttata	gcataatttgc	acatgggtt	1380
aaaaaaagaaa	cagtcgtaga	aatacttatt	agggatcag	tatcccttct	tgaaattgt	1440
tctgtacat	gattcaatct	ttggcaagtc	tcttataattt	tttgggtt	ggttccattt	1500
tctacaagac	ccatgcagtt	ccaaaatttga	actctaata	aaactaaaaaa	tacctccat	1560
aactgcattt	caggcaagat	tatcctcaat	gcttccatcc	tcagccccgt	ttctaaccct	1620
caaataccca	cgaatattat	ccttactata	tattgtc	ttagttgt	aaaataataa	1680
cttatttttga	aaagaaataa	aaaatgaaat	tacaaqa	aaaaaaaaaa		1729

<210> 69
<211> 359
<212> DNA
<213> Rat

```
<400> 69
ctcgtgccgc aattcgac gaggattcgc tatactgcat atgaccgagc ctacaaccgg   60
gccagctgca agttcattgt aaaagtacaa gtgagacgct gtcctattct gaaaccacca 120
cagcatggct acctcacctg cagctcagcg ggggacaact atggtgcgt ctgtaaatac 180
caactcgatg gtggttatga acgccaaggg accccctcccc gagtctgtca gtcaagtcga 240
cagtggctcg gatcaccacc tgctgtact cctatgaaga ttaatgtcaa tgtaactca 300
qctqctqqcc tcctqqatca qttctatqaa aaacaaqcqac tcctcataagt ctcaq 355
```

<210> 70
<211> 1421
<212> DNA
<213> Нчтап

```

<400> 70
gattagcgtg gtcgcggccg aggtgtctgt tcccaggagt ctttcggccg ctgttgtc 60
agtggctga tcgcgtatggg gacaaaggcg caagtcgaga gaaaactgtt gtgtctttc 120
atattggcga tcctgttggc 0tccctggca ttgggcagtg ttacagtgc ctcttctgaa 180
cctgaagtca gaattcctga gaataatcc gtgaagttgt cctgtgccta ctcggcctt 240
tcttctcccc gtgtggagtg gaagtttgac caaggagaca ccaccagact cgtttgcata 300
aataacaaga tcacagcttc ctatgaggac cgggtgacct tcttgccaac tggtatcacc 360
ttcaagtccg tgacacggga agacactggg acatacactt gtatggtctc tgaggaaggc 420
ggcaacagct atggggaggt caaggtcaag ctcatctgtc ttgtgcctcc atccaaggct 480
acagtttaaca tccccctctc tgccaccatt gggAACCGGG cagtgcgtac atgctcagaa 540
caagatgtt ccccaccttc tgaatacacc tggttcaag atgggatagt gatgcctacg 600
aatccccaaa gcacccgtgc cttagcaac tcttcctatg tcctgaatcc cacaacagga 660
gagctggctt ttgatccccct gtcagcctct gatactggag aatacagctq tqaqqcacqg 720

```

aatgggtatg ggacacccat gacttcaa at gctgtgcga t ggaagctgt ggagcggaa 780
 gtgggggtca tcgtggcagc cgtccttgc accmtgatc tcctggaa at cttggtttt 840
 ggcatcttgtt ttgcctatag ccgaggccac tttgacagaa caaagaaaagg gacttcgagt 900
 aagaaggta ttacagcca gccttagtgc cgaagtgaar gagaattcaa acagacctcg 960
 tcatttctgg t tgagcctg gtcggctcac cgccatcat ctgcatttgc cttactcagg 1020
 tgctaccgga ctctggcccc t gatgtctgk agtttmacag gatgccttat ttgtctttta 1080
 cacccacag ggcggccatc ttcttcggat gtgttttaa taatgtcagc tatgtgcccc 1140
 atccttccttc atgcctccc tcccttcctt accactgmtg agtggcctgg aacttggta 1200
 aagtgtttat tcccccatttc tttgaggat cagaaggaa tcctggat gccattgact 1260
 tccctctaa gtagacagca aaaatgggg gggtcgcagg aatmtacact caactgccc 1320
 cctggctggc agggatctt gaataggat cttagctt gttctggct cttctttgt 1380
 gtacctgcccc gggcgccgc tcgaaatcaa gcttacatcgat a 1421

<210> 71
 <211> 378
 <212> DNA
 <213> Human

<400> 71

tagcgtggtc gggccggagg tacaaaaaaa ctttacataa attaagaatg aatacat tta 60
 caggcgtaaa t gcaaacccgc ttccaaactca aagcaagtaa cagccacgg tggtctggcc 120
 aaagacatca gctaagaaag gaaactgggt cctacggctt ggactttca accctgacag 180
 a cccgcaaga caaaaacaact gttcttgcc agcccttaga gaaatcccag aacactcagc 240
 cctgacacgt taataccctg cacagatcg aggctgtgg ccacacagac tcaccaagcc 300
 acagacttgc tttccacaag cacgttctta ccttagccac gaagtgaccc aagccacacg 360
 tacctgcccc ggcggccg 378

<210> 72
 <211> 267
 <212> DNA
 <213> mouse

<400> 72

ggggcatggg ccatgctgta tggagtcgtg atgctctgtg tgctggaccc aggtcagccg 60
 agttagttg aggaggctgg ctgtggccct ggcaggatcc agaacggaa tggcaacaac 120
 actcgctgct gcagcctgta tgctccagc aaggaggact gtccaaaaga aaggtgcata 180
 tgtgtcacac ctgagtagca ctgtggagac cctcagtgca agatctgca gcaactaccc 240
 tgccaaaccag gccaaagggt ggaagtc 267

<210> 73
 <211> 1633
 <212> DNA
 <213> mouse

<220>

<400> 73

ggcacgagcg ggagcctgtc actgcctgc tgggttcctt gggccgact gtagccttgc 60
 ctgtccacag gtcgttcg gccccagtc tgccacgtg tgtacatgc ggcaaggggc 120
 ggcacgtgac ccagtgtcg ggacttgcat ctgtccccc gggaaagacgg gaggccattg 180
 tgagcgcggc t gtcctccagg accggtttg caagggtctgt gaaacacaagt gtgcctgcag 240
 gaatggggc ctgtgtcatg ctaccaatgg cagctgtcc tgccccctgg gctggatggg 300
 gcccacgtt gggcacgcct gcccgtcgg ggcgtatggt gtcgttcgc tcctggagtg 360
 ttcctgtcag aacaatggca gctgtgagcc caccccccgc gcttgcctt gtggccctgg 420
 ctctatggt caagcttgc aagacacctg ccctggggc ttccatggat ctgtggcca 480
 gagagttgc ggtgtcaac agggcgctcc ctgtgaccct gtcagtggcc ggtgcctctg 540
 ccctgtggc ttccgtggcc agttctgcga gaggggggtgc aagccaggt ttttggaga 600
 tggctgcctg cagcagtgtt aactgccccac ggggtgtggcc t gatccca tcagcggcc 660
 ctgccttgc ccaccaggcc ggcaggaaac cacatgtgac cttagattgca gaagaggccg 720
 ctggggcccg ggctgtggcc t gcgctgtga ttgtgggggt ggggctgact ggcacccat 780
 cagtgccag t gccactgtg tggacagctac cacgggaccc acttgcgggg aagtgcac 840

acagctgtcc tctatcagac cagcacccca gcactccagc agcaaggcca tgaaggacta	900
actcagagga acgcccacag aggcccacta ctgtgttcca gcccaaggga cccaggcctc	960
tgcgttgtac taagatagag gtggcactt tggatccaca cctttctgg aaagccatgg	1020
attgtgtgg acagctatgg atagtcatat agccacacac cggggctcca tggcatggg	1080
gaagaaggcc tccttgac acaaggaatc caggaagtcg gctggcttc gggccactgt	1140
ttacatgggg accctgcagg ctgtgttg gaatcctggc cctttcagc gacctggat	1200
gggaccaagg tggaataga caaggccccca cctgcctgcc aggtccttct ggtgcttaggc	1260
catggactgc tgccagccagc caactgtta cctggaaatg tagtccagac catattata	1320
taaggtatctt atggcatct ccacctgccc ttatgttct gggtcagatg gaagctgcct	1380
gaccaggaa cttaggcagt ggcctgtgg gtctccagca agtggatca agggtttgt	1440
aaaaccagt gagttaaagg cacagtgtgt cccattgc ctgggttct gtgtttctg	1500
tagactccgtg gtccttcca agagcagggtgg cctgagggtt cttgaatggg aacctctgt	1560
accctctgt aatgacatgc atgtaatgt aatgtttcact caccttaggg ttcttctga	1620
cttccagctc tag	1633

<210> 74
<211> 1252
<212> DNA
<213> mouse

<400> 74

ggaagagccg tgcataaatg ggtctgaaat cttgttttat aacatcgatc tgggagacag	60
ctgcattact gtggcaaca ctaccacaca cgtgatgaag aaccttccttc cagaaacgac	120
ataccggatc agaaattcagg ctatcaatga aattggagtt ggaccattta gtcagttcat	180
taaagcaaaa actcgccat taccgccttc gcctcttagg cttgagtgtg ctgcgtctgg	240
tcctcagacg ctgaagctca agtggggaga cagtaactcc aagacacatg ctgctggta	300
catgggtgtac acactacagc tggaaagacag gaacaagagg tttatctcaa tctaccgagg	360
acccagccac acctacaagg tccagagact gacagatgtt acctgtact cttcaggat	420
ccagggcaatg agcgaggcag gggaggggcc ttactcagaa acctacacct tcagcacaac	480
caaaagcgtg cctcccaccc tcaaagcacc tcgagtgacg cagttagaag ggaattcctg	540
tgaaatcttc tgggagacgg taccaccat gagaggcgc cctgtgagct acgttctaca	600
gggtctgggt ggaagagact ctgagtaaa gcagggtgtac aagggagaag aagccacatt	660
ccaaatctca ggcctccaga gcaacacaga ttacaggttc cgctgtgtg cctgcgcgg	720
ctgtgtggac acgttctcagg agctcagtgg cgcttcage ccctctgccc ctttcatgtt	780
acaacacgcgt gaggttatgc ttacagggga cctgggaggc atggaagaag ccaagatgaa	840
gggcatgtatg cccaccgacg aacagttgc tgcaactcatc gtgcttgct tcgcgaccct	900
gtccattttg ttgccttta tattacagta cttttaatg aagtaaatcc agcaggccag	960
tggatgtctc ggaacgcccac acgttttaat acacatttac tcagagcctc cccttttac	1020
gctgtttcgatctt atacgcttct cttgttttac acatgttgc aggggaaaga	1080
gtttgctgc acctatttga gatcaaaac taggaagagg taaaactgaa tttttttta	1140
aacaataata aataaaaggaa taaagaagag aaggaagcgg cggcaagct ccagacaccg	1200
agagccatgt tgcccaacga gcttgccttg tcgggcttcc cgtgtcttc tg	1252

<210> 75
<211> 2411
<212> DNA
<213> mouse

<400> 75

tcggcacgag agtgggtaca ctttactaca tgtctccaga gagaatacat gaaaatggat	60
acaacttcaa gtcgtacatc tggctcttgc gctgtctgtc atatgagatg gtcgtactgc	120
agagttctt ctagggcgac aagatgaact ttttctct gtgttggaaat atagaggatg	180
gtgactaccc gcctctcccg tcagatcaat attcgaggg agttgcacatc ctagttaata	240
tatgtatcaa cccagatcca gagaagcgcac ccgcacatcgc ctatgtttat gatgtggcaa	300
agaggatgc tgcatgtacc gcaaggacact aaactgtaca agatctgaa gacggcaacc	360
aagataactt aaaatgttt ttgtgcagat catacctccc cgcttgc tgggtgtttaa	420
gattactgtc tcagagctaa tgctgttttgc atccatcacc agtttgcata tgagttcat	480
ttttctacca ggctcaatca ctttccaaat ccacaacttt gggatgtca gatggccacca	540
agaatgtcaag cccaaacaaga gttttcgatgg tgagaattgt ttcgagttc tgctgtataga	600
ctgtgtttat agatgtcag tgcccgatgg tgaagcacac acacatagc acatgtccag	660
agcgatgcag aacctgagga aggacctggg catttgactt gtttgcttt aagtcaactta	720

atggacgttt	tagtgacat	gattgtgaac	ttctgatttt	tttcttttaa	gttcaagta	780
catgttttag	ttcttagcat	tagagatctc	aaatataatt	cttataagac	atgcagacat	840
aaacttttg	agaaaagattt	aaaattttta	gttatacat	tcaaatgca	actattaaat	900
gtgaaagcat	agaggcataa	atgtgagttt	gacactgaag	tctatgtttt	aatgcctttg	960
aaagccttt	tttggtgtgt	tttaaatgg	ataaaatgaac	ccattttaaa	acgtggtaa	1020
ggacttgttt	gcctggcg	tgatgtatgt	ttaacatgca	caaggctt	tgtttttatt	1080
gtacatttga	agaatattct	tggaataatc	ttgcagtagt	tatagttcaa	tttctttaca	1140
aatctaaata	cacttaactc	ataactatac	actgtatgc	aagcatatat	tgttattcat	1200
atattgaagt	tttgatcagt	tcctcttcag	aatctttttt	atccaagtt	ctttcttatt	1260
tatattgtgt	gtgcatttca	tccattaaat	gtttagatt	ttctgagaat	gagttccctt	1320
tttaaaat	atttggat	ccaacactt	tttaggattt	aaaaaaaaatt	tttttaatg	1380
tttgggtcat	ttaggtgca	tctgttttct	cttggtagaa	agaaaaggtg	tgtgtaaaaa	1440
tgtgcctgt	aatgtcgata	ttgtttggca	gggttataat	tttagagtt	gctctagagt	1500
atgttgaaca	gctgtgaagac	tggcccttac	tgaagacaga	actgttccaa	gagcagcatt	1560
cccggtgaga	tgctttggag	taaagtactg	tgtatgacga	tgacagacat	tttagttaag	1620
gggggtaaaa	aaaaaggagg	ggtattttag	aaaccctgag	gtgaaattt	ggtgaatgtc	1680
ttcattttaa	taccagccaa	ttccttcaga	gaattgtgg	gccaagaac	agagtaatcg	1740
tggctgtgc	agaacacacgg	gtgccatgg	agagcattgg	gaaggctcat	cctgcgggt	1800
ggtcggtcag	acagccctgt	tttggggage	tttactctg	gcccacagag	ctcggttcat	1860
tttcttacag	agtattttt	ctacagttt	tttcaagtt	ttttaaattt	tcaaagtaat	1920
atctcatctt	ttaatttact	atgtatgt	tcgttagacaa	agggaaatctg	ggtttttttt	1980
tgtttttgtt	tttggttttt	tttgcatttga	aggctgaact	gggttacatcc	cagatcttag	2040
tggctcatag	gatataccca	gaggcatgaa	gaaatggctt	ccggtgacca	tttggtttgk	2100
gktatatccc	attgtatgt	cacaggactg	atttagatga	aacatccccct	tcctacaaga	2160
gttgggttct	ttccatattt	aaaaacatga	ggttctgcct	ggcagtatgt	gtacacacct	2220
ttaatcccag	cacccggggag	gcagaggcag	gaggatttct	gagttcgagg	ccagcctgg	2280
ctacaaagtg	agttccagga	cagccaggac	tacacagaga	aatctgtct	caaaaaacca	2340
aaactaaatg	aaaatacaag	gcttctcccc	ttttagtgac	tttgcattt	gaatttgc	2400
aaaaaaaaa	a					2411

<210> 76
<211> 1335
<212> DNA
<213> mouse

<400> 76

acccaaacag	cccgggacca	tgctgtcgct	ccgctcctt	cttccacacc	tggactgtt	60
cctgtgcctg	gctctgact	tatccccctc	cctctctg	agtataatg	ggtctgcgt	120
ggtccttgc	aatatctaca	cctccgacat	tttggaaatc	agcactatgg	ctaacgtctc	180
tggtggggat	gtaacctata	cagtgcgg	cccggtgaac	gattcagtca	gtgcgtgt	240
cctgaaagca	gtgaaggagg	acgacagccc	agttggcacc	tggagtggaa	catatgagaa	300
gtgcaacgc	agcagtgtct	actataactt	gacatccaa	agccagtctgg	tctccagac	360
aaactggaca	tttccactt	ccgaggatgt	gactaaatgc	aacctgcagg	tcctcatct	420
cgtcaatcg	acagccctcaa	agtcatccgt	gaaaatggaa	caagtacaa	cctcagcctc	480
aacccctatt	cctgagagtt	ctgagaccag	ccagaccata	aacacgactc	caactgtgaa	540
cacagccaag	atacagccaa	aggacacagc	caacaccaca	gccgtgacca	cagcaatac	600
cacagccaat	accacagccg	tgaccacagc	caagaccaca	gccaaaagcc	tggccatccg	660
cactctccgc	agccccctgg	caggcccct	ccatattctg	tttggttttc	tcattagtaa	720
actcctctt	taaagaaaac	tggggaaagca	gatctccaa	ctccaggatca	tcctcccgag	780
ctcatttcag	gccagtgc	aaacatacc	gaatgaaggt	tttatgtct	cagtccgcag	840
ctccaccacc	ttggaccaca	gacctgcaac	actagtgcac	tttggggata	caaatgttt	900
cctggatctt	tcaaggcaca	aattccgctt	ttttagaaata	tttagtccat	ccatccgtcg	960
tgtaacctga	agttctgact	ctcagttaa	cctgttgaca	gccaatctg	actttgttt	1020
cttgccttgc	gtattccat	gagcctcct	gggtgtgggg	tggggaggga	atgatcc	1080
tttactttca	aactgattt	agatttctgg	ccaaacctac	tcaggttgca	aaggacttat	1140
gtgactttagt	tgactgtagg	aaaaagagaa	atgagtgtac	atcctgtggc	tactagcaga	1200
tttccactgt	gcccagacca	gtcggtaggt	tttgaaggaa	gtatatgaaa	actgtgcctc	1260
agaagccaaat	gacaggacac	atgactttt	ttttctaagt	caaataaaca	atatattgaa	1320
caaggaaaaaa	aaaaaa					1335

<210> 77

<211> 440
 <212> DNA
 <213> mouse

<220>

<400> 77

gagaagcctt	gcccaactcaa	atacctgggc	60	
catcagctgc	accggctcca	ctcccatctg	ctccaggccc	tgaagagaag ccaacacttt
tcaggcccc	caacctccac	atcagaacag	gcagagcctg	tggtgtcagc tggatcca
aaggcaacc	ttgggtgggt	tgggtgtta	aagtagtcat	gctaatttct aagcaacaag
ctctgagctg	cagccccccag	gccctccagg	gcagtccagg	gcagtgcag ggtaggt
agttctaggg	gtctagttatc	tggatcaaca	agtcccagag	ttggggccag tggctgctga
cttgcataat	gaccaagaat	atacgaccta	accttttta	tttggttggg caaccacagc
tccgagtaag	tcatcaaggc			420
				440

<210> 78

<211> 204
 <212> DNA
 <213> mouse

<400> 78

ctccataaaa	tccctcaaaa	tctgttcccc	cagcagattt	cctgtgcatt cttgggctcc	60
cttccatcc	tttcccgctt	ttagggctc	ctcacagtgt	tgtttctaa caacgcaggc	120
atgagaaggc	actactgtg	tgctccctca	ggcctggcct	ctcctggtga ttgtcttctt	180
cctctgtgtc	ctcttcatcc	caat			204

<210> 79

<211> 300
 <212> DNA
 <213> mouse

<220>

<

<400> 79

tatttatgac	ttgggttaag	ggagtttgct	gtgcaatcat	gaagaccaga gttcagatcc	60
cagcacccat	atagcaagag	agcataacaag	aagcacctgt	gactgcactc tgaagaatcc	120
aacacccatct	tctggcctcc	atggcacaca	gaacccccc	acacatgctc atccactctc	180
aaagagagacat	acataaaaat	aaatatttag	gtctgggtc	cctcagagac tagtcttac	240
aggcctaaa	tacaaacga	gcggaccgca	aagggtgagg	gagtggat gaagaagcta	300

<210> 80

<211> 214
 <212> DNA
 <213> mouse

<400> 80

cccgacccct	gtgtcagcta	tcccagcaga	aaaagaagat	gcggaccctc tcagcaagtc	60
aggtgaggaa	acccaggaag	cagggtcatg	accccgcaga	gtcggggct cctgggtcag	120
aggatcagat	tttgtgtac	ttctgtctt	ggccagcag	agtaaggcgt gtaaatcct	180
gtctgacctg	catggtaaaa	tactgttaagg	agcgt		214

<210> 81

<211> 152
 <212> DNA
 <213> mouse

<220>

<400> 81	
cccccttaact aacccaggac cttccactaa gtggaaggct ccaccatcca cagagggggc	60
cagtcattt taagcacacg gacctttgt gagacagtgc tgatcttaac tgtggtgtca	120
ctgatggagc tgaacggtat cccctaaaag ta	152
<210> 82	
<211> 181	
<212> DNA	
<213> mouse	
<220>	
<400> 82	
tctcaagtat gatgagaagg tccggaggag gcaggagaaa gcagggcccc gcccctccct	60
gggtctccac ccacccacgc ccgctaaggt cacctgttct cccatggaga tgatgaagaa	120
gctcatagct ggacaaggcc cggaacctca gcccagtaac cgacctactt cccgcctggg	180
a	181
<210> 83	
<211> 332	
<212> DNA	
<213> mouse	
<220>	
<400> 83	
tatagagatg gtatgtataat gggccagggt gtaagcttca acctggggga ttttgctgg	60
tttgggtttt ccctgtgttag ccctaacaag cctgtgtaga ccaggctgac tttaactttg	120
cagatgacat tcacgtctac ttctctctgt gttgggttta tgggtctgca cacctgccc	180
ggcctaggct gggggatttt gaagtatctt agattatgga gtagacccag agtttgcag	240
tatctgtttt aaagtgcacac ataaacatag cctcctgacc atcttccaca gtgggaccct	300
gatctggct ctccctggaa gaagagagaa ag	332
<210> 84	
<211> 213	
<212> DNA	
<213> mouse	
<400> 84	
gcaggcagat aacaatgatt actggacaga gtgcttcaac gcatttggaa acggggaggca	60
atatgtggat aatccccacag gcgaaaaagt ggacgaggct ctggtgagaa gtgccaccgt	120
acattgttgg cgcacacgca acgtgttgg cacaagcatg ctctcatccc cagatgtgg	180
gcatgctg ctgtccctgc agcccttctt gca	213
<210> 85	
<211> 273	
<212> DNA	
<213> mouse	
<220>	
<400> 85	
ccggctctct ctctctctt tccccgcctc ttctgcctcc cctgccttggaa actctgtatga	60
ggaggggacca ggtggtcagg caccccaagtc tgatcaggac tcctgtggcc tccagatgttt	120
cactcccccg tccatcctga agcgggcctcc tcgggagcgt ccaggtcaag tggcctttaa	180
cgccatcacc gtctactatt tcccacgggtg ccagggattc accagtgtgc ccagccgtg	240
gtggctgtac cctggggcatg gtttctcgcc aca	273

<210> 86
<211> 218
<212> DNA
<213> mouse

<400> 86

ctcagccgc	tgctctgggg	gctggagggt	ctccccactta	actgtgtctg	ccgttcaggg	60
ggctcaccca	gtgtcgct	acacagaggt	tttccctcca	gctccagtc	gtcctgccta	120
ctcccttat	aaccgcctcc	aagagctggc	ctcactgtt	ccccggccgg	ataagccctg	180
cccagccat	gtggagccct	tgactgttgt	tttgtcacc			218

<210> 87

<211> 335

<212> DNA

<213> mouse

<400> 87

gagggtgggggt	gggtgcata	cctgcctgca	attgtcgccg	ctgggcttaa	cgttgtga	60
gctggcccggt	ttcacaca	gcagcacctg	ccatggagcc	tggccacaag	gccactcaga	120
gctgggttgg	cagagtgtga	ccagaaactc	cctgtgggtt	ctgataaaagg	attctccat	180
aggcaaggtt	cagagaacct	gggcctcctg	ttctcaggga	ggcctgtcta	tccccagcct	240
ctgagctgtt	tcgtcctagt	tggtgagtt	agtggcatag	ccctcttgag	gcctctgtat	300
ttggaaaggccc	acagaattgc	aattattctt	gcatg			335

<210> 88

<211> 410

<212> DNA

<213> mouse

<400> 88

```

aaacccggcc aggaaacaaa taccgggtga tcggcttac tgaatgcatt tattcccaa 60
gggaaactga aaagcaacct agggacactg taagcagaaa gctgaggctt ttaaaaaccc 120
accttggcaa tgtaacttgg gaggttcccc cacaccagg gctgtgcate gtgaaattct 180
gtctcctgag acgctgagaa acccttcctt gcagctataa tgggcctggc cgcccagtgt 240
ggagctgttag cttcccacga cgtagccctc aggaacttca ggagggatgc cacagtctat 300
ttctgaaaac aaaaccgtgt caacttctt actttacaaa tgcaagttt cagaatccac 360
catctcttg caccatacc ccatgcctca caccccaagac cctgtgttaq 410

```

<210> 89

<211> 279

<212> DNA

<213> mouse

<220>

<400> 89

```

gtgcagagag tggattgtca gtggactgct cagttacaaa tgggacatct aacacacaca 60
cacacacaca cacacacaca cacacacaca caccccaagg ctttagagacc attgcagaag 120
agaagagtt atggaaatc ttggagaaaa cattggatgg tttagagagaa tggttaggag 180
atcagactag ctatcccagg aagcagtgaa gggggcggg gttagaagat gaggtcgaaa 240
gacagggtgg agggcattgt ccgacagaac cattgttgt 279

```

<210> 90

<211> 398

<212> DNA

<213> mouse

<400> 90

```

ccaccaaccc agaaaattga caaagggggtt gaatgttggc ctttgcgtcc ttccccggca   60
gtggatgtac tgtttgagc cctgtgtggc acttctgaac ttcgtgctgt aactttcaga 120

```

WO 99/55865

PCT/NZ99/00051

actcttagac atgggtgtgc tcactgaact ctagggctcg tggcttagat gctgccaacg	180
ctgtattcag gacctgaagt gaggaccgt gtggatccag accaateccag tgtgagacta	240
ctgaagaaca tctgttgcca gaacggccac accaaacaga tggagtgcc cagcaacttag	300
cttcttaaat aacatcgaa ccattcagcc agcagtcg tggttgttt ttgttaaatt	360
gtccggcggaa tctaaattcc tccaaaaggc ttgtgacc	398

<210> 91
<211> 279
<212> DNA
<213> mouse

<400> 91	
gttgttactt cagttgctct cggcggaaat tcttaaactg catcctgagt gaggagctt	60
tggcgagaaa gcaagaccca gtggtagaca gattagcatt actgtacagc ttcttgggt	120
gttcgagggaa gccccggctgg accatagtgg ccacggcggt gaggtaggcg tggacaggc	180
tgaccagtcc aagttaagga cgttcgggtc catgttaacc ctgcottgta cgtccagcat	240
cgtaaagaaaa aacacttgag aacccgaaga ggagatgga	279

<210> 92
<211> 401
<212> DNA
<213> mouse

<400> 92	
aaaaagtttt accaaaaacct tttattgact tttataaatt agatagtatt tcaaagttt	60
tgttagaatcg tattcttga aactgtactt agcagagcag aagaggcctg ctgacgctag	120
cacgcctctgc aatgaatcat gtggcacccga gtctacgcca aggccccccga gaaaactttat	180
tccatagatg ggcagatggt tcccaaagtt acactacaga actacaaatc gactcttaaa	240
attaaaaacgg gactttacaa gcattctaga agactcaaac ttgaagcaat ttttggaaaa	300
taaatgtaca gagaaaaagat cttgaagcta ctgaacagag aacccttatt aaccgagcaa	360
atacatccta tggagcttcc gaggagtaca cagacagacc g	401

<210> 93
<211> 339
<212> DNA
<213> mouse

<400> 93	
ccactgacct tcccagaagg tgacagccgg cggcggatgt tgcataaggag ccgagatagt	60
ccagcagtgc ctggatccccc agaagacggg ctgtctcccc ccaaaagacg ggcacattcg	120
atgagaagtc accacagtga ttcacatcc tgcagatgat tccatgtgg gatggagtc	180
catgtgcag cctggcctt cctagagcct gtgaaccctc gcttggtag tggataccga	240
cgtgtcatca agaaccctat ggattttcc accatgcgag aacgcctgct ccgtggaggg	300
tacactagct cagaagagtt tgcagctgat gctctgctg	339

<210> 94
<211> 55
<212> DNA
<213> mouse

<400> 94	
ggggtgtggg caacttggat aacctcagct gcttccatct ggctgacatc tttgg	55

<210> 95
<211> 186
<212> DNA
<213> mouse

<400> 95	
ggactctggc ttccctggggc tgcggccgac ctcggtgat cccgctctga ggcggccggcg	60
gcggggcccc agaaacaaga agcggggctg gaggaggctc gccgaggagc cgctgggtt	120

agaggtcgac cagttcctgg aagacgtccg gctacaggag cgcacgaccg gtggcttgg	180
ggcaga	186
<210> 96	
<211> 244	
<212> DNA	
<213> mouse	
<400> 96	
ggtgaccaaa acccccttctg ccccccttccc agagactctg acttgaccct ctttccaatt	60
ccctctcccc aaggccatgg attatgaagc ccctctgtaa gatgggtgagc cagggccct	120
aagaggccat gaggcacacc ctgatcactg tctcaggcct ttgtgggacac tgactcgacc	180
ctggccacc tcacgcccccc aggccagttg gcaactggtg gctttgagg gctttacgc	240
cctt	244
<210> 97	
<211> 116	
<212> DNA	
<213> mouse	
<220>	
<221> unsure	
<222> (11)...(11)	
<221> unsure	
<222> (13)...(13)	
<221> unsure	
<222> (41)...(41)	
<400> 97	
acccgggtctg ngnactgccc gccttctggg gcttccttta naggatacag tctttaccc	60
atctaggact cctgccaccc tgactgctga cttacagcta tgaggcccg gcttct	116
<210> 98	
<211> 307	
<212> DNA	
<213> mouse	
<400> 98	
ccccgggcca tctgtcgcca taccgggccc gtcaagctt ttgcagggtt tagaagatgg	60
cgaattcatg acacctgtga tccaggacaa cccctcaggg tggggccct gtgcgttcc	120
tgagcaattt cgggatatgc cctaccagcc attcagcaaa ggagatcgcc tggaaaggt	180
tgcagactgg acaggggcca cataccagga caagaggtac acaaacaagt attccctctca	240
tttcgggtggg gggagtcaat atgcataattt ccatgaggag gatgagacaa gtttccagc	300
tgggtgg	307
<210> 99	
<211> 360	
<212> DNA	
<213> mouse	
<220>	
<400> 99	
ccttggtgca ccagctccag cctcaggact tcctccttgc ggcctgaca gcccaactct	60
tgtcccaagca gaatccagtg acaggaagga gtttctgagg caggggagga ggcttctcca	120
tgggaaccag acagccttgc ttcaactgtat aagtgcctg atcacacgca gaatgaagtg	180
ccaggttgct cagaaggcaca aagggtgtgg ctactggccc taaccatgga ctacgtggtt	240
ctaacccaaag actctagaac tctgggtgg gggagaaaaca atgtgttctg tgctccagaa	300

ctcggcgtt cctggcccat atggatgggc ttggcaagga acctacacctct tctctaagg 360

<210> 100

<211> 257

<212> DNA

<213> mouse

<400> 100

tgccgcgcgtg agaggggggg ccgcaccacc accgcacca ccaccaccgc cgccgcgc	60
gggtgggggtg ggagggggcg gggccaccgc taccgcgc gcctcccg ggccgcgc	120
tctccttaga cggccggcgc acaggacgag ggcttcatca ctgtaaatgg ttgcaagccg	180
acaaagctgc acctcctgaa aaagacggac agcccatcgc gtgagctgta gaaatttg	240
gacgcatttc tatcggt	257

<210> 101

<211> 203

<212> DNA

<213> mouse

<400> 101

ccaaagtgc cattgtgatt caagacgata gccttccac ggggccccct ccacagatcc	60
gcatcctcaa gaggcccacc agcaacgggtg tggtcagcag ccccaactcc accagcaggc	120
cagcccttcc tgtcaagtcc ctagcacagc gggaggcaga gtatgcagag gctcggagac	180
ggatcctagg cagtgcgcage cct	203

<210> 102

<211> 300

<212> DNA

<213> mouse

<400> 102

agtacagaga cctcggctgc agcttaaacc tcggacagtg gcaacgcccc tcaatcaagt	60
agccaacccc aactcagcca tctttggggg agccaggccc agagaggaag tggttcagaa	120
ggagcaagaa tgagcttagg ttgggaggga atggggcgtg ggggagctgg agcaagacca	180
cggcctgggt gcagccggtc gcccatacagg cccattcccc gcctggact gtcctccctt	240
cagcggaaac acagagcttg tgagtgcattg tcagctgtta acaagtgggt tctagtacat	300

<210> 103

<211> 370

<212> DNA

<213> mouse

<220>

<400> 103

cagcaactgt ttcaggagct gcacgggtgtc cgcctgctga ctgatgcgt ggaactaaca	60
ctggcggtgg ccccaaaga aaaccctccg gtatgcgttc cagccaaaga gacggagagg	120
gccatggaga tcctcaaagt gctcttaat atcaccttg actctgtcaa gagggaaattt	180
gatgaggaag atgctgcctt ttaccgtac ctggggactc ttctgcggca ctgcgtgtatg	240
gttgaagctg ctggggaccg cacagaggag ttccacggcc acacggtgaa tctctgggg	300
aacttgccttcaatgtttt ggtatgtgtt ctggccctgg agctccacga aggatccctt	360
gagtcaatgg	370

<210> 104

<211> 423

<212> DNA

<213> mouse

<400> 104

tttccccagcc tgggtggagca gccgactggc gagggtgtccaa actgtccccgt gcttccccagc	60
---	----

tcctacccctg cctgtcttct ctctcctggg aagatgttcc tggtggggct gacgggaggc	120
atcgccctcg gcaagagctc cgtcatccag gtattccaac agctgggctg tgctgtaatc	180
gacgtggacg tcattgcgcg gcacgttgc cagccagggt atcctgccca ccggcgtata	240
gtagaggect ttggactga agtcttgctg gagaatggcg acatcgaccg caaggteetc	300
ggagacctga tcttcaacca gcctgaccgt cgccagctgc tcaactccat tacccacccct	360
gagatccgca agaaaatgtat gaaggagacc ttcaagtact tctccgaggt accgatacgt	420
gat	423
<210> 105	
<211> 117	
<212> DNA	
<213> mouse	
<400> 105	
agcttttgtgc ttttcatatt taaactgata aagactcttc ataggagctg agggtagcaa	60
ccccgcgtcg gtgactgggg tctcacacag gttcagcaact tggagcatag tgaggtg	117
<210> 106	
<211> 133	
<212> DNA	
<213> mouse	
<400> 106	
ttttttttttt aaaataccac catttccaat cccaaaaagaa catggcactt gtttgtttct	60
tcccccctc attcattcca gactttcaag tgtttcttc aatactgagg ctttctcctg	120
cagctctggt ctg	133
<210> 107	
<211> 217	
<212> DNA	
<213> mouse	
<220>	
<221> unsure	
<222> (1) ... (1)	
<221> unsure	
<222> (11) ... (11)	
<221> unsure	
<222> (18) ... (23)	
<221> unsure	
<222> (34) ... (34)	
<221> unsure	
<222> (37) ... (38)	
<221> unsure	
<222> (40) ... (42)	
<221> unsure	
<222> (50) ... (52)	
<221> unsure	
<222> (55) ... (58)	
<221> unsure	
<222> (152) ... (152)	
<221> unsure	

<222> (155) ... (155)

<221> unsure

<222> (165) ... (165)

<400> 107

nttttttttg ngcgcacnnn nnngnnnnncg cccnggnngn nnagcctacn nncannnnngt	60
tttcttcagg aggtgaaga cctgaacgta aagttggaaag gggagccttc catgcggaaa	120
ccaaagcagc ggccgcggcc ggagccccctc ancanccca ccaangcggg cacttcatc	180
ccccctcttg tctactccaa catcacccct taccaga	217

<210> 108

<211> 346

<212> DNA

<213> mouse

<220>

<400> 108

gggcatagaa ggcatacgaa aaagaatact tatttgaatt gaaggaagat gaagaggcct	60
gcaggaaggc tcagaagaca ggagtgtttt acctttca tgacctggat cctttgctcc	120
aggcgtaggg acatcgatac ctgggtcccc ggcttagccg agcagaggta gaagggctgc	180
tgggttaaggc cggacaggat tcgcaaagaa ttgaagattc ggtgctggtt ggggtgctccg	240
agcagcagga agcatggttt gctttgatc tagtgtctgaa gagtcctcc tccagccgtg	300
gacaagtatc gctgctccag cagcttact gctgtaaaga ggatct	346

<210> 109

<211> 242

<212> DNA

<213> mouse

<400> 109

ccacattgtc cacaactgga aggcacgatg gttcatcctt cggcagaaca cgctcctgt	60
ttacaagcta gaggggtggcc ggcgagaac ccccccacag gggaggattt tccttgatgg	120
ctgcaccatc acctgccccct gcctggagta tgaaaacccgg cgcctcctca ttaaactgaa	180
gaccgcgaaact tccactgagt acttcctgga agctgttct cgagaggaga gagactcctg	240
gg	242

<210> 110

<211> 310

<212> DNA

<213> mouse

<220>

<400> 110

cccgccggg aatccaggtg gtagctggtg gagtcgcctc cggagagtga cgccgagact	60
cggctccccc gcccggccgc ctcctggcg cctcgccgcgt gtctcccttg ctccctgaga	120
tcgctgagcg ctgagcagcg gcccggaga ggaggccttg ggacgcgggg cgccgagagg	180
gaggcgccggc gggcagtggg ggcgcggcg atctctatat ggacgcgt ctgtcggtc	240
tggctgtcccg gctgtcgcc tcggccgnc cggccgtcc tatgggtct tctgaa-gg	300
ggctgaccccg	310

<210> 111

<211> 228

<212> DNA

<213> mouse

<400> 111

ttctttttta acatttggtg gttttttctt ttactctttt tttctttcc ttcttttct	60
gcctcaacc ccccaactcc tttggtatga agtactttta acatttatat ttcattgtta	120

cactttaaat	tttgtaagga	aaactctgat	atttcattcc	tcctgaacca	ctaattgttag	180	
aatttatttc	taagaatcag	tcaacatgta	tactcttaat	agtgaatt	228		
<210>	112						
<211>	292						
<212>	DNA						
<213>	mouse						
<400>	112						
gtggggtccc	agacttgcca	accaaaggc	cattcctgg	atatggttct	ggcttcagct	60	
ctggggcat	ggactatgg	atgggtgg	gcaaggaggc	tgggaccgag	tctcgcttca	120	
aacagtggac	ctcaatgatg	gaagggctgc	catctgtggc	cacacaagaa	gccaccatgc	180	
acaaaaacgg	cgctatagtg	gcccctggta	agacccgagg	aggttcaacca	tacaaccagt	240	
ttgatataat	cccagggtgac	acactgggtg	gccatacggg	tcctgctgg	ga	292	
<210>	113						
<211>	255						
<212>	DNA						
<213>	mouse						
<220>							
<400>	113						
tttagatgact	taggacttta	atgtttcca	tgca	tgctcgat	tgaaaacact	gatacatgaa	60
caaccagaaa	aagacctcag	caatgtatag	acctggata	tatagtgtg	ccctggtaa	120	
actacaagaa	cagccacgtg	atcacagttt	gagggtgaa	ggcaggggtg	tgactgagtt	180	
ttgtttaacg	gcctaaccga	aaagcaaaga	atcaaccatt	tcttctactt	gtggcaagaa	240	
acgagagtca	tttgt					255	
<210>	114						
<211>	197						
<212>	DNA						
<213>	mouse						
<400>	114						
gaccCACATG	tgaacagccg	cgtgtatgtc	acactgctct	gtgtgtgatt	tcttcacgtg	60	
tgcatgtgcg	ctcttggct	ttccacttat	tgccctcg	gtaa	gaaacc	120	
tgccaaggag	gttttattcc	ttttttttt	aaagatgaca	aatgtacaga	.tgtagtaca	180	
gatgttaatg	tacagat					197	
<210>	115						
<211>	205						
<212>	DNA						
<213>	mouse						
<400>	115						
aaaacatttc	acaaaacacgc	aaaacaaaat	tgatacaatc	aaaaaaacaa	cactataacc	60	
aacatagg	aaaacagcc	aacacataat	gtacaatctg	gtgtccagg	acaacatct	120	
gtcatataca	tgttatatac	atataactt	tttca	tatattatga	caatatatat	180	
ttaaaatttt	gttatagaca	aaaaaa				205	
<210>	116						
<211>	202						
<212>	DNA						
<213>	mouse						
<220>							
<400>	116						
cctccctcat	cctctacttc	cctttccctt	cctgcttgat	tttctcattc	cagaccccta	60	

tgcacacaca cacacacaca cacacacaca cacgaacaca cgcacacaca cacacacacg	120
cacacacaca ctgtccatcc atagttactt atttagttt ccattcctag agagatctaa	180
tcatccccta gtcagtgcct aa	202
<210> 117	
<211> 240	
<212> DNA	
<213> mouse	
<400> 117	
ccgcccaggag aggagataca cagccagtga tggaccac cggatggctg ttgctgctgc	60
cgcttctgct gtgtgaagga gcgcagccc tggagtgcta cagctgcgtg cagaaggcgg	120
acgatggatg cgctccgcac aggatgaaga cagtc当地atg tggccccggg gtggacgtct	180
gtaccggagc cgtgggagcg gtagagacca tccacggca attctctgtg gcggtgcggg	240
<210> 118	
<211> 527	
<212> DNA	
<213> Human	
<400> 118	
ccgtcagtct agaaggataa gagaaagaaa gttaagcaac tacaggaaat ggcttggga	60
gttccaatat cagtttatct tttattcaac gcaatgacag cactgaccga agaggcagcc	120
gtgactgtaa cacctccaaat cacagcccag caaggtaact ggacagttaa caaaacagaa	180
gctcacaaca tagaaggacc catagccttg aagttctcac accttgcct ggaagatcat	240
aacagttact gcatcaacgg tgcttgca ttccaccatg agctagagaa agccatctgc	300
agggtttta ctggttatac tggagaaaagg tggagact tgactttaac ttcatatgct	360
gtggattctt atgaaaataa cattgcaatt gggattgggt ttggattact attaagtgg	420
tttcttgtta tttttactg ctatataaga aagagggtgc taaaattgaa atcgccctac	480
aatgtctgtt ctggagaaaag acgaccactg tgaggcctt gtgaaga	527
<210> 119	
<211> 655	
<212> DNA	
<213> Rat	
<400> 119	
atggcgccccc cccgcgcctg gtgggtggctg cggccgcctgg cggcgctcgc cctggcgctg	60
gcccgtggccggccccc agcccgccccc ggccagatgc cggccccccgc agaggcgggg	120
ccccccatcacttgcgttccac cgaggaggag ctggccgcgt acagcggcga ggaggaggat	180
caaccatcacttgcgttccac cgaggaggag ctggccgcgt acagcggcga ggaggaggat	240
tatggacgtg gagccccctcaacgccttg gcccggaaagg actcgagcag aggtgtggcc	300
aagatgtcgc tggatcttcact catgacattt ctggctcact tggccaaaggag	360
ctggaaaggccc tggatgacat ctgcggccaaag gtgtacaaaag cccaaatacccc catttgtggc	420
tacacggccc ggaggatcc caacggaggat ggcagccccca acctggactt caaggctgaa	480
gaccagcccc attttgcacaaaggacggat ttctaatgtc tagctgagaa gctggttcta	540
ggggagggatg agggggacagg agttaaatgt cccacggaaac aaggcgggaa agcctctgag	600
tgctctgcataataaaaa ctgatattta actggaaaaaaa aaaaaaaaaaaaaa	655
<210> 120	
<211> 176	
<212> PRT	
<213> Rat	
<400> 120	
Met Val Pro Cys Phe Leu Leu Ser Leu Leu Leu Val Arg Pro Ala	
1 5 10 15	
Pro Val Val Ala Tyr Ser Val Ser Leu Pro Ala Ser Phe Leu Glu Glu	
20 25 30	
Val Ala Gly Ser Gly Glu Ala Glu Gly Ser Ser Ala Ser Ser Pro Ser	
35 40 45	

Leu Leu Pro Pro Arg Thr Pro Ala Phe Ser Pro Thr Pro Gly Arg Thr
 50 55 60
 Gln Pro Thr Ala Pro Val Gly Pro Val Pro Pro Thr Asn Leu Leu Asp
 65 70 75 80
 Gly Ile Val Asp Phe Phe Arg Gln Tyr Val Met Leu Ile Ala Val Val
 85 90 95
 Gly Ser Leu Thr Phe Leu Ile Met Phe Ile Val Cys Ala Ala Leu Ile
 100 105 110
 Thr Arg Gln Lys His Lys Ala Thr Ala Tyr Tyr Pro Ser Ser Phe Pro
 115 120 125
 Glu Lys Lys Tyr Val Asp Gln Arg Asp Arg Ala Gly Gly Pro His Ala
 130 135 140
 Phe Ser Glu Val Pro Asp Arg Ala Pro Asp Ser Arg Gln Glu Glu Gly
 145 150 155 160
 Leu Asp Phe Phe Gln Gln Leu Gln Ala Asp Ile Leu Ala Cys Tyr Ser
 165 170 175

<210> 121
 <211> 116
 <212> PRT
 <213> Rat

<400> 121
 Met Glu Leu Leu Tyr Trp Cys Leu Leu Cys Leu Leu Leu Pro Leu Thr
 1 5 10 15
 Ser Arg Thr Gln Lys Leu Pro Thr Arg Asp Glu Glu Leu Phe Gln Met
 20 25 30
 Gln Ile Arg Asp Lys Ala Leu Phe His Asp Ser Ser Val Ile Pro Asp
 35 40 45
 Gly Ala Glu Ile Ser Ser Tyr Leu Phe Arg Asp Thr Pro Arg Arg Tyr
 50 55 60
 Phe Phe Met Val Glu Glu Asp Asn Thr Pro Leu Ser Val Thr Val Thr
 65 70 75 80
 Pro Cys Asp Ala Pro Leu Glu Trp Lys Leu Ser Leu Gln Glu Leu Pro
 85 90 95
 Glu Glu Ser Ser Ala Asp Gly Ser Gly Asp Pro Glu Pro Leu Asp Gln
 100 105 110
 Gln Lys Gln Gln
 115

<210> 122
 <211> 64
 <212> PRT
 <213> Human

<400> 122
 Met Asn Leu Leu Ile Gly Ser Ile Ile Leu Ser Ser Phe Leu Val Leu
 1 5 10 15
 Ser Asp Gly Asp Thr Thr Ala Ser Pro Ser Ser Met Ser Ser Ser Ser
 20 25 30
 Val Leu Asn His Ile Ser Ser Ser Ser Ser Ser Val Trp His Leu Phe
 35 40 45
 Asp Ile Cys Asp Ser Ser Lys Trp Asn Ala Tyr Cys Gln Val Trp Gly
 50 55 60

<210> 123
 <211> 68
 <212> PRT
 <213> Human

<400> 123

Met Leu Thr Leu Pro Ile Leu Val Cys Lys Val Gln Asp Ser Asn Arg
 1 5 10 15
 Arg Lys Met Leu Pro Thr Gln Phe Leu Phe Leu Leu Gly Val Leu Gly
 20 25 30
 Ile Phe Gly Leu Thr Phe Ala Phe Ile Ile Gly Leu Asp Gly Ser Thr
 35 40 45
 Gly Pro Thr Arg Phe Phe Leu Phe Gly Ile Leu Phe Ser Ile Cys Phe
 50 55 60
 Ser Cys Leu Leu
 65

<210> 124
<211> 110
<212> PRT
<213> mouse

<400> 124
 Met Ile Ser Pro Ala Trp Ser Leu Phe Leu Ile Gly Thr Lys Ile Gly
 1 5 10 15
 Leu Phe Phe Gln Val Ala Pro Leu Ser Val Val Ala Lys Ser Cys Pro
 20 25 30
 Ser Val Cys Arg Cys Asp Ala Gly Phe Ile Tyr Cys Asn Asp Arg Ser
 35 40 45
 Leu Thr Ser Ile Pro Val Gly Ile Pro Glu Asp Ala Thr Thr Leu Tyr
 50 55 60
 Leu Gln Asn Asn Gln Ile Asn Asn Val Gly Ile Pro Ser Asp Leu Lys
 65 70 75 80
 Asn Leu Leu Lys Val Gln Arg Ile Tyr Leu Tyr His Asn Ser Leu Asp
 85 90 95
 Glu Phe Pro Thr Asn Leu Pro Lys Tyr Val Lys Glu Leu His
 100 105 110

<210> 125
<211> 330
<212> PRT
<213> mouse

<400> 125
 Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Ser Leu Pro Leu Leu
 1 5 10 15
 Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala Cys Pro Cys Leu Arg
 20 25 30
 Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg Val Asp Lys Arg Phe
 35 40 45
 Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu Val Arg Lys Ser Lys
 50 55 60
 Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His Arg Thr Pro Ala Ser
 65 70 75 80
 Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu Ser Glu Glu Ser His
 85 90 95
 Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His Arg Gly Gln Arg Thr
 100 105 110
 Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg Glu His Leu Pro Glu
 115 120 125
 Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe Ser Phe Asp Leu Leu
 130 135 140
 Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro Ala Gly Pro Lys Ala
 145 150 155 160
 Ser Val Arg Leu Cys Tyr Gln Trp Ala Leu Glu Cys Glu Asp Leu Ser
 165 170 175
 Ser Pro Phe Asp Thr Gln Lys Ile Val Ser Gly Gly His Thr Val Asp

	180	185	190
Leu Pro Tyr Glu Phe Leu Leu Pro Cys Met Cys Ile Glu Ala Ser Tyr			
195	200	205	
Leu Gln Glu Asp Thr Val Arg Arg Lys Lys Cys Pro Phe Gln Ser Trp			
210	215	220	
Pro Glu Ala Tyr Gly Ser Asp Phe Trp Gln Ser Ile Arg Phe Thr Asp			
225	230	235	240
Tyr Ser Gln His Asn Gln Met Val Met Ala Leu Thr Leu Arg Cys Pro			
245	250	255	
Leu Lys Leu Glu Ala Ser Leu Cys Trp Arg Gln Asp Pro Leu Thr Pro			
260	265	270	
Cys Glu Thr Leu Pro Asn Ala Thr Ala Gln Glu Ser Glu Gly Trp Tyr			
275	280	285	
Ile Leu Glu Asn Val Asp Leu His Pro Gln Leu Cys Phe Lys Phe Ser			
290	295	300	
Phe Glu Asn Ser Ser His Val Glu Cys Pro His Gln Ser Gly Ser Leu			
305	310	315	320
Pro Ser Trp Thr Val Ser Met Asp Thr Gln			
325	330		

<210> 126

<211> 37

<212> PRT

<213> Rat

<400> 126

Met Leu Trp Val Leu Leu Ser Leu Thr Pro Leu Leu Ser Pro Leu Ile			
1	5	10	15
Phe Phe Pro Val Lys Thr Val Ala Leu Glu Glu Ile Ser Thr Ile Cys			
20	25	30	
Arg Ala Asp Val Leu			
35			

<210> 127

<211> 42

<212> PRT

<213> mouse

<400> 127

Met Gly Ser Pro Ile Ser Gly Val Cys Pro Val Leu Pro Gly Gly Leu			
1	5	10	15
Phe Val Ala Leu Gly Trp Ile Phe Leu Leu Phe His Arg Asp Ala Phe			
20	25	30	
Ser Leu His Thr Met Ser Ala Gly Phe Pro			
35	40		

<210> 128

<211> 253

<212> PRT

<213> mouse

<400> 128

Met Met Tyr Trp Ile Val Phe Ala Ile Phe Met Ala Ala Glu Thr Phe			
1	5	10	15
Thr Asp Ile Phe Ile Ser Trp Ser Gly Pro Arg Ile Gly Arg Pro Trp			
20	25	30	
Gly Trp Glu Gly Pro His His His His His Leu Ala Ser Gly Ser His			
35	40	45	
Lys Pro Leu Pro Leu Leu Thr His Arg Phe Pro Phe Tyr Tyr Glu Phe			
50	55	60	
Lys Met Ala Phe Val Leu Trp Leu Leu Ser Pro Tyr Thr Lys Gly Ala			

65	70	75	80
Ser Leu Leu Tyr Arg Lys Phe Val His Pro Ser Leu Ser Arg His Glu			
85	90	95	
Lys Glu Ile Asp Ala Cys Ile Val Gln Ala Lys Glu Arg Ser Tyr Glu			
100	105	110	
Thr Met Leu Ser Phe Gly Lys Arg Ser Leu Asn Ile Ala Ala Ser Ala			
115	120	125	
Ala Val Gln Ala Ala Thr Lys Ser Gln Gly Ala Leu Ala Gly Arg Leu			
130	135	140	
Arg Ser Phe Ser Met Gln Asp Leu Arg Ser Ile Pro Asp Thr Pro Val			
145	150	155	160
Pro Thr Tyr Gln Asp Pro Leu Tyr Leu Glu Asp Gln Val Pro Arg Arg			
165	170	175	
Arg Pro Pro Ile Gly Tyr Arg Pro Gly Gly Leu Gln Gly Ser Asp Thr			
180	185	190	
Glu Asp Glu Cys Trp Ser Asp Asn Glu Ile Val Pro Gln Pro Pro Val			
195	200	205	
Arg Pro Arg Glu Lys Pro Leu Gly Arg Ser Gln Ser Leu Arg Val Val			
210	215	220	
Lys Arg Lys Pro Leu Thr Arg Glu Gly Thr Ser Arg Ser Leu Lys Val			
225	230	235	240
Arg Thr Arg Lys Lys Ala Met Pro Ser Asp Met Asp Ser			
245	250		

<210> 129

<211> 40

<212> PRT

<213> mouse

<400> 129

Met Lys Ala Met Ala Leu Ser Leu Gly Ala Ser Pro Val Leu Ala Phe			
1	5	10	15
Leu Leu Ser Gly Tyr Ser Asp Gly Tyr Gln Val Cys Ser Arg Phe Gly			
20	25	30	
Ser Lys Val Pro Gln Phe Leu Asn			
35	40		

<210> 130

<211> 87

<212> PRT

<213> mouse

<400> 130

Met Ile Ala Val Thr Phe Ala Ile Val Leu Gly Val Ile Ile Tyr Arg			
1	5	10	15
Ile Ser Thr Ala Ala Ala Leu Ala Met Asn Ser Ser Pro Ser Val Arg			
20	25	30	
Ser Asn Ile Arg Val Thr Val Thr Ala Thr Ala Val Ile Ile Asn Leu			
35	40	45	
Val Val Ile Ile Leu Leu Asp Glu Val Tyr Gly Cys Ile Ala Arg Trp			
50	55	60	
Leu Thr Lys Ile Gly Glu Cys His Val Gln Asp Ser Ile Gly Ser Met			
65	70	75	80
Gly Leu Gly Gln Gly Gln Pro			
85			

<210> 131

<211> 70

<212> PRT

<213> mouse

<400> 131

Met Phe Gly Leu Val His Val Cys Thr Cys Val Cys Val Cys Val Cys
 1 5 10 15
 Val Cys Val Cys Val Cys Ile Cys Ser Cys Gly Tyr Val His Val Pro
 20 25 30
 Cys Gly Cys Val Cys Leu Trp Gly Pro Glu Val Arg Tyr Leu Pro Leu
 35 40 45
 Ser Leu His Pro Gly Gly Phe Cys Phe Val Leu Phe Cys Phe Gly Pro
 50 55 60
 Gly Leu Ser Leu Ile Ser
 65 70

<210> 132

<211> 63
 <212> PRT
 <213> mouse

<400> 132

Met Trp Leu Leu Val Ala Leu Thr Leu Ser Val Tyr Ser Leu Val Ala
 1 5 10 15
 Phe Val Thr Gly Met Leu Cys Asp Thr Val Val Ile Lys Met Leu Met
 20 25 30
 Ser Leu His Lys Ser Ser Lys Leu Asn Pro Arg Ala Lys Cys Gly Gly
 35 40 45
 Val Pro Leu Ile Pro Ala Leu Trp Gly Gln Val Gln Val Val Leu
 50 55 60

<210> 133

<211> 39
 <212> PRT
 <213> mouse

<400> 133

Met Asp Asn Thr Leu Ser Ile Ile Ile Tyr Leu Leu Phe Ile Phe Ala
 1 5 10 15
 Ile Ser Val Leu Asp Ser Gln Leu Ser Thr Arg Cys Leu Trp Trp Phe
 20 25 30
 Ser Lys Asp Leu Glu Val Thr
 35

<210> 134

<211> 90
 <212> PRT
 <213> Rat

<400> 134

Met Pro Thr Met Trp Pro Leu Leu His Val Leu Trp Leu Ala Leu Val
 1 5 10 15
 Cys Gly Ser Val His Thr Thr Leu Ser Lys Ser Asp Ala Lys Lys Ala
 20 25 30
 Ala Ser Lys Thr Leu Leu Glu Lys Thr Gln Phe Ser Asp Lys Pro Val
 35 40 45
 Gln Asp Arg Gly Leu Val Val Thr Asp Ile Lys Ala Glu Asp Val Val
 50 55 60
 Leu Glu His Arg Ser Tyr Cys Ser Ala Arg Ala Arg Glu Arg Asn Phe
 65 70 75 80
 Ala Gly Glu Val Leu Gly Ile Cys His Ser
 85 90

<210> 135

<211> 193

<212> PRT
 <213> Rat

<400> 135

Met	Thr	Ser	Gly	Pro	Gly	Gly	Pro	Ala	Ala	Ala	Thr	Gly	Gly	Lys	
1				5				10			15				
Asp	Thr	His	Gln	Trp	Tyr	Val	Cys	Asn	Arg	Glu	Lys	Leu	Cys	Glu	Ser
				20				25			30				
Leu	Gln	Ser	Val	Phe	Val	Gln	Ser	Tyr	Leu	Asp	Gln	Gly	Thr	Gln	Ile
				35				40			45				
Phe	Leu	Asn	Asn	Ser	Ile	Glu	Lys	Ser	Gly	Trp	Leu	Phe	Ile	Gln	Leu
				50				55			60				
Tyr	His	Ser	Phe	Val	Ser	Ser	Val	Phe	Thr	Leu	Phe	Met	Ser	Arg	Thr
				65				70			75			80	
Ser	Ile	Asn	Gly	Leu	Leu	Gly	Arg	Gly	Ser	Met	Phe	Val	Phe	Ser	Pro
				85				90			95				
Asp	Gln	Phe	Gln	Arg	Leu	Leu	Lys	Ile	Asn	Pro	Asp	Trp	Lys	Thr	His
				100				105			110				
Arg	Leu	Leu	Asp	Leu	Gly	Ala	Gly	Asp	Gly	Glu	Val	Thr	Lys	Ile	Met
				115				120			125				
Ser	Pro	His	Phe	Glu	Glu	Ile	Tyr	Ala	Thr	Glu	Leu	Ser	Glu	Thr	Met
				130				135			140				
Ile	Trp	Gln	Leu	Gln	Lys	Lys	Tyr	Arg	Val	Leu	Gly	Ile	Asn	Glu	
				145				150			155			160	
Trp	Gln	Asn	Thr	Gly	Phe	Gln	Tyr	Asp	Val	Ile	Ser	Cys	Leu	Asn	Leu
				165				170			175				
Leu	Asp	Arg	Cys	Asp	Gln	Pro	Leu	Thr	Leu	Leu	Lys	Asp	Ile	Arg	Met
				180				185			190				
Ser															

<210> 136
 <211> 106
 <212> PRT
 <213> Rat

<400> 136

Met	Ala	Ala	Pro	Met	Asp	Arg	Thr	His	Gly	Gly	Arg	Ala	Ala	Arg	Ala
1				5				10			15				
Leu	Arg	Arg	Ala	Leu	Ala	Leu	Ala	Ser	Leu	Ala	Gly	Leu	Leu	Ser	
				20				25			30				
Gly	Leu	Ala	Gly	Ala	Leu	Pro	Thr	Leu	Gly	Pro	Gly	Trp	Arg	Arg	Gln
				35				40			45				
Asn	Pro	Glu	Pro	Pro	Ala	Ser	Arg	Thr	Arg	Ser	Leu	Leu	Asp	Ala	
				50				55			60				
Ala	Ser	Gly	Gln	Leu	Arg	Leu	Glu	Tyr	Gly	Phe	His	Pro	Asp	Ala	Val
				65				70			75			80	
Ala	Trp	Ala	Asn	Leu	Thr	Asn	Ala	Ile	Arg	Glu	Thr	Gly	Trp	Ala	Tyr
				85				90			95				
Leu	Asp	Leu	Gly	Thr	Asn	Gly	Ser	Tyr	Lys						
				100				105							

<210> 137
 <211> 286
 <212> PRT
 <213> Rat

<400> 137

Met	Ala	Ala	Ala	Met	Pro	Leu	Gly	Leu	Ser	Leu	Leu	Leu	Val	Leu	
1				5				10			15				
Val	Gly	Gln	Gly	Cys	Cys	Gly	Arg	Val	Glu	Gly	Pro	Arg	Asp	Ser	Leu

20	25	30
Arg Glu Glu Leu Val Ile Thr Pro Leu Pro Ser Gly Asp Val Ala Ala		
35	40	45
Thr Phe Gln Phe Arg Thr Arg Trp Asp Ser Asp Leu Gln Arg Glu Gly		
50	55	60
Val Ser His Tyr Arg Leu Phe Pro Lys Ala Leu Gly Gln Leu Ile Ser		
65	70	75
Lys Tyr Ser Leu Arg Glu Leu His Leu Ser Phe Thr Gln Gly Phe Trp		
85	90	95
Arg Thr Arg Tyr Trp Gly Pro Pro Phe Leu Gln Ala Pro Ser Gly Ala		
100	105	110
Glu Leu Trp Val Trp Phe Gln Asp Thr Val Thr Asp Val Asp Lys Ser		
115	120	125
Trp Lys Glu Leu Ser Asn Val Leu Ser Gly Ile Phe Cys Ala Ser Leu		
130	135	140
Asn Phe Ile Asp Ser Thr Asn Thr Val Thr Pro Thr Ala Ser Phe Lys		
145	150	155
Pro Leu Gly Leu Ala Asn Asp Thr Asp His Tyr Phe Leu Arg Tyr Ala		
165	170	175
Val Leu Pro Arg Glu Val Val Cys Thr Glu Asn Leu Thr Pro Trp Lys		
180	185	190
Lys Leu Leu Pro Cys Ser Ser Lys Ala Gly Leu Ser Val Leu Leu Lys		
195	200	205
Ala Asp Arg Leu Phe His Thr Ser Tyr His Ser Gln Ala Val His Ile		
210	215	220
Arg Pro Ile Cys Arg Asn Ala His Cys Thr Ser Ile Ser Trp Glu Leu		
225	230	235
Arg Gln Thr Leu Ser Val Val Phe Asp Ala Phe Ile Thr Gly Gln Gly		
245	250	255
Lys Lys Glu Ala Cys Pro Leu Ala Ser Gln Ser Leu Val Tyr Val Asp		
260	265	270
Ile Thr Gly Tyr Ser Gln Asp Asn Glu Thr Leu Glu Val Ser		
275	280	285

<210> 138

<211> 198

<212> PRT

<213> Rat

<400> 138

Met Thr Val Phe Arg Lys Val Thr Thr Met Ile Ser Trp Met Leu Leu		
1	5	10
Ala Cys Ala Leu Pro Cys Ala Ala Asp Pro Met Leu Gly Ala Phe Ala		
20	25	30
Arg Arg Asp Phe Gln Lys Gly Gly Pro Gln Leu Val Cys Ser Leu Pro		
35	40	45
Gly Pro Gln Gly Pro Pro Gly Pro Pro Gly Ala Pro Gly Ser Ser Gly		
50	55	60
Met Val Gly Arg Met Gly Phe Pro Gly Lys Asp Gly Gln Asp Gly Gln		
65	70	75
Asp Gly Asp Arg Gly Asp Ser Gly Glu Glu Gly Pro Pro Gly Arg Thr		
85	90	95
Gly Asn Arg Gly Lys Gln Gly Pro Lys Gly Lys Ala Gly Ala Ile Gly		
100	105	110
Arg Ala Gly Pro Arg Gly Pro Lys Gly Val Ser Gly Thr Pro Gly Lys		
115	120	125
His Gly Ile Pro Gly Lys Lys Gly Pro Lys Gly Lys Gly Glu Pro		
130	135	140
Gly Leu Pro Gly Pro Cys Ser Cys Gly Ser Ser Arg Ala Lys Ser Ala		
145	150	155
Phe Ser Val Ala Val Thr Lys Ser Tyr Pro Arg Glu Arg Leu Pro Ile		

	165	170	175												
Lys	Phe	Asp	Lys	Ile	Leu	Met	Asn	Glu	Gly	Gly	His	Tyr	Asn	Ala	Ser
			180					185					190		
Ser	Gly	Lys	Phe	Val	Cys										
			195												

<210> 139
<211> 233
<212> PRT
<213> Rat

	<400> 139														
Met	Ala	Ser	Ala	Leu	Glu	Glu	Leu	Gln	Lys	Asp	Leu	Glu	Glu	Val	Lys
				1	5				10					15	
Val	Leu	Leu	Glu	Lys	Ser	Thr	Arg	Lys	Arg	Leu	Arg	Asp	Thr	Leu	Thr
						20			25					30	
Asn	Glu	Lys	Ser	Lys	Ile	Glu	Thr	Glu	Leu	Arg	Asn	Lys	Met	Gln	Gln
					35			40				45			
Lys	Ser	Gln	Lys	Lys	Pro	Glu	Phe	Asp	Asn	Glu	Lys	Pro	Ala	Ala	Val
					50			55			60				
Val	Ala	Pro	Leu	Thr	Thr	Gly	Tyr	Thr	Val	Lys	Ile	Ser	Asn	Tyr	Gly
					65			70			75			80	
Trp	Asp	Gln	Ser	Asp	Lys	Phe	Val	Lys	Ile	Tyr	Ile	Thr	Leu	Thr	Gly
					85			90			95				
Val	His	Gln	Val	Pro	Ala	Glu	Asn	Val	Gln	Val	His	Phe	Thr	Glu	Arg
					100			105			110				
Ser	Phe	Asp	Leu	Leu	Val	Lys	Asn	Leu	Asn	Gly	Lys	Asn	Tyr	Ser	Met
					115			120			125				
Ile	Val	Asn	Asn	Leu	Leu	Lys	Pro	Ile	Ser	Val	Glu	Ser	Ser	Ser	Lys
					130			135			140				
Lys	Val	Lys	Thr	Asp	Thr	Val	Ile	Ile	Leu	Cys	Arg	Lys	Lys	Ala	Glu
					145			150			155			160	
Asn	Thr	Arg	Trp	Asp	Tyr	Leu	Thr	Gln	Val	Glu	Lys	Glu	Cys	Lys	Glu
					165			170			175				
Lys	Glu	Lys	Pro	Ser	Tyr	Asp	Thr	Glu	Ala	Asp	Pro	Ser	Glu	Gly	Leu
					180			185			190				
Met	Asn	Val	Lys	Lys	Ile	Tyr	Glu	Asp	Gly	Asp	Asp	Asp	Met	Lys	
					195			200			205				
Arg	Thr	Ile	Asn	Lys	Ala	Trp	Val	Glu	Ser	Arg	Glu	Lys	Gln	Ala	Arg
					210			215			220				
Glu	Asp	Thr	Glu	Phe	Leu	Gln	Pro	Gly							
					225			230							

<210> 140
<211> 38
<212> PRT
<213> Human

	<400> 140														
Met	Gly	Leu	Ala	Leu	Cys	Leu	Ala	Ser	Ala	Gly	Ile	Ser	Gly	Ser	Arg
				1	5				10				15		
Ser	Ala	Phe	Leu	Gly	Val	Pro	Arg	Pro	Arg	Pro	Thr	Leu	Ile	Lys	Leu
					20			25				30			
Ile	Asp	Thr	Val	Asp	Leu										
				35											

<210> 141
<211> 322
<212> PRT
<213> mouse

<400> 141

Met Asp Ala Arg Trp Trp Ala Val Val Val Leu Ala Thr Leu Pro Ser
 1 5 10 15
 Leu Gly Ala Gly Gly Glu Ser Pro Glu Ala Pro Pro Gln Ser Trp Thr
 20 25 30
 Gln Leu Trp Leu Phe Arg Phe Leu Leu Asn Val Ala Gly Tyr Ala Ser
 35 40 45
 Phe Met Val Pro Gly Tyr Leu Leu Val Gln Tyr Leu Arg Arg Lys Asn
 50 55 60
 Tyr Leu Glu Thr Gly Arg Gly Leu Cys Phe Pro Leu Val Lys Ala Cys
 65 70 75 80
 Val Phe Gly Asn Glu Pro Lys Ala Pro Asp Glu Val Leu Leu Ala Pro
 85 90 95
 Arg Thr Glu Thr Ala Glu Ser Thr Pro Ser Trp Gln Val Leu Lys Leu
 100 105 110
 Val Phe Cys Ala Ser Gly Leu Gln Val Ser Tyr Leu Thr Trp Gly Ile
 115 120 125
 Leu Gln Glu Arg Val Met Thr Gly Ser Tyr Gly Ala Thr Ala Thr Ser
 130 135 140
 Pro Gly Glu His Phe Thr Asp Ser Gln Phe Leu Val Leu Met Asn Arg
 145 150 155 160
 Val Leu Ala Leu Val Val Ala Gly Leu Tyr Cys Val Leu Arg Lys Gln
 165 170 175
 Pro Arg His Gly Ala Pro Met Tyr Arg Tyr Ser Phe Ala Ser Leu Ser
 180 185 190
 Asn Val Leu Ser Ser Trp Cys Gln Tyr Glu Ala Leu Lys Phe Val Ser
 195 200 205
 Phe Pro Thr Gln Val Leu Ala Ser Lys Val Ile Pro Val Met
 210 215 220
 Met Met Gly Lys Leu Val Ser Arg Arg Ser Tyr Glu His Trp Glu Tyr
 225 230 235 240
 Leu Thr Ala Gly Leu Ile Ser Ile Gly Val Ser Met Phe Leu Leu Ser
 245 250 255
 Ser Gly Pro Glu Pro Arg Ser Ser Pro Ala Thr Thr Leu Ser Gly Leu
 260 265 270
 Val Leu Leu Ala Gly Tyr Ile Ala Phe Asp Ser Phe Thr Ser Asn Trp
 275 280 285
 Gln Asp Ala Leu Phe Ala Tyr Lys Met Ser Ser Val Gln Met Met Phe
 290 295 300
 Gly Val Asn Leu Phe Ser Cys Leu Phe Thr Val Gly Ser Leu Leu Glu
 305 310 315 320
 Gln Gly

<210> 142

<211> 312

<212> PRT

<213> mouse

<400> 142

Met Leu Cys Leu Cys Leu Tyr Val Pro Ile Ala Gly Ala Ala Gln Thr
 1 5 10 15
 Glu Phe Gln Tyr Phe Glu Ser Lys Gly Leu Pro Ala Glu Leu Lys Ser
 20 25 30
 Ile Phe Lys Leu Ser Val Phe Ile Pro Ser Gln Glu Phe Ser Thr Tyr
 35 40 45
 Arg Gln Trp Lys Gln Lys Ile Val Gln Ala Gly Asp Lys Asp Leu Asp
 50 55 60
 Gly Gln Leu Asp Phe Glu Glu Phe Val His Tyr Leu Gln Asp His Glu
 65 70 75 80
 Lys Lys Leu Arg Leu Val Phe Lys Ser Leu Asp Lys Lys Asn Asp Gly

	85	90	95
Arg Ile Asp Ala Gln Glu Ile Met Gln Ser Leu Arg Asp Leu Gly Val			
100	105	110	
Lys Ile Ser Glu Gln Gln Ala Glu Lys Ile Leu Lys Ser Met Asp Lys			
115	120	125	
Asn Gly Thr Met Thr Ile Asp Trp Asn Glu Trp Arg Asp Tyr His Leu			
130	135	140	
Leu His Pro Val Glu Asn Ile Pro Glu Ile Ile Leu Tyr Trp Lys His			
145	150	155	160
Ser Thr Ile Phe Asp Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe			
165	170	175	
Thr Val Glu Glu Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala			
180	185	190	
Gly Gly Gly Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp			
195	200	205	
Arg Leu Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met			
210	215	220	
Cys Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Lys			
225	230	235	240
Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro Glu			
245	250	255	
Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Met Lys Arg Leu Val Gly			
260	265	270	
Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val Ala Gly Ser			
275	280	285	
Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro Met Glu Val Leu			
290	295	300	
Lys Thr Arg Met Ala Leu Arg Lys			
305	310		

<210> 143

<211> 163

<212> PRT

<213> Rat

<400> 143

Met Pro Leu Val Thr Thr Leu Phe Tyr Ala Cys Phe Tyr His Tyr Thr			
1	5	10	15
Glu Ser Glu Gly Thr Phe Ser Ser Pro Val Asn Leu Lys Lys Thr Phe			
20	25	30	
Lys Ile Pro Asp Arg Gln Tyr Val Leu Thr Ala Leu Ala Ala Arg Ala			
35	40	45	
Lys Leu Arg Ala Trp Asn Asp Val Asp Ala Leu Phe Thr Thr Lys Asn			
50	55	60	
Trp Leu Gly Tyr Thr Lys Lys Arg Ala Pro Ile Gly Phe His Arg Val			
65	70	75	80
Val Glu Ile Leu His Lys Asn Ser Ala Pro Val Gln Ile Leu Gln Glu			
85	90	95	
Tyr Val Asn Leu Val Glu Asp Val Asp Thr Lys Leu Asn Leu Ala Thr			
100	105	110	
Lys Phe Lys Cys His Asp Val Val Ile Asp Thr Cys Arg Asp Leu Lys			
115	120	125	
Asp Arg Gln Gln Leu Leu Ala Tyr Arg Ser Lys Val Asp Lys Gly Ser			
130	135	140	
Ala Glu Glu Glu Lys Ile Asp Val Ile Leu Ser Ser Ser Gln Ile Arg			
145	150	155	160
Trp Lys Asn			

<210> 144

<211> 330

<212> PRT
 <213> Rat

<400> 144

Met Ala Gly Trp Ala Gly Ala Glu Leu Ser Val Leu Asn Pro Leu Arg
 1 5 10 15
 Ala Leu Trp Leu Leu Leu Ala Ala Ala Phe Leu Leu Ala Leu Leu Leu
 20 25 30
 Gln Leu Ala Pro Ala Arg Leu Leu Pro Ser Cys Ala Leu Phe Gln Asp
 35 40 45
 Leu Ile Arg Tyr Gly Lys Thr Lys Gln Ser Gly Ser Arg Arg Pro Ala
 50 55 60
 Val Cys Arg Ala Phe Asp Val Pro Lys Arg Tyr Phe Ser His Phe Tyr
 65 70 75 80
 Val Val Ser Val Leu Trp Asn Gly Ser Leu Leu Trp Phe Leu Ser Gln
 85 90 95
 Ser Leu Phe Leu Gly Ala Pro Phe Pro Ser Trp Leu Trp Ala Leu Leu
 100 105 110
 Arg Thr Leu Gly Val Thr Gln Phe Gln Ala Leu Gly Met Glu Ser Lys
 115 120 125
 Ala Ser Arg Ile Gln Ala Gly Glu Leu Ala Leu Ser Thr Phe Leu Val
 130 135 140
 Leu Val Phe Leu Trp Val His Ser Leu Arg Arg Leu Phe Glu Cys Phe
 145 150 155 160
 Tyr Val Ser Val Phe Ser Asn Thr Ala Ile His Val Val Gln Tyr Cys
 165 170 175
 Phe Gly Leu Val Tyr Tyr Val Leu Val Gly Leu Thr Val Leu Ser Gln
 180 185 190
 Val Pro Met Asn Asp Lys Asn Val Tyr Ala Leu Gly Lys Asn Leu Leu
 195 200 205
 Leu Gln Ala Arg Trp Phe His Ile Leu Gly Met Met Met Phe Phe Trp
 210 215 220
 Ser Ser Ala His Gln Tyr Lys Cys His Val Ile Leu Ser Asn Leu Arg
 225 230 235 240
 Arg Asn Lys Lys Gly Val Val Ile His Cys Gln His Arg Ile Pro Phe
 245 250 255
 Gly Asp Trp Phe Glu Tyr Val Ser Ser Ala Asn Tyr Leu Ala Glu Leu
 260 265 270
 Met Ile Tyr Ile Ser Met Ala Val Thr Phe Gly Leu His Asn Val Thr
 275 280 285
 Trp Trp Leu Val Val Thr Tyr Val Phe Phe Ser Gln Ala Leu Ser Ala
 290 295 300
 Phe Phe Asn His Arg Phe Tyr Lys Ser Thr Phe Val Ser Tyr Pro Lys
 305 310 315 320
 His Arg Lys Ala Phe Leu Pro Phe Leu Phe
 325 330

<210> 145
 <211> 301
 <212> PRT
 <213> Rat

<400> 145

Met Leu Val Ala Phe Leu Gly Ala Ser Ala Val Thr Ala Ser Thr Gly
 1 5 10 15
 Leu Leu Trp Lys Lys Ala His Ala Glu Ser Pro Pro Ser Val Asn Ser
 20 25 30
 Lys Lys Thr Asp Ala Gly Asp Lys Gly Lys Ser Lys Asp Thr Arg Glu
 35 40 45
 Val Ser Ser His Glu Gly Ser Ala Ala Asp Thr Ala Ala Glu Pro Tyr
 50 55 60

Pro Glu Glu Lys Lys Lys Arg Ser Gly Phe Arg Asp Arg Lys Val
 65 70 75 80
 Met Glu Tyr Glu Asn Arg Ile Arg Ala Tyr Ser Thr Pro Asp Lys Ile
 85 90 95
 Phe Arg Tyr Phe Ala Thr Leu Lys Val Ile Asn Glu Pro Gly Glu Thr
 100 105 110
 Glu Val Phe Met Thr Pro Gln Asp Phe Val Arg Ser Ile Thr Pro Asn
 115 120 125
 Glu Lys Gln Pro Glu His Leu Gly Leu Asp Gln Tyr Ile Ile Lys Arg
 130 135 140
 Phe Asp Gly Lys Lys Ile Ala Gln Glu Arg Glu Lys Phe Ala Asp Glu
 145 150 155 160
 Gly Ser Ile Phe Tyr Thr Leu Gly Glu Cys Gly Leu Ile Ser Phe Ser
 165 170 175
 Asp Tyr Ile Phe Leu Thr Thr Val Leu Ser Thr Pro Gln Arg Asn Phe
 180 185 190
 Glu Ile Ala Phe Lys Met Phe Asp Leu Asn Gly Asp Gly Glu Val Asp
 195 200 205
 Met Glu Glu Phe Glu Gln Val Gln Ser Ile Ile Arg Ser Gln Thr Ser
 210 215 220
 Met Gly Met Arg His Arg Asp Arg Pro Thr Thr Gly Asn Thr Leu Lys
 225 230 235 240
 Ser Gly Leu Cys Ser Ala Leu Thr Thr Tyr Phe Phe Gly Ala Asp Leu
 245 250 255
 Lys Gly Lys Leu Thr Ile Lys Asn Phe Leu Glu Phe Gln Arg Lys Leu
 260 265 270
 Gln Arg Cys Leu Leu Gly Leu Pro Val Trp Glu Gly Ser Pro His Leu
 275 280 285
 Pro Thr Gly His Trp Leu Arg Glu Leu Trp Ser Leu Leu
 290 295 300

<210> 146
 <211> 61
 <212> PRT
 <213> Rat

<400> 146
 Met Glu Asn Ile Tyr Tyr Thr Asn Leu Ile Thr Ile Leu Gly Asn Lys
 1 5 10 15
 His Ala Asn Gln Met Glu Leu Asn Leu Gln Ala Leu Ile Leu Ser Pro
 20 25 30
 Trp Phe Ala Val Cys Ala Pro Pro Gly Phe Ala Arg Asp Gln Ala Val
 35 40 45
 Arg Gly Leu Ala Leu Ala Gly Arg Arg Ile Thr Val Val
 50 55 60

<210> 147
 <211> 105
 <212> PRT
 <213> Rat

<400> 147
 Met Leu Arg Arg Gln Leu Val Trp Trp His Leu Leu Ala Leu Leu Phe
 1 5 10 15
 Leu Pro Phe Cys Leu Cys Gln Asp Glu Tyr Met Glu Ser Pro Gln Ala
 20 25 30
 Gly Gly Leu Pro Pro Asp Cys Ser Lys Cys Cys His Gly Asp Tyr Gly
 35 40 45
 Phe Arg Gly Tyr Gln Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Ile
 50 55 60
 Pro Gly Asn His Gly Asn Asn Gly Asn Asn Gly Ala Thr Gly His Glu

65	70	75	80
Gly Ala Lys Gly Glu	Lys Gly Asp	Lys Gly Asp	Leu Gly Pro Arg Gly
85	90		95
Glu Arg Gly Gln His	Gly Pro Lys	Gly	
100		105	

<210> 148
<211> 210
<212> PRT
<213> Rat

<400> 148			
Met Leu Gly Ala Thr Ser Leu Ser Trp Pro Trp Val Leu Trp Ala Val			
1	5	10	15
Ala Gln Arg Asp Ser Val Asp Ala Ile Gly Met Phe Leu Gly Gly Leu			
20	25	30	
Val Ala Thr Ile Phe Leu Asp Ile Ile Tyr Ile Ser Ile Phe Tyr Ser			
35	40	45	
Ser Val Ala Val Gly Asp Thr Gly Arg Phe Ser Ala Gly Met Ala Ile			
50	55	60	
Phe Ser Leu Leu Leu Gln Ala Leu Leu Leu Pro Arg Leu Pro His			
65	70	75	80
Ala Pro Gly Ser Glu Gly Val Ser Ser Arg Ser Ala Arg Ile Ser Ser			
85	90	95	
Asp Leu Leu Arg Asn Ile Val Pro Thr Arg Gln Leu Thr Arg Gln Thr			
100	105	110	
His Leu Gln Thr Pro Leu Gln Ala Trp Arg Thr Arg Ala Lys Leu Pro			
115	120	125	
Pro Gly Gly Thr Glu Ala Val Pro Gly Arg Pro Gly Ala Gln Gln Asp			
130	135	140	
Ala Cys His Leu Leu Tyr Trp Thr Tyr Asn Gly Val Ser Ser Ile Pro			
145	150	155	160
Cys His Arg Gly Gly Leu Ser His Val Pro Ser Glu Val Pro Ala Glu			
165	170	175	
Lys Ser Pro Val Leu Ile Leu His Ala Ala Pro Pro Phe Lys Thr Pro			
180	185	190	
Val Asn Pro Trp Ala Arg Thr Val Val Gly Phe Phe Pro Ser Ser Pro			
195	200	205	
Ser Leu			
210			

<210> 149
<211> 301
<212> PRT
<213> Rat

<400> 149			
Met Leu Val Ala Phe Leu Gly Ala Ser Ala Val Thr Ala Ser Thr Gly			
1	5	10	15
Leu Leu Trp Lys Lys Ala His Ala Glu Ser Pro Pro Ser Val Asn Ser			
20	25	30	
Lys Lys Thr Asp Ala Gly Asp Lys Gly Lys Ser Lys Asp Thr Arg Glu			
35	40	45	
Val Ser Ser His Glu Gly Ser Ala Ala Asp Thr Ala Ala Glu Pro Tyr			
50	55	60	
Pro Glu Glu Lys Lys Lys Arg Ser Gly Phe Arg Asp Arg Lys Val			
65	70	75	80
Met Glu Tyr Glu Asn Arg Ile Arg Ala Tyr Ser Thr Pro Asp Lys Ile			
85	90	95	
Phe Arg Tyr Phe Ala Thr Leu Lys Val Ile Asn Glu Pro Gly Glu Thr			
100	105	110	

Glu Val Phe Met Thr Pro Gln Asp Phe Val Arg Ser Ile Thr Pro Asn
 115 120 125
 Glu Lys Gln Pro Glu His Leu Gly Leu Asp Gln Tyr Ile Ile Lys Arg
 130 135 140
 Phe Asp Gly Lys Lys Ile Ala Gln Glu Arg Glu Lys Phe Ala Asp Glu
 145 150 155 160
 Gly Ser Ile Phe Tyr Thr Leu Gly Glu Cys Gly Leu Ile Ser Phe Ser
 165 170 175
 Asp Tyr Ile Phe Leu Thr Thr Val Leu Ser Thr Pro Gln Arg Asn Phe
 180 185 190
 Glu Ile Ala Phe Lys Met Phe Asp Leu Asn Gly Asp Gly Glu Val Asp
 195 200 205
 Met Glu Glu Phe Glu Gln Val Gln Ser Ile Ile Arg Ser Gln Thr Ser
 210 215 220
 Met Gly Met Arg His Arg Asp Arg Pro Thr Thr Gly Asn Thr Leu Lys
 225 230 235 240
 Ser Gly Leu Cys Ser Ala Leu Thr Thr Tyr Phe Phe Gly Ala Asp Leu
 245 250 255
 Lys Gly Lys Leu Thr Ile Lys Asn Phe Leu Glu Phe Gln Arg Lys Leu
 260 265 270
 Gln Arg Cys Leu Leu Gly Leu Pro Val Trp Glu Gly Ser Pro His Leu
 275 280 285
 Pro Thr Gly His Trp Leu Arg Glu Leu Trp Ser Leu Leu
 290 295 300

<210> 150

<211> 80

<212> PRT

<213> Human

<400> 150

Met Lys Leu Ser Gly Met Phe Leu Leu Leu Ser Leu Ala Leu Phe Cys
 1 5 10 15
 Phe Leu Thr Gly Val Phe Ser Gln Gly Gly Gln Val Asp Cys Gly Glu
 20 25 30
 Phe Gln Asp Thr Lys Val Tyr Cys Thr Arg Glu Ser Asn Pro His Cys
 35 40 45
 Gly Ser Asp Gly Gln Thr Tyr Gly Asn Lys Cys Ala Phe Cys Lys Ala
 50 55 60
 Ile Val Lys Ser Gly Gly Lys Ile Ser Leu Lys His Pro Gly Lys Cys
 65 70 75 80

<210> 151

<211> 27

<212> PRT

<213> mouse

<400> 151

Met Leu Lys Ala Ser Leu His Ile Leu Phe Leu Gly Ile Leu Asn Val
 1 5 10 15
 Pro Ile Val Asp Thr Ser Thr Lys Thr Gly Val
 20 25

<210> 152

<211> 86

<212> PRT

<213> mouse

<400> 152

Met Leu Gln Gly Pro Ala Pro Ser Cys Phe Trp Val Phe Ser Gly Ile
 1 5 10 15

Cys Val Phe Trp Asp Phe Ile Phe Ile Phe Asn Val Leu Ser
 20 25 30
 Leu Gly Asn Arg Glu Ile Ser Ala Lys Asp Phe Ala Asp Gln Pro Ala
 35 40 45
 Gly Ala Gln Gly Met Trp Gly Ile Trp Gly His Thr Ile Thr Cys Gly
 50 55 60
 Leu Ala Pro Gly Ala Lys Pro Cys Ser Leu Lys Arg Glu Gly Pro Asp
 65 70 75 80
 Leu Leu Ser Phe Pro Pro
 85

<210> 153
 <211> 72
 <212> PRT
 <213> mouse

<400> 153
 Met Ser Ala Ile Phe Asn Phe Gln Ser Leu Leu Thr Val Ile Leu Leu
 1 5 10 15
 Leu Ile Cys Thr Cys Ala Tyr Ile Arg Ser Leu Ala Pro Ser Ile Leu
 20 25 30
 Asp Arg Asn Lys Thr Gly Leu Leu Gly Ile Phe Trp Lys Cys Ala Arg
 35 40 45
 Ile Gly Glu Arg Lys Ser Pro Tyr Val Ala Ile Cys Cys Ile Val Met
 50 55 60
 Ala Phe Ser Ile Leu Phe Ile Gln
 65 70

<210> 154
 <211> 169
 <212> PRT
 <213> mouse

<400> 154
 Met Ser Gly Leu Arg Thr Leu Leu Gly Leu Gly Leu Leu Val Ala Gly
 1 5 10 15
 Ser Arg Leu Pro Arg Val Ile Ser Gln Gln Ser Val Cys Arg Ala Arg
 20 25 30
 Pro Ile Trp Trp Gly Thr Gln Arg Arg Gly Ser Glu Thr Met Ala Gly
 35 40 45
 Ala Ala Val Lys Tyr Leu Ser Gln Glu Glu Ala Gln Ala Val Asp Gln
 50 55 60
 Glu Leu Phe Asn Glu Tyr Gln Phe Ser Val Asp Gln Leu Met Glu Leu
 65 70 75 80
 Ala Gly Leu Ser Cys Ala Thr Ala Ile Ala Lys Ala Tyr Pro Pro Thr
 85 90 95
 Ser Met Ser Lys Ser Pro Pro Thr Val Leu Val Ile Cys Gly Pro Gly
 100 105 110
 Asn Asn Gly Gly Asp Gly Leu Val Cys Ala Arg His Leu Lys Leu Phe
 115 120 125
 Gly Tyr Gln Pro Thr Ile Tyr Tyr Pro Lys Arg Pro Asn Lys Pro Leu
 130 135 140
 Phe Thr Gly Leu Val Thr Gln Cys Gln Lys Met Asp Ile Pro Phe Leu
 145 150 155 160
 Gly Glu Met Pro Pro Glu Asp Gly Met
 165

<210> 155
 <211> 61
 <212> PRT
 <213> mouse

<400> 155
 Met Glu Lys Gln Met Asp Ala Ser Val Ser Val Ile Phe Gly Ser Ile
 1 5 10 15
 Val Ile Ser Ala Phe Leu Tyr Leu Ser Leu Ala Gly Pro Trp Ala Val
 20 25 30
 Thr Val Thr Gln Met Arg Thr Ile Ile Ile Thr Met Asp Gln Leu Arg
 35 40 45
 Asp Ala Leu Ile Leu Asp Gln Leu Lys Val Ala Val Ser
 50 55 60

<210> 156
 <211> 131
 <212> PRT
 <213> mouse

<400> 156
 Met Ala Pro Ser Leu Trp Lys Gly Leu Val Gly Val Gly Leu Phe Ala
 1 5 10 15
 Leu Ala His Ala Ala Phe Ser Ala Ala Gln His Arg Ser Tyr Met Arg
 20 25 30
 Leu Thr Glu Lys Glu Asp Glu Ser Leu Pro Ile Asp Ile Val Leu Gln
 35 40 45
 Thr Leu Leu Ala Phe Ala Val Thr Cys Tyr Gly Ile Val His Ile Ala
 50 55 60
 Gly Glu Phe Lys Asp Met Asp Ala Thr Ser Glu Leu Lys Asn Lys Thr
 65 70 75 80
 Phe Asp Thr Leu Arg Asn His Pro Ser Phe Tyr Val Phe Asn His Arg
 85 90 95
 Gly Arg Val Leu Phe Arg Pro Ser Asp Ala Thr Asn Ser Ser Asn Leu
 100 105 110
 Asp Ala Leu Ser Ser Asn Thr Ser Leu Lys Leu Arg Lys Phe Asp Ser
 115 120 125
 Leu Arg Arg
 130

<210> 157
 <211> 133
 <212> PRT
 <213> mouse

<400> 157
 Met Arg Leu Leu Ala Ala Ala Leu Leu Leu Leu Leu Ala Leu Cys
 1 5 10 15
 Ala Ser Arg Val Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro
 20 25 30
 Lys Ile Arg Tyr Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr
 35 40 45
 Pro His Cys Glu Glu Lys Met Val Ile Val Thr Thr Lys Glu His Val
 50 55 60
 Gln Gly Thr Gly Ala Arg Ser Thr Ala Cys Thr Leu Ser Cys Arg Ala
 65 70 75 80
 Pro Asn Ala Ser Ser Ser Gly Thr Met Pro Gly Thr Arg Ser Ala Gly
 85 90 95
 Ser Thr Lys Asn Arg Val Asp Asp His Gly Lys Lys Asn Ser Arg Pro
 100 105 110
 Val Glu Arg Leu Gln Gln Arg Thr Leu Gln Ile Lys Ile Lys Ala Leu
 115 120 125
 Ser Phe Ser Gln Ala
 130

<210> 158
<211> 78
<212> PRT
<213> mouse

<400> 158

Gly Thr Arg Lys Pro Leu Pro Met Glu Ala His Ser Arg Arg Glu Lys
1 5 10 15
Ala Ser Gly Leu Arg Leu Ala Trp His Tyr Glu Cys Ser Gly Val Ser
20 25 30
Val Trp Trp Met Cys Val Leu Gly Trp Leu Ser Phe Leu Val Phe Leu
35 40 45
Leu Phe Ser Leu Val Cys Ser Phe Pro Ser Pro Ile Asn His Ser His
50 55 60
Met Leu Pro Cys Leu Phe Leu Arg Gly Gly Ser Asn Val
65 70 75

<210> 159
<211> 206
<212> PRT
<213> mouse

<400> 159

Met Leu Pro Pro Ala Ile His Leu Ser Leu Ile Pro Leu Leu Cys Ile
1 5 10 15
Leu Met Arg Asn Cys Leu Ala Phe Lys Asn Asp Ala Thr Glu Ile Leu
20 25 30
Tyr Ser His Val Val Lys Pro Val Pro Ala His Pro Ser Ser Asn Ser
35 40 45
Thr Leu Asn Gln Ala Arg Asn Gly Gly Arg His Phe Ser Ser Thr Gly
50 55 60
Leu Asp Arg Asn Ser Arg Val Gln Val Gly Cys Arg Glu Leu Arg Ser
65 70 75 80
Thr Lys Tyr Ile Ser Asp Gly Gln Cys Thr Ser Ile Ser Pro Leu Lys
85 90 95
Glu Leu Val Cys Ala Gly Glu Cys Leu Pro Leu Pro Val Leu Pro Asn
100 105 110
Trp Ile Gly Gly Tyr Gly Thr Lys Tyr Trp Ser Arg Arg Ser Ser
115 120 125
Gln Glu Trp Arg Cys Val Asn Asp Lys Thr Arg Thr Gln Arg Ile Gln
130 135 140
Leu Gln Cys Gln Asp Gly Ser Thr Arg Thr Tyr Lys Ile Thr Val Val
145 150 155 160
Thr Ala Cys Lys Cys Lys Arg Tyr Thr Arg Gln His Asn Glu Ser Ser
165 170 175
His Asn Phe Glu Ser Val Ser Pro Ala Lys Pro Ala Gln His His Arg
180 185 190
Glu Arg Lys Arg Ala Ser Lys Ser Ser Lys His Ser Leu Ser
195 200 205

<210> 160
<211> 169
<212> PRT
<213> mouse

<400> 160

Met Ser Gly Leu Arg Thr Leu Leu Gly Leu Gly Leu Leu Val Ala Gly
1 5 10 15
Ser Arg Leu Pro Arg Val Ile Ser Gln Gln Ser Val Cys Arg Ala Arg
20 25 30
Pro Ile Trp Trp Gly Thr Gln Arg Arg Gly Ser Glu Thr Met Ala Gly.

35	40	45
Ala Ala Val Lys Tyr Leu Ser Gln Glu Glu Ala Gln Ala Val Asp Gln		
50	55	60
Glu Leu Phe Asn Glu Tyr Gln Phe Ser Val Asp Gln Leu Met Glu Leu		
65	70	75
Ala Gly Leu Ser Cys Ala Thr Ala Ile Ala Lys Ala Tyr Pro Pro Thr		
85	90	95
Ser Met Ser Lys Ser Pro Pro Thr Val Leu Val Ile Cys Gly Pro Gly		
100	105	110
Asn Asn Gly Gly Asp Gly Leu Val Cys Ala Arg His Leu Lys Leu Phe		
115	120	125
Gly Tyr Gln Pro Thr Ile Tyr Tyr Pro Lys Arg Pro Asn Lys Pro Leu		
130	135	140
Phe Thr Gly Leu Val Thr Gln Cys Gln Lys Met Asp Ile Pro Phe Leu		
145	150	155
Gly Glu Met Pro Pro Glu Asp Gly Met		
165		

<210> 161

<211> 114

<212> PRT

<213> mouse

<400> 161

Met Ser Val Thr Ile Gly Arg Leu Ala Leu Phe Leu Ile Gly Ile Leu			
1	5	10	15
Leu Cys Pro Val Ala Pro Ser Leu Thr Arg Ser Trp Pro Gly Pro Asp			
20	25	30	
Thr Cys Ser Leu Phe Leu Gln His Ser Leu Ser Leu Ser Leu Arg Leu			
35	40	45	
Gly Gln Ser Leu Glu Gly Gly Leu Ser Val Cys Phe His Val Cys Ile			
50	55	60	
His Ala Cys Glu Cys Val Ala Cys Cys Arg Val Leu Trp Asp Pro Lys			
65	70	75	80
Pro Arg Gly Ser Ser Leu Cys Arg Trp Val Leu Gly Ser Ile Thr Cys			
85	90	95	
Leu Phe Met Tyr Glu Val Gly Gly Trp Thr Gln Gly Gly Leu Ile Val			
100	105	110	
Ser Leu			

<210> 162

<211> 46

<212> PRT

<213> mouse

<400> 162

Met His Tyr Pro Cys Leu Ala Cys Leu Phe Val Asn Val His Trp Cys			
1	5	10	15
Phe Ala Trp Met Cys Ile Leu Val Lys Met Ser Glu Leu Leu Glu Leu			
20	25	30	
Glu Leu Glu Thr Met Val Ser Cys Leu Val Asp Val Gly Asn			
35	40	45	

<210> 163

<211> 122

<212> PRT

<213> mouse

<400> 163

Met Phe Thr Phe Val Val Leu Val Ile Thr Ile Val Ile Cys Leu Cys

1	5	10	15
His Val Cys Phe Gly His Phe Lys Tyr Leu Ser Ala His Asn Tyr Lys			
20	25	30	
Ile Glu His Thr Glu Thr Asp Ala Val Ser Ser Arg Ser Asn Gly Arg			
35	40	45	
Pro Pro Thr Ala Gly Ala Val Pro Lys Ser Ala Lys Tyr Ile Ala Gln			
50	55	60	
Val Leu Gln Asp Ser Glu Gly Asp Gly Asp Gly Ala Pro Gly			
65	70	75	80
Ser Ser Gly Asp Glu Pro Pro Ser Ser Ser Gln Asp Glu Glu Leu			
85	90	95	
Leu Met Pro Pro Asp Gly Leu Thr Asp Thr Asp Phe Gln Ser Cys Glu			
100	105	110	
Asp Ser Leu Ile Glu Asn Glu Ile His Gln			
115	120		

<210> 164
<211> 60
<212> PRT
<213> Rat

<400> 164			
Met Ser Phe Val Lys Ile Glu Ala Thr Pro Thr Gln Thr Lys Trp Pro			
1	5	10	15
Phe Ser Val Val Pro Gln Ser Leu Leu Val Thr Val Tyr Ile Cys Tyr			
20	25	30	
Ile Phe Leu Val Ile Phe Phe Phe Phe Glu Ala Cys Gln Glu Val			
35	40	45	
Leu Cys Ser Phe Phe Asp Phe Ser Arg Arg Arg Gly			
50	55	60	

<210> 165
<211> 57
<212> PRT
<213> mouse

<400> 165			
Met Gly Ser Pro Ile Ser Gly Val Cys Pro Val Leu Pro Gly Gly Leu			
1	5	10	15
Phe Val Ala Leu Gly Trp Ile Phe Leu Leu Phe His Arg Asp Ala Phe			
20	25	30	
Ser Leu His Thr Met Ser Ala Gly Phe Pro Lys Ser Pro Ala Asn Pro			
35	40	45	
His His Pro Pro Leu Arg Leu Ser Pro			
50	55		

<210> 166
<211> 75
<212> PRT
<213> mouse

<400> 166			
Lys Thr Arg Arg Thr Leu Thr Gly Gln Leu Gly Leu Phe Ser Val Asp			
1	5	10	15
Phe Met Val Cys Ile Phe Leu Phe Leu Phe Cys Phe Leu Phe Pro			
20	25	30	
Phe Pro Leu Phe Leu Val Arg Lys His Ile Leu Leu Ser His Cys Lys			
35	40	45	
Gln Trp Glu Gly Ser Thr Met Thr His Thr His Thr His Ile			
50	55	60	
His Ile His Thr Pro Pro Arg Gln Cys Gln Ser			

65

70

75

<210> 167
<211> 52
<212> PRT
<213> mouse

<400> 167
Val Arg Ser Leu Glu Gln Leu Gly Leu Phe Ser Val Asp Phe Met Val
1 5 10 15
Cys Ile Phe Leu Phe Leu Phe Phe Cys Phe Leu Phe Pro Phe Pro Leu
20 25 30
Phe Leu Val Arg Lys His Ile Leu Leu Ser His Cys Lys Gln Trp Glu
35 40 45
Gly Ser Thr Met
50

<210> 168
<211> 119
<212> PRT
<213> Rat

<400> 168
Met Leu Gly Ala Thr Ser Leu Ser Trp Pro Trp Val Leu Trp Ala Val
1 5 10 15
Ala Gln Arg Asp Ser Val Asp Ala Ile Gly Met Phe Leu Gly Gly Leu
20 25 30
Val Ala Thr Ile Phe Leu Asp Ile Ile Tyr Ile Ser Ile Phe Tyr Ser
35 40 45
Ser Val Ala Val Gly Asp Thr Gly Arg Phe Ser Ala Gly Met Ala Ile
50 55 60
Phe Ser Leu Leu Leu Gln Ala Leu Leu Leu Pro Arg Leu Pro His
65 70 75 80
Ala Pro Gly Ser Glu Gly Val Ser Ser Arg Ser Ala Arg Ile Ser Ser
85 90 95
Asp Leu Leu Arg Asn Ile Val Pro Thr Arg Gln Leu Thr Arg Gln Thr
100 105 110
His Leu Gln Thr Pro Leu Gln
115

<210> 169
<211> 104
<212> PRT
<213> Rat

<220>

<400> 169
Leu Val Pro Lys Ser Ala Arg Ala Ser Leu Leu Cys Cys Gly Pro Lys
1 5 10 15
Leu Ala Ala Cys Gly Ile Val Leu Ser Ala Trp Gly Val Ile Met Leu
20 25 30
Ile Met Leu Gly Ile Phe Phe Asn Val His Ser Ala Val Xaa Ile Xaa
35 40 45
Asp Val Pro Phe Thr Glu Lys Asp Phe Glu Asn Gly Pro Gln Asn Ile
50 55 60
Tyr Asn Leu Tyr Glu Gln Val Ser Tyr Asn Cys Phe Ile Ala Ala Gly
65 70 75 80
Leu Tyr Leu Leu Xaa Gly Gly Phe Ser Phe Cys Gln Val Arg Leu Asn
85 90 95

Lys Arg Lys Glu Tyr Met Val Arg
100

<210> 170
<211> 123
<212> PRT
<213> Rat

<220>
<221> UNSURE
<222> (27) ... (27)

<221> UNSURE
<222> (104) ... (104)

<221> UNSURE
<222> (118) ... (118)

<400> 170

Met	Arg	Pro	Gly	Ala	Asp	Trp	Ala	Ala	Val	Cys	Ala	Leu	Trp	Pro	Ser
1				5				10						15	
Trp	Arg	Pro	Ser	Cys	Ser	Leu	Pro	Ser	Ser	Xaa	Arg	Ile	Gln	Pro	Asp
				20				25					30		
Glu	Leu	Trp	Leu	Tyr	Arg	Asn	Pro	Tyr	Val	Lys	Ala	Glu	Tyr	Phe	Pro
				35				40				45			
Thr	Gly	Pro	Met	Phe	Val	Ile	Ala	Phe	Leu	Thr	Pro	Leu	Ser	Leu	Ile
			50			55					60				
Phe	Phe	Ala	Lys	Phe	Leu	Arg	Lys	Ala	Asp	Ala	Asp	Arg	Gln	Arg	Ala
			65			70				75			80		
Ser	Leu	Pro	Arg	Cys	Gln	Pro	Cys	Pro	Ser	Ala	Lys	Trp	Cys	Leu	Tyr
				85				90				95			
Gln	His	His	Lys	Thr	Asp	Ser	Xaa	Gln	Gly	His	Ala	Gln	Ile	Ala	Ser
			100				105					110			
Thr	Glu	Cys	Ser	Pro	Xaa	Gly	Ile	Ala	His	Ser					
			115				120								

<210> 171
<211> 75
<212> PRT
<213> Rat

<400> 171

Ser	Ala	Gly	Val	Met	Thr	Ala	Ala	Val	Phe	Phe	Gly	Ala	Phe	Ile	
1				5				10					15		
Ala	Phe	Gly	Pro	Ala	Leu	Ser	Leu	Tyr	Val	Phe	Thr	Ile	Ala	Thr	Asp
				20				25				30			
Pro	Leu	Arg	Val	Ile	Phe	Leu	Ile	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val
			35			40					45				
Ser	Leu	Leu	Leu	Ser	Ser	Val	Phe	Trp	Phe	Leu	Val	Arg	Val	Ile	Thr
			50			55				60					
Asp	Asn	Arg	Asp	Gly	Pro	Val	Gln	Asn	Tyr	Leu					
			65			70				75					

<210> 172
<211> 79
<212> PRT
<213> Human

<400> 172

Lys	Thr	Ser	Tyr	His	Tyr	His	Thr	Asn	Val	Glu	Glu	Leu	Thr	Ile	Pro
1				5				10				15			

Glu Thr Arg Asn Asn Leu Tyr Ile Ser Ile Ser Trp Leu Trp Cys Leu
 20 25 30
 Val Leu Val Leu Leu Ser Thr Met Ile Leu Asn Lys His Gly Trp Met
 35 40 45
 Lys Ala Asn Ala Tyr Ser Leu Val Pro Ser Ile Ile Tyr Ser Pro Ser
 50 55 60
 Tyr Leu Lys Leu Leu Leu Arg Leu Tyr Lys Leu Gln Ile Cys Cys
 65 70 75

<210> 173
 <211> 134
 <212> PRT
 <213> Human

<220>
<400> 173
 Leu Arg Gly Arg Gly Arg Gly Val Cys Ser Gln Glu Ser Phe Gly Gly
 1 5 10 15
 Cys Cys Val Ser Gly Leu Ile Ala Met Gly Thr Lys Ala Gln Val Glu
 20 25 30
 Arg Lys Leu Leu Cys Leu Phe Ile Leu Ala Ile Leu Leu Cys Ser Leu
 35 40 45
 Ala Leu Gly Ser Val Thr Val His Ser Ser Glu Pro Glu Val Arg Ile
 50 55 60
 Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe Ser
 65 70 75 80
 Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg Leu
 85 90 95
 Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val Thr
 100 105 110
 Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp Thr
 115 120 125
 Gly Thr Tyr Thr Cys Met
 130

<210> 174
 <211> 137
 <212> PRT
 <213> Human

<400> 174
 Ala Trp Ser Arg Pro Arg Tyr Asp Ser Val Leu Ala Leu Ser Ala Ala
 1 5 10 15
 Leu Gln Ala Thr Arg Ala Leu Met Val Val Ser Leu Val Leu Gly Phe
 20 25 30
 Leu Ala Met Phe Val Ala Thr Met Gly Met Lys Cys Thr Arg Cys Gly
 35 40 45
 Gly Asp Asp Lys Val Lys Lys Ala Arg Ile Ala Met Gly Gly Ile
 50 55 60
 Ile Phe Ile Val Ala Gly Leu Ala Ala Leu Val Ala Cys Ser Trp Tyr
 65 70 75 80
 Gly His Gln Ile Val Thr Asp Phe Tyr Asn Pro Leu Ile Pro Thr Asn
 85 90 95
 Ile Lys Tyr Glu Phe Gly Pro Ala Ile Phe Ile Gly Trp Ala Gly Ser
 100 105 110
 Ala Leu Val Ile Leu Gly Gly Ala Leu Ser Pro Val Pro Val Leu Gly
 115 120 125
 Ile Arg Ala Gly Leu Gly Thr Cys Pro
 130 135

<210> 175

<211> 43
<212> PRT
<213> Human

<400> 175

Met Lys Leu Ser Gly Met Phe Leu Leu Leu Ser Leu Ala Leu Phe Cys
1 5 10 15
Phe Leu Thr Gly Val Phe Ser Gln Gly Gly Gln Val Asp Cys Gly Glu
20 25 30
Ser Arg Thr Pro Arg Pro Thr Ala Leu Gly Asn
35 40

<210> 176
<211> 63
<212> PRT
<213> Rat

<400> 176

Pro Asn Thr Arg Pro Arg Arg His Thr Ala Cys Arg Val Ser Ile Ser
1 5 10 15
Val Phe Tyr Met Leu His Thr Glu Leu Lys Lys Cys Trp Phe Phe Leu
20 25 30
Phe Cys Phe Ser Leu Phe Leu Trp Phe Cys Phe Trp Phe Cys Phe Leu
35 40 45
Leu Pro Arg Phe Asp Tyr Leu Pro Met Pro Ser Thr Arg Pro Arg
50 55 60

<210> 177
<211> 52
<212> PRT
<213> mouse

<400> 177

Met Leu Gln Gly Pro Ala Pro Ser Cys Phe Trp Val Phe Ser Gly Ile
1 5 10 15
Cys Val Phe Trp Asp Phe Ile Phe Ile Ile Phe Phe Asn Val Leu Ser
20 25 30
Leu Gly Asn Arg Glu Ile Ser Ala Lys Asp Phe Ala Asp Gln Pro Ala
35 40 45
Gly Ala Gln Gly
50

<210> 178
<211> 62
<212> PRT
<213> mouse

<400> 178

Val Ser Pro Arg Pro Thr Tyr Pro Ser Thr Ala Ser Ser Met Ala Ala
1 5 10 15
Phe Leu Val Thr Gly Phe Phe Ser Leu Phe Val Val Leu Gly Met
20 25 30
Glu Pro Arg Ala Leu Phe Arg Pro Asp Lys Ala Leu Pro Leu Ser Cys
35 40 45
Ala Lys Pro Thr Ser Leu Cys Val Gln Ser Ser Phe Leu Gly
50 55 60

<210> 179
<211> 123
<212> PRT
<213> mouse

<400> 179

Ala Ser Arg Thr Ala Val Met Ser Leu Cys Arg Cys Gln Gln Gly Ser
 1 5 10 15
 Arg Ser Arg Met Asp Leu Asp Val Val Asn Met Phe Val Ile Ala Gly
 20 25 30
 Gly Thr Leu Ala Ile Pro Ile Leu Ala Phe Val Ala Ser Phe Leu Leu
 35 40 45
 Trp Pro Ser Ala Leu Ile Arg Ile Tyr Tyr Trp Tyr Trp Arg Arg Thr
 50 55 60
 Leu Gly Met Gln Val Arg Tyr Ala His His Glu Asp Tyr Gln Phe Cys
 65 70 75 80
 Tyr Ser Phe Arg Gly Arg Pro Gly His Lys Pro Ser Ile Leu Met Leu
 85 90 95
 His Gly Phe Ser Ala His Lys Gly His Val Ala Gln Arg Gly Gln Val
 100 105 110
 Pro Ser Arg Lys Asn Leu His Phe Gly Cys Val
 115 120

<210> 180

<211> 120

<212> PRT

<213> mouse

<220>

<221> UNSURE

<222> (5)...(5)

<400> 180

Ala Arg Arg Arg Xaa Arg Trp Arg Arg Gly Cys Cys Trp Leu Ile Gly
 1 5 10 15
 Thr Gly Leu Arg Ala Ala Thr Trp Thr Val Leu Cys Ser Pro Asn Ser
 20 25 30
 Ser Leu Val Val Ala Arg His Thr Lys Ser Phe Pro Pro Lys Lys Pro
 35 40 45
 Leu Gln Ala Leu Thr Met Ser Ile Met Asp His Ser Pro Thr Thr Gly
 50 55 60
 Val Val Thr Val Ile Val Ile Leu Ile Ala Ile Ala Ala Leu Gly Gly
 65 70 75 80
 Leu Ile Leu Gly Cys Trp Cys Tyr Leu Arg Leu Gln Arg Ile Ser Gln
 85 90 95
 Ser Glu Asp Glu Glu Ser Ile Val Gly Asp Gly Glu Thr Lys Glu Pro
 100 105 110
 Phe Tyr Trp Cys Ser Thr Leu Leu
 115 120

<210> 181

<211> 60

<212> PRT

<213> mouse

<400> 181

Lys Gly Pro Glu Val Ser Cys Cys Ile Lys Tyr Phe Ile Phe Gly Phe
 1 5 10 15
 Asn Val Ile Phe Trp Phe Leu Gly Ile Thr Phe Leu Gly Ile Gly Leu
 20 25 30
 Trp Ala Trp Asn Glu Lys Gly Val Leu Ser Asn Ile Ser Ser Ile Thr
 35 40 45
 Asp Leu Gly Gly Phe Asp Pro Val Trp Leu Phe Leu
 50 55 60

<210> 182
 <211> 72
 <212> PRT
 <213> mouse

<220>

<400> 182
 Lys Pro Thr Val Gly Ser Ala Glu Val Ala Ile Ala Val Phe Leu Val
 1 5 10 15
 Ile Cys Ile Ile Val Val Leu Thr Ile Leu Gly Tyr Cys Phe Phe Lys
 20 25 30
 Asn Gln Arg Lys Glu Phe His Ser Pro Leu His His Pro Pro Pro Thr
 35 40 45
 Pro Ala Ser Ser Thr Val Ser Thr Thr Glu Asp Thr Glu His Leu Val
 50 55 60
 Tyr Asn His Thr Thr Gln Pro Leu
 65 70

<210> 183
 <211> 771
 <212> PRT
 <213> Rat

<220>

<400> 183
 Glu Leu Tyr Leu Asp Gly Asn Gln Phe Thr Leu Val Pro Lys Glu Leu
 1 5 10 15
 Ser Asn Tyr Lys His Leu Thr Leu Ile Asp Leu Ser Asn Asn Arg Ile
 20 25 30
 Ser Thr Leu Ser Asn Gln Ser Phe Ser Asn Met Thr Gln Leu Leu Thr
 35 40 45
 Leu Ile Leu Ser Tyr Asn Arg Leu Arg Cys Ile Pro Pro Arg Thr Phe
 50 55 60
 Asp Gly Leu Lys Ser Leu Arg Leu Leu Ser Leu His Gly Asn Asp Ile
 65 70 75 80
 Ser Val Val Pro Glu Gly Ala Phe Gly Asp Leu Ser Ala Leu Ser His
 85 90 95
 Leu Ala Ile Gly Ala Asn Pro Leu Tyr Cys Asp Cys Asn Met Gln Trp
 100 105 110
 Leu Ser Asp Trp Val Lys Ser Glu Tyr Lys Glu Pro Gly Ile Ala Arg
 115 120 125
 Cys Ala Gly Pro Gly Glu Met Ala Asp Lys Leu Leu Thr Thr Pro
 130 135 140
 Ser Lys Asn Phe Thr Cys Gln Gly Pro Val Asp Val Thr Ile Gln Ala
 145 150 155 160
 Lys Cys Asn Pro Cys Leu Ser Asn Pro Cys Lys Asn Asp Gly Thr Cys
 165 170 175
 Asn Asn Asp Pro Val Asp Phe Tyr Arg Cys Thr Cys Pro Tyr Gly Phe
 180 185 190
 Lys Gly Gln Asp Cys Asp Val Pro Ile His Ala Cys Thr Ser Asn Pro
 195 200 205
 Cys Lys His Gly Gly Thr Cys His Leu Lys Pro Arg Arg Glu Thr Trp
 210 215 220
 Ile Trp Cys Thr Cys Ala Asp Gly Phe Glu Gly Glu Ser Cys Asp Ile
 225 230 235 240
 Asn Ile Asp Asp Cys Glu Asp Asn Asp Cys Glu Asn Asn Ser Thr Cys
 245 250 255

Val Asp Gly Ile Asn Asn Tyr Thr Cys Leu Cys Pro Pro Glu Tyr Thr
 260 265 270
 Gly Glu Leu Cys Glu Glu Lys Leu Asp Phe Cys Ala Gln Asp Leu Asn
 275 280 285
 Pro Cys Gln His Asp Ser Lys Cys Ile Leu Thr Pro Lys Gly Phe Lys
 290 295 300
 Cys Asp Cys Thr Pro Gly Tyr Ile Gly Glu His Cys Asp Ile Asp Phe
 305 310 315 320
 Asp Asp Cys Gln Asp Asn Lys Cys Lys Asn Gly Ala His Cys Thr Asp
 325 330 335
 Ala Val Asn Gly Tyr Thr Cys Val Cys Pro Glu Gly Tyr Ser Gly Leu
 340 345 350
 Phe Cys Glu Phe Ser Pro Pro Met Val Phe Leu Arg Thr Ser Pro Cys
 355 360 365
 Asp Asn Phe Asp Cys Gln Asn Gly Ala Gln Cys Ile Ile Arg Val Asn
 370 375 380
 Glu Pro Ile Cys Gln Cys Leu Pro Gly Tyr Leu Gly Glu Lys Cys Glu
 385 390 395 400
 Lys Leu Val Ser Val Ser Ile Leu Val Asn Lys Glu Ser Tyr Leu Gln
 405 410 415
 Ile Pro Ser Ala Lys Val Arg Pro Gln Thr Asn Ile Thr Leu Gln Ile
 420 425 430
 Ala Thr Asp Glu Asp Ser Gly Ile Leu Leu Tyr Lys Gly Asp Lys Asp
 435 440 445
 His Ile Ala Val Glu Ser Ile Glu Gly Ile Arg Ala Ser Tyr Asp Thr
 450 455 460
 Gly Ser His Pro Ala Ser Ala Ile Tyr Ser Val Glu Thr Ile Asn Asp
 465 470 475 480
 Gly Asn Phe His Ile Val Glu Leu Leu Thr Leu Asp Ser Ser Leu Ser
 485 490 495
 Leu Ser Val Asp Gly Gly Ser Pro Lys Ile Ile Thr Asn Leu Ser Lys
 500 505 510
 Gln Ser Thr Leu Asn Phe Asp Ser Pro Leu Tyr Val Gly Gly Met Pro
 515 520 525
 Gly Lys Asn Asn Val Ala Ser Leu Arg Gln Ala Pro Gly Gln Asn Gly
 530 535 540
 Thr Ser Phe His Gly Cys Ile Arg Asn Leu Tyr Ile Asn Ser Glu Leu
 545 550 555 560
 Gln Asp Phe Arg Lys Val Pro Met Gln Thr Gly Ile Leu Pro Gly Cys
 565 570 575
 Glu Pro Cys His Lys Lys Val Cys Ala His Gly Thr Cys Gln Pro Ser
 580 585 590
 Ser Gln Ser Gly Phe Thr Cys Glu Cys Glu Gly Trp Met Gly Pro
 595 600 605
 Leu Cys Asp Gln Arg Thr Asn Asp Pro Cys Leu Gly Asn Lys Cys Val
 610 615 620
 His Gly Thr Cys Leu Pro Ile Asn Ala Phe Ser Tyr Ser Cys Lys Cys
 625 630 635 640
 Leu Glu Gly His Gly Gly Val Leu Cys Asp Glu Glu Glu Asp Leu Phe
 645 650 655
 Asn Pro Leu Pro Gly Asp Gln Val Gln Ala Arg Glu Val Gln Ala Leu
 660 665 670
 Trp Ala Arg Ala Ala Leu Leu Trp Met Gln Gln Trp Ile His Arg Gly
 675 680 685
 Gln Leu Thr Gln Arg Ile Ser Cys Arg Gly Glu Arg Ile Arg Asp Tyr
 690 695 700
 Tyr Gln Ser Ser Arg Val Arg Cys Leu Ser Asn Asp

<210> 184
 <211> 340
 <212> PRT

<213> mouse

<400> 184

Asp Gly Ser Leu Trp Leu Gln Ala Thr Gln Pro Asp Asp Ala Gly His
 1 5 10 15
 Tyr Thr Cys Val Pro Ser Asn Gly Phe Leu His Pro Pro Ser Ala Ser
 20 25 30
 Ala Tyr Leu Thr Val Leu Tyr Pro Ala Gln Val Thr Val Met Pro Pro
 35 40 45
 Glu Thr Pro Leu Pro Thr Gly Met Arg Gly Val Ile Arg Cys Pro Val
 50 55 60
 Arg Ala Asn Pro Pro Leu Leu Phe Val Thr Trp Thr Lys Asp Gly Gln
 65 70 75 80
 Ala Leu Gln Leu Asp Lys Phe Pro Gly Trp Ser Leu Gly Pro Glu Gly
 85 90 95
 Ser Leu Ile Ile Ala Leu Gly Asn Glu Asp Ala Leu Gly Glu Tyr Ser
 100 105 110
 Cys Thr Pro Tyr Asn Ser Leu Gly Thr Ala Gly Pro Ser Pro Val Thr
 115 120 125
 Arg Val Leu Leu Lys Ala Pro Pro Ala Phe Ile Asp Gln Pro Lys Glu
 130 135 140
 Glu Tyr Phe Gln Glu Val Gly Arg Glu Leu Leu Ile Pro Cys Ser Ala
 145 150 155 160
 Arg Gly Asp Pro Pro Pro Ile Val Ser Trp Ala Lys Val Gly Arg Gly
 165 170 175
 Leu Gln Gly Gln Ala Gln Val Asp Ser Asn Asn Ser Leu Val Leu Arg
 180 185 190
 Pro Leu Thr Lys Glu Ala Gln Gly Arg Trp Glu Cys Ser Ala Ser Asn
 195 200 205
 Ala Val Ala Arg Val Thr Thr Ser Thr Asn Val Tyr Val Leu Gly Thr
 210 215 220
 Ser Pro His Val Val Thr Asn Val Ser Val Val Pro Leu Pro Lys Gly
 225 230 235 240
 Ala Asn Val Ser Trp Glu Pro Gly Phe Asp Gly Gly Tyr Leu Gln Arg
 245 250 255
 Phe Ser Val Trp Tyr Thr Pro Leu Ala Lys Arg Pro Asp Arg Ala His
 260 265 270
 His Asp Trp Val Ser Leu Ala Val Pro Ile Gly Ala Thr His Leu Leu
 275 280 285
 Val Pro Gly Leu Gln Ala His Ala Gln Tyr Gln Phe Ser Val Leu Ala
 290 295 300
 Gln Asn Lys Leu Gly Ser Gly Pro Phe Ser Glu Ile Val Leu Ser Ile
 305 310 315 320
 Pro Glu Gly Leu Pro Thr Thr Pro Ala Ala Pro Gly Leu Pro Ala Thr
 325 330 335
 Arg Ser Arg Val
 340

<210> 185

<211> 536

<212> PRT

<213> mouse

<400> 185

Lys Val Glu Gly Glu Gly Arg Gly Arg Trp Ala Leu Gly Leu Leu Arg
 1 5 10 15
 Thr Phe Asp Ala Gly Glu Phe Ala Gly Trp Glu Lys Val Gly Ser Gly
 20 25 30
 Gly Phe Gly Gln Val Tyr Lys Val Arg His Val His Trp Lys Thr Trp
 35 40 45
 Leu Ala Ile Lys Cys Ser Pro Ser Leu His Val Asp Asp Arg Glu Arg

50	55	60
Met Glu Leu Leu Glu Glu Ala Lys Lys Met Glu	Met Ala Lys Phe Arg	
65	70	75
Tyr Ile Leu Pro Val Tyr Gly Ile Cys Gln Glu	Pro Val Gly Leu Val	80
85	90	95
Met Glu Tyr Met Glu Thr Gly Ser Leu Glu Lys	Leu Leu Ala Ser Glu	
100	105	110
Pro Leu Pro Trp Asp Leu Arg Phe Arg Ile Val	His Glu Thr Ala Val	
115	120	125
Gly Met Asn Phe Leu His Cys Met Ser Pro Pro	Leu Leu His Leu Asp	
130	135	140
Leu Lys Pro Ala Asn Ile Leu Leu Asp Ala His	Tyr Gln Met Ser Arg	
145	150	155
Phe Leu Asp Phe Gly Leu Ala Lys Cys Asn Gly	Met Ser His Ser His	160
165	170	175
Asp Leu Ser Met Asp Gly Leu Phe Gly Thr Ile	Gly Tyr Leu Pro Pro	
180	185	190
Glu Arg Ile Arg Glu Lys Ser Arg Leu Phe Asp	Thr Lys His Asp Val	
195	200	205
Tyr Ser Phe Ala Ile Val Ile Trp Gly Val Leu	Thr Gln Asn Asn Pro	
210	215	220
Phe Ala Asp Glu Lys Asn Ile Leu His Ile Met	Met Lys Val Val Lys	
225	230	235
Gly His Arg Pro Glu Leu Pro Pro Ile Cys Arg	Pro Arg Pro Arg Ala	240
245	250	255
Cys Ala Ser Leu Ile Gly Leu Met Gln Arg Cys	Trp His Ala Asp Pro	
260	265	270
Gln Val Arg Pro Thr Phe Gln Glu Ile Thr Ser	Glu Thr Glu Asp Leu	
275	280	285
Cys Glu Lys Pro Asp Glu Glu Val Lys Asp Leu	Ala His Glu Pro Gly	
290	295	300
Glu Lys Ser Ser Leu Glu Ser Lys Ser Glu Ala	Arg Pro Glu Ser Ser	
305	310	315
Arg Leu Lys Arg Ala Ser Ala Pro Pro Phe Asp	Asn Asp Cys Ser Leu	320
325	330	335
Ser Glu Leu Leu Ser Gln Leu Asp Ser Gly Ile	Phe Pro Arg Leu Leu	
340	345	350
Lys Gly Pro Glu Glu Leu Ser Arg Ser Ser Ser	Glu Cys Lys Leu Pro	
355	360	365
Ser Ser Ser Ser Gly Lys Arg Leu Ser Gly Val	Ser Ser Val Asp Ser	
370	375	380
Ala Phe Ser Ser Arg Gly Ser Leu Ser Leu Ser	Phe Glu Arg Glu Ala	
385	390	395
Ser Thr Gly Asp Leu Gly Pro Thr Asp Ile Gln	Lys Lys Lys Leu Val	
405	410	415
Asp Ala Ile Ile Ser Gly Asp Thr Ser Arg Leu	Met Lys Ile Leu Gln	
420	425	430
Pro Gln Asp Val Asp Leu Val Leu Asp Ser Ser	Ala Ser Leu Leu His	
435	440	445
Leu Ala Val Glu Ala Gly Gln Glu Glu Cys Val	Lys Trp Leu Leu Leu	
450	455	460
Asn Asn Ala Asn Pro Asn Leu Thr Asn Arg	Lys Gly Ser Thr Pro Leu	
465	470	475
His Met Ala Val Glu Arg Lys Gly Arg Gly	Ile Val Glu Leu Leu Leu	480
485	490	495
Ala Arg Lys Thr Ser Val Asn Ala Lys Asp Glu	Asp Gln Trp Thr Ala	
500	505	510
Leu His Phe Ala Ala Gln Asn Gly Asp Glu Gly	Gln His Lys Ala Ala	
515	520	525
Ala Arg Glu Glu Cys Phe Cys Gln		
530	535	

<210> 186
<211> 337
<212> PRT
<213> Rat

<220>

<400> 186

Arg	Phe	Gly	Tyr	Gln	Met	Asp	Glu	Gly	Asn	Gln	Cys	Val	Asp		
1					5				10				15		
Val	Asp	Glu	Cys	Ala	Thr	Asp	Ser	His	Gln	Cys	Asn	Pro	Thr	Gln	Ile
					20				25				30		
Cys	Ile	Asn	Thr	Glu	Gly	Gly	Tyr	Thr	Cys	Ser	Cys	Thr	Asp	Gly	Tyr
					35				40				45		
Trp	Leu	Leu	Glu	Gly	Gln	Cys	Leu	Asp	Ile	Asp	Glu	Cys	Arg	Tyr	Gly
					50				55				60		
Tyr	Cys	Gln	Gln	Leu	Cys	Ala	Asn	Val	Pro	Gly	Ser	Tyr	Ser	Cys	Thr
					65				70				75		80
Cys	Asn	Pro	Gly	Phe	Thr	Leu	Asn	Asp	Asp	Gly	Arg	Ser	Cys	Gln	Asp
					85				90				95		
Val	Asn	Glu	Cys	Glu	Thr	Glu	Asn	Pro	Cys	Val	Gln	Thr	Cys	Val	Asn
					100				105				110		
Thr	Tyr	Gly	Ser	Phe	Ile	Cys	Arg	Cys	Asp	Pro	Gly	Tyr	Glu	Leu	Glu
					115				120				125		
Glu	Asp	Gly	Ile	His	Cys	Ser	Asp	Met	Asp	Glu	Cys	Ser	Phe	Ser	Glu
					130				135				140		
Phe	Leu	Cys	Gln	His	Glu	Cys	Val	Asn	Gln	Pro	Gly	Ser	Tyr	Phe	Cys
					145				150				155		160
Ser	Cys	Pro	Pro	Gly	Tyr	Val	Leu	Leu	Glu	Asp	Asn	Arg	Ser	Cys	Gln
					165				170				175		
Asp	Ile	Asn	Glu	Cys	Glu	His	Arg	Asn	His	Thr	Cys	Thr	Pro	Leu	Gln
					180				185				190		
Thr	Cys	Tyr	Asn	Leu	Gln	Gly	Gly	Phe	Lys	Cys	Ile	Asp	Pro	Ile	Val
					195				200				205		
Cys	Glu	Glu	Pro	Tyr	Leu	Leu	Gly	Asp	Asn	Arg	Cys	Met	Cys	Pro	
					210				215				220		
Ala	Glu	Asn	Thr	Gly	Cys	Arg	Asp	Gln	Pro	Phe	Thr	Ile	Leu	Phe	Arg
					225				230				235		240
Asp	Met	Asp	Val	Val	Ser	Gly	Arg	Ser	Val	Pro	Ala	Asp	Ile	Phe	Gln
					245				250				255		
Met	Gln	Ala	Thr	Thr	Arg	Tyr	Pro	Gly	Ala	Tyr	Tyr	Ile	Phe	Gln	Ile
					260				265				270		
Lys	Ser	Gly	Asn	Glu	Gly	Arg	Glu	Phe	Tyr	Met	Arg	Gln	Thr	Gly	Pro
					275				280				285		
Ile	Ser	Ala	Thr	Leu	Val	Met	Thr	Arg	Pro	Ile	Lys	Gly	Pro	Arg	Asp
					290				295				300		
Ile	Gln	Leu	Asp	Leu	Glu	Met	Ile	Thr	Val	Asn	Thr	Val	Ile	Asn	Phe
					305				310				315		320
Arg	Gly	Ser	Ser	Val	Ile	Arg	Leu	Arg	Ile	Tyr	Val	Ser	Gln	Tyr	Pro
					325				330				335		
Phe															

<210> 187
<211> 152
<212> PRT
<213> mouse

<400> 187

Met Ala Leu Gly Val Leu Ile Ala Val Cys Leu Leu Phe Lys Ala Met
 1 5 10 15
 Lys Ala Ala Leu Ser Glu Glu Ala Glu Val Ile Pro Pro Ser Thr Ala
 20 25 30
 Gln Gln Ser Asn Trp Thr Phe Asn Asn Thr Glu Ala Asp Tyr Ile Glu
 35 40 45
 Glu Pro Val Ala Leu Lys Phe Ser His Pro Cys Leu Glu Asp His Asn
 50 55 60
 Ser Tyr Cys Ile Asn Gly Ala Cys Ala Phe His His Glu Leu Lys Gln
 65 70 75 80
 Ala Ile Cys Arg Cys Phe Thr Gly Tyr Thr Gly Gln Arg Cys Glu His
 85 90 95
 Leu Thr Leu Thr Ser Tyr Ala Val Asp Ser Tyr Glu Lys Tyr Ile Ala
 100 105 110
 Ile Gly Ile Gly Val Gly Leu Leu Ile Ser Ala Phe Leu Ala Val Phe
 115 120 125
 Tyr Cys Tyr Ile Arg Lys Arg Cys Ile Asn Leu Lys Ser Pro Tyr Ile
 130 135 140
 Ile Cys Ser Gly Gly Ser Pro Leu
 145 150

<210> 188

<211> 118

<212> PRT

<213> Rat

<220>

<400> 188

Leu Val Pro Gln Phe Gly Thr Arg Ile Arg Tyr Thr Ala Tyr Asp Arg
 1 5 10 15
 Ala Tyr Asn Arg Ala Ser Cys Lys Phe Ile Val Lys Val Gln Val Arg
 20 25 30
 Arg Cys Pro Ile Leu Lys Pro Pro Gln His Gly Tyr Leu Thr Cys Ser
 35 40 45
 Ser Ala Gly Asp Asn Tyr Gly Ala Ile Cys Glu Tyr His Cys Asp Gly
 50 55 60
 Gly Tyr Glu Arg Gln Gly Thr Pro Ser Arg Val Cys Gln Ser Ser Arg
 65 70 75 80
 Gln Trp Ser Gly Ser Pro Pro Val Cys Thr Pro Met Lys Ile Asn Val
 85 90 95
 Asn Val Asn Ser Ala Ala Gly Leu Leu Asp Gln Phe Tyr Glu Lys Gln
 100 105 110
 Arg Leu Leu Ile Val Ser
 115

<210> 189

<211> 299

<212> PRT

<213> Human

<220>

<400> 189

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
 1 5 10 15
 Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
 20 25 30
 Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
 35 40 45
 Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe

50	55	60
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr		
65	70	75
Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe		80
85	90	95
Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser		
100	105	110
Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val		
115	120	125
Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr		
130	135	140
Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro		
145	150	155
Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn		160
165	170	175
Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro		
180	185	190
Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly		
195	200	205
Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser		
210	215	220
Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val		
225	230	235
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly		240
245	250	255
Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly		
260	265	270
Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu		
275	280	285
Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val		
290	295	

<210> 190

<211> 91

<212> PRT

<213> Human

<400> 190

Gln Pro Thr Val Phe Trp Pro Lys Thr Ser Ala Lys Lys Gly Asn Trp		
1	5	10
Val Leu Arg Leu Gly Leu Ser Asn Pro Asp Arg Pro Ala Arg Gln Asn		15
20	25	30
Asn Trp Phe Leu Pro Ala Ser Arg Glu Ile Pro Glu His Ser Ala Leu		
35	40	45
Thr Arg Tyr Pro Ala Gln Ile Arg Gly Cys Trp Pro His Arg Leu Thr		
50	55	60
Lys Pro Gln Thr Cys Leu Pro Gln Ala Arg Ser Tyr Leu Ser His Glu		
65	70	75
Val Thr Gln Ala Thr Arg Thr Cys Pro Gly Gly		80
85	90	

<210> 191

<211> 89

<212> PRT

<213> mouse

<400> 191

Gly Ala Trp Ala Met Leu Tyr Gly Val Ser Met Leu Cys Val Leu Asp		
1	5	10
Leu Gly Gln Pro Ser Val Val Glu Glu Pro Gly Cys Gly Pro Gly Lys		15
20	25	30

Val Gln Asn Gly Ser Gly Asn Asn Thr Arg Cys Cys Ser Leu Tyr Ala
 35 40 45
 Pro Gly Lys Glu Asp Cys Pro Lys Glu Arg Cys Ile Cys Val Thr Pro
 50 55 60
 Glu Tyr His Cys Gly Asp Pro Gln Cys Lys Ile Cys Lys His Tyr Pro
 65 70 75 80
 Cys Gln Pro Gly Gln Arg Val Glu Val
 85

<210> 192
 <211> 299
 <212> PRT
 <213> mouse

<220>

<400> 192
 Ala Arg Ala Gly Ala Cys Tyr Cys Pro Ala Gly Phe Leu Gly Ala Asp
 1 5 10 15
 Cys Ser Leu Ala Cys Pro Gln Gly Arg Phe Gly Pro Ser Cys Ala His
 20 25 30
 Val Cys Thr Cys Gly Gln Gly Ala Ala Cys Asp Pro Val Ser Gly Thr
 35 40 45
 Cys Ile Cys Pro Pro Gly Lys Thr Gly Gly His Cys Glu Arg Gly Cys
 50 55 60
 Pro Gln Asp Arg Phe Gly Lys Gly Cys Glu His Lys Cys Ala Cys Arg
 65 70 75 80
 Asn Gly Gly Leu Cys His Ala Thr Asn Gly Ser Cys Ser Cys Pro Leu
 85 90 95
 Gly Trp Met Gly Pro His Cys Glu His Ala Cys Pro Ala Gly Arg Tyr
 100 105 110
 Gly Ala Ala Cys Leu Leu Glu Cys Ser Cys Gln Asn Asn Gly Ser Cys
 115 120 125
 Glu Pro Thr Ser Gly Ala Cys Leu Cys Gly Pro Gly Phe Tyr Gly Gln
 130 135 140
 Ala Cys Glu Asp Thr Cys Pro Ala Gly Phe His Gly Ser Gly Cys Gln
 145 150 155 160
 Arg Val Cys Glu Cys Gln Gln Gly Ala Pro Cys Asp Pro Val Ser Gly
 165 170 175
 Arg Cys Leu Cys Pro Ala Gly Phe Arg Gly Gln Phe Cys Glu Arg Gly
 180 185 190
 Cys Lys Pro Gly Phe Phe Gly Asp Gly Cys Leu Gln Gln Cys Asn Cys
 195 200 205
 Pro Thr Gly Val Pro Cys Asp Pro Ile Ser Gly Leu Cys Leu Cys Pro
 210 215 220
 Pro Gly Arg Ala Gly Thr Thr Cys Asp Leu Asp Cys Arg Arg Gly Arg
 225 230 235 240
 Phe Gly Pro Gly Cys Ala Leu Arg Cys Asp Cys Gly Gly Ala Asp
 245 250 255
 Cys Asp Pro Ile Ser Gly Gln Cys His Cys Val Asp Ser Tyr Thr Gly
 260 265 270
 Pro Thr Cys Arg Glu Val Pro Thr Gln Leu Ser Ser Ile Arg Pro Ala
 275 280 285
 Pro Gln His Ser Ser Ser Lys Ala Met Lys His
 290 295

<210> 193
 <211> 314
 <212> PRT
 <213> mouse

<220>

<400> 193

Glu Glu Pro Cys Asn Asn Gly Ser Glu Ile Leu Ala Tyr Asn Ile Asp
 1 5 10 15
 Leu Gly Asp Ser Cys Ile Thr Val Gly Asn Thr Thr Thr His Val Met
 20 25 30
 Lys Asn Leu Leu Pro Glu Thr Thr Tyr Arg Ile Arg Ile Gln Ala Ile
 35 40 45
 Asn Glu Ile Gly Val Gly Pro Phe Ser Gln Phe Ile Lys Ala Lys Thr
 50 55 60
 Arg Pro Leu Pro Pro Ser Pro Pro Arg Leu Glu Cys Ala Ala Ser Gly
 65 70 75 80
 Pro Gln Ser Leu Lys Leu Lys Trp Gly Asp Ser Asn Ser Lys Thr His
 85 90 95
 Ala Ala Gly Asp Met Val Tyr Thr Leu Gln Leu Glu Asp Arg Asn Lys
 100 105 110
 Arg Phe Ile Ser Ile Tyr Arg Gly Pro Ser His Thr Tyr Lys Val Gln
 115 120 125
 Arg Leu Thr Glu Phe Thr Cys Tyr Ser Phe Arg Ile Gln Ala Met Ser
 130 135 140
 Glu Ala Gly Glu Gly Pro Tyr Ser Glu Thr Tyr Thr Phe Ser Thr Thr
 145 150 155 160
 Lys Ser Val Pro Pro Thr Leu Lys Ala Pro Arg Val Thr Gln Leu Glu
 165 170 175
 Gly Asn Ser Cys Glu Ile Phe Trp Glu Thr Val Pro Pro Met Arg Gly
 180 185 190
 Asp Pro Val Ser Tyr Val Leu Gln Val Leu Val Gly Arg Asp Ser Glu
 195 200 205
 Tyr Lys Gln Val Tyr Lys Gly Glu Ala Thr Phe Gln Ile Ser Gly
 210 215 220
 Leu Gln Ser Asn Thr Asp Tyr Arg Phe Arg Val Cys Ala Cys Arg Arg
 225 230 235 240
 Cys Val Asp Thr Ser Gln Glu Leu Ser Gly Ala Phe Ser Pro Ser Ala
 245 250 255
 Ala Phe Met Leu Gln Gln Arg Glu Val Met Leu Thr Gly Asp Leu Gly
 260 265 270
 Gly Met Glu Glu Ala Lys Met Lys Gly Met Met Pro Thr Asp Glu Gln
 275 280 285
 Phe Ala Ala Leu Ile Val Leu Gly Phe Ala Thr Leu Ser Ile Leu Phe
 290 295 300
 Ala Phe Ile Leu Gln Tyr Phe Leu Met Lys
 305 310

<210> 194

<211> 109

<212> PRT

<213> mouse

<400> 194

Gly Thr Arg Val Gly Thr Pro Tyr Tyr Met Ser Pro Glu Arg Ile His
 1 5 10 15
 Glu Asn Gly Tyr Asn Phe Lys Ser Asp Ile Trp Ser Leu Gly Cys Leu
 20 25 30
 Leu Tyr Glu Met Ala Ala Leu Gln Ser Pro Phe Tyr Gly Asp Lys Met
 35 40 45
 Asn Leu Tyr Ser Leu Cys Lys Ile Glu Gln Cys Asp Tyr Pro Pro
 50 55 60
 Leu Pro Ser Asp His Tyr Ser Glu Glu Leu Arg Gln Leu Val Asn Ile
 65 70 75 80
 Cys Ile Asn Pro Asp Pro Glu Lys Arg Pro Asp Ile Ala Tyr Val Tyr

85	90	95
Asp Val Ala Lys Arg Met His Ala Cys Thr Ala Ser Thr		
100	105	

<210> 195
<211> 237
<212> PRT
<213> mouse

<400> 195		
Met Leu Ser Leu Arg Ser Leu Leu Pro His Leu Gly Leu Phe Leu Cys		
1	5	10
Leu Ala Leu His Leu Ser Pro Ser Leu Ser Ala Ser Asp Asn Gly Ser		
20	25	30
Cys Val Val Leu Asp Asn Ile Tyr Thr Ser Asp Ile Leu Glu Ile Ser		
35	40	45
Thr Met Ala Asn Val Ser Gly Gly Asp Val Thr Tyr Thr Val Thr Val		
50	55	60
Pro Val Asn Asp Ser Val Ser Ala Val Ile Leu Lys Ala Val Lys Glu		
65	70	75
Asp Asp Ser Pro Val Gly Thr Trp Ser Gly Thr Tyr Glu Lys Cys Asn		
85	90	95
Asp Ser Ser Val Tyr Tyr Asn Leu Thr Ser Gln Ser Gln Ser Val Phe		
100	105	110
Gln Thr Asn Trp Thr Val Pro Thr Ser Glu Asp Val Thr Lys Val Asn		
115	120	125
Leu Gln Val Leu Ile Val Val Asn Arg Thr Ala Ser Lys Ser Ser Val		
130	135	140
Lys Met Glu Gln Val Gln Pro Ser Ala Ser Thr Pro Ile Pro Glu Ser		
145	150	155
Ser Glu Thr Ser Gln Thr Ile Asn Thr Thr Pro Thr Val Asn Thr Ala		
165	170	175
Lys Thr Thr Ala Lys Asp Thr Ala Asn Thr Thr Ala Val Thr Thr Ala		
180	185	190
Asn Thr Thr Ala Asn Thr Thr Ala Val Thr Thr Ala Lys Thr Thr Ala		
195	200	205
Lys Ser Leu Ala Ile Arg Thr Leu Gly Ser Pro Leu Ala Gly Ala Leu		
210	215	220
His Ile Leu Leu Val Phe Leu Ile Ser Lys Leu Leu Phe		
225	230	235

<210> 196
<211> 154
<212> PRT
<213> Human

<400> 196		
Met Ala Leu Gly Val Pro Ile Ser Val Tyr Leu Leu Phe Asn Ala Met		
1	5	10
Thr Ala Leu Thr Glu Glu Ala Ala Val Thr Val Thr Pro Pro Ile Thr		
20	25	30
Ala Gln Gln Gly Asn Trp Thr Val Asn Lys Thr Glu Ala His Asn Ile		
35	40	45
Glu Gly Pro Ile Ala Leu Lys Phe Ser His Leu Cys Leu Glu Asp His		
50	55	60
Asn Ser Tyr Cys Ile Asn Gly Ala Cys Ala Phe His His Glu Leu Glu		
65	70	75
Lys Ala Ile Cys Arg Cys Phe Thr Gly Tyr Thr Gly Glu Arg Cys Glu		
85	90	95
His Leu Thr Leu Thr Ser Tyr Ala Val Asp Ser Tyr Glu Lys Tyr Ile		
100	105	110

Ala Ile Gly Ile Gly Val Gly Leu Leu Leu Ser Gly Phe Leu Val Ile
 115 120 125
 Phe Tyr Cys Tyr Ile Arg Lys Arg Cys Leu Lys Leu Lys Ser Pro Tyr
 130 135 140
 Asn Val Cys Ser Gly Glu Arg Arg Pro Leu
 145 150

<210> 197
<211> 171
<212> PRT
<213> Rat

<400> 197

Met Ala Arg Pro Ala Pro Trp Trp Trp Leu Arg Pro Leu Ala Ala Leu
 1 5 10 15
 Ala Leu Ala Leu Ala Leu Val Arg Val Pro Ser Ala Arg Ala Gly Gln
 20 25 30
 Met Pro Arg Pro Ala Glu Arg Gly Pro Pro Val Arg Leu Phe Thr Glu
 35 40 45
 Glu Glu Leu Ala Arg Tyr Ser Gly Glu Glu Glu Asp Gln Pro Ile Tyr
 50 55 60
 Leu Ala Val Lys Gly Val Val Phe Asp Val Thr Ser Gly Lys Glu Phe
 65 70 75 80
 Tyr Gly Arg Gly Ala Pro Tyr Asn Ala Leu Ala Gly Lys Asp Ser Ser
 85 90 95
 Arg Gly Val Ala Lys Met Ser Leu Asp Pro Ala Asp Leu Thr His Asp
 100 105 110
 Ile Ser Gly Leu Thr Ala Lys Glu Leu Glu Ala Leu Asp Asp Ile Phe
 115 120 125
 Ser Lys Val Tyr Lys Ala Lys Tyr Pro Ile Val Gly Tyr Thr Ala Arg
 130 135 140
 Arg Ile Leu Asn Glu Asp Gly Ser Pro Asn Leu Asp Phe Lys Pro Glu
 145 150 155 160
 Asp Gln Pro His Phe Asp Ile Lys Asp Glu Phe
 165 170

<210> 198
<211> 1399
<212> DNA
<213> Mouse

<400> 198

ggcaaagact tcggcacgag asaacagcaa agcagagctg gctgcagcca ttcactggcc	60
tcggcgccc gtgccacaga ggcagtgtaa gtgaaaagtga aagagaaaacg ataagagaac	120
ggagaccaca ggtgctaagt gagggtgtc acagaacccc ctcttcagcc agagatca	180
agcaggggaa ctgtggagaa ggcagccagc aaggaagagc ctgagagtag cctccatggg	240
cttggagccc agctgttatac tgctgtctg tttggctgtc tctggggcag cagggactga	300
ccctccccaca ggcggccacca cagcagaaaag acagccggcag cccacggaca tcatttgc	360
ctgttttttg gtgacacaaag acaggccaccc cggggcttgc gccagcactg gggacaggga	420
gaggcccttg ctgtgtgtca agcaggattc agtgcgttgc gatggctccc ttggaggcat	480
cacagatttc caggggggca ctgagaccaa acaggattca ctttttatct ttggggcttc	540
agtggacttg gtacagattc cccaggcaga ggcgttgctc catgctgact gcaggggaa	600
ggcagtgtacc tgcgagatct ccaagtattt cttccaggcc agacaagagg ccactttga	660
gaaagccatcat tggttcatca gcaacatgca gttttctaga ggtggcccca gtgtctccat	720
ggtgatgaag actctaagag atgtgttgc tggagctgtc cggcacccca cactgaacct	780
acctctgagt gcccaggggca cagtgaagac tcaagtggag ttccaggta catcagagac	840
ccaaaccctg aaccacactgc tggggtccctc tgctccctg cactgcagg tctccatggc	900
accagacctg gacctcaactg gcggtggatg gcgctgcag cataaaggca gcgccagct	960
ggtgtacagc tggaaagacag ggcaggggca ggcacggcgc aaggggcgtca cactggagcc	1020
tgaggagcta ctcagggtctg gaaacggctc tctcacctt cccaaacctca ctctaaaggaa	1080
tgaggggacc tacatctgcc agatctccac ctctctgtat caagctcaac agatcatgcc	1140

acttaacatc	ctggctcccc	ccaaagtaca	actgcacttg	gcaaacaagg	atcctctgcc	1200
ttccctcgctc	tgagcattt	ccggctacta	tcctctggat	gtgggagtgta	cgtggattcg	1260
agaggagctg	ggtggattc	cagcccaagt	ctctggtgcc	tccttctcca	gcctcaggca	1320
gagcacgatg	ggaacctaca	gcatttctc	cacggtgatg	gctgaccagg	gccccacagg	1380
tgcacttat	acctgccaa					1399
<210>	199					
<211>	469					
<212>	DNA					
<213>	Rat					
<400> 199						
ggggcgctgg	ccagtcatgg	cgagcattt	ggctggcag	tttctgcaag	ctttgcccgc	60
cacggcgctc	ggagcgctgg	gcaccctggg	cagcgagttt	ctgcgggagt	gggagacaca	120
agatatgcga	gtgactctct	tcaagcttct	cctgctttgg	ttggtgtttaa	gtctcctggg	180
catccagctg	gctgtgggggt	tctacggaa	cacagtgacc	gggttgtatc	accgtccagg	240
gaaatggcag	caaataaact	cacagagaat	aaaggaaggc	agcaggagaa		300
gggtctccag	agatatcgct	gggtctgttg	gctcctgtgc	tgtaccttgc	tgctatccag	360
accccttagg	caactgcaga	gggcttgggt	tggggactg	gagtaccatg	atgctccag	420
ggtggcctc	cactgcccctc	agccttgccct	ccaacagcgt	caggtactg		469
<210>	200					
<211>	529					
<212>	DNA					
<213>	Rat					
<400> 200						
aaagcttcca	tcctcaacat	gccacttagt	acgacactct	tctacgcctg	cttctatcac	60
tacacggagt	ccgagggggac	tttcagcagt	ccagtcaacc	tgaagaaaac	attcaagatc	120
ccagacagac	agtatgtct	gacagcattt	gctgcgcggg	ccaagcttag	agcctggaat	180
gatgtcgacg	ccttgttac	cacaaagaac	tgggtgggtt	acaccaagaa	gagagcaccc	240
attggcttcc	atcgagttgt	ggaaattttt	cacaagaaca	gtgcccctgt	ccagatattg	300
caggaatatg	tcaatctgtt	ggaagatgtg	gacacaaagt	tgaacttagc	cactaagttc	360
aagtgccatg	atgttgtcat	tgataacttgc	cgagacctga	aggategtca	acagttgctt	420
gcatacagga	gcaaaatgtaga	taaaggatct	gctgaggaag	agaaaatcga	tgtcatccctc	480
agcagtcgc	aaattcgtat	gaagaactaa	ggtttttttgc	ctacccaga		529
<210>	201					
<211>	1230					
<212>	DNA					
<213>	Rat					
<400> 201						
aagaattcgg	cacgaggcca	tggctggttt	ggcgaaaaa	gagctctcgg	tcctgaaccc	60
gctgcgtcg	ctgtggctgt	tgctggcgc	cgccctccctg	ctcgactgc	tgctgcagct	120
ggcgcccccc	aggctgtctac	cgagctgcgc	gctcttccag	gacccatcc	gctacggaa	180
gaccaagcag	tccggctcgc	ggcgcccccc	cgtctgcagg	gccttcgcacg	tcccaagag	240
gtacttcttct	cacttctac	tctgttctact	gttatggat	ggctccctgc	tctgttccct	300
gtctcagtct	ctgttccctgg	gagcgcgcgtt	tccaaagctgg	ctttgggtt	tgctcagaac	360
tcttgggttc	acgcagtttc	aagccctggg	gatggagttc	aaggcttctc	ggatacaagc	420
aggcgagctg	gctctgtcta	ccttcttagt	gttgggttgc	ctctgggtcc	atagtcttcg	480
gagactcttc	gagtgttttct	acgtcagcgt	cttctctaaac	acggccatttc	acgtcgtgca	540
gtactgtttc	gggctggctt	actatgttct	tgttggcttgc	accgtactga	gccaagtgcc	600
catgaatgac	aagaacgtgt	acgctctggg	gaagaatcta	ctgctacaag	ctcggtggtt	660
ccacatcttgc	ggaatgtat	tgttcttctg	gtccctctgcc	catcgtata	agtgccacgt	720
cattctcagc	aatctcaggaa	gaaataagaa	agggtgtggc	atccactgccc	agcacagaat	780
cccccttggaa	gactgggtcg	agtatgtgtc	ttctgttctaaac	tacctagcag	agctgtatgtat	840
ctacatctcc	atggctgtca	ccttggggct	ccacaacgtt	acctgggtggc	tgggtgtgac	900
ctatgtcttc	tccagccaag	ccttgcgttgc	gttcttcaac	cacagttct	acaaaagcac	960
attttgttgc	tacccaaagc	ataggaaatggc	tttcttccccg	ttcttggttt	gaacaggctt	1020
tatggtgaag	agcgcagccc	aggtgacagg	ttcccttccct	cgagacgctg	agacaggctg	1080

aagtacactt tctgcagctg	gcccggca	ggctgctacc	gagctgcgcg	ctttccagg	1140
acctcatccg	ctacggaaag	accaagcagt	ccggctcg	gccccccg	1200
cggggatcc	actagttcta	gagccgc			1230

<210> 202
<211> 778
<212> DNA
<213> Rat

<400> 202						
ctgcaggctg	acactagtgg	atccaaagat	tcggcacgag	ataaggcaca	tttgcttcat	60
aaaataaaaa	aaaaggaaat	ttacttagcc	gcatgtcagt	cacccaaatt	ttgagtgtac	120
aatgaaatg	gaaaacattt	attacacaaa	ttaattaca	attctaggga	ataaacatgc	180
aatcagatg	gagctcaatc	tgcaggcgt	gatcctctcc	ccctgggtt	cagtctgtgc	240
accccttgg	ttcggccgc	accaggcagt	cagaggcctg	gtcttgcag	gcaggaggat	300
cactgttgta	aagaacagcg	tcacatttag	cgcacatctggc	gtatgtac	tttttaacac	360
tttgcgcagg	tgccctcc	cccccaccc	cgcttggta	ggtctacctc	tctaaatctc	420
tgccttc	gcacagtaag	tgacctctcc	atgacaaagg	gccccccagac	agcagttata	480
aatcaatgt	ttttgggtt	ttgtttgtt	ttaaagaaaa	acccggccat		540
gttggggc	acttgcctt	aatagtacg	cttggtagac	agaggcaagc	ggttctctgt	600
aagttaaagg	ccagcctggt	ctacacagtg	agaccgggtc	tcaaaaacaa	aacaacaaaa	660
aacaactct	attgaatcca	ctacaggaag	ggggggcgc	gatca	tgcaaactaa	720
agtgacttga	gtccctgtca	cagccttcc	agcaaggc	agtttcttta	ttagttat	778

<210> 203
<211> 1123
<212> DNA
<213> Rat

<400> 203						
ggggccccc	tcgagtcgac	gktatcgata	agcttgat	cgaattcctg	caggtcgaca	60
ctagtggatc	caaagaattc	ggcacgagcc	tgaggcgact	acgggtgcggg	tgccgggtgc	120
cgggtgccta	cagccccc	cagettcccc	ggggagattc	tgccgat	tcacgagcc	180
tgcctcagg	gcagctcg	tggtggcacc	tgctggctt	gttttcc	ccat	240
tgtgtcaaga	tgaatac	gagtc	ccac	aagctggagg	actgccccca	300
agtgttgc	ttggagattat	ggattcc	gttaccaagg	gccccctgg	cccccagg	360
ctcctggcat	tccaggaaac	catggaaaca	atggaaataa	cgagccact	ggccacgaa	420
gggccaaggg	tgagaaagga	gacaaaggcg	acctggggcc	tcgaggggaa	cgggggc	480
atggcccaa	aggatagaag	ggatacc	gggtgccacc	agagctgc	attgc	540
tggcttct	agcgactc	ttcagca	agaa	cattatctt	agcagtgtt	600
agaccaacat	ttggaaactc	ttcgatgt	tgact	tttggggcc	cccgat	660
gcgtgtat	tttcac	agcatgt	agcat	ggg	gttatgt	720
accttatg	caatggtaac	acgg	gtat	ccat	gaaaca	780
cagatac	cagcaac	gcagtgc	agttggccaa	aggagatgaa	gtctggctaa	840
gaatggca	cggtgc	catggggacc	accagcg	ctctac	gcaggctt	900
tgc	tttta	aacta	tgagga	aggatag	catgct	960
gttgagct	gtttag	atctgaggg	tttggagtt	ggcttct	atggagtatt	1020
taactgttac	attgg	ctgctact	ttctaa	atccaattt	tgttgat	1080
tttagggct	aggaa	gaccacaagg	taatatt	ccc	aga	1123

<210> 204
<211> 434
<212> DNA
<213> Mouse

<400> 204						
accacca	agatggaaat	ctggcacacc	catgcac	catggcgt	cagg	60
attgttaa	aattgacatc	agaaatattt	acagaaatag	atac	ttt	120
agagatgaa	ttttgtctaa	acttcaacc	aagcttagat	gcacat	agg	180
agtcc	ttgcacttcc	tgtact	aagcttgaac	cccat	gtt	240
acatattctt	tttcttg	tttgaatgt	tccattgt	gacacc	aggta	300

tgtgtgaaga gctctggcac cttaaccat attttccctg agtggcatcc actcaatgtc	360
gcccattttg gtcctatgtaa cagctcaac agtaaatcac aaataagaaa aatgggtttg	420
gaaagagcgt cgcc	434

<210> 205
<211> 783
<212> DNA
<213> Mouse

<400> 205	
aattccgcac gaggctagtc gaatgtccgg gctgcggacg ctgtctgggc tggggctgtc	60
ggttgcgggc tcgcgcctgc cacgggtcat cagccagcag agtgtgtgtc gtgcaggcc	120
catctggtgg ggaacacacg gccggggctc ggagaccatg gcggggcgctg cggtaagta	180
cttaagttag gaggaggctc aggccgtgg acaagagctt tttaacgagt atcagtttag	240
cgtggatcaa ctcatggagc tggccgggtt gagctgtgcc acggctatgg ccaaggctta	300
tccccccacg tctatgtcca agagtcccccc gactgtcttg gtcatctgtg gccccggaaa	360
taacggaggg gatgggctgg tctgtgcgcg acacctaaaa ctttttgggtt accagccaac	420
tatcttattac cccaaagagc ctaacaagcc cctttcaact gggctagtgta ctcagtgtca	480
gaaaatggac atcccttcc ttggtaaaat gcccccaagag gatgggatgt agagaaggaa	540
aacccttagcg gaatccaacc agacttactc atctcaactga cggcacccaa gaagtctgca	600
actcacttta ctggccgata tcattacctt ggggtcgct ttgtaccacc tgctctagag	660
aagaagtacc agctgaacct gccatcttac cctgacacag agtgtgtcta ccgtctacag	720
taaggaggt gggtaggcag gattctcaat aaagacttgg tactttctgt cttaaaaaaaa	780
aaa	783

<210> 206
<211> 480
<212> DNA
<213> Mouse

<400> 206	
aaataaaaac tcttggarct cgcgcgcctg caggtcgaca ctatgtggatc caaagaattc	60
ggcacaggtt aagggtttca gacttttattt catggattt gacattgaca cataactgagt	120
tagtaacaag ataccatgca gctccctcta gcctcgatc accgaagcag gaagaaggtc	180
agactgcccc catcccgat ttgcttagtt tgctctccaa tggctggac tttaaagaca	240
ggaaatggag aacgagatgg atgcttcagt ttcaagtctt tttggctcta tagtgcatttc	300
tgccttcctg tacctgtcc tggctggacc ctggcgatc actgtcaactc agatgaggac	360
gatcatcatt acaatggacc aactgagggaa tgcctcata ttagaccaat taaaagttgc	420
tgtgatgttacc accaggaatg accgcacttc cacatcgaa atcaaacaaa atcaatggtt	480

<210> 207
<211> 501
<212> DNA
<213> Mouse

<400> 207	
ctgcaggatcg acactagtgg atccaaagaa ttggcacgaa gaatcatggc gcccgtcgctg	60
tggaaaggggc ttgttaggtgt cgggctttt gcccctagccc acgctgcctt ttcaagctgcg	120
cagcatcgat ttatatatcg actaacagaa aagaagatg aatcattacc aatagatata	180
gttcttcaga cacttctggc ctttgcagtt acctgttatg gcatagttca tatcgagg	240
gagttcaaaag acatggatgc cacttcagaa taaaagaata agacatttg aacccat	300
aatcaccat ctttttatgt gtttaaccat cgtggatcgag tgctgtccg gcctcagat	360
gcaacaaatt cttcaaacct agatgcatttgc ttctctaata catcgatggaa gttacgaaag	420
tttgactcac tgcggccgtt agcttttac aaattaaata acaggacaga cacagaatttgc	480
agtattggat ttgggggtgt a	501

<210> 208
<211> 480
<212> DNA
<213> Mouse

<400> 208

ggcacgagga	aggcctttcc	catggaagca	cactctagga	gagagaaggc	ctctgggctc	60
cgcctggcct	ggcattatga	atgcagtggg	gtcagtgtgt	ggtggatgtg	tgtactgggt	120
tggcttcct	tttagtttt	tttactttt	agtttagttt	gttctttcc	ttccccaaata	180
aatcattctc	acatgcttcc	atgtttgtt	ctgagaggtg	ggggctcaa	tgtatagaaa	240
gtagggccca	gtccataagg	aggtgtgaac	acacccctt	actgcttatac	acccatttga	300
caggaacgcc	caggagggg	gggggagggg	aagagggtgag	ttctgcacag	tcggacattt	360
ctgttgctt	tgcatagttta	atatagaacgt	tcctgtcgat	ccttgggaga	tcatggcctt	420
cagatatgca	cacgacccccc	gaattgtgcc	tactaattat	agcaggggac	ttgggtaccc	480

<210> 209

<211> 962
 <212> DNA
 <213> Mouse

<400> 209

ggcacgagat	tagccgctcc	tcagcccagc	aaatccctca	ctcatcatgc	ttcctcctgc	60
cattcatctc	tctctcatcc	ccctgctctg	catccctgatg	agaaacttgtt	tggcttttaa	120
aaatgatgcc	acagaaatcc	tttattcaca	tgtggttaaa	cctgtccccc	cacacccca	180
cagcaacagc	accctgaatc	aagccagggaa	tggaggcagg	catttcagta	gcactggact	240
ggatcgaaac	agtcgagttc	aagtgggctg	caggaaactg	cggtccacca	aatacatttcc	300
ggacggccag	tgcaccagca	tcagccctct	gaaggagctg	gtgtgcgcgg	gcgagtgctt	360
gccccctgccc	gtgcttccca	actggatcgg	aggaggctac	ggaacaaagt	actggagccg	420
gaggagctct	caggagttggc	ggtgtgtcaa	cgacaagacg	cgccacccaga	ggatccagct	480
gcagtgtcag	gacggcagca	cgcgcaccta	caaaatcacc	gtggtcacgg	cgtgcaagtg	540
caagaggtac	accgtcagc	acaacaggtc	cagccacaac	tttggaaagcg	tgtcgccagc	600
caagccgc	cagcaccaca	gagagcggaa	gagagccagc	aatccagca	agcacagtc	660
gagctagacc	tggactgact	aggaagcatac	tgctacccag	atttggattgc	ttggaaagact	720
ctctctcgag	cctgccattt	ctctttctc	acttggaaagt	atatgcttcc	tgcattttgatc	780
aagccagca	ggctgtccctt	ctctgggact	agctttccct	tttggaaagcg	tcaagatgt	840
aatgagtggt	tttgcagtgaa	agccaggcat	cctgttagttt	ccatcccccc	ccccatcccc	900
gtcatttctt	taaaagcacc	tgatgctgca	ttctgttaca	gtttaaaaaa	aaaaaaaaaa	960
aa						962

<210> 210

<211> 778
 <212> DNA
 <213> Mouse

<400> 210

ggcacgaggc	tagtcataatg	tccgggtcgc	ggacgctgct	ggggctgggg	ctgctgggtt	60
cgggctcgcg	cctgcccacgg	gtcatcagcc	agcagagtgt	gtgtcgctca	aggcccatct	120
ggtggggaaac	acagcgccgg	ggctcggaga	ccatggcggg	cgctcggtg	aagtacttaa	180
gtcaggagga	ggctcaggcc	gtggaccgg	agcttttaa	cgagtatcag	ttcagcggtt	240
atcaactcat	ggagctggcc	gggttggact	gtgccacggc	tattgccaag	gcttatcccc	300
ccacgtctat	gttcaagaggt	cccccgactg	tcttgggtcat	ctgtggccccc	ggaaataaacg	360
gaggggatgg	gctggctctgt	gcccggacacc	tcaaaactttt	tggttaccag	ccaaactatct	420
attaccccaa	aagacctaacc	aagccctct	tcactgggct	agtgactcag	tgtcagaaaaa	480
tggacattcc	tttccttgggt	gaaatggccc	cagaggatgg	gatgttagaga	agggaaaccc	540
tagcggaaatc	caaccagact	tactcatctc	actgacggca	cccaagaagt	ctgcaactca	600
ctttacttggc	cgtatcatt	accttggggg	tcgttttgc	ccacctgctc	tagagaagaa	660
gtaccagctg	aacctgcccc	tttacccctt	cacagagtgt	gtctaccgtc	tacagtaagg	720
gagggtggta	ggcaggattc	tcaataaaaga	cttgggtactt	tctgtcttgc	aaaaaaaaaa	778

<210> 211

<211> 1152
 <212> DNA
 <213> Mouse

<400> 211

ggcacgagct	tctcaggggcc	tgccacccaa	ataagtctgg	ccctagcctc	aactctctct	60
------------	-------------	------------	------------	------------	------------	----

caggctgggc cacaggaagc tgctgactgg ccacttgaca ccctccccc	aaagctaatg	120
tctgtgacta tagggaggtt agcactttt ctaattggaa ttcttcctg tcctgtggcc		180
ccatccctca cccgccttgc gcctggacca gatacatgca gcctttctt ccagcacagc		240
ctttccctga gcctgaggtt agggcagagt ttagagggtg ggctaagtgt atgtttcat		300
gtatgcattc atgcctgtga gtgtgtggct tgctgtcg	tcctctggaa tcccaagcca	360
cgcggtctt ccctctgttag atgggtctg ggttctatca cctgcttatt tatgtacgag		420
gttgggggtt ggacccaggg tgggttatt gtctctttgt aaggaaggtat gtgtcggggg		480
tgacacgagg ctaagccccg gaaaccccg gagacagcac tgcatagaa actggtttcc		540
magactgcag agggagctgc acttttgtt tgacaaaaaa caaaaaacaa aacaaaacaa		600
aaacaaaaaca aaaataactc tgaagggcgg gaggataccc aagcctgatg cctgagagga		660
gtccctagac ttccagcaact ccgcgtcg	gcctgagccc agcgggaggg atggggagag	720
aattttttgg agtccgtgc tgggtggc agtccgtgc ctccagctga akgagtgc		780
tttggctgcc ctccacccgc actacttgac cttgaggc	tgagtatctc ctgtgcacag	840
gagaagctcc tgcaccagaa agcaccaaar sccmtggcac cccatcttac tccactctcc		900
ccagggactc ccaggtggga actgtgtgg cagtgc	ctc agccggaca gacactgcca	960
accctgtctc ctggcattgg gctccgc	ctc tacccatcca agcagggcga ggccccgcct	1020
tctcagccta gcaccacctg tccccgagtc ttctcagctt gcccattt ctcggcgc		1080
acacaggtga cagtcaccaag tagataaccc ccatggaca agttgggtgt tgccttaccc		1140
gcctgcccag cc		1152

<210> 212
<211> 446
<212> DNA
<213> Mouse

<400> 212

ggcacgagct tgagtctggaa gtgctgcaaa taatagtatg cactatccct gcctggcatg	60
tttgttgtt aatgtgact ggtgtttgc ctggatgtgt atacttgcata agatgtcaga	120
actccctggag ctggagttttag agacaatggt gagtgcctt gtggatgttg ggaattgaac	180
ccaggtccctc tggagaaata accagtgc ttaaccacta agccatctca acagccccaa	240
attattttttaataagttt cctcggtcat gttgtcttaa tcagagcgat agaaaagtaa	300
ctaataataga ttatattatgaa attcaggtgg cttaatggta tatgcatgaa tttagtagtaa	360
aacaagaact agggccagca agtggcttaa ggggcctgc taaccatctc agccacctga	420
gttcagtctc caggaaccac acagt	446

<210> 213
<211> 2728
<212> DNA
<213> Mouse

<400> 213

ggggaggggag ggcctgttt tggcggagca gggcgccgg ctggccccc	gaagtggagc	60
gagagggagg cgcttcgcgg ggtgcactg cggggggaggc tcgtcg	ccagcgccgg	120
tcgcggctcc ctccaggatcg atgcacccgc gtttacccgt gaggaggcgg cggccggg	180	
agatgggtttt ggcgcacagtt ttaattctgc tccctcttgc ggcggcggg	ctgggaggtg	240
agacacgacc cccggccggc acggagcggc ggtcggtcg	gcccagcga cgtcgccgg	300
ccggcccgcc cgtgtcaggt ctccctggcgt tctgtcagct ctctcagctc	gcctcagccg	360
accccgagcg acgetccccc cgcgcatttgc tccctcgccgc gccccgaccc	cgctcccccc	420
ggcggccctg cttccggc ttctcgccgc gtttcccccgg	ggagcggcgg agcccaaggcc	480
agcccccctc ggcactccg cagccaccc tccatccgc gggtccgacccc	cccgggaccc	540
cgcagactcg cagcaacttg cgagggtggc	agcgcggcgg gaggattttt ctgc	600
gcgagcggac cccggccggg tgcggacgc cgggtgtcg	ccgc	660
ctccgcctcg tgctcttttgc gggatgttttgc tagccagcgc	gcccggagtt	720
gtgtgtctgt ctgtctgtctgt gtttcccccgg	ggcaagact tttagttgact	780
gaggagaagg gcaagccgtt tttagatgtctt ccctcgatcca	tctgtcttt tgagttgagt	840
ccacagagaa gcaagaccga cccttcctgg gcaaccac	ttgcagagtt ttctaaact	900
ctcagggtggaa gcaagacgtac tgcttagtca gaggattgtc	agggctgtgc tccctcccc	960
tgcaatttgg agttcaactgt tgctcaagt ttccctgtatgc	ttcggttttgc agacagcggt	1020
atttcattcc caggcttcc taggacaggt tgcatgatta	ttttgttccct atgagaaagtt	1080
gcttattccat aggtaaagcta atttggcc	caagtgtctg gagagaggtt agcttaaaag	1140
cattgaattt gaaacaaccc ccagaacttc caggggtgt	tcggatggtt gtcagcagcc	1200

taatttgata	ctttagaaaa	tatcctagtg	tttctgttag	tgtattgtct	gtgttcatcc	1260
ctttgtctca	ttgacttaaa	ctgcaggacc	cagcctattt	ttgtctggca	ttctgcttac	1320
tctgaagttg	gttttgtgt	ctcagttct	gttgttgtgt	gtactattca	tttattaagt	1380
acacatttta	gatgacagcc	actaatagat	gcttattttt	gttttgtttt	tgtttttgt	1440
ttttttaag	aaccagattg	cagaccgtt	gtaaagagcc	tctttattta	acatttgtat	1500
ttctgtaca	cggcttatag	tcctggctgg	ctgttttac	tttttgtat	tatggtcagg	1560
aatttagacac	tgttctctat	gaggtaataa	aatctaagtt	aatgtgata	cactttgata	1620
acgttagtcat	acaaaatgcc	tttttattaag	gaaaactaaa	accaatgtgg	cctgttgttt	1680
ggggaaaaaa	gtaaattaac	agcataagca	ttgtgggtga	agagtttat	tcagatctt	1740
ggagtttctt	tctgcactaa	gtaatgattc	aaaggccagg	ttttgttgg	cttctgtcaa	1800
aaactaaaaa	aaaaaaataa	aagtttcac	ttaagtatta	tgtcaaattt	gtaataacttg	1860
agtagttagg	tatatttata	atttggggct	gtggaatgt	gcccagtgc	aattgcctag	1920
caaggccatg	caaggctttg	gattcaacat	ctctgtttaa	ggcccaaacc	tcctcctatg	1980
tttatttgt	actcattata	ctatatgtcg	ggttttttt	ttttatctga	actgaatcgc	2040
ata>tagctaa	gtttatataat	ttttgtgatg	ttttgttaggc	tagtgtgcat	tcaaacttag	2100
tagatattgg	ctgttagtgca	ttggaaagtt	gaaatgtttt	taaggtagg	gtagttgttag	2160
aaatacacaa	ctttaaggta	taagccatgt	tcaggtgaaa	ctaaactctg	ttgggtgctt	2220
tcatcttgc	tttttgtgtt	aatcactgtt	gtgtgtgaat	gttttctta	ctgcacataa	2280
tgtgaggggt	gggaagctgg	aaggaggcaa	taaagtgttt	aaatactaaa	acaacttttc	2340
tagtttccc	ttctatgttg	gtggatgtcc	tgcccagtgt	tgtatttgt	gaaagataacc	2400
atgatagttt	tttagttagt	gaagtgtctg	tatggaaat	ttcatatatac	tgtacaaaat	2460
gcttctaaaa	agttttagt	tgccatgaa	aatggctcg	tagtgggag	cacttgctt	2520
gaaaggctga	ctatctgatt	tctagcccc	atccctttag	ttgaaggaga	gaaccaactc	2580
ctgaaaattt	tcttttgacc	ttcacatgca	caccatggtt	cctcgtgccc	ttactcacac	2640
atgtacacta	cacacaatta	taagataata	aagtttattt	gagacgtgtt	aggaacttat	2700
tggcactatc	ctgattagcc	acaatttt				2728

<210> 214
<211> 2046
<212> DNA
<213> Rat

<400> 214

cggtatcgat	aagcttgata	tcgaattcct	gcaggtcgac	actagtggat	ccaaagaatt	60
cgccacgaga	aaataaccaa	ccaaacaaac	tttctcttc	ccgctagaaa	aaacaaattc	120
tttaaggatg	gagctgctct	actgggtttt	gctgtgcctc	ctgttaccac	tcacctccag	180
gaccagaag	ctgcccacca	gagatgagga	acttttcag	atgcagatcc	gggataaggc	240
attgttccac	gattcatccg	tgattccaga	tggagctgaa	atcagcagg	accttattag	300
agatacacct	agaaggattt	tcttcatgg	tgaggaagat	aacacccac	tgtcagtcac	360
agtgcacac	tgtgatgcgc	cttggaaatg	gaagcttagc	ctccaggagc	tgcctgagga	420
gtccagtgc	gatgggtcag	tgacccaga	accacttgac	cagcagaagc	agcagatgac	480
tgatgtggag	ggcacagaaac	tgttctcta	caagggcaat	gatgttagat	attttctgtc	540
ttcaagttcc	ccatctgg	tgtatcagtt	ggagcttctt	tcaacagaga	aagacacaca	600
tttcaagta	tatgccacca	ccactccaga	atctgatcaa	ccataccctg	acttaccata	660
tgacccaga	gtttagtgc	cctctattgg	acgttaccaca	gtcacttcttgg	cctggaaagca	720
aagccccaca	gcttctatgc	tgaaacaaacc	catagagtac	tgtgtggtca	tcaacaagga	780
gcacaatttc	aaaaggcctt	gtgcagcaga	aacaaaaatg	agtgcagatg	atgccttcat	840
ggtggccccc	aaacctggcc	tagactttt	cccccttgc	tttgcctt	tcggatttcc	900
aacagataat	ttgggtaagg	atcgcagctt	cctggcaaa	ccttctccca	aagtggggcg	960
ccatgtctac	tggaggccct	aggttgacat	aaaaaaaaatc	tgcataaggaa	gtaaaaatat	1020
tttcacagtc	tccgacctga	agcccaatac	ccagtaactac	tttgcatttgc	tcatggtcaa	1080
taccaacact	aacatgaaca	cagctttgt	gggtgcctt	gccaggacca	aggaggaggc	1140
aaaacagaag	acagtggagc	tcaaagatgg	gagggtcaca	gatgtggc	taaaaaggaa	1200
agggaaaaag	tttctacgg	ttgctccagt	ctctcttcac	caaaaagtca	ccctctttat	1260
tcactcttgc	atggacactg	ttcaagtc	atggagaaga	gatgggaagc	tgcttctgtc	1320
acagaatgtg	gaaggcattc	ggcagttcca	gttaagagga	aaacccaaag	gaaagtacct	1380
cattcgactg	aaaggcaaca	agaaaggagc	atcaatgtt	aaaatactag	ccaccaccag	1440
gcccagtaag	cacgcattcc	cctctcttcc	tgtgacaca	agaatcaaag	cctttgacaa	1500
gctacgcact	tgctcttcag	tcacgggtgc	ttggcttggc	acccaaagaga	ggagaaaagtt	1560
ttgtatctac	agaaaggaaag	tgggtggaaa	ctacagtcaa	gagcagaaga	gaagagagag	1620
aaaccagtgc	ctaggaccag	acaccagaaa	gaagtcagag	aaggttctt	gcaagtactt	1680

ccacagccaa aacctgcaga aagcagtgcac gacagagaca atcagagatc	tgcaacctgg	1740
caagtcttac ctactggacg tttatgttgtt aggacatggg ggacactctg	tgaagtatca	1800
gagtaaacatt gtgaaaaacaa ggaaggctgt ttagttacct taagtgaaga tcagtagaac		1860
tcccggagag atatggatc acactgcctg ttactgacta ctctcatgac	aaacagaagt	1920
tgtacttcaa agaaaaggata acaacatgt tacattgtat cctgtgtat gtaacgtgga		1980
gacttgttatt ca cgacacacc tgtggtactt aggtccatc tgtcta atgc tggcta atgt		2040
caaagg		2046

<210> 215
<211> 493
<212> DNA
<213> Mouse

<400> 215		
ccccacccagc agaagatcct ctaccaatga atgctgactg agcctgccc	actttttgtg	60
cacaagaaga accagccacc ttcacacagc agcctccgc	ttcacttttag gaccctagca	120
ggagcactgg ccctttcttc aacacagatg agtggggac	tacagattct cccctgcctg	180
agccta atcc ttcttcttgc	gaaccaagtg ccagggcttg	240
gggtcttgc	agggtcaaga gttccgattt	300
aagaacactg tgcaaactca ggatgacatc acaagcatcc	ggctgttcaa gccgcagg	360
ctgcggaatg tctcggtat	cagatggaa gggatagct	420
tgggagtcgt tcccttctgc	agctctctaa gaggggctga	480
tctgatccct atacaggaca	aggctgagca tgaggca aag	
tggctctgt ctg		493

<210> 216
<211> 511
<212> DNA
<213> Mouse

<400> 216		
gggcata tagtgc tggaggataga tgagaattct atgtcatgtt	ccccaggca a caggagaag	60
attgtcttcc aggtagctt gagaagggtc tcagagtat	gcatttcctc caatgcccac	120
tccaa cagggt ctat tccctt ggc aacat	ccacagtgc taaaggccaa	180
gtggatggat gtctggctg ggttgcact ggagacctt	tggatata tg aggctgtgt	240
gccttggctg ctgatggggc	aggggcatgc ctgggtctgt	300
ctttgttaat gtcccaggct tatgttacca caaaagcca	ttcagatgcc cctggctc	360
attgtctgccc gaagcactgt gctagccctg cctcttgc	accaccacac tcagaagagc	420
tgtcccttacc tcttgc	ctggcacaat agagctgacc	480
gtgaactggc tcccttcttc atctactgt	ctgatgaat ggaagcactg	
g		511

<210> 217
<211> 1107
<212> DNA
<213> Rat

<400> 217		
cggcatctca agctgctgca agcaggactg agcactacca gaggcaca	ctcgatggc	60
cctggacgtg gcacgcgcgg ggcacaggaa caagaagact	tgtaaagcc tctttccca	120
acccat atcc agaaagaacg atttagatga cagtttttag	aaagggtgacc accatgatct	180
cctggatgtt cttggcctgt gccccttgcgt	tgctgtgtga cccaatgtttt ggtgccttt	240
ctcgaggaa cttccagaag ggtggcttc	aactgggtgtg cagtctgcctt ggtccccaa	300
gccccacctgg ccctccaggaa	gcacccaggat cctcaggaaat ggtgggaaaga atgggtttt	360
ctggtaagga tggccaagac	ggccaggac gagaccgagg	420
cacctggcag gacaggcaac	cgaggaaaac aaggacc	480
ggagagcggg tctcgagga	ccaaaggggg tcaatggatc	540
cgggcaagaa gggaccta	ggcaagaaag gggAACCTGG	600
gcggcagtag cggagccaa	gtcccaggc	660
agcactgac catcaagttt	tttacccacgtg	720
ccagtggcaa gttcgctgc	gacgtgcac	780
tggccaacaa acacctggcc	ggatcttata	840
ttgacgccaa cacggcaac	ctcgatggctc	900
cacgacgtgg	caccatccat	
	gctctcaagg	

agggtgatga agtctggta cagatttct actcggagca gaatggactc ttctacgacc	960
cttattggac cgacagcctg ttcaccggct tcctcatcta cgctgatcaa ggagacccc	1020
atgagggtata gacaagctgg gggtgagccg tccaggcagg gactaagatt ccgcaagggt	1080
gctgatagaa gaggatctct gaactga	1107

<210> 218

<211> 1001

<212> DNA

<213> Rat

<400> 218

ggagcaagaa gcaacccgaa gctaggagtc tgtcagcgag ggcagggct gcctgggtgg	60
ggtaggagtg ggagcagggc cagcaggagg gtctgaggaa gccattcaaa gcgagcagct	120
gggagagctg gggagccggg aagggctac agactacaag agaggatctt ggcgtctggg	180
cctcctgggt catcaccatg aggccacttc ttgcctgtc gcttctgggt ctggcatcag	240
gtctctctcc tctggacgac aacaagatcc ccagcctgtg tccccggcag cccggctcc	300
caggcacacc aggccaccac ggcagccaag gcctgcctgg ccgtgacgac cgtgatggcc	360
gcgacgggtc acccggagct ccgggagaga aaggcgaggg cgggagaccc ggactacctg	420
ggccacgtgg ggagcccgaa ccgctggag aggaggacc tggggggct atcgggctcg	480
cgggggagtg ctgggtgccc ccacgatcag cttcgtgtc caagcgatca gagagccggg	540
taccccgcc accgcacaca cccctaccc tggaccgtgt gctgctaat gagcaggag	600
attacgatgc cactaccggc aagttcacct gccaagtgc tggtgtctac tactttgtcg	660
tccatgccac tgcttacccgg gccagccatc agtttgatct tgtaaaaaat ggccaatcca	720
tagctcttt ctccagttt ttgggggggt ggccaaagcc agcctcgctc tcaggggggtg	780
cgttgtgag gctagaaccc gaggaccagg tatgggttca ggtgggtgtg ggtgattaca	840
ttggcatcta tgccagcato aaaacagaca gtacccctc tggatttctc gtctattctg	900
actggcacag ctcccccagtc ttggctaaa atacagtgaa cccggagctg gcacttgctc	960
ctagtggagg gtgtgacatt ggtccagcgc gcataccagg a	1001

<210> 219

<211> 2206

<212> DNA

<213> Rat

<400> 219

tttcgtctt aacgcctct ctgcgttggc agaactggcc gtgggctccc gctggatcca	60
tggAACATCT cagcccacac agactaagcg gagactgtat ttgggtggct tcctcgagc	120
atcccggtg actgcaagta ccgggtctct gtggagaag gctcagcag aatctccacc	180
gagcgtcaac agcaagaaga ctgacgtgg agataagggg aagagcaagg acacccggg	240
agtgtccagc catgaaggaa ggcgtcaga cactgcggcc gagccttacc cagaggagaa	300
gaagaagaag cgttctggat tcagagacag aaaagtaatg gagtatgaga ataggatccg	360
agcctactcc acaccagaca aaatcttccg gtattttgc accttggaaag taatcaacga	420
acctgtgaa actgaagtgt tcatgacccc acaggacttt gtgcgttcca taacacccaa	480
tgagaagcag ccagaacact tgggccttga tcagtatata ataaagcgt tcgatggaaa	540
gaaaatttgc caggaacggg aaaagttgc tgacgaaggc agcatcttct atacccttgg	600
agagtgtgaa ctcatcttct tctctgtacta catcttccctc acaacgggtc tctccactcc	660
tcagagaaat ttggaaatttgc ttggacttgc gtttgcattt aatggagatg gagaagatg	720
catggaggag ttggaggcagg ttcaagcat cattcgctcc cagaccagca tgggcgtcg	780
tcacagagat cgtccaaacta ctgggaaacac cctcaagtct ggcttatgtt cggccctcac	840
gacctacttt ttggagactg atctcaagg gaaactgacc attaaaaact tcctggaaatt	900
tcagcgtaaa ctgcagcatg acgttctaaa gctggagttt gaacgcgtt acccggtaga	960
cgggagaatc ttggaggcagg agttcggtgg catgtgtcg gcctacagt ggtgcgttc	1020
caagaagctg accggccatgc agaggcactg gaagaaggc ac tcaaggatg ggaaggcc	1080
gactttccag gaggtggaga acttcttccat tttctgttca aacattaatg acgtggac	1140
tgcgttaagg ttttaccaca tggctggagc atccctcgat aaagtgcacca tgcacgtt	1200
ggccaggaca ttggcgaaag tcgagctgtc ggaccacgtg tggacgtgg tggacttgc	1260
ctttgactgc gacggcaatg gggagctgag caataaggag tttgtctcca tcatgaaagca	1320
gcggctgatg agaggcctgg agaagccaa ggacatgggc tttaaccctc tcatgcaggc	1380
catgtggaaa tggcccaag aaaccgcctg ggactttctt ctacccaaat agtacccac	1440
ctccctgcacc ttggccatcc gcaatcttgc agtggcttc atgctgttgc tgcttctgg	1500
agtgtgccc acatccccat tttctggaa gtgacctctg gctcagctg gctgacctct	1560

ccatcctccc	ctgaccagg	cagtgtccg	ctaggctctg	aatctgcagt	cagatcaaag	1620
gtctaagaca	ggaacaagtc	ttcaaagcag	agaccatagc	tcccttaacc	agtccccgt	1680
ggtaaatgc	ggggagccct	cccacactgg	cagccccagg	aggcatctc	gcagtctc	1740
actgtggatt	taagtaaacac	aaacgtccct	gccatctcc	tcccactgtt	ttaaagctgc	1800
aagtttggaa	atactctggc	aggcaaaggg	aagtctgtga	tgaacggtaa	tgcagatgac	1860
cctggtagcc	tgatctggca	gggcacctgg	tcaggggaag	ggtctgcgtc	agacaccagc	1920
ggcaccagga	aggcttttg	ccaccagcac	agctcccgt	tcaaagtgc	tgctttgagc	1980
ggctctccag	aacctcctgc	tcttttttt	ttctctcccg	ctccctgcga	tgccctctct	2040
gggactctgc	ttcaactagag	ccagggtctga	gcccctgttc	cttgtgtctt	gtccctctc	2100
tatagacctg	cagagcgcag	ctcagagcct	atctgcctc	tgtctaatac	actcgtaaat	2160
atcacttaa	ttatagcact	ttgcaggaaa	taccccaaaa	aaaaaaa		2206

<210> 220
<211> 376
<212> DNA
<213> Human

<400> 220						
atcggcatca	ccttctacaa	caagtggctg	acaaagagct	tccatttccc	cctcttcatg	60
acgatgctgc	acctggccgt	gatcttcctc	tttccgccc	tgtccagggc	gctggttcag	120
tgctccagcc	acagggcccg	tgtggtctg	agctggggcg	actacctcg	aagagtggct	180
cccacagctc	ttgcgcacggc	gcttgacgtg	ggcttgtcca	actggagctt	cctgtatgtc	240
accgtctcgc	tgtgagtaact	ggccatgccc	tgctgcctcc	cttcaggctg	aagctgtctg	300
tctgtccagc	gggggtgtctg	cacaccggc	tgctaggcca	gccactccac	cactctggga	360
ccagcccttg	ctctct					376

<210> 221
<211> 433
<212> DNA
<213> Human

<400> 221						
agtttcttct	cagagcaaac	agtaagcaac	agaaaaatata	catttcatg	aacattcttt	60
gcatttagaga	aacatgaaaa	taaatataat	tcaaggaagt	ataatgatc	tctaataatgt	120
cttttctcaga	cctgtactag	tttaccgggtt	caagaagctc	tcatcacatt	tttcaattgt	180
attttacata	ttgctattcg	ggtaattcaa	ataaaatgca	ggtcttgtaa	aagaataaaaa	240
acattgacaa	gtatgcatgt	gccagggacc	aaatttagagg	gttctttgtt	gcagttagtc	300
caaattctca	gatttgaagg	ataatatgt	ccaataaaaaa	aaaaatctgc	tgctagacat	360
ttacagcagt	gtctgtctt	gttccacatt	agaaaatcgaa	aacagctgtt	ctcaacaagc	420
caattttatt	ttt					433

<210> 222
<211> 530
<212> DNA
<213> Human

<400> 222						
gtttcaagcc	tgtaatcata	gcgttggaa	tgctaaggca	gaatccata	gttgagggca	60
gcctgaggtt	gatagagaaa	caactgcaaa	ctaaaaata	ttcagtctga	ggatgactta	120
atattgactt	tgtaagaagt	atactcttg	aaataggtgc	taagcaaata	gtgtttggga	180
cctctaagct	tatgtgaccg	gagttttact	cttttgcct	taattttctc	attttcttt	240
gactggtaa	aagttgcagt	gtaagttaga	atttggctcg	aagcctgtt	ccttagttga	300
atgcctgtg	ttttttttt	ttttttttt	tttagcactt	caaaaagtat	gatataatgt	360
tccttaatgt	taggactcta	tataccctca	gaggcatgtg	tgttgggatt	gaaattcaaa	420
ttctgtatcat	gtaaaaatgg	cactagttgt	tagaggaagt	ctctccctca	atctcagcat	480
ttacttacat	actaactgaa	gagaaaatca	cgtctctag	ttctttgtaa		530

<210> 223
<211> 550
<212> DNA
<213> Mouse

<400> 223

aagctgctgg	ttttaaatat	ttactttccc	aggagggtggg	tttcttcagg	tgtttgtta	60
aagaggcgt	tcacaggtga	atggtttggg	gaacccttct	tggcagagg	ttagctgcct	120
tactaacat	tgtcccaaca	gaaagtccct	atcgttctcc	ttccttcttg	gcaggcttca	180
ggtttgcgt	cagecccctgg	agccaacatt	ttggttgtgg	gaggctgacc	tcttcctgc	240
ctccttgtt	ggacagagt	gtgaagacgt	attcctcacc	tccttgcctt	tcagtaaatg	300
gccacgatgt	gactattgt	tgagggttcc	agccttcc	aagaccttgc	caggctgagt	360
ggggccttag	agcttgcagg	cacttaaagc	ttcctggcaa	agggggccggc	cacaggcaga	420
gggaaaggaa	caggtcagag	gcgttgcct	ggcagaggcg	gctcgggctg	cccatcgtgt	480
ttctgcgggg	ttgaggtggg	ctcccttctt	tgtagatgcc	tttcctctcg	taataacaac	540
tccttgcccc						550

<210> 224

<211> 470
 <212> DNA
 <213> Mouse

<400> 224

aggcctgttc	accaccactc	ctgttctccg	ctaagcttt	ctttggcttt	tggtggtttg	60
ttttttgtta	ctgttattca	acagttcagc	ctaattatac	catggcagag	aacgagcctt	120
ttatgtttgg	gctgtgccac	tgaactgtt	actgttagcgt	tggttgtgaag	gtggaactaa	180
tgggcgtcagt	ccttacctcc	tgcttctgt	taggaggctc	agccgaggct	tggaactggc	240
tacttcagc	cagcagtctt	ttccccctgt	gtatagcaac	ccttctaccc	ttgctttct	300
tgcttctca	tcttactca	acctaagca	gagttcaag	actcaacttc	aacattggtc	360
atctgggtgt	gtatttatat	gtgaataatg	atatcagatc	cagagtaaca	cctttgcgtgt	420
cttcttagga	tgggtgagtg	cacggggctc	gggtctttt	ctgaaatactt		470

<210> 225

<211> 1752
 <212> DNA
 <213> Rat

<400> 225

ggcacagact	gacatgaagc	cccctagacc	cagagattgg	ttcctgctgt	gacatgccta	60
ccatgtggcc	acttcttcat	gtcctctggc	ttgtctgtt	ctgtggctt	gttcacacca	120
ccctgtcaaa	gtcagatgcc	aaaaaaagctg	cctcaaagac	gctgctggaa	aagactcagt	180
tttcggataa	acctgtccaa	gaccggggtc	tggttgtgac	ggacatcaa	gctgaggatg	240
tggttcttga	acatcgtagc	tactgctcag	caagggctcg	ggagagaaaac	tttgcggag	300
aggtcctagg	ctatgtca	ccatggaca	ccatggcta	tgatgttgc	aaggctttt	360
ggagcaagtt	cacacagatc	tcaccagt	gttgcagct	gaagagacgt	ggtcgggaga	420
tgtttgaaat	cacaggcctc	catgtgtgg	accaagggtg	gatgcgagct	gtcaagaagc	480
atgccaaagg	cgtgcgcata	gtgcctcg	ttctgtttga	agactggact	tacgatgatt	540
tccgaagcgt	cctagacagt	gaggatgaga	tagaagagct	cagcaagact	gtggtacagg	600
tggcaagaa	ccagcatttt	gacggcttt	tggtgtgaggt	ctggagccag	ttgctgagcc	660
agaaacatgt	aggectcatt	cacatgctt	ctcaacttgc	tgaggcgcgt	caccaggcca	720
ggctgctgtt	cattctggc	atcccacct	ctgtcacccc	tggactgac	cagctgggca	780
tgtttacaca	caaggagttt	gagcagctgg	ccccatact	agatggctc	agcctcatga	840
catacgacta	ctccacatca	cagcagctgt	gccctaata	tccattgtca	tggatcccg	900
cctgtgttca	ggtcctagac	cccaagtcac	agtggcgtag	caagatcc	ctgggattga	960
acttctatgg	catggattat	gcagcctcca	aggatggcc	tgagcctgtc	attggagcca	1020
ggcagtttt	gaagggtggc	ctgcccattgg	ctgtctcatc	ccagcagatc	tggacattgg	1080
gaagaggagg	gttcaccagt	gccctactcc	tggcaggctt	ggggctggcc	tcagagccct	1140
gtacaaagag	cgaggaagg	ccaaagaaga	gcctttaga	tacatgttgg	cactggcagg	1200
gagagccagg	agcaactgtgt	agaggtcgtc	ttcacacctg	gatcctagtg	agcgcgggtcc	1260
cgcaggcctg	cacatgcctg	tttcagtgat	ggcctcacga	ggcagcaccc	gctctagctg	1320
cactgcttcc	tttgatttagc	tttggccat	ggagacacag	gtagcagcat	agcgggtcag	1380
gaaccttctg	agcagatcca	accaaaggct	tttgcact	tgccagctt	gcatggcag	1440
cctgtgacac	cgtctcactc	aaggccttct	ggagttggcc	ctcagctcag	atgtcatgt	1500
agggatacc	taaggagatg	atggggctcc	ctttgcctg	agcttgcagg	attggatctt	1560
ggcagatca	gggcagtgaa	aacgtcagac	cttctacccg	tacatacaga	cgctgaagga	1620

ccacaggccc	cgtgtggtat	gggacagcca	ggctgcggaa	cacttcttg	agtacaagaa	1680
gaatcgcggc	gggaggcacg	ttgtcttcta	cccaacgctg	aagtctctgc	aggtgcggct	1740
ggagctagcc	ag					1752

<210> 226
<211> 2165
<212> DNA
<213> Mouse

<400> 226

ggcacagacc	tgctgcctc	ttgcagacag	gaaagacatg	gtctctgcgc	ccggatccct	60
cagaagctca	tggggagccc	cagactggca	gccttgc	tgtctctccc	gtaactgc	120
atcgccctcg	ctgtgtctgc	tcgggttgcc	tgccccgtcc	tgccggatgt	gaccagccac	180
tgtctctgg	cataccgtgt	ggataaacgt	tttgcgtggcc	ttcagtgcccc	ctgggtccct	240
ctcttggta	ggaaatctaa	aagtccct	aaatttgaag	actattggag	gcacaggaca	300
ccagcatctt	tccagaggaa	gctgcttagc	agcccttccc	tgtctgagga	aagccatcga	360
atttccatcc	cctcctcagc	catctcccac	agaggccaac	gcacccaaaag	ggcccaagcct	420
tcagctgcag	aaggaagaga	acatccct	gaagcagggt	cacaaaagt	tggaggacct	480
gaatttctt	ttgatttgct	gcccgagggt	caggctgttc	gggtgactat	tcctgcaggc	540
cccaaggcca	gtgtgcgcct	ttgttatcag	tggcactgg	aatgtgaaga	cttgagtagc	600
ccttttgata	cccaaaaaat	tgtgtctgg	ggccacactg	tagacctg	ttatgaattc	660
cttctgcctt	geatgtgc	agaggctcc	tacctgcaag	aggacactgt	gaggcgc	720
aagtgtccct	tccagagctg	gcctgaaget	tatggctcg	acttctggc	gtcaatacgc	780
ttcactgact	acagccagca	caatcagat	gtcatggc	tgacactcc	ctgcccactg	840
aaactggagg	cctccctctg	ctggaggcag	gaccctca	caccctgca	aaccccttccc	900
aacgcacac	cacaggagtc	agaaggatgg	tatccctgg	agaatgtgg	ttgcacccc	960
cagctctgt	ttaagtttctc	atttggaaac	agcagccacg	ttgaatgtcc	ccaccagagt	1020
ggctctctcc	catccctggac	tgtgagcat	gatccccagg	cccagcagct	gacgcttcac	1080
ttttcttcga	ggacatatgc	caccttcagt	getgcctgg	tgacccagg	tttggggccg	1140
gataccccc	tgcctcctgt	gtacagcatc	agccagaccc	agggctca	ccagtgtacg	1200
ctagaccta	tcatccctt	cctgaggcag	gagaattgc	tcctgggtg	gaggtcagat	1260
gtccatttt	ccttggaaagca	cgttttgt	cctgatgacg	cccttaccc	tactcagctg	1320
ttgctccgg	cctttaggctc	cggtcgaaca	agggcagtt	tactcctaca	tgacggac	1380
tcagaggcac	agcgacgcct	ggtggagct	ttggccgaac	tgctgcggac	ggcgcgtgg	1440
ggtggacgcg	acgtgtatgt	ggatctctgg	gaagggacgc	acgtacacg	cattggacca	1500
ctggcgtggc	tttggggcage	gccccggcgc	gtggcgggg	agcagggc	agtgtgc	1560
ctgtggaaact	gtgggggtcc	cagcaccg	tgca	cccgccagg	tgcg	1620
cgcaccc	tgtgtctgc	tccacgtcc	ctgtgtctg	cctacttca	tcgc	1680
gccaagggt	acatcccc	gcccgtgc	gctctgc	gctaccgc	gttcgt	1740
ctggcgc	tgctgagac	actggatgt	cagccgtcc	ccctagcc	cagctgg	1800
caccc	ctaaagcgt	tttggaaac	cgtctgg	agtgta	actgt	1860
gaggctgcca	aagatgacta	ccaaggctca	accaatagtc	cctgtgg	cagctgt	1920
tagcc	ctgtgttagca	acagcaggaa	ctccagaat	aggcct	cata	1980
ttgggggtgc	ttcttgc	ccaaaccgta	agactcac	taagtccc	acttgac	2040
cctcc	at	ccaaaccgta	ccaaaccgta	ccaaaccgta	ccaaaccgta	2100
tcctc	tttctgagaa	ggagggacga	ttttccatt	tctttcaaa	actgaaaaaa	2160
aaaaaa						2165

<210> 227
<211> 1348
<212> DNA
<213> Mouse

<220>
<221> unsure
<222> (644) ... (644)

<400> 227

caaagaattc	ggcacgagac	cgccctact	atgtctgcca	ttttcaattt	tcaatgtctg	60
ttgactgtaa	tcttgcgtct	tatatgtaca	tgtgttata	tccgatccct	ggcacccagc	120
atcctggaca	gaaataaaaac	tggactattt	gaaatattt	gaaatgtgc	ccgaattggg	180

gaacgcaaga gtccttatgt	cgccatatgc	tgtatagtga	tggccttcag	catccttc	240
atacagtagc	tttggaaact	accagcatgt	gcttgctatc	agactgtaaa	300
cctccagaaa	.ataatggaa	gaatggtaa	gccatttgc	tctgaacatg	360
aacttcaaga	tgctgttctc	tattttatg	ctattggacc	aatgagctga	420
aagatgtaac	aggtaatac	acaggaatgt	gattgtatcc	atcaacctca	480
tccagttata	cattctgcaa	atgtcattct	gttgtgtcag	gtctctcac	540
ttcgggcacg	aagttagaaac	ccagtggcaa	attccaaggc	tcctttact	600
aataatgtct	tcacagaatg	gtacctctag	cgactgtct	attnttattg	660
ttgttctatt	tttgggttgc	ttactgttct	tatggattgc	attcatattt	720
gattgctaac	cagagtacct	ctattcttgg	caaattccgc	agtttattac	780
agtatTTAA	acaaaactct	gaatttctt	agttagccct	agagttggct	840
aagatacagc	tcccacactg	tgacgaagag	cacccatgaa	agaaaagcag	900
gtgacaagt	aagcaccgtg	cagtcttcgt	gcaagtaagc	accgtgcagt	960
tgttagtcttgc	tcttccaaat	agaacgtcca	tcgttagttac	ccaaagggtgg	1020
gttcttaatg	cagtgttta	agtctagtgt	atgttctgtc	agcttgaact	1080
ttgttaactt	gttaggttata	aacatatctc	atatctgttt	tagtctgggt	1140
aagtacattt	cagctttgac	acagaatgtg	aatagacgaa	tatcaaagga	1200
tttgtatcca	acatttcttc	aggttcagct	gaaaatcagt	tactgtttca	1260
gaattaaaatc	ctagctgaaa	actatacata	gcattttatta	attaattact	1320
gctctttta	aaagtttcaa	aaaaaaaaaa			1348

<210> 228

<211> 2296

<212> DNA

<213> Mouse

<220>

<221> unsure

<222> (2255) ... (2255)

<400> 228

ctggagctcg	cgcgcctgca	ggtcgacact	agtggatcca	aagctaaaaa	gagactccac	60
ccactccagt	agacccggga	ctaaaacaga	aattctgaga	aagcagcaag	aagcagaaga	120
aatagctatt	tcacagcagt	aacagaagct	acctgctata	ataaaagacct	caacactgct	180
gaccatgatc	agccccagcct	ggagcctt	cctcatcggg	actaaaattg	ggctgttctt	240
ccaaagtggca	cctctgtcag	ttgtggctaa	atccctgtcca	tctgtatgtc	gctgtgacgc	300
aggcttcatt	tactgttaacg	atcgctct	gacatccatt	ccagtgggaa	ttccggagga	360
tgctacaaca	ctctaccc	agaacaacca	aataaacaat	gttgggattc	cttccgattt	420
gaagaacttg	ctgaaagtac	aaagaatata	cctataccac	aacagtttag	atgaattccc	480
taccaaccc	ccaaagtatg	tcaaagagtt	acatttgcaa	gagaataaca	taaggactat	540
cacctatgt	tcactttcga	aaattccgta	tcttggaaagag	ttacacttgg	atgataactc	600
agtctcggct	gttagcatcg	aagagggagc	atttcgagac	agtaactatc	tgccgctgct	660
tttctgtcc	cgttaaccacc	ttagcacaat	cccggggggc	ttgcccagga	ctattgagga	720
attacgcctg	gatgacaatc	gcatatcaac	gatctcttcc	ccatcaactc	atggtctcac	780
aagcctgaaa	cgcctgggtt	tagatggaaa	cttggtaac	aaccatgggt	tgggtgaccaa	840
agttttcttc	aacttagtaa	acttaacaga	gctgtccctg	gtgaggaatt	ccttgacagc	900
agcgcctg	aacccccc	gcacaagct	gaggaagctt	taccttcaag	acaaccatat	960
caaccgggta	ccccccaaatg	ctttttctta	tttaaggcag	ctgtatcgac	tcgatatagtc	1020
taataataac	ctaagcaatt	tacctcagg	tatctttgtat	gatttggaca	atataacc	1080
actgattctt	cgaacaatc	cttggat	tggatgcaag	atgaaatggg	tacgagactg	1140
gttacagtgc	ctaccgggtga	aggtcaatgt	gctggggctc	atgtgccaag	ccccagaaaa	1200
ggtccggta	atggctatca	aggacctcg	tgcagaactt	tttgattgt	aagacagtgg	1260
gattgtgagc	accattcaga	taaccactgc	aatacccaac	acagcatatc	ctgctcaagg	1320
acagtggcca	gctcctgtga	ccaaacaacc	agatattaaa	aaccccaagc	tcattaagga	1380
tcagcgaact	acaggcagcc	cctcacggaa	aacaatttta	attactgtga	aatctgtcac	1440
ccctgacaca	atccacat	cctggagact	tgctctgcct	atgactgtc	tgcgactcag	1500
ctggcttaaa	ctgggccata	gcccagcctt	tggatctata	acagaaacaa	tcgtaacagg	1560
agaacgcagt	gaataacttgg	tcaccgcct	agaacctgaa	tcaccctata	gagttatgc	1620
ggttcccatg	gaaaccagta	acctttacct	gtttgatgaa	acacctgttt	gtattgagac	1680
ccaaactgccc	cctcttcgaa	tgtacaaccc	cacaaccacc	ctcaatcgag	agcaagagaa	1740
agaaccttac	aaaaatccaa	atttaccc	ggctgccatc	attggtgggg	ctgtggccct	1800

ggtaagcatc	gccctccttg	ctttgggtgt	ttggtatgtg	cataggaacg	ggtcactgtt	1860
ttcacggAAC	tgtgcgtaca	gcaaaggcg	gaggagaaag	gatgactatg	cagaAGCCG	1920
tactaagaaa	gacaactcca	tcctggaaat	cagggaaact	tcttccaga	tgctaccgat	1980
aagcaatgaa	cccatctcca	aggaggagtt	tgtataacac	accatatttc	ctccGAATGG	2040
gatgaatctg	tacaagaaca	acctcagtga	gagcagtagt	aaccggagct	acagagacag	2100
tggcatcccA	gactcggacc	actcacactc	atgatgcaag	gaggtcccac	accagactgt	2160
tccgggtttt	ttttaaaaaa	acctaagaaa	ggtgatggta	ggaactctgt	tctactgcaa	2220
aacactggaa	aagagactga	gagaagcaat	gtacntgtac	atttgcata	taatttata	2280
ttaagaacctt	tttttt					2296

<210> 229

<211> 1704

<212> DNA

<213> Rat

<220>

<400> 229

ccaaagaatt	cgccacgagg	eggctcgaaa	tggcgcccc	catggacccg	accatggtg	60
gccggggcagc	ccggggcgctg	cgggggcgc	tggcgctggc	ctcgctggcc	gggttattgc	120
tgagcggcct	gggggggtct	ctccccccccc	tcggggccgg	ctggggggcgc	caaaaccccg	180
agccggccgc	ctccccgcacc	cgctcgctgc	tgcgtggacgc	cgcttggcgc	cagctgcgcc	240
tggagtagcgg	cttccacccc	gatgcgtgtt	cctgggtctaa	cctcacaac	gcacatccgcg	300
agactgggtg	ggcctatctg	gacctggca	caaattggcag	ctacaatgtt	atccccccgg	360
ctgcaggcct	atgcagctgg	tgtgggtggag	gcctctgtgt	ccgaggagct	catctacatg	420
cactggatga	acacgggtgtt	caattactgc	ggcccccctcg	agtagcgtt	cggttactgt	480
gagaagctca	agagcttctt	ggaggccaaac	ctggagttgg	tgcagaggga	aatggagctt	540
agcccccact	cgccataactg	gcaccagggt	cggttgcaccc	tcggggctgca	gctgaagagg	600
cctggaggac	agctatgaag	gccgtttaac	cttcccaact	ggggagggttca	acatcaaacc	660
cttgggggttc	ctctcgctgc	aggaatctct	ggagatctgg	aagacctttaga	gacagccctg	720
aataagacca	acgaccaage	gcttccgtgg	gctccgggttc	gtgtctgtcc	ctcatcaagc	780
tgctgccccgg	cagccatgtat	ctcctgggtt	ctcacaacac	ttggaaactcc	tacccagaaca	840
tgttacgcatt	catcatggag	tccccccggc	tgcagttccg	ggagggggccg	caagaaggag	900
tacccctgtt	ttgcccggca	caacttggatt	ttttcgcttt	acccggggcac	catcttctcc	960
ggtgatgact	tctatcatctt	gggcagtggg	ctggtcaccc	tggagaccac	caatccggca	1020
caaagaaccc	aagcgctgt	gaagtacgtg	caaccccaagg	gctgtgtgt	ggagtggatt	1080
cgaaacattt	tggccaaccc	gcctggccctt	ggatggggcc	acctgggcag	atgtcttcag	1140
gcccgttcaat	agtggcacgt	ataataacca	gtggatgtt	gtggactacaa	aggcattcat	1200
ccccaatggg	cccagccctg	gaagccgggt	gcttccatc	ctagaacaga	tccgggcat	1260
ggtgtgggt	gcatccccccg	ggctgcagga	attcgatata	aagttatcg	atcacacgtcg	1320
aaccctccgag	ccaaatatctt	ccagaggggac	cagtcaactag	tagaggacgt	agacaccatg	1380
gtccggctca	tgaggttacaa	tgactttctt	catgaccctc	tgtcggtgt	tgaggcctgc	1440
agccccaaggc	ccaaacgcaga	gaacgcacatc	tctggggccgc	tctgtatctca	accctgtctaa	1500
ntggctcta	cccatattcag	gccctgcgtc	agcgcccca	tggcggcatt	gatgtgaagg	1560
tgaccagcg	tgcactggct	aagtacatga	gcatgtggc	agccagttggc	cccacgtggg	1620
accagttggcc	accgttccag	tggagtaaat	caccattcca	caacatgttgc	cacatgggca	1680
aaggctgtatc	tttggatgtt	ctca				1704

<210> 230

<211> 2004

<212> DNA

<213> Rat

<400> 230

ctcgaggatcg	acggtatcgta	taagcttgat	taattaaccc	tcactaaagg	gaacaaaagc	60
tggagctcgc	gsgctgcagg	tcgacactag	tggatccaaa	gaattcggca	cgaggcgaa	120
gcagccgcag	gtatggcgcc	tgccatggcc	ctgggtttat	cgttgtgtt	gctgggtctt	180
gtggggcagg	gctgtgtgtt	ccgcgtggag	ggcccaacgcg	acagctgtcg	agaggaactc	240
gttattactc	cgctgccttc	cggcgacgtt	gcccgcacat	tccagttccg	cacgcgttgg	300
gattccgatc	tgcagcgaaa	aggagtgtcc	cattacaggc	tcttccctaa	agccctggga	360
cagttgatct	ccaaatgttc	ctcgaggag	ctacacctgt	cattcacgca	aggcttttgg	420

aggaccggat	actggggggcc	acccttccgt	caggctccat	caggtgcaga	gctctgggtc	480
tggttccaag	acactgtcac	agatgtggat	aagtcttgg	aggagctcag	taatgtcetc	540
tcagggatct	tctgcgcgtc	cctcaacttc	atcgactcca	ccaataccgt	cactccccaca	600
gcctccttca	aacctctggg	gctggccaat	gacactgacc	actacttcct	gegctatgtc	660
gtgctcccc	gggaggtcgt	ctgcaccgag	aatctcacgc	cgtggaaagaa	gctctgccc	720
tgtagctcca	aggcagggct	gtccgtgcta	ctgaaaagcag	atcgattgtt	ccacaccagt	780
taccactccc	aggcagtgc	tatccggcca	atctgcagaa	atgctcaactg	caccagtatc	840
tcctggggagc	tgaggcagac	ccttcagtt	gtctttgatg	ccttcateac	cgacagggg	900
aagaaagact	ggtctcttt	ccgcatgttc	tccggactc	tcacagaggc	ctgtccattg	960
gcatctcaga	gcttagttt	tgtggacatc	acaggctaca	gccaggacaa	cgaaacactg	1020
gaggtgagcc	ctcccccac	ttccacatac	caggatgtca	ttttgggcac	caggaagacc	1080
tatgcgtct	atgacttgtt	tgacacagcc	atgatcaata	actcccggaa	cctcaacatc	1140
cagctcaa	at ggaagagacc	cccagataat	gaagccctgc	ccgtggccct	cctgcatgca	1200
cagcggta	cg	tgagtggta	tgggctacag	aaggcggagc	tgagcaccct	1260
tctcatcctt	accgggcctt	ccctgtgctg	ctactggatg	ctgtggccctg	gtacccgtgg	1320
ctgtatgtgc	acaccctcac	catcaccc	aaggcgaagg	ataataaaacc	aagttatatc	1380
ca	ctgcccagga	ccggcagcag	ccccaccc	tggagatgt	cattcagctg	1440
ccggccaa	ccgtcacca	ggtctccatc	cagtttgaac	gagccctgt	caagtggaca	1500
gaatacacgc	cagacccaa	ccatgggttc	tatgtcagcc	catctgtct	cagtgcctt	1560
gtgcccagca	tggtggcagc	caaaccatgt	gactgggaag	agagccctct	cttcaacacc	1620
ttgttcccg	tgtctgtatgg	ctccagatc	tttgcgtcc	tctacacaga	gcccttgcta	1680
gtgaacctgc	ccacccccc	cttcagcatg	ccctacaatg	tgatctgc	tacatgcact	1740
gtggtggccg	tgtgttatgg	ctcccttctac	aatctctca	ccggaaacct	ccacattgaa	1800
gagccaaat	ccggcggcct	ggccaagcgg	ctgcttaacc	tcatccggcg	tgctctgtgt	1860
gttccccctc	tctaagattc	ccttcttca	gcaactacag	tttcataactc	acctggccca	1920
ggggagcagt	ggcagggctt	tttctggccat	gcccttttc	cccagagtta	gcttctgaag	1980
ctaactcccc	ctggatctgg	tctg				2004

<210> 231

<211> 1397

<212> DNA

<213> Rat

<400> 231

cgggcccccc	ctcgagggtcg	acggtatcga	taagcttgc	taattaaccc	tcactaaagg	60
gaacaaaagc	tggagctcgc	gcccgtcag	gtcgacacta	gtggatccaa	agaattcggc	120
acgagcggca	cgagcggccc	cgaaaggggc	tgcacggcg	acttggcg	gatggctcg	180
gctccggcg	cgacgacgg	ggccggaggc	ggccgtctct	cctccttc	ctcctggct	240
tggcccccgc	ggtgatccga	gctggcggcc	gcggcccccc	gatgagactg	ttggggggct	300
ggctgtgcct	gagcctggcg	tccgtgtggc	tggcggag	gatgtggacg	ctggggagcc	360
cgctctcccg	ctctctgtac	gtgaacatga	ctagcggccc	tggcggccca	cgccggccca	420
cggccggcg	gaaggacacg	caccagtgt	atgtgtgca	cagagagaaa	ttatgcgaat	480
cacttcagtc	tgtctttgtt	cagagtatac	ttgaccaagg	aacacagatc	ttcttaaaca	540
acagcattga	gaaatctggc	tggatattta	tccaaactta	tcatttttt	gtatcatctg	600
tttttagct	gtttagtgc	agaacatcta	ttaacgggtt	gttaggaaga	ggctccatgt	660
ttgtgttctc	accagatcg	tttcagagac	tgctaaaaat	taatccggac	tggaaaaccc	720
atagacttct	tgattpatgt	gctggagatg	gagaagtcac	gaaaatcatg	agccctcatt	780
ttgaagaaat	ttatgccact	gaaatttctg	aaacaatgt	ctggcagtc	cagaagaaga	840
aatacagagt	gcttggtata	aatgaatggc	agaatacagg	tttccagat	gatgtcatca	900
gctgcttaaa	tctgctggat	cgctgtgatc	agccctctgac	attgttaaaa	gatatcagaa	960
gtgtcttgg	gcccacccaa	ggcagggtca	tcctggcctt	ggtttgc	tttcatccct	1020
atgtggaaa	cgtaggtggc	aagtggaga	aaccatcaga	aattctggaa	atcaaggggac	1080
agaatggga	agagcaagt	aatagctgc	ctgagggtt	caggaaagct	ggcttgc	1140
tcgaagctt	cactagactg	ccataccgt	gtgaaggtga	catgtacaat	gactactatg	1200
ttctggacga	cgctgtctt	gttctcagac	cagtgtaaac	atgtggaggc	ccaagtcttc	1260
agagtccaccc	ctggaatctg	ccctccagaa	gaggaggtgc	atccagtat	gtgaggggg	1320
cctctgggaa	ctgtcattct	cagtatcatg	taggaattt	aaaagccaaa	atactaattc	1380
tttctttgt	gtgtgt					1397

<210> 232

<211> 861

<212> DNA
 <213> Rat

<400> 232

gaattcgcca	cgagaggaga	gaaagagaag	tgtgcacaaa	gaaacttcta	ttattattaa	60
ttagcaccta	gcttgggtgt	gtctgataca	ccaccaagta	gtaatttttg	aaaaaacgaa	120
gaagaaaaaa	aaaaaacaaa	aaaaccaaac	agtgggtact	caaataagat	aggagaaaaaa	180
tgagagaaca	gaccagttc	tcgacccttgc	cttctcaagg	tcctccccacc	aggctgccaa	240
agcaagatgg	tgttgtctg	atccagtcag	tattcttttgc	actttttttt	ttaatctcca	300
ggttttgggtt	caggctccca	tattcataacc	ctggctcatt	tagctttccc	tcatgttg	360
ggtttcttctg	cccttcaccc	ccttactctc	cccactgata	ttcttccca	tcagactgt	420
ggctctggaa	gaaatatcca	ccatggcag	agctgatgtt	ctgttagatcg	taatgttgaa	480
gctgtgggtg	tcctgggtgg	cagaatcact	cctgtattac	tctggtacat	agggtgtctcc	540
tgatagactc	cctggcctta	gtcatgggg	gttttctaga	ggcagactaa	gacaggagtc	600
aaaaaaagatt	tagaggaagg	agctgaggaa	agaaaagacag	ttgtggagg	aaaatcaagt	660
tctactcagg	atcccagtg	tttctgtaga	tgttagattgg	aatgtgtcca	taacagagag	720
gccagtgaga	gacatcccc	aggacctgccc	aggctttcct	tcgctccagg	aagacgcacc	780
atcactcaaa	aggggtttcc	tagaaagaaa	gacaagtgc	ttaaaaaatc	tgccagtggg	840
ttcttgaagt	catcgaaacct	a				861

<210> 233
 <211> 445
 <212> DNA
 <213> Mouse

<400> 233

ggaagtagaa	ggggccggcg	ttttcatggc	ggcgcttgg	gggcagggtgc	ttgtctgg	60
gctgggtggcc	gcactgtggg	gtggcacgca	gccgctgctg	aagcgagcct	cctccggccct	120
ggagcaagtg	cgtgagcggg	cgtggccctg	gcagctgttgc	caggagataa	aggctctttt	180
cggaaatact	gaggtgcgtc	tagtctcac	ggacgagccc	ctgaaaattt	caccataggt	240
cggcgttatt	cccagcccat	ctcttactca	ctagaagttc	ctggaaagagt	catttaccc	300
cttacctgat	gccctttctc	ctcaatcaga	gtggatccct	tctctactac	ttgactttgg	360
catcaacaga	tctgacgtta	gctgtgccc	tctgcaactc	tctggccatc	gtctttacac	420
tgattgttgg	gaaggtcctt	ggaga				445

<210> 234
 <211> 565
 <212> DNA
 <213> Human

<400> 234

cagcatcctc	aatcaatcca	acagcatatt	cggttgcattc	ttctacacac	tacagctatt	60
gttaggttgc	ctgcggacac	gctggccctc	tgtcctgtat	ctgctgagct	ccctgggtgc	120
tctcgctgg	tctgtctacc	tggcctggat	cctgttcttc	gtgctctatg	atttctgcat	180
tgttgttatac	accacctatg	ctatcaacgt	gagcctgtat	tggctca	tccggaaagg	240
ccaaagaaccc	cagggcaagg	ctaagaggca	ctgagccctc	aacccaagcc	aggctgaccc	300
ctgctttgttgc	ttggcatgttgc	agccttgcct	aagggggcat	atctgggtcc	ctagaaggcc	360
ctagatgttgc	ggcttctaga	ttaccccttc	ctccctgccat	acccgcacat	gacaatggac	420
caaatgtgcc	acacgctcgc	tcttttttac	acccagtgc	tctgactctg	tccccatggg	480
ctggcttcca	aagcttttc	cattgccc	ggagggaaagg	ttctgagca	taaagtttct	540
tagatcaatc	aaaaaaaaaaa	aaaaaa				565

<210> 235
 <211> 476
 <212> DNA
 <213> Human

<400> 235

ggtggttttc	attgggtgctg	tcccccggcat	aggccatct	ctgcagaagc	catttcagga	60
gtacctggag	gctcaacggc	agaagttca	ccacaaaaagc	gaaatggca	caccacaggg	120
agaaaaactgg	ttgtcctgg	ttttgaaaa	gttggtcgtt	gtcatgggt	tttacttc	180

cctatctatc attaactcca tggcacaaag ttatgccaaa cgaatccagc agcggttcaa	240
ctcagaggaa aaaactaaat aagttagagaa agtttaaac tgcagaaaatt ggagtgatg	300
ggttctgcct taaattggaa ggactccaag ccggaaagga aaattccctt ttccaacctg	360
tatcaatttt tacaactttt ttccctgaaag cagtttagtc catacttgc actgacatac	420
ttttcccttc tgtgctaagg taaggtatcc accctcgatg caatccacct tgttt	476

<210> 236

<211> 607

<212> DNA

<213> Human

<400> 236

tatgtccact aacaatatgt cggacccacg gaggccgaac aaagtgtga ggtacaagcc	60
cccgccgagc gaatgtacc cggccttggc cgaccgcacg cggactacat gaacctgctg	120
ggcatgatct tcagcatgtg cggcctcatg cttaaagctga agtgggtgtc ttgggtcgct	180
gtctactgct ctttcatcag ctttgccaaac tctcgagct cggaggacac gaagcaaatg	240
atagtagtagt tcatgtgtc catctctgccc gtgggtatgt cctatctgca gaatcctcag	300
cccatgacgc ccccatgggt ataccagcct agaagggtca cattttggac cctgtctatc	360
cactaggcct gggctttggc tgctaaacct gctgccttca gtcgcacatcc tggacttccc	420
tgaatgaggc cgtctcggtg cccccagctg gatagaggga acctggccct ttccctaggga	480
acaccctagg ctacccttc ctgcctccct tccccgtcct gtcgtgggg gagatgtgt	540
ccatgttttct aggggtattc atttgttcc tcgttgaaac ctgttgttaa taaagtttt	600
cactctg	607

<210> 237

<211> 513

<212> DNA

<213> Mouse

<400> 237

ttctccatta cctctatgcc taatattcat cagccttcat tactctctag catattcacc	60
ttgattcaac agattcaaac ttcttacagc cttctactga ttttttttacaa gctctgcct	120
ctgtgccttt ctcatgttat tttttttgt tagattgtc ttttgtccca gtcatgttc	180
atcactccct tcaaaggcctt tttccctta tatcttctgca ctgagctctc cctgattgac	240
atcacccat gcgatgaccc ccccttattt gtgtgcctc agcacttatac tttttagttt	300
gtactgtgtt ccatgtactt actaatatgt tgctttgtaa ttatttcttgc gcaactgtgt	360
ttacagtttc atatttgtat ttatttccaa aattaaatttga agtgcctt gaggcagga	420
ataataactt ttacattttt atctctgcac cccccaggtgc ctatgtatgt gctgagcaca	480
tagtagggcgt ttaataaaatg ctttgttgaag tat	513

<210> 238

<211> 944

<212> DNA

<213> Rat

<400> 238

ggcacgaggg gccgcccgggtt cccgggggtt cggtgttagct cgctgcggac gtcgcacgc	60
tcgtgggtgc cgtgttcggc ttttcctgtc tacttcgtg caccgtgtca gtcgggcct	120
cggtgtctgac ggcacacagc atggcttcgg ctttggagga gttgcagaaa gacctagaag	180
aggtcaaaatgt gctgtgtggaa aagtccacta gaaaaagact acgtgtataact ttacaaatg	240
aaaaatccaa gattgagacg gaactaaagg acaagatgtca gcagaaggta cagaagaaac	300
cagaatttga taatgaaaatg ccagctgtg tgggtgtctcc ttttacaaca gggtaactg	360
tggaaatccatg taattatggaa tggatcaactt cagataagtt tttttttttt tacattactt	420
taactggagt tcacatgggtt cctgtgtgaga atgtcaactt acatctcaca gagaggcat	480
tttgcattttt ggtaaaaacatc tcaatggca agaattactc catgattgtg aacaatctt	540
tggaaatccat cttgtgtggaa agcagttcaaaa aaaaatgtca gactgataaca gttttatcc	600
tatgttagaaa gaaagcagaa aacacacgtt gggactactt aactcaggtg gaaaaagaat	660
gcaaaagagaa agaaaagcctt tcctacgaca ctgaggcaga tccttagtgg ggtttatgt	720
atgttctaaa gaaaattttt gaaatgtggat atgtgacat gaaatgtca accatataaa	780
cgtgggtggaa atcccgagag aagcaagcca gggaaagacac agaattctgt ggtttaaaa	840
gtccctgtggg aaccgtcatg tggagtgtctc gtgtttccag tagggactgt tggtaactg	900

cacacatgtg ttcatgtggg tatgttagttt tggacagatg acta

944

<210> 239
<211> 386
<212> DNA
<213> Rat

<400> 239

ctcggtccga attcggcacg agtggcgaga tgggaatgc ggccctggga gcggagctgg	60
gcgtgcgggt cctgtctttt gtggccttcc tggcaccga gctgtccctt cccttccagc	120
ggcgattca gcccggaggag ctgtggttt accgaaaccg gtacgtggag gcggaaact	180
tccccaccgg ccccatgttt gtcatgtct ttctcaccctt actgtccctt atcttcttcg	240
ccaagtttctt gaggaaagct gacgccaccg acagcaagca agcctgcctc gtcggcagcc	300
ttgccttagc tctgaatggt gtctttacca acatcataaa actgatagtg ggcaggccac	360
gcccagattt ctcttacccga tgcttc	386

<210> 240
<211> 228
<212> DNA
<213> Rat

<400> 240

ttcccgccggc gtcatgacgg ctgcgggttt ctttggttgc gccttcatcg ctttcgggccc	60
cgcgcctccctt ctttacgtct tcaccatcgc cactgtatctt ttgcgagtc tcttcctcat	120
cgccgggtgc ttcttcttgtt tgggtctctt gctgttttcg tctgtttttt gtttcctagt	180
gagagtcatc actgacaaca gagatggacc agtacagaat tacctgtct	228

<210> 241
<211> 452
<212> DNA
<213> Human

<400> 241

ttcgagcggc cgcccgccca ggttggaaact ttagaaagaa gagccgggag gatgtattgg	60
ttgttaggaa aatgttaggctt accagtagaa aatgacattt tctattaata agatctgagg	120
tgcacacac ataaattgtcc caattttaa gattgtatggg gagcatgaag cattttta	180
atgtgttggc aggccccattt aaatgcataa actgcataagg actcatgtgg tctaatgtt	240
tttttagggctt ttctggaaat tttcttgaca gagaacctca gctggacaaa gcaggcttga	300
tctgagttagt gtaactgtaca caatggaaact gtcaggcatg tttctgtcc tctctctggc	360
tctttctgc ttttttacag gtgtctttagt tcaggaggaa caggttgact gtgggtggc	420
caggacacca aggcttactg cactcgggaa cc	452

<210> 242
<211> 1311
<212> DNA
<213> Mouse

<400> 242

ctgcaacaag gctgttgggtt ccttcacat gggctccagt gaagggttcc tgggcctggg	60
ccctggggccc aatggtcaca gtcacccgtt gaagacccca ctgggtggcc agaaaacgcag	120
ttttttccac ctgtgtccctt cacctgagcc cagccccagag ggcagctacg tggccagca	180
ctcccgaggc ctcggcggcc actacgcggg ctcttaccc aagcggaaaga ggatttctt	240
aggggttcgac accagagatg ctccaaaggcc ctgcaccaag ttgcgttttg gttttttctg	300
gtatgttgc tttctggat ttatttttta ttatgttcc tctttggta	360
atagagaaat ctctgcacaa gactttgtt accaaccaggc tggagctcaa ggaatgtggg	420
gtatctgggg ccacaccattt acctgtgggc ttgttccctgg agccaaacccc tgcaagctta	480
agagagaggg gcctgacccgtt ctcttcttcc ctcccttagctt ccaggccccc tctctgcct	540
cgtcaactccgtt gtgttctggc ctcttgcgtt cctttggagg tttctctgtac ctgtgaggat	600
cagagacagt ccccggtttt aaacttcacca aattgactttt tatttccttt tctaattttt	660
attatttttt aaaacaacca ggatgattt cactatctact ccccccattcc tccagaaaag	720
ccccaaatttggtcttccat ggtctggcctt gcccaggctt tattccacat gtgcagggttc	780

caacagctta accctattctt cttcccagtc atctgctgca ggtatagctg tctcatgccc	840
ctgcctgcctt attctggcca gtaccctaag ccccaagatc tccagccccctt gccccagtat	900
ccttgcccttc tgatgcctta aagttgggcc acaggtcctg ctgggtcaga gcctcacaga	960
tgcggagctc caaaagctcc gctcaggacc aaagagctctt ggccttagggt tcatecttcc	1020
tccaggtgtc tccccctgtgg acagaaggct aaagccttga tcttggcaaa ccacccttt	1080
tgcggaaaaggc ctggatgcag agaccagat ttctgtctgg cttcaacagt ctccccctgtct	1140
gtctgtgaaa ggtagcatt gtaccaggc cactggccctt ctaccatgtt ctttcaaacc	1200
caggtcatta ccatacccccag gctggatcac tggagcaggc ctccctctgt tccatgtgag	1260
ggggacctag gggctctgcc cttagccagc tgagccacca ccagcctccc t	1311

<210> 243

<211> 399

<212> DNA

<213> Mouse

<400> 243

aagggtccctg aagtcaatgg ttgcataaaa tacttcattt ttggcttcaa tgtcatat	60
tggtttttgg gaataaacgtt tcttggaaatc ggactgtggg cgtggaaatga aaaaggtgtc	120
ctctccaaaca tctcgccat caccgaccc ggtggcttgc acccagtgtg gctttccctc	180
tgagtgccca gcccggccct gagctctgtc aatgacatcc aaggagaaaa tgaggttaat	240
gagagacatt aattaaacac tccctcaccac caccgacca aaccagtgg gttcttctga	300
tattctggaa tactctgggc tatgttttat gtttattttt ttttaatcg gttgtat	360
ggtctttttt ttcttcttc tttttttttt gctcccaaa	399

<210> 244

<211> 1421

<212> DNA

<213> Mouse

<220>

<221> unsure

<222> (1370) ... (1370)

<221> unsure

<222> (1395) ... (1395)

<400> 244

gccaggaggcgg gcaggcacca gccagagcag ctggcggcag acagtcggac cgagacagtt	60
ggaccggagac agtcgaacgg tctaacaggg cctggcttgc ctacctggca gctgcaccccg	120
gtcctttcc caagactgggt tctgtgggtc aacatggtcc cctgtttctt cctgtctctg	180
ctgctacttg tgaggcctgc gcctgtgggtc gcctactctg tgccttccccc ggcctccctc	240
ctggaggaag tggcggggcag tggggaaagct gagggttctt cagcctcttc cccaaaggctg	300
ctggccccc ggactccagc cttcagttttt acaccaggga ggaccaggcc cacagctccg	360
gtcgccccctg tgccacccac caacccctt gatgggatcg tggacttctt cccggcgttat	420
gtgatgtca ttgcgggtgtt gggctcgctg acctttctca tcagttccata gtctgcgcgg	480
cactcatcac ggcggcagaag cacaaggcca cagccctacta cccgttccctt ttccccgaaa	540
agaagatgtt ggaccagaga gaccggcgtg gggggccca tgccttcagc gaggtccctg	600
acaggcacc tgacagccgg caggaagagg gcctggactc cttccaggccag ctccaggctg	660
acattctggc tgctactcag aacctccgtt ctccagctag agccctggca ggcagtgggg	720
agggaaacaaa acaggtgaag ggtgggtcgg aggaggagga ggagaaggaa gaggaggtgt	780
tcagtgccca ggaggagccc cgggaagccc cagttatgtgg ggtcactgaa gagaagccgg	840
aggtccctga cgagacagcc tcagcagagg ctgaagggggt tcccgccagcc agcggggcc	900
aagggaaacc agaagggtctt ttctcccttag cccaggaacc ccaggaggca gctggccctt	960
ccggaaagggtc ctgtgcctgc aacagaatctt ccctaatgt gtaacaggcc ccagaactgt	1020
gaggcctgac tcttgggtcc tcgaagggtca cctcccttggt caagaaaggc attcagcttt	1080
gactgtttctt tgacacccctg cttggccat tgggtgtcc aatccctgacc ctgaatgggc	1140
aaagctgtcg gcctctgtgt taccccaagga aacaccaccc caagttccag cgcccttaat	1200
gacttcaca ttctggggcc ttccacccca agcaccactt ttctggaaagg ggaagggtcag	1260
acacatccca gtttggagcc gcaatgagggc agtccctcaga acagaagggg aacaggccag	1320
aggctgactg tgacatacac agtaaacacc cctgcttgc ctttggctgn ggagacaaga	1380
ggggctgttg atcanatggc ctgcgggtc ctatctggcc t	1421

<210> 245
<211> 461
<212> DNA
<213> Mouse

<400> 245

cgcctgcagg	tcgacactag	tggatccaaa	gttcttttc	ttttctttt	ctttttttt	60
tgtgtgtgt	tttgggttt	tttgtttt	ggttttcctg	gaactca	tgttagaccag	120
gctagccccca	aactcagaaa	tctgcctccc	gagtgc	actaagggtg	tgcaccacca	180
ctgccttgtt	gcagatgact	ccttaagga	gctagagtaa	cccttgc	cctcggtgag	240
agtctgagaa	tcaaggcgctt	tggcacaca	gctcaattt	cacagcca	ccttttagctt	300
ctatgtgtc	tgggcatgga	cagaccc	tcatgc	tgatgatggc	cgggttcca	360
ggcagccgtg	gtcctgtctt	aatattgtct	ctaactgcca	cagttcaga	gaaaggggaa	420
caagttctcc	tttgc	tttgc	tttgc	tttgc	tttgc	461

<210> 246
<211> 1280
<212> DNA
<213> Mouse

<400> 246

ttggactcgc	ggcctgcag	gtcgacacta	gtggatccaa	agaattcggc	acgagagaac	60
attcgagaat	atgttcgggt	gatgtatgtat	tggattgtct	ttgcgatctt	catggcagca	120
gaaaccttca	cagacatctt	catttcttgg	tccggcccaa	ggattggcag	gccatggggt	180
tggaaaggc	ctcaccacca	ccaccac	gcctctggct	cacacaacc	cctccccc	240
cttacacaca	gttcccgtt	ttattacag	ttaagatgg	cttttgc	gtggctgctc	300
tcacccatca	ccaagggggc	cagcctgtt	taccgaaat	ttgtcc	atccatacc	360
cgccatgaga	aggagatcga	cgc	gtcaggca	aggagcgc	ctatgaaacc	420
atgctcagtt	ttggaaagcg	gagc	atgc	cagtc	gcaggctgt	480
accaagagtc	aaggcgtct	agtc	gag	tcacgg	agatgc	540
tctatccctg	acacccctgt	ccccac	ttca	tctat	agac	600
ccccgacgt	gacccctat	tggata	ccaggcggc	tgca	ggc	660
gatgagtgtt	ggtcagacaa	tgagattgtc	ccccagccac	ctgttggcc	ccgagagaag	720
cctctaggcc	gcagccagag	ccttcgggt	gtcaagagga	agccatt	tcgagagg	780
acccacacgt	ccctgaaggt	ccgaaccc	aaaaaggc	tgcc	catgg	840
tagagtctc	agattgaggc	cac	ctgg	cgg	atcc	900
caccagctac	ccccgttct	ctccgt	cttgc	ttc	gtgt	960
cctgcacagg	gagacattca	ctgtac	aaa	cc	tttatt	1020
ttccctctg	tttgc	tcagacat	gg	ccacc	atcc	1080
aacccaaagt	ccaaccagct	gtgtt	cattic	cttctt	ttcaaa	1140
tttccaaggc	ctgggtgtgt	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	tgtgttac	1200
tacactagct	gcatgtttcg	tgtgtgtgt	tgaggtcagg	tttat	aaaa	1260
aataaaatacc	aaacagt	gaa	tttttatata			1280

<210> 247
<211> 833
<212> DNA
<213> Rat

<400> 247

gtgcctccg	ccgggtcggg	atggagctgc	ctgcccgtgaa	cttgaagg	tttcttctgg	60
ttcactggct	gttacaacc	ttgggtctgt	tggc	agg	ctt	120
acttca	cctggccct	gggtgtgt	ctgtggccca	gcggg	actt	180
ttggcatgtt	tcttgggt	ttgggt	ccat	ggac	ttt	240
tcttca	aagcgttgc	gttgggaca	ctggccgtt	cagtgc	ttt	300
tcagcttgc	gtcgaagccc	tttcttctgt	gcctcg	ccacat	ttt	360
gggggtgagct	cccgctccgc	tggatttct	tggac	cg	ttt	420
agacaattga	ctcg	tcac	tc	tc	ttt	480
aagctgcccc	ccgggggtac	tgaag	gtc	c	ttt	540
tgtcac	tttactggac	ctaca	atgg	ttt	ttt	600

ctgagtcatg	tgcctcgga	ggtcccagct	gagaagagcc	cagtccataat	tctccatgt	660
gccccatccat	tcaagacacc	tgttaaaaa	ttggcttagaa	ctgtgggtgg	tttcttcccc	720
tcctccccat	cactataaca	cacaaccgcc	gagctgtca	gagtgttca	ggccatccag	780
gccttatggg	ccaatgatca	ctgcctctca	ggctacccca	aggtgaccca	gcc	833

<210> 248
<211> 1308
<212> DNA
<213> Rat

<400> 248						
gccgaggcgg	gcaggcacca	gccagagcag	ctggcggcag	acagtcggac	cgagacagtt	60
ggaccgagac	agtgcAACGG	tctaacaagg	cctggctgc	ctacctggca	gctgcacccg	120
gtcctttcc	cagagctgg	tctgtgggt	aacatggtcc	cctgcttcct	cctgtctctg	180
ctgctacttg	tgaggcctgc	gcctgtgg	gcctactctg	tgtccctccc	ggccttcctc	240
ctggaggaag	tggcggcag	tggggaaagct	gagggttctt	cagcctctc	ccaaagcctg	300
ctgcccggcc	ggactccagc	cttcagtc	acaccaggga	ggaccacggc	cacagctccg	360
gtcgccccctg	tgccacccac	caacccctgt	gatgggatcg	tggacttctt	ceggcagttat	420
gtgtatgtca	ttcggtgtgt	gggtctcg	accccttc	tcatgttcat	agtctgcgcg	480
gcactcatca	cgcgc	gcacaagg	acagctact	acccgttc	tttccccgaa	540
aagaagtatg	tggaccagag	agaccgg	ggggggcccc	atgccttc	cgagggtccct	600
gacaggcgc	ctgacagccg	gcaggaagag	ggcctggact	cctcc	gctccaggct	660
gacattctgg	ctgtactca	gaacccctgg	tctccagta	gagccctgg	aggcagtggg	720
gagggaa	aacagggtaa	gggtgggtcg	gaggaggagg	aggagaagga	agaggagggt	780
ttcagtggcc	aggaggagcc	ccgggaagcc	ccagtatgt	gggtca	agagaagccg	840
gaggccctg	acgagacagc	ctcagcagag	gctgaagggg	ttcccg	cagcagg	900
caaggggaa	cagaagggtc	tttctctta	gccaggaa	cccaggag	agctgg	960
tccgaaagg	cctgtgc	caacagaatc	tcccttaatg	tgt	cccaactg	1020
tgaggcctga	ctcttgg	ctcgaagg	accccttgg	tcaagaa	agg	1080
tgactgttc	ttgacaccc	gcctggca	ttgtgggtc	caatct	ctgac	1140
caaagctgt	ggctctgg	gtaccc	aaacaccacc	ccaagt	tcc	1200
tgactctcac	cattctgggg	gcttcaccc	gaagcaccac	ttctctgg	aa	1260
agacacatcc	cagttgg	cgcaat	cgatc	gg	gggaaagg	1308

<210> 249
<211> 1212
<212> DNA
<213> Human

<400> 249						
tagcgtggc	gcccgcgagg	tactacagac	tttgtataa	ggctgaagct	tggggcatcg	60
tcctagaaac	gggtggccaca	gctgggg	tgacctcg	ggccttc	atcgacttc	120
cgatccctgt	ctgcaagg	caggactcc	acaggc	aatgt	actcagttc	180
tcttcctcct	gggtgtgt	ggcatctt	gcctcac	cgccttc	atcgactgg	240
acgggagcac	agggcccaca	cgctt	tcttgg	cctttt	atctgttct	300
cctgcctgt	ggctcatgt	gtcag	ccaa	ccgggg	aagccc	360
ccctgtgt	gatttctgg	ctggccgt	gctc	ccgggg	aggat	420
ttgaatatat	tgtctgacc	atgaatag	ccaa	tgt	tttcttcc	480
ctcctcg	caatgaagac	tttgc	tgc	tttcttcc	gagcttcc	540
tgaccc	catgtct	ttcac	tttgc	tttcttcc	ttgtatgg	600
gggcccacat	ctac	atgc	ccatt	cac	ggggctgg	660
tgctcatgt	tcc	gac	ggat	cat	ttgggtgg	720
ctgccaatgg	ctgggtgt	ctgttgg	atgtt	ctc	tccgc	780
agcaacgaaa	ccccatgg	tatc	aggat	tc	tttgg	840
agaagagcta	tgtgtgg	aacag	actct	caact	caagg	900
aagagacagg	ggacacg	tat	ccat	caact	tttt	960
ctccccaaaa	gaaattctc	atccc	ccac	caact	cagaacc	1020
atgaagtaaa	gaaagagg	acta	gtc	caact	tttgc	1080
cggcagatct	agcggg	gat	ttgg	tttgc	tttgc	1140
tgtac	ccggcg	ctcg	gaaat	tttgc	tttgc	1200
ggcccggtac	ac	agtt	tac	tac	tttgc	1212

<210> 250
 <211> 453
 <212> DNA
 <213> Human

<400> 250
 aagaattcca aatgcttact tttctggtgc agaaagattg ttgggaacag acaggaacca 60
 atgtggaaat tcaacttcaa gttcaaaaaa cagtccccta ggttaaagag caagtgtaca 120
 ggaggattgc agcctcccg tcaagtacgaa gatgttcata ccaatccaga ccaggactgc 180
 tgcctactgc aggtcaccc cctcaatttc atcttattc cgattgtcat gggaaatgata 240
 tttactctgt ttactatcaa tgtgagcacg gacatgcgcg atcatcgagt gagactggtg 300
 ttccaagatt cccctgtcca tgggtgtcgg aaactgcgcg gtgaacaggg tggcaagtc 360
 atcctggacc agtgcacagc gttcggtct ttgactggtg gcattcctcag taccattct 420
 ccctgagagc gtagttactg cttccatcc ctt 453

<210> 251
 <211> 242
 <212> DNA
 <213> Human

<400> 251
 gagagagaga actagtctcg agttttttgt atttttat ttgttcatct gctgctgttt 60
 acattctggg gggtagggg gagtccccct ccctcccttt ccccccggg cacagagggg 120
 agagggggcca gggaaatggta tggctctcc cctcccaaccc caccctgttg tagccccctcc 180
 tacccttcc ccatccaggg gctgtgtatt attgtgagcg aataaaacaga gagacgctaa 240
 ca 242

<210> 252
 <211> 358
 <212> DNA
 <213> Human

<400> 252
 gatggccccca gtcggcaagtt ggccctgtgg ctggccctcac cagctccac agcagccccca 60
 acagccctgg gggaggctgg tcttgccag cacagccaga gggatgaccg gtggctgctg 120
 gtggcactcc tggtgccaaac gtgtgtctt ttgggtgtcc tgcttgcact gggcatcg 180
 tactgcaccc gctgtggccc ccatgcaccc aacaagcgca tcactgactg ctatcgctgg 240
 gtcatccatg ctgggagcaa gagcccaaca gaacccatgc ccccccggg cagcctcaca 300
 ggggtgcaga cctgcagaac cagcgtgtga tgggtgcag acccccctca tggagtat 358

<210> 253
 <211> 568
 <212> DNA
 <213> Human

<400> 253
 catctgtcat ggccggctggg ctgtttgggt tgagcgctcg ccgtttttg gcggcagcgg 60
 cgacgcgagg gtcggccgc gcccggcgtcc gctggaaatc tagttctcc aggactgtgg 120
 tcgccccgtc cgctgtggcg gggaaagcggc ccccaagaacc gaccacaccg tggcaagagg 180
 acccagaacc cgaggacgaa aacttgtatg agaagaaccc agactccat gtttatgaca 240
 aggacccgtt tttggacgtc tggAACATGC gacttgtctt cttttttggc gtctccatca 300
 tccttggctt tggcagcacc tttgtggctt atctgcctga ctacaggatg aaagagtgg 360
 cccggccgcga agctgagagg cttgtaaaat accgagaggc caatggcctt cccatcatgg 420
 aatccaaactg ctgcaccc agcaagatcc agctgccaga ggatgatgtga ccagttgcata 480
 agtggggctc aagaagcacc gcctcccca cccctgcctt gccattctga cctcttctca 540
 gagcacctaa taaaaggggc tgaaagtc 568

<210> 254
 <211> 1421
 <212> DNA

<213> Human

<400> 254

gattagcgtg	gtcgcggccg	aggtgtctgt	tcccaggagt	ccttcggccgg	ctgttgtgtc	60
agtggctga	tcgcgtatgg	gacaaaggcg	caagtcgaga	ggaaactgtt	gtgtctcttc	120
atattggcga	tccctgttg	ctccctggca	ttgggcagt	ttacagtgc	ctcttctgaa	180
cctgaagtca	gaattcctga	gaataatct	gtgaagttgt	cctgtgccta	ctcgggcttt	240
tcttcctccc	gtgtggagtg	gaagtttgac	caaggagaca	ccaccagact	cgtttgcstat	300
aataacaaga	tcacagctc	ctatgaggac	cgggtgacct	tcttgcac	tggtatcacc	360
ttcaagtccg	tgacacggga	agacactggg	acatacactt	gtatggtctc	tgaggaaggc	420
ggcaacagct	atggggaggt	caaggtcaag	ctcatcgtgc	tttgtgccttc	atccaagcct	480
acagtttaaca	tcccttcctc	tgccaccatt	gggaaccggg	cagtgcgtac	atgctcagaa	540
caagatggtt	ccccacccctc	tgaatacaccc	tggttcaaaag	atgggatagt	gatgcctacg	600
aatccaaaaa	gcacccgtgc	cttcagcaac	tcttcctatg	tcctgaatcc	cacaacagga	660
gagctgttct	ttgatccctt	gtcagcctct	gatactggag	aatacagctg	tgagggacgg	720
aatgggtatg	ggacacccat	gacttcaaatt	gctgtgcgc	tggagctgt	ggagcggaaat	780
gtgggggtca	tcgtggcagc	cgtecttgc	accctgattc	tcctgggaaat	cttgggttttt	840
ggcatctgtt	ttgcctatag	ccgaggccac	tttgacagaa	caaagaaaagg	gacttcgagt	900
aagaaggtga	tttacagcc	gccttagtgc	cgaagtgaaa	gagaattcaa	acagacacctg	960
tcatttcctgg	tgtgagcctg	gtcggtctcac	cgccttatcat	ctgcatttgc	cttactcagg	1020
tgctaccgga	ctctggcccc	tgatgtctgt	agtttcacag	gatgccttat	ttgtctttta	1080
cacccacac	ggcccccctac	ttcttcggat	gtgtttttaa	taatgtcagc	tatgtgcccc	1140
atccttccttc	atgcccctccc	tccctttctt	accactggtg	agtggcctgg	aacttggta	1200
aagtgtttat	tcccccatttc	tttgagggat	caggaaggaa	tcctgggtat	gccattgact	1260
tcccttcata	gtagacagca	aaaatggcgg	gggtgcgcagg	aatctacact	caactgccc	1320
cctggctggc	aggatcttt	gaataggtat	tttgagcttg	gttctggct	ctttccttgc	1380
gtacctgccc	ggcgccggcc	tcgaaatcaa	gcttatacgat	a		1421

<210> 255

<211> 1464

<212> DNA

<213> Mouse

<400> 255

ggcacgagcg	ggagcctgct	actgcccgtc	tgggttcctt	ggggccgact	gtagccttgc	60
ctgtccacag	ggtcgtctcg	gccccagctg	tgcacacgt	tgtacatgc	ggcaaggggc	120
ggcatgtgac	ccagtgtcgg	ggacttgc	ctgtccctcc	gggaagacgg	gaggccattg	180
ttagcgcggc	tgtccccagg	accgggttgg	caagggtctgt	gaacacaagt	gtgcctgcag	240
gaatgggggc	ctgtgtcatg	ctaccaatgg	cagctgc	tgccttgc	gtggatggg	300
gccacactgt	gagcacgc	gccctgtgg	gctgtatgg	gctgcctgc	tcctggagtg	360
ttcctgtcag	aacaatggca	gctgtgagcc	cacccctggc	gcttgcctt	gtggccctgg	420
cttctatgtt	caagcttgc	aagacaccc	ccctggccgc	ttccatggat	ctgggtgc	480
gagagttgc	gagtgtcaac	agggcgctcc	ctgtgaccct	gtcagtgccc	gtgcctctg	540
ccctgtggc	ttccgtggcc	agttctgc	gaggggggtgc	aagccaggt	tttttgaga	600
tggctgcctg	cagcagtgt	actgccccac	gggtgtgccc	tgtgatccca	tcagcggcct	660
ctgccttgc	ccaccagg	gcccggaaac	cacatgt	ctagattgc	gaagaggccg	720
ctttggccgc	ggctgtgtcc	tgcgtgt	ttgtgggggt	ggggctgact	gcgcacccat	780
cagtggccag	tgcactgt	tggacagct	cacgggaccc	acttgc	aaagtgc	840
acagctgtcc	tctatcagac	cagcacccca	gcactccagc	agcaaggc	tgaaggacta	900
actcagagga	acgcccacag	aggcccacta	ctgtgttca	gcccacgg	cccaggc	960
tgcgtgtgc	taagatagag	gtggcactt	tggatccaca	cctttctgg	aaagccatgg	1020
attgtgttgc	acagctatgg	atagtcatat	agccacacac	ccgggctca	tggatcg	1080
gaagaaggcc	tcccttggac	acaaggaaatc	caggaagt	gctggctc	ggggactgt	1140
ttacatgggg	accctgcagg	ctgtgtgt	gaatcttgc	cctcttc	gacctggat	1200
gggaccaagg	tggaaataga	caaggccca	cctgcctgc	aggctcttct	gtgtctag	1260
catggactgc	tgcagcc	caactgtt	cctggaaatg	tagtcc	catattata	1320
taaggattt	atgggcatct	ccacctgc	ttatggte	gggtc	agatgc	1380
gacccagaa	cttaggc	ggcctgtgg	gttcc	agatggatca	agggtttgt	1440
aaaacccagt	gagttaaagg	caca				1464

<210> 256

<211> 2411

<212> DNA

<213> Mouse

<400> 256

tcggcacgag	agtgggtaca	ccttactaca	tgtctccaga	gagaatacat	aaaaatggat	60
acaacctcaa	gtctgacato	tggtcttttg	gctgtctgt	atatgagatg	gctgcactgc	120
agagtccttt	ctacggcgac	aagatgaaact	tgtattctct	gtgtaaagaag	atagagcagt	180
gtgactaccc	gctctcccg	tcagatcaact	attcggagga	gctacgacag	ctagttataa	240
tatgcatcaa	cccagatcca	gagaaggcgac	ccgacatcgc	ctatgtttat	gatgtggcaa	300
agaggatgca	tgcattgtacc	gcaagcactt	aaactgtaca	agatcctgaa	gacggcaacc	360
aagataactt	aaaagtgttt	tttgtcagat	catacctccc	cgcttatgtc	tggtgtttaa	420
gattactgtc	teagagctaa	tgcgtttga	atccctaacc	agttttcata	tgagcttcat	480
ttttctacca	ggctcaatca	ccttcccaat	ccacaacttt	gggatgctca	gatggcacca	540
agaatgcaag	cccaacaaga	gttttcgtt	tgagaattgt	ttcgagttc	tgctgataga	600
ctgtgtttat	agatagtcag	tgcccgatgg	tgaagcacac	acacatagc	acatgtccag	660
agcgatgcag	aacctgagga	aggacctggg	catttgcatt	gtttgccttt	aagtcaactt	720
atggacgttg	tagtggacat	gattgtAAC	ttctgatttt	tttcttttaa	gtttcaagta	780
catgttttag	ttcttagcat	tagagatctc	aaatataatt	tttataagac	atgcagacat	840
aaacttttg	agaaagattt	aaaatttttta	gtttatacat	tcaaaatgca	actattaaat	900
gtgaaagcat	agaggtcaaa	atgtgagttt	gacactgaag	tctatgtttt	aatgcctttg	960
aaagcctttt	tttgggtgtt	ttttaatgggt	ataaaatgaac	ccattttaaa	acgtggttaa	1020
ggacttgg	gcctggcggt	atagtcatgt	ttaacatgca	caaggcttt	tggttttatt	1080
gtacatttga	agaatattct	tggataatac	ttgcagtagt	tatagttcaa	tttctttaca	1140
aatctaaata	cacttaactc	ataactatac	actgtaatgc	aagcatatat	tgttattcat	1200
atattgaagt	tttgcattgt	tccttcag	aatttttttt	atccaagttt	ctttcttatt	1260
tatattgtgt	gtgcatttca	tccattaaat	gtttcagatt	ttctgagaat	gagttccctt	1320
tttaaaatat	atttgggtat	ccaacacttt	tttaggattt	aaaaaaaaatt	tttttaatgt	1380
tttgggtcat	tctagggtca	tctgttttct	cttggtagaa	agaaaagggt	tgtgttaaaa	1440
tgtgcctgt	aatgtcgata	ttgtttggca	gggttataat	tttagagtt	gctctagagt	1500
atgttgaaca	gcgtgaagac	tggcccttac	tgaagacaga	actgttccaa	gagcagcatt	1560
cccggttgg	tgctttggag	taaagtactg	tgtatgacga	tgacagacat	tttagttaag	1620
gggggtgaaaa	aaaaaggagg	ggtattttag	aaaccctgag	gtggaaatttt	ggtaatgtc	1680
ttcatcttaa	taccagccaa	ttccttcaga	gaattgtgg	gccaaagaac	agagaatcgt	1740
tggctgttgc	agaacacgg	gtgccccatgt	agagcattgg	gaaggctcat	cttgcgggt	1800
ggtcggtcag	acagccctgt	gttggggagc	ttgtactctg	gcccacagag	ctcgggtgat	1860
tttcttacag	atgatctttt	ctacaggat	tttcaagttt	ttgttaattt	tcaaagtaat	1920
atctcatctt	ttaatttact	atgtatgt	tcgttagacaa	agggaaatctg	ggtttttttt	1980
tgtttttgtt	tttgggttttt	tttgcattgt	aggctgaact	gggttacatcc	cagatcttag	2040
tggctcatag	gatataccca	gaggcatgaa	gaaatggctt	ccgggtgacca	tttgggttgk	2100
gktatatccc	attgtatgt	cacaggactg	attgagatga	aacatcccc	tcctacaaga	2160
gttgggttct	ttccatattt	aaaaacatga	ggttctgcct	ggcagtgtat	gtacacacct	2220
ttaatcccag	cacccggag	gcagaggcag	gaggatttt	gagttcgagg	ccagcctgg	2280
ctacaaagt	agttccagga	cagccaggac	tacacagaga	aatcctgtct	caaaaaacca	2340
aaactaaatg	aaaatacaag	gcttctcccc	ttgttagtgc	tttgcatttt	gaatttgc	2400
aaaaaaaaa	a					2411

<210> 257

<211> 3516

<212> DNA

<213> Mouse

<400> 257

aaagtggagg	gcgaggggccg	gggcccgtgg	gctctggggc	tgctgcgcac	cttcgacgcc	60
ggcgaattcg	caggctggga	gaagggtggc	tcggcggct	tcggcggat	gtacaaggtg	120
cgcctatgtc	actggaaagac	gtggctcg	atcaactgt	cgcccactt	gcacgtcgac	180
gacaggaaac	gaatggagct	cctggaggaa	gctaagaaga	tggagatggc	caagttccga	240
tacatttctac	ctgtgtacgg	catatgccag	gaacctgtcg	gcttggtcat	ggagatcatg	300
gagacaggct	ccctggagaa	gctgctggcc	tcagagccat	tgccttgg	cctgcgttt	360
cgcacatgtc	acgagacagc	cgtggcatg	aacttccctgc	attgcattgc	tccggcaactg	420
ctgcacctag	acctgaagcc	agcgaacatc	ctgctggatg	cccactacca	tgtcaagatt	480

tctgactttg ggctggccaa gtcaatggc atgtcccact ctcatgaccc cagcatggat 540
 ggccttgg gtacaatcgcc ttacccctt ccagagcgaat ttcgtgagaa gagccgcttg 600
 tttgacacca aacatgatgt atacagcttc gccattgtga tctggggtgt gcttacacag 660
 aagaagccat ttgcagatga aaagaacatc ctacacatca tgatgaaagt ggtaaaggc 720
 caccggccag agctgccacc catctgcaga ccccgccgc gtgcctgtc cagccgtata 780
 gggctcatgc aacggtgctg gcatgcagac ccacaggtgc gggccaccc ccaagaaatt 840
 acctctgaaa cagaagacctt ttgtgagaag cctgatgagg aggtgaaaga cctggctcat 900
 gagccaggcg agaaaagctc tctagagtcc aagagtgagg ccaggccga gtcctcacgc 960
 ctcaagcgcg cctctgtcc ccccttcgat aacgactgca gtctctccga gttgtgtca 1020
 cagttggact ctggatctc ccagactctt gaaggccccg aagagctcag ccgaagtcc 1080
 tctgaatgca agctcccatc gtccagcagt ggcaagaggc tctcggggt gtcctcagt 1140
 gactcagecctt ttcctccag aggatcgctg tcactgtctt ttgagccggaa agcttcaaca 1200
 ggcgacccctgg gccccacaga catccagaag aagaagcttag tggatgccc catatcagg 1260
 gacaccagca ggctgtatgaa gatccatcag ccccaagatg tggacttgg tctagacagc 1320
 agtgcagcc tctgtcaccctt ggctgtggag gccggacagg aggagtgtt caagtggctg 1380
 ctgcttaata atgccaaccc caacccatc aacccatc aacccatc aacccatc aacccatc 1440
 gctgtggagc ggaaggggac ttggatgtt gaggacttgc tagcccgaa gaccatgtc 1500
 aatgccaagg atgaagagcca gtggacttgc ctgcactttt cagcccaaaa tggggatgag 1560
 gccaggccaa ggctgtctgtt agagaagaat gtttgcata atgggtgaa ctttggggc 1620
 cgaacacccca tgcattgttgc ctgcacccatc ggacaggaga acatctgcg caccctgtc 1680
 cggccgtggc ttggatgtggg cctgcaggaa aagatgcct ggttgcctt gcactatgt 1740
 gcctggcagg gcccacccatc cattgttaag ctgcataccca acgacccatc ggtgatgt 1800
 aatgcccaga cactagacgg gaggacaccc ctgcacccatc ctgtcaggatc atgggtgaa 1860
 cgtgtggctc gcatcttcat tgacccatc tctgtatgtt ctttggggc acatctgcg caccctgtc 1920
 cagacacccatc tgcattgttgc tgcagagact ggacacacta catctgtggc ttggatgtggg 1980
 gcccacccatc gacacccatc tactgtcaag ctgcataccca atactgcctt gcacccatc 2040
 gctcgccggc ccctgaatca gacagcactg caccctgtc ggttgcctt gcactatgt 2100
 gtggtagaaag agctggtcag tgcattgttgc attggatgtt ctttggggc acatctgcg caccctgtc 2160
 gcaactgcacc tggctgtca gggcaggcat tcacagactg tggagacact gtcactatgt 2220
 ggagcacaaca tcaacttgc gaggatgttgc ttggatgttgc ggttggatgtt ggttggatgtt 2280
 ttgctccgac gcaagcaagac ctgcattgttgc accacaaaaac ggttggatgtt ggttggatgtt 2340
 tggaccatcc ttgtttccctt atggggacag aatggccctt ggttggatgtt ggttggatgtt 2400
 gtggctgtcc catacaactga ccaagcagag gctaattggac ggttggatgtt ggttggatgtt 2460
 gggggccacatc agccaaatgtt tctgtatgtt gatggggacta ggttggatgtt ggttggatgtt 2520
 ggttggatgtt ggttggatgtt gatggggacta ggttggatgtt ggttggatgtt ggttggatgtt 2580
 ctgtccatag agcaagccat ttctgttgc ttggatgttgc ggttggatgtt ggttggatgtt 2640
 ggaaggccatc tgcattgttgc ttggatgttgc ggttggatgtt ggttggatgtt ggttggatgtt 2700
 tgcattgttgc accatgttgc ttggatgttgc ggttggatgtt ggttggatgtt ggttggatgtt 2760
 agagccatcatc atataatatgtt taccggaaat tttttgtaa atggggatgtt tactaaaatgtt 2820
 tggatgttgc aacatgttgc tctttcaggc tctttggatgtt aatggggatgtt tactaaaatgtt 2880
 ggttggatgtt ggttggatgtt ggttggatgtt ggttggatgtt ggttggatgtt ggttggatgtt 2940
 tgcattgttgc accatgttgc ttggatgttgc ggttggatgtt ggttggatgtt ggttggatgtt 3000
 agagccatcatc atataatatgtt taccggaaat tttttgtaa atggggatgtt tactaaaatgtt 3060
 tggatgttgc aacatgttgc tctttcaggc tctttggatgtt aatggggatgtt tactaaaatgtt 3120
 ggttggatgtt ggttggatgtt ggttggatgtt ggttggatgtt ggttggatgtt ggttggatgtt 3180
 tggatgttgc accatgttgc ttggatgttgc ggttggatgtt ggttggatgtt ggttggatgtt 3240
 tggatgttgc accatgttgc ttggatgttgc ggttggatgtt ggttggatgtt ggttggatgtt 3300
 atgctatagc atggatgttgc acacagaatgtt atattaatgtt gatggggacta ggttggatgtt 3360
 tcatggacac gatactttt catggacac gatggatgttgc tggatgttgc tggatgttgc 3420
 ctcaatttgc ttctactgtt tccctctt gtttggatgtt ggttggatgtt ggttggatgtt 3480
 ttttatgttca ataaaggact ccgcctaaaa aaaaaa 3516

<210> 258
 <211> 946
 <212> DNA
 <213> Mouse

<400> 258

cctggctgca aatccctgcac tgtgtgtcgt catggccgt gtcgctccgt ggagaaggac 60
 agcgtatgtt gtggatgttgc cccggatgg accggccgc tatgtatgtt ggttggatgtt 120
 gaccctgtcc ttggatgttgc ctgcaggcac gggacatgtt ggttggatgtt ggttggatgtt 180

gtgtgcaagt	gtgccgaggg	ctacggaggg	gctttgtgt	accagaagaa	tgactctgcc	240
atgcctgct	cagcctcaa	gtgccaccat	ggcagtgtc	acatctcaga	tcgaggggag	300
ccctattgcc	tatgccagcc	tggcttca	ggccatca	gtgagcaaga	aatccatgt	360
atggggaga	tagccgtga	agccatccgc	cgccagaaag	actacgcctc	ttgtgccacg	420
gcgtccaagg	tgcccatcat	ggaatgccgc	ggggctgcg	ggaccacgtg	ctgccagccg	480
attcgaagca	agcggcgaa	atatgtctc	cagtgcacgg	acggctcctc	attcgtggaa	540
gagggtggaga	gacacttgg	atgtggctgc	cgcgcgtt	cctgagcccc	ctctgccacc	600
caccatcc	ccgccttcg	gaccccagct	cattggctg	ggaacagcca	catggAACCT	660
ctttagatt	cagaacgaag	gagagaaatc	tggagagca	gaggcaaaag	agagaatatt	720
aagtatattt	taaaataacc	aaaaatagaa	tttattttt	ttatggaaag	tgactatTTT	780
catctttat	tatataaata	tatcacaccg	tctgagttata	tggactatac	agtggatTTT	840
ttttaccaag	ttttgtttt	tggtgttat	ttttgtgtt	tttataaaca	gctgtttata	900
aaatTTTAAG	acaaagaaaaa	aacactaata	aaaatTTTT	aaacac		946

<210> 259
<211> 1018
<212> DNA
<213> Human

<400> 259						
gctaccgcta	ctgcccac	cgctgcgtga	acctgcctgg	ctccctccgc	tgccagtgcg	60
agccgggtt	ccagctgggg	cctaacaacc	gctcctgtgt	tgatgtgaac	gagtgtgaca	120
tggggggccc	atgcgagcag	cgctgcttca	actcctatgg	gaccttcctg	tgtcgctgcc	180
accaggggta	tgagctgcat	cgggatggct	tctcctgcag	tgatattgtat	gagtgttagct	240
actccagcta	cctctgtcag	taccgcgtcg	tcaacgagcc	aggccgttcc	tcctgcact	300
gcccacaggg	ttaccagctg	ctggccacac	gcctctgcga	agacattgtat	gagtgtgagt	360
ctgggtgcga	ccagtgcctc	gaggccaaa	cctgtgtcaa	cttccatggg	ggctaccgt	420
gcgtggacac	caaccgcgtc	gtggagccct	acatccagg	ctctgagaac	cgctgtctct	480
gccccgcctc	caaccctcta	tgtcgagagc	agccttcatc	cattgtgcac	cgctacatga	540
ccatcacctc	ggagcggaggc	gtggccgtg	acgtgttcca	gatccaggcg	accccggtct	600
accccggtgc	ctacaatgccc	tttcagatcc	gtgctggaaa	ctcgcagggg	gacttttaca	660
tttaggcaaat	caacaacgtc	agcgcctatgc	tggctctcg	ccggccgggt	acggggcccc	720
gggagtagt	gtggacctg	gagatggtca	ccatgaattc	cctcatgagc	tacggggcca	780
gctctgtact	gaggctcacc	gtctttgttag	gggcctacac	cttctgagga	gcaggaggga	840
gccaccctcc	ctgcagctac	cctagctgag	gagcctgttg	tgagggcag	aatgagaaag	900
gcccaaggggc	ccccattgac	aggagctggg	agctctgcac	cacgagcttc	agtccaccccg	960
agaggagagg	aggtaacgag	gagggcggac	tccaggcccc	ggcccagaga	tttggact	1018

<210> 260
<211> 2800
<212> DNA
<213> Mouse

<400> 260						
ggcacgagga	agagccgtgc	aataatgggt	ctgaaatcct	tgcttataac	atcgatctgg	60
gagacagctg	cattactgtg	ggcaacacta	ccacacacgt	gatgaagaac	ctccttccag	120
aaacacata	ccggatcaga	attcaggcta	tcaatgaaat	tggagttgga	ccatttagtc	180
agttcattaa	agcaaaaaact	cgccattac	cgcccttcgc	tccttaggtt	gagtgtgtcg	240
cgtctggtcc	tcaagacgtc	aagctcaagt	ggggagacag	taactccaa	acacatgtcg	300
ctgggtacat	ggtgtacaca	ctacagctgg	aagacaggaa	caagagg	tttacatct	360
accgaggacc	cagccacacc	tacaaggtcc	agagactgac	agagttacc	tgctactcct	420
tcaggatcca	ggcaatgagc	gaggcagggg	agggccctt	ctcagaaacc	tacaccttca	480
gcacaaccaa	aagcgtgcct	cccacccatca	aagcacctcg	agtgacgcag	ttagaaggga	540
attcctgtga	aatcttctgg	gagacggtac	caccgatgag	aggcgaccct	gtgagctacg	600
ttctacaggt	gtgggttgg	agagactctg	agtacaagca	ggtgtacaag	ggagaagaag	660
ccacatttcca	aatctcagggc	ctccagagca	acacagatta	caggttccgc	gtgtgtgcct	720
gccggccgtg	tgtggacacg	tctcaggagc	tcagtggcgc	tttcagcccc	tctggggcctt	780
tcatgttaca	acagcgtgag	gttatgttta	caggggacct	gggaggcatg	gaagaggcca	840
agatgaaggg	catgtatccc	accgacgaac	agtttgcgtc	actcatcg	cttggcttcg	900
cgaccctgtc	cattttgttt	gccttataat	tacagtaactt	cttaatgaag	taaatccagc	960
aggccagtg	tatgtcgaa	acgcccacacg	ttttaataca	catttactca	gagcctcccc	1020

tttttacgt	tttgcgttct	ttgatttata	cgcttctt	gttttacaca	tttagctagg	1080
ggaaaagat	ttgtgtgcacc	tatTTGAGAT	gaaaactag	gaagaggta	aactggatt	1140
ttttttaaac	aataataaaat	aaaggaaataa	agaagagaag	gaagcggcgg	gcaagctcca	1200
gacaccgaga	gcccagtgtgc	ccaaacgagct	tgccttgcg	ggcttccccg	tgtgttctg	1260
gtctgttccc	actgtatgtct	ttcgcaagcc	tttgatcatc	ttgtgtgtta	cagttcagta	1320
atttatattc	acagtcattt	tttgatcatc	tatacctgtt	aacagaatca	cagtgtatgt	1380
agttcagggc	tgggattccg	gtgtgtcag	agtattgcc	catgagaata	ttcagtgtgc	1440
cttcggagga	ggccacctcg	accatccta	cgtcaactcg	ttacgtaact	gtgttagctc	1500
atctaagtca	aagtgtgtac	tttaatctaa	aatgttttat	tactctgtat	cccttatgtat	1560
tttaacacta	tgagttgcct	gtctaagaag	tcacataacc	aatgcgcct	ataaaatgata	1620
gaggattgt	gatTTTcaca	tcggccata	gcagtaactt	taagaggca	tttgcaata	1680
gttagttgtt	tcttgcgtt	ctactttaaa	agctgctta	acttgtctgt	ctgtcttgt	1740
acataactac	ttctaatata	atcaactagag	ttattatatt	ctgttatgtt	tgaccggaaat	1800
tatgtgacga	gagctcatgg	cagttgtgaa	ctgtctcctt	acatgttggc	ccatcatatt	1860
tgaaagactt	gccttggct	attcttggg	gtgtcagtga	cgtgaatgaa	gttgaatacc	1920
atatttcagt	gcccattgtata	ctaatgtac	agtagataga	aatcttactg	ataaaagccca	1980
ccacaaggga	accatttaca	tttgcctgt	tttgcggggc	ttcatctggc	cgcatggaga	2040
gagggagtgg	aaactggctg	tgagcatgag	atgtttgggg	gccaaagagc	ctactagatt	2100
ctctccctgg	gtctgtca	aattgttctt	gtgacccctc	tgtgcctgtt	ttcccatgca	2160
tgagtaatca	aatcaaatgg	ggattcaata	cctgttaagt	ctaagagacc	ttggatccac	2220
cgggtctatg	taagtgcgg	gaatcaact	cacggattca	tttagagtc	tgaggtaatg	2280
agttctaacc	caaagtcaatt	ggatccctca	accaagtcca	caatgttcaa	gtacccagg	2340
gacacttaag	aagtgggg	tgcaactgta	ttccaaaagg	gtgcgacaga	cacagccgat	2400
tccctcttc	ctgtttttt	gtatatttt	gtcccttggt	ttttcttgat	catagctact	2460
ttgtgttgg	tctatgttgc	ctatgtgca	gtaagtaccc	tgtactagct	tatactattc	2520
ccataccaaa	gtcatgggg	aaccaacatt	atTTTGTtT	gggtttattt	atactctatt	2580
ctgcatacag	tactttaaat	gccaatgaca	gtcaatctt	tatTTTATTG	aatgttaat	2640
gtacttatta	ctaatgtgcc	ctccatgtat	gttatatttt	gtgtgtttt	tacttttgt	2700
aatTTTGTtT	cagtttagtt	ccttggcaac	atctgtatgt	ttagccttct	gacatcttcc	2760
ttgtgttttt	aaagataaga	gcatctaact	cattaaatgc			2800

<210> 261
<211> 1335
<212> DNA
<213> Mouse

<400> 261						
acccaaacag	cccgggacca	tgctgtcgct	ccgctcctt	tttccacacc	ttggactgtt	60
cctgtgcctg	gctctgca	tatccccctc	cctctctgc	agtataatg	ggtcctgcgt	120
ggtccttgc	aacatctaca	cctccgacat	cttggaaatc	agcaactatgg	ctaacgtctc	180
tggtggggat	gtiacctata	cagtgcgg	ccccgtgaac	gattcagtca	gtgcgtgtat	240
cctgaaagac	gtgaaggagg	acgacagccc	agtgggcacc	tggagtggaa	catacgagaa	300
gtgcaacgac	agcagtgtct	actataactt	gacatccaa	agccagtcgg	tcttccagac	360
aaactggaca	gttccactt	ccgaggatgt	gactaaatgc	aacctgcagg	tcctcattcgt	420
cgtcaatcgc	acagcctca	agtcatccgt	gaaaatggaa	caagtcac	cctcagccctc	480
aacccctatt	cctgagagtt	ctgagaccag	ccagaccata	aacacgactc	caactgtgaa	540
cacagccaag	actacagca	aggcacacgc	caacaccaca	gcccgtacca	cagccaatac	600
cacagccaaat	accacagccg	tgaccacgc	caagaccaca	gccaaaagcc	ttggccatccg	660
cactctccgc	agccccctgg	caggtccct	ccatatctt	tttgttttc	tcattagtaa	720
actcctcttc	taaagaaaaac	tggggaaagca	gatctccaa	ctccaggta	tcctcccgag	780
ctcatttcag	gccagtgtt	aaacataaccc	gaatgaagg	tttatgtct	cagtcgcag	840
ctccaccacc	ttggaccaca	gacctgcaac	actagtgcac	ttgaggata	caaatgttt	900
cctggatctt	tcagggcaca	aattccgtt	tttgtaataa	tttagtcac	ccatccctgcg	960
tgtaacctga	agttctgact	ctcagttaa	cctgttgaca	gccaatctga	acttgtgttt	1020
cctggccaaag	gtattccat	gagcctctg	gggtgtgggg	tggggaggaa	atgatccctc	1080
tttactttca	aactgatttc	agatttctgg	ccaaacactac	tcaggttgc	aaggacttat	1140
gtgactttagt	tgactgttag	aaaaagagaa	atgagtgtac	atccgtggc	tactagcaga	1200
tttccactgt	gcccagacca	gtcggtaggt	tttgaaggaa	gtatataaaa	actgtgcctc	1260
agaagccaaat	gacaggacac	atgactttt	ttttctaagt	caaataaaca	atatattgaa	1320
	aaaaaaa	aaaaaa				1335

<210> 262
 <211> 1816
 <212> DNA
 <213> Mouse

<400> 262

ggcacagga cttctgctag tacttgcgcc tggcggtggc tgagcaaccg gtctcaccag	60
catgtctgc ctgtgcctgt atgtgccat cgccggggcg gctcagactg agttccagta	120
ctttgagtcc aaggggcttc ctgcccagct gaaatccatc ttcaaactca gtgtctttat	180
ccccctctcaa gagttctcca cataccgcca atgaaagcag aaaattgtgc aagcaggtga	240
caaggaccc tgcgtggcaac tggacttga agagttgtat cattacctcc aagatcatga	300
aaaaaaaactg aggctgggtgt tcaagagtct ggacaaaaag aatgatggtc gaatcgatgc	360
tcaggagatc atgcagttcc tgcgggaccc gggtgtcaag atctcggAAC agcaggcgga	420
gaagattctt aagagcatgg ataagaatgg cacatgacc atcgacttgg acgagtggag	480
ggacttaccac ctccctgcacc ctgtggagaa catccccggag atccatccctgt actggaaagca	540
ctcgacgatc ttcatgttcg gtgagaatct gacagtccca gatgagttca cagtggagga	600
gaggcagacg gggatgtgggt ggaggcacct ggtggcagga ggtggggcag gggcagtttc	660
cagaacctgc actgcctccccc tggacagact gaaggtgctc atgcagggtcc atgcctcccg	720
cagcaacaac atgtcatcg taggtggatt cacacagatg attcgagaag ggggagccaa	780
gtcactctgg cggggcaacg gcatcaatgt cctcaaaaatt gcccctgagt cggccatcaa	840
attcatggca tatgacgaga tggaaacggct tgcggtagt gatcaggaga cgctgaggat	900
ccacgaaagg ctgtggcag gctcctggc cggagccatt gcccagatg gcatctaccc	960
aatggaggtt ctgaagaccc gaatggccct gggaaaaaca ggacagtact cggccatgt	1020
ggactgtgcc aggaggatct tggctaaaga gggtagct gctttctaca aaggctacat	1080
cccccaacatg ctggggatca tcccctatgc tggcatcgac ctatgtct atgagacatt	1140
aaaaaatacc tggctccagc gctacgcgt aaacagtgc gaccccggt tgttcgtgt	1200
cctggctgt ggtactatct ccagtttg tggccagctg gccagctacc cactagccct	1260
ggtcaggacc cggatgcagg cacaaggctc cattgaggbc gcacctgagg taaccatgag	1320
cagectcttc aaacagatcc tgcggactga gggggccctt gggctctacc ggggctggc	1380
cccccaacttc atgaaggtga tccccggctgt gacatcago tacgtggct acgaaaacct	1440
gaagatcacc ctgggcgtgc agtctcggtg acgggagggt ggtggactt tgagcctgg	1500
gctggggccc agggtagtgc gcccacccat tctgtgaatg tgccaaact aagctgactt	1560
acccaagctg tggaaacccag gataccatag gggacgggca gggagctggc aagctctggg	1620
ctgggtctgc tgacctggca gaccttcgtg tctttccaa ggaagacctg tggatgttcc	1680
ttgggggtca ggggtcagta agatgttaggc tcctgcacta gagacaggac gttttctca	1740
gtgcctgcca gatagcgagc ttggatgcca gcttagttct tccatctcgt tcactcagcc	1800
ggacccatcagc cacggg	1816

<210> 263

<211> 764
 <212> DNA
 <213> Mouse

<400> 263

gcagcaccca ggcggcaagcg caccaggcac cgccgcacagac ggcaggagca cccatcgacg	60
ggcgtactgg agcgagccg gcaagacgaga gagaggcgtg cttgaaacccg agaaccaagc	120
cgggccggcat ccccccggccg cccgcacgcac aggccggcgc cctcccttgc tccctgtcc	180
ccacccggcc cctccggcca gcatgaggct cctggccggcc ggcgtctcc tgctgtctct	240
ggcgtgtgc gcctcgccgc tggacgggtc caagtgtaa tgttcccgga agggcccaa	300
gatccgcgtac agcgacgtga agaagctgaa aatgaagccca aagtacccac actgcgagga	360
gaagatggtt atcgtcccca ccaagacgcgtt gtcgggtac cggggccagg agcactgcct	420
gcacccctaag ctgcagagca ccaaacgcattt catcaagtgg tacaatgcct ggaacgagaa	480
gcccgggtc tacgaagaat agggtggacg atcatggaaa gaaaaactcc aggcagttt	540
agagacttca gcagaggact ttgcagatta aaataaaaagc cctttcttc tcacaagcat	600
aagacaaatt atatattgtc atgaagctt tcttaccagg gtcagttttt acatttata	660
gctgtgtgtg aaaggcttcc agatgtgaga tccagctcgc ctgcgcacca gacttcattt	720
caagtggctt ttgcgtggc ggttggcgccc gggcgggggggg acct	764

<210> 264

<211> 1697
 <212> DNA

<213> Mouse

<400> 264

gcgcggcccg	ggggactcac	atccccgggt	ccccctccg	ccccacgcgg	ctggggccatg	60
gacgcagat	ggggcgcagt	agtggtaactc	gccacactcc	cttccttggg	agcagggtgga	120
gagtcaaaaa	aagccccctcc	gcagtcctgg	acacagctgt	ggetttccg	cttcttggtg	180
aatgttagcg	gctatgccag	ctttatggta	cctggctacc	tcctggtgca	gtacttaaga	240
cggaagaact	acctggagac	aggcagggtt	ctctgcttcc	ccctggtcaa	agcctgtgtg	300
tttggcaatg	agccccaaaggc	tcctgatgag	gttcttggg	ctccgcggac	agagacagcg	360
gaatccaccc	cgtcttggca	ggtcctgaag	ctggcttct	gtgcctcggg	tctccagggtg	420
tcctatctga	cttggggcat	actgcagaaa	agagtgtatg	ctggcagcta	cggggccaca	480
gccacatcac	caggagagca	tttcacagac	tcccagttc	tggtgctgat	gaaccgtgtg	540
ctggcgctgg	tttgtggcagg	cctctactgt	gtcctgcga	agcagccccg	tcatgtgca	600
cccatgtacc	ggtactcctt	tgccagtcg	tcaaatagtgc	ttagcagctg	gtgccagtat	660
gaagcactta	agttcgtcag	cttccctacc	cagggtctgg	cgaaggccctc	caaggtgatc	720
cctgtcatga	tgatggggaa	gctgggttcc	cggegcagct	atgaacactg	ggaataacctg	780
actgcggcc	tcatctccat	tggagtgagc	atgtttcttc	tatccagttgg	accagagcct	840
agaagcttc	cagccaccac	actctctggc	ttggtcttac	tggcaggctt	tattgtttc	900
gacagcttca	cctcaaattt	gcaggatgcc	ctgtttgcct	ataagatgtc	atcggtgcag	960
atgattttgc	gggtcaattt	attctccctgt	cttttcacag	taggctca	actggaaacag	1020
ggggccctac	tgaggggggc	acgcttcatg	ggggcggcaca	gtgagtttgc	gtcccatgct	1080
ctccctcttc	ccatctgctc	cgccttggg	cagctttca	tcttctacac	cattggacaa	1140
tttggagctg	ctgttcttac	tatcatcatg	actctacgccc	aggctattgc	catccttc	1200
tcctgcctcc	tctatggcca	tactgtca	gtgggtgggg	gactgggagt	agctgtggc	1260
ttcaactgccc	tcctactcag	agtctatgcc	cgggggccgg	agcagcgggg	aaagaaggct	1320
gtgcccaactg	agccccccagt	acagaagtg	tgagcagtgc	agtaaaagacc	ctcatcttct	1380
gaggcactgg	ctcagtatca	gcatacagca	gaggattgga	gccctggagg	cagecctttt	1440
tgcctaaaa	gcccccaactt	catggaaatg	acagctgtgg	gtgtttgggtt	agaggtgacc	1500
cagagctct	cccccaatct	ctgaaatctt	gtgggtggcc	aagcaaacc	gcaccaggc	1560
tttgcata	gcacgcaccc	ttgaggctac	caggcaccag	ctgggaagag	aatttacagg	1620
tcctgcagg	ccccctagggg	ccagtgagaa	tggtgctgtg	ccagaaggga	caaaggcccc	1680
cageccagg	ggggcccc					1697

<210> 265

<211> 159

<212> DNA

<213> Mouse

<220>

<400> 265

gttttcttct	ccaggctgaa	gacctgaacg	tcaagttgga	aggggagcct	tccatgcgg	60
aaccaaagca	ggggccgcgg	ccggagccccc	tcatcatccc	caccaaggcg	ggcactttca	120
tcgccttc	tgtctactcc	aacatcaccc	cttaccaga			159

<210> 266

<211> 292

<212> DNA

<213> Mouse

<400> 266

gtgggtcccg	agacttgccca	accaaaggc	cattcctgg	atatggttct	ggcttcagct	60
ctgggtggcat	ggactatgg	atgggttgg	gcaaggaggc	tgggaccgag	tctcgcttca	120
aacagtggac	ctcaatgtat	gaagggctgc	catctgtggc	cacacaagaa	gccaccatgc	180
acaaaaacgg	cgttatagtg	gccccctggta	agacccggagg	aggttccacca	tacaaccagt	240
ttgatataat	ccccagggtac	acactgggtg	gcccatacggg	tcctgctgt	ga	292

<210> 267

<211> 339

<212> DNA

<213> Mouse

<400> 267

ccactgacct tcccagaagg tgacagccgg cggcggatgt tgtcaaggag ccgagatagt	60
ccagcagtgc ctcggtaccc agaagacggg ctgtctcccc ccaaaagacg gcgacattcg	120
atgagaagtc accacagtga tctcacattt tgcgagatta tcctgatgga gatggagtcc	180
catgtgcag cctggccctt cctagagcct gtgaaccctc gcttggtgag tggataccga	240
cgtgtcatca agaaccctat ggattttcc accatgcgag aacgcctgct ccgtggaggg	300
tacactagct cagaagagtt tgcagctgat gctctgctg	339

<210> 268

<211> 153

<212> DNA

<213> Mouse

<400> 268

ctgaagttct ctcatccttg tctggaagac cataatagtt actgcattaa tggagcatgt	60
gcattccacc atgagctgaa gcaagccatt tgcagatgct ttactggta tacggacaa	120
cgatgtgagc atttgaccct aacttcgtat gct	153

<210> 269

<211> 153

<212> DNA

<213> Human

<400> 269

ttgaagttct cacacaccccttgc cctggaagat cataacagtt actgcataa cggtgcttgt	60
gcattccacc atgagctgaa gaaagccatc tgcaggtgtt ttactggta tactggagaa	120
aggtgtgagc acttgacttt aacttcatat gct	153

<210> 270

<211> 288

<212> DNA

<213> Human

<400> 270

gcggccgcgc tgctccctgct gctgctggcg ctgtacaccg cgctgtgga cgggtccaaa	60
tgcaagtgccttccggaaaggcc acccaagatc cgctacagcg acgtgaagaa gctggaaatg	120
aagccaaatgt accccgactg cgaggagaag atggttatca tcaccaccaa gagcgtgtcc	180
aggtaaccgag gtcaggagca ctgcctgcac cccaaagctgc agagcaccaa ggcgttcatc	240
aagtggtaaca acgcctggaa cgagaagcgc agggtctacg aagaatag	288

<210> 271

<211> 234

<212> DNA

<213> Mouse

<400> 271

tccaagtgtta agtgttcccg gaagggccccc aagatccgct acagcgacgt gaagaagctg	60
gaaatgaagc caaatgtaccc acactgcgag gagaagatgg ttatcgatc caccatcgac	120
atgtccaggt accggggccca ggagcactgc ctgcaccctt agctgcagag caccatcgac	180
ttcatcaatgt ggtacaatgc ctggaaacgag aagcgccaggg tctacgaaga atag	234

<210> 272

<211> 234

<212> DNA

<213> Human

<400> 272

tccaaatgca agtgcgtcccg gaagggaccc aagatccgct acagcgacgt gaagaagctg	60
gaaatgaagc caaatgtaccc gcactgcgag gagaagatgg ttatcgatc caccatcgac	120
gtgtccaggt acccgagggtca ggagcactgc ctgcaccctt agctgcagag caccatcgac	180

ttcatcaagt ggtacaacgc ctggaacgag aagcgcaggg tctacgaaga atag

234

<210> 273
<211> 645
<212> DNA
<213> Mouse

<400> 273

atgctgtcgcc	tccgtctcctt	gcttccacac	ctgggactgt	tcctgtgcct	ggctctgcac	60
ttatccccct	ccctctctgc	cagtgataat	gggtcctgcg	tggtccttga	taacatctac	120
acctccgaca	tcttggaaat	cagcactatg	gctaacgtct	ctgggtggga	tgtaacctat	180
acagtgcgg	tccccgtgaa	cgattcagtc	agtgcgcgtga	tcctgaaaagc	agtgaaggag	240
gacgacagcc	cagtgggcac	ctggagtgga	acatatgaga	agtgcacgca	cagcagtgtc	300
tactataact	tgacatccca	aagccagtctg	gtcttccaga	caaactggac	agttcctact	360
tccgaggatg	tgactaaagt	caacctgcag	gtcttcatcg	tcgtcaatcg	cacagcctca	420
aagtcatccg	tggaaatggaa	acaagtacaa	ccctcagcct	caaccctat	tcctgagagt	480
tctgagacca	gccagaccat	aaacacgact	ccaactgtga	acacagccaa	gactacagcc	540
aaggacacag	ccAACACCCAC	AGCCGTGACC	ACAGCCAATA	CCACAGCCAA	TACCAAGGCC	600
gtgaccacag	ccaaagaccac	agccaaaagc	ctggccatcc	gcact		645

<210> 274
<211> 63
<212> DNA
<213> Mouse

<400> 274

gggtacagtg	atggttacca	agtgtgttgt	aggttcggaa	gcaaagtgcc	tcagtttctg	60
..aac						63

<210> 275
<211> 388
<212> PRT
<213> Mouse
<400> 275

Met	Gly	Leu	Glu	Pro	Ser	Trp	Tyr	Leu	Leu	Cys	Leu	Ala	Val	Ser	
1				5				10			15				
Gly	Ala	Ala	Gly	Thr	Asp	Pro	Pro	Thr	Ala	Pro	Thr	Ala	Glu	Arg	
						20		25			30				
Gln	Arg	Gln	Pro	Thr	Asp	Ile	Ile	Leu	Asp	Cys	Phe	Leu	Val	Thr	Glu
						35		40			45				
Asp	Arg	His	Arg	Gly	Ala	Phe	Ala	Ser	Ser	Gly	Asp	Arg	Glu	Arg	Ala
						50		55			60				
Leu	Leu	Val	Leu	Lys	Gln	Val	Pro	Val	Leu	Asp	Asp	Gly	Ser	Leu	Glu
						65		70			75			80	
Gly	Ile	Thr	Asp	Phe	Gln	Gly	Ser	Thr	Glu	Thr	Lys	Gln	Asp	Ser	Pro
						85		90			95				
Val	Ile	Phe	Glu	Ala	Ser	Val	Asp	Leu	Val	Gln	Ile	Pro	Gln	Ala	Glu
						100		105			110				
Ala	Leu	Leu	His	Ala	Asp	Cys	Ser	Gly	Lys	Ala	Val	Thr	Cys	Glu	Ile
						115		120			125				
Ser	Lys	Tyr	Phe	Leu	Gln	Ala	Arg	Gln	Glu	Ala	Thr	Phe	Glu	Lys	Ala
						130		135			140				
His	Trp	Phe	Ile	Ser	Asn	Met	Gln	Val	Ser	Arg	Gly	Gly	Pro	Ser	Val
						145		150			155			160	
Ser	Met	Val	Met	Lys	Thr	Leu	Arg	Asp	Ala	Glu	Val	Gly	Ala	Val	Arg
						165		170			175				
His	Pro	Thr	Leu	Asn	Leu	Pro	Leu	Ser	Ala	Gln	Gly	Thr	Val	Lys	Thr
						180		185			190				
Gln	Val	Glu	Phe	Gln	Val	Thr	Ser	Glu	Thr	Gln	Thr	Leu	Asn	His	Leu
						195		200			205				
Leu	Gly	Ser	Ser	Val	Ser	Leu	His	Cys	Ser	Phe	Ser	Met	Ala	Pro	Asp

210	215	220
Leu Asp Leu Thr Gly Val Glu Trp Arg Leu Gln His Lys Gly Ser Gly		
225	230	235
Gln Leu Val Tyr Ser Trp Lys Thr Gly Gln Gly Gln Ala Lys Arg Lys		240
245	250	255
Gly Ala Thr Leu Glu Pro Glu Glu Leu Leu Arg Ala Gly Asn Ala Ser		
260	265	270
Leu Thr Leu Pro Asn Leu Thr Leu Lys Asp Glu Gly Thr Tyr Ile Cys		
275	280	285
Gln Ile Ser Thr Ser Leu Tyr Gln Ala Gln Gln Ile Met Pro Leu Asn		
290	295	300
Ile Leu Ala Pro Pro Lys Val Gln Leu His Leu Ala Asn Lys Asp Pro		
305	310	315
Leu Pro Ser Leu Val Cys Ser Ile Ala Gly Tyr Tyr Pro Leu Asp Val		320
325	330	335
Gly Val Thr Trp Ile Arg Glu Glu Leu Gly Gly Ile Pro Ala Gln Val		
340	345	350
Ser Gly Ala Ser Phe Ser Ser Leu Arg Gln Ser Thr Met Gly Thr Tyr		
355	360	365
Ser Ile Ser Ser Thr Val Met Ala Asp Pro Gly Pro Thr Gly Ala Thr		
370	375	380
Tyr Thr Cys Gln		
385		

<210> 276
<211> 151
<212> PRT
<213> Rat

<400> 276		
Met Ala Glu Pro Trp Ala Gly Gln Phe Leu Gln Ala Leu Pro Ala Thr		
1	5	10
Val Leu Gly Ala Leu Gly Thr Leu Gly Ser Glu Phe Leu Arg Glu Trp		
20	25	30
Glu Thr Gln Asp Met Arg Val Thr Leu Phe Lys Leu Leu Leu Trp		
35	40	45
Leu Val Leu Ser Leu Leu Gly Ile Gln Leu Ala Trp Gly Phe Tyr Gly		
50	55	60
Asn Thr Val Thr Gly Leu Tyr His Arg Pro Gly Lys Trp Gln Gln Met		
65	70	75
Lys Leu Ser Lys Leu Thr Glu Asn Lys Gly Arg Gln Gln Glu Lys Gly		80
85	90	95
Leu Gln Arg Tyr Arg Trp Val Cys Trp Leu Leu Cys Cys Thr Leu Leu		
100	105	110
Leu Ser Arg Pro Leu Arg Gln Leu Gln Arg Ala Trp Val Gly Gly Leu		
115	120	125
Glu Tyr His Asp Ala Pro Arg Val Ser Leu His Cys Pro Gln Pro Cys		
130	135	140
Leu Gln Gln Arg Gln Val Leu		
145	150	

<210> 277
<211> 163
<212> PRT
<213> Rat

<400> 277		
Met Pro Leu Val Thr Thr Leu Phe Tyr Ala Cys Phe Tyr His Tyr Thr		
1	5	10
Glu Ser Glu Gly Thr Phe Ser Ser Pro Val Asn Leu Lys Lys Thr Phe		
20	25	30

Lys Ile Pro Asp Arg Gln Tyr Val Leu Thr Ala Leu Ala Ala Arg Ala
 35 40 45
 Lys Leu Arg Ala Trp Asn Asp Val Asp Ala Leu Phe Thr Thr Lys Asn
 50 55 60
 Trp Leu Gly Tyr Thr Lys Lys Arg Ala Pro Ile Gly Phe His Arg Val
 65 70 75 80
 Val Glu Ile Leu His Lys Asn Ser Ala Pro Val Gln Ile Leu Gln Glu
 85 90 95
 Tyr Val Asn Leu Val Glu Asp Val Asp Thr Lys Leu Asn Leu Ala Thr
 100 105 110
 Lys Phe Lys Cys His Asp Val Val Ile Asp Thr Cys Arg Asp Leu Lys
 115 120 125
 Asp Arg Gln Gln Leu Leu Ala Tyr Arg Ser Lys Val Asp Lys Gly Ser
 130 135 140
 Ala Glu Glu Glu Lys Ile Asp Val Ile Leu Ser Ser Ser Gln Ile Arg
 145 150 155 160
 Trp Lys Asn

<210> 278
<211> 330
<212> PRT
<213> Rat

<400> 278
 Met Ala Gly Trp Ala Gly Ala Glu Leu Ser Val Leu Asn Pro Leu Arg
 1 5 10 15
 Ala Leu Trp Leu Leu Leu Ala Ala Ala Phe Leu Leu Ala Leu Leu Leu
 20 25 30
 Gln Leu Ala Pro Ala Arg Leu Leu Pro Ser Cys Ala Leu Phe Gln Asp
 35 40 45
 Leu Ile Arg Tyr Gly Lys Thr Lys Gln Ser Gly Ser Arg Arg Pro Ala
 50 55 60
 Val Cys Arg Ala Phe Asp Val Pro Lys Arg Tyr Phe Ser His Phe Tyr
 65 70 75 80
 Val Val Ser Val Leu Trp Asn Gly Ser Leu Leu Trp Phe Leu Ser Gln
 85 90 95
 Ser Leu Phe Leu Gly Ala Pro Phe Pro Ser Trp Leu Trp Ala Leu Leu
 100 105 110
 Arg Thr Leu Gly Val Thr Gln Phe Gln Ala Leu Gly Met Glu Ser Lys
 115 120 125
 Ala Ser Arg Ile Gln Ala Gly Glu Leu Ala Leu Ser Thr Phe Leu Val
 130 135 140
 Leu Val Phe Leu Trp Val His Ser Leu Arg Arg Leu Phe Glu Cys Phe
 145 150 155 160
 Tyr Val Ser Val Phe Ser Asn Thr Ala Ile His Val Val Gln Tyr Cys
 165 170 175
 Phe Gly Leu Val Tyr Tyr Val Leu Val Gly Leu Thr Val Leu Ser Gln
 180 185 190
 Val Pro Met Asn Asp Lys Asn Val Tyr Ala Leu Gly Lys Asn Leu Leu
 195 200 205
 Leu Gln Ala Arg Trp Phe His Ile Leu Gly Met Met Met Phe Phe Trp
 210 215 220
 Ser Ser Ala His Gln Tyr Lys Cys His Val Ile Leu Ser Asn Leu Arg
 225 230 235 240
 Arg Asn Lys Lys Gly Val Val Ile His Cys Gln His Arg Ile Pro Phe
 245 250 255
 Gly Asp Trp Phe Glu Tyr Val Ser Ser Ala Asn Tyr Leu Ala Glu Leu
 260 265 270
 Met Ile Tyr Ile Ser Met Ala Val Thr Phe Gly Leu His Asn Val Thr
 275 280 285

Trp Trp Leu Val Val Thr Tyr Val Phe Phe Ser Gln Ala Leu Ser Ala
 290 295 300
 Phe Phe Asn His Arg Phe Tyr Lys Ser Thr Phe Val Ser Tyr Pro Lys
 305 310 315 320
 His Arg Lys Ala Phe Leu Pro Phe Leu Phe
 325 330

<210> 279
 <211> 61
 <212> PRT
 <213> Rat

<400> 279
 Met Glu Asn Ile Tyr Tyr Thr Asn Leu Ile Thr Ile Leu Gly Asn Lys
 1 5 10 15
 His Ala Asn Gln Met Glu Leu Asn Leu Gln Ala Leu Ile Leu Ser Pro
 20 25 30
 Trp Phe Ala Val Cys Ala Pro Pro Gly Phe Ala Arg Asp Gln Ala Val
 35 40 45
 Arg Gly Leu Ala Leu Ala Gly Arg Arg Ile Thr Val Val
 50 55 60

<210> 280
 <211> 105
 <212> PRT
 <213> Rat

<400> 280
 Met Leu Arg Arg Gln Leu Val Trp Trp His Leu Leu Ala Leu Leu Phe
 1 5 10 15
 Leu Pro Phe Cys Leu Cys Gln Asp Glu Tyr Met Glu Ser Pro Gln Ala
 20 25 30
 Gly Gly Leu Pro Pro Asp Cys Ser Lys Cys Cys His Gly Asp Tyr Gly
 35 40 45
 Phe Arg Gly Tyr Gln Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Ile
 50 55 60
 Pro Gly Asn His Gly Asn Asn Gly Asn Asn Gly Ala Thr Gly His Glu
 65 70 75 80
 Gly Ala Lys Gly Glu Lys Gly Asp Lys Gly Asp Leu Gly Pro Arg Gly
 85 90 95
 Glu Arg Gly Gln His Gly Pro Lys Gly
 100 105

<210> 281
 <211> 27
 <212> PRT
 <213> Mouse

<400> 281
 Met Leu Lys Ala Ser Leu His Ile Leu Phe Leu Gly Ile Leu Asn Val
 1 5 10 15
 Pro Ile Val Asp Thr Ser Thr Lys Thr Gly Val
 20 25

<210> 282
 <211> 169
 <212> PRT
 <213> Mouse

<400> 282
 Met Ser Gly Leu Arg Thr Leu Leu Gly Leu Gly Leu Val Ala Gly

1	5	10	15
Ser Arg Leu Pro Arg Val Ile Ser Gln Gln Ser Val Cys Arg Ala Arg			
20	25	30	
Pro Ile Trp Trp Gly Thr Gln Arg Arg Gly Ser Glu Thr Met Ala Gly			
35	40	45	
Ala Ala Val Lys Tyr Leu Ser Gln Glu Glu Ala Gln Ala Val Asp Gln			
50	55	60	
Glu Leu Phe Asn Glu Tyr Gln Phe Ser Val Asp Gln Leu Met Glu Leu			
65	70	75	80
Ala Gly Leu Ser Cys Ala Thr Ala Ile Ala Lys Ala Tyr Pro Pro Thr			
85	90	95	
Ser Met Ser Lys Ser Pro Pro Thr Val Leu Val Ile Cys Gly Pro Gly			
100	105	110	
Asn Asn Gly Gly Asp Gly Leu Val Cys Ala Arg His Leu Lys Leu Phe			
115	120	125	
Gly Tyr Gln Pro Thr Ile Tyr Pro Lys Arg Pro Asn Lys Pro Leu			
130	135	140	
Phe Thr Gly Leu Val Thr Gln Cys Gln Lys Met Asp Ile Pro Phe Leu			
145	150	155	160
Gly Glu Met Pro Pro Glu Asp Gly Met			
165			

<210> 283

<211> 61

<212> PRT

<213> Mouse

<400> 283

Met Glu Lys Gln Met Asp Ala Ser Val Ser Val Ile Phe Gly Ser Ile			
1	5	10	15
Val Ile Ser Ala Phe Leu Tyr Leu Ser Leu Ala Gly Pro Trp Ala Val			
20	25	30	
Thr Val Thr Gln Met Arg Thr Ile Ile Ile Thr Met Asp Gln Leu Arg			
35	40	45	
Asp Ala Leu Ile Leu Asp Gln Leu Lys Val Ala Val Ser			
50	55	60	

<210> 284

<211> 131

<212> PRT

<213> Mouse

<400> 284

Met Ala Pro Ser Leu Trp Lys Gly Leu Val Gly Val Gly Leu Phe Ala			
1	5	10	15
Leu Ala His Ala Ala Phe Ser Ala Ala Gln His Arg Ser Tyr Met Arg			
20	25	30	
Leu Thr Glu Lys Glu Asp Glu Ser Leu Pro Ile Asp Ile Val Leu Gln			
35	40	45	
Thr Leu Leu Ala Phe Ala Val Thr Cys Tyr Gly Ile Val His Ile Ala			
50	55	60	
Gly Glu Phe Lys Asp Met Asp Ala Thr Ser Glu Leu Lys Asn Lys Thr			
65	70	75	80
Phe Asp Thr Leu Arg Asn His Pro Ser Phe Tyr Val Phe Asn His Arg			
85	90	95	
Gly Arg Val Leu Phe Arg Pro Ser Asp Ala Thr Asn Ser Ser Asn Leu			
100	105	110	
Asp Ala Leu Ser Ser Asn Thr Ser Leu Lys Leu Arg Lys Phe Asp Ser			
115	120	125	
Leu Arg Arg			
130			

<210> 285
<211> 78
<212> PRT
<213> Mouse

<400> 285
Gly Thr Arg Lys Pro Leu Pro Met Glu Ala His Ser Arg Arg Glu Lys
1 5 10 15
Ala Ser Gly Leu Arg Leu Ala Trp His Tyr Glu Cys Ser Gly Val Ser
20 25 30
Val Trp Trp Met Cys Val Leu Gly Trp Leu Ser Phe Leu Val Phe Leu
35 40 45
Leu Phe Ser Leu Val Cys Ser Phe Pro Ser Pro Ile Asn His Ser His
50 55 60
Met Leu Pro Cys Leu Phe Leu Arg Gly Gly Ser Asn Val
65 70 75

<210> 286
<211> 206
<212> PRT
<213> Mouse

<400> 286
Met Leu Pro Pro Ala Ile His Leu Ser Leu Ile Pro Leu Leu Cys Ile
1 5 10 15
Leu Met Arg Asn Cys Leu Ala Phe Lys Asn Asp Ala Thr Glu Ile Leu
20 25 30
Tyr Ser His Val Val Lys Pro Val Pro Ala His Pro Ser Ser Asn Ser
35 40 45
Thr Leu Asn Gln Ala Arg Asn Gly Gly Arg His Phe Ser Ser Thr Gly
50 55 60
Leu Asp Arg Asn Ser Arg Val Gln Val Gly Cys Arg Glu Leu Arg Ser
65 70 75 80
Thr Lys Tyr Ile Ser Asp Gly Gln Cys Thr Ser Ile Ser Pro Leu Lys
85 90 95
Glu Leu Val Cys Ala Gly Glu Cys Leu Pro Leu Pro Val Leu Pro Asn
100 105 110
Trp Ile Gly Gly Tyr Gly Thr Lys Tyr Trp Ser Arg Arg Ser Ser
115 120 125
Gln Glu Trp Arg Cys Val Asn Asp Lys Thr Arg Thr Gln Arg Ile Gln
130 135 140
Leu Gln Cys Gln Asp Gly Ser Thr Arg Thr Tyr Lys Ile Thr Val Val
145 150 155 160
Thr Ala Cys Lys Cys Lys Arg Tyr Thr Arg Gln His Asn Glu Ser Ser
165 170 175
His Asn Phe Glu Ser Val Ser Pro Ala Lys Pro Ala Gln His His Arg
180 185 190
Glu Arg Lys Arg Ala Ser Lys Ser Ser Lys His Ser Leu Ser
195 200 205

<210> 287
<211> 169
<212> PRT
<213> Mouse

<400> 287
Met Ser Gly Leu Arg Thr Leu Leu Gly Leu Gly Leu Leu Val Ala Gly
1 5 10 15
Ser Arg Leu Pro Arg Val Ile Ser Gln Gln Ser Val Cys Arg Ala Arg
20 25 30

Pro Ile Trp Trp Gly Thr Gln Arg Arg Gly Ser Glu Thr Met Ala Gly
 35 40 45
 Ala Ala Val Lys Tyr Leu Ser Gln Glu Glu Ala Gln Ala Val Asp Gln
 50 55 60
 Glu Leu Phe Asn Glu Tyr Gln Phe Ser Val Asp Gln Leu Met Glu Leu
 65 70 75 80
 Ala Gly Leu Ser Cys Ala Thr Ala Ile Ala Lys Ala Tyr Pro Pro Thr
 85 90 95
 Ser Met Ser Lys Ser Pro Pro Thr Val Leu Val Ile Cys Gly Pro Gly
 100 105 110
 Asn Asn Gly Gly Asp Gly Leu Val Cys Ala Arg His Leu Lys Leu Phe
 115 120 125
 Gly Tyr Gln Pro Thr Ile Tyr Tyr Pro Lys Arg Pro Asn Lys Pro Leu
 130 135 140
 Phe Thr Gly Leu Val Thr Gln Cys Gln Lys Met Asp Ile Pro Phe Leu
 145 150 155 160
 Gly Glu Met Pro Pro Glu Asp Gly Met
 165

<210> 288
<211> 114
<212> PRT
<213> Mouse

<400> 288
Met Ser Val Thr Ile Gly Arg Leu Ala Leu Phe Leu Ile Gly Ile Leu
 1 5 10 15
 Leu Cys Pro Val Ala Pro Ser Leu Thr Arg Ser Trp Pro Gly Pro Asp
 20 25 30
 Thr Cys Ser Leu Phe Leu Gln His Ser Leu Ser Leu Ser Leu Arg Leu
 35 40 45
 Gly Gln Ser Leu Glu Gly Gly Leu Ser Val Cys Phe His Val Cys Ile
 50 55 60
 His Ala Cys Glu Cys Val Ala Cys Cys Arg Val Leu Trp Asp Pro Lys
 65 70 75 80
 Pro Arg Gly Ser Ser Leu Cys Arg Trp Val Leu Gly Ser Ile Thr Cys
 85 90 95
 Leu Phe Met Tyr Glu Val Gly Gly Trp Thr Gln Gly Gly Leu Ile Val
 100 105 110
 Ser Leu

<210> 289
<211> 46
<212> PRT
<213> Mouse

<400> 289
Met His Tyr Pro Cys Leu Ala Cys Leu Phe Val Asn Val His Trp Cys
 1 5 10 15
 Phe Ala Trp Met Cys Ile Leu Val Lys Met Ser Glu Leu Leu Glu Leu
 20 25 30
 Glu Leu Glu Thr Met Val Ser Cys Leu Val Asp Val Gly Asn
 35 40 45

<210> 290
<211> 199
<212> PRT
<213> Mouse

<400> 290

Met Val Leu Pro Thr Val Leu Ile Leu Leu Ser Trp Ala Ala Gly
 1 5 10 15
 Leu Gly Gly Glu Thr Arg Pro Arg Ala Ala Thr Glu Arg Arg Ser Val
 20 25 30
 Gly Pro Ser Ala Arg Arg Gly Ala Gly Pro Arg Val Ser Gly Leu Leu
 35 40 45
 Gly Phe Cys Gln Leu Ser Gln Leu Ala Ser Ala Asp Pro Glu Arg Arg
 50 55 60
 Ser Pro Arg Ala Ile Val Pro Arg Ala Pro Arg Pro Arg Ser Arg Arg
 65 70 75 80
 Arg Pro Cys Leu Pro Gly Phe Ser Arg Arg Phe Pro Arg Glu Arg Arg
 85 90 95
 Ser Pro Gly Gln Pro Pro Ser Arg Thr Pro Gln Pro Pro Gln Pro Cys
 100 105 110
 Arg Gly Pro Ser Pro Gly Thr Ala Gln Thr Arg Ser Asn Leu Arg Gly
 115 120 125
 Trp Gln Arg Gly Gly Ser Ile Val Leu Gln Ala Ser Glu Arg Thr Arg
 130 135 140
 Ala Gly Cys Arg Thr Pro Val Cys Val Ser His Pro Ser Ala Phe Pro
 145 150 155 160
 Pro Pro Arg Ala Leu Phe Gly Val Phe Val Ala Ser Ala Pro Glu Val
 165 170 175
 Val Cys Val Cys Val Ser Val Val Leu Ser Val Cys Leu Leu Ser Pro
 180 185 190
 Arg Gly Lys Thr Leu Val Asp
 195

<210> 291
 <211> 568
 <212> PRT
 <213> Rat

<400> 291
 Met Glu Leu Leu Tyr Trp Cys Leu Leu Cys Leu Leu Pro Leu Thr
 1 5 10 15
 Ser Arg Thr Gln Lys Leu Pro Thr Arg Asp Glu Glu Leu Phe Gln Met
 20 25 30
 Gln Ile Arg Asp Lys Ala Leu Phe His Asp Ser Ser Val Ile Pro Asp
 35 40 45
 Gly Ala Glu Ile Ser Ser Tyr Leu Phe Arg Asp Thr Pro Arg Arg Tyr
 50 55 60
 Phe Phe Met Val Glu Glu Asp Asn Thr Pro Leu Ser Val Thr Val Thr
 65 70 75 80
 Pro Cys Asp Ala Pro Leu Glu Trp Lys Leu Ser Leu Gln Glu Leu Pro
 85 90 95
 Glu Glu Ser Ser Ala Asp Gly Ser Gly Asp Pro Glu Pro Leu Asp Gln
 100 105 110
 Gln Lys Gln Gln Met Thr Asp Val Glu Gly Thr Glu Leu Phe Ser Tyr
 115 120 125
 Lys Gly Asn Asp Val Glu Tyr Phe Leu Ser Ser Ser Pro Ser Gly
 130 135 140
 Leu Tyr Gln Leu Glu Leu Leu Ser Thr Glu Lys Asp Thr His Phe Lys
 145 150 155 160
 Val Tyr Ala Thr Thr Pro Glu Ser Asp Gln Pro Tyr Pro Asp Leu
 165 170 175
 Pro Tyr Asp Pro Arg Val Asp Val Thr Ser Ile Gly Arg Thr Thr Val
 180 185 190
 Thr Leu Ala Trp Lys Gln Ser Pro Thr Ala Ser Met Leu Lys Gln Pro
 195 200 205
 Ile Glu Tyr Cys Val Val Ile Asn Lys Glu His Asn Phe Lys Ser Leu
 210 215 220

Cys Ala Ala Glu Thr Lys Met Ser Ala Asp Asp Ala Phe Met Val Ala
 225 230 235 240
 Pro Lys Pro Gly Leu Asp Phe Ser Pro Phe Asp Phe Ala His Phe Gly
 245 250 255
 Phe Pro Thr Asp Asn Leu Gly Lys Asp Arg Ser Phe Leu Ala Lys Pro
 260 265 270
 Ser Pro Lys Val Gly Arg His Val Tyr Trp Arg Pro Lys Val Asp Ile
 275 280 285
 Lys Lys Ile Cys Ile Gly Ser Lys Asn Ile Phe Thr Val Ser Asp Leu
 290 295 300
 Lys Pro Asn Thr Gln Tyr Tyr Phe Asp Val Phe Met Val Asn Thr Asn
 305 310 315 320
 Thr Asn Met Asn Thr Ala Phe Val Gly Ala Phe Ala Arg Thr Lys Glu
 325 330 335
 Glu Ala Lys Gln Lys Thr Val Glu Leu Lys Asp Gly Arg Val Thr Asp
 340 345 350
 Val Val Val Lys Arg Lys Gly Lys Lys Phe Leu Arg Phe Ala Pro Val
 355 360 365
 Ser Ser His Gln Lys Val Thr Leu Phe Ile His Ser Cys Met Asp Thr
 370 375 380
 Val Gln Val Gln Val Arg Arg Asp Gly Lys Leu Leu Leu Ser Gln Asn
 385 390 395 400
 Val Glu Gly Ile Arg Gln Phe Gln Leu Arg Gly Lys Pro Lys Gly Lys
 405 410 415
 Tyr Leu Ile Arg Leu Lys Gly Asn Lys Lys Gly Ala Ser Met Leu Lys
 420 425 430
 Ile Leu Ala Thr Thr Arg Pro Ser Lys His Ala Phe Pro Ser Leu Pro
 435 440 445
 Asp Asp Thr Arg Ile Lys Ala Phe Asp Lys Leu Arg Thr Cys Ser Ser
 450 455 460
 Val Thr Val Ala Trp Leu Gly Thr Gln Glu Arg Arg Lys Phe Cys Ile
 465 470 475 480
 Tyr Arg Lys Glu Val Gly Gly Asn Tyr Ser Glu Glu Gln Lys Arg Arg
 485 490 495
 Glu Arg Asn Gln Cys Leu Gly Pro Asp Thr Arg Lys Lys Ser Glu Lys
 500 505 510
 Val Leu Cys Lys Tyr Phe His Ser Gln Asn Leu Gln Lys Ala Val Thr
 515 520 525
 Thr Glu Thr Ile Arg Asp Leu Gln Pro Gly Lys Ser Tyr Leu Leu Asp
 530 535 540
 Val Tyr Val Val Gly His Gly Gly His Ser Val Lys Tyr Gln Ser Lys
 545 550 555 560
 Leu Val Lys Thr Arg Lys Val Cys
 565

<210> 292
<211> 123
<212> PRT
<213> Mouse

<400> 292
Met Leu Thr Glu Pro Ala Gln Leu Phe Val His Lys Lys Asn Gln Pro
 1 5 10 15
 Pro Ser His Ser Ser Leu Arg Leu His Phe Arg Thr Leu Ala Gly Ala
 20 25 30
 Leu Ala Leu Ser Ser Thr Gln Met Ser Trp Gly Leu Gln Ile Leu Pro
 35 40 45
 Cys Leu Ser Leu Ile Leu Leu Leu Trp Asn Gln Val Pro Gly Leu Glu
 50 55 60
 Gly Gln Glu Phe Arg Phe Gly Ser Cys Gln Val Thr Gly Val Val Leu
 65 70 75 80

Pro Glu Leu Trp Glu Ala Phe Trp Thr Val Lys Asn Thr Val Gln Thr
 85 90 95
 Gln Asp Asp Ile Thr Ser Ile Arg Leu Leu Lys Pro Gln Val Leu Arg
 100 105 110
 Asn Val Ser Val Ile Arg Trp Glu Gly Asp Ser
 115 120

<210> 293
 <211> 66
 <212> PRT
 <213> Mouse

<400> 293
 Met Asp Val Trp Ser Gly Leu Pro Leu Glu Thr Leu Trp Ile Tyr Glu
 1 5 10 15
 Ala Val Leu Pro Trp Leu Leu Met Gly Gln Gly His Ala Trp Val Cys
 20 25 30
 Gly Pro Ile Ala Leu Trp Val Phe Val Asn Val Pro Gly Leu Cys Tyr
 35 40 45
 His Gln Lys Pro Phe Arg Cys Pro Trp Ser Gly Leu Leu Pro Glu Ala
 50 55 60
 Leu Cys
 65

<210> 294
 <211> 294
 <212> PRT
 <213> Rat

<400> 294
 Met Thr Val Phe Arg Lys Val Thr Thr Met Ile Ser Trp Met Leu Leu
 1 5 10 15
 Ala Cys Ala Leu Pro Cys Ala Ala Asp Pro Met Leu Gly Ala Phe Ala
 20 25 30
 Arg Arg Asp Phe Gln Lys Gly Pro Gln Leu Val Cys Ser Leu Pro
 35 40 45
 Gly Pro Gln Gly Pro Pro Gly Pro Pro Gly Ala Pro Gly Ser Ser Gly
 50 55 60
 Met Val Gly Arg Met Gly Phe Pro Gly Lys Asp Gly Gln Asp Gly Gln
 65 70 75 80
 Asp Gly Asp Arg Gly Asp Ser Gly Glu Glu Gly Pro Pro Gly Arg Thr
 85 90 95
 Gly Asn Arg Gly Lys Gln Gly Pro Lys Gly Lys Ala Gly Ala Ile Gly
 100 105 110
 Arg Ala Gly Pro Arg Gly Pro Lys Gly Val Ser Gly Thr Pro Gly Lys
 115 120 125
 His Gly Ile Pro Gly Lys Lys Gly Pro Lys Gly Lys Gly Glu Pro
 130 135 140
 Gly Leu Pro Gly Pro Cys Ser Cys Gly Ser Ser Arg Ala Lys Ser Ala
 145 150 155 160
 Phe Ser Val Ala Val Thr Lys Ser Tyr Pro Arg Glu Arg Leu Pro Ile
 165 170 175
 Lys Phe Asp Lys Ile Leu Met Asn Glu Gly Gly His Tyr Asn Ala Ser
 180 185 190
 Ser Gly Lys Phe Val Cys Ser Val Pro Gly Ile Tyr Tyr Phe Thr Tyr
 195 200 205
 Asp Ile Thr Leu Ala Asn Lys His Leu Ala Ile Gly Leu Val His Asn
 210 215 220
 Gly Gln Tyr Arg Ile Arg Thr Phe Asp Ala Asn Thr Gly Asn His Asp
 225 230 235 240
 Val Ala Ser Gly Ser Thr Ile Leu Ala Leu Lys Glu Gly Asp Glu Val

	245	250	255												
Trp	Leu	Gln	Ile	Phe	Tyr	Ser	Glu	Gln	Asn	Gly	Leu	Phe	Tyr	Asp	Pro
	260				265								270		
Tyr	Trp	Thr	Asp	Ser	Leu	Phe	Thr	Gly	Phe	Leu	Ile	Tyr	Ala	Asp	Gln
	275				280								285		
Gly	Asp	Pro	Asn	Glu	Val										
	290														

<210> 295
<211> 243
<212> PRT
<213> Rat

	<400> 295														
Met	Arg	Pro	Leu	Leu	Ala	Leu	Leu	Leu	Gly	Leu	Ala	Ser	Gly	Ser	
1			5				10					15			
Pro	Pro	Leu	Asp	Asp	Asn	Lys	Ile	Pro	Ser	Leu	Cys	Pro	Gly	Gln	Pro
			20				25					30			
Gly	Leu	Pro	Gly	Thr	Pro	Gly	His	His	Gly	Ser	Gln	Gly	Leu	Pro	Gly
			35				40					45			
Arg	Asp	Gly	Arg	Asp	Gly	Arg	Asp	Gly	Ala	Pro	Gly	Ala	Pro	Gly	Glu
	50			55					60						
Lys	Gly	Glu	Gly	Gly	Arg	Pro	Gly	Leu	Pro	Gly	Pro	Arg	Gly	Glu	Pro
65			70				75					80			
Gly	Pro	Arg	Gly	Glu	Ala	Gly	Pro	Val	Gly	Ala	Ile	Gly	Pro	Ala	Gly
	85				90							95			
Glu	Cys	Ser	Val	Pro	Pro	Arg	Ser	Ala	Phe	Ser	Ala	Lys	Arg	Ser	Glu
	100				105							110			
Ser	Arg	Val	Pro	Pro	Pro	Ala	Asp	Thr	Pro	Leu	Pro	Phe	Asp	Arg	Val
	115				120							125			
Leu	Leu	Asn	Glu	Gln	Gly	His	Tyr	Asp	Ala	Thr	Thr	Gly	Lys	Phe	Thr
	130				135							140			
Cys	Gln	Val	Pro	Gly	Val	Tyr	Tyr	Phe	Ala	Val	His	Ala	Thr	Val	Tyr
145				150				155					160		
Arg	Ala	Ser	Leu	Gln	Phe	Asp	Leu	Val	Lys	Asn	Gly	Gln	Ser	Ile	Ala
	165				170							175			
Ser	Phe	Phe	Phe	Gly	Gly	Trp	Pro	Lys	Pro	Ala	Ser	Leu	Ser		
													180		
	180				185							190			
Gly	Gly	Ala	Met	Val	Arg	Leu	Glu	Pro	Glu	Asp	Gln	Val	Trp	Val	Gln
	195				200							205			
Val	Gly	Val	Gly	Asp	Tyr	Ile	Gly	Ile	Tyr	Ala	Ser	Ile	Lys	Thr	Asp
	210				215							220			
Ser	Thr	Phe	Ser	Gly	Phe	Leu	Val	Tyr	Ser	Asp	Trp	His	Ser	Ser	Pro
													225		
	225				230					235				240	
Val	Phe	Ala													

<210> 296
<211> 444
<212> PRT
<213> Rat

	<400> 296														
Met	Leu	Val	Ala	Phe	Leu	Gly	Ala	Ser	Ala	Val	Thr	Ala	Ser	Thr	Gly
1			5				10					15			
Leu	Leu	Trp	Lys	Lys	Ala	His	Ala	Glu	Ser	Pro	Pro	Ser	Val	Asn	Ser
			20			25						30			
Lys	Lys	Thr	Asp	Ala	Gly	Asp	Lys	Gly	Lys	Ser	Lys	Asp	Thr	Arg	Glu
	35				40							45			
Val	Ser	Ser	His	Glu	Gly	Ser	Ala	Ala	Asp	Thr	Ala	Ala	Glu	Pro	Tyr
												50			
	50				55							60			

Pro Glu Glu Lys Lys Lys Arg Ser Gly Phe Arg Asp Arg Lys Val
 65 70 75 80
 Met Glu Tyr Glu Asn Arg Ile Arg Ala Tyr Ser Thr Pro Asp Lys Ile
 85 90 95
 Phe Arg Tyr Phe Ala Thr Leu Lys Val Ile Asn Glu Pro Gly Glu Thr
 100 105 110
 Glu Val Phe Met Thr Pro Gln Asp Phe Val Arg Ser Ile Thr Pro Asn
 115 120 125
 Glu Lys Gln Pro Glu His Leu Gly Leu Asp Gln Tyr Ile Ile Lys Arg
 130 135 140
 Phe Asp Gly Lys Lys Ile Ala Gln Glu Arg Glu Lys Phe Ala Asp Glu
 145 150 155 160
 Gly Ser Ile Phe Tyr Thr Leu Gly Glu Cys Gly Leu Ile Ser Phe Ser
 165 170 175
 Asp Tyr Ile Phe Leu Thr Thr Val Leu Ser Thr Pro Gln Arg Asn Phe
 180 185 190
 Glu Ile Ala Phe Lys Met Phe Asp Leu Asn Gly Asp Gly Glu Val Asp
 195 200 205
 Met Glu Glu Phe Glu Gln Val Gln Ser Ile Ile Arg Ser Gln Thr Ser
 210 215 220
 Met Gly Met Arg His Arg Asp Arg Pro Thr Thr Gly Asn Thr Leu Lys
 225 230 235 240
 Ser Gly Leu Cys Ser Ala Leu Thr Thr Tyr Phe Phe Gly Ala Asp Leu
 245 250 255
 Lys Gly Lys Leu Thr Ile Lys Asn Phe Leu Glu Phe Gln Arg Lys Leu
 260 265 270
 Gln His Asp Val Leu Lys Leu Glu Phe Glu Arg His Asp Pro Val Asp
 275 280 285
 Gly Arg Ile Ser Glu Arg Gln Phe Gly Gly Met Leu Leu Ala Tyr Ser
 290 295 300
 Gly Val Gln Ser Lys Lys Leu Thr Ala Met Gln Arg Gln Leu Lys Lys
 305 310 315 320
 His Phe Lys Asp Gly Lys Gly Leu Thr Phe Gln Glu Val Glu Asn Phe
 325 330 335
 Phe Thr Phe Leu Lys Asn Ile Asn Asp Val Asp Thr Ala Leu Ser Phe
 340 345 350
 Tyr His Met Ala Gly Ala Ser Leu Asp Lys Val Thr Met Gln Gln Val
 355 360 365
 Ala Arg Thr Val Ala Lys Val Glu Leu Ser Asp His Val Cys Asp Val
 370 375 380
 Val Phe Ala Leu Phe Asp Cys Asp Gly Asn Gly Glu Leu Ser Asn Lys
 385 390 395 400
 Glu Phe Val Ser Ile Met Lys Gln Arg Leu Met Arg Gly Leu Glu Lys
 405 410 415
 Pro Lys Asp Met Gly Phe Thr Arg Leu Met Gln Ala Met Trp Lys Cys
 420 425 430
 Ala Gln Glu Thr Ala Trp Asp Phe Ala Leu Pro Lys
 435 440

<210> 297
 <211> 65
 <212> PRT
 <213> Human

<400> 297
 Met Thr Met Leu His Leu Ala Val Ile Phe Leu Phe Ser Ala Leu Ser
 1 5 10 15
 Arg Ala Leu Val Gln Cys Ser Ser His Arg Ala Arg Val Val Leu Ser
 20 25 30
 Trp Ala Asp Tyr Leu Arg Arg Val Ala Pro Thr Ala Leu Ala Thr Ala
 35 40 45

Leu Asp Val Gly Leu Ser Asn Trp Ser Phe Leu Tyr Val Thr Val Ser
 50 55 60

Leu
 65

<210> 298
 <211> 52
 <212> PRT
 <213> Human

<400> 298
 Met Lys Ile Asn Ile Ile Gln Gly Ser Ile Met Ile Leu Leu Ile Cys
 1 5 10 15
 Leu Ser Gln Thr Cys Thr Ser Leu Pro Val Gln Glu Ala Leu Ile Thr
 20 25 30
 Phe Cys His Leu Tyr Phe Thr Tyr Cys Tyr Ser Gly Asn Ser Asn Lys
 35 40 45
 Met Gln Val Leu
 50

<210> 299
 <211> 41
 <212> PRT
 <213> Human

<400> 299
 Met Pro Cys Val Leu Phe Phe Phe Phe Leu Ser Thr Ser Lys Ser
 1 5 10 15
 Met Ile Tyr Ser Ser Leu Met Leu Gly Leu Tyr Ile Pro Ser Glu Ala
 20 25 30
 Cys Val Leu Gly Leu Lys Phe Lys Phe
 35 40

<210> 300
 <211> 80
 <212> PRT
 <213> Mouse

<400> 300
 Met Val Trp Gly Thr Leu Leu Gly Arg Val Leu Ala Ala Leu Leu Asn
 1 5 10 15
 Ile Val Pro Thr Glu Ser Ser Tyr Arg Ser Pro Ser Phe Leu Ala Gly
 20 25 30
 Phe Arg Phe Cys Cys Ser Pro Trp Ser Gln His Phe Gly Cys Gly Arg
 35 40 45
 Leu Thr Ser Cys Leu Pro Pro Cys Val Asp Arg Val Val Lys Thr Tyr
 50 55 60
 Ser Ser Pro Pro Cys Leu Ser Val Asn Gly His Asp Val Thr Ile Cys
 65 70 75 80

<210> 301
 <211> 82
 <212> PRT
 <213> Mouse

<400> 301
 Met Gly Ser Val Leu Thr Ser Cys Phe Cys Val Gly Gly Ser Ala Glu
 1 5 10 15
 Ala Trp Asn Trp Leu Pro Ser Ala Ser Ser Leu Phe Pro Cys Cys Ile
 20 25 30
 Ala Thr Leu Leu Pro Leu Leu Phe Leu Leu Pro His Leu His Ser Thr

35	40	45
Leu Ser Arg Val Gln Arg Leu Asn Phe Asn Ile Gly His Leu Gly Val		
50	55	60
Tyr Leu Tyr Val Asn Asn Asp Ile Arg Ser Arg Val Thr Pro Leu Leu		
65	70	75
Ser Ser		80

<210> 302
 <211> 411
 <212> PRT
 <213> Rat

<400> 302		
Met Pro Thr Met Trp Pro Leu Leu His Val Leu Trp Leu Ala Leu Val		
1	5	10
Cys Gly Ser Val His Thr Thr Leu Ser Lys Ser Asp Ala Lys Lys Ala		
20	25	30
Ala Ser Lys Thr Leu Leu Glu Lys Thr Gln Phe Ser Asp Lys Pro Val		
35	40	45
Gln Asp Arg Gly Leu Val Val Thr Asp Ile Lys Ala Glu Asp Val Val		
50	55	60
Leu Glu His Arg Ser Tyr Cys Ser Ala Arg Ala Arg Glu Arg Asn Phe		
65	70	75
Ala Gly Glu Val Leu Gly Tyr Val Thr Pro Trp Asn Ser His Gly Tyr		
85	90	95
Asp Val Ala Lys Val Phe Gly Ser Lys Phe Thr Gln Ile Ser Pro Val		
100	105	110
Trp Leu Gln Leu Lys Arg Arg Gly Arg Glu Met Phe Glu Ile Thr Gly		
115	120	125
Leu His Asp Val Asp Gln Gly Trp Met Arg Ala Val Lys Lys His Ala		
130	135	140
Lys Gly Val Arg Ile Val Pro Arg Leu Leu Phe Glu Asp Trp Thr Tyr		
145	150	155
Asp Asp Phe Arg Ser Val Leu Asp Ser Glu Asp Glu Ile Glu Glu Leu		
165	170	175
Ser Lys Thr Val Val Gln Val Ala Lys Asn Gln His Phe Asp Gly Phe		
180	185	190
Val Val Glu Val Trp Ser Gln Leu Leu Ser Gln Lys His Val Gly Leu		
195	200	205
Ile His Met Leu Thr His Leu Ala Glu Ala Leu His Gln Ala Arg Leu		
210	215	220
Leu Val Ile Leu Val Ile Pro Pro Ala Val Thr Pro Gly Thr Asp Gln		
225	230	235
Leu Gly Met Phe Thr His Lys Glu Phe Glu Gln Leu Ala Pro Ile Leu		
245	250	255
Asp Gly Phe Ser Leu Met Thr Tyr Asp Tyr Ser Thr Ser Gln Gln Pro		
260	265	270
Gly Pro Asn Ala Pro Leu Ser Trp Ile Arg Ala Cys Val Gln Val Leu		
275	280	285
Asp Pro Lys Ser Gln Trp Arg Ser Lys Ile Leu Leu Gly Leu Asn Phe		
290	295	300
Tyr Gly Met Asp Tyr Ala Ala Ser Lys Asp Ala Arg Glu Pro Val Ile		
305	310	315
Gly Ala Arg Ala Val Leu Lys Val Ala Leu Pro Leu Ala Val Ser Ser		
325	330	335
Gln Gln Ile Trp Thr Leu Gly Arg Gly Ser Thr Ser Ala Leu Leu		
340	345	350
Leu Ala Gly Leu Gly Leu Ala Ser Glu Pro Cys Thr Lys Ser Glu Glu		
355	360	365
Val Pro Lys Lys Ser Leu Leu Asp Thr Val Trp His Trp Gln Gly Glu		

370	375	380
Pro Gly Ala Leu Cys Arg	Gly Arg Leu His Thr Trp Ile Leu Val Ser	
385	390	395
Ala Val Pro Gln Ala Cys Thr Cys Leu Phe Gln		400
	405	410

<210> 303
 <211> 617
 <212> PRT
 <213> Mouse

<400> 303			
Met Gly Ser Pro Arg Leu Ala Ala Leu Leu Ser Leu Pro Leu Leu			
1	5	10	15
Leu Ile Gly Leu Ala Val Ser Ala Arg Val Ala Cys Pro Cys Leu Arg			
20	25	30	
Ser Trp Thr Ser His Cys Leu Leu Ala Tyr Arg Val Asp Lys Arg Phe			
35	40	45	
Ala Gly Leu Gln Trp Gly Trp Phe Pro Leu Leu Val Arg Lys Ser Lys			
50	55	60	
Ser Pro Pro Lys Phe Glu Asp Tyr Trp Arg His Arg Thr Pro Ala Ser			
65	70	75	80
Phe Gln Arg Lys Leu Leu Gly Ser Pro Ser Leu Ser Glu Glu Ser His			
85	90	95	
Arg Ile Ser Ile Pro Ser Ser Ala Ile Ser His Arg Gly Gln Arg Thr			
100	105	110	
Lys Arg Ala Gln Pro Ser Ala Ala Glu Gly Arg Glu His Leu Pro Glu			
115	120	125	
Ala Gly Ser Gln Lys Cys Gly Gly Pro Glu Phe Ser Phe Asp Leu Leu			
130	135	140	
Pro Glu Val Gln Ala Val Arg Val Thr Ile Pro Ala Gly Pro Lys Ala			
145	150	155	160
Ser Val Arg Leu Cys Tyr Gln Trp Ala Leu Glu Cys Glu Asp Leu Ser			
165	170	175	
Ser Pro Phe Asp Thr Gln Lys Ile Val Ser Gly Gly His Thr Val Asp			
180	185	190	
Leu Pro Tyr Glu Phe Leu Leu Pro Cys Met Cys Ile Glu Ala Ser Tyr			
195	200	205	
Leu Gln Glu Asp Thr Val Arg Arg Lys Lys Cys Pro Phe Gln Ser Trp			
210	215	220	
Pro Glu Ala Tyr Gly Ser Asp Phe Trp Gln Ser Ile Arg Phe Thr Asp			
225	230	235	240
Tyr Ser Gln His Asn Gln Met Val Met Ala Leu Thr Leu Arg Cys Pro			
245	250	255	
Leu Lys Leu Glu Ala Ser Leu Cys Trp Arg Gln Asp Pro Leu Thr Pro			
260	265	270	
Cys Glu Thr Leu Pro Asn Ala Thr Ala Gln Glu Ser Glu Gly Trp Tyr			
275	280	285	
Ile Leu Glu Asn Val Asp Leu His Pro Gln Leu Cys Phe Lys Phe Ser			
290	295	300	
Phe Glu Asn Ser Ser His Val Glu Cys Pro His Gln Ser Gly Ser Leu			
305	310	315	320
Pro Ser Trp Thr Val Ser Met Asp Thr Gln Ala Gln Gln Leu Thr Leu			
325	330	335	
His Phe Ser Ser Arg Thr Tyr Ala Thr Phe Ser Ala Ala Trp Ser Asp			
340	345	350	
Pro Gly Leu Gly Pro Asp Thr Pro Met Pro Pro Val Tyr Ser Ile Ser			
355	360	365	
Gln Thr Gln Gly Ser Val Pro Val Thr Leu Asp Leu Ile Ile Pro Phe			
370	375	380	
Leu Arg Gln Glu Asn Cys Ile Leu Val Trp Arg Ser Asp Val His Phe			

385	390	395	400
Ala Trp Lys His Val Leu Cys Pro Asp Asp Ala Pro Tyr Pro Thr Gln			
405	410	415	
Leu Leu Leu Arg Ser Leu Gly Ser Gly Arg Thr Arg Pro Val Leu Leu			
420	425	430	
Leu His Ala Ala Asp Ser Glu Ala Gln Arg Arg Leu Val Gly Ala Leu			
435	440	445	
Ala Glu Leu Leu Arg Thr Ala Leu Gly Gly Arg Asp Val Ile Val			
450	455	460	
Asp Leu Trp Glu Gly Thr His Val Ala Arg Ile Gly Pro Leu Pro Trp			
465	470	475	480
Leu Trp Ala Ala Arg Glu Arg Val Ala Arg Glu Gln Gly Thr Val Leu			
485	490	495	
Leu Leu Trp Asn Cys Ala Gly Pro Ser Thr Ala Cys Ser Gly Asp Pro			
500	505	510	
Gln Ala Ala Ser Leu Arg Thr Leu Leu Cys Ala Ala Pro Arg Pro Leu			
515	520	525	
Leu Leu Ala Tyr Phe Ser Arg Leu Cys Ala Lys Gly Asp Ile Pro Arg			
530	535	540	
Pro Leu Arg Ala Leu Pro Arg Tyr Arg Leu Leu Arg Asp Leu Pro Arg			
545	550	555	560
Leu Leu Arg Ala Leu Asp Ala Gln Pro Ala Thr Leu Ala Ser Ser Trp			
565	570	575	
Ser His Leu Gly Ala Lys Arg Cys Leu Lys Asn Arg Leu Glu Gln Cys			
580	585	590	
His Leu Leu Glu Leu Glu Ala Ala Lys Asp Asp Tyr Gln Gly Ser Thr			
595	600	605	
Asn Ser Pro Cys Gly Phe Ser Cys Leu			
610	615		

<210> 304

<211> 72

<212> PRT

<213> Mouse

<400> 304

Met Ser Ala Ile Phe Asn Phe Gln Ser Leu Leu Thr Val Ile Leu Leu			
1	5	10	15
Leu Ile Cys Thr Cys Ala Tyr Ile Arg Ser Leu Ala Pro Ser Ile Leu			
20	25	30	
Asp Arg Asn Lys Thr Gly Leu Leu Gly Ile Phe Trp Lys Cys Ala Arg			
35	40	45	
Ile Gly Glu Arg Lys Ser Pro Tyr Val Ala Ile Cys Cys Ile Val Met			
50	55	60	
Ala Phe Ser Ile Leu Phe Ile Gln			
65	70		

<210> 305

<211> 649

<212> PRT

<213> Mouse

<400> 305

Met Ile Ser Pro Ala Trp Ser Leu Phe Leu Ile Gly Thr Lys Ile Gly			
1	5	10	15
Leu Phe Phe Gln Val Ala Pro Leu Ser Val Val Ala Lys Ser Cys Pro			
20	25	30	
Ser Val Cys Arg Cys Asp Ala Gly Phe Ile Tyr Cys Asn Asp Arg Ser			
35	40	45	
Leu Thr Ser Ile Pro Val Gly Ile Pro Glu Asp Ala Thr Thr Leu Tyr			
50	55	60	

Leu Gln Asn Asn Gln Ile Asn Asn Val Gly Ile Pro Ser Asp Leu Lys
 65 70 75 80
 Asn Leu Leu Lys Val Gln Arg Ile Tyr Leu Tyr His Asn Ser Leu Asp
 85 90 95
 Glu Phe Pro Thr Asn Leu Pro Lys Tyr Val Lys Glu Leu His Leu Gln
 100 105 110
 Glu Asn Asn Ile Arg Thr Ile Thr Tyr Asp Ser Leu Ser Lys Ile Pro
 115 120 125
 Tyr Leu Glu Glu Leu His Leu Asp Asp Asn Ser Val Ser Ala Val Ser
 130 135 140
 Ile Glu Glu Gly Ala Phe Arg Asp Ser Asn Tyr Leu Arg Leu Leu Phe
 145 150 155 160
 Leu Ser Arg Asn His Leu Ser Thr Ile Pro Gly Gly Leu Pro Arg Thr
 165 170 175
 Ile Glu Glu Leu Arg Leu Asp Asp Asn Arg Ile Ser Thr Ile Ser Ser
 180 185 190
 Pro Ser Leu His Gly Leu Thr Ser Leu Lys Arg Leu Val Leu Asp Gly
 195 200 205
 Asn Leu Leu Asn Asn His Gly Leu Gly Asp Lys Val Phe Phe Asn Leu
 210 215 220
 Val Asn Leu Thr Glu Leu Ser Leu Val Arg Asn Ser Leu Thr Ala Ala
 225 230 235 240
 Pro Val Asn Leu Pro Gly Thr Ser Leu Arg Lys Leu Tyr Leu Gln Asp
 245 250 255
 Asn His Ile Asn Arg Val Pro Pro Asn Ala Phe Ser Tyr Leu Arg Gln
 260 265 270
 Leu Tyr Arg Leu Asp Met Ser Asn Asn Leu Ser Asn Leu Pro Gln
 275 280 285
 Gly Ile Phe Asp Asp Leu Asp Asn Ile Thr Gln Leu Ile Leu Arg Asn
 290 295 300
 Asn Pro Trp Tyr Cys Gly Cys Lys Met Lys Trp Val Arg Asp Trp Leu
 305 310 315 320
 Gln Ser Leu Pro Val Lys Val Asn Val Arg Gly Leu Met Cys Gln Ala
 325 330 335
 Pro Glu Lys Val Arg Gly Met Ala Ile Lys Asp Leu Ser Ala Glu Leu
 340 345 350
 Phe Asp Cys Lys Asp Ser Gly Ile Val Ser Thr Ile Gln Ile Thr Thr
 355 360 365
 Ala Ile Pro Asn Thr Ala Tyr Pro Ala Gln Gly Gln Trp Pro Ala Pro
 370 375 380
 Val Thr Lys Gln Pro Asp Ile Lys Asn Pro Lys Leu Ile Lys Asp Gln
 385 390 395 400
 Arg Thr Thr Gly Ser Pro Ser Arg Lys Thr Ile Leu Ile Thr Val Lys
 405 410 415
 Ser Val Thr Pro Asp Thr Ile His Ile Ser Trp Arg Leu Ala Leu Pro
 420 425 430
 Met Thr Ala Leu Arg Leu Ser Trp Leu Lys Leu Gly His Ser Pro Ala
 435 440 445
 Phe Gly Ser Ile Thr Glu Thr Ile Val Thr Gly Glu Arg Ser Glu Tyr
 450 455 460
 Leu Val Thr Ala Leu Glu Pro Glu Ser Pro Tyr Arg Val Cys Met Val
 465 470 475 480
 Pro Met Glu Thr Ser Asn Leu Tyr Leu Phe Asp Glu Thr Pro Val Cys
 485 490 495
 Ile Glu Thr Gln Thr Ala Pro Leu Arg Met Tyr Asn Pro Thr Thr Thr
 500 505 510
 Leu Asn Arg Glu Gln Glu Lys Glu Pro Tyr Lys Asn Pro Asn Leu Pro
 515 520 525
 Leu Ala Ala Ile Ile Gly Gly Ala Val Ala Leu Val Ser Ile Ala Leu
 530 535 540
 Leu Ala Leu Val Cys Trp Tyr Val His Arg Asn Gly Ser Leu Phe Ser

545	550	555	560
Arg Asn Cys Ala Tyr Ser Lys Gly Arg Arg Arg Lys Asp Asp Tyr Ala			
565	570	575	
Glu Ala Gly Thr Lys Lys Asp Asn Ser Ile Leu Glu Ile Arg Glu Thr			
580	585	590	
Ser Phe Gln Met Leu Pro Ile Ser Asn Glu Pro Ile Ser Lys Glu Glu			
595	600	605	
Phe Val Ile His Thr Ile Phe Pro Pro Asn Gly Met Asn Leu Tyr Lys			
610	615	620	
Asn Asn Leu Ser Glu Ser Ser Asn Arg Ser Tyr Arg Asp Ser Gly			
625	630	635	640
Ile Pro Asp Ser Asp His Ser His Ser			
645			

<210> 306
<211> 150
<212> PRT
<213> Rat

<400> 306

Met Ala Ala Pro Met Asp Arg Thr His Gly Gly Arg Ala Ala Arg Ala			
1	5	10	15
Leu Arg Arg Ala Leu Ala Leu Ala Ser Leu Ala Gly Leu Leu Leu Ser			
20	25	30	
Gly Leu Ala Gly Ala Leu Pro Thr Leu Gly Pro Gly Trp Arg Arg Gln			
35	40	45	
Asn Pro Glu Pro Pro Ala Ser Arg Thr Arg Ser Leu Leu Leu Asp Ala			
50	55	60	
Ala Ser Gly Gln Leu Arg Leu Glu Tyr Gly Phe His Pro Asp Ala Val			
65	70	75	80
Ala Trp Ala Asn Leu Thr Asn Ala Ile Arg Glu Thr Gly Trp Ala Tyr			
85	90	95	
Leu Asp Leu Gly Thr Asn Gly Ser Tyr Lys Trp Ile Pro Arg Ala Ala			
100	105	110	
Gly Leu Cys Ser Trp Cys Gly Gly Leu Cys Val Arg Gly Ala His			
115	120	125	
Leu His Ala Leu Asp Glu His Gly Gly Gln Leu Leu Arg Pro Leu Arg			
130	135	140	
Val Arg Ser Arg Leu			
145	150		

<210> 307
<211> 580
<212> PRT
<213> Rat

<400> 307

Met Ala Ala Ala Met Pro Leu Gly Leu Ser Leu Leu Val Leu			
1	5	10	15
Val Gly Gln Gly Cys Cys Gly Arg Val Glu Gly Pro Arg Asp Ser Leu			
20	25	30	
Arg Glu Glu Leu Val Ile Thr Pro Leu Pro Ser Gly Asp Val Ala Ala			
35	40	45	
Thr Phe Gln Phe Arg Thr Arg Trp Asp Ser Asp Leu Gln Arg Glu Gly			
50	55	60	
Val Ser His Tyr Arg Leu Phe Pro Lys Ala Leu Gly Gln Leu Ile Ser			
65	70	75	80
Lys Tyr Ser Leu Arg Glu Leu His Leu Ser Phe Thr Gln Gly Phe Trp			
85	90	95	
Arg Thr Arg Tyr Trp Gly Pro Pro Phe Leu Gln Ala Pro Ser Gly Ala			
100	105	110	

Glu Leu Trp Val Trp Phe Gln Asp Thr Val Thr Asp Val Asp Lys Ser
 115 120 125
 Trp Lys Glu Leu Ser Asn Val Leu Ser Gly Ile Phe Cys Ala Ser Leu
 130 135 140
 Asn Phe Ile Asp Ser Thr Asn Thr Val Thr Pro Thr Ala Ser Phe Lys
 145 150 155 160
 Pro Leu Gly Leu Ala Asn Asp Thr Asp His Tyr Phe Leu Arg Tyr Ala
 165 170 175
 Val Leu Pro Arg Glu Val Val Cys Thr Glu Asn Leu Thr Pro Trp Lys
 180 185 190
 Lys Leu Leu Pro Cys Ser Ser Lys Ala Gly Leu Ser Val Leu Leu Lys
 195 200 205
 Ala Asp Arg Leu Phe His Thr Ser Tyr His Ser Gln Ala Val His Ile
 210 215 220
 Arg Pro Ile Cys Arg Asn Ala His Cys Thr Ser Ile Ser Trp Glu Leu
 225 230 235 240
 Arg Gln Thr Leu Ser Val Val Phe Asp Ala Phe Ile Thr Gly Gln Gly
 245 250 255
 Lys Lys Asp Trp Ser Leu Phe Arg Met Phe Ser Arg Thr Leu Thr Glu
 260 265 270
 Ala Cys Pro Leu Ala Ser Gln Ser Leu Val Tyr Val Asp Ile Thr Gly
 275 280 285
 Tyr Ser Gln Asp Asn Glu Thr Leu Glu Val Ser Pro Pro Pro Thr Ser
 290 295 300
 Thr Tyr Gln Asp Val Ile Leu Gly Thr Arg Lys Thr Tyr Ala Val Tyr
 305 310 315 320
 Asp Leu Phe Asp Thr Ala Met Ile Asn Asn Ser Arg Asn Leu Asn Ile
 325 330 335
 Gln Leu Lys Trp Lys Arg Pro Pro Asp Asn Glu Ala Leu Pro Val Pro
 340 345 350
 Phe Leu His Ala Gln Arg Tyr Val Ser Gly Tyr Gly Leu Gln Lys Gly
 355 360 365
 Glu Leu Ser Thr Leu Leu Tyr Asn Ser His Pro Tyr Arg Ala Phe Pro
 370 375 380
 Val Leu Leu Leu Asp Ala Val Pro Trp Tyr Leu Arg Leu Tyr Val His
 385 390 395 400
 Thr Leu Thr Ile Thr Ser Lys Gly Lys Asp Asn Lys Pro Ser Tyr Ile
 405 410 415
 His Tyr Gln Pro Ala Gln Asp Arg Gln Gln Pro His Leu Leu Glu Met
 420 425 430
 Leu Ile Gln Leu Pro Ala Asn Ser Val Thr Lys Val Ser Ile Gln Phe
 435 440 445
 Glu Arg Ala Leu Leu Lys Trp Thr Glu Tyr Thr Pro Asp Pro Asn His
 450 455 460
 Gly Phe Tyr Val Ser Pro Ser Val Leu Ser Ala Leu Val Pro Ser Met
 465 470 475 480
 Val Ala Ala Lys Pro Val Asp Trp Glu Glu Ser Pro Leu Phe Asn Thr
 485 490 495
 Leu Phe Pro Val Ser Asp Gly Ser Ser Tyr Phe Val Arg Leu Tyr Thr
 500 505 510
 Glu Pro Leu Leu Val Asn Leu Pro Thr Pro Asp Phe Ser Met Pro Tyr
 515 520 525
 Asn Val Ile Cys Leu Thr Cys Thr Val Val Ala Val Cys Tyr Gly Ser
 530 535 540
 Phe Tyr Asn Leu Leu Thr Arg Thr Phe His Ile Glu Glu Pro Lys Ser
 545 550 555 560
 Gly Gly Leu Ala Lys Arg Leu Ala Asn Leu Ile Arg Arg Ala Arg Gly
 565 570 575
 Val Pro Pro Leu
 580

<210> 308
 <211> 283
 <212> PRT
 <213> Rat

<400> 308

Met Thr Ser Gly Pro Gly Gly Pro Ala Ala Ala Thr Gly Gly Lys
 1 5 10 15
 Asp Thr His Gln Trp Tyr Val Cys Asn Arg Glu Lys Leu Cys Glu Ser
 20 25 30
 Leu Gln Ser Val Phe Val Gln Ser Tyr Leu Asp Gln Gly Thr Gln Ile
 35 40 45
 Phe Leu Asn Asn Ser Ile Glu Lys Ser Gly Trp Leu Phe Ile Gln Leu
 50 55 60
 Tyr His Ser Phe Val Ser Ser Val Phe Ser Leu Phe Met Ser Arg Thr
 65 70 75 80
 Ser Ile Asn Gly Leu Leu Gly Arg Gly Ser Met Phe Val Phe Ser Pro
 85 90 95
 Asp Gln Phe Gln Arg Leu Leu Lys Ile Asn Pro Asp Trp Lys Thr His
 100 105 110
 Arg Leu Leu Asp Leu Gly Ala Gly Asp Gly Glu Val Thr Lys Ile Met
 115 120 125
 Ser Pro His Phe Glu Glu Ile Tyr Ala Thr Glu Leu Ser Glu Thr Met
 130 135 140
 Ile Trp Gln Leu Gln Lys Lys Tyr Arg Val Leu Gly Ile Asn Glu
 145 150 155 160
 Trp Gln Asn Thr Gly Phe Gln Tyr Asp Val Ile Ser Cys Leu Asn Leu
 165 170 175
 Leu Asp Arg Cys Asp Gln Pro Leu Thr Leu Leu Lys Asp Ile Arg Ser
 180 185 190
 Val Leu Glu Pro Thr Gln Gly Arg Val Ile Leu Ala Leu Val Leu Pro
 195 200 205
 Phe His Pro Tyr Val Glu Asn Val Gly Gly Lys Trp Glu Lys Pro Ser
 210 215 220
 Glu Ile Leu Glu Ile Lys Gly Gln Asn Trp Glu Glu Gln Val Asn Ser
 225 230 235 240
 Leu Pro Glu Val Phe Arg Lys Ala Gly Phe Val Ile Glu Ala Phe Thr
 245 250 255
 Arg Leu Pro Tyr Leu Cys Glu Gly Asp Met Tyr Asn Asp Tyr Tyr Val
 260 265 270
 Leu Asp Asp Ala Val Phe Val Leu Arg Pro Val
 275 280

<210> 309
 <211> 37
 <212> PRT
 <213> Rat

<400> 309

Met Leu Trp Val Leu Leu Ser Leu Thr Pro Leu Leu Ser Pro Leu Ile
 1 5 10 15
 Phe Phe Pro Val Lys Thr Val Ala Leu Glu Glu Ile Ser Thr Ile Cys
 20 25 30
 Arg Ala Asp Val Leu
 35

<210> 310
 <211> 70
 <212> PRT
 <213> Mouse

<400> 310
Met Ala Ala Ser Trp Gly Gln Val Leu Ala Leu Val Val Ala Ala
1 5 10 15
Leu Trp Gly Gly Thr Gln Pro Leu Leu Lys Arg Ala Ser Ser Gly Leu
20 25 30
Glu Gln Val Arg Glu Arg Thr Trp Ala Trp Gln Leu Leu Gln Glu Ile
35 40 45
Lys Ala Leu Phe Gly Asn Thr Glu Val Arg Leu Ala Leu Thr Asp Glu
50 55 60
Pro Leu Lys Ile Ser Pro
65 70

<210> 311
<211> 58
<212> PRT
<213> Human

<400> 311
Met Leu Leu Ser Ser Leu Val Ser Leu Ala Gly Ser Val Tyr Leu Ala
1 5 10 15
Trp Ile Leu Phe Phe Val Leu Tyr Asp Phe Cys Ile Val Cys Ile Thr
20 25 30
Thr Tyr Ala Ile Asn Val Ser Leu Met Trp Leu Ser Phe Arg Lys Val
35 40 45
Gln Glu Pro Gln Gly Lys Ala Lys Arg His
50 55

<210> 312
<211> 52
<212> PRT
<213> Human

<400> 312
Met Gly Thr Pro Gln Gly Glu Asn Trp Leu Ser Trp Met Phe Glu Lys
1 5 10 15
Leu Val Val Val Met Val Cys Tyr Phe Ile Leu Ser Ile Ile Asn Ser
20 25 30
Met Ala Gln Ser Tyr Ala Lys Arg Ile Gln Gln Arg Leu Asn Ser Glu
35 40 45
Glu Lys Thr Lys
50

<210> 313
<211> 70
<212> PRT.
<213> Human

<400> 313
Met Asn Leu Leu Gly Met Ile Phe Ser Met Cys Gly Leu Met Leu Lys
1 5 10 15
Leu Lys Trp Cys Ala Trp Val Ala Val Tyr Cys Ser Phe Ile Ser Phe
20 25 30
Ala Asn Ser Arg Ser Ser Glu Asp Thr Lys Gln Met Met Ser Ser Phe
35 40 45
Met Leu Ser Ile Ser Ala Val Val Met Ser Tyr Leu Gln Asn Pro Gln
50 55 60
Pro Met Thr Pro Pro Trp
65 70

<210> 314
<211> 58

<212> PRT
 <213> Mouse

<400> 314

Met	Phe	Ile	Thr	Pro	Phe	Lys	Ala	Phe	Leu	Pro	Leu	Tyr	Leu	Leu	Thr
1															15
															10
Glu	Leu	Ser	Leu	Ile	Asp	Ile	Thr	Ser	Cys	Asp	Asp	Leu	Pro	His	Ser
															30
															25
Val	Leu	Pro	Gln	His	Leu	Ser	Phe	Glu	Phe	Val	Leu	Trp	Ser	Met	Tyr
															45
															35
Leu	Leu	Ile	Cys	Cys	Phe	Val	Ile	Ile	Phe						
															55
															50

<210> 315

<211> 229
 <212> PRT
 <213> Rat

<400> 315

Met	Ala	Ser	Ala	Leu	Glu	Glu	Leu	Gln	Lys	Asp	Leu	Glu	Glu	Val	Lys
1															15
															10
Val	Leu	Leu	Glu	Lys	Ser	Thr	Arg	Lys	Arg	Leu	Arg	Asp	Thr	Leu	Thr
															30
															20
Asn	Glu	Lys	Ser	Lys	Ile	Glu	Thr	Glu	Leu	Arg	Asn	Lys	Met	Gln	Gln
															45
															35
Lys	Ser	Gln	Lys	Pro	Glu	Phe	Asp	Asn	Glu	Lys	Pro	Ala	Ala	Val	
															60
															50
Val	Ala	Pro	Leu	Thr	Thr	Gly	Tyr	Thr	Val	Lys	Ile	Ser	Asn	Tyr	Gly
															80
															70
Trp	Asp	Gln	Ser	Asp	Lys	Phe	Val	Lys	Ile	Tyr	Ile	Thr	Leu	Thr	Gly
															85
															90
Val	His	Gln	Val	Pro	Ala	Glu	Asn	Val	Gln	Val	His	Phe	Thr	Glu	Arg
															100
															105
Ser	Phe	Asp	Leu	Leu	Val	Lys	Asn	Leu	Asn	Gly	Lys	Asn	Tyr	Ser	Met
															115
															120
Ile	Val	Asn	Asn	Leu	Leu	Lys	Pro	Ile	Ser	Val	Glu	Ser	Ser	Ser	Lys
															130
															135
Lys	Val	Lys	Thr	Asp	Thr	Val	Ile	Ile	Leu	Cys	Arg	Lys	Lys	Ala	Glu
															145
															150
Asn	Thr	Arg	Trp	Asp	Tyr	Leu	Thr	Gln	Val	Glu	Lys	Glu	Cys	Lys	Glu
															165
															170
Lys	Glu	Lys	Pro	Ser	Tyr	Asp	Thr	Glu	Ala	Asp	Pro	Ser	Glu	Gly	Leu
															180
															185
Met	Asn	Val	Leu	Lys	Ile	Tyr	Glu	Asp	Gly	Asp	Asp	Asp	Asp	Met	Lys
															195
															200
Arg	Thr	Ile	Asn	Lys	Ala	Trp	Val	Glu	Ser	Arg	Glu	Lys	Gln	Ala	Arg
															210
Glu	Asp	Thr	Glu	Phe											220
															225

<210> 316
 <211> 128
 <212> PRT
 <213> Rat

<400> 316

Arg	Ala	Glu	Phe	Gly	Thr	Ser	Gly	Glu	Met	Gly	Asn	Ala	Ala	Leu	Gly
1															15
															10
Ala	Glu	Leu	Gly	Val	Arg	Val	Leu	Leu	Phe	Val	Ala	Phe	Leu	Ala	Thr
															30
															20
Glu	Leu	Leu	Pro	Pro	Phe	Gln	Arg	Arg	Ile	Gln	Pro	Glu	Leu	Trp	

35	40	45
Leu Tyr Arg Asn Pro Tyr Val Glu Ala Glu Tyr Phe Pro Thr Gly Pro		
50	55	60
Met Phe Val Ile Ala Phe Leu Thr Pro Leu Ser Leu Ile Phe Phe Ala		
65	70	75
Lys Phe Leu Arg Lys Ala Asp Ala Thr Asp Ser Lys Gln Ala Cys Leu		80
85	90	95
Ala Ala Ser Leu Ala Leu Ala Leu Asn Gly Val Phe Thr Asn Ile Ile		
100	105	110
Lys Leu Ile Val Gly Arg Pro Arg Pro Asp Phe Phe Tyr Arg Cys Phe		
115	120	125

<210> 317
<211> 75
<212> PRT
<213> Rat

<400> 317		
Ser Ala Gly Val Met Thr Ala Ala Val Phe Phe Gly Cys Ala Phe Ile		
1	5	10
Ala Phe Gly Pro Ala Leu Ser Leu Tyr Val Phe Thr Ile Ala Thr Asp		
20	25	30
Pro Leu Arg Val Ile Phe Leu Ile Ala Gly Ala Phe Phe Trp Leu Val		
35	40	45
Ser Leu Leu Leu Ser Ser Val Phe Trp Phe Leu Val Arg Val Ile Thr		
50	55	60
Asp Asn Arg Asp Gly Pro Val Gln Asn Tyr Leu		
65	70	75

<210> 318
<211> 43
<212> PRT
<213> Human

<400> 318		
Met Lys Leu Ser Gly Met Phe Leu Leu Leu Ser Leu Ala Leu Phe Cys		
1	5	10
Phe Leu Thr Gly Val Phe Ser Gln Gly Gly Gln Val Asp Cys Gly Glu		
20	25	30
Ser Arg Thr Pro Arg Pro Thr Ala Leu Gly Asn		
35	40	

<210> 319
<211> 86
<212> PRT
<213> Mouse

<400> 319		
Met Leu Gln Gly Pro Ala Pro Ser Cys Phe Trp Val Phe Ser Gly Ile		
1	5	10
Cys Val Phe Trp Asp Phe Ile Phe Ile Ile Phe Phe Asn Val Leu Ser		
20	25	30
Leu Gly Asn Arg Glu Ile Ser Ala Lys Asp Phe Ala Asp Gln Pro Ala		
35	40	45
Gly Ala Gln Gly Met Trp Gly Ile Trp Gly His Thr Ile Thr Cys Gly		
50	55	60
Leu Ala Pro Gly Ala Lys Pro Cys Ser Leu Lys Arg Glu Gly Pro Asp		
65	70	75
Leu Leu Ser Phe Pro Pro		80
85		

<210> 320
 <211> 60
 <212> PRT
 <213> Mouse

<400> 320
 Lys Gly Pro Glu Val Ser Cys Cys Ile Lys Tyr Phe Ile Phe Gly Phe
 1 5 10 15
 Asn Val Ile Phe Trp Phe Leu Gly Ile Thr Phe Leu Gly Ile Gly Leu
 20 25 30
 Trp Ala Trp Asn Glu Lys Gly Val Leu Ser Asn Ile Ser Ser Ile Thr
 35 40 45
 Asp Leu Gly Gly Phe Asp Pro Val Trp Leu Phe Leu
 50 55 60

<210> 321
 <211> 160
 <212> PRT
 <213> Mouse

<400> 321
 Ile Arg His Glu Ala Glu Ala Gly Arg His Gln Pro Glu Gln Leu Ala
 1 5 10 15
 Ala Asp Ser Arg Thr Glu Thr Val Gly Pro Arg Gln Ser Asn Gly Leu
 20 25 30
 Thr Gly Pro Gly Leu Pro Thr Trp Gln Leu His Pro Val Leu Phe Pro
 35 40 45
 Glu Leu Val Leu Trp Val Asn Met Val Pro Cys Phe Leu Leu Ser Leu
 50 55 60
 Leu Leu Leu Val Arg Pro Ala Pro Val Val Ala Tyr Ser Val Ser Leu
 65 70 75 80
 Pro Ala Ser Phe Leu Glu Glu Val Ala Gly Ser Gly Glu Ala Glu Gly
 85 90 95
 Ser Ser Ala Ser Ser Pro Ser Leu Leu Pro Pro Arg Thr Pro Ala Phe
 100 105 110
 Ser Pro Thr Pro Gly Arg Thr Gln Pro Thr Ala Pro Val Gly Pro Val
 115 120 125
 Pro Pro Thr Asn Leu Leu Asp Gly Ile Val Asp Phe Phe Arg Gln Tyr
 130 135 140
 Val Met Leu Ile Ala Val Val Gly Ser Leu Thr Phe Leu Ile Ser Ser
 145 150 155 160

<210> 322
 <211> 54
 <212> PRT
 <213> Mouse

<400> 322
 Arg Leu Gln Val Asp Thr Ser Gly Ser Lys Val Leu Phe Leu Phe Phe
 1 5 10 15
 Phe Phe Phe Leu Cys Val Cys Val Leu Val Cys Cys Cys Phe Gly Phe
 20 25 30
 Pro Gly Thr His Ser Val Asp Gln Ala Ser Pro Lys Leu Arg Asn Leu
 35 40 45
 Pro Pro Glu Cys Trp Asp
 50

<210> 323
 <211> 280
 <212> PRT
 <213> Mouse

<400> 323

Leu Asp Ser Arg Ala Cys Arg Ser Thr Leu Val Asp Pro Lys Asn Ser
 1 5 10 15
 Ala Arg Glu Asn Ile Arg Glu Tyr Val Arg Trp Met Met Tyr Trp Ile
 20 25 30
 Val Phe Ala Ile Phe Met Ala Ala Glu Thr Phe Thr Asp Ile Phe Ile
 35 40 45
 Ser Trp Ser Gly Pro Arg Ile Gly Arg Pro Trp Gly Trp Glu Gly Pro
 50 55 60
 His His His His His Leu Ala Ser Gly Ser His Lys Pro Leu Pro Leu
 65 70 75 80
 Leu Thr His Arg Phe Pro Phe Tyr Tyr Glu Phe Lys Met Ala Phe Val
 85 90 95
 Leu Trp Leu Leu Ser Pro Tyr Thr Lys Gly Ala Ser Leu Leu Tyr Arg
 100 105 110
 Lys Phe Val His Pro Ser Leu Ser Arg His Glu Lys Glu Ile Asp Ala
 115 120 125
 Cys Ile Val Gln Ala Lys Glu Arg Ser Tyr Glu Thr Met Leu Ser Phe
 130 135 140
 Gly Lys Arg Ser Leu Asn Ile Ala Ala Ser Ala Ala Val Gln Ala Ala
 145 150 155 160
 Thr Lys Ser Gln Gly Ala Leu Ala Gly Arg Leu Arg Ser Phe Ser Met
 165 170 175
 Gln Asp Leu Arg Ser Ile Pro Asp Thr Pro Val Pro Thr Tyr Gln Asp
 180 185 190
 Pro Leu Tyr Leu Glu Asp Gln Val Pro Arg Arg Arg Pro Pro Ile Gly
 195 200 205
 Tyr Arg Pro Gly Gly Leu Gln Gly Ser Asp Thr Glu Asp Glu Cys Trp
 210 215 220
 Ser Asp Asn Glu Ile Val Pro Gln Pro Pro Val Gly Pro Arg Glu Lys
 225 230 235 240
 Pro Leu Gly Arg Ser Gln Ser Leu Arg Val Val Lys Arg Lys Pro Leu
 245 250 255
 Thr Arg Glu Gly Thr Ser Arg Ser Leu Lys Val Arg Thr Pro Lys Lys
 260 265 270
 Ala Met Pro Ser Asp Met Asp Ser
 275 280

<210> 324

<211> 166

<212> PRT

<213> Rat

<400> 324

Ala Leu Arg Arg Val Gly Met Glu Leu Pro Ala Val Asn Leu Lys Val
 1 5 10 15
 Ile Leu Leu Val His Trp Leu Leu Thr Thr Trp Gly Cys Leu Ala Phe
 20 25 30
 Ser Gly Ser Tyr Ala Trp Gly Asn Phe Thr Ile Leu Ala Leu Gly Val
 35 40 45
 Trp Ala Val Ala Gln Arg Asp Ser Val Asp Ala Ile Gly Met Phe Leu
 50 55 60
 Gly Gly Leu Val Ala Thr Ile Phe Leu Asp Ile Ile Tyr Ile Ser Ile
 65 70 75 80
 Phe Tyr Ser Ser Val Ala Val Gly Asp Thr Gly Arg Phe Ser Ala Gly
 85 90 95
 Met Ala Ile Phe Ser Leu Leu Lys Pro Phe Ser Cys Cys Leu Val
 100 105 110
 Tyr His Met His Arg Glu Arg Gly Glu Leu Pro Leu Arg Ser Asp
 115 120 125

Phe Phe Gly Pro Ser Gln Glu His Ser Ala Tyr Gln Thr Ile Asp Ser
 130 135 140
 Ser Asp Ser Pro Ala Asp Pro Leu Ala Ser Leu Glu Asn Lys Gly Gln
 145 150 155 160
 Ala Ala Pro Arg Gly Tyr
 165

<210> 325
 <211> 338
 <212> PRT
 <213> Rat

<400> 325
 Ile Arg His Glu Ala Glu Ala Gly Arg His Gln Pro Glu Gln Leu Ala
 1 5 10 15
 Ala Asp Ser Arg Thr Glu Thr Val Gly Pro Arg Gln Ser Asn Gly Leu
 20 25 30
 Thr Gly Pro Gly Leu Pro Thr Trp Gln Leu His Pro Val Leu Phe Pro
 35 40 45
 Glu Leu Val Leu Trp Val Asn Met Val Pro Cys Phe Leu Leu Ser Leu
 50 55 60
 Leu Leu Leu Val Arg Pro Ala Pro Val Val Ala Tyr Ser Val Ser Leu
 65 70 75 80
 Pro Ala Ser Phe Leu Glu Glu Val Ala Gly Ser Gly Glu Ala Glu Gly
 85 90 95
 Ser Ser Ala Ser Ser Pro Ser Leu Leu Pro Pro Arg Thr Pro Ala Phe
 100 105 110
 Ser Pro Thr Pro Gly Arg Thr Gln Pro Thr Ala Pro Val Gly Pro Val
 115 120 125
 Pro Pro Thr Asn Leu Leu Asp Gly Ile Val Asp Phe Phe Arg Gln Tyr
 130 135 140
 Val Met Leu Ile Ala Val Val Gly Ser Leu Thr Phe Leu Ile Met Phe
 145 150 155 160
 Ile Val Cys Ala Ala Leu Ile Thr Arg Gln Lys His Lys Ala Thr Ala
 165 170 175
 Tyr Tyr Pro Ser Phe Pro Glu Lys Lys Tyr Val Asp Gln Arg Asp
 180 185 190
 Arg Ala Gly Gly Pro His Ala Phe Ser Glu Val Pro Asp Arg Ala Pro
 195 200 205
 Asp Ser Arg Gln Glu Glu Gly Leu Asp Ser Ser Gln Gln Leu Gln Ala
 210 215 220
 Asp Ile Leu Ala Ala Thr Gln Asn Leu Arg Ser Pro Ala Arg Ala Leu
 225 230 235 240
 Pro Gly Ser Gly Glu Gly Thr Lys Gln Val Lys Gly Gly Ser Glu Glu
 245 250 255
 Glu Glu Glu Lys Glu Glu Val Phe Ser Gly Gln Glu Glu Pro Arg
 260 265 270
 Glu Ala Pro Val Cys Gly Val Thr Glu Glu Lys Pro Glu Val Pro Asp
 275 280 285
 Glu Thr Ala Ser Ala Glu Ala Glu Gly Val Pro Ala Ala Ser Glu Gly
 290 295 300
 Gln Gly Glu Pro Glu Gly Ser Phe Ser Leu Ala Gln Glu Pro Gln Gly
 305 310 315 320
 Ala Ala Gly Pro Ser Glu Arg Ser Cys Ala Cys Asn Arg Ile Ser Pro
 325 330 335
 Asn Val

<210> 326
 <211> 347
 <212> PRT

<213> Human

<400> 326

Ala Trp Ser Arg Pro Arg Tyr Tyr Arg Leu Cys Asp Lys Ala Glu Ala
 1 5 10 15
 Trp Gly Ile Val Leu Glu Thr Val Ala Thr Ala Gly Val Val Thr Ser
 20 25 30
 Val Ala Phe Met Leu Thr Leu Pro Ile Leu Val Cys Lys Val Gln Asp
 35 40 45
 Ser Asn Arg Arg Lys Met Leu Pro Thr Gln Phe Leu Phe Leu Leu Gly
 50 55 60
 Val Leu Gly Ile Phe Gly Leu Thr Phe Ala Phe Ile Ile Gly Leu Asp
 65 70 75 80
 Gly Ser Thr Gly Pro Thr Arg Phe Phe Leu Phe Gly Ile Leu Phe Ser
 85 90 95
 Ile Cys Phe Ser Cys Leu Leu Ala His Ala Val Ser Leu Thr Lys Leu
 100 105 110
 Val Arg Gly Arg Lys Pro Leu Ser Leu Leu Val Ile Leu Gly Leu Ala
 115 120 125
 Val Gly Phe Ser Leu Val Gln Asp Val Ile Ala Ile Glu Tyr Ile Val
 130 135 140
 Leu Thr Met Asn Arg Thr Asn Val Asn Val Phe Ser Glu Leu Ser Ala
 145 150 155 160
 Pro Arg Arg Asn Glu Asp Phe Val Leu Leu Leu Thr Tyr Val Leu Phe
 165 170 175
 Leu Met Ala Leu Thr Phe Leu Met Ser Ser Phe Thr Phe Cys Gly Ser
 180 185 190
 Phe Thr Gly Trp Lys Arg His Gly Ala His Ile Tyr Leu Thr Met Leu
 195 200 205
 Leu Ser Ile Ala Ile Trp Val Ala Trp Ile Thr Leu Leu Met Leu Pro
 210 215 220
 Asp Phe Asp Arg Arg Trp Asp Asp Thr Ile Leu Ser Ser Ala Leu Ala
 225 230 235 240
 Ala Asn Gly Trp Val Phe Leu Leu Ala Tyr Val Ser Pro Glu Phe Trp
 245 250 255
 Leu Leu Thr Lys Gln Arg Asn Pro Met Asp Tyr Pro Val Glu Asp Ala
 260 265 270
 Phe Cys Lys Pro Gln Leu Val Lys Lys Ser Tyr Gly Val Glu Asn Arg
 275 280 285
 Ala Tyr Ser Gln Glu Glu Ile Thr Gln Gly Phe Glu Glu Thr Gly Asp
 290 295 300
 Thr Leu Tyr Ala Pro Tyr Ser Thr His Phe Gln Leu Gln Asn Gln Pro
 305 310 315 320
 Pro Gln Lys Glu Phe Ser Ile Pro Arg Ala His Ala Trp Pro Ser Pro
 325 330 335
 Tyr Lys Asp Tyr Glu Val Lys Lys Glu Gly Ser
 340 345

<210> 327

<211> 141

<212> PRT

<213> Human

<400> 327

Lys Asn Ser Lys Cys Leu Leu Phe Trp Cys Arg Lys Ile Val Gly Asn
 1 5 10 15
 Arg Gln Glu Pro Met Trp Glu Phe Asn Phe Lys Phe Lys Lys Gln Ser
 20 25 30
 Pro Arg Leu Lys Ser Lys Cys Thr Gly Gly Leu Gln Pro Pro Val Gln
 35 40 45
 Tyr Glu Asp Val His Thr Asn Pro Asp Gln Asp Cys Cys Leu Leu Gln

50	55	60
Val Thr Thr Leu Asn Phe Ile Phe Ile Pro Ile Val Met Gly Met Ile		
65	70	75
Phe Thr Leu Phe Thr Ile Asn Val Ser Thr Asp Met Arg His His Arg		80
85	90	95
Val Arg Leu Val Phe Gln Asp Ser Pro Val His Gly Gly Arg Lys Leu		
100	105	110
Arg Ser Glu Gln Gly Val Gln Val Ile Leu Asp Gln Cys Thr Ala Phe		
115	120	125
Gly Ser Leu Thr Gly Gly Ile Leu Ser Thr His Ser Pro		
130	135	140

<210> 328
<211> 71
<212> PRT
<213> Human

1	5	10	15
Cys Cys Cys	Leu His Ser Gly Gly	Leu Gly Gly	Val Pro Leu Pro Pro
20	25	30	
Phe Pro Pro Gln Ala Gln Arg Gly Glu Gly	Pro Gly Lys Trp Met Ser		
35	40	45	
Pro Pro Leu Pro Pro His Pro Val Val Ala Pro Pro Pro Thr Pro Ser Pro			
50	55	60	
Ser Arg Gly Cys Val Leu Leu			
65	70		

<210> 329
<211> 109
<212> PRT
<213> Human

1	5	10	15
Thr Ala Ala Pro Thr Ala Leu Gly Glu Ala Gly	Leu Ala Glu His Ser		
20	25	30	
Gln Arg Asp Asp Arg Trp Leu Leu Val Ala Leu Leu Val	Pro Thr Cys		
35	40	45	
Val Phe Leu Val Val Leu Leu Ala Leu Gly Ile Val Tyr Cys Thr Arg			
50	55	60	
Cys Gly Pro His Ala Pro Asn Lys Arg Ile Thr Asp Cys Tyr Arg Trp			
65	70	75	80
Val Ile His Ala Gly Ser Lys Ser Pro Thr Glu Pro Met Pro Pro Arg			
85	90	95	
Gly Ser Leu Thr Gly Val Gln Thr Cys Arg Thr Ser Val			
100	105		

<210> 330
<211> 155
<212> PRT
<213> Human

1	5	10	15
Ala Ala Ala Ala Thr Arg Gly Leu Pro Ala Ala Arg Val Arg Trp Glu			
20	25	30	
Ser Ser Phe Ser Arg Thr Val Val Ala Pro Ser Ala Val Ala Gly Lys			

35	40	45
Arg Pro Pro Glu Pro Thr Thr Pro Trp Gln Glu Asp Pro Glu Pro Glu		
50	55	60
Asp Glu Asn Leu Tyr Glu Lys Asn Pro Asp Ser His Gly Tyr Asp Lys		
65	70	75
Asp Pro Val Leu Asp Val Trp Asn Met Arg Leu Val Phe Phe Phe Gly		
85	90	95
Val Ser Ile Ile Leu Val Leu Gly Ser Thr Phe Val Ala Tyr Leu Pro		
100	105	110
Asp Tyr Arg Met Lys Glu Trp Ser Arg Arg Glu Ala Glu Arg Leu Val		
115	120	125
Lys Tyr Arg Glu Ala Asn Gly Leu Pro Ile Met Glu Ser Asn Cys Phe		
130	135	140
Asp Pro Ser Lys Ile Gln Leu Pro Glu Asp Glu		
145	150	155

<210> 331

<211> 299

<212> PRT

<213> Human

<400> 331

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile		
1	5	10
Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His		
20	25	30
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu		
35	40	45
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe		
50	55	60
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr		
65	70	75
Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe		
85	90	95
Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser		
100	105	110
Glu Glu Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val		
115	120	125
Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr		
130	135	140
Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro		
145	150	155
Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn		
165	170	175
Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro		
180	185	190
Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly		
195	200	205
Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser		
210	215	220
Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val		
225	230	235
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly		
245	250	255
Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly		
260	265	270
Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu		
275	280	285
Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val		
290	295	

<210> 332
 <211> 299
 <212> PRT
 <213> Mouse

<400> 332

Ala Arg Ala Gly Ala Cys Tyr Cys Pro Ala Gly Phe Leu Gly Ala Asp
 1 5 10 15
 Cys Ser Leu Ala Cys Pro Gln Gly Arg Phe Gly Pro Ser Cys Ala His
 20 25 30
 Val Cys Thr Cys Gly Gln Gly Ala Ala Cys Asp Pro Val Ser Gly Thr
 35 40 45
 Cys Ile Cys Pro Pro Gly Lys Thr Gly Gly His Cys Glu Arg Gly Cys
 50 55 60
 Pro Gln Asp Arg Phe Gly Lys Gly Cys Glu His Lys Cys Ala Cys Arg
 65 70 75 80
 Asn Gly Gly Leu Cys His Ala Thr Asn Gly Ser Cys Ser Cys Pro Leu
 85 90 95
 Gly Trp Met Gly Pro His Cys Glu His Ala Cys Pro Ala Gly Arg Tyr
 100 105 110
 Gly Ala Ala Cys Leu Leu Glu Cys Ser Cys Gln Asn Gly Ser Cys
 115 120 125
 Glu Pro Thr Ser Gly Ala Cys Leu Cys Gly Pro Gly Phe Tyr Gly Gln
 130 135 140
 Ala Cys Glu Asp Thr Cys Pro Ala Gly Phe His Gly Ser Gly Cys Gln
 145 150 155 160
 Arg Val Cys Glu Cys Gln Gln Gly Ala Pro Cys Asp Pro Val Ser Gly
 165 170 175
 Arg Cys Leu Cys Pro Ala Gly Phe Arg Gly Gln Phe Cys Glu Arg Gly
 180 185 190
 Cys Lys Pro Gly Phe Phe Gly Asp Gly Cys Leu Gln Gln Cys Asn Cys
 195 200 205
 Pro Thr Gly Val Pro Cys Asp Pro Ile Ser Gly Leu Cys Leu Cys Pro
 210 215 220
 Pro Gly Arg Ala Gly Thr Thr Cys Asp Leu Asp Cys Arg Arg Gly Arg
 225 230 235 240
 Phe Gly Pro Gly Cys Ala Leu Arg Cys Asp Cys Gly Gly Ala Asp
 245 250 255
 Cys Asp Pro Ile Ser Gly Gln Cys His Cys Val Asp Ser Tyr Thr Gly
 260 265 270
 Pro Thr Cys Arg Glu Val Pro Thr Gln Leu Ser Ser Ile Arg Pro Ala
 275 280 285
 Pro Gln His Ser Ser Ser Lys Ala Met Lys His
 290 295

<210> 333
 <211> 109
 <212> PRT
 <213> Mouse

<400> 333

Gly Thr Arg Val Gly Thr Pro Tyr Tyr Met Ser Pro Glu Arg Ile His
 1 5 10 15
 Glu Asn Gly Tyr Asn Phe Lys Ser Asp Ile Trp Ser Leu Gly Cys Leu
 20 25 30
 Leu Tyr Glu Met Ala Ala Leu Gln Ser Pro Phe Tyr Gly Asp Lys Met
 35 40 45
 Asn Leu Tyr Ser Leu Cys Lys Lys Ile Glu Gln Cys Asp Tyr Pro Pro
 50 55 60
 Leu Pro Ser Asp His Tyr Ser Glu Glu Leu Arg Gln Leu Val Asn Ile
 65 70 75 80

Cys Ile Asn Pro Asp Pro Glu Lys Arg Pro Asp Ile Ala Tyr Val Tyr
 85 90 95
 Asp Val Ala Lys Arg Met His Ala Cys Thr Ala Ser Thr
 100 105

<210> 334
 <211> 787
 <212> PRT
 <213> Mouse

<400> 334
 Lys Val Glu Gly Glu Gly Arg Gly Arg Trp Ala Leu Gly Leu Leu Arg
 1 5 10 15
 Thr Phe Asp Ala Gly Glu Phe Ala Gly Trp Glu Lys Val Gly Ser Gly
 20 25 30
 Gly Phe Gly Gln Val Tyr Lys Val Arg His Val His Trp Lys Thr Trp
 35 40 45
 Leu Ala Ile Lys Cys Ser Pro Ser Leu His Val Asp Asp Arg Glu Arg
 50 55 60
 Met Glu Leu Leu Glu Glu Ala Lys Lys Met Glu Met Ala Lys Phe Arg
 65 70 75 80
 Tyr Ile Leu Pro Val Tyr Gly Ile Cys Gln Glu Pro Val Gly Leu Val
 85 90 95
 Met Glu Tyr Met Glu Thr Gly Ser Leu Glu Lys Leu Ala Ser Glu
 100 105 110
 Pro Leu Pro Trp Asp Leu Arg Phe Arg Ile Val His Glu Thr Ala Val
 115 120 125
 Gly Met Asn Phe Leu His Cys Met Ser Pro Pro Leu Leu His Leu Asp
 130 135 140
 Leu Lys Pro Ala Asn Ile Leu Leu Asp Ala His Tyr His Val Lys Ile
 145 150 155 160
 Ser Asp Phe Gly Leu Ala Lys Cys Asn Gly Met Ser His Ser His Asp
 165 170 175
 Leu Ser Met Asp Gly Leu Phe Gly Thr Ile Ala Tyr Leu Pro Pro Glu
 180 185 190
 Arg Ile Arg Glu Lys Ser Arg Leu Phe Asp Thr Lys His Asp Val Tyr
 195 200 205
 Ser Phe Ala Ile Val Ile Trp Gly Val Leu Thr Gln Lys Lys Pro Phe
 210 215 220
 Ala Asp Glu Lys Asn Ile Leu His Ile Met Met Lys Val Val Lys Gly
 225 230 235 240
 His Arg Pro Glu Leu Pro Pro Ile Cys Arg Pro Arg Pro Arg Ala Cys
 245 250 255
 Ala Ser Leu Ile Gly Leu Met Gln Arg Cys Trp His Ala Asp Pro Gln
 260 265 270
 Val Arg Pro Thr Phe Gln Glu Ile Thr Ser Glu Thr Glu Asp Leu Cys
 275 280 285
 Glu Lys Pro Asp Glu Glu Val Lys Asp Leu Ala His Glu Pro Gly Glu
 290 295 300
 Lys Ser Ser Leu Glu Ser Lys Ser Glu Ala Arg Pro Glu Ser Ser Arg
 305 310 315 320
 Leu Lys Arg Ala Ser Ala Pro Pro Phe Asp Asn Asp Cys Ser Leu Ser
 325 330 335
 Glu Leu Leu Ser Gln Leu Asp Ser Gly Ile Ser Gln Thr Leu Glu Gly
 340 345 350
 Pro Glu Glu Leu Ser Arg Ser Ser Glu Cys Lys Leu Pro Ser Ser
 355 360 365
 Ser Ser Gly Lys Arg Leu Ser Gly Val Ser Ser Val Asp Ser Ala Phe
 370 375 380
 Ser Ser Arg Gly Ser Leu Ser Leu Ser Phe Glu Arg Glu Ala Ser Thr
 385 390 395 400

Gly Asp Leu Gly Pro Thr Asp Ile Gln Lys Lys Lys Leu Val Asp Ala
 405 410 415
 Ile Ile Ser Gly Asp Thr Ser Arg Leu Met Lys Ile Leu Gln Pro Gln
 420 425 430
 Asp Val Asp Leu Val Leu Asp Ser Ser Ala Ser Leu Leu His Leu Ala
 435 440 445
 Val Glu Ala Gly Gln Glu Glu Cys Val Lys Trp Leu Leu Leu Asn Asn
 450 455 460
 Ala Asn Pro Asn Leu Thr Asn Arg Lys Gly Ser Thr Pro Leu His Met
 465 470 475 480
 Ala Val Glu Arg Lys Gly Arg Gly Ile Val Glu Leu Leu Leu Ala Arg
 485 490 495
 Lys Thr Ser Val Asn Ala Lys Asp Glu Asp Gln Trp Thr Ala Leu His
 500 505 510
 Phe Ala Ala Gln Asn Gly Asp Glu Ala Ser Thr Arg Leu Leu Leu Glu
 515 520 525
 Lys Asn Ala Ser Val Asn Glu Val Asp Phe Glu Gly Arg Thr Pro Met
 530 535 540
 His Val Ala Cys Gln His Gly Gln Glu Asn Ile Val Arg Thr Leu Leu
 545 550 555 560
 Arg Arg Gly Val Asp Val Gly Leu Gln Gly Lys Asp Ala Trp Leu Pro
 565 570 575
 Leu His Tyr Ala Ala Trp Gln Gly His Leu Pro Ile Val Lys Leu Leu
 580 585 590
 Ala Lys Gln Pro Gly Val Ser Val Asn Ala Gln Thr Leu Asp Gly Arg
 595 600 605
 Thr Pro Leu His Leu Ala Ala Gln Arg Gly His Tyr Arg Val Ala Arg
 610 615 620
 Ile Leu Ile Asp Leu Cys Ser Asp Val Asn Ile Cys Ser Leu Gln Ala
 625 630 635 640
 Gln Thr Pro Leu His Val Ala Ala Glu Thr Gly His Thr Ser Thr Ala
 645 650 655
 Arg Leu Leu Leu His Arg Gly Ala Gly Lys Glu Ala Leu Thr Ser Glu
 660 665 670
 Gly Tyr Thr Ala Leu His Leu Ala Ala Gln Asn Gly His Leu Ala Thr
 675 680 685
 Val Lys Leu Leu Ile Glu Glu Lys Ala Asp Val Met Ala Arg Gly Pro
 690 695 700
 Leu Asn Gln Thr Ala Leu His Leu Ala Ala Ala Arg Gly His Ser Glu
 705 710 715 720
 Val Val Glu Glu Leu Val Ser Ala Asp Leu Ile Asp Leu Ser Asp Glu
 725 730 735
 Gln Gly Leu Ser Ala Leu His Leu Ala Ala Gln Gly Arg His Ser Gln
 740 745 750
 Thr Val Glu Thr Leu Leu Lys His Gly Ala His Ile Asn Leu Gln Ser
 755 760 765
 Leu Lys Phe Gln Gly Gln Ser Ser Ala Ala Thr Leu Leu Arg Arg
 770 775 780
 Ser Lys Thr
 785

<210> 335
 <211> 194
 <212> PRT
 <213> Mouse

<400> 335
 Pro Gly Cys Lys Ser Cys Thr Val Cys Arg His Gly Leu Cys Arg Ser
 1 5 10 15
 Val Glu Lys Asp Ser Val Val Cys Glu Cys His Pro Gly Trp Thr Gly
 20 25 30

Pro Leu Cys Asp Gln Glu Ala Arg Asp Pro Cys Leu Gly His Ser Cys
 35 40 45
 Arg His Gly Thr Cys Met Ala Thr Gly Asp Ser Tyr Val Cys Lys Cys
 50 55 60
 Ala Glu Gly Tyr Gly Ala Leu Cys Asp Gln Lys Asn Asp Ser Ala
 65 70 75 80
 Ser Ala Cys Ser Ala Phe Lys Cys His His Gly Gln Cys His Ile Ser
 85 90 95
 Asp Arg Gly Glu Pro Tyr Cys Leu Cys Gln Pro Gly Phe Ser Gly His
 100 105 110
 His Cys Glu Gln Glu Asn Pro Cys Met Gly Glu Ile Val Arg Glu Ala
 115 120 125
 Ile Arg Arg Gln Lys Asp Tyr Ala Ser Cys Ala Thr Ala Ser Lys Val
 130 135 140
 Pro Ile Met Glu Cys Arg Gly Gly Cys Gly Thr Thr Cys Cys Gln Pro
 145 150 155 160
 Ile Arg Ser Lys Arg Arg Lys Tyr Val Phe Gln Cys Thr Asp Gly Ser
 165 170 175
 Ser Phe Val Glu Glu Val Glu Arg His Leu Glu Cys Gly Cys Arg Ala
 180 185 190
 Cys Ser

<210> 336
<211> 274
<212> PRT
<213> Human

<400> 336
 Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu Pro Gly Ser Phe Arg
 1 5 10 15
 Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro Asn Asn Arg Ser Cys
 20 25 30
 Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro Cys Glu Gln Arg Cys
 35 40 45
 Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys His Gln Gly Tyr Glu
 50 55 60
 Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile Asp Glu Cys Ser Tyr
 65 70 75 80
 Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn Glu Pro Gly Arg Phe
 85 90 95
 Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu Ala Thr Arg Leu Cys
 100 105 110
 Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His Gln Cys Ser Glu Ala
 115 120 125
 Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg Cys Val Asp Thr Asn
 130 135 140
 Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu Asn Arg Cys Leu Cys
 145 150 155 160
 Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro Ser Ser Ile Val His
 165 170 175
 Arg Tyr Met Thr Ile Thr Ser Glu Arg Ser Val Pro Ala Asp Val Phe
 180 185 190
 Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala Tyr Asn Ala Phe Gln
 195 200 205
 Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr Ile Arg Gln Ile Asn
 210 215 220
 Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro Val Thr Gly Pro Arg
 225 230 235 240
 Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met Asn Ser Leu Met Ser
 245 250 255

Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val Phe Val Gly Ala Tyr
 260 265 270
 Thr Phe

<210> 337
 <211> 316
 <212> PRT
 <213> Mouse

<400> 337
 His Glu Glu Glu Pro Cys Asn Asn Gly Ser Glu Ile Leu Ala Tyr Asn
 1 5 10 15
 Ile Asp Leu Gly Asp Ser Cys Ile Thr Val Gly Asn Thr Thr Thr His
 20 25 30
 Val Met Lys Asn Leu Leu Pro Glu Thr Thr Tyr Arg Ile Arg Ile Gln
 35 40 45
 Ala Ile Asn Glu Ile Gly Val Gly Pro Phe Ser Gln Phe Ile Lys Ala
 50 55 60
 Lys Thr Arg Pro Leu Pro Pro Ser Pro Pro Arg Leu Glu Cys Ala Ala
 65 70 75 80
 Ser Gly Pro Gln Ser Leu Lys Leu Lys Trp Gly Asp Ser Asn Ser Lys
 85 90 95
 Thr His Ala Ala Gly Asp Met Val Tyr Thr Leu Gln Leu Glu Asp Arg
 100 105 110
 Asn Lys Arg Phe Ile Ser Ile Tyr Arg Gly Pro Ser His Thr Tyr Lys
 115 120 125
 Val Gln Arg Leu Thr Glu Phe Thr Cys Tyr Ser Phe Arg Ile Gln Ala
 130 135 140
 Met Ser Glu Ala Gly Glu Gly Pro Tyr Ser Glu Thr Tyr Thr Phe Ser
 145 150 155 160
 Thr Thr Lys Ser Val Pro Pro Thr Leu Lys Ala Pro Arg Val Thr Gln
 165 170 175
 Leu Glu Gly Asn Ser Cys Glu Ile Phe Trp Glu Thr Val Pro Pro Met
 180 185 190
 Arg Gly Asp Pro Val Ser Tyr Val Leu Gln Val Leu Val Gly Arg Asp
 195 200 205
 Ser Glu Tyr Lys Gln Val Tyr Lys Gly Glu Glu Ala Thr Phe Gln Ile
 210 215 220
 Ser Gly Leu Gln Ser Asn Thr Asp Tyr Arg Phe Arg Val Cys Ala Cys
 225 230 235 240
 Arg Arg Cys Val Asp Thr Ser Gln Glu Leu Ser Gly Ala Phe Ser Pro
 245 250 255
 Ser Ala Ala Phe Met Leu Gln Gln Arg Glu Val Met Leu Thr Gly Asp
 260 265 270
 Leu Gly Gly Met Glu Glu Ala Lys Met Lys Gly Met Met Pro Thr Asp
 275 280 285
 Glu Gln Phe Ala Ala Leu Ile Val Leu Gly Phe Ala Thr Leu Ser Ile
 290 295 300
 Leu Phe Ala Phe Ile Leu Gln Tyr Phe Leu Met Lys
 305 310 315

<210> 338
 <211> 237
 <212> PRT
 <213> Mouse

<400> 338
 Met Leu Ser Leu Arg Ser Leu Leu Pro His Leu Gly Leu Phe Leu Cys
 1 5 10 15
 Leu Ala Leu His Leu Ser Pro Ser Leu Ser Ala Ser Asp Asn Gly Ser

20	25	30
Cys Val Val Leu Asp Asn Ile Tyr Thr Ser Asp Ile Leu Glu Ile Ser		
35	40	45
Thr Met Ala Asn Val Ser Gly Gly Asp Val Thr Tyr Thr Val Thr Val		
50	55	60
Pro Val Asn Asp Ser Val Ser Ala Val Ile Leu Lys Ala Val Lys Glu		
65	70	75
Asp Asp Ser Pro Val Gly Thr Trp Ser Gly Thr Tyr Glu Lys Cys Asn		
85	90	95
Asp Ser Ser Val Tyr Tyr Asn Leu Thr Ser Gln Ser Gln Ser Val Phe		
100	105	110
Gln Thr Asn Trp Thr Val Pro Thr Ser Glu Asp Val Thr Lys Val Asn		
115	120	125
Leu Gln Val Leu Ile Val Val Asn Arg Thr Ala Ser Lys Ser Ser Val		
130	135	140
Lys Met Glu Gln Val Gln Pro Ser Ala Ser Thr Pro Ile Pro Glu Ser		
145	150	155
Ser Glu Thr Ser Gln Thr Ile Asn Thr Thr Pro Thr Val Asn Thr Ala		
165	170	175
Lys Thr Thr Ala Lys Asp Thr Ala Asn Thr Thr Ala Val Thr Thr Ala		
180	185	190
Asn Thr Thr Ala Asn Thr Thr Ala Val Thr Thr Ala Lys Thr Thr Ala		
195	200	205
Lys Ser Leu Ala Ile Arg Thr Leu Gly Ser Pro Leu Ala Gly Ala Leu		
210	215	220
His Ile Leu Leu Val Phe Leu Ile Ser Lys Leu Leu Phe		
225	230	235

<210> 339
 <211> 469
 <212> PRT
 <213> Mouse

<400> 339		
Met Leu Cys Leu Cys Leu Tyr Val Pro Ile Ala Gly Ala Ala Gln Thr		
1	5	10
Glu Phe Gln Tyr Phe Glu Ser Lys Gly Leu Pro Ala Glu Leu Lys Ser		
20	25	30
Ile Phe Lys Leu Ser Val Phe Ile Pro Ser Gln Glu Phe Ser Thr Tyr		
35	40	45
Arg Gln Trp Lys Gln Lys Ile Val Gln Ala Gly Asp Lys Asp Leu Asp		
50	55	60
Gly Gln Leu Asp Phe Glu Glu Phe Val His Tyr Leu Gln Asp His Glu		
65	70	75
Lys Lys Leu Arg Leu Val Phe Lys Ser Leu Asp Lys Lys Asn Asp Gly		
85	90	95
Arg Ile Asp Ala Gln Glu Ile Met Gln Ser Leu Arg Asp Leu Gly Val		
100	105	110
Lys Ile Ser Glu Gln Gln Ala Glu Lys Ile Leu Lys Ser Met Asp Lys		
115	120	125
Asn Gly Thr Met Thr Ile Asp Trp Asn Glu Trp Arg Asp Tyr His Leu		
130	135	140
Leu His Pro Val Glu Asn Ile Pro Glu Ile Ile Leu Tyr Trp Lys His		
145	150	155
Ser Thr Ile Phe Asp Val Gly Glu Asn Leu Thr Val Pro Asp Glu Phe		
165	170	175
Thr Val Glu Glu Arg Gln Thr Gly Met Trp Trp Arg His Leu Val Ala		
180	185	190
Gly Gly Gly Ala Gly Ala Val Ser Arg Thr Cys Thr Ala Pro Leu Asp		
195	200	205
Arg Leu Lys Val Leu Met Gln Val His Ala Ser Arg Ser Asn Asn Met		

210	215	220
Cys Ile Val Gly Gly Phe Thr Gln Met Ile Arg Glu Gly Gly Ala Lys		
225	230	235
Ser Leu Trp Arg Gly Asn Gly Ile Asn Val Leu Lys Ile Ala Pro Glu		240
245	250	255
Ser Ala Ile Lys Phe Met Ala Tyr Glu Gln Met Lys Arg Leu Val Gly		
260	265	270
Ser Asp Gln Glu Thr Leu Arg Ile His Glu Arg Leu Val Ala Gly Ser		
275	280	285
Leu Ala Gly Ala Ile Ala Gln Ser Ser Ile Tyr Pro Met Glu Val Leu		
290	295	300
Lys Thr Arg Met Ala Leu Arg Lys Thr Gly Gln Tyr Ser Gly Met Leu		
305	310	315
Asp Cys Ala Arg Arg Ile Leu Ala Lys Glu Gly Val Ala Ala Phe Tyr		320
325	330	335
Lys Gly Tyr Ile Pro Asn Met Leu Gly Ile Ile Pro Tyr Ala Gly Ile		
340	345	350
Asp Leu Ala Val Tyr Glu Thr Leu Lys Asn Thr Trp Leu Gln Arg Tyr		
355	360	365
Ala Val Asn Ser Ala Asp Pro Gly Val Phe Val Leu Leu Ala Cys Gly		
370	375	380
Thr Ile Ser Ser Thr Cys Gly Gln Leu Ala Ser Tyr Pro Leu Ala Leu		
385	390	395
Val Arg Thr Arg Met Gln Ala Gln Ala Ser Ile Glu Gly Ala Pro Glu		400
405	410	415
Val Thr Met Ser Ser Leu Phe Lys Gln Ile Leu Arg Thr Glu Gly Ala		
420	425	430
Phe Gly Leu Tyr Arg Gly Leu Ala Pro Asn Phe Met Lys Val Ile Pro		
435	440	445
Ala Val Ser Ile Ser Tyr Val Val Tyr Glu Asn Leu Lys Ile Thr Leu		
450	455	460
Gly Val Gln Ser Arg		
465		

<210> 340
<211> 99
<212> PRT
<213> Mouse

<400> 340		
Met Arg Leu Leu Ala Ala Ala Leu Leu Leu Leu Leu Ala Leu Cys		
1	5	10
Ala Ser Arg Val Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro		15
20	25	30
Lys Ile Arg Tyr Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr		
35	40	45
Pro His Cys Glu Glu Lys Met Val Ile Val Thr Thr Lys Ser Met Ser		
50	55	60
Arg Tyr Arg Gly Gln Glu His Cys Leu His Pro Lys Leu Gln Ser Thr		
65	70	75
Lys Arg Phe Ile Lys Trp Tyr Asn Ala Trp Asn Glu Lys Arg Arg Val		80
85	90	95
Tyr Glu Glu		

<210> 341
<211> 431
<212> PRT
<213> Mouse

<400> 341

Met Asp Ala Arg Trp Trp Ala Val Val Val Leu Ala Thr Leu Pro Ser
 1 5 10 15
 Leu Gly Ala Gly Gly Glu Ser Pro Glu Ala Pro Pro Gln Ser Trp Thr
 20 25 30
 Gln Leu Trp Leu Phe Arg Phe Leu Leu Asn Val Ala Gly Tyr Ala Ser
 35 40 45
 Phe Met Val Pro Gly Tyr Leu Leu Val Gln Tyr Leu Arg Arg Lys Asn
 50 55 60
 Tyr Leu Glu Thr Gly Arg Gly Leu Cys Phe Pro Leu Val Lys Ala Cys
 65 70 75 80
 Val Phe Gly Asn Glu Pro Lys Ala Pro Asp Glu Val Leu Leu Ala Pro
 85 90 95
 Arg Thr Glu Thr Ala Glu Ser Thr Pro Ser Trp Gln Val Leu Lys Leu
 100 105 110
 Val Phe Cys Ala Ser Gly Leu Gln Val Ser Tyr Leu Thr Trp Gly Ile
 115 120 125
 Leu Gln Glu Arg Val Met Thr Gly Ser Tyr Gly Ala Thr Ala Thr Ser
 130 135 140
 Pro Gly Glu His Phe Thr Asp Ser Gln Phe Leu Val Leu Met Asn Arg
 145 150 155 160
 Val Leu Ala Leu Val Val Ala Gly Leu Tyr Cys Val Leu Arg Lys Gln
 165 170 175
 Pro Arg His Gly Ala Pro Met Tyr Arg Tyr Ser Phe Ala Ser Leu Ser
 180 185 190
 Asn Val Leu Ser Ser Trp Cys Gln Tyr Glu Ala Leu Lys Phe Val Ser
 195 200 205
 Phe Pro Thr Gln Val Leu Ala Lys Ala Ser Lys Val Ile Pro Val Met
 210 215 220
 Met Met Gly Lys Leu Val Ser Arg Arg Ser Tyr Glu His Trp Glu Tyr
 225 230 235 240
 Leu Thr Ala Gly Leu Ile Ser Ile Gly Val Ser Met Phe Leu Leu Ser
 245 250 255
 Ser Gly Pro Glu Pro Arg Ser Ser Pro Ala Thr Thr Leu Ser Gly Leu
 260 265 270
 Val Leu Leu Ala Gly Tyr Ile Ala Phe Asp Ser Phe Thr Ser Asn Trp
 275 280 285
 Gln Asp Ala Leu Phe Ala Tyr Lys Met Ser Ser Val Gln Met Met Phe
 290 295 300
 Gly Val Asn Leu Phe Ser Cys Leu Phe Thr Val Gly Ser Leu Leu Glu
 305 310 315 320
 Gln Gly Ala Leu Leu Glu Gly Ala Arg Phe Met Gly Arg His Ser Glu
 325 330 335
 Phe Ala Leu His Ala Leu Leu Leu Ser Ile Cys Ser Ala Phe Gly Gln
 340 345 350
 Leu Phe Ile Phe Tyr Thr Ile Gly Gln Phe Gly Ala Ala Val Phe Thr
 355 360 365
 Ile Ile Met Thr Leu Arg Gln Ala Ile Ala Ile Leu Leu Ser Cys Leu
 370 375 380
 Leu Tyr Gly His Thr Val Thr Val Val Gly Gly Leu Gly Val Ala Val
 385 390 395 400
 Val Phe Thr Ala Leu Leu Leu Arg Val Tyr Ala Arg Gly Arg Lys Gln
 405 410 415
 Arg Gly Lys Lys Ala Val Pro Thr Glu Pro Pro Val Gln Lys Val
 420 425 430

<210> 342

<211> 51

<212> PRT

<213> Mouse

<400> 342

Leu Lys Phe Ser His Pro Cys Leu Glu Asp His Asn Ser Tyr Cys Ile
 1 5 10 15
 Asn Gly Ala Cys Ala Phe His His Glu Leu Lys Gln Ala Ile Cys Arg
 20 25 30
 Cys Phe Thr Gly Tyr Thr Gly Gln Arg Cys Glu His Leu Thr Leu Thr
 35 40 45
 Ser Tyr Ala
 50

<210> 343

<211> 51

<212> PRT

<213> Human

<400> 343

Leu Lys Phe Ser His Leu Cys Leu Glu Asp His Asn Ser Tyr Cys Ile
 1 5 10 15
 Asn Gly Ala Cys Ala Phe His His Glu Leu Glu Lys Ala Ile Cys Arg
 20 25 30
 Cys Phe Thr Gly Tyr Thr Gly Glu Arg Cys Glu His Leu Thr Leu Thr
 35 40 45
 Ser Tyr Ala
 50

<210> 344

<211> 95

<212> PRT

<213> Human

<400> 344

Ala Ala Ala Leu Leu Leu Leu Leu Ala Leu Tyr Thr Ala Arg Val
 1 5 10 15
 Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys Ile Arg Tyr
 20 25 30
 Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr Pro His Cys Glu
 35 40 45
 Glu Lys Met Val Ile Ile Thr Thr Lys Ser Val Ser Arg Tyr Arg Gly
 50 55 60
 Gln Glu His Cys Leu His Pro Lys Leu Gln Ser Thr Lys Arg Phe Ile
 65 70 75 80
 Lys Trp Tyr Asn Ala Trp Asn Glu Lys Arg Arg Val Tyr Glu Glu
 85 90 95

<210> 345

<211> 77

<212> PRT

<213> Mouse

<400> 345

Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys Ile Arg Tyr Ser Asp
 1 5 10 15
 Val Lys Lys Leu Glu Met Lys Pro Lys Tyr Pro His Cys Glu Glu Lys
 20 25 30
 Met Val Ile Val Thr Thr Lys Ser Met Ser Arg Tyr Arg Gly Gln Glu
 35 40 45
 His Cys Leu His Pro Lys Leu Gln Ser Thr Lys Arg Phe Ile Lys Trp
 50 55 60
 Tyr Asn Ala Trp Asn Glu Lys Arg Arg Val Tyr Glu Glu
 65 70 75

<210> 346

<211> 77

<212> PRT
 <213> Human

<400> 346

Ser	Lys	Cys	Lys	Cys	Ser	Arg	Lys	Gly	Pro	Lys	Ile	Arg	Tyr	Ser	Asp
1															
									10					15	
Val	Lys	Lys	Leu	Glu	Met	Lys	Pro	Lys	Tyr	Pro	His	Cys	Glu	Glu	Lys
									20		25			30	
Met	Val	Ile	Ile	Thr	Thr	Lys	Ser	Val	Ser	Arg	Tyr	Arg	Gly	Gln	Glu
									35		40		45		
His	Cys	Leu	His	Pro	Lys	Leu	Gln	Ser	Thr	Lys	Arg	Phe	Ile	Lys	Trp
									50		55		60		
Tyr	Asn	Ala	Trp	Asn	Glu	Lys	Arg	Arg	Val	Tyr	Glu	Glu			
									65		70		75		

<210> 347

<211> 215
 <212> PRT
 <213> Mouse

<400> 347

Met	Leu	Ser	Leu	Arg	Ser	Leu	Leu	Pro	His	Leu	Gly	Leu	Phe	Leu	Cys
1															
									10				15		
Leu	Ala	Leu	His	Leu	Ser	Pro	Ser	Leu	Ser	Ala	Ser	Asp	Asn	Gly	Ser
									20		25		30		
Cys	Val	Val	Leu	Asp	Asn	Ile	Tyr	Thr	Ser	Asp	Ile	Leu	Glu	Ile	Ser
									35		40		45		
Thr	Met	Ala	Asn	Val	Ser	Gly	Gly	Asp	Val	Thr	Tyr	Thr	Val	Thr	Val
									50		55		60		
Pro	Val	Asn	Asp	Ser	Val	Ser	Ala	Val	Ile	Leu	Lys	Ala	Val	Lys	Glu
									65		70		75		80
Asp	Asp	Ser	Pro	Val	Gly	Thr	Trp	Ser	Gly	Thr	Tyr	Glu	Lys	Cys	Asn
									85		90		95		
Asp	Ser	Ser	Val	Tyr	Tyr	Asn	Leu	Thr	Ser	Gln	Ser	Gln	Ser	Val	Phe
									100		105		110		
Gln	Thr	Asn	Trp	Thr	Val	Pro	Thr	Ser	Glu	Asp	Val	Thr	Lys	Val	Asn
									115		120		125		
Leu	Gln	Val	Leu	Ile	Val	Val	Asn	Arg	Thr	Ala	Ser	Lys	Ser	Ser	Val
									130		135		140		
Lys	Met	Glu	Gln	Val	Gln	Pro	Ser	Ala	Ser	Thr	Pro	Ile	Pro	Glu	Ser
									145		150		155		160
Ser	Glu	Thr	Ser	Gln	Thr	Ile	Asn	Thr	Thr	Pro	Thr	Val	Asn	Thr	Ala
									165		170		175		
Lys	Thr	Thr	Ala	Lys	Asp	Thr	Ala	Asn	Thr	Thr	Ala	Val	Thr	Thr	Ala
									180		185		190		
Asn	Thr	Thr	Ala	Asn	Thr	Ala	Val	Thr	Thr	Ala	Lys	Thr	Thr	Ala	
									195		200		205		
Lys	Ser	Leu	Ala	Ile	Arg	Thr									
					210										

<210> 348

<211> 21
 <212> PRT
 <213> Mouse

<400> 348

Gly	Tyr	Ser	Asp	Gly	Tyr	Gln	Val	Cys	Ser	Arg	Phe	Gly	Ser	Lys	Val
1														15	
Pro	Gln	Phe	Leu	Asn											

<210> 349

<211> 417
<212> DNA
<213> Mouse

<400> 349

gctagccgtg caccaggcgc tccggagcgc gtgcaggcga gcccggcgcc ccgtccgcgg	60
ttctcggca ggcgctgcgg gctccccggc tcccccggcgt cccggggcacc cgggggggcc	120
atgcggccgg gctagagcgt agccggccgc atggcgctcc cgctgctgtc cgccgcgtc	180
tgcctcgccg cctccccggc gcccggcgc gcctggcagc tgccgtcgga gtggagaccc	240
ttgagcgaag gctgcccgcg cgagctagcc gagaccatcg tgtatgccaa ggtgtggcg	300
ctgcaccccg aggtgcctgg cctctacaac tacctggcgt ggcagtagcca agctggagag	360
ggaggggctct tctactccgc cgaggtggag atgcttgtgt gaccaaggcg tggggca	417

<210> 350

<211> 1837
<212> DNA
<213> Mouse

<400> 350

cccccacctg cccagccaag ccgagtgcgg ccggcttgc tcgctttgtc ctcgcgcacc	60
taagccggcg gcctggaaaga acgcattccc ggagagcgc cgcggcgctcg caccaggct	120
aacaacatgc ctccacttct gcttcttaca gccatctaca tgctctgtt ctccagatgt	180
tcccccacca tctctttca ggaagtgcat gtgaaccggg agaccatggg gaagatcgct	240
gtggccagca aattaatgtg gtgctcagcc gcggtcgaca tcctgtttct tttagatggc	300
tctcacagca tccggaaaggg gagcttcgag aggtccaaagc gcttcgcctcg ctgcgcctgt	360
gatgccctgg acatcagccc tggcagggtc agagtcggag ccttgcagtt tggttccact	420
cctcatctgg aatccccctt ggactcttc tcaactcgac aggaagtgaa ggaagcata	480
aaggggatag ttttcaaagg tgggcgcacc gagacggggc tagccctgaa acgcctgagc	540
agagggttcc cccggaggcg aaatggctct gtggcccaga ttcttattcat cgtcacggat	600
ggcaagtccc agggggcccg ggctctcccg gctaagcagc tgagagaaa gggcatcgtc	660
gtgtttgcgg taggagtcgg tttcccaagg tggacgagc tgctcacgct ggccagttag	720
ccgaaggacc ggcacatgtct gttggctgag caagtggagg atgcccacca tggccctctc	780
agcacccctca gcacgtccgc actctgcacc actgctgatc cagactgcag ggtggAACCT	840
catccctgtg agcggaggac gctggagacc gtcaaggagc tcgctggccaa tgccttgc	900
tggagaggat caaggcaagc agacactgtg ctggctctgc cctgtccctt ctacagctgg	960
aagagagtgt tccagacaca ccctgccaac tgctacagaa ccatctgtcc aggcccctgt	1020
gactcccaagc cctgccaaaaa tggagggcagc tgcatcttccag aagggtgtgga taggtaccac	1080
tgtctctgca cactggcatt cggaggggaa gtcaactgtg ccccgaaagct gaggctggaa	1140
tgcagaatcg atgtcccttt cctgtctggc agttctgcag gcaccacatt gggggcttc	1200
cgaggggcca aggcccttgc caagcgctt gtgcaggccg tgctgaggaa ggactcccga	1260
gcccccggtt ggtatagccag ttatggcagg aacttaatgg tggcggtgcc ctgtcgggaa	1320
gtaccagcat tggccggac ctgatcagga gccttgcac cattcccttc agcggtgccc	1380
cgaccctaac cgggagtgcc ttgctccagg tggcagagca cggctttggg agtggccagca	1440
ggactgtca ggacaggcca cgcagagtag tagttctgtc cactgaatca cgctcccagg	1500
atgaggtgtc tggccagca gctcacgcaa gggctggga gctactccctc ctggcggtgg	1560
gcagtgatgt cctgcaggcg gagctgtgtc agatcaccgg tagcccgaag catgtgatgg	1620
tccacacaga ccctcaggac ctgtcagcca aatccagagc tgcagaggag gctatgcagc	1680
cagccacggc caggctgcca ggcacagtca ctggacctgg tcttcctgtg gatgcctctg	1740
ctctgtggga cgtgagaact ttgccccaaat gcagagctc atcagggaaat gcaccctccg	1800
ttttgtatgt aatccctgtat tgacacaatgt tggccttgc	1837

<210> 351

<211> 941
<212> DNA
<213> Mouse

<400> 351

taagccctca ggcacccctca atgctatccc cctttgttcc tgcagcgtgg acccagtcag	60
cagccaggcc atggagctct ctgatgtcac cctcatttag ggtgtgggta acggaggat	120
ggtggttagca ggcgtgggtgg cgctgactct agccctggc ctgcctggc tctccaccta	180
tgtacacatcg agtggtaaca accagctgtc gggcaccatt gtgtcagcag gtgacacgtc	240

tgttccac	ctggccatg	tggaccagct	gttaaaccaa	ggcactccag	agccaaccga	300
acaccccat	ccatcagggg	gcaatgatga	caaggctgaa	gagaccagt	acagtgggg	360
agacgccact	ggagaacctg	gagctagggg	agagatggag	cccagcctgg	agcatctcct	420
ggacatccaa	ggcctgccta	aaaggcaagc	aggcctgggg	agcagtcgc	cagaagcccc	480
gctgggtta	gatgatggct	cctgcctc	tcccagcccc	agcctcatca	atgttgcct	540
caagttcctc	aatgacacgg	aggagctagc	tgtggccagg	ccagaggaca	ctgtgggtac	600
cctaaaaagg	tgagtaggcc	ggagagaggc	cagttgctcg	tgacttgttc	ctcagatgat	660
ggtttctga	agaagctgtg	catatatgtg	agcacaggag	ggattttaaag	ggaaatgga	720
gacttccata	gacagacaccc	cagtgtctt	catgtccagg	ccttgatctc	tctagcctta	780
ttcttatacc	agtctttcct	ttcatccctg	tagcaaatac	ttccctggac	aagagaacca	840
aatgaagttg	atctaccagg	gtcggctgct	gcaggaccca	gcacgcacac	tgagttccct	900
gaacattacc	aacaactg	tgatccactg	ccaccgctca	c		941

<210> 352

<211> 571

<212> DNA

<213> Mouse

<400> 352

gctgactgta	cctataattc	accatgaatt	acgtctgtga	gttacccctcg	tgagctctca	60
tttgatattg	agtatgtgtg	catgtggtt	gggctcaget	gctgtgcgc	tgacatccac	120
atttggatgt	cttttgggtc	cgtgaacaag	tagaaattgc	atgtgtctac	cggtgacagt	180
gtgggtgtcac	tggggccctgt	gggtggctca	cttacctctg	attccgtctg	tggaaaagtc	240
ccagtgta	caaagtggc	attgttgc	gccttgggtg	tgtgtggag	attgtctctg	300
tctctcagac	cctttgtgc	tttgtctgtt	gaaagagaca	gagacccctt	gtgggggttct	360
cagctgagaa	ccccccctcc	tgggatgtt	gggtgtaaact	taactgctt	gcaaagcctg	420
ccccccctca	tgctgacccct	tcaatatctg	gcagtgcatt	gttcccaagc	ccccccctgtc	480
tatgggaatg	tcagggctct	ctcaccttga	cagctgataa	ttccattcct	cgactcttga	540
gaactggccc	ttgtctgtt	ttctctgcct	g			571

<210> 353

<211> 467

<212> DNA

<213> Rat

<400> 353

cggagaatga	gccccgtggcc	gtggctgcag	ctgctgcggc	ggcactgaca	ggacacgagc	60
tctatgcctt	tccggctgtct	tatcccgtc	ggcctcggt	gcgtgcgtct	gccccctgcac	120
catggtgcc	caggccccga	aggcaccgcg	cccgaccccg	cccaactacag	ggagcgagtc	180
aaggccatgt	tatccacgc	ctacgcacgt	tacccggaaa	atgcctttcc	ctacgatgag	240
ctgagacetc	tcacccgt	cgggcacgac	acccggggca	gtttttctct	gacactgatt	300
gtgccttgg	acacccgtct	gatttttggg	aataccctctg	aattccaaag	agtgggtggag	360
gttccctcagg	acaaacgtgg	actttgat	cgacgtcaat	gcctctgtgt	tcgaaaccaa	420
catccgatgt	gttaggaggac	tcctttctgc	tcatctcttg	tcaaaga		467

<210> 354

<211> 528

<212> DNA

<213> Rat

<400> 354

gtgactcctg	ctgttaggacc	ctccaggaag	cactggcctc	tcctacagag	tcctccacct	60
agcacccggcc	ttaatgctaa	agccaaatgt	ggtttctgcc	ctgcagcgt	ccccctggtaa	120
tctcgagttg	ccactcccaa	gccagcccc	actggccata	tggcatcata	tctgggggtc	180
aggaggccct	gtgcaggctt	tggacagcca	cttgcacag	cagaggagag	agtggagttt	240
ccagggccat	caggaaggaa	gacccagaa	ttccccaggg	ctctttgagt	ggtaatgttg	300
acttctggag	agtctgcctt	ccttgcgtc	acacaagcat	ggacaggaca	ctgggacttt	360
tatccctgtt	ttaagctgtt	tccacagaag	cccggtcagg	tagttactt	acccacattt	420
gccctatagc	cagaggagtg	ccctggctaa	ctgcagtcgt	agcttgcata	caacagaagt	480
gcccaggagc	tgacccaaa	ggccagaag	gctcgagtt	gccactt		528

<210> 355
<211> 473
<212> DNA
<213> Mouse

<400> 355

ggcagcagga ccgcggtcac tgagcctctg caggtgtcaa caaggctcaa ggagcaggat	60
ggatctcgat gtggtaaca tggggatggg accctggcca ttccaatcct	120
ggcatttgtt gggctttcc tcctgtggcc ttcaagactg ataagaatct attattggta	180
ctggccggagg acactggca tgcaagttcg ctacgcacac catgaggact atcagttctg	240
ttactccttc cggggcggc caggacacaa gccatccatc cttatgcctc atggattctc	300
cgcacacaag gacatgtggc tcagctggt caagttcctt ccgaagaacc tgcaacttggt	360
ctgtgtggac atgcctggc atgaaggcac caccgcctcc tccctggatg acctgtccat	420
agtggggcaa gttaaaaagga tacatcagtt tgttagaatgc cttaaagctga aca	473

<210> 356
<211> 431
<212> DNA
<213> Rat

<400> 356

cttaactagc gccccatcc accatgttcc ctgacggatt ctgccttgt ttgtttttt	60
caacctaaaa ccaaataggaa atggccggag agtccaggg cacctagggtt ccctggcttc	120
ggcttcggct gggctaaccgc gcgagtgtgg tggactatc cttaggagggtt ttccctggaga	180
gagaggcgt ggcgtcaagt agtaactggc tggccggagt gaatgtcggtt cttgtgtatgg	240
cgtacggag cctggatttc gtattgtgtt ttatttttgtt gaagagacaa atcatgcgt	300
ttgcaatgaa atctagaagg ggacctcatg tccctgtggg acacaatgcc ccgaaggact	360
taaaagagga aattgtatatt cggctatcca gagttcagga catcaagtat gaaccgcagc	420
tccttgaga t	431

<210> 357
<211> 1206
<212> DNA
<213> Mouse

<400> 357

ccaacactcg ccatcggttc tggggcactg tggccgtgc tttggggagc cctggctgg	60
acagtggat ccgtgggcgc cgtgatggc tccgaggatt ctgtgcccgg tggcggtgtgc	120
tggctccagc agggcagaga ggccacactgc agtctggc tgaagactcg tgtagccgg	180
gaggagtgcgt gtgttccgg caacatcaac accgcctggt ccaacttcac ccaccaggc	240
aataaaatca gcctgttagg gtccctggc ctgtccact gcctccctg caaagattcc	300
tgcgacggag tggagtgcgg cccggcaag gcgtggcga tgctgggggg gcgtccaaca	360
ctgcgaagtt gcgtgcccua ctgcgaggggg yttccgggg gcttccaggt ctgcggctct	420
gatggcgcca cctaccggga cgaatgcgaa ctgcgcaccc cgccgtgtcg cgacaccca	480
gacttgcgcg tcatgtaccc cggccgtgtt caaaagtctt ggcgtcaggt agtgcgtcc	540
cgtccccagt cgtgccttgc ggtacagacc ggcagcgcac actgcgtgtt gtgtcggt	600
gcgcctgccc cagtacccctc caacccggc caagaactct gtggcaacaa caacgttacc	660
tacatctcg tgcgtcaccc gcgcaggcc acttgcgttc tggccgtc cattgggtt	720
cgccacccag gcatctgcac aggtggcccc aaagtaccag cagaggagga agagaacttc	780
gtgtgagctg cagccactgg gcctggcatt tgacgcccatt ccgattttat ttattgttat	840
agaaaatatt ctaatattat tcacatggac atttccaaa cctggcctgg aaccacttgg	900
ggatccccctt gggatcctga gcacgtatca caaggactga agggagattt ttataatagt	960
tggatgtgc catcacccar gtactggat caaagttaga acccaagacc cctgtgc	1020
agggatggca gtcgtatgg gatccccctg ctatgatctc cccacctgtt ttctaggctg	1080
gagctgtcgcc agggcacacgc cgatgagttt gtgttgcatt atggctggcc tcagaccaga	1140
gcgggcaaca tcaggtcaga gaaacactgg gtcattcctt gttggtcca ctcagggtga	1200
aacctg	1206

<210> 358
<211> 1052
<212> DNA

<213> Rat

<400> 358

ccagaaaagaa	cgattttagat	gacagttttt	agaaaggta	ccaccatgt	ctcctggatg	60
ctcttgcct	gtgcccttc	gtgtctgct	gaccaatgc	ttgggcctt	tgctcgagg	120
gacttccaga	agggtggtcc	tcaactggt	tgcaagtctgc	ctggccccca	aggcacctg	180
gcccctcagg	agcaccaggaa	tcctcaggaa	tggggaaag	aatgggtttt	cctggtaagg	240
atggccaaga	cggccaggac	ggagacccag	gggacagtgg	agaagaagg	ccacctggca	300
ggacaggcaa	ccgaggaaaaa	caaggaccaa	aggcaaaagc	tggggcatt	gggagagcgg	360
gtcctcgagg	acccaagggg	gtcagtggt	ccccgggaa	acatggtata	ccggcaaga	420
agggaccta	gggcaagaaa	ggggaaacctg	ggctcccagg	ccctgttagc	tgcggcagta	480
gcccggccaa	gtcggccctt	tccgtggcg	taaccaagag	ttacccacgt	gagcgactgc	540
ccatcaagtt	tgacaagatt	ctgatgaatg	agggaggcca	ctacaatgca	tccagtgca	600
attcgtctg	cagcgtgca	gggatctatt	actttaccta	tgacattacg	ctggccaaca	660
aacacctggc	catcgcccta	gtgcacaatg	gccagttaccg	cattcgact	tttgcgc	720
acacccggca	ccacgcacgt	gcctcggt	ccaccatect	agctctcaag	gaggtgtatg	780
aagtctggtt	acagatttc	tactcgagc	agaatggact	cttctacac	ccttattgga	840
ccgacagcct	gttcacccgc	ttcctcatct	acgctgatca	aggagacccc	aatgaggtat	900
agacaagctg	gggttgagcg	tccaggcagg	gactaagatt	ccgcaagggt	gctgatagaa	960
gaggatctct	gaactgaggc	tggggactgg	cagttcttgg	gagcttttat	tcccaggcaa	1020
gcctccctcg	gtgctgctt	aaaaaaaaaa	aa			1052

<210> 359

<211> 1134

<212> DNA

<213> Rat

<400> 359

aattcggcac	gaggcggtca	gaacccggc	ttctcgttt	tcctgaacgg	cactaccagg	60
gcgggtggaa	cagagatggc	ggagggcggt	gggaggagag	gcgtctagtc	ttgtggctc	120
agcaagcccg	ataagcatga	agctcgctg	tttgggggt	gtgggggggt	gttgtgtgt	180
accccccgc	caagccaaca	agagctctga	agatatccgg	tgcaaatgca	tctgtcccc	240
ttacagaaac	atccagcgggc	acatttacaa	ccagaatgtg	tctcagaagg	actgcaactg	300
cctcgatgt	gtggagccca	tgccggtgcc	tggccatgt	gtggaaaggct	actgcctgct	360
ctgtgagtgt	agttatgagg	agcgcagcac	cacaaccatc	aaggtcatta	tcgtcatcta	420
cctgtctgt	gtagggggcc	tcttactcta	catggcccttc	ctgtatgtgg	tggaccctct	480
catccgaaag	ccggatgcct	atactgagca	gctgcacaat	gaagaagaga	atgaggatgc	540
ccgctccatg	gtccggcccg	ccgcatccat	tggaggaccc	cgagcaaaca	ccgtcctgga	600
gcgggtggaa	ggcgctcagc	agcgatggaa	gctacaggtg	caggagcagc	ggaagacggt	660
ttcgcatcga	cacaagatgc	tcagttagat	gattgccatg	gcagtgtcag	ggacccagac	720
ctcggttacc	agttcttggg	gcagtcttcc	ctgggttetc	ccttcaaattg	cccggtggcat	780
ttgtccttct	ccctctctct	agaaaatgtac	tcgactgtta	taacttaggga	gtgggatttgg	840
gtctttggtc	tctagtgtct	ctgttagtct	ctggggtaga	agggaggggaa	aggaaggcag	900
aagagaacag	agatggttga	gacggccaca	cgattggtga	aattccccc	tcctgtcctc	960
cccggttcctc	acagctccac	atcttaagga	tgtttatagc	tctttggag	acggagctgt	1020
cccgtaata	gtccggtggg	tgcgacaaa	gtgtgaccca	gccctcagcc	tgtgtctac	1080
gatccgtgg	cccccattcc	cacttnca	gtgccaatac	tttagcttgg	cctg	1134

<210> 360

<211> 876

<212> DNA

<213> Mouse

<400> 360

tgccagctgc	cccttcgagt	gtttatcatc	agcaacaaca	agttaggagc	cctgcctcca	60
gacatcagca	ccttggaaag	cctgcggcag	cttgatgtga	gcagcaatga	gctgcagtc	120
ctgcccgtgg	agctgtgtag	cctccgttcc	ctgcgggatc	tcaatgttgc	aaggAACCAAG	180
ctcagttaccc	tgcctgtat	gctgggagac	cttcctctgg	tccgcctgga	tttctctgt	240
aaccgcattt	cccgatcc	ctgtctcttc	tgccgcctca	ggcacctgca	ggtcgatctg	300
ctggatagca	accccttata	gagtccaccc	gcccagatat	gcctgaaggg	gaaacttcac	360
atcttcaagt	acctaacaat	ggaagctggc	cggagggag	ccggccctcg	ggacccgttgc	420

cctccccccc ccccaagttt tagtccttgc cctgccgaag atttatttcc gggacgtcgt	480
tatgtggtg gcctggactc aggcttccac agcggtgaca gtggcagcaa gaggtggtca	540
ggaaatgagt ccacagatga ttttcagag ctgtcttcc gcatctcgaa gctggctcg	600
gatccccggg ggcctagaca acctaggaa gatggcgctg gcatggaga cctggagcag	660
attgacttta ttgacagcca cgttccctgg gaagatgaag atcgaagtgc agctgaggag	720
cagctgcctt ctgaattaag ctttgcata gggatgtgg agaaggccatc tagcagcagg	780
cgagaggagc ctgcaggggg ggagaggcgg cgcccagaca ctttgcagtt gtggcaggaa	840
cgggagcggc agcaacagca acagagtggg gatgg	876

<210> 361
<211> 495
<212> DNA
<213> Mouse

<400> 361	
gtcgcgccag ctgagagccc ctaggttga ccctcggtcg ggattccacg cggagggcaa	60
ggacagaggg ccctctgttc cccaggcct gctgaaggca gcgagaagca gcggccaact	120
caacttggcg ggaaggaacc tcggggaaat ccctcagtgt gtttggagaa taaatgtgga	180
cattcctgaa gaggctaacc agaatcttc attcagttct actgaacatg ggtggatca	240
gacagatctg accaaaactca tcatctccag caataaactt cagtcctct ctgatgaccc	300
ccgactcttgc cctggccctta ctgttcttga tatacatgat aatcagctga catctcttcc	360
ttcagctata agagagctag acaatcttca gaaacttaat gtcagccata acaaactgaa	420
aatactgcctt gaagaaatattt caagctaaa aaacctgagg acgctgcacc tccagcacaa	480
tgagctgact tgcatt	495

<210> 362
<211> 349
<212> DNA
<213> Mouse

<400> 362	
tctctgtcttca tcttgcctgc tttttttttt ccacttatcc atctacagcg	60
agttagtatgg cggcccttcctt tgtaacaggc tttttttttt ctctcttcgt ggtgttggg	120
atggaaaccca gggctttgtt taggcctgac aagctctgc ccctgagctg tgccaagccc	180
acctccctctt gtgtacaaat ctcctttttt ggtgaccaa catcttcctg tctttgagca	240
accaaggcca gatgcgagcc acccagaatg taattaaacc aggttcatcg ggagtttgc	300
gaaatgtttaa gcatactctg ttctagagag ggagtgaaga aagggccca	349

<210> 363
<211> 380
<212> DNA
<213> Mouse

<400> 363	
gagttatgttca ccagagtctt agagaagtca ctgagaaaaatccagaaa caaagagacc	60
gacaagggttca agctgacccgatgggaccgc ttcccacccat atttcacccaa tcttgtctcc	120
atcatcttca tgatcgactt gacatttgcata tcgtcctcg gagttatcat ctatagaatc	180
tccacagctg cagcccttgc catgaactcc tccctgtctg tgccgtccaa catccgggtt	240
acagtcacgg ccaccgctgt tatcatcaac ctctgtgtca tcattctgtt ggtatgttca	300
tacggctgtca ttggccagggtt gctcaccaag attgggtgagt gccatgtgca ggacagcata	360
ggcagcatgg gccttagggca	380

<210> 364
<211> 351
<212> DNA
<213> Mouse

<400> 364	
gcggcagaga acgagatgcc ggtggctgtt ggtccctacg ggcagtcaca gcccagctgc	60
ttcgaccgcg tgaagatggg ctttgcata ggttgcggccg tgggtatggc ggccggggcc	120
ctgttcggca ctttcttcctt ttcaggatc ggaatgcggg gtcggagct gatggcggc	180

atggggaaaa ccatgatgca gagtggcggt accttggca ctttcatggc catcggaatg	240
ggcatacgat gctaattagg gcacggatgc cctgctacac ccaaacttcc tcatccat	300
cgaaccttgt acaataaaagt tttttcttc ttgttaaaaa aaaaaaaaaa a	351

<210> 365
<211> 854
<212> DNA
<213> Rat

<400> 365	
gcgggtggctc ctctgtgtcc cacgtcctga ggggctcagg acaagaaaagg agcccacccc	60
cagccagtat gcagccgccc tggggcctgg cgctccctct gctgctcccc tgggtggcag	120
gtggagtagg gaccagccca cgggattatt ggttgccagc actggcacac cagcctgggg	180
tctgtcacta cggactaag acggcctgtc gctatggctg gaaaaggaaac agcaaaggag	240
tatgtgaagc tgggtgttag cccagatgca agtttggta gtgtgtgggcca cggaaataat	300
gtagatgctt ccaggatata accgggaaga cctgcagtca agacgtgaat gagtgtgcat	360
tcaaaccggc gccatgccc cacagatgtg tgaatacaca cggtagctac aaatgttttt	420
gcctcagegg ccacatgtt ctagccacg ccacatgttc aaactccagg acatgtgcca	480
gaataaaactg ccagtagt gttgaagaca cagcagaagg gcccacatgt gtgtgtccat	540
cctctggctt ccgcctgggt ccaaattggaa gagttgcctt agatatcgat gaatgtgctt	600
ctagcaaaggc agtctgttcc tccaaatagaa gatgtgtgaa cacatttggaa agctactact	660
gcaaattgtca cattgggtttt gaactgaaat atatcgatc cccatgtatgat tttgttagata	720
taaatgagtg cactctgaaat acccgtagt gcagccccca tgccaaattgc ctcataaccc	780
aaggatcctt caagtgc当地 tgcaagcagg gatacagggg gaatggactg cagtgttctg	840
tgattcctga acat	854

<210> 366
<211> 257
<212> DNA
<213> Rat

<400> 366	
ggcgccaccca tgtacttcag cgagggccga gagagaggca aggtgtatgt ctacaacctg	60
agacagaacc gttttgtttt taatggcact ctgaaggatt cccacagcta ccagaacgcc	120
cgggttcgggt catgcattgc ctccgttcaa gacctcaacc aagattccta caatgacgtg	180
gtgggtgggggg cccctcagga ggacagccac agaggggcca tctacatctt ccatggcttc	240
caaaccacaaca tcctgaa	257

<210> 367
<211> 475
<212> DNA
<213> Rat

<400> 367	
cttccaaacc aacatcctga agaagccgt gcagagaata tcagcctcag agctggctcc	60
cggcttcgcg cattttggct gcagcatcca cggacaactg gacctcaatg aggacgggct	120
tgtggaccta gcagtggcg ccctggccaa cgctgtgggt ttgtggcgc gtcccgtagt	180
tcagatcaac gccagcctcc actttgagcc ttccaaagatc aacatcttcc acaaggactg	240
caagcgcaat ggcaggatg ccacctgcctt ggctgccttc ctctgcttcg gacctatctt	300
cctggcaccac cacttccaca cagcaaccgt cggcatcagg tacaatgcaa ccatggatga	360
gagacggat atgcccacggg cacatctgaa tgaggggtca gaccgttca ccaacaggc	420
tgtcctactc tcttctggtc aggaacactg tcaaaggatc aacttccacg tcctg	475

<210> 368
<211> 392
<212> DNA
<213> Mouse

<400> 368	
gcccggcggcggc aggaagcgag cagccggcgg aggccggcggc ggcggggcc ggccttggttt	60
tcctcaggct cgctccgcgc tgagccgcag cctcgcttc ctcaggctcg ctctcgcccg	120

cggccttctt	tccttcaggg	tcggtcgcgg	ccttgcgtgt	cccaggcttg	ctccccggcc	180
gcctccgtcc	tctttcaag	ctcgctctgc	ggccgttccc	acctccttcc	aggctcgctc	240
cccgccaccg	cattcctcc	cctccctcca	ggctcgctcc	cgggccggcg	ccccctcagcc	300
gcccaggctg	cgcgggtgt	cgcgtggggc	cttgtgcgt	ttcagctgg	ggtcggccga	360
ggggcggggc	gtgagcggt	ctggccgggc	ct			392
<210>	369					
<211>	824					
<212>	DNA					
<213>	Rat					
<400>	369					
cggcactgt	gactgccaag	ccggctatgg	gggcgaggcc	tgtggccagt	gtggccttgg	60
ctacttttag	gcagagcgca	acagcagcca	tctggtatgt	tcggcgtgt	ttggtccctg	120
tgcccgctgc	acaggacccc	aggaatccca	ctgtctgcag	tgcagaaag	gctggccct	180
gcatcacctc	aagtgtgtag	acatcgatga	gtgtggcaca	gagcaagcta	cctgtggagc	240
cgaccaggttc	tgtgtgaaca	cggaagggtc	ctatgagtgc	cgagattgtg	caaaggcctg	300
cctggctgt	atgggagcag	ggccaggggcc	ctgcaaaaaaa	tgcagccgt	gttaccagca	360
ggtggctcc	aagtgcctag	atgtggatga	gtgtgagaca	gtggtgtgtc	caggagagaa	420
cgagcagtgt	aaaaacacgg	aaggtagcta	ccgctgtgtc	tgtgtcaag	gttccagaca	480
ggaggacggc	atctgtgtga	aggagcagat	cccagagtcg	gcccgttct	tegccccat	540
gacagaggac	gaaatggtgg	tcctgcagca	gatgttctt	gtgtgtatca	tctgtgcact	600
ggccacactt	gctgctaagg	gggacttggt	gttcaccgcc	atcttcattt	gagctgtggc	660
agctatgact	gggtactgtt	tgtcagagcg	cagtgaccgt	gtgctggagg	gttcatcaa	720
gggtagataa	tccctgccac	cacttacagg	atttccccc	accaggctg	ccccatagagg	780
ttatttctct	ctcccgctgg	acacctggga	cagcattgtt	tctc		824
<210>	370					
<211>	1663					
<212>	DNA					
<213>	Mouse					
<400>	370					
gcagcacccca	gcgccaagcg	caccaggcac	cgcgacagac	ggcaggagca	cccatcgacg	60
ggcgtaactgg	agcgagccga	gcagagcaga	gagaggcggt	cttgaaacccg	agaaccaagc	120
cggggcggcat	ccccccggcg	ccgcacgcac	aggccggcgc	cctcttgc	tccctgtctcc	180
ccaccggcgc	cctccggcga	gcatgaggct	cctggggggc	gctgtgtcc	tgtgtctct	240
ggcgctgtgc	gcctcgcg	tggacgggtc	caagtgtaa	tgttcccgga	aggggccccaa	300
gatccgctac	agcgacgtga	agaagctgga	aatgaagcc	aagtaccac	actgcgagga	360
gaagatgggt	atcgacacca	ccaagagcat	gtccaggtac	cggggccagg	agcaactgcct	420
gcaccctaag	ctgcagagca	ccaaacgcctt	catcaagtg	tacaatgcct	gaaacgagaa	480
gcmcagggtc	tacgaagaat	agggtggacg	atcatggaaa	aaaaactcc	agggcagttg	540
agagacttca	gcagaggact	ttgcagattt	aaataaaaac	cctttctt	tcacaagcat	600
aagacaaaatt	atatatgt	atgaagctt	tcttaccagg	gtcagttttt	acattttata	660
gctgtgtgt	aaaggcttcc	agatgtgaga	tccagctgc	ctgcgcacca	gacttcatta	720
caagtggctt	tttgcgtggc	ggttggcggg	ggcgggggggg	acctcaagcc	tttctttttt	780
aaaataaggg	gtttgtatt	tgtccatatg	tcaccacaca	tctgagctt	ataagcgcct	840
gggaggaaca	gtgagcatgg	ttgagaccgt	tcacagca	actgtccgc	tccaggctt	900
caaagcttcc	gctcagagag	cctgggggt	ctgtgcagct	gccacaggct	ctctgggct	960
tatgactgtt	cagagttca	gtgtgactcc	actgtggccc	ctgtgcagg	gcaattggga	1020
gcaggtcctt	ctacatctgt	gcctagagga	actcagtcta	cttaccagaa	ggagcttcat	1080
ccccacccca	ccccccaccc	cacccagct	cattccctgt	tcacgaccag	gcaagtgtac	1140
cttaaaggag	ctgggtctt	tttttgc	aaatgtgtt	ctgaaagg	ggctgtttt	1200
gtagaagatg	cttctgaggc	atccaaagtc	cccgacgtgt	tgagaaaatg	attctcgat	1260
ttcggggagga	caagggaaga	tgcaggatta	gatgcaggac	acacaggccag	agctacacat	1320
cctcttggca	atgggagctc	ccccccccc	aaagttttgtt	tctttccctc	accccaacag	1380
aaagtgcact	ccccctca	gaatacgaa	acagcactgt	tctctgagtt	aggatgttag	1440
gacgatcctg	cgcctgc	tctccgtgt	acatattgc	ttcagtaccc	ctccccacc	1500
ccatgccaca	cactgccc	cattagaggc	cgcactgtat	ggctgtgtat	ctgttatgt	1560
aatgctgaga	ccccctgagtg	ctgcacatgc	gtttcatgtt	ttttctaaga	tgaaaagaga	1620
aagaataaaa	atatatgt	agttcccaa	aaaaaaaaaa	aaa		1663

<210> 371
 <211> 568
 <212> DNA
 <213> Human

<400> 371

ccgtcagtct	agaaggataa	gagaaagaaa	gttaagcaac	tacagggaaat	ggctttggga	60
gttccaatat	cagtctatct	tttattcaac	gcaatgacag	caactgaccga	agaggcagcc	120
gtgactgtaa	cacccccaat	cacagcccag	caaggtaact	ggacagttaa	caaaacagaa	180
gctgacaaca	tagaaggacc	catagccttg	aaggctcac	acctttgcct	ggaagatcat	240
aacaggtaact	gcatcaacgg	tgcttgcac	ttccaccatg	agctagagaa	agccatctgc	300
aggtgtctaa	aattgaaatc	gccttacaat	gtctgtctg	gagaaagacg	accactgtga	360
ggccttgtg	aagaattttc	atcaaggcat	ctgttagagat	cagtgagccc	aaaattaaag	420
ttttcagatg	aaacaacaaa	acttgtcaag	ctgactagac	tcgaaaataa	tgaaagttgg	480
gatcacaatg	aatatgagaag	ataaaattca	gcgttgcct	ttagactttg	ccatccttaa	540
ggagtgtatgg	aagccaagtg	aacaagcc				568

<210> 372
 <211> 5583
 <212> DNA
 <213> Rat

<400> 372

ctgggtgcaga	gcgtcgccaa	ggacgccccgg	agggaggcgg	gattgccaag	atatcccca	60
gtgaagtgc	tgtgtgtgt	caaaccatcc	ttggctgtcg	cgaaggcagag	aagacggctt	120
ggggctgctg	ctgtgccgca	ggagtggaga	gaccgggtga	gctgagccct	gcccggca	180
tcaccgcctg	gcgccccccaa	ggctgcctga	ataccgggt	cggccggcg	cgcgacatga	240
ccagtcctc	cgagggctct	gctttggacc	tgccaggccc	ttgcgccttc	tagttcg	300
gggaatccac	tttgatcagg	gccaccatta	ctgttaaagc	cccttcctca	gcctgtact	360
cttcccactg	gaatcggtt	tgctagaggg	tgccgtggaa	tcggaagtcc	tcccttgc	420
tcaagcaacc	agctctgc	tcttcggga	cactgcaagt	aggagcttct	ttaccaccaa	480
gttgaagtcg	cgcctgtcc	tcacagctgc	ttcggggct	accccaagcc	tgagtcggc	540
ctattgatat	tcaggacctg	aagttggcca	cggatcttgc	gctctgttag	aaaggcttgg	600
agagcggagg	aaagacgtgt	gcttctgtct	gctctctgc	ccatatatcac	tgtccatata	660
tactgtgtga	gcacatctcc	gggtgtgtg	ggctgcaaga	ccagcggccag	gaactggcc	720
tcggacacccg	tccacttttc	acgcaaccga	aagctaaagt	ccctcaaaagc	aagggtctg	780
ttgggaagat	gagttggcatt	ggctggcaga	cactgtccct	atctctggcg	ttagtgttgc	840
cgatctgaa	caaggtggcg	cctcatgcgt	gcccggccca	gtgctctgt	tcaggcagca	900
cagtggactg	tcatggctg	gcactgcga	gtgtgcccag	gaatatcccc	cgcaacacgg	960
agagactgga	tttgaatgga	aataacatca	caaggatcac	gaagacagat	tttgcgggtc	1020
tcagacacct	caggttctt	cagctcatgg	agaacaagat	cagcaccatc	gagaggggag	1080
cattccagga	tcttaaggag	ctagaaagac	tgctttaaa	cagaataaac	tttcagttgt	1140
ttcctgagct	gctgtttctt	gggactgcga	agctctaccg	gcttgatctc	agtgaaaatc	1200
agattcaagc	aattccaagg	aaggctttcc	gtgggtcagt	tgacattaaa	aatctgcagt	1260
tggattacaa	ccagatcgc	tgcattgaag	atggggcatt	ccgagctctg	cgagatctgg	1320
aagtgcac	tctgaacaat	aacaatattt	ctagatttc	agtggcaagt	ttcaaccata	1380
tgcctaaact	taggacatt	cgactccact	ccaacaaccc	atactgcac	tgccacccgg	1440
cctggctctc	ggactggctt	cgccaaaggc	cacgggtgg	tttgcact	cagtgtatgg	1500
gcccattccca	cctgaggggc	cataatgtag	cagaggttca	aaaacgagag	tttgcctgca	1560
gtgggtcacca	gtcattcatg	gctccctct	gcagtgtgt	gactgccc	attgtctgt	1620
cctgtaccaa	caacattgt	gactggcgag	ggaaaggct	cactgagatc	cccacaaatc	1680
tgcctgagac	catcacagaa	atacgtttgg	aacagaactc	cataagggtc	atccctccag	1740
gagcattctc	accataaaaa	aagcttcgac	gactagacct	gagtaataac	cagatctcg	1800
aacttgctcc	agatgccttc	caaggactgc	gttctctgaa	ttcccttgc	ctgtatggaa	1860
ataaaaatcac	agaactcccc	aaaagtttat	ttgaaggact	gtttccctta	cagctactat	1920
tattgaatgc	caacaagata	aactgccttc	gggttagatgc	ttttcaggac	ctgcacaact	1980
tgaaccccttct	ctccttatac	gacaataagc	ttcagactgt	tgccaagggg	accttctcag	2040
ctctcagagc	catccaaact	atgcattttgg	cccagaatcc	tttcattttgt	gactgccc	2100
tcaagtggct	agcggattat	ctccacacca	acccaattga	gaccagcgg	gcccgttgc	2160
ccagtcggcc	ccgcctggct	aacaaaagaa	ttggacagat	caaaagcaag	aaattccgtt	2220

gttcagctaa agagcagtat	ttcattccag gtacagaaga ttatcgatca aaattaagtg	2280
gagactgctt tgcaagacttg	gcttgtcctg aaaaatgtcg ctgtgaagg accacagtag	2340
actgctcaa tcaaaaactc	aacaaaatcc cagaccatat tccccagtag acagcagagc	2400
tgcgtctcaa taataatgaa	ttcacagtgt tagaagccac gggaaatattt aagaaacttc	2450
ctcaattgcg taaaatcaac	cttagcaaca ataagatcac tgatatcgag gagggggcat	2520
tgcagggtgc gtctgggtgt	aatgagattc tgcttaccag taaccgtttg gaaaatgttc	2580
agcataaagat gttcaaaggaa	ttggagagcc tcaaaacatt gatgctgaga agtaatcgaa	2640
taagctgtgt gggaaacgac	agtttcacag gactcggttc tgcgtctgt ctctctttat	2700
atgacaatca aattaccaca	gttgcaccag gaggcatttg tactctccat tcattatcta	2760
cactaaacctt cttggccaat	cctttcaact gtaactgtca cttggcatgg cttggagaat	2820
ggctcagaag gaaaaagaatt	gtaacagaa atcctcgatg caaaaaaccc tacttcttga	2880
aggaaatacc aatccaggat	gtagccatc aggacttcac ctgtgatgac gggaaacgatg	2940
ataatacgctg ctctccactc	tcccgttgc cttcgaatg tacttcttg gatacagtag	3000
tacgatgttag caacaagggc	ttgaaggct tacctaaagg cattccaaga gatgtcacag	3060
aactgtatct ggatgggaac	cagtttacac tggtcccgaa ggaactctcc aactacaaac	3120
attnaactact tatagactt	agtaacaaca gaataagcac cctttccaac caaagcttca	3180
gcaacatgac ccaacttctc	accttaatc tcagttacaa cctgtctgaga tgtatccctc	3240
cacggacctt tcatggattt	aatctcttc ttactgttc tctacatgga aatgacattt	3300
ctgtcggtcc tgaagggtgcc	tttggtgacc tttcagccctt gtcacactta gcaattggag	3360
ccaaacctctt ttactgtgt	tgtaacatgc agtgggttac cgactgggtg aagtcggaat	3420
ataaggaacc tggaaatttgc	cgctgtcccg gttcccgaga aatggcagat aaattgttac	3480
tcacaactcc ctccaaaaaa	tttacatgtc aaggctctgt ggatgttact attcaagcca	3540
agttaaaccctt ctgtttgtca	aatccatgtt aaaaatgtgg cacctgttaac aatgacccgg	3600
tggatttttta tcatgcacc	tgcccatatg gtttcaaggg ccaggactgt gatgtcccc	3660
ttcatgcctg tattcagtaat	ccatgttaac atggaggaac ttgcattta aaaaaggag	3720
agaatgatgg attctgggtgt	acttgcgtt atgggttga aggagaaagc tgcgtacatca	3780
atattgatga ttgcgaagat	aatgattgtg aaaataattt tacatgcgtt gatggattt	3840
acaactacac gtgtcttgc	ccaccggaaat acacaggcga actgtgtgag gaaaaactgg	3900
acttctgtgc acaagacctg	aatccctgcg acatgactc caagtgcac tgcacccaa	3960
agggattcaa gtgtactgc	actccggat acattggta gcaactgtgac atcgacttt	4020
atgactgcca agataacaag	tgcaaaaacg gtgcatttgc cacagatgca gtaacggat	4080
acacatgtgt ctgtcctgaa	ggctacagt gcttgcctg tgatgtttctt ccaccatgg	4140
tcctccctcg caccagcccc	tgtgataatt ttgattgtca gaatggagcc cagtgtatca	4200
tcagggtgaa tgaaccaata	tgccagtgtt tgccctggcta cttggagag aagtgtgaga	4260
aattggtcag tgcattttt	gtaaacaaag agtccatatct tcaatttttcc tcagccaagg	4320
ttcgacactca gacaaacatc	acacttcaga ttgcacaga tgaagacagc ggcattctct	4380
tgtacaagggtt tgacaaggac	cacattgtt tggacttca tgcaggggcga gttcgagcca	4440
gctatgacac cggctctcac	ccggcttctg ccatttacag tgcggagaca atcaatgtat	4500
gaaacttcca cattgttagag	ctactgaccc tggattcggat tctttccctc tctgtggatg	4560
gaggaagccc taaaatcatc	accaatttgc caaaacaatc tactctgaat ttgcactctc	4620
cactttacgtt aggaggatgt	cctggaaaaa ataaacgttgc ttgcgtgcgc caggccctg	4680
ggcagaacgg caccagttc	catggctgtt tccggaaacct ttacattaaac agtgaactgc	4740
aggactccg gaaagtgcct	atgcaaaaccc gatttgc tggctgtgaa ccatggccaca	4800
agaaagtgtg tggccatggc	acatggcgc ccagcagccca atcaggctt acctgtgaaat	4860
gtgagggagg gtggatgggg	ccccctctgtt accagagaac caatgtatccc tgcgtccggaa	4920
acaaaatgtt acatgggacc	tgcgtccca tcaacgcctt ctccctacagc tgcaagtgc	4980
tggaggggcca cggcggggtc	ctctgtgtt aagaagaaga tgcgttttac ccctggcagg	5040
tgcattcaatgtt caagcacggg	aagtgcaggc tctctgggtt cggggcagccc tattgtgaaat	5100
gcagcagtgg attcaccggg	gacagctgtt acagagaaat ttcttgcga ggggaacggaa	5160
taaggggattt ttaaaaaaaag	cagcagggtt acgctgcctt tcaaaacgact aagaaagtat	5220
ctcgcttggaa gtgcagaggc	gggtgtgtt gggggcagtg ctgtggaccc ctgagaagca	5280
agaggcggaa atactcttc	aatgtcacag atggatcttcc atttgcggac gaggtcgaga	5340
agggtggtaa gtgcggctgc	acgagatgtt cctccatagtt gcagctcgag aagcttctgt	5400
ctttggcgaa gtttgcacac	ttcttgcacca tgcgtttactt attcatgtt cataatggaa	5460
atatttgaaa tatattgtaa	aatacagaac agacttattt ttattatgtt aataaagact	5520
tgcgtgcatt tgaaaaaaa	ataaaataaa agacacgctt gtactaaaaaaa aaaaaaaaaa	5580
aaa		5583

<211> 83
 <212> PRT
 <213> Mouse

<400> 373

Met Pro Leu Pro Leu Leu Ala Ala Leu Cys Leu Ala Ala Ser Pro
 1 5 10 15
 Ala Pro Ala Arg Ala Cys Gln Leu Pro Ser Glu Trp Arg Pro Leu Ser
 20 25 30
 Glu Gly Cys Arg Ala Glu Leu Ala Glu Thr Ile Val Tyr Ala Lys Val
 35 40 45
 Leu Ala Leu His Pro Glu Val Pro Gly Leu Tyr Asn Tyr Leu Pro Trp
 50 55 60
 Gln Tyr Gln Ala Gly Glu Gly Leu Phe Tyr Ser Ala Glu Val Glu
 65 70 75 80
 Met Leu Val

<210> 374

<211> 405
 <212> PRT
 <213> Mouse

<400> 374

Met Pro Pro Leu Leu Leu Pro Ala Ile Tyr Met Leu Leu Phe Phe
 1 5 10 15
 Arg Val Ser Pro Thr Ile Ser Leu Gln Glu Val His Val Asn Arg Glu
 20 25 30
 Thr Met Gly Lys Ile Ala Val Ala Ser Lys Leu Met Trp Cys Ser Ala
 35 40 45
 Ala Val Asp Ile Leu Phe Leu Leu Asp Gly Ser His Ser Ile Gly Lys
 50 55 60
 Gly Ser Phe Glu Arg Ser Lys Arg Phe Ala Ile Ala Ala Cys Asp Ala
 65 70 75 80
 Leu Asp Ile Ser Pro Gly Arg Val Arg Val Gly Ala Leu Gln Phe Gly
 85 90 95
 Ser Thr Pro His Leu Glu Phe Pro Leu Asp Ser Phe Ser Thr Arg Gln
 100 105 110
 Glu Val Lys Glu Ser Ile Lys Gly Ile Val Phe Lys Gly Gly Arg Thr
 115 120 125
 Glu Thr Gly Leu Ala Leu Lys Arg Leu Ser Arg Gly Phe Pro Gly Gly
 130 135 140
 Arg Asn Gly Ser Val Pro Gln Ile Leu Ile Ile Val Thr Asp Gly Lys
 145 150 155 160
 Ser Gln Gly Pro Val Ala Leu Pro Ala Lys Gln Leu Arg Glu Arg Gly
 165 170 175
 Ile Val Val Phe Ala Val Gly Val Arg Phe Pro Arg Trp Asp Glu Leu
 180 185 190
 Leu Thr Leu Ala Ser Glu Pro Lys Asp Arg His Val Leu Leu Ala Glu
 195 200 205
 Gln Val Glu Asp Ala Thr Asn Gly Leu Leu Ser Thr Leu Ser Ser Ser
 210 215 220
 Ala Leu Cys Thr Thr Ala Asp Pro Asp Cys Arg Val Glu Pro His Pro
 225 230 235 240
 Cys Glu Arg Arg Thr Leu Glu Thr Val Arg Glu Leu Ala Gly Asn Ala
 245 250 255
 Leu Cys Trp Arg Gly Ser Arg Gln Ala Asp Thr Val Leu Ala Leu Pro
 260 265 270
 Cys Pro Phe Tyr Ser Trp Lys Arg Val Phe Gln Thr His Pro Ala Asn
 275 280 285
 Cys Tyr Arg Thr Ile Cys Pro Gly Pro Cys Asp Ser Gln Pro Cys Gln

290	295	300														
Asn	Gly	Gly	Thr	Cys	Ile	Pro	Glu	Gly	Val	Asp	Arg	Tyr	His	Cys	Leu	
305																320
					310											315
Cys	Pro	Leu	Ala	Phe	Gly	Gly	Glu	Val	Asn	Cys	Ala	Pro	Lys	Leu	Ser	
																325
Leu	Glu	Cys	Arg	Ile	Asp	Val	Leu	Phe	Leu	Leu	Asp	Ser	Ser	Ala	Gly	
																340
Thr	Thr	Leu	Gly	Gly	Phe	Arg	Arg	Ala	Lys	Ala	Phe	Val	Lys	Arg	Phe	
																355
Val	Gln	Ala	Val	Leu	Arg	Glu	Asp	Ser	Arg	Ala	Arg	Val	Gly	Ile	Ala	
																370
Ser	Tyr	Gly	Arg	Asn	Leu	Met	Val	Ala	Val	Pro	Cys	Arg	Gly	Val	Pro	
																385
Ala	Leu	Cys	Arg	Thr												390
																395
																400
																405

<210> 375

<211> 180

<212> PRT

<213> Mouse

<400> 375

Met	Glu	Leu	Ser	Asp	Val	Thr	Leu	Ile	Glu	Gly	Val	Gly	Asn	Glu	Val	
1								5		10						15
Met	Val	Val	Ala	Gly	Val	Val	Ala	Leu	Thr	Leu	Ala	Leu	Val	Leu	Ala	
																20
Trp	Leu	Ser	Thr	Tyr	Val	Ala	Asp	Ser	Gly	Asn	Asn	Gln	Leu	Leu	Gly	
																35
Thr	Ile	Val	Ser	Ala	Gly	Asp	Thr	Ser	Val	Leu	His	Leu	Gly	His	Val	
																50
Asp	Gln	Leu	Val	Asn	Gln	Gly	Thr	Pro	Glu	Pro	Thr	Glu	His	Pro	His	
																65
Pro	Ser	Gly	Gly	Asn	Asp	Asp	Lys	Ala	Glu	Glu	Thr	Ser	Asp	Ser	Gly	
																85
Gly	Asp	Ala	Thr	Gly	Glu	Pro	Gly	Ala	Arg	Gly	Glu	Met	Glu	Pro	Ser	
																100
																105
Leu	Glu	His	Leu	Leu	Asp	Ile	Gln	Gly	Leu	Pro	Lys	Arg	Gln	Ala	Gly	
																115
Leu	Gly	Ser	Ser	Arg	Pro	Glu	Ala	Pro	Leu	Gly	Leu	Asp	Asp	Gly	Ser	
																130
Cys	Leu	Ser	Pro	Ser	Pro	Ser	Leu	Ile	Asn	Val	Arg	Leu	Lys	Phe	Leu	
																145
Asn	Asp	Thr	Glu	Glu	Leu	Ala	Val	Ala	Arg	Pro	Glu	Asp	Thr	Val	Gly	
																165
Thr	Leu	Lys	Arg													180

<210> 376

<211> 68

<212> PRT

<213> Mouse

<400> 376

Met	Cys	Leu	Pro	Val	Thr	Val	Trp	Cys	His	Trp	Ala	Leu	Trp	Val	Ala	
1									5							10
His	Leu	Pro	Leu	Ile	Pro	Ser	Val	Gly	Lys	Ser	Gln	Cys	Thr	Gln	Met	
																20
Trp	His	Cys	Cys	Met	Pro	Trp	Val	Cys	Val	Gly	Asp	Cys	Leu	Cys	Leu	
																35
Ser	Asp	Pro	Leu	Trp	Leu	Cys	Leu	Leu	Lys	Glu	Thr	Glu	Thr	Pro	Cys	
																50
																55
																60

Gly Phe Leu Ser
65

<210> 377
<211> 107
<212> PRT
<213> Rat

<400> 377

Met Pro Phe Arg Leu Leu Ile Pro Leu Gly Leu Val Cys Val Leu Leu
1 5 10 15
Pro Leu His His Gly Ala Pro Gly Pro Glu Gly Thr Ala Pro Asp Pro
20 25 30
Ala His Tyr Arg Glu Arg Val Lys Ala Met Phe Tyr His Ala Tyr Asp
35 40 45
Ser Tyr Leu Glu Asn Ala Phe Pro Tyr Asp Glu Leu Arg Pro Leu Thr
50 55 60
Cys Asp Gly His Asp Thr Trp Gly Ser Phe Ser Leu Thr Leu Ile Asp
65 70 75 80
Ala Leu Asp Thr Leu Leu Ile Leu Gly Asn Thr Ser Glu Phe Gln Arg
85 90 95
Val Val Glu Val Leu Gln Asp Lys Arg Gly Leu
100 105

<210> 378
<211> 95
<212> PRT
<213> Rat

<400> 378

Met Trp Phe Leu Pro Cys Ser Val Pro Leu Val Ile Ser Ser Cys His
1 5 10 15
Ser Gln Ala Ser Pro His Trp Pro Tyr Gly Ile Ile Ser Gly Gly Gln
20 25 30
Glu Gly Leu Cys Arg Leu Trp Thr Ala Thr Cys His Ser Arg Gly Glu
35 40 45
Ser Glu Val Ser Arg Ser Ser Arg Lys Glu Asp Pro Arg Ile Pro Gln
50 55 60
Gly Ser Leu Ser Gly Asn Val Asp Phe Trp Arg Val Cys Pro Pro Cys
65 70 75 80
Ala His Thr Ser Met Asp Arg Thr Leu Gly Leu Leu Ser Cys Cys
85 90 95

<210> 379
<211> 138
<212> PRT
<213> Mouse

<400> 379

Met Asp Leu Asp Val Val Asn Met Phe Val Ile Ala Gly Gly Thr Leu
1 5 10 15
Ala Ile Pro Ile Leu Ala Phe Val Ala Ser Phe Leu Leu Trp Pro Ser
20 25 30
Ala Leu Ile Arg Ile Tyr Tyr Trp Tyr Trp Arg Arg Thr Leu Gly Met
35 40 45
Gln Val Arg Tyr Ala His His Glu Asp Tyr Gln Phe Cys Tyr Ser Phe
50 55 60
Arg Gly Arg Pro Gly His Lys Pro Ser Ile Leu Met Leu His Gly Phe
65 70 75 80
Ser Ala His Lys Asp Met Trp Leu Ser Val Val Lys Phe Leu Pro Lys
85 90 95

Asn Leu His Leu Val Cys Val Asp Met Pro Gly His Glu Gly Thr Thr
 100 105 110
 Arg Ser Ser Leu Asp Asp Leu Ser Ile Val Gly Gln Val Lys Arg Ile
 115 120 125
 His Gln Phe Val Glu Cys Leu Lys Leu Asn
 130 135

<210> 380
 <211> 81
 <212> PRT
 <213> Rat

<400> 380

Met Ala Ser Ser Ser Asn Trp Leu Ser Gly Val Asn Val Val Leu Val
 1 5 10 15
 Met Ala Tyr Gly Ser Leu Val Phe Val Leu Leu Phe Ile Phe Val Lys
 20 25 30
 Arg Gln Ile Met Arg Phe Ala Met Lys Ser Arg Arg Gly Pro His Val
 35 40 45
 Pro Val Gly His Asn Ala Pro Lys Asp Leu Lys Glu Glu Ile Asp Ile
 50 55 60
 Arg Leu Ser Arg Val Gln Asp Ile Lys Tyr Glu Pro Gln Leu Leu Ala
 65 70 75 80
 Asp

<210> 381
 <211> 257
 <212> PRT
 <213> Mouse

<400> 381

Met Arg Ser Gly Ala Leu Trp Pro Leu Leu Trp Gly Ala Leu Val Trp
 1 5 10 15
 Thr Val Gly Ser Val Gly Ala Val Met Gly Ser Glu Asp Ser Val Pro
 20 25 30
 Gly Gly Val Cys Trp Leu Gln Gln Gly Arg Glu Ala Thr Cys Ser Leu
 35 40 45
 Val Leu Lys Thr Arg Val Ser Arg Glu Glu Cys Cys Ala Ser Gly Asn
 50 55 60
 Ile Asn Thr Ala Trp Ser Asn Phe Thr His Pro Gly Asn Lys Ile Ser
 65 70 75 80
 Leu Leu Gly Phe Leu Gly Leu Val His Cys Leu Pro Cys Lys Asp Ser
 85 90 95
 Cys Asp Gly Val Glu Cys Gly Pro Gly Lys Ala Cys Arg Met Leu Gly
 100 105 110
 Gly Arg Pro Thr Leu Arg Ser Cys Val Pro Asn Cys Glu Gly Leu Pro
 115 120 125
 Ala Gly Phe Gln Val Cys Gly Ser Asp Gly Ala Thr Tyr Arg Asp Glu
 130 135 140
 Cys Glu Leu Arg Thr Ala Arg Cys Arg Gly His Pro Asp Leu Arg Val
 145 150 155 160
 Met Tyr Arg Gly Arg Cys Gln Lys Ser Cys Ala Gln Val Val Cys Pro
 165 170 175
 Arg Pro Gln Ser Cys Leu Val Asp Gln Thr Gly Ser Ala His Cys Val
 180 185 190
 Val Cys Arg Ala Ala Pro Cys Pro Val Pro Ser Asn Pro Gln Glu
 195 200 205
 Leu Cys Gly Asn Asn Asn Val Thr Tyr Ile Ser Ser Cys His Leu Arg
 210 215 220
 Gln Ala Thr Cys Phe Leu Gly Arg Ser Ile Gly Val Arg His Pro Gly

225	230	235	240
Ile Cys Thr Gly Gly Pro Lys Val Pro Ala Glu Glu Glu Asn Phe			
	245	250	255
Val			

<210> 382
<211> 285
<212> PRT
<213> Rat

<400> 382			
Met Ile Ser Trp Met Leu Leu Ala Cys Ala Leu Pro Cys Ala Ala Asp			
1	5	10	15
Pro Met Leu Gly Ala Phe Ala Arg Arg Asp Phe Gln Lys Gly Gly Pro			
20	25	30	
Gln Leu Val Cys Ser Leu Pro Gly Pro Gln Gly Pro Pro Gly Pro Pro			
35	40	45	
Gly Ala Pro Gly Ser Ser Gly Met Val Gly Arg Met Gly Phe Pro Gly			
50	55	60	
Lys Asp Gly Gln Asp Gly Gln Asp Gly Asp Arg Gly Asp Ser Gly Glu			
65	70	75	80
Glu Gly Pro Pro Gly Arg Thr Gly Asn Arg Gly Lys Gln Gly Pro Lys			
85	90	95	
Gly Lys Ala Gly Ala Ile Gly Arg Ala Gly Pro Arg Gly Pro Lys Gly			
100	105	110	
Val Ser Gly Thr Pro Gly Lys His Gly Ile Pro Gly Lys Lys Gly Pro			
115	120	125	
Lys Gly Lys Lys Gly Glu Pro Gly Leu Pro Gly Pro Cys Ser Cys Gly			
130	135	140	
Ser Ser Arg Ala Lys Ser Ala Phe Ser Val Ser Val Thr Lys Ser Tyr			
145	150	155	160
Pro Arg Glu Arg Leu Pro Ile Lys Phe Asp Lys Ile Leu Met Asn Glu			
165	170	175	
Gly Gly His Tyr Asn Ala Ser Ser Gly Lys Phe Val Cys Ser Val Pro			
180	185	190	
Gly Ile Tyr Tyr Phe Thr Tyr Asp Ile Thr Leu Ala Asn Lys His Leu			
195	200	205	
Ala Ile Gly Leu Val His Asn Gly Gln Tyr Arg Ile Arg Thr Phe Asp			
210	215	220	
Ala Asn Thr Gly Asn His Asp Val Ala Ser Gly Ser Thr Ile Leu Ala			
225	230	235	240
Leu Lys Glu Gly Asp Glu Val Trp Leu Gln Ile Phe Tyr Ser Glu Gln			
245	250	255	
Asn Gly Leu Phe Tyr Asp Pro Tyr Trp Thr Asp Ser Leu Phe Thr Gly			
260	265	270	
Phe Leu Ile Tyr Ala Asp Gln Gly Asp Pro Asn Glu Val			
275	280	285	

<210> 383
<211> 183
<212> PRT
<213> Rat

<400> 383			
Met Lys Leu Leu Cys Leu Val Ala Val Val Gly Cys Leu Leu Val Pro			
1	5	10	15
Pro Ala Gln Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys Cys Ile			
20	25	30	
Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn Gln Asn Val			
35	40	45	

Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu Pro Met Pro Val
 50 55 60
 Pro Gly His Asp Val Glu Ala Tyr Cys Leu Leu Cys Glu Cys Arg Tyr
 65 70 75 80
 Glu Glu Arg Ser Thr Thr Ile Lys Val Ile Ile Val Ile Tyr Leu
 85 90 95
 Ser Val Val Gly Ala Leu Leu Leu Tyr Met Ala Phe Leu Met Leu Val
 100 105 110
 Asp Pro Leu Ile Arg Lys Pro Asp Ala Tyr Thr Glu Gln Leu His Asn
 115 120 125
 Glu Glu Glu Asn Glu Asp Ala Arg Ser Met Ala Ala Ala Ala Ser
 130 135 140
 Ile Gly Gly Pro Arg Ala Asn Thr Val Leu Glu Arg Val Glu Gly Ala
 145 150 155 160
 Gln Gln Arg Trp Lys Leu Gln Val Gln Glu Gln Arg Lys Thr Val Phe
 165 170 175
 Asp Arg His Lys Met Leu Ser
 180

<210> 384
 <211> 292
 <212> PRT
 <213> Mouse

<400> 384
 Cys Gln Leu Pro Leu Arg Val Leu Ile Ile Ser Asn Asn Lys Leu Gly
 1 5 10 15
 Ala Leu Pro Pro Asp Ile Ser Thr Leu Gly Ser Leu Arg Gln Leu Asp
 20 25 30
 Val Ser Ser Asn Glu Leu Gln Ser Leu Pro Val Glu Leu Cys Ser Leu
 35 40 45
 Arg Ser Leu Arg Asp Leu Asn Val Arg Arg Asn Gln Leu Ser Thr Leu
 50 55 60
 Pro Asp Glu Leu Gly Asp Leu Pro Leu Val Arg Leu Asp Phe Ser Cys
 65 70 75 80
 Asn Arg Ile Ser Arg Ile Pro Val Ser Phe Cys Arg Leu Arg His Leu
 85 90 95
 Gln Val Val Leu Leu Asp Ser Asn Pro Leu Gln Ser Pro Pro Ala Gln
 100 105 110
 Ile Cys Leu Lys Gly Lys Leu His Ile Phe Lys Tyr Leu Thr Met Glu
 115 120 125
 Ala Gly Arg Arg Gly Ala Ala Leu Gly Asp Leu Val Pro Ser Arg Pro
 130 135 140
 Pro Ser Phe Ser Pro Cys Pro Ala Glu Asp Leu Phe Pro Gly Arg Arg
 145 150 155 160
 Tyr Asp Gly Gly Leu Asp Ser Gly Phe His Ser Val Asp Ser Gly Ser
 165 170 175
 Lys Arg Trp Ser Gly Asn Glu Ser Thr Asp Asp Phe Ser Glu Leu Ser
 180 185 190
 Phe Arg Ile Ser Glu Leu Ala Arg Asp Pro Arg Gly Pro Arg Gln Pro
 195 200 205
 Arg Glu Asp Gly Ala Gly Asp Gly Asp Leu Glu Gln Ile Asp Phe Ile
 210 215 220
 Asp Ser His Val Pro Gly Glu Asp Glu Asp Arg Ser Ala Ala Glu Glu
 225 230 235 240
 Gln Leu Pro Ser Glu Leu Ser Leu Val Ala Gly Asp Val Glu Lys Pro
 245 250 255
 Ser Ser Ser Arg Arg Glu Glu Pro Ala Gly Glu Glu Arg Arg Arg Pro
 260 265 270
 Asp Thr Leu Gln Leu Trp Gln Glu Arg Glu Arg Lys Gln Gln Gln
 275 280 285

Ser Gly Gly Trp
290

<210> 385
<211> 164
<212> PRT
<213> Mouse

<400> 385

Ser Arg Gln Leu Arg Ala Pro Arg Phe Asp Pro Arg Ala Gly Phe His
1 5 10 15
Ala Glu Gly Lys Asp Arg Gly Pro Ser Val Pro Gln Gly Leu Leu Lys
20 25 30
Ala Ala Arg Ser Ser Gly Gln Leu Asn Leu Ala Gly Arg Asn Leu Gly
35 40 45
Glu Val Pro Gln Cys Val Trp Arg Ile Asn Val Asp Ile Pro Glu Glu
50 55 60
Ala Asn Gln Asn Leu Ser Phe Ser Ser Thr Glu Arg Trp Trp Asp Gln
65 70 75 80
Thr Asp Leu Thr Lys Leu Ile Ile Ser Ser Asn Lys Leu Gln Ser Leu
85 90 95
Ser Asp Asp Leu Arg Leu Leu Pro Ala Leu Thr Val Leu Asp Ile His
100 105 110
Asp Asn Gln Leu Thr Ser Leu Pro Ser Ala Ile Arg Glu Leu Asp Asn
115 120 125
Leu Gln Lys Leu Asn Val Ser His Asn Lys Leu Lys Ile Leu Pro Glu
130 135 140
Glu Ile Thr Ser Leu Lys Asn Leu Arg Thr Leu His Leu Gln His Asn
145 150 155 160
Glu Leu Thr Cys

<210> 386
<211> 71
<212> PRT
<213> Mouse

<400> 386

Ser Leu Ser Ile Leu Pro Ala Val Arg Val Ser Pro Arg Pro Thr Tyr
1 5 10 15
Pro Ser Thr Ala Ser Ser Met Ala Ala Phe Leu Val Thr Gly Phe Phe
20 25 30
Phe Ser Leu Phe Val Val Leu Gly Met Glu Pro Arg Ala Leu Phe Arg
35 40 45
Pro Asp Lys Ala Leu Pro Leu Ser Cys Ala Lys Pro Thr Ser Leu Cys
50 55 60
Val Gln Ser Ser Phe Leu Gly
65 70

<210> 387
<211> 126
<212> PRT
<213> Mouse

<400> 387

Glu Tyr Glu Ala Arg Val Leu Glu Lys Ser Leu Arg Lys Glu Ser Arg
1 5 10 15
Asn Lys Glu Thr Asp Lys Val Lys Leu Thr Trp Arg Asp Arg Phe Pro
20 25 30
Ala Tyr Phe Thr Asn Leu Val Ser Ile Ile Phe Met Ile Ala Val Thr
35 40 45

Phe Ala Ile Val Leu Gly Val Ile Ile Tyr Arg Ile Ser Thr Ala Ala
 50 55 60
 Ala Leu Ala Met Asn Ser Ser Pro Ser Val Arg Ser Asn Ile Arg Val
 65 70 75 80
 Thr Val Thr Ala Thr Ala Val Ile Ile Asn Leu Val Val Ile Ile Leu
 85 90 95
 Leu Asp Glu Val Tyr Gly Cys Ile Ala Arg Trp Leu Thr Lys Ile Gly
 100 105 110
 Glu Cys His Val Gln Asp Ser Ile Gly Ser Met Gly Leu Gly
 115 120 125

<210> 388
<211> 84
<212> PRT
<213> Rat

<400> 388
Ala Ala Glu Asn Glu Met Pro Val Ala Val Gly Pro Tyr Gly Gln Ser
 1 5 10 15
 Gln Pro Ser Cys Phe Asp Arg Val Lys Met Gly Phe Val Met Gly Cys
 20 25 30
 Ala Val Gly Met Ala Ala Gly Ala Leu Phe Gly Thr Phe Ser Cys Leu
 35 40 45
 Arg Ile Gly Met Arg Gly Arg Glu Leu Met Gly Gly Ile Gly Lys Thr
 50 55 60
 Met Met Gln Ser Gly Gly Thr Phe Gly Thr Phe Met Ala Ile Gly Met
 65 70 75 80
 Gly Ile Arg Cys

<210> 389
<211> 284
<212> PRT
<213> Rat

<400> 389
Gly Gly Ser Ser Val Ser His Val Leu Arg Gly Ser Gly Gln Glu Arg
 1 5 10 15
 Ser Pro Pro Pro Ala Ser Met Gln Pro Pro Trp Gly Leu Ala Leu Pro
 20 25 30
 Leu Leu Leu Pro Trp Val Ala Gly Gly Val Gly Thr Ser Pro Arg Asp
 35 40 45
 Tyr Trp Leu Pro Ala Leu Ala His Gln Pro Gly Val Cys His Tyr Gly
 50 55 60
 Thr Lys Thr Ala Cys Cys Tyr Gly Trp Lys Arg Asn Ser Lys Gly Val
 65 70 75 80
 Cys Glu Ala Val Cys Glu Pro Arg Cys Lys Phe Gly Glu Cys Val Gly
 85 90 95
 Pro Asn Lys Cys Arg Cys Phe Pro Gly Tyr Thr Gly Lys Thr Cys Ser
 100 105 110
 Gln Asp Val Asn Glu Cys Ala Phe Lys Pro Arg Pro Cys Gln His Arg
 115 120 125
 Cys Val Asn Thr His Gly Ser Tyr Lys Cys Phe Cys Leu Ser Gly His
 130 135 140
 Met Leu Leu Pro Asp Ala Thr Cys Ser Asn Ser Arg Thr Cys Ala Arg
 145 150 155 160
 Ile Asn Cys Gln Tyr Ser Cys Glu Asp Thr Ala Glu Gly Pro Arg Cys
 165 170 175
 Val Cys Pro Ser Ser Gly Leu Arg Leu Gly Pro Asn Gly Arg Val Cys
 180 185 190
 Leu Asp Ile Asp Glu Cys Ala Ser Ser Lys Ala Val Cys Pro Ser Asn

195	200	205
Arg Arg Cys Val Asn Thr Phe Gly Ser Tyr Tyr Cys Lys Cys His Ile		
210	215	220
Gly Phe Glu Leu Lys Tyr Ile Ser Arg Arg Tyr Asp Cys Val Asp Ile		
225	230	235
Asn Glu Cys Thr Leu Asn Thr Arg Thr Cys Ser Pro His Ala Asn Cys		240
245	250	255
Leu Asn Thr Gln Gly Ser Phe Lys Cys Lys Cys Lys Gln Gly Tyr Arg		
260	265	270
Gly Asn Gly Leu Gln Cys Ser Val Ile Pro Glu His		
275	280	

<210> 390
<211> 85
<212> PRT
<213> Rat

<400> 390		
Gly Ala Pro Met Tyr Phe Ser Glu Gly Arg Glu Arg Gly Lys Val Tyr		
1	5	10
Val Tyr Asn Leu Arg Gln Asn Arg Phe Val Phe Asn Gly Thr Leu Lys		
20	25	30
Asp Ser His Ser Tyr Gln Asn Ala Arg Phe Gly Ser Cys Ile Ala Ser		
35	40	45
Val Gln Asp Leu Asn Gln Asp Ser Tyr Asn Asp Val Val Val Gly Ala		
50	55	60
Pro Gln Glu Asp Ser His Arg Gly Ala Ile Tyr Ile Phe His Gly Phe		
65	70	75
Gln Thr Asn Ile Leu		80
85		

<210> 391
<211> 158
<212> PRT
<213> Rat

<400> 391		
Phe Gln Thr Asn Ile Leu Lys Lys Pro Val Gln Arg Ile Ser Ala Ser		
1	5	10
Glu Leu Ala Pro Gly Leu Gln His Phe Gly Cys Ser Ile His Gly Gln		
20	25	30
Leu Asp Leu Asn Glu Asp Gly Leu Val Asp Leu Ala Val Gly Ala Leu		
35	40	45
Gly Asn Ala Val Val Leu Trp Ala Arg Pro Val Val Gln Ile Asn Ala		
50	55	60
Ser Leu His Phe Glu Pro Ser Lys Ile Asn Ile Phe His Lys Asp Cys		
65	70	75
Lys Arg Asn Gly Arg Asp Ala Thr Cys Leu Ala Ala Phe Leu Cys Phe		
85	90	95
Gly Pro Ile Phe Leu Ala Pro His Phe His Thr Ala Thr Val Gly Ile		
100	105	110
Arg Tyr Asn Ala Thr Met Asp Glu Arg Arg Tyr Met Pro Arg Ala His		
115	120	125
Leu Asp Glu Gly Ala Asp Gln Phe Thr Asn Arg Ala Val Leu Leu Ser		
130	135	140
Ser Gly Gln Glu His Cys Gln Arg Ile Asn Phe His Val Leu		
145	150	155

<210> 392
<211> 124
<212> PRT

<213> Mouse

<400> 392

Ala Ala Glu Gln Glu Ala Ser Ser Arg Arg Arg Arg Gly Gly Ala Gly
 1 5 10 15
 Pro Ala Leu Phe Ser Ser Gly Ser Leu Arg Ser Glu Pro Gln Pro Arg
 20 25 30
 Leu Pro Gln Ala Arg Ser Arg Pro Arg Pro Ser Phe Leu Gln Ala Arg
 35 40 45
 Ser Arg Pro Cys Leu Ser Gln Ala Cys Ser Pro Ala Ala Ser Val Leu
 50 55 60
 Ser Ser Ser Ser Leu Cys Gly Arg Ser His Leu Leu Pro Gly Ser Leu
 65 70 75 80
 Pro Ala Thr Ala Phe Leu Leu Leu Pro Gly Ser Leu Pro Gly Arg
 85 90 95
 Arg Pro Ser Ala Ala Gln Ala Ala Pro Val Leu Ala Trp Gly Leu Val
 100 105 110
 Ala Phe Gln Leu Gly Val Ala Ala Gly Ala Gly Arg
 115 120

<210> 393

<211> 242
<212> PRT
<213> Rat

<400> 393

Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Gly Glu Ala Cys Gly Gln
 1 5 10 15
 Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ser Ser His Leu Val
 20 25 30
 Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Thr Gly Pro Glu Glu
 35 40 45
 Ser His Cys Leu Gln Cys Arg Lys Gly Trp Ala Leu His His Leu Lys
 50 55 60
 Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gln Ala Thr Cys Gly Ala
 65 70 75 80
 Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg Asp Cys
 85 90 95
 Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Pro Cys Lys
 100 105 110
 Lys Cys Ser Arg Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu Asp Val
 115 120 125
 Asp Glu Cys Glu Thr Val Val Cys Pro Gly Glu Asn Glu Gln Cys Glu
 130 135 140
 Asn Thr Glu Gly Ser Tyr Arg Cys Val Cys Ala Glu Gly Phe Arg Gln
 145 150 155 160
 Glu Asp Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala Gly Phe
 165 170 175
 Phe Ala Glu Met Thr Glu Asp Glu Met Val Val Leu Gln Gln Met Phe
 180 185 190
 Phe Gly Val Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys Gly Asp
 195 200 205
 Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met Thr Gly
 210 215 220
 Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe Ile Lys
 225 230 235 240
 Gly Arg

<210> 394

<211> 99

<212> PRT
 <213> Mouse

<400> 394

Met	Arg	Leu	Leu	Ala	Ala	Ala	Leu	Leu	Leu	Leu	Leu	Leu	Ala	Leu	Cys
1				5				10					15		
Ala	Ser	Arg	Val	Asp	Gly	Ser	Lys	Cys	Lys	Cys	Ser	Arg	Lys	Gly	Pro
			20				25					30			
Lys	Ile	Arg	Tyr	Ser	Asp	Val	Lys	Lys	Leu	Glu	Met	Lys	Pro	Lys	Tyr
			35				40				45				
Pro	His	Cys	Glu	Glu	Lys	Met	Val	Ile	Val	Thr	Thr	Lys	Ser	Met	Ser
						50		55			60				
Arg	Tyr	Arg	Gly	Gln	Glu	His	Cys	Leu	His	Pro	Lys	Leu	Gln	Ser	Thr
						65		70		75			80		
Lys	Arg	Phe	Ile	Lys	Trp	Tyr	Asn	Ala	Trp	Asn	Glu	Lys	Arg	Arg	Val
						85			90			95			
Tyr	Glu	Glu													

<210> 395

<211> 103
 <212> PRT
 <213> Human

<400> 395

Met	Ala	Leu	Gly	Val	Pro	Ile	Ser	Val	Tyr	Leu	Leu	Phe	Asn	Ala	Met
1				5				10				15			
Thr	Ala	Leu	Thr	Glu	Glu	Ala	Ala	Val	Thr	Val	Thr	Pro	Pro	Ile	Thr
				20				25				30			
Ala	Gln	Gln	Gly	Asn	Trp	Thr	Val	Asn	Lys	Thr	Glu	Ala	Asp	Asn	Ile
				35				40			45				
Glu	Gly	Pro	Ile	Ala	Leu	Lys	Phe	Ser	His	Leu	Cys	Leu	Glu	Asp	His
				50			55			60					
Asn	Ser	Tyr	Cys	Ile	Asn	Gly	Ala	Cys	Ala	Phe	His	His	Glu	Leu	Glu
				65			70			75			80		
Lys	Ala	Ile	Cys	Arg	Cys	Leu	Lys	Leu	Lys	Ser	Pro	Tyr	Asn	Val	Cys
				85				90			95				
Ser	Gly	Glu	Arg	Arg	Pro	Leu									100

<210> 396

<211> 1529
 <212> PRT
 <213> Rat

<400> 396

Met	Ser	Gly	Ile	Gly	Trp	Gln	Thr	Leu	Ser	Leu	Ser	Leu	Ala	Leu	Val
1					5			10					15		
Leu	Ser	Ile	Leu	Asn	Lys	Val	Ala	Pro	His	Ala	Cys	Pro	Ala	Gln	Cys
					20			25			30				
Ser	Cys	Ser	Gly	Ser	Thr	Val	Asp	Cys	His	Gly	Leu	Ala	Leu	Arg	Ser
					35			40			45				
Val	Pro	Arg	Asn	Ile	Pro	Arg	Asn	Thr	Glu	Arg	Leu	Asp	Leu	Asn	Gly
				50			55			60					
Asn	Asn	Ile	Thr	Arg	Ile	Thr	Lys	Thr	Asp	Phe	Ala	Gly	Leu	Arg	His
				65			70			75			80		
Leu	Arg	Val	Leu	Gln	Leu	Met	Glu	Asn	Lys	Ile	Ser	Thr	Ile	Glu	Arg
						85			90			95			
Gly	Ala	Phe	Gln	Asp	Leu	Lys	Glu	Leu	Glu	Arg	Leu	Arg	Leu	Asn	Arg
					100			105			110				
Asn	Asn	Leu	Gln	Leu	Phe	Pro	Glu	Leu	Leu	Phe	Leu	Gly	Thr	Ala	Lys

115	120	125
Leu Tyr Arg Leu Asp Leu Ser Glu Asn Gln Ile Gln Ala Ile Pro Arg		
130	135	140
Lys Ala Phe Arg Gly Ala Val Asp Ile Lys Asn Leu Gln Leu Asp Tyr		
145	150	155
Asn Gln Ile Ser Cys Ile Glu Asp Gly Ala Phe Arg Ala Leu Arg Asp		
165	170	175
Leu Glu Val Leu Thr Leu Asn Asn Asn Ile Thr Arg Leu Ser Val		
180	185	190
Ala Ser Phe Asn His Met Pro Lys Leu Arg Thr Phe Arg Leu His Ser		
195	200	205
Asn Asn Leu Tyr Cys Asp Cys His Leu Ala Trp Leu Ser Asp Trp Leu		
210	215	220
Arg Gln Arg Pro Arg Val Gly Leu Tyr Thr Gln Cys Met Gly Pro Ser		
225	230	235
His Leu Arg Gly His Asn Val Ala Glu Val Gln Lys Arg Glu Phe Val		
245	250	255
Cys Ser Gly His Gln Ser Phe Met Ala Pro Ser Cys Ser Val Leu His		
260	265	270
Cys Pro Ile Ala Cys Thr Cys Ser Asn Asn Ile Val Asp Cys Arg Gly		
275	280	285
Lys Gly Leu Thr Glu Ile Pro Thr Asn Leu Pro Glu Thr Ile Thr Glu		
290	295	300
Ile Arg Leu Glu Gln Asn Ser Ile Arg Val Ile Pro Pro Gly Ala Phe		
305	310	315
Ser Pro Tyr Lys Lys Leu Arg Arg Leu Asp Leu Ser Asn Asn Gln Ile		
325	330	335
Ser Glu Leu Ala Pro Asp Ala Phe Gln Gly Leu Arg Ser Leu Asn Ser		
340	345	350
Leu Val Leu Tyr Gly Asn Lys Ile Thr Glu Leu Pro Lys Ser Leu Phe		
355	360	365
Glu Gly Leu Phe Ser Leu Gln Leu Leu Leu Asn Ala Asn Lys Ile		
370	375	380
Asn Cys Leu Arg Val Asp Ala Phe Gln Asp Leu His Asn Leu Asn Leu		
385	390	395
Leu Ser Leu Tyr Asp Asn Lys Leu Gln Thr Val Ala Lys Gly Thr Phe		
405	410	415
Ser Ala Leu Arg Ala Ile Gln Thr Met His Leu Ala Gln Asn Pro Phe		
420	425	430
Ile Cys Asp Cys His Leu Lys Trp Leu Ala Asp Tyr Leu His Thr Asn		
435	440	445
Pro Ile Glu Thr Ser Gly Ala Arg Cys Thr Ser Pro Arg Arg Leu Ala		
450	455	460
Asn Lys Arg Ile Gly Gln Ile Lys Ser Lys Lys Phe Arg Cys Ser Ala		
465	470	475
Lys Glu Gln Tyr Phe Ile Pro Gly Thr Glu Asp Tyr Arg Ser Lys Leu		
485	490	495
Ser Gly Asp Cys Phe Ala Asp Leu Ala Cys Pro Glu Lys Cys Arg Cys		
500	505	510
Glu Gly Thr Thr Val Asp Cys Ser Asn Gln Lys Leu Asn Lys Ile Pro		
515	520	525
Asp His Ile Pro Gln Tyr Thr Ala Glu Leu Arg Leu Asn Asn Asn Glu		
530	535	540
Phe Thr Val Leu Glu Ala Thr Gly Ile Phe Lys Leu Pro Gln Leu		
545	550	555
Arg Lys Ile Asn Leu Ser Asn Asn Lys Ile Thr Asp Ile Glu Glu Gly		
565	570	575
Ala Phe Glu Gly Ala Ser Gly Val Asn Glu Ile Leu Leu Thr Ser Asn		
580	585	590
Arg Leu Glu Asn Val Gln His Lys Met Phe Lys Gly Leu Glu Ser Leu		
595	600	605

Lys Thr Leu Met Leu Arg Ser Asn Arg Ile Ser Cys Val Gly Asn Asp
 610 615 620
 Ser Phe Thr Gly Leu Gly Ser Val Arg Leu Leu Ser Leu Tyr Asp Asn
 625 630 635 640
 Gln Ile Thr Thr Val Ala Pro Gly Ala Phe Gly Thr Leu His Ser Leu
 645 650 655
 Ser Thr Leu Asn Leu Leu Ala Asn Pro Phe Asn Cys Asn Cys His Leu
 660 665 670
 Ala Trp Leu Gly Glu Trp Leu Arg Arg Lys Arg Ile Val Thr Gly Asn
 675 680 685
 Pro Arg Cys Gln Lys Pro Tyr Phe Leu Lys Glu Ile Pro Ile Gln Asp
 690 695 700
 Val Ala Ile Gln Asp Phe Thr Cys Asp Asp Gly Asn Asp Asp Asn Ser
 705 710 715 720
 Cys Ser Pro Leu Ser Arg Cys Pro Ser Glu Cys Thr Cys Leu Asp Thr
 725 730 735
 Val Val Arg Cys Ser Asn Lys Gly Leu Lys Val Leu Pro Lys Gly Ile
 740 745 750
 Pro Arg Asp Val Thr Glu Leu Tyr Leu Asp Gly Asn Gln Phe Thr Leu
 755 760 765
 Val Pro Lys Glu Leu Ser Asn Tyr Lys His Leu Thr Leu Ile Asp Leu
 770 775 780
 Ser Asn Asn Arg Ile Ser Thr Leu Ser Asn Gln Ser Phe Ser Asn Met
 785 790 795 800
 Thr Gln Leu Leu Thr Leu Ile Leu Ser Tyr Asn Arg Leu Arg Cys Ile
 805 810 815
 Pro Pro Arg Thr Phe Asp Gly Leu Lys Ser Leu Arg Leu Leu Ser Leu
 820 825 830
 His Gly Asn Asp Ile Ser Val Val Pro Glu Gly Ala Phe Gly Asp Leu
 835 840 845
 Ser Ala Leu Ser His Leu Ala Ile Gly Ala Asn Pro Leu Tyr Cys Asp
 850 855 860
 Cys Asn Met Gln Trp Leu Ser Asp Trp Val Lys Ser Glu Tyr Lys Glu
 865 870 875 880
 Pro Gly Ile Ala Arg Cys Ala Gly Pro Gly Glu Met Ala Asp Lys Leu
 885 890 895
 Leu Leu Thr Thr Pro Ser Lys Lys Phe Thr Cys Gln Gly Pro Val Asp
 900 905 910
 Val Thr Ile Gln Ala Lys Cys Asn Pro Cys Leu Ser Asn Pro Cys Lys
 915 920 925
 Asn Asp Gly Thr Cys Asn Asn Asp Pro Val Asp Phe Tyr Arg Cys Thr
 930 935 940
 Cys Pro Tyr Gly Phe Lys Gly Gln Asp Cys Asp Val Pro Ile His Ala
 945 950 955 960
 Cys Ile Ser Asn Pro Cys Lys His Gly Gly Thr Cys His Leu Lys Glu
 965 970 975
 Gly Glu Asn Asp Gly Phe Trp Cys Thr Cys Ala Asp Gly Phe Glu Gly
 980 985 990
 Glu Ser Cys Asp Ile Asn Ile Asp Asp Cys Glu Asp Asn Asp Cys Glu
 995 1000 1005
 Asn Asn Ser Thr Cys Val Asp Gly Ile Asn Asn Tyr Thr Cys Leu Cys
 1010 1015 1020
 Pro Pro Glu Tyr Thr Gly Glu Leu Cys Glu Glu Lys Leu Asp Phe Cys
 1025 1030 1035 104
 Ala Gln Asp Leu Asn Pro Cys Gln His Asp Ser Lys Cys Ile Leu Thr
 1045 1050 1055
 Pro Lys Gly Phe Lys Cys Asp Cys Thr Pro Gly Tyr Ile Gly Glu His
 1060 1065 1070
 Cys Asp Ile Asp Phe Asp Asp Cys Gln Asp Asn Lys Cys Lys Asn Gly
 1075 1080 1085
 Ala His Cys Thr Asp Ala Val Asn Gly Tyr Thr Cys Val Cys Pro Glu

1090	1095	1100
Gly	Tyr Ser Gly Leu Phe Cys Glu Phe Ser Pro Pro Met Val Leu Leu	
1105	1110	1115
Arg	Thr Ser Pro Cys Asp Asn Phe Asp Cys Gln Asn Gly Ala Gln Cys	112
	1125	1130
Ile	Ile Arg Val Asn Glu Pro Ile Cys Gln Cys Leu Pro Gly Tyr Leu	1135
	1140	1145
Gly	Glu Lys Cys Glu Lys Leu Val Ser Val Asn Phe Val Asn Lys Glu	
	1155	1160
Ser	Tyr Leu Gln Ile Pro Ser Ala Lys Val Arg Pro Gln Thr Asn Ile	1165
	1170	1175
Thr	Leu Gln Ile Ala Thr Asp Glu Asp Ser Gly Ile Leu Leu Tyr Lys	
1185	1190	1195
Gly	Asp Lys Asp His Ile Ala Val Glu Leu Tyr Arg Gly Arg Val Arg	120
	1205	1210
Ala	Ser Tyr Asp Thr Gly Ser His Pro Ala Ser Ala Ile Tyr Ser Val	1215
	1220	1225
Glu	Thr Ile Asn Asp Gly Asn Phe His Ile Val Glu Leu Leu Thr Leu	
	1235	1240
Asp	Ser Ser Leu Ser Leu Ser Val Asp Gly Gly Ser Pro Lys Ile Ile	1245
	1250	1255
Thr	Asn Leu Ser Lys Gln Ser Thr Leu Asn Phe Asp Ser Pro Leu Tyr	
1265	1270	1275
Val	Gly Gly Met Pro Gly Lys Asn Asn Val Ala Ser Leu Arg Gln Ala	128
	1285	1290
Pro	Gly Gln Asn Gly Thr Ser Phe His Gly Cys Ile Arg Asn Leu Tyr	1295
	1300	1305
Ile	Asn Ser Glu Leu Gln Asp Phe Arg Lys Val Pro Met Gln Thr Gly	
	1315	1320
Ile	Leu Pro Gly Cys Glu Pro Cys His Lys Lys Val Cys Ala His Gly	
	1330	1335
Thr	Cys Gln Pro Ser Ser Gln Ser Gly Phe Thr Cys Glu Cys Glu Glu	
1345	1350	1355
Gly	Trp Met Gly Pro Leu Cys Asp Gln Arg Thr Asn Asp Pro Cys Leu	136
	1365	1370
Gly	Asn Lys Cys Val His Gly Thr Cys Leu Pro Ile Asn Ala Phe Ser	1375
	1380	1385
Tyr	Ser Cys Lys Cys Leu Glu Gly His Gly Gly Val Leu Cys Asp Glu	
	1395	1400
Glu	Glu Asp Leu Phe Asn Pro Cys Gln Val Ile Lys Cys Lys His Gly	
	1410	1415
Lys	Cys Arg Leu Ser Gly Leu Gly Gln Pro Tyr Cys Glu Cys Ser Ser	
	1425	1430
Gly	Phe Thr Gly Asp Ser Cys Asp Arg Glu Ile Ser Cys Arg Gly Glu	
	1445	1450
Arg	Ile Arg Asp Tyr Tyr Gln Lys Gln Gln Gly Tyr Ala Ala Cys Gln	
	1460	1465
Thr	Thr Lys Lys Val Ser Arg Leu Glu Cys Arg Gly Gly Cys Ala Gly	1470
	1475	1480
Gly	Gln Cys Cys Gly Pro Leu Arg Ser Lys Arg Arg Lys Tyr Ser Phe	
	1490	1495
Glu	Cys Thr Asp Gly Ser Ser Phe Val Asp Glu Val Glu Lys Val Val	1500
	1505	1510
Lys	Cys Gly Cys Thr Arg Cys Ala Ser	1515
	1525	152

<210> 397

<211> 8

<212> PRT

<213> Mouse

<400> 397

Trp Tyr Asn Ala Trp Asn Glu Lys
 1 5

<210> 398

<211> 7

<212> PRT

<213> Mouse

<400> 398

Met Val Ile Ile Thr Thr Lys
 1 5

<210> 399

<211> 2206

<212> DNA

<213> Rat

<400> 399

gtttcgtctt aacgcctct	ctgcgttggc agaactggcc	gtgggctccc gctggatcca	60
tggAACATCT cagccccac	agactaaAGCG gagactgatG	ttgggtggcgT tcctcggaGc	120
atcccggtg actgcAAGTA	ccggctccCT gtggAAAGAG	gctcaCgcAG aatctccacc	180
gagcgtcaac agcaagaAGA	ctgacgttgg agataaggGGG	aagAGCAAG acaccGGGA	240
agtgtccAGC catgaaggAA	gCGCTGCAGA cactgcggCC	gagccttacc cagaggAGAA	300
gaagaAGAAAG cgttctggAT	tcagAGACAG aaaAGTAATG	gagtatgAGA ataggatCCG	360
agcctactCC acaccAGACA	aaatcttCCG gtattttGC	accttGAAAG taatcaacGA	420
acctggtaa actgaAGTGT	tcatgACCCC acaggACTT	gtgcgtCCA taacacCCAA	480
tgagaAGCAG ccagaACACT	tgggccttGA tcagTACATA	ataaAGCCT tcgatggAAA	540
gaaaATTGCC caggaACGAG	aaaAGTTTC tgacGAAGGC	agcatCTCT ataccTTGG	600
agagtgtggA ctcATCTCCT	tctctGACTA catTTCTC	acaacGGTGC tctccACTCC	660
tcagAGAAAT ttCGAAATTG	cTTCAAGAT gtttGACTTG	aatGGAGATG gagaAGTAGA	720
catggaggAG tttgAGCAGG	ttcaaAGCAT cattcgCTCC	cagaccAGCA tgggcatGCG	780
tcacAGAGAT cgtCCAACtA	ctggGAACAC CCTCAAGTCT	ggCTTATGTT CGGCCCTCAC	840
gacctactTT ttggAGCTG	atctCAAAGG gaaACTGACC	attaaaaACT tcctGGAATT	900
tcagcgtAAA ctgcAGCATG	acgttCTAAAG GCTGGAGTT	gaacGCCATG acccGGTAGA	960
cgggagaATC tctgAGAGGC	agttcGGTGG catGTCGTC	gcctACAGTG gagtGAGTC	1020
caagaAGCTG accGCCATGC	agaggcAGCT gaAGAAAGCAC	ttcaAGGATG ggaAGGGCCT	1080
gacttCCAG gaggTGGGAGA	acttCTTCAC tttcCTGAAG	aacATTAATG acGTGACAC	1140
tgcgttaAGC tttaccACA	tggctGGAGC atccCTCGAT	aaAGTGAACCA tgcAGCAAGT	1200
ggccAGGACA gtggCGAAAG	tcgAGCTGTC ggaccACGTC	tgtGACGTGG tgTTTGCACT	1260
cTTGACTGC gacGGCAATG	gggAGCTGAG caataAGGAG	tttGTCtCCA tcatGAAGCA	1320
gCGGCTGATG agaggcCTGG	agaAGCCCA ggACATGGC	tttACCCGTC tcatGAGGC	1380
catgtggAAA tGTGCCCCAG	aaaccGCTG ggactTTGCT	ctacCCAAAT agtACCCAC	1440
ctcCTGACC ttAGCACCCC	ttAGCACCTGG atGTCCTTC	atGTCGTCGA tgcttCTGGG	1500
agtagtGCC ACATCCCAT	ctttCTGGAA gtGACCTCTG	gcctcAGCTG gCTGACCTCT	1560
ccatCCTCCC ctGACCCAGT	ctAGTGTTCG CTAGGCTGTC	aatCTGAGT CAGATCAAAG	1620
gtctaAGACA ggaACAAAGTC	ttcaAAAGCAG AGACCATAGC	tccCTTAACC agtGCCCGT	1680
gggtAAATGC ggggAGGCCCT	cccACACTGG CAGCCCCAGG	aggCATCTC gCAGTCCTC	1740
actgtggatt taAGTAACAC	aaACGTCCtT GccATCTCC	tcccACTGTT ttaaAGCTGC	1800
aagtTGGAA atactCTGGC	aggCAAAAGGG aAGTCTGTG	tGAACGGTAA tgcAGATGAC	1860
cctggTACCC tGATCTGGCA	gggcACCTGG TCAAGGGAG	GGTCTGCTC agacACCAGC	1920
ggcAccAGGA aggCTCTTG	CCACCAgCac AGCTCCCGAT	tcaaAGTCGc tgcttGAGC	1980
ggCTCTCCAG AACCTCTGC	TCTTTTTT TtCCTCCCGG	ctccCTGCGA tgcttCCTCT	2040
gggactCTGC ttCACTAGAG	CCAGGGCTGA GCCCTGTTC	tttgtGTCTT gttCCCTCTC	2100
tatagacCTG cAGAGCgCAG	CTCAGAGCT ATCTGCCCTC	tGTCTAATAC ACTCGTAAAT	2160
atcacttAA ttATAGCACT	ttGCAggAAA tacCCAAA	aaaaAA	2206

<210> 400

<211> 160

<212> DNA

<213> Mouse

<400> 400
tcgcaggacg ctcactggac agcttggct ttttcagtt gattttatgg tttgcacatctt 60
tctcttctc tttttctgtt tcttggccc cttcccccctt ttccctggta gaaagcacat 120
attactgagc cattgcaagc aatgggaggg gtccacaatg 160

<210> 401
<211> 430
<212> DNA
<213> Rat

<400> 401
ggcaccagcc cggcttctgt gctccgctca gtctccagcg atccctccct acctccgccc 60
tccatggcgt cgctccctgt ctgtggcct aagctggccg cctgtggcat cgtcctcagc 120
gcctggggag tgatcatgtt gataatgtc gggatatttt tcaatgtcca ttctgctgtg 180
ttaattgagg atgtccccctt cacagagaaa gattttgaga acggccctca gaacatatac 240
aacctgtacg agcaagtca g tacaactgt ttcatcgccg cggccctcta cctcccttc 300
gggggcttctt cttctgcca agttcgctc aataagcgca aggaatacat ggtgcgctag 360
agcgagtcg gactctcccc attccctcc ttattnaaag actcctcagt ccatctgttc 420
cactcatctg 430

<210> 402
<211> 190
<212> DNA
<213> Rat

<400> 402
ccgaatacgc ggccgcgtcg acataactgcc ttagatgtt gtatccatgtt tttttatatg 60
ttgcacactg aattgaagaa atgtggttt ttcttggttt gttttatgtt gtttcttgg 120
ttttgtttt gttttgctt ttacttccc aggtttgact atttgcaat gccgtcgacg 180
cggccgcgaa 190

<210> 403
<211> 1774
<212> DNA
<213> Mouse

<400> 403
ccaaagtggc gggcgagggc cggggccgggt gggctctggg gctgctgcgc accttcgacg 60
ccggcgaatt cgcaggctgg gagaaggctgg gctcggccgg ctccggcag gtgtacaagg 120
tgcgccatgt gcactggaa acgtggctcg cgatcaagtg ctgcggccagt ctgcacgtcg 180
acgacaggga acgaatggag ctccctggagg aagctaagaa gatggagatg gccaagttcc 240
gatacattct acctgtgtac ggcataatgcc aggaacccctgt cggcttgcgc atggagtaca 300
tggagacagg ctccctggag aagctgtgg cctcagagcc attgccttgg gacctgcgt 360
ttcgcacatgt gcacgagaca gccgtggca tgaacttccct gcattgcgt tctccgcac 420
tgctgcaccc agacctgtaa ccagcgaaca tcctgtggg tgcccaactac catgtcaaga 480
tttctgactt tgggctggcc aagtgcataatg gcatgtccca ctctcatgac ctcagcatgg 540
atggcctgtt tggataaatc gtttacatcc cttccagagcg aattcgtgg aagagccgt 600
tgttgacac caaacatgtt gtatacagct tcgcattgt gatctgggt gtgtttacac 660
agaagaagcc atttgcagat gaaaagaaca tcctacacat catgtaaaa gtggtaaagg 720
gccaccgccc agagctgcca cccatctgca gacccggcc gcgtgcctgt gccaagccctga 780
taggataat gcaacgggtgc tggcatgcac acccacaggt gcgccccacc ttccaaagaaa 840
ttacctctga aacagaagac ctttgcata gacccatgtt gggatggaaa gacccggcc 900
atgagccagg cgagaaaage tctcttagt ccaagactgtt ggcaggcccc gagtcctcact 960
gcctcaagcg cgcctctgtt ccccccttcg ataacgcactg cagtcctcc gagttgtgt 1020
cacagttggc ctctggatc tcccagactc ttgaaggccc cgaagagctc agccaaagtt 1080
cctctgaatg caagctccca tcgtccagca gtggcaagag gctctcgcccc gtgtccctcag 1140
tggactcage ctttgcata agaggatcgc tgcactgtt ttttgcgg gaaagttcaa 1200
caggcgaccc gggccccaca gacatccaga agaagaagct agtggatgcc atcatatcag 1260
gggacaccag caggctgtatc aagatccatc agcccaaga tggacttgg gttcttagaca 1320
gcagtgcac cttgcgtgttgg aggccggaca ggaggatgt gtcaagtggc 1380

tgctgcttaa caatgccaac ccaacctga ccaacaggaa gggctctaca ccactgcata	1440
tggctgtgga gcggaaggga cgtggattt tggagctact gctagcccg aagaccagtg	1500
tcaatgcca ggtatgaagac cagtggactg ccctgcactt tgcagccccag aatggggatg	1560
aggccagcac aaggctgctg cttagagaaga atgcctctgt caatgagggtg gactttgagg	1620
gccgaacacc catgcgttgc gcctgcccgc atggacagga gaacattgtg cgcacccctgc	1680
tccggcgtgg tggatgtg ggccctgcagg gaaaggatgc ctgggtgcct ctgcactatg	1740
ctgcctggca aggccacett cccattggta agct	1774

<210> 404

<211> 372

<212> DNA

<213> Mouse

<400> 404

ccacagcaca tcgtcctgac tgccttc ccagggacca agagctagag acccggtgt	60
gactgcccgc ctctgggct tccttttagag gagacagtct ttacccatct agactcctgc	120
caccctgact gctgacttac agctatgagg tcccgcttc tgctgcccgt gccccatttg	180
ccaaacgattc gggaaatgtc agaagagctg tcacatgggg cagctggca ggaaccccca	240
gcgtccccca gcctggatga ctacgtcagg tgcgttgc agctggcaca gcccacctca	300
gtgctggaca aggtcacagc ccagagccgt cccaaacagac cttccggcc agcctggact	360
cgagagaaga gg	372

<210> 405

<211> 396

<212> DNA

<213> Mouse

<400> 405

gagcttcgaa gcttctccg tcttccaaga cgacaggtt ctggggccac aagaggccga	60
gcctctcat tttgtttct tctccagct gaagacctga acgtcaagg t ggaaggggag	120
ccttccatgc gaaaacccaa gcagccccg cggccggcgc cctccatcat ccccaaccaag	180
gcggggactt tcatcgcccc tcctgtctac tccaacatca ccccttacca gagccacctg	240
cgctctcccg tgcgccttgc tgaccacccc tctgagccga gctttaggcc ccccccattac	300
acaccacccc ccattctcag ccccgccgg gaaggctctg gcctctactt caatgccatc	360
atatcaacca gcaacatccc ggccccctt gtatca	396

<210> 406

<211> 444

<212> PRT

<213> Rat

<400> 406

Met Leu Val Ala Phe Leu Gly Ala Ser Ala Val Thr Ala Ser Thr Gly	
1 5 10 15	
Leu Leu Trp Lys Lys Ala His Ala Glu Ser Pro Pro Ser Val Asn Ser	
20 25 30	
Lys Lys Thr Asp Ala Gly Asp Lys Gly Lys Ser Lys Asp Thr Arg Glu	
35 40 45	
Val Ser Ser His Glu Gly Ser Ala Ala Asp Thr Ala Ala Glu Pro Tyr	
50 55 60	
Pro Glu Glu Lys Lys Lys Arg Ser Gly Phe Arg Asp Arg Lys Val	
65 70 75 80	
Met Glu Tyr Glu Asn Arg Ile Arg Ala Tyr Ser Thr Pro Asp Lys Ile	
85 90 95	
Phe Arg Tyr Phe Ala Thr Leu Lys Val Ile Asn Glu Pro Gly Glu Thr	
100 105 110	
Glu Val Phe Met Thr Pro Gln Asp Phe Val Arg Ser Ile Thr Pro Asn	
115 120 125	
Glu Lys Gln Pro Glu His Leu Gly Leu Asp Gln Tyr Ile Ile Lys Arg	
130 135 140	
Phe Asp Gly Lys Ile Ala Gln Glu Arg Glu Lys Phe Ala Asp Glu	

145	150	155	160
Gly Ser Ile Phe Tyr Thr Leu Gly Glu Cys Gly Leu Ile Ser Phe Ser			
165	170	175	
Asp Tyr Ile Phe Leu Thr Thr Val Leu Ser Thr Pro Gln Arg Asn Phe			
180	185	190	
Glu Ile Ala Phe Lys Met Phe Asp Leu Asn Gly Asp Gly Glu Val Asp			
195	200	205	
Met Glu Glu Phe Glu Gln Val Gln Ser Ile Ile Arg Ser Gln Thr Ser			
210	215	220	
Met Gly Met Arg His Arg Asp Arg Pro Thr Thr Gly Asn Thr Leu Lys			
225	230	235	240
Ser Gly Leu Cys Ser Ala Leu Thr Thr Tyr Phe Phe Gly Ala Asp Leu			
245	250	255	
Lys Gly Lys Leu Thr Ile Lys Asn Phe Leu Glu Phe Gln Arg Lys Leu			
260	265	270	
Gln His Asp Val Leu Lys Leu Glu Phe Glu Arg His Asp Pro Val Asp			
275	280	285	
Gly Arg Ile Ser Glu Arg Gln Phe Gly Gly Met Leu Leu Ala Tyr Ser			
290	295	300	
Gly Val Gln Ser Lys Lys Leu Thr Ala Met Gln Arg Gln Leu Lys Lys			
305	310	315	320
His Phe Lys Asp Gly Lys Gly Leu Thr Phe Gln Glu Val Glu Asn Phe			
325	330	335	
Phe Thr Phe Leu Lys Asn Ile Asn Asp Val Asp Thr Ala Leu Ser Phe			
340	345	350	
Tyr His Met Ala Gly Ala Ser Leu Asp Lys Val Thr Met Gln Gln Val			
355	360	365	
Ala Arg Thr Val Ala Lys Val Glu Leu Ser Asp His Val Cys Asp Val			
370	375	380	
Val Phe Ala Leu Phe Asp Cys Asp Gly Asn Gly Glu Leu Ser Asn Lys			
385	390	395	400
Glu Phe Val Ser Ile Met Lys Gln Arg Leu Met Arg Gly Leu Glu Lys			
405	410	415	
Pro Lys Asp Met Gly Phe Thr Arg Leu Met Gln Ala Met Trp Lys Cys			
420	425	430	
Ala Gln Glu Thr Ala Trp Asp Phe Ala Leu Pro Lys			
435	440		

<210> 407

<211> 53

<212> PRT

<213> Mouse

<400> 407

Arg Arg Thr Leu Thr Gly Gln Leu Gly Leu Phe Ser Val Asp Phe Met			
1	5	10	15
Val Cys Ile Phe Leu Phe Leu Phe Cys Phe Leu Phe Pro Phe Pro			
20	25	30	
Leu Phe Leu Val Arg Lys His Ile Leu Leu Ser His Cys Lys Gln Trp			
35	40	45	
Glu Gly Ser Thr Met			
50			

<210> 408

<211> 119

<212> PRT

<213> Rat

<400> 408

Gly Thr Ser Pro Ala Ser Val Leu Arg Ser Val Ser Ser Asp Pro Ser			
1	5	10	15

Leu Pro Pro Pro Ser Met Ala Ser Leu Leu Cys Cys Gly Pro Lys Leu
 20 25 30
 Ala Ala Cys Gly Ile Val Leu Ser Ala Trp Gly Val Ile Met Leu Ile
 35 40 45
 Met Leu Gly Ile Phe Phe Asn Val His Ser Ala Val Leu Ile Glu Asp
 50 55 60
 Val Pro Phe Thr Glu Lys Asp Phe Glu Asn Gly Pro Gln Asn Ile Tyr
 65 70 75 80
 Asn Leu Tyr Glu Gln Val Ser Tyr Asn Cys Phe Ile Ala Ala Gly Leu
 85 90 95
 Tyr Leu Leu Leu Gly Gly Phe Ser Phe Cys Gln Val Arg Leu Asn Lys
 100 105 110
 Arg Lys Glu Tyr Met Val Arg
 115

<210> 409

<211> 590

<212> PRT

<213> Mouse

<400> 409

Lys Val Glu Gly Glu Gly Arg Gly Arg Trp Ala Leu Gly Leu Leu Arg
 1 5 10 15
 Thr Phe Asp Ala Gly Glu Phe Ala Gly Trp Glu Lys Val Gly Ser Gly
 20 25 30
 Gly Phe Gly Gln Val Tyr Lys Val Arg His Val His Trp Lys Thr Trp
 35 40 45
 Leu Ala Ile Lys Cys Ser Pro Ser Leu His Val Asp Asp Arg Glu Arg
 50 55 60
 Met Glu Leu Leu Glu Glu Ala Lys Lys Met Glu Met Ala Lys Phe Arg
 65 70 75 80
 Tyr Ile Leu Pro Val Tyr Gly Ile Cys Gln Glu Pro Val Gly Leu Val
 85 90 95
 Met Glu Tyr Met Glu Thr Gly Ser Leu Glu Lys Leu Ala Ser Glu
 100 105 110
 Pro Leu Pro Trp Asp Leu Arg Phe Arg Ile Val His Glu Thr Ala Val
 115 120 125
 Gly Met Asn Phe Leu His Cys Met Ser Pro Pro Leu Leu His Leu Asp
 130 135 140
 Leu Lys Pro Ala Asn Ile Leu Leu Asp Ala His Tyr His Val Lys Ile
 145 150 155 160
 Ser Asp Phe Gly Leu Ala Lys Cys Asn Gly Met Ser His Ser His Asp
 165 170 175
 Leu Ser Met Asp Gly Leu Phe Gly Thr Ile Ala Tyr Leu Pro Pro Glu
 180 185 190
 Arg Ile Arg Glu Lys Ser Arg Leu Phe Asp Thr Lys His Asp Val Tyr
 195 200 205
 Ser Phe Ala Ile Val Ile Trp Gly Val Leu Thr Gln Lys Lys Pro Phe
 210 215 220
 Ala Asp Glu Lys Asn Ile Leu His Ile Met Met Lys Val Val Lys Gly
 225 230 235 240
 His Arg Pro Glu Leu Pro Pro Ile Cys Arg Pro Arg Pro Arg Ala Cys
 245 250 255
 Ala Ser Leu Ile Gly Ile Met Gln Arg Cys Trp His Ala Asp Pro Gln
 260 265 270
 Val Arg Pro Thr Phe Gln Glu Ile Thr Ser Glu Thr Glu Asp Leu Cys
 275 280 285
 Glu Lys Pro Asp Glu Glu Val Lys Asp Leu Ala His Glu Pro Gly Glu
 290 295 300
 Lys Ser Ser Leu Glu Ser Lys Ser Glu Ala Arg Pro Glu Ser Ser Arg
 305 310 315 320

Leu Lys Arg Ala Ser Ala Pro Pro Phe Asp Asn Asp Cys Ser Leu Ser
325 330 335
Glu Leu Leu Ser Gln Leu Asp Ser Gly Ile Ser Gln Thr Leu Glu Gly
340 345 350
Pro Glu Glu Leu Ser Arg Ser Ser Ser Glu Cys Lys Leu Pro Ser Ser
355 360 365
Ser Ser Gly Lys Arg Leu Ser Gly Val Ser Ser Val Asp Ser Ala Phe
370 375 380
Ser Ser Arg Gly Ser Leu Ser Leu Ser Phe Glu Arg Glu Ala Ser Thr
385 390 395 400
Gly Asp Leu Gly Pro Thr Asp Ile Gln Lys Lys Lys Leu Val Asp Ala
405 410 415
Ile Ile Ser Gly Asp Thr Ser Arg Leu Met Lys Ile Leu Gln Pro Gln
420 425 430
Asp Val Asp Leu Val Leu Asp Ser Ser Ala Ser Leu Leu His Leu Ala
435 440 445
Val Glu Ala Gly Gln Glu Glu Cys Val Lys Trp Leu Leu Leu Asn Asn
450 455 460
Ala Asn Pro Asn Leu Thr Asn Arg Lys Gly Ser Thr Pro Leu His Met
465 470 475 480
Ala Val Glu Arg Lys Gly Arg Gly Ile Val Glu Leu Leu Ala Arg
485 490 495
Lys Thr Ser Val Asn Ala Lys Asp Glu Asp Gln Trp Thr Ala Leu His
500 505 510
Phe Ala Ala Gln Asn Gly Asp Glu Ala Ser Thr Arg Leu Leu Leu Glu
515 520 525
Lys Asn Ala Ser Val Asn Glu Val Asp Phe Glu Gly Arg Thr Pro Met
530 535 540
His Val Ala Cys Gln His Gly Gln Glu Asn Ile Val Arg Thr Leu Leu
545 550 555 560
Arg Arg Gly Val Asp Val Gly Leu Gln Gly Lys Asp Ala Trp Leu Pro
565 570 575
Leu His Tyr Ala Ala Trp Gln Gly His Leu Pro Ile Gly Lys
580 585 590

INTERNATIONAL SEARCH REPORT

International application No. PCT/NZ 99/00051
--

A. CLASSIFICATION OF SUBJECT MATTERInt Cl⁶: C12N 15/12, 15/18, 15/19

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
C12N 15/12, 15/18, 15/19

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
GenBank, GenBank (ESTs), EMBL, EMBL (ESTs), SwissProt, TREMBL, PIR.**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GenBank (ESTs) Accession no AI412233	SEQ ID NO 119 Claims 1-17, 19, 21, 23, 25, 27, 28
X	GenBank (ESTs) Accession no AA850731	SEQ ID NO 119 Claims 1-17, 19, 21, 23, 25, 27, 28
X	GenBank (ESTs) Accession no AI299847	SEQ ID NO 119 Claims 1-17, 19, 21, 23, 25, 27, 28

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent but published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
8 September 1999

Date of mailing of the international search report

15 SEP 1999

Name and mailing address of the ISA/AU
AUSTRALIAN PATENT OFFICE
PO BOX 200
WODEN ACT 2606
AUSTRALIA
Facsimile No.: (02) 6285 3929

Authorized officer

GILLIAN ALLEN
Telephone No.: (02) 6283 2266

INTERNATIONAL SEARCH REPORT

International application No.

PCT/NZ 99/00051

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:1-28
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

It is not economically feasible to carry out a full search on all sequences of the claims. Search has been limited to sequences from each of the Examples, namely: -
SEQ ID NOS 68, 118 and 196 from Example 3; SEQ ID NOS 119 and 197 from Example 5; SEQ ID NOS 263, 270 and 344 from Example 5; SEQ ID NOS 273 and 347 from Example 6; SEQ ID NO 129 from Example 7
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/NZ 99/00051

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GenBank (ESTs) Accession no W97325	SEQ ID NO 263 Claim nos 1-9, 11, 13, 16, 17, 19, 21, 22-28
X	GenBank (ESTs) Accession no AA111146	SEQ ID NO 263 Claim nos 1-9, 11, 13, 16, 17, 19, 21, 22-28
X	GenBank (ESTs) Accession no AI037414	SEQ ID NO 263 Claim nos 1-9, 11, 13, 16, 17, 19, 21, 22-28
X	GenBank (ESTs) Accession no AI282114	SEQ ID NO 270 Claim nos Claim nos 1-9, 11, 13, 16, 17, 19, 21, 22-28
X	GenBank (ESTs) Accession no AA865643	SEQ ID NO270 Claim nos 1-9, 11, 13, 16, 17, 19, 21, 22-28
X	GenBank (ESTs) Accession no AI140104	SEQ ID NO270 Claim nos 1-9, 11, 13, 16, 17, 19, 21, 22-28
X	GenBank (ESTs) Accession no AA726580	SEQ ID NO 273 Claim nos1-9, 11, 17, 19, 21, 23, 25, 27
X	GenBank (ESTs) Accession no AA407924	SEQ ID NO 273 Claim nos1-9, 11, 17, 19, 21, 23, 25, 27
X	GenBank (ESTs) Accession no AA498629	SEQ ID NO 273 Claim nos1-9, 11, 17, 19, 21, 23, 25, 27

THIS PAGE BLANK (USPTO)