Ecuaciones, propiedades y eliminación Modelación de la ingeniería a través de la matemática computacional (TC1003B)

M.C. Xavier Sánchez Díaz sax@tec.mx

Outline

① ¿Ecuaciones y matrices?

Ensamblando Robots

¿Ecuaciones y matrices?

IntelliCorp produce dos tipos de procesadores, el x230 y el x260 para sus robots.

Para poder fabricarlos, se necesitan silicio, cobre y aluminio.

El x230 usa 4, 3 y 5 láminas, respectivamente, mientras que el x260 usa 5, 2 y 6 placas.

	x230	×260
Si	4	5
Cu	3	2
Al	5	6

¿Qué tiene más sentido? ¿Ecuaciones y matrices?

¿Que cada placa se haga con distintos procesadores?

$$S = 4x_1 + 5x_2$$

$$C = 3x_1 + 2x_2$$

$$A = 5x_1 + 6x_2$$

¿Que cada procesador se haga con distintas placas?

$$x_{230} = 4s + 3c + 5a$$
$$x_{260} = 5s + 2c + 6s$$

¿Qué tiene más sentido? ¿Ecuaciones y matrices?

¿Que cada placa se haga con distintos procesadores?

$$S = 4x_1 + 5x_2$$

$$C = 3x_1 + 2x_2$$

$$A = 5x_1 + 6x_2$$

¿Que cada procesador se haga con distintas placas?

$$x_{230} = 4s + 3c + 5a$$
$$x_{260} = 5s + 2c + 6s$$

Transpuesta

¿Ecuaciones y matrices?

Para que tenga más sentido, podemos transponer la matriz. Para eso, reescribiremos las columnas de la matriz como renglones y los renglones como columnas:

$$A = \begin{bmatrix} 4 & 5 \\ 3 & 2 \\ 5 & 6 \end{bmatrix}$$

$$A^T = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix}$$

¿Ecuaciones y matrices?

Desde ahora, nuestra
$$A^T$$
 será $C = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix}$

¿Cuántas placas necesitaríamos para hacer 3 procesadores de cada tipo?

$$3C = 3\begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 12 & 9 & 15 \\ 15 & 6 & 18 \end{bmatrix} \blacksquare$$

¿Ecuaciones y matrices?

Desde ahora, nuestra
$$A^T$$
 será $C = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix}$

¿Cuántas placas necesitaríamos para hacer 3 procesadores de cada tipo?

$$3C = 3\begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 12 & 9 & 15 \\ 15 & 6 & 18 \end{bmatrix} \blacksquare$$

¿Ecuaciones y matrices?

Si la nueva tecnología antiestática utiliza 1 placa adicional de cada material para el x230, y 2 placas de silicio, 1 de cobre y 1 de aluminio adicionales para el x260, ¿cuántas placas necesitaré de ahora en adelante si ahora todos mis procesadores incluirán tecnología antiestática?

Primero, ¿cómo es la matriz de costos de la tecnología antiestática?

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$C + S = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 6 \\ 7 & 3 & 7 \end{bmatrix} \blacksquare$$

¿Ecuaciones y matrices?

Si la nueva tecnología antiestática utiliza 1 placa adicional de cada material para el x230, y 2 placas de silicio, 1 de cobre y 1 de aluminio adicionales para el x260, ¿cuántas placas necesitaré de ahora en adelante si ahora todos mis procesadores incluirán tecnología antiestática?

Primero, ¿cómo es la matriz de costos de la tecnología antiestática?

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$C + S = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 6 \\ 7 & 3 & 7 \end{bmatrix} \blacksquare$$

¿Ecuaciones y matrices?

Si la nueva tecnología antiestática utiliza 1 placa adicional de cada material para el x230, y 2 placas de silicio, 1 de cobre y 1 de aluminio adicionales para el x260, ¿cuántas placas necesitaré de ahora en adelante si ahora todos mis procesadores incluirán tecnología antiestática?

Primero, ¿cómo es la matriz de costos de la tecnología antiestática?

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$C + S = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 6 \\ 7 & 3 & 7 \end{bmatrix} \blacksquare$$

¿Ecuaciones y matrices?

Si la nueva tecnología antiestática utiliza 1 placa adicional de cada material para el x230, y 2 placas de silicio, 1 de cobre y 1 de aluminio adicionales para el x260, ¿cuántas placas necesitaré de ahora en adelante si ahora todos mis procesadores incluirán tecnología antiestática?

Primero, ¿cómo es la matriz de costos de la tecnología antiestática?

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$C + S = \begin{bmatrix} 4 & 3 & 5 \\ 5 & 2 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 & 6 \\ 7 & 3 & 7 \end{bmatrix} \blacksquare$$

De las operaciones al álgebra ¿Ecuaciones y matrices?

Nuestra nueva C es ahora $C=\begin{bmatrix}5&4&6\\7&3&7\end{bmatrix}$. Si sabemos que cada placa de silicio cuesta \$4, cada placa de cobre \$2 y cada placa de aluminio \$3, ¿Cuál es el precio total de cada procesador en \$?

Nuestro vector de precios es $\mathbf{p} = [4,2,3]^T$ así que. . .

$$C\mathbf{p} = \begin{bmatrix} 5 & 4 & 6 \\ 7 & 3 & 7 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} = 4 \begin{pmatrix} 5 \\ 7 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 6 \\ 7 \end{pmatrix}$$
$$= \begin{bmatrix} 20 + 8 + 18 \\ 28 + 6 + 21 \end{bmatrix}$$
$$= \begin{bmatrix} 46 \\ 55 \end{bmatrix} \blacksquare$$

De las operaciones al álgebra ¿Ecuaciones y matrices?

Nuestra nueva C es ahora $C=\begin{bmatrix}5&4&6\\7&3&7\end{bmatrix}$. Si sabemos que cada placa de silicio cuesta \$4, cada placa de cobre \$2 y cada placa de aluminio \$3, ¿Cuál es el precio total de cada procesador en \$?

Nuestro vector de precios es $\mathbf{p} = [4, 2, 3]^T$ así que. . .

$$C\mathbf{p} = \begin{bmatrix} 5 & 4 & 6 \\ 7 & 3 & 7 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} = 4 \begin{pmatrix} 5 \\ 7 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 6 \\ 7 \end{pmatrix}$$
$$= \begin{bmatrix} 20 + 8 + 18 \\ 28 + 6 + 21 \end{bmatrix}$$
$$= \begin{bmatrix} 46 \\ 55 \end{bmatrix} \blacksquare$$

De las operaciones al álgebra ¿Ecuaciones y matrices?

Nuestra nueva C es ahora $C=\begin{bmatrix}5&4&6\\7&3&7\end{bmatrix}$. Si sabemos que cada placa de silicio cuesta \$4, cada placa de cobre \$2 y cada placa de aluminio \$3, ¿Cuál es el precio total de cada procesador en \$?

Nuestro vector de precios es $\mathbf{p} = [4, 2, 3]^T$ así que. . .

$$C\mathbf{p} = \begin{bmatrix} 5 & 4 & 6 \\ 7 & 3 & 7 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} = 4 \begin{pmatrix} 5 \\ 7 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 6 \\ 7 \end{pmatrix}$$
$$= \begin{bmatrix} 20 + 8 + 18 \\ 28 + 6 + 21 \end{bmatrix}$$
$$= \begin{bmatrix} 46 \\ 55 \end{bmatrix} \blacksquare$$

¿Ecuaciones y matrices?

Ya sabemos el precio de cada procesador. Ahora queremos saber la resistencia eléctrica de cada uno, así como también su peso.

La matriz que contiene esta información (la columna de resistencias y la

columna de pesos, por cada material) es
$$D = \begin{bmatrix} 3 & 2 \\ 1 & 4 \\ 2 & 3 \end{bmatrix}$$

¿Puedo hacer la multiplicación de siempre? ¿Qué matriz obtendré?

$$CD = \begin{bmatrix} 31 & 44 \\ 38 & 47 \end{bmatrix}$$

Que es la matriz de resistencia y peso (heredados de D) de los procesadores (heredados de C).

¿Ecuaciones y matrices?

Ya sabemos el precio de cada procesador. Ahora queremos saber la resistencia eléctrica de cada uno, así como también su peso.

La matriz que contiene esta información (la columna de resistencias y la

columna de pesos, por cada material) es
$$D = \begin{bmatrix} 3 & 2 \\ 1 & 4 \\ 2 & 3 \end{bmatrix}$$

¿Puedo hacer la multiplicación de siempre? ¿Qué matriz obtendré?

$$CD = \begin{bmatrix} 31 & 44 \\ 38 & 47 \end{bmatrix}$$

Que es la matriz de resistencia y peso (heredados de D) de los procesadores (heredados de C).

¿Ecuaciones y matrices?

Ya sabemos el precio de cada procesador. Ahora queremos saber la resistencia eléctrica de cada uno, así como también su peso.

La matriz que contiene esta información (la columna de resistencias y la

columna de pesos, por cada material) es
$$D = \begin{bmatrix} 3 & 2 \\ 1 & 4 \\ 2 & 3 \end{bmatrix}$$

¿Puedo hacer la multiplicación de siempre? ¿Qué matriz obtendré?

$$CD = \begin{bmatrix} 31 & 44 \\ 38 & 47 \end{bmatrix}$$

Que es la matriz de resistencia y peso (heredados de D) de los procesadores (heredados de C).

¿Ecuaciones y matrices?

Volvamos a transponer nuestra matriz para poder manejar pedidos (materiales \times procesador y procesadores \times pedido para obtener

materiales
$$\times$$
 pedidos): $C = C^T = \begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix}$

- ¿Cuál es el vector que representa un pedido de 2 y 0 x230 y x260 respectivamente?
- ¿Y si nuestro pedido fuera de 2 y 2?
- ¿Y si fuera de 2 y 3?
- ¿Y si mi pedido fuera de 1 y 1?

¿Ecuaciones y matrices?

Volvamos a transponer nuestra matriz para poder manejar pedidos (materiales \times procesador y procesadores \times pedido para obtener

materiales
$$\times$$
 pedidos): $C = C^T = \begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix}$

- ¿Cuál es el vector que representa un pedido de 2 y 0 x230 y x260 respectivamente?
- ¿Y si nuestro pedido fuera de 2 y 2?
- ¿Y si fuera de 2 y 3?
- ¿Y si mi pedido fuera de 1 y 1?

¿Ecuaciones y matrices?

Volvamos a transponer nuestra matriz para poder manejar pedidos (materiales \times procesador y procesadores \times pedido para obtener

materiales
$$\times$$
 pedidos): $C = C^T = \begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix}$

- ¿Cuál es el vector que representa un pedido de 2 y 0 x230 y x260 respectivamente?
- ¿Y si nuestro pedido fuera de 2 y 2?
- ¿Y si fuera de 2 y 3?
- ¿Y si mi pedido fuera de 1 y 1?

¿Ecuaciones y matrices?

Volvamos a transponer nuestra matriz para poder manejar pedidos (materiales \times procesador y procesadores \times pedido para obtener

materiales
$$\times$$
 pedidos): $C = C^T = \begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix}$

- ¿Cuál es el vector que representa un pedido de 2 y 0 x230 y x260 respectivamente?
- ¿Y si nuestro pedido fuera de 2 y 2?
- ¿Y si fuera de 2 y 3?
- ¿Y si mi pedido fuera de 1 y 1?

¿Ecuaciones y matrices?

Volvamos a transponer nuestra matriz para poder manejar pedidos (materiales \times procesador y procesadores \times pedido para obtener

materiales
$$\times$$
 pedidos): $C = C^T = \begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix}$

- ¿Cuál es el vector que representa un pedido de 2 y 0 x230 y x260 respectivamente?
- ¿Y si nuestro pedido fuera de 2 y 2?
- ¿Y si fuera de 2 y 3?
- ¿Y si mi pedido fuera de 1 y 1?

Matriz escalar ¿Ecuaciones y matrices?

Una matriz escalar es una matriz que sólo tiene escalares en la diagonal. Sirven para escalar una matriz: cada una columna por un cierto factor.

¿Cuál es el resultado de la siguiente operación?

$$\begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 21 \\ 8 & 9 \\ 12 & 21 \end{bmatrix}$$

Matriz escalar ¿Ecuaciones y matrices?

Una matriz escalar es una matriz que sólo tiene escalares en la diagonal. Sirven para escalar una matriz: cada una columna por un cierto factor.

¿Cuál es el resultado de la siguiente operación?

$$\begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 21 \\ 8 & 9 \\ 12 & 21 \end{bmatrix}$$

Matriz escalar ¿Ecuaciones y matrices?

Una matriz escalar es una matriz que sólo tiene escalares en la diagonal. Sirven para escalar una matriz: cada una columna por un cierto factor.

¿Cuál es el resultado de la siguiente operación?

$$\begin{bmatrix} 5 & 7 \\ 4 & 3 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 10 & 21 \\ 8 & 9 \\ 12 & 21 \end{bmatrix}$$