ADDITION:

num1=as.integer(readline(prompt="enter a number1 : "))

num2=as.integer(readline(prompt="enter a number2 : "))

num3=num1+num2

print(num3)

SUBTRACTION:

num1=as.integer(readline(prompt="enter a number1 : "))

num2=as.integer(readline(prompt="enter a number2 : "))

num3=num1-num2

print(num3)

ODD OR EVEN:

```
num=as.integer(readline(prompt="enter a number : "))
if((num%%2)==0){
  print('Number is even')
}else{
  print('Number is odd')
```


MEAN

names<-c("Sanju","Anshu","Gupta")

age<-c(20,19,21)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

mean(df \$age)

write.csv(df,"datafr.csv")

MEDIAN

names<-c("Sanju","Anshu","Gupta")

age<-c(20,19,21)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

median(df \$age)

MODE

names<-c("Sanju","Anshu","Gupta")

age<-c(20,19,21)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

mode(df \$age)

SUMMARY

names<-c("Sanju","Anshu","Gupta")

age<-c(20,19,21)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

summary(df \$age)

write.csv(df,"datafr.csv")

IQR

names<-c("Sanju","Anshu","Gupta")

age<-c(20,19,21)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

IQR(df \$age)

QUANTILE

names<-c("Sanju","Anshu","Gupta")

age<-c(20,19,21)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

quantile(df \$age)

RANGE

names<-c("Sanju","Anshu","Gupta")

age<-c(20,19,21)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

range(df \$age)

write.csv(df,"datafr.csv")

BOX PLOT

names<-c("Sanju","Anshu","Gupta")

age<-c(23,24,35)

marks<-c(89,88,87)

df<-data.frame(names,age,marks)

hist(df \$age)

boxplot(df\$age)

BARPLOT

a<-c(55,67,89,80,90)

barplot(a)

HORIZONTAL BARPLOT

a<-c(55,67,89,80,90)

barplot(a)

barplot(a,horiz=TRUE)

HISTOGRAM

a<-c(55,67,89,80,90)

hist(a)

SCATTER PLOT

set.seed(9)

x<-rnorm(1000)

y<-rnorm(1000)

smoothScatter(y~x)

smoothScatter(x,y)

MEAN NORMALIZATION

diabetes<-read.csv("D:\\DWHDM\\diabetes.csv")

A<-c(diabetes\$Age)

Mean<-mean(A)

MINIMUM NORMALIZATION

diabetes<-read.csv("D:\\DWHDM\\diabetes.csv")

A<-c(diabetes\$Age)

Minimum<-min(diabetes\$Age)

MAXIMUM NORMALIZATION

diabetes<-read.csv("D:\\DWHDM\\diabetes.csv")

A<-c(diabetes\$Age)

Maximum<-max(diabetes\$Age)

MINMAX NORMALIZATION

diabetes<-read.csv("D:\\DWHDM\\diabetes.csv")

A<-c(diabetes\$Age)

Minmax<-(A-Minimum)/(Maximum-Minimum)

DECIMAL SCALING NORMALIZATION

diabetes<-read.csv("D:\\DWHDM\\diabetes.csv")

A=c(diabetes\$Age)

decimalscaling=(A/100)

decimalscaling

LINEAR REGRESSION

Relation<-Im(diabetes\$BloodPressure~diabetes\$Age)

Png<-(file="linear regression.png")

plot(diabetes\$Age,diabetes\$BloodPressure,col="green",main="Linear Regression Analysis",abline=(lm(diabetes\$BloodPressure~diabetes\$Age)),xlab="BloodPressure",vlanb="Age")

MULTIPLE REGRESSION

Input<-diabetes[c("Age","BloodPressure","Glucose")]
model<-lm(Age~BloodPressure+Glucose,dat=input)
print(model)