

Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular Depth Estimation by Integrating IMU Dynamics

Sen Zhang, Jing Zhang, Dacheng Tao The University of Sydney, Australia

Motivation:

Intrinsic problems of of current deep learning-based unsupervised monocular depth estimation methods:

- > (a) Scale ambiguity: The backwarping process is equivalent up to an arbitrary scaling factor w.r.t. depth and translation;
- > (b) Robustness: The photometric error is sensitive to illumination change and moving objects;
- > (c) Generalizability: The learned neural network may overfit to the training dataset.

IMU as a remedy. IMU presents a commonly-deployed sensor in modern sensor suites on vehicles that is advantageous in that:

- (a) The absolute scale metric can be recovered by inquiring the IMU motion dynamics;
- > (b) It is robust to the scenarios when vision fails such as in illumination-changing and textureless regions;
- > (c) It does not suffer from the visual domain gap, leading to a better generalization ability across datasets.

(c) Generalization Results on Make3D

Methodology

Overall Framework of DynaDepth

- (a) A scale-aware IMU photometric loss and a cross-sensor photometric consistency loss are proposed to introduce IMU motion dynamics into the system;
- (b) The IMU preintegration technique is adopted to avoid redundant computation to accelerate the training process;
- > (c) A differentiable camera-centric EKF framework is derived to facilitate the fusion of vision and IMU information.

Methodology:

Camera-Centric IMU Preintegration

- ➤ We derive the IMU preintegration formula at the camera frame to ease training since the losses are defined on image appearance.
- ➤ We predict the velocity and the gravity vectors directly from images using neural networks to avoid the complicated initialization step that is commonly used in classical methods.

$$egin{aligned} \hat{oldsymbol{R}_{c_kc_{k+1}}} &= oldsymbol{R}_{cb}\mathcal{F}^{-1}(oldsymbol{q}_{b_kb_{k+1}})oldsymbol{R}_{bc}, \ \hat{oldsymbol{p}_{c_kc_{k+1}}} &= oldsymbol{R}_{cb}oldsymbol{lpha}_{b_kb_{k+1}} + oldsymbol{N}_{c_kc_{k+1}}oldsymbol{R}_{cb}oldsymbol{p}_{bc} - oldsymbol{R}_{cb}oldsymbol{p}_{bc} + oldsymbol{v}^{ ilde{c}_k}\Delta t_k - rac{1}{2}oldsymbol{g}^{ ilde{c}_k}\Delta t_k^2, \end{aligned}$$

IMU-Related Losses

➤ **IMU Photometric Loss**: This loss is proposed to provide dense supervisory signals for both the depth and the ego-motion networks

$$L_{photo}^{IMU} = \frac{1}{N} \sum_{i=1}^{N} \min_{\delta \in \{-1,1\}} \mathcal{L}(\boldsymbol{I}(\boldsymbol{y}_i), \boldsymbol{I}_{\delta}(\psi(\boldsymbol{K}\hat{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_i + \frac{\boldsymbol{K}\hat{\boldsymbol{p}}_{\delta}}{\tilde{z}_i}))),$$

$$\mathcal{L}(\boldsymbol{I}, \boldsymbol{I}_{\delta}) = \alpha \frac{1 - SSIM(\boldsymbol{I}, \boldsymbol{I}_{\delta})}{2} + (1 - \alpha)||\boldsymbol{I} - \boldsymbol{I}_{\delta}||_{1},$$

Cross-Sensor Photometric Consistency Loss: This loss is proposed to align the ego-motions predicted from IMU and vision.

$$L_{photo}^{cons} = \frac{1}{N} \sum_{i=1}^{N} \min_{\delta \in \{-1,1\}} \mathcal{L}(\boldsymbol{I}_{\delta}(\psi(\boldsymbol{K}\tilde{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_{i} + \frac{\boldsymbol{K}\tilde{\boldsymbol{p}}_{\delta}}{\tilde{z}_{i}})), \boldsymbol{I}_{\delta}(\psi(\boldsymbol{K}\hat{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_{i} + \frac{\boldsymbol{K}\hat{\boldsymbol{p}}_{\delta}}{\tilde{z}_{i}}))), \quad \underline{\boldsymbol{I}}_{\delta}(\psi(\boldsymbol{K}\hat{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_{i} + \frac{\boldsymbol{K}\hat{\boldsymbol{p}}_{\delta}}{\tilde{z}_{i}})))), \quad \underline{\boldsymbol{I}}_{\delta}(\psi(\boldsymbol{K}\hat{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_{i} + \frac{\boldsymbol{K}\hat{\boldsymbol{p}}_{\delta}}{\tilde{z}_{i}}))), \quad \underline{\boldsymbol{I}}_{\delta}(\psi(\boldsymbol{K}\hat{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_{i} + \frac{\boldsymbol{K}\hat{\boldsymbol{p}}_{\delta}}{\tilde{z}_{i}})), \quad \underline{\boldsymbol{I}}_{\delta}(\psi(\boldsymbol{K}\hat{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_{i} + \frac{\boldsymbol{K}\hat{\boldsymbol{p}}_{\delta}}{\tilde{z}_{i}})), \quad \underline{\boldsymbol{I}}_{\delta}(\psi(\boldsymbol{K}\hat{\boldsymbol{R}}_{\delta}\boldsymbol{K}^{-1}\boldsymbol{y}_{i} + \frac{\boldsymbol{K}\hat{\boldsymbol{p}}_$$

The Camera-Centric EKF Framework

We derive the EKF framework at the camera frame to facilitate the learning process since the training process takes images as input.

EKF Propagation: We separate the states into the nominal states and the error states, where the continuous-time propagation model for the error states is derived as: $\delta \dot{x}_{b_t} = F \delta x_{b_t} + G n$

➤ **EKF Update**: The observation model and the corresponding Jacobian w.r.t. the error states are derived as:

$$h(\check{\boldsymbol{x}}_{k+1}) = \begin{bmatrix} \bar{\boldsymbol{\phi}}_{c_k c_{k+1}} \\ \bar{\boldsymbol{R}}_{c_k b_{k+1}} \boldsymbol{p}_{bc} + \bar{\boldsymbol{p}}_{c_k b_{k+1}} \end{bmatrix}, \boldsymbol{H}_{k+1} = \begin{bmatrix} J_l(-\bar{\boldsymbol{\phi}}_{c_k c_{k+1}})^{-1} \boldsymbol{R}_{cb} & 0 & 0 & 0 & 0 & 0 \\ -\bar{\boldsymbol{R}}_{c_k b_{k+1}} [\boldsymbol{p}_{bc}]^{\wedge} & \boldsymbol{I}_3 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Experiment:

- Experiment results show that our proposed DynaDepth is scale-aware, robust, and generalizable compared with other methods.
- > Ablation studies validate the effectiveness of each components.
- > Please refer to our paper for more details on our experiment.

Table 1: Per-image rescaled depth evaluation on KITTI using the Eigen split. The best and the second best results are shown in **bold** and <u>underline</u>. † denotes our reproduced results. Results are rescaled using the median ground-truth from Lidar. The means and standard errors of the scaling ratios are reported in Scale.

Methods	Year	Scale		\mathbf{E}_{1}	rror↓		Accuracy↑		
	rear	Scale	AbsRel	SqRel	RMSE	RMSE_{log}	$\sigma < 1.25 \ c$	$\tau < 1.25^2$	$\sigma < 1.25^3$
Monodepth2 R18 [14]	ICCV 2019	NA	0.112	0.851	4.754	0.190	0.881	0.960	0.981
Monodepth $2 R50^{\dagger}$ [14]	ICCV 2019	$29.128 {\pm} 0.084$	0.111	0.806	4.642	0.189	0.882	$\boldsymbol{0.962}$	0.982
PackNet-SfM [15]	${\rm CVPR}~2020$	NA	0.111	0.785	4.601	0.189	0.878	0.960	$\boldsymbol{0.982}$
Johnston R18 [18]	${\rm CVPR}~2020$	NA	0.111	0.941	4.817	0.189	0.885	0.961	0.981
R-MSFM6 [49]	ICCV 2021	NA	0.112	0.806	4.704	0.191	0.878	0.960	0.981
G2S R50 [3]	ICRA 2021	1.031 ± 0.073	0.112	0.894	4.852	0.192	0.877	0.958	0.981
ScaleInvariant R18 [38]	ICCV 2021	NA	0.109	<u>0.779</u>	4.641	0.186	0.883	0.962	0.982
DynaDepth R18	2022	1.021 ± 0.069	0.111	0.806	4.777	0.190	0.878	0.960	0.982
DynaDepth R50	2022	$1.013 {\pm} \underline{0.071}$	0.108	0.761	4.608	0.187	0.883	$\boldsymbol{0.962}$	$\boldsymbol{0.982}$

Table 5: Ablation results of the robustness against vision degradation on the simulated data from KITTI. The best results are shown in **bold**. IC and MO denote the two investigated vision degradation types, i.e., illumination change and moving objects. - means item not available. † denotes our reproduced results.

Methods	EKF .	Τ.	Type	Scale		Er	rror↓		Accuracy↑		
		$\left. rac{L_{vg}}{} \right $			AbsRel	SqRel	RMSE	$[\mathrm{RMSE}_{log}]$	$\sigma < 1.25$	$\sigma < 1.25^2$	$\sigma < 1.25^{3}$
Monodepth2† [14]	_	-	\mid IC	27.701 ± 0.096	0.127	0.976	5.019	0.220	0.855	0.946	0.972
DynaDepth			IC	1.036 ± 0.099	0.124	0.858	4.915	0.226	0.852	0.950	0.977
DynaDepth	✓		IC	$0.946 {\pm} 0.089$	0.123	0.925	4.866	0.196	0.863	0.957	0.981
${\bf DynaDepth}$	✓	\checkmark	IC	$\bf 1.019 {\pm} 0.074$	0.121	0.906	4.950	0.217	0.859	0.954	0.978
Monodepth2† [14]	-	-	MO	$0.291 {\pm} 0.176$	0.257	2.493	8.670	0.398	0.584	0.801	0.897
DynaDepth			MO	$0.083 {\pm} 0.225$	0.169	1.290	6.030	0.278	0.763	0.915	0.960
DynaDepth	✓		MO	0.087 ± 0.119	0.126	0.861	5.312	0.210	0.840	0.948	$\boldsymbol{0.979}$
DynaDepth	✓	✓	MO	$0.956{\pm}0.084$	0.125	0.926	4.954	0.214	0.852	0.949	0.976

Conclusion

- We propose DynaDepth, a scale-aware, robust, and generalizable monocular depth estimation framework by integrating IMU motion dynamics.
- Code link: https://github.com/SenZHANG-GitHub/ekf-imu-depth.

 For any questions, feel free to contact us via email: szha2609@uni.sydney.edu.au

