Quiz 5

Course: Operating Systems Course Code: CS 2006

Section: BCS-4F Total Marks:10
Name: RollNo:

Question 1: [10 Marks]

Process	Max	Allocation	Available
	A, B, C, D	A, B, C, D	A, B, C, D
P0	6 0 1 2	4 0 0 1	3 2 1 1
P1	2 7 5 0	1 1 0 0	
P2	2 3 5 6	1 2 5 4	
P3	1 6 5 3	0 6 3 3	
P4	1 6 5 6	0 2 1 2	

Using Banker's algorithm, answer the following questions:-

- How many total resources of type A, B, C, D are there? (2 marks)
- Find if the system is currently in a safe state? If it is, find the safe sequence.(4 marks)
- Process P1 requests one additional instance of resource type A and one instance of resource type C? By using Bankers Algorithm, this request should be approved or not? Show complete working? (4 marks)

Quiz 4 Solution.							
a) $A = 3 + 4 + 1 + 1 + 0 + 0 = 9$							
B = 2 + 1 + 2 + 6 + 2 = 13							
C = 1 + 5 + 3 + 1 = 10							
D = 1+1+4+3+2 = 11							
	(9,13,1	0, 11)					
b)	max	Out - Man	need	Available			
0)		Auocation	A B C D				
Po	6 0 12	400 I	2011	3 2 1 1 + Po			
ρ,	2750	1 1 0 0	1 6 5 0				
	2 3 5 6	1 2 5 4	1 1 0 2				
Pa	1653	0 6 3 3	1020				
Py	1656	0 2 1 2	1 4 4 4				
9 13 10 11							
System is in safe state because safe sequence exists.							
	< Po, Pz, P3,		July and a William State	Y a S decord .			
(12) Limite							
c) Request P, (1,0,1,0)							
C	hecle:		-				
1, Request_ < Need_ 1010 < 1650							
2) Request_ 5 Available 1010 5 3211							
new state Allocation Need Available							
Po	4001	2 0 1 l		_			
P,	2110	0 6 4 0					
Pz				No safe sequence exists,			
P3 0633		102		hence we can not			
P4 0212 1444 grant the request.							
new need P1 new allocation P1 new available							
1650 1100 3211							
$\frac{1010}{0640}$ $\frac{+1010}{210}$ $\frac{-1010}{2201}$							
0640 2100 2201							