#### Sahakar Maharshi Bhausaheb Santuji Thorat

**College Sangamner** 

Name:-\_Gorde Yash Somnath

Title of the expt:-\_Slip no 6

#### DEPARTMENT OF COMPUTER SCIENCE

**Sub: Mathematics** 

| Remark  |       |     |  |  |  |  |  |  |  |  |
|---------|-------|-----|--|--|--|--|--|--|--|--|
| Demons  | trato | r's |  |  |  |  |  |  |  |  |
| Signatu | re    |     |  |  |  |  |  |  |  |  |
| Date:-  | /     | /20 |  |  |  |  |  |  |  |  |

\_\_\_ Roll.No:-<u>21</u> Date:-\_

Page.no:-\_\_\_Class:-\_\_\_BCS\_

## Q1 Attempt any TWO of the following

A) Draw the horizontal bar graph for the following data in Maroon color

| City             | Pune | Mumbai | Nasik | Nagpur | Thane |
|------------------|------|--------|-------|--------|-------|
| Air Quality Idex | 168  | 190    | 170   | 178    | 195   |

 $\rightarrow$ 

import matplotlib.pyplot as plt cities = ['Pune', 'Mumbai', 'Nasik', 'Nagpur', 'Thane'] air\_quality = [168, 190, 170, 178, 195] plt.barh(cities, air\_quality, color='maroon') plt.title('Air Quality Index for Cities in Maharashtra') plt.xlabel('Air Quality Index') plt.ylabel('City') plt.show()





# B ) Using Python program ,Generate 3D surface plot for the function $f(x) \! = \! sin(x^{2+}y^2)$ in the interval $[0,\!10]$

```
\rightarrow
  import numpy as np
  import matplotlib.pyplot as plt
  from mpl_toolkits.mplot3d import Axes3D
  def f(x, y):
    return np.\sin(x^{**}2 + y^{**}2)
  x = np.linspace(0, 10, 50)
  y = np.linspace(0, 10, 50)
  X, Y = np.meshgrid(x, y)
  Z = f(X, Y)
  fig = plt.figure()
  ax = fig.add_subplot(111, projection='3d')
  ax.plot_surface(X, Y, Z, cmap='coolwarm')
  ax.set\_title('f(x) = sin(x^2+y^2)')
  ax.set_xlabel('X')
  ax.set_ylabel('Y')
  ax.set_zlabel('Z')
  plt.show()
```

$$f(x) = \sin(x^2 + y^2)$$



# C ) Using python ,plot the graph of function $f(x){=}sin(x){-}e^x{+}3x^2{-}log_{10}(X)$ on the interval $[0,\!2\pi]$

 $\rightarrow$ 

```
import numpy as np import matplotlib.pyplot as plt def f(x):
    return np.sin(x) - np.exp(x) + 3*x**2 - np.log10(x)

x = \text{np.linspace}(0, 2*\text{np.pi}, 200)
y = f(x)

plt.plot(x, y)
plt.title('Graph of f(x)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```



## Q2) Attempt any TWO of the following

A ) Using Python rotate the line segment by  $180^{\circ}$  having end points (1,0) and (2,-1)

```
<u>-</u>→
```

```
import numpy as np
import matplotlib.pyplot as plt
x = [1, 2]
y = [0, -1]
theta = np.pi
           np.array([[np.cos(theta),
R
                                        -np.sin(theta)],
                                                            [np.sin(theta),
np.cos(theta)]])
points = np.vstack((x, y))
rotated_points = R @ points
x_new = rotated_points[0]
y_new = rotated_points[1]
plt.plot(x, y, label='Original')
plt.plot(x_new, y_new, label='Rotated')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()
```



# B ) Write a python program , to draw a polygon with vertices (0,0),(2,0),(2,3) and (1,6) and rotate it by using $180^\circ$

->

```
import numpy as np
import matplotlib.pyplot as plt
x = [0, 2, 2, 1]
y = [0, 0, 3, 6]
theta = np.pi
R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
points = np.vstack((x, y))
rotated_points = R @ points
x_new = rotated_points[0]
y_new = rotated_points[1]
fig, axs = plt.subplots(1, 2, figsize=(8, 4))
axs[0].plot(x, y, 'b', label='Original')
axs[1].plot(x_new, y_new, 'r', label='Rotated')
for ax in axs:
  ax.set_xlabel('X')
  ax.set_ylabel('Y')
  ax.legend()
plt.show()
```



## C ) Using python program generate tringle with vertices (0,0),(4,0),(2,4) check whether the triangle is isosceles triangle

->

```
import math
import matplotlib.pyplot as plt
A = (0, 0)
B = (4, 0)
C = (2, 4)
a = \text{math.sqrt}((B[0]-C[0])**2 + (B[1]-C[1])**2)
b = \text{math.sqrt}((A[0]-C[0])**2 + (A[1]-C[1])**2)
c = \text{math.sqrt}((A[0]-B[0])**2 + (A[1]-B[1])**2)
fig, ax = plt.subplots()
ax.plot([A[0], B[0]], [A[1], B[1]], 'b-', label='AB')
ax.plot([B[0], C[0]], [B[1], C[1]], 'r-', label='BC')
ax.plot([C[0], A[0]], [C[1], A[1]], 'g-', label='CA')
if a == b or b == c or a == c:
  ax.text(1.5, 1, 'Isosceles', fontsize=12, color='r')
else:
  ax.text(1.5, 1, 'Non-Isosceles', fontsize=12, color='r')
ax.set_xlim([-1, 5])
ax.set_ylim([-1, 5])
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.legend()
plt.show()
```



### Q3) Attempt the following

- A) Attempt any one of the following
- I) write a python program to solve the following LPP:

```
\begin{array}{ccc} \text{Max} & Z {=} x {+} y \\ \text{Subject to} & 2x {-} 2y {\geq} 1 \\ & X {+} y {\geq} 2 \\ & X, y {\geq} 0 \end{array}
```

->

```
from pulp import *
lp_prob = LpProblem("LP problem", LpMaximize)

x = LpVariable('x', lowBound=0, cat='Continuous')
y = LpVariable('y', lowBound=0, cat='Continuous')

lp_prob += x + y
lp_prob += 2*x - 2*y >= 1
lp_prob += x + y >= 2

status = lp_prob.solve()
print("x = ", value(x))
print("y = ", value(y))
print("Optimal objective value = ", value(lp_prob.objective))
```

II ) Write a python program to display the following LPP by using Pulp module and simplex method. Find the optimal solution if exist

```
Min Z=x+y
Subject to x\geq6
y\geq6
x+y\leq11
x,y\geq0
```

->

```
from pulp import *

lp_prob = LpProblem("LP problem", LpMinimize)

x = LpVariable('x', lowBound=0, cat='Continuous')

y = LpVariable('y', lowBound=0, cat='Continuous')

lp_prob += x + y

lp_prob += x >= 6

lp_prob += y >= 6

lp_prob += x + y <= 11
```

```
status = lp_prob.solve()
print("Status:", LpStatus[status])
if LpStatus[status] == "Optimal":
    print("Optimal solution found:")
    print("x = ", value(x))
    print("y = ", value(y))
    print("Optimal objective value = ", value(lp_prob.objective))
else:
    print("No optimal solution found.")
```

### B) Attempt any one of the following

- I ) Apply Python program in each of the following transformation on the point P[4,-2]
  - A) Reflection through Y-axis
  - B) Scaling in X-coordinate By factor 7
  - C) Shering in Y direction by 3 units
  - D) Reflection through the line y=-x

->

```
P = [4, -2] \\ P\_reflected = [-P[0], P[1]] \\ print("Reflection through Y-axis of P{} is P{}.".format(P, P\_reflected)) \\ P = [4, -2] \\ P\_scaled = [7*P[0], P[1]] \\ print("Scaling in X-coordinate by factor 7 of P{} is P{}.".format(P, P\_scaled)) \\ P = [4, -2] \\ P\_sheared = [P[0], P[1] + 3*P[0]] \\ print("Shearing in Y direction by 3 units of P{} is P{}.".format(P, P\_sheared)) \\ P = [4, -2] \\ P\_reflected = [-P[1], -P[0]] \\ print("Reflection through the line y=-x of P{} is P{}.".format(P, P\_reflected)) \\ P\_reflected = [-P[1], -P[0]] \\ P\_reflected = [-P[1], -
```

#### output:

Reflection through Y-axis of P[4, -2] is P[-4, -2]. Scaling in X-coordinate by factor 7 of P[4, -2] is P[28, -2]. Shearing in Y direction by 3 units of P[4, -2] is P[4, 10]. Reflection through the line y=-x of P[4, -2] is P[2, -4].

### II ) Find the combined transformation by using Python program for the following sequence of transformation

- A) Rotation about origin through an angle 60°
- B) Scaling in X-coordinate by 7 units
- C ) Uniform scaling by 4 units
- **D**) Reflection through the line y=x

```
->
```

```
import numpy as np
A = np.array([[np.cos(np.radians(60)), -np.sin(np.radians(60)), 0],
         [np.sin(np.radians(60)), np.cos(np.radians(60)), 0],
         [0, 0, 1]]
B = np.array([[7, 0, 0],
         [0, 1, 0],
         [0, 0, 1]]
C = np.array([[4, 0, 0],
         [0, 4, 0],
         [0, 0, 1]]
D = np.array([[0, 1, 0],
         [1, 0, 0],
         [0, 0, 1]]
T = D @ C @ B @ A
p = np.array([[1], [2], [1]])
p_transformed = T @ p
print(p_transformed)
```

#### output:

```
[[ 7.46410162]
[-34.49742261]
[ 1.
        ]]
```