

<u>Home</u> <u>Gameboard</u>

Maths Geometry

Trigonometry

Double Angles 2

Double Angles 2

Pre-Uni Maths for Science H4.9

Part A $\tan{(2\theta)}$

Using the formula for $\tan{(A \pm B)}$, derive the double angle formula for $\tan{(2\theta)}$.

The following symbols may be useful: cos(), sin(), tan(), theta

Part B $\tan{(4\theta)}$

Now prove that $\tan 4\theta = \frac{k}{1-6\tan^2\theta+\tan^4\theta}$ and give an expression for k in its simplest form in terms of $\tan\theta$.

The following symbols may be useful: k, theta

Created for isaacphysics.org by Julia Riley.

Gameboard

Maths

Trigonometry: Double Angles 1ii

Trigonometry: Double Angles 1ii

Part A The form $a\sin^2\theta+b\sin\theta+c=0$

Express the equation $(\csc\theta)(3\cos2\theta+7)+11=0$ in the form $a\sin^2\theta+b\sin\theta+c=0$, where $a,\,b,$ and c are constants and a>0.

Give the value of a.

The following symbols may be useful: a

Give the value of b.

The following symbols may be useful: b

Give the value of c.

The following symbols may be useful: c

Give the highest (most positive) solution.

answers in degrees, to three significant figures.

Give the lowest (most negative) solution.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-Angle Formulae

Gameboard

Maths

Trigonometry: Double Angles 2ii

Trigonometry: Double Angles 2ii

Part A sin Double Angle

Write down the identity expressing $\sin 2\theta$ in terms of $\sin \theta$ and $\cos \theta$.

The following symbols may be useful: theta

Part B $\sin 2\alpha$

Given that $\sin \alpha = \frac{1}{4}$ and α is acute, find the exact value of $\sin 2\alpha$.

The following symbols may be useful: alpha

Part C Solve

Solve in degrees, for $0^{\circ} < \beta < 90^{\circ}$, the equation $5\sin 2\beta \sec \beta = 3$, giving your answer in degrees to three significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-Angle Formulae

Gameboard

Maths

Trigonometry: Combined Angles 5i

Trigonometry: Combined Angles 5i

The value of $\tan 10^{\circ}$ is denoted by p. Find, in terms of p, the value of:

Part A $an 55^{\circ}$

 $an 55^{\circ}$

The following symbols may be useful: p

Part B $an 5^{\circ}$

 $an 5^\circ$

The following symbols may be useful: p

Part C $\tan \theta$

an heta, where heta satisfies the equation $3\sin\left(heta+10^\circ
ight)=7\cos\left(heta-10^\circ
ight)$.

The following symbols may be useful: p, theta

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-Angle Formulae

 ${\sf Gameboard}$

Maths

Functions: Reciprocal Trig 2i

Functions: Reciprocal Trig 2i

It is given that A and B are angles such that

$$\sec^2 A - \tan A = 13$$
 and $\sin B \sec^2 B = 27 \cos B \csc^2 B$.

Part A Largest value of $\tan(A-B)$

Find the largest possible exact value of tan(A - B).

The following symbols may be useful: A, B

Part B Smallest value of an(A-B)

Give the smallest possible value of tan(A - B).

The following symbols may be useful: A, B

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-Angle Formulae

Home Game

 ${\sf Gameboard}$

Maths Geometry

Trigonometry

Trigonometry and R-Form 1

Trigonometry and R-Form 1

Part A $5\cos x + 12\sin x$

Express $5\cos x + 12\sin x$ in the form $R\cos(x-\alpha)$, where R>0 and $0^\circ < \alpha < 90^\circ$.

State the value of R.

The following symbols may be useful: R

Give the value of α in degrees, to three significant figures.

Part B Transformations

Give details of a pair of transformations which transform the curve $y=\cos x$ to the curve $y=5\cos x+12\sin x$.

Available items

Part C Solve

Solve, for $0^{\circ} < x < 360^{\circ}$, the equation $5\cos x + 12\sin x = 2$, giving your answers correct to the nearest 0.1° .

Give the smallest solution, in degrees, to four significant figures.

Give the largest solution, in degrees, to four significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-Angle Formulae

 ${\sf Gameboard}$

Maths

Trigonometry: Combined Angles 3i

Trigonometry: Combined Angles 3i

In Figure 1, ABCD represents a rectangular table with sides $3.5\,\mathrm{m}$ and $1.5\,\mathrm{m}$. It has been turned so it wedges in a passage of width $2.5\,\mathrm{m}$.

Figure 1: The rectangular table ABCD.

Given that θ is the acute angle between the longer side and the passage, as shown in the diagram, find the exact value of $7\sin\theta + 3\cos\theta$.

The following symbols may be useful: cos(), sin(), tan(), theta

Part B The form $R \sin \left(heta^\circ + lpha^\circ ight)$

Express $7\sin\theta+3\cos\theta$ in the form $R\sin\left(\theta+lpha\right)$, where R>0 and $0^\circ<lpha<90^\circ.$

Give the exact value of R.

The following symbols may be useful: R

Give the value of α to 3 significant figures.

Part C Find θ

Find θ , to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-Angle Formulae

Home Gameboard

Maths

Geometry

Trigonometry

Addition of Angles 7

Addition of Angles 7

Pre-Uni Maths for Science H4.10

c c c

Two waves

$$\psi_1 = A\cos\left(2\pi f t - \left(rac{2\pi}{\lambda}
ight)x + \phi
ight)$$

and

$$\psi_2 = A\cos\left(2\pi f t - \left(rac{2\pi}{\lambda}
ight)x - \phi
ight)$$

interfere, such that the resultant wave is given by $\psi=\psi_1+\psi_2$. Express ψ as the product of two terms.

Express ψ as the product of two terms.

The following symbols may be useful: A, f, lambda, phi, pi, t, x

Created for isaacphysics.org by Julia Riley.