● CSCI 8314 ● Spring 2014 ● SPARSE MATRIX COMPUTATIONS

Class time : MW 9:45 - 11:00 AM

Room : STSS 117
Instructor : Yousef Saad

URL: www-users.cselabs.umn.edu/classes/Spring-2014/csci8314/

➤ Lecture notes will be posted on the class web-site — usually before the lecture.

- Review them and try to get some understanding (help: text) if possible before class.
- ➤ Lecture note packets are grouped by topics rather than by lecture.
- ➤ In the notes the symbol indicates suggested exercises often [not always] done in class.
- ➤ I will often post the matlab diaries used for the demos (if any). [with the help of matlab's diary utility].
- ➤ Do not hesitate to contact me for any questions...

Csci 8314 – January 21, 2014

CSCI 8314: SPARSE MATRIX COMPUTATIONS GENERAL INTRODUCTION

- General introduction a little history
- Motivation
- Resources
- What will this course cover

What this course is about

Before we begin....

- ➤ Solving linear systems and (to a lesser extent) eigenvalue problems with matrices that are sparse.
- ➤ Sparse matrices : matrices with mostly zero entries [details later]
- Many applications of sparse matrices...
- > ... and we are seing more with new applications everywhere

Csci 8314 - January 21, 2014

A brief history

Sparse matrices have been identified as important early on – origins of terminology is quite old. Gauss defined the first method for such systems in 1823 (now the Gauss-Seidel iteration). Varga used explicitly the term 'sparse' in his 1962 book on iterative methods.

- ➤ Special techniques used for sparse problems coming from Partial Differential Equations
- ➤ One has to wait until to the 1960s to see the birth of the general technology available today
- ➤ Graphs introduced as tools for Sparse Gaussian matrices in 1961 [Seymour Parter]

later wood in Hamsell MACO and a ID.

duced.

➤ ... later used in Harwell MA28 code [Duff] - released in 1977.

Early work on reordering for banded systems, envelope methods

Various reordering techniques for general sparse matrices intro-

- ➤ Tinney-Walker Minimal degree ordering for power systems [1967]
- ➤ Nested Dissection [A. George, 1973]
- > SPARSPAK [commercial code, Univ. Waterloo]

➤ Minimal degree ordering [Markowitz - 1957] ...

➤ Elimination trees, symbolic factorization, ...

3 _____ Csci 8314 – January 21, 2014

Csci 8314 – January 21, 2014

History: development of iterative methods

- ➤ 1950s up to 1970s : focus on "relaxation" methods
- ➤ Development of 'modern' iterative methods took off in the mid-70s. but...
- ➤ ... The main ingredients were in place earlier [late 40s, early 50s: Lanczos; Arnoldi; Hestenes (a local!) and Stiefel;]
- ➤ The next big advance was the push of 'preconditioning': in effect a way of combining iterative and (approximate) direct methods [Meijerink and Van der Vorst, 1977]

History: eigenvalue problems

- ➤ Another parallel branch was followed in sparse techniques for large eigenvalue problems.
- A big problem in 1950s and 1960s: flutter of airplane wings.. This leads to a large (sparse) eigenvalue problem
- ➤ Overlap between methods for linear systems and eigenvalue problems [Lanczos, Arnoldi]

Resources

[See the "links" page in the course web-site]

➤ Matrix market

http://math.nist.gov/MatrixMarket/

Florida collection

http://www.cise.ufl.edu/research/sparse/matrices/

> SPARSKIT, etc.

http://www.cs.umn.edu/~saad/software

1-7 ______ Csci 8314 – January 21, 2014

Resources - continued

Books: on sparse direct methods.

- ➤ Book by Tim Davis [SIAM, 2006] see class web-site.
- ➤ Best reference [old, out-of print, but still the best]:
- Alan George and Joseph W-H Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981. Englewood Cliffs, NJ.
- ➤ Of interest mostly for references:
- I. S. Duff and A. M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Clarendon press, Oxford, 1986.
- ➤ References to articles will be posted on a regular basis.

Csci 8314 – January 21, 2014

Overall plan for the class

- ➤ We will begin by sparse matrices in general, their origin, storage, manipulation, etc..
- \blacktriangleright We will then spend about 1/3 of the class on sparse direct methods
- \triangleright .. and about 1/3 on iterative methods
- > ... rest on eigenvalue problems and applications..
- ➤ Plan is not rigid!

SPARSE MATRICES

- See Chap. 3 of text
- See the "links" page on the class web-site
- See also the various sparse matrix sites.
- Introduction to sparse matrices
- Sparse matrices in matlab -

Csci 8314 – January 21, 2014

What are sparse matrices?

Pattern of a small sparse matrix

1 _____ Csci 8314 – January 21, 2014

➤ Vague definition: matrix with few nonzero entries

For all practical purposes: an $m \times n$ matrix is sparse if it has $O(\min(m, n))$ nonzero entries.

This means roughly a constant number of nonzero entries per row and column -

ightharpoonup This definition excludes a large class of matrices that have $O(\log(n))$ nonzero entries per row.

ightharpoonup Other definitions use a slow growth of nonzero entries with respect to n or m.

L-12 _____ Csci 8314 – January 21, 2014

"...matrices that allow special techniques to take advantage of the large number of zero elements." (J. Wilkinson)

A few applications which lead to sparse matrices:

Structural Engineering, Computational Fluid Dynamics, Reservoir simulation, Electrical Networks, optimization, Google Page rank, information retrieval (LSI), circuit similation, device simulation,

Goal of Sparse Matrix Techniques

To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

Example: To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

For typical Finite Element /Finite difference matrices, number of nonzero elements is O(n).

Remark: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).

-13 ______ Csci 8314 – January 21, 2014

Csci 8314 - January 21, 2014

Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

PORES3: Unsymmetric MATRIX FROM PORES

BP 1000: UNSYMMETRIC BASIS FROM LP PROBLEM BI

Csci 8314 - January 21, 2014

Types of sparse matrices

- Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)
- ➤ The matrices PORES3 and SHERMAN5 are from Oil Reservoir Simulation. Often: 3 unknowns per mesh point (Oil , Water saturations, Pressure). Structured matrices.
- 40 years ago reservoir simulators used rectangular grids.
- ➤ Modern simulators: Finer, more complex physics ➤ harder and larger systems. Also: unstructured matrices
- \blacktriangleright A naive but representative challenge problem: $100 \times 100 \times 100$ grid + about 10 unknowns per grid point $\triangleright N \approx 10^7$, and $nnz \approx 10^7$ 7×10^{8} .

Solving sparse linear systems: existing methods

Csci 8314 - January 21, 2014 Csci 8314 - January 21, 2014 Two types of methods for general systems:

- ➤ Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..
- ➤ Iterative methods: compute a sequence of iterates which converge to the solution preconditioned Krylov methods..

Remark: These two classes of methods have always been in competition.

- \blacktriangleright 40 years ago solving a system with n=10,000 was a challenge
- Now you can solve this in a fraction of a second on a laptop.

➤ Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.

➤ 3-D problems lead to more challenging systems [inherent to the underlying graph]

Difficulty:

- No robust 'black-box' iterative solvers.
- At issue: Robustness in conflict with efficiency.
- ➤ Iterative methods are starting to use some of the tools of direct solvers to gain 'robustness'

L-19 _____ Csci 8314 - January 21, 2014

20 ______ Csci 8314 – January 21, 2014

Consensus:

- 1. Direct solvers are often preferred for two-dimensional problems (robust and not too expensive).
- 2. Direct methods loose ground to iterative techniques for threedimensional problems, and problems with a large degree of freedom per grid point,

Sparse matrices in matlab

- Matlab supports sparse matrices to some extent.
- Can define sparse objects by conversion

$$A = sparse(X) ; X = full(A)$$

Can show pattern

spy(X)

> Define the analogues of ones, eye:

speye(n,m), spones(pattern)

> A few reorderings functions provided..

symrcm, symamd, colamd, colperm

-21 _____ Csci 8314 – January 21, 2014

> Random sparse matrix generator:

sprand(S) or sprand(m,n, density)

➤ To read if you are interested in sparse matrices in matlab: • John R. Gilbert, Cleve, Moler and Robert Schreiber, "Sparse Matrices in MATLAB: Design and Implementation", SIAM Journal on Matrix Analysis and Applications, volume 13, number 1, pages 333–356 (1992).

-23 ______ Csci 8314 – January 21, 2014

$Graph\ Representations\ of\ Sparse\ Matrices$

➤ Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V, E) with $E \subset G \times G$. So G represents a binary relation. The graph is undirected if the binary relation is reflexive. It is directed otherwise. V is the vertex set and E is the edge set.

Example: Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the relations

R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [mod(x,3) = mod(y,3)]

lacksquare Graph G=(V,E) of an n imes n matrix A defined by

ightharpoonup Vertices $V = \{1, 2,, N\}$.

ightharpoonup Edges $E=\{(i,j)|a_{ij}
eq 0\}$.

ightharpoonup Often self-loops (i,i) are not represented [because they are always there]

Csci 8314 - January 21, 2014

➤ Graph is undirected if the matrix has a symmetric structure:

$$a_{ij} \neq 0$$
 iff $a_{ji} \neq 0$.

Example: (directed graph)

Example: (undirected graph)

28 _____ Csci 8314 - January 21, 2014

Example: Adjacency graph of:

Example: What is the graph of a tridiagonal matrix? Of a dense matrix?

➤ We will see much on graphs and their use for sparse matrices later.

1-29 Csci 8314 – January 21, 2014