Preventing Overloading Incidents on Smart Grids: A Multiobjective Combinatorial Optimization Approach

Nikolaos Antoniadis¹ Maxime Cordy¹ Angelo Sifaleras² Yves Le Traon¹

¹University of Luxembourg

Interdisciplinary Centre of Security, Reliability and Trust (SnT) Luxembourg, Luxembourg

²UNIVERSITY OF MACEDONIA

Department of Applied Informatics Thessaloniki, Greece

Outline

- Introduction
 - Motivation
 - Computational paradigm
- Mathematical model
 - Notation
 - Formulation
- Evaluation
 - Dataset and experimental setup
 - Results
- Conclusions and future work
 - Conclusions
 - Future work
 - Linear transformation

Outline

- Introduction
 - Motivation
 - Computational paradigm
- Mathematical model
 - Notation
 - Formulation
- Evaluation
 - Dataset and experimental setup
 - Results
- Conclusions and future work
 - Conclusions
 - Future work
 - Linear transformation

Introduction

- The low-voltage distribution grid is organized in a *multigraph*
- Its vertices are the substations and cabinets
- its edges are the power lines (cables) of the grid
- Every cable starts from a **fuse** in a cabinet and ends in an other's cabinet fuse
- Between the cable and each user installation a smart meter is installed

Problem definition

How to determine the **optimal sequence of actions** to reconfigure a smart grid system?

- Limit the consumption and/or the production of the smart grid's users
- Change the state of the fuses (controlling the reachability of the cables)

Problem definition

How to determine the **optimal sequence of actions** to reconfigure a smart grid system?

- Limit the consumption and/or the production of the smart grid's users
- Change the state of the fuses (controlling the reachability of the cables)

First example: Overloading cable

First example: Solution

Limiting power to over-consuming user

Second example: Overloading cable

Second example: Solution

Change grid's topology when user regulation is not possible

Outline

- Introduction
 - Motivation
 - Computational paradigm
- Mathematical model
 - Notation
 - Formulation
- Evaluation
 - Dataset and experimental setup
 - Results
- Conclusions and future work
 - Conclusions
 - Future work
 - Linear transformation

Nomenclature (1/2)

n	number of cables, $n \in \mathbb{N}^*$
rį	reachability cable state; 1 if cable i is powered and 0 otherwise
m	number of users, $m \in \mathbb{N}^*$
uc _{ki}	user cable indicator; 1 if user k is connected with cable i , 0 otherwise
0	number of cabinets (including substations), $o \in \mathbb{N}^*$
dfcab _b	cabinet visit indicator; 1 if $\sum_{f=1}^{2n} cc_{bf} x_f - x_f^0 \ge 1$, 0 otherwise
X_f	fuse state; 1 if fuse f is closed, and 0 otherwise;
	if $f = 2i$, x_f denotes the current state of the <i>start</i> fuse of cable i ,
	else if $f = 2i + 1$, x_f denotes the current state of the <i>end</i> fuse of cable i
x_f^0	initial fuse state
CCbf	fuse cabinet indicator; 1 if fuse f belongs to the cabinet b , 0 otherwise

Nomenclature (2/2)

```
coefficient matrix element; for equation j and fuse f, A_{if} \in \{-1, 0, 1\}
            actual active energy vector energy element for fuse f; wp_t \in \mathbb{R}
WPf
            active load vector element; P_i = Pl_i \cdot r_i, if equation j is describing the current flow of cable i, and 0 otherwise, P_i \in \mathbb{R}
            initial active energy for cable i, Pl_i = \delta \sum_{k=1}^m uc_{ki} RaE_k
Pl_i
            measurement frequency coefficient; e.g. \frac{60}{15} = 4, for 15 min interval
δ
RaE<sub>v</sub>
            real active energy consumption for user k,
            RaE_k = aE_k, if cur_k < l_{IC}, (consumer) or cur_k < l_{IP} (producer), and RaE_k = RGaE_k otherwise
            active energy for user k, aE_k = aEC_k - aEP_k, aE_k \in \mathbb{R}
aE_{\nu}
aEC_k
            active energy consumption for user k, aEC_k \in \mathbb{R}_+
aEP<sub>v</sub>
            active energy production for user k, aEP_k \in \mathbb{R}_+
rΕν
            reactive energy for user k, rE_k = rEC_k - rEP_k, rE_k \in \mathbb{R}
            reactive energy consumption for user k, rEC_k \in \mathbb{R}_+
rEC,
            reactive energy production for user k, rEP_k \in \mathbb{R}_+
rEP<sub>v</sub>
            amperage of user k, cur_k = \frac{\sqrt{aE_k^2 + rE_k^2}}{\sqrt{a}}
cur,
            maximum allowed amperage for producers, e.g. 60A
lıь
            maximum allowed amperage for consumers, e.g. 32A
lic
            curtailed active energy for user k, RGaE_k = \sqrt{|230^2 \cdot 3 \cdot l_R^2 - rE_k^2|}, RGaE_k \in \mathbb{R}_+
RGaE<sub>v</sub>
            curtailed amperage for users, e.g. 20A
lp
WQt
            actual reactive energy vector energy element for fuse f; wq_t \in \mathbb{R}
            reactive load vector element; Q_i = Ql_i \cdot r_i, if equation j is describing the current flow of cable i, and 0 otherwise, Q_i \in \mathbb{R}
Q
            initial reactive energy for cable i, Ql_i = \delta \sum_{k=1}^m uc_{ki} r E_k
            actual current load percentage, at cable l; l_l = \max(\frac{100\sqrt{w_{D_2^2} + wa_{D_2}^2}}{220 + 15}, \frac{100\sqrt{w_{D_2^2} + wa_{D_2^2}^2}}{220 + 15}, \frac{100\sqrt{w_{D_2^2} + wa_{D_2^2}^2}}{220 + 15}
Я
            maximum allowed current load percentage for all cables, e.g. 80%
```

cable index, $i \in \{1, \ldots, n\}$

Objectives & basic constraints

Mixed Integer Quadratically Constrained Program (MIQCP) formulation

1st objective: Maximize the serviced users of the grid

$$\max \sum_{i=1}^{n} r_i \sum_{k=1}^{m} u c_{ki}$$
 (1)

2nd objective: Minimize the number of visiting cabinets

$$\min \sum_{b=1}^{o} df c a b_b \tag{2}$$

3rd objective: Minimize the number of fuses' changes

$$\min \sum_{t=1}^{2n} |x_t - x_t^0|$$

Basic constraints

Approximate active energy for the current topology

$$A \cdot wp = P$$
 (4)

Approximate reactive energy for the current topology

$$A \cdot wq = Q \tag{5}$$

Cable amperage constraint

$$I_i < \hat{n}, \forall i \in \{1, \dots, n\}$$
 (6)

Outline

- Introduction
 - Motivation
 - Computational paradigm
- Mathematical model
 - Notation
 - Formulation
- Evaluation
 - Dataset and experimental setup
 - Results
- Conclusions and future work
 - Conclusions
 - Future work
 - Linear transformation

Dataset and experimental setup

- Topology generator
- 10 instances x 10 grid topologies x 216 scenarios = 21600 instances
- Consumption and production energy data based on historical data from Creos Luxembourg S.A.
- Soft curtailment is applied if
 - a producer overpasses the threshold of 60A, i.e., 80% of 75A, or
 - a consumer overpasses the threshold of 32A, i.e., 80% of 40A
- If a producer or a consumer is curtailed, its active energy is limited to 20A

Research questions

- First research question:
 scalability of our approach wrt. increasingly-large grids
- Second research question: how well curtailment policies allow avoiding user disconnections?

Findings - 1st Research Question

18/23

Findings - 2nd Research Question

- 10 topologies with 5 substations
 - average time $6.363 \sec \pm 1.527 \sec$
- If overloaded consumers ≤ 10% and overloaded producers ≤ 25%
 - no disconnection is needed (if we curtail all users)
 - 6.98% of cabinets should be visited
 - 3.47% of fuses should be changed
- With no curtailment, even when overload producers ≤ 10%
 - \bullet 5.43% \pm 0.93% of the users should be disconnected

Outline

- Introduction
 - Motivation
 - Computational paradigm
- Mathematical model
 - Notation
 - Formulation
- Evaluation
 - Dataset and experimental setup
 - Results
- Conclusions and future work
 - Conclusions
 - Future work
 - Linear transformation

- Defined and formulated the overloading prevention problem in smart grids as a Multiobjective MIQCP.
- Suggested a solution method using a state-of-the-art exact solver.
- Can be included in the grid operator's decision-making process.
 - Prevent challenging overloading incidents in a smart grid
 - Minimizing the disconnections of the grid's users.

- Defined and formulated the overloading prevention problem in smart grids as a Multiobjective MIQCP.
- Suggested a solution method using a state-of-the-art exact solver.
- Can be included in the grid operator's decision-making process.
 - Prevent challenging overloading incidents in a smart grid
 - Minimizing the disconnections of the grid's users.

- Defined and formulated the overloading prevention problem in smart grids as a Multiobjective MIQCP.
- Suggested a solution method using a state-of-the-art exact solver.
- Can be included in the grid operator's decision-making process.
 - Prevent challenging overloading incidents in a smart grid
 - Minimizing the disconnections of the grid's users.

- Defined and formulated the overloading prevention problem in smart grids as a Multiobjective MIQCP.
- Suggested a solution method using a state-of-the-art exact solver.
- Can be included in the grid operator's decision-making process.
 - Prevent challenging overloading incidents in a smart grid
 - Minimizing the disconnections of the grid's users.

- It would be interesting to analyze the intermediate states to find the optimal order of fuses' change.
- Also, applying a dynamic soft curtailment policy would be a desired feature for the smart grid users.
- Another interesting addition should be the appliance of a fairness policy to avoid curtailing the same users repetitively over time.
- We should also consider the future states of the grid and their inherent stochasticity, as the recovery response solution should guarantee stability over the next 24 hours.
- We also plan to exploit metaheuristic methods to solve the overloading prevention problem, that may help us to address the additions mentioned above.

- It would be interesting to analyze the intermediate states to find the optimal order of fuses' change.
- Also, applying a dynamic soft curtailment policy would be a desired feature for the smart grid users.
- Another interesting addition should be the appliance of a fairness policy to avoid curtailing the same users repetitively over time.
- We should also consider the future states of the grid and their inherent stochasticity, as the recovery response solution should guarantee stability over the next 24 hours.
- We also plan to exploit metaheuristic methods to solve the overloading prevention problem, that may help us to address the additions mentioned above.

- It would be interesting to analyze the intermediate states to find the optimal order of fuses' change.
- Also, applying a dynamic soft curtailment policy would be a desired feature for the smart grid users.
- Another interesting addition should be the appliance of a fairness policy to avoid curtailing the same users repetitively over time.
- We should also consider the future states of the grid and their inherent stochasticity, as the recovery response solution should guarantee stability over the next 24 hours.
- We also plan to exploit metaheuristic methods to solve the overloading prevention problem, that may help us to address the additions mentioned above.

- It would be interesting to analyze the intermediate states to find the optimal order of fuses' change.
- Also, applying a dynamic soft curtailment policy would be a desired feature for the smart grid users.
- Another interesting addition should be the appliance of a fairness policy to avoid curtailing the same users repetitively over time.
- We should also consider the future states of the grid and their inherent stochasticity, as the recovery response solution should guarantee stability over the next 24 hours.
- We also plan to exploit metaheuristic methods to solve the overloading prevention problem, that may help us to address the additions mentioned above.

- It would be interesting to analyze the intermediate states to find the optimal order of fuses' change.
- Also, applying a dynamic soft curtailment policy would be a desired feature for the smart grid users.
- Another interesting addition should be the appliance of a fairness policy to avoid curtailing the same users repetitively over time.
- We should also consider the future states of the grid and their inherent stochasticity, as the recovery response solution should guarantee stability over the next 24 hours.
- We also plan to exploit metaheuristic methods to solve the overloading prevention problem, that may help us to address the additions mentioned above.

End of presentation

Thank you for your attention!

Contact details

- @ nikolaos.antoniadis@uni.lu
- @niko_antoniadis

in

www.linkedin.com/in/nikosantoniadis

live:nantoniad

The 216 scenarios and these slides can be retrieved from http://tiny.cc/ola2020_antoniadis

$$P_{j} = \sum_{f=1}^{2n} A_{jf} w p_{f}, \forall j \in \{1, \dots, leq\}$$
 (7)
$$Q_{j} = \sum_{f=1}^{2n} A_{jf} w q_{f}, \forall j \in \{1, \dots, leq\}$$
 (8)

$$zp_{jf} = \begin{cases} -wp_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wp_f, & A_{jf} = 1 \end{cases}$$
 (9)
$$zq_{jf} = \begin{cases} -wq_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wq_f, & A_{jf} = 1 \end{cases}$$
 (10)

$$P_{j} = \sum_{f=1}^{2n} z p_{jf}, \forall j \in \{1, \dots, leq\}$$
 (11)
$$Q_{j} = \sum_{f=1}^{2n} z q_{jf}, \forall j \in \{1, \dots, leq\}$$
 (12)

$$-1y_{jf1} + 0y_{jf2} + 1y_{jf3} = A_{jf}, (13) y_{jf1} + y_{jf2} + y_{jf3} = 1 (14)$$

$$zp_{jf} = \begin{cases} -wp_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wp_f, & y_{jf3} = 1 \end{cases}$$
 (15)
$$zq_{jf} = \begin{cases} -wq_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wq_f, & y_{jf3} = 1 \end{cases}$$
 (16)

$$P_{j} = \sum_{f=1}^{2n} A_{jf} w p_{f}, \forall j \in \{1, \dots, leq\}$$
 (7)
$$Q_{j} = \sum_{f=1}^{2n} A_{jf} w q_{f}, \forall j \in \{1, \dots, leq\}$$
 (8)

$$zp_{jf} = \begin{cases} -wp_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wp_f, & A_{jf} = 1 \end{cases}$$
 (9)
$$zq_{jf} = \begin{cases} -wq_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wq_f, & A_{jf} = 1 \end{cases}$$
 (10)

$$P_{j} = \sum_{f=1}^{2n} z p_{jf}, \forall j \in \{1, \dots, leq\}$$
 (11)
$$Q_{j} = \sum_{f=1}^{2n} z q_{jf}, \forall j \in \{1, \dots, leq\}$$
 (12)

$$-1y_{jf1} + 0y_{jf2} + 1y_{jf3} = A_{jf}, (13) y_{jf1} + y_{jf2} + y_{jf3} = 1 (14)$$

$$zp_{jf} = \begin{cases} -wp_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wp_f, & y_{jf3} = 1 \end{cases}$$
 (15)
$$zq_{jf} = \begin{cases} -wq_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wq_f, & y_{jf3} = 1 \end{cases}$$
 (16)

$$P_{j} = \sum_{f=1}^{2n} A_{jf} w p_{f}, \forall j \in \{1, \dots, leq\}$$
 (7)
$$Q_{j} = \sum_{f=1}^{2n} A_{jf} w q_{f}, \forall j \in \{1, \dots, leq\}$$
 (8)

$$zp_{jf} = \begin{cases} -wp_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wp_f, & A_{jf} = 1 \end{cases}$$
 (9)
$$zq_{jf} = \begin{cases} -wq_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wq_f, & A_{jf} = 1 \end{cases}$$
 (10)

$$P_{j} = \sum_{f=1}^{2n} z p_{jf}, \forall j \in \{1, \dots, leq\}$$
 (11)
$$Q_{j} = \sum_{f=1}^{2n} z q_{jf}, \forall j \in \{1, \dots, leq\}$$
 (12)

$$-1y_{jf1} + 0y_{jf2} + 1y_{jf3} = A_{jf}, (13) y_{jf1} + y_{jf2} + y_{jf3} = 1 (14)$$

$$zp_{jf} = \begin{cases} -wp_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wp_f, & y_{jf3} = 1 \end{cases}$$
 (15)
$$zq_{jf} = \begin{cases} -wq_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wq_f, & y_{jf3} = 1 \end{cases}$$
 (16)

$$P_{j} = \sum_{f=1}^{2n} A_{jf} w p_{f}, \forall j \in \{1, \dots, leq\}$$
 (7)
$$Q_{j} = \sum_{f=1}^{2n} A_{jf} w q_{f}, \forall j \in \{1, \dots, leq\}$$
 (8)

$$zp_{jf} = \begin{cases} -wp_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wp_f, & A_{jf} = 1 \end{cases}$$
 (9)
$$zq_{jf} = \begin{cases} -wq_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wq_f, & A_{jf} = 1 \end{cases}$$
 (10)

$$P_{j} = \sum_{f=1}^{2n} zp_{jf}, \forall j \in \left\{1, \dots, leq\right\}$$
 (11)
$$Q_{j} = \sum_{f=1}^{2n} zq_{jf}, \forall j \in \left\{1, \dots, leq\right\}$$
 (12)

$$-1y_{jf1} + 0y_{jf2} + 1y_{jf3} = A_{jf}, (13) y_{jf1} + y_{jf2} + y_{jf3} = 1 (14)$$

$$zp_{jf} = \begin{cases} -wp_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wp_f, & y_{jf3} = 1 \end{cases}$$
 (15)
$$zq_{jf} = \begin{cases} -wq_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wq_f, & y_{jf3} = 1 \end{cases}$$
 (16)

$$P_{j} = \sum_{f=1}^{2n} A_{jf} w p_{f}, \forall j \in \{1, \dots, leq\}$$
 (7)
$$Q_{j} = \sum_{f=1}^{2n} A_{jf} w q_{f}, \forall j \in \{1, \dots, leq\}$$
 (8)

$$zp_{jf} = \begin{cases} -wp_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wp_f, & A_{jf} = 1 \end{cases}$$
 (9)
$$zq_{jf} = \begin{cases} -wq_f, & A_{jf} = -1 \\ 0, & A_{jf} = 0 \\ wq_f, & A_{jf} = 1 \end{cases}$$
 (10)

$$P_{j} = \sum_{f=1}^{2n} z p_{jf}, \forall j \in \{1, \dots, leq\}$$
 (11)
$$Q_{j} = \sum_{f=1}^{2n} z q_{jf}, \forall j \in \{1, \dots, leq\}$$
 (12)

$$-1y_{jf1} + 0y_{jf2} + 1y_{jf3} = A_{jf}, (13) y_{jf1} + y_{jf2} + y_{jf3} = 1 (14)$$

$$zp_{jf} = \begin{cases} -wp_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wp_f, & y_{jf3} = 1 \end{cases}$$
 (15)
$$zq_{jf} = \begin{cases} -wq_f, & y_{jf1} = 1\\ 0, & y_{jf2} = 1\\ wq_f, & y_{jf3} = 1 \end{cases}$$
 (16)