1

Seien X und Y Zufallsvariablen mit endlicher Varianz. Wir definieren die Kovarianz $\mathbf{Cov}(X,Y)$ durch $\mathbf{Cov}(X,Y) := \mathbb{E}[(X-\mathbb{E}[X])\cdot (Y-\mathbb{E}[Y])]$

- (i) Zeige, dass $Cov(X, Y) = \mathbb{E}[X \cdot Y] \mathbb{E}[X] \cdot \mathbb{E}[Y]$.
- (ii) Zeige, dass Cov(X, Y) = 0, wenn X und Y unabhängig ist.
- (iii) Seien nun Var(X), Var(Y) und Cov(X,Y) bekannt. Berechne Var(X+Y).
- (iv) Sei $\Omega = [5]$ ein Laplace Raum und X und Y zwei Zufallsvariablen mit untenstehender Definition, wobei X die Anzahl der Stunden Schlaf am Tag i und Y die Anzahl der getrunkenen Kaffeebecher am Tag i angibt. Berechne Cov(X,Y).

Lösung:

(i) Wir multiplizieren zuerst die Terme in der Definition der Kovarianz: $\mathbb{E}[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])] = \mathbb{E}[X \cdot Y - X \cdot \mathbb{E}[Y] - \mathbb{E}[X] \cdot Y + \mathbb{E}[X] \cdot \mathbb{E}[Y]]$ $= \mathbb{E}[X \cdot Y] - \mathbb{E}[X \cdot \mathbb{E}[Y]] - \mathbb{E}[\mathbb{E}[X] \cdot Y] + \mathbb{E}[\mathbb{E}[X] \cdot \mathbb{E}[Y]]$ $= \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y] + \mathbb{E}[X] \cdot \mathbb{E}[Y]$ $= \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$

aufgrund der Linearität des Erwartungswertes.

- (ii) Wenn X und Y unabhängig sind, so gilt $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ und die Aussage gilt trivial.
- (iii) Wie benutzen die zweite (nützliche) Formel für die Varianz und kriegen somit insgesamt:
 - $Var[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
 - $\operatorname{Var}[Y] = \mathbb{E}[Y^2] \mathbb{E}[Y]^2$
 - $Cov(X, Y) = \mathbb{E}[X \cdot Y] \mathbb{E}[X] \cdot \mathbb{E}[Y]$

Wenn wir nun wieder die Formel für die Varianz für X + Y anwenden, so kriegen wir

$$Var(X + Y) = \mathbb{E}[(X + Y)^2] - \mathbb{E}[X + Y]^2$$

$$= \mathbb{E}[X^2 + 2XY + Y^2] - (\mathbb{E}[X] + \mathbb{E}[Y])^2$$

$$= \mathbb{E}[X^2] + 2 \cdot \mathbb{E}[XY] + \mathbb{E}[Y^2] - (\mathbb{E}[X]^2 + 2 \cdot \mathbb{E}[X]\mathbb{E}[Y] + \mathbb{E}[Y]^2)$$

$$= Var[X] + Var[Y] + 2 \cdot Cov(X, Y)$$

(iv) Wir benutzen die Formel aus Aufgabe i) und berechnen erstmal die benötigten Erwartungswerte.

$\mathrm{Day}\ i$	1	2	3	4	5
X(i)	8	4	10	2	6
Y(i)	1	4	0	7	3
$X \cdot Y(i)$	8	16	0	14	18

 \Longrightarrow

•
$$\mathbb{E}[X] = \frac{8+4+10+2+6}{5} = 6$$

•
$$\mathbb{E}[Y] = \frac{1+4+0+7+3}{5} = 3$$

•
$$\mathbb{E}[XY] = \frac{8+16+0+14+18}{5} = \frac{56}{5} \approx 11$$

Somit kriegen wir $Cov(X,Y) = \frac{56}{5} - 6 \cdot 3 \approx -7$