Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Maletin Kirill Гр. 320201

Вариант 30

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4ee9:4b69:7269:6c00:0/102

Задание 1.2: разбить сеть из п.1.1 на 100 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{ m C\'\Gamma C,}$	2001: db8: 0: 4ee9: 4b69: 7269: 6c00: 0/109
Префикс $N_{\mathrm{C,P\ddot{e}PS}}$	2001:db8:0:4ee9:4b69:7269:6f18:0/109

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (30*16)/256+10=11

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (30*16)/256=224

Дано: Сеть 11.224.0.0/12

Задание 2.1.1: разбить сеть на 512 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	224	U	U
Адрес сети	00001011	11100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 5 бит из 2-го октета.

3. Итого, получается, что сеть 11.224.0.0/12 мы разбили на 512 подсети, в каждой из которых по 2046 узлов, указываем первые 5 подсетей:

	11	224	0	0
Адрес сети дв.с	00001011	11100000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

11.224.0.0/21
11.224.0.1
11.224.7.254
11.224.7.255
11.224.8.0/21
11.224.8.1
11.224.15.254
11.224.15.255
11.224.16.0/21
11.224.16.1
11.224.23.254
11.224.23.255
11.224.24.0/21
11.224.24.1
11.224.31.254
11.224.31.255
11.224.32.0/21
11.224.32.1
11.224.39.254
11.224.39.255

Дано: Сеть 11.224.0.0/12

Задание 2.1.2: разбить сеть на 10000 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	224	0	0
Адрес сети	00001011	11100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить данную сеть на $(10000\leqslant 2^{14}=16384)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 8 бит из 2-го октета, а также 2 бит из 1-го октета (получается, что сеть можно разбить на 16384 подсетей: $2^{14}=16384$; оставшиеся 6 бит идут под узлы: $2^6-2=62$ в каждой подсети).

3. Указываем первую и последнюю подсети:

Адрес сети $N_1/$ Префикс N_1	11.224.0.0/26
Адрес первого узла N_1	11.224.0.1
Адрес последнего узла N_1	11.224.0.62
Широковещательный адрес N_1	11.224.0.63

Λ дрес сети $N_2/$ Префикс N_2	11.233.195.192/26
Λ дрес первого узла N_2	11.233.195.193
Адрес последнего узла N_2	11.233.195.254
Широковещательный адрес N_2	11.233.195.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 8192 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

• адрес подсети;

- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	224	0	0
Адрес сети	00001011	11100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=13, т.к. $2^{13}-2=8190$. Т.е. нужно выбрать такую маску, которря выделит ровно 13 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^7=32$ подсетей по 8190 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.239.96.0/19
Адрес первого узла N_1	11.239.96.1
Адрес последнего узла N_1	11.239.127.254
Широковещательный адрес N_1	11.239.127.255
Λ дрес сети $N_2/$ Префикс N_2	11.239.128.0/19
${ m A}$ дрес первого узла N_2	11.239.128.1
Адрес последнего узла N_2	11.239.159.254
Широковещательный адрес N_2	11.239.159.255
Λ дрес сети $N_3/$ Префикс N_3	11.239.160.0/19
${ m A}$ дрес первого узла N_3	11.239.160.1
Адрес последнего узла N_3	11.239.191.254
Широковещательный адрес N_3	11.239.191.255

Адрес сети $N_4/$ Префикс N_4	11.239.192.0/19
Λ дрес первого узла N_4	11.239.192.1
Адрес последнего узла N_4	11.239.223.254
Широковещательный адрес N_4	11.239.223.255
Адрес сети $N_5/$ Префикс N_5	11.239.224.0/19
Адрес первого узла N_5	11.239.224.1
Адрес первого узла N_5 Адрес последнего узла N_5	11.239.224.1 11.239.255.254

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 20000 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	224	0	0
Адрес сети	00001011	11100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=15, т.к. $2^{15}-2=32766 \geqslant 20000$.

	11	224	U	U
Адрес сети дв.с	00001011	11100000	00000000	00000000
Маска дв.с	11111111	11111111	10000000	00000000
	255	255	128	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.224.0.0/17
Адрес первого узла N_1	11.224.0.1
Адрес последнего узла N_1	11.224.127.254
Широковещательный адрес N_1	11.224.127.255

Адрес сети $N_2/$ Префикс N_2	11.239.128.0/17
Адрес первого узла N_2	11.239.128.1
Адрес последнего узла N_2	11.239.255.254
Широковещательный адрес N_2	11.239.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 400 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	11	224	0	0
Адрес сети	00001011	11100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=9, т.к. $2^9-2=510$.

	11	224	0	0
Адрес сети дв.с	00001011	11100000	00000000	00000000
Маска дв.с	11111111	11111111	11111110	00000000
	255	255	254	0

3. Указываем последние 5 подсетей:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	11.239.246.0/23
Адрес первого узла N_1	11.239.246.1
Адрес последнего узла N_1	11.239.247.254
Широковещательный адрес N_1	11.239.247.255
Адрес сети $N_2/$ Префикс N_2	11.239.248.0/23
Λ дрес первого узла N_2	11.239.248.1
Адрес последнего узла N_2	11.239.249.254
Широковещательный адрес N_2	11.239.249.255

$oxedsymbol{A}$ дрес сети $N_3/$ Префикс N_3	11.239.250.0/23
Адрес первого узла N_3	11.239.250.1
Адрес последнего узла N_3	11.239.251.254
Широковещательный адрес N_3	11.239.251.255
$oxedsymbol{\Lambda}$ Адрес сети $N_4/$ Префикс N_4	11.239.252.0/23
Адрес первого узла N_4	11.239.252.1
Адрес последнего узла N_4	11.239.253.254
Широковещательный адрес N_4	11.239.253.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	11.239.254.0/23
Адрес первого узла N_5	11.239.254.1
Адрес последнего узла N_5	11.239.255.254
Широковещательный адрес N_5	11.239.255.255