Real-time data collection framework in virtual reality environment

SUBARCTIC MONKEYS

OUR TEAM

+ MUIZ
Sensors

MARI
Data & VR

SAKIB

Sensors

BRI

Data & VR

VIRTUAL REALITY (VR)

VR provides **collaboration**personalised environments where to
experience co-presence. **Context**, **physical** and **physiological** data from
a variety of sources are required to
improve the experience. Therefore, the
need of a **VR framework** that brings
together all the different sources.

CHALLENGE

Create a solution which collects and integrates data from several sources for virtual reality collaboration and co-presence applications with a particular focus on medical training. Collect sample data and make standardized data cleanup for analysis.

VR SCENE

An VR scene involving physical activity is used to trigger physiological sensors

SENSORS

EEG, pulse, respiration and galvanic skin response sensors track physiological data of the user

DATABASE

A free cloud database is used to store the data:

MongoDB Atlas

REQUIREMENTS

REALTIME DATA COLLECTION

VIRTUAL REALITY ENVIRONMENT

CONTEXT, PHYSICAL AND PHYSIOLOGICAL DATA

MULTIPLE SOURCES

STANDARDIZED DATA

OPEN SOURCE FRAMEWORK

SYSTEM ARCHITECTURE

POSSIBLE EXTENSIONS

COLLECTED DATA

- X, Y, Z (qaze)
- TargetX, TargetY, TargetZ (stimulus)

- Timestamp
- Value of the ECG/EKG

EYEDATA

heartData

eyeData |

Data collected from the VR

HEARTDATA

heartData

Data collected from the sensor

eyeData •

Data collected from the VR

FRAMEWORK

Simple

Standardized

Lightweigh

subarctic.py

The user has to create a MongoDB account, create a database, and retrieve the connection URI. With the **subarctic** python module it is possible to:

- Create a collection
- Delete a collection
- From a .csv file, insert data into a collection
- Watch for changes in database
- Write data from Arduino to database

The user only needs to **import subarctic** into his/her script without dealing with low-level pymongo library.

BUSINESS POTENTIAL

- 1. Medical training
- 2. Treatment of patients
- 3. Pain management
- 4. Physical therapy
- 5. Rehabilitation
- 6. Health education
- 7. Fitness

BUSINESS CASE

PROJECTED HEALTHCARE GROWTH IN VR

FUTURE DEVELOPMENT OF THE PROJECT

DATA ANALYSIS

Analyse the data to improve the co-presence in the environment

DEPLOYMENT

Integrate components of the system into preventative healthcare plan

1

2

3

4

INCLUDE MORE SENSORS

To retrieve indoor contextual data, physical and physiological data

VR SCENE

Define a scene that triggers sensors in a supervised medical environment

DEMO

DEMO #1

DEMO #2