Čip v sudu s radonovou atmosférou

Michal Šesták

21. května 2019

Obsah

1	Uvc	od	1				
2	Úlohy						
3	Difúze radonu do čipu skrze pouzdro						
	3.1	Popis difúzního šíření	2				
	3.2	Součinitel difúze a rozměry pouzdra	2				
	3.3	Numerické řešení difúzní rovnice	3				
		3.3.1 Počáteční a okrajové podmínky	3				
		3.3.2 Použitá metoda	4				
	3.4	Výsledek	4				
	3.5	Diskuze	5				
	3.6	Závěr	6				
4	Výpočet dávky absorbované v čipu						
	4.1	Příspěvek od α	7				
		4.1.1 Energetický příspěvek od α , které vznikly mimo čip a pouzdro	7				
		4.1.2 Energetický příspěvek od α , které vznikly uvnitř čipu a pouzdra	8				
		4.1.3 Celkový příspěvek k dávce	9				
	4.2	Příspěvek od β	9				
	4.3	Příspěvek of γ	9				
		4.3.1 Vzduch v sudu	10				
		4.3.2 Vnitřní povrch sudu	11				
		4.3.3 Povrch pouzdra	11				
		4.3.4 Příspěvek k dávce	11				
	4.4	Konkrétní hodnoty	12				
		U					

1 Úvod

Účelem tohoto experimentu je zkoumání vlivu kosmického záření na chybovost integrovaného obvodu. Kosmické záření je simulováno radonovou atmosférou v plechovém uzemněném sudu válcové geometrie, v jehož středu je čip umístěn. Radonová atmosféra je vytvořena injekcí definované koncentrace radonu do sudu v daný počáteční čas. Kolem čipu jsou umístěny

TLD detektory, kterými měříme dávku absorbovanou v čipu. Dále se měří počet chyb zaznamenaných v různých segmentech čipu, např v ADC nebo v paměti. Snahou je zjistit, zdali existuje nějaká závislost počtu chyb v čipu na velikosti absorbované dávky.

Problémem je, že zatímco β a γ záření je TLD detektory měřeno spolehlivě, u α tomu tak není. Proto se přistoupilo k pokusu o výpočet dávky z jednotlivých složek záření (α, β, γ) pomocí teoretických poznatků.

Ještě předtím však bylo potřeba ověřit, že radon difunduje do zkoumaného čipu přes vrstvičku materiálu, která ho obklopuje, dostatečně rychle vzhledem k jeho radioaktivní přeměně. Pokud by difundoval mnohem pomaleji než se přeměňuje, pak by dávka (hlavně její část pocházející od alf) byla nižší než v případě, kdy bychom uvažovali stejnou koncentraci radonu v čipu jako v okolním prostředí sudu. Proto byl výpočet dávky rozdělen do dvou úloh.

2 Úlohy

- 1. Ověření, zdali radon difunduje k čipu přes vrstvičku materiálu pouzdra dostatečně rychle vzhledem k radioaktivní přeměně radonu v sudu.
- 2. Výpočet dávky absorbované v čipu. Určují se jednotlivě příspěvky od záření α, β, γ .

3 Difúze radonu do čipu skrze pouzdro

3.1 Popis difúzního šíření

Průběh šíření radonu difúzí v čase v daném materiálu popsaném difúzním součinitelem D se řídí druhým Fickovým zákonem

$$\frac{\partial c}{\partial t} = D \cdot \operatorname{div}(c) - \lambda c, \qquad (1)$$

kde c = c(t; x, z, y) je koncentrace radonu v bodě (x, y, z) v čase t, λ je přeměnová konstanta radonu; $[c] = \text{Bq/m}^3$; $[D] = \text{m}^2 \text{s}^{-1}$.

3.2 Součinitel difúze a rozměry pouzdra

Vzhledem k tomu, že známe pouze prvkové složení pouzdra a nevíme, z jakého materiálu je vyrobeno, tak byl uvažován difúzní součinitel o hodnotě

$$D = 3 \cdot 10^{-7} \,\mathrm{m}^2 \mathrm{s}^{-1} \,, \tag{2}$$

což by měla být hodnota obvyklá pro pevné látky (zdroj?¹). Čip je rozměrově kvádr o šířce a délce cca 7 mm a tloušťce 0,15 mm. Pouzdro ho obepíná, na bočních stranách čipu je 6,5 až 7 mm materiálu pouzdra, na horní a dolní ploše čipu je ho 0,69 mm.

¹zkusit najít a doplnit

3.3 Numerické řešení difúzní rovnice

Rešení rovnice (1) v kartézských souřadnicích při daných rozměrech pouzdra by bylo zbytečně náročné, a proto se přistoupilo k aproximaci čipu koulí o poloměru R_1 a pouzdra kulovou slupkou o poloměru R_2 a tloušťce d. Pak lze rovnici (1) převést do sférických souřadnic (r, φ, ϕ) s počátkem ve středu aproximujících útvarů:

$$\frac{\partial c}{\partial t} = D \left(\frac{\partial^2 c}{\partial r^2} + \frac{2}{r} \frac{\partial c}{\partial r} \right) - \lambda c \,, \tag{3}$$

kde navíc díky homogennosti koncentrace radonu v okolí pouzdra uvažujeme izotropní šíření, tj. nezávislé na souřadnicích φ a ϕ , a proto c=c(t,r). V prvním přiblížení byly aproximující parametry položeny hodnotám

$$R_1 = 5 \,\mathrm{cm}\,,\tag{4}$$

$$R_2 = 10 \,\mathrm{cm}\,,\tag{5}$$

$$d = R_2 - R_1 = 5 \,\mathrm{cm}\,, (6)$$

v případě potřeby by byly zmenšeny. Rovnice (3) byla řešena jen uvnitř pouzdra.

3.3.1 Počáteční a okrajové podmínky

Byly řešeny dva případy:

- 1. **Injektáž radonu:** v okolí čipu je konstantní koncentrace radonu c_0 a uvnitř čipu a pouzdra je v počátečním čase nulová koncentrace, tj.:
 - počáteční podmínka je $c(0,r) = c_u(0) = 0$ pro $r \in (R_1, R_2)$, kde $c_u(t)$ je koncentrace radonu v kouli aproximující čip v blízkosti pouzdra,
 - okrajová podmínka na rozhraní pouzdra a okolního prostředí (dále jen vnější okrajová podmínka) je $c(t, R_2) = c_0$ pro $t \in [0, T]$, kde T čas, do kterého chceme rovnici řešit,
 - okrajová podmínka na rozhraní pouzdra a čipu (dále jen vnitřní okrajová podmínka) bude uvedena později.
- 2. **Vypumpování radonu:** v okolí čipu je nulová koncentrace radonu a uvnitř čipu a pouzdra je koncentrace tentokrát v počátečním čase c_0 , tedy:
 - počáteční podmínka je $c(0,r) = c_u(0) = c_0$ pro $r \in [R_1, R_2]$,
 - vnější okrajová podmínka je $c(t, R_2) = 0$ pro $t \in [0, T]$,
 - vnitřní okrajová podmínka bude uvedena později.

První případ představuje injektáž radonu do sudu s čipem, druhý pak vypumpování radonu ven ze sudu. Vnitřní okrajová podmínka vypadá následovně:

$$D\frac{\partial c(t, R_1)}{\partial r} = h \cdot (c(t, R_1) - c_u(t)), \qquad (7)$$

kde h je tzv. přestupní koeficient vyjadřující schopnost přestupu radonu z pouzdra do čipu (nebo naopak), $[h] = \mathbf{m} \cdot \mathbf{s}^{-1}$. Jeho určení je velmi problematické a v podstatě nebyla provedena žádná systematická měření jeho hodnot pro rozhraní různých materiálů. Autoři článku [1] odhadují jeho hodnotu pro nezměřená rozhraní na

$$h = 0.1 \,\mathrm{m \cdot s^{-1}}\,,\tag{8}$$

tato hodnota byla uvažována i v našich výpočtech.

Koncentrace uvnitř čipu $c_u(t+\Delta t)$ se určí ze známé koncentrace v předchozím bodě časové sítě $c_u(t)$ pomocí vztahů

$$E(t) = h \cdot (c(t, R_1) - c_u(t)),$$

$$c_u(t + \Delta t) = c_u(t) \cdot e^{-\lambda \Delta t} + \frac{E(t) \cdot A}{V \cdot \lambda} \cdot \left(1 - e^{-\lambda \Delta t}\right),$$

$$= c_u(t) \cdot e^{-\lambda \Delta t} + \frac{3 \cdot E(t)}{R_1 \cdot \lambda} \cdot \left(1 - e^{-\lambda \Delta t}\right),$$
(10)

kde E(t) exhalační rychlost z pouzdra do čipu (či naopak) v čase t, $[E] = \text{Bq} \cdot \text{m}^{-2}\text{s}^{-1}$, dále Δt je časový krok, λ je přeměnová konstanta radonu, $A = 4\pi R_1^2$ je vnější plocha koule reprezentující čip a $V = \frac{4}{3}\pi R_1^3$ je objem této koule. Vztahy (7), (9) a (10) byly převzaty z [1].

Vnější okrajová podmínka představuje Dirichletovu okrajovou podmínku, vnitřní pak Neumannovu okrajovou podmínku.

3.3.2 Použitá metoda

Pro určení prostorového a časového vývoje koncentrace v pouzdře c(t,r) pro $t \in [0,T], r \in [R_1, R_2)$ a časového vývoje koncentrace uvnitř čipu v blízkosti pouzdra $c_u(t)$ pro $t \in [0,T]$ z rovnic (3), (7) a (10) byla použita Crank-Nicolsonova metoda [2, 3].

Z takto určeného vývoje je možné stanovit dobu T_1 , resp. T_2 (pro první a druhý případ), po níž bude radon difundovat přes pouzdro do čipu, dokud nebude v čipu s určitou tolerancí ε stejná koncentrace radonu jako ve vnějším prostředí. Při výpočtu byla použita tolerance

$$\varepsilon = 0,01. \tag{11}$$

3.4 Výsledek

Časový vývoj c_u je pro oba dva případy k nahlédnutí v obr. 1. T_1 a T_2 vychází pro všechna testovaná c_0 stejně:

$$T_1 = 5.98 \,\text{hod}\,,$$
 (12)

$$T_2 = 4.25 \,\text{hod}\,,$$
 (13)

$$T_1 + T_2 = 10,23 \,\text{hod}\,,$$
 (14)

doba $T_1 + T_2$ představuje celkovou dobu trvání obou případů. Byly testovány následující hodnoty c_0 : $1 \, \mathrm{kBq/m^3}$, $10 \, \mathrm{kBq/m^3}$, $100 \, \mathrm{kBq/m^3}$, $100 \, \mathrm{kBq/m^3}$

Obr. 1: V (a) je vidět časový vývoj koncentrace radonu v čipu v bezprostřední blízkosti pouzdra v prvním uvažovaném případě (injektáž radonu). V (b) je vidět vývoj c_u pro druhý případ (vypumpování radonu ze sudu ven). V obou případech uvažujeme $c_0 = 10 \, \mathrm{kBq/m^3}$.

3.5 Diskuze

Doby T_1 , T_2 a T_1+T_2 jsou v porovnání s $T_{1/2}(^{222}\mathrm{Rn})=3,82$ dne krátké. Vzhledem k tomu že výpočet proběhl pro mnohem větší rozměry pouzdra než jaké ve skutečnosti jsou, tak můžeme říct, že v čipu je stejná koncentrace radonu jako v sudu po většinu času experimentu. Toto

tvrzení ovšem platí pouze za předpokladu, že uvažovaný součinitel difúze skrze pouzdro D není hodně nadhodnocený.

3.6 Závěr

Bylo ověřeno, že radon difunduje skrze pouzdro do čipu dostatečně rychle vzhledem k radioaktivní přeměně radonu.

Reference

- [1] Jiránek M., Fronka A.: New technique for the determination of radon diffusion coefficient in radon-proof membranes. Radiat Prot Dosimetry. 2008;130(1):22-5. doi: 10.1093/rpd/ncn121.
- [2] Hellevik, L. R.: Numerical Methods for Engineers. Department of Structural Engineering, NTNU. 2018. Citováno 10. 5. 2019. Dostupné z http://folk.ntnu.no/leifh/teaching/tkt4140/._main068.html#ch5:sec6 a http://folk.ntnu.no/leifh/teaching/tkt4140/._main069.html#ex:52
- [3] Wikipedia, The Free Encyclopedia: Crank-Nicolson method. Citováno 10. 5. 2019. Dostupné z https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method

4 Výpočet dávky absorbované v čipu

I v této úloze aproximuje čip a pouzdro koulemi se středy ve stejném bodě, zde však s poloměry R_1 , resp. R_2 :

$$R_1 = 3.0 \,\mathrm{mm}\,,$$
 (15)

$$R_2 = 3.1 \,\mathrm{mm}\,,\tag{16}$$

které odpovídající více reálným rozměrům čipu a pouzdra. Objem a hmotnost čipu jsou označeny jako V_{cip} a m_{cip} :

$$V_{cip} = 0.0073 \,\mathrm{cm}^3 \,, \tag{17}$$

$$m_{cin} = 1.7 \times 10^{-5} \,\mathrm{kg} \,.$$
 (18)

Při výpočtu m_{cip} bylo uvažováno, že celý čip je z křemíku.

Sud je válec o poloměru a výšce

$$R_{sud} = 27 \,\mathrm{cm}\,,\tag{19}$$

$$h_{sud} = 83 \,\mathrm{cm} \tag{20}$$

a jeho objem je

$$V_{sud} = 0.19 \,\mathrm{m}^3 \,. \tag{21}$$

Uvažujeme faktor nerovnováhy F=0,1. Objemová aktivita radonu je označena a. Do sudu je na začátku experimentu jednorázově injektována počáteční koncentrace radonu a_0 , průběh a v sudu se pak řídí exponenciálním rozpadem.

4.1 Příspěvek od α

V následujících dvou podkapitolách budou určeny energetické příspěvky od α částic vzniklých mimo a uvnitř čipu, resp. pouzdra, při dané aktivitě a_0 za jednotkový časový interval (tj. 1 s). V následující podkapitole proběhne časová integrace těchto příspěvků přes zadanou dobu expozice a následné podělení hmotností pro určení dávky od α částic.

4.1.1 Energetický příspěvek od α , které vznikly mimo čip a pouzdro

Částice α o dané počáteční energii T_0 má v daném prostředí známý maximální dosah R_{max} [1]. Proto lze okolo čipu uvažovat kouli o poloměru

$$R_3 = R_{max} + R_2$$

v jejímž objemu vzniklé alfa částice mohou dolétnout k pouzdru. Alfa částice emitované mimo tuto kouli budou zastaveny dříve než doletí k pouzdru čipu. Ztrátu energie částice alfa, která vznikla ve vzdálenosti $r \in [R_2, R_3]$ od pouzdra, po projití vrstvy vzduchu o tloušť ce r je možné zjistit z tabelovaných hodnot brzdných schopností [1] a pomocí následujícího jednoduchého algoritmu:

1. Inicializace:

$$\begin{aligned} x &= 0 \,, \\ dE &= 0 \,, \\ dx &= 0, 1 \,. \end{aligned}$$

x je doposud ušlá dráha alfa částice; dE je ztráta energie, která je vypočítávána v každé iteraci; dx je krok, my jej bereme roven jednomu milimetru.

2. Iterace:

$$x = x + dx, (22)$$

kontrola x < r,

$$dE = \frac{dE}{dx}(T_i) \cdot dx,$$

$$T_{i+1} = T_i - dE,$$

kontrola dE > 0 a $T_{i+1} > 0$.

 $\frac{dE}{dx}(T_i)$ je brzdná schopnost alfa částice o energii T_i ve vzduchu. Spojitá závislost $\frac{dE}{dx}$ na T byla získána interpolováním tabelovaných hodnot z [1] kubickým splinem.

3. Ukončení cyklu:

pokud byla porušena jakákoliv kontrola v předchozím bodě, pak je cyklus ukončen a momentální T je energie, která alfa částici zbyla při příchodu k pouzdru.

Předchozí algoritmus je vlastně funkcí vzdálenosti vzniku alfa částice od pouzdra, tj. r, označme ji $f_0(r)$. Po přenásobením korekcí na prostorový úhel

$$k_1 = \frac{1}{2} \cdot \left(1 - \frac{r}{\sqrt{r^2 + R_1^2}} \right) ,$$

a faktorem zohledňujícím skutečnost, že nás zajímají alfy z celé slupky s vnitřním poloměrem r a vnějším poloměrem $r+\mathrm{d} r$

$$k_2 = 4\pi r^2 \,,$$

získáváme funkci f(r), kterou lze zintegrovat od R_2 do R_3 , tj.

$$I = \int_{R_2}^{R_3} f(r) = \int_{R_2}^{R_3} k_1(r) \cdot k_2(r) \cdot f_0(r) dr.$$
 (23)

Tato veličina představuje střední hodnotu zbylé energie alfa částice s danou počáteční energií T_0 po dojití k pouzdru, která je přenásobená objemem kulové slupky s poloměry R_2 a R_3 a její rozměr je tedy

$$[I] = MeV \cdot cm^3. \tag{24}$$

Po vydělení I integrovaným objemem $V=\frac{4}{3}\pi(R_3^3-R_2^3)$ získáváme střední energii alfa částice u vstupu do pouzdra:

$$\bar{E} = \frac{I}{V} \,. \tag{25}$$

Vypočítané hodnoty I, \bar{E} a počáteční kinetické energie T_0 alfa částic emitovaných radonem a jeho krátkodobě žijících dceřinných produktů jsou v tabulce 1.

Tab. 1: Počáteční energie, I a $\bar{E}_{pouzdro}$ alfa částic emitovaných radonem a jeho krátkodobě žijícími dceřinnými produkty (RN=radionuklid).

RN	$T_0 [{ m MeV}]$	$I [{ m MeV \cdot cm^3}]$	$\bar{E} \; [\mathrm{MeV}]$
²²² Rn	5,489	3,164	0,008
²¹⁸ Po	6,002	4,105	0,007
²¹⁴ Po	7,689	8,363	0,005

Energetický příspěvek: Energetický příspěvek od α částic vzniklých mimo objem pouzdra a čipu je možné vypočítat z

$$E_{vne} = (\bar{E}_{222}V_{222} + \bar{E}_{218}V_{218}F + \bar{E}_{214}V_{214}F)a_0, \qquad (26)$$

$$= (I_{222} + I_{218}F + I_{214}F)a_0 \quad [MeV], \qquad (27)$$

kde F je faktor nerovnováhy.

Nadhodnocení: Bohužel tento postup nezahrnuje ztrátu energie v pouzdru, jelikož v databázi [1] nelze definovat vlastní materiály. Pro tyto účely je vhodný program SRIM [2], avšak ten mi nebyl doposud nainstalován. Důsledkem je, že je dávka od tohoto příspěvku nadhodnocena.

4.1.2 Energetický příspěvek od α , které vznikly uvnitř čipu a pouzdra

Energetický příspěvek těchto α jsem odhadl jako jednu polovinu počátečních energií všech α částici vzniklých v objemu čipu, tj.:

$$E_{vnitrek} = \frac{1}{2} \cdot (5,489 + 6,002 + 7,689) \cdot a_0 \cdot V_{cip} \quad [\text{MeV}].$$
 (28)

Tento odhad lze odůvodnit tím, že α částice mají malý dosah, a proto pokud nejsou emitovány blízko povrchu čipu směrem ven, tak jsou absorbovány uvnitř čipu.

4.1.3 Celkový příspěvek k dávce

Příspěvek od α k dávce je roven:

$$D_{\alpha} = \frac{1}{m_{cip}} (E_{vne} + E_{uvnitr}) \cdot 1, 6 \times 10^{-13} \frac{1 - \exp(-\lambda T)}{\lambda},$$
 (29)

kde $1,6\times 10^{-13}$ je převodní faktor z MeV na Jouly, λ je přeměnová konstanta radonu a Tje doba expozice.

4.2 Příspěvek od β

Tento příspěvek stále nebyl určen. Vzhledem k charakteru β záření je potřeba použít metody Monte Carlo.

4.3 Příspěvek of γ

U γ záření postupujeme podobným způsobem jako u α s tím rozdílem, že se zde nepočítá s brzdnými schopnostmi, ale s exponenciálním zeslabováním svazku

$$N(d) = N_0 e^{-\left(\frac{\mu}{\rho}\right) \cdot \rho \cdot d}, \tag{30}$$

kde N_0 je počet fotonů o dané energii E před vstupem materiálu o hustotě ρ , N(d) je počet nerozptýlených fotonů po projití materiálu o tloušť ce d a $\left(\frac{\mu}{\rho}\right)$ je hmotnostní součinitel zeslabení γ záření v uvažovaném materiálu.

Důležité: V dalším postupu předpokládáme, že pokud se kvantum γ záření rozptýlí, pak již nemůže přispět k dávce absorbované v čipu, tj. uvažujeme úzký svazek. Tato aproximace je částečně ospravedlněna velikou pronikavostí γ záření ve vzduchu.

Vzhledem k tomu, že sud je rozměrově válec, tak s výhodou využijeme cylindrických souřadnic (r, θ, z) , jejichž význam je znázorněn v obr. 2. Definujme následující funkci:

$$f(r,z) = \frac{1}{2} \cdot \left(1 - \sqrt{\frac{r^2 + z^2}{r^2 + z^2 + R_1^2}} \right) \cdot e^{-\mu\sqrt{(r^2 + z^2)}},$$
 (31)

kde μ lineární součinitel zeslabení vzduchu. Tato funkce vyjadřuje, jaký zlomek fotonů vznikající v bodě o daných souřadnicích r a z a libovolné souřadnici $\theta \in [0, 2\pi)$ dojde bez rozptýlení ke středu čipu (tím se dopouštíme určité nepřesnosti, jelikož správně bychom měli uvažovat pouze dráhu od místa vzniku k povrchu pouzdra a pak počítat zeslabování v pouzdru). Faktor

$$\frac{1}{2} \cdot \left(1 - \sqrt{\frac{r^2 + z^2}{r^2 + z^2 + R_1^2}} \right) \tag{32}$$

Obr. 2: Význam cylindrických souřadnic. [3]

zohledňuje korekci na prostorový úhel a exponenciela $e^{-\mu\sqrt{(r^2+z^2)}}$ představuje zeslabování svazku. Funkce f(r,z) je nezávislá na souřadnici θ , jelikož předpokládáme homogenní rozložení koncentrace radonu uvnitř sudu.

Uvažujeme několik zdrojů γ záření:

- 1. $vzduch \ v \ sudu$, ve kterém je radon o dané koncentrace a a část vznikajících dceřinných produktů, jejichž koncentrace je dána vztahem $a \cdot F$.
- 2. Vnitřní povrch sudu, na který se deponují dceřinné produkty.
- 3. Povrch pouzdra, na který se též deponují dceřinné produkty.

Zanedbání: Zanedbáváme γ záření vznikající uvnitř čipu a pouzdra. Dále neuvažujeme zeslabení svazku uvnitř pouzdra s přihlédnutím k jeho tloušťce.

4.3.1 Vzduch v sudu

Počet γ kvant dané energie, které došly k čipu (při zanedbání pouzdra) v daný časový interval [t, t + dt], lze vypočítat z

$$N_{air} = a_{air}(t) \cdot Y \cdot 2 \int_{R_1}^{R_{sud}} \int_{R_1}^{h_{sud}} f(r, z) dz dr, \qquad (33)$$

kde Y je výtěžek dané energetické linky a

$$a_{air} = \begin{cases} a & \text{pro } \gamma \text{ od radonu}, \\ a \cdot F & \text{pro } \gamma \text{ od dcer}. \end{cases}$$
 (34)

Při tomto výpočtu zanedbáváme příspěvky od γ záření vznikající v souřadnicích $r \in [0, R_1], z \in [0, R_1]$. Výpočtem bylo ověřeno, že toto zanedbání lze provést.

4.3.2 Vnitřní povrch sudu

Koncentrace dceřinných produktů na stěně je rovna

$$a_{sud} = a \cdot \frac{V_{sud}}{S_{sud}} \cdot (1 - F), \qquad (35)$$

kde $S_{sud} = 1,866 \,\mathrm{m}^2$ je povrch vnitřního povrchu sudu. Hledaný počet γ částic došlých k čipu:

$$N_{sud} = a_{sud}(t) \cdot Y \cdot 2 \left(\int_0^{R_{sud}} f(r, h_{sud}) d\mathbf{r} + \int_0^{h_{sud}} f(R_{sud}, z) d\mathbf{z} \right). \tag{36}$$

4.3.3 Povrch pouzdra

Koncentrace dceřinných produktů na pouzdro je

$$a_{pouzdro} = \frac{S_{pouzdro}}{S_{pouzdro} + S_{sud}} \cdot a \cdot \frac{V_{sud}}{S_{pouzdro}} \cdot (1 - F), \qquad (37)$$

kde $S_{pouzdro}=8.81~{\rm cm}^2$ je povrch pouzdra (vypočten ze skutečných rozměrů). Faktor $S_{sud}/(S_{sud}+S_{pouzdro})$ by správně měl být i v (35), ale tam může být zanedbán díky jeho blízkosti jedničce. $N_{pouzdro}$ bylo odhadnuto následovně:

$$N_{pouzdro} = \frac{1}{4} \cdot a_{pouzdro} \cdot Y \,. \tag{38}$$

Tento odhad se snaží nadhodnocovat příspěvek od dcer deponovaných na pouzdře.

4.3.4 Příspěvek k dávce

Nejprve je třeba určit počet částic absorbovaných čipu. To se zjistí pomocí hmotnostního součinitele absorpce $\left(\frac{\mu}{\rho}\right)_{en}$ ze vztahu

$$N_i^{abs} = N_i \left(1 - e^{-\left(\frac{\mu}{\rho}\right)_{en} \cdot \rho_{cip} \cdot 2R_1} \right) , \tag{39}$$

kde $i \in \{air, sud, pouzdro\}$.

V tab. 2 jsou uvedeny nejintenzivnější energetické linky radonu a jeho krátkodobě žijících dceřinných produktů. Některé linky s blízkou energií byly pro zjednodušení sloučeny dohromady. Dávka od linky s energií E příslušející některému dceřinnému produktu je rovna:

$$D_{progenies}(E) = \frac{1}{m_{cip}} \sum_{i} N_i^{abs} \cdot E \cdot 1, 6 \cdot 10^{-16} \frac{1 - \exp(-\lambda t)}{\lambda},$$
 (40)

dávka od linky 511 keV od radonu je následující

$$D_{Rn}(511) = \frac{1}{m_{cip}} N_{air}^{abs} \cdot 511 \cdot 1, 6 \cdot 10^{-16} \frac{1 - \exp(-\lambda t)}{\lambda}. \tag{41}$$

Faktor $1,6\cdot 10^{-16}$ slouží k převodu z keV na Jouly, λ je přeměnová konstanta radonu. Celkový příspěvek od γ záření k dávce je

$$D_{\gamma} = D_{Rn}(511) + \sum_{E} D_{progenies}(E)$$
(42)

Tab. 2: Energie E, výtěžek Y a hmotnostní součinitel zeslabení $\frac{\mu}{\rho}$, resp. absorpce $\left(\frac{\mu}{\rho}\right)_{en}$ daného γ záření od uvedeného radionuklidu (RN). Řádek s hvězdičkou u RN značí, že u daného radionuklidu bylo z důvodu zjednodušení sloučeno několik blízkých energetických linek dohromady a jejich výtěžky byly sečteny.

$\Big)_{en}$
971
968
932
951
700
145
300
7

4.4 Konkrétní hodnoty

Vypočítal jsem D_{α} a D_{γ} pro T=1 den a pro injektovanou koncentraci $a_0=1$ kBq·m⁻³:

$$D_{\alpha} = 5.70 \,\mu\text{Gy} \,, \tag{43}$$

$$D_{\gamma} = 0.21 \,\mu\text{Gy} \,, \tag{44}$$

$$D_{celk} = 5.91 \,\mu\text{Gy} \,. \tag{45}$$

Reference

- [1] National Institute of Standards and Technology: aStar, Stopping-power and Range Tables for Helium Ions. 14. 5. 2019. Dostupné z https://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
- [2] Ziegler, J. F.: SRIM The Stopping and Range of Ions in Matter. 14. 5. 2019. Dostupné z http://srim.org/
- [3] Dawkins, P.: Section 1-12: Cylindrical Coordinates. Citováno 17. 5. 2019. http://tutorial.math.lamar.edu/Classes/CalcIII/CylindricalCoords.aspx