Universidade Federal do Rio Grande do Sul Escola de Engenharia

ENG10001 Circuitos Elétricos I-C

Trabalho Bônus 1 Associação de Quadripolos

Pedro Lubaszewski Lima (00341810)

Turma A

Sumário

1.1	Circuitos Sorteados	2
2.1	Circuito Equivalente de Thevénin da Entrada	4
3.1	Análise da Associação de Quadripolos	7
	3.1.1 Representação dos Circuitos	
	3.1.2 Parâmetros do Quadripolo Q2	
	3.1.3 Parâmetros do Quadripolo Q1	
	3.1.4 União dos Quadripolos	1(
4.1	Circuito Equivalente de Norton da Saída	11
5.1	Ganho de Tensão da Saída V_2/V_1	13

1.1 Circuitos Sorteados

Primeiramente, com o meu número de matrícula $0\ 0\ 3\ 4\ 1\ 8\ 1\ 0$, observa-se os seguintes dígitos sorteadores:

- $N_1 = 3$;
- $N_2 = 4;$
- $N_3 = 1;$
- $N_4 = 8;$
- $N_5 = 1$;
- $N_6 = 0$.

A partir deles, sabe-se que os circuito a serem analisados são os seguintes:

• Circuito de Entrada:

Figura 1: Circuito de Entrada 2

• Primeira Topologia de Quadripolo:

Figura 2: Topologia de Quadripolo 2 (Q1)

• Segunda Topologia de Quadripolo:

Figura 3: Topologia de Quadripolo 3 (Q2)

• Associação dos Quadripolos:

Figura 4: Associação dos Quadripolos Q1 e Q2

• Circuito de Saída:

Figura 5: Circuito de Saída 1

2.1 Circuito Equivalente de Thevénin da Entrada

Partindo do circuito de entrada sorteado (figura 1), pode-se adotar a estratégia de transformação de fontes repetidas vezes até chegar-se no circuito equivalente de Thevénin:

⊸B

Assim, com a sequência ilustrada acima, chegou-se ao circuito equivalente de Thevénin da entrada com $V_{TH}=\frac{27}{2}{\rm V}=13,5{\rm V}$ e $R_{TH}=\frac{95}{22}\Omega=4,3\overline{18}\Omega.$

3.1 Análise da Associação de Quadripolos

3.1.1 Representação dos Circuitos

Dada a associação de quadripolos sorteada, é mais prudente representar ambos os quadripolos com os parâmetros a, visto que o quadripolo equivalente apresenta parâmetros da seguinte forma:

$$a_{11} = a'_{11}a''_{11} + a'_{12}a''_{21} a_{12} = a'_{11}a''_{12} + a'_{12}a''_{22}$$

$$a_{21} = a'_{21}a''_{11} + a'_{22}a''_{21} a_{22} = a'_{21}a''_{12} + a'_{22}a''_{22}$$

$$(1)$$

Onde o primeiro quadripolo ($\mathbb{Q}2$) da figura 4 tem os parâmetros $a^{'}$ e o segundo quadripolo ($\mathbb{Q}1$) tem os parâmetros $a^{''}$. Além disso, os parâmetros a representam as variáveis dos quadripolos da seguinte maneira:

$$V_1 = a_{11}V_2 - a_{12}I_2 I_1 = a_{21}V_2 - a_{22}I_2$$
 (2)

3.1.2 Parâmetros do Quadripolo Q2

Com o segundo quadripolo sorteado ($\mathbb{Q}2$), calcular-se-á os seus parâmetros $a^{'}$ para realizar a sua associação com o primeiro quadripolo ($\mathbb{Q}1$):

Parâmetros $a_{11}^{'}$ e $a_{21}^{'}$

Através da equação 2, para calcular os parâmetros $a_{11}^{'}$ e $a_{21}^{'}$, basta zerar a corrente de saída I_2 e determinar os valores de V_1 e I_1 em função da variável restante V_2 . Calcular-se-á essas variáveis através da análise nodal:

Nesse caso, com esses nós e essas correntes, sabe-se que:

$$V_x = -V_A$$
$$V_2 = V_B$$

Equações observáveis de cara no circuito. Além disso, para modelar as correntes em função de V_A e V_B :

$$I_1 = \frac{V_1 - V_A}{1k\Omega}$$

$$I_2 = \frac{V_x}{100k\Omega} = -\frac{V_A}{100k\Omega}$$

$$I_3 = \frac{V_A - V_B}{2k\Omega}$$

$$I_4 = \frac{10^5 \cdot V_x - V_B}{50\Omega} = -\frac{10^5 \cdot V_A + V_B}{50\Omega}$$

$$I_5 = \frac{V_B}{5k\Omega}$$

Com essas correntes, pode-se utilizar a Lei dos Nós para cada nó:

• Nó com V_A :

$$I_{1} + I_{2} = I_{3}$$

$$\Rightarrow \frac{V_{1} - V_{A}}{1k\Omega} - \frac{V_{A}}{100k\Omega} = \frac{V_{A} - V_{B}}{2k\Omega}$$

$$\Rightarrow \frac{100V_{1} - 100V_{A} - V_{A}}{100k\Omega} = \frac{50V_{A} - 50V_{B}}{100k\Omega}$$

$$\Rightarrow 100V_{1} - 101V_{A} = 50V_{A} - 50V_{B}$$

$$\Rightarrow 151V_{A} - 50V_{B} = 100V_{1}$$
(I)

• Nó com V_B :

$$I_{3} + I_{4} = I_{5}$$

$$\Rightarrow \frac{V_{A} - V_{B}}{2k\Omega} - \frac{10^{5} \cdot V_{A} + V_{B}}{50\Omega} = \frac{V_{B}}{5k\Omega}$$

$$\Rightarrow \frac{5V_{A} - 5V_{B}}{10k\Omega} - \frac{2 \cdot 10^{7} \cdot V_{A} + 200V_{B}}{10k\Omega} = \frac{2V_{B}}{10k\Omega}$$

$$\Rightarrow 5V_{A} - 5V_{B} - 2 \cdot 10^{7} \cdot V_{A} - 200V_{B} = 2V_{B}$$

$$\Rightarrow V_{A} = -\frac{207}{19999995}V_{B}$$
(II)

Substituindo a equação II na equação I:

$$151 \cdot \left(-\frac{207}{19999995}V_B\right) - 50V_B = 100V_1$$

$$\Rightarrow -\frac{31257}{19999995}V_B - 50V_B = 100V_1$$

$$\Rightarrow -\frac{31257}{19999995}V_B - \frac{999999750}{19999995}V_B = \frac{1999999500}{19999995}V_1$$

$$\Rightarrow -1000031007V_B = 1999999500V_1$$

$$\Rightarrow V_B = -\frac{1999999500}{1000031007}V_1 \qquad (III)$$

Utilizando o valor obtido na equação III em II:

$$V_A = -\frac{207}{19999995} \cdot \left(-\frac{1999999500}{1000031007} V_1 \right)$$

$$\Rightarrow V_A = \frac{20700}{1000031007} V_1$$
(IV)

Com essas equações acima, pode-se obter as variáveis de saída (e consequentemente os parâmetros) da seguinte forma:

$$\begin{split} V_B &= V_2 \\ \Rightarrow -\frac{1999999500}{1000031007} V_1 &= V_2 \\ \Rightarrow V_1 &= -\frac{1000031007}{1999999500} V_2 \\ \Rightarrow a_{11}^{'} &= -\frac{1000031007}{1999999500} \approx -0.5 \end{split}$$

$$I_{1} = \frac{V_{1} - V_{A}}{1 \text{k}\Omega}$$

$$\Rightarrow I_{1} = \frac{V_{1} - \frac{20700}{1000031007} V_{1}}{1 \text{k}\Omega}$$

$$\Rightarrow I_{1} = \frac{1000031007 V_{1} - 20700 V_{1}}{1000031007000\Omega}$$

$$\Rightarrow I_{1} = \frac{1000010307 V_{1}}{1000031007000\Omega}$$

$$\Rightarrow I_{1} = \frac{1000010307}{1000031007000\Omega} \left(-\frac{1000031007}{1999999500} V_{2} \right)$$

$$\Rightarrow I_{1} = -\frac{1,000041314 \cdot 10^{18}}{2,000061514 \cdot 10^{21}\Omega} V_{2}$$

$$\Rightarrow I_{1} = -\frac{1000041314}{2000061514000\Omega} V_{2}$$

$$\Rightarrow a'_{21} = -\frac{1000041314}{2000061514000\Omega} S \approx -0,0005S = -0,5mS$$

Parâmetros $a_{12}^{'}$ e $a_{22}^{'}$

Agora, zerando a tensão V_2 , calcular-se-á os parâmetros $a_{12}^{'}$ e $a_{22}^{'}$ a partir de mais uma análise nodal. Isto é, encontrando V_1 e I_1 em função de I_2 :

Com essa configuração, observa-se que:

$$V_B = V_2 = 0V$$

Por conta disso, a tensão sobre o resistor de 50Ω deve ter tensão de mesma magnitude e sentido contrário ao da fonte dependente abaixo dele. Com isso:

$$I_z = \frac{10^5 \cdot V_x}{50\Omega}$$

E o resto pode-se analisar normalmente:

$$I_y = \frac{V_A}{2\mathrm{k}\Omega}$$

$$I_x = \frac{V_x}{100\mathrm{k}\Omega} = -\frac{V_A}{100\mathrm{k}\Omega}$$

$$I_1 = \frac{V_1 - V_A}{1\mathrm{k}\Omega}$$

• Nó com V_A :

$$\begin{split} I_1 + I_x &= I_y \\ \Rightarrow \frac{V_1 - V_A}{1 \mathrm{k} \Omega} - \frac{V_A}{100 \mathrm{k} \Omega} &= \frac{V_A}{2 \mathrm{k} \Omega} \\ \Rightarrow \frac{100 V_1 - 100 V_A - V_A}{100 \mathrm{k} \Omega} &= \frac{50 V_A}{100 \mathrm{k} \Omega} \end{split}$$

$$\Rightarrow 100V_1 - 101V_A = 50V_A$$

$$\Rightarrow 151V_A = 100V_1$$

$$\Rightarrow V_1 = \frac{151}{100}V_A$$
(I)

• Nó com V_B :

$$I_{y} + I_{z} + I_{2} = 0$$

$$\Rightarrow \frac{V_{A}}{2k\Omega} + \frac{10^{5} \cdot V_{x}}{50\Omega} + I_{2} = 0$$

$$\Rightarrow \frac{V_{A}}{2k\Omega} - \frac{10^{5} \cdot V_{A}}{50\Omega} + I_{2} = 0$$

$$\Rightarrow \frac{V_{A}}{2k\Omega} - \frac{4 \cdot 10^{6} \cdot V_{A}}{2k\Omega} + \frac{2k\Omega \cdot I_{2}}{2k\Omega} = 0$$

$$\Rightarrow 3999999V_{A} = 2000\Omega \cdot I_{2}$$

$$\Rightarrow V_{A} = \frac{2000}{3999999}\Omega \cdot I_{2}$$
(II)

Utilizando a equação II em I:

$$V_1 = \frac{151}{100} \cdot \left(\frac{2000}{3999999} \Omega \cdot I_2\right)$$
$$\Rightarrow V_1 = \frac{3020}{3999999} \Omega \cdot I_2$$

Cuidando com o sinal inerente da equação 2:

$$a_{12}^{'} = -\frac{3020}{3999999}\Omega$$

Para finalizar:

$$I_{1} = \frac{V_{1} - V_{A}}{1k\Omega}$$

$$\Rightarrow I_{1} = \frac{\frac{151}{100}V_{A} - V_{A}}{1k\Omega}$$

$$\Rightarrow I_{1} = \frac{151V_{A} - 100V_{A}}{100k\Omega}$$

$$\Rightarrow I_{1} = \frac{51V_{A}}{100k\Omega}$$

$$\Rightarrow I_{1} = \frac{51\left(\frac{2000}{3999999}\Omega \cdot I_{2}\right)}{100k\Omega}$$

$$\Rightarrow I_{1} = \frac{102}{399999900}I_{2}$$

Relembrando do sinal da equação 2:

$$a_{22}^{'} = -\frac{102}{399999900}$$

Unindo os parametros $a^{'}$ do quadripolo $\mathbb{Q}2$

Concluindo, abaixo estão os parâmetros calculados para esse quadripolo:

$$a_{11}^{'} = -\frac{1000031007}{1999999500} \qquad a_{12}^{'} = -\frac{3020}{3999999}\Omega$$

$$a_{21}^{'} = -\frac{1000041314}{2000061514000}S \qquad a_{22}^{'} = -\frac{102}{399999900}$$
(3)

3.1.3 Parâmetros do Quadripolo Q1

3.1.4 União dos Quadripolos

4.1 Circuito Equivalente de Norton da Saída

Partindo do circuito de saída sorteado (figura 5), sabe-se de cara que, por não haver nenhuma fonte de tensão ou de corrente independente, a corrente de Norton é $I_N=0$ A. Para determinar-se o valor de R_N , pode-se colocar uma fonte indepedente na saída e medir a outra grandeza sobre essa, visto que $R_N=\frac{V_F}{I_F}$. Para esse circuito em específico, colocar-se-á uma fonte de corrente de $I_F=1$ A para cima e medir-se-á a tensão V_F sobre ela:

Nesse caso, com essa fonte de corrente, forçou-se I=1A. Por conta disso, do outro lado do circuito, obteve-se que a primeira fonte de corrente controlada fornece ou consome $0.5 \cdot I = 0.5 \cdot 1A = 0.5A$.

A partir dessa informação, no nó V_A , obtém-se que a corrente I_R sobre o resistor de 500Ω se dá por:

$$0.5 \cdot I = I_R + 10^{-3} \cdot V$$

$$\Rightarrow I_R = 0.5 \cdot I - 10^{-3} \cdot V$$

$$\Rightarrow I_R = 0.5A - 10^{-3} \cdot V$$

Com essa informação, como, em resistores, $V = R \cdot I$:

$$V = I_R \cdot 500\Omega$$

$$\Rightarrow V = (0.5A - 10^{-3} \cdot V) \cdot 500\Omega$$

$$\Rightarrow V = 250V - 0.5 \cdot V$$

$$\Rightarrow 1.5 \cdot V = 250V$$

$$\Rightarrow V = \frac{500}{3}V$$

Com essa informação, basta retornar para o outro lado do circuito e determinar a tensão V_F através de Lei das Malhas:

$$-V_F + I \cdot 100\Omega + 0.5 \cdot V = 0$$

$$\Rightarrow V_F = I \cdot 100\Omega + 0.5 \cdot V$$

$$\Rightarrow V_F = 1A \cdot 100\Omega + 0.5 \cdot \frac{500}{3}V$$

$$\Rightarrow V_F = 100V + \frac{250}{3}V$$

$$\Rightarrow V_F = \frac{550}{3}V$$

Logo, a partir dessa tensão, pode-se determinar por fim o valor de R_N :

$$R_N = \frac{V_F}{I_F}$$

$$\Rightarrow R_N = \frac{\frac{550}{3} \text{V}}{1 \text{A}}$$

$$\Rightarrow R_N = \frac{550}{3} \Omega = 183, \overline{3}\Omega$$

Ou seja, o circuito equivalente Norton da saída é o seguinte:

5.1 Ganho de Tensão da Saída V_2/V_1