Graph Neural Networks

Introduction to Graphs

Dr. Alireza Aghamohammadi

What is a Graph?

- A graph is a data structure composed of two primary components: nodes (or vertices) representing entities, and edges (or links) representing relationships between these entities.
- Each node and edge in a graph may also contain feature data, which provides additional information:
 - ☐ In a *road network*, an edge could be characterized by its length, number of lanes, accident frequency, and speed limit. This information is stored in an **edge embedding**.
 - ☐ In a *social network*, nodes might include attributes such as names, ages, or other personal details. This information is stored in a **node embedding**.

Graph Representation

- \diamond Formally, a graph is defined by a set of N nodes and a set of E edges that connect pairs of nodes.
- A common way to represent a graph is through an **adjacency matrix**, which is an $N \times N$ matrix where the entry (i, j) is 1 if there is an edge between nodes i and j, and 0 otherwise.

***** Another common representation is the **incidence matrix**, an $N \times E$ matrix where entry (i, j) is 1 if node i is incident with edge j.

	e1	e2	e3	e4	e5	e6
A	1	1	0	0	0	0
B	1	0	1	1	1	0
C	0	0	0	0	1	0
D	0	0	0	1	0	1
E	0	1	1	0	0	1

Types of Graphs

- ❖ Graphs can vary based on their structure and characteristics:
 - 1. Homogeneous and Heterogeneous graphs
 - 2. Bipartite graphs
 - 3. Cyclic and Acyclic graphs
 - 4. Knowledge Graphs
 - 5. Hypergraphs