Existence and Uniqueness of Solutions Section 2.4 (Noonburg)

When solving real-world situations using DE models, we should be confident that there is a solution to our IVP **and** that it is unique!

Existence and Uniqueness Theorem:

Consider the differential equation $\frac{dx}{dt} = f(t, x)$. If f is defined and continuous everywhere inside the rectangle $\mathbf{R} = \{(t, x) | a \le t \le b, c \le x \le d\}$ in the tx-plane, containing the initial data point (t_0, x_0) , then there exists a solution $x = \phi(t)$ passing through the point (t_0, x_0) , and this solution is continuous on an interval $I = (t_0 - \varepsilon, t_0 + \varepsilon)$ for some $\varepsilon > 0$.

If $\frac{\partial f}{\partial x}$ is continuous in **R**, the solution is unique.

Picture:

$$(t_{0},x_{0})$$
 f and $\frac{\partial f}{\partial x}$ are continuous in R

Example #1: Consider the IVP $x' = 3x \ x(0) = 7$.

(a) Is it guaranteed to have a unique solution? f(t,x) = 3x Continuous and the following solution? f(t,x)=3x Continuous and defined for all x, t $\frac{\partial f}{\partial x}=3$ Continuous and defined in R

We are garanteed to have a unique solution on some t-interval around t=0

(b) Are there any initial conditions $x(t_0) = x_0$ that do not guarantee a unique solution? No. R covers every value for x(to) = xo Every point in the t-x plane has a solution curve passing through it and two solutions cannot intersect

Example #2: What does the existence and uniqueness theorem tells us about the following IVP?

$$x' = t\sqrt{x-2}, \quad x(5) = 2$$
 $(t_0 \times s) = (5,2)$

f(t,x)=t/x-2 x ≥ 2 Continuous and defined for [2,00)=x

We cannot enclose the initial point (5,2) inside a rectangle, so we cannot define a rectangle R

f does not satisfy the continuity hypothesis of the theorem

The existance and uniqueness theorem cannot give any information about the solution to this IVP

Example #3: Does the IVP $tx' + x = \cos t$, x(1) = 2, have a unique solution? $x' = \frac{\cos t}{t} - \frac{x}{t}$ $t \neq 0$ $(t_0, x_0) = (1, 2)$ Defined and continuous for $(-\infty, 0) \cup (0, \infty) = t$

 $R = \{(\dot{t}, x) | octcoo, -occx coo\}$

We can draw a rectangle R such that (1,2) is in R and f is continuous and defined in R

The IVP has a solution

 $\frac{\partial f}{\partial x} = -\frac{1}{t}$ $t \neq 0$ Continuous and defined in R The IVP has a unique solution