Homework 3

Joyce Yu Cahoon

6.3

Let Y_t be a vector of excess returns of N assets. Consider the multivariate linear regression model:

$$\mathbf{Y}_t = \alpha + \beta \mathbf{Y}_t^m + \boldsymbol{\epsilon}_t$$

where $\epsilon_t \sim N(0, \Sigma)$ and $cov(Y_t^m, \epsilon) = 0$.

- 1. Derive the MLE for α and β . You do not need to derive the MLE for Σ since this part is hard. You just take for granted that $\hat{\Sigma}$ is the MLE.
- 2. Show that the MLRT for the null hypothesis H_0 : $\alpha = 0$ is:

$$T_2 = T[\log(|\hat{\Sigma}_0|) - \log(\hat{\Sigma})]$$

where $\hat{\Sigma}_0$ is the MLE under H_0 . Give the expression for $\hat{\Sigma}_0$.

6.4

Consider the multifactor model:

$$Y_t = \alpha + BX_t + \epsilon_t$$

with observable factor X_t where $\mathbb{E}\epsilon_t = 0$ and $cov(X_t, \epsilon_t) = 0$.

- 1. Based on the 20 stock portfolios over a period of 60 months on the 3 factors, it was computed that $|\hat{\Sigma}_0| = 2.375$ and $|\hat{\Sigma}| = 1.624$. Test if the multifactor model is consistent with the empirical data, $H_0: \alpha = 0$.
- 2. Suppose that the beta's of the GE stock over the S&P500 index (X_1), the size effect X_2 , and the book-to-market effect X_3 are respectively 1.3, 0.3, -0.4. Assume further that over the last 10 years the average risk-free interest is 4%, the average return of the S&P500 is 11%, the average difference of returns between the small large capitalization is 3%, and the average difference of returns between the high and low book-to-market is 2%, what is the expected return of the GE stock using the Fama-French model?

6.5

Consider the multi-factor model:

$$Y_t = \alpha + BX_t + \epsilon_t$$

with observable factor X_t . 1. Suppose that the CAPM holds and over the last five years, the average of the risk-free interest rate is 3.5% and the average return of the CRSP value-weighted index is 12.5%. If the market β of a stock (with respect to the index) is 1.3, what is the expected return of the stock? 2. Based on 15 stock portfolios over a period of 60 months regressed on five factors without knowing the risk-free interest rate, it is computed that $|\hat{Sigma}_0| = 2.425$ and $|\hat{\Sigma}| = 1.742$. Test if the multifactor model is consistent with the empirical data, $H_0: \alpha = 0$.

3. Suppose that the strict multi-factor model is correct so that $var(\epsilon) = \Sigma_0$ is a diagonal matrix and X_t and ϵ_t are uncorrelated. Show how to estimate the covariance matrix of Y based on the past T days' data:

$$\{(\boldsymbol{X}_t,\boldsymbol{Y}_t):t=1,\ldots,T\}$$

6.8

Use the Fama-French 100 portfolios in the last five years to construct 3 common factors via the PCA based on the correlation matrix. Report the variance explained by each principle components. Now, regress each of the Fama-French 100 portfolios on these 3 principal components and report the distribution (histogram) of the residual variances. Report also the distribution of the variance of these 100 portfolios over the same time period.