Pole Shed App ver 01 2022	
Job Number:	BWhite
Issue:	Consulting Ltd
PRODUCER STATEMENT-PS1-DESIGN	
ISSUED BY: BWhite Consulting Ltd (Design Engineer: Bevan White)	
TO BE SUPPLIED TO: Kaipara District Council IN RESPECT OF: Proposed NEW Farm Sh	1ed
AT: 1985 West Road, Te Kopuru 0391, New Zealand	
LEGAL DESCRIPTION	
We have been engaged by Ezequote Pty Ltd to provide Specific Structural Engineering Design the requirements of Clause(s) B1 of the Building Code for part only (as specified in the attachmen the proposed building work.	-
☐ ALL ☐ Part only as specified: Purlins, Rafters, Girts, Poles, Columns, Pole embedment an	ad all connections
The design has been prepared in accordance with compliance documents to NZ Building Code issumess, Innovation & Employment Clauses B1/VM1 and B1/VM4	ued by Ministry of
The proposed building work covered by the producer statement is described on Ezequote drawing numbered A101-A115 REV-1 dated 24/05/2024 together with the following specification, and other the schedule attached to this statement: Design Featured Report Dated 22/05/2024 and number	er documents set out in
On behalf of BWhite Consulting Ltd, and subject to:	
 Site verification of the following design assumptions: an Ultimate foundation bearing pres accordance with NZS3604:2011 The building has a design life of 50 years and am Importance Level 1 Unless specifically noted, compliance of the drawings to None-Specific codes such as Nave not been checked by this practice This Certificate does not cover any other building code clause including weather tights Inspections of the building to be completed by Kaipara District Council. As BWhite Coundertaking inspections, we cannot issue a producer Statement-PS4- Construction Res This Producer Statement- Design is valid for a building consent issued within 1 year fr All proprietary products meeting their performance specification requirements 	NZS3604 and NZS4229 ness Consulting Ltd are not view.
I believe on reasonable grounds that a) the building, if constructed in accordance with the drawing other documents provided or listed in the attached schedule, will comply with the relevant provision and that b), the presons who have undertaken the design have the necessary competency to do so follow level of construction monitoring/observation:	ons of the Building Code
☑ CM1 ☐ CM2 ☐ CM3 ☐ CM4 ☐ CM5 or as per agreement with owner/developer (stated	above)
I, Bevan White am CPEng 108276 I am Member of Engineering New Zealand and hold the follow BE.Civil and holds a current policy of Professional Indemnity Insurance no less than \$200,000	wing qualification:
Signed by Bevan White on behalf of BWhite Consulting Ltd Dated: 22/05/2024	
Email: bwhitecpeng@gmail.com Phone: 0211-979786	

Note: This statement shall only be relied upon by the Building Consent Authority named above. Liability under this statement accrues to the Design Firm only. The total maximum amount of damages payable arising from this statement and all other statements provided to the Building Consent Authority in relation to this building work, whether in contract, tort or otherwise(including negligence), is limited to the sum of \$200,000.

 $This\ form\ is\ to\ accompany\ Form\ 2\ of\ the\ Building(Forms)\ Regulations\ 2004\ for\ the\ application\ of\ a\ Building\ Consent$

Date: 22/05/2024 BWhite
Consulting Ltd

18B Jules Crescent,

Bell Block New Plymouth 4312

New Zealand File No:

DESIGN FEATURES SUMMARY FOR PROPOSED NEW FARM SHED 1985 WEST ROAD, TE KOPURU 0391, NEW ZEALAND

Site Specific Loads

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & EQ ARI	100 Years	Max Height	3.6 m
Wind Region	NZ1	Terrain Category	2.11	Design Wind Speed	40.21 m/s
Wind Pressure	0.97 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years

Timber

Sawn Timber to be graded to the properties of SG6 and SG8 or better as mentioned on plans, with moisture content of 18% or less for dry and 25% or less for wet.

The following standards have been used in the design of this structure

- NZS 3603:1993 Timber Structures Standard
- NZS 3604:2011 Timber Framed Buildings. Standards New Zealand, 2011
- NZS 3404:1997 Steel Structures
- AS/NZS 1170 2003 Structural Design Actions
- AS/NZS 1170.2 2021 Structural Design Actions-Wind Action
- Branz. "Engineering Basis of NZS 3604". April 2013

Yours Faithfully

BWhite CONSULTING LTD

Bevan White

Director | BE Civil . CMengNZ CPEng

Email: bwhitecpeng@gmail.com Contact: 0211 979 786

 Job No.:
 Jodie Milich
 Address:
 1985 West Road, Te Kopuru 0391, New Zealand
 Date:
 22/05/2024

 Latitude:
 -36.056084
 Longitude:
 173.917093
 Elevation:
 26.5 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	1	Subsoil Category	D	Exposure Zone	C
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.6 m
Wind Region	NZ1	Terrain Category	2.11	Design Wind Speed	40.21 m/s
Wind Pressure	0.97 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = 0.6649

For roof CP,e from 0 m To 1.65 m Cpe = -0.94 pe = -0.67 KPa pnet = -1.24 KPa

For roof CP,e from 1.65 m To 3.3 m Cpe = -0.88 pe = -0.63 KPa pnet = -1.20 KPa

For wall Windward Cp,i = 0.5849 side Wall Cp,i = 0.6649

For wall Windward and Leeward CP,e from 0 m To 6 m Cpe = 0.7 pe = 0.61 KPa pnet = 1.14 KPa

For side wall CP,e from 0 m To 3.3 m Cpe = pe = -0.57 KPa pnet = 0.04 KPa

Maximum Upward pressure used in roof member Design = 1.24 KPa

Maximum Downward pressure used in roof member Design = 0.69 KPa

Maximum Wall pressure used in Design = 1.14 KPa

Maximum Racking pressure used in Design = 1.05 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 4050 mm Try Purlin 190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

 $K1 \; Short \; term = 1 \qquad K1 \; Medium \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Short \; term = 0.8 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K4 = 1 \qquad K5 = 1 \qquad K8 \; Downward = 0.98 \qquad K1 \; Long \; term = 0.6 \qquad K1 \; Long \; term = 0.6 \qquad K1 \; Long \; term = 0.6 \qquad K1 \; Long \; term = 0.8 \qquad K1 \; Long \; t$

K8 Upward =0.76 S1 Downward =12.23 S1 Upward =18.23

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.62 Kn-m	Capacity	1.79 Kn-m	Passing Percentage	288.71 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.83 Kn-m	Capacity	2.38 Kn-m	Passing Percentage	130.05 %
Mo.9D-WnUp	-1.87 Kn-m	Capacity	-2.30 Kn-m	Passing Percentage	122.99 %

Pole Shed App Ver 01 2022 0.62 Kn Capacity 8.25 Kn Passing Percentage 1330.65 % $V_{1.35D}$ 1.80 Kn Capacity 11.00 Kn Passing Percentage 611.11 % $V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$ -1.85 Kn Capacity -13.75 Kn Passing Percentage 743.24 % $V_{0.9D\text{-W}nUp}$

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 10.44 mm

Limit by Woolcock et al, 1999 Span/240 = 16.67 mm

Deflection under Dead and Service Wind = 14.71 mm

Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Reactions

Maximum downward = 1.80 kn Maximum upward = -1.85 kn

Number of Blocking = 1 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 4200 mm Internal Rafter Span = 5850 mm Try Rafter 2x290x45 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 7.47 S1 Upward = 7.47

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	3.41 Kn-m	Capacity	8.48 Kn-m	Passing Percentage	248.68 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	6.41 Kn-m	Capacity	11.3 Kn-m	Passing Percentage	176.29 %
$M_{0.9D\text{-W}nUp}$	9.62 Kn-m	Capacity	-14.12 Kn-m	Passing Percentage	146.78 %
V _{1.35D}	3.43 Kn	Capacity	25.18 Kn	Passing Percentage	734.11 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	6.45 Kn	Capacity	33.58 Kn	Passing Percentage	520.62 %
$ m V_{0.9D ext{-}WnUp}$	9.64 Kn	Capacity	-41.96 Kn	Passing Percentage	435.27 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 11 mm Limit by Woolcock et al, 1999 Span/240 = 25.00 mm Deflection under Dead and Service Wind = 24.5 mm Limit by Woolcock et al, 1999 Span/100 = 60.00 mm

Reactions

Maximum downward = 6.45 kn Maximum upward = 9.64 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 19.50 Kn > 9.64 Kn

Prop on Sides = 2 2/SG815050Dry 1000mm Reaction Prop = 12.48 Kn down 20.36 Kn Up

Prop Combined axial and bending ratios (My/Phi x Mny)+(Nc/Phi x Ncy) should be less than or equal to 1

For Short Term Load = 0.99 < 1 OK

For Medium Term Load = 0.76 < 1 OK

For Long Term Load = 0.54 < 1 OK

Prop Connection check

Effective width of Pole used in Calculations = 175 mm - 20mm (Margin for chamfer)

Bolt Size = M12 Number of Bolts = 2

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Angle of prop = 45 degree

Prop Connection Capacity under Short term loads: 24.85 Kn > 20.36 Kn OK

Prop Connection Capacity under Medium term loads: 19.88~Kn > 12.48~Kn~OK

Prop Connection Capacity under Long term loads: 14.91 Kn > 6.65 Kn OK

Intermediate Design Front and Back

Intermediate Spacing = 2100 mm Intermediate Span = 2850 mm Try Intermediate 2x140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 10.36 S1 Upward = 0.58

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw_{ind+Snow} 2.43 Kn-m Capacity 3.3 Kn-m Passing Percentage 135.80 % V_{0.9D-WnUp} 3.41 Kn Capacity -20.26 Kn Passing Percentage 594.13 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 18.505 mm

Limit byWoolcock et al, 1999 Span/100 = 28.50 mm

Reactions

Maximum = 3.41 kn

Intermediate Design Sides

Intermediate Spacing = 3000 mm

Intermediate Span = 3150 mm

Try Intermediate 2x190x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 0.98

K8 Upward = 1.00 S1 Downward = 12.23 S1 Upward = 0.72

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 2.12 Kn-m Capacity 6.06 Kn-m Passing Percentage 285.85 % $V_{0.9D-WnUp}$ 2.69 Kn Capacity 27.5 Kn Passing Percentage 1022.30 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 15.785 mm

Limit by Woolcock et al, 1999 Span/100 = 31.50 mm

Reactions

Maximum = 2.69 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm

Girt's Span = 2100 mm

Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.87 S1 Downward = 10.36 S1 Upward = 15.83

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 $M_{Wind+Snow}$ 0.82 Kn-m Capacity 1.43 Kn-m Passing Percentage 174.39 % $V_{0.9D-WnUp}$ 1.56 Kn Capacity 10.13 Kn Passing Percentage 649.36 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 5.44 mm

Limit by Woolcock et al, 1999 Span/100 = 21.00 mm

Sag during installation = 1.46 mm

Reactions

Maximum = 1.56 kn

6/10

Girt Design Sides

Girt's Spacing = 1300 mm Girt's Span = 3000 mm Try Girt 140x45 SG8

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.72 S1 Downward =10.36 S1 Upward =18.92

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.67 Kn-m	Capacity	1.19 Kn-m	Passing Percentage	71.26 %
V _{0.9D-WnUp}	2.22 Kn	Capacity	10.13 Kn	Passing Percentage	456.31 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 22.67 mm Limit by Woolcock et al. 1999 Span/100 = 30.00 mm

Sag during installation =6.06 mm

Reactions

Maximum = 2.22 kn

Middle Pole Design

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level)	Dry Use	Height	3300 mm
Area	27598 mm2	As	20698.2421875 mm2
Ix	60639381 mm4	Zx	646820 mm3
Iy	60639381 mm4	Zx	646820 mm3
Lateral Restraint	3400 mm c/c		

Loads

Total Area over Pole = 12.6 m^2

Dead	4.15 Kn	Live	3.23 Kn
Wind Down	8.91 Kn	Snow	0.00 Kn
Moment wind	4.90 Kn-m		
Phi	0.8	K8	0.76
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	E =	9257 MPa

Capacities

7/10

PhiNex Wind	302.65 Kn	PhiMnx Wind	14.30 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	181.59 Kn	PhiMnx Dead	8.58 Kn-m	PhiVnx Dead	29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.84 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.67 < 1 OK$

Deflection at top under service lateral loads = 31.79 mm < 33.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 4.90 Kn-m Shear Wind = 3.96 Kn

Pile Properties

Safety Factory 0.55

Hu = 7.16 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.65 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.55 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

175 SED H5 (Minimum 200 dia. at Floor Level) Dry Use Height 3400 mm

Area 27598 mm2 As 20698.2421875 mm2

Ix 60639381 mm4 Zx 646820 mm3 Iy 60639381 mm4 Zx 646820 mm3

Lateral Restraint mm c/c

Loads

Total Area over Pole = 12.6 m^2

8/10

Dead	3.15 Kn	Live	3.15 Kn
Wind Down	8.69 Kn	Snow	0.00 Kn

Moment Wind 5.34 Kn-m

 Phi
 0.8
 K8
 0.76

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

Peeling	Steaming	Normal	Dry Use
fb =	36.3 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	22 MPa	$\mathbf{E} =$	9257 MPa

Capacities

PhiNex Wind	302.74 Kn	PhiMnx Wind	14.31 Kn-m	PhiVnx Wind	49.01 Kn
PhiNcx Dead	181.64 Kn	PhiMnx Dead	8.59 Kn-m	PhiVnx Dead	29.41 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.42 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.19 < 1 \text{ OK}$

Deflection at top under service lateral loads = 17.29 mm < 35.91 mm

Ds = 0.6 mm Pile Diameter

L = 1500 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 12.6 m^2

Pile Properties

Safety Factory 0.55

Hu = 7.16 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.65 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.46 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30))}{(1+\sin(30))}$

 $Kp = \frac{(1+\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter

L= 1500 mm Pile embedment length

f1 = 2700 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 5.34 Kn-m Shear Wind = 1.98 Kn

Pile Properties

Safety Factory 0.55

Hu = 7.16 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 11.65 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.46 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1500) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1500)

Skin Friction = 18.17 Kn

Weight of Pile + Pile Skin Friction = 22.56 Kn

Uplift on one Pile = 12.79 Kn

Uplift is ok