МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

ОТЧЕТ

по лабораторной работе №1

по теме: "Методы безусловной минимизации функций"

Студент гр. 8383	Киј	реев К.А.
Преподаватель	Мал	ьцева Н.В

Санкт-Петербург

Цель работы.

- 1. Решение задачи безусловной минимизации функций с помощью стандартной программы.
- 2. Исследование и объяснение полученных результатов.

Задание (вариант 37).

Минимизировать функцию $F(x_1, x_2, a) = (x_2 - x_1^2)^2 + a (x_1 - 1)^2$ с точностью до 10^{-5} (abs ($F(x_{1k}, x_{2k}, a) - F(x_1^*, x_2^*, a)$) $< 10^{-5}$) градиентными методами - методом с убыванием длины шага и методом наискорейшего спуска. Оценить скорость и порядок сходимости обоих методов. Провести сравнительный анализ эффективности методов в зависимости от начальной точки и параметра a>0.

Теоретические сведения

Будем рассматривать задачу:

$$\varphi(x) \to \min, x \in X \equiv R^n$$
 (безусловная минимизация),

предполагая, что функция $\varphi(x)$ непрерывно дифференцируема на R^n , т.е. $\varphi(x) \in C^1(R^n)$. По определению дифференцируемой функции

$$\varphi(x+h) - \varphi(x) = \left(\varphi'(x), h\right) + o(h),$$
 где
$$\lim_{|h| \to 0} o(h) \left\|h\right\|^{-1} = 0.$$

Если $\varphi'(x) \neq 0$, то при достаточно малых ||h|| главная часть приращения для φ будет определяться дифференциалом функции $d\varphi(x) = (\varphi'(x)h)$. Оценим величину $d\varphi(x)$. Справедливо неравенство Коши-Буняковского:

$$-\|\varphi'(x)\|\cdot\|h\| \le (\varphi'(x),h) \le \|\varphi'(x)\|\cdot\|h\|,$$

причем, если $\varphi'(x) \neq 0$, то правое неравенство превращается в равенство, только при $h = -\alpha \varphi'(x)$, а левое только при $h = \alpha \varphi'(x)$, где $\alpha = const \geq 0$.

Отсюда ясно, что при $\varphi'(x) \neq 0$ направление наибыстрейшего возрастания функции $\varphi(x)$ в точке x совпадает с направлением градиента $\varphi(x)$, а направление наибыстрейшего убывания — с направлением антиградиента $\varphi'(x)$. Это свойство градиента лежит в основе ряда итерационных методов минимизации функций. Один из таких — градиентный. Он предполагает, как, впрочем, и все остальные итерационные методы, наличие априорной точки начального приближения.

Предположим, что начальная точка x_0 уже выбрана, тогда градиентный метод заключается в построении последовательности $\{x_k\}$ по правилу:

$$x_{k+1} = x_k - \alpha_k \varphi'(x_k), \ \alpha_k > 0, \ k = 0, 1, \dots$$

 α_k – величина шага, x_k – направление спуска.

Если $\varphi'(x_k) \neq 0$, то шаг $\alpha_k > 0$ можно выбрать так, чтобы получить релаксационную последовательность: $\varphi(x_{k+1}) < \varphi(x_k)$.

$$\varphi(x_{k+1}) - \varphi(x_k) = \alpha_k \left[-\|\varphi'(x_k)\|^2 + o(\alpha_k) \cdot \alpha_k^{-1} \right] < 0,$$

при всех достаточно малых $\alpha_k > 0$.

Если $\varphi'(x_k) = 0$, то x_k – стационарная точка. В этом случае процесс прекращается и проводятся дополнительные исследования поведения функции в окрестности точки x_k для выяснения того, достигается ли в точке x_k минимум функции $\varphi(x)$ или не достигается.

Существуют различные способы выбора величины шага a_k в методе. В зависимости от способа выбора a_k можно получить различные варианты градиентного метода.

Градиентный метод с убыванием длины шага

В ряде методов достаточно потребовать выполнения условий:

$$a_k > 0, k = 0,1,...;$$
 $\sum_{k=0}^{\infty} a_k = \infty;$ $\sum_{k=0}^{\infty} a_k^2 < \infty$ (например, $a_k = \frac{c}{k+1}$)

На интуитивном уровне объяснение следующее:

- \circ условие сходимости ряда $\sum_{k=0}^{\infty} a_k^2$ накладывают, чтобы добиться достаточно быстрой сходимости последовательности a_k к нулю с целью обеспечения сходимости метода в окрестности точки экстремума x^* .
- \circ условие расходимости ряда $\sum_{k=0}^{\infty} a_k$ призвано обеспечить достижение точки экстремума x^* даже при неудачном выборе начального приближения x^0 , т.е. при больших расстояниях от x^0 до x^* .

Сходимость медленная!

Метод наискорейшего спуска

На луче $\{x \in \mathbb{R}^n : x = x_k - a\phi'(x_k), a \ge 0 \}$, направленном по антиградиенту, введем функцию одной переменной

$$\psi(a) = \varphi(x_k - a\varphi'(x_k)), a \ge 0$$

и определим а_к из условий

$$a_k = \operatorname{argmin} \varphi(x_k - a\varphi'(x_k)), a \ge 0$$

Другими словами, a_k выбирается так, чтобы $\phi(x_{k+1})$ в заданном направлении была наименьшей для чего на любом шаге необходимо решать задачу одномерной минимизации функции $\psi(a)$, например, с помощью $\psi'(a)=0$.

У данного метода медленная сходимость (геометрическая скорость сходимости, порядок сходимости d=1)

$$\lim_{k \to \infty} \frac{\ln \triangle_{k+1}}{\ln \triangle_k} - \text{порядок сходимости метода, где } \triangle_k = ||x_k - x^*||$$

$$\varphi(x_k) - \varphi(x^*) \le const * q^k - \text{геометрическая скорость сходимости, где q<1}$$

$$\varphi(x_k) - \varphi(x^*) \le const * q^{2k} - \text{квадратичная скорость сходимости, где q<1}$$

Экспериментальное исследование методов

Точкой глобального минимума функции F является точка $x^* = (1, 1)$; $F(x^*) = 0$. При помощи языка python и библиотеки matplotlib были построены графики функции при различных значениях а. Графики функции представлены на рис. 1-3.

Рисунок 1 – График функции $F(x_1, x_2, 1)$

Рисунок 2 – График функции $F(x_1, x_2, 50)$

Рисунок 3 — График функции $F(x_1, x_2, 500)$

В качестве различных начальных приближений были выбраны следующие точки. Точки выбраны на основании того, что они находятся на разном расстоянии от точки минимума $x^* = (1, 1)$.

$$x_1 = (2, 4)$$

$$x_2 = (10, 0)$$

$$x_3 = (-6, 6)$$

А также были выбраны три параметра a > 0.

$$a_1 = 1$$

$$a_2 = 10$$

$$a_3 = 25$$

Результаты работы программы

Метод наискорейшего спуска.

• Начальное приближение $x_1 = (2, 4)$

 \circ при $a_1 = 1$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	1,938552	4,000000	0,939452	12		
6	1,817028	3,303706	0,667539	17		
11	1,640268	2,885761	0,448078	12		
16	1,529878	2,342590	0,280775	17		
21	1,378130	2,036566	0,161840	10		
26	1,290762	1,666746	0,084543	16		
31	1,183853	1,479239	0,039844	13		
36	1,130640	1,278685	0,017067	16		
41	1,074465	1,189164	0,006748	14		
46	1,049992	1,102564	0,002499	17		
51	1,026748	1,067250	0,000885	13		
56	1,017467	1,035275	0,000305	17		
61	1,009107	1,022812	0,000103	13		
66	1,005877	1,011794	0,000035	17	1,044289	0,802533
67	1,004712	1,011793	0,000028	13	1,008528	0,802350
68	1,004713	1,009450	0,000022	17	1,042253	0,801741
69	1,003777	1,009450	0,000018	14	1,008123	0,801578
70	1,003778	1,007574	0,000014	17	1,040173	0,801712
71	1,003027	1,007573	0,000011	14	1,007779	0,801590
72	1,003029	1,006069	0,000009	16	1,038323	0,801521
73	1,002426	1,006068	0,000007	14	1,007456	0,801422
74	1,002427	1,004861	0,000006	16	1,036704	0,801110
75	1,001943	1,004860	0,000005	15	1,007162	0,801046

 \circ при $a_2 = 10$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	1,516175	4,000000	5,558493	11		
2	1,513070	2,280088	2,632495	16	0,288733	0,473599
3	1,201258	2,280650	1,106670	12	0,807567	0,420388
4	1,201097	1,442227	0,404402	16	-2,781377	0,365422
5	1,065448	1,442254	0,137129	10	1,115087	0,339092
6	1,065307	1,134582	0,042651	17	2,359952	0,311025

7	1,019418	1,134603	0,012870	12	1,050148	0,301749
8	1,019724	1,040475	0,003891	16	1,554054	0,302325
9	1,005790	1,040429	0,001166	10	1,031453	0,299571
10	1,005855	1,011874	0,000343	18	1,352254	0,294075
11	1,001696	1,011865	0,000101	10	1,023000	0,293227
12	1,001704	1,003427	0,000029	17	1,258034	0,288878
13	1,000489	1,003426	0,000008	11	1,018088	0,288652
14	1,000497	1,001012	0,000002	17	1,197928	0,295072

\circ при $a_3 = 25$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	1,243552	4,000000	7,502986	11		
2	1,256684	1,614111	1,648386	15	-0,369428	0,219697
3	1,043654	1,612938	0,321929	10	1,196256	0,195300
4	1,045463	1,096938	0,051689	16	4,588201	0,160560
5	1,006684	1,096802	0,008071	11	1,044055	0,156141
6	1,007445	1,016677	0,001389	18	1,715970	0,172074
7	1,001141	1,016617	0,000238	11	1,023013	0,171387
8	1,001301	1,002973	0,000042	17	1,399416	0,178243
9	1,000204	1,002960	0,000008	11	1,015639	0,178070
10	1,000212	1,000439	0,000001	17	1,310300	0,148082

• Начальное приближение $x_2 = (10, 0)$

\circ при $a_1=1$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	0,823271	0,456781	0,080072	7		
6	0,869426	0,711192	0,019048	13		
11	0,943779	0,836769	0,006071	17		
16	0,955365	0,898290	0,002201	13		
21	0,978371	0,937743	0,000847	16		
26	0,982487	0,959713	0,000338	12		
31	0,991199	0,974732	0,000137	16		
36	0,992816	0,983417	0,000057	13		
41	0,996340	0,989499	0,000024	17		
46	0,997005	0,993076	0,000010	13		
51	0,998463	0,995594	0,000004	16	1,025519	0,841019
52	0,998219	0,995882	0,000003	13	1,007319	0,841148
53	0,998706	0,996293	0,000003	15	1,024672	0,841318
54	0,998502	0,996535	0,000002	13	1,007098	0,841414
55	0,998911	0,996880	0,000002	16	1,023851	0,841491
56	0,998739	0,997084	0,000002	13	1,006894	0,841557

57	0,999083	0,997374	0,000001	15	1,023112	0,841674
58	0,998939	0,997545	0,000001	13	1,006669	0,841826
59	0.999228	0.997789	0,000001	16	1,022415	0,841765

\circ при $a_2 = 10$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	0,949128	0,433056	0,244705	8		
6	0,933953	0,659266	0,088992	13		
11	0,980466	0,791658	0,032599	11		
16	0,975381	0,874067	0,012036	12		
21	0,992652	0,922762	0,004458	13		
26	0,990824	0,953191	0,001657	12		
31	0,997246	0,971251	0,000616	12		
36	0,996578	0,982560	0,000230	11		
41	0,998972	0,989284	0,000086	13		
46	0,998723	0,993497	0,000032	11		
51	0,999616	0,996004	0,000012	12		
52	0,999294	0,996402	0,000010	11	1,016423	0,820980
53	0,999685	0,996719	0,000008	12	1,018995	0,820964
54	0,999420	0,997046	0,000007	11	1,015864	0,820973
55	0,999741	0,997307	0,000005	12	1,018398	0,820950
56	0,999524	0,997575	0,000004	11	1,015311	0,820972
57	0,999788	0,997789	0,000004	12	1,017777	0,820962
58	0,999609	0,998009	0,000003	11	1,014806	0,820977
59	0,999826	0,998185	0,000002	12	1,017241	0,820957
60	0,999679	0,998365	0,000002	11	1,014287	0,821007
61	0,999857	0,998510	0,000002	12	1,016756	0,820973
62	0,999737	0,998658	0,000001	11	1,013891	0,820967
63	0,999883	0,998776	0,000001	12	1,016124	0,821005

о при $a_3 = 25$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	1,016994	0,403731	0,404809	8		
2	0,955538	0,426427	0,286227	11		
3	1,011726	0,577007	0,202872	15		
4	0,968189	0,593253	0,143729	12		
5	1,008268	0,700252	0,101788	14		
6	0,977341	0,711836	0,072060	11		
7	1,005978	0,788601	0,050797	15		
8	0,983961	0,796814	0,035797	11		
9	1,004273	0,851420	0,025151	16		

10 0,988704 0,857211 0,017668 12 11 1,003081 0,896117 0,012349 16 12 0,992089 0,900179 0,008631 10 13 1,002178 0,927554 0,006018 15 14 0,994467 0,930396 0,004196 11 15 1,001464 0,949170 0,002944 15 16 0,996113 0,951164 0,002065 11 17 1,001018 0,964292 0,001451 14 18 0,997266 0,965694 0,001019 11	
12 0,992089 0,900179 0,008631 10 13 1,002178 0,927554 0,006018 15 14 0,994467 0,930396 0,004196 11 15 1,001464 0,949170 0,002944 15 16 0,996113 0,951164 0,002065 11 17 1,001018 0,964292 0,001451 14	
13 1,002178 0,927554 0,006018 15 14 0,994467 0,930396 0,004196 11 15 1,001464 0,949170 0,002944 15 16 0,996113 0,951164 0,002065 11 17 1,001018 0,964292 0,001451 14	
14 0,994467 0,930396 0,004196 11 15 1,001464 0,949170 0,002944 15 16 0,996113 0,951164 0,002065 11 17 1,001018 0,964292 0,001451 14	
15 1,001464 0,949170 0,002944 15 16 0,996113 0,951164 0,002065 11 17 1,001018 0,964292 0,001451 14	
16 0,996113 0,951164 0,002065 11 17 1,001018 0,964292 0,001451 14	
17 1,001018 0,964292 0,001451 14	
18 0 997266 0 965694 0 001019 11	
10 0,337,200 0,303034 0,001013 11	
19 1,000703 0,974852 0,000718 15	
20 0,998076 0,975838 0,000505 11	
21 1,000515 0,982406 0,000354 15	
22 0,998652 0,983098 0,000247 11	
23 1,000352 0,987645 0,000174 14	
24 0,999055 0,988130 0,000122 11	
25 1,000256 0,991375 0,000085 15	
26 0,999339 0,991714 0,000059 11	
27 1,000174 0,993952 0,000042 16 1,066304 0,7012	204
28 0,999537 0,994190 0,000029 11 1,007322 0,7011	.37
29 1,000126 0,995782 0,000020 15 1,062767 0,6974	04
30 0,999677 0,995948 0,000014 11 1,006845 0,6973	80
31 1,000086 0,997045 0,000010 15 1,057844 0,7006	558
32 0,999774 0,997161 0,000007 11 1,006407 0,7006	512
33 1,000062 0,997940 0,000005 15 1,055186 0,6970	067
34 0,999842 0,998021 0,000003 11 1,006046 0,6970)11
35 1,000042 0,998557 0,000002 15 1,051209 0,7004	25
36 0,999890 0,998614 0,000002 11 1,005747 0,7004	13
37 1,000030 0,998995 0,000001 16 1,049273 0,6968	342

• Начальное приближение $x_3 = (-6, 6)$

 \circ при $a_1=1$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	-2,359	6,298	11,820	9		
6	-2,263	5,384	10,716	15		
11	-1,976	4,682	9,461	11		
16	-1,814	3,533	7,976	15		
21	-1,273	2,560	6,049	12		
26	0,990	0,981	~ 0,000	18		
31	0,996	0,989	~ 0,000	13	1,008503	0,763026
32	0,996	0,992	~ 0,000	18	1,052484	0,762856
33	0,997	0,992	~ 0,000	13	1,007978	0,763051
34	0,997	0,994	~ 0,000	19	1,049527	0,762830
35	0,997	0,994	~ 0,000	13	1,007555	0,762968
36	0,998	0,995	~ 0,000	18	1,046637	0,763655
37	0,998	0,995	~ 0,000	14	1,007148	0,763757
38	0,998	0,996	~ 0,000	18	1,044065	0,764448

39	0,998	0,996	~ 0,000	13	1,006782	0,764510
40	0,999	0,997	~ 0,000	18	1,041944	0,764561
41	0,999	0,997	~ 0,000	13	1,006440	0,764634

\circ при $a_2 = 10$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0	
1	2,014	6,559	16,54669	10			
2	1,936	3,484	8,83227	19	0,563824	0,533778	
3	1,423	3,498	3,95785	10	0,951855	0,448113	
4	1,383	1,817	1,47724	17	-0,111052	0,373242	
5	1,126	1,823	0,46644	10	1,779725	0,315755	
6	1,111	1,205	0,12391	17	7,925467	0,265647	
7	1,030	1,207	0,03038	12	1,074181	0,245181	
8	1,027	1,047	0,00712	17	1,862532	0,234258	
9	1,007	1,048	0,00163	11	1,040165	0,229171	
10	1,006	1,011	0,00036	17	1,456421	0,223136	
11	1,002	1,011	0,00008	9	1,027318	0,221987	
12	1,001	1,002	0,00002	17	1,315694	0,211126	
13	1,000	1,002	0,00000	10	1,020970	0,210836	

о при $a_3 = 25$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0	
1	1,488	6,420	23,64185	10			
2	1,680	3,827	12,56225	17	0,630037	0,531356	
3	1,218	3,793	6,52184	11	0,965162	0,519162	
4	1,330	2,272	2,96992	16	0,265414	0,455381	
5	1,090	2,255	1,34065	12	0,839871	0,451409	
6	1,143	1,534	0,56467	17	-2,581020	0,421192	
7	1,036	1,526	0,23734	10 1,079961		0,420311	
8	1,060	1,223	0,09914	17	2,290936	0,417704	
9	1,015	1,219	0,04141	10	1,032880	0,417725	
10	1,025	1,090	0,01672	19	1,566666	0,403691	
11	1,006	1,089	0,00675	10	1,020895	0,403617	
12	1,010	1,037	0,00275	17	1,349657	0,408123	
13	1,002	1,036	0,00112	10	1,015080	0,408190	
14	1,004	1,015	0,00045	16	1,262050	0,398605	
15	1,001	1,014	0,00018	10	1,011972	0,398632	
16	1,002	1,006	0,00007	18	1,200397	0,407049	
17	1,000	1,006	0,00003	10	1,009709	0,407027	
18	1,001	1,002	0,00001	16	1,169635	0,397883	
19	1,000	1,002	0,00000	10	1,008352	0,397914	
20	1,000	1,001	0,00000	18	1,140204	0,406834	

Градиентный метод с убыванием длины шага

• Начальное приближение $x_1 = (2, 4)$

$$\circ$$
 при $a_1 = 1$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0	
1	1,980	4,000	0,96674	1			
1001	1,941	3,978	0,92989	1	0,990954	0,961889	
2001	1,939	3,975	0,92828	1	0,999076	0,998261	
3001	1,938	3,974	0,92735	1	0,999459	0,999001	
4001	1,938	3,972	0,92670	1	0,999617	0,999297	
5001	1,937	3,971	0,92619	1	0,999703	0,999457	
6001	1,937	3,971	0,92578	1	0,999757	0,999558	
7001	1,937	3,970	0,92544	1	0,999795	0,999627	
8001	1,937	3,969	0,92514	1	0,999822	0,999678	
9001	1,936	3,969	0,92488	1	0,999843	0,999716	
10001	1,936	3,968	0,92464	1	0,999860	0,999746	
11001	1,936	3,968	0,92443	1	0,999873	0,999771	
12001	1,936	3,968	0,92424	1	0,999884	0,999791	
13001	1,936	3,967	0,92406	1	0,999893	0,999808	
14001	1,936	3,967	0,92390	1	0,999901	0,999822	
15001	1,936	3,967	0,92374	1	0,999908	0,999835	
16001	1,935	3,966	0,92360	1	0,999914	0,999845	
17001	1,935	3,966	0,92347	1	0,999919	0,999855	
18001	1,935	3,966	0,92334	1	0,999924	0,999863	
19001	1,935	3,966	0,92322	1	0,999928	0,999871	
20000	1,935	3,965	0,92311	1	0,999932	0,999877	

\circ при $a_2 = 10$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0	
1	1,800	4,000	6,97760	1			
1001	1,529	3,833	5,03467	1	0,934322	0,721548	
2001	1,520	3,812	4,95987	1	0,992724	0,985142	
3001	1,515	3,800	4,91719	1	0,995704	0,991396	
4001	1,512	3,792	4,88731	1 0,996935		0,993924	
5001	1,509	3,785	4,86434	1	0,997614	0,995299	
6001	1,507	3,779	4,84569	1	0,998044	0,996166	
7001	1,506	3,775	4,83000	1	0,998342	0,996763	
8001	1,504	3,771	4,81647	1	0,998561	0,997198	
9001	1,503	3,767	4,80458	1	0,998728	0,997530	
10001	1,502	3,764	4,79397	1	0,998861	0,997792	
11001	1,501	3,761	4,78440	1	0,998967	0,998004	
12001	1,500	3,758	4,77568	1	0,999057	0,998178	

13001	1,499	3,756	4,76768	1	0,999131	0,998325
14001	1,499	3,754	4,76029	1	0,999195	0,998449
15001	1,498	3,752	4,75341	1	0,999249	0,998557
16001	1,498	3,750	4,74700	1	0,999297	0,998650
17001	1,497	3,748	4,74098	1	0,999339	0,998732
18001	1,496	3,746	4,73531	1	0,999376	0,998805
19001	1,496	3,745	4,72996	1	0,999410	0,998869
20000	1,495	3,743	4,72489	1	0,999440	0,998929

 \circ при $a_3 = 25$

№ шага	x1	x2	f	Число вычислений f	Оценка порядка сходимости	Оценка скорости сходимости (F(x[k])/F(x[k-1])) с учетом F(x*)=0
1	1,500	4,000	9,31250	1		
1001	1,232	3,721	6,19874	1	0,903109	0,665636
2001	1,228	3,690	6,06209	1	0,988754	0,977955
3001	1,225	3,673	5,98360	1	0,993340	0,987053
4001	1,223	3,660	5,92853	1	0,995240	0,990797
5001	1,222	3,651	5,88617	1	0,996289	0,992854
6001	1,221	3,643	5,85177	1	0,996956	0,994157
7001	1,220	3,636	5,82285	1	0,997417	0,995057
8001	1,219	3,630	5,79791	1	0,997757	0,995716
9001	1,219	3,625	5,77599	1	0,998016	0,996220
10001	1,218	3,621	5,75646	1	0,998222	0,996618
11001	1,218	3,617	5,73884	1	0,998389	0,996940
12001	1,217	3,613	5,72280	1	0,998526	0,997206
13001	1,217	3,610	5,70809	1	0,998642	0,997429
14001	1,217	3,607	5,69450	1	0,998741	0,997619
15001	1,216	3,604	5,68187	1	0,998826	0,997783
16001	1,216	3,601	5,67009	1	0,998901	0,997926
17001	1,216	3,598	5,65904	1	0,998966	0,998051
18001	1,215	3,596	5,64864	1	0,999024	0,998163
19001	1,215	3,594	5,63882	1	0,999076	0,998262
20000	1,215	3,591	5,62953	1	0,999124	0,998352

Дальнейшие расчеты для других начальных приближений избыточны, так как исходя из данных таблиц из-за большого количества итераций, невозможно достижение заданной точности при использовании исходных данных.

Оценка скорости и порядка сходимости методов

Исходя из полученных данных для каждого начального приближения и каждого значения a в методе наискорейшего спуска оценка порядка сходимости всегда находится вблизи единицы, что соотносится с теоретическими данными (порядок сходимости метода d=1). Линейная сходимость.

Также можно сказать, что для каждого запуска последовательность $F(x_k)$ сходится к $F(x^*)$ линейно (со скоростью геометрической прогрессии), так как выполняется соотношение:

$$||F(x_{k+1}) - F(x^*)|| \le q||F(x_k) - F(x^*)||, \ \epsilon \partial e \ q = 0.84$$

Результаты исследования метода убывания длины шага также показали, что оценка порядка сходимости находится вблизи единицы, что соотносится с теоретическими данными. *Линейная сходимость*.

Также можно сказать, что для каждого запуска последовательность $F(x_k)$ сходится к $F(x^*)$ линейно (со скоростью геометрической прогрессии), так как выполняется соотношение:

$$||F(x_{k+1}) - F(x^*)|| \le q||F(x_k) - F(x^*)||, \, \varepsilon \partial e \, q = 0.99$$

Исследование эффективности метода наискорейшего спуска и его сравнение с методом с убыванием длины шага

		Men	Метод с убыванием длины шага					
Начальное приближение	$a_1 = 1$		$a_1 = 10$		$a_1 = 25$		$a_1 = 1$	
	Шагов	Вычислений <i>F</i>	Шагов	Вычислений <i>F</i>	Шагов	Вычислений <i>F</i>	Шагов	Вычислений <i>F</i>
$x_1 = (2, 4)$	75	1095	14	193	10	137	20000	20000
$x_2 = (10, 0)$	59	861	63	734	37	478	20000	20000
$x_3 = (-6, 6)$	41	591	13	176	20	274	20000	20000

Выводы

Эффективность метода с убыванием длины шага и его сравнение с методом наискорейшего спуска

Исходя из полученных данных можно сделать следующие выводы.

При использовании метода с убыванием длины шага требуется значительное число шагов и, следовательно, вычислений F по сравнению с методом наискорейшего спуска. Данный метод чувствителен к выбору первоначальных данных, так как неудачный выбор намного увеличивает количество итераций. Метод наискорейшего спуска также чувствителен к входным данным.

В целом использование метода наискорейшего спуска намного эффективнее метода с убыванием длины шага.

Также было установлено, что при увеличении параметра a в методах уменьшалось количество производимых шагов и, следовательно, вычислений F.