

Mathématiques Expertes

Épreuve 2, Option A

Sujet zéro

Durée: 1h30

Code sujet : ○ ○ ●

FONCTIONNEMENT DES QUESTIONS

- Les *questions à choix multiples* sont numérotées **M1**, **M2** etc. Le candidat y répond en **noircissant** la case correspondant à sa réponse dans la feuille-réponse □. Pour chacune de ces questions, il y a une et une seule bonne réponse. Toute réponse fausse retire des points aux candidats. Noircir plusieurs réponses à une même question a un effet de neutralisation (le candidat récoltera 0 point).
- Les *questions à réponse brute* sont numérotées **L1**, **L2** etc. Elles ne demandent aucune justification : les résultats sont reportés par le candidat dans le cadre correspondant sur la feuille-réponse \triangle . Tout débordement de cadre est interdit.
- Les *questions à réponse rédigée* sont numérotées **R1**, **R2** etc. Elles sont écrites dans le cadre correspondant sur la feuille-réponse ou la feuille-réponse △, selon le symbole précédant le numéro de la question. Tout débordement de cadre est interdit.

Conseils de bon sens

- · L'énoncé est (très) long : il n'est absolument pas nécessaire d'avoir tout traité pour avoir une note et un classement excellents.
- Ne vous précipitez pas pour reporter vos réponses, notamment aux questions à choix multiples. Il est préférable d'avoir terminé un exercice avant d'en reporter les réponses.
- Ne répondez jamais au hasard à une question à choix multiples!
- · Selon l'exercice, les questions peuvent être dépendantes les unes des autres ou non. Soyez attentifs à la variété des situations.

TeSciA est une initiative de l'AORES (Association pour une Orientation Raisonnée vers l'Enseignement supérieur Scientifique). Énoncés et feuilles-réponses réalisés à l'aide du logiciel libre Auto-Multiple-Choice.

Exercice 1. Calculs élémentaires sur les nombres complexes

 \square **M1** Le produit (1+3i)(2-i) vaut :

A
$$-1 + 5i$$

$$\boxed{B}$$
 $-5-5i$

$$C 1 - 5$$

A
$$-1+5i$$
 B $-5-5i$ C $1-5i$ D $-5+5i$ E $5+5i$

$$E = 5 + 5i$$

 \square **M2** Le nombre complexe 4 + 3i a pour module :

$$\begin{bmatrix} A \end{bmatrix}$$
 $\begin{bmatrix} -7 \end{bmatrix}$ $\begin{bmatrix} B \end{bmatrix}$ $\begin{bmatrix} 5 \end{bmatrix}$ $\begin{bmatrix} C \end{bmatrix}$ $\begin{bmatrix} 7 \end{bmatrix}$ $\begin{bmatrix} D \end{bmatrix}$ $\begin{bmatrix} 25 \end{bmatrix}$ $\begin{bmatrix} E \end{bmatrix}$ $\begin{bmatrix} \sqrt{7} \end{bmatrix}$

$$\left[\mathbf{C}\right]$$

$$\mathbf{E}$$
 $\sqrt{7}$

 \square M3 L'inverse du nombre complexe 2 + 3i est :

A
$$\frac{2}{13} - \frac{3i}{13}$$
 B $\frac{2}{7} - \frac{3i}{7}$ C $\frac{1}{2} + \frac{i}{3}$ D $\frac{1}{2} - \frac{i}{3}$ E $-2 - 3i$

$$\boxed{\mathbf{B}} \quad \frac{2}{7} - \frac{3i}{7}$$

$$\boxed{\mathbf{C}} \quad \frac{1}{2} + \frac{3}{3}$$

$$\boxed{\mathbf{D}} \quad \frac{1}{2} - \frac{i}{3}$$

$$\boxed{\mathrm{E}}$$
 $-2-3i$

 \square **M4** Le quotient $\frac{1-3i}{3-i}$ vaut :

$$\frac{3+4}{5}$$

$$\boxed{\mathbf{B}} \quad \frac{3-4a}{5}$$

$$\boxed{\mathbf{C}} - \frac{3+4}{5}$$

[A]
$$\frac{3+4i}{5}$$
 [B] $\frac{3-4i}{5}$ [C] $-\frac{3+4i}{5}$ [D] $-\frac{3-4i}{5}$ [E] $\frac{-3+4i}{5}$

$$\boxed{E} \quad \frac{-3+4i}{5}$$

 \square M5 L'équation $z^2 + 6 = -2z$ possède pour solutions complexes :

A
$$-1 + i\sqrt{5}$$
 et $-1 - i\sqrt{5}$

B
$$2 + 2i\sqrt{5}$$
 et $-2 + 2i\sqrt{5}$

$$\boxed{\mathbf{C}} \ 1 + i\sqrt{5} \text{ et } 1 - i\sqrt{5}$$

D
$$2\sqrt{5} + 2i$$
 et $2\sqrt{5} - 2i$

E
$$2 + 2i\sqrt{5}$$
 et $2 - 2i\sqrt{5}$

 \square M6 Le nombre complexe i est la seule solution complexe de l'équation $z^2 = -1$.

 \square M7 Le module et un argument de $\frac{\sqrt{6}-i\sqrt{2}}{2}$ sont respectivement :

$$\boxed{\mathbf{A}} \quad \sqrt{2} \text{ et } \frac{2\pi}{3}$$

$$\boxed{\mathbf{B}} \quad \sqrt{2} \text{ et } -\frac{\pi}{6}$$

$$\boxed{\text{C}}$$
 $\sqrt{2}$ et $\frac{\pi}{6}$

A
$$\sqrt{2}$$
 et $\frac{2\pi}{3}$ B $\sqrt{2}$ et $-\frac{\pi}{6}$ C $\sqrt{2}$ et $\frac{\pi}{6}$ D $\sqrt{2}$ et $-\frac{5\pi}{6}$ E $\sqrt{3}$ et $\frac{5\pi}{6}$

$$\boxed{\text{E}}$$
 $\sqrt{3}$ et $\frac{5\pi}{6}$

Exercice 2. Arithmétique élémentaire

On appellera plus simplement « entiers » les entiers relatifs. Ainsi, -1 est un entier mais pas un entier naturel.

□ M8	Le nombre 1 est premier.				
		A	Faux B	Vrai	
□ M 9	Le nombre 91 est premier.				
		A	Faux B	Vrai	
□ M10	Un entier est premier si et seulem	ient si l	e nombre de ses	diviseurs enti	ers vaut :
	A 8	3 2	C 1	D 4	E 0
□ M 11	Le nombre 110 est premier avec :				
	A 45 B	21	C 10	D 33	E 14
□ M12	Le nombre de diviseurs entiers na	aturels	de 115 est :		
	A 4 B	2	C 8	D 6	E 10
\triangle L1	Donner sans justification le pgcd d	e 1636	et 1227.		
△ L2	Donner sans justification le ppcm o	le 1636	et 1227.		
□ M1 3	Le nombre 7 ¹² est congru module	o 13 à			
	A -1 E	1	C -2	D 0	E 2
□ M14	Le nombre 11^{46} est congru modu	lo 23 à			
	A 4	0	C 2	D 8	E 6
□ M 15	Le reste dans la division euclidier	ne de	4^{19} par 9 vaut :		
	$oxed{A}$ 1 $oxed{B}$	2	C -1	D 4	E 7

Exercice 3. Mots

Définitions, exemples

On appelle **mot fini** une suite finie (non vide) de 0 et de 1. Par exemple, 0011010 est un mot fini. Le nombre de chiffres du mot est appelé longueur du mot. Par exemple, la longueur du mot 0011010 est 7.

On appelle **mot infini** une suite infinie de 0 et de 1 (c'est-à-dire une suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_n\in\{0,1\}$ pour tout $n\in\mathbb{N}$). On représentera un mot en « collant » les chiffres de la suite. Par exemple, le mot w défini par $w_n=0$ pour tout $n\in\mathbb{N}$ peut être représenté par

 $w = 0000000000 \cdots$

Si u est un mot (fini ou infini), on appelle **sous-mot fini** de u tout mot fini constitué de chiffres consécutifs dans u. L'ensemble des sous-mots de u est noté S(u).

Par exemple:

- Le mot 110 est un sous-mot fini (de longueur 3) de 0011010.
- Le mot 111 n'est pas un sous-mot fini de 0011010.
- Les sous-mots finis de longueur 3 de 011011011 sont 011, 110 et 101.
- Le mot 00000 est un sous-mot fini de longueur 5 du mot infini w défini précédemment.
- On a $S(w) = \{0, 00, 000, \dots\}.$
- Les mots 1 et 01 ne sont pas des sous-mots finis de w.

Vrai ou Faux

Dans les questions de cette partie, on demande d'évaluer la validité logique des propositions indiquées.

□ M 16	Le mot 0101 est un sous-mot fini de 010010011.
	A Faux B Vrai
□ M17	Le mot infini w (défini dans le préambule de l'exercice) a un seul sous-mot de longueur 4 .
	A Faux B Vrai
□ M 18	Il existe (au moins) un mot fini dont les seuls sous-mots de longueur 2 sont 00 et 10.
	A Faux B Vrai
□ M 19	Il existe (au moins) un mot infini dont les seuls sous-mots de longueur 2 sont 00 et 10.
	A Faux B Vrai
□ M20	Il existe (au moins) un mot fini dont les seuls sous-mots de longueur 2 sont 00 et 11.
	A Vrai B Faux
□ M21	Il existe (au moins) un mot infini dont les seuls sous-mots de longueur 2 sont 00 et 11.
	A Faux B Vrai

□ M22	Il existe (au moins) un mot fini dont les seuls sous-mots de longueur 2 sont 00 et 01.				
	A Faux B Vrai				
□ M23	Il existe (au moins) un mot infini dont les seuls sous-mots de longueur 2 sont 00 et 01.				
	A Vrai B Faux				
Ensem	ble des sous-mots				
A L'er B L'er C Auc D L'er	Laquelle des affirmations suivantes est vraie? Insemble $S(u)$ peut être fini même si u est infini. Insemble $S(u)$ est toujours fini. Insemble $S(u)$ est toujours infini. Insemble $S(u)$ est toujours infini si u est infini, toujours fini si u est fini.				
\square M25 Deux mots u et v étant donnés, l'hypothèse minimale, parmi les suivantes, pour pouvoir obtenir l'égalité $u=v$ est :					
□ M2 6	Il existe (au moins) un mot infini u tel que $S(u)$ contienne tous les mots finis possibles.				
	A Vrai B Faux				
○ R1 J	Justifier votre réponse à la question M26 .				
Mots p	ériodiques				
On di	it qu'un mot infini $u=(u_n)_{n\in\mathbb{N}}$ est périodique s'il existe un entier $d\in\mathbb{N}^*$ tel que				
	$u_n = u_{n+d}$ pour tout $n \in \mathbb{N}$.				
Cela sign	ifie que le mot u est obtenu en répétant un mot de longueur d . Par exemple, le mot				
	$z = 011011011011011011011 \cdots$				
-	dique avec $d=3$ (ou encore $d=6$), obtenu en répétant le mot fini 011 (ou le mot fini 011011). les questions suivantes, on demande d'évaluer la véracité des propositions indiquées.				
□ M27	Toutes les mots infinis sont périodiques.				
	A Faux B Vrai				
□ M28	L'ensemble des mots périodiques est infini.				
	A Vrai B Faux				

 \square M29 Si u est un mot périodique obtenu en répétant un mot fini v, alors S(u) = S(v).

A Vrai

B Faux

Étant donné un mot u et un entier k, l'ensemble des sous-mots de longueur k de u est noté $S_k(u)$, et le nombre de sous-mots de longueur k de u est noté $P_k(u)$. Par exemple, pour u=0111011, on a $S_3(u)=\{011,111,110,101\}$ et $P_3(u)=4$.

 \square M30 Si u est un mot périodique obtenu en répétant un mot fini v de longueur d, alors $S_i(u) = S_i(v)$ pour tout entier i compris entre 1 et d.

A Vrai

B Faux

 \square M31 Si u est un mot périodique obtenu en répétant un mot fini v de longueur d, alors $P_i(u) \leq d$ pour tout entier i > 0.

A Faux

B Vrai

○ R2 Justifier brièvement votre réponse à la question M31.

Transformation de mots (début)

Dans les questions de cette partie, on donne des égalités et on demande de dire s'il existe des mots a et b satisfaisant simultanément à toutes celles qui sont indiquées.

 \square **M32** $f_{a,b}(0) = 11$ et $f_{a,b}(1001) = 101111110$

A Non

B Oui

 \square **M33** $f_{a,b}(0) = 01$ et $f_{a,b}(110) = 001$

A Non

B Oui

 \square **M34** $f_{a,b}(0101) = 110111101$ et $f_{a,b}(11) = 00$

A Non

B Oui

 \square **M35** $f_{a,b}(000) = 101010$ et $f_{a,b}(10) = 110$

A Oui

B Non

 \square **M36** $f_{a,b}(001) = 00000$ et $f_{a,b}(101) = 0000$

A Non

B Oui

	□ M3	7 f_a	b(0011)	= 10	01010	1010
--	------	---------	---------	------	-------	------

A Oui

B Non

$$\square$$
 M38 $f_{a,b}(001) = 1111111$ et $f_{a,b}(101) = 1111$

A Non

B Oui

$$\square$$
 M39 $f_{a,b}(01010101010101\cdots) = 10101010101\cdots$ et $f_{a,b}(10) = 010101$

A Non

B Oui

 \Box **M40** $f_{a,b}(011011011011011011\cdots) = 101010101010\cdots$

A Oui

B Non

$$\Box$$
 M41 $f_{a,b}(011011011011011011\cdots) = 1100110011001100\cdots$

A Non

B Oui

Transformation de mots (fin)

- \square M42 La propriété « Pour n'importe quel mot périodique u, le mot $f_{a,b}(u)$ est périodique » est vraie :
 - A pour aucun choix des mots finis a et b
 - $oxed{B}$ pour tous mots finis a et b
 - $oxed{C}$ pour certains mots finis a et b mais pas tous
- \bigcirc R3 Soit a un mot fini de longueur au moins 2 et commençant par 0. Justifier qu'il existe un mot infini u tel que $f_{a,b}(u)=u$.

Exercice 4. Nombres parfaits

Un entier naturel $n \ge 2$ est dit **parfait** lorsqu'il est égal à la somme de ses diviseurs positifs stricts (c'est-à-dire tous ses diviseurs positifs sauf n lui-même). Par ailleurs, on notera $\sigma(n)$ la somme de tous les diviseurs positifs de n, par exemple $\sigma(4) = 1 + 2 + 4 = 7$ et $\sigma(9) = 1 + 3 + 9 = 13$. Ainsi, ni 4 ni 9 n'est parfait. En revanche 6 est parfait car 6 = 1 + 2 + 3.

 \square **M43** $\sigma(10)$ vaut :

Épreuve 2, Option A

 $\boxed{\mathbf{A}}$ 9

B 10

[C] 17

 \square **M44** $\sigma(30)$ vaut :

 $|\mathbf{A}|$ 90

B 72

C 42

D 50

E 44

□ **M45** Un nombre premier peut-il être parfait?

A Seul le nombre 1 est à la fois premier et parfait

B Oui, tous

C Non, aucun

D Certains le sont et d'autres non

△ L3 En cas de réponse "Certains le sont et d'autres non" à la question M45, citer un nombre premier parfait et un nombre premier non parfait.

 \square M46 Soit p un nombre premier et k un entier naturel non nul. Alors $\sigma(p^k)$ vaut :

 \square M47 Le nombre n (entier naturel) est parfait si et seulement si $\sigma(n)$ vaut :

A n+1

 $\boxed{\mathbf{B}}$ 2n

 $\begin{bmatrix} \mathbf{C} \end{bmatrix}$ n

D n^2

 \square M48 L'ensemble des nombres parfaits de la forme p^k avec p premier et $k \ge 1$ est :

A fini et possède plusieurs éléments

B réduit à un élément

C vide

D infini

Multiplicativité de la fonction σ

Dans cette partie, on admet le résultat suivant : quels que soient les entiers naturels $a \ge 1$ et $b \ge 1$ premiers entre eux, on a $\sigma(ab) = \sigma(a) \, \sigma(b)$.

Donner la valeur de $\sigma(144)$ et celle de $\sigma(105)$.

L'affirmation : « pour tous a et b entiers naturels non nuls, $\sigma(ab) = \sigma(a) \sigma(b)$ » est :

Fausse

B] Vraie

 \triangle L5 En cas de réponse « Fausse » à la question M49, expliciter un couple (a,b) d'entiers naturels non nuls tel que $\sigma(ab) = \sigma(a) \, \sigma(b)$, et expliciter sans calcul les valeurs respectives de $\sigma(ab)$ et $\sigma(a) \, \sigma(b)$.

- \square M50 Soit un entier $m \ge 1$. Laquelle des affirmations suivantes est systématiquement vraie?
 - A Si $2^{m+1}-1$ est premier, alors $2^m(2^{m+1}-1)$ est parfait
 - \fbox{B} Si 2^m-1 est premier, alors $2^m(2^m-1)$ est parfait
 - \square Si $2^m 1$ est premier, alors $2^{m+1}(2^m 1)$ est parfait
 - D Aucune
- \square M51 Soit $m \in \mathbb{N}$ et p un nombre premier. Alors :
 - A Si $2^m p$ n'est pas parfait alors p est pair.
 - B Il se peut qu'aucune des quatre autres propositions ne soit vraie.
 - \square Si $2^m p$ n'est pas parfait alors p est impair.
 - D Le nombre $2^m p$ peut être parfait sans que p soit impair.
- [E] Si $2^m p$ est parfait alors p est impair.
- \square M52 Soit $m \in \mathbb{N}$ et p un nombre premier. On suppose que $2^m p$ est parfait. Alors :
 - $|A| p = 2^m 1$
 - $B p = 2^{m+1} + 1$
 - $C p = 2^{m+1} 1$
 - $p = 2^{m-1} 1$
 - [E] Il se peut qu'aucune des quatre autres propositions ne soit vraie.

 \triangle **R4** En supposant connus les nombres premiers de Mersenne, c'est-à-dire les nombres premiers de la forme $2^a - 1$, déterminer les nombres parfaits de la forme $2^m p^n$ avec m, n entiers naturels et p premier impair. On attend un raisonnement entièrement détaillé mais on pourra s'appuyer sur des résultats déjà obtenus dans les questions précédentes.

Exercice 5. Calculs symboliques sur les nombres complexes

- □ **M**53 Pour tout nombre réel a, un argument du nombre complexe $\sin(a) - i\cos(a)$ est :

- \square M54 Soit $z\in\mathbb{C}.$ Le module de z-i est toujours égal à :
 - [A] 1+|z| [B] |z-1| [C] |1-iz|

- $\boxed{\mathbf{D}} \quad |1+iz| \qquad \boxed{\mathbf{E}} \quad |z+1|$

 \square M55 Soit $z=re^{i\theta}$ un nombre complexe non nul, avec r réel strictement positif et $\theta\in\mathbb{R}$. Pour tout choix de r>0 et de θ , le module et un argument de $\frac{-1-i\sqrt{3}}{\overline{z}}$ sont, respectivement :

$$\boxed{\mathbf{A}} \quad \frac{\sqrt{2}}{r} \text{ et } \frac{2\pi}{3} - \theta$$

 \square M56 Soit a un nombre strictement compris entre $\frac{\pi}{2}$ et π . Le module et un argument de $\frac{1}{1+i\frac{\sin a}{\cos a}}$ sont toujours égaux respectivement à :

- $|A| \cos a \text{ et } a$
- $\boxed{\mathbf{B}} \cos a \text{ et } \pi a$
- $\boxed{\mathbf{C}} |\cos a| \text{ et } a$
- $\boxed{\mathbf{D}} \cos a \text{ et } \pi + a$
- $|\mathbf{E}| |\cos a| \text{ et } \pi + a$

 \square M57 Soit θ un nombre réel de l'intervalle $]-\pi,+\pi[$. On pose $x=-\frac{\sin(\theta/2)}{\cos(\theta/2)}$. Pour tout choix de θ , le nombre $e^{i\theta}$ vaut :

$$\boxed{\mathbf{A}} \quad \frac{1-ix}{1+ix}$$

$$\boxed{\mathbf{B}} \quad \frac{1+ix}{1-ix}$$

$$\boxed{\mathbf{D}} \quad \frac{1 - ix}{-1 + ix}$$

$$\boxed{\mathbf{E}} \quad \frac{1+ix}{-1+ix}$$

 \square M58 Pour n'importe quel nombre réel θ , le produit $(\cos \theta)(\cos 2\theta)$ vaut :

- $|\mathbf{A}| 2\cos(\theta) \cos(3\theta)$
- $\begin{array}{c|c}
 \hline
 \mathbf{B} & \frac{\cos(\theta)}{2} \frac{\cos(3\theta)}{2} \\
 \hline
 \mathbf{C} & \frac{\cos(\theta)}{2} + \frac{\cos(3\theta)}{2}
 \end{array}$
- $D \cos(\theta) + \cos(3\theta)$

$$\frac{}{}$$
E $\frac{3\cos(\theta)}{2} - \frac{\cos(3\theta)}{2}$

 \square M59 Pour n'importe quel nombre réel θ , le produit $(\cos \theta)(\cos 2\theta)(\cos 3\theta)$ vaut :

- $\begin{array}{c|c} \textbf{M59} & \text{Pour n'importe quel nombre réel} \\ \hline \textbf{A} & \frac{-1+2\cos(2\theta)+2\cos(4\theta)-\cos(6\theta)}{2} \\ \hline \textbf{B} & \frac{-1+2\cos(2\theta)-\cos(4\theta)+2\cos(6\theta)}{2} \\ \hline \textbf{C} & \frac{-1+2\cos(2\theta)+2\cos(4\theta)-\cos(6\theta)}{2} \\ \hline \textbf{D} & \frac{2-\cos2\theta-\cos(4\theta)+2\cos(6\theta)}{2} \\ \hline \textbf{E} & \frac{1+\cos(2\theta)+\cos(4\theta)+\cos(6\theta)}{4} \\ \end{array}$

Donner une expression simple des solutions de l'équation $z^4 = 1 - i$, en entourant la seule d'entre elles qui est à la fois de partie réelle et de partie imaginaire positives.

Exercice 6. Équations à inconnue complexe

- \triangle L7 Rappeler sans démonstration les solutions complexes de l'équation $z = \overline{z}$.
- \triangle L8 On fixe un nombre réel θ ; expliciter sous la forme la plus appropriée possible les solutions de l'équation $z=e^{i\theta}\overline{z}$. Aucune démonstration n'est attendue.
- \square M60 On considère les fonctions polynômes complexes suivantes :

$$E: z \mapsto z^2 + z + 1$$
; $F: z \mapsto -z^2 + 2z + 1$; $G: z \mapsto -2z^2 + z - 2$; $H: z \mapsto z^3 - i$.

Lesquelles ne s'annulent qu'en des nombres complexes de module un?

- A Toutes
- lacksquare B et G
- C E, F et G
- D E, F et H
- $E \mid E, G \text{ et } H$

Dans la suite, on fixe un entier naturel $n \ge 1$. Soit z un nombre complexe tel que $z^n = \overline{z}$. Le raisonnement suivant prétend démontrer que z est nécessairement de module 1, mais il est possible qu'il contienne une ou plusieurs erreurs.

- Étape 1 : on déduit de l'hypothèse $z^n = \overline{z}$ que $|z|^n = |z|$.
- Étape 2 : ainsi $|z|^{n-1} = 1$.
- Étape 3 : on en déduit que |z|=1.

\square **M61** L'étape 1 est :

- $\overline{\mathbf{A}}$ valide si z est imaginaire pur, mais peut être invalide sinon
- B valide si $z \neq 0$, mais peut être invalide sinon
- C valide si z est réel, mais peut être invalide sinon
- $\boxed{\mathbf{D}}$ valide si $z \neq 1$, mais peut être invalide sinon
- E toujours valide

\square **M62** L'étape 2 est :

- [A] valide si $z \neq 1$ et $n \neq 1$, mais peut être invalide sinon
- B valide si $n \neq 1$, mais peut être invalide sinon
- c toujours valide
- D valide si $z \neq 0$, mais peut être invalide sinon
- E valide si $z \neq 0$ et $n \neq 1$, mais peut être invalide sinon

□ M63 L'étape 3 est :

- A valide si $z \neq 0$, mais peut être invalide sinon
- B valide si $z \neq 1$ et $n \neq 1$, mais peut être invalide sinon
- C toujours valide
- D valide si $z \neq 0$ et $n \neq 1$, mais peut être invalide sinon
- [E] valide si $n \neq 1$, mais peut être invalide sinon

On suppose maintenant $n \geq 2$.

R5 Justifier de manière très détaillée votre réponse à la question M65.