

Probability density functions

Continuous variables

Quantities that can take any value, not just discrete values

Michelson's speed of light experiment

measured speed of light (1000 km/s)

```
299.98
       299.98
               299.65
299.98
       299.93
                       299.76
       300.00
               299.96
                      299.96
       299.96
               299.94
                      299.88
               299.90
                       299.84
       299.88
               299.88
                      299.88
       299.81
       299.79
               299.76
               299.86
       299.88
       299.86
               299.97
               299.87
       299.85
               299.84
       299.84
       299.81
               299.82
       299.74
               299.75
299.92
       299.89
               299.86
                       299.88
       299.85
               299.85
                      299.78
299.84 299.78 299.81 299.76
               299.82
                      299.85
       299.81
        299.81
       299.80
               299.81
```

Image: public domain, Smithsonian

Data: Michelson, 1880

Probability density function (PDF)

- Continuous analog to the PMF
- Mathematical description of the relative likelihood of observing a value of a continuous variable

Normal PDF

Normal PDF

Normal CDF

Let's practice!

Introduction to the Normal distribution

 Describes a continuous variable whose PDF has a single symmetric peak.

Parameter

mean of a Normal distribution

st. dev. of a Normal distribution

Calculated from data

mean computed from data

standard deviation computed from data

Comparing data to a Normal PDF

Checking Normality of Michelson data

```
In [1]: import numpy as np
In [2]: mean = np.mean(michelson_speed_of_light)
In [3]: std = np.std(michelson_speed_of_light)
In [4]: samples = np.random.normal(mean, std, size=10000)
In [5]: x, y = ecdf(michelson_speed_of_light)
In [6]: x_theor, y_theor = ecdf(samples)
```


Checking Normality of Michelson data

```
In [1]: import matplotlib.pyplot as plt
In [2]: import seaborn as sns
In [3]: sns.set()
In [4]: _ = plt.plot(x_theor, y_theor)
In [5]: _ = plt.plot(x, y, marker='.', linestyle='none')
In [6]: _ = plt.xlabel('speed of light (km/s)')
In [7]: _ = plt.ylabel('CDF')
In [8]: plt.show()
```


Checking Normality of Michelson data

Let's practice!

The Normal distribution: Properties and warnings

The Gaussian distribution

Length of MA large mouth bass

Length of MA large mouth bass

Mass of MA large mouth bass

Light tails of the Normal distribution

Let's practice!

The Exponential distribution

The Exponential distribution

 The waiting time between arrivals of a Poisson process is Exponentially distributed

The Exponential PDF

Possible Poisson process

- Nuclear incidents:
 - Timing of one is independent of all others

Exponential inter-incident times

```
In [1]: mean = np.mean(inter_times)
In [2]: samples = np.random.exponential(mean, size=10000)
In [3]: x, y = ecdf(inter_times)
In [4]: x_theor, y_theor = ecdf(samples)
In [5]: _ = plt.plot(x_theor, y_theor)
In [6]: _ = plt.plot(x, y, marker='.', linestyle='none')
In [7]: _ = plt.xlabel('time (days)')
In [8]: _ = plt.ylabel('CDF')
In [9]: plt.show()
```


Exponential inter-incident times

Let's practice!

Final thoughts

You now can...

- Construct (beautiful) instructive plots
- Compute informative summary statistics
- Use hacker statistics
- Think probabilistically

In the sequel, you will...

- Estimate parameter values
- Perform linear regressions
- Compute confidence intervals
- Perform hypothesis tests

See you in the sequel!