8. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 13.12.2018 23:59

Zeit	Raum	Abgabe im Moodle; Mails mit Betreff: [SMD1819]		
Di. 10-12	CP-03-150	tobias.hoinka@udo.edu, felix.geyer@udo.edu und jan.soedingrekso@udo.edu		
	CP-03-150 CP-03-150	simone.mender@udo.edu und alicia.fattorini@udo.edu mirco.huennefeld@udo.edu und kevin3.schmidt@udo.edu		

Aufgabe 22: Fehlerfortpflanzung

6 P.

WS 2018/2019

Prof. W. Rhode

Die Parameter einer Ausgleichsgeraden $y=a_0+a_1x$ wurden zu $a_0=1,0\pm0,2$ und $a_1=1,0\pm0,2$ bestimmt. Der Korrelationskoefffizient ist $\rho=-0,8$. Bestimmen Sie die Unsicherheit eines Wertes y als Funktion von x.

- a) Bestimmen Sie das Resultat analytisch sowohl unter Berücksichtigung der Korrelation als auch unter Vernachlässigung der Korrelation.
- b) Bestimmen Sie das Resultat numerisch mit einer Monte Carlo Simulation. Visualisieren Sie die Parameter a_0 und a_1 in einem Scatter-Plot.
- c) Bestimmen Sie die Vorhersagen y (Mittelwert und Standardabweichung) für feste x = -3, 0, +3 numerisch sowie analytisch und vergleichen Sie diese.

Aufgabe 23: Teilchenspuren

6 P.

In einem Teilchenphysikexperiment stehen 2 Ebenen von Driftkammern senkrecht zur z-Achse an den Positionen z_1 und z_2 (kein Magnetfeld, Vakuum). Sie messen die jeweilige x-Position $(x_1$ und $x_2)$ eines hindurchfliegenden geladenen Teilchens mit den Fehlern σ_{x_1} und σ_{x_2} ohne Korrelation.

a) Berechnen Sie die Geradengleichung

$$x = az + b$$
,

die die Bewegung des Teilchens in der x-z-Ebene beschreibt, sowie die Fehler, die Kovarianzmatrix und den Korrelationskoeffizienten von a und b.

- b) Die Messungen in den beiden Driftkammerebenen bei z_1 und z_2 sollen nun verwendet werden, um die Position des Teilchens im nächsten Detektorelement vorherzusagen. Dies sei eine weitere Driftkammerebene parallel zu den ersten beiden bei $z=z_3$. Berechnen Sie also mit Hilfe der in (a) bestimmten Geradengleichung die Position x_3 und ihren Fehler bei $z=z_3$.
- c) Wie ändert sich der Fehler von x_3 , wenn Sie fälschlich die Korrelation zwischen a und b nicht berücksichtigen?

8. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 13.12.2018 23:59

8 P.

WS 2018/2019

Prof. W. Rhode

Aufgabe 24: F-Praktikum

In einem Praktikumsversuch werden folgende Werte gemessen:

Ψ / °	Asymmetrie	Ψ / °	Asymmetrie	Ψ / °	Asymmetrie
0	-0,032	30	0,010	60	0,057
90	0,068	120	$0,\!076$	150	0,080
180	0,031	210	$0,\!005$	240	-0,041
270	-0,090	300	-0,088	330	-0.074

Die Asymmetriewerte haben einen Messfehler von $\pm 0{,}011$. Die Theorie sagt, dass die Asymmetrie durch einen Ansatz der Form

$$f(\Psi) = A_0 \cos(\Psi + \delta)$$

beschrieben wird.

a) Machen Sie zunächst den Ansatz

$$f(\Psi) = a_1 f_1(\Psi) + a_2 f_2(\Psi)$$

mit

$$f_1(\varPsi) = \cos(\varPsi) \quad \text{und} \quad f_2(\varPsi) = \sin(\varPsi)$$

und schreiben Sie die Designmatrix A auf.

- b) Berechnen Sie den Lösungsvektor **â** für die Parameter nach der Methode der kleinsten Quadrate.
- c) Berechnen Sie die Kovarianzmatrix $V[\hat{\mathbf{a}}]$ sowie die Fehler von a_1 und a_2 und den Korrelationskoeffizienten.
- **d)** Berechnen Sie A_0 und δ und deren Fehler und Korrelation aus a_1 und a_2 .