SIN 251 – Organização de Computadores (PER-3 2021-1)

Aula 13 – Aritmética do Computador *Ponto Flutuante*

Prof. João Fernando Mari joaof.mari@ufv.br

Referências

- STALLINGS, W. **Arquitetura e Organização de Computadores**, 8. Ed., Pearson, 2010.
 - Capitulo 9

Roteiro

- Números reais
- Exemplo.: Ponto fixo
- Ponto flutuante
- Expoente polarizado
- Normalização
- Exemplo: Ponto flutuante
- Números representáveis
- IEEE 754
- Aritmética de ponto flutuante (+/-)
- Exemplo: Soma e subtração
- Aritmética de ponto flutuante (×/÷)

Números reais

- Como representar os números reais no computador?
 - Poderia ser feito em binário puro.
 - $1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9,625$

- Onde está o ponto binário?
 - Fixo?
 - Muito limitado em termos de representação.
 - Móvel?
 - Como você determina onde está o ponto?

EXEMPLP: Ponto fixo

- Suponha palavras de 8 bits:
 - 4 bits para a parte inteira e 4 bits para a parte real

Aumentar o intervalo de inteiros, diminui a precisão da parte real

Aumentar a precisão da parte real, diminui o intervalo de inteiros

Ponto flutuante

+/- Significando x 2^{Exponente}

Obs.: O termo Mantissa, encontrado em muitos livros texto, é considerado obsoleto. Usaremos Significando.

Expoente polarizado

- Expoente está em *representação polarizada*.
 - Polarização: um valor fixo que é subtraído para obter o expoente.
 - Polarização: 2^{k-1} 1 (k é o número de bits do expoente)
 - EXEMPLO: Expoente com 8 bits (Intervalo de 0 a 255)
 - A polarização é $2^7 1 = 127$
 - Intervalo do expoente polarizado: -127 a +128.

Normalização

- Números em ponto flutuante geralmente são normalizados, ou seja
 - O expoente é ajustado de modo que bit inicial (MSB) da mantissa seja 1.
 - Por ser sempre 1, não é preciso armazená-lo.
 - Ex.: 00100101.001 x $2^0 = 1.00101001$ x 2^5
- Obs.: Em notação científica, os números são normalizados para um único dígito antes do ponto decimal:
 - − Ex.:
 - $3,123 \times 10^3 = 3123,0$
 - $3,123 \times 10^{-3} = 0,003123$

Exemplos de ponto flutuante

(b) Exemplos

Exemplos de ponto flutuante

- Valor em binário:
- Resolver o expoente polarizado:
 - 147 127 = 20
- Incluir o bit 1 mais significativo do significando
 - + | 10100 | 1.1010001000000000000000
- Converte os valores para base decimal:
 - + | 20 | 1.6328125
- Colocar em notação científica:
 - (+/-)significando × $2^{expoente}$
 - + 1.6328125 × 2²⁰ = 1.6328125 × 1,048,576 =
 - 1,712,128
- Valor em decimal:
 - + 1,712,128.0

- Valor em decimal:
 - + 1,712,128.0
- Converte para binário (a parte inteira e a parte decimal):
 - + 1 1010 0010 0000 0000 0000. 0
- Colocar em notação cientifica (base 2)
 - + 1 1010 0010 0000 0000 0000. 0 x 2⁰
- Mover o ponto até antes do bit 1 mais significativo:
 - + 1. 1010 0010 0000 0000 0000 x 2²⁰
- Tornar o expoente polarizado e remover o 1 mais significativo:
 - 20 + 127 = 147
- Valor em binário:

8 bits 23 bits

Sinal do significando → Exp. polarizado Significando

Exemplos de ponto flutuante (significando negativo)

- Valor em binário:
 - 1 | 10010011 | 1010001000000000000000
- Resolver o expoente polarizado:
 - 147 127 = 20
- Incluir o bit 1 mais significativo do significando
 - - | 10100 | 1.1010001000000000000000
- Converte os valores para base decimal:
 - **-** | 20 | 1.6328125
- Colocar em notação científica:
 - (+/-)significando × 2^{expoente}
 - - 1.6328125 × 2²⁰ = 1.6328125 × 1,048,576 =
 - **-** -1,712,128
- Valor em decimal:
 - **- - 1**,712,128.0

- Valor em decimal:
 - **-** 1,712,128.0
- Converte para binário (a parte inteira e a parte decimal):
 - 1 1010 0010 0000 0000 0000. 0
- Colocar em notação cientifica (base 2)
 - 1 1010 0010 0000 0000 0000. 0 x 2⁰
- Mover o ponto até antes do bit 1 mais significativo:
 - 1. 1010 0010 0000 0000 0000 x 2²⁰
- Tornar o expoente polarizado e remover o 1 mais significativo:
 - 20 + 127 = 147
 - - | 10010011 | 1010001000000000000000
- Valor em binário:
 - 1 | 10010011 | 1010001000000000000000

8 bits 23 bits

Sinal do significando

Exp. polarizado Significando

Exemplos de ponto flutuante (expoente negativo)

- Valor em binário:
- Resolver o expoente polarizado:
 - 107 127 = -20
- Incluir o bit 1 mais significativo do significando
- Converte os valores para base decimal:
 - + | -20 | 1.6328125
- Colocar em notação científica:
 - (+/-)significando × 2^{expoente}
 - + 1.6328125 × 2⁻²⁰ =
- Valor em decimal (um número muito pequeno):
 - + 0.000001557171344757080078125

8 bits 23 bits

Sinal do significando → Exp. polarizado Significando

Exemplos de ponto flutuante (com valores reais)

- Valor em decimal:
 - + 20.3
- Converte para binário (a parte inteira e a parte decimal):
- Colocar em notação cientifica (base 2)
- Mover o ponto até antes do bit 1 mais significativo:
- Tornar o expoente polarizado e remover o 1 mais significativo do significando (manter apenas 23 bits):
 - -4+127=131
- Valor em binário:

- Valor em binário:
- Resolver o expoente polarizado:
 - 131 127 = 4
- Incluir o bit 1 mais significativo do significando
- Converte os valores para base decimal:
 - + | 4 | 1.268749952316284
- Colocar em notação científica:
 - (+/-)significando × 2^{expoente}
 - $+ 1.268749952316284 \times 2^{4}$
 - + 1.268749952316284 × 16 =
 - + 20.29999924
- Valor em decimal (arredondando):
 - + 20.3

23 bits

Sinal do significando → Exp. polarizado Significando

Números representáveis

Intervalos de números expressos em 32 bits

IEEE 754

- Padrão para armazenamento de ponto flutuante.
- Padrões de 32 e 64 bits.
- Expoente de 8 e 11 bits, respectivamente.

Aritmética de ponto flutuante (+/-)

- Algoritmo para soma e subtração de números binários em ponto-flutuante:
 - Verifique zero
 - Alinhe significandos (ajustando expoentes)
 - Some ou subtraia significandos
 - Verifique overflow ou underflow
 - Normalize o resultado
 - Arredonde o resultado

Fluxograma da adição e subtração de ponto flutuante

Exemplo

Polarização: k=5, então $2^4 - 1 = 15$

Exemplo

IEEE FP16 Sinal do significando [5 bits Exp. polarizado	10 bits Significando
20.3 + 5.25		
20.3		5.25
0 10011 1.0100010011		0 10001 1.0101000000
(19)		(17) + 1 = 18
		0 10010 0.1010100000 0
1.0100010011		(18) + 1 = 19
<u>0.0101010000 +</u>		0 10011 0.0101010000 0
1.1001100011		(19)
0 10011 100	1100011	

25.546875 = 25.55 (arredondando)

Polarização: 19 - 15 = 4

 $1.5966796875 \times 2^4 =$

Aritmética de ponto flutuante (x/÷)

- Verifique zero.
- Some/subtraia expoentes.
- Multiplique/divida significandos (observe o sinal).
- Normalize.
- Arredonde.
- Resultados intermediários armazenados em tamanho duplo.

Multiplicação e divisão de ponto flutuante

FIM – Aula 13