Machine Learning WS2014/15 (Unsupervised Learning)

Lecturer: Prof. Dr. Bethge

3. Continuous distributions and generative models

Task 1:

Show that the maximum likelihood estimates of the parameters of a multivariate Normal distribution $\mathcal{N}(\mathbf{x}|\mathbf{m},C)$ are given by the sample mean and the sample covariance.

Task 2:

Consider the following generative model:

$$\mathbf{u} \sim \prod_{k=1}^{d} U[-1, 1], \qquad \mathbf{x} = A\mathbf{u}$$
probability of \mathbf{u}

where U[a, b] denotes the uniform distribution between a and b.

- 1. Compute the differential entropies $h[p(\mathbf{u})]$ and $h[p(\mathbf{x})]$ in case when
 - (i) A is invertible
 - (ii) A is orthogonal.
- 2. Estimate numerically the cross-entropy of the maximum likelihood Gaussian model.
- 3. In the following always ssume d=2 and $A=\frac{1}{\sqrt{2}}\begin{pmatrix}1&-1\\1&1\end{pmatrix}$. Compute the probability density function $p(x_k)$ and compare it to $p(u_k)$.
- 4. Compute and compare the variance of the components u_k to the variance of the components of x_k .
- 5. Sample from the distribution $\hat{p}(\mathbf{x}) = p(x_1)p(x_2)$ and show the data points in a scatter plot. Then sample from the true distribution $p(\mathbf{x})$ and superimpose the data points in the same scatter plot but with a different color.
- 6. Estimate numerically the cross-entropy of $\hat{p}(\mathbf{x}) = p(x_1)p(x_2)$ and compare it to the Gaussian cross-entropy and to the true entropy.
- 7. Modify the generative model by additionally multiplying \mathbf{x} with an independent scalar variable z drawn from a Gamma distribution with parameters a=2 and b=1/2 such that $\mathbf{x}=z\cdot A\mathbf{u}$. Still assume d=2 and $A=\frac{1}{\sqrt{2}}\binom{1}{1}\binom{1}{1}$. Estimate numerically the cross-entropy of $\hat{p}(\mathbf{x})=\mathcal{L}(x_1|0,\sigma)\mathcal{L}(x_2|0,\sigma)$ where $\mathcal{L}(x_k|0,\sigma)$ denotes the Laplacian distribution with scale σ . The scale σ should be chosen to maximize the likelihood (i.e. minimize the cross-entropy).

[Optional extra task: Compute the true density $p(\mathbf{x})$ and use it to numerically estimate the true differential entropy of the data]