2005年3月

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} A = \begin{pmatrix} 1 & 4 & -8 \\ -1 & -3 & 5 \\ 0 & 0 & -3 \end{pmatrix}$$
として、次の問に答えよ。

- (1) Aの固有値を求めよ。
- (2) A の各固有値の固有空間を求めよ。
- (3) A は対角化可能か否かその理由をつけて答えよ。

2 a, b, c は実数とし、行列 A は

$$A = \left(\begin{array}{cc} 1+c & a-ib \\ a+ib & 1-c \end{array}\right)$$

とする。ある 2 次の複素列ベクトル \mathbf{x} が存在して、 $A = \mathbf{x}\mathbf{x}^*$ となるため の必要十分条件を求めよ。ここで、 \mathbf{x}^* は \mathbf{x} の共役転置ベクトルであり、iは虚数単位を表す。

3 方程式

$$e^{2x} - 2e^x - y^2 + 1 = 0$$

が (x,y)-平面の第 1 象限 (x>0,y>0) と第 2 象限 (x<0,y>0) において定める陰関数をそれぞれ $x=\psi_1(y)$ と $x=\psi_2(y)$ とする。定積分

$$\int_0^{1/2} \left\{ \psi_1(y) - \psi_2(y) \right\} \, dy$$

を計算せよ。

4

定数 α は α < 1 とし、積分区域

$$D = \{ (x, y) \mid 0 < x \le 1, \ 0 \le y < x \}$$

上の積分

$$I = \iint_D \frac{1}{(x-y)^{\alpha}} dx dy$$

を計算せよ。

n を自然数とする。 n から n までの数字 $\{1,\ldots,n\}$ の置換全体を S_n で表す。 S_n の中、ある数字を固定する置換全体を

$$F_n = \{ \sigma \in S_n | \sigma(i) = i \ (\exists \ i \) \}$$

で表す。数字 1 に置換 σ を続けて行って得られる数の全体を

$$X_{\sigma} = \{ \sigma^{i}(1) | i = 0, 1, 2, \dots \}$$

で表す。一般に有限集合 X の元の個数を $\sharp X$ で表し、 $a_n=\sharp F_n$ とする。以下の問に答えよ。

- (1) a_1, a_2, a_3, a_4 を求めよ。
- (2) 整数 k を $1 \le k \le n$ にとる。 $\sharp X_{\sigma} = k$ となる置換の全体を $A_k = \{\sigma \in S_n \mid \sharp X_{\sigma} = k\}$ とおく。 $\sharp A_k$ を求めよ。
- (3) 整数 k を $1 \le k \le n$ にとる。 $F_n \cap A_k$ の元の個数を a_{n-k} で表せ。
- $(4) a_n$ を $a_{n-2}, a_{n-3}, \ldots, a_1$ で表せ。

 \mathbb{Z} は整数環、 \mathbb{Q} は有理数体を表し、 $\mathbb{Z}[x]$ は整数係数多項式環、 $\mathbb{Q}[x]$ は有理数係数多項式環を表すとする。有理数係数多項式で、整数での値が常に整数になるものの全体を R とする。即ち

$$R = \{ f(x) \in \mathbb{Q}[x] \mid f(n) \in \mathbb{Z} \ (\forall n \in \mathbb{Z}) \}$$

である。次の問に答えよ。

- (1) R は $\mathbb{Q}[x]$ の部分環になることを示せ。
- (2) $k = 0, 1, 2, \cdots$ に対して

$$F_k(x) = \frac{x(x-1)(x-2)\cdots(x-k+1)}{k!}$$

とおく。 すなわち $F_0(x)=1, F_1(x)=x, F_2(x)=x(x-1)/2!, \cdots$ である。

- (a) $F_k(x) \in R (k = 0, 1, 2, \cdots)$ を示せ。
- (b) R の元 f(x) は

$$f(x) = \sum_{k=0}^{d} a_k F_k(x) \ (a_k \in \mathbb{Z})$$

とただ一通りに表せることを示せ。ただし、dはf(x)の次数である。

(3) 正整数 m を任意に与える。p を m より大きい素数とするとき、(2) で定めた $F_k(x)$ について、 $F_p(x)$ は $F_1(x), F_2(x), \cdots, F_m(x)$ の R-係数 1 次結合にはならないことを示せ。即ち、

$$F_p(x) = \sum_{k=1}^{m} a_k(x) F_k(x) \ (a_k(x) \in R)$$

とはならないことを示せ。

(4) R はネーター環ではないことを示せ。

7

任意の $\varepsilon \geq 0$ に対して \mathbb{R}^3 の部分集合

$$X_{\varepsilon} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 + \varepsilon^2 = 0\}$$

を、 \mathbb{R}^3 の標準位相から定まる相対位相により位相空間とみなす。次の問に答えよ。

- (1) $\varepsilon>0$ に対して、 X_{ε} は弧状連結でないことを示せ。
- (2) $\varepsilon = 0$ の時、 X_0 は弧状連結であることを示せ。
- (3) $\varepsilon>0$ に対して、 X_{ε} は 2 次元 C^{∞} -多様体となることを示せ。
- (4) $\varepsilon=0$ のとき、 X_0 は 2 次元 C^{∞} -多様体だろうか?正しければ証明 し、誤っていればその理由を述べよ。

8

次の常微分方程式の初期値問題を考える:

$$(1+x^2)y''(x) + 4xy'(x) + 2y(x) - 6x = 0, \quad y(0) = y'(0) = 1$$

次の問に答えよ。

- (1) 関数 $y(x)=\sum_{n=0}^{\infty}a_nx^n$ が上記を満たすとき、収束半径内で定数 a_n を求めよ。また、そのときの収束半径を求めよ。
- (2) -1 < x < 1 として、次の関数のマクローリン展開を求めよ:

$$\frac{1}{1+x}$$

(3) 上の常微分方程式の初期値問題の $-\infty < x < \infty$ での解を求めよ。

9 n を 2 以上の自然数とする。R>1 とし、複素平面上の積分経路 C_R を次で定義する:

$$C_R = \{ re^{i\theta} ; 0 \le r \le R, \theta = 0 \} \cup \{ re^{i\theta} ; r = R, 0 \le \theta \le 2\pi/n \} \cup \{ re^{i\theta} ; 0 \le r \le R, \theta = 2\pi/n \}.$$

複素関数 $(1+z^n)^{-1}$ を考えることにより、次の定積分を求めよ:

$$\int_0^\infty \frac{1}{1+x^n} dx.$$

$oxed{10}$ 確率変数 $X_n,\,Y_n$ を次のように定める:

- 1. $X_0 = Y_0 = 0$,
- 2. 時刻 t=n において公平なサイコロを振り、その結果によって、

$$X_{n+1} = \left\{ egin{array}{ll} X_n+1, & 1,3,5 \ ext{ が出た場合}, \ X_n-1, & 2,4,6 \ ext{ が出た場合}, \ Y_{n+1} & = \left\{ egin{array}{ll} Y_n+1, & 1,2,3 \ ext{ が出た場合}, \ Y_n-1, & 4,5,6 \ ext{ が出た場合}, \end{array}
ight.$$

とする。次の問に答えよ。

- (1) 確率変数 X_1, X_2 の確率分布を求めよ。
- (2) 確率変数 X_1 と Y_1 は互いに独立ではないことを示せ。
- (3) 確率変数 X_n の分布を求め、平均値と分散を求めよ。
- (4) X_nY_n の平均値 $E[X_nY_n]$ を求めよ。