Histopathologic Image Classification of Benign Fibro-Osseous Lesions of the Jaws Using Deep Neural Network

1.การอัพโหลดข้อมูลและการสร้างโฟลเดอร์ที่จำเป็นในการเก็บรูปภาพบน Google drive

อัพโหลดข้อมูลขึ้นบน Google Drive และสร้างโฟลเดอร์ที่จะใช้ในการเก็บไฟล์ข้อมูลรูปภาพลักษณะต่าง ๆ ลงบน Google Drive โดยจากงานของเราจะมีรูปภาพทั้งหมดบน Google Drive 6 แบบ รวมภาพ Original RGB Image โดย

P => Piecewise Linear Contrast Stretching

GHE => Global Histogram Equalization

CLAHE => Contrast Limited Adaptive Histogram Equalization

ภายในไดร์ฟจะแบ่งเป็น 2 โฟลเดอร์ คือ ข้อมูล Train และ test และภายในแต่ละโฟลเดอร์จะมีการแยกรูปภาพ ตามชนิดของรอยโรค คือ

ภายในแต่ละโฟลเดอร์จะมีภาพถ่ายทางจุลพยาธิวิทยาของรอยโรคอยู่

ภาพรวมในการเข้าถึงไฟล์รูปภาพจะเป็น และจำนวนโฟลเดอร์จที่ต้องสร้างจะมี ดังนี้
RGB Image >>> Train and Test >>> Cemento and Fibrous and Ossifying (มี Dataset ให้)
Grayscale >>> Train and Test >>> Cemento and Fibrous and Ossifying
GHE >>> Train and Test >>> Cemento and Fibrous and Ossifying
CLAHE >>> Train and Test >>> Cemento and Fibrous and Ossifying
GHE + P >>> Train and Test >>> Cemento and Fibrous and Ossifying
CLAHE + P >>> Train and Test >>> Cemento and Fibrous and Ossifying

2. RUN CODE

2.1 แปลงภาพ

2.1.1 เชื่อมต่อ Colab กับ Google Drive ที่ทำการสร้างโฟลเดอร์ในการเก็บภาพถ่ายทางจุลพยาธิ วิทยาไว้

2.1.2 Import library ที่จำเป็น

2.1.3 แปลงภาพให้อยู่ในรูปแบบต่างๆตามโค้ดที่ส่งให้ โดยเปลี่ยน Path ตามที่เราใส่ไว้ใน Drive ตัวเอง ลักษณะของ Code ตรงส่วนของการแปลงภาพเบื้องต้นเมื่อเปิดไฟล์ที่ให้ไป

Convert RGB to Grayscale	↑ ↓ ∞ □ / □ ▮ ∶
▶ train set	
[] ไข่อน3 เซลล์	
→ test set	
[] ไข่อน3 เซลล์	

มีสิ่งที่ต้องแก้คือ Path ที่ใช้เชื่อมต่อกับโฟลเดอร์ในไดร์ฟของเราที่สร้างไว้ โดยบรรทัดที่ 1 คือไดรฟ์ต้นทางที่เราจะ ทำการดึงภาพถ่ายทางจุลพยาธิวิทยามาแปลง และบรรทัดต่อมาคือไดรฟ์ปลายทางที่เราจะทำการจัดเก็บภาพหลัง การแปลง ซึ่งจะทำเหมือนกันในข้อมูล Train และ Test ทั้ง 5 รูปแบบการแปลงภาพ

```
data_train_ce = '/content/drive/MyDrive/Digital Image Project/Old_Data_Set/Original_image/train_cell/Cemento'
gray_train_ce = '/content/drive/MyDrive/Digital Image Project/Old_Data_Set/Gray Scale/train_gray_scale/Cemento_train_gray'
try:
    makedirs(gray_train_ce)
except:
    print ("Directory already exist, images will be written in asme folder")

# Folder won't used
files = os.listdir(data_train_ce)

for image in files:
    img = cv2.imread(os.path.join(data_train_ce,image))
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #Convert RGB image to Gray-scale
    cv2.imwrite(os.path.join(gray_train_ce,image),gray)
```

*******ในภาพคือการแปลงจาก RGB to Grayscale*********

********ในบางรูปแบบการแปลงอาจต้องสร้างฟังก์ชั่นซึ่งสามารถกดรันตามลำดับในโค้ดที่แนบมาได้เลย******

2.2. Preprocess Data

เมื่อแปลงข้อมูลเสร็จจะเป็นการแบ่งส่วนเพื่อใช้ในการ Train และ Test model สามารถปรับแก้ หรือ กดรันตาม โค้ดได้เลย

2.3 Model

เป็นกระบวนการในการใช้ข้อมูลในรูปแบบตาง ๆ มา Train Model ซึ่งจะแบ่งออกเป็น 5 รูปแบบ ดังภาพ

Model ResNe	t50	
	Grayscale	
[] 4 ช่อน 16 เชลล์		
	GHE	
[] 4 ช่อน 13 เชลล์		
	CLAHE	
[] 4 ช่อน 13 เซลล์		
	GHE + Piecewise	
[] 4 ช่อน 13 เชลล์		
	CLAHE + Piecewise	
[] 4 ซ่อน 13 เซลล์		

ในทุก ๆ รูปแบบภาพจะมีการแบ่งส่วนเพื่อให้ง่ายต่อการ Run ดังนี้

ส่วนที่ 1 ต้องเปลี่ยน Path ของข้อมูล Train และ Test ในทุก ๆ รูปแบบของการปรับปรุงคุณภาพภาพให้ ตรงกับ Location ของภาพรูปแบบนั้น ๆ (ในกรณีนี้ในภาพคือการ Train Grayscale)

ส่วนที่ 2 ตั้งแต่ส่วนที่ 2 – 4 สามารถ Run code ตามลำดับได้เลย

เป็นการเรียนใช้ ResNet50 Model Code อยู่ในส่วนของ Grayscale ซึ่งสามารถ เรียกใช้ในการแปลงภาพรูปแบบอื่น ๆ ได้เลย

```
[ ] resnet = ResNet50(
    input_shape = IMAGE_SIZE + [3], #.....
    weights = 'imagenet',
    include_top = False )
```

ส่วนที่ 3 เป็นการ Train Model ที่กำหนด จำนวน epoch = 20 และ Bath size = 32 (สามารถปรับตัว เลขได้) โดยตั้งการ callback ไว้ให้ดูที่ค่า loss โดยหากค่า Loss ไม่ลดลงติดกัน 2 ครั้ง จะทำการหยุดการ Train model และ Save Epoch ที่สูงเป็นลำดับที่ 3 นับจากด้านล่าง

▼ train model Grayscale

```
Epoch 1/20
15/15 [====
                ==========] - 95s 6s/step - loss: 4.4640 - accuracy: 0.4565 - val_loss: 1.8955 - val_accuracy: 0.5848
Epoch 2/20
15/15 [====
                       =======] - 25s 2s/step - loss: 1.4919 - accuracy: 0.5326 - val_loss: 1.1560 - val_accuracy: 0.5543
Epoch 3/20
15/15 [===:
                      :========] - 23s 2s/step - loss: 1.5525 - accuracy: 0.4935 - val_loss: 1.0503 - val_accuracy: 0.5957
Epoch 4/20
                         :======] - 25s 2s/step - loss: 1.3302 - accuracy: 0.6196 - val_loss: 1.1683 - val_accuracy: 0.6174
15/15 [===
Epoch 5/20
15/15 [====
                  =========] - 23s 2s/step - loss: 0.9491 - accuracy: 0.6522 - val_loss: 0.6814 - val_accuracy: 0.6913
Epoch 6/20
15/15 [=====
            Epoch 7/20
                  ==========] - 23s 2s/step - loss: 0.9750 - accuracy: 0.6304 - val_loss: 0.7836 - val_accuracy: 0.6130
15/15 [====
```

ส่วนที่ 4 เป็นการดูผลลัพธ์ความแม่นยำที่ได้จากการ Train Model ด้วยภาพถ่ายทางจุลพยาธิวิทยาในแบบต่าง ๆ

ในการ Train model ของการปรับปรุงภาพถ่ายทางจุลพยาธิวิทยาในรูปแบบอื่น ๆ หลังจากการเปลี่ยน Path แล้ว สามารถ Run Code ตามลำดับได้เลยเช่นเดียวกันกับ ภาพในรูปแบบ Grayscale

ปล. ชุดข้อมูลที่แสดงการรันโค้ดข้างต้นคือ ชุดข้อมูลรูปภาพ Grayscale โดยชุดข้อมูลชุดอื่น ๆ ก็จะทำการรันโค้ดตามวิธีที่ แสดงข้างต้นเช่นกัน