Tutorium zu
Computer-Engineering
im SS19
Termin 5

Jakob Otto

HAW Hamburg

28. Mai 2019

Ablauf

Aufgabe 5

Aufgabenzettel

Metastabile Zustände

- Signale sind nicht unmittelbar stabil
- Set-up hold-time usw.
- Signal kann also zur "falschen" Zeit abgetastet werden
- \bullet \rightarrow Metastabile Zustände

Metastabile Zustände

- t_{su} <u>S</u>et<u>u</u>p Time
- t_{HD} <u>H</u>ol<u>d</u> Time
- t_{co} from Clock edge to Output Delay (Response Time)
- t_R Resolution Time $t_R = t_{CLK} (t_{SU} + t_{COBILO})$

Asynchrone kommunikation

- Kommunikation zwischen Endpunkten oft asynchron
- Beide Seiten nutzen eigene Taktfrequenz
- Synchronisation wird benötigt

4-Phasen-Handshake

- Kommunikationsprotokoll zum übermitteln von Daten
- Bidirektional über einen Datenbus
- Verhindert
 - ► Metastabile Zustände
 - Kurzschlüsse

Welche Leitungen?

Benötigt verschiedene Leitungen zur Datenübertragung

- RD/nWR signal zum lesen/schreiben signalisieren
- REQ Request vom Master zu Slave
- ACK/nRDY acknowledge vom Slave zum Master
- Data 16 bit Datenbus

Ablauf vom Handshake

Die 4 Phasen sind:

- Master initiiert RD/nWR = '1' Datenbus auf high-impedance REQ auf '1'
- Slave reagiert legt geforderte Daten auf Datenbus acknowledged (ACK = '1')
- Master quittiert Empfang REQ = '0'
- Slave nimmt Daten vom Bus Datenbus auf High-impedance

8 / 14

28 Mai 2019

lesender Zugriff

Abbildung: 4-Phasen-Handshake lesender Zugriff


```
uint16 t rxdat:
/* wait for the fpga to be ready */
while (READY == 0):
/* setup the connection to the FPGA */
OUTPUT DISABLE;
SET READ:
// handle transaction by 4 phase handshake
REQ ENABLE;
while (ACKNOWLEDGE == 0):
rxdat = (GPIOE -> IDR & Ox0000FFFF):
REQ_DISABLE;
while(ACKNOWLEDGE != 0);
```

HAW HAMBURG

return rxdat:

Ablauf vom Handshake

Die 4 Phasen sind:

- Master initiiert RD/nWR = '0' legt Daten auf Bus REQ auf '1'
- Slave quittiert ACK = '1'
- Master setzt Bus auf High-impedance REQ = '0'
- slave quittiert quittung ACK = '0'

schreibender Zugriff

Abbildung: 4-Phasen-Handshake lesender Zugriff


```
/* setup connection to the FPGA */
SET WRITE;
OUTPUT ENABLE;
/* set data */
GPIOE -> ODR = txdat;
// handle transaction by 4 phase handshake
REQ ENABLE;
while(ACKNOWLEDGE == 0);
REQ DISABLE;
while(ACKNOWLEDGE != 0);
```


FPGA-Seite

Tri-State Treiber für Datenbus

```
tristate:
process (oe_s, dato_s) is
begin
  if oe s = '1' then
    data <= dato s;
  else
    data <= (others=>'Z');
  end if;
end process tristate;
dati_s <= data;</pre>
```


