What Even is a Computer Algebra?

Mitchell Holt

August 2024

Exact Computation

Example

$$\underbrace{\frac{1}{10} + \frac{1}{10} + \dots + \frac{1}{10}}_{\text{10 times}}$$

Python:

Exact Computation

Example

$$\underbrace{\frac{1}{10} + \frac{1}{10} + \dots + \frac{1}{10}}_{\text{10 times}}$$

Maple:

```
> total := 0:
> for i to 10 do
>        total += 1/10;
> end do:
> total;
1
```

Representing Data in Computer Algebra

(i) Use arbitrary precision integers

(ii) Now we can easily represent fractions - use GCD to keep the fraction in lowest terms and avoid *expression swell*.

(iii) DO NOT USE FLOATS I SWEAR I WILL KNOW AND I WILL FIND YOU

Exact Computation

Example

$$(\sqrt{2})^2$$

Python:

```
>>> math.sqrt(2) ** 2 2.00000000000000004
```

Maple:

```
> sqrt(2)^2
2
```

Representing Data in Computer Algebra

(i) An algebraic number is the root of a polynomial with rational coefficients. For example, $\sqrt{2}$ is a root of $x^2 - 2$.

(ii) We can represent irrational algebraic numbers with their minimal polynomial, which is just the (unique) smallest polynomial it is a root of.

Polynomials

Definition (Polynomials over a Field)

Let F be a *field*. The polynomials over F in the symbol x (write F[x]) are sums

$$a = \sum_{i=0}^{m} a_i x^i, \quad a_0, \dots, a_m \in F, \ a_m \neq 0$$

Here, m is the degree of a.

Our Goal: Polynomial GCD

Definition (Polynomial GCD)

Let F be a field and $a, b \in F[x]$ be polynomials that are not both zero. The *greatest common divisor* of a and b (write gcd(a, b)) is the *monic* is the maximum polynomial (w.r.t. degree) dividing both a and b.

"Why Should I Care?"

Chat GPT says I should mention:

- (i) Applications in computer algebra
- (ii) Algebraic geometry
- (iii) Public key cryptography
- (iv) Educational value

Polynomial Representations

Dense Representation

- (i) Store a list (or vector or array) of coefficients, e.g. $x^3 x + 2$ becomes [2, -1, 0, 1].
- (ii) Store the degree of the polynomial.
- (iii) Efficient access to every coefficient.
- (iv) What about the zero polynomial?

Sparse Representation

- (i) Store a list of monomials
- (ii) Efficient when polynomials are... sparse, e.g. $x^{10000} 1$.

Algorithm: Polynomial Addition

```
Input: Dense polynomials a, b \in F[x]
Output: c = a + b \in F[x] and deg c
  if a = 0 \ (b = 0) then
      return b (return a)
  end if
  \deg c \leftarrow -1
  N \leftarrow \max(\deg a, \deg b)
  for i = 0, 1, ..., N do
      c_i \leftarrow a_i + b_i \text{ in } F
      if c_i \neq 0 then
          \deg c \leftarrow i
      end if
  end for
  return [c_0, c_1, \ldots, c_N] and deg c
Complexity in field operations? O(N).
```

Polynomial Multiplication

Example

$$(x^2 + 5x + 1)(x - 2) \in \mathbb{Q}[x]$$

- (i) What is the degree of the product?
- (ii) What is the coefficient of x in the product?

Let

$$a = \sum_{i=0}^{m} a_i x^i$$
 and $b = \sum_{j=0}^{n} b_j x^j$

Then

$$ab = \sum_{k=1}^{m+n} c_k x^k$$
 where $c_k = \sum_{r=0}^k a_r b_{k-r}$

Algorithm: Polynomial Multiplication

```
Input: Dense polynomials a, b \in F[x]
Output: c = ab \in F[x]
  N \leftarrow \deg a + \deg b
  for k = 0, 1, ..., N do
      c_k \leftarrow 0
       for r = 0, 1, ..., k do
           c_k \leftarrow c_k + a_r b_{k-r}
       end for
  end for
  return [c_0, c_1, \ldots, c_N]
```

Algorithm Analysis

Recall

$$ab = \sum_{k=0}^{m+n} c_k x^k$$
, where $c_k = \sum_{r=0}^k a_r b_{k-r}$

- (i) c_k requires k+1 field multiplications.
- (ii) Hence ab requires

$$\sum_{k=0}^{m+n} (k+1) = \frac{(m+n+1)(m+n+2)}{2}$$

field multiplications.

If $N = \deg ab = m + n$, then multiplication is $O(N^2)$.

Polynomial Division

Theorem (Euclidean Divison)

Let $a, b \in F[x]$. Then there exists $q, r \in F[x]$ with a = bq + r, with r = 0 or $\deg r < \deg b$.

Example

Let $a, b \in \mathbb{Z}_7[x]$ be given by

$$a = 5x^5 + 4x^4 + 3x^3 + 2x^2 + x,$$

$$b = x^2 + 2x + 3$$

Then $q = 5x^3 + x^2 + 6$ and r = 3x + 3.

Synthetic Division (Polynomial Long Division)

No way I'm doing this in LATEX

Let $m = \deg a$, $n = \deg b$, and a = bq + r. Remember:

- (i) $\deg q = m n$
- (ii) r = 0 or $\deg r < n$

Algorithm Idea:

- 1. Compute $b^{-1} \mod x^{m-n+1}$.
- 2. Recover q.
- 3. Compute r = a bq.

$$a = bq + r \mod x^{m-n+1}$$
$$q = b^{-1}(a-r) \mod x^{m-n+1}$$

Problem: $r \mod x^{m-n+1}$ might not be 0, so we need to know r a priori.

Idea: Reverse the polynomials!

$$rev_m(a(x)) = x^m a\left(\frac{1}{x}\right) = \sum_{k=0}^m a_{m-k} x^k$$

Let a = bq + r, with deg a = m and deg q = n.

$$x^{m}a\left(\frac{1}{x}\right) = x^{m}b\left(\frac{1}{x}\right)q\left(\frac{1}{x}\right) + x^{m}r\left(\frac{1}{x}\right)$$
$$= x^{n}b\left(\frac{1}{x}\right) \cdot x^{m-n}q\left(\frac{1}{x}\right) + x^{m-n+1} \cdot x^{n-1}r\left(\frac{1}{x}\right)$$
$$\operatorname{rev}_{m}(a) = \operatorname{rev}_{n}(b)\operatorname{rev}_{m-n}(q) + x^{m-n+1}\operatorname{rev}_{n-1}(r)$$

Then

$$\operatorname{rev}_m(a) \equiv \operatorname{rev}_n(b) \operatorname{rev}_{m-n}(q) \mod x^{m-n+1}$$

$$\operatorname{rev}_m(a) \equiv \operatorname{rev}_n(b) \operatorname{rev}_{m-n}(q) \mod x^{m-n+1}$$

 $\operatorname{rev}_{m-n}(q) \equiv \operatorname{rev}_n(b)^{-1} \operatorname{rev}_m(a) \mod x^{m-n+1}$

- (i) $\deg(\operatorname{rev}_{m-n}(q)) = \deg q = m n$, so we have $\operatorname{rev}_{m-n}(q)$ proper.
- (ii) $\operatorname{rev}_{m-n}(\operatorname{rev}_{m-n}(q)) = q$.

```
Input: polynomials a, b \in F[x]

Output: q, r with a = qb + r such that r = 0 or \deg r < \deg b

m, n \leftarrow \deg a, \deg b

a_r, b_r \leftarrow \operatorname{rev}_m(a), \operatorname{rev}_n(b)

b'_r \leftarrow b_r^{-1} \mod x^{m+n-1}

q \leftarrow \operatorname{rev}_{m-n}(b'_r a_r \mod x^{m+n-1})

r \leftarrow a - bq

return q, r
```

Truncated Power Series Inverse

Let $f \in F[x]$ and $g \in F[x]$ approximate f^{-1} with $fg \equiv 1 \mod x^k$ Observe:

- (i) $g(0) = f(0)^{-1}$
- (ii) g = g(0) is an inverse $\mod x^1$

Question: From this initial approximation, can we successively get better approximations?

Newton Iteration

Initial guess: $x_0 = 1$

Newton Iteration

Next guess:
$$x_1 = x_0 - \frac{\phi(x_0)}{\phi'(x_0)} \approx 0.3678794412$$

Truncated Power Series Inverse

Let

$$\phi(g) = 1/g - f$$

Then

$$g_{i+1} = g_i - \frac{1/g_i - f}{-1/g_i^2} = 2g_i - fg_i^2$$

Theorem

Let $f, g_0, g_1, \dots \in F[x]$ with $g_0 = f(0)^{-1}$ and $g_{i+1} = 2g_i - fg_i^2$ mod $x^{2^{i+1}}$ for all i. Then $fg_i \equiv 1 \mod x^{2^i}$ for all $i \geq 0$.

Proof.

Induction on i.

Fast Newton Iteration

```
Input: f \in F[x] and k \in \mathbb{N}

Output: g \in F[x] with fg \equiv 1 \mod x^k

g_0 \leftarrow f(0)^{-1}

r \leftarrow \lceil \log_2 k \rceil

for i = 1, \ldots, r do

g_i \leftarrow 2g_{i-1} - fg_{i-1}^2 \mod x^{2^i}

end for

return g_r
```

Proposition (Complexity of Fast Division)

Let M(n) be the number of multiplications in F needed to multiply two polynomials of degree n-1 in F[x]. Let D(n) be the number of multiplications in F to compute $f^{-1} \mod x^n$. If M is super-linear, D(n) < 3M(n) + O(n).

Proof.

lmk if u care and i'll send one

Corollary

The fast division algorithm costs around the same as 4 polynomial multiplications.

Polynomial GCD

Lemma (probably Euclid)

Let $a,b,q,r\in F[x]$ and suppose that we have the Euclidean divisions

$$a = bq + r$$

Then gcd(a, b) = gcd(b, r).

Polynomial GCD

Example

$$\gcd(x^3 + 1, x^2 - 1) \qquad x^3 + 1 = (x^2 - 1)x + (x + 1)$$
$$\gcd(x^2 - 1, x + 1) \qquad x^2 - 1 = (x + 1)(x - 1) + 0$$
$$\gcd(x + 1, 0) \qquad x + 1$$

Polynomial GCD

```
Input: a, b \in F[x], a \neq 0, with b = 0 or \deg a > \deg b
Output: \gcd(a, b)
if b = 0 then
return a
end if
q, r \leftarrow \text{Euclidean division of } a \text{ by } b
return \gcd(b, r)
```

Notice that r = 0 or $\deg r < \deg b$, proving termination.

Thanks for Listening!

