Microsoc Seminar Series 2018-09-20:

Soil-persistent E. coli and Mobile elements

Nicholas Waters

September 20, 2018

National University of Ireland, Galway, Ireland The James Hutton Institute, Dundee, Scotland

Background

Sources

- https://github.com/tseemann/prokka
- https://github.com/nickp60/riboSeed
- https://sanger-pathogens.github.io/Roary/
- https://www.nature.com/scitable/topicpage/ transposons-the-jumping-genes-518
- https://www.nature.com/scitable/topicpage/
 transposons-the-jumping-genes-518
- https://www.researchgate.net/publication/283707425_
 The_Phage-Inducible_Chromosomal_Islands_A_Family_of_
 Highly_Evolved_Molecular_Parasites
- https://www.sciencedirect.com/science/article/pii/ S0043135416302226
- △ http:
 - //www.bx.psu.edu/~ross/workmg/TranspositionCh9_files/
- https://www.frontiersin.org/articles/10.3389/fmicb.
 2018.00762

Acknowledgments

OÉ Gaillimh NUI Galway

NUIG Microbiology

- ☐ Dr. Fiona Brennan
- ☐ Dr. Florence Abram
- Soil and Environmental
 Microbiology Research Group
- ☐ Functional Environmental Microbiology Group

James Hutton Institute, Dundee

- ☐ Dr. Leighton Pritchard
- ☐ Dr. Ashleigh Holmes

Project Overview

- ∠ E. coli has been found to persist stably in the soil
- Isolates were cultured from lysimeter leachate
- Strains were sequenced, resulting in 149 soil-persistent E. coli genomes

What types of E. coli are able to persist in soil?

- What types of E. coli are able to persist in soil?
- What virulence factors are harboured by these strains?

- What types of E. coli are able to persist in soil?
- What virulence factors are harboured by these strains?
- → What can we infer about adaptation?

- What types of E. coli are able to persist in soil?
- What virulence factors are harboured by these strains?
- What can we infer about adaptation?
- Can we differentiate soil-persistent E. coli from recent contamination?

E. coli Pangenome

Assembly \Rightarrow Annotation \Rightarrow presense/absence matrix

Assembly \Rightarrow Annotation \Rightarrow presense/absence matrix riboSeed \Rightarrow Prokka \Rightarrow Roary

Assembly \Rightarrow Annotation \Rightarrow presense/absence matrix riboSeed \Rightarrow Prokka \Rightarrow Roary

	N	Core	total
Soil	149	2662	21,662
Enterobase	1193	1822	79,288
All	1342	1806	83,868

Annotation

Partial

Annotation Correction with annofilt performance

https://nickp60.github.io/annofilt/

Detecting differential presence/absence

- $\scriptstyle \sim$ No statistically significant gene associations with source
- ∠ E coli diversity adds noise

What does 10 years look like to E. coli?

 ${\sf BoE\ Calculations\ for\ Doubling\ Time}$

High estimate:

 $0.013865 * 60 * 24 * 365 * 10 \approx 72$ k generations

BoE Calculations for Doubling Time

Medium estimate:

$$(5.9*/2)*365*10 \approx 10k$$
 generations

*(assuming generation time roughly equals half of turnover rate)

Other estimates

No viable coliforms after:

- ∅ 8 weeks
- √ 16 weeks

In situ Detection

E. coli approximately .092% prevalence in soil metagenomes

Hypothesis

Stressed and outnumbered?

Hypothesis

Stressed and outnumbered?

rapid > incremental

Hypothesis

Stressed and outnumbered?

rapid > incremental

. . adaptation via mobile elements

Mobile Genetic Elements

	Kb	Mobility	Detection
IS	.75-1.5	transposase	ITR and transposase
Non-composite Tn	<3	IS	IS with bonus genes
Composite Tn	<5kb	double IS	flanking ISs
Integron	<10	integrase*	attl site, AMR genes
Genetic Island	>10	phage	GC Skew, ORF phylogeny
Phage Inducible Cl	5-15	phage	phage inhibitors
Prophage	≈50	lysogeny	integrase, tail, capsule
Plasmid	1-1 Mb	various	run a gel, <i>oriT</i>

Genomic NJ on Pangenome

https://github.com/nickp60/happie/
Horizontally Aquired Partial Pangenome of Inserted Elements

Horizontally Aquired Partial Pangenome of Inserted Elements

https://github.com/nickp60/happie/

Horizontally Adulted Fartial Fallgeholde of diserted Lientent

In Closing

Summary

What we know:

- wide range of estimates exist for doubling time in soil
- diversity prevents robust statistical trait association
- MGE phylogeny does not reflect genome phylogeny

What we want to know:

- how the mobile pangenomes of soil vs enteric E. coli compare
- which types of phages, etc, are correlated by source
- whether genomic islands reflect phylogeny
- which regions are interrupted by IS, Tns, etc

Summary

What we know:

- o soil *E. coli* is very diverse
- wide range of estimates exist for doubling time in soil
- diversity prevents robust statistical trait association
- MGE phylogeny does not reflect genome phylogeny

What we want to know:

- how the mobile pangenomes of soil vs enteric E. coli compare
- which types of phages, etc, are correlated by source
- whether genomic islands reflect phylogeny
- which regions are interrupted by IS, Tns, etc

Questions?