网络通信

2022年3月11日

1 Linux 基础知识

1.1 linux 内核

内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux 内核由如下几部分组成:内存管理、进程管理、设备驱动程序、 文件系统和网络管理等。如图所示:

其中系统调用接口: SCI 层提供了某些机制执行从用户空间到内核的函数调用。

1.2 Linux 远程登录

Linux 系统中是通过 ssh 服务实现的远程登录功能, 默认 ssh 服务端口号为 22。

安装 ssh: yum install ssh

启动 ssh: service sshd start

登录远程服务器: ssh -p 50022 my@127.0.0.1

输入密码: my@127.0.0.1: (-p 后面是端口, my 是服务器用户名, 127.0.0.1 是服务器 ip)

回车输入密码即可登录。

1.3 Linux 进程

在 Linux 系统中,能够同时运行多个进程, Linux 通过在短的时间间隔内轮流运行这些进程而实现"多任务"。这一短的时间间隔称为"时间片",让进程轮流运行的方法称为"进程调度",完成调度的程序称为调度程序。

Linux 中常见的进程间通讯机制有信号、管道、共享内存、信号量和套接字等。

1.3.1 相关命令

可以使用 \$ps 命令来查询正在运行的进程, 比如 \$ps -e、-o pid,-o comm,-o cmd,

其中-e 表示列出全部进程, -o pid,-o comm,-o cmd 分别表示需要 PID, COMMAND, CMD 信息。

三个信息的意义依次为: PID(process IDentity) 是每一个进程的身份(唯一), 是一个整数, 进程也可以根据 PID 来识别其他的进程; COMMAND 是这个进程的简称; CMD 是进程所对应的程序以及运行时所带的参数。

1.3.2 Linux 进程的产生

当计算机开机的时候,内核 (kernel) 只建立了一个 init 进程。Linux 内核并不提供直接建立新进程的系统调用。其他所有进程都是 init 进程通过

fork 机制建立的。

fork 表示: 新的进程要通过老的进程复制自身得到,它是一个系统调用。进程存活于内存中。每个进程都在内存中分配有属于自己的一片空间 (address space)。当进程 fork 的时候, Linux 在内存中开辟出一片新的内存 空间给新的进程,并将老的进程空间中的内容复制到新的空间中,此后两个进程同时运行。

老进程成为新进程的父进程 (parent process),而相应的,新进程就是老的进程的子进程 (child process)。一个进程除了有一个 PID 之外,还会有一个 PPID(parent PID) 来存储的父进程 PID。如果我们循着 PPID 不断向上追溯的话,总会发现其源头是 init 进程。所以说,所有的进程也构成一个以 init 为根的树状结构。

1.3.3 Linux 进程的消失

当子进程终结时,它会通知父进程,并清空自己所占据的内存,并在内核里留下自己的退出信息 (exit code,如果顺利运行,为 0;如果有错误或异常状况,为 >0 的整数)。在这个信息里,会解释该进程为什么退出。

父进程在得知子进程终结时,有责任对该子进程使用 wait 系统调用。 这个 wait 函数能从内核中取出子进程的退出信息,并清空该信息在内核中 所占据的空间。

但是,如果父进程早于子进程终结,子进程就会成为一个孤儿 (orphand) 进程。孤儿进程会被过继给 init 进程, init 进程也就成了该进程的父进程。init 进程负责该子进程终结时调用 wait 函数。

注意:在 Linux 中,线程只是一种特殊的进程。多个线程之间可以共享内存空间和 IO 接口。所以,进程是 Linux 程序的唯一的实现方式。

1.4 Linux 线程

需要头文件:

#include <pthread.h>

CMakeList.txt 中需要加入如下内容来添加链接库:

find_package(Threads)

target link libraries (··· \$CMAKE THREAD LIBS INIT)

1.4.1 pthread_create 函数

函数概述:

- 功能:
- 返回值:
- 范围限制:
- 注意:

函数声明:

•

使用示例:

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg);

1.5 Linux 内存管理

了让有限的物理内存满足应用程序对内存的大需求量, Linux 采用了称为"虚拟内存"的内存管理方式。Linux 将内存划分为容易处理的"内存页"(对于大部分体系结构来说都是 4KB)。Linux 包括了管理可用内存的方式,以及物理和虚拟映射所使用的硬件机制。

1.6 Linux 文件系统

Linux 系统能支持多种目前流行的文件系统,如 EXT2、EXT3、FAT、FAT32、VFAT 和 ISO9660。

Linux 下面的文件类型主要有:

- 1) 普通文件: C 语言元代码、SHELL 脚本、二进制的可执行文件等。 分为纯文本和二进制;
 - 2) 目录文件: 目录, 存储文件的唯一地方;
 - 3) 链接文件: 指向同一个文件或目录的的文件;
- 4) 设备文件:与系统外设相关的,通常在/dev 下面。分为块设备和字符设备;

- 5) 管道 (FIFO) 文件: 提供进程之间通信的一种方式;
- 6) 套接字 (socket) 文件: 该文件类型与网络通信有关;

可参考: https://www.linuxprobe.com/linux-system-structure.html

1.7 Linux 防火墙

1.7.1 常用命令

• 启动: systemctl start firewalld

• 重启: systemctl restart firewalld

• 停止: systemctl stop firewalld

• 重新加载: firewall-cmd -reload

• 查看 firewalld 的运行状态:

firewall-cmd —state

• 取消开放 https 服务,即禁止 https 服务: firewall-cmd -zone=drop -remove-service=https

• 开放 22 端口:

firewall-cmd -zone=drop -add-port=22/tcp

• 取消开放 22 端口:

firewall-cmd -zone=drop -remove-port=22/tcp

• 开放两个端口:

firewall-cmd-zone = drop-add-port = 8080-8081/tcp

• 查询 drop 区域开放了哪些端口:

firewall-cmd -zone=drop -list-ports

• 其他常用命令:

允许 icmp 协议流量,即允许 ping:

firewall-cmd -zone=drop -add-protocol=icmp

取消允许 icmp 协议的流量,即禁 ping:

firewall-cmd -zone=drop -remove-protocol=icmp

查询 drop 区域开放了哪些协议:

firewall-cmd -zone=drop -list-protocols

将原本访问本机 888 端口的流量转发到本机 22 端口:

firewall-cmd -zone=drop -add-forward-port =port=888:proto=tcp:toport=22

2 socket 基础

2.1 socket 通信的概念

套接字,运行在计算机中的两个程序通过 socket 建立起一个通道,数据在通道中传输。套接字可以看成是两个网络应用程序进行通信时,各自通信连接中的端点,这是一个逻辑上的概念。它是网络环境中进程间通信的API(应用程序编程接口)(是 IP 地址和端口结合)。

socket 把复杂的 TCP/IP 协议族隐藏了起来,只要用好 socket 相关的 函数,就可以完成网络通信。

2.2 socket 的分类

socket 提供了流(stream)和数据报(datagram)两种通信机制,即流 socket 和数据报 socket。

流 socket 基于 TCP 协议,是一个有序、可靠、双向字节流的通道,传输数据不会丢失、不会重复、顺序也不会错乱。类似于打电话。

数据报 socket 基于 UDP 协议,不需要建立和维持连接,可能会丢失或错乱。UDP 不是一个可靠的协议,对数据的长度有限制,但是它的速度比较高。类似于短信。

在实际开发中,数据报 socket 的应用场景极少。

2.3 socket 通信的过程

2.3.1 服务端

- 创建服务端的 socket。socket()
- 把服务端指定的用于通信的 ip 地址和端口绑定到 socket 上。bind()

- 把 socket 设置为监听模式,以监听用户请求。listen()
- 接受客户端的连接。accept()
- 与客户端通信,接收客户端发过来的报文后,回复处理结果。send()/recv()
- 不断的重复上一步步,直到客户端断开连接。
- 关闭 socket, 释放资源。close()

2.3.2 客户端

- 创建客户端的 socket。socket()
- 向服务器发起连接请求。connect()
- 与服务端通信,发送一个报文后等待回复,然后再发下一个报文。send()/recv()
- 不断的重复上一步,直到全部的数据被发送完。
- 关闭 socket, 释放资源。close()

2.4 Socket

在 Linux 系统中,一切输入输出设备皆文件。而 socket 本质上可以视为一种特殊的文件,即通信的实现,因此 socket 的通信过程也可以理解为通过"打开 open -> 读写 write/read -> 关闭 close"模式的操作过程。

注意:

- a. 客户端有一个 socket,是用于发送报文的 socket;而服务端有两个 socket,一个是用于监听的 socket,还有一个就是客户端连接成功后,由 accept 函数创建的用于与客户端收发报文的 socket。
- b. socket 是系统资源,操作系统打开的 socket 数量是有限的,在程序 退出之前必须关闭已打开的 socket,就像关闭文件指针一样,就像 delete 已 分配的内存一样,极其重要。
- c. 关闭 socket 的代码不能只在 main 函数的最后,那是程序运行的理想状态,还应该在 main 函数的每个 return 之前关闭。
- d. socket 类型的 servaddr 的地址的强制转换, (struct sockaddr *)&servaddr。

2.5 Socket 主要参数及结构体

2.5.1 socket 函数返回的值

返回值称为 socket 描述符 (socket descriptor), 其本质是一个文件描述符, 是一个整数。把它作为参数, 通过它来进行一些读写操作。

0表示标准输入,1表示标准输出,2表示标准错误。

注意: 默认创建的 socket 是主动连接的。

2.5.2 有关定义

- 大端模式、小端模式:"大端"和"小端"表示多字节值的哪一端存储 在该值的起始地址处;小端存储在起始地址处,即是小端字节序;大端 存储在起始地址处,即是大端字节序。
 - a. 大端字节序 (Big Endian): 最高有效位存于最低内存地址处,最低有效位存于最高内存处; b. 小端字节序 (Little Endian): 最高有效位存于最高内存地址,最低有效位存于最低内存处。
- 网络字节序 NBO: 网络字节序是大端字节序。在进行网络传输的时候, 发送端发送的第一个字节是高位字节。
- 主机字节序 HBO: 不同的机器 HBO 不相同,与 CPU 的设计有关,数据的顺序是由 CPU 决定的,而与操作系统无关。不同体系结构的

机器之间不能直接通信,所以要转换成一种约定的顺序,也就是网络字节顺序。存在专门的函数来进行二者的转换。

- 转换函数命名规则: h 主机、n 是网络字节序, to 是转换为, s 是短型数据, l 是长型。
- 命名规则:

socket 字符: sockfd 客户端, listenfd 服务端;

网络地址: clientaddr 客户端, servaddr 服务端;

char *h_name; //主机名,即官方域名

• 待添加

2.5.3 struct hostent* h

域名和网络地址结构体: struct hostent {

char **h_aliases; //主机所有别名构成的字符串数组,同一 IP 可绑定多个域名

int h_addrtype; //主机 IP 地址的类型, AF_INET(ipv4)、AF_INET6 (ipv6)

int h_length; //主机 IP 地址长度,IPV4 为 4,IPV6 为 16。 char **h_addr_list; //主机的 ip 地址,虽然为 char 形式,但以网络字节序格式存储,可以通过 memcpy 互相拷贝。

};

注意: a. 通常用于客户端已知对方 ip 情况下获得对方网络其他信息。

- b. 与下面的结构体一样, 定义时指的是哪个端, 其内数据就指哪个端。
- c. 具有预定义参数: # define h_addr h_addr_list[0]
- d. 主要用于客户端存入端口和 ip 地址信息, 然后通过 h_addr 来将信息传递给网络地址结构体 sin_addr。

操作函数

• *gethostbyname(const char *name);

用于客户端指定服务端的 ip 地址,详见后文函数介绍,注意参数为 char 类型的常量。成功执行该函数后结构体内各变量均可获得。

• 新型网路地址转化函数 inet_pton 和 inet_ntop:

这两个函数是随 IPv6 出现的函数,对于 IPv4 地址和 IPv6 地址都适用,函数中 p 和 n 分别代表表达(presentation)和数值(numeric)。地址的表达格式通常是 ASCII 字符串,数值格式则是存放到套接字地址结构的二进制值。

int inet_pton(int family, const char *strptr, void *addrptr); //将点分十进制的 ip 地址转化为用于网络传输的数值格式

返回值: 若成功则为 1, 若输入不是有效的表达式则为 0, 若出错则 为-1。

const char * inet_ntop(int family, const void *addrptr, char *strptr, size_t len); //将数值格式转化为点分十进制的 ip 地址格式

返回值: 若成功则为指向结构的指针, 若出错则为 NULL。

其中: family 即主机 IP 地址的类型参数。

2.5.4 struct sockaddr_in servaddr

表示地址信息的数据结构(体),存放了目标地址和端口。与结构体 sockaddr 把目标地址和端口信息混在一起了不同,其把 port 和 addr 分开储存在两个变量中。

```
struct sockaddr_in
{
    sa_family_t sin_family; //协议族, 在 socket 编程中只能是
AF_INET。
    unit16_t sin_port; //16 位的 TCP/UDP 端口号。
    struct in_addr sin_addr; //32 位 IP 地址
    char sin_zero[8]; //不使用。
}
其中:
struct in_addr
{
```

```
in_addr_t s_addr; //32 位 IP v4 地址。
(可表示为: servaddr.sin_addr.s_addr)
}
```

操作函数

• inet_addr(): 将十进制 IP 地址字符串转为网络二进制数字 (网络字节序), 返回的 IP 地址是网络字节序的。

```
(const char—-> in_addr_t)(ascii to network)
```

• inet_ntoa(): 将网络二进制数字 (网络字节序) 转为十进制 IP 地址字 符串。

```
(in_addr—->const char)(network to ascii)
```

- inet_aton(): 将十进制 IP 地址字符串转为网络二进制数字 (网络字节序),与 inet_addr 的区别是,结果不是作为返回值,而是保存形参 inp 所指的 in_addr 结构体中 (前者需要保存到 in_addr_t 变量中)。
 函数原型: int inet_aton(cont char* cp, struct in_addr_t *inp)
 (const char—-> in_addr)(ascii to network)
- htons()、htonl() 作用是将端口号由主机字节序转换为网络字节序的整数值。前者针对的是 16 位的 (short)、后者针对的是 32 位的 (long)。
 (int to in_addr_t)(host to net)
 (不一定是 in_addr_t, 满足要求的字符即可, 例如 unit16_t)
- 与 htonl() 和 htons() 作用相反的两个函数是: ntohl() 和 ntohs()。
 (net to host)
- 应用:
 - a. 服务端绑定 (自身的)IP 地址:

servaddr.sin_addr.s_addr = inet_addr("192.168.149.129"); // 指定ip 地址

servaddr.sin_addr.s_addr = htonl(INADDR_ANY); // 本主机的任意 ip 地址。在实际开发中,采用任意 ip 地址的方式比较多。

- 注意: htons() 的参数为 int 型的无符号短整形数, 若用 argv[] 来传递, 需要强制转换类型函数 atoi()。同理 htonl()。
- 注意:其中 sin_addr 和 sin_port 的字节序都是网络字节序,而 sin_family 不是。因为前者是从 IP 和 UDP 协议层取出来的数据,是直接和网络相关的。但 sin_family 域只是内核用来判断 struct sockaddr_in 是存储的什么类型的数据,且永远不会被发送到网络上,所以可以使用主机字节序来存储。
- 注意:不论是那个端的程序采用, servaddr 指的是哪个端,端口、IP 地址就是哪个端。

注意:通常服务器在启动的时候都会绑定一个众所周知的地址(如 ip 地址 + 端口号),用于提供服务,客户就可以通过它来接连服务器;而客户端就不用指定,有系统自动分配一个端口号和自身的 ip 地址组合。这就是为什么通常服务器端在 listen 之前会调用 bind(),而客户端就不会调用,而是在 connect() 时由系统随机生成一个。

2.6 客户端服务端函数

以下为几种常用的接口函数:

2.6.1 socket 函数

- 功能:用于创建一个新的 socket。对应于普通文件的打开操作。
- 返回值:成功则返回一个 socket 描述符,失败返回-1,错误原因存于 errno 中。
- 范围限制: 客户端、服务端。
- 注意: 无。

函数声明:

int socket (int domain, int type, int protocol);

• domain: 协议域,又称协议族 (family)。协议族决定了 socket 的地址 类型,在通信中必须采用对应的地址。

AF_INET: 决定了要用 ipv4 地址 (32 位的) 与端口号 (16 位的) 的组合;

AF_UNIX: 决定了要用一个绝对路径名作为地址。

• type: 指定 socket 类型。

流式 socket (SOCK_STREAM) 是一种面向连接的 socket, 针对于面向连接的 TCP 服务应用。数据报式 socket (SOCK_DGRAM) 是一种无连接的 socket, 对应于无连接的 UDP 服务应用。

• protocol: 指定协议。

常用协议有 IPPROTO_TCP、IPPROTO_UDP、IPPROTO_STCP、IPPROTO_TIPC等,分别对应 TCP 传输协议、UDP 传输协议、STCP传输协议、TIPC传输协议。

注意为 0 则与 type 相匹配,与 type 不能随意匹配。

• 正常情况,第一个参数只能填 AF_INET,第二个参数只能填 SOCK_STREAM, 第三个参数只能填 0。

使用示例: int sockfd = socket(AF_INET,SOCK_STREAM,0))

2.6.2 send 函数

- 功能:把数据通过 socket 发送给对端。
- 返回值:函数返回已发送的字符数。出错时返回-1,错误信息 errno 被标记。
- 范围限制: 客户端、服务端。
- 注意: 就算是网络断开,或 socket 已被对端关闭, send 函数不会立即报错,要过几秒才会报错。如果 send 函数返回的错误(<=0),表示通信链路已不可用。

函数声明:

ssize_t send(int sockfd, const void *buf, size_t len, int flags);

- sockfd: 已建立好连接的客户端socket。
- buf: 需发送数据的内存地址。
- len: 需发送数据的长度。
- flags: 填 0, 其他数值意义不大。
 - MSG CONFIRM: 用来告诉链路层。
 - MSG_DONTROUTE: 不要使用网关来发送数据, 只发送到直接连接的主机上。通常只有诊断或者路由程序会使用, 这只针对路由的协议族定义的, 数据包的套接字没有。
 - MSG_DONTWAIT: 启用非阻塞操作,如果操作阻塞,就返回 EAGAIN 或 EWOULDBLOCK。
 - MSG EOR: 当支持 SOCK SEQPACKET 时,终止记录。
 - MSG_MORE: 调用方有更多的数据要发送。这个标志与 TCP 或者 udp 套接字一起使用。
 - MSG_NOSIGNAL: 当另一端中断连接时,请求不向流定向套接字上的错误发送 SIGPIPE,EPIPE 错误仍然返回。
 - MSG_OOB: 在支持此概念的套接字上发送带外数据(例如,SOCK_STREAM 类型); 底层协议还必须支持带外数据。

使用示例: iret=send(sockfd,buffer,strlen(buffer),0);

2.6.3 recv 函数

- 功能:接收对方 socket 发送过来的数据。
- 返回值:函数返回已接收的字符数。出错时返回-1,失败时不会设置 errno 的值。
- 范围限制: 客户端、服务端。

• 注意:如果 socket 的对端没有发送数据, recv 函数就会等待,如果对端发送了数据,函数返回接收到的字符数。出错时返回-1。如果 socket 被对端关闭,返回值为 0。如果 recv 函数返回的错误(<=0),表示通信通道已不可用。

函数声明:

ssize_t recv(int sockfd, void *buf, size_t len, int flags);

- sockfd: 为已建立好连接的客户端socket。
- buf: 用于接收数据的内存地址。
- len: 接收数据的长度,不能超过 buf 的大小,否则内存溢出。
- flags: 填 0, 其他数值意义不大。同上。

使用示例: iret=recv(sockfd,buffer,sizeof(buffer),0);

2.6.4 gethostbyname() 函数

函数概述:

- 功能: 把 ip 地址或域名转换为 hostent 结构体表达的地址。
- 返回值:如果成功,返回一个 hostent 结构指针,失败返回 NULL。
- 范围限制:客户端。
- 注意: 只要地址格式没错,一般不会返回错误。失败时不会设置 errno 的值。

函数声明:

struct hostent *gethostbyname(const char *name);

• name: 域名或者主机名, 例如"192.168.1.3"、"www.freecplus.net" 等。

使用示例: struct hostent *h = gethostbyname(argv[1])

2.6.5 connect 函数

函数概述:

- 功能:客户端通过调用 connect 函数来建立客户端 socket 与服务器的 连接。
- 返回值:成功则返回 0,失败返回-1,错误原因存于 errno 中。
- 范围限制: 客户端。
- 注意:如果服务端的地址错了,或端口错了,或服务端没有启动,connect 一定会失败。

函数声明:

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

- sockfd: 客户端 socket。
- *addr: 服务端的网络地址 (注意const struct sockaddr * 类型, 需要 强制转换)。
- addrlen: 服务端网络地址的长度 (addr 结构体的大小)。

使用示例:connect(sockfd, (struct sockaddr*)&servaddr,sizeof(servaddr))

2.6.6 bind 函数

- 功能: 服务端把自身用于通信的地址和端口绑定到 socket 上。
- 返回值:成功则返回 0,失败返回-1,错误原因存于 errno 中。
- 范围限制: 服务端。
- 注意:如果绑定的地址错误,或端口已被占用,bind 函数一定会报错, 否则一般不会返回错误。

函数声明:

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

- sockfd: 服务端 socket。
- *addr: 服务端的网络地址。(const struct sockaddr * 类型的指针,需要使用强制类型转换。指向要绑定给 sockfd 的协议地址。存放了服务端用于通信的地址和端口)。
- addrlen: 服务端网络地址的长度。

使用示例: bind(listenfd,(struct sockaddr*)&servaddr,sizeof(servaddr));

2.6.7 listen 函数

函数概述:

- 功能: 用于把主动连接 socket 变为被动连接的 socket, 使得这个 socket 可以接受其它 socket 的连接请求, 从而成为一个服务端的 socket。调用之后, 服务端的 socket 就可以调用 accept 来接受客户端的连接请求。
- 返回值: 0-成功, -1-失败, 错误原因存于 errno 中。
- 范围限制: 服务端。
- 注意: listen 函数一般不会返回错误。

函数声明:

int listen(int sockfd, int backlog);

- sockfd: 服务端已经被 bind 过的 socket。
- backlog: 这个参数涉及到一些网络的细节,比较麻烦,填 5、10 都行, 一般不超过 30。

使用示例: listen(listenfd,5);

2.6.8 accept 函数

函数概述:

- 功能:用于服务端接受客户端的连接。
- 返回值: 成功则返回 0, 失败返回-1, 错误原因存于 errno 中。
- 范围限制: 服务端。
- 注意:
- a. 函数在等待的过程中,如果被中断或其它的原因,函数返回-1,表示失败,如果失败,可以重新 accept。
 - b. 函数等待客户端的连接,如果没有客户端连上来,它就一直等待,这种方式称之为阻塞。
 - c. 函数等待到客户端的连接后,创建一个新的 socket, 函数返回值就 是这个新的 socket, 服务端使用这个新的 socket 和客户端进行报文的 收发。

函数声明:

int accept(int sockfd,struct sockaddr *addr,socklen t *addrlen);

- sockfd: 服务端已经被 listen 过的 socket。
- addr: 客户端的网络地址 (const struct sockaddr*)。如果不需要客户端的地址,可以填 0。也可以先定义一个空的客户端地址,然后填进去。
- addrlen:客户端网络地址长度,如果 addr 为 0, addrlen 也填 0。

使用示例:clientfd=accept(listenfd,(struct sockaddr*)&clientaddr,(socklen_t*)&socklen);

2.6.9 附注: 计算大小函数、运算符

sizeof 运算符

- 参数可以是数组、指针、类型、对象、函数等。
- 功能是获得保证能容纳实现所建立的最大对象的字节大小。

- 不能用来返回动态分配的内存空间的大小。
- 返回值为 int 类型,大小与空间大小有关,跟对象、结构、数组所存储的内容没有关系。
- 内容区分为指针时,指的是存储该指针所用的空间大小(存储该指针的地址的长度,是长整型,应该为4),而对于数组名字,则返回数组大小。

strlen 函数

- 参数必须是字符型指针(char*)(数组名视为指针)。
- 功能是返回字符串的长度。
- 可以返回动态内存空间大小。
- 返回值为 int 类型,大小与存储的数据内容有关,与空间的大小和类型无关。
- 不区分内容是数组还是指针,就读到
 - 0 为止返回长度。且不把
 - 0 计入字符串的长度。

2.6.10 附注: 开辟空间函数、运算符

memset 函数

- 声明: void *memset(void *str, int c, size t n)
 - str: 指向要填充的内存块。
 - c: 为每个字节所赋的值。该值以 int 形式传递, 但是函数在填充 内存块时是使用该值的无符号字符形式。默认 0。
 - n: 内存块大小,单位是字节。
- 特点:
 - 它是以字节为单位进行赋值的。

- 用 memset 对非字符型数组赋初值是不可取的,因为初值并不是数字,而是对应的 ASCII 码,会造成初始数值改变。(0 不受影响)
- 可以说是初始化内存的"万能函数", 在统一赋值时比较适合。一般跟 sizeof 一起使用。
- 通常是给数组或结构体进行初始化。一般的变量如 char、int、float、double 等类型的变量直接初始化即可,没有必要用 memset。
- 使用示例: memset(str, 0, sizeof(str));

malloc 函数

- 声明: extern void *malloc(unsigned int num_bytes);
 - num_bytes: 内存块大小。
- 特点:
 - 需要自己计算字节数。
 - 返回指向被分配内存空间的指针,本身无类型,需要强转成指定 类型的指针。
 - 只管分配内存,不进行初始化,所以新内存中值是随机的。
 - 当内存不再使用的时候,应使用 free()函数将内存块释放掉。申请后不释放就是内存泄露。一般跟 sizeof 一起使用。
- 使用示例: p=(int*)malloc(sizeof(int)*128);

new 运算符

- 声明: 无
- 特点:
 - new 返回指定类型的指针。
 - new 可以自动计算所需要的大小。
 - 会进行初始化。
 - 开辟新空间用。
- 使用示例: p=new int;

2.6.11 附注:字符串复制函数

memcpy 函数

- 声明: void *memcpy(void *str1, const void *str2, size_t n)
 - str1: 指向用于存储复制内容的目标数组,类型强制转换为 void* 指针。
 - str2: 指向要复制的数据源,类型强制转换为 void* 指针。
 - n: 要被复制的字节数。

• 特点:

- 可以用来拷贝任何数据类型的对象。
- 可以指定拷贝的数据长度(n 来指定)。
- 会完整的复制 n 个字节, 不会因为遇到字符串结束' 0' 而结束。
- 使用示例: memcpy(b,a,sizeof(b)) (b<a)

strcpy 函数

- 声明: char* strcpy(char* dest, char* src)
 - dest: 待被复制的数组指针
 - str2: 要复制的字符串。

• 特点:

- 只用于字符串复制,并且它不仅复制字符串内容之外,还会复制字符串的结束符。
- 复制过程遇到字符串结束' 0'结束。
- 使用示例: p=new int;

2.6.12 附注: sprintf() 函数

int sprintf(char *str, const char *format, ...);

用途: 把结果输出到指定的字符串中。

str - 这是指向一个字符数组的指针,该数组存储了要写入的字符串。 format - 这是字符串,包含了要被写入到字符串 str 的文本。与之后参数一起使用,类似于格式化输出中%d、%f 之类的用法。

2.7 注意事项

- 每一个端, 具有一个 socket 指示符、一个地址信息。
- 凡是函数参数含有地址信息的,均需要强制格式化: (struct sockaddr *)& + 地址名
- 凡是需要网络地址参数的函数,都必须将类型强制转化为(struct sockaddr *)类型,因为函数在设计时没有考虑 sockaddr_in 类型。
- 最好 recv 函数采用 sizeof (最大值), send 采用 strlen (减少不必要的 发送量)。
- socket 缓冲区:每一个 socket 在被创建之后,系统都会给它分配两个 缓冲区,即输入缓冲区和输出缓冲区。一般来说,默认的输入输出缓 冲区大小为 8K。
- send 函数并不是直接将数据传输到网络中,而是负责将数据写入输出 缓冲区,数据从输出缓冲区发送到目标主机是由 TCP 协议完成的。数 据写入到输出缓冲区之后,send 函数就可以返回了。(数据是否发送 出去,是否发送成功,何时到达目标主机,都不由它负责了,而是由 协议负责。)

recv 函数同理,它是从输入缓冲区中读取数据。

- 套接字关闭的时候,输出缓冲区的数据不会丢失,会由协议发送到另一方;而输入缓冲区的数据则会丢失。
- 数据的发送和接收是独立的,并不是发送方执行一次 send,接收方就 执行以此 recv。recv 函数不管发送几次,都会从输入缓冲区尽可能多 的获取数据。如果发送方发送了多次信息,接收方没来得及进行 recv,

则数据堆积在输入缓冲区中,取数据的时候会都取出来。换句话说, recv 并不能判断数据包的结束位置。

- 在数据进行发送的时候,需要先检查输出缓冲区的可用空间大小,如果可用空间大小小于要发送的数据长度,则 send 会被阻塞,直到缓冲区中的数据被发送到目标主机,有了足够的空间之后,send 函数才会将数据写入输出缓冲区。
- TCP 协议正在将数据发送到网络上的时候,输出缓冲区会被锁定(生产者消费者问题),不允许写人, send 函数会被阻塞,直到数据发送完,输出缓冲区解锁,此时 send 才能将数据写入到输出缓冲区。
- 函数先检查输入缓冲区,如果输入缓冲区中有数据,读取出缓冲区中的数据,否则的话,recv函数会被阻塞,等待网络上传来数据。如果读取的数据长度小于输出缓冲区中的数据长度,没法一次性将所有数据读出来,需要多次执行recv函数,才能将数据读取完毕。

3

函数概述:

- 功能:
- 返回值:
- 范围限制:
- 注意:

函数声明:

•

使用示例:

- •
- •
- •