Лабораторная работа №3 «Матричные вычисления. Построение графиков в Smath Studio»

Цель работы: получить навыки работы с матричными функциями Smath Studio и навыки построения двумерных и трехмерных графиков в математическом пакете Smath Studio.

Методические рекомендации по выполнению лабораторной работы

В рамках данной лабораторной работы необходимо выполнить шесть заданий. Для решения всех задач необходимо воспользоваться пакетом Smath Studio.

Порядок выполнения работы:

- познакомиться с описанием лабораторной работы;
- выбрать задание (номер варианта номер студента в списке группы);
- решить задачи в Smath Studio;
- оформить отчет.

Теоретические сведения

Все необходимые теоретические сведения приведены в модуле «Матричные вычисления. Построение графиков в Smath Studio».

Задание 1.

- а. Вычислить определители.
- b. Найти матрицу обратную заданной, транспонировать матрицу.
- с. Найти ранги матриц, выделить из матриц подматрицы, состоящие из 2й и 3й строк и 2го и 3го столбца.

№ варианта	Задание За	Задание 3ь	Задание 3с
1	$\begin{vmatrix} 1 & 2 & 2 & 4 \\ 1 & 6 & 0 & 5 \\ 1 & 2 & -1 & 3 \\ 1 & 2 & -1 & 2 \end{vmatrix}$ $\begin{vmatrix} -2 & 2 & -2 & 1 \\ -1 & 2 & 2 & 4 \\ -1 & 1 & 0 & 1 \\ -3 & 3 & 0 & 4 \end{vmatrix}$	$ \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} $	$ \begin{pmatrix} 3 & 0 & 1 \\ 2 & 5 & 3 \\ 1 & 4 & -1 \end{pmatrix} $ $ \begin{pmatrix} 2 & 7 & 9 & 7 \\ 6 & 9 & 5 & 4 \\ 8 & 16 & 14 & 11 \\ -4 & -2 & 4 & 3 \end{pmatrix} $
2	-2 2 -2 1 -1 2 2 4 -1 1 0 1 -3 3 0 4 4 8 -3 6 2 5 0 3 2 4 -3 1 6 12 -9 2	$\begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 4 & 3 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 8 & 4 & 0 \\ 8 & 9 & 5 & 1 \\ 10 & 17 & 9 & 1 \\ -6 & -1 & -1 & -1 \end{pmatrix}$

3	4 8 -3 6 2 5 0 3 2 4 -3 1 6 12 -9 2 6 -2 9 7 3 0 8 -1 3 -1 4 2 9 -3 12 7	$\begin{pmatrix} 4 & 3 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 & 8 & 6 \\ 6 & 9 & 4 & 3 \\ 8 & 9 & 12 & 9 \\ -4 & -9 & 4 & 3 \end{pmatrix}$
4	6 -2 9 7 3 0 8 -1 3 -1 4 2 9 -3 12 7 4 -4 -1 12 2 -3 2 6 2 -2 1 4 6 -6 3 13	$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 5 & 1 \\ 1 & 4 & 2 \end{pmatrix}$	$ \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix} $ $ \begin{pmatrix} 2 & 3 & 7 & 4 \\ 4 & 5 & 7 & 2 \\ 6 & 8 & 14 & 6 \\ -2 & -2 & 0 & 2 \end{pmatrix} $
5	4 -4 -1 12 2 -3 2 6 2 -2 1 4 6 -6 3 13	$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 2 & 1 \end{pmatrix}$	$ \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix} $ $ \begin{pmatrix} 2 & 7 & 4 & 9 \\ 3 & 5 & 2 & 8 \\ 5 & 12 & 6 & 17 \\ -1 & 2 & 2 & 1 \end{pmatrix} $
6	-4 2 1 -4 -2 2 3 3 -2 1 0 -1 -6 3 0 -2 -6 2 3 10 -3 -1 1 4 -3 1 0 3 -9 3 0 8	$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$	$ \begin{pmatrix} -2 & 0 & 5 \\ 3 & 1 & 5 \\ 1 & 0 & 2 \end{pmatrix} $ $ \begin{pmatrix} 2 & 5 & 9 & 6 \\ 5 & 7 & 6 & 3 \\ 7 & 12 & 15 & 9 \\ -3 & -2 & -3 & 3 \end{pmatrix} $
7	-6 2 3 10 -3 -1 1 4 -3 1 0 3 -9 3 0 8 2 4 -5 3 1 4 -4 4 1 2 -3 1 3 6 -9 5	$\begin{pmatrix} 2 & 0 & 5 \\ 3 & 1 & 5 \\ 1 & 0 & 2 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 3 \\ 3 & 0 & 4 \end{pmatrix} $ $ \begin{pmatrix} 2 & 6 & 5 & 3 \\ 8 & 6 & 4 & 3 \\ 10 & 12 & 9 & 6 \\ -2 & 0 & 1 & 0 \end{pmatrix} $

8	2 4 -5 3 1 4 -4 4 1 2 -3 1 3 6 -9 5 2 4 7 11 1 -3 7 12 1 2 4 5 3 6 12 17	$ \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 3 \\ 3 & 0 & 4 \end{pmatrix} $	$ \begin{pmatrix} -2 & 1 & 0 \\ 3 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix} $ $ \begin{pmatrix} 2 & 6 & 9 & 1 \\ 4 & 5 & 3 & 9 \\ 6 & 11 & 12 & 10 \\ -2 & 1 & 6 & -8 \end{pmatrix} $
9	2 4 7 11 1 -3 7 12 1 2 4 5 3 6 12 17 6 2 1 -4 3 3 -4 2 3 1 0 -1 9 3 0 -2	$ \begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix} $	$\begin{pmatrix} 1 & 3 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 8 & 5 & 9 \\ 3 & 1 & 5 & 8 \\ 5 & 9 & 10 & 17 \\ -1 & 7 & 0 & 1 \end{pmatrix}$
10	6 2 1 -4 3 3 -4 2 3 1 0 -1 9 3 0 -2 2 -4 4 11 1 -9 2 6 1 -2 1 4 3 -6 3 11	$\begin{pmatrix} 1 & 3 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} -6 & 5 & -2 \\ 3 & -3 & 1 \\ 1 & 1 & 2 \end{pmatrix} $ $ \begin{pmatrix} 2 & 9 & 5 & 1 \\ 1 & 3 & 4 & 1 \\ 3 & 12 & 9 & 2 \\ 1 & 6 & 1 & 0 \end{pmatrix} $
11	2 -4 4 11 1 -9 2 6 1 -2 1 4 3 -6 3 11 2 -2 2 4 1 7 1 -1 1 -1 -1 3 8 -3 -3 10	$\begin{pmatrix} -6 & 5 & -2 \\ 3 & -3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	$ \begin{pmatrix} 3 & 0 & 1 \\ 2 & 5 & 3 \\ 1 & 4 & -1 \end{pmatrix} $ $ \begin{pmatrix} 2 & 9 & 0 & 5 \\ 4 & 3 & 2 & 7 \\ 6 & 12 & 2 & 12 \\ -2 & 6 & -2 & -2 \end{pmatrix} $
12	2 -2 2 4 1 7 1 -1 1 -1 -1 3 8 -3 -3 10 8 6 5 9 4 5 -2 4 4 3 2 3 12 9 6 11	$ \begin{bmatrix} 1 & -3 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} $	$ \begin{pmatrix} -6 & -4 & -5 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} 2 & 6 & 9 & 1 \\ 2 & 2 & 4 & 3 \\ 4 & 8 & 13 & 4 \\ 0 & 4 & 5 & -2 \end{pmatrix} $

13	8 6 5 9 4 5 -2 4 4 3 2 3 12 9 6 11 6 4 -4 5 3 3 -2 6 3 2 -3 4 9 6 -9 11	$\begin{pmatrix} -6 & -4 & -5 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -2 & 3 \end{pmatrix} $ $ \begin{pmatrix} 2 & 6 & 3 & 3 \\ 4 & 5 & 5 & 3 \\ 6 & 11 & 8 & 6 \\ -2 & 1 & -2 & 0 \end{pmatrix} $
14	6 4 -4 5 3 3 -2 6 3 2 -3 4 9 6 -9 11 4 14 5 12 2 10 0 6 2 7 -1 4 6 21 -3 13	$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -2 & 3 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -3 \\ 0 & -1 & 2 \end{pmatrix} $ $ \begin{pmatrix} 2 & 5 & 5 & 6 \\ 7 & 4 & 3 & 2 \\ 9 & 9 & 8 & 8 \\ -5 & 1 & 2 & 4 \end{pmatrix} $
15	4 14 5 12 2 10 0 6 2 7 -1 4 6 21 -3 13 -2 2 -1 1 -1 3 4 3 -1 1 3 0 -3 3 9 2	$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -3 \\ 0 & -1 & 2 \end{pmatrix}$	$ \begin{pmatrix} -2 & 0 & 5 \\ 1 & 1 & -5 \\ 1 & 0 & -2 \end{pmatrix} $ $ \begin{pmatrix} 2 & 9 & 9 & 8 \\ 7 & 2 & 3 & 4 \\ 9 & 11 & 12 & 12 \\ -5 & 7 & 6 & 4 \end{pmatrix} $
16	2 4 7 11 1 -3 7 12 1 2 4 5 3 6 12 17 6 2 1 -4 3 3 -4 2 3 1 0 -1 9 3 0 -2	$\begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 8 & 5 & 9 \\ 3 & 1 & 5 & 8 \\ 5 & 9 & 10 & 17 \\ -1 & 7 & 0 & 1 \end{pmatrix}$
17	6 2 1 -4 3 3 -4 2 3 1 0 -1 9 3 0 -2 2 -4 4 11 1 -9 2 6 1 -2 1 4 3 -6 3 11	$\begin{pmatrix} 1 & 3 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$	$ \begin{pmatrix} -6 & 5 & -2 \\ 3 & -3 & 1 \\ 1 & 1 & 2 \end{pmatrix} $ $ \begin{pmatrix} 2 & 9 & 5 & 1 \\ 1 & 3 & 4 & 1 \\ 3 & 12 & 9 & 2 \\ 1 & 6 & 1 & 0 \end{pmatrix} $

18	2 -4 4 11 1 -9 2 6 1 -2 1 4 3 -6 3 11 2 -2 2 4 1 7 1 -1 1 -1 -1 3 8 -3 -3 10	$\begin{pmatrix} -6 & 5 & -2 \\ 3 & -3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 3 & 0 & 1 \\ 2 & 5 & 3 \\ 1 & 4 & -1 \end{pmatrix}$ $\begin{pmatrix} 2 & 9 & 0 & 5 \\ 4 & 3 & 2 & 7 \\ 6 & 12 & 2 & 12 \\ -2 & 6 & -2 & -2 \end{pmatrix}$
19	2 -2 2 4 1 7 1 -1 1 -1 -1 3 8 -3 -3 10 8 6 5 9 4 5 -2 4 4 3 2 3 12 9 6 11	$\begin{pmatrix} 1 & -3 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$ \begin{pmatrix} -6 & -4 & -5 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} 2 & 6 & 9 & 1 \\ 2 & 2 & 4 & 3 \\ 4 & 8 & 13 & 4 \\ 0 & 4 & 5 & -2 \end{pmatrix} $
20	8 6 5 9 4 5 -2 4 4 3 2 3 12 9 6 11 6 4 -4 5 3 3 -2 6 3 2 -3 4 9 6 -9 11	$\begin{pmatrix} -6 & -4 & -5 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & -2 & 3 \end{pmatrix} $ $ \begin{pmatrix} 2 & 6 & 3 & 3 \\ 4 & 5 & 5 & 3 \\ 6 & 11 & 8 & 6 \\ -2 & 1 & -2 & 0 \end{pmatrix} $

Задание 2.

а. Задать в Smath Studio вектор V (используя цикл for), элементы которого определяются по соответствующей формуле. Произвести над введенным вектором указанные действия (Таблица 1). b. Задать в Smath Studio матрицы определенной размерности с произвольными элементами.

Выполнить над матрицами указанные действия (Таблица 2).

Таблица 1.

No No	Вектор	Действия над вектором
варианта		
1	$V_i = \frac{\cos(2i)}{\sin(i+1)}, i = 1, \dots 10$ $V_i = i^3 + \sqrt{i+2}, i = 1, \dots 7$	$V^T, V_1 = 0$
2	$V_i = i^3 + \sqrt{i+2}, i = 1, 7$	$V^2, V_5 = 1$
3	$V_i = 0.25e^{-i+2}$, $i = 1,7$	$V^3, V_5 = -1$
4	$V_i = \sqrt[8]{\cos\left(i\frac{\pi}{10}\right)}, i = 1, 9$	$V^T, V_3 = 10$
5	$V_i = i^2 + \sqrt{i}, i = 1, \dots 15$	$V^4, V_1 = 1$
6	$V_i = \sin(i-1), i = 1, \dots 11$	$V^3, V_2 = 0$ $V^T, V_2 = 5$
7	$V_i = \frac{1}{1000}, i = 1, 8$	$V^T, V_7 = 5$
8	$V_i = ctg(i - \frac{\pi}{3}), i = 1, 8$	V^T , $V_8 = 4$
9	$V_i = (0.01i + 0.25)/e^i, i = 1, 7$ $V_i = (i^2 - 1)/(i + 1), i = 1, 12$	$V^4, V_6 = -2$ $V^T, V_5 = -3$ $V^T, V_{10} = 0$
10	$V_i = (i^2 - 1)/(i + 1), i = 1, 12$	V^T , $V_5 = -3$
11	$V_i = \frac{1}{i^2 + 2.5} - \frac{1}{i + 1}, i = 1, \dots 16$	
12	$V_i = \ln(0.05i + 0.1), i = 1, 17$	$V^2, V_4 = 1$
13	$V_i = (i+1)!, i = 1, 6$	$V^2, V_4 = 1$ $V^T, V_5 = 2$
14	$V_i = \sqrt[8]{\cos\left(i\frac{\pi}{10}\right)}, i = 1, \dots 9$	$V^T, V_3 = 10$
15	$V_{i} = \sqrt[8]{\cos\left(i\frac{\pi}{10}\right)}, i = 1, \dots 9$ $V_{i} = \frac{\cos(i)}{\sqrt{i+1}}, i = 1, \dots 8$	$V^T, V_7 = 5$
16	$V_i = (0.01i + 0.25)/e^i, i = 1, 7$	$V^4, V_6 = -2$ $V^T, V_{10} = 0$
17	$V_i = \frac{1}{i^2 + 2.5} - \frac{i}{i+1}, i = 1, \dots 16$	20
18	$V_{i} = \frac{1}{i^{2} + 2.5} - \frac{i}{i+1}, i = 1, \dots 16$ $V_{i} = \frac{\cos(2i)}{\sin(i+1)}, i = 1, \dots 10$	$V^T, V_1 = 0$
19	$V_i = 0.25e^{-i+2}$, $i = 1,7$	$V^3, V_5 = -1$
20	$V_i = \sin(i-1), i = 1, \dots 11$	$V^3, V_2 = 0$

Таблица 2.

N₂	Матрицы	Размерность	Действия
варианта			
1	A, B	4x4	max(A), A*B
2	A, B	5x5	C=A+B, $det(C)$
3	A	6x5	$B=A^{T}-E$, $max(A)*min(B)$
4	A, B	4x5	C=A-B, min(C)
5	A	4x4	$B=A^{-1}, A*B$
6	M	5x5	det(M)*min(M)
7	M, N	5x5, 4x4	det(M)+det(N)
8	M	6x6	N=M+E, $det(M)$
9	A	5x6	B=X*A, X=2,5

10	A	4x4	N=M+E, $det(N)$
11	A	6x5	$B=A^{T}-E$, $max(B)*min(A)$
12	N	3x7	min(N)*max(N)
13	A	5x5	$B=A^{-1}, det(B)$
14	M	6x6	$N=M^{-1}$, $det(M)$
15	A, B	4x4	Max(a*B)
16	A, B	5x5	C=A+B, $det(C)$
17	A	6x5	$B=A^{T}-E, \max(A)*\min(B)$
18	A, B	4x5	C=A-B, min(C)
19	A	4x4	$B=A^{-1}, A*B$
20	M	5x5	det(M)*max(M)

Задание 3.

- Создать квадратные матрицы А. В. D. размером (5,5,4 соответственно).
- 2. Исследовать следующие свойства матриц на примере преобразования заданных массивов:
- транспонированная матрица суммы двух матриц равна сумме транспонированных матриц $(A+B)^T=A^T+B^T$;
- транспонированная матрица произведения двух матриц равна сумме произведению транспонированных матриц, взятых в обратном порядке: $(A*B)^T = B^T*A^T$;
- при транспонировании квадратной матрицы определитель не меняется : |D|=|D^T|;
- произведение квадратной матрицы на соответствующую ей квадратную дает единичную матрицу (элементы главной диагонали единичной матрицы равны 1, а все остальные -0) $D*D^1=E$.
 - 3. Для матриц А,В найти обратные матрицы.
 - 4. Найти определители матриц А.В.
 - Для матрицы А увеличить значения элементов в п раз, где п номер варианта.
 - Для матрицы В увеличить значения элементов на n.

Задание 4. Задайте матрицу А заданного размера, элементы которой являются заданными функциями индексов.

- найдите сумму элементов матрицы А;
- найдите сумму диагональных элементов матрицы А;
- замените третью строку матрицы A на строку из «7»;
- транспонируйте матрицу А;
- добавьте к матрице А столбцы или строки так, чтобы она стала квадратной, назовите полученную матрицу В;
- найдите определитель матрицы В и обратную ей матрицу (если определитель окажется равным нулю, измените какой-нибудь элемент матрицы так, чтобы матрица В стала обратимой);
- найдите ранг матрицы В;

Варианты

№ варианта	Размерность матрицы	Матрица
1	4x3	A _{i,j} =i-j
2	3x5	A _{i,j} =i ² -j ²
3	6x4	A _{i.j} =i ² -j
4	4x5	A _{i,j} =i+j ²
5	4x6	A _{i,j} =i ² -j
6	4x5	A _{i,j} =i+1/j
7	5x4	$A_{i,j}=i^2/j^2$
8	3x4	A _{i,j} =i+j ²
9	5x3	A _{i,j} =i+j
10	4x6	A _{i,j} =i*j
11	5x6	$A_{i,j}=i^2+j^2$
12	6x4	A _{i,j} =i ² -j

13	4x5	A _{i,j} =i+j ²
14	4x6	A _{i,j} =i ² -j
15	4x3	A _{i,j} =i+1/j
16	3x4	A _{i,j} =i*j
17	6x4	A _{i,j} =i-j
18	5x3	$A_{i,j}=i^2+j^2$
19	3x5	$A_{i,j}=i^2/j^2$
20	5x4	A _{i,j} =i+j
21	5x6	A _{i,j} =i ² -j ²

Задание № 5. Постройте графики функций.

Вариант	Функция одной переменной	Функция двух переменных
1	$y = \frac{3}{x^3} + \frac{2}{x^2} + \frac{1}{x}$	$z = \sin\left(\frac{x}{y}\right)\cos\left(\frac{y}{x}\right)$
2	$y = \sqrt{x} - \sqrt[3]{x^2} + \sqrt[4]{x^3}$	$z = \frac{1}{arctg\left(\frac{y}{x}\right)}$
3	$y = \ln(3x) + \frac{\exp(-3x)}{\sqrt{x}}$	$z = x^3 y - xy^3$
4	$y = \frac{x^2 - \sqrt{x}}{1 - x}$	$z = \exp\left(-\frac{x}{y}\right)$
5	$y = \frac{x^2}{x^3 + 1}$	$z = 4.25x \cdot \exp(-t) + 6t$
6	$y = \sin(x) - 4\cos(x)$	$z = \frac{x^3 + y^3}{x^2 + y^2}$
7	$y = x^2 \cdot tg(x)$	$z = \ln\left(x + \sqrt{x^2 + y^2}\right)$
8	$y = \frac{\sqrt[3]{x}}{\cos(x)}$	$z = \ln\left(tg\left(\frac{x}{y}\right)\right)$
9	$y = \frac{\cos(x) - \sin(x)}{\cos(x) + \sin(x)}$	$z = \ln(x^2 + y^2)$
10	$y = (1 + x^2)\arccos(x)$	$z = x^{x \cdot y}$
11	$y = \sqrt{x^3} arctg(x)$	$z = (1 + \lg(x))^{\nu}$

12	$y = \sin(x) \cdot \arcsin(x)$	$z = \frac{x+y}{x-y}$
13	$y = \frac{x^2 - 1}{\lg(x)}$	$z = \frac{1}{2}\ln(x^2 + y^2)$
14	$y = x \cdot \cos(x) \cdot \ln(x)$	$z = \frac{x^2 + y^2}{x^2 - y^2}$
15	$y = \ln\left(\sqrt{\exp(x)}\right)$	$z = x^2 y^4 - x^3 y^3 + x^4 y^2$
16	$y = \exp(x) \cdot (tg(x) - x)$	$z = 2\sqrt{\frac{1 - \sqrt{xy}}{1 + \sqrt{xy}}}$
17	$y = \frac{x^2 - 1}{\lg(x)}$	$z = \sin\left(\frac{x}{y}\right)\cos\left(\frac{y}{x}\right)$
18	$y = \frac{3}{x^3} + \frac{2}{x^2} + \frac{1}{x}$	$z = \frac{x^3 + y^3}{x^2 + y^2}$
19	$y = \frac{\cos(x) - \sin(x)}{\cos(x) + \sin(x)}$	$z = \ln\left(x + \sqrt{x^2 + y^2}\right)$
20	$y = \frac{x^2}{x^3 + 1}$	$z = x^{x \cdot y}$
21	$y = \frac{3}{x^3} + \frac{2}{x^2} + \frac{1}{x}$	$z = 4.25x \cdot \exp(-t) + 6t$

Задание № 6. Построить на одном графике кривые двух зависимостей y(x) и z(x) для указанного интервала изменения аргумента x. Нанести на график сетку, изменить цвета кривых.

N₂	Задание
варианта	
1	$y = 2x + 10$, $z = \sqrt{x} + 2$;
	$x \in [0 \dots 10]$
2	$y = \sin(x), z = \sin(2x+10);$
	$x \in [0 \dots 4\pi]$
3	$y = \cos(3x)$, $z = \sin(3x)$;
	$x \in [0 \dots 4\pi]$
4	$y = e^{4x+10}$, $z = e^x$;
	$x \in [12]$
5	$y = e^{x/10}$, $z = e^{(x/10+20)}$;
	$x \in [10 \dots 20]$
6	y = tg(x), $z = ctg(x)$;
	$x \in [0 \dots 4\pi]$

7	y = 1/(x+1), z = x;
	$x \in [1 \dots 2]$
8	$y = x^2 + 1$, $z = [\ln(x) - x]/x$;
	$x \in [10 \dots 20]$
9	$y = \operatorname{arctg}(x), z = \operatorname{3arcctg}(x);$
	$x \in [5 12]$
10	$y = \ln(x), z = \lg(x);$
	$x \in [1 \dots 2]$
11	y = x , z = 2x + 4;
	$x \in [-10 \dots 10]$
12	$y = 2x + 10$, $z = \sqrt{x} + 2$;
	$x \in [0 10]$
13	$y = \sin(x), z = \sin(2x + 10);$
	$x \in [0 \dots 4\pi]$
1.4	
14	$y = \cos(3x), z = \sin(3x);$
	$x \in [0 \dots 4\pi]$
15	$y = e^{4x+10}, z = e^x;$
	$x \in [12]$
16	y = 1/(x+1), z = x;
	$x \in [1 \dots 2]$
17	$y = 2x + 10$, $z = \sqrt{x} + 2$;
	$x \in [0 \dots 10]$
18	$y = \cos(3x), z = \sin(3x);$
	$x \in [0 \dots 4\pi]$
19	$y = x^2 + 1$, $z = [\ln(x) - x]/x$;
	$x \in [10 \dots 20]$
20	$y = e^{4x+10}, z = e^x;$
	$x \in [12]$