

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Lösungsblätter zur Klausur

Robotik I: Einführung in die Robotik

am 11. März 2019, 14:00 – 15:00 Uhr

Name:	Vorname:		Matrikelnum	mer:
Aufgabe 1			von	6 Punkten
Aufgabe 2			von	7 Punkten
Aufgabe 3			von	8 Punkten
Aufgabe 4			von	6 Punkten
Aufgabe 5			von	6 Punkten
Aufgabe 6			von	7 Punkten
Aufgabe 7			von	5 Punkten
Gesamtpunktzahl:				
		Note:		

Aufgabe 1 Transformationen

1. Beweis, dass R eine Rotationsmatrix ist:

2. Inverse Matrix R^{-1} :

3. Homogene Darstellung:

Aufgabe 2 Kinematik

1. (a) Transformationsmatrix $A_{0,2}$:

$$A_{0,2} =$$

(b) DH-Parameter des Roboters:

Gelenk	$ heta_i$ [°]	$d_i \ [mm]$	$a_i \ [mm]$	$lpha_i \ [^\circ]$
G1				
G2				

Name: Vorname: Matr.-Nr.: 4

2. Herleitung:

Aufgabe 3 Dynamik

1. (a) Bewegungsgleichung:

(b) Beschreibung der Terme (mit Dimensionen):

Ausdruck	Dimension	Beschreibung

2. (a) Kinetische und potentielle Energie:

$$E_{kin,1} =$$

$$E_{pot,1} =$$

(b) Lagrange-Funktion (allgemein und eingesetzt für den Roboter):

$$L(q,\dot{q}) =$$

$$L(q_1, \dot{q}_1) =$$

(c) Generalisierte Kräfte:

$$\frac{\partial L}{\partial \dot{q}_1} =$$

$$\frac{d}{dt} \Big(\frac{\partial L}{\partial \dot{q}_1} \Big) =$$

$$\frac{\partial L}{\partial q_1} =$$

$$\tau_1 =$$

Aufgabe 4 Bewegungsplanung mit PRM

1. PRM vs. RRT:

PRM	RRT

 $2.\ \,$ Erweiterung der Roadmap um die drei Samples:

$$a = (24, 10), b = (13, 1), c = (26, 3)$$

3. Expansionsreihenfolge:

A,

Aufgabe 5 Greifen

3. (a) Annäherungsvektor:

l.	(a)	Greifanalyse: i. Gegeben:
		ii. Gesucht:
	(b)	Greifsynthese: i. Gegeben:
		ii. Gesucht:
2.	(a)	Bedeutung der Kraftgeschlossenheit:
	(b)	Zwei Qualitätsmaße:
		ii.

(b) Zwei weitere Parameter:

i.

ii.

Aufgabe 6 Bildverarbeitung

1. Kamerakalibrierung:

2. Korrelation von B mit g:

$$B_R' =$$

$$B'_G =$$

$$B_B' =$$

Name: Vorname: Matr.-Nr.: 10

- 3. ICP:
 - (a) Gradient der Fehlerfunktion:

(b) Erster Schritt der Aktualisierungsfunktion für p_1 :

Aufgabe 7 Symbolisches Planen

1. STRIPS-Zustandsraum Θ :

Symbol	Beschreibung

- 2. (a) ClosedList:
 - (b) Zustand nach putOn(B, D, A):

(c) Weitere parametrisierte Aktionen: