BACALAUREAT 2005 SESIUNEA SPECIALĂ

M1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- 1. Câte numere de 4 cifre distincte se pot forma utilizând cifre din mulțimea $\{1, 2, 3, 4\}$?
- **2.** Cât este suma tuturor elementelor grupului $(\mathbb{Z}_{12},+)$?
- **3.** Cât este produsul $\log_2 3 \cdot \log_3 4$?
- **4.** Care este valoarea sumei $C_8^0 + C_8^2 + C_8^4 + C_8^6 + C_8^8$?
- 5. Dacă matricea $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, care este probabilitatea ca un element al matricei A^5 să fie egal cu 0?

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 2x + 1$.

- **6.** Cât este $f'(x), x \in \mathbb{R}$?
- 7. Cât este $\int_0^1 f(x) \ dx$?
- 8. Cum este funcția f, convexă sau concavă?
- **9.** Cât este $\lim_{x\to 1} \frac{f(x) f(1)}{x 1}$?
- **10.** Cât este $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$?

SUBIECTUL II

În sistemul cartezian de coordonate Oxyz, se consideră punctele A(3,4,5), B(4,5,3), C(5,3,4).

- 11. Care este ecuația planului care trece prin punctele A, B și C?
- 12. Care este lungimea segmentului AB?
- **13.** Care este aria triunghiului *ABC*?
- 14. Care este lungimea medianei din A a triunghiului ABC?
- **15.** Cât este $\cos(\triangleleft BAC)$?
- **16.** Care sunt coordonatele centrului de greutate ale triunghiului ABC?

Pentru subiectele III și IV se cer rezolvările complete

SUBIECTUL III

Se consideră polinoamele $f_n \in \mathbb{C}[X]$, definite prin $f_0 = 1$ și $f_1 = X$, $f_2 = \frac{X(X-1)}{1 \cdot 2}$, ..., $f_n = \frac{X(X-1) \dots (X-n+1)}{n!}$, ..., (\forall) $n \in \mathbb{N}^*$.

- a) Să se arate că $f_n(k) = C_k^n$, (\forall) $n \in \mathbb{N}^*$, (\forall) $k \geq n$.
- **b)** Să se arate că $f_n(k) \in \mathbb{Z}$, (\forall) $n \in \mathbb{N}$, (\forall) $k \in \mathbb{Z}$.
- c) Să se găsească un polinom g de gradul trei, cu coeficienți raționali, cel puțin unul neîntreg, astfel încât $g(k) \in \mathbb{Z}$, (\forall) $k \in \mathbb{Z}$.

1

- d) Să se arate că $\operatorname{grad}(f_n) = n$, (\forall) $n \in \mathbb{N}$.
- e) Să se arate că dacă $h \in \mathbb{C}[X]$ este un polinom de grad 3, atunci există $a_0, a_1, a_2, a_3 \in \mathbb{C}$, unice, astfel încât $h = a_0 f_0 + a_1 f_1 + a_2 f_2 + a_3 f_3$.
- f) Să se arate că dacă $w \in \mathbb{C}[X]$ este un polinom de grad 3, astfel încât $w(k) \in \mathbb{Z}$, (\forall) $k \in \{0,1,2,3\}$, atunci $w(k) \in \mathbb{Z}$, (\forall) $k \in \mathbb{Z}$.
- g) Să se arate că dacă $u \in \mathbb{C}[X]$ este un polinom de grad 3, astfel încât $u(k) \in \mathbb{Z}$, (\forall) $k \in \{0, 1, 2, 3\}$, atunci există $p \in \mathbb{Z}$, astfel încât $u(k) \neq p$, (\forall) $k \in \mathbb{Z}$.

Se consideră funcțiile $f_n: \mathbb{R} \to \mathbb{R}$, definite prin $f_0(x) = 1 - \cos x$ și $f_{n+1}(x) = \int_0^x f_n(t) \ dt$, $(\forall) \ n \in \mathbb{N}$, $(\forall) \ x \in \mathbb{R}$.

- a) Să se verifice că $f_1(x) = x \sin x$, $(\forall) x \in \mathbb{R}$.
- **b)** Să se calculeze $f_2(x), x \in \mathbb{R}$.
- c) Utilizând metoda inducției matematice, să se arate că, (\forall) $n \in \mathbb{N}^*$, (\forall) $x \in \mathbb{R}$,

$$f_{2n}(x) = \frac{x^{2n}}{(2n)!} - \frac{x^{2n-2}}{(2n-2)!} + \dots + (-1)^{n-1} \frac{x^2}{2!} + (-1)^n + (-1)^{n+1} \cos x.$$

- d) Să se arate că graficul funcției f_1 nu are asimptotă către ∞ .
- e) Să se arate că $0 \le f_n(x) \le 2 \cdot \frac{x^n}{n!}$, $(\forall) \ n \in \mathbb{N}^*$, $(\forall) \ x > 0$.
- f) Să se arate că $\lim_{n\to\infty} \frac{x^n}{n!} = 0$, $(\forall) x > 0$.
- **g)** Să se arate că $\lim_{n \to \infty} \left(1 \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots + \frac{x^{2n}}{(2n)!} \right) = \cos x, \ (\forall) \ x \in \mathbb{R}.$

SESIUNEA SPECIALĂ

M1

Filiera teoretică, specializarea Științe ale naturii Filiera tehnologică, profil Tehnic, toate specializările

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

1. Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este f(x) = 5x + 1, cât este suma $f(1) + f(2) + \ldots + f(20)$?

- **2.** Câte mulțimi X verifică relația $\{a,b,c\}\subseteq X\subseteq \{a,b,c,d,e\}$?
- 3. Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este $f(x) = x^2 2$, cât este $(f \circ f)(-1)$?
- **4.** Care este probabilitatea ca un element al inelului $(\mathbb{Z}_{10}, +, \cdot)$ să fie soluție a ecuației $\hat{5} \cdot \hat{x} = \hat{0}$?
- 5. Care este numărul de soluții reale ale ecuației $x^3 3x^2 + 2x = 0$?

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 - 4x$.

- **6.** Cât este $f'(x), x \in \mathbb{R}$?
- 7. Cât este $\int_0^1 f(x) \ dx$?
- 8. Cum este funcția f, convexă sau concavă?
- **9.** Cât este $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$?
- 10. Cât este $\lim_{n\to\infty} \frac{3n+5}{2n-1}$?

SUBIECTUL II

- 11. Care este distanța dintre punctele A(3,4,5) și B(4,3,5)?
- 12. Care este lungimea razei cercului $x^2 + y^2 = 9$?
- 13. Care este aria triunghiului determinat de punctele P(0,1), Q(1,0) și R(1,1)?
- **14.** Care este ecuația dreptei care trece prin punctele P(0,1) și Q(1,0)?
- **15.** Care este modulul numărului complex $\sin 1 + i \cos 1$?
- **16.** Care este valoarea produsului $i \cdot i^2 \cdot i^3 \cdot \ldots \cdot i^{20}$?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

a) Să se arate că , dacă $x, y \in (-1, 1)$, atunci $-1 < \frac{x+y}{1+xy} < 1$.

Pe mulțimea G = (-1,1) se consideră legea de compoziție "o" definită prin $x \circ y = \frac{x+y}{1+xy}$, $(\forall) x, y \in G$.

3

- **b)** Să se verifice egalitatea $x \circ y = \frac{(1+x)(1+y) (1-x)(1-y)}{(1+x)(1+y) + (1-x)(1-y)}$, $(\forall) \ x, y \in G$.
- c) Să se arate că $(x \circ y) \circ z = x \circ (y \circ z), (\forall) x, y, z \in G.$
- d) Să se determine $e \in G$, astfel încât $x \circ e = e \circ x = x$, (\forall) $x \in G$.
- e) Să se arate că (\forall) $x \in G$, există $y \in G$ astfel încât $x \circ y = y \circ x = 0$.

- g) Să se arate că $\frac{1}{2} \circ \frac{1}{3} \circ \ldots \circ \frac{1}{n} = \frac{n^2+n-2}{n^2+n+2}, \ (\forall) \ n \in \mathbb{N}, \ n \geq 2.$

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \, f(x) = \sqrt{x^2 + 2} - \sqrt{x^2 + 1}.$

- a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- b) Să se arate că funcția f este strict descrescătoare pe intervalul $[0, \infty)$.
- c) Să se calculeze $\lim_{x\to\infty} f(x)$.
- d) Să se determine ecuația asimptotei la graficul funcției f către $-\infty$.
- e) Să se calculeze $\lim_{n\to\infty} \frac{f(\sqrt{1}) + f(\sqrt{2}) + \ldots + f(\sqrt{n})}{\sqrt{n}}$.
- $\mathbf{f)} \quad \text{Să se arate că} \int_0^x \sqrt{t^2 + a^2} \ dt = \frac{1}{2} x \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}) \frac{a^2}{2} \ln a, \ (\forall) \ x \in \mathbb{R}, \ (\forall) \ a > 0.$
- g) Să se calculeze aria suprafeței plane cuprinsă între graficul funcției f, axa Ox și dreptele de ecuații x=0 și x=1.

M1

Filiera teoretică, specializarea matematică - informatică. Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- **1.** Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este f(x) = x 3, cât este produsul $f(1) \cdot f(2) \cdot \ldots \cdot f(7)$?
- 2. Câte submulțimi nevide ale mulțimii \mathbb{Z}_3 au suma elementelor egală cu $\hat{0}$?
- **3.** Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este $f(x) = -x^4 + 2x$, cât este $(f \circ f)(1)$?
- 4. Care este probabilitatea ca un element n din multimea $\{0,1,2,3,4\}$ să verifice relația $2^n + 5^n = 3^n + 4^n$?
- **5.** Câte soluții reale are ecuația $x^4 = 16$?

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x + x + \frac{1}{2}$

- **6.** Cât este $f'(x), x \in \mathbb{R}$?
- 7. Cât este $\int_0^1 f(x) dx$?
- 8. Cum este funcția f pe mulțimea numerelor reale : convexă sau concavă?
- **9.** Cât este $\lim_{x\to 1} \frac{f(x) f(1)}{x 1}$?
- 10. Cât este $\lim_{n\to\infty} \frac{\sqrt{n}}{n}$?

SUBIECTUL II

- **11.** Care este distanța dintre punctele A(1,3,5) și B(3,5,7)?
- 12. Care este lungimea razei cerculului $x^2 + y^2 = 4$?
- 13. Cât este $\cos^2 \pi + \sin^2 \pi$?
- **14.** Care este modulul numărului complex $\frac{5+8i}{8-5i}$?
- 15. Cât este aria unui triunghi cu lungimile laturilor de 3, 3 și 4?
- 16. Care este ecuația tangentei la parabola $y^2 = 2x$ dusă prin punctul P(2,2)?

Pentru subiectele III și IV se cer rezolvările complete

SUBIECTUL III

Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ şi $K = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Spunem că matricea $M \in \mathcal{M}_2(\mathbb{R})$ este nilpotentă, dacă există $n \in \mathbb{N}^*$, astfel încât $M^n = O_2$.

- a) Să se verifice că matricele O_2 și J sunt nilpotente.
- b) Să se arate că matricea K nu este nici inversabilă nici nilpotentă.
- c) Să se arate că, dacă matricea $X \in \mathcal{M}_2(\mathbb{R})$ este $X = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$, atunci avem identitatea $X^2 (p+s)X + (ps-rq)I_2 = O_2$.

- d) Să se arate că, dacă matricea $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathscr{M}_2(\mathbb{R})$ verifică relația $A^2=O_2$, atunci a+d=0 și ad-bc=0.
- e) Să se arate că, dacă matricea $B \in \mathcal{M}_2(\mathbb{R})$ este nilpotentă, atunci $B^2 = O_2$.
- f) Să se arate că matricea I_2 nu poate fi scrisă ca o sumă finită de matrice nilpotente.

- a) Să se verifice că $\frac{1}{1-a} = 1 + a + \ldots + a^n + \frac{a^{n+1}}{1-a}$, (\forall) $n \in \mathbb{N}$ şi (\forall) $a \in \mathbb{R} \setminus \{1\}$.
- **b)** Să se deducă relația $\frac{1}{1+\sqrt{x}} = 1 \sqrt{x} + (\sqrt{x})^2 + \ldots + (-1)^n (\sqrt{x})^n + (-1)^{n+1} \frac{(\sqrt{x})^{n+1}}{1+\sqrt{x}}, \ (\forall) \ x \in [0,1], \ (\forall) \ n \in \mathbb{N}.$
- c) Să se arate că $0 \le \frac{(\sqrt{x})^{n+1}}{1+\sqrt{x}} \le (\sqrt{x})^{n+1}, (\forall) \ x \in [0,1], (\forall) \ n \in \mathbb{N}^*.$
- **d)** Să se arate că $\lim_{n\to\infty} \int_0^b \frac{(\sqrt{x})^{n+1}}{1+\sqrt{x}} dx = 0$, (\forall) $b \in [0,1]$.
- e) Să se calculeze integrala $\int_0^b \frac{1}{1+\sqrt{x}} dx$, unde b>0.
- f) Să se arate că

$$\lim_{n \to \infty} \left(x + \frac{(-1)^1 x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} + \frac{(-1)^2 x^{\frac{2}{2} + 1}}{\frac{2}{2} + 1} + \dots + \frac{(-1)^n x^{\frac{n}{2} + 1}}{\frac{n}{2} + 1} \right) = \int_0^x \frac{1}{1 + \sqrt{t}} dt, \ (\forall) \ x \in [0, 1].$$

M1

Filiera teoretică, specializarea Științe ale naturii Filiera tehnologică, profil Tehnic, toate specializările

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- 1. Cât este suma $\hat{1} + \hat{2} + \hat{3} + \hat{4} + \hat{5}$ în grupul $(\mathbb{Z}_6, +)$?
- **2.** Câte soluții reale are ecuația $2^{x^2} = 4$?
- **3.** Câte funcții $f: \{a, b, c\} \rightarrow \{1, 2\}$ verifică relația $f(a) \cdot f(b) = 1$?
- 4. Care este probabilitatea ca un element x din multimea $\{1, 2, 3, 4, 5\}$ să fie soluție a ecuației $x^2 5x + 6 = 0$?
- 5. Care este prima zecimală a numărului $\sqrt{120}$?

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 3x + 1$

- **6.** Cât este $f'(x), x \in \mathbb{R}$?
- 7. Cât este $\int_0^1 f(x) dx$?
- 8. Câte puncte de extrem local are funcția f?
- **9.** Câte puncte de inflexiune are graficul funcției f?
- 10. Cât este $\lim_{n\to\infty}\frac{2^n}{3^n}$?

SUBIECTUL II

- 11. Cât este lungimea segmentului care unește punctele A(-3,1,2) și B(1,-3,2)?
- **12.** Cât este modulul numărului complex 1 i?
- 13. Cât este perimetrul unui triunghi dreptunghic cu catetele de lungimi 6 și 8?
- 14. Cât este suma celor două soluții complexe, nereale, ale ecuației $x^4 = 1$?
- 15. Dacă ecuația planului care trece prin punctele A(-3,1,2), B(1,-3,2) și C(2,1,-3) este x+az+by+c=0, cât este a+b+c?
- **16.** Cât este aria triunghiului PQR în care $PQ=1,\ QR=2$ și $m(\triangleleft PQR)=\frac{\pi}{6}$?

Pentru subiectele III și IV se cer rezolvările complete

SUBIECTUL III

Se consideră matricele $A = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ şi $O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

- a) Să se calculeze determinantul şi rangul matricei A.
- **b)** Să se calculeze matricele A^2 și A^3 .
- c) Să se verifice că $A^3 + A^2 + A = O_3$.
- d) Să se găsească o matrice $B \in \mathcal{M}_3(\mathbb{R}), B \neq O_3$, cu proprietatea $AB = BA = O_3$.
- e) Să se arate că $A^{2005} = A$.
- **f)** Să se arate că $I_3 \neq aA + bA^2 + cA^3$, (\forall) $a, b, c \in \mathbb{R}$.

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \ln x^2 + 2 - \ln x^2 + 1.$

- a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- **b)** Să se calculeze $\lim_{x\to 0} \frac{f(x) f(0)}{x}$.
- c) Să se arate că funcția f este strict crescătoare pe intervalul $(-\infty, 0]$ și strict descrescătoare pe intervalul $[0, \infty)$.
- **d)** Să se arate că $0 < f(x) \le \ln 2$, $(\forall) x \in \mathbb{R}$.
- e) Să se arate că $\ln(t^2 + a^2) dt = x \ln(x^2 + a^2) 2x + 2a \cdot \arctan\frac{x}{a}$, $(\forall) x \in \mathbb{R}$, $(\forall) a \in \mathbb{R}^*$.
- f) Să se calculeze aria suprafeței plane cuprinsă între graficul funcției f, axa Ox și dreptele de ecuații x=0 și x=1.

M2

Filiera tehnologică, profil Servicii, toate specializările; profil Resurse naturale și protecția mediului, toate specializările

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- 1. Câte funcții $f: \{a, b\} \to \{1, 2, 3\}$ au proprietatea f(a) < f(b)?
- 2. Care este probabilitatea ca un element n din mulțimea $\{1, 2, 3, 4, 5\}$ să verifice relația $n^2 < n!$?
- **3.** Câte soluții reale are ecuația $2^x + 2 = 0$?
- **4.** Care este valoarea sumei 1 + 5 + 9 + 13 + ... + 49?
- **5.** Dacă funcțiile $f: \mathbb{R} \to \mathbb{R}$ şi $g: \mathbb{R} \to \mathbb{R}$ sunt f(x) = 2x + 3 şi g(x) = 3x + 2, cât este $(g \circ f)(-1)$? Se consideră funcția $f: (0, \infty) \to \mathbb{R}$, $f(x) = \ln x$.
- **6.** Cât este $f'(x), x \in (0, \infty)$?
- 7. Cât este $\lim_{x\to 1} \frac{f(x) f(1)}{x 1}$?
- **8.** Câte asimptote verticale are graficul funcției f?
- 9. Cât este $\int_0^1 e^x dx$?
- 10. Cât este $\lim_{n\to\infty} \frac{2n+3}{3n+2}$?

SUBIECTUL II

- 11. Cât este distanța de la punctul A(1,1) la punctul B(2,2)?
- **12.** Care este ecuația dreptei care trece prin punctele A(1,1) și B(2,2)?
- 13. Cât este aria unui triunghi echilateral cu latura de lungime $\sqrt{3}$?
- **14.** Care este conjugatul numărului complex 2 + 3i?
- **15.** Cât este $\cos^2 1 + \sin^2 1$?
- **16.** Dacă în triunghiul ABC, AB=2, AC=3 și $m(\triangleleft BAC)=\frac{\pi}{3}$, cât este BC?

Pentru subiectele III și IV se cer rezolvările complete

SUBIECTUL III

Se consideră matricele $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $O_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și polinomul $f = X^2 - 6X + 5$.

- a) Să se rezolve în mulțimea numerelor reale ecuația f(x) = 0.
- **b)** Să se calculeze determinantul matricei A.
- c) Să se calculeze matricea A^2 .
- d) Să se verifice că $f(A) = O_2$. (Prin f(A) înțelegem matricea $A^2 6A + 5I_2$).
- e) Să se rezolve sistemul $\begin{cases} 3x + 2y = 0 \\ 2x + 3y = 0 \end{cases}$, unde $x, y \in \mathbb{R}$.

 $\textbf{f)} \quad \text{Să se arate că } A^n = \frac{1}{2} \begin{pmatrix} 5^n + 1 & 5^n - 1 \\ 5^n - 1 & 5^n + 1 \end{pmatrix}, \ (\forall) \ n \in \mathbb{N}, \ n \geq 2.$

SUBIECTUL IV

Se consideră funcția $f:[0,\infty)\to[0,\infty),\ f(x)=\frac{x+2}{x+1}$

- a) Să se calculeze $f'(x), x \in [0, \infty)$.
- b) Să se arate că funcția f este strict descrescătoare pe intervalul $[0, \infty)$.
- c) Să se verifice că $f(\sqrt{2}) = \sqrt{2}$.
- d) Să se arate că, dacă $x, y \in (0, \infty), x \neq y$, atunci |f(x) f(y)| < |x y|.
- e) Să se calculeze $\int_0^1 f(x) dx$.
- $\mathbf{f)} \quad \text{Să se arate că} \left| \frac{p}{q} \sqrt{2} \right| > \left| \frac{p+2q}{p+q} \sqrt{2} \right|, \ (\forall) \ p, \ q \in \mathbb{N}^*.$

M3

Filiera Vocațională: profil Pedagogic, specializările învățător-educatoare

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- **1.** Câte funcții $f: \{a, b, c\} \rightarrow \{1, 2\}$ au proprietatea f(a) = f(b) = 1?
- 2. Câte elemente din mulțimea $\{7, 8, \dots, 25\}$ se divid cu 3?
- 3. Dacă mulțimea A are 4 elemente, mulțimea B are 5 elemente și mulțimea $A \cap B$ are 2 elemente, câte elemente are mulțimea $A \cup B$?
- 4. Cât este produsul primelor 10 zecimale ale numărului $\sqrt{26}$?
- **5.** Câte elemente din şirul C_5^0 , C_5^1 , C_5^2 , C_5^2 , C_5^3 , C_5^4 , C_5^5 sunt numere impare?

Se consideră triunghiul echilateral ABC cu lungimea laturii de 4.

- **6.** Cât este perimetrul triunghiului *ABC*?
- 7. Cât este lungimea înălțimii triunghiului ABC?
- 8. Cât este aria triunghiului ABC?
- 9. Cât este raportul dintre perimetrul triunghiului ABC şi perimetrul triunghiului care are vârfurile în mijloacele laturilor triunghiului ABC?
- 10. Cât este raportul dintre aria triunghiului ABC şi aria triunghiului care are vârfurile în mijloacele laturilor triunghiului ABC?

SUBIECTUL II

- 11. Câte rădăcini reale are ecuația $x^2 + 6x 7 = 0$?
- 12. Care este mulțimea valorilor reale ale lui x care verifică inecuația $x^2 + 6x 7 < 0$?
- **13.** Câte rădăcini reale are ecuația $9^x + 8 \cdot 3^x 9 = 0$?
- **14.** Cât este valoarea maximă a funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = -x^2 + 2x$?
- **15.** Care sunt valorile parametrului real m, pentru care $x^2 + 2x + m \ge 0$, (\forall) $x \in \mathbb{R}$?
- 16. Cât este produsul celor 4 rădăcini reale ale ecuațiilor $9x^2 + 1986x + 25 = 0$ și $25x^2 + 1986x + 9 = 0$?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră un triunghi echilateral ABC, cu lungimea laturii 2 şi un punct M în interiorul său . Picioarele perpendicularelor duse din M pe segmentele (BC), (CA), (AB) se notează cu D, E, F. Notăm lungimile segmentelor: BD = 1 + a, CE = 1 + b şi AF = 1 + c, unde a, b, $c \in (-1, 1)$.

- a) Să se determine măsura în grade a unghiului $\triangleleft ABC$.
- b) Utilizând teorema lui *Pitagora*, să se arate că $MB^2 MC^2 = BD^2 DC^2$.
- c) Să se verifice identitatea (1+x)(1+y)(1+z) = 1+x+y+z+xy+yz+zx+xyz, $(\forall) x, y, z \in \mathbb{R}$.
- d) Utilizând relația de la punctul b), să se arate că $BD^2 DC^2 + CE^2 EA^2 + AF^2 FB^2 = 0$.
- e) Utilizând relația de la punctul d), să se arate că a+b+c=0 și că BD+CE+FA=3.
- f) Să se arate că, dacă $BD \cdot CE \cdot AF = CD \cdot EA \cdot BF$, atunci $a \cdot b \cdot c = 0$.

Se consideră mulțimea A formată din toate numerele naturale care se scriu în baza zece cu două cifre distincte.

- a) Să se determine numărul elementelor mulțimii A.
- b) Să se determine numărul elementelor mulțimii A care se divid cu 5.
- c) Să se determine numărul de elemente ale mulțimii $\{x \in A \mid \sqrt{x} \in \mathbb{Q}\}.$
- d) Să se determine numărul de zerouri cu care se termină produsul elementelor mulțimii A, scris în baza zece.
- e) Să se arate că produsul elementelor mulțimii A nu este un pătrat perfect.
- f) Să se calculeze suma elementelor mulțimii A.

M2 Proba F

Filiera vocațională, profil Artistic, specializările: Arhitectură, arte ambientale și design; profil Militar, specializarea Științe sociale

Filiera teoretică, specializarea Științe sociale

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- **1.** Câte funcții $f: \{a, b, c\} \rightarrow \{1, 2\}$ au proprietatea $f(a) \neq f(b)$?
- 2. Câte soluții are ecuația $3^{x^2} = 3^{-x}$?
- 3. Dacă matricea $A = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$, cât este matricea A^5 ?
- **4.** Care este valoarea sumei 1 + 11 + 111 + ... + 11111111?
- 5. Care este produsul primelor 5 zecimale ale numărului $\sqrt{122}$?

Se consideră funcția $f:(0,\infty)\to\mathbb{R}, f(x)=\ln x.$

- **6.** Cât este $f'(x), x \in (0, \infty)$?
- 7. Cât este $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$?
- 8. Câte asimptote verticale are graficul funcției f?
- 9. Cât este $\int_1^2 \frac{1}{x} dx$?
- 10. Cât este $\lim_{n\to\infty} \frac{5n+2}{2n+5}$?

SUBIECTUL II

- 11. Cât este distanța de la punctul A(4,4) la punctul B(5,5)?
- **12.** Cât este $\cos^2 6 + \sin^2 6$?
- **13.** Dacă în triunghiul ABC, AB = 1, AC = 1 şi $m(\triangleleft BAC) = \frac{\pi}{3}$, cât este BC?
- **14.** Care este conjugatul numărului complex -3 3i?
- **15.** Care este ecuația dreptei care trece prin punctele A(4,4) și B(5,5)?
- 16. Cât este aria unui triunghi cu lungimile laturilor de 7, 10 și 11?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră mulțimea de funcții $G = \{f_n \mid f_n : \mathbb{R} \to \mathbb{R}, f_n(x) = (x+1)^{3^n} - 1, (\forall) n \in \mathbb{Z}, (\forall) x \in \mathbb{R}\}.$

- a) Să se verifice că funcția $g: \mathbb{R} \to \mathbb{R}, \ g(x) = x,$ aparține mulțimii G.
- **b)** Să se arate că $f_n \circ f_p = f_{n+p}$, (\forall) $n, p \in \mathbb{Z}$.
- c) Să se arate că inversa funcției f_n este funcția f_{-n} , (\forall) $n \in \mathbb{Z}$.
- **d)** Să se calculeze suma $f_1(-1) + f_2(-1) + \ldots + f_{2005}(-1)$.
- e) Să se arate că funcția f_1 este strict crescătoare pe \mathbb{R} .

 \mathbf{f}) Să se arate că mulțimea G împreună cu operația de compunere a funcțiilor determină o structură de grup.

SUBIECTUL IV

Se consideră funcțiile $h: \mathbb{R} \to \mathbb{R}, \ h(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!}, \ g: \mathbb{R} \to \mathbb{R}, \ g(x) = h(x) + \frac{x^3}{3!}, \ f: \mathbb{R} \to \mathbb{R}, \ f(x) = g(x) + \frac{x^4}{4!},$

- a) Să se verifice că g'(x) = h(x) și $f'(x) = g(x), (\forall) x \in \mathbb{R}.$
- **b)** Să se arate că h(x) > 0, (\forall) $x \in \mathbb{R}$.
- Să se arate că funcția g este strict crescătoare pe \mathbb{R} .
- Să se calculeze $\int_0^1 h(x) dx$.
- e) Să se calculeze $\lim_{x \to \infty} g(x)$ și $\lim_{x \to -\infty} g(x)$.
- Să se arate că ecuația g(x) = 0 are o singură soluție reală.

M3 Proba F

Filiera Teoretică,
sp. Filologie; Filiera Vocațională: profil Artistic, sp.:Arte plastice și decorative, Coregrafie, Muzică și Teatru;

profil Pedagogic, toate specializările cu excepția învățător-educatoare;
profil Educație fizică și sport ; profil Militar, sp. Muzici militare; profil Teologic, toate specializările

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- **1.** Câte funcții $f: \{a, b, c\} \rightarrow \{1, 2\}$ au proprietatea f(a) + f(b) = 3?
- 2. Câte elemente din mulțimea $\{7, 8, \dots, 25\}$ nu se divid cu 4?
- 3. Dacă mulțimea A are 9 elemente, mulțimea B are 8 elemente și mulțimea $A \cup B$ are 12 elemente, câte elemente are mulțimea $A \cap B$?
- 4. Care este produsul primelor 10 zecimale ale numărului $\sqrt{197}$?
- 5. Câte numere de 2 cifre distincte se pot forma utilizând numai cifre din mulțimea $\{1, 2, 3, 4\}$?

Se consideră triunghiul dreptunghic ABC cu catetele AB = AC = 6.

- **6.** Cât este perimetrul triunghiului *ABC*?
- 7. Cât este lungimea înălțimii din A a triunghiului ABC?
- 8. Cât este aria triunghiului ABC?
- 9. Cât este lungimea medianei din A a triunghiului ABC?
- 10. Cât este măsura în grade a unghiului $\triangleleft ABC$?

SUBIECTUL II

- 11. Câte rădăcini reale are ecuația $5x^2 + 6x 11 = 0$?
- 12. Care este multimea valorilor reale ale lui x care verifică inecuația $5x^2 + 6x 11 < 0$?
- 13. Câte rădăcini reale are ecuația $64^x + 7 \cdot 8^x 8 = 0$?
- **14.** Care este valoarea minimă a funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x$?
- **15.** Care sunt valorile parametrului real m, pentru care $x^2 + 1 + m > 0$, (\forall) $x \in \mathbb{R}$?
- **16.** Cât este produsul celor 4 rădăcini reale ale ecuațiilor $5x^2 + 1986x 9 = 0$ și $9x^2 + 1986x 5 = 0$?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră o dreaptă d, două puncte A şi B situate de o parte şi de alta a dreptei d. Notăm cu C simetricul punctului A față de dreapta d şi cu D intersecția dreptelor BC şi d. (Punctul B se consideră astfel încât $C \neq B$ şi dreptele BC şi d nu sunt paralele). Mai considerăm un punct X pe dreapta d.

- a) Să se arate că AD = DC.
- b) Să se arate că dreapta d este bisectoarea unghiului $\triangleleft ADB$.
- c) Să se verifice că |AD DB| = BC.
- d) Să se arate că XA = XC.
- e) Să se arate că $|XB XA| \le |AD DB|$.

f) Să se arate că, dacă |XB - XA| = |AD - DB|, atunci X = D.

SUBIECTUL IV

Se consideră mulțimea $A=\{p+q\sqrt{3}\,|\,p,q\in\mathbb{Z}\}.$

- a) Să se arate că, dacă $x, y \in A$, atunci $x + y \in A$.
- **b)** Să se arate că, dacă $x, y \in A$, atunci $x \cdot y \in A$.
- c) Să se verifice că $1 \in A$ și $2 \sqrt{3} \in A$.
- d) Utilizând metoda inducției matematice, să se arate că, dacă $x_1, x_2, ..., x_n \in A$, atunci $x_1 \cdot x_2 \cdot ... \cdot x_n \in A$, (\forall) $n \in \mathbb{N}^*$.
- e) Să se arate că $(2 \sqrt{3})^n \in A$, (\forall) $n \in \mathbb{N}^*$.
- f) Să se arate că în intervalul (0; 0, 01) există un element din mulțimea A.

M1

Filiera vecatională, profil Militar, specializarea matematică in

Filiera vocațională, profil Militar, specializarea matematică - informatică.

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

1. Câte soluții reale are ecuația $16^x + 3 \cdot 4^x - 4 = 0$?

- **2.** Dacă matricea A este $A = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix}$ cât este matricea A^{2005} ?
- **3.** Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este $f(x) = x^3 9x$, cât este $(f \circ f)(3)$?
- **4.** Care este probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $3^n > 5n + 2$?
- **5.** Care este suma elementelor în grupul $(\mathbb{Z}_7, +)$?

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \, f(x) = \frac{x}{x^2 + x + 1}$

- **6.** Cât este $f'(x), x \in \mathbb{R}$?
- 7. Cât este $\int_0^1 f'(x) dx$?
- 8. Care este ecuația asimptotei către $+\infty$ la graficul funcției f?
- 9. Cât este $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$?
- 10. Cât este $\int_0^1 e^x dx$?

SUBIECTUL II

- 11. Dacă ecuația dreptei care trece prin punctele A(2,2) și B(3,3) este x + ay + b = 0, cât este a + b?
- **12.** Care este distanța de la punctul C(0,1) la dreapta x-y=0?
- 13. Cât este numărul $\cos^2 2 + \sin^2 2$?
- **14.** Care este modulul numărului complex $(1-i)^4$?
- 15. Cât este aria triunghiului cu vârfurile în punctele A(2,2), B(3,3) și C(0,1)?
- **16.** Care este ecuația tangentei la hiperbola $\frac{x^2}{3} \frac{y^2}{2} = 1$ dusă prin punctul P(3,2)?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră numărul complex z = a + bi, cu $a, b \in \mathbb{R}$ și notăm $\overline{z} = a - bi$.

- a) Să se calculeze $z + \overline{z}$.
- **b)** Să se calculeze $z \cdot \overline{z}$.
- c) Să se verifice că $z^2 2az + a^2 + b^2 = 0$.
- d) Să se determine $c, d \in \mathbb{R}$, știind că numărul complex x = 3 + 4i verifică ecuația $x^2 + cx + d = 0$.
- e) Utilizând metoda inducției matematice , să se arate că (\forall) $n \in \mathbb{N}, n \geq 2$, există $a_n, b_n \in \mathbb{R}$, astfel încât $z^n = a_n \cdot z + b_n$.

- f) Să se arate că pentru orice $w \in \mathbb{C}$ și orice $n \in \mathbb{N}$, $n \geq 2$, există polinomul cu coeficienți reali $f = X^n + pX + q$, cu proprietatea că f(w) = 0.
- g) Să se arate că numărul complex x=3+4i nu poate fi rădăcină pentru niciun polinom $g\in\mathbb{R}[X]$, de forma $g=X^8+r$.

Se consideră funcția $f:(0,\infty)\to\mathbb{R}, \ f(x)=2\sqrt{x}$ și șirurile $(a_n)_{n\geq 1}, \ (b_n)_{n\geq 1}$ și $(c_n)_{n\geq 1}, \ a_n=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}, \ b_n=a_n-f(n), \ c_n=a_n-f(n+1), \ (\forall) \ n\in\mathbb{N}, \ n\geq 1.$

- a) Să se calculeze $f'(x), x \in (0, \infty)$.
- b) Să se arate că funcția f' este strict descrescătoare pe intervalul $(0, \infty)$.
- c) Utilizând teorema lui Lagrange, să se arate că (\forall) k>0, există $c\in(k,k+1)$, astfel încât $f(k+1)-f(k)=\frac{1}{\sqrt{c}}$.
- d) Să se arate că $\frac{1}{\sqrt{k+1}} < 2\sqrt{k+1} 2\sqrt{k} < \frac{1}{\sqrt{k}}, \ (\forall) \ k \in (0,\infty).$
- e) Să se arate că șirul $(b_n)_{n\geq 1}$ este strict descrescător iar șirul $(c_n)_{n\geq 1}$ este strict crescător.
- f) Să se arate că șirurile $(b_n)_{n\geq 1}$ și $(c_n)_{n\geq 1}$ sunt convergente.
- g) Să se calculeze $\lim_{n\to\infty} a_n$.

M1

Filiera teoretică, specializarea Științe ale naturii Filiera tehnologică, profil Tehnic, toate specializările

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

1. Câte funcții $f: \{a, b\} \rightarrow \{1, 2, 3\}$ verifică relația f(a) + f(b) = 4?

- **2.** Dacă matricea $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, cât este matricea A^2 ?
- 3. Care este probabilitatea ca un element n din mulțimea $\{1,2,3,4,5\}$ să verifice relația $2^n > n!$?
- **4.** Câte soluții are ecuația $x^2 + x + 1 = 0$ în mulțimea numerelor reale?
- **5.** Dacă funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to \mathbb{R}$ sunt f(x) = 2x 3 și g(x) = 3x 2, cât este $(f \circ g)(1)$?

Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = \frac{x-1}{x}$

- **6.** Cât este $f'(x), x \in \mathbb{R}^*$?
- 7. Cât este $\lim_{x\to 1} \frac{f(x) f(1)}{x 1}$?
- 8. Care este ecuația asimptotei către $+\infty$ la graficul funcției f?
- 9. Cât este $\int_1^2 f(x) dx$?
- 10. Cât este $\lim_{n\to\infty} \frac{5n+3}{2n+7}$?

SUBIECTUL II

- 11. Care este distanța de la punctul M(-2,1) la punctul N(2,-1)?
- 12. Care este ecuația dreptei care trece prin punctele M(-2,1) și N(2,-1)?
- 13. Care este aria unui triunghi echilateral cu latura de lungime 4?
- 14. Care este conjugatul numărului complex $\frac{1}{3}i$?
- **15.** Care este semnul numărului $\cos(-1)$?
- **16.** Dacă în triunghiul ABC, AB = 2, AC = 3 și $m(\triangleleft BAC) = \frac{\pi}{3}$, cât este BC?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră $a, b, c \in \mathbb{R}$ și polinomul $f \in \mathbb{R}[X], f = X^3 - pX^2 + qX - r$, cu rădăcinile $x_1, x_2, x_3 \in \mathbb{C}$, unde $p, q, r \in (0, \infty)$.

- a) Să se determine $s \in \mathbb{R}$ cu proprietatea că $f = s(X x_1)(X x_2)(X x_3)$.
- b) Să se calculeze expresia $(1-x_1)(1-x_2)(1-x_3)$ în funcție de p, q, r.
- c) Să se arate că $x_1^2 + x_2^2 + x_3^2 = p^2 2q$.
- d) Să se arate că polinomul $g = X^3 X^2 + X 2$ nu are toate rădăcinile reale.
- e) Să se arate că, dacă $x \in (-\infty, 0]$, atunci f(x) < 0.

- f) Să se arate că polinomul f nu are rădăcini în intervalul $(-\infty, 0]$.
- g) Să se arate că, dacă a+b+c>0, ab+bc+ca>0 și abc>0, atunci a>0, b>0, c>0.

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+2)^3 - x^3$.

- a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- b) Să se arate că funcția f este convexă pe \mathbb{R} .
- c) Să se arate că funcția f este strict descrescătoare pe intervalul $(-\infty, -1]$ și strict crescătoare pe intervalul $[-1, \infty)$.
- **d)** Să se arate că $2 \le f(x)$, (\forall) $x \in \mathbb{R}$.
- e) Să se arate că orice primitivă a funcției f este strict crescătoare pe \mathbb{R} .
- f) Să se calculeze aria suprafeței plane cuprinsă între graficul funcției f, axa Ox și dreptele de ecuații x=0 și x=1.

M2

Filiera tehnologică, profil Servicii, toate specializările; profil Resurse naturale și protecția mediului, toate specializările

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- **1.** Câte funcții $f: \{a,b\} \to \{a,b\}$ au proprietatea $f(a) \neq f(b)$?
- **2.** Câte soluții reale are ecuația $x^2 + 10x 11 = 0$?
- 3. Care este probabilitatea ca o submulțime a mulțimii {1, 2, 4} să conțină numai elemente pare?
- **4.** Dacă matricea $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, cât este matricea A^2 ?
- **5.** Dacă funcția $f: \mathbb{R} \to \mathbb{R}$ este f(x) = 2x 3, care sunt coordonatele unui punct de pe graficul funcției f, pentru care abscisa este egală cu ordonata?

Se consideră funcția $f: \mathbb{R}^* \to \mathbb{R}, f(x) = x - \frac{1}{x}$

- **6.** Cât este f'(x), $x \in \mathbb{R}^*$?
- 7. Cât este $\lim_{x\to 1} \frac{f(x) f(1)}{x 1}$?
- **8.** Câte asimptote verticale are graficul funcției f?
- 9. Cât este $\int_1^2 f(x) \ dx$?
- **10.** Cât este $\lim_{n\to\infty} \frac{f(n)}{2n}$?

SUBIECTUL II

- 11. Cât este distanța de la punctul A(-1, -2) la punctul B(-2, -1)?
- **12.** Care este ecuația dreptei care trece prin punctele A(-1, -2) și B(-2, -1)?
- 13. Cât este $\cos^2 12 + \sin^2 12$?
- 14. Care este conjugatul numărului complex 3 + i?
- 15. Cât este aria unui triunghi cu lungimile laturilor de 5, 5 și 6?
- **16.** Dacă în triunghiul ABC, AB = 5, AC = 5 și $m(\triangleleft BAC) = \frac{\pi}{3}$, cât este BC?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

a) Să se arate că
$$\frac{x^2}{a} + \frac{y^2}{b} - \frac{(x+y)^2}{a+b} = \frac{(xb-ya)^2}{ab(a+b)}$$
, (\forall) $x, y \in \mathbb{R}$ şi (\forall) $a, b \in (0, \infty)$.

- b) Să se rezolve în mulțimea numerelor reale ecuația $\frac{x^2}{2} + \frac{y^2}{3} = \frac{(x+x^2)^2}{5}$.
- c) Să se arate că $\frac{x^2}{a} + \frac{y^2}{b} \ge \frac{(x+y)^2}{a+b}$, (\forall) $x, y \in \mathbb{R}$ și (\forall) $a, b \in (0, \infty)$.

- **d)** Utilizând metoda inducției matematice, să se arate că (\forall) $n \in \mathbb{N}^*$, (\forall) $x_1, x_2, \ldots, x_n \in \mathbb{R}$ și (\forall) $a_1, a_2, \ldots, a_n \in (0, \infty)$, avem inegalitatea $\frac{x_1^2}{a_1} + \frac{x_2^2}{a_2} + \ldots + \frac{x_n^2}{a_n} \geq \frac{(x_1 + x_2 + \ldots + x_n)^2}{a_1 + a_2 + \ldots + a_n}$.
- e) Să se arate că $\frac{x^2}{y+z} + \frac{y^2}{x+z} + \frac{z^2}{x+y} \ge \frac{x+y+z}{2}$, (\forall) $x, y, z \in (0, \infty)$.
- **f)** Să se arate că $\frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{a+c} \ge \frac{9}{2(a+b+c)}$, $(\forall) \ a, \ b, \ c \in (0, \infty)$.

Se consideră funcțiile $f, g : \mathbb{R} \to \mathbb{R}, f(x) = \ln\left(e^x + \frac{1}{e^x}\right)$ și $g(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$.

- a) Să se arate că $f'(x) = g(x), (\forall) \ x \in \mathbb{R}.$
- b) Să se arate că funcția f este strict descrescătoare pe intervalul $(-\infty, 0]$ și strict crescătoare pe intervalul $[0, \infty)$.
- c) Să se verifice că $f(x) \ge \ln 2$, $(\forall) x \in \mathbb{R}$.
- **d)** Să se calculeze $\lim_{x \to \infty} g(x)$.
- e) Să se calculeze $\int_0^1 g(x) \ dx$.
- f) Să se determine ecuația asimptotei la graficul funcției f către $+\infty$.

M3

Filiera Vocațională: profil Pedagogic, specializările învățător-educatoare

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- 1. Câte funcții $f: \{1,2\} \rightarrow \{1,2\}$ au proprietatea $f(1) \cdot f(2) = 2$?
- 2. Câte elemente din mulțimea $\{101, 102, \dots, 125\}$ se divid cu 5?
- 3. Dacă mulțimea A are 7 elemente, mulțimea B are 6 elemente și mulțimea $A \cup B$ are 9 elemente, câte elemente are multimea $A \cap B$?
- **4.** Cât este produsul primelor 10 zecimale ale numărului $\sqrt{65}$?
- **5.** Câte elemente din şirul C_6^0 , C_6^1 , C_6^2 , C_6^3 , C_6^4 , C_6^5 , C_6^6 se divid cu 3?

Se consideră triunghiurile asemenea ABC și DEF astfel încât $\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = 3$.

- 6. Cât este raportul dintre perimetrul triunghiului ABC şi perimetrul triunghiului DEF?
- 7. Cât este raportul dintre aria triunghiului ABC și aria triunghiului DEF?
- 8. Dacă înălțimea din A a triunghiului ABC are lungimea 6, cât este lungimea înălțimii din D a triunghiului DEF?
- 9. Dacă măsura unghiului A al triunghiului ABC este 70° , cât este măsura unghiului D al triunghiului DEF?
- 10. Dacă lungimea laturii AC este 9, cât este lungimea laturii DF?

SUBIECTUL II

- 11. Câte rădăcini reale are ecuația $x^2 + 5x 6 = 0$?
- 12. Care este mulțimea valorilor reale ale lui x care verifică inecuația $x^2 + 5x 6 < 0$?
- 13. Care este soluția reală și strict pozitivă a ecuației $\log_3 x = 2$?
- **14.** Care este soluția reală a ecuației $2^x = 0, 5$?
- 15. Câte submulțimi cu 2 elemente are o mulțime cu 5 elemente?
- **16.** Care este cel mai mic număr real a, pentru care funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 1$, este strict crescătoare pe intervalul $[a, \infty)$?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră un triunghi dreptunghic ABC, ($m(\triangleleft A) = 90^{\circ}$) și un punct M pe segmentul (BC). Picioarele perpendicularelor duse din M pe catetele (AB) și (AC) se notează cu N și P.

- a) Să se arate că $AM^2 = AP^2 + AN^2$.
- b) Să se arate că $MC^2 = CP^2 + AN^2$.
- c) Să se arate că $MB^2 = AP^2 + NB^2$.
- d) Să se arate că triunghiul MBN este asemenea cu triunghiul CBA.
- e) Să se deducă relațiile $\frac{AP}{AC} = \frac{NB}{AB} = \frac{MB}{CB}$
- f) Să se arate că $AM^2 \cdot BC^2 = AB^2 \cdot MC^2 + AC^2 \cdot MB^2$.

Se consideră mulțimea $A = \{x^2 - 3y^2 \mid x, y \in \mathbb{Z}\}.$

- a) Să se verifice că $\{0, 1, 4, 6\} \subset A$.
- **b)** Să se verifice identitatea $(x^2 3y^2)(a^2 3b^2) = (xa + 3yb)^2 3(ay + bx)^2$, $(\forall) \ a, \ b, \ x, \ y \in \mathbb{R}$.
- c) Să se arate că, dacă $z, w \in A$, atunci $z \cdot w \in A$.
- d) Să se arate că $2 \notin A$.
- e) Utilizând metoda inducției matematice, să se arate că $6^n \in A$, (\forall) $n \in \mathbb{N}^*$.
- f) Să se arate că mulțimea $\mathbb{Z} A$ conține cel puțin 2005 elemente.

M2 Proba F

Filiera vocațională, profil Artistic, specializările: Arhitectură, arte ambientale și design; profil Militar, specializarea Științe sociale

Filiera teoretică, specializarea Științe sociale

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

1. Câte funcții $f: \{a, b, c\} \rightarrow \{a, b\}$ au proprietatea f(a) = f(b)?

2. Câte soluții are ecuația $5^{x^2} = 5^{5x}$ în multimea numerelor reale?

3. Dacă matricea $A = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$, cât este matricea A^5 ?

4. Care este valoarea sumei 7 + 77 + 777 + ... + 7777777?

5. Care este produsul primelor 5 zecimale ale numărului $\sqrt{145}$?

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x + e^x$.

6. Cât este $f'(x), x \in \mathbb{R}$?

7. Cât este $\lim_{x\to 1} \frac{f(x) - f(1)}{x - 1}$?

8. Câte puncte de extrem local are funcția f?

9. Cât este $\int_{1}^{2} \frac{1}{x^{2}} dx$?

10. Cât este $\lim_{n\to\infty} \frac{3n+2}{4n+5}$?

SUBIECTUL II

- 11. Cât este distanța de la punctul A(-4, -4) la punctul B(-5, -5)?
- **12.** Cât este $\cos^2 16 + \sin^2 16$?
- **13.** Dacă în triunghiul ABC, AB = 1, AC = 1 și $m(\triangleleft BAC) = \frac{\pi}{2}$, cât este BC?
- **14.** Care este conjugatul numărului complex -3 + i?
- **15.** Care este ecuația dreptei care trece prin punctele A(-4, -4) și B(-5, -5)?
- 16. Cât este aria unui triunghi cu lungimile laturilor de 7, 7 și 6?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră matricele $A = \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ și polinomul $f = X^2 - 10X + 16$.

a) Să se rezolve în mulțimea numerelor reale ecuația f(x) = 0.

b) Să se calculeze determinantul matricei A.

c) Să se calculeze matricea A^2 .

d) Să se verifice că $f(A) = O_2$. (Prin f(A) înțelegem matricea $A^2 - 10A + 16I_2$).

e) Să se rezolve sistemul $\begin{cases} 5x+3y=0\\ 3x+5y=0 \end{cases}$, unde $x,\,y\in\mathbb{R}.$

 $\mathbf{f)} \quad \text{Să se arate că } A^n = \frac{1}{2} \begin{pmatrix} 8^n + 2^n & 8^n - 2^n \\ 8^n - 2^n & 8^n + 2^n \end{pmatrix}, \, (\forall) \,\, n \in \mathbb{N}, \,\, n \geq 2.$

SUBIECTUL IV

Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^4 + x^3 + x^2 + x + 1 \ (\forall) \ x \in \mathbb{R}.$

a) Să se calculeze $f'(x), x \in \mathbb{R}$.

b) Să se arate că funcția f' este strict crescătoare pe \mathbb{R} .

c) Să se calculeze $\lim_{x\to\infty} f'(x)$ și $\lim_{x\to-\infty} f'(x)$.

d) Să se calculeze $\int_0^1 f(x) \ dx$.

e) Să se calculeze $\lim_{x\to 0} \frac{f(x)-1}{x(e^x-1)}$.

f) Să se arate că $f(x) \ge 1$, $(\forall) x \in \mathbb{R}$.

M3 Proba F

Filiera Teoretică, sp. Filologie; Filiera Vocațională: profil Artistic, sp.: Arte plastice și decorative, Coregrafie, Muzică și Teatru:

profil Pedagogic, toate specializările cu excepția învățător-educatoare;
profil Educație fizică și sport ; profil Militar, sp. Muzici militare; profil Teologic, toate specializările

SUBIECTUL I

Pentru întrebările 1-16 scrieți doar răspunsurile pe foaia de examen

- **1.** Câte funcții $f: \{1, 2, 3\} \to \{1, 2\}$ au proprietatea $f(1) \cdot f(2) = 2$?
- 2. Câte elemente din mulțimea $\{101, 102, \dots, 125\}$ nu se divid cu 4?
- 3. Dacă mulțimea A are 9 elemente, mulțimea B are 8 elemente și mulțimea $A \cap B$ are 4 elemente, câte elemente are mulțimea $A \cup B$?
- 4. Care este produsul primelor 10 zecimale ale numărului $\sqrt{257}$?
- 5. Câte numere de 3 cifre distincte se pot forma utilizând numai cifre din mulțimea {1, 2, 3, 4}?

Se consideră triunghiul dreptunghic ABC cu catetele AB = 5, AC = 12.

- **6.** Cât este perimetrul triunghiului ABC?
- 7. Cât este lungimea înălțimii din A a triunghiului ABC?
- 8. Cât este aria triunghiului ABC?
- 9. Cât este lungimea medianei din A a triunghiului ABC?
- **10.** Cât este cosinusul unghiului $\triangleleft ABC$?

SUBIECTUL II

- 11. Câte rădăcini reale are ecuația $2x^2 + 3x 5 = 0$?
- 12. Care este multimea valorilor reale ale lui x care verifică inecuația $2x^2 + 3x 5 < 0$?
- **13.** Câte rădăcini reale are ecuatia $64^x 8 = 0$?
- 14. Care este rădăcina reală, strict pozitivă, a ecuației $\log_6 x = -2$?
- **15.** Cât este suma $C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4$?
- **16.** Care este cel mai mare număr dintre 2 şi $\sqrt[3]{9}$?

Pentru subiectele III și IV se cer rezolvările complete SUBIECTUL III

Se consideră patrulaterul convex ABCD în care $AC \cap BD = \{O\}$.

- a) Să se arate că, dacă $AC \perp BD$, atunci aria patrulaterului ABCD este egală cu $\frac{AC \cdot BD}{2}$.
- b) Să se arate că, dacă $AC \perp BD$, atunci $OA^2 + OB^2 + OC^2 + OD^2 = AB^2 + CD^2$.
- c) Să se arate că, dacă $AC \perp BD$, atunci $AB^2 + CD^2 = AD^2 + BC^2$.
- d) Perpendiculara din A pe dreapta BD cade pe segmentul [DO] în punctul E. Să se arate că $AB^2 = OA^2 + OB^2 + 2 \cdot OE \cdot OB$.

- e) Perpendiculara din C pe dreapta BD cade pe segmentul [BO] în punctul F. Să se arate că $CD^2 = OC^2 + OD^2 + 2 \cdot OF \cdot OD$.
- f) Să se arate că, dacă $AB^2 + CD^2 = AD^2 + BC^2$, atunci $AC \perp BD$.

Se consideră mulțimea $A = \{p + q\sqrt{5} \mid p, q \in \mathbb{Z}\}.$

- a) Să se arate că, dacă $x, y \in A$, atunci $x + y \in A$.
- **b)** Să se arate că, dacă $x, y \in A$, atunci $x \cdot y \in A$.
- c) Să se verifice că $1 \in A$ și $\sqrt{5} 2 \in A$.
- d) Utilizând metoda inducției matematice, să se arate că, dacă $x_1, x_2, ..., x_n \in A$, atunci $x_1 \cdot x_2 \cdot ... \cdot x_n \in A$, (\forall) $n \in \mathbb{N}^*$.
- e) Să se arate că $(\sqrt{5}-2)^n \in A$, (\forall) $n \in \mathbb{N}^*$.
- f) Să se arate că în intervalul (0; 0, 01) există un element din mulțimea A.