ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет безопасности информационных технологий

Дисциплина:

«Операционные системы»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

«Тестирование файловых систем»

Выполнили:
Нгуен Хонг Хань N3249
(подпись)
Проверил:
Савков Сергей Витальевич
(подпись)

Задание

Выбрать 3 (или больше) файловых систем, выбрать методику проверки и найти лучшую из них.

Усложненный вариант

Экзотические фс или экзотические методики проверки

1. Файловые системы

Журналируемая файловая система — файловая система, в которой осуществляется ведение журнала, хранящего список изменений и, в той или иной степени, помогающего сохранить целостность файловой системы при сбоях.

a. NTFS

- NTFS стандартная файловая система для семейства операционных систем Windows.
- Каталог на NTFS представляет собой специфический файл, хранящий ссылки на другие файлы и каталоги, создавая иерархическое строение данных на диске.
- NTFS поддерживает хранение метаданных. Информация о файлах хранится в главной файловой таблице Master File Table (MFT). Для повышения надёжности файловой системы в NTFS используется система журналирования USN.

б. ext4

- ext4 журналируемая файловая система, используемая в операционных системах с ядром Linux, созданная на базе ext3 в 2006 году.
- Для Ext4 существует три уровня работы с журналированием:
 - Журнал самый безопасный режим.
 - Упорядоченный этот режим используется по умолчанию во многих дистрибутивах.
 - Обратная запись менее безопасный метод журналирования.

• Особенности

- ext4 обратно совместим с ext3 и ext2, что позволяет монтировать ext3 и ext2 как ext4.
- Больший размер файлов и файловой системы
- Масштабируемость подкаталогов. Она позволяет создавать неограниченное количество подкаталогов.
- Экстенты. Экстент это в общем-то набор последовательных физических блоков. Благодаря применению экстентов улучшается производительность, а также уменьшается фрагментированность, поскольку экстенты способствуют непрерывному размещению данных.
- Многоблочное распределение. Ext4 использует механизм многоблочного распределения (multiblock allocator, mballoc) который позволяет распределить любое количество блоков с помощью единственного вызова и избежать огромных накладных расходов.
- Отложенное распределение. Суть этого метода состоит в отсрочке выделения блоков насколько это возможно.
- Быстрый fsck: В Ext4 после inode-таблицы каждой группы хранится список неиспользованных inodes (снабжённый для надёжности контрольной суммой), поэтому fsck такие inodes не будет проверять.

в. ReiserFS

- ReiserFS журналируемая файловая система, разработанная специально для Linux.
- Это эффективная файловая система, которая очень быстро работает с небольшими файлами. ReiserFS использует специально оптимизированные сбалансированные деревья (b* balanced tree одно на файловую систему) для организации всех данных файловой системы. Одно это дает большое увеличение производительности, а также снимает ряд искусственных ограничений на размещение файловой системы.

- Она поддерживает журналирование для быстрого восстановления в случае проблем. В основе структуры файловой системы, также как и для ReiserFS лежат деревья.
- Она позволяет помещать небольшие файлы и хвосты файлов в один блок, это снижает занимаемое ими место.

г. BtrFS

- btrfs (B-Tree Filesystem) файловая система для Unix-подобных операционных систем, основанная на технике «Copy on Write» (CoW), призванная обеспечить легкость масштабирования файловой системы, высокую степень надежности и сохранности данных, гибкость настроек и легкость администрирования, сохраняя при этом высокую скорость работы.
- Btrfs поддерживает режим полного журналирования (данных и метаданных), проверку тома без размонтирования и множество других современных фич.

д. Сравнения нескольких ограничений

орависиим исскольких ограничении					
	Файловая	Родная	Максимальная	Максимальный	Максимальный
	система	OC	длина имён файлов	размер файла	размер тома
	NTFS	Windows	255 символов	16 ЭиБ	16 ЭиБ
		NT			
	ext4	Linux	255 байт	16 ГиБ — 16 ТиБ	1 ЭиБ
	ReiserFS	Linux	4032 байт/255	8 ТиБ	16 ТиБ
			символов		
	btrfs	Linux	255 байт	16 ЭиБ	16 ЭиБ

2. Ход работы

```
#!/bin/bash
#Создадим тестовый файл
sudo dd if=/dev/zero of=/home/hanhnguyen26/testfile bs=1M count=256
for T in "ext4" "ntfs"; do
    echo $T
    mkdir $T
    # C помощью dd создать диск
    sudo dd if=/dev/zero of=$T.bin bs=1M count=512 &> /dev/null
    # C помощью mkfs создать файловую систему
    sudo mkfs -t $T -F $T.bin &> /dev/null
    # Смонтировать фс в папку
    sudo mount $T.bin $T &> /dev/null
    # Время копирования
    sudo /usr/bin/time -p cp /home/hanhnguyen26/testfile $T
    # Время вывода
    sudo /usr/bin/time -p cat $T/testfile
    # Время удаления
    sudo /usr/bin/time -p rm $T/testfile
    # • С помощью iozone Тестирование пропускной способности при чтении, записи
    sudo iozone -t 2 -s 65536 -b $T.xls
    sudo umount $T
    sudo rm $T.bin
done
for T in "btrfs" "reiserfs"; do
    echo $T
    mkdir $T
    sudo dd if=/dev/zero of=$T.bin bs=1M count=512
```

```
sudo mkfs -t $T -f $T.bin
sudo mount $T.bin $T
sudo /usr/bin/time -p cp /home/hanhnguyen26/testfile $T
sudo /usr/bin/time -p cat $T/testfile
sudo /usr/bin/time -p rm $T/testfile
sudo iozone -t 2 -s 65536 -b $T.xls
sudo umount $T
sudo rm $T.bin
```

done

3. Результат

• Вывод: Файловая система помогает управлять файлами, хранящимися на диске, создавая удобство для пользователей при доступе к файлам, а также каталогам. Файловая система в linux очень разнообразна, каждая файловая система имеет свои преимущества и недостатки, в зависимости от потребностей пользователя мы можем изменить файловую систему в любой момент.