import pandas as pd
import numpy as np

Import dataset

from google.colab import files
files.upload()

```
Choose Files Housing_dataset.zip
```

• Housing_dataset.zip(application/x-zip-compressed) - 11983 bytes, last modified: 4/5/2024 - 100% done Saving Housing_dataset.zip to Housing_dataset.zip

{'Housing_dataset.zip': b'PK\x03\x04-

 $$$ \x11\timese4\times19M\timese9]\times89\times125\timese2\timese3j\times1ft\times94\times8c\times51\timesa35\timese57\timesfe\times18\times8a\timesea+\x9a\times91\times03!\timesec''\times941\times81\timesd\timesbf\times80mc\times9bjj\timesfdz\timesb6X\timeseb\timescb\timesd8\times1a\timesf1\timesc7T\timesea\timesd5\times1d\times87<\times8ao\timesad\times0fA\timesa1\timesc7\timesda\timesaecjFh\timesec\timesf6\times87\times94\\rr\times81\timesb1\times1f\timesc1\times1f!<<x16!b\timesed\times0f\times84s\times98;\timesd8\timesbf\timesb6d\timesbf1\timesd93\times93\timesfe\times85\timesd1$

 $\xbay\x8f@\xb1\xf3\xa8\x13Rc$?

 $$$ \x11\xf7\xee\xe7i\x94D\xc73\x98\x8f\xd7\xb5~I\xbd\x9f\B\xadgR\xd (\x08C\x1be\x97\x9d\x12\xd8B\xfa\xa0rE) | n\xf6\xbc\xd4 \xecW_\x0eB\xd3\xf1N?$

 $\x3_W\x0^x97L\x92\x60\x62\xfa\xad@\xe5\xbeh\xb1c\x1eth0\xc1G\xc8\x06\xc1\x19\xb4\xc0(\xb49\x89\xb1\xab\x81i)$

 $\label{thm:condition} $$ x93\times x^fd\times x^f8\times x^f9\times x^f0\times x^f0$

 $$$ \times 15\times1e9t\xf5\timesd4\xb9v\xcf<\x10\xf3g\xae\xb9\xc1\x10\x0b\xf3xf1c\x08\xa4\x85\x89\xa0\xe7\xf9\x89\x90\x17\x98j\xd1/\xfd\x31\x9f\xad\x94\x90\x1d\xc5\x9c\x80\x17\xd6t\x88\x91\xaf(\xb8\cq\xa8\x9f\xa2\x17\x04\xa4\{\xaa\xfd\xe5\x82@\xcf\x1a\x1a\x14\x92\xe2\x9f(\x16\xf3\x9c\x95\xa2\x85)-$

 $= a \times 04 \times ce \times 14 \times fd 3 \times a6r6 \times 18 \times fb \times y90 \times y90a \times c4LZ \times c1 \times c6 \times y90 \times y90a \times c4LZ \times c1 \times c6 \times y90 \times y90a \times c4LZ \times c1 \times c6 \times y90 \times y90a \times$

 $$$ \times 10^r\times 2^{0}\times 2^{1}\times 2^{2}\times 2^{$

\x81#\x0c%+\xf9\x86!\x88\x13:\xd9\xb2ata\x82P\x86V\x1b\xf68P\x9b-

\x8d\xe1d\xb8\x93\xc2\x94\xd2\xaceH\xab;\x80\x1dA\xa1\x14\xfb\x05!\xe2\xe1Ed=\xcd)
\xef\xc8*\x80\x12V\x9b>

\xb9\x80X1\xd8\x85\x17\x83\xc7\xb1\xb4P7\xc2\x17\x98\x16\t\xd6\xf30v\xbb\r5\x16\xd0\x92S\xdeN\$L\xbdfh\xb5\xe9\x92\x8b\xe9\xe2\x13\xc5\@\xd4!\xd3U^\xf1\n^\xf0\x1d\x86\\xb6b:\x1b\x1e\xc1\\\x84\xa0(I\xc0\xcf\R\x82\x91\x02\x13\xb8\x9d\t\xe9\xed\x1a]z\xf(\w\xb1~\xde\J3)\xe4\t\#\x07\xe9\@(\xf4\x17\x7fL5\#\$\xf8&\x08\xc9c\xd4\xa6>\xa9?

 $$\x81\xf7\x01\x11\xf3\x08\xec_\x94\xbf":\x88d\x14S!\x18\xdb\x91\x8a\xce#e)\x0b_L\xef\xd3\\0\xe3a\x8f\x03A\xc5d*\xbcT\xc2\xc6\x17a\xbb0gSH\x1a$

 $1\xd0H^\x81d\x8b\xd6\x99\xa4\x00\xbfArA^C\xdb{\xf8\x01\xe4n\x8c\xbd^\xee(wj\xxde7\x90za\xacvH\x0bT\xb4\xb3\xb6o"\x97\xe0\x14\xa3q\xa0\r\xcd+,\x18\xb4\x07\x85\xee\x87\x84.t~$

 $\label{thm:convention} $$ \xeb\xeG\xfcz:\x89\xf1k\xf7\xd6\n\x00\x04\x81\xbd:\y\xda\xf9n\x06;\xf6\xdb\xed\xxd5\n9B\xb8\x94\xb3\xf7n\) $$ \y\x6\x87\xbf\x88\x94\xba\x1706\x8c\x14\xe8\xcb1\x06\xp9\xf4\x9e\xd0=\x1e\xf6\x91\x86\x92\xf6\x99\xeal\nb\x8e\x08\x94\xb8\xb2\xef\xdb\xa9p_\xff\x9dF\x19\xa8\xb15\xbf\xa1\#\x1e\x18\x8d\xc5r\xe9q\xadW\xa8\x7\xf2\x0b\T\xcc\x92\xc8\x8a\xc1\xce\x19v\xc0\xc5\xfed\x91\xdb\x85\x0e\xb1\xb0\xbd\xa8\x8d\x9e\xca\xa9\xf7\xcdG&\x93\x9c-$

 $\label{label} $$ \xd0^{j}xf3\x86\x8a\x9e\xd2\x92\x81\x1a\x16\xd4\x1e:\xfcF\x9b\x99\xbd\xac\sim\x82T m\xcf\x8aU\xc1o\x84\xca&\x1b\xb6\x96\)$

\xea\x8d\x90\x9d\xf2t~ko\xd2\x0f\x10T\x0b`z\xa1\x01VVV6\xc9\xc1\xc5\xa3X0\xa2\xf8\xfe, $\xspace \xspace \xsp$ $$ \xc1\timese^xb4\timesc8\times1d\timesa1\timesfa\timese^j\xf7p\xfa\timesba\timesd6\times0f\times0f\times01hL\timesa8> $ $ {+\xc7\timesf4[\xc7\times84\timesa5f\times7f\xd9]\times95\timesb8\times91P\timesa1\times86\timesd0\timesb1T.} $$ $ $ x10\timesx10\times10^m $$ $ x10\timesx10^m $$ $\label{lem:saddle} $$ xfcB\xdc\xfbq\x159\xb3Fo^\x84\xa3\xe8\x1f\x9b(a\x80) $$$ $\xcf\xf44\x824\xba\xa5\x9af\xee\xc68\x98\xa9,K3\xefP\xdb7\x11\xdd\xf7\x03\x88\{&x66\xa9,K3\x$ <0\xe8\xcaK\xfa\xf6\xc1\x8c\xbe\xc0 \xb0\xcf\xa3Q\xd6yQ\x97\xf2\x05\xa3\xb0\xb5\xb7x\xcek\x83\xa0\x06\x83X\x8e5\x18\x16\x18\x96\x0b\x00w\rp\ %h\x9cFe\xfb\'\x08v0\xd49"\xac\xecxF\xb1c0\x8556\xf1}^\x00\xc9\x9897\x10\xa4\x0c\'g\x1b \xb9\x8a,>\xda+\x8c%\xea\xfe\xd9\x17H\x84\xe6\xe1\xe4\x82\xcc4\x02\xf5\xd6\n\x91\xedE\x '\r\xedl\xf1\x8a!\xcco\xca\xd8\xe5\xf9M3\x95\x97\xf3\xa0g\x01\xad\xa7? $\x94\xfd\xbd\xc6\x93\x0c^\xeaX\xd6\x99\x06A,\xe40\xeb\xcf\xa7,\x1e\x08$ $\xf9\x07\x10\x9c\xb5\x2.!v\xce\x9eo\x18\x06\x8d\xec(\xab\xea\xcd[B\x1f\x90\xe18\x07\yR.\xex)$ $\xbe\x1ad\x87(\xcc!\xe5?\x80\x80\x178w-$ \x08R\x90(\xcc>\xdde\x89N\x9fkI\xc4\x9c\x01\xf2\x87(:q\xe4\x9c\\xa9\xee\x97\xe2\x85\x8 $@/t\x85k\xf45\x03\xbe\xda\xe3+\xfe\xfd\n\xb1\xec\x96;P\xa6\x03\xda\xdc\xa70lw\x81\xc8\x$ \xcd\xd7\xe4N-\xb6\xba\xfa\\\xdf\x02\x12\xb1\x90\x18\x9d\x179\xe4\r\xe2\xc9\xd5? \xddv\xa6\xd2\xd1sz\x80pKG\$%U\xf1\xd3\x0bL\xa61\x95w\xa2\x11\xab\x18\x03\xb5\x90\x85\x1 \x18\x7f\xb5\x9d\'\xc9\xe7\t\xe0\xf4dr\$\xfa\xfa\xa3\x15A\xd1Q\xc6Y\x1dS\xcbHC~c\xe4@\xf P7\x0bH\xaa\xe8gj\xb3? \x1a\xa31\xbeY\xfcCH\xe1\xdd\x86\x87\x10\xcc\xa5\xadg\xa1c\x9c\xb8\x9d\x9bQ%\xc2\xd5\xd \xd8o7\xb6 $oy\\x12\\x82\\xa9\\xc8\\xd0\\xfa\\xb0q\\x85\\(xe8h`#\\x99\\xfd\\xa9\\xc8\\r%r\\xd7\\x83\\x8f\\x$ $5d\xb0\x19\xeb\xb0\xaaZX\xca8\x85.\xb7\x90~\xb(\xc7\xfe\xfc\xa7\x8a\x9d*\xa9\x1d\x10:$ $\xf2\xbcaz\xdc"\x8c\xd3^\x9fMTW!\xe8\xf1\xca\xf5 \xa5| \label{linear_continuous} $$ \agnormall{ Linear_continuous} $$ \agnorm{ Linear_continuous}$ wo\x00\xfa\x18\x89- $\xc0\x111\xc0\x31x91\xcf\xc2\xb9\xb1\x93\x10t=\xcfM9\xb1\Ee\x15\\\xb7\xb7\xb3\xba\xd$ $\xc1\xbb+\xcc \xa5\xe1\xe5\xd5\xc8N\xd1\x13\xa7?$ x08sFNx89xddxf3xf6txdaxdbx870x03xc9xaaxx82A5xf7x13x06xebx010xbfnx9c $F\xff2E\xe5\xf7*\xac0\xc2\xd2w\x1f\xdbt\xeetJiu\xdc\x1c\x06\xb3\x935\xb11AwW\x07\&)$ $Y(\x12\xe6\x1de\x83\xc8\xfcR\xc6\x91\xa3k\xba\%\xc6\x8a\x8f\xc8\xb1\xc6I=\x89o\x8d\n\%\x11)$ $\xo5M\xf5\xd1A\xe4\x1eFrV^\xd8P\xa3\x90M9Ii\x18\xcb^\xf7;r\x11gv\xd9\xfb{=}\x14\xb5G\xaf$

e\x88Lb\x8a\xffr\xa6\x8c\xd9\xee\xc2\xb4J\xdas\xa29 n\xff\xbel,\x9fh\xed $- \\ x06M{\x8f\%\xc9m/\x03\xa0\xd2\x8c\xcb\x0e\xf2$6\xccj\xad\xde\x7f}\x8aq\x18\xa8\sim q\xb9\xee}$ $\xeb\xbc1&\xecH\xdeF\xfe\xc5{K\xa8\x15F\x8aom[\x12Q\xabR\xf0\xbc3\x8b\x9c)\x88\x9ao\x}$ $[Q\xc8\xbe\x1c\%\xf2\x0bV\xe8\xfe\x98\x08\xaalI<\x97\x15A\t\x8c\x97\xdc\xc2\xa1\x18"\xdd]$ \x90\xa3\x0c\x90\xd27s=\xbd\xc2\x1aYE2\xc0\xbf\xec3\x94=\xa7\x88\x85\xb9\x14\xd8\xf8\x9 $x18\xc4\xc5[\xeea\xb7i\xa5\x8d\x869]$

\x8f\xd0\xe7\x085\xcb\x01\xc2G\xe4\xdf\x17\xd1\xf4Z\xb1\x81\xc8\xf2\x1f\xf8\x98\xcd\xa9

Read dataset

df = pd.read_csv("/content/Housing_dataset.zip")

df

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST/
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.9
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.(
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.9
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	Nε
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	Nε
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.(
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.6
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.4
505	0.04741	0.0	11.93	0.0	0.573	6.030	NaN	2.5050	1	273	21.0	396.90	7.8
E06 **	• 11 ~	dumno											•

Basic Operation

```
df.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
A	0 06005	0.0	ク 1Ω	0.0	N 45Ω	7 1/17	EA 2	E 0E22	3	າາາ	1Ω 7	306 00	NaN

Next steps:

Generate code with df

View recommended plots

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	486 non-null	float64
1	ZN	486 non-null	float64
2	INDUS	486 non-null	float64
3	CHAS	486 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	486 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	int64
9	TAX	506 non-null	int64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	486 non-null	float64
13	MEDV	506 non-null	float64
dtyp	es: float	64(12), int64(2)	
memo	ry usage:	55.5 KB	

df.describe()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE
count	486.000000	486.000000	486.000000	486.000000	506.000000	506.000000	486.000000
mean	3.611874	11.211934	11.083992	0.069959	0.554695	6.284634	68.518519
std	8.720192	23.388876	6.835896	0.255340	0.115878	0.702617	27.999513
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000
25%	0.081900	0.000000	5.190000	0.000000	0.449000	5.885500	45.175000
50%	0.253715	0.000000	9.690000	0.000000	0.538000	6.208500	76.800000
75%	3.560263	12.500000	18.100000	0.000000	0.624000	6.623500	93.975000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000

Data Preprocessing 1) Check null values and handle it

df.isna()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST
0	False	False	False	False	False	False	False	False	False	False	False	False	Fal
1	False	False	False	False	False	False	False	False	False	False	False	False	Fal
2	False	False	False	False	False	False	False	False	False	False	False	False	Fal
3	False	False	False	False	False	False	False	False	False	False	False	False	Fal
4	False	False	False	False	False	False	False	False	False	False	False	False	Tr
501	False	False	False	False	False	False	False	False	False	False	False	False	Tr
502	False	False	False	False	False	False	False	False	False	False	False	False	Fal
503	False	False	False	False	False	False	False	False	False	False	False	False	Fal
504	False	False	False	False	False	False	False	False	False	False	False	False	Fal
505	False	False	False	False	False	False	True	False	False	False	False	False	Fal
506 ro	ww. v 1/	Laalumi	20										•

df.isna().sum()

CRIM 20 20 INDUS 20 CHAS 20 NOX 0 RM 0 20 AGE DIS 0 RAD TAX 0 PTRATIO 0 LSTAT 20 MEDV 0 dtype: int64

df = df.replace(np.NaN, 0)

df

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST/
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.9
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.1
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.9
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	0.0
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	0.0
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.0
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.6
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.4
505	0.04741	0.0	11.93	0.0	0.573	6.030	0.0	2.5050	1	273	21.0	396.90	7.8
E06 ***	11	alumna											•

Next steps:

Generate code with df

View recommended plots

```
df.isna().sum()
```

CRIM 0 ΖN 0 INDUS 0 CHAS 0 NOX 0 0 RM AGE 0 DIS RAD 0 TAX PTRATIO В 0 LSTAT 0 MEDV 0 dtype: int64

Check Outliers

```
import seaborn as sns
import matplotlib.pyplot as plt
```

df.boxplot()


```
Q1 = df['MEDV'].quantile(0.25)
```

```
Q3 = d+['MEDV'].quantile(0./5)

IQR = Q3 - Q1

Lower_limit = Q1 - 1.5 * IQR

Upper_limit = Q3 + 1.5 * IQR

Upper_limit = Q3 + 1.5 * IQR

print(f'Q1 = {Q1}, Q3 = {Q3}, IQR = {IQR}, Lower_limit = {Lower_limit}, Upper_limit = {Upper_limit}')

Q1 = 17.025, Q3 = 25.0, IQR = 7.975000000000001, Lower_limit = 5.062499999999964, Upper_limit = 36.962500000000000
```

```
outliers_MEDV=[]
for i in df.MEDV:
    if i<Lower_limit or i>Upper_limit:
        outliers_MEDV.append(i)
print("outliers are",outliers_MEDV)
```

outliers are [38.7, 43.8, 41.3, 50.0, 50.0, 50.0, 50.0, 37.2, 39.8, 37.9, 50.0, 37.0, 50.0, 42.3, 48.5, 50.0, 44.8, 50.0, 37.6, 46.7, 4

df[df.MEDV<Lower_limit].index</pre>

Index([398, 405], dtype='int64')

 $\label{eq:dflower_limit} $$ df1 = df.drop(df[(df['MEDV'] < Lower_limit) \ | \ (df['MEDV'] > Upper_limit)].index) $$$

df1.boxplot()


```
outliers_MEDV=[]
for i in df1.MEDV:
   if i<Lower_limit or i>Upper_limit:
      outliers_MEDV.append(i)
print("outliers are",outliers_MEDV)
```

outliers are []

df1

```
CRIM
                   ZN INDUS CHAS
                                      NOX
                                             RM AGE
                                                          DIS RAD TAX PTRATIO
                                                                                       B LST/
     0
         0.00632 18.0
                         2.31
                                0.0 \quad 0.538 \quad 6.575 \quad 65.2 \quad 4.0900
                                                                    296
                                                                             15.3 396.90
                                                                                           4.9
         0.02731
                   0.0
                         7.07
                                0.0 0.469 6.421 78.9 4.9671
                                                                 2 242
                                                                            17.8 396.90
                                                                                           9.1
     2
         0.02729
                   0.0
                         7.07
                                0.0 0.469 7.185 61.1 4.9671
                                                                 2 242
                                                                            17.8 392.83
                                                                                           4.0
                                0.0 0.458 6.998 45.8 6.0622
         0.03237
                                                                 3 222
     3
                   0.0
                         2.18
                                                                            18.7 394.63
                                                                                           2.9
         0.06905
                   0.0
                         2.18
                                0.0 0.458 7.147 54.2 6.0622
                                                                 3 222
                                                                             18.7 396.90
                                                                                           0.0
    501 0.06263
                                0.0 0.573 6.593 69.1 2.4786
                   0.0
                        11.93
                                                                 1 273
                                                                            21.0 391.99
                                                                                           0.0
    502 0.04527
                                                                 1 273
                   0.0
                        11.93
                                0.0 0.573 6.120 76.7 2.2875
                                                                            21.0 396.90
                                                                                           9.0
    503 0.06076
                   0.0
                        11.93
                                0.0 0.573 6.976 91.0 2.1675
                                                                 1 273
                                                                            21.0 396.90
                                                                                           5 f
    504 0.10959
                                0.0 0.573 6.794 89.3 2.3889
                                                                 1 273
                   0.0
                        11.93
                                                                            21.0 393.45
                                                                                           6.4
    505 0.04741
                        11.93
                                0.0 0.573 6.030
                                                  0.0 2.5050
                                                                 1 273
                                                                            21.0 396.90
                   0.0
                                                                                           7.8
            Generate code with df1
                                      View recommended plots
Next steps:
```

Preaparing the data for training the model

```
X = df.drop(['MEDV'], axis = 1)
Y = df['MEDV']

X

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LST/
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LST/
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.9
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.1
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.9
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	0.0
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	0.0
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.(
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.€
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.4
505	0.04741	0.0	11.93	0.0	0.573	6.030	0.0	2.5050	1	273	21.0	396.90	7.8
E06 **	40 0	مصيناه											•

```
0
       24.0
1
       21.6
2
       34.7
       33.4
       36.2
501
       22.4
502
       20.6
503
       23.9
504
       22.0
505
       11.9
Name: MEDV, Length: 506, dtype: float64
```

Splitting the data into training and testing sets

```
from sklearn.model_selection import train_test_split
Xtrain, Xtest, Ytraiytrain_pred = lm.predict(xtrain)
ytest_pred = lm.predict(xtest)
ytrain_predn, Ytest = train_test_split(X, Y, test_size =0.2,random_state = 0)

import sklearn
from sklearn.linear_model import LinearRegression
lm = LinearRegression()

model=lm.fit(Xtrain, Ytrain)
model

* LinearRegression
```

Predict the y_pred for all values of train_x and test_x

LinearRegression()

```
Ytrain_pred = lm.predict(Xtrain)
Ytest_pred = lm.predict(Xtest)
Ytrain pred
            24.85066407, 19.63467407, 29.88611991, 9.38276177, 24.76151505,
            16.72954149, 16.29385216, 22.77008753, 21.26802212, 12.2364709 ,
            24.64477302, 27.71019776, 22.37135579, 12.05768659, 24.34053293,
            26.22963857, 25.26554617, 27.5573375 , 25.38605534, 23.06402212,
            20.60323418, 35.90032876, 20.8846604 , 35.83504182, 25.53810828,
            20.18211477,\ 15.19432166,\ 31.81754202,\ 20.9929256\ ,\ 27.62499348,
            17.56075001, 32.93774989, 14.19953109, 2.05446008, 19.57716258,
            13.39959974, 37.06963824, 16.02843169, 14.22645918, 25.8004773,
            23.17938523, 17.51289677, 31.03928846, 29.67567958, 27.664875 ,
            24.87954992,\ 27.0939266\ ,\ 26.40862538,\ 11.1643275\ ,\ 20.36781195,
            10.0546563 \ , \ 17.26624222, \ 11.97746837, \ 27.32233663, \ 14.86882989,
            15.98655082, 28.32889291, 14.0393481 , 21.1535252 , 12.66673814,
            16.60941748, 23.44062773, 20.67404959, 14.38333681, 21.1686395 ,
            13.76862585, 25.66766384, 12.53439405, 35.14087573, 15.35455039,
            43.2661169 , 31.27520414, 34.39926511, 21.58897794, 15.39880006,
            26.85768714, 28.60521699, 13.42512446, 26.26735857, 35.59014297,
            16.12321718, \ 12.1104995 \ , \ 34.04506216, \ 35.60373817, \ 17.48828129,
            25.33999395, 20.60520108, 24.06997649, 18.77252598, 26.9130493,
            -4.01040623, 20.54287878, 37.41339975, 34.74735709, 24.63091938,
            25.91858311, 19.44854638, 21.10224807, 16.19845928, 17.06790664,
            20.38162681,\ 27.64453456,\ 19.60519903,\ \ 7.24242967,\ 16.00033535,
            31.73236706, 35.45008203, 15.42885644, 18.77768003, 26.32877708,
             5.66978469, 21.18273113, 22.75936134, 15.50615652, 17.80964805,
            22.81298897, 26.78805495, 25.83084156, 37.22114199, 14.19665739,
            28.23285926, 24.85620232, 20.73994597, 38.30287036, 22.29143643,
            23.24430272, 22.34183176, 10.95022824, 19.50231212, 32.85036084,
            24.38133064, 17.27463319, 32.50636784, 22.68303606, 28.23715359,
            31.71958986, 36.30336114, 21.66627169, 23.20527639, 22.97726689,
            31.84758343, 22.51864962, 17.9820902 , 21.40804716, 28.84399091,
            22.76519651, 22.05554279, 17.40672403, 17.30260312, 16.67622643,
            16.44614716, 17.91832318, 31.75872911, 22.57702341, 17.48740869,
            18.64901264, 33.9937244 , 13.93997981, 25.52249105, 16.63719249,
```

```
28.425125/1, 31.563160/5, 24.45355221, 36.08996401, 1/.990405/2, 19.63518719, 18.83950626, 41.31553357, 25.01876563, 18.73759211, 33.53881 , 23.08223101, 19.05046237, 22.94236564])
```

Ytrain

```
220
       26.7
       21.7
240
       22.0
       22.9
6
417
      10.4
323
      18.5
192
      36.4
117
      19.2
47
      16.6
172
      23.1
```