CLAIMS:

1. A compound of the formula:

$$X \xrightarrow{11} \mathbb{R}^{8} \mathbb{R}^{B}$$

$$\mathbb{R}^{A} \mathbb{Q}^{N} \mathbb{R}^{1}$$

5 wherein

25

Q is oxygen or sulfur;

X is hydrogen and Y is CHR^2R^3 , NHR^2 , $NHOR^2$, or $NHNR^2R$; or X and Y are taken together to form $=CR^2R^3$; $=NR^2$; $=NOR^2$; or $=NNR^2R^3$;

R¹, R², and R³ are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ, where m is an integer from 0-6 and Z 10 is selected from the group consisting of halogen, hydroxy, formyl, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, 15 C₁-C₆ alkylaminoalkyl, (C₁-C₆ alkyl)(C₁-C₆ alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, $-CO_2R^4$, $-CONR^5R^6$, $-P(O)(OR^4)_2$, $-P(O)(NR^4R^5)_2$, and $-P(O)(NR^4R^5)(OR^4)$, where 20 R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C1-C6 alkyl; or

when X and Y are taken together to form = NNR^2R^3 , R^2 and R^3 are taken together with the attached nitrogen to form an optionally substituted heterocycle;

R^A represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_m/Z', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆

alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆

alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 5 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R^{4'}, -CONR^{5'}R^{6'}, -P(O)(OR^{4'})₂, -P(O)(NR^{4'}R^{5'})₂, and -P(O)(NR⁴'R⁵')(OR⁴'), where R⁴', R⁵', and R⁶' are each independently selected in each 10

occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

R^A represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally 15 substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m'}Z', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C1-C6 alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 20 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally 25 substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R^{4'}, -CONR^{5'}R^{6'}, $-P(O)(OR^{4'})_{2}$, $-P(O)(NR^{4'}R^{5'})_{2}$, and $-P(O)(NR^{4'}R^{5'})(OR^{4'})$, where $R^{4'}$, $R^{5'}$, and $R^{6'}$ are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted 30 phenyl, and optionally substituted phenyl-C1-C6 alkyl; and

25

30

R^B represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m"}Z", where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C1-C6 alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 5 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cvano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted 10 phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of -N₃, -CO₂ $R^{4''}$, -CON $R^{5''}R^{6''}$, -P(O)(OR^{4''})₂, -P(O)(NR^{4''} $R^{5''}$)₂, and -P(O)(NR^{4"}R^{5"})(OR^{4"}), where R^{4"}, R^{5"}, and R^{6"} are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted 15 phenyl-C₁-C₆ alkyl; or

R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m"}Z", where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of -N₃, -CO₂R^{4"}, -CONR^{5"}R^{6"}, $-P(O)(OR^{4''})_2$, $-P(O)(NR^{4''}R^{5''})_2$, and $-P(O)(NR^{4''}R^{5''})(OR^{4''})$, where $R^{4''}$, $R^{5''}$, and $R^{6''}$ are each independently selected in each occurrence from the group consisting of

15

20

25

hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl is described.

- 2. The compound of claim 1, wherein X and Y are taken together to form $=CR^2R^3$.
- The compound of claim 1, wherein X and Y are taken together to form =CR²R³, and the carbon-carbon double bond formed thereby is an E-double bond.
 - 4. The compound of claim 1, wherein Z is selected from the group consisting of hydroxy, amino, C₁-C₆ alkylamino, and nitro.
 - 5. The compound of claim 1, wherein Z' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
 - 6. The compound of claim 1, wherein Z'' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
 - 7. The compound of claim 1, wherein X and Y are taken together to form = CR^2R^3 ; and R^2 is C_1 - C_6 haloalkyl or aminoalkyl; and R^1 is hydrogen.
 - 8. The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle.
 - 9. The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of the substituents are adjacent substituents and are taken together with the attached carbons to form an heterocycle selected from the group consisting of dioxolane and dioxane.
 - 10. The compound of claim 1, wherein R^B represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted heterocycle; and Z'' is selected from the group consisting of C_1 - C_6 alkoxy and nitro.
 - 11. The compound of claim 1, wherein Q is oxygen; and R^A is 2,3-bis(C_1 - C_6 alkoxy).
- 12. The compound of claim 1, wherein Q is oxygen; and R^1 is C_1 -30 C_6 alkyl, aminoalkyl, or C_1 - C_6 haloalkyl.

- 13. The compound of claim 1, wherein Q is oxygen, R^A is 2,3-bis(C_1 - C_6 alkoxy), R^B is 8,9-alkylenedioxy, and X and Y are taken together to form = CR^2R^3 , where R^2 is hydrogen.
- The compound of claim 1, wherein Q is oxygen, R^A is 2,3bis(C₁-C₆ alkoxy), R^B is 8,9-alkylenedioxy, X and Y are taken together to form =CR²R³, R² is hydrogen, and R¹ is hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, C₃-C₈ halocycloalkyl, amino-C₁-C₆ alkyl, C₁-C₆ alkylamino-C₁-C₆ alkyl, or (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino-C₁-C₆ alkyl.

15. A compound of the formula:

$$\begin{array}{c|c}
R^1 & N \\
\downarrow & \downarrow & \downarrow \\
R^A & Q & R^2 & R^3
\end{array}$$

$$\begin{array}{cccc}
R^B & R^B &$$

10

wherein

Q is oxygen or sulfur;

R¹, R², and R³ are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ, where m is an integer from 0-6 and Z is selected from the group consisting of halogen, hydroxy, formyl, C1-C6 alkanoyloxy, 15 optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C1-C6 alkyl)(C1-C6 alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, 20 alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, $-CO_2R^4$, $-CONR^5R^6$, $-P(O)(OR^4)_2$, $-P(O)(NR^4R^5)_2$, and $-P(O)(NR^4R^5)(OR^4)$, where R⁴, R⁵, and R⁶ are each independently selected in each occurrence from the group 25 consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C1-C6 alkyl; or

 R^1 is selected from the group consisting of hydrogen and a radical -(CH₂)_mZ, where m is an integer from 0-6 and Z is selected from the group consisting

15

20

25

30

of halogen, hydroxy, formyl, C1-C6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C₁-C₆ alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵R⁶, $-P(O)(OR^4)_2$, $-P(O)(NR^4R^5)_2$, and $-P(O)(NR^4R^5)(OR^4)$, where R^4 , R^5 , and R^6 are each 10 independently selected in each occurrence from the group consisting of hydrogen, C1-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; and R² and R³ are taken together with the attached carbon to form an optionally substituted carbocycle or heterocycle;

R^A represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_mZ', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanovloxy, optionally substituted benzoyloxy, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkoxy, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, C₃-C₈ halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R⁴, -CONR⁵'R⁶, -P(O)(OR⁴')₂, -P(O)(NR⁴'R⁵')₂, and -P(O)(NR4'R5')(OR4'), where R4', R5', and R6' are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; or

RA represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally

substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_m/Z', where m' is an integer from 0-6 and Z' is selected from the group consisting of halogen, hydroxy, C1-C6 alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 5 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C6 alkylsulfonyl, optionally 10 substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z' is selected from the group consisting of -N₃, -CO₂R^{4'}, -CONR^{5'}R^{6'}, -P(O)(OR4')2, -P(O)(NR4'R5')2, and -P(O)(NR4'R5')(OR4'), where R4', R5', and R6' are each independently selected in each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted 15 phenyl, and optionally substituted phenyl-C₁-C₆ alkyl;

R^B is selected from the group consisting of hydrogen and a radical -(CH₂)_{m"}Z", where m" is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C_1 - C_6 alkanoyloxy, optionally substituted benzoyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkoxy, C_2 - C_6 20 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C₁-C₆ alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C₁-C₆ alkylsulfonyl, optionally 25 substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z" is selected from the group consisting of -N₃, -CO₂R^{4"}, -CONR^{5"}R^{6"}, $-P(O)(OR^{4''})_2$, $-P(O)(NR^{4''}R^{5''})_2$, and $-P(O)(NR^{4''}R^{5''})(OR^{4''})$, where $R^{4''}$, $R^{5''}$, and $R^{6''}$ are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted 30 phenyl, and optionally substituted phenyl-C₁-C₆ alkyl; and'

25

30

R^C represents 1-4 substituents each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m"}Z"', where m"' is an integer from 0-6 and Z" is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 5 haloalkoxy, C3-C8 halocycloalkyl, C3-C8 halocycloalkoxy, amino, C1-C6 alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C₁-C₆ alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C6 alkylsulfonyl, optionally substituted phenyl, optionally substituted 10 phenoxy, and optionally substituted heteroaryl; or Z"' is selected from the group consisting of -N₃, -CO₂R^{4"'}, -CONR^{5"'}R^{6"'}, -P(O)(OR^{4"'})₂, -P(O)(NR^{4"'}R^{5"'})₂, and -P(O)(NR^{4"} $R^{5"}$)(OR^{4"}), where $R^{4"}$, $R^{5"}$, and $R^{6"}$ are each independently selected in each occurrence from the group consisting of hydrogen, C1-C6 alkyl, C3-C8 cycloalkyl, C1-C6 haloalkyl, optionally substituted phenyl, and optionally substituted 15 phenyl-C₁-C₆ alkyl; or

R^C represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical - $(CH_2)_{m''}Z'''$, where m''' is an integer from 0-6 and Z''' is selected from the group consisting of halogen, hydroxy, C₁-C₆ alkanoyloxy, optionally substituted benzoyloxy, C1-C6 alkyl, C1-C6 alkoxy, C3-C8 cycloalkyl, C3-C8 cycloalkoxy, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 haloalkyl, C1-C6 haloalkoxy, C3-C8 halocycloalkyl, C₃-C₈ halocycloalkoxy, amino, C₁-C₆ alkylamino, (C₁-C₆ alkyl)(C₁-C₆ alkyl)amino, alkylcarbonylamino, N-(C1-C6 alkyl)alkylcarbonylamino, aminoalkyl, C1-C6 alkylaminoalkyl, (C1-C6 alkyl)(C1-C6 alkyl)aminoalkyl, alkylcarbonylaminoalkyl, N-(C1-C6 alkyl)alkylcarbonylaminoalkyl, cyano, nitro, C1-C6 alkylsulfonyl, optionally substituted phenyl, optionally substituted phenoxy, and optionally substituted heteroaryl; or Z"' is selected from the group consisting of -N₃, -CO₂R^{4"'}, -CONR^{5"'}R^{6"'}, $-P(O)(OR^{4"})_2$, $-P(O)(NR^{4"}R^{5"})_2$, and $-P(O)(NR^{4"}R^{5"})(OR^{4"})$, where $R^{4"}$, $R^{5"}$, and $R^{6"}$ are each independently selected in each occurrence from the group consisting of

15

hydrogen, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₁-C₆ haloalkyl, optionally substituted phenyl, and optionally substituted phenyl-C₁-C₆ alkyl is described.

- The compound of claim 15, wherein at least one of R^1 , R^2 , R^3 , R^A , R^B , or R^C is not hydrogen.
- 17. The compound of claim 15, wherein R^A is 2,3-bis(C_1 - C_6 alkoxy).
- 18. The compound of claim 15, wherein Q is oxygen, R^A is 2,3-bis(C₁-C₆ alkoxy), and R^B, R^C, R¹, R², and R³ are each hydrogen.
- 19. The compound of claim 15, wherein Z' is selected from the group consisting of hydroxy and nitro.
 - 20. The compound of claim 15, wherein R^A represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH_2)_mZ', where Z' is selected from the group consisting of hydroxy and nitro.
 - 21. The compound of claim 15, wherein Z" is nitro.
 - 22. The compound of claim 15, wherein Z" is nitro.
- 23. The compound of claim 15, wherein R^C represents 2-4 substituents where 2 of said substituents are adjacent substituents and are taken together with the attached carbons to form an optionally substituted carbocycle or an optionally substituted heterocycle, and the remaining 2 substituents are each independently selected from the group consisting of hydrogen and a radical -(CH₂)_{m"}Z"'; and Z"' is nitro.
- 24. A pharmaceutical composition comprising a compound of claim 1 or claim 15 and a pharmaceutically acceptable carrier, excipient, or diluent therefor.
- 25. A method for treating a mammal in need of relief from a disease state including cancer, comprising administering to the mammal an effective amount of a compound according to claim 1 or claim 15 or an effective amount of a pharmaceutical composition according to claim 24.