METCS777

Big Data Analytics

Term Paper

Short Report

Topic

Performance and Visualization of Big Data in Cloud Environments: A Comparative Study of Spark SQL (Databricks) and BigQuery

Team Members:

Tanvi Thopte-U35489362

Mehul Bisht-U93099406

1) Environment Setup

Component	BigQuery	Databricks		
Cluster	BigQuery Free Tier (serverless, managed by Google)	One driver node and two worker nodes with 15 GB RAM total		
Dataset	Stored in a Google Cloud Storage bucket linked to BigQuery	9 GB dataset split across multiple CSV files uploaded.		
Libraries Tools	BigQuery Web Console using SQL	PySpark and Plotly for data processing and visualization		
File Paths	glassy-ripsaw- 4732233.ecommerce.events_clean	Volumes/ecom in the Databricks workspace		
Visualization	Built-in BigQuery Charts and Data Studio (Looker)	Plotly and Matplotlib charts generated through notebooks		

2) How to Run the Code

For BigQuery

- We first upload our raw dataset into BigQuery under a table named events raw.
- Then, we run the CREATE OR REPLACE TABLE command to clean and partition the data, creating a new table called events_clean.
- After the table is ready, we execute all the EDA and analytics queries in sequence to perform our analysis.
- Once the queries finish, we check the Execution Details tab to view metrics like elapsed time, slot usage, and bytes processed to understand performance.
- Then,we connect Looker Studio to Big Query for visualisation purpose.

For Databricks

- We upload the CSV files containing the raw data into a Databricks workspace folder.
- Next, we run the create_table.sql script to create the cleaned events_clean table inside Databricks.
- After that, we run the eda_queries.sql and analytics_queries.sql scripts to perform the same exploratory and analytical steps as in BigQuery.
- Finally, we use plotly_charts.py to generate visualizations (like revenue trends and outlier detection). We make small adjustments in the script to match the actual dataset and query outputs.

3) DATASET DESCRIPTION:

The dataset used for this project is a 9 GB e-commerce events log containing detailed user activity and transaction information collected from an online retail platform. It captures all interaction users make on the website, from viewing products to completing purchases.

Key Features:

Total Size: 9 GB (split into multiple CSV files for Databricks; stored as a single table in BigQuery)

Time Period Covered: October 2019 – April 2020

Number of Records: Approximately 98 million rows

Each row represents a single user event (e.g., product view, cart addition, or purchase).

Main Columns:

- event time Timestamp of the user action
- event type Type of event (view, cart, purchase, etc.)
- product_id, category_id, category_code Product details and hierarchy
- brand Brand name of the product
- price Product price at the time of the event
- user id Unique identifier of the user
- user session Session ID representing a continuous user visit

Purpose:

This dataset enables analysis of user behavior, product performance, sales trends, and anomalies over time. It is used for both exploratory data analysis (EDA) and performance analytics, including daily revenue tracking, brand/category aggregation, and anomaly detection using statistical methods.

What are we exactly doing:

Steps from start to end (no code, just what each query does):

- Data Cleaning and Table Creation Create a clean, partitioned table (events_clean) from raw events, remove rows with missing prices, and ensure proper data types.
- 2. Row Count and Time Coverage Check total number of rows and event date range to verify data completeness.
- 3. Missing Data Overview Identify how many rows have missing category codes, brands, or prices.
- 4. Cardinality Analysis Count unique products, users, sessions, categories, and brands.
- 5. Price Statistics Find minimum, maximum, average, and quartile distribution of prices.
- 6. Monthly Event Distribution Analyze total number of events and total revenue per month.
- 7. Daily Revenue Trend Calculate daily total orders, revenue, and average price; include day-over-day revenue change.
- 8. Category × Brand Aggregation Compute total orders, revenue, and average price for each category-brand pair.
- 9. User-Level Monetization Summarize each user's activity: sessions, events, total and average spending.
- 10. Session Analytics Evaluate basket size, number of items, and total value per session.

- 11. Trend and Anomaly Detection Generate 7-day rolling averages and z-scores to detect abnormal revenue days.
- 12. Scalability Experiment Run the same aggregation on 1-month, 3-month, and 7-month periods to compare performance.
- 13. Top-K Products by Revenue Identify the top 100 products generating the highest total sales.
- 14. Brand-Level Price Outliers Detect products whose prices deviate more than three standard deviations from their brand's average.
- 15. Heavy Query (Category × Brand) Repeat the main category-brand analysis for a fixed time window (Oct 2019–Apr 2020).
- 16. Heavy Query (User-Level) Re-run the user-level aggregation for the same time window.
- 17. Heavy Query (Session Analytics) Re-run the high-cardinality session analysis for the same time window.
- 18. Rolling-Window Trend (Fixed Period) Compute 7-day moving average and z-score for daily revenue within a defined time frame.
- 19. Daily Metrics View Creation Create a reusable view summarizing daily revenue, 7-day moving average, standard deviation, and z-score for dashboards or further analysis.

Codes:

BIG QUERY:

```
-- Names: Tanvi Thopte, Mehul Bisht
      -- Cleaning + analyzing ecommerce events in BigQuery
  50/*8) Create a clean, partitioned table from the raw events.

PARTITION BY DATE(event_time) to speed up time-range scans.

SAFE_CAST converts/validates types without failing the query.

Filters out rows with NULL price, since price is central to revenue calcs. -*/
      -- glassy-ripsaw-473223-u3 is project name with ecommerce_events_raw and later cleaned and has ecommerce_events_clean
    CREATE OR REPLACE TABLE 'glassy-ripsaw-473223-u3.ecommerce.events_clean' PARTITION BY DATE(event_time)
       TIMESTAMP(event_time) AS event_time, -- normalize to TIMESTAMP
       TIMESTAMP(event_time) AS event_time, -- normalize to TIMESTAMP event_type, -- keeping as-is

SAFE_CAST(product_id AS STRING) AS product_id, -- to string type
SAFE_CAST(category_id AS STRING) AS category_id, -- to string type
category_code, -- may be NULL-pused in group-bys
brand, -- may be NULL-pused in group-bys
SAFE_CAST(price AS FLOAT64)AS price, -- numeric price for math
SAFE_CAST(user_id AS STRING) AS user_id, -- user identifying
SAFE_CAST(user_session AS STRING)AS user_session -- session identifying
SAFE_CAST(user_idsaw=47232-u]& ecommerce_events_raw.
 25 FROM glassy-ripsaw-473223-u3.ecommerce.events_raw 
26 WHERE price IS NOT NULL; -- remove rows without pr
 28 ---EDA (Exploratory Data Analysis)
 29
 30
      -- 0.1 Row count + time coverage (checking of table size and timeline)
 31 SELECT
        COUNT(*) AS total_rows,
 32
 33
        MIN(event_time) AS first_event,
 34
       MAX(event_time) AS last_event
 35
      FROM <u>'glassy-ripsaw-473223-u3.ecommerce.events_clean'</u>;
 36
 37
       -- 0.2 Missing data overview
 38
      SELECT
       SUM(CASE WHEN category_code IS NULL THEN 1 ELSE 0 END) AS null_category_code,
 39
 40
         SUM(CASE WHEN brand IS NULL THEN 1 ELSE @ END) AS null_brand,
 41
        SUM(CASE WHEN price IS NULL THEN 1 ELSE 0 END) AS null_price -- should be 0 by construction
 42
      FROM _glassy-ripsaw-473223-u3.ecommerce.events_clean ;
 43
 44
      -- 0.3 Cardinalities (uniques across main keys for sense of scale)
 45 SELECT
 46
        COUNT(DISTINCT product_id) AS unique_products,
 47
         COUNT(DISTINCT user_id) AS unique_users,
        COUNT(DISTINCT user_session) AS unique_sessions,
COUNT(DISTINCT category_code) AS unique_categories,
 48
 49
 50
       COUNT(DISTINCT brand) AS unique_brands
 51
      FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean';
 52
 53
       -- 0.4 Price stats (range, average, quartiles for distribution shape)
 54
      SELECT
       MIN(price) AS min_price,
 56
         MAX(price) AS max_price,
        AVG(price) AS avg_price,
 57
         APPROX_QUANTILES(price, 4) AS price_quartiles -- min, Q1, median, Q3, max
 59
       FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean';
 60
 61
      -- 0.5 Monthly event distribution (volume + gross value per month)
 62
       SELECT
       FORMAT_DATE('%Y-%m', DATE(event_time)) AS month,
 63
 64
        COUNT(*) AS total_events,
        SUM(price) AS total_value
 65
 66 FROM <u>'glassy-ripsaw-473223-u3.ecommerce.events_clean'</u>
      GROUP BY month
 68 ORDER BY month;
 69
 70
```

```
70 -- PART B: Performance / Analyese
     -- 1) Daily revenue trend with day-over-day change
 72 --
             Aggregates orders, revenue, avg ticket daily.
            Uses LAG to compute day-over-day revenue delta.
 73 --
 74 WITH daily AS (
 75
      SELECT
 76
        DATE(event_time) AS day,
 77
        COUNT(*) AS total_orders,
        SUM(price) AS total_revenue,
AVG(price) AS avg_ticket
 78
 79
 80
       FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
 81
      GROUP BY day
 82
 83 SELECT
 84
      day,
 85
       total_orders,
 86
       total_revenue,
 87
      avg_ticket,
       total_revenue - LAG(total_revenue) OVER (ORDER BY day) AS revenue_change
 88
 89 FROM daily
 90 ORDER BY day;
 91
     -- 2) Category into Brand aggregation (multi-dimensional performance view)
 93 --
            Filters out NULLs so results are cleaner.
 94 --
             Orders by revenue to surface top pairs.
 95 SELECT
 96
      category_code,
 97
      brand,
      COUNT(*) AS total_orders,
SUM(price) AS total_revenue,
AVG(price) AS avg_price
 98
 99
100
101 FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
102 WHERE brand IS NOT NULL AND category_code IS NOT NULL
103 GROUP BY category_code, brand
104 ORDER BY total_revenue DESC
105 LIMIT 1000;
106
107 -- 3) User-level monetization
            Sessions = distinct sessions per user
109 --
110 --
            Events = line-item or click-level counts.
            total_spent, avg_spent = revenue view.
111 SELECT
112 user_id,
113
       COUNT(DISTINCT user_session) AS sessions,
      COUNT(*) AS events,
114
115 SUM(price) AS total_spent,
116 AVG(price) AS avg_spent
117 FROM _glassy-ripsaw-473223-u3.ecommerce.events_clean
118 GROUP BY user_id
119 ORDER BY total_spent DESC
120 LIMIT 1000;
```

```
122 -- 4) Session analytics (basket size/value)
          unique_products = breadth of items in a basket.
123
124
           items = total line count in session
125 ---
          session_value = revenue per session.
126 SELECT
127
     user_session,
      COUNT(DISTINCT product_id) AS unique_products,
128
129
     COUNT(*) AS items,
130
     SUM(price) AS session_value
131 FROM glassy-ripsaw-473223-u3.ecommerce.events_clean
132 GROUP BY user_session
133 ORDER BY session_value DESC
134
     LIMIT 1000;
135
136 -- 5) Trend + anomaly detection (7-day rolling z-score)
         ma7 = 7-day moving average revenue.
137
           sd7 = 7-day rolling std dev.
138
           zscore flags deviations from short-term trend.
140 WITH daily AS (
141
     SELECT DATE(event_time) AS day, SUM(price) AS revenue
      FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
142
143
     GROUP BY day
144
145 stats AS (
146
     SELECT day, revenue,
       AVG(revenue) OVER (ORDER BY day ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS ma7,
147
148
         STDDEV_POP(revenue) OVER (ORDER BY day ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS sd7
149
      FROM daily)
150
151 SELECT
152
     day, revenue, ma7, sd7,
     SAFE_DIVIDE(revenue - ma7, sd7) AS zscore
153
     FROM stats
154
155 WHERE sd7 IS NOT NULL
156 ORDER BY day:
157
158
     -- 6) Scalability experiment (compare scan size/latency by time window)
159 ---
           Same aggregation over 1 month, 3 months, and 7 months.
           Measure performance externally (bytes processed, duration).
160
161
162
     -- 6a: 1 month window
163 SELECT category_code, brand, SUM(price) AS revenue
164 FROM <u>'glassy-ripsaw-473223-u3.ecommerce.events_clean'</u>
     WHERE event_time >= TIMESTAMP('2019-10-01') AND event_time < TIMESTAMP('2019-11-01')
166 GROUP BY category_code, brand;
168
     -- 6b: 3 month window
169 SELECT category_code, brand, SUM(price) AS revenue
170 FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
171 WHERE event_time >= TIMESTAMP('2019-10-01') AND event_time < TIMESTAMP('2020-01-01')
172 GROUP BY category_code, brand;
173
174 -- 6c: full 7 months window
175 SELECT category_code, brand, SUM(price) AS revenue
176 FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
177 WHERE event_time >= TIMESTAMP('2019-10-01') AND event_time < TIMESTAMP('2020-05-01')
178 GROUP BY category_code, brand;
170
```

```
180 -- 7) Top-K products by revenue (exact ranking)
      SELECT product_id, SUM(price) AS revenue
 181
 182 FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
 183 GROUP BY product_id
 184 ORDER BY revenue DESC
 185 LIMIT 100;
 186
 187
       -- 8) Brand-level price outliers (|z| > 3)
               per-brand mean & stddev.
 188
 189
              Join back to score each event's price.
 190
      WITH brand_stats AS (
 191
        SELECT brand, AVG(price) AS avg_price, STDDEV_POP(price) AS sd_price
         FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
 192
       GROUP BY brand
 193
 194
 195 SELECT
 196
       e.brand, e.product_id, e.price, b.avg_price, b.sd_price,
 197
          SAFE_DIVIDE(e.price - b.avg_price, b.sd_price) AS z
 198 FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean' e
 199 JOIN brand_stats b USING (brand)
 200 WHERE b.sd_price IS NOT NULL AND ABS(SAFE_DIVIDE(e.price - b.avg_price, b.sd_price)) > 3
 201 ORDER BY z DESC
 202 LIMIT 100;
 203
 204
205 /*Heavy queries repeated with explicit global time filter (2019-10 to 2020-04) b/
206
      - Category × Brand
208 SELECT
289
      category_code,
210
      brand.
      COUNT(*)
211
                 AS total_orders,
      SUM(price) AS total_revenue,
      AVG(price) AS avg_price
213
214 FROM glassy-ripsaw-473223-u3.ecommerce.events_clean
215 WHERE event_time >= TIMESTAMP('2019-10-01') AND event_time < TIMESTAMP('2020-05-01')
216 AND category_code IS NOT NULL AND brand IS NOT NULL
    GROUP BY category_code, brand
218 ORDER BY total_revenue DESC
219
    LIMIT 1000:
220
221
     -- User-level large group-by
222 SELECT
223
      COUNT(DISTINCT user_session) AS sessions,
224
      COUNT(*) AS events,
225
226
      SUM(price) AS total_spent,
      AVG(price)AS avg_spent
227
228 FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
229 WHERE event_time >= TIMESTAMP('2019-10-01') AND event_time < TIMESTAMP('2020-05-01')
230 GROUP BY user_id
231 ORDER BY total_spent DESC
232
    LIMIT 1000;
233
     -- Session analytics (very high cardinality)
234
235 SELECT
236
     user_session,
      COUNT(DISTINCT product_id) AS unique_products,
237
222
     COUNT(*) AS items,
SUM(price) AS session_value
239
240 FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
241 WHERE event_time >= TIMESTAMP('2019-10-01') AND event_time < TIMESTAMP('2020-05-01')
     AND user_session IS NOT NULL
242
    GROUP BY user_session
ORDER BY session_value DESC
243
244
245
    LIMIT 1000;
247
      -- Rolling-window trend + anomalies (7-day z-score)
248 WITH daily AS (
249 | SELECT DATE(event_time) AS day, SUM(price) AS revenue
250
      FROM 'glassy-ripsaw-473223-u3.ecommerce.events_clean'
      WHERE event_time >= TIMESTAMP('2019-10-01') AND event_time < TIMESTAMP('2020-05-01')
251
      GROUP BY day
252
253
     SELECT
254
255
       day,
256
257
       AVG(revenue) OVER (ORDER BY day ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS ma7,
258
       STDDEV_POP(revenue) OVER (ORDER BY day ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS sd7,
259
260
                  AVG(revenue) OVER (ORDER BY day ROWS BETWEEN 6 PRECEDING AND CURRENT ROW),
         NULLIF( STDDEV_POP(revenue) OVER (ORDER BY day ROWS BETWEEN 6 PRECEDING AND CURRENT ROW), 0)
```

Databricks Code:

We have run the same queries as BigQuery.

Outputs:

Both Platforms are giving almost the same outputs:

Creating new clean table

Row count + time coverage

Missing data overview

Cardinalities (uniques across main keys for sense of scale)

stats (range, average, quartiles for distribution shape)

Monthly event distribution (volume + gross value per month)

1) Daily revenue trend with day-over-day change

- -- Aggregates orders, revenue, avg ticket daily.
- -- Uses LAG to compute day-over-day revenue delta.

2) Category into Brand aggregation (multi-dimensional performance view)

- -- Filters out NULLs so results are cleaner.
- -- Orders by revenue to surface top pairs.

Que	ry results		Save results	▼ M Open in	٠ ٥
Job in	formation Results	Visualization JSON	Execution details	Execution grap	oh
Row	category_code ▼	brand ▼	total_orders ▼	total_revenue ▼	avg_pric
1	electronics.smartphone	apple	4658729	4396550883.339	943.723
2	electronics.smartphone	samsung	5316962	1859341741.730	349.700
3	electronics.smartphone	xiaomi	3331784	762315172.0799	228.80
4	electronics.video.tv	samsung	771041	464426314.4800	602.33
5	electronics.smartphone	huawei	1237930	351044715.7599	283.57
6	computers.notebook	lenovo	598788	343124594.2699	573.03
7	computers.notebook	acer	536366	341795252.8000	637.24
8	computers.notebook	apple	169262	287483656.5799	1698.4
9	computers.notebook	asus	389176	263873519.9399	678.03
10	electronics.smartphone	орро	811698	243552014.1399	300.05
11	electronics.video.tv	lg	351790	207951920.5599	591.12
12	electronics.clocks	apple	424133	197039963.2399	464.57
13	computers.notebook	hp	319525	192047871.3400	601.04
14	appliances.kitchen.washer	samsung	425969	177984031.6199	417.83
15	electronics.audio.headphone	apple	813163	165488542.4099	203.51
16	appliances.kitchen.washer	Ig	306091	131411032.9999	429.32
17	appliances.kitchen.refrigerators	Ig	173244	122042147.1400	704.45
18	electronics.video.tv	sony	123282	100713806.2999	816.93
19	computers.desktop	pulser	135853	99488566.71999	732.32
20	appliances.kitchen.refrigerators	samsung	119826	92846469.95999	774.84
21	electronics.tablet	apple	121133	87504647.02000	722.38
22	computers.desktop	acer	89033	81908755.34999	919.98
23	electronics.clocks	garmin	88036	77337249.45000	878.47
24	electronics.smartphone	oneplus	110173	76271744.71000	692.29
25	electronics.video.tv	artel	311139	70713351.12000	227.27
26	appliances.kitchen.refrigerators	indesit	206983	64108196.75000	309.72
27	electronics.clocks	samsung	222906	59918188.32000	268.80
28	computers.desktop	lenovo	65947	55210916.11000	837.20
29	computers.notebook	dell	62062	54966179.54999	885.66

3) User-level monetization

- -- Sessions = distinct sessions per user
- -- Events = line-item or click-level counts.
- -- total_spent, avg_spent = revenue view.

Que	ry results				■ S	ave results ▼	
Job in	formation	Results	Visualization .	JSON	Executi	on details Ex	ecution graph
Row	user_id ▼		sessions ▼	events 🕶	/-	total_spent ▼	avg_spent ▼
1	568778435		22542		22929	5187451.930000	226.2397806271
2	512365995		561		6042	2263807.200000	374.6784508440
3	569335945		14810		14810	1655685.840000	111.7951276164
4	569038711		2407		2407	1591572.03	661.2264353967
5	568805468		2767		2847	1567113.060000	550.4436459430
6	513558661		74		1528	1557656.669999	1019.408815445
7	512845454		72		1729	1537491.579999	889.2374667437
8	568793129		4453		4771	1390417.869999	291.4311192622
9	566522251		131		1854	1235717.829999	666.5144714131
10	563907320		125		976	1201993.319999	1231.550532786
11	567475167		3617		3724	1199111.089999	321.9954591836
12	568833833		1441		1577	1156774.750000	733.5286937222
13	569625394		76		990	1145607.740000	1157.179535353
14	568818636		57		6171	1075817.049999	174.3343137254
15	529616034		47		1113	1055755.129999	948.5670530098
16	568804062		3290		4257	1054749.990000	247.7683791402
17	468703624		1205		1218	1002879.65	823.3823070607
18	568797382		1289		1336	964422.9700000	721.8734805389
19	513778820		139		1671	956587.1699999	572.4638958707
20	571663686		14		789	953195.05	1208.105259822
21	518433364		48		900	936563.2300000	1040.625811111
22	547556934		46		687	920568.3599999	1339.983056768
23	550781174		2050		2575	918893.8399999	356.8519766990
24	512558829		96		1166	914411.99999999	784.2298456260
25	568836063		1054		1072	903175.08	842.5140671641
26	516365893		64		727	872393.0499999	1199.990440165
27	528026033		80		785	868511.0700000	1106.383528662
28	568512539		92		2080	850350.1599999	408.8221923076
29	512432656		209		1169	837250.2299999	716.2106330196

4) Session analytics (basket size/value)

- -- unique_products = breadth of items in a basket.
- -- items = total line count in session
- -- session_value = revenue per session.

Query results				Save results ▼		Open in ▼	
Job in	formation	Results	Visualization	JSON	Executi	on details	Execution graph
Row /	user_session '	*	unique_products •	items 🕶	/	session_value •	
1	0c307610-aa79)-bf12-4ada-323	. 543	3	918	36081	9.7
2	ef2fd879-4b1a-	4319-818c-567d.	4	1	246	331040.050000	0
3	c6be5380-8322	-432e-b948-90b.	49	9	178	291139	.89
4	123c2880-3db4	l-4f69-b2aa-9c6	. 139	9	360	274889.930000	0
5	1d34878d-1a42	2-401b-90a4-d44.		9	251	272767.149999	9
6	84f2e900-9da5	-c970-7a9e-6c57.	:	3	204	248544.599999	9
7	37738e78-3988	-460c-bd3b-6b1.	100)	305	245503.289999	9
8	eefe97d8-7901	-4a45-9a75-616	. 9	1	323	243561.639999	9
9	21bba45e-ecbf	-437c-9cbf-17ca.	90	5	180	233097	.01
10	c200e51b-7c35	-4efa-9956-a5e3.	73	3	279	232081.629999	9
11	1b64f998-793f-	4093-a6a8-c9a8.	102	2	231	231680.629999	9
12	62731828-1c87	7-484f-ad90-f59d.	39	9	190	230063.189999	9
13	4921edd9-3cbb	-43a4-bb0d-d12.	16	1	196	224270.910000	0
14	ea8d0053-08f0	-4661-b00d-06b	. 30)	227	220417.079999	9
15	fdd27028-5bb0	-422f-aa32-4a02.	48	В	124	204457.830000	0
16	ca310f80-ce7f-	4fa0-acbf-28c37.	99	3	162	200352	.09
17	1f569f01-9836-	4491-abfd-d2aa	94	4	124	199504.250000	0
18	081a2ea6-cc00	4fb8-9e92-dc97.	89	9	156	199335	.44
19	fe991bee-2200	-454b-93c6-36c3	50)	120	199126.860000	0
20	babd114c-3846	i-4244-a386-02e.	6	1	159	198432	.16
21	194d4a86-f76e	-4756-ad00-02e	. 178	3	285	198114.199999	9
22	0b48b16b-f8ce	-4b3f-be2d-7d7d.	144	4	215	196698.820000	0
23	e2778db6-0aee	-4d95-832c-e6b	. 62	2	240	195241.960000	0
24	81ea3b1d-3929	0-480b-b3ac-9ea	80	0	107	191142	.13
25	44f0883f-2647-	4784-a631-1bf2.	50	0	146	189344.309999	9
26	53c412c9-e864	-d0dc-a036-012	574	4	594	187928.550000	0
27	7226bcff-353b-	4f8c-a4bc-e4d0	. 60	3	182	187526	.71
28	b5a0b4de-1c09	-4065-bef9-54bf.	4	1	217	187218	.72

5) Trend + anomaly detection (7-day rolling z-score)

- -- ma7 = 7-day moving average revenue.
- -- sd7 = 7-day rolling std dev.
- -- zscore flags deviations from short-term trend.

Que	ry results			Save result	ts▼ Mar Open in ▼ \$
Job in	formation	Results Visu	alization JSON	Execution details	Execution graph
Row	day ▼	revenue ▼	, ma7 ▼	, sd7 ▼ , z	zscore ▼
1	2019-11-01	425699527.2600	425699527.2600	0.0	null
2	2019-11-02	454850035.9900	440274781.6250	14575254.36502	1.0
3	2019-11-03	467094603.9000	449214722.3833	17362904.17513	1.029774819713
4	2019-11-04	531778362.6000	469855632.4375	38784588.88062	1.596580805667
5	2019-11-05	495287635.8198	474942033.1140	36150814.03062	0.562797913446
6	2019-11-06	489674523.9398	3 477397448.2516	33454642.62831	0.366976739957
7	2019-11-07	512657491.8200	482434597.3328	33340107.24275	0.906502617616
8	2019-11-08	554703837.0796	5 500863784.4499	32530138.83757	1.655082165450
9	2019-11-09	546360619.0097	513936724.8813	29674072.46479	1.092667484953
10	2019-11-10	570583105.3198	528720796.5127	28406490.04634	1.473688186708
11	2019-11-11	579771948.0898	3 535577023.0112	33628893.21413	1.314195052368
12	2019-11-12	583480026.2198	3 548175935.9255	32681694.22397	1.080240517898
13	2019-11-13	602679110.2499	564319448.2555	27256825.71423	1.407341500309
14	2019-11-14	993883256.8096	i 633065986.1112	148311469.7630	2.432834569537
15	2019-11-15	1898027969.470	824969433.5955	461391328.3739	2.325701568029
16	2019-11-16	1998441656.939	1032409581.871	596222392.2173	1.620254602440
17	2019-11-17	1876480491.500) 1218966351.325	626089449.9421	1.050192013673
18	2019-11-18	585124794.6899	1219731043.697	625311069.5385	-1.01486488872
19	2019-11-19	489910565.1600) 1206363977.831	639605834.0118	-1.12014833913
20	2019-11-20	466821973.3798	1186955815.421	659384949.3427	-1.09212963195
21	2019-11-21	448364254.9000	1109024529.434	708040259.4459	-0.93308292250
22	2019-11-22	437934668.4498	3 900439772.145661	658193309.5646	-0.70268885595
23	2019-11-23	440199629.3599	0 677833768.2056	491625270.8224	-0.48336436906
24	2019-11-24	447272961.9499	21 473661263.9842	48502262.29646	-0.54406332374
25	2019-11-25	440003052.7598	452929586.5656	17596369.35134	-0.73461368920
26	2019-11-26	455308302.8698	3 447986406.2384	9520247.533333	0.769086791675
27	2019-11-27	456351290.0500	446490594.3342	6907307.833478	1.427574382599
28	2019-11-28	471908085.4800	449853998.7028	11322084.23613	1.947882237693

6) Scalability experiment (compare scan size/latency by time window)

- -- Same aggregation over 1 month, 3 months, and 7 months.
- -- Measure performance externally (bytes processed, duration).

Que	ry results			Save results ▼	Open in ▼
Job in	formation	Results	Visualization JS	ON Execution details	Execution graph
ow /	category_code	. •	brand ▼	revenue ▼	
1	apparel.shoes	.keds	null	5366510.830000	
2	appliances.per	rsonal.massager	null	537759.3800000	
3	appliances.en	vironment.water	. null	918041.9999999	
4	stationery.cart	rige	null	67380.45000000	
5	null		a-mega	65144.009999999	
6	electronics.au	dio.acoustic	adagio	76252.34999999	
7	appliances.kite	chen.hood	akpo	874625.24	
8	appliances.kit	chen.refrigerators	almacom	1767210.120000	
9	auto.accessor	ies.videoregister	alpine	80439.24999999	
10	construction.te	ools.welding	alteco	65194.86000000	
11	computers.com	mponents.memory	amd	31106.08999999	
12	apparel.shoes	.keds	anta	523612.2499999	
13	computers.not	tebook	apple	287483656.5799	
14	null		arnica	19602.65999999	
15	appliances.kite	chen.hood	artel	717065.2099999	
16	furniture.bedro	oom.bed	askona	215933.1400000	
17	accessories.ba	ag	asus	5601.939999999	
18	appliances.kite	chen.washer	atlant	4503965.73	
19	sport.snowboa	ard	atlant	125212.2299999	
20	apparel.shoes		atrai	53860.49999999	
21	sport.bicycle		author	1107202.439999	

Job in	formation Results	Visualization JSON	Execution details Ex
Row /	category_code ▼	brand ▼	revenue ▼
1	auto.accessories.player	null	18247747.96999
2	appliances.environment.vacuum	null	1163649.059999
3	appliances.kitchen.coffee_mac	null	333720.4599999
4	apparel.sock	null	35719.58999999
5	apparel.shoes.keds	adidas	2924287.990000
6	null	adile	214312.4599999
7	kids.carriage	aimile	28619.04000000
8	appliances.environment.vacuum	airline	33778.08000000
9	electronics.audio.microphone	akg	183545.1599999
10	electronics.audio.microphone	alctron	108037.7899999
11	construction.tools.pump	alteco	99745.08000000
12	furniture.bedroom.pillow	alvitek	7630.849999999
13	null	am.pm	663982.7800000
14	furniture.bathroom.toilet	am.pm	55960.94000000
15	null	amatis	197572.9799999
16	auto.accessories.videoregister	anytek	1135409.000000
17	null	apacer	878882.2300000
18	null	aplus	467317.7899999
19	apparel.shoes.sandals	ara	7206.280000000
20	electronics.video.tv	arg	5242354.089999
21	null	arg	1008515.670000

7) Top-K products by revenue (exact ranking)

Query results				Save results ▼	Open in ▼	
Job in	formation	Results	Visualization	JSON	Execution details	Execution graph
Row /	product_id 🕶		revenue ▼	<i>h</i> .		
1	1005115		619370131.6099			
2	1005105		414205784.4399			
3	1005135		253700985.780001			
4	1004249		219218005.9900			
5	1005116		189324729.1200			
6	1004767		140070377.5600			
7	1002544		128290954.8099			
8	1003317		114420230.7499			
9	1004659		100994058.8900			
10	1005174		92020653.60999			
11	1004870		89571223.92000			
12	1005129		86360298.34999			
13	1005284		85956164.55999			
14	1002524		85351937.71000			
15	1005106		82279350.14000			
16	1004856		80997844.46999			
17	1004873		79871374.42000			
18	1005124		77456216.88999			
19	1005144		76219416.78000			
20	1004258		75131906.01000			
21	1005132		73550214.96999			
22	1005186		72367965.02000			
23	1004246		70121840.31000			
24	1005160		68146237.29000			
25	1005104		66355126.88999			
26	1005073		64122712.81000			
27	4804056		63645354.55999			
28	1005118		61673358.31999			

8) Brand-level price outliers (|z| > 3)

- -- per-brand mean & stddev.
- -- Join back to score each event's price.

Que	ry results				Save results	▼ M Open in	٠ ٥
Job in	formation	Results	Visualization	JSON	Execution details	Execution grap	oh
Row /	brand -		/ product_id ▼	,	price ▼ //	avg_price ▼ //	sd_price
1	fitbit		5100235		218.77	180.1720392890	0.68168
2	goodride		100017570		688.05	49.43657006525	13.3569
3	turboair		2401679		618.25	49.65299112139	13.1420
4	turboair		2401679		618.25	49.65299112139	13.1420
5	triangle		12720013		1536.74	51.66865925173	35.8682
6	triangle		12720013		1536.74	51.66865925173	35.8682
7	triangle		12720013		1536.74	51.66865925173	35.8682
8	triangle		12720013		1536.74	51.66865925173	35.8682
9	triangle		12720013		1536.74	51.66865925173	35.8682
10	triangle		12720013		1536.74	51.66865925173	35.8682
11	triangle		12720013		1536.74	51.66865925173	35.8682
12	triangle		12720013		1536.74	51.66865925173	35.8682
13	triangle		12720013		1536.74	51.66865925173	35.8682
14	triangle		12720013		1536.74	51.66865925173	35.8682
15	triangle		12720013		1536.74	51.66865925173	35.8682
16	triangle		12720013		1536.74	51.66865925173	35.8682
17	triangle		12720013		1536.74	51.66865925173	35.8682
18	triangle		12720013		1536.74	51.66865925173	35.8682
19	triangle		12720013		1536.74	51.66865925173	35.8682
20	triangle		12720013		1536.74	51.66865925173	35.8682
21	triangle		12720013		1536.74	51.66865925173	35.8682
22	triangle		12720013		1536.74	51.66865925173	35.8682
23	triangle		12720013		1536.74	51.66865925173	35.8682
24	triangle		12720013		1536.74	51.66865925173	35.8682
25	triangle		12720013		1536.74	51.66865925173	35.8682
26	triangle		12720013		1536.74	51.66865925173	35.8682
27	triangle		12720013		1536.74	51.66865925173	35.8682
20	t-:		12720012		4506.74	E4 6404E03E473	25.060

PERFORMANCE ANALYSIS:

Following screenshots give:

- ➤ Elapsed time
- > Bytes processed
- > Bytes billed
- > Bytes shuffled
- > Bytes spilled to disk
- > Slot time consumed
- > Destination table

TO:

Clean and create new clean table:

Big Query:

Row count and time coverage:

BigQuery:

Missing Data Overview:

BigQuery:

Cardinality Analysis:

BigQuery:

Price Statistics

BigQuery:

Query results				Save results ▼	Open in ▼
Job information	Results	Visualization	JSON	Execution details	Execution graph
Job ID	glassy-	ipsaw-473223-u3:U	S.bquxjob_f3	41467_19a3bc4d251	
User	tanvit@	bu.edu			
Location	US				
Creation time	Oct 31,	2025, 3:35:46 PM U	TC-4		
Start time	Oct 31,	2025, 3:35:46 PM U	TC-4		
End time	Oct 31,	2025, 3:35:46 PM U	TC-4		
Duration	0 sec				
Bytes processed	515 MB				
Bytes billed	515 MB				
Slot milliseconds	22786				
Job priority	INTERA	CTIVE			
Use legacy SQL	false				
Destination table	Tempor	ary table			
Labels					

Monthly Event Distribution

BigQuery:

Elapsed time	Slot time consumed ⑦	Bytes shuffled ⑦	Bytes spilled to disk 🗇
633 ms	23 sec	4.86 KB	0 B ⑦

Query results Save results ▼ **JSON** Job information Results Visualization Execution details Job ID glassy-ripsaw-473223-u3:US.bquxjob_24e0c4f4_19a3bc559d7 User tanvit@bu.edu US Location Creation time Oct 31, 2025, 3:36:21 PM UTC-4 Start time Oct 31, 2025, 3:36:21 PM UTC-4 End time Oct 31, 2025, 3:36:21 PM UTC-4 Duration 0 sec Bytes processed 1.01 GB Bytes billed 1.01 GB Slot milliseconds 23103 INTERACTIVE Job priority Use legacy SQL false Destination table Temporary table Labels

Daily Revenue Trend

BigQuery:

Category × Brand Aggregation

BigQuery:

Databricks:

User-Level Monetization

BigQuery:

Session Analytics

Big Query

Trend and Anomaly Detection

Big Query:

Scalability Experiment

Big Query:

Elapsed time			Statements prod	cessed	Job status	
2 sec			3		SUCCESS	
Status	End time	SQL				Action
⊘	9:56 PM [2:1]	SELECT catego	ry_code, brand,	SUM(price) AS re	venue	View results
⊘	9:56 PM [8:1]	SELECT catego	ry_code, brand,	SUM(price) AS re	venue	View results
>	9:56 PM [14:1]	SELECT catego	ry_code, brand,	SUM(price) AS re	venue	View results

Databricks:

Top-K Products by Revenue

BigQuery:

Databricks:

100 52,865,963

214.90 MB

100 %

0 bytes

0 bytes

IO Rows returned

Rows read

Bytes read Bytes pruned

Bytes written

Bytes read from cache

Brand-Level Price Outliers

BigQuery

Databricks

VISULIZATION PART:

Daily Revenue Trend

What we did: Used Day as the Dimension and Revenue + Orders as Metrics.

What it shows: Daily revenue and order count across the month.

Insight: Identifies sales spikes or drops over time (helps track performance trends).

Category × Brand Revenue

What we did: Used category_code as Dimension, brand as Breakdown, and Revenue as Metric.

What it shows: How much revenue each brand contributes within different product categories.

Insight: Reveals top-performing brand–category combinations driving sales.

Top Users by Total Spending

What we did: Used user_id as Dimension and Revenue + Avg Ticket as Metrics.

What it shows: The highest-spending customers and their average order values.

Insight: Highlights your most valuable users and potential VIP customers.

Spending Distribution Histogram

What we did: Used Revenue as Dimension and COUNT_DISTINCT(user_id) as Metric.

What it shows: The number of users grouped by spending range.

Insight: Shows how spending is distributed whether most users spend small amounts or a few spend a lot.

Session Analytics

What we did: Used user_session as Dimension and Unique Products, Orders, and Session Value as Metrics.

What it shows: The value of each user session number of products viewed, items bought, and total spend.

Insight: Measures engagement efficiency per session and identifies sessions with the highest revenue.

Anomalies (Revenue vs Rolling Average)

What we did: From the BigQuery daily_metrics view plotted revenue and ma7 (7-day moving average).

What it shows: Actual revenue compared to its smoothed 7-day trend.

Insight: Highlights unusual spikes or drops in daily revenue useful for anomaly detection and demand forecasting.

LOOKER STUDIO RESULTS:

Category × Brand Revenue

Top users by total spending

	user_id	Revenue +	Avg Tic
1.	568797382	212,631.41	1,012.53
2	516054872	191,874.31	1,148.95
3.	569335945	172,308.04	121.09
4.	562850008	168,034.34	852.97
5.	568793129	164,944.46	420.78
6.	554501441	158,196.68	1,068.9
7.	546635249	154,455.24	718.4
		1 - 100 / 268643	()

Spending distribution histogram

Session Analytics

	user_session	Unique Prod	Orders	Ses ▼
1.	0c307610-aa79	543	918	360,819.7
2.	ef2fd879-4b1a	41	246	331,040.05
3.	c6be5380-8322	49	178	291,139.89
4.	123c2880-3db4	139	360	274,889.93
5.	1d34878d-1a42	9	251	272,767.15
6.	84f2e900-9da5	3	204	248,544.6
7.	37738e78-398a	100	305	245,503.29

1 - 100 / 2000000+

Anomalies

PYTHON RESULTS (Plotly):

Category × Brand Revenue (Top 20)

Top Users by Total Spending

Session Analytics (Top 100 by Value)

user_session	unique_products	orders	session_value
0c307610-aa79-bf12-	543	918	360819.6999999998
ef2fd879-4b1a-4319-	41	246	331040.05000000005
c6be5380-8322-432e	49	178	291139.88999999996
1d34878d-1a42-401b	9	251	272767.15000000014
84f2e900-9da5-c970-	3	204	248544.5999999997
1b64f998-793f-4093-	102	231	231680.63000000003
62731828-1c87-484f-	39	190	230063.1900000001
4921edd9-3cbb-43a4	161	196	224270.9099999999
fdd27028-5bb0-422f-	48	124	204457.83000000007
081a2ea6-cc00-4fb8-	89	156	199335.43999999997
fe991bee-2200-454b-	50	120	199126.86
194d4a86-f76e-4756-	178	285	198114.2000000001
e2778db6-0aee-4d95	62	240	195241.96
44f0883f-2647-4784-	50	146	189344.31
3f48e024-c25e-40eb-	59	97	184565.29999999996
1-407464 OF# 4-bb	47	122	102670 6100000007

Daily Revenue Trend (with 7-day MA & Anomalies)

RESULT EXPLANATIONS:

Query / Task	Big Query Execution Time	Databricks Execution Time
Table Creation (events_clean)	~18s	~23 s
EDA Queries (0–4)	12sec total	9sec total
Daily Revenue Trend (5)	~761ms	~648s
Category × Brand Aggregation	~351ms	~1s
User-Level Monetization	~8 s	~3s
Session Analytics	~7s	~7.2s
Anomaly Detection	~513ms	~563ms
Scalability Test (1-Month Data)	~2s	~1 s
Scalability Test (3-Month Data)	~534ms	~2s
Scalability Test (7-Month Data)	~564ms	~3s

VISUALIZATION RESULTS:

Chart	What It Shows	Key Insight
Daily Revenue Trend	Revenue & order volume per day	Sales spikes or slow periods
Category × Brand Revenue	Revenue split by brand within each category	Top-performing brand-category pairs
Top Users by Spending	Total and average spend per user	Identifies VIP customers
Spending Distribution Histogram	Number of users per spending range	Reveals concentration of low vs. high spenders
Session Analytics	Products viewed, items bought, and session value	Measures engagement efficiency
Anomalies (Revenue vs Rolling Avg)	Daily revenue vs 7-day trend line	Detects unusual revenue fluctuations

Detailed Comparison and Explanation of Results:

Both BigQuery and Databricks were tested on the same 9 GB e-commerce dataset. The queries included table creation, EDA (exploratory data analysis), trend analysis, user/session analytics, anomaly detection, and scalability testing. The results confirm that both platforms delivered accurate outputs, but their performance varied depending on the workload type.

1. Table Creation (events_clean)

BigQuery: ~18 seconds

Databricks: ~23 seconds

BigQuery completed table creation slightly faster. It directly pulls data from Google Cloud Storage and automatically optimizes schema and partitioning, while Databricks required CSV reading and transformation into a Delta table, adding a few extra seconds.

2. EDA Queries (Q0-Q4)

BigQuery: 12 seconds total

Databricks: 9 seconds total

Databricks outperformed here because once data was loaded into memory, it executed smaller, repeated queries faster. Spark's in-memory processing provided an edge over

BigQuery's on-demand query execution.

3. Daily Revenue Trend (Q5)

BigQuery: ~761 milliseconds

Databricks: ~648 milliseconds

Both systems were efficient. Databricks performed marginally better because the operation involved calculating aggregates over limited time windows, which suited Spark's caching and partition-based parallelism.

4. Category × Brand Aggregation

BigQuery: ~351 milliseconds

Databricks: ~1 second

BigQuery handled large group-by operations faster due to its Dremel engine, which parallelizes across thousands of slots automatically. Databricks needed more shuffle operations to reorganize data before aggregation, slightly slowing it down.

5. User-Level Monetization

BigQuery: ~8 seconds

Databricks: ~3 seconds

Databricks was faster in this query since user-level aggregation benefited from Spark's distributed joins and cached intermediate results. It's more efficient for iterative or session-based workloads once data is loaded in memory.

6. Session Analytics

BigQuery: ~7 seconds

Databricks: ~7.2 seconds

Both platforms performed almost identically. This query required grouping by session IDs, which is high in cardinality but evenly distributed, making it well-optimized on both systems.

7. Anomaly Detection

BigQuery: ~513 milliseconds

Databricks: ~563 milliseconds

BigQuery's analytical functions (LAG, STDDEV, AVG) were slightly faster because it executes window functions natively at scale. Databricks performed very closely, showing Spark SQL's efficiency for analytical workloads.

8. Scalability Tests

For smaller ranges (1 month), Databricks performed faster as data was already cached. However, as data size increased (3–7 months), BigQuery scaled more efficiently — it automatically distributed queries across multiple nodes without manual cluster tuning.

9. Key Insights

BigQuery Strengths:

Consistently faster for large scans and heavy aggregations.

Auto-scaling ensures stable performance even as data grows.

Best suited for ad-hoc analytics, dashboards, and large-scale reports.

Built-in cost and performance transparency (bytes processed, slot time).

Databricks Strengths:

Better for iterative, in-memory analytics and custom visualization (Plotly, PySpark).

Ideal for data science, ML pipelines, and streaming workloads.

Cluster resources can be adjusted for fine-grained control

10. Overall Conclusion

Aspect	BigQuery	Databricks
Performance on Large Data	Faster (auto-optimized, scalable)	Slower for very large queries
Performance on Cached Data	Slightly slower	Faster (Spark in-memory advantage)
Ease of Use	No setup, simple SQL	Requires cluster configuration
Visualization	Limited (Looker/Charts)	Excellent (Plotly, Matplotlib)
Scalability	Automatic and seamless	Manual tuning needed
Best For	Large-scale analytics, BI dashboards	Interactive data science, ML workflows

In this experiment:

- BigQuery excelled in speed, scalability, and simplicity, best for analytics at scale.
- Databricks excelled in flexibility, caching, and visualization, best for exploration and experimentation.

Both platforms are powerful, choosing between them depends on whether your goal is rapid analytics.
