CONTRÔLE CONTINU

CORRECTION

Exercice 1 -

- (1) Un groupe est un couple (G, \times) où G est un ensemble et \times est une application de $G \times G$ dans G (l'image d'un couple (g, h) étant notée $g \times h$) tels que
 - $(\forall g, h, k \in G) \ (g \times h) \times k = g \times (h \times k),$
 - $-- (\exists e \in G) (\forall g \in G) g \times e = g = e \times g,$
 - $(\forall g \in G) \ (\exists h \in G) \ g \times h = h \times g = e.$
 - (2) Un sous groupe de G est un sous-ensemble H de G tel que
 - $-e \in H$,
 - $-- (\forall g, h \in H) \ g \times h \in H,$
 - $-- \forall g \in H) \ g^{-1} \in H.$
- (3) Le sous-groupe engendré par A est l'intersection des sous-groupes de G contenant A.
- (4) Soit (H, \times) un groupe. Un homomorphisme de groupes de G dans H est une application φ de G dans H telle que

$$(\forall g_1, g_2 \in G) \ \varphi(g_1 \times g_2) = \varphi(g_1) \times \varphi(g_2).$$

- (4) Soit $G=\mathbb{U}_4$. Alors $i,-i\in G,$ ils sont d'ordre 4 de G et $i\times i=1,$ c'est un élément d'ordre 1.
- Soit $G = \mathbb{U}_4$. Alors $i \in G$, il est d'ordre 4 et $i \times i = -1$, c'est un élément d'ordre 2.
- Soit $G = \mathbb{U}_4 \times \mathbb{U}_4$. Alors $(i, 1), (1, i) \in G$, ils sont d'ordre 4 et $(i, 1) \times (1, i) = (i, i)$, c'est un élément d'ordre 4.

Exercice 2 -

- (1) D'après la méthode vue en cours pour écrire une permutation comme produit de cycles de longueur au moins 2 et à supports deux-à-deux disjoints on $\sigma = (145) (212) (36118) (7109)$.
- (2) La signature est un homomorphisme de \mathscr{S}_{12} dans $\{-1,1\}$, sur un cycle de longueur notée ℓ elle prend la valeur $(-1)^{\ell-1}$. Donc

$$\varepsilon(\sigma) = \varepsilon((145))\varepsilon((212))\varepsilon((36118))\varepsilon((7109)) = (-1)^{2+1+3+2} = 1$$
.

- (3) L'ordre de σ est le ppcm des longueurs des cycles qui apparaissent dans sa décomposition en produit de cycles à supports deux-à-deux disjoints. Donc c'est ppcm(3,2,4,3)=12.
 - (4) \mathscr{A}_{12} est l'ensemble des permutations de \mathscr{S}_{12} de signature 1. Donc $\sigma \in \mathscr{A}_{12}$.
- (5) Soit $\beta = (17395)(286)$. Les cycles (17395) et (286) commutent parce qu'ils sont à supports disjoints. Donc $\beta^2 = (17395)^2(286)^2$. Or $(17395)^2 = (13579)$ et $(286)^2 = (268)$. Donc β répond à la question posée.

Exercice 3 - Soit f l'application de G dans G/H définie par f(x) = gxH. Soit \mathcal{R} la relation d'équivalence sur G associée à l'action de H sur G par translation à droite. Donc

$$\begin{array}{lll} (\forall x,y \in G) & x\mathcal{R}y & \Leftrightarrow & (\exists h \in H) \ y = xh \\ & \Leftrightarrow & xH = yH \ . \end{array}$$

Soient $x,y \in G$. On suppose que $x\mathcal{R}y$. Donc xH=yH. Donc gxH=gyH, c'est-à-dire f(x)=f(y). Par passage au quotient par la relation d'équivalence \mathcal{R} , il existe donc une application φ_g de G/H (= G/\mathcal{R}) dans G/H telle que

$$(\forall x \in G) \ \varphi_q(xH) = f(x) = gxH.$$

- (2) Étant donnés $g \in G$ et $\omega \in G/H$ on note $g \cdot \omega$ pour $\varphi_g(\omega)$. Soit $\omega \in G/H$. Soient $g_1, g_2 \in G$. Il existe $x \in G$ tel que $\omega = xH$. Alors
- $e \cdot \omega = \varphi_e(\omega) = exH = xH = \omega,$
- $g_1 \cdot (g_2 \cdot \omega) = \varphi_{g_1}(\varphi_{g_2}(\omega)) = \varphi_{g_1}(g_2 x H) = g_1 g_2 x H = \varphi_{g_1 g_2}(\omega).$

Donc l'application de $G \times G/H$ dans G/H définie par $(g, \omega) \mapsto \varphi_g(\omega)$ est bien une action de groupe à gauche.

- (3) Soient $\omega_1, \omega_2 \in G/H$. Il existe $x_1, x_2 \in G$ tels que $\omega_1 = x_1H$ et $\omega_2 = x_2H$. On pose $g = x_2x_1^{-1}$. Alors $g \cdot \omega_1 = gx_1H = x_2x_1^{-1}x_1H = x_2H = \omega_2$. Donc l'action est transitive.
 - (4) Soit $g \in G$. On a (avec les notations utilisées en (1))

$$\begin{split} g \in \operatorname{Stab}_G(x) &\Leftrightarrow & gxH = xH \\ &\Leftrightarrow & gx\mathcal{R}x \\ &\Leftrightarrow & (\exists h \in H) \ gx = xh \\ &\Leftrightarrow & (\exists h \in H) \ g = xhx^{-1} \\ &\Leftrightarrow & g \in xHx^{-1} \,. \end{split}$$

Donc Stab_G $(x) = xHx^{-1}$.

Exercice 4 - On suppose qu'il existe $g_1, \ldots, g_n \in G$ deux-à-deux distincts tels $G = \langle g_1, \ldots, g_n \rangle$ et que G n'est engendré par aucune partie à n-1 éléments. On note f l'application définie par

$$\begin{array}{ccc} \{0,1\}^n & \to & G \\ (x_1,\dots,x_n) & \mapsto & g_1^{x_1}\cdots g_n^{x_n} \, . \end{array}$$

On démontre par l'absurde que f est injective. Soient $(x_1,\ldots,x_n),(y_1,\ldots,y_n)\in\{0,1\}^n$ distincts tels que $g_1^{x_1}\cdots g_n^{x_n}=g_1^{y_1}\cdots g_n^{y_n}$. Il existe donc $i\in\{1,\ldots,n\}$ tel que $x_{i+1}=y_{i+1},x_{i+2}=y_{i+2},\ldots,x_n=y_n$. Quitte à échanger les rôles de (x_1,\ldots,x_n) et de (y_1,\ldots,y_n) on peut supposer que $y_i=1$ et $x_i=0$. Par simplification à droite, on a $g_1^{x_1}\cdots g_{i-1}^{x_{i-1}}=g_1^{y_1}\cdots g_{i-1}^{y_{i-1}}g_i$. Donc $g_i=\left(g_1^{y_1}\cdots g_{i-1}^{y_{i-1}}\right)^{-1}g_1^{x_1}\cdots g_{i-1}^{x_{i-1}}$. Ainsi $g_i\in\langle g_1,\ldots,g_{i-1}\rangle$. Donc G est engendré par les n-1 éléments $g_1,\ldots,g_{i-1},g_{i+1},\ldots,g_n$. C'est absurde. Donc f est injective. Donc $\operatorname{Card}(G)\geqslant\operatorname{Card}(\{0,1\}^n)=2^n$.

Exercice 5 - On pose $H = \text{Ker}(\varphi)$. Comme $\varphi(K) \subseteq \text{Im}(\varphi)$ et comme φ est un homomorphisme, on a

$$\begin{split} \operatorname{Im}(\varphi) &= \varphi(K) & \Leftrightarrow & (\forall g \in G) \ (\exists k \in K) \ \varphi(g) = \varphi(k) \\ & \Leftrightarrow & (\forall g \in G) \ (\exists k \in K) \ \varphi(gk^{-1}) = e \\ & \Leftrightarrow & (\forall g \in G) \ (\exists k \in K) \ gk^{-1} \in \operatorname{Ker}(\varphi) \\ & \Leftrightarrow & (\forall g \in G) \ (\exists k \in K) \ (\exists h \in \operatorname{Ker}(\varphi)) \ g = hk \\ & \Leftrightarrow & G = HK \ . \end{split}$$

Pour conclure il suffit de démontrer que $\langle H \cup K \rangle = HK$. Pour cela on démontre successivement que $HK \subseteq \langle H \cup K \rangle$ et que $\langle H \cup K \rangle \subseteq HK$.

Comme $\langle H \cup K \rangle$ est un sous-groupe de G contenant $H \cup K$, il contient tout élément de le forme hk où $h \in H$ et $k \in K$. Donc $HK \subseteq \langle H \cup K \rangle$.

Comme $\langle H \cup K \rangle$ est le plus petit sous-groupe de G contenant $H \cup K$, il suffit de démontrer que HK est un sous-groupe de G contenant $H \cup K$ pour démontrer que $\langle H \cup K \rangle \subseteq HK$. Or

- si $h \in H$ alors $h = he \in HK$ car $e \in K$, de sorte que $H \subseteq HK$,
- si $k \in K$ alors $k = ek \in HK$ car $e \in H$, de sorte que $K \subseteq HK$.

Donc $H \cup K \subseteq HK$. Par ailleurs

- $e \in H$ et $e \in K$ donc $e = ee \in HK$,
- si $h, h' \in H$ et $k, k' \in K$ alors $(hk)(h'k') \in HK$; en effet

$$(hk)(h'k') = (hkh'k^{-1})(kk');$$

ici $kk' \in K$ parce que K est un sous-groupe de G; de plus

$$\varphi(kh'k^{-1}) = \varphi(k)\varphi(h')\varphi(k)^{-1} = \varphi(k)e\varphi(k)^{-1} = e$$

en utilisant que φ est un homomorphisme de groupes et que $h' \in \mathrm{Ker}(\varphi)$; donc $kh'k^{-1} \in H$ puis $hkh'k^{-1} \in H$ (parce que H est un sous-groupe de G),

— si $h \in H$ et $k \in K$ alors $(hk)^{-1} = k^{-1}h^{-1} = k^{-1}h^{-1}kk^{-1}$. Or, suivant les arguments donnés au point précédent, on a $\varphi(k^{-1}h^{-1}k) = e$ de sorte que $k^{-1}h^{-1}k \in H$. Donc $(hk)^{-1} \in HK$.

Donc HK est bien un sous-groupe de G contenant $H \cup K$. Donc $HK = \langle H \cup K \rangle$.

Ainsi $HK = \langle H \cup K \rangle$ de sorte que $\varphi(K) = \operatorname{Im}(\varphi)$ si et seulement si $G = \langle H \cup K \rangle$.

Exercice 6 -

- (1) Soit d l'ordre de g. Donc $d = \langle g \rangle$. On a d | 6 (théorème de Lagrange). Donc $d \in \{1, 2, 3, 6\}$. Comme $\langle g \rangle$ est un sous-groupe commutatif de G, on déduit que $\langle g \rangle \subsetneq G$. Donc d < 6. Donc $d \in \{1, 2, 3\}$.
- (2) Par l'absurde on suppose que : $(\forall g \in G)$ $g^2 = e$. Donc tout élément de G est égal à son inverse. Soient $g,h \in G$. Alors $hg = h^{-1}g^{-1} = (gh)^{-1} = gh$. C'est absurde parce que G n'est pas commutatif. Donc il existe $g \in G$ tel que $g^2 \neq e$.
- (3) Le sous-groupe $\langle \rho \rangle$ est d'ordre 3 car ρ est d'ordre 3. Donc tout élément de ce sous-groupe est d'ordre 1 ou 3 (théorème de Lagrange). Seul e est d'ordre 1. Donc $\langle \rho \rangle$ contient deux éléments d'ordre 3.

On note \mathcal{S} l'ensemble des sous-groupes de G de la forme $\langle g \rangle$ pour $g \in G$ d'ordre 3. Vu que tout tel sous-groupe est engendré par n'importe lequel de ses éléments d'ordre 3 (d'après le théorème de Lagrange), deux tels sous-groupes n'ont un élément d'ordre 3 en commun que si ils sont égaux. On a donc une partition

$$\{g \in G \mid g \text{ est d'ordre 3}\} = \coprod_{S \in \mathcal{S}} \{g \in S \mid g \text{ est d'ordre 3}\}$$

où chaque sous-ensemble contient deux éléments. Donc le nombre d'éléments d'ordre 3 de G est pair.

(4) Les éléments d'ordre 3 forment avec e un sous-ensemble de G de cardinal impair. Donc ce sous-ensemble ne peut être G. Ceci et (1) implique qu'il existe un élément d'ordre 2 dans G.

- (5) Par l'absurde on suppose que X n'a qu'un seul élément τ . On vérifie d'abord que $\rho\tau\rho^{-1}$ est d'ordre $2: \rho\tau\rho^{-1} \neq e$ car $\tau \neq e$, et $(\rho\tau\rho^{-1})^2 = \rho\tau^2\rho^{-1} == \rho e\rho^{-1} = e$. Donc $\rho\tau\rho^{-1} = \tau$. Donc $\rho\tau = \tau\rho$. Or, on peut constater que $\rho\tau$ n'est pas d'ordre 1, 2 ou 3:
 - ρ est d'ordre 3 et $\tau = \tau^{-1}$ est d'ordre 2, donc $\rho \neq \tau^{-1}$, donc $\rho \tau \neq e$,
 - $\rho \neq e$ donc $\rho \tau \neq \tau$, donc $\rho \tau \notin X$, donc $\rho \tau$ n'est pas d'ordre 2,
 - $(\rho\tau)^3 = \rho^3\tau^3$ car $\rho\tau = \tau\rho$, donc $(\rho\tau)^3 = \tau$ parce que $\tau^2 = \rho^3 = e$, donc $\rho\tau$ n'est pas d'ordre 3.

Ceci est en contradiction avec (1). Donc $Card(X) \ge 2$.

- (6) La vérification faite en (5) démontre que pour tout $\tau \in X$ et pour tout $g \in G$, l'ordre de $g\tau g^{-1}$ est 2 de sorte que $g\tau g^{-1} \in X$. Autrement dit, la restriction à $G \times X$ de l'application $G \times G \to G$ de l'action de G sur lui-même par conjugaison est à valeurs dans X. L'application $G \times X \to X$ qui en résulte (donc définie par $(g,\tau) \mapsto g\tau g^{-1}$) vérifie les axiomes des actions de groupes parce que l'application $G \times G \to G$ à partir de laquelle elle est définie par restriction à la source et au but les vérifie.
 - (7) On a $\varphi(g)(x) = gxg^{-1}$.
- (8) On a $\operatorname{Stab}_G(\tau) = \{g \in G \mid g\tau g^{-1} = \tau\}$. C'est un sous-groupe de G qui contient un sous-groupe d'ordre 2, à savoir $\langle \tau \rangle$. Si on applique le théorème de Lagrange aux inclusions $\langle \tau \rangle \subseteq \operatorname{Stab}_G(\tau)$ et $\operatorname{Stab}_G(\tau) \subseteq G$ on déduit que $\operatorname{Stab}_G(\tau)$ est d'ordre 2 ou 6. Les arguments présentés en (5) démontrent que $\operatorname{Stab}_G(\tau)$ ne contient pas d'élément d'ordre 3. Donc $\operatorname{Stab}_G(\tau) \neq G$. Donc $\operatorname{Stab}_G(\tau)$ est d'ordre 2. Donc $\operatorname{Stab}_G(\tau) = \langle \tau \rangle$.
 - (9) Soit $g \in G$. On a

$$\begin{array}{ll} g \in \mathrm{Ker}(\varphi) & \Leftrightarrow & (\forall \tau \in X) \quad \varphi_g(\tau) = \tau \\ & \Leftrightarrow & g \in \bigcap_{\tau \in X} \mathrm{Stab}_G(\tau) \\ & \Leftrightarrow & g \in \bigcap_{\tau \in X} \{e, \tau\} \,. \end{array}$$

Comme $\bigcap_{\tau \in X} \{e, \tau\} = \{e\}$, on déduit que φ est injectif.

(10) Ainsi, $\operatorname{Im}(\varphi)$ est un sous-groupe de \mathscr{S}_3 , et l'application de G dans $\operatorname{Im}(\varphi)$ définie par $g \mapsto \varphi(g)$ est un homomorphisme de groupes qui est injectif (voir (9)) et surjectif par construction. Donc G est isomorphe à un sous-groupe d'ordre 6 de \mathscr{S}_3 . Comme \mathscr{S}_3 est d'ordre 6 on déduit que G et \mathscr{S}_3 sont isomorphes.