Introdução ao Raciocínio Lógico para ALP

Rafael Alceste Berri – rafaelberri@usp.br Claudio Cesar de Sá – claudio.sa@udesc.br

> Universidade do Estado de Santa Catarina Departamento de Ciência da Computação

> > 19 de março de 2018

2 / 15

Atenção ...

....

- Este texto reflete as dificuldades básicas que alunos tiveram na disciplina de ALP em semestre anteriores.
- Objetivo: entender as condições binárias (0: false e 1: true) de expressões lógicas
- Todo conteúdo encontra-se sob revisão constante e está distante de um formato final!

Aquecendo no desequilíbrio, ou desigualdades:

As inequações serão úteis:

Seja $x \in \{0, 1...99\}$, avalie a **verdade** das expressões:

- $\mathbf{0} \ x > 100$
- $\mathbf{2}$ x é impar ou x é par
- $\forall x(12x + x^2 \le 12)$
- $\exists x(128-14x \leq 12x+4)$

As inequações serão úteis:

Seja $x \in \{0, 1...99\}$, avalie a **verdade** das expressões:

- $\mathbf{1}$ x > 100R: 0 ou falsa
- $\mathbf{2}$ x é impar ou x é par R: 1 ou verdade
- **3** $\forall x (12x + x^2 \le 12)$ R: 0 ou falsa
- $\forall x (144 > 12x + 7)$ R: 0 ou falsa
- $\exists x(128-14x \leq 12x+4)$ R: 1 ou verdade

Questões de concurso público, tais como:

A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- o hoje não, não é domingo
- 4 hoje é sábado

Questões de concurso público, tais como:

A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- 3 hoje não, não é domingo
- o hoje é sábado

A negação de "hoje é domingo e amanhã não choverá" é:

- 1 hoje não é domingo e amanhã não choverá
- hoje não é domingo ou amanhã choverá
- hoje não é domingo então amanhã choverá
- o hoje não é domingo nem amanhã choverá

Questões de concurso público, tais como:

A negação de "hoje é domingo" é:

- hoje é domingo
- a hoje não é domingo
- 3 hoje não, não é domingo
- o hoje é sábado

A negação de "hoje é domingo e amanhã não choverá" é:

- hoje não é domingo e amanhã não choverá
- hoje não é domingo ou amanhã choverá
- hoje não é domingo então amanhã choverá
- o hoje não é domingo nem amanhã choverá

Assim ...

precisamos de algo mais forte!

Este mais forte é ...

- Transformar as frases do tipo "hoje é domingo" em afirmações (assertivas ou proposições)
- ② Estas serão **Verdadeiras** ou **Falsas**, como nas inequações, exemplo: 2+3>6
- 3 Construir fórmulas a partir destas proposições, exemplo: x+3>6 e $12+x\leq 6$
- ${\bf 0}\,$ Ao final, calcular o valor desta fórmula composta, indicando se é ${\bf V}$ ou ${\bf F}\,$
- Troque este V e F por 1 e 0, respectivamente, e bem vindo ao mundo binário do computador!

Este mais forte é ...

- Transformar as frases do tipo "hoje é domingo" em afirmações (assertivas ou proposições)
- ② Estas serão **Verdadeiras** ou **Falsas**, como nas inequações, exemplo: 2+3>6
- 6 Construir fórmulas a partir destas proposições, exemplo: x+3>6 e $12+x\leq 6$
- ${\bf 0}\,$ Ao final, calcular o valor desta fórmula composta, indicando se é ${\bf V}$ ou ${\bf F}\,$
- Troque este V e F por 1 e 0, respectivamente, e bem vindo ao mundo binário do computador!

Assim ...

vamos usar uma lógica com circuitos elétricos conhecidos do colegial, para resolver estas fórmulas!

A **negação** em um circuito elétrico:

Onde	a	tabela
valente	é	dada
A		$\sim {f A}$
V (ou	1)]	F (ou 0)
F (ou	(0) V	V (ou 1)

onde:

V (ou 1): lâmpada acesa

F (ou 0): lâmpada apagada

equipor:

A conjunção ou conectivo E em um circuito elétrico:

Onde a tabela equivalente é dada por:

A	В	$\mathbf{A} \wedge \mathbf{B}$
V	V	V
V	F	F
F	V	F
F	F	F

V (ou 1): lâmpada acesa F (ou 0): lâmpada apagada

A disjunção ou conectivo OU em um circuito elétrico:

Onde a tabela equivalente é dada por:

A	В	$\mathbf{A} \lor \mathbf{B}$
V	V	V
V	F	V
F	V	V
F	F	F

V (ou 1): lâmpada acesa acesa F (ou 0): lâmpada apagada

Construa a Tabelas Verdades (TVs) das fórmulas abaixo:

A	В	$\sim {f A}$	$\sim \mathbf{A} \vee \mathbf{B}$
V	V	F	
V	F	F	
F	V	V	
F	F	V	

Esta fórmula é conhecida como $\sim A \vee B \equiv A \rightarrow B$, leia-se: se A então B

Resolva: $\sim A \vee B$

A	В	$\sim {f A}$	$\sim {f A} ee {f B}$
F	F	V	
F	V	V	
V	F	F	
V	V	F	

Construa a Tabelas Verdades (TVs) das fórmulas abaixo:

Resolva: $(\sim A \vee B) \wedge (\sim B \vee A)$

A	В	$\sim {f A}$	$X : \sim \mathbf{A} \vee \mathbf{B}$	$\sim {f B}$	$Y : \sim \mathbf{B} \vee \mathbf{A}$	$X \wedge Y$
F	F	V				
F	V	V				
V	F	F				
V	V	F				

- Para fins de concurso público é algo como: se A e B forem iguais então esta fórmula é verdadeira!
- Se A e B forem diferentes, então a expressão é falsa
- Esta fórmula é conhecida como $A \leftrightarrow B$, leia-se: A bi-implica em В

Sejam as fórmulas A: X = 3 e B: Y = 4, resolva via TV:

- $X = 3 \lor Y = 4$
- $X = 3 \lor Y \neq 4$
- $X = 3 \land Y \neq 4$
- $X < 3 \lor Y = 4$
- $X > 3 \land Y \neq 4$

Todas estas expressões lógicas vão estar presentes na linguagem C:

- \sim equivale ao!
- ∨ equivale ao ∏
- ◆ A equivale ao &&

- Exemplo: !1=0
- Exemplo: X == 3 | Y != 4
- Exemplo: X >= 3 && Y <= 4

Todas estas expressões lógicas vão estar presentes na linguagem C:

- \sim equivale ao!
- ✓ equivale ao | |
- ◆ A equivale ao &&
- Ainda que: $X \to Y \equiv \sim X \vee Y$

Exemplo: !1=0

Exemplo: X == 3 | Y != 4

Exemplo: X >= 3 && Y <= 4

Todas estas expressões lógicas vão estar presentes na linguagem C:

• \sim equivale ao!

Exemplo: !1=0 Exemplo: X == 3 | | Y != 4

✓ equivale ao | | ◆ A equivale ao &&

- Exemplo: X >= 3 && Y <= 4
- Ainda que: $X \to Y \equiv \sim X \vee Y$
- Ainda que: $X \leftrightarrow Y \equiv (X \to Y) \land (Y \to X)$

Todas estas expressões lógicas vão estar presentes na linguagem C:

• \sim equivale ao!

Exemplo: !1=0 Exemplo: X == 3 | Y != 4

 ✓ equivale ao | | ↑ equivale ao &&

- Exemplo: X >= 3 && Y <= 4
- Ainda que: $X \to Y \equiv \sim X \vee Y$
- Ainda que: $X \leftrightarrow Y \equiv (X \to Y) \land (Y \to X)$
- Tudo passível de se colocar na linguagem C
- Coloque parênteses em cada condição lógica!
- Os resultados permanecem: 1 = true = 0 = false

Isto tudo se relaciona em seguir passos lógicos:

• Como o computador trabalha com **0**'s e **1**'s, estas operações de **V**erdade (*true*) e **F**also (*false*) são análogas

- Como o computador trabalha com 0's e 1's, estas operações de Verdade (true) e Falso (false) são análogas
- O tempo inteiro voce deverá começar a pensar deste modo: 0 = Fe 1 = V

- Como o computador trabalha com 0's e 1's, estas operações de Verdade (true) e Falso (false) são análogas
- O tempo inteiro voce deverá começar a pensar deste modo: 0 = Fe 1 = V
- Claro este princípio não serve para vida!

- Como o computador trabalha com **0**'s e **1**'s, estas operações de **V**erdade (*true*) e **F**also (*false*) são análogas
- \bullet O tempo inteiro voce deverá começar a pensar deste modo: 0=F e 1=V
- Claro este princípio não serve para vida!
- Mas, aqui para o curso sim!

- Como o computador trabalha com **0**'s e **1**'s, estas operações de **V**erdade (*true*) e **F**also (*false*) são análogas
- \bullet O tempo inteiro voce deverá começar a pensar deste modo: 0=F e 1=V
- Claro este princípio não serve para vida!
- Mas, aqui para o curso sim!
- Boa sorte!