Likelihood for Seed Production

Growth data is on individual level, while seed data is on stand level, so I will model individual tree radial growth and stand-level seed production by introducing $\mu_{j,sp,y}$, representing the mean radial growth for stand j, species sp, and year y.

For each individual tree i in stand j, species sp, and year y, the observed radial growth is modeled as, with sigma being the variance across individuals:

$$Growth_{i,j,sp,y} \sim Normal(\mu_{j,sp,y}, \sigma^2)$$

The seed count for a particular stand j, species sp, and year y follows a negative binomial distribution with mean $\lambda_{j,sp,y}$ and dispersion term ϕ :

Seed_{j,sp,y} ~ NegBinomial(
$$\lambda_{j,sp,y}, \phi$$
)

The modeled seed count $(\lambda_{j,sp,y})$ for stand j, species sp, and year y is:

$$\log(\lambda_{j,sp,y}) = \alpha_0 + \alpha_{sp} + \alpha_j + (\beta_{1,sp} + \beta_{1,j}) \cdot \mu_{j,sp,y} + (\beta_{2,sp} + \beta_{2,j}) \cdot \mu_{j,sp,y-1} + \beta_{3,sp} \cdot \text{Elevation}_j$$

Where:

 α_0 is the grand mean across all species, stands and years;

 α_{sp} is the species-specific intercept for species sp;

 α_i is the stand-specific intercept for stand j;

 $\beta_{1,sp}$ is the slope for the relationship between current-year growth and seed production for species sp;

 $\beta_{1,j}$ is the slope for the relationship between current-year growth and seed production for stand i:

 $\mu_{j,sp,y}$ is the mean growth for stand j, species sp, and year y;

 $\beta_{2,\text{sp}}$ is the slope for the relationship between previous-year growth and seed production as the lag effect for species sp;

 $\beta_{2,j}$ is the slope for the relationship between previous-year growth and seed production as the lag effect for stand j;

 $\beta_{3,\text{sp}}$ is the effect of elevation on seed production for species sp.

Priors for Random Slopes

$$eta_{1,\mathrm{sp}} \sim \mathrm{Normal}(0, \sigma_{eta_1,\mathrm{sp}})$$
 $eta_{2,\mathrm{sp}} \sim \mathrm{Normal}(0, \sigma_{eta_2,\mathrm{sp}})$
 $eta_{1,j} \sim \mathrm{Normal}(0, \sigma_{eta_1,j})$
 $eta_{2,j} \sim \mathrm{Normal}(0, \sigma_{eta_2,j})$

Where:

 $\sigma_{\beta_1,\text{sp}}$ and $\sigma_{\beta_2,\text{sp}}$ represent the standard deviations for the random slopes at the species level; $\sigma_{\beta_1,j}$ and $\sigma_{\beta_2,j}$ represent the standard deviations for the random slopes at the stand level.