CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

OBJETIVOS

- Reconocer como funciona el transistor bipolar.
- Reconocer las zonas de operación como amplificador, en corte y saturación.

1. Conceptos Preliminares

El transistor como elemento activo, puede ser utilizado según las modalidades base común, colector común y emisor común. Los transistores bipolares pueden ser NPN o PNP

Para comprender su funcionamiento, se requiere realizar un ensayo en laboratorio, con instrumentos adecuados de precisión que permita medir valores y obtener resultados que luego de ser interpretados resultan de gran significado para comprender como opera un transistor.

Transistor NPN

B C

Transistor PNP

Polarización de Transistores

Figura 1: Representación gráfica de un transistor

El transistor NPN polariza la juntura C-B en forma inversa, la juntura E-B de forma directa. El transistor PNP polariza la juntura C-B en forma inversa, la juntura E-B de forma directa.

Regla: La polarización E-B en forma directa. La polarización C-B en forma inversa. El transistor NPN polariza el colector a positivo. El PNP polariza el colector a negativo.

La indicación "+ B –" que se observa en las gráficas significa que la Base puede estar con polaridad cambiante, tal como sucede con una señal variable en el tiempo.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

Curva de transferencia y Curva de Salida

Tal como se explica en la teoría, las ecuaciones a considerar en el circuito son

$$\begin{split} \text{IE} &= \text{IC} + \text{IB} \\ \text{Vcc} &= \text{IC*Rc} + \text{Vce} \\ \beta &= \text{IC/IB} \end{split}$$

Donde:

IE = Corriente del emisor

IC = Corriente del Colector

IB = Corriente de Base

Vcc = Polarización entre Colector y Emisor

Vbe= Polarización entre Base y Emisor

Rc = Resistencia de carga

 β = (Hfe) Ganancia de Corriente (>>1. Generalmente entre 40 a 600)

Figura 2: Esquema y gráfica de las curvas de transferencia y de salida

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

2. Desarrollo. Experiencia práctica

Para determinar y trazar la curva característica o curva de salida se analiza el circuito de la figura 3. En el circuito se indican los instrumentos de medición, esto es, amperímetros y voltímetros correspondientes a IB, IC, VCE, VBE.

Figura 3: Circuito de ensayo experimental. Vdd fuente de valor fijo. Vcc fuente de valor variable entre 0 a 10Volt.

Método de trabajo:

- 1_En el circuito de la figura 3, con Vdd=1V se ajusta R1 de tal modo que se fije un valor de IB, el cual no variará durante los procedimientos indicados en los puntos 2, 3 y 4.
- 2_Con este valor de IB cte. (corriente de base constante) se procede a ajustar el Valor de VCE en 1 volt utilizando una fuente variable indicada como +Vcc. Se procede a medir el valor de la corriente de colector (IC).
- 3_Para realizar otra medición se ajusta otra vez VCE en 2 Volt modificando la fuente variable +Vcc. Se mide ahora un nuevo valor de la corriente de colector (IC).
- 4_Se repite el procedimiento indicado en el punto 3 para diferentes VCE entre 3 y 10volt. Todos los valores de VCE e IC se corresponden para el Valor de IB ajustado en el punto 1.
- 5_Se procede a repetir la experiencia para otro valor de IB mayor (isolínea de base), tal como se indica en el punto 1. Se repiten los procedimientos indicados en los puntos 2,3 y 4.

Los resultados se ordenan según una tabla.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3. acterísticas. Recta de carga. An

Tabla de Resultados de la experiencia

La experiencia realizada con un transistor BC337 comercial se observa en la tabla 1 Los valores se corresponden para Corrientes de Base de IB= 10 uA, 40 uA, 80 y 100 uA.

IB = 10 uA	IB = 40 uA
------------	------------

VCE (V)	IC (mA)	Hfe	VCE (V)	IC (mA)	Hfe
0,1	1,9	190	0,1	7	175
1	2,25	225	1	9,1	227,5
2	2,33	233	2	9,35	233,75
3	2,35	235	3	9,52	238
4	2,37	237	4	9,54	238,5
5	2,43	243	5	9,6	240
6	2,49	249	6	9,93	248,25
7	2,53	253	7	10,1	252,5
8	2,59	259	8	10,2	255
9	2,64	264	9	10,33	258,25
10	2,72	272	10	10,45	261,25

Promedio 242 239

IB = 80 uA IB= 100 uA

VCE (V)	IC (mA)	Hfe	VCE (V)	IC (mA)	Hfe
0,1	12,8	160	0,1	16,02	160,2
1	18,2	227,5	1	23,05	230,5
2	19,18	239,75	2	24,4	244
3	19,6	245	3	25,03	250,3
4	19,97	249,625	4	25,55	255,5
5	20,5	256,25	5	26,22	262,2
6	21	262,5	6	26,76	267,6
7	21,49	268,625	7	27,65	276,5
8	22,05	275,625	8	28,7	287
9	22,33	279,125	9	29,24	292,4
10	22,8	285	10	30,02	300,2

Promedio 250 257

Tabla 1: Valores experimentales obtenidos del ensayo del circuito Figura 3.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

TRABAJO PRÁCTICO A DESARROLLAR

Punto A. Con los valores de la tabla 1 realice el gráfico de la curva característica o curva de salida (IC vs VCE) para el transistor NPN BC337 utilizado en el circuito de la figura 3. Presente los valores y gráfico utilizando software Planilla de Cálculo. Indique en los ejes los valores (título, unidades y magnitudes) para cada curva de IB constantes. El resultado debería ser similar al indicado en la figura 4.

Figura 4: Curva característica o curva de salida. Transistor BC337

Punto B. Indique las características observadas de la experiencia y las características que se obtienen de los datos que entrega el fabricante del transistor BC337 (ver al final las especificaciones técnicas)

Responda la Pregunta:

¿La ganancia de corriente calculada se corresponde con la hoja de datos técnicos del fabricante? Nota: La hoja de datos técnicos del transistor BC337 se obtiene fácilmente descargándola de cualquier sitio web. El práctico incluye como anexo parte de la hoja de datos del BC337.

Punto C. Con los valores de la Tabla1 calcule la Recta de Carga considerando las ecuaciones: IE = IC + IB

Vcc= IC*Rc + Vce. β = IC/IB

Utilizando una Planilla de Cálculo (software) realice las ecuaciones y presente los valores de Vcc, Vce, Rc e IC. Considere que Vcc=10 Volt y Rc= 500 ohm no cambian de valor en las ecuaciones. Realice un gráfico que muestre el trazado de la recta de carga sobre la gráfica obtenida en el punto A.

Punto D. Experimentalmente se determinaron los valores correspondientes al circuito de la Figura 3. Fijando un valor de VCE, se intercepta la isolínea de IB constante y se mide el valor de IC sobre la ordenada. Se indican los valores en la Tabla 2. Los valores de IB se corresponden con los adoptados para el trazado de la curva característica (10, 40, 80 y 100 uA) Realice el gráfico correspondiente y compárelo con el obtenido en el punto C.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

	RECTA DE CARGA EXPERIMENTAL					
IB (uA)	VCE (V)	IC (mA)				
100	0,13	19,9				
80	0,85	18,5				
40	5,3	9,62				
10	8,94	2,42				
	10	0				
	0	20				

Tabla 2: Valores experimentales del circuito de la figura 3

Punto E. Realice el circuito de la Figura 5. Variando el valor de la resistencia R1 o R2 se podrá observar cómo cambia la intensidad lumínica del diodo "Led" en serie con la Resistencia de Carga (RC). Esto prueba que la corriente IC varía en función del valor de IB que cambia con el valor de las resistencias.

COMPONENTES de REFERENCIA R1: 10 k ohm R2: 22 ohms T1: BC337 RC: 500 ohm

Figura 5: Circuito de ensayo. (Nota: Los valores de los componentes pueden variar)

Año 2021.

Modalidad Virtual. Desarrollar El Circuito con el Simulador Proteus Profesional V8.8 sp1

- Armar el circuito eléctrico de la figura 5. (Simulación)
- Ensayar el circuito según las indicaciones del punto E.
- Observar resultados y anotarlos (de la Simulación)
- AGREGAR IMAGEN DE LA SIMULACIÓN en el Informe.
- Adjuntar archivo electrónico de la Simulación. (Solo si es posible)

Nota. Recordar que los componentes pueden adoptar valores diferentes al mostrado en el circuito El objetivo es lograr el funcionamiento descripto en el punto E.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

Punto F. Realice el circuito de la figura 6. Observe que ubicando la llave en una posición u otra el Led indicado como "red LED" se enciende o se apaga.

Responda a las preguntas:

- 1. ¿Cuál es la condición del "led" (encendido o apagado) que se corresponde al Estado de Corte y cuál al Estado de Saturación? Explique y fundamente.
- 2. ¿Cuál es el comportamiento del circuito si se reemplaza el Transistor NPN (BC337) por otro Transistor PNP (BC327). Nota. Los códigos de los Transistores son a modo ilustrativo. Explique.

Figura 6: Circuito de ensayo. Corte y saturación. R2: utilice resistencia pequeña (ej. 220 ohm). Nota: Los valores de los componentes pueden variar)

Año 2021.

Modalidad Virtual. Desarrollar El Circuito con el Simulador Proteus Profesional V8.8 sp1

- Armar el circuito eléctrico de la figura 6. (Simulación)
- Ensayar el circuito según las indicaciones del punto F.
- Observar resultados y anotarlos (de la Simulación)
- AGREGAR IMAGEN DE LA SIMULACIÓN en el Informe.
- Adjuntar Archivo electrónico de la Simulación. (Solo si es posible)

Nota. Recordar que los componentes pueden adoptar valores diferentes al mostrado en el circuito El objetivo es lograr el funcionamiento descripto en el punto F.

RESUMEN DE LA ACTIVIDAD

Realice todos los ejercicios indicados en los Puntos A a F.

- _ Presente un informe grupal con los resultados. (Use el Modelo de Presentación)
- _ Indique en cada hoja del informe el mismo encabezado que el utilizado en este Trabajo. En el pie de página indique los nombres completos, legajo y carrera del grupo de trabajo.
- _ Adjuntar los circuitos de simulación y enviar junto al archivo electrónico del Tpráctico. (Solo si es posible)

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

EJERCICIOS PROPUESTOS (NO SON OBLIGATORIOS. NO SE ENTREGAN) Ejercicio 1.

Dado el circuito de la Figura 5, responda las siguientes preguntas.

- 1. ¿Cuál es el comportamiento del circuito si se reemplaza el diodo led por un diodo común (ej. 1N4007) con la misma polarización del circuito? Explique.
- 2. ¿Cuál es el comportamiento del circuito si se reemplaza pin a pin el Transistor NPN (BC337) por otro Transistor PNP (BC327). Nota. Los códigos de los Transistores son a modo ilustrativo. Explique lo que sucede. Nota: pin a pin significa que se reemplaza en forma directa el transistor, colector con colector y lo mismo con la base y emisor. Tenga en cuenta la polarización de los transistores.

Ejercicio 2.

Dado el circuito de la Figura 6, responda las siguientes preguntas.

- 1. ¿Cuál es el comportamiento del circuito si se reemplaza el diodo led por un diodo común (ej. 1N4007) con la misma polarización del circuito? Explique.
- ¿Cuál es el comportamiento del circuito si se reemplaza el diodo led por un diodo común (ej. 1N4007) polarizado en forma inversa? Nota. Se conecta el ánodo del diodo a masa. Explique.
- 3. ¿Cuál es el comportamiento del circuito si se conecta el led en forma inversa? Nota. Se conecta el ánodo del led a masa. Explique.

Ejercicio 3.

Dado el circuito de la figura 3, y los valores de la Tabla 2, determine

- a). La Ganancia de Corriente para IB= 40 uAmpere.
- b). La Ganancia de Corriente para IB= 100 uAmpere.

Ejercicio 4.

Dado el circuito de la figura 5. Responda

- a). Si disminuye el valor de RC (RC=10 ohms), Explique el funcionamiento del Led
- b). Con RC=470 ohms. Cálcule la Ganancia en Corriente para IB=40 uAmpere. Use los datos de la Tabla 2.

Ejercicio 5.

Dado el circuito,

a) Explique el funcionamiento del led cuando se modifica la corriente de Base (aumento o disminución de IB)

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

ANEXO. Transistor BC337 (No es Obligatorio presentar estas páginas)

BC817; BC817W; BC337
45 V, 500 mA NPN general-purpose transistors
Rev. 06 — 17 November 2009

Product data sheet

Product profile

1.1 General description

NPN general-purpose transistors.

Table 1. Product overview

Type number	Package	Package P	
	NXP	JEITA	
BC817	SOT23	-	BC807
BC817W	SOT323	SC-70	BC807W
BC337[1]	SOT54 (TO-92)	SC-43A	BC327

^[1] Also available in SOT54A and SOT54 variant packages (see Section 2).

1.2 Features

- High current
- Low voltage

1.3 Applications

General-purpose switching and amplification

1.4 Quick reference data

Table 2. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CEO}	collector-emitter voltage	open base; I _C = 10 mA		-	-	45	٧
Ic	collector current (DC)			-	-	500	mΑ
I _{CM}	peak collector current			-	-	1	Α
h _{FE}	DC current gain	I _C = 100 mA;	[1]	-	-	-	
	BC817; BC817W; BC337	V _{CE} = 1 V		100	-	600	
	BC817-16; BC817-16W; BC337-16	_		100	-	250	
	BC817-25; BC817-25W; BC337-25	_		160	-	400	
	BC817-40; BC817-40W; BC337-40	_		250	-	600	

^[1] Pulse test: t_n ≤ 300 μs; δ ≤ 0.02.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

NXP Semiconductors

BC817; BC817W; BC337

45 V, 500 mA NPN general-purpose transistors

5. Limiting values

Table 6. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CBO}	collector-base voltage	open emitter		-	50	٧
V _{CEO}	collector-emitter voltage	open base; I _C = 10 mA		-	45	V
V _{EBO}	emitter-base voltage	open collector		-	5	٧
l _c	collector current (DC)			-	500	mΑ
I _{CM}	peak collector current			-	1	Α
I _{BM}	peak base current			-	200	mA
Ptot	total power dissipation					
	BC817	T _{amb} ≤ 25 °C	[1][2]	-	250	mW
	BC817W	T _{amb} ≤ 25 °C	[1][2]	-	200	mW
	BC337	T _{amb} ≤ 25 °C	[1][2]	-	625	mW
T _{stg}	storage temperature			-65	+150	°C
Tj	junction temperature			-	150	°C
Tamb	ambient temperature			-65	+150	°C

^[1] Transistor mounted on an FR4 printed-circuit board, single-sided copper, tin-plated and standard footprint.

6. Thermal characteristics

Table 7. Thermal characteristics

rubic r.	Themas onaraoteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient					
	BC817	T _{amb} ≤ 25 °C	[1][2] -	-	500	K/W
	BC817W	T _{amb} ≤ 25 °C	[1][2]	-	625	K/W
	BC337	T _{amb} ≤ 25 °C	[1][2]	-	200	K/W

^[1] Transistor mounted on an FR4 printed-circuit board, single-sided copper, tin-plated and standard footprint.

^[2] Valid for all available selection groups.

^[2] Valid for all available selection groups.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

NXP Semiconductors

BC817; BC817W; BC337

45 V, 500 mA NPN general-purpose transistors

7. Characteristics

Table 8. Characteristics

T_{amb} = 25 ℃ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _{CBO}	collector-base cut-off current	I _E = 0 A; V _{CB} = 20 V	-	-	100	nΑ
		I _E = 0 A; V _{CB} = 20 V; T _I = 150 °C	-	-	5	μА
I _{EBO}	emitter-base cut-off current	I _C = 0 A; V _{EB} = 5 V	-	-	100	nΑ
h _{FE}	DC current gain	I _C = 100 mA; V _{CE} = 1 V	<u>[11]</u>			
	BC817; BC817W; BC337		100	-	600	
	BC817-16; BC817-16W; BC337-16	_	100	-	250	
	BC817-25; BC817-25W; BC337-25		160	-	400	
	BC817-40; BC817-40W; BC337-40	_	250	-	600	
h _{FE}	DC current gain	I _C = 500 mA; V _{CE} = 1 V	<u>[1]</u> 40	-	-	
V _{CEsat}	collector-emitter saturation voltage	I _C = 500 mA; I _B = 50 mA	111 -	-	700	mV
V _{BE}	base-emitter voltage	I _C = 500 mA; V _{CE} = 1 V	[2] _	-	1.2	٧
Cc	collector capacitance	I _E = i _e = 0 A; V _{CB} = 10 V; f = 1 MHz	-	3	-	pF
fT	transition frequency	I _C = 10 mA; V _{CE} = 5 V; f = 100 MHz	100	-	-	MHz

Pulse test: t₀ ≤ 300 μs; δ ≤ 0.02.

^[2] VBE decreases by approximately 2 mV/K with increasing temperature.

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

- V_{CE} = 1 V
- (1) T_{amb} = 150 °C
- (2) T_{emb} = 25 °C
- (3) T_{amb} = -55 °C

Fig 1. Selection -16: DC current gain as a function of collector current; typical values

- V_{CE} = 1 V
- (1) T_{amb} = 150 °C
- (2) T_{amb} = 25 °C
- (3) T_{amb} = -55 °C

Fig 2. Selection -25: DC current gain as a function of collector current; typical values

- V_{CE} = 1 V
- (1) Tamb = 150 °C
- (2) T_{emb} = 25 °C
- (3) T_{amb} = -55 °C

Fig 3. Selection -40: DC current gain as a function of collector current; typical values

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

Selection -40: Collector-emitter saturation voltage as a function of collector current; typical values

T_{amb} = -55 °C

CARRERA: INGENIERIA INDUSTRIAL - INGENIERIA MECATRONICA CARPETA TRABAJOS PRACTICOS

2022-TP N°3.

El transistor. Curvas características. Recta de carga. Amplificación. Corte y Saturación

NXP Semiconductors

BC817; BC817W; BC337

45 V, 500 mA NPN general-purpose transistors

