

Term End Examination

Dec 2023

CET2003B - Operating Systems

Question Paper ID: 027171

Faculty/School	Engineering and Technology	Term	Semester III
Program	SY B.Tech CSE/AIDS/CSF	Duration	2 Hours 30 Minutes
Specialization		Max. Marks	70

Section - 1 (7 X 10 Marks) Answer <u>any 7</u> questions

1	Explain five OS compon	ents in detail.[10 Mark	rs]		10 marks	CO1	Understanding
2	Consider the following s turnaround time (TAT) as come first serve (FCFS-1) the Gantt chart.[10 Mark	or each process using	g First	10 marks	-	Understandin	
	Process	Arrival Time	Burst Time]			
	P1	0	3				
	P2	2	6				
	P3	4	4				
	P4	6	5				
	P5	8	2				
3	(a) Describe the Reader Writer's classical semaphore problem.[4 Marks] (b) Discuss the solution(pseudo code) for the Reader Writer's problem using semaphores [6 Marks]			10 marks	CO3	Understanding	
4	(a) Define the following to (i) Mutual Exclusion (ii) Race condition (iii) Atomic Operation (iv) Critical section (v) Starvation	erms related to concurr	ency: [5 Marks]		10 marks	CO3	Remembering

5	Suppose we want to synchronize two concurrent processes P and Q using	10 marks	CO:	3 Applying
	binary semaphores S1 and S2. The code for the processes P and Q is shown	10 marks		, Abbiania
	below.			
	Process P:			
	while(1)			
	{			
	P(S1);			
	P(S2);			
	Critical Section			
	V(S1);			
	V(S2);			
	}			
	Process Q:			
	while(1)			
	{			
	P(S1);			
	P(S2);			
	Critical Section			
	V(S1);			
	V(S2);			
	}			
	Justify whether it results in staryation double-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Justify whether it results in starvation, deadlock or mutual exclusion. [10 Marks]			
6	(a) Define the following terms with respect to paging [5 Marks]	10 manks	CO4	Remembering
	(i) Page	10 marks	CO4	Remembering
	(ii) Frame			
	(iii) Thrashing			
	(iv) Temporal Locality			
	(v) Page fault			
	(v) i age fault			
	(b) Compare Paging and Segmentation (any five points). [5 Marks]			
7	(a) Explain four key differences amongst the types of I/O devices.[4 Marks]	10 marks	CO4	Remembering
	(b) Explain four types of I/O buffering schemes with diagrams.[6 Marks]			

8	(a) Define the following terms with respect to Disk Scheduling: [4 Marks] (i) Seek Time (ii) Rotational Latency (iii) Transfer time (iv) Disk Access Time	10 marks	CO4	Understandin
	(b) Consider the following disk request sequence 86,1470,913,1774,948,1509,1022,1750,130 for a disk with 2000 tracks starting from the current head position at 125. Find the number of head movements in tracks and average seek time using SSTF and C-SCAN scheduling. Plot the graphs for the same. [6 Marks]			
9	(a) Write a shell script program to print the multiplication table of a given number [4 Marks] For Example, if the given input is 4 then the output should be 4*1=4 4*2=8 : 4*10=40	10 marks	COS	Understanding
	(b) Explain conditional control structure syntax with a proper example for: [6Marks] (i) if structure (ii) case structure.	2		
10	Draw and Explain the block diagram of the UNIX system kernel. [10 Marks]	10 marks	CO5	Understanding

END OF QUESTION PAPER