

Mathematik 1 Infotronik (21) Gerald Kupris

Weiterer Plan für dieses Semester

- 16. (13.12.2012): Lineare Abbildung, 2D Abbildungen, 2D Grafik
- 17. (19.12.2012): Projektion, Verschiebung, homogene Koordinaten
- 18. (20.12.2012): Drehung um einen beliebigen Punkt, Scherung

Feiertage

19. (09.01.2013): Definition von Eigenvektoren und Eigenwerten

- 21. (16.01.2013): Eigenschaften von Eigenvektoren und Eigenwerten
- 22. (17.01.2013): Anwendung von Eigenvektoren und Eigenwerten
- 23. (23.01.2013): Anwendung von Eigenvektoren und Eigenwerten
- 24. (24.01.2013): Wiederholung, Prüfungsvorbereitung

Wiederholung: Eigenvektor und Eigenwert

Ein **Eigenvektor** einer Abbildung ist in der linearen Algebra ein vom Nullvektor verschiedener Vektor, dessen **Richtung** durch die Abbildung nicht verändert wird.

Ein Eigenvektor wird also nur gestreckt, und man bezeichnet den Streckungsfaktor als **Eigenwert** der Abbildung.

Eigenwerte charakterisieren wesentliche Eigenschaften linearer Abbildungen, etwa ob ein entsprechendes lineares Gleichungssystem eindeutig lösbar ist oder nicht.

In vielen Anwendungen beschreiben Eigenwerte auch physikalische Eigenschaften eines mathematischen Modells.

Definitionen Eigenvektor und Eigenwert (1)

Ist V ein Vektorraum über einem Körper K und $f:V\to V$ eine lineare Abbildung von V in sich selbst (Endomorphismus), so bezeichnet man als **Eigenvektor** einen Vektor $v\neq 0$, der durch f auf ein Vielfaches $\lambda\in K$ von sich selbst abgebildet wird: $f(v)=\lambda v$

Den Faktor λ nennt man dann den zugehörigen **Eigenwert**.

Anders formuliert: Hat für ein $\lambda \in K$ die Gleichung $f(v) = \lambda v$ eine Lösung $v \neq 0$ (der Nullvektor ist natürlich immer eine Lösung), so heißt λ *Eigenwert* von f. Jede Lösung $v \neq 0$ heißt **Eigenvektor** von f zum **Eigenwert** λ .

Definitionen Eigenvektor und Eigenwert (2)

Ist der Vektorraum endlichdimensional, so kann jeder Endomorphismus f durch eine quadratische Matrix A beschrieben werden. Die obige Gleichung lässt sich dann als Matrizengleichung schreiben:

$$A \cdot x = \lambda x$$

wobei x hier einen Spaltenvektor bezeichnet. Man nennt eine Lösung $x \neq 0$ und λ in diesem Fall **Eigenvektor** bzw. **Eigenwert** der Matrix A.

Diese Gleichung kann man auch in der Form $A \cdot x = \lambda \, E \cdot x$ schreiben, wobei E die Einheitsmatrix bezeichnet, und äquivalent umformen zu

$$(A - \lambda E) \cdot x = 0$$

bzw.

$$(\lambda E - A) \cdot x = 0$$

Wiederholung: Berechnung der Eigenwerte

Die Gleichung

$$(A - \lambda E) \cdot x = 0$$

die Eigenwerte definiert, stellt ein homogenes lineares Gleichungssystem dar.

Da $x \neq 0$ vorausgesetzt wird, ist dieses genau dann lösbar wenn gilt:

$$\det(A - \lambda E) = 0$$

Expandiert man die Determinante auf der linken Seite, so erhält man ein Polynom n-ten Grades in λ. Dieses wird charakteristisches Polynom genannt, und dessen Nullstellen sind die Eigenwerte, also die Lösungen der Gleichung

$$\alpha_n \cdot \lambda^n + \alpha_{n-1} \cdot \lambda^{n-1} + \ldots + \alpha_1 \cdot \lambda + \alpha_0 = 0$$

Charakteristisches Polynom

Das charakteristische Polynom wird als Determinante derjenigen Matrix berechnet, die entsteht, wenn in A von den Hauptdiagonalelementen jeweils λ abgezogen wird.

Die Spur einer Matrix A (spur A) ist die Summe der Elemente auf der Hauptdiagonalen.

Für n = 2 und n = 3 ist das ausgeschrieben:

$$p(\lambda) = \lambda^{2} - \operatorname{spur} A \lambda + \det A \qquad (n = 2)$$

$$p(\lambda) = -\lambda^{3} + \operatorname{spur} A \lambda^{2} - c_{2}\lambda + \det A \qquad (n = 3)$$

$$c_{2} \text{ ist für } A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix} \text{ definiert als } c_{2} = \begin{vmatrix} a & b \\ d & e \end{vmatrix} + \begin{vmatrix} a & c \\ g & j \end{vmatrix} + \begin{vmatrix} e & f \\ h & j \end{vmatrix}.$$

Zur Erinnerung: Quadratische Gleichung

allgemeine Form

Normalform

$$ax^{2} + bx + c = 0$$
 $(a, b, c \in \mathbb{R}, a \neq 0)$ $x^{2} + px + q = 0$ $(p, q \in \mathbb{R})$

$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
 $x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$

wenn die Diskriminante D negativ ist:

$$\sqrt{D}=i\sqrt{|D|}=i\sqrt{-D}$$

Wiederholung: Berechnung der Eigenvektoren

Für einen Eigenwert λ lassen sich die Eigenvektoren aus der Gleichung

$$(A - \lambda E) \cdot x = 0$$

bestimmen.

Die Eigenvektoren spannen einen Raum auf, dessen Dimension als geometrische Vielfachheit des Eigenwertes bezeichnet wird. Für einen Eigenwert λ der geometrischen Vielfachheit μ lassen sich also linear unabhängige Eigenvektoren

$$x_1, \ldots, x_{\mu}$$

finden, so dass die Menge aller Eigenvektoren zu ${\bf \lambda}$ gleich der Menge der Linearkombinationen von x_1,\ldots,x_μ ist.

 x_1, \ldots, x_μ heißt dann Basis aus Eigenvektoren zum Eigenwert λ .

Anleitung zur Bestimmung von Eigenvektor und Eigenwert

"Schritt-für-Schritt":

- 1. Die Eigenwerte werden über die charakteristische Gleichung bestimmt (Nullstellen des charakteristischen Polynoms).
- 2. Die gefundenen Eigenwerte werden in die Gleichung $(A \lambda E) \cdot x = 0$ eingesetzt.
- 3. Das Gleichungssystem wird gelöst, dadurch wird ein Eigenvektor (von vielen möglichen) zu dem jeweiligen Eigenwert gefunden.
- 4. Probe: der gefundene Vektor wird mit der Matrix multipliziert, um zu überprüfen, ob es sich tatsächlich um einen Eigenvektor handelt.

Beispiel

Beispiel

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A**.

$$A = \begin{pmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{pmatrix}$$

Untersuchen Sie die gefundenen Eigenvektoren auf Orthogonalität.

Das Produkt der Eigenwerte ist die Determinante der Matrix.

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A**.

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Die Summe der Eigenwerte ist die Summe entlang der Diagonale (der Spur der Matrix).

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A**.

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Die Eigenwerte einer n-reihigen Diagonal- bzw. Dreiecksmatrix **A** sind identisch mit den Elementen der Hauptdiagonale.

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A**.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

Eigenwerte von Diagonal- und Dreiecksmatrizen

Die Eigenwerte einer Diagonalmatrix oder einer unteren oder oberen Dreiecksmatrix stehen in der Diagonalen. Sie müssen also nicht berechnet, sondern können einfach abgelesen werden. Insbesondere besitzt eine (n,n)-Dreiecksmatrix n reelle Eigenwerte.

Beispielaufgaben

Bestimmen Sie auf möglichst einfache Art sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der folgenden Matrizen (mit Kontrolle):

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 1 & 4 \end{pmatrix}$$

$$B = \begin{pmatrix} -5 & 1 & -3 \\ 0 & 2 & 5 \\ 0 & 0 & 7 \end{pmatrix}$$

Wenn A eine n x n Matrix ist, dann gibt es maximal n Eigenwerte und n Eigenvektoren.

Beispiel: Bestimmen Sie auf möglichst einfache Art sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der folgenden Matrix **A**:

$$A = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

Eine Matrix **A** und die dazu gehörende transponierte Matrix **A**^T haben die selben Eigenwerte.

Die Matrix **A** und die Matrix **A**^T haben das selbe charakteristische Polynom, daher besitzen sie die selben Eigenwerte.

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A** und der transponierten Matrix **A**^T.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

Wenn die Matrix **A** eine singuläre Matrix ist, dann ist $\lambda = 0$ ein Eigenwert.

Die Matrix (A - $\lambda \cdot E$) ist dann auch eine singuläre Matrix.

Die Determinante dieser Matrix ist dann 0.

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A**. Sind die Eigenvektoren linear unabhängig?

$$A = \begin{pmatrix} 3 & 5 & 0 \\ 1 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$

Es ist **A** genau dann invertierbar, wenn alle Eigenwerte ≠ 0 sind.

Ist λ ein Eigenwert von **A** mit Eigenvektor **b**, dann ist λ^{-1} ein Eigenwert von **A**-1 mit demselben Eigenvektor **b**.

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A** und der inversen Matrix **A**-1.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

Wiederholung: Matrizeninvertierung

Es sei $A \in \Re^{n \times n}$. A heißt invertierbar oder auch regulär, wenn es eine Matrix

$$A^{-1} \in \Re^{n \times n}$$
 gibt mit der Eigenschaft $A^{-1} \cdot A = A \cdot A^{-1} = E_n$.

In diesem Fall heißt A^{-1} die inverse Matrix von A.

Aber Achtung: nicht jede Matrix lässt sich invertieren!

Folgerung: eine Matrix heißt invertierbar oder auch regulär, wenn ihre Determinante nicht gleich Null ist.

Determinante der inversen Matrix

Beweisen Sie den Satz:
$$\det A^{-1} = \frac{1}{\det A}$$

Definition inverse Matrix:
$$A \cdot A^{-1} = E$$

Multiplikationstheorem:
$$\det(A \cdot A^{-1}) = \det A \cdot \det A^{-1}$$

$$\det E = 1 = \det A \cdot \det A^{-1}$$

Daraus folgt:
$$\det A^{-1} = \frac{1}{\det A}$$

Daraus folgt: die Determinante der inversen Matrix ist immer ungleich Null.

Eigenwerte von Potenzen einer Matrix

Es sei $A \in K^{n \times n}$, $k \in \mathbb{N}$, und λ sei Eigenwert von A zum Eigenvektor v. Dann ist λ^k Eigenwert von A^k zum Eigenvektor v.

Ist A invertierbar, so gilt diese Aussage sogar für beliebige ganze Zahlen k, wobei $A^{-k} = (A^{-1})^k$.

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A** und der inversen Matrix **A**-1.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

Komplexe Eigenwerte

Da auch reelle Polynome nichtreelle Nullstellen haben können, kann eine reelle Matrix **A** auch nichtreelle komplexe Eigenwerte haben. In diesem Fall kann man zu **A** komplexe Eigenvektoren bestimmen.

Ist λ = a + ib einen nichtreeller Eigenwert, so ist auch λ = a - ib ein Eigenwert.

Beispiel: Eigenwerte und Eigenvektoren der Matrix:

$$A = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix}$$

Eigenwerte und Eigenvektoren symmetrischer Matrizen:

Für die Eigenwerte und Eigenvektoren einer symmetrischen (n, n)-Matrix gilt:

- Alle Eigenwerte sind reell.
- Die Eigenvektoren zu verschiedenen Eigenwerten stehen senkrecht zueinander.
- Es gibt n paarweise orthogonale Eigenvektoren.

Beispiel: Berechnen Sie sämtliche Eigenwerte, Spur und Determinante sowie die Eigenvektoren der Matrix **A** und überprüfen Sie, ob die Eigenvektoren orthogonal sind.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Symmetrische Matrizen

Symmetrische Matrizen haben stets nur reelle Eigenwerte.

$$A = A^* = \overline{A}^T = \overline{A}^T$$
.

Eigenvektoren zu verschiedenen Eigenwerten stehen senkrecht aufeinander.

Positive Symmetrische Matrizen: alle Eigenwerte sind positiv. Die Determinante ist auch positiv.

Beispiel: Eigenwerte und Eigenvektoren der Matrix:

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}$$

Die Eigenvektoren einer symmetrischen Matrix stehen senkrecht aufeinander!

Aufgabe

1. Berechnen Sie die Eigenwerte und die Eigenvektoren für die Matrix:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & -2 \\ 0 & 0 & 5 \end{pmatrix}$$

2. Überprüfen Sie die gefundenen Ergebnisse durch Proberechnung.

Beispiel

$$A = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix}$$

Vektor v:

$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$A \cdot v = \begin{pmatrix} 3 & 0 \\ 8 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \end{pmatrix} = 3 \cdot v$$

Eigenwert:

$$\lambda = 3$$

Eigenwerte Beispiel 1

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

$$\det \begin{pmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix} = 0$$

$$\lambda^2 - 5\lambda - 2 = 0$$

$$\lambda_{1,2} = \frac{5}{2} \pm \frac{\sqrt{33}}{2}$$

$$\lambda_1 = 5,37$$

$$\lambda_2 = -0,37$$

Eigenvektoren Beispiel 1

$$(A - \lambda E) \cdot \vec{x} = 0$$

$$\lambda_{1} = 5,37$$

$$\begin{pmatrix} 1 - 5,37 & 2 \\ 3 & 4 - 5,37 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = 0$$

$$\begin{pmatrix} 2+1 & 1 \\ 6 & 1+1 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = 0$$

$$\begin{pmatrix} -4,37 & 2 \\ 3 & -1,37 \end{pmatrix} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_{1} = x_{2} = y_{1} = y_{2} = 0$$

Beispiel 3

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

$$A - tE = \begin{pmatrix} -t & -1 & 0 \\ -2 & 1 - t & 0 \\ 1 & 0 & 1 - t \end{pmatrix}$$

Dann ist:
$$det(A - tE) = -t(t-1)^2 + 2(t-1) = -t^3 + 2t^2 + t-2$$

Dieses heißt das **charakteristische Polynom**.

Die Nullstellen des Polynoms sind die gesuchten Eigenwerte.

Quellen

Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium, Hanser Verlag, München, 2010

Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg+Teubner Verlag, 2009

Peter Hartmann: Mathematik für Informatiker, Vieweg Verlag, Wiesbaden 2006

Manfred Brill: Mathematik für Informatiker, Hanser Verlag, München 2005

Thomas Rießinger: Mathematik für Ingenieure, Springer Verlag, Berlin 2009

Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 1, Springer Verlag, Springer Verlag, Berlin 2003

http://de.wikipedia.org

Hochschule Deggendorf – Edlmairstr. 6 und 8 – 94469 Deggendorf