

Diversity and Teams 1: Collaboration

SOC 121D: People Analytics Austin van Loon

Teams in Organizations

A team is defined as a group of people who perform interdependent tasks to work toward accomplishing a common mission or specific objective. Some teams have a limited life: for example, a design team developing a new product, or a continuous process improvement team organized to solve a particular problem. Others are ongoing, such as a department team that meets regularly to review goals, activities, and performance.

-ASQ.org

- Become more common in the U.S. during the 1980's
- Widely celebrated in the U.S.
 - o "Two heads are better than one"
 - o "Many hands make light work"
 - o "Teamwork divides the task and multiplies the success"

In-class Exercise

Team 1	Team 2	Team 3	Team 4	Team 5
Genesis Thai Nguyen	Pek Yong Loy	Honor Shannon Magon	Kohei Sato	Huseyin Tayyip Goktas
Shiya Guan	Seungmo Hong	Jake Michael Hornibrook	Levani Damuni	Kang Zhao Wong
Aastha Mehul Shah	Sai Balaji Suresh	Esther Lee Ann Ong	Nick Kuebler	Ricky Robert Miezan
Sze Min Jeanelle Boey	Sarang Nirwan	Wei Jian Ivan Chan	Cormac James Morrison	Chun Wai Lee
Chi Han Looi	Colby Matthew Bowman	Darren Yiqian Teo	Emma Halia Verdery	Max Lucius Schaldach

Two Benefits of Teams in Organizations

- Coordination: teams are a tool for synchronizing work activity
 - o Common hierarchy for resolving conflict
 - High-frequency interactions for establishing shared expectations/understandings
 - Shared social context for increased cohesion and goal alignment
- Creativity: teams are the site of the exchange and recombination of ideas
 - Shared foci among members with unique expertise and experiences
 - o Safe testing ground for ideas and for idea development
 - o Development of idiosyncratic "language"

Collaboration and Coordination

Task complexity moderates group synergy

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

September 3, 2021 118 (36) e2101062118 https://doi.org/10.1073/pnas.2101062118

Initial state Complete assignment

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

Abdullah Almaatouq , Mohammed Alsobay , Ming Yin, and Duncan J. Watts Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

Task complexity moderates group synergy

Abdullah Almaatouq 📵 🖾 , Mohammed Alsobay 📵 , Ming Yin, and Duncan J. Watts 📵 Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

Task complexity moderates group synergy

Abdullah Almaatouq [®] [™], Mohammed Alsobay [®], Ming Yin, and Duncan J. Watts [®] Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

September 3, 2021 118 (36) e2101062118 https://doi.org/10.1073/pnas.2101062118

Moderate

Low

High

Very high

Very low

Task complexity moderates group synergy

Abdullah Almaatouq [®] Mohammed Alsobay [®], Ming Yin, and Duncan J. Watts [®] Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved July 2, 2021 (received for review March 18, 2021)

How intermittent breaks in interaction improve collective intelligence

Ethan Bernstein, Jesse Shore , and David Lazer Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved June 21, 2018 (received for review February 8, 2018)

 August 13, 2018
 115 (35) 8734-8739
 https://doi.org/10.1073/pnas.1802407115

Ethan Bernstein, Jesse Shore , and David Lazer Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved June 21, 2018 (received for review February 8, 2018)

 August 13, 2018
 115 (35) 8734-8739
 https://doi.org/10.1073/pnas.1802407115

	No Ties	Constant Ties	Intermittent Ties
Optimal Solution?			
Average Solution?			

Ethan Bernstein, Jesse Shore , and David Lazer Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved June 21, 2018 (received for review February 8, 2018)

 August 13, 2018
 115 (35) 8734-8739
 https://doi.org/10.1073/pnas.1802407115

	No Ties	Constant Ties	Intermittent Ties
Optimal Solution?	Often		
Average Solution?	Bad		

Ethan Bernstein, Jesse Shore , and David Lazer Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved June 21, 2018 (received for review February 8, 2018)

 August 13, 2018
 115 (35) 8734-8739
 https://doi.org/10.1073/pnas.1802407115

	No Ties	Constant Ties	Intermittent Ties
Optimal Solution?	Often	Rare	
Average Solution?	Bad	Good	

Ethan Bernstein, Jesse Shore , and David Lazer Authors Info & Affiliations

Edited by Matthew O. Jackson, Stanford University, Stanford, CA, and approved June 21, 2018 (received for review February 8, 2018)

 August 13, 2018
 115 (35) 8734-8739
 https://doi.org/10.1073/pnas.1802407115

	No Ties	Constant Ties	Intermittent Ties
Optimal Solution?	Often	Rare	Often
Average Solution?	Bad	Good	Good

Quantifying collective intelligence in human groups

Edited by Scott E. Page, University of Michigan, Ann Arbor, MI, and accepted by Editorial Board Member Kenneth W. Wachter March 23, 2021 (received for review March 26, 2020)

May 17, 2021 | 118 (21) e2005737118 | https://doi.org/10.1073/pnas.2005737118

Quantifying collective intelligence in human groups

Edited by Scott E. Page, University of Michigan, Ann Arbor, MI, and accepted by Editorial Board Member Kenneth W. Wachter March 23, 2021 (received for review March 26, 2020)

May 17, 2021 | 118 (21) e2005737118 | https://doi.org/10.1073/pnas.2005737118

Quantifying collective intelligence in human groups

Edited by Scott E. Page, University of Michigan, Ann Arbor, MI, and accepted by Editorial Board Member Kenneth W. Wachter March 23, 2021 (received for review March 26, 2020)

May 17, 2021 | 118 (21) e2005737118 | <u>https://doi.org/10.1073/pnas.2005737118</u>

Coordination Problems

- Free riders or social loafers hurt morale (as well as productivity) and cause conflict
- Poorly defined boundaries hurt social cohesion
- Nebulous or inconsistent goals make it unclear what to coordinate on
- Can take time for group to figure out its routine—needs time to mature
- Need to align group incentives (i.e., individual performance measures can hurt teams)

Collaboration and Innovation

Collaboration and Creativity: The Small World Problem¹

Brian Uzzi Northwestern University

Jarrett Spiro
Stanford University

Collaboration and Creativity: The Small World Problem¹

Brian Uzzi Northwestern University

Jarrett Spiro
Stanford University

Collaboration and Creativity: The Small World Problem¹

Brian Uzzi Northwestern University

Jarrett Spiro
Stanford University

FIG. 6.—Financial success of a season

Fig. 7.—Artistic success of a season

Mathijs de Vaan Columbia University David Stark
Columbia University

Balazs Vedres
Central European University

Mathijs de Vaan Columbia University David Stark
Columbia University

Balazs Vedres
Central European University

Fig. 2.—Visualization of the definition of game changer

Mathijs de Vaan Columbia University David Stark
Columbia University

Balazs Vedres
Central European University

1. Riven: Sequel to Myst

Fig. 5.—Cognitive group graphs of three production teams

Fig. 2.—Visualization of the definition of game changer

Mathijs de Vaan Columbia University David Stark Columbia University

Balazs Vedres Central European University

1. Riven: Sequel to Myst

2. Leisure Suit Larry

Fig. 5.—Cognitive group graphs of three production teams

Fig. 2.—Visualization of the definition of game changer

Mathijs de Vaan Columbia University David Stark
Columbia University

Balazs Vedres Central European University

Fig. 2.—Visualization of the definition of game changer

1. Riven: Sequel to Myst

2. Leisure Suit Larry

3. Fallout

Fig. 5.—Cognitive group graphs of three production teams

Mathijs de Vaan Columbia University David Stark
Columbia University

Balazs Vedres
Central European University

Fig. 2.—Visualization of the definition of game changer

1. Riven: Sequel to Myst

2. Leisure Suit Larry

3. Fallout

Fig. 5.—Cognitive group graphs of three production teams

See you Thursday!

