

Data Science Graduate Capstone

University of Notre Dame April 2023

IN PARTNERSHIP WITH:

Banfield Pet Hospital

Meet the Team

Support Team

PET HOSPITAL Christina Malone

Banfield Jai Thomas

Chris Frederick

Objectives

Confirm Patient's Heartworm Preventative Treatment Status

- Determine if Banfield is accurately recording Heartworm Preventative in designated (structured) fields.
 - Provided by Banfield (is_provided_flg = Y)
 - Provided by Client (client_provided_flg = Y)
 - HWP not being Provided (Both Flags = N)
- Develop Natural Language Processing (NLP) Model to evaluate medical notes and determine if HWP is being administered.

Purpose ML Ops Framework

 Suggest sustainable Machine Learning Operations (ML Ops) framework for Banfield to utilize for further data science projects.

Agenda

Data Structure & EDA

Modeling

ML Ops Infrastructure

Ethical Considerations

Data Structure & EDA

Clashmore Mike

- Notre Dame Legend
- Prime Heartworm Preventative Candidate

Vet Visits for Clashmore Mike What the Data Looks Like

Visit Date	Visit Notes (Predictor)	Visit ID	HWP Provided (Response)
Mar 2, 2018	Foxtail Removal	VST00001	None
Sep 30, 2018	Ate Nat'l Championship Pennant, induced vomiting, Pennant was recovered	VST00002	None
Nov 12, 2018	Annual Exam – Client is providing HWP from previous vet.	VST00003	Client
Mar 1, 2019	Provided heartworm test, client still providing HWP from previous vet.	VST00004	Client
May 29, 2019	Bordetella Vaccine Administered - Nasal	VST00005	None
Nov 18, 2019	Annual Exam – Client is administering Heartgard 51-100# from previous vet.	VST00006	None Should be Client
Nov 19, 2021	Annual Exam – Refilled 6 mo Heartgard Plus	VST00007	Banfield
May 19, 2022	Bordetella Vaccine Administered – Nasal, Client using other pets HWP, no refill needed	VST00008	Client

Pet Visit Table

Preventative Care Table

Data Obstacles

Preventative Care Table

Pet ID	Create Date	Visit ID	Banfield Provided	Client Provided
PT1842	Nov 13, 2018	-999999	N	Υ
PT1842	Nov 19, 2021	VST00007	N	N
PT1842	Nov 19, 2021	VST00007	N	N
PT1842	Nov 19, 2021	VST00007	N	Υ

Challenge: For all HWP Preventative Care records flagged as Client Provided, no Visit ID to join on **Solution:** "Fuzzy Joined" on Pet ID & 1 day lag between visit date in visit table and create date in preventative care table.

Challenge: For some visits in preventative care table, multiple conflicting records exist for HWP.

Solution: If any contain yes, prioritize that record.

Process Diagram for Classification

Examples of Actual Medical Notes

(PDF of Full Medical Note)

Modeling

Note on Data Used

Modeling Approaches

Keyword Filtering

- Simple to Build
- Searches for HWP Keywords
- Does not take context into consideration
- Keyword List may be incomplete

NLP Model

- Complex Build
- Built on Pretrained Models specific to Medical field
- Hard to interpret what classification criteria is
- Can Typically Produce Much Better Results

Measures Used in Model Selection & Improvement

Accuracy

How often a model makes correct predictions.

$$\frac{TP + TN}{TP + FP + TN + FN}$$

Precision

Positive Predictive Value (PPV)

How often a model correctly predicts positive outcomes.

High Precision will decrease False Positives

$$\frac{TP}{TP + FP}$$

Recall

Sensitivity

True Positive Rate (TPR)

How often a model correctly identifies positive outcomes.

$$\frac{TP}{TP + FN}$$

First Keyword Matching Model (Baseline Model)

Model Criteria:

If a note contains a HWP Keyword **Classify as Positive Else Negative**

Confusion Matrix:

Model Metrics:

Accuracy	65.7%
Precision	97.6%
Recall	33.4%

What is BERT NLP?

<u>Bidirectional Encoder Representations from Transformers</u>

"The chicken is ready to eat."

"I marinated the chicken overnight and cooked it for several hours. Now the chicken is ready to eat."

"The chicken is ready to eat after marinating overnight and cooking it for several hours."

Unidirectional NLP Models may struggle with one of the statements above. BERT, and its bidirectional superpowers would be able to better understand the context either way it was written.

BERT NLP Model

Model Criteria:

BERT sentence encodings with transfer learning from BioBERT fed to binary classification neural network. Trained on client medical notes where HWP provided by client and notes where client not providing any HWP.

Confusion Matrix:

Note: Smaller volume of cases in confusion matrix due to Train/ Test splitting not required in Keyword Models

Model Metrics:

Accuracy	99.4%
Precision	100%
Recall	98.9%

Why is BERT NLP Performing So Well?

System Generated Notes Highly Correlated with Negative Cases

(Back to the Full Medical Note)

Second Keyword Matching Model (Prioritizing Negative Cases)

Model Criteria:

If a note contains "not given" **Classify as Negative Else Positive**

Confusion Matrix:

Model Metrics:

Accuracy	94.7%
Precision	98.8%
Recall	90.6%

Results Compared (All Results from Unvalidated Data)

Next Steps

- 1. Focus model text on either:
 - Model Focused on specific template if it can be used consistently throughout organization.
 - RegEx Model extracted specific part of notes (i.e. "Subjective" part of S.O.A.P Notes) to reduce noise and key in on signal in the data.
- 2. Larger Validated Dataset for Training
 - Including Both Positive and Negative Cases
- 3. Better understanding of relationship between Preventative Care table and Pet Visit Table for records where labeled Client Provided.

ML Ops

Machine Learning Code is a Small Component of MLOps

Azure Based Technologies Map

Functionality	Technology	
Execution Environment		Azure Databricks
Feature Store		Databricks Feature Store
Model Registry	ml <i>fl</i> ow	ML Flow (Databricks)
Source Control	Azure DevOps	Azure DevOps •Azure Repos •Azure Pipelines
Storage		Azure Data Lake Storage Gen 2 •Delta Lake format to support Time Travel
Secrets Management	Key Vault	Azure Key Vault

→ Writes

--- Model transition

Code is Converted to Models and Promoted Through Environments

Ethical Considerations

Ethical Considerations

Data retention plan (closed hospitals, deceased pets, client departures)

Rights to be forgotten (client removal request)

Model does not reveal clients

Results do not impact privacy

Data (Partitions)

Modeling

Infrastructure

Transparency

Risks assessed and communicated Clear language utilized Help guides provided

Unvalidated data

Model assumptions
evaluated

Subject Matter Experts'
interpretation lacking

More dogs than cats, No Bias detected Modeling downstream impacts have not been evaluated

Suggested Resource: https://www.aiethicist.org/frameworks-guidelines-toolkits

Thank You

