Math 9853: Homework #3

Due Thursday, September 12, 2019

- (a) Note that K[x] denotes the ring of polynomials over a field K and $K\langle\langle x\rangle\rangle$ denotes the ring of formal power series (that is, $\sum_{i\in\mathbb{N}} c_i x^i$ where $c_i\in K$, no convergence is required for the series, and multiplication is performed just like polynomials).
 - (a.1) Show that, as vector spaces, K[x] is isomorphic to $K^{(\mathbb{N})}$ and $K\langle\langle x \rangle\rangle$ is isomorphic to $K^{\mathbb{N}}$ (see definition in the book or in class).
 - (a.2) Explain why the set $\{x^i : i \in \mathbb{N}\}$ is a basis for K[x] but not a basis for $K\langle\langle x \rangle\rangle$, both as vector spaces over K.
 - (a.3) Let W be an arbitrary vector space over K. Show that, for every function $\tau: \mathbb{N} \longrightarrow K$, there is a unique linear map $f: K[x] \longrightarrow W$ so that $f(x^i) = \tau(i)$ for all $i \in \mathbb{N}$.
- (b) Let $f: V \longrightarrow W$ be a linear map of vector spaces over K. Prove the following (if a statement is wrong, make a correct statement and prove it):
 - (b.1) For any $u_1, u_2, \ldots, u_n \in V$, if $f(u_1), f(u_2), \ldots, f(u_n)$ are linearly independent, then u_1, u_2, \ldots, u_n are independent;
 - (b.2) For any $u_1, u_2, \ldots, u_n \in V$, if u_1, u_2, \ldots, u_n are linearly independent, then $f(u_1), f(u_2), \ldots, f(u_n)$ are independent.
- (c) Let $A \in K^{m \times n}$ over K. The *column space* of A is the subspace of K^m spanned by the columns of A, in short $\operatorname{Col}(A) = \operatorname{Span}(A_1, \ldots, A_n)$ where A_i is the ith column of A, similarly for the *row space* $\operatorname{Row}(A)$. The *null space* of A is $\operatorname{Null}(A) = \{x \in K^n \mid Ax = 0\} \subseteq K^n$.

For this problem, $K = \mathbb{Z}_2$. Let $f: K^5 \longrightarrow K^4$ by f(x) = Ax for $x \in K^5$ where

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \in K^{4 \times 5}.$$

- (c.1) Apply row operations to A to get a reduced row Echelon form A'.
- (c.2) Use Problem (b) in HW2 to claim that Row(A) = Row(A'), then get a basis for the row space Row(A).
- (c.3) Find a basis for Null(A) = Null(A') (you should know that the two spaces are the same).
- (c.4) Using the basis in (c.3) to express each column of A a combination of some independent columns of A, hence get a basis for the column space Col(A).
- (c.5) Is f injective or onto? What's the dimension for the kernel space and image space of f?

(c.6) (About dual space) Note that each vector $v \in K^5$ defines a linear functional $v^*: K^5 \longrightarrow K$ by

$$v^*(x) = \langle v, x \rangle = \sum_{i=1}^5 v_i x_i \in K, \quad \text{for } x \in K^5.$$

Let W = Row(A) and define

$$W^{\perp} = \{ v^* \in (K^5)^* : v^*(u) = 0 \text{ for all } u \in W \}.$$

Get a basis for W^{\perp} using (c.3).