

Value Function Approximation

Metodi Batch

Batch Reinforcement Learning

- Gradient descent semplice ed accattivante
- Ma non è efficiente dal punto di vista del campionamento
- I metodi batch cercano di trovare la value function più adatta
- Data l'esperienza dell'agente (dati di addestramento)

Least Squares Prediction

▶ Data una value function approximation $\hat{v}(s; \mathbf{w}) \approx v_{\pi}(s)$ e l'esperienza D costituita da coppie <stato, valore>

$$\mathcal{D} = \{ \langle S_1, v_1^{\pi} \rangle, \langle S_2, v_2^{\pi} \rangle, \dots, \langle S_T, v_T^{\pi} \rangle \}$$

- Quali parametri \mathbf{w} offrono il miglior risultato di adattamento della value function $\hat{v}(s; \mathbf{w})$?
- Gli algoritmi Least Squares individuano il vettore dei parametri \boldsymbol{w} che minimizza l'errore quadratico medio tra $\hat{v}(s;\boldsymbol{w})$ e i valori target $v_{\pi}(s)$

$$LS(\mathbf{w}) = \sum_{t=1}^{T} (v^{\pi} - \hat{v}(s_t; \mathbf{w}))^2 = \mathbb{E}_{\mathcal{D}} \left[(v^{\pi} - \hat{v}(s; \mathbf{w}))^2 \right]$$

Experience Replay

SGD con Experience Replay

▶ Data una value function approximation $\hat{v}(s; \mathbf{w}) \approx v_{\pi}(s)$ e l'esperienza \mathcal{D} costituita da coppie <*stato*, *valore*>

$$\mathcal{D} = \{ \langle S_1, v_1^{\pi} \rangle, \langle S_2, v_2^{\pi} \rangle, \dots, \langle S_T, v_T^{\pi} \rangle \}$$

- Ripetere
 - Campiona stato e valore dall'esperienza D

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2. Esegui lo stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha(\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}; \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}; \mathbf{w})$$

Converge alla soluzione least squares

$$\mathbf{w} = \arg\min_{\mathbf{w}} LS(\mathbf{w})$$

Deep Q-Networks (DQN)

- DQN usa experience replay e Q-target fissati
- Esegue l'azione a_t in base alla policy ϵ -greedy
- Memorizza le transizioni $(s_t, a_t, r_{t+1}, s_{t+1})$ nella replay memory D
- Campiona un mini-batch casuale di transizioni (s, a, r, s')
- Calcola i Q-learning target rispetto ai vecchi parametri fissati w⁻
- Ottimizza la MSE tra la Q-network e i Q-learning target

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s', a'; w_i^-) - Q(s, a; w_i) \right)^2 \right]$$

Utilizza una variante del stochastic gradient descent

Atari-DQN

- Apprendimento end-to-end dei valori Q(s, a) dai pixel s
- Lo stato di input s è uno stack di pixel grezzi degli ultimi 4 fotogrammi
- L'output è Q(s, a) per 18 posizioni di joystick/pulsante
- La ricompensa è la variazione del punteggio per quello step

L'Architettura di rete e gli iperparametri sono gli stessi per tutti i giochi

Atari-DQN (Risultati)

Least Squares Prediction and Control

Linear Least Squares Prediction

- L'experience replay trova una soluzione least squares, ma può richiedere molte iterazioni
- Utilizzo della linear value function approximation $\hat{v}(s; \mathbf{w}) = \mathbf{x}(s)^T \mathbf{w}$
- Possiamo risolvere la soluzione least squares direttamente

Linear Least Squares Prediction - Batch

Al valore minimo di LS(w), l'expected update deve essere pari a zero

$$\mathbb{E}_{\mathcal{D}}[\Delta \boldsymbol{w}] = 0$$

$$\alpha \sum_{t=1}^{T} \boldsymbol{x}(S_t)(\boldsymbol{v}_t^{\pi} - \boldsymbol{x}(S_t)^T \boldsymbol{w}) = 0$$

$$\boldsymbol{w} = \left(\sum_{t=1}^{T} \boldsymbol{x}(S_t)\boldsymbol{x}(S_t)^T\right)^{-1} \sum_{t=1}^{T} \boldsymbol{x}(S_t)\boldsymbol{v}_t^{\pi}$$

▶ Costi diretti (N^3) e incrementali (N^2)

Linear Least Squares Prediction - Algoritmi

- Non conosciamo il true value v_t^{π}
- I dati di addestramento utilizzano campioni rumorosi o distorti di v_t^{π}
 - Least Squares Monte-Carlo (LSMC) usa return $v_t^{\pi} \approx G_t$
 - Least Squares TD (LSTD) usa TD target $v_t^{\pi} \approx R_{t+1} + \gamma \hat{v}(S_{t+1}; \mathbf{w})$
 - Least Squares TD(λ) (LSTD(λ)) usa λ -return $v_t^{\pi} \approx G_t^{\lambda}$
- In ogni caso bisogna risolvere direttamente il punto fisso di MC/TD/TD(λ)

LS Updates

LSMC
$$w = \left(\sum_{t=1}^{T} x(S_t)x(S_t)^T\right)^{-1} \sum_{t=1}^{T} x(S_t)G_t$$

$$\text{LSTD} \qquad w = \left(\sum_{t=1}^{T} x(S_t)\left(x(S_t) - \gamma x(S_{t+1})\right)^T\right)^{-1} \sum_{t=1}^{T} x(S_t)R_{t+1}$$

$$\text{LSTD}(\lambda) \qquad w = \left(\sum_{t=1}^{T} E_t\left(x(S_t) - \gamma x(S_{t+1})\right)^T\right)^{-1} \sum_{t=1}^{T} x(S_t)R_{t+1}$$

Convergenza degli Algoritmi di Linear Least Squares Prediction

On/Off-Policy	Algorithm	Table Lookup	Linear	Non-Linear
On-Policy	MC	✓	✓	✓
	LSMC	✓	✓	-
	TD	✓	✓	×
	LSTD	✓	✓	-
Off-Policy	MC	✓	✓	✓
	LSMC	✓	✓	-
	TD	✓	X	×
	LSTD	✓	✓	-

Least Squares Control

- Valutazione della Policy Policy evaluation attraverso least squares Q-learning
- Miglioramento della Policy Greedy policy improvement

Least Squares Action-Value Function Approximation

• Approssimare $q_{\pi}(s, a)$ usando combinazioni lineari delle feature $\mathbf{x}(s, a)$

$$\hat{q}(s, a; \mathbf{w}) = \mathbf{x}(s, a)^T \mathbf{w} \approx q_{\pi}(s, a)$$

- Minimizzare il least squares error tra $\hat{q}(s, a; \mathbf{w})$ e $q_{\pi}(s, a)$
 - \blacktriangleright Dall'esperienza generata usando la policy π
 - Composta da coppie <(stato, azione), valore>

$$\mathcal{D} = \{ \langle (s_1, a_1), v_1^{\pi} \rangle, \dots, \langle (s_T, a_T), v_T^{\pi} \rangle \}$$

Least Squares Control

- Per la policy evaluation, vogliamo utilizzare in modo efficiente tutta l'esperienza acquisita
- Per il control, vogliamo anche migliorare la policy
- Questa esperienza è generata da molte policy
- Quindi, per valutare $q_{\pi}(s, a)$ dobbiamo apprendere off-policy
- Utilizziamo la stessa idea del Q-learning:
 - Utilizziamo l'esperienza generata dalla vecchia policy S_t , A_t , R_{t+1} , $S_{t+1} \sim \pi_{old}$
 - ▶ Consideriamo un'azione alternativa $A' \sim \pi_{new}(S_{t+1})$
 - Aggiorniamo $\hat{q}(S_t, A_t; \mathbf{w})$ rispetto al valore dell'azione alternativa $R_{t+1} + \gamma \hat{q}(S_{t+1}, A'; \mathbf{w})$

Least Squares Q-Learning

Si consideri il seguente linear Q-learning update

$$\delta_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, \pi(S_{t+1}); \mathbf{w}) - \hat{q}(S_t, A_t; \mathbf{w})$$
$$\Delta \mathbf{w}_t = \alpha \delta_t \mathbf{x}(S_t, A_t)$$

 Algoritmo LSTDQ: risoluzione per aggiornamento totale uguale a zero

$$\mathbf{w} = \left(\sum_{t=1}^{T} \mathbf{x}(S_t, A_t) \left(\mathbf{x}(S_t, A_t) - \gamma \mathbf{x}(S_{t+1}, \pi(S_{t+1}))\right)^T\right)^{-1} \sum_{t=1}^{T} \mathbf{x}(S_t, A_t) R_{t+1}$$

Convergenza degli Algoritmi di Control

Algorithm	Table Lookup	Linear	Non-Linear
Monte-Carlo Control	✓	(✓)	X
Sarsa	✓	(\checkmark)	X
Q-learning	✓	×	X
LSPI	✓	(\checkmark)	-

 (\checkmark) = si aggira intorno a una value-function quasi ottimale

Take home messages

- Value function approximation: scalare RL a problemi di dimensioni reali
- Utilizzare MC, TD e TD(λ) per generare campioni per l'addestramento degli (action) value approximator
 - Stochastic Gradient Descent (incrementale)
 - Least Squares (batch)
- Experience replay dei dati memorizzati e aggiornamenti con target dei parametri meno recenti (DQN)
- Linear least squares fornisce una soluzione in forma chiusa
- La convergenza dell'apprendimento potrebbe essere complicata