אלגברה לינארית 1 - 20109 פתרון לשאלות נבחרות למבחן לדוגמה - א2003

שאלה 1

א. נדרג את מטריצת המקדמים של המערכת:

$$A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & a \\ a+1 & -1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - aR_1} B = \begin{pmatrix} 1 & a & 1 \\ 0 & 1 - a^2 & 0 \\ 0 & -a^2 - a - 1 & -a \end{pmatrix} = B$$

: אם לדרג לדרג , $a\neq\pm 1$, כלומר לדרג לדרג , $a^2-1\neq 0$

:a הגענו לצורה מדורגת, ניתן להתחיל את הדיון לפי ערכי

אם מטריצת היחידה ולכן שורות שורות אקולת אם מטריצת מטריצת מטריצת אם $\underline{a \neq 1, -1, 0}$ אם יחיד, הפתרון הטריוויאלי בלבד.

. אם
$$A$$
 אינסוף שורות למטריצה ($\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ולכן יש אינסוף פתרונות A אינסוף אינסוף אם $a=0$

נסמן:
$$z=t$$
 (הוא משתנה חפשי המערכת שקולה למערכת: $y=0$

 $.(-t\,,0\,,t)$ והפתרון הכללי הוא

אם
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & -3 & -1 \end{pmatrix}$$
 ומטריצה זו שקולת שורות , נציב במטריצה $a=1$ את $a=1$ את $a=1$

. בדוקי). לכן יש אינסוף פתרונות.
$$\begin{pmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{pmatrix}$$

$$z = t$$
 נסמן $z = t$ והפתרון הכללי הוא $z = t$

אם $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix}$: והיא שקולת שורות a=-1 את B את במטריצה $\underline{a=-1}$ אם $\underline{a=-1}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
 : למטריצה

z = t נסיק שיש אינסוף פתרונות, נסמן z = t נסמן פתרונות, נסמן

לסיכום:

. פתרון טריוויאלי בלבד $a \neq 1,-1,0$

אם t, (-t, 0, t) : ממשי הפתרון הכללי הוא a = 0

אם $t, (-\frac{2}{3}t, -\frac{1}{3}t, t)$: אם a = 1 ממשי.

אם t, (0, t, t) : אם a = -1 ממשי

 $(I + \alpha A)(I - \alpha A) = I - (\alpha A)^2$: נשתמש בזהות .

I+lpha A נכי ($(lpha A)^2=lpha^2A^2=0$ (כי (I+lpha A) (I-lpha A) ונסיק מיד כי (I+lpha A) ונסיק מיד כי (I+lpha A).

שאלה 2

(*) $\lambda_1(v_1-v_n)+\lambda_2(v_2-v_n)+...+\lambda_{n-1}(v_{n-1}-v_n)=0:$ נניח שמתקיים: (1 ..., $\lambda_1,...,\lambda_{n-1}$ סקלרים.

$$\lambda_{\!\scriptscriptstyle 1}=\lambda_{\!\scriptscriptstyle 2}=\ldots=\lambda_{n-1}=0$$
 נוכיח כי

לאחר פיתוח סוגריים ושימוש בחוק הקיבוץ, מתקבל מ-(*):

$$\lambda_{1} v_{1} + \ldots + \lambda_{n-1} \, v_{n-1} + (-\lambda_{1} - \lambda_{2} \ldots - \lambda_{n-1}) \, v_{n} \, = \, 0$$

 $\lambda_1=...=\lambda_{n-1}=0$ נובע כי מהווים בסיטל בתייל (כי מהווים בתייל אייל בתייל י $v_1,...,v_n$

ולכן
$$v_1 - v_n, v_2 - v_n, ..., v_{n-1} - v_n$$
 בת"ל.

נניח כי $v_1,...,v_n$ פתרונות של המערכת . $A\underline{x}=\underline{b}$. ידוע שהפרש של פתרונות של מערכת (2 אי-הומוגנית הוא פתרונות של המערכת ההומוגנית המתאימה, לכן $v_1-v_n,...,v_{n-1}-v_n$ הם אי-הומוגנית של המערכת . $A\underline{x}=\underline{0}$, ולכן

. בתייל. $v_1-v_n,...,v_{n-1}-v_n$ כי n-1 הוא לפחות אב $\underline{Ax}=\underline{0}$ בתייל.

מימד זה אינו יכול להיות n כי ,אם הוא שווה ל-n , אז כל וקטור ב- \mathbf{R}^n הוא פתרון של מימד זה אינו יכול להיות להיות $Av_1=b$, מה שסותר את ההנחה כי $Av_1=b$ (למשל).

Ax = 0 לכן מימד מרחב הפתרונות של

dim (Ax = 0 ידוע כי: $n - \rho(A) = n - \rho(A)$

 $\rho(A)=1$: לכן יוצא כי

 $\left|A-2I\right|=\left|A+2I\right|=0$ ב. נניח כי A מטריצה סינגולרית מסדר מסדר 3 כך ש

Ax=0 מרחב הפתרונות של המערכת ההומוגנית W-נסמן

. מצד שני, מכיוון שA סינגולרית יש למערכת אינסוף פתרונות

Aשל ומכיוון של - 2 ו-2 - ערכים עצמיים של - |A-2I|=|A+2I|=0ומכיוון של סינגולרית אז 0 גם ערך עצמי. למטריצה Aיש 3 ערכים עצמיים שונים ו-Aמסדר 3 איש 3 סינגולרית אז 0 גם ערך עצמי. למטריצה איש 3 ערכים עצמיים שונים ו-Aמסדר בעצמי הוא 1.

. dim W=1 ולכן W המרחב העצמי של ס הוא בדיוק

שאלה 3

$$V = \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \mid a_i \in \mathbb{R}, \ 0 \le i \le 4 \right\}$$
 נתון:

$$U = \{ p(x) \in V \mid p(1) = p(-1) = 0 \}$$

$$W = \{ p(x) \in V \mid p(1) = p(2) = 0 \}$$

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$
 יהי

$$p(x) \in U \Leftrightarrow \begin{cases} a_0 + a_1 + a_2 + a_3 + a_4 = 0 \\ a_0 - a_1 + a_2 - a_3 + a_4 = 0 \end{cases}$$
: The

$$U = \left\{ p(x) \in V \mid a_0 + a_1 + a_2 + a_3 + a_4 = 0 \right. \quad \text{ מכן} : \left. \left\{ a_0 - a_1 + a_2 - a_3 + a_4 = 0 \right\} \right.$$

באופן דומה:

$$W = \left\{ p(x) \in V \mid a_0 + a_1 + a_2 + a_3 + a_4 = 0 \right. + \left. 2a_1 + 4a_2 + 8a_3 + 16a_4 = 0 \right\}$$

: v א. נוכיח כי U ו-W תת-מרחבים של

U מקיים את מקיים של $U \neq \emptyset$

יהיו μ, λ ב-ע ו- p(x), q(x) יהיו

$$(\lambda p + \mu q)(1) = \lambda p(1) + \mu q(1) = 0 + 0 = 0$$
: in

-תת U ולכן $\lambda p + \mu q \in U$ - הוכחנו ש- $\lambda p(-1) + \mu q(-1) = 0$ ולכן תת מרחב של V באופן דומה מוכיחים כי V תת-מרחב של V. באופן דומה מוכיחים כי

$$\begin{cases} a_0+a_1+a_2+a_3+a_4=0\\ a_0-a_1+a_2-a_3+a_4=0 \end{cases}$$
: ב. על מנת למצוא בסיס ל- U , נפתור את המערכת ב

: נדרג את המטריצה המתאימה

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & 0 & -2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

. מכאן a_4,a_3,a_2 כאשר $a_1=-a_3$ ו $a_0=-a_2-a_4$: מכאן

u-ב היא u-ב פולינום ב-היא ולכן הצורה הכללית

$$p(x) = (-a_2 - a_4) - a_3 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

2 מכיוון שיש 3 משתנים חפשיים, המימד של U הוא 3 ונקבל בסיס ל-U עייי כך שנציב מהמשתנים החפשיים שווים ל-0 והשלישי שווה ל-1:

$$a_2 = 1$$
 $a_3 = 0$ $a_4 = 0$ $a_2 = 0$ $a_3 = 1$ $a_4 = 0$ $a_2 = 0$ $a_3 = 0$ $a_4 = 1$ $q_1(x) = -1 + x^2$ $q_2(x) = -x + x^3$ $q_3(x) = -1 + x^4$

(u מקיימים את מקיימים $q_i(x)$ שהפולינומים של (בודקים שהפולינומים)

(1)
$$\{x^2 - 1, x^3 - x, x^4 - 1\}$$
 = \underline{u}

 $\dim W = 3:$ w באופן דומה מקבלים בסיס ומימדו

(2)
$$\left\{2 - 3x + x^2, 6 - 7x + x^3, 14 - 15x + x^4\right\} = \underline{w}$$

: בסיס ל- $U \cap W$ מתקבל באופן דומה

$$U \cap W = \left\{ p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \mid p(1) = p(-1) = p(2) = 0 \right\}$$

$$p(x) \in U \cap W \Leftrightarrow \begin{cases} a_0 + a_1 + a_2 + a_3 + a_4 = 0 \\ a_0 - a_1 + a_2 - a_3 + a_4 = 0 \\ a_0 + 2a_1 + 4a_2 + 8a_3 + 16a_4 = 0 \end{cases}$$

 $a_2=-2a_3-5a_4$, $a_1=-a_3$, $a_0=2a_3+4a_4$: לאחר דרוג המטריצה המתאימה מקבלים: . $\dim(U\cap W)=2$ ולכן בסיס של $\left\{x^3-2x^2-x+2,4-5x^2+x^4\right\}$ הוא ולכן בסיס של

:U+W -ג. מציאת בסיס ל

$$U = Sp\{x^2 - 1, x^3 - x, x^4 - 1\}$$
 (2) עפייי (1) עפייי

$$W = Sp\{x^2 - 3x + 2, x^3 - 7x + 6, x^4 - 15x + 14\}$$
 -1

: לכן

$$U + W = Sp\{x^4 - 1, x^3 - x, x^2 - 1, x^2 - 3x + 2, x^3 - 7x + 6, x^4 - 15x + 14\}$$

$$(U+W=Sp(A\cup B)$$
 אזי $W=Sp(B)$, $U=SpA$ מפני שאם

על מנת למצוא בסיס ל-W+W, נעבור לוקטורי קואורדינטות של הפולינומים האלה לפי . $B=(x^4,x^3,x^2,x,1)$

נדרג את המטריצה ששורותיה הן וקטורי הקואודינטות האלה, והשורות השונות מ-0 בצורה מדורגת יתנו לנו בסיס ל-U+W (לאחר חזרה לפולינומים).

 $\left\{x^4-1,x^3-x,x^2-1,x-1
ight\}\,:U+W$ בחזור לפולינומים ונקבל בססי ל- . $\dim(U+W)=4$

בדיקה: נבדוק שמתקיים יימשפט המימדיי:

$$4 = 3 + 3 - 2 \qquad \dim(U + W) = \dim U + \dim W - \dim(U \cap W)$$

ובכן הוא מתקיים.

שאלה 4

- א. נשתמש בסימונים המופיעים בשאלה. נעיר שמתקיים p(v)=u אם ורק אם $v\in U$ אם ורק אם $v\in U$ זאת אומרת אם ורק אם $v\in U$. נובע מכך ש- $v\in U$ הוא ערך עצמי של $v\in U$ הוא ערך עצמי המרחב העצמי השייך לערך זה. בנוסף, ברור ש- $v\in U$ לכן $v\in U$ הוא ערך עצמי של של ו- $v\in U$ המרחב העמי המתאים. מכיוון ש- $v\in U$ הסכום של הרכים של הערכים העצמיים האלה שווה ל- $v\in U$ ולכן $v\in U$ הם הערכים העצמיים היחידים של $v\in U$ הוא סכום ישר של המרחבים העצמיים של $v\in U$ הוא סכום ישר של המרחבים העצמיים של $v\in U$ הוא סכום ישר של המרחבים העצמיים של $v\in U$ האלה $v\in U$
- ב. נמצא את המשלים האורתוגונלי של . U של . U הוא מרחב הפתרונות של . $U^\perp = Sp\{(1,0,-1)\} \ . \ \begin{cases} x+y+z=0 \\ x+z=0 \end{cases}$ ולכן בסיס

.
$$B = \left\{ \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right) \right\}$$
 אורתונורמלי שלו הוא

שאלה 5

ש. $\operatorname{Im} T^2 = \operatorname{Im} T$ ונוכיח ש- $V = \operatorname{Im} T \oplus \ker T$ הקורא וכיח ש. (i) א. v = T(u) שמתקיים $u \in V$ ונוכיח ש $v \in \operatorname{Im} T$ אז קיים $u \in V$ כך ש- $v \in \operatorname{Im} T$ והו תרגיל סטנדרטי. יהי $v \in \operatorname{Im} T$ אז קיים $u \in \operatorname{Im} T$ ההו תרגיל סטנדרטי. יהי $u_1 \in \operatorname{Im} T$ וו בע מהנתון $u_2 \in \ker T$ שקיימים $u_1 \in \operatorname{Im} T$ וו בע מהנתון $u_2 \in \ker T$ שקיימים $u_1 \in \operatorname{Im} T$ וו בע מהנתון $u_2 \in \ker T$ שקיימים $u_1 \in \operatorname{Im} T$ וו בע מהנתון $u_2 \in \ker T$ וו בע מהנתון $u_2 \in \ker T$ וו בע מהנתון $u_2 \in \ker T$ וו בע מו בע מו

עבור w מסוים (כי $\operatorname{Im} T$ כי $u_1\in\operatorname{Im} T$). קיבלנו כך ש- $T(u_1)=T(T(w))=T^2(w)$ עבור $v=T^2(w)\in\operatorname{Im} T^2$ יחד עם ההכלה הקודמת יוצא כי , $v=T^2(w)\in\operatorname{Im} T^2$. $\operatorname{Im} T^2=\operatorname{Im} T$

. $\ker T = \ker T^2 \Leftarrow \operatorname{Im} T = \operatorname{Im} T^2$: (ii)

מאידך, עייפ . $\ker T \subseteq \ker T^2$ מתקיים T מתקיים . $\ker T = 1$ מאידך, עייפ משפט המימד עבור העתקה ליניארית, מתקיים $\ker T + \dim \operatorname{Im} T = n$ וגם $\dim \ker T + \dim \operatorname{Im} T^2 = n$ יחד עם השוויון $\dim \ker T^2 + \dim \operatorname{Im} T^2 = n$ מתקבל ש- $\dim \ker T^2 + \dim \ker T^2 + \dim \operatorname{Im} T^2 = n$ בעלי אותו מימד . $\dim \ker T = \dim \ker T^2$ ואחד מהם מוכל בשני , לכן $\ker T = \ker T^2$ (משפט $\operatorname{V.29}$) .

נניח עתה ש- T(v)=0 ומאידך, קיים . $\lim T^2=\lim T$ ומאידך, קיים . (iii) $u\in\ker T^2$ פרן שגורר ש- $u\in\ker T^2$ אז . $u\in \ker T^2$ שגורר ש- $u\in V$

ע"פ סעיף (ii) מתקיים אור . v=T(u)=0 וה וב . v=T(u)=0 והוכחנו . v=T(u)=0 ומתקבל ש- v=T(u)=0 וע"פ סעיף (ii) ע"פ סעיף . v=T(u)=0 . v=T(u)=0 ומתקבל ש- v=T(u)=0 . v=T(u)=0 ומתקבל ש- v=T(u)=0 . v=T(u)=0 ומתקבל ש- v=T(u)=0 . v=T(u)=0 והוכחנו . v=T(u)=0 . v

. $\operatorname{Im} T^2 = \operatorname{Im} T$ אם ורק אם $V = \operatorname{Im} T \oplus \ker T$ יוצא שי (iii) יוצא שי $V = \operatorname{Im} T \oplus \ker T$ אם אם יוצא שי

ב. הטענה לא נכונה: למשל , ניקח A+B=B אז A=0 הוא הערך הטענה לא נכונה: למשל , ניקח A+B אם A+B הייתה לכסינה היא הייתה דומה העצמי היחיד לש המטריצה $A+B=B\neq 0$ אם $A+B=B\neq 0$

: <u>הערות</u>

א. דרך אחרת לשאלה 2 סעיף 2):

לכל $i \leq n$, אם נסמן ב-T את הטרנספורמציה הלינארית . $Av_i = \underline{b}$ מתקיים , $1 \leq i \leq n$, אז המטריצה של T לפי הבסיס R^m מוגדרת עייי T(v) = Av, אז המטריצה של R^m לפי הבסיס R^m , שעמודותיה הן הקואורדינטות של הוקטור \underline{b} לפי הבסיס . R^m דרגתה של מטריצה זו היא R^m והיא גם שווה לדרגה של R^m , וגם של R^m , לכן המסקנה.

ב. דרך אחרת לשאלה 3:

x+1ים ב-1ים המתחלקים ב-Uים הם הפולינומים של מכיוון שהפולינומים של Uים הם הפולינומים המתחלקים ב- $U=\left\{(x^2-1)(ax^2+bx+c)\mid a,b,c\in\mathbf{R}\right\}$ ניתן לכתוב: $\left\{x^2(x^2-1),x(x^2-1),x(x^2-1)\right\}$ היא בסיס ל- $\left\{x^2(x^2-1),x(x^2-1),x(x^2-1)\right\}$

 \cdot באופן דומה ניתן למצוא בסיס ל-wכי

$$W = \{(x-1)(x-2)(ax^2 + bx + c) \mid a,b,c \in \mathbf{R}\}$$

$$U \cap W = \{(x-1)(x+1)(x-2)(ax+b) \mid a,b,\in \mathbf{R}\} -1$$