Clustering spatiotemporal point data to visualize spatial patterns

Dr. David Frantz

Geoinformatics – Spatial Data Science Demonstration lecture Trier / Zoom, 02.07.2020

Semester 1 Semester 2 Semester 3 Semester 4 **Computer Programming for GIS** Spatial Data Analysis GIS - Application Geostatistics with Python development Project studies on 3D Introduction to 3D Multivariate Statistics Visualization and Visualization **Augmented Reality Final Master Thesis** Project Fundamentals of Pattern Recognition in Numerical **Environmental Remote** long-term global Mathematics for satellite archives Geoscientists Sensing Environmental **6 TO 8 ELECTIVE COURSES** System Analysis

Requirements

Learning Objective

- Introduction to spatiotemporal data types
- Clustering algorithm
- Practical experience/demonstration to cluster real-life ST data with current relevancy

1) ST event

- Single measurement
- <longitude, latitude, timestamp>

Fire events

Kisilevich et al.: Spatio-temporal clustering. In: Data mining and knowledge discovery handbook. Springer, Boston, MA, 2009. S. 855-874.

2) Geo-referenced variable

- Evolution in time, but only the most recent value
- <longitude, latitude, timestamp, non-spatial value>

Weather station with most recent temperature value

Kisilevich et al.: Spatio-temporal clustering. In: Data mining and knowledge discovery handbook. Springer, Boston, MA, 2009. S. 855-874.

3) Moving points

object moves, most recent position

navigation / real-time tracking of vehicles

single updated time series snapshot snapshot Geo-referenced ST events variable fixed location Spatial location dynamic Iocation Moving points

Kisilevich et al.: Spatio-temporal clustering. In: Data mining and knowledge discovery handbook. Springer, Boston, MA, 2009. S. 855-874.

Temporal extension

4) Geo-referenced time series

Whole history is stored

NDVI time series

Kisilevich et al.: Spatio-temporal clustering. In: Data mining and knowledge discovery handbook. Springer, Boston, MA, 2009. S. 855-874.

5) Trajectories

Object moves, whole history is stored

Google Location History

Spatial location

Kisilevich et al.: Spatio-temporal clustering. In: Data mining and knowledge discovery handbook. Springer, Boston, MA, 2009. S. 855-874.

Clustering ST event data

ST events

Three dimensions:

<longitude, latitude, timestamp>

Static in space and time = snapshot

Problem: complex datasets

Solution: Spatiotemporal analyses methods to mine meaningful patterns for better understanding

Clustering = unsupervised method for discovering potential patterns

Finding clusters among events means to discover groups that lie close both in time and in space

DBSCAN

Density-Based Spatial Clustering of Applications with Noise

ESTER, Martin, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd. 1996. S. 226-231.

Popular algorithm in data mining, simple application, very efficient

Main assumption

Within each cluster, there is a typical density of points, which is considerably higher than outside

Find clusters of arbitrary shape

Detect noise

Number of clusters not known à priori

https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html

1) Neighborhood

Determined by a distance function, e.g. Euclidean Distance

Distance between two points p and q in database D: $dist(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}$

2) Eps-neighborhood of a point *q*:

$$N_{Eps}(q) = \{ p \in D \mid dist(p, q) \le Eps \}$$

Input parameter 1: Distance threshold *Eps*

3) Core point

$$\left|N_{Eps}(q)\right| \ge MinPts$$

Core point is part of a cluster

Input parameter 2: MinPts = 3

4) Directly density-reachable

p is directly density-reachable from q if p is within the Eps-neighborhood of q, and q is a core point $p \in N_{Eps}(q)$ AND $|N_{Eps}(q)| \ge MinPts$

p directly density-reachable from q

4) Directly density-reachable

p is directly density-reachable from q if p is within the Eps-neighborhood of q, and q is a core point

 $p \in N_{Eps}(q) \text{ AND}$ $|N_{Eps}(q)| \ge MinPts$

p directly density-reachable from qq not directly density-reachable from p

p is not a core point $(|N_{Eps}(p)| = 2)$ $\rightarrow p =$ border point

5) Density-reachable

p is density-reachable from q if there is a chain of points that are directly density-reachable

6) Density-connected

p is density connected to o, if both p and o are density-reachable from a point q

7) **Density-based cluster** contains all points that are density-reachable from a seed point q: $\forall p,q:if\ q\in C\ AND\ p$ is density-reachable from q $\forall p,q\in C:if\ p$ is density-connected to q

7) **Density-based cluster** contains all points that are density-reachable from a seed point q: $\forall p,q:if\ q\in C\ AND\ p$ is density-reachable from q $\forall p,q\in C:if\ p$ is density-connected to q

Noise

Any point *k* not belonging to any cluster

Eps and MinPts

MinPts does not critically affect clustering results Suggestion use 4 for spatial data

The distance *Eps* should be set according to the "thinnest" cluster

Eps and MinPts

MinPts does not critically affect clustering results Suggestion use 4 for spatial data

The distance *Eps* should be set according to the "thinnest" cluster

Simple solution:

- 1) Compute the distance of a point p to its k-th nearest neighbor k = MinPts
- 2) Repeat for each point
- 3) Sort the distances and plot (k-dist graph)

Time in DBSCAN

DBSCAN can be applied to 2D, 3D or any high dimensional feature space

Time is simply an additional dimension:

$$dist(p,q) = \sqrt{(x_p - x_q)^2 + (y_p - y_q)^2 + (t_p - t_q)^2}$$

- → some sort of scaling might be required to use the same *Eps* for space AND time
- → MinPts = number of dimensions + 1

Hands-on / Live Demo

→ covid19.ipynb

Play with the data

Download the JupyterLab environment from

github.com/davidfrantz/covid19

includes

- Jupyter notebooks with all plots and code,
- COVID-19 data,
- this presentation,
- literature with suggested reading

requires

- JupyterLab
- R & R-Kernel

Parameters that will affect the clusters

- Number of infections N
 - → find larger or smaller hotspots,
- Scaling of the temporal dimension
 - \rightarrow 7 days, 31 days?
 - → statistical rescaling method for all dimensions? (e.g. z-transform)
- Eps
 - → Shift the allocations to noise/clusters