

CLAIMS

What is claimed is:

1. A compound selected from Formula I, an N-oxide or an agriculturally suitable salt thereof,

5

I

wherein

- R¹ is cyclopropyl optionally substituted with 1-5 R⁵, isopropyl optionally substituted with 1-5 R⁶, or phenyl optionally substituted with 1-3 R⁷;
- R² is ((O)_jC(R¹⁵)(R¹⁶))_kR;
- 10 R is CO₂H or a herbicidally effective derivative of CO₂H;
- R³ is halogen, cyano, nitro, OR²⁰, SR²¹ or N(R²²)R²³;
- R⁴ is -N(R²⁴)R²⁵ or -NO₂;
- each R⁵ and R⁶ is independently halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C₁-C₃ alkoxy, C₁-C₂ haloalkoxy, C₁-C₃ alkylthio or C₁-C₂ haloalkylthio;
- 15 each R⁷ is independently halogen, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₁-C₄ hydroxyalkyl, C₂-C₄ alkoxyalkyl, C₂-C₄ haloalkoxyalkyl, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₃-C₄ alkynyl, C₃-C₄ haloalkynyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₂-C₄ alkenyloxy, C₂-C₄ haloalkenyloxy, C₃-C₄ alkynyoxy, C₃-C₄ haloalkynyoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ haloalkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylsulfonyl, C₂-C₄ alkenylthio, C₂-C₄ haloalkenylthio, C₂-C₄ alkenylsulfinyl, C₂-C₄ haloalkenylsulfinyl, C₂-C₄ alkenylsulfonyl, C₂-C₄ haloalkenylsulfonyl, C₃-C₄ alkynylthio, C₃-C₄ haloalkynylthio, C₃-C₄ alkynylsulfinyl, C₃-C₄ haloalkynylsulfinyl, C₃-C₄ alkynylsulfonyl, C₃-C₄ haloalkynylsulfonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₄-C₆ (alkyl)cycloalkylamino, C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxy carbonyl, C₂-C₆ alkylaminocarbonyl, C₃-C₈ dialkylaminocarbonyl, C₃-C₆ trialkylsilyl, phenyl, phenoxy and 5- or 6-membered heteroaromatic rings, each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring optionally substituted with one to three substituents independently selected from R⁴⁵; or

- two adjacent R⁷ are taken together as -OCH₂O-, -CH₂CH₂O-, -OCH(CH₃)O-, -OC(CH₃)₂O-, -OCF₂O-, -CF₂CF₂O-, -OCF₂CF₂O- or -CH=CH-CH=CH-;
- R¹⁵ is H, halogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, hydroxy, C₁-C₄ alkoxy or C₂-C₄ alkylcarbonyloxy;
- 5 R¹⁶ is H, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl; or
R¹⁵ and R¹⁶ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;
- R²⁰ is H, C₁-C₄ alkyl or C₁-C₃ haloalkyl;
- R²¹ is H, C₁-C₄ alkyl or C₁-C₃ haloalkyl;
- 10 R²² and R²³ are independently H or C₁-C₄ alkyl;
- R²⁴ is H, C₁-C₄ alkyl optionally substituted with 1-2 R³⁰, C₂-C₄ alkenyl optionally substituted with 1-2 R³¹, or C₂-C₄ alkynyl optionally substituted with 1-2 R³²; or R²⁴ is C(=O)R³³, nitro, OR³⁴, S(O)₂R³⁵, N(R³⁶)R³⁷ or N=C(R⁶²)R⁶³;
- R²⁵ is H, C₁-C₄ alkyl optionally substituted with 1-2 R³⁰ or C(=O)R³³; or
- 15 R²⁴ and R²⁵ are taken together as a radical selected from -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- and -(CH₂)₂O(CH₂)₂-, each radical optionally substituted with 1-2 R³⁸; or
R²⁴ and R²⁵ are taken together as =C(R³⁹)N(R⁴⁰)R⁴¹ or =C(R⁴²)OR⁴³;
- each R³⁰, R³¹ and R³² is independently halogen, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, C₁-C₃ alkylthio, C₁-C₃ haloalkylthio, amino, C₁-C₃ alkylamino, C₂-C₄ dialkylamino or C₂-C₄ alkoxy carbonyl;
- 20 each R³³ is independently H, C₁-C₄ alkyl, C₁-C₃ haloalkyl, C₁-C₄ alkoxy, phenyl, phenoxy or benzyloxy;
- R³⁴ is H, C₁-C₄ alkyl, C₁-C₃ haloalkyl or CHR⁶⁶C(O)OR⁶⁷;
- 25 R³⁵ is C₁-C₄ alkyl or C₁-C₃ haloalkyl;
- R³⁶ is H, C₁-C₄ alkyl or C(=O)R⁶⁴;
- R³⁷ is H or C₁-C₄ alkyl;
- each R³⁸ is independently halogen, C₁-C₃ alkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, C₁-C₃ alkylthio, C₁-C₃ haloalkylthio, amino, C₁-C₃ alkylamino, C₂-C₄ dialkylamino or C₂-C₄ alkoxy carbonyl;
- 30 R³⁹ is H or C₁-C₄ alkyl;
- R⁴⁰ and R⁴¹ are independently H or C₁-C₄ alkyl; or
R⁴⁰ and R⁴¹ are taken together as -(CH₂)₄-, -(CH₂)₅-, -CH₂CH=CHCH₂- or -(CH₂)₂O(CH₂)₂;
- 35 R⁴² is H or C₁-C₄ alkyl;
- R⁴³ is C₁-C₄ alkyl;
- each R⁴⁵ is independently halogen, cyano, nitro, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₃-C₆ cycloalkyl, C₃-C₆ halocycloalkyl, C₂-C₄ alkenyl, C₂-C₄ haloalkenyl, C₃-C₄

alkynyl, C₃–C₄ haloalkynyl, C₁–C₄ alkoxy, C₁–C₄ haloalkoxy, C₁–C₄ alkylthio, C₁–C₄ haloalkylthio, C₁–C₄ alkylsulfinyl, C₁–C₄ alkylsulfonyl, C₁–C₄ alkylamino, C₂–C₈ dialkylamino, C₃–C₆ cycloalkylamino, C₄–C₆ (alkyl)cycloalkylamino, C₂–C₄ alkylcarbonyl, C₂–C₆ alkoxy carbonyl, C₂–C₆ alkylaminocarbonyl, C₃–C₈ dialkylaminocarbonyl or C₃–C₆ trialkylsilyl;

5 R⁶² is H, C₁–C₄ alkyl or phenyl optionally substituted with 1–3 R⁶⁵;

R⁶³ is H or C₁–C₄ alkyl; or

R⁶² and R⁶³ are taken together as -(CH₂)₄- or -(CH₂)₅-;

10 R⁶⁴ is H, C₁–C₁₄ alkyl, C₁–C₃ haloalkyl, C₁–C₄ alkoxy, phenyl, phenoxy or benzyloxy;

each R⁶⁵ is independently CH₃, Cl or OCH₃;

R⁶⁶ is H, C₁–C₄ alkyl or C₁–C₄ alkoxy;

R⁶⁷ is H, C₁–C₄ alkyl or benzyl;

j is 0 or 1; and

15 k is 0 or 1;

provided that:

(a) when k is 0, then j is 0;

20 (b) when R² is CH₂OR^a wherein R^a is H, optionally substituted alkyl or benzyl, then R³ is other than cyano;

(c) when R¹ is phenyl substituted by Cl in each of the meta positions, the phenyl is also substituted by R⁷ in the para position;

25 (d) when R¹ is phenyl substituted by R⁷ in the para position, said R⁷ is other than *tert*-butyl, cyano or optionally substituted phenyl;

(e) when R¹ is cyclopropyl or isopropyl optionally substituted with 1–5 R⁶, then R is other than C(=W)N(R^b)S(O)₂–R^c–R^d wherein W is O, S, NR^e or NOR^e; R^b is

hydrogen, C₁–C₄ alkyl, C₂–C₆ alkenyl or C₂–C₆ alkynyl; R^c is a direct bond or CHR^f, O, NR^e or NOR^e; R^d is an optionally substituted heterocyclic or carbocyclic aromatic radical having 5 to 6 ring atoms, the radical being optionally condensed with an aromatic or nonaromatic 5- or 6-membered ring; each R^e is independently H, C₁–C₃ alkyl, C₁–C₃ haloalkyl or phenyl; and R^f is H, C₁–C₃ alkyl or phenyl; and

30 (f) the compound of Formula I is other than diethyl 6-amino-5-nitro-2-phenyl-4-pyrimidinemalonate.

2. The compound of Claim 1 wherein

35 R² is CO₂R¹², CH₂OR¹³, CH(OR⁴⁶)(OR⁴⁷), CHO, C(=NOR¹⁴)H, C(=NNR⁴⁸R⁴⁹)H,

(O)_jC(R¹⁵)(R¹⁶)CO₂R¹⁷, C(=O)N(R¹⁸)R¹⁹, C(=S)OR⁵⁰, C(=O)SR⁵¹,

C(=S)SR⁵² or C(=NR⁵³)YR⁵⁴;

- R¹² is H, -CH{C(O)O(CH₂)_m}, -N=C(R⁵⁵)R⁵⁶; or a radical selected from C₁-C₁₄ alkyl, C₃-C₁₂ cycloalkyl, C₄-C₁₂ alkylcycloalkyl, C₄-C₁₂ cycloalkylalkyl, C₂-C₁₄ alkenyl, C₂-C₁₄ alkynyl and phenyl, each radical optionally substituted with 1-3 R²⁷; or
- 5 R¹² is a divalent radical linking the carboxylic ester function CO₂R¹² of each of two pyrimidine ring systems of Formula I, the divalent radical selected from -CH₂-, -(CH₂)₂-, -(CH₂)₃- and -CH(CH₃)CH₂;
- R¹³ is H, C₁-C₁₀ alkyl optionally substituted with 1-3 R²⁸, or benzyl;
- R¹⁴ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl or benzyl;
- 10 R¹⁷ is C₁-C₁₀ alkyl optionally substituted with 1-3 R²⁹, or benzyl;
- R¹⁸ is H, C₁-C₄ alkyl, hydroxy, C₁-C₄ alkoxy or S(O)₂R⁵⁷;
- R¹⁹ is H or C₁-C₄ alkyl;
- 15 each R²⁷ is independently halogen, cyano, hydroxycarbonyl, C₂-C₄ alkoxycarbonyl, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, amino, C₁-C₄ alkylamino, C₂-C₄ dialkylamino, -CH{O(CH₂)_n} or phenyl optionally substituted with 1-3 R⁴⁴; or
- 15 two R²⁷ are taken together as -OC(O)O- or -O(C(R⁵⁸)(R⁵⁸))₁₋₂O-; or
- two R²⁷ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;
- 20 each R²⁸ is independently halogen, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, amino, C₁-C₄ alkylamino or C₂-C₄ dialkylamino; or
- two R²⁸ are taken together as an oxygen atom to form, with the carbon atom to which they are attached, a carbonyl moiety;
- 25 each R²⁹ is independently halogen, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkylthio, amino, C₁-C₄ alkylamino or C₂-C₄ dialkylamino;
- each R⁴⁴ is independently halogen, C₁-C₄ alkyl, C₁-C₃ haloalkyl, hydroxy, C₁-C₄ alkoxy, C₁-C₃ haloalkoxy, C₁-C₃ alkylthio, C₁-C₃ haloalkylthio, amino, C₁-C₃ alkylamino, C₂-C₄ dialkylamino or nitro;
- 30 R⁴⁶ and R⁴⁷ are independently C₁-C₄ alkyl or C₁-C₃ haloalkyl; or
- R⁴⁶ and R⁴⁷ are taken together as -CH₂CH₂-, -CH₂CH(CH₃)- or -(CH₂)₃-;
- R⁴⁸ is H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₄ alkylcarbonyl, C₂-C₄ alkoxycarbonyl or benzyl;
- 35 R⁴⁹ is H, C₁-C₄ alkyl or C₁-C₄ haloalkyl;

R⁵⁰, R⁵¹ and R⁵² are H; or a radical selected from C₁–C₁₄ alkyl, C₃–C₁₂ cycloalkyl, C₄–C₁₂ alkylcycloalkyl, C₄–C₁₂ cycloalkylalkyl, C₂–C₁₄ alkenyl and C₂–C₁₄ alkynyl, each radical optionally substituted with 1–3 R²⁷;

Y is O, S or NR⁶¹;

5 R⁵³ is H, C₁–C₃ alkyl, C₁–C₃ haloalkyl, C₂–C₄ alkoxyalkyl, OH or C₁–C₃ alkoxy;

R⁵⁴ is C₁–C₃ alkyl, C₁–C₃ haloalkyl or C₂–C₄ alkoxyalkyl; or

R⁵³ and R⁵⁴ are taken together as -(CH₂)₂–, -CH₂CH(CH₃)– or -(CH₂)₃–;

R⁵⁵ and R⁵⁶ are independently C₁–C₄ alkyl;

R⁵⁷ is C₁–C₄ alkyl, C₁–C₃ haloalkyl or NR⁵⁹R⁶⁰;

10 each R⁵⁸ is independently selected from H and C₁–C₄ alkyl;

R⁵⁹ and R⁶⁰ are independently H or C₁–C₄ alkyl;

R⁶¹ is H, C₁–C₃ alkyl, C₁–C₃ haloalkyl or C₂–C₄ alkoxyalkyl;

m is an integer from 2 to 3; and

n is an integer from 1 to 4.

15 3. The compound of Claim 2 wherein R³ is halogen.

4. The compound of Claim 2 wherein R¹ is cyclopropyl or phenyl substituted with a halogen, methyl or methoxy radical in the para position and optionally with 1–2 radicals selected from halogen and methyl in other positions; and R⁴ is -N(R²⁴)R²⁵.

5. The compound of Claim 4 wherein R² is CO₂R¹², CH₂OR¹³, CHO or
20 CH₂CO₂R¹⁷.

6. The compound of Claim 5 wherein R²⁴ is H, C(O)R³³ or C₁–C₄ alkyl optionally substituted with R³⁰; R²⁵ is H or C₁–C₂ alkyl; or R²⁴ and R²⁵ are taken together as =C(R³⁹)N(R⁴⁰)R⁴¹.

7. The compound of Claim 6 wherein R² is CO₂R¹²; and R²⁴ and R²⁵ are H.

25 8. The compound of Claim 7 wherein R¹² is H, C₁–C₄ alkyl or benzyl.

9. The compound of Claim 1 selected from the group consisting of:

methyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,

ethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,

phenylmethyl 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylate,

30 6-amino-5-bromo-2-cyclopropyl-4-pyrimidinecarboxylic acid monosodium salt,

methyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,

phenylmethyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,

6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylic acid monosodium salt,

ethyl 6-amino-5-chloro-2-cyclopropyl-4-pyrimidinecarboxylate,

35 methyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate,

ethyl 6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylate,

6-amino-5-chloro-2-(4-chlorophenyl)-4-pyrimidinecarboxylic acid,
ethyl 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate,
methyl 6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylate, and
6-amino-2-(4-bromophenyl)-5-chloro-4-pyrimidinecarboxylic acid.

- 5 10. A herbicidal mixture comprising a herbicidally effective amount of a compound of Claim 1 and an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener.
11. A herbicidal mixture comprising synergistically effective amounts of a compound of Claim 1 and an auxin transport inhibitor.
- 10 12. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1 and at least one of a surfactant, a solid diluent or a liquid diluent.
13. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.
- 15 14. A herbicidal composition comprising a herbicidally effective amount of a compound of Claim 1, an effective amount of at least one additional active ingredient selected from the group consisting of an other herbicide and a herbicide safener, and at least one of a surfactant, a solid diluent or a liquid diluent.