Работа 3.4.5 Петля Гистерезиса (Динамический метод)

Гаврилин Илья Дмитриевич Б01-101

14 декабря 2022 г.

1 Аннотация

В работе изучили петлю Гистерезиса для различных материалов, изучили амплитудные и коэрцитивные и остаточные значения поля и индукции соответственно.

2 Теория

Измерение напряжения с помощью осциллографа

Исследуемый сигнал подается на вход X; длина 2x горизонтальной черты, наблюдаемой на экране, характеризует удвоенную амплитуду сигнала.

Если известна чувствительность усилителя K_x в вольтах на деление шкалы экрана, то удвоенная амплитуда напряжения определяется произведением

$$2U_{X,0} = 2x \cdot K_x$$

Напряжение, подаваемое на вход Y определяется аналогично.

Калибровку осей осциллографа можно использовать для построения кривой гистерезиса в координатах B и H:

Зная величину сопротивления R_0 , с которого снимается сигнал, можно определить чувствительность канала по току $K_{XI} = \frac{K_x}{R_0}$ [А/дел]; затем, используя формулу

$$H = \frac{IN_0}{2\pi R} \tag{1}$$

определить цену деления шкалы в А/м.

Используя формулу

$$B = \frac{R_{\text{\tiny H}} C_{\text{\tiny H}} U_{\text{\tiny Bbix}}}{S N_{\text{\tiny H}}} \tag{2}$$

можно рассчитать цену деления вертикальной шкалы в теслах.

Проверка калибровки горизонтальной оси ЭО с помощью амперметра

проводится при закороченной обмотке N_0 . Эта обмотка с помещенным в нее ферромагнитным образцом является нелинейным элементом, так что ток в ней не имеет синусоидальной формы, и это не позволяет связать амплитуду тока с показаниями амперметра.

$$m_X = \frac{2\sqrt{2}R_0 I_{\text{эф}}}{2x} [\text{В/дел}] \tag{3}$$

Проверка калибровки вертикальной оси ЭО с помощью вольтметра

Сигнал с обмотки 12,6 В понижающего трансформатора подается на делитель напряжения. Часть этого напряжения снимается с делителя с коэффициентом деления $K_{\rm Д}$ (1/10 или 1/100) и подается на вход Y. Мультиметр V измеряет напряжение $U_{\rm эф}$ на этих же клеммах делителя.

Далее по формуле

$$m_Y = \frac{2\sqrt{2}U_{
m s}\Phi}{2y}[\mathrm{B}/\mathrm{дел}]$$
 (4)

можно рассчитать чувствительность канала Y.

Постоянная времени *RC*-цепочки

Рассчитывается по формуле

$$RC = \frac{U_{\text{bx}}}{\Omega U_{\text{bbix}}} \tag{5}$$

3 Ход работы

Характеристики установки

Подготовим установку согласно техническому описанию, соберем требуемую схему. Перед началом замеров запишем характеристики нанесенные на установку и образцы, результаты запишем в таблицу.

	Пермаллой	Кремнистое железо	Феррит 1000нн
N_0	20	25	42
$N_{\scriptscriptstyle m M}$	300	250	400
S, cm ²	0.76	2	3
$2\pi R$, cm	13.3	11	25

Таблица 1: Характеристики образцов

R_0 , Om	0,2
$R_{\rm m}$, кОм	20
$C_{\text{и}}$, мк Φ	20

Таблица 2: Характеристики экспериментальной установки

Получение петли Гистерезиса

	Величина	$\sigma(x)$	Величина	$\sigma(x)$	Величина	$\sigma(x)$
	Пермаллой		Феррит 1000нн		Кремнистое железо	
Петля	C. NO. 100.0 UMC.					
$I_{9\Phi}, MA$	171.8	0.9	277	0.2	588	1
[2x(c)], ед	7.2	0,2	4.2	0,2	4.8	0,2
[2y(r)], ед	3,6	0,2	4	0,2	3.8	0,2
K_x	0,01	0	0,01	0	0,02	0
K_y	0,05	0	0,01	0	0,02	0
H, A/M	7.5	0,02	8.4	0,2	22.7	0,3
H_c , A/M	27	3	17.6	0.6	54.5	2.1
B_r , Тл/дел	0.877	0,011	0.033	0,004	0,16	0,012
В, Тл	1.57	0,13	0.066	0.012	0,31	0,02

Таблица 3: Данные, полученные из петли гистерезиса

	пермалой		феррит		железо	
	знач	$\sigma(x)$	знач	$\sigma(x)$	знач	$\sigma(x)$
2x(s)	7	0.2	9.6	0.2	8	0.2
2y(s)	3.6	0.2	5	0.2	3	0.2
K_x	0.02	0	0.02	0	0.05	0
k_y	0.05	0	0.02	0	0.05	0
H, А/м дел	13.67	0.42	16.8	0.4	56.8	0.7
H_s , A/M	47.85	0.2	80.64	0.41	227.2	0.8
В, Тл/дел	0.877	0.011	0.067	0.011	0.4	0.05
B_s , Тл	1.58	0.23	0.1675	0.011	0.6	0.06

Таблица 4: Значения поля и индукции, амплитудное

Калибровка оси Х

Отключаем намагничивающую обмотку от цепи, соединив оба провода, идущих к обмотке, на одной из ее клемм.

Подбираем такой ток, чтобы горизонтальная прямая занимала большую часть экрана.

Рассчитаем чувствительность канала m_X по формуле (3).

Результаты смотри в таблице 3.

Калибровка оси Ү

Разберем цепь. Соединим вход Y с клеммами делителя "1/100-земля". Не меняя рабочего коэффициента K_Y , подберем с помощью трансформатора напряжение, при котором вертикальная прямая занимает почти весь экран. Измеряем длину 2y. Запишем данные из двух вышеизложенных пунктов в таблицу. Рассчитаем m_Y по формуле (4).

	Величина	σ	Величина	σ	Величина	σ
	Пермаллой		Феррит 1000нн		Кремнистое железо	
2х, ед	6,0	0,1	7,0	0,1	10,0	0,1
m_X , [В/дел]	0,020	0,001	0,092	0,001	0,057	0,001
$U_{\mathfrak{s}\Phi},\mathrm{B}$	0,13	0,01	0,50	0,01	0,50	0,01
2у, ед	8,0	0,1	7,0	0,1	7,0	0,1
m_Y , [В/дел]	0,046	0,001	0,202	0,001	0,202	0,001
K_x	0,02	0	0,02	0	0,05	0
K_y	0,05	0	0,1	0	0,02	0

Таблица 4. Калибровка осей осциллографа.

По таблице видим, что соответствующие K и m равны с точностью до погрешности.

Расчет au постоянной времени для цепочки

Считаем $U_{\mbox{\tiny BX}} = 2y \cdot K_y$ и $U_{\mbox{\tiny BMX}} = 2x \cdot K_x.$

Запишем все полученные данные в таблицу и посчитаем τ по формуле (5) и через параметры установки.

Величина	Значение	Ошибка	
2у, ед	8,0	0,2	
K_y , В/ед	2	0	
2x, ед	6,2	0,2	
K_x , В/ед	0,02	0	
$U_{\scriptscriptstyle \mathrm{BX}},\mathrm{B}$	16,0	0,2	
$U_{\text{вых}}$, В	0,124	0,002	
au из формулы, с	0,41	0,02	
au из пар. уст., с	0,40	0,02	

 $\overline{\mathbf{Taблицa}}$ 5. Измерение au.

Замеры μ

Рис. 1: Петля гистерезиса пермаллоя, с нанесенным участком убывания

Рис. 2: Петля гистерезиса феррита, с нанесенным участком убывания

Рис. 3: Петля гистерезиса кремнистого железа, с нанесенным участком убывания

Замерить μ для пермаллоя не представляется возможным, так как в процессе изменения напряжения контура петля Гистерезиса принимала совершенно различные формы не дающие возможности оценить значение.

Для феррита получаем: $\mu_{\text{дифф}}/\mu_0 = 6*10^3$ Для кремнистого железа: $\mu_{\text{дифф}}/\mu_0 = 8*10^3$

4 Выводы

- 1) Получили петли Гистерезиса для различных материалов.
- 2) Оценили дифференциальную магнитную проницаемость для феррита и кремнистого железа. табличные значения:

Для феррита: $\mu_{\text{дифф}}/\mu_0 = 5*10^3$

Для кремнистого железа: $\mu_{\text{дифф}}/\mu_0 = 6.3*10^3$

3) Получили значения близкие к табличным, однако судить о погрешности достаточно сложно ввиду взятия угла наклона по картинке построенной по изменению петли на экране осциллографа.