Обобщение при уточнении понятия замкнутой переменной

А. Н. Непейвода ИПС им. А.К. Айламазяна РАН

V совместное совещание по языку Рефал

16 июня 2022, МГТУ им. Н.Э. Баумана

Наводящий пример

При обобщении $(\varepsilon)(e.x)$ и (A)(Ae.x') получается заготовка $(e.x_1)(e.x_1e.x_2)$. После чего параметры $e.x_1$ и $e.x_2$ сливаются как подряд идущие, даже если на e.x и e.x' есть рестрикция, запрещающая вхождения буквы A, переносимая на $e.x_2$.

Частичное решение: записать уравнение, устанавливающее связь между переменными после слияния — оказывается слабым, потому что негативные рестрикции всё равно теряются.

Идея

Перенести часть зависимостей из языка рестрикций (уравнения) в язык конфигурации (параметризованное выражение).

Что сейчас:

- Строится кандидат общего вида без обобщений вида $e.i = \varepsilon \mid \varepsilon$.
- Сливаются подряд идущие е-параметры.
- Выбирается наилучший по оценке.

Что хочется:

- Строится кандидат общего вида.
- Если он безопасный ⇒ ОК, иначе параметры сливаются, чтобы стал безопасным .
- Выбирается наилучший по оценке.

Идея

Перенести часть зависимостей из языка рестрикций (уравнения) в язык конфигурации (параметризованное выражение).

Что было:

- Строится кандидат общего вида без обобщений вида $e.i = \varepsilon \mid \varepsilon$.
- Сливаются подряд идущие *е*-параметры.
- Выбирается наилучший по оценке.

Как стало:

- Строится кандидат общего вида.
- Безопасный ⇒ ОК, иначе параметры сливаются, чтобы стал безопасным (future work).
- Выбирается наилучший по оценке.

Якорные фрагменты

(пока что в допущении, что t-параметров нет, и без учёта общезначимости дизъюнкции: $e.i = s.i~e.j \lor e.i = (e.j_1)e.j_2)$

- Константный фрагмент дерево, не содержащее е-параметров.
- Плоское разбиение п-ка подвыражений, помечающих узлы в лесе структуры (структурные скобки + вызовы функций) без учёта константных фрагментов.
- Свободный фрагмент максимальное подвыражение, содержащее только *е*-параметры.
- Якорный фрагмент подвыражение плоского разбиения, стоящее между е-параметрами и не содержащее е-параметров.

Язык образца

Базовое семантическое понятие для построения обобщения ассоциативных данных.

Пусть \mathscr{P} — образец; тогда языком $\mathscr{L}(\mathscr{P})$ называется множество всех возможных слов, которые получаются некоторой подстановкой в \mathscr{P} .

Если \mathscr{P}' — обобщение \mathscr{P} , и \mathscr{P} и \mathscr{P}' имеют одну и ту же структуру леса над плоским разбиением, то $\mathscr{L}(\mathscr{P}) \subseteq \mathscr{L}(\mathscr{P}')$ (как образцов, полученных из параметризованных выражений).

Возможные проблемы

Что плохое может случиться, если мы перестанем сливать соседние параметры?

Перестаёт выполняться критерий обрыва цепи вычислений (нарушается свойство wqo).

 Крускал + Турчин ⇒ безопасно (Крускал выполняется всегда, а Турчин не смотрит на параметры).

Возможные проблемы

Что плохое может случиться, если мы перестанем сливать соседние параметры?

Перестаёт выполняться критерий обрыва цепи вычислений (нарушается свойство wqo).

 Крускал + Турчин ⇒ безопасно (Крускал выполняется всегда, а Турчин не смотрит на параметры).

Последовательность обобщений становится бесконечной (нарушается свойство нётеровости).

• Опасно!

$$P_1 = e.x_0e.x_0$$

 $P_2 = e.x_1e.x_0e.x_0e.x_1$
 $P_3 = e.x_2e.x_1e.x_0e.x_0e.x_1e.x_2$

Открытые переменные

Рассмотрим произвольный образец Р.

- Семантически открытая е-переменная такая переменная е.i, что при сопоставлении вида
 P, e.i : Cond могут потребоваться рекурсивные возвраты (расширения).
- Синтаксически открытая е-переменная переменная, входящая в некоторый элемент плоского разбиения Р вместе с какой-нибудь другой е-переменной.

Совпадают ли эти понятия?

Синтаксис vs семантика

Рассмотрим образец $(e.x_1 e.x_2) e.x_2 e.x_1 e.x_1$. Он однозначный (т.е. существует единственная возможная подстановка), но в нём нет ни одной синтаксически замкнутой переменной.

• Проводим разбиение на равносоставленные фрагменты, отчего длина $e.x_1$ определяется однозначно.

Рассмотрим образец $(e.x_1 e.x_2)(e.x_2 e.x_3)(e.x_3 e.x_1)$. Он однозначный, но в элементах его плоского разбиения нет равносоставленных префиксов или суффиксов.

• Сравнение длин двух решений приводит к противоречию.

8 / 14

п-замкнутость

Пусть \mathscr{P} — образец (выражение); P_1, \ldots, P_n — свободные фрагменты элементов его плоского разбиения (далее кратко СФР).

- Если е.j единственная е-переменная, входящая в некоторый P_k , тогда е.j 0-замкнутая.
- Если $e.j_1, \ldots, e.j_k$ j_i -замкнутые переменные, входящие в P_k вместе с некоторой $e.j_{k+1}$, степень замкнутости которой неизвестна либо больше $\max(j_i)+1$, тогда $e.j_{k+1}$ $\max(j_i)+1$ -замкнутая.

Утверждение

Если все переменные образца \mathscr{P} і-замкнутые, тогда степень замкнутости переменной, входящей в его СФР P_1, \ldots, P_n , не может превышать n-1.

Мера открытости

Дан СФР Р. п-ку (t_{n-1},\ldots,t_0) такую, что t_i — количество различных переменных замкнутости i, входящих в Р, назовём мерой открытости $\mu(P)$.

В образце $(e.1\ e.1)(e.2)(e.1\ e.2)$ все переменные являются 0-замкнутыми (вычисляются однозначно), но меры открытости его СФР $(P_1,\ P_2,\ P_3)=(e.1\ e.1,\ e.2,\ e.1\ e.2)$ различны. $\mu(P_1)=\mu(P_2)=(0,0,1),\,\mu(P_3)=(0,0,2)$

Мера открытости

Дан СФР Р. п-ку (t_{n-1}, \ldots, t_0) такую, что t_i — количество различных переменных замкнутости i, входящих в Р, назовём мерой открытости $\mu(P)$.

В образце $(e.1\ e.1)(e.2)(e.1\ e.2)$ все переменные являются 0-замкнутыми (вычисляются однозначно), но меры открытости его СФР $(P_1,\ P_2,\ P_3)=(e.1\ e.1,\ e.2,\ e.1\ e.2)$ различны. $\mu(P_1)=\mu(P_2)=(0,0,1),\,\mu(P_3)=(0,0,2)$

Утверждение

Если в СФР і-замкнутого образца добавляется е-переменная, которая туда не входит (но может входить в другие СФР того же образца), то мера открытости этого СФР может только увеличиться лексикографически.

10 / 14

Различающая подстановка

Пусть Φ_i — константные фрагменты элементов плоского образца Р. Рассмотрим различные $\Psi_i \in (\Sigma^*)$ такие, что $\forall i, j (\Psi_i \neq \Phi_j)$ (таких Ψ_i можно построить неограниченное количество). Пусть e.i — e-переменные, входящие в Р. Назовём подстановку σ такую, что $\sigma(e.i) = \Psi_i$, различающей подстановкой.

Утверждение

Пусть (P_1, \ldots, P_n) — кортеж СФР k-замкнутого образца \mathscr{P} . Построим образец \mathscr{P}' добавлением в некоторые P_i ещё одного вхождения какой-либо переменной, уже входящей в P_i . Тогда $\mathscr{L}(\mathscr{P}) \not\subseteq \mathscr{L}(\mathscr{P}')$.

Оставшийся случай

Набор переменных в P_i остался тот же, при этом кратность некоторых из них увеличилась, а других — уменьшилась. Может ли такое преобразование (как минимум) сохранять язык образца?

- По индукции: для СФР, имеющих $\mu(P) = (0, \dots, 0, 1)$, такое невозможно из-за существования различающей подстановки. Следовательно, невозможно для P с $\mu(P) = (0, \dots, 0, n)$.
- Предположим, что для всех СФР, имеющих $\mu(P)=(0,\ldots,0,\,t_i,\ldots)$, такое невозможно. Тогда для СФР, имеющих $\mu(P)=(0,\ldots,1\,t_i,\ldots)$, это также невозможно, поскольку значения всех прочих переменных после различающей подстановки фиксированы.

Нётеровость обобщений

Набросок теоремы

Если k_i -замкнутый образец обобщается до k_j -замкнутого, тогда выполняется минимум одно условие (в порядке приоритетов):

- уменьшается число элементов плоского разбиения или СФР;
- увеличивается общее число различных переменных (ограниченное сверху числом СФР);
- увеличивается мера открытости СФР (также ограничена сверху);
- при сохранении двух предыдущих мер уменьшается кратность некоторой переменной.

Future Work

- Точный критерий семантической замкнутости переменной либо доказательство алгоритмической неразрешимости задачи проверки семантической замкнутости (и поиск различных эвристик, аппроксимирующих её снизу).
- Модификация алгоритмов сопоставления с образцом с учётом расширенного понятия замкнутости.
- Совершенствование алгоритма приведения обобщённого выражения к «безопасной» форме.

Future Work

- Точный критерий семантической замкнутости переменной либо доказательство алгоритмической неразрешимости задачи проверки семантической замкнутости (и поиск различных эвристик, аппроксимирующих её снизу).
- Модификация алгоритмов сопоставления с образцом с учётом расширенного понятия замкнутости.
- Совершенствование алгоритма приведения обобщённого выражения к «безопасной» форме.

Спасибо за внимание!