Generierung von Schachkommentaren mittels maschinellem Lernen

Max Semdner

Frankfurt University of Applied Sciences

31. Januar 2023

Table of Contents

- 1 Überblick
 - Schach und KI
 - Forschungsfrage
 - Aufbau
- 2 Schach Engine
 - Anforderungen
 - Brett Darstellung
 - Zugsuche und Positionsbewertung
 - Zusammenfassung
- 3 Schachkommentator
 - Allgemeiner Ansatz
 - Generations Models
- 4 Fazit

1 Überblick

Schach und KI

- Eines der am längsten erforschten Teilgebiete der KI
- Häufig Forschung in Bezug auf Schach Engines
 - ► Ziel ist die Optimierung der Spielstärke eines Schachprogramms
 - ► Spielstärke von Engines liegt weit über der von Menschen
- Professionelle Schachspieler oder Kommentatoren werden benötigt um Absicht hinter Zügen zu verstehen
- Problem: Züge werden nicht immer richtig verstanden

Forschungsfrage

Wie kann maschinelles Lernen genutzt werden, um Kommentare zu Schachpartien zu generieren?

Aufbau

- Der Prozess der Kommentarerzeugung wird in zwei Teile aufgeteilt
 - ► Bereitstellung von Informationen (Schach Engine)
 - ► Computerverständliche Schachbrettdarstellung
 - Zugsuche
 - Positionsbewertung
 - ► Generierung von Kommentaren (Virtueller Schachkommentator)
 - ► Festlegen was man übersetzen möchte
 - ► Architektur zur Erzeugung von Schachkommentaren

2 Schach Engine

Anforderungen

- Jede Schach Engine muss bestimmte Anforderungen erfüllen
 - ► Darstellung des Schachbretts
 - ► Suche nach den möglichen Spielzügen
 - Bewertung der Position

Brett Darstellung

- Brett und Figuren müssen in eine Computer verständliche Form gebracht werden
- Eine Möglichkeit der Darstellung sind Bitboards
- Jedes Feld wird dargestellt und kann entweder den Wert 0 oder 1 enthalten
 - ▶ 0 = Keine Figur auf Feld, 1 = Figur auf Feld
- Für jeden Figurtyp (6), Figurfarbe (2) und für Rochaden (4) werden Bitboards erstellt
 - ► 16 Bitboards insgesamt

Brett Darstellung

- Mögliche Implementierung durch 8 × 8 Arrays
- Züge können mit Hilfe von logischen Operationen berechnet werden
- Vorteil: Können als Input für neuronale Netze verwendet werden können

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0
0	0	1	1	0	0	0	0
1	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0

- Schach ist bislang ungelöst
- Suche nach dem besten Zug und Bewertung auf der Grundlage von Rechenfertigkeiten und Programmierung
- Um den besten Zug zu finden, muss die Engine zwei Aufgaben erfüllen
 - ► Legale, möglichen Züge in aktuellen und folgenden Positionen finden (Zugsuche)
 - ► Positionen bewerten
- Bekannte Implementierungen: MiniMax/Alpha-Beta Pruning und handgeschriebene Evaluationsfunktion

- Neue Implementierungen: Monte Carlo tree search (MCTS) und Neuronales Netzwerk
 - ► Ansatz mittels maschinellem Lernen
- Neuronales Netzwerk zum bewerten einer Position
- MCTS zum suchen von Zügen
- Pfad mit der besten Gesamtbewertung wird gespielt

- Das Neuronale Netzwerk muss trainiert werden, um eine zuverlässige Ausgabe zu erzeugen
- Daten für das Training werden durch Selbstspiel generiert
- Zu Beginn existiert ein Programm mit Spielregeln, ein untrainiertes neuronales Netz und der MCTS-Algorithmus

- 1. Programm spielt gegen sich selbst und zeichnet jedes Spiel auf
 - ▶ Jede Partie bekommt verloren (-1), unentschieden (0) oder gewonnen (+1) zugerodnet
- 2. Neuronales Netzwerk wird geklont und die Parameter werden angepasst
- 3. Das neue Programm, spielt gegen das alte Programm
- 4. Das Programm, das gewinnt, wird ausgewählt und es beginnt wieder bei 1.

Zusammenfassung

- Von der Schachengine bereitgestellte Informationen:
 - ► Brettdarstellung (Bitboards)
 - ► Positionsbewertung (*v*)
 - ► Zugwahrscheinlichkeiten (p)
 - Zugpfade

3 Schachkommentator

Allgemeiner Ansatz

Allgemeiner Ansatz

4 Fazit

Fazit