Why/How/When to Visualize Your Research Results

Aaron M. Geller

Senior Data Visualization SpecialistResearch Computing and Data Services

Research Associate Professor

Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics & Astronomy

Northwestern
INFORMATION TECHNOLOGY
RESEARCH COMPUTING AND DATA SERVICES

	**				
			. A.		
		100			
		N N			

Why: Scientific discovery!

Why: Bug checking

Why: Data Exploration / -anation

	Exploration Help YOU learn about your data	Explanation Help OTHERS learn about your data
Audience	You and your collaborators	Pick one
Number of Visualizations	Many	Probably 1 per dataset
Visualization Message	Unknown	Why include the visualization?
Formatting	Not important	Important, possibly restricted

Open Cluster Binary Explorer

Access photometric binary-star data in a collection of open clusters

An NSF-funded research project from PI Aaron M. Geller,

We use the Bayesian Analysis of Stellar Evolution with Nine Parameters (BASE-9) software suite along with Gaia kinematics and distances and photometry from Gaia, Pan-STARRS and 2MASS to characterise the binary-star populations in a collection of open clusters. For information about our methods and results, please see the Papers section at the bottom of this page. You can access these data by clicking on the button below.

The interactive visualization above shows the open cluster population as seem from Earth, with the clusters in this study highlighted in pink.

Click here to enter the Interactive Data Explorer

View, filter, sort, create, edit, and download data and plots

Firefly:

A WebGL tool to explore particle-based data

Aaron Geller / Alex Gurvich / Northwestern

Instructions:

- · Right-click and drag with the mouse to rotate your view.
- · Use the mouse wheel to zoom in and out.
- · Click the Controls bar on the top left to show/hide a user interface.
- Detailed instructions can be found on the Firefly GitHub page.
- · h: toggles this help screen on and off.

Why: Public Engagement

In person and online / press

Masses in the Stellar Graveyard

How: Some General Suggestions

- Focus on storytelling.
- Improve Data-to-Ink Ratio: "Is this [shape] necessary?"
- Ensure Visual Quality: "Is this geometry telling the truth?"
- Reduce Clutter: "Is this color choice or layout necessary?"
- Increase Efficiency: "Is it too hard or time consuming to read?"
- Consider Accessibility: "Is this colorblind safe? Is the font size large enough?"
- Organize and Guide: "Should I regroup my data? Can I add helpful text?"

Edward Tufte's "Data to Ink Ratio"

How: Salience

Guide your viewer to your result

How: Salience

Use easy-to-estimate visual representations

How: Salience

Try direct labels instead of legends; highlight the most important result

What Happened To Women In Computer Science?

% Of Women Majors, By Field

How: Symbols

Open circles are the most flexible.

How: Symbols

Form strong visual boundaries

Strong visual boundaries

Weak visual boundaries

How: Symbols

Form strong visual boundaries

Choose colormaps wisely but note that color is not ideal for representing quantitative data.

What does it look like in greyscale? Is it colorblind safe?

Perceptually uniform sequential colormaps

https://colorbrewer2.org/ https://coolors.co/ matplotlib

What does it look like in greyscale? Is it colorblind safe?

There are LOTS of (often very bad) colormaps out there. Be careful!

Colors can have meaning (that differs between cultures).

Good

Bad

Banana

Sky

Colors can have meaning (that differs between cultures).

Good

Bad

Banana

Sky

How: Choose the Right Chart Type

How: Artistic License

To facilitate science communication

How: Artistic License

For visual impact

Generative Al? ...

Images generated by DALL-E 3 via Microsoft Copilot

Prompt: "Please create an image of a cosmological volume with multiple galaxies with active star formation."

Generative Al? ...

Images generated by DALL-E 3 via Microsoft Copilot

Generative Al? ...

Images generated by DALL-E 3 via Microsoft Copilot

active star formation.."

region."

red giant star."

My Additional "Two Cents"

• Interactivity can enhance many of the "why's".

 We are in dire need of innovative strategies for visualizing large data (e.g., for Gaia, LSST, etc.)

Questions?

(I have a hands-on Python demo next.)

Exercise

- Either work with your own data, find a dataset online, or use a dataset from one of these resources:
 - Chicago Data Portal
 - Evanston Data Portal
 - A few datasets I have available on GitHub
- 2. Create a figure that tells a story.
 - Use the recommendations from this workshop!
 - Make a few drafts
- 3. Share your figure(s) with us and discuss the choices you made.

