Visualizing and explaining neural networks

Outline

- Basic visualization techniques
- Mapping activations back to the image
- Synthesizing images to maximize activation
- Saliency maps
- Quantifying interpretability of units

Visualize first-layer weights directly

Features from a CIFAR10 network, via Stanford CS231n

Visualize maximally activating patches:

pick a unit; run many images through the network; visualize patches that produce the highest output values

Source: Stanford CS231n

Source: Andrej Karpathy

Given: a particular input image

Given: a particular input image

Source

Visualize activations for this image

Given: a particular input image

Visualize pixel values responsible for the activation

Visualize activations for this image

Deep visualization toolbox

YouTube video

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, <u>Understanding neural</u> networks through deep visualization, ICML DL workshop, 2015

Outline

- Basic visualization techniques
- Mapping activations back to the image
- Synthesizing images to maximize activation
- Saliency maps
- Quantifying interpretability of units

- Let's take a single value in an intermediate feature map and propagate its gradient back to the original image pixels
- What does this tell us?

- 1. Forward an image through the network
- 2. Choose a feature map and an activation
- 3. Zero out all values except for the one of interest
- 4. Propagate that value back to the image

Commonly used methods differ in how they treat the ReLU

J. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, <u>Striving for simplicity: The all</u> convolutional net, ICLR workshop, 2015

Deconvnet visualization

AlexNet Layer 4

AlexNet Layer 5

Guided backpropagation visualization

J. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all convolutional net, ICLR workshop, 2015

Outline

- Basic visualization techniques
- Mapping activations back to the image
- Synthesizing images to maximize activation
- Saliency maps
- Quantifying interpretability of units

- How can we synthesize images that maximize activation of a given neuron?
- Basic approach: find image x maximizing target activation f(x) subject to natural image regularization penalty R(x):

$$x^* = \arg\max_{x} f(x) - \lambda R(x)$$

- Maximize $f(x) \lambda R(x)$
 - f(x) is score for a category before softmax
 - R(x) is L2 regularization
 - Perform gradient ascent starting with zero image, add dataset mean to result

K. Simonyan, A. Vedaldi, and A. Zisserman, <u>Deep Inside Convolutional Networks:</u>
<u>Visualising Image Classification Models and Saliency Maps</u>, ICLR 2014

Alternative approach to regularization:
 at each step of gradient ascent, apply operator regularizes the image:

$$x \leftarrow r \left(x + \eta \frac{\partial f}{\partial x} \right)$$

- Combination that gives good-looking results:
 - L2 decay
 - Gaussian blur (every few iterations)
 - Clip pixel values with small magnitude
 - Clip pixel values with small contribution to the activation (estimated by product of pixel value and gradient)

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, <u>Understanding neural</u> <u>networks through deep visualization</u>, ICML DL workshop, 2015

Example visualizations:

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, <u>Understanding neural</u> <u>networks through deep visualization</u>, ICML DL workshop, 2015

Example visualizations of intermediate features:

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, <u>Understanding neural</u> <u>networks through deep visualization</u>, ICML DL workshop, 2015

Multifaceted feature visualization

- Key idea: most neurons in high layers respond to a mix of different patterns or "facets"
- For coherent visualizations, zero in on individual facets

A. Nguyen, J. Yosinski, J. Clune, <u>Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks</u>, ICML workshop, 2016

Multifaceted feature visualization

- Key idea: most neurons in high layers respond to a mix of different patterns or "facets"
- For coherent visualizations, zero in on individual facets
- Algorithm:
 - Cluster FC activations of training images to identify facets
 - For each facet, initialize optimization with mean image of that facet
 - To attempt to produce image of a single object, use center-biased regularization (start with blurry image, gradually increase resolution and update center pixels more than edge pixels)

Multifaceted feature visualization

A. Nguyen, J. Yosinski, J. Clune, <u>Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks</u>, ICML workshop, 2016

Google DeepDream

Choose an image and a layer in a CNN; repeat:

- 1. Forward: compute activations at chosen layer
- 2. Set gradient of chosen layer equal to its activation
 - Equivalent to maximizing $\sum_i f_i^2(x)$
- 3. Backward: Compute gradient w.r.t. image
- 4. Update image (with some tricks)

Source: Stanford CS231n

Outline

- Basic visualization techniques
- Mapping activations back to the image
- Synthesizing images to maximize activation
- Saliency maps
- Quantifying interpretability of units

Saliency maps

 Which parts of the image played the most important role in the network's decision?

"White box" saliency via gradients

 Backpropagate gradient of class score (before softmax) to the image, display max of absolute values across color channels

K. Simonyan, A. Vedaldi, and A. Zisserman, <u>Deep Inside Convolutional Networks:</u>
<u>Visualising Image Classification Models and Saliency Maps</u>, ICLR 2014

"White box" saliency via gradients

Can be used for weakly supervised segmentation:

K. Simonyan, A. Vedaldi, and A. Zisserman, <u>Deep Inside Convolutional Networks:</u>
<u>Visualising Image Classification Models and Saliency Maps</u>, ICLR 2014

Gradient-weighted class activation mapping (Grad-CAM)

R. Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. ICCV 2017

 Slide square occluder across image, see how class score changes

Correct class probability as function of occluder position

M. Zeiler and R. Fergus, <u>Visualizing and Understanding Convolutional Networks</u>, ECCV 2014

 Saliency of a class at a pixel is expected score for that class over all masks where the pixel is visible

V. Petsiuk, A. Das, K. Saenko, <u>RISE: Randomized Input Sampling for Explanation of Black-box Models</u>, BMVC 2018

 Saliency of a class at a pixel is expected score for that class over all masks where the pixel is visible

V. Petsiuk, A. Das, K. Saenko, <u>RISE: Randomized Input Sampling for Explanation of Black-box Models</u>, BMVC 2018

Application: detecting model/dataset bias

Application: detecting model/dataset bias

Baseline: A **man** sitting at a desk with a laptop computer.

Improved model: A **woman** sitting in front of a laptop computer.

L. Hendricks, K. Burns, K. Saenko, T. Darrell, A. Rohrbach, <u>Women Also Snowboard:</u>

<u>Overcoming Bias in Captioning Models</u>, ECCV 2018

Outline

- Basic visualization techniques
- Mapping activations back to the image
- Synthesizing images to maximize activation
- Saliency maps
- Quantifying interpretability of units

- From the beginning, people have observed that many units in higher layers seem to fire on meaningful concepts
- But how can we quantify this?

Figure: Zeiler & Fergus

 For a given unit, measure the overlap between areas of high activation and semantic segmentations for a large set of visual concepts

D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, <u>Network Dissection: Quantifying</u>
<u>Interpretability of Deep Visual Representations</u>, CVPR 2017

 For a given unit, measure the overlap between areas of high activation and semantic segmentations for a large set of visual concepts

D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, <u>Network Dissection: Quantifying</u>
<u>Interpretability of Deep Visual Representations</u>, CVPR 2017

Histogram of object detectors for Places AlexNet conv5 units 81/256 units with IoU > 0.04

D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, <u>Network Dissection: Quantifying Interpretability of Deep Visual Representations</u>, CVPR 2017

D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, <u>Network Dissection: Quantifying Interpretability of Deep Visual Representations</u>, CVPR 2017

Summary

- Basic visualization techniques
 - Showing weights, top activated patches, nearest neighbors
- Mapping activations back to the image
 - Deconvolution
 - Guided back-propagation
- Synthesizing images to maximize activation
 - Gradient ascent with natural image regularization
- Saliency maps
 - "White box" vs. "black box"
- Explainability/interpretability
 - Explaining network decisions, detecting bias
 - Quantifying interpretability of intermediate units

Acknowledgement

Thanks to the following courses and corresponding researchers for making their teaching/research material online

- Deep Learning, Stanford University
- Introduction to Deep Learning, University of Illinois at Urbana-Champaign
- Introduction to Deep Learning, Carnegie Mellon University
- Convolutional Neural Networks for Visual Recognition, Stanford University
- Natural Language Processing with Deep Learning, Stanford University
- And Many More