6.11. Понятие о числовом ряде

Важным примером применения теории пределов числовой последовательности является понятие числового ряда.

Определение 1 Пусть дана последовательность a_n . Символ

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

называется числовым рядом, последовательность a_n – общим членом ряда.

Определение 2 Последовательность S_k : сумма первых k членов ряда

$$S_k = a_1 + a_2 + a_3 + \dots + a_k = \sum_{n=1}^k a_n$$

называется частичной суммой ряда, а её предел, если он существует в \mathbb{R} , называется суммой ряда:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k.$$

Если последовательность S_k сходится, то ряд называется сходящимся, иначе – расходящимся. Разность $R_k = S - S_k$ называется остатком ряда.

Примеры:

- 1. $\sum_{n=1}^{\infty} 0$ сходится и его сумма равна 0.
- 2. $\sum_{n=1}^{\infty} q^n$ геометрическая прогрессия. Сходится, если |q| < 1, и его сумма равна $\frac{1}{1-q}$.
- 3. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Рассмотрим частичную сумму

$$S_k = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{k(k+1)} = 1 - \frac{1}{n+1} \to 1,$$

следовательно, ряд сходится, и его сумма равна 1.

4. $\sum_{n=1}^{\infty} (-1)^n$ расходится, т.к. последовательность частичных сумм состоит из чередующихся 0 и -1.

Замечание 1 Изменение, отбрасывание или добавление конечного числа членов ряда не влияет на его сходимость.

Лемма. Ряд сходится тогда и только тогда, когда его остаток стремится к нулю.

▶ Запишем для ряда

$$\sum_{n=1}^{\infty} a_n = S_k + R_k.$$

Тогда $\lim_{k\to\infty} S_k = S$ равносильно тому, что $\lim_{k\to\infty} R_k = 0$. \blacktriangleleft

Теорема 1 Пусть ряды $\sum_{n=1}^{\infty} a_n \ u \sum_{n=1}^{\infty} b_n$ сходятся к конечным суммам $A \ u \ B$, соответственно. Тогда

- 1) ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ сходится, и его сумма равна A + B;
- 2) ряд $\sum_{n=1}^{\infty} \lambda a_n$ сходится, и его сумма равна λA .
- ▶ Доказательство следует из аналогичного утверждения для пределов частичных сумм. \blacktriangleleft

Теорема 2 (**Критерий Коши сходимости ряда**) Для того, чтобы ряд $\sum_{n=1}^{\infty} a_n \ cxoдился, \ необходимо \ u \ достаточно, чтобы для любого <math>\varepsilon$ можно было найти номер k_0 такой, что для всех $k \neq k_0$ u для всех $p \in \mathbb{N}$ выполнялось неравенство $\left|\sum_{n=k+1}^{k+p} a_n\right| < \varepsilon.$

▶ Доказательство следует из критерия Коши для частичных сумм.
Пример: гармонический ряд

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

Запишем

$$S_{2k} - S_{k-1} = \frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{2k} > \frac{1}{2k} \cdot k = \frac{1}{2}.$$

Это означает, что критерий Коши не выполняется и ряд расходится.

Теорема 3 (Необходимое условие сходимости ряда) $Ecnu\ pnd\sum_{n=1}^{\infty}a_n\ cxodumcs,\ mo\ a_n\to 0.$

▶ Запишем $a_n = S_n - S_{n-1}$. Так как $S_n \to S$ и $S_{n-1} \to S$, то $a_n \to S - S = 0$. ◀

Замечание 2 Условие $a_n \to 0$ не является достаточным для сходимости ряда $\sum_{n=1}^{\infty} a_n$. Но если $a_n \not\to 0$, то $\sum_{n=1}^{\infty} a_n$ расходится.

Признаки сравнения для положительных рядов

Будем рассматривать ряды вида $\sum_{n=1}^{\infty} a_n$, где $a_n \ge 0$.

Лемма. Пусть $a_n \geq 0$. Тогда последовательность $S_k = \sum_{n=1}^k a_n$ возрастает (нестрого) и

$$\sum_{n=1}^{\infty} a_n = \sup S_k,$$

т.е. сходимость положительного ряда равносильна ограниченности последовательности его частичных сумм.

▶ Так как $a_n \ge 0$, то $S_{k+1} = S_k + a_k \ge S_k$, т.е. S_k возрастает. Тогда по теореме Вейерштрасса, сходимость ряда равносильна ограниченности последовательности S_k . \blacktriangleleft

Теорема 4 (1-ый признак сравнения) $\Pi ycmb\ 0 \le a_n \le b_n$. Тогда

- 1) Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то сходится и ряд $\sum_{n=1}^{\infty} a_n$;
- 2) Если ряд $\sum_{n=1}^{\infty} a_n$ расходится, то расходится и ряд $\sum_{n=1}^{\infty} b_n$.

▶ 1) Обозначим
$$S_k^A = \sum_{n=1}^k a_n, \, S_k^B = \sum_{n=1}^k b_n, \, S^B = \sum_{n=1}^\infty b_n.$$
 Тогда
$$S_n^A < S_n^B < S^B < +\infty.$$

Тогда S_n^A ограничена и ряд с общим членом a_n сходится.

2) От противного, если сходится ряд $\sum_{n=1}^{\infty} b_n$, то по 1) должен сходится и ряд $\sum_{n=1}^{\infty} a_n$, что противоречит условию. \blacktriangleleft

Теорема 5 (2-ой признак сравнения) Пусть $a_n \geq 0$, $b_n > 0$ $u \lim_{n \to \infty} \frac{a_n}{b_n} = C \neq 0$, $C \in \mathbb{R}$. Тогда ряды $\sum_{n=1}^{\infty} a_n$ $u \sum_{n=1}^{\infty} b_n$ оба сходятся или оба расходятся.

▶ Из определения предела следует, что начиная с некоторого номера верно неравенство

$$\left| \frac{a_n}{b_n} - C \right| < \frac{C}{2} \quad \Rightarrow \quad \frac{1}{2}C < \frac{a_n}{b_n} < \frac{3}{2}C \quad \Rightarrow \quad \frac{1}{2}Cb_n < a_n < \frac{3}{2}Cb_n,$$

откуда, по 1-му признаку сравнения следует требуемое. ◀

Пример:

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Заметим, что

$$0 < \frac{1}{n^2} < \frac{1}{n(n+1)},$$

а ряд с общим членом $\frac{1}{n(n+1)}$ сходится (было доказано выше). Следовательно, исходный ряд тоже сходится.

Теорема 6 (3-ий признак сравнения) Пусть $a_n \ge 0$ и a_n монотонно убывает. Тогда ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=0}^{\infty} 2^n a_{2^n}$ оба сходятся или оба расходятся.

▶ Обозначим
$$S_k = \sum_{n=1}^k a_n$$
 и $S_m' = \sum_{n=0}^m 2^n a_{2^n}$. При $2^m \le k < 2^{m+1}$ получим

$$S_k = a_1 + (a_2 + a_3) + (a_4 + \dots + a_7) + \dots + (a_{2^m} + \dots + a_k) \le a_1 + 2a_2 + 4a_4 + \dots + 2^m a_{2^m} = S'_m,$$

откуда из сходимости второго ряда следует сходимость первого. С другой стороны,

$$S_k \ge a_1 + a_2 + (a_3 + a_4) + \dots + (a_{2^{m-1}+1} + \dots + a_{2^m}) \ge \frac{a_1}{2} + a_2 + 2a_4 + \dots + 2^{m-1}a_{2^m} = \frac{1}{2}S'_m,$$

откуда из сходимости первого ряда следует сходимость второго. •

Пример: обобщённый гармонический ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}.$$

Рассмотрим ряд

$$\sum_{n=0}^{\infty} 2^n \frac{1}{2^{n\alpha}} = \sum_{n=0}^{\infty} \frac{1}{2^{n(\alpha-1)}},$$

который сходится при $\frac{1}{2^{\alpha-1}} < 1$, т.е. при $\alpha > 1$ и расходится при $\alpha \le 1$.

Теорема 7 (Ряд для числа e) $Pяд \sum_{n=0}^{\infty} \frac{1}{n!} \ cxodumcs$, u его сумма равна e.

▶ Обозначим

$$y_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}.$$

Запишем разложение по биному Ньютона, аналогично доказательству сходимости второго замечательного предела:

$$\begin{split} \left(1 + \frac{1}{n}\right)^n &= 1 + \frac{n}{n} + \\ &+ \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \ldots + \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \ldots \left(1 - \frac{k}{n}\right) + \ldots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \ldots \left(1 - \frac{n-1}{n}\right) > \\ &> 2 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \ldots + \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \ldots \left(1 - \frac{k}{n}\right) \xrightarrow[n \to \infty]{} \end{split}$$

для произвольного фиксированного k, меньшего n. Устремим теперь $n \to \infty$ при фиксированном k. Тогда последнее выражение стремится к

$$\underset{n\to\infty}{\longrightarrow} 2 + \frac{1}{2!} + \dots + \frac{1}{k!} = y_k.$$

Так как $(1+\frac{1}{n})^n \to e$, то из полученного неравенства следует $y_k \le e$. С другой стороны

$$\left(1 + \frac{1}{n}\right)^{n} = 1 + \frac{n}{n} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-1}{n}\right) < 2 + \frac{1}{2!} + \dots + \frac{1}{n!} = y_n,$$

откуда следует $y_n \geq e$. Следовательно, $y_n \to e$. \blacktriangleleft

Напишем оценку на остаток R_n полученного ряда:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + R_n,$$

$$R_{n} = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \dots = \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots \right) < \frac{1}{(n+1)!} \left(1 + \frac{1}{n+2} + \frac{1}{(n+2)^{2}} + \frac{1}{(n+2)^{3}} + \dots \right) = \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+2}} = \frac{n+2}{(n+1)! \cdot (n+1)} = \frac{n+2}{n! \cdot (n+1)^{2}} < \frac{1}{n! \cdot n}.$$

Последнее неравенство верно, т.к.

$$\frac{n+2}{(n+1)^2} < \frac{1}{n} \Leftrightarrow n(n+2) < (n+1)^2 \Leftrightarrow n^2 + 2n < n^2 + 2n + 1.$$

Окончательно, получаем

$$0 < R_n < \frac{1}{n! \cdot n}.$$

Можем записать равенство

$$R_n = \frac{\theta_n}{n! \cdot n},$$
 где $\theta_n \in (0,1).$

Подставляя это равенство в ряд для числа e, получим

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{\theta_n}{n! \cdot n},$$
 где $\theta_n \in (0, 1).$

Теорема 8 (Об иррациональности числа е) Число е иррационально.

▶ От противного. Предположим, что $e = \frac{p}{q}$ — несократимая дробь, $p,q \in \mathbb{N}$. Напишем ряд для числа e с q слагаемыми:

$$e=1+rac{1}{1!}+rac{1}{2!}+...+rac{1}{q!}+rac{ heta}{q!\cdot q},$$
 где $heta\in(0,1).$

Умножим равенство на q!:

$$e \cdot q! = q! + \frac{q!}{1!} + \frac{q!}{2!} + \dots + \frac{q!}{q!} + \frac{\theta}{q}.$$

Левая часть этого равенства целая. В правой части все слагаемые целые, кроме последнего, которое не является целым, т.к. $\theta \in (0,1)$. Получаем противоречие и $e \in \mathbb{R} \setminus \mathbb{Q}$.