

Russell Chap. 18.7

Luger Chap. 11

The Brain

- The brain consists of
 - 1 billion ~10 billion neurons
 - 100 ~ 100000 connections / neuron
- Operation of neuron
 - Propagation of electo-chemical signal
 - Operates in milliseconds

Characteristics of the Brain

- Parallel / distributed processing
 - Understanding scene or sentence by computer
 - → more than 1 second = 1000 million steps
 - Understanding scene or sentence by brain
 - → less than 1 second = 1000 steps
- Robustness
 - Failure of one component in a computer
 - → total failure
 - Failure of one component in a brain
 - → still performs well

Connectionist Model

- Motivation
 - Brain-like performance
- Features
 - Large number of simple processing elements
 - Large number of weighted connections
 - Parallel, distributed processing
 - Automatic learning
- Parallel Distributed Processing (PDP)
- Neural Networks

Perceptron

A model of neuron

McCulloch and Pitts [1943], Rosenblatt [1958]

Function

Input x_i, weight w_i, threshold T

• Output = 1 if
$$\Sigma x_i w_i \ge T$$
 ($O = sign(\Sigma x_i w_i)$)
-1 otherwise

Perceptron

Example

x1	x2	0
0	0	- 1
0	1	-1
1	0	- 1
1	1	1

Perceptron

Represent linearly-separable function

• Output = 1 for input (x_1, x_2) such that

$$x_1 w_1 + x_2 w_2 - T \ge 0$$
 $x_2 \ge -(w_1 / w_2) x_1 + (T / w_2)$

Example

• $W_1 = 1$, $W_2 = 1$, T = 1.5

:
$$O = 1$$
 if $x_2 + x_1 - 1.5 \ge 0$ \longrightarrow $x_2 \ge -x_1 + 1.5$

$$x_2 \ge -x_1 + 1.5$$

Learning

- Adjusting weights so that it can produce right output for given example <X, d>
 - If d = 1 but O = -1
 → increase weights of + input
 - If d = -1 but O = 1
 → decrease weights of + input

$$\Delta \mathbf{w}_i = \mathbf{c} (\mathbf{d} - \mathbf{O}) \mathbf{x}_i$$

- d: desired output
- (d O): error
- c: learning rate

• Example: <(1, 0), -1> (d = -1)

Before learning:

Before learning:

$$O = 1$$
 if $1 \cdot x_1 + 1 \cdot x_2 - 0.5 \ge 0$

• O for (1, 0): $1 \cdot 1 + 1 \cdot 0 - 0.5 \ge 0$ (O = 1) Error!

■
$$\Delta w_1 = 0.5 \cdot (-1 - 1) \cdot 1 = -1$$
 \rightarrow $w_1' = w_1 + \Delta w_1 = 1 - 1 = 0$
 $\Delta w_2 = 0.5 \cdot (-1 - 1) \cdot 0 = 0$ \rightarrow $w_2' = w_2 + \Delta w_2 = 1 - 0 = 1$

After learning:

$$O = 1$$
 if $0 \cdot x_1 + 1 \cdot x_2 - 0.5 \ge 0$

• O for (1, 0): $0.1 + 1.0 - 0.5 \le 0$ (0 = -1)

Х		0	
1.0	5.2	Y(1)	
9.4	1.4	N(-1)	
•••			

 \rightarrow O (t(X))

Example

X1	X2	0
1.0	1.0	1
9.4	6.4	-1
2.5	2.1	1
8.0	7.7	-1
0.5	2.2	1

Perceptron

• O = sign
$$(w1 \cdot x1 + w2 \cdot x2 + w3 \cdot 1) = sign(W \cdot X)$$

 $(W = (w1, w2, w3), X = (x1, x2, 1))$

Learning

•
$$W' = W + 0.2 \cdot (d - sign(W \cdot X)) \cdot X$$

Example

- Random initial W = (0.75, 0.5, -0.6)
- W = (0.75, 0.5, -0.6), Example 1: X = $(1.0, 1.0, 1) \rightarrow d = 1$
 - $O = sign(W \cdot X) = sign(0.75*1.0 + 0.5*1.0 0.6*1.0) = 1$
- W = (0.75, 0.5, -0.6), Example 2: X = $(9.4, 6.4, -1) \rightarrow d = -1$
 - $O = sign(W \cdot X) = sign(0.75*9.4 + 0.5*6.4 0.6*1.0) = 1$
 - W' = (0.75, 0.5, -0.6) + 0.2*(-1-1)*(9.4, 6.4, 1) = (-3.01, -2.06, -1.0)
- W = (-3.01, -2.06, -1.0), Example 3: X = $(2.5, 2.1, 1) \rightarrow d = 1$
 - O = $sign(W \cdot X) = sign(-3.01*2.5 2.06*2.1 1.0*1.0) = -1$
 - W' = (-3.01, -2.06, -1.0) + 0.2*(1-(-1))*(2.5, 2.1, 1) = (-2.01, -1.22, -0.6)
- W = (-2.01, -1.22, -0.6), Example 4: ...
 - **...**
- After 500 iteration, W = (-1.3, -1.1, 10.9)

Example

• O = sign $(-1.3 \cdot x1 - 1.1 \cdot x2 + 10.9)$ = 1 if $x2 < -1.18 \cdot x1 + 9.9$

Use sigmoid for output(activation) function

$$O = f(S) = \frac{1}{(1 + e^{-S})}, \quad S = \sum x_i \cdot w_i$$

- Adjust weight
 - Error is a function of weights
 - $E = (d O) = (d 1 / (1 + e^{-\sum x_i w_i})) = f(w_1, w_2, ...)$
 - Update W = (w₁, w₂, ... w_n) to the direction which most rapidly reduce the error

- For E = f(w)
 - If $f'(w) = \frac{dE}{dw} > 0$ \rightarrow decrease w
 - If $f'(w) = \frac{dE}{dw} < 0$ \rightarrow increase w
 - $\therefore \ \Delta w = -c \cdot \frac{dE}{dw}$

• For $E = f(W) = f(w_1, w_2, ..., w_n)$

$$\therefore \Delta W = -c \cdot \left(\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_n}\right)$$

Gradient descent:

Example

$$z = f(x, y) = x^2 + y^2$$

$$\Delta x = -\frac{\partial z}{\partial x} = -2x , \Delta y = -\frac{\partial z}{\partial y} = -2y$$

∴ At (1, 1) the direction that most rapidly reduce z is (-2, -2)

Minimize E

$$E = \frac{1}{2}(d - O)^{2} \quad O = \frac{1}{(1 + e^{-S})} \quad S = \sum_{i} x_{i}w_{i}$$

$$\frac{\partial E}{\partial w_{i}} = \frac{\partial E}{\partial O} \cdot \frac{\partial O}{\partial S} \cdot \frac{\partial S}{\partial w_{i}} = -(d - O) \cdot O(1 - O) \cdot x_{i}$$

$$\left(\frac{\partial O}{\partial S} = \frac{-(-e^{-S})}{(1 + e^{-S})^{2}} = \frac{1 \cdot (1 + e^{-S} - 1)}{(1 + e^{-S}) \cdot (1 + e^{-S})} = O \cdot (1 - O)\right)$$

$$\Delta w_i = -c \cdot \frac{\partial E}{\partial w_i} = c \cdot (d - O) \cdot O(1 - O) \cdot x_i$$

- Limitations of single-layer perceptron
 - Only applicable to linearly separable problems

Use multi-layer network

х3

0.4

0.6

-0.2

d1

0

0

0

0

0

1

0

Activation of hidden layer

$$h_i = \frac{1}{(1 + e^{-S_x})}, \quad S_x = \sum x_k \cdot w_{ki}$$

Activation of output layer

$$o_j = \frac{1}{(1 + e^{-S_h})}, \quad S_h = \sum h_i \cdot w_{ij}$$

$$E = E_1 = \frac{1}{2}(d_1 - O_1)^2$$

Learning

• Let
$$E = \frac{1}{2} \sum_{j} (d_j - O_j)^2$$
 $E_j = \frac{1}{2} (d_j - O_j)^2$

Adjusting weights to output layers

$$\Delta w_{ij} = -c \cdot \frac{\partial E}{\partial w_{ij}} = -c \cdot \frac{\partial E_{j}}{\partial w_{ij}}$$
$$= -c \cdot \frac{\partial E_{j}}{\partial O_{j}} \cdot \frac{\partial O_{j}}{\partial S_{h}} \cdot \frac{\partial S_{h}}{\partial w_{ij}}$$

$$\Delta w_{ij} = c \cdot (d_j - O_j) \cdot O_j (1 - O_j) \cdot h_i$$

Adjusting weights to hidden layers

$$\begin{split} \Delta w_{ki} &= -c \cdot \frac{\partial E}{\partial w_{ki}} \\ &= -c \cdot \frac{\partial E}{\partial h_i} \cdot \frac{\partial h_i}{\partial S_x} \cdot \frac{\partial S_x}{\partial w_{ki}} = -c \cdot \frac{\partial E}{\partial h_i} \cdot h_i (1 - h_i) \cdot x_k \\ &= -c \cdot \sum_j \frac{\partial E_j}{\partial h_i} \cdot h_i (1 - h_i) \cdot x_k \\ &= -c \cdot \sum_j (\frac{\partial E_j}{\partial O_j} \cdot \frac{\partial O_j}{\partial S_h} \cdot \frac{\partial S_h}{\partial h_i}) \cdot h_i (1 - h_i) \cdot x_k \end{split}$$

$$\Delta w_{ki} = c \cdot \left(\sum_{j} ((d_j - O_j) \cdot O_j (1 - O_j) \cdot w_{ij}) \right) \cdot h_i (1 - h_i) \cdot x_k$$

Define network
Initialize all weights
Until satisfied, Do
For each training example <X, d>
compute O = f(X)

For each output unit j

$$\delta_j = (d_j - o_j) o_j (1 - o_j)$$

For each hidden unit i

$$\delta_i = (\Sigma w_{ii}\delta_i) h_i (1-h_i)$$

Update each network weight

$$w_{ij} = w_{ij} + c \delta_j h_i$$

$$w_{ki} = w_{ki} + c \delta_i x_k$$

x1	x2	х3	d1	d2	d3
0.3	0.9	0.4	1	0	0
-0.8	-0.1	0.6	0	0	1
0.1	-0.5	-0.2	0	1	0
	•••				

- Hand-written Character recognition
 - Input: 2 dimensional image array
 - Output: classify into a character

Applying Neural Network

Image recognition

→ airplane/bird/cat/dog ··· ?