

ECOLE POLYTECHNIQUE DE THIES

www.ept.sn

Téléphone: 77 286 65 17 | 78 597 55 12

BUREAU DES ÉLÈVES / COMMISSION PÉDAGOGIQUE / CONCOURS JUNIOR POLYTECH

Epreuve de Construction Mécanique

Premières — Session 2024 — Durée : 04 heures

NB:

- ✓ L'épreuve comporte 9 pages.
- ✓ Elle est notée sur 40 points.
- ✓ La rigueur et la clarté seront prises en compte. (Présentation 1 point.)
- ✓ Bien lire les notions sur les engrenages et accouplements pour pouvoir traiter certaines questions.
- ✓ Utilisez des intercalaires dans le cas où la marge de réponse n'est pas suffisante (veuillez numéroter la question sur l'intercalaire avant de donner la réponse.)

1. Mise en situation

Le système étudié équipe certains véhicules de la marque Audi, notamment ceux de la gamme A8.

Ce type de système fournit une assistance électrique pour actionner automatiquement le coffre grâce à une solution motorisée.

Pour actionner l'ouverture ou la fermeture, l'utilisateur agit sur une télécommande ou un bouton situé à l'intérieur de la voiture

Les avantages de ce système sont :

- ✓ Un accès rapide et facile au coffre.
- ✓ Un fonctionnement simple et sans effort.
- ✓ Une possibilité d'ouverture manuelle.

Figure 1 : position du système étudié sur l'arrière de la voiture

2. Présentation

Le système d'ouvrant étudié est symétrique, seul le côté droit, motorisé, sera étudié. Les principaux constituants du système étudié sont :

Figure 2 : constituants du système

3. Description du système étudié

Le système d'ouvrant étudié permet d'ouvrir ou fermer un coffre. Il permet ainsi de passer d'une position ouverte à une position fermée et vice versa, avec une assistance à l'ouverture et à la fermeture.

Il assure un accès confortable au coffre, sans risque pour l'utilisateur et garantit l'état d'étanchéité lors de la fermeture.

Positions du système étudié lors de la phase de fermeture

Figure 3 : coffre ouvert

Figure 5 : coffre en position fermée

L'action de l'utilisateur sur un bouton où une télécommande alimente le moteur électrique à courant continu 12 V. Ce moteur anime en rotation le rotor vis sans fin <u>1</u> qui engrène avec la roue <u>3</u>. Cette dernière s'accouple avec la roue <u>2</u> qui transmet la rotation à la roue <u>14</u>. La roue <u>14</u> entraîne le mouvement du secteur denté <u>4</u> par l'intermédiaire d'un coupleur électromagnétique. Le manchon d'entraînement encastré sur le secteur denté <u>4</u> transmet le couple de sortie nécessaire sur le levier <u>25</u>.

ECOLE POLYTCHNIQUEDE THIES				
Durée: 04 h		Ech:		
Format : A3 H	CONSTRUCTION MECANIQUE	Année : 2023/2024		
Feuille N° 2/9		Seriés : S3 - T		

Concours Junior Polytech — Session 2024 — Construction Mécanique — Première

29	3	Vis H – M8*16 ISO 4017		
28	1	Couvercle de coffre		Peint
27	1	Platine de liaison	S185	Peint
26	1	Axe d'entraînement	C35	Nickelé
25	1	Levier	C35	Bichromaté
24	3	Rondelle		
23	3	Axe	C35	Nickelé
22	1	Bras	S185	Zingué
21	2	Rondelle		
20	1	Passe câble	ABS	
19	2	Rotule		
18	1	Vis ISO 4766 – M5 x 20		Vis de pression
17	3	Rondelle		
16	1	Support	S185	Peint
15	1	Roue dentée	C55	m= 1,5 ; Z=14
14	1	Roue dentée du coupleur	C55	m= 1; Z=100
13	3	Plot élastique		
12	1	Couvercle réducteur	ABS	
11	1	Coupleur inférieur		
10	1	Axe roue/vis	C35	Nickelé
9	1	Carter supérieur	ABS	
8	1	Manchon d'entraînement	16NiCr6	Nickelé
7	1	Axe coupleur	C35	Nickelé
6	1	Coupleur supérieur		
5	1	Carter moteur	ABS	
4	1	Secteur denté		m= 1,5 ; Z=98
3	1	Roue à denture hélicoïdale		m= 0,8 ; Z=73
2	1	Roue dentée		m= 1; Z=24
1	1	Rotor vis sans fin		γ <5°; m = 0,8; Z = 1 filet
REP.	NB.	DESIGNATION	MATIERE	REFERENCE

Tableau 1: nomenclature

ECOLE POLYTCHNIQUEDE THIES				
Durée: 04 h		Ech:		
Format : A4 V	CONSTRUCTION MECANIQUE	Année : 2023/2024		
Feuille N° 4/9		Seriés : S3 - T		

Notions sur les engrenages et accouplements

Les engrenages

Les engrenages ont pour fonction de transmettre une puissance d'un arbre en rotation à un autre arbre tournant à une vitesse généralement différente, les deux vitesses restant dans un rapport constant. Un engrenage est un mécanisme composé de deux roues dentées. L'une des roues entraîne l'autre par l'action des dents qui sont successivement en contact.

La roue qui a le plus petit nombre de dents est appelée pignon. Une combinaison d'engrenages est appelée train d'engrenages.

Selon la position relative des axes, on distingue plusieurs types d'engrenages :

Les engrenages parallèles, les engrenages coniques, les systèmes pignons crémaillères et les systèmes roues et vis sans fin.

Dans ce sujet on s'intéresse à l'engrenage parallèle et les systèmes roues et vis sans fin.

Engrenage parallèle:

Schéma cinématique

Representation normalisée

Caractéristiques des engrenages

Module	m	
Nombre de dents	Z	
Pas	P	$P = m \pi$
Saillie	ha	ha = m
Creux	hf	hf = 1,25m
Hauteur de dents	h	h = 2,25m
Diamètre primitive	d	d = mZ
Diamètre de tête	da	da = d + 2m
Diamètre de pied	df	df = d - 2.5m
Largeur de denture	b	b = k.m (avec k entre 6 et 10
Entraxe de deux roues	a	a = (d1 + d2)/2 = m(Z1 + Z2)/2

Formules utiles:

$$C = F_t \times r$$

$$\eta G = \frac{Ps}{Pe}$$
 = produit des rapports

$$r_{g} = \frac{\textit{Produit des diamètres menants}}{\textit{Produit des diamètres menés}} = \frac{\textit{Produit des Z menants}}{\textit{Produit des Z menés}} = \frac{\textit{N sortie}}{\textit{N entrée}}$$

$$P = Cω (Puissance en watt)$$
 avec $ω = \frac{2\pi N}{60}$ (rad/s)

r est le rayon de l'engrenage en (m).

 ηG est le rendement global

ECOLE POLYTCHNIQUEDE THIES				
Durée: 04 h		Ech:		
Format : A4 H	CONSTRUCTION MECANIQUE	Année : 2023/2024		
Feuille N° 5/9		Séries : S3 - T		

Système roue et vis sans fin:

Un engrenage roue et vis sans fin est un dispositif de transmission de puissance effectuée entre deux arbres orthogonaux où la vis est généralement motrice.

Ce dispositif permet d'obtenir des réductions importantes et offre des possibilités d'irréversibilité pour un encombrement réduit. C'est un engrènement silencieux et sans choc. Le glissement et le frottement de la vis sur la roue lui confèrent un rendement souvent faible (0,3 à 0,7). Un couple de matériaux avec un faible frottement (par exemple : vis en acier et roue en bronze) et une lubrification sont indispensables.

Quand la rotation de la vis entraîne celle de la roue et réciproquement, le système roue et vis est réversible.

Quand la rotation de la roue ne peut pas entraîner celle de la vis, le système est irréversible. La réversibilité d'une transmission par roue et vis sans fin, dépend principalement des valeurs d'angle d'inclinaison d'hélice et du coefficient de frottement au niveau du contact.

Le système est considéré irréversible pour un angle d'hélice de la vis inférieure au coefficient de frottement. Pour un angle (γ) de la vis inférieure à 5°, le système est considéré totalement irréversible. Cette condition est un critère de sécurité décisif dans certains mécanismes comme par exemple dans les mécanismes de levage.

Les accouplements

On appelle accouplement tout appareil destiné à assurer la liaison en rotation entre deux arbres placés bout à bout avec transmission intégrale de la puissance et sans modification de la vitesse angulaire(w).

Schéma et exemple

Types d'accouplements

Accouplement	s permanents	Accouplements temporaires			
Accouplement (cas général)	\dashv \vdash	Embrayage (cas général)	<u> </u>	Coupleur automatique	五子
Accouplement rigide	* *	Coupleur hydraulique	11	Embrayage centrifuge	气护
Accouplement élastique		Coupleur électrique		Roue libre	七子
Accouplement à Cardan	 	Frein (cas général)		Limiteurs de couple	47

ECOLE POLYTCHNIQUEDE THIES					
Durée : 04 h	CONCEDUCATION MECANICALE	Ech:			
Format : A4 H	CONSTRUCTION MECANIQUE	Année : 2023/2024			
Feuille N° 6/9		Séries : S3 - T			

Représentations:

4. Etude techn	ompréhension
	4.1.1. Donner le nom de la liaison entre le levier <u>25</u> et la platine de liaison <u>27</u> , au point B , (voir
•	feuille 3/9 coupe B-B) et le nom de la solution constructive adoptée pour cette liaison. (1 point)
Nom de la liais	on <u>25</u> - <u>27</u> :
Nom de la solu	tion constructive:
	4.1.2. Proposer un ajustement entre la platine de liaison <u>27</u> et l'axe <u>23</u> et donner sa nature. (0,5 point)
4	4.1.3. Indiquer le nom, le type et la fonction de l'ensemble {2, 3, 13} (voir feuille 1/7, figure 7). (1 point)
	mble:
4	4.1.4. Le réducteur est-il réversible ? Justifier votre réponse. (0,5 point)
4	4.1.5. Choisir un type de matériau pour la vis $\underline{1}$ et la roue $\underline{3}$ et justifier votre choix. (1 point)
•	a vis <u>1</u> :
	a roue <u>3</u> :
4	4.1.6. Décoder la désignation normalisée des matériaux suivants : (1,5 point)
S185:	
C35 :	
•••••	
16NiCr6 :	
4.2. Et	tude de la transmission de puissance
La chaîne d'éner	rgie est constituée :
✓ D'un mot	teur électrique à courant continu 12V;
√ D'un rédu	ucteur roue et vis sans fin, 1er étage de réduction ;
√ D'un eng	renage droit, 2ème étage de réduction ;
√ D'un 3èm	ne étage de réduction, composé d'un pignon et d'un secteur denté.
	sistance des matériaux a permis de déterminer la résistance pratique à l'extension minimale
	m^2 que doit avoir le matériau constitutif du secteur denté $\underline{4}$ pour supporter l'ouverture du
	ffre. On prendra l'effort tangentiel $F_t = 1218 N$ appliqué sur une dent du secteur denté.
İ	

4.2.1. Établir la chaîne cinématique de transmission de mouvement de l'arbre moteur $\underline{1}$ au secteur denté $\underline{4}$, compléter le schéma cinématique au niveau de **figure 8** et compléter la **figure 9** (2 + 5 + 4 **points**)

Figure 8 : : schéma cinématique du motoréducteur

Figure 9 : synoptique

4.2.2. Déterminer, à l'aide de la formule ci-dessous, le module m du secteur denté $\underline{\mathbf{4}}$. Conclure par rapport au module normalisé choisi par le constructeur. (1 points)

$$m \ge 2,34 \times \sqrt{\frac{\mathbf{Ft}}{\mathbf{k} \times \sigma_{pe}}}$$
 $k = 8$

ECOLE POLYTCHNIQUEDE THIES				
Durée: 04 h		Ech:		
Format : A3 H	CONSTRUCTION MECANIQUE	Année : 2023/2024		
Feuille N° 7/9		Seriés : S3 - T		

7. 20		r le counte 🕻 c			f)		
				denté 4. (1 poin			
	4. Calculer la vé précédemi	_		réducteur Ps . O	n prendra $Cs = 0$	9 0 <i>N.m</i> quel qu	e soit le résul
		* *	réduction glol	bal de la transm	ission rg . En dé	duire la fréquen	ce de
	• • • • • • • • • • • • • • • • • • • •						
4.2.		r le rendemen	t global du réd	ucteur, noté η_G .	(1 point)	•••••	••••••
				-	_		
4.2.	7. Calculer à	l'entrée du réc	ducteur la puis	sance P e. En dé	duire le couple	C e. (2 points)	
	· · · · · · · · · · · · · · · · · · ·						
4.2	O Camplátan	1- tablaga ai	1 domes				
4.2.	8. Completer	le tableau ci-c	dessous donnai	nt les caracteris	iques de 1 engre	enage $(15 - 4)$. (2)	3 points)
				7		1	
	m	Z	P	d	d_f	d_a	а
<u>5</u>	m	Z	P	a	d_f	d_a	а
<u> </u>	m	Z	P	a	d_f	d_a	a
1				a	d_f	d_a	a
<u> </u>		Z		a	d_f	d_a	a
4.3.	NB: Calcu	ıls Obligatoir actionnelle (fi	es. igure 10):		d_f	d_a	a
4.3.	NB: Calcu	ıls Obligatoir actionnelle (fi	es.		d_f	d_a	a
4.3.	NB: Calcu Cotation for 1. Justifier la	ils Obligatoir actionnelle (fi présence de la	es. igure 10): a condition Ja	: (0,5 point)		Justifier. (0,5	
4.3.	NB: Calcu Cotation for 1. Justifier la	ils Obligatoir actionnelle (fi présence de la	es. igure 10): a condition Ja	: (0,5 point)			
4.3.	NB: Calcu Cotation for 1. Justifier la	ils Obligatoir actionnelle (fi présence de la	es. igure 10): a condition Ja	: (0,5 point)			
4.3.	NB: Calcu Cotation for 1. Justifier la	ils Obligatoir actionnelle (fi présence de la	es. igure 10): a condition Ja	: (0,5 point)			
4.3.	NB: Calcu Cotation for 1. Justifier la	ils Obligatoir actionnelle (fi présence de la	es. igure 10): a condition Ja	: (0,5 point)			
4.3.	NB: Calcu Cotation for 1. Justifier la	ils Obligatoir actionnelle (fi présence de la	es. igure 10): a condition Ja	: (0,5 point)			
4.3.	NB: Calcu Cotation for 1. Justifier la	ols Obligatoir actionnelle (fi présence de la con Ja est-elle	es. igure 10): a condition Ja maximale ou n	: (0,5 point) ninimale ?			
4.3. 4.3. 4.3. 4.3.	NB: Calcu Cotation for 1. Justifier la	ols Obligatoir actionnelle (fi présence de la con Ja est-elle	es. igure 10): a condition Ja maximale ou n	: (0,5 point)			
4.3. 4.3. 4.3. 4.3.	NB: Calcu Cotation for 1. Justifier la 2. La condition	als Obligatoir nctionnelle (fi présence de la on Ja est-elle	es. Egure 10): a condition Ja maximale ou n	: (0,5 point) ninimale ?	EDE THIES	Justifier. (0,5	5 point)

- **4.3.3.** Tracer sur le dessin *(figure 10)* la chaîne de cotes relative à la condition **Ja. (0,5 point)**
- **4.3.4.** Inscrire sur le dessin qui suit (*figure 10*) les ajustements, entre l'arbre 7 et les coussinets 31 et entre la roue dentée 14 et le coussinet 31, nécessaires au fonctionnement du mécanisme. (1 point)

Arbre 1

5. Etude graphique

Compléter le dessin (*figure 11*); en assurant le guidage en rotation de la vis sans fin 1 par les roulements **R1** et **R2.** Assurer l'étanchéité et inscrire les tolérances nécessaires au montage des roulements. (**5 points**)

6. Dans la partie réservée ci-dessous, reproduire l'arbre $\underline{1}$ du dessin ci-dessus.(4 points)

FIN...

ECOLE POLYTCHNIQUEDE THIES				
Durée: 04 h		Ech:		
Format : A3 H	CONSTRUCTION MECANIQUE	Année : 2023/2024		
Feuille N° 9/9		Seriés : S3 - T		