STAR Research Journal Available online at www.starresearchjournal.com (Star International Journal)

PHYSICAL EDUCATION

Star. Phy. Edn 3 (2015)

EFFECTS OF AEROBIC EXERCISE PROGRAMME ON DIFFERENT TERRAINS ON BLOOD PRESSURE AND HIGH DENSITY LIPOPROTEIN

Mr. S. SELVAKUMAR¹ & Dr. S. CHIDAMBARA RAJA²

¹Ph.D., Scholar, Department of Physical Education and Sports Sciences, Annamalai University. Associate ²Professor, Department of Physical Education and Sports Sciences, Annamalai University.

ABSTRACT

The purpose of the present study was to find out the effect of aerobic exercise programme on different terrains on blood pressure and high density lipoprotein among middle aged women. For this purpose, thirty middle aged women residing at various places around Chennai city, Tamilnadu, were selected as subjects. The age of the subjects were ranged from 35 to 45 years. They were divided into three equal groups, each group consisted of ten subjects, in which experimental group - I underwent aerobic exercise as brisk walking on beach sand, experimental group - II underwent aerobic exercise as brisk walking on grass and group - III acted as control that did not participate in any special activities apart from their regular day-to-day activities. The training period for the study was five days (Monday to Friday) in a week for twelve weeks. Prior and after the experimental period, the subjects were tested on systolic and diastolic blood pressure and high density lipoprotein. Systolic and diastolic blood pressure was assessed by using sphygmomanometer. High density lipoprotein was tested after taking 5 ml of blood samples by venous puncture method, using CHOD – PAP method recommended by Lopes – Virella et al [1977]. The Analysis of Covariance (ANCOVA) was applied to find out any significant difference between the experimental groups and control group on selected criterion variables. The result of the study shows that the brisk walking on beach sand group and brisk walking on grass group were decreased the blood pressure and high density lipoprotein significantly. It was concluded from the results of the study that brisk walking on beach sand and brisk walking on grass has bring positive changes in systolic and diastolic blood pressure and high density lipoprotein as compare to the control group. Moreover it was also concluded that there was no significant difference was found between the experimental groups in all criterion variables.

Key words: Brisk walking on beach sand, Brisk walking on grass, blood pressure (systolic and diastolic,) high density lipoprotein, ANCOVA.

INTRODUCTION

Aerobic exercise is a kind of physical exercise which improves the efficiency of cardiovascular system in absorbing and transporting oxygen. Aerobic means, relating to, involving or requiring free oxygen [Cooper, Kenneth H. (1997)] and it also refers the use of oxygen to adequately meet energy demands during exercise through aerobic Katch metabolism.[McArdle; and Katch (2006)].

The most available and simplest aerobic exercise is walking. Everyone can walk almost anywhere such as outdoors or indoors like malls, treadmill etc. This makes walking easy to continue throughout the year. The first and good choice for starting any exercise programme is walking.

Walking is good for the muscles because all the muscles in our body contract at the time of walking. We might feel a little pain when we start off because our body is not in the habit of exercising. [Meghna Mukerjee, "The Many Benefits of Walking", [2014]] Regular walking of a moderate to vigorous intensity has been shown to benefit both cardiovascular and psychological health. [Morgan A, Tobar D and Snyder L, (2010)] Psychological benefits include improved sense of well-being, more positive (i.e., vigor) and less negative (i.e., tension, depression) feelings and mood states and enhanced self-esteem. [Barton J, Hine R and Pretty J, (2009), Biddle S and Mutrie N, (2008)].

Hypertension is a major health problem. Elevated systolic and diastolic blood pressure levels are associated with a higher risk of developing coronary heart disease (CHD), congestive heart failure, stroke and kidney failure. There is a one-fold increase in developing these diseases when blood pressure is 140/90 millimeters of mercury (mm Hg).[Bouchard C and Despres JP, [1995)]

Aerobic exercise can reduce the amount of fat in the body. According to the National Federation of Personal Trainers Endurance Specialist Manual, 65 % to 95% of the calories from the body's fat stores, can burn during the aerobic exercise.

METHODOLOGY

Thirty middle aged women from various places around Chennai city, Tamilnadu were selected as subjects. The age of the subjects were ranged from 35 to 45 years. The selected subjects were divided into three equal groups, each group consisted of ten subjects, in which group - I (n = 10) underwent brisk walking on beach sand, experimental group - II (n = 10) underwent brisk walking on grass and group - III (n = 10) acted as control, which did not participate in any special activities apart from their regular curricular activities. The two different training programmes were conducted five days (Monday to Friday) per week for twelve weeks. The researcher consulted with the yoga experts and selected the following variables as criterion variables: 1. Systolic blood pressure, 2. Diastolic blood pressure and 3.High density lipoprotein. Systolic and diastolic blood

pressure was assessed by using sphygmomanometer and high density lipoprotein was estimated by using using CHOD - PAP method recommended by Lopes -Virella et al [1977].. For the purpose of collection of data, the subjects were asked to report at early morning, one day prior and one day after experimental period, in fasting condition. 5 ml of blood was collected from each subject by venous puncture method and the blood thus collected was stored in small bottles for pre and post-test for measuring the high density lipoprotein.

Analysis of covariance (ANCOVA) was applied to find out the significant difference if any, among the experimental groups and control group on selected criterion variables separately. In all the cases, .05 level of confidence was fixed to test the significance, which was considered as appropriate.

RESULTS

The data collected on systolic blood pressure and high density lipoprotein among experimental and control groups were analyses and the results were presented in Table – I.

Table - I ANALYSIS OF COVARIANCE ON SELECTED CRITERION VARIABLES AMONG EXERCISE GROUPS AND CONTROL GROUP

Variable Name	Group Name	Brisk Walking on Beach Sand Group	Brisk Walking on Grass Group	Control Group	'F' Ratio
Systolic Blood Pressure (mmHg)	Pre-test Mean ± S.D	134.2 ± 6.14	133.0± 7.44	131.8± 6.63	0.315
	Post-test Mean ± S.D.	132.2 ± 6.13	131.9 ± 7.61	133.2 ± 5.83	0.107
	Adj. Post-test Mean	131.062	131.90	134.338	12.71*
Diastolic Blood Pressure (mmHg)	Pre-test Mean ± S.D	89.2 ± 3.994	88.9 ± 4.99	87.9 ± 4.41	0.230
	Post-test Mean ± S.D.	86.8 ± 4.32	87.8 ± 5.03	89.5 ± 3.54	0.991
	Adj. Post-test Mean	86.33	87.594	90.175	11.42*
High density lipoproteins (mg/dl)	Pre-test Mean ± S.D	46.0 ± 4.19	45.3 ± 5.27	47.8 ± 4.54	0.756
	Post-test Mean ± S.D.	49.6 ± 2.91	50.4 ± 3.10	47.50 ± 5.08	1.532
	Adj. Post-test Mean	49.860	51.560	46.484	14.758*

^{*}Significant .05 level of confidence. (The table values required for significance at .05 level of confidence with df 2 and 42 and 2 and 41 were 3.22 and 3.21 respectively).

Table – I shows that pre and post test means 'f ratio of brisk walking on beach sand group, brisk walking on grass group and control group on systolic blood pressure were 0.315 and 0.107, which were insignificant at 0.05 level of confidence. The adjusted post test mean 'f' ratio value of experimental groups and control group was 12.71, which was significant at 0.05 level of confidence. The pre and post test means 'f ratio of brisk walking on beach sand group, brisk walking on grass group and control group on diastolic blood pressure were 0.230 and 0.991, which were insignificant at 0.05

level of confidence. The adjusted post-test mean 'f' ratio value of experimental group and control group was 11.42, which was significant at 0.05 level of confidence. The pre and post test means 'f ratio of brisk walking on beach sand group, brisk walking on grass group and control group on high density lipoproteins were 0.756 and 1.532which was insignificant at 0.05 level of confidence. The adjusted post test mean 'f' ratio value of experimental groups and control group was 14.758, which was significant at 0.05 level of confidence. Further which of the paired Further to d

etermine which of the paired means has a significant difference among the groups, the Scheffé S test was applied.

Table - II
Scheffe S Test for the Difference Between the Adjusted Post-Test Mean of Selected Criterion Variables

Adjusted Post-test Mean	n on Systolic Blood Pre	essure		
Brisk Walking on Beach Sand Group	Brisk Walking on Grass Group	Control Group	Mean Difference	Confidence interval at .05 level
131.062		134.338	3.276*	1.733405
131.062	131.90		0.838	1.733405
	131.90	134.338	2.438*	1.733405
Adjusted Post-test Mean	n on Diastolic Blood Pr	essure		
Brisk Walking on Beach Sand Group	Brisk Walking on Grass Group	Control Group	Mean Difference	Confidence interval at .05 level
86.330		90.175	3.845*	2.111678
86.330	87.594		1.264	2.111678
	87.594	90.175	2.581*	2.111678
Adjusted Post-test Mean	n on High Density Lipo	protein		
Brisk Walking on Beach Sand Group	Brisk Walking on Grass Group	Control Group	Mean Difference	Confidence interval at .05 level
49.860		46.484	3.377*	2.243231
49.860	51.156		1.296	2.243231
	51.156	46.484	4.672*	2.243231

^{*} Significant at .05 level of confidence.

Table – II shows that the Scheffě S Test for the difference between adjusted post-test mean on systolic blood pressure of brisk walking on beach sand group and control group (3.276) and brisk walking on grass group and control group (2.438), which were significant at .05 level of confidence. There was a significant difference on diastolic blood

pressure between brisk walking on beach sand group and control group (3.845) and brisk walking on grass group and control group (2.581) and also there was a significant difference on high density lipoprotein between brisk walking on beach sand group and control group (3.377) and brisk walking on grass group and control group (4.672) which was

significant at 0.05 level of confidence after the respective training programme. Moreover the result of the study shows that there was no significant difference between the training groups on selected criterion variables.

CONCLUSIONS

- 1. There was a significant reduction in blood pressure for walking on sand group and walking on grass group when compared with the control group. The result of the study also shows that there was no significant difference between the training groups on blood pressure. **Sohn, Hasnain and Sinacore** (2007) found that walking with extra 30 minutes has reduced the blood pressure in hypertension patients after six months of trial. **Stewart**, *et al* (2006) found that there was a significant decrease in SBP and DBP after the aerobic exercise and resistance training.
- 2. In the present study, it was found that there was a significant reduction in high density lipoprotein, triglycerides and low density lipoprotein and a significant increase in high density lipoprotein for both the training groups when compared with the control group. Arazi, Farzaneh and Gholamian (2012) found that there was a significant change in TC, TGL, HDL and LDL in overweight sedentary females after the morning aerobic training. Rahimi et al (2013) found that there was a significant decrease in TC, TGL and LDL and a significant increase in HDL after the six weeks of walking on water and land among middle aged women.

Reference:

Cooper, Kenneth H. (1997). <u>Can stress</u> <u>heal?</u>. Thomas Nelson Inc. p. 40. <u>ISBN 978-0-7852-8315-7</u>. Retrieved 19 October 2011.

McArdle, William D. Frank I. Katch; Victor L. Katch [2006). *Essentials of exercise physiology*. Lippincott Williams & Wilkins. p. 204.

Meghna Mukerjee, "The Many Benefits of Walking", http://timesofindia.indiatimes.com/life-style/health-fitness/health/The-many-benefits-of-walking/articleshow/40314625.cms on 01-01-2015.

Morgan A, Tobar D and Snyder L, (2010), "Walking Toward a New Method: The Impact of Prescribed Walking 10,000 Steps/day on Physical and Psychological Well Being", *Journal of Physical Activity and health*, 7, 299-307.

Barton J, Hine R and Pretty J, (2009), "The Health Benefits of Walking in Green Spaces of high Natural and Heritage Value", *Journal of Integrative Environmental Sciences*, 6, 261-278.

Bouchard C and Despres JP, (1995), "Physical Activity and Health: Atherosclerotic, Metabolic, and Hypertensive Diseases", *Research Quarterly for Exercise and Sport*, 66, 268-75

Lopes – Virella MF, Stone P, Ellis S and Colwell JA, [May1977], "Cholesterol Determination in High-density Lipoproteins Separated by Three Different Methods", *Clinical Chemistry*, 23 882-884.

Sohn, Augustine J., Memoona Hasnain and James M. Sinacore, "Impact of Exercise (Walking) on Blood Pressure Levels in African American Adults With Newly Diagnosed Hypertension", *Ethnicity & Disease*, 17, (2007), 503 – 507.

Stewart KJ, Bacher AC, Turner KL, Fleg JL, Hees PS, Shapiro EP, Tayback M and Ouyang P, (September 2006), "Effect of Exercise on Blood Pressure in Older Person: A Randomized Controlled Trial", *Arch Intern Med.*, 166:17, 1813.

Hamid Arazi, Esmaeil Farzaneh and Samira Gholamian, (2012), "Effects of Morning Aerobic Training on Lipid Profile, Body Composition WHR and VO_{2max} in Sedentary Overweight Females", *Acta Kinesiologica*, 6:1, 19-23.

Alireza Rahimi, Masoud Moini Shabestari, Kobra Faryadian, Vahideh Safaeinejadi, Jaber Safarkhani Moazen and Zynalabedin Fallah, (2013), "The Effect of Selecting Aerobics Exercise Program (Walking in Water and in Land) on HDL-C, LDL-C, TC and TG in Non-athlete Menopausal Women", *European Journal of Experimental Biology*, 3:2, 463-468.