

Ayudantía 13 Análisis Funcional

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

1 de diciembre de 2022

Problema 1. Sea H espacio de Hilbert, $V \subseteq H$ subespacio vectorial cerrado y P_V su proyección ortogonal.

- 1. Determine el espectro y los autovalores de P_V .
- 2. ¿Bajo qué condiciones P_V es compacto?

Problema 2. Considere el espacio ℓ^2 y defina los operadores shift izquierdo y derecho como

$$T_l: \ell^2 \to \ell^2,$$
 $T_l(x_0, x_1, x_2, \dots, x_n, \dots) := (x_1, x_2, x_3, \dots, x_{n+1}, \dots)$
 $T_r: \ell^2 \to \ell^2,$ $T_r(x_0, x_1, x_2, \dots, x_n, \dots) := (0, x_1, x_2, \dots, x_{n-1}, \dots)$

Con respecto a estos operadores

- 1. Muestre que $T_l, T_r \in \mathcal{L}(\ell^2)$.
- 2. Pruebe que estos operadores no son compactos.
- 3. Encuentre los operadores adjuntos T_l^*, T_r^* .
- 4. Calcule los valores propios de T_l, T_r y verifique que $VP(T_l) \neq VP(T_r)$.
- 5. Demuestre que $\sigma(T_l) = \sigma(T_r) = [-1, 1]$.

Problema 3. Sea X = C([0,1]) con la norma del supremo y considere el operador

$$T(u)(x) = \begin{cases} \frac{1}{x} \int_0^x u(t)dt & \text{si } x \in (0,1] \\ u(0) & \text{si } x = 0 \end{cases}$$

- 1. Demuestre que T está bien definido y $\|T\|_{\mathcal{L}(X)}=1.$
- 2. Demuestre que VP(T) = (0,1] y encuentre las funciones propias.
- 3. Muestre que $\sigma(T) = [0,1]$. Detemirne si el operador T es compacto y encuentre una fórmula explícita para $(T - \lambda I)^{-1}$ cuando $\lambda \in \rho(T)$.
- 4. Considere ahora T como un operador $T: C[0,1] \to L^p(0,1)$ con $1 \le p < +\infty$. Demuestre que T es un operador

Indicación: Para $\varepsilon > 0$ defina $T_{\varepsilon}(u)(x) = \frac{1}{x+\varepsilon} \int_0^x u(t)dt$. Demuestre que T_{ε} es compacto usando el teorema de Arzelá-Ascoli y concluye mostrando que $\|T_{\varepsilon} - T\| \to 0$.