Convexity-preserving operation 어떤 set이 convex하다는 것을	ons on convex sets 을 어떻게 알아내는가?	
1. 정의를 사용한다. x₁,x₂∈ C, 0 ≤ θ ≤ 1 ⇒ θx₁ + (′		
2. Convexity-preserving oper A. Intersection:	ations을 사용한다.	
	n C1∩C2 is also convex ← 들을 이용한 것이다. E convex set이다.	try to show this!
B. Scaling:		
If C is convex, aC ≡ {ax → 확장시키고 멀리 보니		
C. Translation:		
	[a + x x ∈ C} is also conve 그 set을 옮기는 것이다.	2X.
D. Minkowski addition:		
defined by the operator \oplus such that $A \oplus B \equiv \{x + y x \in A, y \in B\}.$		
If C1 and C2 are convex, C1 ⊕ C2 is also convex.		•
→ A라는 점들 하나하나에 대해서 B의 모양을 일일이 뒤집어 씌운다고 생각하라.		
Affine sets, convex cone, cor	•	
Consider a set A and n points A is if $\sum_{i=1}^{n} \theta_i x_i \in A$	$S X_1, X_2, \dots, X_n \subseteq A$	
where θ_i , $i = 1,,n$ are any n	umbers which satisfy	
Subspace,	if $\theta_{i} \in \mathbb{R}$	
Affine,	if $\theta_{\lambda} \in \mathbb{R}$, $\Sigma_{\lambda} \theta_{\lambda} = 1$	
Convex, Convex,	if $\theta_{\lambda} \in \mathbb{R}$, $\theta_{\lambda} \ge 0$ if $\theta_{\lambda} \in \mathbb{R}$, $\Sigma_{\lambda} \theta_{\lambda} = 1$, $\theta_{\lambda} \ge 0$	