Elmore 2 Lecture 17

Advanced Digital IC Design

nMOSFET

Operation Regions	Voltages	Current
Cut Off	$V_{GS} \leq V_{Tn}$	$I_{DS} = 0$
Saturation	$V_{GS} > V_{Tn}$ $V_{DS} > V_{GS} - V_{Tn}$	$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{Tn})^2 (1 + \lambda V_{DS})$
Resistive	$V_{GS} > V_{Tn}$ $V_{DS} < V_{GS} - V_{Tn}$	$I_{DS} = \mu_n C_{ox} \frac{W}{L} \left[(V_{GS} - V_{Tn}) V_{DS} - \frac{V_{DS}^2}{2} \right]$

Advanced Digital IC Design

pMOSFET

Operation Regions	Voltages	Current
Cut Off	$V_{SG} \leq \left V_{Tp}\right $	$I_{SD} = 0$
Saturation	$egin{aligned} V_{SG} > & V_{Tp} \ V_{SD} > V_{SG} - & V_{Tp} \ \end{aligned}$	$I_{SD} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} \left(V_{SG} - \left V_{Tp} \right \right)^2 \left(1 + \lambda V_{SD} \right)$
Resistive	$egin{aligned} V_{SG} > & V_{Tp} \ V_{SD} < V_{SG} - & V_{Tp} \ \end{aligned}$	$I_{SD} = \mu_p C_{ox} \frac{W}{L} \left[\left(V_{SG} - \left V_{Tp} \right \right) V_{SD} - \frac{V_{SD}^2}{2} \right]$

Enhancement mode MOSFET transistor region of operation

	Cut-off	Resistive	Saturation
nMOS	$V_{GSn} < V_{Tn} \ V_{IN} < V_{Tn}$	$V_{GSn} > V_{Tn} \ V_{IN} > V_{Tn} \ V_{DSn} < V_{GSn} - V_{Tn} \ V_{OUT} < V_{IN} - V_{Tn}$	$V_{GSn} > V_{Tn}$ $V_{IN} > V_{Tn}$ $V_{DSn} > V_{GSn} - V_{Tn}$ $V_{OUT} > V_{IN} - V_{Tn}$
pMOS	$V_{GSp} > V_{Tp}$ $V_{IN} > V_{Tp} + V_{DD}$	$egin{aligned} V_{GSp} < V_{Tp} \ V_{IN} < V_{Tp} + V_{DD} \ V_{DSp} > V_{GSp} - V_{Tp} \ V_{OUT} > V_{IN} - V_{Tp} \end{aligned}$	$egin{aligned} V_{GSp} &= V_{Tp} \ V_{IN} &< V_{Tp} + V_{DD} \ V_{DSp} &< V_{GSp} - V_{Tp} \ V_{OUT} &< V_{IN} - V_{Tp} \end{aligned}$

• Intrinsic capacitors in the cut-off $V_{GS} < V_{TN}$

Channel is not inverted

$$C_{gate} = C_{gate-body} = C_0 = C_{ox}WL = \frac{\mathcal{E}_{ox}}{t_{ox}}WL$$

$$C_{\mathit{gate}} = C_{\mathit{gate-body}} + C_{\mathit{gate-source}} + C_{\mathit{gate-drain}}$$

$$C_{gate} = 0 + \frac{C_0}{2} + \frac{C_0}{2} = C_0$$

• Intrisic capacitors in the saturation $V_{GS} > V_{TN} \& V_{DS} > V_{GS} - V_{TN}$

$$C_{\mathit{gate}} = C_{\mathit{gate-body}} + C_{\mathit{gate-source}} + C_{\mathit{gate-drain}}$$

$$C_{gate} = 0 + \frac{2C_0}{3} + 0 = \frac{2C_0}{3}$$

Intrinsic MOS gate capacitor

Operation	Cut-off	Saturation	Resistive
C_{gs}	0	$\frac{2}{3}C_{OX}WL_{eff}$	$\frac{1}{2}C_{OX}WL_{eff}$
C_{gd}	0	0	$\frac{1}{2}C_{OX}WL_{eff}$
C_{gb}	$C_{\scriptscriptstyle OX}WL_{\scriptscriptstyle e\!f\!f}$	0	0
C_g	$C_{\scriptscriptstyle OX}WL_{\scriptscriptstyle e\!f\!f}$	$\frac{2}{3}C_{OX}WL_{eff}$	$C_{\scriptscriptstyle OX}WL_{\scriptscriptstyle eff}$

Detailed gate capacitors

Operation	Cut-off	Saturation	Resistive
C_{gs}	$C_{OX}WL_{D}$	$\frac{2}{3}C_{OX}WL_{eff} + C_{OX}WL_{D}$	$\frac{1}{2}C_{OX}WL_{eff} + C_{OX}WL_{D}$
C_{gd}	$C_{OX}WL_{D}$	$C_{OX}WL_{D}$	$\frac{1}{2}C_{OX}WL_{eff} + C_{OX}WL_{D}$
C_{gb}	$C_{\mathit{OX}}WL_{\mathit{eff}}$	0	0

 V_{C}

Find the Elmore delay

- Find the Elmore delay after T₁, given:
- Minimum size: s = 1, $W = W_{min}$
- Size: S = 2, $W = 2W_{\min}$
- Resistances: $R_{eqnMOS} = 10k\Omega$, $R_{eqpMOS} = 20k\Omega$
- Capacitances: $C_{gs} = C_{gd} = 0.5 fF$

$$C_{db} = C_{sb} = 1fF$$

- Ignore overlap capacitance and feedthrough.
- Except $V_{in} = V_{DD}$, initially all nodes are at zero.

Equivalent RC circuit.

R and C equivalent

$$R_1 = R_{eqpMOS} = 20k\Omega$$

$$C_1 = 5fF + 6C_{gs} + 8C_{db} = 5fF + 6(0.5) + 8(1) = 16fF$$

$$R_2 = \frac{R_{eqpMOS}}{3} = 6.7k\Omega$$

$$C_2 = 20fF + 3C_{gs} + 3C_{db} = 20fF + 3(0.5) + 3(1) = 24.5fF$$

$$R_3 = \frac{R_{eqpMOS}}{2} = 10k\Omega$$

$$C_3 = 10fF + 4C_{gs} + 4C_{db} = 10fF + 4(0.5) + 4(1) = 16fF$$

R and C equivalent

$$R_4 = \frac{R_{eqnMOS}}{2} = 5k\Omega$$

$$C_4 = 10fF + 4C_{gs} + 4C_{db} = 20fF + 4(0.5) + 4(1) = 26fF$$

$$R_5 = \frac{R_{eqpMOS}}{2} = 10k\Omega$$

$$C_5 = 5fF + 2C_{gs} + 4C_{db} = 5fF + 4(0.5) + 4(1) = 10fF$$

$$R_6 = \infty$$

Tree-structured RC network

The Elmore delay

$$\tau_{out} = R_1 C_1 + R_1 C_2 + (R_1 + R_3) C_3 + (R_1 + R_3) C_5 + (R_1 + R_3 + R_4) C_5$$

$$t_{PHL} = 0.69 \, \tau_{V_{OUT}}$$

