Truth Definitions:

- $\neg \mathbf{T}$: A negation of the form $\lceil \neg A \rceil$ is true in an interpretation \mathcal{I} just in case A is false in \mathcal{I} .
- $\wedge \mathbf{T}$: A conjunction of the form $\lceil (A \wedge B) \rceil$ is true in an interpretation \mathcal{I} just in case A is true in \mathcal{I} and B is true in \mathcal{I} .
- $\vee \mathbf{T}$: A disjunction of the form $\lceil (A \vee B) \rceil$ is true in an interpretation \mathcal{I} just in case either A is true in \mathcal{I} or B is true in \mathcal{I} .
- \to **T**: A material conditional of the form $\lceil (A \to B) \rceil$ is true in an interpretation \mathcal{I} just in case either A is false in \mathcal{I} or B is true in \mathcal{I} .
- \leftrightarrow **T**: A material bi-conditional of the form $\lceil (A \leftrightarrow B) \rceil$ is true in an interpretation \mathcal{I} just in case either $(A \text{ is true in } \mathcal{I} \text{ and } B \text{ is true in } \mathcal{I})$ or $(A \text{ is false in } \mathcal{I} \text{ and } B \text{ is false in } \mathcal{I})$.

Derivative Falsity Definitions:

- \neg **F**: A negation of the form $\lceil \neg A \rceil$ is false in an interpretation \mathcal{I} just in case A is true in \mathcal{I} .
- $\wedge \mathbf{F}$: A conjunction of the form $\lceil (A \wedge B) \rceil$ is false in an interpretation \mathcal{I} just in case either A is false in \mathcal{I} or B is false in \mathcal{I} .
- $\vee \mathbf{F}$: A disjunction of the form $\lceil (A \vee B) \rceil$ is false in an interpretation \mathcal{I} just in case both A is false in \mathcal{I} and B is false in \mathcal{I} .
- \to **F**: A material conditional of the form $\lceil (A \to B) \rceil$ is false in an interpretation \mathcal{I} just in case A is true in \mathcal{I} and B is false in \mathcal{I} .
- \leftrightarrow **F**: A material bi-conditional of the form $\lceil (A \leftrightarrow B) \rceil$ is false in an interpretation \mathcal{I} just in case either $(A \text{ is true in } \mathcal{I} \text{ and } B \text{ is false in } \mathcal{I})$ or $(A \text{ is false in } \mathcal{I} \text{ and } B \text{ is true in } \mathcal{I})$.

Basic Inference Rules for \mathcal{F}

Conditional Inference Rules for \mathcal{F}

