Time series graphics

Analysis of Sequential Data

MSE Data Science

Credits

Slides and book openly published by Rob Hyndman:

https://robjhyndman.com/teaching/

https://otexts.com/fpp2/

Customization by Giorgio Corani for the MSE course.

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise

ts objects and ts function

A time series is stored in a ts object in R:

- a list of numbers
- information about times those numbers were recorded.

Example

Year	Observation	
2012	123	
2013	39	
2014	78	
2015	52	
2016	110	

 $y \leftarrow ts(c(123,39,78,52,110), start=2012)$

ts objects and ts function

For observations that are more frequent than once per year, add a frequency argument.

E.g., monthly data stored as a numerical vector z:

```
y <- ts(z, frequency=12, start=c(2003, 1))</pre>
```

ts objects and ts function

ts(data, f	requency, start)	
Type of data	frequency	start example
Annual	1	1995
Quarterly	4	c(1995,2)
Monthly	12	c(1995,9)
Daily	7 or 365.25	1 or c(1995,234)
Weekly	52.18	c(1995,23)
Hourly	24 or 168 or 8,766	1
Half-hourly	48 or 336 or 17,532	1

Australian GDP

- Class: "ts", frequency =4
- Print and plotting methods available.

ausgdp

```
Otr1 Otr2 Otr3 Otr4
##
## 1971
                  4612 4651
## 1972 4645 4615 4645 4722
## 1973 4780 4830 4887 4933
  1974 4921 4875 4867 4905
## 1975 4938 4934 4942 4979
## 1976 5028 5079 5112 5127
## 1977 5130 5101 5072 5069
## 1978 5100 5166 5244 5312
  1979 5349 5370 5388 5396
```

Australian GDP

Residential electricity sales

```
elecsales
## Time Series:
## Start = 1989
## End = 2008
## Frequency = 1
##
    [1] 2354.34 2379.71 2318.52 2468.99 2386.09
    [6] 2569.47 2575.72 2762.72 2844.50 3000.70
##
   [11] 3108.10 3357.50 3075.70 3180.60 3221.60
   [16] 3176.20 3430.60 3527.48 3637.89 3655.00
```

Class package

> library(fpp2)

Class package

> library(fpp2)

This loads:

some data for use in examples and exercises

Class package

> library(fpp2)

This loads:

- some data for use in examples and exercises
- forecast package (for forecasting functions)
- ggplot2 package (for graphics functions)
- fma package (for lots of time series data)
- expsmooth package (for more time series data)

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise

Time plots

Time plots

Your turn

- Create plots of the following time series: dole, bricksq, lynx, goog
- Use help() to find out about the data in each series.
- For the last plot, modify the axis labels and title.

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise

Seasonal plots

```
ggseasonplot(a10, year.labels=TRUE, year.labels.left=TRUE) +
  ylab("$ million") +
  ggtitle("Seasonal plot: antidiabetic drug sales")
     Seasonal plot: antidiabetic drug sales
  30 - 2008
      2006
                                                                          2006
$ million
      2001
      2000
      1999
               Feb
          Jan
                     Mar
                           Apr
                                May
                                            Jul
                                                 Aua
                                                             Oct
                                                                  Nov
                                                                        Dec
                                        Month
```

Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: ggseasonplot()

Seasonal subseries plots

Data for each season collected together in time plot as

Quarterly Australian Beer Production

Quarterly Australian Beer Production

Quarterly Australian Beer Production

Your turn

The arrivals data set comprises quarterly international arrivals (in thousands) to Australia from Japan, New Zealand, UK and the US.

- Use autoplot() and ggseasonplot() to compare the differences between the arrivals from these four countries.
- ggseasonplot() should be applied to each column separately
- Can you identify any unusual observations?

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise

Trend pattern exists when there is a long-term increase or decrease in the data.

Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are *not of fixed period* (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
autoplot(window(elec, start=1980)) +
  ggtitle("Australian electricity production") +
  xlab("Year") + ylab("GWh")
     Australian electricity production
 14000 -
 12000 -
 10000 -
                         1985
                                           1990
                                                             1995
                                   Year
```

```
autoplot(bricksq) +
  ggtitle("Australian clay brick production") +
  xlab("Year") + ylab("million units")
     Australian clay brick production
  600 -
  500 -
million units
  400 -
  300 -
  200 -
                              1970
                                              1980
                                                              1990
                                      Year
```

```
autoplot(hsales) +
  ggtitle("Sales of new one-family houses, USA") +
  xlab("Year") + ylab("Total sales")
    Sales of new one-family houses, USA
  80 -
  40 -
           1975
                       1980
                                    1985
                                                1990
                                                             1995
                                  Year
```

```
autoplot(ustreas) +
  ggtitle("US Treasury Bill Contracts") +
  xlab("Day") + ylab("price")
   US Treasury Bill Contracts
 90 -
98 -
88 -
 86 -
               20
                                             80
                              Dav
```

```
autoplot(lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
      Annual Canadian Lynx Trappings
  6000 -
Number trapped
4000 -
    0 -
                             1860
                                                             1920
                                       1880
                                                  1900
                  1840
                                      Year
```

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- 5 Autocorrelation
- 6 White noise

(this slide to be disregarded)

- correlation measures the extent of a linear relationship between two variables
- autocorrelation measures the linear relationship between lagged values of a time series.

We use the notation:

 \blacksquare r_k : correlation between y_t and y_{t-k}

For instance:

 \blacksquare r_2 : correlation between y_t and y_{t-2}

$$r_k = \frac{\sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})^2}$$

- T is the lenght of the time series
- \blacksquare the denominator of r_k is the variance of y_t

$$\blacksquare$$
 $(y_t > \bar{y} \text{ and } y_{t-k} > \bar{y}) \rightarrow r_k > 0$

$$\blacksquare$$
 ($y_t < \bar{y}$ and $y_{t-k} < \bar{y}$) $\rightarrow r_k > 0$

$$lacksquare$$
 ($y_t < \bar{y}$ and $y_{t-k} > \bar{y}$) $\rightarrow r_k < 0$

$$lacksquare (y_t > ar{y} ext{ and } y_{t-k} < ar{y})
ightarrow r_k < 0$$

Results for first 9 lags for beer data:

r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	r ₇	r ₈	r ₉
-	-	-	0.869	-	-	-	0.832	-
0.102	0.657	0.060		0.089	0.635	0.054		0.108

- r_4 higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the autocorrelation or ACF.
- The plot is known as a **correlogram**

ACF

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

Aus monthly electricity production

Aus monthly electricity production

Aus monthly electricity production

Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

- The slowly decaying ACF indicates trend.
- The ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12.

Google stock price

Google stock price

Your turn

We have introduced the following graphics functions:

- gglagplot
- ggAcf

Explore the following time series using these functions. Can you spot any seasonality, cyclicity and trend? What do you learn about the series?

- hsales
- usdeaths
- bricksq
- sunspotarea
- gasoline

Which is which?

Outline

- 1 Time series in R
- 2 Time plots
- 3 Seasonal plots
- 4 Seasonal or cyclic?
- **5** Autocorrelation
- 6 White noise

Example: White noise

Example: White noise

r_1	-0.12
r_2	0.15
<i>r</i> ₃	-0.21
r_4	-0.14
r ₅	-0.02
<i>r</i> ₆	-0.09
r ₇	0.21
<i>r</i> ₈	-0.14
r ₉	0.01

-0.07

 r_{10}

Sample autocorrelations for white noise series.

We expect each autocorrelation to be close to zero.

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the *critical values*.

Example:

T = 36 and so critical values at

talues at $\pm 1.96/\sqrt{36} = \pm 0.327$. All autocorrelation coefficients lie within

these limits, confirming that the data are white noise. (More precisely,

the data cannot be distinguished from white noise.)


```
pigs2 <- window(pigs, start=1990)</pre>
autoplot(pigs2) +
  xlab("Year") + ylab("thousands") +
  ggtitle("Number of pigs slaughtered in Victoria")
       Number of pigs slaughtered in Victoria
  110000 -
thousands
  100000 -
  80000 -
                                                             1995
        1990
                   1991
                             1992
                                        1993
                                                   1994
                                      Year
```


Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows some significant autocorrelation at lags 1, 2, and 3.
- $Arr r_{12}$ relatively large although not significant. This may indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 1990 through August 1995. (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows some significant autocorrelation at lags 1, 2, and 3.
- $Arr r_{12}$ relatively large although not significant. This may indicate some slight seasonality.

These show the series is **not a white noise series**.

Your turn

You can compute the daily changes in the Google stock price using

```
dgoog <- diff(goog)</pre>
```

Does dgoog look like white noise?

Explanation

The Google stocks can be modelled by the random walk model $y_{t+1} = y_t + \epsilon_t$

where
$$\epsilon_t \sim N(0, \sigma^2)$$

 ϵ_t is i.i.d.: hence ϵ_t is independent from ϵ_{t-1} , ϵ_{t-2} .

By differencing:

$$\mathsf{y}_{t+1}-\mathsf{y}_t=\epsilon_t,$$

which is indeed a white noise time series.