Pan cord - Qualitative statistics Histogram + 1) Ages - (10, 12, 14, 18, 24, 26, 30, 35, 36, 37, 40, 41, 42, 43, 50, 51, 65, 68, 78, 90, 95, 100} of sorting the no No of bin = Max = 100 = 10 2) bins - Me of groups 3) Bin size - Size of Bins Probability Devister Ing low 30 40 30 60 40 90 90 2) Deight = {30, 35, 38, 42, 44, 58, 59, 62, 63, 68, 75, 77, 80, 90, 95} Bln = 10 No of bins = 95-30 = 65/ = 6.5 30 36.5 43 495 56 625 69 75.58 1) is creti state No Ybane 0/c- [2, 3, 5, 1,4, 5, 3, 7,8, 3, 2,4,5] Mahality Mahality Kundima

A measure of central tending is a single Measure of artical Tendency I value that attempts to decease decide a le of data identifying the central position 1) Mean d) Median 3) Mode Mean: Population mean (μ) = $\frac{N}{2} \frac{\chi_i}{N}$ | sample mean (\bar{z}) = $\frac{N}{2} \frac{2\chi_i}{N}$ [N7n] but, 14.772, 7714 Population Ages = \$24,23,2,1,28,27} | Sample age = {24,2,1,29} M = 24123+2+1+28+27 = 17.5, 2 = 24+2+1+27 = 13.5M= 17.5 Practical Application [Feature Engineering] solary Age family size. NAN NAN NAN Instead dropping NAN, replace NAN value with mean value. If MAN deepped, there may be chances of tolder of data

Age	Solary.	Age (2) = 24+28+29+31+36
24	415	
28	NAM	7
NAN 31 36 NAN	60 75 80 NAN	Salary (x) = 45+50+60+75+80
1.00	Age (NAN) with salary (NAN) with	

Median:-Steps to find median

- 1) forth the MO
- (3) Find the central no (of no of elements are even, then any of centre)

(1, 2, 3, 4, 5, 6, 7, 8, 180, 120)

Medlan = 5+6/2 = 5.5

with outline Median. Without outlines Mean.

Mode: Most frequent occurring elements.

- 1) {1, 2, 3, 3, 4, 5, 6} + Mode = 3
- J) {1, 2, 3, 2, 2, 3, 3, 4, 5, 6} → Modi= 12, 3}

Mide used with Categorical variable.

Measure of dispersion: 1) Variance (62) + Spead of Data 2) Standard deviation (o) -+ Vocance Population variana (62) Sample variance (32) $S^{2} = \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$ 67 = 5 (Zi-M)2 Itandard deviation: (V52) = {1, 2, 3, 4,5} M = 3; $\sigma^2 = [(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2]$ = 4+1+0+1+4 = 1/3 = 2 52 2 So, Std, decidation = 552 = 52 = 1.41/