Pravděpodobnost a statistika - zkoušková písemka 29.5.2014

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Vrátný na FEL během své pracovní doby od 7:00 do 19:00 obslouží průměrně 144 studentů a pedagogů, přičemž studentů, kteří využívají pomoci vtátného, je dvakrát víc než pedagogů. Předpokládejme, že časy příchodů studentů i pedagogovů jsou v této době rozloženy rovnoměrně. Určete pravděpodobnost, že

- a) do 8:00 využijí služeb vrátného minimálně tři pedagogové,
- b) po 17:00 využije služeb vrátného maximálně deset lidí, přičemž všichni to budou pedagogové,
- c) doba čekání na prvního studenta bude kratší než půl hodiny,
- d) v sedmi po sobě jdoucích příchozích lidech bude maximálně pět pedagogů,
- e) v daný den bude nejpozději 4.příchozí člověk student.

Úloha 2. Kulička má náhodný poloměr X, kde $X \sim Ro(4,7)$.

- a) Určete distribuční funkci, hustotu, střední hodnotu a rozptyl náhodné veličiny X.
- b) Určete pravděpodobnost, že průměr kuličky je v rozmezí 5-10 cm.
- c) Určete distribuční funkci rozdělení náhodné veličiny Y udávající objem kuličky. (Objem koule $V=\frac{4}{3}\pi r^3$)
- d) Předpokládejme, že pět takových kuliček chceme prostrkávat kruhovým otvorem o průměru 10 cm. Určete rozdělení náhodné veličiny W udávající počet kuliček, které otvorem skutečně prostrčíme, a spočtěte pravděpodobnost, že otvorem prošly maximálně dvě kuličky.
- e) Předpokládejme, že do téhož otvoru strkáme 100 takových kuliček. Spočtěte pravděpodobnost, že otvorem projde alespoň 30 kuliček. (použijte CLV)

Úloha 3. V 16 prodejnách byly sledovány počty prodaných nových tabletů za týden. Tyto počty jsou uvedeny v následující tabulce:

ĺ	3	0	3	2	5	1	3	3	2	2	1	2	2	3	5	3
							l .					l				

- a) Nakreslete histogram a empirickou distribuční funkci těchto dat.
- b) Určete z dat výběrový průměr a medián.
- c) Určete, jaké rozdělení mají tato data, a metodou maximální věrohodnosti určete parametr tohoto rozdělení.
- d) Spočtěte 95% (oboustranný) intervalový odhad parametru tohoto rozdělení.
- e) Otestujte na hladině 5%, zda je možné říct, že střední počet prodaných nových tabletů za týden je roven 3, a použitý test řádně zdůvodněte.

Úloha 4. U dvou různých algoritmů třídění náhodných, stejně dlouhých posloupností bylo sledováno, zda doba třídění nepřesáhne zvolený limit. Statistika je následující:

	úspěšný	neúspěšný
algoritmus 1	38	12
algoritmus 2	22	28

- a) Určete marginální rozdělení náhodného vektoru (X,Y), kde X popisuje úspěšnost zpracování (X=1 pro úspěch a X=0 pro neúspěch), a Y popisuje zvolený algoritmus (Y=1 pro algoritmus 1 a Y=2 pro algoritmus 2).
- b) Statisticky otestujte na hladině 5%, zda je úspěšnost třídění závislá na zvoleném algoritmu.
- c) Statisticky otestujte na hladině 1%, zda počet úspěšných a neúspěšných výsledků byl přibližně stejný.
- d) Jsou počty úspěšných a neúspěšných výsledků nezávislé? Odpověď řádně zdůvodněte.
- e) Definujte **obecně** nezávislost diskrétních náhodných veličin X a Y.