Model Documentation of the:

DC-DC Buck Converter

1 Nomenclature

1.1 Nomenclature for Model Equations

 i_L main inductor current

 U_o output voltage

 U_c inductor voltage

 U_{DC} input voltage

R resistance of main Resistor

L inductivity of main inductor

C capacity of main capacitor

 r_L (parasitic) inductor resistance

 r_c (parasitic) capacitor resistance

 r_{son} (parasitic) switch resistance

d duty cycle

1.2 Nomenclature for Derivation

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2)^T = (i_L \ U_o)^T$$
$$u = u_1 = d$$

System Equations:

$$\dot{x}_1 = \frac{-(r_{son} + r_L)}{L} x_1 - \frac{1}{L} x_2 + \frac{U_{DC}}{L} u_1 \tag{1a}$$

$$\dot{x}_2 = \frac{LR - CRr_c(r_{son} + r_L)}{LC(R + r_c)} x_1 + \frac{-CRr_c - L}{LC(R + r_c)} x_2 + \frac{Rr_c U_{DC}}{L(R + r_c)} u_1$$
 (1b)

Parameters: R, L, C, r_L , r_c , r_{son} , U_{DC}

Outputs: U_o

2.1 Assumptions

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
Load Resistance	R	2.345	Ω
Inductivity	L	$4.7 \cdot 10^{-5}$	Η
Capacity	C	$6.8 \cdot 10^{-5}$	\mathbf{F}
Input Voltage	U_{DC}	3.75	V
switching resistance	r_{son}	2.1	Ω
Inductor Resistance	r_L	0.13	Ω
Capacitor Resistance	r_c	0.055	Ω

3 Derivation and Explanation

References

[1] M. M. Salih, H. A. Jeiad, A. Al-Araji: Modeling and Analysis of DC-DC Buck Converter for Mobile Applications, IJSR, 2020