Progress Report for 25 August 2015

Extracted relevant data channels (T7, T8, P7, P8, AF3, AF4, F3, F4) from 1v1
physical recording data, performed band-pass filter, computed crosscorrelations between single-channel data:

```
clear
tload desired .mat file
load (Visers/Jon/Desktop/Social_Neuroscience/recordings/lvlphysical/EEGlog-PIAHIC2M2b -20150701T143228.mat', 'recordData')
testDatal = recordData;
load (Visers/Jon/Desktop/Social_Neuroscience/recordings/lvlphysical/EEGlog-PIBH2C2M2b-20150701T143127.mat', 'recordData')
testData2 = recordData;
testData2 = recordData;
load desired data channels
fullextractedData1 = testData1(:,4:17);
fullextractedData1 = testData1(:,4:17);
fullextractedData1(:, 3) = [];
fullextractedData1(:, 5) = [];
fullextractedData1(:, 5) = [];
fullextractedData1(:, 5) = [];
fullextractedData1(:, 5) = [];
fullextractedData2(:, 4:17);
fullextractedData2(:, 2) = [];
fullextractedData2(:, 5) = [];
fullextracted
```

 Sample EEG data (EEGlog-P1AH1C2M2b -20150701T143228.mat) for reference:

	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	0	4.2641e	4.2841e	4.2313e	4.2205e	4.2692e	4.2626e	4.2492e	4.2446e	4.1651e	4.2523e	4.2549e	4.2338e	4.2564e	4.2405e	1670
2	0	4.1903e	4.1877e	4.1933e	4.1872e	4.1887e	4.1887e	4.1877e	4.1897e	4.1918e	4.1892e	4.1887e	4.1897e	4.1882e	4.1887e	1670
3	0	4.2000e	4.2062e	4.2046e	4.1872e	4.1995e	4.2026e	4.1969e	4.1959e	4.1682e	4.1918e	4.1949e	4.1944e	4.1969e	4.1928e	1670
4	0	4.3395e	4.3718e	4.2615e	4.2733e	4.3518e	4.3338e	4.3159e	4.3072e	4.1856e	4.3231e	4.3282e	4.2877e	4.3297e	4.3041e	1671
5	0	3.8195e	3.6892e	4.0010e	4.0631e	3.7887e	3.8185e	3.8897e	3.9297e	4.4108e	3.8882e	3.8713e	3.9923e	3.8610e	3.9538e	1673
6	0	3.0667e	2.6969e	3.6415e	3.8523e	2.9785e	3.0938e	3.3251e	3.4133e	4.8636e	3.2687e	3.2303e	3.6108e	3.2082e	3.4979e	1673
7	1	3.1323e	2.7231e	3.6800e	4.0800e	3.0487e	3.1574e	3.4554e	3.5256e	5.2185e	3.3974e	3.3467e	3.7441e	3.3169e	3.6477e	1676
8	3	3.3021e	2.9590e	3.7882e	4.1262e	3.2272e	3.3221e	3.5867e	3.6431e	5.0882e	3.5590e	3.4949e	3.8303e	3.4662e	3.7415e	1675
9	4	3.1600e	2.8067e	3.7256e	4.0010e	3.0867e	3.1969e	3.4600e	3.5215e	4.9985e	3.4256e	3.3549e	3.7149e	3.3292e	3.6174e	1678
10	8	3.1795e	2.8097e	3.7318e	4.0651e	3.1292e	3.2221e	3.5056e	3.5605e	5.1174e	3.4810e	3.3990e	3.7544e	3.3682e	3.6677e	1678
11	5	3.2359e	2.8969e	3.7744e	4.0800e	3.2118e	3.2892e	3.5626e	3.6067e	5.0626e	3.5436e	3.4533e	3.7877e	3.4221e	3.6938e	1679
12	3	3.2190e	2.8928e	3.7713e	4.0641e	3.2200e	3.2918e	3.5677e	3.6067e	5.0446e	3.5292e	3.4462e	3.7795e	3.4123e	3.6785e	1679
13	4	3.2154e	2.8938e	3.7697e	4.0636e	3.2200e	3.2887e	3.5744e	3.6179e	5.0677e	3.5446e	3.4610e	3.7846e	3.4236e	3.6759e	1680
14	0	3.2082e	2.9010e	3.7590e	4.0549e	3.1887e	3.2708e	3.5605e	3.6026e	5.0323e	3.5477e	3.4533e	3.7733e	3.4226e	3.6590e	1680
15	0	3.1949e	2.8990e	3.7508e	4.0492e	3.1805e	3.2656e	3.5538e	3.5897e	5.0031e	3.5338e	3.4446e	3.7641e	3.4144e	3.6574e	1680
16	0	3.1892e	2.9021e	3.7549e	4.0410e	3.2154e	3.2754e	3.5636e	3.5985e	4.9985e	3.5359e	3.4538e	3.7687e	3.4174e	3.6559e	1682
17	0	3.1979e	2.9205e	3.7615e	4.0569e	3.2487e	3.2872e	3.5831e	3.6118e	5.0097e	3.5605e	3.4703e	3.7795e	3.4349e	3.6621e	1681
18	0	3.1979e	2.9272e	3.7605e	4.0559e	3.2518e	3.2867e	3.5846e	3.6062e	4.9867e	3.5559e	3.4713e	3.7754e	3.4385e	3.6677e	1681
19	0	3.1933e	2.9251e	3.7600e	4.0497e	3.2513e	3.2846e	3.5836e	3.6082e	4.9779e	3.5405e	3.4738e	3.7759e	3.4395e	3.6703e	1678
20	0	3.1985e	2.9395e	3.7682e	4.0610e	3.2523e	3.2882e	3.5964e	3.6267e	4.9979e	3.5646e	3.4933e	3.7928e	3.4590e	3.6785e	1678
21	0	3.1995e	2.9497e	3.7718e	4.0621e	3.2446e	3.2887e	3.6062e	3.6262e	4.9923e	3.5928e	3.5031e	3.7979e	3.4718e	3.6841e	1675
22	0	3.2046e	2.9621e	3.7795e	4.0697e	3.2733e	3.3031e	3.6246e	3.6308e	4.9826e	3.6138e	3.5092e	3.8021e	3.4795e	3.6918e	1673
23	0	3.2046e	2.9703e	3.7913e	4.0769e	3.3041e	3.3154e	3.6369e	3.6456e	4.9867e	3.6272e	3.5113e	3.8062e	3.4800e	3.6892e	1673
24	0	3.2010e	2.9687e	3.7892e	4.0631e	3.2933e	3.3062e	3.6303e	3.6431e	4.9718e	3.6097e	3.5041e	3.8000e	3.4764e	3.6795e	1667
25	0	3.1990e	2.9651e	3.7754e	4.0497e	3.2682e	3.2964e	3.6256e	3.6297e	4.9369e	3.5769e	3.4887e	3.7903e	3.4636e	3.6651e	1670
26	0	3.1815e	2.9436e	3.7667e	4.0415e	3.2574e	3.3031e	3.6333e	3.6287e	4.9210e	3.5600e	3.4708e	3.7841e	3.4333e	3.6431e	1677
27	0	3.1826e	2.9456e	3.7795e	4.0446e	3.2974e	3.3215e	3.6554e	3.6574e	4.9467e	3.6082e	3.5051e	3.8036e	3.4626e	3.6605e	1673
28	0	3.2041e	2.9697e	3.7908e	4.0554e	3.3405e	3.3251e	3.6626e	3.6759e	4.9636e	3.6708e	3.5549e	3.8231e	3.5277e	3.6908e	1671

Band-pass filter function:

```
# function EEG_signal_filt = Band_pass_filter(EEG_signal,Cut_off_freq_1,Cut_off_freq_2,Fs)

# function to implement band-pass filtering using FIR filter.

# Usage: EEG_signal_filt = Band_pass_filter(EEG_signal,Cut_off_freq_1,Cut_off_freq_2,Fs)

# Input:

# EEG_signal = Referenced EEG signal

# Cut_off_freq_1 & Cut_off_freq_2 - cut-off frequencies in linear

# Scale (in hertz)

# Usage: EEG_signal_filt = Band_pass_filter(EEG_signal,Cut_off_freq_1,Cut_off_freq_2,Fs)

# EEG_signal = Referenced EEG signal

# Cut_off_freq_1 & Cut_off_freq_2 - cut-off frequencies in linear

# Scale (in hertz)

# Usage: EEG_signal_filt = Band_pass_filtered EEG signal

# We Freamble

# Nyquist_freq = Fs/2;

# Filter of order 100

# Normalized frequencies

# W = [Cut_off_freq_1 Cut_off_freq_2]./Nyquist_freq;

# Filter_coeffs = fir(100,W);

# For i=1:Num_chan,

# EEG_signal_filt(i,:) = filter(Filter_coeffs,1,EEG_signal(i,:));

end

# EEG_signal_filt(i,:) = filter(Filter_coeffs,1,EEG_signal(i,:));

end
```

Cross-correlation results:

	1	2
1	5.7898	
2	11.4779	
3	17.1821	
4	23.0777	
5	28.2729	
6	32.4446	
7	36.6893	
8	41.1556	
9	45.4358	
10	49.7524	
11	54.1553	
12	58.5450	
13	62.9281	
14	67.2913	
15	71.6355	
16	75.9698	
17	80.3108	
18	84.6532	
19	88.9940	
20	93.3433	
21	97.6918	
22	102.0520	
23	106.4235	
24	110.7936	
25	115.1308	
26	119.4489	

Comments:

- 1. Cross-correlation results do not correspond with expected range of [-1,1]. Need to identify sources of error in presented code and/or data.
- 2. Compilation time is fairly significant: Between 5 to 10s for current code presented above.
- 3. Data extraction code may be further condensed and called in functions.