HLIN612 - Calculabilité/Complexité

Exercice 40 - Programmation dynamique : algorithme pseudo-polynomial

Antoine AFFLATET et Jérémie ROUX (L3 Groupe C)

2019 - 2020

Exercice 1

Problème de 2-Partition

Entrée: Étant donnés n objets a_i $(1 \le i \le n)$ de poids entiers $p(a_1), p(a_2), ..., p(a_n)$ de somme 2P.

Question: Est-il possible de les partager en 2 sous-ensembles de même poids total P?

On considère i et j, tels que $1 \le i \le n$ et $0 \le j \le P$ et T(i,j): "Étant donnés les i premiers éléments de la famille, il existe un sous-ensemble de ces i éléments de poids j".

$$n = 6$$

$$2P = \sum_{i=1}^{n} p(a_i) = \sum_{i=1}^{6} p(a_i) = p(a_1) + p(a_2) + p(a_3) + p(a_4) + p(a_5) + p(a_6) = 5 + 9 + 3 + 8 + 2 + 5 = 32$$
donc $P = \frac{32}{2} = 16$

 $T[i,j] \text{ est vrai si et seulement si } (p(a_i) == j) \mid\mid (T[i,j] == T[i-1,j]) \mid\mid (T[i-1,j-p(a_i)] == 1)) \text{ l'est aussi.}$

i/j	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1																	
2																	
3																	
4																	
5																	
6																	

i/j	0	1	2	3	4	5	6	7	8	9
1	{{}}	Ø	Ø	Ø	Ø	$\{\{a_1\}\}$	Ø	Ø	Ø	Ø
2	{{}}	Ø	Ø	Ø	Ø	$\{\{a_1\}\}$	Ø	Ø	Ø	$\{a_2\}$
3	{{}}	Ø	Ø	$\{\{a_3\}\}$	Ø	$\{\{a_1\}\}$	Ø	Ø	$\{\{a_1,a_3\}\}$	$\{a_2\}$
4	{{}}	Ø	Ø	$\{\{a_3\}\}$	Ø	$\{\{a_1\}\}$	Ø	Ø	$\{\{a_1,a_3\},\{a_4\}\}$	$\{a_2\}$
5	{{}}	Ø	$\{\{a_5\}\}$	$\{\{a_3\}\}$	Ø	$\{\{a_1\}\},\{a_3,a_5\}\}$	Ø	$\{\{a_1,a_3\}\}$	$\{\{a_1,a_3\},\{a_4\}\}$	$\{a_2\}$
6	{{}}	Ø	$\{\{a_5\}\}$	$\{\{a_3\}\}$	Ø	$\{\{a_1\}\},\{a_3,a_5\},\{a_6\}\}$	Ø	$\{\{a_1,a_5\},\{a_6,a_5\}\}$	$\{\{a_1,a_3\},\{a_4\},\{a_6,a_3\}\}$	$\{a_2\}$

Depuis ce tableau (tableau 1) on prend l'élément de la première ligne vérifiant la colonne 16, puis celui de la première ligne vérifiant $16-p(a_i)$ avec a_i étant l'élément de la première ligne vérifiant la colonne 16. On reproduit

Algorithme 1 : Reconstruction de la solution $(T : tableau \ a \ 2 \ dimensions, P : poids total, n : entier) : ensemble$

```
\begin{array}{l} i \leftarrow n; \\ j \leftarrow P; \\ S \leftarrow \{\}; \\ \textbf{tant que } i > 0 \ et \ T[i][j] \neq 0 \ \textbf{faire} \\ & \begin{vmatrix} i - -; \\ S \leftarrow S \cup \{a_{i+1}\}; \\ j \leftarrow j - p(a_{i+1}); \\ i \leftarrow n; \end{vmatrix} \\ \end{array}
```

Complexité de l'algorithme = O(n * P) où n est le nombre d'élément dans l'ensemble et $P = 1/2 * \sum_{i=1}^{n} p(a_i)$

Exercice 2

- Problème du sac à dos sans répétition -

Les objets seront pris au plus 1 fois. Pour cela considérons, un tableau K à deux dimensions tel que K[j,w] représente la valeur maximale que l'on peut stocker dans un sac de capacité w, avec des objets 1,...,j.

$$K[0,w] = 0$$
 et $K[j,0] = 0$
 $K[j,w] = \max$

$$K[j,\!w] = \max(K[j-1,\!w],\!K[j-1,\!w-w_j] + v_j)$$

$j \backslash w$	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	1	1	1	1	1	1	1	1	1
2	0	1	6	7	7	7	7	7	7	7	7	7	7
3	0	1	6	7	7	18	19	24	25	25	25	25	25
4	0	1	6	7	7	18	22	24	28	29	29	40	41
5	0	1	6	7	7	18	22	24	28	30	31	40	42