EML 2010

Exercice 1

Partie I : Un endomorphisme de l'espace vectoriel des matrices carrées d'ordre 2

- On note $\mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 2.
- On note : $A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$, $F = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $G = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $H = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- On note \mathfrak{S}_2 l'ensemble des matrices carrées symétriques d'ordre 2.
- 1. Calculer AFA, AGA, AHA.
- 2. Montrer que \mathfrak{S}_2 est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$ et que (F, G, H) est une base de \mathfrak{S}_2 . Déterminer la dimension de \mathfrak{S}_2 .

On note u l'application qui, à chaque matrice S de \mathfrak{S}_2 , associe la matrice u(S) = ASA.

- 3. a) Montrer: $\forall s \in \mathfrak{S}_2, u(S) \in \mathfrak{S}_2$.
 - b) Montrer que u est un endomorphisme de l'espace vectoriel \mathfrak{S}_2 .
 - c) Donner la matrice de u dans la base (F, G, H) de \mathfrak{S}_2 .

Partie 2 : Réduction d'une matrice carrée d'ordre 3

On note :
$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $M = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 4 & 6 \\ 4 & 12 & 9 \end{pmatrix}$, $D = \begin{pmatrix} -4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}$

- 1. Vérifier que -4, 1, 16 sont valeurs propres de M et déterminer, pour chacune de celles-ci, une base du sous-espace propre associé. Est-ce que M est diagonalisable?
- 2. Déterminer une matrice P carrée d'ordre 3, inversible, de première ligne égale à $\begin{pmatrix} 4 & 4 & 1 \end{pmatrix}$, telle que $M = PDP^{-1}$.
- 3. Vérifier que (D+4I)(D-I)(D-16I) est la matrice nulle.
- 4. En déduire : $M^3 = 13M^2 + 52M 64I$.
- 5. Établir : $u^3 = 13u^2 + 52u 64e$, où e désigne l'application indentité de \mathfrak{S}_2 et où u a été définie dans la partie I.

Exercice 2

On note $f: \mathbb{R} \to \mathbb{R}$ l'application de classe C^2 , définie, pour tout $x \in \mathbb{R}$, par :

$$f(x) = x - \ln(1 + x^2)$$

et C la courbe représentative de f dans un repère orthonormé. On donne la valeur approchée : $\ln(2)\approx 0,69$.

Partie I : Étude de f et tracé de C

- 1. a) Calculer, pour tout $x \in \mathbb{R}$, f'(x).
 - b) En déduire le sens de variation de f.
 - c) Calculer, pour tout $x \in \mathbb{R}$, f''(x).
- 2. Déterminer la limite de f en $-\infty$ et la limite de f en $+\infty$.
- 3. Déterminer la nature des branches infinies de C.
- 4. Montrer que C admet deux points d'inflexion dont on déterminera les coordonnées.
- 5. Tracer C. On utilisera un repère orthonormé d'unité graphique 2 centimètres, et on précisera la tangente à C en l'origine et en chacun des points d'inflexion.
- 6. Calculer $\int_0^1 x f(x) dx$.

A cet effet, on pourra utiliser le changement de variable défini par $t = 1 + x^2$.

Partie II : Étude d'une suite et d'une série associées à f

On considère la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=1$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n)$$

- 1. Montrer que $(u_n)_{n\geqslant 0}$ est décroissante.
- 2. Établir que la suite $(u_n)_{n\geqslant 0}$ converge et déterminer sa limite.
- 3. Écrire un programme en -Scilab qui calcule et affiche un entier n tel que $u_n \leq 10^{-3}$.
- **4.** a) Établir: $\forall x \in [0; 1], \quad f(x) \leq x \frac{1}{2}x^2.$
 - **b)** En déduire : $\forall n \in \mathbb{N}, u_n 2 \leq 2(u_n u_{n+1}).$
 - c) Démontrer que la série $\sum_{n\geq 0}^{u} {}_{n}2$ converge.

Partie III : Étude d'une fonction de deux variables réelles associée à f

On considère l'application $F: \mathbb{R}^2 \to \mathcal{R}$, définie, pour tout $(x,y) \in \mathbb{R}^2$, par :

$$F(x,y) = f(x+y) - f(x) - f(y)$$

1. Montrer que F est de classe C^1 sur \mathbb{R}^2 et exprimer, pour tout $(x,y) \in \mathbb{R}^2$, les dérivées partielles premières de F en (x,y) à l'aide de f', x et y.

- 2. Résoudre dans \mathbb{R}^2 le système $\begin{cases} f'(x) = f'(y) \\ f'(x+y) = f'(x) \end{cases}$ En déduire les points critiques de F.
- 3. Est-ce que F admet un minimum local?

Exercice 3

Les deux parties sont indépendantes

Partie 1

Une gare dispose de deux guichets. Trois clients notés C_1, C_2, C_3 arrivent en même temps. Les clients C_1 et C_2 se font servir tandis que le client C_3 attend puis effectue son opération dès que l'un des deux guichets se libère.

On définit X_1, X_2, X_3 les variables aléatoires égales à la durée d'opération des clients C_1, C_2, C_3 respectivement. Ces durées sont mesurées en minutes et arrondies à l'unité supérieure ou égale. On suppose que les variables X_1, X_2, X_3 suivent la loi géométrique de paramètre $p, p \in]0;1[$ et qu'elles sont indépendantes. On note q=1-p.

On note A l'évènement : " C_3 termine en dernier son opération". Ainsi l'évènement A est égal à l'évènement : $(\min(X_1, X_2) + X_3 > \max(X_1, X_2))$. On se propose de calculer la probabilité de A.

Partie I

1. Rappeler la loi de X_1 ainsi que son espérance $E(X_1)$ et sa variance $V(X_1)$.

On définit la variable aléatoire $\Delta = |X_1 - X_2|$.

- 2. Calculer la probabilité $P([\Delta = 0])$.
- 3. Soit n un entier naturel non nul.

a) Justifier:
$$P([X_1 - X_2 = n]) = \sum_{k=1}^{+\infty} P([X_2 = k]) P([X_1 = n + k]).$$

- **b)** En déduire : $P([\Delta = n]) = \frac{2pq^n}{1+q}$.
- 4. a) Montrer que Δ admet une espérance $E(\Delta)$ et la calculer.
 - b) Montrer : $\mathrm{E}((X_1-X_2)^2)=2\mathrm{V}(X_1).$ En déduire que Δ admet une variance $\mathbb{V}(\Delta)$ et la calculer.
- 5. Montrer que l'évènement A est égal à l'évènement $(X_3 > \Delta)$.
- 6. a) En déduire : $P([A=\sum_{k=0}^{+\infty} P(\Delta=k)P(X_3>k).$
 - b) Exprimer P(A) à l'aide de p et q.

Partie II

Dans cette partie, X est une variable aléatoire suivant la loi géométrique de paramètre $p, p \in]0; 1[$ et Y est une variable aléatoire suivant la loi exponentielle de paramètre $\lambda, \lambda \in]0; +\infty[$. On note q = 1 - p.

On suppose que X et Y sont indépendantes, c'est à dire :

$$\forall k \in \mathbb{N}^*, \quad \forall t \in [0; +\infty[, \quad P((X=k) \cap (Y \leq t)) = P(X=k)P(Y \leq t)$$

- 1. Rappeler une densité de Y ainsi que son espérance et sa variance.
- 2. On définit la variable aléatoire $Z = \frac{Y}{X}$.
 - a) Montrer: $\forall t \in [0; +\infty[, P([Z \geqslant t]) = \sum_{k=1}^{+\infty} P(X = k)P(Y \geqslant kt).$
 - **b)** En déduire : $\forall t \in [0; +\infty[, P([Z \geqslant t]) = \frac{pe^{-\lambda t}}{1 qe^{-\lambda t}}.$
 - c) Montrer que la variable aléatoire Z admet une densité et déterminer une densité de Z.