Single-Step ODE solvers (PRU00)

Submission deadline: 14.11.2022, 23:59

Edilbert Christhuraj

November 1, 2022

1 Problem Description

1.1 Abstract problem

We consider an Ordinary Differential Equation (ODE) of the following form

$$\frac{\mathrm{d}X(t)}{\mathrm{d}t} = F(t, X(t)),\tag{1}$$

where $X(t) \in \mathbb{R}^n$, where $n \in \mathbb{R}$, and $t \in [t_{\text{initial}}, T]$, where t_{initial} and $T \in \mathbb{R}^+$, with a given initial condition as

$$X(t_{\text{initial}}) = X_{\text{initial}}. (2)$$

Test your understanding

Look at Equations (1) and (2) and ask yourself

- What quantity am I supposed to find ?
- What is/(are) the dependent and independent variable(s)?
- What are the dimensions of X(t), t, and F(t, X(t))?

1.2 Discrete problem

Since we want to use computer algorithms to solve our abstract problem (1) and (2), we must first convert the continuous abstract problem into a discrete one. Consider the continuous variable t and discretise it by $t_i \in \mathcal{T}$ where \mathcal{T} given by

$$\mathcal{T} := \{ t_j \mid t_j \in \mathbb{R}^+; t_0 = t_{\text{initial}} < t_{j-1} < t_j < t_{j+1} < t_N = T; j = 0, 1, \dots, N; N \in \mathbb{N} \}.$$
 (3)

The above fuzzy-looking mathematical cypher can be decyphered into the following picture:

For convenience you can imagine the variable t as time but it does not necessarily have to be time and it could be anything. Then, t_0 is the initial time which is equal to given initial time t_{inital} which could be zero or any value in \mathbb{R}^+ . At this point, we introduce the quantities

$$h_j = t_{j+1} - t_j \quad \forall j \in \{0, 1, \dots, N\},$$
 (4)

which are the time-steps between two successive points in the discrete time axis. For this programming exercise (PRU00) we consider $h_i = h$.

Test your understanding

- Can you recall \mathbb{R}^+ ?
- Can you describe what you see in the diagram in your own words?
- What is N above? Can you picture the discrete setup for N = 5?
- What happens to the discrete setup if $N \to \infty$?

Having discretised the independent variable t, we introduce the following notation for the dependent variable $X(t_j) := X_j$. You may understand X_j as the function $X(t_j)$ evaluated at time t_j . We apply these notations in the Equation (1) to approximate the time derivative of X(t) which gives

$$\frac{\mathrm{d}X(t)}{\mathrm{d}t} \approx \frac{X_{j+1} - X_j}{h_j}.$$
 (5)

But what about F(t, X(t))? We have several choices to approximate it. Based on our choices we have difference numerical schemes which we compiled below:

Explicit Euler Method
$$X_{j+1} = X_j + h_j F(t_j, X_j),$$
 (6)

Implicit Euler Method
$$X_{j+1} = X_j + h_j F(t_{j+1}, X_{j+1}),$$
 (7)

Implicit Midpoint rule Method
$$X_{j+1} = X_j + h_j F\left(t_j + \frac{h_j}{2}, \frac{X_j + X_{j+1}}{2}\right),$$
 (8)

Explicit Modified Euler Method
$$X_{j+1} = X_j + h_j F\left(t_j + \frac{h_j}{2}, X_j + \frac{h}{2} F(t_j, X_j)\right),$$
 (9)

Trapezoidal Method
$$X_{j+1} = X_j + h_j \frac{F(t_j, X_j) + F(t_{j+1}, X_{t+1})}{2}$$
. (10)

2 Test cases - Initial Value Problems (IVP)

2.1 IVP1

Consider an ODE

$$\frac{\mathrm{d}X(t)}{\mathrm{d}t} = \exp(-t),\tag{11}$$

where $X: \mathbb{R} \to \mathbb{R}$ and $t \in [0, 1.3]$, with initial the condition

$$X(0) = -1. (12)$$

2.2 IVP2

Consider an ODE

$$\frac{\mathrm{d}^2 X(t)}{\mathrm{d}t^2} = -wX(t),\tag{13}$$

where $X: \mathbb{R} \to \mathbb{R}$, a constant $w \in \mathbb{R}^+$ (for e.g. you may take w = 16) and $t \in [0, 4]$, with the initial condition

$$X(0) = 1. (14)$$

Tip:

Convert the problem into a system of first-order ODEs.

3 Tasks

- 1. Implement the numerical schemes Eqns. (6) (10) in Python.
- 2. Derive the exact solutions for IVP-1 and IVP-2.
- 3. Compare the numerical solutions of Eqns. (6) (10) with the derived exact solutions by plotting it.
- 4. Provide a convergence plot for Eq. (6) (10). You may consider the following formula to calculate the L_2 errors

$$\frac{\|f^{\text{exact}} - f^{\text{approx.}}\|_2}{\|f^{\text{exact}}\|_2}.$$
 (15)

20 **Points**