

$$a = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix} \qquad b = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}$$

$$a^{7} = \begin{bmatrix} 7, -4, 2 \end{bmatrix}$$

b)
$$a \cdot b = 3$$
 $a \cdot c = -5$

$$a \cdot (3b + c)$$
 $3 \cdot a \cdot b + a \cdot b$
 $(3) + (-5)$

$$a \cdot (3b + c)$$
 $3 \cdot a \cdot b + a \cdot b$ insert

 $3 \cdot (3) + (-5)$
 $9 - 5$
 4

Problem 2
$$A = \begin{bmatrix} -2 & 1 \\ -1 & 3 \\ 6 & -4 \end{bmatrix}$$
 $b = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

 $Ab = \begin{bmatrix} -2 & 1 \\ -1 & 2 \\ 6 & -4 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ -16 \end{bmatrix}$

b) $A^{T}b^{T} = \begin{bmatrix} -2 & 7 & 6 \\ 1 & 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 5 & -16 \end{bmatrix}$

$$a^{T} \cdot b = 7.3 + 4.1 + 2.1 = 23$$

d) b is in the null space of A
since b is not 0, I has not the full rank

Problem 3

a)
$$\begin{bmatrix} 2-4 \\ 13 \end{bmatrix} \begin{bmatrix} -1 \\ -3 \end{bmatrix} = \begin{bmatrix} 10 \\ -10 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \end{bmatrix}$$

b) $\begin{bmatrix} 18 \\ -3 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 13 \\ 45 \\ 5 \end{bmatrix} \begin{bmatrix} 13 \\ 45 \\ 4 \end{bmatrix}$

Proben 4
$$\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}$$

$$\begin{cases}
(x) = x_1^2 + 2x_2^3 - 3x_3 - x_1 x_2 x_3 \\
(x_1) = 2x_1 - x_2 x_3
\end{cases}$$

$$f'(x_2) = 6x_2^2 - x_1x_3$$

$$f'(x_3) = -3 - x_7x_2$$

$$\nabla_x f(x) = \left[2x_1 - x_2x_3, 6x_2^2 - x_1x_3, -3 - x_1x_2\right]$$

b)
$$f(x) = qT_{x} + xT_{x}$$

1. derivative $a(qT_{x})$; q

2. xT_{x} ; $s(xT_{x})$; derivative of this is $s(xT_{x})$; or zx

3. $f'(x) = q + zx$

Problem S

a) $F(x,y) = \left[x^{2} + y^{2} \right]$

$$d_{x}(F(x,y)) = \left[x^{2} + y^{2} \right]$$

$$d_{y}(F(x,y)) = \left[x^{2} + y^{2} \right]$$

Problem 8

a)
$$\frac{df}{dy}(f(x)) = \begin{bmatrix} 2y_1 \\ 2y_1 \end{bmatrix}$$

b) $H(x) = \begin{bmatrix} x_1 \cdot x_2 \\ x_1 \end{bmatrix} \cdot \frac{dH}{dx} (H(x)) = \begin{bmatrix} x_2 & x_1 \\ 1 & 0 \end{bmatrix}$

c) $\frac{df}{dH(x)} = \begin{bmatrix} 2 & x_1 \cdot x_2 \\ 2 & 1 \end{bmatrix}$

d) $\frac{df}{dH(x)} \cdot \frac{dH}{dx} = \begin{bmatrix} 2 & x_1 \cdot x_2 \\ 2 & 1 \end{bmatrix} \cdot \frac{dH}{dx}$

$$= \begin{bmatrix} 2x_1 \cdot x_2^2 + 2 & 2x_1^2 \cdot x_2 \\ 2x_1 \cdot x_2^2 + 2 & 2x_1^2 \cdot x_2 \end{bmatrix}$$