Independent.

2004
Higher School Certificate
Trial Examination

Mathematics Extension 1

General Instructions

- Reading time 5minutes
- Working time 2 hours
- · Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided with this paper
- All necessary working should be shown in every question

Total marks - 84

Attempt Questions 1 - 7

All questions are of equal value

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:

Question 1 Begin a new page Marks

- a. Find the domain of the function $f(x) = \log_e \left(\frac{5-x}{3-x} \right)$
- b. Consider the curves $y = x^3$ and $y = x^2 x$.
 - i. Show that the curves intersect at the point where x = 0.
 - ii. Find the acute angle between the curves at this point.
- c. If $P(x) = x^4 3x^3 + ax^2 ax 12$ is divisible by (x-3), find the value of a.
- d. In the diagram, AB = 10 cm, CD = 15 cm and AC = x. Find the value of x.

e. Six people are to be placed around a circular table. Two of them want to sit together.

In how many ways can the table be arranged?

Quest	ion 2 Begin a new page	Mark
a.	Find the exact value of $\int_{-1}^{1} \sqrt{4-x^2} dx$, using the substitution $x = 2\sin\theta$.	3
b.	For the expansion of the expression $\left(x - \frac{3}{x}\right)^{s}$, find the term independent of x	3
c.	i. Sketch the graph of $y = 2\tan^{-1} 3x$.	2
	ii. State the domain and range of the function.	1
d.	Solve the equation $3\cos\theta - 4\sin\theta = 5$, for $-\pi \le \theta \le \pi$.	3
	Express your answers to 2 decimal places.	
Question 3 Begin a new page		
a.	In how many ways can 8 prefects be chosen from a group of 20 nominees?	1
b.	Find the exact value of $\int_{0}^{\pi/2} \sin^2 2x dx$.	3
c.	Use Mathematical Induction to show that $\sum_{r=1}^{n} 4r - 3 = 2n^2 - n$.	3
d.	Jaime wants to use Newton's Method to obtain the zero of $\sqrt[3]{x} = 0$.	
	i. Using Newton's Method once with a first approximation of $x = 1$, obtain a second approximation.	2
	ii. Using Newton's Method with a first approximation $x_1 \neq 0$, show that the second approximation, x_2 , is such that $ x_2 > x_1 $.	3

Explain the significance of this result.

Question 4 Begin a new page		Marks
a .	A particle is moving so that its displacement, x cm, at any time, t	
	seconds, is given by the equation $x = 2\cos\left(3t + \frac{\pi}{6}\right)$.	
	i. Show that the particle moves in Simple Harmonic Motion.	2
	ii. State the period of the motion.	1
	iii. When does the particle first come to rest after $t = 0$?	1
b.	$P(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$.	
	The normal at P cuts the x axis at S and the y axis at T .	
	i. Draw a half page sketch to show this information.	1
	ii. State the equation of the normal to the parabola at P and hence show that S is the point $(ap(2 + p^2), 0)$ and that T is the point $(0, a(2 + p^2))$.	3
	iii. Find the value(s) of p such that P is the midpoint of ST .	1
с.	i. Explain why the probability of obtaining 2 heads and a tail when three coins are tossed is $\frac{3}{8}$.	1
	ii. Sian tosses three coins 10 times in a row. Calculate the probability of obtaining 2 heads and a tail at least 2 times. Give your answer correct to 3 significant figures.	2

Question 5

Begin a new page

Marks

a. The rate at which a body cools in air is proportional to the difference between the temperature, T, of the body and the constant surrounding temperature, S. This can be expressed as

$$\frac{dT}{dt} = k(T - S)$$

where t is time in minutes and k is a constant.

i. Show that $T = S + Be^B$, where B is a constant, is a solution of the above equation.

2

ii. If a particular body cools from 100° to 80° in 30 minutes, find the temperature of the body after a further 30 minutes, given the surrounding temperature remains constant at 25°. Give your answer to the nearest degree.

3

b. A man of height 2 metres throws a ball from M to the roof of a 15 metre high building. He throws the ball at an initial velocity of 25m/s, and he is 20 m from the base of the building.

Between which two angles of projection must be throw the ball to ensure that it lands on the roof of the building?

5

(Assume $\ddot{x} = 0$ and $\ddot{y} = -10$)

c.

i. By considering $(1 + x)^{n+3} = (1 + x)^n (1 + x)^3$, show that $\binom{n+3}{k} = \binom{n}{k} + 3 \binom{n}{k-1} + 3 \binom{n}{k-2} + \binom{n}{k-3}$.

2

ii. Between what values must k lie?

1

Question 6

Begin a new page

Marks

. 4

1

a. AB is a tangent to the circle. AB | EC and CD = AC.

Copy the diagram into your booklet.

Prove that AC | ED.

- b. A particle is moving in a straight line. At time t seconds, it has displacement x metres from a fixed point O on the line, velocity v ms⁻¹ and acceleration a ms⁻². The particle starts from O and you are given that $v = (2 x)^2$.
 - i. Find an expression for a in terms of x.
 - ii. Find an expression for x in terms of t.
 - iii. Find the distance from O when the particle has a speed of 1 ms⁻¹.
- c. i. Given a function, y = f(x), under what geometrical conditions would $f(x) = f^{-1}(x)$?
 - ii. Give an example of a function for which $f(x) = f^{-1}(x)$.

Question 7

Begin a new page

Marks

a. i. Find $\frac{d}{dx} \left(x \cos^{-1} x - \sqrt{1 - x^2} \right)$

2

ii. Find the area between the curve $y = \cos x$, the y axis and the lines $y = \frac{1}{2}$ and $y = \frac{\sqrt{3}}{2}$.

3

b. The diagram shows a unit square, ABCD, where A(1, 0), B(1, 1), C(2, 1), D(2, 0).

Copy the diagram into your workbook.

i. A line, l, passing through the origin with gradient m, cuts the sides AB and CD at P and Q respectively.

Comment on the possible values of m.

1

ii. For what value(s) of m does the line, l, divide the area of the square in the ratio 2:1?

3

iii. Another line, k, passes through the origin with gradient, n, and cuts the square through sides AB and BC at S and T respectively.

Show that it is not possible for k to divide the area of the square in the ratio 2:1.

3