PC829 Series

* TÜV (VDE0884) approved type is also available as an option.

■ Features

1. Symmetrical terminal configuration

PC829: 2-channel type PC849: 4-channel type 2. High current transfer ratio

(CTR: MIN. 50% at $I_F = 5mA$, $V_{CE} = 5V$)

3. High isolation voltage between input and output (V_{iso} : 5 000 V_{rms})

4. Recognized by UL, file No. E64380

■ Applications

- 1. Telephone exchangers
- 2. Computer terminals
- 3. System appliances, measuring instruments
- 4. Signal transmission between circuits of different potentials and impedances

■ Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

		J		
	Parameter	Symbol	Rating	Unit
Input	Forward current	I_F	50	mA
	*1Peak forward current	I_{FM}	1	A
	Reverse voltage	V _R	6	V
	Power dissipation	P	70	mW
Output	Collector-emitter voltage	V _{CEO}	35	V
	Emitter-collector voltage	V _{ECO}	6	V
	Collector current	Ic	50	mA
	Collector power dissipation	Pc	150	mW
Total power dissipation		P _{tot}	170	mW
*2Isolation voltage		V iso	5 000	V _{rms}
Operating temperature		T opr	- 25 to + 100	°C
Storage temperature		T stg	- 40 to + 125	°C
*3Soldering temperature		T sol	260	°C

- *1 Pulse width<=100 \u03c4s, Duty ratio: 0.001
- *2 40 to 60% RH, AC for 1 minute
- *3 For 10 seconds

High Density Mounting Type Photocoupler

■ Electro-optical Characteristics

 $(Ta = 25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		VF	$I_F = 20mA$	-	1.2	1.4	V
	Peak forward voltage		V _{FM}	$I_{FM} = 0.5A$	-	-	3.0	V
	Reverse current		I_R	$V_R = 4V$	-	-	10	μΑ
	Terminal capacitance		Ct	V = 0, $f = 1kHz$	-	30	250	pF
Output	Collector dark current		Iceo	$V_{CE} = 20V, I_F = 0$	-	-	10 -7	A
Transfer characteristics	Current transfer ratio		CTR	$I_F = 5mA$, $V_{CE} = 5V$	50	-	400	%
	Collector-emitter saturation voltage		V _{CE(sat)}	$I_F = 20 \text{mA}$, $I_C = 1 \text{mA}$	-	0.1	0.2	V
	Isolation resistance		R _{ISO}	DC500V, 40 to 60% RH	5 x 10 ¹⁰	1011	-	Ω
	Floating capacitance		$C_{\rm f}$	V = 0, f = 1MHz	-	0.6	1.0	pF
	Cut-off frequency		fc	$V_{CE} = 5V$, $I_{C} = 2mA$, $R_{L} = 100 \Omega$, $-3dB$	-	80	-	kHz
	Response time	Rise time	t _r	$V_{CE} = 2V$, $I_{C} = 2mA$, $R_{I} = 100 \Omega$	-	4	-	μs
		Fall time	t_{f}	V CE – Δ V, 1 C – ΔΠΙΑ, Κ L = 100 \$2	-	3	-	μs

Fig. 1 Forward Current vs.

Ambient Temperature

Fig. 3 Peak Forward Current vs. Duty Ratio

Fig. 2 Collector Power Dissipation vs.
Ambient Temperature

Fig. 4 Forward Current vs. Forward Voltage

Fig. 5 Current Transfer Ratio vs.
Forward Current

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

Fig. 9 Collector Dark Current vs.

Ambient Temperature

Fig. 6 Collector Current vs.
Collector-emitter Voltage

Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig.10 Response Time vs. Load Resistance

Load resistance R_L (k Ω)

Fig.11 Frequency Response

Fig.12 Collector-emitter Saturation Voltage vs. Forward Current

• Please refer to the chapter "Precautions for Use"

Test Circuit for Response Time

Test Circuit for Frepuency Response

