Lecture 15

Name: Harsh Sanjay Roniyar

Roll Number: 22B3942

Assignment Discussion/Doubts

Now beginning with a shorter topic

Feature Extraction and Selection

Increasing or decreasing the number of features and how they affect our classification for the data

Variable Transformation

Say, we have a heavy tailed distribution (i.e. not Gaussian, usually for income distribution), then we can create a new feature, $\phi(x) = \log(x + \epsilon)$.

Some other transformations are:

- Power: $\phi(x) = x^p$
- Exponential: $\phi(x) = e^{ax+b}$

These transformations that help in approximate transformation of some other distribution into a Gaussian Distribution, since all our techniques were based on Gaussian.

So, how would we do an exact transformation:

$$x \sim p_x(x)$$

Then, find a transformation $\hat{x} = f(x)$ such that $q_x(\hat{x})$ is a desired (and well-behaved) distribution.

Goal: Find the transformation f(x) -

$$\int_{x_1}^{x_2} p(x) dx = \int_{f(x_1)}^{f(x_2)} q(\hat{x}) d\hat{x}$$

This reduces to,

$$q(\hat{x}) = p(f^{-1}(\hat{x})) \left| rac{df^{-1}(\hat{x})}{d\hat{x}}
ight|$$

which is equivalent to,

$$q(\hat{x}) = p(x) \left| rac{dx}{d\hat{x}} \right|$$

Interaction Variables

x_1	x_2	$x_3=x_1x_2$
Row 1, Col 1	Row 1, Col 2	Row 1, Col 3
Row 2, Col 1	Row 2, Col 2	Row 2, Col 3
Row 3, Col 1	Row 3, Col 2	Row 3, Col 3

We can model either as $w_1x_1 + w_2x_2 + b$, or as $w_1x_1 + w_2x_2 + w_3x_1x_2 + b$.

In the second case, this will allow us to model x_1 and x_2 separately and their combination is now part of a new feature, since from the initial model we can see that the output would be something midway between both x_1 and x_2 . So adding x_3 allows the two features to interact in some way, and we would be able to represent the relation between them via x_3 .

Modelling discrete variables

Assume that the discrete variable has C unique values. So, there are two scenarios -

- 1. The variable is an input to a model: Then we will have to convert the variable to binary form for our model (... we would have C binary variables)
- 2. The variable is an output of a model \implies One-Hot Encoding

Cross Entropy Loss $= -\sum_{i=1}^N \sum_{j=1}^C t_{ij} \log p_{ij}$, where t_{ij} is the j^{th} one-hot encoding for the i^{th} sample

But, this one-hot encoding would not work for the input since that would just add redundancy, leading to instability in the data, because, for example $w_1x_1 + w_2x_2 + w_3x_3 + b$,

after one hot encoding would be $w_1x_1 + w_2x_2 + w_3(1 - x_1 - x_2) + b$, where the third term is redundant.

Therefore for input, we use C-1 binary columns ⇒ Dummy Encoding

Note: Do not use integers to encode discrete variables

An example illustrating the difference between the encoding depending on whether it is an input to the model or output of the model.

Pet Type	x_1, x_2 (Input)	x_1, x_2, x_3 (Output)
Dog	10	100
Dog	10	100
Cat	0 1	010
Parrot	0 0	0 0 1

Image Features

- Pixel-level
 - Gray-scale histograms
 - Color histograms
 But these representations won't retain shape of the images
- Shape-based
 - Hue invariant moments
- Texture-based
 - Fourier descriptors

Audio Features

- MFCC
 - Windowing
 - DFT: Power Spectral Density
 - Filter Bank
 - DCT: Discrete Cosine Transform (\sim to Fourier Transform without complex components)

Text Features

TF-IDF and then using SVM was the classical way of processing text earlier.

TF-IDF

TF-IDF stands for *Term Frequency - Inverse Document Frequency*, used to evaluate how important a word is to a document in a corpus.

Term Frequency (TF)

The term frequency (tf) of a term t in a document d is calculated as:

$$ext{tf}(t,d) = rac{f(t,d)}{\sum_z f(z,d)}$$

where:

- f(t, d) is the frequency of term t in document d.
- $\sum_z f(z,d)$ is the sum of frequencies of all terms in the document.

Inverse Document Frequency (IDF)

The inverse document frequency (idf) of a term t in a set of documents D (corpus) is calculated as:

$$\mathrm{idf}(t,D) = \log\left(\frac{|D|}{1 + |\{d \in D: t \in d\}|}\right)$$

where:

- |D| is the total number of documents.
- $|\{d \in D : t \in d\}|$ is the number of documents containing the term t.

TF-IDF

The final TF-IDF value is the product of TF and IDF:

$$TF-IDF = tf(t, d) \times idf(t, D)$$