EC569 Economic Growth Technology and Efficiency (Lecture 8)

İlhan Güner School of Economics, University of Kent

March 3, 2019

Technology Production Function

 Last lecture, we assumed technology growth rate is independent of current technology level:

$$\hat{A} = \frac{L_A}{\mu}$$

 However, technology is cumulative: Researchers begin their investigations where those who came before them left off.

Cumulative Nature of Technology Development

Suppose that
$$\hat{A} \equiv \frac{\dot{A}}{A} = \frac{L_A^{\lambda}}{\mu} A^{\phi-1}$$
, then

$$\dot{A} = \frac{L_A^{\lambda}}{\mu} A^{\phi}$$

- If $\phi > 0$: "standing on shoulders"
 - Isaac Newton: If I have seen father than others, it is because I have stood on the shoulders of giants.
 - Larger base of knowledge
 - Larger set of tools
- If $\phi < 0$: "fishing out"
 - Fishing out effect: easiest discoveries have already been made
 - More is known today, more effort for a researcher to learn everything required

Decreasing Returns to Scale in Technology Production

- λ < 1
- Efforts of most of the researchers will be wasted if many are working at the same project
- Charles Darwin came up earlier with 'natural selection' than Alfred Wallace
- Two teams completed the sequencing of human genome simultaneously

Long-run growth rate

 $\dot{A} = \frac{L_A^{\lambda}}{\mu} A^{\phi}$

- Growth rate of A, $g_A = \frac{\dot{A}}{A} = \frac{(\gamma_A L)^{\lambda}}{\mu} A^{\phi-1} = \frac{(\gamma_A L)^{\lambda}}{\mu A^{1-\phi}}$
- For g_A to be constant, $(\gamma_A L)^{\lambda}$ and $\mu A^{1-\phi}$ should grow at the same rate.
- Growth rate of $(\gamma_A L)^{\lambda}$ is λn , where n is the population growth rate.
- Growth rate of $\mu A^{1-\phi}$ is equal to $(1-\phi)g_A$
- $(1 \phi)g_A = \lambda n$
- Growth rate of technology: $g_A = \frac{\lambda n}{(1-\phi)}$
- g_A is positively correlated with λ and n, and negatively correlated with ϕ

Determinants of productivity growth

- In the long-run: $g_A = \frac{\lambda n}{(1-\phi)}$
 - Unaffected by the fraction of population engaging in R&D
 - Intuitively, higher γ_A leads to higher \hat{A} in the short run
 - ullet as A grows it becomes harder to make new innovations
 - g_A and n are positively correlated
- Short-run growth rate of productivity is a function of fraction of labor force engaging in R&D.

Income per capita in the long run

- Fraction of labor force engaging in R&D impacts income per capita
 - · Positively: high level of productivity in the long run
 - Negatively: smaller fraction of workers in the production
- Size of labor force, L(t), impacts income per capita positively (scale effect):
 - demand effect: $L\uparrow\Rightarrow$ larger market for an idea $\Rightarrow\uparrow$ return to research
 - supply effect: $L \uparrow \Rightarrow$ more potential creators of ideas

Romer Model

- Consists of three sectors:
 - Research
 - Produces designs and sells to intermediate goods sector
 - Intermediate goods
 - Monopolistic competition
 - Purchase design of a specific capital good from the research sector
 - Produce a particular capital good, x_j , and sell it to the final goods producers
 - Final goods
 - Large number of identical firms
 - $Y = L_Y^{1-\alpha} \sum_{j=1}^A x_j^{\alpha}$
- Technological progress:
 - addition of new varieties of the goods to the economy, $A \uparrow$

Romer Model, cont'd

- Without going into tedious solution of the model, focus on the insights
- Return to innovation: expected discounted sum of future profits
- Fraction of labor force working in research:
 - The fastest the economy grows (higher g_A), the higher the fraction of population that works in research.
 - The higher the discount rate, the lower the return to innovation, the lower the fraction of population doing research.

Schumpeterian Model

- Technological progress in Romer:
 - increase in the number of intermediate goods
 - steam engines and electric motors are used alongside each other
- Technological progress in the Schumpeterian model:
 - Developed by Aghion and Howitt (1992) and Grossman and Helpman (1991)
 - Insights of Joseph Schumpeter, creative destruction
 - Technological progress: an innovation replaces an existing intermediate good

Schumpeterian model, cont'd

- Consists of three sectors:
 - Final goods
 - Large number of competitive firms
 - $Y = L_Y^{1-\alpha} A_i^{1-\alpha} x_i^{\alpha}$
 - One variety of intermediate input is used in production
 - *i*: version of the intermediate input.
 - Example: A_4 : modern cars, A_3 : the Model T Ford, A_2 : horse cart, A_1 : walking
 - x_i : quantity of intermediate input i used in production.
 - Intermediate good
 - Monopoly
 - Purchases design of a single version of the capital good
 - Produces capital good and sells to the final goods producers
 - Research
 - Produces designs and sells to intermediate goods sector

Research Sector

- With certain probability an innovation occurs
- If an innovation occurs, version of the intermediate good increases from A_i to A_{i+1}
- After an innovation, previous versions of the capital good becomes useless

Research sector, cont'd

Fraction of labor force working in research

- · Negatively on the discount rate
- Positively on the probability of innovation
 - The higher the chance of a successful innovation, the higher the incentives to innovate
- Negatively on the probability of innovation
 - The higher the chance of being replaced by subsequent innovators, the lower the incentives to innovate

Comparison of the Romer model and the Schumpeterian model

- In both models, long-run *growth* is independent of the fraction of labor force engaging in research
- In both models, level of income per capita in the long run is impacted by the fraction of labor force engaging in research
- If the discount rate applied to monopoly profits is large, the Schumpeterian model imply a larger fraction of labor force engaging in innovation
 - because relative importance of being replaced by others is small
- If the discount rate is relatively small, the Schumpeterian model imply a smaller fraction of labor force engaging in research
 - because people are sensitive to the future destruction of profits

Optimal R&D

- Because of the externalities in the innovation process, competitive equilibrium R&D level is not optimum.
- Three distortions: Remember that $\dot{A}=\frac{L_A}{\mu}A^{\phi}$
 - if $\phi > 0$: "standing on shoulders"
 - Researchers do not benefit from the positive impact on the subsequent innovators
 - if $\lambda < 1$: "stepping on toes"
 - Researchers do not take into account potential duplication of research efforts
 - Consumer surplus effect
 - Private gain of an innovation = profit | Consumer surplus = Social gain
- Ground for government interference to correct for the externalities

Efficiency

$Productivity = Technology \times Efficiency$

- Technology: Knowledge about how factors of production can be combined to produce output
- Efficiency: How effectively given technology and factors of production actually used
- Productivity is much lower in poor countries than in rich countries
- Not obvious the only reason is a gap of technology
- Many of the most advanced technologies are being used in poor countries

Types of Inefficiency

- Unproductive activities
- Idle resources
- Misallocation among sectors
- Misallocation among firms
- Technology blocking

Unproductive Activities

- rent seeking: involve the use of laws or government institutions to bring private benefits
- Economic rent: payment to a factor of production in excess of what is required to elicit the supply of that factor
- E.g.: quotas to limit the imports of some goods, lobbying, ...
- Costs: a good deal of effort, bright people work in unproductive activities
- Illegal activities: theft, smuggling, kidnapping for ransom, ...

Idle Resources

- Factors of production not used at all
- Unemployment, underemployment
- Factory that sits unused
- Factory running at less than full capacity
- capital hoarding: factory shutdown during recessions
- Example: Air Afrique: 500 employees per airplane, EasyJet: 66 employees per airplane
- 'Fireman' employed in diesel engines of the United States and Canada railroads during the middle of the 20th century

Misallocation Among Sectors

Misallocation among sectors: marginal product of inputs are not equal across sectors

- barriers to mobility
 - · geographical isolation
 - wage policy: e.g. sectoral minimum wage
- wages ≠ marginal product of labor
 - market segmentation: potentially productive people are unable to work in certain sectors

Efficiency Gains from Sectoral Reallocation

Reallocation from agriculture to manufacture

- Taiwan: 0.7% of 5.4% annual growth over 1966-1991
- Korea: 0.7% of 5.7% annual growth over 1960-1990
- US: fraction of agricultural labor 50% to 3% over 1880-1980
- China: fraction of agricultural labor 69% to 40% over 1980-2009

Misallocation Among Firms

Misallocation among firms: marginal product of inputs are not equal across firms

- government-owned firms over-employ: political power
- monopolies under-employ: monopolistic profit
- financial frictions prevent efficient allocation of capital: financial development and growth

Technology Blocking

Agents deliberately prevent the use of technology

- Gutenbergs printing press (1453): scribes
- automated weaving loom (19th century): Luddites
- margarine (late 19th century): dairy farmers
- Netscape browser: Microsoft

Isn't technological progress beneficial to the economy?

- creative destruction and technology blocking
- the success of technology blocking depends on the relative power of the opposer/supporter
- rich countries are more prone to technology blocking
- technology blocking requires a well functioning government