Esame per il Corso di ALGEBRA LINEARE

28/06/2023

- 1. **(7 punti)** Si consideri il numero complesso $z = -\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}i$.
 - (a) Si calcolino i seguenti numeri:
 - i. Il modulo |z| di z.
 - ii. Il coniugato \bar{z} di z.
 - iii. Il numero complesso $\frac{1}{7}$.
 - (b) Si calcoli il prodotto zw dove $w = 5(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4}))$.
 - (c) Si calcolino tutte le radici quadrate di z.
- 2. (7 punti) Si consideri la seguente matrice:

$$A = \begin{pmatrix} 2 & 0 & -4 & 2 \\ 1 & 1 & -1 & 1 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & -4 & 2 \end{pmatrix}$$

- (a) Si calcoli una forma ridotta U di A e si determini il rango di A.
- (b) Si trovi una matrice invertibile E tale che A = EU.
- (c) Si risolva il sistema lineare per cui la matrice A è la matrice aumentata corrispondente.
- (d) Si dica se il sistema lineare omogeneo Ax = 0 ammette una sola soluzione.
- 3. (10 punti) Si consideri la seguente matrice con $t \in \mathbb{C}$:

$$A_t = \begin{pmatrix} 2 & 0 & 0 \\ t & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

- (a) Si calcolino gli autovalori di A_t .
- (b) Si determini i valori di $t \in \mathbb{C}$ per cui la matrice A_t è diagonalizzabile.
- (c) Si trovino basi per ognuno degli autospazi di A_0 .
- 4. (6 **punti**) Si consideri la matrice $B = \begin{pmatrix} 1 & 1 \\ 0 & 2 \\ 3 & 3 \end{pmatrix}$.

Vero o falso? Si giustifichi la risposta!

- (a) La matrice B è la matrice associata all'applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^3$ definita come $f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x \\ 2y \\ 3x \end{pmatrix}$ rispetto alla base $\mathcal{B} = \left\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\right\}$ di \mathbb{R}^2 e la base canonica di \mathbb{R}^3 .
- (b) Lo spazio delle colonne C(B) di B ha dimensione 3.
- (c) Lo spazio nullo N(B) di B possiede una base ortonormale.
- 5. (1 punti) Sia V uno spazio vettoriale su \mathbb{K} con base $\mathcal{B} = \{b_1, \dots, b_n\}$. Si dimostri che l'applicazione delle coordinate $c_{\mathcal{B}} \colon V \to \mathbb{K}^n$ è un isomorfismo.

Angolo α	$cos(\alpha)$	$sin(\alpha)$
0	1	0
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{2}$	0	1
$\frac{3\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
π	-1	0
$\frac{5\pi}{4}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$
$\frac{3\pi}{2}$	0	-1
$\frac{7\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$