Analysis Pipeline

This analysis pipeline script was written by Julián Candia and Ceereena Ubaida-Mohien to ensure the reproducibility of results reported in "Transcriptomics and proteomics of gastrocnemius muscle biopsies in peripheral artery disease" by L. Ferrucci, J. Candia, C. Ubaida-Mohien et al. For questions and/or comments, please contact Julián Candia (julian.candia@nih.gov), Ceereena Ubaida-Mohien (ceereena.ubaida-mohien@nih.gov) or Luigi Ferrucci (Ferruccilu@mail.nih.gov).

FIGURE 1:

FIG. 1A)

<u>DEG limma_voom.R</u>: using raw gene expression counts as input, this script was used to filter genes, perform voom quantile normalization, and compute empirical Bayes statistics for differential gene expression.

DEG_volcano_coding.R: generates Volcano plot of coding genes.

FIG. 1B)

DEG volcano noncoding.R: generates Volcano plot of non-coding genes.

FIG. 1C)

TPM boxplots genes.R: generates TPM expression boxplot for a target gene of interest.

FIG. 1D)

We implemented our GSEA framework (publicly available under GPL-3.0 license at https://github.com/juliancandia/GSEA_Pathway_Analysis) using parameters n_run = 1000, adj_pval_thres = 0.05, pwy_sel_thres = 80, gene_sel_thres = 80, seed = 123, eps = 0. We performed separate runs for "Hallmarks" and "Canonical_Pathways". Output files were manually merged and annotated (provided as **Supplementary Data 2**).

DEG GSEA barplot.R: annotated pathways are visualized using a barplot chart.

FIGURE 2:

FIG. 2A)

DEP_volcano.R: generates Volcano plot of proteins.

FIG. 2B)

ETC ProteinHeatmap.R: generates heatmap of ETC complex proteins.

FIG. 2C)

RibosomeBarplot.R: generates ribosomal protein barplot.

FIG. 2D)

We implemented our GSEA framework (publicly available under GPL-3.0 license at https://github.com/juliancandia/GSEA_Pathway_Analysis) using parameters n_run = 1000, adj_pval_thres = 0.05, pwy_sel_thres = 80, gene_sel_thres = 80, seed = 123, eps = 0. We performed separate runs for "Hallmarks" and "Canonical_Pathways". Output files were manually merged and annotated (provided as **Supplementary Data 4**).

DEP GSEA barplot.R: annotated pathways are visualized using a barplot chart.

FIGURE 3:

FIG. 3A-B)

<u>ETC_prot_net.R</u>: calculates full list of protein pairwise correlations and filtered list for FDR-adjusted p<0.05, separately for PAD and non-PAD subcohorts. It also generates an annotated list of ETC proteins. These files were uploaded into Cytoscape v. 3.9.1 to generate protein network visualizations (ETC_networks.cys).

FIG. 3C -D)

Co-regulation_ProteinsPAD_Non-PAD.R calculates the correlation of ETC complex proteins with PAD and non-PAD.

FIG. 3E)

ETC_prot_net_closeness.R: implements algorithm to determine the average closeness centrality of the protein PAD and non-PAD networks, as well as random network ensembles to assess statistical significance. For further details, see "Network analysis" under the "Online methods" section.

FIG. 3F)

ETC_prot_correl_comparison.R: performs a statistical comparison between pairwise correlation distributions for PAD and non-PAD, separately determined for each ETC protein complex.

FIGURE 4:

PAD_muscle paper.sas: SAS code to generate csv output files, which, in turn, are uploaded into ORIGIN PRO for plotting.

FIGURE 5:

FIG. 5A)

Prot_mRNA_cor.R: calculates protein-mRNA correlations with 95% confidence-level ranges for PAD and non-PAD subcohorts.

Prot_mRNA_cor_groups.R: classifies protein-mRNA pairs based on correlation significance in PAD and non-PAD subcohorts.

Prot_mRNA_cor_plot.R: generates plot of protein-mRNA correlations in PAD (y-axis) vs non-PAD (x-axis) colored by significance group, highlighting genes contained in several target gene sets.

FIG. 5B-D)

Prot_mRNA_cor_diff.R: generates detailed plots of PAD vs non-PAD differences for genes contained in several target gene sets.