CS1231(S) Tutorial 8: Relations Solutions

National University of Singapore

2020/21 Semester 1

1. Let $A = \{1, 2, ..., 10\}$ and $B = \{2, 4, 6, 8, 10, 12, 14\}$. Define a relation R from A to B by setting

$$x R y \Leftrightarrow x \text{ is prime and } x \mid y$$

for each $x \in A$ and each $y \in B$. Write down the sets R and R^{-1} in roster notation. Do not use ellipses (\dots) in your answers.

Solution.

$$R = \{(2,2), (2,4), (2,6), (2,8), (2,10), (2,12), (2,14), (3,6), (3,12), (5,10), (7,14)\}.$$

$$R^{-1} = \{(2,2), (4,2), (6,2), (8,2), (10,2), (12,2), (14,2), (6,3), (12,3), (10,5), (14,7)\}.$$

- 2. Let R be a relation on a set A. Show that R is symmetric if and only if $R = R^{-1}$. Solution.
 - 1. ("Only if")
 - 1.1. Suppose R is symmetric.
 - 1.2. (\subseteq)
 - 1.2.1. Let $x, y \in A$ such that $(x, y) \in R$.
 - 1.2.2. Then x R y by the definition of x R y;
 - 1.2.3. \therefore y R x as R is symmetric;
 - 1.2.4. \therefore $x R^{-1} y$ by the definition of R^{-1} ;
 - 1.2.5. $(x,y) \in R^{-1}$ by the definition of $x R^{-1} y$.
 - 1.3. (\supseteq)
 - 1.3.1. Let $x, y \in A$ such that $(x, y) \in R^{-1}$.
 - 1.3.2. Then $x R^{-1} y$ by the definition of $x R^{-1} y$;
 - 1.3.3. \therefore y R x by the definition of R^{-1} ;
 - 1.3.4. \therefore x R y as R is symmetric.
 - 2. ("If")
 - 2.1. Suppose $R = R^{-1}$.
 - 2.1.1. Let $x, y \in A$ such that x R y.
 - 2.1.2. Then $(x,y) \in R$ by the definition of x R y;
 - 2.1.3. $(x,y)R^{-1}$ as $R = R^{-1}$;
 - 2.1.4. \therefore $x R^{-1} y$ by the definition of $x R^{-1} y$;
 - 2.1.5. \therefore y R x by the definition of R^{-1} .
 - 2.2. So R is symmetric.
- 3. For each of the following relations on \mathbb{Q} , determine if it is (i) reflexive, (ii) symmetric, (iii) transitive, (iv) antisymmetric, (v) an equivalence relation.

- (a) R is defined by setting x R y if and only if $xy \ge 0$ for all $x, y \in \mathbb{Q}$.
- (b) S is defined by setting x S y if and only if xy > 0 for all $x, y \in \mathbb{Q}$.

(c) T is defined by setting x T y if and only if $|x - y| \le 2$ for all $x, y \in \mathbb{Q}$.

Solution.

- (a) R is reflexive and symmetric. It is not transitive because 1 R 0 and 0 R -1 but 1 R -1. Since it is not transitive, it is not an equivalence relation. It is not antisymmetric because 1 R 2 and 2 R 1 but 1 \neq 2.
- (b) S is symmetric and transitive. It is not reflexive because 0 \mathcal{S} 0. Since it is not reflexive, it is not an equivalence relation. It is not antisymmetric because 1 S 2 and 2 S 1 but $1 \neq 2$.
- (c) T is reflexive and symmetric. It is not transitive because $-2\ T$ 0 and 0 T 2 but $-2\ T$ 2. Since it is not transitive, it is not an equivalence relation. It is not antisymmetric because 1 T 2 and 2 T 1 but $1 \neq 2$.
- 4. Define a relation R on \mathbb{Q} as follows: for all $x, y \in \mathbb{Q}$,

$$x R y \Leftrightarrow x - y \in \mathbb{Z}.$$

- (a) Show that R is an equivalence relation.
- (b) Find an element a in the equivalence class $\left[\frac{37}{7}\right]$ that satisfies $0 \le a < 1$.
- (c) Devise a general method to find, for each given equivalence class [x], where $x \in \mathbb{Q}$, an element $a \in [x]$ such that $0 \le a < 1$. Justify your answer.

Solution.

- (a) 1. ("Reflexivity")
 - 1.1. Let $x \in \mathbb{Q}$.
 - 1.2. Then $x x = 0 \in \mathbb{Z}$.
 - 1.3. So x R x.
 - 2. ("Symmetry")
 - 2.1. Let $x, y \in \mathbb{Q}$ such that x R y.
 - 2.2. Then $x y \in \mathbb{Z}$ by the definition of R.
 - 2.3. So $y x = -(x y) \in \mathbb{Z}$ as \mathbb{Z} is closed under taking negatives.
 - 2.4. This implies y R x by the definition of R.
 - 3. ("Transitivity")
 - 3.1. Let $x, y, z \in \mathbb{Q}$ such that x R y and y R z.
 - 3.2. Then $x y \in \mathbb{Z}$ and $y z \in \mathbb{Z}$ by the definition of R.
 - 3.3. So $x z = (x y) + (y z) \in \mathbb{Z}$ as \mathbb{Z} is closed under addition.
 - 3.4. This implies x R z by the definition of R.
 - 4. Since R is reflexive, symmetric and transitive, it is an equivalence relation. \Box
- (b) Note that $\frac{37}{7} = 5\frac{2}{7}$. Thus $\frac{37}{7} \frac{2}{7} = 5 \in \mathbb{Z}$. This implies $\frac{37}{7} R \frac{2}{7}$ and hence $\frac{2}{7} \in \left[\frac{37}{7}\right]$.
- (c) Let $x \in \mathbb{Q}$. Take $m \in \mathbb{Z}$ and $n \in \mathbb{Z} \setminus \{0\}$ such that x = m/n. Without loss of generality, we may assume n > 0. Define $a = (m \mod n)/n$. Then we know $0 \le a < 1$ because $0 \le m \mod n < n$ by the definition of $m \mod n$. In addition,

$$x - a = \frac{m}{n} - \frac{m \bmod n}{n} = \frac{m - (m \bmod n)}{n} = m \underline{\operatorname{div}} \, n \in \mathbb{Z}$$

as $m = n(m \operatorname{\underline{div}} n) + (m \operatorname{\underline{mod}} n)$. Thus x R a and so $a \in [x]$.

5. Let A,B be nonempty sets and f be a surjection $A\to B$. Show that $\mathscr C$ is a partition on A, where

$$\mathscr{C} = \big\{ \{ x \in A : f(x) = y \} : y \in B \big\}.$$

Solution.

- 1. We claim that each element of \mathscr{C} is nonempty.
 - 1.1. Let $S \in \mathscr{C}$.
 - 1.2. Use the definition of \mathscr{C} to find $y_0 \in B$ such that $S = \{x \in A : f(x) = y_0\}$.
 - 1.3. Use the surjectivity of f to find $x_0 \in A$ such that $f(x_0) = y_0$.
 - 1.4. Then $x_0 \in S$ by the choice of y_0 .
 - 1.5. In particular, the set S is nonempty.
- 2. (≥ 1)
 - 2.1. Let $x_0 \in A$.
 - 2.2. Define $y_0 = f(x_0)$ and $S = \{x \in A : f(x) = y_0\} \in S$.
 - 2.3. $x_0 \in S$ as $f(x_0) = y_0$.
- 3. (≤ 1)
 - 3.1. Let $x_0 \in A$ and $S, S' \in \mathscr{C}$ such that $x_0 \in S$ and $x_0 \in S'$.
 - 3.2. Use the definition of $\mathscr C$ to find $y,y'\in B$ such that $S=\{x\in A: f(x)=y\}$ and $S'=\{x\in A: f(x)=y'\}$.
 - 3.3. Then $f(x_0) = y$ and $f(x_0) = y'$ as $x_0 \in S$ and $x_0 \in S'$.
 - 3.4. This implies y = y' by the functionality of f.
- 6. Consider the "divides" relation on each of the following sets of integers. For each of these, draw a Hasse diagram, find all largest, smallest, maximal and minimal elements, and a linearization.
 - (a) $A = \{1, 2, 4, 5, 10, 15, 20\}.$
 - (b) $B = \{2, 3, 4, 6, 8, 9, 12, 18\}.$

Solution.

(a)

1 is the only minimal element and is the smallest element. 15 and 20 are maximal elements. There is no largest element. There are many linearizations; the easiest one is probably \leq on A.

(b)

2 and 3 are minimal elements. 8, 12 and 18 are maximal elements. There is no largest element. there is no smallest element. There are many linearizations; the easiest one is probably \leq on B.

- 7. **Definition.** Let \leq be a partial order on a set P, and $a, b \in P$.
 - We say a, b are comparable if $a \leq b$ or $b \leq a$.
 - We say a, b are *compatible* if there exists $c \in P$ such that $a \leq c$ and $b \leq c$.
 - (a) Is it true that, in all partially ordered sets, any two comparable elements are compatible? Justify your answer.
 - (b) Is it true that, in all partially ordered sets, any two compatible elements are comparable? Justify your answer.

Solution.

- (a) Yes. If a and b are comparable, then either $a \preccurlyeq b$ or $b \preccurlyeq a$. In the former case, we have $a \preccurlyeq b$ and $b \preccurlyeq b$ by the symmetry of \preccurlyeq , and so a and b are compatible. In the latter case, we have $a \preccurlyeq a$ and $b \preccurlyeq a$ by the symmetry of \preccurlyeq , and so a and b are compatible.
- (b) No. Consider the "divides" relation | on \mathbb{Z}^+ . This is a partial order on \mathbb{Z}^+ . We know $2 \mid 6$ and $3 \mid 6$. So 2 and 3 are compatible. However, we also know that $2 \nmid 3$ and $3 \nmid 2$. So 2 and 3 are not comparable.