Semester 1

Tutorial Exercises for Week 3 — Solutions

2022

1. For the points $A=(2,1), B=(3,-1), C=(0,5), \text{ and } D=(-2,-2), \text{ calculate } \overrightarrow{AB} \cdot \overrightarrow{CD}$.

Solution: We know that if $P=(p_1,p_2)$ and $Q=(q_1,q_2)$, then $\overrightarrow{PQ}=[q_1-p_1,q_2-p_2]$. So

$$\overrightarrow{AB} = [3-2, -1-1] = [1, -2]$$
 and $\overrightarrow{CD} = [-2-0, -2-5] = [-2, -7],$

and hence $\overrightarrow{AB} \cdot \overrightarrow{CD} = [1, -2] \cdot [-2, -7] = -2 + 14 = 12$.

- **2.** Given that $\mathbf{a} = [3, 1], \mathbf{b} = [\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}], \text{ and } \mathbf{c} = [-1, 2], \text{ find}$
 - (i) $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{c}$
 - (ii) the lengths of \mathbf{a} , \mathbf{b} and \mathbf{c}
 - (iii) the unit vectors in the directions of \mathbf{a} , \mathbf{b} and \mathbf{c}
 - (iv) the projection of \mathbf{a} onto \mathbf{b}
 - (v) the projection of c onto a

Solution:

- (i) $\mathbf{a} \cdot \mathbf{b} = \sqrt{2}$ and $\mathbf{a} \cdot \mathbf{c} = -1$
- (ii) $\|\mathbf{a}\| = \sqrt{10}$, $\|\mathbf{b}\| = 1$ and $\|\mathbf{c}\| = \sqrt{5}$
- (iii) the unit vector in the direction of \mathbf{a} is $\left[\frac{3}{\sqrt{10}}, \frac{1}{\sqrt{10}}\right]$, the unit vector in the direction of \mathbf{b} is \mathbf{b} and the unit vector in the direction of \mathbf{c} is $\left[\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right]$
- (iv) $\operatorname{proj}_{\mathbf{b}}(\mathbf{a}) = [1, -1]$
- (v) $\operatorname{proj}_{\mathbf{a}}(\mathbf{c}) = \left[-\frac{3}{10}, -\frac{1}{10} \right]$
- **3.** Given that $\mathbf{u} = [1, 2, 2]$ and $\mathbf{v} = [-4, 4, 1]$, find
 - (i) $\mathbf{u} \cdot \mathbf{v}$
 - (ii) the cosine of the angle between \mathbf{u} and \mathbf{v}
 - (iii) the projection of \mathbf{u} onto \mathbf{v}

Solution:

- (i) 6
- (ii) $\frac{2}{\sqrt{33}}$
- (iii) $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \left[-\frac{24}{33}, \frac{24}{33}, \frac{6}{33} \right]$
- **4.** Let $\mathbf{v} = [2, -6, 9, 0]$ and $\mathbf{w} = [4, 0, 2, -4]$. Find
 - (i) $\mathbf{v} \cdot \mathbf{w}$
 - (ii) the unit vectors in the directions of ${\bf v}$ and ${\bf w}$
 - (iii) $\|\mathbf{v} + \mathbf{w}\|$

Solution:

- (i) 26
- (ii) the unit vector in the direction of \mathbf{v} is $\left[\frac{2}{11}, \frac{-6}{11}, \frac{9}{11}, 0\right]$ and the unit vector in the direction of \mathbf{w} is $\left[\frac{2}{3}, 0, \frac{1}{3}, -\frac{2}{3}\right]$.
- (iii) $\sqrt{209}$. (Note this is not equal to $\|\mathbf{v}\| + \|\mathbf{w}\|$.)

5. Let \mathbf{u} , \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^n with $n \geq 2$, and let c be a scalar. Explain why the following expressions make no sense: $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$, $c \cdot (\mathbf{u} + \mathbf{v})$, $\mathbf{u} \cdot \mathbf{v} + \mathbf{w}$, $\mathbf{v} \mathbf{w}$.

Solution: First, \mathbf{u} is a vector but $\mathbf{v} \cdot \mathbf{w}$ is scalar, and we cannot take the dot product of a vector with a scalar. Second, c is a scalar but $\mathbf{u} + \mathbf{v}$ is a vector, and we cannot take the dot product of a scalar with a vector. Third, $\mathbf{u} \cdot \mathbf{v}$ is a scalar and \mathbf{w} is a vector, and we can't add a scalar to a vector. Fourth, $\mathbf{v}\mathbf{w}$ is not defined: you must always specify which operation on vectors you intend (addition, dot product, cross product, etc).

6. * Prove that if **a** and **b** are vectors in \mathbb{R}^n with $\|\mathbf{a}\| = \|\mathbf{b}\|$, then $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are orthogonal.

Solution: Using properties of the dot product, we have

$$\begin{aligned} (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) &= & \mathbf{a} \cdot (\mathbf{a} - \mathbf{b}) + \mathbf{b} \cdot (\mathbf{a} - \mathbf{b}) \\ &= & \mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b} \\ &= & & \|\mathbf{a}\|^2 - \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} - \|\mathbf{b}\|^2 \\ &= & & \|\mathbf{a}\|^2 - \|\mathbf{b}\|^2 \\ &= & 0 \end{aligned}$$

since $\|\mathbf{a}\| = \|\mathbf{b}\|$. Hence $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are orthogonal.

7. * Let $\mathbf{u} = [3,1]$ and $\mathbf{v} = [-1,1]$. Show that the vector $\mathbf{w} = [-7,-1]$ can be expressed as a linear combination of \mathbf{u} and \mathbf{v} , and draw a picture to illustrate this geometrically.

Solution: We want to find scalars c_1 and c_2 so that $\mathbf{w} = c_1 \mathbf{u} + c_2 \mathbf{v}$. Now

$$c_1\mathbf{u} + c_2\mathbf{v} = [3c_1, c_1] + [-c_2, c_2] = [3c_1 - c_2, c_1 + c_2]$$

and $\mathbf{w} = [-7, -1]$. So by comparing components, we need to solve the simultaneous equations

$$3c_1 - c_2 = -7$$
 and $c_1 + c_2 = -1$.

These have (unique) solution $c_1 = -2$ and $c_2 = 1$, so $\mathbf{w} = -2\mathbf{u} + \mathbf{v}$. (You should check this answer.)

8. Let $\mathbf{v} = \overrightarrow{PQ}$ where P = (-3, 2, 0) and Q = (4, -2, 3). Find the vector \mathbf{v} , the length of \mathbf{v} and the angles \mathbf{v} makes (to the nearest degree) with each of the positive x, y and z-axes. (These will be the angles between \mathbf{v} and the vectors \mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_3 .)

Solution: We have $\mathbf{v} = [7, -4, 3]$ and $\|\mathbf{v}\| = \sqrt{74}$. So the cosines of the angles made with the positive x, y and z-axes are

$$\frac{7}{\sqrt{74}}$$
, $-\frac{4}{\sqrt{74}}$, $\frac{3}{\sqrt{74}}$

2

yielding angles of approximately 36°, 118° and 70° respectively.

9. Consider the points A(1,2,-3), B(-2,1,1), and C(0,2,1).

- (i) Find the point D such that ABCD is a parallelogram.
- (ii) Let P be the midpoint of AC. Find the vector \overrightarrow{OP} .
- (iii) Find the vectors \overrightarrow{BP} and \overrightarrow{PD} , and deduce that the diagonals AC and BD bisect each other.
- (iv) Find the lengths of \overrightarrow{AC} and \overrightarrow{BD} . Is the parallelogram ABCD a rectangle?

Solution:

(i) We want D(x, y, z) such that $\overrightarrow{AB} = \overrightarrow{DC}$, so that

$$[-3, -1, 4] = [-x, 2 - y, 1 - z],$$

yielding x = 3, y = 3, z = -3. Hence D is the point (3, 3, -3).

- (ii) The coordinates of P are the averages of the respective coordinates of A and C, so $P = (\frac{1}{2}, 2, -1)$ and $\overrightarrow{OP} = [\frac{1}{2}, 2, -1]$.
- (iii) We have $\overrightarrow{BP} = \overrightarrow{PD} = [\frac{5}{2}, 1, -2]$, so that P must be the midpoint of the line segment joining B and D. Thus the diagonals AC and BD bisect each other.
- (iv) We have

$$\|\overrightarrow{AC}\| = \|[-1, 0, 4]\| = \sqrt{17}$$
 and $\|\overrightarrow{BD}\| = \|[5, 2, -4]\| = 3\sqrt{5}$.

Since these lengths are different, the parallelogram ABCD a not a rectangle.

- 10. Find all values of the scalars α and β such that
 - (i) [2,3] is orthogonal to $[\alpha+1,\alpha-1]$
 - (ii) $[3, \beta, 3\beta]$ has the same length as [12, 0, -5]

Solution:

(i) We want to find α such that $[2,3] \cdot [\alpha+1,\alpha-1] = 0$. Now

$$[2,3] \cdot [\alpha+1, \alpha-1] = 2(\alpha+1) + 3(\alpha-1) = 5\alpha - 1$$

and so $\alpha = \frac{1}{5}$.

- (ii) The vector $[3, \beta, 3\beta]$ has length $\sqrt{3^2 + \beta^2 + (3\beta)^2} = \sqrt{9 + 10\beta^2}$. The vector [12, 0, -5] has length 13. Squaring both sides, we get $9 + 10\beta^2 = 169$ hence $\beta^2 = 16$ and so $\beta = \pm 4$.
- 11. * Prove the following distributive law: for all vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} in \mathbb{R}^n , we have

$$(\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}.$$

Solution: Let $\mathbf{a} = [a_1, a_2, \dots, a_n], \mathbf{b} = [b_1, b_2, \dots, b_n], \text{ and } \mathbf{c} = [c_1, c_2, \dots, c_n].$ Then

$$\begin{aligned} (\mathbf{a} + \mathbf{b}) \cdot \mathbf{c} &= & ([a_1, a_2, \dots, a_n] + [b_1, b_2, \dots, b_n]) \cdot [c_1, c_2, \dots, c_n] \\ &= & [a_1 + b_1, a_2 + b_2, \dots, a_n + b_n] \cdot [c_1, c_2, \dots, c_n] \\ &= & (a_1 + b_1)c_1 + (a_2 + b_2)c_2 + \dots + (a_n + b_n)c_n \\ &= & a_1c_1 + b_1c_1 + a_2c_2 + b_2c_2 + \dots + a_nc_n + b_nc_n \\ &= & a_1c_1 + a_2c_2 + \dots + a_nc_n + b_1c_1 + b_2c_2 + \dots b_nc_n \\ &= & [a_1, a_2, \dots, a_n] \cdot [c_1, c_2, \dots, c_n] + [b_1, b_2, \dots, b_n] \cdot [c_1, c_2, \dots, c_n] \\ &= & \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c} \end{aligned}$$

as required.

12. * Prove that if **a** and **b** are orthogonal vectors in \mathbb{R}^n then

$$\|\mathbf{a} + \mathbf{b}\|^2 = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2.$$

3

Interpret this result in terms of a well-known fact about triangles.

Solution: If **a** and **b** are orthogonal then $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = 0$, so that

$$\|\mathbf{a} + \mathbf{b}\|^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b})$$

$$= \mathbf{a} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b}$$

$$= \|\mathbf{a}\|^2 + 0 + 0 + \|\mathbf{b}\|^2$$

$$= \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2.$$

This is just the usual Theorem of Pythagoras where ${\bf a}$ and ${\bf b}$ label directed edges of a right-angled triangle.

13. * Suppose we have $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, where \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n and $\mathbf{u} \neq \mathbf{0}$. Does it follow that $\mathbf{v} = \mathbf{w}$? Either give a proof, or give a counterexample, that is, give specific vectors $\mathbf{u} \neq \mathbf{0}$, \mathbf{v} and \mathbf{w} such that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ but $\mathbf{v} \neq \mathbf{w}$.

Solution: No, this does not follow. For example in \mathbb{R}^2 let $\mathbf{u} = [1,0]$, $\mathbf{v} = [0,1]$ and $\mathbf{w} = [0,2]$. Then $\mathbf{u} \cdot \mathbf{v} = 0 = \mathbf{u} \cdot \mathbf{w}$, but $\mathbf{v} \neq \mathbf{w}$. There are many other counterexamples.