UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2025

HOMEWORK 7

Instructor: GAUTAM BHARALI Assigned: FEBRUARY 28, 2025

1. Let $\{a_n\}$ be a real sequence and assume that

$$\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n.$$

Show that $\{a_n\}$ converges to some extended real number.

2. Let $\{a_n\}$ be a real sequence. Define

$$A_k := \inf\{a_k, a_{k+1}, a_{k+2}, \dots\},\$$

 $B_k := \sup\{a_k, a_{k+1}, a_{k+2}, \dots\}.$

Show that

$$\lim_{n \to \infty} \inf a_n = \lim_{k \to \infty} A_k, \quad \text{and} \quad \limsup_{n \to \infty} a_n = \lim_{k \to \infty} B_k.$$

3. Consider the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n},$$

and let S_n denote its *n*-th partial sums, $n = 1, 2, 3, \ldots$

- (a) Show that the sequences $\{S_1, S_3, S_5, \dots\}$ and $\{S_2, S_4, S_6, \dots\}$ are monotone and bounded.
- (b) Examine the conclusions of (a) to deduce that the above series converges.
- **4.** (Problem 11(a) from Chapter 3 of "Baby" Rudin) Let $a_1, a_2, a_3, \dots > 0$ and assume that the series $\sum_{n=1}^{\infty} a_n$ diverges. Show that the series

$$\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$$

also diverges.

- **5.** Let $\sum_{n=1}^{\infty} a_n$ be a convergent series with terms in \mathbb{R} .
 - (a) Let $\{b_n\} \subset \mathbb{R}$ be a monotone bounded sequence. Show that $\sum_{n=1}^{\infty} a_n b_n$ is convergent.
 - (b) What can be said about $\sum_{n=1}^{\infty} a_n b_n$ if $\{b_n\} \subset \mathbb{R}$ is assumed merely to be bounded?

6. Determine all the $p \in \mathbb{R}^+$ for which the series

$$\sum_{n=1}^{\infty} \left(\sqrt{1 + n^{2p}} - n^p \right)$$

converges.

7. Given the power series $\sum_{n=0}^{\infty} c_n z^n$ (where $c_n \in \mathbb{C}$ for each $n \in \mathbb{N}$). Define

$$\alpha := \limsup_{n \to \infty} \sqrt[n]{|c_n|}$$
 and $\rho := 1/\alpha$

(with the understanding the $\rho := 0$ if $\alpha = +\infty$, and $\rho := +\infty$ if $\alpha = 0$).

- (a) Show that $\sum_{n=0}^{\infty} c_n z^n$ converges at each $z: |z| < \rho$ and diverges at each $z: |z| > \rho$.
- (b) Give an example of $\sum_{n=0}^{\infty} c_n z^n$ showing that it behaves differently for different $z \in \mathbb{C}$ satisfying $|z| = \rho$.