NSWI021: Počítačové sítě II (verze 4.0)

Lekce 2: Internetworking II

Jiří Peterka

propojování na L1, L2 a L3

na fyzické vrstvě (L1)

- propojují se jednotlivé uzly
 - nebo celé segmenty (skupiny uzlů)
- propojuje se pomocí opakovačů (repeater), ev. odbočkami na "drátě"
- výsledkem propojení jsou <u>segmenty</u>

- na síťové vrstvě (L3)
 - propojují se jednotlivé sítě
 - propojuje se pomocí směrovačů (router)
 - výsledkem propojení je soustava propojených sítí (internetwork, internet)

- propojují se jednotlivé segmenty (
- propojuje se pomocí mostů
 (bridge) či přepínačů (switch)

propojování na L1, L2 a L3

na fyzické vrstvě (L1)

- opakovače nejsou "viditelné"
- -----
- koncové uzly neví o existenci opakovačů
 - nemohou jim nic adresovat
- opakovače propouští všesměrové vysílání
 - nedokáží vůbec poznat, že jde o broadcast
- opakovače propouští kolize (v Ethernetu)
 - musí, protože nebufferují data
 - neukládají data do vyrovnávacích pamětí
- opakovače mohou propojovat pouze segmenty se stejnou přenosovou rychlostí
 - stejnou wire speed
- na síťové vrstvě (L3)
 - směrovače již jsou "viditelné"
 - koncové uzly jim adresují své pakety
 - koncové uzly si musí uvědomovat rozdělení do sítí a existenci "jiných sítí" (než té jejich)
 - musí dokázat rozlišit mezi uzlem "ve vlastní síti" a uzlem "v jiné síti"
 - koncové uzly se musí určitým způsobem podílet na směrování
 - směrovače nepropouští ani kolize (v Ethernetu) ani všesměrové vysílání (broadcast)

- na linkové vrstvě (L2)
 - mosty ani přepínače nejsou "viditelné!
 - koncové uzly neví o jejich existenci
 - nemohou jim nic adresovat

- mosty a přepínače propouští broadcast
- nepropouští kolize (v Ethernetu)
 - protože již bufferují data
- mohou propojovat segmenty s různou přenosovou rychlostí
 - protože již bufferují data

pohled koncových uzlů

od A pro B

na linkové vrstvě (L2)

- koncový uzel si myslí, že má přímé spojení se všemi ostatními uzly
 - proto jim své rámce (na L2) posílá přímo
 - ve skutečnosti je zachytí most či přepínač a postará se o jejich předání

C odesílá

koncový uzel (A) musí být schopen poznat, zda se cílový uzel (B) nachází ve stejné síti jako on

od A pro B

C zpracuje

C zachytí

A odesílá

- pak mu odesílá přímo (fakticky na L2)
- nebo zda se nachází v jiné síti
 - pak svá data pošle (na L2) směrovači

rozdíly mezi přepínači a směrovači

přepínač (nebo most)

- manipuluje s linkovými rámci od A pro B
 - s těmi, které mu nejsou určeny
 - které "zachytává" díky speciálnímu nastavení svého síťového rozhraní
 - tzv. promiskuitní režim

- již nezkoumá "náklad" linkových rámců
 - například IP pakety
- rozhoduje se jen podle linkových adres
 - např. ethernetových adres
- v odchozím směru odesílá "původní" (nezměněné) linkové rámce
 - s "původními" linkovými adresami
 - zde: A, B

směrovač

- manipuluje s linkovými rámci od A pro C
 - které jsou mu explicitně adresovány

- zkoumá "náklad" linkových rámců
 - "vybaluje" z rámců síťové pakety a zkoumá jejich obsah
 - zajímají ho síťové adresy, podle kterých se rozhoduje o dalším směru přenosu paketu (provádí směrování)
 - zde: X.A (odesilatel), Y.B (příjemce)
- při odesílání síťových paketů je opět vkládá do linkových rámců
 - a odesílá na linkovou adresu příjemce (B)

rozdíly mezi přepínači a směrovači

přepínač (nebo most)

- funguje na principu <u>forward if not local</u>
 - pokud nemá (pozitivní) informaci o tom, že linkový rámec může zastavit (filtrovat)
 - že je "lokální" (v "příchozím" segmentu)
 - pak jej předá dál (forwarduje)
 - pokud nemá k dispozici informace o tom, kde se nachází příjemce, nemůže jít o cílené předávání
 - jen do příslušného cílového segmentu
 - ale musí jej předat do všech "odchozích" segmentů
 - jde vlastně o záplavu/broadcast, kdy se přepínač chová jako opakovač

nevýhoda:

- pokud cílový uzel neexistuje (nebo jen neodpovídá), přepínač se chová jako opakovač
 - rozesílá rámec na všechny strany
 - plýtvá přenosovou kapacitou

- směrovač
 - funguje na principu <u>forward if proven</u> <u>distant</u>
 - síťový paket předává dál (forwarduje) pouze tehdy, pokud má (pozitivní) informaci o tom, že je určen "vzdálenému" uzlu
 - a současné "ví, kam jej poslat"
 - jinak se síťovým paketem nedělá nic
 - musí jej zahodit
 - nedokáže jej zpracovat

– výhoda:

- pokud cílový uzel/cílová síť neexistuje, směrovač nic nepředává dál
 - neplýtvá přenosovou kapacitou

broadcast doména, L2 broadcast

připomenutí:

- unicast: přenos k 1 příjemci
 - příjemcem je právě 1 uzel
- multicast: přenos k N příjemcům
 - příjemcem je skupina uzlů, tzv.
 multicast(ová) skupina

- broadcast (všesměrové vysílání): přenos ke všem uzlům
 - příjemce jsou všechny uzly v rámci určité oblasti – tzv. broadcast domény

existuje více druhů broadcastu (všesměrového vysílání)

a) L2 broadcast

- vysílání linkových rámců, které mají jako cílovou adresu broadcastovou (linkovou) adresu
 - v Ethernetu: samé 1
 - FF:FF:FF:FF:FF

- efekt: broadcast doménou je daná síť
 - síť, ve které se nachází odesilatel
 - jinými slovy:
 - mosty a přepínače propouští L2 broadcast
 - směrovače zastavují L2 broadcast

broadcast doména

- definice: oblast, v rámci které se šíří všesměrové vysílání / broadcast
- v praxi: konkrétní síť
 - celek na úrovni síťové vrstvy (L3)
 - "to, co je propojeno pomocí mostů/přepínačů"

(místní) L3 broadcast

· další druh broadcastu (všesměrového vysílání):

b) (obyčejný, místní) L3 broadcast

- týká se šíření síťových (L3) paketů
 - zatímco L2 broadcast se týká šíření linkových (L2) rámců
- paket, odeslaný jako "L3 broadcast", by měl být doručen všem uzlům v dané síti
 - tedy ve stejné síti, ve které se nachází jeho zdroj (odesilatel)
- praktická realizace
 - síťový paket se vloží do linkového rámce, a ten se rozešle pomocí L2 broadcastu

příklad (TCP/IP a Ethernet)

- IPv4 paket je odesílán na "broadcastovou" IP adresu
 - 255:255:255:255 (32x samé 1)
- odesilatel vloží paket do ethernetového (linkového) rámce
 - a odešle jej na ethernetovou "broadcastovou" adresu
 - FF:FF:FF:FF:FF (48x samé 1)
 - tento rámec přijmou všechny uzly v dané síti
 - a vybalí si z něj vložený IPv4 paket

praktický efekt je

stejný jako u L2 broadcastu

cílený L3 broadcast

- připomenutí: (obyčejný, místní) L3 broadcast
 - šíří se v dané síti
 - v síti, kde se nachází jeho zdroj (odesilatel)
 - viz předchozí slide

další druh broadcastu (všesměrového vysílání):

- c) cílený L3 broadcast (L3 directed broadcast)
 - šíří se v zadané cílové síti
 - jiné, než je síť, ve které se nachází zdroj (odesilatel)
 - praktická realizace:
 - síťový paket je odeslán ze sítě svého odesilatele
 - je přenášen jako unicastový paket (v 1 exempláři)
 - síťový paket je postupně směrován (přenesen) do cílové sítě
 - stále jako unicastový paket (v 1 exempláři)
 - směrovače jej propouští (nezastavují, směrují) !!!!
 - v cílové síti se z něj stává (L3) broadcastový paket
 - a je doručen všem uzlům v cílové síti
 - je vložen do linkového rámce, který je rozeslán pomocí L2 broadcastu
- příklad (TCP/IP):
 - IPv4 paket je odesílán na "cílenou broadcastovou IP adresu"
 - ve formátu <N>:111...111
 - kde N je síťová část adresy cílové sítě

odesilatel cíleného L3 broadcastu

směrovač propouští!!

jak členit sítě a jejich soustavy?

důležitá otázka:

- když máme větší počty uzlů
 - pracovních stanic, serverů, periferií atd.

- na jaké (menší celky/skupiny) je rozdělit?
 - na jaké sítě, do jakých segmentů?

- jak tyto celky/skupiny vzájemně propojit?
 - na jaké vrstvě?
 - pomocí jakých aktivních prvků?

· faktory, na kterých záleží

- pro rozhodování o odpovědích
- co a jak dělají uživatelé?
 - jaké služby využívají ?
 - email, web,
 - jaké používají aplikace?
 - jak tyto aplikace fungují?
 - s kým/čím komunikují
 - s jakými servery, kde se nachází
- jaké jsou požadavky na přístup, ochranu a bezpečnost
 - kdo kam smí a kam nesmí
 - jaký provoz je přípustný a jaký nikoli
 - jaká jsou nebezpečí a hrozby

jak členit sítě a jejich soustavy?

- neexistuje žádný jednoznačný návod na to, jak postupovat
 - pouze určitá doporučení
 - která se ale s postupem času vyvíjí
 - kvůli tomu, jak se mění chování uživatelů, i charakter jimi využívaných služeb a způsob jejich fungování
- příklady doporučení (když jde o):
 - rychlost, propustnost, kapacitu
 - vhodné řešení: na L2
 - pomáhá segmentace
- rozdělování na co nejmenší segmenty
- podle generovaných datových toků
- propojování segmentů pomocí přepínačů
- nevýhody a nebezpečí:
 - vznikají "příliš velké" ploché sítě
 - jde o velké broadcast domény
 - každý jednotlivý broadcast "spotřebuje" hodně kapacity
 - mohou být problémy s přidělováním adres
 - obtížné zajištění ochrany a práv/oprávnění
 - kam kdo smí přistupovat
 - jaký provoz je přípustný a jaký nikoli

-

- přístupová práva, ochranu, bezpečnost
 - vhodné řešení: na L3
 - vhodné je členění do různých sítí
 - podle práv, zabezpečení atd.
 - tak, aby sítě byly homogenní
 - co do práv/zabezpečení svých uzlů
 - a jejich propojování pomocí směrovačů
 - plus aplikace firewallů
 - nevýhody a nebezpečí:
 - vyšší nároky na propustnost směrovačů
 - nedosahují propustnosti přepínačů
 - jsou optimalizovány spíše na "logiku" (v rámci směrování)
 - vyšší celková složitost
 - složitější soustava vzájemně propojených sítí

pravidlo 80:20

- "zvykové pravidlo" z dob před nástupem Internetu a cloud computing-u
 - kdy uživatelé pracovali především s "místními" zdroji
 - zejména: servery, umístěnými ve vlastní síti/soustavě sítí (internetu)
 - typicky: se servery v rámci školní či firemní sítě (soustavy sítí / internetu)
 - nikoli se servery umístěnými "vně" (v Internetu / externím cloudu)
 - podle tohoto pravidla se rozdělovaly uzly do různých sítí

podstata pravidla:

80% provozu by mělo být místní

- ve smyslu: zůstávat v dané síti, coby "místní" broadcast doméně (a nešířit se dál)
- 20% provozu může být "vnější" prochází i skrze

směrovat do jiných sítí, ať již v rámci vlastní soustavy sítí (internetu), nebo do Internetu

předpoklady pravidla 80:20

podle pravidla 80:20 se seskupovaly uzly do sítí

dnes již neplatí!!!!

- pracovní stanice uživatelů, kteří používali stejné služby, se zapojovaly do stejné sítě
- spolu se servery, které tyto služby poskytovaly
 - předpoklad: uživatelé budou pracovat hlavně s těmito servery
 - 80% procent provozu směřuje k těmto serverům

- pokud jsou všechny uzly fyzicky umístěny "vhodně blízko sebe"
 - v dosahu opakovačů nebo přepínačů
 - a naopak zde nejsou "jiné" uzly
 - které by používaly jiné služby, a měly by patřit do jiných sítí

- pokud tento předpoklad není splněn
 - dá se to řešit pomocí sítí VLAN
 - kde rozdělení do sítí není závislé na fyzickém umístění

- pokud uživatelé v maximální míře používají "vlastní" služby
 - příslušné servery se nachází ve stejné síti
- pokud uživatelé v minimální míře používají "cizí" služby
 - servery, které tyto služby poskytují, se nachází v jiných sítích

- pokud tyto předpoklady nejsou splněny, roste zátěž směrovačů
 - objem provozu skrze směrovače

pravidlo 20:80

s nástupem Internetu a cloud computingu se poměry obrátily

- z pravidla 80:20 se stalo pravidlo 20:80
 - většina provozu směřuje "ven ze sítě" (80%), a jen malá část zůstává "uvnitř sítě" (20%)

důsledek

- významně rostou požadavky na celkovou propustnost směrovačů
 - aby zvládaly výrazně větší datové toky, které skrze ně prochází

· možná řešení:

- použití L3 přepínačů (L3 switch)
 - které mají větší propustnost a nejsou úzkým hrdlem
 - zjednodušeně:
 - mají stejnou propustnost jako (L2) přepínače
 - (logicky) fungují jako směrovače

nasazení sítí VLAN

- cíl: udržet propojení na linkové vrstvě (L2)
- ale: zmenšit broadcast domény
 - lze realizovat "na menší vzdálenosti"
 - pro "místní" provoz
 - tam, kde vše (je) může být propojeno pomocí přepínačů

směrovače vs. L3 přepínače

směrovač (router):

- je optimalizován na logické funkce
 - směrování, aplikace přístupových práv,
- je vybaven "dalšími" schopnostmi
 - monitorování dat. provozu, management
- jeho logické funkce jsou realizovány v SW
 - obvykle má vlastní operační systém
 - CISCO: IOS
- není (tolik) optimalizován na rychlost a propustnost
 - původně po něm nebyla (tolik) požadována
 - viz pravidlo 80:20
- má větší směrovací tabulky
 - dokáže pracovat s většími objemy směrovacích informací, podporuje BGP,
- má (obvykle) větší buffery pro data
 - dokáže bufferovat více síťových paketů
- může mít síťová rozhraní různých typů
 - Ethernet, SDH, SONET, E1/T1,

L3 přepínač (L3 switch)

- L3 = funguje na síťové vrstvě
 - tj. manipuluje se síťovými pakety
 - rozhoduje se (směruje) podle síťových adres (např. IP adres)
- přepínač (switch) = je optimalizován na rychlost a propustnost
 - a typicky realizován v HW
 - aby mohl fungovat "rychlostí drátu"
 - "at wire speed"
- má menší směrovací tabulky a buffery
 - nezvládá větší objemy směrovacích informací,
- má obvykle jen ethernetová rozhraní
- jeho "další funkce" jsou omezeny nebo nejsou vůbec dostupné
 - například naplňování přístupových práv, monitorování, správa,

zjednodušená představa: je to běžný (L2) přepínač, doplněný o schopnost práce na L3

směrovače vs. L3 přepínače

- L3 switch je určen pro "propojení"
 - v rámci homogenního prostředí
 - hlavně: pro vzájemné propojení jednotlivých (L3) sítí v rámci LAN či MAN
 - kde "panují stejné poměry"
 - kde jsou používány stejné přenosové technologie
 - na L2: jen Ethernet
 - kde se pracuje s malými objemy směrovacích informací
 - které se tak často nemění

- směrovač je určen pro "přechod"
 - pro přechod mezi různými prostředími
 - hlavně: pro napojení sítí "menších" sítí (sítí LAN, ev. MAN) na "velké" sítě (WAN)
 - kde je kladen důraz na přizpůsobení, logické oddělení, správné rozhodování,

...

- kde se pracuje s většími objemy informací, různými protokoly (i směrovacími),
- umožňuje "napojení na jiné sítě"

sítě VLAN (Virtual LAN)

VLAN (Virtual LAN) je řešení pro situaci:

- kdy je potřeba členit uzly do sítí nezávisle na jejich fyzickém umístění
 - ale podle logických kritérií (příslušnost ke skupině/kategorii uživatelů, přístupová práva, používané služby a servery,)
- je třeba "řídit" velikost broadcast domén (aby se příliš nerozrůstaly)

situace bez sítí LAN

- uzly musí být zařazovány do sítí podle toho, kde jsou fyzicky umístěny
 - "kam od nich vede kabeláž" ke kterému přepínači a směrovači
 - fyzické umístění nemusí korespondovat s logickými kritérii !!!

princip virtuální sítě (VLAN)

- již neplatí, že: to, co je propojeno na linkové vrstvě (L2), je jednou sítí
- místo toho:
 - přepínač (podporující VLAN) může propojovat uzly, "patřící" do různých sítí
 - a tím i do různých broadcast domén

lokální a end-to-end VLAN

existuje více variant sítí VLAN

- které se liší hlavně svým účelem a cílem
 - ale hranice mezi nimi nejsou příliš ostré (jednoznačné)

lokální VLAN

- spojuje (řadí do jedné sítě) "geograficky blízké" uzly
 - hlavním cílem je minimalizovat velikost broadcast domény
 - typicky v dosahu jediného (L2) přepínače, nebo (malé) skupiny přepínačů)
- uzly v lokální VLAN síti nemusí mít "společné zájmy"
 - a nemusí generovat více "lokálního" provozu než "vnějšího"
 - spíše zde platí pravidlo 20:80
 - jen 20% provozu je lokální

end-to-end VLAN

- spojuje (řadí do jedné sítě)
 "geograficky rozptýlené uzly"
 - sdružuje uživatele se stejnými právy/zájmy/chováním/zařazením
 - mohou být i "daleko od sebe"
 - např.: "všichni studenti na univ. kampusu"
- dělá se hlavně kvůli snadné správě uživatelů a nastavení přístupových práv
 - rozložení provozu pro tyto sítě VLAN může být jakékoli
 - 80:20, stejně jako 20:80

Počítačové sítě II VLAN trunking, směrování mezi VLAN verze 4.0, lekce 2, slide 19

- sítě VLAN se mohou "rozkládat" i přes více přepínačů
 - pak je ale mezi nimi nutný tzv. VLAN trunking
 - řešení, kdy 1 spoj mezi více přepínači přenáší provoz, který spadá do více různých VLAN
 - a nedochází k "promíchání" provozu od různých VLAN

- sítě VLAN mohou "procházet" i skrze směrovače (či L3 přepínače,)
 - směrovače ale musí takovéto řešení (sítě VLAN) podporovat

- pro směrování mezi různými sítěmi VLAN je nutný směrovač (L3 přepínač)
 - který může vystačit i s jedním rozhraním
 - skrze které dokáže předávat síťové pakety mezi různými sítěmi VLAN

L4 a L7 přepínače

data

IP₁ IP₂ port₁ port₂

 \leftarrow L3 \rightarrow \leftarrow L4 \rightarrow \leftarrow L7 \rightarrow

- připomenutí: L3 přepínač
 - manipuluje se síťovými pakety
 - řídí se síťovými (L3) adresami
- vedle toho existují také:
 - L4 přepínače (≱€ L4 switch)
 - fungují na síťové (L3) vrstvě
 - manipulují se síťovými pakety
 - rozhodují se podle síťových (L3) adres
 i podle transportních (L4) adres
 - v TCP/IP: dle IP adres i dle čísel portů
 - výhoda
 - dokáží rozlišovat různé druhy provozu (podle čísla portu) a "nakládat s nimi" různě
 - např. směrovat požadavky na WWW servery jinak než DNS dotazy

L7 přepínače (≥ L7 switch)

fungují na síťové (L3) vrstvě

manipulují se síťovými pakety

- rozhodují se podle síťových (L3) adres,
 podle transportních (L4) adres a také
 podle aplikačních (L7) dat
 - v TCP/IP: (např.) dokáží vzít v úvahu, že

L3 switch

- jde o požadavek na WWW server
 - dle portu č. 80 (L4 adresy)
- jaké konkrétní URL je požadováno
 - dle obsahu požadavku GET a dalších údajů na aplikační (L7) vrstvě

využití L4/L7 přepínačů

• L4 a L7 přepínače se hodí pro 2 různé skupiny účelů:

- řízení datového provozu (traffic management)
 - různé "zacházení" s různými druhy provozu
 - typicky: podle cílového portu
 - například:
 - multimediální data mají přednost před ostatními
 - prioritizace dle druhu provozu
 - blokování určitého provozu
 - např. P2P přenosů, VOIP komunikace
 - objemové limity/kvóty na různé druhy provozu
 - např. v rámci FUP (Fair Use Policy)

- rozdílné směrování
 - může být ještě spojeno s (rozdílným) překladem adres (NAT-em)
 - například:
 - rozdělování požadavků na různé služby mezi servery, poskytující různé služby

- rozdělování požadavků na služby stejného typu mezi různé instance serverů stejného typu (např. serverové farmy)
 - obdoba anycast-u u IPv6
- rozklad zátěže (load balancing)
 - využití více přenosových cest
- transparentní cache
 - pomocí přesměrování požadavků na port 80
- přesměrování DNS dotazů
-

firewall

významným úkolem internetworkingu je (dnes) také řízení přístupu

- nikoli ve smyslu "řízení přístupu ke sdílenému médiu" (řešenému na L2)
- ale ve smyslu toho:
 - aby se uživatelé (resp. datový provoz) dostali jen tam, kam mají právo se dostat
 - neboli:
 - blokování neoprávněného přístupu, povolení (umožnění) oprávněného přístupu

- tak se (obecně) označuje řešení, které implementuje požadovaná pravidla přístupu
- firewall může realizován jako:
 - kombinace SW a HW
 - jen v SW
 - jen jako sada (organizačních) opatření
- firewall může být:
 - "společný" (firemní, školní, domácí, ….) chrání celé sítě (a více uživatelů)
 - "individuální" (osobní) chrání jen jednoho uživatele

princip fungování firewallů

firewally mohou využívat dva různé přístupy ke svému fungování

- "vše je blokováno, ale něco je povoleno"
 - nejprve: vše se zablokuje
 - následně: povolí se konkrétní "pozitivní" výjimky
 - charakteru povolení
- otázky:
 - jak dosáhnout "zablokování všeho"
 - tak, aby následně bylo možné specifikovat výjimky?
 - jak dosáhnout "zablokování něčeho"
 - tak, aby vše ostatní mohlo řádně fungovat?
 - na jaké úrovni / jakou formou specifikovat výjimky?

- "vše je povoleno, ale něco je blokováno"
 - nejprve: vše se nechá povolené
 - následně: zakáží se konkrétní "negativní" výjimky
 - charakteru zákazu

DMZ: demilitarizovaná zóna

stejný

princip

kontrol:

- obvyklé řešení pro firewally, fungující na principu "vše je zakázáno, něco je povoleno"
 - mezi vnější sítí a vnitřní sítí se vytvoří tzv. demilitarizovaná zóna (DMZ)
 - tato demilitarizovaná zóna není průchozí (není povolen žádný provoz "skrz" DMZ)
 - povolen je pouze takový provoz, který začíná či končí uvnitř DMZ

- do demilitarizované zóny se umístí "brány", které předávají povolený provoz
 - brána kontroluje provoz: pokud je povolený, "pustí jej" dál
 - ve skutečnosti (aby byl možný průchod "skrz" DMZ)
 - příchozí provoz "končí" na bráně uvnitř DMZ

příklad: HTTP proxy brána

příklad praktického nasazení:

- v DMZ je brána, fungující na úrovni aplikační vrstvy (L7): HTTP proxy brána
 - kvůli L7 je taková brána vždy "aplikačně závislá" (specifická pro konkrétní aplikaci/službu)
 - zde pro WWW, resp. protokol HTTP
- princip fungování:
 - 1. WWW klient (browser) ve vnitřní síti pošle svůj požadavek (HTTP request) proxy bráně
 - jelikož ta nefunguje transparentně, musí být browser nastaven tak, aby "znal" proxy bránu
 - a posílal příslušný požadavek proxy bráně, místo přímo cílovému serveru (to by neprošlo přes DMZ)
 - 2. proxy brána sama vygeneruje vlastní požadavek na cílový server
 - 3. proxy brána přijme odpověď cílového serveru
 - 4. proxy brána odpoví (předá odpověď) browseru ve vnitřní síti

obdobně se řeší i další služby (FTP, mail, DNS,)

aplikační firewally (s proxy bránami)

- řešení se 2 směrovači je typické spíše pro větší firemní sítě
 - lze vystačit i s 1 směrovačem
 - který má síťová 3 rozhraní

- směrovač je nastaven tak, aby zakazoval "přímý průchod" z vnější do vnitřní sítě
 - povolen je pouze takový provoz, který začíná či končí na tom rozhraní, které plní roli DMZ
 - kde mohou být umístěny proxy brány

- firewall na principu DMZ lze realizovat i bez směrovače
 - DMZ se vytvoří v SW, v rámci uzlu který propojuje vnější a vnitřní síť

- společná vlastnost řešení s DMZ
 - blokování funguje na síťové vrstvě (L3)
 - povolování je řešeno na aplikační vrstvě (L7), pomocí proxy bran
 - pro každou službu/aplikaci musí být jiná (specifická) proxy brána !!!

proto se také hovoří o aplikačních firewallech

paketové filtry

· další možné řešení firewallů

- blokování i povolování se odehrává na úrovni síťové vrstvy (L3)
 - tedy na úrovni manipulace se síťovými pakety (např. IP pakety)
 - proto se takovéto řešení obecně označuje jako paketový filtr

možné varianty paketových filtrů:

- mohou fungovat na obou možných principech
 - "vše je zakázáno, něco je povoleno" i "vše je povoleno, něco je zakázáno"
 - rozdíl je prakticky jen ve způsobu formulace pravidel pro blokování/povolení
- mohou využívat (také) informace, dostupné na vyšších vrstvách
 - vychází především z informací, dostupných na L3 (adresa odesilatele, adresa příjemce,)
 - ale mohou se rozhodovat například i podle čísel portů (L4), případně i URL (L7) apod.
- mohou fungovat na bezestavovém nebo stavovém principu
 - bezestavový paketový filtr posuzuje každý paket samostatně, bez ohledu na jiné pakety
 - bez ohledu na "historii", reprezentovanou jinými (dříve přenesenými) pakety
 - nedokáže odhalit např. DOS a DDOS útoky, protože nevnímá "zvýšený souběh" požadavků
 - stavový paketový filtr bere ohled na historii (již přenesené pakety)
 - dokáže odhalit více nežádoucích situací (zejména různé souběhy)
- může jít o běžný směrovač
 - s "posíleným" operačním systémem, který zajišťuje funkce paketového filtru
 - nebo o speciální jednoúčelové zařízení, či o běžný počítač s vhodným SW

Inspection

ACL (Access Control List)

- obecné označení pro "seznamy pravidel", které specifikují konkrétní pravidla blokování či povolování
 - jsou určené hlavně pro firewally charakteru paketových filtrů
 - podle obsahu ACL se konkrétní paket buďto povolí (propustí), nebo zakáže (zastaví)
- "standardní" seznamy ACL
 - jejich pravidla se ptají pouze na to, odkud paket přichází
 - zabývají se pouze L3 adresou jeho odesilatele (zdrojovou IP adresou)
 - neptají je, kam síťový paket směřuje
 - paketové filtry, které používají tyto (standardní) seznamy ACL, by měly být umístěny co nejblíže cílovým uzlům
 - standard ACL

- "rozšířené" seznamy ACL
 - jejich pravidla se ptají i na další věci
 - např. na cílovou adresu, na číslo portu / druh služby, transportní protokol atd.
 - mohou být dále podmíněné např. denní dobou
 - paketové filtry, které používají tyto (rozšířené) seznamy ACL, se obvykle umisťují co nejblíže ke zdroji provozu

