Contents

1	Tra	rasformata Laplace															1								
	1.1	Teorer	$_{ m mi}$																						1
	1.2	Notev	oli																						1
2	Antitrasformata laplace / Analisi modale														2										
	2.1	Residu	ui																						2
	2.2	Rispos	sta	per	· pol	i																			2
	2.3	Rispos Poli a	mo	olte	plici	tà n	nult	tipla	ι.																2
3	Sistemi LTI TC														2										
	3.1	Evoluzione stato e uscita																							
		3.1.1	\mathbf{E}	volu	ızioı	ni n	el t	$_{ m emp}$	0																:
		3.1.2																							
		3.1.3						_																	
	Font	ti usate):																						
	eser	cizii di	rie	pilo	go ((non	ı ha	a pu	.bb	lica	atc	u	ın	pr	og	ra	mı	na	ι, Ι	ch	е :	io	Sa	рр	oia)
e/c		e e/o la						-							_									_	,

1 Trasformata Laplace

• Definzione

$$\mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-st}dt = F(s)$$

1.1 Teoremi

 \bullet Ritardo

$$\mathcal{L}\lbrace e^{\lambda t}f(t)\rbrace = F(s-\lambda)$$

1.2 Notevoli

• Gradino (ricavi con definizione)

$$\mathcal{L}\{1(t)\} = \frac{1}{s}$$

• Esponenziale causale (ricavi col teorema del ritardo)

$$\mathcal{L}\{e^{\lambda t}1(t)\} = \frac{1}{s-\lambda}$$

• Seno causale (ricavi con l'esponenziale)

$$\mathcal{L}\{\sin(\omega_0 t)1(t)\} = \frac{\omega_0}{s^2 + \omega_0^2}$$

• Coseno causale (ricavi con l'esponenziale)

$$\mathcal{L}\{\cos(\omega_0 t)1(t)\} = \frac{s}{s^2 + \omega_0^2}$$

• Impulso di dirac (ricavi con definizione) (usata per funzioni semplicemente proprie)

$$\mathcal{L}\{\delta(t)\} = 1$$

- Rampa unitaria (ricavi prodotto per t) (usata per poli nulli a molteplicità 2)
- Rampa parabolica (ricavi prodotto per t) (usata per poli nulli a molteplicità 3)
- Esponenziale × monomo
io (usata per poli non nulli a molteplicità multipla)

2 Antitrasformata laplace / Analisi modale

2.1 Residui

2.2 Risposta per poli...

- Reali Modo naturale $e^{polo\ t}$, con $t \ge 0$
- Complessi coniugati $\sigma \pm j\omega$ (I complessi sono per forza coniugati qui) Detti:
 - Ke \overline{K} i residui corrispondenti ai poli, che saranno coniugati complessi
 - $-\alpha$ e β le parti reali e immaginarie di K (o \overline{K} tanto la formula torna lo stesso)

$$e^{\sigma t}(2\alpha\cos(\omega t) - 2\beta\sin(\omega t))1(t)$$

2.3 Poli a molteplicità multipla

- Reali con molteplicità l Modi naturali $1(t),\,t1(t),\,\ldots,\,t^{l-1}1(t)$
- Complessi coniugati com molteplicità l Modi nautrali (da rivedere)

3 Sistemi LTI TC

• Definizione:

$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases}$$

per i sistemi SISO (Single Input, Single Output) B è un vettore colonna, C è un vettore riga, $D\in\mathbb{R}$

3.1 Evoluzione stato e uscita

3.1.1 Evoluzioni nel tempo

- Evoluzione stato nel tempo
 - libera

$$x_l(t) = e^{At}x_0$$

- forzata

$$x_f(t) = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

- complessiva

$$x(t) = x_l(t) + x_l(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

- Evoluzione uscita nel tempo
 - libera

$$y_l(t) = Cx_l(t) = Ce^{At}x_0$$

- forzata

$$y_l(t) = Cx_f(t) + Du(t) = \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

- complessiva

$$y(t) = y_l(t) + y_f(t) = Ce^{At}x_0 + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

3.1.2 Evoluzioni in Laplace

- Evoluzione stato nel tempo
 - libera

$$X_l(s) = \mathcal{L}\{e^{At}x_0\} = (sI - A)^{-1}x_0$$

- forzata

$$X_f(s) = (sI - A)^{-1}BU(s)$$

- complessiva

$$X(s) = X_l(s) + X_f(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s)$$

- Evoluzione uscita nel tempo
 - libera

$$Y_l(s) = CX_l(s) = C(sI - A)^{-1}x_0$$

- forzata

$$Y_f(s) = CX_f(s) + DU(s) = C(sI - A)^{-1}BU(s) + DU(s)$$

- complessiva

$$Y(s) = Y_l(s) + Y_f(s) = C(sI - A)^{-1}x_0 + C(sI - A)^{-1}BU(s) + DU(s)$$

3.1.3 Funzione di trasferimento

$$G(s) = \frac{Y_f(s)}{U(s)} = C(sI - A)^{-1}B + D$$