

# A device to record natural daily wrist motion

MS Thesis Defense

Surya Prakash Sharma

Committee Members: Dr. Adam Hoover (Chair) Dr. Ian Walker Dr. Jason Hallstrom

November 24, 2014

# Outline

Motivation and Background

Methods

Results

Conclusion

### Motivation

- Our vision: Wrist-worn eating activity monitor
- Previous work: 81% accuracy detecting periods of eating (44 subjects, 1 day)
  86% accuracy counting bites during eating (49 subjects, 1 meal)
- Need: device to record large number of people for long period of time



The bite counter

### Background (cont)

Recording wrist movement data requires three basic components

Accelerometer - Translational motion

Gyroscope - Rotational Motion

Memory - Store Data



# Background

- Multiple wrist worn devices available.
- None has addressed the need of recording translational and rotational wrist movement data.
- Many devices do not contain all the required sensors
- Others have unneeded features increasing cost, weight and discomfort, while reducing battery life.









# Previous Work

- iPhone Based Data Logger
  - Long Battery Life
  - High resolution data
  - High customizability
  - Big Size
  - Low comfort



### Other Devices

#### Activity Trackers

- Long Battery Life
- Small Size
- High Comfort
- Economical Cost
- Low resolution data
- No customizability
- No gyroscope



The Fitbit Flex

#### Other Devices (cont)

#### Research Devices

- Average Battery Life
- High resolution Data
- High customizability
- Medium Comfort



- Development Kit: \$2000

- Unit: \$249



Promotional photo of the SHIMMER

#### Other Devices (cont)

#### Smartwatches

- Average Battery Life
- Average customizability
- OK Comfort
- Some have all sensors
- High cost
- Unit: \$249
- Low resolution data



# Summary

| Name             | Market Segments | Both Sensors | Size   | Weight (g) | Active Battery Life (hours) | Extra components                           |
|------------------|-----------------|--------------|--------|------------|-----------------------------|--------------------------------------------|
| iPhone           | Mobile Phone    | Υ            | Large  | 149        | 40                          | Display, GSM Module                        |
| MetaWatch        | SmartWatch      | N            | Small  | 81         | 80                          | Display, Bluetooth Module                  |
| Samsung Gear 2   | SmartWatch      | Y            | Small  | 68         | 48                          | Display, Bluetooth Module, Media<br>Player |
| Fitbit Zip       | Fitness Tracker | N            | Small  | 8          | 6 mo                        |                                            |
| Fitbit Flex      | Fitness Tracker | N            | Small  | N/A        | 120                         |                                            |
| Jawbone Up Move  | Fitness Tracker | N            | Small  | 6.8        | 168                         |                                            |
| Jawbone Up 3     | Fitness Tracker | N            | Small  | 29         | 168                         |                                            |
| Fitbit One       | Fitness Tracker | N            | Small  | 8          | 240                         |                                            |
| Nike FuelBand    | Fitness Tracker | N            | Small  | 30         | 96                          |                                            |
| SHIMMER          | Research        | Υ            | Medium | 23.6       | 24                          | SD Card, Bluetooth Module                  |
| Thalmic Labs Myo | Research        | Y            | Medium | 93         | 48                          | EMG Sensors                                |

Note: Sizes are as follows: Small: Wrist watch or similar

Medium: Larger than wrist watch, smaller than a smartphone.

Large: Smartphone

# Novelty

- New Wrist mounted device to log motion data
  - Good Battery Life
  - High customizability
  - Economical Cost
  - High Comfort
- Smaller size leads to more comfort, and the user can wear it longer

# Methods



http://www.ti.com/graphics/folders/partimages/MSP430F248.jpg https://www.flickr.com/photos/40875537@N04/5659910644 http://www.snowcap.fi/uploads//2011/12/mpu6000.png http://electronics-diy.com/img/FT232RL\_chip.jpg http://www.mouser.com/images/adestotechnologies/images/cason8.jpg

# Components

- Sensor
- Memory chip
- Microcontroller
- USB to UART bridge
- Battery
- Battery charger
- LED
- Button
- Case

# Procedure

Part selection

Circuit design / Prototype / Programming

PCB design

Soldering

### Sensor



#### MPU-6000: MEMS 6 axis sensor

- 2.375 3.46 V supply
- Current Consumption:
- Accelerometer: 200 uA
- Gyro + Acc: 3.8 mA
- Digital Communication over SPI / I<sup>2</sup>C
- 8 KHz internal clock
- Measurement Range:
  - Accelerometer: ±2, ±4,±8,±16 g
  - Gyro: ±250/±500/±1000/±2000

°/sec

InvenSense MPU-6000

**Breakout Board** 

Current Consumption for STMicro LSM330: 6.1 mA

# Microcontroller



The MSP430F248 microcontroller

#### MSP430F248

- 1.8 3.46 V supply
- Current Consumption: 270 uA @ 1 MHz
- SPI and UART modules
- Two 16 bit timers
- 4 KB RAM

# Memory

$$\mathrm{data} = 24~\mathrm{hours} \times \frac{60~\mathrm{minutes}}{\mathrm{hour}} \times \frac{60~\mathrm{seconds}}{\mathrm{minute}} \times \frac{15~\mathrm{polls}}{\mathrm{second}} \times \frac{6~\mathrm{sensors}}{\mathrm{poll}} \times \frac{1~\mathrm{byte}}{\mathrm{sensor}~\mathrm{poll}}$$



**Memory chip** 

 $data = 7,776,000 \text{ bytes} \approx 7.5 \text{ MB}$ 

#### AT45DB642D

- 2.7 3.6 V supply
- Current Consumption
  - Read: 15 mA
  - Write / Erase : 25 mA
  - Standby: 25 uA
- SPI communication
- Package : CASON
- Write duty cycle: 0.56%
- Average current: 140 μA

### SPI



SPI master with two slaves on the same bus

### Data Transfer



FT232RL

#### FT232RL USB to UART bridge

- 5 V supply
- Integrated 3.3 V level converter
- Data transfer technology would require
   18 mA of current over 30 minutes
- Using a wired connection allows this power to be sourced from the host
- Battery can be charged with the same connector
- Allows us to get data off the device

#### LED



Photo of a LED

- Typical current draw of 20 mA
- Duty cycle: 0.56%
- Average current: 110 μA
- Off the shelf LED

### Case



**Ergo Minitec Series Cases** 

#### **Ergo Minitec Series**

- Largest case used for previous work
- Smallest case measures 52 mm x 32 mm x 15 mm
- Intermediate ring allows a strap to pass through
- Lightweight

# Battery



#### Turnigy Nano-tech 160 mAh

- Most batteries would fit in 52 mm x 32 mm
- Case is limiting factor
- Case is curved so the Duracell AAA 800 mAh, Nano-tech 300 mAh and LIR2450 90 mAh batteries wouldn't fit
- Nano-tech 160 mAh provides the highest battery capacity

Top view profiles of different batteries considered



# Programming

#### Simplified algorithm for the device



# PCB Layout



Parts placed before routing

# PCB Layout (cont)



PCB layout after routing

#### Soldering (Mounting Parts)



Video: Soldering Crystal (41 seconds)
<a href="https://www.youtube.com/watch?v=VSIhrFNCuyM">https://www.youtube.com/watch?v=VSIhrFNCuyM</a>

# Soldering (cont)



Video: Soldering SMD Resistor (44 seconds) <a href="https://www.youtube.com/watch?v=mzgT1sddoXY">https://www.youtube.com/watch?v=mzgT1sddoXY</a>

# Z - axis tape





Z – axis tape reel

Z – axis tape under a microscope

# Soldering (cont)



Stencil placement



Solder paste application



Hot plate reflow soldering

#### Final Device



Final PCB with top case cover

### Results



Final device mounted on wrist



Battery life of active device



WristView showing recorded data



WristView showing smoothed data

| Description                       | Cost (US\$) | Quantity |
|-----------------------------------|-------------|----------|
| Capacitor, 0.1 uF                 | 0.10        | 7        |
| Capacitor, 4.7 uF                 | 0.26        | 1        |
| Capacitor, 10.0 uF                | 0.50        | 1        |
| Capacitor, 10.0 nF                | 0.32        | 1        |
| Resistor PTH, $2 \text{ k}\Omega$ | 0.14        | 1        |
| Resistor SMD, 2 k $\Omega$        | 0.10        | 1        |
| FT232RL                           | 4.50        | 1        |
| Fuse                              | 0.35        | 1        |
| MSP430F248                        | 7.89        | 1        |
| MPU-6000                          | 14.9        | 1        |
| MCP73831                          | 0.67        | 1        |
| Crystal, 32768 Hz                 | 1.49        | 1        |
| AT45DB642D                        | 12.7        | 1        |
| PCB Fabrication                   | 2.99        | 1        |
| Stencil                           | 5.00        | 1        |
| Total Cost                        | 52.5        | 1        |

#### Device production cost

| Name of Device Market Segments |                 | Both Sensors | Size   | Weight | Active Battery Life (hours) | Extra components                           |
|--------------------------------|-----------------|--------------|--------|--------|-----------------------------|--------------------------------------------|
| iPhone                         | Mobile Phone    | Υ            | Large  | 149    | 40                          | Display, GSM Module                        |
| MetaWatch                      | SmartWatch      | N            | Small  | 81     | 80                          | Display, Bluetooth Module                  |
| Samsung Gear 2                 | SmartWatch      | Υ            | Small  | 68     | 48                          | Display, Bluetooth Module,<br>Media Player |
| Fitbit Zip                     | Fitness Tracker | N            | Small  | 8      | 6 mo                        |                                            |
| Fitbit Flex                    | Fitness Tracker | N            | Small  | N/A    | 120                         |                                            |
| Jawbone Up Move                | Fitness Tracker | N            | Small  | 6.8    | 168                         |                                            |
| Jawbone Up 3                   | Fitness Tracker | N            | Small  | 29     | 168                         |                                            |
| Fitbit One                     | Fitness Tracker | N            | Small  | 8      | 240                         |                                            |
| Nike FuelBand                  | Fitness Tracker | N            | Small  | 30     | 96                          |                                            |
| SHIMMER                        | Research        | Υ            | Medium | 23.6   | 24                          | SD Card, Bluetooth Module                  |
| Thalmic Labs Myo               | Research        | Υ            | Medium | 93     | 48                          | EMG Sensors                                |
|                                |                 |              |        |        |                             |                                            |
| This Work                      | Research        | Υ            | Small  | 26.6   | 24                          |                                            |

Good Battery Life
High customizability
Economical Cost
High Comfort

# Challenges



Microcontroller after cutting pins to desolder

### Future Work

Dataset of wrist motion movement needs to be created

 100 - 200 subjects wearing this device for up to 2 weeks each

20 - 25 devices needed

#### Future Work (cont)

Add a local time feature to the watch

Consider using EMG sensors to pursue new algorithms

Try a different profile with custom molded case

#### Questions?



Old people used to write obnoxious thinkpieces about how people these days always wear watches and are slaves to the clock, but now they've switched to writing thinkpieces about how kids these days don't appreciate the benefits of an old-fashioned watch. My position is: The word 'thinkpiece' sounds like a word made up by someone who didn't know about the word 'brain'.