Experimento 8 FLIP-FLOPS:RS E JK

Lucas Mafra Chagas, 12/0126443 Marcelo Giordano Martins Costa de Oliveira, 12/0037301

¹Dep. Ciência da Computação – Universidade de Brasília (UnB) CiC 116351 - Circuistos Digitais - Turma C

{giordano.marcelo, chagas.lucas.mafra}@gmail.com

Abstract. Write here a short summary of the report in English. This corresponds to the Experiment 7 report on combinational circuits, specifically the multiplexers.

Resumo. Escreva aqui um pequeno resumo do relatório. Este corresponde ao relatório do Experimento 7 sobre circuitos combinacionais, especificamente os multiplexadores.

1. Objetivos

Apresentação do flip-flop como unidade armazenadora de memória. Observação do funcionamento e construção dos flip-flops RS, RS Gatilhado, SENHOR-ESCRAVO e JK SENHOR-ESCRAVO.

2. Materiais

- Painel Digital
- protoboard
- Fios
- Portas Lógicas NAND, NOR e NOT.

3. Introdução

O flip-flop, ou multivibrador biestável, é um circuito digital pulsado capaz de servir como uma memória de um bit. Um flip-flop tipicamente tem dois sinais de entrada, o SET e o RESET, um sinal de clock (gatilho), um sinal de saída e o seu inverso. A pulsação ou mudança no sinal do clock faz com que o flip-flop mude ou retenha seu sinal de saída, baseado nos valores dos sinais de entrada e na equação característica do flip-flop. Existem vários tipos de flip-flops, a saber:

3.1. Flip-flop Latch RS

O valor guardado no flip-flop será mantido se SET e RESET forem ambos iguais a 0; irá mudar para 0, se a entrada RESET for 1, e se tornará 1 se a entrada SET for 1. O comportamento não será especificado se as duas entradas forem iguais a 1. Esse comportamento, neste relatório será referido como o estado proibido. Aqui temos uma implementação desse flip-flop feito apenas com portas NAND.

Figure 1. Latch RS

Para este tipo de implementação temos que considerar que a ativação de SET ou RESET é feita quando a entrada é 0. Além disso, temos que para esse flip-flop a saída possui um complemento, que sempre será o inverso da saída original.

4. Procedimentos

Escreva nesta seção os diversos itens pedidos no experimentos.

4.1. Multiplexador de 4 entradas

Descrever o experimento realizado. Sempre que colocar uma figura deve-se explicar o que se pretende que o leitor veja, ou uma análise logo após a figura.

Figure 2. Uma figura

A Figura 1 apresenta um exemplo de como usar e citar uma figura.

Aqui temos um exemplo de como citar uma URL na bibliografia [?]. Aqui temos um exemplo de como criar um hiperlink. Veja aqui um exemplo de vídeo.

Sempre identifique no site do vídeo:

• o experimento: Experimento 7;

• semestre: 2016-2;

• a disciplina: CiC 116351 - Circuitos Digitais - Turma B;

• a universidade: Universidade de Brasília (UnB);

• os nomes dos componentes do grupo.

É apresentado acima como fazer uma listagem não numerada.

4.2. Demultiplexador

Este é outro item do experimento. Aqui temos um exemplo de como construir e citar uma tabela, conforme mostrado na Tabela 1.

Table 1. Expected values of the obtained circuits' attributes.

	Phase 1			Phase 2			1	
Experiment	n_g	n_l	n_t	n_g	n_l	n_t	t(s)	
1 bit full adder	8.16	3.8	47.6	5.03	3.0	25.93	99.13	
2 bit full adder	18.06	5.16	107.13	11.06	4.9	60.06	709.56	
2 bit multiplier	14.2	4.03	74.33	7.7	2.2	37.53	357.76	
7 segment decoder	47.53	5.83	270.46	32.86	5.0	176.4	740.63	
Karnaugh 1 bit full adder	19.0	6.0	102.0	5.03	3.0	24.8	130.73	

Aqui devemos colocar uma apresentação e análise da tabela, explicando ao leitor o que se pretende mostrar.

5. Análise dos Resultados

Faça uma análise crítica dos resultados obtidos nos experimentos. Esta análise pode ser feita item a item ou de uma forma geral.

Dica: Use pesquisa na Internet para tirar as dúvidas sobre edição em LATEX.

6. Conclusão

Concluir o relatório explanando rapidamente o que foi feito e os resultados obtidos, sempre correlacionando com os objetivos do experimento apresentado na Seção 1.

Auto-Avaliação

- 1. a
- 2. c
- 3. b
- 4. d