Project Report

PROJECT REPORT

Project name	Efficient water quality analysis	
	prediction using machine learning	
Team id	PNT2022TMID52107	
Team members	M.Srisakthi	
	J.Shyja jenifer	
	M.Sindhu	
	K.Sujith	

INTRODUCTION

Project Description:

Water is considered as a vital resource that affects various aspects of human health and lives. The quality of water is a major concern for people living in urban areas. The quality of water serves as a powerful environmental determinant and a foundation for the prevention and control of waterborne diseases. However predicting the urban water quality is a challenging task since the water quality varies in urban spaces nonlinearly and depends on multiple factors, such as meteorology, water usage patterns, and land uses, so this project aims at building a Machine Learning (ML) model to Predict Water Quality by considering all water quality standard indicators.

Purpose:

- To evaluate the quality of water and determine the safety of water.
- To monitor changes in water quality.
- To determine whether water is suitable for the health of the natural environment.
- To determine whether water is suitable for human consumption and other uses.

LITERATURE SURVEY

Problem Statement:

One in nine people worldwide uses drinking water from unimproved and unsafe sources. 2.4 billion people live without any form of sanitation.

- Water is one of the most essential for the existence of life. The safety and accessibility if drinking-water are major concerns throughout the globe.
- Water makes up about 70% of the surface and is one of the most important sources

- vital to sustaining life.
- Water quality has been conventionally estimated through expensive and time consuming lab and statical analysis.
- This system is proposed to check the water quality and warm the user before water gets contaminated using Machine Learning.

References:

Abobakr Saeed Abobakr Yahya, Ali Najah Ahmed, Faridah Binti Othman, Rusul Khaleel Ibrahim, Haitham Abdulmohsin Afan, Amr El-Shafie, Chow Ming Fai, Md Shabbir Hossain, Mohammad Ehteram and Ahmed Elshafie "Water Quality Prediction Model Based Support Vector Machine Model for Ungauged River Catchment under Dual Scenarios"

<u>Water | Free Full-Text | Water Quality Prediction Model Based Support Vector Machine Model for Ungauged River Catchment under Dual Scenarios (mdpi.com)</u>

IDEATION AND PROPOSED SOLOUTION

Empathy Map:

Ideation & Brainstorming:

Proposed Solution:

S.No. 1.	Parameter Problem Statement (Problem to be solved)	Description To establish safe drinking water sources in the future, it is imperative to understand the quality and pollution level of existing groundwater. The prediction of water quality with high accuracy is the key to controlling water pollution and the improvement of water management.
2.	Idea / Solution description	In this study, a machine learning (ML) based model is proposed for predicting groundwater quality and compared with three other machine learning(ML) models, namely, random forest, extreme gradient boosting and artifical neural network(ANN).
3.	Novelty / Uniqueness	 ☑ The main reason behind the success of this ML technique is that it ignore the requirements of selective featuires that are most representative compared to that of traditional ML algorithm. ☑ ML methods can progressively construct highlevel attributes from the given dataset. ☑ ML technique is a self deterministic approach that learns features to discover the correct representation required for the given task .
4.	Social Impact / Customer Satisfaction	Generation of unprocessed effluent, municipal refuse, factory wastes, and junking of compostable and non compostable effluents has hugely contaminated nature provided water bodies like rivers, lake, and ponds. Therefore, there is a necessity to look into the water

Business Model (Revenue Model)

standard before usage .This is a problem that can greatly benifit from artifical intelligence. Traditional methods require human inspection and are time consuming.

Assesment of water quality using conventional methods causes losses in eco-nomic value, which in turn affect yhe decision —making

5.

Problem Solution fit:

REQUIREMENT ANALYSIS

Functional requirement:

FR. No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)	
FR-1	User registration	Registration through Gmail Create an account Follow the instructions	
FR-2	User Confirmation	Confirmation via Email and it is predicted by water level sensor	
FR-3	Interface sensor	Interface sensor and Water level sensor produces the detection of clean drinking water	
FR-4	Accessing datasets	Datasets are collected by data preprocessing method.	
FR-5	Mobile application	The efficient of water quality is analyzed, the mobile application is not used	

Non-functional Requirements:

NFR-2	Security	We have designed this project to secure the people from drinking the impurity water.
NFR-3	Reliability	This project will help everyone in protecting their health. Accurate water quality prediction is the basis of water environment managementand is of great significance for water environment protection
NFR-4	Performance	This system uses different sensors for monitoring the water quality by determine pH,Turbidity,conductivity and temperature. The data preprocessing access the dataset. With the use of this we predict the quality water.
NFR-5	Availability	By developing and deploying resilient hardware and software we can analyze the drinkingwater .
NFR-6	Scalability	This project used to measure and determine the quality of water. This provide pollution free and purified water.

PROJECT DESIGN

Data Flow Diagrams:

Solution Architecture:

Technical Architecture

User Journey

PROJECT PLANNING & SCHEDULING

Sprint	Function al Require ment (Epic)	User Story Number	User Story / Task	Stor Poir
Sprint-1	Data Collection	USN-1	Collect the appropriate f datasetpredicting the water quality.	10
Sprint-1		USN-2	Data Preprocessing – Used to transform thedata into useful format.	7
Sprint-2	Model Building	USN-3	Calculate the Water Quality Index (WQI) using Regression algorithm of Machine Learning.	10

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	4 Days	24 Oct 2022	27 Oct 2022	20	29 Oct 2022
Sprint-2	20	5 Days	28 Oct 2022	01 Nov 2022	20	04 Nov 2022
Sprint-3	20	8 Days	02 Nov 2022	09 Nov 2022	20	11 Nov 2022
Sprint-4	20	9 Days	10 Nov 2022	18 Nov 2022	20	19 Nov 2022

S.NO	MILESTONE	DESCRIPTION	DURATION	Working Status
1.	Prerequisites	Prerequisites are all the needs at the requirement level needed for the execution of the different phases of a project.	1 WEEK	Completed
2.	Ideation	Ideation process is where you generate ideas and solutions through sessions such as Sketching, Prototyping, Brainstorming, Worst Possible ideas and wealth of other techniques.	1 WEEK	Completed
3.	Project design phase	Project design is an early phase of a project where the project's key features, structure, criteria for success, and major deliverables are planned out. The	1 WEEK	Completed

	Т			
		aim is to develop		
		one or more		
		designs that can		
		be used to		
		achieved the		
		desire goals.		
4.	Project Planning Phase	In the Planning	1 WEEK	Completed
		Phase, the		
		Project Manager		
		works with the		
		team to create		
		the technical		
		design, task list,		
		resources,		
		communication		
		plan, budget and		
		initial schedule		
		for project.		
5.	Data Collection and Data pre	A Data collection	1 WEEK	Completed
	- processing	is a process of		
		gathering and		
		measuring		
		information on		
		variables to		
		ensure accuracy		
		and facilitate		
		analysis. It help		
		to solve the		
		critical		
		workloads.		
6.	Model Building	Model Building is	4 WEEKS	Completed
		used for project		
		visualization to		
		provide		
		information		
		about the		
		proposed state. It		
		helps to identify		
		the quality of		
		objectives and it		
		formulate the		
		conceptual		
		model.		
7.	Develop Application	A web	4 WEEKS	Completed
		application is		
		application		
		software that		
		runs in a web		
		browser, unlike		
	l l	Dionisci) alline		
		software		

		run locally and natively on the operating system of the device.		
8.	Project development phase	Project development is the process of planning and allocating resources to fully develop a project or product from concept to go - live.	4 WEEKS	Completed

CONCLUSION:

The prediction of water quality is very vital in monitoring the pollution and in sustaining the availability of potable water resources. Undoubtedly, it can afford early warnings when the water quality changes as well as it can reduce the adverse consequences resulting from the poor water quality. Herein, the SVM approach was introduced to estimate the water quality of Langat River Basin using six parameters. The presented model accurately estimated the water quality factors with relatively minor prediction errors, proving a quite efficient and robust performance. The model also can help in the optimization of water quality monitoring plans by decreasing the frequency, quantity of sampling sites, and water quality factors. Prediction precision with the maximum error was equal to 1% and CC was equal to 0.9987. Even though the outcomes seem to be reasonable, the application of water quality parameters is quite sensitive to the error level. 1% as a maximum error is comparatively on the higher side in such an application which triggers the need to improve it. In this regard, it is suggested to deploy the optimal kernel parameters determined and choose the Nu-RBF model as the optimal model.

GitHub & Project Demo Link

https://github.com/IBM-EPBL/IBM-Project-47808-1660802465

https://youtu.be/1vX3cpRx4T0