Michael Grossberg

# Intro to Data Science CS59969

Neural Net and Deep Architecture



Artificial Neural Network

#### Perceptron



# Neuron Analogy



#### Activation Function

$$f = \begin{cases} 1 & \text{if } u \ge 0 \\ 0 & \text{if } u < 0 \end{cases} \text{ or } = \frac{1}{1 + e^{-u}}$$
Step Sigmoid

More intuitive

Easier for optimization

# Perceptron: Separating Hyperplane



#### Update Algorithm

$$f_{\boldsymbol{w}} \text{ depends on } \mathcal{W}_0, \mathcal{W}_1, \cdots \mathcal{W}_n$$
 
$$\mathcal{W}_i(t) \text{ update for next t}$$
 
$$\mathcal{W}_i(0) \text{ random } \text{j th Data Point}$$
 
$$f_{\boldsymbol{w}(t)}(\boldsymbol{x}^j) = y^j \text{nth True Response}$$
 j th predicted output 
$$w_i(t+1) = w_i(t) + (d^j - y_i^j) \cdot x_i^j \text{ Update Rule}$$

Converges .....

#### Multi-layer perceptron



Outputs in one layer Inputs of next layer

#### Non-linear Decision Boundaries



# Complex NN

Feed Forward NN



### More Complex Optimizations



$$rac{\partial E}{\partial w_{ij}} = rac{\partial E}{\partial o_j} rac{\partial o_j}{\partial \mathrm{net_j}} rac{\partial \mathrm{net_j}}{\partial w_{ij}}$$

**Gradient Decent** 

Leads to

**Back Propagation** 

Use partial derivatives to move error back from output to input to update weights

#### Traditional Problems with Neural Networks

- \* Black Box (what do the weights mean?)
- Picking the network
- \* Getting the weights to converge
- \* Overfitting
- Computational Cost
- Not enough Data

#### Traditional Problems with Neural Networks

- \* Black Box (what do the weights mean?)
- Picking the network
- \* Getting the weights to converge
- \* Overfitting
- \* Computational Cost Cheaper Cloud Computing
- \* Not enough Data ... Abundant Data

#### Neural Network Triumvirate







#### Traditional Problems with Neural Networks

- \* Black Box (what do the weights mean?)
- \* Picking the network
- \* Getting the weights to converge
- \* Overfitting.....
- \* Computational Cost
- \* Not enough Data ....

Task Specific Networks: CNN, RNN

> Pooling Knockout

# Deep Learning



ANN with MANY hidden layers

### Why Should it work?



### ImageNet



2007: 14 Million Labeled Images Competition to Classify

# 2012: Google Brain



Official Blog

Insights from Googlers into our products,

Using large-scale brain simulations for machine learning and A.I.

June 26, 2012

You probably use machine learning technology dozens of times a day without knowing



YouTube

Video sharing company







#### Auto-Encoder: Unsupervised Learning

- Input Cell
- Hidden Cell
- Match Input Output Cell

Auto Encoder (AE)



Learn Important Features

#### AutoEncoder



#### Deep Auto-Encoder



Linear -> Gives PCA
Non-linear Generalizes PCA
Use Noise to deal with overfitting
Features can be reused

#### What features?







### Deep Learning Scales with Data



#### DeepMind 2013

#### Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies



Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders, Seaquest, Beam Rider

### DeepMind Network: DQN per Game



# Complete Graph



#### Too Many Parameters



#### Convolution Neural Networks



#### ANN/CNN

- Hard to train
- \* Big Breakthrough: Pre-Train with unsupervised networks auto encoder

# (Traditional) Feature Engineering



[Honglak Lee]

# Pre-Training





#### Deep Approach: Learned Features



[Honglak Lee]

# Very Different Convergence



http://jmlr.org/papers/volume11/erhan10a/erhan10a.pdf

#### Dropout



Helps Address Overfitting

#### Recurrent Neural Net



http://blog.josephwilk.net/ruby/recurrent-neural-networks-in-ruby.html

#### Libraries

- Keras (python)
- Theano (python)
- TensorFlow (many wrappers)
- \* Cafe (C++)
- \* Torch (Lua)
- Deeplearning4j (java/spark)
- \* MXnet
- \* Comparison: <a href="https://en.wikipedia.org/wiki/">https://en.wikipedia.org/wiki/</a> Comparison of deep learning software