As B.	ertot Sug	gested, we	break	edges into	3 categorie
		•	-7 arc-li	ines.	
	•	•	-> Incom	plete edge	25
			→ comf)	lete - el	jes
What mores	do we r	red to			
		then the s	wee pline	Lis at 1	r)
	YK50 eintk y	. In the	e case of	complete e	olge:
		tracing ou ction are			

Beachline: Ret B= [a, a, --, an] then intersection (ai, ait) intersection (ai, ait) \(\frac{1}{2}\) i

This criteria is necessary and sufficient,

Circle event must be freformed to respect this

criteria while the suekfline mores

Site event There is only one way to a site

while respecting this criteria

From a Properly constructed beachline to a correct Voronoi Diagram &

- We can assert that the cell for each and in the blackline one subject of voronoi and the same for incomplete edges

- The in winflete edges are extremal edges
in the sense that the left and the right
of an edge belongs to different celler
- Theorem the beachline does NOT contain
two consecutive arcs withe the same
focal Point.

The	end	and	the	beginning
	B D.			