Сложность алгоритмов

1. Расположите следующие функции в порядке увеличения скорости роста при больших n:

(a) $\log n$	(f) $\log \log n$	(k) n^n
(b) 1	(g) $\sqrt{2}^{logn}$	(l) $n \log n$
(c) \sqrt{n}	$(h) (log(n))^{log(n)}$	(m) n^2
(d) n	(i) 2^{2^n}	(m) m^2
(e) 1.01^n	(i) $n!$	(n) 2^n

2. Отметьте все функции, равные $\Theta(n^2)$ и все функции, равные $O(n^2)$

```
• 1000n^2 
• \frac{n^3}{1000} + 5000n^2 
• e^n 
• log(n^9 + n^5) 
• log n 
• n \log n 
• n^3/(1+n)
```

- 3. Чему равна алгоритмическая сложность следующих операций?
 - Поиск элемента в массиве размера N
 - Добавление элемента в начало массива размера N
 - Сортировка пузырьком массива размера N
 - Быстрая сортировка массива размера N
 - Добавление элемента в стек размера N
 - ullet Сложение матриц размера $N \times N$
 - Простой алгоритм умножения матриц размера $N \times N$
 - Следующий участок кода:

- 4. Алиса и Боб любят игры и соревнования. И сейчас они готовы приступить к новой игре. Всего у них есть X плиток шоколада. По правилам игры они могут есть этот шоколад по очереди(первой начинает Алиса). Известно, что Алиса съедает 7 плиток шоколада за ход, а Боб 5 плиток шоколада. Выйгрывает тот, кто съест последнюю плитку. При заданном X, определить победителя. Предложено 2 алгоритма решения этой задачи:
 - Плохой: Вычитаем сначала 7, затем 5 и так до тех пор пока не дойдём до 0 (или отрицательного числа). Чему равна сложность данного решения?
 - Хороший: Сначала находим остаток от деления X на 12. В зависимости от остатка определяем победителя. Чему равна сложность данного решения?

Сортировки

- 1. Создайте массив со следующими элементами: {163, 624, 7345, 545, 41, 78, 5, 536, 962, 1579}
- 2. Печать массива: Написать функцию print_array(int n, int arr[])
- 3. Сортировка выбором: Написать функцию сортировки выбором void selection_sort(int n, int arr[]). arr массив чисел, которые нужно отсортировать, n количество чисел в этом массиве. Будем обозначать подмассивы так: arr[k:m] подмассив массива arr с элементами под номерами от k до m. Таким образом, весь массив можно обозначить как arr[0:n-1].

Алгоритм сортировки выбором:

- Найти минимальный элемент в массиве.
- Поменять местами минимальный элемент и первый элемент массива.
- Повторить эти операции для подмассива arr[1:n-1], затем для подмассива arr[2:n-1] и т.д.
- 4. **Реккурсивная сортировка выбором:** Написать реккурсивную функцию сортировки выбором void rec_selection_sort(int start, int n, int arr[]).

arr — массив чисел, которые нужно отсортировать, n — количество чисел в массиве arr, start — начальный индекс подмассива в массиве arr.

5. **Быстрая сортировка:** Написать реккурсивную функцию быстрой сортировки void quick_sort(int arr[], int lo, int hi), которая будет сортировать подмассив arr[lo:hi] массива arr.

Алгоритм быстрой сортировки:

- Если lo < hi:
 - (a) Выбираем последний элемент подмассива в качестве опорного. Сохраняем это значение в переменной pivot.
 - (b) Вводим переменные-счётчики i = lo
 - (с) Бежим по массиву, используя новую переменную счётчик j, и, для каждого элемента, который не больше опорного, меняем i-й и j-й элементы. После каждого обмена увеличиваем i на 1.
 - (d) Меняем і-й элемент и опорный, так как мы хотим, чтобы опорный элемент разделял 2 подмассива.
 - (e) Реккурсивно вызываем функцию quick sort() для каждого из подмассивов.

Стандартная функция qsort()

Задачи:

- 1. Отсортировать числа массива arr по убыванию.
- 2. Отсортировать числа массива arr по возрастанию последней цифры.
- 3. Отсортировать числа массива arr по первой цифре числа.
- 4. Описать структуру Movie с полями title(название строка), year(год выхода целое число), rating(рейтинг на кинопоиске вещественное число). Создать массив из 6-ти таких структур. Написать отдельную функцию для печати такого массива на экран.
- 5. Отсортировать массив фильмов по убыванию рейтинга.
- 6. Отсортировать массив фильмов по возрастанию года выхода.
- 7. Интерпретируем значения массива arr, как значения некоторых углов в градусах. Отсортировать числа по возрастанию косинусов соответствующих углов.
- 8. Отсортировать числа массива **arr** следующим образом: сначала четные числа по возрастанию, затем нечётные по убыванию.