Student Information

Full Name : Deniz KOLUAÇIK

Id Number : 2310274

Answer 1

a)

p	q	$\neg p$	$q \to \neg p$	$p \leftrightarrow q$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
Т	Т	F	F	Т	F
Т	F	F	Т	F	F
F	Т	Τ	Τ	F	F
F	F	Т	Τ	Т	Т

Table 1: The truth table of the given compound proposition.

b)

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r) \land (q \to r)$	$((p \lor q) \land (p \to r) \land (q \to r) \to r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	T
T	F	Т	Т	Т	Т	T	T
Т	F	F	Т	F	Т	F	T
F	Т	Т	Т	Т	Т	F	T
F	Т	F	Т	Т	F	F	T
F	F	Т	F	Т	Т	F	T
F	F	F	F	Т	Т	F	T

Table 2: The truth table for the given formula, where the expression on the last column holds true for any value of x, y, and z, showing us that the formula is a **tautology**.

Answer 2

Hence; $\neg p \to (q \to r)$ is logically equivalent to $q \to (p \lor r)$.

Answer 3

- a) $\forall x L(x, Burak)$
- **b)** $\forall x L(Hazal, x)$
- c) $\forall x \exists y L(x,y)$
- **d)** $\neg \exists x \forall y (L(x,y))$
- e) $\forall x \exists y L(y, x)$
- **f)** $\forall x(\neg L(x, Mustafa) \land \neg L(x, Burak))$
- g) $\exists x \exists y \forall z (L(Ceren, x) \land (L(Ceren, y) \land x \neq y) \land (L(Ceren, z) \rightarrow (z = x \lor z = y)))$
- **h)** $\forall x \exists y \forall z (L(x,y) \land (L(x,z) \rightarrow y = z))$
- i) $\forall x \forall y (L(x,y) \to x \neq y)$
- $\mathbf{j)} \ \exists x \exists y \forall z (L(x,x) \land L(x,y) \land x \neq y) \land (L(x,z) \rightarrow (z=x \lor z=y))$

Answer 4

Table 3: Proof of $p \to q, \neg q \vdash \neg p$. This proof will be referred as *Modus Tollens* or *M.T.* for short.

$$\begin{array}{cccc} 1 & p \rightarrow q & premise \\ 2 & \neg q & premise \\ 3 & p & assumption \\ 4 & q & \rightarrow_e, 1, 3 \\ 5 & \bot & \neg_e, 2, 4 \\ 6 & \neg p & \neg_i, 3 - 5 \end{array}$$

Table 4: Proving that $p, p \to (r \to q), q \to s \vdash \neg q \to (s \lor \neg r)$

1	p	premise
2	$p \to (r \to q)$	premise
3	$q \to s$	premise
4	$r \to q$	$\rightarrow_e, 1, 2$
5	$\neg q$	assumption
6	$\neg r$	M. T., 4, 5
7	$s \vee \neg r$	\vee_i , 6
8		$\rightarrow_i, 5-7$

Answer 5

In this question, we are going to use several theorems that will be proven first, like in the previous question.

1	$\neg p \land \neg q$	premise
2	$\neg p$	$\wedge_e, 1$
3	$\neg q$	$\wedge_e, 1$
4	$p \lor q$	assumption
5	p	assumption
6		$\neg_e, 2, 5$
7	$p \to \perp$	$\rightarrow_i, 5-6$
8	q	assumption
9		$\neg_e, 3, 8$
10	$q \to \perp$	$\rightarrow_i, 5-6$
11	\perp	$\vee_e, 4, 7, 10$
12	$\neg (p \lor q)$	$\neg_i, 4-11$

Table 5: De Morgan's Law: $\neg p \land \neg q \vdash \neg (p \lor q)$. Note that we have used \bot to represent the Boolean value *False* in line 7 and 10 to be able to use conjunction elimination in line 11.. This theorem will be referred as $DeM_{.\lor}$.

1	$p \vee q$	premise
2	$\neg q$	premise
3	$\neg p$	assumption
4	$\neg p \land \neg q$	$\wedge_i, 2, 3$
5	$\neg (p \lor q)$	$DeM{\lor}, 4$
6	上	$\neg_e, 1, 5$
7	$\neg \neg p$	$\neg_i, 3-6$
8	p	$\neg \neg_e, 7$

Table 6: Lemma: $p \lor q, \neg q \vdash p$. This lemma will be referred as Koluacik's rule.

1	$\neg \exists x p(x)$	
2	x_0	constant
3	$p(x_0)$	assumption
4	$\exists x p(x)$	$\exists_i, 3$
5		$\neg_e, 1, 4$
6	$\neg p(x_0)$	$\neg_i, 3-5$
7	$\forall x \neg p(x)$	$\forall_i, 2-7$

Table 7: De Morgan's Law for quantifiers. This law will be referred as $DeM._{\exists}$.

Table 8: Proof of $\forall x(p(x) \to q(x)), \neg \exists z r(z), \exists y p(y) \lor r(a) \vdash \exists z q(z).$

1		$\forall x (p(x) \to q(x))$	premise
2		$\neg \exists z r(z)$	premise
3		$\exists y p(y) \lor r(a)$	premise
4		$\forall z \neg r(z)$	$DeM{\exists z}, 2$
5		$\neg r(a)$	$\forall_{e,z\leftarrow a}, 4$
6		$\exists y p(y)$	$Koluacik's\ rule, 3, 5$
7	b	p(b)	assumption
8		$p(b) \to q(b)$	$\forall_{e,x\leftarrow b}, 1$
9		q(b)	$\rightarrow_e, 7, 8$
10		$\exists z q(z)$	$\exists_i, 9$
11		$\exists z q(z)$	$\exists_e, 6, 7-10$