Tut 2 due next Tues 17 Sep.

continue - spin angular momentum

- Spin-orbit coupling
- Dircc equation (not examinable)
 Tensor products => Addition of angular momentum in W6.

Pauli matrices - Spin- & systems.

$$\{\delta_k, \delta_j\} = 2\delta_{kj} 1$$
 - anticonments

For all k,
$$\mathcal{S}_{k}^{2} = 1$$
.

Spin magnetic moment

to an electron,
$$\vec{\mu} = -g_e \mu_B \vec{S}$$
, $g_e \approx 2$

$$\mu_B = \frac{e \hbar}{2m_e c} 70 ((6s))$$

Spin-orbit coupling (Suc)

- spin couples to lattice only through the spin-orbit coupling (spatial degrees of freedom)

- magnetic anisotropy — preferred visertation of spin, and along with that, spin magnetic moment. (from SOC)

idea: 3 = M negretic monent

L = B internal nagretic field
felt by the election.

u ~ - ば.B.

is & E eve given in the frame of the nucleus.

In an inertial frame moving at velocity if the particle feels a (non-accelerating)

$$\vec{B} = -\frac{\vec{y}}{c} \times \vec{E}$$
 (from special relativity)

Here, in the frame of the edection, which is precessing around the nucleus, we need an additional bector 1 ± 3

known as the Thomas precession factor, the electron feels a

$$\vec{B} = -\frac{1}{2} \vec{J} \times \vec{E} \qquad (nst \text{ lessel})$$

Energy
$$U = -\vec{\mu} \cdot \vec{B}$$

$$= \frac{1}{2} \vec{\mu} \cdot (\vec{\zeta} \times f(n) \vec{r})$$

$$= -\frac{1}{2} \frac{f(n)}{c} \vec{\mu} \cdot (\vec{r} \times \vec{p})$$

$$= -\frac{1}{2} \frac{f(n)}{cm_{e}} \vec{\mu} \cdot (\vec{r} \times \vec{p})$$

$$= -\frac{1}{2} \frac{f(n)}{cm_{e}} \vec{\mu} \cdot \vec{L}$$

spin
$$\mu$$
 = $-\frac{1}{2}\frac{f(r)}{cm}\left(-\frac{g_e}{2m_c}\frac{e^{\frac{t}{h}}}{\frac{t}{h}}\right)$. \vec{L}

$$= \frac{e^{\frac{t}{h}}(r)g_e}{\frac{t}{h}(m_ec)^2} \vec{S} \cdot \vec{L}$$

$$f(r) = -\frac{\partial \varphi}{\partial r_r} \qquad \frac{1}{r} \frac{\partial \varphi}{\partial r_r} \vec{S} \cdot \vec{L}$$

Spin-orbit coupling.

Tensor products

Aldre of angular momentum

Eg Addition of angular unomentum. $\vec{L} + \vec{S} \cdot \vec{?}$ $\vec{l} = 1 \quad S = \frac{1}{2}$ dimension $2l+1 = 3 \quad 2s+1 = 2$

Spaces that I & S operate on have different dimensionalities.

evertually: $\Gamma \otimes 1_{2x_2} + 1_{3x_3} \otimes \overline{S}_{(2x_2)}$

Tensor product spa a E

Given two vector spaces \mathcal{E} , and \mathcal{E}_z , we can define another vector space \mathcal{E} which is alled the tensor product space of \mathcal{E}_1 and \mathcal{E}_2 .

E = E ⊗ E,

Suppose Ei is spanned by { | U:(1) > } and Ez is spanned by { | U:(2) > }.

(O.n. basis)

Then E is spanned by { |U(1)> \omega |U(2)>}

Any vector in \mathcal{E} can be written as $|4\rangle = \sum_{i,j} C_{ij} |u_i(n)\rangle \otimes |v_j(2)\rangle$

(beginition of E)

Properties of vectors in & For 1907 & E., 1x(w)>EEz,

Linearity: (>19(1)>) ⊗ |x(2)> = > (19(1)> ⊗ |x(2)>

14(1) > (/ (x(x)) = / (18(1)> @ (x(x))>

「中ロン⊗ ((スロン)+ (スロン)) = (四口)※ (スロン) + 1円ロン⊗ (スロン) (1月ロ) + 1 中ロン)⊗ (オロン) = 1月ロン⊗ (スロン) + 1円ロン⊗ (オロン)

to every pair of vectors $|9(1)\rangle \approx 2$, and $|\chi(\nu)\rangle \in \mathcal{E}_{\nu}$,

Ja vector | 9(1)>⊗ |7(2)> ∈ € = €,⊗ €2. — (1)

But not all vectors in & can be written as 19(0>@17(2)>.

Those that cannot be written this way are called entangled

PC3130 W5L2 AY24 Page 3

Either $a_1b_2 = 0$ or $a_2b_1 = 0$ or $a_2b_2 = 0$).

Sometimes $a_1b_2 = 0$ or $a_2b_1 = 0$ or $a_2b_2 = 0$.

So $|\phi\rangle = \frac{1}{4\Sigma} (|1\rangle,0\rangle - |0\rangle,1\rangle$ is an entangled state.

- basis of quantum telepartation, cryptography, etc.

(Ballentine).

|4(1)78 (1x, (2) + x, (2)) = |4, (1)78 |x, (2)7 + |4(1)78 |x, (2))

Eg.
$$|47 = \frac{1}{\sqrt{2}} (1007 + 1017)$$

= $\frac{1}{\sqrt{2}} (107 \otimes (1072 + 1172))$ - not entangled.

PC3130 W5L2 AY24 Page 4

Another operation for rectors: Salar products in E. $\langle \Psi, \chi_1 | \Psi, \chi_2 \rangle = \langle \Psi, | \Psi, \rangle \langle \chi_1 | \chi_2 \rangle$ ie. $(\langle \varphi,' | \otimes \langle \chi' |) (| \varphi, \rangle \otimes | \chi, \gamma) = \langle \varphi,' | \varphi, \rangle \langle \chi' | \chi, \gamma$ Now we cover operators on tensor product space Â, operator on E, , Bz operator on Ez Define tensor product of operators: (A, & B,) acting on & = & & Ez. $(\hat{A}, \otimes \hat{B}_z) (|\Psi, \rangle \otimes |\chi, \rangle) = (\hat{A}, |\Psi, \rangle) \otimes (\hat{B}_z |\chi, \rangle) \in \mathcal{E}_{, \otimes} \mathcal{E}_z$ En⊗ Ez Consider En & Ez are each of dimension 2. $\hat{\beta}_{2} \longrightarrow \beta_{2} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ If $\widehat{A}_1 \leftarrow A_1 = \begin{pmatrix} a_1 & a_{12} \\ a_2 & a_1 \end{pmatrix}$ Basis for & = { |f, >, |f, >} Basis for E, = { (e,>, (e,>)} Eg. a, = <e, (A, le,) a, = <e, | Â, |e,> Convertion in linear algebra. $|g_1\rangle |g_2\rangle |g_2\rangle |g_3\rangle |g_4\rangle |g_1\rangle |g_2\rangle |g_3\rangle |g_4\rangle |g_1\rangle |g_2\rangle |g_3\rangle |g_4\rangle |g_4\rangle |g_4\rangle |g_5\rangle |g_4\rangle |g_5\rangle |g_5$ Basis for $\mathcal{E} = \mathcal{E}_1 \otimes \mathcal{E}_2$ is $\{ |g_1\rangle = |e_1\rangle \otimes |f_1\rangle$ 1927 = 1e,70 185

· linear: (a, \hat{\Delta}, + a, \hat{\Delta},) & \hat{\Beta} = K, \hat{\Delta}, \otimes \hat{\Beta} + \otimes_2 \hat{\Delta}_2 \otimes \hat{\Beta}.

1937 = 1e,>8/16>

1347 = 1e270 1f27 }

· linear: $(\alpha, \hat{A}_1 + \alpha, \hat{A}_2) \otimes \hat{B} = \alpha, \hat{A}_1 \otimes \hat{B} + \alpha, \hat{A}_2 \otimes \hat{B}$ $(\hat{A}' \otimes \hat{B}')(\hat{A} \otimes \hat{B}) | \Psi \rangle = (\hat{A}' \hat{A}) \otimes (\hat{B}' \hat{B}) | \Psi \rangle$

$$(\hat{A}' \otimes \hat{B}')(\hat{A} \otimes \hat{B}) | \mathcal{F} \rangle = (\hat{A}' \hat{A}) \otimes (\hat{B}' \hat{B}) | \mathcal{F} \rangle$$

$$\mathcal{E} \otimes \mathcal{E}_{\lambda}$$

Trace. $T_{r_{\epsilon}}(\hat{A} \otimes \hat{B}) = T_{r_{\epsilon_{1}}}(\hat{A}) T_{r_{\epsilon_{2}}}(\hat{B})$

Adjoint
$$(\hat{A} \otimes \hat{B})^{\dagger} | \xi 7 = \hat{A}^{\dagger} \otimes \hat{B}^{\dagger} | \xi 7$$

acts on acts on ξ_1 , ξ_2

acts on ξ_2 .

Contrast with:

Single-particle Hilbert space \mathcal{E} Where $\widehat{\mathbb{G}}$ acts on $\widehat{\mathbb{E}}$ and $\widehat{\mathbb{R}}$ also acts on $\widehat{\mathbb{E}}$. $(\widehat{\mathbb{G}}\widehat{\mathbb{R}})^{\dagger} | \Psi \rangle = (\widehat{\mathbb{R}}^{\dagger} \widehat{\mathbb{Q}}^{\dagger}) | \Psi \rangle$

$$\mathcal{E}_{1}$$
 dimension n_{1}
 \mathcal{E}_{2} n_{2}
 $\mathcal{E}_{1} \otimes \mathcal{E}_{2}$ $n_{1}n_{2}$.

Evample Spin-orbit coupling.

let's say l=1.

Ez spanned by angular momentum eigenstates for l:

$$\vec{S} \cdot \vec{L} = \frac{t_1}{2} \left(\delta_x L_x + \delta_y L_y + \delta_z L_z \right)$$

$$\vec{S} = \frac{t_1}{2} \left(\delta_x \hat{e}_x + \delta_y \hat{e}_y + \delta_z \hat{e}_z \right)$$

$$\vec{S}_x = \frac{t_1}{2} \delta_x$$

What does this mean?

PC3130 W5L2 AY24 Page 6

Eg. $\delta_{x} L_{x} = \delta_{x} \otimes L_{x}$ add on ξ_{1} acts on ξ_{1} $(\delta_{x} \otimes L_{x})(|+\rangle_{z} \otimes |f_{1}\rangle) = (\delta_{x} |+\rangle_{z}) \otimes (L_{x} |f_{1}\rangle)$ Dimension of $\xi = \xi_{1} \otimes \xi_{2}$ is $2 \times 3 = 6$