Azure Machine Learning – platforma do budowy, trenowania i wdrażania modeli ML/AI w skali. Integracja z Python, scikit-learn, TensorFlow, PyTorch.

MLflow (często integrowany z Databricks) – śledzenie eksperymentów, wersjonowanie modeli.

Cognitive Services – gotowe modele AI do wykrywania twarzy, tłumaczenia, OCR, analizy tekstu itd.

AutoML – automatyczne tworzenie modeli ML bez głębokiej wiedzy programistycznej. **Azure Synapse Analytics** – platforma analityczna łącząca hurtownię danych z Apache Spark.

Azure Data Lake Storage Gen2 – skalowalna przestrzeń do przechowywania danych w formacie plikowym (parquet, JSON, CSV).

Azure Data Factory – ETL/ELT i integracja danych z wielu źródeł.

Azure Databricks – środowisko do analizy danych w oparciu o Apache Spark, Python/Scala, MLlib.

Apache Kafka (Confluent on Azure) – strumieniowe przetwarzanie danych.

Power BI – wizualizacja danych, integracja z Azure Synapse i Data Lake.

Azure Monitor + Log Analytics – monitoring systemów i diagnostyka danych telemetrycznych.

Azure Event Hubs / IoT Hub - ingestowanie danych telemetrycznych z urządzeń IoT.

1. Wykrycie nieprawidłowości w danych sensorycznych z linii produkcyjnej w czasie rzeczywistym.

- a) Użyte narzędzia:
 - **IoT Hub** zbieranie danych z urządzeń.
 - Stream Analytics / Azure Functions przetwarzanie danych w czasie rzeczywistym.
 - Azure Data Lake magazyn danych surowych (Raw), przetworzonych (Curated).
 - Azure Machine Learning trenowanie modelu detekcji anomalii (np. Isolation Forest, Autoencoder).
 - **Azure Databricks** eksploracja danych, przygotowanie danych treningowych.
 - Power BI dashboard do wizualizacji wyników detekcji anomalii.
- b) Przebieg:
 - Dane z czujników trafiają do IoT Hub.
 - Stream Analytics filtruje dane i zapisuje do Data Lake.
 - Databricks przygotowuje dane, trenuje model wykrywania anomalii.
 - Model wdrażany jako webservice w Azure ML.
 - Wyniki z endpointu prezentowane w Power BI.

2. Monitorowanie zachowań graczy, wykrywanie błędów gry, analiza satysfakcji graczy w czasie rzeczywistym.

- a) Przetwarzanie danych w czasie rzeczywistym:
 - **Event Hubs** odbieranie danych z klientów (telemetria z gry).
 - Azure Stream Analytics przetwarzanie danych na bieżąco (alerty, metryki).
 - Azure Functions reagowanie na konkretne zdarzenia (np. crash).
- b) Przetwarzanie wsadowe i analiza ML:

- Azure Data Lake przechowywanie danych historycznych (parquet).
- Azure Synapse Analytics analityka SQL + Spark.
- **Azure Databricks** trenowanie modeli do predykcji błędów, klasyfikacja nastrojów graczy (analiza tekstów z forów, czatów).
- Azure ML detekcja błędów, predykcja churnu gracza.

c) Wizualizacja i monitorowanie:

- **Power BI** dashboardy do KPI (np. liczba błędów na build).
- **Azure Monitor + App Insights** monitorowanie backendu gry.

d) Storage w architekturze:

Komponent	Compute	Storage
Azure Databricks	Spark Clusters (autoscale)	ADLS Gen2
Azure ML	ML Compute (GPU/CPU)	Blob Storage / ML datastore
Azure Synapse	Dedicated SQL / Spark Pools	Synapse DB / ADLS
Power BI	Power BI Service	DirectQuery do Synapse
IoT/Event Hubs	PaaS	Event Stream / Short Retention