Réseaux de neurones $IFT \ 780$

Réseaux à convolution

Par Pierre-Marc Jodoin

1

Δ

Beaucoup trop de paramètres (655,370 dans la couche 1) | Total Color |

Comment réduire le nombre de connections?

11

11

Comment réduire le nombre de connections?

Les couches pleinement connectées (fully-connected layers) sont problématiques lorsque le nombre de neurones est élevé.

150-D en entrée avec 150 neurones dans la 1ère couche => 22,200 parametres dans la couche d'entrée!!

Convolution et couche convolutionnelle

En gros

convolution = **produit scalaire** + **translation**

17

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26 -7

29

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

12 21 21 26 -7 23

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

2 -3 .4

21 21 26 -7 23 8

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

35 -18 33

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 --3 .4 --5 .6

Taille de la carte d'activation = 5

37

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

2 -3 .4 -5 .6 -7 .8

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

Stride = 2

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40 ? ?

prod. scal.

F=5

35 1

ERREUR! Combinaison D-F-S invalide

Stride et calcul de la taille de la carte d'activation

Taille de la carte d'activation = (D-F)/S+1

47

47

Parfois on souhaite que le <u>nombre de neurones</u> dans la carte d'activation soit <u>le même</u> que la couche précédente

? 10 20 30 40 50 × × ×

Comment gérer les bords?

Option 1 : Ajout de zéros (« zero padding » remplacer ? par 0)

f(u)
0 10 20 30 40 50 0

(f*W)(u) 8 -4 8 -10-6

.1 .2 .3

Option 2 : Réflexion (« reflexion padding »)

 $\begin{aligned} \textbf{Option 3:} & \text{ \'{E}tirement (} \textit{``stretching padding "')} \\ & \text{ } \textit{f(u)} \end{aligned}$

(f*W)(u)

10 10 20 30 40 50 50

48

Convolution et couche convolutionnelle 2D

$$\begin{split} (x*W)(i,j) &= w_1 x(i-1,j-1) + w_2 x(i,j-1) + w_3 x(i+1,j-1) \\ &+ w_4 x(i-1,j) \\ &+ w_5 x(i,j) \\ &+ w_6 x(i+1,j) + w_6 x(i,j+1) + w_6 x(i+1,j+1) \end{split}$$

Ex.: taille de filtre : 5x5, 5 cartes d'activation, convolution « same »

Représentation schématique images couleur (ex.: images RGB de CIFAR10 convolution « same »)

6 cartes d'activation (bloc convolutif)
Filtre: 5x5x3
Stride: 1

32

Couche convolutive

3

Qu'arrivera-t-il si on utilise une stride de 3?

Volume en entrée : 32 x 32 x 3 10 filtres 5x5 avec stride = 1 et convolution « same »

Combien y a-t-il de paramètres dans cette couche?

85

Exemple

Volume en entrée : 32 x 32 x 3 10 filtres 5x5 avec stride = 1 et convolution « same »

Combien y a-t-il de paramètres dans cette couche?

Chaque filtre a 5x5x3 = 75 paramètres Comme il y a 10 filtres : 750 paramètres

Volume en entrée : 32 x 32 x 3 10 filtres 5x5 avec stride = 1 et convolution « same ».

Combien y a-t-il de paramètres dans cette couche si on ajoute un biais?

Chaque filtre a 5x5x3+1 = 76 paramètres (+1 pour le biais) Comme il y a 10 filtres : 760 paramètres

87

Exemple

Volume en entrée : 32 x 32 x 3 10 filtres 5x5 avec stride = 1 et convolution « *valid* »

Combien de paramètres dans cette couche?

Volume en entrée : 32 x 32 x 3 10 filtres 5x5 avec stride = 1 et convolution « *valid* »

Combien de paramètres dans cette couche?

Même chose, cela ne change pas la conformité des filtres

89

Exemple

Volume en entrée : 32 x 32 x 3 10 filtres 5x5 avec stride = 1 et convolution « *valid* »

Combien de **neurones** dans les cartes d'activations?

Volume en entrée : 32 x 32 x 3 10 filtres 5x5 avec stride = 1 et convolution « *valid* »

Combien de neurones dans les cartes d'activations?

$$(32-5+1) \times (32-5+1) \times 10 = 7,840$$

91

Exemple simple d'un filtre 1x1

 $\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$

Filtre moyennant les canaux **rouge**, **vert**, **bleu** d'une image couleur. Résultat, une image en **niveau de gris**.

93

Tout comme un Perceptron multi-couches, un réseau à convolution contient plusieurs couches consécutives

Tout comme un perceptron multicouches, un réseau à convolution se termine par une couche de sortie avec 1 neurone par variable prédite

103

Réseaux à convolution vs Réseaux **pleinement** convolutifs

Configurations équivalentes

couche 1 : 3 filtres de taille 7x7 couche 2 : 5 filtres de taille 9x9 couche 3 : 4 filtres de taille 11x11 couche 4 pleinement connectée 256x4 Softmax couche 1:3 filtres de taille 7x7 couche 2:5 filtres de taille 9x9 couche 3:4 filtres de taille 11x11 couche 4:4 filtres de taille 8x8 Softmax

En fait, presque équivalent ...

Question: qu'arrive-t-il si on remplace l'image 32x32x3 par une image 64x64x3?

125

Pooling

Global pooling

Max ou Mean pooling « valid » avec un filtre de la taille des canaux

Résultat : un vecteur de la taille du nombre de canaux

133

Multiplication matricielle parcimonieuse

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Il est **plus rapide** de multiplier des matrices que de les convoluer.

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

Entrée

Filtre

	W0	W1	W2	
:	W3	W4	W5	=
	W6	W7	W8	

135

Il est **plus rapide** de multiplier des matrices que de les convoluer.

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

Entrée

Filtre

W0	W1	W2
W3	W4	W5
W6	W7	W8

On peut **remplacer** une **convolution** par une **multiplication matrice-matrice** ou **matrice-vecteu** De façons :

1- en <u>linéarisant</u> l'entrée et en « <u>matriçant</u> » le filtre

2- en <u>linéarisant</u> le filtre et en « <u>matriçant</u> » l'entrée

Rappel

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

W0	W1	W2	X3
W3	W4	W5	X7
W6	W7	W8	X11
X12	X13	X14	X15

Y0	Y1
Y2	Y3

Y0=W0.X0+W1.X1+W2.X2+W3.X4+W4.X5+W5.X6+W6.X8+W7.X9+W8.X10

137

Rappel

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

X0	W0	W1	W2
X4	W3	W4	W5
X8	W6	W7	W8
X12	X13	X14	X15

Y1=W0.X1+W1.X2+W2.X3+W3.X5+W4.X6+W5.X7+W6.X9+W7.X10+W8.X11

Rappel

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

X0	X1	X2	Х3
W0	W1	W2	X7
W3	W4	W5	X11
W6	W7	W8	X15

Y0	Y1
Y2	Y3

Y2=W0.X4+W1.X5+W2.X6+W3.X8+W4.X9+W5.X10+W6.X12+W7.X13+W8.X14

139

Rappel

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

X0	X1	X2	Х3
X4	W0	W1	W2
X8	W3	W4	W5
X12	W6	W7	W8

Y3=W0.X5+W1.X6+W2.X7+W3.X9+W4.X10+W5.X11+W6.X13+W7.X14+W8.X15

Linéarisation de l'entrée et « matriçage » du filtre

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 2x2

On peut faire la même chose mais en linéarisant le filtre et en « matriçant » l'entrée

Ex.: convolution « valid »

Entrée

X0	X1	X2	X3
X4	X5	X6	X7
X8	Х9	X10	X11
X12	X13	X14	X15

X0
X1
X2
X4
X5
X6
X8
X9
X10

151

On peut faire la même chose mais en linéarisant le filtre et en « matriçant » l'entrée

Ex.: convolution « valid »

Entrée

X0	X1	X2	Х3
X4	X5	X6	Х7
X8	X9	X10	X11
X12	X13	X14	X15

 X0
 X1

 X1
 X2

 X2
 X3

 X4
 X5

 X5
 X6

 X6
 X7

 X8
 X9

 X9
 X10

 X10
 X11

On peut faire la même chose mais en linéarisant le filtre et en « matriçant » l'entrée

Ex.: convolution « valid »

Entrée

Linute			
X0	X1	X2	X3
X4	X5	X6	X7
X8	Х9	X10	X11
X12	X13	X14	X15

X0	X1	X4
X1	X2	X5
X2	Х3	X6
X4	X5	X8
X5	X6	X9
X6	X7	X10
X8	X9	X11
X9	X10	X12
X10	X11	X13

153

On peut faire la même chose mais en linéarisant le filtre et en « matriçant » l'entrée

Ex.: convolution « valid »

Entrée

X0	X1	X2	Х3
X4	X5	Х6	Х7
X8	X9	X10	X11
X12	X13	X14	X15

X0	X1	X4	X5
X1	X2	X5	X6
X2	Х3	X6	X7
X4	X5	X8	X9
X5	X6	X9	X10
X6	X7	X10	X11
X8	X9	X11	X13
X9	X10	X12	X14
X10	X11	X13	X15

On peut faire la même chose mais en linéarisant le filtre et en « matriçant » l'entrée

Exercice à la maison, voir comment cette 2e approche s'applique au cas à

- Plusieurs canaux en entrée
- · Plusieurs cartes d'activation
- Plusieurs entrées (mini-batch)

Sinon, voir im2col du travail pratique 2.

157

Comment calculer la rétropropagation dans un CNN?

À faire au TP2