Examen final [Lunes 12 de Diciembre de 2011]

La evaluación dura 3 (tres) horas. Entregar en hojas separadas por ejercicio, numeradas, cada una con apellido en el margen superior derecho. Entregar este enunciado. Puntaje nulo a las respuestas aún correctas pero sin justificación o desarrollo. Respuestas incompletas reciben puntajes incompletos. No usar libros ni apuntes.

- 1) a) Justifique el valor de verdad de $\forall x \forall y \ (x^2 < y + 1)$, donde el dominio de discurso es el conjunto de los números reales.
 - b) Escriba la recíproca y la contrapositiva de la implicación: $si\ (1-n)$ es par, entonces n^3 es impar, y dé una demostración directa de la implicación dada.
 - c) Demuestre usando inducción que $n! < n^n$ para todo entero n > 1.
- 2) a) Demuestre la ley asociativa (con y sin diagramas de Venn), $(A \cup B) \cup C = A \cup (B \cup C)$ para todo conjunto A, B, C.
 - b) Sean R y S relaciones sobre un conjunto X, demuestre o dé un contrajemplo: si R y S son simétricas, entonces $R \cap S$ es simétrica.
 - c) En el conjunto $A = \{a, b, c\}$ justifique un ejemplo de una relación que sea reflexiva, no-simétrica, no-antisimétrica y no-transitiva. ¿Es la única posible?
- 3) a) Considere los conjuntos: $A = \{1\}$, $B = \{a, b, c\}$ y $C = \{\alpha, \beta, \gamma\}$, y las funciones $g = \{(1, b)\}$ y $f = \{(a, \beta), (b, \beta), (c, \alpha)\}$. Obtenga la composición $f \circ g$.
 - b) Sea la función $f(x) = x^2 + 1$ de \mathbb{R} a \mathbb{R} . ¿Es inyectiva, sobreyectiva y/o biyectiva?
 - c) Considere las letras ABCDEF. Justifique cuántas cadenas de longitud n=6, sin elementos repetidos, se pueden formar bajo las siguientes condiciones: (i) A aparece después que D; (ii) No contienen las subcadenas BA ni EB. (iii) A aparece después que DEF.
- 4) Nota: No es estrictamente necesario construir una tabla, en su lugar pueden dibujarse los grafos intermedios (debidamente trazados) que resulten del uso de cada algoritmo.
 - a) Dado el grafo G_1 de la Fig. 1 (izq.), encuentre un circuito hamiltoniano y un circuito euleriano, o justifique que no-existen.
 - b) En el grafo G_2 de la Fig. 1 (centr.) utilice el algoritmo de Prim, o bien el de Kruskal, para hallar un árbol de expansión mínimo, mostrando los pasos intermedios e indicando el peso mínimo hallado. ¿Podría existir otro de peso aún menor? ¿Por qué?
 - c) Dado el grafo G_2 de la Fig. 1 (der.) y usando el orden alfabético (i) Encuentre un árbol de expansión T mediante búsqueda en profundidad, indicando el orden en que se van agregando las aristas; (ii) Dibujar T como un árbol con raíz, indicar hojas, niveles y altura de T, los hermanos y antecesores de B, y recórralo en posorden.

Figura 1: Grafos G_1 (izq.), G_2 (cent.) y G_3 (der.) para los incisos 4a, 4b y 4c.