Evaluation Report on Microbiota Status Classification

Objective

Need to develop a model to classify patients' gut microbiota status into three categories ('Optimal', 'Suboptimal', and 'At Risk') using health indicators, medical history, dietary habits, and lifestyle factors.

Preprocessing Techniques Used

- Unnecessary feature removal
- Convert multi-item columns into numerical
- Target encoding
- Convert boolean columns into numerical
- Outlier detection and removal
- SHAP analysis
- Using SHAP-value based weight to group multi-item features
- Creating composite features using domain knowledge
- Feature scaling (Standard Scaling)
- Balancing target class (using SMOTE)

Model's used

- Logistic regression
- Random Forest
- XqBoost
- ANN
- LightGBM
- MLP with feature interaction
- Stacking of XGboost + MLP + Logistic regression
- Hierarchical XgBoost
- Tab Transformer
- Hierarchical Tab Transformer

Hyperparameter tuning

- Bayesian Optimization
- Optuna

Performance Metrics Table

Model	Accuracy	Precision	Recall	F1 (macro)
Logistic Regression	0.64	0.64	0.65	0.64
Random Forest	0.66	0.66	0.66	0.66
XgBoost	0.6561	0.6533	0.6560	0.6546
ANN	0.6744	0.6759	0.6743	0.6741
LightGBM	0.55	0.57	0.61	0.58
MLP with feature interaction	0.6687	0.6669	0.6686	0.6571
Stacking (LR+MLP+XgBoost)	0.6695	0.6690	0.6693	0.6691
Hierarchical XgBoost	0.9182	0.9181	0.9183	0.9182
Hierarchical Tab Transformer	0.6529	0.6559	0.6596	0.6557
Hierarchical XgBoost with Bayesian Optimization	0.9281	0.9281	0.9281	0.9280
Hierarchical XgBoost with Optuna	0.9258	0.9258	0.9258	0.9258

Confusion Matrix

Fig: Confusion Matrix of Hierarchical XgBoost with Bayesian Optimization

Fig: Confusion Matrix of Hierarchical XgBoost with Optuna

ROC Curve

Summary of key findings

- Hierarchical classification performs better in this dataset.
- All the models struggled to distinguish between Optimal and Suboptimal
- Hyperparameter tuning can improve performance.
- Composite features, SHAP based features and target encoding played an important role to increase the performance.