Homework 3

Alex Day

Analysis of Linear Systems

September 7, 2021

Theorem 1. Let $A: X \to Y$ be a linear transformation between vector spaces X and Y over the field \mathcal{F} . A is one-to-one if and only if $\mathcal{N}(A) = \{ \bigcirc_X \}$.

Proof.

1. Subproof. \mathcal{A} is 1:1 $\Longrightarrow \mathcal{N}(\mathcal{A}) = \{ \bigcirc_X \}$

Assume \mathcal{A} one-to-one. Let $x \in \mathcal{N}(\mathcal{A})$

$$\mathcal{A}(\bigodot) = \bigodot_{Y} \qquad \qquad \text{(definition of null space)}$$

$$x = \bigodot_{X} \qquad \qquad \text{(by definition of 1:1)}$$

2. Subproof. $\mathcal{N}(\mathcal{A}) = \{ \bigcirc_X \} \implies \mathcal{A} \text{ is } 1:1$

Assume
$$\mathcal{N}(\mathcal{A}) = \{ \bigcirc_X \}$$
. Let $x_1, x_2 \in X$ such that $\mathcal{A}(x_1) = \mathcal{A}(x_2)$

$$\mathcal{A}(x_1) - \mathcal{A}(x_2) = \bigodot_Y$$

$$\mathcal{A}(x_1) + (-1)\mathcal{A}(x_2) = \bigodot_Y$$

$$\mathcal{A}(x_1 + (-1)x_2) = \bigodot_Y$$

$$\mathcal{A}(x_1 - x_2) = \bigodot_Y$$

$$x_1 - x_2 = \bigodot_X$$
(by definition of null space)
$$x_1 = x_2$$