BİÇİMSEL DİLLER VE OTOMATLAR ÖDEV-5

- 1) $L = \{x \in \{a,b\}^*, n_a(x) < n_b(x)\}$ şeklinde verilen dil, a'ların sayısı b'lerin sayısından az olan sözcükleri içerir. Bu dili kabul eden yığın yapılı otomatı (PDA) oluşturarak üretim kurallarını veriniz.
- 2) a. Aşağıda tanımlı dili kabul eden yığın yapılı otomatı oluşturunuz.

$$L(M) = \{a^n b^m, \quad 0 \le n \le m \le 2n\}$$

- **b.** Bu dile uyan bir örnek katar seçerek, tanımladığınız otomat tarafından kabul edildiğini gösteriniz
- 3) Şerit üzerinde bulunan bir w katarında abc alt katarını arayan bir Turing makinası tasarlanacaktır. Makina arama sonunda abc katarını bulursa, şeritteki giriş katarının en sağına koyacağı bir boşluğun ardından $\widehat{\ }$ simgesini yazacaktır. Arama sonucunda abc alt katarını bulamazsa, giriş katarının en sağına koyacağı bir boşluğun ardından $\widehat{\ }$ simgesini yazacaktır. $w \in \{a,b,c\}^*$ olarak tanımlanmış olsun. Aşağıda her iki durum için örnek birer çalışma verilmiştir:

 $\underline{\#}$ acbbca# sonucunda #acbbca# $\underline{\mathbb{N}}\underline{\#}$ çıktısı, $\underline{\#}$ accabcb# sonucunda ise #accabcb# $\underline{\mathbb{Y}}\underline{\#}$ çıktısı elde edilmelidir.

4) Başlangıç konfigürasyonu (q0, $\#u\underline{x}v$) şeklinde verilen bir karakter katarından x simgesini silen bir Turing Makinası tasarlanacaktır. $x \in \{a, b\}$ ve $u, v \in \{a, b\}^*$ şeklindedir. Makinanın son konfigürasyonu (h,#uv#) olacaktır.

Ödevlerinizi, **4 Ocak 2012 Çarşamba 23:00**'e kadar **Ninova** üzerinden 'doc' veya 'pdf' uzantılı bir dosya şeklinde teslim edebilirsiniz.

ÇÖZÜMLER

1)
$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$

 $K = \{q_0, q_1, f\}, \Sigma = \{a, b\}, \Gamma = \{a, b, c\}, F = \{f\}$
 $\Delta = \{[(q_0, \Lambda, \Lambda), (q_1, c)], [(q_1, a, c), (q_1, ac)], [(q_1, a, a), (q_1, aa)], [(q_1, b, c), (q_1, bc)], [(q_1, b, b), (q_1, bb)], [(q_1, a, b), (q_1, \Lambda)], [(q_1, b, a), (q_1, \Lambda)], [(q_1, \Lambda, b), (f, \Lambda)]\}$

Gramer üretim kuralları:

$$S \rightarrow aSb | bSa | bS | Sb | b$$

2) a) Gramer üretim kuralları:

$$S \rightarrow aSB \mid \Lambda$$

B \rightarrow bb \ b

Bu dili tanıyan PDA'nın tanımı:

$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$

$$K = \{q0, q1, q2, q3\}, \Sigma = \{a, b\}, \Gamma = \{a\}, F = \{q2, q3\}$$

$$\Delta = \{[(q0, \Lambda, \Lambda), (q3, \Lambda)], [(q0, a, \Lambda), (q1, a)], [(q0, a, \Lambda), (q0, a)], [(q0, b, a), (q2, \Lambda)], [(q1, \Lambda, \Lambda), (q0, a)], [(q2, b, a), (q2, \Lambda)]\}$$

b)	Durum	Katar	Yığın	Durum	Katar	Yığın
	q0	aabbbb	Λ	q0	aabbb	Λ
	q1	abbbb	а	q1	abbb	a
	q0	abbbb	aa	q0	abbb	aa
	q1	bbbb	aaa	q0	bbb	aaa
	q0	bbbb	aaaa	q2	bb	aa
	q2	bbb	aaa	q2	b	a
	q2	bb	aa	q2	٨	Λ
	q2	b	а			
	q2	Λ	Λ			

3)	q	а	b	С	# _	((2
	q_{s}			7	(q0,R)	D	
	q_0	(q1,R)	(q0,R	(q0,R)	(q4,R)		(h,R)
	q_1	(q1,R)	(q2,R)	(q0,R)	(q4,R)		
	q_2	(q1,R)	(q0,R)	(q3,R)	(q4,R)		
	q ₃	(q3,R)	(q3,R)	(q3,R)	(q5,R)		
	q_4				(h, \mathbb{N})		
	q ₅				(h, \mathfrak{D})		
	h				(h <i>,</i> #)	(h,R)	(h,R)

4)
$$(q0,a) \rightarrow (q1,R)$$
 $(q3,a) \rightarrow (q5,a)$
 $(q0,b) \rightarrow (q1,R)$ $(q3,b) \rightarrow (q5,a)$
 $(q1,a) \rightarrow (q3,L)$ $(q4,a) \rightarrow (q5,b)$
 $(q1,b) \rightarrow (q4,L)$ $(q4,b) \rightarrow (q5,b)$
 $(q1,\#) \rightarrow (q2,L)$ $(q5,a) \rightarrow (q0,R)$
 $(q2,a) \rightarrow (h,\#)$ $(q5,b) \rightarrow (q0,R)$
 $(q2,b) \rightarrow (h,\#)$