math

Aaron Wang

October 31, 2022

Contents

1		2 2
L	ecture 1: Introduction	10/28/2022
	• First part: fundamental groups. We follow Munkres:	10/20/2022
	 Chap 9 'Fundamental group' Chap 11 'The Seifert-Van Kampen thm' and 	
	 Chap 12/13 'Classification covering spaces' 	
	• Second part: Homology groups, via cudi, chapter of a book.	
	• 10 problems (solve them during the semester) No feedback during the semester, but asking questions is allowed. Working together is allowed.	e
	• Exam (completely open book) First 4 questions: 1h30 prep. Last one 3 min, no prep	0
	1. Theoretical question (open book, explain the proof,)	4
	2. New problem (comparable to one of the 10 problems)	4
	3. Explain your solution n -th problem solved at home	4
	4. Explain your solution m -th problem solved at home	4
	5. 4 small questions	4
	After the exam, hand in your solutions of the other problems. After quick look, the points of 3. and 4. can be ± 1 (in extreme cases ± 2)	a
	• No exercise classes for this course!	

Chapter 1

Introduction

1.1 What is algebraic topology?

Functor from category of topological spaces to the category of groups.

- Category: set of spaces and morphisms.
- Functor: $X \leadsto G_X$ and $f: X \to Y \leadsto f_*: G_X \to G_Y$ such that

$$-(f\circ g)_* = f_*\circ g_*$$

 $-(1_X)_* = 1_{G_X}$

Two systems we'll discuss:

- fundamental groups
- homology groups

Example. Suppose we have a functor. If $G_X \not\cong G_Y$, then X and Y are not homeomorphic. If 'shadows' are different, then objects themselves are different too.

Proof. Suppose X and Y are homeomorphic. Then $\exists f: X \to Y$ and $g: Y \to X$, maps (maps are always continuous in this course), such that $g \circ f = 1_X$ and $f \circ g = 1_Y$. Then $f_*: G_X \to G_Y$ and $g_*: G_Y \to G_X$ such that $(g \circ f)_* = (1_X)_*$ and $(f \circ g)_* = (1_Y)_*$. Using the rules discussed previously, we get

$$g_* \circ f_* = 1_{G_X} \quad f_* \circ g_* = 1_{G_Y},$$

which means that $f_*:G_X\to G_Y$ is an isomorphism.