Дифракция на дифракционной решетке

Пусть дифракционная решетка содержит N щелей шириной a с периодом d. Слева на решетку по нормали к ней падает плоская волна с амплитудой E_0 . Требуется определить поле справа от решетки в зоне дифракции Фраунгофера. Считаем, что поля (лучи) от каждой из щелей фокусируются собирающей линзой, так что фактически параллельные волны складываются на их фронте.

Решение.

По принципу суперпозиции искомое поле равно сумме комплексов полей, формируемых каждой щелью. Рассматриваются поля на фронте волны с определенным k. Рассмотрим две такие волны, выходящие из соседних щелей под углом θ . Амплитуда каждой волны равна

$$E_1(\theta) = \frac{E_0 a e^{ikz_p}}{\sqrt{i\lambda z_p}} \operatorname{sinc} \frac{k_x a}{2},\tag{1}$$

где $k_x = k \operatorname{tg} \theta$. Волна из верхней щели отличается по фазе от нижней на величину *

$$\Delta \Phi = -kd \sin \theta$$
.

Волны, выходящие из 3-й, 4-й и остальных щелей, выражаются аналогичным образом. Тогда суммарная волна получается как сумма членов геометрической прогрессии со знаменателем $q = e^{-ikd\sin\theta}$:

$$\hat{E}_P = \frac{1 - q^N}{1 - q} E_1 = \frac{1 - e^{-iNkd\sin\theta}}{1 - e^{-ikd\sin\theta}} E_1.$$

Квадрат модуля \hat{E}_P равен

$$I(\theta) = \frac{\sin^2 \frac{kNd\sin\theta}{2}}{\sin^2 \frac{kd\sin\theta}{2}} I_1(\theta) = \frac{\sin^2 \frac{\pi Nd\sin\theta}{\lambda}}{\sin^2 \frac{\pi d\sin\theta}{\lambda}} I_1(\theta), \tag{2}$$

где $I_1(\theta) = |E_1|^2$ – интенсивность от одной щели.

$$\frac{E_0 e^{ik\left(z_p + \frac{x_p^2}{2z_p}\right)}}{\sqrt{i\lambda z_p}} \int_{-a/2}^{a/2} e^{-i\frac{kx_p x}{z_p}} dx,$$

где x – координата источника вторичного излучения в щели. Фаза волны, распространяющейся за щелью с волновым вектором \mathbf{k} , определяется зависимостью $\mathrm{e}^{i(\mathbf{k}\mathbf{R}-\omega t)}=\mathrm{e}^{i(k\sin\theta(X-x)+k\cos\theta Z-\omega t)}$ уже без минуса при координатах точки наблюдения.

[†] Выражение для знаменателя прогрессии остается верным даже при больших углах дифракции, когда $\sin \theta \neq \theta$. Однако в этом случае выражение (1) для $E_1(\theta)$ становится справедливым лишь на качественном уровне (в частности, затухает с увеличением угла).

 $^{^{\}ast}$ В приближении Фраунгофера интеграл Кирхгофа записывается как

На рисунке приведен пример $I(\theta)$ для N=4:

Отметим характерные свойства функции $I(\theta)$.

- 1. Нули знаменателя (2) задают положение *главных* максимумов. В них величина $I_{max} = N^2 I_1(\theta)$ определяется огибающей sinc^2 (пунктирная кривая на рисунке).
- 2. Между главными максимумами располагаются *дополнительные* максимумы. Дополнительные максимумы находятся примерно посередине между нулями числителя, кроме интервала между первым нулем и главным максимумом, где дополнительные максимумы отсутствуют. Число дополнительных максимумов равно N-2.
 - 3. Значение I в первом дополнительном максимуме при $N\gg 1$ равно

$$I_{1\text{ДОП}} = I|_{\frac{\pi N d \sin \theta}{\lambda} = \frac{3}{2} \frac{\pi}{N-1}} pprox \frac{4N^2}{9\pi^2} I_1 pprox \frac{I_{max}}{22}.$$

До середины между главными максимуми значения в дополнительных максимумах монотонно убывают с увеличением их индекса (для N>4), затем, при приближении к соседнему главному максимуму, нарастают.