V407

Fresnelsche Formeln

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 2. Mai 2023 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2			
2	Theorie	2			
3	Durchführung	4			
4	Auswertung4.1 Senkrechte Polarisation4.2 Parallele Polarisation	4 4 7			
5	Diskussion	9			
Lit	teratur	9			
Ar	Anhang				

1 Zielsetzung

Ziel des Versuches ist es, die Intensität von einfallender Strahlung und an der SI-Oberfläche reflektierter Strahlung in Abhängigkeit des Einfallswinkels zu messen. Anschließend werden die experimentel bestimmten Werte mit den theorethischen Werten verglichen.

2 Theorie

Als Grundlage des Versuches dient die elektromagnetische Wellentheorie, wobei die Ausbreitung von Licht mit Hilfe der Maxwellschen Gleichungen

$$\nabla \times \vec{H} = \vec{j} + \varepsilon \varepsilon_0 \partial_t \vec{E} \quad \text{und} \tag{1}$$

$$\nabla \times \vec{E} = -\mu \mu_0 \partial_t \vec{H} \tag{2}$$

beschrieben wird. Im folgenden werden nicht-ferromagnetische und nicht elektrisch leitende Materialien betrachtet, somit gilt $\mu \approx 1$ und $\vec{j} = 0$. Die elektrische und magnetische Arbeit

$$\begin{split} W_{\text{elektrisch}} &\coloneqq \frac{1}{2} \varepsilon \varepsilon_0 \vec{E}^2 \quad \text{und} \\ W_{\text{magnetisch}} &\coloneqq \frac{1}{2} \mu_0 \vec{H}^2 \end{split}$$

stellen den Zusammenhang zwischen Energie pro Volumeneinheit eines elektrischen beziehungsweise magnetischen Feldes dar. Der Poynting Vektor

$$\vec{S} = \vec{E} \times \vec{H} \quad \text{und} \tag{3}$$

$$|\vec{S}| = v\varepsilon\varepsilon_0 \vec{E}^2 \tag{4}$$

besitzt die Dimension Leistung/Fläche und stellt die Strahlungsleistung pro Flächeneinheit eines elektromagnetischen Feldes dar. Beim Einfallen einer Welle aus dem Vakuum auf eine Grenzfläche unter einem Winkel α , wird ein Bruchteil dieser refelktiert und der andere dringt in das Medium ein. Der Lichtstrahl, welcher in das Medium eindringt erfährt eine Richtungsänderung und wird so gebrochen, dass der Beugungswinkel $\beta < \alpha$ ist. Es werden nur nicht absorbierende Medien verwendet und es gilt somit

$$\begin{aligned} \mathbf{S}_e \mathbf{F}_e &= \mathbf{S}_r \mathbf{F}_e + \mathbf{S}_d \mathbf{F}_d & \text{oder} \\ \mathbf{S}_e \cos \alpha &= \mathbf{S}_r \cos \alpha + \mathbf{S}_d \cos \beta. \end{aligned}$$

Diese Gleichung kann umgeschrieben werden zu

$$c\varepsilon_0 \vec{E}_e^2 \cos \alpha = c\varepsilon_0 \vec{E}_r^2 \cos \alpha + v\varepsilon\varepsilon_0 \vec{E}_d^2 \cos \beta. \tag{5}$$

Für den Brechnungsindex ergibt sich das Verhältnis

$$n = -\frac{c}{v}. (6)$$

Aus den Maxwellschen Gelichungen (2) ergibt sich die Maxwellsche Relation

$$n = \varepsilon^2. \tag{7}$$

Aus der Mexwellschen Relation (7) und der Gleichung 5 ergibt sich

$$\left(\vec{E}_e^2 - \vec{E}_r^2\right) \cos \alpha = n\vec{E}_d^2 \cos \beta. \tag{8}$$

Die Polarisationsrichtung der einfallenden Welle \vec{E}_e relativ zur Einfallsebene ist entweder senkrecht polarisiert oder parallel polarisiert, sodass

$$\vec{E}_e = \vec{E}_\perp + \vec{E}_\parallel \tag{9}$$

gegeben ist. Zunächst wird die Polarisation senkrecht zur Einfallsebene betrachtet. Für den parallel polarisierten Teil \vec{E}_{\parallel} geht hervor, dass dieser tangential zur Grenzfläche schwingt. In der Abbildung 1 wird die Reflexion eines Lichtstrathls an einer Grenzfläche dargestellt.

Abbildung 1: Reflexion und Brechung des senkrecht polarisierten Lichtstrahls. [1]

Da die Beträge der \vec{E}_{\perp} gleich ihren Tangentialkomponenten sind und keine Normalkomponente vorhanden ist kann aus den Stetigkeitsbedingungen die Beziehung

$$\vec{E}_{e\perp} + \vec{E}_{r\perp} = \vec{E}_{d\perp}$$

aufgestellt werden. Zusammen mit dem Snellius Brechungsgesetzt

$$n = \frac{\sin \alpha}{\sin \beta} \tag{10}$$

ergeb sich die Fresnel Formeln

3 Durchführung

4 Auswertung

4.1 Senkrechte Polarisation

Abbildung 2

Tabelle 1

α / \circ	Ι / μΑ	I/I_0	n	α / $^{\circ}$	Ι / μΑ	I/I_0	n
6	70 ± 2	0.143 ± 0.007	$2,206 \pm 0,048$	44	100 ± 20	$0,204 \pm 0,042$	$2,027 \pm 0,207$
8	70 ± 2	0.143 ± 0.007	$2,198 \pm 0,048$	46	100 ± 20	$0,204 \pm 0,042$	$1,975 \pm 0,198$
10	71 ± 2	$0,145 \pm 0,007$	$2,\!202 \pm 0,\!048$	48	100 ± 20	$0,\!204 \pm 0,\!042$	$1,921 \pm 0,189$
12	72 ± 2	0.147 ± 0.007	$2,204 \pm 0,048$	50	110 ± 20	$0,224 \pm 0,042$	$1,957 \pm 0,189$
14	72 ± 2	0.147 ± 0.007	$2,190 \pm 0,048$	52	110 ± 20	$0,224 \pm 0,042$	$1,\!896 \pm 0,\!179$
16	76 ± 2	$0,155 \pm 0,008$	$2,\!227 \pm 0,\!050$	54	110 ± 20	$0,224 \pm 0,042$	$1,834 \pm 0,168$
18	77 ± 2	0.157 ± 0.008	$2,\!222 \pm 0,\!050$	56	120 ± 20	$0,245 \pm 0,042$	$1,851 \pm 0,166$
20	78 ± 2	$0,159 \pm 0,008$	$2,214 \pm 0,049$	58	110 ± 20	$0,224 \pm 0,042$	$1,709 \pm 0,147$
22	80 ± 2	$0,163 \pm 0,008$	$2,216 \pm 0,050$	60	120 ± 20	$0,245 \pm 0,042$	$1,714 \pm 0,144$
24	81 ± 2	$0,\!165 \pm 0,\!008$	$2,203 \pm 0,049$	62	120 ± 20	$0,245 \pm 0,042$	$1,\!646 \pm 0,\!132$
26	83 ± 2	$0,169 \pm 0,008$	$2,\!200 \pm 0,\!050$	64	140 ± 20	$0,286 \pm 0,042$	$1,702 \pm 0,136$
28	84 ± 2	$0,\!171 \pm 0,\!008$	$2,\!182 \pm 0,\!049$	66	130 ± 20	$0,265 \pm 0,042$	$1,\!565 \pm 0,\!115$
30	85 ± 2	$0,173 \pm 0,008$	$2,161 \pm 0,049$	68	140 ± 20	$0,\!286 \pm 0,\!042$	$1,544 \pm 0,110$
32	89 ± 2	0.182 ± 0.008	$2,\!173 \pm 0,\!050$	70	150 ± 20	$0,\!306 \pm 0,\!043$	$1,\!516 \pm 0,\!104$
34	90 ± 2	0.184 ± 0.009	$2,147 \pm 0,049$	72	160 ± 20	0.327 ± 0.043	$1,479 \pm 0,097$
36	92 ± 2	$0{,}188 \pm 0{,}009$	$2,129 \pm 0,049$	74	160 ± 20	0.327 ± 0.043	$1,395 \pm 0,082$
38	96 ± 2	$0,\!196 \pm 0,\!009$	$2,130 \pm 0,049$	76	170 ± 20	0.347 ± 0.043	$1,348 \pm 0,073$
40	96 ± 2	$0,\!196 \pm 0,\!009$	$2,084 \pm 0,048$	78	180 ± 20	0.367 ± 0.043	$1,\!294 \pm 0,\!063$
42	98 ± 2	$0,200 \pm 0,009$	$2,\!057 \pm 0,\!047$	80	180 ± 20	$0,367 \pm 0,043$	$1,\!213 \pm 0,\!047$
				82	190 ± 20	$0,388 \pm 0,044$	$1{,}157 \pm 0{,}036$
				84	190 ± 20	$0,388 \pm 0,044$	$1,\!091 \pm 0,\!021$
				86	200 ± 20	$0,408 \pm 0,044$	$1,047 \pm 0,011$

 $n = 1{,}523 \pm 0{,}022$

Abbildung 3

$$n = 3,\!642 \pm 0,\!071~s = 0,\!457 \pm 0,\!009$$

$$n = 2{,}134 \pm 0{,}041$$

4.2 Parallele Polarisation

Abbildung 4

Tabelle 2

$\alpha / ^{\circ}$	Ι / μΑ	I/I_0	n	α/°	Ι / μΑ	I/I_0	n
6	$54,0 \pm 2,0$	$0,1102 \pm 0,0061$	$2,002 \pm 0,041$	48	$32,0 \pm 2,0$	$0,0653 \pm 0,0049$	$2,\!396 \pm 0,\!055$
8	$54{,}0\pm2{,}0$	$0,1102 \pm 0,0061$	$2,\!009 \pm 0,\!042$	50	$30,0 \pm 2,0$	$0,0612 \pm 0,0048$	$2,\!449 \pm 0,\!057$
10	$52,0\pm2,0$	$0,\!1061 \pm 0,\!0060$	$1,989 \pm 0,041$	52	$28{,}0\pm2{,}0$	$0,\!0571 \pm 0,\!0047$	$2,\!511 \pm 0,\!059$
12	$60,0\pm2,0$	$0,\!1224 \pm 0,\!0065$	$2{,}113 \pm 0{,}045$	54	$24{,}0\pm2{,}0$	$0,\!0490 \pm 0,\!0045$	$2{,}528 \pm 0{,}062$
14	$60,0 \pm 2,0$	$0,1224 \pm 0,0065$	$2,\!126 \pm 0,\!045$	56	$22{,}0\pm2{,}0$	$0,0449 \pm 0,0045$	$2,\!607 \pm 0,\!065$
16	$60,0 \pm 2,0$	$0,1224 \pm 0,0065$	$2,142 \pm 0,046$	58	$18{,}0\pm2{,}0$	$0,0367 \pm 0,0043$	$2,634 \pm 0,070$
18	$58,0\pm2,0$	$0,1184 \pm 0,0063$	$2{,}132 \pm 0{,}045$	60	$16{,}0\pm2{,}0$	$0,0326 \pm 0,0043$	$2,734 \pm 0,076$
20	$59{,}0\pm2{,}0$	$0,1204 \pm 0,0064$	$2,\!168 \pm 0,\!047$	62	$14{,}0\pm2{,}0$	$0,0286 \pm 0,0042$	$2,\!849 \pm 0,\!082$
22	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2,056 \pm 0,043$	64	$8,0 \pm 2,0$	$0,0163 \pm 0,0041$	$2,792 \pm 0,104$
24	$51,\!0\pm2,\!0$	$0,\!1041 \pm 0,\!0059$	$2,097 \pm 0,044$	66	$7{,}0\pm2{,}0$	$0,0143 \pm 0,0041$	$2,\!975 \pm 0,\!116$
26	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2{,}110 \pm 0{,}045$	68	$6{,}3\pm0{,}2$	$0,0128 \pm 0,0007$	$3,\!209 \pm 0,\!021$
28	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2,142 \pm 0,046$	70	$4{,}0\pm0{,}2$	$0,0082 \pm 0,0005$	$3,365 \pm 0,022$
30	$50,0 \pm 2,0$	$0,\!1020 \pm 0,\!0058$	$2,\!179 \pm 0,\!047$	72	$2,\!0\pm0,\!2$	$0,0041 \pm 0,0004$	$3,\!542 \pm 0,\!027$
32	$48{,}0\pm2{,}0$	$0,\!0979 \pm 0,\!0057$	$2,\!186 \pm 0,\!047$	74	0.8 ± 0.2	$0,0016 \pm 0,0004$	$3,\!805 \pm 0,\!042$
34	$46,0\pm2,0$	$0,0939 \pm 0,0056$	$2,\!197 \pm 0,\!048$	76	0.5 ± 0.02	$0,0010 \pm 0,0001$	$4,\!291 \pm 0,\!008$
36	$44{,}0\pm2{,}0$	$0,0898 \pm 0,0055$	$2,211 \pm 0,048$	78	$1{,}2\pm0{,}2$	$0,0024 \pm 0,0004$	$5,\!215 \pm 0,\!046$
38	$44{,}0\pm2{,}0$	$0,0898 \pm 0,0055$	$2,\!266 \pm 0,\!050$	80	$3,8 \pm 0,2$	$0,0077 \pm 0,0005$	$6,798 \pm 0,041$
40	$44{,}0\pm2{,}0$	$0,0898 \pm 0,0055$	$2,\!328 \pm 0,\!051$	82	$8,0 \pm 0,2$	$0,0163 \pm 0,0008$	$9,\!236 \pm 0,\!058$
42	$38,0 \pm 2,0$	$0,\!0775 \pm 0,\!0052$	$2,\!279 \pm 0,\!051$	84	$18{,}0\pm0{,}2$	$0,\!0367 \pm 0,\!0016$	$14,\!067 \pm 0,\!119$
44	$38,5 \pm 2,0$	$0,\!0786 \pm 0,\!0052$	$2,364 \pm 0,052$	86	$38,0 \pm 0,2$	$0,\!0775 \pm 0,\!0032$	$25{,}381 \pm 0{,}316$
46	$34,0 \pm 2,0$	$0,0694 \pm 0,0050$	$2,\!351 \pm 0,\!053$				

 $n = 3{,}527 \pm 0{,}018$

Abbildung 5

$$n = 4,265 \pm 0,053$$
 $s = 0,282 \pm 0,010$

$$n = 3{,}798 \pm 0{,}156$$

$$n = 2{,}794 \pm 0{,}016$$

5 Diskussion

Literatur

[1] Anleitung zu Versuch 407, Fresnelsche Formeln. TU Dortmund, Fakultät Physik. 2023.

Anhang