COT3100 Exam 2 review

Section 1ZED (Carson, Zac)

Feb 27, 2024

- Overview
- 2.3 Functions
- 3 2.4 Sequences and series
- 4 2.5 Cardinality of sets
- 5 3.1 Algorithms
- 3.2 Growth of functions
- 3.3 Complexity of algorithms

Exam details

- Time: 8:20 to 10:20 PM
- Topics:
 - 2.3 to 2.5 (no matrices!)
 - 3.1 to 3.3
 - Somewhat cumulative (proof techniques, etc.)
- Things to bring:
 - Writing utensils
 - Handwritten reference sheet (8.5x11)
 - 4 function calculator
 - ID (UF ID, state ID, or ID on phone)

Common mistakes!

- What is the parity of 0?
- 2 List all primes less than 10.
- What is 0! ?
- **4** What is [-3.2]?

- Overview
- 2 2.3 Functions
- 3 2.4 Sequences and series
- 4 2.5 Cardinality of sets
- 5 3.1 Algorithms
- 3.2 Growth of functions
- 3.3 Complexity of algorithms

Functions'

Definition

A function f is written as

$$f: A \rightarrow B$$
,

where A is the *domain* of f and B is the *codomain* of f. Every element of the domain is mapped to exactly one element of the codomain.

Definition

The *range* of a function f is the set of all values of the codomain that are actually mapped to by some value of the domain.

Be careful in using codomain and range! The codomain is the *possible* values that can be mapped to, but they aren't necessarily all mapped to.

One-to-one and onto

Definition

A function f is *one-to-one* or *injective* if every element of the comain has at most one domain element mapped to it.

Definition

A function f is *onto* or *surjective* if every element of the comain has at least one domain element mapped to it.

See the relationship?

Bijections

Definition

A function f is a one-to-one correspondence or bijective if it is both one-to-one and onto. Equivalently, each codomain element has exactly one domain element mapped to it.

Mathmatical definitions

Definition

A function f is *one-to-one* if for any two elements x_1 and x_1 in the domain of f,

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

Definition

A function f is *onto* if for any element y in the codomain of f, there exists an x in the domain where

$$f(x) = y$$
.

Problem

Given $f: \mathbb{R} \to \mathbb{R}^+$, where $f(x) = x^4$, prove or disprove if f is one-to-one. Prove or disprove if f is onto.

- Overview
- 2.3 Functions
- 3 2.4 Sequences and series
- 4 2.5 Cardinality of sets
- 5 3.1 Algorithms
- 3.2 Growth of functions
- 3.3 Complexity of algorithms

Important series

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=1}^{n} 1 = ?$$

Important series

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=1}^{n} 1 = n$$

Problem

- Overview
- 2.3 Functions
- 3 2.4 Sequences and series
- 4 2.5 Cardinality of sets
- 5 3.1 Algorithms
- 3.2 Growth of functions
- 3.3 Complexity of algorithms

Countability

Definition

A *countable* set *S* has a bijection

$$f:\mathbb{Z}^+\to S$$
.

A set where this bijection does not exist is *uncountable*.

Note

The integers \mathbb{Z} , the set of even integers, and (surprisingly) the set of rationals \mathbb{Q} are all examples of countable sets.

Note

The set of reals, \mathbb{R} is uncountable. Any interval of \mathbb{R} is also uncountable. The set of irrationals is also uncountable (why?).

Problem

- Overview
- 2.3 Functions
- 3 2.4 Sequences and series
- 4 2.5 Cardinality of sets
- 5 3.1 Algorithms
- 3.2 Growth of functions
- 3.3 Complexity of algorithms

Searching and sorting complexities

Search algorithms:

- Linear search O(n)
- Binary search $O(\log_2 n)$

Sorting algorithms:

- Bubble sort $O(n^2)$
- Selection sort $O(n^2)$
- Insertion sort $O(n^2)$

Refer to the textbook and discussion slides for details of each algorithm.

Pseudocode

When writing pseudocode, getting the message across is most important

- Will likely look similar to Python
- Can replace technical syntax (array[i][j]=n) with description ("set array element at (i, j) to n")

Pseudocode

When writing pseudocode, getting the message across is most important

- Will likely look similar to Python
- Can replace technical syntax (array[i][j]=n) with description ("set array element at (i, j) to n")

Warning!

You will likely need to write algorithms beyond searching/sorting! Be ready to work with arrays (lists), strings, and numbers.

Problem

For an integer array nums of size at least 2, let a *peak* be an index i of nums where the element at i is strictly greater than the elements at indices i-1 (if it exists) and i+1 (if it exists). Describe an algorithm peak_count that finds the number of peaks of a given nums.

Problem

For an integer array nums of size at least 2, let a *peak* be an index i of nums where the element at i is strictly greater than the elements at indices i-1 (if it exists) and i+1 (if it exists). Describe an algorithm peak_count that finds the number of peaks of a given nums.

Example

If nums=[2,1,5,3,1], then nums has a peak at i = 0 (2) since 2 > 1, and a peak at i = 2 (5) since 5 > 1 and 5 > 3.

- Overview
- 2.3 Functions
- 3 2.4 Sequences and series
- 4 2.5 Cardinality of sets
- 3.1 Algorithms
- **6** 3.2 Growth of functions
- 3.3 Complexity of algorithms

Growth rates

Note

The following order represents the growth rates of functions from slowest to fastest:

$$1 \ll \log n \ll n \ll n \log n \ll n^2 \ll \text{(polynomials)} \ll 2^n \ll n! \ll n^n$$

Big O

Definition

A function f(x) is O(g(x)) if there are C and k such that

$$|f(x)| \le C|g(x)|$$

for all x > k.

We think of big O as an *upper bound* for the growth of f. In other words, g either grows faster or at the same rate as f.

Big O

Definition

A function f(x) is O(g(x)) if there are C and k such that

$$|f(x)| \le C|g(x)|$$

for all x > k.

We think of big O as an *upper bound* for the growth of f. In other words, g either grows faster or at the same rate as f.

Example

If $f(x) = x^2 + 3$, then f(x) is $O(x^2)$. However, f(x) is also $O(x^3)$, $O(2^x)$, O(x!), and many more.

Big Ω

Definition

A function f(x) is $\Omega(g(x))$ if there are C and k such that

$$|f(x)| \geq C|g(x)|$$

for all x > k.

We think of big Ω as a *lower bound* for the growth of f. In other words, g either grows slower or at the same rate as f.

Big Ω

Definition

A function f(x) is $\Omega(g(x))$ if there are C and k such that

$$|f(x)| \geq C|g(x)|$$

for all x > k.

We think of big Ω as a *lower bound* for the growth of f. In other words, g either grows slower or at the same rate as f.

Example

If $f(x) = x^2 + 3$, then f(x) is $\Omega(x^2)$. However, f(x) is also $\Omega(x)$, $\Omega(1)$, etc.

Big Θ

Definition

A function f(x) is $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$

We think of big Θ as the "class" of functions growing at a similar rate.

Note

The "optimal" big O refers to the *slowest* growing big O possible. Similarly, the "optimal" big Ω refers to the *fastest* growing big Ω possible. These both end up the same as big Θ .

Big Θ

Definition

A function f(x) is $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$

We think of big Θ as the "class" of functions growing at a similar rate.

Note

The "optimal" big O refers to the *slowest* growing big O possible. Similarly, the "optimal" big Ω refers to the *fastest* growing big Ω possible. These both end up the same as big Θ .

Example

If $f(x) = x^2 + 3$, then f(x) is $\Theta(x^2)$. Its "optimal" big O and big Ω are $O(x^2)$ and $\Omega(x^2)$, respectively.

Problem

Order the following functions of n by their growth rates from *fastest* to *slowest*.

- (1) 2024 $(1.0001)^n$ $log(n^n)$ $4n^2 1$ n^{2024}
- (2) 2024 $(1.0001)^n$ $log(n^n)$ $4n^2 1$ n^{2024}
- (3) 2024 $(1.0001)^n$ $log(n^n)$ $4n^2 1$ n^{2024}
- (4) 2024 $(1.0001)^n$ $log(n^n)$ $4n^2 1$ n^{2024}
- (5) 2024 $(1.0001)^n$ $log(n^n)$ $4n^2 1$ n^{2024}

Problem

For $f(n) = 4n^3 + n - 7$, prove that f(n) is $\Theta(n^3)$.

Problem

Order the following functions of *n* by their growth rates from *fastest* to slowest.

- n^{2024} $4n^2 - 1$ (1)2024 $(1.0001)^n$ $log(n^n)$ n^{2024}
- $log(n^n)$ $4n^2-1$ (2) $(1.0001)^n$ 2024
- $log(n^n)$ $4n^2 1$ n^{2024} (3)2024 $(1.0001)^n$
- $log(n^n)$ $4n^2 1$ n^{2024} (4) $(1.0001)^n$ 2024
- $log(n^n) 4n^2 1$ n^{2024} (5) $(1.0001)^n$ 2024

Problem

For $f(n) = 4n^3 + n - 7$, prove that f(n) is $\Theta(n^3)$.

- Overview
- 2.3 Functions
- 3 2.4 Sequences and series
- 4 2.5 Cardinality of sets
- 5 3.1 Algorithms
- 3.2 Growth of functions
- 3.3 Complexity of algorithms

Problem

Find the time complexity of the peak_count algorithm.