Method of proof

Part 2

Definition

A real number r is *rational* if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator.

Definition

A real number r is *rational* if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is *irrational*.

Definition

A real number r is *rational* if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is *irrational*. More formally, if r is a real number, then

r is rational $\Leftrightarrow \exists$ integers a and b such that $r = \frac{a}{b}$ and $b \neq 0$.

- 1. Is 10/3 a rational number?
- 2. Is 5 a rational number?
- 3. Is 0.281 a rational number?
- 4. Is 7 a rational number?
- 5. Is 2/0 a rational number?
- 6. Is 2/0 an irrational number?
- 7. Is 0.12121212 . . . a rational number (where the digits 12 are assumed to repeat forever)?

Is 0.12121212 . . . a rational number (where the digits 12 are assumed to repeat forever)?

Yes!

$$x = 0.12121212...$$

Then,

$$100x = 12.12121212...$$

$$100x - x = 12.121212... - 0.121212...$$

$$99x = 12$$

$$x = \frac{12}{99}$$

Zero Product Property

If neither of two real numbers is zero, then their product is also not zero.

Theorem:

Every integer is a rational number. $\forall r \in \mathbb{R}, if \ r \ is \ an \ integer \ then \ r \ is \ rational$ $\forall r \in \mathbb{Z}, r \ is \ rational$

Proof:

Let z be any integer. Since $z = \frac{z}{1}$ where both $z, 1 \in \mathbb{Z}$ and $1 \neq 0$, by definition of rational numbers z is a rational number.

Theorem:

Every integer is a rational number.

 \forall int z, z is rational \forall real no z, if z is an int then z is rational

Proof:

Let z be any integer. Since $z = \frac{z}{1}$ where both $z, 1 \in \mathbb{Z}$ and $1 \neq 0$, by definition of rational numbers z is a rational number. \blacksquare

Theorem: The sum of any two rational numbers is rational.

Proof:

Suppose r and s are rational numbers. [We must show that r+s is rational.] Then, by definition of rational, r=a/b and s=c/d for some integers a,b,c, and d with $b\neq 0$ and $d\neq 0$. Thus

$$r + s = \frac{a}{b} + \frac{c}{d}$$
 by substitution $= \frac{ad + bc}{bd}$ by basic algebra.

Let p=ad+bc and q=bd. Then p and q are integers because products and sums of integers are integers and because a,b,c, and d are all integers. Also $q\neq 0$ by the zero-product property. Thus

$$r+s=\frac{p}{q},$$

where p and q are integers and $q \neq 0$.

Therefore, r + s is rational by definition of a rational number.

Exercise:

- 1. The product of any two rational numbers is a rational number.
- 2. If r and s are any two rational numbers, then $\frac{r+s}{2}$ is rational.
- 3. For all real numbers a and b, if a < b then $a < \frac{a+b}{2} < b$.
- 4. given any two rational numbers r and s with r, s, there is another rational number between r and s.
- 5. if a is any even integer and b is any odd integer, then $\frac{a^2+b^2+1}{2}$ is an integer.

Suppose a, b, and c are integers and x, y, and z are nonzero real numbers that satisfy the following equations:

$$\frac{\dot{x}y}{x+y} = a, \frac{xz}{x+z} = b \text{ and } \frac{yz}{y+z} = c$$

Is x rational? If so, express it as ratio of two integers.

Suppose a, b, and c are integers and x, y, and z are nonzero real numbers that satisfy the following equations:

$$\frac{\dot{x}y}{x+y} = a, \frac{xz}{x+z} = b \text{ and } \frac{yz}{y+z} = c$$

Is x rational? If so, express it as ratio of two integers.

$$\frac{1}{a} = \frac{1}{y} + \frac{1}{x}, \qquad \frac{1}{b} = \frac{1}{x} + \frac{1}{z}, \qquad \frac{1}{c} = \frac{1}{y} + \frac{1}{z}$$

Suppose a, b, and c are integers and x, y, and z are nonzero real numbers that satisfy the following equations:

$$\frac{\dot{x}y}{x+y} = a, \frac{xz}{x+z} = b \text{ and } \frac{yz}{y+z} = c$$

Is x rational? If so, express it as ratio of two integers.

$$\frac{1}{a} = \frac{1}{y} + \frac{1}{x}, \qquad \frac{1}{b} = \frac{1}{x} + \frac{1}{z}, \qquad \frac{1}{c} = \frac{1}{y} + \frac{1}{z}$$

$$\frac{1}{b} - \frac{1}{c} + \frac{1}{a} = ?$$