

### Electrotecnia

Trabajo Práctico Nº 8

Generador de C.C.: **Curvas Características** 

2021

### **Objetivos:**

- Reconocer y describir en forma general la máquina de corriente continua, estudio de conexiones y accesorios de comando.
- Aplicar la denominación normalizada de bornes.
- Ensayar un generador con excitación derivación y obtener sus características de funcionamiento.
- Realizar Informe del Ensayo.-

### Consignas:

- o El alumno debe presentar el trabajo impreso de la siguiente manera:
- o Carátula con los datos del alumno y del grupo.
- o Informe del Ensayo con los siguientes puntos:
  - Objetivo de la Práctica.
  - b. Fundamento Teórico.
  - c. Circuito utilizado.
  - d. Perspectiva del circuito con los instrumentos empleados.
  - e. Características de los instrumentos y/o elementos.
  - Maniobra Operativa. f.
  - Tabla de Valores Obtenidos.
  - g. Tabla de Valores Obtenidos.h. Representación gráfica de los valores obtenidos.
  - Aplicaciones.
  - Precauciones a tener en cuenta.
  - k. Normas a consultar.
  - Síntesis y Conclusiones.

| APELLIDO Y NOMBRE: |
|--------------------|
| APROBACIÓN:        |
| FIRMA:             |
| FECHA:             |



**ELECTROTECNIA**Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

| Laboratorio Experimental 2021 |
|-------------------------------|
| Alumno:                       |
| Comisión:                     |
| Grupo:                        |

| ASIGNATURA: CUI             |                        |                     |                   |         |             | SO: SEMES    |                        | MESTRE:    |  |
|-----------------------------|------------------------|---------------------|-------------------|---------|-------------|--------------|------------------------|------------|--|
| ELEC                        | CTROTECNIA             |                     |                   | 3°      |             | 5°           |                        |            |  |
| 2                           |                        | NOMBRE Y APELLIDO:  |                   |         |             |              |                        |            |  |
| <i>N</i>                    |                        |                     |                   |         |             |              |                        |            |  |
| ALUMNO                      | FOTO                   | Legajo N°:          | N°: ESPECIALIDAD: |         | AÑO:        | GR           | UPO N°:                |            |  |
| AI                          |                        |                     | ING. INDUSTRIAL   |         | 2021        |              |                        |            |  |
|                             | Prof. Tit.             | Ing. Alejandr       | g. Alejandro FARA |         |             |              |                        |            |  |
| ES                          | J.T.P.                 | Ing. José CORBACHO  |                   |         |             |              |                        |            |  |
| DOCENTES                    | J.T.P.                 | Ing. Orlando ROMERO |                   |         |             |              |                        |            |  |
| CE                          | J.T.P.                 | _                   | Ing. David MOLINA |         |             |              |                        |            |  |
| DC                          | Ayte Ad Honorem        |                     |                   |         |             |              |                        |            |  |
|                             |                        |                     |                   | DENC    | MINACI      | ÓN DEL PRA   | ÁCTICO                 | ) <i>:</i> |  |
| TRA                         | BAJO PRÁCTICO DE       | 0                   | Ge                | enerado | r de C.C.   | : Curvas Cai | Curvas Características |            |  |
| L                           | ABORATORIO N°          | 8                   | OBJETIVO          | S:      |             |              |                        |            |  |
|                             |                        |                     | Ver caráti        |         |             |              |                        |            |  |
|                             | FECHA DE ENTRE         | GA                  |                   |         | ECHA        |              | FIRMA                  |            |  |
|                             | 7 EGINT DE ENTINE      |                     | 1°:               |         | //_         |              |                        |            |  |
| / /                         |                        |                     | 2 <sup>a</sup> :  | 1611    |             | _/_/_        |                        |            |  |
|                             |                        | APROBAC             |                   |         | <u>/_/_</u> |              |                        |            |  |
|                             |                        | INTEGRA             | NIES DE           |         | IVIISIUI    | IV .         |                        |            |  |
| 1                           |                        |                     |                   | 6       |             |              |                        |            |  |
| 2                           |                        |                     |                   | 7       |             |              |                        |            |  |
| 3                           |                        |                     |                   | 8       |             |              |                        |            |  |
| 4                           |                        |                     |                   | 9       |             |              |                        |            |  |
| 5                           |                        |                     |                   | 10      |             |              |                        |            |  |
| OBSERVACIONES FIRMA DOCENTE |                        |                     |                   |         |             |              |                        |            |  |
|                             |                        |                     |                   |         |             |              |                        |            |  |
|                             |                        |                     |                   |         |             |              |                        |            |  |
|                             | <b>REV. 0</b> 12/09/14 |                     |                   |         |             | 12/09/14     |                        |            |  |
|                             |                        |                     |                   |         |             | REV.         | 1                      | 20/02/15   |  |
|                             |                        |                     |                   |         |             | REV. 2       | 2                      | 25/02/16   |  |
|                             |                        |                     |                   | •••••   |             | REV.         | 3                      | 24/02/20   |  |



Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

| Laboratorio Experimental 2021 |
|-------------------------------|
| Alumno:                       |
| Comisión:                     |
|                               |

Grupo:.....

### 1. -Generalidades:

Las máquinas dinamoeléctricas de corriente continua, son máquinas reversibles; es decir, pueden funcionar indistintamente como generadores o como motores.

Salvo en pequeñas máquinas, donde se emplean imanes permanentes, la excitación se logra mediante electroimanes alimentados con corriente continua proveniente de una fuente o red auxiliar (máquinas con excitación independiente), o bien con corriente generada por la misma máquina (generadores auto excitados).

Hay tres formas típicas de auto excitación: en *derivación*, en *serie* y *compuesta* (ésta puede ser adicional o diferencial). Ellas caracterizan las máquinas, por lo que se clasifican con igual denominación.

Examinando una máquina de corriente continua (tarea que realizaremos en el laboratorio), identificamos:

- El sistema **inductor**; con los polos inductores (electroimanes) fijos a la carcasa; cada núcleo posee una expansión polar; el (o los) circuito magnético queda bien definido.
- El sistema **inducido**: rotor, montado solidariamente al eje de la máquina, construido con chapas de acero al silicio laminado. Posee canaletas o ranuras axiales para alojar los lados de bobinas del bobinado inducido. Los extremos de bobinas están conectados al: sistema **colector**, formado con delgas. Sobre el colector apoyan las escobillas, sujetas mediante porta escobillas al estator de la máquina.

La carcasa sirve de estructura a todo el conjunto; a ella se fijan los cojinetes y las tapas. El dispositivo porta escobillas puede desplazarse, lo que posibilita ubicar a las escobillas con un "decalaje" mejorando las condiciones de conmutación. La mejora de la conmutación (función que cumple el sistema colector - escobillas), se logra también con los polos auxiliares o polos de conmutación.

### 2.-Designación de terminales

Terminales del inducido A-B; excitación derivación. C-D; excitación serie: E-F. Polos auxiliares de conmutación:  $G_a - H_a$ ; arrollamientos compensadores:  $G_c - H_c$ 

Cuando existan conexiones en serie no accesibles, los terminales libres se designarán con las letras características correspondientes a los arrollamientos.





Trabajo Práctico Nº 8:

Generador de C.C.: Curvas Características

|   | Laboratorio Experimental 2021 |
|---|-------------------------------|
|   | Alumno:                       |
|   | Comisión:                     |
| Г | •                             |



Las conexiones permanentes y accesibles se designarán con la combinación de las letras características de los extremos conectados.

Las barras de corriente continua se designarán: Positiva (P); Negativa(N); Neutro(0); Tierra(=) A continuación se dibujan los circuitos esquemático y real de la conexión compuesta larga de la máquina a utilizar en Laboratorio.-



### 3.-Paralelo de generadores

Para el funcionamiento en paralelo se recurre a generadores con excitación en derivación y a generadores con excitación compuesta adicional.

Las condiciones generales son:

- -Polaridad coincidente con las del sistema de barras de vinculación;
- -Igual tensión.

La figura muestra el esquema de conexiones en paralelo de los generadores derivación; la distribución de cargas se efectúa accionando los reóstatos de excitación.

La conexión de la máquina a incorporar se realiza llevándola previamente a la velocidad nominal y a tensión de barras (generalmente tensión nominal).

La desconexión se realiza estando la máquina descargada; es decir, suministrando una corriente pequeña (prácticamente nula). Esto se consigue operando el reóstato de excitación.



**Laboratorio Experimental 2021** 

Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

| Alumno:   |
|-----------|
| Comisión: |
| Grupo:    |

El interruptor general debe ser automático, con protección contra sobre intensidad y contra inversión de corriente; ésta, para evitar posible funcionamiento del generador como motor.

El óptimo funcionamiento en paralelo se consigue cuanto las máquinas tienen igual característica externa.



# NACIONAL PROPERTY OF THE PROPE

### **ELECTROTECNIA**

Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

| Laboratorio Experimental 2021 |
|-------------------------------|
| Alumno:                       |
| Comisión:                     |
| Grupo:                        |

### ENSAYO

| 1. | Ob | jetivos | de I | a | práctica: |
|----|----|---------|------|---|-----------|
|----|----|---------|------|---|-----------|

- -Reconocer y describir en forma general la máquina de corriente continua, estudio de conexiones y accesorios de comando.
- -Ensayar un generador con excitación derivación y obtener sus características de funcionamiento.

| <ol><li>N</li></ol> | láguinas e | instrumentos | utilizados: | (describir la | s partes v | v datos | nominale | 25) |
|---------------------|------------|--------------|-------------|---------------|------------|---------|----------|-----|
|---------------------|------------|--------------|-------------|---------------|------------|---------|----------|-----|

| a) | Generador de corriente continua:                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------------|
| b) | Motor Asíncrono Trifásico (para arrastrar el generador):                                                             |
|    | Auto transformador Trifásico $I_{m\acute{a}x}$ =(para alimentación del Motor Asíncrono)<br>Reóstato de Campo $R_r$ : |
| e) | Voltímetro para tensión en bornes y f.e.m.:                                                                          |
| f) | Amperimetros para la carga I:                                                                                        |
| g) | Amperimetro para $I_{ex}$ :                                                                                          |
| h) | Amperímetro para control del motor $I_m$ :                                                                           |

3. Curvas características: ensayos

La fuerza electromotriz inducida en un generador dinamoeléctrico de corriente continua vista en la Teoría es  $E = \frac{N.p.\Phi.n}{60.a}$  la cual depende de:

-Una serie de particularidades constructivas de la máquina que, para cada generador, pueden englobarse en una constante  ${\it K}$ 

-La velocidad del generador *n* [rpm.]

-El flujo magnético inductor Φ

En consecuencia, podemos escribir:  $E = k.n.\Phi$ 

La velocidad n es una condición de régimen nominal de todo generador por lo que, si es accionado por un adecuado motor primario, se la puede considerar constante.

El flujo  $\Phi$  depende de la fuerza magneto motriz  $(N.I_{ex})$  que actúa en los electroimanes (polos) y, como en éstos el número de vueltas del arrollamiento permanece invariable, se tendrá que  $\Phi$  depende de la corriente del devanado inductor  $I_e$  (corriente de excitación). Además, el flujo magnético depende de la reluctancia del circuito magnético, que es variable conforme al grado de saturación de las diferentes partes. Finalmente, el flujo originado por los electroimanes, es alterado por la reacción del inducido (campo transversal del inducido), que depende de la corriente de carga I.

Laboratorio Experimental 2021

Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

| Alumno:   |  |
|-----------|--|
| Comisión: |  |
| Grupo:    |  |

Cuando la máquina trabaja en carga, con una corriente I, aparece una caída de tensión interna ( $I_i$ ,  $R_i$ ) debida a la resistencia interna del generador (resistencia de bobinas del inducido, escobillas, contacto escobillas-delgas, etc.). Luego, la tensión de bornes  $U_b$  resulta:  $U_b = E - I_i \cdot R_i$ 

En conclusión, de acuerdo a lo expuesto, la tensión de bornes de todo generador dependerá:

- -De la intensidad de corriente de carga I; y
- -De la intensidad de corriente de excitación lex

Por ello, podemos escribir:

$$U_b = f(I, I_{ex})$$
 ó  $f(U_b; I; I_{ex}) = 0$ 

Se denominan curvas características de la máquina, o simplemente características, a las curvas planas que representan la variación de una de las tres variables:  $U_b$ , I ó  $I_{ex}$ , en función de otras de ellas, cuando la tercera permanece constante.

Las características son:

Característica de Vacío:

$$E = f(I_e)$$
  $I = 0$   $n = constante$ 

Característica de Carga:

$$U_b = f(I_{ex})$$
  $I = constante \neq 0$   $n = constante$ 

Característica externa:

$$U_b = f(I)$$
  $I_{ex} = constante$   $n = constante$ 

Característica de regulación:

$$I_e = f(I)$$
  $U_b = constante$   $n = constante$ 

Las características se pueden determinar mediante ensayos. Al realizarlos, la velocidad del generador debe ser la <u>nominal</u> y no debe modificarse el ángulo de decalaje de las escobillas.

4. Reconocimiento de la máquina:

Se reconocen los circuitos y se miden las resistencias de los diferentes bobinados como sigue:

| Marca:. | Modelo               | :Serie N°:       |
|---------|----------------------|------------------|
|         | $R_i$ = $\Omega$     | Potencia:W       |
|         | $R_d$ = $\Omega$     | Tensión:V        |
|         | $R_c$ = $\Omega$     | Intensidad:A     |
|         | $R_s = \dots \Omega$ | Velocidad:r.p.m. |

**Laboratorio Experimental 2021** 

Alumno:.....

Comisión:.....Grupo:....

## Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

### 5. Característica de vacío:

Es la curva que representa la variación de la fuerza electromotriz de la máquina en función de la intensidad de excitación. La intensidad de carga debe ser nula (generador en vacío, circuito de carga abierto) y la máquina debe girar a velocidad nominal.

El esquema indica la disposición de los elementos necesarios para el ensayo. El voltímetro medirá  $\boldsymbol{E}$  y el amperímetro  $\boldsymbol{I}_{\text{ex}}$ .-



Se confecciona el cuadro de valores registrando  $\boldsymbol{E}$  e  $\boldsymbol{I}_{ex}$ . La primera lectura de instrumentos se realiza con el circuito de excitación abierto

 $(R_{exc} = \infty ; I_{ex} = 0)$  y el último par de medidas con el reóstato de excitación anulado  $R_{ex}=0$ 

Para cada par de valores, debe realizarse lectura simultánea de los dos instrumentos.

### Cuadro de valores

| I <sub>ex</sub> [A] |
|---------------------|
|                     |
|                     |
|                     |
|                     |
|                     |



Es de esperar una curva como la de la figura. La característica no pasa por el origen de coordenadas debido a que, para  $l_{ex}$ =0, actúa el magnetismo remanente del sistema inductor; éste es suficiente para originar una f.e.m. OM; hay una zona de crecimiento rápido y proporcional a  $l_{ex}$  y, finalmente, continúa una parte sensiblemente recta pero de pendiente mucho menor.

Esta característica representa también el comportamiento magnético del inductor, por ello suele denominarse característica magnética del generador.

La característica de vacío facilita estudios sobre la capacidad de regulación de tensión del generador y del reóstato de excitación.

**CICLO DE HISTÉRESIS**: incrementando la excitación hasta el l<sub>ex max</sub>. Se obtiene la parte ascendente de la curva, disminuyendo gradualmente e invirtiendo el sentido de la corriente de excitación convenientemente se puede relevar el ciclo completo. Confeccionar la tabla de valores necesario y dibujar a escala el ciclo.



**Laboratorio Experimental 2021** 

Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

| Alumno:   |
|-----------|
| Comisión: |
| Grupo:    |

**5.1.** Característica de carga:  $U_b = f(I_{ex}) \rightarrow I = cte$ .

Ensayo similar al anterior, pero realizado con una carga  $I \neq 0$  que se controlará con un amperímetro montado al efecto y se logrará con una resistencia  $R_c$  variable regulada convenientemente.





Cuadro de valores:



| U <sub>b</sub> [V] | Iex [A] |
|--------------------|---------|
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |
|                    |         |

5.2. Característica externa

$$U_b = f(I)$$
  $I_{ex} = constante$   $n = constante$ 



| U <sub>b</sub> [V] | I [A] |
|--------------------|-------|
|                    |       |
|                    |       |
|                    |       |
|                    |       |
|                    |       |
|                    |       |

Se opera en la misma forma que en el ensayo anterior. La característica es de la forma indicada en la gráfica; generalmente se la determina hasta un valor de  $I = I_n$ 

En máquinas con excitación independiente (**no en la nuestra**) el ensayo hasta  $U_b=0$  es decir hasta la  $I=I_{cc}$  condición ésta obtenida cuando  $R_c=0$ . Así, en este tipo de máquinas, la

Laboratorio Experimental 2021

Trabajo Práctico Nº 8:

### Generador de C.C.: Curvas Características

| Alumno:   |
|-----------|
| Comisión: |
| Grupo:    |

característica resulta similar a la mostrada por la Fig.1. También, en las máquinas auto excitadas derivación, suelen realizarse ensayos hasta lograr que  $U_b = 0 V$ .

Las gráficas que se obtienen son como las mostradas por la Figura 2.





5.3. Característica de regulación:

$$I_{\rm e} = f(I)$$

$$U_b$$
 = constante

Se adopta igual montaje de elementos que en el ensayo anterior. Hay que operar convenientemente las cargas  $R_c$  y la resistencia de excitación  $R_{exc}$  para lograr mantener constante  $U_b$ .



Cuadro de valores:

| Iex [A] | I [A] |
|---------|-------|
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |

Si la máquina no tuviese caída de tensión interna y la f.e.m. fuera invariable, no sería necesario modificar la excitación para mantener constante U<sub>b</sub> a cualquier estado de carga (característica de regulación; trazo punteado).

En cambio, por las caídas de tensión interna que aumentan a medida que se incrementa *I*, debe regularse la corriente de excitación, resultando la curva de trazo continuo (característica de regulación real).

| 6. | Análisis | ~ ~ ı | ~~ ~~   | COCTOR | יסדוססכי  |
|----|----------|-------|---------|--------|-----------|
| () | AHAHAIS  | UC 1  | as (.a) | aulei  | בה. וווכו |
| ◡. |          | ~ ·   |         |        |           |

Describir los instrumentos, el generador y realizar análisis y comentarios del T.P.

......