Полу-определённое программирование Методы внутренней точки

Roland Hildebrand

LJK, Université Grenoble Alpes / CNRS

Методы оптимизации, ФУПМ МФТИ, апрель 2021 г.

Конические программы

Определение

Остроконечный замкнутый выпуклый конус $K \subset \mathbb{R}^n$ с непустой внутренностью называется регулярным или правильным.

Определение

Коническая программа над регулярным конусом $K \subset \mathbb{R}^n$ — это задача оптимизации вида

$$\min_{x \in K} \langle c, x \rangle : Ax = b.$$

любая задача выпуклой оптимизации может быть приведена к конической программе

Геометрическая интерпретация

допустимое множество представляется в виде пересечения конуса K с аффинным подпространством

альтернативная формулировка

$$\min_{z}\langle c',z\rangle:\ A'z+b'\in K$$

переменная параметризует не конус, а допустимое множество

Классы регулярных конусов

в оптимизации встречаются

- симметрические конуса (классические конические задачи)
- конуса положительных отображений (робастная оптимизация)
- конуса моментов (полиномиальная оптимизация)
- конуса положительных полиномов (полиномиальная оптимизация)
- конуса сумм квадратов (выпуклые релаксации)
- коположительные конуса (невыпуклые задачи)
- экспоненциальный конус (геометрические программы)
- степенные конуса (ограничения на *p*-норму)

Симметрические конуса

симметрические конуса, использующиеся в оптимизации:

- ullet ортант $\mathbb{R}^n_+ = ig\{ (x_1,\ldots,x_n)^T \,|\, x_i \geq 0 ig\}$
- ullet конус Лоренца $L_n = \left\{ (x_0, \dots, x_{n-1}) \, | \, x_0 \geq \sqrt{x_1^2 + \dots + x_{n-1}^2}
 ight\}$
- матричный конус \mathcal{S}_{+}^{n} вещественных симметрических неотрицательно определённых матриц
- матричный конус \mathcal{H}^n_+ комплексных эрмитовых неотрицательно определённых матриц
- их прямые произведения

симметрические конуса обладают дополнительной структурой, позволяющей применять более эффективные алгоритмы

Классы конических программ

программы над симметрическими конусами

- ullet линейные программы (LP) над \mathbb{R}^n_+ : $\sim 10^7$ переменных
- ullet квадратично-конические программы (SOCP) над $\prod_j L_{n_j}$: $\sim 10^5$ переменных
- ullet полу-определённые программы (SDP) над \mathcal{S}_+^n : $\sim 10^3$ переменных

наличие структуры позволяет решать бо́льшие задачи

$$LP \subset SOCP \subset SDP$$

разработаны солверы (CLP, LiPS, SDPT3, SeDuMi, CPLEX, MOSEK, ...)

Примеры несимметрических конусов

экспоненциальный конус

$$K_{\mathsf{exp}} = \mathsf{cl} \left\{ (t, tx, ty) \, | \, t \ge 0, \ y \ge e^x \right\}$$

= $\left\{ (t, tx, ty) \, | \, t > 0, \ y \ge e^x \right\} \cap \left\{ (0, tx, ty) \, | \, x \le 0, \ y \ge 0 \right\}$

ограничение $y \geq e^{x}$ записывается в виде $(1,x,y) \in \mathcal{K}_{\mathsf{exp}}$

степенной конус

$$K_p = \{(x, y, z) \mid |z| \le x^{1/p} y^{1/q}, \ x \ge 0, \ y \ge 0\}$$

где $\frac{1}{p}+\frac{1}{q}=1$, $p,q\in[1,+\infty]$ ограничение $x\geq |z|^p$ для $p\geq 1$ записывается в виде $(x,1,z)\in \mathcal{K}_p$

Двойственный конус

Определение

Пусть $K \subset \mathbb{R}^n$ — регулярный выпуклый конус. Двойственным к K называется конус

$$K^* = \{ s \in \mathbb{R}_n = (\mathbb{R}^n)^* \mid \langle s, x \rangle \ge 0 \quad \forall \ x \in K \}.$$

двойственный конус определён в *двойственном* векторном пространстве

если в пространстве задано *скалярное произведение*, то двойственное можно отождествить с прямым пространством

для регулярного K конус K^* также является регулярным, и $(K^*)^* = K$

Как вычислять двойственный конус

элементы границы ∂K^* двойственного конуса являются нормалями к подпирающим K плоскостям

Примеры (само)двойственных конусов

отождествляя \mathbb{R}^n с \mathbb{R}_n через скалярное произведение $\langle x,y \rangle = x^T y$, получаем

- $\bullet \ (\mathbb{R}^n_+)^* = \mathbb{R}^n_+$
- $L_n^* = L_n$

отождествляя \mathcal{S}^n с $(\mathcal{S}^n)^*$ $(\mathcal{H}^n$ с $(\mathcal{H}^n)^*$) через скалярное произведение $\langle A,B\rangle=\operatorname{tr}(AB)$, получаем

- $(S_{+}^{n})^{*} = S_{+}^{n}$
- $(\mathcal{H}_{+}^{n})^{*} = \mathcal{H}_{+}^{n}$

отождествляя \mathbb{R}^3 с \mathbb{R}_3 через скалярное произведение $\langle x,y \rangle = x^T y$, получаем

- $K_{\exp}^* = \operatorname{cl} \{ (-tx, -t, te^{-1}y) | t \ge 0, y \ge e^x \}$
- $K_p^* = \{(x/p, y/q, z) \mid |z| \le x^{1/p} y^{1/q}, \ x \ge 0, \ y \ge 0\}$

Определение симметрических конусов

- самодвойственный: линейно изоморфен двойственному
- однородный конус: группа линейных автоморфизмов конуса действует транзитивно на внутренности

Определение

Самодвойственный однородный конус называется симметрическим.

симметрические конуса полностью классифицированы [Винберг, 1960; Koecher, 1962]

- ullet ортант \mathbb{R}^n_{\perp}
- конус Лоренца L_n
- матричные конуса $\mathcal{S}_{+}^{n}, \mathcal{H}_{+}^{n}, \mathcal{Q}_{+}^{n}, \mathcal{O}_{+}^{3}$ (вещественные, комплексные, кватернионные, октонионный)
- ullet прямые произведения $\prod_{i=1}^m K_i$

Коническая двойственность

дана прямая коническая программа

$$\min_{x \in K} \langle c, x \rangle$$
 : $Ax = b$

рассмотрим произвольный элемент $s \in K^*$ вида $s = c - A^T y$ для любого x из допустимого множества имеем

$$0 \le \langle s, x \rangle = \langle c, x \rangle - \langle A^T y, x \rangle = \langle c, x \rangle - \langle y, Ax \rangle = \langle c, x \rangle - \langle y, b \rangle$$

мы получили нижнюю оценку $\langle b,y
angle$ на оптимальное значение исходной (прямой) программы

двойственная коническая программа над двойственным конусом K^* формулируется как задача максимизации этой оценки

$$\max_{y} \langle b, y \rangle : \qquad c - A^{T} y \in K^{*}$$

для каждой допустимой точки x величина $\langle c, x \rangle$ является верхней оценкой оптимального значения двойственной программы

разница между оптимальными значениями — разрыв двойственности

Симметричная формулировка

аффинную оболочку допустимого множества исходной программы можно представить в виде суммы r+L $L=\ker A\subset\mathbb{R}^n$ — линейное подпространство, Ar=b вектор $r\in\mathbb{R}^n$ выбран так, что $\langle c,r\rangle=0$

прямая программа

$$\min_{x \in K} \langle c, x \rangle : \qquad x \in r + L$$

тогда

$$\langle b, y \rangle = \langle Ar, y \rangle = \langle r, A^T y \rangle = \langle r, c - s \rangle = -\langle r, s \rangle, \quad L^{\perp} = \operatorname{Im} A^T$$

двойственная программа

$$\max_{s \in K^*} -\langle r, s \rangle$$
 : $s \in c + L^{\perp}$

Принцип метода внутренней точки

сложность конической программы в ограничении $x \in \mathcal{K}$

устраняем это условие посредством добавления строго выпуклой барьерной функции $F:K^o\to\mathbb{R}$ к функции цены $\lim_{x\to\partial K}F(x)=+\infty$ — свойство барьера

вместо исходной задачи

$$\min_{x \in K} \langle c, x \rangle$$
 : $Ax = b$

получаем 1-параметрическое семейство задач

$$\min_{x} \left(\tau \langle c, x \rangle + F(x) \right) : \qquad Ax = b$$

au>0 — параметр семейства

Принцип метода внутренней точки

пусть решение исходной задачи существует, тогда

- при достаточно больших au точки минимума $x^*(au)$ вспомогательной задачи существуют и единственны
- ullet при $au o +\infty$ решение $x^*(au)$ стремится к некоторому x^* в относительной внутренности множества решений

дифференцируемую кривую $x^*(au)$ называют центральным путём

прямой метод следования центральному пути перемежает шаг по направлению к минимуму $x^*(au)$ вспомогательной задачи и увеличение переметра au этой задачи

для шага минимизации используют метод Ньютона

Принцип метода внутренней точки

серые: целевые точки на центральном пути чёрные: итерации в прямом пространстве

обновление целевой точки перемежается с шагом Ньютона по направлению к текущей целевой точке

про целевую точку известно, что она минимизирует вспомогательную функцию цены $F(x) + \tau \langle c, x \rangle$ на $\{x \mid Ax = b\}$

Метод Ньютона

рассмотрим задачу минимизации локально строго выпуклой функции f(x) класса C^3 на открытом выпуклом множестве D

на к-ом шаге: аппроксимируем

$$f(x) \approx q_k(x) = f(x_k) + \langle f'(x_k), x - x_k \rangle + \frac{1}{2} \langle f''(x_k)(x - x_k), x - x_k \rangle$$

минимизируем квадратичную аппроксимацию q_k

$$x_{k+1} = x_k - \frac{\gamma_k}{\gamma_k} (f''(x_k))^{-1} f'(x_k)$$

 γ_k — коэффициент затухания (damping coefficient) точный минимум функции q_k достигается при $\gamma_k=1$

Геометрическая интерпретация

M — граф градиента f, M_k — граф градиента q_k аппроксимируем M касательной плоскостью M_k в точке (x,f'(x))

Аффинная инвариантность

пусть $A \in \mathbb{R}^{n \times n}$ обратима, $b \in \mathbb{R}^n$, и

$$x \mapsto \tilde{x} = Ax + b, \quad x = A^{-1}(\tilde{x} - b)$$

минимизируем $ilde{f}(ilde{x}) = f(x(ilde{x})) = f(A^{-1}(ilde{x}-b))$ шагом Ньютона

- $\bullet \ \tilde{f}'(\tilde{x}) = A^{-T}f'(x)$
- $\tilde{f}''(\tilde{x}) = A^{-T}f''(x)A^{-1}$

если $ilde{x}_k = Ax_k + b$, то следующая точка

$$\tilde{x}_{k+1} = \tilde{x}_k - \gamma_k (\tilde{f}''(\tilde{x}_k))^{-1} \tilde{f}'(\tilde{x}_k)
= Ax_k + b - \gamma_k (A^{-T} f''(x_k) A^{-1})^{-1} A^{-T} f'(x_k)
= Ax_k + b - \gamma_k A(f''(x_k))^{-1} f'(x_k) = Ax_{k+1} + b$$

и последовательность итераций эквивариантна по отношению к аффинным преобразованиям

Ньютоновский декремент

как измерить прогресс, сделанный на данном шаге?

- ullet локальная метрика $f''(x_k)$
- ullet длина шага $ho_k = \sqrt{(x_{k+1} x_k)^T f''(x_k)(x_{k+1} x_k)}$
- ullet норма градиента $ho_k = \sqrt{f'(x_k)^T (f''(x_k))^{-1} f'(x_k)}$
- ullet прогнозируемый прогресс $f(x_k) q_k(x_{k+1}) = rac{
 ho_k^2}{2}$

 ho_k называется $\dfrac{\mbox{\sf Hьютоновским декрементом}}{
ho_k}$ измеряет, насколько далеко точка x_k находится от минимума, $ho_k=0$ в точке минимума ho_k аффинно инвариантен

в идеальном случае, когда $f=q_k$, имеем $ho_{k+1}=0$ значение ho_{k+1} контролируется разницей $q_{k+1}-q_k$ между старой и новой аппроксимацией

итерация может вывести из множества D

Самосогласованные функции

Определение (Ю.Е. Нестеров, А.С. Немировский 1994)

Локально строго выпуклая C^3 функция $f:D\to\mathbb{R}$ называется самосогласованной, если для любого $x\in D$ и любого касательного вектора $h\in T_xD$ имеет место неравенство

$$|f'''(x)[h, h, h]| \le 2(f''(x)[h, h])^{3/2}.$$

Функция f называется сильно самосогласованной если вдобавок имеет место

$$\lim_{x \in \partial D} f(x) = +\infty.$$

Свойства

операции, сохраняющие (сильную) самосогласованность

- f(x) c.-c. $\Rightarrow g(x) = f(Ax + b)$ c.-c.
- ullet f c.-c. \Rightarrow f+I c.-c. для линейных I
- ullet f c.-c., L аффинное подпр-во $\Rightarrow f|_L$ c.-c.
- ullet f c.-c. $\Rightarrow lpha f$ c.-c. для $lpha \geq 1$
- $f, g \text{ c.-c.} \Rightarrow f + g \text{ c.-c.}$
- ullet f c.-c. \Rightarrow сопряжённая по Лежандру f^* c.-c.

сопряжённая по Лежандру определена как

$$f^*(p) = \sup_{x \in D} \langle p, x \rangle - f(x)$$

можно ослабить условие на третью производную и потребовать только $f \in C^2(D)$ и

$$\limsup_{t\to 0} \frac{|f''(x+th)[h,h]-f''(x)[h,h]|}{t} \le 2(f''(x)[h,h])^{3/2}$$

Эллипсоид Дикина

пусть $x\in D$, h — касательный вектор единичной длины в $\|\cdot\|_{x}$ обозначим $\sigma(t)=f''(x+th)[h,h]$, тогда $\sigma(0)=1$ по условию самосогласованности $|\dot{\sigma}|\leq 2\sigma^{3/2}$, откуда $\frac{1}{(1+t)^2}\leq \sigma(t)\leq \frac{1}{(1-t)^2}$

Следствие (Ю.Е. Нестеров, А.С. Немировский 1994)

Пусть f — сильно самосогласованная функция на области D. Тогда D содержит открытый единичный шар в локальной метрике (эллипсоид Дикина)

$$E_x = \{y \mid \langle f''(x)(y-x), y-x \rangle < 1\}.$$

если $ho_k < 1$, то полный шаг Ньютона не выведет из области D иначе необходимо укоротить шаг: $\gamma_k < \rho_k^{-1}$

Поведение декремента

в методах внутренней точки используются camocornacoвaнныe барьеры F

все вспомогательные функции $F(x)+ au\langle c,x
angle$ также самосогласованы на множестве допустимых точек

анализ сходимости основан на изучении эволюции декремента

- ullet декремент зависит не только от точки $x\in D$, но и от au
- шаг Ньютона приближает текущую точку к минимуму и уменьшает декремент
- ullet обновление au удаляет минимум от текущей точки и увеличивает декремент
- ullet больший выигрыш на шаге позволяет сильнее увеличить au
- ullet декремент колеблется в диапазоне, позволяющем увеличивать au с максимальной скоростью

Известные оценки: полный шаг

оценки основаны на соотношении [Ю.Е. Нестеров, А.С. Немировский 1994]

$$(1-||x-x_k||_{x_k})^2 F''(x_k) \leq F''(x) \leq (1-||x-x_k||_{x_k})^{-2} F''(x_k)$$

для самосогласованных функций

Теорема (Ю.Е. Нестеров, А.С. Немировский 1994)

Пусть F- сильно самосогласованная функция на D. Если $ho_k < \lambda^* = \frac{3-\sqrt{5}}{2} \approx 0.3820$, то после полного шага Ньютона имеем

$$\rho_{k+1} \le \left(\frac{\rho_k}{1 - \rho_k}\right)^2 < \rho_k.$$

Известные оценки: укороченный шаг

Теорема (Ю.Е. Нестеров, А.С. Немировский 1994)

Пусть F- сильно самосогласованная функция на D. Если $ho_k < \lambda^* = rac{\sqrt{5}-1}{2} pprox 0.6180$, то после укороченного шага Ньютона с коэффициентом $\gamma_k = rac{1}{1+
ho_k}$ имеем

$$\rho_{k+1} \le \frac{\rho_k^2(2+\rho_k)}{1+\rho_k} < \rho_k.$$

Теорема (Ю.Е. Нестеров 2018)

Пусть F — сильно самосогласованная функция на D. Если $\rho_k < \lambda^* = roots(\lambda^3 + \lambda^2 + \lambda - 1) \approx 0.5437$, то после укороченного шага Ньютона с коэффициентом $\gamma_k = \frac{1+\rho_k}{1+\rho_k+\rho_k^2}$ имеем

$$\rho_{k+1} \leq \rho_k^2 \left(1 + \rho_k + \frac{\rho_k}{1 + \rho_k + \rho_k^2} \right) < \rho_k.$$

верхние оценки на ho_{k+1}

сплошная — полный шаг $\gamma_k=1$ штриховая — укороченный шаг $\gamma_k=\frac{1}{1+\rho_k}$ штрих-пунктирная — укороченный шаг $\gamma_k=\frac{1+\rho_k}{1+\rho_k+\rho_k^2}$

Оптимальные оценки

оптимальные оценки можно получить с помощью теории оптимального управления

длина оптимального коэффициента затухания зависит от ρ_k достаточно находиться в эллипсоиде Дикина, чтобы гарантировано понизить декремент

Диапазон быстрейшей сходимости

слишком маленький или большой декремент в исходной точке шага Ньютона приводит к малому прогрессу

оптимальное значение $\overline{\lambda}$ максимизирует $ho_{k+1}ho_k$

обновляем параметр au таким образом, чтобы декремент стал равным $\overline{\lambda}$

Алгоритм

- ullet стартуем с пары $(x_0, au_0)\in X imes \mathbb{R}_{++}$, так что $ho_0^0=\overline{\lambda}$
- ullet делаем шаг Ньютона по направлению к решению $x^*(au_0)$, получаем x_1 , декремент принимает значение ho_1^0
- ullet обновляем значение параметра на $au_1 > au_0$, так что $ho_1^1 = \overline{\lambda}$
- переход к следующей итерации

на каждом шаге выполняются соотношения

$$\rho_k^k = \overline{\lambda}, \qquad \rho_{k+1}^k \le \underline{\lambda}$$

 ho_k^I — декремент в x_k по отношению к функции $au_l\langle c,x
angle + F(x)$

Параметр барьера

потребуем ещё одно условие от барьера: пусть существует константа u такая, что

$$||F'(x)||_x^2 = (F'(x))^T (F''(x))^{-1} F'(x) \le \nu \quad \forall x \in D$$

Определение

Самосогласованным барьером с параметром u на выпуклом множестве X называется C^3 функция $F: X^o \to \mathbb{R}$, удовлетворяющая условиям

- $F'' \succ 0$ (локально строгая выпуклость)
- $F|_{\partial X} = +\infty$ (свойство барьера)
- ullet $F'''(x)[h,h,h] \leq 2(F''(x)[h,h])^{3/2}$ для всех $x \in X^o$, $h \in T_x X^o$
- ullet $F'(x)[h] \leq \sqrt{
 u F''(x)[h,h]}$ для всех $x \in X^o$, $h \in T_x X^o$

Обновление au

в текущей точке x_k декремент как функция от au задаётся гиперболой

$$\rho(\tau) = ||F'(x_k) + \tau c||_{x_k} = \sqrt{(F'(x_k) + \tau c)^T (F''(x_k))^{-1} (F'(x_k) + \tau c)}$$

отсюда получаем оценку на производную

$$\frac{d\rho}{d\tau} \leq \sqrt{c^T(F''(x_k))^{-1}c} = ||c||_{x_k}$$

эквивалентно

$$\frac{d\rho}{d\log\tau} \le \tau ||c||_{x_k}$$

Скорость сходимости

оценка шага по au сверху

$$\tau_{k+1} - \tau_k \ge \frac{\rho_{k+1}^{k+1} - \rho_{k+1}^k}{||c||_{X_k}} \ge \frac{\overline{\lambda} - \underline{\lambda}}{||c||_{X_k}}$$

для больших au получаем

$$F'(x_k) \approx -c\tau_k, \quad ||c||_{x_k} \approx \frac{||F'(x_k)||_{x_k}}{\tau_k} \leq \frac{\sqrt{\nu}}{\tau_k}$$

отсюда
$$rac{ au_{k+1}- au_k}{ au_k}pprox \lograc{ au_{k+1}}{ au_k}\simrac{ar{\lambda}-\underline{\lambda}}{\sqrt{
u}}$$

меньший параметр барьера соответствует большей скорости сходимости

генерируемые точки находятся в O(1) окрестности центрального пути (в локальной норме)

Настройка параметров метода

больший выигрыш в ho на шаге Ньютона позволяет

- ullet делать больший шаг $au_{k+1}- au_k$ вдоль центрального пути
- увеличить окрестность центрального пути, в которой генерируются точки

Итоги

метод следования центральному пути с коротким шагом

- линейная скорость сходимости
- ullet на каждом шаге можно увеличивать $\log au$ на величину порядка $u^{-1/2}$
- ullet чем больше параметр u, тем медленнее метод будет сходиться
- сложность задачи зависит от наличия эффективно вычислимого самосогласованного барьера с небольшим значением параметра
- возможность отступать дальше от центрального пути увеличивает скорость

методы с *длинным* шагом используют дополнительную структуру

Логарифмично однородные барьеры

Определение (Ю.Е. Нестеров, А.С. Немировский 1994)

Пусть $K\subset \mathbb{R}^n$ — регулярный выпуклый конус. Логарифмично однородным самосогласованным барьером на K называется функция $F:K^o\to \mathbb{R}$ класса C^3 , удовлетворяющая условиям

- ullet $F(lpha x) = rac{ullet}{ullet} \log lpha + F(x)$ (логарифмичная однородность)
- $F''(x)\succ 0$ (локально строгая выпуклость)
- ullet lim $_{ extit{X}
 ightarrow\partial K}$ $F(extit{X})=+\infty$ (барьерное свойство)
- $|F'''(x)[h,h,h]| \leq 2(F''(x)[h,h])^{3/2}$ (самосогласованность)

для всех касательных векторов h в каждой точке $x \in K^o$. Параметр однородности ν называется параметром барьера.

растяжения действуют прибавлением констант кF

Ограниченность декремента

оба определения совместимы, поскольку логарифмичная однородность ограничивает Ньютоновский декремент

дифференцируя соотношение $F(\alpha x) = -\nu \log \alpha + F(x)$ по x получим $\alpha F'(\alpha x) = F'(x)$

дифференцируя это и исходное соотношение по lpha при lpha=1 получим

$$F'(x) + F''(x) \cdot x = 0, \qquad \langle F'(x), x \rangle = -\nu$$
$$(F''(x))^{-1}F'(x) = -x, \ (F'(x))^{T}(F''(x))^{-1}F'(x) = -\langle F'(x), x \rangle = \nu$$

Двойственный барьер

пусть $f:D o\mathbb{R}$ — выпуклая функция преобразованием Лежандра функции f называется функция

$$f^*(s) = \sup_{x \in D} \langle s, x \rangle - f(x)$$

Лемма (Ю.Е. Нестеров, А.С. Немировский 1994)

Преобразование Лежандра логарифмично однородного барьера с параметром ν на конусе K является логарифмично однородным барьером c тем же параметром ν на $-K^*$.

двойственный барьер определим как

$$F_*(s)=F^*(-s)=\sup_{x\in K}\left(-\langle s,x\rangle-F(x)
ight)$$
 имеем $F_*(au x)= au^{-1}F_*(x)$ для всех $au>0$, $x\in K^o$

Римановы метрики

положительно определённый гессиан барьера F на конусе K можно интерпретировать как риманову метрику

тогда внутренность конуса K принимает структуру полного риманова многообразия

Лемма (Ю.Е. Нестеров, А.С. Немировский 1994)

Преобразование Лежандра $\mathcal{D}: x \mapsto p = -F'(x)$ является изометрией между внутренностью прямого и двойственного конусов. Изометрия действует на тензор третьих производных барьера умножением на -1.

Барьеры на симметрических конусах

для классических задач используются следующие барьеры

класс
$$K$$
 F ν

LP \mathbb{R}^n_+ $-\sum_{i=1}^n \log x_i$ n

SOCP $\prod_{j=1}^J L_{n_j} -\sum_j \log \left((x_0^j)^2 - (x_1^j)^2 - \dots - (x_{n_j-1}^j)^2 \right)$ $2J$

SDP \mathcal{S}^n_+ $-\log \det A$ n

на
$$\prod_{i=1}^m K_i$$
 используется $F(x_1,\ldots,x_m)=\sum_{i=1}^m F_i(x_i)$ с параметром $u=\sum_{i=1}^m \nu_i$

- параметр этих барьеров оптимальный
- ullet барьеры *авто-шкалированные* \Rightarrow методы с длинным шагом

Экспоненциальный конус

$$K_{\text{exp}} = \left\{ (x, y, 0) \, | \, x \le 0, \ y \ge 0 \right\} \cup \left\{ (x, y, z) \, | \, z > 0, \ y \ge z e^{x/z} \right\}$$

на экспоненциальном конусе имеется барьер

$$F(x, y, z) = -\log\left(z\log\frac{y}{z} - x\right) - \log y - \log z,$$

значение параметра u=3 также оптимально

Универсальный барьер

пусть K — произвольный регулярный выпуклый конус

функция объёма $V: K^o \ni x \mapsto Vol\{p \in K^* \,|\, \langle x,p \rangle < 1\}$ определена с точностью до множителя

Универсальный барьер

Теорема (Ю.Е. Нестеров, А.С. Немировский, 1994)

Существует константа c>0 такая, что для произвольного регулярного выпуклого конуса $K\subset\mathbb{R}^n$

$$F(x) = c \log V(x)$$

является самосогласованным барьером на K с параметром $\nu = c \cdot n$. Этот барьер называется универсальным.

позже было установлено, что можно выбрать c=1 [Bubeck, Eldan 2015]

Свойства

универсальный барьер F

- $A \in Aut \ K \Rightarrow F(Ax) = F(x) + \log \det A$
- ullet инвариантен по отношению к действию $SL(n,\mathbb{R})$
- $F_{\prod_i K_i} = \sum_i F_{K_i}$

для неоднородных конусов трудно вычислим не эквивариантен по отношению к двойственности

двойственный к универсальному называется *энтропическим* [Bubeck, Eldan '15]

Канонический барьер

Теорема

Пусть $D \subset \mathbb{R}^n$ — выпуклая область, не содержащая прямой. Тогда существует единственное выпуклое решение $F:D \to \mathbb{R}$ уравнения в частных производных $\log \det F'' = 2F$ с граничным условием $\lim_{x \to \partial D} F(x) = +\infty$.

Теорема

Если D — внутренность выпуклого регулярного конуса K, это решение является логарифмично однородным самосогласованным барьером на K со значением параметра $\nu=n$. Этот барьер называется каноническим. Двойственный барьер к каноническому барьеру на конусе K совпадает K0 каноническим барьером на двойственном конусе K1.

Свойства

канонический барьер

- обладает теми же свойствами инвариантности что и универсальный
- эквивариантен по отношению к двойственности
- совпадает с универсальным (и энтропическим) на однородных конусах (в том числе на симметрических)
- вычислим на некоторых неоднородных конусах с большой группой симметрий

на симметрических конусах все три барьера задаются стандартным логарифмическим барьером

Пример канонического барьера

на экспоненциальном конусе K_{exp}

$$F_{can}(x, y, z) = -\log y - 2\log z + \phi\left(\log\frac{y}{z} - \frac{x}{z}\right)$$

 $\phi: \mathbb{R}_{++} o \mathbb{R}$ задана неявно кривой

$$\left\{ \begin{pmatrix} t \\ \phi \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \log(1+\kappa) + 2\kappa \\ \log(1+\kappa) - 3\log\kappa \end{pmatrix} \,\middle|\, \kappa \in \mathbb{R}_{++} \right\}$$

Прямо-двойственные методы

прямая программа

$$\min_{x \in K} \langle c, x \rangle : Ax = b$$

двойственная программа

$$\max_{s \in K^*} \langle b, z \rangle$$
 : $s = c - A^T z$

прямо-двойственные методы решают прямую и двойственную программы одновременно и генерируют пары $(x_k,s_k)\in \operatorname{int} K imes \operatorname{int} K^*$

прямо-двойственные методы удобно анализировать в произведении $\mathbb{R}^n imes\mathbb{R}_n$ прямого и двойственного пространств

Объекты в $\mathbb{R}^n \times \mathbb{R}_n$

- ullet прямое аффинное подпространство $P=\{x\,|\,Ax=b\}\subset\mathbb{R}^n$, $\dim P=k,\;n-k$ кол-во строк A
- ullet двойственное аффинное подпространство $D=\{s\,|\,\exists\,\,z:\,\,s=-(A^Tz-c)\}\subset\mathbb{R}_n,\,\,\dim D=n-k$
- ullet произведение $\mathcal{A}=P imes D$, $\dim\mathcal{A}=n$
- ullet граф лежандровой изометрии $M = \{(x, -F'(x)) \mid x \in K^o\}, dim <math>M = n$

прямой центральный путь представится в виде прямой компоненты пересечения $M\cap (P imes \mathbb{R}\cdot D)$

двойственный центральный путь представится в виде двойственной компоненты пересечения $M\cap (\mathbb{R}\cdot P imes D)$

Прямо-двойственный центральный путь

точку $(x, \mu s) \in M \cap (P \times \mathbb{R} \cdot D)$ можно соотнести с точкой $(\mu x, s) \in M \cap (\mathbb{R} \cdot P \times D)$

это определяет каноническую биекцию между прямым и двойственным центральными путями

определим кривую

$$\mathbb{R} \cdot M \cap \mathcal{A} = \{ (\sqrt{\mu}x, \sqrt{\mu}s) \in M \mid (x, s) \in \mathcal{A} \}$$

как прямо-двойственный центральный путь

параметр μ определяется из параметра τ прямого пути как $\mu=\tau^{-1}$

Прямо-двойственные методы внутренней точки

- итерации (x_k, s_k) состоят из прямой и двойственной компонент
- перемежаем обновление параметра au (или μ) на прямо-двойственном центральном пути и шаг Ньютона по направлению к соответствующей точке
- разные способы линеаризации нелинейной системы, определяющей центральный путь, приводят к разным направлениям поиска (search direction)
- ullet последовательность зазоров $\langle x_k, s_k
 angle$ монотонно убывает

некоторые методы минимизируют потенциал, например

$$V(x,s) = F(x) + F_*(s) + const \cdot \log\langle x, s \rangle$$

константа зависит от параметра u барьера F

Авто-шкалированные барьеры

Определение

Пусть $K \subset \mathbb{R}^n$ — регулярный выпуклый конус, K^* двойственный к нему, F — самосогласованный барьер на K с параметром ν , F_* — двойственный к нему барьер на K^* . Тогда F называется авто-шкалированным если для всех $x, w \in K^o$ справедливо

$$s = F''(w)x \in \text{int } K^*, \qquad F_*(s) = F(x) - 2F(w) - \nu.$$

Конус K, допускающий авто-шкалированный барьер, называется авто-шкалированным.

[Ю.Е. Нестеров, М. Тодд, 1996]: для любой пары $(x,s)\in (K\times K^*)^o$ существует единственная точка шкалировки $w\in K^o$ такая, что

$$F''(w)x = s$$

Классификация

Hauser, Güler, Lim, Schmieta 1998 – 2002:

- авто-шкалированный конус ⇔ симметрический конус
- авто-шкалированные барьеры на произведениях конусов являются взвешенными суммами авто-шкалированных барьеров на неприводимых факторах
- авто-шкалированные барьеры на неприводимых конусах являются логарифмами детерминантов

Примеры

точка шкалировки для стандартных барьеров

LP:
$$K = \mathbb{R}^{n}_{+}, F = -\sum_{i=1}^{n} \log x_{i}$$

$$F''(w) = \operatorname{diag}(w_1^{-2}, \dots, w_n^{-2}), \ w_i^{-2} x_i = s_i, \ w = \left(\sqrt{\frac{x_1}{s_1}}, \dots, \sqrt{\frac{x_n}{s_n}}\right)$$

$$\mathsf{SDP} \colon K = \mathcal{S}^n_+, \ F = -\log \det X$$

$$F''(W)[X,\cdot] = W^{-1}XW^{-1} = S, \quad W = U\Lambda_X^{1/2}\Lambda_S^{-1/2}U^T,$$

где $X=U\Lambda_XU^T$, $S=U\Lambda_SU^T$ — диагонализирующие разложения X,S

w — геодезическая средняя между x и s^{-1}

Точка шкалировки как ближайшая точка

на произведении $\mathbb{R}^n imes\mathbb{R}_n$ можно ввести $\mathit{pacctoshue}$

$$d^2((x,s),(x',s')) = \langle x - x', s - s' \rangle$$

точка (w, -F'(w)) является ближайшей к (x, s) точкой на M:

$$\langle x-w,s+F'(w)
angle
ightarrow \mathsf{max}$$

производная по и приводит к условию

$$-(s+F'(w))+F''(w)(x-w)=0$$

красные члены сокращаются, поскольку F''(w)w = -F'(w) получаем условие шкалировки F''(w)x = s

Направление поиска Нестерова-Тодда

плоскость M_k параллельна к касательной плоскости в точке (w, -F'(w)) и проходит через точки $(x, -F'(x)), (-F'_*(s), s)$ (существует и единственна для симметрических конусов)

Направление поиска Нестерова-Тодда

пересечение $\mathbb{R}\cdot M_k\cap \mathcal{A}$ является прямой и аппроксимирует прямо-двойственный центральный путь

направление аффинной шкалировки Нестерова-Тодда есть касательное к этой прямой направление

направление центрирующей шкалировки Нестерова-Тодда есть направление из текущей точки (x_k, s_k) на ближайшую точку этой прямой

направление аффинной шкалировки: продвигается параллельно центральному пути

направление центрирующей шкалировки: корректирует невязку с центральным путём, не улучшая параметр au

Направления шкалировок

направление аффинной шкалировки направление центрирующей шкалировки

прямо-двойственный центральный путь $\mathbb{R}\cdot M\cap \mathcal{A}$ аппроксимируется прямой $\mathbb{R}\cdot M_k\cap \mathcal{A}$

Методы с длинным шагом

методы с коротким шагом используют комбинацию аффинной и центрирующей шкалировок

методы с длинным шагом идут по направлению аффинной шкалировки, пока не достигнут границы некоторой «большой» окрестности центрального пути

варианты методов

- предиктор-корректор: после «длинного» шага следует один или несколько корректирующих шагов по центрирующему направлению, пока итерации не приблизятся достаточно к центральному пути
- высшего порядка: аппроксимируют центральный путь полиномом вместо прямой

на практике быстрее методов с коротким шагом, хотя в теории не лучше или даже уступают

Определение «большой» окрестности

LP:

автоморфизм \mathbb{R}^n_+ — диагональная матрица D действует на прямо-двойственную пару по формуле $(x,p)\mapsto (Dx,D^{-1}p)$

по-компонентное произведение $y=x\cdot p$ инвариантно

на центральном пути имеем $y=\mu\cdot \mathbf{1}$, в точке решения задачи $y=\mathbf{0}$

произведение прямого и двойственного допустимого множества задачи биективно отображается на $\mathbb{R}^n_{++}
ightarrow y$

«большую» окрестность зададим

$$N(\gamma) = \left\{ y \mid \frac{\max_j y_j}{\min_j y_j} \le \gamma \right\}$$

типичное значение $\gamma \sim 10^3$

Определение «большой» окрестности

SDP:

автоморфизм A конуса \mathcal{S}^n_+ действует по формуле

$$(X, P) \mapsto (AXA^T, A^{-T}PA^{-1}), \quad XP \mapsto AXPA^{-1}$$

спектр произведения XP инвариантен по отношению к сопряжению с A

«большую» окрестность зададим

$$N(\gamma) = \left\{ y \mid \frac{\lambda_{\mathsf{max}}(XP)}{\lambda_{\mathsf{min}}(XP)} \le \gamma \right\}$$

История конического программирования

LP: Simplex method [Dantzig 1951], exp. compl.

Ellipsoid method [Yudin, Nemirovski 1976] polynomial-time

LP: Interior-point projective scaling [Karmarkar 1984] polynomial-time

General cones: IP [Nesterov, Nemirovski 1988] self-concordant barriers

CP: primal, primal-dual IP [Nesterov, Nemirovski 1994] systematic approach Universal barrier

Symmetric cones IP Euclidean Jordan algebras [Faybusovich 1995] LP: Interior-point affine scaling [Dikin 1967] rediscovery 1986

LP: Primal-dual IP [Kojima, Mizuno, Yoshise 1989] [Monteiro, Adler 1989] [Todd. Ye 1990]

Symmetric cones IP [Nesterov, Todd 1994] self-scaled barriers

Classification of self-scaled barriers [Hauser 1999, 2000] [Hauser, Güler 2002] [Hauser, Lim 2002] [Schmieta 2000]

Спасибо за внимание