CISC 3667 F25 Midterm Sample Questions

Part A: Short Answer / Conceptual

Four Elements of Games

 We discussed the *four elements* that every game has. Name each of these four elements, and give a one-sentence example of how each element shows up in a game you know.

Kinds of Fun (LeBlanc / Lazzaro)

- List LeBlanc's eight "kinds of fun."
- Then, pick two of them and for each, describe a game feature (mechanic, interface, narrative twist, etc.) that exemplifies that kind of fun.

Space and Time in Games

- Explain what it means for space to be discrete vs continuous in a game. Give an example of a game (or a genre) for each.
- Likewise, explain discrete time vs continuous time in games, and give an example of each.

Rule Layers

 The notes talk about different "layers" or types of rules (foundational, operational, behavioral/social). Define each layer, and for a game you choose, give an example of each.

Feedback Loops

 What is the difference between a positive feedback loop and a negative feedback loop in a game system? Why would a designer include each? Provide one example of each from existing games.

Emergent Behavior and Complexity

 What is emergent behavior in games? Give a simple rule set (2–3 rules) that could plausibly produce emergent behavior, and briefly explain how.

Player Types

 Outline the player types in Bartle's taxonomy discussed in the course. For each type, name a kind of game mechanic or feature that is likely to appeal to that type.

Meaningful Choice

 The notes stress the importance of meaningful choices. What is a meaningful choice? Provide an example of a game scenario that presents a meaningful choice and one that does not, explaining why.

- Explain the difference between *operational rules* and *foundational rules*. Give an example of each.
- What are the "four elements of a game" according to the course notes? Briefly describe each.
- Describe Bartle's taxonomy of player types (Achiever, Explorer, Socializer, Killer). For each type, name one game mechanic that particularly appeals to them.
- What is a *feedback loop* in game design? Why is it important?
- According to Nicole Lazzaro's "4 Keys 2 Fun," what are the four types of fun? Give a short example game (or feature) for each.
- What does it mean for space in a game to be *discrete* vs *continuous*? Give an example of each.
- Why might a game designer deliberately include *chance* in a game?
- What role does *time* play as a mechanic in games? Explain discrete time vs continuous time, and give an example of a game that uses each.

Part B: Multiple Choice / True-False / Matching

- Which one of the following is not one of LeBlanc's eight kinds of fun?
 - A. Sensation
 - B. Mastery
 - C. Discovery
 - D. Submission
- **Matching:** Match the rule types (left) with their description (right):

Rule Type	Description
A. Behavioral rules	i. Underlying formal structure (e.g., how state changes)
B. Written rules	ii. Implicit norms/sportsmanship
C. Operational rules	iii. What the players actually do to play
D. Foundational rules	iv. The official documented rules of the game

- **True or False:** A negative feedback loop favors players who are already ahead, amplifying their lead.
- Which of the following mechanics would best appeal to an Explorer-type player?
 - A. Leaderboards and ranking
 - B. Hidden lore and unlockable secret levels
 - C. Achievements and badges
 - D. PvP combat
- In a continuous-time game, which of these might be true?
 - A. Actions happen strictly at fixed intervals (turns)
 - B. The player can pause time
 - C. Time does not matter at all
 - D. The game world advances even if the player is idle

Part C: Case / Diagram / Design Task

Case Study & State Diagram

- Consider the following simple game mechanic: A character in a platformer game can
 walk, run, jump, and fall. When on the ground, the character can choose to walk or run; if
 the player presses the jump button, the character transitions to the *jumping* state. If,
 while in the air, gravity pulls the character downward, it transitions to a *falling* state. Upon
 landing, it transitions back to *on ground*. Additionally, if the player holds a "sprint button"
 while on the ground, walking transitions into running.
 - Draw a state diagram showing these states (Ground / Walk / Run / Jump / Fall) and transitions (e.g., "press jump," "land," "gravity," "press sprint")
 - Label at least two transitions with any conditions (e.g, "isOnGround = true")
 - Suppose you add a *double jump* ability: from *falling*, the character can press jump again (if they haven't double-jumped yet) and go to a "jump again" state. Extend your diagram accordingly.
 - Discuss how you might represent this behavior in terms of objects, attributes, and states