FOSS4G - FR - 2014

Workflow de génération de cartes de qualité de l'air

Le projet EO2Heaven

« Earth Observation and ENVironmental modelling for the mitigation of HEAlth risks »

> Projet Européen FP7

- [2010-2013] [8,6M€] [14 partenaires]
- Afrique du Sud, Allemagne, Espagne, France, Pays-bas, Ouganda

> Objectifs thématiques (environnement, santé):

 Développer une meilleure compréhension des relations entre l'exposition de la population aux facteurs environnementaux, et les impacts sur la santé.

> Objectifs technologiques:

- Architecture modulaire, interopérabilité,
- Fusion de données, qualité des données, analyse de données domaines, données EO and in-situ.

Le projet EO2Heaven

3 cas d'utilisation:

- > Impacts environnementaux sur les allergies et maladies cardiovasculaires en Saxe.
- > Liens entre variables environnementales et épidémies de Cholera en Ouganda
- > Relation entre l'exposition aux polluants industriels et les problèmes respiratoires à Durban
- * 250 000 habitants
- * 2 raffineries de pétrole
- * Usine de traitement des eaux usées
- * Nombreuses industries

Qualité de l'air et santé à Durban

> Objectifs:

- Sur le bassin industriel Sud de Durban, en conservant un historique sur 1 semaine:
- Fournir en temps réel (toutes les 10')
 - Données qualité de l'air (concentration de polluants SO2, NO2, PM10)
- A la journée (toutes les 24h)
 - Risques sur la santé en nombres de symptômes respiratoires probables

> Utilisateurs:

Accès restreint (login / password) pour les autorités sanitaires.

> Une contrainte technique:

 Limiter les technologies et standards utilisés, afin de faciliter la maintenance par les équipes techniques de l'université de Durban hébergeant le workflow.

Etapes du workflow – Concentration des polluants

> Toutes les 10 minutes

Techno utilisée: python

> Acquisition des données brutes

- Météo et polluants:
 - direction et vitesse du vent, température, pression atmosphérique, humidité,
 - NO2, SO2, PM10 (particules fines)
- Input sous format csv, transmis en FTP depuis un serveur de la municipalité de Durban.

> Pré-traitement des données

- Vérification des données (en cas de données manquantes ou erronées)
- Génération de fichiers .met
- Mise à disposition des données en WMS-Time

Etapes du workflow – Concentration des polluants

- > Technos utilisées: python et logiciel ADMS
- Exécution du modèle ADMS
 - Logiciel ADMS: Atmospheric Dispersion Modelling System
- > Création d'une grille sous format csv
 - résolution de grille de 250*250m.
 - Input: fichier .met généré par l'étape de pré-traitement des données brutes
 - Concentration des polluants (NO2, SO2, PM10)

Etapes du workflow – Concentration des polluants

- > Technos utilisées: python, GDAL, R, MapServer
- > Mise à disposition des données en WMS-Time
 - 1. Transformation de la grille .csv en shape
 - Un polygone par cellule
 - Un shape par période de temps, 1 attribut par polluant
 - Les shapes sont fusionnés en un seul pour obtenir un WMS-Time
 - 2. Agrégation spatiale des données par zone (quartiers de Durban)
 - R via python
 - 3. Publication des deux jeux de données avec MapServer (scripts python de génération des mapfiles)

AIR QUALITY INDEX						
Pollutant	Period	GLV	VERY GOOD	GOOD	MODERATE	POOR
Sulphur Dioxide (SO ₂)	10 min	191ppb	<19	29-95	96-191	>191
Nitrogen Dioxide (NO ₂)	1 hour	106 ppb	<1	22-53	54-106	>106
Particulate Matter (PM ₁₀)	24 hour	120ug/m ³	<45	46-75	76-120	>120

Etapes du workflow – cartes de risques pour la santé

- > Toutes les 24h
- > Agrégation temporelle des données météo et de la concentration en polluant
 - Techno utilisée: python
 - Calculs de maximums et moyennes sur température et pression
 - Algorithme spécifique pour la direction du vent (prevailling value)
 - Moyennes et max sur les 3 jours précédents pour les polluants.
 - Résultat en format texte (.csv)
- > Exécution du modèle de risque pour la santé
 - Techno utilisée: python appelant un modèle implémenté en R
 - Calcul du nombre de symptômes probables
 - Résultat en geotiff.

Etapes du workflow – cartes de risques pour la santé

- > Technos utilisées: python, GDAL, R, MapServer
- > Mise à disposition des données en WMS-Time
 - 1. Agrégation spatiale des données par zone (quartiers de Durban)
 - R via python
 - Input:

geotiff résultat du modèle de santé Shape des zones de Durban

2. Publication avec MapServer (scripts python de génération des mapfiles)

Synthèse des technologies

Scripts python

- Gestion du workflow, dont erreurs et fichiers logs
- Construction de shapes à partir des données in-situ
- Calculs sur les grilles (geotiff) : agrégation temporelles
- Manipulation des MapFiles

> Scripts R

- Application du modèle de santé
- Agrégation spatiale sur les quartiers de Durban et création des shapefiles

> GDAL

- Pour réaliser un WMS-Time: fusion des shapes
- > MapServer (WMS-Time)
- Map Client (Java, Javascript)

Graphiques – librairie HighCharts

