MATH 2270: Midterm 2 Practice Problems

Here are some practice problems for the first exam. This is not meant to mimic the length of the exam.

1. Inventions:

- (a) Invent a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ that is onto. You can describe the linear transformation T by giving explicit formulas for $T(\vec{e}_1), T(\vec{e}_2)$, and $T(\vec{e}_3)$.
- (b) Invent a square matrix A such that rank(A) = 2 and det A = 0.
- (c) Invent a 2×2 matrix A such that $A^T \neq A$ and $\operatorname{col} A = \operatorname{row} A^T$.
- (d) Invent a 2×2 matrix A such that $A \neq I_2$, but $A^2 = I_2$.
- (e) Invent a matrix A such that the nullspace of A is $V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \middle| 3a b + c = 0. \right\}$
- (f) Invent a 2×2 matrix A such that $A \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \vec{e}_1$ and $A \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \vec{e}_2$.
- (g) Invent three vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ in \mathbb{R}^4 so that the subspace of \mathbb{R}^4 spanned by these vectors is 2-dimensional.
- (h) Invent a basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\}$ of \mathbb{R}^3 such that the \mathcal{B} -coordinates of the vector $\vec{x} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ are $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$.
- (i) Invent a matrix A such that det(A) = 3 and det(2A) = 24.
- 2. Answer each of the following true/false questions, and then give an explanation of your reasoning.
 - (a) \mathbb{R}^3 a subspace of \mathbb{R}^4 .
 - (b) A linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^5$ can be one-to-one but not onto.
 - (c) For any $n \times n$ matrix A, det(-A) = -det(A).
 - (d) If the columns of a 4×5 matrix span \mathbb{R}^4 , then the columns are linearly independent.
 - (e) If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are vectors in \mathbb{R}^n , then $\text{Span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is the same as the column space of the matrix $[\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p]$.
 - (f) The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^n .
 - (g) Every line in \mathbb{R}^n is a one-dimensional subspace of \mathbb{R}^n .
 - (h) If $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a linearly independent set of p vectors in \mathbb{R}^n , then $\mathrm{Span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a p-dimensional subspace of \mathbb{R}^n .
 - (i) For any two $n \times n$ matrices A and B, $\det(A + B) = \det(A) + \det(B)$.
 - (j) For any two $n \times n$ matrices A and B, $\det(AB) = \det(A) \det(B)$.
 - (k) If $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a basis for a subspace H of \mathbb{R}^n , then H is an n-dimensional subspace.

- (1) If $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a basis for a subspace H of \mathbb{R}^n and $\vec{x} \in H$, then the \mathcal{B} -coordinates of \vec{x} , which we write as $[\vec{x}]_{\mathcal{B}}$ is a vectors with n entries.
- 3. Solve the matrix equation AB = BC for A, assuming that A, B, and C are square and invertible.
- 4. Consider the following matrices

$$A = \begin{bmatrix} 4 & -1 & 2 & 8 \\ 4 & 3 & 5 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 & 0 \\ 4 & 5 & 0 \\ -7 & 3 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} -8 & 5 \\ 12 & -3 \\ -4 & -1 \end{bmatrix}$$

Which matrices correspond to one-to-one transformations? Which ones correspond to onto transformations? Explain. (You don't need to row-reduce the matrices if you don't want to, but give a brief reason for each matrix.)

- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that $T(\vec{e_1}) = \vec{e_2}$ and $T(\vec{e_2}) = -\vec{e_1}$, where $\vec{e_1}$ and $\vec{e_2}$ are columns of the 2×2 identity matrix.
 - (a) Find the standard matrix A of T.
 - (b) Plot the unit square on the left. Reminder: The unit square is the square with vertices (0,0), (0,1), (1,0), (1,1). On the right, plot the image of the unit square under the transformation T.
 - (c) Describe in words what the transformation T does to \mathbb{R}^2 .
 - (d) Is T one-to-one? Is T onto? Explain.
- 6. Determine whether or not the following matrix is invertible. Do not try to invert it

(a)

$$A = \begin{bmatrix} 6 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ 8 & -5 & 6 & 7 & 1 \\ 3 & 0 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 & 0 \end{bmatrix}$$

- (b) Find the determinant of A^5 .
- 7. Suppose a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ has the property that $T(\vec{u}) = T(\vec{v})$ for some pair of distinct vectors \vec{u} and \vec{v} . Can T be onto? Why or why not?
- 8. Prove that if $det(B^3) = 0$, then det B = 0.
- 9. Consider the following matrix:

$$A = \begin{bmatrix} 5 & 1 & 6 & 2 & 0 \\ 3 & 3 & 6 & -1 & -18 \\ 8 & 4 & 12 & -5 & 18 \\ 2 & 1 & 3 & 0 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 5 \\ 0 & 1 & 1 & 0 & -13 \\ 0 & 0 & 0 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find a basis for $\operatorname{col} A$.

- (b) Find a basis for row A.
- (c) Find a basis for $\ker A$.
- 10. Find the inverse of the following matrix:

$$\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$

11. Is it possible for a 5×5 matrix to be invertible if the columns of A do not span \mathbb{R}^5 .