ECON 3113 Microeconomic Theory I Lecture 11: Risk Preference

Pak Hung Au

Department of Economics, HKUST

April 2020

Why may expected value not be a good criterion in evaluating a lottery?

- St. Petersburg Paradox
- Consider the following lottery:

Prize	1	2	4	8	16	32	
Probability	1/2	1/4	1/8	1/16	1/32	1/64	

• The expected value of this lottery is

$$\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 4 + \frac{1}{16} \times 8 + \frac{1}{32} \times 16 + \frac{1}{64} \times 32 + \dots$$

$$= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

$$= \infty.$$

• Would anyone be willing to pay 1 million to play this lottery?

"Resolution" to St. Petersburg Paradox

- One dollar given to a rich man is worth less than a dollar given to a poor man — the marginal utility of money is decreasing!
- Suppose $u(w) = \sqrt{w}$. Then the **expected utility** is

$$\begin{split} &\frac{1}{2}u\left(1\right) + \frac{1}{4}u\left(2\right) + \frac{1}{8}u\left(4\right) + \frac{1}{16}u\left(8\right) + \frac{1}{32}u\left(16\right) + \dots \\ &= &\frac{1}{2}\times\sqrt{1} + \frac{1}{4}\times\sqrt{2} + \frac{1}{8}\times\sqrt{4} + \frac{1}{16}\times\sqrt{8} + \frac{1}{32}\times\sqrt{16} + \dots \\ &= &\frac{1}{2}\left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{8}} + \frac{1}{\sqrt{16}} + \dots\right) \\ &= &\frac{1}{2}\frac{1}{1 - \frac{1}{\sqrt{2}}} \approx 1.7071. \end{split}$$

"Resolution" to St. Petersburg Paradox

• The resolution above is only partial. This lottery will make the problem re-emerges:

Prize	1 ²	2^2	4 ²	8 ²	16 ²	32 ²	
Probability	1/2	1/4	1/8	1/16	1/32	1/64	

- To fully resolve St. Petersburg paradox, we need an upper bound on the utility value.
- Alternatively, there is no St. Petersburg paradox is the state space is finite.

Von Neumann-Morgenstern Utility

- This partial resolution is insightful because it shows that in some cases, expected utility can be a more useful concept than expected value.
- This idea was developed by John Von-Neumann and Oscar Morgenstern using the axiomatic approach.
- The alternatives (objects to be chosen) here are lotteries.
 - A lottery is a description of state space, the prize of each state, and the probability of each state.
- \bullet The consumer/individual has a complete and transitive preference \succsim over lotteries.

Lottery

- Fix the set of possible prizes $x_1, x_2, ..., x_n$.
 - For simplicity, we can name the states by the prizes they provide.
- A typical lottery thus takes the form

Prize	<i>x</i> ₁	<i>x</i> ₂	 Xn
Probability	p_1	p_2	 p_n

- With a fixed state space/ prize space, a lottery is a probability function over the set of all possible prizes.
 - A typical lottery is denoted by $L = (p_1, p_2, ..., p_n)$.
 - Being a probability function, $p_1 + p_2 + ... + p_n = 1$.

Some Special Lotteries

• A degenerate lottery assigns all probability to a single prize:

$$L_i = \left(0,0,...0,\underbrace{1}_{\text{i-th position}},0,...,0\right).$$

- Given any two lotteries, L and L', and some $\alpha \in [0, 1]$, a **compound** lottery $\alpha L + (1 \alpha) L'$ is a two-step lottery.
 - The first draw decides what lotteries to get: lottery L with probability α and lottery L' with probability $1-\alpha$.
 - The second draw decides the prize with probability determined by the lottery drawn in the first stage.

Consequentialist

- Any compound lottery can be reduced to a simple lottery.
- With lotteries $L=(p_1,p_2,...,p_n)$ and $L'=(p'_1,p'_2,...,p'_n)$ and $\alpha \in [0,1]$, the compound lottery $\alpha L+(1-\alpha)L'$ has prize x_i realizing with probability $\alpha p_i+(1-\alpha)p'_i$:

Prize	<i>x</i> ₁	 X _n
L	p_1	 p_n
L'	$ ho_1'$	 p'_n
$\alpha L + (1 - \alpha) L'$	$\alpha p_1 + (1 - \alpha) p_1'$	 $\alpha p_n + (1-\alpha) p'_n$

• The individual is a **consequentialist**: he views the compound lottery $\alpha L + (1 - \alpha) L'$ and the reduced lottery $(\alpha \rho_1 + (1 - \alpha) \rho_1', ..., \alpha \rho_n + (1 - \alpha) \rho_n')$ as identical objects.

Axioms

Definition

Preference \succeq over lotteries satisfies the **independence axiom** if for any three lotteries L, L', and L'', and any $\alpha \in [0,1]$,

$$L \succsim L' \Rightarrow \alpha L + (1 - \alpha) L'' \succsim \alpha L' + (1 - \alpha) L''.$$

Definition

Preference \succeq over lotteries satisfies the **continuity axiom** if for any three lotteries such that $L'' \succeq L \succeq L'$, there is a $\alpha \in [0,1]$ such that $L \sim \alpha L' + (1-\alpha) L''$.

Challenging the Independence Axiom: Allais Paradox

• Which lottery L_1 or L'_1 would you prefer?

Prize	1.1 <i>M</i>	1 <i>M</i>	0
Lottery L_1	0	1	0
Lottery L_1'	0.98	0	0.02

• Which lottery L_2 or L'_2 would you prefer?

Prize	1.1 <i>M</i>	1 <i>M</i>	0
Lottery L_2	0	0.5	0.5
Lottery L_2'	0.49	0	0.51

Challenging the Independence Axiom: Allais Paradox

• If you have $L_1 \succ L_1'$ and $L_2 \prec L_2'$, then your preference violates the independence axiom.

$$L_2 = 0.5L_1 + 0.5L_0$$
 and $L_2' = 0.5L_1' + 0.5L_0$,

where L_0 is the degenerate lottery of zero prize:

Prize	1.1 <i>M</i>	1 <i>M</i>	0
Lottery L_0	0	0	1

Von Neumann-Morgenstern Theorem

Theorem

If a complete and transitive preference \succeq over lotteries satisfies the independence axiom and the continuity axiom, then it can be represented by some utility function u(x) over prizes, that is, for any pair of lotteries $L = (p_1, p_2, ..., p_n)$ and $L' = (p'_1, p'_2, ..., p'_n)$,

$$L \succsim L' \Leftrightarrow \sum_{i=1}^{n} p_{i}u\left(x_{i}\right) \geq \sum_{i=1}^{n} p'_{i}u\left(x_{i}\right).$$

- Function u(x) is called the **von Neumann-Morgenstern utility** function.
- The **expected utility** of lottery $L = (p_1, p_2, ..., p_n)$ is

$$E_{L}[u(x)] = p_{1}u(x_{1}) + p_{2}u(x_{2}) + ... + p_{n}u(x_{n}) = \sum_{i=1}^{n} p_{i}u(x_{i}).$$

 4 □ ▶ 4 □ № 4 □

- Let L_n and L_1 be the most and the least preferred degenerate lottery respectively.
- By the independence axiom, $L_n = \alpha L_n + (1 - \alpha) L_n \succ \alpha L_n + (1 - \alpha) L_1.$
- By the independence axiom again (and that the individual is consequentialist), for any $\beta > \alpha$,

$$\beta L_n + (1 - \beta) L_1$$

$$= \frac{\beta - \alpha}{1 - \alpha} L_n + \frac{1 - \beta}{1 - \alpha} [\alpha L_n + (1 - \alpha) L_1]$$

$$\succ \frac{\beta - \alpha}{1 - \alpha} [\alpha L_n + (1 - \alpha) L_1] + \frac{1 - \beta}{1 - \alpha} [\alpha L_n + (1 - \alpha) L_1]$$

$$= \alpha L_n + (1 - \alpha) L_1.$$

• Therefore, for compound lottery of the form $\alpha L_n + (1 - \alpha) L_1$, the larger the probability of L_n , the better it is.

Pak Hung Au (HKUST) Risk Pref April 2020 13 / 46

- Continuity axiom: for any degenerate lottery L_i , there is some $\alpha \in [0, 1]$ such that $L_i \sim (1 \alpha) L_1 + \alpha L_n$.
 - It follows from above that this value α is unique for each L_i .
- Let's call this α by $u(x_i)$, so by definition:

$$L_i \sim (1 - u(x_i)) L_1 + u(x_i) L_n$$
.

- Any lottery $L = (p_1, p_2, ..., p_n)$ can be written as $L = p_1L_1 + p_2L_2 + ... + p_nL_n$ (consequentialist).
- Applying the independence axiom to iteratively replace L_i with $(1 u(x_i)) L_1 + u(x_i) L_n$ preserves indifference:

$$L \sim p_{1} [(1 - u(x_{1})) L_{1} + u(x_{1}) L_{n}] + p_{2}L_{2} + ... + p_{n}L_{n}$$

$$\sim p_{1} [(1 - u(x_{1})) L_{1} + u(x_{1}) L_{n}]$$

$$+ p_{2} [(1 - u(x_{2})) L_{1} + u(x_{2}) L_{n}] + ... + p_{n}L_{n}$$

$$\sim ... \sim$$

$$\sim p_{1} [(1 - u(x_{1})) L_{1} + u(x_{1}) L_{n}]$$

$$+ p_{2} [(1 - u(x_{2})) L_{1} + u(x_{2}) L_{n}] + ... +$$

$$+ p_{n} [(1 - u(x_{n})) L_{1} + u(x_{n}) L_{n}].$$

Therefore, lottery L is indifferent to the lottery

$$\left(1 - \underbrace{\left[p_{1}u(x_{1}) + ... + p_{n}u(x_{n})\right]}_{E_{L}[u(x)]}\right)L_{1} + \underbrace{\left[p_{1}u(x_{1}) + ... + p_{n}u(x_{n})\right]}_{E_{L}[u(x)]}L_{n}$$

ullet Lottery $L'=(p_1',p_2',...,p_n')$ is indifferent to the lottery

$$\left(1-\underbrace{\left[p_{1}^{\prime}u\left(x_{1}\right)+...+p_{n}^{\prime}u\left(x_{n}\right)\right]}_{E_{L^{\prime}}\left[u\left(x\right)\right]}\right)L_{1}+\underbrace{\left[p_{1}^{\prime}u\left(x_{1}\right)+...+p_{n}^{\prime}u\left(x_{n}\right)\right]}_{E_{L^{\prime}}\left[u\left(x\right)\right]}L_{n}.$$

• By transitivity, $L \succsim L'$ if and only if

$$\begin{split} \left(1-E_{L}\left[u\left(x\right)\right]\right)L_{1}+E_{L}\left[u\left(x\right)\right]L_{n}\\ \succsim &\left(1-E_{L'}\left[u\left(x\right)\right]\right)L_{1}+E_{L'}\left[u\left(x\right)\right]L_{n} \end{split}$$

By the result 3 pages before, this happens if and only if

 $E_{L}\left[u\left(x\right)\right] \geq E_{L'}\left[u\left(x\right)\right] . \quad \text{as it is a property }$

Expected Utility

- In expected-utility representation, the vN-M utility is not purely ordinal.
- Two vN-M utility functions represent the same preference for lotteries if and only if one is a **positive linear transformation** of the other.
 - A positive linear transformation takes the form: f(x) = A + Bx for some numbers B>0 and A.
- If u(x) represents \succeq , so is A + Bu(x):

$$E_{L}[u(x)] \ge E_{L'}[u(x)]$$

$$\Leftrightarrow A \times E_{L}[u(x)] + B \ge A \times E_{L'}[u(x)] + B$$

$$\Leftrightarrow E_{L}[Au(x) + B] \ge E_{L'}[Au(x) + B]$$

 We will see below that other transformation may not preserve the preference.

Risk Attitude

- For the rest of this lecture, we focus on the lotteries over wealth.
- The vN-M utility function is therefore defined over wealth.
- The shape of an individual's vN-M utility function determines his/her risk attitude.

Example

- Lottery 1: Gives wealth \$40 for certain.
- Lottery 2: Gives wealth \$70 with probability 50%, and gives wealth \$10 with probability 50%.
- Two lotteries have identical expected values:

$$E_{L1}[x] = 1 \times 40 = 40 = \frac{1}{2} \times 70 + \frac{1}{2} \times 10 = E_{L2}[x].$$

Risk Aversion: Concave vN-M Utility Function

• The marginal utility for money is diminishing as wealth increases.

Risk Aversion

• Her expected utility of lottery 1:

$$E_{L1}[U(x)] = 1 \times U(40) = 120.$$

• Her expected utility of lottery 2:

$$E_{L2}[U(x)] = \frac{1}{2} \times U(70) + \frac{1}{2} \times U(10) = \frac{1}{2}(140) + \frac{1}{2}(70) = 105.$$

She strictly prefers lottery 1, and so would any risk-averse person.

Risk Premium and Certainty Equivalent

• For a person with vN-M utility $U(\cdot)$, the **certainty equivalent** ψ of lottery L is the guaranteed amount of money that she would view as equally desirable as lottery L. That is,

$$U(\psi) = E_L[U(x)].$$

• The **risk premium** of lottery *L* is the difference between its expected value and and certainty equivalent.

Risk premium =
$$E_L[x] - \psi$$
.

 In other words, the risk premium is the amount (of expected value) that the person is willing to give up to avoid the risk involved in lottery L altogether.

Risk Aversion: Example

- The certainty equivalent of lottery 2 is the sure amount that gives her an expected utility equal to $E_{L2}\left[U\left(x\right)\right]=105$. Inspecting her vN-M utility function, it is equal to $\psi=26$.
- The risk premium of lottery 2 is thus $E_{L2}[x] \psi = 40 26 = 14$.

Risk Neutrality

- An individual is risk-neutral if her vN-M utility function is linear.
 - Her marginal utility for money is constant as wealth increases.
- A risk-neutral person evaluates lotteries by their expected values.
- She has a zero risk premium for all lotteries.

Risk Neutrality

• Her expected utility of lottery 1:

$$E_{L1}[U(x)] = 1 \times U(40) = 105.$$

• Her expected utility of lottery 2:

$$E_{L2}[U(x)] = \frac{1}{2} \times U(70) + \frac{1}{2} \times U(10) = \frac{1}{2}(140) + \frac{1}{2}(70) = 105.$$

 A risk-neutral person is indifferent between lotteries with equal expected value.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

vN-M utility function is preserved only with positive linear transformation

- In this example, $U(x) = \frac{175}{3} + \frac{7}{6}x$.
- If we apply transformation \sqrt{u} (which is strictly increasing) to it, it becomes $\tilde{U}(x)=\sqrt{\frac{175}{3}+\frac{7}{6}x}$.
- "Expected utility" of lottery 1 becomes:

$$E_{L1}\left[\tilde{U}\left(x\right)\right]=1\times\tilde{U}\left(40\right)=\sqrt{105}\approx10.25.$$

"Expected utility" of lottery 2 becomes:

$$E_{L2}\left[U\left(x\right)\right] = \frac{1}{2} \times \tilde{U}\left(70\right) + \frac{1}{2} \times \tilde{U}\left(10\right) = \frac{1}{2}\sqrt{140} + \frac{1}{2}\sqrt{70} \approx 10.10.$$

• Therefore, lottery 1 has a higher "expected utility".

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

Risk Loving

- An individual is risk-loving if her vN-M utility function is convex.
 - Her marginal utility for money is increasing as wealth increases.
- A risk-loving person has a **negative risk premium**.

Risk Loving

• Her expected utility of lottery 1:

$$E_{L1}[U(x)] = 1 \times U(40) = 82.$$

• Her expected utility of lottery 2:

$$E_{L2}[U(x)] = \frac{1}{2} \times U(70) + \frac{1}{2} \times U(10) = \frac{1}{2}(140) + \frac{1}{2}(70) = 105.$$

• A risk-loving person would strictly prefer lottery 2.

State-preference Approach to Choice under Uncertainty

- Suppose you are endowed with wealth \$w and a car worth \$L to you.
- There is a probability p that the car will be stolen.
- Two states: good state (car not stolen) and bad state (car stolen)
- Your wealth in the good state is $W_g = w$ and your wealth in the bad state is $W_b = w L$.
- Your expected utility is

$$(1-p)U(W_g)+pU(W_b)$$
.

Suppose you are risk averse, so your U is concave.

- Suppose an insurance company offers you a deal: you can get a coverage q for the loss of car at a premium of πq .
 - π is the premium rate/ premium per dollar of coverage.
- Insurance purchase allows you to transfer your wealth across the two states (at some exchange rate):

$$W_g = w - \pi q$$
 and $W_b = w - \pi q - L + q$.

• By varying choice of $q \in [0, L]$, you can attain any combination of (W_g, W_b) that satisfies

$$(1-\pi) W_g + \pi W_b = w - \pi L,$$

$$W_g \le w, W_b \le w - \pi L$$

The insurance purchase problem can be formulated as

$$\max_{W_{g} \leq w, W_{b} \leq w - \pi L} \left(1 - p\right) U\left(W_{g}\right) + p U\left(W_{b}\right)$$

subject to the "budget constraint"

$$\underbrace{\left(1-\pi\right)}_{\text{like price of good }W_g}\times W_g + \underbrace{\pi}_{\text{like price of good }W_b}\times W_b = \underbrace{w-\pi L}_{\text{like income}}.$$

• The marginal rate of substitution is

$$MRS = \frac{\left(1 - p\right) U'\left(W_{g}\right)}{pU'\left(W_{b}\right)}.$$

• The price ratio is

$$\frac{\mathsf{Price} \; \mathsf{of} \; W_{\mathsf{g}}}{\mathsf{Price} \; \mathsf{of} \; W_{\mathsf{b}}} = \frac{1-\pi}{\pi}.$$

At an interior solution, MRS equals price ratio, so

$$rac{1-p}{p} imesrac{U'\left(W_{g}
ight)}{U'\left(W_{b}
ight)}=rac{1-\pi}{\pi}.$$

- The expected profit of the insurance company is $\pi q pq$.
- If the insurance company is risk-neutral and faces extremely intense competition, it will offer actuarially fair rate: $\pi = p$.
- In this case, the FOC gives $W_g = W_b$, so you will opt for full coverage: q = L.
 - This conclusion does not depend on the particular vN-M utility form.

Actuarially Fair Insurance

- If the insurance company can make positive expected profit, then $\pi > p$.
- In this case,

$$\frac{U'\left(W_{g}\right)}{U'\left(W_{b}\right)} = \frac{p}{1-p} \frac{1-\pi}{\pi} < 1$$

$$\Rightarrow \quad U'\left(W_{g}\right) < U'\left(W_{b}\right)$$

- Risk-aversion implies concavity of U, so $W_g > W_b$, equivalently, q < L.
- You will go for partial coverage only.

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Actuarially Unfair Insurance

Insurance: Another formulation

 Alternatively, we can formulate the insurance problem as one of choosing coverage directly:

$$\max_{q \in [0,L]} \left(1-p\right) U\left(w-\pi q\right) + p U\left(w-\pi q-L+q\right)$$

FOC:

$$(1-p)(-\pi) U'(w-\pi q) + p(1-\pi) U'(w-\pi q - L + q) = 0$$

$$\Leftrightarrow \frac{1-p}{p} \times \frac{U'(w-\pi q)}{U'(w-\pi q - L + q)} = \frac{1-\pi}{\pi}$$

- If $\pi=p$, then $w-\pi q=w-\pi q-L+q\Leftrightarrow q=L$ (full coverage).
- If $\pi < p$, then $w \pi q > w \pi q L + q \Leftrightarrow q < L$ (partial coverage).

Asset Investment

- Suppose you are endowed with wealth \$w and you can invest in an asset that costs π per unit.
- Each unit of the asset pays $\$R > \pi$ in the good state and pays nothing in the bad state.
- The probability of good state is 1 p.
- If you buy x units of the asset, your wealth in the two states are respectively

$$W_g = w - \pi x + Rx$$
 and $W_b = w - \pi x$.

• By varying choice of x, you can attain any combination of (W_g, W_b) that satisfies

$$\pi W_g + (R - \pi) W_b = wR.$$

Asset Investment

This investment problem can therefore be formulated as

$$\max_{W_{g},W_{b}}\left(1-p\right)U\left(W_{g}\right)+pU\left(W_{b}\right)$$

subject to budget constraint

$$\pi W_g + (R - \pi) W_b = wR.$$

• The marginal rate of substitution is

$$MRS = \frac{\left(1-p\right)U'\left(W_{g}\right)}{pU'\left(W_{b}\right)}.$$

• The price ratio is

$$\frac{\text{Price of } W_g}{\text{Price of } W_b} = \frac{\pi}{R - \pi}.$$

Asset Investment

• At an interior solution, MRS equals price ratio, so

$$\frac{1-p}{p} \times \frac{U'(W_g)}{U'(W_b)} = \frac{\pi}{R-\pi}.$$

- If the asset is actuarially fair, $\pi = (1 p) R$.
- In this case, the FOC gives $W_g = W_b$, so you will not invest in the asset: x = 0.
 - This conclusion does not depend on the particular vN-M utility form.

Asset Investment with Zero Expected Value

Asset Investment with Positive Expected Value

• If the asset has a positive expected value, $\pi < (1-p)\,R$, then FOC gives

$$\frac{U'\left(W_{g}\right)}{U'\left(W_{b}\right)} = \frac{\pi}{R - \pi} \times \frac{p}{1 - p} < 1.$$

• Therefore, $W_g > W_b$ and you are a buyer of the asset.

Asset with Positive Expected Value

Asset Investment with Negative Expected Value

• If the asset has a negative expected value, $\pi > (1-p)\,R$, then FOC gives

$$\frac{U'(W_g)}{U'(W_b)} = \frac{\pi}{R - \pi} \times \frac{p}{1 - p} > 1.$$

• Therefore, $W_g < W_b$ and you are a short-seller of the asset (if it is feasible).

Asset with Negative Expected Value

Asset Investment: Another formulation

 Alternatively, we can formulate the investment problem as one of choosing x directly:

$$\max_{x} (1-p) U(w - \pi x + Rx) + pU(w - \pi x)$$

FOC:

$$(1-p)(R-\pi)U'(w-\pi x+R x)+p(-\pi)U'(w-\pi x)=0$$

$$\Leftrightarrow \frac{U'(w-\pi x+R x)}{U'(w-\pi x)}=\frac{\pi}{R-\pi}\times\frac{p}{1-p}.$$

- If $\pi = (1 p) R$, then $w \pi x + Rx = w \pi x \Leftrightarrow x = 0$.
- If $\pi < (1-p) R$, then $w \pi x + Rx > w \pi x \Leftrightarrow x > 0$.
- If $\pi > (1-p) R$, then $w \pi x + Rx < w \pi x \Leftrightarrow x < 0$.

- 4日 > 4個 > 4 種 > 4種 > 種 > 種 の Q (で

Summary

- **Expected utility** If a complete transitive preference over lottery satisfies the independence axiom and the continuity axiom, then it can be represented by expected utility.
- Risk preference An individual is risk averse if her vN-M utility function is concave. She is risk neutral if her vN-M utility function is linear.
- **Insurance** A risk-averse individual fully (partially) insure against her potential loss if charged actuarially fair (unfair) rate.
- **Investment** A risk-averse individual invests in an asset if and only if it has a positive expected value.