Problemes del Tema 1: Anells.

Estructures Algebraiques. Grau en Matemàtiques, UPC, tardor 2020. Àlex Batlle Casellas

Problemes de classe.

1. Sigui $d \in \mathbb{Z}$ un enter $d \equiv 1 \pmod{4}$. Sigui $w = \frac{1}{2} \left(1 + \sqrt{d} \right) \in \mathbb{C}$. Demostreu que el conjunt $\mathbb{Z}[w] = \{a + bw : a, b \in \mathbb{Z}\}$ és un subanell de \mathbb{C} .

Comprovarem les tres condicions següents que defineixen ser subanell:

- $-1_{\mathbb{C}} \in \mathbb{Z}[w].$
- $-x, y \in \mathbb{Z}[w] \implies x y \in \mathbb{Z}[w].$
- $-x, y \in \mathbb{Z}[w] \implies xy \in \mathbb{Z}[w].$

La primera és força evident, ja que posant a=1,b=0 ja tenim la unitat. La segona també és força evident: si $x=a_1+b_1w, y=a_2+b_2w$, aleshores la seva diferència és $x-y=(a_1-a_2)+(b_1-b_2)w\in\mathbb{Z}[w]$. La tercera condició la comprovem seguidament. El producte entre x i y és

$$(a_1 + b_1 w)(a_2 + b_2 w) = a_1 a_2 + (a_1 b_2 + b_1 a_2)w + b_1 b_2 w^2.$$

Veiem què val w^2 :

$$w^{2} = \left(\frac{1}{2} + \frac{1}{2}\sqrt{d}\right)^{2} = \frac{1}{4} + \frac{1}{4}d + \frac{1}{2}\sqrt{d} = \frac{d+1}{4} + \left(w - \frac{1}{2}\right) = \frac{d-1}{4} + w.$$

Com que $d \equiv 1 \pmod{4}$, la fracció $\frac{d-1}{4}$ és un enter. Per tant, si diem $k = \frac{d-1}{4} \in \mathbb{Z}$, aleshores el resultat del producte és

$$a_1a_2 + (a_1b_2 + b_1a_2)w + b_1b_2\left(\frac{d-1}{4} + w\right) = \left(a_1a_2 + b_1b_2\frac{d-1}{4}\right) + (a_1b_2 + b_2a_1 + b_1b_2)w \in \mathbb{Z}[w]$$

2. Sigui $\zeta = e^{2\pi i/5}$ i considereu el conjunt $\mathbb{Z}[\zeta] = \{a_0 + a_1\zeta + a_2\zeta^2 + a_3\zeta^3 + a_4\zeta^4 : a_i \in \mathbb{Z}\}$. Demostreu que és un subanell de \mathbb{C} .

És evident que hi ha la unitat dels enters i que la suma i la diferència es comporten bé dins d'aquest conjunt. El producte és

$$(a_0 + a_1\zeta + a_2\zeta^2 + a_3\zeta^3 + a_4\zeta^4)(b_0 + b_1\zeta + b_2\zeta^2 + b_3\zeta^3 + b_4\zeta^4) = \sum_{i=0, i=0}^4 a_i b_j \zeta^{i+j}.$$

Com que les potències de ζ són cícliques, és evident que això seran combinacions enteres de potències (fins la quarta) de ζ . Noti's que aquest resultat val per a qualsevol arrel n-èssima de la unitat

3. Demostreu que, donat $\alpha \in \mathbb{Q}$, el conjunt dels polinomis que s'anul·len en α és un ideal de \mathbb{Q} .

Sigui $I = \{f(x) \in \mathbb{Q}[x] : f(\alpha) = 0\}$. Comprovarem les dues condicions següents que defineixen ser un ideal d'un anell A:

- $-x,y\in I\implies x+y\in I.$
- $-x \in I, \lambda \in A \implies \lambda x \in I.$

La primera condició és senzilla de comprovar: siguin $f,g \in I$, aleshores el polinomi a coeficients racionals f+g s'anul·la en α : $(f+g)(\alpha)=f(\alpha)+g(\alpha)=0$. La segona condició també és força senzilla: sigui $a(x) \in \mathbb{Q}[x]$, aleshores el polinomi producte avaluat en α és $(fa)(\alpha)=f(\alpha)a(\alpha)=0 \cdot a(\alpha)=0$. Per tant, I és un ideal de $\mathbb{Q}[x]$

4. Sigui \mathfrak{a} un ideal de l'anell A. Demostreu que Ann $\mathfrak{a} = \{a \in A : ax = 0 \ \forall x \in \mathfrak{a}\}$ és un ideal d'A. S'anomena anul·lador d' \mathfrak{a} .

Si $x, y \in \text{Ann } \mathfrak{a}$, aleshores clarament $\forall \beta \in \mathfrak{a}$ es té que $(x + y)\beta = x\beta + y\beta = 0_A + 0_A = 0_A$. També està clar que si $\alpha \in A$, aleshores $\forall \beta \in \mathfrak{a}$ es té $(\alpha x)\beta = \alpha(x\beta) = \alpha 0_A = 0_A$

5. Un element a d'un anell s'anomena nilpotent si $a^n = 0$ per algun $n \ge 1$. Demostreu que el conjunt de tots els elements nilpotents d'un anell n'és un ideal. S'anomena radical de l'anell.

Anomenem Rad $A := \{x \in A : \exists n \in \mathbb{N}, x^n = 0\}$. Siguin $x, y \in \text{Rad } A$, i $\alpha \in A$. Clarament, com que estem en un anell commutatiu, $(\alpha x)^n = \alpha^n x^n = 0$. Per la suma, siguin $n, m \in \mathbb{N}$ tals que $x^m = 0, y^n = 0$. Aleshores, $(x + y)^{n+m} = 0$. Vegem-ho:

$$(x+y)^{n+m} = \sum_{j=0}^{n+m} \binom{n+m}{j} x^j y^{n+m-j} = \sum_{j=0}^{m} \binom{n+m}{j} x^j y^{n+m-j} + \sum_{j=m+1}^{n+m} \binom{n+m}{j} x^j y^{n+m-j} = \underbrace{y^n}_{0_A} \sum_{j=0}^{m} \binom{n+m}{j} x^j y^{m-j} + \underbrace{x^m}_{0_A} \sum_{j=m+1}^{n+m} \binom{n+m}{j} x^{j-m} y^{n+m-j} = \underbrace{0_A + 0_A = 0_A}.$$

Per tant, el radical d'un anell n'és un ideal

6. Demostreu que la suma d'un element nilpotent i una unitat d'un anell és una altra unitat.

Sigui z un element nilpotent $(z^n=0_A)$ i u una unitat de l'anell. La motivació per la resolució d'aquest exercici és recordar la identitat notable $(u+z)(u-z)=u^2-z^2$. Volem que aquest exponent sigui una n, i així l'element nilpotent no contribueix a la suma i podem invertir la resta multiplicant repetidament per l'invers de la unitat. Per tant, observem el següent:

$$(u+z)\left(u^{n-1} - u^{n-2}z + u^{n-3}z^2 - u^{n-4}z^3 + \cdots\right) = u^n + zu^{n-1} - u^{n-1}z - u^{n-2}z^2 + \cdots + (-1)^n z^n = u^n.$$

Per aquest element ja sabem que tenim invers, per definició d'unitat. Per tant, resumint, u+z es pot invertir fent

$$(u^{-1})^n \left(\sum_{i=0}^{n-1} (-1)^i u^{n-1-i} z^i \right) (u+z) = (u^{-1})^n u^n = 1_A \blacksquare$$

7. Siguin $\zeta = e^{2\pi i/5}$ i $k \in \mathbb{Z}$. Considereu l'aplicació

$$\begin{array}{ccc} f: \mathbb{Z}[\zeta] & \longrightarrow & \mathbb{Z}[\zeta] \\ \sum_{i=0}^4 a_i \zeta^i & \longmapsto & \sum_{i=0}^4 a_i \zeta^{ki}. \end{array}$$

Demostreu que és un morfisme d'anells.

Veurem que és un morfisme d'anells comprovant les tres condicions següents:

$$-f(1)=1.$$

$$-x, y \in \mathbb{Z}[\zeta] \implies f(x+y) = f(x) + f(y).$$

$$-x, y \in \mathbb{Z}[\zeta] \implies f(xy) = f(x)f(y).$$

La primera condició és bastant evident, ja que f(1+0+0+0+0)=1. La segona condició també és bastant directe, ja que

$$f\left(\sum_{i} a_{i}\zeta^{i} + \sum_{i} b_{i}\zeta^{i}\right) = f\left(\sum_{i} (a_{i} + b_{i})\zeta^{i}\right) =$$

$$\sum_{i} (a_{i} + b_{i})\zeta^{ki} = \sum_{i} a_{i}\zeta^{ki} + \sum_{i} b_{i}\zeta^{ki} =$$

$$f\left(\sum_{i} a_{i}\zeta^{i}\right) + f\left(\sum_{i} b_{i}\zeta^{i}\right).$$

La tercera condició requereix exactament la mateixa quantitat de treball:

$$f(xy) = f\left(\left(\sum_{i} a_{i}\zeta^{i}\right) \cdot \left(\sum_{j} b_{j}\zeta^{j}\right)\right) = f\left(\sum_{i,j} a_{i}b_{j}\zeta^{i+j}\right) =$$

$$\sum_{i,j} a_{i}b_{j}\zeta^{k(i+j)} = \sum_{i} a_{i}\zeta^{ki} \sum_{j} b_{j}\zeta^{kj} = \left(\sum_{i} a_{i}\zeta^{ki}\right) \left(\sum_{j} b_{j}\zeta^{kj}\right) =$$

$$f(x)f(y) \blacksquare$$

Noti's que aquest resultat val per qualsevol anell $\mathbb{Z}[\omega]$ per $\omega = e^{2\pi i/n}, n \in \mathbb{N} \setminus 0$.

8. Siguin A un anell i $\alpha \in A$. Considereu l'aplicació

$$\varphi_{\alpha}: A[x] \longrightarrow A \\
f \longmapsto f(\alpha).$$

Vegeu que és un morfisme exhaustiu d'anells. Concloeu que $A[x]/(x-\alpha)$ és isomorf a A.

És un morfisme d'anells. Efectivament, comprovarem les tres condicions que hem comentat a l'exercici anterior:

-f(1)=1 ja que 1 és un polinomi constant.

$$- f(p+q) = (p+q)(\alpha) = p(\alpha) + q(\alpha) = f(p) + f(q).$$

$$- f(pq) = (pq)(\alpha) = p(\alpha)q(\alpha) = f(p)f(q).$$

És exhaustiu ja que, donat $a \in A$, el polinomi constant p(x) = a és tal que $f(p) = p(\alpha) = a$. Vegem ara que efectivament $A[x]/(x-\alpha) \cong A$. Si demostrem que $\ker f = (x-\alpha)$, ja haurem provat l'isomorfisme. Clarament, $(x-\alpha) \subseteq \ker f$, ja que $(x-\alpha) = \{h(x)(x-\alpha) : h(x) \in A[x]\}$, i $f(h(x)(x-\alpha)) = h(\alpha)(\alpha-\alpha) = 0$. Vegem ara que $\ker f \subseteq (x-\alpha)$. En efecte, si $p(x) \in \ker f$, aleshores sigui $q(x) = p(x+\alpha)$. q(x) és $q(x) = \sum_{j=0}^{n} q_i x^i$, per alguna $n \in \mathbb{N}$ tal que $q_n \neq 0$. Aleshores, q(x) = q(x). Aleshores, tornem a la definició de q(x) i fem $p(x) = q(x-\alpha) = (x-\alpha)q'(x-\alpha)$. Això vol dir, però, que $p(x) \in (x-\alpha)$, i per tant, que $\ker f \subseteq (x-\alpha)$. Per tant, tenim que $(x-\alpha) = \ker f$. Pel primer teorema d'isomorfisme, sabem que el següent és cert:

$$A[x]/(x-\alpha) = A[x]/(x+\alpha) \cong \text{Im } f = A \blacksquare$$

9. Volem veure que es poden racionalitzar totes les fraccions de la forma

$$\frac{a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{4}}{b_0 + b_1\sqrt[3]{2} + b_2\sqrt[3]{4}}, \ a_i, b_i \in \mathbb{Q}.$$

- (a) Demostreu que l'ideal de $\mathbb{Q}[x]$ generat pel polinomi $x^3 2$ és maximal.
- (b) Definiu un epimorfisme entre $\mathbb{Q}[x]$ i $\mathbb{Q}[\sqrt[3]{2}] = \{a_0 + a_1\sqrt[3]{2} + a_2\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}.$
- (c) Concloeu que $\mathbb{Q}[\sqrt[3]{2}]$ és un cos.
- Sigui $I \subseteq \mathbb{Q}[x]$ un ideal tal que $(x^3 2) \subsetneq I$. Aleshores, $\exists p(x) \in I \setminus (x^3 2)$. Per tant, p(x) es pot escriure com p(x) = q(x) + r(x), amb $q(x) \in (x^3 2)$ i $r(x) \not\in (x^3 2)$. A més, $r(x) = p(x) q(x) \in I$, ja que ambdós polinomis en formen part. Com que $x^3 2 \in (x^3 2) \subsetneq I$, l'ideal generat per $x^3 2$ i r(x) es troba tot dins d'I. Però, $(x^3 2, r(x)) = \mathbb{Q}[x]$, ja que $\forall a(x) \in \mathbb{Q}[x]$, a(x) es pot escriure com $a(x) = (x^3 2)q(x) + r(x)s(x)$. Si $a(x) \in (x^3 2)$, aleshores $s(x) \equiv 0$, i si $a(x) \not\in (x^3 2)$, aleshores $q(x) \equiv 0$. Per tant, tenim que $\mathbb{Q}[x] = (x^3 2, r(x)) \subseteq I$, i per tant, $\mathbb{Q}[x] = I$. Per tant, $(x^3 2)$ és un ideal maximal.

(b) Sigui *e* la següent aplicació:

$$e: \mathbb{Q}[x] \longrightarrow \mathbb{Q}[\sqrt[3]{2}]$$

 $p(x) \longmapsto p(\sqrt[3]{2})$

És clarament exhaustiva: sigui $y = y_0 + y_1\sqrt[3]{2} + y_2\sqrt[3]{4}$, aleshores $p_y(x) = y_0 + y_1x + y_2x^2$ és tal que $e(p_y) = p_y(\sqrt[3]{2}) = y$.

Observem que $(x^3 - 2) = \ker e$, i com ja hem vist, $\mathbb{Q}[\sqrt[3]{2}] = \operatorname{Im} e$. Per tant, com que e és un morfisme d'anells (clarament), pel primer teorema d'isomorfisme tenim que

$$\mathbb{Q}[x]_{(x^3-2)} = \mathbb{Q}[x]_{\ker e} \cong \operatorname{Im} e = \mathbb{Q}[\sqrt[3]{2}].$$

A més, com que l'ideal (x^3-2) és maximal, aleshores $\mathbb{Q}[x]/(x^3-2)$ és un cos, i per tant, la seva imatge per un isomorfisme també (comprovació immediata per ser un isomorfisme un morfisme d'anells bijectiu). Per tant, $\mathbb{Q}[\sqrt[3]{2}]$ és un cos

- **10.** Teorema xinès dels residus. Dos ideals I, J d'un anell \mathbb{A} es diuen coprimers (o comaximals) si $I + J = \mathbb{A}$. Sigui $\phi : \mathbb{A} \to \mathbb{A}/I \times \mathbb{A}/J$ el morfisme que té per components les projeccions canòniques, $\phi(x) = ([x]_I, [x]_J)$. Demostreu que:
 - (a) Si I i J són coprimers, aleshores $IJ = I \cap J$. INDICACIÓ: Existeixen $u \in I$ i $v \in J$ amb u + v = 1.
 - (b) Si I i J són coprimers aleshores per a tot parell d'elements $a, b \in \mathbb{A}$ existeix un element $x \in \mathbb{A}$ tal que $x \equiv a \pmod{I}$ i $x \equiv b \pmod{J}$, i la classe d'aquest element mòdul IJ queda univocament determinada.
 - (c) ϕ és exhaustiu si, i només si, I i J són coprimers.
 - (d) Si I i J són coprimers, aleshores $^{\mathbb{A}}/_{IJ} \cong ^{\mathbb{A}}/_{I} \times ^{\mathbb{A}}/_{J}$.
- (a)

Veurem primer la inclusió $IJ \subseteq I \cap J$: sigui $\sum_i u_i v_i$ un element de IJ. Aleshores, $u_i \in I \subseteq A, v_i \in J \subseteq A$. Com que tant I com J són ideals, tenim que $\sum_i u_i v_i \in I$, i també que $\sum_i u_i v_i \in J$. Per tant, $\sum_i u_i v_i \in I \cap J$.

Vegem ara la inclusió contrària, $IJ \supseteq I \cap J$: primer, observem que la condició de ser coprimers I i $J,\ I+J=A$, és equivalent a dir que existeixen $u\in I,v\in J$ tals que u+v=1. Aleshores, sigui $x\in I\cap J$, llavors x=x(u+v)=xu+xv, i com que $x\in I\cap J,u\in I,v\in J$, això és un element de IJ. Per tant, hem demostrat que $IJ=I\cap J$ si I i J són coprimers.

(b)

Volem trobar $\alpha \in I, \beta \in J$ tals que es compleixi

$$x = a + \alpha$$

$$x = b + \beta$$

Aleshores, clarament tenim que $a - b = \beta - \alpha$. Com que u + v = 1, aleshores tenim que a - b = (a - b)(u + v) = (a - b)u + (a - b)v, sent el primer un membre d'*I* i el segon un element de *J*. Per tant, ja tenim les α i β que buscàvem, i la x serà, per tant,

$$x = a - (a - b)u = b + (a - b)v.$$

Ara vegem que la classe d'x mòdul IJ està unívocament determinada: sigui x' tal que compleix les mateixes relacions que x, és a dir, $x' \equiv a \pmod{I}$ i $x' \equiv b \pmod{J}$. Aleshores, per la primera condició, $x - x' \in I$, i per la segona, $x - x' \in J$. Per tant, $x - x' \in I \cap J = IJ$, i per tant, $[x']_{IJ} = [x]_{IJ}$.

11. Demostreu que un ideal \mathfrak{p} és primer si, i només si, per a tot parell d'ideals I, J es compleix $IJ \subseteq \mathfrak{p} \iff I \subseteq \mathfrak{p}$ o $J \subseteq \mathfrak{p}$.

Primer prenem p un ideal primer. Vegem que es compleix la condició:

 $\Longrightarrow IJ \subseteq \mathfrak{p}$. Suposem que $I \not\subset \mathfrak{p}$ i $J \not\subset \mathfrak{p}$. Aleshores, existeixen $a \in I \setminus \mathfrak{p}, \ b \in J \setminus \mathfrak{p}$. L'element ab pertany a l'ideal producte, $ab \in IJ \subseteq \mathfrak{p}$. Però, com que \mathfrak{p} és primer, aleshores o bé $a \in \mathfrak{p}$ o bé $b \in \mathfrak{p}$, contradient el fet que $a \not\in \mathfrak{p}$ o que $b \not\in \mathfrak{p}$. Per tant, $I \subseteq \mathfrak{p}$ o bé $J \subseteq \mathfrak{p}$.

 \subseteq Si $I \subseteq \mathfrak{p}$, aleshores $IJ \subseteq I \cap J \subseteq I \subseteq \mathfrak{p}$. Per tant, $IJ \subseteq \mathfrak{p}$.

Falta comprovar que si es compleix la condició, aleshores \mathfrak{p} és primer. Siguin I i J dos ideals. Sigui $ab \in IJ \subseteq \mathfrak{p}$, amb $a \in I, b \in J$. Com que es compleix la condició, el fet que $ab \in IJ \subseteq \mathfrak{p}$ implica que $a \in \mathfrak{p}$ o bé $b \in \mathfrak{p}$. És a dir, que \mathfrak{p} és un ideal primer

12. Sigui $I \subseteq \mathbb{A}$ un ideal d'un anell \mathbb{A} .

- 1. Comproveu que $I[X] = \{\sum_i a_i X^i : a_i \in I\}$ és un ideal de l'anell de polinomis $\mathbb{A}[X]$.
- 2. Demostreu que I és primer si, i només si, I[X] també ho és, però que tant si I és maximal com si no, I[X] no ho és mai.
- 3. Demostreu que $\mathbb{A}[X]/_{I[X]} \cong \mathbb{A}[X]$.

1. Siguin $p, q \in I[x], \alpha \in \mathbb{A}[x]$. Aleshores, la suma és

$$p + q = \left(\sum_{i=0}^{d_p} p_i x^i\right) + \left(\sum_{j=0}^{d_q} q_j x^j\right) = \sum_{i=0}^{\max(d_p, d_q)} (p_i + q_i) x^i \in I[x],$$

on ampliem el polinomi de menor grau amb zeros a partir de $\min(d_q, d_p)$. El producte αp és

$$\alpha p = \left(\sum_{i=0}^{d_{\alpha}} \alpha_i x^i\right) \left(\sum_{j=0}^{d_p} p_j x^j\right) = \sum_{i,j} \alpha_i p_j x^{i+j},$$

i clarament $\alpha_i p_i \in I$ ja que I és un ideal. Per tant, I[x] és un ideal.

2.

 \implies Recordem que un ideal I és primer si, per definició, passa que

$$ab \in I \implies \begin{cases} a \in I, & \text{o b\'e} \\ b \in I. \end{cases}$$

Aleshores, sigui pq un element de I[x]; és de la forma

$$\sum_{i,j} p_i q_j x^{i+j}.$$

Com que és un element d'I[x], es té que $p_iq_j \in I$ per a tot i, j. Podem assumir que $p_i \in I \ \forall i$. Si no fos així, existiria una parella (i, j) de coeficients p_i, q_j tals que multiplicats donarien un element de fora de l'ideal I i aleshores seria $pq \notin I[x]$. Per tant, $p \in I[x]$.

 \sqsubseteq I[x] és primer. Aleshores, sigui $pq \in I[x]$ com abans. Podem assumir que $p \in I[x]$ ja que I[x] és primer. Per tant, tots els $p_i \in I$. D'aquí podem treure tots els productes d'elements de I amb elements d' \mathbb{A} , ja que no hi ha cap restricció respecte de què pot ser q. Per tant, sempre que tinguem un producte d'elements p_iq_j , serà $p_i \in I$, el que vol dir que I és un ideal primer.

3.

Sigui φ la següent aplicació:

$$\varphi: \mathbb{A}[x] \longrightarrow \left(\mathbb{A}/I\right)[x]$$
$$\sum a_n x^n \longmapsto \sum [a_n]_I x^n$$

És exhaustiva i a més, clarament és ker $\varphi = I[x]$. Pel Primer Teorema d'Isomorfisme,

$$\mathbb{A}[x]/I[x] = \mathbb{A}[x]/\ker \varphi \cong \operatorname{Im} \varphi = \mathbb{A}[x]/\ker \varphi$$

13. Un anell local és un anell que té un únic ideal maximal. Sigui $I\subseteq \mathbb{A}$ un ideal propi de l'anell \mathbb{A} . Demostreu que:

- 1. Si $\mathbb{A} \setminus I \subseteq \mathbb{A}^*$ aleshores \mathbb{A} és local i I és el seu ideal maximal.
- 2. Si I és maximal i $1+I:=\{1+x:x\in I\}\subseteq \mathbb{A}^*$ aleshores \mathbb{A} és local.
- 1.

Vegem que I és maximal. Suposem que $I \subsetneq J \subseteq A$. Aleshores, $\exists x \in J \setminus I \subseteq A \setminus I \subseteq A^*$. Si $x \in \mathbb{A}^*$, això vol dir que $(x) \subseteq J$ és l'ideal total, i per tant, que J = A, és a dir, que I **és maximal**. Ara vegem que \mathbb{A} és un anell local. Sigui $J \subsetneq \mathbb{A}$ un ideal maximal, $J \neq I$. Aleshores, existeix un punt $x \in J \setminus I \subseteq A \setminus I \subseteq A^*$, i per tant, $x \in \mathbb{A}^*$, o el que és el mateix, J = A. Per tant, J no és maximal, i per tant \mathbb{A} és un anell local.

2.

Sigui $x \in A \setminus I$. Aleshores, tenim que $I \subsetneq (x) + I \subseteq A$, i per tant, que (x) + I = A. Per tant, (x) i I són coprimers, i llavors existeixen $v \in I$, $u \in A$ tals que v + xu = 1. Per tant, $xu = 1 - v \in 1 + I \subseteq A^*$, i per tant $x \in A^*$. Per l'apartat anterior, A és un anell local

14. Demostreu que tot domini d'integritat finit és un cos. Deduïu que en un anell finit tot ideal primer és maximal.

Problemes complementaris.

23. Comproveu que el conjunt $\mathcal{P}(X)$ de les parts d'un conjunt X, amb la suma definida com la diferència simètrica $A+B:=A\Delta B=(A\cup B)\setminus (A\cap B)$ i el producte definit com la intersecció $A\cdot B:=A\cap B$ és un anell commutatiu.

Per comprovar que $(\mathcal{P}(X), \Delta, \cap)$ és un anell abelià, hem de:

- Veure que la suma és commutativa.
- Trobar un neutre per la suma.
- Trobar l'oposat per la suma.
- Veure que el producte és commutatiu.
- Trobar un neutre pel producte.
- Comprovar la propietat distributiva.

Veiem primer que la suma és commutativa: en efecte,

$$A + B = A\Delta B = (A \cup B) \setminus (A \cap B) = (B \cup A) \setminus (B \cap A) = B\Delta A = B + A.$$

L'element neutre de la suma és el conjunt buit, \varnothing . Vegem-ho:

$$A + \varnothing = A\Delta\varnothing = (A \cup \varnothing) \setminus (A \cap \varnothing) = A \setminus \varnothing = A.$$

L'oposat d'A per la suma és A mateix:

$$A + A = A\Delta A = (A \cup A) \setminus (A \cap A) = A \setminus A = \emptyset.$$

El producte és evidentment commutatiu ja que és la intersecció de conjunts típica. El neutre pel producte és el conjunt total, X. Vegem-ho:

$$A \cdot X = A \cap X = A.$$

Per últim, comprovem la propietat distributiva:

$$A \cdot (B+C) = A \cap (B \Delta C) = A \cap ((B \cup C) \setminus (B \cap C)) = (A \cap (B \cup C)) \setminus (B \cap C) = A \cap (B \cup C) \cap (B \cap C)^{C} = A \cap (B \cup C) \cap (B^{C} \cup C^{C} \cup A^{C}) = ((A \cap B) \cup (A \cap C)) \setminus ((A \cap B) \cap (A \cap C)) = ((A \cap B) \Delta (A \cap C) = A \cdot B + A \cdot C.$$

Per tant, hem vist que $(\mathcal{P}(X), \Delta, \cap)$ és un anell commutatiu

24. Siguin I, J dos ideals d'un anell A. Demostreu que els conjunts

$$I + J := \{a + b : a \in I, b \in J\}$$
$$IJ := \left\{ \sum_{j < \infty} a_j b_j : a_j \in I, b_j \in J \right\}$$

són ideals d'A. Doneu un exemple en el qual $I \cup J$ no sigui un ideal.

I+J és un ideal.

Sigui $\alpha \in A$ i $a \in I, b \in J$. Aleshores, $\alpha(a+b) = \alpha a + \alpha b$, de manera que, com que el primer és d'I i el segon és de J, aquest element pertany a I+J. A més, siguin $u,v \in I+J$, per tant $u=a_1+b_1, v=a_2+b_2$. Aleshores, $u+v=a_1+b_1+a_2+b_2=(a_1+a_2)+(b_1+b_2)\in I+J$.

IJ és un ideal.

- **28.** Sigui \mathbb{A} un anell commutatiu. Un element $e \in \mathbb{A}$ es diu *idempotent* si $e^2 = e$. Dos idempotents e_1, e_2 es diuen *ortogonals* si $e_1e_2 = 0$.
 - 1. Demostreu que si e és un idempotent aleshores 1 e també ho és, i tots dos són ortogonals.
 - 2. Sigui e un idempotent. Demostreu que l'ideal principal $(e) = e\mathbb{A}$ és un anell amb les mateixes operacions d' \mathbb{A} . En quin cas és un subanell?
 - 3. Demostreu que tot ideal principal d'A que sigui també un anell amb les operacions d'A està generat per algun idempotent.
 - 4. Comproveu que, al producte cartesià $\mathbb{A}_1 \times \mathbb{A}_2$ de dos anells, els elements (1,0) i (0,1) són idempotents ortogonals.
 - 5. Demostreu que dos idempotents e_1, e_2 amb $e_1 + e_2 = 1$ indueixen un isomorfisme d'anells $\mathbb{A} \cong e_1 \mathbb{A} \times e_2 \mathbb{A}$.
 - 6. Trobeu tots els idempotents de $\mathbb{Z}/_{60\mathbb{Z}}$ i doneu totes les descomposicions d'aquest anell com a producte cartesià de dos anells, llevat d'isomorfisme.
- Si e és idempotent, aleshores $(1-e)^2 = 1 + e^2 2e = 1 e$. A més, $e(1-e) = e e^2 = e e = 0$.
- 2. Siguin $x,y\in\mathbb{A}$, aleshores $ex,ey\in e\mathbb{A}$. La suma i el producte són els d' \mathbb{A} , i per tant mantenen les seves propietats. A més, $ex+ey=e(x+y)\in e\mathbb{A}$, i pel producte, $(ex)(ey)=e^2xy=exy\in e\mathbb{A}$. Observem que el neutre pel producte és e. Per tant, $e\mathbb{A}$ és un anell. Serà un subanell quan el neutre per la multiplicació d' \mathbb{A} estigui a $e\mathbb{A}$, i això passarà quan $e\in\mathbb{A}^*$. Però llavors, $e\mathbb{A}=\mathbb{A}$.

3.

Sigui I un ideal principal que també és un anell. Això vol dir que conté neutre per la multiplicació. Suposem que aquest, al que anomenarem e_I , no és de \mathbb{A}^* , ja que en cas contrari, com hem vist a l'apartat anterior, necessàriament és $I = \mathbb{A}$. Com que és el neutre per la multiplicació, en particular passa que $e_I^2 = e_I e_I = e_I$. Segueix que I està generat per e_I necessàriament, ja que tots els elements d'I en són múltiples per la condició d'identitat multiplicativa en l'anell I.

4.

Segons la definició d'anell producte, les operacions es fan com:

- $(a_1, b_1) +_{\mathbb{A}_1 \times \mathbb{A}_2} (a_2, b_2) := (a_1 +_{\mathbb{A}_1} a_2, b_1 +_{\mathbb{A}_2} b_2)$
- $(a_1, b_1) *_{\mathbb{A}_1 \times \mathbb{A}_2} (a_2, b_2) := (a_1 *_{\mathbb{A}_1} a_2, b_1 *_{\mathbb{A}_2} b_2)$

Seguint d'aquí, és bastant evident que els elements $(1_{\mathbb{A}_1}, 0_{\mathbb{A}_2})$ i $(0_{\mathbb{A}_1}, 1_{\mathbb{A}_2})$ són idempotents i ortogonals. Vegem-ho:

$$(1,0)^2 = (1*1,0*0) = (1,0),$$

$$(0,1)^2 = (0*0,1*1) = (0,1),$$

$$(1,0)*(0,1) = (1*0,0*1) = (0,0) \equiv 0_{\mathbb{A}_1 \times \mathbb{A}_2}.$$

Nota: també podríem haver vist la idempotència pensant que aquests elements representen la projecció sobre la primera i la segona component, respectivament.