

Prof. FELIX ORLANDO MARIA JOSEPH

DEPARMENT OF ELECTRICAL ENGINEERING

Force Control of an Index Finger Exoskeleton

Outline

- 1. Introduction
- 2. Kinematic Model of the Exoskeleton
- **3.** Force Control Strategy
- 4. Stability Analysis
- 5. Results
- 6. Limitations
- 7. Conclusion

Kinematic Model of the Index Finger Exoskeleton

(a) Serially connected 4-bars

(b) Proximal 4-bar

(c) Middle 4-bar

(d) Distal 4-bar

Kinematic Model of the Index Finger Exoskeleton

Kinematic Model of the Index Finger Exoskeleton (cont'd)

$$\begin{split} X_{IF} &= \cos(\delta_{M}) \times (L1_{M} + L4_{M} \times \cos(\sigma_{M}) + LC_{MI} \times \cos(\phi_{M} - \alpha_{MI})) - \sin(\delta_{M}) \times (L4_{M} \times \sin(\sigma_{M}) + LC_{MI} \times \sin(\phi_{M} - \alpha_{MI})) + \cos(\delta_{P}) \times (L1_{P} + L4_{P} \times \cos(\sigma_{P}) + LC_{PI} \times \cos(\phi_{P} - \alpha_{PI})) \\ &- \sin(\delta_{P}) \times (L4_{P} \times \sin(\sigma_{P}) + LC_{PI} \times \sin(\phi_{P} - \alpha_{PI})) + \cos(\delta_{D}) \times (L1_{D} + L4_{D} \times \cos(\sigma_{D}) + LC_{D} \times \cos(\phi_{D} - \alpha_{D})) \\ &+ LC_{D} \times \cos(\phi_{D} - \alpha_{D})) - \sin(\delta_{D}) \times (L4_{D} \times \sin(\sigma_{D}) + LC_{D} \times \sin(\phi_{D} - \alpha_{D})) \\ &Y_{IF} &= \sin(\delta_{M}) \times (L1_{M} + L4_{M} \times \cos(\sigma_{M}) + LC_{MI} \times \cos(\phi_{M} - \alpha_{MI})) + \cos(\delta_{M}) \times (L4_{M} \times \sin(\sigma_{M}) + LC_{MI} \times \sin(\phi_{M} - \alpha_{MI})) + \sin(\delta_{P}) \times (L1_{P} + L4_{P} \times \cos(\sigma_{P}) + LC_{PI} \times \cos(\phi_{P} - \alpha_{PI})) \\ &+ LC_{M} \times \sin(\phi_{M} - \alpha_{MI})) + \sin(\delta_{P}) \times (L1_{P} + L4_{P} \times \cos(\sigma_{P}) + LC_{PI} \times \cos(\phi_{P} - \alpha_{PI})) \\ &+ \cos(\delta_{P}) \times (L4_{P} \times \sin(\sigma_{P}) + LC_{PI} \times \sin(\phi_{P} - \alpha_{PI})) + \sin(\delta_{D}) \times (L1_{D} + L4_{D} \times \cos(\sigma_{D}) \\ &+ LC_{D} \times \cos(\phi_{D} - \alpha_{D})) + \cos(\delta_{D}) \times (L4_{D} \times \sin(\sigma_{D}) + LC_{D} \times \sin(\phi_{D} - \alpha_{D})) \end{split}$$

Force Control Strategy

To derive the force control law based on the Jacobian transpose method, ideal dynamics of index finger exoskeleton is assumed.

❖ Hence, the joint torque is given by

$$\tau = \dot{\theta}$$

***** Thus the update law

$$\dot{\theta} = J^T K E$$

❖ Force KE to regulated the tip of the exoskeleton towards the desired force.

Force Control Strategy

 $F_{Act} \longrightarrow$ Actual Force

 $K_E \longrightarrow Stiffness Matrix$

Stability Analysis

The Lyapunov function is taken as,

$$V(E) = \frac{1}{2}E^{T}KE$$
 $V(E) > 0 \ \forall E \neq 0$ $V(0) = 0$

By Differentiating,

$$\begin{split} \dot{V} &= E^T K \dot{E} \\ &= E^T K (\dot{F}_{des} - \dot{F}) \\ &= E^T K \dot{F}_{des} - E^T K K_E (\dot{X} - \dot{X}_{init}) \\ &= E^T K \dot{F}_{des} - E^T K K_E \dot{X} + E^T K K_E \dot{X}_{init} \end{split}$$

Where,

$$F = K_E(X - X_{init})$$
 and $\dot{F} = K_E(\dot{X} - \dot{X}_{init})$

Stability Analysis (cont'd)

Again,

$$\dot{V} = E^T K \dot{F}_{des} - E^T K K_E J(\theta) \dot{\theta} + E^T K K_E J(\theta) \dot{\theta}_{init}$$

Substituting the joint velocity control law

$$\dot{V} = E^T K \dot{F}_{des} - E^T K K_E J(\theta) J^T(\theta) K E + E^T K K_E J(\theta_{init}) J^T(\theta_{init}) K E$$

Assuming, $\dot{F}_{des} = 0$, $\dot{X}_{init} = 0$,

So, from the above assumption, $\dot{V} = -E^T K K_E J(\theta) J^T(\theta) K E$ < 0

Therefore, V > 0 and $\dot{V} < 0$

The error is converges to zero so, the system is asymptotically stable

Experiment

Force Sensor (FSR402) used in our Study

Experiment

Human Subject Grasping a Deformable Object

Results

Results

Time domain specification for simulation

S. No.	Parameters	Values
1.	Rise time (sec)	0.0037
2.	Peak time (sec)	0.0050
3.	Settling time (sec)	0.0121
4.	Maximum overshoot (%)	8.2053
5.	Peak value (N)	5.1263

Time domain specification for experiment

S. No.	Parameters	Values
1.	Rise time (sec)	0.0046
2.	Peak time (sec)	0.1531
3.	Settling time (sec)	0.9972
4.	Maximum overshoot (%)	16.1111
5.	Peak value (N)	3.3768

Limitations

Only static force analysis; Dynamics?

* Robustness?

Statistical analysis with rehabilitation paradigms?

Conclusion

❖ A primitive study on force analysis is performed on the index finger exoskeleton

❖ Future study on Robust control strategy – disturbance analysis.

Thank You!

