

Introducción a las Wavelets.Transformada Coseno

El objetivo de las transformaciones

Por qué usar wavelets.

Análisis Wavelet. Ejemplos de wavelets Transformada wavelet rápida

Transformada Coseno

El objetivo de las transformaciones

Transformaciones: Nos permiten detectar rasgos o características de la imagen con objeto de obtener información y/o mejorar el aspecto de la imagen

Análisis de Fourier

 Descompone la señal en sus componentes sinusoidal de diferentes frecuencias

Esto significa: Expresada una señal en el dominio del tiempo se cambia a una expresión en el dominio de las frecuencias

Análisis de Fourier . Ejemplo (Matlab)

Para ilustrar como la TF obtiene la similaridad entre una señal y sinusoides de diferentes frecuencias veamos el siguiente ejemplo en el que tenemos una señal consistente de 4 y 8Hertz y ruido aditivo.

```
rng(0,'twister'); %numero aleatorios
Fs = 128;
t = linspace(0,1,128);%valores en el tiempo
x = 2*cos(2*pi*4*t)+1.5*sin(2*pi*8*t)+randn(size(t));
xDFT = fft(x); %TF
Freq = 0:64;
Subplot(2,1,1);
plot(t,x); xlabel('Seconds'); ylabel('Amplitude');
Subplot(2,1,2);
plot(Freq,abs(xDFT(1:length(xDFT)/2+1)))
set(gca,'xtick',[4:4:64]);
xlabel('Hz'); ylabel('Magnitude');
```


Introducción a las Wavelets. Transformada Coseno

El objetivo de las transformaciones

Por qué usar wavelets.

Análisis Wavelet. Ejemplos de wavelets Transformada wavelet rápida Transformada Coseno

¿Qué problemas existen con Fourier?

- Cuando usamos la TF, perdemos información del tiempo o espacio:cuando o dónde un evento tuvo lugar ?. P.e en una imagen: ¿es un pixel determinado una arista?.
- FT no puede localizar tendencias, cambios abruptos, donde se inicia y termina un evento,etc
- Usa números complejos para su cálculo.

Función Kronneker

$$\psi_{k}(t) = \delta k(t) = \left\{ \frac{1, k=t}{0, k \neq t} \right\}$$

Es una función que se caracteriza por un completo conocimiento del tiempo (cuando ocurre un evento) pero un total desconocimiento de las frecuencias. Todas las frecuencias participan para representar la función

Transformada de Fourier Aventanada

Denis Gabor (1946) para poder analizar una pequeña sección de la señal, desarrolló una técnica basada en le TF aventanada: STFT (short time Fourier Transform).

STFT (o: Transformada Gabor)

- Esta transformada intenta expresar con una mayor precisión a la señal en ambos dominios: espacio o tiempo y el dominio de las frecuencias.
- La precisión viene dada por el tamaño de la ventana.
- El tamaño de la ventana es el mismo para todas las frecuencias.

Problemas de la Transformada Gabor:

Muchas señales necesitan una aproximación más flexible, esto quiere decir, debemos de tener la posibilidad de adaptar el tamaño de la ventana para ser más precisos en tiempo o frecuencia.

Introducción a las Wavelets.Transformada Coseno

El objetivo de las transformaciones

Por qué usar wavelets.

Análisis Wavelet. Ejemplos de wavelets

Transformada wavelet rápida

Transformada Coseno

¿En qué consiste el Análisis Wavelet?

Qué es una wavelet?

- Una wavelet es una señal con forma de onda de duración limitada (soporte finito) y con valor medio 0.
- Bien localizada en el tiempo con integral 0.
- Se puede desplazar a lo largo del tiempo
- Se puede escalar.

13

Transformada Wavelet Continua (CWT)

- Transformada de Fourier:
- Estos coeficientes,
 cuando se multiplican por
 la apropiada sinusoidal de
 frecuencia, produce la
 componente sinusoidal de
 la señal de entrada

Los coeficientes de Fourier se obtienen como la suma global de la señal *f(t)* en todos los instantes multiplicada por exponenciales complejas ∞

 $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$

Signal

Constituent sinusoids of different frequencies

Transformada Wavelet

- De igual manera el resultado de la CWT son coeficientes Wavelet .
- Multiplicando cada coeficiente por la wavelet a una escala y desplazamiento concreto da lugar a la wavelet de la señal original

Escala

- El análisis wavelet produce una visión<u>tiempo-escala</u> de la señal original
- Escalar lo tenemos que entender como estiramiento o compresión de la señal
- Factor Escala (a) para ondas seno

$$f(t) = \sin(t); a = 1$$

$$f(t) = \sin(2*t); a = \frac{1}{2}$$

$$f(t) = \sin(4*t); a = \frac{1}{4}$$

Escala

Factor Escala (a) tiene el mismo comportamiento con las wavelets

$$f(t) = \psi(t); a = 1$$

$$f(t)=\psi(t); a=\frac{1}{2}$$

$$f(t) = \psi(t); a = \frac{1}{4}$$

En resumen, la correspondencia entre escala y frecuencia es:

Baja escala a ⇒ Wavelet comprimida ⇒ Cambios rápido (detalles) ⇒ Alta frecuencia ω **Alta escala** a ⇒ Wavelet estirada ⇒ Cambios lentos (rasgos gruesos) ⇒ Baja frecuencia ω

Diferentes espacios de representación de una Señal:

Wavelet

Función 1D

$$\Psi_{a,b}(x) = \frac{1}{\sqrt{a}} \Psi(\frac{x-b}{a})$$

- a escala
- b –desplazamiento

Función 2D

$$\Psi_{a,b_x,b_y}(x,y) = \frac{1}{|a|} \Psi(\frac{x-b_x}{a}, \frac{y-b_y}{a})$$

CWT

Recordar: La CWT es la suma sobre todos los instantes de la señal, multiplicado por una versión escalada y desplazada de la función wavelet

Paso 1:

Tomar una Wavelet y compararla con una porción, desde el principio, de la señal de entrada.

Paso 2:

Calcular un número, C, que representa como de correlada esta la wavelet a esta sección de la señal original. Cuanto más grande sea C más similaridad habrá.

20

CWT

Paso 3: Desplazar la wavelet a la derecha y repetir los pasos 1 y 2, hasta atravesar la señal entera.

Paso 4: Escalar la wavelet y repetir los paso 1-3

Ejemplos de Wavelets. Transformada Dyaclic

 Para facilitar el cálculo se discretiza la señal continua.

$$a = 2^{j}$$

 Tenemos una matriz de valores discretos denominados enrejado dyadic.

$$b = k2^{j}$$

Las funciones wavelet tienen un soporte compacto.

Ejemplos funciones de

Wavelet

Haar

Daubechies

23

Properties of Daubechies wavelets

- I. Daubechies, *Comm. Pure Appl. Math.* <u>41</u> (1988) 909.
- Soporte Compacto
 - Número finito de parámetros de los filtros/ implementaciones rápidas
 - Compresión alta.
 - Las amplitudes de las escalas finas (detalle) son muy pequeñas en regiones donde la función es suave/sensible al reconocimiento de estructuras
- Los parámetros de los filtros de análisis y síntesis son los mismos
 - Rápida y reconstrucción exacta

Introducción a las Wavelets.Transformada Coseno

El objetivo de las transformaciones Por qué usar wavelets.

Análisis Wavelet. Ejemplos de wavelets

Transformada wavelet rápida

Transformada Coseno

Transformada Wavelet Rápida:

Mallat fue el primero en usar este esquema, usando un diseño de filtro denominado " codificador de subbandas de 2 canales"

Aproximaciones y Detalle

Aproximaciones: Componentes frecuenciales bajas de la señal.

Escala Alta

Detalle: Componentes alta de frecuencia.

Submuestreo

- El proceso tal cual produce el doble de datos: Con N muestras produce N coeficientes de aproximación y N coeficientes de detalle.
- Para corregirlo, submuestreamos el filtro de salida por dos, simplemente eliminando un coeficiente de cada dos.

Descomposición en diferente niveles

Arbol de descomposición wavelet: Iterando el proceso de descomposición, descomponemos la señal en muchas componente de menor resolución.

Orthogonality

 Para dos vectores

$$\langle v, w \rangle = \sum_{n} v_{n} w_{n}^{*} = 0$$

 Para dos funciones

$$\langle f(t), g(t) \rangle = \int_a^b f(t)g^*(t)dt = 0$$

Por qué es deseable una base ortogonal en las wavelets?

- El cálculo es más simple
- La precisión es mayor
- La multiplicación escalar con otra función base es cero

Reconstucción Wavelet

Síntesis o reconstrucción es el proceso por el que se unen todas las componentes wavelet

Sobremuestreo (o interpolación) :se inserta un cero cada dos coeficientes

Example

Un filtro paso-bajo (L') para la wavelet db2:

Los coeficientes del filtro son (usando el comando dbaux(2) de Matlab)

0.3415 0.5915 0.1585 -0.0915

Invertiendo el orden de este vector y multiplicando las posiciones impares por -1 obtenemos el filtro paso alto H':

-0.0915 -0.1585 0.5915 -0.3415

Trasnsformada Wavelet 2D:Localización de las bandas de frecuencias

LL ³ LH ³ HL ³ HH ³		LH ²	LH
HL			HH

Introducción a las Wavelets.Transformada Coseno

El objetivo de las transformaciones

Por qué usar wavelets.

Análisis Wavelet. Ejemplos de wavelets

Transformada wavelet rápida

Transformada Coseno

Transformada Discreta Coseno (DCT): Se usan para convertir los datos en una sumatoria de una serie de ondas cosenos oscilando a diferentes frecuencias. Esta transformada ha sido usada en uno de los más famosos compresores de imágenes: JPEG

Transformada Coseno Discreta 1D (DCT)

$$C(u) = a(u) \sum_{x=0}^{N-1} f(x) \cos\left[\frac{(2x+1)u\pi}{2N}\right]$$

$$a(u) = \begin{cases} \sqrt{\left(\frac{1}{N}\right)} & si \quad u = 0\\ \sqrt{\left(\frac{2}{N}\right)} & si \quad u = 1, 2, \dots, N-2 \end{cases}$$

Transformada Coseno Discreta Inversa 1D

$$f(x) = \sum_{u=0}^{N-1} a(u)C(u)\cos\left[\frac{(2x+1)u\pi}{2N}\right]$$

1-D Basis Functions N=16

Example: 1D signal

$$x[n] = \begin{cases} \frac{1}{5}, & \text{for } 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$$

TRANSFORMADA COSENO DISCRETA 2-D (DCT)

$$C(u,v) = a(u)a(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos\left[\frac{(2x+1)u\pi}{2N}\right] \cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} a(u)a(v)C(u,v)\cos\left[\frac{(2x+1)u\pi}{2N}\right]\cos\left[\frac{(2y+1)v\pi}{2N}\right]$$

$$u, v = 0, 1, \dots, N-1$$

Propiedades

La DCT es una transformada real

Compacta muy bien la energía de la señal de entrada en pocos coeficientes

Al igual que con la FFT existen algoritmos rápidos para obtener la transformada

Separable

2-D Funciones Base N=8

41

2D DCT

