DEEP LEARNING part I: perceptron

marco milanesio MScDSAI 2021-2022

neural networks

- recognize patterns
- human brain

artificial neural networks

- ANN represents connections
- · between inputs and outputs
- · each connection has a weight
- learning == adjusting these weights
- to predict the correct output
- applications:
 - classification
 - anomaly detection
 - speech/audio recognition
 - images
 - time series analysis

— . . .

general structure

perceptron

- ANN without hidden layers
- · only input and output
- applications:
 - decision making
 - logic gates

- . . .

how does it work?

- 2 steps
- Given:
 - -a set of input
 - a set of weights (random!!!)
- Feed-forward
 - compute output according to weights
- Back-propagation
 - calculate error between predicted and target
 - gradient descent to update the weights

· consider the following perceptron

data	target
0	0
1	2
2	4
3	6

output =
$$w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b$$

• b = 0 for simplicity

data	target	output w _i = 3	error
0	0	0	0
1	2	3	1
2	4	6	2
3	6	9	3

output =
$$w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

errors in 3 out of 4 prediction
 increase or decrease the weights

data	target	output w _i = 4	error
0	0	0	0
1	2	4	2
2	4	8	4
3	6	12	6

output =
$$w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

errors in 3 out of 4 prediction
 increase or <u>decrease</u> the weights

data	target	output w _i = 2	error
0	0	0	0
1	2	2	0
2	4	4	0
3	6	6	0

output =
$$w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

- Error minimized
- Global minimum

data	target	output w _i = 2	error
0	0	0	0
1	2	2	0
2	4	4	0
3	6	6	0

output =
$$w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

- Get the weights so that the error becomes minimum
- Once we figure out if we have to decrease or increase the weights we proceed in the chosen direction
- STOP if error increases again
- GRADIENT DESCENT

sigmoid function

• activation function in a ANN

ANN from scratch

- Implementation of a ANN
- From scratch
- Pure python
- ANN → OR GATE

X1	X2	Out
0	0	0
0	1	1
1	0	1
1	1	1

- init the weights at random
- calculate input and output (and error)


```
Input for o1 = w1x1 + w2x2 + w3b = 0.8

out = sigmoid(o1) = 1 / (1 + e^{-o1}) = 0.68997

MSE = SUM(1/2 * (target - output)<sup>2</sup>) = 0.0480593
```

- · Have to compute this for all inputs
- Compute global MSE
- Then, update the weights to minimize the error
- → GRADIENT DESCENT

Gradient descent

- iterative algorithm
- find optimal values for its parameters
- inputs = parameters + learning rate (lr)
- · Loop:
 - •start with initial values
 - •calculate costs
 - ·update values using an update function
 - •return min costs for cost function
- $\bullet X = X lr * f'(X)$
- where f'(X) = d/dX f(X)

Gradient descent

- Need to find the derivatives...
- Let's switch to the notebook
- [LIVE CODING]

pretty good!

Prediction for (1,0) --> Target value = 1

```
In [37]: point = np.array([1,0])
    res1 = np.dot(point, weights) + bias # step1
    res2 = sigmoid(res1) # step2
    print(res2)

[0.9793702]
```

Prediction for (1,1) --> Target value = 1

```
In [38]: point = np.array([1,1])
    res1 = np.dot(point, weights) + bias # step1
    res2 = sigmoid(res1) # step2
    print(res2)

[0.99998097]
```

Prediction for (0,0) --> Target value = 0

```
In [39]: point = np.array([0,0])
    res1 = np.dot(point, weights) + bias # step1
    res2 = sigmoid(res1) # step2
    print(res2)

[0.04112867]
```

- Why bias?
- Suppose we have input (0,0)
- The sum of the products will always be 0
- INDEPENDENTLY of the weights
- Then the result will always be 0
- INDEPENDENTLY of how long we train
- Bias affect the shape of the sigmoid function (Live coding)

THE END

- For now.
- Next time: pytorch