

Welcome to the course!

Mine Cetinkaya-Rundel Associate Professor of the Practice, Duke University

Rent in Manhattan

On a given day, twenty 1 BR apartments were randomly selected on Craigslist Manhattan from apartments listed as "by owner" (as opposed to by a rental agency).

Is the mean or the median a better measure of typical rent in Manhattan?

Bootstrapping techniques

- Assume the data is representative
- Pulling oneself up by one's bootstraps

Observed sample

sample median = \$2,350

Bootstrap population

Bootstraping scheme

- 1. Take a bootstrap sample a random sample taken with replacement from the original sample, of the same size as the original sample.
- 2. Calculate the bootstrap statistic a statistic such as mean, median, proportion, etc. computed on the bootstrap samples.
- 3. Repeat steps (1) and (2) many times to create a bootstrap distribution a distribution of bootstrap statistics.

Bootstraping scheme, in R

Bootstraping scheme, in R

Bootstraping scheme, in R

Constructing the bootstrap interval

Constructing the bootstrap interval

Let's practice!

Review: Percentile and standard error

methods

Mine Cetinkaya-Rundel Associate Professor of the Practice, Duke University

Bootstrap distribution

Percentile method

Percentile method

Standard error method

sample statistic \pm $t^*_{df=n-1}$ imes SE_{boot}

- df for t^* is n-1, where n is the sample size
- ullet SE_{boot} is the standard deviation of the bootstrap distribution distribution

Let's practice!

Re-centering a bootstrap distribution for hypothesis testing

Mine Cetinkaya-Rundel Associate Professor of the Practice, Duke University

Re-centering a bootstrap distribution for hypothesis testing

- Bootstrap distributions are by design centered at the observed sample statistic.
- However since in a hypothesis test we assume that H_0 is true, we shift the bootstrap distribution to be centered at the null value.
- p-value = The proportion of simulations that yield a sample statistic
 at least as favorable to the alternative hypothesis as the observed
 sample statistic.

Re-centering the bootstrap distribution - sketch

Let's practice!