BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI (RAJASTHAN)

Second Semester, 2015-2016 Course Handout (Part-II)

10/01/2016

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course Number : IS F243

Course Title : Database Systems & Applications

Instructor-in-charge : Dr. LAVIKA GOEL (<u>lavika.goel@pilani.bits-pilani.ac.in</u>) : Neetika Gupta (<u>neetika.gupta@pilani.bits-pilani.ac.in</u>) Rupal Bhargava (<u>rupal.bhargava@pilani.bits-pilani.ac.in</u>)

1. Scope and Objective of the course

The scope of the course is the basic concepts and implementation issues of a Database System. This course is intended to give students a solid background in databases, with a focus on relational database management systems. Topics include data modeling, database design theory, data definition and manipulation languages, storage and indexing techniques, query processing and optimization, concurrency control and crash recovery. In addition to these traditional topics, this course covers a sample of advanced database topics such as distributed databases and spatio-temporal databases. The emphasis is on learning the concepts through rigorous mathematical foundations and implementation details.

2. Text Book

Silberschatz A, Korth H F, & Sudarshan S, *Database System Concepts*, 6e, TMH, 2011.

3. Reference Books

- R1. Ramakrishna R. & Gehrke J, *Database Management Systems*, 3e, Mc-Graw Hill, 2003.
- R2. Hector G Molina, Jeffrey D.Ullman and Jennifer Widom, *Database Systems The Complete Book*, Pearson Education, 2002.
- R3. Elmarsi R, & Navathe S B, Fundamental of Database System, 5e, Pearson Education, 2008.

4. Lecture Plan

Lectur e#	Learning Objective	Topics	Chapter Reference
1-2	Introduction to Database Systems	 Objectives/Motivation Evolution of Database Systems Overview of a DBMS Advantages of a DBMS Recent Advances in Database Technology Database System Architecture 	Ch. 1 R1:Ch. 1 R2:Ch. 1 R3:Chs. 1-2
3-4	Data Modeling	Overview of Data Modeling Self Study Entity-Relationship (ER) Modeling Enhanced ER (EER) Modeling Network Data Model Hierarchical Data Model Case Study	Ch. 6, App. A, B R1:Ch. 2 R2:Ch 2 R3:Chs. 3-4, App. D, E
5-7	Understanding Relational Model	 Relational Model Concepts Relation as a Mathematical Model ER, EER to Relational model 	Chs. 2, 6 R1:Ch. 3 R2: Ch. 3 R3:Ch. 7
8-12	Database Design through Functional Dependencies & Normalization	 Functional Dependencies Normal Forms: 1NF,2NF,3NF, BCNF Criterion for Good Database Design Multi-valued dependencies: 4NF Join Dependencies-5NF, PJNF (self study) 	Ch. 7, App. C R1:Ch. 19 R2: Ch. 3 R3:Chs. 10-11

13-16	Query Languages	 Relational Algebra Relational Calculus Tuple Relational Calculus Domain Relational Calculus SQL (to be covered in Lab. Sessions) 	Chs. 2, 5 R1:Ch. 4 R2: Ch. 5 R3:Ch. 6 + Class Notes
17-23	Data Storage & Indexing	 File Organizations Organization of Records in Files RAID Indexing Structures Primary & Secondary Indexes Tree-structured Indexes Hash-based Indexes Multidimensional Indexes Bitmap Indexes 	Chs. 11-12 R1:Chs. 8-11 R2: Chs. 11-14 R3:Chs. 13-14
24-30	Query Processing & Optimization	 Introduction to Operator Evaluation Algorithms for Relational Operators Sorting Cost-based Optimization Heuristic-based Optimization View Materialization 	Chs. 13-14 R1:Chs. 12-15 R2: Chs. 15-16 R3:Ch. 15
31-33	Transaction management:	 Transaction Management Overview Serial Schedule & Serializability Conflict Serializability View Serializability Testing for Serializability Recoverability & Cascadeless Schedules 	Chs. 15 R1:Chs. 16 R2: Chs. 19 R3:Chs. 17
34-40	Concurrency Control & Crash Recovery	 Concurrency Control Locking Time-stamping Crash Recovery Log-Based Shadow Paging 	Chs. 16-17 R1: Chs. 17-18 R2: Chs. 17-18 R3: Chs. 18-19

5. Evaluation components

Component	Duration	Weightage(%)	Date & Time	Mode
Midsem	90 Mins.	25	16/3 9:00 -	Closed Book
			10:30 AM	
Online Lab. Test	90 Mins.	20	TBA	Open Book
Quiz		15	TBA	Closed Book
Comprehensive Exam	3 Hrs.	40	7/5 FN	Partly Open

6. Labs

A 2-hour, supervised lab, will be organized every week. The labs will focus on learning SQL and a suitable host language. There will be marks for each lab for active participation. One Lab test to be conducted in April.

7. Make-up Policy

Make-up will be granted strictly on **prior permission** only. Make-up on medical ground may be granted subject to submission of proper certificates from **Medical Officer** and concerned **Warden**. The responsibility of proving genuineness of Make-up reasons lies completely with the concerned student.

- 8. **Chamber Consultation Hours**: Monday 12 1 PM (Chamber: 6120-J)
- 9. **Notice**: All the notices of this course will be displayed on the **Nalanda LMS & CSIS notice boards** only.

Instructor in Charge CS F212