Variance reduction for stochastic gradient methods

Axel Böhm

December 3, 2021

- Introduction
- SAG
- SAGA
- 4 SVRG

The finite sum probem

Introduction 000000

A common Task in (supervised) machine learning:

$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{n} \sum_{i=1}^n \underbrace{f_i(x)}_{\text{loss for } i\text{-th sample}} + \underbrace{\psi(x)}_{\text{regularize}}$$

where the *i*-th sample is (a_i, v_i) .

Examples:

- \diamond linear regression: $f_i(x) = (a_i^T x y_i)^2$, and $\psi = 0$
- \diamond logistic regression: $f_i(x) = \log(1 + e^{-y_i a_i^T x})$, and $\psi = 0$ "sigmoid function" and logistic loss.
- \diamond Lasso: f_i as for linear regression but $\psi(x) = ||x||_1$
- \diamond SVM: $f_i(x) = \max\{0, 1 y_i a_i^T x\}$ and $\psi(x) = ||x||^2$

Gradient descent

Algorithm (batch) GD

- 1: **for** k = 1, 2, ... **do**
- 2: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
 - o gradient can be computed via

$$\nabla f(x) = \nabla \left(\sum_{i=1}^n f_i(x)\right) = \sum_{i=1}^n \nabla f_i(x_k)$$

- good convergence properties
- \diamond can be **expensive** if *n* is large!

Stochastic gradient descent

Algorithm SGD

- 1: for k = 1, 2, ... do
- 2: pick i_k uniform at random in [n]
- 3: $x_{k+1} = x_k \alpha_k \nabla f_{i_k}(x_k)$

We already noticed that:

- \diamond unbiased: $\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^n \mathbb{P}[i = i_k] \nabla f_i(x) = \sum_{i=1}^n \frac{1}{n} \nabla f_i(x)$
- \diamond large stepsizes fail to suppress variability in the stoch. gradients \to leads to oscillations
- decreasing stepsizes mitigate this problem but slows down convergence (too *conservative*)

Recall SGD (template)

000000

$$x_{k+1} = x_k - \alpha_k g_k$$

- \diamond g_k is an unbiased estimator of the true gradient $\nabla F(x_k)$
- \diamond convergence depends on variance $\mathbb{E}[\|g_k \nabla F(x_k)\|] \leq \sigma_{\sigma}$ (not strictly necessary)
- \diamond vanilla SGD uses $g_k = \nabla f_{i_k}(x_k)$ **issue:** σ_g is non-negligible even close to the solution
- \diamond **Q**: can we choose g_k in a different way to reduce variability?

Minibatching

Algorithm minibatch SGD

- 1: for k = 1, 2, ... do
- 2: pick I_k random subset of [n] with $|I_k| = b$
- 3: $x_{k+1} = x_k \alpha_k \sum_{i \in I_k} \nabla f_i(x_k)$
 - \diamond typically we make a (uniform) random choice $i_k \in [n] = \{1, \dots, n\}$ (or random reshuffling)
 - \diamond by increasing the size to a **random subset** $I_k \subset [n]$ of size $b \ll n$ we can
 - decrease variance
 - increase cost only moderately,
 - ▶ no improvement in the rate

A simple idea

Consider

- \diamond estimator X for parameter μ ($\mathbb{E}[X] = \mu$ and $\mathbb{V}[X] = \sigma^2$)
- want to keep unbiased but reduce variance
- \diamond find Y such that $\mathbb{E}[Y]=0$ but $\mathsf{Cov}(X,Y)$ is large and $\tilde{X}=X-Y$
- remains unbiased

$$\mathbb{V}[\tilde{X}] = \mathbb{V}[X] + \mathbb{V}[Y] - 2\operatorname{\mathsf{Cov}}[X,Y]$$

 \diamond can be much smaller than $\mathbb{V}[X]$ if X, Y are highly correlated

Stochastic average gradient (SAG), 2013

- \diamond maintain table containing gradients g_i of f_i
- \diamond at step $k = 1, 2, \ldots$ pick random $i_k \in [n]$ and

$$g_i^k := \nabla f_{i_k}(x^k)$$

set $g_i^k = g_i^{k-1}$ for all $i \neq i_k$ (remain the same)

Update

$$x^{k+1} = x^k - \alpha_k \frac{1}{n} \sum_{i=1}^n g_i^k$$

- assuming gradients do not change too much along trajectory
- gradient estimator no longer unbiased
- Isn't it expensive to average these gradients?

$$x^{k+1} = x^k - u\alpha_k \left(\frac{g_{i_k}^k}{n} - \frac{g_{i_k}^{k-1}}{n} + \underbrace{\frac{1}{n} \sum_{i=1}^n g_i^k}_{i \in \mathbb{N}} \right)$$

Introduction

Gradient estimator in SAG:

$$x^{k+1} = x^k - \alpha_k \frac{1}{n} \left(\underbrace{g_{i_k}^k}_{X} - \underbrace{g_{i_k}^{k-1} - \sum_{i=1}^n g_i^k}_{Y} \right)$$

- \diamond While $\mathbb{E}[X] = \nabla f(x^k)$, but $\mathbb{E}[Y] \neq 0 \rightarrow$ biased estimator
- $\diamond X$ and Y are correlated as $X Y \rightarrow 0$ as
- $\diamond x^k$ and x_{k-1} both converge to x^* and
- \diamond the last term converges to $\nabla f(x^*) = 0$

Convergence

As always, initialization plays a role: $D^2 := ||x^0 - x^*||^2$.

SAG:
$$\frac{n}{k}(f(x^0) - f^*) + \frac{L}{k}D^2$$
GD:
$$\frac{L}{k}D^2$$
SGD:
$$\frac{L}{\sqrt{k}}D^2$$

- Achieves linear convergence in the strongly convex setting.
- proofs are difficult (and computer-aided)

Same gradient oracle cost as SGD, but same converge rate as GD.

Very similar:

- \diamond maintain table containing gradients g_i of f_i
- \diamond at step $k=1,2,\ldots$ pick random $i_k\in[n]$ and

$$g_i^k := \nabla f_{i_k}(x^k)$$

set $g_i^k = g_i^{k-1}$ for all $i \neq i_k$ (remain the same)

Update

$$x^{k+1} = x^k - u\alpha_k \left(g_{i_k}^k - g_{i_k}^{k-1} + \frac{1}{n} \sum_{i=1}^n g_i^k \right)$$

estimator now unbiased!

For Comparison

Introduction

SAGA gradient estimate:

$$g_{i_k}^k - g_{i_k}^{k-1} + \frac{1}{n} \sum_{i=1}^n g_i^k$$

SAGA gradient estimate:

$$\frac{1}{n}g_{i_k}^k - \frac{1}{n}g_{i_k}^{k-1} + \frac{1}{n}\sum_{i=1}^n g_i^k$$

Stochastic Variance Reduced Gradient (SVRG), 2013

Algorithm SVRG

```
1: for k = 1, 2, ... do
        Set x^1 = \tilde{x} = \tilde{x}^k
2:
        Compute \tilde{\mu} := \nabla f(\tilde{x})
                                                                            //update snapshot
3:
        for l = 1, 2, ..., m do
                                                                   //m iterations per epoch
4:
             pick i_l uniform at random in [n]
5:
             Set x^{l+1} = x^l - \alpha(\nabla f_i(x^l) - \nabla f_i(\tilde{x}) + \tilde{\mu})
6:
        z^{k+1} - z^{m+1}
7:
```

- Does **not** need to **store** full table of gradients.
- requires batch gradient computation every epoch
- \diamond per iteration cost is comparable to that of SGD if m > nconvergence rates similar to SAGA, but simpler analysis.

SVRG

key idea: by storing old point we can

$$\underbrace{\nabla f_{i_k}(x^k) - \nabla f_{i_k}(x^{\text{old}})}_{\rightarrow 0 \text{ if } x \approx x^{\text{old}}} + \underbrace{\nabla f(x^{\text{old}})}_{\rightarrow 0 \text{ if } x^{\text{old}}}$$

- \diamond is an unbiased estimate of $\nabla f(x^k)$
- \diamond converges to 0 (meaning reduced variability) if $x^k \approx x^{\mathsf{old}} \approx x^*$

SVRG: Theorem

Theorem

Assume each f_i is convex and L-smooth, and F is μ -strongly convex.

Choose m large enough s.t. $\rho = \frac{1}{\mu\alpha(1-2L\alpha)m} + \frac{2L\alpha}{1-2L\alpha} < 1$, then

$$\mathbb{E}[F(x_s^{old}) - F(x^*)] \le \rho^s [F(x_0^{old}) - F(x^*)]$$

Computational cost:

- \diamond per epoch: (m+n)
- \diamond complexity: $(n + \kappa) \log(1/\epsilon)$

SVRG: Convergence Proof

Denote $g_s^k = \nabla f_{i_l}(x_s^k) - \nabla f_{i_l}(x_s^{old}) + \nabla F(x_s^{old})$. Conditioning on everythong prior to x_s^{k+1} we get

$$\mathbb{E}[\|x_s^{k+1} - x^*\|^2] = \mathbb{E}[\|x_s^k - \alpha g_s^k - x^*\|^2]$$

$$= \|x_s^k - x^*\|^2 - 2\alpha (x_s^k - x^*)^T \mathbb{E}[g_s^t] + \alpha^2 \mathbb{E}[\|g_s^k\|^2]$$

$$= \|x_s^k - x^*\|^2 - 2\alpha (x_s^k - x^*)^T \nabla F(x_s^t) + \alpha^2 \mathbb{E}[\|g_s^k\|^2]$$

$$\leq \|x_s^k - x^*\|^2 - 2\alpha (F(x_s^k) - F(x^*)) + \alpha^2 \mathbb{E}[\|g_s^k\|^2]$$

 \diamond **key step**: control $\mathbb{E}[\|g_s^k\|^2]$

Comparison

$$\begin{array}{c|cccc} \mathsf{SVRG} & \mathsf{GD} & \mathsf{SGD} \\ \hline (n+\kappa)\log(1/\epsilon) & n\kappa\log(1/\epsilon) & \kappa^2/\epsilon \end{array}$$