Print your name and sign the honor code.

Name _____

Honor code:

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

1. A communication system transmits four (equally likely) bits using one of 16 signals in 7 dimensions. The first 8 signals are

$$s_0 = A(+1,+1,+1,+1,+1,+1,+1)$$

$$s_1 = A(-1,+1,+1,+1,-1,+1,-1)$$

$$s_2 = A(-1,-1,+1,+1,+1,-1,+1)$$

$$s_3 = A(+1,-1,-1,+1,+1,+1,-1)$$

$$s_4 = A(-1,+1,-1,-1,+1,+1,+1)$$

$$s_5 = A(+1,-1,+1,-1,-1,+1,+1)$$

$$s_6 = A(+1,+1,-1,+1,-1,+1,-1,+1)$$

$$s_7 = A(+1,+1,+1,-1,+1,-1,+1,-1,-1)$$

The last 8 signals (s_8, \dots, s_{15}) are the negatives of the first 8 signals. That is, $s_8 = -s_0, \dots$ $s_{15} = -s_7$. The signal vectors are used with 7 orthonomal waveforms $\varphi_0(t), \dots, \varphi_6(t)$ to generate a transmitted signal (in the usual way). The received signal is the transmitted signal with additive white Gaussian noise with power spectral density $N_0/2$.

- (a) Determine the average energy of the 16 signals in terms of A.
- (b) Determine the relation between the energy per bit E_h and the amplitude A.
- (c) Determine the squared Euclidean distance between s_0 and every other signal.
- (d) Describe the optimal decision rule to minimize the probability of choosing the wrong signal.
- (e) Determine the union bound on the probability of making an error given signal s_0 is transmitted. Express your answer in terms of E_b/N_0 (not A).

2. Four bits of information are communicated via a signal with one of 16 amplitudes and phases. The receiver output is a pair of random variables (X,Y). Let H_i , i = 0, 1, ..., 15 be the event that a certain sequence of bits is sent as follows

Hypothesis	b_0	b_1	b_2	b_3	$\mu_c(i)$	$\mu_s(i)$					
H_0	0	0	0	0	-3	-3					
H_1	0	0	0	1	-3	-1			$\bigwedge Y$		
H_2	0	0	1	0	-3	3	• n	• n	13	•••	•n
H_3	0	0	1	1	-3	1	$^{\bullet}R_2$	${}^{\bullet}R_6$		${}^{\bullet}R_{14}$	${}^{\bullet}R_{10}$
H_4	0	1	0	0	-1	-3 —			2		
H_5	0	1	0	1	-1	-1	• n	• 5	1	_	• 5
H_6	0	1	1	0	-1	3	$^{\bullet}R_3$	${}^{ullet}R_7$	1	R_{15}	${}^{\bullet}R_{11}$
H_7	0	1	1	1	-1	1 -	+		_		
H_8	1	0	0	0	3	-3	-3 -	$\begin{array}{cc} -1 & \bullet \\ & \bullet R_5 \end{array}$	1-1	1 2	3 X
H_9	1	0	0	1	3	-1	${}^{\bullet}R_1$	R_5	-1	${}^{\bullet}R_{13}$	${}^{ullet}R_9$
H_{10}	1	0	1	0	3	3 —			-2		
H_{11}	1	0	1	1	3	1		•	2	_	
H_{12}	1	1	0	0	1	-3	$-R_0$	R_4	I-3	${}^{\bullet}R_{12}$	${}^{ullet}R_8$
H_{13}	1	1	0	1	1	-1			ı	I	
H_{14}	1	1	1	0	1	3					
H_{15}	1	1	1	1	1	1					

Assuming hypothesis i is true the output of the receiver is

$$X = \mu_c(i) + N_c, \quad Y = \mu_s(i) + N_s$$

where N_c and N_s are independent, zero mean Gaussian random variables with variance σ^2 . The receiver decides hypothesis H_i is true if $(X,Y) \in R_i$ where R_i is shown above.

Determine an expression (involving the Q function) for the conditional probability that the receiver decides that hypothesis H_{15} occurred given H_0 is actually occurred. That is, find $P\{(X,Y) \in R_{15}|H_0\}$. Your answer should be in terms of the Q function and σ .

- 3. A communication system transmits a signal using a power of 1mWatt. The rate of the communication is 100Mbps. The gain of the transmit and receive antennas is 0dB. The signal propagates via free space a distance of 100 meters. The frequency used is 2.4GHz. The noise level at the receiver is $N_0 = 4 \times 10^{-21}$ Watts/Hz.
 - (a) What is the signal-to-noise ratio, E_b/N_0 , is at the receiver
 - (b) If 16QAM is the modulation with rectangular pulses what null-to-null bandwidth is required.
 - (c) For the same data rate and bandwidth found in part (b) what is the smallest possible signal-to-noise ratio, E_b/N_0 in dB for any communication system that is reliable.

4. A communication system transmits a bit of information $b \in \{+1, -1\}$ by transmitting one of two signals and by using two different frequencies.

$$b = +1, \Rightarrow s_0(t) = +[\varphi_0(t) + \varphi_1(t)]$$

 $b = -1, \Rightarrow s_1(t) = -[\varphi_0(t) + \varphi_1(t)]$

where

$$\varphi_i(t) = \sqrt{2/T}\cos(2\pi f_i t) p_T(t), \ i = 0, 1$$

and f_0, f_1, T are such that $\varphi_0(t)$ and $\varphi_1(t)$ are orthonormal. The transmitted signal can also be expressed as

$$s_i(t) = b[\varphi_0(t) + \varphi_1(t)], i = 0, 1$$

where b = +1 for i = 0 and b = -1 for i = 1. The channel attenuates different frequencies by different amounts. The received signal is

$$r(t) = \alpha_0 b \varphi_0(t) + \alpha_1 b \varphi_1(t) + n(t)$$

where n(t) is white Gaussian noise with power spectral density $N_0/2$. The receiver knows the values of α_0 and α_1 .

- (a) Determine the optimum receiver for deciding if the data bit is b = +1 or b = -1.
- (b) Determine the error probability of the optimum receiver. This should depend on α_0 and α_1 , and N_0 .