Semestralní projekt MI-PAR 2014/2015:

Úloha DOM: i-dominující množina grafu

Tomáš Nesrovnal Adam Léhar

magisterské studium, FIT ČVUT, Kolejní 550/2, 160~00 Praha 6 December 1, 2014

1 Definice problému a popis sekvenčního algoritmu

Naším úkolem bylo nalezení minimální i-dominující množiny W grafu G.

I-dominující množina je definována takto: Je-li dáno přirozené číslo i \geq 0 a uzel u grafu G, pak i-okolí uzlu u je množina všech uzlů G ve vzdálenosti nejvýše i od u, včetně uzlu u samotného. Pak i-dominující množina grafu G je každá množina uzlů takových, že sjednocení jejich i-okolí obsahuje všechny uzly G.

Vstupem algoritmu je graf G reprezentován maticí sousednosti a hodnota i-dominance. Výstupem je počet uzlů minimální i-dominující množiny W a jejich výpis. Jednička reprezentuje uzel obsažený v množině W, nula uzel neobsažený v množině W.

Stavový prostor úlohy reprezentuje m-ární strom, kde m je počet uzlů grafu G. V hloubce k obsahuje každý uzel stromu částečné řešení obsahující k uzlů prohledávaného grafu G. Prohledávání stavového prostoru řešíme jako DFS (prohledávání grafu do hloubky). Pro urychlení výpočtu používáme metodu větví a řezů. M-ární strom reprezentující stavový prostor prořezáváme podle doposud nejlepšího nalezeného řešení. Pokud je hloubka uzlu ve stromu větší nebo rovna než počet uzlů grafu v doposud nejlepším nalezeném řešení, tak tuto větev již dále neprohledáváme protože již nemůže obsahovat zlepšující řešení. Pokud nalezneme řešení obsahující počet uzlů rovných těsné horní mezi problému, můžeme výpočet ihned ukončit. Máme zaručeno, že lepší řešení již neexistuje. Těsná horní mez je rovna $\lceil \frac{prumer(G)}{2i+1} \rceil$, kde G je graf a i je hodnota i-dominance.

2 Popis paralelního algoritmu a jeho implementace v MPI

Po inicializaci master procesor vygeneruje syny kořenu stromu stavového řešení a rozešle práci ostatním procesorům. Pote každý procesor vstoupí do hlavni smyčky, která se vykonává, dokud nedojde k ukončení výpočtu.

V hlavni smyčce vybírají prvky ze zásobníku a testuje se, zdali jsou, nebo nejsou řešením. Po M zpracovaných prvcích, nebo pokud nejsou prvky na zásobníku program přijme zprávy MPI a pote vyšle zprávy MPI. Nasleduje popis zprav.

Pokud procesor nalezne lepší řešení, posle ho ostatním.

Pokud procesor nemá žádnou další práci, pta se na ni postupně ostatních procesorů. Když odešle požadavek, nedělá nic jiného, než že čeká na odpověď a reaguje na přijaté zprávy. Pokud procesor dostane zadost o práci, tak pokud má dostatečný počet prvku na zásobníku, práci mu posle. Práce se posílá ve více zprávách o velikosti 950kB.

Pokud master procesoru dojde práce, kromě žádosti o práci také vyšle peška. Pešek je čistý a špinavý. Pokud nějaký procesor poslal práci procesoru s menším rankem, je špinavý. Když procesor dostane špinavého peška, pošle ho dál jako špinavého. Po odeslání peška se očistí. Když se master procesoru vrátí čistý pešek, rozešle zprávu o ukončení výpočtu. Pokud nemaster procesor dostane zprávu o ukončení výpočtu, odpoví bud ze zprávu přijal, nebo posle řešení s nejmenším počtem uzlů, pokud to byl on, co ho vypočítal.

3 Naměřené výsledky a vyhodnocení

Pro měření jsem si vygenerovali 3 různé grafy. Graf 1 obsahuje 200 uzlů, průměrný stupeň uzlu je 4 a i-dominance je také 4. Graf 2 obsahuje 32 uzlů, průměrný stupeň uzlu je 6 a i-dominance je 1. Graf 3 obsahuje 50 uzlů, průměrný stupeň uzlu je 3 a i-dominance je také 2.

Zrychlení na všech grafech jsme naměřili sublineární. Tento výsledek jsem očekávali, protože stejná práce je rozdělena mezi více procesorů a dále přibila komunikační režie mezi procesory. Pro graf 1 a graf 2 s 32 respektive 50 uzly dosáhl výpočet na 32 procesorech zrychlení téměř 15x. Podle grafu lze předpokládá, že zrychlení by se pro více procesorů dále zvětšovalo. Pro graf s 200 uzly na komunikační síti InfiniBand je nejlepší zrychlení pro 25

Figure 1: Porovnání doby výpočtu s komunikací přes InfiniBand

procesorů. Pak je už komunikační režie tak náročná, že dochází k poklesu zrychlení.

Pro srovnání jsem naměřili výsledky na stejných grafech také pro komunikaci přes Ethernet. Rozdíl je nejvíce patrný na grafu 1 s 200 uzly. Na rozdíl od InfiniBandu nedochází na Ethernetu k poklesu zrychlení pro více procesorů. Pro 32 procesorů jsme dosáhli zrychlení téměř 8x. Také pro další grafy jsme dosáhli lepších výsledků při komunikaci přes Ethernet. Pro graf 2 s 32 uzly je zrychlení téměř ideální, pro 32 procesorů je přibližně 31x.

4 Závěr

Cílem tohoto projektu bylo vyzkoušet si programování počítače s distribuovanou pamětí za pomoci knihovny MPI. Tento cíl byl úspěšně splněn a výsledkem je funkční program na výpočet minimální i-dominující množiny grafu.

Naměřené výsledky odpovídají naším předpokladům. Překvapením trochu bylo, že komunikace přes Ethernet je ve většině případů rychlejší než komunikace přes InfiniBand, která je pro takovéto systémy preferovaná.

Pro grafy s velmi hodně uzly nejsou výsledky příliš uspokojivé. Dochází

Table 1: Naměřené hodnoty pro graf 1: n=200, k=4, i=4

	InfiniBand				Ethernet				
n	T(n,p) $C(n,p)$ $S(n,p)$ $E(n,p)$			T(n,p)					
р 1	279.39	$\frac{C(n,p)}{279.39}$	$\frac{S(n,p)}{1.000}$	$\frac{L(n,p)}{1.000}$	279.39	$\frac{C(n,p)}{279.39}$	$\frac{S(n,p)}{1.000}$	$\frac{E(n,p)}{1.000}$	
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	155.42	310.84	1.798	0.899	154.94	309.87	1.803	0.902	
$\frac{2}{3}$	117.35	352.04	2.381	0.399 0.794	119.52	358.57	2.338	0.902 0.779	
$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	108.20	432.81	2.581 2.582	0.794 0.646	94.00	376.01	2.972	0.743	
5	86.22	432.81	3.241	0.648	87.36	436.78	3.198	0.743	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	85.89	515.34	3.241 3.253	0.542	78.93	473.58	3.198 3.540	0.540 0.590	
7	73.82	516.75	3.785	0.542 0.541	85.65	473.38 599.58	3.262	0.390 0.466	
8	58.90	471.19	4.744	0.593	67.80	542.41	4.121	0.515	
9	86.97	782.75	3.212	0.357	69.61	626.47	4.014	0.446	
10	52.38	523.79	5.334	0.533	56.27	562.69	4.965	0.497	
11	92.88	1021.72	3.008	0.273	60.74	668.12	4.600	0.418	
12	44.61	535.27	6.263	0.522	68.27	819.24	4.092	0.341	
13	84.37	1096.78	3.312	0.255	58.26	757.35	4.796	0.369	
14	92.22	1291.08	3.030	0.216	60.91	852.70	4.587	0.328	
15	60.29	904.40	4.634	0.309	47.80	716.97	5.845	0.390	
16	60.91	974.51	4.587	0.287	47.41	758.62	5.893	0.368	
17	72.92	1239.65	3.831	0.225	46.09	783.46	6.062	0.357	
18	42.92	772.52	6.510	0.362	47.49	854.78	5.883	0.327	
19	59.66	1133.53	4.683	0.246	45.67	867.74	6.118	0.322	
20	56.78	1135.60	4.921	0.246	44.35	887.06	6.299	0.315	
21	83.38	1750.93	3.351	0.160	42.45	891.48	6.581	0.313	
22	52.34	1151.53	5.338	0.243	43.32	953.13	6.449	0.293	
23	53.02	1219.38	5.270	0.229	42.45	976.46	6.581	0.286	
24	52.55	1261.24	5.316	0.222	41.57	997.71	6.721	0.280	
25	53.19	1329.69	5.253	0.210	44.19	1104.64	6.323	0.253	
26	264.06	6865.45	1.058	0.041	40.32	1048.43	6.929	0.266	
27	82.18	2218.90	3.400	0.126	36.73	991.62	7.607	0.282	
28	255.99	7167.68	1.091	0.039	38.37	1074.36	7.281	0.260	
29	260.28	7548.19	1.073	0.037	36.48	1058.04	7.658	0.264	
30	274.21	8226.45	1.019	0.034	37.77	1133.14	7.397	0.247	
31	269.25	8346.83	1.038	0.033	36.16	1120.95	7.727	0.249	
32	265.02	8480.53	1.054	0.033	35.94	1150.12	7.774	0.243	

Table 2: Naměřené hodnoty pro graf 2: n=32, k=6, i=1

	InfiniBand								
-				Ethernet					
p	T(n,p)	C(n,p)	S(n,p)	E(n,p)	T(n,p)	C(n,p)	S(n,p)	E(n,p)	
1	274.09	274.09	1.000	1.000	274.09	274.09	1.000	1.000	
2	296.87	593.73	0.923	0.462	141.90	283.81	1.932	0.966	
3	212.40	637.21	1.290	0.430	100.03	300.09	2.740	0.913	
4	144.37	577.47	1.899	0.475	68.74	274.96	3.987	0.997	
5	116.10	580.49	2.361	0.472	57.59	287.95	4.759	0.952	
6	95.85	575.12	2.859	0.477	46.79	280.76	5.858	0.976	
7	82.99	580.90	3.303	0.472	40.19	281.32	6.820	0.974	
8	74.31	594.46	3.689	0.461	35.02	280.15	7.827	0.978	
9	65.53	589.75	4.183	0.465	30.95	278.54	8.856	0.984	
10	59.55	595.50	4.603	0.460	28.06	280.59	9.769	0.977	
11	54.01	594.16	5.074	0.461	26.34	289.72	10.407	0.946	
12	50.36	604.29	5.443	0.454	23.70	284.36	11.567	0.964	
13	57.89	752.54	4.735	0.364	21.69	281.95	12.638	0.972	
14	54.26	759.57	5.052	0.361	20.13	281.80	13.617	0.973	
15	52.56	788.36	5.215	0.348	19.05	285.72	14.389	0.959	
16	39.30	628.82	6.974	0.436	18.11	289.80	15.132	0.946	
17	36.12	613.98	7.589	0.446	16.73	284.43	16.382	0.964	
18	35.27	634.79	7.772	0.432	15.88	285.92	17.255	0.959	
19	33.77	641.63	8.116	0.427	15.10	286.96	18.148	0.955	
20	32.60	652.09	8.407	0.420	14.35	286.92	19.105	0.955	
21	28.67	602.09	9.560	0.455	13.81	289.93	19.852	0.945	
22	30.14	663.05	9.094	0.413	13.21	290.64	20.747	0.943	
23	38.03	874.71	7.207	0.313	12.90	296.61	21.253	0.924	
24	28.35	680.36	9.669	0.403	12.05	289.14	22.751	0.948	
25	36.01	900.13	7.613	0.305	11.94	298.56	22.951	0.918	
26	26.03	676.77	10.530	0.405	11.40	296.46	24.038	0.925	
27	24.39	658.52	11.238	0.416	10.72	289.42	25.570	0.947	
28	24.05	673.50	11.395	0.407	10.45	292.47	26.241	0.937	
29	22.43	650.57	12.218	0.421	10.25	297.18	26.747	0.922	
30	21.13	633.87	12.972	0.432	9.98	299.37	27.467	0.916	
31	19.88	616.16	13.790	0.445	9.62	298.29	28.485	0.919	
32	18.99	607.71	14.433	0.451	8.96	286.61	30.602	0.956	
				-	_	- '			

Table 3: Naměřené hodnoty pro graf 3: n=50, k=3, i=2

	InfiniBand				Ethernet				
p	T(n,p)	C(n,p)	$\frac{S_{\rm and}}{S_{\rm (n,p)}}$	E(n,p)	T(n,p)	C(n,p)	$\frac{S(n,p)}{S(n,p)}$	E(n,p)	
1	253.28	$\frac{253.28}{253.28}$	$\frac{5(n,p)}{1.000}$	$\frac{2(n,p)}{1.000}$	253.28	$\frac{253.28}{253.28}$	$\frac{5(n,p)}{1.000}$	$\frac{2(n,p)}{1.000}$	
$\frac{1}{2}$	178.78	357.56	1.417	0.708	121.49	242.99	2.085	1.042	
$\frac{2}{3}$	119.63	358.88	2.117	0.706	82.27	246.81	3.079	1.026	
$\frac{3}{4}$	90.40	361.58	2.802	0.700	61.34	245.37	4.129	1.032	
5	73.02	365.09	3.469	0.694	49.69	248.43	5.098	1.020	
6	60.67	364.01	4.175	0.696	41.26	247.58	6.138	1.023	
7	52.10	364.70	4.861	0.694	35.22	246.52	7.192	1.027	
8	45.62	364.93	5.552	0.694	118.03	944.22	2.146	0.268	
9	40.53	364.74	6.250	0.694	27.40	246.58	9.245	1.027	
10	36.66	366.57	6.909	0.691	24.77	247.70	10.225	1.023	
11	33.48	368.31	7.565	0.688	22.74	250.18	11.136	1.012	
12	30.49	365.82	8.308	0.692	20.76	249.08	12.202	1.017	
13	28.68	372.85	8.831	0.679	19.29	250.81	13.128	1.010	
14	26.18	366.52	9.675	0.691	17.98	251.67	14.090	1.006	
15	25.13	376.94	10.079	0.672	60.78	911.67	4.167	0.278	
16	29.20	467.19	8.674	0.542	19.56	312.99	12.948	0.809	
17	27.64	469.88	9.164	0.539	18.84	320.25	13.445	0.791	
18	73.49	1322.77	3.447	0.191	18.18	327.27	13.931	0.774	
19	66.12	1256.30	3.831	0.202	17.51	332.65	14.466	0.761	
20	66.48	1329.61	3.810	0.190	16.47	329.36	15.380	0.769	
21	23.46	492.62	10.797	0.514	15.96	335.06	15.875	0.756	
22	22.86	503.01	11.078	0.504	15.55	342.11	16.287	0.740	
23	70.13	1613.00	3.612	0.157	14.92	343.22	16.973	0.738	
24	42.20	1012.79	6.002	0.250	14.53	348.62	17.436	0.727	
25	21.32	533.12	11.877	0.475	14.23	355.78	17.798	0.712	
26	38.35	997.13	6.604	0.254	13.85	360.11	18.287	0.703	
27	20.70	559.01	12.233	0.453	13.47	363.72	18.801	0.696	
28	19.69	551.41	12.861	0.459	13.38	374.52	18.936	0.676	
29	19.65	569.89	12.889	0.444	12.79	370.98	19.799	0.683	
30	19.50	584.97	12.989	0.433	38.15	1144.44	6.639	0.221	
31	19.22	595.75	13.179	0.425	12.40	384.45	20.423	0.659	
32	18.40	588.85	13.764	0.430	12.33	394.47	20.547	0.642	

Figure 2: Porovnání zrychlení s komunikací přes InfiniBand

Figure 3: Porovnání doby výpočtu s komunikací přes Ethernet

Figure 4: Porovnání zrychlení s komunikací přes Ethernet

Figure 5: Porovnání zrychlení s různými komunikačními sítěmi pro graf 1

Figure 6: Porovnání zrychlení s různými komunikačními sítěmi pro graf 2

Figure 7: Porovnání zrychlení s různými komunikačními sítěmi pro graf 3

zde k problémům s návrhem posílání práce ostatním procesorům. Zvolili jsme posílání pouze malých zpráv do 1kB, abychom mohli využívat blokující variantu zpráv. Při posílání velkého množství práce pak dochází k rozdělení zásobníku do více zpráv a pravděpodobně také z zahlcení komunikační sítě. S tímto fakte si lépe poradí Ethernet než InfiniBand.

Ještě lepších výsledků by šlo pravděpodobně dosáhnout předěláním posílání práce do jedné velké zprávy a tím pádem využití neblokujících variant zpráv.