LAB 04

PH142 Fall 2025

Announcements

- Lab04: due 9/19 at 11:59pm
- Quiz03: due 9/19 at 11:59pm
- Data Project Part I: due 9/26 at 11:59pm

*Your group must meet with your assigned GSI before the due date.

Next week in lab: Midterm I Review Session

Two-Way Tables

Exposure group	Disease	No disease	Row total
Exposed	A	В	A+B
Not Exposed	\mathbf{C}	D	C+D
Column total	A+C	B+D	A+B+C+D

Marginal Distribution: The distribution of a single categorical variable in the entire population

- Use the totals in the margins of the table to calculate proportions
- Percent of Exposed individuals = (A+B)/(A+B+C+D)
- Percent of Unexposed individuals = (C+D) / (A+B+C+D)

Conditional Distribution: The distribution of one categorical variable within the other

- Use a single row or column to calculate proportions
- Percent of Diseased given exposure = A/(A+B)Percent of Exposed given disease = A/(A+C)

Sensitivity, Specificity, PPV, NPV

	Disorder	No Disorder
Positive Test Result	True Positive (TP)	False Positive (FP)
Negative Test Result	False Negative (FN)	True Negative (TN)

Sensitivity = TP/(TP+FN) Specificity = TN/(TN+FP) PPV = TP/(TP+FP) NPV = TN/(FN+TN)

Observation vs Experimentation

A study is observational if the researcher **observes** what happens and does not control who is treated or exposed.

Does not control for confounding

A study is experimental if the investigator is **experimenting** (or intervening) by controlling who is treated or exposed.

 In an experimental study, the exposure is assigned by a randomization mechanism that is controlled by the investigator

Internal and External Validity

Internal Validity

The extent to which the observed results represent the truth in the population we are studying and, thus, are not due to methodological errors

External Validity

- The extent to which you can generalize the findings of the study to other situations, people, settings, and measures
- Representativeness/generalizability

Population and Sampling

Population of Interest

- <u>Target Population</u> entire group of individuals about which we want estimates to apply *problem in PPDAC*
- <u>Study Population</u> part of the population which we can select individuals & collect information to draw conclusions about the entire population
- <u>Study Sample</u> individuals who have been sampled from the study population; the group that you collect data from

Simple Random Sampling

Simple Random Sample (SRS): A sample chosen by chance, where each individual in the dataset has an equal chance of being selected

Functions in R:

- slice_sample(n = 100), selects n rows at random
- slice_sample(prop = 0.05), selects a random proportion of rows
- set.seed(#), makes results reproducible by taking the same sample

Example: CS_100 <- CS_data %>% slice_sample(n = 100)

LAB 04 Walkthrough

Lab Submission

- Follow the directions on the LAB04 file
- Submit using the **Terminal Tab** (next to the console in the bottom left pane)
 - Copy and paste the given line into the terminal
 - Follow prompts (NOTE: the terminal will **not** show your password being typed out!)
- CHECK IN GRADESCOPE THAT ALL YOUR TESTS PASSED