INTERVIEW QUESTIONS

- 1. How does logistic regression differ from linear regression?
- 2. What is the sigmoid function?
- 3. What is precision vs recall?
- 4. What is the ROC-AUC curve?
- 5. What is the confusion matrix?
- 6. What happens if classes are imbalanced?
- 7. How do you choose the threshold?
- 8.Can logistic regression be used for multi-class problems?

1. How does logistic regression differ from linear regression?

Explanation (intuition).

- ullet Linear regression predicts a continuous value $\hat{y}\in\mathbb{R}.$ It models the conditional mean $E[y|x]=x^ op w.$
- Logistic regression predicts a probability that an example belongs to class 1: $P(y=1 \mid x) \in (0,1)$. It models the log-odds (logit) as a linear function of x: $\log \operatorname{it}(p) = \log \frac{p}{1-p} = x^\top w$. Use a threshold (usually 0.5) on the probability to get a class label.

Key formulas.

Linear regression (prediction):

$$\hat{y} = x^{\top} w$$
 (often fit by minimizing MSE)

MSE loss:

$$L_{ ext{MSE}}(w) = rac{1}{2n} \sum_{i=1}^n (y_i - x_i^ op w)^2$$

Logistic regression (probability):

$$p(x) = P(y = 1 \mid x) = \sigma(x^ op w) = rac{1}{1 + e^{-x^ op w}}$$

Log-loss (negative log-likelihood):

$$L_{\mathrm{log}}(w) = -rac{1}{n}\sum_{i=1}^{n}\left[y_{i}\log p(x_{i})+\left(1-y_{i}
ight)\log(1-p(x_{i}))
ight]$$

Differences to remember:

- Output type: real value vs probability in [0, 1].
- Loss: MSE (squared errors) vs log-loss (cross-entropy / negative log-likelihood).
- Interpretation: linear predicts mean; logistic predicts odds/probability.
- Predictions from linear can fall outside [0, 1]; logistic is constrained to [0, 1].

Example (toy):

Suppose $x^ op w = 1.2$.

- Linear prediction: $\hat{y} = 1.2$ (not a probability).
- Logistic probability: $p=\sigma(1.2)=rac{1}{1+e^{-1.2}}pprox 0.768$. This can be interpreted directly as probability of class 1.

2. What is the sigmoid function?

Explanation.

The sigmoid (logistic) function $\sigma(z)$ squashes any real number z into the interval (0,1). In logistic regression we set $z=x^\top w$ and interpret $\sigma(z)$ as a probability.

Formula:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Useful identities:

- $\sigma(0) = 0.5$.
- Derivative: $\sigma'(z) = \sigma(z) ig(1 \sigma(z)ig)$. This is handy for gradients in optimization.
- Logit (inverse): $\operatorname{logit}(p) = \operatorname{log} \frac{p}{1-p}$ so $\sigma(\operatorname{logit}(p)) = p$.

Example values:

- $\sigma(0) = 0.5$
- $\sigma(2) \approx 0.8808$ (so a large positive score \rightarrow high probability).
- $\sigma(-2) pprox 0.1192$ (large negative score ightarrow low probability).

Graphical intuition: S-shaped curve; near $-\infty$ it \rightarrow 0, near $+\infty$ it \rightarrow 1, center at 0.

3. What is precision vs recall?

Definitions (from the confusion matrix):

- True Positive (TP): predicted 1 and true 1.
- False Positive (FP): predicted 1 but true 0.
- False Negative (FN): predicted 0 but true 1.
- True Negative (TN): predicted 0 and true 0.

Formulas:

$$ext{Precision} = rac{TP}{TP + FP} \qquad ext{Recall (Sensitivity, TPR)} = rac{TP}{TP + FN}$$

Also useful:

$$ext{F1 score} = 2 \cdot rac{ ext{Precision} \cdot ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Interpretation:

- Precision = "when I predict positive, how often am I right?" controls false positives.
- Recall = "of all actual positives, how many did I detect?" controls false negatives.
 Which matters depends on application (e.g., recall is critical for disease screening; precision is critical when false alarms are costly).

Numeric example: (confusion matrix)

- TP = 40, FP = 10, FN = 5, TN = 45 (100 samples total)
 - Precision = 40/(40+10) = 0.80
 - $\bullet \quad \mathsf{Recall} = 40/(40+5) \approx 0.8889$
 - Accuracy = (40+45)/100 = 0.85
 - F1 ≈ 0.8421

This shows high recall (we catch most positives) and good precision (most predicted positives are correct).

4.What is the ROC-AUC curve?

ROC (Receiver Operating Characteristic) curve:

 Plot of True Positive Rate (TPR = recall) on the y-axis versus False Positive Rate (FPR = FP/(FP+TN)) on the x-axis as you vary the classification threshold. Each threshold gives one (FPR, TPR) point — the ROC curve connects these.

AUC (Area Under Curve):

- AUC = $\int_0^1 \text{TPR}(\text{FPR}^{-1}(x)) dx$ geometrically the area under the ROC curve.
- Interpretation: AUC = probability that a randomly chosen positive example has a higher predicted score than a randomly chosen negative example:

$$\mathrm{AUC} = P\big(\mathrm{score}(X^+) \ > \ \mathrm{score}(X^-)\big)$$

Why it's useful:

• It measures ranking quality independent of a chosen threshold and of class imbalance to some extent. Values range from 0.0 (worst) to 1.0 (perfect); 0.5 indicates random ranking.

Small example & computing AUC by trapezoids (illustration):

Given a small dataset with true labels y and probabilities p,

- y = [1, 1, 0, 0, 1, 0]
- p = [0.9, 0.4, 0.7, 0.6, 0.3, 0.2]

If you compute ROC points (FPR, TPR) for thresholds and then integrate using trapezoids, you get an AUC \approx 0.5556 (i.e. slightly better than random in this toy example). The AUC can be computed numerically by:

$$ext{AUC} pprox \sum_{i=1}^{m-1} (ext{FPR}_{i+1} - ext{FPR}_i) \cdot rac{ ext{TPR}_i + ext{TPR}_{i+1}}{2}.$$

Caveat: When classes are heavily imbalanced, Precision–Recall curves are often more informative than ROC curves.

5. What is the confusion matrix?

Definition (2×2 table):		
	Pred = 1	Pred = 0
True = 1	ТР	FN
True = 0	FP	TN

Common metrics expressed from it:

• Accuracy
$$= \frac{TP + TN}{TP + TN + FP + FN}$$

• Precision =
$$\frac{11}{TP + FP}$$

• Precision =
$$\frac{TP}{TP + FP}$$
• Recall / Sensitivity = $\frac{TP}{TP + FN}$
• Specificity = $\frac{TN}{TP + FN}$

• Specificity =
$$\frac{TN}{TN + FP}$$

• False Positive Rate =
$$\frac{FP}{FP + TN} = 1 - \text{Specificity}$$

• Negative Predictive Value =
$$\frac{TN}{TN + FN}$$

• F1 score
$$=2rac{ ext{Precision} \cdot ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Example (same as question 3): TP=40, FP=10, FN=5, TN=45 → you can compute all metrics from the table (see earlier).

Confusion matrix is the fundamental tool to compute and reason about the trade-offs (precision vs recall, etc.).

6. What happens if classes are imbalanced?

Problem: When one class (say negatives) far outnumbers the other (positives), common issues arise:

- Accuracy becomes misleading. A classifier always predicting the majority class can have high accuracy but be useless (e.g., 99% accuracy in a 99:1 dataset by always predicting the majority).
- ROC may be optimistic, while Precision–Recall (PR) curve is more sensitive to class imbalance for the minority (positive) class.
- Training may under-emphasize the minority class because the loss is dominated by the majority.

Techniques to handle imbalance:

- 1. Resampling
 - Oversample minority (random oversampling, SMOTE) or undersample majority.
- **2.** Use class weights in the loss (e.g., in scikit-learn class_weight='balanced') gives more penalty for misclassifying minority class.
- **3.** Use appropriate metrics: Precision, Recall, F1, PR-AUC, Matthews correlation coefficient (MCC), balanced accuracy:

$$ext{Balanced accuracy} = rac{ ext{TPR} + ext{TNR}}{2}$$

- 4. Threshold tuning to meet recall/precision targets.
- 5. Specialized algorithms: anomaly-detection methods if the positive class is extremely rare.

Example: If positives = 1% and you care about detecting positives (recall), optimize thresholds or use sampling/weights — otherwise model may just predict all negatives.

7. How do you choose the threshold?

Default: 0.5 — but this is arbitrary.

Practical methods to choose a threshold:

1. Business-cost based: choose threshold that minimizes expected cost:

Expected
$$cost(t) = Cost_{FP} \cdot FP(t) + Cost_{FN} \cdot FN(t)$$

Choose t minimizing expected cost (costs come from domain knowledge).

2. Youden's J statistic: choose t that maximizes

$$J(t) = \text{Sensitivity}(t) + \text{Specificity}(t) - 1.$$

This maximizes overall correct separation.

- **3.** Maximize F1 (or other metric): pick t that maximizes F1 if you want a balance between precision and recall.
- **4.** Meet a constraint: choose smallest t such that recall \geq required level (useful in screening where recall must be high).
- **5. ROC/PR curve inspection**: pick a point on curve that gives the best trade-off visually or according to metric.

Concrete threshold example (toy):

Labels y = [1, 0, 1, 0, 1, 0], scores p = [0.9, 0.4, 0.7, 0.6, 0.2, 0.1].

- At threshold t = 0.5: predictions = [1,0,1,1,0,0] → TP=2, FP=1, FN=1, TN=2 → precision=0.667, recall=0.667.
- At threshold t = 0.3: predictions = [1,1,1,1,0,0] → TP=2, FP=2, FN=1, TN=1 → precision=0.5, recall=0.667.

Lowering the threshold often increases recall and decreases precision. Choose t depending on whether you want fewer false negatives (favor recall) or fewer false positives (favor precision).

8.Can logistic regression be used for multi-class problems?

Yes — two standard approaches:

- 1. One-vs-Rest (OvR / One-vs-All):
 - Train K binary logistic regressors for K classes. For class k the model learns $P(y=k\mid x)$ vs others. At prediction time choose class with highest score (or probability). Simple and works well.
- 2. Multinomial logistic regression (softmax):
 - A single model that outputs a K-way probability distribution using the softmax function. This is sometimes called "multinomial" logistic regression and optimizes the multinomial (cross-entropy) loss directly.

Softmax formula (for K classes):

Let $z_j = w_i^ op x$ be the score for class j. Then

$$P(y=j\mid x) = rac{\exp(z_j)}{\sum_{k=1}^K \exp(z_k)}.$$

Multiclass cross-entropy loss:

$$L(w) = -rac{1}{n} \sum_{i=1}^n \sum_{j=1}^K \mathbf{1}\{y_i = j\} \log P(y_i = j \mid x_i).$$

Example (softmax numeric):

Scores z = [1.2, 0.3, -0.5] for classes 1..3.

$$ext{softmax}(z)_j = rac{e^{z_j}}{e^{1.2} + e^{0.3} + e^{-0.5}}$$

Numerically:

$$P \approx [0.6292, 0.2558, 0.1149]$$

So the model would pick class 1 with probability \approx 0.63.

Practical note: scikit-learn's LogisticRegression supports both multi_class='ovr' and multi_class='multinomial' (the latter with solver='lbfgs' etc.). Multinomial often performs better if the true problem is inherently multi-class.

Quick summary / cheat-sheet

- Logistic regression => models $\sigma(x^\top w)$ \rightarrow probability; use log-loss.
- Sigmoid: $\sigma(z) = 1/(1+e^{-z})$; derivative $\sigma(z)(1-\sigma(z))$.
- Precision = TP/(TP+FP) (correctness of positive predictions).
- Recall = TP/(TP+FN) (coverage of actual positives).
- ROC plots TPR vs FPR; AUC measures ranking quality (probability a positive outranks a negative).
- Confusion matrix gives TP/FP/FN/TN; all standard metrics derive from it.
- Imbalanced classes → accuracy misleading; use class weights, resampling, PR curves.
- Threshold selection should be driven by business cost or chosen metric (Youden's J, F1, cost minimization, constraints).
- Multi-class: OvR or softmax (multinomial logistic) both supported in libraries.