System Performance and Cost Modelling in LHC computing

Catherine Biscarat¹, Tommaso Boccali², Daniele Bonacorsi³, Concezio Bozzi^{4,5}, Raul Cardoso Lopes⁶, Davide Costanzo⁷, Dirk Duellmann⁴, Johannes Elmsheuser⁸, Eric Fede⁹, José Flix Molina¹⁰, Alessandra Forti¹¹, Martin Gasthuber¹², Domenico Giordano⁴, Costin Grigoras⁴, Jan Iven⁴, Michel Jouvin¹³, Yves Kemp¹², David Lange¹⁴, Helge Meinhard⁴, Michele Michelotto¹⁵, Gareth Douglas Roy¹⁶, Andrew Sansum¹⁷, Andrea Sartirana¹⁸, Markus Schulz⁴, Andrea Sciabà⁴, Oxana Smirnova¹⁹, Graeme Stewart⁴, Andrea Valassi⁴, Renaud Vernet²⁰, Torre Wenaus⁸, and Frank Wuerthwein²¹

```
<sup>1</sup>LPSC Grenoble, IN2P3/CNRS
```

Abstract. The increase in the scale of LHC computing expected for Run 3 and even more so for Run 4 (HL-LHC) over the next ten years will certainly require radical changes to the computing models and the data processing of the LHC experiments. Translating the requirements of the physics programmes into computing resource needs is a complicated process and subject to significant uncertainties. For this reason, WLCG has established a working group to develop methodologies and tools intended to characterize the LHC workloads, better understand their interaction with the computing infrastructure, calculate their cost in terms of resources and expenditure and assist experiments, sites and the WLCG project in the evaluation of their future choices. This working group started in November 2017 and has about 30 active participants representing experiments and sites. In this contribution we expose the activities, the results achieved and the future directions.

²INFN Sezione di Pisa

³University of Bologna

⁴CERN

⁵INFN Sezione di Ferrara

⁶Brunel University

⁷University of Sheffield

⁸Brookhaven National Laboratory

⁹CNRS/IN2P3/LAPP

¹⁰Centro de Investigaciones Energéticas Medioambientales y Tecnológicas

¹¹University of Manchester

¹²Deutsches Elektronen-Synchrotron

¹³Université Paris-Saclay

¹⁴Princeton University

¹⁵Università e INFN, Padova

¹⁶University of Glasgow

¹⁷STFC

¹⁸Centre National de la Recherche Scientifique

¹⁹Lund University

²⁰Centre de Calcul IN2P3

²¹Univ. of California San Diego

1 Introduction

Explain motivations, give current extrapolations to the HL-LHC scale.

Describe history of WG, goals, participation, areas of work.

 ≤ 1 page.

2 Workload characterisation and metrics

Explain the need for metrics to characterise the workload.

Explain the interplay among applications, sites, resource utilisation.

Talk about the tools we use (prmon, Trident).

 ≤ 2 pages.

3 Resource estimation

Explain why we need a framework to calculate resource estimates.

Describe the common framework derived by Ken Bloom.

Describe the work needed to be utilised by other experiments.

 ≤ 1 page.

4 Site cost estimation

Explain the importance of a common method to estimate the costs for sites given the resource needs of the experiments.

Describe Renaud's model and future perspectives for this area.

 ≤ 1 page.

5 HL-LHC and areas of improvement

Describe the potential gains achievable on a medium-long term.

Describe the recent studies of caching as an example of an area for R&D.

 ≤ 2 pages.

6 Conclusions

Conclusions.

 ≤ 0.5 pages.

References

- [1] Journal Author, Journal Volume, page numbers (year)
- [2] Book Author, Book title (Publisher, place, year) page numbers