Teoremi di rigidità per funzioni olomorfe nel disco

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Il lemma di Schwarz-Pick

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre, se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in Aut(\mathbb{D})$ e vale sempre l'uguaglianza.

Il lemma di Schwarz-Pick

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre, se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in Aut(\mathbb{D})$ e vale sempre l'uguaglianza.

Dal lemma, si ha che la quantità $\left| \frac{z-w}{1-\bar{w}z} \right|$ è contratta dalle funzioni in $\operatorname{Hol}(\mathbb{D},\mathbb{D})$. A partire da essa è possibile definire una distanza sul disco.

La distanza di Poincaré

Scriviamo
$$[z, w] := \frac{z - w}{1 - \bar{w}z} e p(z, w) := |[z, w]|.$$

La distanza di Poincaré

Scriviamo
$$[z, w] := \frac{z - w}{1 - \bar{w}z} e p(z, w) := |[z, w]|.$$

Definizione

La distanza di Poincaré (o iperbolica) sul disco è la funzione $\omega : \mathbb{D} \times \mathbb{D} \longrightarrow [0, +\infty)$ data da

$$\omega(z, w) := \operatorname{arctanh}(p(z, w)) = \frac{1}{2} \log \left(\frac{1 + p(z, w)}{1 - p(z, w)} \right).$$

La distanza di Poincaré

Scriviamo
$$[z, w] := \frac{z - w}{1 - \overline{w}z}$$
 e $p(z, w) := |[z, w]|$.

Definizione

La distanza di Poincaré (o iperbolica) sul disco è la funzione $\omega: \mathbb{D} \times \mathbb{D} \longrightarrow [0, +\infty)$ data da

$$\omega(z, w) := \operatorname{arctanh}(p(z, w)) = \frac{1}{2} \log \left(\frac{1 + p(z, w)}{1 - p(z, w)} \right).$$

In termini di ω , il lemma di Schwarz-Pick si riscrive come

$$\omega(f(z), f(w)) \le \omega(z, w).$$

Derivata e rapporto iperbolici

Definizione

Data $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$, la derivata iperbolica è definita come

$$f^h(w) := \lim_{z \to w} \frac{[f(z), f(w)]}{[z, w]} = \frac{f'(w)(1 - |w|^2)}{1 - |f(w)|^2}.$$

Derivata e rapporto iperbolici

Definizione

Data $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$, la derivata iperbolica è definita come

$$f^h(w) := \lim_{z \to w} \frac{[f(z), f(w)]}{[z, w]} = \frac{f'(w)(1 - |w|^2)}{1 - |f(w)|^2}.$$

Definizione

Il rapporto iperbolico è definito come

$$f^*(z, w) := \begin{cases} \frac{[f(z), f(w)]}{[z, w]} & \text{per } z \neq w \\ f^h(w) & \text{per } z = w \end{cases}$$

Derivata e rapporto iperbolici

Definizione

Data $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$, la derivata iperbolica è definita come

$$f^h(w) := \lim_{z \to w} \frac{[f(z), f(w)]}{[z, w]} = \frac{f'(w)(1 - |w|^2)}{1 - |f(w)|^2}.$$

Definizione

Il rapporto iperbolico è definito come

$$f^*(z,w) := \begin{cases} \frac{[f(z),f(w)]}{[z,w]} & \text{per } z \neq w \\ f^h(w) & \text{per } z = w \end{cases}$$

Fissato $w \in \mathbb{D}$, la funzione $z \longmapsto f^*(z, w)$ appartiene a $\operatorname{Hol}(\mathbb{D}, \mathbb{D})$.

Regioni di Stolz e settori

Definizione

Dati $\alpha \in (0, \pi/2)$ e $\sigma \in \partial \mathbb{D}$, chiamiamo settore di vertice σ e angolo 2α l'insieme $S(\sigma, \alpha) \subset \mathbb{D}$ tale che per ogni $z \in S(\sigma, \alpha)$ l'angolo compreso tra la retta congiungente σ e 0 e la retta congiungente σ e z ha modulo minore di α .

Regioni di Stolz e settori

Definizione

Dati $\alpha \in (0, \pi/2)$ e $\sigma \in \partial \mathbb{D}$, chiamiamo settore di vertice σ e angolo 2α l'insieme $S(\sigma, \alpha) \subset \mathbb{D}$ tale che per ogni $z \in S(\sigma, \alpha)$ l'angolo compreso tra la retta congiungente σ e 0 e la retta congiungente σ e z ha modulo minore di α .

Definizione

Dati $\sigma \in \partial \mathbb{D}$ e M > 1, chiamiamo regione di Stolz $K(\sigma, M)$ l'insieme $\left\{z \in \mathbb{D} \mid \frac{|\sigma - z|}{1 - |z|} < M\right\}$.

regioni di Stolz e settori

A sinistra, il settore $S(1, 2\pi/3)$; a destra, la regione di Stolz K(1, 2).

Proposizione

Dato M > 1, sia $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$. Per ogni $\alpha' < \alpha$ esiste $\varepsilon > 0$ tale che, detto $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$, si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Proposizione

Dato M > 1, sia $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$. Per ogni $\alpha' < \alpha$ esiste $\varepsilon > 0$ tale che, detto $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$, si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: senza perdita di generalità $\sigma = 1$.

Possiamo scrivere $S(1, \alpha) = \{z \in \mathbb{D} \mid |\mathfrak{Im}(z)| < (\tan \alpha) (1 - \mathfrak{Re}(z)) \}$. Se $z \in K(1, M)$, da

$$M > \frac{|1-z|}{1-|z|} \ge \frac{|1-z|}{1-\Re(z)}$$

troviamo

$$\frac{|\mathfrak{Im}(z)|}{1-\mathfrak{Re}(z)} < \sqrt{M^2 - 1} = \tan \alpha;$$

questo mostra la seconda inclusione.

Proposizione

Dato M > 1, sia $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$. Per ogni $\alpha' < \alpha$ esiste $\varepsilon > 0$ tale che, detto $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$, si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: sia $\alpha' < \alpha$ e supponiamo per assurdo che per ogni $\varepsilon > 0$ esista $z \in S(1, \alpha') \cap B(1, \varepsilon)$ tale che $z \notin K(1, M)$. Si ha allora

$$\frac{1-|z|}{|1-z|} \le \frac{1}{M} e^{-\frac{|\mathfrak{Im}(z)|}{1-\mathfrak{Re}(z)}} < \tan \alpha'. \tag{1}$$

Dalla seconda disuguaglianza in (1) si ottiene

$$\frac{|1-z|}{1-\Re(z)} < \sqrt{\tan^2 \alpha' + 1} =: M' < M; \tag{2}$$

moltiplicando la (2) per la prima disuguaglianza della (1) troviamo

Proposizione

Dato M > 1, sia $\alpha = \arctan\sqrt{M^2 - 1} \in (0, \pi/2)$. Per ogni $\alpha' < \alpha$ esiste $\varepsilon > 0$ tale che, detto $B(\sigma, \varepsilon) = \{z \in \mathbb{C} \mid |\sigma - z| < \varepsilon\}$, si ha

$$S(\sigma, \alpha') \cap B(\sigma, \varepsilon) \subset K(\sigma, M) \subset S(\sigma, \alpha).$$

Traccia della dimostrazione: $\frac{1-|z|}{1-\Re \mathfrak{e}(z)} < \frac{M'}{M} < 1$. Tuttavia, ponendo $x = \Re \mathfrak{e}(z)$ e $y = \Im \mathfrak{m}(z)$ e riscrivendo la condizione $z \in S(1, \alpha')$ come $y/(1-x) < \tan \alpha'$, vediamo facilmente che

$$\lim_{\substack{z \to 1, \\ z \in S(1, \alpha')}} \frac{1 - |z|}{1 - \Re \mathfrak{e}(z)} = 1,$$

da cui otteniamo una contraddizione.

