4.3 Power Functions

Definition. Functions of the form $f(x) = x^r$, where r is a constant, are called **power** functions.

- These are **even** functions f(-x) = f(x)
- Symmetry about the y-axis (-x,y), (x,y)

$$e,g. f(x)=x^{2}$$

$$f(-x) = (-x)^{2} = x^{2} = f(x)$$

$$g(x) = |x| + 1$$

$$g(x) = |-x| + 1 = |x| + 1 = g(x)$$

$$f(x) = |-x| + 1 = |x| + 1 = |x|$$

- 1 В. -2
- These are odd functions f(x) = f(-x)
- Symmetry about the origin

$$(-x,-y), (x,y)$$

$$x = g + f(x) = x^{3}$$

$$\Rightarrow f(-x) = (-x)^{3} = -f(x)$$

$$\Rightarrow g(x) = 2x^{3} + 3x$$

$$\Rightarrow g(-x) = 2(-x)^{3} + 3(-x)$$

$$\Rightarrow -2(x)^{3} - 3(x)$$

Fall 2018 Class notes

Note: The lading exponent = -9 (x).

Note: The lading exponent

does not guarantee even or odd $h(x) = x^2 + x + 1$ so reither even or odd (

Example. Determine if the following functions are symmetric about the y-axis, x $f(-x) = 3(-x)^5 + 2(-x)^3 - (-x)$ axis or the origin.

a)
$$f(x) = 3x^5 + 2x^3 - x$$

$$3-x$$

$$= -3 \times 5 - 2 \times 3 + x$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x) = -f(x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x)$$

$$= -(3 \times 5 + 2 \times - x$$

b)
$$f(x) = 2|x|$$

even -> sym about years

c)
$$x^3 - y^5 = 0$$

c)
$$x^3 - y^5 = 0$$
 $(-x)^3 - (-y)^5 = -x^3 + y^5 = (-1)(x^3 - y^5) = 0$

$$d) f(x) = x|x|$$

$$\Rightarrow \text{ we how the points } (-x, -y) \text{ and } (x, -y)$$

$$(-x)^3 - (y)^5 = -x^3 - y^5 \rightarrow \text{ No sym about } y - axis$$

$$f(-x) = -x |-x| = -x |x| \neq -f(x)$$

 $\neq f(x)$

No symmetry!

4.4 Shifting up and down

$$f(x)$$
 vs. $f(x) + c$

4.5 Shifting left and right

$$f(x)$$
 vs. $f(x-c)$

4.6 Translations

Example.

Graph
$$\frac{1}{x-1}+2$$

1. Shift right by 1

2. Shift up by Z

Example.

"Completing the square"

Graph $g(x) = x^2 - 6x + 5$

 $g(x) = \chi^{2} - 6x + 5$ $= (\chi^{2} - 6x + \frac{1}{2}) + (5 - \frac{1}{2})$ $[1(-6)]^{2}$

 $= (x^{2} - 6x + 9) + (5 - 9)$ $= (x - 3)^{2} - 4 \implies (2) Down by 4$

Example.

Graph
$$f(t) = 40t - 5t^2$$

$$f(t) = -5 t^2 + 40t$$

=-5(
$$t^2$$
-8+ $\frac{16}{16}$)-5($\frac{-16}{16}$)
=-5(t^2 -8+ $\frac{16}{16}$)-5(t^2 -8+ $\frac{16}{16}$)
=-5(t^2 -8+ $\frac{16}{16}$)-5(t^2 -8+ $\frac{16}{16}$)
=-5(t^2 -8+ $\frac{16}{16}$)-5(t^2 -8+ $\frac{16}{16}$)
=-5(t^2 -8+ $\frac{16}{16}$)-5(t^2 -8+ $\frac{16}{16}$)-7-7-8+ $\frac{16}{16}$)
=-5(t^2 -8+ $\frac{16}{16}$)-5(t^2 -8+ $\frac{16}{16}$)-7-8+ $\frac{16}{16}$)
=-5(t^2 -8+ $\frac{16}{16}$)-7-8+ $\frac{16}{16}$ 0
=-5(t^2 -8+ $\frac{16}{1$

Example.

Graph $g(h) = 100\pi h$

Composition

$$(f \circ g)(x) = f(g(x))$$

Example.
$$f(x) = \sqrt{x}, g(x) = x + 1$$

 $(f \circ g)(x) = f(g(x)) = f(x+1) = \int x + 1$
 $(g \circ f)(x) = g(f(x)) = g(f(x)) = f(x+1) = f(x+1)$