TEMA 3: Introducción a la probabilidad

- Fenómenos y experimentos aleatorios. Álgebra de sucesos.
- Diferentes concepciones de probabilidad.
- Axiomática de Kolmogorov. Propiedades básicas de la probabilidad.

CONCEPTOS BÁSICOS

OBJETIVO DE LA PROBABILIDAD

Establecer y desarrollar modelos matemáticos para tratar situaciones que se desarrollan en ambiente de incertidumbre.

EXPERIMENTO ALEATORIO

- Todos sus posibles resultados son conocidos de antemano.
- Realizado bajo las mismas condiciones puede dar lugar a distintos resultados.
- No es posible predecir su resultado antes de cualquier realización.

Suceso elemental, resultado elemental o punto muestral: Cada posible resultado que pueda observarse tras la realización de un experimento aleatorio, que no pueda descomponerse en otros más simples.

Espacio muestral (Ω) : Conjunto formado por todos los sucesos elementales.

Suceso aleatorio: Hecho o propiedad referente al resultado del experimento, cuyo cumplimiento o no puede ser verificado tras la realización del mismo (se identifica con el subconjunto del espacio muestral formado por los sucesos elementales que satisfacen la propiedad especificada).

 σ -álgebra de sucesos: Clase de subconjuntos de Ω con estructura de σ -álgebra, que contiene a todos los sucesos de interés en el experimento, $\mathcal{A} \subseteq \mathcal{P}(\Omega)$.

Una vez especificado el espacio medible (Ω, \mathcal{A}) , formado por el espacio muestral y la σ -álgebra de sucesos de interés en un experimento aleatorio, se trata de cuantificar la incertidumbre acerca de la posibilidad de ocurrencia de cada suceso.

DEFINICIÓN CLÁSICA DE PROBABILIDAD (LAPLACE, 1812)

CARACTERÍSTICAS DEL EXPERIMENTO

- Espacio muestral finito: $\Omega = \{a_1, \ldots, a_n\}.$
- Principio de la razón insuficiente: No hay razón para suponer que cualquier suceso elemental tiene más posibilidad de aparecer en cada realización del experimento que cualquier otro.

REGLA DE LAPLACE

$$P: \mathcal{P}(\Omega) \longrightarrow \mathbb{R}$$

$$A = \{a_{i_1}, \dots, a_{i_m}\} \subseteq \Omega \implies P(A) = \frac{m}{n}$$

Propiedades:

- $i) P(A) \ge 0, \forall A \in \mathcal{P}(\Omega).$
- $ii) P(\Omega) = 1.$
- $iii) \ A_1, \dots, A_h \in \mathcal{P}(\Omega) \ / \ A_i \cap A_j = \emptyset, \ \forall i \neq j \ \Rightarrow \ P\left(A_1 \cup \dots \cup A_h\right) = P(A_1) + \dots + P(A_h).$

DEFINICIÓN FRECUENTISTA DE PROBABILIDAD

CARACTERÍSTICAS DEL EXPERIMENTO

- Espacio muestral arbitrario: Ω .
- Puede repetirse indefinidamente bajo idénticas condiciones.

 $A \subseteq \Omega \to Frecuencia relativa de A en N repeticiones bajo idénticas condiciones: <math>f_N(A) = \frac{N_A}{N}$.

 $N_A = \mathbf{n}^{\underline{o}}$ de veces que ocurre A en las N repeticiones del experimento

$$P: \mathcal{P}(\Omega) \longrightarrow \mathbb{R}$$

$$A \subseteq \Omega \implies P(A) = \lim_{\substack{N \to +\infty \\ \uparrow}} f_N(A)$$

Principio de estabilidad o de regularidad de frecuencias (ver pg. 7)

Propiedades:

- $i) P(A) \ge 0, \forall A \in \mathcal{P}(\Omega).$
- $ii) P(\Omega) = 1.$
- $iii) \{A_n\}_{n\in\mathbb{N}} \subseteq \mathcal{P}(\Omega) / A_n \cap A_m = \emptyset, \forall n \neq m \Rightarrow P\left(\bigcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} P(A_n).$

DEFINICIÓN AXIOMÁTICA (KOLMOGOROV, 1933)

(Ω, \mathcal{A}) : ESPACIO MEDIBLE ARBITRARIO

$$P: \mathcal{A} \longrightarrow \mathbb{R}$$

P es una función de probabilidad si es no negativa, asigna el valor uno a Ω y es σ -aditiva:

 $A1: P(A) \ge 0, \forall A \in \mathcal{A}.$

 $A2: P(\Omega) = 1.$

$$A3: \{A_n\}_{n\in\mathbb{N}} \subseteq \mathcal{A} / A_n \cap A_m = \emptyset, \ \forall n \neq m \ \Rightarrow \ P\left(\bigcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} P(A_n).$$

(Ω, \mathcal{A}, P) : ESPACIO DE PROBABILIDAD

- $\Omega \rightarrow \text{CONJUNTO ARBITRARIO}$
- $\mathcal{A} \rightarrow \sigma$ -ÁLGEBRA DE CONJUNTOS DE Ω
- $P \to \text{FUNCION DE PROBABILIDAD SOBRE } (\Omega, \mathcal{A})$

PROPIEDADES BÁSICAS DE LA PROBABILIDAD

- $P(\emptyset) = 0$.
- Aditividad finita: $A_1, \ldots, A_n \in \mathcal{A}$ y $A_i \cap A_j = \emptyset$, $\forall i \neq j \Rightarrow P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$.
- Probabilidad del suceso complementario: $A \in \mathcal{A} \implies P(A^c) = 1 P(A)$.
- Probabilidad de la diferencia: $A, B \in \mathcal{A} \implies P(A B) = P(A) P(A \cap B)$.
 - $A, B \in \mathcal{A} \ y \ B \subseteq A \Rightarrow P(A B) = P(A) P(B)$.
 - Monotonía: $A, B \in \mathcal{A} \ y \ B \subseteq A \Rightarrow P(B) \leq P(A)$.
 - $A \in \mathcal{A} \Rightarrow 0 \le P(A) \le 1$.
- Regla de adición: $A, B \in \mathcal{A} \Rightarrow P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- Principio de inclusión-exclusión: $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{\substack{i_{1}, i_{2}=1\\i_{1} < i_{2}}}^{n} P(A_{i_{1}} \cap A_{i_{2}}) + \sum_{\substack{i_{1}, i_{2}, i_{3}=1\\i_{1} < i_{2} < i_{3}}}^{n} P(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) + \dots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_{i}\right).$$

■ Subaditividad: $\begin{cases} i) \ A_1, \dots, A_n \in \mathcal{A} \Rightarrow P\left(\bigcup_{i=1}^n A_i\right) \leq \sum_{i=1}^n P(A_i). \\ ii) \ \{A_i\}_{i \in \mathbb{N}} \subseteq \mathcal{A} \Rightarrow P\left(\bigcup_{i=1}^{+\infty} A_i\right) \leq \sum_{i=1}^{+\infty} P(A_i). \end{cases}$

■ Designaldad de Boole:
$$\begin{cases} i) \ A_1, \dots, A_n \in \mathcal{A} \Rightarrow P\left(\bigcap_{i=1}^n A_i\right) \ge 1 - \sum_{i=1}^n P(A_i^c). \\ ii) \ \{A_i\}_{i \in \mathbb{N}} \subseteq \mathcal{A} \Rightarrow P\left(\bigcap_{i=1}^{+\infty} A_i\right) \ge 1 - \sum_{i=1}^{+\infty} P(A_i^c). \end{cases}$$

SIMULACIÓN: número de caras en sucesivos lanzamientos de una moneda no cargada

Número de lanzamientos	Número de caras cada 10 lanzamientos	Suma acumulada de curas	Frecuencia relativa de caras
1	0	0	0
10	6	6	0,600
20	2	8	0,400
30	6 5	14	0,467
40	5	19	0,475
50	6	25	0,500
60	6	31	0,517
70	6 7 5 3 5 5	38	0,543
80	5	43	0,537
90	3	46	0,511
100	5	51	0,510
110	5	56	0,509
120	7	63	0,525
130	5	68	0,523
140	4	72	0,514
150	3	75	0,500
160	3 3	78	0,487
170	5	83	0,488
180	6	89	0,494
190	6	95	0,500
200	6	101	0,505

Representación gráfica del número de lanzamientos de una moneda al aire y frecuencia relativa de las caras.

Proporción de lanzamientos de una moneda que dan cara, desde 1 hasta 1.000 lanzamientos de la moneda. Después de muchos lanzamientos, la proporción de caras se acerca a 0.5, que es la probabilidad de que salga cara.