Sistemas Informáticos

UT2_2 – Gestión de procesos

César Fernández Zapico

cesarfz@educastur.org

Gestión de procesos

Proceso = Programa en ejecución

Analogía con receta de cocina

Programa → La propia receta

 Proceso → El acto de leer la receta, mezclar ingredientes y cocinarla

1. Procesos concurrentes

- Procesos concurrentes

 Ejecución simultánea
- Sistema monoprocesador

 Concurrencia aparente
- Procesos concurrentes
 - Sincronización entre procesos
 - Comunicación entre procesos

1.1. Sincronización entre procesos

- Sección crítica → Parte del programa en la que se accede al recurso compartido.
- Evitar que dos o más procesos se solapen en sus secciones críticas, de manera que se eviten las condiciones de competencia Establecer una exclusión mutua.

1.1. Sincronización entre procesos

- Métodos de exclusión mutua
 - Desactivación de interrupciones
 - Cerrojos
 - Algoritmo de Peterson
 - Dormir y despertar
 - Semáforos
 - Monitores

1.2. Comunicación entre procesos

- IPC → Inter-Process Communication
- Proporcionar a los procesos mecanismos que les permitan intercambiar información.
- Sistema operativo

 Permite compartir espacios de memoria (variables compartidas, buffers, etc.)

Estados de un Proceso

- Decide cuándo un proceso se va a ejecutar
- Diferentes niveles de planificación:
 - A corto plazo: selecciona el siguiente proceso a ejecutar
 - A medio plazo: selecciona qué procesos se añaden o se retiran de memoria principal
 - A largo plazo: control de admisión de procesos a ejecutar.
 Usada en sistemas batch.
 - No apropiativa: el proceso en ejecución conserva la CPU mientras quiera. Problema de seguridad
 - Apropiativa: el sistema operativo puede expulsar a un proceso de la CPU

 ¿En qué momento se puede decidir la planificación de un proceso?

- Cuando el proceso de bloquea en espera de un evento (llamada al sistema)
- Cuando se produce una interrupción (de reloj o fin de E/S)
- Cuando se acaba.

 Los procesos listos para ejecutar se mantienen en una cola

- Tipos de cola
 - Cola única
 - Colas por tipos de procesos
 - Colas por prioridades

2.1. Parámetros para planificar

Utilización de CPU

- % de tiempo que se usa la CPU
- Objetivo: Maximizar
- Productividad
 - Número de trabajos terminados por unidad de tiempo
 - Objetivo: Maximizar
- Tiempo de retorno (T_q)
 - Tiempo que está un proceso en el sistema. Instante final (T_f) menos instante en que se carga (T_i)
 - Objetivo: Minimizar

2.1. Parámetros para planificar

- Tiempo de servicio (T_s) :
 - Tiempo dedicado a tareas productivas (CPU, E/S).
 - $T_s = T_{CPU} + T_{E/S}$
- Tiempo de espera (T_e)
 - Tiempo que un proceso pasa en colas de espera
 - $T_e = T_q T_s$
- Tiempo de retorno normalizado (T_n)
 - Razón entre tiempo de retorno y tiempo de servicio
 - $T_n = T_q/T_s$
 - Indica el retardo experimentado

- FCFS (First to Come First to Serve)
 - Algoritmo no expulsivo
 - Cola FIFO. Penaliza a los procesos cortos

Proceso	Llegada	Servicio
Α	0	3
В	2	6
С	4	4
D	6	5
E	8	2

- FCFS (First to Come First to Serve)
 - Tiempo medio de espera: 4,6
 - Tiempo medio de retorno normalizado: 2,36

Proceso	Llegada	Servicio	Inicio	Fin	Retorno	Espera	Retorno normalizado
Α	0	3	0	3	3	0	3/3=1
В	2	6	3	9	7	1	7/6=1.16
С	4	4	9	13	9	5	9/4=1.25
D	6	5	13	18	12	7	12/5=2.4
E	8	2	18	20	12	10	12/2=6

- SJF (Shortest Job First)
 - Algoritmo no expulsivo
 - Selecciona trabajo más corto
 - Aplicable únicamente si se conoce la duración
 - Posibilidad de inanición:
 - Si continuamente llegan trabajos cortos, los largos nunca se llegarán a ejecutar

Algoritmos de Planificación

SJF

Proceso	Llegada	Servicio	Inicio	Fin	Retorno	Espera	Retorno normalizado
Α	0	3	0	3	3	0	3/3=1
В	2	6	3	9	7	1	7/6=1.16
С	4	4	11	15	11	7	11/4=2.75
D	6	5	15	20	14	9	14/5=2.8
E	8	2	9	11	3	1	3/2=1.5
						3.6	5 1.84

- Cíclico o Round-Robin (RR)
 - Algoritmo expulsivo
 - Mantiene cola FIFO con procesos listos
 - Proceso recibe el procesador durante un cuanto o rodaja de tiempo (quantum - q)
 - Proceso regresa a la cola de listos si:
 - Expira su quantum
 - Se produce un evento que lo lleva a la cola de bloqueados
 - Se debe tener en cuenta que el cambio de contexto genera retraso

• RR con q=1

Proceso	Llegada	Servicio	Inicio	Fin	Retorno	Espera	Retorno normalizado
Α	0	3	0	4	4	1	4/3=1.33
В	2	6	2	18	16	10	16/6=2.66
С	4	4	5	17	13	9	13/4=3.25
D	6	5	7	20	14	9	14/5=2.8
E	8	2	10	15	7	5	7/2=3.5

• RR con q=2

Proceso	Llegada	Servicio	Inicio	Fin	Retorno	Espera	Retorno normalizado
Α	0	3	0	5	4	1	4/3=1.33
В	2	6	2	17	16	10	16/6=2.66
С	4	4	5	13	13	9	13/4=3.25
D	6	5	9	20	14	9	14/5=2.8
E	8	2	13	15	7	5	7/2=3.5
						_	

Sistemas Informáticos-1ºDAW César F. Zapico 19

• RR con q=4

Proceso	Llegada	Servicio	Inicio	Fin	Retorno	Espera	Retorno normalizado
Α	0	3	0	3	3	0	3/3=1
В	2	6	3	17	15	9	15/6=2.5
С	4	4	7	11	7	3	7/4=1.75
D	6	5	11	20	14	9	14/5=2.8
E	8	2	17	19	11	9	11/2=5.5
						6	2.71

Sistemas Informáticos-1ºDAW César F. Zapico 20

- Asignación por prioridades
 - Cada proceso tiene una prioridad
 - Se seleccionan primero los procesos más prioritarios

- Tipos de planificación por prioridades:
 - Colas con diferente nivel de prioridad
 - Colas con diferente nivel de prioridad realimentadas

- Tipos de prioridades
 - − Fijas → Problemas de inanición
 - Solución → Asignación dinámica de prioridades
 - Algoritmos de envejecimiento (Aging) → Aumenta la prioridad de un proceso cuanto más tiempo lleva esperando por la CPU.