PRACTICE PROBLEMS ON DUIS

EXERCISE

Prove the following (1 to 34):

1.
$$\int_0^1 \frac{x^{a} - x^b}{\log x} dx = \log \left(\frac{a+1}{b+1} \right)$$
 Hence, evaluate $\int_0^1 \frac{x^7 - x^3}{\log x} dx$

$$2. \qquad \int_0^\infty \frac{e^{-x}}{x} \left(e^{-ax} - e^{-bx} \right) dx = \log \left(\frac{1+b}{1+a} \right)$$

3.
$$\int_0^\infty e^{-xy} dx = \frac{1}{y}, y > 0 \text{ and hence, deduce that } \int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx = \log\left(\frac{b}{a}\right), a > 0, b > 0$$

4.
$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin mx \ dx = tan^{-1} \left(\frac{m}{a}\right) - tan^{-1} \left(\frac{m}{b}\right)$$

5.
$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin mx \ dx = \tan^{-1} \left(\frac{b}{m}\right) - \tan^{-1} \left(\frac{a}{m}\right)$$

6.
$$\int_0^\infty \frac{e^{-\beta x} \sin \alpha x}{x} dx = \tan^{-1} \frac{\alpha}{\beta} \text{ Deduce that } \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

8.
$$\int_0^\infty \frac{e^{-x} - e^{-\alpha x}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{\alpha^2 + 1}{2} \right)$$

9.
$$\int_0^\infty \frac{e^{-\alpha x} - e^{-\beta x}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{\beta^2 + 1}{\alpha^2 + 1} \right)$$

10.
$$\int_0^\infty \frac{\log(1+ax^2)}{x^2} dx = \pi \sqrt{a}$$
, $(a > 0)$. Also, deduce that $\int_0^\infty \frac{\log(1+x^2)}{x^2} dx = \pi$

$$11. \quad \int_0^\pi \frac{\log(1+\sin\alpha\cos x)}{\cos x} dx = \pi\alpha$$

12.
$$\int_0^{\pi/2} \frac{\log(1 + \cos \alpha \cos x)}{\cos x} dx = \frac{\pi^2}{8} - \frac{\alpha^2}{2}$$

13.
$$\int_0^{\pi} \log(1 - a \cos x) dx = \pi \log \left[\frac{1 + \sqrt{1 - a^2}}{2} \right], |a| < 1$$

14.
$$\int_0^{\pi} \log(1 - \cos\alpha \cos x) dx = \pi \log \left[\frac{1 + \sin\alpha}{2} \right]$$

15.
$$\int_0^\infty e^{-x^2} \cos 2ax \ dx = \frac{\sqrt{\pi}}{2} e^{-a^2}, \text{ Given: } \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

16.
$$\int_0^\infty e^{-bx^2} \cos 2ax \ dx = \frac{1}{2} \sqrt{\left(\frac{\pi}{b}\right)} \cdot e^{-a^2/b}, b > 0$$
 Given: $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$

17.
$$\int_0^\infty \frac{1-\cos mx}{x} e^{-x} dx = \frac{1}{2} \log(m^2 + 1)$$

18.
$$\int_0^\infty \frac{1-\cos ax}{x^2} dx = \frac{\pi a}{2}. \text{ Given: } \int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

19.
$$\int_0^\infty e^{-(x^2+a^2/x^2)} dx = \frac{\sqrt{\pi}}{2} e^{-2a}, a > 0, Given: \int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} e^{-2a}$$

20.
$$\int_0^{\pi} \frac{dx}{a - \cos x} = \frac{\pi}{\sqrt{a^2 - 1}}$$
, $(a > 0)$. Deduce that

(i)
$$\int_0^\pi \frac{dx}{(a-\cos x)^2} = \frac{\pi a}{(a^2-1)^{3/2}}$$

(ii)
$$\int_0^{\pi} \frac{dx}{(2-\cos x)^2} = \frac{2\pi}{3\sqrt{3}}$$

21.
$$\int_0^\infty \frac{tan^{-1}ax - tan^{-1}bx}{x} dx = \frac{\pi}{2} \log\left(\frac{a}{b}\right)$$

22.
$$\int_0^{\pi/2} log \left[\frac{a + b \sin x}{a - b \sin x} \right] \frac{dx}{\sin x} = \pi \sin^{-1} \left(\frac{b}{a} \right)$$

23.
$$\int_0^{\pi/2} \log(a^2 \cos^2 \theta + b^2 \sin^2 \theta) d\theta = \pi \log\left(\frac{a+b}{2}\right)$$

- Verify the rule of differentiation under the integral sign for $\int_0^\infty e^{-at} \sin bt \ dt$, Where a is a parameter. 24.
- Verify the rule of differentiation under the integral sign for $\int_0^\infty e^{-at} \cos bt \ dt$ 25.

26. Evaluate
$$\int_0^{\pi/2} \frac{dx}{1 + a\cos^2 x}$$
 and hence, deduce that $\int_0^{\pi/2} \frac{\cos^2 x}{(3 + \cos^2 x)^2} dx = \frac{\pi\sqrt{3}}{96}$

27. Evaluate
$$\int_0^{\pi/2} \frac{dx}{1 + a \sin^2 x}$$
 and deduce that $\int_0^{\pi/2} \frac{\sin^2 x}{(3 + \sin^2 x)^2} dx = \frac{\pi \sqrt{3}}{96}$

28. Evaluate
$$\int_0^{\pi} \frac{dx}{a + b\cos x}$$
, $a > 0$, $b > 0$ and deduce that $\int_0^{\pi} \frac{dx}{(a + b\cos x)^2} = \frac{\pi a}{(a^2 - b^2)^{3/2}}$
And $\int_0^{\pi} \frac{\cos x \, dx}{(a + b\cos x)^2} = -\frac{\pi b}{(a^2 - b^2)^{3/2}}$

Evaluate
$$\int_0^\pi \frac{dx}{a+b\cos x}$$
, $a>0$, $|b|. Hence, deduce that $\int_0^\pi \frac{dx}{(5+4\cos x)^3}=\frac{11\pi}{81}$$

30. Assuming
$$\int_0^{\pi/2} \frac{dx}{a + b \cos x} = \frac{1}{\sqrt{a^2 - b^2}} cos^{-1} \left(\frac{b}{a}\right)$$
, $a > b$. Show that $\int_0^{\pi/2} \frac{\log(1 + \cos \alpha \cos x)}{\cos x} dx = \frac{\pi^2}{8} - \frac{\alpha^2}{2}$

31. Prove that
$$\int_0^1 x^a (\log x)^n dx = \frac{(-1)^n n!}{(a+1)^{n+1}}$$

32. By differentiating $\int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a}$ w.r.t a under the integral sign successively, prove that $\int_0^\infty \frac{dx}{(x^2 + a^2)^{n+1}} = \frac{(2n)!\pi}{2^{2n+1} \cdot (n!)^2 a^{2n+1}}$

ANSWERS

26.
$$\frac{\pi}{2\sqrt{1+a}}$$
29. $\frac{\pi}{\sqrt{a^2-h^2}}$

$$27. \quad \frac{\pi}{2\sqrt{1+a}}$$

28.
$$\frac{\pi}{\sqrt{a^2-b^2}}$$

$$29. \quad \frac{\pi}{\sqrt{a^2-b^2}}$$