Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

INF/UFG - LFA 2021/1 - H. Longo

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (865 - 912 de 913)

Uma linguagem regular

- $ightharpoonup \mathcal{L}_1 = \{a^i b^i \mid 0 \le i \le n\}, \text{ para um } n \text{ fixo.}$
- \blacktriangleright Estados s_i 's contam a quantidade de a's e estados q_i 's contam quantos b's faltam para igualar à quantidade de a's.

Uma linguagem não regular

- $\mathcal{L}_2 = \{a^i b^i \mid i \ge 0\}.$
- Qualquer autômato determinístico construído para aceitar \mathcal{L}_2 tem um número infinito de estados:
 - Suponha que \mathcal{L}_2 é aceita pelo DFA M.
 - $ightharpoonup s_i$ é o estado de M após processar a cadeia a^i ($\overline{\delta}(s_0, a^i) = s_i$).
 - $\forall i, j \ge 0$, com $i \ne j$, $a^i b^i \in \mathcal{L}_2$, $a^j b^j \in \mathcal{L}_2$, $a^i b^j \notin \mathcal{L}_2$ e $a^j b^i \notin \mathcal{L}_2$.
 - $\overline{\delta}(s_0, a^i b^i) \neq \overline{\delta}(s_0, a^j b^i).$
 - $\overline{\delta}(s_0, a^i b^i)$ é estado final e $\overline{\delta}(s_0, a^j b^i)$ não é final.
 - $\overline{\delta}(s_0, a^i b^i) = \overline{\delta}(\overline{\delta}(s_0, a^i), b^i) = \overline{\delta}(s_i, b^i) \in \overline{\delta}(s_0, a^j b^i) = \overline{\delta}(\overline{\delta}(s_0, a^j), b^i) = \overline{\delta}(s_i, b^i).$
 - $ightharpoonup s_i \neq s_i$ uma vez que $\overline{\delta}(s_i, b^i) \neq \overline{\delta}(s_j, b^i)$.
 - Estados s_i e s_i são distintos para todos valores $i \neq j$.
 - ightharpoonup M deve conter um número infinito de estados correspondentes a s_1, s_2, \ldots

Uma linguagem não regular

Teorema 5.42

- ► A linguagem $\mathcal{L}_2 = \{a^i b^i \mid i \ge 0\}$ não é regular.
- ► Pode-se mostrar que uma linguagem é regular construindo-se uma DFA que a aceite.
- Como provar que uma linguagem não é regular?
 - 1. Provar que não existe DFA que a aceite (no caso da linguagem \mathcal{L}_2 , é a argumentação usada antes de enunciar o Teorema 5.42); ou
 - 2. Usar o Teorema de Myhill-Nerode ou
 - 3. Usar o Pumping Lemma.

INF/UFG - LFA 2021/1 - H. Longo

Indistinguibilidade de cadeias

Definição 5.43

▶ Duas cadeias $u, v \in \Sigma^*$ são distinguíveis em relação à linguagem $\mathcal{L} \subseteq \Sigma^*$ se existir alguma cadeia $w \in \Sigma^*$ tal que $uw \in \mathcal{L}$ e $vw \notin \mathcal{L}$.

Exemplo 5.44

- ▶ $a, aa \in \Sigma^* = \{a\}^*$ não são distinguíveis em relação à linguagem $\mathcal{L}_1 = \{a^n \mid n \in \mathbb{Z}^+\}$, porque aa^k e aaa^k pertencem à linguagem \mathcal{L}_1 , para qualquer $k \in \mathbb{Z}^+$.
- $a, aa \in \Sigma^* = \{a, b\}^*$ são distinguíveis em relação à linguagem $\mathcal{L}_2 = \{a^n b^n \mid n \in \mathbb{Z}^+\},$ porque $ab \in \mathcal{L}_2$ enquanto $aab \notin \mathcal{L}_2$.

Pumping Lemma para linguagens regulares (868 - 912 de 913

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (869 - 912 de 913

Linguagens não regulares

Teorema 5.45 (Myhill-Nerode)

- ▶ Seia \mathcal{L} uma linguagem sobre o alfabeto Σ . Se existe um conjunto $S \subseteq \Sigma^*$ que satisfaz as seguintes propriedades:
 - 1. |S| é infinita, e
 - 2. se $u, v \in S$ e $u \neq v$, então u e v são distinguíveis em relação à \mathcal{L} ; então £ não é regular.

Demonstração.

Demonstração também similar à demonstração do Teorema 5.42.

Linguagens não regulares

- ► A linguagem $\mathcal{L} = \{a^i b^i \mid i \ge 0\}$ não é regular.
 - ▶ Seja $S = \{a^n \mid n \in \mathbb{N}\}$. Este conjunto é infinito porque contém uma cadeia para cada número natural. Agora, considere quaisquer cadeias $a^n, a^m \in S$ tais que $n \neq m$, então $a^nb^n \in \mathcal{L}$ e $a^mb^n \notin \mathcal{L}$. Logo, a^n e a^m são distinguíveis em relação a \mathcal{L} . Assim, S é um conjunto infinito de cadeias distinguíveis em relação a \mathcal{L} . Portanto, pelo Teorema de Myhill-Nerode, £ não é regular.
- ▶ O conjunto \mathcal{L} de palíndromos sobre $\{a, b\}$ não é regular.
 - \triangleright $S = \{a^k b \mid k \ge 0\} \subset \Sigma^* \Rightarrow |S| = \infty.$
 - \bullet $u = a^i b \in S$, $v = a^j b \in S$ e $w = a^i \in \Sigma^* \Rightarrow uw \in \mathcal{L}$ e $vw \notin \mathcal{L}$, $\forall i \neq j$.

Linguagens não regulares

Exemplo 5.47

► Gramáticas regulares não são adequadas para definir linguagens de programação que contém expressões aritméticas/booleanas.

Gramática	Derivação
$S \to A$	$S \Rightarrow A$
$A \to T \mid A + T$	$\Rightarrow T$
$T \to b \mid (A)$	$\Rightarrow (A)$
	$\Rightarrow (T)$
	\Rightarrow (b)

- ▶ Regras $T \Rightarrow (A) \Rightarrow (T)$ e $T \rightarrow b$, geram $(b), ((b)), (((b))), \dots$

 - $\mathbf{v} = (ib \in S, \mathbf{v} = (jb \in S \in W =)^i \in \Sigma^* \Rightarrow uw \in \mathcal{L} \in vw \notin \mathcal{L}, \forall i \neq j.$
 - ► *S*, *u*, *v* e *w* satisfazem as condições do Teorema 5.45.
- Argumento similar pode ser usado para mostrar que PASCAL, C, ADA, ... não são regulares.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (872 - 912 de 913

Linguagens não regulares

Teorema 5.48

 \triangleright Se \mathcal{L}_1 é uma linguagem regular e \mathcal{L}_2 uma linguagem livre de contexto, então a linguagem $\mathcal{L}_1 \cap \mathcal{L}_2$ não necessariamente é regular.

Exemplo 5.49

- ▶ Sejam $\mathcal{L}_1 = a^*b^*$ e $\mathcal{L}_2 = \{w \in \{a,b\}^* \mid |w|_a = |w|_b\}.$
- ▶ Se \mathcal{L}_2 é regular, então $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$ também é regular.
- ► Contudo, $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2 = \{a^i b^i \mid i \ge 0\}$ não é regular.

Exemplo 5.50

 $\mathcal{L} = \{a^i b^j \mid i, j \ge 0 \text{ e } i \ne j\}$ não é regular, pois $\overline{\mathcal{L}} \cap a^* b^* = \{a^i b^i \mid i \ge 0\}$ não é regular.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (873 - 912 de 913

Pumping Lemma

- Pumping: aceitação de cadeias com repetição de subcadeias.
- Considere o seguinte DFA com 4 estados:

- ▶ Processamento da cadeia w = aabb ($|w| \ge 4$): $[s_0, aabb] \longmapsto [s_1, abb] \longmapsto [s_2, bb] \longmapsto [s_3, b] \longmapsto [s_3, \varepsilon]$
- ▶ Processamento da cadeia w = abbab ($|w| \ge 4$): $[s_0, abbab] \mapsto [s_1, bbab] \mapsto [s_1, bab] \mapsto [s_1, ab] \mapsto [s_2, b] \mapsto [s_3, \varepsilon]$

Pumping Lemma

Caso geral

- Seja £ uma linguagem regular infinita (contém um número infinito de cadeias).
- \mathcal{L} é aceita por um DFA $M = \langle \Sigma, S, s_0, \delta, F \rangle$, com k estados.
- ▶ Se $w \in \mathcal{L}$, $|w| = n \ge k$, então pelo menos um estado do DFA é repetido no processamento de w:

$$w = w_1 \dots w_i \dots w_j \dots w_n.$$

$$[s_0, w_1 \dots w_i \dots w_j \dots w_n] \longmapsto \cdots \longmapsto$$

$$[s_a, w_i \dots w_i \dots w_n] \longmapsto \cdots \longmapsto$$

$$[s_q, w_j \dots w_n] \longmapsto \cdots \longmapsto$$

$$[s_{f-1}, w_n] \longmapsto$$

$$[s_f, \varepsilon], \quad s_f \in F.$$

Lema 5.51

Seja G o diagrama de estados de um DFA com k estados. Qualquer caminho de comprimento k em G contém um ciclo.

Demonstração.

- ▶ Um caminho de comprimento k contém k + 1 vértices.
- Como existem apenas k vértices em G, deve existir um vértice s_q que ocorre em pelo menos duas posições do caminho.
- ightharpoonup O subcaminho da primeira ocorrência de s_q para a segunda produz o ciclo.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (876 - 912 de 913

Pumping Lemma

Corolário 5.52

Seja G o diagrama de estados de um DFA com k estados e c um caminho de comprimento k ou maior. O caminho c pode ser decomposto em subcaminhos q, r e s, tal que c = qrs, o comprimento de qr é menor ou igual a k e r é um ciclo.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (877 - 912 de 913

Pumping Lemma

Teorema 5.53 (*Pumping Lemma* para linguagens regulares)

Seja $\mathcal L$ uma linguagem infinita regular. Existe um inteiro p (tamanho crítico ou pumping length), tal que toda cadeia $w \in \mathcal L$, com comprimento $|w| \geqslant p$, pode ser escrita como w = xyz, com $|xy| \leqslant p$, |y| > 0 e $xy^iz \in \mathcal L$, $\forall i \geqslant 0$.

Pumping Lemma

Teorema 5.53 (*Pumping Lemma* para linguagens regulares)

Seja \mathcal{L} uma linguagem regular que é aceita por um DFA M com k estados. Seja $w \in \mathcal{L}$, com $|w| \ge k$. Então, w por ser escrita como w = xyz, com $|xy| \le k$, |y| > 0 e $xy^iz \in \mathcal{L}$, $\forall i \ge 0$.

Demonstração.

- ▶ Seja $w \in \mathcal{L}$ tal que $n = |w| \ge k$. O processamento de w em M gera um caminho c de comprimento n em M.
- ► Este caminho pode ser quebrado em subcaminhos *q*, *r* e *s*, onde *r* é um ciclo no diagrama de estados (Corolário 5.52).
- ► A decomposição de *w* em *x*, *y* e *z* consiste das cadeias processadas nos subcaminhos *q*, *r* e *s*, respectivamente.

- Pumping: aceitação de cadeias com repetição de subcadeias.
 - k = 4 (quantidade de estados do autômato M).
 - w = xyz = ababab, com x = a, y = bab e z = ab.
 - $xy^3z = a(bab)^3ab = a(bab)(bab)(bab)ab.$

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (880 - 912 de 913

Pumping Lemma

Como provar que uma linguagem £ não é regular?

- 1. Suponha que \mathcal{L} é regular.
- 2. Use o *Pumping Lemma* para garantir a existência de p, tal que toda cadeia w, com $|w| \ge p$, satisfaz as condições do lema.
- 3. Encontre uma cadeia $w \in \mathcal{L}$, com $|w| \ge p$, que não satisfaça as condições do
 - Análise individual das possibilidades de divisão de w.
- 4. A existência de w contradiz o *Pumping Lemma*. Logo, \mathcal{L} não é regular.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (881 - 912 de 913

Pumping Lemma

Esquema de prova por contradição com o Pumping Lemma

- 1. Supor que a linguagem \mathcal{L} é regular.
- 2. Definir p como o pumping length dado pelo lema.
- 3. Escolher $w \in \mathcal{L}$ (geralmente associada a p).
- 4. Como $w \in \mathcal{L}$ e $|w| \ge p$, o lema garante que w pode ser dividida em 3 partes, w = xyz, tal que $|xy| \le p$, $y \ne \varepsilon$ e $xy^iz \in \mathcal{L}$, $i \ge 0$.
- 5. Para todos as valores possíveis de y (dadas as condições do lema), mostrar que $xy^iz \notin \mathcal{L}$.
- 6. A contradição é mostrada para todos os casos, o que prova que \mathcal{L} não é regular.
- Notas:
 - Escolher uma cadeia w que pode ser bombeada não prova nada!
 - Às vezes, encontrar uma cadeia w apropriada é a parte mais difícil.

Pumping Lemma

Exemplo 5.54

- ► Suponha que £ é regular.
 - \mathcal{L} é aceito por algum DFA M com k estados.
- ▶ Seia $w = a^k b^k$. Qualquer decomposição de w em xyz, satisfazendo as condições do Pumping Lemma, deve ter a seguinte forma:

$$\overbrace{a^k b^k}^w = \overbrace{a^i}^x \overbrace{a^j}^y \overbrace{a^{k-i-j} b^k}^z,$$

onde $i + j \le k$ e j > 0.

Exemplo 5.54

 $\mathcal{L} = \{a^i b^i \mid i \geqslant 0\}.$

- Portanto, $xy^2z = \overbrace{a^i}^x \overbrace{a^ja^j}^y \overbrace{a^{k-i-j}b^k}^z = a^ka^jb^k$.
- ► Como $xy^2z \notin \mathcal{L}$, não existe decomposição possível de w que satisfaça as condições do lema.
- ► Portanto, £ não é regular.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (884 - 912 de 913)

Pumping Lemma

Exemplo 5.55

- $ightharpoonup \mathcal{L} = \{0^n 1^n \mid n \ge 0\}.$
- ► Suponha que £ é regular.
- \blacktriangleright *k* é o *pumping length* dado pelo lema.
- Seia $w = 0^k 1^k$:
 - $w \in \mathcal{L} e |w| \ge k \Rightarrow w = xyz e xy^iz \in \mathcal{L}, \forall i \ge 0.$

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (885 - 912 de 913)

Pumping Lemma

Exemplo 5.55

- $ightharpoonup \mathcal{L} = \{0^n 1^n \mid n \ge 0\}.$
- Contradições:
 - a) y consiste somente de 0's.
 - ► A cadeia *xyyz* tem mais 0's do que 1's e não pertence a £.
 - b) y consiste somente de 1's.
 - ► A cadeia xyyz tem mais 1's do que 0's e não pertence a £.
 - c) y consiste de 0's e 1's.
 - ► A cadeia xyyz pode ter o mesmo número de 0's e 1's, mas com ocorrência de 1's antes de 0's.

Pumping Lemma

- $\blacktriangleright \mathcal{L} = \{w \in \{0, 1\}^* \mid w \text{ tem igual número de 0's e 1's}\}.$
- ► Suponha que £ é regular.
- ▶ p é o pumping length dado pelo lema.
- Seja $w = 0^p 1^p$:
 - $\blacktriangleright w \in \mathcal{L} e |w| \ge p \Rightarrow w = xyz e xy^iz \in \mathcal{L}, \forall i \ge 0.$

Exemplo 5.56

- \blacktriangleright $\mathcal{L} = \{w \in \{0, 1\}^* \mid w \text{ tem igual número de 0's e 1's}\}.$
- ► Contradição????
 - a) $x = z = \varepsilon$ e $y = 0^p 1^p$.
 - ► A cadeia xyⁱz sempre tem o mesmo número de 0's e 1's!!!
 - b) Se $|xy| \le p$, então y deve consistir só de 0's.
 - ► A cadeia xyyz tem mais 0's do que 1's.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (888 - 912 de 913)

Pumping Lemma

Exemplo 5.57

- $ightharpoonup \mathcal{L} = \{a^i b^j c^j \mid i, j > 0\}.$
- ► Suponha que £ é regular.
 - \blacktriangleright \mathcal{L} é aceito por algum DFA M com k estados.
- ▶ Pelo *Pumping Lemma*, toda cadeia $w \in \mathcal{L}$, com $|w| \ge k$, pode ser decomposta em w = xyz, com $|xy| \le k$, $y \ne \varepsilon$ e $xy^iz \in \mathcal{L}$, $\forall i \ge 0$
- ▶ Seja $w = ab^k c^k$. Qualquer decomposição de w em xyz, satisfazendo as condições do Pumping Lemma, deve ter uma das seguintes formas:

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (889 - 912 de 913)

Pumping Lemma

Exemplo 5.57

- $\mathcal{L} = \{a^i b^j c^j \mid i, i > 0\}.$
- 1. *a* ∉ *y*:

$$w = ab^k c^k = \underbrace{ab^i}_{x} \underbrace{b^j}_{y} \underbrace{b^{k-i-j}c^k}_{z},$$

onde $i + j \le k - 1$ e j > 0.

Portanto, $xy^0z = ab^ib^{k-i-j}c^k = ab^{k-j}c^k \notin \mathcal{L}$.

Pumping Lemma

Exemplo 5.57

- $ightharpoonup \mathcal{L} = \{a^i b^j c^j \mid i, j > 0\}.$
- 2. $a \in y$:

$$z = ab^k c^k = \overbrace{\varepsilon}^x \overbrace{ab^i}^y \overbrace{b^{k-i}c^k}^z,$$

onde $i \leq k-1$.

Portanto, $xy^0z = b^{k-i}c^k \notin \mathcal{L}$.

Exemplo 5.57

- $\mathcal{L} = \{a^i b^j c^j \mid i, j > 0\}.$
- ► Assim, pode-se concluir que $xy^0z \notin \mathcal{L}$.
- Logo, não existe decomposição possível de $w = ab^k c^k$ que satisfaça as condições do lema.
- ► Portanto, £ não é regular.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (892 - 912 de 913

Pumping Lemma

Exemplo 5.58

- $ightharpoonup \mathcal{L} = \{uvu \mid u, v \in \{0, 1\}^+\}.$
- ► Suponha que £ é regular.
 - $ightharpoonup \mathcal{L}$ é aceito por algum DFA M com k estados.
- ► Seja $w = 0^n 110^n 1 \in \mathcal{L}$, com $n \ge k$.
 - $u = 0^n 1 e v = 1.$
- ▶ O Pumping Lemma garante que $w = uvu = 0^n 110^n 1$ pode ser decomposta em xyz, com $y \neq \varepsilon$ e $xy^iz \in \mathcal{L}, \ \forall \ i \geqslant 0.$

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (893 - 912 de 913

Pumping Lemma

Exemplo 5.58

- $\mathcal{L} = \{uvu \mid u, v \in \{0, 1\}^+\}.$
- ▶ Pelo Punping Lemma, dado que w = xyz, $|xy| \le k$ e $y \ne \varepsilon$, então $xy^2z \in \mathcal{L}$.
- ► Mas $xy^2z = 0^{n+|y|}110^n1 \notin \mathcal{L}$, pois o tamanho do sufixo 0^n1 de xy^2z é no máximo igual à quantidade de símbolos 0 no prefixo $0^{n+|y|}1$, ou seja, $|0^{n+|y|}1| > |0^n1|$.
- Logo, a cadeia xy^2z não contém um prefixo que seja igual a um sufixo da cadeia.

Pumping Lemma

- $\mathcal{L} = \{uvu \mid u, v \in \{0, 1\}^+\}.$
- Assim, não existe decomposição possível de $w = uvu = 0^n 110^n 1$ em w = xyz que satisfaça as condições do lema.
- ► Portanto, £ não é regular.

Exemplo 5.59

- $\blacktriangleright \mathcal{L} = \{a^i \mid i \text{ é primo}\}.$
- ► Suponha que £ é regular.
 - $ightharpoonup \mathcal{L}$ é aceito por algum DFA M com k estados.
- ▶ Pelo *Pumping Lemma*, $w = a^n \in \mathcal{L}$, com $n \ge k$ e primo, pode ser decomposta em $w = a^n = xyz$, com $|xy| \le k$, $y \ne \varepsilon$ e $xy^iz \in \mathcal{L}$, $\forall i \ge 0$.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (896 - 912 de 913

Pumping Lemma

Exemplo 5.59

- $ightharpoonup \mathcal{L} = \{a^i \mid i \text{ \'e primo}\}.$
- ▶ Se $w' = xy^{n+1}z \in \mathcal{L}$, então $|xy^{n+1}z|$ deve ser um número primo. Mas:

$$|w'| = |xy^{n+1}z| = |xyy^nz|$$
$$= |xyz| + |y^n|$$
$$= n + n \cdot |y|$$
$$= n \cdot (1 + |y|).$$

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (897 – 912 de 913

Pumping Lemma

Exemplo 5.59

- $ightharpoonup \mathcal{L} = \{a^i \mid i \text{ \'e primo}\}.$
- ► Como $n \ge k$, |y| > 0 e $|xy^{n+1}z| = n \cdot (1 + |y|)$, então $|xy^{n+1}z|$ não é primo.
- ▶ Não existe decomposição possível de $w = a^n$ que satisfaça as condições do lema.
- ightharpoonup Portanto, $\mathcal L$ não é regular.

Pumping Lemma

- $\mathcal{L} = \{w \in \{a, b\}^* \mid |w| \text{ \'e um quadrado perfeito}\}.$
- ► Suponha que £ é regular.
 - \mathcal{L} é aceito por algum DFA M.
 - ▶ Seja k o número de estados de M.
- ▶ Pelo *Pumping Lemma*, toda cadeia $w \in \mathcal{L}$, com $|w| \ge k$, pode ser decomposta em subcadeias $x, y \in z$, com $|xy| \le k, y \ne \varepsilon$ e $xy^iz \in \mathcal{L}$, $\forall i \ge 0$.

Exemplo 5.60

- ▶ $\mathcal{L} = \{w \in \{a, b\}^* \mid |w| \text{ é um quadrado perfeito}\}.$
- ▶ Seja w uma cadeia qualquer de comprimento k^2 .
 - ▶ O *Pumping Lemma* requer a decomposição de w em subcadeias x, y e z, com $0 < |xy| \le k$ e |y| > 0, ou seja, $|y| \le k$. Logo,

$$k^{2} < |xy^{2}z| = |xyz| + |y|$$

$$= k^{2} + |y|$$

$$\leq k^{2} + k$$

$$< k^{2} + 2.k + 1 = (k+1)^{2}.$$

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (900 - 912 de 913)

Pumping Lemma

Exemplo 5.60

- ▶ $\mathcal{L} = \{w \in \{a, b\}^* \mid |w| \text{ é um quadrado perfeito}\}.$
- ► Como $k^2 < |xy^2z| < (k+1)^2$, então $|xy^2z|$ não é um quadrado perfeito.
- ▶ Não existe decomposição possível de *w* que satisfaça as condições do lema.
- ► Portanto, £ não é regular.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (901 – 912 de 913)

Cardinalidade da linguagem de um DFA

Teorema 5.61

Seja D um DFA com k estados:

- 1. $\mathcal{L}(D) \neq \emptyset$ se, e somente se, D aceita uma cadeia w com |w| < k.
- 2. $|\mathcal{L}(D)| = \infty$ se, e somente se, D aceita uma cadeia w com $k \le |w| < 2k$.

Cardinalidade da linguagem de um DFA

Demonstração.

1. $\mathcal{L}(D) \neq \emptyset$ se, e somente se, D aceita uma cadeia w com |w| < k.

Ш

Cardinalidade da linguagem de um DFA

Demonstração.

- 1. $\mathcal{L}(D) \neq \emptyset$ se, e somente se, D aceita uma cadeia w com |w| < k.
 - Condição óbvia.

П

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (904 - 912 de 913)

Cardinalidade da linguagem de um DFA

Demonstração.

- 1. $\mathcal{L}(D) \neq \emptyset$ se, e somente se, D aceita uma cadeia w com |w| < k.
 - Condição óbvia.
 - \Rightarrow Seja um DFA D, tal que $\mathcal{L}(D) \neq \emptyset$, e $w \in \mathcal{L}(D)$ tal que |w| é mínimo.
 - ▶ Suponha que $|w| \ge k$. Pelo *Pumping Lemma*, w = xyz e $xy^iz \in \mathcal{L}(D)$, $\forall i \ge 0$.
 - ▶ Logo $xy^0z = xz \in \mathcal{L}(D)$ contradiz a minimalidade de |w|.
 - Portanto, |w| < k.

...

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (905 - 912 de 913)

Cardinalidade da linguagem de um DFA

Demonstração.

2. $|\mathcal{L}(D)| = \infty$ se, e somente se, D aceita uma cadeia $w \operatorname{com} k \leq |w| < 2k$.

Cardinalidade da linguagem de um DFA

Demonstração.

- 2. $|\mathcal{L}(D)| = \infty$ se, e somente se, D aceita uma cadeia w com $k \le |w| < 2k$.
 - \leftarrow Assuma que *D* aceita uma cadeia $w \operatorname{com} k \leq |w| < 2k$.
 - ▶ Então w = xyz e x, y e z satisfazem as condições do *Pumping Lemma*.
 - Portanto, $xy^iz \in \mathcal{L}(D), \forall i \geq 0.$
 - ▶ Logo, $|\mathcal{L}(D)| = \infty$.

Cardinalidade da linguagem de um DFA

Demonstração.

- 2. $|\mathcal{L}(D)| = \infty$ se, e somente se, M aceita uma cadeia w com $k \le |w| < 2k$.
 - \Rightarrow Assuma que $|\mathcal{L}(D)| = \infty$.
 - O número de cadeias de cardinalidade menor que *k* é finito.
 - Assim, suponha que $w \in \mathcal{L}(D)$, com $|w| \ge 2k$ é de comprimento mínimo.
 - ▶ Pelo Pumping Lemma, w = xyz, $|y| \le k$ e $xy^0z = xz \in \mathcal{L}(D)$.
 - ▶ Logo $k \le |xy| < 2k$ contradiz a minimalidade de |w|.
 - Portanto, |w| < 2k.

П

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (908 - 912 de 913)

Cardinalidade da linguagem de um DFA

Corolário 5.62

Seja D um DFA. Existe um procedimento que determina se:

- 1. $\mathcal{L}(D)$ é vazia,
- 2. $\mathcal{L}(D)$ é finita, ou
- 3. $\mathcal{L}(D)$ é infinita.

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (909 – 912 de 913

Cardinalidade da linguagem de um DFA

- Procedimento para determinar a cardinalidade da linguagem de um DFA $D = \langle \Sigma, S, s_0, \delta, F \rangle$:
 - Seja k = |S| e $m = |\Sigma|$.
 - $ightharpoonup rac{(m^k-1)}{(m-1)}$ é o número de cadeias com comprimento menor que k.
 - ightharpoonup O Teorema 5.61 determina se $\mathcal{L}(D) = \emptyset$ ao testar cada uma dessas cadeias.
 - ▶ Testar todas as cadeias de comprimento entre k e 2k 1 responde se a linguagem é finita ou infinita.

Cardinalidade da linguagem de um DFA

Corolário 5.63

Sejam D_1 e D_2 dois DFA's. Existe um procedimento que determina se D_1 e D_2 são equivalentes.

Demonstração.

- ▶ A linguagem $L = (\mathcal{L}(D_1) \cap \overline{\mathcal{L}(D_2)} \cup (\overline{\mathcal{L}(D_1)} \cap \mathcal{L}(D_2))$ é regular.
- ightharpoonup L é vazia se, e somente se, $\mathcal{L}(D_1)$ e $\mathcal{L}(D_2)$ são idênticas.
- Pelo Corolário 5.62 existe um procedimento para determinar se L é vazia, ou seja, se $\mathcal{L}(D_1)$ e $\mathcal{L}(D_2)$ são idênticas.

Roteiro

INF/UFG - LFA 2021/1 - H. Longo

Pumping Lemma para linguagens regulares (912 – 912 de 913)

Livros texto

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It – A Structured Approach. Cambridge University Press, 1996.

J. E. Hopcroft; J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação.

T. A. Sudkamp.
Languages and Machines – An Introduction to the Theory of Computer Science. Addison Wesley Longman, Inc. 1998.

J. Carroll; D. Long.
Theory of Finite Automata – With an Introduction to Formal Languages.

M. Sipser.

Introduction to the Theory of Computation.
PWS Publishing Company, 1997.

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação.

Bookman, 2000.

INF/UFG - LFA 2021/1 - H. Longo Bibliografia (913 - 913 de 913)