

Sistemas Operacionais

Profº - Dr. Thales Levi Azevedo Valente thales.l.a.valente@gmail.com.br

Sejam Bem-vindos!

Os celulares devem ficar no silencioso ou desligados

Pode ser utilizado apenas em caso de emergência

Boa tarde/noite, por favor e com licença DEVEM ser usados

Educação é essencial

Resumo da primeira aula..

Aula 1...

Válvulas

Primeira Geração (1945 - 1955)

Usou válvulas para elementos lógicos digitais e memória.

Transistores

Segunda Geração (1955 - 1965)

Substituição das válvulas pelo transistor.

Terceira Geração (1965-1980)

Circuitos Integrados foram criados.

Computadores Pessoais

Quarta Geração (1980 - atual)

IBM, Apple e os primeiros computadores pessoais.

Computadores Móveis

Descoberta inovadora (atual-futuro)

Chips que continham todos os elementos de uma CPU.

6a Geração....?

- Sistemas Operacionais Inteligentes?
- Computação Quântica ?

Aula 2....

Aula 3....

Mono programável

Multiprogramável

Múltiplos Processadores

Batch

Time Sharing

Real Time

Fortemente Acoplados

Fracamente Acoplados

SMP

NUMA

S.O. de Rede S.O. Distribuído

Aula 4....

Objetivos de hoje

Mostrar conceitos básicos e alguns algoritmos de escalonamento de processos

Ao final da aula, os alunos serão capazes de explicar o funcionamento básico de um escalonador e qual o seu objetivo dentro do contexto de sistemas operacionais

Roteiro: Escalonamento de Processos

Introdução

Diversos processos podem estar no estado de pronto, desta forma é necessário estabelecer critérios para selecionar a ordem em que os processos serão executados pelo processador

(Política de Escalonamento);

Introdução

Compare um conjunto de programas, cada qual com seus processos para serem executados com a imagem ao lado sem um intermediador para arbitrar as execuções. Como seria o desempenho do computador?

O que é um escalonador?

É um processo de mais baixo nível responsável por escolher os processos que serão executados pelo processador.

Escalonador

É um processo de mais baixo nível responsável por escolher os processos que serão executados pelo processador.

- Rotina do SO que tem como principal função implementar os critérios da política de escalonamento
- Em um sistema multiprogramável, o escalonador é fundamental pois todo o compartilhamento do processador é dependente dessa rotina

Funções Básicas

- Define a política que será utilizada para definir a ordem em que os processos da fila entrarão em execução.
- Busca manter o processador ocupado a maior parte do tempo.
- Balancear o uso da CPU entre processos
- Privilegiar a execução de aplicações críticas

Funções Básicas

- Maximizar o Throughput do sistema
- Oferecer tempos de respostas razoáveis para usuários interativos

- Em palavras simples
 - Escolhe a próxima tarefa a ser executada.
 - É a parte mais demorada.
 - Faz a fila
 - Gerencia a fila

Mudança de Contexto

- 1. Salva os registradores do processo A
- 2. Carrega os registradores do processo B
- 3. Salva os registradores do processo B
- 4. Carrega os registradores do processo A

É um processo custoso.

Mudança de Contexto

- 1. Salva os registradores do processo A
- 2. Carrega os registradores do processo B
- 3. Salva os registradores do processo B
- 4. Carrega os registradores do processo A

Envolve 2 componentes:

Dispatcher

Escalonador

Dispatcher

- Responsável pela troca de contexto dos processos após o escalonador determinar qual processo deve fazer uso do processador
- Armazena e recupera o contexto
- Atualiza as informações do PCB
- Processo rápido

O período de tempo gasto na substituição de um processo em execução por outro é denominado de **latência do dispatcher**.

Escalonador e Dispatcher

Quando o escolanador é chamado?

- Um novo processo é criado;
- Um processo chega ao fim e um processo pronto deve ser executado
- Um processo é bloqueado e precisa colocar outro processo em execução.

Critérios de Escalonamento

Critérios usados pelo Escalonador para decidir o momento em que cada processo obterá a CPU

- As características de cada sistema operacional determinam os principais aspectos para a implementação de políticas de escalonamento adequadas;
- Evitar starvation que um processo fique indefinidamente esperando pela utilização do processador.

Critérios de Escalonamento

Critérios usados pelo Escalonador para decidir o momento em que cada processo obterá a CPU

- Principais critérios
 - Utilização do processador
 - Throughput
 - Tempo de Processador
 - Tempo de Espera
 - Tempo de Turnaround
 - Tempo de Resposta

Utilização do Processador

- Desejável que fique maior parte do tempo ocupado
- Exemplo
 - Utilização de 30% indica uma carga de processamento baixa;
 - Por outro lado, uma utilização de 90% indica um sistema bastante carregado (atingindo quase a capacidade máxima)

Tempo do Processador

• É o tempo que um processo leva no estado de execução durante seu processamento

• É o tempo em que ele efetivamente ocupou a CPU

Tempo de Espera

- É o tempo que um processo leva na fila de estado de pronto aguardando ser processado
- Não é o tempo em estado de "em espera (bloqueado)"
- Deseja-se redução do Tempo de Espera

Tempo de Turnaround

- É o tempo que um processo leva desde a criação até seu término
- Deseja-se minimizar o Tempo de Turnaround
- Leva em consideração
 - Tempo gasto na espera para alocação de memória;
 - Espera na fila de pronto (tempo de espera)
 - Tempo de processador;
 - Tempo na fila de espera (op. de E/S)

Tempo de Resposta

- É o tempo decorrido entre uma requisição ao sistema ou à aplicação e o instante em que a resposta é exibida
- Em geral, o tempo de resposta não é limitado pela capacidade de processamento, mas pela velocidade dos dispositivos de E/S

Questão de Concurso

Sistemas Operacionais Disciplina – Assunto Algoritmo de Escalonamento,
Processos Ano: 2010 Banca: ESAF Órgão: SUSEP Prova: Analista Técnico

São critérios de escalonamento de processos em sistemas operacionais:

- a) througset, custo de recicling, tempo de turnover.
- b) throughput, tempo de espera, tempo de turnaround.
- c) throughput, tempo de controle, tempo de stayaround.
- d) output, paralelismo de controle, tempo de
- movearound.
- e) threadout, velocidade de espera, memória de
- turnaround.

Tipos de Escalonadores

Preemptivo

- Permite que o processo, por algum motivo, perca seu uso da CPU;
- Provoca interrupção forçada para que outro processo possa utilizar a CPU.

Não-preemptivo

- Não interrompe a execução de um processo.
- Condições de parada:
 - Termine de executar
 - Solicite uma operação de E/S
 - Libera explicitamente o uso da CPU e volta para fila

Algoritmos de Escalonamento

- Sistemas batch
 - First-come first-serve (FIFO)
 - Shortest Job First
 - Shortest Remaining Time Next
- Sistemas Interativos
 - Round Robin Scheduling
 - Por Prioridade
 - Múltiplas Filas
- Sistemas de Tempo Real

First-Come-First-Served (FCFS) ou FIFO

- Não-preemptivo.
- O processo que chegar primeiro ao estado de pronto é o selecionado para a execução.
- Fácil de entender e fácil de programar.

First-Come-First-Served (FCFS) ou FIFO

Possui algumas desvantagens:

- A impossibilidade de saber quando um processo terá sua execução iniciada;
- O algoritmo não se preocupa com o tempo médio de espera;
- Não é muito eficiente se houver processos curtos esperando atrás de processos longos

First-Come-First-Served (FCFS) ou FIFO

Possui algumas desvantagens:

 Lembra a fila de banco. Leva em conta apenas quem chega primeiro, não importando se alguns processos podem ser muito mais rápido que outros ou a importância do problema de cada um

Shortest Job First

- Não-preemptivo
- Deve-se prever o tempo de execução de cada processo
- Seleciona o processo com menor tempo de execução
- Pode ser prejudicial se houver muitos processos curtos, pois processos longos podem esperar indefinidamente.
- Turnaround menor que o FIFO

Shortest Job First

Processo	Tempo de Processador
Α	10
В	4
С	3

Turnaround FIFO

- Turnaround A = 10
- Turnaround B = 14
- Turnaround C = 17

Média =
$$41/3 = 13,6$$

Turnaround SJF

Média =
$$30/3 = 10$$

Shortest Remaning Time Next

- "Versão" preemptiva do SJF.
- Processos com menor tempo de execução são executados primeiro.
- Caso um processo de tempo de execução menor que o processo que atualmente está em execução surja, o processo em execução é interrompido para que o de menor tempo seja executado (toma o controle).

Shortest Remaning Time Next

Processo	Tempo de Processador
Α	10
В	4
С	3

Turnaround FIFO

- Turnaround A = 10
- Turnaround B = 14
- Turnaround C = 17

Média =
$$41/3 = 13,6$$

Turnaround SJF

Média =
$$30/3 = 10$$

Exercício para casa

Simule as politicas de escalonamento **não-preemptivas FIFO e SJF** e as preempitivas circular (Quantum = 2) e **por prioridade** para a situação de chegada de processos conforme tabela de tempos abaixo:

#	Chegada	Duração	Prioridade
H	0	1	4
I	3	3	3
J	3	3	1
K	4	1	0
L	5	5	2
M	9	2	4
О	9	1	0

Bibliografia

TANENBAUM, A. S.; BOS, H. Sistemas Operacionais Modernos. 4ª Edição. Editora Pearson, 2016.

TANEMBAUM, A. S.; WOODHULL, A. S. Sistemas Operacionais. 3ª Edição. Editora Bookman, 2008.

DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. Sistemas Operacionais. 3ª Edição. Editora Pearson, 2005.

Dúvidas?

Próxima Aula

- Começam os seminários de
 - Continuação de escalonamento de processos
 - Gerenciamento de Memória
 - Gerência de Arquivos
 - Proteção e Segurança
 - Gerencia de Entrada e Saída

Apresentador

Thales Levi Azevedo Valente

E-mail:

thales.l.a.valente@gmail.com