What Is Claimed Is:

1	1. A method that facilitates one or more of minimum spacing and
2	width control during an optical proximity correction operation for a mask that is
3	used in manufacturing an integrated circuit, the method comprising:
4	considering a target edge of a first feature on the mask;
5	identifying a set of interacting edges in proximity to the target edge; and
6	performing the optical proximity correction operation, wherein performing
7	the optical proximity correction operation involves applying a first edge bias to
8	the target edge to compensate for optical effects in a resulting image of the target
9	edge;
10	wherein applying the first edge bias to the target edge involves allocating
11	an available bias between the first edge bias for the target edge and a second edge
12	bias for at least one edge in the set of interacting edges.
1	2. The method of claim 1, wherein applying the first edge bias can
2	involve adding a positive edge bias that increases the size of the first feature or
3	adding a negative edge bias that decreases the size of the first feature.

wherein the second edge belongs to a second feature so that the distance

wherein applying the first edge bias to the target edge involves satisfying a

between the target edge and the second edge defines a distance between the first

minimum spacing requirement between the target edge and the second edge.

The method of claim 1,

3.

feature and the second feature;

1

2

3

4

5

6

1	4.	The method of claim 3, wherein applying the first edge bias to the
2	target edge ac	lditionally involves satisfying a minimum width requirement
3	between the t	arget edge and an opposing edge of the first feature.
1	5.	The method of claim 1, wherein the second edge is also an edge of
2	the first featu	re so that a distance between the target edge and the second edge
3	defines a dist	ance across a gap between portions of the first feature.
1	6.	The method of claim 1,
2	where	in the second edge is an opposing edge of the first feature so that a
3	distance betw	reen the target edge and the opposing edge defines a width of the first
4	feature; and	
5	where	in applying the first edge bias to the target edge involves satisfying a
6	minimum wid	dth requirement for the first feature between the target edge and the
7	second edge.	
1	7.	The method of claim 1, wherein applying the first edge bias to the
2	target edge in	volves considering an edge type of the target edge and considering
3	_	of the second edge.
1	8.	The method of claim 1, wherein allocating the available bias
2		arget edge and the second edge involves ensuring that the first edge
3		get edge satisfies a minimum spacing requirement between the
4		and each edge in the set of interacting edges.
1	9.	The method of claim 1, wherein allocating the available bias
2		arget edge and the second edge involves ensuring that the first edge

13

14

3	bias of the target edge satisfies a minimum width requirement between the target
4	edge and each edge in the set of interacting edges.

- 1 10. The method of claim 1, wherein the available bias is allocated 2 based on relative weights assigned to the target edge and the second edge.
- 1 11. The method of claim 1, wherein allocating the available bias 2 involves iteratively updating bias allocated to the target edge and the second edge 3 in a manner that satisfies minimum spacing requirements or minimum width 4 requirements.
- 12. A computer-readable storage medium storing instructions that 1 2 when executed by a computer cause the computer to perform a method that 3 facilitates one or more of minimum spacing and width control during an optical 4 proximity correction operation for a mask that is used in manufacturing an 5 integrated circuit, the method comprising: considering a target edge of a first feature on the mask; 6 7 identifying a set of interacting edges in proximity to the target edge; and 8 performing the optical proximity correction operation, wherein performing 9 the optical proximity correction operation involves applying a first edge bias to 10 the target edge to compensate for optical effects in a resulting image of the target 11 edge; wherein applying the first edge bias to the target edge involves allocating 12

an available bias between the first edge bias for the target edge and a second edge

bias for at least one edge in the set of interacting edges.

1	13. The computer-readable storage medium of claim 12, wherein
2	applying the first edge bias can involve adding a positive edge bias that increases
3	the size of the first feature or adding a negative edge bias that decreases the size of
4	the first feature.
1	14. The computer-readable storage medium of claim 12,
2	wherein the second edge belongs to a second feature so that the distance
3	between the target edge and the second edge defines a distance between the first
4	feature and the second feature;
5	wherein applying the first edge bias to the target edge involves satisfying a
6	minimum spacing requirement between the target edge and the second edge.
1	15. The computer-readable storage medium of claim 14, wherein
2	applying the first edge bias to the target edge additionally involves satisfying a
3	minimum width requirement between the target edge and an opposing edge of the
4	first feature.
1	16. The computer-readable storage medium of claim 12, wherein the
2	second edge is also an edge of the first feature so that a distance between the
3	target edge and the second edge defines a distance across a gap between portions
4	of the first feature.
1	17. The computer-readable storage medium of claim 12,
2	wherein the second edge is an opposing edge of the first feature so that a
3	distance between the target edge and the opposing edge defines a width of the first
4	feature; and

1

2

3

5	wherein applying the first edge bias to the target edge involves satisfying a
6	minimum width requirement for the first feature between the target edge and the
7	second edge.

- 1 18. The computer-readable storage medium of claim 12, wherein 2 applying the first edge bias to the target edge involves considering an edge type of 3 the target edge and considering an edge type of the second edge.
- 1 19. The computer-readable storage medium of claim 12, wherein 2 allocating the available bias between the target edge and the second edge involves 3 ensuring that the first edge bias of the target edge satisfies a minimum spacing 4 requirement between the target edge and the second edge.
- 1 20. The computer-readable storage medium of claim 12, wherein 2 allocating the available bias between the target edge and the second edge involves 3 ensuring that the first edge bias of the target edge satisfies a minimum width 4 requirement between the target edge and each edge in the set of interacting edges.
 - 21. The computer-readable storage medium of claim 12, wherein the available bias is allocated based on relative weights assigned to the target edge and each edge in the set of interacting edges.
- The computer-readable storage medium of claim 12, wherein allocating the available bias involves iteratively updating bias allocated to the target edge and the second edge in a manner that satisfies minimum spacing requirements or minimum width requirements.

1	23. An apparatus that facilitates minimum spacing or width control
2	during an optical proximity correction operation for a mask that is used in
3	manufacturing an integrated circuit, the apparatus comprising:
4	an identification mechanism that is configured to identify a set of
5	interacting edges in proximity to a target edge of a first feature; and
6	an optical proximity correction mechanism that is configured to perform
7	the optical proximity correction operation, wherein the optical proximity
8	correction mechanism is configured to add a first edge bias to the target edge to
9	compensate for optical effects in a resulting image of the target edge;
10	wherein the optical proximity correction mechanism is configured to
11	allocate an available bias between the first edge bias for the target edge and a
12	second edge bias for at least one edge in the set of interacting edges.
1	24. The apparatus of claim 23, wherein applying the first edge bias can
2	involve adding a positive edge bias that increases the size of the first feature or
3	adding a negative edge bias that decreases the size of the first feature.
1	25. The apparatus of claim 23,
2	wherein the second edge belongs to a second feature so that the distance
3	between the target edge and the second edge defines a distance between the first
4	feature and the second feature;
5	wherein while adding the first edge bias, the optical proximity correction
6	mechanism is configured to satisfy a minimum spacing requirement between the
7	target edge and the second edge.
_	
1	26. The apparatus of claim 25, wherein while adding the first edge bias
2	to the target edge, the optical proximity correction mechanism is configured to

- satisfy a minimum width requirement between the target edge and an opposing
 edge of the first feature.
- The apparatus of claim 23, wherein the second edge is also an edge of the first feature so that a distance between the target edge and the second edge defines a distance across a gap between portions of the first feature.
- 1 28. The apparatus of claim 23,
- wherein the second edge is an opposing edge of the first feature so that a

 distance between the target edge and the opposing edge defines a width of the first

 feature; and
- wherein while adding the first edge bias, the optical proximity correction mechanism is configured to satisfy a minimum width requirement for the first feature between the target edge and the second edge.
- 1 29. The apparatus of claim 23, wherein while adding the first edge 2 bias, the optical proximity correction mechanism is configured to consider an 3 edge type of the target edge and to consider an edge type of the second edge.
- 1 30. The apparatus of claim 23, wherein while adding the first edge 2 bias, the optical proximity correction mechanism is configured to ensure that the 3 first edge bias of the target edge satisfies a minimum spacing requirement 4 between the target edge and the second edge.
- 1 31. The apparatus of claim 23, wherein while adding the first edge 2 bias, the optical proximity correction mechanism is configured to ensure that the

11

12

13

the set of interacting edges.

3	first edge bias of the target edge satisfies a minimum width requirement between
4	the target edge and each edge in the set of interacting edges.
1	32. The apparatus of claim 23, wherein the available bias is allocated
2	based on relative weights assigned to the target edge and each edge in the set of
3	interacting edges.
_	33. The apparatus of claim 23, wherein while allocating the available
1	
2	bias, the optical proximity correction mechanism is configured to iteratively
3	update bias allocated to the target edge and the second edge in a manner that
4	satisfies minimum spacing requirements or minimum width requirements.
1	34. A means for facilitating minimum spacing or width control during
2	an optical proximity correction operation for a mask that is used in manufacturing
3	an integrated circuit, comprising:
4	an identification means that is configured to identify a set of interacting
5	edges in proximity to the target edge of a first feature; and
6	an optical proximity correction means for performing the optical proximit
7	correction operation, wherein performing the optical proximity correction
8	operation involves applying a first edge bias to the target edge to compensate for
9	optical effects in a resulting image of the target edge;
10	wherein while applying the first edge bias to the target edge, the optical

proximity correction means is configured to allocate an available bias between the

first edge bias for the target edge and a second edge bias for at least one edge in

1	35. A method of manufacturing an integrated circuit product that
2	facilitates minimum spacing or width control during an optical proximity
3	correction operation for a mask used in manufacturing the integrated circuit, the
4	method comprising:
5	considering a target edge of a first feature on the mask;
6	identifying a set of interacting edges in proximity to the target edge; and
7	performing the optical proximity correction operation, wherein performing
8	the optical proximity correction operation involves applying a first edge bias to
9	the target edge to compensate for optical effects in a resulting image of the target
10	edge;
11	wherein applying the first edge bias to the target edge involves allocating
12	an available bias between the first edge bias for the target edge and a second edge
13	bias for at least one edge in the set of interacting edges.
1	36. A mask used in fabricating an integrated circuit, wherein the mask
2	is created through a method that facilitates minimum spacing or width control
3	during an optical an proximity correction operation for the mask, the method
4	comprising:
5	considering a target edge of a first feature on the mask;
6	identifying a set of interacting edges in proximity to the target edge; and
7	performing the optical proximity correction operation, wherein performing
8	the optical proximity correction operation involves applying a first edge bias to
9	the target edge to compensate for optical effects in a resulting image of the target
10	edge;
11	wherein applying the first edge bias to the target edge involves allocating
12	an available bias between the first edge bias for the target edge and a second edge
13	bias for at least one edge in the set of interacting edges.