HW #8

Sam Fleischer

November 30, 2015

Problem 1

Consider the Banach space C([0,1]) with the supremum norm. For $x \in [0,1]$ let δ_x denote the linear functional on C([0,1]) given by

$$\delta_x(f) = f(x), \quad \text{for all } f \in C([0, 1])$$

a)

Show that $\|\delta_x\| = 1$.

$$\|\delta_x\| = \sup_{\|f\|=1} |\delta_x(f)| = \sup_{\|f\|=1} |f(x)| \le 1$$

but if $f \equiv 1$, then $|\delta_x(f)| = f(x) = 1$, and thus

$$\|\delta_x\| = 1$$

b)

Show that there does not exist a Riemann integrable function $k : [0,1] \to \mathbb{R}$, such that

$$\delta_x(f) = \int_0^1 k(y)f(y)dy, \quad \text{for all } f \in C([0,1])$$

Fix $z \in [0,1]$. Then define $\delta_z(f) = f(z)$ and assume there exists $k : [0,1] \to \mathbb{R}$ such that

$$\delta_z(f) = \int_0^1 k(y)f(y)dy$$

for all $f \in C([0,1])$. For n = 1, 2, ..., define $f_k \in C([0,1])$ as

$$f_n(x) = \begin{cases} 2^n x + (1 - 2^n x_0) &, x \in [z - \frac{1}{2^n}, z] \\ -2^n x + (1 + 2^n z) &, x \in [z, z + \frac{1}{2^n}] \\ 0 &, \text{else} \end{cases}$$

These are tent functions centered at z with $f_n(z) = 1$ for all n. Then

$$1 = f_n(z) = \delta_z(f) = \int_0^1 k(y) f_n(y) dy = \int_{\max\{0, z - \frac{1}{2^n}\}}^{\min\{1, z + \frac{1}{2^n}\}} k(y) f_n(y) dy$$

Note $||f_n|| = 1$ for all n, and let K denote ||k|| (K is finite since k is continuous on a compact set). Then

$$1 = f_n(z)\delta_z(f) \le K \int_{\max\{0, z - \frac{1}{2^n}\}}^{\min\{1, z + \frac{1}{2^n}\}} dy = K \frac{1}{2^{n-1}}$$

Taking the limit as $n \to \infty$ yields $1 \le \lim_{n \to \infty} K \frac{1}{2^{n-1}} = 0$, a contradiction.

Thus, there does not exist a Riemann integrable function k such that

$$\delta_z(f) = \int_0^1 k(y)f(y)\mathrm{d}y$$

for all $f \in C([0,1])$.

Problem 2

Prove that there does not exist an inner product on C([0,1]) such that the supremum norm is derived from this inner product.

Take f(x)=x and g(x)=1. Then $\|f\|_{\infty}=1$ and $\|g\|_{\infty}=1$. Also, $\|f+g\|_{\infty}=2$ and $\|f-g\|_{\infty}=1$. Then

$$5 = \|f + g\|_{\infty}^{2} + \|f - g\|_{\infty}^{2} \neq 2\|f\|_{\infty}^{2} + 2\|g\|_{\infty}^{2} = 4$$

Thus $\|\cdot\|_{\infty}$ cannot be derived from an inner product on C([0,1]).

Problem 3

Let \mathcal{H} be a Hilbert space and let M be a subset of \mathcal{H} .

 $\mathbf{a})$

Prove that M^{\perp} is a closed linear subspace of \mathcal{H} .

First we show M^{\perp} is a linear subspace. Let $x, y \in M^{\perp}$ and $\lambda, \mu \in \mathbb{C}$. Then for each $m \in M$,

$$\langle m, \lambda x + \mu y \rangle = \lambda \langle m, x \rangle + \mu \langle m, y \rangle = 0$$

Thus $\lambda x + \mu y \in M^{\perp}$. Thus M^{\perp} is a linear subspace of \mathcal{H} . Next, let (x_n) be a convergent sequence in M^{\perp} , and let $x_n \to x$. Then for each $m \in M$,

$$\langle x, m \rangle = \langle \lim_{n \to \infty} x_n, m \rangle$$

but since $\langle \cdot, \cdot \rangle$ is continuous,

$$\langle \lim_{n \to \infty} x_n, m \rangle = \lim_{n \to \infty} \langle x_n, m \rangle = \lim_{n \to \infty} 0 = 0$$

Thus $\langle x, m \rangle = 0$, which shows $x \in M^{\perp}$, proving M^{\perp} is closed.

b)

Prove that $M \cap M^{\perp} \subset \{0\}$.

Let $x \in M \cap M^{\perp}$. Then by the definition of M^{\perp} ,

$$\langle x, x \rangle = 0$$

Then ||x|| = 0, which shows x = 0. Thus $M \cap M^{\perp} \subset \{0\}$.

 $\mathbf{c})$

If M is a linear subspace of \mathcal{H} , prove that $(M^{\perp})^{\perp} = \overline{M}$.

Assume $x \in \overline{M}$. Then there is a sequence $x_n \in M$ such that $x_n \to x$. Then $\langle x_n, y \rangle = 0$ for every $y \in M^{\perp}$. Then by continuity of $\langle \cdot, \cdot \rangle$, $\langle x, y \rangle = 0$ for every $y \in M^{\perp}$. Then $x \in (M^{\perp})^{\perp}$ by the definition of $(M^{\perp})^{\perp}$. Thus $\overline{M} \subset (M^{\perp})^{\perp}$.

Now assume $x \notin \overline{M}$. Since \overline{M} is closed, then by the Projection Theorem, $\exists y \in \overline{M}$ such that $(x-y) \perp \overline{M}$. Since $y \in \overline{M}$, $\langle x-y,y \rangle = 0$. Since $x \neq y$ ($x \notin \overline{M}$ and $y \in \overline{M}$), then $\langle x-y,x-y \rangle \neq 0$. However, $\langle x-y,x-y \rangle = \langle x-y,x \rangle - \langle x-y,y \rangle = \langle x-y,x \rangle$. Since $x-y \perp \overline{M}$, then $x-y \perp M$. So $x-y \in M^{\perp}$. Then since $\langle x-y,x \rangle \neq 0$, then $x \notin (M^{\perp})^{\perp}$. Then $(M^{\perp})^{\perp} \subset \overline{M}$.

Thus,
$$\overline{M} = (M^{\perp})^{\perp}$$
.

Problem 4

Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H})$. If $\langle x, Ay \rangle = 0$ for all $x, y, \in \mathcal{H}$, prove $A = \mathbb{O}$.

Since $\langle x, Ay \rangle = 0$ for all $x, y \in \mathcal{H}$, then in particular, take x = Ay, and so $\langle Ay, Ay \rangle = 0$ for all $y \in \mathcal{H}$. Thus $A = \mathbb{O}$.

Problem 5

Let \mathcal{H} be a Hilbert space and P and Q two orthogonal projections on \mathcal{H} .

a)

Prove that PQ is an orthogonal projection if and only if PQ - QP = 0, i.e., if and only if P and Q commute.

First note that

$$\langle PQx, y \rangle = \langle Qx, Py \rangle = \langle x, QPy \rangle$$
 (1)

Assume PQ is an orthogonal projection. Then by the definition of orthogonal projection, and by (1), $\langle PQx, y \rangle = \langle x, PQy \rangle$. Then for all $x, y \in \mathcal{H}$,

$$\langle x, QPy \rangle = \langle x, PQy \rangle$$

$$\implies \langle x, (QP - PQ)y \rangle = 0$$

$$\implies QP - PQ = 0$$

$$\implies QP = PQ$$

Thus P and Q commute.

Now assume PQ = QP. Then $(PQ)^2 = PQPQ = PPQQ = PQ$ since P and Q are orthogonal projections. Also, by (1), $\langle PQx, y \rangle = \langle x, QPy \rangle = \langle x, PQy \rangle$. Thus PQ is an orthogonal projection.

b)

Prove that for commuting orthogonal projections P and Q, one has $ran(PQ) = ran(P) \cap ran(Q)$.

Let $x \in \operatorname{ran}(PQ)$. Then $\exists y$ such that PQy = x. Then P maps Qy on to x. Then $x \in \operatorname{ran}(P)$. However, since P and Q commute, then QPy = x, and thus Q maps Py on to x, and so $x \in \operatorname{ran}(Q)$. Thus $x \in \operatorname{ran}(P) \cap \operatorname{ran}(Q)$. So $\operatorname{ran}(PQ) \subset \operatorname{ran}(P) \cap \operatorname{ran}(Q)$.

Now let $x \in \operatorname{ran}(P) \cap \operatorname{ran}(Q)$. Then $x \in \operatorname{ran}(P)$ and $x \in \operatorname{ran}(Q)$. So $\exists y_1, y_2$ such that $Py_1 = Qy_2 = x$. Thus, $PQy_2 = P^2y_1 = Py_1 = x$, and thus $x \in \operatorname{ran}(PQ)$. So $\operatorname{ran}(P) \cap \operatorname{ran}(Q) \subset \operatorname{ran}(PQ)$.

Thus,
$$ran(PQ) = ran(P) \cap ran(Q)$$
.

c)

Prove that P+Q is an orthogonal projection if and only if $PQ=\mathbb{O}$.

Assume $PQ = \emptyset$. Then $\langle PQx, y \rangle = 0$ for all $x, y \in \mathcal{H}$. But by (1), $\langle x, QPy \rangle = 0$ for all $x, y \in \mathcal{H}$. Thus $QP = \emptyset$. Then $(P+Q)^2 = P^2 + PQ + QP + Q^2 = P^2 + \emptyset + \emptyset + Q^2 = P + Q$ since P and Q are orthogonal projections. Also,

$$\langle (P+Q)x, y \rangle = \langle Px + Qx, y \rangle$$

$$= \langle Px, y \rangle + \langle Qx, y \rangle$$

$$= \langle x, Py \rangle + \langle x, Qy \rangle$$

$$= \langle x, Py + Qy \rangle$$

$$= \langle x, (P+Q)y \rangle$$

Thus P + Q is an orthogonal projection.

Assume P+Q is an orthogonal projection. Then $(P+Q)^2=P+Q$, but $(P+Q)^2=P^2+PQ+QP+Q^2=P+PQ+QP+Q$. Thus PQ+QP=0, i.e. PQ=-QP.

Assume $x \in \operatorname{ran}(P) \cap \operatorname{ran}(Q)$ and note 0 = (PQ + QP)x = PQx + QPx. Since $x \in \operatorname{ran}(P)$, Px = x. Also, since $x \in \operatorname{ran}(Q)$, Qx = x. Then PQx = Px = x and QPx = Qx = x. So 0 = PQx + QPx = 2x. Thus x = 0, which proves $\operatorname{ran}(P) \cap \operatorname{ran}(Q) = \{0\}$.

Now, take any $x \in \mathcal{H}$, then certainly $PQx \in \text{ran}(P)$ and since PQx = -QPx = Q(-Px), then $PQx \in \text{ran}(Q)$. Then PQx = 0 by the paragraph above, and thus PQ = 0, i.e. $\text{ran}(PQ) = \{0\}$.

Thus,
$$P + Q$$
 is an orthogonal projection if and only if $ran(PQ) = \{0\}$.

d)

Prove that if PQ = 0, we have $ran(P + Q) = ran(P) \oplus ran(Q)$.

Let PQ = 0 and assume $y \in \operatorname{ran}(P + Q)$. Then $\exists x \in \mathcal{H}$ such that Px + Qx = y. Then y is the sum of an element in $\operatorname{ran}(P)$ and an element in $\operatorname{ran}(Q)$. Thus $y \in \operatorname{ran}(P) \oplus \operatorname{ran}(Q)$. Assume

 $y \in \operatorname{ran}(P) \oplus \operatorname{ran}(Q)$. Then $\exists x_1, x_2 \in \mathcal{H}$ such that $y = Px_1 + Qx_2$. Then $Py = P^2x_1 + PQx_2 = Px_1$ and $Qy = QPx_1 + Q^2x_2 = Qx_2$ since $QP = \emptyset$. Thus $y = Px_1 + Qx_2 = Py + Qy = (P+Q)y$. Thus $y \in \operatorname{ran}(P+Q)$, which shows $\operatorname{ran}(P+Q) = \operatorname{ran}(P) \oplus \operatorname{ran}(Q)$.

Problem 6

Let \mathcal{H} be a Hilbert space and $P \in \mathcal{B}(\mathcal{H})$ such that $P^2 = P$ and $\dim \operatorname{ran}(P) = 1$.

a)

Show that $||P|| \ge 1$.

Let $x \in \operatorname{ran}(P)$ such that ||x|| = 1. Then Px = x, and so ||Px|| = ||x|| = 1. Thus $||P|| \ge 1$. \square

b)

Suppose dim $\mathcal{H} \geq 2$. Find

$$\sup \left\{ \|P\| \mid P \in \mathcal{B}(\mathcal{H}), \ P^2 = P, \ \dim \operatorname{ran}(P) = 1 \right\}$$

Let dim $\mathcal{H} \geq 2$ and let $\{e_{\alpha}\}_{{\alpha}\in I}$ be an orthonormal basis. Then pick two distinct basis elements, e_{α_1} and e_{α_2} , and define

$$P_n(x) = (x_{\alpha_1} + nx_{\alpha_2})e_{\alpha_1}$$

for $n=1,2,\ldots,$ and where x_{α_i} is the defined as the coefficient on e_{α_i} in the sum

$$x = \sum_{\alpha \in I} x_{\alpha} e_{\alpha}$$

Then clearly dim ranP_n = 1 since $P_n x = a e_{\alpha_1}$ where a is the only degree of freedom (i.e. no vector in the range of P_n is linearly independent from e_{α_1}). Also,

$$P_n^2 x = P_n((x_{\alpha_1} + nx_{\alpha_2})e_{\alpha_1})$$

$$= (x_{\alpha_1} + nx_{\alpha_2} + n(0))e_{\alpha_1}$$

$$= P_n x$$

Lastly,

$$||P_n|| = \sup_{\|x\|=1} ||P_n x|| = \sup_{\|x\|=1} |x_{\alpha_1} + n x_{\alpha_2}|$$

However, since $||x|| = \sqrt{\langle x, x \rangle} = 1$, and $x = \sum_{\alpha \in I} x_{\alpha} e_{\alpha}$, then

$$1 = \langle x, x \rangle = \left\langle \sum_{\alpha \in I} x_{\alpha} e_{\alpha}, \sum_{\alpha \in I} x_{\alpha} e_{\alpha} \right\rangle = \sum_{\alpha \in I} |x_{\alpha}|^{2}$$

Thus each x_{α} is at most 1, and so $|x_{\alpha_1}| \leq 1$ and $|x_{\alpha_2}| \leq 1$. Thus

$$||P_n|| = \sup_{||x||=1} |x_{\alpha_1} + nx_{\alpha_2}| \le 1 + n$$

Note, however, $||P_n e_{\alpha_2}|| = n$, and thus $||P_n|| \ge n$. In summary,

$$n \le ||P_n|| \le n + 1$$

So $P_n \in \mathcal{B}(\mathcal{H})$, but as $n \to \infty$, $||P_n|| \to \infty$. Thus,

$$\sup \{ \|P\| \mid P \in \mathcal{B}(\mathcal{H}), \ P^2 = P, \ \dim \operatorname{ran}(P) = 1 \} = \infty$$

Problem 7

Let $\{e_1, e_2, ...\}$ be an orthonormal basis of a separable Hilbert space \mathcal{H} .

a)

Let $(a_n) \in \ell^1(\mathbb{N})$. Show that $\sum_{n=1}^{\infty} a_n e_n$ converges absolutely to a limit in \mathcal{H} .

$$\sum_{n=1}^{\infty} ||a_n e_n|| = \sum_{n=1}^{\infty} |a_n| ||e_n|| = \sum_{n=1}^{\infty} |a_n| < \infty$$

since $(a_n) \in \ell^1(\mathbb{N})$. Thus $\sum_{n=1}^{\infty}$ converges absolutely to a limit in \mathcal{H} .

b)

Let $\alpha \in (0,\infty)$ and define $a_n = n^{-\alpha}$, $n \geq 1$. For which values of α does $\sum_{n=1}^{\infty} a_n e_n$ converge unconditionally but not absolutely?

If $\alpha > 1$, then

$$\sum_{n=1}^{\infty} ||a_n e_n|| = \sum_{n=1}^{\infty} |a_n| ||e_n|| = \sum_{n=1}^{\infty} |n^{-\alpha}| < \infty$$

by the p-series test of calculus. Now consider the norm of the proposed summation:

$$\left\| \sum_{n=1}^{\infty} a_n e_n \right\| = \sqrt{\left\langle \sum_{n=1}^{\infty} a_n e_n, \sum_{n=1}^{\infty} a_n e_n \right\rangle} = \sqrt{\sum_{n=1}^{\infty} |a_n|^2 \langle e_n, e_n \rangle} = \sqrt{\sum_{n=1}^{\infty} n^{-2\alpha}}$$

which converges if $2\alpha > 1$, i.e. if $\alpha > \frac{1}{2}$. Thus if $\alpha \in (\frac{1}{2}, 1]$, then $\sum_{n=1}^{\infty}$ converges unconditionally but not absolutely.

Problem 8

Define the Legendre polynomials P_n by

$$P_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^2 - 1)^n$$

a)

Show that the Legendre polynomials are orthogonal in $L^2([-1,1])$, and that they are obtained by Gram-Schmidt orthogonalization of the monomials.

Fix n, and pick m < n. Then

$$\langle x^{m}, P_{n} \rangle = \int_{-1}^{1} x^{m} P_{n} dx$$

$$= \int_{-1}^{1} x^{m} \frac{1}{2^{n} n!} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n} dx$$

$$\implies 2^{n} n! \langle x^{m}, P_{n} \rangle = \int_{-1}^{1} x^{m} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n} dx$$

$$= (-1)^{m} m! \int_{-1}^{1} \frac{d^{n-m}}{dx^{n-m}} (x^{2} - 1)^{n} dx \quad \text{through integration by parts } m \text{ times}$$

$$= (-1)^{m} m! \frac{d^{n-m-1}}{dx^{n-m-1}} (x^{2} - 1)^{n} \Big|_{-1}^{1}$$

$$= 0$$

because x^2-1 is a factor of $\frac{\mathrm{d}^{n-m-1}}{\mathrm{d}x^{n-m-1}}(x^2-1)^n$. Thus $x^m \perp P_n$ for all m < n. However, P_m is a linear combination of elements from $\{1, x, \dots, x^m\}$, and thus $P_m \perp P_n$. Thus the Legendre polynomials are orthogonal in $L^2([-1,1])$.

b)

Show that

$$\int_{-1}^{1} P_n(x)^2 \mathrm{d}x = \frac{2}{2n+1}$$

$$\langle P_n, P_n \rangle^2 = \int_{-1}^1 P_n(x)^2 dx$$

$$= \int_{-1}^1 \left(\frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \right)^2 dx$$

$$= \frac{1}{2^{2n} (n!)^2} \int_{-1}^1 \left(\frac{d^n}{dx^n} (x^2 - 1)^n \right)^2 dx$$

$$= \frac{(-1)^n}{2^{2n} (n!)^2} \int_{-1}^1 (x^2 - 1)^n \frac{d^{2n}}{dx^{2n}} (x^2 - 1)^n dx \qquad \text{through integration by parts } n \text{ times}$$

$$= \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \int_{-1}^1 (x^2 - 1)^n dx \qquad \text{through integration by parts } 2n \text{ times}$$

Now just consider the integral

$$\int_{-1}^{1} (x^2 - 1)^n dx = \int_{-1}^{1} (x - 1)^n (x + 1)^n dx$$

$$= \frac{(n!)^2(-1)^n}{(2n)!} \int_{-1}^1 (x+1)^{2n} dx \qquad \text{through integration by parts } n \text{ times}$$

$$= \frac{(n!)^2(-1)^n}{(2n)!} \left[\frac{(x+1)^{2n+1}}{2n+1} \right]_{-1}^1$$

$$= \frac{(n!)^2(-1)^n}{(2n)!(2n+1)} \frac{2^{2n+1}}{(2n)!(2n+1)}$$

Thus,

$$\langle P_n, P_n \rangle^2 = \frac{(-1)^n (2n)!}{2^{2n} (n!)^2} \cdot \frac{(n!)^2 (-1)^n 2^{2n+1}}{(2n)! (2n+1)}$$

= $\frac{2}{2n+1}$

c)

Prove that the Legendre polynomials form an orthogonal basis of $L^2([-1,1])$.

In part a), we used the Gram-Schmidt process to generate the Legendre polynomials from the basis of monomials. The Gram-Schmidt process creates an orthogonal basis from any basis. Thus the Legendre polynomials form an orthogonal basis of $L^2([-1,1])$.

d)

Prove that the Legendre polynomial P_n is an eigenfunction of the differential operator

$$L = -\frac{\mathrm{d}}{\mathrm{d}x} \left[(1 - x^2) \frac{\mathrm{d}}{\mathrm{d}x} \right]$$

with eigenvalue $\lambda_n = n(n+1)$, meaning that

$$LP_n = \lambda_n P_n$$

Let $u(x) = (x^2 - 1)^n$ and note that

$$(x^2 - 1)Du = (x^2 - 1)n(x^2 - 1)^n \cdot 2x = 2nxu$$

Apply D^{n+1} to both sides, and use Liebnitz's Rule for n^{th} derivative of fg to acheive

$$\frac{(n+1)n}{2} \cdot 2 \cdot D^{n-1}Du + (n+1)2xD^nDu + (x^2-1)D^{n+1}Du = 2n(n+1)D^nu + 2nxD^{n+1}u$$

$$\implies 2xD^{n+1}u + (x^2-1)D^{n+2}u = n(n+1)D^nu$$

$$\implies LD^nu = n(n+1)D^nu$$

which shows D^n is an eigenfunction of L with eigenvalue $\lambda_n = n(n+1)$. Since $2^n n! P_n = D^n$ (i.e. P_n is linearly dependent on D^n), then P_n is an eigenfunction of L with eigenvalue $\lambda_n = n(n+1)$.