ГРАФОВІ ЙМОВІРНІСНІ МОДЕЛІ СТАТИСТИЧНИЙ АНАЛІЗ ДАНИХ КВАНТИЛІ

Сумський державний університет

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантип

Ящик :

Графік

■ Статистичним рядом називається сукупність пар $i \Longrightarrow x_i$, отриманих в результаті експерименту. Зазвичай статистичні ряди представляють у вигляді таблиці, в першому стовпці якої стоїть номер досліду (i), а в другому — спостережуване значення випадкової величини x_i , яке називається варіантою.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик:

Графік

• Статистичним рядом називається сукупність пар $i \Longrightarrow x_i$, отриманих в результаті експерименту. Зазвичай статистичні ряди представляють у вигляді таблиці, в першому стовпці якої стоїть номер досліду (i), а в другому — спостережуване значення випадкової величини x_i , яке називається варіантою.

Индекс <i>i</i>	Варианта x_i
1	<i>x</i> ₁
2	x_2
n	x_n

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон

Квантил

Ящик : вусами

Графік *О — О* **Розмахом вибірки** називають різницю між найбільшою і найменшою варіантами вибірки:

$$R = x_{max} - x_{min}$$
.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графін О — О Якщо одна і та сама варіанта зустрічається у вибірці кілька разів, то статистичний ряд зручніше записувати у вигляді наступної таблиці

			T doming 5
Индекс <i>i</i>	Варианта x_i	Частота n_i	Относит. частота \overline{n}_i
1	<i>x</i> ₁	<i>n</i> ₁	\overline{n}_1
2	<i>x</i> ₂	n_2	\overline{n}_2
•••		•••	•••
k	x_k	n_k	\overline{n}_k

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик вусами

Графік О — О • Частотою $n_i(i=\overline{1,k})$ варіанти x_i називається число повторень варіанти x_i у вибірці, причому

$$\sum_{i=1}^k n_i = n.$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик : вусами

Графік *О — О* • Частотою $n_i(i=\overline{1,k})$ варіанти x_i називається число повторень варіанти x_i у вибірці, причому

$$\sum_{i=1}^k n_i = n.$$

■ Відносною частотою або вагою $\bar{n}_i (i=\overline{1,k})$ варіанти x_i називається відношення частоти варіанти до об'єму вибірки n, тобто

$$\bar{n}_i = \frac{n_i}{n}$$

$$\sum_{i=1}^k \bar{n}_i = 1.$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик : вусами

Графік О — О При великій кількості спостережень простий статистичний ряд перестає бути зручною формою запису статистичних даних. Для додання йому більшої компактності і наочності статистичний матеріал піддають додатковій обробці — будують варіаційні ряди або груповані варіаційні ряди.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон

Квантил

Ящик

Графік *О — О* ■ Варіаційним рядом називається упорядкована сукупність варіант $x_i(i=\overline{1,k})$ з відповідними їм частотами n_i або відносними частотами \bar{n}_i .

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графік *Q — Q*

- Варіаційним рядом називається упорядкована сукупність варіант $x_i (i = \overline{1,k})$ з відповідними їм частотами n_i або відносними частотами \bar{n}_i .
- Для побудови групованого варіаційного ряду інтервал зміни спостережуваних значень випадкової величини [x_{min}; x_{max}] розбивають на N інтервалів, що не пересікаються (їх називають частковими інтервалами або розрядами).

Ящик вусами

Графік *О — О* Число інтервалів залежить від об'єму вибірки і визначається за формулою Стерджеса

$$N = 1 + 3.32 \log n$$

Графік *Q — Q* Число інтервалів залежить від об'єму вибірки і визначається за формулою Стерджеса

$$N = 1 + 3.32 \log n$$

$$N = 1 + 1.44 \ln n$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантип

Ящик : вусами

Графін *Q — Q* Число інтервалів залежить від об'єму вибірки і визначається за формулою Стерджеса

$$N = 1 + 3.32 \log n$$

$$N = 1 + 1.44 \ln n$$

$$N \geq [1+3.32\log n] + 1$$

квадратні дужки позначають цілу частину числа.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон

Квантип

Ящик:

Графік О — О ■ Розбиття на мале число інтервалів може призвести до невірних статистичними висновків. Відповідно до цієї формули, наприклад, необхідно брати не менше 8 інтервалів на 100 спостережень.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графік *Q — Q*

- Розбиття на мале число інтервалів може призвести до невірних статистичними висновків. Відповідно до цієї формули, наприклад, необхідно брати не менше 8 інтервалів на 100 спостережень.
- Інтервали повинні бути однакової довжини

$$\Delta = \frac{R}{N} = \frac{x_{max} - x_{min}}{N}$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон

Квантип

Ящик

Графік *О — О* • Частотою $n_i(i=\overline{1,N})$ інтервалу $(u_i;u_{i+1}]$ називається число варіант x_i , що потрапили в цей інтервал, причому

$$\sum_{i=1}^{N} n_i = n.$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик : вусами

Графін О — О **Частотою** $n_i(i=\overline{1,N})$ інтервалу $(u_i;u_{i+1}]$ називається число варіант x_i , що потрапили в цей інтервал, причому

$$\sum_{i=1}^{N} n_i = n.$$

■ При групуванні спостережених значень за розрядами виникає питання про те, до якого інтервалу віднести значення, що знаходиться на межі двох розрядів. В цих випадках вважають, що дане значення належить до лівого інтервалу.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик : вусами

Графік О — О **Частотою** $n_i(i=\overline{1,N})$ інтервалу $(u_i;u_{i+1}]$ називається число варіант x_i , що потрапили в цей інтервал, причому

$$\sum_{i=1}^{N} n_i = n.$$

- При групуванні спостережених значень за розрядами виникає питання про те, до якого інтервалу віднести значення, що знаходиться на межі двох розрядів. В цих випадках вважають, що дане значення належить до лівого інтервалу.
- Відносною частотою або вагою $\bar{n}_i (i = \overline{1, N})$ інтервалу $(u_i; u_{i+1}]$ називається відношення частоти інтервалу до об'єму вибірки n, тобто

$$\bar{n}_i = \frac{n_i}{n}$$

Гістограма та полігон частот

Квантил

Ящик

Графік О — О ■ Накопиченою відносною частотою $w_i(i = \overline{1, N})$ інтервалу $(u_i; u_{i+1}]$ називається сума відносних частот перших i інтервалів, тобто

$$w_i = \sum_{i=1}^j \bar{n}_j.$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик : вусами

Графік О — О ■ Накопиченою відносною частотою $w_i(i=\overline{1,N})$ інтервалу $(u_i;u_{i+1}]$ називається сума відносних частот перших i інтервалів, тобто

$$w_i = \sum_{i=1}^j \bar{n}_j.$$

■ Групованим варіаційним рядом називається впорядкована сукупність інтервалів з відповідними їм частотами n_i , відносними частотами \bar{n}_i і накопиченими відносними частотами w_i .

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графін *Q — Q*

Индекс <i>i</i>	Интервал $(u_i; u_{i+1}]$	Частота n_i	Относит. частота \bar{n}_i	Накопл. относит. частота w_i
1	$[u_1;u_2]$	n_1	\overline{n}_1	$w_1 = \overline{n}_1$
2	$(u_2; u_3]$	n_2	\overline{n}_2	$w_2 = \overline{n}_1 + \overline{n}_2$
			•••	
N	$(u_N;u_{N+1}]$	n_N	\overline{n}_N	$w_N = 1$
$\sum_{i=1}^{N}$		n	1	

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графі *Q* — (

Розглянемо приклад

Ī	2,88	2,78	4,90	4,41	4,86	4,46	4,76	4,48	4,71	4,70
Ī	2,94	5,37	7,48	-3,32	5,79	8,55	8,27	5,65	7,23	7,95
Ī	2,95	2,44	7,89	2,45	5,90	2,45	2,67	2,50	2,67	2,51
Ī	5,16	4,40	9,12	5,52	1,56	8,46	1,34	5,69	9,57	-1,07
Ī	5,20	4,99	9,00	8,47	6,55	2,88	6,78	5,72	6,10	0,13
Ī	4,23	5,15	6,39	4,39	6,56	5,78	6,85	4,40	6,23	0,56
	4,23	2,99	6,46	6,88	9,63	4,22	3,58	6,57	5,83	9,35
Ī	4,33	3,24	9,97	6,99	5,22	8,93	3,69	6,58	7,09	5,68
Ī	4,38	3,27	7,19	1,73	5,29	1,96	3,71	1,99	2,31	2,30
	5,67	3,90	7,38	3,94	5,33	3,98	3,79	4,08	4,12	4,12

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графі *Q* — (Потрібно скласти групований варіаційний ряд для вибіркової сукупності значень випадкової величини X, розбивши вибірку на

$$N = 10$$

рівних інтервалів. Дана вибірка має об'єм

$$n = 10$$
.

Визначимо інтервал зміни випадкової величини X. Для цього в таблиці знаходимо максимальний і мінімальний елементи:

$$x_{max} = 9,97$$
 $x_{min} = -3,32$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон

Квантип

Ящик :

Графік *О — О* ■ Визначимо розмах вибірки:

$$R = x_{max} - x_{min} = 13,29$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантип

Ящик : вусами

Графія *О — О* ■ Визначимо розмах вибірки:

$$R = x_{max} - x_{min} = 13,29$$

Для зручності подальшої обробки статистичних даних іноді слід округлити $x_{max} - x_{min}$ до найближчих цілих чисел

$$x_{max}^{0} = 10$$
 $x_{min}^{0} = -4$

Квантил

Ящик : вусами

Графі 0 — С ■ Визначимо розмах вибірки:

$$R = x_{max} - x_{min} = 13,29$$

■ Для зручності подальшої обробки статистичних даних іноді слід округлити $x_{max} - x_{min}$ до найближчих цілих чисел

$$x_{max}^{0} = 10$$
 $x_{min}^{0} = -4$

■ Тоді новий розмах

$$R^0 = x_{max}^0 - x_{min}^0 = 14$$

Квантилі

Ящик з вусами

I рафі *Q — С* Далі можна розбити вибірку на N=10 рівних інтервалів, довжина кожного часткового інтервалу дорівнює

$$\Delta = \frac{R^0}{N} = \frac{14}{10} = 1.4$$

Інтервали наведені у другому стовбчику таблиці.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантилі

Ящик з вусами

Графі О — С Далі можна розбити вибірку на N=10 рівних інтервалів, довжина кожного часткового інтервалу дорівнює

$$\Delta = \frac{R^0}{N} = \frac{14}{10} = 1.4$$

Інтервали наведені у другому стовбчику таблиці.

Индекс <i>i</i>	Интервал $(u_i; u_{i+1}]$	
1	[-4,0; -2,6]	
2	(-2,6; -1,2]	
3	(-1,2; 0,2]	
4	(0,2; 1,6]	
5	(1,6; 3,0]	
6	(3,0;4,4]	
7	(4,4; 5,8]	
8	(5,8; 7,2]	
9	(7,2; 8,6]	
10	(8,6; 10,0]	90

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графін *Q — Q* Знайдемо кількість варіант, що потрапили в кожний частковий інтервал розбиття, і заповнимо третій стобчик таблиці. Сума всіх частот повинна бути

$$n = 100$$
.

Далі знаходимо відносні частоти і накопичені відносні частоти (четвертий і п'ятий стовпці таблиці). Варіаційний ряд представляється у вигляді таблиці

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон

Квантилі

Эщик : вусами

Графік *Q — Q*

Индекс <i>i</i>	Интервал $(u_i; u_{i+1}]$	Частота n_i	Относит. частота \overline{n}_i	Накопл. относит. частота w_i
1	[-4,0; -2,6]	1	0,01	0,01
2	(-2,6;-1,2]	0	0	0,01
3	(-1,2; 0,2]	2	0,02	0,03
4	(0,2; 1,6]	3	0,03	0,06
5	(1,6; 3,0]	18	0,18	0,24
6	(3,0;4,4]	20	0,2	0,44
7	(4,4; 5,8]	24	0,24	0,68
8	(5,8;7,2]	16	0,16	0,84
9	(7,2; 8,6]	9	0,09	0,93
10	(8,6; 10,0]	7	0,07	1
Сумма		100	1	

Імовірнісні основи обробки даних

З таблиці видно, що дана вибірка має одну ізольовану точку

$$x_{min} = -3,32$$

Статистичні ряди

віддалену від групи інших експериментальних точок. У такому випадку можна вважати цю ізольовану точку аномальним спостереженням, грубою помилкою вимірювання і видалити її з вибірки, тоді обсяг вибірки зменшиться і дорівнюватиме n = 99. Змінюються також і вибіркові характеристики

Квантилі

Ящик вусами 3а вбудованими функціями EXEL n=100

$$\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = \frac{1}{100} \cdot 491,2900 = 4,9129.$$

Квантил

Ящик : вусами

Графік *Q — Q* 3а вбудованими функціями EXCEL n=100

$$S^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} = \frac{1}{100} \cdot 2985,1739 - 4,9129^{2} = 5,7152,$$

$$S_0^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{n \cdot S^2}{n-1} = \frac{100 \cdot 5,7152}{99} = 5,7729.$$

$$\widetilde{\sigma}_X = \sqrt{\widetilde{D}_X} = \sqrt{S_0^2} = S_0 = 2,4027.$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантилі

Ящик з вусами

Графік *Q — Q* 3а вбудованими функціями EXCEL n=99

$$\overline{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i = 4,9961,$$

$$S_0^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x})^2 = 5{,}1332,$$

$$S_0 = \sqrt{S_0^2} = \sqrt{5,1332} = 2,2657$$
.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик : вусами

Графік О — О Перевірка гіпотези про аномальність спостереження проводиться наступним чином:

значення визнається аномальним і викидається з вибірки обсягу n, якщо воно не відповідає даній довірчій імовірності або заданій квантилі.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантилі

Ящик з вусами

Графі *Q — (* Коли умова виконується, то точку

$$x_{min} = -3.32$$

можна з вибірки виключити. Відповідно в таблиці можна виключити два перших інтервали.

Зауважимо, що число інтервалів тепер виявилося 8, що відповідає умові:

$$N \ge [1+3,32 \cdot \lg n] + 1 = [1+3,32 \cdot \lg 99] + 1 = 8.$$

В іншому випадку число інтервалів довелося б збільшити.

Статистичні ряди

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Эщик: вусами

Графіі *Q — Q*

Индекс <i>i</i>	Интервал $(u_i; u_{i+1}]$	Частота n_i	Относит. частота \overline{n}_i	Накопл. относит. частота w_i
1	(-1,2; 0,2]	2	0,0202	0,0202
2	(0,2; 1,6]	3	0,0303	0,0505
3	(1,6;3,0]	18	0,1818	0,2323
4	(3,0;4,4]	20	0,2020	0,4343
5	(4,4; 5,8]	24	0,2424	0,6768
6	(5,8;7,2]	16	0,1616	0,8384
7	(7,2; 8,6]	9	0,0909	0,9293
8	(8,6; 10,0]	7	0,0707	1,0000
Сумма		99	1,0000	

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графік О — О Нехай $\{x_i\}$ вибірка обсягу n, що містить k різних варіант, з генеральної сукупності випадкової величини X з невідомою густиною імовірності f(x).

Наближенням (оцінкою) невідомої густини імовірності можуть служити гістограма або полігон відносних частот. Гістограма і полігон відносних частот служать для геометричного зображення асоційованого варіаційного ряду.

Імовірнісні основи обробки даних

Статистичн ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Граф *Q* — (Гістограма відносних частот представляється у вигляді прямокутників, що примикають один до одного, з основами

$$\Delta = \frac{R}{N}$$

рівними ширині інтервалів груп, і висотами

$$h_i = rac{ar{n}_i}{\Delta}$$

Для гістограми відносних частот площа фігури відповідає сумі ймовірностей і дорівнює 1. Площа будь-якого прямокутника гістограми дорівнює ймовірності влучення значень розглянутої випадкової величини в інтервал, що відповідає основи прямокутника.

Імовірнісні основи обробки даних

Статистичн ряди

Гістограма та полігон частот

Квантип

Ящик :

Графік *Q — Q*

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантилі

Ящик : вусами

Графі *Q — (* **Полігоном** відносних частот називається ламана, що з'єднує точки середини інтервалів.

При збільшенні обсягу вибірки і зменшенні довжин інтервалів гістограма і полігон відносних частот наближаються до графіку невідомої функції f(x) — густини імовірності сукупності.

За виглядом гістограми та полігоном частот можна висунути гіпотезу про вигляд розподілу генеральної сукупності.

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантип

Ящик

Графік *Q — Q*

Нормальній розподіл (розподіл Гаусса)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантип

Ящик

Графік О — О

Рівномірний розподіл

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a;b], \\ 0, & x \notin [a;b] \end{cases}$$

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик : вусами

Графік О — О

Експоненційний розподіл

$$f(x) = \begin{cases} \lambda \cdot e^{-\lambda x}, & x > 0, \\ 0, & x \le 0 \end{cases}$$

Імовірнісні основи обробки даних

Статистичні

Гістограма та полігон частот

Квантил

Ящик : вусами

Графін О — О

Для зручності побудови полігону відносних частот в третій стовбчик додають середину інтервалу

Индекс <i>i</i>	Интервал $(u_i; u_{i+1}]$	Середина интервала z_i	Относит. частота \overline{n}_i	Высота прямоуг. h_i
1	(-1,2; 0,2]	-0,5	0,0202	0,0144
2	(0,2; 1,6]	0,9	0,0303	0,0216
3	(1,6; 3,0]	2,3	0,1818	0,1299
4	(3,0;4,4]	3,7	0,2020	0,1443
5	(4,4; 5,8]	5,1	0,2424	0,1732
6	(5,8;7,2]	6,5	0,1616	0,1154
7	(7,2; 8,6]	7,9	0,0909	0,0649
8	(8,6; 10,0]	9,3	0,0707	0,0505
Сумма			1,0000	1,0000

Імовірнісні основи обробки даних

Статистичні ряли

Гістограма та полігон частот

Квантил

Ящик:

 Γ рафінO = O

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантип

Ящик :

Графік *О — О*

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик вусами

Графі

Гістограма і полігон відносних частот, є статистичними оцінками густини імовірностей генеральної сукупності, схожі з кривою густини імовірностей нормального закону. На підставі цього висувається нульова гіпотеза.

Генеральна сукупність, з якої взята вибірка, розподілена за нормальним законом з параметрами

$$\bar{x} = 4,9961$$
 $\sigma = 2,2657$

тобто теоретична густина імовірності має вигляд

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$$

Квантилі

Ящик вусами

Графіі *Q — Q* Квантиль, відповідної ймовірності p, називається таке значення x, при якому виконується співвідношення:

$$P(X < x_p) = \int_{-\infty}^{x_p} f(x) dx = p,$$

Імовірнісні основи обробки даних

Статистичн ряди

Гістограма та полігон частот

Квантилі

Ящик :

Графін

Геометричне пояснення квантилі

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантилі

Ящик з вусами

Графі О — С

Види квантилей

Название квантилей	Число частей, на которые разбивается ряд
Медиана	2
Терциль	3
Квартиль	4
Дециль	10
Процентиль	100

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантилі

Ящик вусами

Графі *Q* — (

Нормальний розподіл

Normal Bell-shaped Curve – Нормальна колоколо-подібна крива Percentage of cases in 8 portions of the curve – імовірність в % події на 8 відрізках кривої

Standard deviation — стандартне відхилення Cumulative Percentages — кумулятивні відсотки

Percentiles – процентилі

Імовірнісні основи обробки даних

Статистичн ряди

Гістограма та полігон частот

Квантилі

Ящикз вусами

Графік О — О Процентилі — це характеристика набору даних, що виражають ранги елементів масива і є показником того, який відсоток значень знаходиться нижче визначеного рівня.

Наприклад, значення 30-ї процентилі вказує, що 30% значень розташовано нижче цього рівня.

Імовірнісні основи обробки даних ۲

Статистичні ряди

Гістограма та полігон частот

Квантилі

Ящик з вусами

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ 990

Імовірнісні основи обробки ланих

Статистичні

Гістограма та полігон

Квантилі

Ящик з вусами

Графік *Q — Q*

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон частот

Квантил

Ящик з вусами

Графін *Q — Q*

Імовірнісні основи обробки даних

Статистичн ряди

Гістограма та полігон частот

Квантип

Ящик з вусами

Графік *Q — Q*

Імовірнісні основи обробки даних

Статистичні ряди

Гістограма та полігон

Квантилі

Ящик з вусами

Графік

Операция

Імовірнісні основи обробки даних

Ящик з вусами

Графік Q-Q

Імовірнісні основи обробки даних

Статистичні ряли

Гістограма та полігон

Квантил

Ящик з

 Γ рафік Q - Q

Графік квантиль-квантиль використовується для порівняння даних з розподілами імовірностей, даних с даними, розподілів з даними і розподілів з розподілами.

