Project Title:

StudBud AI

Team Name:

Hack Attackers

Team Members:

- Bikkumalia Sai Manikanta
- Gopaladas Madhan Mohan
- Shaik Samreen
- Loka Sagarika

Phase-1: Brainstorming & Ideation

Objective:

Develop an AI-powered educational assistant, StudBud, to help students with personalized learning, exam preparation, and academic guidance.

Problem Statement:

- Many students struggle to find reliable study materials, personalized guidance, and exam preparation resources.
- Students require Al-driven support for answering academic queries, summarizing notes, and improving their learning efficiency.

Proposed Solution:

- An Al-powered application, StudBud, designed to provide real-time academic assistance, concept explanations, and practice tests.
- The app offers personalized study plans, AI-generated notes, and performance tracking to enhance learning outcomes.

Target Users:

- Students preparing for competitive exams and academic assessments.
- Learners seeking personalized study materials and guidance.
- Educators looking for Al-powered tools to support student learning.

Expected Outcome:

 A functional AI-powered educational tool that enhances student learning through personalized content, real-time query resolution, and exam preparation strategies.

Phase-2: Requirement Analysis

Objective:

Define the technical and functional requirements for the AutoSage App. ints:

- Technical Requirements:
 - Programming Language: Python
 - Backend: Js , Python
 - Frontend: React
 - Database: Not required initially (API-based queries)
- Functional Requirements:
 - Al-powered study plan generation based on user goals, deadlines, and subjects.
 - Real-time progress tracking with Al-driven insights and analytics.
 - Adaptive learning system that modifies study schedules based on user feedback.
 - Al-generated study notes, summaries, and concept explanations.
- Constraints & Challenges:
 - Ensuring real-time updates and accuracy in Al-generated study plans.
 - Managing API rate limits and optimizing AI-generated responses.
 - Creating an intuitive UI with Streamlit for easy user interaction.
 - Handling diverse academic resources to provide comprehensive learning support..

Phase-3: Project Design

Objective:

Develop the architecture and user flow of the application.

Key Points:

• System Architecture:

User Flow:

- Step 1 User logs in and sets academic goals.
- Step 2: Al generates a personalized study schedule.
- Step 3: User engages in planned study sessions with Pomodoro timers and reminders.
- Step 4: Al tracks progress, adapts schedules, and suggests improvements.
- Step 5: User completes practice tests and revision exercises.

UI/UX Considerations:

- Minimalist and intuitive interface for a seamless study experience.
- Dark/light mode options for comfortable studying.
- Dashboard with visual progress tracking and AI-generated insights.

Phase-4: Project Planning (Agile Methodologies)

Objective:

Break down development tasks for efficient completion.

Sprint	Task	Priority	Duration	Deadline	Assigned To	Dependencies	Expected Outcome
Sprint 1	Sprint Planning & Roadmap Creation		6 hours (Day 1)	End of Day 1	Manikanta	Stakeholder inputs	Clear scope document

Sprint 1	Team Roles & Resource Allocation	High	2 hours (Day 1)	End of Day 1	Madhan	Business requirements	Prioritized and refined backlog
Sprint 2	Study Plan Generation & Al Integration	High	3 hours (Day 2)	End of Day 1	Samreen	Backlog refinement	Sprint roadmap with milestones
Sprint 2	Identify Team Roles & Resource Allocation	□ Medium	1.5 hours (Day 2)	End of Day 1	Sagarika	Project scope & sprint plan	Defined roles and assigned resources
Sprint 3	Risk Assessment & Mitigation Plan	High	1.5 hours (Day 2)	End of Day 1	Samreen	Project scope & backlog	Documented risk plan with mitigation strategies
Sprint 3	Define Acceptance Criteria & DoD	High	1 hour (Day 2)	End of Day 1	Entire Team	User stories & backlog	Clear acceptance criteria for all tasks

Sprint 1 – Setup & Integration (Day 1)

- (High Priority) Set up the environment & install dependencies.
- (High Priority) Integrate Google Gemini API.

(Medium Priority) Build a basic UI with input fields.

Sprint 2 – Core Features & Debugging (Day 2)

- (High Priority) Implement search & comparison functionalities.
- (High Priority) Debug API issues & handle errors in queries.

Sprint 3 - Testing, Enhancements & Submission (Day 2)

(Medium Priority) Test API responses, refine UI, & fix UI bugs.

(Low Priority) Final demo preparation & deployment.

Phase-5: Project Development

Objective: Implement core features of StudBud Al. Points:

- Technology Stack Used:
 - Frontend: Streamlit
 - Backend: Google Gemini Flash APIProgramming Language: Python
- Development Process:

- Implement Al-powered study plan generation.
- Develop real-time progress tracking and analytics.
- · Optimize API interactions for efficient data retrieval.

Challenges & Fixes:

• Challenge: Handling dynamic study plan updates.

Fix: Al-driven adaptive scheduling. **Challenge:** Managing API rate limits.

Fix: Optimize queries and implement caching.

Phase-6: Functional & Performance Testingctive:

Objective: Ensure StudBud AI functions as expected.

Test Case ID	Category	Test Scenario	Expected Outcome	Status	Tester
TC-001	Functional Testing	Generate personalized study plan	Al-generated plan matches user input		Tester 1
TC-002	Functional Testing	Track study progress	Progress tracking updates accurately	⊘ Passed	Tester 2
TC-003	Performance Testing	Al response time under 500ms	API should return results quickly	⚠ Needs Optimization	Tester 3
TC-004	Bug Fixes & Improvements	Fixed incorrect Algenerated schedules	Study plans should be accurate	∜ Fixed	Developer
TC-005	Final Validation	Ensure UI is responsive across devices	UI should work on mobile & desktop	➤ Failed - Needs Fix	Tester 2
TC-006	Deployment Testing	Deploy StudBud Al on cloud infrastructure	App should be accessible online		DevOps

Final Submission

Deliverables:

- Project Report: Based on the hackathon template.
- **Demo Video (3-5 Minutes):** Showcasing the Al-powered study planner.
- GitHub/Code Repository Link: Hosting all project-related files.

• Presentation: Summarizing features, challenges, and outcomes.