# Perceptual Evaluation of Singing Quality (PESnQ)

## Chitralekha Gupta<sup>1,2</sup>, Haizhou Li<sup>3</sup>, and Ye Wang<sup>1</sup>

chitralekha@u.nus.edu, haizhou.li@nus.edu.sg, wangye@comp.nus.edu.sg <sup>1</sup>School of Computing, <sup>2</sup>NUS Graduate School for Integrative Sciences and Engineering, <sup>3</sup>Department of Electrical and Computer Engineering, National University of Singapore

## 1. Introduction

- Singing pedagogy is dependent on human music experts, and is not always accessible to the masses
- A perceptually-valid automatic singing evaluation score could serve as a complement to singing lessons, and make singing training more accessible to learners



# 2. How do experts perceptually evaluate singing quality?

Rhythm Consistency

Intonation Accuracy

Appropriate Vibrato

Voice Quality

Pitch Dynamic Range

Reference





Poor

## 3. Objective Characterization of Singing Quality

#### **Rhythm Consistency**

Use DTW of MFCC vectors between frame-equalized reference and test. Uniformly faster or slower tempo shouldn't be penalized



#### **Intonation Accuracy**

- Compare post-processed pitch contours from rhythmaligned reference and test
- **Key transposition** should be allowed  $\rightarrow$  pitch derivative, and median-subtracted pitch

### **Appropriate Vibrato**

- Vibrato oscillations: **Rate**: 5-8 Hz; **Extent**: 30-150 cents
- Features: vibrato likeliness, rate, extent

#### **Voice Quality and Pronunciation**

DTW distance between MFCC feature vectors

#### Pitch Dynamic Range

Comparison of difference between min and max pitch values

#### **Disturbance Features**

Frame-level deviation of the optimal path from the diagonal in DTW for rhythm and intonation features





School of Computing



## 4. PESQ-based Feature Modeling

Combine frame-disturbances of these features with cognitive modeling inspired by telecommunication standard PESQ [Rix2001]:

### a localized error in time has a larger subjective impact than a distributed error

- Localized error: L6-norm over split second intervals (320ms)
- Distributed error: L2-norm over all split second intervals

## 5. PESnQ Formulation



#### **Experimental Dataset**

- 20 audio recordings collected from 20 singers with varied singing abilities – professional to poor
- Subjective evaluation for singing quality by 5 professionally trained musicians – inter-judge agreement was 0.82

| System        | Description                                                                                                  |  |
|---------------|--------------------------------------------------------------------------------------------------------------|--|
| Baselines     | Pitch distance [Tsai2012], pitch-aligned rhythm distance [Molina2013], volume distance [Chang2007, Tsai2012] |  |
| PESnQ systems | Combinations of L2-norm, L6+L2-norm and distance features for the various MFCC-aligned perceptual features   |  |

## 6. Results



| System      | Correlation objective score with avg. overall human score | Leave-one-judge-out avg. correlation score |
|-------------|-----------------------------------------------------------|--------------------------------------------|
| Human Judge | _                                                         | 0.87                                       |
| Baseline    | 0.30                                                      | 0.38                                       |
| PESnQ       | 0.59                                                      | 0.66                                       |

### 7. Conclusions

- We propose perceptually relevant features to objectively evaluate singing quality
- We adopt the cognitive modeling theory of PESQ to design a **PESnQ** score which performs better than distance features
- PESnQ shows 96% improvement over baseline scores in correlating with the music-expert human judges