复习课

考试和答疑时间

■ 考试时间: 12月20日三四节课(暂定)

■ 答疑时间: 12月15日 12:30-14:00

题型

- 1、选择
- 2、填空
- 3、简答
- 4、综合计算

第1章

- 1、非参数统计和参数统计的区别和联系。
- 2、秩检验统计量的性质 P22 定理1.3 推论1.2 推论1.3的结论
- 3、有结数据的秩的处理P23
- 4、p值的概念 P6
- 5、秩的概念,秩方法的思想 哪些检验是秩方法检验?

第1章

设样本 x_1, x_2, \dots, x_n 来自连续型总体X,记 x_i 的秩为 R_i ($i = 1, 2, \dots, n$),

 R_i, R_j 的联合分布列为______

第1章

2、在观察值中有相等的值(即有结)时,用_____方法确定结里观察值的秩.

例 样本数据有 12 个数,其值,秩和结统计量 (用 τ_i 表示,为第 i 个结中的观察值数量) 为:

表 2.1. 结的计算

观察值	2	2	4	7	7	7	8	9	9	9	9	10
秩												3

其中有6个结,每个结长分别为

第2章 单一样本的推断问题

- 1、符号检验 要求: 会作检验并能求出精确p值 P40 例2.2 ☆
- 2、Wilcoxon符号秩检验 P87 2.1 2.4 (会给出 P324附表2部分信息) ★
- 3、符号检验和Wilcoxon符号秩检验 的区别和联系 P60
- 4、Cox-Staut趋势存在性检验P47 例2.6 ☆
- 5、Kolmogorov-Smirnov正态性检验的原理, 它与卡方拟合优度检验的区别。P75-76

第2章 单一样本的推断问题

1,	一般可用		_			来表示
数	据的中心	位置。	在麴	分析	方法中,	总体的中心
位	置常用总	体的		表示;	在非参	数分析方法
中	总体的中	心位置	常用总	体的_		_表示。
符	号检验方	法是讨	论对_		的检验	问题。

第2章 单一样本的推断问题

- 2、对称中心的概念 X的分布关于 θ 对称,则对任意的a>0,应满足
- 3、Wilcoxon符号秩和检验是对_____的检验问题。

第3章 两独立样本数据的位置和尺度推断

- 1、Brown-Mood中位数检验 P92例3.1 ☆ 要求: 能利用P91的分布求*p*值
- 2、Wilcoxon-Mann-Whitney秩和检验 ↑
 例3.4(会给出检验的临界值表
 P332附表4部分信息)
 P95定理3.1 *E(W_V)*, *Var(W_V)* 的推导

统计量 W_v 的取值情况。

第4章 多组数据位置推断

1、Kruskal-Wallis单因素方差分析 P119 例4.3 ☆

E(H)的推导

2、Friedman秩方差分析法 P144 4.4 ☆ (注意处理和区组的区别) E(Q)的推导

3、两者间的区别

假设某公司有三种方法供员工执行某生产任务使用。为检验这三种方法之间 有没有差异,有以下两个方案:

方案 1: 随随机地抽取 6 个员工。每一个员工先后用三种方法执行该生产任务。6 个员工 完成该生产任务所用的时间(分钟)由下表给出。

1	2	3	4	5	6
6.0	5.0	7.0	6.2	6.1	6.4
5.4	5.2	6.5	5.9	6.0	5.8
6.4	5.4	6.7	6.3	6.8	7.2
	5.4	5.4 5.2	5.4 5.2 6.5	5.4 5.2 6.5 5.9	5.4 5.2 6.5 5.9 6.0

方案 2: 先随机地抽取 6 个员工,其中的每个员工都使用方法 1。然后随机地抽取另 6 个员工,其中的每个员工都使用方法 2。最后再随机地抽取另 6 个员工,其中的每个员工都使用方法 3。他们完成该生产任务所用的时间(分钟)由下表给出。

方法 1: 7.2 6.8 7.3 6.0 6.6 7.0

方法 2: 6.5 6.2 5.1 6.1 5.9 6.9

方法 3: 7.6 7.1 7.4 6.3 7.5 6.4

- ①你认为在使用这两个方案的数据检验这三种方法之间有没有差异时,能用相同的方法吗? 为什么?
- ②请根据方案1得到的数据,检验这三种方法之间有没有差异。
- ③请根据方案 2 得到的数据, 检验这三种方法之间有没有差异。

第5章 分类数据的关联分析

- ☆ 1、卡方检验 P178 5.2
 - 2、Fisher精确性检验
- ☆ 3、关联规则 Apriori算法 (会找强关联规则)

概念: 支持度 可信度

P154例 P179 5.8(2)

4、Cochran检验 P135 例4.10

关联规则挖假设最小值支持度为50% 最小置信度为50%

交易ID	购买商品
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

频繁项集	支持度
{A}	75%
{B}	50%
{C}	50%
{A,C}	50%

- ▶ 对于规则 $A \Rightarrow C$:
- 支持度 = support($\{A,C\}$) = 50%
- ► 置信度 = su 规则 A→C满足最小支持度和最小置信度,所以它是强关联规则

$$= 66.\overline{6}\%$$

Apriori算法举例

现有A、B、C、D、E五种商品的交易记录表,找出所有频繁项集,假设最小支持度>=50%,最小置信度>=50%

交易号	商品代码				
T1	A、C、D				
T2	B、C、E				
T3	A、B、C、E				
T4	B、E				

Apriori算法举例_产生频繁项集

Apriori算法举例_产生频繁项集

L2	{A,C}	50%
	{ B,C }	50%
	{ B , E }	75%
	{ C , E }	50%

从K2中求可用来计算	的的三项集
$\{A,C\} + \{B,C\}$	{A,B,C}
$\{A,C\} + \{B,E\}$	超过三项
$\{A,C\} + \{C,E\}$	{A,C, E}
$\{\mathbf{B,C}\} + \{\mathbf{B,E}\}$	{B,C, E}
{ B,C} +{C,E}	{B,C, E}
$\{B,E\} + \{C,E\}$	{B,C, E}

Apriori算法举例_产生关联规则

■ 对于频繁项集{B,C,E},它的非空子集有{B}、{C}、{E}、{B,C}、{B,E}、{C,E}。以下就是据此获得的关联规则及其置信度。

规则	置信度Confidence
в→се	66.7%
C→BE	66.7%
E→BC	66.7%
СЕ→В	1
ве→с	66.7%
вс→Е	1

置信度≥50%(最小置信度), 都是强关联规则

第6章 秩相关和分位数回归

1、3个相关系数: Pearson相关系数, Spearman 秩相关系数, Kendall τ相关系数

- 2、Spearman相关检验 P182 例6.1
- 3、Kendall τ相关检验 P187 例6.4
- 4、多变量Kendall协和系数(不出大题)

第6章 秩相关和分位数回归

例:零售商要了解每周的广告费和销售收入间的关系,记录了如下的数据:

广告费(10万元)	1	2	3	4	9	16	46
销售收入(100万元)	1	3	5	7	9	12	15

计算Pearson矩相关系数和Spearman秩相关系数, 是否相等?为什么?

比较两个检验的方法

常用的比较方法:

(1)待比较的两个检验在相同的样本容量n的情况下, 给定相同的显著性水平 α ,比较犯第二类错误的大小.

犯第二类错误概率小的检验为好.

定义1: 功效 $\beta = 1 - 检验犯第二类错误的概率$ $= P(拒H_0|H_1$ 真)

即等价于功效大的检验为好.

(2)待比较的两检验取相同的显著性水平 α ,并取同样 的功效 β ,比较要达到水平 α 和功效 β 所需要的样本容量.

所需样本容量较小的检验为好. (1),(2)两种方法等价

比较两个检验的方法

定义: $\frac{n_1}{n_2}$ 称为检验2对检验1的渐近相对效率

注: 若渐近相对效率 $\frac{n_1}{n_2} > 1$,说明检验2优于检验1;

若渐近相对效率 $\frac{n_1}{n_2}$ <1,说明检验1优于检验2.