

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

CONVOLUTIONAL NEURAL NETWORK

Why CNN

Image Classification

 \rightarrow Cat? (0/1)

64x64x3

Text detection

Object detection

Why CNN

Total weights = ?

No ink \rightarrow 0

Image Classification

64x64x3

Cat? (0/1)

1000x1000x3

Image Classification

1000x1000x3

Total weights = ?

- Neural Networks that use convolution in place of general matrix multiplication in at least one layer
- There are three types of layers in the convolutional network,
 - Convolution layer (Conv)
 - Pooling layer (Pool)
 - Fully connected layer (FC)

Cross-correlation

- \Box Let f be the image,
- \square w be the kernel of size $m \times n$
 - o where m=2a+1 and n=2b+1), a and b are the positive integers.
- g be the output image

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

This is called a **cross-correlation** operation:

$$g = w \otimes f$$

Cross-correlation

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

At any point (x, y), the response g(x, y) of the filter is the sum of product of filter coefficient and the image pixels

$$g(x, y) = w(-1,-1) f(x-1, y-1) + w(-1,0) f(x-1, y) + ...$$
$$w(0,0) f(x, y) + ...$$
$$w(1,1) f(x+1, y+1)$$

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x - s, y - t)$$

This is called a **convolution** operation:

$$g = w * f$$

Convolution is commutative and associative

2D Spatial filtering

- O Image point
- Filter mask point

2D Spatial filtering

10	11	10	0	0	1
9	10	11	1	0	1
10	9	10	0	2	1
11	10	9	10	9	11
9	10	11	9	99	11
10	9	9	11	10	10

F

1/9

	• •	
1	1	1
1	1	1
1	1	1

Н

X	X	X	X	X	X
X	10				X
X					X
X					X
X					X
X	X	X	X	X	×
			G		

$$1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) = 1/9.(90) = 10$$

Convolution Examples-Mean filtering

1	1	1	1	
_	1	1	1	
9	1	1	1	

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

W *

f

=

g

Linear filters: examples

Identical image

Source: D. Lowe

Linear filters: examples

Original

Shifted left By 1 pixel

Source: D. Lowe

Smoothing Spatial Filters

	1	1	1
$\frac{1}{9}$ ×	1	1	1
	1	1	1

	1	2	1
×	2	4	2
	1	2	1

Box Filter

Weighted Average

the center is the most important and other pixels are inversely weighted as a function of their distance from the center of the mask

Linear filters: examples

Original

Blur (with a mean filter)

Source: D. Lowe

Smoothing Filters

- (a) is the original image of size500x500 pixel
- (b)-(f) results of smoothing with square averaging filter masks of size n = 3, 5, 9, 15 and 35, respectively.
- □ Note:
 - The big mask is used to eliminate small objects from an image.
 - The size of the mask establishes the relative size of the objects that will be blended with the background.

Gradient Operator

□ The first derivatives are implemented using the magnitude of

the gradient

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$M(x, y) = mag(\nabla f) = [G_x^2 + G_y^2]^{\frac{1}{2}}$$
$$= \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{\frac{1}{2}}$$

Gradient Operator

$$M(x, y) = mag(\nabla f) = [G_x^2 + G_y^2]^{\frac{1}{2}}$$
$$= \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{\frac{1}{2}}$$

commonly approx.

the magnitude becomes nonlinear

$$M(x, y) \approx |G_x| + |G_y|$$

Sobel Operators

z_1	z_2	z_3
\mathcal{Z}_{4}	Z_5	z_6
z_7	z_8	z_{9}

Sobel operators, 3x3

$$G_x = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$

$$G_y = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

$$M(x, y) \approx |G_x| + |G_y|$$

the weight value 2 is to achieve smoothing by giving more important to the center point

-2

-1	0	1
-2	0	2
-1	o	1

Sobel Operators

The summation of coefficients in all masks equals 0, indicating that they would give a response of 0 in an area of constant gray level.

-1	-2	-1	-1	o	1
0	O	0	-2	0	2
1	2	1	-1	0	1

Image Derivatives

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

 $\frac{\partial f}{\partial x}$

 $\frac{\partial f}{\partial y}$

Applied Machine Learning (CS4104)

CNN ... Example

Acknowledgements

Stuart J. Russell and Peter Norvig, Tom M. Mitchell, Jiwon Jeong, Floydhub, Andrej Karpathy