

SF1625 Envariabelanalys Lösningsförslag till tentamen 2021.03.11

DEL A

1. Beräkna följande integraler:

(3+3 p)

$$\int_{e}^{e^2} \frac{dx}{x \ln x} \quad \text{och} \quad \int \frac{dx}{x^2 - 4}.$$

Lösning. (a) Vi gör variabelsubstitutionen $u = \ln x$ och får då du = dx/x och de nya integrationsgränserna u(e) = 1 och $u(e^2) = 2$, vilket ger

$$\int_{e}^{e^{2}} \frac{dx}{x \ln x} = \int_{1}^{2} \frac{du}{u} = [\ln |u|]_{1}^{2} = \ln 2 - \ln 1 = \ln 2.$$

(b) Vi partialbråksuppdelar integranden. Eftersom $x^2-4=(x+2)(x-2)$ så söker vi en uppdelning på formen

$$\frac{1}{(x+2)(x-2)} = \frac{A}{x+2} + \frac{B}{x-2}.$$

Multiplicerar vi upp nämnaren (x+2)(x-2) fås

$$1 = A(x-2) + B(x+2)$$

vilket kan skrivas

$$1 = (A + B)x + (2B - 2A).$$

Identifierar vi respektive koefficienter på båda sidor fås ekvationssystemet

$$\begin{cases} A+B=0\\ 2B-2A=1. \end{cases}$$

Detta system har lösningen A=-1/4, B=1/4. Således har vi

$$\frac{1}{x^2 - 4} = \frac{1}{(x+2)(x-2)} = \frac{1}{4} \left(\frac{1}{x-2} - \frac{1}{x+2} \right).$$

Integration ger nu att

$$\int \frac{dx}{x^2 - 4} = \frac{1}{4} \left(\ln|x - 2| - \ln|x + 2| \right) + C = \frac{1}{4} \ln\left(\frac{|x - 2|}{|x + 2|} \right) + C.$$

Svar: (a)
$$\ln 2$$
, (b) $\frac{1}{4} \ln \left(\frac{|x-2|}{|x+2|} \right) + C$.

2. Låt $f(x) = \sqrt{1-x}$, $0 \le x \le 1$. Bestäm den punkt (x_0, y_0) på grafen y = f(x) som gör rektangeln med hörn i punkterna (0,0), $(x_0,0)$, (x_0,y_0) och $(0,y_0)$ maximal. Glöm inte att föklara varför arean blir maximal i punkten. (6 p)

Lösning. Om (x_0, y_0) är en punkt på kurvan så är $0 \le x_0 \le 1$, $y_0 = \sqrt{1 - x_0}$, och arean A av rektangeln ges av

$$A = x_0 y_0 = x_0 \sqrt{1 - x_0}.$$

Vi söker således det största värdet av funktionen

$$A(x) = x\sqrt{1-x}$$

på intervallet [0,1]. Eftersom funktionen A är kontinuerlig på det slutna och begränsade intervallet [0,1] så vet vi att största (och minsta) värde finns, och måste antas i en ändpunkt till intervallet, en singulär punkt eller en kritisk punkt.

Vi söker kristiska punkter. Vi har

$$A'(x) = \sqrt{1-x} - x \frac{1}{2\sqrt{1-x}} = \frac{2(1-x) - x}{2\sqrt{1-x}} = \frac{2-3x}{2\sqrt{1-x}}.$$

Notera att A'(x) existerar för alla 0 < x < 1 (så singulära punkter saknas här) och att x = 2/3 är den enda kritiska punkten. Således måste A:s största värde på intervallet [0,1] antas i någon av pukterna x = 0, x = 2/3 och x = 1. Eftersom A(0) = A(1) = 0 och A(2/3) > 0 har vi alltså att A antar sitt största värde för x = 2/3. Detta betyder att $(2/3, f(2/3)) = (2/3, 1/\sqrt{3})$ är den sökta punkten.

Svar: $(2/3, 1/\sqrt{3})$.

DEL B

3. Avgör om det finns någon lösning y(t) till differentialekvationen y''(t)+2y'(t)+5y(t)=0 som uppfyller att

$$\lim_{t \to 0} \frac{y(t)}{t} = 1.$$

Bestäm en sådan lösning om en sådan lösning finns, annars förklara varför det inte finns någon. (6 p)

Lösning. Vi löser differentialekvationen. Karaktäristiska ekvationen $r^2 + 2r + 5 = 0$ har lösning $r = -1 \pm 2i$ så diffekvationen har allmän lösning $y(t) = e^{-t}(A\cos 2t + B\sin 2t)$, för godtyckliga konstanter A och B.

Första kravet för att denna funktion y(t) ska uppfylla att

$$\lim_{t \to 0} \frac{y(t)}{t} = 1$$

är att konstanten A=0 ty annars saknas gränsvärdet helt. Vidare gäller (med l'Hopitals regel) att

$$\lim_{t \to 0} \frac{e^{-t}B\sin 2t}{t} = [0/0] = \lim_{t \to 0} \frac{-e^{-t}B\sin t + e^{-t}2B\cos 2t}{1} = 2B.$$

Vi ser att gränsvärdet blir 1 om vi väljer B = 1/2

Vi får alltså att $y(t)=\frac{1}{2}e^{-t}\sin 2t$ är en lösning till diffekvationen med de efterfrågade egenskaperna.

Svar: $y(t) = \frac{1}{2}e^{-t}\sin 2t$ uppfyller villkoren.

4. Bestäm de punkter på kurvan $y=e^{x^2+2x}$ i vilka tangenten till kurvan går genom punkten (1,0). (Notera att punkten (1,0) inte ligger på kurvan.) (6 p)

Lösning. Låt $f(x)=e^{x^2+2x}$. Vi har då $f'(x)=(2x+2)e^{x^2+2x}$. Om (a,f(a)) är en punkt på kurvan så ges tangenten till kurvan i denna punkt av

$$y = f(a) + f'(a)(x - a).$$

Denna linje går igenom punkten (1,0) om och endast om vi har

$$0 = f(a) + f'(a)(1 - a).$$

Stoppar vi in uttrycken för f och f' får vi ekvationen

$$0 = (1 + (2a + 2)(1 - a))e^{a^2 + 2a},$$

vilket kan skrivas (eftersom $e^{a^2+2a} \neq 0$)

$$3 - 2a^2 = 0.$$

Denna ekvation har lösningarna $a = \pm \sqrt{3}/\sqrt{2}$.

Således, i punkterna $(\sqrt{3}/\sqrt{2}, f(\sqrt{3}/\sqrt{2}))$ och $(-\sqrt{3}/\sqrt{2}, f(-\sqrt{3}/\sqrt{2}))$ går tangenten till kurvan genom punkten (1,0).

Svar: I punkterna $(\sqrt{3}/\sqrt{2}, f(\sqrt{3}/\sqrt{2}))$ och $(-\sqrt{3}/\sqrt{2}, f(-\sqrt{3}/\sqrt{2}))$.

DEL C

5. Betrakta integralen $\int_1^\infty \frac{2}{2x^2 + \sin x + 1} \, dx$ (a) Visa att integralen är konvergent.

(2 p)

(b) Bestäm ett närmevärde till integralen där felet inte är större än $\frac{1}{8}$. (4 p)

Lösning. Vi börjar med att observera att $0 \le \sin x + 1 \le 2$ för alla x.

a) Vi har att

$$0 \le \frac{2}{2x^2 + \sin x + 1} \le \frac{2}{2x^2} = \frac{1}{x^2},$$

och eftersom den generaliserade integralen $\int_{1}^{\infty} \frac{dx}{x^2}$ är konvergent så är också integralen $\int_{1}^{\infty} \frac{2}{2x^2 + \sin x + 1} dx$ konvergent, enligt jämförelsesatsen för generaliserade integraler med positiv integrand.

b) Låt

$$I = \int_1^\infty \frac{2}{2x^2 + \sin x + 1} \, dx.$$

Observera att

$$\frac{1}{x^2+1} \le \frac{2}{2x^2+\sin x+1} \le \frac{1}{x^2}$$

för alla x. Därför är

$$\int_{1}^{\infty} \frac{dx}{1+x^2} \le I \le \int \frac{dx}{x^2}.$$

Eftersom

$$\int_{1}^{\infty} \frac{dx}{1+x^2} = \lim_{R \to \infty} \left[\arctan x \right]_{1}^{R} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} > \frac{3}{4}$$

och

$$\int_{1}^{\infty} \frac{dx}{x^2} = \lim_{R \to \infty} \left[-\frac{1}{x} \right] = 1$$

är

$$\frac{3}{4} \le I \le 1.$$

Sätt nu $\hat{I} = 7/8$ som ett approximativt värde till I. Då får från olikheterna ovan att

$$-1/8 = 3/4 - 7/8 \le I - \hat{I} \le 1 - 7/8 = 1/8.$$

Alltså, $I \approx 7/8$, där felet inte är större än 1/8.

Svar: (a) Se bevis ovan; (b) T ex 7/8.

6. För varje heltal n > 1, låt

$$A_n = \left(\frac{1}{n}\right)^{\left(\frac{1}{n^2}\right)} \cdot \left(\frac{2}{n}\right)^{\left(\frac{2}{n^2}\right)} \cdot \left(\frac{3}{n}\right)^{\left(\frac{3}{n^2}\right)} \cdots \left(\frac{n}{n}\right)^{\left(\frac{n}{n^2}\right)}.$$
Bestäm $\lim_{n \to \infty} A_n$. (6 p)

Lösning. Först logaritmerar vi A_n och beräknar $\lim_{n\to\infty} (\ln(A_n))$:

$$\ln(A_n) = \frac{1}{n^2} \ln(\frac{1}{n}) + \frac{2}{n^2} \ln(\frac{2}{n}) \cdots + \frac{n}{n^2} \ln(\frac{n}{n}) = \sum_{k=1}^n \frac{k}{n^2} \ln(\frac{k}{n}) = \frac{1}{n} \sum_{k=1}^n \frac{k}{n} \ln(\frac{k}{n}).$$

Uttrycket $\frac{1}{n}\sum_{k=1}^{n}\frac{k}{n}\ln(\frac{k}{n})$ ser formellt ut som en Riemannsumma för funktionen $y=x\ln x$ över intervallet [0,1], men problemet är att $x \ln x$ inte är definierat för x=0.

Note: a att
$$\lim_{x\to 0^+} (x\ln x) = \lim_{x\to 0^+} (\frac{\ln x}{1/x}) = \text{(L'Hôpital, } [\infty/\infty]) = \lim_{x\to 0^+} (\frac{1/x}{-1/x^2}) = \lim_{x\to 0^+} (-x) = 0.$$
 Därför är funktionen
$$f(x) = \begin{cases} x\ln x, & 0 < x \leq 1 \\ 0 & \text{om } x = 0 \end{cases}$$
 kontinuerlig och därmed integrerbar på intervallet [0,1].

$$f(x) = \begin{cases} x \ln x, & 0 < x \le 1\\ 0 & \text{om } x = 0 \end{cases}$$

Uttrycket $\frac{1}{n}\sum_{k=1}^{n}\frac{k}{n}\ln(\frac{k}{n})$ är nu en Riemannsumma $\sum_{k=1}^{n}f(x_k)(x_k-x_{k-1})$ för integralen

$$\int\limits_{0}^{1}f(x)dx \bmod x_{k}=\tfrac{k}{n} \text{ , och } x_{k}-x_{k-1}=\tfrac{1}{n}, k=1,...,n \text{ . Detta medf\"or att}$$

$$\lim_{n\to\infty} \left(\ln(A_n)\right) = \int_0^1 x \ln x dx = \text{(partiell integration)} = \left[\frac{x^2}{2} \ln x - \frac{x^2}{4}\right]_0^1 = -\frac{1}{4}.$$

Slutligen, eftersom e^x är en kontinuerlig funktion, har vi

$$\lim_{n \to \infty} (A_n) = \lim_{n \to \infty} (e^{\ln(A_n)}) = e^{-1/4}$$

Svar. $e^{-1/4}$.