### Planification d'expériences (numériques)

12-13 décembre 2017

### Informations pratiques

- Contact : Victor Picheny
   INRA (Institut National de la Recherche Agronomique)
   victor.picheny@inra.fr
- Volume horaire : 4,5 heures cours + 3h TP
- Support de cours : transparents uniquement
- Evaluation : exercice dans l'examen du 11 janvier + CR TP
- A noter : TP "filé" avec les autres cours de l'UP4

### Propos du cours

Cours de O. Roustant : vous avez vu comment construire un métamodèle à partir d'un ensemble de données (x - y)

Question : comment choisir les points pour obtenir le "meilleur" modèle ?

Exemple de krigeage : même nombre de points mais différents emplacements



### Quelques repères historiques

- Traditionnellement : pharmaceutique, agronomie, procédés...
- Depuis 20+ ans : expériences numériques

#### Planification d'expériences "classiques"

- Fisher : Design of Experiments (1935)
- Kiefer : Optimum experimental designs (1959)
- Fedorov : Theory of optimal experiments (1972)
- Taguchi : Introduction to quality engineering (1986)

#### Planification d'expériences numériques

- McKay: Latin Hypercube Sampling (1979)
- Sacks : Design and analysis of computer experiments (1989)

### Exemple introductif : qualité de feuilles de PVC

- X1 Température matière entrée calandre
- X2 Ouverture de la filière
- X3 Débit matière à l'entrée
- X4 Température cylindres 1 et 2
- X5 Température cylindre 3

- X6 Température cylindre 4
- X7 Diamètre du bourrelet 1
- X8 Diamètre du bourrelet 2
- X9 Diamètre du bourrelet 3
- X10 Dernier entrefer



### Objectif : absence de bulles d'air, résistance

1 essai = 1 jour, 2500 €

- Un facteur à la fois
- Toutes les combinaisons possibles ⇒ plans pour facteurs qualitatifs
- "Un peu de tout" ⇒ plans remplissant l'espace

#### Ajout d'information a priori

"Toutes les variables contribuent linéairement à l'amélioration de la production"

- Modèle :  $y = \beta_0 + \beta_1 X_1 + ... + \beta_{10} X_{10} + \varepsilon$
- Comment obtenir le modèle le plus précis possible?
  - ⇒ plans optimaux / orientés modèle

#### Exemple PVC

Essayer toutes les combinaisons pour 2 valeurs de chaque  $X_i$ : 1024 essais = 3 ans

### Planification: quels objectifs?

Obtenir le maximum d'information avec un nombre fixé d'observations

Analyse de sensibilité

Recherche des facteurs influents

Optimisation

Déterminer la meilleure combinaison de facteurs

Apprentissage / prédiction

Connaître le phénomène pour l'ensemble de variation des facteurs



- $\mathbf{x} \in \mathbb{R}^d$  : facteur / entrée
- *d* : dimension du problème
- *y* : réponse / sortie
- Plan d'expériences :  $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$

Dans la suite du cours :  $b_i \le x_i \le B_i \quad \forall i$ 

- On normalise toujours!  $0 \le x_i \le 1$
- Plan d'expériences = explorer l'hypercube de dimension d,  $[0,1]^d$

### Plan du cours

### Partie 1 : approches géométriques

- 1. plans pour facteurs qualitatifs
- 2. plans remplissant l'espace

#### Partie 2 : plans orientés modèle

- 1. Modèle de régression linéaire
- 2. Modèle de krigeage

### Plans pour facteurs qualitatifs

### Un à la fois (OAT - "One-at-a-time")

Une approche intuitive pour voir si un facteur a une influence sur la réponse est de les faire varier un à la fois

- On fixe tous les autres facteurs à leur valeur de référence
- On effectue une expérience de référence, et une pour la variation de chaque facteur étudié

#### Exemple



| point                 | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3 |
|-----------------------|-----------------------|-----------------------|------------|
| $X_1$                 | 0                     | 0                     | 0          |
| $X_2$                 | 1                     | 0                     | 0          |
| <i>X</i> <sub>3</sub> | 0                     | 1                     | 0          |
| $X_4$                 | 0                     | 0                     | 1          |

- + seulement d+1 observations
- + faciles à interpréter
- on ne peut voir que des effets linéaires

$$m(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$$

- seules 2 expériences servent à la fois pour estimer les effets
- pas de mesure des interactions

#### Exercice

Comment adapter ce type de plans pour estimer des effets quadratiques?

### Solution Les effets quadratiques peuvent être estimés avec au choix :





On parle parfois de "plan en étoile".

## Principe : considérer toutes les combinaisons de $x_i \in \{0,1\}$ :



+ On peut mesurer toutes les interactions :

$$\beta_0 + \sum_k \beta_k x_k + \sum_{j,k} \beta_{j,k} x_j x_k + \beta_{1,2,3} x_1 x_2 x_3$$

 Le nombre d'expériences devient 2<sup>d</sup> irréaliste avec d grand (cf. exemple PVC)

### Plans factoriels complets

On peut également construire des plans factoriels avec k niveaux :



Cela permet de calculer des effets quadratiques (ou plus) mais le nombre d'évaluations  $k^d$  est encore moins réaliste...

#### On peut aussi combiner ou réduire les plans

### Composite



Effets quadratiques pour "seulement"  $2^d + d + 1$  expériences

### Fractionnaire



Effets linéaires avec  $2^{d-1}$  expériences *mais* effets confondus : ici C = AB

### Problème de projection

Pourquoi ne veut-on pas de superposition de points quand on projette?

Si une variable n'a pas d'influence (cf. cours à venir d'E.

Padonou), les observations deviennent redondantes :



On passe de 27 observations à 9...

## Conclusion sur les plans pour facteurs qualitatifs pour :

Faciles à utiliser

Adaptés aux variables continues et discrètes

Peuvent être combinés (étoile + factoriel par exemple) ou dégradés (plans fractionnaires)

Bien adaptés (souvent optimaux) pour la régression linéaire

#### contre:

Nombre d'expériences non flexible Nombre d'expériences trop grand en grande dimension

Expériences dupliquées en projection

Notions géométriques : "remplir l'espace"

### Quel contexte?

- Variables continues
- Pas d'information a priori sur la réponse (modèle statistique non présupposé)
- Réponse potentiellement complexe (voire discontinue)
- Possibilité de variables peu influentes
- Nombre de facteurs pouvant être élevé
- Nombre de facteurs influents pouvant être beaucoup plus petit



### **Objectifs**

#### Les plans doivent :

- permettre d'utiliser une grande variété de modèles
- donner de l'information pour n'importe quelle partie du domaine
- avoir de bonnes projections dans les sous-espaces
- être robustes à la montée en dimension

# "Remplir l'espace" : explorer au maximum l'espace des variables

- observer f partout
- disperser au maximum les observations
- ⇒ quelle signification donner à "remplir", "partout", "disperser"?

### Deux contre-exemples





### Curiosités de la montée en dimension (1/3)

#### L'intuition est souvent trompeuse!

- Volume du cube :  $(2r)^d$
- Volume de la boule :  $V = \frac{r^d \pi^d}{\Gamma(d/2+1)}$



### Ratio hypersphère /hypercube :



⇒ Pour d grand, la boule contient 0% du volume!

### Curiosités de la montée en dimension (2/3)

Rapport entre le cube de côté 1 et celui de côté 0,9 :

 $rac{V_1}{V_2}=0, 9^p 
ightarrow 0 \Rightarrow$  Tout le volume est contenu dans l'"écorce"!



De plus : les points peuvent être loins les uns des autres Diagonale du cube unité de longueur  $\sqrt{d}$ 

### Curiosités de la montée en dimension (3/3)

■ Le nombre de sommets et d'arêtes d'un hypercube croît plus vite que ce qu'on peut penser



Tester toutes les combinaisons min / max des 50 facteurs prendrait...

### Curiosités de la montée en dimension (3/3)

■ Le nombre de sommets et d'arêtes d'un hypercube croît plus vite que ce qu'on peut penser



Tester toutes les combinaisons min / max des 50 facteurs prendrait...

3000 fois l'âge de l'univers!  $(d = 50 \rightarrow 2^d \approx 1.e15)$ 

### Mesurer le remplissage d'espace

#### Trois familles de critère

- Intra-distances : au sein du plan d'expérience **X**<sub>n</sub>
- Inter-distances : entre  $\mathbf{X}_n$  et  $\mathbb{X}$
- Uniformité de la distribution des x<sub>i</sub>

#### Intuition

- Les points sont bien dispersés s'ils sont éloignés les uns des autres
- On a "observé partout" si, pour tout point de X, il existe une observation  $x_i$  proche
- Le remplissage est uniforme si toutes les zones de l'espace contiennent un nombre égal d'observations

### Critères basés sur les distances

#### Intra-distances: Maximin

la distance minimum entre les points du plan doit être grande

#### Inter-distances: Minimax

la distance maximale entre n'importe quel point du domaine et le point du plan le plus proche doit être petite



#### Exercice

- 1. Formaliser les critères maximin et minimax
- 2. Ecrire les problèmes d'optimisation de plans d'expériences correspondants

$$\max_{\mathbf{x}_1,...,\mathbf{x}_N} \left[ \min_{i \neq j} \left( d(\mathbf{x}_i, \mathbf{x}_j) \right) \right]$$

- On maximise en dimension  $d \times N$
- On calcule n(n-1)/2 distances.

#### Minimax

$$\min_{\mathbf{x}_1, \dots, \mathbf{x}_N} \left[ \max_{\mathbf{x}} \left[ \min_{i} \left( d(\mathbf{x}, \mathbf{x}_i) \right) \right] \right]$$





- On maximise en dimension d
- On calcule n distances



### Lien avec des problèmes de physique (pour d > 1)

- maximin ⇔ empilement de sphères
- minimax ⇔ recouvrement de sphères



Source: L. Pronzato

Discrépance = mesure de non-uniformité Compare le nombre de points dans un hyper-rectangle avec le nombre attendu (en espérance) d'un échantillon issu de la distribution uniforme.

Exemple: plan à 11 points



Proba (loi uniforme) d'être dans R: 0.22Ratio empirique : 2/11. Discrépance (par rapport à R):  $D_R = |0.22 - 2/11| = 0.038$ 

Définition borne supérieure de la distance entre les fonctions de répatition empirique et analytique :  $D = \sup \left| \frac{N_R}{N} - \frac{V_R}{V} \right|$ 

#### La discrépance est souvent calculée soit en :

- fixant un des sommets de R à l'origine
- en centrant R



Le maximum (par rapport à R) est obtenu pour R tangent à des points

→ sup calculé sur un ensemble discret

### Résolution directe des problèmes d'optimisation?

$$\max_{\boldsymbol{x}_{1},...,\boldsymbol{x}_{\mathcal{N}}}\Phi\left[\boldsymbol{X}_{\mathcal{N}}\right]$$

avec Φ maximin, minimax ou discrépance.

#### Problème extrêmement difficile!!

- Grande dimension :  $d \times N$
- Objectifs ni convexes, ni différentiables
- Minimax nécessite une boucle interne d'optimisation → très coûteux à évaluer

### Réduction de nos ambitions (cf. suite du cours)

- Optimiser une classe de plans (LHS)
- Construire des plans avec de bonnes propriétés sans résoudre un problème d'optimisation : CVT, suites à faible discrépance

### Plans remplissant l'espace : Hypercubes latins (LHS)

### Hypercubes latins (Latin Hypercube Sampling, LHS)

- Plans aléatoires
- On découpe chaque dimension en n intervalles ( $\Rightarrow n^d$  blocs)
- On prend un unique point par "ligne" et par "colonne"
- Les distributions marginales sont uniformes!



Pas de remplissage d'espace garanti...



They have to be combined with a criterion such as maximin.

#### Exercice

- Construire un LHS à 5 points en dimension 3
- Comment programmer une fonction lhs(n, d)?
- Comment optimiser un LHS afin qu'il remplisse l'espace?

## Solution (1/2)

#### Définition

Un hypercube latin à n points et d variables, LHS(n, d), est une matrice  $n \times d$  dont chaque colonne est une permutation (normalisée) de  $\{1, 2, \ldots, n\}$ 

## Solution (2/2)

On peut permuter 2 cellules (ou blocs) d'une même colonne et conserver la structure LHS



⇒ Problème discret! On va utiliser des algorithmes d'échange.

## Recuit simulé - Morris et Mitchell [1995]

- 1. On génère un LHS initial
- 2. On cherche les points critiques au sens du critère maximin
- 3. On choisit aléatoirement une colonne d'un point critique
- 4. On effectue un **échange** avec une autre cellule de la même colonne prise aléatoirement
- 5. Si l'échange est bénéfique : on accepte la modification
- 6. Sinon : on accepte (quand même!) avec une probabilité :

$$\pi = \exp\left[rac{\phi_{\it ancien} - \phi_{\it nouveau}}{T}
ight]$$
 (si  $\phi$  est à maximiser)

#### T décroît avec le temps

Par exemple : 
$$T_k = \frac{T_0}{\log(k+1)}$$
.



### LHS maximin

#### Le plan le plus utilisé pour les expériences numériques



## Pour aller plus loin...

Un exemple de LHS en 2D : sudoku!

| 4 | 3 | 1 | 6 | 7 | 9 | 5 | 2 | 8 |
|---|---|---|---|---|---|---|---|---|
| 9 | 6 | 7 | 2 | 5 | 8 | 3 | 4 | 1 |
| 5 | 8 | 2 | 1 | 4 | 3 | 9 | 6 | 7 |
| 6 | 5 | 9 | 8 | 1 | 7 | 2 | 3 | 4 |
| 3 | 2 | 8 | 5 | 6 | 4 | 1 | 7 | 9 |
| 7 | 1 | 4 | 9 | 3 | 2 | 8 | 5 | 6 |
| 8 | 7 | 3 | 4 | 2 | 1 | 6 | 9 | 5 |
| 1 | 4 | 5 | 3 | 9 | 6 | 7 | 8 | 2 |
| 2 | 9 | 6 | 7 | 8 | 5 | 4 | 1 | 3 |

| • | 3            | 1            | 6 | 7            | 9 | 5          | 2 | 8 |
|---|--------------|--------------|---|--------------|---|------------|---|---|
| 9 | 6            | 7            | 2 | 5            | 8 | 3          | • | 1 |
| 5 | 8            | 2            | 1 | lacktriangle | 3 | 9          | 6 | 7 |
| 6 | 5            | 9            | 8 | 1            | 7 | 2          | 3 | • |
| 3 | 2            | 8            | 5 | 6            | • | 1          | 7 | 9 |
| 7 | 1            | lacktriangle | 9 | 3            | 2 | 8          | 5 | 6 |
| 8 | 7            | 3            | • | 2            | 1 | 6          | 9 | 5 |
| 1 | lacktriangle | 5            | 3 | 9            | 6 | 7          | 8 | 2 |
| 2 | 9            | 6            | 7 | 8            | 5 | lacksquare | 1 | 3 |

Le sudoku possède des propriétés supplémentaires!

#### Niveau de stratification supplémentaire

Nous allons utiliser un outil complémentaire : tables orthogonales (OA)

## Table orthogonale (OA): définition

- n lignes
- k colonnes
- Chaque élément prend une valeur entre 1 et q

#### X est de **force t** si, pour toute sous-matrice $n \times t$ :

- Chaque valeur dans chaque colonne apparaît un nombre égal de fois
- Chaque combinaison de valeurs entre deux colonnes apparaît un nombre  $(\lambda)$  égal de fois
- On a :  $\lambda \times q^t = n$

#### On note: OA(n, k, q, t)

## Exemple

## Table orthogonale:

- OA(n points, k dim, q valeurs, force t)
- Pour toute sous-matrice  $n \times t$ :
  - Chaque valeur dans chaque colonne apparaît un nombre égal de fois
  - Chaque combinaison de valeurs entre deux colonnes apparaît un nombre λ égal de fois
- lacksquare On a :  $\lambda \times q^t = n$

| λ=2            |  |             |             |             |             |             |             |             |  |
|----------------|--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|
|                |  | Α           | В           | С           | D           | E           | F           | G           |  |
| 1<br>2<br>3    |  | 1<br>3<br>2 | 1 2 3       | 3<br>2<br>1 | 2<br>1<br>3 | 3<br>1<br>2 | 1<br>3<br>2 | 1 1 1       |  |
| 4<br>5<br>6    |  | 1<br>3<br>2 | 2<br>3<br>1 | 1<br>3<br>2 | 1<br>3<br>2 | 2<br>3<br>1 | 1<br>3<br>2 | 2<br>2<br>2 |  |
| 7<br>8<br>9    |  | 1<br>3<br>2 | 3<br>1<br>2 | 2<br>1<br>3 | 1<br>3<br>2 | 3<br>1<br>2 | 2<br>1<br>3 | 3<br>3<br>3 |  |
| 10<br>11<br>12 |  | 1<br>3<br>2 | 3<br>1<br>2 | 1<br>3<br>2 | 2<br>1<br>3 | 1<br>2<br>3 | 3<br>2<br>1 | 1 1 1       |  |
| 13<br>14<br>15 |  | 1<br>3<br>2 | 1<br>2<br>3 | 2<br>1<br>3 | 3<br>2<br>1 | 2<br>3<br>1 | 3<br>2<br>1 | 2<br>2<br>2 |  |
| 16<br>17<br>18 |  | 1<br>3<br>2 | 2<br>3<br>1 | 3<br>2<br>1 | 3<br>2<br>1 | 1<br>2<br>3 | 2<br>1<br>3 | 3<br>3<br>3 |  |

OA(18, 7, 3, 2)

## LHS et tables orthogonales

- Tous les LHS sont des tables orthogonales de force 1
- $lue{}$  On peut construire un LHS à partir d'une table orthogonale de force >1
- Algorithme de Tang (1993): pour chaque colonne, pour chaque niveau s, on remplace toutes les instances de s par une permutation de

$$(s-1)\lambda q^{t-1}+1,\ldots,(s-1)\lambda q^{t-1}+\lambda q^{t-1}$$

Exercice Construire un LHS à 4 points à partir de OA(n = 4, k = 2, q = 2, t = 2) OA(18,2,3,2):

3

3

3

2 expériences par carré :



Uniformité sur les marges de dimension  $t:\lambda$ points dans chacune des  $q^t$  cellules

# Récapitulatif : LHS et OA LHS

- Projections uniformes sur les marginales d'ordre 1
- Très facile à générer
- Pas de difficulté pour *N* et *d* grands
- Pas de duplication en projection
- MAIS pas de remplissage d'espace sans optimisation
- $\Rightarrow$  Alternative à l'optimisation : niveau de stratification supplémentaire
  - Propriétés plus complexes atteignables : OA, tms-Net
  - Intérêts :
    - ► Limite les "trous" dans les sous-espaces
    - Meilleure capture des interactions
  - Défaut : nombre de points fortement contraint
- ⇒ Difficile à mettre en oeuvre! Cf. package planor

## Plans remplissant l'espace : Tessellations Centroïdales de Voronoï (CVT)

Etant donné un ensemble de points générateurs  $\mathbf{x}_1, \dots, \mathbf{x}_n$ , la **cellule de Voronoi**  $\mathcal{C}_i$  associée au point  $\mathbf{x}_i$  est la region de l'espace telle que :

$$\forall \mathbf{x} \in C_i, d(\mathbf{x}, \mathbf{x}_i) \leq d(\mathbf{x}, \mathbf{x}_j), \quad i \neq j$$

**Tessellation de Voronoi** = ensemble des cellules  $\{C_1, \dots, C_n\}$ 



Source: Q. Du et Al., Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, 41-4, 1999.

**Tessellation Centroïdale de Voronoï (CVT)** est un cas particulier des Tesselations de Voronoi où les points générateurs correspondent aux centres de masse des cellules :



Source: Q. Du et Al., Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, 41-4, 1999.

## Propriétés des CVT

Les CVT sont des points stationnaires de :

$$\sum_{i=1}^k \int_{V_i} \|y-z_i\|^p dy, \quad p \ge 1$$

- Distorsion :  $H(z_i, V_i) = \sum_{i=1}^k \int_{V_i} ||y z_i||^2 dy$
- Quadrature :

$$\int_{\Omega} f(y) dy \approx \sum_{i=1}^k \int_{V_i} f(z_i) dy = \sum_{i=1}^k A_i f(z_i), \text{ avec } A_i = \text{volume}(V_i)$$

avec  $A_i = \text{volume}(V_i)$ . Pour f lipschitzienne :

$$Q = \left| int_{\Omega} f(y) dy - \sum_{i=1}^{k} A_i f(z_i) \right| \leq L \sum_{i=1}^{k} \int_{V_i} \|y - z_i\| dy$$

## CVT et planification

#### Propriétés de stationnarité

- Distorsion minimale : chaque point de l'espace est proche d'un point générateur
- Bonne approximation constante par morceaux
- Propriétés indépendantes de la dimension de l'espace

#### Conséquences

- Bon remplissage d'espace
- On utilise les points générateurs comme plan d'expériences

## Construction des CVT : algorithme de Lloyd

- 1 Générer un ensemble **X** de *n* points
- 2 Tant que  $i < nb_{iter}$
- 3 Calculer la tessellation associée à X
- X =centre de masse de chaque cellule



source: page wikipedia, "Lloyd's algorithm"

#### Construction des CVT: k-means

Très proche de Lloyd, mais basé sur un grand ensemble discret de points au lieu du domaine continu :



## Construction des CVT : algorithme de McQueen

Beaucoup plus rapide (bien qu'il demande beaucoup d'itérations)

- 1 Générer un ensemble **X** de *n* points
- 2 Initialiser *j* un vecteur de 1 de longueur *n*
- 3 Tant que  $i < nb_{i}$
- 4 Générer aléatoirement un point w
- 5 Chercher le point générateur  $x_k$  le plus proche d w
- Mettre à jour :  $x_k = \frac{j_k x_k + w}{j_{\nu} + 1}$
- 7  $j_k = j_k + 1$

## Construction des CVT : algorithme de McQueen



## Fonctionne pour un espace X quelconque



source: L. Pronzato - Ecole PECNUM' 2016

# Plans remplissant l'espace : suites à faible discrépance

## Rappel de la discrépance

Mesure d'uniformité de la répartition des points dans l'espace

$$D = \sup \left| \frac{N_R}{N} - \frac{V_R}{V} \right|$$



## Suites à faible discrépance

Les suites à faible discrépance sont des suites déterministes qui convergent vers la distribution uniforme.

- Elles remplissent l'espace uniformément et "rapidement"
- Elles sont faciles à construire
- On peut facilement ajouter des points

Beaucoup de ces suites existent : Halton, Hammerley, Sobol', Faure, van der Corput, ...

#### Exemple : suite de Halton

Basée sur d entiers sans diviseurs communs. Pour d=2, avec les entiers (2,3) la suite s'écrit :

$$x_1 = 1/2$$
, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16,...  
 $x_2 = 1/3$ , 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27,...



### Exemple : suite de Halton (256 points)

#### Halton Sequence



#### uniform pseudo random



source: wikipedia

## Définitions / Propriétés

## Suites équiréparties : une des trois conditions est vérifiée

- $\frac{1}{n}\sum_{i=1}^n f(x_i) \to \int f(x)dx$
- $\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{f(x_i) \in [0, v]^d} \to \text{Vol}([0, y]^d)$
- Discrépance empirique  $D_n \rightarrow 0$

#### Il existe des suites équiréparties telles que :

$$\left|\frac{1}{n}\left|\sum_{i}f(x_{i})-\int f(x)dx\right|\leq c(f)\frac{\log(n)^{d}}{n}\right|$$

- ⇒ Suites à faible discrépance
  - Tirage uniforme (Monte-Carlo) :  $c(f) = \frac{1}{\sqrt{n}}$
  - Plan factoriel (grille) :  $c(f)^{\frac{1}{n}}$

## Limites des suites à faible discrépance

#### Pour *n* petit

Ne remplit pas forcément l'espace (cf. exemple de Halton)

#### Pour d grand

- Alignements en projections
- "Trous" dans les sous-espaces

Ex.: Halton en 8 dimensions, 80 points: (X7, X8)



Source: thèse J. Franco, 2008

## Récapitulatif : remplissage d'espace

### Plusieurs critères de "qualité"

- intra-distances : Maximin
- inter-distances : minimax
- uniformité : discrépance
- projection / stratification

#### Plusieurs familles de plans

- Hypercubes latins
- Tessellations centroïdales de Voronoï
- Suites à faible discrépance

#### Pas de solution universelle!