GPS Signal Structures

Band	L1		L2			L5	
Carrier freq (GHz)	1.5	7542	1.2276		5	1.17645	
Code	CA	P(Y) P(Y)		CM	CL	CA	
Code length (chips)	1023	23,017,555.5		10,230	767,250	10,230	
Code period	1 ms	1 wk		20 ms	1.5 s	1 ms	
Chip rate (MHz)	1.023	10.23		1.023		10.23	
Data rate (bps)		50		25*	Data less	50*	Data less
Max power at receiver (dBW)	-157.7	-160.7	-163.7	-160		-154	

Signal frequency relationships

Signal modulation at L1

GPS SV signals PRN Sequence:

- 1. 50% are 0, 50% are 1
- 50% of run lengths are 1, 25% are length 2, ...
- if the sequence is shifted, resulting seq. has equal number of agreements and disagreements as orig.

Relativistic Effect | f₀=10.23 MHz Observed at Ground BPSK (Binary Phase Shift Keying)

- Given carrier: s(t) = Acos(w t + P)
- Its phase modulated version is:
 - \circ Scm(t) = Acos(w t + P + O(t))

BPSK modulation ←→Binary Amplitude Shift Keying $s_{cm}(t) = p(t)A\cos(\omega_c t + \varphi)$

p(t) takes 2 values: 1 and -1

Signal frequency domain representation:

· DTFS and CTFT

Synthesis equation

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi ft} df$$

Spectral resolution and bandwidth

 $X[k] \Rightarrow X(k\Delta f) = X(f)$ $x(t) = x(n\Delta t) \Rightarrow x[n]$

L1 Signal mathematical rep.

$$s_{L1} = s_C + s_P$$

$$s_P = AP(t)D(t)\cos[2\pi(f_{L1} + f_D)t + \varphi]$$

A: Protected signal amplitude

 f_{IJ} : L1 carrier frequency 1.57542GHz *P*(*t*): P c

 f_D : L1 carrier frequency Doppler shift D(t): Na

φ: L1 carrier frequency phase

CA Code and Signal Power Spectrum

Correlation

- $r_{xy}(\tau) = \int_T x(t)y(t-\tau)d\tau$
 - $z_{xy}[n] = \sum_{m=-\infty}^{\infty} x[m]y[m-n]$

Power spectrum's relation to auto-correlation

- Power: $S(f) = |X(f)|^2$
- Auto: $R(\tau) = \int x(t)x(t+\tau)dt$
- $S(f) = \int R(\tau)e^{-j2\pi f\tau}d\tau$
- $R(\tau) \leftrightarrow S(f)$

Example with square pulse:

- $S_1(f) = A^2T^2sinc(\pi fT)$
- $R_1(\tau) = A^2 T \left(1 \frac{|\tau|}{\tau} \right), |\tau| \le T$

For a sequence of N pulses:

• $R_2(\tau) = NR_1(\tau)$ (same with S)

Signal Simulation

CA Code alignment at receiver

- CA=[CASamps(N-n0+2:N) CASamps(1:Ns-n0+1)]
- N=samps in code pd., n0=init. code samp index at rcvr, Ns=total samps rcv'd, icp=N-n0+2

Ps and Amplitude relationship

- $S(f) = \frac{A^2T}{2} sinc(\pi fT)$ approximate PSD of $AC(t)\cos^{2}(2\pi(f_{L1}+f_{d})t+\varphi)$ at the baseband
- $P_s = \int_{-\infty}^{\infty} S(f) df = \frac{1}{2} A^2$

Carrier generation

- $car = cos[2\pi(f_{L1} + f_d)t_s[0:N_s 1] + \varphi]$
- ts=1/fs.

Carrier to noise ratio

- $\frac{C}{N_0} = 10 log \left(\frac{P_s}{Pn}\right) (dB Hz)$
- C/N spec. by user, Ps rel. to A, Pn env/device

Noise power density and amplitude

- $P_n = kT_k; T_k = T_{ant} + T_{RX}$ $T_{ant} \sim 100K; T_{RX} = 290(NF 1)$

Noise generation

- for WGN, normal distrib.: $\sigma^2 = P_n = kT_k$
- $\therefore noise = \sqrt{kT_k} * randn(1, N_s)$

Antenna

Antenna gain

Isotropic radiator (imaginary theoretical element) G = 0 dB

Half-wave dipole:

Noise Figure

- · device's contribution to thermal noise at output
- increase in a device noise power from in- to output
 - $\circ NF = 10log_{10} \left(\frac{N_{out}}{N_{in}} \right) G$
- amount of decrease in the SNR $\circ \quad NF = SNR_{out} - SNR_{in}$
- · only applies to bandwidth of interest
- typical range: $0.5 4 \sim 8 \text{ dB}$

Polarization

Definition: the orientation of the electric field vector in a signal Cause: phase difference between 2 perpendicular components in the electric field of a propagating signal: x, y

Polarization cont'd

Ay/Ax	Polarization Pattern					
∞						
1	/	\bigcirc	\	O	\	
0	_	_	_	_		
ф	-180°	-90°	0°	90°	180°	

RX Front End Circuit

Nominal GPS SNR at a RX

- L1 CA P @ RX: P = -160dBW = -130dBm
- RX input noise P: $N_{in} = kTB$
- If B=2MHz, 10log(B)=63 dB
- Assume kT = -209 dBW = -179 dBm
- $N_{in} = -179 + 63 = -116 \text{ dBm}$

Mixing and Down Conversion Output

• Nominal SNR: $SNR = P - N_{in} = -14 dB$

 $Output = s_{IF}(t) + n_{IF}(t) + spurious$ components

 $s_{TF}(t) = s(t)\cos(\omega_1 t) = AC(t)D(t)\cos[(\omega_{L1} + \omega_d)t + \phi]\cos(\omega_1 t)$

 $s_{IF}(t) = \frac{A}{2}C(t)D(t)\left\{\cos\left[\left(\omega_{L1} - \omega_1 + \omega_d\right)t + \phi\right] + \cos\left[\left(\omega_{L1} + \omega_1 + \omega_d\right)t + \phi\right]\right\}$

 $s_{IF}(t) = \frac{A}{2}C(t)D(t)\cos[(\omega_{IF} + \omega_d)t + \phi]$

 $(t) = r(t)\cos[\omega_{IF}t + \phi_n(t)]$

RX Front End Amplification

$$N_{out} = \frac{1}{2} \frac{v_{_{pp}}^2}{R_{ADC}} = \frac{1}{2} \frac{0.1^2}{50} = 0.1 mW = -10 dBm$$

Why use IF samplin to convert to baseband?

- Analog mixing generates I and O channels
 - Channel imbalance
 - More complex hardware components
- Sig strength division between 2 ch's
- IF sampling moves ADC to output of IF
 - Single channel
 - Less hardware
 - Signal strength preservation

$N_{out} = FGN_{in} = GN_{in} + N_T; N_T = (F - I)$ $1)GN_{in}$ For cascaded networks:

Network with

RX Noise Figure Calc.

Signal

Generator

System temp=T

Recall noise figure definition: F =

$$\begin{aligned} & \textit{Overall gain } G = G_1 G_2 \dots G_N \\ & F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots + \frac{F_N - 1}{G_1 G_2 \dots G_{N-1}} \end{aligned}$$

Sampling Frequency and CA Code Chipping Rate

- Fs should not be int multiples of fc
 - Choose fs=5MHz (separated from 5fc)
- Fc should include Doppler
 - o $f_c = 1.023 \, MHz + f_d$

note: $f_{in} = f_{L1} + f_d$ for direct sampling $f_{in} = f_{IF}$ for IF sampling

Sampling Frequency Selection and Aliasing

Sampling Frequency Selection Criteria

1. $f_s > 2B$

 $f_s \neq m(f_c + \Delta f_d)$

3. select n so fo only contains freq. w/in 1 oct.

 $f_0 = f_{in} - nf_s \approx \frac{f_s}{f_s}$

 $f_o = f_{in} - nf_s \approx \frac{3f_s}{4}$ (no band aliasing)

$\overline{\mathrm{ADC}\ \mathrm{Output}}\ \mathrm{Range}\ (v_{pp})$ and $\mathrm{Step}\ \mathrm{Size}\ (\Delta)$

N-bit ADC: 2^N levels separated by Δ

	Digital Rep.	Data Range	Output Levels	General Formula	
	00	x<-0.8	-1	V_{min} \leftarrow	
	01	-0.8≤x<0	-0.3	$V_{min}+\Delta$ \leftarrow	\downarrow^{Δ}
	10	<i>0</i> < <i>x</i> <0.8	0.3	$V_{min}+2\Delta \leftarrow$	$^{\Delta}$
17	11	x>0.8	1	$V_{min} + 3\Delta \leftarrow$	Δ
$\Delta = \frac{v_{pp}}{2N-1}$					

- use more bits in ADC
- higher sampling frequency
 - a. get more details about signal
 - longer data
 - accumulate more coherent energy

Signal Acquisition

Acquisition Basics for Software RX

- · performed using a block of data
- performed for each SV in sequence
- time elapse between SV acq. & tracking data
- · fast acquisition is key to real time software rx

General Idea of Acquisition Reference Input Find a match

Good Search Bin Size?

General consideration

- Large bin size → larger errors, few computations
- Small bin size → smaller errors, more computations
- Compromised approach:
 - · Work with large bin size first
 - · Find potential cell, zoom into it
 - · Sub-divide potential cell into smaller bins for 2nd round search (fine acquisition)
- Code phase bin
 - Hardware-based receiver, typical bin size =1/2 chip
- Software-based receiver, typical bin size = 1~ 2Δt_s
- · Doppler frequency bin
 - Determined by data length T: Δf=1/T
 - For nominal satellite signal acquisition:
 - T= $1\sim10\text{ms} \rightarrow \Delta f=1\text{kHz} \sim 100\text{Hz}$

Doppler effect on CA code

Acquisition Data Length Selection

- minimum: 1ms to ensure 1 pd CA code included
- max: 10 ms to ensure no nav data transition
- main constraint: nav data bit transition spread carrier causing SNR loss in acquisition
- secondary constraint: Doppler effect on CA code