algebarski element Neka je F polje i E neko proširenje tog polja. Za element $\alpha \in E$ kažemo da je algebarski nad F ako postoji nenul polinom $f \in F[X]$ takav da je $f(\alpha) = 0$. Proširenje polja E/F je algebarsko ako je svaki element od E algebarski nad F.

algebarski zatvarač Polje Ω je algebarski zatvarač potpolja F ako je algebarski zatvoreno (vidi definiciju) i algebarsko nad F.

algebarski zatvoreno polje Polje Ω je algebarski zatvoreno ako zadovoljava sljedeće ekvivalentne uvjete:

- 1) svaki nekonstantan polinom iz $\Omega[X]$ se cijepa u $\Omega[X]$ (vidi definiciju),
- 2) svaki nekonstantni polinom u $\Omega[X]$ ima barem jedan korijen u Ω ,
- 3) ireducibilni polinomi u $\Omega[X]$ su polinomi stupnja jedan,
- 4) svako polje konačnog stupnja nad Ω (vidi definiciju) je jednako Ω .

Primjer: Polje kompleksnih brojeva C je algebarski zatvoreno, vidi "fundamentalni teorem algebre".

algoritam

za dijeljenje polinoma Algoritmom za djeljenje polinoma nazivamo sljedeću ťvrdnju: ako su dani f(X) i $g(X) \in F[X]$ t.d $g \neq 0$, onda postoje q(X), $r(X) \in F[X]$ t.d. je stupanj od r manji od stupnja od q i vrijedi

$$f = gq + r$$
.

Nadalje, q i r su jedinstveno određeni sa f i g.

Euklidov Neka su f i g elementi od F(X) i neka je njihov najveći zajednički djelitelj polinom $d(X) \in F[X]$. Euklidov algoritam konstruira polinome a(X) i b(X) takve da

$$a(X) \cdot f(X) + b(X) \cdot g(X) = d(X), \quad st(a) < st(g) \quad i \quad st(b) < st(f)$$

koristeći algoritam za djeljenje polinoma.

za faktorizaciju polinoma Polinom $f \in \mathbb{Q}[X]$ možemo faktorizirati na sljedeći način: prvo ga množimo sa odgovarajućim cijelim brojem c da dobijemo normirani polinom, tj. tako da je cf oblika

$$cf(X) = X^m + a_1 X^{m-1} + \dots + a_m, \qquad a_i \in \mathbb{Z}.$$

Fundamentalni teorem algebre (vidi pod "fundamentalni teorem algebre) kaže da se cf poptuno cijepa u $\mathbb{C}[X]$:

$$cf(X) = \prod_{i=1}^{m} (X - \alpha_i), \qquad \alpha_i \in \mathbb{C}.$$

Iz jednakosti

$$0 = f(\alpha_i) = \alpha_i^m + a_1 \alpha_i^{m-1} + \dots + a_m$$

slijedi da je $|\alpha_i|$ manje od neke ograde koja ovisi samo o stupnju i koeficijentima polinoma cf. Ako je sada g(X) normirani faktor od cf(X), onda su njegovi korjeni neki od α_i -ova, a koeficijenti tog polinoma g su simetrični polinomi u njegovim korjenima. Stoga su koeficijenti od g(X) ograničeni s obzirom na stupanj i koeficijente od cf(X), dakle, za g ima samo konačno mnogo kombinacija. Ispitujemo te kombinacije jednu po jednu i dobivamo faktorizaciju. Ovaj postupak može se primjeniti i ako je $f(X) \in \mathbb{F}_p[x] = (\mathbb{Z}/p\mathbb{Z})[X]$.

Artinova propozicija Neka je G konačna grupa automorfizama polja E i neka je F fiksno potpolje od G u E, $F = E^G$ (vidi definicije). Onda je stupanj od E nad F manji ili jednak redu grupe G, tj. $[E:F] \leq (G:1)$ (vidi definicije).

automorfizam Neka su dana polja $E\supset F,\ E'\supset F.$ F-izomorfizam je izomorfizam $\varphi:E\longrightarrow E'$ takav da $\varphi(\alpha)=\alpha$ za svako $\alpha\in F.$ F-izomorfizam sa $E\longrightarrow E$ još nazivamo i F-automorfizam od E. F-automorfizmi od E čine grupu (s obzirom na kompoziciju funkcija kao operaciju) koju označavamo sa Aut(E/F).

biracionalan Grupu $Aut(\mathbb{C})/\mathbb{C}$ nazivamo grupom biracionalnih automorfizama n-dimenzionalne Riemannove sfere $\mathbb{P}^n_{\mathbb{C}}$. Ta se grupa još zove i Cremona-grupa.

cijepanje Neka je F neko polje. Polinom f se cijepa u F[X] ako je f produkt polinom stupnja jedan u F[X] (vidi "algebarski zatvoreno polje" za opis polja polinoma u kojima se svaki polinom iz tog polja cijepa).

ciklotomski polinomi Polinom X^n-1 ima neke očite faktore u \mathbb{Q} , naime, polinome oblika X^d-1 za svako d|n. Iz rastava od X^n-1 sada izbacimo one linearne faktore koji su linearni faktori od X^d-1 za d|n za sve d< n. Na primjer, za X^4-1 imamo rastav $X^4-1=(X-1)(X+1)(X^2+1)$ i tu izbacujemo faktore (X-1) (dijeli X-1, a 1 dijeli 4) i (X+1) (dijeli X^2-1 , a 2 dijeli 4). Dobiveni polinom zove se n-ti ciklotomski polinom Φ_n . U slučaju X^4-1 to je očito X^2+1 . Stoga je

 $\Phi_n(X) = \prod (X - \zeta),$ produkt po svim primitivnim n-tim korjenima jedinice.

Lako se pokaže da vrijedi:

$$X^n - 1 = \prod_{d \mid n} \Phi_d(X).$$

Na primjer, $\Phi_1(X) = X - 1$, $\Phi_2(X) = X + 1$, $\Phi_3(X) = X^2 - X + 1$ itd.

diskriminanta Neka je zadan polinom

$$f(X) = X^n + a_1 X^{n-1} + \ldots + a_n$$

i neka $f(X) = \prod_{i=1}^n (X - \alpha_i)$ u nekom polju cijepanja od f (vidi definiciju). Definiramo

$$\Delta(f) = \prod_{1 \le i \le j \le n} (\alpha_i - \alpha_j), \qquad D(f) = \Delta(f)^2 = \prod_{1 \le i \le j \le n} (\alpha_i - \alpha_j)^2.$$

Broj D(f) zovemo diskrimanata polinoma f. Primjetimo da je $D(f) \neq 0$ ako i samo ako f ima samo proste korjene, tj. ako je f separabilan bez višestrukih faktora. Diskriminanata of f može se izraziti kao univerzalni polinom u koeficijentima od f. Na primjer:

$$D(aX^{2} + bX + c) = b^{2} - 4ac,$$

$$D(X^{3} + bX + c) = -4b^{3} - 27c^{2}.$$

fiksno polje Neka je G grupa homomorfizama polja E. Definiramo podskup od E:

$$E^G = Inv(G) = \{ \alpha \in E \mid \sigma\alpha = \alpha \text{ za sve } \sigma \in G \}.$$

Taj podskup je potpolje od E koje nazivamo potpoljem G-invarijanata od E ili fiksnim poljem od G.

Frobeniusov

endomorfizam Neka je polje F karakteristike p (vidi definiciju). U tom slučaju vrijedi:

$$(a+b)^p = a^p + b^p.$$

Stoga je preslikavanje $a \mapsto a^p$ homomorfizam $F \longrightarrow F$ koji nazivamo Frobeniusov endomorfizam.

 ${f automorfizam}$ Ako je polje F konačno, onda je Frobeniusov endomorfizam (vidi gore) izomorfizam kojeg nazivamo Frobeniusov automorfizam.

fundamentalni teorem

algebre Fundamentalni teorem algebre prvi je rigorozno dokazao Gauss oko 1816. Teorem glasi: polje $\mathbb C$ kompleksnih brojeva je algebarski zatvoreno (vidi definiciju), tj. svaki nekonstantni polinom iz $\mathbb C[X]$ ima barem jednu nultočku u $\mathbb C$.

Galoisove teorije Neka je E Galoisovo proširenje od F i G = Gal(E/F) njegova Galoisova grupa (vidi definicije). Preslikavanja $H \mapsto E^H$ (koje podgrupi H od G pridružuje njeno fiksno potpolje u E (vidi definiciju)) i $M \mapsto Gal(E/M)$ (koje potpolju od E pridružuje njegovu Galoisovu grupu) su inverzne bijekcije između skupa svih podrgupa od G i skupa svih međupolja od F i E:

$$\{ \text{ podgrupe od } G \} \longleftrightarrow \{ \text{ međupolja } F \subset M \subset E \}.$$

Nadalje,

- (a) ta bijekcija okreće inkluzije, tj. $H_1 \supset H_2 \iff E^{H_1} \subset E^{H_2}$;
- (b) indeksi su jednaki stupnjevima: $(H_1:H_2)=[E^{H_2}:E^{H_1}];$
- (c) $\sigma H \sigma^{-1} \leftrightarrow \sigma M$, tj. $E^{\sigma H \sigma^{-1}} = \sigma(E^H)$; $Gal(E/\sigma M) = \sigma \ Gal(E/M) \ \sigma^{-1}$;
- (d) H je normalna u $G \Longleftrightarrow E^H$ je normalno (stoga i Galoisovo) nad F, i u tom slučaju

$$Gal(E^H/F) = G/H.$$

Galoisova grupa Neka je F polje. Konačno proširenje E od F je Galoisovo ako je F fiksno polje (vidi definiciju) grupe F-automorfizama od E. Ta grupa se onda zove Galoisova grupa od E nad F i označava sa Gal(E/F). Za proširenje E/F ekvivalentno je:

- (a) E je polje cijepanja separabilnog polinoma $f \in F[X]$;
- (b) $F = E^G$ za neku konačnu grupu G automorfizama od E;
- (c) E je normalno, separabilno i konačnog stupnja nad F;
- (d) E je Galoisovo nad F.

polinoma Ako je polinom $f \in F[X]$ separabilan (vidi definiciju), onda je njegovo polje cijepanja (vidi definiciju) F_f Galoisovo nad F (vidi gore). U tom slučaju Galoisovu grupu $Gal(F_f/F)$ zovemo Galoisova grupa G_f od f.

Galoisovo polje Konačna polja (vidi definiciju) su se nekad zvala Galoisova polja.

Galoisov zatvarač Neka je E Galoisovo proširenje od F i neka je G pripadna Galoisova grupa (vidi definicije). Neka je, nadalje, H podgrupa od G i neka je $M=E^H$ fiksno polje od H (vidi definiciju). Može se pokazati da je najveća normalna podgrupa sadržana u H oblika $N=\cap_{\sigma\in G}\sigma H\sigma^{-1}$ i stoga je E^N najmanje normalno proširenje (vidi definiciju) od F koje sadrži M. Zovemo ga normalni ili Galoisov zatvarač od M u E.

Gaussovi brojevi Gaussovim brojevima nazivamo elemente polja

$$\mathbb{Q}(i) = \{ a + bi \in \mathbb{C} \mid a, b \in \mathbb{Q} \}.$$

Polje Gaussovih brojeva je stupnja dva nad \mathbb{Q} (vidi definiciju) sa bazom $\{1, i\}$.

 $G\text{-}\mathbf{modul}$ Neka je G (konačna) grupa. $G\text{-}\mathbf{modul}$ je abelova grupa Mzajedno sa djelovanjem od Gna M,tj. sa zajedno sa preslikavanjem $G\times M\longrightarrow M$ takvim da

- (a) $\sigma(m+m') = \sigma(m) + \sigma(m')$ za sve $\sigma \in G$, $m, m' \in M$;
- (b) $(\sigma \tau)(m) = \sigma(\tau(m))$ za sve $\sigma, \tau \in G, m \in M$;
- (c) $1_G m = m$ za sve $m \in M$.

Stoga je zadavanje djelovanja od G na M ekvivalentno zadavanju homomorfizma $G \longrightarrow Aut(M)$ (homomorfizma kao homomorfizma grupa).

grupa kohomologije Zbroj i razlika dva ukrižena homomorfizma (vidi definiciju) je opet ukriženi homomorfizam, a zbroj i razlika dvaju glavnih ukriženih homomorfizama (vidi definiciju) je opet glavni ukriženi homomorfizam. Stoga možemo govoriti o abelovoj grupi ukriženih homomorfizama i abelovoj grupi glavnih ukriženih homomorfizama, te u skladu s tim definirati kvocijentnu abelovu grupu

$$H^1(G,M) = \frac{\{\text{ukriženi homomorfizmi}\}}{\{\text{glavni ukriženi homomorfizmi}\}} = \frac{\text{kociklusi}}{\text{korubovi}}$$

To je prva grupa kohomologije, a slično se definiraju i n-te grupe kohomologije, $H^n(G, M)$.

homomorfizam

polja Homomorfizam polja $\alpha: F \longrightarrow F'$ je jednostavno homomorfizam prstenova (vidi dolje) sa svojstvom da $1_F \mapsto 1_{F'}$. Homomorfizam polja je uvijek injektivan jer je jezgra homomorfizma pravi ideal (vidi definiciju) u polju F pa stoga mora biti nula.

prstenova Homomorfizam prstenova $\alpha:R\longrightarrow R'$ je preslikavanje sa R u R'takvo da vrijedi:

$$\alpha(a+b) = \alpha(a) + \alpha(b), \qquad \alpha(ab) = \alpha(a)\alpha(b), \qquad \text{za sve} \quad a, b \in R.$$

ideal Ideal I u komutativnom prstenu R je podgrupa abelove grupe (R, +) zatvorena s obzirom na množenje sa elementima iz R:

$$r \in R$$
, $a \in I \Longrightarrow ra \in I$.

Na primjer, u prstenu cijelih brojeva \mathbb{Z} svi brojevi djeljivi s nekim zadanim prirodnim brojem n čine ideal koji označavamo sa (n). Dalje, trivijalno se provjeri da su jezgra i slika homomorfizma prstenova (vidi definiciju) također ideali.

integralna domena Komutativan prsten R je integralna domena ako $1_R \neq 0$ i ako vrijedi zakon kraćenja, tj. ako

$$ab = ac$$
 i $a \neq 0 \Longrightarrow b = c$ u R .

Posljednji uvjet ekvivalentan je uvjetu da u R nema djelitelja nule tj. da iz jednakosti ab=0 za $a,b\in R$ nužno slijedi a=0 ili b=0.

invarijante Vidi pod "fiksno polje".

karakteristika polja Neka je dano polje F. Promatramo homomorfizam prstenova $\mathbb{Z} \longrightarrow F$

$$n \mapsto 1_F + 1_F + \ldots + 1_F, \qquad (n \text{ puta } 1_F)$$

Jezgra tog homomorfizma je ideal u Z. Razlikujemo dva slučaja:

(1) ako je jezgra trivijalna, nenul elementi iz \mathbb{Z} se preslikaju u invertibilne elemente u polju F koje onda sadrži kopiju od \mathbb{Q} . U tom slučaju kažemo da je F karakterisitke nula.

(2) ako jezgra nije trivijalna, onda $n \cdot 1_F = 0$ za neko $n \neq 0 \in \mathbb{Z}$. Najmanji pozitivan takav n bit će prost broj p takav da p generira jezgru. Stoga preslikavanje $n \mapsto n \cdot 1_F : \mathbb{Z} \longrightarrow F$ definira izomorfizam sa $\mathbb{Z}/p\mathbb{Z}$ u potprsten

$$\{ m \cdot 1_F \mid m \in \mathbb{Z} \}$$

od F. U tom slučaju F sadrži kopiju od $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ i kažemo da je F karakteristike p.

kompozit polja Neka su F i F' potpolja polja E. Presjek potpolja od E koja sadrže F i F' je najmanje potpolje od E koje sadrži i F i F'. Zovemo ga kompozit od F i F' u E i označavamo sa $F \cdot F'$. Možemo ga također opisati kao potpolje od E generirano sa F i F', ili potpolje od E generirano nad F' sa F:

$$F(F') = F \cdot F' = F'(F).$$

 ${\bf komutativan}$ prsten
 PrstenRje komutativan ako je množenje u tom prstenu komutativ
no, tj. ako je

$$ab = ba$$
 za sve $a, b \in R$.

konačno proširenje Kažemo da je proširenje E polja F konačno ako je njegov stupanj (vidi definiciju) nad F, [E:F], konačan. Na primjer, polje $\mathbb C$ je konačno proširenje polja $\mathbb R$ jer je stupanj od $\mathbb C$ nad $\mathbb R$ jednak dva, $[\mathbb C:\mathbb R]=2$ (baza $\{1,i\}$)

konstruktibilan Broj (ili dužina) je konstruktibilan ako se u konačno mnogo koraka može konstruirati iz jedinice pomoću uzastopnih presjeka

- pravaca povučenih kroz dvije već konstruirane točke
- kružnica sa centrom u već konstruiranoj točki i radijusa već konstruirane dužine.

To je ekvivalentno s tim da je taj broj element polja K nad $\mathbb Q$ koje se dobije iz $\mathbb Q$ pomoću konačno mnogo kvadratnih proširenja (vidi "konstruktibilni brojevi").

konjugati Neka je E Galoisovo nad F sa Galoisovom grupom G (vidi definicije). Elementi $\alpha_1 = \alpha, \alpha_2, \alpha_3, \ldots, \alpha_m$ orbite od α s obzirom na djelovanje od G zovu se konjugati od α . Može se pokazati da je minimalni polinom (vidi definiciju) od α oblika

$$f(X) = \prod_{i=1}^{m} (X - \alpha_i).$$

korijen

višestruki Vidi pod "kratnost". prosti Vidi pod "kratnost".

kratnost Neka je zadano polje F i polinom $f \in F[X]$. Neka je, nadalje,

$$f(X) = a \prod_{i=1}^{r} (X - \alpha_i)^{m_i}, \quad \alpha_i$$
 međusobno različiti, $m_i \ge 1, \quad \sum_{i=1}^{r} m_i = st(f), \quad a \ne 0$

rastav od f u nekom polju cijepanja od f. Kažemo da je α_i korijen kratnosti m_i . Ako je $m_i \geq 2$, α_i se naziva višestrukim korijenom od f. Ako $m_i = 1$, kažemo da je α_i prosti korijen od f.

Kummerova teorija Kummerova teorija koristi se rezultatima klasifikacije cikličkih proširenja reda n polja F u slučaju kada F sadrži primitivni n-ti korijen jedinice (vidi definiciju). Uz iste pretpostavke na F, moguće je proširiti te rezultate na klasifikaciju Galoisovih proširenja od F čija je Galoisova grupa abelova i eksponenta n (tj. na ona proširenja čija Galoisova grupa je kvocijent grupe $(\mathbb{Z}/n\mathbb{Z})^r$ za neko r).

Maple Maple je programski paket koji se koristi za rješavanje različitih matematičkih problema.

norma i trag Neka je polje E konačno proširenje polja F stupnja n (vidi definicije). Element α iz F definira F-linearno preslikavanje

$$\alpha_L: E \longrightarrow E, \quad x \mapsto \alpha x.$$

E je vektorski prostor nad F pa za gornje linearno preslikavanje sa E u E možemo gledati standardni trag i determinantu. Funkcije traga i norme sada definiramo kao:

$$Tr_{E/F}(\alpha) = Tr(\alpha_L), \qquad Nm_{E/F}(\alpha) = det(\alpha_L).$$

Iz svojstva traga i norme sada izlazi da je $Tr_{E/F}$ homomorfizam $(E,+) \longrightarrow (F,+)$, a $Nm_{E/F}$ je homomorfizam $(E^{\times},\cdot) \longrightarrow (F^{\times},\cdot)$.

Pogledajmo, na primjer, proširenje $\mathbb{C}\supset\mathbb{R}$. Za $\alpha=a+bi$, matrica od α_L u bazi $\{1,i\}$ je $A=\left(\begin{array}{cc}a&-b\\b&a\end{array}\right)$. Stoga je

$$Tr_{\mathbb{C}/\mathbb{R}}(\alpha) = 2Re(\alpha), \qquad Nm_{\mathbb{C}/\mathbb{R}}(\alpha) = |\alpha|^2.$$

normalna baza Neka je E konačno Galoisovo proširenje od F sa Galoisovom grupom G (vidi definicije). Normalna baza za E je F-baza oblika $\{\sigma\alpha\mid\sigma\in G\}$, tj. F-baza koja se sastoji od konjugata elementa α u E (vidi definiciju). Može se pokazati da svako Galoisovo proširenje ima normalnu bazu.

normalni zatvarač Vidi Galoisov zatvarač.

opći polinom Kada promatamo polinome drugog stupnja,

$$q(X) = aX^2 + bX + c,$$

znamo da su rješenja jednadžbe g(X) = 0 dana formulom

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

gdje a,b,c promatramo kao varijable. Takav rezultat ne može se dobiti za polinome bilo kojeg stupnja. Protuprimjer su tzv. opći polinomi.

Neka je F neko polje. Opći polinom stupnja n je polinom oblika

$$f(X) = X^n - t_1 X^{n-1} + \dots + (-1)^n t_n \in F[t_1, \dots, t_n][X]$$

gdje su t_1, \ldots, t_n varijable. Može se pokazati da je Galoisova grupa polinoma f (vidi definiciju), ako ga gledamo kao polinom u X sa koeficijentima u polju $F(t_1, \ldots, t_n)$, grupa permutacija S_n . Iz toga slijedi da (barem za polja karakterisitke nula) nema formule za rješenja jednadžbe f(X) = 0 rješive u radikalima (vidi definiciju) od f ako je f opći polinom stupnja ≥ 5 .

polinom

minimalni Neka je E/F proširenje polja F i neka je $\alpha \in E$ algebarski nad F (vidi definiciju). Polinomi $g \in F[X]$ takvi da $g(\alpha) = 0$ čine ideal u F[X] koji je generiran normiranim polinomom f najmanjeg stupnja sa svojstvom da $f(\alpha) = 0$. Polinom f zovemo minimalni polinom od α nad F. On je ireducibilan jer bi inače mogli naći dva nenul elementa u E čiji je umnožak nula. Minimalni polinom je karakteriziran kao element iz F[X] svakim od sljedećih skupova uvjeta:

- f je normiran; $f(\alpha) = 0$ i f dijeli svaki drugi polinom g iz F[X] sa svojstvom $g(\alpha) = 0$,
- f je normirani polinom najmanjeg stupnja takav da je $f(\alpha) = 0$,
- f je normiran, ireducibilan i $f(\alpha) = 0$.

separabilan Polinom $f \in F[X]$ je separabilan ako niti jedan od njegovih ireducibilnih faktora nema višestruke korjene (u bilo kojem polju cijepanja). Može se pokazati da je f separabilan uvijek osim u slučaju kada je

- (a) karakteristika od $F p \neq 0$ i
- (b) barem jedan od ireducibilnih faktora od f polinom u X^p .

polje Polje je skup F sa dvije binarne operacije + i \cdot takve da je:

- (a) (F, +) komutativna grupa,
- (b) (F^{\times}, \cdot) (gdje $F^{\times} = F \setminus \{0\}$), također komutativna grupa,
- (c) vrijedi zakon distributivnosti.

Iz definicije slijedi da polje sadrži barem dva raličita elementa, 0 i 1_F . Primjeri polja su \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ (gdje je p prost broj).

cijepanja Neka je f polinom s koeficijentima u polju F i neka je $E \supset F$ neko proširenje od F. Kažemo da polje E cijepa f ako se f cijepa u E[X] tj. ako $f(X) = \prod_{i=1}^{m} (X - \alpha_i), \quad \alpha_i \in E$ u E[X]. Ako je, nadalje, E generirano s korjenima od f,

$$E = F[\alpha_1, \dots, \alpha_m],$$

onda E zovemo polje cijepanja od f. Jasno je da polinomi $\prod f_i(X)^{m_i}$ $(m_i \ge 1)$ i $\prod f_i(X)$ imaju isto polje cijepanja.

Primjer: Neka je $f(X) = aX^2 + bX + c \in \mathbb{Q}[X]$, i neka je $\alpha = \sqrt{b^2 - 4ac}$. Potpolje $\mathbb{Q}[\alpha]$ od \mathbb{C} je polje cijepanja za f.

potpolje Potpolje S polja F je potprsten zatvoren s obzirom na invertiranje, tj. $a \in S$ i $a \neq 0 \Longrightarrow a^{-1} \in S$. U tom slučaju S nasljeđuje strukturu polja od F. Na primjer, $\mathbb R$ i $\mathbb Q$ su potpolja u $\mathbb C$.

generirano podskupom Lagano se pokaže da je presjek polja sadržanih u nekom polju ponovo polje. Neka je E neko polje i $S \subset E$ podskup od E. Presjek svih potpolja od E koja sadrže S je najmanje potpolje od E koje sadrži S. Kažemo da je to potpolje generirano skupom S. Primjer: Polje $\mathbb{Q}[\pi]$ koje se sastoji od svih kompleksnih brojeva oblika

$$\frac{g(\pi)}{h(\pi)}$$
, $g(X), h(X) \in \mathbb{Q}[X]$, $h(\pi) \neq 0$,

je potpolje u \mathbb{C} generirano skupom $\mathbb{Q} \cup \pi$.

potprsten Potprsten S prstena R je podskup zatvoren je s obzirom na zbrajanje, invertiranje s obzirom na zbrajanje te na množenje. Drugim riječima, S je podgrupa od (R, +) i vrijedi

$$a, b \in S \Longrightarrow a \cdot b \in S$$

za svako $a, b \in S$.

Presjek prstena je ponovno prsten. Kao i kod polja, možemo uzeti neki podskup prstena $S \subset R$ i promatrati sve potprstenove od R koji sadrže S. Njihov presjek je najmanji potprsten od R koji sadrži S i kažemo da je to prsten generiran sa S. Ako imamo polje F i proširenje tog polja $E, E \supset F$, te podskup $S \subset E$, možemo promatrati sve potprstene od E koji sadrže F i S. njihov presjek je onda ponovno najmanji potprsten od E koji sadrži F i S, a označavamo ga sa F[S] i zovemo potprsten od E generiran sa F i S (ili generiran nad F sa S). Na primjer, $\mathbb{C} = \mathbb{R}[\sqrt{-1}]$.

pravilni n-terokut Pravilni poligon sa n-stranica ili pravilni n-terkout je konstruktibilan (vidi definiciju) ako i samo ako $n = 2^k p_1 \dots p_s$ gdje su p_i -ovi različiti Fermatovi prosti brojevi.

proširenje polja Polje E koje sadrži polje F naziva se proširenje polja F. Takvo polje može se na očit način gledati kao vektorsko polje nad F. Sa [E:F] označavamo dimenziju, konačnu ili beskonačnu, od E kao vektorskog prostora nad F. Broj [E:F] zovemo stupanj od E nad F. Imamo različite vrste proširenja:

abelovo Konačno proširenje $E\supset F$ zove se abelovo proširenje ako je E Galoisovo proširenje čija je Galoisova grupa (vidi definicije) abelova.

cikličko Konačno proširenje $E \supset F$ zove se cikličko proširenje ako je E Galoisovo proširenje čija je Galoisova grupa (vidi definicije) ciklička.

Galoisovo Vidi pod Galoisova grupa.

normalno Algebarsko proširenje E/F je normalno ako se minimalni polinom svakog elementa iz E cijepa u E[X] (vidi definiciju). Dakle, algebarsko proširenje je normalno ako se svaki irreducibilni polinom $f \in F[X]$ koji ima korijen u E cijepa u E.

prosto (jednostavno) Proširenje E od F je prosto (jednostavno) ako je $E = F(\alpha)$ za neko $\alpha \in E$ ($F(\alpha)$ je, po definiciji, najmanje polje koje sadrži polje F i element α ; kažemo da je to polje generirano sa F i α).

rješivo Konačno proširenje $E\supset F$ zove se rješivo proširenje ako je E Galoisovo proširenje čija je Galoisova grupa (vidi definicije) rješiva.

separabilno Algebarsko proširenje E/F je separabilno ako je minimalni polinom svakog elementa iz E separabilan (vidi definiciju). U suprotnom, proširenje zovemo neseparabilnim.

primitivni element Konačno proširenje E/F je prosto (jednostavno) ako postoji element $\alpha \in E$ takav da je $E = F[\alpha]$ (vidi definiciju). Takav α nazivamo primitivnim elementom. Poznato je da sva separabilna proširenja (vidi definiciju) imaju primitivni element. Čak i više, vrijedi *Teorem* Neka je $E = F[\alpha_1, \ldots, \alpha_r]$ konačno proširenje od F i pretpostavimo da su $\alpha_2, \ldots, \alpha_r$ separabilni nad F (ali ne nužno i α_1). Onda postoji $\gamma \in E$ takav da $E = F[\gamma]$.

primitivni korijen jedinice Primitivni n-ti korijen jedinice u polju F je element reda n u F. Takav element može postojati jedino ako je F karakteristike nula ili karakteristike p gdje p ne dijeli n.

prsten Prsten je skup R sa dvije binarne operacije + i \cdot takve da

- (a) (R, +) je komutativna grupa;
- (b) · je asocijativna operacija;
- (c) vrijedi zakon distributivnosti: za sve $a,b,c\in R$ je

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

 $a \cdot (b+c) = a \cdot b + a \cdot c.$

Ponekad se traži i uvjet postojanja jedinice tj. elementa $1_R \in R$ sa svojstvom da $a \cdot 1_R = 1_R \cdot a = a$ za sve $a \in R$. Prsteni sa takvim elementom nazivaju se onda prsteni sa jedinicom.

polinoma Prsten polinoma F[X] je komutativan prsten čiji su elementi polinomi s koeficijentima u polju F u jednoj varijabli X. Dakle, elementi tog prstena se mogu na jedinstven način zapisati kao

$$a_m X^m + a_{m-1} X^{m-1} + \ldots + a_0, \quad a_i \in F, \ m \in \mathbb{N}, \quad a_m \neq 0.$$

Njihovo zbrajanja i množenje definirano je na standardni način.

rješiva u radikalima Za polinom $f \in F[X]$ kažemo da je jednadžba f(X) = 0 rješiva u radikalima ako se njena rješenja mogu dobiti algebarskim operacijama zbrajanja, oduzimanja, množenja, dijeljenja i korjenovanja, ili, preciznije, ako postoji toranj polja

$$F = F_0 \subset F_1 \subset F_2 \subset \ldots \subset F_m$$

takav da je

- (a) $F_i = F_{i-1}[\alpha_i], \quad \alpha_i^{m_i} \in F_{i-1};$
- (b) F_m sadrži polje cijepanja (vidi definiciju) za f.

Može se pokazati da vrijedi sljedeće: neka je F karakteristike nula. Jednadžba f=0 je rješiva u radikalima ako i samo ako je Galoisova grupa od f rješiva (vidi definiciju).

savršeno polje Polje F je savršeno ako su svi polinomi u F[X] separabilni (ili, ekvivalentno, ako su svi ireducibilni polinomi u F[X] separabilni). Može se pokazati da je svako polje karakteristike nula (vidi definiciju) savršeno te da je polje karakteristike $p \neq 0$ savršeno ako i samo ako je $F = F^p$, tj. ako je svaki element od F p-ta potencija. Algebarski zatvorena polja su također savršena.

separabilan Kažemo da je algebarski element α nad F (vidi definiciju) separabilan nad F ako njegov minimalni polinom nad F nema višestrukih korjena (vidi definicije).

separabilni element Neka je E/F konačno proširenje polja F (vidi definiciju). Element $\alpha \in E$ nazivamo separabilnim elementom nad F ako je njegov minimalni polinom nad F separabilan (vidi definiciju).

simetrični polinomi Neka je R komutativni prsten s jedinicom 1_R . Polinom $P(X_1, \ldots, X_n) \in R[X_1, \ldots, X_n]$ je simetričan ako je invarijantan na permutacije varijabli, tj. ako

$$P(X_{\sigma(1)},\ldots,X_{\sigma(n)})=P(X_1,\ldots,X_n)$$
 za sve $\sigma\in S_n$.

elementarni Polinomi oblika

$$\begin{array}{rcl} p_1 & = & \sum_i X_i = X_1 + \ldots + X_n, \\ \\ p_2 & = & \sum_{i < j} X_i X_j = X_1 X_2 + X_1 X_3 + \ldots + X_{n-1} X_n, \\ \\ p_3 & = & \sum_{i < j < k} X_i X_j X_k = X_1 X_2 X_3 + \ldots, \\ \\ \dots & \\ p_r & = & \sum_{i_1 < \ldots < i_r} X_{i_1} \ldots X_{i_r}, \\ \\ \dots & \\ p_n & = & X_1 X_2 \ldots X_n \end{array}$$

su očito simetrični jer su p_r sume svih monoma stupnja r sastavljenih od različitih X_i -ova. Te polinome zovemo elementarni simetrični polinomi. Jasno je da su sve njihove linearne kombinacije također simetrični polinomi.

stupanj Neka je E/F neko proširenje polja F. E se na prirodan način može gledati kao vektorski prostor nad F. Dimenzija od E nad F kao vektorskog prostora nad F, zove se stupanj od E nad F i označava sa [E:F]. Taj broj može biti i beskonačan.

teorem

binomni u karakteristici p Binomni teorem

$$(a+b)^m = a^m + \binom{m}{1}a^{m-1}b + \binom{m}{2}a^{m-2}b^2 + \dots + b^m$$

vrijedi u svakom komutativnom prstenu. Ako je p prost, onda $p|\binom{p}{r}$ za svako $r,\ 1\leq r\leq p-1$. Stoga, ako je polje F karakteristike p, vrijedi jednakost

$$(a+b)^p = a^p + b^p.$$

(vidi "Frobeniusov automorfizam")

ciklotomski polinomi Taj teorem dokazao je još Dedekind, a glasi: Teorem N-ti ciklotomski polinom (vidi definiciju), Φ_n , je ireducibilan u $\mathbb{Q}[X]$.

Dedekindov Neka je $f(X) \in \mathbb{Z}[X]$ normirani polinom stupnja m i neka je p prost broj takav da f mod p ima proste korjene (ili, ekvivalentno, takav da diskriminanta D(f) nije djeljiva sp). Pretpostavimo da je slika od f u $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ s obzirom na standardnu projekciju oblika $\bar{f} = \prod f_i$ gdje su f_i ireducibilni polinomi stupnja m_i u $\mathbb{F}_p[X]$. Onda Galoisova grupa polinoma f, G_f (vidi definciju), sadrži element čija je ciklička dekompozicija oblika

$$m = m_1 + \cdots + m_r$$
.

Ovaj teorem daje strategiju za računanje Galoisove grupe ireducibilnog polinoma $f \in \mathbb{Q}[X]$.

Galoisov iz 1832. Neka je F polje karakterisitke nula (vidi definiciju). Jednadžba f=0 je rješiva u radikalima ako i samo ako je Galoisova grupa od f rješiva (vidi "rješiva u radikalima").

Galoisova proširenja Za proširenje E/F sljedeće tvrdnje su evivalentne:

- (a) E je polje cijepanja separabilnog polinoma $f \in F[X]$;
- (b) F je fiksno polje neke konačne grupe G automorfizama od $F, F = E^G$;
- (c) E je normalno i separabilno, te konačnog stupnja nad F;
- (d) E je Galoisovo nad F

(vidi pripadne definicije). Neke od važnih posljedica ovog teorema jesu:

- svako konačno separabilno proširenje E od F je sadržano u nekom konačnom Galoisovom proširenju od F,
- neka $E \supset M \supset F$; ako je E Galoisovo nad F, onda je E Galoisovo i nad M.

konstruktibilnosti n-terokuta Vidi pod pravilni n-terokut.

konstruktibilni brojevi Imamo dva važna teorema o konstruktibilnosti brojeva (vidi definiciju):

Teorem 1

(a) skup konstruibilnih brojeva čini polje,

(b) broj α je konstruibilan ako i samo ako α leži u polju oblika

$$\mathbb{Q}[\sqrt{a_1},\ldots,\sqrt{a_r}], \quad a_i \in \mathbb{Q}[\sqrt{a_1},\ldots,\sqrt{a_{i-1}}].$$

Posljedice ovog teorema su rješenja poznatih problema iz povijesti:

- nemoguće je udvostručiti kocku pomoću ravnala i šestara,
- nemoguće je konstruirati trisekciju proizvoljnog kuta,
- nemoguće je konstruirati kvadrat iste površine kao i zadani krug, tj. nemoguća je kvadratura kruga.

Drugi teorem glasi:

Teorem 1 Ako je α sadržan u Galoisovom proširenju stupnja $2^r, r \in \mathbb{N}$ od \mathbb{Q} (vidi definicije), onda je α konstruktibilan.

Iz ovog teorema slijedi da, ako je p prost broj oblika $2^k + 1$, onda je $\cos \frac{2\pi}{p}$ konstruktibilan. Krajnja posljedica je ta da je pravilni p-terokut (p prost broj), konstruktibilan ako i samo ako je p Fermaov broj, tj. oblika $2^{2^r} + 1$.

Liouvilleov 1884. god. matematičar Liouville je prvi pokazao da postoje brojevi koji nisu algebarski, odnosno našao je neke transcedentalne brojeve koje danas zovemo Liouvilleovi brojevi. Jedan takav broj navodi sljedeći teorem:

Teorem Broj $\alpha = \sum \frac{1}{2^{n!}}$ je transcendentalan.

nezavisnost karaktera Neka je F polje i neka je G grupa (može i slabiji zahtjev, G monoid). Onda je svaki konačni skup χ_1, \ldots, χ_m homomorfizama $G \longrightarrow F^{\times}$ linearno nezavisan nad F, tj.

$$\sum a_i \chi_i = 0 \quad \text{(kao funkcija } G \longrightarrow F) \implies a_1 = 0, \dots, a_m = 0.$$

Neke od važnih posljedica tog teorema jesu:

- neka su F_1 i F_2 polja i neka su σ_1,\dots,σ_m različiti homomorfizmi $F_1\longrightarrow F_2$. Onda su σ_1,\dots,σ_m linearno nezavisni nad F_2 ;
- neka je E konačno separabilno proširenje od F stupnja m. Neka je $\alpha_1, \ldots, \alpha_m$ baza od E nad F i neka su $\sigma_1, \ldots, \sigma_m$ različiti F-homomorfizmi sa E u polje Ω . Onda je matrica $(\sigma_i \alpha_j)$ invertibilna.

normalna baza Svako Galoisovo proširenje ima normalnu bazu (vidi definicije).

trag Vidi pod norma i trag.

transcedentalan Neka je F polje i E neko proširenje tog polja. Za element $\alpha \in E$ kažemo da je transcedentalan nad F ako homomorfizam

$$f(X) \mapsto f(\alpha) : F[X] \longrightarrow E$$

ima trivijalnu jezgru, tj. ako ne postoji polinom $f \in F[X]$ takav da je $f(\alpha) = 0$. Ako takav element postoji u E, E nazivamo transcedentalnim proširenjem od F. Najpoznatije transcedentalno proširenje je $\mathbb R$ nad $\mathbb Q$, već 1884. god. Liouville je našao prve transcedentalne brojeve u $\mathbb R$ (vidi pod Liouville). 1873. god. Hermite je pokazao da je broj e transcendentalan, a 1882. god. Lindemann dokazuje isto za π . U vezi transcedetalnih brojeva postoji puno otvorenih pitanja, npr. još se ne zna je li Eulerova konstanta

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right)$$

transcedentalna ili ne.

ukriženi homomorfizam (kociklus) Neka je M G-modul (vidi definiciju). Ukriženi homomorfizam (kociklus) je preslikavanje $f:G\longrightarrow M$ takvo da

$$f(\sigma\tau) = f(\sigma) + \sigma f(\tau)$$
 za sve $\sigma, \tau \in G$.

Iz definicije odmah slijedi da $f(1) = f(1 \cdot 1) = f(1) + f(1)$ pa f(1) = 0.

glavni (korub) Za bilo koje $x \in M$ možemo dobiti ukriženi homomorfizam ako definiramo

$$f(\sigma) = \sigma x - x$$
, za sve $\sigma \in G$.

Takav ukriženi homomorfizam nazivamo glavnim ukriženim homomorfizmom (korubom).