

Binyi Wu Faculty of Electrical Engineering and Information Technology Chair of Highly-Parallel VLSI Systems and Neuro-Microelectronics

Efficient Mapping of Convolutional Neural Networks on SpiNNaker2 prototype

Dresden, 29.05.2019

Content

- Motivation
- SpiNNaker2 and Simulator: SpiNNaker2Py
- Mapping Strategy
- Validation and Simulation
- Conclusion

Content

- Motivation
- SpiNNaker2 and Simulator: SpiNNaker2Py
- Mapping Strategy
- Validation and Simulation
- Conclusion

Motivation

- SpiNNaker2:
 - 1. 144 Processing elements (PEs)
 - 2. PE: ML-accelerator with 64 MACs but limited SRAM (128 KB)

- CNN:
 - Every layer of state-of-art model is very large
 (VGG-CONV_2 → input: 3 MB, weight: 36 KB, output: 6 MB)

- dedicated mapping strategies are need.
 - Layers in CNN → primitive operations supported by SpiNNaker2
 - 2. How to chain different operations?
 - 3. How to split each operation?
 - 4. How to distribute into SpiNNaker2?

• SpiNNaker2 is still under development

SpiNNaker2 simulator (SpiNNaker2Py)

Content

- Motivation
- SpiNNaker2 and Simulator: SpiNNaker2Py
- Mapping Strategy
- Validation and Simulation
- Conclusion

SpiNNaker2: PE

Operand A: From local PE SRAM or neighbor PE SRAM through NoC

Operand B: From local PE SRAM

PE: Processing element

[2] TU Dresden. SpiNNaker2 Wiki: SpiNNaker2 Universal Spiking Neural Network Architecture

SpiNNaker2 and QPE

[2] TU Dresden. SpiNNaker2 Wiki: SpiNNaker2 Universal Spiking Neural Network Architecture

SpiNNaker2 Simulator: PE simulator

No timer and NMU

Processing element (PE)

Processing element (PE) Simulator

SpiNNaker2 Simulator: QPE simulator

[2] TU Dresden. SpiNNaker2 Wiki: SpiNNaker2 Universal Spiking Neural Network Architecture

SpiNNaker2 Simulator: QPE-DRAM simulator

QPE-DRAM simulator

SpiNNaker2 Simulator: SpiNNaker2 simulator

Content

- Motivation
- SpiNNaker2 and Simulator: SpiNNaker2Py
- Mapping Strategy
- Validation and Simulation
- Conclusion

Mapping Strategy

dedicated mapping strategies:

Layers in CNNs → primitive operations of SpiNNaker2
 How to chain different operations?
 How to split each operation?
 How to distribute into SpiNNaker2?

Mapping Strategy: Parser

- Parse the neural network
- Layer → Operations e.g.

convolutional layer

padding operation (ARM)

convolution operation (MLA)

nonlinearity operation (ARM)

quantization operation (ARM)

• Operator fusion → operation blocks

Mapping Strategy: Parser

Operator fusion → operation block

1. convolution block

$$\begin{array}{c} \textbf{core operation} \longleftarrow \begin{array}{c} padding \ operation \ (ARM) \\ \textbf{convolution operation} (MLA) \\ nonlinearity \ operation (ARM) \\ quantization \ operation (ARM) \\ \end{array} \\ \longrightarrow \begin{array}{c} convolution \ block \\ \end{array}$$

2. pooling block ← (stride not <u>equal to</u> pooling width/height)

$$core operation \longleftarrow \begin{bmatrix} padding \ operation(ARM) \\ pooling \ operation(ARM) \end{bmatrix} \longrightarrow pooling \ block$$

3. matrix multiplication block

core operation
$$\longleftarrow$$
 $matrix\ multiplication\ operation(MLA)$
 $nonlinearity\ operation\ (ARM)$
 $quantization\ opoeration\ (ARM)$
 \longrightarrow $matrix\ multiplication\ block$

Mapping Strategy: Splitter

- Split the core operation
 - 1. Convolution block → convolution operation
 - 2. Pooling block → pooling operation
 - 3. Matrix multiplication block → MM operation
- SRAM utilization, MAC utilization, PE utilization, size increasement by splitting, computation balance and acceleration speed are considered during splitting.

3 distribution algorithms

Without operator fusion and without data reuse

Without operator fusion and without data reuse

• Each PE runs entirely independently from other PEs. Once a PE has completed its work, it writes out the result and immediately get a new task.

Without operator fusion

3 distribution algorithms

- Without operator fusion and without data reuse
- With operator fusion and without data reuse

With operator fusion and without data reuse

- Each PE runs entirely independently from other PEs. Once a PE has completed its work, it writes out the result and immediately get a new task.
- Take operation block into account

With operator fusion (convolution block)

3 distribution algorithms

- Without operator fusion and without data reuse
- With operator fusion and without data reuse
- With operator fusion and with data reuse

With operator fusion and with data reuse

- Only convolution operation has data reuse.
- All Pes relate to each other !!
- Different for QPE and SpiNNaker2

With operator fusion (convolution block)

Data reuse in QPE

- 1. Update F_1 , F_2 , F_3 , F_4 to F_5 , F_6 , F_7 , F_8
- → Feature map reuse (partial filter weight reuse)
- 2. Update I_1 , I_2 , I_3 , I_4 to I_5 , I_6 , I_7 , I_8
- → Filter weight reuse (partial feature map reuse)

Selected based on the data amount.

Input
feature map
Filter
output
feature map
PE SRAM

Convolution:

$$I_1 - F_1, I_2 - F_2, I_3 - F_3, I_4 - F_4$$

Paired PE shift: 0

Convolution:

$$I_1 - F_3$$
, $I_2 - F_4$, $I_3 - F_1$, $I_4 - F_2$
Paired PE shift: 2

Convolution:

$$I_1 - F_4$$
, $I_2 - F_1$, $I_3 - F_2$, $I_4 - F_3$

Paired PE shift: 3

Data reuse in SpiNNaker2

4 ways to reuse data through **data migration**

- Data reuse inside QPE
- Data reuse inside QPE block
- Data reuse inside double QPE block
- Data reuse inside SpiNNaker2

Only feature map reuse is available for SpiNNaker2!!

Content

- Motivation
- SpiNNaker2 and Simulator: SpiNNaker2Py
- Mapping Strategy
- Validation and Simulation
- Conclusion

Validation: Splitter and QPE Simulator

- The split scheme will be verified (PASSED)
- Because all the simulation work is done on SpiNNaker2Py
 - → Verification of the accuracy of QPE simulator.

QPE clock cycles compared between simulator and ICPRO for various layers and local/neighbor weight. The difference is below 10%. $|\delta| \le 10\%$

Clocks deviation:

$$\delta = \frac{CLK_{simulator} - CLK_{ICPRO}}{CLK_{ICPRO}}$$

Simulation:

• 3 distribution strategies for convolution and matrix-multiplication (grey parts)

Simulation: 3 distribution strategies on SpiNNaker2

Comparing to without operator fusion and data reuse:

Operator fusion has an improvement up to 5 times. But most of them are below 2.

Data reuse + operator fusion has an improvement up to 10 times ($5\sim10$ times).

→ Operator fusion and data reuse can improve the performance. Data reuse helps much more!

Simulation: 3 distribution strategies on SpiNNaker2

- MM: easily reaches the DRAM bandwidth ceiling.
- CONV: towards SpiNNaker2 performance ceiling

Simulation: Overall clocks of the whole network, SpiNNaker2, data reuse and operator fusion

VGG-16: ~43.3 ms

ResNet-50: ~19.5 ms

Simulation: Comparison of MLAs with different number of MAC units

- The later proposed CNN (ResNet-50) has lower operational intensity
 →The computing resource cannot be fully utilize
- Might decrease the chip area and power consumption

Simulation: Comparison between MLAs with different number of MAC units

- Computing power is halved, but the degradation is below 1.5 times
 → alleviate the problem of insufficient memory bandwidth
- 16*2 is better than 8*4
 - → 16*2 has less data fetching operations.

Content

- Motivation
- SpiNNaker2 and Simulator: SpiNNaker2Py
- Mapping Strategy
- Validation and Simulation
- Conclusion

Conclusion

Contributions:

- SpiNNaker2 Simulator: SpiNNaker2Py ;
- 2. By optimized split scheme, operator fusion and several hierarchies of data reuse, the achieved speedup on SpiNNaker2 is up to 10;
- The system is limited by memory bandwidth;
- 4. comparison of different MLA architectures;

- Improvements:
 - 1. improvement the simulation speed of SpiNNaker2Py
 - 2. machine learning based search algorithm for splitter
 - 3. Distributor also has room for improvement through pre-caching

Reference

- 1. Sebastian Hoeppner and Christian Mayr. SpiNNaker2 Towards extremely efficient digital neuromorphics and multi-scale brain emulation. 2018
- 2. TU Dresden. SpiNNaker2 Wiki: SpiNNaker2 Universal Spiking Neural Network Architecture
- Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. 2015. url: http://arxiv.org/abs/1409.1556
- 4. K. He, X. Zhang, S. Ren, and J. Sun. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778. doi: 10.1109/ CVPR.2016.90
- 5. T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang, Y. Hu, L Ceze, C. Guestrin, and A. Krishnamurthy. "TVM: An Automated End-to-End Optimizing Compiler for Deep Learning". In: (2018). url: https://arxiv.org/abs/1802.04799
- 6. Samuel Williams, Andrew Waterman, and David Patterson. "Roofline:An Insightful Visual Performance Model for Multicore Architectures".In: Commun. ACM 52.4 (Apr. 2009), pp. 65–76. issn: 0001-0782. doi:10.1145/1498765.1498785. url: http://doi.acm.org/10.1145/1498765.1498785

Thank you

Mapping Strategy:

CNN architecture:

CONV: convolutional layer

POOL: pooling layer

FC: fully-connected layer

Mapping Strategy: Parser

Layer → **Operations:** primitive operations supported by SpiNNaker2

Type of Layers	Operations	
	padding operation (ARM)	
gonnalutional layer	convolution operation (MLA)	
convolutional layer	nonlinearity operation (ARM)	
	quantization operation (ARM)	
mo alim a lavon	padding operation (ARM)	
pooling layer	pooling operation (MLA/ARM)	
	matrix multiplication operation (MLA)	
fully — connected layer	nonlinearity operation (ARM)	
	quantization operation (ARM)	

Convolution block

- The Core operation "convolution operation" is the split object.
- Split dimension order: $channel_{out} \rightarrow width_{out}, height_{out} \rightarrow channel_{in}$
- If $channel_{in}$ is split:

```
\begin{bmatrix} padding \ operation \ (ARM) \\ \textbf{convolution operation} (MLA) \\ \textbf{element - wise addition} (ARM) \\ nonlinearity \ operation (ARM) \\ quantization \ operation (ARM) \\ \end{bmatrix} \longrightarrow convolution \ block
```

• SRAM utilization, MAC utilization, PE utilization, size increasement, computation balance are considered during splitting.

Pooling block

- The Core operation "pooling operation" is the split object.
- Split dimension order: $channel \rightarrow width_{out}, height_{out}$
- SRAM utilization, MAC utilization, PE utilization, size increasement are considered during splitting.

Matrix multiplication block

- The Core operation "matrix multiplication operation" is the split object.
- Split dimension order: $height_{weight} \rightarrow width_{weight}$
- If *height*_{weight} is split:

```
\begin{bmatrix} matrix \ multiplication \ operation(MLA) \\ element - wise \ addition(ARM) \\ nonlinearity \ operation \ (ARM) \\ quantization \ opoeration \ (ARM) \\ \end{bmatrix} \longrightarrow matrix \ multiplication \ block
```


Convolution block: convolution

Split input feature map into *C* parts

- W \rightarrow w parts
- H $\rightarrow h$ parts

•
$$C = w * h$$

$$Size_{before} = H * W$$

$$Size_{after} = H * W$$

 $+(h-1) * W * (H_{filter} - S)$
 $+(w-1) * H * (W_{filter} - S)$
 $-(h-1) * (w-1) * (H_{filter} - S) * (W_{filter} - S)$

 H_{filter} : height of filter weight

 W_{filter} : width of filter weight

S: stride

Convolution block: convolution

$$Size_{increased} = Size_{after} - Size_{before}$$

$$= (h-1)*W*(H_{filter} - S)$$

$$+(w-1)*H*(W_{filter} - S)*(W_{filter} - S)$$

$$-(h-1)*(w-1)*(H_{filter} - S)*(W_{filter} - S)$$

$$|W_{filter} = H_{filter} = F;$$

$$W = H;$$

$$C = w*h$$

$$Size_{increased} = \left(\frac{C}{w} + w - 2\right)*H*(F - S) - \left(\frac{C}{w} - 1\right)*(w-1)*(F - S)^{2}$$

$$|Setting the gradient of$$

$$|Size_{increased}| \text{ with respect to}$$

$$|w - \frac{C}{w} = 0$$

$$|w = \sqrt{C}, h = \sqrt{C}|$$

Convolution block Lead some calculations to be accelerated by ARM Core input feature map: [width_{in}, height_{in}, channel_{in}] $filter\ weight: [width_{filter}, height_{filter}, channel_{in}, channel_{out}]$ output feature map: [width_{out}, height_{out}, channel_{out}] Width need to align to Alignment with MAC_ARRAY_COLUMN (16) MAC_ARRAY_ROW (4)

Convolution block

SRAM condition: If the available SRAM is enough for input, weight and output?

Tasks condition: If the number of the split tasks is

 ≥ 4 for QPE or

 \geq 128 for SpiNNaker2?

NO1: The number of tasks can be increased by splitting $\textbf{\textit{C}}$ into more parts.

NO②: The number of tasks cannot be increased by splitting C into more parts.

Convolution

Pooling block

Lead some calculations to be accelerated by ARM Core

 $input\ feature\ map: [width_{in}, height_{in}, channel]$ $output\ feature\ map: [width_{out}, height_{out}, channel]$ $width\ need\ to\ align\ to\ MAC_ARRAY_COLUMN\ (16)$ $Alignment\ with\ MAC_ARRAY_ROW\ (4)$

Pooling block

SRAM condition: If the available SRAM is enough for input, weight and output?

Tasks condition: If the number of the split tasks is

 ≥ 4 for QPE or ≥ 128 for SpiNNaker2?

NO①: The number of tasks can be increased by splitting $\boldsymbol{\mathcal{C}}$ into more parts.

NO②: The number of tasks cannot be increased by splitting C into more parts.

Pooling block

Matrix Multiplication block

Matrix Multiplication block: MM

A * B = C, with dimension $[W_A, H_A]$ and $[W_B, H_B]$

Read matrix *B* from DRAM takes (comparing to matrix *B*, matrix *A* is very small)

$$T_{DRAM} = \frac{W_B * H_B}{f_{DRAM} * 16 Bytes / 2}$$

The computation taskes

$$T_{computation} = \frac{W_B * H_B * 2}{f_{MLA} * 16 * 2} = \frac{W_B * H_B}{f_{MLA} * 16} = \frac{1}{2} T_{DRAM}$$

DRAM:	DATA to PE1	DATA to PE2		DATA to PE1		
PE1:	IDLE	MM		IDLE		MM
PE2:	IDLE			MM	ID	LE

Validation: QPE Simulator

CONV/FC: local PE SRAM

Clocks deviation:

$$\delta = \frac{CLK_{simulator} - CLK_{ICPRO}}{CLK_{ICPRO}}$$

 $\delta \in [-7.12\%, 5.04\%]$

 \rightarrow meet the requirement $|\delta| \le 10\%$

Convolution task feature map dimension: $[W, H, D]$, filter dimension: $[W_f, H_f, D, C]$, stride: 1	Clocks (HDL prototype)	Clocks (Simulator)	Clock deviation δ $(\frac{CLK_{Simulator}-CLK_{ICPRO}}{CLK_{ICPRO}})$
fmap: [226,22,3] filter: [3,3,3,4]	27748	25771	-7.12%
fmap: [114,9,64] filter: [3,3,64,4]	61186	59543	-2.69%
fmap: [18,18,128] filter: [3,3,128,4]	38626	38264	-0.94%
fmap: [30,9,256] filter: [3,3,256,4]	66244	66342	0.15%
fmap: [56,14,64] filter: [1,1,64,4]	10822	10599	-2.06%
fmap: [28,10,256] filter: [1,1,256,4]	13162	13395	1.77%
fmap: [28,14,128] filter: [5,5,128,4]	116215	109402	-5.86%
fmap: [28,10,128] filter: [7,7,128,4]	82139	86275	5.04%
fmap: [16,16,128] filter: [9,9,128,4]	31648	32883	3.90%
Matrix Multiplication task Matrix A dimension: $[W_A, H_A]$, Matrix B dimension: $[W_B, H_B]$	Clocks (HDL prototype)	Clocks (Simulator)	Clock deviation δ $(\frac{CLK_{Simulator}-CLK_{ICPRO}}{CLK_{ICPRO}})$
fmap: [64,1] weight: [1024,64]	13276	12619	-4.95%
fmap: [128,1] weight: [512,128]	11908	11435	-3.97%

Validation: QPE Simulator

CONV/FC: neighbor PE SRAM

Clock deviation:

$$\delta = \frac{CLK_{simulator} - CLK_{ICPRO}}{CLK_{ICPRO}}$$

 $\delta \in [-9.51\%, -0.80\%]$

 \rightarrow meet the requirement $|\delta| \le 10\%$

Because of design flaws of HDL, only one task is available.

Neighbor PE SRAM feature map dimension: $[W,H,D] = [226,22,3],$ filter dimension: $[W_f,H_f,D,C] = [3,3,3,4],$ stride: 1 Neighbor PE shift: 0	Clocks (Error to shift 0) (HDL prototype) 27748 (0.00%)	Clocks (Error to shift 0) (Simulator) 25771 (0.00%)	Clock deviation (CLK _{Simulator} -CLK _{ICPRO}) -7.12%
Neighbor PE shift: 1 Neighbor PE shift: 2	27735 (0.00%) 28482 (2.65%)	25772 (0.00%) 25772 (0.00%)	-7.08% -9.51%
Neighbor PE shift: 3	27726 (0.00%)	25773 (0.00%)	-7.04%
Neighbor PE SRAM Matrix A dimension: $[W_A, H_A] = [64, 1],$ Matrix B dimension: $[W_B, H_B] = [1024, 64]$	Clocks (Error to shift 0) (HDL prototype)	Clocks (Error to shift 0) (Simulator)	Clock deviation $\binom{CLK_{Simulator}-CLK_{ICPRO}}{CLK_{ICPRO}}$
Neighbor PE shift: 0	13276 (0.00%)	12619 (0.00%)	-4.95%
Neighbor PE shift: 1	13563 (2.16%)	13454 (6.62%)	-0.80%
Neighbor PE shift: 2	12893 (2.88%)	12493 (-1.00%)	-3.10%
Neighbor PE shift: 3	13577 (2.27%)	12974 (2.81%)	-4.44%

Simulation: 3 distribution strategies for **QPE**

Green one has an improvement up to 3 times, comparing to blue one. <u>But most of them don't have that improvement.</u>

Red one has an improvement up to 5 times, comparing to blue one. <u>But most of them don't have that improvement.</u>

→ Operator fusion and data reuse can improve the performance.

Simulation: 3 distribution strategies for **QPE**

- Matrix-multiplication: easily reaches the DRAM bandwidth ceiling.
- Convolution: Operator fusion and data reuse → towards QPE performance ceiling

Without operator fusion and data reuse

With operator fusion and without data reuse

With operator fusion and without data reuse

Simulation:

Components	Frequency (MHz)	Clocks per operation
NoC	500	1
DRAM	250	2
HOST Interface	250	1
PE	250	1
ARM in PE	250	1
SRAM in PE	250	1
DMA in PE	250	1

Simulation: Overall clocks of the whole network, SpiNNaker2, data reuse and operator fusion

Operation	Clocks	Comments
padding	2	per 32-bit
quantization	8	per input pixel
non-Linearity	8	32-bit ReLU, per input pixel
non-Linearity	2.5	8-bit ReLU, per input pixel
MAX-pooling	18.75	32-bit, per input pixel
MAX-pooling	12	8-bit, per input pixel
matrix element-wise addition	8	per input pixel

Validation and Simulation

Simulation: Overall clocks of the whole network, SpiNNaker2, data reuse and operator fusion

Comparison of QPE and SpiNNaker2

Without operator fusion and without data reuse

Up to 5 times

Up to 12 times

Comparison of QPE and SpiNNaker2

With operator fusion and without data reuse

Up to 5 times

Up to 15 times

Comparison of QPE and SpiNNaker2

With operator fusion and With data reuse

Up to 26 times

Up to 24 times

Experiment: Comparison between MLAs with different number of MAC units

Operation	Operational intensity (operations/byte)	Performance [16*4] (Gops)	Performance [16*2] (Gops)	Performance [8*4] (Gops)
CONV_1	51.51	363.53 → 1.04 —	348.86	345.50
CONV_7	1210.28	2155.06 → 1.53 —	1410.20	1246.84
CONV_9	1641.38	2235.36 → 1.55 —	1445.07	1267.11
FC_21	2.00	15.88 → 1.00 →	15.90	15.79

Operation	Operational intensity (operations/byte)	Performance [16*4] (Gops)	Performance [16*2] (Gops)	Performance [8*4] (Gops)
CONV_1	243.44	592.30 → 1.69 →	350.29	350.01
CONV_SC_14	153.91	445.98 → 1.57 →	284.02	290.03
CONV_19	636.93	1284.88 → 1.32 →	976.13	898.47
CONV_42	68.50	272.63 → 1.17 →	232.21	223.96

Experiment: Comparison between MLAs with different number of MAC units

Comparison the simulation result of QPE and SpiNNaker2

Distribution algorithm	Improvement of SpiNNake2 against QPE (VGG-16)	Improvement of SpiNNake2 against QPE (ResNet-50)
Without operator fusion and without data reuse	Up to 5 times	Up to 12 times
With operator fusion and without data reuse	Up to 5 times	Up to 15 times
With operator fusion and With data reuse	Up to 26 times	Up to 24 times

Improvement of SpiNNake2 against QPE should be in [4, 36]

F4-F8-F11 F<u>11</u> **F7 F7** F12-F15 F8-F11 F12-F12-| F0-F0-F12-F<u>15</u> F<u>1</u>5 F15 F8-F11 F4-F8-F11 F4-QPE QPE **F7** F12-F12-₽F0-F0-QPE QPE F15 F15 F0-F3 F4-F7 F8-F8-F4-F11 F12-F12-F0-F0-F0-F12-F15

16 parts of filter weight

10	11		17
18	19		115
I16	117	:	123
124	125		I31
132	133		139
140	l41	•••	147
148	149		155

Input feature map: 56 parts

Split into 64 parts, each part has 4 filter

56 * 64 = 3584 tasks

Step 1: After fetching input and weight into SpiNNaker2.

Using data reuse in QPE: (28*4)*4 = 448 tasks are finished.

Step 2: Migrate filter inside QPE block

Using data reuse in QPE: (28*4)*4 = 448 tasks are finished.

Step 3: Migrate filter inside QPE block

Using data reuse in QPE: (28*4)*4 = 448 tasks are finished.

Step 4: Migrate filter inside QPE block

Using data reuse in QPE: (28*4)*4 = 448 tasks are finished.

448 * 4 = 1792 tasks are finished.

Step 5: Migrate filter inside SpiNNaker2

Repeat step 1-4:

448 * 4 = 1792 tasks are finished.

After then All 3584 tasks are finished.

With operator fusion and with data reuse

① Can be done at same time

②DRAM is idle during acceleration. Pre-caching weight for next operation, especially for MM

Conclusion

XXX

