Drill: Order Of Growth

3 Pick your constants: Big O

Given $f(n) = 32n^2 + 17n + 1$

- 1. $f(n) = O(n^2)$ because $32n^2 + 17n + 1 < 49n^2$.
- 2. f(n) != O(n) Proof by contradiction: In order for f(n) to be O(n), we must have positive constants c, n_0 such that:

 $32n^2 + 17n + 1 \le c*n \text{ for all } n >= n_0.$

If we divide both sides by n we get $32n + 17 + 1/n \le c$ which is not true for n = c + 1.

f(n) := O(nlogn) - Proof by contradiction: In order for f(n) to be O(nlogn), we must have positive constants c, n_0 such that:

 $32n^2 + 17n + 1 \le c*nlogn for all n >= n_0$.

If we divide both sides by nlogn, we get $(32n + 17 + 1/n)/\log n \le c$. Because the limit of $(32n + 17 + 1/n)/\log n$ as n approaches ∞ is ∞ , it is clear that there exists an n such that $(32n + 17 + 1/n)/\log n > c$.

4 Pick your constants: Ω

Given $f(n) = 32n^2 + 17n + 1$

- 1. $f(n) = \Omega(n^2)$ because $32n^2 + 17n + 1 > 31n^2$ $f(n) = \Omega(n)$ because $32n^2 + 17n + 1 > n$
- 2. $f(n) := \Omega(n^3)$ Proof by contradiction: In order for f(n) to be $\Omega(n^3)$, we must have positive constants c, n_0 such that:

 $32n^2 + 17n + 1 \ge c \cdot n^3$ for all $n \ge n_0$.

If we divide both sides by n^3 , we get $(32n^2 + 17n + 1)/n^3$. Because the limit of $(32n^2 + 17n + 1)/n^3$ as n approaches ∞ is 0, there is clearly a c such that $c > (32n^2 + 17n + 1)/n^3$ for all $n > n_0$.

5 Pick your constants: Θ

Given $f(n) = 32n^2 + 17n + 1$

- 1. $f(n) = \Theta(n^2)$ because $32n^2 + 17n + 1 > 31n^2$ and $32n^2 + 17n + 1 < 49n^2$.
- 2. $f(n) != \Theta(n)$ See 3.2 above for proof that f(n) != O(n). Because f(n) != O(n), $f(n) != \Theta(n^3)$ See 4.2 above for proof that $f(n) != \Omega(n^3)$. Because $f(n) != \Omega(n^3)$, $f(n) != \Theta(n^3)$.