РАСТРОВА ГРАФІКА

Слайди до лекцій з дисципліни «Математичні та алгоритмічні основи комп'ютерної графіки» Лектор: к.т.н., доцент Сулема Є.С.

Каф. ПЗКС, ФПМ, КПІ ім. Ігоря Сікорського 2019/2020 навч. рік

ПЕРЕВАГИ РАСТРОВОЇ ГРАФІКИ

- Фотореалістичність;
- Простота отримання;
- Можливість застосування різноманітних ефектів.

НЕДОЛІКИ РАСТРОВОЇ ГРАФІКИ

- Розмір файлу є пропорційним до площі зображення, роздільності і типу зображення і, переважно, є великим.
- Роздільність та глибину представлення кольорів можна змінювати лише у певних межах і, як правило, із втратою якості.
- Складність «доступу» до окремого фрагменту зображення.
 - (Наприклад, спробуйте виділити окрему квіточку у букеті ©)

ЯКІСТЬ РАСТРОВОГО ЗОБРАЖЕННЯ

- Роздільність екранного зображення:
 - > PPI pixels per inch;
- Роздільність сканованого зображення:
 - > DPI dots per inch;
- Роздільність друкованого зображення:
 - > LPI lines per inch.

НА ЩО ВПЛИВАЄ РОЗДІЛЬНІСТЬ?

$$72 \ ppi \Rightarrow \begin{cases} \frac{800}{72} = 11,11" = 28,22 \text{ cm} \\ \frac{600}{72} = 8,33" = 21,17 \text{ cm} \end{cases}$$

3ображення 800×600 (pixels)

$$36 \ ppi \Rightarrow \begin{cases} \frac{800}{36} = 22,22" = 56,44 \text{ cm} \\ \frac{600}{36} = 16,66" = 42,34 \text{ cm} \end{cases}$$

$$144 \ ppi \ \Rightarrow \begin{cases} \frac{800}{144} = 5,55" = 14,11 \ \text{cm} \\ \frac{600}{144} = 4,16" = 10,58 \ \text{cm} \end{cases}$$

ТРОХИ ПРО ΠΟΛΙΓΡΑΦΙЮ...

Амплітудна модуляція: ілюзія темнішого кольору створюється за рахунок збільшення розмірів точок і скорочення проміжкового поля між ними при однаковій відстані між центрами елементів растра.

Частотна модуляція:

інтенсивність тону регулюється зміною відстані між сусідніми точками однакового розміру.

ЩО ТАКЕ РАСТР?

- <u>У поліграфії</u> растр це спосіб представлення графічної інформації за допомогою точок певного розміру та густини розташування:
 - регулярний растр (амплітудна модуляція),
 - > стохастичний растр (частотна модуляція).
- <u>У комп'ютерній графіці растр</u> це порядок розташування точок, які називаються растровими елементами. Розрізняють:
 - > квадратний (прямокутний) растр,
 - гексагональний растр,
 - > трикутний растр.

ЗВ'ЯЗНІСТЬ РАСТРОВИХ ЛІНІЙ

Квадратний (прямокутний) растр:

- 8-зв'язна лінія,
- 4-зв'язна лінія.

У гексагональному растрі лінії 6-зв'язні.

РАСТЕРИЗАЦІЯ ГРАФІЧНИХ ПРИМІТИВІВ

Графічні примітиви:

- Відрізок прямої лінії;
- Kono;
- Крива Без'є.

Загальні вимоги до зображення відрізків:

- 1) кінці відрізка повинні знаходитись у заданих точках.
- 2) відрізки повинні мати вигляд прямих.
- 3) яскравість уздовж відрізка повинна бути постійною та не залежати від довжини та нахилу.

Так у чому тут проблема?

ВИСНОВОК

Жодна з цих умов не може бути точно виконана на растровому дисплеї, оскільки зображення будується з пікселів скінченних розмірів, а саме:

- 1) кінці відрізка у загальному випадку розташовуються на пікселях, лише найбільш близьких до потрібних позицій, і лише в окремих випадках координати кінців відрізків точно співпадають з координатами пікселів.
- 2) відрізок апроксимується набором пікселів і лише в окремих випадках горизонтальних, вертикальних та відрізків під кутом 45° вони будуть виглядати прямими, причому вони будуть гладкими (не будуть мати східчастості) лише у разі горизонтальних та вертикальних відрізків.
- 3) **яскравість** для різних відрізків та навіть уздовж відрізка у загальному випадку **різна**, тому що відстань між центрами пікселів, наприклад, для вертикального відрізка і відрізка, розташованого під кутом 45°, різна.

РАСТРОВА РОЗГОРТКА НА ОСНОВІ РІВНЯННЯ y=kx+b

<u>Базовий алгоритм</u>

- 1. Задати початкову точку $P_1(x_1, y_1)$
- 2. Обчислити кутовий коефіцієнт $k = \frac{y_2 y_1}{x_2 x_1}$
- 3. Обчислити коефіцієнт $b = y_1 k \cdot x_1$
- 4. У циклі обчислювати цілочисельні координати:

$$x_i = x_{i-1} + 1$$
$$y_i = k \cdot x_i + b$$

Умова виходу з циклу: досягнення точки $P_2(x_2, y_2)$.

Приклад: $P_1(2,3), P_2(6,6)$

X	2	3	4	5	6
У	3	3.75	4.5	5.25	6
Уокр	3	4	5	5	6

РАСТРОВА РОЗГОРТКА НА ОСНОВІ РІВНЯННЯ y=kx+b

$$y = y_1 + k(x - x_1) = kx + b$$

$$x = x_1 \Rightarrow y = y_1$$

$$x_i = x_{i-1} + 1 \Rightarrow y = k(x + 1) + b = kx + b + k = y + k \Rightarrow y_i = y_{i-1} + k$$

Оптимізований алгоритм

- 1. Задати початкову точку $P_1(x_1, y_1)$
- 2. Обчислити кутовий коефіцієнт $k = \frac{y_2 y_1}{x_2 x_1}$
- 3. У циклі обчислювати цілочисельні координати:

$$x_i = x_{i-1} + 1$$

$$y_i = y_{i-1} + k$$

Умова виходу з циклу: досягнення точки $P_2(x_2,y_2)$.

АЛГОРИТМ ЦДА

Звичайний алгоритм:

- 1. Задати початкову точку $P_1(x_1, y_1)$
- 2. Обчислити $P_x = |x_2 x_1|$ та $P_y = |y_2 y_1|$
- 3. Задати кількість кроків N
- 4. Обчислити $d_x = \frac{P_x}{N}$ та $d_y = \frac{P_y}{N}$
- 5. У циклі обчислювати цілочисельні координати:

$$x_i = x_{i-1} + d_x$$
$$y_i = y_{i-1} + d_y$$

Умова виходу з циклу: виконання циклу N разів.

X	2	2.8	3.6	4.4	5.2	6
X _{okp}	2	3	4	4	5	6
У	3	3.6	4.2	4.8	5.4	6
Уокр	3	4	4	5	5	6

АЛГОРИТМ ЦДА

Несиметричний алгоритм:

- 1. Задати початкову точку $P_1(x_1, y_1)$
- 2. Обчислити $P_x = |x_2 x_1|$ та $P_y = |y_2 y_1|$
- 3. Обчислити $L = \max(P_x, P_y)$
- 4. Обчислити $d_{x}=\frac{P_{x}}{L}$ та $d_{y}=\frac{P_{y}}{L}$
- 5. У циклі обчислювати цілочисельні координати: а) якщо $P_x > P_v$

$$x_i = x_{i-1} + 1$$

$$y_i = y_{i-1} + d_y$$

b) якщо
$$P_x < P_y$$

$$x_i = x_{i-1} + d_x$$

$$y_i = y_{i-1} + 1$$

Умова виходу з циклу: виконання циклу L разів.

РАСТРОВА РОЗГОРТКА НА ОСНОВІ ПАРАМЕТРИЧНОГО

- 1. Задати початкову точку $P_1(x_1, y_1)$ та $t_1 = 0$ РІВНЯННЯ
- 2. Обчислити $P_x = x_2 x_1$ та $P_y = y_2 y_1$
- 3. Обчислити $\Delta t = \frac{1}{\max(|P_x|,|P_y|)}$
- 4. У циклі обчислювати цілочисельні координати:

$$x_i = x_1 + t_i \cdot P_x$$

$$y_i = y_1 + t_i \cdot P_y$$

$$t_i = t_{i-1} + \Delta t$$

Умова виходу з циклу: досягнення точки $P_2(x_2,y_2)$.

t	0	0.25	0.5	0.75	1
X	2.0	3.0	4.0	5.0	6.0
X _{okp}	2	3	4	5	6
У	3	3.75	4.5	5.25	6
Уокр	3	4	5	5	6

АЛГОРИТМ БРЕЗЕНХЕМА ДЛЯ РАСТРОВОЇ РОЗГОРТКИ ВІДРІЗКІВ

Основна ідея алгоритму:

якщо **кутовий коефіцієнт** $<\frac{1}{2}$, то за наступну точку беремо точку (1,0), інакше – точку (1, 1).

Основна перевага алгоритму: відсутність ділення.

і-й крок алгоритму Брезенхема

і-й крок алгоритму Брезенхема

Нехай відрізок починається у початку координат (наприклад, завдяки геометричним перетворенням).

Виведемо ітеративну формулу для обчислення керівної змінної алгоритму Брезенхема.

Позначимо координати точки P_{i-1} як (r,q). Тоді $S_i = (r+1,q)$ та $T_i = (r+1,q+1)$.

Оскільки трикутники OAA_1 та OBB_1 подібні, то $\frac{dy}{dx} = \frac{S+q}{r+1}$. Тоді $S = \frac{dy}{dx}(r+1) - q$.

Tможна представити як T=1 – S. Отже, $T=1-\frac{dy}{dx}(r+1)+q$.

Знайдемо різницю S та T: $S-T=2\frac{dy}{dx}(r+1)-2q-1$.

Помножимо ліву та праву частини на dx:

$$dx \cdot (S-T) = 2dy \cdot (r+1) - 2dx \cdot q - dx.$$

Оскільки величина dx додатна, нерівність dx(S-T) < 0 можна використати як ознаку при виборі наступного пікселя. Позначимо $d_i = dx(S-T)$, тоді:

$$d_i = 2dy \cdot r - 2dx \cdot q + 2dy - dx.$$

Оскільки $r = x_{i-1}$ то $q = y_{i-1}$, то:

$$d_i = 2dy \cdot x_{i-1} - 2dx \cdot y_{i-1} + 2dy - dx$$
.

Змінимо індекси та знайдемо d_{i+1} :

$$d_{i+1} = 2dy \cdot x_i - 2dx \cdot y_i + 2dy - dx.$$

Знайдемо різницю між d_i та d_{i+1} :

$$d_{i+1} - d_i = 2dy \cdot (x_i - x_{i-1}) - 2dx \cdot (y_i - y_{i-1}).$$

Відомо, що $X_i - X_{i-1} = 1$, тоді:

$$d_{i+1} = d_i + 2dy - 2dx \cdot (y_i - y_{i-1}).$$

Оскільки $(x_0, y_0) = (0, 0)$, то $d_1 = 2dy - dx$.

АЛГОРИТМ БРЕЗЕНХЕМА ДЛЯ РАСТРОВОЇ РОЗГОРТКИ ВІДРІЗКІВ

Дані координати точок початку (x_1, y_1) та кінця (x_n, y_n) відрізку.

- 1. Обчислити $dx = |x_n x_1|$ та $dy = |y_n y_1|$.
- 2. За перший піксель взяти піксель з координатами (x_1, y_1) .
- 3. Обчислити $d_i=2dy-dx$ при i=1.
- 4. Якщо $d_i \geq 0$, то за наступний піксель взяти T_{i+1} та обчислити:
 - $x_{i+1} = x_i + 1$
 - $y_{i+1} = y_i + 1$
 - $d_{i+1} = d_i + 2(dy dx)$.

Завдання на СРС:

вивести формули для d.

- 5. Якщо $d_i < 0$, то за наступний піксель взяти S_{i+1} та обчислити:
 - $x_{i+1} = x_i + 1$
 - $y_{i+1} = y_i$
 - $d_{i+1} = d_i + 2dy$.
- 6. Перейти до п.4 для вибору наступного пікселя (i=i+1). Умова виходу з циклу: отримання пікселя з координатами (x_n, y_n).

АЛГОРИТМ БРЕЗЕНХЕМА ДЛЯ РАСТРОВОЇ РОЗГОРТКИ ВІДРІЗКІВ

Приклад: $P_1(2,3), P_2(6,6)$

Х	2	3	4	5	6
У	3	4	5	5	6
d _i	2	0	-2	4	
Наступний піксель	T _i	T _i	Si	T _i	

PACTPOBA PO3FOPTKA KOAA

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$

$$y = y_0 \mp \sqrt{R^2 - (x - x_0)^2}$$

$$\begin{cases} x = x_0 + R \cdot \cos \alpha \\ y = y_0 + R \cdot \sin \alpha \end{cases}$$
$$0^{\circ} \le \alpha < 360^{\circ}$$

Яка властивість кола може допомогти оптимізувати обчислення?

Задача: побудувати коло з центром у точці (0,0) и радіусом R=5.

$$y = \sqrt{R^2 - x^2}$$

Х	0	1	2	3	4	5
У	5.0	4.9	4.6	4.0	3.0	0
Уокр	5	5	5	4	3	0

$$\begin{cases} x = R \cdot \cos \alpha \\ y = R \cdot \sin \alpha \end{cases}$$

а	90	75	60	45	30	15	0
X	0	1.3	2.5	3.5	4.3	4.8	5.0
X _{OKP}	0	1	3	4	4	5	5
У	5.0	4.8	4.3	3.5	2.5	1.3	0
Уокр	5	5	4	4	3	1	0

АЛГОРИТМ БРЕЗЕНХЕМА ДЛЯ РАСТРОВОЇ РОЗГОРТКИ КІЛ

$$x^{2} + y^{2} = R^{2}$$

 $\epsilon(P_{i}) = (x_{i}^{2} + y_{i}^{2}) - R^{2}$

Похибка $\epsilon(P_i)$ має бути мінімальною

Варіанти для обрання наступної точки

$$\varepsilon_{g} = (x + 1)^{2} + y^{2} - R^{2}$$

$$\varepsilon_{d} = (x + 1)^{2} + (y - 1)^{2} - R^{2}$$

$$\varepsilon_{v} = x^{2} + (y - 1)^{2} - R^{2}$$

АЛГОРИТМ БРЕЗЕНХЕМА ДЛЯ РАСТРОВОЇ РОЗГОРТКИ КІЛ

1) Якщо \mathbf{E}_{d} < 0, то за наступний піксель може бути обраний P_{g} або P_{d} . Для остаточного обрання обчислюємо:

$$d_i = |\varepsilon_g| - |\varepsilon_d| = |(x+1)^2 + y^2 - R^2| - |(x+1)^2 + (y-1)^2 - R^2|$$

Якщо $d_i \le 0$, то обираємо P_g , інакше – P_d .

2) Якщо \mathbf{E}_{d} > 0, то за наступний піксель може бути обраний P_{d} або P_{v} . Для остаточного обрання обчислюємо:

$$d_i = |\varepsilon_d| - |\varepsilon_v| = |(x+1)^2 + (y-1)^2 - R^2| - |x^2 + (y-1)^2 - R^2|$$

Якщо $d_i \le 0$, то обираємо P_d , інакше – P_v .

3) Якщо \mathbf{E}_{d} = 0, то за наступний піксель обираємо P_{d} .

Задача: побудувати коло з центром у точці (0,0) и радіусом R=5.

X	0	1	2	3	4	5	5	5
у	5	5	5	4	3	2	1	0
٤g	1	4						
٤ _d	-8	-5	0	0	4	12	11	
٤,					-5	1	0	
di	-7	- 1			- 1	11	11	
Наступний піксель	Pg	Pg	P _d	P _d	P _d	P _v	P _v	

РАСТЕРИЗАЦІЯ КРИВИХ БЕЗ'Є

Криві Бєз'є – поліноміальні криві, форму яких визначають контрольні точки.

> Найчастіше використовують криві 3го порядку

Характерні риси кривих Без'є:

- порядок контрольних точок є важливим,
- 2) крива завжди проходить через першу і останню точку,
- 3) лінія, що з'єднує дві перші точки, дотична до кривої в першій точці,
- 4) лінія, що з'єднує дві останні точки, дотична до кривої в останній точці,
- 5) зміна розміщення будь-якої контрольної точки змінює форму кривої.

Визначення кривої Без'є 3-го порядку:

$$B(t) = (1-t)^{3} P_{0} + 3t(1-t)^{2} P_{1} + 3t^{2}(1-t)P_{2} + t^{3} P_{3}$$

$$x(t) = (1-t)^3 x_0 + 3t(1-t)^2 x_1 + 3t^2(1-t)x_2 + t^3 x_3$$

$$y(t) = (1-t)^3 y_0 + 3t(1-t)^2 y_1 + 3t^2(1-t)y_2 + t^3 y_3$$

Визначення кривої Без'є n-го порядку:

 $K_n(t) = \sum_{i=0}^{n} B_n^i(t) P_i$

$$B_n^i(t) = C_n^i \cdot (1-t)^{n-i} \cdot t^i$$

$$t = [0...1]$$

біноміальний
$$\longrightarrow$$
 $C_n^i = \frac{n!}{(n-i)! \cdot i!}$

Приклад 4-х сегментної кривої Бєз'є:

Необхідна умова безперервного (гладкого) з'єднання двох кривих:

дотична до 1-ї кривої в останній контрольній точці та дотична до 2-ї кривої у першій контрольній точці мають лежати на одній прямій.

Задача:

Растеризувати та намалювати ескіз кривої Бєз'є, яка визначена контрольними точками: $P_0(2,2)$, $P_1(3,5)$, $P_2(6,6)$, $P_3(4,3)$.

t	0	0.25	0.5	0.75	1
X	2.00	3.01	4.12	4.67	4.00
Хокр	2	3	4	5	4
У	2.00	3.84	4.75	4.53	3.00
Уокр	2	4	5	5	3

$$x(t) = (1-t)^{3} x_{0} + 3t(1-t)^{2} x_{1} + 3t^{2}(1-t)x_{2} + t^{3} x_{3}$$

$$y(t) = (1-t)^{3} y_{0} + 3t(1-t)^{2} y_{1} + 3t^{2}(1-t)y_{2} + t^{3} y_{3}$$

Питання?

РАСТРОВА ГРАФІКА

Слайди до лекцій з дисципліни «Математичні та алгоритмічні основи комп'ютерної графіки» Лектор: к.т.н., доцент Сулема Є.С.

Каф. ПЗКС, ФПМ, КПІ ім. Ігоря Сікорського 2018/2019 навч. рік