RISC-V 32流水线CPU的verilog实现

1. 实验任务

设计一个32位流水线RISC-V微处理器,具体要求如下

下面详细解析各个指令的含义,便于后续的查询。

运行指令包括: RISC-V 32bit 整型指令集(除去 FENCE,FENCE.I,CSR,ECALL 和 EBREAK 指令)共37条指令

RV32I Base Instruction Set

	imm[31:12]	Dasc IIIsti		rd	0110111	LUI		
	imm[31:12]			rd	0010111	AUIPC		
ir	$\frac{1}{1}$ $\frac{1}{1}$	9:12]		rd	1101111	$_{ m JAL}$		
imm[1]		rs1	000	rd	1100111	JALR		
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	$_{ m BEQ}$		
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE		
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT		
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE		
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU		
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU		
imm[1]	1:0]	rs1	000	rd	0000011	LB		
imm[1]	1:0]	rs1	001	rd	0000011	LH		
imm[1]	1:0]	rs1	010	rd	0000011	LW		
imm[1]	1:0]	rs1	100	$^{\mathrm{rd}}$	0000011	LBU		
imm[1]	1:0]	rs1	101	$^{\mathrm{rd}}$	0000011	LHU		
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	SB		
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH		
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	$\overline{}$ SW		
imm[1]	1:0]	rs1	000	$^{\mathrm{rd}}$	0010011	ADDI		
imm[1]	,	rs1	010	rd	0010011	SLTI		
imm[1]	,	rs1	011	rd	0010011	SLTIU		
imm[1]	,	rs1	100	rd	0010011	XORI		
imm[1]	1:0]	rs1	110	rd	0010011	ORI		
imm[1]	1:0]	rs1	111	rd	0010011	ANDI		
0000000	shamt	rs1	001	rd	0010011	SLLI		
0000000	shamt	rs1	101	rd	0010011	SRLI		
0100000	shamt	rs1	101	rd	0010011	SRAI		
0000000	rs2	rs1	000	rd	0110011	ADD		
0100000	rs2	rs1	000	rd	0110011	\Box SUB		
0000000	rs2	rs1	001	rd	0110011	\Box SLL		
0000000	rs2	rs1	010	rd	0110011	SLT		
0000000	rs2	rs1	011	rd	0110011	SLTU		
0000000	rs2	rs1	100	rd	0110011	XOR		
0000000	rs2	rs1	101	$_{ m rd}$	0110011	SRL		
0100000	rs2	rs1	101	rd	0110011	SRA		
0000000	rs2	rs1	110	rd	0110011	OR		
0000000	rs2	rs1	111	rd	0110011	AND		
	red succ	00000	000	00000	0001111	FENCE		
	0000	00000	001	00000	0001111	FENCE.I		
00000000		00000	000	00000	1110011	ECALL		
	00000000001		000	00000	1110011	EBREAK		
csr		rs1	001	rd	1110011	CSRRW		
csr		rs1	010	rd	1110011	CSRRS		
csr		rs1 zimm	011	rd	1110011	CSRRC		
csr			101	rd	1110011	CSRRWI		
csr		zimm	110	rd	1110011			
csr		zimm	111	rd	1110011	CSRRCI		

31 30 25	24 21	20	19	$15 \ 14$	12 11	1 8	7	6	0
funct7	rs2		rs1	func	t3	$_{\rm rd}$		opcod	e R-type
imm[1	1:0]		rs1	func	t3	$_{\rm rd}$		opcod	e I-type
imm[11:5]	rs2		rs1	func	t3	$_{ m imm}[$	4:0]	opcod	e S-type
$[imm[12] \mid imm[10:5]$	rs2		rs1	func	t3 in	nm[4:1]	imm[11]	opcod	e B-type
	imm[31:1]	.2]				rd		opcod	e U-type
	·								
[imm[20]] $[imm[1]$	0:1] in	nm[11]	imn	n[19:12]		$_{ m rd}$		opcod	e J-type

imm表示指令中的立即数,比如imm[11:0],表示一个12位的立即数,它的高20位会符号位扩展,imm[31:12]表示一个32位的立即数,它的低12位会补0。

下图是各种指令格式扩展后的32位立即数。

31	30	20	19	12	11	10	5		1	0	
		— inst[3	1] —			inst	[30:25]	inst[24	:21]	inst[20]	I-immediate
		— inst[3	11 —			inst	[30:25]	inst[1]	1.8]	inst[7]	S-immediate
		mstjo	1]			шы	[50.25]	mst	1.0]	11130[1]	5-mmediate
		— inst[31] —			inst[7]	inst	[30:25]	inst[1	1:8]	0	B-immediate
inst[31]		nst[30:20]	inst[19:12]	_			— (<u> </u>			U-immediate
mst[51]	111	1130[30.20]	11130[13.12]					,			C-mmediate
_	- inst	[31] —	inst[19:12]	j	inst[20]	inst	[30:25]	inst[24	:21]	0	J-immediate

与mips相比,格式有如下的变化

Register-r	egister													
	31		25 2	24	20	19	15	14	12	11	7	6		0
RISC-V	funct7(7	7)		rs2(5)		rs1(5)		funct	3(3)		rd(5)		opcode(7)	
	31	26	25	21	20	16	15			11	10	6	5	0
MIPS	Op(6)			Rs1(5)		Rs2(5)		Rd	(5)		Const(5)		Opx(6)	
Load														
	31				20	19	15	14	12	11	7	6		0
RISC-V	ir	mmedia	ite(1	12)		rs1(5)		funct	3(3)		rd(5)		opcode(7)	
	31	26	25	21	20	16	15						1	0
	01													
MIPS	Op(6)			Rs1(5)		Rs2(5)					Const(1	6)		
Store	Op(6)		25 2	24	20	19	15	14		11 ir	7	7 1000,000	oncode(7)	0
	Op(6)	e(7)	25 2	24 rs2(5)		19 rs1(5)		funct					opcode(7)	
Store	Op(6)		25 2	24 rs2(5)	20	19 rs1(5)	15	funct			7	6	opcode(7)	0
Store RISC-V	Op(6) 31 immediate 31	e(7)	25 2	24 rs2(5) 21		19 rs1(5)		funct			7 mmediate(5)	6	opcode(7)	
Store RISC-V MIPS	Op(6) 31 immediate 31	e(7)	25 2	rs2(5) 21 Rs1(5)	20	19 rs1(5)	15	funct	3(3)		7 mmediate(5) Const(16	6	opcode(7)	
Store RISC-V MIPS	31 immediate 31 Op(6)	e(7) 26	25 2	rs2(5) 21 Rs1(5)	20	19 rs1(5) 16 Rs2(5)	15	funct	3(3)	11	7 mmediate(5) Const(16	6	opcode(7)	0
Store RISC-V MIPS Branch	31 immediate 31 Op(6)	e(7) 26	25 25 25 25	rs2(5) 21 Rs1(5) 24 rs2(5)	20	19 rs1(5) 16 Rs2(5)	15	funct	3(3)	11	7 mmediate(5) Const(16	6		0

FIGURE 2.29 Instruction formats of RISC-V and MIPS.

要实现的指令可以分成如下几个种类,详细的内容请查看 Instr.xls 文件

1.1. Load和Store指令

31	20	19	15	14	12	11	7	6 0	
imm[11:0)]		rs1		funct3	rd		opcode	
12			5		3	5		7	
偏移量[11	:0]	ā	基址		宽度	dest		LOAD	
31 25	24 0	19	15	14	12	11 7	,	6 0	
imm[11:5]	rs2 rs1			funct3	imm[4:0]		opcode		
7	5		5		3	5		7	
偏移量[11:5]	src 基址			宽度	偏移量[4:0]		STORE		
imm[11:0]			rs1		000	$^{\mathrm{rd}}$		0000011	☐ LB
imm[11:0]			rs1		001	$^{\mathrm{rd}}$		0000011	LH
imm[11:0]			rs1		010	$^{\mathrm{rd}}$		0000011	LW
imm[11:0]			rs1		100	$^{\mathrm{rd}}$		0000011	LBU
imm[11:0]			rs1		101	$^{\mathrm{rd}}$		0000011	LHU
imm[11:5]	rs2		rs1		000	imm[4:0]		0100011	SB
imm[11:5]	rs2		rs1		001	imm[4:0]		0100011	SH
imm[11:5]	rs2		rs1		010	imm[4:0]		0100011	SW

Load和store指令在寄存器和存储器之间传输数值。Load指令编码为I类格式,而store指 令编码为S类格式。

有效字节地址是通过将寄存器 rs1 与符号扩展的12位偏移量相加而获得的。

Load指令将存储器中的一个值复制到寄存器rd中。Store指令将寄存器rs2中的值复制到存储器中。

LW 指令将一个32位数值从存储器复制到 rd 中。

LH 指令从存储器中读取一个16位数值, 然后将其进行符号扩展到32位, 再保存到 rd 中。

LHU 指令存储器中读取一个16位数值,然后将其进行**零扩展**到32位,再保存到 rd 中。

对于8位数值, LB 和 LBU 指令的定义与前面类似。

SW、SH、SB 指令分别将从 rs2 低位开始的32位、16位、8位数值保存到存储器中

注意,装入目的寄存器如果为x0,将会产生一个异常。

1.2. 整数计算指令

(算术,逻辑指令,比较指令以及移位指令)

计算指令在寄存器和寄存器之间,或者在寄存器和立即数之间进行算术或逻辑运算。指令格式为I,R或者U型。整数计算指令不会产生异常。我们能够通过 ADDI x0, x0,0 来模拟 NOP 指令,该指令除了改变 pc 值外,不会改变其它任何用户状态。

1.2.1. 整数寄存器-立即数指令

31	20	19		15	14		12	11		7	6	0	_
imm[11:0]			rs1			funct3			rd		оро	ode	
12			5			3			5				_
I立即数[11:0]		src				ADD/SLTI	[U]		dest		OP-	IMM	
立即数[11:0]			src ANDI/ORI/XORI					dest			OP-IMM		
imm[11:0]				rs1		000	\mathbf{r}	d		0010	0011		ADDI
imm[11:0]				rs1		010	r	d		0010	0011	:	SLTI
imm[11:0]				rs1		011	r	d		0010	0011	:	SLTIU
imm[11:0]				rs1		100	r	d		0010	0011		XORI
imm[11:0]				rs1		110	r	d		0010	0011	(ORI
imm[11:0]				rs1		111	\mathbf{r}	d		0010	0011		ANDI
	imm[11:0] 12 1立即数[11:0] 1立即数[11:0] imm[11:0] imm[11:0] imm[11:0] imm[11:0]	imm[11:0] 12 1立即数[11:0] 1立即数[11:0] imm[11:0] imm[11:0] imm[11:0] imm[11:0]	imm[11:0] 12 I立即数[11:0] I立即数[11:0] imm[11:0] imm[11:0] imm[11:0] imm[11:0]	imm[11:0] rs1 12 5 I立即数[11:0] src I立即数[11:0] src imm[11:0] imm[11:0] imm[11:0] imm[11:0] imm[11:0]	imm[11:0] rs1 12 5 I立即数[11:0] src imm[11:0] src imm[11:0] rs1 imm[11:0] rs1 imm[11:0] rs1 imm[11:0] rs1 imm[11:0] rs1	imm[11:0] rs1 12 5 I立即数[11:0] src imm[11:0] src imm[11:0] rs1 imm[11:0] rs1 imm[11:0] rs1 imm[11:0] rs1 imm[11:0] rs1 imm[11:0] rs1	imm[11:0]	imm[11:0]	imm[11:0]	imm[11:0]	imm[11:0]	imm[11:0]	imm[11:0]

ADDI 将**符号扩展**的12位立即数加到寄存器 rs1 上。算术溢出被忽略,而结果就是运算结果的低XLEN位。 ADDI rd, rs1,0 用于实现 MV rd, rs1 汇编语言伪指令。

SLTI(set less than immediate)将数值 1 放到寄存器 rd 中,如果寄存器 rs1 小于符号扩展的立即数(比较时,两者都作为有符号数),否则将 0 写入 rd。 SLTIU 与之相似,但是将两者作为无符号数进行比较(也就是说,立即数被首先符号扩展为XLEN位,然后被作为一个无符号数)。注意, SLTIU rd, rs1, 1 将设置 rd 为 1 ,如果 rs1 等于 0 ,否则将 rd 设置为 0(汇编语言伪指 令 SEQZ rd, rs)。

ANDI 、 ORI 、 XORI 是逻辑操作,在寄存器 rs1 和**符号扩展**的12位立即数上执行**按位**AND、 OR、XOR操作,并把结果写入 rd 。注意, XORI rd, rs1, -1 在 rs1 上执行一个按位取反操作(汇编 语言伪指令 NOT rd, rs)。

1	25	24	20	19	15	14	12	11	7	6	0	_
imm[11:5]		imm[4:0]		-	rs1	fı	unct3	-	rd	opco	ode	
7		5			5		3		5	7		-
0000000		移位次数[4:0]		src		SLLI	d	est	OP-II	ММ	
0000000		移位次数[4:0]]		src		SRLI	d	est	OP-II	MM	
0100000		移位次数[4:0]]		src	9	SRAI	d	est	OP-II	MM	
0000000		shamt		rs1		001	rd		001	0011		SLLI
0000000		shamt		rs1		101	rd		001	0011		SRLI
0100000		shamt		rs1		101	rd		001	0011		SRAI
	7 0000000 0000000 0100000 0000000 0000000	imm[11:5] 7 0000000 0000000 0100000 00000000 000000	imm[11:5] imm[4:0] 7 5 0000000 移位次数[4:0 0000000 移位次数[4:0 0000000 shamt 0000000 shamt 0000000 shamt	imm[11:5] imm[4:0] 7 5 0000000 移位次数[4:0] 0000000 移位次数[4:0] 0000000 shamt 0000000 shamt 0000000 shamt	imm[11:5] imm[4:0] 7 5 0000000 移位次数[4:0] 0000000 移位次数[4:0] 0000000 shamt rs1 0000000 shamt rs1	imm[11:5] imm[4:0] rs1 7 5 5 0000000 移位次数[4:0] src 0000000 移位次数[4:0] src 0100000 移位次数[4:0] src 0000000 shamt rs1 0000000 shamt rs1	imm[11:5] imm[4:0] rs1 fe 7 5 5 0000000 移位次数[4:0] src 0000000 移位次数[4:0] src 0100000 移位次数[4:0] src 00000000 shamt rs1 001 00000000 shamt rs1 101	imm[11:5] imm[4:0] rs1 funct3 7 5 5 3 0000000 移位次数[4:0] src SLLI 0000000 移位次数[4:0] src SRLI 0100000 移位次数[4:0] src SRAI 0000000 shamt rs1 001 rd 0000000 shamt rs1 101 rd	imm[11:5] imm[4:0] rs1 funct3 7 5 5 3 00000000 移位次数[4:0] src SLLI d 0000000 移位次数[4:0] src SRLI d 0100000 移位次数[4:0] src SRAI d 0000000 shamt rs1 001 rd 0000000 shamt rs1 101 rd	imm[11:5] imm[4:0] rs1 funct3 rd 7 5 5 3 5 0000000 移位次数[4:0] src SLLI dest 0000000 移位次数[4:0] src SRLI dest 0100000 移位次数[4:0] src SRAI dest 0000000 shamt rs1 001 rd 001 0000000 shamt rs1 101 rd 001	imm[11:5] imm[4:0] rs1 funct3 rd opcome 7 5 5 3 5 7 0000000 移位次数[4:0] src SLLI dest OP-II 0000000 移位次数[4:0] src SRAI dest OP-II 0000000 shamt rs1 001 rd 0010011 0000000 shamt rs1 101 rd 0010011	imm[11:5] imm[4:0] rs1 funct3 rd opcode 7 5 5 3 5 7 0000000 移位次数[4:0] src SLLI dest OP-IMM 0000000 移位次数[4:0] src SRAI dest OP-IMM 0000000 shamt rs1 001 rd 0010011 SRAI 0000000 shamt rs1 101 rd 0010011 SRAI

被移位常数次,被编码为I类格式的特例。被移位的操作数放在 rs1 中,移位的次数被编码到I立即数字段的低5 位。右移类型被编码到I立即数的一位高位。 SLLI 是逻辑左移(0被移入低位); SRLI 是逻辑右移(0被移入高位); SRAI 是算术右移(原来的符号位被复制到空出的高位中)。

31	12	11	7	6	0
imm[31:12]		rd		opcode	
20		5		7	
U立即数[31:12]		dest		LUI	
U立即数[31:12]		dest		AUIPC	
$\mathrm{imm}[31{:}12]$		rd		0110111	LUI
$\mathrm{imm}[31:12]$		$_{ m rd}$		0010111	AUIPC

LUI(load upper immediate)用于构建32位常数,并使用U类格式。 LUI 将U立即数放到目标寄存器 rd 的高20位,将 rd 的低12位填0。

AUIPC (add upper immediate to pc)用于构建pc相对地址,并使用U类格式。 AUIPC 从20 位U立即数构建一个32位偏移量,将其低12位填0,然后将这个偏移量加到pc上,最后将结果写入寄存器rd。

1.2.2. 整数寄存器-寄存器操作

RV32l定义了几种算术R类操作。所有操作都是读取 rs1 和 rs2 寄存器作为源操作数,并把结果写入到寄存器 rd中。 funct7 和 funct3 字段选择了操作的类型

31	25	24	20	19	15	14	12	11	7	6	0						
funct7		rs2	2	rs	1	funct3		ro	ł	орс	ode						
7		5		5	5	3		5		7	7						
0000000		src	2	sro	c 1	ADD/SLT/SL	ΓU	de	st	0	P						
0000000		src	2	src1		AND/OR/XC	de	st	0	P							
0000000		src	2	src1		SLL/SRL		SLL/SRL		SLL/SRL		dest		dest		0	P
0100000		src	2	sro	c 1	SUB/SRA		de	st	0	P						

0000000	rs2	rs1	000	$_{ m rd}$	0110011	ADD
0100000	rs2	rs1	000	$_{\mathrm{rd}}$	0110011	SUB
0000000	rs2	rs1	001	$^{\mathrm{rd}}$	0110011	SLL
0000000	rs2	rs1	010	$^{\mathrm{rd}}$	0110011	SLT
0000000	rs2	rs1	011	$_{ m rd}$	0110011	SLTU
0000000	rs2	rs1	100	$_{ m rd}$	0110011	XOR
0000000	rs2	rs1	101	rd	0110011	SRL
0100000	rs2	rs1	101	$^{\mathrm{rd}}$	0110011	SRA
0000000	rs2	rs1	110	$_{ m rd}$	0110011	OR
0000000	rs2	rs1	111	$_{ m rd}$	0110011	AND

ADD 和 SUB 分别执行加法和减法。溢出被忽略,并且结果的低XLEN位被写入目标寄存器 rd 。 SLT 和 SLTU 分别执行**符号数**和无符号数的比较,如果 rs1<rs2 ,则将 1 写入 rd ,否则写入 0 。 注意 , SLTU rd, x0, rs2 ,如果 rs2 不等于0(译者注:在RISC-V中, x0 寄存器永远是0),则把1写入 rd ,否则将0写入 rd (汇编语言 伪指令 SNEZ rd, rs)。 AND 、 OR 、 XOR 执行按位逻辑操作。 SLL 、 SRL 、 SRA 分别执行逻辑左移、逻辑 右移、算术右移,被移位的操作数是寄存器 rs1 ,移位次数是寄存器 rs2 的低5位。

1.2.3. NOP 指令

31	20	19	15	14	12	11	7	6	0
imm[11:0]		r	s1	funct3		r	d	opco	de
12			5	3		į	5		
0			0	ADDI		()	OP-IN	ΛM

NOP指令并不改变任何用户可见的状态,除了使得pc向前推进。NOP被编码为ADDI x0, x0, 0。

1.3. 控制指令

包括无条件跳转指令和条件跳转指令

1.3.1 无条件跳转

跳转并连接(JAL)指令使用了UJ类格式,此处J立即数编码了一个2的倍数的有符号偏移量。这个偏移量被**符号扩展**,加到pc上,形成跳转目标地址,跳转范围因此达到±1MB。JAL将**跳转指令后面指令**的地址(pc+4)保存到寄存器 rd 中。标准软件调用约定使用 x1 来作为返回地址寄存器。 普通的无条件跳转指令(汇编语言伪指令 J)被编码为 rd=x0 的 JAL 指令。(译者注: x0是只读寄存器,无法写入)

31		20	19		15	14		12	11	7	6		0
in	nm[11:0]			rs1			funct3		ro	l	0	pcode	
	12			5			3		5			7	
偏和	多量[11:0]			基址			0		de	st		JALR	

间接跳转指令 JALR (jump and link register)使用I类编码。通过将12位**有符号**I类立即数加上 rs1 ,然后将结果的最低位设置为0,作为目标地址。**跳转指令后面指令的地址**(pc+4)保存到寄存器 rd 中。如果不需要结果,则可以把x0作为目标寄存器

JAL指令和JALR指令会产生一个非对齐指令取指异常,如果目标地址没有对齐到4字节边界。

1.3.2. 条件分支

所有分支指令使用SB类指令格式。 12位B立即数编码了以2字节倍数的有符号偏移量,并被加到当前pc上,生成目标地址。条件分支范围是±4KB。

31	30	25	24	20	19	15	14	12	11	8	7	6	0	
imm[12]	imm[12] imm[10:5]		rs2		rs1		fun	funct3		imm[4:1]		1] op	opcode	
1	1 6		5	5	5		3		4		1		7	
偏移量[12,10:5]		5]	sro	:2	src1		BEQ	BEQ/BNE		偏移量[11,4:1]			BRANCH	
偏移量	偏移量[12,10:5]		sro	:2	sr	src1		BLT[U]		偏移量[11,4:1]			BRANCH	
偏移量	偏移量[12,10:5]		sro	:2	sr	c1	BGI	[U]	偏移量[11,4:1]	BR	ANCH	
imm[imm[12 10:5]		rs2	2		rs1	(00	imm[4:1 11] 110	00011	BEQ	
imm[imm[12 10:5]		rs2	2		rs1		01	imm[4:1 11]		110	00011	BNE	
imm[imm[12 10:5]		rs2	2	rs1		1	.00	imm[4:1 11]] 110	00011	BLT	
imm[imm[12 10:5]		rs2	2		rs1	1	.01	imm[4:1 11]] 110	00011	\mid BGE	
imm[imm[12 10:5]		rs2	2		rs1	1	10	imm[4:1 11]		1100011		BLTU	
imm[imm[12 10:5]		rs2	2		rs1	1	11	imm[4:1 11]		110	1100011		

分支指令比较两个寄存器。 BEQ 和 BNE 将跳转,如果 rs1 和 rs2 相等或者不相等。 BLT 和 BLTU 将跳转,如果 rs1 小于 rs2,分别使用**有符号数**和无符号数进行比较。 BGE 和 BGEU 将跳转,如果 rs1 大于等于 `rs2,分别使用**有符号数**和无符号数进行比较。注意, BGT 、 BGTU 、 BLE 和 BLEU 可以通过将 BLT 、 BLTU 、 BGE 、 BGEU 的操作数对调来实现。

2. 实验原理

2.1. 总体设计

采用五级流水线模式,也就是

```
1 | IF ==> ID ==> EX ==> MEM ==> WB
```

附加对数据相关和控制相关的处理,也就是采用数据转发,Stall和Flush.

2.2. 模块详细

2.2.1. ALU

输入为 Operand1 Operand2 AluContrl 输出为 AluOut

基于不同的 AluContrl 做出不同的运算,比较简单的组合逻辑

需要注意的是,对于 SRA ADD SUB SLT 需要特别注明是有符号数 \$signed()

相应的代码如下:

```
1 | always@(*)
   begin
2
      case(AluContrl)
4
           `SLL: AluOut <= Operand1 << Operand2[4:0];
            `SRL: AluOut <= Operand1 >> Operand2[4:0];
 5
            `SRA: AluOut <= $signed(Operand1) >>> Operand2[4:0];
 6
7
            `ADD: AluOut <= $signed(Operand1) + $signed(Operand2);
            `SUB: AluOut <= $signed(Operand1) - $signed(Operand2);
9
            `XOR: AluOut <= Operand1 ^ Operand2;
            `OR: AluOut <= Operand1 | Operand2;</pre>
10
            `AND: AluOut <= Operand1 & Operand2;
11
            `SLT: AluOut <= ($signed(Operand1) < $signed(Operand2)) ? 32'b1:32'b0;
12
            `SLTU: AluOut<= (Operand1 < Operand2) ? 32'b1:32'b0;
13
14
            `LUI: AluOut <= Operand2;//LUI的值已在imm上计算了,直接用,而AUIPC使用的是ADD
            default: AluOut <= 32'b0;
15
        endcase
16
17
   end
```

2.2.2. BranchDecisionMaking

与 ALU 模块很类似,也是根据不同的Control信号来进行计算,然后输出不同的值。

这个模块其实可以和 ALU 合并,分离出来是为了架构更加清晰。

需要注意的是几个需要特别注明是有符号数的, BLT, BGE

相应的代码如下

```
1
    always@(*)
 2
         begin
             case(BranchTypeE)
 3
 4
                  `NOBRANCH: BranchE <= 0;
                  `BEQ: BranchE <= (Operand1 == Operand2);</pre>
 5
                  `BNE: BranchE <= (Operand1 != Operand2);</pre>
 6
                  `BLT: BranchE <= ($signed(Operand1) < $signed(Operand2));</pre>
 7
                  `BLTU: BranchE <= (Operand1 < Operand2);</pre>
 8
 9
                  `BGE: BranchE <= ($signed(Operand1) >= $signed(Operand2));
                  `BGEU:BranchE <= (Operand1 >= Operand2);
10
                 default: BranchE <= 0;</pre>
11
12
             endcase
13
         end
```

2.2.3. ControlUnit

这是一个比较麻烦的模块,需要根据输入的 Op Fn3 Fn7 来判断很多的输出信号相应的值,但是简化的部分是,所有的输出信号都已经给出了,可以一个一个判断。所以这个模块分成两个阶段,首先根据 Op Fn3 Fn7 来判断是什么指令,然后对每个需要输出的信号依次分析:哪些指令需要这些信号以及相应的值。

首先是第一步,判断指令。可以通过下面的图来分析。

Format	Instruction	Opcode	Funct3	Funct6/7
	add	0110011	000	0000000
	sub	0110011	000	0100000
	s11	0110011	001	0000000
	xor	0110011	100	0000000
R-type	srl	0110011	101	0000000
n-type	sra	0110011	101	0000000
	or	0110011	110	0000000
	and	0110011	111	0000000
	lr.d	0110011	011	0001000
	sc.d	0110011	011	0001100
	1 b	0000011	000	n.a.
	1h	0000011	001	n.a.
	iw	0000011	010	n.a.
	id	0000011	011	n.a.
	ibu	0000011	100	n.a.
	ihu	0000011	101	n.a.
I-type	iwu	0000011	110	n.a.
	addi	0010011	000	n.a.
	slli	0010011	001	000000
	xori	0010011	100	n.a.
	srli	0010011	101	000000
	srai	0010011	101	010000
	ori	0010011	110	n.a.
	andi	0010011	111	n.a.
	jalr	1100111	000	n.a.
	sb	0100011	000	n.a.
Ctuno	sh	0100011	001	n.a.
S-type	SW	0100011	010	n.a.
	sd	0100011	111	n.a.
	beq	1100111	000	n.a.
	bne	1100111	001	n.a.
CD tune	blt	1100111	100	n.a.
SB-type	bge	1100111	101	n.a.
	bltu	1100111	110	n.a.
	bgeu	1100111	111	n.a.
U-type	lui	0110111	n.a.	n.a.
UJ-type	jal	1101111	n.a.	n.a.

FIGURE 2.18 RISC-V instruction encoding.

从技术上来说,只用依次判断即可,结构基本上类似。

第二步为输出的依次处理,下面详细说明

JalD JalrD

都是只依赖一个指令,表示相应的跳转,输出用于 NPC_Generator 对下一个PC的判断上。所以代码为

```
1 assign JalD=JAL;
2 assign JalrD=JALR;
```

RegWriteD

这个输出的信号有两个目的,其一是用在 DataExt 对从 mem 中读出的信号的扩展方式选择上,其二是在 WB 阶段 判断是否需要写入寄存器,用作使能。

需要用到这个信号的指令除了Load(LB LH LW LBU LHU)还有LUI AUIPC JAL JALR 以及R-Type和其他的I-Type.相应的代码为

```
//其他要写入reg的
 1
 2
        wire OtherWriteReg;//除了load的几个
        assign OtherWriteReg=(LUI||AUIPC||JAL||JALR)||(Op==IType_op)||(Op==RType_op);
 3
 4
 5
        always@(*)
        begin
 6
 7
            case ({LB,LH,LW,LBU,LHU,OtherWriteReg})
 8
                6'b100000: RegWriteD <= `LB;
 9
                6'b010000: RegWriteD <= `LH;
10
                6'b001000: RegWriteD <= `LW;
                6'b000100: RegWriteD <= `LBU;
11
12
                6'b000010: RegWriteD <= `LHU;
13
                6'b000001: RegWriteD <= `LW;
                default: RegWriteD <= `NOREGWRITE;</pre>
14
15
            endcase
16
        end
```

MemToReg

表示ID阶段的指令需要将data memory读取的值写入寄存器,与上面的不同之处在于,此处只能是 mem 得到的数,用于在 WB 阶段对写入数据的判断上, 0表示从 mem 中读出的数, 1表示 ALU 计算或者其他地方的数。

那么只用判断是不是 Load 指令即可。

```
1 | assign MemToRegD=(LB || LH || LW || LBU || LHU);
```

MemWriteD

采用独热码格式,对于data memory的 32bit 字按byte进行写入, MemWriteD=0001 表示只写入最低1个byte 仅仅有 SB, SH, SW 有存储 mem 功能, 所以仅仅需要处理这几个指令就行了

```
always@(*)
1
2
       begin
3
            case ({SB,SH,SW})
                3'b100: MemWriteD <= 4'b0001;
4
5
                3'b010: MemWriteD <= 4'b0011;
6
                3'b001: MemWriteD <= 4'b1111;
                default: MemWriteD <= 4'b0000;</pre>
7
8
            endcase
9
       end
```

这里给出的信息只能判断是 B H W 其他的都判断不了,但是 SB 是按字节对齐, SH 是按半字对齐,这部分还需要在Mem部分另外进行指定。

LoadNpcD

表示将NextPC输出到ResultM, 需要nextPC写入到RD的 JAL, JALR

```
1 assign LoadNpcD=(JAL||JALR);
```

RegReadD

RegReadD[1]==1表示A1对应的寄存器值被使用到了,RegReadD[0]==1表示A2对应的寄存器值被使用到了,用于forward的处理

这个信号的处理需要格外仔细,具体的指令用到的信息在 Instr.xls

```
assign RegReadD[1]=JALR||(Op==br_op)||(Op==load_op)||(Op==store_op)||(Op==IType_op)||
(Op==RType_op);
assign RegReadD[0]=(Op==br_op)||(Op==store_op)||(Op==RType_op);
```

BranchTypeD

表示不同的分支类型,用于 BranchDecisionMaking

形式比较清晰

```
always@(*)
 1
 2
        begin
 3
             case ({BEQ, BNE, BLT, BLTU, BGE, BGEU})
 4
                 6'b100000: BranchTypeD <= `BEQ;
 5
                 6'b010000: BranchTypeD <= `BNE;
                 6'b001000: BranchTypeD <= `BLT;
 6
                 6'b000100: BranchTypeD <= `BLTU;
 7
                 6'b000010: BranchTypeD <= `BGE;
 8
 9
                 6'b000001: BranchTypeD <= `BGEU;
                 default: BranchTypeD <= `NOBRANCH;</pre>
10
             endcase
11
12
        end
```

AluContrlD

表示不同的ALU计算功能

需要仔细分析的是,好几个指令用的是 ALU 的 ADD 形式,分别有 Load, Store 计算mem地址,以及另外的指令 ADD ADDI AUIPC JALR

弄清除这一点后就可以直接写出来了

```
always@(*)
 1
 2
        begin
 3
             if((Op==load_op)||(Op==store_op)||ADD||ADDI||AUIPC||JALR)begin AluContrlD <=
     `ADD; end
            else if(SUB)begin AluContrlD <= `SUB; end
 4
            else if(LUI)begin AluContrlD <= `LUI; end</pre>
 5
 6
            else if(XOR||XORI)begin AluContrlD <= XOR; end
             else if(OR||ORI)begin AluContrlD <= `OR; end
 8
             else if(AND||ANDI)begin AluContrlD <= `AND; end
             else if(SLL||SLLI)begin AluContrlD <= `SLL; end</pre>
 9
             else if(SRL||SRLI)begin AluContrlD <= `SRL; end</pre>
10
             else if(SRA||SRAI)begin AluContrlD <= `SRA; end
11
             else if(SLT||SLTI)begin AluContrlD <= `SLT; end
12
             else if(SLTU||SLTIU)begin AluContrlD <= `SLTU; end
13
14
             else begin AluContrlD <= 4'dx; end
15
        end
```

AluSrc1D AluSrc2D

这两个信号的处理最麻烦,

AluSrc2D,表示Alu输入源2的选择; 00:Reg 01:Rs2 5bits 10:Imm

AluSrc1D,表示Alu输入源1的选择; 0:Reg 1:PC

对于源1,仅仅只有AUIPC用到了PC而且需要ALU处理,所以

```
1 | assign AluSrc1D = (AUIPC);
```

对于源2,使用了Rs2的是几个立即数移位指令 SLLI SRLI SRAI

使用了Reg的是branch和Rtype的指令,其他的不同AUL或者使用立即数的,都列为其他

```
1 | assign AluSrc2D = (SLLI||SRLI||SRAI)? 2'b01 : ((Op==br_op||Op==RType_op)? 2'b00 : 2'b10);
```

ImmType

表示指令的立即数格式

因为指令本身就已经分成了 R I S B U J 几种格式, 所以判断即可

```
always@(*)
 1
 2
         begin
 3
             if(Op==RType_op)begin ImmType<=`RTYPE; end</pre>
 4
             else if(Op==IType_op || Op==load_op || JALR) begin ImmType<=`ITYPE; end
 5
             else if(Op==store_op)begin ImmType<=`STYPE; end
             else if(Op==br_op)begin ImmType<=`BTYPE; end</pre>
 6
             else if(LUI||AUIPC)begin ImmType<=`UTYPE; end</pre>
 7
             else if(JAL)begin ImmType<=`JTYPE; end</pre>
 8
 9
             else begin ImmType<=3'dx; end
10
         end
```

2.2.4. DataExt

目的是对mem读出的内容进行扩展,需要根据 RegWrite (也就是Load指令的类型)来做合适的拓展,考虑到不同的对齐方式,还有一个字节的选择, LoadedBytesSelect

理解起来比较显然, LB LH 是符号拓展, LBU LHU 是零拓展。

基本模式为

```
always@(*)
 1
 2
        begin
 3
             case (RegWriteW)
 4
                 `LB: begin
                     case (LoadedBytesSelect)
 5
                          2'b00: OUT <= {{25{IN[7]}}, IN[6:0]};
 6
                          2'b01: OUT <= {{25{IN[15]}}, IN[14:8]};
 7
 8
                          2'b10: OUT <= {{25{IN[23]}}, IN[22:16]};
 9
                          2'b11: OUT <= {{25{IN[31]}}, IN[30:24]};
                          default: OUT <= 32'bx;
10
11
                     endcase
                 end
12
13
                 `LH: begin
                     casex (LoadedBytesSelect)
14
15
                          2'b0x: OUT <= {{17{IN[15]}}, IN[14:0]};
                          2'b1x: OUT <= {{17{IN[31]}}, IN[30:16]};
16
                          default: OUT <= 32'bx;
17
18
                     endcase
                 end
19
20
                 . . .
```

```
default: OUT <= 32'bx;
endcase
end
```

2.2.5. HazardUnit

这是一个很关键的模块,需要实现三部分,一是数据转发,二是无法转发的数据采用Stall, 三是跳转指令的Flush 首先是数据转发,reg读出的数据,从两个地方转发,WB 和 Mem ,其中,从 Mem 转发的优先级要高于从 WB ,需要判断的标准是,相关的阶段准备写入Reg, 但是还没写来得及,以及 src=dst , src!=0 ,同时注意优先级。

```
//Forward Register Source 1
assign Forward1E[0]=(|RegWriteW)&&(RdW!=0)&&(!((RdM==Rs1E)&&(|RegWriteM)))&&
    (RdW==Rs1E)&&RegReadE[1];
assign Forward1E[1]=(|RegWriteM)&&(RdM!=0)&&(RdM==Rs1E)&&RegReadE[1];

//Forward Register Source 2
assign Forward2E[0]=(|RegWriteW)&&(RdW!=0)&&(!((RdM==Rs2E)&&(|RegWriteM)))&&
    (RdW==Rs2E)&&RegReadE[0];
assign Forward2E[1]=(|RegWriteM)&&(RdM!=0)&&(RdM==Rs2E)&&RegReadE[1];
```

然后是无法转发然后stall, 比如说 Load 之后马上进行 Store.

判断的标准为

```
1 | MemToRegE && ((RdE==Rs1D )||(RdE==Rs2D))&& RdE!=0
```

处理的办法是将 StallF StallD 设置为1

最后是控制相关,Branch 和 Jalr 都是在 Ex 阶段被发现的,所以需要清除 FlushD FlushE 为1 而 Jal 是在 ID 阶段被发现的,需要将 FlushD=1 即可。

需要另外注意的是, Jal 由于流水线的层次浅,它的优先级小于 Jalr Branch

2.2.6. ImmOperandUnit

需要根据不同的Type(RISBUJ)来进行立即数的拓展,

首先, RV32I指令格式为

31 30 25	5 24 21 20	19 1	5 14 12	2 11 8	7	6 0	
funct7	rs2	rs1	funct3	rd		opcode	R-type
imm[1	.1:0]	rs1	funct3	rd		opcode	I-type
							_
imm[11:5]	rs2	rs1	funct3	imm[4	::0]	opcode	S-type
	•						_
$[imm[12] \mid imm[10:5]$	rs2	rs1	funct3	imm[4:1] i	mm[11]	opcode	B-type
							_
	imm[31:12]			rd		opcode	U-type
							_
[imm[20]] $imm[1]$.0:1] imm[11]	imm[19:12]	rd		opcode	J-type
[imm[12] imm[10:5]	rs2 imm[31:12]	rs1	funct3	imm[4:1] i		opcode opcode] B-

imm表示指令中的立即数,比如imm[11:0],表示一个12位的立即数,它的高20位会符号位扩展,imm[31:12]表示一个32位的立即数,它的低12位会补0。

下图是各种指令格式扩展后的32位立即数。

31	30	20	19	12	11	10	5		1	0	
		— inst[3	1] —			inst	[30:25]	inst[24	:21]	inst[20]	I-immediate
		— inst[3	11 —			inst	[30:25]	inst[1]	1.8]	inst[7]	S-immediate
		mstjo	1]			шы	[50.25]	mst	1.0]	11130[1]	5-mmediate
— inst[31] —					inst[7]	inst	[30:25]	inst[1	1:8]	0	B-immediate
inst[31]		nst[30:20]	inst[19:12]	_			— (<u> </u>			U-immediate
mst[51]	111	1130[30.20]	11130[13.12]					,			C-mmediate
_	- inst	[31] —	inst[19:12]	j	inst[20]	inst	[30:25]	inst[24	:21]	0	J-immediate

根据这张图,就很容易写出来立即数的拓展方式了

```
1
    always@(*)
 2
        begin
 3
             case(Type)
                 `RTYPE: Out<=32'b0;
 4
 5
                 `ITYPE: Out<={ {21{In[31]}}, In[30:20] };
                 `STYPE: Out<={ {21{In[31]}}, In[30:25],In[11:7]};
 6
                 `BTYPE: Out<={ {20{In[31]}}, In[7], In[30:25], In[11:8], 1'b0};
 7
                 `UTYPE: Out<={ In[31:12],12'b0};
 8
                 `JTYPE: Out<={ {12{In[31]}}, In[19:12], In[20], In[30:21], 1'b0};
 9
                               //请补全!!!
10
                 default:Out<=32'hxxxxxxxx;</pre>
             endcase
11
12
        end
```

2.2.7. WBSegSeg

这部分最关键的是处理非字对齐store. 关键技术在于对 WE A[1:0] 的判断和分析。

需要另外设置 WE_test 重新规划 WE 的写入,比如 SB 分为 0001 0010 0100 1000, SH 分为 0011 1100,而 SW 只有 1111.

```
assign WE_test= (|WE)? ((WE==4'b0001)? (WE<<A[1:0]):((WE==4'b0011)? ((A[1]==1'b0)? 4'b0011:4'b1100):4'b1111)):WE;
```

需要另外设置 WD_test 重新规划数据的输入,因为仅仅是低位的数据,所以需要进行复制,如下

```
1 | assign WD_test= (|WE)? ((WE==4'b0001)? ({WD[7:0], WD[7:0], WD[7:0]}) : ((WE==4'b0011)? ({WD[15:0], WD[15:0]}) : WD) ):WD;
```

2.2.8. NPC_Generator

流水线深的先执行

所以 Jalr=Br > Jal (Jalr 与 Br 不可能同时出现)

```
1  always@(*)
2  begin
3   if(JalrE)begin PC_In<=JalrTarget; end
4   else if(BranchE)begin PC_In<=BranchTarget; end
5   else if(JalD)begin PC_In<=JalTarget; end
6   else begin PC_In<=PCF+4; end
7  end</pre>
```

3. 问题回答

- 1. 为什么将DataMemory和InstructionMemory嵌入在段寄存器中? 这样在时钟沿读出后直接进入下一个流水阶段,不用等下一个时钟周期。
- 2. DataMemory和InstructionMemory输入地址是字(32bit)地址,如何将访存地址转化为字地址输入进去? 地址改成 A[31:2] ,而 A[1:0] 在DataExt使用选定特定的位。
- 3. 如何实现DataMemory的非字对齐的Load ? 将读出的32bits数据按照不同的Load指令格式进行选位与扩展。
- 4. 如何实现DataMemory的非字对齐的Store ? WE使能表示使用不同的位写入,比如 0011 表示写入低16bits.
- 5. 为什么RegFile 的时钟要取反?相当于不采用同步读,就是比较方便五段流水,不用在内部转发
- 6. NPC_Generator中对于不同跳转target 的选择有没有优先级? 执行越靠后越优先,Br = Jalr > Jal
- 7. ALU模块中,默认wire变量是有符号数还是无符号数? 无符号数,可以使用 \$signed()
- 8. AluSrc1E执行哪些指令时等于1'b1?

AUIPC

9. AluSrc2E执行哪些指令时等于2'b01?

SLLI SRLI SRAI

10. 哪条指令执行过程中会使得LoadNpcD==1?

jalr, jal

11. DataExt模块中,LoadedBytesSelect的意义是什么? 从取到的32bits选择相应的位

12. Harzard模块中,有哪几类冲突需要插入气泡?
Load相关, 比如Load之后紧接着是Store相应的寄存器的值(或其他用到Reg的指令)

13. Harzard 模块中采用默认不跳转的策略,遇到branch 指令时,如何控制flush 和stall信号? FlushD FlushE=1 其他都是0

14. Harzard模块中, RegReadE 信号有什么用? 判断是否用到了Reg, 从而判断是否需要进行转发。

15. 0号寄存器值始终为 0 , 是否会对forward的处理产生影响? 需要判断是否为 x0 ,如果是则不需要转发

Ref

RISC-V指令集手册(卷1-用户级指令集)-中文版

RV32I指令集

《Computer Organization and Design RISC-V edition》

CSE 564 Computer Architecture Summer 2017--Lecture 09: RISC-V Pipeline Implementation