II. IDENTIFICACIÓN DE LOCUTORES

22.47 Procesamiento de voz

Marc S. Ressl

Identificación de locutores

El reconocimiento de voz es un ingrediente fundamental en la implementación de agentes virtuales.

Pero sólo nos dice **qué** se está diciendo; no nos dice **quién** lo está diciendo.

Identificación de locutores

La **verificación de locutores** determina si una grabación de voz es de quien dice ser. Consiste en una clasificación 1:1.

En **identificación de locutores** asignamos una identidad a una grabación de voz. Consiste en una clasificación 1:N, o, si se admiten locutores desconocidos, 1:N+1.

Ambos problemas pertenecen al campo de la **biometría**.

Identificación de locutores

Otras aplicaciones de la verificación/identificación de locutores:

- Sistemas de control de acceso.
- Sistemas forenses.
- Anotación automática de conversaciones (big data).

Enfoque clásico

Features

Al igual que en reconocimiento de voz, convertimos la señal de voz s[n] es una secuencia de feature vectors $X = \{X_1, X_2, ..., X_T\}$, en donde cada feature vector es $X_t = \{x_{t1}, x_{t2}, ..., x_{tD}\}$.

Necesitamos features que sean fuertemente dependientes de la **estructura física del aparato fonador** y de los **hábitos articulatorios** de un locutor.

Features

En la práctica solemos usar los **mfcc**, por más que descartan información útil en identificación de locutores.

También usamos los Δ mfcc (la diferencia entre vectores mfcc sucesivos) y los Δ 2mfcc (la diferencia entre vectores Δ mfcc sucesivos).

MAP

Para determinar la identidad de un locutor solemos aplicar el criterio *maximum a posteriori* (MAP):

$$\hat{L} = \arg \max_{L} P(L \mid X)$$

 \hat{L} es el locutor que maximiza la probabilidad MAP.

L es el espacio de posibles locutores.

X es la matriz de feature vectors.

MAP

Por la regla de Bayes:

$$\hat{L} = \arg \max_{L} \frac{P(X|L)P(L)}{P(X)}$$

P(X|L) es el modelo del locutor.

P(L) es la probabilidad de ocurrencia de locutor.

P(X) no depende de L, por lo que solemos ignorarlo.

Para modelar P(X|L) solemos usar modelos **GMM** (gaussian mixture models).

Solemos ignorar el aspecto temporal de la matriz de feature vectors $X = \{\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_T\}$, considerando los valores \mathbf{X}_t como muestras de un proceso i.i.d.

Una gaussiana multidimensional se define como:

$$p_{\mu,\Sigma}(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)}$$

 μ es un vector de medias.

 Σ es una matriz de covarianza, $|\Sigma|$ su determinante.

d es la dimensión de los feature vectors.

El **modelo de mezclas gaussianas** se construye a partir de una combinación lineal de *N* gaussianas:

$$P(X|L) = \sum_{k=1}^{N} w_k p_{\mu_k, \Sigma_k}(X)$$

Los pesos w_k han de cumplir:

$$\sum_{k=1}^{N} w_k = 1$$

Modelo GMM

Para entrenar el modelo solemos utilizar el algoritmo **expectation maximization** (EM).

Consiste en dos pasos que se aplican iterativamente:

- En el **paso E** asignamos a cada feature vector una de las *N* gaussianas.
- En el **paso M** optimizamos los parámetros de las N gaussianas.

Algoritmo EM

Paso E

Algoritmo EM

Paso M

Algoritmo EM

Resultado final

Armados con los modelos de locutores P(X|L) y la probabilidad de ocurrencia de locutor P(L), estamos en condiciones de hacer **identificación de locutores 1:N**.

Para asignar una identidad a una grabación de voz, calculamos los feature vectors Xy evaluamos la **verosimilitud logarítmica** de X para cada modelo:

$$\log(P(L|X)) = \sum_{t=1}^{T} \log(P(\mathbf{X}_t|L)P(L))$$

Los valores resultantes se llaman **scores**.

La identidad del locutor corresponderá al modelo que produzca el máximo score.

La detección de **locutores desconocidos** requiere otro enfoque, ya que no podemos modelar un locutor desconocido en forma explícita.

Debemos tomar la decisión a partir de un umbral de decisión t_h :

$$\log(P(L \mid X)) \le t_h$$

Para determinar t_h estimamos primero la distribución de scores con grabaciones de un locutor, y con grabaciones de un impostor (grabaciones que no son el locutor).

Dependiendo del valor de t_h , tendremos más error por falsa aceptación (FA) o por falso rechazo (FR).

El **false acceptance rate** (FAR) es la probabilidad de aceptación de un impostor (el área roja).

El **false rejection rate** (FRR) es la probabilidad de rechazo del locutor (el área azul).

El **equal error rate** (EER) se da cuando el FAR coincide con el FRR.

Las **curvas ROC** (receiver operating characteristic) representan el FAR vs. el FRR.

Las **curvas DET** (detection error trade-off) son curvas ROC representadas en ejes logarítmicos.

Son muy útiles para comparar diferentes sistemas de verificación/identificación de locutores entre sí.

En **verificación de locutores** aplicamos este procedimiento tal como mostramos.

En **identificación de locutores N+1** determinamos los scores de cada modelo, y si todos los scores son inferiores a cierto umbral t_h que depende de cada modelo, lo declaramos desconocido.

Enfoque contemporáneo

Enfoque contemporáneo

Al igual que en los otros problemas que presentamos, enfoque se basa en **deep learning**.

Suelen utilizarse modelos end-to-end.

Requiere un extenso corpus de grabaciones de voz anotadas por locutor.

Enfoque contemporáneo

Algunos enfoques frecuentes:

- VAE con una medida que minimiza la entropía de un mismo locutor y maximiza la entropía entre locutores diferentes.
- **Embeddings**, que modelan las características de cada locutor con un conjunto de valores.

