

5.3
$$f = (xz + yz') \times or z$$

 $f = (xz + yz' + xy) \times or z$
(et $x = y = 1$
 $f = (z + 1.z' + 1.1) \times or z$
 $= (z + z' + 1) \times or z$
 $= (x + z' + 1) \times or z$
 $= z' \text{ independent of } (z + z')$
No Guitch

$$\begin{array}{ccc}
\textcircled{4} & f = (x \oplus y \oplus z)w = gw \\
g = x \oplus y \oplus z
\end{array}$$

5.6
6
$$f = xy + \frac{2}{2}x(w'+y') + \frac{2}{2}x'wy$$

$$= xy + w'xz + xy'z + wx'yz$$

1 See 6 above

(b) from 5.56 f= w(m3+m3+m6+m7)

5,9 © See 5,96 (from 5,5c)

5.9 from 5.5d f= mo+m,+m+m3+m5

5.9 from 5.5e = f= mo+m,+m,+m,+m,+m,+m,+m,7 m,000 m,000

$$5/3$$
 $a_{5} = 08$
 $a_{4} = 08$
 $a_{4} = 08$
 $a_{4} = 08$
 $a_{5} = 08$
 $a_{4} = 08$
 $a_{5} = 08$
 $a_{5} = 08$
 $a_{7} = 0$

5.18 The B5 compares the magnitudes of two four bit nos, In all cases a 1 in quater Than I a O. For signed numbers the leading digit a3, b3 is the sign digit where 1<0.

Sizz
$$X = 1011$$
 $Y = 0101$ $C_{1M} = 0$

Remind + Paper 1 111 of Canina

1 10 11 X

2 $C_{1} = \{0\} + \{0$

5,24
$$Z_{j} = (5_{3}ba + 5_{2}b'a) \times or (5_{1}b' + 5_{0}b + a)$$
 $code_{6}$ $5_{3} = 0$ $5_{2} = 1$ $5_{1} = 1$ $5_{0} = 0$
 $code_{6}$ $5_{3} = 0$ $5_{2} = 1$ $5_{1} = 1$ $5_{0} = 0$
 $code_{6}$ $5_{3} = 0$ $5_{2} = 1$ $5_{1} = 1$ $5_{0} = 0$
 $code_{6}$ $5_{3} = 0$ $5_{2} = 1$ $5_{1} = 1$ $5_{0} = 0$
 $code_{6}$ $5_{3} = 0$ $5_{2} = 0$
 $code_{6}$ $5_{3} = 0$
 $code_{6}$ 6_{5} 6_{5} 6_{5}
 $code_{6}$ 6_{5} 6_{5}
 $code_{6}$ 6_{5} 6_{5}
 $code_{6}$ 6_{5}
 $code_{6}$ 6_{5}
 $code_{6}$ 6_{5}
 $code_{6}$ 6_{5}
 $code_{6}$ 6_{5}
 $code_{6}$ 6_{5}
 $code_{6}$
 $code_{6}$ 6_{5}
 $code_{6}$
 $code_{6}$ 6_{5}
 $code_{6}$
 $code_{6}$

5.26 Key is reconizing that 76 is a programmable inverter

$$S_{j} = \alpha_{j} \oplus (b_{j} \oplus sub) \oplus (c_{m} \oplus sub)$$

$$5.28$$
 $S_1 = gb'a$
 $b = wx$
 $a = 4+2$
 $g = 1$
 $S_1 = (wx)'(4+2)$
 $S_1 = (w'+x')(4+2)$

$$5.29$$
 $5_0 = r's'g$ $g = (p \oplus q)'$
 $5_0 = (p \oplus q') r's'$

$$5.30$$
 $f = m_1 + m_2 = 4x' + 4x'$ (g=1)

Chapter 6
Sequential Circuit Elements

