Driver Drowsiness Detection System (DDDS)

Acceptance Test Report

Submission Date: April 14, 2025

Submitted to: Prof. Emel Koç

Prepared by: Khaled Alrefai Student ID: 220212334

Department of Computer Engineering

Contents

1. Introduction	3
1.1 Purpose of this document	
1.2 Scope of the development project	3
1.3 Summary of results	
1.4 Definitions, Acronyms and Abbreviations	4
2. Performed Tests and Results	4
2.1 Capture Stage	
2.2 Processing Stage	5
2.3 Alarming Stage	5
2.4 System-Level Tests	
3. Conclusion	6
3.1 Acceptance Criteria	6
3.2 Acceptance Results	6
3.3 Success Performance	6
4. References	6

1. Introduction

1.1 Purpose of this document

The purpose of this Acceptance Test Report is to document the outcomes of test cases executed on the Driver Drowsiness Detection System (DDDS). These tests verify the implementation's alignment with the functional and non-functional requirements specified in the Software Requirements Specification (SRS) and Software Design Document (SDD). It further serves to demonstrate the progress made through simulation and partial hardware integration.

1.2 Scope of the development project

The Driver Drowsiness Detection System (DDDS) is a real-time intelligent monitoring system that aims to detect signs of driver fatigue through video input and machine learning inference. The project is implemented with a focus on embedded systems and TinyML, capable of operating under low power with efficient image processing. The system utilizes a camera to capture eye-region images, processes them using a lightweight trained CNN model, and triggers an alert mechanism such as a buzzer or LED when signs of drowsiness are detected. All tests were conducted in a simulated environment using OpenCV and TensorFlow, with deployment options on ESP32-S3, ESP32-CAM, Maixduino k210, or Raspberry pi planned for integration.

1.3 Summary of results

Tests across capture, processing, and alerting stages confirm that most core functionalities work as intended. Several tests—particularly related to power usage and long-duration runtime—remain pending final hardware integration. All components tested in simulation matched system expectations. This document captures the current verified status and test outcomes. Additional tests such as power usage and continuous uptime have been scheduled for the upcoming graduation phase.

1.4 Definitions, Acronyms and Abbreviations

SRS: Software Requirements Specification

SDD: Software Design Document

DDDS: Driver Drowsiness Detection System

TinyML: Tiny Machine Learning

CNN: Convolutional Neural Network

TFLite: TensorFlow Lite FPS: Frames Per Second

GPIO: General Purpose Input/Output

2. Performed Tests and Results

2.1 Capture Stage

Test ID	Test Description	Result	Comments	Reference
CAP01	Camera initializes and streams frames	Pass	Camera feed stable and smooth using OpenCV	SRS 6.1.1
CAP02	Frame rate ≥15 FPS	Pass	Measured average: 28.61 FPS	SRS 8.2
CAP03	Camera handles low-light conditions	Pending	To be tested in dim lighting	SRS 7.1
CAP04	Face and eye region centered	Partial	Face mesh works, eye region not always centered	SRS 6.1.1
CAP05	Image preprocessing (grayscale, resize)	Pass	Output clean at 24x24 for model input	SRS 6.1.2

2.2 Processing Stage

Test ID	Test	Result	Comments	Reference
	Description			
PROC01	Model loads	Pass	Model output:	SRS 6.1.2
	and classifies		Closed, 99%	
	input		confidence	
PROC02	Detect eye	Pass	Alerts fired	SRS 6.1.3
	closed > 2 sec		after 56+	
			frames closed	
PROC03	Detect head tilt	Fail	Accuracy	SRS 7.1
	or bad posture		dropped under	
			head angle	
			variation	
PROC04	Ignore short	Pass	No false alerts	SRS 6.1.3
	blinks		for 2-3 frame	
			blinks	

2.3 Alarming Stage

Test ID	Test	Result	Comments	Reference
	Description			
ALRT01	Trigger buzzer or LED	Pass	Simulated and ready for GPIO pin integration	SRS 6.1.3
ALRT02	Reset alert after eyes open	Pass	System resets after detecting open eye	SRS 6.1.3

2.4 System-Level Tests

Test ID	Test	Result	Comments	Reference
	Description			
SYS01	Run for 2+	Planned	To be tested in	SRS 8.2
	hours		final hardware	
			setup.	
SYS02	Power usage	Planned	Pending	SRS 8.2
	<500mA		multimeter	
			testing.	
SYS03	Offline	Confirmed	System does	SRS 8.3
	functionality		not require	
			internet	
			connection.	

3. Conclusion

3.1 Acceptance Criteria

To consider the implementation acceptable, the following vital processes must be tested and validated:

- Real-time camera integration
- Image preprocessing
- Inference with trained model
- Alert triggering
- Offline capability

3.2 Acceptance Results

Most modules functioned as expected and were verified either through direct testing or simulation. Although some advanced features like posture adaptation and power profiling are incomplete, the system meets the primary project goals and can be considered a working prototype.

3.3 Success Performance

Total Test Cases: 14

Pass: 11

Partial/Pending: 2

Fail: 1

Success Rate: $11 / 14 \times 100 = 78.6\%$

4. References

- 1. Computer Engineering SRS Driver Drowsiness Detection System Khaled Alrefai
- 2. Software Design Document Khaled Alrefai
- TensorFlow-Tool Configuration
- 3. IEEE 829 Software Test Documentation Standard