Liam tardimen Office Hrs: Zoom When TBD Survey on Canuas Problems are huch Files > Discussion Documents Induction Prove that $1+5+\ldots+N=\frac{2}{2},$ POOC Induction Base cast: n=1 1 = 1(1+1) = = = = = 1 \langle

Two proposition is true

for all K < M

ie 1+2+--+ K = K(KH)

XK < M

show it's true for n+1. 1+2+··· r n + (n+1) [[(inductive hypothesis) $\frac{N(n+1)}{2} + (n+1)$ $=\frac{N^2+N+2N+2}{2N+2}$ $=\frac{n^2+3n+2}{2}=\frac{(nn)(n+2)}{2}$ The claim fellows of by induction

Inductive slep: suppose TT P < 4 + K & N n7/2 Strong induction The Prif not is even, it's pant prime not prime (ind hyp) < 4n-1 < 4n PASsome then n=2k PENTIP (TP) (TP) (XP) (XP)

Consider the binomial coefficient $= (2k+1)(2k)\cdots(k+2)$ is divisible by all prime In [K+2, 2KH]. since K! divisible only by Primes & K.

5. What's wrong with this proof?

Claim. If we have n lines in the plane, no two of which are parallel, then they all go through one point.

Proof. This is clearly true for one or two lines by definition. Suppose that it is true for any set of n lines and let $S = \{\ell_1, \ell_2, \ell_3, \ell_4, \dots, \ell_{n+1}\}$ be a set of n+1 lines in the plane, no two of which are parallel. Delete the line ℓ_3 to obtain a set S' of n lines, no two of which are parallel. By the induction hypothesis, the lines in S' must all pass through some point P. In particular, ℓ_1 and ℓ_2 pass through P.

Now put ℓ_3 back and delete ℓ_4 instead to get another set S'' of n lines, no two of which are parallel. Again by the induction hypothesis, they must all pass through some point Q. In particular, ℓ_1 and ℓ_2 pass through Q. But ℓ_1 and ℓ_2 pass through P. Since two lines can pass through at most one point, we must have P = Q. But then ℓ_3 goes through P, so all the lines in S go through P.