1.

 (\Longrightarrow) Suppose $f:A\to B$ is not surjective. Then there is $b\in B$ such that $b\notin f(A)$. Let $i,j:B\to\{0,1\}$ such that $i(b)=0,\ j(b)=1$ and other elements of B go to the same element. Then if=jf but $i\neq j$, concluding that f is not an epi. (\Longleftrightarrow) Suppose f is surjective and $i,j:B\to C$ are different. Then there is an element $b\in B$ such that $i(b)\neq j(b)$, concluding that $if(a)\neq jf(a)$ where f(a)=b.

2.

Let $f: p \le q$ and $i: e_1 \le p$, $j: e_2 \le p$ or $i: q \le e_1, j: q \le e_2$. Since i, j have the same domain or codomain, mono and epi follow directly.

3.

 $g = 1_A \circ g = g \circ f \circ g = g' \circ f \circ g = g' \circ 1_B = g'.$

4.

- (a) Firstly, $h^{-1} = g^{-1} \circ f^{-1}$. Secondly, let hi = hj. Then gfi = gfj and by the assumption, i = j. Thirdly, let ih = jh. Then igf = jgf. As previous, i = j.
- (b) Suppose fi = fj. Then gfi = gfj for any g. Since h = gf and h is monic, i = j.
- (c) Suppose ig = jg. Then igf = ih = jh = jgf, concluding i = j.
- (d) Let $A = C = \{0\}$, $B = \{0, 1\}$. Then h is monic since all maps to A is constant. But g need not be.

5.

- $(a \Rightarrow b, c, d)$: Suppose $f: A \to B$ is an isomorphism. If fi = fj, then $f^{-1}fi = i = j = f^{-1}j$ and hence f is a split mono. Similarly, f is a split epi.
- $(b \Rightarrow a)$: Since f is split epi. there is g such that $fg = 1_B$. Since f is mono, $(fg)f = f = f(1_A)$, implying $gf = 1_A$. Hence $g = f^{-1}$.
- $(c \Rightarrow a)$: Similar to above case.
- $(d \Rightarrow b, c)$: It enough to show that split mono(epi) implies mono(epi). Suppose $gf = 1_A$. If fi = fj, then gfi = i = j = gfj, concluding f is mono. Similar argument holds for epi.

6.

Suppose h is not injective on vertices. Then there is two distinct vertices v, w such that h(v) = h(w). Consider $\mathbf{1}$, a graph of one vertex and $f, g: \mathbf{1} \to G$ two homomorphisms whose images are v, w, respectively. Then hf = hg, concluding that h is not mono. Use the same argument to the edge case.

7.

Recall that an object P is projective if for any epi $e: E \to X$ and $f: P \to X$, there is an arrow $f': P \to E$ such that ef' = f. Let A be a retract of P and $g: A \to X$, $a: A \to P$ with right inverse $s: P \to A$. Then g = (ga)s and by the definition of projective, there is $g\hat{a}: P \to E$ such that $e(g\hat{a}) = ga$. Then $e(g\hat{a})s = gas = g$ and hence we can find a map $(g\hat{a})s: A \to E$ satisfying the property, conclding that A is projective.

8.

Let $f: P \to X$ be a function and $e: E \to X$ be a surjection. Since e is surjective, for all $x \in X$, we have $E = \bigcup_x e^{-1}(x)$, which is a disjoint union. Define $\hat{f}: P \to E$ such that for each $p \in P$, $\hat{f}(p)$ is an element in $e^{-1}(f(p))$, which is possible by Choice Axiom. Then obviously $e\hat{f}(p) = e(k) = f(p)$ where $e^{-1}(k) \in e^{-1}(f(p))$. Hence P is projective. Since P is arbitrary, all sets are projective.

9.

(\iff) Suppose $f:A\to B$ is surjective and $g,h:B\to C$ with gf=hf. Since f is surjective, f(A)=B and hence g(x)=h(x) for all $x\in B$, concluding f is epi. (\implies) Suppose f is not epi. Then there are $g,h:B\to C$ such that gf=hf but $g\ne h$. Then there is $x\in B$ such that $g(x)\ne h(x)$. If x is in the image of f, then g(x)=h(x) by assumption, contradiction. Hence f is not surjective. Consider f in f in

10.

(i) Let A be a set. It can be regarded as a discrete poset in **Pos**. Let $f: A \to X$ be a map and $e: X \to Y$ be an epi in **Pos**. For each $y \in Y$, define $x_y \in X$ by an element in X such that $e(x_y) = y$. Define $\hat{f}: A \to X$ by $\hat{f}(a) = x_{f(a)}$. Then A is projective. (ii) Consider $P = \{0 \le 1\}$, $X = \{a, b\}$ a discrete poset, and an epi $e: X \to P$ with e(a) = 0, e(b) = 1. Consider $\mathbf{1}_P: P \to P$. Since X is discrete, it lose all information of order, meaning that for all $g: P \to X$, we cannot get $e \circ g \ne \mathbf{1}_P$. Thus P is not projective. (iii) Let P be projective and |P| be a discretization of P, i.e., a set. Let $|\mathbf{1}_P|:|P|\to P$ be an identity map. Since P is projective, there is a map $f: P \to |P|$ with $|\mathbf{1}_P| \circ f = \mathbf{1}_P$. Then we can see that the only arrow is identity, meaning that P is a set. Hence it is obvious that **Sets** is a subccategory of **Pos**.

11.

Let $f:A\to U(B)$, underlying set of a monoid B. By UMP of free monoids, there is a unique $\bar f:M(A)\to B$ such that $f=U(\bar f)\circ i$ where $i:A\to U(M(A))$. Let $\eta:A\to U(X)$ be an initial object. Then for any $f:A\to U(B)$, there is a unique morphism $\hat f$ such that $f=\hat f\circ \eta$. But this is exactly the same as the definition of free monoid M(A).

12.

Let $p: B \to \mathbf{2}$ be a homomorphism of boolean algebras. We will show that $F = p^{-1}(1)$ is an ultrafilter. Firstly suppose $a \in F$ and $a \leq b$. Then $p(a) \leq p(b)$ and hence $b \in F$. Besides, if $a, b \in F$, then $p(a \land b) = p(a) \land p(b) = 1$, concluding $a \land b \in F$. Hence F is a filter. Now let $x \in B$. If $x \in F$, then $p(x \land \neg x) = p(0) = 0$, concluding that $\neg x \notin F$, and vice versa. Since p is surjective, either $x \in F$ or $\neg x \in F$. Thus if there is U strictly containing F, then there is $y \in U$ such that $y = \neg a$ for some $a \in F$, concluding that U = B. Therefore, U = B and hence F is an ultrafilter.

13.

Let $P = (A \times B) \times C$, $Q = A \times (B \times C)$, $p_1 : P \to A \times B \to A$, $p_2 : P \to A \times B \to B$, $p_3 : P \to C$ and $q_1 : Q \to A$, $q_2 : Q \to B \times C \to B$, $q_3 : Q \to B \times C \to C$. By UMP, there is a unique map $f_1 = p_2 \times p_3 : P \to B \times C$. Therefore, there is $f = p_1 \times (p_2 \times p_3) : P \to Q$ with $q_i = p_i f$. Similarly, there is $g : Q \to P$ such that gf and fg are identities. Therefore, $P \cong Q$.

14.

- (a) Let $P = \prod_{i \in I} X_i$, $p_i : P \to X_i$. P is a product if for any object Y with $y_i : Y \to X_i$, there is a unique map $f : Y \to P$ with $y_i = p_i f$.
- (b) Define $x_i: X^I \to X_i$ by $x_i(f) = f(i), i \in I$. Then by UMP, there is a map $x: X^I \to \prod_{i \in I} X$ such that $p_i x = x_i$. On the other hand, define $y: \prod_{i \in I} X \to X^I$ by $y(a) = f: I \to X$ defined by $y(a)(i) = p_i(a)$. Then obviously we can see xy, yx are identities.

15.

Obvious by the definition of product.

16.

???

17.

Note that $\pi_1 \circ \Gamma(f) = 1_A$, meaning $\Gamma(f)$ is split mono, implying mono. Define $G : \mathbf{Sets} \to \mathbf{Rel}$ by G(A) = A for an object A and $G(f) = \Gamma(f)$ where $f : A \to B$.

18.

Let M=1. Then $U(M)=\operatorname{Hom}(1,M)$ and $U(f)=\operatorname{Hom}(1,f):\operatorname{Hom}(1,A)\to\operatorname{Hom}(1,B)$. Hence U is representable. It follows from the corollary that U preserves the product.