STAT 401A - Statistical Methods for Research Workers One-way ANOVA (contrasts and multiple comparisons)

Jarad Niemi (Dr. J)

Iowa State University

last updated: October 10, 2014

Mice lifetimes

Simple hypothesis

Consider the one-way ANOVA model: $Y_{ij} \sim N(\mu_j, \sigma^2)$ where $j = 1, \dots, J$.

Here are a few simple alternative hypotheses:

- Mean lifetimes for N/R50 and R/R50 diet are different.
- Mean lifetimes for N/R40 is different than for N/R50 and R/R50 combined.
- Mean lifetimes for high calorie (NP and N/N85) diets is different than for low calorie diets combined.

$$H_0: \gamma = 0$$
 $H_1: \gamma \neq 0:$
$$\gamma_1 = \mu_{R/R50} - \mu_{N/R50}$$

$$\gamma_2 = \mu_{N/R40} - \frac{1}{2} (\mu_{N/R50} + \mu_{R/R50})$$

$$\gamma_3 = \frac{1}{4} (\mu_{N/R50} + \mu_{R/R50} + \mu_{N/R40} + \mu_{lopro}) - \frac{1}{2} (\mu_{NP} + \mu_{N/N85})$$

Contrasts

Definition

A linear combination of group means has the form

$$\gamma = C_1 \mu_1 + C_2 \mu_2 + \ldots + C_J \mu_J$$

where C_j are known coefficients and μ_j are the unknown population means.

Definition

A linear combination with $C_1 + C_2 + \cdots + C_J = 0$ is a contrast.

Remark Contrast interpretation is usually best if $|C_1| + |C_2| + \cdots + |C_J| = 2$, i.e. the positive sum to 1 and the negative coefficients sum to -1.

Inference on contrasts

$$\gamma = C_1 \mu_1 + C_2 \mu_2 + \dots + C_J \mu_J$$

Estimated by

$$g = C_1 \overline{Y}_1 + C_2 \overline{Y}_2 + \dots + C_J \overline{Y}_J$$

with standard error

$$SE(g) = s_p \sqrt{\frac{C_1^2}{n_1} + \frac{C_2^2}{n_2} + \cdots + \frac{C_J^2}{n_J}}$$

t-statistic (compare to t_{n-J}) and CI:

$$t = \frac{g}{SE(g)}$$
 $g \pm t_{n-J}(1 - \alpha/2)SE(g)$

Contrasts for mice lifetime dataset

For these contrasts:

- Mean lifetimes for N/R50 and R/R50 diet are different.
- Mean lifetimes for N/R40 is different than for N/R50 and R/R50 combined.
- Mean lifetimes for high calorie (NP and N/N85) diets is different than for low calorie diets combined.

$$H_0: \gamma = 0$$
 $H_1: \gamma \neq 0:$

$$\gamma_1 = \mu_{R/R50} - \mu_{N/R50}
\gamma_2 = \mu_{N/R40} - \frac{1}{2} (\mu_{N/R50} + \mu_{R/R50})
\gamma_3 = \frac{1}{4} (\mu_{N/R50} + \mu_{R/R50} + \mu_{N/R40} + \mu_{lopro}) - \frac{1}{2} (\mu_{NP} + \mu_{N/N85})$$

	N/N85	N/R40	N/R50	NP	R/R50	lopro
early rest - none @ 50kcal	0.00	0.00	-1.00	0.00	1.00	0.00
40kcal/week - 50kcal/week	0.00	1.00	-0.50	0.00	-0.50	0.00
lo cal - hi cal	-0.50	0.25	0.25	-0.50	0.25	0.25

Mice liftime examples

	Diet	n	mean	sd
1	N/N85	57	32.69	5.13
2	N/R40	60	45.12	6.70
3	N/R50	71	42.30	7.77
4	NP	49	27.40	6.13
5	R/R50	56	42.89	6.68
6	lopro	56	39.69	6.99

Contrasts:

	g	SE(g)	t	р	L	U
early rest - none @ 50kcal	0.59	1.19	0.49	0.62	-1.76	2.94
40kcal/week - 50kcal/week	2.53	1.05	2.41	0.02	0.46	4.59
lo cal - hi cal	12.45	0.78	15.96	0.00	10.92	13.98

SAS

```
DATA case0501;
  INFILE 'case0501.csv' DSD FIRSTOBS=2;
  INPUT lifetime diet $;
PROC MEANS DATA=case0501;
  CLASS diet;
  VAR lifetime;
  RUN;
```

The MEANS Procedure Analysis Variable : lifetime

N					
Obs	N	Mean	Std Dev	Minimum	Maximum
57	57	32.6912281	5.1252972	17.9000000	42.3000000
60	60	45.1166667	6.7034058	19.6000000	54.6000000
71	71	42.2971831	7.7681947	18.6000000	51.9000000
49	49	27.4020408	6.1337010	6.4000000	35.5000000
56	56	42.8857143	6.6831519	24.2000000	50.7000000
56	56	39.6857143	6.9916945	23.4000000	49.7000000
	0bs 57 60 71 49 56	0bs N 57 57 60 60 71 71 49 49 56 56	Obs N Mean 57 57 32.6912281 60 60 45.1166667 71 71 42.2971831 49 49 27.4020408 56 56 42.8857143	Obs N Mean Std Dev 57 57 32.6912281 5.1252972 60 60 45.1166667 6.7034058 71 71 42.2971831 7.7681947 49 49 27.4020408 6.1337010 56 56 42.8857143 6.6831519	Obs N Mean Std Dev Minimum 57 57 32.6912281 5.1252972 17.9000000 60 60 45.1166667 6.7034058 19.600000 71 71 42.2971831 7.7681947 18.600000 49 49 27.4020408 6.1337010 6.400000 56 56 42.8857143 6.6831519 24.2000000

SAS

```
PROC GLM;
 CLASS diet:
 MODEL lifetime = diet / CLPARM;
 ESTIMATE 'early rest - none @ 50kcal' diet 0 1 -1 0 0 0;
 ESTIMATE '40kcal/week - 50kcal/week' diet 0 2 -1 0 -1 0 / DIVISOR = 2;
 ESTIMATE 'lo cal - hi cal' diet -2 1 1 -2 1 1 / DIVISOR = 4;
 RUN;
 QUIT;
```

The GLM Procedure

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	12733.94181	2546.78836	57.10	<.0001
Error	343	15297.41532	44.59888		
Corrected Total	348	28031.35713			

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
early rest - none @ 50kcal	0.5885312	1.19355007	0.49	0.6223
40kcal/week - 50kcal/week	2.5252180	1.04854904	2.41	0.0166
lo cal - hi cal	12.4496851	0.78001425	15.96	<.0001

Parameter	95% Confider	nce Limits
early rest - none @ 50kcal	-1.7590676	2.9361299
40kcal/week - 50kcal/week	0.4628224	4.5876136
lo cal - hi cal	10.9154718	13.9838985

R

```
library(multcomp)
m = lm(Lifetime~Diet-1, case0501) # The -1 indicates no intercept (see Ch 7)
summary(m)
Call:
lm(formula = Lifetime ~ Diet - 1, data = case0501)
Residuals:
       10 Median 30
   Min
                                Max
-25.517 -3.386 0.814 5.183 10.014
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
DietN/N85 32.691
                     0.885
                             37.0
                                  <2e-16 ***
DietN/R40 45.117
                     0.862 52.3
                                  <2e-16 ***
DietN/R50 42.297 0.793 53.4
                                  <2e-16 ***
DietNP
      27.402 0.954
                             28.7
                                  <2e-16 ***
DietR/R50 42.886 0.892
                             48.1
                                  <2e-16 ***
Dietlopro 39.686
                     0.892
                          44.5 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.68 on 343 degrees of freedom
Multiple R-squared: 0.972, Adjusted R-squared: 0.972
F-statistic: 2.01e+03 on 6 and 343 DF, p-value: <2e-16
K
```

```
N/N85 N/R40 N/R50 NP R/R50 lopro
early rest - none @ 50kcal 0.0 0.00 -1.00 0.0 1.00 0.00
40kcal/week - 50kcal/week 0.0 1.00 -0.50 0.0 -0.50 0.00
                         -0.5 0.25 0.25 -0.5 0.25 0.25
lo cal - hi cal
```

```
R
t = glht(m, linfct=K)
summarv(t)
Simultaneous Tests for General Linear Hypotheses
Fit: lm(formula = Lifetime ~ Diet - 1, data = case0501)
Linear Hypotheses:
                              Estimate Std. Error t value Pr(>|t|)
early rest - none @ 50kcal == 0 0.589 1.194 0.49 0.946
40kcal/week - 50kcal/week == 0 2.525 1.049 2.41 0.049 *
                        12.450 0.780 15.96 <1e-05 ***
lo cal - hi cal == 0
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
confint(t, calpha=univariate calpha())
Simultaneous Confidence Intervals
Fit: lm(formula = Lifetime ~ Diet - 1, data = case0501)
Quantile = 1.967
95% confidence level
```

Linear Hypotheses:

early rest - none @ 50kcal == 0 0.589 -1.759 2.936 40kcal/week - 50kcal/week == 0 2.525 0.463 4.588 lo cal - hi cal == 0 12.450 10.915 13.984

Estimate lwr upr

One-way ANOVA (contrasts and multiple con

Summary

- Contrasts are linear combinations that sum to zero
- t-test tools are used to calculate pvalues and confidence intervals

SAS code and output for one-way ANOVA

```
DATA mice;
INFILE 'case0501.csv' DSD FIRSTOBS=2;
INPUT lifetime diet $;

PROC GLM DATA=mice;
CLASS diet;
MODEL lifetime = diet;
LSMEANS diet / ADJUST=T;
RUN:
```

The GLM Procedure

Dependent Variable: lifetime

		Sum OI			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	5	12733.94181	2546.78836	57.10	<.0001
Error	343	15297.41532	44.59888		
Corrected Total	348	28031.35713			

Cum of

SAS code and output for pairwise comparisons

The GLM Procedure Least Squares Means

diet	lifetime LSMEAN	LSMEAN Number
N/N85	32.6912281	1
N/R40	45.1166667	2
N/R50	42.2971831	3
NP	27.4020408	4
R/R50	42.8857143	5
lopro	39.6857143	6

Least Squares Means for effect diet Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: lifetime

i/j	1	2	3	4	5	6
1		<.0001	<.0001	<.0001	<.0001	<.0001
2	<.0001		0.0166	<.0001	0.0731	<.0001
3	<.0001	0.0166		<.0001	0.6223	0.0293
4	<.0001	<.0001	<.0001		<.0001	<.0001
5	<.0001	0.0731	0.6223	<.0001		0.0117
6	<.0001	<.0001	0.0293	<.0001	0.0117	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Statistical testing errors

Definition

A type I error occurs when a true null hypothesis is rejected.

Definition

A type II error occurs when a false null hypothesis is not rejected. Power is one minus the type II error probability.

Remark We set α to control the type I error probability. If we set $\alpha=0.05$, then we will incorrectly reject a true null hypothesis 5% of the time.

Definition

The familywise error rate is the probability of rejecting at least one true null hypothesis.

Type I error for all pairwise comparisons of J groups

How many combinations when choosing 2 items out of J?

$$\binom{J}{2} = \frac{J!}{2!(J-2)!}.$$

If J=6, then there are 15 different comparison of means. If we set $\alpha = 0.05$ as our significance level, then individually each test will only incorrectly reject 5% of the time.

If we have 15 tests and use $\alpha = 0.05$, what is the familywise error rate?

$$1 - (1 - 0.05)^{15} = 1 - (0.95)^{15} = 1 - 0.46 = 0.54$$

So there is a greater than 50% probability of falsely rejecting a true null hypothesis!

Bonferroni correction

Definition

If we do m tests and want the familywise error rate to be α , the Bonferroni correction uses α/m for each individual test. The familywise error rate, for independent tests, is $1 - (1 - \alpha/, m)^m$.

Bonferroni familywise error rate

SAS code and output for pairwise comparisons

Compare the unadjusted pvalues to $\alpha/15 = 0.05/15 = 0.0033$.

Least Squares Means for effect diet Pr > |t| for HO: LSMean(i)=LSMean(j)

Dependent Variable: lifetime

i/j	1	2	3	4	5	6
1		<.0001	<.0001	<.0001	<.0001	<.0001
2	<.0001		0.0166	<.0001	0.0731	<.0001
3	<.0001	0.0166		<.0001	0.6223	0.0293
4	<.0001	<.0001	<.0001		<.0001	<.0001
5	<.0001	0.0731	0.6223	<.0001		0.0117
6	<.0001	<.0001	0.0293	<.0001	0.0117	

NOTE: To ensure overall protection level, only probabilities associated with pre-planned comparisons should be used.

Now 2-3, 3-6, and 5-6 are no longer significant.

SAS code and output for one-way ANOVA

If you use SAS to do the adjustment, compare pvalues to lpha= 0.05.

```
DATA mice;
  INFILE 'case0501.csv' DSD FIRSTOBS=2:
  INPUT lifetime diet $:
PROC GLM DATA=mice:
  CLASS diet:
  MODEL lifetime = diet;
  LSMEANS diet / ADJUST=BON;
  RUN:
                                Least Squares Means for effect diet
                                Pr > |t| for HO: LSMean(i)=LSMean(i)
                                    Dependent Variable: lifetime
    i/j
                      1
                                                    3
                                < .0001
                                               < .0001
                                                              0.0009
                                                                             < .0001
                                                                                            < .0001
       2
                 <.0001
                                               0.2488
                                                              <.0001
                                                                             1.0000
                                                                                            0.0002
       3
                 < .0001
                                0.2488
                                                              <.0001
                                                                             1.0000
                                                                                            0.4402
                 0.0009
                                < .0001
                                               < .0001
                                                                             <.0001
                                                                                            <.0001
       5
                 < .0001
                                1.0000
                                               1.0000
                                                              < .0001
                                                                                            0.1751
                 < .0001
                                0.0002
                                                              < .0001
                                                                             0.1751
                                               0.4402
```

Comments on the Bonferroni correction

Remark The Bonferroni correction can be used in any situation. In particular, it can be used on unadjusted pvalues reported in an article that has many tests by comparing their pvalues to α/m where m is the number of tests they perform.

Remark The Bonferroni correction is (in general) the most conservative multiple comparison adjustment we will discuss, i.e. it will lead to the least null hypothesis rejections.

Constructing multiple confidence intervals

Remark A $100(1-\alpha)\%$ confidence interval should contain the true value $100(1-\alpha)\%$ of the time.

Remark An error occurs if the confidence interval does not contain the true value.

Just like the Type I error and familywise error rate, we can ask what is the probability at least one confidence interval does not cover the true value.

The procedures we will talk about for confidence intervals have equivalent approaches for hypothesis testing (pvalues). Within these procedures we still have the equivalence between pvalues and Cls.

Constructing multiple confidence intervals

Confidence interval for the difference between group j and group j':

$$\overline{Y}_j - \overline{Y}_{j'} \pm M \, s_p \sqrt{\frac{1}{n_j} + \frac{1}{n_{j'}}}$$

where M is a multiplier that depends on the adjustment procedure:

Procedure	M	Use
LSD	$t_{n-J}(1-\alpha/2)$	After significant <i>F</i> -test
		(no adjustment)
Dunnett	multivariate <i>t</i>	Compare all groups to control
Tukey-Kramer	$q_{J,n-J}(1-\alpha/2)/\sqrt{2}$	All pairwise comparisons
Scheffé	$\sqrt{(J-1)F_{(J-1,n-J)}(1-\alpha)}$	All contrasts
Bonferroni	$t_{n-J}(1-\alpha/2m)$	m tests
		(most generic)

SAS code and output for one-way ANOVA

```
INFILE case0501.csv' DSD FIRSTOBS=2;
INPUT lifetime diet $;

PROC GLM DATA=mice;
CLASS diet;
MODEL lifetime = diet;
LSMEANS diet / CL ADJUST=TUKEY;
RUN;
The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer
```

Dependent Variable: lifetime

i/j	1	2	3	4	5	ϵ
1		<.0001	<.0001	0.0008	<.0001	<.0001
2	<.0001		0.1565	<.0001	0.4684	0.0002
3	<.0001	0.1565		<.0001	0.9964	0.2460
4	0.0008	<.0001	<.0001		<.0001	<.0001
5	<.0001	0.4684	0.9964	<.0001		0.1168
6	<.0001	0.0002	0.2460	<.0001	0.1168	

DATA mice;

SAS code and output for one-way ANOVA

The GLM Procedure Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

Least Squares Means for Effect diet

		Difference	Simultane	Simultaneous 95%		
		Between	Confidence l	Limits for		
i	j	Means	LSMean(i)-l	LSMean(j)		
1	2	-12.425439	-15.965442	-8.885435		
1	3	-9.605955	-13.009741	-6.202169		
1	4	5.289187	1.560626	9.017749		
1	5	-10.194486	-13.795557	-6.593416		
1	6	-6.994486	-10.595557	-3.393416		
2	3	2.819484	-0.536769	6.175736		
2	4	17.714626	14.029406	21.399846		
2	5	2.230952	-1.325223	5.787128		
2	6	5.430952	1.874777	8.987128		
3	4	14.895142	11.340571	18.449714		
3	5	-0.588531	-4.009133	2.832070		
3	6	2.611469	-0.809133	6.032070		
4	5	-15.483673	-19.227592	-11.739755		
4	6	-12.283673	-16.027592	-8.539755		
5	6	3.200000	-0.416969	6.816969		

False Discovery Rate

Remark Not wanting to make a single mistake is pretty conservative.

In high-throughput fields a more common multiple comparison adjustment is false discovery rate.

Definition

False discovery rate procedures try to control the expected proportion of incorrectly rejected null hypotheses.

How to incorporate multiple comparison adjustments

- Determine what tests are going to be run (before looking at the data) or what confidence intervals are going to be constructed.
- Oetermine which multiple comparison adjustment is the most relevant
- Use/state that adjustment and interpret your results

Sulfur effect on scab disease in potatoes

The experiment was conducted to investigate the effect of sulfur on controlling scab disease in potatoes. There were seven treatments: control, plus spring and fall application of 300, 600, 1200 lbs/acre of sulfur. The response variable was percentage of the potato surface area covered with scab averaged over 100 random selected potatoes. A completely randomized design was used with 8 replications of the control and 4 replications of the other treatments.

Cochran and Cox. (1957) Experimental Design (2nd ed). pg96 and Agron. J. 80:712-718 (1988)

Scientific question:

- Does sulfur have any impact at all?
- Is there a difference between spring and fall?
- Is there an effect of increased sulfur (expect more sulfur causes less scab)?

```
inf trt row col
        F3
    12
         0
    18
        S6
    10 F12
        S6
    24
    17 S12
        S3
        F6
         0
    10
        S3
11
     4 F12
12
    10
        F6
13
    21
        S3
14
    24
         0
15
    29
         0
    12
16
        S6
17
18
     7 S12
19
    18
        F6
20
    30
         0
        F6
21
    18
    16 S12
23
    16 F3
24
     4 F12
25
        S3
26
    18
         0
27
    17 S12
28
    19
        S6
    32
29
         0
30
     5 F12
```

Design

Treatment visualization

Design

Completely randomized design potato scab experiment

Model

 Y_{ij} : avg % of surface area covered with scab for plot i in treatment j for $j = 1, \ldots, 7$.

Assume $Y_{ij} \stackrel{ind}{\sim} N(\mu_j, \sigma^2)$.

Hypotheses:

- Difference amongst any means: One-way ANOVA F-test
- Any effect: Control vs sulfur
- Fall vs spring: Contrast comparing fall vs spring applications
- Sulfur level: Linear trend contrast

Control vs sulfur

	1							
Trt Sulfur vs control	F12	F6	F3	0	S3	S6	S12	
Sulfur vs control	1	1	1	-6	1	1	1	6

$$\gamma = \frac{1}{6}(\mu_{F12} + \mu_{F6} + \mu_{F3} + \mu_{S3} + \mu_{S6} + \mu_{S12}) - \mu_O$$

$$\gamma = \frac{1}{6}(\mu_{F12} + \mu_{F6} + \mu_{F3} + \mu_{S3} + \mu_{S6} + \mu_{S12} - 6\mu_O)$$

Fall vs spring contrast

Fall vs spring: Contrast comparing fall vs spring applications

$$\gamma = \frac{1}{3}(\mu_{F12} + \mu_{F6} + \mu_{F3}) + 0\mu_O - \frac{1}{3}(\mu_{S3} + \mu_{S6} + \mu_{S12})$$

$$= \frac{1}{3}\mu_{F12} + \frac{1}{3}\mu_{F6} + \frac{1}{3}\mu_{F3} + 0\mu_O - \frac{1}{3}\mu_{S3} - \frac{1}{3}\mu_{S6} - \frac{1}{3}\mu_{S12}$$

$$= \frac{1}{3}[\mu_{F12} + \mu_{F6} + \mu_{F3} + 0\mu_O - 1\mu_{S3} - 1\mu_{S6} - 1\mu_{S12}]$$

Sulfur level: linear trend contrasts

- The unique X_i are 0, 3, 6, and 12.
- So the linear trend contrast $(X_i \overline{X})$ is

But 3, 6, and 12 are duplicated, so we need the average of the groups

$$\begin{split} \gamma &= -\frac{21}{4}\mu_0 - \frac{9}{4}\mu_3 + \frac{3}{4}\mu_6 + \frac{27}{4}\mu_{12} \\ &= -\frac{21}{4}\mu_0 - \frac{9}{4}\left(\frac{\mu_{53} + \mu_{F3}}{2}\right) + \frac{3}{4}\left(\frac{\mu_{56} + \mu_{F6}}{2}\right) + \frac{27}{4}\left(\frac{\mu_{512} + \mu_{F12}}{2}\right) \\ &= \frac{1}{8}\left[-42\mu_0 - 9\mu_{53} - 9\mu_{F3} + 3\mu_{56} + 3\mu_{F6} + 27\mu_{512} + 27\mu_{F12} \right] \end{split}$$

Contrasts

i	1	2	3	4	5	6	7	Div
Trt	F12	F6	F3	0	S3	S6	S12	
Sulfur vs control	1	1	1	-6	1	1	1	6
Fall v Spring	1	1	1	0	-1	-1	-1	3
Linear Trend	27	3	-9	-42	-9	3	27	8

SAS code

DATA d;

```
INFILE 'potato.csv' DSD FIRSTOBS=2;
INPUT scabp treatment % row col;
sulfur = 0;
IF treatment in ("F3","S3") THEN sulfur=300;
IF treatment in ("F6","S6") THEN sulfur=600;
IF treatment in ("F12","S12") THEN sulfur=1200;
application = "NA ";
IF treatment in ("F3","F6","F12") THEN application="fall";
IF treatment in ("F3","S6","S12") THEN application="spring";
PROC PRINT DATA=d (OBS=10); RUN;
PROC MEANS;
CLASS treatment;
VAR scabp;
RUN;
```

SAS code

0bs	scabp	treatment	row	col	sulfur	application
1	9	F3	4	1	300	fall
2	12	0	4	2	0	NA
3	18	S6	4	3	600	spring
4	10	F12	4	4	1200	fall
5	24	S6	4	5	600	spring
6	17	S12	4	6	1200	spring
7	30	S3	4	7	300	spring
8	16	F6	4	8	600	fall
9	10	Ō	3	1	0	NA
10	7	S3	3	2	300	spring

The MEANS Procedure

Analysis Variable : scabp

	N						
treatment	0bs	N	Mean	Std Dev	Minimum	Maximum	
F12	4	4	5.7500000	2.8722813	4.0000000	10.0000000	
F3	4	4	9.5000000	4.9328829	4.0000000	16.0000000	
F6	4	4	15.5000000	3.7859389	10.0000000	18.0000000	
0	8	8	22.6250000	8.3655330	10.0000000	32.0000000	
S12	4	4	14.2500000	4.8562674	7.0000000	17.0000000	
S3	4	4	16.7500000	10.7819293	7.0000000	30.0000000	
S6	4	4	18.2500000	4.9244289	12.0000000	24.0000000	
30			16.2500000	4.9244209	12.0000000	24.000000	

SAS code

```
PROC GLM DATA=d PLOTS=(DIAGNOSTICS RESIDUALS);
CLASS treatment;
MODEL scabp = treatment;
LSMEANS treatment / CL;
ESTIMATE 'fall - spring' treatment 1 1 1 0 -1 -1 -1 / DIVISOR=3;
ESTIMATE 'linear trend' treatment 27 -9 3 -42 27 -9 3 / DIVISOR=8;
OUTPUT OUT=dres P=predicted R=residuals;
RUN;

PROC GPLOT DATA=dres;
PLOT residuals*predicted;
PLOT residuals*sulfur;
PLOT residuals*application;
PLOT residuals*zow;
PLOT residuals*zow;
PLOT residuals*zow;
PLOT residuals*zow;
PLOT residuals*col;
RUN;
```

Diagnostics

SAS output

The GLM Procedure

Class Level Information

Class Levels Values

treatment 7 F12 F3 F6 0 S12 S3 S6

Number of Observations Read 32 Number of Observations Used 32

Dependent Variable: scabp

Sum of Squares Mean Square F Value Pr > F Model 6 972.343750 162.057292 3.61 0.0103 Frror 25 1122.875000 44.915000

Corrected Total 31 2095.218750 44.918

R-Square Coeff Var Root MSE scabp Mean 0.464077 42.80633 6.701865 15.65625

SAS output

treatment	scabp LSMEAN	95% Confidence Limits		
F12	5.750000	-1.151375	12.651375	
F3	9.500000	2.598625	16.401375	
F6	15.500000	8.598625	22.401375	
0	22.625000	17.744991	27.505009	
S12	14.250000	7.348625	21.151375	
S3	16.750000	9.848625	23.651375	
S6	18.250000	11.348625	25.151375	

The GLM Procedure

Dependent Variable: scabp

Standard Error t Value Pr > |t| 95% Confidence Limits Parameter Estimate sulfur - control -9.2916667 2.7360251 -3.40 0.0023 -14.9266158 -3.6567175 fall - spring -6.1666667 2.7360251 -2.25 0.0332 -11.8016158 -0.5317175 linear trend -68.1562500 21.0269359 -3.24 0.0034 -111.4620350 -24.8504650

```
par(mfrow=c(2,3))
plot(m,1:6)
```



```
g = glht(lm(inf~trt-1,d), linfct=K) # notice the -1 in the model
summary(g, test=adjusted(type="none")) # unadjusted pvalues
Simultaneous Tests for General Linear Hypotheses
Fit: lm(formula = inf ~ trt - 1, data = d)
Linear Hypotheses:
                    Estimate Std. Error t value Pr(>|t|)
sulfur - control == 0 -9.29 2.74 -3.40 0.0023 **
fall - spring == 0 -6.17 2.74 -2.25 0.0332 *
linear trend == 0 -68.16 21.03 -3.24 0.0034 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- none method)
confint(g, calpha=univariate calpha()) # unadjusted confidence intervals
Simultaneous Confidence Intervals
Fit: lm(formula = inf ~ trt - 1, data = d)
Quantile = 2.06
95% confidence level
Linear Hypotheses:
                    Estimate lwr upr
sulfur - control == 0 -9.292 -14.927 -3.657
fall - spring == 0 -6.167 -11.802 -0.532
```

Jarad Niemi (Iowa State)

linear trend == 0 -68.156 -111.462 -24.850

Summary

For this particular data analysis

- Significant differences in means between the groups (ANOVA $F_{6,25} = 3.61 \text{ p} = 0.01$)
- Sulfur had a significant impact on scab (p=0.002)
- Fall was better than spring (p=0.03, 95% CI (0.53, 11.8))
- Linear trend in sulfur was significant(p=0.003)
- Concerned about spatial correlation among columns
- Consider a transformation of the response
 - CI for F12 (-1.2, 12.7)
 - Non-constant variance (residuals vs predicted, sulfur, application)