MACM 201 - Discrete Mathematics

1. Fundamental combinatorial objects

Department of Mathematics

Simon Fraser University

Lecture overview

Discrete mathematics differs from continuous mathematics (calculus) in that it is the mathematics of objects composed of a **finite** set of elements arranged into a specific **structure**.

So combinatorial objects are defined by:

What are the elements (atoms) that compose them?

How are they structured?

A family of combinatorial objects is defined by these two characteristics. We will see four main kinds of objects:

sets and subsets, strings and permutations, graphs, trees

The notion of an atom naturally leads to a notion of its **size**, defined as the (integer) **number of atoms** the object contains, e.g., number of letters in a string.

Strings

Definition

Let \mathcal{A} be a set that we will refer to as an **alphabet**. A **string** \mathcal{S} , of size n, over \mathcal{A} is a totally ordered list of n elements, called **letters**, of \mathcal{A} . Note that a string over \mathcal{A} may contain a letter of \mathcal{A} many times or zero times.

Note: The atoms of a string are the letters (taken from \mathcal{A}) and the structure is a total order: there is a first letter, a second letter, ..., a last letter.

Examples.

$$\mathcal{A} = \{0, 1\} \qquad \qquad \mathcal{A} = \{A, C, G, T\}$$

Applications. Strings are used in many applications, from computer code analysis (binary strings) to data streams analysis in big data, through genomics (DNA and protein strings).

Substrings

Definition

Let S be a string of length n over the alphabet \mathcal{A} . For every $1 \leq i \leq n$ we let S[i] denote the i^{th} letter of S. If $1 \leq i \leq j \leq n$ then we define the string

$$S[i,j] = S[i], S[i+1], \dots S[j]$$

and we call any such string a **substring** of S. Note that a the letters of a substring of S must appear consecutively in S.

Examples.

$$S = 11001100$$

$$S = ABCDEF$$

Problem. Find all strings of length 6 over $\{0,1\}$ that do not have 10 a substring.

Permutations

Definition

A **permutation** P over an alphabet \mathcal{A} is a string over \mathcal{A} where every symbol of \mathcal{A} occurs exactly once.

Problem. For $A = \{1, 2, 3\}$, find all permutations over A

Applications. Permutations are useful to model the various orders of **distinguishable** atoms.

Graphs

Definition

A graph G = (V, E) is composed of a set V of vertices and E of edges, defined as unordered pairs of vertices. If $e \in E$ and $e = \{i, j\}$ then we say that e is **incident** with the vertices i and j. Two distinct vertices $i, j \in V$ are adjacent if $\{i, j\} \in E$. The size of a graph is its number of vertices.

Example.

$$V = \{1, 2, 3, 4, 5, 6\}, E = \{\{1, 2\}, \{1, 5\}, \{2, 3\}, \{2, 5\}, \{3, 4\}, \{4, 5\}, \{4, 6\}\}$$

Applications. Graphs are perfectly adapted at modelling binary relations (the edges) between a finite set of elements (the atoms): social networks, biological networks, . . .

Basic Families of Graphs

Definition

A graph G = (V, E) is **complete** if for every $i, j \in V$ with $i \neq j$ we have $\{i, j\} \in E$. We let K_n denote a complete graph of size n.

Example. K₅.

Definition

A graph G=(V,E) is called a **path** if V may be ordered v_1,v_2,\ldots,v_n so that $E=\Big\{\{v_1,v_2\},\{v_2,v_3\},\ldots,\{v_{n-1},v_n\}\Big\}.$

Example: A path of size 5

Definition

A graph G = (V, E) is called a **cycle** if V may be ordered v_1, v_2, \ldots, v_n so that $E = \Big\{ \{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\} \Big\}.$

Example: A cycle of size 5

Directed Graphs

Definition

A directed graph G = (V, E) is composed of a set V of vertices and E of edges, defined as ordered pairs of vertices. If $e \in E$ and e = (i, j) then e goes from the vertex i to the vertex j. The size of a directed graph is its number of vertices.

Example.

$$V = \{1, 2, 3, 4, 5, 6\}, E = \{(1, 2), (2, 1), (1, 5), (3, 2), (2, 5), (4, 3), (6, 4)\}$$

Rooted Trees

Definition

A **rooted tree** T is a tree with a distinguished vertex called the **root**. (we will define tree more precisely later).

Here is another equivalent definition for which all terms have been defined.

Definition

A **rooted tree** T = (V, E) is a graph with a distinguished vertex called the **root** with the added property that every vertex $v \in V$ has an associated **level** so that the following conditions are satisfied:

- (1) The level of every vertex is a nonnegative integer.
- (2) The root is the unique vertex of level 0.
- (3) For every edge $\{i, j\}$ the levels of i and j differ by exactly 1.
- (4) For every non-root vertex $v \in V$ with level i there is exactly one vertex of level i-1 adjacent to v.

Rooted Trees

Example.

Applications. Rooted trees are well suited to model elements with a hierarchical structure: evolutionary trees, decision trees, . . .