ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Отчёт о выполнении заданий

Дисциплина: «Статистические методы»

Студент: Леонов Владислав Денисович

Учебная группа: <u>224-322</u>

Преподаватель 1: Филиппович Юрий Николаевич

Преподаватель 2: Воробьев Никита Григорьевич

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ПРАКТИЧЕСКАЯ РАБОТА 1	
ПРАКТИЧЕСКАЯ РАБОТА 2	
ЛАБОРАТОРНАЯ РАБОТА 1	
ЛАБОРАТОРНАЯ РАБОТА 2	
ЛАБОРАТОРНАЯ РАБОТА 3	
ЛАБОРАТОРНАЯ РАБОТА 4	
ВЫВОДЫ	
ЗАКЛЮЧЕНИЕ	16
ЛИТЕРАТУРА	17

ВВЕДЕНИЕ

В рамках разработки предметной области по созданию чат-бота и по работе с анализом больших объемов данных из открытых источников, были выбраны статьи, которые связаны с темой ВКР «Адаптивный интерфейс САПР на основе нейросетевого анализа пользовательских логов в задачах предсказания команд».

Для данной ВКР потребуются как статьи с пониманием инструментов, которые требуются для решения задачи, так и информация о работе используемых систем. Потому основным набором статей стали те, которые описывают работу ВКР.

Для прохождения курса необходимо выполнить задачи:

- 1. Собрать ЕЯ текстовые описания ПО.
- 2. Составить набор данных для обучения векторной модели.
- 3. Обучить модель Word2Vec, используя собранные данные.
- 4. Провести рубрицирование ЕЯ текстовых данных описания ПО.
- 5. Составить набор справочных данных, описывающих рубрики исследуемой ПО.
- 6. Создать автоматическую систему, предлагающую пользователю справочную информацию при запросе темы с использованием ЕЯ.

ПРАКТИЧЕСКАЯ РАБОТА 1

При сборе ЕЯ текстовых описаний ПО были выполнены следующие работы:

- 1. Были найдены 30 статей, соответствующих теме ВКР.
- 2. Был сохранен список названия статей и ссылок на них.
- 3. Было проведено ручное рубрицирование текстов.

При проведении ручного рубрицирования текстов было изучено их содержание. Далее для каждого текста были выделены 5-10 ключевых слов/словосочетаний, с помощью которых можно было составить поисковые образы. После этого статьи были разделены на 5 категорий.

Все данные ручного рубрицирования были собраны в виде таблицы со столбцами со следующими названиями «№», «Название статьи», «Ссылка на статью», «Дата обращения», «Ключевые слова», «Рубрика» (Рис. 1).

Nº	Название статьи	Ссылка на статью	Дата обращения	Ключевые слова	Рубрика
1	ЛИНГВИСТИЧЕСКАЯ ЭКСПЕРТОЛОГИЯ КАК	https://cyberleninka.ru/article/n/l	15.04.2024	теоретическая	лигвистика
2	Проектирование быстрой программной	https://cyberleninka.ru/article/n/	15.04.2024	отбор	нейронные сети
3	Система контроля достоверности	https://cyberleninka.ru/article/n/	15.04.2024	текстовая информация /	N-грамма
4	N-граммы в лингвистике	https://cyberleninka.ru/article/n/	15.04.2024	n-грамма / порождающая	N-грамма
5	Информативность n-грамм в пределах	https://cyberleninka.ru/article/n/i	15.04.2024	информативность n-	N-грамма
6	Оценка эффективности использования	https://cyberleninka.ru/article/n/	15.04.2024	таджикский	N-грамма
7	РАСПОЗНАВАНИЕ СПАМ-СООБЩЕНИЙ С	https://cyberleninka.ru/article/n/	15.04.2024	машинное	кластеризация
8	АЛГОРИТМ НЕЧЕТКОЙ КЛАСТЕРИЗАЦИИ В	https://cyberleninka.ru/article/n/	15.04.2024	кластерный	кластеризация
9	ПОДГОТОВКА ДАННЫХ ДЛЯ	https://cyberleninka.ru/article/n/	15.04.2024	данные / кластеризация	кластеризация
10	О поддержке принятия решения в	https://cyberleninka.ru/article/n/	15.04.2024	data	кластеризация
11	КЛАССИФИКАЦИЯ ТЕКСТОВ ПО	https://cyberleninka.ru/article/n/	15.04.2024	классификация / машинное	кластеризация
12	Математическая модель активности	https://cyberleninka.ru/article/n/	15.04.2024	удобство	адаптивный интерфейс
13	Адаптивный интерфейс пользователя	https://cyberleninka.ru/article/n/	15.04.2024	САПР / Адаптивный	адаптивный интерфейс
14	Задачи проектирования адаптивных	https://cyberleninka.ru/article/n/	15.04.2024	строительство / constructio	адаптивный интерфейс
15	ПРОГРАММНАЯ ИНСТРУМЕНТАЛЬНАЯ	https://cyberleninka.ru/article/n/	15.04.2024	адаптивный	адаптивный интерфейс
16	Построение тепловой карты на основе	https://cyberleninka.ru/article/n/	15.04.2024	математическая модель	адаптивный интерфейс
17	Метод обнаружения веб-роботов на	https://cyberleninka.ru/article/n/	15.04.2024	веб-	анализ пользовательских
18	Оценка степени удобства использования	https://cyberleninka.ru/article/n/	15.04.2024	логика	анализ пользовательских
19	НЕОБХОДИМОСТЬ UX-АНАЛИЗА	https://cyberleninka.ru/article/n/	15.04.2024	анализ / интерфейс	анализ пользовательских
20	ПРИМЕНЕНИЕ СТЕКА ТЕХНОЛОГИЙ ELK	https://cyberleninka.ru/article/n/	15.04.2024	облачные	анализ пользовательских
21	Компьютерное сопровождение	https://cyberleninka.ru/article/n/	15.04.2024	графическая	nanoCAD

Рисунок 1 – Задание 1

ПРАКТИЧЕСКАЯ РАБОТА 2

При создании обучающего датасета были выполнены следующие работы:

- 1. Была извлечена текстовая информация из найденных в первом задании статей и сохранена в формате docx.
 - 2. Файлы docx были собраны в единый файл .txt.
 - 3. Полученный файл был конвертирован в формат .tsv.

При извлечении текстовой информации из найденных в <u>Задании 1</u> статей файлы были удалены лишние разделы.

В результате выполнения данного пункта был получен файл «*.tsv», являющийся обучающим датасетом (Рис. 2).

Рисунок 2 – Задание 2

Для обучения модели Word2Vec был получен шаблон у преподавателя. Далее были установлены следующие библиотеки, используемые в шаблоне.

Сначала происходит импорт необходимых библиотек. Далее происходит загрузка данных из файла с датасетом «*.tsv» с предобработкой.

После обучения модели происходит вывод векторного представления слова «технологий» для проверки того, что обучения модели произошло корректно. Далее модель сохраняется в файл «*.model» (Рис. 3).

```
len(model.wv)=4252
model.wv['carp']=array([ 0.26980424, -0.10121949, 0.16700783, 0.01214969, 0.05541877,
-0.1396033, 0.06081348, -0.04932012, -0.14497093, 0.03152451,
-0.11919741, -0.15339778, -0.03117944, -0.2065502, 0.02017382,
-0.1216367, -0.1313089, -0.00897831, -0.04641525, 0.2930966,
-0.1510757, 0.17898493, -0.179972, -0.5254953, -0.1127089,
-0.1435391, -0.1505722, 0.02676977, -0.00468068, 0.05758157,
-0.00561134, 0.06168572, -0.01625093, -0.05934908, 0.05400387,
-0.07485245, -0.11157027, -0.07853808, -0.1627722, 0.16300852,
-0.05668899, 0.05565174, -0.12341783, 0.034167, 0.15987813,
-0.11302516, -0.083193211, -0.04216453, 0.01122172, 0.13285859,
-0.11950099, 0.03918725, -0.24771166, -0.16595434, 0.15532398,
-0.19950099, 0.03918725, -0.24771166, -0.16595434, 0.15532398,
-0.19950099, 0.03918725, -0.24771166, -0.16595434, 0.15532398,
-0.19950099, 0.03918725, -0.24771166, -0.16595434, 0.15532398,
-0.19950099, 0.09318709, -0.0048576, -0.04060163], dtype=float32)
model.wv.most_similar('canp')=[('системы', 0.99772297782897949), ('является', 0.9975845813751221), ('быть', 0.9975594878196716), ('основе', 0.9974576830863953), ('число', 0.9997429782897949), ('является', 0.9972543120384216)]
model.wv.most_similar('анализ')=[('пользователя', 0.9968934655189514), ('поскольку', 0.9968385100364685), ('правила', 0.9968237248254525), ('задачи', 0.99566853857040465), ('который', 0.9956912103652954), ('мосно', 0.995604562443054), ('число', 0.99642807425252651769485474), ('поскольку', 0.995604562443054), ('число', 0.9954706884), ('число', 0.9954706884), ('число', 0.9954706884), ('число', 0.9954706884), ('число', 0.995604562443054), ('число', 0.9956045624430554), ('число', 0.995604562443054), ('число', 0.9956045624430554), ('число', 0.9956045624430554), ('число', 0.9956045624430554), ('число', 0.9956045624430554), ('число', 0.9956045624430554), ('число', 0.9956045624430554), ('число', 0.995604562443054), ('число', 0.9956045624430564), ('число', 0.9956045624430564), ('число', 0.9956045624430564), ('число', 0.9956045624430564),
```

Рисунок 3 – Задание 3

Обучение модели Word2Vec происходило со следующими параметрами:

- «min_count» = 5 (слова, которые встречаются менее 5 раз, будут игнорироваться, причина столь низкого значения заключается в проблеме с текстами. В них встречается обилие слов, которые не относятся к темам работ, а сами же темы упоминаются не так частно. Потому возникла проблема с небольшим количеством упоминаний слов.);
- «window» = 2 (размер контекстного окна для обучения, максимальное расстояние между текущим словом и целевым словом);

- «vector_size» = 64 (размерность векторного представления слов);
- «alpha» = 0.03 (начальная скорость обучения);
- «negative» = 1 (количество отрицательных образцов, которые нужно сгенерировать для каждого положительного образца, при увеличении параметра происходило обильное просачивание прилагательных и служебных слов в финальную работу);
 - «min_alpha» = 0.0007 (конечная скорость обучения);
 - «sample» = 6e-5 (порог для снижения частоты частотных слов).

Для автоматического рубрицирования датасет был разделен по текстам. На рисунке 4 представлен результат разделения датасета.

_1_programmnaya-instrumentalnaya-sistema-soz	19.04.2024 23:30	Текстовый докум	32 КБ
2_raspoznavanie-spam-soobscheniy-s-ispolzovan	19.04.2024 23:31	Текстовый докум	20 КБ
_3_razrabotka-sistemy-raspoznavaniya-rechi-na-o	19.04.2024 23:31	Текстовый докум	32 KБ
_4_rol-bim-tehnologiy-v-organizatsii-i-tehnologii	19.04.2024 23:31	Текстовый докум	36 KБ
_5_sistema-kontrolya-dostovernosti-tekstovoy-inf	19.04.2024 23:31	Текстовый докум	47 КБ
_6_sistema-prediktivnogo-vvoda-kak-sredstvo-po	19.04.2024 23:31	Текстовый докум	13 КБ
_7_sravnitelnyy-analiz-sapr-na-primere-proektirov	19.04.2024 23:19	Текстовый докум	24 КБ
_8_adaptivnyy-interfeys-polzovatelya-sapr.txt	19.04.2024 23:31	Текстовый докум	12 КБ
_9_algoritm-nechetkoy-klasterizatsii-v-tehnologii	19.04.2024 23:31	Текстовый докум	12 КБ
	19.04.2024 23:31	Текстовый докум	7 КБ
_11_klassifikatsiya-tekstov-po-tonalnosti-metoda	19.04.2024 23:31	Текстовый докум	26 КБ
212_kompyuternoe-soprovozhdenie-prepodavaniy	19.04.2024 23:30	Текстовый докум	16 КБ
_13_matematicheskaya-model-aktivnosti-polzovat	19.04.2024 23:30	Текстовый докум	37 КБ
_14_metod-obnaruzheniya-veb-robotov-na-osnov	19.04.2024 23:30	Текстовый докум	16 KB

Рисунок 4 – Результат разделения датасета по текстам

Далее был разработан код, который производит автоматическое рубрицирование текстов. На рисунке 5 представлен результат работы кода.

```
resources/_1_programmnaya-instrumentalnaya-sistema-sozdaniya-adaptivnyh-polzovatelskih-interfeysov.txtresources/_20_otsenka-effektivnosti-ispolzovaniya-unigramm-pri-identifikatsii-teksta.txt
resources/\_21\_podgotovka-dannyh-dlya-klasterizatsii-sobytiy-v-zhurnalah-informatsionnoy-bezopasnosti.txt
resources/_22_postroenie-teplovoy-karty-na-osnove-tochechnyh-dannyh-ob-aktivnosti-polzovatelya-prilozheniya.txt
resources/_23_prediktivnyy-vvod-teksta-na-osnove-faktornoy-modeli-yazyka.txt
resources/ 24 primenenie-steka-tehnologiy-elk-dlya-sbora-i-analiza-sistemnyh-zhurnalov-sobytiy.txt
resources/_25_problema-razrabotki-vr-trenazherov-sborki-razborki-i-variant-vysokoproizvoditelnogo-resheniya-na-baze-tehnologii-
vr-concept.txt
resources/_26_proektirovanie-bystroy-programmnoy-realizatsii-spetsializirovannoy-neyrosetevoy-arhitektury-s-razrezhennymi-svyaz
resources/_27_informativnost-n-gramm-v-predelah-slova.txt
resources/_28_lingvisticheskaya-ekspertologiya-kak-napravlenie-teoreticheskoy-i-prikladnoy-lingvistiki.txt resources/_29_otsenka-stepeni-udobstva-ispolzovaniya-polzovatelskih-interfeysov-v-logike-taylov.txt
resources/\_2\_raspoznavanie-spam-soobscheniy-s-ispolzovaniem-metodov-mashinnogo-obucheniya.txt
resources/_30_zadachi-proektirovaniya-adaptivnyh-interfeysov-sapr.txt
resources/3 razrabotka-sistemy-raspoznavaniya-rechi-na-osnove-skrytyh-markovskih-modeley-otdelnyh-slov.txt
resources/_4_rol-bim-tehnologiy-v-organizatsii-i-tehnologii-stroitelstva.txt
resources/_5_sistema-kontrolya-dostovernosti-tekstovoy-informatsii-na-osnove-n-grammnyh-parsingovyh-modeley.txt
resources/\_6\_sistema-prediktivnogo-vvoda-kak-sredstvo-povysheniya-effektivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnogo-vvoda-kak-sredstvo-povysheniya-effektivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnogo-vvoda-kak-sredstvo-povysheniya-effektivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnogo-vvoda-kak-sredstvo-povysheniya-effektivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnogo-vvoda-kak-sredstvo-povysheniya-effektivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-prediktivnosti-nabora-teksta.txtources/\_6\_sistema-pre
resources/_7_sravnitelnyy-analiz-sapr-na-primere-proektirovaniya-trehmernoy-modeli-korpusa-sudna.txt
resources/_8_adaptivnyy-interfeys-polzovatelya-sapr.txt
resources/_9_algoritm-nechetkoy-klasterizatsii-v-tehnologii-data-mining.txt
-0.23017436893667703
[('продуктом', 0.4222221076488495), ('операторы', 0.35737529397010803), ('независимо', 0.25844326615333557), ('документации', 0
.2528797388076782), ('вариантом', 0.20255087316036224), ('неравномерных', 0.19761013984680176), ('дение', 0.19320088624954224)]
 -0.21089786535124283
[('продуктом', 0.4222221076488495), ('операторы', 0.35737529397010803), ('независимо', 0.25844326615333557), ('документации', 0
.2528797388076782), ('вариантом', 0.20255087316036224), ('неравномерных', 0.19761013984680176), ('дение', 0.19320088624954224)]
 -0.19413451067580323
[('продуктом', 0.4222221076488495), ('операторы', 0.35737529397010803), ('независимо', 0.25844326615333557), ('документации', 0
.2528797388076782), ('вариантом', 0.20255087316036224), ('неравномерных', 0.19761013984680176), ('дение', 0.19320088624954224)]
PS.C:\Users\Surflav\Downloads\N2>
```

Рисунок 5 – Результаты автоматического рубрицирования

Для выполнения задания выбрал описание тем, фугирующих в статья, входящих в категорию. Таблица состоит из вектора, категории, выделенной из статей, а также описания категории (Рис. 6).

Вектор	Категория	Описание
0.345831524	анализ	процесс разбора, изучения и выявления закономерностей в данных или явлениях
0.317591989	проектирование	создание плана, макета или модели чего-либо перед его фактической реализацией
0.338325244	предсказание	использование данных и статистических методов для определения будущих событий или значений

Рисунок 6 – Задание 5

В ходе выполнения задания 6 получилось 2 таблицы со связью один ко многим. На основе таблиц была создана база данных, структура базы данных представлена на рисунке 7.

Рисунок 7 – Структура базы данных

База состоит из двух таблиц, в одной хранятся наименования рубрик и их векторные значения (таблица rubrics), и таблицы rubrics_word, которая хранит в себе основные определения каждой из рубрик. Заполнение таблиц rubrics и rubrics_word представлено на рисунках 8 и 9.

	vector	rubric
	Фильтр	Фильтр
1	-0.229328284021437	анализ
2	-0.629328284021437	проектирование
3	-0.129328284021437	предсказание

Рисунок 8 – Заполнение таблицы rubrics

	rubric	word	value
	Фильтр	Фильтр	Фильтр
1	предсказание	RNN	рекуррентная нейронная сеть
2	предсказание	LSTM	сеть с долговременной и
3	предсказание	Предсказание команд	предсказание команд может помоч
4	проектирование	Проектирование	процесс создания проекта и его
5	проектирование	AutoCAD	это пакет программ для точного
6	проектирование	nanoCAD	платформа для проектирования и
7	анализ	N-грамма	это фразы из двух или трех слов,
8	анализ	Кластеризация	это разделение большой группы
9	анализ	Анализ пользовательских логов	позволяет выявить закономерност
10	проектирование	САПР	это автоматизированная система,

Рисунок 9 – Заполнение таблицы rubrics_word

С использованием созданной таблицы был реализован алгоритм, который выполняет действия:

- 1. Пользователь вводит запрос;
- 2. Система разбивает запрос на массив слов;
- 3. Для каждого отдельного слова создается нормализованный вектор из обученной модели;
 - 4. Рассчитывается среднее значение вектора запроса;
- 5. Из таблицы rubric выбирается поле с наиболее близким числовым значением категории;
- 6. Пользователю выводится информация о теме, которое система смогла найти в его запросе, если же определение не было найдено, то выводится случайная информация по теме.
- 7. Система запрашивает у пользователя подтверждение правильности выбора рубрики
- 8. Если рубрика определена верно, то пользователю предлагается вновь сделать запрос
- 9. Если же рубрика была определена неверно, то к значению вектора рубрики, указанной пользователем как правильная, прибавляется или

вычитается, в зависимости от значения вектора введенного запроса, число равное корню квадратному модуля разности вектора запроса и вектора рубрики.

На рисунке 10 представлен интерфейс программы для взаимодействия с чат-ботом.

Рисунок 10 – Интерфейс программы

На рисунке 11 представлен ответ на вопрос пользоватяля.

Рисунок 11 – Ответ на вопрос пользователя

ВЫВОДЫ

Рассматривая применение векторного решения для рубрицирования текстов можно прийти к выводу, что подобный подход является слишком примитивным для рубрицирования российских текстов. Проблема в том, что русский язык пестрит большим количеством средств выразительности, что приводит к увеличению работы по очищению текста до работы с ним векторной модели. Также играет роль и то, как люди пишут научные работы. Так, например, довольно редко упоминается сам объект исследования, что приводит к проблеме с его выделением по вектору без снижения значения min_count. Тем самым, более выгодным решением для подобного решения будет многослойная нейронная сеть.

ЗАКЛЮЧЕНИЕ

Были успешно достигнуты поставленные цели и задачи, связанные с обработкой и использованием естественно-языковых текстовых данных. В процессе проекта были выполнены следующие ключевые этапы:

- изучение материалов и освоение необходимых методов и технологий, связанных с анализом и обработкой текстовых данных. Это включало в себя изучение лекционных курсов, выполнение практических заданий и использование специального программного обеспечения;
- сбор текстовых описаний программного обеспечения (ПО) на естественном языке, которые послужили основой для дальнейших исследований;
- создание датасета для обучения векторной модели, что позволило улучшить качество анализа текстов;
- обучение модели word2vec на основе собранных данных, что сделало возможным получение векторных представлений для слов и текстов, улучшая качество анализа текстовых данных;
- рубрицирование текстовых описаний ПО, что позволило организовать информацию в систему категорий и облегчило поиск и доступ к данным;
- создание автоматической системы, предоставляющей пользователям справочную информацию на основе запросов с использованием естественно-языковых текстовых данных.

Таким образом, были приобретены навыки по работе с текстовыми данными и их автоматическому рубрицированию.

ЛИТЕРАТУРА

- 1. Автоматическая рубрикация текстов: методы и проблемы URL: https://cyberleninka.ru/article/n/avtomaticheskaya-rubrikatsiya-tekstov-metody-i-problemy (Дата обращения 15.04.2024);
- 2. Автоматическое тематическое рубрицирование сообщений средств массовой информации на основе применения технологии нейронных сетей URL: http://engineering-science.ru/doc/56926.html (Дата обращения 05.04.2024);
- 3. Методы и алгоритмы рубрикации текстов URL: https://cyberleninka.ru/article/n/metody-i-algoritmy-rubrikatsii-tekstov (Дата обращения 15.04.2024);
- 4. Vector Space Model для семантической классификации текстов URL: https://habr.com/ru/sandbox/18635/ (15.04.2024);
- 5. Векторное представление слов URL: <a href="https://neerc.ifmo.ru/wiki/index.php?title=%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%B5%D0%B5_%D0%B5_%D0%B5_%D0%B5_%D0%B5%D0%BD%D0%B8%D0%B5_%D1%81%D0%BB%D0%BE%D0%B2 (Дата обращения 15.04.2024);
- 6. Word2vec в картинках URL: https://habr.com/ru/articles/446530/ (Дата обращения 15.04.2024);
- 7. Word2Vec: как работать с векторными представлениями слов URL: https://neurohive.io/ru/osnovy-data-science/word2vec-vektornye-predstavlenija-slov-dlja-mashinnogo-obuchenija/ (Дата обращения 15.04.2024);
- 8. Семантика и технология Word2Vec URL: https://habr.com/ru/articles/585838/ (Дата обращения 15.04.2024).