

Session 2. Introduction to PyTorch

Aplicaciones de Reconocimiento de Formas (ARF)

Curso 2023/2024

Departamento de Sistemas Informáticos y Computación

Index

- 1 Overview ▷ 3
- 2 Tutorial: PyTorch basics ▷ 7
- 3 Tutorial: autograd ▷ 14
- 4 Tutorial: neural networks ▷ 18
- 5 Practical task: speech recognition ▷ 35

Index

- 1 Overview ▷ 3
 - 2 Tutorial: PyTorch basics ▷ 7
 - 3 Tutorial: autograd ▷ 14
 - 4 Tutorial: neural networks ▷ 18
 - 5 Practical task: speech recognition ▷ 35

Overview of PyTorch

End-to-end Machine Learning Framework

Provided high level features:

- Tensor computation with GPU extension
- Deep Neural Networks built on tape-based autograd system

PyTorch enables fast, flexible experimentation and efficient production through a user-friendly front-end, distributed training, and ecosystem of tools and libraries.

Overview of PyTorch

Most important PyTorch library components:

- torch: Tensor library with GPU support
- torch.autograd: automatic differentiation library for any torch Tensor
- torch.nn: neural network library integrated with autograd
- torch.cuda: support for CUDA GPU tensors
- torch.optim: optimization methods (SGD, RMSProp, LBFGS, Adam, . . .)
- torch.linalg: lineal algebra operations
- torch.distributions: probability distributions
- torch.utils: DataLoader, tensorboard, model zoo, and other
- torch.library: user defined operations
- torch.distributed: for distributed systems computation
- torch.onnx: export to ONNX format
- torch.hub: pre-trained models repository

Overview of PyTorch

PyTorch features: current stable version (2.2.0)

- Production ready
- Torchserve: tool for deploying PyTorch models at scale
- Distributed training
- Robust ecosystem
- Native support of ONNX
- C++ front-end
- Cloud support
- Mobile support (experimental): for iOS and Android

Full documentation

Index

- 1 Overview ▷ 3
- 2 Tutorial: PyTorch basics ▷ 7
 - 3 Tutorial: autograd ▷ 14
 - 4 Tutorial: neural networks ▷ 18
 - 5 Practical task: speech recognition ▷ 35

Based on Soumith Chintala's Deep Learning with PyTorch: A 60 Minute Blitz

Tensor:

- Tensor objects: n-dimensional arrays (similar to NumPy's ndarray)
- Usable with GPUs

Tensor creation from data:

Tensor creation from NumPy array:

Tensor creation from other Tensor (keeping dimensions):

Tensor random initialisation:

torch.ones(...) and torch.zeros(...) for unitary or null Tensor

Tensor attributes:

```
>>> print(x.shape)
torch.Size([5, 3])
>>> print(x.dtype)
torch.float32
>>> print(x.device)
cpu
```

Parallelisation for GPU with CUDA: transform Tensor into CUDA Tensor

```
>>> if torch.cuda.is_available():
>>>      x = x.to("cuda")
>>>      y = y.to("cuda")
```


Tensor indexing/slicing:

Tensor joining:

Tensor multiplication:

```
>>> t1 = torch.ones(4, 4)
>>> t1[:, 1] = 0
>>> print(t1)

tensor([[1., 0., 1., 1.],

[1., 0., 1., 1.],

[1., 0., 1., 1.],

[1., 0., 1., 1.]])

>>> t2 = torch.ones(4, 4)
>>> t2[1, :] = 0
>>> print(t2)
tensor([[1., 1., 1., 1.],

[0., 0., 0., 0.],

[1., 1., 1., 1.]])
```

• Element-wise: mul, *

Matrix product: matmul, @

Tensor math operations:

- In-line operands: x + y
- Tensor methods: torch.add(x, y), torch.add(x, y, out=result)
- In-place operands (with _): $y.add_(x)$ (same than y = y + x)

Some important methods for Tensor math operations:

abs	add	atan	ceil	clamp	cos	cosh	div
exp	floor	lerp	log	mul	neg	pow	remainder
round	sigmoid	sign	sin	sinh	sqrt	tan	tanh
dist	mean	median	norm	prod	std	sum	var
eq	equal	ge	gt	isfinite	isinf	isnan	isreal
_	oquar	50	6	101 1111 00	101111	Ibiidii	IDICAI
<u>.</u>	le	lt	maximum	minimum	ne	sort	101001
	•	•	_				101001
det	le	1t	maximum	minimum	ne	sort	symeig

Complete list

Index

- 1 Overview ▷ 3
- 2 Tutorial: PyTorch basics ▷ 7
- 3 *Tutorial:* autograd ▷ 14
 - 4 Tutorial: neural networks ▷ 18
 - 5 Practical task: speech recognition ▷ 35

Autograd

autograd: package that provides automatic differentiation for Tensor

Full autograd documentation

When creating a Tensor:

- With requires_grad=True makes operations on Tensor to be tracked
- Call to backward() allows to compute gradients
- grad attribute stores gradients

```
>>> import torch
>>> a = torch.tensor([2., 3.], requires_grad=True)
>>> print(a)
tensor([2., 3.], requires_grad=True)
```


Autograd

Each Tensor with requires_grad=True is connected to the function that created it

Tensor attribute grad_fn (None for user-defined Tensor)

From the basic Tensor (the one with requires_grad=True), the corresponding functions that create the final composed object can be defined:

```
>>> b = torch.tensor([6., 4.], requires_grad=True)
>>> Q = 3*a**3 - b**2
>>> print(Q)
tensor([-12., 65.], grad_fn=<SubBackward0>)

>>> print(Q.grad_fn)
<SubBackward0 object at 0x7efe01954dc0>
```

Now Q has the function $Q = 3a^3 - b^2$

Autograd

Gradients: by using the backward method

Derivatives with respect to a and b:

$$\frac{\mathrm{d}Q}{\mathrm{d}a} = 9a^2 \qquad \frac{\mathrm{d}Q}{\mathrm{d}b} = -2b$$

Specific values:

$$a = (2,3) \to \frac{dQ}{da} = (36,81)$$
 $b = (6,4) \to \frac{dQ}{db} = (-12,-8)$

It is necessary to indicate the gradient to do the derivatives:

```
>>> Q.backward(gradient=torch.tensor([1., 1.]))
>>> a.grad
tensor([36., 81.])
>>> b.grad
tensor([-12., -8.])
```


Index

- 1 Overview ▷ 3
- 2 Tutorial: PyTorch basics ▷ 7
- 3 Tutorial: autograd ▷ 14
- 4 Tutorial: neural networks ▷ 18
 - 5 Practical task: speech recognition ▷ 35

By using the torch.nn package:

- nn employs autograd for model definition and differentiation
- nn.Module contains
 - The layers
 - A forward(input) method that returns an output

Network training process:

- Define network with its weights
- Iterate over input dataset and process it by the network
- Compute network loss
- Propagate gradients back into network
- Update network weights

Example of feed-forward network (LeNet)

Definition of the network includes:

- Convolutional layers
- Subsampling (max pool)
- Linear fully-connected layers

Structure for the network code:

- Import libraries and classes (torch, nn, functional)
- Define class for the network, derived from nn.Module
 - Constructor (__init__): define network elements
 - forward method: define network connections and operations
 - Auxiliar methods (if needed)
- backward method not necessary (provided by autograd)

Code:

```
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = torch.flatten(x, 1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```


For creating and visualising the net:

```
>>> net = Net()
>>> print(net)
Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
```


Visualising the internal parameters of the network:

```
>>> params = list(net.parameters())
>>> print(len(params))
10
>>> print(params[0].size())
torch.Size([6, 1, 5, 5])
>>> print(params[0])
Parameter containing:
tensor([[[[ 0.0727, 0.1421, -0.0468, -0.0630, -0.1446],
          [0.0773, -0.0762, -0.1289, -0.1441, 0.1419],
          [-0.0679, -0.1911, -0.1467, 0.1722, 0.0006],
          [0.1494, -0.1786, -0.1229, -0.1727, 0.1350],
          [-0.0813, 0.1056, -0.1841, 0.1526, -0.1622]]]
        [[[0.0104, -0.0567, 0.0613, -0.0571, -0.1645],
          [0.1841, 0.1473, 0.0132, -0.0322, 0.0823],
          [-0.0269, 0.1671, -0.0737, 0.0866, 0.1922],
          [0.0688, 0.0618, 0.0238, -0.0139, -0.0216],
          [ 0.1568, -0.0625, -0.1545, -0.0483, -0.1220]]]], requires_grad=True)
```


Types of layers provided by torch.nn:

- Convolutional: Conv1d, Conv2d, Conv3d, . . .
- Pooling: MaxPool1d, MaxUnpool1d, AvgPool1d, . . .
- Padding: ReflectionPad2d, ReplicationPad2d, ZeroPad2d, . . .
- Non-linear activators: ReLU, SELU, Threshold, Sigmoid, Softmax, . . .
- Normalisation: BatchNorm1d, InstanceNorm1d, LayerNorm, . . .
- Recurrent: RNN, LSTM, GRU, . . .
- Transformer: Transformer, TransformerEncoder, . . .
- Linear: Linear, Bilinear, ...
- Dropout: Dropout, Dropout2d, Dropout3d, . . .
- Sparse: Embedding, EmbeddingBag
- Other types: vision, shuffle, parallel

Full documentation

The network uses Tensor objects as input and output data

For gradient propagation, reset (zero_grad) and backpropagate (backward)

```
>>> net.zero_grad()
>>> out.backward(torch.randn(1, 10))
```


Loss functions:

- Provided by torch.nn
- Many different functions available
 - MSELoss: mean square error
 - CrossEntropyLoss
 - CTCLoss: Connectionist Temporal Classification
 - NLLLoss: negative log likelihood
 - BCELoss: Binary Cross Entropy
 - KLDivLoss: Kullback-Leibler
 - **–** . . .

Full documentation

Example with MSELoss:

```
>>> output = net(input)
>>> target = torch.randn(10)
>>> target = target.view(1, -1)
>>> criterion = nn.MSELoss()
>>> loss = criterion(output, target)
>>> print(loss)

tensor(0.8269, grad_fn=<MseLossBackward0>)
```


Computation graph for loss:

Some steps backward:

```
>>> print(loss.grad_fn)
<MseLossBackward0 object at 0x7f62ac864b20>
>>> print(loss.grad_fn.next_functions[0][0])
<AddmmBackward0 object at 0x7f62ac864b50>
>>> print(loss.grad_fn.next_functions[0][0].next_functions[0][0])
<AccumulateGrad object at 0x7f62ac864b50>
```


Now the loss must be backpropagated to re-estimate the network weights

```
net.zero_grad()
print(net.conv1.bias.grad)
None

loss.backward()
print(net.conv1.bias.grad)
tensor([0.0150, 0.0043, 0.0250, 0.0049, 0.0022, 0.0150])
```


Weight update: via optimisers in torch.optim

- Adam
- LGBFS
- RMSprop
- SGD
- . . .

Full documentation

Example of use: with SGD and learning rate of 0.01

```
>>> net.zero_grad()
>>> import torch.optim as optim
>>> optimizer = optim.SGD(net.parameters(), lr=0.01)
>>> optimizer.zero_grad()
>>> output = net(input)
>>> loss = criterion(output, target)
>>> loss.backward()
>>> optimizer.step()
```


Network training: for each epoch and each training sample

- Obtain inputs and labels as Tensor objects
- Make the optimizer reset (optimizer.zero_grad())
- Pass input to network and obtain output (outputs = net(inputs))
- Compute loss (loss = criterion(outputs, labels))
- Backpropagate (loss.backward())
- Change network weights (optimizer.step())

Network testing: for each test sample

- Obtain inputs and labels, inputs as a Tensor object
- Obtain network output (outputs = net(inputs))
- Get hypothesis from output (_, hyp = torch.max(outputs.data, 1))
- Compare real and hypothesis label to check error

Summary:

- 1. Define and create network
- 2. Define loss function
- 3. Define optimiser
- 4. Load training data
- 5. Train network
- 6. Load test data
- 7. Test network

Index

- 1 Overview ▷ 3
- 2 Tutorial: PyTorch basics ▷ 7
- 3 Tutorial: autograd ▷ 14
- 4 Tutorial: neural networks ▷ 18
- 5 Practical task: speech recognition ▷ 35

Practical task: speech recognition

Based on José A. Rodríguez Fonollosa Google commands code

Task description: Spanish digit recognition

- 10 speakers, 10 repetitions each speaker
- A total of 1000 samples (100 for each class)
- Format: NSR.wav (N number, S speaker, R repetition)
- Partitions:
 - Training: speakers 0, 1, 2 (female), 5, 6, 7 (male)
 - Validation: speakers 3 (female) and 8 (male)
 - Test: speakers 4 (female) and 9 (male)

Practical task: speech recognition

Download database from PoliformaT (DIG.tgz)

Download Python code from Poliformat:

- DIG_loader.py: to read wav files and organise data
- model.py: models definitions
- train.py: train and test methods
- run.py: full experiment code

Put all downloaded files into the same folder (e.g., 02-PYTORCH)

Uncompress DIG.tgz

Practical task: speech recognition

Run full experiment:

python run.py --arc LeNet --num_workers 1

Approximated running time: 2 minutes

Final test result: 91.5% accuracy

Check the code and play with the different options

Be careful!: logs for models can make your disk space full (checkpoint directory) and some models are so large that do not fit in the virtual machine memory

