CAPSTONE PROJECT

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By:
Smith Raj A R – SRM RAMAPURAM – Computer Science
Engineering

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- References

PROBLEM STATEMENT

Develop a predictive maintenance model for a fleet of industrial machines to anticipate failures before they occur. This project will involve analyzing sensor data from machinery

to identify patterns that precede a failure. The goal is to create a classification model that can predict the type of failure (e.g., tool wear, heat dissipation, power failure) based on real-time operational data. This will enable proactive maintenance, reducing downtime and operational costs.

PROPOSED SOLUTION

Proposed System

• The proposed system focuses on predicting industrial machine failures using IBM Cloud and Watsonx.ai Studio to enable proactive maintenance and reduce downtime.

1. Data Collection

- Collected historical sensor data from industrial machines (Kaggle dataset).
- Data includes parameters such as temperature, vibration, torque, rotational speed, voltage, and pressure.

Data Preprocessing:

- Cleaned and normalized data by handling missing values, outliers, and inconsistent formats.
- Performed feature engineering (rolling averages, correlations) and split data into train/test sets.

Machine Learning Algorithm:

- Trained models (Random Forest, XGBoost, Logistic Regression) in Watsonx.ai Studio.
- Applied hyperparameter tuning and cross-validation to select the best-performing model.

PROPOSED SOLUTION

Deployment:

- Deployed the final model on Watsonx.ai Runtime and created a REST API for real-time predictions.
- Integrated IBM Cloud Object Storage for automated input data handling and updates.

Evaluation:

- Evaluated using Accuracy, Precision, Recall, and F1-score with a confusion matrix.
- Implemented continuous monitoring and periodic retraining to maintain performance.

Result:

- Evaluated using Accuracy, Precision, Recall, and F1-score with a confusion matrix.
- Implemented continuous monitoring and periodic retraining to maintain performance.

SYSTEM APPROACH

- System requirements
- Hardware:
- Minimum 4-core CPU,8 GB RAM
- 20 GB free disk space
- Stable internet connection for IBM Cloud access
- Software:
- IBM Cloud account with Watsonx.ai Studio and Runtime enabledIBM Cloud Object Storage
- Library required to build the model
- Library Requirements:
- Kaggle dataset: Machine Predictive Maintenance Classification Dataset
- https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification

ALGORITHM & DEPLOYMENT

- Algorithm (Machine Learning)
- Algorithm Selection:
- Tested multiple algorithms: Random Forest, XGBoost, and Logistic Regression.
- Selected the best model based on evaluation metrics (Accuracy, F1-Score).
- Data Input: Real-time and historical sensor data (temperature, torque, vibration, speed, voltage).
- Data preprocessed (cleaning, normalization, feature engineering) before feeding into the model.
- **Training Process:** Used Watsonx.ai Studio for training with hyperparameter tuning and cross-validation.
- Trained the model on labeled failure data to learn patterns indicating machine issues.

ALGORITHM & DEPLOYMENT

- Prediction Process: The trained model predicts failure type (tool wear, power failure, heat dissipation) from live sensor input.
- Outputs prediction with confidence score for proactive maintenance action.
- Deployment:
- Cloud Deployment: Deployed the trained model using Watsonx.ai Runtime Services in IBM Cloud.
- Created a REST API endpoint to enable real-time prediction integration with applications.
- **Data Handling**: Connected IBM Cloud Object Storage for storing input/output data.
- Enabled automated updates and re-training with new incoming data for continuous improvement.

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 5	Batched Tree Ensemble Classifier (Snap Random Forest Classifier)	INCR	0.995	HPO-1 FE HPO-2 BATCH	00:01:41
	2	Pipeline 4	O Snap Random Forest Classifier		0.995	HPO-1 FE HPO-2	00:00:47
	3	Pipeline 3	O Snap Random Forest Classifier		0.995	HPO-1 FE	00:00:39
	4	Pipeline 9	 Snap Decision Tree Classifier 		0.994	HPO-1 FE HPO-2	00:00:03

predictive maintenance model Openloyed Online

API reference Test Enter input data **JSON** Text Enter data manually or use a CSV file to populate the spreadsheet. Max file size is 50 MB. Download CSV template **⊻** Browse local files 7 Search in space **↗** Clear all × UDI (double) Product ID (other) Type (other) Air temperature [K] (double) Process temperature [K] (double) Rotational speed [rpm] (double) Torque [Nm] (double) Tool wear 51 L47230 300 310 2861 4.6 1 143 78 298 309 1360 60.8 187 78 L47257 41.3 3 298.8 308.9 1455 208 4 50 Μ 44 24 32 100 4 rows, 9 columns Predict

CONCLUSION

- Conclusion
- The predictive maintenance system developed using IBM Cloud and Watsonx.ai Studio successfully predicts industrial machine failures in advance.
- By analyzing real-time sensor data and classifying failure types, the solution reduces unplanned downtime, lowers operational costs, and enhances machine reliability.

REFERENCES

- Kaggle. Predictive Maintenance Dataset. Available at: https://www.kaggle.com/IBM Cloud.
- Watsonx.ai Studio Documentation. Available at: https://www.ibm.com/cloud/watsonxIBM Cloud.
- Object Storage Documentation. Available at: https://cloud.ibm.com/docs/cloudobject-storage

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Smith Raj

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 17, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Smith Raj

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 20, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Smith Raj

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 23 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

