Распределенное обучение нейросетей

Богданов Александр, Пилипенко Сергей, Козлова Ольга

Что это?

Обучение, при котором рабочая нагрузка для обучения модели разделяется между несколькими рабочими узлами

А чем не подходит обычное?

- Модель не помещается на GPU
- Данные не помещаются в RAM
- Слишком долго ждать

Какие есть подходы?

(b) Model Parallelism

(c) Layer Pipelining

Что расскажем мы?

- Intro to Distributed Systems & Data Parallelism by me
- Model parallelism & Layer Pipelining by Alexander
- Practice by Sergey

Intro to Distributed Systems

полный курс смотрите у ребят с РС

Распределенная система – это ...

С программной точки зрения: совокупность независимых процессов, взаимодействующих посредством передачи сообщений

Основы

- Процессы выполняются на различных узлах
- Каждый процесс имеет собственное состояние
- Процессы не имеют прямого доступа к состояниям других процессов

Data Parallelism

вернемся к сеткам

Проблемы?

- Слишком долго ждать
- Данные не помещаются в RAM

Что происходит?

- Знаем, что модель полностью помещается в GPU
- Данные разбиваются на куски и распределяются по процессам

Процесс работы (ожидание)

AllReduce

- Процесс обмена градиентами между процессами (агрегируем векторы)
- На всех узлах будут одинаковые данные (модели)

Как? – Способы коммуникации

Топология – это конфигурация графа, вершинам которого соответствуют конечные узлы сети

Каждый с каждым

Плюсы:

– Каждый отправляет данные каждому узлу, все очень просто

Минусы:

- Это точно будет долго O(n²)

По дереву

Плюсы:

- Быстро O(n)

Минусы

- Информация с листьев теряется если произошло отключение в сети

По дереву

По дереву

Плюсы:

- Быстро O(n)

Минусы:

- Я не нашла

Horovod – Uber 2018

Horovod – Uber 2018

Процесс работы (реальность)

А что если не ждать?

- <u>Синхронная модель взаимодействия</u> ждем все узлы и только потом обновляем модель (обсуждали только что)
- <u>Асинхронная модель</u> каждый узел получает обновленные значения градиента сразу и обновляет модель независимо (обсудим сейчас)

Parameter server

Idea: remove synchronization step alltogether, use parameter server

Problems? We have some

Итого

Проблемы?

Источники

2018 Horovod Uber

- https://arxiv.org/pdf/1802.05799.pdf,
- https://github.com/horovod/horovod,
- https://www.youtube.com/watch?v=SphfeTl70Ml

2018 An In-Depth Concurrency Analysis

- https://arxiv.org/pdf/1802.09941.pdf
- https://www.youtube.com/watch?v=xtxxLWZznBl

Курс ШАДа

- https://github.com/yandexdataschool/dlatscale_draft

He источник, но посмотреть можно: 2019 TF replicator DeepMind

- https://arxiv.org/pdf/1902.00465.pdf

Me: *uses machine learning*

Machine: *learns*

Me:

