Trabalho de conclusão de curso Universidade Federal de Itajubá - Campus Theodomiro Carneiro Santiago Instituto de Ciências Tecnológicas - ICT Engenharia de Computação

Circuito digital CMOS para controle do fator de qualidade de um filtro passa banda-ativo sintonizável

Alef de Oliveira Santos*, Dean Bicudo Karolak*, Paulo Márcio Moreira e Silva*

* Universidade Federal de Itajubá - Campus Theodomiro Carneiro Santiago Rua Rua Irmã Ivone Drumond, 200 - Distrito Industrial II - 35903-087 Itabira, Minas Gerais, Brasil

E-mail: alef_santos@unifei.edu.br, dean.karolak@unifei.edu.br, paulo.silva@unifei.edu.br

Resumo

teste

Resumo

teste

Abstract: Keywords: Resumo:

Palavras-Chave:

1 Introdução

Este documento e seu código-fonte são exemplos de referência de uso da classe abntex2 e do pacote abntex2cite. O documento exemplifica a elaboração de publicação periódica científica impressa produzida conforme a ABNT NBR 6022:2018 Informação e documentação - Artigo em publicação periódica científica - Apresentação.

A expressão "Modelo canônico" é utilizada para indicar que abnTEX2 não é modelo específico de nenhuma universidade ou instituição, mas que implementa tão somente os requisitos das normas da ABNT. Uma lista completa das normas observadas

pelo abnTeX2 é apresentada em Araujo (2015a).

Sinta-se convidado a participar do projeto abnTEX2! Acesse o site do projeto em http://www.abntex.net.br/. Também fique livre para conhecer, estudar, alterar e redistribuir o trabalho do abnTEX2, desde que os arquivos modificados tenham seus nomes alterados e que os créditos sejam dados aos autores originais, nos termos da "The LATEX Project Public License".

Encorajamos que sejam realizadas customizações específicas deste documento. Porém, recomendamos que ao invés de se alterar diretamente os arquivos do abnTEX2, distribua-se arquivos com as respectivas customizações. Isso permite que futuras versões do abnTEX2 não se tornem automaticamente incompatíveis com as customizações promovidas. Consulte Araujo (2015b) para mais informações.

Este exemplo deve ser utilizado como complemento do manual da classe abntex2 (ARAUJO, 2015a), dos manuais do pacote abntex2cite (ARAUJO,

^{1 &}lt;http://www.latex-project.org/lppl.txt>

2015d; ARAUJO, 2015e) e do manual da classe memoir (WILSON; MADSEN, 2010). Consulte o Araujo (2015c) para obter exemplos e informações adicionais de uso de abnTeX2 e de LATeX.

2 Introdução

Este trabalho trata de um sistema eletrônico que recebe e controla o fator de qualidade (Q) de um circuito eletrônico ressonante. O circuito proposto utiliza-se de técnicas de computação numérica para controlar o fator de qualidade através de uma corrente de referência injetada no sistema ressonante. Neste trabalho serão realizados circuitos digitais periféricos para a determinação do valor de Q medido de um filtro passa banda ativo, bem como, um circuito digital para controle e aproximação do Q desejado. Em relação ao controle e aproximação de Q, serão comparados os métodos numéricos da Bisseção, Secantes e Secantes com seleção de intervalo implementados. O sistema digital é projetado e implementado em Verilog tendo em mente a posterior fabricação em silício. Para efeitos de estudo e desenvolvimento, este projeto em ASIC utiliza uma tecnologia GPDK de 45nm.

2.1 Contexto e justificativa

Ainda de acordo com $\ref{eq:condition}$, o fator Q também está relacionado com o teorema da máxima transferência de potência em circuitos de RF. Para entregar o máximo de potência de uma fonte para uma carga através de uma rede, um circuito de casamento de impedâncias é usado para alcançar a maior transferência de potência. A Figura 2 ilustra como o Q interfere na eficiência de um circuito:

Num circuito com uma carga estática, basta calcular um Q que realize o casamento de impedâncias para a maior transferência de potência. Num circuito onde a carga é variável, um Q fixo não fornece o

Figura 1 - Q versus largura de banda

fig/q-band.png

Figura 2 - Q versus eficiência

Fonte: (??)

fig/q-eff.png

Fonte: (??)

casamento de impedâncias necessário para a máxima transferência de potência em todos os cenários de carregamento, assim reduzindo a eficiência do circuito.

De fato \ref{fato} retomam em seu trabalho as proposições de \ref{fato} e projetam uma rede de casamentos de impedância baseada no fator de qualidade, onde o mesmo é ajustado a fim de casar impedâncias de rede com uma carga variável. \ref{fato} realiza um trabalho com a mesma ideia de controlar o Q usando outras técnicas para selecionar o valor ótimo.

Desta forma, fica evidente a necessidade de controlar o Q de um circuito eletrônico, tanto no contexto deste trabalho quanto em outros trabalhos com pouca similaridade, mas com a mesma necessidade de Q controlável/variável.

Em relação às diferentes implementações de circuitos eletrônicos para controle do Q, pode-se distingui-los em dois grupos, os circuitos analógicos e os digitais. Os circuitos analógicos têm a vantagem de ser mais simples, mais rápidos, como apresentado em (??). Entretanto, eles não apresentam a mesma versatilidade e configurabilidade proposta por um sistema digital. Já os circuitos digitais, além de mais versáteis, apresentam uma implementação física mais simples com o uso de standard-cells para a construção de layouts, sendo inclusive, altamente assistidas por ferramentas de EDA pela característica programática. Em conjunto com a maior versatilidade, o circuito digital poderia ser estendido em aplicações onde o controle do Q deve ter alta precisão, uma vez que o circuito digital pode ser replicado com maior confiabilidade, portabilidade e reprodutibilidade.

Dessa forma, julga-se pertinente projetar este circuito eletrônico digital capaz de controlar o Q, para que seja possível obter circuitos mais versáteis e com aplicações mais amplas com menor complexidade em projeto analógico, além de promover inovação no desenvolvimento de circuitos para computação numérica.

3 Objetivos

Os objetivos principais deste trabalho para o TCC1 são, principalmente o fluxo de front-end, compreendido por:

- 1. Projetar a arquitetura capaz de controlar o fator de qualidade do circuito;
- 2. Codificar os blocos do sistema projetado em Verilog;
- 3. Comparar o desempenho dos métodos de controle prototipados *standalone*;
- 4. Validar a funcionalidade blocos projetados através de *testbenches* em Verilog/SystemVerilog.

Após finalizado o fluxo de front-end, selecionase o método de convergência com melhor desempenho com relação à todo o sistema e inicia-se o processo de verificação do sistema completo seguido do fluxo de back-end no TCC2, compreendido por:

- 1. Integrar e coordenar a operação dos blocos como um sistema completo;
- 2. Realizar a síntese lógica em RTL;
- 3. Simular o circuito sintetizado em RTL e checar a equivalência lógica;
- 4. Realizar etapas de posicionamento e roteamento;
- 5. Analisar o consumo;
- Analisar desempenho do sistema por temporização estática (STA);
- 7. Construir layout.

Referências

ARAUJO, L. C. A classe abntex2: Modelo canônico de trabalhos acadêmicos brasileiros compatível com as normas ABNT NBR 14724:2011, ABNT NBR 6024:2012 e outras. [S.l.], 2015. Disponível em: http://www.abntex.net.br/. Citado na página 1.

ARAUJO, L. C. Como customizar o abnTeX2. 2015. Wiki do abnTeX2. Disponível em: https://github.com/abntex/abntex2/wiki/ComoCustomizar. Acesso em: 27 abr 2015. Citado na página 1.

ARAUJO, L. C. Modelo Canônico de Trabalho Acadêmico com abnTeX2. [S.l.], 2015. Disponível em: http://www.abntex.net.br/. Citado na página 2.

ARAUJO, L. C. O pacote abntex2cite: Estilos bibliográficos compatíveis com a ABNT NBR 6023. [S.l.], 2015. Disponível em: http://www.abntex.net.br/. Citado na página 1.

ARAUJO, L. C. O pacote abntex2cite: tópicos específicos da ABNT NBR 10520:2002 e o estilo bibliográfico alfabético (sistema autor-data). [S.l.], 2015. Disponível em: http://www.abntex.net.br/. Citado na página 1.

WILSON, P.; MADSEN, L. The Memoir Class for Configurable Typesetting - User Guide. Normandy Park, WA, 2010. Disponível em: http://mirrors.ctan.org/macros/latex/contrib/memoir/memman.pdf>. Acesso em: 19 dez. 2012. Citado na página 2.