Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

# ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

**Дисциплина:** Программное обеспечение встраиваемых систем **Тема:** Разработка описания робота

| Выполнил<br>студент гр. 5140901/21501 | <nodnucь></nodnucь> | А.М. Кобыжев    |         |
|---------------------------------------|---------------------|-----------------|---------|
| Преподаватель                         | <подпись>           | Г.С. Васильянов |         |
|                                       |                     | «»              | 2023 г. |

Санкт-Петербург 2023

# СОДЕРЖАНИЕ

| 1.    | Цели работы                         | 3  |
|-------|-------------------------------------|----|
| 2.    | Задание                             | 3  |
| 3.    | Ход работы                          | 3  |
| 3.1.  | Описание робота                     | 4  |
| 3.2.  | Запуск робота                       | 7  |
| 3.2.1 | . Запуск контроллера                | 7  |
| 3.2.2 | . Запуск симулятора                 | 7  |
| 3.2.3 | . Запуск rviz                       | 8  |
| 3.2.4 | . Запуск панелей управления роботом | 9  |
| 4.    | Выводы                              | 11 |

#### 1. ЦЕЛИ РАБОТЫ

Разработка описания робота на языке URDF.

#### 2. ЗАДАНИЕ

Вам дан усечённый проект колёсного робота со всеми основными файлами для запуска.

Изучить макросы в файле myrobot description/urdf/macro.xacro.

В файле myrobot\_description/urdf/myrobot.xacro расположена заготовка робота, в которой вам необходимо создать:

- Корпус робота с названием base link;
- Колёса робота;
- Сенсоры будущего робота лидар и ик-сенсоры.

Перед запуском симуляции, не забудьте проверить следующее:

- Что имена ваших link'ов совпадают с теми, что существуют в файлах myrobot\_simulator/urdf/macro.gazebo.xacro и myrobot control/config/diffdrive controller.yaml;
- Что все joint и link имеют иерархичную структуру.

Таким образом, вам необходимо:

- Создать URDF описание простого колёсного робота:
  - о диаметр колёс робота должен быть меньше длины робота;
  - о колес должно быть как минимум 2;
  - о линейные размеры робота не должны превышать 0,5м.
- Связать его с Gazebo
- Запустить созданного робота

### 3. ХОД РАБОТЫ

Репозиторий с исходным кодом для данной лабораторной работы можно посмотреть по ссылке:

https://github.com/alexnevskiy/urdf\_labs/tree/lab2

#### 3.1. Описание робота

Описание простого двухколёсного робота на языке URDF представлено в листинг 3.1. Весь код можно разбить на два условных блока: объявление параметров и описание частей робота.

В первом блоке описываются все необходимые для описания робота переменные, а именно:

- Начальная позиция;
- Габариты тела робота (параллелепипед);
- Габариты колёс и их позиция относительно тела робота;
- Габариты лидара и его позиция относительно тела робота;
- Габариты ик-сенсоров и их позиции относительно тела робота.

Во втором блоке описываются части робота: тело, колёса, лидар и иксенсоры.

Для создания тела робота использовался заготовленный макрос *make\_box*, который строит параллелепипед с указанными параметрами. Тело робота получилось длиной 21 сантиметр, шириной 16 сантиметров и высотой 5 сантиметров.

Для создания колёс также использовался заранее заготовленный макрос wheel, в котором потребовалось добавить параметр массы из-за его отсутствия в виде атрибута, хотя в теле макроса он использовался. Всего у робота имеется два колеса, шасси которых располагается по середине тела. Ширина каждого колеса составляет 2 сантиметра, а радиус 3 сантиметра. Данные габариты укладываются в заданные рамки, описанные ранее.

Для создания лидара написан link с заданными габаритами и коллизией, а также joint с фиксированным типом, где родителем является тело робота.

Для создания трёх ик-сенсоров использовался также ранее заготовленный макрос  $ir\_sensor$  с заданными параметрами. Два ик-сенсора располагаются спереди по краям робота и повёрнуты на 45, а третий — по центру тела робота и направлен прямо по оси X.

#### Листинг 3.1. Описание робота

```
<?xml version="1.0"?>
<robot name="myrobot" xmlns:xacro="http://www.ros.org/wiki/xacro">
  <!-- ======= Enter xacro properties here (if you want) ========== -->
  <xacro:property name="start_x" value="0.0"/>
  <xacro:property name="start_y" value="0.0"/>
  <xacro:property name="start_z" value="0.03"/>
  <xacro:property name="body name" value="body name"/>
  <xacro:property name="body sx" value="0.21"/>
  <xacro:property name="body_sy" value="0.16"/>
  <xacro:property name="body_sz" value="0.05"/>
  <xacro:property name="body_mass" value="5"/>
  <xacro:property name="wheel_radius" value="0.03"/>
  <xacro:property name="wheel_width" value="0.02"/>
  <xacro:property name="wheel_spacer" value="0.005"/>
  <xacro:property name="wheelbase_x" value="0"/>
  <xacro:property name="wheelbase_y" value="${body_sy / 2 + wheel_width / 2 +</pre>
wheel_spacer}"/>
  <xacro:property name="wheelbase_z" value="${-body_sz / 4}"/>
  <xacro:property name="wheel_mass" value="1"/>
  <xacro:property name="lidar_rad" value="0.001"/>
  <xacro:property name="lidar_width" value="0.001"/>
  <xacro:property name="lidar_x" value="0"/>
  <xacro:property name="lidar_y" value="0"/>
  <xacro:property name="lidar_z" value="${body_sz / 2}"/>
  <xacro:property name="lidar_pos_z" value="${start_z + 0.001}"/>
  <xacro:property name="ir_sx" value="0.003"/>
  <xacro:property name="ir_sy" value="0.008"/>
<xacro:property name="ir_sz" value="0.008"/>
  <xacro:property name="ir_x" value="${body_sx / 2}"/>
  <xacro:property name="ir y" value="${body sy / 2}"/>
  <xacro:property name="ir_z" value="${-body_sz / 2}"/>
  <!-- ======= Including macros and materials ========= -->
  <xacro:include filename="$(find myrobot description)/urdf/macro.xacro"/>
  <xacro:include filename="$(find myrobot_description)/urdf/materials.xacro"/>
  <!-- ======= Some magic. Do not touch ========= -->
  <link name="rs_t265_pose_frame">
  </link>
  <joint name="rs_t265_joint" type="fixed">
    <origin rpy="0 0 0" xyz="0 0 0"/>
    <parent link="rs_t265_pose_frame"/>
    <child link="base link"/>
  </joint>
  <!-- ======= Enter base link code here ========= -->
  <link name="base link">
    <xacro:make_box sx="${body_sx}" sy="${body_sy}" sz="${body_sz}" mass="${body_mass}"</pre>
xyz="${start_x} ${start_y} ${start_z}"/>
  </link>
  <!-- ====== Enter wheels code here ======== -->
  <xacro:wheel wheel_prefix="left" parent_link="base_link" left_right="-1"</pre>
radius="${wheel_radius}" width="${wheel_width}" wheel_mass="${wheel_mass}">
```

```
<origin xyz="${start_x + wheelbase_x} ${start_y + wheelbase_y} ${start_z +</pre>
wheelbase z}"/>
  </xacro:wheel>
  <xacro:wheel wheel_prefix="right" parent_link="base_link" left_right="1"</pre>
radius="${wheel_radius}" width="${wheel_width}" wheel_mass="${wheel_mass}">
    <origin xyz="${start_x + wheelbase_x} ${start_y - wheelbase_y} ${start_z +</pre>
wheelbase_z}"/>
  </xacro:wheel>
  <!-- ======= Enter sensors code here ========= -->
  <!-- ======= LIDAR ======== -->
 <link name="rplidar_a2_frame">
    <visual>
      <origin rpy="0 0 0" xyz="0 0 ${lidar_pos_z}"/>
        <mesh filename="package://myrobot_description/meshes/rplidar.dae"</pre>
scale="${lidar_rad} ${lidar_width}"/>
      </geometry>
    </visual>
    <collision>
      <origin rpy="0 0 0" xyz="0 0 ${lidar pos z}"/>
        <cylinder length="${lidar_width}" radius="${lidar_rad}"/>
      </geometry>
    </collision>
  </link>
  <joint name="rplidar_a2_joint" type="fixed">
    <axis xyz="0 1 0"/>
    corigin rpy="0 0 ${PI}" xyz="${lidar_x} ${lidar_y} ${lidar_z + 0.003}"/>
    <parent link="base_link"/>
    <child link="rplidar_a2_frame"/>
  </joint>
  <xacro:ir_sensor name="front_0" parent="base_link" sx="${ir_sx}" sy="${ir_sy}"</pre>
sz="${ir sz}">
    <origin rpy="0 0 ${45 * PI / 180}"</pre>
     xyz="${start_x + ir_x} ${start_y + ir_y} ${start_z + ir_z}"/>
  </xacro:ir sensor>
 <xacro:ir_sensor name="front_1" parent="base_link" sx="${ir_sx}" sy="${ir_sy}"</pre>
sz="${ir_sz}">
    <origin rpy="0 0 0"</pre>
    xyz="${start_x + ir_x} ${start_y} ${start_z + ir_z}"/>
  </xacro:ir_sensor>
  <xacro:ir_sensor name="front_2" parent="base_link" sx="${ir_sx}" sy="${ir_sy}"</pre>
sz="${ir sz}">
    <origin rpy="0 0 ${-45 * PI / 180}"</pre>
     xyz="${start_x + ir_x} ${start_y - ir_y} ${start_z + ir_z}"/>
  </xacro:ir sensor>
</robot>
```

Имена всех описанных ранее link'ов совпадают с теми, что существуют в файлах myrobot\_simulator/urdf/macro.gazebo.xacro и myrobot\_config/diffdrive\_controller.yaml.

#### 3.2. Запуск робота

#### 3.2.1. Запуск контроллера

Для запуска контроллера, который отвечает за управление роботом, необходимо ввести команду *roslaunch myrobot\_control control.launch*. Запуск контроллера в терминале представлен на рис. 3.1.

```
/home/alexnevskiy/catkin_ws/src/myrobot/myrobot_control/launch/control.launch http://l...
File Edit View Search Terminal Help
 * /rosversion: 1.14.13
NODES
    controller_spawner (controller_manager/spawner)
    robot_state_publisher (robot_state_publisher/robot_state_publisher)
auto-starting new master
process[master]: started with pid [18205]
ROS_MASTER_URI=http://localhost:11311
setting /run_id to a66da966-8642-11ee-843b-000c293b4238
process[rosout-1]: started with pid [18216]
started core service [/rosout]
process[controller_spawner-2]: started with pid [18223]
process[robot_state_publisher-3]: started with pid [18224]
[INFO] [1700333132.166747]: Controller Spawner: Waiting for service controller_m
anager/load controller
[WARN] [1700333162.331280]: Controller Spawner couldn't find the expected contro
ller manager ROS interface
[controller_spawner-2] process has finished cleanly
log file: /home/alexnevskiy/.ros/log/a66da966-8642-11ee-843b-000c293b4238/contro
ller_spawner-2*.log
```

Рис. 3.1. Окно терминала с контроллером

#### 3.2.2. Запуск симулятора

Для запуска симулятора gazebo, в котором будет происходить симуляция описанного ранее робота в заданном помещении, необходимо ввести команду *roslaunch myrobot\_simulator gazebo\_testwalls.launch*. По окончанию запуска симулятора открывается окно gazebo, где будет представлен описанный ранее робот, как показано на рис. 3.2.



Рис. 3.2. Окно gazebo

## 3.2.3. Запуск rviz

Для запуска rviz, в котором будет отображён описанный ранее робот с предоставленным описанием, необходимо ввести команду roslaunch myrobot\_description rviz.launch. Окно rviz с роботом представлено на рис. 3.3. Красными точками помечены контуры помещения при помощи лидара.



Рис. 3.3. Окно rviz

#### 3.2.4. Запуск панелей управления роботом

Для запуска панели, откуда будет производиться управление роботом, необходимо запустить утилиту *rqt*. Окно rqt с плагином Robot Steering, позволяющего управлять роботом, представлено на рис. 3.4. Для управления созданным роботом необходимо указать топик /controller/cmd vel.



Рис. 3.4. Окно rqt с плагином Robot Steering для управления роботом

При помощи данного плагина можно управлять роботом как в rviz, так и в gazebo, так как они имеют одно и то же помещение в симуляции. Пример управления роботом при помощи плагина в rviz представлен на рис. 3.5.



Рис. 3.5. Окно rviz с траекторией движения робота

Пример управления роботом при помощи управления плагина в gazebo представлен на рис. 3.6. Из рисунка видно, что робот находится на том же месте в помещении, что и в rviz.



Рис. 3.6. Окно gazebo со смещённым роботом

## 4. ВЫВОДЫ

В ходе выполнения данной лабораторной работы произведено описание двухколёсного робота с лидаром и тремя ик-сенсорами на языке URDF. Созданный робот соответствует всем критериям, описанных в задании. Также произведён успешный запуск робота в симуляции gazebo и rviz. Управление роботом производилось при помощи плагина Robot Steering.