COMMUTATIVE ALGEBRA

M. ATIF ZAHEER

Contents

1. I	Rings and ideals	1
1.1.	Ideals and ring homomorphisms	1
1.2.	Zero-divisors, nilpotents, and units	2
1.3.	Prime and maximal ideals	2
1.4.	Nilradical and Jacobson radical	3
1.5.	Problems	4

1. Rings and ideals

1.1. Ideals and ring homomorphisms.

Definition 1.1. Let A be a ring. A subset \mathfrak{a} of A is said to be an *ideal* of A if \mathfrak{a} is an additive subgroup of A and $\mathfrak{a}x \subset \mathfrak{a}$ for every $x \in A$.

Proposition 1.2. Let A be a ring and let \mathfrak{a} be an additive subgroup of A. Then \mathfrak{a} is an ideal of A if and only if the multiplication operation

$$(x + \mathfrak{a})(y + \mathfrak{a}) = xy + \mathfrak{a}$$

on the quotient group A/\mathfrak{a} is well-defined.

Proposition 1.3 (characterization of ideals in a quotient ring). Let A be a ring and let \mathfrak{a} be an ideal of A. Then there is an inclusion preserving bijective correspondence between the ideals \mathfrak{b} of A containing \mathfrak{a} and the ideals of A/\mathfrak{a} given by $\mathfrak{b} \mapsto \mathfrak{b}/\mathfrak{a}$.

If $\pi: A \to A/\mathfrak{a}$ is the canonical projection map, then the inverse of the map $\mathfrak{b} \mapsto \mathfrak{b}/\mathfrak{a}$ above is given by $\overline{\mathfrak{b}} \mapsto \pi^{-1}(\overline{\mathfrak{b}})$.

Claim 1.4. Images and preimages of subrings are subrings under a ring homomorphism.

Claim 1.5. Preimage of an ideal under a ring homomorphism is an ideal. The image of an ideal is an ideal of the image ring.

The image of an ideal need not be an ideal. Consider the embedding $\mathbb{Z} \to \mathbb{Q}$.

Theorem 1.6 (Isomorphism theorems).

(a) Let $f: A \to B$ be a ring homomorphism. Then $A/\ker f \cong \operatorname{im} f$.

(b) Let \mathfrak{a} be an ideal and let B be a subring of A. Then $B + \mathfrak{a}$ is a subring of A, $B \cap \mathfrak{a}$ is an ideal of B and

$$(B + \mathfrak{a})/\mathfrak{a} \cong B/(B \cap \mathfrak{a}).$$

(c) If $\mathfrak{a} \subset \mathfrak{b}$ are ideals of a ring A, then

$$(A/\mathfrak{a})/(\mathfrak{b}/\mathfrak{a}) \cong A/\mathfrak{b}.$$

1.2. Zero-divisors, nilpotents, and units.

Claim 1.7. The set of zero-divisors and units are disjoint.

A nilpotent is always a zero-divisor in a nonzero ring but the converse is not true as $\overline{3} \in \mathbb{Z}/6\mathbb{Z}$ and $\overline{x} \in k[x,y]/(xy)$ are both zero-divisors but not nilpotents.

Problem 1.1. Identify nilpotent elements in the ring $\mathbb{Z}/n\mathbb{Z}$.

Solution. An element $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if and only if $\prod_{p|n} p$ divides a.

Proposition 1.8. Let A be a ring $\neq 0$ Then the following are equivalent:

- (a) A is a field.
- (b) The only ideals of A are 0 and (1).
- (c) Every nonzero ring homomorphism from A to a ring B is injective.

1.3. Prime and maximal ideals.

Definition 1.9. Let A be a ring. A proper ideal \mathfrak{p} of A is said to be *prime* if $xy \in A$ implies $x \in A$ or $y \in A$.

Example 1.10. (1) If A is an integral domain, then 0 is a prime ideal of A.

- (2) The prime ideals of \mathbb{Z} are precisely the zero ideal and ideals of the form (p), where p is a prime number.
- (3) The ideal $(x) \subset k[x,y]$ is prime.

Proposition 1.11. An ideal \mathfrak{p} of a ring A is prime if and only if A/\mathfrak{p} is an integral domain.

Claim 1.12. If $f: A \to B$ is a ring homomorphism and \mathfrak{q} is a prime ideal of B, then the inverse image $f^{-1}(\mathfrak{q})$ is also prime.

Proof. The proof is quite simple following directly from the definition but a more instructive proof is as follows: Consider the map $\pi \circ f : A \to B/\mathfrak{q}$, where $\pi : B \to B/\mathfrak{q}$ is the canonical projection. Then $\ker(\pi \circ f) = f^{-1}(\mathfrak{q})$. Thus we have $A/f^{-1}(\mathfrak{q}) \cong (\pi \circ f)(A)$. Since B/\mathfrak{q} is an integral domain, it follows that the subring $(\pi \circ f)(A)$ and hence $A/f^{-1}(\mathfrak{q})$ is an integral domain. This implies that $f^{-1}(\mathfrak{q})$ is prime in A.

Claim 1.13. Let $f: A \to B$ be a surjective ring homomorphism and let \mathfrak{p} be a prime ideal of A such that $\mathfrak{p} \supset \ker f$. Then the image $f(\mathfrak{p})$ is prime in B.

Definition 1.14. Let A be a ring. A proper ideal \mathfrak{m} of A is said to be *maximal* if there is no proper ideal strictly containing \mathfrak{m} .

Proposition 1.15. An ideal \mathfrak{m} of A is maximal if and only if A/\mathfrak{m} is a field.

The inverse image of a maximal ideal need not be maximal. Consider the embedding $\mathbb{Z} \to \mathbb{Q}$. However, the image of a maximal ideal under a surjective ring homomorphism containing the kernel is a maximal ideal.

Theorem 1.16. Every nonzero ring A has a maximal ideal.

Proof. Follows from Zorn's lemma.

Corollary 1.17. If \mathfrak{a} is a proper ideal of a ring A, then there is a maximal ideal of A containing \mathfrak{a} .

Corollary 1.18. Every nonunit element is contained in some maximal ideal.

Problem 1.2. Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1. Show that every prime ideal is maximal.

Solution. Let \mathfrak{p} be a prime ideal of A. Then we know that \mathfrak{p} is contained in some maximal ideal \mathfrak{m} of A. Suppose for the sake of contradiction that \mathfrak{p} is properly contained in \mathfrak{m} and let $x \in \mathfrak{m} \backslash \mathfrak{p}$. Then we have $x^n = x$ for some n > 1 and so $x(x^{n-1} - 1) = 0 \in \mathfrak{p}$. This implies that $x^{n-1} - 1 \in \mathfrak{p}$ as $x \notin \mathfrak{p}$. It now follows that $x^{n-1} - 1 \in \mathfrak{m}$ as $\mathfrak{p} \subset \mathfrak{m}$. Finally, we get that $1 \in \mathfrak{m}$ as $x \in \mathfrak{m}$, a contradiction. Hence we must have $\mathfrak{p} = \mathfrak{m}$.

Another solution: Let \mathfrak{p} be a prime ideal of A. Then A/\mathfrak{p} is an integral domain. Let $x \in A$. Then $x^n = x$ for some n > 1 and so $\overline{x}^n = \overline{x}$. If $\overline{x} \neq 0$, then $\overline{x}^{n-1} = \overline{1}$ and so \overline{x} is a unit. This shows that A/\mathfrak{p} is a field and so \mathfrak{p} is a maximal ideal.

Claim 1.19. If \mathfrak{m} is a proper ideal of a ring A such that $A \setminus \mathfrak{m} \subset A^{\times}$, then \mathfrak{m} is the unique maximal ideal of A.

Proof. Every proper ideal \mathfrak{a} is contained in $A \setminus A^{\times} \subset \mathfrak{m}$.

Claim 1.20. If \mathfrak{m} is a maximal ideal of A such that $1 + \mathfrak{m} \subset A^{\times}$, then \mathfrak{m} is the unique maximal ideal of A.

Proof. If x is a nonunit element not contained in \mathfrak{m} , then $\mathfrak{m} + (x) = (1)$ and so $x \in 1 + \mathfrak{m} \subset A^{\times}$, a contradiction.

Problem 1.3. Show that the only idempotents in a local ring are 0 and 1.

Solution. Let x be an idempotent element in a ring A and \mathfrak{m} be the unique maximal ideal of A. Then $x^2 = x$ and so x(x-1) = 0. Because $\mathfrak{m} = A \setminus A^{\times}$ we get that either x or 1-x is a unit for if both are nonunits, then both lie in \mathfrak{m} which results in $1 \in \mathfrak{m}$, a contradiction. This implies that x = 0 or x = 1.

Claim 1.21. In a PID every nonzero prime ideal is maximal.

1.4. Nilradical and Jacobson radical.

Claim 1.22. The set \mathfrak{N} of all nilpotent elements in a ring A form an ideal. Moreover, the ring A/\mathfrak{N} does not have any nonzero nilpotent elements.

Theorem 1.23. Let A be a ring. Then

$$\mathfrak{N} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p}.$$

Proof. The inclusion \subset is easy. For the other inclusion let $x \in \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p}$. Suppose for the sake of contradiction that x is not nilpotent. Then the collection of all ideals \mathfrak{a} of A for which $x^n \notin \mathfrak{a}$ for every $n \in \mathbb{N}$ has a maximal element \mathfrak{p} by the Zorn's lemma. It is then easy to see that \mathfrak{p} is a prime ideal and so we obtain a contradiction. \square

Corollary 1.24. If \mathfrak{a} is an ideal of A, then

$$\sqrt{\mathfrak{a}} = \bigcap_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \supset \mathfrak{a}}} \mathfrak{p}.$$

Proof. Note that $\sqrt{\mathfrak{a}}$ is the preimage of the nilradical of A/\mathfrak{a} under the canonical projection map $\pi: A \to A/\mathfrak{a}$. Thus we have

$$\sqrt{\mathfrak{a}}=\pi^{-1}(\mathfrak{N}_{A/\mathfrak{a}})=\pi^{-1}\left(\bigcap_{\overline{\mathfrak{p}} ext{ prime}} \overline{\mathfrak{p}}
ight)$$

Note that due to Claim 1.13 there is a one-to-one bijective correspondence between the prime ideals of A containing \mathfrak{a} and the prime ideals of A/\mathfrak{a} . Due to this we get

$$\sqrt{\mathfrak{a}} = \pi^{-1} \left(\bigcap_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \supset \mathfrak{a}}} \mathfrak{p}/\mathfrak{a} \right) = \bigcap_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \supset \mathfrak{a}}} \pi^{-1}(\mathfrak{p}/\mathfrak{a}) = \bigcap_{\substack{\mathfrak{p} \text{ prime} \\ \mathfrak{p} \supset \mathfrak{a}}} \mathfrak{p}.$$

Problem 1.4. Let A be a ring and let \mathfrak{N} be its nilradical. Show that the following are equivalent:

- (a) A has exactly one prime ideal.
- (b) Every element of A is either a unit of a nilpotent.
- (c) A/\mathfrak{N} is a field.

Solution. (a) \Rightarrow (b): Let $x \in A$ be a nonunit. Then x lies in some prime ideal \mathfrak{p} of A. But by assumption \mathfrak{p} is the unique prime ideal of A and so $\mathfrak{N} = \mathfrak{p}$. Thus x is a nilpotent.

- (b) \Rightarrow (c): By assumption we have $A \setminus A^{\times} \subset \mathfrak{N}$. This immediately shows that \mathfrak{N} is the unique maximal ideal of A by Claim 1.19 and so A/\mathfrak{N} is a field.
- (c) \Rightarrow (a): If \mathfrak{p} is a prime ideal of A, then $\mathfrak{N} \subset \mathfrak{p}$. Since \mathfrak{N} is a maximal ideal we get that $\mathfrak{p} = \mathfrak{N}$. Hence, \mathfrak{N} is the unique prime ideal of A.

Theorem 1.25. Let \mathfrak{R} be the Jacobson radical of a ring A. Then $x \in \mathfrak{R}$ if and only if $1 + xy \in A^{\times}$ for every $y \in A$.

1.5. Problems.

Problem 1.5. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Solution. Take y = -x. Then y is also nilpotent. Let $y^n = 0$. Note that

$$1 = 1 - y^n = (1 - y)(1 + y + \dots + y^{n-1}).$$

This shows that 1 - y = 1 + x is a unit. Now if u is a unit, then $u^{-1}x$ is also nilpotent and so it follows that $u(1 + u^{-1}x) = u + x$ is a unit by the previous result.

Problem 1.6. Let A be a ring and let $f = a_0 + a_1x + \cdots + a_nx^n \in A[x]$. Prove that

- (a) f is a unit in A[x] if and only if a_0 is a unit and a_1, \ldots, a_n are nilpotent. (If $g = b_0 + b_1 x + \cdots + b_m x^m$ is the inverse of f, prove by induction on r that $a_n^{r+1}b_{m-r} = 0$ and conclude that a_n is nilpotent.)
- (b) f is nilpotent if and only if a_0, a_1, \ldots, a_n are nilpotent.
- (c) f is a zero divisor if and only if there is a $a \neq 0$ in A such that af = 0. (Choose a polynomial $g = b_0 + b_1 x + \cdots + b_m x^m$ of least degree m such that fg = 0. Then $a_n b_m = 0$, hence $a_n g = 0$ as $a_n g$ annihilates f and has degree f and has degree f show by induction that f and f are f and f and f are f are f and f are f and f are f are f and f are f and f are f and f are f are f are f are f and f are f are f and f are f and f are f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f are f are f are f and f are f are f and f are f are f are f are f are f are f and f are f
- (d) f is said to be *primitive* if $(a_0, a_1, \ldots, a_n) = 1$. Prove that if $f, g \in A[x]$, then fg is primitive if and only if f and g are primitive.

Solution. (a): Let $f = a_n x^n + \cdots + a_1 x + a_0$ be a unit in A[x] and let $g = b_m x^m + \cdots + b_1 x + b_0$ be such that fg = 1. Since the constant term of fg is $a_0 b_0$ we get $a_0 b_0 = 1$ and so a_0 is a unit. We now show that $a_n^{r+1} b_{m-r} = 0$ for $0 \le r \le m$. Clearly we have $a_n b_m = 0$ as it is the coefficient of x^{n+m} in fg. Suppose that $a_n^{s+1} b_{m-s} = 0$ for all $0 \le s < r$, where $r \le m$. Now consider the coefficient of x^{n+m-r} in fg which is given as

$$a_n b_{m-r} + a_{n-1} b_{m-r+1} + \dots + a_{n-r} b_m = 0$$

if $r \leq n$ and

$$a_n b_{m-r} + a_{n-1} b_{m-r+1} + \dots + a_0 b_{m-r+n} = 0$$

if r > n. Multiplying this by a_n^r we get either

$$a_n^{r+1}b_{m-r} + a_{n-1}(a_n^rb_{m-r+1}) + \dots + a_{n-r}a_n^{r-1}(a_nb_m) = 0$$

or

$$a_n^{r+1}b_{m-r} + a_{n-1}(a_n^rb_{m-r+1}) + \dots + a_0a_n^{n-1}(a_n^{r-n+1}b_{m-r+n}) = 0.$$

Because the terms in the parenthesis are all zero by the induction hypothesis we conclude that $a_n^{r+1}b_{m-r}=0$. Thus $a_n^{r+1}b_{m-r}=0$ for all $0 \le r \le m$. In particular, we have $a_n^{m+1}b_0=0$. Because b_0 is a unit it follows that $a_n^{m+1}=0$ and so a_n is nilpotent. Since we know that a unit shifted by a nilpotent element stays a unit, we deduce that $h=f-a_nx^n=a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ is a unit. Repeating the above argument for h we obtain that a_{n-1} is nilpotent. Continuing this way we conclude that a_1,\ldots,a_n are all nilpotent.

For the converse, let f as above and assume that a_1, \ldots, a_n are all nilpotent. Then it follows that a_1x, \ldots, a_nx^n are nilpotent as well, which in turn implies that $p = f - a_0 = a_1x + \cdots + a_nx^n$ is also nilpotent (as the set of nilpotent elements form an ideal). Since a unit shifted by a nilpotent element is again a unit, we get that $f = a_0 + p$ is a unit.

- (b): If a_0, a_1, \ldots, a_n are nilpotent in A, then so are the monomials $a_0, a_1 x, \ldots, a_n x^n$ in A[x] which in turn implies that f is nilpotent (as the set of nilpotent elements is an ideal). Conversely, if f is nilpotent, then so xf. It then follows that 1 + xf is a unit. Since the nonconstant coefficients of 1 + xf are precisely a_0, a_1, \ldots, a_n we conclude that a_0, a_1, \ldots, a_n are all nilpotent.
- (c): Let $f = a_0 + a_1x + \cdots + a_nx^n$ be a zero divisor and $g = b_0 + b_1x + \cdots + b_mx^m$ be the polynomial of least degree m satisfying fg = 0. Since $a_nb_m = 0$, it follows that a_ng has degree strictly smaller than m. As $(a_ng)f = a_n(gf) = 0$, we deduce that by the minimality of the degree of g that $a_ng = 0$. Suppose that $a_{n-s}g = 0$ for $0 \le s < r$ where $r \le n$. Then observe that

$$0 = gf = g(a_n x^n + \dots + a_{n-r+1} x^{n-r+1} + a_{n-r} x^{n-r} + \dots + a_1 x + a_0)$$

$$= (a_n g) x^n + \dots + (a_{n-(r-1)} g) x^{n-r+1} + g(a_{n-r} x^{n-r} + \dots + a_1 x + a_0)$$

$$= g(a_{n-r} x^{n-r} + \dots + a_1 x + a_0).$$

The last inequality implies in particular that $a_{n-r}b_m=0$ and so $a_{n-r}g$ has degree strictly smaller than the degree of g. Because $(a_{n-r}g)f=a_{n-r}(gf)=0$, it follows by the minimality of degree of g that $a_{n-r}g=0$. Thus we have shown that $a_{n-r}g=0$ for $0 \le r \le n$. This gives us $a_{n-r}b_m=0$ for all $0 \le r \le n$ and so $b_m f=0$ as desired.

(d): Suppose that $f, g \in A[x]$ are primitive. Let \mathfrak{a} be the ideal of A generated by the coefficients of fg. Let \overline{f} and \overline{g} be the polynomials in $(A/\mathfrak{a})[x]$ obtained from f and g by reducing the coefficients mod \mathfrak{a} . By the definition of \mathfrak{a} , we have $\overline{fg} = \overline{fg} = 0$. If either $\overline{f} = 0$ or $\overline{g} = 0$, then we would be done for this would imply that the coefficients of f or coefficients of g lie in \mathfrak{a} and since f and g are primitive it would follow that $\mathfrak{a} = (1)$. Suppose for the sake of contradiction that $\overline{f} \neq 0$ and $\overline{g} \neq 0$. This implies that \overline{f} is a zero divisor and so by part (c) there is a nonzero $\overline{b} \in A/\mathfrak{a}$ such that $\overline{b} \overline{f} = \overline{bf} = 0$. If $f = a_0 + a_1 x + \cdots + a_n x^n$, then we have $ba_i \in \mathfrak{a}$ for all i. Since f is primitive, there exist $c_i \in A$ such that

$$\sum_{i=0}^{n} c_i a_i = 1.$$

Multiplying by b we get

$$\sum_{i=0}^{n} c_i(ba_i) = b.$$

Because $ba_i \in \mathfrak{a}$ for each i, it follows that $b \in \mathfrak{a}$, a contradiction as $\overline{b} \neq 0$.

The converse is trivial for the ideal generated by the coefficients of fg is contained in the ideal generated by the coefficients of f and the ideal generated by the coefficients of g and so if fg is primitive, then so are f and g.

Problem 1.7. Show that the nilradical and the Jacobson radical are the same in the ring A[x].

Solution. By definition we have $\mathfrak{N} \subset \mathfrak{R}$. For the other inclusion let $f \in \mathfrak{R}$. Then 1+xf is a unit. It now follows by Problem 1.6(a) that all the coefficients of f are nilpotent which in turn implies by Problem 1.6(b) that f is nilpotent and hence $f \in \mathfrak{N}$.

Problem 1.8. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ be ideals of a ring A and let \mathfrak{p} be a prime ideal of A. Show that if $\mathfrak{a}_1 \cdots \mathfrak{a}_k \subset \mathfrak{p}$, then $\mathfrak{a}_i \subset \mathfrak{p}$ for some $1 \leq i \leq k$. In particular, if $\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_k \subset \mathfrak{p}$, then $\mathfrak{a}_i \subset \mathfrak{p}$ for some $1 \leq i \leq k$.

Solution. Suppose for the sake of contradiction that $\mathfrak{a}_1 \cdots \mathfrak{a}_k \subset \mathfrak{p}$ but $\mathfrak{a}_i \not\subset \mathfrak{p}$ for every $1 \leqslant i \leqslant k$. Choose $x_i \in \mathfrak{a}_i \setminus \mathfrak{p}$ for each $1 \leqslant i \leqslant k$. Then observe that $x_1 \cdots x_k \in \mathfrak{a}_1 \cdots \mathfrak{a}_k$ and so $x_1 \cdots x_k \in \mathfrak{p}$. From this it follows that $x_i \in \mathfrak{p}$ for some $1 \leqslant i \leqslant k$, a contradiction. The second part follows as $\mathfrak{a}_1 \cdots \mathfrak{a}_k \subset \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_k$.

Problem 1.9. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. Prove that

- (a) if \mathfrak{a} is the ideal generated by E, then $V(E) = V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$.
- (b) V(0) = X and $V(1) = \emptyset$.
- (c) if $\{E_i\}_i$ is any family of subsets of A, then

$$V\left(\bigcup_{i} E_{i}\right) = \bigcap_{i} V(E_{i}).$$

(d) $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$ for any ideals $\mathfrak{a}, \mathfrak{b}$ of A.

These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the *Zariski topology*. The topological space X is called the *prime spectrum* of A, and is written spec A

Solution. First note that $V(\cdot)$ is an inclusion reversing operator. Now parts (a)-(c) are trivial following basically from definition. For part (d) note that if $\mathfrak{p} \supset \mathfrak{a} \cap \mathfrak{b}$, then $\mathfrak{p} \supset \mathfrak{a}\mathfrak{b}$ (as $\mathfrak{a}\mathfrak{b} \subset \mathfrak{a} \cap \mathfrak{b}$) and if $\mathfrak{p} \supset \mathfrak{a}\mathfrak{b}$, then $\mathfrak{p} \supset \mathfrak{a}$ or $\mathfrak{p} \supset \mathfrak{b}$ due to Problem 1.8. Finally, if $\mathfrak{p} \in V(\mathfrak{a}) \cup V(\mathfrak{b})$, then $\mathfrak{p} \supset \mathfrak{a}$ or $\mathfrak{p} \supset \mathfrak{b}$ which implies that $\mathfrak{p} \supset \mathfrak{a} \cap \mathfrak{b}$.

Problem 1.10. For each $f \in A$, let $X_f = X \setminus V(f)$, where $X = \operatorname{spec} A$. The sets X_f are open. Show that they form basis of open sets for the Zariski topology on X, and that

- (a) $X_f \cap X_g = X_{fg}$;
- (b) $X_f = \emptyset$ if and only if f is nilpotent;
- (c) $X_f = X$ if and only if f is a unit;
- (d) $X_f = X_g$ if and only if $\sqrt{(f)} = \sqrt{(g)}$;
- (e) X is compact;
- (f) each X_f is compact;
- (g) an open subset of X is compact if and only if it is a finite union of sets X_f .

Solution. (a): Note that

$$X_f \cap X_g = (X \setminus V(f)) \cap (X \setminus V(g)) = X \setminus (V(f) \cup V(g)) = X \setminus V(fg) = X_{fg}$$

(b): Note that $X_f = \emptyset$ if and only if V(f) = X if and only if f lies in every prime ideal of A if and only if f is nilpotent.

(c): Note that $X_f = X$ if and only if $V(f) = \emptyset$ if and only if f is a unit as

$$A \backslash A^{\times} = \bigcup_{\mathfrak{p} \text{ prime}} \mathfrak{p}.$$

(d): Note that $X_f = X_g$ if and only if V(f) = V(g) if and only if

$$\sqrt{(f)} = \bigcap_{\mathfrak{p} \in V(f)} \mathfrak{p} = \bigcap_{\mathfrak{p} \in V(g)} \mathfrak{p} = \sqrt{(g)}$$

as $V(\sqrt{(f)}) = V(f)$ and $V(\sqrt{(g)}) = V(g)$.

(e): Let $\{X_i\}_{i\in I}$ be an open cover of X. Take $X_i = X \setminus V(\mathfrak{a}_i)$, where \mathfrak{a}_i is an ideal of A. Then we have

$$X = \bigcup_{i \in I} X_i = \bigcup_{i \in I} X \setminus V(\mathfrak{a}_i) = X \setminus \bigcap_{i \in I} V(\mathfrak{a}_i) = X \setminus V\left(\bigcup_{i \in I} \mathfrak{a}_i\right).$$

Thus we have

$$V\left(\sum_{i\in I}\mathfrak{a}_i\right)=V\left(\bigcup_{i\in I}\mathfrak{a}_i\right)=\emptyset.$$

Hence, we have $\sum_{i \in I} \mathfrak{a}_i = (1)$ and so

$$\sum_{r=1}^{n} x_{i_r} = 1,$$

where $x_{i_r} \in \mathfrak{a}_{i_r}$ for each $r = 1, \ldots, n$. We thus deduce that

$$\emptyset = V\left(\sum_{r=1}^{n} \mathfrak{a}_{i_r}\right) = V\left(\bigcup_{r=1}^{n} \mathfrak{a}_{i_r}\right).$$

From this we obtain that

$$X = X \backslash V \left(\bigcup_{r=1}^n \mathfrak{a}_{i_r} \right) = X \backslash \bigcap_{r=1}^n V(\mathfrak{a}_{i_r}) = \bigcup_{r=1}^n X_{i_r}.$$