Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра	Систем Уп	равления и Информатики	Группа Р3340

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 2

Выполнил	<u>Алякин С.П</u>		(подпись)
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись)
""	_ 20 <u>17</u> г.	Санкт-Петербург,	20 <u>17</u> г.
Работа выполнена	с оценкой		
Дата зашиты "	" 20) 17 г.	

Цель работы

Изучение частотных характеристик типовых динамических звеньев и способов их построения.

Исходные данные

Таблица 1 – Исходные данные

k	T	ξ
2	0,5	0,15

Сопрягающая частота $\frac{1}{T} = 2$ Входной сигнал $g(t) = g_m \sin \omega t$ Исследуемые типы звеньев:

- 1. Колебательное $W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}$
- 2. Идеальное интегрирующее $W(s) = \frac{k}{s}$
- 3. Изодромное $W(s) = \frac{k(1+Ts)}{s}$

1 Колебательное звено

Частотная передаточная функция для колебательного звена:

$$W(j\omega) = W(s)\big|_{s=j\omega} = \frac{k}{1 - T^2\omega^2 + jT\xi\omega} = \frac{k(1 - T^2\omega^2)}{(1 - T^2\omega^2)^2 + (2T\xi\omega)^2} - j\frac{2T\xi\omega k}{(1 - T^2\omega^2)^2 + (2T\xi\omega)^2}$$
(1)

$$U(\omega) = \frac{k(1 - T^2 \omega^2)}{(1 - T^2 \omega^2)^2 + (2T\xi\omega)^2} = \frac{2 - 0,5\omega^2}{(1 - 0,25\omega^2)^2 + 0,0225\omega^2}$$

$$V(\omega) = -\frac{2T\xi\omega k}{(1 - T^2\omega^2)^2 + (2T\xi\omega)^2} = -\frac{0,3\omega}{(1 - 0,25\omega^2)^2 + 0,0225\omega^2}$$
(3)

$$V(\omega) = -\frac{2T\xi\omega k}{(1 - T^2\omega^2)^2 + (2T\xi\omega)^2} = -\frac{0.3\omega}{(1 - 0.25\omega^2)^2 + 0.0225\omega^2}$$
(3)

$$A(\omega) = \sqrt{U^2(\omega) + V^2(\omega)} = \frac{k}{\sqrt{(1 - T^2\omega^2)^2 + (2T\xi\omega)^2}} = \frac{2}{\sqrt{(1 - 0, 25\omega^2)^2 + 0,0225\omega^2}}$$
(4)

$$\psi(\omega) = \begin{cases} -\arctan \frac{2T\xi\omega}{1 - T^2\omega^2} = -\arctan \frac{0,15\omega}{1 - 0,25\omega^2} & \text{при } \omega \le \frac{1}{T} \\ -\pi - \arctan \frac{2T\xi\omega}{1 - T^2\omega^2} = -\pi - \arctan \frac{0,15\omega}{1 - 0,25\omega^2} & \text{при } \omega > \frac{1}{T} \end{cases}$$
(5)

Рисунок 1 – Временная диаграмма колебательного звена

Таблица 2 – Данные исследования колебательного звена

ω	$\lg \omega$	$A(\omega)$	$L(\omega)$	$\psi(\omega)$
0,2	-0,69	2,02	6,11	-1,74
0,35	-0,45	2,06	6,28	-3,1
0,5	-0,3	2,13	6,57	-4,57
0,71	$0,\!15$	2,27	7,12	-6,95
1	0	2,61	8,33	-11,31
1,41	$0,\!15$	3,67	11,29	-22,81
2	0,3	6,67	$16,\!48$	-90
2,82	$0,\!45$	1,86	5,39	-156,82
3,98	0,6	0,66	-3,61	-168,59
6,31	0,8	0,22	-13,15	-173,97
10	1	0,08	21,94	-176,42

Частотные и логарифмические частотные характеристики приведены на рисунке 2.

(b) **ΑΦЧX**

Рисунок 2 – Характеристики колебательного звена

Построим асимптотическое ЛАЧХ для данного звена:

Рисунок 3 – Асимптотическое ЛАЧХ колебательного звена

2 Идеальное интегрирующее звено

Частотная передаточная функция для идеального интегрирующего звена:

$$W(j\omega) = W(s)\big|_{s=j\omega} = \frac{k}{j\omega} = \frac{jk\omega}{-\omega^2} = -j\frac{k}{\omega}$$
 (6)

$$U(\omega) = 0 \tag{7}$$

$$V(\omega) = \frac{k}{\omega} = \frac{2}{\omega} \tag{8}$$

$$A(\omega) = \frac{2}{\omega} \tag{9}$$

$$L(\omega) = 20 \lg A(\omega) = 20 \lg \frac{2}{\omega} = 20 \lg 2 - 20 \lg \omega$$
 (10)

$$\psi(\omega) = \operatorname{arctg} \frac{V(\omega)}{U(\omega)} = -\operatorname{arctg} \frac{2}{\omega} = -\operatorname{arctg} \infty = -\frac{\pi}{2}$$
 (11)

Таблица 3 – Данные исследования идеального интегрирующего звена

ω	$\lg \omega$	$A(\omega)$	$L(\omega)$	$\psi(\omega)$
0,2	-0,69	10	20	-90
0,35	-0,45	5,71	$15,\!13$	-90
0,5	-0,3	4	12,04	-90
0,71	0,15	2,82	9	-90
1	0	2	6,02	-90
1,41	0,15	1,42	3,05	-90
2	0,3	1	0	-90
2,82	0,45	0,71	-2,97	-90
3,98	0,6	0,5	-6,02	-90
6,31	0,8	0,32	-9,89	-90
10	1	0,2	-13,97	-90

Построим асимптотическое ЛАЧХ для интегрирующего звена:

Рисунок 4 – Асимптотическое ЛАЧХ идеального интегрирующего звена

Рисунок 5 – Характеристики идеального интегрирующего звена

3 Изодромное звено

Частотная характеристика для изодромного звена:

$$W(j\omega) = W(s)\big|_{s=j\omega} = \frac{k(1+jT\omega)}{j\omega} = \frac{-kT\omega^2 + jk\omega}{-\omega^2} = \frac{kT\omega - jk}{\omega} = kT - j\frac{k}{\omega}$$
(12)

$$U(\omega) = kT = 1 \tag{13}$$

$$V(\omega) = -\frac{k}{\omega} = -\frac{2}{\omega} \tag{14}$$

$$A(\omega) = \sqrt{1 + \frac{4}{\omega^2}} \tag{15}$$

$$L(\omega) = 20 \lg \sqrt{1 + \frac{4}{\omega^2}} \tag{16}$$

$$\psi(\omega) = -\arctan\frac{2}{\omega} \tag{17}$$

Таблица 4 – Данные исследования изодромного звена

ω	$\lg \omega$	$A(\omega)$	$L(\omega)$	$\psi(\omega)$
0,2	-0,69	10,05	20,04	-84,29
0,35	-0,45	5,8	14,12	-80,07
0,5	-0,3	4,12	12,29	-75,96
0,71	0,15	2,99	9,51	-70,46
1	0	2,24	7	-63,43
1,41	0,15	1,74	4,81	-54,82
2	0,3	1,41	2,98	-45
2,82	0,45	1,23	1,79	-35,35
3,98	0,6	1,12	0,98	-26,68
6,31	0,8	1,05	0,42	-17,59
10	1	1,02	0,17	-11,31

Рисунок 6 – Характеристики изодормного звена

Рисунок 7 – Асимптотическое ЛАЧХ изодромного звена

Вывод

В данной работе были изучены обычные и логарифмические частотные характеристики типовых динамических звеньев, а так же методы построения асимптотических ЛАЧХ. И было доказано, что асимптотические ЛАЧХ сходятся к построенным в ходе математического моделирования, следовательно, могут быть использованы при разработке систем, так как для их построения практически не требуется вычислительная работа.