What Sets Bayes Apart?

Models for Socio-Environmental Data

Chris Che-Castaldo, Mary B. Collins, N. Thompson Hobbs

June 03, 2019

Housekeeping

- Introductions
- GitHub / Website for course materials
- Getting notes just in time
- Daily schedule
- Lecture / exercise mix
- Individual modeling projects

Pace

- Challenge
- Solutions
 - Working in groups
 - Questions, questions, questions
 - Advanced problems
 - A flexible schedule

Readings

Errata and explanations can be found here

Exercise

What do statements made by journalists, attorneys, and scientists have in common? What sets the statements of scientists apart?

What is this course about?

What is this course about?

Gaining insight about socio-ecological systems by building models

$$[z_i \mid \theta_p]$$

and fitting those models to data

$$[y_i \mid z_i, \theta_d]$$

using Bayesian methods.

3 A	5 B	1 B	4 B	2 A	1 A	4 A	3 B	2 B	5 A	Block 1	
2 A	5 B	4 B	2 B	4 A	3 A	1 A	1 B	3 B	5 A	Block 2	Factorial Arrangement of Treatments in Randomized Complete Bloo Design
1 A	3 B	4 B	5 B	3 A	4 A	2 A	2 B	1 B	5 A	Block 3	
5 A	2 A	1 A	4 A	3 A	1 B	3 B	5 B	4 B	2 B	Block 1	ĺ
5 B	3 B	1 B	2 B	4 B	4 A	3 A	2 A	1 A	5 A	Block 2	Factorial Arrangement of Treatments in Split-Plot Desi

Problems poorly suited to traditional approaches:

- Multiple sources of data
- Multiple sources of uncertainty
- Missing data
- Inference across scales
- Unobservable quantities
- Multimodal data
- Derived quantities
- Forecasting
- Synthesis

SESYNC is dedicated to fostering synthetic, actionable science related to the structure, functioning, and sustainability of socio-environmental systems.

	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
1 variable 1 sample	Examination of a single sample	Procedure for grouping a frequency distribution, Box 2.1: Grouping arthropic for the form of the form		Confidence limits for a percentage, Section 17.1 Runs test for randomness in dichotomized data, Box 18.3
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.2; from an intrinsic hypothesis, Box 17.2 Kolmogorov-Smirrov test of goodness of fit, Box 17.3 Graphic "Tests" for normality: large sample sizes, Box 6.3; small sample sizes transiti test). Box 6.4 Test of sample statistic against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
rariable ≥2 amples	Single classification	Single Classification anyws. Single Classification anyws. Planned comparison of means in anova, 80 v 98. Planned comparison of means in anova, 80 v 98. Single degree of freedom comparisons of means, 80 v 14. 10 Unplanned comparison of means. Therethod, equal sample sizes, 80 v 99. T., GT2, and Hubey-Narmer, unequal sample sizes, 80 v 910. T., and GT2, 80 v 912, multiple confidence limits. Section 14.10 Estimate variance components: unequal sample sizes, 80 v 92. equal sample sizes, 80 v 93. Tests of homogeneity of variances, 80 x 13.1 Tests of openation of means when variances are heterogeneous, 80 x 13.2	Kruskal-Wallis test. Box 13.5 Unplanned comparison of means by a negan-metric STP, Box 17.5	Great for homogeneity of percentages. Boxes 17:3 and 17:8 Comparison of several samples with an expected frequency distribution, Box 17:3 unplanned analysis of replicated tests 1-d goodness of fit, Box 17:3
	Nested classification	Two level nested anova: equal sample sizes, Box 10.1; unequal sample sizes, Box 10.4 Three-level nested anova: equal sample sizes, Box 10.3; unequal sample sizes, Box 10.5		
	Two-way or multi-way classification	Two say arous with replication, Box 11.1; without replication, Box 11.2; unequal but proportional subcless sizes. Box 11.4; with a single missing observation, Box 11.5; with a single missing observation, Box 11.5. Three way anowa, Box 12.1 More than three way classification. Section 12.3 and Box 12.2 Test for nonadhirtyis in a two way anova. Box 13.4	Friedman's method for randomized blocks, Box 13.9	Three way log-linear model, Box 17.9 Randomized blocks for frequency data (repeated testing of the same individuals) Box 17.11

Goals

- Provide principles based understanding
- Enhance intellectual satisfaction
- Foster collaboration
- Build a foundation for self-teaching

Learning outcomes

- Explain basic principles of Bayesian inference.
- Diagram and write out mathematically correct posterior and joint distributions for Bayesian models.
- Explain basics of the Markov chain Monte Carlo (MCMC) algorithm.
- Use software for implementing MCMC.
- Develop and implement hierarchical models.
- Evaluate model fit.
- Understand papers and proposals using Bayesian methods.

Learning outcomes

B. Model specification

Diagram relationship between observed and unobserved.

Write out posterior and joint distributions using general probability notation.

Choose appropriate

probability distributions.

\blacksquare

C. Model implementation

Write full conditional distributions.
Write MCMC sampling algorithm.

Or

Write code for MCMC software.

Implement MCMC on simulated data.

Implement MCMC on real data.

D. Model evaluation and inference

Posterior predictive checks

Probabilistic inference from single model

Model selection, model averaging

Topics

Day 1 - 2

Principles

- Rules of probability
- Distribution theory
- Likelihood
- Moment matching
- Bayes' theorem
- Conjugate priors

Day 3 - 8

Implementation

- MCMC
 - JAGS
 - Regression
 - Hierarchical models
- Model checking

Day 9 - 11

Advanced topics

- Model selection
 - Designed experiments
- Mixture models
- Ordinal regression
- Dynamic models
- Spatial models
- Individual problems

Cross cutting theme

$$\mu_{i} = \frac{mx_{i}^{a}}{h^{a} + x_{i}^{a}}$$

$$[a, h, m, \sigma^{2} \mid \mathbf{y}] \propto \prod_{i=1}^{n} [y_{i} \mid \mu_{i}, \sigma^{2}][a][h][m][\sigma^{2}]$$

```
model{
    a ~ dnorm(0, .0001)
    m ~ dgamma(.01, .01)
    h ~ dgamma(.01, .01)
    sigma ~ dunif(0, 5)
    for (i in 1:length(y)){
        mu[i] <- (m * x[i]^a) / (h^a + x[i]^a)
        y[i] ~ dgamma(mu[i]^2 / sigma^2, mu[i] / sigma^2)
    }
}</pre>
```

Exercise

Describe how Bayesian analysis differs from other types of statistical analysis.

Some notation

- y data
- \bullet θ a parameter or other unknown quantity of interest
- $[y \mid \theta]$ The probability distribution of y conditional on θ
- $[\theta \mid y]$ The probability distribution of θ conditional on y
- $P(y \mid \theta) = p(y \mid \theta) = [y \mid \theta] = f(y \mid \theta) = f(y, \theta)$, different notation that means the same thing.

Confidence envelopes

What sets Bayes apart? An illustration using confidence envelopes.

Notes for this are in the board notes folder.

What do we do in Bayesian modeling?

- We divide the world into things that are observed (y) and things that unobserved (θ) .
- The unobserved quantities (θ) are random variables.
- The data are random variables before they are observed and fixed after they have been observed.
- We seek to understand the probability distribution of θ using fixed observations, i.e., $[\theta \mid y]$.
- Those distributions quantify our uncertainty about θ .

You can understand it

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - ► The chain rule of probability
- Distribution theory
- Markov chain Monte Carlo

