Shortest paths: Floyd-Warshall

CS 2860: Algorithms and Complexity

Magnus Wahlström and Gregory Gutin

October 15, 2017

Shortest paths: All pairs, negative weights

- Saw: Dijkstra, solving:
 - ► Compute shortest paths from single source to all destinations
 - Directed graphs, non-negative weights
- Complications today:
 - 1. Negative weights
 - 2. Computing all distances (from all, to all)
- ► Algorithm: Floyd-Warshall
 - Mystical procedure
 - ► Solution category: Dynamic programming

- Saw: Dijkstra, solving:
 - ► Compute shortest paths from single source to all destinations
 - ▶ Directed graphs, non-negative weights
- Complications today:
 - 1. Negative weights
 - 2. Computing all distances (from all, to all)
- ► Algorithm: Floyd-Warshall
 - Mystical procedure
 - ► Solution category: Dynamic programming

- Saw: Dijkstra, solving:
 - ► Compute shortest paths from single source to all destinations
 - Directed graphs, non-negative weights
- Complications today:
 - 1. Negative weights
 - 2. Computing all distances (from all, to all)
- ► Algorithm: Floyd-Warshall
 - Mystical procedure
 - ► Solution category: Dynamic programming

- Saw: Dijkstra, solving:
 - ► Compute shortest paths from single source to all destinations
 - ▶ Directed graphs, non-negative weights
- Complications today:
 - 1. Negative weights
 - 2. Computing all distances (from all, to all)
- ► Algorithm: Floyd-Warshall
 - Mystical procedure
 - Solution category: Dynamic programming

Negative weights in graph distances

- Negative weights make shortest paths question more complex
- ► Beneficial detours
 - If an arc has negative weight, we may gain by taking a detour to include it
- "Improving" (negative-weight) cycles
 - ▶ If going around a cycle $v_1v_2...v_nv_1$ has negative total weight, there is no sensible "shortest" solution
 - ► We may always take one more pass around the cycle for an even cheaper passage
 - Any path that can go through negative cycle treated as $-\infty$ cost (can be made as low value as you want)
- Can still sensibly compute shortest paths when no such cycle exists

- ► Negative weights make shortest paths question more complex
- Beneficial detours
 - If an arc has negative weight, we may gain by taking a detour to include it
- "Improving" (negative-weight) cycles
 - ▶ If going around a cycle $v_1v_2...v_nv_1$ has negative total weight, there is no sensible "shortest" solution
 - ► We may always take one more pass around the cycle for an even cheaper passage
 - Any path that can go through negative cycle treated as $-\infty$ cost (can be made as low value as you want)
- Can still sensibly compute shortest paths when no such cycle exists

- Negative weights make shortest paths question more complex
- Beneficial detours
 - If an arc has negative weight, we may gain by taking a detour to include it
- "Improving" (negative-weight) cycles
 - ▶ If going around a cycle $v_1v_2...v_nv_1$ has negative total weight, there is no sensible "shortest" solution
 - We may always take one more pass around the cycle for an even cheaper passage
 - Any path that can go through negative cycle treated as $-\infty$ cost (can be made as low value as you want)
- Can still sensibly compute shortest paths when no such cycle exists

- Negative weights make shortest paths question more complex
- Beneficial detours
 - If an arc has negative weight, we may gain by taking a detour to include it
- "Improving" (negative-weight) cycles
 - ▶ If going around a cycle $v_1v_2...v_nv_1$ has negative total weight, there is no sensible "shortest" solution
 - We may always take one more pass around the cycle for an even cheaper passage
 - Any path that can go through negative cycle treated as $-\infty$ cost (can be made as low value as you want)
- Can still sensibly compute shortest paths when no such cycle exists

- Negative weights make shortest paths question more complex
- Beneficial detours
 - If an arc has negative weight, we may gain by taking a detour to include it
- "Improving" (negative-weight) cycles
 - ▶ If going around a cycle $v_1v_2...v_nv_1$ has negative total weight, there is no sensible "shortest" solution
 - We may always take one more pass around the cycle for an even cheaper passage
 - Any path that can go through negative cycle treated as $-\infty$ cost (can be made as low value as you want)
- Can still sensibly compute shortest paths when no such cycle exists

Illustration: Single-source, negative weights

Cycle efe is negative cycle, gets distance $-\infty$ Cycle cdc has negative arc, but positive weight Vertex g inherits distance $-\infty$ from f

- 1. Graph has no negative cycle at all (but negative weights)
 - ▶ Shortest paths computed by reasonable algorithms
- 2. Graph has negative cycle, but not reachable from u or to v
 - ▶ We can still hope to compute a sensible path from u to v
- 3. There is a negative cycle on u or v, or passable on the way from u to v
 - ▶ Shortest path must be given as $-\infty$
- 4. Will focus on graphs with no negative cycle (or on the negative cycle detection problem)

- 1. Graph has no negative cycle at all (but negative weights)
 - ▶ Shortest paths computed by reasonable algorithms
- 2. Graph has negative cycle, but not reachable from u or to v
 - ▶ We can still hope to compute a sensible path from u to v
- 3. There is a negative cycle on u or v, or passable on the way from u to v
 - ▶ Shortest path must be given as $-\infty$
- 4. Will focus on graphs with no negative cycle (or on the negative cycle detection problem)

- 1. Graph has no negative cycle at all (but negative weights)
 - ▶ Shortest paths computed by reasonable algorithms
- 2. Graph has negative cycle, but not reachable from u or to v
 - ▶ We can still hope to compute a sensible path from u to v
- There is a negative cycle on u or v, or passable on the way from u to v
 - ▶ Shortest path must be given as $-\infty$
- 4. Will focus on graphs with no negative cycle (or on the negative cycle detection problem)

- 1. Graph has no negative cycle at all (but negative weights)
 - ▶ Shortest paths computed by reasonable algorithms
- 2. Graph has negative cycle, but not reachable from u or to v
 - ▶ We can still hope to compute a sensible path from u to v
- There is a negative cycle on u or v, or passable on the way from u to v
 - ▶ Shortest path must be given as $-\infty$
- 4. Will focus on graphs with no negative cycle (or on the negative cycle detection problem)

- Negative weights are a real obstacle can't handle by alternative bookkeeping
 - ► For example, adding weight to arcs until all weights are positive warps and destroys the shortest path situation
- 2. Dijkstra's algorithm is essentially unpatchable
 - A central notion is marked vertices we are done with a vertex as soon as we have visited it (no more edge updates can occur)
 - With negative weights, an improving update to v (finding a shorter path) can occur by going through vertices that are further away than v
 - Would need to keep updating until it stabilises
- 3. The problems we investigate
 - ► Compute negative cycle in graph
 - ▶ Compute shortest paths where there are no negative cycles

- Negative weights are a real obstacle can't handle by alternative bookkeeping
 - For example, adding weight to arcs until all weights are positive warps and destroys the shortest path situation
- 2. Dijkstra's algorithm is essentially unpatchable
 - ► A central notion is marked vertices we are done with a vertex as soon as we have visited it (no more edge updates can occur)
 - With negative weights, an improving update to v (finding a shorter path) can occur by going through vertices that are further away than v
 - Would need to keep updating until it stabilises
- 3. The problems we investigate:
 - ► Compute negative cycle in graph
 - Compute shortest paths where there are no negative cycles

- Negative weights are a real obstacle can't handle by alternative bookkeeping
 - For example, adding weight to arcs until all weights are positive warps and destroys the shortest path situation
- 2. Dijkstra's algorithm is essentially unpatchable
 - ► A central notion is marked vertices we are done with a vertex as soon as we have visited it (no more edge updates can occur)
 - With negative weights, an improving update to v (finding a shorter path) can occur by going through vertices that are further away than v
 - Would need to keep updating until it stabilises
- The problems we investigate:
 - ► Compute negative cycle in graph
 - Compute shortest paths where there are no negative cycles

- Negative weights are a real obstacle can't handle by alternative bookkeeping
 - For example, adding weight to arcs until all weights are positive warps and destroys the shortest path situation
- 2. Dijkstra's algorithm is essentially unpatchable
 - ► A central notion is marked vertices we are done with a vertex as soon as we have visited it (no more edge updates can occur)
 - With negative weights, an improving update to v (finding a shorter path) can occur by going through vertices that are further away than v
 - Would need to keep updating until it stabilises
- 3. The problems we investigate:
 - Compute negative cycle in graph
 - ► Compute shortest paths where there are no negative cycles

All-pairs shortest paths problem

- ► Want to know all distances between pairs of vertices
- ► Representation (e.g.) array distance[u][v]
- ▶ Note $\Omega(n^2)$ data
 - ▶ Unavoidable: Consider complete graph with edge weights
 - ▶ Takes $\Theta(n^2)$ numbers to store
- ► To recreate the paths, would also need parentOf data
 - ► Example: array previousNode[u][w]=v records that on the shortest path from u to w, the last node before w is v
 - ► Like parentOf basically, previousNode[u][*] will encode a single-source tree rooted in u
- ▶ Will focus on distances, not to overload with complications

- ► Want to know all distances between pairs of vertices
- ► Representation (e.g.) array distance[u][v]
- ▶ Note $\Omega(n^2)$ data
 - ▶ Unavoidable: Consider complete graph with edge weights
 - ▶ Takes $\Theta(n^2)$ numbers to store
- To recreate the paths, would also need parentOf data
 - ► Example: array previousNode[u][w]=v records that on the shortest path from u to w, the last node before w is v
 - ► Like parentOf basically, previousNode[u][*] will encode a single-source tree rooted in u
- ▶ Will focus on distances, not to overload with complications

- ► Want to know all distances between pairs of vertices
- ► Representation (e.g.) array distance[u][v]
- ▶ Note $\Omega(n^2)$ data
 - ▶ Unavoidable: Consider complete graph with edge weights
 - ▶ Takes $\Theta(n^2)$ numbers to store
- To recreate the paths, would also need parentOf data
 - ► Example: array previousNode[u][w]=v records that on the shortest path from u to w, the last node before w is v
 - Like parentOf basically, previousNode[u][*] will encode a single-source tree rooted in u
- ▶ Will focus on distances, not to overload with complications

- ► Want to know all distances between pairs of vertices
- ► Representation (e.g.) array distance[u][v]
- ▶ Note $\Omega(n^2)$ data
 - ▶ Unavoidable: Consider complete graph with edge weights
 - ▶ Takes $\Theta(n^2)$ numbers to store
- To recreate the paths, would also need parentOf data
 - ► Example: array previousNode[u][w]=v records that on the shortest path from u to w, the last node before w is v
 - ► Like parentOf basically, previousNode[u][*] will encode a single-source tree rooted in u
- ▶ Will focus on distances, not to overload with complications

Computing all-pairs shortest paths

- ► Simple solution: Compute shortest paths from v, for every vertex v
 - Non-negative weights: May use Dijkstra, time $\mathcal{O}(|V| \cdot |E| \cdot \log |V|)$
 - ▶ Negative weights single-source paths: More expensive to compute, but algorithm exists (total time $\mathcal{O}(|V|^2 \cdot |E|)$)
- Will see faster algorithms, making gains by computing all distances in parallel
 - 1. Simple, slower mock-up algorithm
 - 2. Floyd-Warshall

- ► Let's fill out a large table distance(u,v,d), storing the shortest path from u to v with at most d steps
- ▶ Fill out by induction: First steps easy
 - 1. When d=0: distance(u,u,0)=0, otherwise distance(u,v,0)= ∞ , u \neq v
 - When d=1: distance(u,v,1)=weight(uv) if u ≠ v and the arc uv exists
- ► Future steps build on past steps
 - distance(u,v,d+1) = min(distance(u,v,d),
 min distance(u,w,d)+weight(wv)), over all arcs wv
- ▶ One iteration: There are n^2 pairs to fill in, each pair requires looking at $\mathcal{O}(n)$ further values
- ▶ Total time $\Theta(n^3)$ to complete one iteration

- ► Let's fill out a large table distance(u,v,d), storing the shortest path from u to v with at most d steps
- ▶ Fill out by induction: First steps easy
 - 1. When d=0: distance(u,u,0)=0, otherwise distance(u,v,0)= ∞ , u \neq v
 - When d=1: distance(u,v,1)=weight(uv) if u ≠ v and the arc uv exists
- ► Future steps build on past steps
 - distance(u,v,d+1) = min(distance(u,v,d),
 min distance(u,w,d)+weight(wv)), over all arcs wv
- ▶ One iteration: There are n^2 pairs to fill in, each pair requires looking at $\mathcal{O}(n)$ further values
- ▶ Total time $\Theta(n^3)$ to complete one iteration

- ► Let's fill out a large table distance(u,v,d), storing the shortest path from u to v with at most d steps
- ▶ Fill out by induction: First steps easy
 - 1. When d=0: distance(u,u,0)=0, otherwise distance(u,v,0)= ∞ , u \neq v
 - 2. When d=1: distance(u,v,1)=weight(uv) if $u \neq v$ and the arc uv exists
- Future steps build on past steps
 - ▶ distance(u,v,d+1) = min(distance(u,v,d), min distance(u,w,d)+weight(wv)), over all arcs wv
- ▶ One iteration: There are n^2 pairs to fill in, each pair requires looking at $\mathcal{O}(n)$ further values
- ▶ Total time $\Theta(n^3)$ to complete one iteration

- ► Let's fill out a large table distance(u,v,d), storing the shortest path from u to v with at most d steps
- ▶ Fill out by induction: First steps easy
 - 1. When d=0: distance(u,u,0)=0, otherwise distance(u,v,0)= ∞ , u \neq v
 - When d=1: distance(u,v,1)=weight(uv) if u ≠ v and the arc uv exists
- Future steps build on past steps
 - distance(u,v,d+1) = min(distance(u,v,d),
 min distance(u,w,d)+weight(wv)), over all arcs wv
- ▶ One iteration: There are n^2 pairs to fill in, each pair requires looking at $\mathcal{O}(n)$ further values
- ▶ Total time $\Theta(n^3)$ to complete one iteration

Completing and using the distance info

- Observe: Every sensible path has length at most n
- Therefore
 - ▶ After *n* iterations, time $\mathcal{O}(n^4)$, all sensible paths have been found
 - ► The only paths still improving after > n steps must contain a cycle
- Detects negative cycles:
 - ▶ distance(u,u,d)< 0 for some $d \le n$, vertex u if and only if there is a negative cycle
- ▶ If there are no negative cycles,

contains the shortest path data for all pairs of vertices u, v.

Completing and using the distance info

- Observe: Every sensible path has length at most n
- Therefore
 - ▶ After *n* iterations, time $\mathcal{O}(n^4)$, all sensible paths have been found
 - ► The only paths still improving after > n steps must contain a cycle
- Detects negative cycles:
 - ▶ distance(u,u,d)< 0 for some $d \le n$, vertex u if and only if there is a negative cycle
- ▶ If there are no negative cycles,

contains the shortest path data for all pairs of vertices u, v.

Completing and using the distance info

- Observe: Every sensible path has length at most n
- Therefore
 - ▶ After *n* iterations, time $\mathcal{O}(n^4)$, all sensible paths have been found
 - ► The only paths still improving after > n steps must contain a cycle
- Detects negative cycles:
 - ▶ distance(u,u,d)< 0 for some $d \le n$, vertex u if and only if there is a negative cycle
- ▶ If there are no negative cycles,

contains the shortest path data for all pairs of vertices u, v.

Dynamic programming strategy

- Dynamic programming is an advanced algorithm design principle (not fully covered in this course)
- Rough principle: Add extra memory use to speed up repetitive or complex computations
- ▶ In the mock-up:
 - ► Wanted the table distance(u,v,n) as final result
 - ▶ Used n-1 temporary tables distance(u,v,d) to produce it
 - ▶ Interpretation distance(u,v,d) stores path of at most d steps
- ► Floyd-Warshall:
 - ▶ Tables $\delta^t(i,j)$ storing shortest paths using only certain vertices
 - ▶ Build towards $\delta^n(i,j)$ which just stores shortest paths

Dynamic programming strategy

- Dynamic programming is an advanced algorithm design principle (not fully covered in this course)
- Rough principle: Add extra memory use to speed up repetitive or complex computations
- ▶ In the mock-up:
 - ► Wanted the table distance(u,v,n) as final result
 - ▶ Used n-1 temporary tables distance(u,v,d) to produce it
 - ▶ Interpretation distance(u,v,d) stores path of at most d steps
- ► Floyd-Warshall:
 - ▶ Tables $\delta^t(i,j)$ storing shortest paths using only certain vertices
 - ▶ Build towards $\delta^n(i,j)$ which just stores shortest paths

Dynamic programming strategy

- Dynamic programming is an advanced algorithm design principle (not fully covered in this course)
- Rough principle: Add extra memory use to speed up repetitive or complex computations
- ▶ In the mock-up:
 - Wanted the table distance(u,v,n) as final result
 - ▶ Used n-1 temporary tables distance(u,v,d) to produce it
 - ► Interpretation distance(u,v,d) stores path of at most d steps
- ► Floyd-Warshall:
 - ▶ Tables $\delta^t(i,j)$ storing shortest paths using only certain vertices
 - ▶ Build towards $\delta^n(i,j)$ which just stores shortest paths

Dynamic programming strategy

- Dynamic programming is an advanced algorithm design principle (not fully covered in this course)
- Rough principle: Add extra memory use to speed up repetitive or complex computations
- In the mock-up:
 - Wanted the table distance(u,v,n) as final result
 - ▶ Used n-1 temporary tables distance(u,v,d) to produce it
 - ► Interpretation distance(u,v,d) stores path of at most d steps
- Floyd-Warshall:
 - ▶ Tables $\delta^t(i,j)$ storing shortest paths using only certain vertices
 - ▶ Build towards $\delta^n(i,j)$ which just stores shortest paths

Floyd-Warshall

- ▶ Graph G = (V, E), rename vertices $V = \{1, 2, ..., n\}$
- ▶ Write weight(ij) for weight of arc $ij \in E$, if exists, otherwise weight(ij) := ∞
- ▶ Temporary tables δ_{ij}^t , meaning Shortest path from i to j, if all intermediate vertices (i.e., other than i or j) have index at most t.
- ► As with the mock-up example:
 - 1. Can compute base case easily
 - 2. Can use tables $\delta^t(i,j)$ to compute $\delta^{t+1}(i,j)$
 - 3. Once we know $\delta^n(i,j)$, we are done
- ► Base case

$$\delta^0(i,j) = \mathsf{weight}(ij)$$

Floyd-Warshall

- ▶ Graph G = (V, E), rename vertices $V = \{1, 2, ..., n\}$
- ▶ Write weight(ij) for weight of arc $ij \in E$, if exists, otherwise weight(ij) := ∞
- ► Temporary tables δ_{ij}^t , meaning

 Shortest path from i to j, if all intermediate vertices (i.e., other than i or j) have index at most t.
- As with the mock-up example:
 - 1. Can compute base case easily
 - 2. Can use tables $\delta^t(i,j)$ to compute $\delta^{t+1}(i,j)$
 - 3. Once we know $\delta^n(i,j)$, we are done
- ► Base case

$$\delta^0(i,j) = weight(ij)$$

Floyd-Warshall

- ▶ Graph G = (V, E), rename vertices $V = \{1, 2, ..., n\}$
- ▶ Write weight(ij) for weight of arc $ij \in E$, if exists, otherwise weight(ij) := ∞
- ▶ Temporary tables δ_{ij}^t , meaning Shortest path from i to j, if all intermediate vertices (i.e., other than i or j) have index at most t.
- As with the mock-up example:
 - 1. Can compute base case easily
 - 2. Can use tables $\delta^t(i,j)$ to compute $\delta^{t+1}(i,j)$
 - 3. Once we know $\delta^n(i,j)$, we are done
- ▶ Base case

$$\delta^0(i,j) = \mathsf{weight}(ij)$$

with
$$\delta^0(i,i) = 0$$
.

Floyd-Warshall: Recursive case

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

- ▶ Values $\delta^{k-1}(i,j)$ store information about paths whose internal vertices come from the set $\{1,\ldots,k-1\}$
- ▶ To compute $\delta^k(i,j)$, we need to add information about paths where also k may be internal
- ► Two varieties:
 - 1. New path does not use k: $\delta^k(i,j) = \delta^{k-1}(i,j)$
 - 2. New path uses k: Break new path into before k and after k (see figure), getting

$$\delta^k(i,j) = \delta^{k-1}(i,k) + \delta^{k-1}(k,j)$$

Floyd-Warshall: Recursive case

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

- ▶ Values $\delta^{k-1}(i,j)$ store information about paths whose internal vertices come from the set $\{1,\ldots,k-1\}$
- ▶ To compute $\delta^k(i,j)$, we need to add information about paths where also k may be internal
- ► Two varieties:
 - 1. New path does not use k: $\delta^k(i,j) = \delta^{k-1}(i,j)$
 - 2. New path uses k: Break new path into before k and after k (see figure), getting

$$\delta^{k}(i,j) = \delta^{k-1}(i,k) + \delta^{k-1}(k,j)$$

Floyd-Warshall: Recursive case

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

- ▶ Values $\delta^{k-1}(i,j)$ store information about paths whose internal vertices come from the set $\{1,\ldots,k-1\}$
- ▶ To compute $\delta^k(i,j)$, we need to add information about paths where also k may be internal
- Two varieties:
 - 1. New path does not use k: $\delta^k(i,j) = \delta^{k-1}(i,j)$
 - 2. New path uses k: Break new path into before k and after k (see figure), getting

$$\delta^{k}(i,j) = \delta^{k-1}(i,k) + \delta^{k-1}(k,j)$$

Algorithm: Floyd-Warshall

1. Initialise:

```
1.1 \delta^0(i, i) = 0
1.2 \delta^0(i, j) =weight(ij), otherwise
```

- 2. For k=1 to n:
 - 2.1 Create the table $\delta^k(i,j)$
 - 2.2 For every pair $i, j \in V$, compute

$$\delta^{k}(i,j) = \min(\delta^{k-1}(i,j), \quad \delta^{k-1}(i,k) + \delta^{k-1}(k,j))$$

3. Return the values $\delta^n(i,j)$ as final distances

Graph contains negative cycle if and only if $\delta^k(i,i) < 0$ at some point.

Time: Obviously $\Theta(n^3)$

Algorithm: Floyd-Warshall

1. Initialise:

- 1.1 $\delta^0(i, i) = 0$ 1.2 $\delta^0(i, j)$ =weight(ij), otherwise
- 2. For k=1 to n:
 - 2.1 Create the table $\delta^k(i,j)$
 - 2.2 For every pair $i, j \in V$, compute

$$\delta^{k}(i,j) = \min(\delta^{k-1}(i,j), \quad \delta^{k-1}(i,k) + \delta^{k-1}(k,j))$$

3. Return the values $\delta^n(i,j)$ as final distances

Graph contains negative cycle if and only if $\delta^k(i,i) < 0$ at some point.

Time: Obviously $\Theta(n^3)$.

Example for Floyd-Warshall

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(2)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 1 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

 $\Pi^{(k)}$ entries $\pi^{(k)}_{ij}$ are predecessors of j on the current best path from i

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad \Pi^{(3)} = \begin{pmatrix} \text{NIL} & 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(4)} = \begin{pmatrix} \text{NIL} & 1 & 4 & 2 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

Using all $\Pi^{(k)}$ one can get the shortest path from i to j

- ► Single source, unit weights:
- Single source, non-negative weights:
- Single source, arbitrary weights: Omitted (see below)
- ▶ All pairs, arbitrary weights but no negative cycles:
- Omitted:
 - Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

- ► Single source, unit weights:
 - ▶ BFS runs in $\mathcal{O}(|E|)$ time
- Single source, non-negative weights:
- Single source, arbitrary weights: Omitted (see below)
- All pairs, arbitrary weights but no negative cycles:
- Omitted:
 - ▶ Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

- ► Single source, unit weights:
 - ▶ BFS runs in $\mathcal{O}(|E|)$ time
- Single source, non-negative weights:
 - ▶ Dijkstra, in $\mathcal{O}(|E|\log|V|)$ or $\mathcal{O}(|E|+|V|\log|V|)$ or $\mathcal{O}(|V|^2)$ time (basic priority queue, Fibonacci heap, no priority queue)
- Single source, arbitrary weights: Omitted (see below)
- ▶ All pairs, arbitrary weights but no negative cycles:
- Omitted:
 - ▶ Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

- ► Single source, unit weights:
 - ▶ BFS runs in $\mathcal{O}(|E|)$ time
- Single source, non-negative weights:
 - ▶ Dijkstra, in $\mathcal{O}(|E|\log|V|)$ or $\mathcal{O}(|E|+|V|\log|V|)$ or $\mathcal{O}(|V|^2)$ time (basic priority queue, Fibonacci heap, no priority queue)
- Single source, arbitrary weights: Omitted (see below)
- ▶ All pairs, arbitrary weights but no negative cycles:
- Omitted:
 - ▶ Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

- Single source, unit weights:
 - ▶ BFS runs in $\mathcal{O}(|E|)$ time
- Single source, non-negative weights:
 - ▶ Dijkstra, in $\mathcal{O}(|E|\log|V|)$ or $\mathcal{O}(|E|+|V|\log|V|)$ or $\mathcal{O}(|V|^2)$ time (basic priority queue, Fibonacci heap, no priority queue)
- ► Single source, arbitrary weights: Omitted (see below)
- ▶ All pairs, arbitrary weights but no negative cycles:
 - ▶ Floyd-Warshall, in $\mathcal{O}(|V|^3)$ time
 - Repeated single-source algorithm, in special cases
- Omitted:
 - ▶ Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

- Single source, unit weights:
 - ▶ BFS runs in $\mathcal{O}(|E|)$ time
- Single source, non-negative weights:
 - ▶ Dijkstra, in $\mathcal{O}(|E|\log|V|)$ or $\mathcal{O}(|E|+|V|\log|V|)$ or $\mathcal{O}(|V|^2)$ time (basic priority queue, Fibonacci heap, no priority queue)
- ► Single source, arbitrary weights: Omitted (see below)
- ▶ All pairs, arbitrary weights but no negative cycles:
 - ▶ Floyd-Warshall, in $\mathcal{O}(|V|^3)$ time
 - ► Repeated single-source algorithm, in special cases
- Omitted:
 - ▶ Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

- Single source, unit weights:
 - ▶ BFS runs in $\mathcal{O}(|E|)$ time
- Single source, non-negative weights:
 - ▶ Dijkstra, in $\mathcal{O}(|E|\log|V|)$ or $\mathcal{O}(|E|+|V|\log|V|)$ or $\mathcal{O}(|V|^2)$ time (basic priority queue, Fibonacci heap, no priority queue)
- ► Single source, arbitrary weights: Omitted (see below)
- ▶ All pairs, arbitrary weights but no negative cycles:
 - ▶ Floyd-Warshall, in $\mathcal{O}(|V|^3)$ time
 - ► Repeated single-source algorithm, in special cases
- Omitted:
 - ▶ Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

- Single source, unit weights:
 - ▶ BFS runs in $\mathcal{O}(|E|)$ time
- Single source, non-negative weights:
 - ▶ Dijkstra, in $\mathcal{O}(|E|\log|V|)$ or $\mathcal{O}(|E|+|V|\log|V|)$ or $\mathcal{O}(|V|^2)$ time (basic priority queue, Fibonacci heap, no priority queue)
- ► Single source, arbitrary weights: Omitted (see below)
- ▶ All pairs, arbitrary weights but no negative cycles:
 - ▶ Floyd-Warshall, in $\mathcal{O}(|V|^3)$ time
 - ► Repeated single-source algorithm, in special cases
- Omitted:
 - Directed Acyclic Graphs, special-purpose algorithms
 - ▶ Bellman-Ford: Single source, arbitrary weights

Negative edge weights: Application

Illustration: Currency exchange

- Have: Exchange rates offered by different agences
 - ▶ 1 GBP \rightarrow 1.4 USD
 - ▶ 1 USD → 0.7 GBP
 - ▶ 1 Mexican Peso → 0.056 USD
 - ▶ 1 GBP \rightarrow 9.4 Chinese Yuan
 - **•** ...
- Seek most profitable exchange path
 - ▶ Example: 1 Peso \rightarrow 0.056 USD \rightarrow 0.056 \cdot 0.7 GBP \rightarrow 0.056 \cdot 0.7 \cdot 9.4 Yuan
 - ▶ Makes path from 1 Peso to 0.368 Yuan
- Arbitrage options
 - ▶ What if a black market dealer offers 3 Peso per Yuan?
 - ▶ $0.368 \cdot 3 = 1.104 > 1$ Peso per Peso \Rightarrow profit!

Illustration: Currency exchange

- Have: Exchange rates offered by different agences
 - ▶ 1 GBP \rightarrow 1.4 USD
 - ▶ 1 USD → 0.7 GBP
 - ▶ 1 Mexican Peso → 0.056 USD
 - ▶ 1 GBP \rightarrow 9.4 Chinese Yuan
 - **.** . . .
- Seek most profitable exchange path
 - ► Example: 1 Peso \rightarrow 0.056 USD \rightarrow 0.056 \cdot 0.7 GBP \rightarrow 0.056 \cdot 0.7 \cdot 9.4 Yuan
 - ▶ Makes path from 1 Peso to 0.368 Yuan
- ► Arbitrage options
 - ▶ What if a black market dealer offers 3 Peso per Yuan?
 - ▶ $0.368 \cdot 3 = 1.104 > 1$ Peso per Peso \Rightarrow profit!

Illustration: Currency exchange

- Have: Exchange rates offered by different agences
 - ▶ 1 GBP \rightarrow 1.4 USD
 - ▶ 1 USD → 0.7 GBP
 - ▶ 1 Mexican Peso → 0.056 USD
 - ▶ 1 GBP \rightarrow 9.4 Chinese Yuan
 - **.** . . .
- Seek most profitable exchange path
 - ► Example: 1 Peso \rightarrow 0.056 USD \rightarrow 0.056 \cdot 0.7 GBP \rightarrow 0.056 \cdot 0.7 \cdot 9.4 Yuan
 - ▶ Makes path from 1 Peso to 0.368 Yuan
- Arbitrage options
 - What if a black market dealer offers 3 Peso per Yuan?
 - ▶ $0.368 \cdot 3 = 1.104 > 1$ Peso per Peso \Rightarrow profit!

- Casting the currency exchange situation as a graph problem
 - 1. Instead of GBP \rightarrow USD multiplier of 1.4...
 - 2. Create arc from GBP to USD, of weight $-\log 1.4$
 - 3. Negative weight ⇔ less valuable target currency
 - 4. Rate 1.0 gets weight 0, rate 2.0 weight -1
- ► Exchange rate multiplication becomes addition of logarithms
 - ► Two-step conversion from USD to Yuan 0.7 · 9.4
 - $-\log(0.7 \cdot 9.4) = (-\log 0.7) + (-\log 9.4)$
 - $-\log 0.7 = 0.51$ and $-\log 9.4 = -3.23$
- Now we have:
 - 1. Best exchange rate $A \rightarrow B$ found via shortest path from A to B
 - 2. Arbitrage option (gaining cycle) found if and only if negative cycle cycle where the edge weights sum to less than 0

- Casting the currency exchange situation as a graph problem
 - 1. Instead of GBP \rightarrow USD multiplier of 1.4...
 - 2. Create arc from GBP to USD, of weight $-\log 1.4$
 - 3. Negative weight ⇔ less valuable target currency
 - 4. Rate 1.0 gets weight 0, rate 2.0 weight -1
- ► Exchange rate multiplication becomes addition of logarithms
 - ► Two-step conversion from USD to Yuan 0.7 · 9.4
 - $-\log(0.7 \cdot 9.4) = (-\log 0.7) + (-\log 9.4)$
 - $ightharpoonup -\log 0.7 = 0.51 \text{ and } -\log 9.4 = -3.23$
- Now we have:
 - 1. Best exchange rate $A \rightarrow B$ found via shortest path from A to B
 - 2. Arbitrage option (gaining cycle) found if and only if negative cycle cycle where the edge weights sum to less than 0

- Casting the currency exchange situation as a graph problem
 - 1. Instead of GBP \rightarrow USD multiplier of 1.4...
 - 2. Create arc from GBP to USD, of weight $-\log 1.4$
 - 3. Negative weight ⇔ less valuable target currency
 - 4. Rate 1.0 gets weight 0, rate 2.0 weight -1
- ► Exchange rate multiplication becomes addition of logarithms
 - ► Two-step conversion from USD to Yuan 0.7 · 9.4
 - $-\log(0.7\cdot 9.4) = (-\log 0.7) + (-\log 9.4)$
 - $-\log 0.7 = 0.51$ and $-\log 9.4 = -3.23$
- Now we have:
 - 1. Best exchange rate $A \rightarrow B$ found via shortest path from A to B
 - 2. Arbitrage option (gaining cycle) found if and only if negative cycle cycle where the edge weights sum to less than 0

- Casting the currency exchange situation as a graph problem
 - 1. Instead of GBP \rightarrow USD multiplier of 1.4...
 - 2. Create arc from GBP to USD, of weight $-\log 1.4$
 - 3. Negative weight ⇔ less valuable target currency
 - 4. Rate 1.0 gets weight 0, rate 2.0 weight -1
- Exchange rate multiplication becomes addition of logarithms
 - ► Two-step conversion from USD to Yuan 0.7 · 9.4
 - $-\log(0.7 \cdot 9.4) = (-\log 0.7) + (-\log 9.4)$
 - $-\log 0.7 = 0.51$ and $-\log 9.4 = -3.23$
- ▶ Now we have:
 - 1. Best exchange rate $A \rightarrow B$ found via shortest path from A to B
 - 2. Arbitrage option (gaining cycle) found if and only if negative cycle cycle where the edge weights sum to less than 0