CS 580 ALGORITHM DESIGN AND ANALYSIS

Max flow - Min cut

Vassilis Zikas

TODAY

- Maxflow Mincut!
 - Really important algorithm!
 - Tons of applications (both in theory and practice)
 - Cornerstone of combinatorial optimization

- Input: Flow network.
 - Abstraction for material flowing through the edges.
 - \circ G = (V, E) = directed graph, no parallel edges.
 - Two distinguished nodes: s = source, t = sink.
 - c(e) = capacity of edge e.

- An s-t cut is a partition (A,B) of the vertices such that $s \in A$ and $t \in B$
- Capacity of a cut: $cap(A, B) = \sum_{e=(u,v): u \in A, v \in B} c_e$

- An s-t cut is a partition (A,B) of the vertices such that $s \in A$ and $t \in B$
- Capacity of a cut: $cap(A, B) = \sum_{e=(u,v): u \in A, v \in B} c_e$

- An s-t cut is a partition (A,B) of the vertices such that $s \in A$ and $t \in B$
- Capacity of a cut: $cap(A, B) = \sum_{e=(u,v): u \in A, v \in B} c_e$

Capacity = 15+4+8+15+9=51

• Problem: find the s-t cut of minimum capacity

- Dfn: An s t flow is a function that satisfies:
 - ∘ (capacity) For each e ∈ E: 0 ≤ f(e) ≤ c(e)
 - (flow conservation) For each $v \in V \setminus \{s, t\}$: $\sum_{e \text{ in } v} f(e) = \sum_{e \text{ out of } v} f(e)$
- Value of flow: $v(f) = \sum_{e \text{ out of } s} f(e)$

MAX FLOW PROBLEM

• Problem: find the s - t flow of maximum value

- Lemma: Let f be any valid s t flow. Let
 (A, B) be any s t cut. Then, the net flow
 across the cut is equal to the amount
 leaving s
- Proof:
- $v(f) = \sum_{e \text{ out of } s} f(e) + 0$

- Lemma: Let f be any valid s t flow. Let
 (A, B) be any s t cut. Then, the net flow
 across the cut is equal to the amount
 leaving s
- Proof:

•
$$v(f) = \sum_{e \text{ out of } s} f(e) + \mathbf{0}$$

Flow conservation

•
$$0 = \sum_{v \in A \setminus \{s\}} (\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e))$$

- Lemma: Let f be any valid s t flow. Let (A, B) be any s t cut. Then, the net flow across the cut is equal to the amount leaving s
- Proof:

•
$$v(f) = \sum_{e \text{ out of } s} f(e) + 0$$

$$v(f) = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

Flow in to *s* is zero

- Lemma: Let f be any valid s t flow. Let
 (A, B) be any s t cut. Then, the net flow
 across the cut is equal to the amount
 leaving s
- Proof:

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

FLOWS AND CUTS

Weak duality: Let f be any flow and let
 (A, B) be any s - t cut. The value of f is at
 most the capacity of the cut

FLOWS AND CUTS

- Proof of weak duality
- $v(f) = \sum_{e \text{ out of } A} f(e) \sum_{e \text{ in to } A} f(e)$
- $\leq \sum_{e \ out \ of \ A} f(e)$
- $\leq \sum_{e \ out \ of \ A} c(e)$
- = cap(A, B)

FLOWS AND CUTS

- Weak duality: Let f be any flow and let
 (A, B) be any s t cut. The value of f is at
 most the capacity of the cut
- Corollary: Let f be any flow and let (A, B) be any s t cut. If v(f) = cap(A, B) then f is a max flow and (A, B) is a min cut!

- Natural greedy algorithm
 - Start with an empty flow: f(e) = 0 for all $e \in E$
 - Find s t path where each edge has f(e) < c(e)
 - Augment flow along the path
 - Repeat until you get stuck

- Natural greedy algorithm
 - ∘ Start with an empty flow: f(e) = 0 for all $e \in E$
 - Find s t path where each edge has f(e) < c(e)
 - Augment flow along the path
 - Repeat until you get stuck

- Natural greedy algorithm
 - ∘ Start with an empty flow: f(e) = 0 for all $e \in E$
 - Find s t path where each edge has f(e) < c(e)
 - Augment flow along the path
 - Repeat until you get stuck

• Local optimality ≠ Global optimality

RESIDUAL GRAPH

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e).

- Residual edge.
 - "Undo" flow sent.
 - $e = (u, v) \text{ and } e^R = (v, u).$
 - Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

- Residual graph: $G_f = (V, E_f)$.
 - Residual edges with positive residual capacity.
 - $\circ \quad E_f = \{e : f(e) < c(e)\} \ \cup \ \{e^R : f(e) > 0\}.$

FORD-FULKERSON DEMO

AUGMENTING PATH ALGORITHM

- Augment(f, c, path P)
 - \circ *b* =bottleneck of *P*
 - For each $e \in P$:
 - If $e \in E$: f(e) = f(e) + b
 - Else: $f(e^R) = f(e^R) b$

(forward edge)

(reverse edge)

- Ford-Fulkerson (G, s, t, c)
 - For each $e \in E$: f(e) = 0
 - \circ G_f = residual graph
 - ∘ While ∃ residual path *P*:
 - f = Augment(f, c, P)
 - Update G_f

AUGMENTING PATH THEOREM

- Theorem: Flow f is a max-flow iff there are no augmenting paths
- Max-flow min-cut theorem: The value of the max flow is equal to the value of the min cut!
- We will prove both simultaneously by showing that the following are equivalent:
 - i. There exists a cut (A, B) such that v(f) = cap(A, B)
 - ii. Flow f is a max flow
 - iii. There is no augmenting path relative to f

MAX-FLOW MIN-CUT

- $(i) \rightarrow (ii)$: Corollary to weak duality
- $(ii) \rightarrow (iii)$
 - Contrapositive: Let f be a flow and an augmenting path relative to f. Then, we can improve f by sending more flow across the path (i.e. f is not a max flow)

MAX-FLOW MIN-CUT

- $(iii) \rightarrow (i)$
- I.e. No augmenting path for $f \to \text{there exists a cut}$ (A, B) such that v(f) = cap(A, B)
- Proof:
 - Let A be the set of vertices reachable from s in the residual graph
 - By definition of $A, s \in A$
 - By definition of f, $t \notin A$
 - $\circ v(f) = \sum_{e \text{ out of } A} f(e) \sum_{e \text{ in to } A} f(e)$
 - \circ The second term must be zero, since there is no edge from A to $V \setminus A$ in the residual graph
 - In the first term, every f(e) is equal to c(e) since there is no edge from A to $V \setminus A$ in the residual graph
 - Therefore, $v(f) = \sum_{e \text{ out of } A} c(e) = cap(A, B)$

RUNNING TIME

- Assume all capacities are integers between 1 and C
 - Therefore, every flow and residual capacity is an integer
- The algorithm terminates after at most nC iterations
 - Each augmentation increases flow by 1
- Interesting theorem: If all capacities are integers, there exists an integer maximum flow

RUNNING TIME

- Is *nC* polynomial time?
 - · No!
- Use care when selecting augmenting paths
 - Some choices lead to exponential time algorithms
 - Clever choices lead to polynomial time algorithms
- Multiple ideas work
 - Easy one: select path with maximum bottleneck capacity
 - Ok, this is a bit too slow maybe
 - Select path with large bottleneck capacity

CAPACITY SCALING

- Maintain scaling capacity Δ
- Let $G_f(\Delta)$ be the subgraph of the residual graph with edges of capacity at least Δ
 - Find all augmenting paths here
 - \circ If none, update Δ :
 - $\Delta \leftarrow \Delta/2$

SUMMARY

- Max-flow = min-cut
- Ford-Fulkerson algorithm (7.1-7.3 in KT)