Meta-Learning with Adjoint Method

Shibo Li, Zheng Wang, Akil Narayan, Robert M. Kirby, Shandian Zhe The University of Utah

Roadmap

- Motivation
- Background
- Method
- Experiment
- Light Discussion

Motivation

- Meta-Agnostic Meta Learning(MAML)
 - Task adaptation:

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$$

Meta-optimization:

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$$

Rajeswaran et al. 2019

 The backward requires taking auto differentiation on the history of computational graph.

Motivation

- Existing approximation:
 - First-order MAML: no backward
 - Implicit MAML: local curvature $\frac{\lambda}{2} ||\phi' \theta||^2$
 - Reptile: close to all the optimal manifolds of all tasks

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{\tau \sim p(\tau)} \left[\frac{1}{2} \operatorname{dist}(\theta, \mathcal{W}_{\tau}^*)^2 \right]$$

Reptile, Nichol et al. 2018

Our Contribution

- An ODE view of task adaptation
- Meta gradient with adjoint method
- Memory efficiency for long adaptation trajectory while yet accurate meta gradients on validation

Background

 Standard (Deep) Machine Learning: cheap, safe, easy to collect large amount of data

- Data Costly, Sensitive Applications: Robotics, User personalization, etc.
- Meta Learning(Learning to Learn Fast): Enable efficient learning on new tasks with encoding adaptable representations

Background

 Few-shot Classification (2way-4shots)

Few-shot Regression

Meta-Learning Approaches

- Metric Based: Siamese Neural Network, Matching Net, etc.
- Optimization Based: MAML, Reptile, etc.

 $\theta^* = \arg\min_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}^{(1)}(f_{\theta_i'}) = \arg\min_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}^{(1)}(f_{\theta - \alpha \nabla_{\theta}} \mathcal{L}_{\tau_i}^{(0)}(f_{\theta}))$ $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\tau_i \sim p(\tau)} \mathcal{L}_{\tau_i}^{(1)}(f_{\theta - \alpha \nabla_{\theta}} \mathcal{L}_{\tau_i}^{(0)}(f_{\theta}))$

meta-learning

---- learning/adaptation

Model Agnostic Meta-Learning (MAML)

Adjoint Method

An Example: Learn a parametric ODE system

$$\begin{cases} \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \mathbf{f}(\mathbf{u}, t; \boldsymbol{\theta}) \\ \mathbf{u}(t_0) = \mathbf{u}_0 \end{cases} \quad \mathbf{u}(t) \in \mathbb{R}^N; \mathbf{f} \in \mathbb{R}^N; \boldsymbol{\theta} \in \mathbb{R}^P$$

$$\min_{\boldsymbol{\theta}} J(\mathbf{u}, \boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \int_0^T g(\mathbf{u}, \boldsymbol{\theta}) dt$$

For example: Quadratic Loss: $\mathbf{u}^{\top}\mathbf{Q}\mathbf{u}$

Adjoint Method

• Goal: Total derivative
$$\frac{\mathrm{d}J}{\mathrm{d}\theta} = \int_0^T (\frac{\partial g}{\partial \theta} + \frac{\partial x}{\partial \mathbf{u}} \cdot \frac{\partial \mathbf{u}}{\partial \theta}) \mathrm{d}t$$

Forward Sensitivity

$$\frac{d\mathbf{u}}{d\boldsymbol{\theta}} = \left[\frac{d\mathbf{u}}{d\theta_0}, \frac{d\mathbf{u}}{d\theta_1}, \cdots, \frac{d\mathbf{u}}{d\theta_P}\right]$$

$$\frac{d}{d\theta_i} \begin{cases} \frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u}, t; \boldsymbol{\theta}) \\ \mathbf{u}(t_0) = \mathbf{u}_0 \end{cases}$$

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}t} \cdot \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\theta_i} = \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{u}} \cdot \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\theta_i} + \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\theta_i} \\ \frac{\mathrm{d}\mathbf{u}(0)}{\mathrm{d}\theta_i} = \frac{\mathrm{d}\mathbf{u}_0}{\mathrm{d}\theta_i} \end{cases}$$

Solve P+1 ODE systems

Adjoint Sensitivity

$$\hat{J}(\mathbf{u}; \boldsymbol{\theta}) = J(\mathbf{u}; \boldsymbol{\theta}) + \int_0^T \boldsymbol{\lambda}^\top (t) (\mathbf{f} - \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}) \mathrm{d}t$$
Auto-differentiation

T.V.P $\begin{cases} \frac{\mathrm{d}\boldsymbol{\lambda}(t)}{\mathrm{d}t} = -\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{u}}^\top \cdot \boldsymbol{\lambda}(t) - \frac{\mathrm{d}g}{\mathrm{d}\mathbf{u}} \\ \boldsymbol{\lambda}(T) = \mathbf{0} \end{cases}$

$$\frac{\mathrm{d}\hat{J}}{\mathrm{d}\boldsymbol{\theta}} = \int_0^T (\frac{\mathrm{d}g}{\mathrm{d}\boldsymbol{\theta}} + \boldsymbol{\lambda}(t) \frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{\theta}}) \mathrm{d}t + \boldsymbol{\lambda}(0) \frac{\mathrm{d}\mathbf{u}_0}{\mathrm{d}\boldsymbol{\theta}}$$

Solve only 2 ODE systems, scale constantly

An ODE View of Task Adaptation

Forward Propagation

I.V.P
$$\begin{cases} \mathbf{u}_n(0) &= \boldsymbol{\theta}, \\ \frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}t} &= -\frac{\partial \mathcal{L}(\mathbf{u}_n, \mathcal{D}_n^{\mathrm{tr}})}{\partial \mathbf{u}} \end{cases}$$
$$\mathbf{u}_n(t+\alpha) \leftarrow \mathbf{u}_n(t) - \alpha \frac{\partial \mathcal{L}(\mathbf{u}_n, \mathcal{D}_n^{tr})}{\partial \mathbf{u}_n}$$

Validation-Loss

$$J(oldsymbol{ heta}) = rac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\mathbf{u}_n(T), \mathcal{D}_n^{ ext{val}})$$

Meta-Loss Minimization

Target Problem

$$\min_{\boldsymbol{\theta}} \mathbb{E}[J(\boldsymbol{\theta})] = \min_{\boldsymbol{\theta}} \frac{1}{n} \sum_{n} \mathcal{L}(\mathbf{u}_n(T), \mathcal{D}^{\text{val}})$$
s.t. $\forall \mathcal{T}_n \sim p(\mathcal{T})$

$$\mathbf{u}(0) = \boldsymbol{\theta}$$

$$\frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}t} = \mathbf{f}(\mathbf{u}_n, \mathcal{D}_n^{\mathrm{tr}})$$

Lagrangian relaxation

How to optimize? GD! n.t.s $\frac{\mathrm{d}J_n}{\mathrm{d}\boldsymbol{\theta}}$

$$\widehat{J}_n = J_n \left(\mathbf{u}_n(T) \right) + \int_0^T \boldsymbol{\lambda}(t)^{\top} \left(f(\mathbf{u}_n, \mathcal{D}_n^{\text{tr}}) - \frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}t} \right) \mathrm{d}t,$$

Meta-Loss Minimization

Sensitivity/Jacobian Cancellation

$$\frac{\mathrm{d}J_n}{\mathrm{d}\boldsymbol{\theta}} = \frac{\partial J_n}{\partial \mathbf{u}_n(T)} \frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}\boldsymbol{\theta}} (T) - \boldsymbol{\lambda}(T)^{\top} \frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}\boldsymbol{\theta}} (T) + \boldsymbol{\lambda}(0)^{\top} \frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}\boldsymbol{\theta}} (0)$$
$$+ \int_0^T \left\{ \boldsymbol{\lambda}^{\top} \frac{\partial \mathbf{f}}{\mathbf{u}_n} \frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}\boldsymbol{\theta}} + \left(\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t}\right)^{\top} \frac{\mathrm{d}\mathbf{u}_n}{\mathrm{d}\boldsymbol{\theta}} \right\} \mathrm{d}t$$

Adjoint ODE

T.V.P
$$\begin{cases} \boldsymbol{\lambda}(T) &= \left(\frac{\partial J_n}{\partial \mathbf{u}_n(T)}\right)^\top \\ \left(\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t}\right)^\top &= -\boldsymbol{\lambda}(t)^\top \frac{\partial \mathbf{f}}{\partial \mathbf{u}_n}, \quad \frac{\partial \mathbf{f}}{\partial \mathbf{u}_n} = \mathbf{H}(\mathbf{u}_n) = -\frac{\partial^2 \mathcal{L}(\mathbf{u}_n, \mathcal{D}_i^{tr})}{\partial \mathbf{u}_n^2} \end{cases}$$

Meta-Loss Minimization

Efficient Backpropagation

T.V.P
$$\begin{cases} \boldsymbol{\lambda}(T) &= \left(\frac{\partial J_n}{\partial \mathbf{u}_n(T)}\right)^\top \\ \left(\frac{\mathrm{d}\boldsymbol{\lambda}}{\mathrm{d}t}\right)^\top &= -\boldsymbol{\lambda}(t)^\top \frac{\partial \mathbf{f}}{\partial \mathbf{u}_n}, \quad \frac{\partial \mathbf{f}}{\partial \mathbf{u}_n} = \mathbf{H}(\mathbf{u}_n) = -\frac{\partial^2 \mathcal{L}(\mathbf{u}_n, \mathcal{D}_i^{tr})}{\partial \mathbf{u}_n^2} \end{cases}$$

Quick Summary

- "Continuous" task adaptation
- Constrained meta-loss minimization with J_n
- Relaxed meta-loss minimization with \widehat{J}_n
- GD on meta-loss requires $\frac{\mathrm{d}\hat{J_n}}{\mathrm{d}oldsymbol{ heta}}$
- Two ODE systems
 - I.V.P: Forward, task adaptation
 - T.V.P: Backward, gradient of meta-loss

Experiment

- How does our Adjoint-MAML (A-MAML) perform on synthetic problems?
- Efficiency of long adaptation trajectory:
 - Memory
 - Time
- How does A-MAML perform on real-world problems?

Experiment

- Comparing Methods
 - MAML, MAML(1GD)
 - First Order MAML
 - Implicit MAML
 - Reptile

Synthetic Meta Regression

$$f_1(\mathbf{x}) = -0.1 \sum_{i=1}^d A \cos(\omega x_i + \phi) - \sum_{i=1}^d x_i^2$$

$$A \in [0.1, 1.0]$$

$$\omega \in [0.5\pi, 2.0\pi]$$

$$\phi \in [3.0, 6.0]$$

$$f_2(\mathbf{x}) = \sum_{i=1}^d |x_i \sin(x_i + \phi_i) + 0.1x_i|$$

$$\phi_1 \in \left[-\frac{5}{12}\pi, \frac{5}{12}\pi \right]$$

$$\phi_2 \in \left[-\frac{5}{12}\pi, \frac{5}{12}\pi \right]$$

Synthetic Meta Regression

Time/Memory Efficiency

Meta Collaborative Filtering

- Dataset: Jester-1, MovieLens100K, MovieLens1M
- Each user defines a task

	Jester-1		MovieLens100K		MovieLens1M	
	10shot-15val	20shot-30val	10shot-15val	20shot-30val	10shot-15val	20shot-30val
A-MAML	0.074±0.005	0.027±0.002	0.053±0.005	0.023 ± 0.003	0.094±0.008	0.035±0.004
iMAML	0.114 ± 0.007	0.050 ± 0.003	0.082 ± 0.004	0.033 ± 0.002	0.138 ± 0.010	0.052 ± 0.004
MAML	0.120 ± 0.001	0.036 ± 0.000	0.123 ± 0.001	0.050 ± 0.003	0.140 ± 0.002	0.059 ± 0.001
FOMAML	0.292 ± 0.012	0.115±0.004	0.174 ± 0.008	0.068 ± 0.004	0.270 ± 0.011	0.104 ± 0.006
Reptile	0.270 ± 0.012	0.106 ± 0.004	0.166 ± 0.008	0.063 ± 0.003	0.266 ± 0.011	0.101 ± 0.006

Table 1: Meta-test error (nRMSE) with 50 inner gradient descent steps (MAML used 5 GD steps) The results were averaged over 100 tasks.

Meta Collaborative Filtering

	Jester-1		MovieLens100K		MovieLens1M	
	10shot-15val	20shot-30val	10shot-15val	20shot-30val	10shot-15val	20shot-30val
A-MAML	0.069±0.005	0.044±0.003	0.057±0.006	0.021 ± 0.002	0.105±0.009	0.035±0.004
iMAML	0.190 ± 0.010	0.103±0.005	0.168 ± 0.007	0.046 ± 0.002	0.130 ± 0.007	0.045 ± 0.004
MAML	0.154 ± 0.001	0.061 ± 0.002	0.123±0.001	0.050 ± 0.002	0.197 ± 0.002	0.083 ± 0.001
FOMAML	0.273±0.012	0.077 ± 0.004	0.191±0.007	0.071 ± 0.004	0.395 ± 0.010	0.119 ± 0.005
Reptile	0.290 ± 0.012	0.100 ± 0.004	0.171±0.008	0.066 ± 0.004	0.408 ± 0.011	0.128 ± 0.006

Table 2: Meta-test error (nRMSE) with 100 inner gradient descent steps (MAML used 10 GD steps) The results were averaged over 100 tasks.

Conclusion

- A-AMAL accurately estimates the gradient of meta-loss
- Time and memory efficiency are compatible with other raw approximations
- Dominant performance on synthetic and real-world applications