

Druga domaća zadaća

Igra Connect4

1. Implementacija

Upute: U ovom odjeljku potrebno je opisati ključne dijelove funkcionalnosti koristeći isječke programa i snimke zaslona. Obavezno uključite sljedeće elemente s odgovarajućim komentarima:

Isječak programa koji prikazuje pripremu poslova na glavnom (master) procesu.

```
print("Dubina: " + str(iDepth))
dBest = -1.0
for iCol in range(B.columns):
   if(B.moveLegal(iCol)):
       if iBestCol == -1:
           iBestCol=iCol
       if(dubinaDijeljenja==3):
          movesList[iCol]=1.0
       B.Move(iCol,2)
       if(size>1):
    if(dubinaDijeljenja==1):
                movesList[iCol]=1.0
                dResult ={'col':iCol,'Current':B.copy(), 'LastMover':2,'iLastCol':iCol,'iDepth':iDepth-1}
                taskList.append(dResult)
            else:
               EvaluateParalel(B.copy(), 2, iCol, iDepth-1)
            dResult = Evaluate(B.copy(), 2, iCol, iDepth-1)
            B.unodMove(iCol)
            if dResult>dBest or (dBest == dResult and random.randint(0,2)==0):
              dBest= dResult
               iBestCol=iCol
            print("Stupac:"+ str(iCol))
print("vrijednost: " + str(
                                 " + str(dBest))
```

Program kreira zadatke po uzoru na zadani primjer u C++-u, ako je broj procesora Jednak 1 algoritam se izvršava slijedno kao u primjeru, ali ako je zadani broj procesora veći od 1 tada se zadatci stvaraju ovisno o zadanoj dubini dijeljenja, ako je zadan dubina 1 onda se zadatci kreiraju još u petlji a ako je veći od toga kreiraju se u funkciji evaluateParalel. Svi kreirani zadatci se pohranjuju u listu "taskList" iz koje glavni proces dijeli zadatke sporednim procesima koji obavljaju funkciju evaluate nad zadanim podatcima. U while petlji se kreira maksimalno 7 zadataka po iteraciji.


```
def EvaluateParalel(Current, LastMover, iLastCol, iDepth):
    dTotal=0.0
   bAllLose = True
bAllWin = True
   if(Current.gotovo(iLastCol)):
       if(LastMover==2):
return 1.0
   return -1.0
if(iDepth==0):
      return 0.0
   if(LastMover==2):
    NewMover = 1
    for iCol in range(Current.columns):
       if(Current.moveLegal(iCol)):
           Current.Move(iCol,NewMover)
            if(dubinaDijeljenja==2):
                dResult ={'col':iLastCol,'Current':Current.copy(), 'LastMover':NewMover,'iLastCol':iCol,'iDepth':iDepth}
                taskList.append(dResult)
           elif(dubinaDijeljenja==3):
                for jCol in range(Current.columns):
                    if(Current.moveLegal(jCol)):
                        iMoves+=1
                        if(NewMover==2):
                            NewerMover = 1
                        else:
                           NewerMover = 2
                        Current.Move(jCol,NewerMover)
                        dResult ={'col':iLastCol,'Current':Current.copy(), 'LastMover':NewerMover,'iLastCol':jCol,'iDepth':iDepth-1)
                        taskList.append(dResult)
           Current.unodMove(iCol)
```

Ovdje je funkcija evaluateParalel u kojoj se kreira maksimalno 49 ili 343 zadatka koji se pohranjuju u listu "taskList" te se broji broj poteza koji su napravljeni da se izračuna prosjek slično kao što je to bilo u originalnom algoritmu iz primjera.

 Isječke programa koji pokazuju kako se <u>zadaci prenose</u> s glavnog (master) procesa na radničke (worker) procese.

Dakle glavni proces iterira po listi task list i dijeli svakom sprednom procesu po zadatak i onda čeka odgovore od svakog te im opet dijeli zadatke dok ne prođe cijelu listu.

Snimku zaslona koja prikazuje posljednja dva koraka igre u kojoj računalo pobjeđuje.

Predzadnji potez

Zadnji potez

2. Kvantitativna analiza

Upute: U ovom dijelu potrebno je priložiti tablice s rezultatima mjerenja te grafove ubrzanja i učinkovitosti za tri različita scenarija: kada paralelni algoritam ima 7, 49 i 343 zadatka (uz aglomeraciju na dubini 1, 2 i 3). Mjerenja treba provesti tako da je najmanje mjereno trajanje (za 8 procesora) reda veličine barem nekoliko sekundi (definirajte potrebnu dubinu pretraživanja). Uz grafove, dodajte kratki komentar koji opisuje kako broj zadataka utječe na ubrzanje i učinkovitost (uzevši u obzir utjecaj zrnatosti zadataka, komunikacijskog overheada, te udjela programa koji se ne može paralelizirati).

Napomena: Računalo na kojem su vršena mjerenja ima dvije fizičke jezgre, nisamo bio u situaciji da koristim drugo računalo.

			#4.00 to -000 to -000 to -	
Utilization	Speed		Base speed:	1.19 GHz
76%	2.29	GHz	Sockets:	1
			Cores:	2
Processes	Threads	Handles	Logical processors:	4
284	2867	138266	Virtualization:	Enabled
Up time			L1 cache:	160 KB
	2.45		L2 cache:	1.0 MB
17:15:5	3:45		L3 cache:	4.0 MB

a) 7 zadataka

BROJ	1	2	3	4	5	6	7	8
PROCESORA(p)								
Trajanje (s)	25.41	22.56	18.97	16.34	16.17	15.87	15.71	14.35
Ubrzanje	1	1.126	1.339	1.555	1.571	1.601	1.617	1.771
Učinkovitost	1	0.563	0.446	0.389	0.314	0.267	0.231	0.221

b) 49 zadataka

Paralelno programiranje ak. god. 2023./24.

BROJ	1	2	3	4	5	6	7	8
PROCESORA(p)								
Trajanje (s)	24.82	22.9	16.94	14.79	14.41	14.08	14.22	13.87
Ubrzanje	1	1.084	1.465	1.678	1.722	1.763	1.745	1.789
Učinkovitost	1	0.542	0.488	0.42	0.344	0.294	0.249	0.224

Učinkovitost /broj procesora (p)

c) 343 zadataka

BROJ PROCESORA(p)	1	2	3	4	5	6	7	8
Trajanje (s)	25.57	24.16	17.06	15.53	14.87	14.78	14.72	14.67
Ubrzanje	1	1.058	1.499	1.646	1.72	1.73	1.737	1.743
Učinkovitost	1	0.529	0.5	0.412	0.344	0.288	0.248	0.218

- a) Mjerenja u kojima se dijeli 7 zadataka su krupnozrnata jer se veći zadatci dijele jednom, odnosno zadataci su zahtjevniji a komunikacije je malo.
- b) Mjerenja u kojima se dijeli 49 zadatka su manje krupnozrnata u odnosu na mjerenja sa 7 zadataka, u mjernjima sa 49 zadataka zadatci su dosta manji i puno je više komunikacije između procesa.
- c) Mjerenja u kojima se dijeli 343 zadatka su sitnozrnata, zadatci su najjednostavniji u odnsou na ostale primjere i ima puno više komunikacije.

Paralelno programiranje ak. god. 2023./24.

Sva tri mjerenja su imala vrlo slična ubrzanja i učinkovitost, ali je mjerenje s 343 u mom slučaju imalo malo bolju učinkovitost u odnosu na ostala mjerenja dok je mjerenje s 49 zadataka imalo jako slično ubrzanje u odnosu na mjerenje s 343 zadatka te je mjerenje sa 7 zadataka bilo najsporije i najmanje učinkovito.