REMARKS

I. Status of the Claims

Claims 1-88 were originally filed. Claims 6, 20-69, 71, 76-82, and 84 have been canceled. Claims 1-5, 7-19, 70, 72-75, 83, and 85-88 are pending under examination.

Upon entry of the present amendment, claim 5 is amended to recite "wherein the amino acid at position 577 has been substituted by a different amino acid." This amendment does not introduce new matter, since position 577 in SEQ ID NO:20 corresponds to position 208 in SEQ ID NO:2 and position 183 in SEQ ID NO:4 (see Exhibit 1). Claim 13 is amended to add the missing space between "of" and "MTB8.4." Claim 83 is amended to recite an "isolated fusion polypeptide" instead of an "isolated polypeptide encoding a fusion polypeptide." This amendment merely corrects a grammatical error and introduces no new matter.

III. Claim Rejections

A. <u>Double Patenting</u>

Claims 1, 4, 5, and 19 were rejected under the judicially created doctrine of obviousness-type of double patenting over claim 1 of U.S. Patent No. 6,627,198. Applicants respectfully traverse the rejection in light of the present amendment.

Claim 1 of U.S. Patent No. 6,627,198 ("the '198 patent") is drawn to a purified polypeptide comprising the amino acid sequence of SEQ ID NO:26, which is identical to SEQ ID NO:20 of the present application. Following the amendment of November 22, 2004, claim 1 recites "at least one amino acid corresponding to position 183 of SEQ ID NO:4 or position 208 of SEQ ID NO:2 in the MTB32A antigen (SEQ ID NO:2 or 4) has been substituted by a different amino acid." As indicated in Exhibit 1, it is clear that SEQ ID NO:20 of the present invention (or SEQ ID NO:26 of the '198 patent) contains a partial sequence of SEQ ID NO:2 or SEQ ID NO:4, including position 208 of SEQ ID NO:2 or position 183 of SEQ ID NO:4, which is a serine and corresponds to position 577 in SEQ ID NO:20. Thus, the limitation that at least one of these two positions is substituted with a different amino acid requires claim 1 to exclude SEQ

Appl. No. 09/886,349 Amdt. dated May 12, 2005 Reply to Office Action of February 17, 2005

ID NO:20, when position 577 remains a serine. For this reason, claims 1, 4, and 19 are not obvious over claim 1 of the '198 patent.

Upon entry of the present amendment, claim 5 is further amended to recite "wherein the amino acid at position 577 has been substituted by a different amino acid." This newly added limitation explicitly distinguishes the fusion polypeptide in the claimed composition from SEQ ID NO:26 of the '198 patent. Thus, the amended claim 5 is not obvious over claim 1 of the '198 patent.

Accordingly, the withdrawal of the double patenting rejection is respectfully requested.

B. 35 U.S.C. §112, Second Paragraph

The Examiner also rejected claim 83 and 85-87 were rejected under 35 U.S.C. §112, second paragraph, for indefiniteness. Specifically, the Examiner pointed to the language in claim 83 reciting an "isolated polypeptide encoding a fusion polypeptide." Following the present amendment, claim 83 new recites an "isolated fusion polypeptide" in place of the original phrase. Thus, the indefiniteness rejection of claim 83 and its dependent claims is obviated.

III. Claim Objections

Claims 2, 3, and 7-18 were objected to for their dependency from rejected base claims. As discussed above, all claim rejections have now been properly addressed. Thus, the objection of these claims for depending from rejected base claims is moot.

Appl. No. 09/886,349 Amdt. dated May 12, 2005 Reply to Office Action of February 17, 2005

CONCLUSION

In view of the foregoing, Applicants believe all claims now pending in this Application are in condition for allowance. The issuance of a formal Notice of Allowance at an early date is respectfully requested.

If the Examiner believes a telephone conference would expedite prosecution of this application, please telephone the undersigned at 415-576-0200.

Respectfully submitted,

Chuan Gao

Reg. No. 54,111

TOWNSEND and TOWNSEND and CREW LLP

Two Embarcadero Center, Eighth Floor San Francisco, California 94111-3834

Tel: 415-576-0200 Fax: 415-576-0300

Attachment (Exhibit 1: SEQ ID NO:2, SEQ ID NO:4, and SEQ ID NO:20, marked up to show

correspondence)

CG:cg 60486599 v1

INFORMATION FOR SEQ ID NO:2:

5

(i)	SEQU	ENCE CHAI	RACTI	ERISTIC	CS:
	(A)	LENGTH:	355	amino	aci

(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: MTB32A (Ra35FL)

10		_						_				-		-		
- 0	Met	Ser	Asn	Ser	Arq	Arq	Arq	Ser	Leu	Arq	Trp	Ser	Trp	Leu	Leu	Ser
	1				5					10	-		-		15	
402'm	Val	Leu	Ala	Ala 20	Val	Gly	Leu	Gly	Leu 25	Ala	Thr	Ala	Pro	Ala 30	Gln	Ala
15 No: 20	Ala	Pro	Pro 35	Ala	Leu	Ser	Gln	Asp	Arg	Phe	Ala	Asp	Phe 45	Pro	Ala	Leu
	Pro	Leu 50	Asp	Pro	Ser	Ala	Met 55	Val	Ala	Gln	Val	Ala 60	Pro	Gln	Val	Val
20	Asn 65	Ile	Asn	Thr	Lys	Leu 70	Gly	Tyr	Asn	Asn	Ala 75	Vạl	Gly	Ala	Gly	Thr 80
	Gly	Ile	Val	Ile	Asp 85	Pro	Asn	Gly	Val	Val 90	Leu	Thr	Asn	Asn	His 95	Vāl
	Ile	Ala	Gly	Ala 100	Thr	Asp	Ile	Asn	Ala 105	Phe	Ser	Val	Gly	Ser 110	Gly	Gln
25	Thr	Tyr	Gly 115	Val	Asp	Val	Val	Gly 120	Tyr	Asp	Arg	Thr	Gln 125	Asp	Val	Ala
		130					135					Ser 140				
30	145	_				150					155	Met				160
	Gly	Gln	Gly	Gly	Thr 165	Pro	Arg	Ala	Val	Pro 170	Gly	Arg	Val	Val	Ala 175	Leu
2.5	-			180				_	185			Gly		190		
35			195					200				Gln	205	_	_	
	_	210		F	96 in	10. 2	,215					Val 220				
40	225	,	Ser	Asp	Asn	230	GIn				235	Gly				240
				_	245					250		Gln			255	
15	_			260					265			Ala		270		
45	-		275	-			-	280	_		_	Val	285			
	-	290					295		-			Thr 300	_	_		
50	305			_		310					315	Thr				320
					325					330		Ser			335	
5.5		-		Gly 340	Gly	Thr	Arg	Thr	Gly 345	Asn	Val	Thr	Leu	Ala 350	Glu	Gly
55	Pro	Pro	Ala 355													

<213> Ra35 mature <400> SEQ ID NO:4 407 M NO: 23

5	Met	His	His	His	His 5	His	His	Ala	Pro	Pro	Ala	Leu	Ser	Gln	Asp 15	Arg
J	Phe	Ala	Asp	Phe 20		Ala	Leu	Pro	Leu 25	_,	Pro	Ser	Ala	Met 30		Ala
10	Gln	Val.			Gln	Val	Val	Asn 40		Asn	Thr	Lys	Leu 45		Tyr	Asn
	Asn	Ala 50	35 Val	Gly	Ala	Gly	Thr 55	Gly	Ile	Val	Ile	Asp 60		Asn	Gly	Val
15	Val 65		Thr	Asn	Asn	His		Ile	Ala	Gly	Ala 75		Asp	Ile	Asn	Ala
20		Ser	Val	Gly	Ser 85		Gln	Thr	Tyr	Gly 90	_	Asp	Val	Val	Gly 95	
	Asp	Arg	Thr	Gln 100		Val	Ala	Val	Leu 105		Leu	Arg	Gly	Ala 110		Gly
25	Leu	Pro	Ser 115	Ala	Ala	Ile	Gly	Gly 120	Gly	Val	Ala	Val	Gly 125	Glu	Pro	Val
	Val	Ala 130	Met	Gly	Asn	Ser	Gly 135	Gly	Gln	Gly	Gly	Thr 140	Pro	Arg	Ala	Val
30	Pro 145	Gly	Arg	Val	Val	Ala 150	Leu	Gly	Gln	Thr	Val 155	Gln	Ala	Ser	Asp	Ser 160
35	Leu	Thr	Gly	Ala	Glu 165	Glu	Thr	Leu	Asn	Gly 170	Leu	Ile	Gln	Phe	Asp 175	Ala
	Ala	Ile	Gln	Pro 180	Gly	Asp	Ser	Gly		Pro 1:21 (Asn	Gly 190	Leu	Gly
40	Gln	Val	Val 195	Gly	Met	Asn	Thr	Ala 200		١ ١	•		Phe 205	Gln	Leu	Ser
45	Gln	Gly 210	Gly	Gln	Gly	Phe	Ala 215	Ile	Pro	Ile	Gly	Gln 220	Ala	Met	Ala	Ile
4 5	Ala 225	Gly	Gln	Ile	Arg	Ser 230	Gly	Gly	Gly	Ser	Pro 235	Thr	Val	His	Ile	Gly 240
50	Pro	Thr	Ala	Phe	Leu 245	Gly	Leu	Gly	Val	Val 250	Asp	Asn	Asn	Gly	Asn 255	Gly
	Ala	Arg	Val	Gln 260	Arg	Val	Val	Gly	Ser 265	Ala	Pro	Ala	Ala	Ser 270	Leu	Gly
55	Ile	Ser	Thr 275	Gly	Asp	Val	Ile	Thr 280	Ala	Val	Asp	Gly	Ala 285	Pro	Ile	Asn
60		290					295	Ala				300				
	Val 305	Ile	Ser	Val	Thr	Trp 310	Gln	Thr	Lys	Ser	Gly 315	Gly	Thr	Arg	Thr	Gly 320
65	Asn	Val	Thr	Leu	Ala	Glu	Gly	Pro	Pro	Ala						

£	<212 <213		RT rtif:			quen						_				
5	<223			-				cial signa	_	Mtb9		-fus:	ion			
10	His 1	Met	His	His	His 5	His	His	His			Asp	Phe	Gly	Ala	Leu 15	Pro
10	Pro	Glu	Ile	Asn 20	Ser	Ala	Arg	Met	Tyr 25	Ala	Gly	Pro	Gly	Ser 30	Ala	Ser
15	Leu	Val	Ala 35	Ala	Ala	Gln	Met	Trp 40	Asp	Ser	Val	Ala	Ser 45	Asp	Leu	Phe
	Ser	Ala 50	Ala	Ser	Ala	Phe	Gln 55	Ser	Val	Val	Trp	Gly 60	Leu	Thr	Val	Gly
20	Ser 65	Trp		Gly	Ser	Ser 70	Ala	Gly	Leu	Met	Val 75		Ala	Ala	Ser	Pro 80
25	Tyr			Trp	Met 85	Ser	Val	Thr	Ala	Gly 90	Gln	Ala	Glu	Leu	Thr 95	Ala
23	Ala	Gln	Val	Arg 100	Val	Ala	Ala	Ala	Ala 105	Tyr	Glu	Thr	Ala	Tyr 110	Gly	Leu
30	Thr	Val	Pro 115	Pro	Pro	Val	Ile	Ala 120	Glu	Asn	Arg	Ala	Glu 125	Leu	Met	Ile
	Leu	Ile 130	Ala	Thr	Asn	Leu	Leu 135	Gly	Gln	Asn	Thr	Pro 140	Ala	Ile	Ala	Val
35	Asn 145	Glu	Ala	Glu	Tyr	Gly 150	Glu	Met	Trp	Ala	Gln 155	Asp	Ala	Ala	Ala	Met 160
40	Phe	Gly	Tyr	Ala	Ala 165	Ala	Thr	Ala	Thr	Ala 170	Thr	Ala	Thr	Leu	Leu 175	Pro
	Phe	Glu	Glu	Ala 180	Pro	Glu	Met	Thr	Ser 185	Ala	Gly	Gly	Leu	Leu 190	Glu	Gln
45	Ala	Ala	Ala 195	Val	Glu	Glu	Ala	Ser 200	Asp	Thr	Ala	Ala	Ala 205	Asn	Gln	Leu
	Met	Asn 210	Asn	Val	Pro	Gln		Leu						Pro	Thr	Gln
50	Gly 225	Thr	Thr	Pro	Ser	Ser 230	Lys	Leu	Gly	Gly	Leu 235	Trp	Lys	Thr	Val	Ser 240
	Pro	His	Arg	Ser	Pro 245	Ile	Ser	Asn	Met	Val 250	Ser	Met	Ala	Asn	Asn 255	His
55	Met	Ser	Met	Thr 260	Asn	Ser	Gly	Val	Ser 265	Met	Thr	Asn	Thr	Leu 270	Ser	Ser
60	Met	Leu	Lys 275	Gly	Phe	Ala		Ala 280		Ala	Ala	Gln	Ala 285	Val	Gln	Thr
00	Ala	Ala 290	Gln	Asn	Gly	Val	Arg 295	Ala	Met	Ser	Ser	Leu 300	Gly	Ser	Ser	Leu
65	Gly 305	Ser	Ser	Gly /	Leu	Gly 310	Gly	Gly	Val	Ala	Ala 315	Asn	Leu	Gly	Arg	Ala 320
	Ala	Ser	Val	Gly	Ser 325	Leu	Ser	Val	Pro	Gln 330	Ala	Trp	Ala	Ala	Ala 335	Asn

<210> SEQ ID NO:20

		GIN	Ala	vai	340	Pro	Ата	Ala	Arg	345	Leu	PIO	Leu	THE	350	Leu	Thr
•	5	Ser	Ala	Ala 355	Glu	Arg	Gly	Pro	Gly 360	Gln	Met	Leu	Gly	Gly 365	Leu	Pro	Val
•	10	Gly	Gln 370	Met	Gly	Ala	Arg	Ala 375	Gly	Gly	Gly	Leu	Ser 380	Gly /i	Val	Leu	Arg
77`.	n NO;	205				Pro	Tyr 390	Val	Met	Pro	His	Ser 395	Pro	Ala	Ala		Asp 400
57.	15					Ala 405	Leu	Ser	Gln	Asp	Arg 410	Phe	Ala	Asp	Phe	Pro 415	Ala
		Leu	Pro	Leu	Asp 420	Pro	Ser	Ala	Met	Val 425	Ala	Gln	Val	Gly	Pro 430	Gln	Val
	20	Val	Asn	Ile 435	Asn	Thr	Lys	Leu	Gly 440	Tyr	Asn	Asn	Ala	Val 445	Gly	Ala	Gly
	25	Thr	Gly 450	Ile	Val	Ile	Asp	Pro 455	Asn	Gly	Val	Val	Leu 460	Thr	Asn	Asn	His
		Val 465	Ile	Ala	Gly	Ala	Thr 470	Asp	Ile	Asn	Ala	Phe 475	Ser	Val	Gly	Ser	Gly 480
	30	Gln	Thr	Tyr	Gly	Val 485	Asp	Val	Val	Gly	Tyr 490	Asp	Arg	Thr	Gln	Asp 495	Val
		Ala	Val	Leu	Gln 500	Leu	Arg	Gly	Ala	Gly 505	Gly	Leu	Pro	Ser	Ala 510	Ala	Ile
	35	Gly	Gly	Gly 515	Val	Ala	Val	Gly	Glu 520	Pro	Val	Val	Ala	Met 525	Gly	Asn	Ser
	40 .	Gly	Gly 530	Gln	Gly	Gly	Thr	Pro 535	Arg	Ala	Val	Pro	Gly 540	Arg	Val	Val	Ala
		Leu 545	Gly	Gln	Thr	Val	Gln 550	Ala	Ser	Asp	Ser	Leu 555	Thr	Gly	Ala	Glu	Glu 560
	45	Thr	Leu	Asn	Gly	Leu 565	Ile	Gln	Phe	Asp	Ala 570	Ala	Ile	Gln	Pro	Gly 575	Asp
	(Ser	Gly	Gly	Pro 580	Val	Val	Asn	Gly.	Leu 585	Gly	Gln	Val	Val	Gly 590	Met	Asn
	50	Thr	Ala	Ala	Ser		59!	5									
							N										
					200		ΝĊ) (1.	L								

.