\triangleleft

Homework 1

Name: 方嘉聪 ID: 2200017849

Problem 1 (Textbook 1.18). 对以下函数,按照他们的阶从高到低排序;如果两个函数的阶相同,表示为 $f(n) = \Theta(g(n))$.

$$2^{\sqrt{2\log n}}$$
, $n\log n$, $\sum_{k=1}^{n} \frac{1}{k}$, $n2^{n}$, $(\log n)^{\log n}$, 2^{2n} , $2^{\log \sqrt{n}}$

$$n^3$$
, $\log n!$, $\log n$, $\log \log n$, $n^{\log \log n}$, $n!$, n , $\log 10^n$

Answer. 我们用 > 表示阶的大小关系:

$$n! > 2^{2n} > n2^n > (\log n)^{\log n} = n^{\log \log n} > n^3 > n \log n = \Theta(\log n!) > n^3$$

$$n = \Theta(\log 10^n) > 2^{\log \sqrt{n}} > 2^{\sqrt{2 \log n}} > \log n = \Theta(\sum_{k=1}^n \frac{1}{k}) > \log \log n$$

Problem 2 (Textbook 1.19). 求解下列递推方程:

(1)
$$\begin{cases} T(n) = T(n-1) + n^2 \\ T(1) = 1 \end{cases}$$

(2)
$$\begin{cases} T(n) = T(n/2) + T(n/4) + cn \\ T(1) = 1 \end{cases}$$

(3)
$$\begin{cases} T(n) = 5T(n/2) + (n\log n)^2 \\ T(1) = 1 \end{cases}$$

(4)
$$\begin{cases} T(n) = T(n-1) + \frac{1}{n} \\ T(1) = 1 \end{cases}$$

Answer. (1) 用迭代法:

$$T(n) = n^2 + (n-1)^2 + \dots + 4 + 1 = \frac{n(n+1)(2n+1)}{6}$$

(2) 使用递归树法: 设数深为 k, 那么 $n/2^k \ge 1 \implies k \le \log n$:

$$T(n) = \sum_{k=0}^{\log n} \left(\frac{3}{4}\right)^k cn = 4cn \left(1 - \left(\frac{3}{4}\right)^{\log n}\right) = \Theta(n)$$

(3) 由主定理,
$$f(n) = (n \log n)^2 = O(n^{\log_2 5 - \epsilon}), T(n) = \Theta(n^{\log_2 5})$$

 \triangleleft

 \triangleleft

(4) 用迭代法:

$$T(n) = \sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$

Problem 3 (Textbook 1.21). 设原问题规模为 n, 从下述算法中选择一个最坏情况下时间复杂度最低的算法, 简述理由:

- 1. 算法 A: 将原问题划分为规模减半的 5 个子问题, 在线性时间内合并结果.
- 2. 算法 B: 将原问题划分为 2 个规模为 n-1 的子问题, 在常量时间内合并结果.
- 3. 算法 C: 将原问题划分规模为 n/3 的 9 个子问题, 在 $O(n^3)$ 内合并结果.

Answer. 选择算法 A, 理由如下:

- 1. 算法 A: $T(n) = 5T(n/2) + O(n) \implies T(n) = \Theta(n^{\log_2 5})$.
- 2. 算法 B: $T(n) = 2T(n-1) + O(1) \implies T(n) = \Theta(2^n)$.
- 3. 算法 C: $T(n) = 9T(n/3) + O(n^3) \implies T(n) = \Theta(n^3)$.

算法 A 在最坏情况下复杂度最低.

Problem 4 (Complexity Bounds). For each blank, indicate whether A_i is in $O, \Omega,$ or Θ of B_i . More than one space per row can be valid.

A	В	О	Ω	Θ
10n	n			
10	n			
n^2	2n			
n^{2021}	2^n			
$n^{\log 9}$	$9^{\log n}$			
$\log(n!)$	$\log(n^n)$		$\sqrt{}$	
$(3/2)^n$	$(2/3)^n$			
3^n	2^n			
$n^{1/\log n}$	1		$\sqrt{}$	
$\log^5 n$	$n^{0.5}$			
n^2	$4^{\log n}$			
$n^{0.2}$	$(0.2)^n$			
$\log \log n$	$\sqrt{\log n}$			
$\log(\sqrt{n})$	$\sqrt{\log n}$			

Problem 5 (Gauging Complexity from Code). Refer to the algorithms below for solving these problems. Give the **worst-case run-time complexity** in Big-Oh notation for each of the algorithms below.

Algorithm 1: Search an element in an array of length n

```
Input: An array A of size n and an element e

Output: Index of the element e

1 i \leftarrow 0;

2 while i < n do

3 | if A[i] = e then

4 | return i;

5 | end

6 | i \leftarrow i + 1;

7 end

8 return e is not found
```

Algorithm 2: Replace an element in an array of length n with a given element

```
Input: An array A of size n, an element e present in the array, and a new element E
   Output: Updated array
i \leftarrow 0;
2 while i < n do
       currElement \leftarrow A[i];
       if currElement = e then
4
           A[i] \leftarrow E;
5
           return A;
6
       end
8
         A[i] \leftarrow currElement;
9
       end
10
       i \leftarrow i + 1;
11
12 end
13 return A
                                                   // If element e is not found, return the original array
```

Algorithm 3: Sort an array of length n using bubble sort

Answer. (1) **Algorithm 1**: 在最坏情况下, 需要完整遍历一遍数组, 时间复杂度为 $\Theta(n)$.

- (2) **Algorithm 2**: 在最坏情况下, 替换的值在数组的最后一位, 需要完整遍历一遍数组, 时间复杂度 $\Theta(n)$.
- (3) Algorithm 3: 设最坏情况下所需操作数为 T(n), 则 (c_1, c_2) 为常数):

$$T(n) = \sum_{i=0}^{n-2} (c_1(n-i-1) + c_2) = \Theta(n^2)$$

故时间复杂度为 $\Theta(n^2)$.

 \triangleleft

Problem 6 (Partial Sum of a 1D Array). Given an array A consisting of n integers $A[1], A[2], \dots, A[n]$. You want to obtain a 2D $n \times n$ array B where B[i][j] (for i < j) contains the sum of array entries A[i] through A[j], i.e., $A[i] + A[i+1] + \dots + A[j]$. The value of array entry B[i][j] is left unspecified whenever i > j.

Here's a basic algorithm to solve this problem:

Algorithm 4: Basic Algorithm

```
1 for i = 1 to n do

2 | for j = i + 1 to n do

3 | Add up array entries A[i] through A[j];

4 | store the result in B[i][j]

5 | end
```

6 end

- (1) For some function f you may choose, give a bound of O(f(n)) on the runtime of this algorithm.
- (2) For this same function f, prove that the runtime of the algorithm is also $\Omega(f(n))$ (This shows an asymptotically tight bound of $\Theta(f(n))$ on the runtime).
- (3) Although the algorithm you analysis in (1)(2) is the most intuitive way to solve the problem, after all, it contains some highly unnecessary sources of inefficiency. Give a different algorithm to solve the problem, with an asymptotically better runtime. In other words, you should develop an algorithm with runtime O(g(n)), where $\lim_{n\to\infty} g(n)/f(n) = 0$.

•

Answer. (1) 设 $T_1(n)$ 为 Basic Algorithm 的时间复杂度, 那么:

$$T_1(n) = \sum_{i=1}^n \left(1 + \sum_{j=i+1}^n (j-i+2) \right) = \sum_{i=1}^n \left(\frac{n^2}{2} + \frac{i^2}{2} + \frac{5n}{2} - in - \frac{5i}{2} + 1 \right) = \Theta(n^3)$$

故取 $f(n) = cn^3(c)$ 为常数), 则 $T_1(n) = O(n^3)$.

- (2) 由于 $T_1(n) = \Theta(n^3)$, 故 $T_1(n) = \Omega(n^3)$.
- (3) 注意到对于 B[i][j](j>i), $\sum_{k=i}^{j-1} A[k]$ 已经在 B[i][j-1] 中计算过, 无需重复计算, 可以用动态规划的思想优化算法:

Algorithm 5: Optimized Algorithm

- 1 for i=1 to n do
- $\mathbf{2} \quad B[i][i] = A[i];$
- 3 end
- 4 for i = 1 to n do

for
$$j = i + 1$$
 to n do
 $B[i][j] = B[i][j - 1] + A[j];$
 $B[i][j] = B[i][j - 1] + A[i][i]$

8 end

设 $T_2(n)$ 为 Optimized Algorithm 的时间复杂度, 那么:

$$T_2(n) = \sum_{i=1}^n \left(1 + \sum_{j=i+1}^n 1\right) = \sum_{i=1}^n (n-i+1) = \Theta(n^2)$$

令 $g(n) = cn^2(c)$ 为常数), 则 $T_2(n) = O(n^2)$.

 \triangleleft