Pipelining CGRA Applications

Jack Melchert

Motivation

Problem: The applications running on our CGRA run at very low

frequencies

gaussian	68MHz
harris color	25MHz
unsharp	18MHz
camera pipeline	37Mhz
resnet	12MHz

The maximum frequency of the CGRA is 780 MHz at 1.1 V so we want applications to run at least at 500 MHz

Motivation

Solution: Pipeline applications

- Un-pipelined applications have a critical paths that typically start or end at a memory tile or outside of the array
- Adding pipelining registers to these paths should dramatically increase the maximum frequency of the applications

Goals

- Understand and model the delays in the array
 - Measure all contributions to the critical path
 - Integrate that data into a timing analysis tool that will accurately model the critical path in an application
- Create an automated pipelining approach
 - Our applications and hardware change frequently, so an automated approach is required
- Reach 500 MHz for all applications running on the array

Global Buffer Delay: 1.1 ns

PE Delay: 0.48-0.70 ns

MEM Delay: 0 ns

SB Delay: 0.14 ns

Contributions:

- Global Buffer: 1.1 ns
- Switch Boxes: 0.14 ns
- PEs: 0.48-0.7 ns

After about 3 hops in the interconnect, a critical path with 1 PE will be dominated by the interconnect

We must construct the delay model using the output of the place and route tool

- We can represent our applications as graphs composed of place and route primitives
 - PEs
 - MEMs
 - I/Os
 - Switch boxes
 - Register MUXs
 - Pipelining registers
 - Ports
- Then we can do static timing analysis to determine the critical path

Static Timing Analysis

- Arrival time at any node N:
 - arrival[N] = delay[N] + max(arrival[predecessors[N]])

- Simple algorithm for computing arrival time at every node
 - Use a topological ordering to traverse the DAG
 - Calculate arrival time delay[N] + max(arrival[predecessors[N]])

Critical Path Model - Evaluation

Application	Modeled (MHz)	Measured (MHz)	% Difference
Gaussian v1	158	200	23.5%
Gaussian v2	295	280	5.2%
Gaussian v3	515	420	20.3%
Gaussian v4	793	600	27.7%
Harris v1	30	25	18.2%
Harris v2	137	160	15.5%
Harris v3	335	300	11.0%
Harris v4	373	360	3.5%

Pipelining Approaches

- 1. Pipeline at the compute mapping stage
 - Insert pipeline regs before every PE
 - Before/after every output/input IO

- 2. Pipeline at the place and route stage
 - Iteratively break the critical path determined by the STA tool
 - Re-analyze and determine new critical path
 - Continue until target is met

Compute Pipelining

- At compute mapping, we know how many
 PEs we will use and how they are connected
- Have all information needed to do branch delay matching
 - Ensures all paths from one memory to another are the same number of cycles
- All registers are added to the compute graph
 - Need to be packed into the PEs or placed onto the routing fabric

Compute Pipelining

Benefits:

- Easy
- Branch delay matching is simple

Drawbacks:

- No routing information
- No real information about which paths will be longest
- Ignores lots of routes that aren't represented in the compute kernels

Compute Pipelining Results

Application	Before Pipelining	After Pipelining
gaussian	68MHz	180 MHz
harris color	25MHz	160 MHz
unsharp	18MHz	80 MHz
camera pipeline	37Mhz	70 MHz

- Every application got faster, but some didn't improve much
- We expect much larger improvements
- Not close to the 500 MHz target
- Compute pipelining is not good enough

Compute Pipelining Issues

- Place and route result gets worse with more pipeline registers
 - Competing objectives: adding more pipelining to improve delay while keeping the route reasonable

132		133	3	134	5	135	7	136	9	137	11	12	130	14	131	16	17	18	19	20	21	22	23	24	25	26 2
		p16F		p162		;17? 		p175	p195			p182	p176	p169	m237				r391							
		p159						p215	p201	p187		p183							m239							
4		p226		5	p213 —			p229	p203	p20	m1.4	77								p174	p206	p192				
5					p188	p228		p230	p189	p1:		p10*	2200	p180	m12		p104	p109		p205	p112	p193				
6	×667	r668	x632	p227	p211			p216	p L91	p2 4	#=		p 307	p306			p234	p100		p103	p110	p113		p111	p101	
7	p207	P208		p167	p318	p117			-11	2004		p271	p308	p305			p221			p218		r626	r491	r492		
В		p158		p328	p326	p125	r4.14		p E30	p327		p329	p330	p 300	m1.0	p279	p127	p235	x554	p232	p220	p219		x494	201.000	
9		p164	r387	p273	p272	p124		p332	p 115	p314	r463	p1??		p150		p309	p102	p251		p217	p345	p344	x550	p342	p341	
10		**************************************		p274	p276	p278	-7.9	p317		p270	c454	p1 9	p153	p150	r46.	r592	p135	p333		p256	p252			p148	p343	*s
11		p267		p268	p277	p269	m66	p275	b ;ee	x575	.69		126		r460	p250	p25°			p258	p253	p157	r488	p149		p347
12		p263		p116	p154	p122	m29	p356	p 264	p265		p262	12/07	204		p2 9		p L34	m27	p246	p255	p254	- 25	p364	p365	
13			1904	p123	p118	p121	7446	p355	7448	p147		p89	p96	p294			p248	p1	m55	p245		1988	m25	p363	p128	
14			Y403		p143	p145	-460	p354		p146		p297	p299	p293	m85	52 \3	p29:1	Ш	2036	p244	p357	r540		p362	p131	
15					p140	p348	1463	psos		p289	m8.1	p297				p1 14	p29:	p9	7611	p90	p99	p87		p132		
16						0				p287		p288	p283	p295	m8-3	p 242		p2 :2		p90	p97			a a		
												p285	p284	p286		P88				pas	P86					

Place and Route Pipelining

Benefits:

- Have a much better idea of where delay is in the application
- Should be able to pipeline much more intelligently

Drawbacks:

- Adding pipelining registers to a routing result is not always possible
- If a route is short or contains no switch boxes the pipelining fails

Place and Route Pipelining Results

- This approach fails for every application that we tried
- Finding available registers is very difficult and ripping up and rerouting is hard

Need a third solution to the pipelining problem

Combined Approach

- 1. Pipeline application during the compute mapping stage
- 2. Schedule and do memory mapping
- 3. Place and route application
- 4. Do STA analysis and pipeline place and route result
- 5. Schedule application memories again to account for added delay
- Generate bitstream

Combined Approach

- Overcomes issues of compute mapping pipelining approach:
 - Actual route information is available
- Overcomes issues of place and route pipelining approach:
 - Compute kernels are fully pipelined before the routing is fixed
- Potential issues:
 - Adding pipelining registers to a routing result is not always possible

Combined Approach - Potential Issues

 In practice, long critical paths have lots of available registers

Combined Approach - Implementation Issues

- Branch delay matching and rescheduling the applications is hard
 - If you add a register to a compute kernel:
 - Branch delay match within that kernel
 - Possibly branch delay match the whole application too
 - Tell scheduling tool about the new delay
 - If you add a register outside of a compute kernel:
 - Branch delay match the whole application
 - Fix schedules post-scheduling

Combined Approach Results - Gaussian

	Modeled (MHz)	Measured (MHz)
Baseline	158	200
Pipelined v1	295	280
Pipelined v2	360	320
Pipelined v3	515	420
Pipelined v5	793	600

- Combined approach let us hit our 500 MHz target
- 10 registers were added post-PnR to hit 600 MHz

Combined Approach Results - Harris

	Modeled (MHz)	Measured (MHz)
Baseline	30	25
Pipelined v1	137	160
Pipelined v2	166	200
Pipelined v3	335	300
Pipelined v4	373	360

- 5 pipelining registers are added to hit 360 MHz
- Working on getting application working at higher frequencies

Takeaways

- An important comparison measurement for our chip is EDP (energy delay product)
 - (power x delay) x delay
 - Delay is extremely important to getting low EDP
- Our chip can run up to 780 MHz, so pipelining is critically important
- Compute pipelining and place and route alone are not good enough
- Combined approach results in promising results
 - Need to fix MetaMapper flow for all applications
 - Need to fix all pipelining branch delay matching problems