UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD I

CONCEPTOS BÁSICOS Y SIMPLIFICACIÓN ALGEBRAICA DE SISTEMAS DIGITALES COMBINACIONALES.

SISTEMAS DIGITALES I SDU115

Diseño con simplificación algebraica. (Análisis, implementación y diseño)

Agenda

 Análisis e implementación de circuitos digitales.

Objetivo

Describir el funcionamiento de un circuito digital por medio de su ecuación lógica y su tabla de verdad, como un paso previo para la implementación de un circuito a partir de su ecuación lógica.

Obtenga ecuación y Tabla a partir del circuito

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	1

La figura muestra claramente el proceso de obtención de la ecuación lógica. Para obtener la tabla, la OR es 1 cuando cualquiera salida AND es uno.

La AND de arriba es 1 si A=B=0 y la de abajo si A=B=1.

Este arreglo se usa mucho y lo construyen en una compuerta llamada Nor Exclusiva o EXNOR.

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	1

$$F = \overline{A \oplus B}$$

Obtenga la ecuación y Tabla a partir del circuito

Α	В	X	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

En la salida de la AND superior se tiene \bar{A} . By de la Inferior A. \bar{B} , ambas se suman en la OR, este arreglo se llama Or Exclusiva o EXOR y lo venden en forma integrada.

$$C = A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B$$

Obtenga ecuación y Tabla a partir del circuito

Al realizar las operaciones en el circuito de la derecha: AB + AB + AC + BB + BC; AB + AC + B + BC = B(A+1+C)+AC = B + AC = AB + A(B+C) + B(B + C), Será 1

siempre q B=1 o A=C=1

Α	В	C	X
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Obtenga ecuación y Tabla a partir del circuito

Obtenga la ecuación y Tabla a partir del circuito

La salida de la primera AND es \bar{A} .B esta salida se suma con \bar{C} , el inversor niega toda la expresión \bar{A} .B + \bar{C} y esta última se multiplica por (A+C) y queda:

Puede sacar la tabla de verdad 7 1 1 1 dando a las variables de entrada los valores de las combinaciones y deduciendo D.

	Α	В	С	D
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

Dibujar el Circuito a partir de la Ecuación Lógica

Obtener tabla y dibujar el circuito a partir de la ecuación (A + B)(A + C) = A + BC.

A	В	С	A + B	A + C	(A+B)(A+C)	BC	A + BC
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Dibujar el Circuito a partir de la Ecuación Lógica

Dibuje el circuito a partir de la ecuación lógica: A B C D

$$D = A\bar{B} + \bar{A}\bar{B}C + \bar{A}B\bar{C}$$

α.	A	D	C	ט
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	0
7	1	1	1	0

La Ecuación indica que es una suma de tres productos, es decir, una compuerta OR, donde se suman las salidas de tres compuertas AND, de las cuales 2 son de 3 entradas y 1 de 2 entradas. Para la tabla recordar que la salida de la OR es 1 cuando cualquiera de sus entradas es 1, y la salida de la AND solo es 1 cuando todas sus entradas son 1.

Dibujar el Circuito a partir de la Ecuación Lógica.

Dibuje el circuito desde la ecuación lógica:

$$W = X\bar{Y}(Z+Y) + \bar{X}Z$$

La salida (W) es una OR de 2 entradas

 $(Z+\overline{Y})$ es una OR

 $(Z+\overline{Y}).X.\overline{Y}$ es una AND de la OR con las otras variables.

- (1) \bar{X} Z es una compuerta AND y es 1 cuando x=0 y z=1
- (2) $(Z+\overline{Y}).X.\overline{Y}$ es una AND es 1 si (z=1, x=1, y=0) o (y=0, x=1).

W=1 cuando cualquiera de las salida (1) o (2) = 1

	Х	Υ	Z	W
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	0
7	1	1	1	0

Dibujar el circuito a partir de la ecuación lógica.

$$X = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

De 3 y 7 De 5 y 7 De 6 y 7
$$X = BC(\overline{A} + A) + AC(\overline{B} + B) + AB(\overline{C} + C)$$

$$X = BC + AC + AB$$

HASTA LA PRÓXIMA