

Práctica 6: Jerarquía polinomial

Compilado: 6 de junio de 2025

- 1. Probar que el lenguaje Σ_i SAT es completo para la clase Σ_i^p , donde
 - $\Sigma_i \text{ SAT} = \{ \langle \phi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_i) \rangle : \phi \text{ es una fórmula booleana y } \exists \mathbf{v}_1 \forall \mathbf{v}_2 \dots \phi(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_i) \}$
- 2. Probar que si $\Sigma_k^p = \Pi_k^p$ para algún $k \in \mathbb{N}$, entonces $\mathsf{PH} = \Sigma_k^p$.
- 3. Probar que si SAT $\leq_p \overline{\text{SAT}}$ entonces PH = NP.
- 4. Probar que el problema FORMULA_MAS_CHICA de la guía anterior está en Π_2^p .
- 5. La clase $\mathsf{DP} = \{L_1 \cap L_2 : L_1 \in \mathsf{NP}, L_2 \in \mathsf{coNP}\}$ consiste de la intersección de problemas que están en NP y coNP (notar que $\mathsf{DP} \neq \mathsf{NP} \cap \mathsf{coNP}$). Probar que:
 - a) $\mathsf{DP} \subseteq \Sigma_2^p \cap \Pi_2^p$.
 - b) El siguiente lenguaje está en DP.
 - EXACT INDSET = $\{\langle G, k \rangle : G \text{ es un grafo cuyo conjunto independiente más grande tiene tamaño } k \}$
 - c) EXACT INDSET es completo para DP. Para esto, seguir la siguiente estrategia:
 - 1) Dar una reducción g de SAT a INDSET (el problema de dado un grafo G y un k decidir si G tiene un conjunto independiente de tamaño mayor o igual a k). Basar la misma en la siguiente idea: por cada cláusula definir una clique de tamaño 7 que represente las 7 asignaciones que satisfacen la cláusula. Luego, conectar todos los nodos que representan asignaciones inconsistentes.
 - 2) Observar que la reducción propuesta en el ejercicio anterior puede modificarse de tal forma que si $\varphi(x_1, \ldots, x_n)$ es satisfacible entonces el conjunto independiente más grande de G tiene tamaño n, mientras que si φ no lo es entonces el conjunto independiente más grande tiene tamaño n-1.
 - 3) Dado un lenguaje $\Pi \in \mathsf{DP}$ con $L = \Pi_1 \cap \Pi_2$, $\Pi_1 \in \mathsf{NP}$, $\Pi_2 \in \mathsf{coNP}$, sean las reducciones f_1 y f_2 de Π_1 a SAT y de Π_2 a $\overline{\mathsf{SAT}}$. Dado x, considerar las reducciones $g(f_1(x)) = \langle G_1, k_1 \rangle$ y $g(f_2(x)) = \langle G_2, k_2 \rangle$. Suponiendo que $k_1 \neq k_2$, probar que $x \in \Pi$ si y solamente si $\langle G_1 \times G_2, k_1(k_2 1) \rangle \in \mathsf{EXACT}$ INDSET 1 .
 - 4) Adaptar el argumento para el caso en que $k_1 = k_2$.

¹Dados dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ definimos el producto entre ambos como $G_1 \times G_2 = (V_1 \times V_2, \{((v_1, w_1), (v_2, w_2)) : v_1 v_2 \in E_1 \vee w_1 w_2 \in E_2\})$.