C'b ([a,b]) = &f & (([a,b])): \(\ext{3} f^{(1)} \) & C_b ([a,b]) \(\ext{8} \)

With \(\left| \left| \) = \(\text{Sup} \cdot \right| \) This is a \(\text{Banach Space} \)

Def \(\text{Bananch Space} : \text{X is a Banach Space with norm ||-|||} \)

if the porm introduces a metric \(\delta (x,y) = \left| x - y \right| \) S.t

X is complete w.r.t d

i.e. if \(x_n \) is a Cauchy Sequence in \(X_n \), then \(\left| x_n - x \right| \righta 0_n \), \(x \in X_n \)

Hilbert Space: Special Case of Banarch where norm is inner product

A <u>Seperable Basarch Space</u>: (X, 11.11) S.t we have Countable/finite D C X s.t X; ED is the limit of a Cauchy Sequence in X $\{X_1, ..., X_n\}$ $\{X_1, ...,$

Operator: A map between Sets of fits $\frac{\partial}{\partial x}: C_b'([a,b]) \longrightarrow C_b([a,b])$ G: $f \to V$ Space Space

Matrix isomorphic to linear operator

Neural Operator: Mapping from Some parametric functional dependence into our solution space

- A model that takes a fct as input & returns a fct as output.

Learning Procedure: Let $D \subseteq \mathbb{R}^d$ be bounded & open, and $A = A(D; \mathbb{R}^{da}, U(D; \mathbb{R}^{du}))$ are seperable Banarch Spaces Containing fct's taking values in \mathbb{R}^{da} & \mathbb{R}^{du} respectively Now let $G: A \longrightarrow U$ be a possibly nonlinear map

Now, Suppose we have observations $\{a_j, u_j\}_{j=1}^N$ $a_j \in A$ & $U_j \in U_j$ where $a_j \sim \mu$ for some prob measure μ is a Sequence of a IID r.v's from μ supported on A_j and $U_j = G^{\dagger}(a_j)$.

Goal: Construct an approx of 6^{\dagger} by fitting some $G_{\Theta}: A \to U \longleftrightarrow G_{\Gamma}: A \times G_{\Theta} \to U$ Choosing $6^{\dagger} G \times G_{\Theta} = G_{\Gamma}: A \times G_{\Gamma} = G_{\Gamma}: A \times G_$

So, let us construct a minimization problem. Define Some cost functional C: Uxu-> 1R

Thus, $\Theta^{\dagger} = \underset{\theta \in \mathfrak{B}}{\operatorname{argmax}} \mathbb{E}_{a \sim p} \left[\left(\left(G(a, \theta), G^{\dagger}(a) \right) \right) \right]$

Discretization: We model our data as pointwise evaluations

of a_{j} & u_{j} (x_{j}, y_{j}) (a_{j}, y_{j}) (a_{j}, y_{j}) (a_{j}, y_{j}) Q Diffusion Model

Discretization: We model our data as pointwise evaluations of a; & u;.

Assume $D_j = \{x_1, ..., x_n\} \subseteq D$ pointwise discritization of D_j and are observations $a_i|_{D_j} \in \mathbb{R}^{n \times da}$, $u_i|_{D_j} \in \mathbb{R}^{n \times du}$

 $G_{\Theta^{\dagger}}(a(x_{i})) \approx G^{\dagger}(a(x_{i})) \forall i$

We can use this setup to fit G_{64} S.t $G_{64}(a(x)) \approx G^*(a(x))$ for $x \in D \setminus D$;