ИІТМО

Основы электротехники

Отчёт по лабораторной работе №2 Исследование переходных процессов в электрических цепях

Группа Р3334 Вариант 85

Выполнил: Баянов Равиль Динарович

Дата сдачи отчёта: 05.10.2024

Дата защиты: 07.10.2024

Контрольный срок сдачи: 09.10.2024

Количество баллов:

Оглавление

Цель работы	3
Часть 1	
Схема исследуемой цепи	
Расчётные формулы и расчёты. Графики переходных процессов	
Заполненные таблицы 4.2 и 4.3	
Выводы по работе	
Часть 2	
Схема исследуемой цепи	
Расчётные формулы и расчёты. Графики переходных процессов	
Заполненные таблицы 4.4 и 4.5	
Выволы по работе	

Цель работы

Исследование переходных процессов в электрических цепях первого и второго порядков с источником постоянного и переменного напряжения. К выполнению работы следует приступать после изучения раздела «Переходные процессы».

План работы

Часть 1

Исследование переходных процессов в цепях первого порядка с источником постоянного напряжения.

- 1. Исследование переходного процесса в RC-цепи.
- 2. Исследование переходного процесса в RL-цепи.

Часть 2

Исследование переходных процессов в цепи второго порядка с источником постоянного напряжения.

- 1. Исследование апериодического переходного процесса.
- 2. Исследование колебательного переходного процесса.

Часть 1

Схема исследуемой цепи

Схема переходного процесса RC-цепи:

Схема переходного процесса RL-цепи:

Расчётные формулы и расчёты. Графики переходных процессов

График переходного процесса в RC-цепи:

Экспериментально заметим, что постоянная времени равна $\tau = 6023$ [мкс]

Теперь рассчитаем постоянную времени с помощью формулы:

 τ =1.44 $t_{0.5}$ =6083 [*мкс*], *где* $t_{0.5}$ = 4224 [*мкс*] — время, когда ток или напряжение на любом элементе цепи становятся равными половине своего амплитудного значения.

$$\tau = RC = 6000[$$
 мкс $]$

Ιċ

Остальные значения не требуют вычислений и представлены в таблице

График переходного процесса в RL-цепи:

Экспериментально заметим, что постоянная времени равна $\tau = 6047$ [мкс]

Так как
$$R_{\rm k}$$
 = 0 , $mo\, \tau$ = $\frac{L}{R}$ = $\frac{0.3}{50}$ = $0.006[c]$ = $6000[{\rm MKC}]$

Ιċ

$$U_L = \ddot{\iota}$$

$$I(\infty) = E \stackrel{!}{\circ} \stackrel{!}{\circ}$$

$$U_L(\infty) = I(\infty)R_k = 0$$

Заполненные таблицы 4.2 и 4.3

R,	C,	Тип	I (0+),	I (∞),	$U_{c}(0+),$	$U_{c}(\infty),$	τ,
[Ом]	[мкФ]	данных	[мА]	[мА]	[B]	[B]	[мкс]
20 120	эксп.	600	0	-15	15	6023	
	расч.	600	0	-15	15	6000	

R,	L,	$R_{k.}$	Тип	I (0+),	$I(\infty),$	$U_{L}(0+),$	$U_L(\infty)$,	τ,
[Ом]	[мГн]	[Ом]	данных	[мА]	[мА]	[B]	[B]	[мкс]
50	300	0	эксп.	-300	300	30	0	6047
50	300	0	расч.	-300	300	30	0	6000

Выводы по работе

Выполнив данную часть данной лабораторной работы, мы можем сделать выводы, касающиеся законов коммутации и принципов переходных процессов в RC и RL цепях. Здесь мы видим, что в цепях с конденсатором напряжение на конденсаторе не может изменяться скачкообразно, оно меняется плавно, согласно формуле. Точно также и с переходными процессами в цепях с катушкой индуктивности (ток не может меняться скачкообразно в катушке). Переходный процесс идёт бесконечно, но мы всё же по общепринятым правилам определили время, за которое происходит данный процесс (выбираем время равное 3т, при котором значение отличается от устоявшегося значения на 5%). Также рассчитали значения тока и напряжения в цепи, в устоявшемся режиме и в момент сразу после коммутации. Все эти выводы мы делаем в силу того, что энергия не может преобразовываться мгновенно.

Часть 2

Схема исследуемой цепи

Расчётные формулы и расчёты. Графики переходных процессов

График апериодического процесса в RLC-цепи:

Рассчитаем сопротивление резистора:

$$R=4$$
 $p=4$ $\sqrt{\frac{L}{C}}=4$ $\sqrt{\frac{0.3}{120\cdot 10^{-6}}}=200$ [*Oм*], где р — характеристическое сопротивление резистора.

Мы видим, что R>2p -> получаем апериодический процесс.

Промоделировав нашу цепь, получаем такие значения в момент коммутации:

$$U_C$$

По графику t_p =72.032[мс]=72032[мкс]

Теперь при помощи формул рассчитаем все эти же значения:

$$\delta = \frac{R}{2L} = \frac{200}{0.6} = 333.333 -$$
коэффициент затухания процесса.

$$\omega_0 \! = \! \sqrt{\frac{1}{LC}} \! = \! \sqrt{\frac{1}{0.3 \cdot 120 \cdot \left(10^{-6}\right)}} \! = \! 166.667 \left[\mathit{\Gamma u} \right] \! - \mathit{pe}$$
зонансная частота

$$s_1 = -\delta + \sqrt{\delta^2 - \omega_0^2} = -333.333 + \sqrt{333.333^2 - 166.667^2} = -44.658$$

$$s_2 = -\delta - \sqrt{\delta^2 - \omega_0^2} = -333.333 - \sqrt{333.333^2 - 166.667^2} = -622.008$$

i ¿0 [A]

$$E_E = \frac{1}{6}$$

 U_L

$$U_C$$

Занесём данные в таблицу 4.4

Теперь рассмотрим колебательный процесс:

$$R = \frac{p}{2} = \frac{1}{2} \sqrt{\frac{L}{C}} = 25[OM]$$

R<2p -> Колебательный процесс.

Экспериментально определим время переходного процесса:

$$I_{\it m1} =$$
 426.576 [MA] , $I_{\it m2} =$ 189.605 [M A] , $T =$ 39.035 [MC]

Экспериментальные значения: $\delta^{i} = \frac{2 \ln \left(\frac{I_{m1}}{I_{m2}}\right)}{T} = 41.544$, $\omega_{c}^{i} = \frac{2 \pi}{T} = 160.963$

Расчётные значения:
$$\delta = \frac{R}{2L} = 41.667$$
, $\omega_c = \sqrt{\frac{1}{LC} - \delta^2} = i \cdot 161.374$

Заполненные таблицы 4.4 и 4.5

Параметры элементов цепи		U _C (0+)		U _L (0+)		I (0+)		t_p		
R	L	C	расч	эксп	расч	эксп	расч	эксп	расч	эксп
[Ом]	[мГн]	[мкФ]	[B]	[B]	[B]	[B]	[A]	[A]	[мкс]	[мкс]
200	300	120	15	14.42	0	0	0	3.105	67177	72032

Парамет	гры элемент	гов цепи	(3	ω		
R [O _M]	L [мГн]	С [мкФ]	расч [c ⁻¹]	эксп [c ⁻¹]	расч [c ⁻¹] эксп [с		
25	300	120	41.667	41.544	161.374	160.963	

Выводы по работе

Выполнив данную часть лабораторной работы, мы можем заметить, что при сопротивлении на нагрузке в RLC-цепях больше, чем значение 2р, то мы получаем апериодические процессы, если же меньше, то получаем колебательные процессы. С помощью графиков мы видим, что процессы могут быть апериодическими, то бишь не иметь периода, или же колебательными. Мы также определили время совершения переходного процесса. И сравнили экспериментальные и расчётные значения частоты колебаний и коэффициента затухания.