Electronique II

Dylan Bourgeois

MT BA4

1 Introductions

Cours d'électronique II, donné par Mme Lacour.

2 Polarisation et Jonction PN

2.1 ...

A completer avec les notes.

2.2 Diode Zener

2.3 A retenir

La polarisation d'une jonction PN modifie la distribution des charges à la surface:

- Polarisation directe : les porteurs minoritaires sont injectés dans les "zones neutres"
- Polarisation inverse : les porteurs minoritaires sont arrachés dans les "zones neutres"

Caractéristique I(V) de la diode PN :

$$I_D \approx I_s \exp\left(\frac{qV_D}{nkT}\right)$$

Paramètres essentiels : $V_B, -I_s, r_d$

3 Le transistor bipolaire

3.1 Structure du transistor

3.1.1 Le transistor

Polarité indiquée par la flèche (= direction du courant I_E) Comporte trois électrodes :

- Base : électrode de commande.

- Collecteur : Relié au \oplus de l'alimentation.

- Emetteur : draine les courants de base et de collecteur.

3.1.2 Transistor NPN

régime	jonction BE	jonction CB
bloqué	Inverse V _{BE} < 0	Inverse V _{CB} >0
normal	Direct V _{BE} > 0	Inverse V _{CB} >0
saturé	Direct V _{BE} > 0	direct V _{CB} < 0

- Etats de fonctionnement :
- Fonctionnement normal : La "diode" BE est polarisée en mode direct, donc V_{BE} > 0. Les courants de diffusion sont des porteurs majoritaires : Trous de B → E, e⁻ de E → B. La "diode" BC est ploarisée en mode inverse, donc V_{BC} < 0. Les courants de diffusion sont des porteurs minoritaires : e⁻ de B → C. Au final, une large portion d'e⁻ se déplacent de E → C, et un faible courant de trous se déplacent de B → E.

3.1.3 Les courants I_B, I_E, I_C

Courant de collecteur (NB : ne dépend que de V_{BE}) :

$$I_C = I_S \exp\left(\frac{V_{BE}}{U_T} - 1\right)$$

Courant de base (avec β le gain en courant, $50 < \beta < 200$) :

$$I_B = \frac{I_C}{\beta}$$

Courant d'émetteur :

$$I_E = (\frac{1}{\beta} + 1)I_S \exp\left(\frac{V_{BE}}{U_T} - 1\right)$$

3.1.4 Autres modes de fonctionnement

• Bloqué:

Les deux jonctions BE et BC sont en mode inverse Aucun courant ne circule Le collecteur est isolé de l'émetteur (circuit ouvert) $(V_{CE} \rightarrow V_{CC})$

$$i_B = i_C = i_E = 0$$

• Saturé:

Le deux jonctions BE et BC sont en mode direct : $V_{BE} \sim 0.7V$ et $V_{BC} \sim 0.7V$. Diminution de $V_{CE} \rightarrow V_{CE,sat} \sim 0.2 - 0.3V$ Augmentation du courant de base i_B jusqu'à $i_{B,sat} > \frac{i_{C,sat}}{\beta}$.

3.1.5 A retenir

En mode normal, les courants sont proportionnels entre-eux et au facteur $\exp\left(\frac{V_{BE}}{V_T}\right)$. De plus V_{BE} controle I_C (effet transistor). Ce dernier est indépendant de V_{BC} (isolation), mais est controlé via I_B .

3.2 Caractéristiques I(V)

3.2.1 $I_C = f(V_{BE})$

3.2.2 $I_C = f(I_B)$

Générateur de courant commandé par un courant. I_{CE0} est le courant de fuite.

 $5<\beta<80: transistors \ de \ puissance \quad 100<\beta<500: transistors \ de \ signal$

3.2.3 $I_C = f(V_{CE})$

3.2.4 Modèle grands signaux

- Blocage $V_{BE} < U_j, I_C = 0A$
- Normal

$$-V_{BE} = U_j, \ V_{BC} < U_j \ donc \ V_{CE} = V_{CB} + V_{BE} > 0$$

$$-I_C = \beta I_B$$

$$-I_E = (1+\beta)I_B \sim I_C$$

• Saturation

$$-V_{BE} = V_{BC} = U_j \ donc \ V_{CE} = V_{CE,sat} \sim 0V$$

$$-I_B = I_{B,sat} > \frac{I_{C,sat}}{\beta}$$

3.2.5 Schémas équivalents

3.3 Montage inverseur

$$V_X = V_{CC} - R_C i_C$$

