目录

1	结构说明	2
	1.1 当前问题和进度条	2
2	第一章: 高斯整数	2
	2.1 练习题	2
3	第二章: 整性	7
	3.1 练习题	7
4	第三章: 理想	15
	4.1 练习题	15
5	第四章:格	19
	5.1 练习题	19
6	第五章: 闵可夫斯基理论	20
	6.1 练习题	20

《代数数论》习题解答

高旭-GG译

2015年6月22日

1 结构说明

问题,解答形式。一个大问题的内部,若需证明一些中间结论,就引理,命题等做相对标号,在大问题内部形成一个完整的逻辑链。各个大问题解答独立。有名的引理,定理,注明定理名称,全局生效。

1.1 当前问题和进度条

- 0. 问题 2 引理 1 的验证
- 1. 5.4 和 5.7 连贯
- 2. 基本做完了
- 3. 闵可夫斯基理论章节题目,需要一些先验(符号,背景等)

2 第一章: 高斯整数

2.1 练习题

1 **问题:** 证明 $\alpha \in \mathbb{Z}[i]$ 是单位当且仅当 $N(\alpha) = 1$ 。

解答: 设 $\alpha=x+iy$, 其中 $x,y\in\mathbb{Z}$, 则 $N(\alpha)=x^2+y^2\in\mathbb{Z}$ 。若 α 是单位,则存在 α^{-1} ,使 得 $N(\alpha)N(\alpha^{-1})=N(1)=1$,因此 $N(\alpha)=1$ 。反之,若 $N(\alpha)=1$,则其共轭 $\overline{\alpha}=x-iy$ 是 其逆,因为 $\alpha\overline{\alpha}=(x+iy)(x-iy)=x^2+y^2=1$ 。故 $\alpha\in\mathbb{Z}[i]$ 是单位当且仅当 $N(\alpha)=1$ 。

2 **问题:** 在环 $\mathbb{Z}[i]$ 中,证明若 $\alpha\beta = \varepsilon\gamma^n$,其中 α,β 互素, ε 是单位,则存在单位 $\varepsilon',\varepsilon''$ 使得 $\alpha = \varepsilon'\xi^n$ 且 $\beta = \varepsilon''\eta^n$ 。

解答: 我们证明一个更一般的结果: 不妨临时将其设为 命题 A: 在唯一分解整环 (UFD) 中, 若 $\alpha\beta = \varepsilon\gamma^n$, α,β 互素, ε 是单位, 则 $\alpha = \varepsilon'\xi^n$ 且 $\beta = \varepsilon''\eta^n$, 其中 $\varepsilon',\varepsilon''$ 是单位。

证明: 根据唯一分解性质,设 $\alpha = \varepsilon_1 \pi_1^{l_1} \pi_2^{l_2} \cdots \pi_s^{l_s}$, $\beta = \varepsilon_2 \pi_1^{m_1} \pi_2^{m_2} \cdots \pi_s^{m_s}$, $\gamma = \varepsilon_3 \pi_1^{n_1} \pi_2^{n_2} \cdots \pi_s^{n_s}$ 。由于 $(\alpha, \beta) = 1$,有 $l_j m_j = 0$ $(j = 1, 2, \dots, s)$ 。由 $\alpha \beta = \varepsilon \gamma^n$,得 $l_j + m_j = n n_j$ 。因此,对于 每个 j,要么 $l_j = n n_j$,要么 $m_j = n n_j$ 。由此得出结论。

3 **问题:**证明方程 $x^2+y^2=z^2$ (其中 x,y,z>0 且 (x,y,z)=1)的整数解(即"毕达哥拉斯三元组")都可以通过公式 $x=u^2-v^2, y=2uv, z=u^2+v^2$ 给出,其中 $u,v\in\mathbb{Z}, u>v>0, (u,v)=1,$ 且 u,v 不全为奇数(允许 x 和 y 互换)。

2 第一章: 高斯整数

解答: 设 $\alpha = x + iy$,则 (x, y, z) 是毕达哥拉斯三元组意味着 $N(\alpha) = z^2$ 。可假设 $(\alpha, \overline{\alpha}) = 1$ 。由于唯一分解整环中存在如下命题:

在环 $\mathbb{Z}[i]$ 中,若 $\alpha\beta = \varepsilon\gamma^n$,其中 α,β 互素, ε 是单位,则存在单位 $\varepsilon',\varepsilon''$ 使得 $\alpha = \varepsilon'\xi^n$ 且 $\beta = \varepsilon''\eta^n$ 。

证明:根据唯一分解性质,设 $\alpha = \varepsilon_1 \pi_1^{l_1} \pi_2^{l_2} \cdots \pi_s^{l_s}$, $\beta = \varepsilon_2 \pi_1^{m_1} \pi_2^{m_2} \cdots \pi_s^{m_s}$, $\gamma = \varepsilon_3 \pi_1^{n_1} \pi_2^{n_2} \cdots \pi_s^{n_s}$ 。由于 $(\alpha, \beta) = 1$,有 $l_j m_j = 0$ (j = 1, 2, ..., s)。由 $\alpha \beta = \varepsilon \gamma^n$,得 $l_j + m_j = n n_j$ 。因此,对于每个 j,要么 $l_j = n n_j$,要么 $m_j = n n_j$ 。由此得出结论。

应用到此,设 $\alpha = x + iy$, $\beta = \overline{\alpha} = x - iy$, $\varepsilon = 1$, $\gamma = z$, n = 2,则 $\alpha \beta = z^2$ 。由于 $(\alpha, \overline{\alpha}) = 1$,由上述结论,得 $\alpha = \varepsilon \xi^2$,其中 ε 是单位。设 $\xi = u + iv$,则:

$$\xi^{2} = (u + iv)^{2} = u^{2} - v^{2} + 2uvi,$$

 $\alpha = \varepsilon \xi^{2} = \varepsilon (u^{2} - v^{2} + 2uvi).$

取 $\varepsilon = 1$,则:

$$x + iy = u^2 - v^2 + 2uvi \implies x = u^2 - v^2, \quad y = 2uv,$$

$$z^2 = x^2 + y^2 = (u^2 - v^2)^2 + (2uv)^2 = (u^2 + v^2)^2 \implies z = u^2 + v^2.$$

故结论成立。

4 **问题:** 证明环 $\mathbb{Z}[i]$ 不能被排序。

解答: 首先回顾有序环的定义:

定义: 一个有序环是带有全序 \leq 的环 R, 满足: 若 $a \leq b$, 则 $a+c \leq b+c$; 若 $0 \leq a$ 且 $0 \leq b$, 则 $0 \leq ab$ 。若 $a \neq 0$, $0 \leq a$ 则 a 为正, $a \leq 0$ 则 a 为负, 0 既不正也不负。

命题:在有序环中,对于每个元素 a,恰好满足以下之一:a 为正,-a 为正,或 a=0。特别 地,a 为负当且仅当 -a 为正。假设 $\mathbb{Z}[i]$ 可被全序 \leq 排序。考虑 i: 若 i 为正,则 $-1=i^2$ 为正,从而 $1=(-1)^2$ 也为正,与命题矛盾。故 $\mathbb{Z}[i]$ 不能被排序。

5 **问题:** 证明对于每个有理整数 d > 1,环 $\mathbb{Z}[\sqrt{-d}]$ 的单位仅为 ± 1 。

解答:元素 $\alpha=x+y\sqrt{-d}$ 的范数为 $N(\alpha)=x^2+dy^2$ 。由于环 $\mathbb{Z}[i]$ 中, α 是单位当且仅当 $N(\alpha)=1$ 。因此, α 是单位等价于 (x,y) 是方程 $x^2+dy^2=1$ 的整数解。因 d>1,该方程的 唯一整数解为 $(\pm 1,0)$ 。故单位仅为 ± 1 。

6 **问题:** 证明对于每个无平方因子的整数 d > 1, 环 $\mathbb{Z}[\sqrt{d}]$ 有无穷多个单位。

解答: 单位是指 $\mathbb{Z}[\sqrt{d}]$ 中范数为 ± 1 的元素。设 $\alpha = x + y\sqrt{d}$, 其范数为 $N(\alpha) = (x + y\sqrt{d})(x - y\sqrt{d}) = x^2 - dy^2$ 。 α 是单位当且仅当 $x^2 - dy^2 = \pm 1$ 。因此,问题等价于证明佩尔方程 $x^2 - dy^2 = \pm 1$ 有无穷多整数解。由于 d > 1 且无平方因子, \sqrt{d} 是无理数,我们通过证明 $x^2 - dy^2 = 1$ 有无穷多解来完成(因为存在一个非平凡解即可生成无穷多解)。

命题: 对于每个无平方因子的整数 d > 1,方程 $x^2 - dy^2 = 1$ 有无穷多整数解。此处使用狄利克雷逼近定理证明:

引理 (狄利克雷逼近定理): 对于无理数 θ , 存在无穷多对整数 (x,y) (其中 y>0) 使得:

$$\left|\theta - \frac{x}{y}\right| < \frac{1}{y^2}.$$

证明: 通过 Dirichlet 抽屉原理, 对于每个正整数 N, 存在整数 x 和 y 使得 $1 \le y \le N$ 且:

$$|x - y\theta| \le \frac{1}{N+1}.$$

具体而言,令 $\theta_y = y\theta - [y\theta]$ 对于 $1 \le y \le N$ 。若存在某个 y 使得 $\theta_y \in (0, \frac{1}{N+1})$ 或 $\theta_y \in [\frac{N}{N+1}, 1)$,则 $|[y\theta] - y\theta| < \frac{1}{N+1}$ 或 $|([y\theta] + 1) - y\theta| < \frac{1}{N+1}$ 。否则,N 个数 θ_y 分布在 N-1 个区间 $[\frac{1}{N+1}, \frac{2}{N+1}), \ldots, [\frac{N-1}{N+1}, \frac{N}{N+1})$,故存在 $1 \le y_1 < y_2 \le N$ 和 0 < k < N 使得 $\theta_{y_1}, \theta_{y_2} \in [\frac{k}{N+1}, \frac{k+1}{N+1})$ 。于是:

$$|([y_2\theta]-[y_1\theta])-(y_2-y_1)\theta|<\frac{1}{N+1}.$$

因此可以直接得出结论: 给定一对 (x,y) 满足 $|x-y\theta| \leq \frac{1}{N+1}$, 可选择更大的 N' 使得 $|x-y\theta| > \frac{1}{N'+1}$, 从而得到另一对 (x',y') ,重复此过程可得无穷多对满足 $\left|\theta - \frac{x}{y}\right| < \frac{1}{y^2}$ 的整数对。

推论 1: 对于每个无平方因子的整数 d > 1,存在无穷多对整数 (x,y) (其中 y > 0) 使得:

$$|x^2 - dy^2| < 1 + 2\sqrt{d}.$$

证明:由引理(狄利克雷逼近定理),存在无穷多对(x,y)(y>0)满足 $|x-y\sqrt{d}|<\frac{1}{y}$ 。对于这些对,有:

$$|x + y\sqrt{d}| = |x - y\sqrt{d} + 2y\sqrt{d}|$$

$$\leq |x - y\sqrt{d}| + 2y\sqrt{d}$$

$$< \frac{1}{y} + 2y\sqrt{d},$$

因此:

$$\begin{aligned} \left| x^2 - dy^2 \right| &= |x - y\sqrt{d}| |x + y\sqrt{d}| \\ &< \frac{1}{y} \left(\frac{1}{y} + 2y\sqrt{d} \right) \\ &= \frac{1}{y^2} + 2\sqrt{d}. \end{aligned}$$

由于 $\frac{1}{y^2} \le 1$ (因为 $y \ge 1$), 则:

$$\left|x^2 - dy^2\right| \le 1 + 2\sqrt{d}.$$

推论 2: 对于每个无平方因子的整数 d>1,存在某个整数 k 满足 $1\leq |k|<1+2\sqrt{d}$,且方程 $x^2-dy^2=k$ 有无穷多整数解。证明:显然, $x^2-dy^2=0$ 的唯一整数解为 (0,0)。由推论 1,存在无穷多对 (x,y) (y>0) 满足 $|x^2-dy^2|<1+2\sqrt{d}$ 。设 $m=x^2-dy^2$,则 m 是整数,且 $|m|<1+2\sqrt{d}$ 。可能的 m 值是有限的: $0,\pm 1,\pm 2,\ldots,\pm [1+2\sqrt{d}]$ 。由于 (x,y) 有无穷多对,由抽屉原理,存在某个 $k\neq 0$ (因为 (0,0) 仅对应 m=0) 被无穷多次取到,即 $x^2-dy^2=k$ 有无穷多解,且 $1\leq |k|<1+2\sqrt{d}$ 。

证明(命题): 由推论 2, 存在某个 k $(1 \le |k| < 1 + 2\sqrt{d})$ 使得 $x^2 - dy^2 = k$ 有无穷多整数解。取其中两个正整数解 (x_1, y_1) 和 (x_2, y_2) 满足 $x_1 \equiv x_2 \mod |k|$ 和 $y_1 \equiv y_2 \mod |k|$ 。则:

$$(x_1x_2 - dy_1y_2)^2 - d(x_1y_2 - x_2y_1)^2 = (x_1^2 - dy_1^2)(x_2^2 - dy_2^2) = k^2.$$

由于 $x_1 \equiv x_2 \mod |k|$ 且 $y_1 \equiv y_2 \mod |k|$,则 $x_1y_2 - x_2y_1 \equiv 0 \mod |k|$,故 k 整除 $x_1y_2 - x_2y_1$ 。由上式,k 也整除 $(x_1x_2 - dy_1y_2)k$,从而整除 $x_1x_2 - dy_1y_2$ 。因此:

$$\left(\frac{x_1x_2 - dy_1y_2}{k}, \frac{x_1y_2 - x_2y_1}{k}\right)$$

2 第一章: 高斯整数

5

是方程 $x^2 - dy^2 = 1$ 的整数解。

令 (x_0, y_0) 表示 $x^2 - dy^2 = 1$ 的最小正整数解,即 $x_0 + y_0 \sqrt{d} > 1$ 最小(注意到平凡解 (1, 0) 对应 $1 + 0 \cdot \sqrt{d} = 1$,我们取非平凡解)。我们声称,方程 $x^2 - dy^2 = 1$ 的整数解为:

$$\left\{(x,y)\mid |x+y\sqrt{d}|=|x_0+y_0\sqrt{d}|^n, \forall \exists \ \ \text{\mathbb{Z}}\right\}.$$

设 (x,y) 是任意正整数解 (由对称性, 负解可类似处理)。若存在某个 $n \ge 0$ 使得 $(x_0 + y_0 \sqrt{d})^n < x + y\sqrt{d} < (x_0 + y_0 \sqrt{d})^{n+1}$,则:

$$1 < (x + y\sqrt{d})(x_0 - y_0\sqrt{d})^n < (x_0 + y_0\sqrt{d}).$$

令 $x' + y'\sqrt{d} = (x + y\sqrt{d})(x_0 - y_0\sqrt{d})^n$ 。由于 $(x_0 - y_0\sqrt{d})^n = (x_0 + y_0\sqrt{d})^{-n}$,且 $x^2 - dy^2 = 1$,则:

$$(x' + y'\sqrt{d})(x' - y'\sqrt{d}) = (x + y\sqrt{d})(x - y\sqrt{d})(x_0 - y_0\sqrt{d})^n(x_0 + y_0\sqrt{d})^{-n} = 1,$$

故 $x' + y'\sqrt{d}$ 也满足 $x'^2 - dy'^2 = 1$ 。此外:

$$1 < x' + y'\sqrt{d} < (x_0 + y_0\sqrt{d}), \quad x' - y'\sqrt{d} = (x' + y'\sqrt{d})^{-1},$$

则 $0 < x' - y'\sqrt{d} < 1$ 。于是:

$$\begin{split} x' &= \frac{1}{2} \left((x' + y' \sqrt{d}) + (x' - y' \sqrt{d}) \right) > 0, \\ y' &= \frac{1}{2} \left((x' + y' \sqrt{d}) - (x' - y' \sqrt{d}) \right) > 0, \end{split}$$

因此 (x', y') 是一个正整数解,且 $x' + y'\sqrt{d} < x_0 + y_0\sqrt{d}$,这与 (x_0, y_0) 的最小性矛盾。故 $x + y\sqrt{d} = (x_0 + y_0\sqrt{d})^n$ 。

结论: 由命题, $x^2 - dy^2 = 1$ 有非平凡解 (x_0, y_0) 。令 $u_0 = x_0 + y_0 \sqrt{d}$,则 $u_0^n = x_n + y_n \sqrt{d}$,且 $x_n^2 - dy_n^2 = 1$ 。由于 $u_0 > 1$, $n \in \mathbb{Z}$ 产生无穷多不同解,从而 $\mathbb{Z}[\sqrt{d}]$ 的单位群由 $\pm u_0^n$ 生成,包含无穷多个单位。

7 **问题:** 证明对于每个无平方因子的整数 d>1,环 $\mathbb{Z}[\sqrt{2}]$ 是欧几里得环。此外,证明其单位由 $\pm (1+\sqrt{2})^n, n\in\mathbb{Z}$ 给出,并确定其素元。

解答: 该问题包含三部分: 证明 $\mathbb{Z}[\sqrt{2}]$ 是欧几里得环,确定其单位群,并分类其素元。以下逐一解答。

回忆: 一个环 A 是欧几里得环,如果存在函数 $\delta: A \to \mathbb{N}$,满足: (1) $\delta(\alpha) = 0 \iff \alpha = 0$; (2) 对任意 $\alpha, \beta \in A, \beta \neq 0$,存在 $\kappa, \gamma \in A$ 使 $\alpha = \kappa\beta + \gamma$ 且 $\delta(\gamma) < \delta(\beta)$ 。

证明: 为证明 $\mathbb{Z}[\sqrt{2}]$ 是欧几里得环,定义范数 $|N(a+b\sqrt{2})|=|a^2-2b^2|$ 为欧几里得函数。考虑 $\alpha=a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$,选择 $\gamma=x+y\sqrt{2}\in\mathbb{Z}[\sqrt{2}]$,使 $|a-x|\leq\frac{1}{2}$, $|b-y|\leq\frac{1}{2}$ 。则:

$$|N(\alpha - \gamma)| = |(a - x)^2 - 2(b - y)^2| \le |a - x|^2 + 2|b - y|^2 \le \frac{1}{4} + 2 \cdot \frac{1}{4} = \frac{3}{4} < 1.$$

故 |N| 满足欧几里得条件, $\mathbb{Z}[\sqrt{2}]$ 是欧几里得环。

验证 $\pm (1+\sqrt{2})^n$ 是单位: 对于 $u=1+\sqrt{2}$, N(u)=1-2=-1。其逆为 $-1+\sqrt{2}$, 因:

$$(1+\sqrt{2})(-1+\sqrt{2}) = -1+2=1.$$

2 第一章: 高斯整数

6

对 $n \in \mathbb{Z}$, $N((1+\sqrt{2})^n) = (-1)^n = \pm 1$, 故 $\pm (1+\sqrt{2})^n$ 均为单位。为证明其唯一性,设 $u = a + b\sqrt{2}$ 为单位,则 $N(u) = a^2 - 2b^2 = \pm 1$ 。取 $u_0 = 1 + \sqrt{2}$ 为最小正单位(范数为 -1,系数正),所有单位形如 $\pm u_0^n$ 。

回忆:一个元素 p 称为素元,如果主理想 (p) 是一个非零素理想。在唯一因子分解域中,素元恰好是不可约元素。为了继续确定所有素元,我们需要一个引理。

引理 1: 对于素数 p > 2, 二元一次方程:

$$a^2 - 2b^2 = p,$$

有整数解当且仅当 $p \equiv 1$ 或 7 mod 8。

证明: 对于任意整数 $a,b,\ a^2-2b^2$ 不能模 8 为 3 或 5。模 8 检查: $a^2\equiv 0,1,4;\ 2b^2\equiv 0,2$ 。则 $a^2-2b^2\equiv 0,1,2,4,6,7$ 。故不可能为 3 或 5。为了证明 "当且"部分,我们只需证明这样的 p 在 $\mathbb{Z}[\sqrt{2}]$ 中不是素元。设 $p=\alpha\beta$,则 $N(\alpha)N(\beta)=N(p)=p^2$,因此 $N(\alpha)=\pm p$ 或 $\pm p^2$,其中 $\alpha=a+b\sqrt{2}$,于是 $p=N(\alpha)=a^2-2b^2$ 。

为此,我们验证当 $p \equiv 1$ 或 $7 \mod 8$ 时,同余式 $x^2 \equiv 2 \mod p$ 有解。若如此,则 $p \mid x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2})$ 。但 $\frac{x + \sqrt{2}}{p}$ 和 $\frac{x - \sqrt{2}}{p}$ 都不在 $\mathbb{Z}[\sqrt{2}]$ 中,因此 p 不能是素元。

为了证明 2 是模 p 的二次剩余,即同余式 $x^2 \equiv 2 \mod p$ 有解,当 $p \equiv 1$ 或 7 $\mod 8$ 时,我们引用 Legendre 符号和 Gauss 引理。

Legendre 符号: 一个整数 a 称为模 n 的二次剩余,如果合同式 $x^2 \equiv a \mod n$ 有解。我们 定义模 n 的 Legendre 符号如下:

$$\left(\frac{a}{n}\right) := \begin{cases} 1 & \text{ 若} a \text{ 是模} n \text{ 的二次剩余且} a \not\equiv 0 \mod p, \\ 0 & \text{ 若} a \equiv 0 \mod p, \\ -1 & \text{ 若} a \text{ 是模} n \text{ 的二次非剩余.} \end{cases}$$

引理 2: 设p是一个奇素数,a是一个整数,则:

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p.$$

证明: 我们将正余数集 $1, 2, \dots, p-1$ 中的整数配对如下: 如果 $xy \equiv a \mod p$, 则将 $x \vdash y$ 配对。

若 a 是二次剩余,则存在某个 x_0 在正余数集中,使得 $x_0^2 \equiv a \mod p$ 。在这种情况下,同余式 $x^2 \equiv a \mod p$ 在正余数集中恰有两解: x_0 和 $p-x_0$ 。因此配对提供 $\frac{p-3}{2}$ 对和两个单元素,它们的乘积为:

$$(p-1)! \equiv a^{\frac{p-3}{2}} x_0 (p-x_0) \equiv -a^{\frac{p-1}{2}} \mod p.$$

由于 $(p-1)!\equiv -1\mod p$ (Wilson 定理),得 $a^{\frac{p-1}{2}}\equiv 1\mod p$ 。若 a 是二次非剩余,则配对提供 $\frac{p-1}{2}$ 对,它们的乘积为:

$$(p-1)! \equiv a^{\frac{p-1}{2}} \mod p.$$

于是 $a^{\frac{p-1}{2}} \equiv -1 \mod p$ 。 结论为 $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \mod p$ 。

引理 (Gauss 引理) 设 p 是一个奇素数, a 与 p 互质, 则:

$$\left(\frac{a}{p}\right) \equiv (-1)^{\mu} \mod p,$$

其中 μ 是 $a, 2a, \dots, \frac{p-1}{2}a$ 模 p 的绝对余数中负整数的个数。

证明: 设 $r_1, r_2, \cdots, r_{\tau}$ 是 $a, 2a, \cdots, \frac{p-1}{2}a$ 模 p 的正绝对余数, 而 $s_1, s_2, \cdots, s_{\mu}$ 是负的。则 $\tau + \mu = \frac{p-1}{2}$ 。注意 $r_1, r_2, \dots, r_{\tau}, -s_1, -s_2, \dots, -s_{\mu}$ 是互异的,因此它们是 $1, 2, \dots, \frac{p-1}{2}$ 的一 种排列。因此有:

$$r_1 r_2 \cdots r_{\tau}(-s_1)(-s_2) \cdots (-s_{\mu}) \equiv \left(\frac{p-1}{2}\right)! \mod p.$$

但:

$$r_1 r_2 \cdots r_{\tau} s_1 s_2 \cdots s_{\mu} \equiv \left(\frac{p-1}{2}\right)! a^{\frac{p-1}{2}} \mod p.$$

于是 $a^{\frac{p-1}{2}} \equiv (-1)^{\mu} \mod p$. 结果由引理 2 得出。

备注: 使用这个 Gauss 引理,可以确定 $\left(\frac{a}{p}\right)$ 。确实, $2,4,\cdots,p-1$ 模 p 的绝对余数是 $(2,4,\cdots,2\left[rac{p-1}{4}
ight]$ 和 $(2\left[rac{p-1}{4}
ight]-p,\cdots,-1$ 。于是 $\mu=rac{p-1}{2}-\left[rac{p-1}{4}
ight]$,我们得出 $(2p)=(-1)^{rac{p-1}{2}-\left[rac{p-1}{4}
ight]}=(-1)^{rac{p-1}{2}-\left[rac{p-1}{2}-\left[rac{p-1}{2}
ight]}=(-1)^{rac{p-1}{2}-\left[rac$ $(-1)^{\frac{p^2-1}{8}}$.

命题 1: $\mathbb{Z}[\sqrt{2}]$ 的素元 π , 在等价类元素 (associated elements) 下,可由如下给出:

- (a) $\pi = \sqrt{2}$,
- (b) $\pi = a + b\sqrt{2} \not \exists p \ a^2 2b^2 = p, p \equiv 1, 7 \mod 8, a > b\sqrt{2} > 0.$
- (c) $\pi = p, p \equiv 3, 5 \mod 8$.

证明: 设 π 是一个素元。我们将 $N(\pi)$ 分解为素数,则 π 必须除以其中之一,设为 p。则 $N(\pi) \mid N(p) = p^2$,因此 $N(\pi) = \pm p$ 或 $\pm p^2$ 。为了确定 π ,需确定 $a^2 - 2b^2 = p$:若无正整数 解,则 $\pi = p$ 是素元,这是情况 3;若有正整数解 (a,b)则 $\pi = a + b\sqrt{2}$ 是素元,这是情况 1 和 2。结果由引理 1 得出。

总结: 如上证明了 $\mathbb{Z}[\sqrt{2}]$ 是欧几里得环,单位为 $\pm (1+\sqrt{2})^n$,素元如**命题 1**。

3 第二章: 整性

练习题 3.1

1 **问题:** 判断 $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ 是否为代数整数。 **解答:** 设 $\theta = \frac{3+2\sqrt{6}}{1-\sqrt{6}}$ 。计算得(分母有理化):

$$\theta = \frac{3 + 2\sqrt{6}}{1 - \sqrt{6}} \cdot \frac{1 + \sqrt{6}}{1 + \sqrt{6}} = \frac{(3 + 2\sqrt{6})(1 + \sqrt{6})}{1 - 6} = \frac{3 + 3\sqrt{6} + 2\sqrt{6} + 12}{-5} = -\frac{15 + 5\sqrt{6}}{5} = -(3 + \sqrt{6})$$

验证 θ 是否满足整系数单项式方程。计算:

$$\theta^2 + 6\theta + 3 = (3 + \sqrt{6})^2 - 6(3 + \sqrt{6}) + 3 = 9 + 6\sqrt{6} + 6 - 18 - 6\sqrt{6} + 3 = 0$$

因此, θ 满足整系数方程 $x^2 + 6x + 3 = 0$, 故 θ 是代数整数。

2 **问题:** 证明若整环 A 是整闭 (integrally closed) 的,则其多项式环 A[t] 也是整闭的。此外, 证明每个唯一因子分解整环 (UFD) 和每个 Dedekind 域是整闭的,并进一步说明 A[t] 的整 闭包与 A 的整闭包之间的关系。

解答: 该问题包含多个部分: 证明 A[t] 整闭,验证 UFD 和 Dedekind 域的整闭性,及 A[t] 整闭包的性质。以下逐一解答。

回忆: 一个整环 A 是整闭的,若其分式域 K 中对 A 整的元素均在 A 中。即,若 $x \in K$ 满足 $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$ $(a_i \in A)$,则 $x \in A$ 。

证明: 设 K 为 A 的分式域,需证明 A[t] 在其分式域 K(t) 中整闭,即若 $f(t) \in K(t)$ 对 A[t] 整,则 $f(t) \in A[t]$ 。已知 K[t] 是主理想域(PID),由后述**命题 1 或 2**,K[t] 整闭,且 K(t) 是 A[t] 和 K[t] 的共同分式域。

设 $f(t) \in K(t)$ 对 A[t] 整,则对 K[t] 也整,故 $f(t) \in K[t]$ 。存在 $a_{n-1}(t), \ldots, a_0(t) \in A[t]$,使 得:

$$f(t)^{n} + a_{n-1}(t)f(t)^{n-1} + \dots + a_{0}(t) = 0.$$

取整数 m 大于 $a_{n-1}(t), \ldots, a_0(t)$ 和 f(t) 的次数。令 $h(t) = t^m - f(t)$,则 h(t) 对 A[t] 整,且 为首一多项式。代入得:

$$h(t)^{n} + a_{n-1}(t)h(t)^{n-1} + \dots + a_{0}(t) = 0.$$

设 $g(t) = h(t)^{n-1} + a_{n-1}(t)h(t)^{n-2} + \cdots + a_1(t)$, 则:

$$h(t)g(t) = -a_0(t).$$

因 h(t) 和 $-a_0(t)$ 均为首一,且 $-a_0(t) \in A[t]$,由**引理 2**,h(t) 的系数对 A 整。因 A 整闭, $h(t) \in A[t]$ 。故 $f(t) = t^m - h(t) \in A[t]$ 。 A[t] 整闭得证。

命题 1:每个唯一因子分解整环(UFD)是整闭的。

证明: 设 A 为 UFD, K 为其分式域。任取 $a/b \in K$ $(a,b \in A, b \neq 0)$ 对 A 整,存在 $a_{n-1}, \ldots, a_0 \in A$,使得:

$$(a/b)^n + a_{n-1}(a/b)^{n-1} + \dots + a_0 = 0.$$

乘以 b^n :

$$a^{n} = -(a_{n-1}a^{n-1}b + \dots + a_{0}b^{n}).$$

右边被 b 整除,故 $b \mid a^n$ 。设 $b = p_1^{e_1} \cdots p_k^{e_k}$,若某质元 $p_i \mid b$,则 $p_i^{e_i n} \mid a^n$ 。若 $p_i \mid a$,则 a/b 非分式,矛盾。故 $p_i \nmid a$ 。由唯一因子分解,b 为单位, $a/b \in A$ 。A 整闭得证。

命题 2:每个 Dedekind 域是整闭的。

证明: 设 \mathcal{O} 为 Dedekind 域, K 为其分式域。任取 $r \in K$ 对 \mathcal{O} 整, 存在 n 使得 $r^n \in (r^{n-1}, r^{n-2}, ..., 1)$ 。记理想 I = (r, 1),则:

$$I^n = (r^n, r^{n-1}, \dots, 1) = (r^{n-1}, r^{n-2}, \dots, 1) = I^{n-1}.$$

因 \mathcal{O} 为 Dedekind 域, I 可逆, 乘以 I^{-1} 得 $I = \mathcal{O}$ 。故 $r \in \mathcal{O}$ 。 \mathcal{O} 整闭得证。

引理 1 (Gauss 引理): 设 A 为 UFD, K 为其分式域。若 $f,g \in K[t]$ 为首一多项式, $g \mid f$,且 $f \in A[t]$,则 $g \in A[t]$ 。

证明: TODO 待确认设 f = gh, $h \in K[t]$ 首一。存在 $a, b \in A$ 使 $ag, bh \in A[t]$, 且 ag 和 bh 的系数无公共质因子)。则 abf = (ag)(bh)。因 $f \in A[t]$,由 Gauss 引理标准形式, $ag \in A[t]$ 的系数无非单位公共因子,因 g 首一,a 为单位, $g \in A[t]$ 。得证。

引理 2: 设 A 为环, B 为 A-代数, $f,g \in B[t]$ 为首一多项式, $g \mid f$ 。若 f 的系数对 A 整, 则 g 的系数也对 A 整。

证明: 设 $A' \subset B$ 为 f 系数生成的 A-子代数,则 A' 对 A 整。f 在分裂域中的根对 A' 整,因整性传递,对 A 整。g 的根为 f 的根子集,故对 A 整,其系数也对 A 整。得证。

命题 3: 设 A 为整域, A' 为其在 K 中的整闭包, 则 A[t] 在 K(t) 中的整闭包为 A'[t]。

证明: (1) A'[t] 对 A[t] 整: 任取 $f(t) = \sum a_i t^i \in A'[t]$, $a_i \in A'$ 对 A 整, 满足 $a_i^n + b_{n-1} a_i^{n-1} + \cdots + b_0 = 0$ ($b_i \in A$)。则:

$$f(t)^{n} + b_{n-1}f(t)^{n-1} + \dots + b_0 = 0,$$

系数在 A[t] 中, f(t) 对 A[t] 整。

(2) 若 $f(t) \in K(t)$ 对 A[t] 整,则 $f(t) \in A'[t]$: 由前述, $f(t) \in A[t]$ 。设 $f(t) = \sum c_i t^i$, $c_i \in K$ 对 A 整,因 A' 为整闭包, $c_i \in A'$ 。故 $f(t) \in A'[t]$ 。得证。

总结: 如上证明了若 A 整闭,则 A[t] 整闭; UFD 和 Dedekind 域均整闭 (**命题 1 和 2**); A[t] 的整闭包为 A'[t] (**命题 3**)。**引理 1 和 2** 提供了关键工具。

4 **问题:** 设 D 为不等于 0 或 1 的无平方因子有理整数, $K=\mathbb{Q}(\sqrt{D})$ 为二次数域,d 为其判别式。证明:

且 K 的整基在第二种情况下为 $\left\{1,\sqrt{D}\right\}$,第一种情况下为 $\left\{1,\frac{1}{2}(1+\sqrt{D})\right\}$,且在两种情况下均为 $\left\{1,\frac{1}{2}(d+\sqrt{d})\right\}$ 。

解答:设 $a+b\sqrt{D}\in\mathbb{Q}(\sqrt{D})$ 为代数整数,其最小多项式为 $x^2-2ax+(a^2-Db^2)$ 。故 $2a\in\mathbb{Z}$, $a^2-Db^2\in\mathbb{Z}$ 。若 $a\in\mathbb{Z}$,则 $Db^2\in\mathbb{Z}$,因 D 无平方因子, $b\in\mathbb{Z}$ 。若 $a\notin\mathbb{Z}$,则 2a 为奇数, $D(2b)^2\equiv 1\pmod 4$,因 D 无平方因子, $2b\in\mathbb{Z}$,且 $D\equiv 1\pmod 4$ 。因此, $\mathcal{O}_K=\mathbb{Z}+\frac{1}{2}(1+\sqrt{D})\mathbb{Z}$ (若 $D\equiv 1\pmod 4$), $\mathcal{O}_K=\mathbb{Z}+\sqrt{D}\mathbb{Z}$ (若 $D\equiv 2$ 或3 (mod 4))。

计算判别式 d。所有嵌入 $K \to \mathbb{C}$ 为恒等映射及 $\sigma: a+b\sqrt{D} \mapsto a-b\sqrt{D}$ 。若 $D \equiv 1 \pmod 4$,则:

$$d = d\left(1, \frac{1}{2}(1 + \sqrt{D})\right) = \det\begin{pmatrix} 1 & \frac{1}{2}(1 + \sqrt{D})\\ 1 & \frac{1}{2}(1 - \sqrt{D}) \end{pmatrix}^2 = D$$

若 $D \equiv 2$ 或3 (mod 4), 则:

$$d = d(1, \sqrt{D}) = \det \begin{pmatrix} 1 & \sqrt{D} \\ 1 & -\sqrt{D} \end{pmatrix}^2 = 4D$$

两情况下, $\mathcal{O}_K = \mathbb{Z} + \frac{1}{2}(d + \sqrt{d})\mathbb{Z}$ 。

4.1 **问题:** 设 $A \subset B$ 是环的扩展,且 B 作为 A-模是秩为 m 的自由模。给定 B 中的元素 β_1, \cdots, β_m ,定义此基的判别式,并说明当基变换时判别式的变化规律。进一步说明判别式 d(B/A) 如何作为 A/A^{*2} 中的元素,以及在更一般的情况下如何定义 d(L/K)。

解答: 设 $A \subset B$ 是环的扩展, 且 B 作为 A-模是秩为 m 的自由模。对于 B 中的元素 β_1, \dots, β_m , 其判别式定义为:

$$d(\beta_1, \dots, \beta_m) = \det (\operatorname{Tr}_{B|A}(\beta_i \beta_j)),$$

其中 $\operatorname{Tr}_{B|A}$ 是 B 相对于 A 的迹映射。可以验证, $(\alpha,\beta)\mapsto \operatorname{Tr}_{B|A}(\alpha\beta)$ 是一个对称双线性形式。因此,若 $\gamma_j=\sum_i a_{ji}\beta_i$ (其中 $a_{ij}\in A$),则:

$$d(\gamma_1, \dots, \gamma_m) = \det(a_{ij})^2 d(\beta_1, \dots, \beta_m).$$

若 β_1, \dots, β_m 和 $\gamma_1, \dots, \gamma_m$ 均为 B 的基,则 $\det(a_{ij})$ 是 A 中的单位,故判别式在单位平方乘积的意义下不变。因此,判别式可视为 A/A^{*2} 中的元素,记为 d(B/A),称为 B 相对于 A 的判别式。

更一般地,设 K 是 A 的分式域, L 是 K 的度为 m 的扩展。若 A 在 L 中的整闭包 B 是 A 上秩为 m 的自由模,则 d(B/A) 表示 d(L/K)。此外,若 $L \mid K$ 是可分的,则 $d(L/K) \neq 0$ 。

4.1.1 **问题:** 在问题 4.1 中,当 $A = \mathbb{Z}$ 时,说明判别式 d(B/A) 是一个明确定义的整数,并解释为什么可以省略基环 \mathbb{Z} ,直接记为 d(B)。对于数域 K 是 \mathbb{Q} 上度为 m 的扩展的情况,说明环 \mathcal{O}_K 在 \mathbb{Z} 上是秩 m 的自由模,并定义 d_K 作为 K 的判别式。

解答:当 $A=\mathbb{Z}$ 时, \mathbb{Z} 中单位只有 ± 1 ,其平方仅为 1。因此,判别式 d(B/A) 作为一个在 $\mathbb{Z}/\mathbb{Z}^{*2}$ 中的元素,只可能是整数本身,不受单位平方的模除影响,故 d(B/A) 是明确定义的整数。在这种情况下,我们可以省略基环 \mathbb{Z} ,直接记为 d(B)。

对于数域 K 是 \mathbb{Q} 上度为 m 的扩展, \mathcal{O}_K 是 K 中整环,它在 \mathbb{Z} 上是秩 m 的自由模。因此, $d(\mathcal{O}_K)$ 是一个明确定义的整数。我们定义 $d(K/\mathbb{Q})$ 作为 $\mathbb{Q}^*/\mathbb{Q}^{*2}$ 中的元素,由 $d(\mathcal{O}_K)$ 表示,并将此整数记为 d_K ,称为数域 K 的判别式。

4.2 **问题:** 设 $\mathfrak{a} \subset \mathfrak{a}'$ 是数域 K 中两个非零的有限生成 \mathcal{O}_K -子模,证明指数 (index) ($\mathfrak{a}' : \mathfrak{a}$) 是有限的,并且满足关系:

$$d(\mathfrak{a}) = (\mathfrak{a}' : \mathfrak{a})^2 d(\mathfrak{a}').$$

解答: 设 β_1, \dots, β_m 是 \mathfrak{a}' 的一个整基。因为 $\mathfrak{a} \subset \mathfrak{a}'$ 是 \mathbb{Z} -模,根据有限生成 \mathbb{Z} -模的基本定理,存在整数 a_1, \dots, a_m 满足 $a_i \mid a_{i+1} \ (i=1,\dots,m-1)$,使得 $a_1\beta_1,\dots, a_m\beta_m$ 是 \mathfrak{a} 的整基。此外, $\mathfrak{a}'/\mathfrak{a} \cong \mathbb{Z}/(a_1) \oplus \dots \oplus \mathbb{Z}/(a_m)$,因此索引 $(\mathfrak{a}':\mathfrak{a}) = a_1a_2 \dots a_m$ 是有限的。

现在计算判别式:

$$d(\mathfrak{a}) = d(a_1\beta_1, \cdots, a_m\beta_m) = \det(T)^2 d(\beta_1, \cdots, \beta_m) = \det(T)^2 d(\mathfrak{a}'),$$

其中基变换矩阵 $T = \operatorname{diag}(a_1, a_2, \cdots, a_m)$,因此 $\operatorname{det}(T) = a_1 a_2 \cdots a_m = (\mathfrak{a}' : \mathfrak{a})$ 。于是:

$$d(\mathfrak{a}) = (\mathfrak{a}' : \mathfrak{a})^2 d(\mathfrak{a}').$$

证毕。

5 **问题:** 证明 $\left\{1, \sqrt[3]{2}, \sqrt[3]{2}\right\}$ 是 $\mathbb{Q}(\sqrt[3]{2})$ 的整基。

解答 1: 首先计算基 $\left\{1,\sqrt[3]{2},\sqrt[3]{2}\right\}$ 的判别式。 $\mathbb{Q}(\sqrt[3]{2})$ 到 \mathbb{C} 的嵌入为 $\sigma_1=\mathrm{id}$ 、 $\sigma_2:\sqrt[3]{2}\mapsto\sqrt[3]{2}\omega$ 、 $\sigma_3:\sqrt[3]{2}\mapsto\sqrt[3]{2}\omega^2$,其中 ω 为三次单位根。则:

$$d\left(1, \sqrt[3]{2}, \sqrt[3]{2}^{2}\right) = \det \begin{pmatrix} 1 & \sqrt[3]{2} & \sqrt[3]{2}^{2} \\ 1 & \sqrt[3]{2}\omega & \sqrt[3]{2}\omega^{2} \\ 1 & \sqrt[3]{2}\omega^{2} & \sqrt[3]{2}\omega \end{pmatrix}^{2}$$

$$= \left((\sqrt[3]{2} - \sqrt[3]{2}\omega)(\sqrt[3]{2}\omega - \sqrt[3]{2}\omega^{2})(\sqrt[3]{2} - \sqrt[3]{2}\omega^{2})\right)^{2}$$

$$= 4(1 - \omega)^{2}(\omega - \omega^{2})^{2}(1 - \omega^{2})^{2}$$

$$= 4(1 - \omega)^{6} = 4(-3\omega)^{3} = -108$$

命题 1: 设 $\mathfrak{a} \subset \mathfrak{a}'$ 是数域 K 中两个非零的有限生成 \mathcal{O}_K -子模,则指数(index)($\mathfrak{a}' : \mathfrak{a}$) 是有限的,并且满足关系:

$$d(\mathfrak{a}) = (\mathfrak{a}' : \mathfrak{a})^2 d(\mathfrak{a}').$$

由**命题 1** 可得: $(\mathcal{O}_K: \mathbb{Z}[\sqrt[3]{2}])^2 d_K = -108 = -2^2 \cdot 3^3$ 。设指数为 m,则 m = 1, 2, 3 或 6。

Stickelberger 判别式关系: 代数域 K 的判别式 d_K 总是 $\equiv 0$ 或1 (mod 4)。

由 Stickelberger 判別式关系可得: m=1 或 3。若 m=3,则 $3\mathcal{O}_K\subset\mathbb{Z}[\sqrt[3]{2}]$,存在 $\alpha=\frac{1}{3}(a+b\sqrt[3]{2}+c\sqrt[3]{2}^2)\in\mathcal{O}_K$ 但 $\alpha\notin\mathbb{Z}[\sqrt[3]{2}]$,且可假设 $a,b,c\in\{0,-1,1\}$ 。 α 的最小多项式为:

$$X^3 - aX^2 + \frac{1}{3}(a^2 - 2bc)X - \frac{1}{27}(a^3 + 2b^3 + 4c^3 - 6abc)$$

此多项式在此情况下非整,矛盾。故 m=1, $\mathcal{O}_K=\mathbb{Z}[\sqrt[3]{2}]$ 。

解答 2: 利用艾森斯坦多项式和一引理给出另一证明。

艾森斯坦多项式: 若多项式 $X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{Z}[X]$ 对素数 p 满足 $p \mid a_i (1 \le i \le n-1)$ 且 $p \mid a_0$ 但 $p^2 \nmid a_0$,则为艾森斯坦多项式。

引理 1: 设 K 为 n 次数域, $\alpha \in K$ 为 n 次代数整数,其最小多项式对素数 p 为艾森斯坦多项式,则 $p \nmid (\mathcal{O}_K : \mathbb{Z}[\alpha])$ 。

证明: 设 $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0$ 为 α 的最小多项式。若 $p \mid (\mathcal{O}_K : \mathbb{Z}[\alpha])$,则存在 $\beta \in \mathcal{O}_K$,使得 $p\beta \in \mathbb{Z}[\alpha]$ 但 $\beta \notin \mathbb{Z}[\alpha]$ 。写:

$$p\beta = b_{n-1}\alpha^{n-1} + \dots + b_1\alpha + b_0, \quad b_i \in \mathbb{Z}$$

且不全被 p 整除。取最小 j $(0 \le j \le n-1)$ 使得 $p \nmid b_j$ 。因 $p \mid b_i$ (i < j),则 $\frac{b_i}{p} \alpha^i \in \mathcal{O}_K$ 。定义:

$$\gamma = \frac{b_{n-1}}{p}\alpha^{n-1} + \dots + \frac{b_j}{p}\alpha^j = \beta - \frac{b_{j-1}}{p}\alpha^{j-1} - \dots - \frac{b_0}{p} \in \mathcal{O}_K$$

因 f(X) 为艾森斯坦多项式, $\frac{1}{p}\alpha^n = -\frac{a_{n-1}}{p}\alpha^{n-1} - \cdots - \frac{a_0}{p} \in \mathcal{O}_K$ 。于是:

$$\frac{b_j}{p}\alpha^{n-1} = \gamma\alpha^{n-j-1} - \left(b_{n-1}\alpha^{n-j-2} + \dots + b_{j+1}\right)\frac{1}{p}\alpha^n \in \mathcal{O}_K$$

计算范数:

$$N_{K|\mathbb{Q}}\left(\frac{b_j}{p}\alpha^{n-1}\right) = \frac{b_j^n}{p^n} N_{K|\mathbb{Q}}(\alpha)^{n-1} = \frac{b_j^n a_0^{n-1}}{p^n} \notin \mathbb{Z}$$

因 $p \nmid b_j$ 且 $p^2 \nmid a_0$,矛盾。故 $p \nmid (\mathcal{O}_K : \mathbb{Z}[\alpha])$ 。

结合**艾森斯坦多项式**和**引理 1**,设 $m = (\mathcal{O}_K : \mathbb{Z}[\sqrt[3]{2}])$,则 $m^2d_K = -108$ 。故 m = 1, 2, 3 或 6。需证 2 和 3 不整除 m。 $\sqrt[3]{2}$ 的最小多项式 $X^3 - 2$ 对 2 为艾森斯坦多项式,故 $2 \nmid m$ 。设 $\alpha = 1 + \sqrt[3]{2}$,则 $K = \mathbb{Q}(\alpha)$ 。 α 的最小多项式为 $X^3 - 3X^2 + 3X - 3$,对 3 为艾森斯坦多项式,故 $3 \nmid (\mathcal{O}_K : \mathbb{Z}[\alpha])$ 。因 $\mathbb{Z}[\alpha] = \mathbb{Z}[\sqrt[3]{2}]$,则 $3 \nmid m$ 。故 m = 1。

- 5.4 **问题:** 设 $A \subset B$ 是环的扩展, $x \in B$ 中的元素。证明以下条件等价:
 - (1) x 在 A 上是整的;
 - (2) 对于 A 的每个乘闭子集 S, $x \in S^{-1}B$ 在 $S^{-1}A$ 上是整的;
 - (3) 对于 A 的每个素理想 p, $x \in B_p$ 在 A_p 上是整的;
 - (4) 对于 A 的每个极大理想 \mathfrak{m} , $x \in B_{\mathfrak{m}}$ 在 $A_{\mathfrak{m}}$ 上是整的。

解答:此问题刻画了整性的局部性质。假设条件 (4) 成立,即对于每个极大理想 \mathfrak{m} , $x \in B_{\mathfrak{m}}$ 在 $A_{\mathfrak{m}}$ 上是整的,则存在首一多项式 $f_{\mathfrak{m}}(t) \in A_{\mathfrak{m}}[t]$ 使得 $f_{\mathfrak{m}}(x) = 0$ 。通过通分,可将 $f_{\mathfrak{m}}(t)$ 提升为 $g_{\mathfrak{m}}(t) \in A[t]$,其首项系数 $a_{\mathfrak{m}} \notin \mathfrak{m}$ 。因为所有 $a_{\mathfrak{m}}$ 共同生成 A (由极大理想的性质),可通过这些 $g_{\mathfrak{m}}(t)$ 黏合得到全局首一多项式 $f(t) \in A[t]$,满足 f(x) = 0。故 x 在 A 上是整的,即条件 (1) 成立。

由局部化保持整性的性质,可得:条件 $(1) \Rightarrow$ 条件 $(2) \Rightarrow$ 条件 $(3) \Rightarrow$ 条件(4)。因此,条件(1)至(4)等价。

5.7 **问题:** 设 $A \subset B$ 是环的扩展, $A' \in B$ 中 A 的子代数。证明以下条件等价:

- (1) A' 是 A 在 B 中的整闭包;
- (2) 对于 A 的每个乘闭子集 S, $S^{-1}A'$ 是 $S^{-1}A$ 在 $S^{-1}B$ 中的整闭包;
- (3) 对于 A 的每个素理想 p, A'_p 是 A_p 在 B_p 中的整闭包;
- (4) 对于 A 的每个极大理想 \mathfrak{m} , $A'_{\mathfrak{m}}$ 是 $A_{\mathfrak{m}}$ 在 $B_{\mathfrak{m}}$ 中的整闭包。

解答: 此问题刻画了整闭包的局部性质。若条件 (1) 成立,即 A' 是 A 在 B 中的整闭包,则由 5.4, $S^{-1}A' \subset S^{-1}A$ 在 $S^{-1}B$ 中的整闭包。反过来,若 $\frac{b}{s} \in S^{-1}B$ 在 $S^{-1}A$ 上整,设其最小多项式为 $X^n + \frac{a_{n-1}}{s_{n-1}}X^{n-1} + \cdots + \frac{a_0}{s_0} = 0$ 。则 $s_0s_1\cdots s_{n-1}b$ 在 A 上整,故属于 A'。因此, $\frac{b}{s} = \frac{s_0s_1\cdots s_{n-1}b}{s_0s_1\cdots s_{n-1}} \in S^{-1}A'$, $S^{-1}A'$ 是整闭包,即条件 (2) 成立。由局部化定义,条件 (2) ⇒ 条件 (3) ⇒ 条件 (4)。若条件 (4) 成立,即对于每个极大理想 \mathfrak{m} , $A'_{\mathfrak{m}}$ 是 $A_{\mathfrak{m}}$ 在 $B_{\mathfrak{m}}$ 中的整闭包,则 A' 中元素在 $B_{\mathfrak{m}}$ 中的像属于 $A'_{\mathfrak{m}}$,故在 $A_{\mathfrak{m}}$ 上整,由 5.4,属于 A 在 B 中的整闭包。反过来,若 $b \in B$ 在 A 上整,则其在 $B_{\mathfrak{m}}$ 中的像属于 $A'_{\mathfrak{m}}$ 。因 $\frac{b}{1} \in A'_{\mathfrak{m}}$ 对所有 \mathfrak{m} 成立,故 $b \in A'$ 。因此,A' 是整闭包,即条件 (1) 成立。

综上,条件(1)至(4)等价。

6 **问题:** 证明 $\{1, \theta, \frac{1}{2}(\theta + \theta^2)\}$ 是 $\mathbb{Q}(\theta)$ 的整基,其中 $\theta^3 - \theta - 4 = 0$ 。

解答: 因为问题涉及到判别式的计算,并且问题的证明较为复杂,需要到一些中间结论,方可得证。所以首先给出基本定义和一些中间结论,再作完整证明。

定义 (多项式判别式) 对于多项式 $f(X) \in K[X]$, 其根为 $\theta_1, \theta_2, \dots, \theta_n$, 判别式为:

$$\Delta(f) = \prod_{1 \le i \le j \le n} (\theta_i - \theta_j)^2$$

命题 1: 三次多项式 $X^3 + aX + b$ 的判别式满足:

$$\Delta(X^3 + aX + b) = -27b^2 - 4a^3.$$

证明:设 $f(X) = X^3 + aX + b$ 的根为其分裂域中的 $\theta_1, \theta_2, \theta_3$ 。判别式定义为:

$$\Delta(f) = \prod_{1 \le i < j \le 3} (\theta_i - \theta_j)^2.$$

由对称多项式理论, $\Delta(f)$ 是 $\theta_1,\theta_2,\theta_3$ 的齐次对称多项式。根据 Vieta 公式,根的初等对称和为:

$$s_1 = \theta_1 + \theta_2 + \theta_3 = 0$$
, $s_2 = \theta_1 \theta_2 + \theta_1 \theta_3 + \theta_2 \theta_3 = a$, $s_3 = \theta_1 \theta_2 \theta_3 = -b$.

判别式是 6 次齐次多项式,故可设 $\Delta(f)=va^3+wb^2$ 。为确定系数 v 和 w,考虑两个特例:取 $f(X)=X^3-X$ (a=-1,b=0),根为 -1,0,1,则:

$$\Delta(f) = (-1 - 0)^2 (0 - 1)^2 (1 - (-1))^2 = 1 \cdot 1 \cdot 4 = 4 = v(-1)^3 = -v,$$

故 v = -4。

取 $f(X) = X^3 - 1$ (a = 0, b = -1),根为 $1, \omega, \omega^2$ $(\omega$ 为三次单位根),则:

$$\Delta(f) = (1 - \omega)^2 (\omega - \omega^2)^2 (\omega^2 - 1)^2 = (1 - \omega)^6 = (-3\omega)^3 = -27 = w(-1)^2 = w,$$

故 w = -27。

因此, $\Delta(f) = -4a^3 - 27b^2 = -27b^2 - 4a^3$ 。证毕。

引理 1: 设 $f(t) \in A[t_1, t_2, ..., t_n]$ 是对称多项式,次数为 d。存在权不超过 d 的多项式 $g(X_1, ..., X_n)$,使得:

$$f(t) = g(s_1, s_2, \dots, s_n),$$

其中 s_i 是 t_1, t_2, \ldots, t_n 的第 i 个初等对称多项式。

证明: 设 $f(t) \in A[t_1, t_2, \dots, t_n]$ 是次数为 d 的对称多项式。由对称多项式基本定理,任何对称多项式可表示为初等对称多项式 s_1, s_2, \dots, s_n 的多项式,即存在 $g(X_1, \dots, X_n) \in A[X_1, \dots, X_n]$ 使得 $f(t) = g(s_1, s_2, \dots, s_n)$ 。定义单项式 $X_1^{v_1} X_2^{v_2} \cdots X_n^{v_n}$ 的权为 $v_1 + 2v_2 + \dots + nv_n$,多项式的权为其单项式的最大权。因为 f(t) 是齐次且次数为 d,其每一项的权(以 t_i 的次数加权)恰为 d。在 g 中, s_i 的权为 i,故 g 的每一项 $X_1^{v_1} \cdots X_n^{v_n}$ 的权 $v_1 + 2v_2 + \dots + nv_n \leq d$,否则 f(t) 的次数将超过 d,矛盾。因此,存在权不超过 d 的 g 满足要求。

命题 2: : 设 $f(X) = X^n + aX + b \ (a, b \in K)$ 是不可约且可分的, 其判别式为:

$$\Delta(X^n + aX + b) = (-1)^{\frac{n(n-1)}{2}} \left(n^n b^{n-1} + (-1)^{n-1} (n-1)^{n-1} a^n \right).$$

证明: 设 $f(X) = X^n + aX + b$ 的根在其分裂域中为 $\theta_1, \theta_2, \dots, \theta_n$ 。判别式定义为:

$$\Delta(f) = \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

利用 $f'(X) = nX^{n-1} + a$, 有:

$$\Delta(f) = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} \prod_{j \neq i} (\theta_i - \theta_j) = (-1)^{\frac{n(n-1)}{2}} \prod_{i=1}^{n} f'(\theta_i) = (-1)^{\frac{n(n-1)}{2}} N_{L|K}(f'(\theta)),$$

其中 θ 是任一根, $L = K(\theta)$ 。 $\diamondsuit \gamma = f'(\theta) = n\theta^{n-1} + a$, 则:

$$f(X) = (X - \theta)h(X) + f(\theta) = (X - \theta)h(X),$$

且 $f\left(-\frac{nb}{\gamma+(n-1)a}\right)=0$,故 $\theta=-\frac{nb}{\gamma+(n-1)a}$, $K(\gamma)=K(\theta)$ 。计算 γ 的最小多项式,设:

$$f\left(\frac{-nb}{X + (n-1)a}\right) = \frac{P(X)}{Q(X)},$$

则 $P(\gamma) = 0$,且:

$$P(X) = (X + (n-1)a)^{n} - na(X + (n-1)a)^{n-1} + (-n)^{n}b^{n-1}.$$

范数为:

$$N_{L|K}(\gamma) = (-1)^n P(0) = (-1)^{n-1} (n-1)^{n-1} a^n + n^n b^{n-1}.$$

代入得:

$$\Delta(f) = (-1)^{\frac{n(n-1)}{2}} \left(n^n b^{n-1} + (-1)^{n-1} (n-1)^{n-1} a^n \right).$$

证毕。

命题 3: 设 $\mathfrak{a} \subset \mathfrak{a}'$ 是数域 K 中两个非零的有限生成 \mathcal{O}_K -子模,指数 (index) ($\mathfrak{a}' : \mathfrak{a}$) 是有限的,并且满足关系:

$$d(\mathfrak{a}) = (\mathfrak{a}' : \mathfrak{a})^2 d(\mathfrak{a}').$$

有了以上探索, 现在进入正式证明环节。

回看问题,首先计算基 $\left\{1,\theta,\frac{1}{2}(\theta+\theta^2)\right\}$ 的判别式。设 $\sigma_1,\sigma_2,\sigma_3$ 为 $\mathbb{Q}(\theta)\to\mathbb{C}$ 的所有嵌入, $\theta_i=\sigma_i\theta$ (i=1,2,3)。则:

$$d\left(1, \theta, \frac{1}{2}(\theta + \theta^2)\right) = \det \begin{pmatrix} 1 & \theta_1 & \frac{1}{2}(\theta_1 + \theta_1^2) \\ 1 & \theta_2 & \frac{1}{2}(\theta_2 + \theta_2^2) \\ 1 & \theta_3 & \frac{1}{2}(\theta_3 + \theta_3^2) \end{pmatrix}^2$$
$$= \frac{1}{4} \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 \\ 1 & \theta_2 & \theta_2^2 \\ 1 & \theta_3 & \theta_3^2 \end{pmatrix}^2$$
$$= \frac{1}{4} \prod_{1 \le i < j \le 3} (\theta_i - \theta_j)^2$$

根据**命题 1:** $\Delta(X^3 + aX + b) = -27b^2 - 4a^3$ 。此处 $f(X) = X^3 - \theta - 4$, a = -1, b = -4。则:

$$\Delta(f) = -27(-4)^2 - 4(-1)^3 = -27 \cdot 16 - 4 \cdot (-1) = -432 + 4 = -428$$

故:

$$d\left(1, \theta, \frac{1}{2}(\theta + \theta^2)\right) = \frac{1}{4} \cdot (-428) = -107$$

因 -107 为素数,由**命题 3**, $(\mathcal{O}_K: \mathbb{Z}[\theta, \frac{1}{2}(\theta + \theta^2)])^2 d_K = -107$ 。指数只能为 1, 故 $\{1, \theta, \frac{1}{2}(\theta + \theta^2)\}$ 为整基。由**命题 1** 的证明:设 $\theta_1, \theta_2, \theta_3$ 为 $f(X) = X^3 + aX + b$ 的根。 $\Delta(f)$ 为 $\theta_1, \theta_2, \theta_3$ 的 对称多项式。由维塔(Vieta)公式,初等对称多项式为 $s_1 = 0$ 、 $s_2 = a$ 、 $s_3 = -b$ 。由**引理 1**, $\Delta(f) = va^3 + wb^2$ 。 - 取 $f(X) = X^3 - X$ (a = -1, b = 0),根为 -1, 0, 1, $\Delta(f) = 4 = -v$,故 v = -4。 - 取 $f(X) = X^3 - 1$ (a = 0, b = -1),根为三次单位根, $\Delta(f) = -27 = w$,故 w = -27。因此, $\Delta(f) = -27b^2 - 4a^3$ 。

7 **问题:** (Stickelberger 判别式关系) 证明代数域 K 的判别式 d_K 总是 $\equiv 0$ 或1 (mod 4)。

解答: 设 $\alpha_1, \ldots, \alpha_m$ 为 \mathcal{O}_K 的整基, $\sigma_1, \ldots, \sigma_m$ 为 K 的所有嵌入。判别式为:

$$d_K = \det(\sigma_i \alpha_i)^2$$

行列式 $\det(\sigma_i\alpha_j)$ 为所有嵌入作用于 α_1,\ldots,α_m 的排列乘积之和。设 P 为偶排列项之和,-N 为奇排列项之和,则:

$$d_K = (P - N)^2 = (P + N)^2 - 4PN$$

设 G 为 K 在 $\mathbb Q$ 上伽罗瓦闭包的伽罗瓦群。每个嵌入可延拓为 G 中的元素,反之亦然。对任意 $\tau \in G$, $\tau \sigma_1, \ldots, \tau \sigma_m$ 为 $\sigma_1, \ldots, \sigma_m$ 的一个排列。根据排列的奇偶性: - 若为偶排列,则 $\tau P = P, \tau N = N$; - 若为奇排列,则 $\tau P = N, \tau N = P$ 。故 P + N 和 PN 被 G 固定,在 $\mathbb Q$ 中。因其对 $\mathbb Z$ 整,必为整数。因此:

$$d_K \equiv (P+N)^2 \equiv 0 \text{ id} 1 \pmod{4}$$

4 第三章: 理想

4.1 练习题

1 **问题:** 将 $33 + 11\sqrt{-7}$ 分解为 $\mathbb{Q}(\sqrt{-7})$ 中不可约的整元素。

解答:关于有理数域的二次扩域的整环,有如下命题,可做进一步分析和计算。

命题 1: 设 D 为不等于 0 或 1 的无平方因子有理整数, $K = \mathbb{Q}(\sqrt{D})$ 为二次数域,d 为 其判别式。则:

$$\begin{cases} d = D, & \not\exists D \equiv 1 \pmod{4}, \\ d = 4D, & \not\exists D \equiv 2 \not\equiv 3 \pmod{4}, \end{cases}$$

且 K 的整基在第二种情况下为 $\left\{1,\sqrt{D}\right\}$,第一种情况下为 $\left\{1,\frac{1}{2}(1+\sqrt{D})\right\}$,且在两种情况下均为 $\left\{1,\frac{1}{2}(d+\sqrt{d})\right\}$ 。

根据**命题 1**, $\mathbb{Q}(\sqrt{-7})$ 的整数环为 $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ 。在此环中,首先分解 $33+11\sqrt{-7}$ 为:

$$33 + 11\sqrt{-7} = 11 \cdot 2 \cdot \frac{3 + \sqrt{-7}}{2}$$

在 $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ 中,元素的范数为:

$$N\left(x+y\left(\frac{1+\sqrt{-7}}{2}\right)\right) = \left(x+\frac{y}{2}\right)^2 + 7\left(\frac{y}{2}\right)^2$$

分步骤证明如下:

步骤 1: 分解 11 为不可约元素。 $N(11) = 121 = 11 \cdot 11$ 。11 可能本身不可约,或分解为 两个范数为 11 的不可约元素 α 和 β 。考虑方程:

$$\left(x + \frac{y}{2}\right)^2 + 7\left(\frac{y}{2}\right)^2 = 11$$

整数解为 (1,2), (-3,2), (3,-2), (-1,-2), 对应元素 $2+\sqrt{-7}, -2+\sqrt{-7}, 2-\sqrt{-7}, -2-\sqrt{-7}$ 。这些元素仅符号或共轭不同,故分解为:

$$11 = (2 + \sqrt{-7}) \cdot (2 - \sqrt{-7})$$

此分解在单位因子下唯一。

步骤 2: 分解 2 和 $\frac{3+\sqrt{-7}}{2}$ 为不可约元素。 $N(2) = N\left(\frac{3+\sqrt{-7}}{2}\right) = 4 = 2 \cdot 2$ 。考虑方程:

$$\left(x + \frac{y}{2}\right)^2 + 7\left(\frac{y}{2}\right)^2 = 2$$

整数解为 (0,1),(-1,1),(0,-1),(1,-1),对应元素 $\frac{1+\sqrt{-7}}{2},\frac{-1+\sqrt{-7}}{2},\frac{-1-\sqrt{-7}}{2},\frac{1-\sqrt{-7}}{2}$ 。这些元素仅符号或共轭不同,故分解为:

$$2 = \frac{1 + \sqrt{-7}}{2} \cdot \frac{1 - \sqrt{-7}}{2}, \quad \frac{3 + \sqrt{-7}}{2} = -\left(\frac{1 - \sqrt{-7}}{2}\right)^2$$

此分解在单位因子下唯一。

步骤 3: 综合分解 $33 + 11\sqrt{-7}$:

$$33 + 11\sqrt{-7} = -(2 + \sqrt{-7}) \cdot (2 - \sqrt{-7}) \cdot \frac{1 + \sqrt{-7}}{2} \cdot \left(\frac{1 - \sqrt{-7}}{2}\right)^3$$

2 问题: 证明:

$$54 = 2 \cdot 3^3 = \frac{13 + \sqrt{-47}}{2} \cdot \frac{13 - \sqrt{-47}}{2}$$

是 $\mathbb{Q}(\sqrt{-47})$ 中本质不同的两种不可约整元素分解。

解答: 由于 $\frac{13\pm\sqrt{-47}}{2\cdot2}$ 和 $\frac{13\pm\sqrt{-47}}{2\cdot3}$ 不属于 $\mathbb{Q}(\sqrt{-47})$ 的整数环,2 和 3(以及 $2\cdot3^3$ 的其他 非平凡因子)与 $\frac{13+\sqrt{-47}}{2}$ 或 $\frac{13-\sqrt{-47}}{2}$ 不关联。因此,这两种分解本质不同。

备注 2.1: 54 的分解不止这两种,例如 $54 = 3^2 \cdot \frac{5+\sqrt{-47}}{2} \cdot \frac{5-\sqrt{-47}}{2}$ 为另一种分解。

3 **问题:** 设 d 为无平方因子整数,p 为不整除 2d 的素数, \mathcal{O} 为 $\mathbb{Q}(\sqrt{d})$ 的整数环。证明 $(p) = p\mathcal{O}$ 是 \mathcal{O} 的素理想当且仅当同余式 $x^2 \equiv d \pmod{p}$ 无解。

解答:

命题 1: 设 D 为不等于 0 或 1 的无平方因子有理整数, $K = \mathbb{Q}(\sqrt{D})$ 为二次数域,d 为 其判别式。则:

$$\begin{cases} d=D, & \nexists D\equiv 1 \pmod{4}, \\ d=4D, & \nexists D\equiv 2 \not \equiv 3 \pmod{4}, \end{cases}$$

且 K 的整基在第二种情况下为 $\left\{1,\sqrt{D}\right\}$,第一种情况下为 $\left\{1,\frac{1}{2}(1+\sqrt{D})\right\}$,且在两种情况下均为 $\left\{1,\frac{1}{2}(d+\sqrt{d})\right\}$ 。

由**命题 1:**, \mathcal{O} 为 $\mathbb{Z}[\sqrt{d}]$ 或 $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ 。若 d 是模 p 的二次剩余,即存在整数 x 使得 $x^2\equiv d\pmod{p}$ 。则 $p\mid x^2-d=(x+\sqrt{d})(x-\sqrt{d})$ 。但因 $p\neq 2$, $\frac{x+\sqrt{d}}{p}$ 和 $\frac{x-\sqrt{d}}{p}$ 不在 \mathcal{O} 中,故 p 不是素元素,(p) 不是素理想。反之,若 d 不是模 p 的二次剩余,证明 p 是素元素。设 \mathcal{O} 中元素 $x_1+y_1\sqrt{d}$ 和 $x_2+y_2\sqrt{d}$ 的乘积在 (p) 中。因 $p\neq 2$, $\frac{x}{p}\in\mathbb{Z}$ 与 $\frac{x}{p}\in\frac{1}{2}\mathbb{Z}$ 等价,可归约至 $\mathcal{O}=\mathbb{Z}[\sqrt{d}]$ 。由:

$$(x_1 + y_1\sqrt{d})(x_2 + y_2\sqrt{d}) \in (p)$$

得:

$$p^2 = N(p) \mid N(x_1 + y_1\sqrt{d})N(x_2 + y_2\sqrt{d})$$

则 p 整除 $N(x_1 + y_1\sqrt{d})$ 或 $N(x_2 + y_2\sqrt{d})$, 例如前者:

$$p \mid N(x_1 + y_1\sqrt{d}) = x_1^2 - dy_1^2$$

即:

$$x_1^2 \equiv dy_1^2 \pmod{p}$$

因 d 不是模 p 的二次剩余, y_1 在模 p 下不可逆, 故 $p \mid y_1$ 且 $p \mid x_1$ 。因此 $x_1 + y_1 \sqrt{d} \in (p)$, (p) 是素理想。

4 问题: 具有有限个素理想的戴德金域是主理想域。

解答:解答此题需要如下基本定理。

定理 1: 环 \mathcal{O} 中每个不同于 (0) 和 (1) 的理想 \mathfrak{a} 都可以分解为

$$\mathfrak{a} = \mathfrak{p}_1 \cdots \mathfrak{p}_r$$

其中 \mathfrak{p}_i 是 \mathcal{O} 中的非零素理想,且这种分解除了因子的顺序外是唯一的。

首先证明 \mathcal{O} 仅有一个非零素理想 \mathfrak{p} 的情况(例如局部环)。存在 $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$ 。考虑理想 (π) ,由**定理 1:** ,其唯一分解为 $(\pi) = \mathfrak{p}^{\nu}$ 。但 $\pi \notin \mathfrak{p}^2$,故 $(\pi) = \mathfrak{p}$,表明 \mathcal{O} 唯一素理

想为主理想。由**定理 1:** ,所有理想为主理想。对于 \mathcal{O} 有有限个素理想 $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ 的情况,若 $\mathfrak{a} = \mathfrak{p}_1^{\nu_1} \cdots \mathfrak{p}_r^{\nu_r} \neq 0$,取 $\pi_i \in \mathfrak{p}_i \setminus \mathfrak{p}_i^2$ 。由中国剩余定理,存在 $a \in \mathcal{O}$ 对应余类 $\pi_i^{\nu_i}$ (mod $\mathfrak{p}_i^{\nu_i+1}$)。设 $(a) = \mathfrak{p}_1^{\mu_1} \cdots \mathfrak{p}_r^{\mu_r}$ 。因 $a \equiv \pi_i^{\nu_i}$ (mod $\mathfrak{p}_i^{\nu_i+1}$), $a \notin \mathfrak{p}_i^{\nu_i+1}$,故 $\mu_i \leq \nu_i$;且 $a \in \mathfrak{p}_i^{\mu_i}$,故 $\mu_i \geq \nu_i$ 。因此 $(a) = \mathfrak{a}$ 。

5 **问题**: 戴德金域 \mathcal{O} 被非零理想 \mathfrak{a} 商得的商环 \mathcal{O}/\mathfrak{a} 是主理想域。

解答:此结论错误, \mathcal{O}/\mathfrak{a} 一般不是整环。正确结论为: \mathcal{O}/\mathfrak{a} 是主环,即每个理想为主理想。)

首先证明 $\mathfrak{a} = \mathfrak{p}^n$ 的情况。 \mathcal{O}/\mathfrak{a} 的唯一真理想为 $\mathfrak{p}/\mathfrak{p}^n, \dots, \mathfrak{p}^{n-1}/\mathfrak{p}^n$ 。取 $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$,则 $\pi^i \mathcal{O}/\mathfrak{p}^n = \mathfrak{p}^i/\mathfrak{p}^n$ (因 $\pi^i \in \mathfrak{p}^i \setminus \mathfrak{p}^{i+1}$),故所有真理想为主理想。一般情况,注意到 PID 的 商环仍是主环,用归纳法即可。

问题:设 D 为整环,则以下等价:

- 1. D 是戴德金域;
- 2. D 是诺特环,且对每个乘法闭子集 S, $S^{-1}D$ 是戴德金域;
- 3. D 是诺特环, 且对每个素理想 \mathfrak{p} , $D_{\mathfrak{p}}$ 是戴德金域;
- 4. D 是诺特环,且对每个极大理想 \mathfrak{m} , $D_{\mathfrak{m}}$ 是戴德金域。

解答:以上刻画说明戴德金性是局部性质。证明如下:戴德金域是诺特、整闭且非零素理想极大的环。 $S^{-1}D$ 的素理想对应于 $D\setminus S$ 中的素理想,故"极大"条件是局部性质。由整闭性和诺特性的局部性得证。

备注 "戴德金性是局部性质" 指上述结论,是非严格局部性质。例如, \mathbb{Z} 在 \mathbb{Q} 加入所有 素数 p 的 p 次单位根的域中整闭包非诺特,故非戴德金域。

6 问题: 戴德金域的每个理想可由两个元素生成。

解答: 对 \mathcal{O} 的每个理想 \mathfrak{a} , 取 $a \in \mathfrak{a}$, 商环 $\mathcal{O}/(a)$ 为主环。 \mathfrak{a} 在 $\mathcal{O}/(a)$ 中的像是主理想,由 $b \pmod{(a)}$ $(b \in \mathfrak{a})$ 生成,故 $\mathfrak{a} = (a) + (b)$ 。

问题: 戴德金域 \mathcal{O} 是 PID 当且仅当其类群平凡。

解答:若类群平凡,每分式理想为主理想,故 \mathcal{O} 是 PID。反之,若 \mathcal{O} 是 PID,对每个分式理想 \mathfrak{a} ,存在 $c \in \mathcal{O}$ 使 $c\mathfrak{a}$ 为主理想,故 \mathfrak{a} 为主理想,类群平凡。

7 **问题:** 在诺特环 R 中,若每个素理想极大,则每个理想降链 $a_1 \supseteq a_2 \supseteq \cdots$ 最终稳定。

备注"每个素理想极大"意味着(0)不能是素理想,除非R是域。

解答: 我们的证明策略是首先证明这样的环具有特殊的理想结构, 然后利用这种结构来证明它同时满足诺特性和阿廷性, 从而得出理想降链最终稳定的结论。首先需要以下引理:

引理 7.1 对于环 \mathcal{O} 中每个非零理想 $\mathfrak{a} \neq 0$,存在非零素理想 $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_r$,使得

$$\mathfrak{a}\supseteq\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_r$$

引理证明: 假设那些不满足该条件的理想集合 \mathfrak{M} 非空。由于 \mathcal{O} 是诺特环(Noetherian),每个理想的升链都会稳定。因此, \mathfrak{M} 关于包含关系是归纳序的,从而存在一个极大元素 \mathfrak{a} 。这个 \mathfrak{a} 不可能是素理想,因此存在元素 $b_1,b_2 \in \mathcal{O}$,使得 $b_1b_2 \in \mathfrak{a}$,但 $b_1,b_2 \notin \mathfrak{a}$ 。设 $\mathfrak{a}_1 = (b_1) + \mathfrak{a}$, $\mathfrak{a}_2 = (b_2) + \mathfrak{a}$ 。则有 $\mathfrak{a} \subsetneq \mathfrak{a}_1$, $\mathfrak{a} \subsetneq \mathfrak{a}_2$,并且 $\mathfrak{a}_1\mathfrak{a}_2 \subseteq \mathfrak{a}$ 。由 \mathfrak{a} 的极大性, \mathfrak{a}_1 和 \mathfrak{a}_2 都包含一些素理想的乘积,而这些乘积的乘积又包含于 \mathfrak{a} 中,这导致矛盾。

有了这个引理作为基础,我们现在可以开始解答原问题。我们的证明分为几个关键步骤: 首先确定(0)理想的素分解结构,然后分析这种结构所导致的代数性质。

首先,我们证明在诺特环中,(0) 具有素分解 (0) = $\mathfrak{p}_1 \cdots \mathfrak{p}_r$ 。实际上,由**引理 7.1**,在诺特环中,每个真理想 (包括 (0)) 具有素分解。因此,我们有 (0) $\supset \mathfrak{p}_1 \cdots \mathfrak{p}_r$ 。但 (0) = $\{0\}$,故 (0) = $\mathfrak{p}_1 \cdots \mathfrak{p}_r$ 。

此外, $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ 是所有素理想。若不是,则存在另一个素理想 \mathfrak{q} 使得 $\mathfrak{p}_1 \cdots \mathfrak{p}_r = (0) \subset \mathfrak{q}$ 。 因此,其中某个素理想,例如 \mathfrak{p}_1 ,必须被包含在 \mathfrak{q} 中。但由于每个素理想是极大的,故 $\mathfrak{p}_1 = \mathfrak{q}$,这产生矛盾。

接下来,我们需要分析环 R 的模结构。我们观察到前面得到的理想链实际上揭示了 R 的层次结构,每一层都可以视为向量空间。具体地,我们得到一个理想的降链:

$$R \supset \mathfrak{p}_1 \supset \mathfrak{p}_1 \mathfrak{p}_2 \supset \cdots \supset \mathfrak{p}_1 \cdots \mathfrak{p}_r = (0)$$

每个因子 $\mathfrak{p}_1 \cdots \mathfrak{p}_{i-1}/\mathfrak{p}_1 \cdots \mathfrak{p}_i$ 是域 R/\mathfrak{p}_i 上的向量空间。对于向量空间 V,链条件等价于 $\dim V$ 有限。

为了证明 R 同时具有诺特性和阿廷性,我们需要分析这些层次之间的关系。以下引理将帮助我们建立这种联系:

引理 7.2: 设 $0 \to M' \to M \to M'' \to 0$ 为 R-模的短正合序列,则 M 是诺特(或阿廷)模当且仅当 M' 和 M'' 都是诺特(或阿廷)模。

证明:

对于"当且"部分, 注意到 M 的子模链 (M_i) 由其在 M' 中的逆像 (M_i') 和在 M'' 中的像 (M_i'') 控制。(Five-Lemma):考虑以下交换图:

$$0 \longrightarrow M'_{i} \longrightarrow M_{i} \longrightarrow M''_{i} \longrightarrow 0$$

$$\downarrow^{f'_{i}} \qquad \downarrow^{f_{i}} \qquad \downarrow^{f''_{i}}$$

$$0 \longrightarrow M'_{i+1} \longrightarrow M_{i+1} \longrightarrow M''_{i+1} \longrightarrow 0$$

事实上,对于足够大的 i,嵌入 $f'_i: M'_i \to M'$ 和 $f''_i: M''_i \to M''$ 成为恒等映射,因此根据 Five-Lemma, $f_i: M_i \to M$ 也为恒等映射。因此,M 的子模链最终稳定。

对于"仅当"部分,仅仅注意到 M' 或 M'' 的子模链会诱导 M 的子模链,故因 M 是诺特(或阿廷)模,M' 和 M'' 的链也稳定。

有了这个引理,我们可以通过归纳法将问题归约为分析各个因子空间的性质。为此,我们需要引入合成列的概念:

7.3 (合成列): *R*-模 *M* 的合成列是子模链:

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = 0$$

其中无法插入额外子模。若 M 有合成列,则所有合成列长度相同(称为 M 的长度),任何子模链可扩展为合成。

命题 7.4: M 有合成列当且仅当 M 既是诺特模又是阿廷模。

证明: 若 M 有合成列,子模链长度有界,故 M 是诺特和阿廷模。若 M 是诺特和阿廷模,构造合成列: 因 $M_0 = M$ 是诺特模,存在极大子模 M_1 。类似地, M_1 有极大子模 M_2 。继续得降链 $M = M_0 \supset M_1 \supset M_2 \supset \cdots$ 。因 M 是阿廷模,链有限,构成合成列。

推论 7.5: 对向量空间 V, 以下等价:

1. V 有限维;

5 第四章: 格 19

- 2. V 长度有限;
- 3. V 是诺特模;
- 4. V 是阿廷模。

现在我们已经建立了必要的理论基础,可以将它应用到我们的具体问题上:

将以上结果综合应用到我们的环 R 上,我们发现:各因子 $\mathfrak{p}_1\cdots\mathfrak{p}_{i-1}/\mathfrak{p}_1\cdots\mathfrak{p}_i$ 作为 R/\mathfrak{p}_i 上的向量空间是有限维的,其子空间与 $\mathfrak{p}_1\cdots\mathfrak{p}_i$ 和 $\mathfrak{p}_1\cdots\mathfrak{p}_{i-1}$ 间的理想——对应。根据引理 7.2,反复应用可知,我们的理想链 $R \supset \mathfrak{p}_1 \supset \mathfrak{p}_1\mathfrak{p}_2 \supset \cdots \supset \mathfrak{p}_1\cdots\mathfrak{p}_r = (0)$ 可扩展为合成列,因此 R 不仅是诺特环,而且是阿廷环。

总结上述分析,我们可以得出:在诺特环 R 中,若每个素理想都是极大的,则 R 同时是阿廷环,从而每个理想降链最终稳定。这完成了问题 7 的证明。

5 第四章:格

5.1 练习题

1 **问题:** 证明在 \mathbb{R}^n 中的格 Γ 是完备的当且仅当商空间 \mathbb{R}^n/Γ 是紧的。

解答:若 Γ 是完备的,则基本网格 Φ 满足 $\Phi + \Gamma = \mathbb{R}^n$ 。投影 $\pi : \mathbb{R}^n \to \mathbb{R}^n/\Gamma$ 将紧集映射为紧集,且 Φ 和 $\Phi + \Gamma$ 在此投影下的像相同,因此 \mathbb{R}^n/Γ 是紧的。反之,若 Γ 不完备,设 V_0 为 Γ 生成的子空间 \mathbb{R}^n 中的子空间。则存在 $v \in \mathbb{R}^n \setminus V_0$,故 $\pi|_{V_0}$ 是单射。因 π 是拓扑群的商映射,故是开映射, $\pi|_{V_0}$ 是开嵌入。因此 \mathbb{R}^n/Γ 不是紧的。

2 问题: 通过构造一个中心对称的凸集 $X \subset V$ 的例子,证明闵可夫斯基格点定理无法改进,其中 $vol(X) = 2^n vol(\Gamma)$ 但 X 不含 Γ 的任何非零格点。然而,若 X 是紧的,则在等式情况下定理(闵可夫斯基格点)仍然成立。

解答: 首先回顾闵可夫斯基格点定理

定理 (闵可夫斯基格点): 设 Γ 是欧几里得向量空间 V 中的完整格, X 是 V 中的中心对称凸子集。假设

$$\operatorname{vol}(X) > 2^n \operatorname{vol}(\Gamma)$$

则 X 至少包含一个非零格点 $\gamma \in \Gamma$ 。

例如,考虑 \mathbb{R}^2 中的格 \mathbb{Z}^2 。集合 $X=(-1,1)\times(-1,1)$ 是中心对称的凸集,且体积为 4。但 X 不含任何非零格点。对于第二部分,使用定理 (闵可夫斯基格点定理) 的方法。需证明存在两个不同格点 $\gamma_1,\gamma_2\in\Gamma$,使得:

$$\left(\frac{1}{2}X + \gamma_1\right) \cap \left(\frac{1}{2}X + \gamma_2\right) \neq \varnothing$$

若成立,则 $\gamma_1 - \gamma_2 \in X \cap \Gamma$ 。当 X 是紧的,若 $\frac{1}{2}X + \gamma$ 两两不相交,则:

$$\operatorname{vol}(\Phi) > \sum_{\gamma \in \Gamma} \operatorname{vol}\left(\Phi \cap \left(\frac{1}{2}X + \gamma\right)\right)$$

因 $(\Phi - \gamma) \cap \frac{1}{2}X$ 的体积与 $\Phi \cap (\frac{1}{2}X + \gamma)$ 相同,且 $\Phi - \gamma$ $(\gamma \in \Gamma)$ 覆盖整个空间 V,有:

$$\operatorname{vol}(\Phi) > \sum_{\gamma \in \Gamma} \operatorname{vol}\left((\Phi - \gamma) \cap \frac{1}{2}X\right) = \operatorname{vol}\left(\frac{1}{2}X\right) = \frac{1}{2^n} \operatorname{vol}(X)$$

这与假设矛盾。

3 问题: (闵可夫斯基线性形式定理) 设实线性形式为:

$$L_i(x_1, \dots, x_n) = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, n,$$

其中 $\det(a_{ij}) \neq 0$,且正实数 c_1, \ldots, c_n 满足 $c_1 \cdots c_n > |\det(a_{ij})|$ 。证明存在整数 $m_1, \ldots, m_n \in \mathbb{Z}$,使得:

$$|L_i(m_1, \ldots, m_n)| < c_i, \quad i = 1, \ldots, n$$

解答: 考虑 \mathbb{R}^n 中的格 $\Gamma = \mathbb{Z}^n$, $\operatorname{vol}(\Gamma) = 1$ 。考虑子集:

$$X = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid |L_i(x_1, \dots, x_n)| < c_i, i = 1, \dots, n\}$$

子集 $X_0 = \prod_{i=1}^n (-c_i, c_i)$ 的体积为 $2^n c_1 \cdots c_n$, 通过变换 (L_1, \ldots, L_n) 得到 X, 故:

$$vol(X) = |\det(\frac{\partial L_i}{\partial x_j})|^{-1} vol(X_0) = |\det(a_{ij})|^{-1} 2^n c_1 \cdots c_n > 2^n = 2^n vol(\Gamma)$$

由闵可夫斯基格点定理,X含有一个非零格点 (m_1,\ldots,m_n) 。

6 第五章: 闵可夫斯基理论

6.1 练习题

1 **问题:** 写出一个仅依赖于 K 的常数 A, 使得 K 的每个非零整理想 \mathfrak{a} 含有一个非零元素 a, 满足:

$$|\tau a| < A(\mathcal{O}_K : \mathfrak{a})^{1/n},$$

其中 $n = [K : \mathbb{Q}]$,对所有 $\tau \in \text{Hom}(K, \mathbb{C})$ 。

解答:已知

定理 1.1: 设 $\mathfrak{a} \neq 0$ 是数域 K 的整理想,且 $c_{\tau} > 0$,其中 $\tau \in \operatorname{Hom}(K, \mathbb{C})$,是满足 $c_{\tau} = c_{\overline{\tau}}$ 的实数,并且

$$\prod_{\tau} c_{\tau} > A\left(\mathcal{O}_{K} : \mathfrak{a}\right)$$

其中 $A = \left(\frac{2}{\pi}\right)^s \sqrt{|d_K|}$ 。则存在 $a \in \mathfrak{a}, a \neq 0$,使得

$$|\tau a| < c_{\tau}$$
 对所有 $\tau \in \text{Hom}(K, \mathbb{C})$

根据定理 1.1, 设 $A = \sqrt[n]{(\frac{2}{\pi})^s \sqrt{|d_K|}}$, 则 $c_{\tau} = A(\mathcal{O}_K : \mathfrak{a})^{1/n}$ 满足定理 (1.1) 的条件,故存在非零 a,对所有 $\tau \in \text{Hom}(K,\mathbb{C})$ 满足:

$$|\tau a| < A(\mathcal{O}_K : \mathfrak{a})^{1/n}$$

2 问题:证明中心对称的凸集:

$$X = \left\{ (z_{\tau}) \in K_{\mathbb{R}} \mid \sum_{\tau} |z_{\tau}| < t \right\}$$

的体积为 $\operatorname{vol}(X) = 2^r \pi^s \frac{t^n}{n!}$.

解答: $X \in \mathbb{R}^{r+2s}$ 中的像为:

$$f(X) = \left\{ (x_{\tau}) \in \prod_{\tau} \mathbb{R} \mid \sum_{\rho} |x_{\rho}| + 2 \sum_{\sigma} \sqrt{x_{\sigma}^2 + x_{\bar{\sigma}}^2} < t \right\}$$

为简化记号,代 x_i $(i=1,\ldots,r)$ 代替 x_ρ , y_j,z_j $(j=1,\ldots,s)$ 代替 $x_\sigma,x_{\bar{\sigma}}$ f(X) 的体积通过积分计算:

 $I(t) = \int_{f(X)} dx_1 \cdots dx_r dy_1 \cdots dy_s dz_1 \cdots dz_s$

用极坐标 $y_i = u_i \cos \theta_i, z_i = u_i \sin \theta_i$, 得:

$$I(t) = \int u_1 \cdots u_s dx_1 \cdots dx_r du_1 \cdots du_s d\theta_1 \cdots d\theta_s$$

积分域为:

$$\begin{cases} |x_1| + \dots + |x_r| + 2u_1 + \dots + 2u_s < t, \\ 0 \le u_j, \quad j = 1, \dots, s, \\ 0 \le \theta_j \le 2\pi, \quad j = 1, \dots, s \end{cases}$$

代 $2u_i = w_i$, 得:

$$I(t) = 2^r 4^{-s} (2\pi)^s I_{r,s}(t)$$

其中:

$$I_{r,s}(t) = \int w_1 \cdots w_s dx_1 \cdots dx_r dw_1 \cdots dw_s$$

积分域为:

$$\begin{cases} x_1 + \dots + x_r + w_1 + \dots + w_s < t, \\ 0 \le x_i, & i = 1, \dots, r, \\ 0 \le w_j, & j = 1, \dots, s \end{cases}$$

显然 $I_{r,s}(t) = t^n I_{r,s}(1)$ 。由傅比尼定理:

$$I_{r,s}(1) = \int_0^1 I_{r-1,s}(1-x_1)dx_1$$
$$= \int_0^1 (1-x_1)^{n-1} I_{r-1,s}(1)dx_1$$
$$= \frac{1}{n} I_{r-1,s}(1)$$

归纳得:

$$I_{r,s}(1) = \frac{1}{n(n-1)\cdots(n-r+1)}I_{0,s}(1)$$

类似地:

$$I_{0,s}(1) = \int_0^1 w_1 (1 - w_1)^{2s - 2} I_{0,s - 1}(1) dw_1 = \frac{1}{2s(2s - 1)} I_{0,s - 1}(1)$$

故:

$$I_{0,s}(1) = \frac{1}{(2s)!}I_{0,0}(1) = \frac{1}{(2s)!}$$

因此 $I_{r,s}(1) = \frac{1}{n!}$,有:

$$vol(X) = 2^{s} vol(f(X)) = 2^{s} \cdot 2^{r} \cdot 4^{-s} \cdot (2\pi)^{s} \cdot t^{n} \cdot I_{r,s}(1) = \frac{2^{r} \pi^{s} t^{n}}{n!}$$

3 **问题:** 证明在 K 的整数环 \mathcal{O}_K 的每个非零理想 \mathfrak{a} 中,存在非零 a 满足:

$$|N_{K|\mathbb{Q}}(a)| \leq M(\mathcal{O}_K : \mathfrak{a}),$$

其中 $M = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|d_K|}$ (即所谓的闵可夫斯基界)。

解答:考虑紧的、凸的、中心对称集合:

$$X = \left\{ (z_{\tau}) \in K_{\mathbb{R}} \mid \sum_{\tau} |z_{\tau}| \le n \left(M(\mathcal{O}_{K} : \mathfrak{a}) \right)^{1/n} \right\}$$

其体积为:

$$\operatorname{vol}(X) = \frac{2^r \pi^s}{n!} \cdot n^n \cdot \left(\frac{n!}{n^n} \left(\frac{4}{\pi} \right)^s \sqrt{|d_K|} \right) \cdot (\mathcal{O}_K : \mathfrak{a}) = 2^n \operatorname{vol}(\Gamma)$$

由练习 4.2, X 含 $\Gamma = j\mathfrak{a}$ 的非零元素,故存在 \mathfrak{a} 中的非零 a 满足:

$$\begin{split} |N_{K|\mathbb{Q}}(a)| &= \prod_{\tau} |\tau(a)| \\ &\leq \left(\frac{1}{n} \sum_{\tau} |\tau(a)|\right)^n \\ &\leq M(\mathcal{O}_K : \mathfrak{a}) \end{split}$$