Spawning per recruit (Spawning stock biomass per recruit)

Reading:

See Jennings et al. 2001, section 7.7

Haddon et al. 2011, section 2.8

Announcements

- Still grading take home exams
- Grad students, please review the requirements for your project (see canvas) → will discuss later this week
 - Synopsis Due: March 18

Spawning per recruit

- Developed to address YPR limitations of not accounting for maturation and recruitment
- Goal is to determine the lifetime spawning potential of a recruit and how much it is reduced by fishing
- Spawning: typically SSB or eggs
- Used to calculate reference points for fisheries management.

			Mortality Rate			
		Maturity at	Natural	Fishing	Stock Size	
Age	Wt (kg)	age	(v)	(u)	(#)	SSB (kg)
					1000	
1	0.1	0.00	0.2	0		
2	0.5	0.00	0.2	0.3		
3	1	0.50	0.2	0.3		
4	1.5	1.00	0.2	0.3		
5	2	1.00	0.2	0.3		
					TOTAL SSB	
					SSR/R	

Calculate the following (no calculator should be needed):

- stock sizes based on the mortality rates
- Spawning stock biomass (SSB)
- Total SSB

With

Fishing

SSB per recruit (divide by initial # of recruits)

Mortality Rate Maturity at Natural Stock Size Fishing Age Wt (kg) age (#) SSB (kg) (v) (u) 1000 0.1 0.00 0.2 0 800 1 0 2 0.5 0.00 0.3 400 0.2 3 0.3 1 0.50 0.2 200 100 4 1.5 1.00 0.2 0.3 100 150 5 2 1.00 0.2 0.3 50 100 **TOTAL SSB** 350 SSB/R 0.35

With Fishing

Spawning Stock Biomass per Recruit

- Calculation of SSB/R
- Info needed:
 - Maturity at age (Mat_a)
 - Mortality at age (Z_a)
 - Size at age (W_a)
- What are the components of this equation?

$$SSB/R = \sum_{a} Mat_{a} W_{a} e^{\sum_{j=\min a}^{a-1} -Z_{j}}$$

What is the maximum SSB/R that is possible?

With	
ishing	

			Mortality Rate			
		Maturity at	Natural	Fishing	Stock Size	
Age	Wt (kg)	age	(v)	(u)	(#)	SSB (kg)
					1000	
1	0.1	0.00	0.2	0	800	0
2	0.5	0.00	0.2	0.3	400	0
3	1	0.50	0.2	0.3	200	100
4	1.5	1.00	0.2	0.3	100	150
5	2	1.00	0.2	0.3	50	100
					TOTAL SSB	350
					SSB/R	0.35

NO Fishing

			Mortali	ty Rate		
		Maturity	Natural	Fishing	Stock Size	
Age	Wt (kg)	at age	(v)	(u)	(#)	SSB (kg)
					1000	
1	0.1	0.00	0.2	0	800	0
2	0.5	0.00	0.2	0	640	0
3	1	0.50	0.2	0	512	256
4	1.5	1.00	0.2	0	410	614
5	2	1.00	0.2	0	328	655
					TOTAL SSB	1526
					SSB/R	1.53

Maximum spawning potential (MSP)

Spawning Stock Biomass per Recruit

- Maximum spawning potential (MSP)
 - biomass of reproductively mature fish per recruit in the absence of fishing
 - IE, the max. expected lifetime contribution of a recruit to the spawning stock biomass
 - SSB/R with no fishing

No Fishing (MSP):

$$SSB/R_{F=0} = \sum_{a} Mat_{a} W_{a} e^{j-\min a}$$

- How much are we reducing the lifetime spawning potential by fishing?

V	۷i	tł	1	
F	is	h	in	g

			Mortali	ty Rate		
		Maturity at	Natural	Fishing	Stock Size	
Age	Wt (kg)	age	(v)	(u)	(#)	SSB (kg)
					1000	
1	0.1	0.00	0.2	0	800	0
2	0.5	0.00	0.2	0.3	400	0
3	1	0.50	0.2	0.3	200	100
4	1.5	1.00	0.2	0.3	100	150
5	2	1.00	0.2	0.3	50	100
					TOTAL SSB	350
					SSB/R	0.35

NO Fishing

			Mortali	ty Rate		
		0.4 - 1 1		•		
		Maturity	Natural	Fishing	Stock Size	
Age	Wt (kg)	at age	(v)	(u)	(#)	SSB (kg)
					1000	
1	0.1	0.00	0.2	0	800	C
2	0.5	0.00	0.2	0	640	(
3	1	0.50	0.2	0	512	256
4	1.5	1.00	0.2	0	410	614
5	2	1.00	0.2	0	328	655
					TOTAL SSB	1526
					SSB/R	1.53

Maximum spawning potential (MSP)

$$SPR = \frac{SSB/R_{Fishing}}{SSB/R_{NoFishing}} = \frac{0.35}{1.53} = 0.23 \text{ (or 23\%)}$$

Spawning Stock Biomass per Recruit

- Spawning potential ratio (SPR)
 - the fraction of MSP that is achieved at different fishing mortality rates
 - i.e., Ratio of fished SSB/R to unfished SSB/R

With Fishing:

$$SSB / R = \sum_{a} Mat_{a} W_{a} e^{\int_{a}^{a-1} -Z_{j}}$$

No Fishing (MSP):

$$SSB/R_{F=0} = \sum_{a} Mat_{a} W_{a} e^{j-\min a}$$

Spawning potential ratio

$$SPR = \frac{SSB/R}{SSB/R_{F=0}} \times 100$$

Terminology/acronyms

- Spawning stock biomass per recruit
 - Also: spawners per recruit, spawning per recruit
 - Acronyms: SSB/R or S/R or SSBR or SPR (e.g., Gabriel and Mace 1999, Rochet 2000)
 - Maximum spawning potential (MSP) SSB/R with no fishing
- Ratio of SSB/R to unfished SSB/R
 - Spawning potential ratio (SPR, or %SPR)
 - %MSP
 - Compensation ratio (CR) (Goodyear 1993)

Spawning potential ratio (SPR)

Example curves

Reference points from SSB/R

- $F_{x\%SPR}$ = fishing mortality rate that keeps spawning potential ratio at X% of the maximum spawning potential
 - E.g., $F_{40\%}$ is relatively common.

Spawning Potential Ratio (SPR)

Spawning per recruit assumptions

- Constant life history schedules
 - Mortality at age
 - Growth (weight at age)
 - Maturity at age
 - Fecundity at age (for Eggs-Per-Recruit [EPR] models)
- Assumes spawning occurs over a short period in time (ie not continuous process)

Uses of spawning per recruit

- Generation of biological reference points (F_{x%SPR})
 - Used as a proxy of F_{msv}
 - 35% SPR suggested as a general reference point, but may be too aggressive for many life histories
 - 40% SPR now commonly used but higher values (50% to 60%) have been suggested for some species.

Helpful in avoiding recruitment overfishing

Limitations of SPR Models

- Constant assumptions
- Equilibrium conditions
 - No density dependence

- Does not contain stock-recruitment assumptions
 - But possible to build this in

Examples of challenges/problems

- External drivers of populations
 - Environment, Climate, etc.
- Doesn't account for density dependence
- Possible changes as density decreases:
 - Growth rate increases (ie increased W at age)
 - Earlier maturity
 - Higher fecundity at age (due to size)
 - Smaller egg sizes (due to younger age at maturity)
 - Decreased natural mortality
- How have life history traits changed over the history of the fishery?
 - Traits/schedules now (which we estimate) may be different than virgin population

Tradeoffs in YPR and SSB/R

Example

 Walleye YPR and SSBR in Mille Lacs Lake

SSBR

FIGURE 2. Mille Lacs Lake Walleye YPR and SSBR as a function of the age at which 50% selection to the angling fishery occurs, at Full Angling F. The horizontal dashed line represents the age (3.9 years) where 50% selection results in an SSBR = 0.3 at a median F = 0.4, as estimated from the SCAA model. The vertical dashed lines represent low F = 0.2 (10th percentile of SCAA-estimated F) and high F = 0.75 (90th percentile of SCAA-estimated F).

Schmalz et al. 2016

Summary - SSB/R

$$SSB/R = \sum_{a} Mat_{a} W_{a} e^{\int_{a}^{a} -Z_{j}}$$

- SSB/R models
 - Examples of "spawning per recruit" models → but they look at different measures of spawning
 - Typically expressed as ratio of fished to unfished values
 - Definitions/concepts to know: SSB/R, SPR, MSP, recruitment overfishing
- SSB/R models account for:
 - age-structure
 - growth, mortality, maturity
- Don't account for:
 - Recruitment, changes in growth/mortality/maturity schedules, or density dependence
- Provide info and reference points for management
 - Deals with recruitment overfishing
 - $F_{x\%}$ (e.g., $F_{35\%}$ and $F_{40\%}$)
 - Often used as a proxy for F_{MSY} (b/c don't need S-R relationship)
 - Info on best age at first capture
 - These methods can also be modified to calculate eggs per recruit (EPR)