Критерій компланарності векторів

Мішаний добуток векторів $\overline{a},\overline{b}$ та \overline{c} дорівнює нулю, тоді й лише тоді, коли вектори $\overline{a},\overline{b}$ та \overline{c} компланарні:

$$\overline{(\overline{a},\overline{b},\overline{c})}=0\Leftrightarrow \overline{a},\overline{b},\overline{c}$$
 — компланарні.

Взаємна орієнтація векторів

Для будь-яких некомпланарних векторів $\overline{a}, \overline{b}$ та \overline{c} :

- 1) якщо $(\overline{a}, \overline{b}, \overline{c}) > 0$, то вектори $\overline{a}, \overline{b}, \overline{c}$ утворюють праву трійку;
- 2) якщо $(\overline{a},b,\overline{c})<0$, то вектори $\overline{a},\overline{b},\overline{c}$ утворюють ліву трійку.

11. Комплексні числа

11.1. Основні поняття

Означення 11.1. *Комплексним числом* z називають упорядковану пару

$$\left(egin{array}{c} x \ y \end{array}
ight)$$
 дійсних чисел x і y , тобто

$$z = \begin{pmatrix} x \\ y \end{pmatrix}, x \in \mathbb{R}, y \in \mathbb{R}.$$

Перший елемент пари x називають <u>дійсною частиною</u>, а другий елемент — <u>уявною частиною</u> комплексного числа z і позначають

$$x = \operatorname{Re} z, \ y = \operatorname{Im} z.$$

Дії над комплексними числами

Розгляньмо два комплексні числа $z_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ та $z_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$.

Означення 11.2. Два комплексні числа z_1 і z_2 називають *рівними*, якщо рівні їхні дійсні та уявні частини, тобто

Означення 11.3. *Сумою* двох комплексних чисел z_1 і z_2 називають комплексне число

$$\boxed{z_1+z_2= \begin{pmatrix} x_1+x_2\\y_1+y_2 \end{pmatrix}}.$$

Означення 11.4. Добутком двох комплексних чисел z_1 і z_2 називають комплексне число

Множину всіх комплексних чисел з означеними рівністю, додаванням та множенням називають *множиною комплексних чисел* і позначають \mathbb{C} . Оскільки

$$\begin{pmatrix} x_1 \\ 0 \end{pmatrix} + \begin{pmatrix} x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} x_1 \\ 0 \end{pmatrix} \begin{pmatrix} x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 x_2 \\ 0 \end{pmatrix},$$

то комплексні числа вигляду $\begin{pmatrix} x \\ 0 \end{pmatrix}, x \in \mathbb{R}$, ототожнюють з дійсними числа-

ми і записують $\begin{pmatrix} x \\ 0 \end{pmatrix} = x, x \in \mathbb{R}$. Отже,

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1, \ \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0.$$

Зауваження 11.1.

1. Множина дійсних чисел ε підмножиною множини комплексних чисел ($\mathbb{R} \subset \mathbb{C}$). Отже, правдиві включення^{*}

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$$

2. Поняття нерівності для комплексних чисел існує лише як заперечення рівності, тобто $z_1 \neq z_2$ означає, що число z_1 не дорівнює числу z_2 . Поняття «більше» та «менше» для комплексних чисел не означують, тобто множина комплексних чисел $\mathbb C$, на відміну від множини дійсних чисел $\mathbb R$, не впорядкована.

Розгляньмо добуток дійсного числа $\alpha = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$ на комплексне число

$$z = \begin{pmatrix} x \\ y \end{pmatrix}$$
. Маємо

$$\alpha z = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha x \\ \alpha y \end{pmatrix}.$$

^{*} Подальше поширення числових множин розглянуто в п. 13.9.

Отже, означення лінійних дій над комплексними числами збігається з означенням дій над двовимірними арифметичними векторами (для додавання це випливає з означення).

 \square ротилежним для комплексного числа z називають число

$$-z = (-1)z = \begin{pmatrix} -x \\ -y \end{pmatrix}.$$

Під *різницею* комплексних чисел $z_1=\begin{pmatrix} x_1\\y_1 \end{pmatrix}$ та $z_2=\begin{pmatrix} x_2\\y_2 \end{pmatrix}$ розуміють

комплексне число

$$\boxed{z_1 - z_2 = z_1 + (-1)z_2 = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}}.$$

Будь-яке комплексне число можна записати як

$$z = \begin{pmatrix} x \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}, x, y \in \mathbb{R}.$$

Уявною одиницею називають комплексне число

$$i = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

З означення множення комплексних чисел випливає, що

$$i^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = -1,$$

тобто комплексне число $i \in \text{розв'}$ язком рівняння $z^2 + 1 = 0$ і $\underline{i^2 = -1}$.

Твердження 11.1 (властивості додавання і множення комплексних чисел). Для будь-яких комплексних чисел z, z_1, z_2, z_3 правдиві тотожності:

- ① $z_1 + z_2 = z_2 + z_1$ (комутативність додавання);
- 3 z + 0 = z (*існування нуля*);
- 4 існує єдине комплексне число (-z) таке, що z + (-z) = 0 (*існування протилежного числа*);

- $\bigcirc 1 \cdot z = z$ (існування одиниці);
- ® якщо $z \neq 0$, то існує єдине комплексне число z^{-1} , що $zz^{-1} = 1$ (*існування оберненого числа*);

Зауваження 11.2. Зміст попередніх розділів — дії над матрицями, обчислення визначників, теорія систем лінійних алгебричних рівнянь та лінійної залежності векторів — залишається правдивим, якщо елементи матриць, визначників, коефіцієнти та розв'язки СЛАР, координати векторів вважати комплексними числами.

11.2. Алгебрична форма комплексного числа

Означення 11.5. *Алгебричною формою* комплексного числа $z = \begin{pmatrix} x \\ y \end{pmatrix}$

називають вираз

$$z = x + iy,$$

де $x={\rm Re}\,z$ — дійсна частина комплексного числа $x;\;y={\rm Im}\,z$ — уявна частина комплексного числа $z;\;i$ — уявна одиниця, причому

$$i^2 = -1.$$

Дії над комплексними числами в алгебричній формі

Розгляньмо комплексні числа $z_1 = x_1 + i y_1$ та $z_2 = x_2 + i y_2$.

З означень дій над комплексними числами і алгебричної форми комплексного числа випливає, що:

$$\begin{aligned} z_1 &= z_2 \Leftrightarrow \begin{cases} x_1 = x_2, \\ y_1 &= y_2; \\ z_1 + z_2 &= (x_1 + x_2) + i(y_1 + y_2); \\ z_1 - z_2 &= (x_1 - x_2) + i(y_1 - y_2); \\ z_1 z_2 &= (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1). \end{cases}$$

Зауваження 11.3. Арифметичні дії над комплексними числами можна проводити як з алгебричними виразами, враховуючи, що $i^2=-1$.

Піднесення комплексного числа z до натурального степеня n розглядають як множення числа z на себе n разів:

$$z^n = \underbrace{z \cdot z \cdots z}_{n}.$$

Ділення комплексних чисел

Комплексне число x-iy називають *спряженим* до числа z=x+iy і позначають

$$\overline{z} = x - iy.$$

Маємо

$$z\overline{z} = (x+iy)(x-iy) = (x^2+y^2) + 0i = x^2+y^2 \in \mathbb{R},$$

 $z\overline{z} \neq 0 \Leftrightarrow z \neq 0.$

Для будь-якого комплексного числа $z=x+iy\neq 0$ існує *обернене*. Справді, помножуючи рівність

$$z^{-1}z = 1$$

на \overline{z} , дістаємо

$$z^{-1}z\overline{z} = \overline{z} \Rightarrow z^{-1} = \frac{1}{z\overline{z}}\overline{z} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}.$$

Під *часткою комплексних чисел* $z_1=x_1+iy_1$ та $z_2=x_2+iy_2\neq 0$ розуміють комплексне число

$$\boxed{\frac{z_1 \overset{\text{def}}{=} z_1 \left(z_2\right)^{-1} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2}} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{y_1 x_2 - x_1 y_2}{x_2^2 + y_2^2}.$$

Приклад 11.1. Знайдімо суму, різницю, добуток та частку комплексних чисел $z_1 = 2 + 3i$ та $z_2 = -1 + 2i$.

О Ураховуючи формули для дій над комплексними числами в алгебричній формі і зауваження 11.3, маємо:

$$z_1+z_2=2+3i+(-1+2i)=1+5i;$$

$$z_1-z_2=2+3i-(-1+2i)=3+i;$$

$$z_1z_2=(2+3i)(-1+2i)=-2-3i+4i+6i^2=y$$

$$y$$

$$z_1z_2=(2+3i)(-1+2i)=-2-3i+4i+6i^2=y$$

$$z_1z_2=\frac{2+3i}{-2+i-6}=-8+i;$$

$$z_1z_2=\frac{2+3i}{-1+2i}=\frac{(2+3i)(-1-2i)}{(-1)^2+(2)^2}=\frac{2+3i}{2}$$

$$z_2=\frac{2+3i}{2}$$

11.3. Геометричне зображення комплексних чисел

Комплексне число z=x+iy зображують на площині Oxy точкою M(x;y) або радіусом-вектором $\overline{OM}=\begin{pmatrix} x\\y \end{pmatrix}$ (рис. 11.1, 11.2).

Існує взаємно однозначна відповідність між комплексними числами $z = x + iy, x, y \in \mathbb{R}$, і точками площини Oxy. При цьому:

площину, точки якої ототожнюють з комплексними числами, називають *комплексною площиною*; вісь абсцис називають *дійсною віссю* (на ній лежать дійсні числа z=x); вісь ординат називають *уявною віссю* (на ній лежать уявні числа z=iy).

Якщо число z зображують точкою (x;y), то числа $\overline{z},-z$ і $-\overline{z}$ зображують відповідно точками (x;-y),(-x;-y) і (-x;y) (рис. 11.3).

Рис. 11.1

Рис. 11.2

Рис. 11.3

Додаванню та відніманню комплексних чисел відповідає додавання та віднімання відповідних їм радіусів-векторів (рис. 11.4).

Рис. 11.4

11.4. Полярна система координат

Нехай на площині задано точку O, яку називають *полюсом*, одиничний вектор \overline{i} , орієнтацію (проти годинникової стрілки). Промінь Op, який орієнтований вектором \overline{i} , називають *полярною віссю* (рис. 11.5).

Рис. 11.5

Положення точки M, відмінної від полюса O, на площині задають довжиною її радіуса-вектора $\rho = \left| \overline{r} \right|$ і кутом ϕ між полярною віссю і променем OM. Кут ϕ вважають додатним, якщо його відраховують від полярної осі проти ходу годинникової стрілки, і від'ємним, якщо його відраховують за годинниковою стрілкою.

Полярними координатами точки M називають упорядковану пару чисел (ρ,φ)

і записують $M(\rho; \varphi)$. Координату $\rho > 0$ називають *полярним радіусом*, координату φ — *полярним кутом*. Для полюса — точки $O: \rho = 0$, а полярний кут можна брати довільний.

Полярні координати однозначно визначають точку на площині, а кожній точці площини відповідає нескінченна кількість пар ρ та ϕ . У цих парах ρ те саме, а полярні кути ϕ відрізняються один від одного на число, кратне 2π , тобто

$$\varphi = \varphi_0 + 2k\pi,$$

де ϕ_0 справджує умову

$$-\pi < \varphi_0 \le \pi$$
.

Його називають *головним значенням* полярного кута (інколи беруть $\varphi_0 \in [0; 2\pi)$).

Якщо скористатися головним значенням полярного кута, то відповідність між упорядкованими парами дійсних чисел $(\rho; \varphi_0)$ і точками площини буде взаємно однозначною (крім точки 0, де $\rho=0$, а φ_0 — довільний).

Нехай на площині задано полярну систему координат. Прямокутні декартові координати x, y називають *узгодженими* з полярними координатами ρ, φ (рис. 11.6), якщо:

Рис. 11.6

- 1) базис $\{\overline{i},\overline{j}\}$ задає вибрану орієнтацію площини;
- 2) полюс O є початком координат ПДСК;
- 3) промінь Op є додатною піввіссю осі абсцис.

Якщо x, y — прямокутні координати, узгоджені з полярними координатами ρ, φ , то декартові координати виражаються через полярні співвідношеннями:

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \end{cases} \tag{11.1}$$

а полярні через декартові — співвідношеннями:

$$\rho = \sqrt{x^2 + y^2}, \varphi : \begin{cases} \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \\ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}}. \end{cases}$$

Зауважмо, що

Рис. 11.7

$$x^2 + y^2 = \rho^2.$$

Координатними лініями в полярній системі координат є кола з центром у полюсі і радіусом R, що мають рівняння $\rho=R$, та промені, які виходять з полюса і мають рівняння $\varphi=\alpha$ (рис. 11.7).

11.5. Тригонометрична форма комплексних чисел

Розгляньмо комплексне число $z \neq 0$, яке зображує точка $M \neq O$ із полярними координатами (ρ, φ) .

Означення 11.6. Полярний радіус ρ називають *модулем* комплексного числа z і позначають

$$|z| \stackrel{\text{def}}{=} \rho = \sqrt{x^2 + y^2},$$

полярний кут φ називають *аргументом комплексного числа* z і позначають

$$\operatorname{Arg} z = \varphi.$$

Головним значенням аргументу комплексного числа $z \neq 0$ називають число

$$\arg z = \varphi_0 \in (-\pi; \pi].$$

Отже,

$$\overline{\operatorname{Arg} z = \operatorname{arg} z + 2\pi k, k \in \mathbb{Z}.}$$

Зауваження 11.4.

1. Поняття модуля комплексного числа узгоджене з поняттям модуля дійсного числа:

$$|x + 0i| = \sqrt{x^2 + 0^2} = |x|.$$

$$2. \overline{|z\overline{z}| = x^2 + y^2 = |z|^2}.$$

- **3.** Аргумент комплексного числа z=0 невизначений (тобто можна брати будь-який), а модуль дорівнює нулю.
- 4. Головне значення аргумента можна знайти за формулою

$$\arg z = \begin{cases} -\pi + \arctan \frac{y}{x}, & x < 0, y < 0, \\ -\frac{\pi}{2}, & x = 0, y < 0, \\ \arctan \frac{y}{x}, & x > 0, \\ \frac{\pi}{2}, & x = 0, y > 0, \\ \frac{\pi}{2}, & x < 0, y > 0. \end{cases}$$

Нехай точка, що зображує комплексне число z=x+iy, має полярні координати $(\rho;\varphi)$. Тоді, враховуючи співвідношення (11.1), маємо

$$z = x + iy = \rho \cos \varphi + i\rho \sin \varphi, \rho \ge 0.$$

Тригонометричною формою комплексного числа Означення 11.7. $z \neq 0$ називають вираз

$$z = \rho(\cos\varphi + i\sin\varphi),$$

де $\rho = |z|$ — модуль комплексного числа $z; \ \varphi = \operatorname{Arg} z$ — аргумент комплексного числа z.

Приклад 11.2. Зобразімо числа $z_1 = 1 + i$ та $z_2 = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ на комплексній площині і запишімо їх у тригонометричній формі.

Рис. 11.8

$$x_1 = \operatorname{Re} z_1 = 1, y_1 = \operatorname{Im} z_1 = 1;$$

 $x_2 = \operatorname{Re} z_2 = -\frac{\sqrt{3}}{2}, y_2 = \operatorname{Im} z_2 = \frac{1}{2}.$

Число z_1 зображує точка (1;1), а число

$$\overline{x}$$
 z_2 — точка $\left(-\frac{\sqrt{3}}{2};\frac{1}{2}\right)$ (або відповідні раді-

Знаходимо модулі чисел z_1 і z_2 :

$$\begin{split} &\rho_1 = \left| z_1 \right| = \sqrt{(x_1)^2 + (y_1)^2} \, = \sqrt{1^2 + 1^2} \, = \sqrt{2}; \\ &\rho_2 = \left| z_2 \right| = \sqrt{(x_2)^2 + (y_2)^2} \, = \sqrt{\left(-\frac{\sqrt{3}}{2} \right)^2 + \left(\frac{1}{2} \right)^2} \, = 1 \end{split}$$

Знаходимо аргументи чисел z_1 і z_2 , ураховуючи, що число z_1 розташоване у 1-й чверті, а число z_2 — у 2-й чверті:

$$\begin{split} \varphi_1 &= \operatorname{arctg} \frac{y_1}{x_1} = \operatorname{arctg} 1 = \frac{\pi}{4}; \\ \varphi_2 &= \pi + \operatorname{arctg} \frac{y_2}{x_2} = \pi + \operatorname{arctg} \left(-\frac{1}{\sqrt{3}} \right) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}. \end{split}$$

Записуємо числа у тригонометричній формі:

$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right), \qquad z_2 = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}. \bullet$$

Дії над комплексними числами у тригонометричній формі

Розгляньмо комплексні числа

$$z_1 = \rho_1(\cos\varphi_1 + i\sin\varphi_1);$$

$$z_2 = \rho_2(\cos\varphi_2 + i\sin\varphi_2).$$

З означень дій над комплексними числами і тригонометричної форми комплексного числа випливає, що:

$$z_{1} = z_{2} \Leftrightarrow \rho_{1} = \rho_{2}, \varphi_{1} = \varphi_{2} + 2\pi k, k \in \mathbb{Z};$$

$$z_{1}z_{2} = \rho_{1}\rho_{2}(\cos(\varphi_{1} + \varphi_{2}) + i\sin(\varphi_{1} + \varphi_{2}));$$

$$\frac{z_{1}}{z_{2}} = \frac{\rho_{1}}{\rho_{2}}(\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2})).$$

▶ Доведімо формулу множення:

$$\begin{split} z_1 z_2 &= \rho_1 (\cos \varphi_1 + i \sin \varphi_1) \rho_2 (\cos \varphi_2 + i \sin \varphi_2) = \\ &= \rho_1 \rho_2 [(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2) + i (\sin \varphi_1 \cos \varphi_2 + \sin \varphi_2 \cos \varphi_1)] = \\ &= \rho_1 \rho_2 [\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)]. \blacktriangleleft \end{split}$$

Наслідком формули множення комплексних чисел ϵ формула піднесення комплексного числа до натурального степеня, яку називають *муавровою формулою*

$$z^{n} = \left[\rho(\cos\varphi + i\sin\varphi)\right]^{n} = \rho^{n}(\cos n\varphi + i\sin n\varphi). \tag{11.2}$$

▶ Доведімо формулу Муавра методом математичної індукції.

Очевидно, що формула правдива для n = 0 та n = 1:

$$(\rho(\cos\varphi + i\sin\varphi))^0 = 1 = \rho^0(\cos0 + i\sin0) = 1;$$
$$(\rho(\cos\varphi + i\sin\varphi))^1 = \rho(\cos\varphi + i\sin\varphi).$$

Припустімо, що вона правдива для $n=k\in\mathbb{N}$:

$$(\rho(\cos\varphi + i\sin\varphi))^k = \rho^k(\cos k\varphi + i\sin k\varphi),$$

і при цьому припущенні доведімо її для n = k + 1:

$$(\rho(\cos\varphi + i\sin\varphi))^{k+1} = \rho(\cos\varphi + i\sin\varphi)(\rho(\cos\varphi + i\sin\varphi))^k =$$

$$= \rho(\cos\varphi + i\sin\varphi)\rho^k(\cos k\varphi + i\sin k\varphi) =$$

$$= \rho^{k+1}(\cos k\varphi\cos\varphi - \sin\varphi\sin k\varphi + i(\sin\varphi\cos k\varphi + \cos\varphi\sin k\varphi)) =$$

$$= \rho^{k+1}(\cos(k+1)\varphi + i\sin(k+1)\varphi).$$

Згідно із принципом математичної індукції формула Муавра правдива для будь-якого натурального n. \blacktriangleleft

Приклад 11.3. Знайдімо $z_1z_2, \frac{z_1}{z_2}, (z_1)^{10}$ для комплексних чисел

$$z_1 = \sqrt{2} \bigg(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \bigg) \, \mathrm{Ta} \, \, z_2 = \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}.$$

ОМаємо:

$$\begin{split} z_1 z_2 &= \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \cdot 1 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = \\ &= \sqrt{2} \cdot 1 \left(\cos \left(\frac{\pi}{4} + \frac{5\pi}{6} \right) + i \sin \left(\frac{\pi}{4} + \frac{5\pi}{6} \right) \right) = \\ &= \sqrt{2} \left(\cos \frac{13\pi}{12} + i \sin \frac{13\pi}{12} \right); \\ \frac{z_1}{z_2} &= \frac{\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)}{1 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)} = \frac{\sqrt{2}}{1} \left(\cos \left(\frac{\pi}{4} - \frac{5\pi}{6} \right) + i \sin \left(\frac{\pi}{4} - \frac{5\pi}{6} \right) \right) = \\ &= \sqrt{2} \left(\cos \left(-\frac{7\pi}{12} \right) + i \sin \left(-\frac{7\pi}{12} \right) \right); \\ (z_1)^{10} &= \left[\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \right]^{10} = \left(\sqrt{2} \right)^{10} \left(\cos \left(10 \cdot \frac{\pi}{4} \right) + i \sin \left(10 \cdot \frac{\pi}{4} \right) \right) = \\ &= 32 \left(\cos \frac{5\pi}{2} + i \sin \frac{5\pi}{2} \right) = 32i. \bullet \end{split}$$

Корінь з комплексного числа

Комплексне число w називають коренем n-го степеня з комплексного числа, якщо

$$w^n = z, \quad w = \sqrt[n]{z}, n \in \mathbb{N}.$$

Для будь-якого $z \neq 0$ корінь $\sqrt[n]{z}$ має n різних значень. Справді, підставляючи

$$z = \rho(\cos\varphi + i\sin\varphi), w = r(\cos\theta + i\sin\theta)$$

у формулу (11.2), дістаємо

$$r^{n}(\cos n\theta + i\sin n\theta) = \rho(\cos \varphi + i\sin \varphi).$$

З рівності комплексних чисел випливає рівність їхніх модулів, а аргументи чисел відрізняються на $2\pi k, k \in \mathbb{Z}$. Отже, маємо співвідношення:

$$r = \sqrt[n]{\rho}, \ \theta = \frac{\varphi + 2\pi k}{n}. \tag{11.3}$$

Отже, модулі всіх коренів n-го степеня із z однакові, а аргументи відрізняються на $\frac{2\pi k}{n}$. Точки на комплексній площині, що відповідають різним значенням кореня n-го степеня з комплексного числа $z \neq 0$, розташовані у вершинах правильного n-кутника, вписаного в коло радіусом $\sqrt[n]{\rho}$ з центром у точці w = 0 (рис. 11.9).

Надаючи у співвідношенні (11.3) числу k значень $0,1,2,\dots,n-1,$ одержимо n різних комплексних чисел

Рис. 11.9

$$\omega_k = \sqrt[n]{z} = \sqrt[n]{\rho} \left(\cos \left(\frac{\varphi + 2\pi k}{n} \right) + i \sin \left(\frac{\varphi + 2\pi k}{n} \right) \right),$$

$$k = 0, n - 1.$$

Приклад 11.4. Знайдімо всі значення $\sqrt[5]{-\frac{\sqrt{3}}{2}+\frac{1}{2}i}$ і побудуймо їх на комплексній площині.

О Ураховуючи результат прикладу 11.2, маємо

$$z = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}.$$

Тоді

$$\begin{split} \omega_k &= \sqrt[5]{z} = \cos\left(\frac{\frac{5\pi}{6} + 2\pi k}{5}\right) + i\sin\left(\frac{\frac{5\pi}{6} + 2\pi k}{5}\right), k = \overline{0,4}; \\ \omega_0 &= \cos\frac{5\pi}{30} + i\sin\frac{5\pi}{30}; \quad \omega_1 = \cos\frac{17\pi}{30} + i\sin\frac{17\pi}{30}; \\ \omega_2 &= \cos\frac{29\pi}{30} + i\sin\frac{29\pi}{30}; \, \omega_3 = \cos\frac{41\pi}{30} + i\sin\frac{41\pi}{30}; \end{split}$$

$$\omega_{2} = \cos \frac{\pi}{30} + i \sin \frac{\pi}{30}, \quad \omega_{3} = \cos \frac{\pi}{30} + i \sin \frac{53\pi}{30}.$$

$$\omega_{4} = \cos \frac{53\pi}{30} + i \sin \frac{53\pi}{30}.$$

Зображуємо значення $\sqrt[5]{z}$ (рис. 11.10) — усі вони розташовані на колі радіусом 1 і променях

$$\varphi_0 = \frac{5\pi}{30}, \varphi_1 = \frac{17\pi}{30}, \varphi_2 = \frac{29\pi}{30}, \varphi_3 = \frac{41\pi}{30}, \varphi_4 = \frac{53\pi}{30}.$$

Рис. 11.10

Важливий випадок добування кореня n-го степеня з одиниці. З рівності $1=\cos 0+i\sin 0$

$$\sqrt[n]{1} = \varepsilon_k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}, k = \overline{0, n-1}.$$

На комплексній площині корені n-го степеня з одиниці розташовані на колі одиничного радіуса і поділяють його на n рівних дуг; однією з точок поділу є число 1. Тобто «недійсні» корені n-го степеня з одиниці розташовані симетрично щодо дійсної осі — попарно спряжені.

11.6. Комплексні числа в показниковій формі*

Ейлерова формула, що встановлює зв'язок між показниковою і тригонометричними функціями,

$$e^{i\varphi} = \cos\varphi + i\sin\varphi, \varphi \in \mathbb{R},$$

дає змогу записувати комплексні числа ще й у показниковій формі:

$$z = \rho(\cos\varphi + i\sin\varphi) \Leftrightarrow z = \rho e^{i\varphi}, \rho = |z|, \varphi = \operatorname{Arg} z.$$

Якщо покласти в ейлеровій формулі $\varphi = \pi$, то дістанемо цікаву рівність

$$e^{i\pi} + 1 = 0,$$

яка містить 5 визначних сталих $0,1,\pi,e,i$ і символізує єдність усієї математики.

Означення 11.8. *Показниковою формою* комплексного числа $z \neq 0$ називають вираз

$$z=\rho e^{i\varphi},$$

де $\rho = |z|$ — модуль комплексного числа $z; \ \phi = \operatorname{Arg} z$ — аргумент комплексного числа z.

Подамо формули для дій з комплексними числами $z_1 = \rho_1 e^{i\varphi_1}, z_2 = \rho_2 e^{i\varphi_2} \text{ в показниковій формі:}$

$$\begin{aligned} z_1 &= z_2 \Leftrightarrow \rho_1 = \rho_2, \varphi_1 = \varphi_2 + 2\pi k, k \in \mathbb{Z}; \\ z_1 z_2 &= \rho_1 \rho_2 e^{i(\varphi_1 + \varphi_2)}; \\ \frac{z_1}{z_2} &= \frac{\rho_1}{\rho_2} e^{i(\varphi_1 - \varphi_2)}; \\ z_1^n &= \rho_1^n e^{in\varphi_1}, n \in \mathbb{N}; \\ \sqrt[n]{z_1} &= \sqrt[n]{\rho_1} e^{i\frac{\varphi_1 + 2\pi k}{n}}, k = \overline{0, n - 1}, n \in \mathbb{N}. \end{aligned}$$

^{*} Приклад застосування подано в п. 12.9.