FEB 0 4 2004 B

SEQUENCE LISTING

DEMENT	ODZODNOD DIDIINO
<110>	DONATE, Fernando MAZAR, Andrew
<120>	Human Kininogen D3 Domain Polypeptide as an Anti-Angiogenic and Anti-Tumor Agent
<130>	38342-193024
	US 10/661,784 2003-09-15
	US 60/401,279 2002-09-13
<160>	6
<170>	PatentIn version 3.2
<212>	1 123 PRT Homo sapiens
<400>	1
Gly Ly: 1	s Asp Phe Val Gln Pro Pro Thr Lys Ile Cys Val Gly Cys Pro 5 10 15
Arg Ası	p Ile Pro Thr Asn Ser Pro Glu Leu Glu Glu Thr Leu Thr His 20 25 30
Thr Ile	e Thr Lys Leu Asn Ala Glu Asn Asn Ala Thr Phe Tyr Phe Lys 35 40 45
Ile As _] 50	p Asn Val Lys Lys Ala Arg Val Gln Val Val Ala Gly Lys Lys 55 60
Tyr Pho	e Ile Asp Phe Val Ala Arg Glu Thr Thr Cys Ser Lys Glu Ser 70 75 80
Asn Gli	u Glu Leu Thr Glu Ser Cys Glu Thr Lys Lys Leu Gly Gln Ser 85 90 95

Tyr Pro Thr Val Asn Cys Gln Pro Leu Gly Met 115 120

100

Leu Asp Cys Asn Ala Glu Val Tyr Val Val Pro Trp Glu Lys Lys Ile

105

110

<210> 2

<211> 125

<212> PRT

<213> Homo sapiens

<400> 2

Gly Ser Gly Lys Asp Phe Val Gln Pro Pro Thr Lys Ile Cys Val Gly
1 5 10 15

Cys Pro Arg Asp Ile Pro Thr Asn Ser Pro Glu Leu Glu Glu Thr Leu 20 25 30

Thr His Thr Ile Thr Lys Leu Asn Ala Glu Asn Asn Ala Thr Phe Tyr 35 40 45

Phe Lys Ile Asp Asn Val Lys Lys Ala Arg Val Gln Val Val Ala Gly 50 55 60

Lys Lys Tyr Phe Ile Asp Phe Val Ala Arg Glu Thr Thr Cys Ser Lys 65 70 75 80

Glu Ser Asn Glu Glu Leu Thr Glu Ser Cys Glu Thr Lys Lys Leu Gly 85 90 95

Gln Ser Leu Asp Cys Asn Ala Glu Val Tyr Val Val Pro Trp Glu Lys
100 105 110

Lys Ile Tyr Pro Thr Val Asn Cys Gln Pro Leu Gly Met 115 120 125

<210> 3

<211> 127

<212> PRT

<213> Homo sapiens

<400> 3

Gly Ser Gly Lys Asp Phe Val Gln Pro Pro Thr Lys Ile Cys Val Gly
1 10 15

Cys Pro Arg Asp Ile Pro Thr Asn Ser Pro Glu Leu Glu Glu Thr Leu 20 25 30

Thr His Thr Ile Thr Lys Leu Asn Ala Glu Asn Asn Ala Thr Phe Tyr

35 40 45

Phe Lys Ile Asp Asn Val Lys Lys Ala Arg Val Gln Val Val Ala Gly 50 55 60	
Lys Lys Tyr Phe Ile Asp Phe Val Ala Arg Glu Thr Thr Cys Ser Lys 70 75 80	
Glu Ser Asn Glu Glu Leu Thr Glu Ser Cys Glu Thr Lys Lys Leu Gly 85 90 95	
Gln Ser Leu Asp Cys Asn Ala Glu Val Tyr Val Val Pro Trp Glu Lys 100 105 110	
Lys Ile Tyr Pro Thr Val Thr Val Asn His Trp Glu Cys Glu Phe 115 120 125	
<210> 4 <211> 369 <212> DNA <213> Homo sapiens	
<400> 4 gggaaggatt ttgtacaacc acctaccaag atttgcgtgg gctgccccag agatataccc	60
accaacagcc cagagctgga ggagacactg actcacacca tcacaaagct taatgcagag	120
aataacgcaa ctttctattt caagattgac aatgtgaaaa aagcaagagt acaggtggtg	180
gctggcaaga aatattttat tgacttcgtg gccagggaaa ccacatgttc caaggaaagt	240
aatgaagagt tgaccgaaag ctgtgagacc aaaaaacttg gccaaagcct agattgcaac	300
gctgaagttt atgtggtacc ctgggagaaa aaaatttacc ctactgtcaa ctgtcaacca	360
ctgggaatg	369
<210> 5 <211> 375 <212> DNA <213> Homo sapiens	
<400> 5 ggatccggga aggattttgt acaaccacct accaagattt gcgtgggctg ccccagagat	6 0
atacccacca acagcccaga gctggaggag acactgactc acaccatcac aaagcttaat	60 120
gcagagaata acgcaacttt ctatttcaag attgacaatg tgaaaaaaagc aagagtacag	180
gtggtggctg gcaagaaata ttttattgac ttcgtggcca gggaaaccac atgttccaag	240

gaaagtaatg	aagagttgac	cgaaagctgt	gagaccaaaa	aacttggcca	aagcctagat	300
tgcaacgctg	aagtttatgt	ggtaccctgg	gagaaaaaaa	tttaccctac	tgtcaactgt	360
caaccactgg	gaatg					375
<210> 6 <211> 381 <212> DNA <213> Homo	sapiens	·				
<400> 6 ggatccggga	aggattttgt	acaaccacct	accaagattt	gcgtgggctg	ccccagagat	60
atacccacca	acagcccaga	gctggaggag	acactgactc	acaccatcac	aaagcttaat	120
gcagagaata	acgcaacttt	ctatttcaag	attgacaatg	tgaaaaaagc	aagagtacag	180
gtggtggctg	gcaagaaata	ttttattgac	ttcgtggcca	gggaaaccac	atgttccaag	240
gaaagtaatg	aagagttgac	cgaaagctgt	gagaccaaaa	aacttggcca	aagcctagat	300
tgcaacgctg	aagtttatgt	ggtaccctgg	gagaaaaaaa	tttaccctac	tgtcactgtc	360
aaccactooo	aatgtgaatt	C				3.81 .

•

,

SEQUENCE LISTING

<110) >	ATTENUON LLC														
<120)>	Human Kininogen D3 Domain Polypeptide as an Anti-Angiogenic and Anti-Tumor Agent														
<130)>	38342-193025														
<140 <141		•														
<150 <151		US 60/401,279 2002-09-13														
<160)>	6														
<170)>	Pate	ntIn	ver	sion	3.2										
<210 <211 <212 <213	L> 2> 3>	1 123 PRT Homo	sap:	iens												
<400)>	1														
Gly 1	Lys	Asp	Phe	Val 5	Gln	Pro	Pro	Thr	Lys 10	Ile	Cys	Val	Gly	Cys 15	Pro	
Arg	Asp) Ile	Pro 20	Thr	Asn	Ser	Pro	Glu 25	Leu	Glu	Glu	Thr	Leu 30	Thr	His	
Thr	Ile	Thr 35	Lys	Leu	Asn	Ala	Glu 40	Asn	Asn	Ala	Thr	Phe 45	Tyr	Phe	Lys	
Ile	Asp 50	Asn	Val	Lys	rys	Ala 55	Arg	Val	Gln	Val	Val 60	Ala	Gly	Lys	Lys	
Tyr 65	Phe	: Ile	Asp	Phe	Val 70	Ala	Arg	Glu	Thr	Thr 75	Cys	Ser	Lys	Glu	Ser 80	
Asn	Glu	Glu	Leu	Thr 85	Glu	Ser	Cys	Glu	Thr 90	Lys	Lys	Leu	Gly	Gln 95	Ser	
Leu	Asp	Cys	Asn 100	Ala	Glu	Val	Tyr	Val 105	Val	Pro	Trp	Glu	Lys 110	Lys	Ile	
Tyr	Pro	Thr	Val	Asn	Cys	Gln	Pro 120	Leu	Gly	Met						

<210> 2

<211> 125

<212> PRT

<213> Homo sapiens

<400> 2

Gly Ser Gly Lys Asp Phe Val Gln Pro Pro Thr Lys Ile Cys Val Gly
1 5 10 15

Cys Pro Arg Asp Ile Pro Thr Asn Ser Pro Glu Leu Glu Glu Thr Leu
20 25 30

Thr His Thr Ile Thr Lys Leu Asn Ala Glu Asn Asn Ala Thr Phe Tyr 35 40 45

Phe Lys Ile Asp Asn Val Lys Lys Ala Arg Val Gln Val Val Ala Gly 50 55 60

Lys Lys Tyr Phe Ile Asp Phe Val Ala Arg Glu Thr Thr Cys Ser Lys 65 70 75 80

Glu Ser Asn Glu Glu Leu Thr Glu Ser Cys Glu Thr Lys Lys Leu Gly 85 90 95

Gln Ser Leu Asp Cys Asn Ala Glu Val Tyr Val Val Pro Trp Glu Lys 100 105 110

Lys Ile Tyr Pro Thr Val Asn Cys Gln Pro Leu Gly Met 115 120 125

<210> 3

<211> 127

<212> PRT

<213> Homo sapiens

<400> 3

Gly Ser Gly Lys Asp Phe Val Gln Pro Pro Thr Lys Ile Cys Val Gly
1 5 10 15

Cys Pro Arg Asp Ile Pro Thr Asn Ser Pro Glu Leu Glu Glu Thr Leu 20 25 30

Thr His Thr Ile Thr Lys Leu Asn Ala Glu Asn Asn Ala Thr Phe Tyr 35 40 45

Phe Lys Ile Asp Asn Val Lys Lys Ala Arg Val Gln Val Val Ala Gly 50 55 Lys Lys Tyr Phe Ile Asp Phe Val Ala Arg Glu Thr Thr Cys Ser Lys 70 Glu Ser Asn Glu Glu Leu Thr Glu Ser Cys Glu Thr Lys Lys Leu Gly Gln Ser Leu Asp Cys Asn Ala Glu Val Tyr Val Val Pro Trp Glu Lys 105 Lys Ile Tyr Pro Thr Val Thr Val Asn His Trp Glu Cys Glu Phe 115 120 <210> 4 <211> 369 <212> DNA <213> Homo sapiens <400> gggaaggatt ttgtacaacc acctaccaag atttgcgtgg gctgccccag agatataccc 60 accaacagee cagagetgga ggagacactg acteacacca teacaaaget taatgeagag 120 aataacgcaa ctttctattt caagattgac aatgtgaaaa aagcaagagt acaggtggtg 180 gctggcaaga aatattttat tgacttcgtg gccagggaaa ccacatgttc caaggaaagt 240 aatgaagagt tgaccgaaag ctgtgagacc aaaaaacttg gccaaagcct agattgcaac 300 gctgaagttt atgtggtacc ctgggagaaa aaaatttacc ctactgtcaa ctgtcaacca 360 ctgggaatg 369 <210> 5 375 <211> <212> DNA <213> Homo sapiens <400> 5 ggatccggga aggattttgt acaaccacct accaagattt gcgtgggctg ccccagagat 60 atacccacca acagcccaga gctggaggag acactgactc acaccatcac aaagcttaat 120 gcagagaata acgcaacttt ctatttcaag attgacaatg tgaaaaaagc aagagtacag 180 gtggtggctg gcaagaaata ttttattgac ttcgtggcca gggaaaccac atgttccaag 240

gaaagtaatg aagagttgac cgaaagctgt gagaccaaaa aacttggcca aagcct	agat 300						
tgcaacgctg aagtttatgt ggtaccctgg gagaaaaaaa tttaccctac tgtcaa	actgt 360						
caaccactgg gaatg							
<210> 6 <211> 381 <212> DNA <213> Homo sapiens							
<pre><400> 6 ggatccggga aggattttgt acaaccacct accaagattt gcgtgggctg ccccag</pre>	gagat 60						
atacccacca acagcccaga gctggaggag acactgactc acaccatcac aaagct	taat 120						
gcagagaata acgcaacttt ctatttcaag attgacaatg tgaaaaaagc aagagt	acag 180						
gtggtggctg gcaagaaata ttttattgac ttcgtggcca gggaaaccac atgttc	ccaag 240						
gaaagtaatg aagagttgac cgaaagctgt gagaccaaaa aacttggcca aagcct	agat 300						
tgcaacgctg aagtttatgt ggtaccctgg gagaaaaaaa tttaccctac tgtcac	etgtc 360						
aaccactggg aatgtgaatt c	381						