Overfit and Inductive Bias: How to generalize on novel data

Non-Linear Tasks

- Linear Regression will not generalize well to the task below
- Needs a non-linear surface Could use one of our future models
- Could also do a feature pre-process like with the quadric machine
 - For example, we could use an arbitrary polynomial in x
 - Thus, it is $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + ... + \beta_n X^n$ solved with delta rule
 - What order polynomial should we use? Overfit issues can occur

Overfitting

Typically try to learn a model just complex enough to do well and no more complex than that

Avoiding Overfit

- Regularization: any modification we make to learning algorithm that is intended to reduce its generalization error but not its training error
- Occam's Razor William of Ockham (c. 1287-1347)
 - Favor simplest explanation which fits the data
- General Key: Focus on patterns/rules that really matter and ignore others
- More Training Data (vs. overtraining on same data)
 - Data set augmentation Fake data, Can be very effective, Jitter, but take care...
 - Denoising add random noise to inputs during training can act as a regularizer
 - Adding noise to models. e.g. (Random Forests, Dropout, discuss with ensembles)
- Early Stopping Very common regularization approach: Start with simple model (small parameters/weights) and stop training as soon as we attain good generalization accuracy (and before parameters get large)
 - Common early stopping approach is to use a validation set (next slide)
- We will discuss other model specific approaches with specific models

Regularization

- Way to avoid overfitting Keep the model simple
 - E.g., keep decision surfaces smooth
- Make complexity an explicit part of the loss function
- Regularization approach: Model (h) selection
 - Minimize $F(h) = Error(h) + \lambda \cdot Complexity(h)$
 - Tradeoff error/accuracy vs complexity
- Two common approaches
 - Lasso (L1 regularization)
 - Ridge (L2 regularization)
 Note: often used with regression; applicable to many techniques

L1 (Lasso) Regularization

• We add a model complexity term to the loss function:

$$L(\overrightarrow{w}) = E(\overrightarrow{w}) + \lambda \sum |w_i|$$

The gradient descent is given by:

$$-\nabla L(\overrightarrow{w}) = -\nabla E(\overrightarrow{w}) - \lambda$$

- This is also called weight decay
- Decay magnitude towards 0
- Common values for lambda are 0, .01, .03, etc.
- Weights that should be significant stay large enough, but weights just being nudged by a few data instances go to 0

L2 (Ridge) Regularization

• We add a model complexity term to the loss function:

$$L(\overrightarrow{w}) = E(\overrightarrow{w}) + \lambda \sum w_i^2$$

• The gradient descent is given by:

$$-\nabla L(\overrightarrow{w}) = -\nabla E(\overrightarrow{w}) - 2\lambda w_i$$

- Regularization portion of weight update is scaled by weight value (fold 2 into λ)
 - Decreases change when weight small (<0), otherwise increases
 - $-\lambda$ is % of weight change, .03 means 3% of the weight is decayed each time

L1 vs. L2 Regularization

- L1 drives many weights all the way to 0 (sparse representation and feature reduction)
- L1 more robust to large weights (outliers), while L2 acts more dramatically with large weights
- L1 leads to simpler models, but L2 often more accurate with more complex problems which require a bit more complexity

Early Stopping/Model Selection with a Validation Set

- There is a different model h after each epoch
- Select a model in the area where the validation set accuracy flattens
- Keep *bssf* (Best Solution So Far). Once you go w epochs with no improvement stop and use the parameters at the *bssf* w epochs ago.
- The validation set comes out of training set data
- Still need a separate test set to use after selecting model h to predict future accuracy
- Simple and unobtrusive, does not change objective function, etc
 - Can be done in parallel on a separate processor
 - Can be used alone or in conjunction with other regularization approaches

BIAS & VARIANCE

Bias & Variance

- Learning involves the ability to generalize from past experience to deal with new situations
- If we are only consistent with what we have seen, we can't generalize beyond our experience
 - All the cats I have seen are yellow.
 - What happens when I see a black cat?
- Bias is choosing one generalization over another
- Variance is how varied my choices are

Bias vs. Variance

- If there is **no bias**, the outcome of the learner is highly dependent on the training data, and thus there is **much variance** among the models induced from different sets of observations
 - Learner memorizes (overfits)
- If there is a **strong bias**, the outcome of the learner is much less dependent on the training data, and thus there is **little variance** among induced models
 - Learner ignores observations
- Formalized as:
 - Bias-variance trade-off

Bias-Variance Trade-off

- Weak/no bias
 - Observed instances are memorized
 - Learner overfits
- Strong/extreme bias
 - Observed instances are mostly ignored
 - Learner underfits
- Example: fitting arbitrary polynomial vs straight line to sine wave-like observations
- Bias-Variance Error Decomposition
 - All learning algorithms have a bias
 - Decision trees (simplicity), k-NN (similarity), etc.
 - All learning algorithms may be subject to variance in the data
 - Two sources of error
- How can we estimate the bias and variance of an algorithm?
 - Run the algorithm on different random variations of several datasets
 - Examine the errors made for each variation
 - If the algorithm tends to make the **same errors**, then it must have a **strong(er) bias** [one may need a more flexible algorithm]
 - If the algorithm tends to make **random errors**, then it must have a **strong(er) variance** [one may need a less flexible algorithm or more data]

Example Code

Bias Variance.ipynb – on Learning Suite

Your Projects

- Your goal in the group project is to get the highest possible generalization accuracy on a real-world application. You will come up with some task which you believe could be generalized with machine learning and as a group you will go through all the steps from beginning to end to get a good result.
- After you have come up with basic features and data, you will choose machine learning model(s), and format the data to fit the model(s).
- You will then try your model on novel data and report on your performance.

Your Project Proposals

- Examples Look at UC Irvine Data Set or Kaggle to get a feel of what data sets look like
- Stick with supervised classification problems for the most part for the project proposals
- Choose tasks which interest you
- Too hard vs Too Easy
 - Data should be able to be gathered in a relatively short time
 - And, want you to have to battle with the data/features a bit
- See description in Learning Suite
 - Remember your example instance!
 - Give one fully specified example of a data set instance based on your proposed features, including a reasonable representation (continuous, nominal, etc.) and value for each feature. Make sure you include the target output value as part of the instance.

Feature Selection, Preparation, and Reduction

- Learning accuracy depends on the data!
 - Is the data representative of future novel cases critical
 - Relevance
 - Amount
 - Quality
 - Noise
 - Missing Data
 - Skew
 - Proper Representation
 - How much of the data is labeled (output target) vs. unlabeled
 - Is the number of features/dimensions reasonable?
 - Reduction

Gathering Data

- Consider the task What kinds of features could help
- Data availability
 - Significant diversity in cost of gathering different features
 - More the better (in terms of number of instances, not necessarily in terms of number of dimensions/features)
 - The more features you have the more data you need
 - Data augmentation, Jitter Increased data can help with overfit handle with care!
- Labeled data is best
- If not labeled
 - Could set up studies/experts to obtain labeled data
 - Use unsupervised and semi-supervised techniques
 - Clustering
 - Active Learning, Bootstrapping, Oracle Learning, etc.

Feature Selection - Examples

Invariant Data

- For character recognition: Size, Rotation, Translation Invariance
 - Especially important for visual tasks
- Character Recognition Class Assignment Example
 - Assume we want to write a character with a pen and have the system output which character it is
 - What features should we use and how would we train/test the system?

When to Gather More Data

- When trying to improve performance, you may need
 - More Data
 - Better Input Features
 - Different Machine learning models or hyperparameters
 - Etc.
- One way to decide if you need more/better data
 - Compare your accuracy on training and test set
 - If bad training set accuracy then you probably need better data, features, noise handling, etc., or you might need a different learning model/hyperparameters
 - If test set accuracy is much worse than training set accuracy then gathering more data is usually a good direction, though overfit or learning model/hyperparameters could still be a major issue