3강. Determinant

- 1. Introduction to Determinants
- 2. Properties of Determinants
- 3. Cramer's rule

1. Introduction to Determinants

1) Determinants

(1) Definition: minor, cofactor

$$A: n \times n$$
 matrix

minor of entry a_{ij} : determinant of submatrix that remains when ith row and jth columns of A are deleted - M_{ij}

cofactor of entry a_{ij} : $C_{ij} = (-\,1)^{i\,+\,j}\,M_{ij}$

ex)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$$

(2) Determinant of A

The determinant of an $n \times n$ matrix A can be computed by multiplying the entries in any row (or column) by their cofactors and adding the resulting products

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \cdots + a_{in}C_{in}$$

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj}$$

ex)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 & 0 & 0 & 5 \\ -1 & 2 & 4 & 1 \\ 3 & 0 & 0 & 3 \\ 8 & 6 & 0 & 0 \end{bmatrix}$

(3) Theorem: determinant of triangular matrix

If A is a triangular matrix, then $\det A$ is the product of the entries on the main diagonal of A

2. Properties of Determinants

1) Effect of elementary row operation

Let A be $n \times n$ matrix

- ① If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$
- ② If two rows of A are interchanged to produce B, then $\det B = -\det A$
- $\ \ \,$ If one row of A is multiplied by k to produce B, then ${\rm det}B=k{\rm det}A$

E is $n \times n$ elementary matrix, then

ex)
$$A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$$

- 2) Theorems of Determinant and Invertible matrix
- (1) A square matrix A is invertible if and only if $\det A \neq 0$

- (2) If A has two identical rows or columns, then ${\rm det}A=0$
- (3) If A has two identical rows or columns, then ${\rm det}A=0$
- $(4) \det(kA) = k^n \det(A)$

(5) $\det(AB) = \det A \det B$

(6) If A is a square matrix, $\det A = \det A^T$

(7) If A is invertible, then $\det A^{-1} = \frac{1}{\det A}$

3) Unifying Theorems

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix
- b. A is row equivalent to the $n \times n$ identity matrix
- c. A has n pivot positions
- d. The equation Ax = 0 has only the trivial solution
- e. The columns of A form a linearly independent set
- f. The columns of A span $\operatorname{R}^{\operatorname{n}}$
- g. There is an $n \times n$ matrix C such that CA = I
- h. There is an $n \times n$ matrix D such that AD = I
- j. The equation $A \boldsymbol{x} = \boldsymbol{b}$ has at least one solution for each \boldsymbol{b} in \mathbb{R}^n
- k. A^{T} is an invertible matrix.
- I. $\det A \neq 0$

- 3. Cramer's Rule
- 1) Cramer's Rule
- (1) Definition

For any $n \times n$ matrix A and any ${\pmb b}$ in ${\bf R}^{\, {\bf n}}$, let $A_i({\pmb b})$ be the matrix obtained from A by replacing column i by the vector ${\pmb b}$

$$A_i(b) = \begin{bmatrix} a_1 & \cdots & a_{i-1} & b & a_{i+1} & \cdots & a_n \end{bmatrix}$$

(2) Cramer's Rule

Let A be an invertible $n \times n$ matrix. For any \boldsymbol{b} in \mathbb{R}^n , the unique solution \boldsymbol{x} of $A\boldsymbol{x} = \boldsymbol{b}$ has entries given by

$$x_i = \frac{\det A_i(\boldsymbol{b})}{\det A} \quad i = 1, 2, \dots, n$$

$$\begin{array}{ll} \text{ex)} & 3x_1 - 2x_2 = 6 \\ & -5x_1 + 4x_2 = 8 \end{array}$$

2) A Formula for A^{-1}

(1) Finding \boldsymbol{A}^{-1}

Let A be an invertible $n \times n$ matrix. Then, the jth column of A^{-1} is a vector ${\boldsymbol x}$ that satisfies

$$A \mathbf{x} = \mathbf{e_j}$$

By using Cramer's rule,

$$m{x_{ij}} = rac{\det A_i(m{b})}{\det A} - (i\,,j\,)$$
 entry of A^{-1}

$$\det A_i(\mathbf{e}_i) = (-1)^{j+i} M_{ii} = C_{ii}$$

using this fact, we can get

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \cdots & \cdots & \cdots & \cdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

adjugate of A

$$adj A = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \cdots & \cdots & \cdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

Theorem: An inverse formula

Let A be $n \times n$ matrix. Then

$$A^{-1} = \frac{1}{\det A} adjA$$

ex)
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & 2 \end{bmatrix}$$