Week 2

More on random walks

LECTURER: SIVA ATHREYA SCRIBE: SANCHAYAN BHOWAL, VENKAT TRIVIKRAM

Theorem 2.0.1. Let $T: \Omega \to 0, 1, \dots, N$ be a stopping time. Then,

$$\mathbf{E}[S_T^2] = E[T].$$

Proof.

$$S_T^2 = \sum_{k=1}^N S_k^2 \mathbb{1}\{T = k\}$$

$$= \sum_{k=1}^N (S_k^2 - S_{k-1}^2) \mathbb{1}\{T \ge k\}$$

$$= \sum_{k=1}^N (X_k + S_{k-1})^2 - S_{k-1}^2 \mathbb{1}\{T \ge k\}$$

$$= \sum_{k=1}^N (1 + 2X_k S_{k-1}) \mathbb{1}\{T \ge k\}.$$

Now, consider $V_k = S_{k-1} \mathbb{1}\{T \ge k\}$. Note that this is a bet sequence. Hence,

$$\mathbf{E}[S_T^2] = \mathbf{E}\left[\sum_{k=1}^N \mathbb{1}\{T \ge k\}\right] + 2\sum_{k=1}^N \mathbf{E}[X_k V_k]$$
$$= \sum_{k=1}^N \mathbf{P}(T \ge k) + 0$$
$$= E[T].$$

2.1 Reflection Principle

Assume that $a \in \mathbb{Z}$ and c > 0. There is a bijection between the paths that cross a + c and those that do not. This bijection is obtained by reflecting the part of the path crossing a + c as shown in the Figure 2.1. So,

$$|S_n = a + c| = |\sigma_a \le n \& S_n = a + c| = |\sigma_a \le n \& S_n = a - c|$$

Now, we know that all the paths have equal probability. Hence, we get the following lemma.

Lemma 2.1.1. $\mathbf{P}(S_n = a + c) = \mathbf{P}(\sigma_a \le n \& S_n = a - c)$ where $a \in \mathbb{Z}$ and c > 0. This is also known as the reflection principle.

Figure 2.1: The figure shows that the bijection between the paths that cross a+c=3 and those that do not.

Theorem 2.1.1.
$$\mathbf{P}(\sigma_a \leq n) = \mathbf{P}(S_n \notin [-a, a))$$
 where $a \in \mathbb{Z}$ $\{0\}$.

Proof.

$$\mathbf{P}(\sigma_a \le n) = \mathbf{P}(\sigma_a \le n, \bigcup_{b \in \mathbb{Z}} S_n = b)$$

$$= \sum_{b \in \mathbb{Z}} \mathbf{P}(\sigma_a \le n, S_n = b)$$

$$= \sum_{b \in \mathbb{Z}, b \ge a} \mathbf{P}(\sigma_a \le n, S_n = b) + \sum_{b \in \mathbb{Z}, b < a} \mathbf{P}(\sigma_a \le n, S_n = b)$$

$$= \sum_{b \in \mathbb{Z}, b \ge a} \mathbf{P}(S_n = b) + \sum_{b \in \mathbb{Z}, b < a} \mathbf{P}(S_n = 2a - b)$$

$$= \mathbf{P}(S_n \ge a) + \mathbf{P}(S_n > a)$$

$$= \mathbf{P}(S_n \ge a) + \mathbf{P}(S_n < -a)$$

$$= \mathbf{P}(S_n \notin [-a, a))$$

Corollary 2.1.1. $P(\sigma_a = n) = \frac{1}{2} [P(S_{n-1} = a - 1) - P(S_{n-1} = a + 1)]$ where $a \in \mathbb{Z}$.

Proof.

2.2 Arc-Sine Law

Let L denote the last time the random walk hits 0, i.e., $L = \max_{0 \le n \le 2N} S_n = 0$, where N denotes the length of the walk.

Theorem 2.2.1.

$$\mathbf{P}(L=2n) = \frac{1}{2^{2N}} \binom{2n}{n} \binom{2N-2n}{N-n}.$$

Remark. By Stirling's approximation,

$$\mathbf{P}(L=2n) \sim \frac{1}{\pi N} \frac{1}{\sqrt{\left(\frac{n}{N}\right)\left(1-\frac{n}{N}\right)}}.$$

$$\mathbf{P}\left(\frac{L}{2N} \le x\right) = \mathbf{P}(L \le 2Nx)$$

$$= \sum_{n=0}^{[2Nx]} \mathbf{P}(L=2n)$$

$$\sim \sum_{n=0}^{[2Nx]} \frac{1}{\pi N} \frac{1}{\sqrt{(x)(1-x)}}$$

$$\sim \int_{0}^{x} \frac{dy}{pi\sqrt{y(1-y)}}$$

$$= \frac{2}{\pi} \sin^{-1}(\sqrt{x}).$$

Proof of Theorem 2.2.1. Define $\tilde{\sigma_0}$ inf $\{n: S_n = 0, 0 < n \le N\}$. Consider a path of length 2N with L = 2n. This path can be formed by a path which takes $S_2n = 0$ and followed by a path of length 2N - 2n with $\sigma_0 > 2N - 2n$. Hence, number of paths of length 2N with L = 2n is the product of the number of paths of length 2n with $S_{2n} = 0$ and the number of paths of length 2N - 2n with $\sigma_0 > 2N - 2n$. Hence,

$$\mathbf{P}(L=2n) = \mathbf{P}(S_{2n}=0)\mathbf{P}(\tilde{\sigma_0} > 2N - 2n), \tag{2.1}$$

Now let us compute the distribution of $\tilde{\sigma}_0$.

$$\begin{aligned} \mathbf{P}(\tilde{\sigma_0} > 2k) &= \mathbf{P}(S_1 \neq 0, \dots, S_{2k} \neq 0) \\ &= 2\mathbf{P}(S_1 > 0, \dots, S_{2k} > 0) \\ &= \frac{2}{2^{2k}} \{ \text{No. of paths start at 0 and stay above -1 for } 2k - 1 \text{ steps} \} \\ &= \frac{2}{2^{2k}} \{ \text{No. of paths start at 0 and stay below 1 for } 2k - 1 \text{ steps} \} \\ &= \mathbf{P}(\sigma_1 > 2k - 1) \\ &= 1 - \mathbf{P}(\sigma_1 \geq 2k - 1) \\ &= \mathbf{P}(S_{2k-1} = -1) + \mathbf{P}(S_{2k-1} = 0) \\ &= \mathbf{P}(S_{2k-1} = -1) \end{aligned}$$

Using (2.1) and (2.2),

$$\begin{aligned} \mathbf{P}(L=2n) &= \mathbf{P}(S_{2n}=0)\mathbf{P}(S_{2N-2n-1}=-1) \\ &= \mathbf{P}(S_{2n}=0)\mathbf{P}(S_{2N-2n}=0) \\ &= \frac{1}{2^{2N}} \binom{2n}{n} \binom{2N-2n}{N-n}. \end{aligned}$$

The first step analysis of S_{2n} shows that, $\mathbf{P}(S_{2N-2n}=0)=\frac{1}{2}\mathbf{P}(S_{2N-2n-1}=1)+\frac{1}{2}\mathbf{P}(S_{2N-2n-1}=-1)$. Using the symmetry of the walk we know that $\mathbf{P}(S_{2N-2n-1}=1)=\mathbf{P}(S_{2N-2n-1}=-1)$. This gives the second inequality.

2.3 SRW of length N in \mathbb{Z}^d

2.3.1 Notations and notions in higher dimension

• $e_i \in \mathbb{Z}^d$, $\forall i \in \{1, 2, \dots, d\}$, defined as the vector of length d with all entries zeroes except i^{th} being 1.

$$e_i = (0, 0, \cdots, \underbrace{1}_{i^{th}}, 0, \cdots, 0)$$

• For $x \in \mathbb{Z}^d$,

$$x = \sum_{i=1}^{d} x_i e_i, \ x_i \in \mathbb{Z}$$
 $||x|| = \left(\sum_{i=1}^{d} x_i^2\right)^{\frac{1}{2}}$

• $\Omega_N = \{(\omega_1, \omega_2, \cdots, \omega_N) \mid \omega_i \in \mathbb{Z}^d, ||\omega_i|| = 1 \,\forall \, 1 \leq i \leq N\}$

• We have, for $1 \le k, n \le N$

$$X_k: \Omega_N \to \mathbb{Z}^d, \ X_k(\omega) = \omega_k$$
 $S_n: \Omega_N \to \mathbb{Z}^d, \ S_n(\omega) = \sum_{k=1}^n X_k(\omega)$

with $S_0(\omega) = 0$. We can consider S_n as a d-dimensional vector given by $S_n = \left(S_n^{(1)}, S_n^{(2)}, \cdots S_n^{(d)}\right)$, where each $S_n^{(i)}$ is a random walk on \mathbb{Z} .

• The probability function \mathbf{P}^N , given by,

$$\mathbf{P}^N: \mathcal{P}(\Omega_N) \to [0,1], \quad \mathbf{P}(A) = \frac{|A|}{(2d)^N} \, \forall \, A \subseteq \Omega_N$$

2.3.2 Infinite length random walk

On extending $N \to \infty$, we preserve something called as "consistency". First, let us define, for 0 < N < M,

$$\pi_N: \Omega_M \to \Omega_N, \ \pi_N(\omega_1, \omega_2, \cdots, \omega_M) = (\omega_1, \omega_2, \cdots, \omega_N)$$

Under $(\Omega_N, \mathcal{P}(\Omega_N), \mathbf{P}^N)$ and $(\Omega_M, \mathcal{P}(\Omega_M), \mathbf{P}^M)$, if we observe the walk till time n < N the probability of evenets concerning the walk should be same under \mathbf{P}^N or \mathbf{P}^M . For any event $\{\tilde{\omega} \in \Omega_N\}$, there exists a corresponding same event namely $\{\omega \in \Omega_M : \pi_N(\omega) = \tilde{\omega}\}$. We have,

$$\mathbf{P}^{N}(\{\tilde{\omega}\}) = \frac{1}{(2d)^{N}} \qquad \qquad \mathbf{P}^{M}(\{\omega \in \Omega_{M} : \pi_{N}(\omega) = \tilde{\omega}\}) = \frac{(2d)^{M-N}}{(2d)^{M}} = \frac{1}{(2d)^{N}}$$

So, we say the sequence of probability spaces $(\Omega_1, \mathbf{P}^1), (\Omega_2, \mathbf{P}^2), \cdots, (\Omega_N, \mathbf{P}^N)$ satisfies the consistency condition

$$\mathbf{P}^{N}(\{\tilde{\omega}\}) = \frac{1}{(2d)^{N}} = \frac{(2d)^{M-N}}{(2d)^{M}} = \mathbf{P}^{M}(\{\omega \in \Omega_{M} : \pi_{N}(\omega) = \tilde{\omega}\}), \ 0 < N < M, \ \tilde{\omega} \in \Omega_{N}$$

We define the space of infinite sequences,

$$\Omega_{\infty} = \{ \omega = (\omega_k) k \ge 1 \mid \omega_k \in \mathbb{Z}^d, \, \|\omega_k\| = 1 \}$$

 $\mathcal{A}_{\infty}\,(\equiv\mathcal{P}(\Omega_{\infty}))$ denotes the class of events observable "for ever"

For $N \in \mathbb{N}$,

$$\pi_N: \Omega_\infty \to \Omega_N, \ \pi_N(\omega) = (\omega_1, \omega_2, \cdots, \omega_N)$$

Theorem 2.3.1 (Kolmogorov Consistency Theorem). There exists a unique probability measure on $(\Omega_{\infty}, \mathcal{A}_{\infty})$ such that $\forall N \geq 1, \forall \tilde{\omega} \in \Omega_N$,

$$\mathbf{P}^{N}(\{\tilde{\omega}\}) = \mathbf{P}^{M}(\{\omega \in \Omega_{M} : \pi_{N}(\omega) = \tilde{\omega}\}) = \frac{1}{(2d)^{N}}$$

Now, we can define,

$$X_k: \Omega_\infty \to \mathbb{Z}^d, \ X_k(\omega) = \omega_k$$
 $S_n = \sum_{k=1}^n X_k \ \forall \ n \ge 1$

under \mathbf{P} , $\{S_n\}_{n\geq 1}$ is a simple random walk starting at $S_0=0$.

Definition 2.3.1. $A \subseteq \Omega_{\infty}$ is said to be **observable** by time n if A is a union of the events of the form

$$\{\omega \in \Omega_{\infty} : \omega_i = o_i, 1 \le i \le N\}$$
 with $o_i \in \mathbb{Z}^d$, $||o_i|| = 1$

For, $k \in \mathbb{N}_0$, \mathcal{A}_k denotes the set of all events in Ω_{∞} observable by time k.

Definition 2.3.2. $T: \Omega_{\infty} \to \mathbb{N} \cup \{\infty\} \cup \{0\}$ is a **stopping time** if

for any
$$k \in \mathbb{N}_0$$
, $\{T = k\} \in \mathcal{A}_k$

For example, $\sigma_a = \min\{n \geq 0 \mid S_n = a\}$ is a stopping time.

2.3.3 Speed of the walk

Definition 2.3.3. For, $S_n = \sum_{k=1}^n X_k$, we define speed of the walk as

Speed =
$$\frac{S_n}{n} = \frac{1}{n} \sum_{k=1}^n X_k$$

We have, $X_k = \left(X_k^{(1)}, X_k^{(2)}, \cdots, X_k^{(d)}\right), \{X_k\}_{k\geq 1}$ which is an i.i.d sequence of random variables with

$$\mathbf{P}(X_k = e_i) = \frac{1}{2d} = \mathbf{P}(X_k = -e_i)$$

 \Rightarrow $\mathbf{E}[X_k] = 0$ and $\mathbf{E}[||X_k||] = 1 (\leq \infty)$

Theorem 2.3.2 (Strong law of large numbers). For simple random walk on \mathbb{Z}^d ,

$$\frac{S_n}{n} \to 0$$
 with probability 1 under $(\Omega_\infty, \mathcal{A}_\infty, \mathbf{P})$

2.3.4 Typical position of the walk

For d = 1,

$$\frac{S_n - (n)(0)}{\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1)$$

$$\Rightarrow \sqrt{n} \left(\frac{S_n}{n}\right) \xrightarrow{d} \mathcal{N}(0, 1)$$

For d > 1, $\mu \in \mathbb{R}^d$ and a positive definite matrix $\Sigma \in \mathbb{R}^{d \times d}$, we have d-dimensional normal distribution as,

$$\Phi_{d,\mu,\Sigma}(y) = \frac{1}{(2\pi)^{d/2}} \frac{1}{\det(\Sigma)^{1/2}} \exp\left(-\frac{1}{2} (x-\mu)^t \Sigma^{-1} (x-\mu)\right)$$

$$\mathbf{P}\left(\frac{S_n}{\sqrt{n}} \in \prod_{i=1}^d [a_i, b_i]\right) \xrightarrow[n \to \infty]{d} \int_{\prod_{i=1}^d [a_i, b_i]} \Phi_{d,0,\Sigma^d}(y) \, dy$$

where, $\mu = 0$, $\Sigma^d = \operatorname{diag}\left(\frac{1}{d}, \cdots, \frac{1}{d}\right)$

2.3.5 Large deviation principle

From the CLT, we have that

$$\mathbf{P}(\|S_n\| > a\sqrt{n}) \xrightarrow[n \to \infty]{} \int_{\|x\| > a} \Phi_{d,0,\Sigma^d}(y) \, dy$$

We consider the events of the form $\{||S_n|| > an\}$, $a \in [0, \infty)$, which are "rare" in the sense that their probability tends to 0 as $n \to \infty$. On formal application of CLT shows that probability of these rare events are exponentially small.

Theorem 2.3.3 (Cramer's theorem). For, a > 0,

$$\lim_{n \to \infty} \frac{\log(\mathbf{P}(\|S_n\| > an))}{n} = -I(a)$$

where,

$$I(a) = \begin{cases} \log 2 + \frac{1+a}{2} \log \frac{1+a}{2} + \frac{1-a}{2} \log \frac{1-a}{2}, & \text{for } a \in [-1,1] \\ \infty, & \text{otherwise} \end{cases}$$

It can be vaguely interpreted as, $\mathbf{P}(\|S_n\| > na) \sim e^{-nI(a)}$

2.4 Exercises

- 1. Complete the proof of Reflection Principle (Lemma 2.1.1).
- 2. Find the distribution of $M_k = \max_{1 \le k \le n} S_k$.
- 3. Show that $\mathbf{E}[||X_k||] = 1$.