Sets

NzSN

February 26

0.1 Solutions

1 Let X,Y and Z bet sets. Prove the transitivity of inclusion, that is,

$$(\mathbb{X} \subset \mathbb{Y}) \wedge (\mathbb{Y} \subset \mathbb{Z}) \Rightarrow \mathbb{X} \subset \mathbb{Z}$$

Proof. Suppose exists an arbitary element $x \in \mathbb{X}$ then $x \in \mathbb{Y}$ by the definition of \subseteq , Hence, $x \in \mathbb{Z}$ cause $\mathbb{Y} \subseteq \mathbb{Z}$.

2 Verify the claims of Proposition 2.4

Proof. Suppose that \mathbb{X} , \mathbb{Y} , \mathbb{Z} are subset of \mathbb{U} .

- (i) $\mathbb{X} \cup \mathbb{Y} := \{x \in \mathbb{U} : (x \in \mathbb{X}) \lor (x \in \mathbb{Y})\}$ and $\mathbb{Y} \cup \mathbb{Y} := \{x \in \mathbb{U} : (x \in \mathbb{Y}) \lor (x \in \mathbb{X})\}$. Clearly, those two expression are equal by their definition. It's similar to $\mathbb{X} \cap \mathbb{Y}$.
- (ii) \cap and \cup are associativity due to associativity of \wedge and \vee
- (iii) First to prove

$$\mathbb{X} \cup (\mathbb{Y} \cap \mathbb{Z}) \Rightarrow (\mathbb{X} \cup \mathbb{Y}) \cap (\mathbb{X} \cup \mathbb{Z})$$

By definition,

$$\mathbb{X} \cup (\mathbb{Y} \cap \mathbb{Z}) \Rightarrow \forall x \in \mathbb{U} : (x \in \mathbb{X}) \vee (x \in \mathbb{Y} \wedge x \in \mathbb{Z}) \Rightarrow \forall x \in \mathbb{U} : (x \in \mathbb{X} \vee x \in \mathbb{Y}) \wedge (x \in \mathbb{X} \vee x \in \mathbb{Z})$$

prove of another direction is similarly.

(iv) Suppose that $\mathbb{X} \neq \mathbb{Y}$ because the case $\mathbb{X} = \mathbb{Y}$ is trivial. Under this assumption have $\mathbb{X} \subset \mathbb{Y}$. So the proposition can be rewrited as

$$X \subset Y \iff X \cup Y = Y \iff X \cap Y = X$$

which is clearly definite true.

3 Provide a complete proof of Proposition 2.7.

(i)
$$(\bigcap_{\alpha} \mathbf{A}_{\alpha}) \cap (\bigcap_{\beta} \mathbf{B}_{\beta}) = \bigcap_{(\alpha,\beta)} \mathbf{A}_{\alpha} \cap \mathbf{B}_{\beta}.$$

 $(\bigcup_{\alpha} \mathbf{A}_{\alpha}) \cup (\bigcup_{\beta} \mathbf{B}_{\beta}) = \bigcup_{(\alpha,\beta)} \mathbf{A}_{\alpha} \cup \mathbf{B}_{\beta} \text{ (associativity)}$

Proof. by definition we have

$$\begin{split} (\bigcap_{\alpha} \mathbf{A}_{\alpha}) \cap (\bigcap_{\beta} \mathbf{B}_{\beta}) &= \{x \in \mathbb{X} : \forall \alpha \in \mathsf{A} : \mathsf{x} \in \mathbf{A}_{\alpha}\} \cap \{\mathbf{x} \in \mathbb{X} : \forall \beta \in \mathsf{B} : \mathsf{x} \in \mathbf{B}_{\beta}\} \\ &= \{x \in \mathbb{X} : \forall \alpha \in \mathsf{A}, \forall \beta \in \mathsf{B} : \mathsf{x} \in \mathbf{A}_{\alpha} \land \mathbf{x} \in \mathbf{B}_{\beta}\} \\ &= \bigcap_{(\alpha,\beta)} \mathbf{A}_{\alpha} \cap \mathbf{B}_{\beta} \end{split}$$

Prove of [] is similarly.

(ii)
$$(\bigcap_{\alpha} \mathbf{A}_{\alpha}) \cup (\bigcap_{\beta} \mathbf{B}_{\beta}) = \bigcap_{(\alpha,\beta)} \mathbf{A}_{\alpha} \cup \mathbf{B}_{\beta}$$

 $(\bigcup_{\alpha} \mathbf{A}_{\alpha}) \cap (\bigcup_{\beta} \mathbf{B}_{\beta}) = \bigcup_{(\alpha,\beta)} \mathbf{A}_{\alpha} \cap \mathbf{B}_{\beta}$ (distributivity)

Proof. By Proposition 2.4(iii) and the definition of \bigcap and \bigcup we have

$$(\mathsf{A}_{\alpha_0}\cap\mathsf{A}_{\alpha_1}...)\cup(\mathsf{B}_{\beta_0}\cap\mathsf{B}_{\beta_1}...)=((\mathsf{A}_{\alpha_0}\cap\mathsf{A}_{\alpha_1}...)\cup\mathsf{B}_{\beta_0}\cap(\mathsf{A}_{\alpha_0}\cap\mathsf{A}_{\alpha_1}...)\cup\mathsf{B}_{\beta_1}\cap...)$$

Then $\bigcap_{(\alpha,\beta)} A_{\alpha} \cup B_{\beta}$ is got by apply Proposition 2.4(iii) again to right side of this equation. This method can be apply to the second equation of this proposition.

$$\begin{array}{ll} \text{(iii)} & (\bigcap_{\alpha} A_{\alpha})^{c} = \bigcup_{\alpha} A_{\alpha}^{c} \\ & (\bigcup_{\alpha} A_{\alpha})^{c} = \bigcap_{\alpha} A_{\alpha}^{c} \text{ (de Morgan's laws)} \end{array}$$

Proof. Write your proof here.

4 Let X and Y be nonempty sets. Show that

$$\mathbf{X} \times \mathbf{Y} = \mathbf{Y} \times \mathbf{X} \iff \mathbf{X} = \mathbf{Y}$$

Proof.