### Lesson 10

# Digital Logic

Junying Chen





### Synchronous Sequential Logic Design

- Breaks cyclic paths by inserting registers
- Registers contain **state** of the system
- State changes at clock edge: system **synchronized** to the clock
- Rules of synchronous sequential circuit composition:
  - Every circuit element is either a register or a combinational circuit
  - At least one circuit element is a register
  - All registers receive the same clock signal
  - Every cyclic path contains at least one register
- Two common synchronous sequential circuits
  - Finite State Machines (FSMs)
  - Pipelines



# Finite State Machine (FSM)

- Consists of:
  - -State register
    - Stores current state
    - Loads next state at clock edge
  - Combinational logic
    - Computes the next state
    - Computes the outputs





# Finite State Machines (FSMs)

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
  - Moore FSM: outputs depend only on current state
  - Mealy FSM: outputs depend on current state and inputs

#### Moore FSM



#### Mealy FSM





# FSM Example

- Traffic light controller
  - Traffic sensors:  $T_A$ ,  $T_B$  (TRUE when there's traffic)





### **FSM Black Box**

• Inputs: CLK, Reset,  $T_A$ ,  $T_B$ 

• Outputs:  $L_A$ ,  $L_B$ 







### **FSM State Transition Diagram**

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs





### FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

