

$\begin{array}{c} {\bf Type 977~fitting~for~heat~pump}\\ {\bf SINK-11TES} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2018/11/07 at: 12:00:14 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	6.1536e + 01
P_{Q_2}	2^{st} condenser polynomial coefficient	3.1212e+01
P_{Q_3}	3^{st} condenser polynomial coefficient	-6.9283e+02
P_{Q_4}	4^{st} condenser polynomial coefficient	3.5782e+02
P_{Q_5}	5^{st} condenser polynomial coefficient	2.1628e + 02
P_{Q_6}	6 st condenser polynomial coefficient	2.2393e+03
P_{COP_1}	1 st COP polynomial coefficient	4.1121e+01
P_{COP_2}	2 st COP polynomial coefficient	3.6760e + 01
P_{COP_3}	3 st COP polynomial coefficient	-4.8336e+02
P_{COP_4}	4 st COP polynomial coefficient	-4.3409e+01
P_{COP_5}	5 st COP polynomial coefficient	1.0785e + 02
P_{COP_6}	6 st COP polynomial coefficient	1.4993e + 03
\dot{m}_{cond}	$1300.00 \ [kg/h]$	
\dot{m}_{evap}	$1300.00 \ [kg/h]$	
$COP_{nom} \text{ (A0W35)}$	4.56	
$Q_{cond,nom}$ (A0W35)	10.15 [kW]	
$Q_{evap,nom}$ (A0W35)	7.92 [kW]	
$W_{comp,nom}$ (A0W35)	2.23 [kW]	
RMS_{COP}	2.57e - 02	
$RMS_{Q_{cond}}$	3.18e - 02	
$RMS_{W_{comp}}$	1.71e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	^{o}C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	4.31	4.31	0.2	9.29	9.30	0.1	2.15	2.16	0.27
35.00	0.00	4.97	5.00	0.6	10.63	10.60	0.2	2.14	2.12	0.81
35.00	5.00	5.74	5.71	0.5	12.11	12.10	0.1	2.11	2.12	0.39
55.00	0.00	3.12	3.10	0.6	9.80	9.80	0.0	3.14	3.16	0.64
55.00	5.00	3.45	3.50	1.4	11.17	11.20	0.2	3.24	3.20	1.16
35.00	10.00	6.61	6.60	0.1	13.75	13.80	0.4	2.08	2.09	0.45
35.00	15.00	7.50	7.51	0.1	15.43	15.40	0.2	2.06	2.05	0.31
55.00	10.00	3.86	3.82	1.0	12.66	12.60	0.4	3.28	3.30	0.53
55.00	15.00	4.29	4.30	0.2	14.17	14.20	0.2	3.30	3.30	0.01
Sum				4.6			1.9			4.57
RMS_{COP}	2.57e - 02									
$RMS_{Q_{cond}}$	3.18e - 02									
$RMS_{W_{comp}}$	1.71e - 02									

Figure 1: Q_{cond} differences between experiments and fitted data

Figure 2: W_{comp} differences between experiments and fitted data

Figure 3: COP differences between experiments and fitted data