GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Quiz #1

Date: September 29	, 2017	Course:	ECE	6250

Name:		
	Last,	First

- Closed book, closed notes, one $8\frac{1}{2}'' \times 11''$ handwritten sheet (front and back) is allowed. There is a fifty (50) minute time limit.
- No calculators. None of the problems require involved calculations.
- There are three problems; subparts are weighted equally. The quiz is graded out of a total of 75 points.
- All work should be performed on the quiz itself. If more space is needed, use the backs of the pages.
- This quiz will be conducted under the rules and guidelines of the Georgia Tech Honor Code and no cheating will be tolerated.
- Write your final answers in the boxes provided.

Problem 1 (15 points): Say that the signal $x_c(t)$ is bandlimited in that its Fourier transform

$$X_c(j\Omega) = \int_{-\infty}^{\infty} x_c(t)e^{-j\Omega t} dt$$

is zero outside of the interval [-B, B]. Suppose that we have taken samples of this signal with spacing T:

$$x_d[n] = x_c(nT).$$

From these samples, we would like to reconstruct $x_c(t)$. Consider the interpolator, or non-ideal $D \to C$ converter, pictured below:

where p(t) is some fixed, known function. This system converts a discrete sequence of numbers into a continuous-time signal.

Recall that this type of system can be modeled as converting x[n] to a spike train, then passing the result through an analog filter whose frequency response is the continuous-time Fourier transform of p(t):

Suppose that $T = \frac{\pi}{2B}$. In order to ensure that the resulting y(t) will be equal to $x_c(t)$ when given $x_d[n]$ as an input, $P(j\Omega)$ must satisfy certain conditions.

(a)	(a) What conditions, if any, must $P(j\Omega)$ satisfy for $ \Omega \leq \frac{\pi}{2T}$?				

Problem 2 (30 points): Given a 2×2 matrix W, we define

$$\langle x, y \rangle_W = x^T W y$$
 for all $x, y \in \mathbb{R}^2$.

(a) Let
$$W = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
. Set

$$T = \operatorname{span}\left(\begin{bmatrix}1\\2\end{bmatrix}\right), \quad \text{and} \quad x = \begin{bmatrix}0\\1\end{bmatrix}.$$

Find the closest point \hat{x} in T to x where the distance is measured by the norm induced by the inner product $\langle \cdot, \cdot \rangle_W$.

$$\widehat{x} =$$

(b) For each W below, determine whether or not $\langle \cdot, \cdot \rangle_W$ is a valid inner product. For those which are *not* a valid inner product, find specific x and y for which one of the required properties is not satisfied.

(i)
$$W = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

(ii)
$$W = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

(iii)
$$W = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Problem 3 (30 points):

(a) Consider the following two functions defined on the interval [-1,1]:

$$v_1(t) = t, \quad v_2(t) = t^2.$$

Use the Gram-Schmidt algorithm to find an orthonormal basis $\{u_1(t), u_2(t)\}$ for the same space spanned by $\{v_1(t), v_2(t)\}$.¹

$$u_1(t) =$$
 $u_2(t) =$

Use the standard inner product given by $\langle x(t), y(t) \rangle = \int_{-1}^{1} x(t)y(t) dt$.

(b) Let $x(t) = e^{-t}$. Find the minimizer of

$$\min_{y(t) \in T} \int_{-1}^{1} |x(t) - y(t)|^2 dt$$

where $T = \text{span}\{v_1(t), v_2(t)\}^2$

$$y(t) =$$

$$\int te^{-t} dt = -e^{-t}(t+1) \quad \text{and} \quad \int t^2 e^{-t} dt = -e^{-t}(t^2 + 2t + 2)$$

²You may use the facts that

Additional workspace:

Additional workspace:

Additional workspace:

Problem	Score
1 (30)	
2 (40)	
3 (30)	
Total	