SMITH

Serial No. 09/441,709 Filed: November 16, 1999

REMARKS

Applicant would like to thank the Examiner for the thorough examination of the present application. Formal drawings were filed October 10, 2003. A substitute specification is enclosed herewith in which the line spacing are now double spaced. A noted grammatical error has also been corrected in the specification.

The Examiner has taken the position that the specification does not provide support for the first and second filtering algorithms as recited in Claim 50, and as a result, the Examiner has also taken the position that Claim 50 is indefinite. Support in the specification may be found on page 15, lines 3-18. Consequently, the Applicant submits that Claim 50 is definite.

As noted by the Examiner, Claims 42 and 43 are dependent from Claim 36. As helpfully noted by the Examiner, Claim 36 has been amended to more clearly define the steps of storing and filtering. Claim 42 recites that the output of the first filtering algorithm provides the defective pixel values, and Claim 43 has been amended to more clearly define how a defective pixel value is determined. The Applicant submits that Claims 42 and 43 are definite in view of amended Claim 36.

Claims 51-64 have been cancelled, and new Claims 65-84 have been added. New independent Claim 65 is based upon Claims 33 and 36. New independent Claim 82 is based upon cancelled Claims 55, 56, 58 and 59. The arguments supporting patentability of the claims are presented in detail below.

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

I. Independent Claim 33 Is Patentable

The Examiner rejected independent Claim 33 over the Maruo patent. The present invention, as recited in independent Claim 11, is directed to a method for processing a video data stream in an electronic imaging system. The video data stream comprises a series of pixel values corresponding to pixel sites in the electronic imaging system. The method comprises the step of filtering the video data stream in real time for correcting/modifying defective pixel values. The present invention advantageously allows defective pixel values to be corrected/modified after manufacture of an electronic imaging device that processes a video data stream.

Referring now to Maruo, a method of image processing is disclosed. In particular, column 1, lines 5-11 of Mauro discloses that the image processing may be used in an image quality inspection unit such as an LCD tester or a CCD tester in which an image is used to inspect an object being examined. Mauro further discloses that the image processing may be used in an image recognition apparatus in which an object being examined is recognized through an image thereof.

The Examiner has taken the position that Mauro is not limited to still images, and that the image processing may also be applied to a digital video stream as well. The Applicant respectfully disagrees because Mauro fails to teach or suggest that the image processing may be applied to a digital video stream.

Instead, Mauro discloses that input digital image data is subject to a Wavelet transform on a screen on which the image is formed, and an image quantity for a combined area of X-axis high pass information and Y-axis high pass

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

information contained in the image data which results from the Wavelet transform is calculated. An object being examined is determined to be acceptable or faulty depending on whether the image energy quantity is below or above a given value.

As illustrated in the flow diagrams of FIGS. 1 and 6, the digital image is first stored in memory before being process. Mauro does not even mention "in real time" anywhere through the patent. In fact, Mauro teaches away form correcting/modifying defective pixel values in a video data stream or even in a digital still image. Reference is directed to column 3, lines 43-50 of Mauro, which provides:

"In accordance with the invention, a digital image data which is input is subject to a Wavelet transform on a screen on which the image is formed, an image energy quantity is determined for a combined area of X-axis and Y-axis high pass information contained in the Wavelet transformed image data, and an inspection, recognition and/or decision is performed or rendered for an object being examined on the basis of the image energy quality." (Emphasis added.)

In other words, the image processing in accordance with the Mauro patent is directed to examining objects for inspection or recognition purposes. The Examiner has taken the position that column 2, lines 41-65 of Mauro discloses that a pixel value is corrected/modified.

However, reference is directed to lines 52-55 which provides that "it will be seen that active pixels in the binary image D which have the pixel value 1 may represent a noise, a point defect or a component of a lineal or area

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

defect." Reference is also directed to lines 61-63 which provides "Accordingly, an image processing operation is applied so as to remove an isolated point, namely, a pixel in question which has the pixel value of 1."

The isolated point is not corrected. Instead, it is used along with other isolated points to determine if the object being examined has an area defect. Determining if an object has a defect area is completely different than filtering a video data stream in real time for correcting/modifying defective pixel values, as recited in independent Claim 33. Accordingly, it is submitted that independent Claim 33 is patentable over Mauro.

II. New Independent Claim 65 Is Patentable

New independent Claim 65 is based upon Claims 33 and 36, which the Examiner rejected as being unpatentable over Maruo in view of Ninomiya. Independent Claim 65 is directed to method for processing a video data stream in an electronic imaging system comprising a memory, and the video data stream comprises a series of pixel values corresponding to pixel sites in the electronic imaging system.

The method comprises filtering the video data steam in real time for correcting/modifying defective pixel values. In particular, the filtering comprises filtering pixel values not stored in the memory using a first filtering algorithm, identifying defective pixel values, storing locations of the defective pixel values in the memory, and filtering the defective pixel values stored in the memory using a second filtering algorithm. As noted above, the present invention advantageously allows defective pixel values to be

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

corrected/modified after manufacture of an electronic imaging device that processes a video data stream.

Referring now to Maruo, the deficiencies as noted above also apply here. Essentially, Maruo fails to teach or suggest that the disclosed image processing may be applied to a digital video stream as in the claimed invention. In addition, Maruo fails to teach or suggest that defective pixel values are corrected/modified as in the claimed invention. Instead, the image processing in Mauro is directed to examining objects for inspection or recognition purposes. Mauro thus fails to even disclose a need for correcting/modifying defective pixel values.

The Examiner cited the Ninomiya patent as disclosing a memory for storing defective pixel values. However, Ninomiya fails to provided the noted deficiencies with respect to Maruo. Accordingly, it is submitted that independent Claim 65 is patentable over Mauro in view of Ninomiya.

III. New Independent Claim 82 Is Patentable

New independent Claim 82 is based upon Claims 55, 56, 58 and 59, which the Examiner rejected as being unpatentable over Lougheed in view of Maruo and in further view of Kaplan. Independent Claim 82 is directed to an apparatus for processing a video data stream comprising an electronic imaging device, and a first filter circuit connected to the electronic imaging device for filtering the video data stream in real time for correcting/modifying defective pixel values. The video data stream comprises a series of pixel values corresponding to pixel sites in the electronic imaging device.

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

A sampling circuit is connected to the first filter circuit for sampling the video data stream to obtain a data set comprising a current pixel value and a plurality of adjacent pixel values. A ranking circuit is connected to the sampling circuit for sorting the plurality of adjacent pixel values into a rank order based upon predetermined criteria. A comparator is connected to the ranking circuit for comparing a current pixel value with the plurality of adjacent pixel values of selected ranks, and for generating a first filter output based upon the comparison. A median circuit is connected to the ranking circuit for determining a median value of the plurality of adjacent pixel values and for generating a second filter output equal to the median value.

Referring now to Lougheed, an apparatus for filtering digital image matrices is provided. In particular, a neighborhood transformation stage performs filtering operations on an image matrix. A group of pixel values in the image matrix are accessed. A series of comparators are used to compare the values of neighboring pixels with the value of a given pixel in the group. The outputs of the comparators are combined to form a vector to address a programmable lookup table. The addressed output of the look-up table is used as a control signal for a selector which either maintains the value of the given pixel or transforms it into another value associated with a neighboring pixel whose value has been ranked in a predetermined order by a rank sorter device used to compare the values of the neighboring pixels with each other.

The Applicant respectfully submits that Lougheed is directed to still images and does not apply to a video data

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

stream. As recited in independent Claim 82, the first filter circuit is connected to the electronic imaging device for filtering the video data stream in real time for correcting/modifying defective pixel values. Lougheed fails to teach or suggest that the image processing may be applied to a digital video stream in real time.

As correctly noted by the Examiner, Lougheed fails to disclose a median circuit connected to the ranking circuit for determining a median value of the plurality of adjacent pixel values and for generating a second filter output equal to the median value. The Examiner cited Maruo as disclosing additional filtering of defective pixels after an initial filtering step. The deficiencies as noted above with respect to Maruo also apply here.

Maruo fails to teach or suggest that the disclosed image processing may be applied to a digital video stream as in the claimed invention. In addition, Maruo fails to teach or suggest that defective pixel values are corrected/modified as in the claimed invention. Instead, the image processing in Mauro is directed to examining objects for inspection or recognition purposes. Mauro also fails to disclose a need for correcting/modifying defective pixel values since it is primarily concerned with identifying defect areas in objects.

The Examiner cited Kaplan as disclosing afiltering algorithm that replaces the current pixel value with a median value of the plurality of adjacent pixel values. However, Kaplan also fails to provide the deficiencies as noted above with respect to Lougheed and Maruo. Consequently, even if the references were combined as suggested by the Examiner, the claimed invention is still not produced. Accordingly, it is

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

submitted that independent Claim 82 is patentable over Lougheed in view of Maruo and in further view of Kaplan.

In view of the patentability of independent Claims 33, 65 and 82, it is submitted that the dependent claims which recite yet further distinguishing features of the invention are also patentable. These dependent claims need no further discussion herein.

SMITH

Serial No. 09/441,709 Filed: November 16, 1999

CONCLUSION

In view of the arguments provided herein, it is submitted that all the claims are patentable. Accordingly, a Notice of Allowance is requested in due course. Should any minor informalities need to be addressed, the Examiner is encouraged to contact the undersigned attorney at the telephone number listed below.

Respectfully submitted,

Michael W. TAYLOR

Reg. No. 43,182

Allen, Dyer, Doppelt, Milbrath & Gilchrist, P.A.

255 S. Orange Avenue, Suite 1401

Post Office Box 3791

Orlando, Florida 32802

407-841-2330

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: MAIL STOP NON-FEE AMENDMENT, COMMISSIONER FOR PATENTS, P.O. BOX 1450, ALEXANDRIA, VA 22313-1450, on this 21° day of October, 2003.

RECEIVED

OCT 3 0 2003

Technology Center 2600

DEFECT CORRECTION IN ELECTRONIC IMAGING SYSTEMS

Field of the Invention

The present invention relates to electronic imaging systems, and, more particularly, to a method and apparatus for correcting defects in video data generated by an electronic imaging system.

Background of the Invention

A majority of electronic imaging devices are now implemented using semiconductor technologies.

Examples include the charge coupled display (CCD),

10 which is implemented using a MOS manufacturing process, and, more recently, image sensors manufactured using standard CMOS semiconductor processes. In all of these cases, the sensor normally includes a one or two dimensional array of discrete pixels. As a result of the manufacturing processes employed in the production of such devices, occasional defects occur at individual pixel sites. Such defects may cause the affected pixel

to be brighter or darker than the true image at that point, including the extreme cases of saturated white or black pixels.

These defects affect some proportion of the plurality of individual imaging devices or chips on each manufactured wafer. The chips affected must normally be rejected unless the defects can be masked or corrected. It is more economical to mask or correct defective pixels, thus enabling otherwise rejected 10 chips to be passed. This improves the apparent yield of good imaging chips per wafer, and, thereby lowers the cost per usable chip. It is known in the art to calibrate imaging devices at the point of camera manufacture so that the locations of defective pixels 15 in the imaging array are identified and stored. subsequent use of the device, pixel data from these locations are masked or corrected in the live video data stream.

One simple and well known masking technique

is to substitute the defective data with a copy of the

value of a neighboring or adjacent pixel. More

sophisticated techniques are also possible, and

typically may produce an estimate of the correct value

of the defective pixel data. This is done by applying

an algorithm to the data obtained from the neighboring

pixels in one or two dimensions. Generally, the best

correction filters use a mixture of linear and nonlinear estimators and work on at least a 3 x 3 pixel neighborhood centered on the defective pixel.

This prior technique of calibrating

individual sensors at the point of manufacture has two
main disadvantages. First, and most significantly, the
process of calibrating the sensor to determine defect
locations is an inconvenient and expensive
manufacturing burden. Second, defects may sometimes be
transient in nature, so that defects present and
corrected for at the time of calibration may
subsequently disappear, or worse, new defects may occur
subsequent to calibration. These latter defects will
remain uncorrected in subsequent camera use and will
result in blemishes on the images output by the camera.

Summary of the Invention

The invention is most particularly concerned with the correction of defects arising from defective pixel sites in electronic image sensors, and is also applicable to a more general noise reduction in video data streams. The invention is equally applicable to monochrome and color video data and may be useful in still imaging systems as well as kinematic video systems.

A first object of the present invention is to provide a method and an apparatus for the correction of defects in an electronic imaging system which prevents or reduces the above mentioned disadvantages of prior art image defect correction schemes.

While the invention may be implemented using known error correction algorithms for correcting the pixel values output by defective pixel sites, it is a further object of the present invention to provide an improved method and apparatus for filtering video data signals, both for the purpose of correcting image defects originating from defective pixel sites and for more general noise reduction purposes.

10

20

Brief Description of the Drawings

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

Fig. 1 is a block diagram illustrating a first embodiment according to the present invention;

Fig. 2 is a block diagram illustrating a preferred embodiment according to the present invention;

Figs. 3(a) and 3(b) are illustrations representing pixel neighborhood locations used in

correcting image defects according to the present invention;

Fig. 4 is a more detailed block diagram according to the present invention using the pixel neighborhood location representations illustrated in Fig. 3; and

Fig. 5 is a graph illustrating operation of a digital filter used in the embodiment illustrated in Fig. 4.

10 <u>Detailed Description of the Preferred Embodiments</u>

Referring now to the drawings, Fig. 1
illustrates a first, most general embodiment of the
invention. An image sensor 10 of a known type
comprises an array of pixels. The sensor array 10

15 outputs an analog data stream which is converted to
digital form by analog to digital conversion means 12
or converter. Assuming a two dimensional pixel array,
the data stream comprises a series of pixel values
output line by line from the sensor 10. The digital

20 data stream would normally be encoded by encoding means
14 or an encoder in a manner to suit the intended end
use of the video data.

In accordance with the present invention, the live video data stream is filtered in real time by

25 digital filter means 16 or a filter to correct or mask

anomalous pixel values which are judged to arise from defective pixel sites in the sensor 10. Typically, the filter 16 judges a pixel value to be defective if it is significantly higher or lower than its neighbors or 5 adjacent pixels in either one or two dimensions. The filter replaces the defective pixel value with a substitute value. The substitute value may be derived by any suitable algorithm, which may involve linear and/or non-linear processes which may operate on surrounding pixel data from a one or two dimensional neighborhood surrounding the defective pixel value.

The filter 16 works permanently on the normal sensor output and does not require the use of any reference scene or predetermined calibration data.

Rather, the filter depends on predetermined criteria for identifying defective pixel values in the live data stream and on predetermined rules for deriving substitute pixel values to replace the defective pixel values.

15

This live or in-line correction of defective pixels overcomes the manufacturing burden of prior art techniques and deals automatically with defects which arise after manufacture. It further provides a degree of noise filtering on noisy images, correcting

25 excessively large single-pixel noise spikes. Applying automatic correction in this way to an entire image

can, in some circumstances, cause an undesirable deterioration in the overall image quality unless the parameters parameters of the correction filter are relaxed. This limits the effectiveness of the technique in its most basic form.

A suitable class of a pixel-correcting filter is one which uses the central pixel data itself as part of the data set used to determine the correction to be applied. Typically, this means that the non-defective portions of the image, i.e., the majority of each image, are unaffected by the presence of the correcting filter. The filter will, however, correct defects of large magnitude.

Unfortunately, many defects which would be

desirable to correct are not of large magnitude.

Typical examples are pixels with a significant gain error, or pixels which are stuck at an intermediate image value. A single filter capable of correcting these more subtle defects while not falsely correcting non-defective pixels causing an undesirable effect on the overall image, such as by producing a smearing effect, has not been developed.

Fig. 2 illustrates a preferred embodiment of the invention, in which the single filter 16 of Fig. 1
25 is replaced by first and second filter stages 18 and 22 and a defect memory or database 20. In accordance with

٠,٠

this scheme, the first filter stage 18 performs two functions. First, it applies a more subtle correction algorithm to the complete data stream to correct defects of lower magnitude as noted above. Second, it identifies pixels exhibiting more extreme defects, and passes information regarding these pixels to the defect memory 20. The defect memory 20 stores information regarding those pixels which are judged to be most severely defective. The defect memory 20 controls the operation of the second filter stage 22, which applies more severe correction selectively to those pixels identified in the defect memory 20.

10

Typically, the number of pixels for which severe correction is required will be less than 1% of the total pixel count. The pixel locations stored in the defect memory 20 are restricted to those that, historically, appear to be most severely in error as detected by the first filter stage 18. That is, for each video frame or for each still image captured by the sensor, all defects are monitored by the first filter stage 18. Those pixel locations exhibiting the largest apparent errors are added to the defect memory 20 if not already identified and stored.

To enable the contents of the defect memory

25 20 to remain dynamic over time, a management strategy

is required so that locations representing transient

noise defects or defects which disappear over time can be identified and removed from the defect memory 20. Besides preventing future correction of non-defective pixel values, this also creates memory space for new or previously undetected defects. The memory space 20 is necessarily limited, and it is desirable that it be as small as possible consistent with the number of defects which are likely to be encountered in practice.

Typically, the defect memory 20 might store less than 1% of all possible pixel locations. Accordingly, no more than 1% of pixels will be subject to severe

more than 1% of pixels will be subject to severe correction. This proportion is so low as to be unnoticeable to a human observer of the corrected video or still image.

A preferred embodiment of the scheme illustrated in Fig. 2 will now be described with

10

illustrated in Fig. 2 will now be described with reference to Figs. 4 and 5. Referring first to Figs. 3(a) and 3(b), these illustrate examples of pixel neighborhoods operated on by digital filters of the type employed in the invention. In a two dimensional pixel array, each pixel is surrounded by eight immediately neighboring pixels forming a 3 x 3 array. The pixels at the edges of the array are neglected.

The particular pixel operated on by a filter

25 at any point in time is the central pixel p(c) of the 3

x 3 array. Fig. 3(a) illustrates the situation when

the filter includes the central pixel value along with the values of the surrounding eight pixels in the data set employed to determine a substitute value for p(c). Fig. 3(b) illustrates the situation when the filter excludes the central pixel value from the data set employed to determine a substitute value for p(c). These two alternatives are both employed in the two stage filtering provided by the preferred embodiments of the present invention, as described in greater detail below. It will be understood that the use of a 10 3 X 3 array for the filter data set is merely an example being particularly applicable to monochrome image sensors. Larger and/or differently oriented arrays may be appropriate in some circumstances, 15 particularly for color sensors. The approach described in the present example can clearly be extended to other shapes or other array sizes.

Referring now to Fig. 4, there is shown a block diagram of a video data filtering system

20 corresponding to blocks 18, 20 and 22 of Fig. 2. The input data stream includes a series of input pixel values p(in), and the output data stream includes a series of output pixel values p(out).

The input data stream is first sampled by a

25 sampling network comprising line memory buffers 30 and

32, each of which is capable of storing a complete line

of video data. The input data stream is also sampled by individual pixel value memory buffers 34, 36, 38, 40, 42 and 44. The incoming video signal is routed through the line buffers 30, 32 and into the pixel 5 buffers 34-44 so that, over a number of clock cycles, nine pixel values for the central pixel p(c) and surrounding neighbors are accumulated to be operated on by the filter system. The line buffers 30, 32 suitably comprise random access memory, while the pixel buffers 10 34-44 may be D-type flip-flops.

The central pixel value p(c) is extracted on line 46 as shown, while the eight neighboring values are applied to block 48. Block 48 sorts the values of the neighboring pixels into rank order according to their amplitudes. Block 48 also outputs the values in rank order, with the highest value output on the upper output line 48U and the lowest value on the lower output line 48L. In this example, the filter system only employs the highest, lowest and middle two ranking values out of the eight input values. However, variations on this example could utilize other combinations of the eight ranked values, as shall be discussed below.

The ranked values of the neighboring pixels

25 are employed by both the first and second stage filter

processes 18 and 22 of Fig. 2. The two filter stages

25

share components and functions of the embodiment illustrated in Fig. 4, rather than being discrete systems as shown in Fig. 2. However, their essential functionality is separate and is in accordance with the schematic representation provided by Fig. 2. The first stage filtering operates to apply relatively subtle correction to the entire data stream while at the same time identifying defect locations to which the second stage filtering is to be applied, as follows.

10 The highest and lowest ranked pixel values on lines 48U and 48L and the central pixel value p(c) on line 46 are input to block 50, which operates as a three to one multiplexer. Block 50 compares p(c) with the highest and lowest ranked values. If the value of p(c) is greater than the highest ranked value, then the 15 highest ranked value is output from block 50, replacing p(c) in the data stream. If the value of p(c) is less than the lowest ranked value, then the lowest ranked value is output from block 50, replacing p(c) in the 20 If the value of p(c) is less than the data stream. highest ranked value and greater than the lowest ranked value, or is equal to either value, then the value of p(c) is output from block 50 so that p(c) is unaffected by the first stage filter.

This filtering scheme is illustrated in Fig. 5, in which the rank of the input pixel value is

-13plotted against the rank of the pixel value which is output by the filter. The nine ranks of this example are numbered from -4 to +4, with zero being the rank of the median pixel value. The graph shown corresponds to the scheme described above. If p(c) is ranked +4 then it is replaced by the value of rank +3. If p(c) is ranked -4 it is replaced by the value of rank -3. Otherwise, it is unaffected by the filter. The filter could be modified to allow maximum values restricted to ranks 1 or 2, as indicated by the 10 dot-and-dash lines, in which case different outputs from block 48 would be employed. The filter could also be made to be switchable between these different modes of operation if required. The horizontal axis of Fig. 15 5 corresponds to a median filter, in which the median value is output regardless of the input value. diagonal line through the origin indicated by the dashed line corresponds to zero filtering, in which the output is always equal to the input. 20 Since this filtering operation is applied to the entire data stream, it acts as a general noise reduction filter as well as correcting relatively subtle defects arising from defective pixel sites in the sensor array. It is potentially useful in 25 applications other than that illustrated in Figs. 2 and For example, it could be employed purely as a noise reduction filter in imaging systems using prior art calibration schemes to correct sensor defects. This filtering scheme will be referred to hereinafter as a scythe filter and its output value as the scythe value, or may simply be referred to as the filter and filter value.

The second stage filtering 22 of Fig. 2, in this example, is based on the median value of the pixels neighboring the central pixel p(c). A conventional median filter applied to a 3 x 3 array 10 would output a value corresponding to the median value of the nine pixels in the array. In the present case, it is preferred to neglect the value of the central pixel, since this has already been presumed to be 15 erroneous when the second stage filtering is applied. Accordingly, a median value is calculated based on the values of the eight neighboring pixels, excluding the central pixel p(c) as shown in Fig. 3(b). Since there is an even number of neighboring pixels, the median 20 value used is the mean value of the two middle ranking pixel values. The sorting of the neighboring pixel values into rank order, described above, facilitates this. As seen in Fig. 5, the values of the two middle ranking values output from block 48 are summed and 25 divided by two to provide a pseudo-median value. This

filtering scheme will be referred to hereinafter as a ring median filter and its output as the median value.

In the example of Fig. 4, it can be seen that scythe (first stage) filtering and ring median (second stage filtering) both take place in parallel on the entire data stream. Both the scythe and median values are input to a final two to one multiplexer 52. final output p(out) is determined by the contents of the defect memory 20 of Fig. 2. If the pixel location corresponding to the central pixel p(c) is stored in the defect memory 20, then multiplexer 52 will select the ring median value as the final output value. Otherwise, the final output value will be the scythe value. Since the pixel locations stored in the defect memory 20 comprise only a small proportion of the total number of pixels in the sensor array, scythe filtering will be applied to the majority of the data stream with ring median filtering being applied to the remainder.

10

15

In Fig. 4, the defect memory 20 of Fig. 2 is
represented by memory block 54 and memory management
block 56. The pixel locations stored in the defect
memory 20 are those which exhibit the most extreme
differences from their neighbors. In the embodiment of
Fig. 4, pixel locations are selected for inclusion in
the defect memory on the basis of the magnitude of the
difference between the value of p(c) and the scythe

... ; ...

value output from block 50. The difference between the two values is determined at 58 and the absolute magnitude of this difference at 60. The decision as to whether a particular pixel location should be stored can be based on a wide variety of criteria. This criteria is dependent in part on the size of the defect memory and on the memory management strategy employed.

In the present example, a simple scheme is employed whereby the single worst defect in each video frame is stored in the defect memory. This defect is the greatest difference between the value of p(c) and the scythe value. For each frame, the worst defect to date is stored in buffer memory 62. At the end of the frame, the value stored at 62 is passed to the memory block 54, together with its corresponding location in the sensor array. The data stored in the memory block 54 is essentially a sorted list of pixel locations and associated defect magnitudes. Additional information could be stored if necessary.

20 It will be understood that the beginnings and endings of video frames and the locations of pixels corresponding to pixel values in the data stream can be derived by the use of clocks, counters and information included in the data stream. This may be done in a 25 manner which will be familiar to those skilled in the art. Systems for performing these functions will not

be described herein and are excluded from the drawings for the sake of clarity.

The memory management unit 56 controls the output multiplexer 52 to select the ring median value as the final output when the current pixel corresponds to a location stored in the memory block 54. Otherwise, the scythe value is selected. As noted above, a strategy is required for managing the contents of the memory block 54. This is accomplished in the present 10 example by means of a first-order auto-regression function also known as leaky integration. That is, the magnitudes of the defects stored in the memory are continually updated by means of the auto-regression formula. Once the memory 54 is full, the locations 15 with lowest defect magnitudes can be replaced by newly detected defects of greater magnitude. The magnitudes of persistent defects will be refreshed by normal operation of the filtering system, while the stored magnitudes of transient defects will gradually 20 attenuate until they are replaced.

In this example, the magnitudes of stored defects are updated by determining the difference between the current pixel value p(c) and the ring median value at 64, and the absolute magnitude of this difference at 66. The updated value is calculated using the auto-regression formula at 68 from the

25

current stored value for the relevant pixel location and magnitude of the difference between p(c) and the ring median value. The stored value is updated accordingly. The location of the current, lowest stored value is stored in memory buffer 70 so that this value (MIN) can be replaced by a new defect location and value (MAX 62) once the memory 54 is full.

Fig. 2 represents a generalized version of the preferred embodiment, employing a stored list of 10 defect locations to apply two stage filtering to an incoming data stream. The first stage filtering also serves to determine which locations are stored. second stage filtering is switched on and off on the basis of the stored list. As seen in Fig. 4, this 15 functionality is implemented by applying both filtering functions in parallel and selecting which filter output to use on the basis of the stored list. The first stage filter output is also being employed in the selection of locations for storage, and the second 20 stage filter output is being employed in the management of the stored list.

Other variations of the described embodiments can be envisioned using different filtering functions, different data sampling schemes and different memory management strategies. Such variations and other

25

modifications and improvements may be incorporated without departing from the scope of the invention.