Combining Methods

Why Combine?

- Ensemble of methods often predicts more accurately
- Business goal may require multiple methods

Ensemble methods for classification and prediction

In an ensemble approach, multiple methods are used initially, and predictions/classifications tabulated

- Predicting a numeric value? Take the average of the values predicted by the various methods
- Predicting a class? Take a majority vote of the classes predicted by the various methods
- Predicting a propensity? Take the average of the propensities

Why does an ensemble make more accurate predictions?

The key is reducing the variance in predictions.

- Individual methods will produce predictions that have errors, some positive and some negative
- If prediction methods are unbiased, on balance, errors tend to cancel each other out
- An average of multiple predictions takes advantage of this canceling out and, most of the time, is more accurate than individual predictions

Popular forms of ensembles

- Bagging
- Boosting
- Most often applied to trees

Bagging (= Bootstrap aggregating)

The "multiplier" effect in bagging comes from multiple bootstrap samples, rather than multiple methods. Bootstrapping is to take resamples, with replacement, from the original data.

- 1. Generate multiple bootstrap resamples
- 2. Run algorithm on each and produce scores
- 3. Average those scores (or take majority vote)

Boosting

Iteratively focus attention on the records that are misclassified, or where error is greatest

- 1. Fit model to data
- 2. Resample records with highest weights to misclassified or highest errors
- 3. Fit model to new sample
- 4. Repeat steps 2-3

Ensembles summary

Ensembles...

- 1. Generally perform better than individual models
- 2. Have many variants (averaging, weighted averaging, voting, medians, resampling)
- 3. Facilitate "parallel processing," e.g. in contests where multiple teams' models can be combined
- 4. Help mitigate overfitting (but do not cure it)
- 5. Are black-box transparent methods like trees lose transparency when ensembled

Persuasion (uplift) modeling

Often a business problem cannot be tacked with just one method.

- Video streaming service wants to offer recommendations, but there are two different users on a single account, same location. Solution – cluster watched videos into 2 clusters, classify new shopping activity into one of the clusters.
- 2. Political campaign wants to know which of two messages to send to individual voters i.e. which has most "uplift" in propensity to vote favorably

- Uplift modeling starts with an A-B test of two treatments
- 2. In marketing, might be message A versus message B
- 3. In political campaigns, might be message versus no message

1. For each voter you now have two variables – response (0/1), and which message they got (A/B)

Voter #	Message	Response
1	Α	0
2	Α	1
3	В	0

Respond when NOT TREATED

	ī	YES	NO	
Respond when TREATED	NO	Do-Not- Disturbs	Lost Causes	
	YES	Sure Things	Persuadables	

- 1. For each voter you now have two variables response (0/1), and which message they got (A/B)
- 2. Now add demographic, marketing, and voting history info for each voter in sample.

Voter #	Newspaper	Voted Primary	Voted General	Age	Message	Response
1	0	0	1	53	Α	0
2	1	0	1	61	Α	1
3	1	0	0	26	В	0

- 1. For each voter you now have two variables response (0/1), and which message they got (A/B)
- 2. Now add demographic, marketing, and voting history info for each voter in sample.
- 3. Fit a classification model (0/1 respond or not), with all predictor variables, including which message was sent
 - Use training data to fit the model
 - Apply the model to the validation data
- 4. Run the model for all voters (in validation data) twice
 - 1. With original data
 - 2. With message predictor reversed

- 1. You now have two propensity scores for each voter
 - 1. One as if they got message A
 - 2. One as if they got message B
- 2. Propensity for favorable response with B minus propensity with A is the uplift for B over A
- 3. Used in marketing to "microtarget" different marketing messages appropriately
- 4. In political campaigns, often used to determine which is better:
 - 1. Send a message
 - 2. Send no message

Uplift modeling and Campaign Strategy

Feedback loop allowing iterative development