Tutorial-3

(1) Cakshey Shorma AI and DS

1) Pseudo cado for emean seaucht

for (i=0 to n)

{ if (voili] = = key)

printf " Element found"

rold insertion (ant aver [7, ant n)

insultable (aver, n-1);

int num = aver [n-1];

int j=n-2;

while (j>=0 ff aver[j]>num)

{ aver[j++]=aver[j];

j--;

aver [it i] = num; }

iterative

for (i=1 ton)

py = A[i]

j= g=1

work work (j>=0 & 4 A[i] > key)

{ A[j+1] = A[j]

j=j-1; }

ACj+13=Ry;

inextion sout is online southy because it doesn't known the whole suport, more imput can be inserted while the insertion southy is ecurnity.

3) Complenity	of althount so	utry alforithms	
			Avorage
Name	Best case O(n2)	o(n2)	O(n2)
Selecting souting	O(n)	OCn2)	OCHY
Buble sorting	4.4	0(14)	OCA)
Insurbon southly	O(n)		
Heap	O(nlyn)	O(nlogn)	O(nlg
Ewith	O(nlegn)	000	OChlig
merge	O(nlogn)	O(nlgn)	O(NIO
- 7-ml-lace so	why sto	ble souther	Online worth
4) Implace so	0	wige	Insochon
Suble Sdeeting Side	ation B	subple	
Insuring		section	
9			
quick			
heap			
5> Iterative	ROUGH (N. + DITH	[3, out, out	e art Ry)
		(3)	,
$\begin{cases} \text{with } (l < = r) \end{cases} $ with $m = ((l + \mu) (2);$			
	(over [m]==key)	15. 0 %	
section m;			
else if (key (are [m])			
₹=.n-1;			
e	le of t		
	l=m+1;	}	
	& retrain-1	; all the state of	
3 - 1000			
3 time complexity - 10(n)			

```
Recussivet
 int b_search (int ave [], int e, sot u, int key)
 { white (1 <= r) {
     IN m = ((e+4)/2);
        if ( ky = = avr [m])
       clse of ( key ( aver (m))
               juturn b- search (au, l, mid-1, ky);
         preturn 6- search (aux, mid+1, or, key);
  3 setwin -1; &
        Time complenity -> [O(logn)]
  T(n) = T(n/2) +1 - (1)
  T(n/2) = T(n/4) + 1 - (2)
  T(n/4) = T(n/8)+1 -- (3)
     T(n)=T(n/2)+1
           = T(n/4) + 2
           = T(n/8) + 3
           = T(-4)+K
         let gk=n
              K= logn
              T (n) = T(n) + logn
             T(n) = T(1) + logn
     Time complexity => O ( logm)
```

fore (2=0; E < n; [++) { for (art j=0; j < n; j++) { of (orci[i] + on[j]==k) print (" 1.d 7.d ", i, 1); }

8) Quick sort is fastest general - purpose sort, In most potactical situation quick sout is the method of choice is stability is important and space is available, murge sort night be best.

- A paise (A[5], A[j]) of said to be invocation of 9) Invuesions in avery -ELJA < [i]A

- ilj

- Total no of inventions is given according one 31 with menge good,

10) woust case (O(n2)+ - when the proof element is an externe (smallest/lengest) element. This happens when input array is sorted on reverse sorted and either first on last element is scheded as pivot.

Best case (O(nlogn)):

- The best case occurs when we will select prot element as a mean element.

FBest case + TCn) = 2T(n/2) + O(n) } - O(nleyn) + worlst cox + T(n) = 2T(n/2) + O(n) } - O(nleyn) 117 Merge sout !quick sort +

 $\frac{1}{1} \frac{\text{Best case}}{\text{Case}} = \frac{1}{1} \frac{\text{T(n)}}{\text{T(n)}} = \frac{1}{1} \frac{\text{T(n)}}{\text{T(n)}} + \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} \xrightarrow{\text{O(n)}} \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} = \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} + \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} = \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} + \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} = \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} + \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} + \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} = \frac{1}{1} \frac{\text{C(n)}}{\text{C(n)}} + \frac{1}{1} \frac{\text{C(n)}}{$

- In quick early overay of element are divided into a paix erepeated until it is not possible to divide further.

- In range nort, the clements are sport into a subauray

(n/2) again and again motil I only I element is left.

12) for (mti=0;i(n-1;i++) Int mm = 1; for (sat j = i+1; j < n; j++) { if a [min] > a [j]) min = j; }

> ent ky = a [min]; { a[min] = a [min-j]; min =, -; }

a[i] = ky; 3

A better veusion of bubble sout, known as modified. 13) bubble sout, includes a flag that is set of a exchange made then It should be called the array Is already order because no a elements need to be switched.

Void buble. (Int asce [], int n) 2. for (0=0; i\n; [++)

for (m. j=0 ; j < n-1-j; j++) { B Care [j] > aver [j+1]) mt t = aver [j]; wor (j)= aver (j+1); 201[j+1] ≠ t; swap++i3) & (swap == 0) break;