

Assignment 1: Bouncing Balls

Minimal version (up to 9 points)

- Create a large transparent sphere.
- Create a small non-transparent sphere at a random position anywhere inside the large sphere, moving at a random but constant speed.
- Make sure the ball is correctly reflected at the outer sphere such that the angle of reflection equals the angel of incidence.

Reflection at a surface: The angle of incidence between \vec{v}_1 and the surface normal \vec{n} equals the angle of reflection between \vec{v}_2 and \vec{n}

Extended version (up to 12 points)

Extend your program such that it contains an arbitrary number of balls each with its own random position and speed.

Full version (up to 15 points)

Turn your program into a little game as follows:

- Add a black sphere (or any other object) whose position can be controlled with the keyboard.
- Detect when the black ball collides with the outer sphere or any of the other balls. Report *Game over!* in that case.

Handing in the solution

- Hand in your *complete* solution (html and js files) no later than Sunday, Nov. 1st, by email to klaus.juenemann@haw-hamburg.de.
- Chaotic coding style (complete lack of comments, variable names like a, b, c ..., etc.) will lead to a reduction of points.