Written Analysis

Optimal Plans

ALL TAKEN FROM BFS

PROBLEM 1:

Load(C2, P2, JFK)

Load(C1, P1, SFO)

Fly(P2, JFK, SFO)

Load(C2, P2, SFO)

Fly(P1, SFO, JFK)

Load(C1, P1, JFK)

PROBLEM 2:

Load(C2, P2, JFK)

Load(C1, P1, SFO)

Load(C3, P3, ATL)

Fly(P2, JFK, SFO)

Load(C2, P2, SFO)

Fly(P1, SFO, JFK)

Load(C1, P1, JFK)

Fly(P3, ATL, SFO)

Load(C3, P3, SFO)

PROBLEM 3:

Load(C2, P2, JFK)

Load(C1, P1, SFO)

Fly(P2, JFK, ORD)

Load(C4, P2, ORD)

Fly(P1, SFO, ATL)

Load(C3, P1, ATL)

Fly(P1, ATL, JFK)

Load(C1, P1, JFK)

Load(C3, P1, JFK)

Fly(P2, ORD, SFO)

Load(C2, P2, SFO)

Load(C4, P2, SFO)

Result for non-heuristic search:

Per [1] section 3.4, search strategies that come under the heading of uninformed search (a.k.a., blind search) have no additional information about states beyond that provided in the problem definition. All they can do is generate successors and distinguish a goal state from a non-goal state.

PROBLEM 1

	breadth_first	breadth_first	depth_first_g	depth_limited	uniform_cost
	_search	_tree_search	raph_search	_search	_search
Expansions	43	1458	12	101	55
Goal Tests	56	1459	13	271	57
Time elapsed	0.033198938	1.049229473	0.009058805	0.116782741	0.083431082
	99606541	1084257	997483432	85396731	07918704
Plan length	6	6	12	50	6

PROBLEM 2

	breadth_first	breadth_first	depth_first_g	depth_limited	uniform_cost
	_search	_tree_search	raph_search	_search	_search
Expansions	3343		582	222719	4853
Goal Tests	4609		583	2053741	4855
Time elapsed	14.89696321		3.392203800	1014.067314	24.15560687
	5986034		00188	1360749	4031946
Plan length	9		575	50	9

PROBLEM 3

	breadth_first	breadth_first	depth_first_g	depth_limited	uniform_cost
	_search	_tree_search	raph_search	_search	_search
Expansions	14663		627		18151
Goal Tests	18098		628		18153
Time elapsed	114.4821847		3.722325151		57.45030542
	6600596		0004047		6027626
Plan length	12		596		12

In PROBLEM 1 ,there three ones has the same shortest Plan length:BFS,BFTS,UCS.BFS has the least Expansions Goal Tests and Time elapsed,so the optimal plan is BFS.

In PROBLEM 2, here two ones has the same shortest Plan length:BFS,UCS.BFS has the least Expansions Goal Tests and Time elapsed,so the optimal plan is BFS.

In PROBLEM 3, here two ones has the shortest same Plan length:BFS,UCS.BFS has the least Expansions Goal Tests and Time elapsed,so the optimal plan is BFS.

If finding the optimal path length is critical, what strategy should we use? Because it performs faster than Uniform Cost Search, Breadth First Search is the recommended search strategy. This isn't much of a surprise, as BFS is complete and optimal. As shown in [1] section 3.4.7:

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?	Yesa	Yesa,b	No	No	Yesa	Yesa,d
Time	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	$O(b^m)$	$O(b^{\ell})$	$O(b^d)$	$O(b^{d/2})$
Space	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	O(bm)	$O(b\ell)$	O(bd)	$O(b^{d/2})$
Optimal?	Yesc	Yes	No	No	Yesc	$\mathrm{Yes}^{c,d}$

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b optimal if step costs are all identical; b if both directions use breadth-first search.

Which search strategy should we use, if having an optimal path length is not the primary criteria? For problems 2 and 3, DFS has the least Time elapsed,however has more longer Plan length. If you wanna get a plan quickly, you can choose this algorithm.

Result for heuristic search:

PROBELM 1

	recursive_best	greedy_best_first	astar_search	astar_search	astar_search
	_first_search	_graph_search		h_ignore_pr	h_pg_levelsum
				econditions	
Expansions	4229	7	55	41	60
Goal Tests	4230	9	57	43	62
Time	3.0680696859	0.005921821109	0.04932075	0.043797663	0.6410302770
elapsed	490126	9505424	506076217	995064795	091221
Plan length	6	6	6	6	6

PROBLEM2

	recursive_best	greedy_best_first	astar_search	astar_search	astar_search
	_first_search	_graph_search		h_ignore_pr	h_pg_levelsum
				econditions	
Expansions		998	4853	1450	5446
Goal Tests		1000	4855	1452	5448
Time		2.672985436860	13.4492457	4.634387897	305.66087429
elapsed		472	9304643	909619	004256
Plan length		17	9	9	9

PROBLEM3

recursive_best	greedy_best_first	astar_search	astar_search	astar_search
_first_search	_graph_search		h_ignore_pr	h_pg_levelsum
			econditions	

Expansions	 5398	18151	5038	20457
Goal Tests	 5400	18153	5040	20459
Time	 17.15792502695	58.0671973	18.11798137	1587.4482484
elapsed	6946	7092499	2983195	669425
Plan length	 26	12	12	12

In PROBLEM 1, there five ones has the same shortest Plan length:

RBFS,GBFGS,A*(ASH1),A*(ASHIP),A*(ASHPGL).GBFGS has the least Expansions Goal Tests and Time elapsed.In A* algorithm,ASHIP has has the least Expansions Goal Tests and Time elapsed.

In PROBLEM 2, there three ones has the same shortest Plan length:

A*(ASH1),A*(ASHIP),A*(ASHPGL).A*(ASHIP) has the least Expansions Goal Tests and Time elapsed.

In PROBLEM 2, there three ones has the same shortest Plan length:

A*(ASH1),A*(ASHIP),A*(ASHPGL).A*(ASHIP) has the least Expansions Goal Tests and Time elapsed.

What was the best heuristic used in these problems? Was it better than non-heuristic search planning methods for all problems? Why or why not?

A*(ASHIP) is the best heuristic in these problems. Yes, It is better than all non-heuristic search planning methods. It drop some pre conditions, so i will got a better time elapsed.