

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

Bc

Eur pâisches Patentamt
Europ än Pat ent Office
Office européen des bre vets

(11) Publication number:

EP 0 031 104
A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 80107869.2

(51) Int. Cl.³: C 07 D 277/06

(22) Date of filing: 12.12.80

C 07 D 207/16, A 61 K 31/425
A 61 K 31/40

(30) Priority: 13.12.79 JP 161977.79

(71) Applicant: SANTEN PHARMACEUTICAL CO., LTD:
9-19, 3-Chome, Shimoshinjo
Higashiyodogawaku Osaka(JP)

(43) Date of publication of application:
01.07.81 Bulletin 81/26

(72) Inventor: Oya, Masayuki
27-18, 3-chome Yamatedai
Ibaraki-shi Osaka(JP)

(84) Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

(72) Inventor: Iso, Tadashi
197-7, Joroku,
Sakai-shi Osaka(JP)

(74) Representative: Zumstein, Fritz, Dr. Dr. F. Zumstein
sen. Dr. E. Assmann et al,
Dr. R. Koenigsberger Dr. F. Zumstein jun. Dipl.-Ing. F.
Klingseisen Brâuhausstrasse 4
D-8000 München 2(DE)

(54) Thiazolidine and pyrrolidine compounds, processes for their preparation and pharmaceutical compositions containing them.

(57) Thiazolidine and pyrrolidine compounds which have the general formula

and salts thereof for preventing or relieving diabetic complications and for reducing blood pressure, the processes for their preparation, and the compositions comprising them and pharmaceutically acceptable excipient(s).

EP 0 031 104 A1

1 aryloxycarbonyl and heteroaryloxycarbonyl;
 (b) (i) phenyl and naphthyl, and
 (ii) phenyl and naphthyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxy-carbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;
 (c) (i) furyl, thienyl and pyridyl, and
 (ii) furyl, thienyl and pyridyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxy-carbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

R^C is selected from the group consisting of
 (a) (i) hydroxy, lower alkoxy and amino, and
 (ii) lower alkoxy, and amino substituted by at least one substituent selected from the group consisting of lower alkyl, aralkyl, heteroaralkyl, aralkenyl, heteroaralkenyl, hydroxy, lower alkoxy, aralkyloxy, heteroaralkyloxy, aryloxy, hetero-aryloxy, acyloxy, aryl, heteroaryl, substituted aralkyl and substituted aryl wherein the substituent is lower alkyl, lower alkoxy, halogen or amino;
 (b) (i) aryloxy and heteroaryloxy, and
 (ii) aryloxy and heteroaryloxy substituted by at least one substituent selected from the group consisting of lower alkyl, hydroxy, lower alkoxy, halogen and amino, and

1 -O-, -CO-, -S-, -SO-, -SO₂-, -C= _{N-R²⁰}, -NHCONH-, -N- ₂₁ or -N- _{R²¹};

l, m, n, p, q, r, s and t each is 0, 1, 2 or 3;
 R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴,
 R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each is R^d;

5 R^A is R^b when W is _{R²²}-CH-NH-C- _{R²⁴}²³ or -CH-(CH)₀₋₂- _{R²⁵} | _{R²⁶}²⁶, wherein

R²², R²³, R²⁴, R²⁵ and R²⁶ each is R^d;

R^a is selected from the group consisting of

(i) hydrogen, lower alkyl and lower alkenyl, and
 0 (ii) lower alkyl and lower alkenyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxy carbonyl, aralkyloxy-carbonyl, aryloxycarbonyl, sulfamoyl, lower alkylamino-sulfonyl and lower alkylsulfinyl;

5 R^b is selected from the group consisting of

(a) (i) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl, and
 0 (ii) aralkyl, heteroalkyl, aralkenyl and heteroaralkenyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxy carbonyl, aralkyloxy-carbonyl, aryloxycarbonyl, sulfamoyl, lower alkylamino-sulfonyl and lower alkylsulfinyl, and
 5 (iii) carboxy, lower alkoxy carbonyl, aralkyloxycarbonyl,

1. The compounds [I] of this invention can be prepared by following process.

(i) A compound of the formula [I] is yielded by the reaction of a compound of the formula [II]

5

[II],

10 wherein R^A and R^B may be protected by any suitable groups (e.g., lower alkyl, acyl, aralkyl, aralkyloxy, etc.) when R^A and R^B include reactive groups (e.g., amino, hydroxy, mercapto, hydroxyamino, etc.), with the reactive derivative of carboxylic acid of the formula [III] (e.g., acyl halide, acid anhydride, mixed anhydride, active ester, lactone, etc.) 15 by general methods used in peptide syntheses or amide formation reactions

[III],

20 wherein W and R^C may be protected by any suitable groups (e.g., lower alkyl, acyl, aralkyl, aralkyloxy, etc.) when W and R^C include reactive groups (e.g., amino, hydroxy, mercapto, hydroxyamino, etc.), followed by removal of protective groups by well-known methods (e.g., hydrolysis, 25 hydrogenolysis, ammonolysis, alcoholysis, etc.).

This procedures of deprotection can be applied in the following methods.

1 R^d is selected from the group consisting of
 (a) (i) hydrogen, lower alkyl, lower alkenyl, aralkyl, hetero-
 aralkyl, alkanoyl, arylalkanoyl, heteroarylalkanoyl, hydroxy,
 carboxy, amino, mercapto and sulfo, and
 (ii) lower alkyl, lower alkenyl, aralkyl, heteroaralkyl,
 5 alkanoyl, arylalkanoyl, heteroarylalkanoyl, hydroxy, carboxy,
 amino, mercapto and sulfo substituted by at least one substituent
 selected from the group consisting of lower alkyl, lower alkenyl,
 lower alkoxy, lower alkanoyl, aryl, heteroaryl, acyloxy, aroyl,
 hydroxy, carboxy, amino, guanidino, mercapto, acylamino,
 acylmercapto, lower alkoxycarbonyl, sulfo, halogen, nitro,
 cyano, sulfamoyl, lower alkylaminosulfonyl, lower alkylthio
 10 and lower alkylsulfinyl;
 (b) (i) phenyl and naphthyl, and
 (ii) phenyl and naphthyl substituted by at least one substituent
 selected from the group consisting of lower alkyl, lower alkoxy,
 lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen,
 nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-
 15 lower alkyl, halogeno-lower alkoxy, lower alkylenedioxy, lower
 aloxycarbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl
 and lower alkylsulfinyl;
 (c) (i) furyl, thienyl and pyridyl, and
 (ii) furyl, thienyl and pyridyl substituted by at least one
 20 substituent selected from the group consisting of lower alkyl,
 lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino,
 halogen, nitro, cyano, acylamino, mercapto, acylmercapto,
 halogeno-lower alkyl, halogeno-lower alkoxy, lower alkylene-
 dioxy, lower aloxycarbonyl, sulfo, sulfamoyl, lower alkyl-
 aminosulfonyl and lower alkylsulfinyl;
 and salts thereof which are useful as agents for therapy or
 25 prophylaxis of the diabetic complication because they inhibit
 strongly aldose reductase, and as antihypertensive agents
 because they inhibit angiotensin I-converting enzyme.

1 protected such as (i) above, in the presence of proper alkaline and/or organic bases, if necessary, by known methods.

5 (iii) A compound of the formula [I] is yielded by the reaction of a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [VII] (e.g., mentioned in (i) above)

10 and then with a compound of the formula (VIII)

15 by the same method as (ii) above.

(iv) A compound of the formula [I] is yielded by the reaction of a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [IX] (e.g., mentioned in (i) above)

and then with a compound of the formula [X]

by the same method as (ii) above.

1 (ii) A compound of the formula [I] is yielded by the reaction
 of a compound of the formula [II] with the reactive
 derivative of carboxylic acid of [IV] (e.g., above-mentioned)

5

[IV],

wherein W^1 is $\begin{array}{c} R^1 \\ | \\ C \\ | \\ R^2 \end{array} \begin{array}{c} R^3 \\ | \\ C \\ | \\ R^4 \end{array}_m$, and may be protected such as (i)

10 above, L is a leaving group (e.g., halogen, alkylsulfonyl,
 arylsulfonyl, etc.), by the same methods as described in
 (i) above to produce a compound of the formula [V]

15

[V]

and then reation of a compound of the formula [V] with a
 compound of the formula [VI]

20

[VI],

wherein W^2 is $\begin{array}{c} R^5 \\ | \\ C \\ | \\ R^6 \end{array}_n \begin{array}{c} R^7 \\ | \\ C \\ | \\ R^8 \end{array}_p$, W^3 is $\begin{array}{c} R^9 \\ | \\ C \\ | \\ R^{10} \end{array}_q \begin{array}{c} R^{11} \\ | \\ C \\ | \\ R^{12} \end{array}_r$, W^4 is

25

$\begin{array}{c} R^{13} \\ | \\ C \\ | \\ R^{14} \end{array}_s \begin{array}{c} R^{15} \\ | \\ C \\ | \\ R^{16} \end{array}_t$, and W^2 , W^3 , W^4 , X, Y, Z and R^C may be

1 reactive derivative of carboxylic acid of the formula [XV].
 (e.g., mentioned in (v) above)

5

[XV],

and then with a compound of the formula [XVI]

[XVI]

10 by the same method as (ii) above.

(viii) A compound of the formula [I] is also yielded by converting a compound of the formula [I] prepared by any method above-mentioned by well-known methods (e.g., oxidation, formation of oxime, hydrazone and semicarbazone, addition to double bond, etc.)

15 The compounds [I] of this invention are effective on preventing or relieving diabetic complications.

In diabetic patients, high levels of hexoses (e.g., glucose, galactose, etc.) in blood lead to the accumulation of sugar alcohols (e.g., sorbitol, galactitol, etc.) in tissues. It is known that this accumulation causes the swelling of cells to induce complications of diabetic cataract, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, etc. [R. Quan-Ma et al., Biochem. Biophys. Res. Comm., 22, 492 (1966)]. For example, R. Gitzelman et al.

1 (v) A compound of the formula [I] is yielded by the reaction
 of a compound of the formula [II] with the reactive derivative
 of carboxylic acid [XI] (e.g., acyl halide, acid anhydride,
 mixed anhydride, active ester, lactone, thiolactone, etc.)

5

and then with a compound of the formula [XII]

10

15

by the same method as (ii) above.

(vi) A compound of the formula [I] is yielded by the
 reaction of a compound of the formula [II] with the reactive
 derivative of carboxylic acid of the formula [XIII] (e.g.,
 mentioned in (v) above)

20

and then with a compound of the formula [XIV]

25

by the same method as (ii) above.

(vii) A compound of the formula [I] is yielded by the
 reaction of a compound of the formula [II] with the

1 salts to be generally used as medicine such as sodium salt,
potassium salt, calcium salt, magnesium salt, aluminum salt,
ammonium salt, diethylamine salt, triethanolamine, etc.

5 The compounds of formula [I] have the stereoisomers
which are within the limit of this invention, because they
have one or more asymmetric carbon atoms.

Typical examples are shown below, although this invention
is not limited to these examples.

10

15

20

25

1 have presented that cataract is caused by the accumulation
of sugar alcohols [Exptl. Eye. Res., 6, 1 (1967)]. A report
of Kinoshita et al. has demonstrated that aldose reductase
which reduced aldose to the corresponding sugar alcohols
5 was involved in the initiation of these diabetic
complications and that effective inhibitors of aldose
reductase were useful [Jpn. J. Ophthalmol., 20, 339 (1976)].
On the basis of the above information, aldose reductase
inhibition of the compounds [I] of this invention was tested.
10 The results of the examinations demonstrated that these
compounds have potent inhibitory activities on aldose
reductase, and therefore they are useful as drugs for therapy
or prophylaxis of the diabetic complications.

On the other hand, it has been known that a kind of the
15 derivatives of thiazolidine- or pyrrolidinecarboxylic acid
have potent inhibitory activity to angiotensin I-converting
enzyme, but thiazolidine and pyrrolidine compounds of this
invention are novel compounds, and have more potent inhibitory
activities to angiotensin I-converting enzyme. Furthermore,
20 the compounds of this invention are prepared by convenient
methods, and are superior to the stability.

Thus, the compounds of this invention are useful as
therapeutic or prophylactic agents and antihypertensive
agents.

25

The compound of formula [I] can form the conventional

14

1 pyrrolidinc ring. The same shall be applied hereinafter.

*2 Two spots were observed on the TLC (ethyl acetate-chloroform-acetic acid (10:5:3)), and two products could be separated by silica gel column chromatography.

5 From NMR spectra, the upper and lower spots were identified as the titled compound and (4R,4R')-3,3'-(octanedioyl)bis[2-(2-hydroxyphenyl)-4-thiazolidine-carboxylic acid] (compound 40), respectively.

*3 Silica gel, ethyl acetate-chloroform-acetic acid (10:5:3).

The compounds shown in Table I and III were prepared by the same procedure as described above.

The following compounds are also prepared by the same
15 procedure as EXAMPLE 1.

(4R)-3-carboxyacetyl-4-thiazolidinecarboxylic acid

(4R)-3-(3-carboxypropanoyl)-2-phenyl-4-thiazolidine-carboxylic acid

(4R)-3-[3-(2-carboxyethylsulfinyl)propanoyl]-2-(2-

20 hydroxyphenyl)-4-thiazolidinecarboxylic acid

(4R)-3-[[2-(carboxymethoxyethyl)oxy]acetyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(4-carboxybutanoyl)-2-(3-hydroxyphenyl)-4-thiazolidinecarboxylic acid

25 (4R)-3-(5-carboxypentanoyl)-2-(4-methylphenyl)-4-thiazolidinecarboxylic acid

1

EXAMPLE 1

(4R)-3-(7-Carboxyheptanoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid (compound 20)

5 (4R)-2-(2-Hydroxyphenyl)-4-thiazolidinecarboxylic acid
 (6.8g,) in N sodium hydroxide (30ml) and octanedioyl
 dichloride (6.3g,) were added dropwise to 1M potassium
 carbonate (60ml) with stirring under ice-cooling. After the
 addition, the reaction mixture was stirred for 1 hour at
 10 the same temperature and for additional 1 hour at room
 temperature. The solution was acidified with dilute
 hydrochloric acid, and extracted with ethyl acetate. The
 organic layer was washed with saturated sodium chloride
 solution, dried over anhydrous magnesium sulfate, and
 15 evaporated in vacuo. The residual oil^{*2} was purified by
 silica gel column chromatography to give 7.0g (61%) of the
 titled compound: mp 155-157°C (dec.) (ethyl acetate); $[\alpha]_D^{27}$
 $+134.1^\circ$ (c=0.5, methanol). IR (nujol, cm^{-1}): 3220 (OH),
 1710 (COOH), 1620 (CON), 1600 (aromatic), 1415, 1235, 1172,
 20 950, 760. NMR (DMSO-d_6 , δ): 0.53-1.73 (8H, m, $-\text{CH}_2\text{-}\overset{\text{CH}_2}{\underset{\text{CH}_2}{\text{C}}\text{-CH}_2-$),
 1.77-2.57 (4H, m, $-\text{CH}_2\text{-}\overset{\text{CH}_2}{\underset{\text{CH}_2}{\text{C}}\text{-CH}_2-$), 3.03 (1H, AB_q (A part),
 d, J=11.5, 8.5Hz, C₅^{*1}-H_A), 3.37 (1H, AB_q (B part), d, J=11.5,
 6.5Hz, C₅-H_B), 4.60 (1H, dd, J=8.5, 6.5Hz, C₄-H), 6.28
 (1H, s, C₂-H), 6.45-8.07 (4H, m, arom. H), 9.77 (1H, s, -COOH).
 25 TLC: Rf value^{*3} 0.52.

*1 The numbers represent the positions on thiazolidine or

1 thiazolidinecarboxylic acid
 (4R)-3-(6-carboxyhexanoyl)-2-(2-furyl)-4-thiazolidine-
 carboxylic acid
 (4R)-3-(7-carboxyheptanoyl)-2-(2-thienyl)-4-thiazolidine-
5 carboxylic acid
 (4R)-3-(8-carboxyoctanoyl)-2-(3-pyridyl)-4-thiazolidine-
 carboxylic acid
 (4R)-3-(9-carboxynonanoyl)-2-(1-naphthyl)-4-thiazolidine-
 carboxylic acid
10 (4R)-3-(5-carboxypentanoyl)-2-(2-hydroxy-4-sulfamoyl-
 phenyl)-4-thiazolidinecarboxylic acid
 (4R)-3-(6-carboxyhexanoyl)-2-(3-cyanophenyl)-4-
 thiazolidinecarboxylic acid
 (4R)-3-(7-carboxyheptanoyl)-2-(3-difluoromethoxyphenyl)-
15 4-thiazolidinecarboxylic acid
 (4R)-3-(8-carboxyoctanoyl)-2-(4-carboxyphenyl)-4-
 thiazolidinecarboxylic acid
 (4R)-3-(9-carboxynonanoyl)-2-(3-methylsulfinyiphenyl)-4-
 thiazolidinecarboxylic acid
20

EXAMPLE 2

(4R, 4'R)-3,3'-(Octanedioyl)bis[2-(2-hydroxyphenyl)-4-
thiazolidinecarboxylic acid (compound 40)

25 To a stirred solution of (4R)-2-(2-hydroxyphenyl)-
 4-thiazolidinecarboxylic acid (6.8g) in 1M
 potassium carbonate (45ml), octanedioyl dichloride (3.2g)

1 (4R)-3-(6-carboxyhexanoyl)-2-(4-chlorophenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(7-carboxyheptanoyl)-2-(4-methoxyphenyl)-4-thiazolidinecarboxylic acid

5 (4R)-3-(13-carboxytridecanoyl)-2-(2-nitrophenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(7-carboxyheptanoyl)-2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid

(4R)-3-[3-(2-carboxyethylthio)propanoyl]-2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid

10 (4R)-3-[[2-(carboxymethoxyethyl]oxy]acetyl]-2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(6-carboxyhexanoyl)-2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid

15 (4R)-3-(9-carboxynonanoyl)-2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(11-carboxyundecanoyl)-2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid

(4R)-3-[4-(3-carboxypropyloxy)butanoyl]-2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid

20 (4R)-3-[3-(2-carboxyethylsulfonyl)propanoyl]-2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(9-carboxynonanoyl)-2-(5-chloro-2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

25 (4R)-3-(11-carboxyundecanoyl)-2-(3,4,5-trimethoxyphenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(13-carboxytridecanoyl)-2-(2-acetoxyphenyl)-4-

1 organic layer was washed with saturated sodium chloride
 solution, dried over anhydrous magnesium sulfate, and
 evaporated in vacuo. The residual oil was purified by
 silica gel column chromatography to give 7.6g (86%) of
 5 the titled compound: mp 93-97°C (dec.); $[\alpha]_D^{27} +123.6^\circ$
 $(c=0.5, \text{ methanol})$. IR (nujol, cm^{-1}): 1720 (COOH), 1620
 (CON) , 1600 (aromatic), 1230, 1090, 855, 765. NMR (CD_3OD)
 δ : 0.7-1.7 (8H, m, $-\text{CH}_2-\text{CH}_2-\text{CH}_2-$), 1.8-2.4 (4H, m,
 $-\text{CH}_2-\text{CH}_2-\text{CH}_2-$), 3.25 (4H, d, $J=7.5\text{Hz}$, C_5-H), 4.81 (2H,
 10 t, $J=7.5\text{Hz}$, C_4-H), 6.35 (2H, s, C_2-H), 7.7-8.0 (8H, m,
 arom. H). TLC: Rf value * 0.34.

* Silica gel, ethyl acetate-chloroform-acetic acid
 (10:5:3).

15

The compounds shown in Table II and III were prepared by
 the same procedure as described above.

EXAMPLE 3

20 $(4R,4'R)-3,3'-(\text{heptanedioyl})\text{bis}[2-(3\text{-cyanophenyl})-4\text{-thiazolidinecarboxylic acid}]$ (compound 36)

25 To a stirred solution of $(4R)-2-(3\text{-cyanophenyl})-4\text{-thiazolidinecarboxylic acid}$ (4.7g) in 1M sodium carbonate (30ml), heptanedioyl dichloride (2.1g) was added dropwise under ice-cooling. The reaction mixture was stirred for 30 minutes at the same temperature, and

1 was added dropwise under ice-cooling. After the
addition, the reaction mixture was stirred for 1 hour at
the same temperature and for additional 1 hour at room
temperature. The solution was acidified with dilute
5 hydrochloric acid, extracted with ethyl acetate. The

10

15

20

25

- 1 (4R,4'R)-3,3'-(pentanedioyl)bis[2-(3-hydroxyphenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-(hexanedioyl)bis[2-(4-methylphenyl)-4-thiazolidinecarboxylic acid]
- 5 (4R,4'R)-3,3'-(heptanedioyl)bis[2-(4-chlorophenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-(octanedioyl)bis[2-(4-methoxyphenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-(tetradecanedioyl)bis[2-(2-nitrophenyl)-4-thiazolidinecarboxylic acid]
- 10
- (4R,4'R)-3,3'-(3,3'-thiodipropionoyl)bis[2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-[{(ethylenedioxy)diacetyl}bis[2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid]]
- 15
- (4R,4'R)-3,3'-(heptanedioyl)bis[2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-(decanedioyl)bis[2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-(dodecanedioyl)bis[2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid]
- 20
- (4R,4'R)-3,3'-(4,4'-oxydibutanoyl)bis[2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-(3,3'-sulfonyldipropionoyl)bis[2-(4-nitrophenyl)-4-thiazolidinecarboxylic acid]
- 25
- (4R,4'R)-3,3'-(decanedioyl)bis[2-(5-chloro-2-hydroxyphenyl)-4-thiazolidinecarboxylic acid]
-
- (4R,4'R)-3,3'-(dodecanedioyl)bis[2-(3,4,5-trimethoxyphenyl)-4-thiazolidinecarboxylic acid]

1 filtered to give the precipitates. The precipitates were dissolved in hot water (100ml), and acidified with concentrated hydrochloric acid. The separated crystals were collected by filtration to give 3.5g (59%) of the
 5 titled compound: mp 105-112°C; $[\alpha]_D^{25} +115.0^\circ$ (c=1.0, methanol). IR (nujol, cm^{-1}): 2270 (CN), 1735 (COOH), 1640 (CON), 1610 (aromatic), 1195, 790 (aromatic). NMR (DMSO-d₆) δ : 0.69-1.66 (6H, m, -CH₂-CH₂-CH₂-), 1.70-2.50 (4H, m, -CH₂-CH₂-CH₂-), 2.85-3.66 (4H, m, C₅-H), 4.69 (1H, dd, J=8.2, 6.0Hz, C₄-H), 5.13(1H, m, C₄-H), 6.16 (1H, s, C₂-H), 6.43 (1H, s, C₂-H), 7.3-8.3 (8H, m, arom. H). TLC: Rf value* 0.33.

* Silica gel, ethyl acetate-chloroform-acetic acid

15 (10:5:3).

The compounds shown in Table II were prepared by the same procedure as described above.

20 The following compounds are also prepared by the same procedure as EXAMPLE 2 or 3.

(4R,4'R)-3,3'-(propanedioyl)bis(4-thiazolidinecarboxylic acid)

(4R,4'R)-3,3'-(butanedioyl)bis(2-phenyl)-4-thiazolidine-carboxylic acid)

25 (4R,4'R)-3,3'-(3,3'-sulfinyldipropanoyl)bis[2-(2-hydroxy-phenyl)-4-thiazolidinecarboxylic acid]

(4R,4'R)-3,3'-[{(ethylenedioxy)diacetyl]bis[2-(2-hydroxy-phenyl)-4-thiazolidinecarboxylic acid]}

(4R,4'R)-3,3'-[{(ethylenedithio)diacetyl]bis[2-(2-hydroxy-

1 reaction mixture was stirred for 1 hour at the same
 temperature, and the separated crystals were filtered to
 give 4.7g (69%) of the titled compound as disodium salt:
 mp 111-113°C (dec.) (water); $[\alpha]_D^{25} +88.2^\circ$ ($c=0.5$, methanol)
 5 IR (nujol, cm^{-1}): 1635 (CON), 1585 (COO^-), 1520 and 1355
 (NO_2) , 1095, 730. TLC: Rf value * 0.28.

* Silica gel, ethyl acetate-chloroform-acetic acid
 (10:5:3).

10

EXAMPLE 5

(4R)-3-(3-Carboxypropanoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid (compound 6)

15 To a stirred solution of (4R)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid (4.5g) and triethylamine (4.0g) in acetone (100ml), succinic anhydride (2.0g) was added at room temperature, and stirred for 3 hours at the same
 20 temperature. The reaction mixture was concentrated in vacuo, and acidified with dilute hydrochloric acid. The separated oil was extracted with ethyl acetate, and the organic layer was washed with saturated sodium chloride solution, dried over anhydrous magnesium sulfate, and evaporated in vacuo to give 4.9g (75%) of the titled compound: mp 190-191°C (dec.) (ethyl acetate-methanol); $[\alpha]_D^{27} +181.6^\circ$ ($c=1.0$, methanol). IR (nujol, cm^{-1}): 3210

1 (4R,4'R)-3,3'-(tetradecanedioyl)bis[2-(2-acetoxyphenyl)-
4-thiazolidinecarboxylic acid]
(4R,4'R)-3,3'-(heptanedioyl)bis[2-(2-furyl)-4-thiazolidine-
carboxylic acid]
5 (4R,4'R)-3,3'-(octanedioyl)bis[2-(2-thienyl)-4-thiazolidine-
carboxylic acid]
(4R,4'R)-3,3'-(nonanedioyl)bis[2-(3-pyridyl)-4-thiazolidine-
carboxylic acid]
(4R,4'R)-3,3'-(decanedioyl)bis[2-(1-naphthyl)-4-thiazolidine-
10 carboxylic acid]
(4R,4'R)-3,3'-(hexanedioyl)bis[2-(2-hydroxy-5-sulfamoyl-
phenyl)-4-thiazolidinecarboxylic acid]
(4R,4'R)-3,3'-(octanedioyl)bis[2-(3-difluoromethoxyphenyl)-
4-thiazolidinecarboxylic acid]
15 (4R,4'R)-3,3'-(nonanedioyl)bis[2-(4-carboxyphenyl)-4-
thiazolidinecarboxylic acid]
(4R,4'R)-3,3'-(decanedioyl)bis[2-(3-methylsulfinyl-
phenyl)-4-thiazolidinecarboxylic acid].

20

EXAMPLE 4

(4R,4'R)-3,3'-(Heptanedioyl)bis[2-(3-nitrophenyl)-4-
thiazolidinecarboxylic acid] (compound 35)

To a stirred solution of (4R)-2-(3-nitrophenyl)-
25 4-thiazolidinecarboxylic acid (5.1g) in 1M
sodium carbonate (40ml), heptanedioyl dichloride (2.1g)
was added dropwise under ice-cooling. The

1 After the addition, the reaction mixture was stirred for
1.5 hours at the same temperature. After the filtration
of solution, the filtrate was acidified with dilute
hydrochloric acid, and extracted with ethyl acetate. The
5 organic layer was washed with saturated sodium chloride
solution, dried over anhydrous magnesium sulfate, and
evaporated in vacuo. The residual oil was purified
by silica gel column chromatography to give 7.8g (44%)
of the titled compound: $[\alpha]_D^{25} +161.6^\circ$ (c=1.0, methanol).
10 IR (KBr, cm^{-1}): 3380 (OH), 1723 (COOH, COOCH_3), 1624
(CON), 1235, 1200, 1174, 764.

The compounds shown in Table I and II were prepared by
the same procedure as described above.

15

EXAMPLE 7

(4R)-3-(3-Carboxy-2-methylpropanoyl)-2-(2-hydroxyphenyl)-
4-thiazolidinecarboxylic acid (compound 5)

20 (4R)-3-[β -(Methoxycarbonyl)-2-methylpropanoyl]-2-
(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid (compound
4) (7.1g) was dissolved in 2N sodium hydroxide (40ml)
and stirred for 1 hour at room temperature. The
resulting solution was acidified with dilute hydrochloric
acid and the separated crystals were filtered to give
25 5.1g (75%) of the titled compound: mp 163-164°C (dec.)

1 (OH), 1720 (COOH), 1618 (CON), 1602 (aromatic), 1245, 1173, 940,
 763. NMR (DMSO-d₆, δ): 2.0-2.7 (4H, m, -CH₂CH₂-), 3.03
 (1H, AB_q (A part), d, J=11.0, 10.0Hz, C₅-H_A), 3.36 (1H, AB_q
 (B part), d, J=11.0, 7.0Hz, C₅-H_B), 4.61 and 5.07 (1H,
 5 dd, J=10.0, 7.0Hz and m, C₄-H), 6.36 (1H, s, C₂-H),
 6.5-8.0 (4H, arom. H). TLC: Rf value * 0.35.

* Silica gel, ethyl acetate-chloroform-acetic acid (10:5:3).

10 The compounds shown in Table I and III were prepared by the same procedure as described above. The following compounds are also prepared by the same procedure as EXAMPLE 5.

(4R)-3-(4-carboxy-4-oxobutanoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

15 (4R)-3-(6-carboxy-3,5-dioxohexanoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

(4R)-3-[4-carboxy-3-(methoxyimino)butanoyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid.

20

EXAMPLE 6

(4R)-3-[3-(Methoxycarbonyl)-2-methylpropanoyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid (compound 4)

25 To a stirred solution of (4R)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid (11.3g) in 1M sodium carbonate (80mL), dl-3-methoxycarbonyl-2-methylpropanoyl chloride (3.2g) was added dropwise under ice-cooling.

26

1 in 20ml of anhydrous tetrahydrofuran, isobutyl chloroformate (0.39ml) was added dropwise at -15°C, and stirred for additional 2 hours at this temperature. To this solution, the methanol solution of hydroxylamine (0.3g)

5 was added dropwise at -50°C. The reaction mixture was stirred for 1 hour at room temperature, acidified with N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride solution, dried over anhydrous magnesium sulfate, and concentrated in vacuo. The residual oil was purified by silica gel column chromatography to give 0.7g (63%) of the titled compound. IR (KBr, cm^{-1}) 3220, 1727, 1625, 1595, 1200, 1092, 753.

10 NMR (acetone-d₆, δ): 1.24 (3H, t, J=7.5Hz, $\text{CO}_2\text{CH}_2\text{CH}_3$), 2.17-3.07 (4H, m, $\text{CO}-\text{CH}_2-\text{CO}$), 3.30 (1H, AB_q (A part), d, J=10.0, 2.0Hz, C_5-H_A), 3.47 (1H, AB_q (B part), d, J=10.0, 7.0Hz, C_5-H_B), 4.14 (2H, q, J=7.5Hz, CO_2CH_2), 5.18 (1H, dd, J=2.0, 7.0Hz, C_4-H), 6.40 (1H, s, C_2-H), 6.88-7.27 (4H, m, arom. H), 8.60 (2H, br. s, NHOH), 9.77 (1H, br. s,

15 20 OH)

The compounds shown in Table I were prepared by the same procedure as described above.

(4R,4'R)-3,3'-(Nonanedioyl bis[2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid methyl ester] (compound 46)

1 (ethyl acetate); $[\alpha]_D^{25} +174.1^\circ$ ($c=1.0$, methanol). IR (nujol, cm^{-1}): 3330 (OH), 1730 and 1710 (COOH), 1629 (CON), 1280, 1234, 856, 771.

5 The compounds shown in Table I and II were prepared by the same procedure as described above. The following compounds are also prepared by the same procedure as EXAMPLE 6 and 7.

10 (4R)-3-[4-(carboxymethyl)benzoyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

(4R)-3-[(4-carboxyphenyl)acetyl]-2-phenyl-4-thiazolidinecarboxylic acid

(4R)-3-(4-carboxy-3-butenoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

15 (4R)-3-(4-carboxy-2-butenoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

(4R)-3-(4-carboxy-3-butynoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

20 EXAMPLE 8

(4R)-3-[3-(N-Hydroxycarbamoyl)propanoyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid ethyl ester
(compound 10a)

25 To a stirred solution of (4R)-3-(3-carboxypropanoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid ethyl ester (compound 9a) (1.06g) and N-methylmorpholine (0.33ml)

		75a	75b
1	yield	0.4g (37%)	0.5g (47%)
	$[\alpha]_D^{25}$	-52.2° (c=1.2, MeOH)	-60.4° (c=1.0, MeOH)
5	IR (neat, cm ⁻¹)	1720, 1620, 1422, 1217, 756	1722, 1620, 1420, 1215, 755
10	NMR (CDCl ₃ , δ) 2.67-3.63 (6H, m, $\text{-CH}_2\text{-CO}_2\text{H}$, C ₅ -H, $\text{-CH}_2\text{-Ph}$), 3.83-4.83 (3H, m, $\text{-CO-CH}_2\text{-S-}$, C ₂ -H), 4.98 (1H, dd, J=4.5, 6.5Hz, C ₄ -H), 7.22 (5H, s, -C ₆ H ₅) 9.55 (-CO ₂ H)	2.70-3.50 (6H, m, $\text{-S-CH}_2\text{-CO}_2\text{H}$, C ₅ -H, $\text{-CH}_2\text{-Ph}$), 4.00-4.57 (3H, m, $\text{-CO-CH}_2\text{-S-}$, C ₂ -H) 5.02 (1H, dd, J=4.5, 9.5Hz, C ₄ -H), 7.23 (5H, s, -C ₆ H ₅), 10.00 (-CO ₂ H)	
15			

The compounds shown in Table IV were prepared by the same procedure as described above.

EXAMPLE 11

20 (4R)-3-[(Carboxymethylamino)acetyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid (compound 81)

25 (4R)-3-Chloroacetyl-2-(2-hydroxyphenyl)-4-thiazolidine-carboxylic acid (6g) was added to a stirred solution of glycine (1.5g) in N sodium hydroxide (80ml), and stirred overnight at room temperature. The solution was adjusted to pH 1.5 by 20% hydrochloric acid and washed with ethyl acetate. The aqueous layer was adjusted to pH 3.2, and

1 To a stirred solution of (4R,4'R)-3,3'-(nonanedioyl)bis-
[2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid]
(compound 47) (3.3g) in ethyl acetate (50ml), 2% ether
solution of diazomethane was added dropwise until the
5 yellow color of diazomethane was not disappeared, and
stirred continuously for 30 minutes. The reaction mixture
was concentrated in vacuo to give 3.3g (96%) of the titled
compound: mp 61-63°C (benzene); $[\alpha]_D^{23} +79.4^\circ$ (c=1.0,
methanol). IR (KBr, cm^{-1}): 1740, 1660, 1530, 1350,
10 1198, 725.

EXAMPLE 10

(4R)-3-[(2-Carboxymethylthio-3-phenyl)propanoyl]-4-thiazolidinecarboxylic acid (compound 75a and 75b)

15 (4R)-3-[(2-Mercapto-3-phenyl)propanoyl]-4-thiazolidine-
carboxylic acid (1.0g), potassium carbonate (0.7g),
chloroacetic acid (0.2g) and potassium iodide (0.05g)
were dissolved in water (5ml), and stirred for 6 hours
20 at room temperature. The reaction mixture was acidified
with 5N hydrochloric acid and extracted with ethyl acetate.
The organic layer was washed with saturated sodium chloride
solution, dried over anhydrous magnesium sulfate and
concentrated in vacuo. The titled compounds (75a and 75b)
25 were separated from the oily residue by silica gel
column chromatography.

1 compound: $[\alpha]_D^{24} -67.9^\circ$ ($c=1.2$, MeOH). IR (neat, cm^{-1}):
 3460, 1742, 1642, 1428, 1180. NMR (CDCl_3 , δ): 1.23 (6H, t,
 $J=7\text{Hz}$, $-\text{CO}_2\text{CH}_2\text{CH}_3$), 1.25 (3H, d, $J=7.2\text{Hz}$, $\text{CO}-\overset{\underset{\text{CH}_3}{\text{CH}}}{\text{N}}$), 1.67-

5 2.40 (4H, m, $\text{C}_3\text{-H}$ and $\text{C}_4\text{-H}$), 3.57 (4H, s, $-\text{N}-\overset{\underset{\text{CH}_2}{\text{CH}}}{\text{C}}\text{O}_2\text{Et}$),
 3.50-4.00 (2H, m, $\text{C}_5\text{-H}$), 4.13 (4H, q, $J=7\text{Hz}$, $-\text{COCH}_2\text{CH}_3$),
 4.10-4.67 (2H, m, $\text{C}_2\text{-H}$ and $-\text{CO}-\overset{\underset{\text{CH}_3}{\text{CH}}}{\text{N}}$), 5.03, 5.20 (2H, AB_q,
 CH_3

10 $J=12\text{Hz}$, $-\text{CH}_2\text{-Ph}$), 7.30 (5H, s, $-\text{C}_6\text{H}_5$).

The compounds shown in Table V were prepared by the same procedure as described above.

15

EXAMPLE 13

(2S)-1-[(2S)-Bis(ethoxycarbonylmethyl)amino]propanoyl-
 2-pyrrolidinecarboxylic acid (compound 86)

20 (2S)-1-[(2S)-2-bis(ethoxycarbonylmethyl)amino]propanoyl-
 2-pyrrolidinecarboxylic acid benzyl ester (compound 88)
 (0.50g) was dissolved in ethanol (10ml), and hydrogenated
 with 10% palladium on charcoal catalyst (50mg). The
 titled compound was obtained as a colorless oil. Yield
 0.40g (quant. yield); $[\alpha]_D^{24} -52.2^\circ$ ($c=1.1$, MeOH). IR
 (neat, cm^{-1}): 1742, 1640, 1442, 1190, 1130, 752. NMR
 (CDCl_3 , δ): 1.23 (6H, t, $J=7\text{Hz}$, $-\text{CO}_2\text{CH}_2\text{CH}_3$), 1.25 (3H, d,
 $J=7.2\text{Hz}$, $\text{CO}-\overset{\underset{\text{CH}_3}{\text{CH}}}{\text{N}}$), 1.67-2.50 (4H, m, $\text{C}_3\text{-H}$ and $\text{C}_4\text{-H}$),
 CH_3

1 the separated crystals were collected by filtration to
3.28g (48.2%) of the titled compound: mp 181-182°C (dec.)
(water); $[\alpha]_D^{24} +271.2^\circ$ (c=0.5, MeOH). IR (KBr, cm⁻¹):
3400, 3200, 1740, 1672, 1560, 1440, 1380, 1335, 1212,
5 752, 648, NMR (K_2CO_3 in D_2O , δ): 3.0-4.3 (6H, m, C_5-H ,
 $COCH_2NHCH_2CO_2H$), 6.33 and 6.43 (1H, each s, C_2-H), 6.6-
7.3 (3H, m, arom. H), 7.82 (1H, br. d, J=8Hz, arom. H),
9.0-10.3 (2H, br. s, -OH, $-CO_2H$).

10 The compounds shown in Table V were prepared by the
same procedure as described above.

EXAMPLE 12

15 (2S)-1-[(2S)-2-Bis(ethoxycarbonylmethyl)amino]propanoyl-
2-pyrrolidinecarboxylic acid benzyl ester (compound 88)

15 Ethyl bromoacetate (0.92g) was added dropwise under
ice-cooling to a stirred solution of L-alanyl-L-proline
benzyl ester p-toluenesulfonate (2.24g) and triethylamine
20 (1.53ml) in dry methylenechloride. After the addition,
the reaction mixture was stirred for 2 hours at room
temperature, refluxed for another 5 hours, and washed with
water and saturated sodium chloride solution. The organic
layer was dried over anhydrous magnesium sulfate and concentrate
25 in vacuo. The residual oil was purified by silica gel column
chromatography to give 1.02g (44.8%) of the titled

1 saturated sodium chloride solution. The organic layer
 was dried over anhydrous magnesium sulfate, and evaporated
 in vacuo. The residual oil was purified by silica gel
 column chromatography to give 1.3g (89%) of the titled
 5 compound: mp 110-110.5°C (benzene-hexane); $[\alpha]_D^{24} -114.0^\circ$
 $(c=1.0, \text{MeOH})$. IR (KBr, cm^{-1}): 3460, 1739, 1635, 1436,
 1200, 1166. NMR (CDCl_3 , δ): 1.23 (3H, d, $J=7\text{Hz}$, $-\text{CO}-\overset{\underset{\text{CH}_3}{\text{CH}}}{\text{N}}$)
 10 1.28 (3H, t, $J=7\text{Hz}$, $-\text{CO}_2\text{CH}_2\text{CH}_3$), 1.67-2.50 (4H, m, $\text{C}_3\text{-H}$ and
 $\text{C}_4\text{-H}$), 3.60 (2H, s, $-\text{COCH}_2\text{Ph}$), 3.33-3.90 (2H, m, $\text{C}_5\text{-H}$),
 4.16 (2H, q, $J=7\text{Hz}$, $-\text{COCH}_2\text{CH}_3$), 4.23 (2H, s, $-\text{N}-\overset{\underset{\text{CH}_3}{\text{CH}}}{\text{C}}\text{O}_2\text{Et}$),
 4.30-4.60 (1H, m, $\text{C}_2\text{-H}$), 5.03, 5.23 (2H, AB_q, $J=12.5\text{Hz}$,
 $-\text{CO}_2\text{CH}_2\text{Ph}$), 5.58 (1H, q, $J=7\text{Hz}$, $-\text{COCH}_2\text{N}$), 7.23 (5H, s,
 15 $-\text{COCH}_2\text{C}_6\text{H}_5$), 7.30 (5H, s, $-\text{CO}_2\text{CH}_2\text{C}_6\text{H}_5$).

The compounds shown in Table V were prepared by the same procedure as described above.

20

EXAMPLE 15

(2S)-1-[(2S)-2-[(1-Carboxy-3-phenylpropyl)thio]propanoyl]-2-pyrrolidinecarboxylic acid (compound 79)

25 (2S)-1-[(2S)-2-Mercaptopropanoyl]-2-pyrrolidine-carboxylic acid (2.0g), potassium carbonate (2.8g) and 2-bromo-4-phenylbutanoic acid (2.9g) were dissolved in water (40ml), and stirred overnight at room temperature. The

5

The compounds shown in Table V were prepared by the same procedure as described above. The following compounds are also prepared by the same procedure as EXAMPLE 12 and 13.

10 pyrrolidinecarboxylic acid.

(4R)-3-[[4-(1-carboxy-3-phenylpropyl)amino]benzoyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid

EXAMPLE 14

15 (2S)-1-[(2S)-2-(N-Ethoxycarbonylmethyl-N-phenylacetyl)-
amino]propanoyl]-2-pyrrolidinecarboxylic acid benzyl ester
(compound 90)

20 Phenylacetyl chloride (0.44ml) was added dropwise at room temperature to a stirred solution of (2S)-1-[(2S)-
2-(ethoxycarbonylmethyl)amino]propanoyl]-2-pyrrolidinecarboxylic acid benzyl ester (1.1g) and triethylamine (0.47ml) in dry acetone (15ml). After the addition, the reaction mixture was stirred for 1 hour at the same temperature,
25 and the precipitate was removed by filtration. The filtrate was evaporated in vacuo, and the residual oil was dissolved in ethyl acetate, and washed with water and

1 The compounds shown in Table V were prepared by the same procedure as described above.

5 In EXAMPLES and TABLES I, II, III, IV and V, "a" and "b" of compound No. represent diastereoisomers each other.

TABLES I, II, III, IV and V show various compounds and their physical constants including the compounds specified in EXAMPLES.

10

15

20

25

1 reaction mixture was acidified with 6N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride solution, dried over anhydrous magnesium sulfate, and concentrated in vacuo.

5 The residual oil was purified by silica gel column chromatography to give 2.3g (62%) of the titled compound: $[\alpha]_D^{23}$ -82.2° (c=1.2, MeOH). IR (KBr, cm^{-1}): 1740, 1720, 1610, 1455, 1438, 1185, 748, 700.

10 The compounds shown in Table IV were prepared by the same procedure as described above.

EXAMPLE 16

15 1-[(1-Carboxy-3-phenylpropyl)amino]acetyl]-2-(2-hydroxy-phenyl)-5-pyrrolidinecarboxylic acid (compound 99)

1-(Chloroacetyl)-5-(2-hydroxyphenyl)-2-pyrrolidine-
carboxylic acid [mp 204-206°C(dec.), $[\alpha]_D^{24}$ +24.5° (c=1.2, MeOH)] (2.8g) was added to a stirred solution of 2-amino-4-phenylbutanoic acid (1.8g) in N sodium hydroxide (40ml). The reaction mixture was stirred overnight at room temperature. The solution was adjusted to pH 1.5 by 20% hydrochloric acid, and washed with ethyl acetate. The aqueous layer was adjusted to pH 3.0, and the separated solid was collected by filtration to give 1.0g (24%) of the titled compound. IR (nujol, cm^{-1}): 3425, 1735, 1625, 1588.

Table-continued

Compd. [†] No.	T^1	T^2	T^3	m n	Prepn. (%)	Yield (%)	η_{sp} (°C) (Recrysln. solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR spectrum		Rf value [‡] (SiO ₂)
									Sampling [§] method	cm ⁻¹	
6	2-OH	OEt	OH	0	2	1	75 (EtOAc-MeOH)	+181.6 (1.0, MeOH, 27)	B	3210, 1720, 1602, 1245, 1173,	0.35
7	2-OH	OH	OMe	0	2	6	83 (EtOAc)	+165-166 (dec.) (1.0, MeOH, 25)	A	940, 763 3370, 1750, 1693, 1635, 1215, 1165,	0.47
8a	2-OH	OEt	OH	0	2	5	45 (EtOAc)	181-182 (0.5, MeOH, 21)	A	3310, 1727, 1703, 1637, 1595, 1235,	0.55
8b	2-OH	OEt	OH	0	2	5	23 (EtOAc)	116-118 (0.5, MeOH, 21)	A	1190, 745 3370, 1735, 1708, 1635, 1597, 1220,	0.55
9a	2-OH	OEt	OH	0	2	7	172-173 (dec.) (EtOH-H ₂ O)	-311.6 amorph.	A	1180, 760 3375, 1290, 1720, 1657, 1625, 1590,	0.22
9b	2-OH	OH	NHOH	0	2	7	172-173 (dec.) (EtOH-H ₂ O)	172-173 (dec.) amorph.	A	1240, 1088, 748 3220, 1717, 1655, 1625, 1595, 1225,	0.33
10a	2-OH	OEt	NHOH	0	2	8	172-173 (dec.) amorph.	172-173 (dec.) amorph.	A	1092, 752 3220, 1727, 1625, 1595, 1200, 1092,	0.25 [¶]
10b	2-OH	OEt	NHOH	0	2	8	172-173 (dec.) amorph.	172-173 (dec.) amorph.	A	753 3220, 1727, 1625, 1595, 1200, 1092,	0.25 [¶]
11 [¶]	2-OH	OH	OMe	1	2	6	amorph.	+55.5 (0.8, MeOH, 24)	B	1738, 1630, 1585, 1310, 1258, 750	0.32 [¶]
11a	2-OH	OH	OMe	1	2	6	205-207 (dec.) (benzene)	+94.6 (0.5, MeOH, 23)	B	3110, 1730, 1625, 1610, 1192, 1121, 758	0.25 [¶]
12a	2-OH	OH	OH	1	2	7	79 (acetone-cyclohexane)	+168.0 (0.4, MeOH, 23)	A	3370, 1718, 1625, 1598, 758	0.25 [¶]
12b	2-OH	OH	OH	1	2	7	163-164 (dec.) (acetone-cyclohexane)	+149.2 (0.4, MeOH, 23)	A	3300, 1720, 1708, 1615, 1598, 1242, 753	0.25 [¶]
13	2-OH	OH	OEt	0	3	5	65 (H ₂ O)	+153.0 (0.5, MeOH, 24)	B	3190, 1713, 1632, 1598, 1253, 1098, 943, 760	0.38
14	2-OH	OH	OEt	0	3	6	88 (EtOAc-benzene)	+145.6 (1.0, MeOH, 25)	A	3340, 1725, 1638, 1597, 1218, 1120, 768	0.48
15	H	OH	OEt	0	3	5	73 (EtOAc-MeOH)	+106.3 (1.0, MeOH, 24)	B	3170, 1753, 1709, 1631, 1423, 1177, 729	0.39

Table I

Compound No. 1 Compound No. 2a and 2b Compound 3-32

Compd. No.	T^1	T^2	T^3	m	n	Method of prepns. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR spectrum	K_f *2 value (SiO_2)	
										Sampling method	cm^{-1}	
1	OH	OH	0	6	1	55	oil	(0.8, MeOH, 26)	-84.3	C	1720, 1605, 1420, 1190,	0.39
2a	OH	OH	0	3	5	26	oil	(1.1, MeOH, 24)	-19.8	C	1015, 880	
2b	OH	OH	0	3	5	51	oil	(1.1, MeOH, 24)	-113.8	C	1733, 1710, 1650, 1600,	0.60 ^a
3	2-OH	OH	0	1	1	65	154.0-154.5 (dec.) (H ₂ O)	(0.7, MeOH, 25)	+201.4	B	1410, 1240, 1040	
4	2-OH	OH	OMe	1	1	6	44	oil	+161.6	A	1730, 1650, 1610, 1410,	0.55 ^a
5	2-OH	OH	1	1	7	75	163-164 (dec.) (EtOAc)	(1.0, MeOH, 25)	+174.1	B	1460, 1430, 1235, 1100,	0.25
									915, 770			
											3340, 1725, 1625, 1600,	
											1460, 1430, 1235, 1100,	
											3380, 1723, 1624, 1235,	0.51
											1200, 1174, 764	
											3330, 1730, 1710, 1629,	
											1280, 1234, 856, 771	0.41

Table-continued

Compd. ^f No.	T ¹	T ²	T ³	m	n	Method of prepns. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	[α] _D deg. (c, solv., °C)	IR spectrum	Rf value (SiO ₂)	
										Sampling ^{*1} method	Sampling ^{*1} cm ⁻¹	
28	2-OH	OH	OH	0	8	1	58	oil	+100.3 (1.0, MeOH, 24)	C	1710, 1230, 1620, 1090, 1410, 850, 760	0.58
29	2-OH	OH	OH	0	10	1	55	123-124 (EtOAc-cyclo- hexane)	+120.4 (0.5, MeOH, 25)	B	3120, 1410, 1705, 1233, 1620, 1090, 943, 850, 760	0.61
30	3-CN	OH	OH	0	10	1	56	oil	+56.4 (0.3, MeOH, 23)			0.56 ^{*4}
31	2-OH	OH	OH	0	12	1	59	amorph.	+101.4 (1.0, MeOH, 24)	B	3280, 760, 1700, 722, 1620,	1575, 0.52
32	3-CN	OH	OH	0	12	1	43	oil	+61.7 (0.6, MeOH, 23)			0.53 ^{*4}

⁺ a and b represent diastereoisomers of the compound.^{*1} A: KBr disk, B: nujol mull, C: neat.^{*2} EtOAc-CuCl₂-AcOH (10:5:3).^{*3} ClCH₂-EtOAc-AcOH (10:2:1).^{*4} EtOAc-CuCl₂-AcOH (7:5:1).^{*5} Dicyclohexylamine salt.

Table-continued

Compd. ^a No.	τ^1	τ^2	τ^3	Method of prep. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	[α] _D deg. (c, solv., °C)	IR spectrum		Rf value ^{*2} (SiO ₂)
								Sampling ^{*1} method	cm ⁻¹	
16	4-CN	OH	OH	0	3	5	59 (EtOAc-MeOH)	+137.7 (1.0, MeOH, 24)	B	2225, 1710, 1665, 1412, 1258
17	2-OH	OH	OH	0	4	1	62 amorph.	+115.6 (1.0, MeOH, 24)	B	3300, 1700, 1622, 1595, 760, 723
18	2-OH	OH	OH	0	5	1	60 (EtOAc)	+128.6 (0.5, MeOH, 25)	B	3300, 1710, 1620, 1595, 1280, 1095, 895, 850, 760
19	H	OH	OH	0	6	1	33 oil	+80.5 (1.0, MeOH, 24)		0.50
20	2-OH	OH	OH	0	6	1	61 (EtOAc)	+134.1 (0.5, MeOH, 27)	B	3220, 1710, 1620, 1600, 1415, 1235, 1172, 950, 760
21	2-OH	OH	OH	0	7	1	63 (EtOAc)	+70.9 (0.5, MeOH, 26)	B	3220, 1705, 1620, 1600, 1415, 1235, 1173, 1090, 830, 760
22	3-NO ₂	OH	OH	0	7	1	45 oil	+72.1 (0.4, MeOH, 27)	C	1710, 1615, 1525, 1405, 1350, 1095, 735
23	3-NO ₂	OH	OH	0	7	6	79 oil	+72.8 (1.0, MeOH, 23)	C	1735, 1663, 1620, 1533, 1352, 1240, 1190, 728
24	2-F	OH	OH	0	7	1	53 oil	+69.9 (0.5, MeOH, 23)	C	1730, 1660, 1625, 1587, 1228, 1043, 756
25	3-F	OH	OH	0	7	1	50 oil	+63.4 (0.5, MeOH, 23)	C	1730, 1655, 1610, 1590, 1243, 1042, 775
26	4-F	OH	OH	0	7	1	oil	+57.9 (0.8, MeOH, 23)		0.51 ⁴
27	2-CI 5-NO ₂	OH	OH	0	7	1	45 amorph.	+108.3 (0.5, MeOH, 23)	A	1720, 1660, 1580, 1526, 1240, 1050, 745

Table-continued

Compd. No.	T ¹	n	Method of prepns. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	[α] _D deg. (c, solv., °C)	Sampling ^{*1} method	IR spectrum cm ⁻¹		Rf ^{*2} value (SiO ₂)
								Sampling ^{*1} method	IR spectrum cm ⁻¹	
40	2-OH	6	2	86	amorph.	+123.6 (0.5, MeOH, 27)	B	1720, 1620, 1600, 1230, 1090,	855, 765	0.34
41	3-NO ₂	6	2	56	amorph.	+97.5 (0.5, MeOH, 21)	B	1730, 1650, 1605, 1520, 1345,	1095, 730	0.34
42	3-CN	6	2	58	amorph.	+98.3 (0.9, MeOH, 25)	B	2250, 1730, 1640, 1615, 1200,	790	0.38
43	4-CN	6	2	41	amorph.	+130.2 (0.9, MeOH, 25)	B	2248, 1729, 1650, 1618, 790		0.36
44	2-OH	7	2	75	amorph.	+142.7 (0.5, MeOH, 26)	B	1720, 1620, 1600, 1410, 1230,	1173, 1090, 855, 763	0.40
45	2-NO ₂	7	2	47	amorph.	+191.2 (0.6, MeOH, 25)	B	1735, 1655, 1515, 1345, 1190,	730	0.38
46 ⁶	3-NO ₂	7	9	96	61-63 (benzene)	+79.4 (1.0, MeOH, 23)	A	1740, 1660, 1530, 1350, 1198,	725	0.57
47	3-NO ₂	7	2	82	amorph.	+96.2 (0.5, MeOH, 27)	B	1725, 1615, 1520, 1445, 1350,	1095, 730	0.41
48	4-NO ₂	7	2	53	amorph.	+118.5 (0.5, MeOH, 25)	B	1730, 1650, 1600, 1510, 1345,	1185, 1110, 735	0.48
49	3-CN	7	3	65	amorph.	+112.1 (1.1, MeOH, 25)	B	2250, 1729, 1640, 1610, 790		0.41
50 ⁵	2-F	7	.4	85	140-220 (dec.)	+117.5 (1.0, MeOH, 24)	A	1580, 1225, 1173, 758		0.50
51 ⁵	3-F	7	4	88	195-210 (dec.)	+101.9 (0.5, MeOH, 25)	A	1590, 1238, 1142, 767		0.50
52	4-F	7	2	76	o.I	+75.8 (1.0, MeOH, 23)				0.39 ³

Table-continued

Compd. No.	τ^1	n (Examp. No.)	Method of prepn. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	[α]D deg. (c, solv., °C)	Sampling ^{a1} method		IR spectrum cm^{-1}	Rf ^{a2} value (SiO ₂)
							Sampling ^{a1} method	IR spectrum cm^{-1}		
53	2-Cl 5-NO ₂	7	2	79	amorph.	+167.9 (0.5, MeOH, 23)	A	1725, 1640, 1575, 1520, 1342,	0.51	
54	2-OH 5-NO ₂ NH ₂	7	2	75	amorph.	+140.9 (0.6, MeOH, 23)	B	1725, 1620, 1595, 1310, 1150,	0.42 ^{a4}	
55	2-OH	6	2	68	amorph.	+122.1 (1.0, MeOH, 24)	B	3300, 1730, 1628, 1575, 767,	0.45	
56	3-CN	8	2	47	amorph.	+104.6 (1.0, MeOH, 25)	B	2245, 1726, 1630, 1610, 790	0.37	
57	3-NO ₂	8	2	84	amorph.	+102.2 (0.5, MeOH, 25)	A	1735, 1620, 1523, 1190, 728	0.47	
58 ^{a5}	3-NO ₂	8	4	74	amorph.	+93.9 (0.5, MeOH, 23)	A	1597, 1520, 1269, 1096, 723		
59	2-OH	10	2	61	99-100.5 (dec.) (EtOAc-benzene)	+124.7 (0.5, MeOH, 27)	B	3300, 1740, 1620, 1600, 1565,	0.49	
60 ^{a5}	3-CN	10	4	63	190-195 (H ₂ O)	+109.3 (0.5, H ₂ O, 23)	B	3230, 1160, 1090, 895, 770		
61	2-Cl	12	2	66	amorph.	+69.5 (1.0, MeOH, 24)	B	3400, 2240, 1640, 1600, 1208,		
62 ^{a5}	3-CN	12	4	52	amorph.	+104.2 (0.5, MeOH, 23)	B	778, 720		
63								3400, 2225, 1605, 1320, 1207,	0.46 ^{a3}	
								775, 720		

^{a1} A: KBr disk, B: nujol mull, C: neat.^{a2} EtOAc-CHCl₂-ACOH (10:5:3).^{a3} EtOAc-CHCl₂-ACOH (7:5:1).^{a4} CHCl₃-MeOH-ACOH (3:1:1).^{a5} Disodium salt.^{a6} Dimethyl ester.

Table II

Compound No. 33-37, 39-62

Compound No. 38

Compd. No.	T^1	n prep. (Examp. No.)	Method of prep. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR spectrum		RF value ^{a,2} (SiO ₂)
							Sampling ^a method	Sampling ^a cm ⁻¹	
33	2-OH	4	2	73	124-128 (MeOH)	+182.2 (1.0, DMP, 24)	B	3280, 1726, 1620, 1596, 775,	0.23
34	2-OH	5	2	67	oil	+106.1 (0.5, MeOH, 26)	C	1725, 1625, 1600, 1410, 1235,	0.27
35	3-NO ₂ ^{a,5}	5	4	69	111-113 (dec.) (H ₂ O)	+88.2 (0.5, MeOH, 25)	B	1095, 1045, 850, 765 1635, 1585, 1520, 1355	0.28
36	3-CN	5	3	59	105-112 (H ₂ O)	+115.0 (1.0, MeOH, 25)	B	2270, 1735, 1640, 1610, 1195, 790	0.33
37	4-CN	5	3	52	amorph.	+148.2 (0.9, MeOH, 25)	B	2255, 1731, 1655, 1620, 785	0.32
38	6	2	77	oil	-124.5 (0.5, MeOH, 26)	C	1720, 1580, 1410, 1180, 1015, 880	0.09	
39	H	6	2	79	amorph.	+97.4 (1.0, MeOH, 24)	B	1720, 1625, 1585, 732	0.42

Table III

Compound No. 63-68

Compound No. 69-71

Compd. No.	τ^1	W	Method of prepn. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. Solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR spectrum		Rf value (SiO ₂)
							Sampling* ¹ method	cm ⁻¹	
63	2-OH	-CH ₂ COCH(COCH ₃)-	5	31	amorph.	+149.2 (1.2, MeOH, 25)	B	1743, 1720, 1630, 1600, 1238	0.38 ³
64	2-OH	-CH ₂ -O-CH ₂ -	1	35	amorph.	+138.6 (1.1, MeOH, 25)	A	3300, 1726, 1640, 1453, 1234, 1142	0.24 ⁴
65	3-NO ₂	{CH ₂ } ₂ {O} {CH ₂ } ₂	1	36	amorph.	+81.7 (0.9, MeOH, 24)	A	3400, 1702, 1618, 1525, 1400, 1347	0.55 ³
66	2-OH	{CH ₂ } ₂ -O-{CH ₂ } ₂ -	1	33	136-137 (EtOAc)	+147.6 (0.5, MeOH, 25)	B	3320, 1750, 1710, 1625, 1595, 1235, 1110, 855, 770	0.28
67	2-OH	{CH ₂ } ₂ -S-{CH ₂ } ₂ -	1	40	159-160 (dec.) (EtOAc)	+136.4 (0.5, MeOH, 27)	B	3360, 1710, 1627, 1599, 1435, 1235, 1099, 852, 763	0.42
68	2-OH	{CH ₂ } ₂ -S-{CH ₂ } ₂ -S-{CH ₂ } ₂ -	1	35	amorph.	+78.1 (1.0, MeOH, 24)	B	3300, 1715, 1627, 1590, 760	0.31
69	3-NO ₂	{CH ₂ } ₂ {O} {CH ₂ } ₂ -	2	44	amorph.	+106.9 (1.1, MeOH, 24)	A	3425, 1730, 1640, 1525, 1400, 1350	0.38 ³

Table-continued

Compd. No.	τ^1	W	Method of prepn. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	[α]D deg. (c, solv., °C)	IR spectrum		Rf ^{a2} value (SiO ₂)
							*Sampling *1 method	cm ⁻¹	
70	2-OH	$\{CH_2\}_2-O-\{CH_2\}_2-$	2	47	amorph.	(0.5, MeOH, 26)	B	1720, 1625, 1600, 1230, 1090, 850, 760	0.15
71	2-OH	$\{CH_2\}_2-S-\{CH_2\}_2-$	2	53	amorph.	(0.5, MeOH, 27)	B	1720, 1620, 1600, 1420, 1230, 1093, 852, 763	0.30

^{a1} A: KBr disk, B: nujol mull.
^{a2} EtOAc-CHCl₃-AcOH (10:5:3).
^{a3} EtOAc-EtOH-AcOH (40:1:1).
^{a4} CHCl₃-EtOH-AcOH (10:2:1).

Table IV

Compound No. 72-76

Compound No. 77-80

Compd. ^t No. 44	T^4	T^5	T^6	T^7	Method of prepn. (Examp. No.)	Yield (%)	mp (Recrysln. solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR spectrum	
									Sampling ^a 1 method	cm^{-1}
72a	H	CH ₃	Ph	H	10	30	151-153 (EtOAc)	+8.6 (1.0, MeOH, 23)	A	3030, 1737, 1720, 1615, 1413, 1215, 1150, 717
72b	H	CH ₃	Ph	H	10	49	oil	-161.5 (1.0, MeOH, 23)	C	1735, 1623, 1413, 1243, 1170, 1043, 699
73		H	CH ₂ CH ₂ Ph	H	10	81	amorph.	+122.1 (1.2, MeOH, 25)	A	1720-1710, 1625, 1600, 1400, 1235, 752, 698
74	H	CH ₃	CH ₂ CH ₂ Ph	H	10	52	amorph.	-97.9 (1.1, MeOH, 25)	A	1720, 1620, 1415, 750, 700 0.74
75a	H	CH ₂ Ph	H	H	10	37	oil	-52.2 (1.2, MeOH, 25)	C	1720, 1620, 1422, 1217, 756 0.13 ^b
75b	H	CH ₂ Ph	H	H	10	46	oil	-60.4 (1.0, MeOH, 25)	C	1722, 1620, 1420, 1215, 755 0.13 ^b
76	H	CH ₂ CH ₂ Ph	H	H	10	84	oil	-61.2 (1.3, MeOH, 24)	C	1735, 1630, 1615, 1420, 1242, 1172, 1043, 702, 0.66

Table-continued

Compd. No.	τ^4	τ^5	τ^6	τ^7	Method of prep. (Examp. No.)	Yield (%)	mp (C°) (Recrystn. solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR spectrum		RF value (SiO ₂)
									Sampling ^{*1} method	cm ⁻¹	
77	H	COPh	Et	15	36	oil	-46.2 (0.8, MeOH, 30)	C	1733, 1678, 1610, 1447, 1258, 1187, 1025, 1001, 751	0.32 ³	
78	H	CH ₂ Cl ₂ Ph	H	15	46	oil	-48.4 (1.1, MeOH, 26)	C	1730, 1610, 1450, 1240, 1190, 750, 703	0.72 ⁵	
79	CH ₃	CH ₂ CH ₂ Ph	H	15	62	amorph.	-82.2 (1.2, MeOH, 23)	A	1740, 1720, 1610, 1455, 1438, 1185, 748, 700	0.38	
80	H	COCl ₃	Et	15	45	oil	-49.6 (0.9, MeOH, 30),	C	1736, 1597, 1398, 1378, 1333, 1250, 1191, 1047, 860, 752	0.29 ³	

[†] a and b represent diastereoisomers of the compound.

^{*1} A: Kar disk, C: neat.

^{*2} EtOAc-CHCl₃-AcOH (10:5:3).

^{*3} Benzene-EtOAc-EtOH-AcOH (14:14:2:1).

^{*4} Benzene-EtOAc-AcOH (25:25:1).

^{*5} CHCl₃-EtOH-AcOH (10:2:1)

Tabl. V

Compound No. 99

Compd. [†] No.	T ⁴	T ⁷	T ⁸	T ⁹	T ¹⁰	Method of prepn. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	[α] _D deg. (c, solv., °C)	IR spectrum	Rf value (SiO ₂)	
										Sampling #1 method	Sampling #1 cm ⁻¹	
81		H	H	-CH ₂ -	H	11	48.2	181-182 (dec.) (H ₂ O)	(0.5, N NaOH; 24)	A	3400, 3200, 1740, 1672, 1560, 1440, 1380, 1335, 1210, 752	0.25 ²
82		H	H	-CH ₂ -	H	11	32.8	150-155 (H ₂ O)	(0.5, N NaOH; 23)	B	3420, 3210, 1650, 1240, 839, 790	0.45 ³
83		H	H		H	11	44.8	150-153 (dec.) (EtOH-ether)	(0.4, MeOH; 26)	A	3370-2900, 1655, 1602, 1175	0.74 ⁴
84		H	H		H	11	50.3	172-173 (dec.) (EtOAc)	(0.8, MeOH; 25)	A	3350, 1720, 1670, 1644, 1236, 744	0.69 ⁴
85		H	H	CH ₂ CH ₂ Ph	H	11	27.2	174-175 (dec.) (H ₂ O)	A	3400, 1720, 1610, 1492, 1452, 1240, 752, 700	1660, 1442, 1190, 1130, 752	
86	Et	C ₁₂ H ₂₅ CO ₂ Et	-CH ₂ -	H	H	13	quant.	oil	(1.1, MeOH; 24)	C	1742, 1640, 1442, 1190,	0.21 ⁵

6

- 46 -

Table-continued

Compd. [†] No.	τ^4	τ^7	τ^8	τ^9	τ^{10}	Method of prepn. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR Spectrum		Rf value (SiO ₂)
										Sampling method	cm ⁻¹	
87	H	H	CH ₂ CO ₂ H	-CH ₂ -	H	7	26	amorph.	-32.8 (1.0, MeOH, 24)	B	3400, 1720, 1640, 1460, 1380	0.10 ^{*2}
88	H	Et	CH ₂ CO ₂ Et	-CH ₂ -	CH ₂ Ph	12	45.2	oil	-67.9 (1.2, MeOH, 24)	C	3460, 1742, 1642, 1428, 1180	0.70 ^{*5}
89a	H	H	H		H	16	33	216-218 (dec.) (H ₂ O)	-141.1 (0.3, MeOH, 23)	B	2600, 1743, 1550, 1250, 1230, 800	0.20 ^{*6}
89b	H	H	H		H	16	45	218-226 (dec.) (H ₂ O)	+1.5 (0.5, MeOH, 23)	B	3310, 1610, 1575, 1160, 742	0.20 ^{*6}
90	H	Et	COCH ₂ Ph	-CH ₂ -	CH ₂ Ph	14	89	110-110.5 (benzene-n-hexane)	-114.0 (1.0, MeOH, 24)	A	3460, 1739, 1635, 1436, 1200, 1166	0.45 ^{*7}
47	H	Et	COCH ₂ Ph	-CH ₂ -	H	13	quant.	oil	-99.7 (1.1, MeOH, 23)	D	1743, 1640, 1445, 1187	0.35 ^{*5}
92	H	H	COCH ₂ Ph	-CH ₂ -	H	7	83	205-206 (EtOAc-MeOH)	-123.5 (1.0, MeOH, 24)	A	3430, 1727, 1635, 1598, 1426, 1184	0.38 ^{*8}
93	H	Et	CO(CH ₂) ₂ Ph	-CH ₂ -	CH ₂ Ph	14	93	oil	-93.2 (1.0, MeOH, 24)	C	1746, 1655, 1647, 1447, 1188	0.51 ^{*7}
94	H	Et	CO(CH ₂) ₂ Ph	-CH ₂ -	H	13	quant.	oil	-94.7 (1.2, MeOH, 23)	D	1746, 1642, 1449, 1190,	0.38 ^{*5}
95	H	H	CO(CH ₂) ₂ Ph	-CH ₂ -	H	7	96	amorph.	-104.3 (1.0, MeOH, 24)	A	3440, 1735, 1610, 1450, 1185	0.45 ^{*8}
96	H	Et	CH ₂ Ph	-CH ₂ -	CH ₂ Ph	12	46	oil	-66.0 (1.2, MeOH, 25)	D	1740, 1639, 1450, 1425, 1185	0.57 ^{*7}
97	H	CH ₂ Ph	-CH ₂ -	H	H	7	87	amorph.	-59.0 (1.1, MeOH, 25)	A	3420, 1720, 1638, 1448, 1385	0.17 ^{*2}
98	H	H	COCH ₃	Cl ₂ CH ₂ Ph	H	14	62	195-196 (dec.) (EtOAc)	**	B	1758, 1720, 1615, 1600, 1380, 750, 700	

Table-continued

Compd. [†] No.	τ^4	τ^7	τ^8	τ^9	τ^{10}	Method of prep. (Examp. No.)	Yield (%)	mp (°C) (Recrystn. solvent)	$[\alpha]_D$ deg. (c, solv., °C)	IR spectrum	Rf value (SiO ₂)	
										Sampling [‡] method	cm ⁻¹	
99 ^{*11}				H	$\text{CH}_2\text{CH}_2\text{Ph}$	H	H	16	24	amorph.	B	3425, 1735, 1625, 1588
					$-\text{CHCO}_2\text{H}$						C	1740, 1642, 1453, 1425, 1170, 740
100	H	Et	R^8	$-\text{N}^{\text{+}}\text{R}^9$	$= -\text{N}^{\text{+}}\text{CH}_2^-$	CH_2Ph	14	37	oil	(0.5, MeOH, 23)		
												-46.9
101	H	Et	R^8	$-\text{N}^{\text{+}}\text{R}^9$	$= -\text{N}^{\text{+}}\text{CH}_2^-$	H	13	90	oil	(0.5, MeOH, 23)		
												-35.9
102	H	H	R^8	H	H	H	7	90	228-230 (dec.) (MeOH)	(0.4, MeOH, 23)	B	3450, 1720, 1610, 1305, 1228, 1200, 680
												0.25 [‡]
48												

[†] a and b represent diastereoisomers of the compound.

[‡] A: KBr disk, B: nujol mull, C: Neat, D: liquid cell (CHCl_3).

^{*1} Starting material: 1-(chloroethyl)-5-(2-hydroxyphenyl)-2-pyrrolidinecarboxylic acid; mp 204-206°C (dec.), $[\alpha]_D^{24} +24.5^\circ$.

^{*2} *n*-BuOCl-AcOH-H₂O (4:2:1).

^{*3} *n*-BuOCl-AcOH-H₂O (4:1:2).

^{*4} EtOAc-CHCl₃-AcOH (10:5:3).

^{*5} EtOAc-EtOAc-AcOH (40:1:1).

^{*6} EtOAc-CHCl₃-AcOH (7:5:1).

^{*7} Benzene-EtOAc-AcOH (25:25:1).

^{*8} CHCl₃-EtOAc-AcOH (10:2:1).

^{*9} EtOAc

^{*10} *n*-Propanol-2Ba aq. NH₃ (7:3).

^{*11} Starting material: 1-(chloroethyl)-5-(2-hydroxyphenyl)-2-pyrrolidinecarboxylic acid; mp 204-206°C (dec.), $[\alpha]_D^{24} +24.5^\circ$.

1 PHARMACOLOGICAL TEST 1

It has been known that aldose reductase participates in diabetic cataract which is one of the diabetic complications and that appearance is retarded or depressed by inhibition of the aldose reductase [Acta Societatis Ophthalmologicae Japonicae, 80, 1362 (1976)].
The following method is used for the present test.

(Method)

10 Aldose reductase is purified from rat lenses according to the method of Hoyman et al. [J. Biol. Chem., 240, 877 (1965)]. Action of the compounds (I) of this invention is evaluated by measurement of optical density according to the J.H. Kinoshita's method [Invest. Ophthalm., 13, 713 (1974)]. The reaction mixture for the measurement of the aldose reductase activity is 3.0ml [0.007M phosphate buffer solution (pH 6.2), 0.46M lithium sulfate, 5×10^{-5} M NADPH, 4×10^{-4} M DL-glyceraldehyde, 10U aldose reductase, 10^{-4} to 10^{-10} M the compounds (I)]
15 as total volume, and the absorbance thereof is measured at 340nm.

(Result)

Table VI shows that the compounds (I) of this invention have a strong aldose reductase inhibition effect.

1 Table VI. Inhibitory Activity of the Thiazolidine
Compounds against Aldose Reductase

	Compd. No.	IC_{50} (M) *1
5	22	8.2×10^{-10}
	23	1.1×10^{-8}
	47	1.6×10^{-10}
	56	1.7×10^{-9}
10	57	5.4×10^{-9}
	Control *2	1.0×10^{-7}

*1 Molar concentration of a compound producing 50% inhibition of aldose reductase.

*2 Quercitrin: referred to Acta Societatis Ophthalmologicae Japonicae, 80, 1369-1370 (1976).

PHARMACOLOGICAL TEST 2

As the method of measurement of angiotensin I-converting enzyme activity, bioassay for the contractile response of isolated smooth muscle or the pressor response of normal animals and biochemical assay for the enzyme isolated from lung or other organs of animals are known. The former is found more advantageous than the latter for the examination of the conversion of angiotensin I to angiotensin II in vivo.

1 In the present study, therefore, we adopted the
bioassay for contractile response of isolated guinea
pig ileum to angiotensin I.

5 (Method)

Isolated guinea pig ileum was suspended in the organ bath containing 20ml of Tyrode's solution of 30°C gassed with 95% O₂ + 5% CO₂. The contraction induced by the addition of angiotensin I (0.1μg/ml) at intervals 10 of 10 minutes was recorded on a recticorder (Nihon Koden) for 90 seconds using FD pick up (ST-1T-H, Nihon Koden)

The test compounds were added to the bath 5 minutes before the addition of angiotensin I.

15 The inhibitory activity of angiotensin I-converting enzyme was calculated by the following formula.

$$\frac{A - B}{A} \times 100$$

A: contractile intensity of angiotensin I
before addition of the compound

20 B: contractile intensity of angiotensin I
after addition of the compound

From the fact that kininase II, which destroys bradykinin having contractive action on isolated guinea pig ileum, is thought to be identical with angiotensin I-converting enzyme augmentation of the contractile 25 response to bradykinin by test compounds was examined

1 by using bradykinin (0.005 μ g/ml) in place of angiotensin I according to the above mentioned method.

(Result)

Concentration of a number of the compounds of this
5 invention, which produced 50% inhibition of angiotensin I activity or augmentation of bradykinin activity inducing the contraction of guinea pig ileum, fell in the range of 10^{-7} ~ 10^{-9} M.

10 PHARMACOLOGICAL TEST 3

The activity of angiotensin I-converting enzyme was measured by spectrophotometry according to the method of D.W. Cushman and H.S. Cheung [Biochem. Pharmacol., 20, 1637 (1971)]. That is, the absorbance of hippuric acid was measured, which is liberated by incubating 15 hippuryl-L-histidyl-L-leucine (HHL) as substrate in the presence of angiotensin I-converting enzyme extracted from rabbit lung.

20 (Method)

The reaction mixture is as follows:

100mM phosphate buffer (pH 8.3)

300mM sodium chloride

5mM HHL

25 10^{-3} ~ 10^{-9} M enzyme inhibitor

5mU enzyme

1 0.25ml of the above mixture was incubated at 37°C
for 30 minutes and the reaction was stopped by adding
0.25ml of 1 N hydrochloric acid. To this solution,
1.5ml of ethyl acetate was added in order to extract
5 hippuric acid. 1.0ml of ethyl acetate layer was col-
lected and evaporated to dryness, and the residue ob-
tained was dissolved in 1.0ml of water. The absorbance
of this solution was measured at 228nm.

The inhibitory activity of angiotensin I-converting
10 enzyme was calculated by the following formula:

$$\text{Percent inhibition} = \frac{A - B}{A} \times 100$$

A: absorbance of reaction solution before
addition of the compound

B: absorbance of reaction solution after
15 addition of the compound

Concentration of compound producing 50% inhibition of
angiotensin I-converting enzyme (IC_{50})

The solution containing compounds at the concentra-
20 tion of $1 \times 10^{-3} M$ to $1 \times 10^{-9} M$ was incubated and percent
inhibition at each concentration was calculated accord-
ing to the above formula, and then IC_{50} , concentration
of the compound producing 50% inhibition of the enzyme
activity, was determined.

25 (Result)

IC_{50} of a number of the compounds of this invention,

1 fell in the range of 10^{-7} ~ 10^{-10} M.

TOXICITY TEST

The acute toxicity of compounds 47 and 56 is 1000 -
5 1500mg/kg.

(Experimental animals)

The male ddY-std. strain mice (4 weeks of age,
weighing 19-21g) were placed in a breeding room of con-
stant temperature and humidity ($23\pm1^{\circ}\text{C}$, $55\pm5\%$) and fed
10 freely pellet diet (CE-2, Clea Japan, Inc.) and water
ad. libitum for a week. The mice showing the normal
growth were selected for the experiment.

15 (Method of administration)

Test compounds are dissolved in distilled water and
administered (i.v.) in a dose of 0.5ml/20g body weight.

It is found in the above pharmacological and
toxicity test that the compounds (I) of this invention
20 are useful as drugs for therapy or prophylaxis of the
diabetic complications and as antihypertensive agents.

In case the compounds are used for preventing or
relieving diabetic complications, the dosage forms are
tablet, capsule, granule, powder, suppository, injection,
25 ophthalmic solution, ophthalmic ointment, etc. These
preparations can also contain general excipients.

1 On the other hand, in case the compounds are used
 for reducing blood pressure, they can be given with the
 combination of diuretics such as probenecid, carinamide,
 hydroflumethiazide, furosemide, and bumetanide same as
 5 other antihypertensive agents. The compounds can be
 administered either orally or parenterally. The dosage
 forms are tablet, capsule, granule, powder, suppository,
 injection, etc. In the treatment of hypertension, these
 preparations can contain not only general excipients
 10 but also other antihypertensive agents such as reserpine,
 α -methyldopa, guanethidine, clonidine, hydralazine, etc.,
 or β -adrenergic blocking agents such as propranolol,
 alprenolol, pindolol, bufetolol, bupranolol, bunitrolol,
 practolol, oxprenolol, indenolol, timolol, bunolol, etc.
 15 The dose is adjusted depending on symptom, dosage
 form, etc. But, usual daily dosage is 1 to 5000mg, pref-
 erably 10 to 1000mg, in one or a few divided doses.

EXAMPLES OF FORMULATION

20 (1) Oral drug

(a) tablet

	compound 13	50mg
	lactose	120mg
	crystalline cellulose	60mg
25	calcium carboxymethylcellulose	7mg
	magnesium stearate	3mg
	Total	240mg

1	compound 22	100mg
	lactose	95mg
	crystalline cellulose	45mg
	calcium carboxymethylcellulose	7mg
5	magnesium stearate	3mg

	Total	240mg
--	-------	-------

10	compound 23	150mg
	lactose	60mg
	crystalline cellulose	30mg
	calcium carboxymethylcellulose	7mg
	magnesium stearate	3mg

	Total	250mg
--	-------	-------

15	compound 56	150mg
	lactose	60mg
	crystalline cellulose	30mg
	calcium carboxymethylcellulose	7mg
20	magnesium stearate	3mg

	Total	250mg
--	-------	-------

25	compound 74	150mg
	lactose	60mg
	crystalline cellulose	30mg
	calcium carboxymethylcellulose	7mg

1 magnesium stearate 3mg,

Total 250mg

compound 88 150mg

5 lactose 60mg

crystalline cellulose 30mg

calcium carboxymethylcellulose 7mg

magnesium stearate 3mg

Total 250mg

10

The tablets may be treated with common film-coating
and further with sugar-coating.

(b) granule

15 compound 13 30mg

polyvinylpyrrolidone 25mg

lactose 385mg

hydroxypropylcellulose 50mg

talc 10mg

20 Total 500mg

25 compound 22 30mg

polyvinylpyrrolidone 25mg

lactose 385mg

hydroxypropylcellulose 50mg

1	talc	10mg
	<hr/>	
	Total	500mg

5	compound 94	30mg
	polyvinylpyrrolidone	25mg
	lactose	385mg
	hydroxypropylcellulose	50mg
	talc	10mg
	<hr/>	
10	Total	500mg

(c) powder

15	compound 13	250mg
	lactose	240mg
	starch	480mg
	colloidal silica	30mg
	<hr/>	
	Total	1000mg

20	compound 65	300mg
	lactose	230mg
	starch	440mg
	colloidal silica	30mg
	<hr/>	
	Total	1000mg

25	compound 79	300mg
	lactose	230mg

1	starch	440mg
	colloidal silica	30mg
	<u>Total</u>	1000mg

5	compound 100	300mg
	lactose	230mg
	starch	440mg
	colloidal silica	30mg
	<u>Total</u>	1000mg

10

(d) capsule

	compound 13	50mg
	lactose	102mg
15	crystalline cellulose	36mg
	colloidal silica	2mg
	<u>Total</u>	190mg

15

	compound 23	100mg
20	lactose	52mg
	crystalline cellulose	36mg
	colloidal silica	2mg
	<u>Total</u>	190mg

20

25	compound 74	200mg
	glycerin	179.98mg

1 butyl p-hydroxybenzoate 0.02mg
 Total 380mg

5 compound 81 30mg
 glycerin 349.98mg
 butyl p-hydroxybenzoate 0.02mg
 Total 380mg

10 compound 98 200mg
 glycerin 179.98mg
 butyl p-hydroxybenzoate 0.02mg
 Total 380mg

15 (2) Injection

(a) 1 to 30mg of compound 9B is contained in 1ml of
 the aqueous solution (pH 6.5-7.0).

(b) 1 to 30mg of compound 73 is contained in 1ml of
 20 the aqueous solution (pH 6.5-7.0).

(3) Ophthalmic solution

The following composition is contained in 5ml
 of the aqueous solution (pH 6.0).

25

Compound 23 50mg

1	propyl p-hydroxybenzoate	0.7mg
	methyl p-hydroxybenzoate	1.3mg
	sodium hydroxide	proper quantity

5 (4) Ophthalmic ointment

The following composition is contained in 1g.

	compound 22	20mg
	white petrolatum	889.8mg
10	mineral oil	100mg
	butyl p-hydroxybenzoate	0.2mg

(5) Suppository

The following composition is contained in 1g.

15	compound 47	50mg
	polyethylene glycol 1000	800mg
	polyethylene glycol 4000	150mg

20

25

1. A compound of the formula [I]

wherein

Q¹ and Q² each is methylene or sulfur, but Q¹ and Q²
10 are not sulfur at the same time;

R^A is R^a or R^b;

R^B and R^C each is R^c;

15 W is $\left(\begin{array}{c} R^1 \\ | \\ C \\ | \\ R^2 \end{array} \right)_l \left(\begin{array}{c} R^3 \\ | \\ C \\ | \\ R^4 \end{array} \right)_m X \left(\begin{array}{c} R^5 \\ | \\ C \\ | \\ R^6 \end{array} \right)_n \left(\begin{array}{c} R^7 \\ | \\ C \\ | \\ R^8 \end{array} \right)_p Y \left(\begin{array}{c} R^9 \\ | \\ C \\ | \\ R^{10} \end{array} \right)_q \left(\begin{array}{c} R^{11} \\ | \\ C \\ | \\ R^{12} \end{array} \right)_r Z \left(\begin{array}{c} R^{13} \\ | \\ C \\ | \\ R^{14} \end{array} \right)_s \left(\begin{array}{c} R^{15} \\ | \\ C \\ | \\ R^{16} \end{array} \right)_t$, wherei

X, Y and Z each is single bond, -CH₂-, -C=C-, -C≡C-, - $\text{C}_6\text{H}_4\text{R}^{19}$ -,
-O-, -CO-, -S-, -SO-, -SO₂-, -C-
20 $\begin{array}{c} || \\ \text{N}-\text{R}^{20} \end{array}$, -NHCONH-, -N $\text{C}_6\text{H}_4\text{N}-$ or -N- $\begin{array}{c} || \\ \text{R}^{21} \end{array}$;

l, m, n, p, q, r, s and t each is 0, 1, 2 or 3;
R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸,
R¹⁹, R²⁰ and R²¹ each is R^d; R²³

25 R^A is R^b when W is -CH-NH-C- or -CH-(CH)-O-, wherein R²²,
R²³, R²⁴, R²⁵ and R²⁶ each is R^d;

R^a is selected from the group consisting of
(i) hydrogen, lower alkyl and lower alkenyl, and
(ii) lower alkyl and lower alkenyl substituted by at least one
substituent selected from the group consisting of lower alkyl,

1 lower alkenyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

5 R^b is selected from the group consisting of
(a) (i) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl...and
(ii) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, acyloxy,
10 halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl, and
(iii) carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl, aryl-oxycarbonyl and heteroaryloxycarbonyl;

15 (b) (i) phenyl and naphthyl, and
(ii) phenyl and naphthyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxycarbonyl,
20 aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

(c) (i) furyl, thienyl and pyridyl, and
(ii) furyl, thienyl and pyridyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxy-carbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

25

1 R^C is selected from the group consisting of
 (a) (i) hydroxy, lower alkoxy and amino, and
 (ii) lower alkoxy and amino substituted by at least one substituent
 selected from the group consisting of lower alkyl, aralkyl,
 heteroaralkyl, aralkenyl, heteroaralkenyl, hydroxy, lower alkoxy,
 5 aralkyloxy, heteroaralkyloxy, aryloxy, heteroaryloxy, acyloxy,
 aryl, heteroaryl, substituted aralkyl and substituted aryl
 wherein the substituent is lower alkyl, lower alkoxy, halogen
 or amino;

(b) (i) aryloxy and heteroaryloxy, and
 (ii) aryloxy and heteroaryloxy substituted by at least one
 10 substituent selected from the group consisting of lower alkyl,
 hydroxy, lower alkoxy, halogen and amino, and

10 (c)

15 R^d is selected from the group consisting of
 (a) (i) hydrogen, lower alkyl, lower alkenyl, aralkyl, hetero-
 aralkyl, alkanoyl, arylalkanoyl, heteroarylalkanoyl, hydroxy,
 carboxy, amino, mercapto and sulfo, and
 (ii) lower alkyl, lower alkenyl, aralkyl, heteroaralkyl, alkanoyl,
 20 arylalkanoyl, heteroarylalkanoyl, hydroxy, carboxy, amino,
 mercapto and sulfo substituted by at least one substituent
 selected from the group consisting of lower alkyl, lower alkenyl,
 lower alkoxy, lower alkanoyl, aryl, heteroaryl, acyloxy,
 aroyl, hydroxy, carboxy, amino, guanidino, mercapto, acylamino,
 acylmercapto, lower alkoxy carbonyl, sulfo, halogen, nitro,
 cyano, sulfamoyl, lower alkylaminosulfonyl, lower alkylthio
 and lower alkylsulfinyl;
 25 (b) (i) phenyl and naphthyl, and
 (ii) phenyl and naphthyl substituted by at least one substituent

1 selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkyleneoxy, lower alkoxycarbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl
5 (c) (i) furyl, thienyl and pyridyl, and
(ii) furyl, thienyl and pyridyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkyleneoxy, lower alkoxycarbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl
10 and salts thereof.

2. A compound of claim 1 wherein $-Q^1-Q^2-$ is $-\text{CH}_2\text{CH}_2-$, $-\text{SCH}_2-$ or $-\text{CH}_2\text{S}-$.

15 3. A compound of claim 1 wherein R^a is hydrogen, methyl, ethyl, 1-methylethyl, propyl, 2-methylpropyl, butyl, 2,6-dimethyl-5-heptenyl, cyclohexyl, S-acetyl-2-mercaptoproethyl or 2-mercaptoproethyl.

20 4. A compound of claim 1 wherein R^b is benzyl, 2-phenylethyl, 4-methylbenzyl, 4-methoxybenzyl, 2-hydroxybenzyl, 4-hydroxybenzyl, 3-fluorobenzyl, 3-nitrobenzyl, 3-cyanobenzyl, 2-(4-methoxyphenyl)ethyl, 2-(2-hydroxyphenyl)ethyl, 2-(4-hydroxyphenyl)ethyl, 2-(3-fluorophenyl)ethyl, 2-[3-(trifluoromethyl)phenyl]ethyl, 2-(3-nitrophenyl)ethyl, 2-(3-cyanophenyl)ethyl, 2-pyridylmethyl, 4-pyridylmethyl, 2-furylmethyl, 2-(2-pyridyl)ethyl, 2-(4-pyridyl)ethyl, 2-(2-furyl)ethyl, phenyl, 25 4-methylphenyl, 2-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-nitrophenyl, 3-nitrophenyl, 4-nitrophenyl, 2-chloro-5-nitrophenyl, 4-dimethyl-

0031104

1 aminophenyl, 4-acetaminophenyl, 4-[(benzyloxycarbonyl)amino]phenyl,
 2-carboxyphenyl, 4-carboxyphenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
 4-hydroxyphenyl, 3-benzoxyphenyl, 4-(benzyloxycarbonyloxy)-
 phenyl, 3,4-dihydroxyphenyl, 5-chloro-2-hydroxyphenyl, 2-methoxy-
 phenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxy-
 phenyl, 2-hydroxy-3-methoxyphenyl, 2-hydroxy-4-methoxyphenyl,
 4-hydroxy-3-methoxyphenyl, 3,4-methylenedioxyphenyl, 2-cyano-
 phenyl, 3-cyanophenyl, 4-cyanophenyl, 2-nitrosophenyl, 3-
 nitrosophenyl, 4-nitrosophenyl, 2-hydroxy-5-sulfamoylphenyl,
 2-hydroxy-5-[(dipropylamino)sulfonyl]phenyl, 3-(methylsulfinyl)phenyl,
 3-(difluoromethoxy)phenyl, 1-naphthyl, 2-furyl, 2-(5-methyl)furyl,
 2-thienyl, 3-pyridyl or 4-pyridyl.

0

5. A compound of claim 1 wherein R^C is hydroxy, methoxy,
 ethoxy, butoxy, amino, hydroxyamino, succinimidomethoxy, 1-
 succinimidooethoxy, phthalimidomethoxy, 2-phthalimidooethoxy,
 pivaloyloxymethoxy, 1-pivaloyloxyethoxy, benzyloxy, phenoxy,
 benzyloxyamino or

5 6. A compound of claim 1 wherein R^D is hydrogen, methyl,
 ethyl, propyl, 1-methylethyl, 2-methylpropyl, 4-methylpentyl,
 vinyl, allyl, 2-butenyl, 1,3-butanediyl, 1-methylvinyl, hydroxy-
 methyl, carboxymethyl, 2-carboxyethyl, cyclohexyl, cyclo-
 hexylmethyl, benzyl, 2-phenylethyl, 3-phenylbutyl, 2-(1-naphthyl)-
 ethyl, 2-(4-chlorophenyl)ethyl, 2-(3,4-dichlorophenyl)ethyl,
 4-methoxybenzyl, 2-(4-methoxyphenyl)ethyl, 4-hydroxybenzyl,
 2-(4-hydroxyphenyl)ethyl, (2-pyridyl)methyl, (4-pyridyl)-
 methyl, 2-(2-pyridyl)ethyl, 2-(4-pyridyl)ethyl, (4-imidazolyl)-
 methyl, 3-indolylmethyl, 2-(methylthio)ethyl, 4-aminobutyl,
 5-aminopentyl, 4-guanidinobutyl, 4-(aminomethyl)benzyl, phenoxy-
 methyl, (phenylthio)methyl, 1-amino-2-phenylethyl, 1-amino-
 3-methylbutyl phenyl, naphthyl, 4-methylphenyl, 2-chloro-
 phenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2-fluorophenyl,
 3-fluorophenyl, 4-fluorophenyl, 2-nitrophenyl, 3-nitrophenyl,
 4-nitrophenyl, 2-chloro-5-nitrophenyl, 4-dimethylaminophenyl,
 4-acetaminophenyl, 2-carboxyphenyl, 4-carboxyphenyl, 2-hydroxy-
 phenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 3-benzoxypyhenyl, 3,4-

1 dihydroxyphenyl, 5-chloro-2-hydroxyphenyl, 2-methoxyphenyl,
 4-methoxyphenyl, 3,4-dimethoxyphenyl, 3,4,5-trimethoxyphenyl,
 2-hydroxy-3-methoxyphenyl, 2-hydroxy-5-sulfamoylphenyl, 3-
 (methylsulfinyl)phenyl, 3-(difluoromethoxy)phenyl, 2-furyl, 2-(5-
 methyl)furyl, 2-thienyl, 3-pyridyl or 4-pyridyl.

5

7. A compound of claim 1 wherein W is $-\text{CH}-(\text{CH}_2)_{0-12}\text{CH}-$,
 $\overset{\text{R}}{\underset{\text{R}^1}{\text{CH}}}-(\text{CH}_2)_{0-6}\overset{\text{C}=\text{C}}{\underset{\text{R}^{17}\text{R}^{18}}{\text{CH}_2}}(\text{CH}_2)_{0-6}\overset{\text{CH}-}{\underset{\text{R}^1}{\text{CH}}}$,

8. A compound of claim 1, wherein R^{A} is R^{B} when W is
 $\overset{\text{R}^{22}}{\underset{\text{R}^1}{\text{CH}}}-\text{NH}-\overset{\text{R}^{23}}{\underset{\text{C}}{\text{C}}}-$ or $\overset{\text{R}^{25}}{\underset{\text{R}^1}{\text{CH}}}-\text{C}(\text{CH}_2)_{0-2}\overset{\text{R}^{26}}{\underset{\text{R}^1}{\text{CH}}}$.

25

9. A compound of claim 4 which is $(4\text{R})-3-[8-(\text{ethoxy}-\text{carbonyl})\text{octanoyl}]-2-(3\text{-nitrophenyl})-4\text{-thiazolidinecarboxylic acid}$.

1 10. A compound of claim 4 which is (4R,4'R)-3,3'-(nonane-
dioyl)bis[2-(3-nitrophenyl)-4-thiazolidinecarboxylic acid methyl
ester].

5 11. A compound according to claim 4 which is (4R)-3-(11-
carboxyundecanoyl)-2-(3-cyanophenyl)-4-thiazolidinecarboxylic
acid;

(4R,4'R)-3,3'-(decaedioyl)bis[2-(3-cyanophenyl)-4-thiazolidine-
carboxylic acid];

(4R,4'R)-3,3'-(dodecanedioyl)bis[2-(3-cyanophenyl)-4-
thiazolidinecarboxylic acid];

10 (4R)-3-(8-carboxyoctanoyl)-2-(3-nitrophenyl)-4-thiazolidine-
carboxylic acid;

(4R,4'R)-3,3'-(nonanedioyl)bis[2-(3-nitrophenyl)-4-thiazolidine-
carboxylic acid];

(4R)-3-(7-carboxyheptanoyl)-2-(2-hydroxyphenyl)-4-thiazolidine-
carboxylic acid.

15 12. A compound according to claim 4 which is (4R)-3-[[(1-carboxy-3-phenylpropyl)amino]acetyl]-2-(2-hydroxyphenyl)-
4-thiazolidinecarboxylic acid;

(4R)-3-[[(1-(ethoxycarbonyl)-3-phenylpropyl)amino]acetyl]-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid.

20 13. A compound according to claim 4 which is 1-[[[(1-
carboxy-3-phenylpropyl)amino]acetyl]-2-(2-hydroxyphenyl)-5-
pyrrolidinecarboxylic acid;

1-[[[(1-(ethoxycarbonyl)-3-phenylpropyl)amino]acetyl]-2-(2-
hydroxyphenyl)-5-pyrrolidinecarboxylic acid.

25 14. A compound of claim 4 which is (4R)-3-[[[(1-carboxy-
3-phenylpropyl)thio]acetyl]-2-(2-hydroxyphenyl)-4-thiazolidine-
carboxylic acid.

15. A compound of claim 4 which is (4R)-3-(4-carboxy-
butanoyl)-2-(2-hydroxyphenyl)-4-thiazolidinecarboxylic acid.

1

16. A process for preparing a compound of the formula [I]

5

[I]

wherein

Q^1 and Q^2 each is methylene or sulfur, but Q^1 and Q^2 are
10 not sulfur at the same time;

R^{A} is R^{a} or R^{b} ;

R^{B} and R^{C} each is R^{c} ;

15

X, Y and Z each is single bond, $-\text{CH}_2-$, $-\text{C}=\text{C}-$, $-\text{C}\equiv\text{C}-$,
 $\begin{array}{c} \text{R}^{17} \text{R}^{18} \\ | \quad | \\ -\text{C}-\text{C}- \end{array}$

20

or $-\text{N}-$;
 $\begin{array}{c} \text{R}^{21} \\ | \\ \text{R} \end{array}$

l , m , n , p , q , r , s and t each is 0, 1, 2 or 3;

R^1 , R^2 , R^3 , ..., R^{20} and R^{21} each is R^d ;

25

R^{A} is R^{b} when W is $-\text{CH}-\text{NH}-\text{C}-$ or $-\text{CH}-\text{C}(=\text{O})-\text{O}-$, wherein R^{22} ,
 $\begin{array}{c} \text{R}^{23} \\ | \\ \text{R} \end{array}$, R^{24} , R^{25} and R^{26} each is R^d .

1 R^a is selected from the group consisting of
(i) hydrogen, lower alkyl and lower alkenyl, and
(ii) lower alkyl and lower alkenyl substituted by at least one
5 substituent selected from the group consisting of lower alkyl,
lower alkenyl, hydroxy, lower alkoxy, halogeno-lower alkoxy,
acyloxy, halogen, nitro, cyano, amino, lower alkylamino, di-
alkylamino, acylamino, mercapto, acylmercapto, lower alkylthio,
carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl, aryloxycarbonyl,
sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

b R^b is selected from the group consisting of
(a) (i) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl, and
10 (ii) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl
substituted by at least one substituent selected from the group
consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl,
hydroxy, lower alkoxy, halogeno-lower alkoxy, acyloxy, halogen,
nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino,
mercrapo, acylmercapto, lower alkylthio, carboxy, lower alkoxy-
carbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower
15 alkylaminosulfonyl and lower alkylsulfinyl, and
(iii) carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl, aryloxy-
carbonyl and heteroaryloxycarbonyl;

(b) (i) phenyl and naphthyl, and
(ii) phenyl and naphthyl substituted by at least one substituent
selected from the group consisting of lower alkyl, lower alkenyl,
20 halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy,
aralkyloxy, aryloxy, acyloxy, halogen, nitro, cyano, amino,
lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto,
lower alkylthio, carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl,
aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower
alkylsulfinyl;

25 (c) (i) furyl, thienyl and pyridyl, and
(ii) furyl, thienyl and pyridyl substituted by at least one
substituent selected from the group consisting of lower alkyl,

0031104

1 lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy,
 halogeno-lower alkoxy aralkyloxy, aryloxy, acyloxy, halogen, nitro,
 cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto,
 acylmercapto, lower alkylthio, carboxy, lower alkoxycarbonyl,
 aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkyl-
 5 aminosulfonyl and lower alkylsulfinyl;

R^C is selected from the group consisting of

(a) (i) hydroxy, lower alkoxy and amino, and

(ii) lower alkoxy and amino substituted by at least one substituent
 selected from the group consisting of lower alkyl, aralkyl,
 heteroaralkyl, aralkenyl, heteroaralkenyl, hydroxy, lower alkoxy,
 10 aralkyloxy, heteroaralkyloxy, aryloxy, heteroaryloxy, acyloxy,
 aryl, heteroaryl, substituted aralkyl and substituted aryl
 wherein the substituent is lower alkyl, lower alkoxy, halogen
 or amino;

(b) (i) aryloxy and heteroaryloxy, and

(ii) aryloxy and heteroaryloxy substituted by at least one
 15 substituent selected from the group consisting of lower alkyl,
 hydroxy, lower alkoxy, halogen and amino, and

(c)

20

R^d is selected from the group consisting of

(a) (i) hydrogen, lower alkyl, lower alkenyl, aralkyl, hetero-
 aralkyl, alkanoyl, arylalkanoyl, heteroarylalkanoyl, hydroxy,
 carboxy, amino, mercapto and sulfo, and

(ii) lower alkyl, lower alkenyl, aralkyl, heteroaralkyl,
 alkanoyl arylalkanoyl, heteroarylalkanoyl, hydroxy, carboxy,
 25 amino, mercapto and sulfo substituted by at least one
 substituent selected from the group consisting of lower alkyl,
 lower alkenyl, lower alkoxy, lower alkanoyl, aryl, heteroaryl,
 acyloxy, aroyl, hydroxy, carboxy, amino, quanidino, mercapto,

1 acylamino, acylmercapto, lower alkoxy carbonyl, sulfo, halogen, nitro, cyano, sulfamoyl, lower alkylaminosulfonyl, lower alkylthio and lower alkylsulfinyl;

(b) (i) phenyl and naphthyl, and
(ii) phenyl and naphthyl substituted by at least one substituent

5 selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkylene-dioxy, lower alkoxy carbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

(c) (i) furyl, thienyl and pyridyl, and
(ii) furyl, thienyl and pyridyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkylene-dioxy, lower alkoxy carbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

10 and salts thereof

which comprises

(i) reacting a compound of the formula [II]

20

[II]

25 wherein R^A and R^B may include suitable protection of any reactive groups with the reactive derivative of a carboxylic acid of the formula [III] (e.g., acyl halide, acid anhydride, mixed anhydride, active ester, etc.)

1

[III]

wherein R^C and W may include suitable protection of any reactive groups, followed by removal of protective groups, if necessary, to yield a compound of the formula [I];

5

(ii) reacting a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [IV]

[IV]

wherein W^1 is $\begin{array}{c} R^1 \\ | \\ C \\ | \\ R^2 \end{array} \begin{array}{c} R^3 \\ | \\ C \\ | \\ R^4 \end{array}$, and may include suitable protection of

10

any reactive groups, and L is a leaving group to yield a comp of the formula [V]

15

[V],

20

and then reacting a compound of the formula [V] with a compound of the formula [VI]

[VI]

wherein W^2 is $\begin{array}{c} R^5 \\ | \\ C \\ | \\ R^6 \end{array} \begin{array}{c} R^7 \\ | \\ C \\ | \\ R^8 \end{array}$, W^3 is $\begin{array}{c} R^9 \\ | \\ C \\ | \\ R^{10} \end{array} \begin{array}{c} R^{11} \\ | \\ C \\ | \\ R^{12} \end{array}$, W^4 is $\begin{array}{c} R^{13} \\ | \\ C \\ | \\ R^{14} \end{array} \begin{array}{c} R^{15} \\ | \\ C \\ | \\ R^{16} \end{array}$

25

and W^2 , W^3 , W^4 , X, Y, Z and R^C may include suitable protection

1 of any reactive groups, followed by removal of protective groups, if necessary, to yield a compound of the formula [I];

5 (iii) reacting a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [VII]

and then with a compound of the formula [VIII]

10 by the same method as (ii) above to yield a compound of the formula [I];

(iv) reacting a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [IX]

and then with a compound of the formula [X]

20 by the same method as (ii) above to yield a compound of the formula [I];

(v) reacting a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [XI]

25 and then with a compound of the formula [XII]

[XII]

by the same method as (ii) above to yield a compound of the formula [I];

5 (vi) reacting a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [XIII]

[XIII],

and then with a compound of the formula [XIV]

[XIV]

by the same method as (ii) above to yield a compound of the formula [I], or

15 (vii) reacting a compound of the formula [II] with the reactive derivative of carboxylic acid of the formula [XV]

[XV],

and then with a compound of the formula [XVI]

[XVI]

20

by the same method as (ii) above to yield a compound of the formula [I];

furthermore converting R^B , R^C , X, Y and Z to other functional groups by the general methods, if desired, to obtain a desired compound of the formula [I].

25

17. A composition comprising a compound of the formula [I]

1

5

[I]

wherein

0

Q^1 and Q^2 each is methylene or sulfur, but Q^1 and Q^2 are not sulfur at the same time;

R^A is R^a or R^b ;

R^B and R^C each is R^c ;

5

X, Y and Z each is single bond, $-\text{CH}_2-$, $-\text{C}=\text{C}-$, $-\text{C}\equiv\text{C}-$,
 $\text{R}^{17}-\text{R}^{18}$,
 $-\text{C}-$, $-\text{CO}-$, $-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{C}-$
 $\text{N}-\text{R}^{20}$, $-\text{NHCONH}-$,

0

5

1

l, m, n, p, q, r, s and t each is 0, 1, 2 or 3;
 $R^1, R^2, R^3, \dots, R^{20}$ and R^{21} each is R^d ;

5

R^a is selected from the group consisting of
 (i) hydrogen, lower alkyl and lower alkenyl, and
 (ii) lower alkyl and lower alkenyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, acyloxy, halogen, nitro, cyano, amino, lower alkyl-amino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, aralkyloxy-carbonyl, aryloxycarbonyl, sulfamoyl, lower alkylamino-sulfonyl and lower alkylsulfinyl;

10

15

R^b is selected from the group consisting of
 (a) (i) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl, a:
 (ii) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl
 15 substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino, mercapto, acylmercapto, lower alkylthio, carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl, and
 20 (iii) carboxy, lower alkoxycarbonyl, aralkyloxycarbonyl, aryloxycarbonyl and heteroaryloxycarbonyl;

20

25

(b) (i) phenyl and naphthyl, and
 (ii) phenyl and naphthyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy, halogen, nitro, cyano, amino, lower alkylamino, dialkylamino,

1 acylamino, mercapto, acylmercapto, lower alkylthio, carboxy,
lower alkoxy carbonyl, aralkyloxycarbonyl, aryloxycarbonyl,
sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;
(c)(i) furyl, thienyl and pyridyl, and
(ii) furyl, thienyl and pyridyl substituted by at least one
5 substituent selected from the group consisting of lower
alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower
alkoxy, halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy,
halogen, nitro, cyano, amino, lower alkylamino, dialkylamino,
acylamino, mercapto, acylmercapto, lower alkylthio, carboxy,
lower alkoxy carbonyl, aralkyloxycarbonyl, aryloxycarbonvl,
sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

10

R^C is selected from the group consisting of
(a)(i) hydroxy, lower alkoxy and amino, and
(ii) lower alkoxy and amino substituted by at least one
15 substituent selected from the group consisting of lower
alkyl, aralkyl, heteroaralkyl, aralkenyl, heteroaralkenyl,
hydroxy, lower alkoxy, aralkyloxy, heteroaralkyloxy, aryloxy,
heteroaryloxy, acyloxy, aryl, heteroaryl, substituted
aralkyl and substituted aryl wherein the substituent is
lower alkyl, lower alkoxy, halogen, or amino;
(b)(i) aryloxy and heteroaryloxy, and
(ii) aryloxy and heteroaryloxy substituted by at least one
20 substituent selected from the group consisting of lower
alkyl, hydroxy, lower alkoxy, halogen and amino, and

25 (c)

;

R^d is selected from the group consisting of
(a)(i) hydrogen, lower alkyl, lower alkenyl, aralkyl,
heteroaralkyl, alkanoyl, aryalkanoyl, heteroarylalkanoyl,
hydroxy, carboxy, amino, mercapto and sulfo, and

1 (a) (ii) lower alkyl, lower alkenyl, aralkyl, heteroaralkyl, alkanoyl, arylalkanoyl, heteroarylalkanoyl, hydroxy, carboxy, amino, mercapto and sulfo substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkenyl, lower alkoxy, lower alkanoyl, aryl, heteroaryl, acyloxy, aroyl, hydroxy, carboxy, amino, guanidino, mercapto, acylamino, acylmercapto, lower alkoxycarbonyl, sulfo, halogen, nitro, cyano, sulfamoyl, lower alkylamino-sulfonyl, lower alkylthio and lower alkylsulfinyl;

5 (b) (i) phenyl and naphthyl, and
(ii) phenyl and naphthyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acyl-mercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkylenedioxy, lower alkoxycarbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

10 (c) (i) furyl, thienyl and pyridyl, and
15 (ii) furyl, thienyl and pyridyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkylenedioxy, lower alkoxycarbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

20 or salts thereof in an amount sufficient to prevent or relieve diabetes mellitus associated complications consisting of cataracts, neuropathy, nephropathy and retinopathy, and pharmaceutically acceptable excipient(s).

25 18. A composition comprising a compound of the formula [I]

[I]

10 wherein

Q^1 and Q^2 each is methylene or sulfur, but Q^1 and Q^2 are not sulfur at the same time;

R^{A} is R^{a} or R^{b} ;

15 R^{B} and R^{C} each is R^{C} ;

X, Y and Z each is single bond, $-\text{CH}_2-$, $-\text{C}=\text{C}-$, $-\text{C}\equiv\text{C}-$,

$\begin{array}{c} \text{R}^{17} \\ | \\ \text{C}=\text{C} \\ | \quad | \\ \text{R}^{18} \end{array}$

$-\text{S}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{C}-$
 $\text{N}-\text{R}^{20}$

$-\text{NHCONH}-$,

25 R^1 , R^2 , R^3 , ..., R^{20} and R^{21} each is R^{d} ;

R^{A} is R^{b} when W is or , wherein R^{22} ,

1 R²³, R²⁴, R²⁵ and R²⁶ each is R^d;

5 R^a is selected from the group consisting of
(i) hydrogen, lower alkyl and lower alkenyl, and
(ii) lower alkyl and lower alkenyl substituted by at least
one substituent selected from the group consisting of lower
alkyl, lower alkenyl, hydroxy, lower alkoxy, halogeno-lower
alkoxy, acyloxy, halogen, nitro, cyano, amino, lower alkyl-
amino, dialkylamino, acylamino, mercapto, acylmercapto,
lower alkylthio, carboxy, lower alkoxy carbonyl, aralkyloxy-
carbonyl, aryloxycarbonyl, sulfamoyl, lower alkylamino-
sulfonyl and lower alkylsulfinyl;

10 R^b is selected from the group consisting of
(a) (i) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl,
(ii) aralkyl, heteroaralkyl, aralkenyl and heteroaralkenyl
substituted by at least one substituent selected from the
group consisting of lower alkyl, lower alkenyl, halogeno-
lower alkyl, hydroxy, lower alkoxy, halogeno-lower alkoxy,
acyloxy, halogen, nitro, cyano, amino, lower alkylamino,
dialkylamino, acylamino, mercapto, acylmercapto, lower
alkylthio, carboxy, lower alkoxy carbonyl, aralkyloxy-
carbonyl, aryloxycarbonyl, sulfamoyl, lower alkylamino-
sulfonyl and lower alkylsulfinyl, and
(iii) carboxy, lower alkoxy carbonyl, aralkyloxy carbonyl,
aryloxycarbonyl and heteroaryloxycarbonyl;

15 (b) (i) phenyl and naphthyl, and
(ii) phenyl and naphthyl substituted by at least one
substituent selected from the group consisting of lower
alkyl, lower alkenyl, halogeno-lower alkyl, hydroxy, lower
alkoxy, halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy,
halogen, nitro, cyano, amino, lower alkylamino, dialkylamino,
20 acylamino, mercapto, acylmercapto, lower alkylthio, carboxy,
lower alkoxy carbonyl, aralkyloxy carbonyl, aryloxycarbonyl,
sulfamoyl, lower alkylsulfonyl and lower alkylsulfinyl;

1 (c) (i) furyl, thiienyl and pyridyl, and
 (ii) furyl, thiienyl and pyridyl substituted by at least one
 substituent selected from the group consisting of lower alkyl,
 lower alkenyl, halogeno-lower alkyl, hydroxy, lower alkoxy,
 halogeno-lower alkoxy, aralkyloxy, aryloxy, acyloxy, halogen,
 5 nitro, cyano, amino, lower alkylamino, dialkylamino, acylamino,
 mercapto, acylmercapto, lower alkylthio, carboxy, lower
 alkoxycarbonyl, aralkyloxycarbonyl, aryloxycarbonyl, sulfamoyl,
 lower alkylsulfonyl, and lower alkylsulfinyl;

R^C is selected from the group consisting of
 (a) (i) hydroxy, lower alkoxy and amino, and
 10 (ii) lower alkoxy and amino substituted by at least one
 substituent selected from the group consisting of lower
 alkyl, aralkyl, heteroaralkyl, aralkenyl, heteroaralkenyl,
 hydroxy, lower alkoxy, aralkyloxy, heteroaralkyloxy, aryloxy,
 heteroaryloxy, acyloxy, aryl, heteroaryl, substituted
 aralkyl and substituted aryl wherein the substitutent is
 lower alkyl, lower alkoxy, halogen or amino;

15 (b) (i) aryloxy and heteroaryloxy, and
 (ii) aryloxy and heteroaryloxy substituted by at least one
 substituent selected from the group consisting of lower alkyl,
 hydroxy, lower alkoxy, halogen and amino, and

(c)

20

R^D is selected from the group consisting of
 (a) (i) hydrogen, lower alkyl, lower alkenyl, aralkyl,
 heteroaralkyl, alkanoyl, arylalkanoyl, heteroarylalkanoyl,
 hydroxy, carboxy, amino, mercapto and sulfo, and
 25 (ii) lower alkyl, lower alkenyl, aralkyl, heteroaralkyl,
 alkanoyl, arylalkanoyl, heteroarylalkanoyl, hydroxy,
 carboxy, amino, mercapto and sulfo substituted by at least

1 one substituent selected from the group consisting of lower alkyl, lower alkenyl, lower alkoxy, lower alkanoyl, aryl, heteroaryl, acyloxy, aroyl, hydroxy, carboxy, amino, quanidino, mercapto, acylamino, acylmercapto, lower alkoxy-carbonyl, sulfo, halogen, nitro, cyano, sulfamoyl, lower alkylaminosulfonyl, lower alkylthio and lower alkylsulfinyl;

5 (b) (i) phenyl and naphthyl, and
(ii) phenyl and naphthyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkylenedioxy, lower alkoxy carbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

10 (c) (i) furyl, thienyl and pyridyl, and
(ii) furyl, thienyl and pyridyl substituted by at least one substituent selected from the group consisting of lower alkyl, lower alkoxy, lower alkanoyl, acyloxy, hydroxy, carboxy, amino, halogen, nitro, cyano, acylamino, mercapto, acylmercapto, halogeno-lower alkyl, halogeno-lower alkoxy, lower alkylenedioxy, lower alkoxy carbonyl, sulfo, sulfamoyl, lower alkylaminosulfonyl and lower alkylsulfinyl;

15 or salts thereof in an amount sufficient to reduce blood pressure and pharmaceutically acceptable excipient(s).

19. A compound according to claim 1 to 16 for use in a method for therapy or prophylaxis.

20. Use of a compound according to claim 1 to 16 in a process for producing pharmaceutical compositions.

EUROPEAN SEARCH REPORT

Application number

EP 80 10 7869

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl.)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
*	<u>US - A - 4 154 937</u> (D.W. CUSHMAN et al.) * Columns 1-2 * --	1-3, 5, 6, 7, 16	C 07 D 277/06 207/16 A 61 K 31/425 31/40
*	<u>GB - A - 2 000 508</u> (YOSHITOMI PHARM. LTD.) * Pages 1-2 * --	1-5, 7, 16	
	<u>FR - A - 2 407 204</u> (SANDOZ S.A.) * "Revendications" * --	1-5	TECHNICAL FIELDS SEARCHED (Int. Cl.)
	<u>FR - A - 2 412 537</u> (SCIENCE UNION ET CIE) * "Revendications" * --	1, 2	C 07 D 277/06 277/16
	<u>FR - A - 2 340 933</u> (E.R.SQUIBB AND SONS) * "Revendications" * --	1-3, 5-7	
	<u>FR - A - 2 340 932</u> (E.R SQUIBB AND SONS) * "Revendications" * --	1-3, 5-7	CATEGORY OF CITED DOCUMENTS
	<u>FR - A - 2 023 741</u> (EPROVA AG) * "Revendications" * --	1	X: particularly relevant A: technological background G: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: conflicting application D: document cited in the application L: citation for other reasons
P	<u>EP - A - 0 007 477</u> (DAINIPPON PHARM.) * "Revendications" * . / .	1-5	&: member of the same patent family, corresponding document
<input checked="" type="checkbox"/> The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
The Hague	09-03-1981	BRIGHENTI	
EPO Form 1503.1 06.78			

0031104

European Patent
Office

EUROPEAN SEARCH REPORT

Application number

EP 80 10 7869
-2-

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
P	FR - A - 2 445 324 (SANTEN PHARM) * "Revendications"*	1-5	
P	FR - A - 2 440 365 (SANTEN PHARM) * "Revendications"*	1-5	
P	FR - A - 2 434 150 (YOSHITOMI PHARM.) * "Revendications"*	1-5	TECHNICAL FIELDS SEARCHED (Int. Cl. 3)

THIS PAGE BLANK (USPTO)