Universidad de Guadalajara

Tarea 4

Muñoz Nuñez Ian Emmanuel

Visión Robótica

"Operadores Lógicos"

Índice general

1.	Ejercicio 1						
	1.1. Operador lógico "and" ($Conjunci\'on$) $\land \dots \dots \dots \dots \dots \dots$						
	1.2. Operador lógico "or" ($Disyunción$) $\vee \dots $						
	1.3. Operador lógico "not" (Negación) \sim / \neg						
2.	Ejercicio 2						
	2.1. Función cv2.bitwise and()						
	2.2. Función $cv2.bitwise_or()$						

Capítulo 1

Ejercicio 1

1.1. Operador lógico "and" (Conjunci'on) \land

La tabla de verdad del operador lógico "and" se puede representar de las siguientes maneras:

and			
р	q	$p \wedge q$	
1	1	1	
1	0	0	
0	1	0	
0	0	0	

Cuadro 1.1: Operador lógico "and" representado con 1 y 0.

1			
	and		
р	q	$p \wedge q$	
V	V	V	
V	F	F	
F	V	F	
F	F	F	

Cuadro 1.2: Operador lógico "and" representado con V y F.

1.2. Operador lógico "or" ($Disyunci\'{o}n$) \lor

La tabla de verdad del operador lógico "or" se puede representar de las siguientes maneras:

	or		
р	q	$p \lor q$	
1	1	1	
1	0	1	
0	1	1	
0	0	0	

Cuadro 1.3: Operador lógico "or" representado con 1 y 0.

or		
р	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Cuadro 1.4: Operador lógico "or" representado con V y F.

1.3. Operador lógico "not" (Negación) \sim / \neg

La tabla de verdad del operador lógico "not" se puede representar de las siguientes maneras:

not		
р	¬р	
1	0	
0	1	

Cuadro 1.5: Operador lógico "not" representado con 1 y 0.

not		
р	¬р	
V	F	
F	V	

Cuadro 1.6: Operador lógico "not" representado con V y F.

Capítulo 2

Ejercicio 2

$2.1. \quad \text{Funci\'on } \textit{cv2.bitwise_and()}$

La tabla de verdad de la función " $cv2.bitwise_and()$ " es igual a la del operador lógico "and".

Cuadro 2.1: Tabla de verdad de la función $cv2.bitwise_and()$.

2.2. Función $cv2.bitwise_or()$

La tabla de verdad de la función " $cv2.bitwise_or()$ " es igual a la del operador lógico "or".

Cuadro 2.2: Tabla de verdad de la función $cv2.bitwise_or()$.

2.3. Función $cv2.bitwise_not()$

La tabla de verdad de la función " $cv2.bitwise_not()$ " es igual a la del operador "not".

Cuadro 2.3: Tabla de verdad de la función $cv2.bitwise_not()$

Visión Robótica 6 CUCEI