ELECENG 3CL4 Lab 3 Pre-lab

Aaron Pinto pintoa9 L02 $\begin{array}{c} {\rm Raeed~Hassan} \\ {\rm hassam41} \\ {\rm L02} \end{array}$

March 5, 2021

1 Proportional Control of DC Motor

Pre-Lab Question 1 The closed loop transfer function T(s) is:

$$T(s) = \frac{G(s)G_c(s)}{1 + G(s)G_c(s)}$$
$$= \frac{k_pG(s)}{1 + k_pG(s)}$$

We find the characteristic equation of the closed loop transfer function T(s) below:

$$0 = 1 + k_p G(s)$$

$$0 = 1 + \frac{k_p A}{s(s\tau_m + 1)}$$

$$0 = 1 + \frac{k_p A}{s^2 \tau_m + s}$$

$$-1 = \frac{k_p A}{s^2 \tau_m + s}$$

$$-s^2 \tau_m - s = k_p A$$

$$0 = s^2 \tau_m + s + k_p A$$

The closed-loop poles of the system is found by determining the poles of the characteristic equation, which is done in Equation 1.

$$p_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = \tau_m, \ b = 1, \ c = k_p A$$

$$= \frac{-1 \pm \sqrt{1 - 4\tau_m k_p A}}{2\tau_m}$$

$$p_{1,2} = -\frac{1}{2\tau_m} \pm \frac{1}{2\tau_m} \sqrt{1 - 4k_p A \tau_m}$$
(1)

Pre-Lab Question 2

Figure 1: q2

Pre-Lab Question 3

$$T(s) = \frac{k_p G(s)}{1 + k_p G(s)}$$

$$= \frac{\frac{k_p A}{s^2 \tau_m + s}}{1 + \frac{k_p A}{s^2 \tau_m + s}}$$

$$= \frac{k_p A}{s^2 \tau_m + s + k_p A}$$

$$= \frac{\frac{k_p A}{\tau_m}}{s^2 + \frac{s}{\tau_m} + \frac{k_p A}{\tau_m}}$$

$$F_2(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

$$\omega_n^2 = \frac{k_p A}{\tau_m}$$

$$\omega_n = \sqrt{\frac{k_p A}{\tau_m}}$$

$$2\zeta \omega_n s = \frac{s}{\tau_m}$$

$$\zeta \omega_n = \frac{1}{2\tau_m}$$

$$\zeta = \frac{1}{2\tau_m \omega_n}$$

$$\zeta = \frac{1}{2\tau_m \omega_n}$$

$$\zeta = \frac{1}{2\tau_m \sqrt{\frac{k_p A}{\tau_m}}}$$

$$\zeta = \frac{1}{2\sqrt{k_p A \tau_m}}$$

Pre-Lab Question 4

$$\zeta = \frac{1}{2\sqrt{k_p A \tau_m}}$$

$$= \frac{1}{2\sqrt{\frac{A \tau_m}{4A \tau_m}}}$$

$$= \frac{1}{2\sqrt{\frac{1}{4}}}$$

$$= \frac{1}{2(0.5)}\zeta = 1$$

c'est critically damped

Pre-Lab Question 5

$$p_{1,2} = -\frac{1}{2\tau_m} \pm \frac{1}{2\tau_m} \sqrt{1 - 4k_p A \tau_m}$$
$$= \frac{1}{2\tau_m} \left(-1 \pm \sqrt{1 - 4k_p A \tau_m} \right)$$

2 Trade-offs in Proportional Control of a Servomotor: Theoretical Insight

Pre-Lab Question 6

$$T_{s} \approx \frac{4}{\zeta\omega_{n}}$$

$$\approx \frac{4}{\frac{1}{2\tau_{m}}}$$

$$\approx \frac{4}{\frac{1}{2\tau_{m}}}$$

$$\approx 8\tau_{m}$$

$$P.O. = 100 \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^{2}}}\right)$$

$$= 100 \exp\left(-\frac{\frac{\pi}{2\omega_{n}\tau_{m}}}{\sqrt{1-\left(\frac{1}{2\omega_{n}\tau_{m}}\right)^{2}}}\right)$$

$$= 100 \exp\left(-\frac{\frac{\pi}{2\omega_{n}\tau_{m}}}{\sqrt{1-\frac{1}{4\omega_{n}^{2}\tau_{m}^{2}}}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{2\omega_{n}\tau_{m}\sqrt{1-\frac{1}{4\omega_{n}^{2}\tau_{m}^{2}}}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{2\omega_{n}\tau_{m}\sqrt{\frac{4\omega_{n}^{2}\tau_{m}^{2}-1}{4\omega_{n}^{2}\tau_{m}^{2}}}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{2\omega_{n}\tau_{m}\sqrt{\frac{4\omega_{n}^{2}\tau_{m}^{2}-1}{4\omega_{n}^{2}\tau_{m}^{2}}}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{2\omega_{n}\tau_{m}\sqrt{\frac{4\omega_{n}^{2}\tau_{m}^{2}-1}{\sqrt{4\omega_{n}^{2}\tau_{m}^{2}}}}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{2\omega_{n}\tau_{m}\sqrt{\frac{4\omega_{n}^{2}\tau_{m}^{2}-1}{\sqrt{4\omega_{n}^{2}\tau_{m}^{2}}}}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{\sqrt{4\omega_{n}^{2}\tau_{m}^{2}-1}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{\sqrt{4\frac{k_p A}{\tau_m}\tau_m^2 - 1}}\right)$$

$$= 100 \exp\left(-\frac{\pi}{\sqrt{4k_p A \tau_m - 1}}\right)$$

$$T_{r1} \approx \frac{2.16\zeta + 0.6}{\omega_n}$$

$$\approx \frac{\frac{2.16}{2\omega_n \tau_m} + 0.6}{\omega_n}$$

$$\approx \frac{\frac{2.16 + 1.2\omega_n \tau_m}{2\omega_n \tau_m}}{\omega_n}$$

$$\approx \frac{2.16 + 1.2\omega_n \tau_m}{2\omega_n^2 \tau_m}$$

$$\approx \frac{2.16 + 1.2\sqrt{\frac{k_p A}{\tau_m}\tau_m}}{2\frac{k_p A}{\tau_m}\tau_m}$$

$$\approx \frac{2.16 + 1.2\sqrt{\frac{k_p A}{\tau_m}\tau_m}}{2k_p A}$$

Pre-Lab Question 7 T_s does not change with k_p . P.O. increases as k_p increases and it approaches a horizontal asymptote of 100%. T_{r1} decreases as k_p decreases and approaches the horizontal asymptote of 0.

Pre-Lab Question 8 The 2% settling time will not change no matter what we do for k_p .

Pre-Lab Question 9

Pre-Lab Question 10

Pre-Lab Question 11

6 Proportional Controller with Velocity Feedback

Pre-Lab Question 12 If we use block diagram transforms we can transform the block diagram to Figure (ref figure here). From the block diagram, we can see that the total

Figure 2: q12

output response when $F(s) \approx 1$ can be written as:

$$\Theta(s) = \frac{k_p G(s)}{1 + k_v s G(s) + k_p G(s)} R(s) + \frac{G(s)}{1 + k_v s G(s) + k_p G(s)} T_d(s)
= \frac{\frac{k_p A}{s(s\tau_m + 1)}}{1 + s \frac{k_v A}{s(s\tau_m + 1)} + \frac{k_p A}{s(s\tau_m + 1)}} R(s) + \frac{\frac{A}{s(s\tau_m + 1)}}{1 + s \frac{k_v A}{s(s\tau_m + 1)} + \frac{k_p A}{s(s\tau_m + 1)}} T_d(s)
= \frac{k_p A}{s(s\tau_m + 1) + k_v A s + k_p A} R(s) + \frac{A}{s(s\tau_m + 1) + k_v A s + k_p A} T_d(s)
= \frac{\frac{k_p A}{\tau_m}}{s^2 + \frac{1 + k_v A}{\tau_m} s + \frac{k_p A}{\tau_m}} R(s) + \frac{\frac{A}{\tau_m}}{s^2 + \frac{1 + k_v A}{\tau_m} s + \frac{k_p A}{\tau_m}} T_d(s) \tag{2}$$

Pre-Lab Question 13

$$e_{ss} = \lim_{s \to 0} s \frac{A}{s(s\tau_m + 1) + k_v A s + k_p A} T_d(s)$$

$$= \lim_{s \to 0} s \frac{A}{s(s\tau_m + 1) + k_v A s + k_p A} \frac{\tau_d}{s}$$

$$= \lim_{s \to 0} \frac{A\tau_d}{s(s\tau_m + 1) + k_v A s + k_p A}$$

$$= \frac{A\tau_d}{k_p A + \lim_{s \to 0} s(s\tau_m + 1) + k_v A s}$$

$$= \frac{A\tau_d}{k_p A}$$

$$= \frac{\tau_d}{k_p A}$$

$$= \frac{\tau_d}{k_p A}$$
(3)

Pre-Lab Question 14 The closed-loop transfer function can be written as:

$$T(s) = \frac{k_p G(s)}{1 + k_v s G(s) + k_p G(s)}$$

$$= \frac{\frac{k_p A}{s(s\tau_m + 1)}}{1 + \frac{k_v A}{s(s\tau_m + 1)}s + \frac{k_p A}{s(s\tau_m + 1)}}$$

$$= \frac{k_p A}{s^2 \tau_m + (1 + k_v A)s + k_p A}$$

$$= \frac{\frac{k_p A}{\tau_m}}{s^2 + \frac{1 + k_v A}{\tau}s + \frac{k_p A}{\tau}}$$

We can find ζ by writing the closed-loop transfer function in the form of a standard second-

order system.

$$F_2(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\omega_n^2 = \frac{k_p A}{\tau_m}$$

$$\omega_n = \sqrt{\frac{k_p A}{\tau_m}}$$

$$2\zeta\omega_n s = \frac{1 + k_v A}{\tau_m} s$$

$$\zeta\omega_n = \frac{1 + k_v A}{2\tau_m}$$

$$\zeta = \frac{1 + k_v V A}{2\tau_m \omega_n}$$

$$\zeta = \frac{1 + k_v A}{2\tau_m \sqrt{\frac{k_p A}{\tau_m}}}$$

$$\zeta = \frac{1 + k_v A}{2\sqrt{k_p A \tau_m}}$$

Pre-Lab Question 15 Increasing k_p will decrease ζ , which will lead to a decrease in the rise time and an increase in the maximum overshoot, while decreasing k_p will increase the rise time and decrease the maximum overshoot. Increasing k_v will increase ζ , which will lead to an increase in the rise time and a decrease in the maximum overshoot, while decreasing k_v will decrease the rise time and increase the maximum overshoot. The steady-state error to a constant disturbance is inversely proportional to k_p .