DLCV FINAL MEDICAL IMAGING

Abstract

Train a neural network to **classify 5 classes** of cerebral hemorrhage by utilizing data annotated by physicians.

The 5 classes are:

Intracerebral hemorrhage (ICH)
Intraventricular hemorrhage (IVH)
Subarachnoid hemorrhage (SAH)
Subdural hemorrhage (SDH)
Epidural hemorrhage (EDH)

腦內出血 腦室出血 蜘蛛膜下出血 硬膜下出血 硬膜外出血 硬膜外出血

Data Description

A sequence of CT brain image

Patients' ID

Train patients: 1,535 patients, with **50,492** images in total Test patients: 768 patients, with **25,053** images in total Image size: 512*512, grayscale
Training Sequence length range in 22~40

Image Preprocessing

- Data augmentation:
 - Resize all image to (512, 512)
 - RandomHorizontalFlip with probability=0.5
- RandomAffine with translate=(0.2, 0.2)
- RandomRotation with 15 degree

Methodology

- Backbone Resnet 34
- residual block

		40.1	241	#O.1	1011	1.50.1
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112			7×7, 64, stride 2		
				3×3 max pool, stride 2		
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times$	$2 \left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array} \right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times$	$\begin{bmatrix} 3\times3, 256 \\ 3\times3, 256 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 36 $
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times$	$2 \begin{bmatrix} 3 \times 3, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $
	1×1		aver	ge pool, 1000-d fc,	softmax	
FLOPs		1.8×10^9	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10 ⁹

- Loss: Asymmetric Loss For Multi-Label Classification
- reducing negative sample loss

$$p_m = \max(p-m,0)$$
 $ASL = egin{cases} L_+ = & (1-p)^{\gamma_+}\log(p) \ L_- = & (p_m)^{\gamma_-}\log(1-p_m) \end{cases}$

Training Details

- Train

- Training on single image of every patients with

Batch size	lr	Scheduler step	gamma
20	1e-4	10	0.5

- Refining model:

- Refine the model trained in "Train" process by inputting 5 images with lr = 1e-6.

- Test

- Testing with multi images. i.e. 5 images
- We predict for a single image with the observation of a sequence images.
 - 1. Predict a sequence of 5 images respectively.
 - 2. Sum up the 5-image results with weights and filter it with Sigmoid function.

Result

Conclusion

- 1. Compare with BCE loss, Asymmetric Loss performs better when dealing with multi-class imbalanced classification.
- 2. Since we observe the classification result of each slice of CT image only depends on neighbor images, our model which only take 4 neighbors into consideration is easier to train and performs better compared to sequential models such as LSTM, GRU in our experiment.
- 3. Eventually, we combine simple but well-tuned procedures and lead to a good performance.

Reference