MIT WORLD PEACE UNIVERSITY

Vulnerability Identification and Penetration Testing Third Year B. Tech, Semester 6

SCANNING WITH NMAP

ASSIGNMENT 2

Prepared By

Krishnaraj Thadesar Cyber Security and Forensics Batch A1, PA 10

 $January\ 28,\ 2024$

Contents

1	Aim	a	1	
2	Obj	jectives	1	
3	·		1	
4				
	4.1	Need/Purpose of Nmap	1	
	4.2	Advantages of Nmap	1	
	4.3	Disadvantages of Nmap	2	
5	Implementation			
	5.1	Get ip Address	2	
	5.2	Scan 1 port, current IP	3	
		5.2.1 Syntax	3	
	5.3	Scan any IP	4	
		5.3.1 Syntax	4	
	5.4	Scan a range of IPs	4	
		5.4.1 Syntax	4	
	5.5	Scan 1 Port	6	
		5.5.1 Syntax	6	
	5.6	Scan a range of ports	6	
		5.6.1 Syntax	6	
	5.7	Fragmented Scan	7	
		5.7.1 Syntax	7	
	5.8	TCP SYN Scan	8	
		5.8.1 Syntax	8	
	5.9	OS Detection	8	
		5.9.1 Syntax	8	
6	Pla	tform	10	
7	Con	nclusion	10	

1 Aim

To perform scanning with nmap.

2 Objectives

- 1. To learn about nmap.
- 2. To perform live host scanning.

3 Theory

4 Introduction to Nmap

Nmap, short for Network Mapper, is a widely-used open-source tool designed for network exploration and security auditing. It provides a comprehensive view of a network by discovering hosts and services running on them.

4.1 Need/Purpose of Nmap

Nmap serves various purposes in the field of cybersecurity and network management. Its primary objectives include:

- Host Discovery: Identifying active hosts on a network, aiding in network mapping.
- **Port Scanning:** Determining open ports on a system, crucial for understanding potential vulnerabilities.
- Service Version Detection: Identifying the version and type of services running on open ports.
- **OS Fingerprinting:** Attempting to determine the operating system of target hosts.
- **Vulnerability Assessment:** Assessing potential security risks and vulnerabilities within a network.

4.2 Advantages of Nmap

Nmap offers several advantages that make it a preferred choice in the cybersecurity community:

- **Versatility:** Nmap can be used for a wide range of network exploration and security auditing tasks.
- Accuracy: It provides accurate information about hosts, open ports, and services.
- Scripting Engine: Nmap's scripting engine allows users to create custom scripts for specific tasks.
- **Community Support:** Being open-source, Nmap benefits from a large and active user community, ensuring continuous improvement.
- **Platform Independence:** Nmap is available on multiple platforms, making it accessible to a diverse range of users.

4.3 Disadvantages of Nmap

Despite its many strengths, Nmap has some limitations and potential drawbacks:

- Firewall Interference: Firewalls may block Nmap scans, limiting the tool's effectiveness.
- **Legal and Ethical Concerns:** Improper use of Nmap for unauthorized scanning may lead to legal and ethical issues.
- False Positives: In certain scenarios, Nmap might produce false positives, leading to inaccurate assessments.
- **Resource Intensive:** Intensive scanning can consume significant network resources and slow down target systems.
- **Limited Stealth:** While Nmap offers stealthy scanning options, complete stealth is challenging to achieve in some situations.

5 Implementation

5.1 Get ip Address

Syntax

\$ifconfig

Command

\$ifconfig

Purpose

To get the IP Address of the machine.

Output

```
krishnaraj@Krishnaraj-Arch ~ / master ± ifconfig
enp2s0: flags=4099
enp2s0: flags=4099
ether 54:e1:ad:c9:5a:ba txqueuelen 1000 (Ethernet)

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73
lo:
```

Figure 1: Get IP Address

5.2 Scan 1 port, current IP

5.2.1 Syntax

\$ nmap -p <port> <ip>

Command

\$ nmap -p 80 192.168.1.38

Purpose

To get the IP Address of the machine.

Output

```
krishnaraj@Krishnaraj-Arch ~ / master ± nmap 192.168.1.38

Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-19 11:25 IST

Nmap scan report for 192.168.1.38

Host is up (0.00012s latency).

All 1000 scanned ports on 192.168.1.38 are in ignored states.

Not shown: 1000 closed tcp ports (conn-refused)

Section Conclusion

Nmap done: 1 IP address (1 host up) scanned in 0.07 seconds
```

Figure 2: Get IP Address

5.3 Scan any IP

5.3.1 Syntax

\$ nmap <ip>

Command

\$ nmap 192.168.1.38

Purpose

Scan a single ip

Output

Figure 3: Scan google.com

5.4 Scan a range of IPs

5.4.1 Syntax

\$ nmap <ip range>

Command

\$ nmap 192.168.1.38-40

Purpose

To Scan a range of IPs.

Output

```
krishnaraj@Krishnaraj-Arch > ~ / master ± nmap 192.168.1.38/24
Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-19 12:20 IST
Nmap scan report for 192.168.1.1
Host is up (0.0035s latency).
Not shown: 995 closed tcp ports (conn-refused)
       STATE
                SERVICE
21/tcp open
                 ftp
22/tcp
       filtered ssh
53/tcp open
80/tcp open
                http
443/tcp open
                https
Nmap scan report for 192.168.1.33
Host is up (0.0068s latency).
Not shown: 990 closed tcp ports (conn-refused)
PORT
21/tcp
        filtered ftp
23/tcp
        filtered telnet
53/tcp
        filtered domain
110/tcp filtered pop3
135/tcp filtered msrpc
256/tcp filtered fw1-secureremote
995/tcp filtered pop3s
1720/tcp filtered h323q931
5900/tcp filtered vnc
8888/tcp filtered sun-answerbook
```

Figure 4: scan range of ips.

```
Nmap scan report for 192.168.1.38
Host is up (0.000038s latency).
All 1000 scanned ports on 192.168.1.38 are in ignored states.
Not shown: 1000 closed tcp ports (conn-refused)

Nmap scan report for 192.168.1.45
Host is up (0.013s latency).
All 1000 scanned ports on 192.168.1.45 are in ignored states.
Not shown: 1000 closed tcp ports (conn-refused)

Nmap scan report for 192.168.1.50
Host is up (0.0077s latency).
Not shown: 911 filtered tcp ports (no-response), 88 closed tcp ports (conn-refused)
PORT STATE SERVICE
2179/tcp open vmrdp

Nmap done: 256 IP addresses (5 hosts up) scanned in 12.40 seconds

krishnaraj@Krishnaraj-Arch ~ // master ±
```

Figure 5: scan range of ips.

5.5 Scan 1 Port

5.5.1 Syntax

\$ nmap -p <port> <ip>

Command

\$ nmap -p 80 www.example.com

Purpose

To perform a scan on a single port.

Output

Figure 6: Scan a single port

5.6 Scan a range of ports

5.6.1 Syntax

\$ nmap -p <port range> <ip>

Command

\$ nmap -p 1-100 www.example.com

Purpose

To perform a scan on a range of ports.

Output

Figure 7: Scan a range of ports

5.7 Fragmented Scan

5.7.1 Syntax

\$ nmap -F <ip>

Command

\$ nmap -F www.example.com

Purpose

Fragmented Scan is used to evade firewalls.

Output

```
krishnaraj@Krishnaraj-Arch ~ / master ± sudo nmap -F 192.168.1.38
Starting Nmap 7.94 (https://nmap.org) at 2024-01-19 11:49 IST
Nmap scan report for 192.168.1.38
Host is up (0.000015s latency).
All 100 scanned ports on 192.168.1.38 are in ignored states.
Not shown: 100 closed tcp ports (reset)

Nmap done: 1 IP address (1 host up) scanned in 0.12 seconds
```

Figure 8: Perform a fragmented scan.

5.8 TCP SYN Scan

5.8.1 Syntax

\$ nmap -sS <ip>

Command

\$ nmap -sS www.example.com

Purpose

To scan a host for open ports using TCP SYN scan.

Output

Figure 9: Check if tcp syn scan is possible on a host.

5.9 OS Detection

5.9.1 Syntax

\$ nmap -0 <ip>

Command

\$ nmap -0 www.example.com

Purpose

To scan operating system of a host.

Output

Figure 10: Scan Operating System of example.com

```
krishnaraj@Krishnaraj-Arch / master ± sudo nmap -0 192.168.1.38/24
Starting Nmap 7.94 ( https://nmap.org ) at 2024-01-19 12:05 IST
Nmap scan report for 192.168.1.1
Host is up (0.0039s latency).
Not shown: 995 closed tcp ports (reset)
PORT
                 ftp
22/tcp filtered ssh
80/tcp open
443/tcp open
MAC Address: B4:3D:08:08:D7:90 (GX International BV)
Device type: general purpose
Running: Linux 3.X|4.X
OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4
OS details: Linux 3.2 - 4.9
Network Distance: 1 hop
Nmap scan report for 192.168.1.33
Host is up (0.023s latency).
All 1000 scanned ports on 192.168.1.33 are in ignored states.
Not shown: 1000 closed tcp ports (reset)
MAC Address: EC:30:B3:33:46:5C (Xiaomi Communications)
Too many fingerprints match this host to give specific OS details
Network Distance: 1 hop
```

Figure 11: Scan Operating System of host

6 Platform

Operating System: Arch Linux X8664

IDEs or Text Editors Used: Visual Studio Code

7 Conclusion

Thus, we have successfully performed scanning with nmap, and learnt about the various options available with nmap.