COMPARATIVE STUDY OF LSTM VS. BERT FOR FAKE NEWS DETECTION

BASED ON ISOT FAKE NEWS DATASET

CS22B2029-MARAM MOUNISH
CS22B2024-DAMPETLA HARSHA
CS22B2032-YATHIN

PROBLEM STATEMENT

Fake news is a rising threat in digital communication, influencing public opinion and spreading misinformation. Detecting fake news automatically is essential for information credibility.

Goal: Compare traditional RNN-based (LSTM) and transformer-based (BERT) models for detecting fake news.

MODEL ARCHITECTURE

LSTM:

- Recurrent neural network that captures sequential patterns.
- Handles time dependencies well but limited in understanding long-term context.

BERT:

- Transformer-based pre-trained model.
- Uses attention mechanism to capture context in both directions.

LSTM

BERT

D!SE

• Dataset Used: ISOT Fake News Dataset

• Classes: Real News, Fake News

• Size:

• Real: 21,417 samples

o Fake: 23,481 samples

Split: Train(80%)/Test(20%)

METHODOLOGY

BERT

- Using HuggingFace Transformers
- Pre-trained bert-base-uncased model
- Fine-tuning with added classification head
- Tokenized inputs with special tokens [CLS], [SEP]
- Training with AdamW optimizer, learning rate scheduler

LSTM

- Preprocessing with Keras tokenizer
- Embedding layer with pre-trained or random weights
- LSTM layer with dropout
- Dense output layer (sigmoid for binary classification)

METRICS

Metric	LSTM Model	BERT Model
Accuracy	96.98%	99.98%
AUC	0.9945	0.999
Precision	0.9735	1.00
EER	0.0289	0.00

Visualization

LSTM

Epoch 1, Loss: 0.4811 Epoch 2, Loss: 0.1034 Epoch 3, Loss: 0.0630 Epoch 4, Loss: 0.0237 Epoch 5, Loss: 0.0076

Test Set Performance:

Accuracy: 0.9698

AUC: 0.9945

Precision: 0.9735

EER: 0.0289

Visualization

BERT

Confusion Matrix:

[[4669 0] [1 4310]]

Accuracy Score: 0.9998886414253898

AUC Score: 0.9999768979214538

Precision: 1.0

EER: 0.0

EER Threshold: 0.9999515

- LSTM Pros
 - Lightweight, fast to train
 - Suitable for simple sequential tasks

- BERT Pros:
 - Much better context understanding
 - State-of-the-art in many NLP tasks
- Cons:
 - LSTM: Poor long-term dependency capture
 - BERT: Heavy computation and memory

CONCLUSION

- Implemented fake news detection using deep learning models: BERT and LSTM.
- Trained models on a labeled dataset of True.csv and Fake.csv news articles.
- BERT outperformed LSTM in accuracy, precision, and recall due to its deep contextual understanding.
- Demonstrated the potential of NLP models in combating misinformation.
- Results show feasibility of using such models in real-world news verification systems.

