Particle spectrograph

Wave operator and propagator

Multiplicities	1	1	м	м	3	$\beta^{\alpha} \chi^{\chi \beta} = 5$		$\partial^{\alpha}\sigma^{eta\deltaarepsilon}$ -					16	$\mathcal{A}_{\alpha\ \theta}^{\ \ }\partial_{f}^{lpha'}+$	θ	$\alpha \partial_{\theta} f'_{\theta} = \alpha \partial_{\theta} f'_{\theta}$	18 0-7 + 19 01 + 19 01	$\partial f = -\frac{1}{2} \partial_{\beta} \alpha_{\theta} \partial f + \partial_{\alpha} \alpha_{\theta} \partial f + \partial_{\alpha} \alpha_{\theta} \partial f + \partial_{\alpha} \alpha_{\theta} \partial f \partial f + \partial_{\alpha} \partial_{\alpha} \partial f \partial $	$ +2(2\ t_1-t_2)\partial^{ heta}f^{lpha\prime})+$ $ ^{1}-2\ r_2\partial_{ heta}\mathcal{A}_{lphaeta}\partial^{ heta}\mathcal{A}^{lphaeta\prime}+$	5 ×		0	0	0	$\frac{1}{3}\bar{i}k(t_1-2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^{2}(t_{1}+t_{3})$	#1 0⁻∕3	0	0	0	$+t_2$	2 σ† ا	$ \uparrow^{\alpha\beta} \qquad \boxed{\begin{array}{c} \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6) \\ (6) \\ (6) \\ (7) \\ (1) \\ (8) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6) \\ (6) \\ (6) \\ (7) \\ (1) \\ (8) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (5) \\ (6)$	$\frac{2}{(1+2k^2)^2} t^2 + 2k^2 $	$\frac{4k^2}{(1+2k^2)}$	$\frac{\sqrt{2} k}{(t^2)^2 t_1}$	$ \begin{array}{c} $		
			η αβχ		$\begin{array}{l} \partial_{\lambda}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} + 2\ \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + 2\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} \\ \partial_{\alpha}\partial^{\alpha}t^{\chi\beta} + \partial_{\lambda}\partial^{\beta}t^{\alpha\chi} + \partial_{\alpha}\partial^{\chi}t^{\beta\alpha} + 2\ \partial_{\alpha}\partial^{\beta}\sigma^{\alpha\chi\delta} \end{array}$	-3 2,000,000 E- X9100,000,000 F-	+3 3 ₆ 3 ⁶ 3 _x	$\partial^{eta}\partial^{lpha}\sigma^{\delta\epsilon}_{\ \ \delta}$ -6 i k^{X} $\partial_{\epsilon}\partial_{\delta}\partial_{X}$	$\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{x}\tau^{\chi\delta}$ +	+6 i k ^X 3.0 ⁶ 3.0,0 ^{86α} -	ž	000 050 0 0 ==		+6 $\mathcal{A}^{\alpha\beta\chi}$ $\sigma_{\alpha\beta\chi}$ -4 t_1 9	A, B 0/fa	$\partial_{\theta} f_{\alpha}^{\ \theta} + i$	$\frac{\partial}{\partial \theta} \frac{\partial}{\partial t} \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \frac{\partial}{\partial t}$	or +2 11 0, 17 $^{\alpha\theta}$ 1 12 12 0, 12 1 12	$q^{\alpha\theta} + 2 \ \partial^{\theta} f^{\alpha l}) + 2 \ \mathcal{A}_{\alpha\theta l} \ ((t_1 - 2 \ t_2) \ \mathcal{A}^{\alpha\theta})$ -4 $t_2 \ \partial_{\beta} \mathcal{A}_{\alpha\theta l} \ \partial^{\theta} \mathcal{A}^{\alpha\beta l} + 4 \ t_2 \ \partial_{\beta} \mathcal{A}_{l\theta\alpha} \ \partial^{\theta} \mathcal{A}^{\alpha\beta l}$	N	α		0 0	0 0	$\frac{t_1 - 2t_3}{3\sqrt{2}} \qquad 0$	$\frac{t_1+t_3}{3} \qquad 0$	0 0	$\left -\frac{1}{3} i \sqrt{2} k (t_1 + t_3) \right = 0$	$_{0}^{*1}$ $_{f}^{*2}$ $_{0}^{*}$	-i √2 k g 0	$2k^2t_3 \qquad 0$	0 0	0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{i}{t_3} - \frac{i\sqrt{2}k}{(1+2k^2)^2t_3} 0 0$	$\frac{2k^2}{t_3} \left \frac{2k^2}{(1+2k^2)^2 t_3} \right 0 = 0$	C	$\begin{array}{c c} 0 & 0 & \frac{1}{k^2 r_2 + t_2} \end{array}$	#1 αβ 2 ⁺ <i>Ά</i> †	#1 2 ⁺ A as <u>t1</u> 2	$2^{+}fc$ $-\frac{i k_{1}}{\sqrt{2}}$
		$+2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}$	$\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	1	$+ \frac{\partial_{x} \partial^{x} t^{\alpha \beta}}{\partial_{x} \partial^{x} t^{\beta \alpha}} + 2 \frac{\partial_{s} \partial_{s}}{\partial_{s} \partial_{s}}$ $\frac{\partial^{x} \partial^{x} t^{\beta \alpha}}{\partial_{s} \partial^{x} \partial_{s} \partial_{s}} + 2 \frac{\partial^{x} \partial_{s} \partial_{s}}{\partial_{s} \partial_{s}}$	$\partial_{x}\partial^{\delta}\partial^{\beta}\partial^{\alpha}1^{\chi}$	х -3 д _о додда	+4 i K ^X 0	$\partial_{y}\partial^{\beta}\sigma^{\alpha\delta\epsilon} + 2 \eta^{\alpha\beta}$	δβ		t ×		$_{\theta}^{\theta}$ +6 $f^{\alpha\beta}$ $\tau_{\alpha\beta}$	$\mathcal{A}_{I \theta}^{\theta} \partial^{j} f^{\alpha}_{a}$	$^{3}f_{\alpha}^{\ \theta}$ +	, σ.τ ₁ 96α _,	α	$(\alpha^{\mu} + 2 \partial^{\theta} f^{\alpha \iota}) + 2$	-4 r ₂ ∂ _θ ,			0 0	$+t_2$ 0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l} \ k(t_1-2\ t_3)$	#1 0+3	#1 0+34+ t3	ě	0 + + + 0	0 + 5 -0 #2 1+ σα	β #1 0+0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 4 0 0 α 1	$ \begin{array}{c} $	$ \begin{array}{c} i & k \not \downarrow \\ \sqrt{2} \\ 0 \\ 1 & \tau_{\alpha} \end{array} $	$k^{2}t_{1}$
form	<i>αβ</i> == 0	== \$9\beta r^a	$\alpha_{\tau^{\beta X}} == \mathring{\alpha} \partial^X \partial_{\beta} \tau^{\alpha \beta}$	$^{\alpha}\tau^{\beta\chi} == \mathring{q}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	$\partial^{\alpha} t^{\beta \chi} + \partial_{\chi} \partial^{\beta} t^{\chi \alpha} + \partial_{\chi} \partial^{\beta} t^{\alpha \chi} + \partial_{\chi} \partial^{\beta} t^{\alpha \chi}$	ga _r x6	$3 \partial_{\delta} \partial_{\delta} \partial_{\chi} \partial_{\delta} \partial_{\kappa} \partial_{\kappa} \nabla_{\kappa} \nabla_$	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\iota^{\beta\alpha}$	6 i k ^X 0 e 0 s 0 v 0 B 0 a	6 i KX 0,06	2 nab 2 2	-	ors:	-4 t_3 $\mathcal{A}^{lpha_{\prime}}$ \mathcal{A}_{\prime}	, θ, θ, β	$\partial^{\prime} f^{\alpha}_{\alpha}$	x OBT ,	$\partial^{\theta} f^{\alpha l}$	$2(t_1+t_2)~\mathcal{F}_{lphaeta}~(\mathcal{F}^{lphaeta})$	$\mathcal{A}_{lphaeta_l}$ 3° \mathcal{A}^{upl}		3 √2	$\frac{1}{3}\bar{l}k(t_1+t_2)$	$+t_2$) $\frac{1}{3}k^2(t_1+t_2)$	0	0	0		#1 1+ σ: #2 1+ σ:	αβ	$\frac{2(t_1+t_2)}{3t_1t_2}$ $\frac{\sqrt{2}(t_1-2t_1)}{3(1+k^2)t_1}$	2)	$\frac{\sqrt{2}(t_1-2)}{\sqrt{2}(t_1+2)}$ $\frac{t_1+4t_2}{8(1+k^2)^2}$	$\frac{2t_2)}{t_1t_2}$	$i \sqrt{2} k(t_1 - t_2) = i k(t_1 + 4)$ $i k(t_1 + 4)$ $3(1 + k^2)^2$	$t_1 t_2$	0 0	(0 0	1 14	C
Covariant	$\partial_{eta}\partial_{lpha} au^{lphaeta}$	$\partial_{\beta}\partial_{\alpha} \tau^{\alpha\beta}$:	$==0 \qquad \partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$:	$a\beta == 0 \partial_{\chi} \partial^{\alpha} t^{1}$	$\alpha\beta = 0$							Total expected gauge generators:	α β	$8t_3 \mathcal{A}_{lpha}^{~ heta}$	$4t_3\partial_j f^{\theta}$	86305 2536	$2 t_2 o_{\alpha f}_{i\theta}$ $4 t_1 \partial_{\theta} f_{\alpha i}$	$2(t_1)$	#				$-\frac{1}{3}\bar{l}\mathit{K}(t_1)$	0	0	0			τ ^{αβ} -	$\frac{i\sqrt{2}k(t_1-2)}{3(1+k^2)t_1}$	2t ₂)	$i \ k(t_1 + 4)^2$	1t ₂)	$\frac{k^2(t_1+4)^2}{3(1+k^2)^2}$	$t_1 t_2$	$0 = \frac{2(t_1 + t_3)}{3t_1t_3}$		$0 \qquad 0 \\ \frac{\sqrt{2}(t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	0	$\frac{2i \ k \ t}{3t_1 t_3 + 6}$
arity form	0=	#1 kO+ \sigma ==0	$\frac{\#^2}{1^-} \frac{\alpha}{r} + 2 i k \frac{\#^2}{1^-} \frac{\alpha}{\sigma}$	0 ==	+ i k1+ 0	-2 i k ^{#1}	٧						expected ga	$S == \iiint \left(\frac{1}{6} \left(2 t_1 \mathcal{A}^{\alpha}\right)\right)$						#1) =		$\beta = \frac{i \ k(t_1 - 2 t_2)}{3 \sqrt{2}}$	ο	0 σ	σ 0	σ 0	#2 1 o	τ† ^α	0	0			0	-0	$\frac{\sqrt{2}(t_1-2t_1)}{3(1+2k^2)t_1}$	t ₃)	$\frac{t_1+4t_3}{(1+2 k^2)^2 t_1 t_3}$	0	$\frac{i \sqrt{2} k(t_1)}{3(1+2 k^2)}$
Spin-parity	#2 0+ r ==0	#1 0+ r-2	$\frac{#2}{1} \alpha$	$\frac{#1}{1} \alpha$	$\frac{#1}{1}\alpha\beta$	$^{*1}_{\alpha\beta}$	- 1						Totale	ഗ "!'							1	$1^{+}\mathcal{A}^{\dagger}$	$1^{+}_{-}\mathcal{A}^{\dagger}$	$1^{*1}f^{\alpha\beta}$	$^{\#1}_{1}\mathcal{A}^{\dagger}$	$^{#2}_{1}\mathcal{A}^{\dagger}$	$^{#1}_{1^-f}$	$\frac{#^2}{1^-f}$	#2 1 1	- 1	0	0			0		$2i \ k(t_1-2t_3) + 6k^2t$	t ₁ t ₃	$i \sqrt{2} k (t_1 + 4t_3)$ $3(1 + 2 k^2)^2 t_1 t_3$	0	$\frac{2 k^2 (t_1 + t_2)^2}{3(1 + 2 k^2)^2}$

Massive and massless spectra

Parity:	Spin:	U)	Massive particle	$ \begin{array}{cccc} \uparrow & & & \downarrow & $	(No particles)
Odd		2 1 V O	ticle		

Unitarity conditions