Завдання 1–14 мають по п'ять варіантів відповіді,

з яких лише один правильний. Виберіть правильний, на вашу думку, варіант відповіді.

1. Випущено партію з 300 лотерейних білетів. Імовірність того, що навмання вибраний білет із цієї партії буде виграшним, дорівнює 0,2. Визначте кількість білетів без виграшу серед цих 300 білетів.

A	Б	В	Γ	Д
6	60	294	150	240

2. Група з 15 школярів у супроводі трьох дорослих планує автобусну екскурсію в заповідник. Оренда автобуса для екскурсії коштує 800 грн. Вартість вхідного квитка в заповідник становить 20 грн для школяра й 50 грн — для дорослого. Якої мінімальної суми грошей достатньо для проведення цієї екскурсії?

A	Б	В	Γ	Д
1050 грн	1150 грн	1250 грн	870 грн	1350 грн

3. У скільки разів збільшиться об'єм кулі, якщо її радіус збільшити у 2 рази?

A	Б	В	Γ	Д
у 2 рази	у 4 рази	у 6 разів	у 8 разів	у 16 разів

4. Розв'яжіть рівняння $x^2 - 4x + 3 = 0$.

A	Б	В	Γ	Д
-4; 3	1; 3	-3; -1	-2; 3	-1; 4

5. У прямокутнику бісектриса прямого кута ділить протилежну сторону на відрізки завдовжки 5 і 7 (див. рисунок). Знайдіть периметр прямокутника.

A	Б	В	Γ	Д
25	34	29	30	38

7

6. Спростіть вираз $\frac{3m-2n}{n}$

\mathbf{A}	Б	В	Γ	Д
$-\frac{n}{4}$	$-\frac{n}{8}$	$-\frac{n}{6}$	$-\frac{m}{4}$	$\frac{3m-n}{4}$

7. Укажіть лінійну функцію, графік якої паралельний осі абсцис і проходить через точку A(-2; 3).

A	Б	В	Γ	Д
$y = -\frac{3}{2}x$	y = -2	x = -2	x = 3	y = 3

8. Визначте знаменник геометричної прогресії (b_n) , якщо $b_9 = 24$; $b_6 = -\frac{1}{9}$.

A	Б	В	Γ	Д
$\frac{2}{\sqrt{3}}$	$-\frac{2}{\sqrt{3}}$	-3	6	-6

- 9. Які з наведених тверджень є правильними?
 - І. Через дві прямі, що перетинаються, можна провести лише одну площину.
 - II. Через точку, що не належить площині, можна провести безліч прямих, паралельних цій площині.

III. Якщо дві різні площини паралельні одній і тій самій прямій, то вони паралельні.

A	Б	В	Γ	Д
лише I	лише I i II	лише I i III	лише II і III	I, II i III

10. Обчисліть площу зафарбованої фігури, зображеної на рисунку.

A	Б	В	Γ	Д
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\sqrt{2}$	$\sqrt{3}$

11. Обчисліть $\log_2 \frac{1}{8} + \log_5 25$.

A	Б	\mathbf{B}	Γ	Д
2	-1	5	$lg\frac{25}{8}$	$\log_7 25 \frac{1}{8}$

12. Використовуючи зображені на рисунку графіки функцій, розв'яжіть нерівність $2^x > -x + 3$.

A	Б	В	Γ	Д
$(-\infty; 2)$	$(1; +\infty)$	(0; 1)	$(-\infty; 1)$	$(2; +\infty)$

13. Якому проміжку належить значення виразу sin410°?

A	Б	В	Γ	Д
$\left(-1;-\frac{1}{2}\right)$	$\left(-\frac{1}{2};\frac{1}{2}\right)$	$\left(\frac{1}{2}; \frac{\sqrt{2}}{2}\right)$	$\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{3}}{2}\right)$	$\left(\frac{\sqrt{3}}{2};1\right)$

14. Сторона основи правильної чотирикутної призми дорівнює 3 см, а периметр її бічної грані — 22 см. Знайдіть площу бічної поверхні призми.

\mathbf{A}	Б	В	$oldsymbol{\Gamma}$	Д
$66~\mathrm{cm}^2$	$72~\mathrm{cm}^2$	$96~\mathrm{cm}^2$	$114~\mathrm{cm}^2$	$264~\mathrm{cm}^2$

У завданнях 15–18 до кожного з трьох пунктів інформації, позначених цифрами. доберіть один правильний, на вашу думку, варіант, позначений буквою.

15. Установіть відповідність між функцією (1–3) та кількістю спільних точок (А–Д)

графіка цієї функції з графіком функції $y = \frac{x}{5}$. Функція Кількість спільних точок 1 $y = \sin x$ жодної 2 $y = \sqrt{x}$ лише одна лише дві v = x + 5лише три

Д більше трьох **16.** Установіть відповідність між числовим виразом (1–3) та його значенням (А–Д). Числовий вираз Значення числового виразу

4

 $\sqrt{16}$

Початок речення

1

АБВГ

 $2^{3,5} \cdot 2^{1,5}$

17. У трикутнику ABC: AB = c, BC = a, AC = b. До кожного початку речення (1–3) доберіть його закінчення (А–Д) так, щоб утворилося правильне твердження.

Закінчення речення

1 Якщо
$$c^2 = a^2 + b^2$$
, A то $\angle C = 30^\circ$.
2 Якщо $a = c = \frac{b}{\sqrt{2}}$, B то $\angle C = 60^\circ$.
3 Якщо $c^2 = a^2 + b^2 - 2ab \cdot \left(-\frac{1}{2}\right)$, Π то $\angle C = 90^\circ$.
1 По \Box 3 Видостою 4 см виисано конус.

18. У циліндр з радіусом основи 3 см і висотою 4 см вписано конус (див. рисунок). До кожного початку речення (1–3) доберіть його закінчення (А–Д) так, щоб утворилося правильне твердження.

Початок речення Закінчення Площа повної поверхні циліндра речення дорівнює A 9π cm².

БВГ **Б** $12\pi \text{ cm}^2$. Площа основи конуса дорівнює 3 Площа бічної поверхні конуса **B** $15\pi \text{ cm}^2$. дорівнює 24π cm². 42π cm².

Розв'яжіть завдання 19, 20. Відповідь записуйте лише десятковим дробом.

19. Другий член арифметичної прогресії (*a*₂) на 7,2 більший за її шостий член.

20. Висота правильної чотирикутної піраміди дорівнює 12 см, апофема — 13 см.

Визначте перший член a_1 цієї прогресії, якщо $a_4 = 0.7$.

Обчисліть об'єм (у см³) цієї піраміди.