

第十一章: 格与布尔代数

第一节:格的定义与性质

简 第二节:分配格、有补格与布尔代

第十一章: 格与布尔代数

第一节:格的定义与性质

引言

- □格和布尔代数都是抽象的代数系统,与前面不同的是在于格和布尔代数中次序关系具有重要的意义
- □格首先在偏序集合的基础上进行讨论,然后将讨论代数系统格,对代数系统的格施加某些限制可得到布尔代数。布尔代数是一种特殊的代数系统,而且是一种特殊的格
- □格也是一类非常重要的代数结构

- □格:偏序集合<L,≤>,满足
 - **◇每一对元素**a,b∈L都拥有一个最小上界和最大下界
- □符号:
 - **❖最大下界**: ∧
 - ❖最小上界: ∨

例:设S是一集合,P(S)是S的幂集,则<P(S),⊆>是一个 偏序集,∀A,B∈P(S),易证明,

 $A \land B = A \cap B \in P(S), A \lor B = A \cup B \in P(S)$

∴<P(S),⊆>是一个格。

例: I₊是正整数集合,D是整除关系,<I₊,D> 是偏序集,∀a,b∈I₊,

a∧b=最大公约数, a∨b=最小公倍数

证明:若c是{a, b}的下界,则c≤a, c≤b,即c能整除a,能整除b,所以c是a, b的公约数。若c是{a, b}的最大下界,则c是a, b的最大公约数。反之,同样可证。

因此,<I₊,D>是格,因为∀a,b∈I₊都有最大 公约数和最小公倍数。

- □对偶式:格中元素用运算符^,〉连接起来的的一个表达式f,如将f中的^换成〉,将〉换成^, 所形成的表达式称为f的对偶式记作f*
- □对偶命题:两个表达式f,g用关系符≤,≥连接成为命题,将表达式f,g用f*,g*代替,≤与≥互换,形成的命题称为原命题的对偶命题
- □例: f=(a∨b)∧c≼c, f*=(a∧b)∨c≽c

对偶原理:设f是含有格中元素以及符号 = , ≼, ≽ , ∨, ∧等的命题。若f对一切格为真,则f的对 偶命题f*也对一切格为真

□例: 如果对一切格L, ∀a,b∈ L,(a∨b)∧c≼c 则f*=(a∧b)∨c≽c

- □ 定理: 设<L, ≼>是一格, 则对于所有的a,b∈L a≼b⇔a∧b=a⇔a∨b=b
- □定理: 设<L, ≼>是一格,则对于所有的a,b, c,d∈L

- □定理: 设<L, \le >是一格,则对于所有的a,b,c∈L
 - 有:
 - (1) 交换律: a∨b=b∨a, a∧b=b∧a
 - (2) 结合律: (a > b) > c = a > (b > c)
 - $(a \wedge b) \wedge c = a \wedge (b \wedge c)$
 - (3) 幂等律: a∨a=a, a∧a=a
 - (4) 吸收律: a > (a > b) = a, a > (a > b) = a


```
证明结合律: (a∨b)∨c=a∨(b∨c)
(a∨b)∨c≥a∨b≥ a
(a∨b)∨c≥a∨b≥ b
(a∨b)∨c≥c∴(a∨b)∨c≥b∨c
∴ (a∨b)∨c≥a∨(b∨c)
同理a∨(b∨c)≥(a∨b)∨c
因为≥的反对称性, (a∨b)∨c=a∨(b∨c)
```


从现在开始讨论代数系统的格,把格看成是一个特殊类型的代数系统。

□格的另一种定义: 设<L,*,⊕>是一个代数系统, L是一非空集合,*和⊕是L上的二个二元运算。 若*和⊕满足交换律,结合律,幂等律,吸收律,则称此代数系统为格

为什么可以这么定义?

对应意理: 设<L,*, \oplus >是一个代数系统格,则在L中一定存在一个偏序关系 \leq ,并在 \leq 的作用下,对任一 $a,b\in L$,

 $a \oplus b = a \lor b$, $a*b=a \land b$

由上述定理可得以下结论:

(1) 在<L,*,⊕>的代数系统格中,可以定义一个L 上的偏序关系≼,即

a≤b ⇔ a*b=a ⇔ a⊕b=b

(2) 在格<L, ≼>中,可以定义二个运算*和⊕ ,有 a ⊕ b= a ∨ b , a*b=a ∧ b

浏应意理: 设<L,*, \oplus >是一个代数系统格,则在L中一定存在一个偏序关系 \leq ,并在 \leq 的作用下,对任一 $a,b\in L$,

 $a \oplus b = a \lor b$, $a*b=a \land b$

证明: 定义二元关系≼: ∀ a, b∈L

 $a \leq b \Leftrightarrow a \oplus b = b$

需要证明≼是L上的偏序, 且<L, ≼ >为格

证明≼是L上的偏序 (a≼b ⇔ a ⊕ b = b)

自反性: 根据幂等律, ∀ a∈L, a⊕a=a, 故a≼a

反对称性: ∀a, b∈L

 $a \leq b$ 且 $b \leq a \Leftrightarrow a \oplus b = b$ 且 $b \oplus a = a$

⇒ a = b ⊕ a = a ⊕ b = b(⊕适合交换律)

传递性: ∀ a, b, c∈L

 $a \le b$ 且 $b \le c \Leftrightarrow a \oplus b = b$ 且 $b \oplus c = c$

 \Rightarrow a \oplus c = a \oplus (b \oplus c) \Rightarrow a \oplus c = (a \oplus b) \oplus c

 \Rightarrow a \oplus c = b \oplus c = c \Rightarrow a \leq c


```
证明<L, ≼ >为格 (a≼b ⇔ a ⊕ b = b)
```

最小上界存在性: ∀a, b∈L

$$a \oplus (a \oplus b) = (a \oplus a) \oplus b = a \oplus b$$

$$b \oplus (a \oplus b) = a \oplus (b \oplus b) = a \oplus b$$

⇒a≼a ⊕ b且b≼a ⊕ b,故a ⊕ b是{a,b}的上界

设c为{a,b}的上界,则a ⊕ c = c且b ⊕ c = c,故

 $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus c = c$

⇒a ⊕ b≼c, 故 a ⊕ b是{a,b}的最小上界

同理可证最大下界存在性

□子格: 设<L, ∧, ∨>是格, H是L的非空子集, 如果在∧, ∨运算下H是封闭的, 称<H, ∧, ∨>是<L, ∧, ∨>的子格

H对于结合律,交换律,幂等律和吸收律仍然成立的,故只要求H对运算封闭,<H,*,⊕>就是格

第十一章: 格与布尔代数

第二节:分配格、有补格与布尔

代数

□分配格: 设<L, ∧, ∨>是格,且∀a,b,c∈L

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

$$a \lor (b \land c) = (a \lor b) \land (a \lor c)$$

□例:如图两个格是不是分配格?

钻石格 如b*(c⊕d)和 (b*c)⊕(b*d)

五角格 如c⊕(e*b)和(c⊕e)*(c⊕b)

□分配格的充分必要条件定理: 设L是格,则L是分配格当且仅当L中不含与钻石格或五角格同构的子格

□推论:

- **❖小于五元的格都是分配格**
- ❖任何一条链都是分配格

□全上(下)界a:给定格<L, ≤>,对于任何元素b,都有b≤a(a≤b)

- □一个格的全下界(全上界)是*唯一*的
 - ***分别记为0 (1)**

- □有界格<L,≤>: <L,≤> 为格, L中有全上界(记为 1)和全下界(记为0)
 - ❖记作< L, ∧, ∨ , 1, 0>
- ■例:<P(S),∩,∪>, P(S)是集合S的幂集※全上界是全集S,全下界是∅
- □例:< Z₊, ≤>
 不是有界格,因其不存在全上界,(全下界是存在

个是有界格,因具个仔仕全上界,(全下界是仔仕的,是整数1)

□有界格的性质:在有界格中成立,∀a∈L

❖同一律: a⊕0=a,a*1=a

◇零律: a*0=0,a⊕1=1

证明:因0是全下界,∀a∈L,0≤a

a*0=0 a⊕0=a

1是全上界, ∀a ∈ L, a≤1

a*1=a,a⊕1=1

→ 补元: 设< L, ∧, ∨, 0, 1>是有界格,a∈L,如果存在元素b∈L使得

 $a \wedge b = 0$, $a \vee b = 1$

则称b为元素a的补元,记为a'

在有界格中有的元素存在补元,也可能有的元素 不存在补元,也可能有的元素存在两个或两个以 上补元

x₁的补元有**两个**x₂,x₃, x₃的补元只有一**个**是x₁, **0**和**1**是互**为补**元。

在<S₂₄,D>中,全上界为24,全下界为1, 1和24互为补元, 3和8互为补元, 3+8=24, 2,4,6,12的补元是什么?

□补元唯一性定理:在有界分配格中,如果元素 a∈L有一个补元,则此补元是唯一的

证明:假定b和c都是a的补元,则

a*b=0=a*c a⊕b=1=a⊕c

由分配格的性质,得b=c

□**有补格:**如果在一个有界格中,每个元素都至少 有一个补元素,则称此格为有补格。

- □格:偏序集合<L,≤>,满足
 - **◇每一对元素**a,b∈L都拥有一个最小上界和最大下界

- □格的两种定义:
- ◆偏序集合<L,≤>,满足每一对元素a,b∈L都拥有一个最小上界和最大下界
- ◆代数系统<L,*,⊕>,*和⊕是L上的两个二元运算,*和⊕满足交换律,结合律,幂等律,吸收律
- ◆对应定理: 设<L,*,⊕>是一个代数系统格,则 在L中一定存在一个偏序关系≼,并在≼的作 用下,对任一a,b∈L,

 $a \oplus b = a \lor b$, $a*b=a \land b$

□特殊的格:

◆分配格: 设<L, ∧, ∨>是格,且∀a,b,c∈L a∧(b∨c)=(a∧b)∨(a∧c)

 $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

充要条件: L是分配格当且仅当L中不含与钻石格或五角格同构的子格

- ◆有界格: <L,≤> 为格, L中有全上界(记为1)和 全下界(记为0)
 - ❖记作< L, ∧, ∨ , 1, 0>
 - ◇同一律和零律: a⊕0=a,a*1=a; a*0=0,a⊕1=1
- ◆有补格: 在一个有界格中,每个元素都至少有一个补元素
 - ❖补元: 有界格,a∈L,如果存在元素b∈L, 使得 a∧b=0, a∨b=1

则称b为元素a的补元,记为a'

◇唯一性定理:在有界分配格中,如果元素a∈L有一个补元,则此补元是唯一的

第十一章: 格与布尔代数

第一节:格的定义与性质

篇 第二节:分配格、有补格与布尔代

布尔代数简介

- □ 1854年由George Boole在他的著作: The Laws of Thought中提出
- □在电子工程和计算机科学中有很多实践应用
 - ❖电子工程领域专门化了的布尔代数也叫做逻辑代数
 - ❖计算机科学领域专门化了的布尔代数也叫做布尔逻

辑

□布尔代数:又称有补分配格,既是有补格,又是 分配格

布尔代数是有界格,存在全下界记为0,存在全上界记为1,由于是有补格,每个元素均存在且有唯一的补元,因有补分配格,每个元素均存在且有唯一的补元,因而求补元可以看作是一个运算,可以把a的补元记为a',今后用<B, /, /, 0, 1>来表示一个布尔代数。

□常见的布尔代数:

- ***<P(A),** ∪, ∩, ~, Ø, A>是个布尔代数, 称此为集合代数, 其中, 补运算~, 全下界Ø, 全上界A
- **◇S是命题公式的全体,则<S,∨,∧,¬,0,1>是一个** 布尔代数,称之为命题代数

- □定理: 给定布尔代数<B, ∧, ∨, ′, 0, 1>
 - ① 对于每一个a∈B, 都有(a′)′=a
 - ② 对任意元素a,b∈B,a和b有补元素a',b',则 (a∧b)'=a'√b',(a∨b)'=a'∧b'

类似可以证明: (a∧b)∧(a'∨b')=0 所以(a∧b)'=a'∨b' 同理可以证(a∨b)'=a'∧b'

□等价定义:设<B,*,⊕>是代数系统,如果 ∀a,b,c∈B,满足如下: H1:a*b=b*a,a⊕b=b⊕a (交換律) $H2:a*(b\oplus c)=(a*b)\oplus (a*c),$ $a\oplus(b*c)=(a\oplus b)*(a\oplus c)$ (分配律) H3:B中有元素0和1, र्रो∀a∈B,a*1=a,a⊕0=a (同一律) H4:∀a∈B,有一 a∈B,使 a⊕ a=1,a* a=0 (互补律) 则<B,*,⊕, ,0,1>是布尔代数

例: 设S₁₁₀={1,2,5,10,11,22,55,110}是110的所有因数的集合,令glb,lub是最大公约数和最小公倍数运算。下面简记为glb—*,lub—⊕

证明: <S₁₁₀,*,⊕>是一个布尔代数。

证明:

110=1×2×5×11质因子分解式中因子是不重复的。记(x)为x分解的质因数的集合,例 (55)={1,5,11}。

容易验证,交换律显然成立。

显然1是S₁₁₀的全下界,110是S₁₁₀的全上界。 x*110=x,x⊕1=x,同一律成立。

记一x=110/x, 因110中质因数分解中质因数不重复。 故一x与x的质因数没有重复的。

- ∴ ¬x*x=1, ¬x⊕x=(¬x)∪(x)=110互补律是成立,
- ∴ <S₁₁₀,*,⊕, ¬,1,110>是布尔代数。

小结

- □格: 定义, 基本性质。
- □从代数系统角度看格:格代数系统定义,子格, 格同态,积代数。
- □特殊的格:分配格,有界格,有补格,有补分配格。
- □布尔代数: 定义, 性质, 子布尔代数, 布尔同态, 有限布尔代数的原子表示。

作业

