Regulatory sequence analysis

Matrix-based pattern matching

Jacques van Helden https://orcid.org/0000-0002-8799-8584

Aix-Marseille Université, France Theory and Approaches of Genome Complexity (TAGC)

Institut Français de Bioinformatique (IFB) http://www.france-bioinformatique.fr

Regulatory motif: position-specific scoring matrix (PSSM) Binding motif of the yeast TF Pho4p (TRANSFAC matrix F\$PHO4_01)

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Base												
Α	1	3	2	0	8	0	0	0	0	0	1	2
C	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
T	4	1	0	0	0	0	0	8	3	2	2	2
			V	С	Α	C	G	T	K	В		

Frequency matrix

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12	Prior (pi)
Α	0,125	0,375	0,250	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,125	0,250	0,25
С	0,250	0,250	0,375	1,000	0,000	1,000	0,000	0,000	0,000	0,250	0,000	0,250	0,25
G	0,125	0,250	0,375	0,000	0,000	0,000	1,000	0,000	0,625	0,500	0,625	0,250	0,25
Т	0,500	0,125	0,000	0,000	0,000	0,000	0,000	1,000	0,375	0,250	0,250	0,250	0,25
Sum	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00

$$f_{i,j} = \frac{n_{i,j}}{\sum_{i=1}^{A} n_{i,j}}$$

A alphabet size (=4) $n_{i,j}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j

Count matrix with pseudo-count

1st option: identically distributed pseudo-weight (equiprobable residue priors)

Count matrix w	ith pse	udo-co	unt				k=	1			Equip	robable	residues
Residue\position	1	2	3	4	5	6	7	8	9	10	11	12	Prior (pi)
A	1,25	3,25	2,25	0,25	8,25	0,25	0,25	0,25	0,25	0,25	1,25	2,25	0,25
С	2,25	2,25	3,25	8,25	0,25	8,25	0,25	0,25	0,25	2,25	0,25	2,25	0,25
G	1,25	2,25	3,25	0,25	0,25	0,25	8,25	0,25	5,25	4,25	5,25	2,25	0,25
Т	4,25	1,25	0,25	0,25	0,25	0,25	0,25	8,25	3,25	2,25	2,25	2,25	0,25
Sum	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	1,00

$$f'_{i,j} = \frac{n_{i,j} + k/A}{\sum_{i=1}^{A} n_{i,j} + k}$$

2nd option: pseudo-weights distributed according to residue-specific priors

Count matrix w	<u>rith pse</u>	<u>udo-cc</u>	ount				k=	1	S	pecific	nucled	<u>tide fre</u>	equencies
Residue\position	1	2	3	4	5	6	7	8	9	10	11	12	Prior (pi)
A	1,33	3,33	2,33	0,33	8,33	0,33	0,33	0,33	0,33	0,33	1,33	2,33	0,33
С	2,17	2,17	3,17	8,17	0,17	8,17	0,17	0,17	0,17	2,17	0,17	2,17	0,17
G	1,17	2,17	3,17	0,17	0,17	0,17	8,17	0,17	5,17	4,17	5,17	2,17	0,17
T	4,33	1,33	0,33	0,33	0,33	0,33	0,33	8,33	3,33	2,33	2,33	2,33	0,33
Sum	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	9,00	1,00

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

A alphabet size (=4) $n_{i,j}$ occurrences of residue i at position j p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f_{i,j}$ corrected frequency of residue i at position j

Frequencies corrected by a pseudo-count

Frequency mat	rix corr	ected v	vith pse	eudo-ce	ount		k=	1	S	pecific	nucled	tide fre	equencies
Residue\position	1	2	3	4	5	6	7	8	9	10	11	12	Prior (pi)
Α	0,148	0,370	0,259	0,037	0,926	0,037	0,037	0,037	0,037	0,037	0,148	0,259	0,33
С	0,241	0,241	0,352	0,908	0,019	0,908	0,019	0,019	0,019	0,241	0,019	0,241	0,17
G	0,130	0,241	0,352	0,019	0,019	0,019	0,908	0,019	0,574	0,463	0,574	0,241	0,17
Т	0,481	0,148	0,037	0,037	0,037	0,037	0,037	0,926	0,370	0,259	0,259	0,259	0,33
Sum	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,00

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k}$$

```
A alphabet size (=4)
n_{i,j}, occurrences of residue i at position j
p_i prior residue probability for residue i
f_{i,j} relative frequency of residue i at position j
k pseudo weight (arbitrary, 1 in this case)
f'_{i,j} corrected frequency of residue i at position j
```

Probability of a sequence segment under the matrix model

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Α	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sequence	S A	Т	G	С	G	Т	Α	Α	Α	G	С	T

P(res)

P(S|M)

Exercise: estimate the probability of sequence ATGCGTAAAGCT given the motif M

$$P(S \mid M) = \prod_{j=1}^{w} f'_{r_j j}$$

- Let
 - f u M be a frequency matrix of width w
 - $S = \{r_1, r_2, ..., r_w\}$ be a sequence segment of length w (same length as the matrix)
 - $ightharpoonup r_j$ is the residue found at position j of the sequence segment S.
- The corrected frequencies F'_{ij} can be used to estimate the probability to observe residue i at position j of the motif described by the matrix
- The probability to generate the sequence segment S under the model described by the matrix M is the product of the frequencies of residues at the corresponding columns of the matrix.

Probability of a sequence segment under the matrix model

Residue\position	1	2	3	4	5	6	7	8	9	10	11	12	Prior (pi)
A	0,148	0,370	0,259	0,037	0,926	0,037	0,037	0,037	0,037	0,037	0,148	0,259	0,33
С	0,241	0,241	0,352	0,908	0,019	0,908	0,019	0,019	0,019	0,241	0,019	0,241	0,17
G	0,130	0,241	0,352	0,019	0,019	0,019	0,908	0,019	0,574	0,463	0,574	0,241	0,17
Т	0,481	0,148	0,037	0,037	0,037	0,037	0,037	0,926	0,370	0,259	0,259	0,259	0,33
Sequence S	Α	T	G	С	G	T	Α	Α	Α	G	С	T	
P(res)	0,148	0,148	0,352	0,908	0,019	0,037	0,037	0,037	0,037	0,463	0,019	0,259	

$$P(S \mid M) = \prod_{j=1}^{w} f'_{r_j j}$$

- Let
 - f M be a frequency matrix of width w

5,40E-13

P(S|M)

- $S = \{r_1, r_2, ..., r_w\}$ be a sequence segment of length w (same length as the matrix)
- ho r_j is the residue found at position j of the sequence segment S.
- The corrected frequencies F'_{ij} can be used to estimate the probability to observe residue i at position j of the motif described by the matrix
- The probability to generate the sequence segment S under the model described by the matrix M is the product of the frequencies of residues at the corresponding columns of the matrix.

Background probability of a sequence segment – Bernoulli model

Residue	Prio	r (pi)										
Α	0,	33								D(C	'מוי	
С	0,	17								P(S)	(B) =	$=\prod_{i}p_{i}$
G	0,	17										$\overline{j}=\overline{1}$
Т	0,	33										
Sequence S	Α	Т	G	С	G	Т	Α	Α	Α	G	С	T
pi	0,330	0,330	0,170	0,170	0,170	0,330	0,330	0,330	0,330	0,170	0,170	0,330
P(S B)	6,05	E-08										

- A background model (*B*) should be defined to estimate the probability of a sequence motif outside of the motif.
- Various possibilities can be envisaged to define the background model
 - Identical and independent distribution (iid): Bernoulli model with equiprobable residues (this should generally be avoided, because most biological sequences are biased towards some residues)
 - Bernoulli model with residue-specific probabilities (p_r)
 - Markov models (treat dependencies between successive nucleotides)
- Under a Bernoulli model, the probability of a sequence motif S is the probability of the prior frequencies of its residues r_i .

The weight score

- The weight score is the log-likelihood of the sequence between two alternative generative models
 - The motif
 - The background model

Position-weight matrix

Prior	Pos	1	2	3	4	5	6	7	8	9	10	11	12
0.33	A	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
0.18	C	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
0.18	G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
0.33	Т	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
1	Sum	-0.37	-0.02	-1.02	-4.94	-5.55	-4.94	-4.94	-5.55	-3.08	-1.13	-2.03	0.19

$$W_{i,j} = \ln \left(\frac{f'_{i,j}}{p_i} \right)$$

$$f'_{i,j} = \frac{n_{i,j} + p_i k}{\sum_{i=1}^{A} n_{i,j} + k} \qquad \sum_{i=1}^{A} f'_{i,j} = 1$$

A alphabet size (=4) p_i prior residue probability for residue i $f_{i,j}$ relative frequency of residue i at position j k pseudo weight (arbitrary, 1 in this case) $f'_{i,j}$ corrected frequency of residue i at position j

Scoring a sequence with a weight matrix (Bernoulli only)

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Α	-0.79	0.13	-0.23	-2.20	1.05	-2.20	-2.20	-2.20	-2.20	-2.20	-0.79	-0.23
С	0.32	0.32	0.70	1.65	-2.20	1.65	-2.20	-2.20	-2.20	0.32	-2.20	0.32
G	-0.29	0.32	0.70	-2.20	-2.20	-2.20	1.65	-2.20	1.19	0.97	1.19	0.32
Т	0.39	-0.79	-2.20	-2.20	-2.20	-2.20	-2.20	1.05	0.13	-0.23	-0.23	-0.23
residue r	Α	Т	G	С	G	Т	Α	Α	Α	G	С	T
W(r)	-0.79	-0.79	0.70	1.65	-2.20	-2.20	-2.20	-2.20	-2.20	0.97	-2.20	-0.23
Weight -	-11.67		=SUM[W	/(r)]			llndar the		tion of D	arnoulli be	okaround	

$$W_S = \ln \left(\frac{P(S \mid M)}{P(S \mid B)} \right)$$

- The **weight** of a sequence segment is defined as the logratio between
 - P(S|M), the sequence probability under the model described by the PSSM, and
 - ho P(S|B), the sequence probability under the background model.
- The weight W_s represents the likelihood that segment S is an occurrence of the motif M rather than being issued from the background model B.
- Under Bernoulli assumption, the weight matrix W_{ij} can be used to simplify the computation of segment weights.

Under the assumption of Bernoulli background model, this formula becomes

$$W_{S} = \ln\left(\frac{P(S \mid M)}{P(S \mid B)}\right) = \ln\left(\frac{\prod_{j=1}^{s} f'_{r_{j}j}}{\prod_{j=1}^{w} p_{r_{j}}}\right) = \sum_{j=1}^{w} \ln\left(\frac{f'_{r_{j}j}}{p_{r_{j}}}\right) = \sum_{j=1}^{w} W_{r_{j}j}$$

$$W_{S} \qquad \text{weight of sequence segment } S$$

$$P(S \mid M) \qquad \text{probability of the sequence segment, given the matrix}$$

P(S|B) probability of the sequence segment, given the background j position within the segment and within the matrix r_j residue at position j of the sequence segment p_{rj} prior probability of residue r_j probability of residue r_j at position j of the matrix

Probability of the highest scoring sequence segment

	Pos	1	2	3	4	5	6	7	8	9	10	11	12
	A	0.15	0.37	0.26	0.04	0.93	0.04	0.04	0.04	0.04	0.04	0.15	0.26
	С	0.24	0.24	0.35	0.91	0.02	0.91	0.02	0.02	0.02	0.24	0.02	0.24
	G	0.13	0.24	0.35	0.02	0.02	0.02	0.91	0.02	0.58	0.46	0.58	0.24
	Т	0.48	0.15	0.04	0.04	0.04	0.04	0.04	0.93	0.37	0.26	0.26	0.26
Sequ	ence S	T	Α	G	С	Α	С	G	Т	G	G	G	T
	P(res)	0.48	0.37	0.35	0.91	0.93	0.91	0.91	0.93	0.58	0.46	0.58	0.26
	P(S M)	1.59E-0	03										141

This segment of sequence is associated to the highest possible probability given the matrix : P(S|M)

Each nucleotide of the sequence corresponds to the residue with the highest probability in the corresponding column of the matrix.

 $P(S \mid M) = \prod f'_{r_j j}$

Scanning a sequence with a weight matrix

• The weight matrix is successively aligned to each position of the sequence, and the score is the sum of weights for the letters aligned at each position (Hertz & Stormo, 1999).

Example: matching at a given location of a sequence

Weight matrix

	1	2	3	4	5	6	7	8	9	10	11	12
Α	-0.8	0.1	-0.2	-2.2	1.0	-2.2	-2.2	-2.2	-2.2	-2.2	-0.8	-0.2
С	0.3	0.3	0.7	1.6	-2.2	1.6	-2.2	-2.2	-2.2	0.3	-2.2	0.3
G	-0.3	0.3	0.7	-2.2	-2.2	-2.2	1.6	-2.2	1.2	1.0	1.2	0.3
A C G T	0.4	-0.8	-2.2	-2.2	-2.2	-2.2	-2.2	1.0	0.1	-0.2	-0.2	-0.2

Scanning

7.55

0.3

-0.8

1 SUM -10.54							С	С
2						С	С	

1.6

1.0

1.6

1.0

Scanning a sequence with a position-specific scoring matrix

- P(S|M) probability for site S to be generated as an instance of the motif.
- **P(S|B)** probability for site S to be generated as an instance of the background.
- weight, i.e. the log ratio of the two above probabilities.
 - A positive weight indicates that a site is more likely to be an instance of the motif than of the background.

Matrix search : matching positions

- Matrix-based pattern matching is more sensitive than string-based pattern matching.
- How to choose the threshold?

Matrix search : threshold choice

- The program Patser (G. Hertz) includes an option to automatically select a threshold on the basis of
 - the information content of the matrix
 - the length of the sequence to be scanned
- Another approach is to select the threshold on the basis of scores returned when the matrix is used to scan known binding sites for the factor.

Markov chains and transition matrices

Transition matrix, order 1

Prefix/Suffix	Α	С	G	Т	N(Suffix)
а	0.369	0.163	0.176	0.293	0.323
С	0.329	0.189	0.165	0.317	0.181
g	0.315	0.211	0.188	0.286	0.174
t	0.279	0.177	0.171	0.373	0.322
; P_res	0.323	0.181	0.174	0.322	

Transition matrix, order 2

Prefix/Suffix	Α	С	G	Т	P(Prefix)
aa	0.411	0.150	0.184	0.255	0.119
ac	0.353	0.179	0.170	0.298	0.053
ag	0.339	0.199	0.193	0.269	0.057
at	0.353	0.163	0.160	0.325	0.095
ca	0.344	0.183	0.178	0.295	0.059
cc	0.307	0.198	0.169	0.326	0.034
cg	0.283	0.228	0.193	0.296	0.030
ct	0.246	0.188	0.183	0.383	0.057
ga	0.410	0.142	0.186	0.261	0.055
gc	0.335	0.191	0.179	0.295	0.037
gg	0.323	0.215	0.193	0.270	0.033
gt	0.310	0.154	0.198	0.338	0.050
ta	0.304	0.179	0.157	0.360	0.090
tc	0.316	0.193	0.149	0.342	0.057
tg	0.304	0.210	0.177	0.309	0.055
tt	0.224	0.193	0.163	0.419	0.120
P(Suffix)	0.323	0.181	0.174	0.322	

<u>۳</u>	e	Ü	20	4
a	0.369	0.163	0.176	0.293
С	0.329	0.189	0.165	0.317
g	0.315	0.211	0.188	0.286
t	0.279	0.177	0.171	0.373
Ł.	т.			
	_	٥	δ.0 	ب
aa	0.411	0.150	0.184	0.255
ac	0.353	0.179	0.170	0.298
ag	0.339	0.199	0.193	0.269
at	0.353	0.163	0.160	0.325
ca	0.344	0.183	0.178	0.295
cc	0.307	0.198	0.169	0.326
cg	0.283	0.228	0.193	0.296
ct	0.246	0.188	0.183	0.383
ga	0.410	0.142	0.186	0.261
gc	0.335	0.191	0.179	0.295
gg	0.323	0.215	0.193	0.270
gt	0.310	0.154	0.198	0.338
ta	0.304	0.179	0.157	0.360
tc	0.316	0.193	0.149	0.342
tg	0.304	0.210	0.177	0.309
tt	0.224	0.193	0.163	0.419

Scoring a sequence segment with a Markov model

The example below illustrates the computation of the probability of a short sequence (ATGCGTAAAGCT) with a Markov chain of order 2, estimated from 3nt frequencies on the yeast genome.

pos	P(R W)		wR	S	P(S)
1	P(at)	0.094	at	at	9.42E-02
3	P(g at)	0.161	atG	atg	1.52E-02
4	P(c tg)	0.210	tgC	atgc	3.19E-03
5	P(g gc)	0.180	gcG	atgcg	5.74E-04
6	P(t cg)	0.295	cgT	atgcgt	1.69E-04
7	P(a gt)	0.309	gtA	atgcgta	5.23E-05
8	P(a ta)	0.304	taA	atgcgtaa	1.59E-05
9	P(a aa)	0.409	aaA	atgcgtaaa	6.50E-06
10	P(g aa)	0.184	aaG	atgcgtaaag	1.20E-06
11	P(c ag)	0.200	agC	atgcgtaaagc	2.39E-07
12	P(t gc)	0.294	gcT	atgcgtaaagct	7.04E-08

Sensitivity / selectivity tradeoff

- The sequence is scanned with the matrix, and a score is assigned to each position.
- The highest score reflects the highest probability of having a functional site.
- How to define the threshold? There is a tradeoff:
 - □ high selectivity ⇔ low sensitivity
 - high confidence in the predicted sites, but many real sites are missed
 - □ low selectivity ⇔ high sensitivity the real sites are drawn in a see of false positive

Discrimination power of a matrix

Reasonably discriminant

Exercise: impact of the P-value threshold on matrix scan results

- Open a connection to RSAT (<u>http://www.rsat.eu/</u>)
- Menu "Pattern matching", tool "matrix scan (full options)"
- Click on DEMO2 to load the test case
 - Even skipped upstream sequences (5kb upstream of start codon)
 - Background model calibrated on Drosophila upstream sequences

Impact of site P-value threshold on CRER detection

Negative control: CRERs in random sequences

Regulatory Sequence Analysis

Matching a sequence with a library of patterns

Match a sequence with a library of patterns

- Goal : given a sequence, find matches for any known regulatory site
 - → identify transcription factors that could regulate the gene
- Strategy: apply systematically pattern search with all patterns stored in the library
- Problem: how to set the threshold for the different patterns?
- Warning : generates many false positive

Transfac Matsearch result - PHO5 upstream region

```
Inspecting sequence PHO5 4 [?] (1 - 816):
 F$NIT2 01
                             141 (+) |
                                         1.000 I
                                                  0.995
                                                          TATCtc
 F$PHO4 01
                             561 (+) I
                                         1.000 |
                                                  0.990
                                                          tcaCACGtggga
 F$PHO4 01
                              561 (-) I
                                         1.000 |
                                                  0.982 |
                                                          tccCACGtgtga
 F$NIT2 01
                             634 (+) I
                                         1.000 I
                                                  0.972
                                                          TATCaa
  F$NIT2 01
                                                  0.967 I
                             543 (-) |
                                         1.000 I
                                                          TATCga
 F$NIT2 01
                                         1.000 I
                                                  0.945
                             676 (-) I
                                                          TATCcc
 F$NIT2 01
                              31 (-) |
                                                  0.937 |
                                         1.000 I
                                                          TATCag
 F$PHO4 01
                             452 (+) |
                                         1.000 I
                                                  0.935
                                                          tagCACGttttc
 F$MCM1 01
                             666 (-) I
                                         0.961 I
                                                  0.929 | tatCCCAaatgggtat
  F$MATA1 01
                                         1.000 I
                                                  0.926
                                                          tGATGtcagt
                             202 (+) |
 F$GCR1 01
                             323 (-) |
                                         1.000 I
                                                  0.922 |
                                                          gaCTTCcaa
  F$GCN4 C
                             536 (+) |
                                         0.837 |
                                                  0.902 |
                                                          aaaTGAATcq
  F$ABAA 01
                                                  0.889 |
                             292 (-) |
                                         1.000 |
                                                          atttgcgCATTcttgttga
  F$ABF C
                             205 (+) I
                                         0.887 I
                                                  0.885 I
                                                          tgtcagtccccACGC
 F$MATA1 01
                             727 (+) |
                                         1.000 I
                                                  0.882 | tGATGttttg
  F$MIG1 01
                             210 (-) |
                                         1.000 I
                                                  0.881 I
                                                          gctattagcgtGGGGac
 F$GCR1 01
                              69 (+) |
                                                  0.880
                                         0.826 |
                                                          ggCATCcaa
 F$PHO4 01
                                         1.000 |
                                                  0.879
                                                          ggtCACGtttct
                                 (-) l
  F$MAT1MC 02
                             696 (+) I
                                         1.000 I
                                                  0.875
                                                          tgaaTTGTcg
 F$GCN4 C
                             589 (+) |
                                         0.882 |
                                                  0.862 | ttaTGATTct
  F$STE11 01
                             415 (+) |
                                         1.000 I
                                                  0.860
                                                          ctttttCTTTqtctqcac
 F$GCR1 01
                             249 (-) |
                                         0.783 |
                                                  0.859
                                                          ggCGTCctg
 F$STE11 01
                                                  0.859 |
                             425 (-) |
                                         1.000 |
                                                          atatttCTTTgtgcagac
  F$MCM1 01
                                         0.831 I
                                                  0.855 I
                                                          atgCCAAaaaaagtaa
                             484 (+) |
```

Transfac Matsearch result - random sequence (mkv 5)

```
Inspecting sequence random mkv5 [?] (1 - 817):
 F$NIT2 01
                            176 (+) |
                                       1.000 |
                                               1.000 |
                                                       TATCta
 F$NIT2 01
                            656 (+) I
                                      1.000 | 1.000 |
                                                       TATCta
 F$NIT2 01
                            275 (+) |
                                      1.000 I
                                               0.995 |
                                                       TATCtc
                            455 (+) | 1.000 | 0.995 |
 F$NIT2 01
                                                       TATCtc
 F$NIT2 01
                            298 (-) | 1.000 | 0.980 |
                                                       TATCtt
 F$MATA1 01
                            506 (-) | 1.000 | 0.980 | tGATGtatgt
 F$ABF C
                             84 (+) | 0.991 | 0.973 | aatcattcttgACGT
 F$MIG1 01
                            264 (-) |
                                      1.000 | 0.958 | gagataaaactGGGGtt
 F$NIT2 01
                            701 (+) | 1.000 | 0.947 | TATCqt
 F$NIT2 01
                            802 (-) | 1.000 | 0.947 |
                                                       TATCqt
 F$ABF1 01
                             81 (+) | 0.976 | 0.944 | gtaaatcattcttgACGTtttt
 F$MAT1MC 02
                            665 (-) | 1.000 | 0.918 |
                                                       cctaTTGTga
 F$NIT2 01
                            280 (-) | 1.000 | 0.915 |
                                                       TATCcq
                                      1.000 | 0.902 | tccccatCATTctaacagt
 F$ABAA 01
                             42 (+) |
 F$PACC 01
                            331 (-) | 1.000 | 0.897 | acgaGCCAagaaaagtt
 F$ABAA 01
                            201 (+) | 1.000 | 0.883 | accatagCATTctggatct
                            442 (-) | 1.000 | 0.882 | tataTTGTat
 F$MAT1MC 02
 F$ABF C
                            638 (-) | 0.991 | 0.882 | agtcaaatgaaACGT
 F$ABF C
                            609 (-) |
                                      0.949 I
                                               0.874 | tttctttaaacACGG
 F$MATA1 01
                            558 (-) | 1.000 | 0.868 | tGATGqaaqa
 F$HSF 03
                            713 (-) | 1.000 |
                                               0.859 | AGAAttgaaattttt
 F$MAT1MC 02
                            134 (-) | 1.000 | 0.858 | cacaTTGTgt
 F$ABAA 01
                                               0.856 I
                                                       agtaaatCATTcttgacgt
                             80 (+) |
                                      1.000 I
 F$HAP234 01
                            332 (-) |
                                       1.000 I
                                               0.851 I
                                                       acqaqCCAAqaaaaqt
```

Transfac Matsearch result - random sequence (iid)

```
Inspecting sequence random iid [?] (1
                                       - 817):
  F$NIT2 01
                              534 (-) |
                                         1.000 I
                                                  1.000
                                                           TATCta
  F$NIT2 01
                              294 (+) |
                                         1.000 I
                                                  0.995
                                                           TATCtc
  F$NIT2 01
                              634 (-) |
                                         1.000 I
                                                  0.972
                                                           TATCaa
  F$NIT2 01
                                         1.000 I
                                                  0.965
                              216 (-) |
                                                           TATCtq
  F$STUAP 01
                              808 (-) |
                                         1.000 I
                                                  0.959 |
                                                           attCGCGtct
  F$NIT2 01
                               24 (+) |
                                         1.000 |
                                                  0.952 |
                                                           TATCat
  F$NIT2 01
                              343 (+) |
                                         1.000 |
                                                  0.952
                                                           TATCat
  F$NIT2 01
                                                  0.952 |
                              413 (-) |
                                         1.000 I
                                                           TATCat
  F$STUAP 01
                              441 (+) |
                                         1.000 |
                                                  0.930 |
                                                           aagCGCGcct
  F$NIT2 01
                              244 (-) |
                                         1.000 I
                                                  0.930 |
                                                           TATCct
  F$STUAP 01
                              808 (+) |
                                         1.000 I
                                                  0.926
                                                           agaCGCGaat
  F$GCR1 01
                                                  0.922
                                                          gaCTTCcta
                              499 (+) |
                                         1.000 I
                              647 (-) |
  F$PACC 01
                                         1.000 |
                                                  0.920
                                                          ctccGCCAggcactgaa
  F$NIT2 01
                              475 (+) |
                                         1.000 |
                                                  0.915
                                                           TATCcq
  F$ABF C
                              235 (-) |
                                                  0.904 | tatcctgcaacACGG
                                         0.949 |
  F$PHO4 01
                              246 (-) |
                                         1.000 |
                                                  0.882
                                                           gctCACGttatc
  F$GCR1 01
                              763 (-) |
                                         1.000 I
                                                  0.866 |
                                                           acCTTCcgc
  F$STUAP 01
                                                  0.859
                                                           aggCGCGctt
                              441 (-) |
                                         1.000 |
  F$MIG1 01
                                         1.000 I
                                                  0.857
                              371 (+) |
                                                           accgaaacagtGGGGtt
  F$MAT1MC 02
                              375 (-) |
                                         0.769 |
                                                  0.855 I
                                                           cccaCTGTtt
```