Towards a White-Box Secure Fiat-Shamir Transformation

Gal Arnon

Sigma Protocol

- 3-message protocol
- Public-coin
- Pre-processing

Soundness:

- Statistical: against unbounded provers (a.k.a. proof)
- Computational: against bounded provers (a.k.a. argument)

Fiat-Shamir (FS)

Fiat-Shamir transformation:

interactive → non-interactive

Idea: replace verifier randomness with hash function h

FS is widely deployed real-world crypto systems, protecting billions of dollars: signature schemes, blockchains, ...

Security of FS

- Pointcheval and Stern [PS96]: secure in the ROM
 - For both proofs and arguments
- Proofs: exist hash functions for which FS is secure [CCR16, KRR17, CCRR18, HL18, CCHLRRW19, PS19, BKM20, JJ21, HLR21, CJJ21, HJKS22, KLV23,...]

Conversation 0

-O- Commits 5

- Arguments: line of attacks using "white-box" techniques ("diagonalization")
 - Interactive protocols that become insecure with FS for any concrete hash
- Examples of attacks:
 - [Bar01, GK03]: contrived identification schemes
 - [BBHMR19]: contrived CRH for Kilian's protocol
 - [KRS25]: direct attack on natural variant of the [GKR15] protocol
- No attacks on Schnorr's protocol

Checks 11

 m_1 , m_2

Prover

Verifier

Our Results

Our Results

A new transformation (XFS) aimed to mitigate white-box attacks

- Focus on practicality: negligible overhead to prover and verifier
- Circumvents recent attack on GKR
- Evidence for security: prove secure in a relativized model where FS is insecure

Attacks we don't defend against:

- [Bar01, GK03] for arbitrary poly-time verifiers
- [BBHMR19] CRH attack where to compute CRH need to verify a SNARK

But these attacks are contrived

A Toy Protocol

Toy Protocol

Let *Com* be a succinct commitment scheme

Completeness: if C(w) = y verifier accepts

Soundness (computational): follows from the commitment scheme

• the circuit ${\cal C}$ along with w cannot predict ρ

FS for Toy Protocol

Fiat-Shamir hash function h

C(w):

- 1. Parse $w = \psi || y$
- $2. m_1 \leftarrow Com(w)$
- 3. Output $1||h(\psi, y, m_1)|$

Set $y = 0^m$, $\psi = Com(C)$, and $w = \psi ||y|$

I know w s.t.

$$C(w) = y$$

 $m_1 = Com(w)$ decommit C, w

$$\rho = h(\psi, y, m_1)$$

$$C(w) \stackrel{?}{=} y$$
or

$$1||\rho = 1||h(\psi, y, m_1) = C(w) \stackrel{?}{=} 1||\rho$$

Insecure!

For any h:

a prover strategy such that for all w, $C(w) \neq y$ but verifier accepts

Attack on FS

Main problem: C computes "verifier next message" $\rho = h(\psi, y, m_1)$

Naïve solution: make h "more complex" than C

Drawbacks:

- Slow verifier (computes h, more complex than C)
- Non compatible with recursion
- Security unclear

We propose an alternative solution using strong proof of work

Intuitively: make next message function more complex than C, but easy to verify

The XFS Transformation

But first, a strong proof of work

Strong Proof of Work

Proof of work with hardness $\ell \ll 2^{\lambda}$:

- Solve(z) solves puzzle z in time ℓ
- Check(z, s) verifies a solution s to puzzle z

Security:

 $neg(\lambda)$ probability with preprocessing

XFS Transformation

XFS for the Toy Protocol

XFS for Toy Protocol

Does the attack work on XFS?

Need to modify C to compute ρ

 $C(w) \stackrel{?}{=} 1||\rho||$

XFS for Toy Protocol

Fiat-Shamir hash function *h*

Attack: circuit computes ρ

C(w):

- 1. Parse $w = \psi||y|$
- $2. m_1 = Com(w)$
- 3. $z = h(\psi, y, m_1)$
- 4. s = Solve(z)
- 5. Output $1||h(\psi, y, m_1, s)|$

Set $y = 0^m$, $\psi = Com(C)$, and $w = \psi||y|$

Set PoW Hardness $\ell > |C|$ so C can't compute Solve(z)

Can w help solve the puzzle?

Observe: z is computed after C, w are committed

$$z = h(\psi, y, m_1) = h(Com(C), y, Com(w))$$

On the Security of XFS

The Relativized World

• An ideal model with a random oracle model h

All parties have oracle access to h

• This model captures the toy protocol

The Relativized World

- An ideal model with a random oracle model h
- All parties have oracle access to h
- This model captures the toy protocol

What about XFS in this model?

Security in the Relativized World

Theorem:

In the relativized model, the XFS* transformation satisfies:

Input:

- 1. sigma protocol with round-by-round knowledge error κ_{SP}
- 2. strong PoW with error ϵ_{PoW}

Output: non-interactive protocol with knowledge error

$$\kappa_{ARG} \leq O(t \cdot \kappa_{SP} + t \cdot \epsilon_{PoW})$$

where:

- t is the query complexity of the malicious prover
- XFS* is a slight modification of the transformation we saw

Prefix Avoiding Padders

- Tool that facilitates our proof
 - Prevents the verifier from computing ρ
- Padder outputs a prefix τ (deterministically)
- For machine M^h the security game is:
- Example of padders:
 - $Padder(\gamma) = 0^{|M|}$
 - $Padder(\gamma) = h(M, \gamma)$ (extended to be long)
 - In practice could be trivial
- Used for M^h that simulates the verifier

XFS* Transformation

I know w s.t. C(w) = y

Prover

$$m_1$$
, s , m_2

$$m_1 = P_{SP}$$

 $z = h(\psi, y, m_1)$
 $s = \text{Solve}^h(z)$
 $\tau = \text{Padder}^h(\psi, y, m_1, s)$
 $\rho = h(\tau, \psi, y, m_1, s)$
 $m_2 = P_{SP}(\rho)$

$$z = h(\psi, y, m_1)$$

$$\tau = \text{Padder}^h(\psi, y, m_1, s)$$

$$\rho = h(\tau, \psi, y, m_1, s)$$

$$V_{\text{SP}}^h(\psi, y, m_1, \rho, m_2) \stackrel{?}{=} 1$$

$$\text{Check}^h(\mathbf{z}, \mathbf{s}) \stackrel{?}{=} 1$$

$M^h(m)$:

- 1. Parse $m = (\psi, y, m_1, \rho, m_2)$
- 2. Simulate $V_{SP}(\psi, y, m_1, \rho, m_2)$
- 3. Output a random query of V_{SP}

Summary

We saw:

- FS insecure for arguments due to white-box attacks
- We propose XFS aimed to mitigate such attacks
- Uses strong PoW (ask me how to construct!)
- Heuristic proof of security in relativized model

Future work:

- Multi round version
- Security proofs in algebraic models
- Analyze with sponges

Simple PoW construction

- Given a random puzzle z, and hardness ℓ :
- ullet Compute a Merkle tree of length ℓ
 - The i-th leaf is (z, i)
- Hash the root to get small subset $I \subseteq [\ell]$
- Open auth paths in I
- Any algorithm that performs at most $\ell/2$ hashes:
 - Can compute at most $\ell/2$ leaves
 - Probability of opening all leaves in I is negligible