Note: This is the summary note from Udacity Introduction to Deep Learning with PyTorch

Batch vs Stochastic Gradient Descent

- Problem Statement
 - With the normal gradient descent, each step (epoch):
 - We take input (all of our data), run through entire neural network
 - Find prediction
 - Calculate error (how far they are from actual label)
 - Back-propagate this error to update the weight in the neural network
 - The step above is done for all data => it can be a huge matrix computations in case we have many data points
- Solutions
 - Stochastic GD:
 - take small subsets of data (batch)
 - Run through neural network
 - Calculate gradient of error function based on those points
 - Back-propagate
 - Move one step in that direction

Normal GD	Stochastic GD
Take one step at a time	Take x step at a time (x is batch size)
More accurate	Less accurate but better in practices with many data
In case many data, it consume a lot of memories and storages	Less resources needed

Learning Rate Decay

- Problem: what is the learning rate to use?
- General rule:
 - if the model is not working, decrease the learning rate, why so ?
 - Best learning rates are those which decrease as the model is getting closer to a solution

- Huge step can be faster, but can miss out minimum
- Small step slow model, but a good chance to find the minimum

Momentum

- Problem: How to find a local minimum?
- It is included in 08_Neural_Network,
 https://docs.google.com/document/d/1SUzhGwHmiZeJWDCvsYNlezDfwVcoD-nbzyDS-VdtqYE/edit

Error Functions Around the world

- There are multiple error functions that can be used
- What we know so far:
 - Log-Loss function
 - Cross entropy
 - Maximum likelihood

Mini Summary

- Why we need Stochastic Gradient Descent?
- How do we know if this is the right learning rate?
- There are a lot other error functions