DDA4250 Assignment 1

CHEN Ang (118010009)

Notation

For conciseness we introduce the following notation.

- R: multidimensional rectifier functions of suitable dimensions
- $\bullet \quad [a..b] := \{x \in \mathbb{Z} : a \le x \le b\}$

2.1.2

With
$$oldsymbol{ heta}=(1,-1,0,0,1,1,0)\in\mathbb{R}^7, l_1=l_L=2,$$

$$\mathcal{N}_{\mathbf{R},\mathrm{id}_{\mathbb{R}}}^{oldsymbol{ heta},1}(x)=\mathbf{R}(x)+\mathbf{R}(-x)=\left\{egin{array}{c} \mathbf{R}(x)=x, & \mathrm{if}\ x\geq 0\\ \mathbf{R}(-x)=-x, & \mathrm{otherwise} \end{array}\right.=|x|$$

$$\mathbf{d}=7=2l_1+\left[\sum_{k=2}^L l_k\left(l_{k-1}+1\right)\right]+l_L+1$$

2.1.3

Definition. A function $f: \mathbb{R} \to \mathbb{R}$ is said to be piecewise linear with a finite (interval) partition if there exist $n \in \mathbb{N}$ and an interval partition $P = \{p_1, \dots, p_n\}$ of \mathbb{R} such that $f(x) = f_i(x)$ is an affine transform on each of the interval $p_i \in P$. It is required that $p_i \neq \emptyset$ for all $p_i \in P$.

Lemma. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two piecewise linear functions with finite partitions. Then the function $\mathcal{L}: \mathbb{R} \to \mathbb{R}$ given by $x \to c_1 f(x) + c_2 g(x) + d$ is also piecewise linear with a finite partition.

Proof of Lemma. Let $P=\{p_1,\ldots,p_m\}$ be a partition of $\mathbb R$ such that in each interval $p_i\in P$, $f(x)=f_i(x)$ is an affine transform. Similarly let $Q=\{q_1,\ldots,q_n\}$ be a partition of $\mathbb R$ such that in each interval $q_i\in Q$, $g(x)=g_j(x)$ is affine. Clearly,

$$S = \{p \cap q : p \in P, q \in Q\} \setminus \emptyset$$

is also a (finite) partition of \mathbb{R} . Moreover, for each interval $s \in S$, there exist $(i,j) \in [1..m] \times [1..n]$ such that $s = p_i \cap q_j$, and thus for all $x \in S$,

$$\mathcal{L}(x) = c_1 f(x) + c_2 g(x) + d = c_1 f_i(x) + c_2 g_i(x) + d$$

is affine. Hence ${\cal L}$ is piecewise linear with a finite partition.

There is no such $\mathcal N$. To see that, let $\mathcal N^{\theta,1}_{\mathbf R,\dots \mathbf R,\mathrm{id}_{\mathbb R}}$ be given. We can show by induction that for any layer $k\in [0..L+1]$ of the network, the neurons of the layer $\boldsymbol x^{(k)}$ are all piecewise linear functions of x with finite partitions.

Layer 0 is just the input neuron with value x, which is linear on the entire \mathbb{R} .

Suppose that all neurons $x^{(k)}$ of some layer $k \in [0..L]$ are piecewise linear with finite partitions. Consider neurons on the next layer:

$$oldsymbol{x}^{(k+1)} = \mathbf{R} \circ \mathcal{A}^{(k)} \left(oldsymbol{x}^{(k)}
ight) = \mathbf{R} \left(oldsymbol{W}^{(k)} oldsymbol{x}^{(k)} + oldsymbol{b}^{(k)}
ight)$$

Equivalently for all $i \in [1..l_k]$,

$$oldsymbol{x}_i^{(k+1)} = \mathbf{R}\left(oldsymbol{w}_i^{ op} oldsymbol{x}^{(k)} + oldsymbol{b}_i^{(k)}
ight)$$

where ${\boldsymbol w}_i^{\top}$ denotes the i-th row of ${\boldsymbol W}^{(k)}$. From the assumption that ${\boldsymbol x}^{(k)}$ are all piecewise linear with finite partitions, we know by Lemma that ${\boldsymbol w}_i^{\top}{\boldsymbol x}^{(k)}+{\boldsymbol b}_i^{(k)}$ is also piecewise linear with some finite partition $P=\{p_1,\ldots,p_n\}$. Thus on each interval $p_j\in P$, $f_j(x):={\boldsymbol w}_i^{\top}{\boldsymbol x}^{(k)}+{\boldsymbol b}_i^{(k)}$ is affine. Define for each $j\in[1..n]$ the set $\Omega_j^+:=\{x:x\in p_j,f_j(x)\geq 0\}$ and $\Omega_j^-:=p_j\backslash\Omega_j^+$. It holds that for $x\in p_j, j\in[1..n]$,

$$\mathbf{R}\circ f_j(x) = egin{cases} f_j(x), & ext{if } x\in\Omega_j^+ \ 0, & ext{if } x\in\Omega_j^- \end{cases}$$

is affine in either set of the partition $\{\Omega_j^+,\Omega_j^-\}$. Further, since $f_j(x)$ is affine, both Ω_j^+ and Ω_j^- must be intervals (possibly empty). Hence

$$Q:=\left\{\Omega_{j}^{+}:j\in\left[1..n\right]\right\}\cup\left\{\Omega_{j}^{-}:j\in\left[1..n\right]\right\}\,\backslash\,\emptyset$$

forms a finite interval partition of $\mathbb R$ such that $m x_i^{(k+1)}$ is affine on any interval $q \in Q$. In other words, $m x_i^{(k+1)}$ is piecewise linear with a finite partition for all i, completing the induction.

Applying this result on layer L+1 shows that the output $\mathcal{N}_{\mathbf{R},\dots\mathbf{R},\mathrm{id}_{\mathbb{R}}}^{\boldsymbol{\theta},1}(x)=\boldsymbol{x}_{L+1}$ must be piecewise linear in x with a finite partition, which cannot be e^x .

2.1.4

With $\boldsymbol{\theta}=(1,-1,0,1,0,-1,0,0,0,1,1,-1,0)\in\mathbb{R}^{13}, l_1=l_L=3$, for all $(x,y)\in\mathbb{R}^2$

$$\mathcal{N}_{\mathbf{R},\mathrm{id}_{\mathbb{R}}}^{oldsymbol{ heta},2}(x,y) = \mathbf{R}(x-y) + \mathbf{R}(y) - \mathbf{R}(-y)$$

$$= \mathbf{R}(x-y) + y$$

$$= \begin{cases} x-y+y=x, & \text{if } x \geq y \\ 0+y=y, & \text{otherwise} \end{cases}$$

$$= \max\{x,y\}$$

$$\mathbf{d}=13=3l_1+\left[\sum_{k=2}^{L}l_k\left(l_{k-1}+1
ight)
ight]+l_L+1$$

2.1.4

With $m{ heta}=(1,-1,0,0,1,0,0,1,0,0,1,-1,0)\in \mathbb{R}^{13}, l_1=2, l_2=2$, for all $x\in \mathbb{R}$

$$egin{aligned} \mathcal{N}_{\mathbf{R},\mathbf{R},\mathrm{id}_{\mathbb{R}}}^{oldsymbol{ heta},1}(x) &= \mathbf{R} \circ \mathbf{R}(x) - \mathbf{R} \circ \mathbf{R}(-x) \ &= \mathbf{R}(x) - \mathbf{R}(-x) \ &= x \end{aligned}$$

$$\mathbf{d} = 13 = 2l_1 + l_1l_2 + 2l_2 + 1$$

where the second equality comes from the fact that $\mathbf{R}(x) \geq 0$.