МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет компьютерных наук

Кафедра программирования и информационных технологий

Разработка веб-приложения для переноса расписания занятий факультета компьютерных наук в сервис «Google Calendar»

Курсовая работа

09.03.03 Информационные системы и технологии
Программирование и информационные технологии

Допущено к защите в ГЭК		
Зав. кафедрой	С.Д. Махортов, д. т. н., профессор	2023
Обучающийся	Д.А. Змаев, 3 курс, д/о	
Руководитель	П.С. Лысачёв, ст. преподаватель	

Введение	3
1 Постановка задачи	4
1.1 Цель создания системы	4
1.2 Требования к создаваемой системе	4
1.3 Задачи, решаемые в процессе разработки	4
2 Анализ предметной области	5
2.1 Терминология (глоссарий) предметной области	5
2.2 Анализ существующих решений	5
2.2.1 Электронный университет ВГУ	5
2.2.2 ВГУ ФКН Балльно-рейтинговая система	7
2.3 Целевая аудитория	8
3 Реализация	8
3.1 Средства реализации	8
3.2 Разработка архитектуры	9
3.3 Этапы разработки	10
3.3.1 Получение данных	10
3.3.2 Создание событий в сервисе «Google Calendar»	10
3.3.3 Обработка ошибок	11
3.4 Реализация логики	11
3.4.4 Описание класса Parser	11
3.4.5 Описание класса Shedule	12
3.4.6 Описание механизма маршрутизации приложения	13
3.5 Реализация интерфейса	13
3.5.1 Интерфейс пользователя	13
3.5.2 Интерфейс администратора	15
4 Демонстрация работы	18
Заключение	20
Список использованных источников	21

Введение

В наше время, когда все больше процессов становятся автоматизированными современные технологии И позволяют нам оптимизировать многие аспекты нашей жизни, важно не оставаться в стороне от прогресса. В области образования и учебного процесса также есть много возможностей для автоматизации и оптимизации. Одним из примеров такой автоматизации является использование сервиса «Google Calendar» для отслеживания расписания занятий в университете.

Целью данной курсовой работы является разработка веб-приложения, которое будет автоматически переносить расписание занятий факультета компьютерных наук в сервис «Google Calendar». Такое приложение позволит студентам быстро и легко получать доступ к своему расписанию занятий, а также уведомлять их о предстоящих занятиях.

В рамках работы будет проведен анализ возможностей «Google Calendar» АРІ, а также существующих решений для автоматического переноса расписания занятий в календарь. Будет разработана архитектура приложения, которая будет учитывать специфику расписания занятий факультета компьютерных наук. Далее, будет разработано приложение, которое будет обеспечивать автоматический перенос расписания занятий в сервис «Google Calendar». Наконец, приложение будет протестировано и документировано.

В результате выполнения данной курсовой работы студенты факультета компьютерных наук смогут получать доступ к своему расписанию занятий в календаре «Google Calendar», что значительно облегчит им организацию своего времени и позволит им более эффективно использовать свои учебные ресурсы.

1 Постановка задачи

Цель курсовой работы - Разработка веб-приложения для переноса расписания занятий факультета компьютерных наук в сервис «Google Calendar»

1.1 Цель создания системы

Система разрабатывается в следующих целях: Реализация процесса переноса расписания занятий ФКН в сервис «Google Calendar».

1.2 Требования к создаваемой системе

Разрабатываемое приложение должно иметь следующие возможности:

- Предоставление пользователю возможности выбора расписания в зависимости от его курса, группы и подгруппы
- Реализация аккаунта администратора для выгрузки расписания в случае его изменения
- Предоставление пользователю возможности выбора срока заполнения расписания

1.3 Задачи, решаемые в процессе разработки

- Спроектировать систему с учетом полученной в ходе анализа информации
- Изучить и реализовать взаимодействие с внешним ресурсом «Google Calendar API»
- Разработать пользовательский веб-интерфейс
- Описать процесс разработки и результат

2 Анализ предметной области

2.1 Терминология (глоссарий) предметной области

Google Calendar API — это интерфейс программирования приложений, который позволяет разработчикам создавать приложения, которые могут получать доступ к календарю Google, создавать, изменять и удалять события в календаре, а также выполнять другие операции. Это означает, что при помощи Google Calendar API разработчики могут создавать приложения, которые могут автоматически добавлять события в календарь Google, устанавливать напоминания и многое другое.

SQLite — это компактная, встроенная реляционная база данных, работающая на многих платформах.

Веб-приложение - программа, которая запускается в браузере и использует веб-технологии для выполнения своих функций.

Парсинг — это процесс извлечения данных из структурированного или полуструктурированного источника, такого как веб-страница или файл.

Валидация — это процесс проверки правильности и соответствия данных определенным критериям или правилам. В веб-разработке, валидация часто используется для проверки данных, введенных пользователем в форму на веб-странице, например, при регистрации аккаунта или заполнении заказа. Валидация может проверять формат, длину или тип данных, а также применять другие правила, определенные разработчиком. Цель валидации обеспечить корректность и целостность данных, предотвратить ошибки ввода и улучшить пользовательский опыт.

2.2 Анализ существующих решений

2.2.1 Электронный университет ВГУ

Электронный университет ВГУ (Воронежский государственный университет) — это образовательная платформа, которая была создана с

целью обеспечения доступа к образовательным ресурсам и услугам ВГУ через Интернет.

Электронный университет ВГУ предоставляет студентам и преподавателям ВГУ возможность получения доступа к онлайн-курсам, видеолекциям, учебным материалам, тестам и другим образовательным ресурсам. Это позволяет значительно упростить процесс обучения и повысить его эффективность.

У электронного университета ВГУ есть несколько основных направлений, которые включают в себя:

- Дистанционное образование это форма обучения, при которой студенты могут получать знания и навыки, не покидая свой дом.
 Это особенно удобно для тех, кто не может по каким-либо причинам посещать очные занятия.
- Онлайн-курсы это курсы, которые можно проходить полностью онлайн. Они могут быть как бесплатными, так и платными. Онлайн-курсы могут быть как для студентов ВГУ, так и для всех желающих.
- Международные программы это обучение на английском языке для иностранных студентов. ВГУ имеет партнерские отношения с многими университетами по всему миру, что позволяет студентам получить международный опыт и квалификацию.
- Учебные материалы это различные материалы, которые помогают студентам лучше усвоить учебный материал. Это

могут быть видеолекции, презентации, тесты, задания и т.д. приложение, предоставляющее возможность создавать сайты для онлайн-обучения.

Рисунок 1 - Внешний вид интерфейса сайта Электронный университет ВГУ

Хотя Электронный университет ВГУ имеет значительную функциональность, в нем невозможно сохранить расписания обучающегося в какой-либо сервис, однако он имеет отношение к теме курсовой, потому что студенты ВГУ пользуются им в том числе как электронным расписанием занятием, так как оно частично занесено туда и в нем отображается, элемент курса в котором будет проводится занятие, время проведения занятия и ФИО преподавателя.

2.2.2 ВГУ ФКН Балльно-рейтинговая система

ВГУ ФКН Балльно-рейтинговая система (далее БРС) — это система оценки студентов, используемая на факультете компьютерных наук ВГУ (Воронежский государственный университет).

БРС служит для отслеживания итоговых баллов за аттестации и семестр. Баллы начисляются за выполнение заданий, тестирование, защиту проектов, выполнение практических работ и т.д.

БРС позволяет студентам контролировать свой прогресс и улучшать свои результаты. Она также позволяет прозрачно и объективно оценивать студентов, что является важным при подготовке карьеры и поступлении на магистратуру или аспирантуру.

Главная Списки	студентов Старо	оста / Курат	ор Рейтинг студентов										
Свод оценок студента Ф.И.О.: змаев Даним Алексеевич Курк: 3 Смистр: 6 Группа: 5 (2) Направление / спициальность: 05.03.27 Унформационные системы и темнологии/Програменная инженерия в информационных системы) Бакалаер/ФГОСЗ++) Бурк: 3 (2)													
Учебный год	Семестр	Курс	Предмет	Отчётность	Преподаватель	1	2	3	взеш. балл	Экзамен	Доп. балл	Итог. балл	Итог
2022-2023	6	3	Инфармационные технологии (Б1.0.22)	Экзамен	Вахтин А. А.	45	47						
2022-2023	6	3	Инфокоммуникационные системы и сети (Б1.О.23)	Экзамен	Коваль А. С.	37	35						
2022-2023	6	3	Технологии программирования (Б1.0.24)	Экзамен	Tapacos B. C.	34							
2022-2023	6	3	Квантовая теория (Б1.0.32)	Экзамен	3anparaes C. A.	34	41						
2022-2023	6	3	Теория компиляторов (Б1.В.05)	Зачёт	Соломатин Д. И.				-	-	-		
2022-2023	6	3	Разработка web-приложений (б1.8.06)	Зачёт с оценкой	Самойлов Н. К.	50	50			-			
2022-2023	6	3	Язык программирования С++ (Б1.8.Д8.04.01)	Зачёт с оценкой	Лысачев П. С.	41	38			-			
2022-2023	5	3	Теория информационных процессов и систем (Б1.О.19)	Экзамен	Десятирикова Е. Н.	50	50	50	50	50	10	100	отлично
2022-2023	5	3	Операционные системы (61.0.20)	Зачёт	Савинков А. Ю.	45	30	50	-	-	-	84	зачтено
2022-2023	5	3	Методы и средства проектирования информационных систем и технологий (Б1.О.21)	Экзамен	Власов С. В.	44	46	47	46	50	1	97	онично
2022-2023	5	3	Информационные технологии (Б1.О.22)	Зачёт	Михайлов Е. М.	50	45	45	-	-	-	94	зачтено
2022-2023	5	3	Электродинамика (Б1.О.31)	Экзамен	Запрягаев С. А.	33	29	33	32	33	3	68	удовл.
2022-2023	5	3	Проектирование баз данных (Б1.О.АЗ)	Зачёт	Чекмарев А. И.	50	46	35	-	-	-	88	зачтено
2022-2023	5	3	Разработка мобильных приложений (Б1.8.04)	Зачёт	Клейменов И. В.	48	47	50	-	-	-	96	зачтено
2022-2023	5	3	Теория информации (61.8.ДВ.05.01)	Экзамен	Борисов Д. Н.	41	44	40	42	40	0	82	хорошо
2021-2022	4	2	Иностранный язык (Б1.0.03)	Экзамен	Барабушка И. А.	40	45	50	45	45	0	90	отлично
2021-2022	4	2	Философия (Б1.0.01)	Экзамен	Кравец А. С.	45	50	45	47	47	0	94	отлично
2021-2022	4	2	Теория информационных процессов и систем (Б1.О.19)	Зачёт	Десятирикова Е. Н.	50	40	50	-	-	-	94	зачтено
2021-2022	4	2	Механика и оптика (Б1.О.30)	Экзамен	Киселев Е. А.	45	37	40	41	40	0	81	хорошо
2021-2022	4	2	Методы вычислений (Б1.О.34)	Зачёт	Крыловецкий А. А.	45	38	30	-	-	-	76	зачтено
2021-2022	4	2	Уравнения математической физики и специальные функции (Б1.О.35)	Экзамен	Крыловецкий А. А.	45	48	50	48	48	0	96	ОНРИЛТО
2021-2022	4	2	Языки и системы программирования (Б1.О.39)	Зачёт с оценкой	Чекмарев А. И.	39	48	48	90	-	8	98	оплично

Рисунок 2 - Внешний вид интерфейса сайта ВГУ ФКН Балльно-рейтинговая система

БРС не имеет функции отправки расписания студентов ФКН в их Google Calendar, однако, схожесть БРС и данной курсовой работы состоит в следующем: на данном ресурсе присутствуют баллы за аттестационные периоды, которые также связаны с расписанием занятий и могут быть включены в расписание.

2.3 Целевая аудитория

Целевая аудитория для данного веб-приложения - студенты факультета компьютерных наук, которые используют сервис «Google Calendar» для организации своего расписания и планирования учебных занятий???

3 Реализация

3.1 Средства реализации

В качестве средств реализации были использованы:

- Python высокоуровневый язык программирования общего назначения с динамической строгой типизацией и автоматическим управлением памятью, ориентированный на повышение производительности разработчика, читаемости кода и его качества, а также на обеспечение переносимости написанных на нём программ.
- Flask фреймворк для создания веб-приложений на языке программирования Python, использующий набор инструментов Werkzeug, а также шаблонизатор Jinja2.
- SQLite SQLite это компактная, встраиваемая реляционная база данных, которая работает на многих платформах, включая Windows, Mac OS X, Linux, Android и iOS. Она является самодостаточной и не требует отдельного сервера баз данных, поэтому ее можно легко интегрировать в различные приложения и использовать для хранения и управления структурированными данными, такими как текст, числа, изображения и т.д.
- Google Calendar Api это интерфейс программирования приложений, который позволяет разработчикам создавать приложения, которые могут получать доступ к календарю Google, создавать, изменять и удалять события в календаре, а также выполнять другие операции. Это означает, что при помощи «Google Calendar API» разработчики могут создавать приложения, которые могут автоматически добавлять события в календарь Google, устанавливать напоминания и многое другое.

3.2 Разработка архитектуры

— Анализ требований и выбор технологий: на этом этапе будет проведен анализ требований к приложению, определены функциональные и нефункциональные требования, а также

выбраны технологии, которые будут использоваться для разработки приложения.

- Проектирование базы данных: на этом этапе будет спроектирована база данных для приложения, определены таблицы, поля, а также выбрана СУБД для хранения данных. В данном случае, используется SQLite, которая является легковесной и встраиваемой СУБД.
- Разработка серверной части приложения: на этом этапе будет разработана серверная часть приложения, которая будет отвечать за обработку запросов от клиентской части, взаимодействие с базой данных и работу с API Google Calendar. Для разработки серверной части можно использовать фреймворк Flask на языке Python.
- Разработка клиентской части приложения: на этом этапе будет разработана клиентская часть приложения, которая будет отвечать за отображение данных пользователю и взаимодействие с серверной частью приложения. В данном случае в качестве клиентской части используется веб-страница, формируемая статическим шаблонизатором Jinja.

3.3 Этапы разработки

3.3.1 Получение данных

На этом этапе будут получены данные, которые будут использоваться для разбора ячеек файла с расписанием занятий расписания. В данном случае, данные могут быть получены из Excel-файла формата xls.

3.3.2 Создание событий в сервисе «Google Calendar»

На этом этапе создаются события в «Google Calendar» на основе данных о занятиях, полученных на предыдущем шаге. Для создания событий, использутеся Google Calendar API и библиотека google-api-python-client.

3.3.3 Обработка ошибок

На этом этапе будут обработаны возможные ошибки, которые могут возникнуть в процессе разбора ячеек файла расписания или создания событий в сервисе «Google Calendar». В случае возникновения ошибок, пользователю будет выведено соответствующее сообщение.

3.4 Реализация логики

Логику приложения можно разделить на несколько этапов:

3.4.4 Описание класса Parser

На этом этапе создается класс Parser, принимающий в конструктор путь к файлу с расписанием. Класс имеет несколько методов, основные из них представлены в списке ниже:

- Meтoд get_merged_cell_value(self, row, col) служит для получения значений объединённых ячеек. Он необходим, т.к. по умолчанию в ячейках такого типа значение хранится в первой ячейке, а остальные ссылаются на нее.
- Метод __get_time(val) служит для разделения времени в ячейках и последующей записи их в массив, необходимый для указания времени начала пары и ее конца в событии «Google Calendar»
- Meтoд parse_nominator_schedule(self, course_num, group_num, subgroup_num) служит для заполнения списка занятий для четных недель, который содержит в себе день недели, время начала и конца занятия название предмета и ФИО преподавателя
- Meтoд parse_denominator_schedule(self, course_num, group_num, subgroup_num) служит для заполнения списка занятий для нечетных недель. Имеет схожую функциональность с методом parse_nominator_schedule(), однако необходим, так как при распознавании расписания для знаменателя используются ячейки другого вида и имеются особые отступы.

3.4.5 Описание класса Shedule

На этом этапе создается класс Schedule, ответственный за создание событий в веб-сервисе «Google Calendar». Класс имеет несколько методов, основные из них представлены в списке ниже:

```
event = {
    'summary': f'{summary}',
    'location': 'VSU',
    'description': '',
    'start': {
        'dateTime': datetime.combine(start_date, start_time).isoformat(),
        'timeZone': timezone.zone,
    },
    'end': {
        'dateTime': datetime.combine(start_date, end_time).isoformat(),
        'timeZone': timezone.zone,
    },
    'recurrence': [
        f'RRULE:FREQ=WEEKLY;INTERVAL=2;COUNT={week_amount};BYDAY={day}'
    ],
    'reminders': {
        'useDefault': False,
    },
}
```

Рисунок 3 - Пример создания события

- Метод process() необходим для авторизации пользователя через аккаунт «Google», при успешной авторизации программа получает и сохраняет токен пользователя в папку «resources», необходимый для распознавания принадлежности аккаунта и календаря. После успешного получения токена запускается метод create_shedule(). После заполнения расписания токен пользователя удаляется.
- Метод create_events(service, start_time, end_time, day_index, summary, week_amount, weektype) служит для заполнения расписания в веб-сервис «Google Calendar» путем создания событий (рис3). Так как в расписание имеются занятия, проводимые один раз в две недели, то создать события

необходимо два раза для четных и нечетных недель, поэтому используется INTERVAL=2.

— Метод create_schedule(service, course, group, subgroup, week_amount). Данный метод создает экземпляр класса Parser и вызывает два метода: parse_denominator_schedule и parse_nominator_schedule, запоминая списки, переданные из них. После успешного выполнения методов, вызывается метод create_event(), записывающий элементы списков в веб-сервис «Google Calendar»

3.4.6 Описание механизма маршрутизации приложения

В качестве механизма маршрутизации данного приложения, используется код на языке программирования «Python», описанный в файле арр.ру, являющийся частью архитектуры фреймворка «Flask».

3.5 Реализация интерфейса

При открытии веб-приложения пользователь попадает на главную страницу, на которой содержится информация о приложении, а также навигационная панель.

3.5.1 Интерфейс пользователя

Пользовательский интерфейс данного приложения был спроектирован с целью обеспечения возможности передачи данных, необходимых для выполнения функциональных требований разрабатываемого веб-сервиса.

Рисунок 4 - Главная страница веб-приложения

При нажатии на кнопку «Начать» или выборе раздела «Расписание» в меню навигации пользователь попадает на страницу «Заполнение расписания»

Рисунок 5 - Страница «Заполнение расписания»

При корректном вводе всех полей пользователем, его перенаправит на страницу авторизации в Google аккаунт. Если поля содержат неправильно заполненную информацию или не заполнены вовсе, пользователь получит сообщение с просьбой исправить некорректные данные или заполнить недостающие поля.

Рисунок 6 - Ошибка валидации

По завершении процесса загрузки, пользователь может осуществить просмотр полученного результата в «Google Calendar», связанном с аккаунтом, на который происходил вход.

3.5.2 Интерфейс администратора

После выбора опции «Админ» на навигационной панели, происходит открытие страницы входа в учетную запись администратора.

Рисунок 7 - Страница входа в учетную запись администратора
В случае ввода некорректных данных, система выведет сообщение об ошибке.
вводе некорректных данных появится сообщение об ошибке:

Рисунок 8 - Ошибка, возникающая при валидации администратора

После успешного выполнения процесса валидации, система перенаправит администратора на страницу выбора файла. На данной странице администратор может произвести замену расписания на новое в случае, если оно было изменено.

Важно отметить, что на странице также присутствует валидация: система принимает файлы только формата xls, и при попытке загрузки файлов иного формата, система выведет сообщение об ошибке.

Рисунок 9 - Ошибка загрузки файла

При успешном выполнении операции, предыдущее расписание будет заменено на новое.

Следует отметить, что возможность изменения расписания доступна только администраторам, которые имеют доступ к данной странице после успешной авторизации в системе, использующей токены авторизации. Обычным пользователям доступ к данной странице невозможен.

4 Демонстрация работы

Для демонстрации функциональности загрузки файлов будет использован файл schedule.xml, который успешно загрузится в приложение.

Рисунок 10 - Демонстрация успешной загрузки файла с расписанием

После успешной загрузки файла, необходимо перейти на вкладку «Расписание» на навигационной панели и произвести сохранение расписания в сервис «Google Calendar». В качестве примера выполнения работы программы, при вводе данных о третьем курсе, пятой группе и второй подгруппе был получен следующий результат.

Рисунок 11 - Демонстрация результата выполнения программы

Заключение

Как результат выполнения данной курсовой работы, было разработано веб-приложение, которое позволяет автоматически переносить расписание занятий факультета компьютерных наук в сервис «Google Calendar». Были выполнены все поставленные перед проектом функциональные и нефункциональные требования, а именно: возможность автоматического добавления расписания занятий в Google Calendar на основе данных из источников, таких как Excel-файл, возможность настройки периода, на который будет добавлено расписание, возможность синхронизации с «Google Calendar» и уведомления студентов о предстоящих занятиях.

Проект был разработан с использованием Google Calendar API и SQLite, что позволило создать компактное, эффективное и удобное приложение. Вебприложение может быть использовано студентами факультета компьютерных наук для доступа к их расписанию занятий.

В результате выполнения курсовой работы были получены знания и навыки, необходимые для разработки веб-приложений, а также опыт работы с «Google Calendar API» и «SQLite». Разработанное приложение может быть использовано в учебных заведениях для упрощения и оптимизации процесса обучения.

Список использованных источников