Ollscoil na hÉireann The National University of Ireland

Coláiste na hOllscoile, Corcaigh University College, Cork

Practice Quiz1, 2014

CS4407 Algorithm Analysis

Prof. G. Provan
Prof. J. Bowen (HoD)
Prof. Ian Gent (extern)

Attempt all questions

Total marks: 100

50 minutes

Please answer all questions Points for each question are indicated by [xx]

- 1. [20] Assume that we are given as input two arrays *X* and *Y* of integers, with lengths *m* and *n* respectively. We want an algorithm **A** that computes the intersection of *X* and *Y*.
 - a. [5] Does there exist an algorithm **A** that runs in time strictly less than O(mn)?
 - b. [15] If you argue that the required algorithm **A** exists, show the pseudo-code for **A** and specify the complexity of the algorithm you describe. If you argue no such algorithm exists, prove that no such algorithm can exist.
- 2. [20] Consider a recursive algorithm **A** that takes O(1) time to initialize the input array X of n items at the first step; then, at each subsequent step when the array has $k \le n$ items, it takes O(k) time to compute an item V in X, and recursively processes the array minus the item V.
 - a. Define a recurrence relation for the complexity of A.
 - b. Solve the recurrence relation using repeated substitution to determine the complexity of A. Hint: $\sum_{i=1}^{n} i = \frac{1}{2}n(n-1)$.
- 3. [20] A bipartite graph is a graph where the vertices V can be divided into two disjoint sets V_1 and V_2 such that every edge has one vertex in V_1 and the other in V_2 . For example, we need a colouring of the nodes V as either red or blue.
 - a. [12] Show how a Breadth-First-Search algorithm can be adapted to compute if a graph G(V,E) is bipartite or not by labelling the vertices either red or blue.
 - b. [8] Apply your algorithm to the graph below (Figure 1), showing the steps you choose and the final labelling of the vertices.

Figure 1: Graph to be studied for being bipartite or not