

WE CLAIM:

1. A compound of Formula I:

5 wherein

X represents S or O;

¹ R¹ represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl, -(1-4C)alkoxy, -S(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -NH(4-7C)cycloalkyl, or -N[(1-4C)alkyl](CH₂)_rN[(1-4C)alkyl]₂;

¹⁰ R² represents -CN, -CO₂H, -C(=O)NHR¹³; -C(=O)NHOH, -C(=O)NHCN, -SO₂OH, -SO₂NH(1-4C)alkyl, -C(=O)NHSO₂R¹⁹, -PH(=O)(OH), -P(=O)(OH)₂, -P(=O)(OH)NH₂, -P(=O)(OH)CH[(1-4C)alkoxy]₂, -C(=O)NHSO₂CF₃, -C(=O)NHSO₂CH₂CF₃.

15 R⁴ represents hydrogen, OH, -CH₂OH, -CH₂CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃, -CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN, -(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl, 20 -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, SH, -CH₂SO₂NH₂, -CH₂NHC(=O)CH₃,

R^5 represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂R¹⁰, -(1-4C)alkyl, or -(1-4C)alkoxy;

R^6 represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

5 R^7 represents hydrogen or -(1-4C)alkyl;

R^8 represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN, -NHSO₂R¹¹, or -C(=O)(1-4C)alkyl;

R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl,

N[(1-6C)alkyl]₂, -C(=O)NH₂, -CN, -CO₂H, -S(1-4C)alkyl, -NHCO₂(1-4C)alkyl,

10 -C(=O)NHCH₂CH₂CN, or -C(=O)(1-4C)alkyl;

R^{10} , R^{11} , and R^{12} each independently represent -(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂, NH(1-4C)alkyl, N[(1-4C)alkyl]₂, thienyl, phenyl, -CH₂phenyl, or -(CH₂)₂phenyl, wherein phenyl, as used in substituent R^{10} , R^{11} or R^{12} , is unsubstituted or substituted with F, Cl, Br, CF₃, -(1-4C)alkyl, -(1-4)alkoxy, or acetyl;

15 R^{13} represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole;

R^{14} represents -(1-4C)alkyl;

R^{15} represents hydrogen or -(1-4C)alkyl;

R^{19} represents (1-4C)alkyl or CF₃;

m represents 0, 1, 2, or 3;

20 n represents 1, 2, 3, or 4;

p represents 1 or 2;

r represents 1 or 2; and

A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN, NO₂, NH₂, -O(CH₂)_nNH₂, -O(CH₂)_nNHSO₂(1-4C)alkyl, -O(CH₂)_nSO₂(1-4C)alkyl,

25 -C(=O)NH(CH₂)_rNHSO₂(1-4C)alkyl, -S(1-4C)alkyl,

-(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyloxy, -CO₂H,

-CO₂(1-4C)alkyl, -CHO, -C(=O)(1-4C)alkyl, -C(=O)NH₂, -C(=O)NH(1-6C)alkyl,

-C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂,

30 NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃,

-O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl and -(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹²,

5 -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -C(=O)NH(3-6C)cycloalkyl, -C(=O)NH(CH₂)_nN[(1-4C)alkyl]₂, -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴,

10 -(CH₂)_nNHR¹², -(CH₂)_nNH(3-6C)cycloalkyl, -(CH₂)_nN[(1-4C)alkyl]₂, -CH₂NHC(=O)CH₃, -NHC(=O)NHR¹², -NHC(=O)N[(1-4C)alkyl]₂,

and the pharmaceutically acceptable salts thereof.

2. A compound according to claim 1 wherein R^2 represents $-CO_2H$.
3. A compound according to claim 2 wherein X represents S.
4. A compound according to claim 2 wherein X represents O.
5. A compound according to claim 3 or claim 4 wherein A is selected from the group consisting of: $-(CH_2)_mNHSO_2R^{12}$, $-CH(CH_3)(CH_2)_pNHSO_2R^{12}$, $-(CH_2)_pCH(CH_3)NHSO_2R^{12}$,

6. A compound according to claim 4 or claim 5 wherein A is selected from the group consisting of: $-(CH_2)_2NHSO_2R^{12}$, $-CH(CH_3)(CH_2)NHSO_2R^{12}$, $-(CH_2)CH(CH_3)NHSO_2R^{12}$,

5

7. A compound according to claim 4 or claim 5 wherein A is

8. A compound according to claim 7 wherein R^1 represents hydrogen, F, $-OCH_3$, $-C(=O)CH_3$, $-SCH_3$, CF_3 , methyl, or ethyl.

10 9. A compound according to claim 8 wherein R^1 represents hydrogen, $-SCH_3$, CF_3 , methyl, or ethyl.

10 10. A compound according to claim 9 wherein R^1 represents ethyl.

11. A compound according to claim 10 wherein R^5 represents hydrogen, F, Cl, or $-(1-4C)alkyl$.

15 12. A compound according to claim 11 wherein R^5 represents hydrogen.

13. A compound according to claim 12 wherein R^4 represents hydrogen, F, $-(1-4C)alkyl$, $-(1-4C)alkoxy$, $-C(=O)NH(1-4C)alkyl$, $-NHC(=O)(1-4C)alkyl$, $-NHSO_2R^{10}$, $-CN$, $-CO_2H$, $-C(=O)(1-4C)alkyl$, or $-S(1-4C)alkyl$.

20 14. A compound according to claim 13 wherein R^4 represents hydrogen, $-CN$, $-(1-4C)alkoxy$, or $-S(1-4C)alkyl$.

15. A compound according to claim 14 wherein R⁴ represents hydrogen, -CN, ethoxy, or -SCH₃.

16. A composition comprising a compound according to claim 1 in combination with a pharmaceutically acceptable carrier, diluent or excipient.

5 17. A method of treating Alzheimer's disease in a patient comprising administering to said patient an effective amount of a compound according to claim 1.

18. A method of treating mild cognitive impairment in a patient comprising administering to said patient an effective amount of a compound according to claim 1.

19. A method of treating Parkinson's disease in a patient comprising 10 administering to said patient an effective amount of a compound according to claim 1.

20. A method of treating schizophrenia in a patient comprising administering to said patient an effective amount of a compound according to claim 1.

21. Use of a compound according to claim 1 for the manufacture of a medicament for treating Alzheimer's disease.

15 22. Use of a compound according to claim 1 for the manufacture of a medicament for treating schizophrenia.

23. Use of a compound according to claim 1 for the manufacture of a medicament for treating Parkinson's disease.

24. Use of a compound according to claim 1 for the manufacture of a medicament 20 for treating mild cognitive impairment.

25. Use of a compound according to claim 1 for use as a pharmaceutical.

26. A compound of Formula II:

wherein

25 X represents S or O;

R¹ represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl,

-(1-4C)alkoxy, -S(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, or -NH(4-7C)cycloalkyl;

Z represents -O-(1-6C)alkyl, -O-(2-4C)alkenyl, -O-(1-6C)alkylaryl,

-O-(1-6C)alkyl(3-6C)cycloalkyl, -O-(1-6C)alkyl-N,N-(1-6C)dialkylamine,

5 -O-(1-6C)alkyl-pyrrolidine, -O-(1-6C)alkyl-piperidine, -O-(1-6C)alkyl-morpholine, or NH(1-6C)alkyl;

R⁴ represents hydrogen, OH, -CH₂OH, -CH₂CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃, -CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN,

10 -(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, SH, -CH₂SO₂NH₂, -CH₂NHC(=O)CH₃,

R⁵ represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂R¹⁰, -(1-4C)alkyl, or

15 -(1-4C)alkoxy;

R⁶ represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

R⁷ represents hydrogen or -(1-4C)alkyl;

R⁸ represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN, -NHSO₂R¹¹, or -C(=O)(1-4C)alkyl;

20 R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl,

N[(1-6C)alkyl]₂, -C(=O)NH₂, -CN, -CO₂H, -S(1-4C)alkyl, -NHCO₂(1-4C)alkyl, -C(=O)NHCH₂CH₂CN, or -C(=O)(1-4C)alkyl;

R¹⁰, R¹¹, and R¹² each independently represent -(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂,

NH(1-4C)alkyl, N[(1-4C)alkyl]₂, thienyl, phenyl, -CH₂phenyl, or -(CH₂)₂phenyl,

25 wherein phenyl, as used in substituent R¹⁰, R¹¹ or R¹², is unsubstituted or substituted with F, Cl, Br, CF₃, -(1-4C)alkyl, -(1-4C)alkoxy, or acetyl;

R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole;

R¹⁴ represents -(1-4C)alkyl;

R¹⁵ represents hydrogen or -(1-4C)alkyl;

30 m represents 0, 1, 2, or 3;

n represents 1, 2, 3, or 4;

p represents 1 or 2;

r represents 1 or 2; and

A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN,

5 NO₂, NH₂, -O(CH₂)_nNH₂, -O(CH₂)_nNHSO₂(1-4C)alkyl, -O(CH₂)_nSO₂(1-4C)alkyl, -C(=O)NH(CH₂)_nNHSO₂(1-4C)alkyl, -S(1-4C)alkyl, -(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyl, -CO₂H, -CO₂(1-4C)alkyl, -CHO, -C(=O)(1-4C)alkyl, -C(=O)NH₂, -C(=O)NH(1-6C)alkyl, -C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃, -O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl and

10 -(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹², -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -C(=O)NH(3-6C)cycloalkyl, -C(=O)NH(CH₂)_nN[(1-4C)alkyl]₂,

15 -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴, -(CH₂)_nNHR¹², -(CH₂)_nNH(3-6C)cycloalkyl, -(CH₂)_nN[(1-4C)alkyl]₂, -CH₂NHC(=O)CH₃, -NHC(=O)NHR¹², -NHC(=O)N[(1-4C)alkyl]₂,

20

and the pharmaceutically acceptable salts thereof.

27. A compound according to claim 26 wherein X is O.

28. A compound according to claim 26 wherein X is S.

29. A compound according to claim 27 or claim 28 wherein A is selected from

5 the group consisting of: $-(CH_2)_mNHSO_2R^{12}$, $-CH(CH_3)(CH_2)_pNHSO_2R^{12}$, $-(CH_2)_pCH(CH_3)NHSO_2R^{12}$,

30. A compound according to claim 27 or claim 28 wherein A is selected from the group consisting of: $-(CH_2)_2NHSO_2R^{12}$, $-CH(CH_3)(CH_2)NHSO_2R^{12}$,

10 $-(CH_2)CH(CH_3)NHSO_2R^{12}$,

31. A compound according to claim 27 or claim 28 wherein A is

5 32. A compound according to claim 31 wherein R¹ represents hydrogen, F, -OCH₃, -C(=O)CH₃, -SCH₃, CF₃, methyl, or ethyl.

33. A compound according to claim 32 wherein R¹ represents hydrogen, -SCH₃, CF₃, methyl, or ethyl.

34. A compound according to claim 33 wherein R¹ represents ethyl.

10 35. A compound according to claim 34 wherein R⁵ represents hydrogen, F, Cl, or -(1-4C)alkyl.

36. A compound according to claim 35 wherein R⁵ represents hydrogen.

37. A compound according to claim 36 wherein R⁴ represents hydrogen, F, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -NHC(=O)(1-4C)alkyl, -NHSO₂R¹⁰, -CN, -CO₂H, -C(=O)(1-4C)alkyl, or -S(1-4C)alkyl.

15 38. A compound according to claim 37 wherein R⁴ represents hydrogen, -CN, -(1-4C)alkoxy, or -S(1-4C)alkyl.

39. A compound according to claim 38 wherein R⁴ represents hydrogen, -CN, ethoxy, or -SCH₃.

40. A process for preparing a compound of Formula Ia:

wherein

5 X represents S or O;

 R¹ represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl, -(1-4C)alkoxy, -S(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -NH(4-7C)cycloalkyl, or -N[(1-4C)alkyl](CH₂)_rN[(1-4C)alkyl]₂;

10 R⁴ represents hydrogen, OH, -CH₂OH, -CH₂CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃, -CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN, -(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, SH, -CH₂SO₂NH₂,

15 -CH₂NHC(=O)CH₃,

R⁵ represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂R¹⁰, -(1-4C)alkyl, or -(1-4C)alkoxy;

R⁶ represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

20 R⁷ represents hydrogen or -(1-4C)alkyl;

R⁸ represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN, -NHSO₂R¹¹, or -C(=O)(1-4C)alkyl;

R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl, N[(1-6C)alkyl]₂, -C(=O)NH₂, -CN, -CO₂H, -S(1-4C)alkyl, -NHCO₂(1-4C)alkyl,

-C(=O)NHCH₂CH₂CN, or -C(=O)(1-4C)alkyl;

R¹⁰, R¹¹, and R¹² each independently represent -(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂, NH(1-4C)alkyl, N[(1-4C)alkyl]₂, thienyl, phenyl, -CH₂phenyl, or -(CH₂)₂phenyl, wherein phenyl, as used in substituent R¹⁰, R¹¹ or R¹², is unsubstituted or substituted with

5 F, Cl, Br, CF₃, -(1-4C)alkyl, -(1-4)alkoxy, or acetyl;

R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole;

R¹⁴ represents -(1-4C)alkyl;

R¹⁵ represents hydrogen or -(1-4C)alkyl;

R¹⁹ represents (1-4C)alkyl or CF₃;

10 m represents 0, 1, 2, or 3;

n represents 1, 2, 3, or 4;

p represents 1 or 2;

r represents 1 or 2; and

A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN, 15 NO₂, NH₂, -O(CH₂)_nNH₂, -O(CH₂)_nNHSO₂(1-4C)alkyl, -O(CH₂)_nSO₂(1-4C)alkyl, -C(=O)NH(CH₂)_nNHSO₂(1-4C)alkyl, -S(1-4C)alkyl, -(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyl, -CO₂H, -CO₂(1-4C)alkyl, -CHO, -C(=O)(1-4C)alkyl, -C(=O)NH₂, -C(=O)NH(1-6C)alkyl, -C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two

20 substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃, -O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl and

25 -(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹², -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -C(=O)NH(3-6C)cycloalkyl, -C(=O)NH(CH₂)_nN[(1-4C)alkyl]₂,

30 -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴,

-(CH₂)_nNHR¹², -(CH₂)_nNH(3-6C)cycloalkyl, -(CH₂)_nN[(1-4C)alkyl]₂,

-CH₂NHC(=O)CH₃, -NHC(=O)NHR¹², -NHC(=O)N[(1-4C)alkyl]₂,

comprising hydrolyzing a compound of Formula II:

wherein

X represents S or O;

R¹ represents hydrogen, F, Cl, Br, I, CHO, -CN, -S(phenyl), CF₃, -(1-4C)alkyl,

5 -(1-4C)alkoxy, -S(1-4C)alkyl, -SO(1-4C)alkyl, -SO₂(1-4C)alkyl, -C(=O)(1-3C)alkyl, NH₂, -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, or -NH(4-7C)cycloalkyl;

Z represents -O-(1-6C)alkyl, -O-(2-4C)alkenyl, -O-(1-6C)alkylaryl,

-O-(1-6C)alkyl(3-6C)cycloalkyl, -O-(1-6C)alkyl-N,N-(1-6C)dialkylamine,

-O-(1-6C)alkyl-pyrrolidine, -O-(1-6C)alkyl-piperidine, -O-(1-6C)alkyl-morpholine, or

10 NH(1-6C)alkyl;

R⁴ represents hydrogen, OH, -CH₂OH, -CH₂CH₂OH, -CH₂O(1-4C)alkyl, F, Cl, CF₃, OCF₃, -CN, NO₂, NH₂, -CH₂NH₂, -(1-4C)alkyl, -(1-4C)alkoxy, -C(=O)NH(1-4C)alkyl, -C(=O)NH₂, -CH₂C(=O)NH₂, -NHC(=O)(1-4C)alkyl, -(CH₂)_mNHSO₂R¹⁰, -(CH₂)_nCN, -(CH₂)_mCO₂H, -C(=NOH)CH₃, -(CH₂)_mCO₂(1-6C)alkyl, -C(=O)H, -C(=O)(1-4C)alkyl,

15 -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -SR¹⁰, -SOR¹⁰, -SO₂R¹⁰, SH, -CH₂SO₂NH₂,

-CH₂NHC(=O)CH₃,

R⁵ represents hydrogen, F, Cl, -CN, NO₂, NH₂, -(CH₂)_mNHSO₂R¹⁰, -(1-4C)alkyl, or -(1-4C)alkoxy;

20 R⁶ represents hydrogen, -(1-4C)alkyl, -SO₂R¹¹, or -C(=O)(1-4C)alkyl;

R⁷ represents hydrogen or -(1-4C)alkyl;

R⁸ represents hydrogen, F, Cl, Br, -(1-4C)alkyl, -(1-4C)alkoxy, NO₂, NH₂, -CN, -NHSO₂R¹¹, or -C(=O)(1-4C)alkyl;

R^{8a} represents hydrogen, F, Cl, Br, -(1-4C)alkyl, NO₂, NH₂, NH(1-6C)alkyl,

N[(1-6C)alkyl]₂, -C(=O)NH₂, -CN, -CO₂H, -S(1-4C)alkyl, -NHCO₂(1-4C)alkyl, -C(=O)NHCH₂CH₂CN, or -C(=O)(1-4C)alkyl;

R¹⁰, R¹¹, and R¹² each independently represent -(1-4C)alkyl, -(CH₂)₃Cl, CF₃, NH₂, NH(1-4C)alkyl, N[(1-4C)alkyl]₂, thienyl, phenyl, -CH₂phenyl, or -(CH₂)₂phenyl,

5 wherein phenyl, as used in substituent R¹⁰, R¹¹ or R¹², is unsubstituted or substituted with F, Cl, Br, CF₃, -(1-4C)alkyl, -(1-4)alkoxy, or acetyl;

R¹³ represents hydrogen, -(1-4C)alkyl, -CH₂CF₃, triazole, or tetrazole;

R¹⁴ represents -(1-4C)alkyl;

R¹⁵ represents hydrogen or -(1-4C)alkyl;

10 m represents 0, 1, 2, or 3;

n represents 1, 2, 3, or 4;

p represents 1 or 2;

r represents 1 or 2; and

A is selected from the group consisting of -OH, Br, I, CF₃, -(CH₂)_mCN, -C(CH₃)₂CN,

15 NO₂, NH₂, -O(CH₂)_nNH₂, -O(CH₂)_nNHSO₂(1-4C)alkyl, -O(CH₂)_nSO₂(1-4C)alkyl, -C(=O)NH(CH₂)_nNHSO₂(1-4C)alkyl, -S(1-4C)alkyl, -(1-6C)alkyl, -(1-4C)alkoxy, -(2-4C)alkenyl, -(2-4C)alkenyl, -CO₂H, -CO₂(1-4C)alkyl, -CHO, -C(=O)(1-4C)alkyl, -C(=O)NH₂, -C(=O)NH(1-6C)alkyl, -C(=O)NR¹⁵(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two

20 substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, -NHSO₂(1-4C)alkyl, -CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -OSO₂CF₃, -O(CH₂)_nCN, -NHC(=O)(1-4C)alkyl, -NHC(=O)(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl and

25 -(1-4C)alkoxy; -(CH₂)_mNHSO₂R¹², -CH(CH₃)(CH₂)_pNHSO₂R¹², -(CH₂)_pCH(CH₃)NHSO₂R¹², -NH(CH₂)_mphenyl wherein phenyl is unsubstituted or substituted with one or two substituents independently selected from the group consisting of OH, F, Cl, Br, I, NO₂, NH₂, CN, -(1-4C)alkyl, and -(1-4C)alkoxy; -NH(1-4C)alkyl, -N[(1-4C)alkyl]₂, -C(=O)NH(3-6C)cycloalkyl, -C(=O)NH(CH₂)_nN[(1-4C)alkyl]₂,

30 -C(=O)NH(CH₂)_nNH(1-4C)alkyl, -(CH₂)_nNH₂, -O(CH₂)_nSR¹⁴, -O(CH₂)_nOR¹⁴, -(CH₂)_nNHR¹², -(CH₂)_nNH(3-6C)cycloalkyl, -(CH₂)_nN[(1-4C)alkyl]₂, -CH₂NHC(=O)CH₃, -NHC(=O)NHR¹², -NHC(=O)N[(1-4C)alkyl]₂,

with a hydrolysis agent.

41. A process according to claim 40 wherein the hydrolysis agent is a base.