15.8 设 $p(x) = x^3 + 3x - 2, u = x + (p(x)) \in Q[x]/p(x)$), 试将 $(u+4)^-$ 写成u的二阶多项式。

解: 同上题,设 $(u+4)^{-1} = ax^2 + bx + c$ 由 $(u+4)(ax^2 + bx + c) = 1$ $\Rightarrow a = \frac{1}{78}, b = -\frac{2}{39}, c = \frac{19}{78}$ $\therefore (u+4)^{-1} = \frac{1}{78}x^2 - \frac{2}{39}x + \frac{19}{78}$

- 15.9判定下述元素是不是给定域上的代数元。
 - (1) $e^{i\frac{2\pi h}{k}}$ 关于Q和R,其中k,h为正整数,且h<k;

$$\Rightarrow x = e^{i\frac{2\pi h}{k}} = \cos\frac{2\pi h}{k} + i\sin\frac{2\pi h}{k}$$
$$x^k = 1$$

$$\therefore e^{i\frac{2\pi h}{k}} \mathbb{E}x^k - 1 = 0$$
的根

 $\therefore e^{i\frac{2\pi h}{k}}$ 是Q,R上的代数元。

(2)
$$\sqrt{3} + \sqrt{2}$$
 关于 Q ;

$$\diamondsuit x = \sqrt{3} + \sqrt{2}$$

等式两边平方得 $x^2 = 5 + 2\sqrt{6}$

移项再平方得 $(x^2-5)^2=(2\sqrt{6})^2$

$$\mathbb{E} I x^4 - 10x^2 + 1 = 0$$

$$\therefore \sqrt{3} + \sqrt{2}$$
为 $x^4 - 10x^2 + 1 = 0$ 的根

(3) $2\pi + 1$ 关于Q, 其中 π 为圆周率。

采用反证法,设 $2\pi+1$ 为关于Q的代数元

$$\therefore \exists f(x) = \sum_{i=1}^{n} a_{i} x^{i} \in Q[x],$$
 满足 $f(2\pi + 1) = 0,$
$$\therefore \sum_{i=0}^{n} a_{i} (2\pi + 1)^{i} = \mathbf{O} \Longrightarrow \sum_{i=0}^{n} k_{i} \pi^{i} = \mathbf{O}$$
 这与 π 为超越元矛盾。 $\therefore 2\pi + 1$ 为超越元。

- 15.11 找出下述元素在所指定域上的极小多项式:
- (1) $3+\sqrt{2}$ 关于Q;
- (2) 7十5i关于Q,R。
- 解: 1)记 $x=3+\sqrt{2}$,可得 $x^2-6x+7=0$ 。 $x^2-6x+7\in Q[x]$,首项系数为1,且在Q[x]上不可约,即为所求极小多项式。
 - 2)记x=7+5i,可得x²-14x+74=0。x²-14x+74为7+5i关于Q,R的极小多项式。

15.13 x^3 -α \in Q[x]是不可约的,β是 x^3 -α的一个根,证明: Q(β)不是 x^3 -α的根域。

证明: 假设 $Q(\beta)$ 是 x^3 - α 的根域。

- :β是x³-α的一个根
- $\therefore \beta^3 \alpha = 0$
- ∴ $x^3 \alpha = x^3 \beta^3 = (x \beta)(x^2 + \beta x + \beta^2)$ 由假设可知($x^2 + \beta x + \beta^2$)在Q(β)内可分解。
- ∵任何a∈ Q(β)可表示为a₀+a₁β+a₂β²(a_{0,} a_{1,} a₂∈Q)
- ∴存在a,b∈ Q(β)满足 $x^2+\beta x+\beta^2=(x-a)(x-b)=(x-a)+a_1\beta+a_2\beta^2)(x-(b_0+b_1\beta+b_2\beta^2))$ 由等式两边x的系数对应相等可得

$$a+b=\beta$$

$$ab = \beta^2$$

由上面两式可得

$$a_1 + b_1 = 1$$

$$a_1b_1=1$$

:.假设不成立

Q(β)不是x³-α的根域

- 15.16 F为域,f(x), $g(x) \in F[x]$,已知f(x) 是不可约的,K为F的扩域,在K中f(x)与g(x)有公共零点,证明: $f(x) \mid g(x)$ 。
- 证明:记f(x)首项系数为a \in F*, α 为f(x)和 g(x)的公共零点。则f(x)/a为 α 在F[x]中极小多项式。
- $: g(\alpha) = 0$
- \therefore f(x) /a | g(x)
- **∵**a∈F*
- \therefore f(x) | g(x)

15.18证明f(x)=x⁴+1∈Q[x], α为f(x)的根,则Q(α)为f(x)的根域。

证明: $: \alpha$ 为f(x)的根

∴
$$\alpha^4 + 1 = 0$$

:
$$f(x) = x^4 - \alpha^4 = (x - \alpha) (x + \alpha)(x^2 + \alpha^2)$$

$$\alpha^2 = -(-1) \alpha^2 = -\alpha^6$$

:
$$x^2 + \alpha^2 = (x - \alpha^3) (x + \alpha^3)$$

$$\mathbb{R}^{3} f(x) = (x - \alpha) (x + \alpha) (x - \alpha^{3}) (x + \alpha^{3})$$

∴ f(x)能在Q(α)上分解为一次因子的乘积

- ∵f(x)的根域是包含α的Q的最小扩域,而Q(α)为包含α和Q的最小域。
- .. Q(α)为f(x)的根域

- 15.20 F为域,char F=p,α是 x^p -α \in F[x]的一个根,问 $F[\alpha]$ 是否是 x^p -α的根域?
- 解: $F[\alpha]$ 是 x^p - α 的根域。
- ∵ α是 x^p -α∈F[x]的一个根
- $\cdot \cdot \alpha^{p} \alpha = 0$

- ∵ F为域且char F=p
- ∴p为素数或0

当p=0时, $f(x)=x^p-\alpha=1-\alpha$,与题意矛盾

: p为素数

则 $(x-\alpha)^p=x^p-\alpha^p=x^p-\alpha$

即 x^p - α 可在 $F(\alpha)$ 内分解为一次因子的乘积,而 $F(\alpha)$ 为包含 α 的F的最小扩域,所以 $F(\alpha)$ 为 x^p - α 的根域。

15.22 求下列多项式的根域及扩张次数:

- 1) Q上多项式x6-6;
- 2) Z₅上多项式x³+4x+3

解: 1) x⁶-6为Q上不可约多项式,

$$x = \sqrt{4}\cos\frac{k\pi}{3} + i\sin\frac{k\pi}{3}$$
) $k = 0,1,2,3,4,5$
 $\therefore x^6 - 6$ 的根域为Q($\sqrt{6},\sqrt{3}i$)。

2)根域为Z₅[x]/x³+4x+3,扩张次数为3。

- ∵ x³+4x+3在Z₅[x]上不可约。
- ∴记 $Z_5[x]/x^3+4x+3$ 为K,则 x^3+4x+3 在 $K上有根,<math>x^3+4x+3$ 的根域包含K。记 x^3+4x+3 在K中的根为 α 。

则 α^{125} - α =0,由前面16题结论可得 x^3 +4x+3 | x^{125} -x

而x125-x的所有解构成域K

- : x³+4x+3的所有解都在K内
- :. K为x³+4x+3的根域

15.24 (2) 解: $GF(9)=GF(3^2)=Z3x/(x2+1)=\{ax+b|a,b\in Z3\}$

+	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
0	0	1	2	X	X+1	X+2	2x	2x+1	2x+2
1	1	2	0	X+1	X+2	X	2x+1	2x+2	2x
2	2	0	1	X+2	X	X+1	2x+2	2x	2x+1
X	X	X+1	X+2	2x	2x+1	2x+2	0	1	2
x+1	X+1	X+2	X	2x+1	2x+2	2x	1	2	0
x+2	X+2	X	X+1	2x+2	2x	2x+1	2	0	1
2x	2x	2x+1	2x+2	0	1	2	X	X+1	X+2
2x+1	2x+1	2x+2	2x	1	2	0	X+1	X+2	X
2x+2	2x+2	2x	2x+1	2	0	1	X+2	X	X+1

*	0	1	2	X	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	X	X+1	X+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	X	X+2	X+1
X	0	X	2x	2	X+2	2x+2	1	X+1	2x+1
x+1	0	X+1	2X+2	X+2	2x	1	2x+1	2	X
x+2	0	X+2	2X+1	2x+2	1	X	X+1	2x	2
2x	0	2x	X	1	2x+1	X+1	2	2X+2	X+2
2x+1	0	2x+1	X+2	X+1	2	2x	2X+2	X	1
2x+2	0	2x+2	x+1	2X+1	x	2	X+2	1	2x

(3) \Re : $GF(8)=GF(2^3)=Z2x/(x3+x2+1)=ax2+bx+ca,b,c\in \mathbb{Z}2$

+	0	1	X	X+1	X ²	X ² +1	X ² +x	X ² +x+1
0	0	1	X	X+1	X ²	X ² +1	X ² +x	X ² +x+1
1	1	0	X+1	X	X ² +1	X ²	X ² +x+1	X ² +x
X	X	X+1	0	1	X^2+x	X ² +x+1	X ²	X ² +1
X+1	X+1	X	1	0	X ² +x+1	X^2+x	X ² +1	X ²
X ²	X ²	X ² +1	X ² +x	X ² +x+1	0	1	X	X+1
X ² +1	X ² +1	X ²	X ² +x+1	X ² +x	1	0	X+1	X
X ² +x	X ² +x	X ² +x+1	X ²	X ² +1	X+1	X+1	0	1
X ² +x+1	X ² +x+1	X^2+x	X ² +1	X ²	X	X	1	0

*	0	1	X	X+1	X ²	X ² +1	X ² +x	X ² +x+1
0	0	0	0	0	0	0	0	0
1	0	1	X	X+1	X ²	X ² +1	X ² +x	X ² +x+1
X	0	X	X ²	X ² +x	X ² +1	X ² +x+1	1	X+1
X+1	0	X+1	X ² +x	X ² +1	1	X	X ² +x+1	X ²
X ²	0	X ²	X ² +1	1	X ² +x+1	X+1	X	X ² +x
X ² +1	0	X ² +1	X ² +x+1	X	X+1	X ² +x	X ²	1
X ² +x	0	X ² +x	1	X ² +x+1	X	X ²	X+1	X ² +1
X ² +x+1	0	X ² +x+1	X+1	X ²	X ² +x	1	X ² +1	X