

Kaio Christaldo Fabricio Matsunaga

Apresentação Problema Motivador

beecrowd | 1158

Soma de Ímpares Consecutivos III

Adaptado por Neilor Tonin, URI 🥯 Brasil

Timelimit: 1

Leia um valor inteiro **N** que é a quantidade de casos de teste que vem a seguir. Cada caso de teste consiste de dois inteiros **X** e **Y**. Você deve apresentar a soma de **Y** ímpares consecutivos a partir de **X** inclusive o próprio X se ele for ímpar. Por exemplo:

para a entrada 4 5, a saída deve ser 45, que é equivalente à: 5 + 7 + 9 + 11 + 13 para a entrada 7 4, a saída deve ser 40, que é equivalente à: 7 + 9 + 11 + 13

Entrada

A primeira linha de entrada é um inteiro **N** que é a quantidade de casos de teste que vem a seguir.

Cada caso de teste consiste em uma linha contendo dois inteiros **X** e **Y**.

Saída

Imprima a soma dos consecutivos números ímpares a partir do valor X.

Exemplo de Entrada	Exemplo de Saída
2	21
4 3	24
11 2	

1158 - <u>Soma de Ímpares</u> <u>Consecutivos III</u>

- Uma progressão aritmética (PA) é uma sequência numérica onde cada termo, a partir do segundo, é obtido somando-se uma constante (chamada razão) ao termo anterior
- A anedota mais famosa sobre a PA é a do matemático Carl Friedrich Gauss (1777-1855). Quando criança, seu professor, querendo manter a turma ocupada, pediu que somassem todos os números de 1 a 100.

Fórmula	O que Resolve
$a_n = a_1 + (n-1)r$	Achar um termo qualquer da sequência. (Fórmula Principal)
$S_n=rac{(a_1+a_n)n}{2}$	Somar a sequência quando você conhece o início e o fim. (Soma Principal)
$S_n = rac{(2a_1 + (n-1)r)n}{2}$	Somar a sequência quando você só conhece o início e a razão. (Soma Alternativa)
$n = \frac{a_n - a_1}{r} + 1$	Contar quantos termos existem entre dois valores. (Contagem)
$a_k = rac{a_{k-1} + a_{k+1}}{2}$	Achar termos faltantes ou usar em problemas de lógica. (Propriedade)

Onde Usar em Programação Competitiva

- O truque é identificar quando um problema pode ser modelado como uma PA. Fique atento a:
- Somas em um Intervalo: O uso mais clássico.
- Problemas com Padrões de Repetição: Quando algo aumenta ou diminui de forma constante a cada passo.
- Cálculos em Grids ou Geometria: Movimentos ou coordenadas que seguem um padrão linear.

Implementações

```
unsigned long long res = 0;
long long int n; cin >> n;
for (long long i = 1; i < n; i++) {
 res+=i;
```

```
using ull = unsigned long long;

ull pa(ull ni, ull nf) {
   return ((ni + nf) * ((nf - ni + 1) / 2));
}
```

O(n)

Resolução do Problema Motivador

Soma de Ímpares Consecutivos III

• A ideia é implementar uma das fórmulas apresentadas

A resolução estará disponível no Drive. Tente resolver por conta própria e, se precisar, compare com a solução!

Apresentação Problema Motivador

beecrowd | 1160

Crescimento Populacional

Adaptado por Neilor Tonin, URI 🔯 Brasil

Timelimit: 1

Mariazinha quer resolver um problema interessante. Dadas as informações de população e a taxa de crescimento de duas cidades quaisquer (A e B), ela gostaria de saber quantos anos levará para que a cidade menor (sempre é a cidade A) ultrapasse a cidade B em população. Claro que ela quer saber apenas para as cidades cuja taxa de crescimento da cidade A é maior do que a taxa de crescimento da cidade B, portanto, previamente já separou para você apenas os casos de teste que tem a taxa de crescimento maior para a cidade A. Sua tarefa é construir um programa que apresente o tempo em anos para cada caso de teste.

Porém, em alguns casos o tempo pode ser muito grande, e Mariazinha não se interessa em saber exatamente o tempo para estes casos. Basta que você informe, nesta situação, a mensagem "Mais de 1 seculo.".

Entrada

A primeira linha da entrada contém um único inteiro T, indicando o número de casos de teste ($1 \le T \le 3000$). Cada caso de teste contém 4 números: dois inteiros PA e PB ($100 \le PA < 1000000$, $PA < PB \le 1000000$) indicando respectivamente a população de A e B, e dois valores C e C (C 1) com um digito após o ponto decimal cada, indicando respectivamente o crescimento populacional de C e C (C 2) com um digito após o ponto decimal cada, indicando respectivamente o crescimento populacional de C e C (C 2) com um digito após o ponto decimal cada, indicando respectivamente o crescimento populacional de C 0.

Atenção: A população é sempre um valor inteiro, portanto, um crescimento de 2.5 % sobre uma população de 100 pessoas resultará em 102 pessoas, e não 102.5 pessoas, enquanto um crescimento de 2.5% sobre uma população de 1000 pessoas resultará em 1025 pessoas. Além disso, não utilize variáveis de precisão simples para as taxas de crescimento.

Saída

Imprima, para cada caso de teste, quantos anos levará para que a cidade A ultrapasse a cidade B em número de habitantes. Obs.: se o tempo for mais do que 100 anos o programa deve apresentar a mensagem: Mais de 1 seculo. Neste caso, acredito que seja melhor interromper o programa imediatamente após passar de 100 anos, caso contrário você poderá receber como resposta da submissão deste problema "Time Limit Exceeded".

Exemplo de Entrada	Exemplo de Saída
6	51 anos.
100 150 1.0 0	16 anos.
90000 120000 5.5 3.5	12 anos.
56700 72000 5.2 3.0	Mais de 1 seculo.
123 2000 3.0 2.0	10 anos.
100000 110000 1.5 0.5	100 anos.
62422 484317 3.1 1.0	

- PG aparece em problemas de:
 - O Análise de complexidade (tempo O (log n))
 - Somas rápidas em intervalos
 - o Combinatória e contagem
 - Estruturas matemáticas (matrizes, potências)
- Saber manipular PG = vantagem em competições

PG (progressão geométrica) é uma sequência de números em que cada termo, a partir do segundo, é obtido multiplicando-se o termo anterior por um mesmo valor fixo chamado de razão e representado pela letra q.

Exemplos:

```
2, 4, 8, 16, 32... (a_1=2, q=2)
3, -6, 12, -24... (a_1=3, q=-2)
10, 5, 2.5, 1.25... (a_1=10, q=0.5)
```

De acordo com o valor da razão podemos classificar em alguns tipos:

- Crescente Q>1
- Decrescente 0>Q>1
- Constante Q=1
- Oscilante Q<0

Termo Geral

$$a_n = a_1 \cdot q^{n-1}$$

Soma de Termos

$$S_n = \frac{a_1(1-q^n)}{1-q}$$

Resolução do Problema Motivador

A resolução estará disponível no Drive. Tente resolver por conta própria e, se precisar, compare com a solução!

Lista de Exercícios

<u> 1071 - Soma de Ímpares Consecutivos I</u>

<u> 1099 - Soma de Ímpares Consecutivos II</u>

1158 - Soma de Ímpares Consecutivos III

<u> 1308 - Guerreiros Etruscos Nunca Jogam Xadrez</u>

Se tiver alguma dúvida ou dificuldade na resolução de algum exercício, sinta-se à vontade para perguntar!