# 数电芯片总结

## egg

- 一. 数据选择器
- 二. 编码器
- 三. 译码器
- 四. 加法器
- 五. 数值比较器
- 六. 寄存器
- 七. 计数器
- 八. 实用储存器

#### 一. 数据选择器

#### 1.\*\*\*四选一数据选择 74LS153





$$Y = \overline{S}(\overline{A_1}\overline{A_0}D_0 + \overline{A_1}A_0D_1 + A_1\overline{A_0}D_2 + A_1A_0D_3)$$

2.\*\*\*八选一数据选择器 74LS151



八选一数据选择器功能表

| $\overline{S}$ | A <sub>2</sub> | Α | 1 A <sub>0</sub> | Υ              |
|----------------|----------------|---|------------------|----------------|
| 1              | ×              | × | ×                | 0              |
| 0              | 0              | 0 | 0                | $D_0$          |
| 0              | 0              | 0 | 1                | $D_1$          |
| 0              | 0              | 1 | 0                | $D_2$          |
| 0              | 0              | 1 | 1                | D <sub>3</sub> |
| 0              | 1              | 0 | 0                | D <sub>4</sub> |
| 0              | 1              | 0 | 1                | D <sub>5</sub> |
| 0              | 1              | 1 | 0                | D <sub>6</sub> |
| 0              | 1              | 1 | 1                | D <sub>7</sub> |

中南大学自动化学院

## 二. 编码器

1. \*\*\*8 线-3 线优先编码器 74LS148





#### 二、优先编码器

第三章 组合逻辑电路

8线—3线优先编码器功能表

|       | 输 |                       |       |       | 入                     |                       |                       | 输              |                       | 出                |
|-------|---|-----------------------|-------|-------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|------------------|
| $I_0$ | 1 | <b>l</b> <sub>2</sub> | $I_3$ | $I_4$ | <b>I</b> <sub>5</sub> | <b>I</b> <sub>6</sub> | <b>I</b> <sub>7</sub> | Y <sub>2</sub> | <b>Y</b> <sub>1</sub> | $\mathbf{Y}_{0}$ |
| 1     | 0 | 0                     | 0     | 0     | 0                     | 0                     | 0                     | 0              | 0                     | 0                |
| ×     | 1 | 0                     | 0     | 0     | 0                     | 0                     | 0                     | 0              | 0                     | 1                |
| ×     | × | 1                     | 0     | 0     | 0                     | 0                     | 0                     | 0              | 1                     | 0                |
| ×     | × | X                     | 1     | 0     | 0                     | 0                     | 0                     | 0              | 1                     | 1                |
| ×     | × | X                     | X     | 1     | 0                     | 0                     | 0                     | 1              | 0                     | 0                |
| ×     | × | X                     | X     | ×     | 1                     | 0                     | 0                     | 1              | 0                     | 1                |
| ×     | × | X                     | X     | ×     | ×                     | 1                     | 0                     | 1              | 1                     | 0                |
| ×     | × | ×                     | X     | ×     | × >                   | <                     | 1                     | 1              | 1                     | 1                |

三、功能扩展

|     | 输 入                                                                                                                                     | 输           |                                        | 出                           |                 |     |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|-----------------------------|-----------------|-----|--|
|     | $\bar{I}_0 \bar{I}_1 \bar{I}_2 \bar{I}_3 \bar{I}_4 \bar{I}_5 \bar{I}_6 \bar{I}_7 \bar{S}$                                               | $\bar{Y}_2$ | $\overline{\overline{\mathbf{Y}}_{1}}$ | $\overline{\overline{Y}}_0$ | Y <sub>EX</sub> | Ys  |  |
|     | $\times \times \times \times \times \times \times \times \times 1$                                                                      | 1           | 1                                      | 1                           | 1               | 1   |  |
| 第三章 | 11111 11 10                                                                                                                             | 1           | 1                                      | 1                           | 1               | 0   |  |
| 章   | 0 1 1 1 1 1 1 1 0                                                                                                                       | 1           | 1                                      | 1                           | 0               | 1   |  |
| 组合  | × 0 1 1 1 1 1 1 0                                                                                                                       | 1           | 1                                      | 0                           | 0               | 1   |  |
| 逻   | ×× 0 1 1 1 1 1                                                                                                                          | 1           | 0                                      | 1                           | 0               | 1   |  |
| 辑电  | 0                                                                                                                                       | 1           | 0                                      | 0                           | 0               | 1   |  |
| 路   | $\times \times $ | 0           | 1                                      | 1                           | 0               | 1   |  |
|     | $\times \times \times \times \times 0 1 1 1 0$                                                                                          | 0           | 1                                      | 0                           | 0               | 1   |  |
|     | $\times \times \times \times \times 0 1 1 0$                                                                                            | 0           | 0                                      | 1                           | 0               | 1   |  |
|     | $\times \times \times \times \times \times \times 0.1  Q$                                                                               | 南0大乌        | 学位                                     | 息卧                          | <b>≱</b> ∮ப     | 程學院 |  |

#### 3.1 优先级的思想

我们发现普通编码器虽然能实现编码的功能,但它仍有不少局限性,其中之一就表现为:普通编码器的输入端只能同时存在一个高电平信号,当我们不小心输入了多个高电平信号,比如输入(11111111),根据电路图普通编码器输出的结果为(111),与正常输入(00000001)的结果相同,但我们从输出端根本无法判断输入了一个错误的信号。

为了破除这种弊端,我们设想一种新的编码器:它的每个输入端有着不同的重要性,只要更重要的输入端输入了有效信号,我们就不再考虑来自其他次重要输入端的输入信号。比如我们规定  $I_7\ldots I_0$  重要性依次递减,当 $I_7$ 等输入有效信号(比如将输入1定为有效)时,就不再考虑来自另外7个输入端的信号,而在输出端直接输出  $I_1$ ,只有当  $I_7$  输入一个无效信号(比如输入0),在考虑来自  $I_6$  的输入信号。

#### 2. 二一十进制优先编码器(74LS147)









#### 三. 译码器

## 1.\*\*\*中规模集成 3 线-8 线译码器 (74LS138)

#### 为最小项译码器

|   |                |                       | 3线    | <u>—</u> 8     | 线译             | 码器                      | 器真               | 值表               | Ĉ                |     |   | v                                         |
|---|----------------|-----------------------|-------|----------------|----------------|-------------------------|------------------|------------------|------------------|-----|---|-------------------------------------------|
|   | 输              |                       | 入     | 输              |                |                         |                  |                  |                  | 出   |   | $Y_0 = A_2 A_1 A_0$                       |
|   | A <sub>2</sub> | <b>A</b> <sub>1</sub> | $A_0$ | Y <sub>0</sub> | Y <sub>1</sub> | <b>Y</b> <sub>2</sub> \ | / <sub>3</sub> \ | / <sub>4</sub> Y | ′ <sub>5</sub> Y | 6 Y | 7 | $Y_1 = A_2 A_1 A_0$                       |
| - | 0              | 0                     | 0     | 1              | 0              | 0                       | 0                | 0                | 0                | 0   | 0 | $Y_2 = \overline{A_2} A_1 \overline{A_0}$ |
| - | 0              | 0                     | 1     | 0              | 1              | 0                       | 0                | 0                | 0                | 0   | 0 | $Y_3 = \overline{A_2} A_1 A_0$            |
| 3 | 0              | 1                     | 0     | 0              | 0              | 1                       | 0                | 0                | 0                | 0   | 0 |                                           |
| 2 | 0              | 1                     | 1     | 0              | 0              | 0                       | 1                | 0                | 0                | 0   | 0 | $Y_4 = A_2 A_1 A_0$                       |
| 2 | 1              | 0                     | 0     | 0              | 0              | 0                       | 0                | 1                | 0                | 0   | 0 | $Y_5 = A_2 \overline{A_1} A_0$            |
| 1 | 1              | 0                     | 1     | 0              | 0              | 0                       | 0                | 0                | 1                | 0   | 0 | · · · ·                                   |
|   | 1              | 1                     | 0     | 0              | 0              | 0                       | 0                | 0                | 0                | 1   | 0 | $Y_6 = A_2 A_1 A_0$                       |
|   | 1              | 1                     | 1     | 0              | 0              | 0                       | 0                | 0                | 0                | 0   | 1 | $Y_7 = A_2 A_1 A_0$                       |
| 0 |                |                       |       |                |                |                         |                  |                  |                  |     | 中 | 南大学自动化学院                                  |



有杠+圈->低电平有效 S1 处应接高电平(课件打错了) 如果 S 不是 100,则输出全 1



推论1:3线—8线译码器辅以适当门电路可实现任何 三变量的多输出逻辑函数

推论2: n线—2n线译码器辅以适当门电路可实现任何 n变量的多输出逻辑函数

中南大学自动化学院

#### 利用最小项

写出输出的逻辑表达式,再进行处理(如两次取反)

2.二一十进制译码器(74LS42)

第三章 组合逻辑电



### 四. 加法器



Ci: 进位

最后输出: Co 为最高位

应用:



补码:取反后加1

最后的1由Ci提供

将 8421 BCD 码转换为余 3 码: 即+3

#### 五. 数值比较器



### 六. 寄存器

#### 1.集成数码寄存器 74LSI75



#### 74LS175功能表及说明

| $\overline{R_d}$ | CP | 功  | 能  | 说              | 明     |
|------------------|----|----|----|----------------|-------|
| 0                | ×  | 直接 | 清零 | $Q_3Q_2Q_1Q_0$ | =0000 |
| 1                | 1  | 并行 | 送数 | $Q_i^{n+1} =$  | $D_i$ |

## 2.锁存器 75LS116



## 74LS116功能表及说明

| $\overline{Rd}$ | $\overline{LE_{\!\scriptscriptstyle A}} + \overline{LE_{\!\scriptscriptstyle R}}$ | 功   | 能         | 说           | 明        |
|-----------------|-----------------------------------------------------------------------------------|-----|-----------|-------------|----------|
| 0               | X                                                                                 | 直接清 | 事零        | $Q_i=0$     |          |
| 1               | 0                                                                                 | 并行送 | <b>生数</b> | $Q_i^{n+1}$ | $=D_{i}$ |
| 1               | 1                                                                                 | 保   | 持         | $Q_i^{n+1}$ | $=Q_i^n$ |

## 3.双向移位寄存器 74LS194



#### 74LS194功能表及说明

| 第 |
|---|
| 五 |
| 章 |
| 时 |
| 序 |
| 逻 |
| 辑 |
| 电 |
|   |

| $\overline{R_D}$ | CP | S <sub>1</sub> S <sub>0</sub> | 功能   | 说明                                                |
|------------------|----|-------------------------------|------|---------------------------------------------------|
| 0                | ×  | $\times \times$               | 直接清零 | Qi=0                                              |
| 1                | 1  | 1 1                           | 并行送数 | $Q_i^{n+1} = D_i$                                 |
| 1                | 1  | 0 1                           | 右 移  | $Q_i^{n+1} = Q_{i-1}^n, Q_0^{n+1} = D_{IR}^{\nu}$ |
| 1                | 1  | 1 0                           | 左 移  | $Q_i^{n+1} = Q_{i+1}^n, Q_i^{n+1} = D_{IL}$       |
| 1                | ×  | 0 0                           | 保 持  | $Q_i^{n+1} = Q_i^n$                               |
| 1                | 0  | $\times \times$               | 保 持  | $Q_i^{n+1} = Q_i^n$                               |

中南大学自动化学院

应用:串行输入数据,乘2运算,除2运算,环形移位寄存器,扭环形移位寄存器



#### 七. 计数器

1.二-五-十进制异步计数器(74LS290)





5、 $CP_0$ =CP, $CP_1$ = $Q_0$ , $Q_3Q_2Q_1Q_0$ 构成十进制加法计数器。



### 2.\*\*\*4 位二进制同步加法计数器 74LS161



|     | R̄□ | СР         | LD | ET | EP | 功能       | 说明                                 |
|-----|-----|------------|----|----|----|----------|------------------------------------|
| 序   | 0   | ×          | ×  | ×  | ×  | 直接(异步)清零 | Qi=0, C=0                          |
| 五重  | 1   | $\uparrow$ | 0  | ×  | ×  | 同步预置数    | $Q_i^{n+1} = D_i$                  |
| ナ   | 1   | <b>↑</b>   | 1  | 1  | 1  | 计数       | 二进制加法计数                            |
| 見 量 | 1   | ×          | 1  | 1  | 0  | 保持       | $Q_i^{n+1} = Q_i^n, C^{n+1} = C^n$ |
| 中里。 | 1   | ×          | 1  | 0  | ×  | 保持       | $Q_i^{n+1} = Q_i^n, C = 0$         |
| 各   |     |            |    |    |    |          |                                    |

# 3. 同步十进制加法计数器 74160



| $ \overline{R}_{D} $ | CP       | LD | ET | EP | 功能       | 说 明                                |
|----------------------|----------|----|----|----|----------|------------------------------------|
| 0                    | ×        | ×  | ×  | ×  | 直接(异步)清零 | Qi=0, C=0                          |
| 1                    | <b>↑</b> | 0  | ×  | ×  | 同步预置数    | $Q_i^{n+1} = D_i$                  |
| 1                    | <b>↑</b> | 1  | 1  | 1  | 计数       | 十进制加法计数                            |
| 1                    | ×        | 1  | 1  | 0  | 保持       | $Q_i^{n+1} = Q_i^n, C^{n+1} = C^n$ |
| 1                    | ×        | 1  | 0  | ×  | 保持       | $Q_i^{n+1} = Q_i^n, C = 0$         |



### 4.同步十进制可逆计数器(74LS190)



|       | LD | СР      | CT | Ū/D | 功能                    | 说 明                                                 |
|-------|----|---------|----|-----|-----------------------|-----------------------------------------------------|
| 1     | 0  | ×       | ×  | ×   | 异步预置数                 | $Q_i = D_i$                                         |
| 11.1. | 1  | <b></b> | 0  | 0   | 同步十进制加法               | CO=Q3Q0 /00                                         |
| B     | 1  | <b></b> | 0  | 1   | 同步十进制 <mark>减法</mark> | $BO = \overline{Q_1} \overline{Q_2} \overline{Q_3}$ |
| 7     | 1  | ×       | 1  | ×   | 保持                    | $Q_i^{n+1} = Q_i^n, C^{n+1} = C^n$                  |



异步法:利用异步清零端或异步置数端进行跳跃,作用态是暂态,不计算在有效循环中。

同步法:利用同步置数端进行跳跃,作用态是稳态,是有效态,计算在有效循环中。

## 八. 实用存储器芯片

#### 1.EPROM2716



| 工作方式 |        |                 |             | 输出D  |
|------|--------|-----------------|-------------|------|
|      | CE/PGM | $\overline{OE}$ | <b>V</b> PP |      |
| 读出   | 0      | 0               | +5V         | 数据输出 |
| 维持   | 1      | ×               | +5V         | 高阻浮置 |
| 编程   | 几      | 1               | +25V        | 数据写入 |
| 编程禁止 | 0      | 1               | +25V        | 高阻浮置 |
| 编程校验 | 0      | 0               | +25V        | 数据输出 |

#### 2. EEPROM2864



#### 3.SRAM6116



#### 6116有三种操作方式:

- 1) 写入方式: 当  $\overline{CS} = 0, \overline{WE} = 0, \overline{OE} = 1$  时, Do~D7上的内容存入A0~A10对应的单元。
- 2) <mark>读出方式</mark>: 当  $\overline{CS}=0,\overline{WE}=1,\overline{OE}=0$  时,Ao~A1o对应单元的内容输出到Do~D7。
- 3)低功耗维持方式: 当  $\overline{CS}_{=1}$  时, 器件电流仅20 $\mu$ A左右,为系统断电时用电池保存RAM内容提供了可能性。

中南大学自动化学院