Datenblatt LAD-Spektrometer

"Light Absorbing Diodes"

1 Funktionsweise

Das Spektrometer misst die relative Spektrale Leistungsdichte

 $\frac{\text{Leistung}}{\text{Fläche} \cdot \text{Wellenlängenintervall}}$

im Bereich von 350 nm bis 750 nm, also dem kompletten optischen Spektrum. Es misst in 16 unabhängigen, ca. gleichverteilten überlappenden Kanälen und erreicht dabei eine spektrale Auflösung von ca. 40 nm. Verschiedene Lichtquellen sind somit ganz klar identifizierbar.

2 Leuchtdioden

Die verwendeten Leuchtdioden müssen einerseits das Spektrum gut abdecken und andererseits möglichst schmale Absorptionskurven besitzen. Hierzu wurden in etwa 80 LEDs verschiedener Hersteller vermessen und selektiert.

Die folgenden LEDs sind im Spektrometer verbaut:

#	Hersteller	Typ	Vertrieb	Bestllnummer	$\lambda_{\rm em} [{\rm nm}]$
1			Roithner	vl400	400
2			Roithner	rlcv415	415
3	Kingbright	KA-3529QB24ZS	Conrad	180391	457
4	Osram	Q65110A1987	Reichelt	LVT67C	505
5			Roithner	epd470	-
6	Avago	HSMG-A100-J02J1	Conrad	180567	569
7	Osram	Q65110A2399	Reichelt	LPM675	560
8	Osram	Q65110A4007	Reichelt	LGT676	570
9	Osram	Q65110A2156	Reichelt	LYT676	587
10	Avago	HSMU-A100-R00J1	Conrad	180575	592
11	Kingbright	KA-3528IT	Reichelt	smd-led $3528RT$	625
12			Roithner	smc660	660
13			Roithner	smc680	680
14			Roithner	smc700	700
15			Roithner	$\mathrm{smt}735$	735
16			Roithner	smc720	720

Wir erhielten folgende Messwerte in Absorption. Das Messwertsignal I (offsetbereinigt) ist proportional zum eingebauten Messwiderstand R und wurde im Sonnenspektrum gemessen.

#	Bestellnummer	$\lambda_{\rm em}[{\rm nm}]$	$\lambda_{\rm abs}[{\rm nm}]$	$\Delta \lambda_{\rm abs} [{\rm nm}]$	$R[M\Omega]$	I[ADUs]	ΔI
1	vl400	400	383	17	1	44.0	1.3
2	rlcv415	415	397	14	1	109.4	1.7
3	180391	457	412	21	0.33	312.9	2.2
4	LVT67C	505	428	40	1	88.0	0.7
5	epd470	_	482	43	0.068	546.6	3.4
6	180567	569	532	30	0.68	749.9	2.6
7	LPM675	560	544	21	0.68	725.0	4.0
8	LGT676	570	552	25	0.82	564.4	4.1
9	LYT676	587	562	29	0.82	570.6	3.1
10	180575	592	578	23	0.68	660.4	10.0
11	smd-led $3528RT$	625	598	23	1	391.1	3.0
12	smc660	660	627	29	0.47	558.0	4.3
13	smc680	680	669	18	0.1	241.2	1.4
14	smc700	700	680	22	0.1	277.6	3.5
15	$\mathrm{smt}735$	735	703	24	0.1	382.9	9.4
16	smc720	720	704	17	0.1	199.1	1.1

Die Offsetwerte aller Eingänge liegen bei konstant 24 ADUs.

Abbildung 1: Normierte Absorptionsspektren der eingebauten LEDs

3 Kalibration

Das Spektrometer ist mithilfe des Sonnenspektrums kalibriert. Es war keine bekanntere Lichtquelle vorhanden. Die Intensität des Sonnenspektrums wurde dabei von http://rredc.nrel.gov/solar/spectra/am1.5/ genommen.

4 Rekonstruktion

Das mitgelieferte Auswertungsprogramm unterstützt drei Rekonstruktionsmodi.

4.1 Backus Gilbert

Dies ist ein generisches Rekonstruktionsverfahren, welches das komplette Spektrum möglichst original zu rekonstruieren versucht. Backus-Gilbert ist dabei relativ unempfindlich gegenüber Schwankungen im Eingangssignal. Dies lässt keine extrem scharfe Auflösung zu, ist aber notwendig aufgrund der vorhandenen Messwertschwankungen. Das Verfahren ist beschrieben in "Numerical Recipes", dritte Auflage, Kapitel 19.6.

4.2 Schwarzkörper

Ein Schwarzkörperspektrum mit den Parametern Temperatur und Amplitude wird auf die Messdaten gefittet und der Temperaturwert ausgegeben.

4.3 Gauß

Eine Gaußkurve mit den Parametern mittlere Wellenlänge, Breite und Amplitude wird auf die Messdaten gefittet und die mittlere Wellenlänge ausgegeben.

5 Elektronik

Die Elektronik des Spektrometers besteht aus 16 Transimpedanz-Verstärkern zur Messung der Photoströme sowie einem Mikrocontroller für die Übertragung der Daten zum PC, zusätzlich werden noch Multiplexer (4051) benötigt.

Für den Transimpedanz-Verstärker wird ein Operationsverstärker des Typs OPA2134 sowie ein Widerstand und eine Kapazität in Gegenkopplung verwendet. Der Verstärkungsfaktor wird auf jede LED einzeln anhand deren Absorptionskurven mithilfe des Gegenkopplungs-Widerstandes

$$U_{\rm out} = -R_{\rm Gegenkopplung} \cdot I_{\rm Photo}$$

abgestimmt, hierbei werden Werte im Bereich von $68 \,\mathrm{k}\Omega \dots 1 \,\mathrm{M}\Omega$ gewählt. Der Kondensator in der Größenordnung von einigen pF dient der Unterdrückung von Schwingungen.

Die Übertragung der Messwerte auf einen Computer übernimmt ein Mikrocontroller des Typs ATmega 8. Dessen interner 10-bit ADC wird für die Digitalisierung der Spannungswerte herangezogen, die Kommunikation mit dem PC erfolgt über die UART-Schnittstelle mit nachgeschaltetem IC für die Wandlung des Signals auf das USB-Protokoll (FT232RL).