Dept. of CSE, Bennett University ECSE108L - Digital Design Lab Assignment - 06

Q 1. A half-adder is used to add two single bit inputs. It produces a single bit output and a possible carry bit. Below is the truth table for the same.

Input		Output	
Α	В	Carry	Output
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- (i) Develop the Boolean expression and logic circuit for the given truth table.
- (ii) Write a Verilog module for Universal NOR gate. Utilize the **instances of NOR** gate only to write a structural Verilog code for Half adder.
- (iii) Verify it with respective testbench code.
- **Q 2.** The half adder in the previous question can only add two one bit numbers when there is no carry bit, which is not sufficient in many cases. While a full-adder has two one-bit inputs, a carry-in input, a sum output, and a carry-out output. Below truth table represents a full-adder.

Full Adder Truth Table						
Input		Output				
Α	В	Cin	Cout	Sum		
0	0	0	0	0		
1	0	0	0	1		
0	1	0	0	1		
1	1	0	1	0		
0	0	1	0	1		
1	0	1	1	0		
0	1	1	1	0		
1	1	1	1	1		

- ${\rm (i)}$ Utilize the above truth table to design the Boolean expression and digital circuit for the full adder.
- (ii) Write the behavioral Verilog code for the full adder.
- (iii) Verify it with respective Testbench code.

Q 3. The full adder designed in previous question is able to add only two one bit inputs. We can advance our design by adding N number of full adders to create a N bit Ripple carry adder. A block diagram for 4-bit Ripple carry adder can be expressed as:

Ripple Carry Adder (4-bit) Block Diagram

- (i) By using the instances of full adder module created in Question 2, now create a 4-bit Ripple carry adder Verilog module.
- $\rm (ii)$ Write a Testbench code to verify it. (you may take 1101 and 1011 as input values)
- **Q 4.** We can also utilize a adder module to perform the subtraction of binary numbers with the help of 2's complement. Use the Ripple adder module developed in previous question to develop a binary subtraction module.

Verify your code by a suitable Testbench code and test it for following inputs.

- (a) 1011 1001
- (b) 1010 1110

Note:

The syntax for multi-bit port declaration is as follows:

port_direction data_type [port_size] port_name

Example:

input [1:0] a_in // a two bit [1, 0] names a_in output reg [2:0] b in // a three bit register type output port named as b in