EXAMEN OPTION B

L'examen comporte deux exercices indépendants.

Merci de rédiger les deux exercices sur deux copies séparées.

Exercice 1. Dans cet exercice, on s'intéresse au système différentiel suivant

$$\begin{cases} x' = x(1-y) \\ y' = y(-1+x). \end{cases}$$
 (1)

A l'instant initial, on suppose que $(x(0), y(0)) = (x_0, y_0)$ avec $x_0 > 0$ et $y_0 > 0$.

- 1. Discuter l'existence et l'unicité de solution au système (1).
- 2. Montrer que, pour $x_0 > 0$ et $y_0 > 0$ donnés, la solution maximale vérifie x(t) > 0 et y(t) > 0 pour tout t dans son intervalle de définition.
- 3. Soit $H(\tilde{x}, \tilde{y}) := \tilde{y} + \tilde{x} \ln(\tilde{y}) \ln(\tilde{x})$. Montrer que $t \mapsto H(x(t), y(t))$ est constante où x, y sont les solutions maximales du système (1).
- 4. A l'aide de la question précédente, montrer que x et y sont bornées. En déduire que les solutions sont définies sur \mathbb{R} .
- 5. Dans cette question, nous allons tracer le portrait de phase du système différentiel (1).
 - (a) Donner les points stables de (1).
 - (b) Calculer les isoclines de (1).
 - (c) Dessiner un portrait de phase.
 - (d) En utilisant le portrait de phase de (1), montrer que les solutions parcourent successivement les 4 zones délimitées par les isoclines. (il n'est pas nécessaire de justifier tous les cas possibles)
 - (e) En utilisant que $t \mapsto H(x(t), y(t))$ est constante, montrer que les solutions sont périodiques.

Exercice 2. Soient n un entier non nul, $A \in \mathcal{M}_n(\mathbb{R})$ une matrice réelle symétrique et $S \in \mathcal{M}_n(\mathbb{R})$ une matrice réelle symétrique définie-positive. On note $\langle \cdot, \cdot \rangle$ le produit scalaire euclidien sur \mathbb{R}^n et $||x||^2 = \langle x, x \rangle$ la norme associée.

On s'intéresse au problème d'optimisation sous contrainte

$$\min_{x \in \mathbb{R}^n, g(x) = 1} f(x) \tag{2}$$

où la fonction $f: \mathbb{R}^n \to \mathbb{R}$ définie par $f(x) = \frac{1}{2}\langle x, Ax \rangle$ et la contrainte $g: \mathbb{R}^n \to \mathbb{R}$ est donnée par $g(x) = \frac{1}{2}\langle x, Sx \rangle$.

1. Montrer que le problème d'optimisation sous contrainte (2) a une solution. Indication : on pourra montrer que l'ensemble $\{x \in \mathbb{R}^n, g(x) = 1\}$ est compact.

I. Caractérisation de la solution

2. Calculer le gradient de f et celui de g et montrer que

$$\nabla f(x) = Ax$$
 et $\nabla g(x) = Sx$.

- 3. Donner une condition nécessaire pour que $x_* \in \mathbb{R}^n$ soit une solution du problème d'optimisation sous contrainte (2) grâce aux multiplicateurs de Lagrange.
- 4. Soit $L \in \mathcal{M}_n(\mathbb{R})$ le facteur de la décomposition Cholesky de S. On rappelle que L est une matrice inversible triangulaire inférieure vérifiant $L^T L = S$.

Montrer que l'équation d'Euler Lagrange peut se réécrire

$$Bx_* = \lambda x_*$$

où B est une matrice que l'on donnera en fonction de A et L.

5. Montrer que la solution x_* du problème d'optimisation sous contrainte (2) est un vecteur propre associé à la plus petite valeur propre de la matrice B.

II. Approximation du minimiseur

Pour $\mu > 0$, soit $J_{\mu} : \mathbb{R}^n \to \mathbb{R}$ la fonction définie par

$$J_{\mu}(x) = f(x) + \mu g(x) = \frac{1}{2} \langle x, Ax \rangle + \frac{\mu}{2} (\langle x, Sx \rangle - 1)^2.$$

Soit x_* une solution du problème d'optimisation (2).

On cherche à approcher x_* par le problème de minimisation

$$\min_{x \in \mathbb{R}^n} J_{\mu}(x).$$
(3)

6. Montrer que J_{μ} est coercive.

On rappelle que $F: \mathbb{R}^n \to \mathbb{R}$ est coercive si $\lim_{\|x\| \to \infty} F(x) = \infty$

- 7. Montrer que le problème de minimisation (3) a une solution.
- 8. Soit x_{μ} une solution du problème (3). Montrer que $J_{\mu}(x_{\mu}) \leq J(x_{*})$.

- 9. Soit $(\mu_n)_n$ une suite telle que $\lim_{n\to\infty}\mu_n=\infty$. En déduire que $(x_{\mu_n})_n$ est compacte et qu'il existe une valeur d'adhérence \overline{x} .
- 10. Pour $\mu > 0$, soit x_{μ} une solution du problème de minimisation (3). Pour $(\mu_n)_n$ une suite telle que $\lim_{n \to \infty} \mu_n = \infty$, soit \overline{x} une valeur d'adhérence de $(x_{\mu_n})_n$. On note $p(x) = (\langle x, Sx \rangle 1)^2$. Soit $0 < \mu < \nu$.
 - (a) Montrer que

$$J_{\mu}(x_{\mu}) \le J_{\mu}(x_{\nu}), \quad \text{et} \quad J_{\nu}(x_{\nu}) \le J_{\nu}(x_{\mu}).$$

- (b) En déduire que $(\nu \mu)(p(x_{\mu}) p(x_{\nu})) \ge 0$ et que $\mu \mapsto p(x_{\mu})$ est décroissante. En utilisant la question 8, montrer que $p(\overline{x}) = 0$.
- (c) En déduire que \overline{x} est une solution du problème d'optimisation sous contrainte (2).

CORRIGÉ EXAMEN OPTION B

0 Correction exercice EDO

Solution 1. 1. Cauchy-Lipschitz local.

- 2. si x devient négatif, alors par continuité il existe t tel que x(t) = 0. Or x = 0 est solution sur \mathbb{R} du problème de Cauchy avec x(t) = 0.
- 3. Calcul direct.
- 4. Par 2., x ou y ne peuvent tendre que vers $+\infty$. S'il existe une suite (t_n) croissante, telle que $x(t_n) + y(t_n) \to \infty$, alors $H(x(t_n), y(t_n)) \to \infty$: contradiction.
- 5. solutions bornées + f(x, y) définie sur \mathbb{R}^2 donc par Cauchy-Lipschitz local, on a existence sur \mathbb{R} des solutions de l'EDO.
- 6. (a) (1,1) et (0,0).
 - (b) pour x' = 0, on a deux droites x = 0 et y = 1. Pour y' = 0, on a y = 0 et x = 1.

(c)

- (d) si on part du cadran nord ouest, x et y sont décroissants. Si on reste dans ce cadran, x et y tendent vers une limite, or par passage à la limite dans l'EDO, les seuls points stables sont (0,0) et (1,1) contradiction. Donc on passe dans le cadran sud-ouest. Par un raisonnement similaire, on fait le tour.
- (e) quand on revient, on doit repasser par le même point (parce que H est monotone là où il faut)

0 Correction exercice d'optimisation

- **Solution 2.** 1. S définit un produit scalaire, donc l'ensemble admissible est fermé, borné et f est continue donc le problème admet une solution
 - 2. Calcul direct.
 - 3. Les équations d'Euler Lagrange nous disent qu'une solution du problème d'optimisation sous contrainte s'écrit

$$\nabla f(x) + \lambda g(x) = 0.$$

- 4. $B = L^{-T}AL^{T}$.
- 5. on a $\lambda = \langle x, Ax \rangle = f(x)$ par la contrainte, donc la solution est donnée par un vecteur propre associé à la plus petite vp de B. On a unicité que si la plus petite vp de B est de multiplicité 1.
- 6. S est SDP et J_{μ} est quartique
- 7. par coercivité et continuité de J_{μ}
- 8. on a $p(x_*) = 0$ et par optimalité de x_{μ} , nécessairement $J_{\mu}(x_{\mu}) \leq J(x_*)$.
- 9. (a) par définition des x_{μ}
 - (b) en additionnant les deux équations. Si $p(x_{\mu_n}) = P > 0$, $J_{\mu_n}(x_{\mu_n})$ tend vers l'infini ce qui contredit Q8.
 - (c) en passant à la limite, \overline{x} satisfait la contrainte et $J(\overline{x}) \leq J(x_*)$ donc $\overline{x} = x_*$ par unicité du minimiseur.