B06505004 莊博翰 專題報告

主題:改上學期所開發的 3d 點雲疊合對齊程式

main:test.py

讀取bag檔

• function : rw.readallframe

移除背景

• function :rbg.remove_bg

獲取畫面中綠色/紅色部分

- function :imt.green_mask()function :imt.red_mask()
- 找出綠版與紅點

•function:gprd.find_green_plane_red_dot()

獲取平均過後的depth image

• function :pc.non_zero_mean()

找出綠版法向量,綠板x軸向量,y軸向量

pc.findvec()

產生轉換用座標 test.py end

將整個豬隻點雲的座標係轉換 testpig.py start

• pc.transform()

儲存點雲

• rw.savepointtofile ()

package: read_write as rw

function:

read all frames (path, start, max frame, redepth, recolor, time stamp)

path	string	bag 檔路徑
start	int	由第幾 frame 開始讀取
maxframe	int	最多讀出多少 frames
redepth	list	會將 depth image 存入此 list:
		depth image per frame:2d numpy int array (720,1280)
		單位是 mm,redepth→ [frame1, frame2 frameN] 30fps
recolor	list	會將 colorimage 存入此 list 因該更 depth image ——對應
		color image per frame:3d numpy uint8 array (720,1280,3)
		單位是 rgb,recolor→ [frame1, frame2 frameN] 30fps
timestamp	list	會將時間軸存入此 list
		對應每個 frame 的時間 list of int 單位是 ms
return	none	

savetopointcloud(file_name,depth_frame,color_frame,re=False)

將 depth image+color image 轉換成 pointcloud 然後儲存(optional)

file_name	string	存檔檔名
depth_frame	2d numpy int array	深度影像(如果 depth =0 的點會自動忽視
color_frame	3d numpy uint array	彩色影像
	(720,1280,3)	
re	bool	是否 return if(!re)存檔
return	none or 2d list	[[x(float),y,z,r(uint8),g,b]] each element is a point

savepointtofile (p,file_name)

р	list of 1d numpy array	所有要儲存的點
file_name	string	儲存的檔名

package: img_tool as img

green_mask(cframe) red_mask(cframe)

cframe	3d numpy uint array	彩色影像
return	2d bool numpy array	顯示那些部分是紅色/綠色(自訂義)

package greenplane_redot as gprd

find_green_plane_red_dot(gpfilter,rdfilter,p,debug=True)

gpfilter	2d numpy bool array	畫面屬於綠色部分 1,other 0
rdfilter	2d numpy bool array	畫面屬於紅色部分 1,other0
р	3d numpy uint array	原始圖片
debug	bool	是否顯示結果
return	(gplane,redDot)	gplane 2d numpy bool array 屬於綠版部分
		redDot [四個紅點畫面[i,j]值] → [[i,j],[i,j], [i,j],[i,j]]

package pointcloud as pc

findvec(gpmask,reddot,depth,picture,debug=False)

(01 / / 1	.,	
gpmask	2d numpy bool array	畫面屬於綠版部分
reddot	list of list	[四個紅點畫面[i,j]值]
	(4,2)	
depth	2d numpy int array	深度影像
picture	3d numpy uint array	原始圖片
debug	bool	是否產生 debug pointcloud
return	list of numpy 1d float array	新座標的 vx, vy, vz, 中心點

transform(allpoints,vx,vy,vz,mid,debug=True)

allpoints	list of 1d numpy array	所有的點[[x,y,z,b,g,r]]
vx vy vz mid	1d numpy array	要將現在的所有輸入點雲,轉換成以 vx
		vy vz mid 為 x y z 軸&原點的新點雲
return	list of 1d numpy array	新點雲

程式進入點:test.py 須備齊兩 bag file: 背景 (pathbg)& 綠板(pathgb)

```
17 camera=filename[-2:]
18 debug=True
19 red=[]
20 rec=[]
21 tfr=[]
22 pathbg="/Users/percychien/Desktop/project/pig-main/test/"
23 pathgb="/Users/percychien/Desktop/project/pig-main/test/board/before"
```

執行完後會產生用來對其這一視角的 vectors (filename_vec.npy) 還有背景深度圖 (filename_bg.npy)

然後前往 testpig.py 放入這一視角拍攝豬隻的檔案

```
16 filename="23c2"
17 debug=False
18 camera=filename[-2:]
19 red=[]
20 rec=[]
21 tfr=[]
22 path="Users/percychien/Desktop/project/pig-main/test/"
```

執行完後會產生轉換過座標的 pointcloud(<filename>pig<id of camera>.ply) 之後依序執行其他五個視角,最終因該會有六個同一座標軸的 pointcloud (來自六個攝影機)