BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2025)

CLASS: BTECH BRANCH: CSE/AI

SEMESTER: IV/ADD

SESSION: SP/2025

SUBJECT: CS239 OPERATING SYSTEM

TIME:

02 Hours

FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a) Q.1(b)			ions of an opera nong short tern		erm and long term	[2] [3]	CO CO1 CO2	BL BL2 BL3
Q.2(a) Q.2(b)	Draw a queueing model for single blocked queue and multiple blocked queue? Draw a process state diagram to explain the life cycle of a process. What are the steps involved during the context switching?					[2] [2+1]	CO4 CO2	BL4 BL4
Q.3(a)			is user level t	threads bette	r than the kernel	[2]	CO2	BL4
Q.3(b)	$(E_1=5)$, what will be the prediction of the next CPU burst time (E_5) if four runs from oldest to most recent values of burst time are:					[3]	CO2	BL5
	Process P1	Burst time			,			
	P2	8						
	P3 P4	5 6						
Q.4(a)	Give appropriate explanations of the convoy effect of First Come, First Serve (FCFS) scheduling.				[2]	CO2	BL5	
Q.4(b)	Consider the set of 5 processes whose arrival time and burst time are given below:					[3]	CO2	BL5
	Process	Burst Time	Arrival Time					
	P1	8	0					
	P2	2	0					
	P3	7	0					
	P4	3	0					
	P5	5	0					

If the CPU Scheduling policy is Round Robin with time quantum =3 unit and context switch time is 1 unit. Calculate Average waiting time, Average turnaround time, Number of context switches and CPU utilization.

Q.5(a)	What advantage is there in having different time-quantum sizes at different	[2]	CO2	BL4
and a server to	levels of a multilevel queueing system?			
	11 de la defina de la discussa Cingle Queue Multiprocessor	121	COE	DIO

Q.5(b) How do you define cache affinity? Also, discuss Single Queue Multiprocessor Scheduling.

:::::27/02/2025:::::E