北京四中 2016-2017 学年度第二学期期中考试初二年级

数学试卷

(时间: 100分钟, 满分: 120分)

	—,	选择	(每小题	3分,	共 30	分〕
--	----	----	------	-----	------	----

1. 直角三角形的两条直角边长分别为 2 和 3,则斜边长是()

A. 4

- B. 5
- C. $\sqrt{5}$
- D. $\sqrt{13}$

2. 直线 $y = -\frac{2}{3}x + 2$ 不过以下哪个象限(

A. 第一象限

- B. 第二象限
- C. 第三象限
- D. 第四象限
- 3. 如图,公路 AC, BC 互相垂直,公路 AB 的中点 M 与点 C 被湖隔开,若测得 AM 的长 为1.2 km ,则 M , C 两点间的距离为 ()

- A. 0.5km B. 0.6km
- C. 0.9 km
- D. 1.2km

- 4. 下列判断错误的是()
 - A. 两组对边分别相等的四边形是平行四边形
 - B. 四个内角都相等的四边形是矩形
 - C. 四条边都相等的四边形是菱形
 - D. 两条对角线垂直且平分的四边形是正方形
- 5. 某市 6 月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别 是()

A. 21, 21

- B. 21, 21.5 C. 21, 22,
- D. 22, 22
- 6. 点A (-2, a) 与点B (2, b) 都在一次函数 y = -3x + 1 的图象上,则 ()

- B. a = b
- C. a < b
- D. 无法比较
- 7. 菱形 ABCD 的边长为 5, 一条对角线长为 6, 则菱形面积为 (

A. 30

- B. 20
- C. 24
- D. 48
- 8. 如图, $\Box ABCD$ 中, $\angle BAD$ 的平分线 AE 交 CD 于 E , AB=5 , BC=3 , 则 EC 的长是(

- A. 1 B. 1.5
- C. 2
- D. 3

9. 如图, 大拇指与小拇指尽量张开时, 两指尖的距离称为指距, 根据最 近人体构造学的研究成果表明,一般情况下人的指距A和身高h成某 种关系,下表是测得的指距与身高的一组数据:

指距 d (cm)	20	21	22	23
身高 h (cm)	160	169	178	187

A. 25.3 厘米 B. 26.3 厘米 C. 27.3 厘米

D. 28.3 厘米

10. 李阿姨每天早晨从家慢跑到小区公园,锻炼一阵后,再慢跑回家,表示李阿姨离开家的 距离 γ (单位: 米) 与时间 t (单位: 分) 的函数关系的图象大致如下图所示,则李阿 姨跑步的路线可能是(用*P*点表示李阿姨的位置)

- 二、填空(每小题3分,共18分)
- 11. 如图,矩形 ABCD 的对角线 AC, BD 交于点 O, $AC = 4 \, \mathrm{cm}$, $\angle AOD = 120^{\circ}$,则 BC 的 长为____cm.

- 12. 直线 y = 2x 3 与 y 轴交点坐标为_
- 13. 写出一个过点(1,-1)的一次函数解析式_
- 14. 如图,在正方形 ABCD中, $\triangle ABE$ 和 $\triangle CDF$ 为直角三角形, $\angle AEB = \angle CFD = 90^{\circ}$, AE = CF = 5, BE = DF = 12, 则 EF 的长是

15. 已知,在平面直角坐标系中,A(6,0),B(2,-2),C(0,4),四边形ABCD为 平行四边形,则点D坐标是 .

16. 在数学课上,老师提出如下问题:

尺规作图: 过直线外一点作已知直线的平行线;

已知:直线 l 及其外一点 A.

求作: l的平行线, 使它经过点 A.

 A_{ullet}

小云的作法如下:

- (1) 在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;
- (2) 分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;
- (3) 作直线 AD.

所以直线 AD 即为所求.

老师说:"小云的作法正确."

请回答:小云的作图依据是_

三、解答(共52分)

求证: AE = CF.

- 18. 己知点A (6, 6) 在直线 l_2 :y = kx 3上,
 - (1) 直线 *l*₂解析式为_____;
 - (2) 画出该一次函数的图象;
 - (3) 将直线 l_1 向上平移 5 个单位长度得到直线 l_1 , l_1 与x 轴的交点C 的坐标为_____;
 - (4) 直线 *l*, 与直线 *OA* 相交于点 *B*, *B* 点坐标为_____.
 - (5) 三角形 *ABC* 的面积为 .
 - (6) 由图象可知不等式 kx-3<x 的解集为

- 19. 如图,菱形 ABCD 的对角线 AC 和 BD 交于点 O,分别过点 C、D 作 CE // BD,DE // AC,CE 和 DE 交于点 E.
 - (1) 求证: 四边形 ODEC 是矩形;
 - (2) 当 $\angle ADB = 60^{\circ}$, $AD = 2\sqrt{3}$ 时, 求EA的长.

- 20. 如图 1 所示,某乘客乘高速列车从甲地经过乙地到(丙地,列车匀速行驶,图 2 为列车离乙地路程 y (千米)与行驶时间 x 小时)时间的函数关系图象.
 - (1) 填空: 甲、丙两地距离_____千米.
 - (2) 求高速列车离乙地的路程 y 与行驶时间 x 之间的函数关系式,并写出 x 的取值范围.

- 21. 将正方形纸片 ABCD 折叠,使顶点 A 与 CD 边上的点 M 重合,折痕交 AD 于 E . 交 BC 于 E ,连接 EF 、 EM ,边 E 升叠后与 E 分交于点 E ,连接 EF 、 EM ,边 E 升叠后与 E 分交子点 E ,
 - (1) 依题意补全图形;

- (2) 猜想 ∠MAG 的度数为_____; (精确到1°)
- (3) 比较表 (1) 中所作出的线段 *EF* 与 *AM* 的大小关系为 *EF* ______ *AM* . 证明过程如下:
- 22. 如图,在矩形 OABC 中,已知 A, C 两点的坐标分别为 A (4,0), C (0,2), D 为 OA 的中点,设点 P 是 $\angle AOC$ 平分线上的一个动点 (不与点 O 重合).
 - (1) 试证明: 无论点P运动到何处, PC总与PD相等;
 - (2) 当点P运动到与点B的距离最小时,求P的坐标;
 - (3) 已知 E (1, -1),当点 P 运动到何处时, $\triangle PDE$ 的周长最小? 求出此时点 P 的 坐标和 $\triangle PDE$ 的周长.

23. 已知: 如图, 在 $\triangle ABC$ 中, $\angle B = 2\angle C$, $AD \perp BC$ 于点 D, M 为 BC 中点, 求证: AB = 2DM.

四、附加(共20分)

- 1. □ ABCD 中点 M 、N 分别是 AD 边和 BC 边的中点,将四边形 ABCD 沿 MN 翻折,点 C 落 在点C',点D落在点D'处.
 - (1) 依题意补全图形;
 - (2) 若 $\angle B = 70^{\circ}$,则 $\angle BCN = ____{\circ}$.
 - (3) 当□ *ABCD* 满足下列哪个条件时,点 *C* 刚好与点 *A* 重合 .
 - (1) BC = 2AB (2) $\angle B = 60^{\circ}$
- \bigcirc AC \perp BD

- 2. 方成同学看到一则材料,甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地, 设乙行驶的时间为x(h),甲乙两人之间的距离为y(km),y与t的函数关系如图 1 所示, 方成想考后发现了图 1 的部分正确信息, 乙先出发 1 h, 甲出发 0.5 小时与乙相遇, 请你 帮助方成同学解决以下问题:
 - (1) 分别求出线段 BC, CD 所在直线的函数表达式;
 - (2) 当 20 < y < 30 时,求t 的取值范围;
 - (3) 分别求出甲、乙行驶的路程 $S_{\mathbb{H}}$ 、 $S_{\mathbb{Z}}$ 与时间 t 的函数表达式,并在图 2 所给的直角 坐标系中分别画出它们的图象;
 - (4) 丙骑摩擦车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过 $\frac{4}{3}h$ 与 乙相遇,问丙出发后多少时间与甲相遇.

- 3. 在 Rt $\triangle ABC$ 中, $\angle ACB$ = 90° , AC = BC , CD 为 AB 边上的中线,在 Rt $\triangle AEF$ 中, $\angle AEF$ = 90° , AE = EF , AF < AC . 连接 BF , M 、 N 分别为线段 AF , BF 的中点, 连接 MN .
 - (1) 如图 1, 点 F 在 $\triangle ABC$ 内, 求证: CD = MN;
 - (2) 如图 2, 点 F 在 \triangle ABC 外,依题意补全图 2, 连接 CN , EN ,判断 EN 与 EN 的数量关系与位置关系,并加以证明.

