Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

A cocrystal of 3α -hydroxytirucalla-8,24-dien-21-oic acid and 3β -fluorotirucalla-7,24-dien-21-oic acid (0.897:0.103)

S. Yousuf, ^a R. S. T. Kamdem, ^b P. Wafo, ^b B. T. Ngadjui^c and Hoong-Kun Fun^d*‡

^aH.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, ^bDepartment of Chemistry, Higher Teachers Training College, University of Yaounde I, PO Box 48 Yaounde, Cameroon, ^cDepartment of Organic Chemistry, University of Yaounde I, PO Box 812 Yaounde, Cameroon, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 11 March 2011; accepted 25 March 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(\text{C-C}) = 0.005 \text{ Å}$; disorder in main residue; R factor = 0.058; wR factor = 0.153; data-to-parameter ratio = 14.1.

The title compound, $0.897C_{30}H_{48}O_{3.}0.103C_{30}H_{47}O_{2}F$ is a cocrystal of two triterpenes isolated from the resin of *Canarium schweinfurthiiand* Engl. Both triterpenes consists of four *trans*-fused rings having chair/half-chair/half-chair and envelope conformations. The molecular conformations are stabilized by intramolecular $C-H\cdots O$ hydrogen bonds, forming rings of S(7) graph-set motif. In the crystal, molecules are linked by intermolecular $O-H\cdots O$ and $C-H\cdots O$ interactions, forming sheets parallel to (001). All atoms. excepting the axially-oriented hydroxyl group in the major component and the equatorially-oriented fluorine atom in the minor component, are overlapping.

Related literature

For the crystal structure of 3α -hydroxytirucalla-7,24-diene-21-oic acid, see: Mora *et al.* (2001). For the crystal structure of 3α -hydroxytirucalla-8,24-diene-21-oic acid, see: Yousuf *et al.* (2011). For the biological activity of *canarium schweinfurthiiand*, see: Atawodi (2010); Dongmo *et al.* (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{lll} 0.897 C_{30} H_{48} O_3 \cdot 0.103 C_{30} H_{47} O_2 F & Z=6 \\ M_r = 455.88 & \text{Mo } K\alpha \text{ radiation} \\ \text{Trigonal, } P_{3_1} 21 & \mu = 0.07 \text{ mm}^{-1} \\ a = 11.2868 \ (9) \text{ Å} & T=100 \text{ K} \\ c = 36.446 \ (3) \text{ Å} & 0.29 \times 0.24 \times 0.13 \text{ mm} \\ V = 4020.9 \ (5) \text{ Å}^3 & \end{array}$

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.980$, $T_{\max} = 0.991$

27808 measured reflections 4454 independent reflections 4347 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.105$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.058 & 316 \ {\rm parameters} \\ wR(F^2) = 0.153 & {\rm H-atom\ parameters\ constrained} \\ S = 1.18 & \Delta\rho_{\rm max} = 0.39\ {\rm e\ \mathring{A}^{-3}} \\ 4454\ {\rm reflections} & \Delta\rho_{\rm min} = -0.33\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O1-H1 <i>O</i> 1···O2 ⁱ	0.87	1.81	2.654 (3)	165
$O3-H3A\cdots O2^{ii}$	0.84	2.04	2.818 (4)	154
C12−H12 <i>B</i> ···O1	0.99	2.56	3.262 (4)	128
C22-H22 <i>A</i> ···O3 ⁱⁱⁱ	0.99	2.40	3.300 (5)	151

Symmetry codes: (i) -x, -x + y, $-z + \frac{1}{3}$; (ii) x + 1, y + 1, z; (iii) x - 1, y - 1, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

 $[\]begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

[‡] Thomson Reuters ResearcherID: A-3561-2009.

organic compounds

SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

RSTK thanks the H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities. HKF thanks the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2572).

References

Atawodi, S. E. (2010). Adv. Biol. Res. 4, 314-322.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Dongmo, P. M., Tchoumbougnang, F., Ndongson, B., Agwannande, W., Sandjon, B., Zollo, P. H. A. & Menut, C. (2010). *Agri. Biol. J. N. Am.* **1** pp. 606–6011.

Mora, A. J., Delgado, G., Díaz de Delgado, G., Usubillaga, A., Khouri, N. & Bahsas, A. (2001). *Acta Cryst.* C57, 638–640.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yousuf, S., Kamdem, R. S. T., Ngadjui, B. T., Wafo, P. & Fun, H.-K. (2011). *Acta Cryst.* E**67**, 0937–0938.

supplementa	ry materials		

Acta Cryst. (2011). E67, o1015-o1016 [doi:10.1107/S1600536811011159]

A cocrystal of 3α -hydroxytirucalla-8,24-dien-21-oic acid and 3β -fluorotirucalla-7,24-dien-21-oic acid (0.897:0.103)

S. Yousuf, R. S. T. Kamdem, P. Wafo, B. T. Ngadjui and H.-K. Fun

Comment

The title compound is a co-crystal of two triterpenes namely 3α-hydroxytirucalla-7,24-dien-21-oic acid (or epielemadienolic acid, I) as a major component (89.7%) and 3β-fluorotirucalla- 7,24-dien-21-oic acid (II) as minor component (10.3%). The co-crystal was isolated during the phytochemical investigation of the dichloromethane soluble part of the resins of the medicinally important plant Canarium schweinfurthii of Cameroon. The plant has been used for the treatment of a wide range of ailments including malaria, fever and diarrhea (Atawodi, 2010; Dongmo et al., 2010). The refinement of the crystal structure revealed I and II as major (89.7%) and minor (10.3%) component, respectively with the difference that in II the axially oriented hydroxyl group attached to C3 has been replaced by the equatorially oriented fluorine atom. The asymmetric unit of the co-crystal (Fig. 1) consists of the mixture of I (Fig. 2) and II (Fig. 3). The crystal structure of the major component I has already been reported and the space group (P3₁21) and cell parameters were found to be similar to those previously reported (Mora et al., 2001, Yousuf et al., 2011). However the minor component II was found to be a new triterpene. In both components the molecular structure showed that the *trans* fused rings A/B/C and D adopt chair [Q= 0.550 (4) Å, θ = 7.1 (4)° and $\phi = 88$ (3)°] / half-chair [Q= 0.530 (4) Å, $\theta = 49.5$ (4)° and $\phi = 323.5$ (6)°] / half-chair [Q= 0.652 (4) Å, $\theta = 100.4$ (4)° and $\varphi = 83.8$ (3)°] and envelope [Q= 0.483 (2)Å and $\varphi = 10.7$ (4)°] conformations respectively. The chair and envelop conformations of rings C and D are stabilized by C12—H12B···O1 intramolecular hydrogen bond. In the crystal structure, the molecules are linked to form two-dimensional molecular sheets via O3—H3A···O2, O1—H1O1···O2 and C22—H22A···O3 intermolecular hydrogen bonds (symmetry codes as in Table 1) and arranged parallel to the (001) plane (Fig.2). The absolute configuration was assigned on the basis of our recently published triterpene crystal data (Yousuf et al., 2011).

Experimental

The resin (100 g) of *Canarium schweinfurthii* Engl. was collected in Yaounde, Cameroon, in May 2010 and identified by Professor Noumi, a botanist at the Department of Biology, University of Yaounde-1. A voucher specimen (HNC 25918.) was deposited at the National Herbarium of Cameroon in Yaounde. The resin (100 g) of *C. schweinfurthii* was allowed to dry under shade and extracted with dichloromethane. The extract (70 g) was subjected to column chromatography over silica gel (300 g, 60×5 cm) eluting with hexane followed by a mixture of n-hexane–EtOAc in order to increase polarity. The fractions eluted were monitored by thin layer chromatography and similar fractions were combined to give seven fraction FrA-FrG. Fraction FrA (200 mg), obtained on elution with a mixture of n-hexane-EtOAc (8:2 v/v), was subjected to further column chromatography over silica gel (70 g, $60 \text{ cm}^3 \times 3$, hexane-acetone equimolar solution) to yield crystals of the title compound. Recrystallization from n-hexane gave colourless crystals (60 mg).

Refinement

H atoms on the C of methyl, methylene, methine and oxygen were positioned geomatrically with C–H = 0.98–1.00 Å and O–H = 0.86 Å, respectively and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(CH_2, CH)$ and $1.5U_{eq}(CH_3, CH)$

OH). A rotating group model was applied to the methyl groups. The crystal is a twin with twin law -1 0 0 0 - 1 0 0 0 1 and BASF = 0.1815 (16). Friedel pairs were merged in the last refinement cycles.

Figures

Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Fig. 2. The molecular structure of the major component I, showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Fig. 3. The molecular structure of the minor component II, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Fig. 4. Crystal packing of the major component of the title compound, showing a two-dimensional molecular sheet parallel to the (001) plane. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.

3α-Hydroxytirucalla-8,24-dien-21-oic acid- 3β-fluorotirucalla-7,24-dien-21-oic acid (0.897:0.103)

4454 independent reflections

Crystal data

 $\begin{array}{ll} 0.897 \text{C}_{30} \text{H}_{48} \text{O}_{3} \cdot 0.103 \text{C}_{30} \text{H}_{47} \text{O}_{2} \text{F} & D_{\text{x}} = 1.130 \text{ Mg m}^{-3} \\ M_{r} = 455.88 & \text{Mo } K\alpha \text{ radiation, } \lambda = 0.71073 \text{ Å} \\ \text{Trigonal, } P3_{1}21 & \text{Cell parameters from } 10350 \text{ reflections} \\ \text{Hall symbol: p } 31 \text{ 2"} & \theta = 2.1-30.1^{\circ} \\ a = 11.2868 \text{ (9) Å} & \mu = 0.07 \text{ mm}^{-1} \\ \end{array}$

a = 11.2808 (9) A $\mu = 0.07 \text{ mm}$ c = 36.446 (3) Å T = 100 K $V = 4020.9 (5) \text{ Å}^3$ Block, colourles Z = 6 $0.29 \times 0.24 \times 0.13 \text{ mm}$

F(000) = 1506

Data collection

Bruker SMART APEXII DUO CCD area-detector

diffractometer

Radiation source: fine-focus sealed tube 4347 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.105$

ϕ and ω scans	$\theta_{\text{max}} = 30.1^{\circ}, \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -15 \rightarrow 15$
$T_{\min} = 0.980, T_{\max} = 0.991$	$k = -13 \rightarrow 15$
27808 measured reflections	$l = -51 \longrightarrow 38$

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2 Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.153$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0644P)^2 + 1.6942P]$ S = 1.18where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ 4454 reflections $\Delta \rho_{\text{max}} = 0.39 \text{ e Å}^{-3}$ 316 parameters $\Delta \rho_{min} = -0.33 \text{ e Å}^{-3}$ 0 restraints

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
O1	0.1191 (2)	0.0008 (2)	0.12753 (5)	0.0221 (4)	
H1O1	0.1119	-0.0077	0.1511	0.033*	
O2	-0.1057 (2)	-0.0844 (2)	0.13357 (5)	0.0230 (4)	
O3	0.6534(3)	0.8965 (3)	0.10496 (7)	0.0330 (8)	0.898 (8)
Н3А	0.7204	0.9158	0.1187	0.049*	0.898 (8)
F1	0.693 (3)	1.048 (3)	0.1287 (7)	0.042 (7)	0.102(8)
C1	0.4098 (3)	0.7220 (4)	0.14860 (7)	0.0268 (7)	
H1A	0.3651	0.6772	0.1720	0.032*	
H1B	0.4651	0.6811	0.1403	0.032*	
C2	0.5056 (4)	0.8752 (4)	0.15562 (8)	0.0335 (8)	
H2A	0.4524	0.9153	0.1660	0.040*	

H2B	0.5761	0.8875	0.1738	0.040*	
C3	0.5750 (3)	0.9496 (4)	0.12011 (8)	0.0278 (7)	
НЗВ	0.6369	1.0487	0.1257	0.033*	0.898 (8)
H3C	0.6079	0.8925	0.1103	0.033*	0.102(8)
C4	0.4725 (3)	0.9373 (3)	0.09109 (9)	0.0249 (6)	
C5	0.3685 (3)	0.7821 (3)	0.08498 (8)	0.0241 (6)	
H5A	0.4249	0.7444	0.0746	0.029*	
C6	0.2630 (5)	0.7560 (4)	0.05513 (13)	0.0500 (13)	
H6A	0.2107	0.8014	0.0622	0.060*	
Н6В	0.3116	0.7979	0.0319	0.060*	
C7	0.1654(3)	0.6078 (3)	0.04875 (8)	0.0257 (6)	
H7A	0.1104	0.5813	0.0273	0.031*	
C8	0.1521 (3)	0.5079 (3)	0.07283 (8)	0.0217 (5)	
C9	0.2374 (4)	0.5422 (3)	0.10692 (8)	0.0299 (7)	
H9A	0.3193	0.5367	0.0989	0.036*	
C10	0.2987 (3)	0.6922(3)	0.11976 (8)	0.0206 (5)	
C11	0.1746 (4)	0.4342 (3)	0.13671 (7)	0.0252 (6)	
H11A	0.1766	0.4589	0.1617	0.030*	
C12	0.1076 (4)	0.2838 (3)	0.12501 (7)	0.0277 (7)	
H12A	0.0164	0.2323	0.1367	0.033*	
H12B	0.1639	0.2453	0.1342	0.033*	
C13	0.0908(3)	0.2624(3)	0.08335 (7)	0.0180 (5)	
C14	0.0440 (3)	0.3596 (3)	0.06687 (7)	0.0176 (5)	
C15	0.0125 (4)	0.3087 (3)	0.02691 (8)	0.0273 (6)	
H15A	0.0967	0.3517	0.0119	0.033*	
H15B	-0.0549	0.3301	0.0159	0.033*	
C16	-0.0472 (3)	0.1517 (3)	0.02956 (7)	0.0237 (6)	
H16A	0.0009	0.1221	0.0124	0.028*	
H16B	-0.1458	0.1027	0.0234	0.028*	
C17	-0.0255 (3)	0.1210(3)	0.06995 (7)	0.0180 (5)	
H17A	-0.1100	0.1000	0.0840	0.022*	
C18	0.2267 (3)	0.2887 (4)	0.06574 (10)	0.0294 (7)	
H18A	0.2646	0.2420	0.0801	0.044*	
H18B	0.2920	0.3872	0.0654	0.044*	
H18C	0.2094	0.2536	0.0406	0.044*	
C19	0.1860 (4)	0.7155 (4)	0.13545 (15)	0.0473 (11)	
H19A	0.1395	0.6511	0.1556	0.071*	
H19B	0.1197	0.7011	0.1161	0.071*	
H19C	0.2267	0.8094	0.1447	0.071*	
C20	-0.0046 (3)	-0.0042 (3)	0.07384 (7)	0.0191 (5)	
H20A	0.0854	0.0187	0.0627	0.023*	
C21	-0.0021 (3)	-0.0331 (3)	0.11447 (7)	0.0184 (5)	
C22	-0.1189 (3)	-0.1329 (3)	0.05494 (7)	0.0215 (5)	
H22A	-0.2073	-0.1581	0.0668	0.026*	
H22B	-0.1249	-0.1112	0.0289	0.026*	
C23	-0.0965 (4)	-0.2561 (4)	0.05649 (9)	0.0274 (6)	
H23A	-0.0041	-0.2285	0.0470	0.033*	
H23B	-0.1006	-0.2846	0.0824	0.033*	
C24	-0.2013 (4)	-0.3758 (4)	0.03450 (8)	0.0269 (6)	
	··-·········		(0)	(*)	

H24A	-0.1861	-0.3718	0.0088	0.032*
C25	-0.3113 (4)	-0.4852 (4)	0.04663 (8)	0.0288 (6)
C26	-0.3528 (5)	-0.5105 (6)	0.08649 (10)	0.0518 (12)
H26A	-0.2775	-0.4437	0.1018	0.078*
H26B	-0.3741	-0.6031	0.0933	0.078*
H26C	-0.4337	-0.5013	0.0903	0.078*
C27	-0.4081 (5)	-0.5985 (4)	0.02111 (11)	0.0418 (9)
H27A	-0.3788	-0.5722	-0.0043	0.063*
H27B	-0.5010	-0.6138	0.0242	0.063*
H27C	-0.4072	-0.6828	0.0269	0.063*
C28	0.5494 (4)	0.9980 (4)	0.05503 (9)	0.0338 (8)
H28A	0.6234	1.0919	0.0593	0.051*
H28B	0.4860	0.9982	0.0367	0.051*
H28C	0.5880	0.9425	0.0461	0.051*
C29	0.4101 (4)	1.0252 (4)	0.10225 (15)	0.0462 (10)
H29A	0.4819	1.1217	0.1028	0.069*
H29B	0.3689	0.9975	0.1267	0.069*
H29C	0.3397	1.0127	0.0844	0.069*
C30	-0.0905 (3)	0.3400(3)	0.08398 (10)	0.0267 (6)
H30A	-0.1171	0.4003	0.0716	0.040*
H30B	-0.0763	0.3627	0.1102	0.040*
H30C	-0.1631	0.2446	0.0810	0.040*

Atomic displacement parameters $(\mathring{\mathbb{A}}^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0217 (10)	0.0320 (12)	0.0167 (7)	0.0165 (9)	0.0016 (8)	0.0012 (8)
O2	0.0198 (10)	0.0313 (11)	0.0140(7)	0.0099 (9)	0.0026 (7)	0.0030(8)
O3	0.0163 (12)	0.053(2)	0.0305 (13)	0.0177 (13)	-0.0012 (10)	-0.0023 (13)
F1	0.040 (13)	0.043 (14)	0.053 (14)	0.029 (11)	-0.008 (11)	-0.003 (10)
C1	0.0229 (14)	0.0342 (17)	0.0131 (10)	0.0067 (13)	-0.0047 (10)	-0.0013 (11)
C2	0.0304 (16)	0.0350 (18)	0.0138 (11)	0.0003 (15)	-0.0012 (12)	-0.0055 (12)
C3	0.0149 (12)	0.0386 (18)	0.0187 (11)	0.0049 (13)	-0.0020 (11)	-0.0049 (12)
C4	0.0150 (12)	0.0214 (14)	0.0306 (14)	0.0033 (11)	-0.0048 (11)	-0.0039 (12)
C5	0.0181 (13)	0.0188 (13)	0.0281 (13)	0.0037 (11)	-0.0092 (11)	-0.0005 (11)
C6	0.042(2)	0.0203 (16)	0.064(3)	-0.0024 (15)	-0.035 (2)	0.0129 (17)
C7	0.0215 (13)	0.0218 (14)	0.0230 (12)	0.0027 (12)	-0.0109 (11)	0.0036 (12)
C8	0.0145 (12)	0.0195 (13)	0.0246 (12)	0.0036 (10)	-0.0066 (10)	0.0032 (11)
C9	0.0392 (18)	0.0205 (14)	0.0191 (11)	0.0068 (14)	-0.0115 (13)	0.0016 (11)
C10	0.0146 (12)	0.0222 (13)	0.0229 (11)	0.0078 (10)	-0.0029 (10)	-0.0015 (10)
C11	0.0350 (17)	0.0234 (13)	0.0114 (10)	0.0103 (13)	0.0001 (12)	0.0007 (10)
C12	0.045(2)	0.0203 (13)	0.0131 (10)	0.0129 (14)	-0.0069 (13)	0.0013 (10)
C13	0.0182 (12)	0.0217 (13)	0.0133 (9)	0.0093 (11)	-0.0010 (9)	0.0026 (9)
C14	0.0158 (12)	0.0164 (12)	0.0139 (10)	0.0031 (10)	-0.0026 (9)	0.0020 (10)
C15	0.0366 (17)	0.0253 (14)	0.0160 (11)	0.0125 (14)	-0.0072 (12)	0.0045 (11)
C16	0.0257 (14)	0.0232 (14)	0.0157 (10)	0.0075 (12)	-0.0049 (11)	0.0005 (11)
C17	0.0177 (12)	0.0189 (12)	0.0128 (9)	0.0056 (10)	0.0007 (9)	0.0007 (9)
C18	0.0154 (13)	0.0244 (16)	0.0435 (17)	0.0062 (12)	0.0006 (13)	0.0051 (14)

C19	0.0253 (17)	0.0253 (17)	0.090(3)	0.0118 (15)	0.022(2)	0.010(2)
C20	0.0190 (12)	0.0225 (13)	0.0137 (9)	0.0088 (11)	0.0023 (9)	0.0024 (10)
C21	0.0219 (13)	0.0179 (12)	0.0159 (9)	0.0104 (11)	0.0010 (10)	-0.0002 (9)
C22	0.0256 (14)	0.0227 (13)	0.0142 (9)	0.0107 (12)	-0.0007 (10)	-0.0005 (10)
C23	0.0264 (15)	0.0269 (16)	0.0289 (14)	0.0134 (13)	0.0018 (12)	-0.0012 (12)
C24	0.0357 (18)	0.0276 (15)	0.0185 (11)	0.0166 (14)	0.0020 (12)	-0.0010 (11)
C25	0.0286 (16)	0.0325 (16)	0.0245 (13)	0.0147 (14)	-0.0019 (12)	-0.0009 (12)
C26	0.033(2)	0.068(3)	0.0296 (16)	0.007(2)	0.0078 (16)	0.0082 (19)
C27	0.040(2)	0.036(2)	0.0409 (18)	0.0125 (18)	-0.0050 (17)	-0.0098 (17)
C28	0.0324 (18)	0.0280 (16)	0.0263 (14)	0.0041 (14)	-0.0089 (13)	0.0011 (13)
C29	0.0299 (19)	0.0209 (16)	0.084(3)	0.0097 (15)	0.005(2)	0.0034 (19)
C30	0.0164 (13)	0.0207 (14)	0.0383 (16)	0.0059 (12)	0.0006 (12)	0.0005 (13)
Geometric par	ameters (Å, °)					
O1—C21		1.312 (4)	C14-	-C30	1.55	2 (4)
O1—H1O1		0.8651	C15-	-C16	1.55	2 (5)
O2—C21		1.229 (3)	C15-	-H15A	0.99	00
O3—C3		1.406 (5)	C15-	–H15B	0.99	00
O3—H3A		0.8400	C16-	-C17	1.55	9 (4)
О3—Н3С		0.5288	C16-	-H16A	0.99	00
F1—C3		1.27(3)	C16-	-H16B	0.99	00
C1—C2		1.534 (5)	C17-	-C20	1.55	1 (4)
C1—C10		1.539 (4)	C17-	–H17A	1.00	00
C1—H1A		0.9900	C18-	-H18A	0.98	00
C1—H1B		0.9900	C18-	–H18B	0.98	00
C2—C3		1.529 (4)	C18-	-H18C	0.98	00
C2—H2A		0.9900	C19-	–H19A	0.98	00
C2—H2B		0.9900	C19-	–H19B	0.98	00
C3—C4		1.521 (4)	C19-	–H19C	0.98	00
C3—H3B		1.0000	C20-	-C21	1.51	9 (3)
С3—Н3С		0.9601	C20-	-C22	1.54	1 (4)
C4—C29		1.532 (5)	C20-	-H20A	1.00	00
C4—C28		1.535 (5)	C22-	-C23	1.53	3 (5)
C4—C5		1.562 (4)	C22-	–H22A	0.99	00
C5—C6		1.528 (4)	C22-	–H22B	0.99	00
C5—C10		1.568 (4)	C23-	-C24	1.50	6 (5)
C5—H5A		1.0000	C23-	-H23A	0.99	00
C6—C7		1.491 (5)	C23-	–H23B	0.99	00
C6—H6A		0.9900	C24-	-C25	1.31	4 (5)
C6—H6B		0.9900	C24-	-H24A	0.95	00
C7—C8		1.376 (4)	C25-	-C26	1.50	9 (5)
C7—H7A		0.9500	C25-	-C27	1.51	6 (5)
C8—C9		1.499 (4)	C26-	–H26A	0.98	00
C8—C14		1.516 (4)	C26-	–H26B	0.98	00
C9—C11		1.517 (4)	C26-	–H26C	0.98	00
C9—C10		1.547 (4)	C27-	–H27A	0.98	00
С9—Н9А		1.0000	C27-	–H27B	0.98	00
C10—C19		1.533 (5)	C27—	–H27C	0.98	00

C11—C12	1.534 (4)	C28—H28A	0.9800
C11—H11A	0.9500	C28—H28B	0.9800
C12—C13	1.534 (4)	C28—H28C	0.9800
C12—H12A	0.9900	C29—H29A	0.9800
C12—H12B	0.9900	C29—H29B	0.9800
C13—C18	1.548 (4)	C29—H29C	0.9800
C13—C17	1.554 (4)	C30—H30A	0.9800
C13—C14	1.556 (4)	C30—H30B	0.9800
C14—C15	1.540 (4)	C30—H30C	0.9800
C21—O1—H1O1	107.6	C14—C15—C16	104.7 (2)
C3—O3—H3A	109.5	C14—C15—H15A	110.8
C3—O3—H3C	26.1	C16—C15—H15A	110.8
H3A—O3—H3C	121.0	C14—C15—H15B	110.8
C2—C1—C10	113.4 (3)	C16—C15—H15B	110.8
C2—C1—H1A	108.9	H15A—C15—H15B	108.9
C10—C1—H1A	108.9	C15—C16—C17	106.6 (2)
C2—C1—H1B	108.9	C15—C16—H16A	110.4
C10—C1—H1B	108.9	C17—C16—H16A	110.4
H1A—C1—H1B	107.7	C15—C16—H16B	110.4
C3—C2—C1	110.9 (2)	C17—C16—H16B	110.4
C3—C2—H2A	109.5	H16A—C16—H16B	108.6
C1—C2—H2A	109.5	C20—C17—C13	118.1 (2)
C3—C2—H2B	109.5	C20—C17—C13	113.6 (2)
C1—C2—H2B	109.5	C13—C17—C16	102.4 (2)
H2A—C2—H2B	108.0	C20—C17—H17A	102.4 (2)
F1—C3—O3	82.0 (11)	C13—C17—H17A	107.4
F1—C3—C4	131.7 (11)	C16—C17—H17A C13—C18—H18A	107.4
O3—C3—C4	107.4 (2)		109.5
F1—C3—C2	107.2 (11)	C13—C18—H18B	109.5
O3—C3—C2	110.9 (3)	H18A—C18—H18B	109.5
C4—C3—C2	112.4 (3)	C13—C18—H18C	109.5
F1—C3—H3B	30.0	H18A—C18—H18C	109.5
O3—C3—H3B	108.7	H18B—C18—H18C	109.5
C4—C3—H3B	108.7	C10—C19—H19A	109.5
C2—C3—H3B	108.7	C10—C19—H19B	109.5
F1—C3—H3C	95.1	H19A—C19—H19B	109.5
O3—C3—H3C	14.0	C10—C19—H19C	109.5
C4—C3—H3C	102.1	H19A—C19—H19C	109.5
C2—C3—H3C	102.2	H19B—C19—H19C	109.5
H3B—C3—H3C	122.6	C21—C20—C22	109.3 (2)
C3—C4—C29	109.3 (3)	C21—C20—C17	108.2 (2)
C3—C4—C28	108.7 (3)	C22—C20—C17	112.4 (2)
C29—C4—C28	106.2 (3)	C21—C20—H20A	109.0
C3—C4—C5	108.2 (3)	C22—C20—H20A	109.0
C29—C4—C5	115.7 (3)	C17—C20—H20A	109.0
C28—C4—C5	108.6 (3)	O2—C21—O1	122.7 (2)
C6—C5—C4	113.2 (3)	O2—C21—C20	122.5 (3)
C6—C5—C10	111.1 (3)	O1—C21—C20	114.8 (2)
C4—C5—C10	117.6 (2)	C23—C22—C20	113.5 (3)

C6—C5—H5A	104.5	C23—C22—H22A	108.9
C4—C5—H5A	104.5	C20—C22—H22A	108.9
C10—C5—H5A	104.5	C23—C22—H22B	108.9
C7—C6—C5	113.2 (3)	C20—C22—H22B	108.9
C7—C6—H6A	108.9	H22A—C22—H22B	107.7
C5—C6—H6A	108.9	C24—C23—C22	112.5 (3)
C7—C6—H6B	108.9	C24—C23—H23A	109.1
C5—C6—H6B	108.9	C22—C23—H23A	109.1
H6A—C6—H6B	107.7	C24—C23—H23B	109.1
C8—C7—C6	122.4 (3)	C22—C23—H23B	109.1
C8—C7—H7A	118.8	H23A—C23—H23B	107.8
C6—C7—H7A	118.8	C25—C24—C23	127.8 (3)
C7—C8—C9	121.6 (3)	C25—C24—H24A	116.1
C7—C8—C14	120.8 (2)	C23—C24—H24A	116.1
C9—C8—C14	117.5 (2)	C24—C25—C26	124.0 (3)
C8—C9—C11	113.8 (3)	C24—C25—C27	122.0(3)
C8—C9—C10	114.3 (3)	C26—C25—C27	114.0 (3)
C11—C9—C10	115.9 (2)	C25—C26—H26A	109.5
C8—C9—H9A	103.6	C25—C26—H26B	109.5
C11—C9—H9A	103.6	H26A—C26—H26B	109.5
C10—C9—H9A	103.6	C25—C26—H26C	109.5
C19—C10—C1	111.3 (3)	H26A—C26—H26C	109.5
C19—C10—C9	110.2 (3)	H26B—C26—H26C	109.5
C1—C10—C9	108.4 (3)	C25—C27—H27A	109.5
C19—C10—C5	112.4 (3)	C25—C27—H27B	109.5
C1—C10—C5	108.7 (2)	H27A—C27—H27B	109.5
C9—C10—C5	105.6 (2)	C25—C27—H27C	109.5
C9—C11—C12	117.6 (2)	H27A—C27—H27C	109.5
C9—C11—H11A	121.2	H27B—C27—H27C	109.5
C12—C11—H11A	121.2	C4—C28—H28A	109.5
C11—C12—C13	113.8 (2)	C4—C28—H28B	109.5
C11—C12—H12A	108.8	H28A—C28—H28B	109.5
C13—C12—H12A	108.8	C4—C28—H28C	109.5
C11—C12—H12B	108.8	H28A—C28—H28C	109.5
C13—C12—H12B	108.8	H28B—C28—H28C	109.5
H12A—C12—H12B	107.7	C4—C29—H29A	109.5
C12—C13—C18	110.3 (3)	C4—C29—H29B	109.5
C12—C13—C17	116.6 (2)	H29A—C29—H29B	109.5
C18—C13—C17	108.3 (2)	C4—C29—H29C	109.5
C12—C13—C14	109.3 (2)	H29A—C29—H29C	109.5
C18—C13—C14	111.0 (2)	H29B—C29—H29C	109.5
C17—C13—C14	101.1 (2)	C14—C30—H30A	109.5
C8—C14—C15	* *	C14—C30—H30B	109.5
C8—C14—C13	117.1 (2) 106.8 (3)	H30A—C30—H30B	109.5
C15—C14—C30	107.4 (3)	C14—C30—H30C	109.5
C8—C14—C13	110.7 (2)	H30A—C30—H30C	109.5
C15—C14—C13	101.5 (2)	H30B—C30—H30C	109.5
C30—C14—C13	113.4 (2)		
C10—C1—C2—C3	-57.4 (4)	C9—C11—C12—C13	-10.5(5)

C1—C2—C3—F1	-148.0 (12)		C11—C12—C13—C18		81.3 (4)
C1—C2—C3—O3	-60.1 (4)		C11—C12—C13—C17		-154.6 (3)
C1—C2—C3—C4	60.2 (4)		C11—C12—C13—C14		-40.9 (4)
F1—C3—C4—C29	-70.9 (16)		C7—C8—C14—C15		35.8 (4)
O3—C3—C4—C29	-165.7 (3)		C9—C8—C14—C15		-147.8 (3)
C2—C3—C4—C29	72.0 (4)		C7—C8—C14—C30		-84.6 (4)
F1—C3—C4—C28	44.6 (16)		C9—C8—C14—C30		91.8 (3)
O3—C3—C4—C28	-50.3 (4)		C7—C8—C14—C13		151.4 (3)
C2—C3—C4—C28	-172.6 (3)		C9—C8—C14—C13		-32.2 (4)
F1—C3—C4—C5	162.4 (15)		C12—C13—C14—C8		63.1 (3)
O3—C3—C4—C5	67.5 (3)		C18—C13—C14—C8		-58.8 (3)
C2—C3—C4—C5	-54.8 (4)		C17—C13—C14—C8		-173.5 (2)
C3—C4—C5—C6	-177.7 (3)		C12—C13—C14—C15		-171.9 (3)
C29—C4—C5—C6	59.3 (5)		C18—C13—C14—C15		66.2 (3)
C28—C4—C5—C6	-59.9 (4)		C17—C13—C14—C15		-48.5 (3)
C3—C4—C5—C10	50.5 (4)		C12—C13—C14—C30		-57.0 (3)
C29—C4—C5—C10	-72.5 (4)		C18—C13—C14—C30		-178.9 (3)
C28—C4—C5—C10	168.3 (3)		C17—C13—C14—C30		66.4 (3)
C4—C5—C6—C7	178.8 (4)		C8—C14—C15—C16		156.0 (3)
C10—C5—C6—C7	-46.3 (5)		C30—C14—C15—C16		-83.9 (3)
C5—C6—C7—C8	14.2 (6)		C13—C14—C15—C16		35.4 (3)
C6—C7—C8—C9	-1.1 (6)		C14—C15—C16—C17		-9.2 (3)
C6—C7—C8—C14	175.2 (4)		C12—C13—C17—C20		-73.7 (3)
C7—C8—C9—C11	157.2 (3)		C18—C13—C17—C20		51.4 (3)
C14—C8—C9—C11	-19.2 (4)		C14—C13—C17—C20		168.0 (2)
C7—C8—C9—C10	21.0 (5)		C12—C13—C17—C16		160.6 (3)
C14—C8—C9—C10	-155.4 (3)		C18—C13—C17—C16		-74.3 (3)
C2—C1—C10—C19	-74.9 (3)		C14—C13—C17—C16		42.4 (3)
C2—C1—C10—C9	163.8 (3)		C15—C16—C17—C20		-149.2 (3)
C2—C1—C10—C5	49.5 (3)		C15—C16—C17—C13		-20.7 (3)
C8—C9—C10—C19	71.6 (4)		C13—C17—C20—C21		66.8 (3)
C11—C9—C10—C19	-63.7 (4)		C16—C17—C20—C21		-173.3 (2)
C8—C9—C10—C1	-166.4 (3)		C13—C17—C20—C22		-172.4 (2)
C11—C9—C10—C1	58.4 (4)		C16—C17—C20—C22		-52.5 (3)
C8—C9—C10—C5	-50.0(4)		C22—C20—C21—O2		-49.3 (4)
C11—C9—C10—C5	174.7 (3)		C17—C20—C21—O2		73.4 (4)
C6—C5—C10—C19	-56.8 (4)		C22—C20—C21—O1		130.6 (3)
C4—C5—C10—C19	75.9 (4)		C17—C20—C21—O1		-106.7 (3)
C6—C5—C10—C1	179.5 (3)		C21—C20—C22—C23		-63.1 (3)
C4—C5—C10—C1	-47.7 (4)		C17—C20—C22—C23		176.8 (2)
C6—C5—C10—C9	63.4 (4)		C20—C22—C23—C24		-174.0 (2)
C4—C5—C10—C9	-163.9 (3)		C22—C23—C24—C25		-99.7 (4)
C8—C9—C11—C12	42.2 (5)		C23—C24—C25—C26		-0.2 (7)
C10—C9—C11—C12	177.7 (3)		C23—C24—C25—C27		-179.9 (4)
Hydrogen-bond geometry (Å, °)					
<i>D</i> —H··· <i>A</i>		<i>D</i> —Н	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
O1—H1O1···O2 ⁱ		0.87	1.81	2.654(3)	165

O3—H3A···O2 ⁱⁱ	0.84	2.04	2.818 (4)	154
C12—H12B···O1	0.99	2.56	3.262 (4)	128
C22—H22A···O3 ⁱⁱⁱ	0.99	2.40	3.300 (5)	151

Symmetry codes: (i) -x, -x+y, -z+1/3; (ii) x+1, y+1, z; (iii) x-1, y-1, z.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

