Introduction to Data Science

Lecture 07; May 11th, 2015

Ernst Henle

ErnstHe@UW.edu

Skype: ernst.predixion

Agenda

- Social Interactions
 - Get and provide help through the LinkedIn group
 - Encourage Group Homework
- Announcements
- The Science of Data Visualization by Ben Olsen
- Break
- Review Accuracy Measures
 - Homework
 - In-Class Exercise
- Quiz (Accuracy Measures)
- NoSQL: CAP Theorem
- Break
- Relational Algebra (Intro)
- Quiz (Persistence)
- Relational Algebra (continued)

Announcements

- 1-hour guest lecture on May 18th by Marius Marcu "Business Aspects of Data Science" (Changed back to original date)
- May 25th No Class. Memorial Day
- 1-hour guest lecture on June 1st by Matt Danielson "A (brief) introduction to Python for Data Science"

The Science of Data Visualization

Ben Olsen

ben.olsen@matisia.com

Break

Accuracy Measures Exercise

- Question: Why are performance metrics better on training data than on test data?
 - Answer: Because model is optimized for (trained on) training data
- Question: How do you determine which data are training data and which data are test data?
 - Answer a: Prior to training the determination is random.
 - Answer b: After training you can identify the training data in that the model is optimized for those data.

- The Confusion Matrix
 - Calculate the accuracy measures including the F-measure for the Homework. Positive and negative are just points-of-view:
 - Illness is positive (as in a test to determine if one is ill)
 - Health is positive (as in: its positive to be healthy)

- A model was trained on 300 individuals where 149 had the cold and 151 were healthy.
 - These numbers are irrelevant.
 - The accuracy measures are assessed by predictions and the test data.
 - Accuracy is not assessed with the training data.
- The model was tested on 100 individuals where 10 were ill.
 - Total population: 100
 - Support for ill: 10
 - Therefore, support for healthy: 90
- The model correctly predicted that 85 of the healthy individuals were indeed healthy
 - Correct predictions of healthy: 85
 - Therfore, incorrect prediction of ill (they were actually healthy):
 - (90 healthy 85 correct predictions of healthy -> 5 healthy that were not predicted as healthy)
- and correctly predicted that 7 of the ill individuals were indeed ill.
 - Correct predictions of ill: 7
 - Therefore, incorrect prediction of healthy (they were actually ill):
 3
 - (10 ill 7 correct predictions of ill -> 3 ill that were not predicted as ill)

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

- A model was trained on 300 individuals where 149 had the cold and 151 were healthy.
 - These numbers are irrelevant.
 - The accuracy measures are assessed by predictions and the test data.
 - Accuracy is not assessed with the training data.
- The model was tested on 100 individuals where 10 were ill.
 - Total population: 100
 - Support for ill: 10
 - Therefore, support for healthy: 90
- The model correctly predicted that 85 of the healthy individuals were indeed healthy
 - Correct predictions of healthy: 85
 - Therfore, incorrect prediction of ill (they were actually healthy):
 - (90 healthy 85 correct predictions of healthy -> 5 healthy that were not predicted as healthy)
- and correctly predicted that 7 of the ill individuals were indeed ill.
 - Correct predictions of ill: 7
 - Therefore, incorrect prediction of healthy (they were actually ill):
 3
 - (10 ill 7 correct predictions of ill -> 3 ill that were not predicted as ill)

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

	Actual	Predicted
Healthy	90	88
Ш	10	12

- A model was trained on 300 individuals where 149 had the cold and 151 were healthy.
 - These numbers are irrelevant.
 - The accuracy measures are assessed by predictions and the test data.
 - Accuracy is not assessed with the training data.
- The model was tested on 100 individuals where 10 were ill.
 - Total population: 100
 - Support for ill: 10
 - Therefore, support for healthy: 90
- The model correctly predicted that 85 of the healthy individuals were indeed healthy
 - Correct predictions of healthy: 85
 - Therfore, incorrect prediction of ill (they were actually healthy):
 - (90 healthy 85 correct predictions of healthy -> 5 healthy that were not predicted as healthy)
- and correctly predicted that 7 of the ill individuals were indeed ill.
 - Correct predictions of ill: 7
 - Therefore, incorrect prediction of healthy (they were actually ill):
 3
 - (10 ill 7 correct predictions of ill -> 3 ill that were not predicted as ill)

85 predicted healthy and were healthy3 predicted healthy but were ill5 predicted ill but were healthy

7 predicted ill and were ill

	Actual	Predicted
Healthy	90	88
III	10	12

85 predicted healthy and were healthy

3 predicted healthy but were ill

5 predicted ill but were healthy

7 predicted ill and were ill

85 predicted healthy and were healthy 3 predicted healthy but were ill

5 predicted ill

but were healthy

7 predicted ill and

and were ill

Positive and negative are just pointsof-view:

- Illness could be positive (as in a test to determine if one is ill)
- Health could be positive (as in: it's a positive thing to be healthy)

85 predicted healthy and were healthy

3 predicted healthy but were ill

5 predicted ill but were healthy

7 predicted ill and were ill

Health is Positive

		Actual	
_		Р	N
icted	P'	TP	FP
Predicted	N'	FN	TN

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

Illness is Positive

		Actual	
		Р	N
icted	P'	TP	FP
Predicted 	N'	FN	TN

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

		Actual		
		Р	N	
icted	P'	7	5	
Predicted	N'	3	85	
	Illness	is Positiv	⁄e	

		Actual	
_		Р	N
icted	P'	TP	FP
Predicted	N'	FN	TN

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

Health is Positive

True Positive: 85

True Negative: 7

False Positive: 3

False Negative: 5

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

Health is Positive

True Positive: 85True Negative: 7

False Positive: 3

False Negative: 5

Illness is Positive

True Positive: 7

True Negative: 85

False Positive: 5

• False Negative: 3

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

Health is Positive

True Positive: 85True Negative: 7False Positive: 3

False Negative: 5

Illness is Positive

True Positive: 7

• True Negative: 85

False Positive: 5

False Negative: 3

- Sensitivity*: tp / (tp + fn)
- Specificity: tn/(tn + fp)
- Accuracy: (tp + tn) /(tp + fp + tn + fn)
- Precision : tp/(tp + fp)
- Recall*: tp/(tp + fn)
- F-measure: 2tp/(2tp + fn + fp)

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

Health is Positive

- True Positive: 85
- True Negative: 7False Positive: 3
- False Negative: 5

•	True Positive: 7
•	True Negative: 85

Predicted

P

N'

False Positive: 5False Negative: 3

Illness is Positive

Actual

N

85

P

- Sensitivity*: tp / (tp + fn)
- Specificity: tn/(tn + fp)
- Accuracy: (tp + tn) /(tp + fp + tn + fn)
- Precision : tp/(tp + fp)
- Recall*: tp/(tp + fn)
- F-measure: 2tp/(2tp + fn + fp)

- Sensitivity*: 0.94
- Specificity: 0.7
- Accuracy: 0.92
- Precision: 0.97
- Recall*: 0.94
- F-measure: 0.95

85 predicted healthy and were healthy
3 predicted healthy but were ill
5 predicted ill but were healthy
7 predicted ill and were ill

Health is Positive

- True Positive: 85
- True Negative: 7
- False Positive: 3
- False Negative: 5

•	Sensitivity*: tp /	(tp + fn)
---	--------------------	-----------

- Specificity: tn/(tn + fp)
- Accuracy: (tp + tn) /(tp + fp + tn + fn)
- Precision : tp/(tp + fp)
- Recall*: tp/(tp + fn)
- F-measure: 2tp/(2tp + fn + fp)

Sensitivity*: 0.94

- Specificity: 0.7
- Accuracy: 0.92
- Precision: 0.97
- Recall*: 0.94
- F-measure: 0.95

Illness is Positive

- True Positive: 7
- True Negative: 85
- False Positive: 5
- False Negative: 3

Sensitivity*: 0.7

- Specificity: 0.94
- Accuracy: 0.92
- Precision: 0.58
- Recall*: 0.7
- F-measure: 0.63

Homework 06 Problem 5 (0)

ClassificationAccuracy.R

Homework 06 Problem 5 (1)

- # Problem statement
- # I A Classification is tested on 1000 cases.
- # II The false positive rate is 0.4
- # III The true positive rate is 0.8.
- # IV The accuracy is 0.7.
- # Problem statement expressed using TP, FP, FN, TN
- #I N = TP + FP + FN + TN = 1000
- # II FPR = FP/(FP + TN) = 0.4
- # III TPR = TP/(TP + FN) = 0.8
- # IV (TP + TN)/(TP + FP + FN + TN) = 0.7
- # Problem statement expressed as linear equations
- #I 1*TP + 1*FP + 1*FN + 1*TN = 1000
- #II 0 + 3*FP + 0 2*TN = 0
- #III 1*TP + 0 4*FN + 0 = 0
- #IV -3*TP + 7*FP + 7*FN 3*TN = 0

Homework 06 Problem 5 (2)

```
    # Problem statement expressed as linear equations
```

```
    #I 1*TP + 1*FP + 1*FN + 1*TN = 1000
    #II 0 + 3*FP + 0 - 2*TN = 0
    #III 1*TP + 0 - 4*FN + 0 = 0
    #IV -3*TP + 7*FP + 7*FN - 3*TN = 0
```

- # Problem statement expressed in terms of linear algebra:
- # We want to solve the linear equation: Ax = b
- # Where:
- # A is the matrix
- # x is a vector of TP, FP, FN, TN
- # b is the right-hand side of the linear equation

```
# ------
# matrix A vector b
# ------
# TP FP FN TN | b
# ------
# 1 1 1 1 1 1000
# 0 3 0 -2 | 0
# 1 0 -4 0 | 0
# -3 7 7 -3 | 0
```

Homework 06 Problem 6

HowToMakeAnROC_Results.xls

Accuracy

Links

- http://en.wikipedia.org/wiki/Accuracy and precision
- http://en.wikipedia.org/wiki/F1 score
- http://en.wikipedia.org/wiki/Precision and recall

Exercise

- Question 1: Why is the following statement both correct and useless? "My pregnancy test has a 95% accuracy".
- Question 2: What is the precision of the pregnancy test with the following measures?
 - A pregnancy test correctly predicted pregnancy 80% of the time among pregnant women.
 - 10% of all the women were predicted pregnant but were actually not pregnant.
 - The accuracy of the test was 89%.

Pregnancy Test Exercise

Type I error (false positive)

Type II error (false negative)

Pregnancy Test Exercise

- Question 1: Accuracy does not address Recall or Precision. For instance, 95% Accuracy could mean 95% TN and 0% TP. Both Recall and Precision would be 0%
- Question 2: Use ClassificationAccuracy.R (homework) as a template to complete PregnancyExercise.R
- PregnancyExercise.R
- Problem Statement
 - I TP + FN + FP + TN = 1
 - II TP / (TP + FN) = Recall = 0.80
 - III (TP + TN)/(TP + FP + TN + FN) = 0.89
 - IV FP = 0.1
- Algebra on statements II and III
 - II FN = TP*0.20/0.80
 - III*I TN = 0.89 TP
- Substitute FN, TN, and FP:
 - |,||,|||,
 - TP*0.
 - TP = (
- Results:
 - TP = (
 - Precis

Accuracy Measures Exercise

Quiz 07a

- Confusion Matrix and Accuracy Measures
- https://catalyst.uw.edu/webq/survey/ernsthe/270452
- (Last question is like last question of homework review. Complete PregnancyExercise.R by using ClassificationAccuracy.R as an example)

NOSQL: CAP Theorem

CAP Theorem

Continue at 8:43 PM

CAP Theorem

Distributed system with Shared Data: Vasanti Bhat-Nayak and Grace Hopper need a package from R to do a naïve Bayes classification. If there were only one server that contained this package, then consistency would be easy. But, availability would be restricted. When multiple R users want to download a package, the server gets clogged. Therefore, the cran packages are replicated on multiple servers around the world. When a package needs to be updated, then the master node asks all servers to update simultaneously. So when Vasanti and Grace download a package from different servers they will get the same version of the Naive Bayes package.

Distributed system with Shared Data: Vasanti Bhat-Nayak and Grace Hopper need a package from R to do a naïve Bayes classification. If there were only one server that contained this package, then consistency would be easy. But, availability would be restricted. When multiple R users want to download a package, the server gets clogged. Therefore, the cran packages are replicated on multiple servers around the world. When a package needs to be updated, then the master node asks all servers to update simultaneously. So when Vasanti and Grace download a package from different servers they will get the same version of the Naive Bayes package.

Partition of the Distributed System: But, what happens if on that day the Andorran server that Vasanti uses, can't be updated because of a communication error. The database has two choices: (1) It can wait until the Andorran server is fixed and then do the update. (2) Or, it updates all the other servers that allow the update. In the first case we forgo availability and nobody has access to the most recent Naive Bayes package. In the second case Vasanti and Grace will have different results because the packages are different.

- CAP stands for:
 - <u>C</u>onsistency
 - <u>A</u>vailability
 - <u>P</u>artition Tolerance

- CAP stands for:
 - <u>C</u>onsistency: All nodes see the same data at the same time
 - <u>A</u>vailability: Nodes are available for updates and reads
 - <u>P</u>artition Tolerance: Arbitrary message loss or partial failure does not bring down the system

- Assume a single node with one set of data.
- This simple system resembles a typical RDBMS.

 Partition tolerance is irrelevant, because we only have one node.

- The CAP theorem was formulated by Eric Brewer http://en.wikipedia/wiki/CAP theorem
- Two formulations of the CAP theorem:
 - You can have at most two of the CAP properties for any shared data system.
 - During a network partition, a distributed system must choose either Consistency or Availability.

- Assume a cluster with shared and replicated data.
- The cluster consists of two connected nodes called A and B.

- Assume a cluster with shared and replicated data.
- The cluster consists of two connected nodes called A and B.
- The cluster is used by two users, called A and B. Each user has network access to a separate node

- Scenario 1: Network is available and Data are Consistent
 - 1. User A updates node A
 - Update is communicated to node B
 - 3. User B reads the update from node B

- Scenario 2: A network failure occurred.
 - 1. User A attempts to update node A
 - 2. Any Update cannot be communicated
 - 3. User B attempts to read the update

- Scenario 2: A network failure occurred. Two options:
 - 1. Make the database unavailable to avoid inconsistency
 - 2. Keep the database available and tolerate inconsistency

NOSQL: CAP Theorem

Break

Relational Algebra

The Theory behind Relational Databases

Relational Algebra: What and Why

- <u>Ted Codd</u> introduced relational algebra to databases and created the <u>relational model</u>.
- <u>Relational algebra</u> provides a theoretical foundation for <u>relational databases</u>, and particularly for <u>query languages</u> like <u>SQL</u>.
- Why do you want a theoretical foundation?
 - If you want to optimize a query or a database
 - If you are thinking about using NOSQL, then you should be aware of the limitations and advantages of NOSQL data management. In other words, relational algebra assists in comparing <u>SQL</u> with <u>NOSQL</u> (<u>NO</u>T-SQL, <u>Not-Only-SQL</u>, <u>KNO</u>W-SQL, http://www.youtube.com/watch?v=sh1YACOK bo)

New Terminology (1)

Term	Comments
<u>Table</u>	Part of a database
Relation	A table where rows are unique. Operand in Relational Algebra/Calculus
<u>Tuple</u>	single, double, triple, qudruple, quintuple, sextuple; Like a row in a table
<u>Arity</u>	un <u>ary</u> , bin <u>ary</u> , tern <u>ary</u> , quatern <u>ary</u>
<u>Closure</u>	Operation on a type produces a value of that same type. Natural Numbers have closure under + and * $(3 * 5 = 15)$ Natural Numbers do not have closure under – or /; $5 - 3 = -2$

New Terminology (2)

Term	Comments
<u>Procedural</u>	Step-by-step solution to solving problem or achieving goal. I will drive to Bellevue, enter the class room and listen to the lecture. (Relational Algebra is procedural or imperative)
<u>Declarative</u>	Stating what one wants in non-ambiguous terms without describing how one is to achieve ones goal. Example: I want to know what was said in class last week. I don't care if you use the slide deck, your memory, or the recording to get me that information. (SQL is declarative)
Relational Algebra	The algebra that describes relations as operands and results
Relational Calculus	The calculus that uses relations as operands and results (SQL)

New Terminology (3)

Operation	Symbols	Comments
Selection	$σ$ (sigma); $σ_φ$ (R);	SELECT * FROM WHERE Column1 = 1
<u>Projection</u>	π (pi); π _{c1, c2,, cn} (R)	SELECT <u>Column1</u> , <u>Column 2</u> FROM
Rename	P (rho)	
<u>Union</u>	U	AuB; A={1,2,3, 5}; B={0,2}; {1,2,3, 5}u{0,2}={0,1,2,3,5}
Intersection	Λ	$A \cap B$; $A = \{1,2,3,5\}$; $B = \{0,2\}$; $\{1,2,3,5\}$ $\cap \{0,2\} = \{2\}$
<u>Difference</u>	-,	$B\A = B-A; \{0,2\} - \{1,2,3,5\} = \{0\}$

New Terminology (4)

Operation	Symbols	Comments
<u>Product</u>	X	AXB A={1,2,3,5}; B={0,2}; {1,2,3,5} X{0,2}= {{1,0}, {2,0}, {3,0}, {5,0}, {1,2}, {2,2}, {3,2}, {5,2}}
<u>Join</u>	\bowtie_{ϕ}	$B\bowtie_{\phi} A$; φ: $A > B$; $A = \{1,2,3,5\}$; $B = \{0,2\}$; $\{1,2,3,5\}\bowtie_{\phi} \{0,2\} = \{\{1,0\},\{2,0\},\{3,0\},\{3,2\},\{5,0\},\{5,2\}\}$
<u>Division</u>	÷	A÷B = C; Project to show me the columns in A that are not in B; Select to show me the tuples in A that are a superset of the a tuple in B.

Quiz 07b

https://catalyst.uw.edu/webq/survey/ernsthe/270453

Relational Algebra

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Relational Algebra: Relation

	<u>Name</u>	<u>Age</u>	<u>Home</u>	1	Relation
	Blackburn	5	None		
	Kobayashi	21	Rent		
	Menchú	31	Rent		
	Alvarez	42	Rent	/	
	Yamana	50	Own		
,				•	

Relational Algebra: Relation

Relation is like a table except that each row must be unique like in a set

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Relation

Relational Algebra: Attribute

<u>Name</u>		<u>Age</u>		<u>Home</u>
Blackburi	1	5		None
Kobayash	i	21		Rent
Menchú		31		Rent
Alvarez		42		Rent
Yamana		50		Own
Attribute				

Relational Algebra: Attribute

Attribute:

Must be of the same data type. Have a name

<u>Name</u>		<u>Age</u>	<u>Home</u>
Blackburi	1	5	None
Kobayash	i	21	Rent
Menchú		31	Rent
Alvarez		42	Rent
Yamana		50	Own

Attribute

Relational Algebra: Tuple

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

tuple

Relational Algebra: Tuple

tuple from: single, double, triple,

quadr<u>uple</u>, quin<u>tuple</u>

arity from: unary, binary, ternary

	<u>Name</u>	<u>Age</u>	<u>Home</u>
	Blackburn	5	None
	Kobayashi	21	Rent
L	Menchú	31	Rent
	Alvarez	42	Rent
	Yamana	50	Own

tuple with arity of 3

Relational Algebra: Operands and Simple Operations

- Operand
 - Relation (Table)
- Operations
 - UNION
 - INTERSECT
 - PROJECT
 - SELECT
 - PRODUCT
 - DIVISION

Combine Relations

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Combine Relations

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Relational Algebra Union:

Combine Relations

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

SQL Statement:

SELECT * FROM MyTableR UNION SELECT * FROM MyTableS

Relational Algebra Union:

RuS

Combine Relations

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Relational Algebra Union: R u S

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Yamana	50	Own

Same Rows

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Yamana	50	Own

Same Rows

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Yamana	50	Own

Same Rows

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Relational Algebra Intersection: $R \cap S$

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Yamana	50	Own

SQL Statement:

SELECT * FROM MyTableR

INTERSECT

SELECT * FROM MyTableS

Same Rows

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Relational Algebra Intersection: $R \cap S$

NameAgeHomeBlackburn5NoneKobayashi21RentMenchú31RentYamana50Own

Same	Rows	

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

<u>Name</u>	<u>Age</u>	<u>Home</u>
Menchú	31	Rent
Yamana	50	Own

Relational Algebra Intersection: $R \cap S$

Relational Algebra: Examples

- R u S
 - SELECT * FROM MyTableR UNION SELECT * FROM MyTableS
- SELECT * FROM MyTableR UNION SELECT * FROM MyTableS
 - RuS or SuR
- R ∩ S
 - SELECT * FROM MyTableR INTERSECT SELECT * FROM MyTableS
- SELECT * FROM MyTableR INTERSECT SELECT * FROM MyTableS
 - $R \cap S$ or $S \cap R$
- In General:
 - An operation with u or ∩ produces a relation
 - R u S = S u R
 - $R \cap S = S \cap R$
 - $(R \cup S) \cap T = (R \cap T) \cup (S \cap T)$
 - $(R \cap S) \cup T = (R \cup T) \cap (S \cup T)$

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburi	5	None
Kobayash	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Vertical partition

<u>Name</u>		<u>Age</u>	<u>Home</u>
Blackburı	1	5	None
Kobayash	i	21	Rent
Menchú		31	Rent
Alvarez		42	Rent
Yamana		50	Own

Vertical partition

Relational Algebra Project:

 $\pi_{c1, c2, ..., cn}(R)$ where

c1, c2, ..., cn: Age, Home

Name Age Home Blackburn 5 None Kobayashi 21 Rent Menchú 31 Rent Alvarez 42 Rent 50 Yamana Own

SQL Statement:

SELECT Age, Home FROM MyTable

Vertical partition

Relational Algebra Project:

 $\pi_{c1, c2, ..., cn}(R)$ where

c1, c2, ..., cn: Age, Home

	<u>Age</u>	<u>Home</u>
1	5	None
i	21	Rent
	31	Rent
	42	Rent
	50	Own
		5 i 21 31 42

<u>Age</u>	<u>Home</u>
5	None
21	Rent
31	Rent
42	Rent
50	Own

Relational Algebra Project:

 $\pi_{c1, c2, ..., cn}(R)$ where

c1, c2, ..., cn: Age, Home

<u>Name</u>		<u>Age</u>	<u>Home</u>
Blackburı	1	5	None
Kobayash	i	21	Rent
Menchú		31	Rent
Alvarez		42	Rent
Yamana		50	Own

<u>Age</u>	<u>Home</u>
5	None
21	Rent
31	Rent
42	Rent
50	Own

The result of a projection is a relation with 0 to n attributes where n is the number of attributes in the operand

Relational Algebra Project:

 $\pi_{c1, c2, ..., cn}(R)$ where

c1, c2, ..., cn: Age, Home

<u>Name</u>	<u>Age</u>	<u>Home</u>	
Blackburn	5	None	
Kobayashi	21	Rent	
Menchú	31	Rent	
Alvarez	42	Rent	
Yamana	50	Own	

Horizontal partition

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Horizontal partition

```
Relational Algebra Select: \sigma_{\phi}(R) where
```

φ: Home = "Rent"

SQL Statement:

SELECT * FROM MyTable WHERE Home = "Rent"

<u>Name</u>	<u>Age</u>	<u>Home</u>
Blackburn	5	None
Kobayashi	21	Rent
Menchú	31	Rent
Alvarez	42	Rent
Yamana	50	Own

Horizontal partition

```
Relational Algebra Select:
```

 $\sigma_{\phi}(R)$ where

φ: Home = "Rent"

<u>Name</u>	<u>Age</u>	<u>Home</u>	
Blackburn	5	None	
Kobayashi	21	Rent	
Menchú	31	Rent	
Alvarez	42	Rent	
Yamana	50	Own	

<u>Name</u>	<u>Age</u>	<u>Home</u>
Kobayashi	21	Rent
Menchú	31	Rent
Alvarez	42	Rent

The result of a selection is a relation with 0 to n tuples where n is the number of tuples in the operand

Relational Algebra Select:

 $\sigma_{\phi}(R)$ where

φ: Home = "Rent"

Relational Algebra: Examples

- $\pi_{Age,Home}(R)$
 - SELECT Age, Home FROM MyTable
- $\sigma_{\text{Home="Rent"}}(R)$
 - SELECT * FROM MyTable WHERE Home = "Rent"
- SELECT Age, Home FROM MyTable WHERE Home = "Rent"
 - $\pi_{Age,Home}(\sigma_{Home="Rent"}(R))$ or $\sigma_{Home="Rent"}(\pi_{Age,Home}(R))$
- In General:
 - An operation with σ produces a relation
 - An operation with π produces a relation
 - $\sigma_{\varphi_1}(\sigma_{\varphi_2}(R)) = \sigma_{\varphi_2}(\sigma_{\varphi_1}(R))$
 - $\pi_{[c1]}(\pi_{[c2]}(R)) = \pi_{[c2]}(\pi_{[c1]}(R))$
 - $\pi_{[c]}(\sigma_{\varphi}(R)) = \sigma_{\varphi}(\pi_{[c]}(R))$ (only if φ is not dependent on [c])

Combine Rows

	<u>Name</u>	<u>Age</u>
	Blackburn	5
	Kobayashi	21 -
$^{\prime\prime}$		
\mathbb{N}	<u>Name</u>	<u>Home</u>
1 N	Menchú	D
	1 Wienchu	Rent
	Alvarez	Rent

SQL Statement:

SELECT * FROM TableR, TableS

Combine Rows

<u>Name</u>	<u>Age</u>	
- Blackburn	5	
Kobayashi	21 -	

<u>Name</u>	<u>Home</u>	
Menchú	Rent	
Alvarez	Rent	
Yamana	Own	

	Name 1	<u>Age</u>	Name 2	<u>Home</u>
_				
	Blackburn	5	Menchú	Rent
			Alvarez	Rent
			Yamana	Own
_				
	Kobayashi	21	Menchú	Rent
			Alvarez	Rent
			Yamana	Own

Combine Rows

<u>Name</u>	<u>Age</u>	
Blackburn	5	
Kobayashi	21 -	

<u>Name</u>	<u>Home</u>	
Menchú	Rent	
Alvarez	Rent	
Yamana	Own	

	Name 1	<u>Age</u>	Name 2	<u>Home</u>
	Blackburn	5	Menchú	Rent
	Blackburn	5	Alvarez	Rent
ſ	Blackburn	5	Yamana	Own
	Kobayashi	21	Menchú	Rent
	Kobayashi	21	Alvarez	Rent
ſ	Kobayashi	21	Yamana	Own

Combine Rows

<u>Name</u>	<u>Age</u>	
Blackburn	5	
Kobayashi	21 -	

<u>Name</u>	<u>Home</u>	
Menchú	Rent	
Alvarez	Rent	
Yamana	Own	

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own

Combine Rows

<u>Name</u>	<u>Age</u>	
Blackburn	5	
Kobayashi	21	

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Kobayashi	21		
Blackburn	5	Alvarez	Rent
Kobayashi	21		
Blackburn	5	Yamana	Own
Kobayashi	21		

Combine Rows

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Kobayashi	21	Menchú	Rent
Blackburn	5	Alvarez	Rent
Kobayashi	21	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Yamana	Own

Combine Rows

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Kobayashi	21	Menchú	Rent
Blackburn	5	Alvarez	Rent
Kobayashi	21	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Yamana	Own

Combine Rows

The result of a product is a relation with n*m tuples where n and m are the number of tuples in the operands. The arity of the result is i + j where i and j are the arities of the operands

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Kobayashi	21	Menchú	Rent
Blackburn	5	Alvarez	Rent
Kobayashi	21	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Yamana	Own

Combine Rows

The result of a product is a relation with n*m tuples where n and m are the number of tuples in the operands. The arity of the result is i + j where i and j are the arities of the operands

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own

Combine Rows

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Kobayashi	21	Menchú	Rent
Blackburn	5	Alvarez	Rent
Kobayashi	21	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Yamana	Own

Relational Algebra Product with Select: $\sigma_{\phi}(\text{R X S }) \text{ where } \phi\text{: Home = "Rent"}$

Relational Algebra Join:

 $R \bowtie_{\alpha} S$ where φ : Home = "Rent"

Combine Rows

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Kobayashi	21	Menchú	Rent
Blackburn	5	Alvarez	Rent
Kobayashi	21	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Yamana	Own

Relational Algebra Product with Select:

 $σ_{φ}(R X S)$ where φ: Home = "Rent"

Relational Algebra Join:

 $R \bowtie_{\alpha} S$ where φ : Home = "Rent"

Combine Rows

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Kobayashi	21	Menchú	Rent
Blackburn	5	Alvarez	Rent
Kobayashi	21	Alvarez	Rent

Relational Algebra Product with Select: $\sigma_{\phi}(R~X~S~)~where~\phi; Home = "Rent" Relational Algebra Join:$

 $R \bowtie_{\alpha} S$ where φ : Home = "Rent"

- A Join is a Product with a select statement
- Product followed by Select
 - SELECT * FROM TableR, TableS WHERE Home = "Rent"
 - $\sigma_{\omega}(R X S)$ where ϕ : Home = "Rent"
- JOIN
 - SELECT * FROM TableR JOIN TableS ON Home = "Rent"
 - $R \bowtie_{\phi} S$ where ϕ : Home = "Rent"

A Division is sort of like the reverse of a Product

This was a Product Operand

This was the result of a Product

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

Name 1	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own

This was a Product Operand

Relational Algebra Division: $R \div S$

Relational Algebra Division:

 $R \div S$

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21
	\

Result of Selection

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own
Segrè	54	Yamana	Own

Relational Algebra Division:

R ÷ S

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Home</u>
Menchú	Rent
Alvarez	Rent
Yamana	Own

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own
Segrè	54	Yamana	Own

Relational Algebra Division:

R ÷ S

The result of a division is a relation with n tuples of arity I where the divisor operand has exactly m tuples of arity j that are a subset of the of the dividend tuples.

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own
Segrè	54	Yamana	Own

Relational Algebra Division:

The result of a division is a relation with n tuples of arity i where the dividend operand contains n*m tuples of arity i + j that are a superset of the result tuples.

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own
Segrè	54	Yamana	Own

Relational Algebra Division:

The result of a division is a relation with n tuples of arity I where the dividend operand has n*m tuples of arity i + j and the divisor operand has exactly m tuples of arity j that are a subset of the of the dividend tuples.

<u>Name</u>	<u>Age</u>
Blackburn	5
Kobayashi	21

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own
Segrè	54	Yamana	Own

Relational Algebra Division:

The result of a division is a relation with n tuples of arity I where the dividend operand has n*m tuples of arity i + j and the divisor operand has exactly m tuples of arity j that are a subset of the of the dividend tuples.

<u>Name</u>	Age	
Blackburn	5	
Kobayashi	21	

<u>Name</u>	<u>Home</u>	
Menchú	Rent	
Alvarez	Rent	
Yamana	Own	

<u>Name</u>	<u>Age</u>	Name 2	<u>Home</u>
Blackburn	5	Menchú	Rent
Blackburn	5	Alvarez	Rent
Blackburn	5	Yamana	Own
Kobayashi	21	Menchú	Rent
Kobayashi	21	Alvarez	Rent
Kobayashi	21	Yamana	Own
Segrè	54	Yamana	Own

Relational Algebra Division:

Relational Algebra: Resources

- Relational Algebra and SQL
 - RelationalAlgebraAndSQL.pdf
 - RelationalAlgebraAndSQL.sql
- http://en.wikipedia.org/wiki/Cartesian_product
- http://en.wikipedia.org/wiki/Commutative property
- http://en.wikipedia.org/wiki/Associative property
- http://en.wikipedia.org/wiki/Closure (mathematics)

Relational Algebra

Assignment (1)

- 1. {a, b, c} is a relation that contains the tuples a, b, and c. In the following cases the tuples have arity of 1. Calculate the following:
 - a. $(\{1, 2, 3\} \cup \{5, 7, 11\}) \cap \{2, 4, 6, 8, 10\}$
 - b. $(\{1, 2, 3\} \cap \{2, 4, 6, 8, 10\}) \cup (\{5, 7, 11\} \cap \{2, 4, 6, 8, 10\})$
- 2. Use formal notation to write an algebraic example of the following SQL:
 - a. SELECT Column1, Column3 FROM MyTable WHERE Column2 = Column3
 - b. Reverse the order of projection and selection in your algebraic formulation. What happened?
- 3. $\pi_{c1, c2}(\sigma_{\phi 1}(\sigma_{\phi 2}(\pi_{c1, c2, c3, c5}(R))))$ Where
 - ϕ 1: C1 = C5;
 - φ2: C5 = "Test";
 - R: MyTable;
 - a. Write a SQL statement that declares the intent of the algebraic notation
 - b. Simplify the algebraic statement. Simplification means minimize the number of parentheses and terms.

Assignment (2)

- 4. SELECT * FROM T1 JOIN T2 ON T1.C1 = T2.C1
 - a. Write out an equivalent in relational algebra using the join operator
 - b. Write out an equivalent in relational algebra without using the join operator
- 5. $\pi_{S.C1, R.C2}(\sigma_{\phi 1}(R) \bowtie_{\phi 2} S)$ where
 - $\phi 1 = (R.C2 = 'A')$
 - $\phi 2 = (R.C1 = S.C2)$
 - Write out equivalent SQL and test this SQL using relations R and S that you create for this example. The relations R and S in RelationalAlgebraAndSQL.pdf and RelationalAlgebraAndSQL.sql don't quite work because their column types do not match for this assignment.
- 6. Submit answers to items 1 through 5 in a file by Saturday 11:00 PM. The SQL statements from 3a and 5 must be in a txt, doc, or sql file. I will need to copy and paste those statements.
- 7. If you did not complete Quiz 07b during class, then complete the quiz before Saturday 11:00 PM.

Introduction to Data Science