Αναφορά σχετικά με την απεικόνιση και τις μετασχηματισμούς σε 3D στην Python

Αναφορά:

ergasia2.py: Περιέχει συναρτήσεις για την απεικόνιση και τους μετασχηματισμούς σε 3D, συμπεριλαμβανομένης της μετατροπής σημείων από τις παγκόσμιες συντεταγμένες σε συντεταγμένες κάμερας, της μετατροπής "look-at", της προοπτικής προβολής και της ραστεροποίησης,οπως και κωδικα της πρωτης εργασιας για την χρηση της gourand.

class 1.py: Ορίζει μια κλάση για μετασχηματισμούς σε 3D, συμπεριλαμβανομένων των περιστροφών και των μεταφορών,συμφωνα με τις σημειωσεις του μαθήματος.

demo.py: Χρησιμοποιεί τις συναρτήσεις από τα αρχεία ergasia2.py και class 1.py για να απεικονίσει ένα αντικείμενο 3D με σκίαση(ενα ψάρι?).

Περιγραφή των Συναρτήσεων:

ergasia2.py

world2view(pts, R, c0): Μετατρέπει τα 3D σημεία από παγκόσμιες συντεταγμένες σε συντεταγμένες προβολής κάμερας.

lookat(eye, up, target): Υπολογίζει τον πίνακα μετασχηματισμού της κάμερας με βάση τη θέση του ματιού, την κατεύθυνση πάνω και τη θέση του στόχου.

perspective_project(pts, focal, R, t): Προβάλλει τα 3D σημεία στο επίπεδο της εικόνας χρησιμοποιώντας προοπτική προβολή.

rasterize(pts_2d, plane_w, plane_h, res_w, res_h): Μετατρέπει τα προβεβλημένα 2D σημεία σε εικονοστοιχεία στο επίπεδο της εικόνας.

render_object(v_pos, v_clr, t_pos_idx, plane_h, plane_w, res_h, res_w, focal, eye, up, target): Απεικονίζει ένα αντικείμενο 3D σε μια εικόνα δεδομένων παραμέτρων της κάμερας.

class1.py

Transform: Ορίζει έναν τάξη για μετασχηματισμούς 3D.
init(): Αρχικοποιεί τον πίνακα μετασχηματισμού ως μοναδιαίο πίνακα.
rotate(theta, u): Περιστρέφει τον πίνακα μετασχηματισμού γύρω από έναν άξονα και ένα γωνία.
translate(t): Μετακινεί τον πίνακα μετασχηματισμού κατά ένα δεδομένο διάνυσμα.
transform_pts(pts): Εφαρμόζει τον πίνακα μετασχηματισμού σε ένα σύνολο 3D σημείων.
Πώς να Καλέσετε τα Προγράμματα:
ergasia2.py: Εισαγάγετε το πρόσθετο και χρησιμοποιήστε τις συναρτήσεις απευθείας στον κώδικά σας. Για παράδειγμα:

class1.py: Εισαγάγετε την κλάση Transform και δημιουργήστε μια νέα οντότητα για να εκτελέσετε μετασχηματισμούς. Για παράδειγμα:
from class1 import Transform
Create a transformation object
transform = Transform()
Call methods to perform rotations and translations
transform.rotate(theta, u)
transform.translate(t)
demo.py: Εισαγάγετε πρόσθετα και συναρτήσεις από τα αρχεία ergasia2.py και class1.py για να απεικονίσετε ένα αντικείμενο 3D. Για παράδειγμα:
import ergasia2
from class1 import Transform
Create a transformation object
transform = Transform()
Perform transformations and render the object
transformed_points = transform.transform_pts(v_pos)
ergasia2.render_object(transformed_points, v_clr, t_pos_idx, plane_h, plane_w, res_h, res_w, focal, eye, up, target)

Ενδεικτικά Αποτελέσματα που Παράγονται από τη Δοκιμή:

ΔΥΣΤΥΧΏΣ ΔΕΝ ΚΑΤΕΦΕΡΑ ΝΑ ΠΑΡΑΞΏ ΕΙΚΟΝΑ ΛΟΓΏ ΣΦΑΛΜΑΤΟΣ ΣΤΟΝ ΚΩΔΙΚΆ ΤΟ ΟΠΟΙΟ ΜΕΤΑ ΑΠΟ ΠΟΛΎ ΕΡΕΎΝΑ ΣΤΟ INTERNET ΚΑΙ ΡΏΤΩΝΤΑΣ ΓΝΏΣΤΟΥΣ, ΔΕΝ ΕΛΎΣΑ ΔΙΝΏ ΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΑΤΟ·

```
Traceback (most recent call last):
```

File "c:\Users\George\Downloads\cg-hw2-2024 (1)\demo.py", line 38, in <module> render_object(transformed_points, v_clr, t_pos_idx, plane_h, plane_w, res_h, res_w, focal, eye, up, target)

File "c:\Users\George\Downloads\cg-hw2-2024 (1)\ergasia2.py", line 81, in render_object transformed_vertices = world2view(v_pos, R, eye)

File "c:\Users\George\Downloads\cg-hw2-2024 (1)\ergasia2.py", line 10, in world2view Rinv=np.linalg.inv(R)

File

 $\label{local-packages-python-software-foundation} $$ \c \arge\parts $$ \c \arge\pa$

ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)

 $\label{local-packages-python-software-foundation} $$ \c \arge\points $$\c \arge\points $$\c \arge\points $$

_raise_linalgerror_singular

raise LinAlgError("Singular matrix")

numpy.linalg.LinAlgError: Singular matrix