B. Murmann Page 1 of 4

STANFORD UNIVERSITY Department of Electrical Engineering

EE214B: Advanced Analog Integrated Circuit Design

http://coursework.stanford.edu/homepage/W16/W16-EE-214B-01.html

TIME: Class: MWF 10:30-11:20 AM, Gates B01

Review Session: Friday, 2:30-3:20 PM, Gates B03

INSTRUCTOR: Boris Murmann

Email: murmann@stanford.edu
Office hours: See course website.

<u>TAs</u> Danny Bankman and Delphine Chang Email: <u>ee214b-tas@mailman.stanford.edu</u>

Office hours: See course website.

ADMIN: Ann Guerra

DESCRIPTION:

Email: guerra@par.stanford.edu

Phone: (650) 725-3725 Office: Allen-207

GRADING: Homework 20% (lowest score will be dropped)

Midterm Exam 30% Project 20% Final Exam 30%

<u>COURSE</u>
B. Murmann, *EE214B – Advanced Analog Integrated Circuit Design*<u>READER:</u>
Hardcopies available at Stanford Bookstore, Softcopies available online

<u>REQUIRED</u> Tony Chan Carusone, David A. Johns and Kenneth W. Martin, *Analog*

<u>TEXT:</u> *Integrated Circuit Design*, 2nd Edition, Wiley. 2011.

REFERENCE Gray, Hurst, Lewis and Meyer, Analysis and Design of Analog Integrated

TEXTS: Circuits, 5th Edition, Wiley, 2008

B. Razavi, Design of Integrated Circuits for Optical Communications, 2nd

Edition, McGraw-Hill, 2012

GROUP Please sign up for the EE214B Piazza online forum at:

DISCUSSIONS: http://piazza.com/stanford/winter2016/ee214b

<u>COURSE</u> Analysis and design of analog integrated circuits in advanced MOS and

bipolar technologies. Device operation and compact modeling in support of

circuit simulations needed for design. Emphasis on quantitative evaluations of

performance using hand calculations and circuit simulations; intuitive approaches to design. Analytical and approximate treatments of noise and distortion; analysis and design of feedback circuits. Design of archetypal analog blocks for networking and communications such as broadband gain

stages and transimpedance amplifiers.

Prerequisite: EE114/EE214A or equivalent.

Course Calendar (Tentative)

Date	Lecture	Assignments
Mon 01/04	Introduction	
Wed 01/06	Bipolar Junction Transistors	HW1 out
Fri 01/08	Bipolar Junction Transistors	
Mon 01/11	Bipolar Junction Transistors	
Wed 01/13	Elementary BJT Circuits	HW1 due, HW2 out
Fri 01/15	Elementary BJT Circuits	
Mon 01/18	NO CLASS (Martin Luther King Day)	
Wed 01/20	MOSFET Modeling	HW2 due, HW3 out
Fri 01/22	MOSFET Modeling	
Mon 01/25	g _m /I _D Based Design	
Wed 01/27	g _m /I _D Based Design	HW3 due, HW4 out
Fri 01/29	Electronic Noise	
Fri 01/29	Pre-taping: Electronic Noise, 3:30-4:20 PM, Gates B01	
Mon 02/01	NO CLASS	
Wed 02/03	Electronic Noise	HW4 due, HW5 out
Fri 02/05	MIDTERM REVIEW	
Mon 02/08	Electronic Noise	
Mon 02/08	MIDTERM (6:00-7:30 PM, Hewlett 200)	
Wed 02/10	Introduction to Feedback	
Fri 02/12	Feedback TIA Design	HW5 due, HW6 out
Mon 02/15	NO CLASS (Presidents' Day)	
Wed 02/17	Feedback TIA Design	
Fri 02/19	Feedback TIA Design	Project out
Mon 02/22	Root Locus	HW6 due
Wed 02/24	Frequency Compensation	
Fri 02/26	Frequency Compensation	
Mon 02/29	Fully Differential Amplifiers	Project I due
Wed 03/02	OTA Design Examples	
Fri 03/04	OTA Design Examples	
Mon 03/07	OTA Design Examples	
Wed 03/09	Wideband Amplifiers Using Local Feedback	Project II due
Fri 03/11	Mismatch	
TBD	PROJECT PRESENTATIONS	
Thu 03/17	FINAL EXAM (8:30-10:00 AM, Gates B01)	

FAQ

Homework

What is the late submission policy?

All assignments are due on the specified date and time, sharp. It is very difficult for us to get your work to the graders when you submit your work late. Please be on time! If you turn in your work after the deadline, your score will degrade by 0.5 dB per hour.

I am an SCPD student. When/how should I submit my homework?

Local and remote SCPD students may email their assignments to SCPD (scpd-distribution@lists.stanford.edu). Be sure to submit your work on time and use SCPD's routing form as a cover sheet. Do not email your homework to the teaching staff.

CAD

Which program will we use for circuit simulation?

The primary simulator for this course is HSpice. You can access this tool via your instructional computer account. Please refer to the "CAD Basics" handout on the course web site for further information.

Can I use a different circuit simulator?

You may use other Spice variants at your "own risk."

I am a remote student, how can I access and run HSpice?

You can log into your instructional account via SSH and VNC (see "CAD Basics" handout). For general info, please refer to: https://itservices.stanford.edu/service/sharedcomputing/loggingin

I am a remote student, how can I gain access to Stanford's electronic libraries (such as IEEE Xplore)?

You can setup proxy access using your SUNet ID. See: http://library.stanford.edu/using/connect-campus.
You can also use EZproxy to log into access restricted sites, for example: http://ezproxy.stanford.edu/login?url=http://ieeexplore.ieee.org

General Questions

I cannot attend your scheduled office hours. Are you available at other times?

Feel free to email the instructor to set up a meeting on an as-needed basis.

I am an SCPD student, and I must get a grade of B or higher, otherwise I have to pay. Can you guarantee that I won't have to pay?

No, of course not. You earn your grade; we don't arbitrarily assign it. To minimize the likelihood of having to pay, stay current on the homework and, especially, allot plenty of time to do a good job on the design project. Many SCPD students find themselves in trouble time-wise, because of customer visits, unexpected tape-out problems, etc., at their place of employment. Our advice is to expect the unexpected, and budget enough extra time for EE214B.

I need to take the midterm/final exam at other than the scheduled time. May I?

Such arrangements are made on a case-by-case basis, and we cannot guarantee flexibility in this matter. The most common acceptable reason is a *demonstrable* scheduling conflict with another course (which would imply that you are taking two courses that are scheduled at the same time). As an example, "Being able to catch a cheaper flight for a vacation" is not a suitable reason. Please alert us as soon as possible.