Data Integration with Multiple Surveys

Caleb Leedy and Jae Kwang Kim

April 4, 2024

Variance with Estimated Population Constraints

Setup

This summarizes the setup described in main.tex. Suppose that we have K=3 surveys where we observe different variables:

- A_1 : x_1, x_2, x_3, y_1
- A_2 : x_1 , x_3 , y_2
- A_3 : x_1, x_2, y_3

We assume that these surveys are independent, and our estimation procedure consists of two steps.

Step 1: GLS Estimation

Let $\theta = (\mu_1, \mu_2, \mu_3)' = (E[x_1], E[x_2], E[x_3])'$. We first estimate θ using the following GLS

$$\begin{bmatrix} \hat{\mu}_{1,1} \\ \hat{\mu}_{1,2} \\ \hat{\mu}_{1,3} \\ \hat{\mu}_{2,1} \\ \hat{\mu}_{2,3} \\ \hat{\mu}_{3,1} \\ \hat{\mu}_{3,2} \end{bmatrix} := \underbrace{\begin{bmatrix} n_1^{-1} \sum_{i \in A_1} x_{1i} \\ n_1^{-1} \sum_{i \in A_1} x_{2i} \\ n_1^{-1} \sum_{i \in A_1} x_{3i} \\ n_2^{-1} \sum_{i \in A_2} x_{1i} \\ n_2^{-1} \sum_{i \in A_2} x_{3i} \\ n_3^{-1} \sum_{i \in A_3} x_{1i} \\ n_3^{-1} \sum_{i \in A_3} x_{2i} \end{bmatrix}}_{\hat{\theta}} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}}_{X} \underbrace{\begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}}_{\theta} + \mathbf{e}$$

where $\mathbf{e} \sim (0, V)$ and

$$V = \begin{bmatrix} V_1 & 0_{3\times2} & 0_{3\times2} \\ 0_{2\times3} & V_2 & 0_{2\times2} \\ 0_{2\times3} & 0_{2\times2} & V_3 \end{bmatrix}$$

and V_1 , V_2 , and V_3 are known. Then the GLS estimator is

$$\hat{\theta}_{GLS} = (X'V^{-1}X)^{-1}X'V^{-1}\hat{\theta}.$$

Step 2: Debiased Calibration

Let $H_k(X)$ output all of the observed vectors of X for sample k. Then using the same notation as Kwon, Kim, and Qiu 2024, the optimal weights $\hat{\mathbf{w}}^{(k)}$ for a sample A_k solve

$$\hat{\mathbf{w}}^{(k)} = \operatorname{argmin}_{\mathbf{w}} \sum_{i \in A_k} G(w_i)$$
such that
$$\sum_{i \in A_k} w_i^{(k)} H_k(x_i) = H_k(\hat{\theta}_{GLS}) N \text{ and } \sum_{i \in A_k} w_i^{(k)} g(d_i) = \sum_{i \in U} g(d_i).$$

$$(1)$$

Result

Before deriving the variance, I reintroduce some of the notation from Kwon, Kim, and Qiu 2024. Let $G: \mathcal{V} \to \mathbb{R}$ be a strictly convex and differentiable function with derivative g(w) = dG(w)/dw and define the convex conjugate function of G(w) as $F(w) = -G(g^{-1}(w)) + g^{-1}(w)w$ with a derivative f(w) = dF(w)/dw. Note, that $f(w) = g^{-1}(w)$. The primal problem of Equation 1 has a dual formulation of

$$\hat{\lambda} = \operatorname{argmin}_{\lambda \in \Lambda_{A_k}} \sum_{i \in A_k} F(\lambda^T \mathbf{z}_i^{(k)}) - \lambda^T \sum_{i \in U} \mathbf{z}_i^{(k)}.$$

In this case $z^{(k)} = (H_k(X), g(d_i))$, $d_i = \pi_i^{-1}$, $\hat{\lambda} = (\hat{\lambda}_1^T, \hat{\lambda}_2)^T$, and $\Lambda_A = \{\lambda : \lambda^T z_i^{(k)} \in g(\mathcal{V}) \text{ for all } i \in A\}$. We still define λ as having dimension p+1, but p is now the dimension of $H_k(X)$. The parameter λ is also a function of the sample A_k and so should be $\lambda = \lambda^{(k)}$, but we suppress this notation for convenience. Solutions to the primal and dual problem satisfy

$$\hat{w}_i^{(k)} = \hat{w}_i^{(k)}(\hat{\lambda}) = f(\hat{\lambda}^T z_i) = g^{-1}(\hat{\lambda}_1^T H_k(x_i) + \hat{\lambda}_2 g(d_i)).$$

For now, I am only going to derive the variance for the estimate $\hat{Y}_1 = \sum_{i \in A_1} \hat{w}_i^{(1)} y_{1i}$. In this case we have $H_1(X) = X$, however, other samples can be derived in a similar manner. We define that matrix

$$\begin{bmatrix} \Sigma_{xx} & \Sigma_{xg} \\ \Sigma_{gx} & \Sigma_{gg} \end{bmatrix} = N^{-1} \sum_{i \in U} \frac{\pi_i}{g'(d_i)} \begin{bmatrix} x_i x_i^T & g(d_i) x_i^T \\ x_i g(d_i) & g(d_i)^2 \end{bmatrix}.$$

Now we can find the derivative of $\hat{\Lambda}$ with respect to θ .

Lemma 1.

$$\frac{\partial \hat{\lambda}(\theta_N)}{\partial \theta_N} = \begin{bmatrix} \Sigma_{xx} & \Sigma_{xg} \\ \Sigma_{gx} & \Sigma_{gg} \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Proof. This follows the approach of Kwon, Kim, and Qiu 2024 in Appendix A.3. Notice that taking a derivative with respect to θ in the constraints yields

$$\left[N^{-1} \sum_{i \in A_1} f'(\hat{\lambda}(\theta)^T \mathbf{z}_i^{(1)}) (z_i^{(1)})^T \right] \begin{bmatrix} \hat{\lambda}_1'(\theta) \\ \hat{\lambda}_2'(\theta) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

This means that

$$\begin{bmatrix} \hat{\lambda}_1'(\theta_N) \\ \hat{\lambda}_2'(\theta_N) \end{bmatrix} = \begin{bmatrix} N^{-1} \sum_{i \in A_1} f'(\hat{\lambda}(\theta_N)^T \mathbf{z}_i^{(1)}) (z_i^{(1)})^T \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \sum_{xx} & \sum_{xg} \\ \sum_{gx} & \sum_{gg} \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Since the GLS estimator satisfies $\hat{\theta}_{GLS} - \theta_N = o_p(n^{-1/2})$, we have

$$\begin{split} N^{-1} \sum_{i \in A_{1}} \hat{w}_{i}^{(1)}(\hat{\theta}_{GLS}) y_{1i} \\ &= N^{-1} \sum_{i \in A_{1}} \hat{w}_{i}^{(1)}(\theta_{N}) y_{1i} + \left(N^{-1} \sum_{i \in A_{1}} \frac{\partial w_{i}^{(k)}(\theta_{N})}{\partial \theta} y_{1i} \right) (\hat{\theta}_{GLS} - \theta_{N}) + o_{p}(n^{-1/2}) \\ &= \hat{\theta}_{DC} + \left(N^{-1} \sum_{i \in A_{1}} f'(\hat{\lambda}^{T}(\theta_{N}) z_{i}^{(1)}) \frac{\partial \lambda(\theta_{N})^{T}}{\partial \theta} z_{i}^{(1)} y_{1i} \right) (\hat{\theta}_{GLS} - \theta_{N}) + o_{p}(n^{-1/2}) \\ &= \hat{\theta}_{DC} + \gamma'_{N,1:p}(\hat{\theta}_{GLS} - \theta_{N}) + o_{p}(n^{-1/2}) \end{split}$$

where $\hat{\theta}_{DC}$ is the debiased calibration estimator of Kwon, Kim, and Qiu 2024 with the population θ_N and

$$\gamma_N = \left[\sum_{i \in U} \frac{\pi_i z_i^{(1)} (z_i^{(1)})^T}{g'(d_i)} \right]^{-1} \sum_{i \in U} \frac{\pi_i z_i^{(1)} y_{1i}}{g'(d_i)}$$

and $\gamma_{N,1:p}$ is the first p elements of γ_N . This means that the variance of the estimator of Y_1 is

$$Var(\hat{Y}_{1}) = Var\left(\sum_{i \in A_{1}} w_{i}^{(1)y_{1i}}\right)$$

$$= Var(\hat{\theta}_{DC}) + \gamma'_{N,1:p} (X'V^{-1}X)^{-1} \gamma_{n,1:p} + 2\gamma'_{N,1:p} Cov(\hat{\theta}_{DC}, \hat{\theta}_{GLS} - \theta_{N}).$$

Dr. Kim, I think this is the point of departure from your proposed idea and what I do. I probably could use a linearization to estimate the variance but instead I do it directly. Please let me know what you think. Finally,

$$Cov(\hat{\theta}_{DC}, \hat{\theta}_{GLS} - \theta_{N}) = Cov(\hat{\theta}_{DC}, \hat{\theta}_{GLS})$$

$$= (X'V^{-1}X)^{-1}X'V^{-1}n_{1}^{-1} \sum_{i \in U} \sum_{j \in U} Cov\left(\frac{\delta_{1i}y_{1i}}{g(\hat{\lambda}_{1}H_{1}(x_{i}) + \hat{\lambda}_{2}g(d_{i}))}, \delta_{1j}H_{1}(x_{j})\right)$$

$$= (X'V^{-1}X)^{-1}X'V^{-1}n_{1}^{-1} \sum_{i \in U} Cov\left(\frac{\delta_{1i}y_{1i}}{g(\hat{\lambda}_{1}H_{1}(x_{i}) + \hat{\lambda}_{2}g(d_{i}))}, \delta_{1i}H_{1}(x_{i})\right)$$

$$= (X'V^{-1}X)^{-1}X'V^{-1}n_{1}^{-1} \sum_{i \in U} \frac{H_{1}(x_{i})y_{1i}}{g(\hat{\lambda}_{1}H_{1}(x_{i}) + \hat{\lambda}_{2}g(d_{i}))} Cov(\delta_{1i}, \delta_{1i})$$

$$= (X'V^{-1}X)^{-1}X'V^{-1}n_{1}^{-1} \sum_{i \in U} \frac{H_{1}(x_{i})y_{1i}}{g(\hat{\lambda}_{1}H_{1}(x_{i}) + \hat{\lambda}_{2}g(d_{i}))} (\pi_{1i}(1 - \pi_{1i}))$$

If we note that $\pi_{1i}g^{-1}(\hat{\lambda}_1H_1(x_i)+\hat{\lambda}_2g(d_i))\to 1$ as $N\to\infty$ then we have

$$Cov(\hat{\theta}_{DC}, \hat{\theta}_{GLS} - \theta_N) = (X'V^{-1}X)^{-1}X'V^{-1}n_1^{-1}\sum_{i \in U} H_1(x_i)y_{1i}((1 - \pi_{1i})).$$