MEng in Electronic & Computer Engineering

Andrew Whelan, Dublin City University, Prof. Conor Brennan, Dublin City University

Abstract—A heuristic model of diffuse scattering is elaborated and applied to a setup consisting of a plane wave incident on a sinusoidally shaped wall. Results are compared to full-wave method-of-moments (MoM) model, and also to Geometrical Optics (GO) and Physical Optics (PO) approximations.

Index Terms—Diffuse Scattering, Diffuse Reflection, Channel Model, Ray Tracing, Ray Shooting.

I. Introduction

HIS is the intro.

II. Models

A. Effective Roughness Model

This model is a modification of Geometrical Optics in which, in addition to the specular component, each point impinging on the middle of a surface element dW gives a diffuse contribution dE_d to the scattered field E_s whose amplitude $|dE_d|$ is given by

$$|dE_d| \propto \sqrt{\frac{dW\cos\theta_i\cos\theta_d}{\pi}} \frac{1}{r_i r_d}$$
 (1)

with the constant of proportionality depending on the incident amplitude and a scattering parameter S. Specifically, we have

$$|dE_d| = S\Upsilon\sqrt{dW}$$
, where (2a)

$$\Upsilon = \sqrt{\frac{60G_t P_t \cos \theta_i \cos \theta_d}{\pi}} \frac{1}{r_i r_d}$$
 (2b)

1) Uniform Plane Wave Incident on PEC: We start with a setup as per Figure 1.

$$k_i = \sin(\theta_i) \mathbf{e}_x - \cos(\theta_i) \mathbf{e}_y \tag{3a}$$

$$k_r = \sin(\theta_i) \mathbf{e}_x + \cos(\theta_i) \mathbf{e}_y \tag{3b}$$

$$k_d = \sin(\theta_d) \mathbf{e}_x + \cos(\theta_d) \mathbf{e}_y \tag{3c}$$

Fig. 1. A uniform plane wave strikes a PEC. The overall scattered wave is $E_s = E_r + \int_W dE_d$. E_r is just the usual specular component of geometrical optics, multiplied by R, a roughness parameter. E_d is the diffuse component - a sum of non-coherent contributions along the wall, one of which is shown here, for a drawn surface element dW.

Fig. 2. Geometry setup implies that $\frac{1}{r_i r_d} = \frac{\sin \theta_i}{w \sqrt{y^2 + (x-w)^2}}$, and $\cos \theta_d = \frac{y}{\sqrt{y^2 + (x-w)^2}}$

Then, since $G_t = 1$ (0 gain), $P_t = 1$ (uniformity of wave), dW = hdx, $|\Gamma| = 1$, and referring to the geometry of Figure 2, we get

$$E_i = e^{-j(x\sin\theta_i - y\cos\theta_i)} e_z \tag{4a}$$

$$E_r = \sqrt{1 - S^2} e^{-j(x\sin\theta_i + y\cos\theta_i)} e_z$$
 (4b)

$$E_d = S \sin \theta_i \sqrt{\frac{60hy \cos \theta_i}{\pi}} \int_W \frac{1}{w} \sqrt{\frac{dw}{(y^2 + (x - w)^2)^{\frac{3}{2}}}} e^{-j\left(\frac{x^2 + y^2 - xw}{\sqrt{y^2 + (x - w)^2}}\right)} e_{ij}$$
(4c)

References

- V. Degli-Esposti "A diffuse scattering model for urban propagation prediction", IEEE Transactions on Antennas and Propagation, vol. 49, no. 7, pp. 1111-1113, July 2001.
- [2] V. Degli-Esposti, F. Fuschini, E. M. Vitucci and G. Falciasecca, "Measurement and Modelling of Scattering From Buildings", IEEE Transactions on Antennas and Propagation, vol. 55, no. 1, pp. 143-153, Jan. 2007.
- [3] F. Mani and C. Oestges, "Ray-tracing evaluation of diffuse scattering in an outdoor scenario", Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 2011.
- [4] Hossein Ragheb, Edwin R. Hancock, "The modified Beck-mann-Kirchhoff scattering theory for rough surface analysis", Pattern Recognition, Volume 40, Issue 7, 2007, Pages 2004-2020, ISSN 0031-3203
- [5] F. Sheikh, D. Lessy and T. Kaiser, "A Novel Ray-Tracing Algorithm for Non-Specular Diffuse Scattered Rays at Terahertz Frequencies", 2018 First International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Germany, 2018, pp. 1-6.
- [6] F. Sheikh and T. Kaiser, "A Modified Beckmann-Kirchhoff Scattering Model for Slightly Rough Surfaces at Terahertz Frequencies", 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 2019, pp. 2079-2080.
- [7] E. M. Vitucci, N. Cenni, F. Fuschini and V. Degli-Esposti, "A Reciprocal Heuristic Model for Diffuse Scattering From Walls and Surfaces", IEEE Transactions on Antennas and Propagation, vol. 71, no. 7, pp. 6072-6083, July 2023.
- [8] V. Degli-Esposti, D. Guiducci, A. de'Marsi, P. Azzi and F. Fuschini, "An advanced field prediction model including diffuse scattering", IEEE Transactions on Antennas and Propagation, vol. 52, no. 7, pp. 1717-1728, July 2004.
- [9] M. Zhu, L. Cazzella, F. Linsalata, M. Magarini, M. Matteucci and U. Spagnolini, "Toward Real-Time Digital Twins of EM Environments: Computational Benchmark for Ray Launching Software", in IEEE Open Journal of the Communications Society, vol. 5, pp. 6291-6302, 2024.
- [10] Bilibashi, Denis & Vitucci, Enrico & Degli-Esposti, Vittorio, "On Dynamic Ray Tracing and Anticipative Channel Prediction for Dynamic Environments". IEEE Transactions on Antennas and Propagation. PP. 1-1. 10.1109/TAP.2023.3262155, 2023.