DEPARTMENT OF MECHATRONICS ENGINEERING

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Unit of Manipal Academy of Higher Education)

MANIPAL

Drives, Controls and Modelling Laboratory Manual (MTE 3211)

Fifth Semester B.Tech (Mechatronics Engineering)

NAME: Swaraj Dangare

REG NO: 210929156

ROLL NO: 37

Experiment II:

Open loop control of DC-DC Converters: Buck and Boost Converters

Date: 31/08/23

Aim:

To simulate the open loop control of DC-DC converters: Buck and Boost Topology

Problem 1:

Understand the concept switched mode power conversion.

DC-DC switched converter

Problem 2:

Plot the voltage response of a Buck converter across a resistive load of 22 ohm. The source voltage is 220 V and PWM signal has 50% duty cycle and 10kHz switching frequency. Also plot the current in the circuit. Model the circuit with ideal switching devices and $L = 100 \times 10^{-3}$ H, $C = 100 \times 10^{-6}$ F. Understand the significance of efficiency improvement using switched mode power conversion.

Simulate and Plot efficiency at various output voltages of buck converter.

Problem 3:

Plot the voltage response of a Boost converter across a resistive load of 22 ohm. The source voltage is 220 V and PWM signal has 50% duty cycle and 0.1ms period. Model the circuit with ideal switching devices and L = 100×10^{-3} H, C = 100×10^{-6} F.

Simulate and Plot efficiency at various output voltages of boost converter.

Open-Ended Lab Exercises - 2:

Simulate a Buck-Boost Converter with input voltage 150V and output to be variable between 100-200
 Identify the maximum and minimum duty ratio.

Converter parameters: 10 kHz Switching frequency, L=100 mH, C= $100 \mu F$, Load resistance= 22Ω . Simulate till 5sec.

i.Max Duty Cycle = 57.35

II.Min Duty Cycle = 40.431

