1. Rappels de statistiques : estimation, tests et intervalles de confiance

Objectifs: Retravailler les notions d'estimation, de tests et d'intervalles de confiance. Les exercices 1.1 à 1.3 sont à faire pendant le TD, les 1.4 et 1.5 sont à chercher de votre côté.

Exercice 1.1 (Estimation de la variance, moyenne inconnue). Soit un échantillon i.i.d. (X_1, \ldots, X_n) d'espérance μ et de variance $\sigma^2 > 0$ finie, toutes les deux inconnues. On s'intéresse à l'estimation de σ^2 . On note

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$
 et $\widehat{m}_2 := \frac{1}{n} \sum_{i=1}^{n} X_i^2$.

On considère l'estimateur de σ^2 suivant :

$$V_n = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$
.

- 1. Montrer que $V_n = \widehat{m}_2 (\overline{X})^2$.
- 2. V_n est-il un estimateur sans biais de σ^2 ? Sinon, proposer un estimateur sans biais qu'on notera $\hat{\sigma}^2$.

Dans toute la suite de l'exercice, on suppose de plus que les X_i suivent la loi normale $\mathcal{N}(\mu, \sigma^2)$. On admet que cela implique que $K_{n-1} := \sum_{i=1}^n (X_i - \bar{X})^2 / \sigma^2$ suit une loi du khi-deux à n-1 degrés de libertés, loi dont la moyenne est n-1 et la variance est 2(n-1).

- 3. En déduire le risque quadratique de V_n . Cet estimateur est-il consistant ?
- 4. Calculer le risque quadratique de $\hat{\sigma}^2$. Comparer avec celui de V_n .

Dans la suite, on cherche à estimer σ^2 avec un estimateur de la forme

$$T_{a_n} := a_n \sum_{i=1}^n (X_i - \bar{X})^2,$$

où a_n est une constante réelle qui peut dépendre de n.

- 5. Calculer le risque de T_{a_n} . Quelle est une condition nécessaire et suffisante sur a_n pour que T_{a_n} soit consistant?
- 6. A n fixé, déterminer a_n tel que T_{a_n} soit de risque quadratique minimal.
- 7. A la lumière de cet exercice, déterminer si les affirmations sont vraies ou fausses, et justifier :
 - (a) Un estimateur de risque minimal est forcément de variance minimale.
 - (b) Un estimateur non biaisé est de risque minimal.
 - (c) Un estimateur dont la variance tend vers 0 est consistant.

Exercice 1.2 (Intervalles de confiance dans le modèle uniforme). Supposons que $(X_n)_{n\geq 1}$ sont i.i.d. de loi uniforme sur $[0,\theta]$, avec $\theta>0$. Pour tout $n\geq 1$, on définit

$$M_n := \max(X_1, \ldots, X_n)$$
.

1. Montrer que $\left(\frac{M_n}{\theta}\right)^n$ est pivotale, et donner sa loi. On pourra calculer $\mathbb{P}((M_n/\theta)^n \leq u)$ pour tout $u \geq 0$.

- 2. Soit $\alpha \in]0,1]$. En déduire un intervalle de confiance I_1 de probabilité de couverture $1-\alpha$ pour θ basé sur M_n .
- 3. Trouver un équivalent du diamètre de I_1 lorsque $n \to \infty$, pour un α fixé dans]0,1].
- 4. Montrer, en étudiant la convergence simple de la fonction de répartition, que

$$n(1 - M_n/\theta) \xrightarrow[n \to \infty]{(d)} \operatorname{Exp}(1).$$

- 5. Calculer explicitement le quantile d'ordre β de la loi Exp(1) pour tout $\beta \in [0,1[$.
- 6. En déduire un intervalle de confiance asymptotique I_2 de probabilité de couverture $1-\alpha$ pour θ .
- 7. Comparer le diamètre de I_2 à celui de I_1 lorsque $n \to \infty$, pour un α fixé dans]0,1].

Exercice 1.3 (Test gaussien, variance connue). On rappelle dans cet exercice une propriété fondamentale des v.a. gaussiennes : $si(Z_j)_{1 \leq j \leq m}$ sont des v.a. réelles indépendantes et de loi respectives $(\mathcal{N}(\mu_j, \sigma_j^2))_{1 \leq j \leq m}$, alors pour tous réels $\alpha_0, \alpha_1, \ldots, \alpha_m$, on a

$$\alpha_0 + \alpha_1 Z_1 + \ldots + \alpha_m Z_m \sim \mathcal{N}\left(\alpha_0 + \sum_{j=1}^m \alpha_j \mu_j, \sum_{j=1}^m \alpha_j^2 \sigma_j^2\right).$$

Soit (X_1,\ldots,X_{25}) un échantillon de loi gaussienne d'espérance μ inconnue et de variance $\sigma^2=100$ connue.

On donne quelques quantiles de la loi $\mathcal{N}(0,1)$:

$$q_{0.975} \sim 1.96, q_{0.95} \sim 1.65, q_{0.9} \sim 1.28, q_{0.8} \sim 0.84,$$

et quelques images de sa fonction de répartition Φ :

$$\Phi(1.21) \sim 0.89, \Phi(0.90) \sim 0.82, \Phi(0.53) \sim 0.70, \Phi(0.09) \sim 0.53$$
.

1. Construire un test de niveau $\alpha = 0.10$ pour

$$\mathcal{H}_0$$
: " $\mu = 0$ " contre \mathcal{H}_1 : " $\mu = 1.5$ ",

fondé sur la moyenne empirique $\bar{X}:=\frac{1}{25}\sum_{i=1}^{25}X_i$, estimateur du paramètre μ .

- 2. On observe $\bar{x} = 1$. Quelle est la décision du test? L'erreur que l'on fait peut-être ici est-elle de première espèce? de seconde espèce? La calculer.
- 3. Déterminer la taille minimum d'un échantillon dans le même cadre que ci-dessus si l'on souhaite que le test précédent ait des erreurs de première et de seconde espèce toutes deux inférieures à 0.1.
- 4. Désormais on souhaite tester

$$\mathcal{H}_0$$
: " $\mu = 2$ " contre \mathcal{H}_1 : " $\mu < 2$ ".

Définir la région de rejet pour un niveau α donné. Exprimer la puissance du test à l'aide de la fonction Φ , et commenter la dépendance de la puissance en fonction de μ , n et σ .

Exercice 1.4 (Des questions d'identifiabilité). On considère un modèle dans lequel l'observation X est une différence X = Y - Z avec Y, Z deux variables gaussiennes indépendantes, de moyennes respectives μ_1, μ_2 et de variances respectives σ_1^2, σ_2^2 , toutes inconnues.

- 1. Ce modèle est-il identifiable?
- 2. Supposons dans cette question que $\mu_2 = 3\mu_1 + 1$ et $\sigma_2 = 2\sigma_1$. Cela rend-il le modèle identifiable ?
- 3. Qu'en est-il d'un modèle où X = Y Z avec Y, Z deux variables exponentielles indépendantes à paramètres inconnus? On pourra chercher une interprétation géométrique aux équations pour l'espérance et la variance de X.
- 4. Qu'en est-il d'un modèle où $X=\alpha(Y-Z)$ avec Y,Z deux variables exponentielles indépendantes à paramètres inconnus, et $\alpha\in\mathbb{R}$? Et si $\alpha>0$?

Exercice 1.5 (Estimateur sans biais pour une Bernoulli). On considère un échantillon (X_1, \ldots, X_n) i.i.d. de loi de Bernoulli $\mathcal{B}(p)$.

- 1. Montrer que \bar{X} (la moyenne emprique) est un estimateur sans biais de p.
- 2. Soit $g(\bar{X})$ un autre estimateur sans biais de p qui est une fonction (mesurable) de \bar{X} . Montrer que pour tout $x \in \mathbb{R}^+$:

$$\sum_{k=0}^{n} \left(g\left(\frac{k}{n}\right) - \frac{k}{n} \right) \binom{n}{k} x^{k} = 0$$

et en déduire que \bar{X} est le seul estimateur sans biais de p qui est une fonction de \bar{X} .