1D problem testing

Paul Talbot

January 17, 2014

Equation to solve:

$$-\nabla D_g \nabla \phi_g + \sigma_{a,g} \phi_g = \sum_{g'} \sigma_s^{g'g} \phi_{g'} + \frac{\chi_g}{k} \sum_{g'} \nu \sigma_{f,g'} \phi_{g'}, \quad g \in (1,2),$$

$$\tag{1}$$

The problem is 2D, but we simulate 1D by imposing reflecting boundaries on the top and bottom of the problem. The physical mesh is four-by-four regions, but each region consists of an identical material with properties described in Table 1. The flux profiles for either group are shown in Fig. 1. Note that the axes label numeric cells, not centimeters; each cell is 2 cm square.

Figure 1: Default Case Flux Profiles

Property	Group 1	Group 2
\overline{D}	1.255	0.211
Σ_a	0.008252	0.09434
$rac{ u \Sigma_f}{\Sigma_s^{1 o 2}}$	0.004602	0.1091
$\Sigma_s^{1 \stackrel{\circ}{ o} 2}$	0.02533	0
χ	1	0

Table 1: Material properties

$_{\mathrm{type}}$	runs/order	mean	variance
MC	1000	1.00373761371	0.00283423863458
SC	2	1.00342873036	0
SC	4	1.00343853923	0.00284151047378
SC	8	1.00343853932	0.00284153558534
SC	16	1.00343853933	0.00284153558566

Table 2: Uniform Uncertainty Means, Variances

1 Uniform

We allow Σ_a for the second energy group to vary uniformly on $\Sigma_a \in (0.08434, 0.10434)$ and quantify the uncertainty using stochastic collocation for generalized polynomial expansion as well as Monte Carlo sampling. The base case with k nearly exactly one is when Σ_a is at the mean, 0.09343.

For increasing orders of expansion, the mean and variance obtained are shown in Table 2.

The PDFs were obtained by Monte Carlo sampling of the polynomial expansion for the SC cases, and obtained directly for the Monte Carlo case. Each is shown below. The x-axis is the value of the scalar flux, and the y-axis is the probability of obtaining a particular flux.

Figure 2: Uniform, Stochastic Collocation, 2 and 4

Figure 3: Uniform, Stochastic Collocation, 8 and 16

Figure 4: Uniform, MC, 1000 runs

2 Normal

We allow Σ_a for the second energy group to vary normally on $\Sigma_a \in \mathcal{N}(0.09434, 0.01)$ and quantify the uncertainty using stochastic collocation for generalized polynomial expansion as well as Monte Carlo sampling.

For increasing orders of expansion, the mean and variance obtained are shown along with the run time. The other parameters for ϕ are taken as follows:

The PDFs were obtained by Monte Carlo sampling of the polynomial expansion for the SC cases, and obtained directly for the Monte Carlo case. Each is shown below. The x-axis is the value of the scalar flux, and the y-axis is the probability of obtaining a particular flux.

$_{\mathrm{type}}$	runs or order	mean	variance
MC	1000	1.00846253	0.0068809
SC	2	1.00999398	0
SC	4	1.01023002	0.00920998
SC	8	1.01023045	0.00922001
SC	16	1.01023045	0.00922001

Table 3: Normal Uncertainty Means, Variances

Figure 5: Normal, Stochastic Collocation, 2 and 4

Figure 6: Normal, Stochastic Collocation, 8 and 16

Figure 7: Normal, MC, $1000~\mathrm{runs}$