Number 1 Given
$$n(\mathbb{U}) = 20$$
, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$. Find: (a) $n(A \cup B)$, (b) $n(A^{\complement})$, (c) $n(B^{\complement})$, (d) $n(A \setminus B)$, (e) $n(\emptyset)$

Number 2 A survey of a newly refurbished 250-room BUK hostel complex to see which of the rooms have air-conditioning (A), Ceiling Fan (F), television (T) installed. The survey found:

150 had ceiling fan (A),

50 had A and F

120 had Ceiling Fan (F)

90 had A and R

30 had all three options

110 had Television (T)

40 had F and T

find the number of rooms that had

(a) only T;

(b) only A;

(c) only F;

(d) F and T but not A;

(e) A and F but not T;

(f) only one of A, F, T;

(g) at least one of A, F, T;

(h) none of A, F, T;

Number 3 Given $\sum_{i=1}^{n} f(x) = f(1) + f(2) + f(3) + \cdots + f(n)$ and

$$\sum_{i=1}^{n} g(x) = g(1) + g(2) + g(3) + \cdots + g(n), \text{ show that }$$

$$\sum_{i=1}^{n} \left(f(x) + g(x) \right) = \sum_{i=1}^{n} f(x) + \sum_{i=1}^{n} g(x)$$

Number 4 Show that the set of Complex numbers is closed under addition, subtraction, division and multiplication.

Number 5 The fourth term of an arithmetic sequence is 38 and the seventh term is 17. What is the first term?

Number 6 Discuss methods for calculating sums where the index does not start at 1. For example,

$$\sum_{k=15}^{35} (3k+4) = 1659$$

Number 7 A stone is projected vertically upwards. Its height h meters after time t seconds is given by the equation:

$$h = 60t - 5t^2$$

After how many seconds is its height equal to 135 meters?

Number 8 What is the Binomial expansion of $(3x-4)^9$?

Number 9 Plot the point $\left(2, \frac{\pi}{6}\right)$ on the polar plane.

Number 10 Write the complex number $z=2\left(\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right)$ in standard form.