

- Due 10/31 23:59
- Language
 - Please use C++ language to implement your program.
- Program
 - Use Left-Edge Algorithm to minimize the resource usage.
 - Sort intervals in a list by their left edge coordinates.
 - Consider one color at a time and assign as many intervals as possible to the color by scanning the list.
 - Increase color counter when possible intervals are exhausted, and repeat.

Problem statement

- You are given a sequencing graph consisting of v vertices including two NOP nodes which are the source and sink.
- The vertices are numbered from 0 to n (i.e, n = v 1), the source is the vertex 0 and the sink is the vertex n.
- Each vertex represents an operation with specific period.
- What's the minimum usage of resources of this graph?

Input

- * The first line contains two integers v and r (where 2 < v < 100, 0 < r < 5) denoting the number of vertices (from 0 to v 1) in the sequencing graph and the number of resource types provided (from 1 to r).
- Following v lines show the information of an adjacent matrix, where the non-zero element in each line denotes a directed edge (r, c) from v_r to v_c .
- v lines follow. The i-th line contains three integers r_i , $t1_i$ and $t2_i$ denoting that the i-th vertex uses the r_i -resource type and its period is $t1_i$ to $t2_i$.
- Note that the resource type of v_0 and v_n are always marked 0 (NOP).

Output

- You need to iterative report the number of resource r_i used in this sequencing graph following sequences of vertices shared these resource.
- You need to output your report to a file named with benchmarkName.txt
 (Don't forget to replace benchmarkName with actual benchmark name).

Example

Input

```
62^{c=2}
011000
          ←-r=0
000100 (0,2) = 1 describes
000110 a directed edge
000010 from v_0 to v_2.
000001
00000
000
      \longrightarrow v_1 require resource r_1
101
           whose period is [0, 1].
201
212
212
          v_5 is NOP
022
           whose period is [2, 2].
```

The demand of r_2 is 2, following with resource bindings.

Output

```
Demand of resource1: 1
Demand of resource2: 2
23
4
        v_2 and v_3
        share the same resource.
        Note that:
        24
        is also accepted.
```


Note

- There are 4 public and 1 hidden benchmarks to evaluate your program.
- We give a score to a benchmark when the result is correct.
- Runtime is not counted, but your runtime should not exceed 5 seconds per test.
- Please use the following format to run your program:
 - ◆ LE_STUDENTID.exe path_to_benchmark
- Do not use absolute path!

Upload data

- Please upload a zip file.
- The zip file contains a folder which is named by LE_StudentID.
- The folder must contain your source code and header file(if exists).
- We compile source code with the following command:
 - g++ LE_StudentID.cpp -o LE_StudentID
- If your source code have special requirements, please provide your makefile and readme.