

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

ПРАКТИЧЕСКАЯ РАБОТА №2

по дисциплине «Теория принятия решений» Метод Электра II

Студент группы: ИКБО-04-22	Кликушин В.И
	(Ф. И.О. студента)
Преподаватель	Железняк Л.М.
	(Ф.И.О. преподавателя)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 МЕТОД ЭЛЕКТРА II	
1.1 Выбор лучшего варианта	4
1.2 Веса предпочтений	5
1.3 Вывод	18
1.4 Результат работы программы	18
ЗАКЛЮЧЕНИЕ	20
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	21
ПРИЛОЖЕНИЯ	22

ВВЕДЕНИЕ

Цель работы: изучить метод Электра II и научиться применять его в нахождении оптимального решения в выбранной предметной области.

Предметная область: выбор оптимального высшего учебного заведения.

Метод Электра II состоит из нескольких этапов. На первом этапе определяется множество решений и для каждого из N критериев определяется вес — число, характеризующее важность соответствующего критерия. На втором этапе для каждой пары альтернатив вычисляется P^+ - сумма весов критериев, по которым одна альтернатива предпочтительнее другой, и P^- - сумма весов критериев, по которым эта же альтернатива менее предпочтительна по сравнению с другой. На третьем этапе вычисляются отношения P^+ / P^- , и если полученное отношение больше 1, то оно сохраняется в матрицу, а если меньше или равно, то не сохраняется.

На основе полученной матрицы строится граф предпочтений, и если в нём обнаруживаются петли, то назначается порог, который отбрасывает слабые связи, т.е. те пары альтернатив, которые не сильно отличаются друг от друга. Если в графе не осталось петель и граф остался целостным, то выбирается та альтернатива, к которой не идёт ни одно ребро на графе. Она является оптимальной.

1 МЕТОД ЭЛЕКТРА II

1.1 Выбор лучшего варианта

Составлена таблица критериев, по которым оцениваются университеты (Таблица 1).

Таблица 1 – Таблица критериев для оценки альтернатив

Критерии	Вес критерия	Шкала	Код	Стремление	
Проходной		Более 270			
проходнои балл (+)	4	Более 250	10	max	
Oalli (+)		Не более 250	5		
Количество		Более 100	15		
бюджетных	5	Более 50	10	min	
мест (-)		Не более 50	5		
C		Более 350 тыс. рублей	15		
Стоимость обучения (руб.)	2	Более 250 тыс. рублей	10	max	
(+)		Не более 250 тыс.	5		
Размер		Больше 2 тыс. рублей	10		
стипендии (руб.) (+)	5	Не более 2 тыс. рублей	5	max	
		Больше 900	15		
Рейтинг		баллов			
университета	2	Больше 800	10	max	
(баллы) (+)		баллов			
		Не более 800	5		
Расстояние до		Больше 10 км	15		
общежития	4	Больше 5 км	10	min	
(км) (-)		Не более 5 км	5		

Составлена таблица оценок выбора оптимального технического университета. Для 10-ти альтернатив заполнена Таблица 2.

Таблица 2 – Таблица оценок по критериям

Тиол	1 аолица 2 — 1 аолица оценок по критериям									
				Крите	рии					
№	Варианты решений	Проходно й балл (+)	Количеств о бюджетны х мест (-)	Стоимост ь обучения (руб.) (+)	Размер стипенди и (руб.) (+)	Рейтинг университет а (баллы) (+)	Рассто - яние до обще- жития (км) (-)			
1	РТУ МИРЭА	15	15	10	10	10	5			
2	МГТУ имени Н.Э. Баумана	15	10	15	10	15	15			
3	ВШЭ	15	15	15	10	10	5			
4	МАИ	5	5	10	5	5	5			
5	ИТМО	15	5	10	10	10	10			
6	СПбГУ	15	5	10	10	15	15			
7	МТУСИ.	10	10	10	5	5	5			
8	СГУ им. Чернышев -ского	5	5	5	5	10	5			
9	НИЯУ МИФИ	15	5	10	10	15	15			
1 0	МФТИ	15	5	15	5	15	15			
	Bec	4	5	2	5	2	4			
C	тремление	max	min	max	max	max	min			

1.2 Веса предпочтений

Рассмотрим альтернативы 1 и 2 (i = 1, j = 2):

$$P12 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N12 = 0 + 5 + 2 + 0 + 2 + 0 = 9;$$

$$D12 = P12 / N12 = 4/9 = 0.44 \ll 1$$
 - отбрасываем.

$$P21 = 0 + 5 + 2 + 0 + 2 + 0 = 9;$$

$$N21 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D21 = P21 / N21 = 9/4 = 2.25 > 1$$
 - принимаем.

Рассмотрим альтернативы 1 и 3 (i = 1, j = 3):

$$P13 = 0 + 0 + 0 + 0 + 0 + 0 = 0;$$

$$N13 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$D13 = P13 / N13 = 0/2 = 0 \le 1$$
 - отбрасываем.

$$P31 = 0 + 0 + 2 + 0 + 0 + 0 = 2$$
;

$$N31 = 0 + 0 + 0 + 0 + 0 + 0 = 0$$
;

$$D31 = P31 / N31 = 2/0 = \infty > 1$$
 - принимаем.

Рассмотрим альтернативы 1 и 4 (i = 1, j = 4):

$$P14 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$N14 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D14 = P14 / N14 = 11/5 = 2.2 > 1$$
 - принимаем.

$$P41 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N41 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$D41 = P41 / N41 = 5/11 = 0.45 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 1 и 5 (i = 1, j = 5):

$$P15 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
:

$$N15 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D15 = P15 / N15 = 4/5 = 0.8 \le 1$$
 - отбрасываем.

$$P51 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N51 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D51 = P51 / N51 = 5/4 = 1.25 > 1$$
 - принимаем.

Рассмотрим альтернативы 1 и 6 (i = 1, j = 6):

$$P16 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N16 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$D16 = P16 / N16 = 4/7 = 0.57 \le 1$$
 - отбрасываем.

$$P61 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$N61 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D61 = P61 / N61 = 7/4 = 1.75 > 1$$
 - принимаем.

Рассмотрим альтернативы 1 и 7 (i = 1, j = 7):

$$P17 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$N17 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D17 = P17 / N17 = 11/5 = 2.2 > 1$$
 - принимаем.

$$P71 = 0 + 5 + 0 + 0 + 0 + 0 = 5$$
;

$$N71 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$D71 = P71 / N71 = 5/11 = 0.45 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 1 и 8 (i = 1, j = 8):

$$P18 = 4 + 0 + 2 + 5 + 0 + 0 = 11;$$

$$N18 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D18 = P18 / N18 = 11/5 = 2.2 > 1$$
 - принимаем.

$$P81 = 0 + 5 + 0 + 0 + 0 + 0 = 5$$
;

$$N81 = 4 + 0 + 2 + 5 + 0 + 0 = 11$$
;

$$D81 = P81 / N81 = 5/11 = 0.45 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 1 и 9 (i = 1, j = 9):

$$P19 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N19 = 0 + 5 + 0 + 0 + 2 + 0 = 7$$
;

$$D19 = P19 / N19 = 4/7 = 0.57 \le 1$$
 - отбрасываем.

$$P91 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$N91 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D91 = P91 / N91 = 7/4 = 1.75 > 1$$
 - принимаем.

Рассмотрим альтернативы 1 и 10 (i = 1, j = 10):

$$P110 = 0 + 0 + 0 + 5 + 0 + 4 = 9;$$

$$N110 = 0 + 5 + 2 + 0 + 2 + 0 = 9;$$

$$D110 = P110 / N110 = 9/9 = 1 \le 1$$
 - отбрасываем.

$$P1010 = 0 + 5 + 2 + 0 + 2 + 0 = 9;$$

$$N1010 = 0 + 0 + 0 + 5 + 0 + 4 = 9;$$

$$D101 = P101 / N101 = 9/9 = 1 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 2 и 3 (i = 2, j = 3):

$$P23 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$N23 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D23 = P23 / N23 = 7/4 = 1.75 > 1$$
 - принимаем.

$$P32 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N32 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$D32 = P32 / N32 = 4/7 = 0.57 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 2 и 4 (i = 2, j = 4):

$$P24 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$N24 = 0 + 5 + 0 + 0 + 0 + 4 = 9$$
;

$$D24 = P24 / N24 = 13/9 = 1.44 > 1$$
 - принимаем.

$$P42 = 0 + 5 + 0 + 0 + 0 + 4 = 9;$$

$$N42 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$D42 = P42 / N42 = 9/13 = 0.69 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 2 и 5 (i = 2, j = 5):

$$P25 = 0 + 0 + 2 + 0 + 2 + 0 = 4;$$

$$N25 = 0 + 5 + 0 + 0 + 0 + 4 = 9;$$

$$D25 = P25 / N25 = 4/9 = 0.44 \le 1$$
 - отбрасываем.

$$P52 = 0 + 5 + 0 + 0 + 0 + 4 = 9;$$

$$N52 = 0 + 0 + 2 + 0 + 2 + 0 = 4;$$

$$D52 = P52 / N52 = 9/4 = 2.25 > 1$$
 - принимаем.

Рассмотрим альтернативы 2 и 6 (i = 2, j = 6):

$$P26 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$N26 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D26 = P26 / N26 = 2/5 = 0.4 \le 1$$
 - отбрасываем.

$$P62 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N62 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$D62 = P62 / N62 = 5/2 = 2.5 > 1$$
 - принимаем.

Рассмотрим альтернативы 2 и 7 (i = 2, j = 7):

$$P27 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$N27 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D27 = P27 / N27 = 13/4 = 3.25 > 1$$
 - принимаем.

$$P72 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N72 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$D72 = P72 / N72 = 4/13 = 0.31 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 2 и 8 (i = 2, j = 8):

$$P28 = 4 + 0 + 2 + 5 + 2 + 0 = 13$$
;

$$N28 = 0 + 5 + 0 + 0 + 0 + 4 = 9;$$

$$D28 = P28 / N28 = 13/9 = 1.44 > 1$$
 - принимаем.

$$P82 = 0 + 5 + 0 + 0 + 0 + 4 = 9;$$

$$N82 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$D82 = P82 / N82 = 9/13 = 0.69 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 2 и 9 (i = 2, j = 9):

$$P29 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$N29 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D29 = P29 / N29 = 2/5 = 0.4 \le 1$$
 - отбрасываем.

$$P92 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N92 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$D92 = P92 / N92 = 5/2 = 2.5 > 1$$
 - принимаем.

Рассмотрим альтернативы 2 и 10 (i = 2, j = 10):

$$P210 = 0 + 0 + 0 + 5 + 0 + 0 = 5;$$

$$N210 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D210 = P210 / N210 = 5/5 = 1 \le 1$$
 - отбрасываем.

$$P1020 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N1020 = 0 + 0 + 0 + 5 + 0 + 0 = 5;$$

$$D102 = P102 / N102 = 5/5 = 1 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 3 и 4 (i = 3, j = 4):

$$P34 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$N34 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D34 = P34 / N34 = 13/5 = 2.6 > 1$$
 - принимаем.

$$P43 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N43 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$D43 = P43 / N43 = 5/13 = 0.38 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 3 и 5 (i = 3, j = 5):

$$P35 = 0 + 0 + 2 + 0 + 0 + 4 = 6;$$

$$N35 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D35 = P35 / N35 = 6/5 = 1.2 > 1$$
 - принимаем.

$$P53 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N53 = 0 + 0 + 2 + 0 + 0 + 4 = 6$$
;

$$D53 = P53 / N53 = 5/6 = 0.83 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 3 и 6 (i = 3, j = 6):

$$P36 = 0 + 0 + 2 + 0 + 0 + 4 = 6;$$

$$N36 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$D36 = P36 / N36 = 6/7 = 0.86 \le 1$$
 - отбрасываем.

$$P63 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$N63 = 0 + 0 + 2 + 0 + 0 + 4 = 6$$
;

$$D63 = P63 / N63 = 7/6 = 1.17 > 1$$
 - принимаем.

Рассмотрим альтернативы 3 и 7 (i = 3, j = 7):

$$P37 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$N37 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D37 = P37 / N37 = 13/5 = 2.6 > 1$$
 - принимаем.

$$P73 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N73 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$D73 = P73 / N73 = 5/13 = 0.38 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 3 и 8 (i = 3, j = 8):

$$P38 = 4 + 0 + 2 + 5 + 0 + 0 = 11;$$

$$N38 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D38 = P38 / N38 = 11/5 = 2.2 > 1$$
 - принимаем.

$$P83 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N83 = 4 + 0 + 2 + 5 + 0 + 0 = 11;$$

$$D83 = P83 / N83 = 5/11 = 0.45 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 3 и 9 (i = 3, j = 9):

$$P39 = 0 + 0 + 2 + 0 + 0 + 4 = 6;$$

$$N39 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$D39 = P39 / N39 = 6/7 = 0.86 \le 1$$
 - отбрасываем.

$$P93 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$N93 = 0 + 0 + 2 + 0 + 0 + 4 = 6$$
;

$$D93 = P93 / N93 = 7/6 = 1.17 > 1$$
 - принимаем.

Рассмотрим альтернативы 3 и 10 (i = 3, j = 10):

$$P310 = 0 + 0 + 0 + 5 + 0 + 4 = 9;$$

$$N310 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$D310 = P310 / N310 = 9/7 = 1.29 > 1$$
 - принимаем.

$$P1030 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$N1030 = 0 + 0 + 0 + 5 + 0 + 4 = 9$$
;

$$D103 = P103 / N103 = 7/9 = 0.78 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 4 и 5 (i = 4, j = 5):

$$P45 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N45 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$D45 = P45 / N45 = 4/11 = 0.36 \le 1$$
 - отбрасываем.

$$P54 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$N54 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D54 = P54 / N54 = 11/4 = 2.75 > 1$$
 - принимаем.

Рассмотрим альтернативы 4 и 6 (i = 4, j = 6):

$$P46 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N46 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$D46 = P46 / N46 = 4/11 = 0.36 \le 1$$
 - отбрасываем.

$$P64 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$N64 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D64 = P64 / N64 = 11/4 = 2.75 > 1$$
 - принимаем.

Рассмотрим альтернативы 4 и 7 (i = 4, j = 7):

$$P47 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$N47 = 4 + 0 + 0 + 0 + 0 + 0 = 4;$$

$$D47 = P47 / N47 = 5/4 = 1.25 > 1$$
 - принимаем.

$$P74 = 4 + 0 + 0 + 0 + 0 + 0 = 4;$$

$$N74 = 0 + 5 + 0 + 0 + 0 + 0 = 5;$$

$$D74 = P74 / N74 = 4/5 = 0.8 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 4 и 8 (i = 4, j = 8):

$$P48 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$N48 = 0 + 0 + 0 + 0 + 2 + 0 = 2;$$

$$D48 = P48 / N48 = 2/2 = 1 <= 1$$
 - отбрасываем.

$$P84 = 0 + 0 + 0 + 0 + 2 + 0 = 2;$$

$$N84 = 0 + 0 + 2 + 0 + 0 + 0 = 2$$
;

$$D84 = P84 / N84 = 2/2 = 1 <= 1$$
 - отбрасываем.

Рассмотрим альтернативы 4 и 9 (i = 4, j = 9):

$$P49 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$N49 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$D49 = P49 / N49 = 4/11 = 0.36 \le 1$$
 - отбрасываем.

$$P94 = 4 + 0 + 0 + 5 + 2 + 0 = 11;$$

$$N94 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$D94 = P94 / N94 = 11/4 = 2.75 > 1$$
 - принимаем.

Рассмотрим альтернативы 4 и 10 (i = 4, j = 10):

$$P410 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N410 = 4 + 0 + 2 + 0 + 2 + 0 = 8;$$

$$D410 = P410 / N410 = 4/8 = 0.5 \le 1$$
 - отбрасываем.

$$P1040 = 4 + 0 + 2 + 0 + 2 + 0 = 8;$$

$$N1040 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D104 = P104 / N104 = 8/4 = 2 > 1$$
 - принимаем.

Рассмотрим альтернативы 5 и 6 (i = 5, j = 6):

$$P56 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N56 = 0 + 0 + 0 + 0 + 2 + 0 = 2;$$

$$D56 = P56 / N56 = 4/2 = 2 > 1$$
 - принимаем.

$$P65 = 0 + 0 + 0 + 0 + 2 + 0 = 2;$$

$$N65 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D65 = P65 / N65 = 2/4 = 0.5 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 5 и 7 (i = 5, j = 7):

$$P57 = 4 + 5 + 0 + 5 + 2 + 0 = 16;$$

$$N57 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$D57 = P57 / N57 = 16/4 = 4 > 1$$
 - принимаем.

$$P75 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$N75 = 4 + 5 + 0 + 5 + 2 + 0 = 16;$$

$$D75 = P75 / N75 = 4/16 = 0.25 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 5 и 8 (i = 5, j = 8):

$$P58 = 4 + 0 + 2 + 5 + 0 + 0 = 11;$$

$$N58 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D58 = P58 / N58 = 11/4 = 2.75 > 1$$
 - принимаем.

$$P85 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N85 = 4 + 0 + 2 + 5 + 0 + 0 = 11;$$

$$D85 = P85 / N85 = 4/11 = 0.36 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 5 и 9 (i = 5, j = 9):

$$P59 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
:

$$N59 = 0 + 0 + 0 + 0 + 2 + 0 = 2;$$

$$D59 = P59 / N59 = 4/2 = 2 > 1$$
 - принимаем.

$$P95 = 0 + 0 + 0 + 0 + 2 + 0 = 2;$$

$$N95 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D95 = P95 / N95 = 2/4 = 0.5 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 5 и 10 (i = 5, j = 10):

$$P510 = 0 + 0 + 0 + 5 + 0 + 4 = 9;$$

$$N510 = 0 + 0 + 2 + 0 + 2 + 0 = 4;$$

$$D510 = P510 / N510 = 9/4 = 2.25 > 1$$
 - принимаем.

$$P1050 = 0 + 0 + 2 + 0 + 2 + 0 = 4;$$

$$N1050 = 0 + 0 + 0 + 5 + 0 + 4 = 9;$$

$$D105 = P105 / N105 = 4/9 = 0.44 <= 1$$
 - отбрасываем.

Рассмотрим альтернативы 6 и 7 (i = 6, j = 7):

$$P67 = 4 + 5 + 0 + 5 + 2 + 0 = 16;$$

$$N67 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D67 = P67 / N67 = 16/4 = 4 > 1$$
 - принимаем.

$$P76 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$N76 = 4 + 5 + 0 + 5 + 2 + 0 = 16;$$

$$D76 = P76 / N76 = 4/16 = 0.25 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 6 и 8 (i = 6, j = 8):

$$P68 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$N68 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$D68 = P68 / N68 = 13/4 = 3.25 > 1$$
 - принимаем.

$$P86 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$N86 = 4 + 0 + 2 + 5 + 2 + 0 = 13$$
;

$$D86 = P86 / N86 = 4/13 = 0.31 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 6 и 9 (i = 6, j = 9):

$$P69 = 0 + 0 + 0 + 0 + 0 + 0 = 0;$$

$$N69 = 0 + 0 + 0 + 0 + 0 + 0 = 0;$$

$$D69 = P69 / N69 = 0/0 = 1 \le 1$$
 - отбрасываем.

$$P96 = 0 + 0 + 0 + 0 + 0 + 0 = 0;$$

$$N96 = 0 + 0 + 0 + 0 + 0 + 0 = 0;$$

$$D96 = P96 / N96 = 0/0 = 1 \le 1$$
 - отбрасываем.

Рассмотрим альтернативы 6 и 10 (i = 6, j = 10):

$$P610 = 0 + 0 + 0 + 5 + 0 + 0 = 5;$$

$$N610 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$D610 = P610 / N610 = 5/2 = 2.5 > 1$$
 - принимаем.

$$P1060 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$N1060 = 0 + 0 + 0 + 5 + 0 + 0 = 5;$$

$$D106 = P106 / N106 = 2/5 = 0.4 <= 1$$
 - отбрасываем.

Рассмотрим альтернативы 7 и 8 (i = 7, j = 8):

$$P78 = 4 + 0 + 2 + 0 + 0 + 0 = 6;$$

$$N78 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$D78 = P78 / N78 = 6/7 = 0.86 \le 1$$
 - отбрасываем.

$$P87 = 0 + 5 + 0 + 0 + 2 + 0 = 7;$$

$$N87 = 4 + 0 + 2 + 0 + 0 + 0 = 6;$$

$$D87 = P87 / N87 = 7/6 = 1.17 > 1$$
 - принимаем.

Рассмотрим альтернативы 7 и 9 (i = 7, j = 9):

$$P79 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N79 = 4 + 5 + 0 + 5 + 2 + 0 = 16;$$

$$D79 = P79 / N79 = 4/16 = 0.25 \le 1$$
 - отбрасываем.

$$P97 = 4 + 5 + 0 + 5 + 2 + 0 = 16$$
;

$$N97 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D97 = P97 / N97 = 16/4 = 4 > 1$$
 - принимаем.

Рассмотрим альтернативы 7 и 10 (i = 7, j = 10):

$$P710 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N710 = 4 + 5 + 2 + 0 + 2 + 0 = 13;$$

$$D710 = P710 / N710 = 4/13 = 0.31 \le 1$$
 - отбрасываем.

$$P1070 = 4 + 5 + 2 + 0 + 2 + 0 = 13$$
;

$$N1070 = 0 + 0 + 0 + 0 + 0 + 4 = 4$$
;

$$D107 = P107 / N107 = 13/4 = 3.25 > 1$$
 - принимаем.

Рассмотрим альтернативы 8 и 9 (i = 8, j = 9):

$$P89 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N89 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$D89 = P89 / N89 = 4/13 = 0.31 \le 1$$
 - отбрасываем.

$$P98 = 4 + 0 + 2 + 5 + 2 + 0 = 13;$$

$$N98 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D98 = P98 / N98 = 13/4 = 3.25 > 1$$
 - принимаем.

Рассмотрим альтернативы 8 и 10 (i = 8, j = 10):

$$P810 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$N810 = 4 + 0 + 2 + 0 + 2 + 0 = 8;$$

$$D810 = P810 / N810 = 4/8 = 0.5 \le 1$$
 - отбрасываем.

$$P1080 = 4 + 0 + 2 + 0 + 2 + 0 = 8;$$

$$N1080 = 0 + 0 + 0 + 0 + 0 + 4 = 4;$$

$$D108 = P108 / N108 = 8/4 = 2 > 1$$
 - принимаем.

Рассмотрим альтернативы 9 и 10 (i = 9, j = 10):

$$P910 = 0 + 0 + 0 + 5 + 0 + 0 = 5;$$

$$N910 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$D910 = P910 / N910 = 5/2 = 2.5 > 1$$
 - принимаем.

$$P1090 = 0 + 0 + 2 + 0 + 0 + 0 = 2;$$

$$N1090 = 0 + 0 + 0 + 5 + 0 + 0 = 5;$$

$$D109 = P109 / N109 = 2/5 = 0.4 <= 1$$
 - отбрасываем.

Составлена матрица предпочтений с внесенными и принятыми значениями D (Таблица 3).

Таблица 3 – Полная матрица предпочтений альтернатив.

	1	2	3	4	5	6	7	8	9	10
1	-	ı	-	2.2	ı	ı	2.2	2.2	ı	-
2	2.25	ı	1.75	1.44	ı	1	3.25	1.44	1	-
3	8	1	-	2.6	1.2	1	2.6	2.2	ı	1.29
4	-	ı	-	-	ı	ı	1.25	ı	ı	-
5	1.25	2.25	-	2.75	-	2	4	2.75	2	2.25
6	1.75	2.5	1.17	2.75	1	1	4	3.25	1	2.5
7	-	-	-	-	-	-	-	-	-	-
8	-	1	-	-	1	ı	1.17	1	1	-
9	1.75	2.5	1.17	2.75	-	-	4	3.25	-	2.5
10	-	-	-	2	-	-	3.25	2	-	_

По матрице построен граф предпочтений (Рисунок 1).

Рисунок 1 – Вид графа предпочтений

Назначен порог отбора предпочтений C = 1.76 (это соответствует тому, что учитываются только более сильные связи в графе).

Таким образом, матрица разрежается. В ней остаются только самые сильные связи (Таблица 4).

Таблица 4 – Матрица предпочтений проектов, при пороге С=1.76

Матрица преопочтении проектов, при пороге С-1.70										
	1	2	3	4	5	6	7	8	9	10
1	-	ı	ı	2.2	ı	ı	2.2	2.2	ı	i
2	2.25	ı	ı	-	ı	ı	3.25	ı	ı	i
3	8	1		2.6	-	-	2.6	2.2	1	-
4	-	-	-	-	-	-	-	-	-	-
5	-	2.25	-	2.75	-	2	4	2.75	2	2.25
6	-	2.5	-	2.75	-	-	4	3.25	-	2.5
7	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-
9	-	2.5	•	2.75	ı	ı	4	3.25	•	2.5
10	-	-		2	-		3.25	2		-

По этой матрице построен граф предпочтений (Рисунок 2).

Рисунок 2 – Вид графа предпочтений для случая порога принятия решений С = 1.76

Циклов в графе нет, при этом граф остался целостным. Оптимальным решением является альтернатива A5 и A3.

1.3 Вывод

Метод Электра II позволяет определить оптимальное решение, уменьшив субъективный фактор, который был у метода Парето и у методов сужения, однако если ставить порог равным 1, то в графе могут появляться циклы, из-за которых невозможно определить оптимальное решение. Поэтому нужно экспериментально определять подходящее значение порога.

1.4 Результат работы программы

	Матрица предпочтений:										
	1	2	3	4	5	6	7	8	9	10	
1	0	0	0	2.2	 0	0	2.2	2.2	 0	0	
2	2.25	0	1.75	1.44	0	0	3.25	1.44	0	0	
3	inf	0	0	2.6	1.2	0	2.6	2.2	0	1.29	
4	0	0	0	0	0	0	1.25	0	0	0	
5	1.25	2.25	0	2.75	0	2	4	2.75	2	2.25	
6	1.75	2.5	1.17	2.75	0	0	4	3.25	0	2.5	
7	0	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	1.17	0	0	0	
9	1.75	2.5	1.17	2.75	0	0	4	3.25	0	2.5	
10	0	0	0	2	0	0	3.25	2	0	0	

Рисунок 3 – Вывод матрицы предпочтений

	Матрица предпочтений:									
	1	2	3	4	5	6	7	8	9	10
1	0 	0	0	2.2	0	0	2.2	2.2	0	0
2	2.25	0	0	0	0	0	3.25	0	0	0
3	inf	0	0	2.6	0	0	2.6	2.2	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	2.25	0	2.75	0	2	4	2.75	2	2.25
6	0	2.5	0	2.75	0	0	4	3.25	0	2.5
7	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	2.5	0	2.75	0	0	4	3.25	0	2.5
10	0	0	0	2	0	0	3.25	2	0	0

Рисунок 4 – Вывод матрицы предпочтений с порогом = 1.76

ЗАКЛЮЧЕНИЕ

В ходе данной практической работы мной был изучен метод Электра II из семейства Электра и применён для нахождения оптимального высшего заведения. Преимуществами большая технического метода является объективность по сравнению с методом Парето и его методами сужения, однако, необходимо чтобы получить единственное решение, дополнительно стремления, устанавливать порог чтобы на графе предпочтений образовывалось петель и чтобы он оставался целостным.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Болотова Л. С. Многокритериальная оптимизация. Болотова Л. С., Сорокин А. Б. [Электронный ресурс] / Метод. указания по вып. курсовой работы М.: МИРЭА, 2015.
- 2. Сорокин А. Б. Методы оптимизации: гибридные генетические алгоритмы. Сорокин А. Б. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2016.
- 3. Сорокин А. Б. Линейное программирование: практикум. Сорокин А. Б., Бражникова Е. В., Платонова О. В. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2017.

приложения

Приложение A – Код реализации метода Электра II на языке Python.

Приложение А

Код реализации метода Электра II на языке Python.

Листинг А.1. Реализация метода Электра II.

```
import csv
import math
from graphviz import Digraph
def print matrix (c = 1):
    '''Функция для вывода матрицы предпочтений с порогом'''
    print('-' * (10 * (len(matrix)+1) + 4))
    print(11 * ' ', end='')
    for i in range(1, len(matrix) + 1):
    print(f'{i}'.ljust(11), end='')
print('\n' + '-' * (10 * (len(matrix)+1) + 4))
    for i in range(len(matrix)):
        print(str(i+1).ljust(10), end='|')
        for j in range(len(matrix)):
            if matrix[i][j] < c:</pre>
                matrix[i][j] = 0
            print(str(matrix[i][j]).ljust(10), end=' ')
        print()
    print('-' * (10 * (len(matrix)+1) + 4))
def compare alternatives(i, j, alt i, alt j, criteria):
    '''Функция для сравнения альтернатив по кодам'''
    P, N = 0, 0
    P STR, N STR = f'P\{i\}\{j\} =', f'N\{i\}\{j\} ='
    for i in range(len(criteria)):
        counter_i, counter_j = 0, 0
        code = criteria[i]['Код'].split(';')
        for border in criteria[i]['Шкала'].split(';')[1:]:
            if alt i[i] < float(border):</pre>
                counter i += 1
            if alt_j[i] < float(border):</pre>
                counter j += 1
        alt i[i] = float(code[counter i])
        alt j[i] = float(code[counter j])
        if criteria[i]['Стремление'] == '-':
            alt i[i] *= (-1)
            alt j[i] *= (-1)
        if alt i[i] > alt j[i]:
            P += int(criteria[i]['Вес критерия'])
            P STR += (' ' + criteria[i]['Вес критерия'] + ' +')
            N STR += (' ' + str(0) + ' +')
        elif alt i[i] < alt j[i]:
            N += int(criteria[i]['Вес критерия'])
            N STR += (' ' + criteria[i]['Вес критерия'] + ' +')
            P STR += (' ' + str(0) + ' +')
            N STR += (' ' + str(0) + ' +')
            P STR += (' ' + str(0) + ' +')
    return P \overline{STR}.rstrip(' +') + f' = {P}', N \overline{STR}.rstrip(' +') + f' = {N}', P, N
def generate matrix():
    '''Функция для генерации матрицы предпочтений'''
```

Продолжение Листинга А.1

```
def get D(P, N):
                        '''Функция для расчёта D-стремления'''
                      if N == 0 and P == 0:
                                  return 1
                      elif N == 0 and P != 0:
                                  return math.inf
                      value = P/N
                      if math.floor(value) == math.ceil(value):
                                  value = int(value)
                      else:
                                  value = round(value, 2)
                      return value
          def generate D STR(i, j, P, N):
                       '''Функция для генерации D-стремления'''
                      value = get D(P, N)
                      if value <= 1:
                                  return f'D\{i\}\{j\} = P\{i\}\{j\} / N\{i\}\{j\} = \{P\}/\{N\} = \{value\} \le 1 - P\{i\}\{j\} = P\{i\}\{
отбрасываем.'
                      else:
                                  if value == math.inf:
                                             value = '\u221e'
                                  return f'D\{i\}\{j\} = P\{i\}\{j\} / N\{i\}\{j\} = \{P\}/\{N\} = \{value\} > 1 - P\{value\} > 1
принимаем.'
           for i in range(1, len(data)+1):
                      for j in range(i+1, len(data)+1):
                                  print(f'Paccмотрим альтернативы \{i\} и \{j\} (i = \{i\}, j = \{j\}):')
                                  alt i, alt j = data[i-1].copy(), data[j-1].copy()
                                  P STR, N STR, P, N = compare alternatives(
                                             i, j, alt_i, alt_j, criteria)
                                  print(P STR+';', N STR+';', sep='\n')
                                 print(generate D STR(i, j, P, N))
                                  D = get D(P, N)
                                  if D > 1:
                                            matrix[i-1][j-1] = D
                                 print(f'P{j}{i}{N STR[3:]};', f'N{j}{i}{P STR[3:]};', sep='\n')
                                 print(generate D STR(j, i, N, P))
                                  D = get D(N, P)
                                  if D > 1:
                                            matrix[j-1][i-1] = D
def draw graph(c=1):
           '''Функция для рисования хаотичного графа с порогом'''
           dot = Digraph (f'Хаотичный Граф с порогом = {c}')
           for i in range(len(matrix)):
                      dot.node(str(i+1))
           for i in range(len(matrix)):
                      for j in range(len(matrix)):
                                  if matrix[i][j] >= c:
                                             dot.edge(str(i+1), str(j+1))
           dot.render(view=True)
def smart draw graph(levels, c=1):
           '''Функция для рисования графа по уровням с порогом'''
           dot1 = Digraph(f"Граф с порогом = {c}")
           for i in range(len(matrix)):
                      for j in range(len(matrix)):
                                  if matrix[i][j] >= c:
```

Продолжение Листинга А.1

```
dot1.edge(str(i+1), str(j+1))
    for i in range(len(levels)):
        sub = Digraph (name='Подграф'+str(i))
        sub.attr(rank='same')
        sub.node(f'{i+1}-ый уровень')
        for j in levels[i]:
            sub.node(f'{j+1}')
        dot1.subgraph(sub)
    dot1.render(view=True)
def get levels(c=1):
    '''Вспомогательная функция для определения уровня вершин'''
    levels = [] # массив всех вершин visited = [] # массив посещённых вершин
    while len(visited) < len(matrix):</pre>
        level = []
        for i in range(len(matrix)):
            if i in visited:
                continue
            flag = True
            for j in range(len(matrix)):
                if matrix[j][i] >= c:
                     flag = any(j in lev for lev in levels)
                if not flag:
                    break
            if flag:
                level.append(i)
                visited.append(i)
        levels.append(level)
        print(f'{len(levels)}-ый уровень: ' +
               ', '.join(map(lambda x: str(x+1), level)))
    return levels
with open('TPR PRACT2 LIST.csv', encoding='utf-8') as file, \setminus
        open('codes.csv', encoding='utf-8') as criteria file:
    criteria = [i for i in csv.DictReader(
        criteria file)] # Информация о критериях
    data = list(map(lambda x: [float(i) for i in x], [
                i[1:] for i in csv.reader(file)][1:])) # Значения критериев для
рассматриваемых альтернатив
    matrix = [[0]*len(data) for in range(len(data))] # Матрица предпочтений
    generate matrix()
    print("Матрица предпочтений:".center(201))
    print matrix()
    draw graph()
    arg = 1.76
    smart draw graph(get levels(c=arg), c=arg)
```