This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound Compound of the formula I:

$$R^{3} \xrightarrow{Q} R^{1}$$
 (I)

in which

 R^1 represents a (C_6-C_{18}) aryl group, which is optionally substituted and/or optionally fused to a saturated or unsaturated, monocyclic or polycyclic 5- to 8-membered nucleus optionally containing one or more hetero atoms chosen from O, N and S, the said nucleus itself being optionally substituted; an optionally substituted, saturated, unsaturated or aromatic 5- to 8-membered monocyclic heterocyclic group containing one or more hetero atoms chosen from O, N and S; an optionally substituted C_2 - C_{10} alkenyl group; or a C_1 - C_{10} alkyl group;

 R^2 and R^3 independently represent is a hydrogen atom or an optionally substituted (C_6 - C_{18}) aryl; or alternatively R^2 and R^3 together represent a C_3 - C_6 alkylene chain;

 R^3 is an optionally substituted (C_6 - C_{18})aryl; or alternatively R^2 and R^3 together represent a C_3 - C_6 alkylene chain;

and

R represents a hydrogen atom; a C_1 - C_{10} alkyl group; or a $(C_6$ - $C_{18})$ aryl $(C_1$ - $C_{10})$ alkyl group; and the salts or a salt thereof with acids or bases,

or a pharmaceutically acceptable derivative, or stereoisomer thereof, including mixtures thereof in all proportions

it being understood that with the proviso that the following compounds are excluded from the protection:

- 2 -

DOCKET NO.: MERCK-3129

when the compounds where R^3 = phenyl; , R = ethyl; , R^1 = ethyl or phenyl; and R^2 = H, and

methyl (R,S)-2-methoxy-4-phenylbut-3-enoate

and also the pharmaceutically acceptable derivatives, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.

2. (Currently Amended) A compound Compound according to Claim 1 of the formula I in which R^1 represents a (C_6 - C_{10})aryl group, preferably phenyl, which is optionally substituted and/or fused to a carbocyclic or heterocyclic monocyclic 5- to 8-membered nucleus containing from 0 to 4 hetero atoms chosen from O, N and S, which is itself optionally substituted; an optionally substituted C_2 - C_{10} alkenyl group; a hydrogen atom;

 R^2 and R^3 -independently represent <u>is</u> a hydrogen atom; <u>or</u> (C₆-C₁₀)aryl, preferably optionally substituted phenyl; R^3 is a (C₆-C₁₀)aryl, or R^2 and R^3 together represent a C₃-C₆ alkylene chain;

and

R represents a hydrogen atom; a C_1 - C_{10} alkyl group; a $(C_6$ - $C_{10})$ aryl $(C_1$ - $C_{10})$ alkyl group; and also the pharmaceutically acceptable derivatives, salts, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.

3. (Currently Amended) A compound Compound according to Claim 1, eharacterised in that wherein when R^1 represents substituted (C_6 - C_{10})aryl, the aryl nucleus is substituted by one or more of the following radicals:

trifluoromethyl; a halogen atom; a monocyclic, bicyclic or tricyclic aromatic heterocyclic group comprising one or more hetero atoms chosen from O, N and $S_{\frac{1}{2}}$ and optionally substituted by one or more radicals T as defined below; a group Het-CO- in which Het represents an aromatic heterocyclic group as defined above, optionally substituted by one or more radicals T; a C_1 - C_6 alkylenediyl chain; a C_1 - C_6 alkylenedioxy chain; nitro; cyano; $(C_1$ - C_{10})alkyl; $(C_1$ - C_{10})alkylcarbonyl; $(C_1$ - C_{10})alkoxycarbonyl-A- in which A represents $(C_1$ - C_6)alkylene, $(C_2$ - C_6)alkenylene or a bond; $(C_3$ - C_{10})cycloalkyl; trifluoromethoxy; di $(C_1$ - C_{10})alkylamino; $(C_1$ - C_{10})alkoxy $(C_1$ - C_{10})alkoxy; $(C_6$ - C_{18})aryl optionally substituted by one or more radicals T; $(C_6$ - C_{18})aryl $(C_1$ - C_{10})alkoxy- (C_0) n- in

which n is 0 or 1 and aryl is optionally substituted by one or more radicals T; (C_6-C_{18}) aryloxy $(CO)_n$ - in which n is 0 or 1 and in which aryl is optionally substituted by one or more radicals T; (C_6-C_{18}) aryloxy (C_1-C_{10}) alky $(CO)_n$ - in which n is 0 or 1 and in which aryl is optionally substituted by one or more radicals T; a saturated or unsaturated, monocyclic 5- to 8-membered heterocycle comprising one or more hetero atoms chosen from O, N and S, optionally substituted by one or more radicals T; (C_6-C_{18}) arylcarbonyl optionally substituted by one or more radicals T; (C_6-C_{18}) arylcarbonyl-B- $(CO)_n$ - in which n is 0 or 1; B represents (C_1-C_6) alkylene or (C_2-C_6) alkenylene and aryl is optionally substituted by one or more radicals T; (C_6-C_{18}) aryl-C- $(CO)_n$ - in which n is 0 or 1, C represents (C_1-C_6) alkylene or (C_2-C_6) alkenylene and aryl is optionally substituted by one or more radicals T; (C_6-C_{18}) aryl fused to a saturated or unsaturated heterocycle as defined above, optionally substituted by one or more radicals T; (C_6-C_{18}) aryl fused to a saturated or unsaturated heterocycle as defined above, optionally substituted by one or more radicals T; (C_6-C_{18}) aryl fused to a

T is chosen from a halogen atom; (C_6-C_{18}) aryl; (C_1-C_6) alkyl; (C_1-C_6) alkoxy; nitro; carboxyl; (C_1-C_6) alkoxycarboxyl; and T can represent oxo in the case where it substitutes replaces a saturated or unsaturated heterocycle; or alternatively T represents (C_1-C_6) alkoxycarbonyl (C_1-C_6) alkyl; or (C_1-C_6) alkylcarbonyl $((C_1-C_6)$ alkyl)_n- in which n is 0 or 1; and also the pharmaceutically acceptable derivatives, salts, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.

- 4. (Currently Amended) <u>A compound</u> <u>Compound</u> according to Claim 1,characterised in that <u>wherein</u> when R¹ is aryl, R¹ represents phenyl and also the pharmaceutically acceptable derivatives, salts, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.
- 5. (Currently Amended) A compound Compound according to Claim 1, characterised in that wherein R^1 represents (C_1 C_{10}) alkyl, preferably (C_1 - C_3)alkyl, and R^2 and R^3 represent, independently of each other, H or optionally substituted (C_6 C_{18}) aryl, and also the pharmaceutically acceptable derivatives, salts, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.
 - 6. (Currently Amended) A compound Compound according to Claim 1, characterised in

- 4 -

that wherein R² is H and R³ represents unsubstituted aryl, preferably unsubstituted phenyl, and also the pharmaceutically acceptable derivatives, salts, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.

- 7. (Currently Amended) A compound Compound according to Claim 1,eharacterised in that wherein when R represents (C_1 C_{10}) alkylaryl, preferably benzyl, R^1 and R^3 represent unsubstituted aryl, preferably phenyl, and also the pharmaceutically acceptable derivatives, salts, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.
- 8. (Currently Amended) <u>A compound</u> according to Claim 1 of the formula I, which <u>are is:</u>
- methyl (R,S)-2-methoxy-4-phenylbut-3-enoate
- (R,S)-2-methoxy-4-phenylbut-3-enoic acid
- methyl (R,S)-2-propoxy-4-phenylbut-3-enoate
- (R,S)-2-propoxy-4-phenylbut-3-enoic acid
- benzyl (R,S)-2-phenoxy-4-phenylbut-3-enoate
- methyl (R,S)-2-trifluoromethylphenoxy-4-phenylbut-3-enoate
- (R,S)-2-phenoxy-4-phenylbut-3-enoic acid
- (R,S)-2-trifluoromethylphenoxy-4-phenylbut-3-enoic acid (Z and E forms),
 and also the or a pharmaceutically acceptable derivative, salt or stereoisomer derivatives, salts, solvate derivatives and stereoisomers thereof, including mixtures thereof in all proportions.
- 9. (Withdrawn) Process for the preparation of a compound of the formula I according to Claim 1, characterised in that a halide of the formula R^1 -Y in which Y represents a halogen atom and R^1 is (C_1-C_{10}) alkyl, is reacted with a compound having the following formula:

$$R^3$$
 R^2
 O
 R

in which R^2 , R^3 and R are as defined in Claim 1 for formula I, in the presence of silver oxide.

10. (Withdrawn) Process for the preparation of a compound of the formula I according to Claim 1, in which R^1 represents (C_6 - C_{10}) aryl, which is optionally substituted and/or optionally fused to a monocyclic heterocyclic saturated or unsaturated 5- to 8-membered nucleus containing one or more hetero atoms chosen from O, N and S, which is itself optionally substituted, characterised in that a compound of the formula:

$$R^3$$
 R^2
 O
 R
 (V)

in which R^2 , R^3 and R are as defined in Claim 1 for formula I, is reacted with a compound of the formula:

R1-OH

in which R¹ is as defined above, in the presence of rhodium tetraacetate.

- 11. (Withdrawn) Process for the preparation of a compound of the formula I, characterised in that a compound of the formula as defined in Claim 9 is reacted with a compound of the formula R^1 -OH in the presence of triphenylphosphine and ethyl diazodicarboxylate.
- 12. (Withdrawn) Process for the preparation of a compound of the formula I according to Claim 1, characterised in that a compound of the formula II_{Hal}:

$$R^3$$
 R^2
 R^2
 R^3
 R^3

in which R^2 , R^3 and R are as defined in Claim 1 for formula I and Hal represents a halogen atom, is reacted with a compound of the formula R^1 -OH.

13. (Withdrawn) Process for the preparation of a compound of the formula I according to Claim 3, Hal being a halogen atom, according to the following reaction scheme, the first step being performed in a polar aprotic solvent in the presence of a palladium(0) complex and a base; the second step being a saponification:

- 6 -

DOCKET NO.: MERCK-3129

$$R^3$$
 R^3
 R^3

in which reaction scheme G represents a monocyclic, bicyclic or tricyclic aromatic heterocyclic group comprising one or more hetero atoms chosen from O, N and S, and optionally substituted by one or more radicals T as defined above when R¹, in the final compound, represents aryl substituted by such a heterocyclic group; or alternatively G represents aryl optionally substituted by one or more radicals T as defined in Claim 3 when, in the final compound, R¹ represents aryl substituted by an aryl group, which is itself optionally substituted by one or more radicals T;

Hal represents a halogen atom

14-15. (Cancelled)

16. (New)A compound according to claim 2, wherein R¹ is (C₁-C₃)alkyl or a phenyl which is optionally substituted and/or fused to a carbocyclic or heterocyclic monocyclic 5- to 8-membered nucleus containing from 0 to 4 hetero atoms chosen from O, N and S, which is itself optionally substituted.

17 (New) A compound according to claim 2, wherein R² and R³ independently represent a substituted or unsubstituted phenyl.

18. (New) A compound according to claim 7, wherein R represents benzyl.

- 7 -

DOCKET NO.: MERCK-3129