PHY306 Advanced Quantum Mechanics Jan-Apr 2024: Assignment 3

Prof. Kavita Dorai, Department of Physics IISER Mohali. kavita@iisermohali.ac.in

- 1. Consider a two-level system. Let a perturbation act on it which is a delta function in time $H_p = U\delta(t t_0)$. Assume that $U_{aa} = U_{bb} = 0$ and let $U_{ab} = \alpha$. Calculate the probability P_{ab} that a transition occurs from state $|a\rangle$ to state $|b\rangle$.
- 2. Consider a multilevel system. Assume a constant perturbation (which was switched on at time t=0 and switched off again at a later time t). Find the probability of a transition (to first order) from a state N to a state m ($m \neq N$) as a function of t.
- 3. Find the transition probability (to first order) if the perturbation is a sinusoidal function of time $H_p = V \cos(\omega t)$.
- 4. A particle at time t = 0 starts out in the Nth state of an infinite square well. Now water leaks into the well and then drains out again, so that the bottom is at a uniform potential V₀(t) with V₀(0) = V₀(T) = 0. (i) Solve the exact equation and show that the wave function changes phase but no transitions to other states occur. Find the phase change φ(T) in terms of the function V₀(t). (ii) Solve the problem using first-order perturbation theory and compare the solutions.
- 5. A particle of mass m is initially in the ground state of a one-dimensional infinite square well. At time t=0 a brick is dropped into the well so that the potential becomes

$$V(x) = V_0, 0 \le x \le a/2$$

= 0, $a/2 < x \le a$
= ∞ , otherwise

where $V_0 \ll E_1$. After a time T, the brick is removed and the energy of the particle is measured. Find the probability (upto first order) that the energy is now E_2 .

6. An electron is at rest at the origin, in the presence of a magnetic field whose magnitude B_0 is constant but whose direction rides around at

a constant angular velocity ω on the lip of a cone of opening angle α such that

$$B(t) = B_0[\sin\alpha\cos\omega t \hat{i} + \sin\alpha\sin\omega t \hat{j} + \cos\alpha \hat{k}]$$

Use time-dependent perturbation theory (to first order) to calculate the probability of a transition from spin up (initial state) to spin down, as a function of time.

- 7. A particle initially $(t \to -\infty)$ is in its ground state in an infinite potential well with walls at x = 0 and x = a. It is subjected at time t = 0 to a time-dependent perturbation $V(t) = \epsilon x e^{-t^2}$ where ϵ is a small real number. Calculate the probability that the particle will be found in its first excited state after a very long time $(t \to \infty)$.
- 8. A hydrogen atom initially $(t \to -\infty)$ in its ground state, is placed at time t=0 in a time-dependent electric field pointing along the z-axis $E(t) = E_0 \tau \hat{k}/(\tau^2 + t^2)$ where τ is a constant having the dimension of time. Calculate the probability that the atom will be found in the 2p state after a sufficiently long time $(t \to \infty)$.