Interoperation for Lazy and Eager Evaluation

- Matthews & Findler
 - Interoperation
 - Boundaries & natural embedding
 - Type safety and equality
- Kinghorn
- Incompatible evaluation strategies

Lambda calculus

Typing
Interoperation
Model
Laziness
Solution

Set of terms, e

(I)
$$x \in e$$

(2)
$$M \in e \Rightarrow \lambda x . M \in e$$

(3)
$$M, N \in e \Rightarrow M N \in e$$

$$e = x \mid \lambda x . e \mid e e$$

(2)
$$\lambda x \cdot e$$

$$(\lambda y.y) (\lambda y.y)$$

by (1), (2), (3)

$$\lambda x . x x \equiv \lambda x . (x x) \neq (\lambda x . x) x$$

$$\lambda x x' . e \equiv \lambda x . \lambda x' . e$$

$$e e' e'' = (e e') e''$$

term [expression argument / expression parameter] = term'

$$x [e/x] = e$$
 $x [e/x'] = x$
 $(\lambda x.e) [e'/x] = \lambda x.e$
 $(\lambda x.e) [e'/x'] = \lambda x.(e [e'/x'])$
 $(e e') [e''/x] = (e [e''/x]) (e' [e''/x])$

Set of reductions, →

$$(e, e') \in \rightarrow$$

$$e \rightarrow e'$$

$$e \rightarrow e'$$

$$e' \rightarrow e''$$

$$e \rightarrow e' \rightarrow e''$$

$$(\lambda x . e) e' \rightarrow e [x / e']$$

$$(\lambda x.e) e' \rightarrow e [x/e']$$

$$e \rightarrow e' \Rightarrow e e'' \rightarrow e' e''$$

$$\frac{e \rightarrow e'}{e e'' \rightarrow e' e''}$$

$$e \rightarrow e' \Rightarrow (\lambda x . e'') e \rightarrow (\lambda x . e'') e'$$

$$\frac{e \rightarrow e'}{(\lambda x . e'') e \rightarrow (\lambda x . e'') e'}$$

error condition → error

$$\frac{e \rightarrow e'}{e e'' \rightarrow e' e''}$$

$$\begin{array}{c} e \rightarrow error \\ \hline e e' \rightarrow error \end{array}$$

$$\frac{e \rightarrow e'}{(\lambda x . e'') e \rightarrow (\lambda x . e'') e'}$$

$$\frac{e \rightarrow error}{(\lambda x . e') e \rightarrow error}$$

E = all evaluation contexts

$$(\lambda \times .e) e' \rightarrow e [x / e']$$

$$E [(\lambda \times .e) e'] \rightarrow E [e [x / e']]$$

$$E = [] | E e | (\lambda \times .e) E$$

$$...[]...$$

$$E [e] = ...e...$$

```
v = \lambda x \cdot e \mid \underline{n}
```

 $e = \begin{cases} x \mid v \mid e e \mid +/-e e \mid if0 e e e \\ fun? e \mid num? e \mid wrong string \end{cases}$

wrong string

E [wrong string] → Error: string

+ e e

 $E \left[+ \underline{n} \underline{n'} \right] \rightarrow E \left[\underline{n + n'} \right]$

- e e

 $E \begin{bmatrix} -\underline{n} \underline{n}' \end{bmatrix} \rightarrow E \begin{bmatrix} \underline{\max(n-n',0)} \end{bmatrix}$

ifO e e e

E [if 0 0 e e'] \rightarrow E [e] E [if 0 n e e'] \rightarrow E [e']

fun? e

E [fun? $(\lambda x \cdot e)$] $\rightarrow E$ [0] E [fun? \underline{n}] $\rightarrow E$ [\underline{l}]

num? e

E [num? \underline{n}] \rightarrow E [$\underline{0}$] E [num? ($\lambda x \cdot e$)] \rightarrow E [\underline{I}] Typing
Interoperation
Model
Laziness
Solution

Set of types, t

$$t = \mathbf{N} \mid t \rightarrow t$$

 $\lambda x:t.e$

$$t \to t \to t \equiv t \to (t \to t)$$

Set of judgments, ⊢

$$e:t = (e,t)$$

$$\Gamma$$
 is $x_n:t_n,\ldots,x_l:t_l$

$$(\Gamma, e:t) \in \vdash$$

$$\Gamma \vdash e : t$$

$$\Gamma \vdash t$$

Number tyþe ⊢ **N**

Function type
$$\vdash t \longrightarrow t'$$

$$\vdash t \longrightarrow t'$$

Number
$$\vdash \underline{n} : \mathbf{N}$$

Variable
$$\Gamma, x : t \vdash x : t$$

Function
$$\Gamma, x : t \vdash e : t'$$

$$\Gamma \vdash \lambda x : t \cdot e : t \rightarrow t'$$

Application
$$\Gamma \vdash e : t \rightarrow t' - \Gamma \vdash e' : t$$

$$\Gamma \vdash e e' : t'$$

Arithmetic $\Gamma \vdash e : \mathbf{N} - \Gamma \vdash e' : \mathbf{N}$ $\Gamma \vdash +/- e e' : N$ Condition $\Gamma \vdash e : \mathbf{N} - \Gamma \vdash e'/e'' : t$ $\Gamma \vdash \mathbf{if0} \ \mathbf{e} \ \mathbf{e}' \ \mathbf{e}'' : t$ Error $\Gamma \vdash t$ $\Gamma \vdash \mathbf{wrong} \ t \ string : t$

Number
$$\Gamma \vdash \underline{n} : \mathbf{T}$$

Variable
$$\Gamma, x : \mathbf{T} \vdash x : \mathbf{T}$$

Application
$$\Gamma \vdash e : \mathbf{T} - \Gamma \vdash e' : \mathbf{T}$$

$$\Gamma \vdash e e' : \mathbf{T}$$

Function
$$\Gamma, x : \mathbf{T} \vdash e : \mathbf{T}$$

$$\Gamma \vdash \lambda x \cdot e : \mathbf{T}$$

Arithmetic
$$\Gamma \vdash e : \mathbf{T} - \Gamma \vdash e' : \mathbf{T}$$

$$\Gamma \vdash + - e e'$$

Predicate

Γ ⊢ e : **T**

Γ⊢ fun?/num? e : T

Error

Γ ⊢ wrong string : T

 $\lambda x : N . x$

 $\lambda x : \mathbb{N} \to \mathbb{N} . x$

 $\Lambda y . \lambda x : y . x$

 $(\land y . \lambda x : y . x) \langle N \rangle \rightarrow \lambda x : N . x$

 $(\Lambda y.\lambda x:y.x)\langle N \rightarrow N \rangle \rightarrow \lambda x:N \rightarrow N.x$

Type variables

Type abstraction Ay.e

Type application e \langle t \rangle

Universally-quantified / for-all types $\forall y . t$

Free & bound type variables Λ y . (... y ...)

term [type argument / type parameter] = term'

$$x[t/y] = x$$

$$(\lambda x \cdot e)[t/y] = \lambda x \cdot (e[t/y])$$

$$(e e')[t/y] = (e[t/y])(e'[t/y])$$

$$(+/-e e')[t/y] = +/-(e[t/y])(e'[t/y])$$

$$(if0 e e' e'')[t/y] = if0 (e[t/y])(e'[t/y])$$

```
(\land y . e) [t/y] = \land y . e
(\land y . e) [t/y'] = \land y . e [t/y']
(e \langle t \rangle) [t'/y] = (e [t'/y]) \langle t \rangle
```

type [type argument / type parameter] = type'

$$\mathbf{N}[t/y] = \mathbf{N}$$

$$(t \to t')[t/y] = t[t/y] \to t'[t/y]$$

$$y[t/y] = t$$

$$y[t/y'] = y$$

$$(\forall y.t)[t'/y] = \forall y.t$$

$$(\forall y.t)[t'/y'] = \forall y.t[t'/y']$$

 $E[(\Lambda y.e) \langle t \rangle] \rightarrow E[e[t/y]]$

Lambda calculus
Typing
Interoperation
Model
Laziness
Solution

Haskell

 $e_h = \cdots$ | hm $t_h t_m e_m$ | hs $t_h e_s$

ML

 $e_m = \cdots \mid \mathbf{mh} \ t_m \ t_h \ e_h \mid \mathbf{ms} \ t_m \ e_s$

Scheme

 $e_s = \cdots$ | sh t_h e_h | sm t_m e_m

Haskell-ML

 $\Gamma \vdash_h \mathbf{hm} t_h t_m e_m : t_h$

$$\Gamma \vdash_h t_h$$
 $\Gamma \vdash_m t_m$
 $\Gamma \vdash_m e_m : t_m'$
 $t_m = t_m'$
 $t_h = t_m$

ML-Haskell

 $\Gamma \vdash_m \mathbf{mh} t_m t_h e_h : t_m$

Haskell-Scheme

$$\Gamma \vdash_h \mathbf{hs} t_h e_s : t_h$$

$$\Gamma \vdash_h t_h$$

 $\Gamma \vdash_s e_s : \mathbf{T}$

Scheme-Haskell

$$\Gamma \vdash_s \mathbf{sh} t_h e_h : \mathbf{T}$$

$$\Gamma \vdash_h t_h
\Gamma \vdash_h e_h : t_h'
t_h = t_h'$$

(hs t_h (sh t_h x_h)) [e_h / x_h]

Embedding substitution

(hm
$$t_h t_m e_m$$
) $[e_h / x_h] = hm t_h t_m e_m [e_h / x_h]$

(hs
$$t_h e_s$$
) $[e_h / x_h] = hs t_h e_s [e_h / x_h]$

Foreign substitution

...
$$e_m$$
... $[e_h / x_h] = ...e_m [e_h / x_h]...$

$$(\lambda x_m \cdot e_m) [e_h / x_h] = \lambda x_m \cdot (e_m [e_h / x_h])$$

$$\mathscr{E}[\mathsf{hm}\,\mathsf{N}\,\mathsf{N}\,\underline{n}\,]_h\to \mathscr{E}[\,\underline{n}\,]$$

$$\mathscr{E}[\mathsf{hs}\;\mathsf{N}\;\underline{n}]_h \to \mathscr{E}[\underline{n}]$$

$$\mathscr{E}[\mathbf{mh} \, \mathbf{N} \, \mathbf{n} \,]_m \to \mathscr{E}[\underline{n}]$$

$$\mathscr{E}[\mathbf{ms} \ \mathbf{N} \ \underline{n}]_m \to \mathscr{E}[\underline{n}]$$

$$\mathscr{E}[\mathsf{sh}\;\mathsf{N}\;\underline{n}]_{\mathsf{s}}\to\mathscr{E}[\underline{n}]$$

$$\mathscr{E}[\mathbf{sm} \ \mathbf{N} \ \underline{n}]_{s} \to \mathscr{E}[\underline{n}]$$

Haskell to ML $e_m = mh t_m t_h e_h$

ML application $e_m' = F_m e_m$

ML to Haskell $e_h' = hm t_h' t_m' e_m'$

Factor out e_h $\lambda x_h : t_h . hm t_h' t_m' (F_m (mh t_m t_h x_h))$

$$\mathscr{E}\left[\mathsf{hm}\left(t_{h}\to t_{h}'\right)\left(t_{m}\to t_{m}'\right)\mathsf{v}_{m}\right]_{h}$$

 \rightarrow

$$\mathscr{E}\left[\lambda x_h:t_h.\operatorname{hm} t_h't_m'(v_m(\operatorname{mh} t_m t_h x_h))\right]$$

Lambda calculus
Typing
Interoperation
Model
Laziness
Solution

ML & Scheme

- Numbers, arithmetic, conditions
- Functions, applications
- Boundaries
- Errors
- Eager evaluation

ML

- Statically typed
- Type abstractions
- Branded types
- Fixed-point operations

Scheme

- Dynamically typed
- Closed term typing
- Type predicates

Eval cxts, nonterms

Show math defs

Lambda calculus
Typing
Interoperation
Model
Laziness
Solution

- Eager vs. lazy evaluation
- Incompatible evaluation strategies
 - Function behavior
 - Value conversion

$$K_s = \lambda x y . x$$

 $K_h: \forall u_h u_h' . u_h \rightarrow u_h' \rightarrow u_h$

$$K_h = \Lambda u_h u_h'$$
. hs $(u_h \rightarrow u_h' \rightarrow u_h) K_s$

$$K_{hn} \equiv K_h \langle N \rangle \langle N \rangle = hs (N \rightarrow N \rightarrow N) K_s$$

$$K_{hn} \Omega \underline{0} +$$

$$\begin{array}{c} \mathsf{K}_{hn} \ \Omega \ \underline{0} = (\mathsf{hs} \ (\mathsf{N} \to \mathsf{N} \to \mathsf{N}) \ \mathsf{K}_s) \ \Omega \ \underline{0} \\ \\ (\mathsf{hs} \ (\mathsf{N} \to \mathsf{N} \to \mathsf{N}) \ \mathsf{K}_s) \ \Omega \ \underline{0} \\ \\ \to \\ (\lambda \ \mathsf{x}_h : \mathsf{N} \ . \ \mathsf{hs} \ (\mathsf{N} \to \mathsf{N}) \ (\mathsf{K}_s \ (\mathsf{sh} \ \mathsf{N} \ \mathsf{x}_h))) \ \Omega \ \underline{0} \\ \\ \to \\ \\ \mathsf{hs} \ (\mathsf{N} \to \mathsf{N}) \ (\mathsf{K}_s \ (\mathsf{sh} \ \mathsf{N} \ \Omega)) \ \underline{0} \\ \\ \to \\ \\ \mathsf{hs} \ (\mathsf{N} \to \mathsf{N}) \ (\mathsf{K}_s \ (\mathsf{sh} \ \mathsf{N} \ \Omega)) \ \underline{0} \\ \\ \vdots \end{array}$$

 $e_h = \cdots \mid nil t_h \mid cons e_h e_h \mid hd e_h \mid tl e_h \mid null? e_h$

$$t_h = \cdots \mid \{ t_h \}$$

 $E_h = \cdots \mid hd E_h \mid tl E_h \mid null? E_h$

$$\frac{\Gamma \vdash_h t_h}{\Gamma \vdash_h \{ t_h \}}$$

$$\frac{\Gamma \vdash_h e_h : \{ t_h \}}{\Gamma \vdash_h \mathbf{hd} e_h : t_h}$$

$$\frac{\Gamma \vdash_h t_h}{\Gamma \vdash_h \mathbf{nil} t_h : \{ t_h \}}$$

$$\frac{\Gamma \vdash_h e_h : \{ t_h \}}{\Gamma \vdash_h \mathbf{tl} e_h : \{ t_h \}}$$

$$\frac{\Gamma \vdash_h e_h : \{ t_h \}}{\Gamma \vdash_h null? e_h : N}$$

$$\frac{\Gamma \vdash_h e_h : t_h \ \Gamma \vdash_h e_h' : \{ t_h \}}{\Gamma \vdash_h \mathbf{cons} \ e_h \ e_h' : \{ t_h \}}$$

```
\mathscr{E} [ hd (nil t_h)]_h \to \mathscr{E} [ wrong t_h "Empty list"]
\mathscr{E} [ hd (cons e_h e_h') ] h \to \mathscr{E} [ e_h ]
\mathscr{E}\left[\mathsf{tl}\left(\mathsf{nil}\ t_h\right)\right]_h \to \mathscr{E}\left[\mathsf{wrong}\left\{t_h\right\}\;\mathsf{``Empty}\;\mathsf{list''}\right]
\mathscr{E} [ tl (cons e_h e_h') ] h \to \mathscr{E} [ e_h' ]
```

$$\mathscr{E}$$
 [null? (nil t_h)] $_h \to \mathscr{E}$ [$\underline{0}$]

$$\mathscr{E}$$
 [null? (cons $e_h e_h'$)]_h $\rightarrow \mathscr{E}$ [$\underline{\mathsf{L}}$]

 $e_s = \cdots \mid cons \ e_s \ e_s \mid hd \ e_s \mid tl \ e_s$

 $v_s = \cdots \mid nil \mid cons v_s v_s$

 $E_s = \cdots$ | cons E_s es | cons v_s E_s | hd E_s | tl E_s | null? E_s

& [hd/tl nil]_s → & [wrong "Empty list"]

& [hd (cons
$$v_s v_s'$$
)]_s → & [v_s]

& [tl (cons $v_s v_s'$)]_s → & [v_s']

& [hd/tl v_s]_s → & [wrong "Not a list"]

& [null? nil]_s → & [0]

& [null? v_s]_s → & [1]

zeroes_h = fix $(\lambda x : \{ N \} . cons \underline{0} x)$

 $zeroes_h = cons 0 zeroes_h$

 $zeroes_m = mh \{ N \} \{ N \} zeroes_h$

zeroes_m →

```
zeroes_m = mh \{ N \} \{ N \} zeroes_h \rightarrow
         mh \{ N \} \{ N \} (cons \underline{0} zeroes_h) \rightarrow
cons (mh N N 0) (mh \{ N \} \{ N \} zeroes<sub>h</sub>) \rightarrow
          cons \underline{0} (mh \{ N \} \{ N \} zeroes<sub>h</sub>) =
                       cons 0 zeroes<sub>m</sub> \rightarrow
```

Lambda calculus
Typing
Interoperation
Model
Laziness
Solution

Function conversion

List construction conversion

:
cons <u>0</u> (mh { N } { N } zeroes_h) cons v_m E_m
:

$$E_m =$$

 $[]_m$

 $E_m e_m$

 $v_m E_m$

 $E_m \langle t_m \rangle$

fix E_m

+/- E_m e_m

 $+/- v_m E_m$

if0 E_m e_m e_m

cons E_m e_m

cons v_m E_m

 $hd E_m$

tl E_m

null E_m

 $\mathbf{mh} t_m t_h E_h$

 $ms k_s E_s$

 $v_m E_m$ cons E_m e_m cons $v_m E_m$ $E_m = \mathbf{mh} t_m t_h E_h$ E_m e_m $v_m E_m$

 $F_m = U_m \mid \mathbf{mh} t_m t_h E_h$ $V_m \cup_m$ cons U_m e_m cons um Um $U_m =$ $f_m = u_m \mid \mathbf{mh} \ t_m \ t_h \ E_h$ F_m e_m $u_m = \lambda x_m : t_m . e_m | \cdots$ fm Um

$F_m = U_m \mid \mathbf{mh} t_m t_h E_h$

$$U_m =$$

$$[\]_m$$

$$F_m \langle t_m \rangle$$

$$fix F_m$$

$$hd F_m$$

$$ms k_s E_s$$

$$\mathcal{E} \left[\left(\lambda x_m : t_m . e_m \right) u_m \right]_m \to \mathcal{E} \left[e_m \left[u_m / x_m \right] \right]$$

$$\mathcal{E} \left[\text{hd} \left(\text{cons } u_m u_m' \right) \right]_m \to \mathcal{E} \left[u_m \right]$$

$$\mathcal{E} \left[\text{tl} \left(\text{cons } u_m u_m' \right) \right]_m \to \mathcal{E} \left[u_m' \right]$$

$$\mathcal{E} \left[\text{null} \left(\text{cons } u_m u_m' \right) \right]_m \to \mathcal{E} \left[\bot \right]$$

- Common expressions
- Incompatible strictness points
- Interoperation side effects
- Mirror non-strictness for embeddings

- Matthews & Findler
- Evaluation strategies
- Incompatible strictness points
- Forcing & deferring embedded evaluation