Tax Smoothing

Due to the disutility of working being concave up, note $v(h_1) + v(h_2) \ge v_1(\frac{h_1 + h_2}{2})$ when v is given. This tells us $\tau_1^* = \tau_2^*$ (minimization of distortions).

Labor Markets

 P_t working age (16-65) population can be partitioned into participating (labor force) L_t and nonparticipating (early retirees, students, disabled, discouraged workers) N_t , and labor force can be further partitioned into employed E_t and unemployed (actively searching) U_t .

Unemployment rate $u_t = \frac{U_t}{L_t}$ (currently around 4.1%).

Search Model

Employed worker at wage w discounts future income at b with probability σ of separation has value $V_e(w) = w + \beta(\sigma V_u + (1-\sigma)V_e(w)) = \frac{w + \beta\sigma V_u}{1-\beta(1-\sigma)}$ then when $\sigma = 0$, $V_e(w) = \frac{w}{1-\beta}$.

Unemployed worker samples a job every period from distribution with C.D.F. G(w) models an optimal stopping problem: $V_u = b + \beta \int\limits_0^{\bar w} \max(V_e(w), V_u) dG(w)$

Given the reservation wage w^* such that $V_e(w^*) = V_u$, then $V_u = V_e(w^*) = \frac{w^*}{1-\beta}$.

$$V_{u} = b + \beta \int_{0}^{\overline{w}} \max \left(V_{e}(w), V_{u}\right) dG(w)$$

$$V_{u} - \beta V_{u} = b + \beta \left(\int_{0}^{\overline{w}} \max \left(\frac{w + \beta \sigma V_{u}}{1 - \beta(1 - \sigma)}, V_{u}\right) dG(w) - V_{u}\right)$$

$$V_{u}(1 - \beta) = b + \beta \int_{0}^{\overline{w}} \max \left(\frac{w + \beta \sigma V_{u}}{1 - \beta(1 - \sigma)} - V_{u}, 0\right) dG(w)$$

$$w^{*} = b + \beta \int_{0}^{\overline{w}} \max \left(\frac{w - w^{*}}{1 - \beta(1 - \sigma)}, 0\right) dG(w)$$

$$w^{*} = b + \left(\frac{\beta}{1 - \beta(1 - \sigma)}\right) \int_{0}^{\overline{w}} \max \left(w - w^{*}, 0\right) dG(w)$$

$$w^{*} = b + \left(\frac{\beta}{1 - \beta(1 - \sigma)}\right) \int_{w^{*}}^{\overline{w}} w - w^{*} dG(w)$$

$$w^{*} = b + \left(\frac{\beta}{1 - \beta(1 - \sigma)}\right) \operatorname{Ex}\left[w - w^{*}|w > w^{*}\right]$$