

SESA2025 Mechanics of Flight Equations of motion and tail plane equation

Lecture 1.1

Simplifications and assumptions

- small angle of attack
 - -T, D, D_T , $Wsin\gamma$ on the same axis
- balance along path

$$-T = D + D_T + W sin \gamma$$

• symmetrical (and small) tailplane

$$-M_{T_0}=0$$

- neglect moments by T, D, D_T
 - see Cook sec 3.1.4

Final sketch

Drimplified from prev to
show a 99 umption 5

Define positive directions

 M₀: wing pitching moment about AC (+ve: nose up; constant with AoA)

• l: distance from AC to AC_T (+ve: downstream)

 h: distance from LE to CG divided by MAC (+ve: downstream)

h₀: distance from LE to AC divided by MAC (+ve: downstream)

Take force balance and moment balance around CG

Aircraft in equilibrium $\Rightarrow \sum \vec{F} = 0$:

$$L + L_T - W \cos \gamma = 0$$

$$Converient "+r+al lift"$$

$$L^* \stackrel{\text{def}}{=} L + L_T = W \cos \gamma$$

where L^* is the total aircraft lift

Moment balance about $CG \Rightarrow \sum \vec{M} = 0$:

$$M_0 + L(h - h_0)c - L_T(l - (h - h_0)c) = 0$$
or wing piching lift moment fail moment wing
$$M_0 + (L + L_T)(h - h_0)c - L_T l = 0$$

$$M_0 + (L + L_T)(h - h_0)c - L_T l = 0$$
to clean up

Nondimensional trim conditions - Converting +0

Now rewrite in coefficient form using:

where
$$C_{L^*} = \frac{L^*}{\frac{1}{2}\rho V^2 S}$$
; $C_L = \frac{L}{\frac{1}{2}\rho V^2 S}$; $C_W = \frac{W}{\frac{1}{2}\rho V^2 S}$;

$$C_{L_T} = \frac{L_T}{\frac{1}{2}\rho V^2 |S_T|} C_{M_0} = \frac{M_0}{\frac{1}{2}\rho V^2 Sc}$$

Resulting in:

$$C_{L^*} = C_L + C_{L_T} \frac{S_T}{S} = C_w \cos \gamma$$

$$C_{M_0} + C_{L^*} (h - h_0) - C_{L_T} K = 0$$

$$C_{M_0} + C_{L^*}(h - h_0) - C_{L_T} K = 0$$

with the tail volume fraction
$$K \stackrel{\text{def}}{=} \frac{S_T l}{S_C}$$
; weaning just nice cleanup variuble

Tailplane Lift

Positive or negative?

- Forward CG position benefits stability (but results in poorer handling quality at low speed)
- Tail plane design is affected: symmetric or negatively cambered airfoil sections

Tail plane models

General definitions

The angle of attack of the tail plane is defined w.r.t. the aircraft angle of attack and includes an installation (setting) angle:

$$\alpha_T = \alpha + \alpha_S$$
 total tail ADA

To obtain the effective angle of attack of the tail plane, we need:

- the downwash of the main wing
- the downwash of the tail itself

Resulting in:

$$\alpha_{T_{eff}} = \alpha_T - \varepsilon - \varepsilon_T$$

Lownwich effect

Tail plane angle of attack

Influence of downwash II

Given:

$$\alpha_{Teff} = \alpha + \alpha_{S} - \varepsilon - \varepsilon_{T}$$

Expand the downwash terms

$$\alpha_{T_{eff}} = \alpha + \alpha_{S} - \varepsilon_{\alpha}(\alpha - \alpha_{0}) - \frac{c_{L_{T}}}{\pi A_{T} e_{T}}$$
 tail setting angle tail downwas

zero lift angle of attack

Lift equation

Tail plane lift depends on:

 $\alpha_{T_{eff}}$: tail plane angle of attack

$$C_{L_T} = a_1 \alpha_{T_{eff}} + a_2 \eta + a_3 \beta$$
 includes downwash to each, found imperically or aging thin Golf shite,

What would you do to estimate these coefficients?

Aerodynamic forces produce a hinge moment

Hinge moment equation

$$C_{M_H} = f_{M_H}(\alpha_{T_{eff}}, \eta, \beta, \dots) \cong b_1 \alpha_{T_{eff}} + b_2 \eta + b_3 \beta$$

$$\text{moment for cos the to air on the}$$

$$\text{deflected tail}$$

This is the hinge moment that the pilot needs to overcome

(positive → pitch up, negative → pitch down)

$$b_1 = \frac{\partial C_{M_H}}{\partial \alpha_{T_{eff}}} \xrightarrow{\text{describes force related}} b_2 = \frac{\partial C_{M_H}}{\partial \eta} \longrightarrow \text{restoring tendency}$$

$$b_2 = \frac{\partial C_{M_H}}{\partial \eta} \longrightarrow \text{restoring tendency}$$

$$b_3 = \frac{\partial C_{M_H}}{\partial \beta}$$

Southampton Southampton

 C_{M_H}

Horn balance

Aerodynamic balancing: function and effect on modelling

Shielded/unshielded

Reduces floating/restoring tendency

$$C_{M_H} = b_1 \alpha_{T_{eff}} + b_2 \eta + b_3 \beta$$

reduces moments acting on hinge so less force is needed to control it (Suged)

Trim tab working principle I

Assume we want to produce a negative tail lift, where should the elevator go?

Trim tab working principle II

This configuration produces a pitch down moment on the elevator

Southampton Southampton

Tail plane

Trim tab working principle III

The stick is free to move, but the aircraft is trimmed.