

MATHEMATISCHE MODELLE DER KONTINUUMSMECHANIK [MA2904] SoSe 2019
PROF. DR. DANIEL MATTHES matthes@ma.tum.de
BENEDIKT GRASWALD benedikt.graswald@ma.tum.de

Aufgabenblatt 4

Tutorübungen am 5./6./12./13. Juni

Aufgabe T4.1 (Mehrskalenansatz)

Gegeben sei das folgende Anfangswertproblem für t > 0

$$e^2 x'(t) + \epsilon x(t) = \sin(\epsilon t)$$

 $x(0) = 1$

mit kleinem Parameter $\epsilon > 0$.

- a) Berechnen Sie die asymptotische Entwicklung der Lösung x(t) für die Differentialgleichung bis zur 2. Ordnung in ϵ , vernachlässigen Sie hierbei zunächst den Anfangswert.
- b) Bestimmen Sie die exakte Lösung des Anfangswertproblems und vergleichen Sie diese mit der asymptotischen Entwicklung aus Teil a).
 - Für welche Zeiten ist die Approximation gut?
 - Ist die Approximation konsistent?
 - Ist das Anfangswertproblem regulär oder singulär gestört?
- c) Berechnen Sie mittels Mehrskalenansatz eine Approximation der Lösung bis zur 2. Ordnung

$$z(t,s) = z_0(t,s) + \epsilon z_1(t,s) + \epsilon^2 z_2(t,s) + \cdots$$

wobei $s := \epsilon t$ sei.

- d) Vergleichen Sie die Mehrskalenapproximation mit der exakten Lösung aus Teil b).
- e) Benutzen Sie den Grenzschichtenansatz $\tilde{x}(\tau) := x(t)$ mit der neuen Zeitskala $\tau = \frac{t}{\epsilon^{\alpha}}$, um eine gute Näherung nahe der Anfangsbedingung zu erhalten. Der Parameter $\alpha > 0$ ist hierbei geeignet zu wählen.