Gravity inversion in spherical coordinates using tesseroids

Leonardo Uieda

Valéria C. F. Barbosa

Cartesian

VS

Spherical

Existing inversion with tesseroids (Chaves and Ussami, 2013)

- Geoid height anomalies
- Space domain
- Regularization:
 - Depth-weighted Minimum Volume
 - Similarity to seismic tomography

Adapt

Planting anomalous densities (Uieda and Barbosa, 2012)

Planting anomalous densities

- Space domain
- Multicomponent: gravity + gradients
- Non-conventional inversion
 - Growth algorithm
 - No linear systems
 - Efficient sensitivity computations

Synthetics

- Possible applications
- Advantages
- Shortcomings

(Hypothetical) Mantle Plume

Inspired by synthetics in Chaves and Ussami (2013)

After Chaves and Ussami (2013)

gzz at 250 km

Seed

Joint gz + gzz?

gzz

zz Joint

Lineament with dense rocks (magmatic)

Inspired by Chad lineament model (Braitenberg et al, 2011)

What if height=120 km?

at 20 km

at 120 km

1.20

1.05

0.90

0.75

0.60

0.45

0.30

0.15

0.00

-0.15

observed predicted 1.2 1.0 25°N 25°N 8.0 0.6 20°N 20°N 0.4 0.2 15°N 15°N Residuals 400 0.0 350 300 250 10°N -0.2 200 5°E 5°E 150 100 50 -0.020.02 0.06 -0.06

at 20 km at 120 km

Even higher height=270 km

at 120 km

at 270 km

at 120 km at 270 km

Magmatic underplating

Inspired by model of the Paraná basin by Mariani et al (2013)

BOUGUER CORR. MOHO_A_0.3 & SED

After Mariani et al (2013)

After Mariani et al (2013)

top=30 km 10° 200 kg.m⁻³

gzz at 250 km

Seed

What if I use wrong density?

In conclusion

single joint VS

height matters

correct

dense

dense

Future

- Multicomponent data
- Real data
- Dipping models (subduction)

OPEN SOURCE

Fatiando a Terra

Geophysical modeling and inversion

fatiando.org

github.com/leouieda/egu2014