ECN 6338 Cours 2

La résolution de systèmes d'équations linéaires

William McCausland

2025-01-20

Applications de la résolution de systèmes linéaires

(Chapitres de « A First Course in Quantitative Economics with Python », Quant Econ)

- 1. (Ch 8) Trouver les prix d'équilibre dans une économie à n biens, où les quantités demandées $q^d=(q_1^d,\ldots,d_n^d)$ et offertes $q^o=(q_1^o,\ldots,d_n^o)$ sont linéaires en prix $p=(p_1,\ldots,p_n)$: $q_d=Dp+h$ et $q_o=Cp+e$. Le vecteur p^* d'équilibre vérifie $(D-C)p^*=h-e$.
 - 2. (Ch 11) Trouver une suite de prix d'un actif dans un modèle de valeurs actuelles.3. (Ch 12) Trouver une suite de détention d'actifs dans un modèle
 - de lissage de la consommation.
 4. (Ch 14) Trouver une suite d'inflation dans un modèle
 - monétariste des niveaux de prix.
 - 5. (Ch 15) Même chose, avec anticipations adaptatives.
 6. Résolution de systèmes locaux linéaire dans les modèles non-linéaires, autres applications indirectes.
 - 7. Autres exemples plus tard aujourd'hui.

Survol du Cours 2

- Problème : trouver le n-vecteur x qui résoud le système Ax = b. A est $n \times n$ et inversible; b est un n-vecteur.
- Les systèmes les plus faciles : A triangulaire ou orthogonal
- ▶ Pour les systèmes où A est dense, on peut décomposer A et ainsi réduire le problème en la résolution des systèmes triangulaires et orthogonaux.
- ▶ Pour les systèmes où n est grand et A creuse, il y a deux options :
 - utiliser les mêmes décompositions, (attention, les décompositions sont souvent denses)
 - utiliser des méthodes iteratives. (on recourt à ces méthodes pour les systèmes non-linéaires aussi).

Systèmes triangulaires

- Notation:
 - ightharpoonup L, une matrice triangulaire inférieure $n \times n$; (Left, Lower)
 - ightharpoonup R ou U, une matrice triangularie supérieure $n \times n$. (Right, Upper)
- ► Il est facile de voir si la matrice est inversible : ssi aucun élément diagonal n'est nul.
- ▶ Pour le *n*-vecteur colonne *b*, la résolution de
 - \triangleright Lx = b est facile par substitution avant,
 - ightharpoonup Rx = b est facile par substitution arrière.
- Pour le *n*-vecteur ligne b, la solution de xL = b est la transposée de la solution de $L^{\top}x^{\top} = b^{\top}$.

Systèmes orthogonaux

- ▶ Une matrice $n \times n$ Q est orthogonal ssi $Q^{-1} = Q^{\top}$.
- ► Définition équivalente : . . . ssi $Q^{\top}Q = QQ^{\top} = I_n$.
- Exemple, reflections :

$$Q = Q^ op = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}, \quad Q = Q^ op = egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}.$$

Exemple, permutation :

$$Q = egin{bmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}, \quad Q^ op = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{bmatrix}.$$

 \triangleright Exemple, rotation par un angle θ :

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

$$Q^{\top} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos -\theta & -\sin -\theta \\ \sin -\theta & \cos -\theta \end{bmatrix}$$

Systèmes orthogonaux (suite)

Notes:

- ▶ La solution du système Qx = b est $x = Q^{T}b$.
- ▶ Si Q_1 et Q_2 sont orthogonales,
 - \triangleright Q_1^{\top} l'est aussi,
 - \triangleright Q_1Q_2 l'est aussi :

$$(Q_1Q_2)^{\top}(Q_1Q_2) = Q_2^{\top}Q_1^{\top}Q_1Q_2 = Q_2^{\top}Q_2 = I_n,$$

$$Q_1Q_2(Q_1Q_2)^{\top} = Q_1Q_2Q_2^{\top}Q_1^{\top} = I_n.$$

Décompositions

Trois décompositions facilite la résolution d'un système plus générale en reduisant le problème en la résolution des systèmes triangulaires ou orthogonaux :

- ▶ Décomposition LU : A = LU pour A général $n \times n$
- ▶ Décomposition Cholesky : $A = LL^{\top} = R^{\top}R$, pour A symmétrique et définie positive $n \times n$.
- ▶ Décomposition QR : A = QR pour A général $m \times n$

En général, ne calculez pas l'inverse d'une matrice. Il est toujours préférable de faire une décomposition et ensuite de résoudre un (ou des) système triangulaire ou orthogonal.

La résolution de systèmes avec la décomposition LU

- ▶ En théorie, la décomposition est A = LU, où
 - L est triangulaire inférieure $n \times n$.
 - ightharpoonup U est triangulaire supérieure $n \times n$.
- En pratique, pour garder contre la division par un nombre près de zéro, la décomposition est A = PLU, où
 - P est une matrice de permutation.
- Pour résoudre le système Ax = b,
 - ► Calculer la décomposition A = PLU. $((PLU)^{-1} = U^{-1}L^{-1}P^{\top})$
 - Le systéme s'écrit PLUx = b
 - Permuter b avec $P^{\top} = P^{-1}$: $\tilde{b} = P^{\top}b$.
 - Le système s'écrit $LUx = \tilde{b}$.
 - Résoudre le système $Lz = \tilde{b}$ pour trouver $z \equiv Ux$.
 - Résoudre le système Ux = z pour trouver x.
- Pour les systèmes $n \times n$, toutes les décompositions sont $O(n^3)$, la substitution (avant et arrière) est $O(n^2)$ et la multiplication matrice-vecteur est $O(n^2)$.

Exemple, oligopole (Judd, chapitre 3, exo 7)

Voici les fonctions de meilleure réponse de trois firmes en jeu de Cournot

$$q_1 = 5 - 0.5q_2 - 0.3q_3,$$

 $q_2 = 7 - 0.6q_1 - 0.1q_3,$
 $q_3 = 4 - 0.2q_1 - 0.4q_2.$

En équation matriciel Aq = b, où

$$A = \begin{bmatrix} 1.0 & 0.5 & 0.3 \\ 0.6 & 1.0 & 0.1 \\ 0.2 & 0.4 & 1.0 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 7 \\ 4 \end{bmatrix}.$$

L'équilibre Cournot, calculé numériquement

```
data <- c(1.0, 0.6, 0.2, 0.5, 1.0, 0.4, 0.3, 0.1, 1.0)
A <- matrix(data, nrow=3, ncol=3, byrow=FALSE)
b <- c(5, 7, 4)
q <- solve(A, b)
q</pre>
```

```
## [1] 1.671554 5.865103 1.319648
```

Notes:

- solve utilise la commande DGESV de LAPACK.
- ▶ De la documentation LAPACK : "LU decomposition with partial pivoting and row interchanges"
- ▶ En R de base, pas d'accès à la décomposition *PLU*, paraît-il.
- Cependant, si on veut résoudre $Ax^i = b^i$ pour plusieurs i, on peut résoudre AX = B, où $X = [x^1 \cdots x^N]$ et $B = [b^1 \cdots b^N]$, avec X = solve(A, B). La décomposition est faite une seule fois.

La décomposition QR

Pour une matrice A, $n \times n$, la décomposition suivante existe toujours :

$$A = QR$$

où Q est $n \times n$ orthogonal, R est $n \times n$ triangulaire supérieur.

- ▶ Normalisation habituelle : choisir *Q* pour que les éléments diagonaux de *R* soient non-négatifs.
- Pour A inversible, la décomposition normalisée est unique.
- ▶ Il y a des décompositions analogues QL, RQ, LQ.

Pour une matrice X, $n \times k$, n > k (souvent $n \gg k$), on peut faire la décomposition

$$X = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1R_1,$$

où Q est $n \times n$, R est $n \times k$, Q_1 est $n \times k$ et R_1 est $k \times k$.

Une variante de la décomposition QR

La résolution de systèmes avec la décomposition QR

Pour A carré est inversible, tout est simple :

$$A = QR, \quad A^{-1} = R^{-1}Q^{\top}.$$

- Écrire le système à résoudre, Ax = b, comme QRx = b.
- ▶ Définir $\tilde{b} = Q^{\top}b$ et maintenant le système s'écrit $Rx = \tilde{b}$.
- ▶ Résoudre ce système triangulaire avec la substituion arrière.

Pour A grande et mince $(n \gg k)$, l'application principale en économie est le calcul de l'estimation MCO (moindres carrées ordinaire).

Autres applications en finance et macro : modèles à facteurs.

Aparté sur la régression linéaire

► Équation de régression pour l'unité d'observation *i* :

$$y_i = x_{i1}\beta_1 + \ldots + x_{ik}\beta_k + \epsilon_i, \quad E[\epsilon_i|x_{i1},\ldots,x_{ik}] = 0.$$

Cette équation en vecteurs :

$$y_i = x_i^{\top} \beta + \epsilon_i.$$

▶ Toutes les équations, i = 1, ..., n, en matrices :

$$y = X\beta + \epsilon$$
,

- où y et ϵ sont $n \times 1$, X est $n \times k$, β est $k \times 1$.
- ▶ L'estimation MCO b de β est $b = (X^TX)^{-1}X^Ty$.

La résolution de systèmes avec la décomposition QR (suite)

- ▶ On veut calculer $b \equiv (X^T X)^{-1} X^T y$.
- ightharpoonup Décompose X = QR.
- ▶ Rappeler que $QR = Q_1R_1$, pour la sous-matrice $n \times k$ Q_1 et la sous-matrice $k \times k$ R_1 .
- ▶ On peut écrire

$$(X^{T}X)^{-1}X^{T}y = (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}y$$

$$= (R^{T}R)^{-1}R^{T}Q^{T}y$$

$$= (R_{1}^{T}R_{1})^{-1}R_{1}^{T}Q_{1}^{T}y$$

$$= R_{1}^{-1}(R_{1}^{T})^{-1}R_{1}^{T}Q_{1}^{T}y$$

$$= R_{1}^{-1}Q_{1}^{T}y$$

- ▶ On n'a pas besoin de Q_2 et on peut calculer Q_1 sans calculer Q_2 (Tant mieux, Q a $n \times n$ éléments à calculer)
- ► Les résultats sont numériquement plus stables que si on décompose X^TX par la décomposition Cholesky.

La décomposition Cholesky

- ▶ Soit Σ une matrice symmétrique et positive définie $n \times n$.
- ► La décomposition est $\Sigma = LL^{\top} = R^{\top}R$, où ► $L = R^{\top}$ est triangulaire inférieure $n \times n$.
- C'est une décomposition *LU* sans permutation.
- Le calcul est numériquement plus stable, sans recours au pivots.
- \triangleright $O(n^3)$ multiplications, comme les autres décompositions,
- mais un tiers du nombre de multiplications scalaires de la LU.
- Deux opérations intéressantes dans le contexte des variables aléatoires gaussiennes multivariées. (La variance $\Sigma = LL^{\top}$ est positive définie)
 - Multiplication directe Lx
 - Résolution du système Lx = b.

Exemple, tirage de variables aléatoires gaussiennes multivariées

Problème : tirer $X \sim N(\mu, \Sigma)$, où X et μ sont des n-vecteurs et la variance Σ est $n \times n$ et positive définie.

- La décomposition Cholesky est $Σ = LL^T$.
- ▶ Pour $u \sim N(0, I_n)$, $Lu \sim N(0, \Sigma)$, parce que $LI_nL^{\top} = LL^{\top} = \Sigma$.
- ▶ Alors $Lu + \mu \sim N(\mu, \Sigma)$.

Tirage de variables aléatoire $N(\mu, \Sigma)$ en R

```
M = 100 # Nombre de tirages
n = 3 # Nombre d'éléments du vecteur aléatoire
mu = c(4, 1, 3) # Moyenne mu, variance Sigma
Sigma = matrix(c(4,1,3,1,1,1.5,3,1.5,9), nrow=n, ncol=n)
R = chol(Sigma) # Facteur de Cholesky supérieure
U = matrix(rnorm(n*M), nrow=n, ncol=M) # U_i \sim N(0,I)
X = t(R) \% \% U + mu \# X i \sim N(mu, Sigma), i=1,...,M
rowMeans(X)
## [1] 3.7081867 0.8428465 2.8817501
var(t(X))
```

```
## [,1] [,2] [,3]
## [1,] 3.0888990 0.7779338 2.371853
## [2,] 0.7779338 0.9008283 1.370051
## [3,] 2.3718532 1.3700509 8.502441
```

Exemple, évaluation de la densité gaussienne multivariée

Si $X \sim N(\mu, \Sigma)$, la densité multivariée est

$$f(x) = |\Sigma|^{-1/2} (2\pi)^{-k/2} \exp\left[-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right]$$

Pour calculer $(x - \mu)^{\top} \Sigma^{-1} (x - \mu)$:

$$(x - \mu)^{\top} \Sigma^{-1} (x - \mu) = (x - \mu)^{\top} (LL^{\top})^{-1} (x - \mu)$$
$$= (x - \mu)^{\top} L^{-1} (x - \mu),$$
$$= ||L^{-1} (x - \mu)||^{2}$$

et $L^{-1}(x - \mu)$ est la solution du sytème triangulaire $Lu = (x - \mu)$.

Pour calculer $|\Sigma|$: $|\Sigma| = |L||L^{\top}|$ où $|L| = |L^{\top}| = \prod_{i=1}^{n} L_{ii}$, parce que L est triangulaire.

Matrice creuse (sparse matrix), format triple

Matrice creuse A, $m \times n$, avec N éléments (m = 5, n = 6, N = 5):

$$A = \begin{bmatrix} 0 & 0 & A_{13} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A_{32} & 0 & 0 & A_{35} & 0 \\ 0 & 0 & A_{43} & 0 & 0 & 0 \\ 0 & A_{52} & 0 & 0 & 0 & 0 \end{bmatrix}$$

Triples en ordre colonne par colonne (column major order) :

	j	X	i — 1	j-1
3	2	A_{32}	2	1
5	2	A_{52}	4	1
	3	A_{13}	0	2
ļ	3	A_{43}	3	2
3	5	A_{35}	2	4

Matrice creuse, format colonne compressée

$$A = \begin{bmatrix} 0 & 0 & A_{13} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A_{32} & 0 & 0 & A_{35} & 0 \\ 0 & 0 & A_{43} & 0 & 0 & 0 \\ 0 & A_{52} & 0 & 0 & 0 & 0 \end{bmatrix}$$

i-1	Х
2	A_{32}
4	A_{52}
0	A_{13}
3	A_{43}
2	A_{35}

j	0	1	2	3	4	5	(
p	0	0	2	4	4	5	ļ

Mise en oeuvre en R, format collonne compressé par défaut

```
library(Matrix)

m <- Matrix(nrow=5, ncol=6, data=0, sparse=TRUE)

m[1, 3] <- 13

m[3, 2] <- 32

m[3, 5] <- 35

m[4, 3] <- 43

m[5, 2] <- 52

m</pre>
```

```
## 5 x 6 sparse Matrix of class "dgCMatrix"
##
## [1,] . . 13 . . .
## [2,] . . . . . .
## [3,] . 32 . . 35 .
## [4,] . . 43 . . .
## [5,] . 52 . . . .
```

Représentation en format colonne compressée

```
str(m)
## Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
    ..0 i : int [1:5] 2 4 0 3 2
##
    ..0 p : int [1:7] 0 0 2 4 4 5 5
##
## ..0 Dim : int [1:2] 5 6
## ..@ Dimnames:List of 2
##
    .. ..$ : NULL
    .. ..$ : NULL
##
##
    ..0 x : num [1:5] 32 52 13 43 35
    ..@ factors : list()
##
```

Opérations avec les matrices creuses

Opérations rapides et simples

- Soit A une matrice creuse $m \times n$.
- ▶ Quand N = O(n) et les éléments sont bien dispersés, la recherche, l'insertion et la suppression (lookup, insertion, deletion) sont des problèmes
 - ightharpoonup O(1) pour le format colonne compressée,
 - $ightharpoonup O(\log N)$ pour le format triple.
- Opérations rapides :
 - Recherche: x = A[i,j]
 - Insertion : A[i,j] = x
 - ► Suppression : A[i,j] = 0
 - ► Multiplication par un vecteur : y = A %*% x ou y = x %*% A

Opérations lentes ou difficiles

 Les décompositions LU, QR, Cholesky sont possibles (et disponsibles en R) mais les résultats sont souvent des matrices denses.

Multiplication, pour une matrice en format triple

- Soit A une matrice creuse en format triple, m x n avec N éléments non-nuls.
- ▶ Soit x un vecteur dense, $n \times 1$.
- ► On veut calculer le vecteur dense y = A %*% x.
- ▶ Algorithme : $y \leftarrow 0$ puis pour k = 1, ..., N,

$$y_{i_k} \leftarrow y_{i_k} + A_{i_k,j_k} x_{j_k}$$
.

- ightharpoonup L'algorithme est O(N), qui peut être beaucoup plus rapide que l'algorithme standard pour A dense.
- L'algorithme est légèrement plus compliqué pour le format colonne compressé.

Autres notes sur les matrices creuses

- ▶ Il y a un format ligne compressée (compressed sparse row)
- ► La page Wikipédia sur les matrices creuses explique en détail ce format.

Méthodes itératives linéaires

- Problème : trouver x^* , la solution du système Ax = b, quand les décompositions sont couteuses.
- ▶ Il y a des méthodes itératives de la forme

$$x^{k+1} = \Omega x^k + c.$$

- ▶ Pour que $x^k \to x^*$, il faut que
 - 1. $x^* = \Omega x^* + c$ (la solution soit un point fixe) et
 - 2. $\rho(\Omega) < 1$ (toutes les valeurs propres aient une module inférieure à 1)
- ▶ Dans ce cas la convergence est linéaire à taux $\beta = \rho(\Omega)$.

Deux exemples que illustrent les enjeux

Splitting

L'idée est de décomposer A=N-P, et utiliser $\Omega=N^{-1}P$ et $c=N^{-1}b$:

$$x^{k+1} = N^{-1}(b + Px^k).$$

Notes:

Par construction, x^* est un point fixe : $x^* = N^{-1}(b + Px^*)$.

$$Nx^* = b + Px^*, \quad (N - P)x^* = b, \quad Ax^* = b.$$

- On veut choisir N telle que
 - $\rho(N^{-1}P) < 1$
 - le système $Nx^{k+1} = b + Px^k$ est plus facile à résoudre que le système Ax = b.

Gauss-Jacobi pour un système 2×2

Le système 2×2 s'écrit

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}.$$

La première ligne s'écrit $a_{11}x_1 + a_{12}x_2 = b_1$, ce qui motive

$$x_1^{k+1} = (b_1 - a_{12}x_2^k)/a_{11}.$$

Même chose pour la deuxième ligne donne

$$x_2^{k+1} = (b_2 - a_{21}x_1^k)/a_{22}$$

La méthode Gauss-Jacobi est une méthode splitting où

$$N = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}, \ P = -\begin{bmatrix} 0 & a_{12} \\ a_{21} & 0 \end{bmatrix}, \ N^{-1}P = -\begin{bmatrix} 0 & a_{12}/a_{21} \\ a_{21}/a_{22} & 0 \end{bmatrix}$$

▶ Les valeurs propres de
$$\Omega = N^{-1}P$$
 sont $\pm \sqrt{a_{12}a_{21}/a_{11}a_{22}}$

Les valeurs propres de $\Omega = N^{-1}P$ sont $\pm \sqrt{a_{12}a_{21}/a_{11}a_{22}}$

Gauss-Seidel pour un système 2×2

ightharpoonup lci l'itération pour x_1 est pareille :

$$x_1^{k+1} = (b_1 - a_{12}x_2^k)/a_{11}.$$

L'itération pour x_2 utilise x_1^{k+1} , déjà calculé, au lieu de x_1^k :

$$x_2^{k+1} = (b_2 - a_{21}x_1^{k+1})/a_{22}.$$

La méthode Gauss-Jacobi est une méthode splitting où

$$N = \begin{bmatrix} a_{11} & 0 \\ a_{21} & a_{22} \end{bmatrix}, \ P = -\begin{bmatrix} 0 & a_{12} \\ 0 & 0 \end{bmatrix}, \ N^{-1}P = -\begin{bmatrix} 0 & a_{12}/a_{11} \\ 0 & a_{12}a_{21}/(a_{11}a_{22}) \end{bmatrix}$$

Les valeurs propres de $N^{-1}P$ sont $-a_{12}a_{21}/a_{11}a_{22}$ et 0.

Deux exemples de Judd à voir (pages 80-83)

Offre et demande (hog cycle)

- Systéme : demande p + 3q = 21 et offre p 2q = 6, où p est le prix et q est la quantité dans un marché.
- ▶ En matrices, après une normalisation qui donne $a_{11} = a_{22} = 1$:

$$\begin{bmatrix} 1 & -\frac{1}{2} \\ 3 & 1 \end{bmatrix} \begin{bmatrix} q \\ p \end{bmatrix} = \begin{bmatrix} -3 \\ 21 \end{bmatrix}$$

G-J et G-S sont instables, mais on peut les stabiliser.

Duopole en équilibre Bertrand

- Système : meilleures réponses $p_1 = 1 + 0.75p_2$, $p_2 = 2 + 0.80p_1$, où p_i est le prix choisi par la firme i, i = 1, 2.
- ► En matrices :

$$\begin{bmatrix} 1 & -0.75 \\ -0.8 & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

► G-J et G-S sont stables, mais on peut accelerer la convergence.