3 JABBIUMENTINO: 03:

Question onto: 01

What is Infinink Exphension, Postfix exphension and Rhefin exphension.

INJIX EXPRESSION:

axithmèlic expression you write an So the form of expression in appears blue The operand. This Type of expression is referred as infinite expression,

for Example:

is an infinix because operations + and * is blue the operations

GREGIX:

An expression in which all operations preceeds the two operations They work on. They work on. + A * BC. for Example:

Host fix.

which all the operations comes after the corresponding operands. An expression in

for Example:

ABC *+

writte Then are two ways to rolve and how each expression is Jue 5 130 - 02: 02: How the expressions are A+ B*C Forthix: ABC * + Prefix: +A xBC This expression. Solved? Papix:

1. "If both specations have same some precedence" then check associativity is left to right 1) and push the incoming operation.

1) pop stack operation & check forment.

1) and push the incoming operation.

1) Eimply push the incoming operation. How Infin is converted into postfix wing Grack? Ponthix Exp. If an operation corners & stack is simply write d If the operation has higher than stack operation in mpy fuch it. emply then simply push it. 6) WESTION GNO: 03:-1- first make 3 cot: Infix Stack operand comes in postfix. Chules: the

of the incoming operation has town operation openation comes simply bush it If the opening buacket "C" come closing pavanthesis in postfin.) bop out the stack. and check 4) the "Choning bracket" (8")" Dop out the stack finished the opening bracket is on the Top wimply push it into the stack. The stack then whatever untill you find an opening pavanthesis, and 4 comply.

then simply push it in stack. 6- If incoming operator has "same" prec 7) If accostativity is LEFT - RIGHT 1) If associativity is Right - LEFT. 4. 96 chosing paranthesia is on the top of the stack & any openation comes abten this simply push it. 6- 8 u find "Closing paranthers" put Into stack. 3- 3) operand come simply will it. 8- 3) operates come & stack is empty 4- 1 incoming aperater has higher prec How Indix is converted to prefix wing Stack? ("Reverse The String") Suestion Cho: OH: 1- Make 3 colounn.

If you find "Opening Pavanthesis" pop out the stack untill you find the Closing Pavanthesis.
There write opening and Closing pavanthesis. If the incoming operator has lower precentence than stack operator. Pop out the stack and check again untill you find same or lower If expression is finished popoul all elements from the stack untill stack is empty. 11 "Reverse The Empression Again.

Quo1 :-

Josi Fix

A+ B*C^(x-)*X/(B+) ~ Y *B-(C+20)*& B!: (C+A)^3.

Convert into Fostfix expression using Stack.

T 1	4+ 101	Trout ix.
Irefine	Olack	Toothix.
	1	COST JIX. A
A	HULL	A - 310 1000
+	+	A
B	+ 1	AB
*	+*	AB
C	+*	ABC
. ^	+*1	ABC
(+* 1	ABC
X	+** 1	ABCX
-	+x1(-	ABCX
7	+xx(-	ABCXY
*	+x ~ (-x	ABONY
Z	+xx(-x	ABCXYZ
1	+xx(-1	ABCXYZ*
(+x1 (-1)	(ABCXYXX
В	+ × 1/-/1	ABCXYXXB
+	+×1-10	+ ABCXYX*B
2	+×~(-1	(+ ABCXYX*BQ

()くり米日

- (

c

D

,

88

B

!=

C

(B+2)			1	
B!)	+×1(-/	ABEXYX * B2+
)	+ * *	ABCXYX * B2+1-
		4	. <	ABCXYX XB2+1-AX+
		7	4	ABCXYX+B2+1-1+4
m		*	4*	ABCXYZ * B2+/- N*+Y
222		6	人米	ABCX YZ *B2+/-1*+
12				YB
		-	4-	ABC XYX * B2 + /- 1+
9				YB*
0		(4- (ABCXYZ *B2+1-A*+
200				YB*
322		e	<- (ABC XYZ * B2+1-A
1000				*+YB*C
		+	<- (+	11 4 4
		D	2- (+	ABCXYZ * B2+/- ^
				*+YB*CD
)	<-	ABC XYX * B2+1- ~*
		1		+48 * CD+
		88	828	ABCXYX * 82+1-1
				* + 1B * CD + 4-6 ABCXYZ * B2 + 1-1 B
- 10		6	4.8	ABCXYZ *B2 +1 B *+ YB * CD+ 4- 4
*	-	1=	881=	# + 40 # 4
		- (88 Y = (* * *
3		C	8-8 != (ABCXYZ*BZ+1-A
8				** 10 * CD + 64°C
-	8 1985	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EL STORIGHT	

nn	ABCAN7 * B2+1-1	** > 10 * CD + 6 4 CA	ABCX 2 * B2 +1-1	*+ 10 * CD + 4 6 CB.	ABCX12*B2+1-1	*+ YB * CD + 1684	+	ABCXYZ *BZ+1-1	* + 10 * CD+04	BCA + & 3 1 = 88		1-1 *+1B* CD+76
88.1= (+	881=1+		8.8 1 =		881= A			881=A				1 1 1
+	4		,		~			3			Post fix.	ABCXYX * B

SRECTIX:

esin.

Hon

Using STACK: LONVERTING 10 JRE gix

1- A+B*C^(x-1*X1(B+2))<1*B - (C+D) && B!= (C+A)^3.

JAFIX Btack Profix.

has

20 K

Reviewe: - 3 1) A + C (1= B & &)D + C (- B * 7<)) 2+B (12 * 7-x (1 C * B + A

r lower

heck

modo

3AC+ABI=DC 3AC + AB!=D 8AC+18!= Prefix Fxp. SAC+VB 3AC+1 3 AC+ 3AC 8 A 38 = 887+ 88 > Injing Stack TELL tl 200 H ~ ~ +(~ +~~ ~ 200

Again.

Indix	Stack	Pheylin.
	2 8 8	30c+101= Cc+
, i	88-	" "
9	11	3AC + AB! = DC+B
*	* - 25	" "
7	" "	3 AC + AB 1 = DC+B
>	> % &	SAC+ ABI = DC+B
^	884)	" "
^	3861)	11 11
2	" "	8
+	88<1)+	* - 2
0	"	3AC+181= D/ +B
		* - 36
	N8 <)\$	3AC + 1 B1= DC+8
1	27611	*-20+
N	" "	" "
		SAC + ABI = DC+
*	88<>/*	*-26+2.
7	2x < >/*	
1	8847	*- 28+21-0c*
		* - 2B + 7 . * /

Ingix Stack Refix.		X " SAC+AB 1= DC+BY	*-2B+X1 * /x	(&& SAC+NB!= DC+BY	*-2B+Z1*/x-	A SSKA " "	C " 3AC + AB!= DC+BY	*-28+X1*/x-C	* 88<* 3AC+ NB 1= DC+BY	* - 2B + 21 * /x-C.	4	B 1 " " 3AC + AB 1 = DC+BY	*-2B+Z/*/x-C	NB	+ BRC+ BI-DC+BY	*-2B+Z/*/x-C	NO*	A BB'C+ SAC+ NB1= OC+	B1*-2B+21*	1x-cvB*A+<	- & &	Reverse Row, 2AC + BY	* - 20 + 11 * 18-010*A	+< 28	
	1 18+	1	1 = DC+P		2	8+20-1	1 0C+B	,,	11	1= DC+8		1= DC +8		97 97	011001	1	n	B1= DC	, X .	n n		B 1=00	ナスト	B 1 = 8	144

The Grafix Eg would be 88 6+ A * B A C - X / * YX + B2 - * YB + CD! = B N + C F3

Southon OF Fost Fix

128

0

FURLUATION OF STORIFTY ASING

ABCXYX * B2 + /- 1 * + 1B * CD + - < BCA + 3 1 = 8 8

Ruthing The Values:
A=1, B=2, Y=2, Z=4, x=5

C=1, D=2

0 0

0 20

NH

H

9

0

. 100

181524 * 22 + 1 - 1 * + 22 * + 22 * + 22 + - 211 + 3 1 = 88

Stack Action beyorm Input

7	2	2	1	2	el el	00	2
Push 1	Rush 2	Pash 1	Pushs	Punh 2	Parh 4	Rep (4,2)	Push (8)
1 -	2	+	ls.		J	*	

0

cc

4

* 2 + + d 2 * 0 7 d N a N V T T 5 00 N 00 4 4 4 N 4 THE VIEW OF (3,1) Pop (2,5) Pop (2,2) Push 4 Rp (4,8) Push (3, 1 Push (2) (3) Push 2 Rosh 2 Push 4 4 00 +

					00		
Rostbix	8 8	1		>			
= 0 Aw	(heex (0 xx1)	Check (21=8)	Punh (8)	Rop (3,2)	Push 3	Rap (151) Raph (2)	Push(1) Push(1)
	0	0 4	0 2	0	س يو يو	0 20 20	0 2 1

Fost Fix DNO: 2

2+/-1

+ 1 - 1 - 4 CA - 4 CA - 4 CA + 1 - 1

TOCA CA

+1-1

>+@<

= &&

+ 75

	G NO. Y
2- A ((B-C) * D ^ C == X * ((2+x) A = x & 2
C == x * ((-2)
7 10.	
Infix Stack	Postfix.
Λ	

		~ * ((- 2)
	Infix	Btack	Postfix.
	A	NULL	A
	4	4	A
	(4(A
	B	<(AB
	4 7+1	4(-	AB
	Co	4(-	ABC
)	(-)	ABC-
	*	< *	ABC-
	D	L*	ABC-D
	A	C*N	ABC-D
	(< * ~ (ABC-D
	-2	L*^(-	ABC-02
	+	<* \((+)	ABC - D2
	X	人米人(+	ABC-D2X
) -	C*A-	ABC-DDX+
	1)	11	ABC- D2x+1
	A	11	ABC-D2X+A
F	12	11 1 -	. 41 4

11!=

11 &&

x

88

1* * < DA

ABC-DIX+AXKAN ABC-D2X+AXCAX 1=

	ABC-02X+ 1= C - 23X+ ABC-02X+ N= C - 23 ARI= CX """	平 3 2 3
	Ax 1= Cx """	
		-
		1
	× × × / / / / / / / / / / / / / / / / /	
	11000	3
- 118.8	1188==*(ABC-D2x+A*	
- 8811		4- 3
	1188==* (- 4 1	*+
No. of the last of		5- 5
== 9811 C	6==(- ABC - D2x + 1x*	2,
	Ax 1 = CxC2	-
1168	11 68==* ABC > D2x+ N*	-
	Ax 1= Cx C2-	=
		6- 9
A STATE OF THE STA	ABC-DAX+N*CA	6 7
	1=CxC3-*==	
200		7. Ak
		4

TREFIX Q No: 2

LONVERTING TO TREFIX USING
-8 STACKED 3-

2- A< (B-C)*D^(2+x) 11 A!= x && C == x * (c-2)

Reverse the String:)2-c(*x== C88x!= A 11) x+2 2 (A D *) C-B (< A.

1	Infix	Stack	Prepix.
1	0		V
))	NULL
	2) =	2
	-) -	. 2
	C) -	20
	-(NULL	26-
	*	*	20-
	X	*	2C-X
	==	==	26-2*
	C	==	26-240
	848	8.8	2C-X*C==
	x	8-8-	2C - x *C == 3C
	!=	88!=	2c-x*C==x 2c-x*C==xA
	1	1 2 1 2	26-2 * 6-

	,	: OVI	VI XI END	Cora
	Injix	Stack	Thefix	Infix
	11	"	2C-x* C== XA != &&)
)	11)	2C-x * C == XA	
	26	11)	2C-x *C == X	
			1= 88 %	-
	+	11)+	2c-x *c == x1 != &&x	B
	a	11)+	·20-x*c==x	(
			1= 28 x 2	
		113	12 88 X2+	
	^	11/	4 4	A
	D	11.0	2c-x * c=	final
	*	11 *	1=82 x2+5	1
			2c-x * c=1	Ax
-				STATE OF THE PARTY OF

0	20	ub	NEFEKTY.	#Oranord
	L	yix	Stack	Refix
= XA		>		2 C-x * C == x A 1 = 88 x2 + DA
= = XA		C	11*)	2c-x *C == xA 1= 8& X2 + DAC
== XA		-		2C-X * C == XA 1= &2 X2 + DAC
== XI		B	11 *)-	2C-X*C == XA 1= && 72+D^CB
== x x2		(11 *	2C-X*C==XA 1= 88 X2+D^CB
C ==		4	11 🐠 <	2C-x * C == xA 1= && x2+DACB
×2+		A	11 <	-* 2C-x * C == XA 1= 22 x x x x x x x x x x x x x x x x x x
* (=		final	Prefix	- * A < 11 Expression after Rev.
* 42 +			11/0 *-	BCND+2x28)= * x - c2.
8 x2 *	0			

SOLUTION OF FREGIX EXPRES -: UBING STACK 3-11 < A * - BC^D + 2x && ! = Ax == C * x-C2.(). Substituting A=1, B=2, Y=2, Z=4 X=5, C=1, D=2.11<1 * - 21^2 + 25 & 8!= 15 == 1 * 5-12. Action performed Stack Input 22 Push Push Pop (1,2) Pash (-1) Push Pop (5, -1) Push (-5)

1 1-مو 7 * -1 = (t.e) del (Push (217) Pop (2,1) Rush Push (1) Pop (1,128 Chack (1 < 128) Push (128) Pop (19128) Park Pop (100) it me = 1 Push Check (1 11 " " True = 1 1000 0 1 028 128 128 128 0 0 7 20 0 1 0 0 1 D