









parallel = 
$$1 + \frac{63}{62} = \frac{92 + 63}{62}$$
  
FB =  $\frac{62}{1 + 9 + 2}$   
Series = (FB), parallel =  $\frac{62 + 63}{1 + 92 + 2}$ .









Find C using block diagram reduction techniques





$$\frac{C}{R_1} = \frac{\frac{G_1G_2}{1+G_2H_2}}{1+\frac{G_1G_2H_1}{1+G_2H_2}} = \frac{G_1G_2}{1+G_2H_2+G_1G_2H_1}$$

$$\therefore \qquad C = \frac{G_1G_2R_1}{1+G_2H_2+G_1G_2H_1} \qquad ... \text{ due to } R_1$$

## Consider $R_2$ alone, with $R_3 = R_1 = R_4 = 0$



$$\therefore \frac{C}{R_2} = \frac{\frac{G_2}{1 + G_2 H_2}}{1 - \left(\frac{G_2}{1 + G_2 H_2}\right) (-G_1 H_1)}$$

$$C = \frac{G_2 R_2}{1 + G_2 H_2 + G_1 G_2 H_1}$$

Consider  $R_3$  alone,  $R_1 = R_2 = R_4 = 0$ 



## Combining two summing points we get,



Consider  $R_1$  alone, with  $R_1 = R_2 = R_3 = 0$ .



$$\therefore \frac{C}{R_4} = \frac{\frac{-G_1G_2H_1}{1+G_2H_2}}{1-(-G_1H_1)\left(\frac{G_2}{1+G_2H_2}\right)} = \frac{-G_1G_2H_1}{1+G_2H_2+G_1G_2H_1}$$

$$C = \frac{-G_1G_2H_1R_4}{1+G_2H_2+G_1G_2H_1}$$

Combining all the values of C, we get

$$C = \frac{G_1G_2R_1 + G_2(R_2 - R_3) - G_1G_2H_1R_4}{1 + G_2H_2 + G_1G_2H_1}$$