Logistic Regression:

$$\hat{Y} = \frac{1}{1 + e^{-Z}} \qquad Z = w.X + b$$

Y hat --> predicted value

X --> Input Variable

w --> weight

b --> bias

Gradient Descent:

Gradient Descent is an optimization algorithm used for minimizing the loss function in various machine learning algorithms. It is used for updating the parameters of the learning model.

 $w = w - \alpha^* dw$

 $b = b - \alpha * db$

Learning Rate:

Learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function.

Derivatives:

$$dw = \frac{1}{m} * (\hat{Y} - Y).X$$

$$db = \frac{1}{m} * (\hat{Y} - Y)$$

Importing the Dependencies

In [1]: # importing numpy library
import numpy as np

Logistic Regression

```
In [2]: class Logistic Regression():
          # declaring learning rate & number of iterations (Hyperparametes)
          def init (self, learning rate, no of iterations):
            self.learning rate = learning rate
            self.no of iterations = no of iterations
          # fit function to train the model with dataset
          def fit(self, X, Y):
            # number of data points in the dataset (number of rows) --> m
            # number of input features in the dataset (number of columns) --> n
            self.m, self.n = X.shape
            #initiating weight & bias value
            self.w = np.zeros(self.n)
            self.b = 0
            self.X = X
            self.Y = Y
            # implementing Gradient Descent for Optimization
            for i in range(self.no of iterations):
              self.update weights()
          def update weights(self):
            # Y hat formula (sigmoid function)
            Y hat = 1 / (1 + np.exp( - (self.X.dot(self.w) + self.b )))
            # derivaties
            dw = (1/self.m)*np.dot(self.X.T, (Y_hat - self.Y))
            db = (1/self.m)*np.sum(Y hat - self.Y)
            # updating the weights & bias using gradient descent
            self.w = self.w - self.learning rate * dw
            self.b = self.b - self.learning_rate * db
```

```
# Sigmoid Equation & Decision Boundary

def predict(self, X):

Y_pred = 1 / (1 + np.exp( - (X.dot(self.w) + self.b ) ))
Y_pred = np.where( Y_pred > 0.5, 1, 0)
return Y_pred
```

Importing the Dependencies

```
In [3]: import pandas as pd
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
```

Data Collection and Analysis

PIMA Diabetes Dataset

```
In [4]: # Loading the diabetes dataset to a pandas DataFrame
diabetes_dataset = pd.read_csv(r'C:\Users\NITHISH\Desktop\DATA SCIENCE\NITISH-ML\
```

```
In [5]: # printing the first 5 rows of the dataset
diabetes_dataset.head()
```

Out[5]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	1
0	6	148	72	35	0	33.6	0.627	
1	1	85	66	29	0	26.6	0.351	
2	8	183	64	0	0	23.3	0.672	
3	1	89	66	23	94	28.1	0.167	
4	0	137	40	35	168	43.1	2.288	
4								

```
In [6]: # number of rows and Columns in this dataset
diabetes_dataset.shape
```

Out[6]: (768, 9)

In [7]: # getting the statistical measures of the data
diabetes_dataset.describe()

Out[7]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [8]: diabetes_dataset['Outcome'].value_counts()

Out[8]: 0 500 1 268

Name: Outcome, dtype: int64

0 --> Non-Diabetic

1 --> Diabetic

In [9]: diabetes_dataset.groupby('Outcome').mean()

Out[9]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes
Outcome							
0	3.298000	109.980000	68.184000	19.664000	68.792000	30.304200	
1	4.865672	141.257463	70.824627	22.164179	100.335821	35.142537	
4							•

```
In [10]: # separating the data and labels
features = diabetes_dataset.drop(columns = 'Outcome', axis=1)
target = diabetes_dataset['Outcome']
```

```
In [11]: print(features)
               Pregnancies
                              Glucose
                                       BloodPressure
                                                        SkinThickness
                                                                        Insulin
                                                                                   BMI
                                                                                         \
          0
                                  148
                                                    72
                                                                    35
                                                                               0
                                                                                  33.6
                          6
          1
                          1
                                   85
                                                    66
                                                                    29
                                                                               0
                                                                                  26.6
          2
                          8
                                                                     0
                                                                               0
                                                                                  23.3
                                  183
                                                    64
          3
                          1
                                                    66
                                                                    23
                                                                              94
                                                                                  28.1
                                   89
          4
                          0
                                  137
                                                    40
                                                                    35
                                                                             168
                                                                                  43.1
                                                                    . . .
          763
                         10
                                  101
                                                    76
                                                                    48
                                                                             180
                                                                                  32.9
          764
                          2
                                  122
                                                    70
                                                                    27
                                                                               0
                                                                                  36.8
                          5
                                                                                  26.2
          765
                                  121
                                                    72
                                                                    23
                                                                             112
          766
                          1
                                                    60
                                                                               0
                                                                                  30.1
                                  126
                                                                     0
          767
                          1
                                   93
                                                    70
                                                                    31
                                                                               0
                                                                                  30.4
               DiabetesPedigreeFunction
                                            Age
          0
                                    0.627
                                             50
          1
                                    0.351
                                             31
          2
                                    0.672
                                             32
          3
                                    0.167
                                             21
          4
                                    2.288
                                             33
                                    0.171
                                             63
          763
                                    0.340
          764
                                             27
                                    0.245
          765
                                             30
          766
                                    0.349
                                             47
          767
                                    0.315
                                             23
          [768 rows x 8 columns]
In [12]: print(target)
          0
                  1
          1
                  0
          2
                  1
          3
                  0
          4
                  1
          763
                  0
          764
                  0
          765
                  0
          766
                  1
          767
          Name: Outcome, Length: 768, dtype: int64
          Data Standardization
In [13]: scaler = StandardScaler()
In [14]: scaler.fit(features)
Out[14]: StandardScaler()
In [15]: standardized_data = scaler.transform(features)
```

```
In [16]: print(standardized data)
        [[ 0.63994726  0.84832379  0.14964075  ...  0.20401277  0.46849198
          1.4259954
        [-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078
         -0.19067191]
        -0.10558415]
        0.3429808
                    -0.27575966]
        [-0.84488505 0.1597866 -0.47073225 ... -0.24020459 -0.37110101
          1.17073215]
        [-0.84488505 -0.8730192
                              0.04624525 ... -0.20212881 -0.47378505
         -0.87137393]]
In [17]: | features = standardized data
       target = diabetes dataset['Outcome']
In [18]: print(features)
       print(target)
        [ 0.63994726  0.84832379  0.14964075  ...  0.20401277  0.46849198
          1.4259954 ]
        [-0.84488505 -1.12339636 -0.16054575 ... -0.68442195 -0.36506078
         -0.19067191]
        -0.10558415]
        [ 0.3429808
                    -0.27575966]
        [-0.84488505 0.1597866 -0.47073225 ... -0.24020459 -0.37110101
          1.17073215]
        [-0.84488505 -0.8730192
                              0.04624525 ... -0.20212881 -0.47378505
         -0.87137393]]
             1
       1
             0
        2
             1
        3
             0
       4
             1
       763
             0
       764
             0
       765
             0
       766
             1
       767
       Name: Outcome, Length: 768, dtype: int64
       Train Test Split
In [19]: X_train, X_test, Y_train, Y_test = train_test_split(features, target, test_size =
```

```
In [20]: print(features.shape, X train.shape, X test.shape)
         (768, 8) (614, 8) (154, 8)
         Training the Model
In [21]: classifier = Logistic Regression(learning rate=0.01, no of iterations=1000)
In [22]: #training the support vector Machine Classifier
         classifier.fit(X train, Y train)
         Model Evaluation
         Accuracy Score
In [23]: # accuracy score on the training data
         X_train_prediction = classifier.predict(X_train)
         training data accuracy = accuracy score( Y train, X train prediction)
In [24]: print('Accuracy score of the training data : ', training_data_accuracy)
         Accuracy score of the training data: 0.7768729641693811
In [25]: # accuracy score on the test data
         X test prediction = classifier.predict(X test)
         test_data_accuracy = accuracy_score( Y_test, X_test_prediction)
In [26]: |print('Accuracy score of the test data : ', test_data_accuracy)
         Accuracy score of the test data: 0.7662337662337663
```

Making a Predictive System

```
In [27]: input data = (5,166,72,19,175,25.8,0.587,51)
         # changing the input data to numpy array
         input data as numpy array = np.asarray(input data)
         # reshape the array as we are predicting for one instance
         input data reshaped = input data as numpy array.reshape(1,-1)
         # standardize the input data
         std_data = scaler.transform(input_data_reshaped)
         print(std data)
         prediction = classifier.predict(std_data)
         print(prediction)
         if (prediction[0] == 0):
           print('The person is not diabetic')
         else:
           print('The person is diabetic')
         [[ 0.3429808
                        1.41167241 0.14964075 -0.09637905 0.82661621 -0.78595734
            0.34768723 1.51108316]]
         [1]
         The person is diabetic
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\base.py:445: UserWarning: X
         does not have valid feature names, but StandardScaler was fitted with feature n
           warnings.warn(
In [ ]:
```