

Preliminary Design Review

Team Members

Matt Dow Frontend / Data Visualization

John Stanfield
Backend / Simulation

Carson Watkins
User Interaction / Environment

System Overview

• Make satellite management cost effective and portable for smaller companies and universities.

• Build a system capable of visualizing and monitoring satellite constellations using a Virtual Reality system.

Concept of Operations

Similar Systems

∆VIRTU∆LITICS

System Description

User Interaction

Backend

Mission Control Software

Data Visualization

System Demonstration

Failed Requirements

Requirement Type	#	Requirement Statement	
Functional	1.4.1	The software shall allow for satellite anomalies in physical constraints to be detected.	
Performance	2.1.2	The system shall display each satellite's temperature and power data.	
Performance	2.4.1	The system shall display at least 1262 separate orbits.	

Consumer Budget

Virtual Mission Control Budget						
Required Items	<u>Cost</u>					
Oculus Virtual Reality Headset	\$300 - 500					
 Server (Two Options) Dell Server (Built/Configured Server) Dedicated PC (only recommended for small uses) 	Purchased Server : \$500 - \$2000 Dedicated PC: \$0 - \$2000					
<u>Total Cost</u>	Minimum: \$300 Maximum: \$2500					

Jay Stanfield Backend / Simulation

Subsystem Overview

Design Drivers

Requirement Type	#	Requirement Statement
Functional	1.2	The system shall allow for data transfer between the analysis and visualization platforms.
Functional	1.3	The system shall allow for simulation of orbital data.
Performance	2.1	The system shall receive TLEs from a ground station.
Performance	2.4	The system shall automatically update data.

API Design

Data Transfer via RESTful APIMethodEffectivenessMaintenanceEase of UseTotalPython/Django Framework94215Javascript/Express Framework96318

```
app.get('/api/grndtrk', (req, res) => {
    const spawn = require("child_process").spawn;

    const pythonProcess =
    spawn('python',["simulation.py"]);
```

Telemetry

CFESAT

1 30777U 07006F 21102.58371009 .00005430 00000-0 13704-3 0 9996 2 30777 35.4241 200.9033 0004147 23.2780 336.8134 15.39259544782529


```
"SatNum": "30777",
   "Epoch": "21114.45235523",
   "MMotDeriv": ".00006219",
   "inclination": "35.4236",
   "RAAN": "124.7819",
   "Eccentricity": "0004208",
   "ArgPerigee": "153.6616",
   "MAnomaly": "206.4326",
   "MMotion": "15.39429277784352"
},
```

Simulation Design

VMCAA VMCAA VOISSIN IERNAIN

- Model is based on:
 - Two-Body Dynamics
 - o J2 Perturbations
- Numerical Simulation:
 - Runge Kutta 4th Order Integrator
- Interactivity
 - Allows for the user to submit a satellite ID for analysis.
- Ground Track

Subsystem Analysis

Backend Performance				
System	Response Time (seconds)			
Simulation	0.40625			
TLE Update	0.046875			

Subsystem Requirements Status

Requirement Type	#	Requirement Statement	
Functional	1.2	The system shall allow for data transfer between the analysis and visualization platforms.	
Functional	1.3	The system shall allow for simulation of orbital data.	
Performance	2.1	The system shall receive TLEs from a ground station.	
Performance	2.4	The system shall automatically update data.	

Carson Watkins

User Interaction/Environment

Design Drivers

Requirement Type	#	Requirement Statement		
Functional	1.1	The system shall allow for a user to interact with the virtual environment.		
Performance	2.3	The system shall allow for the user to interact with satellite data.		
Constraint	3.3	The system shall offer a health conducive environment.		
Constraint	3.3.1	The system shall reduce movements that could cause motion sickness.		
Constraint	3.3.2	The environment shall utilize lighting that reduces strain on the eyes.		

Subsystem Overview

Unity XR vs. OVR

UI Weighted Values

Package	Ease of Construction	Environment Interaction	Prefabs	Implementation in Unity	Total
XR	6	12	2	9	29
OVR	6	4	3	3	16

Environment and Interaction

Control for Ae

Requirement Status

Requirement Type	#	Requirement Statement		
Functional	1.1	The system shall allow for a user to interact with the virtual environment.		
Performance	2.3	The system shall allow for the user to interact with satellite data.		
Constraint	3.3	The system shall offer a health conducive environment.		
Constraint	3.3.1	The system shall reduce movements that could cause motion sickness.		
Constraint	3.3.2	The environment shall utilize lighting that reduces strain on the eyes.		

Matt Dow

Data Visualization

Design Drivers

Requirement Type	#	Requirement Statement
Performance	2.1	The system shall receive and visualize data from TLEs.
Performance	2.2	The system shall allow for visualization of multiple satellite constellations.
Performance	2.4	The system shall update visualized data autonomously.

Subsystem Overview

2-Dimensional

Comparison Between Satellites

Comparison Over Time

Density Plot

Orbit Visualization

3-Dimensional

Trade Study Outcome

VMCAA VOISSIN IEMANN

Note: All graph types were implemented into the system, this trade study only affected the order in which each type was prioritized.

UI Weighted Values						
Package	Amount Displayable	Readability	Processing Load	Time Span	Total	
Bar Graph	9	12	6	1	28	
Histogram (Individual)	3	12	6	2	23	
Dot Graph (Group)	6	8	4	2	20	

3D Data Visualization

Orbit Visualization

Satellite Density

2D Data Visualization (Time History Comparison)

Element History

Ground Track

2D Data Visualization (Constellation Comparison)

Comparison of Data Ranges

Comparison Of Individual

Data vs Others

Requirement Status

Requirement Type	#	Requirement Statement	Status
Performance	2.1	The system shall receive and visualize data from TLEs.	
Performance	2.2	The system shall allow for visualization of multiple satellite constellations.	
Performance	2.4	The system shall update visualized data autonomously.	

Risk Assessment

VMCAA Risk

- 1. Platform Requires Modification
- 2. Software Integration Issues
- 3. Equipment For Development Malfunctions
- 4. Light/Dizziness Side Effects
- 5. Data Feed Is Interrupted
- 6. Software Design Is Too Complex
- 7. Platform Is Not Capable Of Running Software
- 8. Injury Due To Side Effects
- 9. System Compromised Externally

Final Thoughts

Lessons Learned

- Integrate Subsystems Earlier
- Focus main effort on API development during initial phases
- Ensure all group members can run virtual reality systems on personal computers

Future Work

- Implement anomaly tracking system
- Display ground track of a selected satellite
- Implement satellite selection from visualized orbits