Machine Learning

Chapter 1 머신러닝 개요

- Machine Learning 개념을 이해 할 수 있다.
- Machine Learning의 종류 및 과정을 알 수 있다.

데이터 특성과 패턴을 학습하여, 미지의 데이터에 대한 결과를 예측하는 것

지도학습 (Supervised Learning)

비지도학습 (Unsupervised Learning)

강화학습 (Reinforcement Learning)

지도 학습 (Supervised Learning)

• 데이터에 대한 Label(명시적인 답)이 주어진 상태에서 컴퓨터를 학습시키는 방법.

지도학습의 대표적 알고리즘

분류(classification)

어떠한 x라는 데이터가 들어왔을 때이 데이터가 어떤 class에 속하는지 예측

Ex)강아지나 고양이사진이 주어졌을때 강아지나 고양이로 예측

회귀(Regression)

어떠한 x라는 데이터가 들어왔을 때 "어떠한 값"을 예측

Ex)몸무게라는 x 데이터를 넘겨줬을 때 키 y를 예측

비지도 학습 (Unsupervised Learning)

- 데이터에 대한 Label(명시적인 답)이 없는 상태에서 컴퓨터를 학습시키는 방법.
- 데이터의 숨겨진 특징, 구조, 패턴을 파악하는데 사용.
- 데이터를 비슷한 특성끼리 묶는 군집(Clustering)과 차원 축소(Dimensionality Reduction) 등이 있다.

비지도 학습 (Unsupervised Learning)

clustering

강화 학습 (Reinforcement Learning)

- 문제와 답을 주지 않고 목표와 보상만 제공하여 컴퓨터를 학습시키는 방법.
- 기계는 더 많은 보상을 얻을 수 있는 방향으로 행동을 학습.
- 주로 게임이나 로봇을 학습시키는데 많이 사용.

강화 학습 (Reinforcement Learning)

• 보상 시스템에 따라 최적의 액션 시퀀스(action sequence)를 결정하는 것

지도학습

비지도학습

강화학습

XOR 연산을 학습 해보자

scikit-learn

- 파이썬에서 쉽게 사용할 수 있는 머신러닝 프레임워크,라이브러리
- 회귀,분류,군집,차원축소,특성공학,전처리,교차검증,파이프라인 등 머신러닝에 필요한 기능을 갖춤
- 학습을 위한 샘플 데이터도 제공

XOR 연산 학습하기

XOR 연산 학습하기

Model (알고리즘)

KNN 분류 모델을 사용

XOR 연산 학습하기

```
knn=KNeighborsClassifier(n_neighbors=1)
knn.fit(문제,답)
knn.predict(새로운 문제)
score=metrics.accuracy_score(실제답, 예측결과)
```

- 1. Problem Identification(문제정의)
- 2. Data Collection(데이터 수집)
- 3. Data Preprocessing(데이터 전처리)
- 4. EDA(탐색적 데이터분석)
- 5. Model Selection(모델 선택)
- 6. Fit(학습)
- 7. Evaluation(평가)

1. Problem Identification(문제정의)

- Classification 분류
- Regression 회귀

2. Data Collection(데이터 수집)

- 공공데이터 (https://www.data.go.kr/)
- 웹크롤링 (뉴스, SNS, 블로그)
- Kaggle

- 3. Data Preprocessing(데이터 전처리)
 - 결측치, 이상값 조정
 - Encoding Categorical Data를 수치 데이터로 변경
 - Feature Engineering (특성공학) 단위 변환, 새로운 속성 추가

4. EDA(탐색적 데이터분석)

- 데이터를 관찰 후 전처리 전략 수립 → 시각화(pandas, matplotlib, seaborn)
- 예측 모델에 넣을 Feature(특성) 결정

5. Model Selection(모델 선택)

- 목적에 맞는 적절한 모델 선택
- KNN, Decision Tree, Linear Model, Ridge, Lasso ... HyperParameter tuning (하이퍼파라미터 조정)

6. Fit(학습)

- Train 데이터와 Test 데이터를 7:3 정도<u>로 나눔</u>

7. Evaluation(평가)

- Accuracy(정확도)
- Mean squared error(평균제곱오차)