Introduction

l'agriculture intelligente ou l'agriculture 4.0 est l'application des technologies de l'information et des données pour optimiser des systèmes agricoles complexes. Cela implique des machines individuelles et toutes les opérations agricoles.

Problématique

- Les maladies foliaires constituent une menace majeure pour la productivité globale et la qualité des vergers de pommiers.
- La méthode actuelle repose sur un dépistage manuel coûteux et chronophage. coûteux par des humains.
- La détection et le diagnostic précoces de la maladie réduisent le taux de maladie.

Objectifs du projet

- Etablir une solution collaborative entre le traitement d'image et la phytopathologie permettra de réduire le temps du travail humain nécessaire par l'utilisation des algorithmes afin de faciliter l'identification des maladies des plantes.
- développer un modèle basé sur l'apprentissage en profondeur pour identifier les maladies sur des images de feuilles de pommier.
- Mettre à la disposition des agriculteurs un système dédié à la prédiction des maladies des plantes, de telle façon que les gens pourront prendre une photo de leur plante et le transmettre vers le cloud afin d'obtenir un diagnostic en quelques secondes.

Techniques de l'intelligence artificielle

L'intelligence artificielle est un vaste domaine scientifique, apparue dès les années 50, peut-être définie comme l'ensemble de techniques permettant à des machines d'accomplir des tâches et de résoudre des problèmes normalement réservés aux humains et à certains animaux

Transfer Learning

Le Transfer Learning permet de faire du Deep Learning sans avoir besoin d'y passer un mois de calculs. Le principe est d'utiliser les connaissances acquises par un réseau de neurones lors de la résolution d'un problème afin d'en résoudre un autre plus ou moins similaire.

Conception de système

Résultats expérimentaux

Conclusion

Les étapes de développement du modèle

Préparation des données

Construction du modèle

Évaluation et validation

Travaux connexes

Conception de système

Résultats expérimentaux

Conclusion

Réseaux de classification

✓ Classification traditionnels

segmentation d'images

Support Vector Machines

pseudo-Haar

K-Nearest Neighbors

K-means

√ réseaux convolutifs célèbres basés sur le CNN

Complete State Sta

224 + 224 x 3 224 x 224 x 64

112 x 112 x 128

7 x 7 x 512

7 x 7 x 512

1 x 1 x 4096 1 x 1 x 1000

conclution = ReLU

max pooling

figure excel + ReLU

softmax

AlexNet

Resnet50

GoogleNet

VGGNet

Inception

Revue du littérateur

Travail	Pays	Plant	Data	Méthode de classification	Nbre maladies	Précision
Qiufeng Wu, 2018	Chine	Tomate	5550 (feuille de tomate)	CNN (SGD , ADM)	8	95%
José G. 2019	Brazil	Café	1747 (feuille de café)	CNN (t-SNE)	4	94 ,05 %
Jie Hang 2019	Chine	Blé Cerise Pomme	6108 (Feuilles de : Blé, Cerise et pomme).	CNN (SE)	7	91.70 %

Définition d'ensemble de données

Fine-Grained Visual Categorization

FGVC Competitions:

PlantPathology2021

FGVC8 @ CVPR 2021

Data Explorer

16.1 GB

- test_images
- ▶ □ train_images
 - sample_submission.csv
 - train.csv

Summary

- ▼ □ 18.6k files
 - .jpg
 - .csv
- ▶ **Ш** 4 columns

Echantillon de feuilles avec différentes maladies

Prétraitement des données

✓ Analyse exploratoire

Étiquette	Nombre d'images	Pourcentage	
scab	4826	25,9%	
healthy	4624	24,8%	
Forg_eye_leaf_spot	3181	17,1%	
rust	1860	10,0%	
complex	1602	8,6%	
powdery_mildew	1184	6,4%	
Scab Forg_eye_leaf_spot	686	3,7%	
Scab Forg_eye_leaf_spot complex	200	1,1%	
Forg_eye_leaf_spot complex	165	0,9%	
Rust Forg_eye_leaf_spot	120	0,6%	
Rust complex	97	0,5%	
powdery_mildew complex	87	0,5%	
Totale	18632	100%	

déséquilibre dans l'ensemble de données

Classification multi-class

Classification multi-label

Prétraitement des données

Exploration d'images: Redimensionner et traitement des images

Suppression des doublons de l'ensemble de données

Travaux connexes

Conception de système

Résultats expérimentaux

Conclusion

Architecture de système

Organigramme d'architecture de système

Travaux connexes

Conception de système

Résultats expérimentaux

Architecture des réseaux proposés

Modèle Proposé N° 01 :

Input	Layer Type	Output Size	kernel size	Activation	
1	Conv	254x254x32	3x3	Relu	
2	Pooling/max	127x127x32	3x3	Relu	
3	Conv1	125 × 125× 64	3x3	Relu	
4	Pooling1/max	62x62x64	2x2	Relu	
5	Conv2	60x60x128	3x3	Relu	
6	Pooling2/max	30x30x128	2x2	Relu	
7	Conv3	28x28X128	3x3	Relu	
8	Pooling3/max	14x14x128	2x2	Relu	
9	Conv4	12x12x128	3x3	Relu	
10	Pooling4/max	6x6x128	2x2	Relu	
	Flatten	4608	-	Relu	
11	Dense	512	-	Relu	
12	Dense	5	-	Sigmoid	

Couches du Modèle N°01

Model: "sequential"

	0	
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 254, 254, 32)	896
max_pooling2d (MaxPooling2D)	(None, 127, 127, 32)	0
conv2d_1 (Conv2D)	(None, 125, 125, 64)	18496
max_pooling2d_1 (MaxPooling2	(None, 62, 62, 64)	0
conv2d_2 (Conv2D)	(None, 60, 60, 128)	73856
max_pooling2d_2 (MaxPooling2	(None, 30, 30, 128)	0
conv2d_3 (Conv2D)	(None, 28, 28, 128)	147584
max_pooling2d_3 (MaxPooling2	(None, 14, 14, 128)	0
conv2d_4 (Conv2D)	(None, 12, 12, 128)	147584
max_pooling2d_4 (MaxPooling2	(None, 6, 6, 128)	0
flatten (Flatten)	(None, 4608)	0
dense (Dense)	(None, 512)	2359808
dense_1 (Dense)	(None, 5)	2565
T . 1 0 750 700		

Total params: 2,750,789 Trainable params: 2,750,789 Non-trainable params: 0

Architecture des couches du Modèle N° 01

Travaux connexes

Conception de système

Résultats expérimentaux

Conclusion

Architecture des réseaux proposés

Modèle Proposé N° 02 (dropout, Bach normalisation)

Input	Layer Type	Output Size	kernel size	Activation	
1	Conv	248x248x32	3x3	Relu	
2	Pooling/max	82x82x32	3x3	Relu	
3	Conv1	82x82x64	3x3	Relu	
4	Conv2	82x82x64	3x3	Relu	
5	Pooling1/max	41x41x64	3x3	Relu	
6	Conv 3	41x41x128	3x3	Relu	
7	Conv 4	41x41x128	3x3	Relu	
8	Pooling3/max	20x20x128	2x2	Relu	
	Flatten	51200	-	Relu	
9	Dense	64	-	Relu	
10	Dense	6	-	softmax	

Couches du Modèle N°02

Model: "sequential"		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 248, 248, 32)	896
batch_normalization (BatchNo	(None, 248, 248, 32)	128
max_pooling2d (MaxPooling2D)	(None, 82, 82, 32)	0
dropout (Dropout)	(None, 82, 82, 32)	0
conv2d_1 (Conv2D)	(None, 82, 82, 64)	18496
batch_normalization_1 (Batch	(None, 82, 82, 64)	256
conv2d_2 (Conv2D)	(None, 82, 82, 64)	36928
batch_normalization_2 (Batch	(None, 82, 82, 64)	328
max_pooling2d_1 (MaxPooling2	(None, 41, 41, 64)	0
dropout_1 (Dropout)	(None, 41, 41, 64)	0
conv2d_3 (Conv2D)	(None, 41, 41, 128)	73856
batch_normalization_3 (Batch	(None, 41, 41, 128)	512
conv2d_4 (Conv2D)	(None, 41, 41, 128)	147584
batch_normalization_4 (Batch	(None, 41, 41, 128)	512
max_pooling2d_2 (MaxPooling2	(None, 20, 20, 128)	0
dropout_2 (Dropout)	(None, 20, 20, 128)	0
flatten (Flatten)	(None, 51200)	0
dense (Dense)	(None, 64)	3276864
activation (Activation)	(None, 64)	0
dropout_3 (Dropout)	(None, 64)	0
batch_normalization_5 (Batch	(None, 64)	256
dropout_4 (Dropout)	(None, 64)	Ø
dense_1 (Dense)	(None, 6)	390
activation_1 (Activation) ====================================	(None, 6)	0

Architecture des couches du Modèle N° 01

Travaux connexes

Conception de système

Résultats expérimentaux

Conclusion

Architecture des réseaux proposés

Modèle Proposé N° 03:

Architecture de réseau ResNet50

Layer (type)	Output	Shape	Param #	Connected to
input_2 (InputLayer)	[(None	, 224, 224, 3)	0	
conv1_pad (ZeroPadding2D)	(None,	230, 230, 3)	0	input_2[0][0]
conv1_conv (Conv2D)	(None,	112, 112, 64)	9472	conv1_pad[0][0]
conv1_bn (BatchNormalization)	(None,	112, 112, 64)	256	conv1_conv[0][0]
conv1 relu (Activation)	(None,	112, 112, 64)	0	conv1 bn[0][0]
oool1_pad (ZeroPadding2D)	(None,	114, 114, 64)	0	conv1_relu[0][0]
pool1_pool (MaxPooling2D)	(None,	56, 56, 64)	0	pool1_pad[0][0]
conv2_block1_1_conv (Conv2D)	(None,	56, 56, 64)	4160	pool1 pool[0][0]
conv2 block1 1 bn (BatchNormali	(None,	56, 56, 64)	256	conv2 block1 1 conv[0][0]
conv2_block1_1_relu (Activation	(None,	56, 56, 64)	0	conv2_block1_1_bn[0][0]
conv2_block1_2_conv (Conv2D)	(None,	56, 56, 64)	36928	conv2_block1_1_relu[0][0]
conv2 block1 2 bn (BatchNormali	(None,	56, 56, 64)	256	conv2 block1 2 conv[0][0]
conv2_block1_2_relu (Activation	(None,	56, 56, 64)	0	conv2_block1_2_bn[0][0]
conv2_block1_0_conv (Conv2D)	(None,	56, 56, 256)	16640	pool1_pool[0][0]
conv5_block2_out (Activation)	(None,	7, 7, 2048)	0	conv5_block2_add[0][0]
conv5_block3_1_conv (Conv2D)	(None,	7, 7, 512)	1049088	conv5_block2_out[0][0]
conv5 block3 1 bn (BatchNormali	(None,	7, 7, 512)	2048	conv5_block3_1_conv[0][0]
conv5 block3 1 relu (Activation	(None,	7, 7, 512)	0	conv5 block3 1 bn[0][0]
conv5_block3_2_conv (Conv2D)	(None,	7, 7, 512)	2359808	conv5_block3_1_relu[0][0]
conv5_block3_2_bn (BatchNormali	(None,	7, 7, 512)	2048	conv5_block3_2_conv[0][0]
conv5_block3_2_relu (Activation	(None,	7, 7, 512)	0	conv5 block3 2 bn[0][0]
conv5_block3_3_conv (Conv2D)	(None,	7, 7, 2048)	1050624	conv5_block3_2_relu[0][0]
conv5_block3_3_bn (BatchNormali	(None,	7, 7, 2048)	8192	conv5_block3_3_conv[0][0]
conv5 block3_add (Add)	(None,	7, 7, 2048)	0	conv5 block2 out[0][0] conv5 block3 3 bn[0][0]
conv5_block3_out (Activation)	(None,	7, 7, 2048)	0	conv5_block3_add[0][0]
global_average_pooling2d (Globa	(None,	2048)	0	conv5_block3_out[0][0]
dense (Dense)	(None,	64)	131136	<pre>global_average_pooling2d[0][0]</pre>
dense 1 (Dense)	(None,	16)	1040	dense[0][0]
dense 2 (Dense)	(None,	6)	102	dense_1[0][0]

Total params: 23,719,990 Trainable params: 23,666,870 Non-trainable params: 53,120

couches du Modèle N° 03

Comparaison des résultats obtenus

Modèle	Description d'Architecture utilisée	Nombre de paramètr es	Paramètres traitable	Paramètres non traitable	Batch Size	Epoque	Précision sur la base d'apprentiss age	Précision sur la base de validation	Erreur
Modèle N°01	5 couches de convolution		2, 750,789		128	30	78,95%	83,09%	15,09%
	5 couches de pooling	2, 750,789				40	78,01%	82,85%	18,65%
	2 couches de fully-connected.								
	5 couches de convolution	3, 557,006	3, 556,010	996	32	30	77,44%	78.37%	19,30%
	5 couches de pooling								
Modèle N°02	2 couches de fully-connected.								
	5 batch normalization et dropout					40	79,51%	73,99%	22,03%
Modèle N°03	ResNet50 (50	23,	23, 666,870	53,12	32	30	90,68%	85,95%	46,60%
	convolution)	719,990	25, 000,870			40	92,46%	91,83%	28,34%

Matrice de Confusion pour le Modèle 03 (40 époque)

le modèle 3 pré-entraîne base sur ResNet50 présente les meilleurs résultats trouvés (91.83%)

Pour le modèle 1 on remarque que pour 30 époques donne de meilleurs résultats (une différence de 4.72%), et quand le nombre d'époques passe à 40, on remarque que les deux modèles diminués.

Travaux connexes

Conception de système

Résultats expérimentaux

Conclusion

Travaux connexes

Conception de système

Résultats expérimentaux

Conclusion

Démonstration

Conclusion et perspectives

