LECTURE

4

SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS

Series with nonnegative terms (II)

Theorem 4.1 (Kummer's Test) Let $\sum_{n\geq 1} x_n$ be a series with positive terms.

1° If $\exists (c_n)_{n \in \mathbb{N}}$ in $(0, +\infty)$, $\exists r > 0$ and $\exists n_0 \in \mathbb{N}$, such that

$$c_n \frac{x_n}{x_{n+1}} - c_{n+1} \ge r, \ \forall n \in \mathbb{N}, \ n \ge n_0,$$

then the series $\sum_{n\geq 1} x_n$ is convergent.

 2° If $\exists (c_n)_{n \in \mathbb{N}}$ in $(0, +\infty)$ and $\exists n_0 \in \mathbb{N}$, such that

$$\sum_{n=1}^{n} \frac{1}{c_n} = +\infty \quad and \quad c_n \frac{x_n}{x_{n+1}} - c_{n+1} \le 0, \ \forall n \in \mathbb{N}, \ n \ge n_0,$$

then the series $\sum_{n>1} x_n$ is divergent.

Proof. 1° Since $c_n x_n - c_{n+1} x_{n+1} \ge r x_{n+1}$, $\forall n \ge n_0$, it follows that for any $n \ge n_0 + 1$,

$$\sum_{k=n_0}^{n-1} (c_k x_k - c_{k+1} x_{k+1}) \ge r \sum_{k=n_0}^{n-1} x_{k+1}.$$

Denoting $s_n := x_1 + \ldots + x_n$, we deduce that $c_{n_0} x_{n_0} - c_n x_n \ge r (s_n - s_{n_0})$ and therefore

$$s_n \le s_{n_0} + \frac{1}{r} (c_{n_0} x_{n_0} - c_n x_n) \le s_{n_0} + \frac{c_{n_0} x_{n_0}}{r}.$$

Hence, the sequence of partial sums (s_n) is bounded, which means that the series $\sum_{n\geq 1} x_n$ is convergent (by Lemma 3.13)

2° Since $c_n x_n \leq c_{n+1} x_{n+1}$, $\forall n \geq n_0$, we have $c_{n_0} x_{n_0} \leq c_n x_n$, $\forall n \geq n_0$. This yields

$$\frac{1}{c_n} \le \frac{1}{c_{n_0} x_{n_0}} x_n, \ \forall \ n \ge n_0.$$

Since the series $\sum_{n\geq 1} \frac{1}{c_n}$ is divergent, we conclude that the series $\sum_{n\geq 1} x_n$ is divergent as well, according to the Comparison Test (Theorem 3.18)

Theorem 4.2 (Raabe-Duhamel's Test) Let $\sum_{n\geq 1} x_n$ be a series with positive terms.

$$1^{\circ} \text{ If } \exists q > 1, \ \exists \, n_0 \in \mathbb{N} \text{ such that } n \left(\frac{x_n}{x_{n+1}} - 1 \right) \geq q, \ \forall \, n \geq n_0, \ \text{then } \sum_{n \geq 1} x_n \text{ is convergent.}$$

$$2^{\circ}$$
 If $\exists n_0 \in \mathbb{N}$ such that $n\left(\frac{x_n}{x_{n+1}}-1\right) \leq 1$, $\forall n \geq n_0$, then $\sum_{n\geq 1} x_n$ is divergent.

3° If the following limit exists

$$R := \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) \in \overline{\mathbb{R}},$$

then we have

a) If
$$R > 1$$
, $\sum_{n > 1} x_n$ is convergent.

b) If
$$R < 1$$
, $\sum_{n>1}^{\infty} x_n$ is divergent.

Proof. Follows from Kummer's Test (Theorem 4.1) for $c_n := n$ for all $n \in \mathbb{N}$.

Example 4.3 For any a > 0 consider the series

$$\sum_{n\geq 1} \frac{n!}{a(a+1)\cdot\ldots\cdot(a+n)}.$$

This series is convergent for a > 1 and divergent for $a \in (0,1]$.

Indeed, denoting $x_n := \frac{n!}{a(a+1) \cdot \ldots \cdot (a+n)}$, we have

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)!}{a(a+1)\cdot\ldots\cdot(a+n+1)} \cdot \frac{a(a+1)\cdot\ldots\cdot(a+n)}{n!} = \frac{n+1}{a+n+1}.$$

Note that $D := \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1$, hence the Ratio Test is inconclusive. However,

$$R := \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{a+n+1}{n+1} - 1 \right) = \lim_{n \to \infty} n \frac{a}{n+1} = a,$$

which allows us to conclude, by Raabe-Duhamel's Test, that the given series is convergent if a > 1 and divergent if $a \in (0,1)$.

Finally, for a = 1 the given series becomes $\sum_{n \ge 1} \frac{1}{n+1}$, which is divergent.

Theorem 4.4 (Bertrand's Test) Let $\sum_{n\geq 1} x_n$ be a series with positive terms. If the following limits exists

$$B := \lim_{n \to \infty} (\ln n) \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) - 1 \right] \in \overline{\mathbb{R}},$$

then we have

a) If
$$B > 1$$
, then $\sum_{n=1}^{\infty} x_n$ is convergent.

b) If
$$B < 1$$
, then $\sum_{n>1}^{n \ge 1} x_n$ is divergent.

Proof. Follows from Kummer's Test (Theorem 4.1) for $c_n := n \cdot \ln n, n \in \mathbb{N}, n \geq 2$.

Example 4.5 The series
$$\sum_{n\geq 1} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2$$
 is divergent.

Indeed, denoting
$$x_n := \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 = \left[\frac{1 \cdot 3 \cdot \ldots \cdot (2n-1)}{2 \cdot 4 \cdot \ldots \cdot (2n)} \right]^2$$
 we have

$$\frac{x_{n+1}}{x_n} = \left(\frac{2n+1}{2n+2}\right)^2$$
 for all $n \in \mathbb{N}$. It is a simple exercise to check that

$$D := \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 1;$$

$$R := \lim_{n \to \infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left[\left(\frac{2n+2}{2n+1} \right)^2 - 1 \right] = \lim_{n \to \infty} \frac{4n^2 + 3n}{4n^2 + 4n + 1} = 1,$$

hence both the Ratio Test and the Raabe-Duhamel's Test are inconclusive.

On the other hand, we have

$$B := \lim_{n \to \infty} (\ln n) \left[n \left(\frac{x_n}{x_{n+1}} - 1 \right) - 1 \right] = \lim_{n \to \infty} (\ln n) \left(\frac{4n^2 + 3n}{4n^2 + 4n + 1} - 1 \right) = 0 < 1.$$

We conclude by Bertrand's Test that the given series is divergent.

Series with arbitrary terms

Theorem 4.6 (Abel-Dirichlet's Test) Let $\sum_{n\geq 1} x_n$ be a series of real numbers. Assume that there

exist two sequences of real numbers, $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$, satisfying the following three conditions:

- (i) $x_n = a_n \cdot b_n, \ \forall n \in \mathbb{N}.$
- (ii) $\exists M > 0 \text{ s.t. } -M \leq A_n := a_1 + \cdots + a_n \leq M, \ \forall n \in \mathbb{N}, \text{ i.e., the sequence } (A_n)_{n \in \mathbb{N}} \text{ is bounded.}$
- (iii) The sequence $(b_n)_{n\in\mathbb{N}}$ is monotone and convergent to 0.

Then the series $\sum_{n>1} x_n$ is convergent.

Proof. Without loss of generality we can assume in (iii) that (b_n) is decreasing. We will prove that $\sum_{n\geq 1} x_n$ converges by using Cauchy's Criterion (Theorem 3.11)To this aim, consider an arbitrary $\varepsilon > 0$.

On the one hand, by (i), (ii) and the assumption that (b_n) is decreasing, we have

$$\begin{aligned} &|x_{n+1}+x_{n+2}+\cdots+x_{n+p}|\\ &= &|a_{n+1}b_{n+1}+a_{n+2}b_{n+2}+\ldots+a_{n+p}b_{n+p}|\\ &= &|(A_{n+1}-A_n)\,b_{n+1}+(A_{n+2}-A_{n+1})\,b_{n+2}+\cdots+(A_{n+p}-A_{n+p-1})\,b_{n+p}|\\ &= &|-A_nb_{n+1}+A_{n+1}\,(b_{n+1}-b_{n+2})+\cdots+A_{n+p-1}\,(b_{n+p-1}-b_{n+p})+A_{n+p}b_{n+p}|\\ &\leq &|-A_n|\cdot|b_{n+1}|+|A_{n+1}|\cdot|b_{n+1}-b_{n+2}|+\cdots+|A_{n+p-1}|\cdot|b_{n+p-1}-b_{n+p}|+|A_{n+p}|\cdot|b_{n+p}|\\ &= &|A_n|\cdot b_{n+1}+|A_{n+1}|\cdot(b_{n+1}-b_{n+2})+\cdots+|A_{n+p-1}|\cdot(b_{n+p-1}-b_{n+p})+|A_{n+p}|\cdot b_{n+p}\\ &\leq &M\left[b_{n+1}+(b_{n+1}-b_{n+2})+(b_{n+2}-b_{n+3})+\ldots+(b_{n+p-1}-b_{n+p})+b_{n+p}\right]\\ &= &2Mb_{n+1},\ \forall\,n,p\in\mathbb{N}.\end{aligned}$$

On the other hand, since $\lim_{n\to\infty} b_n = 0$ by (iii), there exists $n_{\varepsilon} \in \mathbb{N}$ such that

$$|b_n| < \frac{\varepsilon}{2M}, \ \forall n \in \mathbb{N}, \ n \ge n_{\varepsilon}.$$

We conclude that $|x_{n+1} + x_{n+2} + \cdots + x_{n+p}| < \varepsilon, \ \forall n \in \mathbb{N}, \ n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}.$

Definition 4.7 A series $\sum_{n\geq 1} x_n$ is called alternating if either

$$x_1 \ge 0, x_2 \le 0, x_3 \ge 0, \dots (i.e., x_n = (-1)^{n+1} |x_n| \text{ for all } n \in \mathbb{N})$$

or

$$x_1 \le 0, x_2 \ge 0, x_3 \le 0, \dots (i.e., x_n = (-1)^n |x_n| \text{ for all } n \in \mathbb{N}).$$

Theorem 4.8 (Leibniz's Criterion for Alternating Series) Consider an alternating series $\sum_{n\geq 1} x_n$.

If the sequence $(|x_n|)_{n\in\mathbb{N}}$ is decreasing, then the following assertions are equivalent:

- 1° The series $\sum_{n\geq 1} x_n$ is convergent.
- 2° The sequence $(x_n)_{n\in\mathbb{N}}$ converges to 0.

Proof. Assume that $x_n = (-1)^{n+1}|x_n|$ for all $n \in \mathbb{N}$. Then the conclusion follows by Abel-Dirichlet's Test for $a_n := (-1)^{n+1}$ and $b_n := |x_n|$.

Definition 4.9 A series of real numbers $\sum_{n\geq 1} x_n$ is called absolutely convergent if the series $\sum_{n\geq 1} |x_n|$ is convergent.

Theorem 4.10 If a series of real numbers $\sum_{n\geq 1} x_n$ is absolutely convergent, then it is also convergent.

Proof. Let $\varepsilon > 0$. Since $\sum_{n \geq 1} |x_n|$ is convergent, there exists in view of the Cauchy's Criterion (Theorem 3.11) a number $n_{\varepsilon} \in \mathbb{N}$ such that

$$||x_{n+1}| + \dots + |x_{n+p}|| < \varepsilon, \ \forall n \in \mathbb{N}, \ n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}.$$

Noting that $|x_{n+1} + \dots + x_{n+p}| \le |x_{n+1}| + \dots + |x_{n+p}| = ||x_{n+1}| + \dots + |x_{n+p}||$, we infer

$$|x_{n+1} + \dots + x_{n+p}| < \varepsilon, \ \forall n \in \mathbb{N}, \ n \ge n_{\varepsilon}, \ \forall p \in \mathbb{N}.$$

By Cauchy's Criterion (Theorem 3.11) we conclude that $\sum_{n\geq 1} x_n$ is convergent. \square

Definition 4.11 A series of real numbers $\sum_{n\geq 1} x_n$ is called semi-convergent (or conditionally convergent) if it is convergent but not absolutely convergent.

Remark 4.12 A series $\sum_{n\geq 1} x_n$ with nonnegative terms is absolutely convergent if and only if it is convergent.

Example 4.13 (The alternating generalized harmonic series) Let $p \in \mathbb{R}$. The so-called alternating generalized harmonic series

$$\sum_{n>1} \frac{(-1)^{n+1}}{n^p}$$

is divergent for $p \in (-\infty, 0]$, semi-convergent for $p \in (0, 1]$ and absolutely convergent for $p \in (1, \infty)$. In particular, for p = 1 we get the alternating harmonic series, whose sum is

$$\sum_{n>1} \frac{(-1)^{n+1}}{n} = \ln 2.$$

Example 4.14 The series $\sum_{n>1} \frac{(-1)^{n+1}}{n\sqrt{n}}$ is absolutely convergent.

Example 4.15 The series $\sum_{n\geq 1} (-1)^{n+1} \sin \frac{1}{n}$ is semi-convergent.

Example 4.16 The series $\sum_{n\geq 1} (-1)^{n+1} \frac{n}{n+1}$ is divergent.

Example 4.17 The series $\sum_{n\geq 1} \cos(n\pi)$ is divergent.

Theorem 4.18 (Cauchy) If a series $\sum_{n\geq 1} x_n$ is absolutely convergent, then for any bijection (permutation) $\sigma: \mathbb{N} \to \mathbb{N}$ the series $\sum_{n\geq 1} x_{\sigma(n)}$ is absolutely convergent and its sum coincides with the sum of the

initial series, i.e., $\sum_{n=1}^{\infty} x_{\sigma(n)} = \sum_{n=1}^{\infty} x_n.$

Theorem 4.19 (Riemann) If a series $\sum_{n\geq 1} x_n$ is semi-convergent, then for every $s\in \overline{\mathbb{R}}$ there exists

a bijection $\sigma : \mathbb{N} \to \mathbb{N}$ such that $\sum_{n=1}^{\infty} x_{\sigma(n)} = s$.

Example 4.20 Consider the alternating harmonic series (see Example 4.13), whose sum is

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n+1}}{n} + \dots = \ln 2.$$

If we permute its terms by alternating p := 2 positive terms followed by q := 3 negative terms we obtain

$$1 + \frac{1}{3} - \frac{1}{2} - \frac{1}{4} - \frac{1}{6} + \frac{1}{5} + \frac{1}{7} - \frac{1}{8} - \frac{1}{10} - \frac{1}{12} + \dots = \sqrt{\frac{p}{q}} \ln 2.$$

Indeed, consider the Euler's constant $\gamma := \lim_{n \to \infty} \gamma_n$ (see Exercise 2 of Seminar 3), where $\gamma_n := \frac{1}{n} + \ldots + \frac{1}{n} - \ln n$ for all $n \in \mathbb{N}$.

Denote by $(s_n)_{n\in\mathbb{N}}$ the sequence of partial sums of the permuted series. Then, for any $k\in\mathbb{N}$, we have

$$s_{5k} = \left(1 + \frac{1}{3} - \frac{1}{2} - \frac{1}{4} - \frac{1}{6}\right) + \left(\frac{1}{5} + \frac{1}{7} - \frac{1}{8} - \frac{1}{10} - \frac{1}{12}\right) + \dots +$$

$$+ \left(\frac{1}{4k - 3} + \frac{1}{4k - 1} - \frac{1}{6k - 4} - \frac{1}{6k - 2} - \frac{1}{6k}\right)$$

$$= \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{4k} - \ln 4k\right) - \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2k} - \ln 2k\right) -$$

$$- \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{3k} - \ln 3k\right) + \ln 4k - \frac{1}{2}\ln 2k - \frac{1}{2}\ln 3k$$

$$= \gamma_{4k} - \frac{1}{2}\gamma_{2k} - \frac{1}{2}\gamma_{3k} + \ln \frac{4k}{\sqrt{6k}},$$

hence

$$\lim_{k \to \infty} s_{5k} = \gamma - \frac{1}{2}\gamma - \frac{1}{2}\gamma + \ln \frac{4}{\sqrt{6}} = \sqrt{\frac{2}{3}} \ln 2.$$

On the other hand, we also have

$$s_{5k+1} = s_{5k} + \frac{1}{4k+1},$$

$$s_{5k+2} = s_{5k} + \frac{1}{4k+1} + \frac{1}{4k+3},$$

$$s_{5k+3} = s_{5k} + \frac{1}{4k+1} + \frac{1}{4k+3} - \frac{1}{6k+2},$$

$$s_{5k+4} = s_{5k} + \frac{1}{4k+1} + \frac{1}{4k+3} - \frac{1}{6k+2} - \frac{1}{6k+4},$$

which show that $\lim_{k\to\infty} s_{5k} = \lim_{k\to\infty} s_{5k+1} = \lim_{k\to\infty} s_{5k+2} = \lim_{k\to\infty} s_{5k+3} = \lim_{k\to\infty} s_{5k+4}$. We conclude that

$$\lim_{n \to \infty} s_n = \sqrt{\frac{2}{3}} \ln 2.$$