2018 EMTF Algorithm Changes Proposal

L1 DPG Meeting May 14, 2018

Wei Shi on behalf of the EMTF working group

weishi@rice.edu

10

¹² z (m)

Overview

- Proposed algorithm changes in 2018
 - \triangleright Reduce track building BX window: $3 \rightarrow 2$
 - ➤ Remove 2-station tracks with different hit BX [1]
 - \triangleright Reduce maximum $\Delta\theta$ for "Zone 0" (ring 1): 8 \rightarrow 4
 - \triangleright Resolve $\Delta\theta$ ambiguity when multiple LCTs are in the same chamber
 - ➤ Revise map between track mode and quality [1]

5/14/2018 weishi@rice.edu

Motivations (I)

- \triangleright Track building BX window: $3 \rightarrow 2$
 - Track building: CSC LCTs or RPC hits correlated in theta (±2°) and phi (±8° in station 1, ±4° in stations 2 4)
 - LCT mistiming rate: <1% (conservative)
 - Tracks in BX = 0 can now include LCTs from BX = -1 and 0, or BX = 0 and +1, but not from BX = -2 or +2, and not both -1 and +1
- >2-station tracks with different hit BX removed [1]
 - Track BX: 2nd-earliest LCT or RPC hit in the track
 - 2-station track affected most by mistimed LCT

5/14/2018 weishi@rice.edu

Motivations (II)

- \triangleright Reduce max $\Delta\theta$ for "Zone 0" from 8 to 4
 - Each LCT is assigned to zones based on θ
 - Zone 0 roughly covers CSC ring 1 ($|\eta| > 1.7$), does not include RPC hits
 - Wide $\Delta\theta$ windows (8 units, ~2°) not necessary, and add rate from PU
- ightharpoonup Resolve $\Delta \theta$ ambiguity when multiple LCTs are in the same chamber

A. Brinkerhoff

Motivations (III)

- ➤ Revised map b/t track mode and quality
 - Earlier study [1] showed dominant contribution to DoubleMu quality rate from mode 12 with small efficiency
 - Demote mode 12 to MuOpen
 - Promote mode 9 to DoubleMu
 - Compensate efficiency loss due to demoting mode 12

Mode #	Definition	Stations
15	1+2+4+8	1,2,3,4
14	2+4+8	1,2,3
13	1+4+8	1,2,4
12	4+8	1,2
11	1+2+8	1,3,4
10	2+8	1,3
9	1+8	1,4
7	1+2+4	2,3,4
6	2+4	2,3
5	1+4	2,4
3	1+2	3,4

5/14/2018 weishi@rice.edu

Selections

- Remove trigger bias
 - "HLT_IsoMu27" or "HLT_Mu50" in run 306154
 - Use RECO muons
 - Events with 2 or more fired the trigger
 - From the endcap when only 1 barrel muon fired trigger
- Selection on RECO muons
 - $|\eta|$ @vertex and $|\eta|$ @ME1 \in (1.25, 2.4)
 - ID
 - pT < 8 GeV: loose && soft or medium
 - 8 < pT < 64 GeV: medium [2]
 - pT > 64 GeV: tight
- Rate
 - Track BX=0, $|\eta| > 1.25$
 - Use Zerobias data from run 306091 (PU 55 75)

SingleMu: Efficiency

- $\Delta\theta = 4$
 - No change in efficiency for pT > 4 GeV
 - Marginal affect on efficiency in 2-4 GeV range

SingleMu: Rate

• $\Delta\theta$ = 4 reduces 13% rate for pT=22 GeV without efficiency loss in SingleMu quality

DoubleMu Inclusive: Efficiency

- $\Delta\theta$ = 4 has similar affect on efficiency as SingleMu
- Efficiency loss(\sim 4%) at pT > 256 GeV (including $\mathcal{O}(\text{TeV})$ muons) is tolerable

DoubleMu Inclusive: Rate

- $\Delta\theta$ = 4 gives 58% rate reduction without efficiency loss in DoubleMu quality
- Revised map of mode to quality contributes most to rate reduction (mode 9 $\leftarrow \rightarrow$ mode 12)

MuOpen Inclusive: Efficiency

MuOpen Inclusive: IsRecoMatch && BX0

Overall efficiency agrees well with 2017

MuOpen Inclusive: Rate

• $\Delta\theta$ = 4 gives 18% rate reduction without efficiency loss overall

Summary

- 2018 EMTF emulator changes show rate reductions with similar efficiency performance to 2017 for all muon quality
 - DoubleMu quality has the most rate reduction due to revised map to modes (mode 9 ←→ mode 12)
- Firmware is ready
 - Implement changes in next weeks pending a fix to EMTF O2O

Back Up

RECO pT

17

MuOpen Inclusive: Efficiency

MuOpen Inclusive: IsRecoMatch && BX0

- Require ID
 - pT<64 GeV: medium; pT>64 GeV: tight

MuOpen Inclusive: Efficiency

MuOpen Inclusive: IsRecoMatch && BX0

• Require ID

- pT < 16 GeV: loose && soft or medium
- 16 < pT < 64 GeV: medium
- pT > 64 GeV: tight

5/14/2018

Muon Quality

- SingleMu (Q>=12)
 - EMTF mode 15, 14, 13, 11
- DoubleMu (Q>=8)
 - EMTF mode 12, 10, 7
 - EMTF mode 15, 14, 13, 11
- MuOpen (Q>=4)
 - EMTF mode 9, 6, 5, 3
 - EMTF mode 9, 10, 7
 - EMTF mode 15, 14, 13, 11

- SingleMu Quality (Q>=12)
 - EMTF mode 15, 14, 13, 11
- DoubleMu Quality (Q>=8)
 - EMTF mode 9, 10, 7
 - EMTF mode 15, 14, 13, 11
- MuOpen Quality (Q>=4)
 - EMTF mode 12, 6, 5, 3
 - EMTF mode 9, 10, 7
 - EMTF mode 15, 14, 13, 11

2017 Emulator

2018 Emulator

SingleMu: plateau efficiency

SingleMu: IsRecoMatch && BX0 && Plateau

SingleMu: IsRecoMatch && BX0 && Plateau

SingleMu: unique match efficiency

SingleMu: IsRecoMatch && BX0 && Unique

SingleMu: IsRecoMatch && BX0 && Unique

DoubleMu Inclusive: plateau efficiency

DoubleMu Inclusive: IsRecoMatch && BX0 && Plateau

DoubleMu Inclusive: IsRecoMatch && BX0 && Plateau

DoubleMu inclusive: unique match efficiency

DoubleMu Inclusive: IsRecoMatch && BX0 && Unique

DoubleMu Inclusive: IsRecoMatch && BX0 && Unique

MuOpen Inclusive: plateau efficiency

MuOpen Inclusive: IsRecoMatch && BX0 && Plateau

MuOpen Inclusive: IsRecoMatch && BX0 && Plateau

MuOpen Inclusive: unique match efficiency

MuOpen Inclusive: IsRecoMatch && BX0 && Unique

MuOpen Inclusive: IsRecoMatch && BX0 && Unique

EMTF track modes vs Stations

Mode #	Definition	Stations
15	1+2+4+8	1,2,3,4
14	2+4+8	1,2,3
13	1+4+8	1,2,4
12	4+8	1,2
11	1+2+8	1,3,4
10	2+8	1,3
9	1+8	1,4
7	1+2+4	2,3,4
6	2+4	2,3
5	1+4	2,4
3	1+2	3,4

Data Files

root://eoscms.cern.ch//store/user/abrinke1/EMTF/Emulator/ntuples/HADD/

• 2017

- NTuple_SingleMuon_FlatNtuple_Run_306154_2018_05_07_SingleMu_2017_emul.root
- NTuple_ZeroBias1_FlatNtuple_Run_306091_2018_05_07_ZB1_2017_emul.root
- NTuple_ZeroBias1_FlatNtuple_Run_306091_2018_05_07_ZB1_2017_emul_dBX.root

• 2018

- NTuple_SingleMuon_FlatNtuple_Run_306154_2018_05_07_SingleMu_2018_emul_dTh4.root NTuple_SingleMuon_FlatNtuple_Run_306154_2018_05_07_SingleMu_2018_emul_dTh6.root NTuple_SingleMuon_FlatNtuple_Run_306154_2018_05_07_SingleMu_2018_emul_dTh8.root
- NTuple_ZeroBias1_FlatNtuple_Run_306091_2018_05_07_ZB1_2018_emul_dTh4.root NTuple_ZeroBias1_FlatNtuple_Run_306091_2018_05_07_ZB1_2018_emul_dTh6.root NTuple_ZeroBias1_FlatNtuple_Run_306091_2018_05_07_ZB1_2018_emul_dTh8.root

CSC Geometry

CSCs in a trigger sector

Station 1 Station 2, 3, 4