The group should submit a summary of the results of their quantitative risk analysis and the conclusions that can be drawn from the information (i.e., are these risks "acceptable"). A statement of public health actions that could be taken to address the potential risks (if any) should also be provided. Students should prepare a message map (see risk communication lecture for more information if needed) that includes key messages that you think should be presented to the community.

EPA Risk Calculator: https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search

Exposure Scenario	Media	Concentration (µg/L)	Total? Cancer Risk	Cancer Risk Acceptability	Non-Cancer Risk	Non-Cancer Risk Acceptability
Default (Adult Resident)	Tap Water	1,1-DCA: 1700 1,2-DCA: 6.1 1,1-DCE: 5400 cisc-1,2-DCE: 43 1,4-Dioxane: 1300 Isopropanol: 1000 TCE: 6 Vinyl Chloride: 8.1	4 x 10 ⁻³	Unacceptable Risk	5 x 10 ¹	Unacceptable Risk
Default (Child Resident)	Tap Water	1,1-DCA: 1700 1,2-DCA: 6.1 1,1-DCE: 5400 cisc-1,2-DCE: 43 1,4-Dioxane: 1300 Isopropanol: 1000 TCE: 6 Vinyl Chloride: 8.1	4 x 10 ⁻³	Unacceptable Risk	5 x 10 ¹	Unacceptable Risk
Indoor Worker - ED: 25 years - EF: 250 days/year - ET: 8 hours	Soil	1,1-DCA: 1700 1,2-DCA: 6.1 1,1-DCE: 5400 cisc-1,2-DCE: 43 1,4-Dioxane: 1300 Isopropanol: 1000 TCE: 6 Vinyl Chloride: 8.1	TR = 1 x 10 ⁻⁶	Acceptable Risk	THI = 1 x 10 ⁻¹	Acceptable Risk
Outdoor Worker - ED: 25 years - EF: 225 days/year - ET: 8 hours	Soil	1,1-DCA: 1700 1,2-DCA: 6.1 1,1-DCE: 5400 cisc-1,2-DCE: 43 1,4-Dioxane: 1300 Isopropanol: 1000 TCE: 6 Vinyl Chloride: 8.1	2 x 10 ⁻⁴	Unacceptable Risk	6	Unacceptable Risk

- Main Message: Contaminated site at Fairchild Semiconductor Facility in San Jose, CA
 - Key Message 1: Historical contamination
 - Supporting Fact 1: A fractured pipeline was discovered in 1981.
 - Supporting Fact 2: Multiple chemicals were leaked out into the soil and groundwater
 - Supporting Fact 3: These chemicals are considered solvents and volatile organic compounds (VOCs), which can easily be emitted into the surrounding atmosphere.
 - o Key Message 2: Current Cleanup Efforts in place
 - Supporting Fact 1: Active site cleanup began in 1982 and ended in 1998, with the removal of underground storage tanks, piping, and contaminated soils.
 - Supporting Fact 2: A slurry wall was established to prevent the movement of any remaining contaminants across facility lines.
 - Supporting Fact 3: EPA conducts 5-year reviews of the site and the contaminants of concern.
 - Key Message 3: Residential and community safety
 - Supporting Fact 1: EPA's last 5-year review revealed that the remediation activities protects human health and the environment.
 - Supporting Fact 2: There is potential for vapor intrusion into nearby residences and communities if surveillance of contaminants is unmonitored.
 - Supporting Fact 3: Schlumberger Technology Corporation, the liable body, conducts air and soil monitoring to evaluate the potential of vapor intrusion.