CS550 Fall 2024 Project 1 Part 2

Name:- Ruchita Darur GNo:- G01514822

Project Description:-

Relational Schemas For The TABLE Customers

Primary Key:- CUSTOMER_ID

CUSTOMER_ID	FIRST_NAME	LAST_NAME:	AGE	GENDER	ZIP_CODE
INT	VARCHAR(50)	VARCHAR	INTEGER	CHAR(1)	VARCHAR(10)
				('M', 'F')	
Primary Key					

Relational Schemas For The TABLE Transactions

Primary Key:- TRANSACTION ID

TRANSACTION_ID	TRANSACTION_DATE	TOTAL	PAYMENT_METHOD	CUSTOMER_I
				D
INTEGER	DATE	DECIMAL (10,2)	INTEGER	INTERGER
				FOREIGN
				KEY

• customer ID INTEGER (Foreign Key referencing Customers(customer ID))

Relational Schemas For The TABLE Transactions

Primary Key:- upc

UPC	PRODUCT_	BRAND	PRODUCT_	CATEGORY	MARKED_	QUANTITY
	NAME		DESCRIPTION		PRICE	_IN_STOCK
VARCHAR	VARCHAR	VARCHAR	VARCHAR	VARCHAR	VARCHAR	INTEGER
(12)	(50)	(50)	(225)	(50)	(50)	
PRIMARY						
KEY						

Relational Schemas For The TABLE contains

TRANSACTION_ID	UPC	QUANTITY
INTEGER	INTEGER	INTERGER
PRIMARY KEY/FOREIGN KEY	FOREIGN KEY	

a) Convert the above ER diagram into relational schemas. In a PDF file, specify the followings for each relation:

(i) The Name Of The Relation

Answer: - The name of the relation from the ER Diagram:

- "makes" is the initial relation that relates the "Transactions" and "Customers" entities.
- "contains" is the following relation that relates the "Transactions" and "Products" entities.

(ii) The Names of Its Attributes

Answer: - Here's a list of all the attributes present in the given ER diagram:

- ♦ Customer:
 - customer ID

- name
 - First name
 - Last_name
- age
- gender
- zip code
- **♦** Transactions:
 - transaction ID
 - transaction_date
 - total
 - payment_method
- ♦ Products:
 - upc
 - Brand
 - product name
 - product_description
 - category
 - marked price
 - Quantity in stock
 - The attribute **quantity** is relationship ("Contains") where Transaction contains Products.
- ♦ Contain:
 - transaction ID
 - upc
 - quantity

(iii) The Domain Of each attribute

Answer:

Customers Table

- customer ID:
 - Domain: Interger.
 - Most likely an integer that acts as the main key to identify every consumer in a unique way.
- name: A composite attribute that is written down further split into:
 - First name:
 - Domain: VARCHAR(50)
 - Representing the first name of the customer.
 - Last name
 - Domain: VARCHAR(50)
 - Indicates the last name of the customer.
- ♦ age:

- Domain: INTEGER
- This represents the customer's age.
- gender:
 - Domain: CHAR(1).
 - ('M', 'F') (Character) (e.g., 'M' or 'F')
 - A single character representing gender, e.g., 'M' or 'F'
- ♦ zip code:
 - Domain: VARCHAR(10).
 - It is formatted to match the region's postal code.

Transactions Table

- ♦ transaction ID:
 - Domain: INTEGER.
 - Each transaction is assigned its unique identification.
- ♦ transaction date:
 - Domain: INTEGER.
 - Represents a reference to the Customers table.
 - to record the exact day of the transaction.
- ♦ total:
 - Domain: Decimal (10,2).
 - Indicating the total money of the transaction.
- payment_method:
 - Domain: Integer.
 - Represents payment method can only have '1' or '2' or '3' as values

Products Table

- ♦ Upc:
 - Domain: Varchar(12)
 - Upc or barcode Commonly used to uniquely identify products.
- ♦ Brand:
 - Domain: Varchar(50)
 - Represents the brand of the product.
- product name:
 - Domain: Varchar(100)
 - Identifies the name of the product.
- product description:
 - Domain: Varchar(225)
 - Representing the product's description.
- ♦ category:
 - Domain: Varchar(50)
 - Indicates the category of the product.
- marked price:
 - Domain: Decimal (10,2)

- Specifies the Product's price.
- ♦ Quantity in stock:
 - Domain: Integer.
 - Displays the number of items in inventory.

Contains Table

- ♦ transaction ID
 - Domain: INTEGER
- ♦ upc
 - Domain: INTEGER
- ♦ quantity
 - Domain: INTEGER

(iv) The Primary Key

- ♦ Customer:
 - Primary Key: customer ID
- ♦ Transactions:
 - Primary Key: transaction ID
- ♦ Products:
 - Primary Key: upc

(v) The Foreign Key(S)

♦ Customers → Transactions:

The foreign key Customer ID in the **Transactions** table references the **Customers** table.

♦ Transactions → Products:

The junction table **Transaction Product** contains two foreign keys, Transaction_ID (references **Transactions**) and UPC (references **Products**), representing the many-to-many relationship between transactions and products.

Table Structure:- SQL QUERY

DROP TABLE Customers CASCADE CONSTRAINTS; DROP TABLE Transactions CASCADE CONSTRAINTS;

DROP TABLE Products CASCADE CONSTRAINTS;

DROP TABLE Contains CASCADE CONSTRAINTS;

CREATE TABLE Customers (
customer_ID NUMBER PRIMARY KEY,
first_name VARCHAR2(50),

```
last name VARCHAR2(50),
  age NUMBER CHECK (age > 0 AND age < 120),
  gender CHAR(1) CHECK (gender IN ('M', 'F')),
  zip code VARCHAR2(10));
CREATE TABLE Transactions (
     transaction ID NUMBER PRIMARY KEY,
     customer ID NUMBER,
     transaction date DATE,
     total NUMBER(10, 2) CHECK (total \geq= 0),
     payment method NUMBER CHECK (payment method IN (1, 2, 3)),
     FOREIGN KEY (customer ID) REFERENCES Customers(customer ID) ON DELETE
   CASCADE);
CREATE TABLE Products (
     upc VARCHAR2(12) PRIMARY KEY,
     Product name VARCHAR2(100),
     brand VARCHAR2(50),
     category VARCHAR2(50),
     Product description VARCHAR2(255),
     quantity in stock NUMBER CHECK (quantity in stock >= 0),
     marked price NUMBER(10, 2) CHECK (marked price >= 0));
CREATE TABLE Contains (
     transaction ID NUMBER,
     upc VARCHAR2(12),
     quantity NUMBER CHECK (quantity > 0),
     PRIMARY KEY (transaction ID, upc),
     FOREIGN KEY (transaction ID) REFERENCES Transactions(transaction ID) ON
   DELETE CASCADE,
     FOREIGN KEY (upc) REFERENCES Products(upc) ON DELETE CASCADE);
```