Seznam použitých veličin

```
B_a
         geometrický faktor (1/cm)
B_m
         materiálový faktor (1/cm)
B_n
         vlastní číslo (1/cm)
β
         podíl zpožděných neutronů (-)
         efektivní podíl zpožděných neutronů (-)
\beta_{\rm ef}
D
         difúzní koeficient (cm)
Ι
         funkce vlivu (-)
Φ
         hustota toku neutronů (1/cm<sup>2</sup>s)
         koeficient násobení (-)
k_{\rm ef}
k_{\infty}
         koeficient násobení pro nekonečný systém (-)
\ell
         střední doba života neutronů (s)
\ell^*
         efektivní střední doba života neutronů (s)
L
         difúzní délka (cm)
L^2
         difúzní plocha (cm<sup>2</sup>)
λ
         rozpadová konstanta (1/s)
         střední doba vzniku neutronů (s)
Λ
\Lambda^*
         efektivní střední doba vzniku neutronů (s)
         hustota neutronů (1/cm<sup>3</sup>)
n
N
         počet neutronů (-)
         počet zpožděných neutronů (-) ze štěpení
\nu_D
         počet okamžitých neutronů (-) ze štěpení
\nu_P
         počet všech neutronů (-) ze štěpení
\nu_T
P
         výkon (tepelný) (W)
         vlastní funkce (-)
\Psi_n
Q
         zdroj neutronů (1/cm<sup>3</sup>s)
         polohový vektor (cm)
\mathbf{r}
         reaktivita (-)
\Sigma
         makroskopický účinný průřez (1/cm)
\sum_{a}
         makroskopický účinný průřez pro absorbci (1/cm)
\sum_f
         makroskopický účinný průřez pro štěpení (1/cm)
t
         čas (s)
         střední doba života (s)
T_{1/2}
         poločas rozpadu (s)
T_e
         perioda reaktoru (s)
T_e^*
         efektivní perioda reaktoru (s)
         rychlost (m/s)
v
```

Seznam použitých zkratek

1G	1-grupová
2G	2-grupová
DP	dceřinný produkt – Daughter Product
FP	štěpný produkt (mateřské jádro) – Fission Product
FR	rychlý reaktor – Fast Reactor
LS	levá strana
LT	Laplaceova transformace
LWR	lehkovodní reaktor – Light Water Reactor
PS	pravá strana
ZV	zpětná vazba

Obsah

Se	Seznam použitých veličin				
Se	eznar	n použ	itých zkratek	2	
0	Ma	temati	cký aparát	f 4	
	0.1	Laplac	eeova transformace	4	
1	Kinetika a dynamika nulového reaktoru				
	1.1	Rovnie	ce kinetiky reaktoru	5	
	1.2 Odvození rovnic jednobodové kinetiky		5		
			Odvození bez vlivu zpožděných neutronů		
		1.2.2	Odvození s vlivem zpožděných neutronů	10	
		1.2.3	Přehled vzorečků	13	
	1.3	Řešeni	í rovnic jednobodové kinetiky	13	
		1.3.1	Řešení bez vlivu zpožděných neutronů	13	
		1.3.2	Řešení s vlivem zpožděných neutronů	14	
		1.3.3	Analytické řešení s vlivem zpožděných neutronů	18	

0 Matematický aparát

0.1 Laplaceova transformace

Je potřeba k tomu, abychom byli schopni jednodušeji řešit soustavy diferenciálních rovnic¹.

Pod pojmem Laplaceova transformace (LT) funkce f(t) definované na intervalu $(0, +\infty)^2$ chápeme zobrazení:

$$\mathcal{L}[f(t)](s) \equiv \int_0^\infty f(t)e^{-st}dt, \qquad (1)$$

kde s značí komplexní proměnnou. Definičním oborem nově vzniklé funkce je obor konvergence definovaného integrálu. Pro usnadnění zápisu budeme Laplaceovu transformaci označovat jako:

$$\mathcal{L}[f(t)](s) = \tilde{f}(s).$$

Dále si zadefinujeme **konvoluci** jednorozměrných funkcí f(t) a g(t) jako:

$$(f * g)(t) \equiv \int_0^t f(x)g(t-x)dx.$$
 (2)

Platí následující vztahy³:

- LT je lineární zobrazení, tj. pro f(t), g(t) z intervalu $(0, +\infty)$ a pro libovolné komplexní číslo α platí: $\mathcal{L}[f(t) + \alpha \cdot g(t)](s) = \tilde{f}(s) + \alpha \cdot \tilde{g}(s)$.
- LT exponenciály: $\mathcal{L}[A \cdot e^{Bt}](s) = \frac{A}{s-B}$, pokud platí B < s.
- LT konvoluce: $\mathcal{L}[(f*g)(t)](s) = \tilde{f}(s) \cdot \tilde{g}(s)$.
- LT derivace: $\mathcal{L}[f'(t)](s) = s\tilde{f}(s) f(0^+)$. Lze aplikovat i na vícenásobné derivace: $\mathcal{L}[f''(t)](s) = s^2\tilde{f}(s) - sf(0^+) - f'(0^+)$, apod.
- LT primitivní funkce: $\mathcal{L}[F(t)](s) = \frac{F(0^+)}{s} + \frac{1}{s}\tilde{f}(s)$.

 Bereme-li primitivní funkci jako funkci horní meze, platí: $\mathcal{L}\left[\int_0^t f(\tau)d\tau\right](s) = \frac{1}{s}\tilde{f}(s)$.
- Speciální limity:
 - a) $\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} s\tilde{f}(s)$,
 - b) $\lim_{t\to\infty} f(t) = \lim_{s\to 0^+} s\tilde{f}(s)$

¹Matematici prominou, následující kapitola bude takové znásilňování matematiky.

²V našem případě půjde typicky o časový interval, proto nám nevadí omezit se na kladný půlinterval.

³Jejichž odvození je primitivní a zvládne je i cvičená opice.

1 Kinetika a dynamika nulového reaktoru

Kinetika reaktoru = zkoumá časové chování reaktoru se změnou vstupních parametrů.

Vstupní parametry = chápeme primárně $k_{\rm ef}$, resp. ρ , a lze je ovlivnit změnou materiálů či geometrií systému.

Výstupní parametry = to, co v systému měříme $(P(t), \Phi(\mathbf{r}, t))$ atd.).

Nulový reaktor = neboli reaktor nulového výkonu; reaktor pracující v takovém výkonovém rozsahu, že jsou jeho zpětné vazby (ZV) zanedbatelné.

- Výzkumné a energetické reaktory sem řadit nelze, jelikož se ZV projevují.
- Často složité odlišit, u některých nulových reaktorů lze pozorovat ZV (ve vyšších energetických hladinách) a naopak některé energetické reaktory lze provozovat bez ZV (při minimálním provozním výkonu).

Zpětná vazba = proces, díky kterému se změna výstupních parametrů (P, Φ) může podílet na změnu vstupních parametrů.

Dynamika reaktoru = to samé co kinetika, pouze už uvažuje zapojení ZV.

1.1 Rovnice kinetiky reaktoru

= Rovnice popisující závislost změny výstupních parametrů (výsledků) na změně vstupních parametrů.

K popisu lze využít transportní rovnici, resp. zjednodušenou difúzní rovnici \rightarrow vede na komplikované soustavy, které nelze v obecném případě řešit analyticky (s projevem heterogenity systému).

Řešením jsou **Rovnice bodové kinetiky**, které zanedbávají změnu prostorového rozložení \rightarrow nastane-li změna na vstupních parametrech (zvětší-li se reaktivita), tak změna výstupních parametrů (např. Φ) se ve všech místech změní stějnou měrou \rightarrow výstupní parametry se tedy pouze škálují a průběh zůstává zachován.

Rovnice jednobodové kinetiky = kromě prostorové závislosti se zanedbává i energetické rozdělení → vede na 1G rovnice.

V reálu to tak není, ale kupodivu dávají rovnice přijatelné výsledky.

1.2 Odvození rovnic jednobodové kinetiky

Pro odvození se vychází z 1G difúzní rovnice (s konstantním D a Σ_a):

$$\frac{\partial n(\mathbf{r},t)}{\partial t} = D\Delta\Phi(\mathbf{r},t) - \Sigma_a\Phi(\mathbf{r},t) + Q(\mathbf{r},t),$$
(3)

kde:

- $n (1/\text{cm}^3)$ značí hustotu neutronů,
- \bullet D (cm) značí difúzní koeficient,
- Φ (1/cm²s) značí hustotu toku neutronů,
- $\Sigma_a \; (1/\mathrm{cm})$ značí makroskopický účinný průřez pro absorbci a
- Q (1/cm³s) značí zdroj neutronů.

1.2.1 Odvození bez vlivu zpožděných neutronů

Uvažuji zjednodušení tvaru:

$$Q(\mathbf{r},t) = k_{\infty} \Sigma_a \Phi(\mathbf{r},t),$$

$$L^2 = \frac{D}{\Sigma_a},$$

$$B_m^2 = \frac{k_\infty - 1}{L^2},$$

$$n(\mathbf{r},t) = \frac{\Phi(\mathbf{r},t)}{v}$$

kde:

- k_{∞} (-) značí koeficient násobenní pro nekonečný systém,
- $\bullet \ L$ (cm) značí difúzní délku (po umocnění difúzní plochu),
- B_m (1/cm) značí materiálový faktor a
- v (cm/s) značí rychlost neutronů (je konstantní, jelikož máme 1G přiblížení)

a předpokládáme, že rovnici (3) lze řešit metodou separace proměnných, tedy:

$$\Phi(\mathbf{r}, t) = \Psi(\mathbf{r}) \cdot T(t).$$

Poté rovnice (3) vede na rovnici:

$$vD\left(\frac{\Delta\Psi(\mathbf{r})}{\Psi(\mathbf{r})} + B_m^2\right) = \frac{1}{T(t)}\frac{dT(t)}{dt} = \text{konst.} = -\omega,$$
(4)

tedy na 2 obyčejné diferenciální rovnice provázané konstantou ω .

Rovnice s $\Psi(\mathbf{r})$ vede po uvažování okrajových podmínek (extrapolované rozhraní, konečnost, spojitost apod.) na vlastní funkce, jejichž tvar závisí na použité geometrii a tvaru Laplaciánu (kombinace goniometrických, Besselových, hyperbolických apod.). Řešení vyplývá z jednoduché vlnové rovnice:

$$\Delta\Psi(\mathbf{r}) + B_n^2\Psi(\mathbf{r}) = 0,$$

kde vztah mezi vlastními čísly B_n a materiálovým faktorem B_m je svázán pomocí určené konstanty ω jako:

$$\omega_n = vD \cdot (B_n^2 - B_m^2).$$

Obecně lze výsledek zapsat tvarem:

$$\Psi(\mathbf{r}) = \sum_{n} A_n \Psi_n(\mathbf{r}),$$

kde A_n značí normalizační konstantu a zjistíme ji z výkonu reaktoru.

Rovnice s T(t) vede na exponenciálu tvaru:

$$T(t) = Ce^{-\omega t}$$
.

Jelikož je ovšem ω závislá na volbě vlastních čísel, tak i zde platí superpozice a celkovou hustotu toku neutronů $\Phi(\mathbf{r},t)$ spočteme přes sumu všech vlastních funkcí jako:

$$\Phi(\mathbf{r},t) = \sum_{n} A_n \Psi_n(\mathbf{r}) e^{-\omega_n t}.$$
 (5)

Tabulka 1 udává vlastní čísla a vlastní funkce pro různé geometrie reaktoru (viz ZAF2).

Tabulka 1: Vlastní čísla a vlastní funkce pro různé geometrie.

$$\begin{array}{c|cccc} \hline \textbf{Geometrie} & B_n \ (1/\text{cm}) & \Psi_n \ (\text{-}) \\ \hline \textbf{Nek. deska} & n \left(\frac{\pi}{a}\right) & \cos(B_n x) \\ \hline \textbf{Nek. válec} & n \left(\frac{2,405}{R}\right) & J_0(B_n r) \\ \hline \textbf{Koule} & n \left(\frac{\pi}{R}\right) & \frac{\sin(B_n r)}{r} \\ \hline \end{array}$$

Jelikož vlastní čísla splňují bilanci $B_1 < B_2 < B_3 < ...$, platí to samé i pro $\omega_1 < \omega_2 < \omega_3 < ...$ a první vlastní číslo po chvíli převáží ta zbylá. Proto dále zavádíme **geometrický faktor** B_g

jako první nejmenší vlastní číslo, tedy $B_g=B_1. \label{eq:basis}$

Pro stacionární systém navíc platí $\omega = 0$ a poté $B_m = B_g$ (viz ZAF2).

Nyní přejdeme k prostorové nezávislosti (což je vlastně smysl celé kapitoly :D). Lze uvažovat (za předpokladu převážení prvního členu v rovnici (5)), že:

$$\Phi(\mathbf{r},t) \doteq vn(t)\Psi_1(\mathbf{r})$$

a hustota neutronů n(t) je zároveň úměrná maximální hustotě toku v soustavě (předpoklad rovnice jednobodové kinetiky), tedy:

$$n(t) \doteq \text{konst.} \cdot \Phi_{max}(t)$$
.

Po dosazení do rovnice (4) získáme novou rovnici tvaru:

$$vD\left(\frac{\Delta\Psi_1(\mathbf{r})}{\Psi_1(\mathbf{r})} + B_m^2\right) = \frac{1}{n(t)}\frac{dn(t)}{dt} = \text{konst.} = -\omega_1,$$
(6)

která opět vede na 2 obyčejné diferenciální rovnice provázané konstantou ω_1 . Nyní už ovšem nejde o superpozici, jelikož uvažujeme pouze první člen (ačkoliv nestacionaritu zachováváme).

Pro zopakování a osvěžení paměti, stále platí:

$$B_q = B_1$$
,

$$\omega_1 = vD \cdot (B_a^2 - B_m^2).$$

Zavedeme novou veličinu ℓ (s) jako **střední dobu života neutronů** vztahem:

$$\ell \equiv \frac{1}{v\Sigma_a} \frac{1}{1 + L^2 B_g^2} \tag{7}$$

a připomeneme si 1G rovnici pro stacionární reaktor:

$$k_{\rm ef} = \frac{k_{\infty}}{1 + L^2 B_g^2}.$$

Z těchto dvou vztahů lze vyjádřit parametr ω_1 (důkaz dosazením) jako:

$$\omega_1 = -\frac{k_{\text{ef}} - 1}{\ell},$$

Což lze dosadit do rovnice (6) (část s Ψ už nemusím řešit) a získáváme **Rovnici jednobodové** kinetiky:

$$\frac{dn(t)}{dt} = \frac{k_{\text{ef}} - 1}{\ell} n(t).$$
(8)

Tím jsme si odvodili obyčejnou diferenciální rovnici 1. řádu pro hustotu neutronů n(t), kterou lze řešit jednoduše pomocí integračního faktoru/separace proměnných (čímkoliv). Často nás ale více než hustota neutronů zajímá časový vývoj výkonu, tedy P(t). Zde platí jednoduchá úměra:

$$n(t) \sim P(t)$$

a tedy po přenormování platí:

$$\frac{dP(t)}{dt} = \frac{k_{\rm ef} - 1}{\ell} P(t).$$

S předpokladem počáteční podmínky $P(0) = P_0$ a úvahy, že $k_{\rm ef} = {\rm konst.}$, poté rovnice jednobodové kinetiky pro výkon dává řešení tvaru:

$$P(t) = P_0 \exp\left(\frac{k_{\text{ef}} - 1}{\ell}t\right). \tag{9}$$

Př. 1:

Rovnice (9) udává, jak rychle se mění výkon v systému v závislosti na $k_{\rm ef}$ a ℓ . Zadefinujeme si **periodu** reaktoru T_e (s) jako dobu, za kterou se výkon v systému změní e-krát, pomocí vztahu:

$$T_e \equiv \frac{\ell}{k_{\rm ef} - 1}.$$
 (10)

Zatímco $k_{\rm ef}$ lze ovlivnit (geometrie, obohacení, materiály), ℓ je pevně dáno a spjato se systémem⁴. Přehled rozsahů pro různé systémy zobrazuje tabulka 2. Je tedy vidět, že např. rychlý reaktor bude na změny $k_{\rm ef}$ reagovat mnohem rychleji, než reaktor moderovaný grafitem.

Tabulka 2: Střední doby života pro různé typy reaktorů.

Typ systému	ℓ (s)
FR LWR Grafit	$ \begin{array}{r} 10^{-7} \\ 10^{-5} - 10^{-4} \\ 10^{-3} \end{array} $

Pokud uvažujeme LWR reaktor ($\ell = 10^{-5}$), tak pro:

- $k_{\rm ef} = 1,01$ vychází perioda $T_e = 0,01$ s a za 1 s se změní výkon $2,69 \cdot 10^{43}$ x,
- $k_{\rm ef}=1,001$ vychází perioda $T_e=0,1$ s a za 1 s se změní výkon $2,20\cdot 10^4{\rm x},$
- $k_{\rm ef}=1,0001$ vychází perioda $T_e=1$ s a za 1 s se změní výkon 2,72x.

⁴Teoreticky to lze také ovlivnit, ale asi těžko z rychlého reaktoru uělám tak jednoduše lehkovodní, žejo.

K rovnici (8) je možné dojít i jednoduchou úvahou. Jelikož platí úměra mezi n(t) a N(t):

$$n(t) \sim N(t)$$
,

lze vycházet právě z počtu neutronů v jedné generaci. Pro přírůstek mezi generacemi totiž platí:

$$dN = k_{\rm ef}N - N,$$

což po vydělení časem dt na LS rovnice, resp. dobou života jedné generace ℓ na PS rovnice spěje k tíženému řešení:

$$\frac{dN(t)}{dt} = \frac{k_{\rm ef} - 1}{\ell} N(t).$$

Dále je možné rovnici (8) přepsat pomocí reaktivity ρ . K tomu si zavedeme **střední dobu vzniku neutronů** Λ (s) jako:

$$\Lambda \equiv \frac{\ell}{k_{\rm ef}}.\tag{11}$$

Po lehké úpravě, usměrnění rovnice (8) a úvaze, že $\Lambda = \text{konst.}$, dostáváme nový výraz pro rovnici jednobodové kinetiky:

$$\frac{dn(t)}{dt} = \frac{\rho(t)}{\Lambda} n(t).$$
(12)

 Λ v podstatě vyjadřuje dobu, za kterou se zreprodukuje 1 neutron. Platí tedy:

- $k_{\rm ef}>1\to\Lambda<\ell\to{\rm nadkritick\acute{y}}$ systém a tedy neutrony se zreprodukují rychleji, než je doba jejich života,
- $k_{\rm ef} < 1 \to \Lambda > \ell \to {\rm podkritick\acute{y}}$ systém a zreprodukování neutronu trvá déle, než doba jejich života.

1.2.2 Odvození s vlivem zpožděných neutronů

Nejprve si ujasníme, o co se jedná. Neutrony vznikající při štěpení můžeme členit na:

- Okamžité neutrony vznikají ihned (do 10⁻¹³ s) emisí z mateřského jádra (FP Fission Product) se střední energií cca 2 MeV. Při štepení se FP nacházejí v excitovaném stavu a s přebytkem neutronů → těch se mohou zbavit buď za pomoci β⁻ rozpadu (vzniká dceřiné jádro), nebo emisí okamžitého neutronu. Často se tyto FP označují jako prekurzory.
- **Zpožděné neutrony** jedná se o neutrony, které se uvolňují až po nějaké době, se stření energií cca 0,5 MeV. Vznikají emisí neutronů z dceřiných jader (DP Daughter Product), které vznikají radioaktivním rozpadem FP. DP se často označují jako **emitory**.

Obrázek 1: Vznik okamžitých a zpožděných neutronů.

Ačkoliv jsou zpožděné neutrony emitovány emitory, pro jejich charakteristiku je přiřazujeme původním prekurzorům. Těch mohou být desítky, proto je dělíme do několika skupin (JEFF 8 skupin, ENDF/B 6 skupin) podle poločasu rozpadu. Pro popis se zavádí tzv. **podíl zpožděných neutronů** β (-) jako:

$$\beta \equiv \frac{\nu_D}{\nu_T},\tag{13}$$

kde:

- \bullet ν_D (-) značí střední počet zpožděných neutronů vzniklých při jednom štěpení a
- ν_T (-) značí střední počet všech vzniklých neutronů.

Obdobně lze zavést $\nu_i,\,\beta_i,\,T^i_{1/2},\,\tau_i$ a λ_i pro jednotlivé skupiny (rodiny) zpožděných neutronů.

Dále se pro popis zavádí tzv. efektivní střední doba života ℓ^* (s) jako:

$$\ell^* \equiv \ell(1-\beta) + \sum_i \beta_i \tau_i, \tag{14}$$

efektivní střední doba vzniku Λ^* (s) jako:

$$\Lambda^* = \frac{\ell^*}{k_{\text{ef}}} \tag{15}$$

a efektivní perioda reaktoru T_e^* (s) jako:

$$T_e^* \equiv \frac{\ell^*}{k_{\text{ef}} - 1}.$$
 (16)

V podstatě se jedná o vážený průměr přes koeficienty β , a ačkoliv je podíl zpožděných neutronů minimální (do 1 %), díky dlouhým τ se efektivní doba života velmi prodlouží a perioda reaktoru natáhne. Proto jsou zpožděné neutrony velmi důležité k řízení reaktoru. Nastane-li kritičnost na okamžitých neutronech, tento prodlužovací efekt zcela vymizí, perioda reaktoru se zkrátí až o několik řádů a máme tu druhý Černobyl.

Př. 2:

Pro klasický PWR reaktor platí, že $\sum \beta_i \tau_i \approx 0,1$ s. Vezměme hodnoty z př. 1 a koukněme se, jak se změní perioda reaktoru:

- $k_{\rm ef}=1,01$ vychází efektivní perioda $T_e^*=10$ s a za 1 s se změní výkon 1,105x (původně 2,69·10⁴³x),
- $k_{\rm ef} = 1,001$ vychází efektivní perioda $T_e^* = 100$ s a za 1 s se změní výkon 1,010x (původně $2,20\cdot 10^4{\rm x}$),
- $k_{\rm ef}=1,0001$ vychází efektivní perioda $T_e^*=1000$ s a za 1 s se změní výkon 1,001x (původně 2,72x).

Je vidět, že s uvažováním zpožděných neutronů se efektivní perioda natáhne o několik řádů a reaktor už není tolik citlivý na změnu $k_{\rm ef}$.

Lépe se řídí takové systémy, které mají větší β . Ve skutečnosti není reaktor takto ideální. Je třeba dále započítávat fotoneutrony (vznikající (γ,n) reakcí na lehkých jádrech, např. Be), více skupin zpožděných neutronů apod. Důležitá je i energetická závislost. Jelikož zpožděné neutrony vznikají s menší energií (0,5 Mev vs. 2 Mev) a mají náskok ve zpomalování. Díky nižší energii nemohou zpožděné neutrony nikdy zapříčinit štepení na štěpitelných jádrech.

Kvůli tomu všemu se zavádí tzv. **efektivní podíl zpožděných neutronů** β_{ef} (-), což je umělá hodnota, která koriguje energetický rozdíl ve skupinách, jelikož každá ze skupin má jiný vliv na štepení. Lze ji zavést pomocí vztahu:

$$\beta_{\text{ef}} = \beta \cdot I,\tag{17}$$

kde I (-) značí tzv. **funkci vlivu** a závisí na konkrétním reaktoru. Říká, jak je snadné pro zpožděné neutrony štěpit, oproti okamžitým neutronům. Obecně se pohybuje okolo ≈ 1 , při bližším studiu lze napsat: FR < 1 a LWR > 1.

Nyní si ještě ukažme rovnice jednobodové kinetiky se zpožděnými neutrony. Odvození je podobné jako v předcházejícím případě, pouze se původní vztah modifikuje. Výsledkem je soustava lineárních diferenciálních rovnic v destrukčním tvaru:

$$\frac{dN}{dt} = \frac{k_{\text{ef}}(1 - \beta_{\text{ef}}) - 1}{\ell} N(t) + \sum_{i=1}^{m} \lambda_i C_i(t), \qquad (18)$$

$$\frac{dC_i}{dt} = -\lambda_i C_i(t) + \frac{\beta_{\text{ef},i} k_{\text{ef}} N(t)}{\ell},$$
(19)

resp. rovnice v produkčním tvaru:

$$\frac{dN}{dt} = \frac{\rho - \beta_{\text{ef}}}{\Lambda} N(t) + \sum_{i=1}^{m} \lambda_i C_i(t),$$
(20)

$$\frac{dC_i}{dt} = -\lambda_i C_i(t) + \frac{\beta_{\text{ef},i} N(t)}{\Lambda}.$$
(21)

1.2.3 Přehled vzorečků

Na závěr kapitolky rychlá vzorečkiáda (viz tabulka 3).

Tabulka 3: Vzorečky s rovnicemi jednobodové kinetiky.

Parametr	Bez zpožděnek	Se zpožděnkami
Střední doba života	$\ell = \frac{1}{v\Sigma_a} \frac{1}{1 + L^2 B_g^2}$	$\ell^* = \ell(1-\beta) + \sum_i \beta_i \tau_i$
Střední doba vzniku	$\Lambda = rac{\ell}{k_{ m ef}}$	$\Lambda^* = rac{\ell^*}{k_{ ext{ef}}}$
Perioda reaktoru	$T_e = \frac{\ell}{k_{\rm ef} - 1}$	$T_e^* = \frac{\ell^*}{k_{\rm ef} - 1}$
R-ce v destrukčním tvaru	$\frac{dN}{dt} = \frac{k_{\text{ef}} - 1}{\ell} N(t)$	$\frac{dN}{dt} = \frac{k_{\text{ef}}(1 - \beta_{\text{ef}}) - 1}{\ell} N(t) + \sum_{i=1}^{m} \lambda_i C_i(t)$
		$\frac{dC_i}{dt} = -\lambda_i C_i(t) + \frac{\beta_{\text{ef},i} k_{\text{ef}} N(t)}{\ell}$
R-ce v produkčním tvaru	$\frac{dN}{dt} = \frac{\rho}{\Lambda} N(t)$	$\frac{dN}{dt} = \frac{\rho - \beta_{\text{ef}}}{\Lambda} N(t) + \sum_{i=1}^{m} \lambda_i C_i(t)$
		$\frac{dC_i}{dt} = -\lambda_i C_i(t) + \frac{\beta_{\text{ef},i} N(t)}{\Lambda}$

1.3 Řešení rovnic jednobodové kinetiky

1.3.1 Řešení bez vlivu zpožděných neutronů

Řešení rovnice bez započtení zpožděných neutronů je triviální (jedná se pouze o jednu lineární diferenciální rovnici prvního řádu) a už zde bylo zmíněno. Pro zopakování, řešíme rovnici:

$$\frac{dN}{dt} = \frac{\rho(t)}{\Lambda} N(t)$$

s počáteční podmínkou $N(0) = N_0$ (ustálený stav).

a) Konstatní reaktivita

Při $\rho = \text{konst.}$ vede rovnice na exponenciální řešení:

$$N(t) = N_0 \exp\left(\frac{\rho_0}{\Lambda}t\right).$$
 (22)

1.3.2 Řešení s vlivem zpožděných neutronů

Řešíme soustavu lineárních diferenciálních rovnic:

$$\frac{dN}{dt} = \frac{\rho(t) - \beta_{\text{ef}}}{\Lambda} N(t) + \sum_{i=1}^{m} \lambda_i C_i(t),$$

$$\frac{dC_i}{dt} = -\lambda_i C_i(t) + \frac{\beta_{\text{ef},i} N(t)}{\Lambda}.$$

s počátečními podmínkami (ustálený stav) $N(0) = N_0$ a $C_i(0) = C_{i,0}$. Tento stav lze předpokládat, pokud se reaktor nachází dostatečně dlouhou dobu v ustáleném stavu (při konstantním výkonu), potom je i koncentrace jader C_i konstantní. Tuto koncentraci lze získat z druhé rovnice z doby před t=0:

$$0 = -\lambda_i C_{i,0} + \frac{\beta_{\text{ef},i} N_0}{\Lambda \lambda_i} \to C_{i,0} = \frac{\beta_{\text{ef},i} N_0}{\Lambda}.$$

Aplikujme na obě rovnice LT, dostaneme:

$$s\tilde{N}(s) - N_0 = \frac{\mathcal{L}[\rho(t)N(t)](s)}{\Lambda} - \frac{\beta_{\text{ef}}\tilde{N}(s)}{\Lambda} + \sum_{i=1}^{m} \lambda_i \tilde{C}_i(s),$$

$$s\tilde{C}_i(s) - C_{i,0} = -\lambda_i \tilde{C}_i(s) + \frac{\beta_{\text{ef},i} \tilde{N}(s)}{\Lambda}.$$

Do druhé rovnice můžeme rovnou dosadit za $C_{i,0}$ (známe z počátečních podmínek, N_0 zachováváme, to získáme z normalizace výkonu), čímž získáváme soustavu algebraických rovnic:

$$s\tilde{N}(s) - N_0 = \frac{\mathcal{L}[\rho(t)N(t)](s)}{\Lambda} - \frac{\beta_{\text{ef}}\tilde{N}(s)}{\Lambda} + \sum_{i=1}^{m} \lambda_i \tilde{C}_i(s),$$

$$s\tilde{C}_i(s) - \frac{\beta_{\text{ef},i}N_0}{\Lambda} = -\lambda_i\tilde{C}_i(s) + \frac{\beta_{\text{ef},i}\tilde{N}(s)}{\Lambda}.$$

Pokračujeme tak, že z druhé rovnice vyjádříme $\lambda_i C_i(s)$:

$$\lambda_i \tilde{C}_i(s) = \frac{\beta_{\text{ef},i} \lambda_i \tilde{N}(s) + \beta_{\text{ef},i} N_0}{\Lambda(\lambda_i + s)}$$

a dosadíme do první rovnice (s vynásobením Λ):

$$\Lambda(s\tilde{N}(s) - N_0) = \mathcal{L}[\rho(t)N(t)](s) - \beta_{\text{ef}}\tilde{N}(s) + \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}\lambda_i\tilde{N}(s)}{\lambda_i + s} + \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}N_0}{\lambda_i + s}.$$

Nyní rozepíšeme $\beta_{\rm ef}$ do sumy přes $\beta_{{\rm ef},i}$ a rozšíříme přes λ_i+s . Po vynásobení se něco požere:

$$\Lambda(s\tilde{N}(s) - N_0) = \mathcal{L}[\rho(t)N(t)](s) - \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}\tilde{N}(s)}{\lambda_i + s}(\lambda_i + s) + \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}\lambda_i\tilde{N}(s)}{\lambda_i + s} + \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}N_0}{\lambda_i + s},$$

$$\Lambda(s\tilde{N}(s)-N_0) = \mathcal{L}[\rho(t)N(t)](s) - \sum_{i=1}^m \frac{\beta_{\mathrm{ef},i}\lambda_i\tilde{N}(s)}{\lambda_i+s} - \sum_{i=1}^m \frac{\beta_{\mathrm{ef},i}s\tilde{N}(s)}{\lambda_i+s} + \sum_{i=1}^m \frac{\beta_{\mathrm{ef},i}\lambda_i\tilde{N}(s)}{\lambda_i+s} + \sum_{i=1}^m \frac{\beta_{\mathrm{ef},i}N_0}{\lambda_i+s},$$

$$\Lambda(s\tilde{N}(s) - N_0) = \mathcal{L}[\rho(t)N(t)](s) - \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}s\tilde{N}(s)}{\lambda_i + s} + \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}N_0}{\lambda_i + s}.$$

Z PS rovnice vytáhneme $(s\tilde{N}(s) - N_0)$:

$$\Lambda(s\tilde{N}(s) - N_0) = \mathcal{L}[\rho(t)N(t)](s) - \left[\sum_{i=1}^{m} \frac{\beta_{\text{ef},i}}{\lambda_i + s} (s\tilde{N}(s) - N_0)\right]$$

a po převedení sumy na LS:

$$\left(\Lambda + \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}}{\lambda_i + s}\right) (s\tilde{N}(s) - N_0) = \mathcal{L}[\rho(t)N(t)](s).$$

Nyní je konečně možné vyjádřit N(s):

$$\tilde{N}(s) = \frac{\mathcal{L}[\rho(t)N(t)](s)}{s\left(\Lambda + \sum_{i=1}^{m} \frac{\beta_{\text{ef},i}}{\lambda_i + s}\right)} + \frac{N_0}{s}.$$

Nyní pro zjednodušení zápisu zavedeme tzv. přenosovou funkci nulového reaktoru $\tilde{G}_0(s)$ vztahem:

$$\tilde{G}_0(s) \equiv \frac{1}{s \left(\Lambda + \sum_{i=1}^m \frac{\beta_{\text{ef},i}}{\lambda_i + s}\right)}.$$
(23)

Potom platí:

$$\tilde{N}(s) = \tilde{G}_0(s) \cdot \mathcal{L}[\rho(t)N(t)](s) + \frac{N_0}{s}.$$

Teď už pouze zbývá provést inverzní LT. Ale to je vopruz, takže budeme postupovat obráceně. Z vět o LT konvoluce a konstanty (0. kapitola) je jasné, že:

$$\tilde{N}(s) = \tilde{G}_0(s) \cdot \mathcal{L}[\rho(t)N(t)](s) + \frac{N_0}{s}$$

$$\Leftrightarrow$$

$$N(s) = G_0(s) * [\rho(t)N(t)] + N_0.$$

Po aplikaci definice konvoluce (opět 0. kapitola) získáváme **Rovnici jednobodové kinetiky v** integrálním tvaru:

$$N(t) = N_0 + \int_0^t G_0(t - t')\rho(t')N(t')dt'.$$
 (24)

To je všechno pěkný, ale musíme ještě znát obraz přenosové funkce $G_0(t)$. Zde musíme vycházet z definice $\tilde{G}_0(s)$, kterou převedeme na parciální zlomky a aplikací vět z 0. kapitoly není obtížné nalézt původní funkci $G_0(t)$. To ale dělat nebudeme, musí nám stačit vědět, že něco takového je možné⁵. Platí totiž:

$$\tilde{G}_0(s) = \frac{\varphi(s)}{\Psi(s)} = \sum_{n=0}^m \frac{A_n}{s - s_n},$$

kde $\varphi(s)$ je libovolný polynom, $\Psi(s)$ je polynom řádu m a s_n jsou jeho kořeny. A_n jsou konstanty získané dle:

$$A_n = \frac{\varphi(s_n)}{\Psi'(s_n)}.$$

Po převodu (suma lomených výrazů se zpět transformuje na sumu exponenciál) dostaneme:

$$G_0(t) = \sum_{n=0}^{m} A_n e^{s_n t}.$$
 (25)

Kuchařka s postupem:

Následní text je pouze matematická kuchařka, jak získat koeficienty A_n a s_n . Definovaný vztah (23) rozšíříme výrazem $\prod_{n=1}^{m} (s + \lambda_n)$, čímž se nám ve jmenovateli něco požere:

$$\tilde{G}_0(s) \equiv \frac{\prod_{n=1}^m (s + \lambda_n)}{s \left(\Lambda \prod_{n=1}^m (s + \lambda_n) + \sum_{n=1}^m \beta_{\text{ef},n} \prod_{k=1, k \neq n}^m (\lambda_k + s)\right)}.$$

Jaké budou kořeny polynomu ve jmenovateli? První je jasný, tj. $s_0 = 0$. Výraz v hranaté závorce je natuty kladný \rightarrow zbylé kořeny nemohou být kladné \rightarrow zbylé kořeny jsou určitě záporné, tj. $s_1, s_2, ..., s_n < 0$.

Abychom získali konstanty A_n , je vhodné si polynomy upravit do lepšího tvaru. Z MAA1 víme:

$$\Psi(s) = K \cdot \prod_{n=0}^{m} (s - s_n)$$

a jelikož známe první kořen $s_0=0$:

$$\Psi(s) = K \cdot s \prod_{n=1}^{m} (s - s_n)$$

Chybí nám už pouze získat konstantu K. Tu získáme z řešení limity $\lim_{s\to\infty} s\cdot \tilde{G}_0(s)$. Z definice přenosové funkce (23) platí:

$$\lim_{s \to \infty} s \cdot \left[\frac{1}{s \left(\Lambda + \sum_{n=1}^{m} \frac{\beta_{\text{ef},n}}{\lambda_n + s} \right)} \right] = \frac{1}{\Lambda}$$

a z námi upraveného tvaru pro polynom $\Psi(s)$ (ten, ve kterém se objevuje konstanta K) zase platí:

$$\lim_{s \to \infty} s \cdot \left[\frac{\prod_{n=1}^{m} (s + \lambda_n)}{K \cdot s \prod_{n=1}^{m} (s - s_n)} \right] = \frac{1}{K}$$

Je tedy jasné, že:

$$K = \Lambda$$
.

a tedy:

$$\tilde{G}_0(s) = \frac{\prod_{n=1}^m (s + \lambda_n)}{\Lambda \cdot s \prod_{n=1}^m (s - s_n)}.$$

Pro ty co se ztratili v tom, o co se vlastně snažíme. Pokoušíme se nalézt konstanty A_n , které jsme si pro připomenutí definovali jako:

$$\tilde{G}_0(s) = \frac{\varphi(s)}{\Psi(s)} = \sum_{n=0}^m \frac{A_n}{s - s_n},$$

$$A_n = \frac{\varphi(s_n)}{\Psi'(s_n)},$$

kde v našem značení:

$$\Psi(s) = \Lambda \cdot s \prod_{n=1}^{m} (s - s_n).$$

Funkci $\Psi(s)$ musíme derivovat, což je jednoduché, jelikož se jedná o produkt. Pro jeho derivaci platí:

$$\frac{d}{dx}\left(\prod_{i=1}^k f_i(x)\right) = \sum_{i=1}^k \left(\frac{f_i'(x)}{f_i(x)} \prod_{j=1, j\neq i}^k f_j(x)\right).$$

Už je pozdě a je zbytečné rozepisovat postupy, zkrátka platí, že:

$$\Psi'(s) = \Lambda \prod_{n=1}^{m} (s - s_n) + \Lambda \cdot s \sum_{n=1}^{m} \prod_{k=1, k \neq n}^{m} (s - s_k).$$

Při dosazení prvního kořene $s_0 = 0$ je řešení triviální, při dosazování zbylých kořenů je první člen vždy nulový a u druhého členu vypadne suma. Tedy:

$$\Psi'(s_0) = \Lambda \cdot \prod_{i=1, i \neq n}^{m} (-s_i), \quad n = 0,$$

$$\Psi'(s_n) = \Lambda \cdot s_n \prod_{i=1, i \neq n}^m (s_n - s_i), \quad \forall \ n \in \widehat{m}.$$

Rovněž platí (a bude se hodit):

$$\sum_{n=0}^{m} A_n = \frac{1}{\Lambda}.$$

1.3.3 Analytické řešení s vlivem zpožděných neutronů

Vycházíme z řešení rovnice jednobodové kinetiky v integrálním tvaru (24). Rovnice je analyticky řešitelná pouze pro 3 různé případy ρ :

- impuls → impulsní charakteristika,
- $\bullet\,$ konstanta \to přechodová charakteristika,
- lineární/periodická závislost.

a) Impulsní charakeristika

Jde tedy o případ, kdy do kritického systému zasáhneme kladnou/zápornou reaktivitu ve tvaru impulsu. Reálně nemůže nastat, ale matematicko-idealisticky lze ρ vyjádřit pomocí Dirackovy δ funkce:

$$\rho(t) = \rho_0 \delta(t)$$
.

Dále tedy řešíme rovnici (24):

$$N(t) = N_0 + \int_0^t G_0(t - t') \rho(t') N(t') dt',$$

$$N(t) = N_0 + G_0(t)\rho_0 N_0.$$

Nás ale zajímá relativní změna $\frac{\Delta N}{N_0}$, přičemž za $G_0(t)$ dosadíme z (25):

$$\frac{\Delta N}{N_0} = \rho_0 G_0(t) = \rho_0 \sum_{n=0}^m A_n e^{s_n t}.$$
 (26)

Jelikož jsou členy $s_n < 0 \quad \forall n \in \widehat{m}$ a $s_0 = 0$, jsou exponenciály ve výrazu (26) klesající, tudíž i průběh relativní změny četnosti je klesající. Nejde ovšem k nule a v t = 0 nejde k nekonečnu! Dále by nás tedy mohly zajímat limitní případy pro $t \to 0^+$ a $t \to \infty$. Řešíme přes limity:

$$\lim_{t\to 0^+}\frac{\Delta N}{N_0}=\rho_0\sum_{n=0}^mA_n=\frac{\rho_0}{\Lambda}\doteq\frac{\rho_0}{\ell},$$

$$\lim_{t \to \infty} \frac{\Delta N}{N_0} = \rho_0 \lim_{s \to 0} s \tilde{G}_0(s) = \frac{\rho_0}{\Lambda + \sum_{i=1}^m \frac{\beta_{\text{ef},i}}{\lambda_i}} \doteq \frac{\rho_0}{\ell^*}.$$

Průběh relativní změny četnosti při vnesení kladné i záporné reaktivity zobrazuje obrázek 2.

Obrázek 2: Závislost relativní změny četnosti neutronů pro impulsní charakteristiku.

Je tedy jasné, že v čase t=0 je relativní změna četnosti neutronů ovlivněna okamžitými neutrony a v čase $t\to\infty$ zpožděnými neutrony. V reálu se u vysokých vložených reaktivit (TRIGA) výrazně projevují zpětné vazby. Výrazy platí pro záporné i kladné vnesené reaktivity.

b) Přechodová charakteristika

Jde o případ, kdy je vložená reaktivita konstantní, tedy:

$$\rho(t) = \rho_0$$

Lze aplikovat i v reálu (pád tyče), i když ve skutečnosti to tak není (tyč padá nějakou tu dobu). Pro řešení vycházíme ještě z doby před zavedením integrální podoby jednobodové kinetiky⁶:

$$\tilde{N}(z) = \frac{N_0}{z} + \tilde{G}_0(z) \cdot \mathcal{L}[\rho(t)N(t)](z),$$

$$\tilde{N}(z) = \frac{N_0}{z} + \rho_0 \tilde{G}_0(z) \tilde{N}(z).$$

Nás zajímá relativní četnost $\frac{\tilde{N}(z)}{N_0}$ a zároveň za $\tilde{G}_0(z)$ dosadíme z (23), tedy:

$$\frac{\tilde{N}(z)}{N_0} = \frac{1}{z\left(1 - \rho_0 \tilde{G}_0(z)\right)} = \frac{\Lambda + \sum_{i=1}^m \frac{\beta_{\text{ef},i}}{z + \lambda_i}}{z\left(\Lambda + \sum_{i=1}^m \frac{\beta_{\text{ef},i}}{z + \lambda_i}\right) - \rho_0}.$$
(27)

Rovnice (27) se dá transformovat úplně stejně, jako v minulé kapitole \rightarrow převedu na parciální zlomky:

$$\frac{\tilde{N}(z)}{N_0} = \sum_{n=0}^{m} \frac{C_n}{z - z_n},$$

$$\frac{N(t)}{N_0} = \sum_{n=0}^{m} C_n e^{z_n t}.$$
(28)

Zaměříme-li se na znaménka koeficientů C_n a z_n , tak:

- z_0 má stejné znaménko jako ρ_0 ,
- $z_n < 0 \quad \forall n \in \widehat{m}$,
- $C_0 > 0$,
- C_n mají opačná znaménka než ρ_0 , $\forall n \in \widehat{m}$.

Pro $\rho_0 < 0$ bude relativní četnost v čase exponenciálně klesat (což bude ovlivněno největším $|z_n|$, což je závislé na $\Lambda \to s$ menším Λ očekáváme strmější nástup).

Pro $\rho_0 > 0$ po chvíli převládne kladné z_0 s C_0 a relativní četnost exponenciálně poroste. Do tohoto zlomového okamžiku bude relativní četnost také růst, ale s jiným průběhem.

Průběh relativní četnosti při vnesení kladné i záporné reaktivity zobrazuje obrázek 3.

 $^{^6}$ Tady si pro další usnadnění života přepíšu proměnou v LT pomocí z, aby se mi nepletlo s obecným řešením.

Obrázek 3: Závislost relativní četnosti neutronů pro přechodovou charakteristiku.

Př. 3:

Vyzkoušíme si přechodovou charakteristiku na jedné skupině zpožděných neutronů. Tu bychom mohli získat pomocí $\bar{\lambda}$ středováním přes $\beta_{\rm ef}$ jako:

$$\beta_{\text{ef}} = \sum_{i=1}^{m} \beta_{\text{ef},i},$$

$$\bar{\lambda} = \frac{\sum_{i=1}^{m} \beta_{\text{ef},i} \lambda_i}{\beta_{\text{ef}}},$$

případně pomocí středování $\bar{\tau} \colon$

$$\bar{\tau} = \frac{\sum_{i=1}^{m} \beta_{\text{ef},i} \tau_i}{\beta_{\text{ef}}}.$$

Nutno poznamenat, že oba způsoby nejou navzájem ekvivalentní a nedávají stejné hodnoty. S ohledem na skupiny upřednostňuje každý delší, případně kratší skupinu.

Při řešení vycházíme z rovnice (27), kterou převádíme pomocí parciálních zlomků na řešení (28). Máme pouze jednu skupinu zpožděnek, tudíž řešíme rovnici tvaru:

$$\frac{\tilde{N}(z)}{N_0} = \frac{\Lambda + \frac{\beta_{\text{ef}}}{z + \bar{\lambda}}}{z \left(\Lambda \frac{\beta_{\text{ef}}}{z + \bar{\lambda}}\right) - \rho_0}$$

a hledáme pouze koeficienty C_0 , C_1 a kořeny z_0 , z_1 . Pro nalezení kořenů pokládáme jmenovatele nule, což po pár řádcích úprav vede na kvadratickou rovnici:

$$z\left(\Lambda + \frac{\beta_{\rm ef}}{z + \bar{\lambda}}\right) - \rho_0 = 0$$

$$\Lambda z^2 + (\Lambda \bar{\lambda} + \beta_{\text{ef}} - \rho_0)z + (-\rho_0 \bar{\lambda}) = 0$$

$$z = \frac{\Lambda \bar{\lambda} + \beta_{\text{ef}} - \rho_0}{2\Lambda} \left(-1 \pm \sqrt{1 + \frac{4\Lambda \rho_0 \bar{\lambda}}{(\Lambda \bar{\lambda} + \beta_{\text{ef}} - \rho_0)^2}} \right).$$

Nyní provedeme pář předpokladů, které platí pro LWR:

- $\Lambda \approx 10^{-4}$,
- $\bar{\lambda} \approx 10^{-1}$.
- $\beta_{\rm ef} \approx 10^{-2}$

a předpoklad malých změn, tj. $\rho_0 \approx 10^{-3}$ (tedy, že $|\rho_0| << \beta_{\rm ef}$). V takovém případě jsou členy:

- $4\Lambda\rho_0\bar{\lambda}\approx 10^{-8}$,
- $\Lambda \bar{\lambda} + \beta_{\rm ef} \rho_0 \approx 10^{-2}$,

což znamená, že: $|4\Lambda\rho_0\bar{\lambda}|<<|\Lambda\bar{\lambda}+\beta_{\rm ef}-\rho_0|$. Poté se nám i výpočet kořene z kvadratické rovnice zjednoduší (protože zlomek v odmocnině je velmi malý, pro nás nulový):

$$z = \frac{\Lambda \bar{\lambda} + \beta_{\text{ef}} - \rho_0}{2\Lambda} \left(-1 \pm 1 \right).$$

Prvním pohledem by se mohlo zdát, že jedním z kořenů je $z_0 = 0$. To ovšem zcela očividně není pravda (vliv zjednodušení) a musíme na něj přijít jinak. Určitě ale platí druhý kořen, tj.:

$$z_1 = \frac{\rho_0 - \beta_{\rm ef} - \Lambda \bar{\lambda}}{\Lambda} \approx -\frac{\beta_{\rm ef} - \rho_0}{\Lambda}.$$

Tento kořen je jistě záporný $\to z_0$ musí mít stejné znaménko jako ρ_0 . Ten zjistíme pomocí Viétových vzorců:

$$z_0 \cdot z_1 = \frac{c}{a} = \frac{-\rho_0 \bar{\lambda}}{\Lambda},$$

a tedy tím pádem:

$$z_0 = \frac{\rho_0 \bar{\lambda}}{\beta_{\text{ef}} - \rho_0},$$

což má skutečně stejné znaménko jako ρ_0 . Ještě nalezneme koeficienty C_0 a C_1 . Platí (viz kuchařka někde nahoře):

$$C_n = \frac{\varphi(z_n)}{\Psi'(z_n)} = \frac{\Lambda + \sum_{i=1}^m \frac{\beta_{\text{ef},i}}{z_n + \lambda_i}}{\Lambda + \sum_{i=1}^m \frac{\beta_{\text{ef},i}\lambda_i}{(z_n + \lambda_i)^2}} = ||\text{pro 1 skupinu}|| = \frac{\Lambda + \frac{\beta_{\text{ef}}}{z_n + \bar{\lambda}}}{\Lambda + \frac{\beta_{\text{ef}}\bar{\lambda}}{(z_n + \bar{\lambda})^2}}.$$

Nalezneme nejprve C_0 . Po dosazení:

$$C_0 = \frac{\Lambda + \frac{\beta_{\text{ef}}}{\frac{\rho_0 \bar{\lambda}}{\beta_{\text{ef}} - \rho_0} + \bar{\lambda}}}{\Lambda + \frac{\beta_{\text{ef}} \bar{\lambda}}{\left(\frac{\rho_0 \bar{\lambda}}{\beta_{\text{ef}} - \rho_0} + \bar{\lambda}\right)^2}}.$$

Zase si ulehčíme život. Při předpokladu: $\frac{\rho_0 \bar{\lambda}}{\beta_{\rm ef} - \rho_0} \approx 0$ pro výraz v čitateli a pouze jednou ve jmenovateli⁷ dostaneme po pár úpravách:

$$C_0 = \frac{\Lambda \bar{\lambda} + \beta_{\text{ef}}}{\Lambda \bar{\lambda} + \beta_{\text{ef}} - \rho_0},$$

což po aplikaci dalšího předpokladu: $\Lambda \bar{\lambda} \approx 0$ dá vzniku finálnímu výsledku:

$$C_0 = \frac{\beta_{\text{ef}}}{\beta_{\text{ef}} - \rho_0}.$$

Člen C_1 získáme obdobně, nebo si pomůžeme, jelikož známe vztah pro sumu C_n (podobné odvození jako pro sumu A_n):

$$\sum_{i=1}^{m} C_n = 1,$$

a tedy:

$$C_1 = -\frac{\rho_0}{\beta_{\text{ef}} - \rho_0}.$$

Získáme tak finální tvar:

$$\frac{N(t)}{N_0} = \frac{\beta_{\text{ef}}}{\beta_{\text{ef}} - \rho_0} \exp\left(\frac{\rho_0 \bar{\lambda}}{\beta_{\text{ef}} - \rho_0} t\right) - \frac{\rho_0}{\beta_{\text{ef}} - \rho_0} \exp\left(-\frac{\beta_{\text{ef}} - \rho_0}{\Lambda} t\right).$$
(29)

Pro ujasnění a okomentování výsledku. První člen vyjadřuje asymptotické chování křivky, tudíž popisuje zpožděné neutrony. Druhý člen je nejintenzivnější hned z kraje intervalu a postupně vymizí, proto popisuje okamžité neutrony.

Pro popis je dále důležitý člen $\frac{\beta_{\rm ef}}{\beta_{\rm ef}-\rho_0}$, který vyjadřuje hodnotu relativní četnosti neutronů, která nastane při okamžitém nárůstu výkonu.

c) Periodické chování

⁷Proč ve jmenovateli pouze jednou? Tady mi to fakt nejde do hlavy. Dle mého by bylo správnější udělat rozvoj do 1. řádu a něco poškrtat, jenže potom by nevyšel tak hezký výsledek jako u Bédi ve skriptech...