

Contents lists available at ScienceDirect

# Behavioural Brain Research

journal homepage: www.elsevier.com/locate/bbr



# Grandmaternal high-fat diet primed anxiety-like behaviour in the secondgeneration female offspring



Gudrun Winther<sup>a,\*</sup>, Amanda Eskelund<sup>a</sup>, Cecilie Bay-Richter<sup>a</sup>, Betina Elfving<sup>a</sup>, Heidi Kaastrup Müller<sup>a</sup>, Sten Lund<sup>b</sup>, Gregers Wegener<sup>a,c</sup>

- <sup>a</sup> Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, DK-8240, Denmark
- b Department of Endocrinology and Internal Medicine Medical Research Laboratory, Aarhus University Hospital, Aarhus, DK-8000, Denmark
- <sup>c</sup> Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark

#### ARTICLE INFO

Keywords: Anxiety Depression High-fat diet Intergenerational Second-Generation Sex differences

#### ABSTRACT

The health consequences of maternal obesity during pregnancy are disturbing as they may contribute to mental disorders in subsequent generations.

We examine the influence of suboptimal grandmaternal diet on potential metabolic and mental health outcome of grand-progenies with a high-fat diet (HFD) manipulation in adulthood in a rat HFD model.

Grandmaternal exposure to HFD exacerbated granddaughter's anxiety-like phenotype.

Grandmaternal exposure to HFD led to upregulated corticotropin-releasing hormone receptor 2 mRNA expression involved in the stress axis in the male  $F_2$  offspring. Thus, we demonstrate that suboptimal grandmaternal diet prior to and during pregnancy and lactation may persist across subsequent generations. These findings have important implications for understanding both individual rates of metabolic and mental health problems and the clinical impact of current global trends towards comorbidity of obesity and depression and anxiety.

In conclusion, the effect of grandmaternal HFD consumption during pregnancy on stress axis function and mental disorders may be transmitted to future generations.

#### 1. Introduction

An increasing amount of evidence suggest that pre-gestational and early postnatal events such as maternal malnutrition can increase laterlife susceptibilities to disease in offspring [1]. In fact, obesity, metabolic syndrome and type 2 diabetes mellitus (T2DM) are strongly comorbid with major depressive disorder (MDD) and anxiety [2,3]. Furthermore, it has been shown that fat mass is not only a result of energy intake and expenditure, but that genetics and environment are strong contributing factors [4–6], although the underlying mechanisms are still unknown.

A growing body of literature indicate that developmental exposure to high-fat diet (HFD) leads to adverse health outcomes later in life. Maternal Westernized diet (herein referred to as HFD consumption) before and during gestation has been associated with an increased prevalence of offspring metabolic diseases, reduced insulin sensitivity and diabetes in a variety of pre-clinical studies [7–12]. More so, maternal HFD has been shown to alter emotional behaviour in rodents and primates in the first generation (F<sub>1</sub>) offspring [12–15].

Furthermore, a recent study linked maternal inflammation related to HFD exacerbated anxiety-like traits in the second generation ( $F_2$ ) offspring as assessed in the rodent elevated plus maze (EPM) [16]. In fact, recent data regarding maternal diet in mice suggest that the metabolic phenotype of the  $F_1$  can be passed on to the  $F_2$  [17] and may even be passed on to the  $F_3$  generation [18]. Thus, it is important to elucidate the mechanisms of intergenerational inheritance of metabolism and mental health to understand how the population-wide epidemics occur, and lastly, how treatments can be initiated.

The hypothalamic-pituitary-adrenal (HPA) axis is exceptionally vulnerable to fetal programming by prenatal metabolic stress [19]. A previous study demonstrated that prenatal stress induced anxiety-like behaviour in  $F_2$  male offspring associated with increased CRH mRNA expression [20]. Up until now, it has been unknown how the HPA axis function and related behavioural effect of a maternal obesogenic diet, as a stressor, can be transmitted to the  $F_2$  offspring and whether gender-determined differences are inherited in an intergenerational manner.

In the present study, we exposed F<sub>0</sub> female rats to a HFD prenatally

E-mail addresses: gwinther@hotmail.com (G. Winther), ares@clin.au.dk (A. Eskelund), cbr@clin.au.dk (C. Bay-Richter, >, betina.elfving@clin.au.dk (B. Elfving), heidi.muller@clin.au.dk (H.K. Müller), sten.lund@clin.au.dk (S. Lund), wegener@clin.au.dk (G. Wegener).

<sup>\*</sup> Corresponding author.

and during lactation.  $F_1$  animals were therefore exposed during development *in utero* and early postnatal life, whereas  $F_2$  animals were potentially exposed as germ cells of the  $F_1$ . The outcome from these  $F_2$  offspring are termed intergenerational.

The study hypothesized that the consequences of  $F_0$  exposure to HFD would result in intergenerational inheritance of potentially pathogenic traits, such as glucose intolerance, increased body weight and occurrence of MDD and anxiety in the  $F_2$  offspring, which might be mediated through an altered developmental programming of the HPA axis function.

#### 2. Materials and methods

#### 2.1. Animals

Seven weeks old male (n = 10) and females (n = 10) Sprague Dawley rats were obtained from Taconic Bioscience A/S (Ry, Denmark). Rats were housed in same-sex pairs (Cage 1291H Eurostandard Type III H,  $425 \times 266 \times 185$ , Techniplast, Buguggiate, Italy, including a tunnel shelter, nesting material, pine bedding and a wooden stick), maintained on a 12 h light-dark cycle (lights on from 7:00 AM). The animal welfare committee appointed by the Danish Ministry of Justice granted ethical permission for the studies. All experimental procedures complied with the EU Directive 2010/63/EU and the Danish Experimentation Act (LBK 1306 from 23/11/2007 with 2011 amendments). The protocol was approved by the Danish Animal Experimentation Committee (j.no 2012-15-2934-00254).

#### 2.2. Diets

Rats were challenged with a HFD (D12492, Research Diets, Inc., New Brunswick, NJ, USA) comprised of 60% kcal fat (mainly lard) and refined carbohydrates (sucrose and maltodextrin) with a total kcal/g 5.24. The control diet (CON) (D12450 J, Research Diets, Inc., New Brunswick, NJ, USA) consisted of 10% kcal fat (soybean oil and lard) and more complex carbohydrates including corn-starch, total kcal/g 3.85. Food (HFD or CON) and water was available *ad libitum*. The composition of the dietary regimens can be seen in Table 1. Food consumption and weight gain was monitored by weighing food and rats once a week. Weekly caloric intake per rat was considered as [rat weight gain / total cage weight gain × total cage caloric intake].

# 2.3. Experimental design

To investigate whether obesogenic grandmaternal HFD (F<sub>0</sub>) would

Table 1
Main nutrient composition of diets used. Fat in the CON was mainly soybean oil, whereas fat in the HFD consisted of mostly lard.

|                                  | CON (D12450 J) |        | HFD (D12492) |      |
|----------------------------------|----------------|--------|--------------|------|
|                                  | gm             | kcal   | gm           | kcal |
| Macronutrients (% energy)        |                |        |              |      |
| Protein                          | 19.2           | 20     | 26           | 20   |
| Carbohydrate                     | 67.3           | 70     | 26           | 20   |
| Fat                              | 4.2            | 10     | 35           | 60   |
| Total                            |                | 100    |              | 100  |
| Energy Density (kcal/gm)         | 3.85           |        | 5.24         |      |
| Micronutrients sources (kcal)    |                |        |              |      |
| Protein, Casein, Lactic, 30 Mesh | 200            | 800    | 200          | 800  |
| Protein, Cysteine L              | 3              | 12     | 3            | 12   |
| Corn starch                      | 506.2          | 2024.8 | 0            | 0    |
| Maltodextrin                     | 125            | 500    | 125          | 500  |
| Sucrose                          | 68.8           | 275    | 68.8         | 275  |
| Soybean oil                      | 25             | 225    | 25           | 225  |
| Lard                             | 20             | 180    | 245          | 2205 |
| Total                            | 1055.05        | 4057   | 773.85       | 4057 |

alter metabolism and behaviour in the grand-offspring (second-generation/ $F_2$ ), sexually mature female rats ( $F_0$ , 8 weeks old), were randomly allocated to control diet (CON,  $F_0$ ) or HFD ( $F_0$ ) (Fig. 1).  $F_0$  received their respective diets for 8 weeks prior to breeding to ensure a female weight gain prior to gestation. Female  $F_0$  were bred with a mature  $F_0$  CON male to produce  $F_1$  offspring of the CON and HFD lineage.

Two breeding combinations were used to produce  $F_2$ : the  $F_2$  CON lineage (produced from  $F_1$  CON females crossed with  $F_1$  CON males, n=10), and  $F_2$  HFD lineage through the maternal line ( $F_1$  HFD females crossed with  $F_1$  CON males, n=10).

 $F_1$  and  $F_2$  offspring were weaned at postnatal day (PND) 21 and had ad libitum CON diet access. To examine postnatal environmental effects, adult male and female  $F_2$  offspring (14 weeks old), were randomly allocated into one of four groups. Thus,  $F_2$  offspring were challenged with a HFD for 14 weeks in order to investigate whether they would develop a more distinct phenotype. This generated the following experimental groups CON-CON, CON-HFD, HFD-CON HFD-HFD, indicating the  $F_0/F_2$  diets, respectively.

#### 2.4. Behavioural assessment

Each behavioural test session was separated by 7 days from the previous test to minimize cross- interference between tests and stress for the animals. The order of each of the four  $F_2$  experimental groups were pseudo-randomized to eliminate potential interactions due to circadian rhythm and kept through all tests. Animals were allowed to habituate for 1 h in a neighbouring room, prior to testing and all apparatus and objects were cleaned with 70% ethanol solution and allowed to air dry to neutralize odorants between sessions. Furthermore, all animals were returned to their home cages between trials and after each session. All tests were carried out between 9 a.m. and 3 p.m.

#### 2.4.1. Elevated plus-maze

To assess anxiety-like behaviour, the EPM was utilised [21,22]. The plus-shaped apparatus (elevated 80 cm above the ground) was constructed of two open arms ( $50 \times 10$  cm) and two closed arms, with opaque, black plastic walls on the sides and at the end of the two arms (20 cm) [23]. Light intensity on the open arms was 60 lx and the other two enclosed arms had limited lighting (10 lx). Rats were placed in the centre of the maze facing the closed arm opposite from the experimenter and allowed to freely explore the maze for 5 min. Rats were recorded by a camera in the ceiling and videos were manually scored by a blinded experimenter. Entry was defined as at least two front paws placed on the arms.

As an index of anxiety-like behaviour, the percentage of time spent on the open arms was calculated as follows – [time spent on open arms / time spent on all arms  $\times$  100%]. Furthermore, the percentage of entries onto open arms was similarly calculated and reported.

# 2.4.2. Light-dark box test

The light-dark box test (LDB) was included as an additional test for anxiety-like behaviour. This test is also based on an approach-avoidance conflict between exploration of novel environments and avoidance of brightly lit, open spaces [24]. The test was conducted in an apparatus consisting of two identical chambers ( $40 \times 40 \times 42$  cm), separated by a wall with a hole ( $20 \times 20$  cm), allowing the animal to move across the two chambers [25,26]. An animal was placed in the light box (200 lx) in the centre of the box and allowed to move freely and video recorded from the ceiling for 5 min. Number of entries into the light chamber, latency to re-enter the light box and time spent in each chamber were recorded.

# 2.4.3. Open field test

Gross locomotor activity was determined in an open field test (OFT) in an arena with opaque black background ( $100 \times 100 \text{ cm}^2$ , height



Fig. 1. Experimental design. F<sub>0</sub> diet was initiated 8 prior to breeding. After weaning all F<sub>1</sub> offspring were fed CON diet. F<sub>2</sub> offspring were challenged with HFD (B and D) at age 14 weeks or kept on a standard diet (A and C).

50 cm), according to previously described (Kim 2011). The rat was placed in the centre of the arena and could freely explore the arena for 5 min. Trials were recorded by a video camera located above the arena and distance travelled was automatically tracked using Ethovision (version 11, Noldus Information Technology, Wacheningen, Netherlands).

#### 2.4.4. Forced swim test

To evaluate behavioural despair, an index of depression-like behaviour, animals were exposed to the modified forced swim test (FST) [27]. Briefly, each rat was subjected to a swim session twice, 24 h apart. Each animal was placed in a transparent, water-filled (25 °C), plastic, cylindrical tank (H:  $54\,\mathrm{cm}$ ,  $\varphi$ : 24 cm, water depth: 40 cm) and allowed to swim for 15 min during the pre-test (day 1) and 7 min on the test trial (day 2). All swim sessions were video-recorded from the side, by a camera positioned in front of the cylinders. Immobility was scored if this was the most dominant behaviour within  $5\,\mathrm{s}$  intervals as described elsewhere [28,29] by an observer blind to study groups.

## 2.4.5. Prepulse inhibition of the acoustic startle response

Patients with neuropsychiatric diseases or schizophrenia often suffer from a dysfunctional sensorimotor gating mechanism [30-32]. This was evaluated by the prepulse inhibition (PPI) of an acoustic startle response, using the startle response system from SR-Lab™SDI (San Diego Instruments (Europe) Ltd., Birmingham, UK). Background, white noise (70 dB) was provided through the entire session by a 3.5 tweeter (model BT2, MG electronics, Hauppauge, NY, USA) 14 cm over the animal chamber (Plexiglas tube  $\varphi$  8.8 cm males and  $\varphi$  6.5 females). Testing began with a 5 min habituation period followed by three blocks lasting 20 min. The first block consisted of five startle- elicited stimuli (120 dB, 40 ms). The second block involved five different types of trials; either the startle stimuli or the startle preceded by a prepulse (20 ms) (PPI) at 72, 74, 78 and 86 dB, separated from the startle with 40 ms. All five stimuli were presented in pseudo-random order (5  $\times$  7). The last block consisted of five startle stimuli. The V max from all five trials in block 2 was used to generate an average V constituting of the independent variable for analysis. Percentage of PPI was calculated as decrease in mean V max: % PPI [100% × (PPI / startle alone) – 100].

# 2.5. Oral glucose tolerance test

To investigate the glucose response, an oral glucose tolerance test (OGTT) was performed after a 10 h fasting period. Blood glucose was measured in duplicates using OneTouch $^{\ast}$  Vita blood glucose metre (Lifescan Inc., Cilag GmbH, Switzerland) from blood obtained by a small incision at the tip of the tail. All plasma glucose levels were measured in duplicates at 30, 60 and 120 min after oral gavage of glucose (2.5 g kg $^{-1}$ ).

## 2.6. Tissue sampling and preparation

All offspring were euthanized by decapitation (PND  $\geq$  150) and heart, liver, and epididymal and gonadal fat tissue were dissected and weighed immediately. The brain was removed and hippocampus dissected and rapidly snap frozen on powdered dry ice and stored at  $-80\,^{\circ}\text{C}$  until further analysis.

## 2.7. Hippocampal RNA extraction

Tissue was homogenised using the bead beating technology by Precellys equipment (Bertin Technologies, Villeurbanne, France) for  $2\times15\,\mathrm{s}$  (5000 rpm) in lysis buffer (Applied Biosystems, Foster City, CA, USA) and one 2.8 mm stainless steel bead. Total RNA was isolated using the ABI PRISM 6100 Nucleic acid Prepstation (Applied Biosystems, Foster City, CA, USA) according to the manufacturers' protocol. 11 mg homogenized tissue was loaded per well. RNA concentration and purity was assessed using Nanodrop spectrophotometer (Thermo Fisher Sci, Massachusetts, USA), and RNA was stored at  $-80\,\mathrm{^{\circ}C}$  prior to use.

# 2.8. cDNA synthesis

Total RNA was reversely transcribed using random primers and Superscript IV Reverse Transcriptase (Sigma-Aldrich, St. Louis, MO, USA) following the manufacturer's protocol. The RNA concentration from the Nanodrop spectrophotometer was utilized to ensure the same amount of RNA was present in each sample. The input RNA concentration per reaction was  $16\,\mathrm{ng}/\mu\mathrm{L}$ . The cDNA samples were stored undiluted at  $-80\,^\circ\mathrm{C}$  until quantitative real-time polymerase chain reaction (real-time qPCR) analysis.

# 2.9. Real-time qPCR

We performed real-time qPCR on individual samples in 96-well PCR plates using the Mx3005 P (Stratagene, La Jolla, CA, USA) and SYBR Green reaction containing 5  $\mu$ l SYBR Green mastermix (Sigma-Aldrich, St. Louis, MO, USA), 0.5  $\mu$ M primer pair, 1.5  $\mu$ l DEPC water and 3  $\mu$ L diluted DNA (10  $\mu$ L total volume) as previously reported [33]. Prior to use, cDNA samples were diluted 1:9 with diethylpyrocarbonate (DEPC). The thermal profile for the PCR was 3 min at 95 °C to activate the hot-start iTaqDNA polymerase, followed by 40 cycles of: 10 s denaturation at 95 °C, 30 s annealing at 60 °C and 60 s extension at 72 °C. Finally, the PCR product was exposed to heat-denaturing by increasing the temperature from 60 °C to 95 °C to generate a melting curve. Each plate included a fivefold standard curve run in duplicate. We investigated five genes encoding for proteins associated with HPA axis regulation (glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), 11betahydroxysteroid dehydrogenase type 1 ( $11\beta$ -hsd1), corticotrophin-

releasing hormone receptor 1 and 2 (*Crh-r1*, *Crh-r2*)), one gene related to structural plasticity (brain derived neurotrophic factor (*Bdnf*)) and eight potential references genes (*Actb, CycA, Gapdh, Hmbs, Hprt, Rpl13 A, Ywhaz, 18 s rRNA*). Characteristics of the primers are given in Table S1. The individual sample genes were normalized to the geometric mean of the two most stable reference genes (*ActB/Hprt*) detected by Normfinder software (http://moma.dk/norm-software; [34]).

## 2.10. Statistical analyses

All analyses were performed using Stata 14 (StataCorp LP, Texas, USA) and SPSS statistics (IBM® SPSS statistics, version 2). Normality was assessed by Shapiro Wilk test and QQ plot, and homoscedacity was confirmed using Levene's test. In case of non-normality or heteroscedasticity, data were log-transformed.

Area under the curve (AUC) was calculated by summation of trapezoids between the different time points for blood glucose levels during OGTT, body weight and %PPI.

Blood glucose levels and body weight were analysed using four-way ANOVA with the independent variables (gender  $\times$  F<sub>0</sub> diet  $\times$  F<sub>2</sub> diet  $\times$  time). In case of significant effect of time, separate three-way ANOVAs were performed at each time point.

We performed three-way ANOVA (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet) for OFT, LDB, EPM, FST, for each time point during the glucose measure, body weight and real-time qPCR. If no three-way and no two-way interactions were present we reported main effects.

If there was a two-way interaction in the three-way ANOVA, we performed analysis of simple main effects at each level of the two independent variables that had interactions.

If we had a three-way interaction, we performed an analysis for simple two-way interactions at each level of gender using the error term from the three-way ANOVA as described by [35].

If we had a simple two-way interaction in this analysis, we performed an analysis for simple-simple main effects at each level of the two independent variables that had interactions still using the error term and degrees of freedom from the three-way ANOVA, otherwise simple main effects were reported. Multiple comparisons were corrected using Bonferroni's method.

False discovery rate correction by Benjamini and Hochberg, [36] was applied to the real-time qPCR data with Q = 0.05 by ranking the significant p-values and evaluating the likelihood of false positives. All results are presented as means  $\pm$  SEM, and the statistical significance level is set at  $\alpha$  = 0.05. Group sizes were chosen based on a power calculation for FST (1- $\beta$  = 0.8 and  $\alpha$  = 0.05).

## 3. Results

# 3.1. Effects of $F_0$ and $F_2$ diet on $F_2$ adult offspring body weight

There was a significant interaction between gender,  $F_2$  diet,  $F_0$  diet and time for  $F_2$  offspring body weight (gender  $\times$   $F_2$  diet  $\times$   $F_0$  diet  $\times$  time:  $F_{(3,\ 226)}=5.37,\ p<0.001,\ Fig.\ 2A)$ . Post hoc comparisons revealed that both male and female  $F_2$  offspring gained weight with  $F_2$  HFD (male:  $F_2$  diet:  $F_{(1,\ 70)}=52.78,\ p<0.001;$  female:  $F_{(1,\ 70)}=28.64,\ p<0.001)$ . In the three-way ANOVA of AUC body weight, there was a significant gender and  $F_2$  diet interaction (gender  $\times$   $F_2$  diet:  $F_{(1,\ 70)}=5.36,\ p=0.024)$ . Simple effect analysis showed that  $F_2$  diet significantly increased AUC body weight for male  $F_2$  offspring ( $F_2$  diet:  $F_{(1,\ 70)}=52.39,\ p<0.001,\ Fig.\ 2B)$  and for female  $F_2$  offspring ( $F_2$  diet:  $F_{(1,\ 70)}=15.71,\ p<0.001,\ Fig.\ 2B)$ .

 $F_2$  HFD significantly increased total epididymal fat tissue in  $F_2$  off-spring ( $F_2$  diet:  $F_{(1, 70)} = 183.3$ , p < 0.001, Table 2). Specifically, total epididymal and gonadal fat tissue was increased in CON-HFD compared to HFD-HFD  $F_2$  offspring ( $F_{(1, 70)} = 8.8$ , p = 0.004, Table 2).

3.2. No effects of  $F_0$  or  $F_2$  HFD on  $F_2$  offspring locomotor activity in adulthood

Neither  $F_0$  nor  $F_2$  diet (p < 0.05) had impact on locomotor activity (Fig. 3A).

3.3. Effects of  $F_0$  and  $F_2$  diet on  $F_2$  adult offspring anxiety-like behaviour in the LDB

In the LDB, there was a significant gender,  $F_0$  diet and  $F_2$  diet interaction on time spent in the light box (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,64)}=7.13$ , p=0.01). For male  $F_2$  offspring there was no effect of  $F_0$  and  $F_2$  diet on time spent in the light box ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,64)}=0.78$ , p=0.38). For female  $F_2$  offspring there was a significant simple  $F_0$  and  $F_2$  diet interaction ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,64)}=8.89$ , p=0.004, Fig. 3B). Post hoc Bonferroni's comparisons test revealed that female HFD-HFD spent less time in the light box than HFD-CON ( $F_{(1,64)}=9.37$ , p=0.003, Fig. 3B).

3.4. Effects of  $F_0$  and  $F_2$  diet on  $F_2$  adult offspring risk-taking behaviour in the EPM

In the EPM, there was a significant gender and  $F_0$  diet interaction in the three-way ANOVA (gender  $\times$   $F_0$  diet:  $F_{(1, 68)} = 9.03$ , p = 0.004, Fig. 3C). Simple main effect analysis revealed that female offspring from  $F_0$  HFD spent less time in the open arms than female offspring from  $F_0$  CON ( $F_0$  diet:  $F_{(1, 68)} = 8.19$ , p = 0.006, Fig. 3C). In addition, there was a significant gender and  $F_2$  diet interaction (gender  $\times$   $F_2$  diet:  $F_{(1, 68)} = 4.23$ , p = 0.044, Fig. 3C). Simple main effect analysis revealed that  $F_2$  HFD male offspring spent less time in the open arms compared to  $F_2$  CON male offspring ( $F_2$  diet:  $F_{(1, 64)} = 9.37$ , p = 0.003, Fig. 3C).

3.5. Effects of  $F_0$  and  $F_2$  diet on  $F_2$  adult offspring depression-like behaviour in the FST

In the FST, there was a significant gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet interaction within time spent immobile (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)}=4.43, p=0.039$ ; Fig. 3D). There was a significant simple  $F_0$  diet and  $F_2$  diet interaction in male  $F_2$  offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)}=4.1, p=0.047$ ) but not for female  $F_2$  offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)}=0.9, p=0.34$ ). Post hoc Bonferroni's multiple comparisons analysis revealed that  $F_2$  diet significantly increased percentage of time spent immobile in  $F_0$  HFD male  $F_2$  offspring ( $F_{(1,70)}=11.92, p=0.001$ ; Fig. 3D) and in  $F_0$  CON male  $F_2$  offspring ( $F_{(1,70)}=38.27, p<0.001$ ; Fig. 3D). Similarly, in female  $F_2$  offspring,  $F_2$  HFD significantly exacerbated percentage immobility in  $F_0$  HFD female  $F_2$  offspring ( $F_{(1,70)}=11.58, p=0.001$ ; Fig. 3D) and in  $F_0$  CON female  $F_2$  offspring ( $F_{(1,70)}=3.93, p=0.05$ ; Fig. 3D).

3.6. Effects of  $F_0$  and  $F_2$  diet on  $F_2$  adult offspring prepulse inhibition

In the four-way ANOVA, %PPI increased with increasing pre-pulse intensity (dB) in the repeated measurements analysis ( $F_{(3,\ 210)} = 79.8$ , p < 0.001), indicating successful PPI setup. There was a significant main effect of gender ( $F_{(1,\ 70)} = 6.3$ , p < 0.01), but  $F_0$  diet,  $F_2$  diet and gender interactions were not significantly different (p > 0.05, Fig. S1).

3.7. Effect of F<sub>0</sub> HFD on F<sub>2</sub> offspring during an oral glucose tolerance test

To determine the metabolic effects of early prenatal diet exposure, we analysed the glucose levels from male and female  $F_2$  offspring from CON and HFD grandmothers. There was a significant gender,  $F_0$  diet,  $F_2$  diet and time interaction during the OGTT (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet  $\times$  time:  $F_{(2147)} = 3.1$ , p = 0.045, Fig. 4A). We therefore performed three-way ANOVAs (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet) at each time point. At



Fig. 2. Body weight increased with adult postnatal HFD challenge in male and female  $F_2$  offspring (A) AUC body weight (B). Results are expressed as mean  $\pm$  SEM. Hashtag indicate significant main effect of  $F_2$  diet.  $^\#p < 0.001$ , effect of  $F_2$  HFD, n = 10 per group. CON, control diet; HFD, high-fat diet. Intact line indicates male  $F_2$  offspring, line with gaps indicates female  $F_2$  offspring. CON-CON: control diet ( $F_0$ ) – control diet ( $F_0$ ), high-fat diet ( $F_0$ ) – control diet ( $F_0$ ) – high-fat diet ( $F_0$ ) –

time points 60 min (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1, 70)} = 38.99$ , p < 0.001) and 120 min (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1, 70)} = 104.46$ , p < 0.001)  $F_2$  HFD significantly increased the blood glucose levels, irrespective of other factors.

At time 0 min (fasting glucose), there was a significant interaction between gender,  $F_0$  diet and  $F_2$  diet (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)}=16.19$ , p<0.001). There was a significant simple  $F_0$  diet and  $F_2$  diet interaction for male offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)}=8.83$ , p=0.004) and for female  $F_2$  offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)}=7.39$ , p=0.008). Simple main effects showed that in male  $F_2$  offspring from CON grandmothers,  $F_2$  HFD significantly increased glucose levels ( $F_2$  diet:  $F_{(1,70)}=56.78$ , p<0.001). In female  $F_2$  offspring from CON grandmothers,  $F_2$  HFD significantly increased glucose levels ( $F_2$  diet:  $F_{(1,70)}=56.78$ , p<0.001), but not in female  $F_2$  offspring from HFD grandmothers ( $F_2$  diet:  $F_{(1,70)}=26.06$ , p<0.001), but not in female  $F_2$  offspring from HFD grandmothers ( $F_2$  diet:  $F_{(1,70)}=1.81$ , p=0.18).

Finally, at 30 min, there was a significant gender,  $F_0$  diet and  $F_2$  diet interaction in the glucose levels (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)} = 4.47$ , p = 0.04). There was a trend for a significant simple  $F_0$  diet and  $F_2$  diet interaction for female  $F_2$  offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)} = 3.59$ , p = 0.06), but not for male  $F_2$  offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1,70)} = 1.19$ , p = 0.27). Simple main effects showed that in male  $F_2$  offspring from CON grandmothers,  $F_2$  HFD significantly increased glucose levels ( $F_2$  diet:  $F_{(1,70)} = 65.75$ , p < 0.001) and from HFD grandmothers ( $F_2$  diet:  $F_{(1,70)} = 11.73$ , p = 0.003). In female  $F_2$  offspring from HFD grandmothers,  $F_2$  HFD significantly increased glucose levels ( $F_2$  diet:  $F_{(1,70)} = 12.69$ , p = 0.002), but not in female  $F_2$  offspring

from CON grandmothers ( $F_2$  diet:  $F_{(1, 70)} = 0.86$ , p = 0.36).

We also performed a three-way ANOVA on the AUC of glucose levels at the OGTT. Here we found increased AUC with  $F_2$  HFD ( $F_2$  diet:  $F_{(1,70)} = 40.21$ , p < 0.001, Fig. 4B).

3.8. Effects of  $F_0$  HFD on  $F_2$  Offspring Hippocampal Neuroendocrine receptor expression, synaptic plasticity and neuronal growth at the mRNA levels

To determine underlying mechanisms driving the sex-specific effects of early prenatal diet exposure, we analysed the hippocampus from male and female  $F_2$  offspring from CON and HFD grandmothers.

In the hippocampus, there was no significant effect of gender,  $F_0$  diet and  $F_2$  diet on  $\mathit{Crh-r1}$  mRNA levels ( $F_{(1,70)}=0.27,\ p=0.6$ ). Nevertheless,  $\mathit{Crh-r2}$  mRNA levels showed a significant gender  $\times$   $F_0$  diet interaction in the tree-way ANOVA (gender  $\times$   $F_0$  diet:  $F_{(1,70)}=4.97,\ p=0.029$ ). In fact, within male  $F_2$  offspring, grandmaternal HFD significantly increased the hippocampal  $\mathit{Crh-r2}$  mRNA levels ( $F_{(1,70)}=6.33,\ p=0.01$ ; Fig. 5A). However, in female  $F_2$  offspring, no significant difference was found ( $F_{(1,70)}=0.23,\ p=0.61$ ; Fig. 5A).

There was a significant gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet interaction within Mr mRNA levels (gender  $\times$   $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1, 70)} = 5.81$ , p = 0.026; Fig. 5B). We then performed simple two-way ANOVAs ( $F_0$  diet  $\times$   $F_2$  diet) for each gender. There was a significant simple  $F_0$  diet and  $F_2$  diet interaction for female  $F_2$  offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1, 70)} = 4.59$ , p = 0.04), but not for male  $F_2$  offspring ( $F_0$  diet  $\times$   $F_2$  diet:  $F_{(1, 70)} = 1.11$ , p = 0.3). In female  $F_2$  offspring from HFD

Table 2

Effect of  $F_0$  and  $F_2$  diet on body weight, fat mass, liver weight and heart weight. Data were analysed by three-way ANOVA. Results are expressed as mean  $\pm$  SEM, n = 9 - 10.  $^+ p < 0.001$ , effect of gender;  $^{\alpha} p < 0.01$ , compared to HFD-HFD;  $^{\&} p < 0.01$ , effect of  $F_2$  diet.

|                                                                                      |                                                                           | Male                                             |                                    |                                                | Female                             |                                                  |                                                                  |                                                |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|------------------------------------------------|------------------------------------|--------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|
|                                                                                      | CON-CON                                                                   | CON-HFD                                          | HFD-CON                            | HFD-HFD                                        | CON-CON                            | CON-HFD                                          | HFD-CON                                                          | HFD-HFD                                        |
| Body weight, start (g) <sup>+</sup><br>Body weight, end (g) <sup>+</sup>             | 426.1 ± 45.7<br>525.7 ± 40.1                                              | 408.5 ± 44.5<br>690.1 ± 24.5 <sup>#</sup>        | 398.2 ± 29.9<br>490.7 ± 37.4       | 432.7 ± 27.9<br>614.6 ± 24.7 <sup>#</sup>      | 241 ± 12.3<br>295.9 ± 16.3         | 263 ± 27.8<br>335.3 ± 14.1 <sup>#</sup>          | $246.1 \pm 17.8$<br>$289.5 \pm 15.0$                             | 252.4 ± 13.7<br>347.9 ± 24.3 <sup>#</sup>      |
| Epididymal/gonadal fat t<br>Weight (g) <sup>+</sup><br>Weight (% of BW) <sup>+</sup> | issue<br>8 ± 1.6<br>1.5 ± 0.2                                             | $21.4 \pm 4.7^{\#}$<br>$3.1 \pm 0.4^{\#,\alpha}$ | 6.9 ± 1.6<br>1.4 ± 0.2             | 16.1 ± 4.4 <sup>#</sup> 2.6 ± 0.6 <sup>#</sup> | $6.1 \pm 1.9$<br>$2.1 \pm 0.6$     | $14.2 \pm 3.7^{\#}$<br>$4.1 \pm 0.8^{\#,\alpha}$ | 5.7 ± 1.6<br>1.9 ± 0.5                                           | 13.3 ± 3.5 <sup>#</sup> 3.8 ± 0.8 <sup>#</sup> |
| Liver Weight (g) + Weight (% of BW)                                                  | $16.1 \pm 2.6$<br>$3.1 \pm 0.3$                                           | $17.7 \pm 2.3$<br>$2.53 \pm 0.2^{\#}$            | $16.6 \pm 2.03$<br>$3.3 \pm 0.21$  | 16.1 ± 1.9<br>2.6 ± 0.2 <sup>#</sup>           | $9.7 \pm 1.2$<br>$3.3 \pm 0.5$     | $10.1 \pm 2.0$<br>$2.8 \pm 0.3^{\#}$             | $9.3 \pm 1.2$<br>$3.1 \pm 0.3$                                   | 9.3 ± 0.8<br>2.7 ± 0.2 <sup>#</sup>            |
| Heart Weight (g) + Weight (% of BW) +                                                | $\begin{array}{c} 1.66 \; \pm \; 0.18 \\ 0.31 \; \pm \; 0.02 \end{array}$ | $1.84 \pm 0.18^{\alpha}$<br>$0.27 \pm 0.02^{\#}$ | $1.52 \pm 0.13$<br>$0.30 \pm 0.02$ | 1.67 ± 0.18<br>0.26 ± 0.02 <sup>#</sup>        | $1.12 \pm 0.13$<br>$0.37 \pm 0.03$ | $1.25 \pm 0.13^{\alpha}$<br>$0.35 \pm 0.04^{\&}$ | $\begin{array}{c} 1.06  \pm  0.1 \\ 0.36  \pm  0.02 \end{array}$ | $1.09 \pm 0.13 \\ 0.32 \pm 0.04^{\&}$          |



**Fig. 3.** Behaviour was altered differently in male and female  $F_2$  offspring with  $F_0$  and  $F_2$  diet. In the OFT there were no changes (A). In the LDB, HFD-HFD female  $F_2$  offspring showed anxiety-like behaviour with  $F_0$  HFD and male  $F_2$  offspring showed anxiety-like behaviour with  $F_0$  HFD and male  $F_2$  offspring showed anxiety-like behaviour with  $F_0$  HFD (C). Immobility was increased in  $F_2$  offspring with  $F_2$  HFD in the FST (D). Data are presented as mean  $\pm$  SEM, n=8-10 per group. p<0.05, compared to  $F_2$  CON; p<0.01, compared to  $F_2$  CON, control diet; HFD, high-fat diet. CON-CON: control diet ( $F_0$ ) – control diet ( $F_0$ ) – control diet ( $F_0$ ) – high-fat diet (

grandmothers, there was a simple main effect of  $F_2$  diet ( $F_2$  diet:  $F_{(1,70)} = 10.55$ , p = 0.004). *Post hoc* Bonferroni's comparisons test revealed significantly higher Mr mRNA level in HFD-CON compared to CON-CON ( $F_{(1,70)} = 4.65$ , p = 0.034, Fig. 5B) and to HFD-HFD ( $F_{(1,70)} = 11.67$ , p < 0.001, Fig. 5B), respectively.

The three-way ANOVA showed a significant main effect of gender within Gr mRNA levels as such that female  $F_2$  offspring transcript levels were higher than male  $F_2$  offspring's (gender:  $F_{(1, 70)} = 5.78$ , p = 0.019; Fig. 5C).

In the three-way ANOVA there was a significant gender  $\times$  F<sub>2</sub> diet interaction within *11β-hsd1* mRNA levels (gender  $\times$  F<sub>2</sub> diet: F<sub>(1,70)</sub> = 4.14, p = 0.046). Simple main effect analysis showed that male F<sub>2</sub> offspring challenged with F<sub>2</sub> HFD had lower levels compared to female F<sub>2</sub> offspring fed F<sub>2</sub> HFD (F<sub>2</sub> diet: F<sub>(1,70)</sub> = 7.91, p = 0.006; Fig. 5D).

The three-way ANOVA showed a significant gender  $\times$  F<sub>2</sub> diet interaction on *Bdnf* mRNA levels (gender  $\times$  F<sub>2</sub> diet: F<sub>(1,70)</sub> = 4.85, p = 0.031). In male F<sub>2</sub> offspring, F<sub>2</sub> HFD did not alter *Bdnf* mRNA levels compared to F<sub>2</sub> CON male F<sub>2</sub> offspring (F<sub>2</sub> diet: F<sub>(1,70)</sub> = 0.14, p = 0.71). Within female F<sub>2</sub> offspring, F<sub>2</sub> HFD increased the *Bdnf* mRNA levels compared to F<sub>2</sub> CON female F<sub>2</sub> offspring (F<sub>2</sub> diet: F<sub>(1,70)</sub> = 7.47, p = 0.008; Fig. 5E).

Furthermore, there was a significant gender  $\times$   $F_0$  diet interaction (gender  $\times$   $F_0$  diet:  $F_{(1, 70)} = 11.28$ , p = 0.001). Male  $F_2$  offspring from  $F_0$  CON had higher *Bdnf* mRNA levels than female  $F_2$  offspring from  $F_0$  CON ( $F_0$  diet:  $F_{(1, 70)} = 6.42$ , p = 0.01; Fig. 5E). Female  $F_2$  offspring

from  $F_0$  HFD had increased *Bdnf* mRNA levels compared to male  $F_2$  offspring from  $F_0$  HFD ( $F_0$  diet:  $F_{(1, 70)} = 4.9$ , p = 0.03; Fig. 5E). In addition, female  $F_2$  offspring from  $F_0$  HFD had higher transcript levels than female  $F_0$  CON ( $F_0$  diet:  $F_{(1, 70)} = 9.37$ , p = 0.003; Fig. 5E).

#### 4. Discussion

We describe for the first time, sex-dependent intergenerational heritability of grandmaternal HFD via the maternal line on the anxietylike behaviour and HPA axis response in rats.

The main findings of the present study are that grandmaternal obesogenic diet indicates a predisposition to an increased anxiety-like behaviour in adult female  $F_2$  offspring in the EPM. In the LDB, HFD in adult female  $F_2$  offspring exacerbates a predisposed latent trait inherited from the  $F_0$  generation to an increased anxiogenic phenotype in the female  $F_2$  generation. Additionally,  $F_2$  HFD induced anxiogenic behaviour in male  $F_2$  offspring, independent of  $F_0$  diet in EPM, but no effects were found for male  $F_2$  offspring in the LDB. In our study, it could indicate that male offspring are more resilient to early life stressors. The underlying mechanism programming the effect of grandmaternal diet exposure remains unclear.

Although early life maternal diet generally has demonstrated anxiety in the  $F_1$  generation across many animal models of early life stressors [13,15,37,38], task variances are occasionally observed [39]. There may be differences in performance in these tasks as the LDB correlates with more responses to novelty than with exploration [40]



**Fig. 4.**  $F_2$  HFD, but not  $F_0$  HFD, impairs blood glucose homeostasis. Plasma glucose levels were increased in male and female  $F_2$  offspring with  $F_2$  HFD, but not  $F_0$  HFD (A). The AUC in male and female  $F_2$  offspring (B). Data are presented as mean  $\pm$  SEM, n=10 per group. p=10 per



**Fig. 5.** Second-generation male and female offspring hippocampal mRNA levels. *Crhr2* mRNA levels were increased in  $F_2$  male offspring with  $F_0$  diet (A). *Mr* mRNA levels were higher in HFD-CON compared to CON-CON and HFD-HFD, respectively (B). *Gr* mRNA levels were higher in male  $F_2$  offspring (C).  $11\beta$ -hsd1 mRNA levels were higher in  $F_2$  HFD exposed female  $F_2$  offspring compared to HFD exposed male  $F_2$  offspring (D). *Bdnf* mRNA levels were higher in  $F_0$  HFD female  $F_2$  offspring than  $F_0$  CON female  $F_2$  offspring. In addition, *Bdnf* mRNA levels were higher in  $F_0$  HFD male  $F_2$  offspring than  $F_0$  CON female  $F_2$  offspring;  $F_0$  is a constant of the control diet,  $F_0$  is a control diet of  $F_0$  HFD within male  $F_2$  offspring;  $F_0$  is a control diet of  $F_0$  CON male  $F_2$  offspring;  $F_0$  is a control diet of  $F_0$  HFD male  $F_2$  offspring;  $F_0$  is a control diet of  $F_0$  HFD male  $F_2$  offspring;  $F_0$  is a control diet of  $F_0$  HFD male  $F_2$  offspring;  $F_0$  is a control diet of  $F_0$  HFD male  $F_2$  offspring;  $F_0$  is a control diet of  $F_0$  HFD male of  $F_0$  CON female  $F_0$  offspring. CON-CON: control diet of  $F_0$  is a control diet of  $F_0$  in  $F_0$  in F

and the EPM correlates with increased novelty-seeking behaviour and risk-assessment [22]. Differences in anxiety-like behaviour detected in the EPM and LDB may be due to differences in dietary habits which have been connected not only to disruption in energy balance but also to mood and anxiety disorders [41].

In the FST,  $F_2$  HFD exposed offspring displayed depression-like behaviour, independently of  $F_0$  diet and sex. This suggests, that depression-like behaviour in the FST in not being passed on in an intergenerational manner, at least with the HFD used in our study. We did not detect any changes in general locomotor activity in the OFT induced by diet, thus confirming that changes in the immobility in the FST cannot be ascribed to changes in general activity.

Sensorimotor gating, being impaired in many schizophrenic patients and in animal model of psychosis [42,43], can be measured by the PPI. Although we could not detect any difference in the PPI with  $F_0$  HFD, the inheritance of such trait has been demonstrated in a study administering methylazoxymethanol acetate, which induced schizophrenic-like phenotype in adolescent rats and was inherited to the  $F_2$  and the  $F_3$  generation, with a significant correlation of the hippocampal parvalbumin expression and the neuronal activity of dopamine in the  $F_2$  rats [44]. These studies may be valuable to examine the aspects of gene and environment interactions.

Our data demonstrate a heritable aspect on the molecular level as we found that the effect of grandmaternal HFD exposure altered hippocampal genes involved in the HPA axis response in the  $\rm F_2$  offspring, which were clearly sexually dimorphic. As CRH-R2 previously has been shown to correlate to anxiety and depression [45], we measured hippocampal  $\it Crh-r2$  mRNA levels in  $\rm F_2$  offspring. Among the adult male  $\rm F_2$ 

offspring, grandmaternal HFD exposure resulted in increased levels of Crh-r2 mRNA levels, with no difference in female  $F_2$  offspring. Animal studies suggest that Crhr2 mRNA expression and functioning differs in response to stressor early in life, as such that expression is both up and down regulated [46]. In our study, the increased Crh-r2 mRNA level in male  $F_2$  offspring by grandmaternal HFD exposure could attribute to an altered HPA axis function, however, future studies are needed to underpin the inherited trait of the HPA axis.

MR and GR play a role in the neuroendocrine stress axis feedback regulation and difference between GR and MR involves resilience and adaption to stress [47]. We found that the hippocampal Mr mRNA gene expression was higher in female  $F_2$  offspring from grandmothers exposed to CON diet than in female  $F_2$  offspring from grandmothers exposed to HFD, suggesting that adult  $F_2$  diet had a programming effect on latent trait expression of the MR affinity for corticosteroids [48]. This finding suggest that grandmaternal diet exposure could be important to MR function in the HPA axis response to maternal HFD.

In our study, we demonstrated a sex-dependent difference in the neuroendocrine stress axis function of Gr mRNA level in response to grandmaternal diet exposure and adult diet manipulation, providing additional indication of sex-dependent programming in the mechanism of phenotype manifestation initiating at early life development. This finding may be in line with a previous study demonstrating an inherited elevated level of the GR target receptor phosphoenolpyruvate carboxykinase (PEPCK) in the liver in the  $F_2$  generation male offspring, following maternal dexamethasone administration during gestation [49].

Surprisingly, we found that in female  $F_2$  offspring, hippocampal  $11\beta$ -hsd1 mRNA expression was increased with  $F_2$  HFD compared to

male  $F_2$  HFD, independently of grandmaternal diet. In the brain,  $11\beta$ -HSD1 acts as a reductase, and may amplify glucocorticoid action under certain circumstances [50]. Inhibition of  $11\beta$ -HSD1 reversed spatial memory impairments and reduced fear memories [51,52], indicating a potential target for treatment option for certain subgroups suffering from anxiety. Our finding suggests that consumption of a highly palatable food modulates the regulation of hippocampal  $11\beta$ -hsd1 mRNA in female  $F_2$  offspring and could play a role in the observed behaviour.

Interestingly, we found a sex-dependent effect in the BDNF expression with HFD in adulthood leading to upregulation of Bdnf mRNA expression levels in female  $F_2$  offspring. This result may be in line with a previous study that demonstrated that maternal HFD increased BDNF and induced a depression-like phenotype in offspring [53]. Increased HFD has been demonstrated to improve stress and ameliorate anxiety and depression-like phenotype in rats [54,55]. Thus, although conflicting results, this study indicates, that grandmaternal HFD consumption can alter behaviour via altered BDNF, which may play a role in the observed behavioural phenotypes in the EPM in the adult progeny.

As expected, offspring receiving a  $F_2$  HFD had increased body weight, visceral adipose tissue, liver weight, and heart weight, suggesting a dysmetabolic physiological condition. However,  $F_2$  offspring exposed to  $F_2$  HFD had elevated levels of visceral adipose tissue by  $F_0$  CON diet compared to  $F_0$  HFD. We evaluated the dynamics of glucose response by an oral glucose tolerance test. Overall,  $F_2$  HFD increased glucose metabolism in male and female  $F_2$  offspring with effects of  $F_0$  diet at 30 and 60 min. Thus, these data may suggest that  $F_0$  diet exposure may play a role in programming adult physiology of weight gain and metabolic dysfunction in the  $F_2$  generation, inherited through the maternal lineage. An increased HPA axis activity is an important link between early life and adult metabolic syndrome and T2DM [56,57]. Although the mechanism for developmental programming is not fully clear, alterations in the trajectories of neuroendocrine and metabolic pathways during early developmental share common features.

Limitations of the current study include inability to confirm whether the observed phenotypes are germ-line modifications or re-transmission via development in the programmed brain. Future studies should include a thorough understanding of the specific molecular mechanisms by which inherited material is altered by the diet and inherited transgenerationally. In addition, due to total amount of hippocampal tissue, it was not possible to execute protein, DNA methylation analysis and other confirming studies. However, for better understanding the mechanism by which grandmaternal diet could lead to such impairment in anxiety, future studies should include larger sample and include the gene and environment interaction model.

The hippocampus was chosen as it is involved in anxiety and affective disorders, however other regions as for example amygdala or prefrontal cortex could have been investigated as these regions are implicated in anxiety and memory. Moreover, the hippocampus was not divided into ventral and dorsal which could have further reduced variability in the measured outcome. Our finding that developmental programming has effects on female offspring following a grandmaternal nutritional stimulus has important implications, not only for improved understanding of how the brain is influenced by the early life environment, but also how programming effects could persist or be repeated in future generations. Furthermore, the lack of published multigenerational studies on diet induced animal models transgenerational effect on behaviour, will require future work on the third generation to address the mechanisms of inheritance from the maternal lineage.

In summary, our findings demonstrate that female offspring exposed to grandmaternal HFD could be more sensitive than male offspring and when exposed to a  $F_2$  diet, and that grandmaternal diet could trigger changes in MR activity, but not in GR, which might describe the extent of diverse results in the subtypes of anxiety. The finding that grandmaternal environment leads to altered behaviour in females, but not in males is of interest in the increased prevalence of anxiety and

depression in women than men [58].

This suggests the possibility that the mechanism of action of behavioural development may differ between the sexes and that the HPA axis responsivity may be important in male and female development of mental disorders. However, future studies should include larger samples to confirm this to develop early intervention options, such as pharmacological and lifestyle strategies.

#### **Author contributions**

All experiments were conducted by Gudrun Winther. First draft of this manuscript was conducted by Gudrun Winther and all authors assisted in the further interpretation of data, editing and final approval of the manuscript.

#### Disclosure

Gregers Wegener declares having received lecture/consultancy fees from H. Lundbeck A/S, Servier SA, Astra Zeneca AB, Eli Lilly A/S, Sun Pharma Pty Ltd, and Pfizer Inc., Shire A/S, HB Pharma A/S, Arla Foods A.m.b.A., Alkermes Inc, and Mundipharma International Ltd., and research funding from the Danish Medical Research Council, Aarhus University Research Foundation (AU-IDEAS initiative (eMOOD)), the Novo Nordisk Foundation, the Lundbeck Foundation, and EU Horizon 2020 (ExEDE). All other authors report no potential conflicts of interest. All other authors have nothing to disclose.

# **Funding**

This work was supported by Health Research Fund of Central Denmark Region, Graduate School of Health (Aarhus University). The project was supported by grants from Lægevidenskabens Fremme.

#### Acknowledgements

We wish to thank Per Fuglsang, Birgitte Hviid Mumm, Sanne Nordestgaard Andersen, Stine Dhiin and Tessa Rasmussen for their appreciated assistance in the laboratory and the animal facility.

# Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.bbr.2018.10.017.

# References

- D.J. Barker, The origins of the developmental origins theory, J. Intern. Med. 261 (5) (2007) 412–417.
- [2] W.S. Fenton, E.S. Stover, Mood disorders: cardiovascular and diabetes comorbidity, Curr. Opin. Psychiatry 19 (4) (2006) 421–427.
- [3] A. Shinkov, A.M. Borissova, R. Kovatcheva, J. Vlahov, L. Dakovska, I. Atanassova, P. Petkova, Increased prevalence of depression and anxiety among subjects with metabolic syndrome and known type 2 diabetes mellitus - a population-based study, Postgrad. Med. 130 (2) (2018) 251–257.
- [4] E.E. Nilsson, M.K. Skinner, Environmentally induced epigenetic transgenerational inheritance of reproductive disease, Biol. Reprod. 93 (6) (2015) 145.
- [5] M.Y. Hanafi, M.M. Saleh, M.I. Saad, T.M. Abdelkhalek, M.A. Kamel, Transgenerational effects of obesity and malnourishment on diabetes risk in F2 generation, Mol. Cell. Biochem. 412 (1-2) (2016) 269–280.
- [6] M.K. Skinner, Endocrine disruptors in 2015: epigenetic transgenerational inheritance, Nat. Rev. Endocrinol. 12 (2) (2016) 68–70.
- [7] F. Guo, K.L. Jen, High-fat feeding during pregnancy and lactation affects offspring metabolism in rats, Physiol. Behav. 57 (4) (1995) 681–686.
- [8] G.Q. Chang, V. Gaysinskaya, O. Karatayev, S.F. Leibowitz, Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity, J. Neurosci. 28 (46) (2008) 12107–12119.
- [9] R.C. Painter, C. Osmond, P. Gluckman, M. Hanson, D.I. Phillips, T.J. Roseboom, Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life, BJOG 115 (10) (2008) 1243–1249.
- [10] T. Pentinat, M. Ramon-Krauel, J. Cebria, R. Diaz, J.C. Jimenez-Chillaron,

- Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition, Endocrinology 151 (12) (2010) 5617–5623.
- [11] G.A. Dunn, T.L. Bale, Maternal high-fat diet effects on third-generation female body size via the paternal lineage, Endocrinology 152 (6) (2011) 2228–2236.
- [12] D. Peleg-Raibstein, E. Luca, C. Wolfrum, Maternal high-fat diet in mice programs emotional behavior in adulthood, Behav. Brain Res. 233 (2) (2012) 398–404.
- [13] S.D. Bilbo, V. Tsang, Enduring consequences of maternal obesity for brain inflammation and behavior of offspring, FASEB J. 24 (6) (2010) 2104–2115.
- [14] E.L. Sullivan, B. Grayson, D. Takahashi, N. Robertson, A. Maier, C.L. Bethea, M.S. Smith, K. Coleman, K.L. Grove, Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxietylike behavior in nonhuman primate offspring, J. Neurosci. 30 (10) (2010) 3826–3830.
- [15] G. Winther, B. Elfving, H.K. Muller, S. Lund, G. Wegener, Maternal high-fat diet programs offspring emotional behavior in adulthood, Neuroscience 388 (2018) 87–101.
- [16] S.H.W. Penteado, E. Teodorov, T.B. Kirsten, B.P. Eluf, T.M. Reis-Silva, M.K. Acenjo, R.C. de Melo, I.B. Suffredini, M.M. Bernardi, Prenatal lipopolysaccharide disrupts maternal behavior, reduces nest odor preference in pups, and induces anxiety: studies of F1 and F2 generations, Eur. J. Pharmacol. 738 (2014) 342–351.
- [17] G.C. Burdge, J. Slater-Jefferies, C. Torrens, E.S. Phillips, M.A. Hanson, K.A. Lillycrop, Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations, Br. J. Nutr. 97 (3) (2007) 435–439.
- [18] D.C. Benyshek, C.S. Johnston, J.F. Martin, Glucose metabolism is altered in the adequately-nourished grand-offspring (F-3 generation) of rats malnourished during gestation and perinatal life, Diabetologia 49 (5) (2006) 1117–1119.
- [19] S. Maccari, H.J. Krugers, S. Morley-Fletcher, M. Szyf, P.J. Brunton, The Consequences of Early-Life Adversity: Neurobiological, Behavioural and Epigenetic Adaptations, J. Neuroendocrinol. 26 (10) (2014) 707–723.
- [20] N.J. Grundwald, P.J. Brunton, Prenatal stress programs neuroendocrine stress responses and affective behaviors in second generation rats in a sex-dependent manner, Psychoneuroendocrinology 62 (2015) 204–216.
- [21] S. Hogg, A review of the validity and variability of the elevated plus-maze as an animal model of anxiety, Pharmacol. Biochem. Behav. 54 (1) (1996) 21–30.
- [22] R.J. Rodgers, A. Dalvi, Anxiety, defence and the elevated plus-maze, Neurosci. Biobehav. Rev. 21 (6) (1997) 801–810.
- [23] S.L. Handley, S. Mithani, Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of fear-motivated behavior, Naunyn Schmiedebergs Arch. Pharmacol. 327 (1) (1984) 1–5.
- [24] J.N. Crawley, Exploratory-behavior models of anxiety in mice, Neurosci. Biobehav. Rev. 9 (1) (1985) 37–44.
- [25] D. Aulich, Escape versus exploratory activity interpretation of rats behavior in open-field and a light-dark preference test, Behav. Processes 1 (2) (1976) 153–164.
- [26] J. Crawley, F.K. Goodwin, Preliminary-report of a simple animal behavior model for the anxiolytic effects of benzodiazepines, Pharmacol. Biochem. Behav. 13 (2) (1980) 167–170.
- [27] D.A. Slattery, J.F. Cryan, Using the rat forced swim test to assess antidepressant-like activity in rodents, Nat. Protoc. 7 (6) (2012) 1009–1014.
- [28] M.J. Detke, M. Rickels, I. Lucki, Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants, Psychopharmacology (Berl.) 121 (1) (1995) 66–72.
- [29] J.F. Cryan, A. Markou, I. Lucki, Assessing antidepressant activity in rodents: recent developments and future needs, Trends Pharmacol. Sci. 23 (5) (2002) 238–245.
- [30] D. Braff, C. Stone, E. Callaway, M. Geyer, I. Glick, L. Bali, Prestimulus effects on human startle reflex in normals and schizophrenics, Psychophysiology 15 (4) (1978) 339–343.
- [31] N.R. Swerdlow, M. Weber, Y. Qu, G.A. Light, D.L. Braff, Realistic expectations of prepulse inhibition in translational models for schizophrenia research, Psychopharmacology (Berl.) 199 (3) (2008) 331–388.
- [32] D.L. Braff, Prepulse inhibition of the startle reflex: a window on the brain in schizophrenia, Curr. Top. Behav. Neurosci. 4 (2010) 349–371.
- [33] B. Elfving, P.H. Plougmann, G. Wegener, Differential brain, but not serum VEGF levels in a genetic rat model of depression, Neurosci. Lett. 474 (1) (2010) 13–16.
- [34] B.E. Bonefeld, B. Elfving, G. Wegener, Reference genes for normalization: a study of rat brain tissue, Synapse 62 (4) (2008) 302–309.
- [35] G. Keppel, Thomas D. Wickens, Design and Analysis: a Researcher's Handbook, Upper Sadle River, NJ: Prentice Hall Inc., 2004.
- [36] Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: A Practical and

- Powerful Approach to Multiple Testing, J. R. Stat. Soc. Ser. B-Methodol. 57 (1) (1995) 289–300.
- [37] A. Sasaki, W.C. de Vega, S. St-Cyr, P. Pan, P.O. McGowan, Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood, Neuroscience 240 (2013) 1–12.
- [38] A.M. Iturra-Mena, M. Arriagada-Solimano, A. Luttecke-Anders, A. Dagnino-Subiabre, Effects of prenatal stress on anxiety- and depressive-like behaviours are sex-specific in prepubertal rats, J. Neuroendocrinol. 30 (7) (2018) e12609.
- [39] S. Hogg, A review of the validity and variability of the elevated plus-maze as an animal model of anxiety, Pharmacol. Biochem. Behav. 54 (1) (1996) 21–30.
- [40] C. Belzung, G. Le Pape, Comparison of different behavioral test situations used in psychopharmacology for measurement of anxiety, Physiol. Behav. 56 (3) (1994) 623–628
- [41] E.L. Gibson, Emotional influences on food choice: sensory, physiological and psychological pathways, Physiol. Behav. 89 (1) (2006) 53–61.
- [42] D.L. Braff, M.A. Geyer, N.R. Swerdlow, Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies, Psychopharmacology (Berl.) 156 (2-3) (2001) 234–258.
- [43] M.A. Geyer, B. Ellenbroek, Animal behavior models of the mechanisms underlying antipsychotic atypicality, Prog. Neuropsychopharmacol. Biol. Psychiatry 27 (7) (2003) 1071–1079.
- [44] S.M. Perez, D.D. Aguilar, J.L. Neary, M.A. Carless, A. Giuffrida, D.J. Lodge, Schizophrenia-like phenotype inherited by the F2 generation of a gestational disruption model of schizophrenia, Neuropsychopharmacology 41 (2) (2016) 477–486.
- [45] Y. Ishitobi, S. Nakayama, K. Yamaguchi, M. Kanehisa, H. Higuma, Y. Maruyama, T. Ninomiya, S. Okamoto, Y. Tanaka, J. Tsuru, H. Hanada, K. Isogawa, J. Akiyoshi, Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a Japanese population, Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B (4) (2012) 429–436.
- [46] I. Zohar, M. Weinstock, Differential effect of prenatal stress on the expression of corticotrophin-releasing hormone and its receptors in the hypothalamus and amygdala in male and female rats, J. Neuroendocrinol. 23 (4) (2011) 320–328.
- [47] E.R. de Kloet, M. Joels, Brain mineralocorticoid receptor function in control of salt balance and stress-adaptation, Physiol. Behav. 178 (2017) 13–20.
- [48] E.R. de Kloet, M. Joels, F. Holsboer, Stress and the brain: from adaptation to disease, Nat. Rev. Neurosci. 6 (6) (2005) 463–475.
- [49] A.J. Drake, B.R. Walker, J.R. Seckl, Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats, Am. J. Physiol. Regul. Integr. Comp. Physiol. 288 (1) (2005) R34–38.
- [50] J.R. Seckl, B.R. Walker, Minireview: 11beta-hydroxysteroid dehydrogenase type 1a tissue-specific amplifier of glucocorticoid action, Endocrinology 142 (4) (2001) 1371–1376.
- [51] N. Wheelan, S.P. Webster, C.J. Kenyon, S. Caughey, B.R. Walker, M.C. Holmes, J.R. Seckl, J.L. Yau, Short-term inhibition of 11beta-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice, Neuropharmacology 91 (2015) 71–76.
- [52] J.L. Yau, N. Wheelan, J. Noble, B.R. Walker, S.P. Webster, C.J. Kenyon, M. Ludwig, J.R. Seckl, Intrahippocampal glucocorticoids generated by 11beta-HSD1 affect memory in aged mice, Neurobiol. Aging 36 (1) (2015) 334–343.
- [53] S. Sharma, S. Fulton, Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry, Int. J. Obes. (Lond) 37 (3) (2013) 382–389
- [54] J. Maniam, M.J. Morris, Voluntary exercise and palatable high-f.at diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus, Psychoneuroendocrinology 35 (10) (2010) 1553–1564.
- [55] B.C. Finger, T.G. Dinan, J.F. Cryan, High-fat diet selectively protects against the effects of chronic social stress in the mouse, Neuroscience 192 (2011) 351–360.
- [56] M.J. Meaney, J. Diorio, D. Francis, J. Widdowson, P. LaPlante, C. Caldji, S. Sharma, J.R. Seckl, P.M. Plotsky, Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress, Dev. Neurosci. 18 (1-2) (1996) 49–72.
- [57] C.M. Reynolds, S.A. Segovia, M.H. Vickers, Experimental models of maternal obesity and neuroendocrine programming of metabolic disorders in offspring, Front. Endocrinol. (Lausanne) 8 (2017) 245.
- [58] A.J. Baxter, K.M. Scott, A.J. Ferrari, R.E. Norman, T. Vos, H.A. Whiteford, Challenging the myth of an "epidemic" of common mental disorders: trends in the global prevalence of anxiety and depression between 1990 and 2010, Depress. Anxiety 31 (6) (2014) 506–516.