Programming Assignment #3: Local Search Algorithms

Assigned: 15.12.2023 Due: 31.12.2023

1 Objective

With the help of this assignment, you will learn

- how to formulate a given problem as a search problem,
- how to solve it by applying local search algorithms,
- and how to evaluate the performance of search algorithms.

2 Requirements

- You are supposed to perform PAO, PA1, and PA2 before this assignment.
- You <u>must</u> implement your solution in Python and using the SimpleAl package. (Other solutions will not be accepted!)
- Use your solution to PA2 as starter code.
- From the SimpleAI package, you will specifically need models.py and local.py codes (located under simpleai/search directory). You are suggested to read their documentation (https://simpleai.readthedocs.io/en/latest/).

3 Specification

In this assignment, you will add new methods to your PA2 codes, to make the problem solvable by local search algorithms. Then you will call local search algorithms: Hill-climbing search, random restarts hill-climbing search, and genetic search.

3.1 Implementation

3.1.1 Additions to NOueens in PA2

You need to implement the following methods of SearchProblem interface, in addition to the methods that you implemented in PA1 and PA2.

```
def value(self, state):
Returns the value of `state` as it is needed by optimization
problems. Value is a number (integer or floating point).
```

As the value of a state, return the number of non-attacking pairs of queens for that state.

```
def generate_random_state(self):
Generates a random state
```

You must have already implemented this method in the previous assignments.

def crossover(self, state1, state2):

Crossover method for genetic search. It should return a new state that is the 'mix' (somehow) of `state1` and `state2`.

In this method, select a random crossover point and return a new state string that is the mixture of state1 and state2.

def mutate(self, state):

Mutation method for genetic search. It should return a new state that is a slight random variation of `state`.

In this method, select a random index from the state string and randomly modify it.

3.1.2 Testing

Add necessary function calls to print the results of hill-climbing, hill-climbing random restarts and genetic search algorithms, in addition to traditional search algorithms.

3.2 Report

You will also write a report including the below sections. Don't forget to write your name, surname, and student ID in the report.

A – Development Environment

Briefly describe your development environment (Python version, OS, IDE, CPU properties, etc.).

B – Results

Run your implementation with different parameters and inputs (N, restarts_limit for hill climbing random restarts algorithm, population_size for genetic algorithm, etc.). Put your output results in this section.

C - Discussion

Discuss the results of different search algorithms in terms of *completeness*, *optimality*, and *time and space complexity* by referring to your results in Part B and our lectures. Compare local search algorithms to traditional search algorithms. Don't give purely theoretical information in this section, write your own observations and comments.

4 Submission

- The assignment can be done individually or in teams of a maximum of 3. (Teams can be a mixture of normal and evening education students.)
- You are free to use any Python development environment that supports Interactive Python Notebook (.ipynb). Some alternatives: Jupyter Notebook, JupyterLab, VS Code, ...
- You will submit your report in pdf format and source files (only the code you implemented, not the simpleai library codes).
- Place all your files in a zip archive with the name **Al_PA3_Surname1_Surname2_Surname3.zip and** submit using the Teams assignment module. Single submission for each team is sufficient.

• If you have further questions, you can send me an e-mail or send a message via MS Teams.

4.1 Late Submission Policy

The deadline for homework submissions is **23:59** at the specified date. For each additional day, a **25% cut-off** will be applied.

5 Academic Honesty Policy

You cannot borrow others' ideas or portions of codes, without giving a proper citation. This can be an Internet source, AI chatbot, or your friend. Clearly indicate which part of your code/report/idea is borrowed and state its source. Of course, you cannot get all or most of your work from others. Otherwise, you will be penalized.

Dr. Zeynep ÇİPİLOĞLU YILDIZ