You must show your work to get full credit.

1. Some of the values of a function f(x) are given by the following table.

x	0	10	20	30	40
f(x)	5	6	8	11	15

(a) Fill in the following table for the estimates of the derivative.

x	5	15	25	35			
f'(x)	. 1	.2	-3	.4			
$\frac{6-5}{10-3} = -1 \frac{8-6}{20-10} = \frac{11-8}{70-20} = \frac{15-11}{40-30} = -4$							

(b) Is the second derivative positive, negative, or does in change sign? Write a sentence or two to explain you answer. The first devive time, Pix), is increasing, so

2. Compute the following derivatives. Here a and b are constants.

(a)
$$y = 3x^4 - 2x^3 - 9$$

$$\frac{dy}{dx} = 12\chi^3 - 6\chi^2$$

(b)
$$A(r) = 3r + \frac{4}{r^2} = 3r + 4r^2$$

 $A'(r) = 3 - 8r^3$

$$A'(r) = \frac{3 - 8r^{-3}}{-3 - \frac{8}{73}}$$

(c)
$$w = a\sqrt{z} + \pi z^2 = \alpha z^2 + \pi z^2$$

 $dw = \frac{1}{2}\alpha z^2 + 2\pi z^2$

$$\frac{dw}{dz} = \frac{1}{2} \alpha Z^{\frac{1}{2}} + 2\pi Z$$

(d)
$$f(t) = a^2 + t(t+1) = a^2 + t^2 + t$$

 $(a^2)' = 0$ as a 15
 $(a^2)' = 0$ (and fact)

$$f'(t) = 2 + 1$$

(e) If
$$f(x) = \frac{1}{x^2}$$
 what is $f'(2)$ $f'(2) = \frac{1}{x^2} = \frac{1}{x^2}$ what is $f'(2) = \frac{1}{x^2} = \frac{1}{x^2}$

3. Find the section derivative of
$$f(x) = x^2 + \frac{1}{x}$$
. $f''(x) = \frac{2+2x^3}{2+2x^3}$ $f''(x) = \frac{2+2x^3}{2+2x^3}$

$$f''(x) = \frac{2 + 2 x^3}{2 + 2 x^3}$$