Pierre-Antoine Graham

Homework 2: Monopoles

Ruth Gregory Gravitational Physics

Contents

1	Dirac	2
2	Taub-NUT, or the gravitomagnetic monopole	3

1 Dirac

(a) We are interested in the relation between the global properties of a manifold *M* and the structure of diffrential forms taking values on its cotangent bundle *T***M* at each point of *M*.

Poincaré's lemma on $M = \mathbb{R}$: Let ω be a p-form ($p \in \{0, 1\}$) constructed from the cotengent space T^*M of M. Then $d\omega = 0$ (ω is closed) implies $\omega = d\lambda$ (ω is closed) where λ is a (p-1)-form (0-form).

Proof: On \mathbb{R} , we can use the identity map as a global coordinate chart. The induced basis on 1-forms is $\{dx\}$ (a smooth frame field) and any 1-forms can be written as $\omega = gdx$ with $g \in C^{\infty}(\mathbb{R})$. Suppose now that ω is closed: we have $0 = d\omega = \partial_x gdx \wedge dx = 0$, $\forall g \in C^{\infty}(\mathbb{R})$ (ω being a 1-form is not restrictive, but would be for \mathbb{R}^n with n > 1). Then we take the 0-form $\lambda = G$ where G is any primitive of g (G(x) exists because g is smooth) and apply an exterior derivative to get $d\lambda = gdx$. Because there are no (0-1)-forms there is no need to check the lemma for 0-forms.

Counterexample: Consider the circle smooth manifold $\mathbb{S}^1 \subset \mathbb{R}^2$ (embeded as $\{x^2 + y^2 = 1 | (x,y) \in \mathbb{R}^2\}$ for simplicity). It takes at least two charts to cover this manifold and, although on individual charts all closed 1-forms are exact (charts make the manifold look like \mathbb{R} locally), this property is lost globally. Choose the chart map $\theta = \arctan_2$ sending points (x,y) on the circle to their angle with the x axis excluding the point (1,0) so that the domain is open. With this chart we have the coordinate induced one form frame field $d\theta$ which we use to construct the closed form $\omega = d\theta$. On $(0,2\pi)$, this form is exact since we have a 0-form $\lambda = F \in C^{\infty}((0,2\pi))$ such that $\omega = d\lambda = \partial_{\theta}Fd\theta = d\theta$ forcing $F = \theta + c$, $c \in \mathbb{R}$ since F has to be a primitive of 1 in the variable θ . The function F is smooth on the chart, but can never be extended to s smooth function over \mathbb{S}^1 globally. Indeed, 0 and 2π being identified, a continuous function on \mathbb{S}^1 should be consistant at the excluded point (0,1) and this would requiere $\lim_{\theta \to 0+} (\theta + c) = \lim_{\theta \to 2\pi^-} (\theta + c)$ which is impossible. Therefore there is a closed form on \mathbb{S}^1 that is not exact.

- (b) Let $F^{(2)}$ be a 2-form on the 2-sphere \mathbb{S}^2 . Suppose $F^{(2)}$ is globally exact implying there is a 1-form ω such that $F^{(2)} = \mathrm{d}\omega$. Then we can use Stokes theorem in combination with the fact \mathbb{S}^2 has no boundary to write $g = \frac{1}{4\pi} \int_{\mathbb{S}^2} F^{(2)} = \frac{1}{4\pi} \int_{\partial \mathbb{S}^2} \mathrm{d}\omega = 0$.
- (c) Now working in Minkowski space $\{\eta, \mathbb{R}^{1,3}\}$ with mostly + signature in the coordinate chart (t,r,θ,ϕ) (this order for the variables provides the notion of positive orientation of a basis) built from spherical coordinates on \mathbb{R}^3 , we have the 2-form $F^{(4)} = Q \sin(\theta) \, d\theta \wedge d\phi$ with $Q \in \mathbb{R}$. We want to determine if $F^{(4)}$ satisfies Maxwell's equations $dF^{(4)} = 0$, $d \star F^{(4)} = 0$. We have $dF^{(4)} = Q \cos(\theta) \, d\theta \wedge d\theta \wedge d\phi = 0$. To evaluate the Hodge dual of $F^{(4)}$, we first calculate

$$\begin{split} \star \, \mathrm{d}\theta \wedge \mathrm{d}\phi &= \sqrt{|r^4 \sin^2 \theta|} \, \frac{1}{2!} \, \frac{1}{2!} \epsilon^{\theta \phi}{}_{rt} \mathrm{d}r \wedge \mathrm{d}t + \frac{1}{2!} \, \frac{1}{2!} \epsilon^{\theta \phi}{}_{tr} \mathrm{d}t \wedge \mathrm{d}r - \frac{1}{2!} \, \frac{1}{2!} \epsilon^{\phi \theta}{}_{rt} \mathrm{d}r \wedge \mathrm{d}t - \frac{1}{2!} \, \frac{1}{2!} \epsilon^{\phi \theta}{}_{tr} \mathrm{d}t \wedge \mathrm{d}r \\ &= r^2 |\sin \theta| \eta^{\theta \theta} \, \eta^{\phi \phi} \left(\frac{1}{2!} \, \frac{1}{2!} \epsilon_{\theta \phi rt} \mathrm{d}r \wedge \mathrm{d}t + \frac{1}{2!} \, \frac{1}{2!} \epsilon_{\theta \phi tr} \mathrm{d}t \wedge \mathrm{d}r - \frac{1}{2!} \, \frac{1}{2!} \epsilon_{\phi \theta rt} \mathrm{d}r \wedge \mathrm{d}t - \frac{1}{2!} \, \frac{1}{2!} \epsilon_{\phi \theta tr} \mathrm{d}t \wedge \mathrm{d}r \right) \\ &= r^2 |\sin \theta| \frac{1}{r^4 \sin^2 \theta} \, \frac{1}{2!} \, \frac{1}{2!} \left((-1) \, \mathrm{d}r \wedge \mathrm{d}t + (+1) \, \mathrm{d}t \wedge \mathrm{d}r - (+1) \, \mathrm{d}r \wedge \mathrm{d}t - (-1) \, \mathrm{d}t \wedge \mathrm{d}r \right) = \mathrm{d}t \wedge \mathrm{d}r \end{split}$$

and it follows that $d \star F^{(4)} = d(Q/r^2 (dt \wedge dr)) = -Q/r^3 (dr \wedge dt \wedge dr) = 0$ where the absolute value was ignored because $\theta \in (0, 2\pi)$ making $\sin(\theta) > 0$.

(d) We can convert the form $F^{(4)}$ to cartesian coordinates with the relations

$$\phi = \arctan_2(y, x), \quad \theta = \arctan_2\left(z, \sqrt{x^2 + y^2}\right) \implies d\phi = \frac{-y dx + x dy}{x^2 + y^2}, \quad d\theta = \frac{\sqrt{x^2 + y^2} dz - (x dx + y dy) \frac{z}{\sqrt{x^2 + y^2}}}{r^2}$$

leading to

$$\begin{split} F^{(4)} &= Q \sin(\theta) \ \mathrm{d}\theta \wedge \mathrm{d}\phi = Q \frac{\sqrt{x^2 + y^2}}{r} \left(\frac{\sqrt{x^2 + y^2} \mathrm{d}z - (x \mathrm{d}x + y \mathrm{d}y) \frac{z}{\sqrt{x^2 + y^2}}}{r^2} \right) \wedge \left(\frac{-y \mathrm{d}x + x \mathrm{d}y}{x^2 + y^2} \right) \\ &= Q \frac{1}{r^3} \left(\mathrm{d}z \wedge (-y \mathrm{d}x + x \mathrm{d}y) - (x^2 \mathrm{d}x \wedge \mathrm{d}y - y^2 \mathrm{d}y \wedge \mathrm{d}x) \frac{z}{x^2 + y^2} \right) = Q \frac{1}{r^3} \ \left(-y \mathrm{d}z \wedge \mathrm{d}x - x \mathrm{d}y \wedge \mathrm{d}z - z \mathrm{d}x \wedge \mathrm{d}y \right). \end{split}$$

We note the electric field components (associated to $dx^i \wedge dt$) all vanish and we only have a magnetic field (associated to $dx^i \wedge dx^j$). The magnetic field has the same from has an electric monopole (inverse square law multiplies by a unit "vector").

(e) Since the monopole field is static, we drop the time direction by mapping $F^{(4)}$ to the two-form $F^{(3)}$ in the cotangent bundle over \mathbb{R}^3 on a fixed time slice. Going further we can map $F^{(3)}$ on the cotangent bundle over \mathbb{S}^2 (embedded in \mathbb{R}^3 as a sphere of radius 1) to get the two-form $F^{(2)}$. To characterize the two-form $F^{(2)}$, we evaluate the integral given in (b) as

$$g = \frac{Q}{4\pi} \int_{\mathbb{S}^2} \sin(\theta) \, d\theta \wedge d\phi = \frac{Q}{4\pi} \int_{\mathbb{S}^2} \sin(\theta) \, d\theta(e_\theta) \wedge d\phi(e_\phi) = Q$$

with e_{ϕ} , e_{θ} the dual vector basis to $\mathrm{d}\phi$, $\mathrm{d}\theta$. More formally, this integration on $V \subset \mathbb{S}^2$ is brought to an integral in $U \subset \mathbb{R}^2$ on the pullback of $F^{(2)}$ by a diffeomorphism mapping U to V. A convenient choice of diffeomorphism is the coordinate chart already used to write $F^{(2)}$. Under this diffeomorphism, $\mathrm{d}\theta$ and $\mathrm{d}\phi$ are mapped to the exterior derivatives of the coordinate fucntions θ , ϕ over U (the exterior derivative of the projection map on each axis which are aslo named $\mathrm{d}\theta$ and $\mathrm{d}\phi$). This allows us to use regular borns of integration where θ and ϕ range from 0 to π and 0 to 2π respectively and use the coordinate representation of the two-form components. Since **exact** \Longrightarrow **vanishing of** g as shown in (b), we have **non vanishing of** g \Longrightarrow **not exact** and $F^{(2)}$ is not exact.

One could say that $g = \frac{1}{4\pi} \int_{\mathbb{S}^2 = \partial \text{Ball}} F^{(2)} = \frac{1}{4\pi} \int_{\text{Ball}} dF^{(2)} = 0$ forming a contradiction with $F^{(2)}$ not being exact. The solution to this problem can be seen with result (c) where $F^{(2)}$ is shown to be ill-defined at the origin. Therfore we need to puncture \mathbb{R}^3 by removing the origin from the domain of definition of $F^{(3)}$ creating a second boundary restoring the result $0 = \frac{1}{4\pi} \int_{\partial \text{Ball+puncture}} F^{(2)}$. Normally the set added to the boundary would be of zero measure, but comparing with the usual treatement of electric monopoles, we get that a dirac delta at the puncture point will change the value of g from 0 to Q.

(f) Stereographic projections provide maps from $U_+ = \mathbb{S}^2$ – North pole (projecting from the north pole) and $U_- = \mathbb{S}^2$ – South pole (projecting to the south pole) to all of \mathbb{R}^2 . Expressed in the cartesian coordinates of the embeding space of \mathbb{S}^2 in \mathbb{R}^3 , the associated coordinate maps φ_+ are

$$\varphi_{\pm}:(x,y,z)\mapsto (u_{\pm},v_{\pm})=\left(\frac{x}{1\mp z},\frac{y}{1\mp z}\right).$$

This form can be obtained by looking at a cut of the sphere in a zw-plane containing the z axis. In this plane, we look for the intersection u_\pm, v_\pm of a line passing trough the relevant pole and the point x, y, z with the xy-plane. In the section plane, the line is given by points of coordinates w_l, z_l such that $z_l = 1 - \frac{1+z}{w} w_l$ (North pole) or $z_l = -1 + \frac{1-z}{w} w_l$ (South pole). The intersection with the xy-plane is given by $u_\pm = \frac{w}{1+z} \frac{x}{w}$ and $v_\pm = \frac{w}{1+z} \frac{y}{w}$ (w coordinate projected on the x and y axis respectively).

To express $F^{(2)}$ in these new coordinates, we notice that $x = u_{\pm}(1 \mp z)$ and $y = v_{\pm}(1 \mp z)$. Since our sphere has radius 1, we have

$$u_{\pm}^2 + v_{\pm}^2 = (1 - z^2)/(1 \mp z)^2 = (1 \pm z)/(1 \mp z) \implies u_{\pm}^2 + v_{\pm}^2 \mp z(u_{\pm}^2 + v_{\pm}^2) = 1 \pm z \implies z = \pm \frac{1 - u_{\pm}^2 - v_{\pm}^2}{1 + u_{\pm}^2 + v_{\pm}^2}$$

leading to $dx = (1 \mp z)du_{\pm} \mp u_{\pm}dz$, $dy = (1 \mp z)dv_{\pm} \mp v_{\pm}dz$ and $dz = Adu_{\pm} + Bdv_{\pm}$ where

$$A = -\pm \frac{2u_{\pm}(1 + u_{\pm}^2 + v_{\pm}^2)}{(1 + u_{\pm}^2 + v_{\pm}^2)^2} - \pm \frac{2u_{\pm}(1 - u_{\pm}^2 - v_{\pm}^2)}{(1 + u_{\pm}^2 + v_{\pm}^2)^2} = \mp \frac{4u_{\pm}}{(1 + u_{\pm}^2 + v_{\pm}^2)^2}, \quad B = \mp \frac{4v_{\pm}}{(1 + u_{\pm}^2 + v_{\pm}^2)^2}.$$

We can also relate the two-form frame fields in cartesian coordinates to the $du \wedge dv$ frame field as (omitting \pm on u, v symbols from now on)

$$dx \wedge dy = ((1 \mp z)du \mp udz) \wedge ((1 \mp z)dv \mp vdz)$$

$$= (1 \mp z)^{2}du \wedge dv \mp (1 \mp z)(Bv + Au)du \wedge dv$$

$$= (1 \mp z)^{2}du \wedge dv + 4(1 \mp z)\frac{v^{2} + u^{2}}{(1 + u^{2} + v^{2})^{2}}du \wedge dv$$

$$dy \wedge dz = (1 \mp z)Adv \wedge du = \pm (1 \mp z)\frac{4u}{(1 + u^{2} + v^{2})^{2}}du \wedge dv$$

$$dz \wedge dx = (1 \mp z)Bdv \wedge du = \pm (1 \mp z)\frac{4v}{(1 + u^{2} + v^{2})^{2}}du \wedge dv$$

With these expressions we are ready to express $F^{(3)}$ in the du and dv frame field (we omit the \pm on u, v in what follows) as

$$\begin{split} F^{(3)} &= Q \frac{1}{r^3} \left(-y \mathrm{d}z \wedge \mathrm{d}x - x \mathrm{d}y \wedge \mathrm{d}z - z \mathrm{d}x \wedge \mathrm{d}y \right) \\ &= -Q \left(z (1 \mp z)^2 + 4z (1 \mp z) \frac{v^2 + u^2}{(1 + u^2 + v^2)^2} \pm (1 \mp z)^2 \frac{4u^2 + 4v^2}{(1 + u^2 + v^2)^2} \right) \\ &= -Q \left(z (1 \mp z)^2 + 4(1 \pm z) (1 \mp z) \frac{v^2 + u^2}{(1 + u^2 + v^2)^2} \right) \\ &= -Q (1 \mp z)^2 \left(\pm \frac{1 - (u^2 + v^2)^2}{(1 + u^2 + v^2)^2} + 4 \frac{(u^2 + v^2)^2}{(1 + u^2 + v^2)^2} \right). \end{split}$$

- (g)
- (h)
- (i)

2 Taub-NUT, or the gravitomagnetic monopole

- (a)
- (b)
- (c)
- (d)