#### Web and HTTP

Manas Ranjan Lenka School of Computer Engineering, KIIT University

#### Web

- Web pages are viewed by a program called a browser
  - E.g. Internet Explorer, Google Chrome, Mozilla Firefox
- Web page consists of base HTML file which includes several referenced objects
  - Object can be other HTML files, JPEG images, Java applets, audio files,.....
  - Text/Image that links to another page is called a hyperlink (often highlighted by some means)
- Each object is addressable by a URL (Uniform Resource Locator)
  - E.g. http://www.iitb.ac.in/images/header/iitb\_logo.gif

# Hyper Text Transfer Protocol (HTTP)

- Based on client-server model
  - Client (browser) requests web objects
  - Server responds with status code and requested object (if present)
- Operates over TCP, server port 80
- Two Versions:
  - HTTP 1.0 (RFC 1945)
  - HTTP 1.1: (RFC 2068)
- Stateless protocol: no user information stored across requests

#### **HTTP Non-persistent Connection**

- Used by HTTP/1.0
- At most one object is sent over a TCP connection
- Rather inefficient in terms of operating system overhead (especially at server) and response time
  - Response Time: Time when a request was made and the object fully received
  - Takes 2RTT +TX-time per object

## Example

- Download a html webpage with 5 embedded objects
- What is the overall response time to display the webpage fully?
  - Assume object fits within one packet
  - Assume objects requests are made sequentially
    - Total Time is 2RTT + 5\*2RTT = 12 RTT
- What if the object requests are made parallely?
  - Total time is ~ 2RTT + 2RTT = 4RTT

#### **HTTP Persistent Connections**

- Used by HTTP 1.1
- Server connection left open for subsequent requests
  - Helps reduce TCP related overhead (buffers, state etc) at server
- Two modes of operation:
- Non-pipelined: new request sent only after previous request completes
  - Example: html page with 5 embed object
    - Total time: 2RTT+ 5RTT = 7RTT
- Pipelined: Multiple requests can be sent at once; default mode of operation
  - Minimum total time: 2RTT+RTT = 3RTT

# **HTTP Message Format**

Two types of messages: Request and Response

**Entity Body** 

Request Message:

Method URL Version lf sp sp cr Header field name: Value sp cr Header field name: Value lf sp Header field name: Value sp

Request Line

GET /~chebrolu/ HTTP/1.1

Host: www.cse.iitb.ac.in

User-agent: Mozilla/5.0

Connection: close Header Lines

Accept-language: fr

(blank line)

## Methods

| Method  | Description                                                                                                               |  |
|---------|---------------------------------------------------------------------------------------------------------------------------|--|
| GET     | Request for a web object                                                                                                  |  |
| HEAD    | Request for header fields (no body); Useful for debugging, get time of last modification                                  |  |
| PUT     | Upload an object to a specified path on a web server; body of request contains the object; used with web publishing tools |  |
| POST    | Similar to PUT, except that object contained in body is "appended"; often used when user fills forms;                     |  |
| DELETE  | Remove the object                                                                                                         |  |
| TRACE   | Asks server to echo incoming request; Useful for debugging                                                                |  |
| CONNECT | Used to facilitate secure connection when using Proxy servers                                                             |  |
| OPTIONS | Query server about its properties or that of an object                                                                    |  |
| PATCH   | Similar to PUT except permits partial modification to an object instead of a full replacement                             |  |

## Response Message Format



# Sample Status Code and Phrases

| Status<br>Code | Phrase                     | Description                                  |
|----------------|----------------------------|----------------------------------------------|
| 200            | OK                         | Request successful, information enclosed     |
| 301            | Moved Permanently          | Object moved; new url under Location:        |
| 400            | Bad Request                | Request could not be understood              |
| 404            | Not Found                  | Requested object not found on server         |
| 503            | Service Unavailable        | Server is currently unavailable (overloaded) |
| 505            | HTTP Version not supported | Server does not support the HTTP version     |

## Web Caches (Proxy Server)

- Browsers access web via a cache (proxy server)
  - Can specify proxy address and port as part of browser's network settings
- If HTTP object request in cache, proxy returns the object (origin server not involved)
- Else, Proxy contacts original server, obtains object and returns it to client



#### Proxy Server

- Proxy server installed by ISP
  - Universities, Companies, local ISPs
- Proxy acts as server to clients and as client to external servers
- Internet dense with caches

## Advantages

- Reduces response time of client request
- Saves bandwidth (prevents downloading of same content multiple times)
- Helps block undesired sites etc
- Enables "poor" content providers to effectively deliver content

## Example

- Assumptions:
- Average objectsize is 100Kbits
- Request rate inside organization is 20 requests/sec



- Approximately, what is the average response time?
  - Order of minutes (governed by queuing delay; considering TCP handshake time)

## High Bandwidth Link

- Assumptions:
- Average objectsize is 100Kbits
- Request rate inside organization is 20 requests/sec



- Approximately, what is the average response time?
  - Around 1 sec but can be a costly upgrade

#### **Proxy Server**

- Assumptions:
- Average objectsize is 100Kbits
- Request rateInside organizationIs 20 requests/sec
- Hit rate of 0.4
- Approximately, what is the average response time?
  - Roughly 1 sec [60% requests take ~ 1 sec, while 40% take a few ms ]



#### Stale Cache

- Problem with Proxy Server
  - How to verify if object in cache is up to date?
- HTTP 1.1 provides means to do this via cachecontrol headers
  - max-age=[seconds] : indicates freshness of the object
  - public : content is cacheable
  - private : content is not cacheable at proxy (can be cached at browser)
  - no-cache : need validation before releasing content
  - no-store : do not cache under any condition
  - E.g. Cache-Control: max-age=3600, public

#### Cookies

- HTTP is a stateless protocol, but servers like to maintain state specific to a user
  - E.g. shopping cart info; user's preference settings; browsing activity;
- Solution: Cookies
  - Server sends 'small amount of data (cookie)' to store at client
  - Every time client contacts the server (same domain), browser sends cookie (of the domain) to server

# Cookies: Keeping "state"



#### Cookie Structure

Browsers need to support at least 4KB cookie size

- Name of cookie
- Value of cookie
- Expiry of cookie
- Path the cookie is good for
- Domain of the cookie
- Type of connection needed

#### Demo

Preferences → Privacy → History section → use custom setting for history → show Cookies