Soobota:28/10/2023 13:09

Vzorové riešenie 3. zadania

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť **110001** Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Úlohy:

- 1) V pamäť ovej časti použite minimálny počet preklápacích obvodov **JK-PO**.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnot'te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Soobota:28/10/2023 13:09

Riešenie

Zadaná postupnosť: 110001

Prechodová tabuľka pre automat typu Moore

stav	Nový	stav	Y	Čo je splnené?
	X=0	X=1		
S0	S 0	S 1	0	Nič
S 1	S0	S2	0	"1"
S 2	S 3	S2	0	"11"
S3	S4	S 1	0	"110"
S4	S5	S 1	0	"1100"
S5	S0	S 6	0	"11000"
S 6	S 0	S2	1	"110001"

Zostrojíme prechodový graf stavového automat typu Moore:

Kódovanie stavov

			z 3		
		z 2			
		<u> </u>			
_	S0	S2	S3	S1	
z 1	S4	S6	X	S5	

Stav	$z_1z_2z_3$
S0	000
S1	001
S2	010
S3	011
S4	100
S5	101
S6	110

Soobota:28/10/2023 13:09

Prechodová tabuľka pre automat Moore po dosadení zakódovaných stavov

Stav	Nový	stav	Y	Čo je splnené?	
Siav	X=0	X=1	1	co je spinene:	
000	000	001	0	Nič	
001	000	010	0	,,1"	
010	011	010	0	,,11"	
011	100	001	0	,,110"	
100	101	001	0	,,1100"	
101	000	110	0	,,11000"	
110	000	010	1	,,110001"	

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			z3	
		z2		_
	000	011	100	000
z 1	101	000	XXX	000
	001	010	XXX	110
X	001	010	001	010
		D1,D2,D3		
			_	
			z3	
		z2		_
_	0	0	1	0
z 1	1	0	X	0
	0	0	X	1
X	0	0	0	0
		D1		
			z3	
		z2		_
_	0	1	0	0
z 1	0	0	X	0
	0	1	X	1
X	0	1	0	1
		D2		

Soobota:28/10/2023 13:09

			z 3	
		z2		_
_	0	1	0	0
z 1	1	0	X	0
	1	0	X	0
X	1	0	1	0
		<i>D</i> 3		
			z3	
		z2		_
	0	0	0	0
z 1	0	0	X	0
	0	1	X	0
X	0	0	0	0
		Y = z1.X.z	2	

Budiace funkcie pre JK preklápacie obvody (JK-PO)

z->Z	J	K
0->0	0	X
0->1	1	X
1-> <u>0</u>	X	1
1-> <u>1</u>	X	0

Soobota:28/10/2023 13:09

			z3	
		z2		
	0	X	X	0
z1	0	X	X	0
	0	X X	X	1
X	0	X	X	1
-		J2 = X.Z3		
			z3	
		z 2		_
	X	0	1	X
z 1	X X X	1	X	X
	X	0	X	X
X	X	0	1	X
	$\nu_2 = \bar{v}$	$\bar{Z}2.Z3 + \bar{X}.Z1$	$72 \perp Y 73$	
	$\Lambda Z - \Lambda$	$.LL.LJ + \Lambda.LJ$	N.L.5	
	KZ - X	. L L . L S T A . L J	z3	
	KZ - X	z2		
	KZ = X			X
z1		<u>z2</u>	z3	X X
		z2 1 0 0	X	X
z1 X	0 1 1 1	z2 1 0 0 0	X	X X X
	0 1 1 1	z2 1 0 0	X	X
	0 1 1 1	z2 1 0 0 0	X	X
	0 1 1 1	z2 1 0 0 0	$ \begin{array}{c c} z3 \\ X \\ X \\ X \\ \hline Z2 + X. \overline{Z2} \end{array} $	X
	$ \begin{array}{c c} 0 \\ 1 \\ 1 \\ 1 \end{array} $ $ J3 = \lambda $	$ \begin{array}{c c} z2 \\ \hline 1 \\ 0 \\ \hline 0 \\ \hline 0. \\ \hline Z. \overline{Z1}. Z2 + Z1. \\ \end{array} $	$ \begin{array}{c c} z3 \\ X \\ X \\ X \\ \hline Z2 + X. \overline{Z2} \end{array} $	X
	$ \begin{array}{c c} 0 \\ 1 \\ 1 \\ 1 \end{array} $ $ J3 = \lambda $	$ \begin{array}{c c} z2 \\ \hline 1 \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline Z. \overline{Z1}. Z2 + Z1. \end{array} $ $ \begin{array}{c c} z2 \\ \hline X \\ X \end{array} $	$ \begin{array}{c c} z3 \\ X \\ X \\ X \\ \hline Z2 + X.\overline{Z2} \\ z3 \end{array} $	X X X
X	$ \begin{array}{c c} 0 \\ 1 \\ 1 \\ 1 \end{array} $ $ J3 = \lambda $ $ \begin{array}{c} X \\ X \\ X \end{array} $	$ \begin{array}{c c} z2 \\ \hline 0 \\ 0 \\ \hline 0 \\ \hline Z. \overline{Z1}. Z2 + Z1. \\ \hline x2 \\ \hline X \\ X \\ X \end{array} $	$ \begin{array}{c c} z3 \\ X \\ X \\ X \\ \hline Z2 + X. \overline{Z2} \\ z3 \\ \hline 1 \\ X \\ X \end{array} $	X X X
X	$ \begin{array}{c c} 0 \\ 1 \\ 1 \\ 1 \end{array} $ $ J3 = X $ $ \begin{array}{c} X \\ X \\ X \\ X \end{array} $	$ \begin{array}{c c} z2 \\ \hline 1 \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline Z. \overline{Z1}. Z2 + Z1. \end{array} $ $ \begin{array}{c c} z2 \\ \hline X \\ X \end{array} $	$ \begin{array}{c c} z3 \\ X \\ X \\ X \\ \hline Z2 + X. \overline{Z2} \\ z3 \\ \hline 1 \\ X \\ X \\ 0 \end{array} $	X X X

Espresso

Obsah vstupného súboru pre ESPRESSO:

#110001 skupinova minimalizacia

.i 4

.o 6

.ilb x z1 z2 z3

.ob j1 k1 j2 k2 j3 k3

.type fr

```
Tomáš Meravý Murárik, ID: 127232
Soobota:28/10/2023 13:09
```

```
.p 16
0000 0-0-0-
0010 0--01-
0011 1--1-1
0001 0-0-1
0100 -00-1-
0110 -1-10-
0111 -----
0101 -10-1
1100 -10-1-
1110 -1-00-
1111 -----
1101 -01—1
1000 0-0-1-
1010 0--00-
1011 0--1-0
1001 0-1-1
```

.e

Výstup programu ESPRESSO:

#110001 skupinova minimalizacia

Prepis na NAND s využitím Shefferovej operácie:

```
J1 = ((X \uparrow) \uparrow Z2 \uparrow Z3) \uparrow ((X \uparrow) \uparrow Z2 \uparrow Z3)
K1 = (X \uparrow (Z3 \uparrow)) \uparrow ((X \uparrow) \uparrow Z1 \uparrow Z2) \uparrow ((X \uparrow) \uparrow Z3)
J2 = (X \uparrow Z3) \uparrow (X \uparrow Z3)
K2 = ((X \uparrow) \uparrow Z2 \uparrow Z3 \uparrow) \uparrow ((X \uparrow) \uparrow Z1 \uparrow Z2) \uparrow (X \uparrow Z3)
J3 = ((X \uparrow) \uparrow (Z1 \uparrow) \uparrow Z2) \uparrow (Z1 \uparrow (Z2 \uparrow)) \uparrow (X \uparrow (Z2 \uparrow))
K3 = (X \uparrow (Z2 \uparrow)) \uparrow ((X \uparrow) \uparrow Z3)
```

Počet logických členov obvodu: 18 členov NAND a 3 preklápacie obvody JK Vyjadrenie k počtu vstupov do logických členov obvodu: 56 (44 v kombinačnej časti a 12 v pamäť ovej časti)

Tomáš Meravý Murárik, ID: 127232 Soobota:28/10/2023 13:09

Zhodnotenie:

Cieľom tejto úlohy bolo navrhnúť sekvenčný obvod s vstupom X a výstupom Y, schopný rozpoznať postupnosť 110001 v sekvencii núl a jednotiek a zmeniť stav výstupu Y z nuly na jednotku. Celý proces som riešil využitím automatu typu Moore, na ktorom som postavil prechodovú tabuľku a prechodový graf. Stavy som zakódoval binárne a tieto hodnoty som následne využil pri tvorbe Karnaughových máp pre D-preklopné obvody.

Na základe týchto máp som zostavil budiace funkcie pre JK-preklopné obvody a využil som skupinovú minimalizáciu. Následne som tieto funkcie upravil pomocou Shefferovej operácie, čím som získal funkcie využívajúce NAND brány. Tieto funkcie som následne použil na zostavenie obvodu v simulátore LogiSim, pričom som vychádzal zo základnej schémy dostupnej v zadání.

Výsledný obvod korektne reaguje na zadanú postupnosť 110001. Celkový počet logických členov v obvode bol 18 NAND brán a počet vstupov do týchto logických členov činil 56 (s 44 v kombinačnej časti a 12 v pamäťovej časti). Toto zhodnotenie zhrnuje môj postup riešenia úlohy a úspešnú implementáciu sekvenčného obvodu.