Generating cryptographicallystrong random lattice bases

...and...

recognizing rotations of \mathbb{Z}^n

https://eprint.iacr.org/2021/154.pdf

Tamar Lichter Blanks and Stephen D. Miller

Rutgers University

- **O**Background
- OGenerating random matrices in $GL(n, \mathbb{Z})$
- OExperiments testing generation methods
- OApplications to the DRS NIST submission

- **O**Background
- OGenerating random matrices in $GL(n, \mathbb{Z})$
- OExperiments testing generation methods
- OApplications to the DRS NIST submission

Overview

- O Hard lattice problems are widely popular for post-quantum crypto
- Need average-case hard distributions for these problems.
 - \circ Can we efficiently recognize rotations of the \mathbb{Z}^n lattice?
- We compare methods to sample random bases (keys)
 - \bigcirc \cong elements of $GL(n, \mathbb{Z})$
- We find existing weaknesses in:
 - O multiplying elementary matrices ("unipotents")
 - O DRS NIST submission method
- Suggest other, stronger methods

Lattices, bases, and integer matrices

- O Lattice $\Lambda \subset \mathbb{R}^n$: the *integral* linear combinations of some basis $\mathcal{B} = \{b_1, ..., b_n\}$

 - O Discrete set of points which can be added, subtracted.
- O In example here, can take $b_1 = u_1$ and $b_2 = u_2$.
- O However, the basis <u>not</u> unique: $\{v_1, v_2\}$ is also a basis
- O Here $v_1 = -5u_1 + 2u_2$ and $v_2 = -2u_1 + 1u_2$
- O The coefficients form an integral matrix $\begin{pmatrix} -5 & 2 \\ -2 & 1 \end{pmatrix}$ whose inverse must also be integral (since can write u_1 , u_2 in terms of v_1 , v_2).
- O <u>Upshot</u>: different basis correspond to matrices in $GL(n, \mathbb{Z}) = \{\text{all integral matrices whose inverse is invertible}\}$ $= \{\text{integral matrices with determinant } \pm 1\}$

The basis $\{u_1, u_2\}$ is easier to work with than $\{v_1, v_2\}$.

Crypto: needs way to convert from easy to hard

but what if no hard bases exist?

Recognizing rotations of \mathbb{Z}^n

- O Not even known whether rotations of the standard integral lattice \mathbb{Z}^n have hard bases!
- Lenstra-Silverberg problem:
 - O Let B be the $n \times n$ matrix whose rows are the basis vectors $\{b_1, ..., b_n\}$
 - \bigcirc For example, spans \mathbb{Z}^n if and only if $B \in GL(n, \mathbb{Z})$.
 - O Define *Gram matrix* $G = BB^t$

Problem 2a (Decision version).

Given a positive-definite integral matrix G, efficiently determine whether or not there is some $M \in GL(n, \mathbb{Z})$ such that $G = MM^t$.

Problem 2b (Search version).

If so, efficiently find such a matrix $M \in GL(n, \mathbb{Z})$.

Problem 3 (Average case version of Problem 2b).

Given a random matrix $M \in GL(n, \mathbb{Z})$ drawn with respect to the probability density p, efficiently recover M from MM^t (up to signed permutations of the columns) with high probability.

- O Note: B = MR and R orthogonal if and only if $BB^t = MM^t$.
 - O Thus problem asks whether lattice spanned by $\{b_1, ..., b_n\}$ is a rotation of the integer lattice.

- **O**Background
- OGenerating random matrices in $GL(n, \mathbb{Z})$
- OExperiments testing generation methods
- OApplications to the DRS NIST submission

Generating random matrices: brute force

Algorithm 1.

For each $1 \leq i, j \leq n$ sample $m_{i,j} \in \mathbb{Z} \cap [-T, T]$ at random. Let $M = (m_{ij})$.

Discard and repeat if $det(M) \neq \pm 1$, otherwise

return M.

- \circ Pros: definitely samples $GL(n, \mathbb{Z})$ uniformly
- o Cons: very *unlikely* that $det(M) = \pm 1 \dots so$ *very* inefficient.
- Only useful for small n (used as a subroutine in later algorithms)

Generating random matrices: RandomSLnZ

Algorithm 2 (Random products of unipotents, such as Magma's RandomSLNZ).

Input: a size bound b and word length ℓ .

Return: a random product $\gamma_1 \cdots \gamma_\ell$, where each γ_k is chosen i.i.d. uniformly among all $n \times n$ matrices of the form $I_n + xE_{i,j}$, with $i \neq j$ and $x \in \mathbb{Z} \cap [-b, b]$.

- \circ Here x = -1, 0, or 1
- o Pros: Easy to implement, provably exhausts $SL(n, \mathbb{Z})$
- o Cons: As we shall see, produces biased output
 - o consequently, easy to break
 - \circ Requires large word length ℓ

Generating random matrices: smaller groups

Algorithm 3 (Random products of smaller matrices).

Input: a word length ℓ and fixed dimension $2 \le d < n$ for which one can uniformly a sample $GL(d,\mathbb{Z})$ matrices in a fixed box.

Return: a random product $\gamma_1 \cdots \gamma_\ell$ in which each $\gamma_j \in GL(n, \mathbb{Z})$ is a matrix of the form $\Phi_{k_1, \dots, k_d}(\gamma^{(d)})$, where $\gamma^{(d)}$ is a uniformly sampled random element of $GL(d, \mathbb{Z})$ in the fixed box mentioned above, and $\{k_1, \dots, k_d\}$ is a uniformly sampled random subset of $\{1, \dots, n\}$ containing d elements.

$$\begin{pmatrix} -1 & 0 & -2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -5 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ -3 & 0 & 5 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 & 3 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -5 & 0 & -4 & -1 & 0 \\ 3 & 0 & 4 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 3 & -1 \\ 0 & 1 & 0 & 0 & 0 \\ -2 & 0 & 0 & 4 & -5 \\ 1 & 0 & 0 & 0 & 2 \end{pmatrix}$$

$$= \begin{vmatrix} -2 & 0 & 5 & 22 & -11 \\ 0 & 1 & 0 & 0 & 0 \\ 11 & 0 & -15 & -80 & 47 \\ 4 & 0 & 4 & 1 & 7 \\ 17 & 0 & -29 & -143 & 79 \end{vmatrix}$$

- \circ Pros: samples more uniformly than previous as d grows.
- \circ Cons: similar to previous Algorithm 2 when d=2
 - Brute force step makes large *d* prohibitive
- Interpolates between Algorithms 1 and 2

^a More generally, one can consider non-uniform distributions as well.

Generating random matrices: random bottom

Algorithm 4 (slight modification of a suggestion of Joseph Silverman).

Uniformly sample random integers $m_{i,j} \in [-T,T]$, for $2 \le i \le n$ and $1 \le j \le n$, until the *n* determinants in (2.4) share no common factor.

Use the euclidean algorithm to find integers m_{11}, \ldots, m_{1n} such that $det((m_{ij})) = \pm 1$, the sign chosen uniformly at random.

Use least-squares to find the linear combination $\sum_{i\geq 2}^n c_i[m_{i1}\cdots m_{in}]$ closest to $[m_{11}\cdots m_{1n}]$, and let $\widetilde{c_i}$ denote an integer nearest to c_i .

Return: the matrix M whose top row is

$$[m_{11}\cdots m_{1n}] - \sum_{i\geq 2}^n \widetilde{c_i}[m_{i1}\cdots m_{in}]$$

and whose *i*-th row (for $i \geq 2$) is $[m_{i1} \cdots m_{in}]$.

- 1. Fills out the bottom n-1 rows at random
- 2. It's very likely there exists a top row making the whole matrix in $GL(n, \mathbb{Z})$
- Find such a row, reduce it to make it smaller

Generating random matrices: well-known HNF

Algorithm 5 (via Hermite Normal Form).

Create a uniformly distributed $m \times n$ matrix B, with $m \geq n$ and entries uniformly chosen in $\mathbb{Z} \cap [-T, T]$.

Decompose B in a Hermite normal form B = UM, where $M \in GL(n, \mathbb{Z})$ and $U = (u_{ij})$ has no nonzero entries with i < j.

Return: M.

- This is folklore, commonly used
- Surprising fact: in practice, very often produces the same output as Algorithm 4!
- Pros: good randomness properties
- Cons: Algorithm 4 seems to slightly outperform it

- **O**Background
- OGenerating random matrices in $GL(n, \mathbb{Z})$
- OExperiments testing generation methods
- OApplications to the DRS NIST submission

Experiments: How we evaluated the algorithms

- O Given a matrix *B* generated by an algorithm
- O attempt to solve Problem 2b by these steps:
 - 1. LLL on Gram matrix $G = BB^t$ (Magma's L2 implementation)
 - 2. BKZ with block sizes 3, 4, and 5 (seems not to matter much)
 - 3. Success declared if all output basis vectors have norm 1 (since we have a rotation of \mathbb{Z}^n lattice)

Experiments: Magma's RandomSLnZ

Algorithm 2 (Random products of unipotents, such as Magma's RandomSLNZ).

Input: a size bound b and word length ℓ .

Return: a random product $\gamma_1 \cdots \gamma_\ell$, where each γ_k is chosen i.i.d. uniformly among all $n \times n$ matrices of the form $I_n + xE_{i,j}$, with $i \neq j$ and $x \in \mathbb{Z} \cap [-b,b]$.

$n = \dim(\Lambda)$	entry size	ℓ
886	$[2^{25}, 2^{32}]$	55,000
1486	$[2^{14}, 2^{20}]$	55,000

- O This shows weakness in high dimensions
- O Special structure of matrices are likely to blame.

Experiments: Algorithm 3

Algorithm 3 (Random products of smaller matrices).

Input: a word length ℓ and fixed dimension $2 \le d < n$ for which one can uniformly a sample $GL(d, \mathbb{Z})$ matrices in a fixed box.

Return: a random product $\gamma_1 \cdots \gamma_\ell$ in which each $\gamma_j \in GL(n, \mathbb{Z})$ is a matrix of the form $\Phi_{k_1,\dots,k_d}(\gamma^{(d)})$, where $\gamma^{(d)}$ is a uniformly sampled random element of $GL(d, \mathbb{Z})$ in the fixed box mentioned above, and $\{k_1, \dots, k_d\}$ is a uniformly sampled random subset of $\{1, \dots, n\}$ containing d elements.

	_					
n	d	T	$ \ell $	shortest row	longest row	found M ?
				length (in bits)	length (in bits)	
200	2	1	4000	6.03607	12.7988	×
200	2	2	1500	1.29248	18.5329	✓
200	2	2	2000	7.86583	22.2151	×
200	2	3	1000	0.5	27.0875	×
200	2	3	2000	23.521	41.5678	×
200	2	10	500	2.04373	38.7179	✓
200	2	10	700	7.943	49.0346	×
200	3	1	1000	2.04373	11.3283	√
200	3	1	1500	7.66619	17.1312	×
200	3	1	2000	13.0661	20.8768	×
200	3	2	500	3.27729	18.4087	✓
200	3	2	600	4.89232	24.111	×
200	3	2	1000	13.0585	34.0625	×
200	4	1	500	3.66096	12.2277	√
200	4	2	300	0.5	24.2424	✓
200	4	2	400	1.79248	26.6452	×

key: n=lattice dimension, d=size of smaller embedded matrices, T=bound on embedded matrix entries, ℓ =length of the product of smaller matrices.

- \circ Generally one observes failure for large enough ℓ
- \circ Tricky to compare between different d
- Seems to not fully depend on entry size.

 $^{^{}a}$ More generally, one can consider non-uniform distributions as well.

Experiments: Algorithm 3

Algorithm 3 (Random products of smaller matrices).

Input: a word length ℓ and fixed dimension $2 \le d < n$ for which one can uniformly a sample $GL(d, \mathbb{Z})$ matrices in a fixed box.

Return: a random product $\gamma_1 \cdots \gamma_\ell$ in which each $\gamma_j \in GL(n, \mathbb{Z})$ is a matrix of the form $\Phi_{k_1,\ldots,k_d}(\gamma^{(d)})$, where $\gamma^{(d)}$ is a uniformly sampled random element of $GL(d, \mathbb{Z})$ in the fixed box mentioned above, and $\{k_1, \ldots, k_d\}$ is a uniformly sampled random subset of $\{1, \ldots, n\}$ containing d elements.

n	d	T	ℓ	shortest row	longest row	found M ?
				length (in bits)	length (in bits)	
500	2	1	4000	0.	5.90085	√
500	2	1	8000	3.41009	10.7467	✓
500	2	1	10000	7.08508	12.7447	✓
500	2	1	15000	12.6617	18.5326	✓
500	2	1	20000	18.0246	24.5732	×
500	2	2	4000	4.21731	18.587	√
500	2	2	6000	12.3467	28.7882	×
500	2	2	8000	18.87	35.7267	×
500	2	2	10000	28.5508	45.8028	×
500	2	3	2000	0.	19.0752	✓
500	2	3	3000	7.38752	32.9895	✓
500	2	3	4000	16.9325	40.9656	×
500	2	10	1000	0.	30.3755	√
500	2	10	2000	11.9964	61.5006	×

key: n=lattice dimension, d=size of smaller embedded matrices, T=bound on embedded matrix entries, ℓ =length of the product of smaller matrices.

n	d	T	ℓ	shortest row	longest row	found M ?
				length (in bits)	length (in bits)	
500	3	1	1000	0.	5.39761	√
500	3	1	2000	1.29248	9.164	√
500	3	1	3000	2.37744	13.9903	√
500	3	1	4000	8.43829	17.4593	✓
500	3	1	5000	14.1789	21.528	✓
500	3	1	6000	18.3878	25.2578	×
500	3	1	7000	20.5646	29.287	\parallel ×
500	3	2	1000	0.	15.551	√
500	3	2	2000	3.24593	33.0945	√
500	3	2	3000	23.5966	43.7986	×
500	3	3	1000	0.	28.1575	√
500	3	3	2000	16.6455	53.1806	×
500	3	3	3000	41.3371	83.9486	×
500	4	1	1000	0.	9.85319	√
500	4	1	2000	8.11356	18.9434	√
500	4	1	3000	19.1019	26.9836	√
500	4	1	4000	24.4869	35.6328	×
500	4	1	5000	26.6804	44.3982	×
500	4	1	6000	40.5944	53.3654	×
500	4	2	1000	6.29272	33.4373	√
500	4	2	2000	33.6181	63.3469	×

^a More generally, one can consider non-uniform distributions as well.

Experiments: Algorithm 3

Algorithm 3 (Random products of smaller matrices).

Input: a word length ℓ and fixed dimension $2 \le d < n$ for which one can uniformly a sample $GL(d, \mathbb{Z})$ matrices in a fixed box.

Return: a random product $\gamma_1 \cdots \gamma_\ell$ in which each $\gamma_j \in GL(n, \mathbb{Z})$ is a matrix of the form $\Phi_{k_1,\ldots,k_d}(\gamma^{(d)})$, where $\gamma^{(d)}$ is a uniformly sampled random element of $GL(d, \mathbb{Z})$ in the fixed box mentioned above, and $\{k_1, \ldots, k_d\}$ is a uniformly sampled random subset of $\{1, \ldots, n\}$ containing d elements.

n	d	T	· ·	shortest row	longest row	found M?
"	-	1			length (in bits)	
886	2	1	3000	/	3.49434	
886				l ő	3.80735	
886				0	4.40207	\ \ \
886	2	1	6000	0	5.30459	✓
886	2	1	7000	0	6.16923	✓
886	2	1	8000	0	6.90754	✓
886	2	1	9000	1	7.58371	✓
886	2	1	10000	2.37744	8.05954	✓
886	2	1	15000	5.46942	11.2176	✓
886	2	1	20000	8.6594	14.5837	✓
886	2	1	25000	10.884	18.035	✓
886	2	1	30000	15.0082	21.0333	✓
886	2	1	35000	17.6964	24.8408	✓
886	2	1	40000	20.7706	28.3888	✓
886	2	1	45000	24.484	30.6745	✓
886	2	1	50000	25.7401	34.0742	×

key: n=lattice dimension, d=size of smaller embedded matrices, T=bound on embedded matrix entries, ℓ =length of the product of smaller matrices.

- O Here d = 2, so similar to RandomSLnZ
- Works very well in high dimensions
- Like RandomSLnZ, fails for long-enough products

^a More generally, one can consider non-uniform distributions as well.

Experiments: Algorithm 4 (Silverman/HNF)

n	T	shortest row		found M ?
		length (in bits)	length (in bits)	
100	1	2.91645	4.65757	✓
100	3	4.14501	5.81034	✓
100	4	4.50141	6.20496	✓
100	10	5.64183	7.15018	✓
100	50	7.99332	9.77546	✓
100	1	2.91645	4.65757	✓
110	1	2.98864	4.54902	×
120	1	3.03304	4.77441	×
125	1	3.09491	4.93979	×
150	1	3.12396	5.09738	×
200	1	3.42899	5.32597	×
200	2	4.23584	6.42421	×
200	3	4.72766	6.82899	×
200	4	5.06529	7.41803	×

- Much stronger than others (never found M when $n \ge 110$).
- We recommend using Algorithm 4
- Use of smaller matrices (with products) in Algorithms 2 and 3 seems to be a weakness.

key: n=lattice dimension, T=bound on matrix entries in bottom n-1 rows.

- **O**Background
- OGenerating random matrices in $GL(n, \mathbb{Z})$
- OExperiments testing generation methods
- OApplications to the DRS NIST submission

Where to look for weaknesses?

- O Experiments indicate product structure is a weakness
- O The DRS NIST PQC proposal includes a random lattice basis construction
 - O Creates a matrix in $GL(n, \mathbb{Z})$ as a product (next slide)
 - O We studied this matrix construction (not the cryptosystem itself)

DRS details

Rough parameters:

Bit security	n
128	912
192	1160
256	1518

Product has *banded* structure (non-random)

- O Define a 2x2 matrix $A_{\pm} = \begin{pmatrix} 1 & \pm 1 \\ \pm 1 & 2 \end{pmatrix}$
- Sample γ_i uniformly among random block diagonal matrices $diag(A_{\pm}, A_{\pm}, ..., A_{\pm})$ (with n/2 independent choices of signs)
- \circ Sample P_i uniformly among random permutation matrices
- O DRS matrix has form $M = P_1 \gamma_1 P_2 \gamma_2 P_3 \cdots P_R \gamma_R P_{R+1}$ (R = 24) where each P_i and γ_i are constructed independently as above.

Experiments: DRS NIST-PQC submission

Outcomes

- Completely recovered M in dimensions 1160 and 1518 (192- and 256-bit settings)
- \circ Nearly recovered M in dimension 912
 - Can with 47 or fewer factors ($R \le 23$)
- This is only for the matrix generation
 - o and only on the "recognizing \mathbb{Z}^n " problem

Conclusions

- O Not all basis generation methods are equal
- \circ For the "recognizing \mathbb{Z}^n " problem, we find serious weaknesses with random unipotents
 - O Magma's RandomSLnZ
- O Also find problems when small matrices (e.g., 2x2) are used repeatedly
 - O Basis generation method in DRS
- O Methods which fill out whole matrix at once appear much stronger
 - Silverman's bottom-up method
 - O Hermite Normal Form
 - (These 2 are fairly equivalent)