Link Analysis: PageRank

Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC)

(Heavily based on slides from Jure Leskovec and Lada Adamic @ Stanford University)

Web as a Graph

Structure of the Web

- On this lecture we will talk about how does the Web graph look like:
 - 1) We will take a real system: the Web
 - 2) We will represent it as a **directed graph**
 - 3) We will use the language of graph theory - Strongly Connected Components
 - 4) We will design a computational experiment:
 - Find In-and Out-components of a given node *v*
 - 5) We will learn something about the structure of the Web: **BOWTIE!**

Out(v)

The Web as a Graph

Q: what does the Web "look like" at a global level?

- Web as a graph:
 - Nodes = web pages
 - Edges = hyperlinks

- Side issue: what is a node?
 - Dynamic pages created on the fly
 - "dark matter" inaccessible database generated pages

The Web as a Graph: Example

I'm giving a class on Network Science

Classes are on FC6 building

Computer
Science
Department
at FCUP

University of Porto

The Web as a Graph: Example

- In early days of the Web links were navigational
- Today many links are transactional (used not to navigate from page to page, but to post, comment, like, buy, ...)

The Web as a Directed Graph

Other Information Networks

Citations

Wikipedia

What does the Web look like?

- How is the Web linked?
- What is the "map" of the Web?

Web as a directed graph [Broder et al. 2000]:

- Given node **v**, what nodes can **v** reach?
- What other nodes can reach **v**?

$$In(v) = \{w \mid w \ can \ reach \ v\}$$

 $Out(v) = \{w \mid v \ can \ reach \ w\}$

For example: $In(A) = \{A,B,C,E,G\}$ $Out(A)=\{A,B,C,D,F\}$

Reasoning About Directed Graphs

Two types of directed graphs:

Strongly connected:

 Any node can reach any node via a directed path In(A)=Out(A)={A,B,C,D,E}

- Directed Acyclic Graph (DAG):
 - Has no cycles: if u can reach v, then v cannot reach u

- Any directed graph (the Web) can be expressed in terms of these two types!
 - Is the Web a big strongly connected graph or a DAG?

Strongly Connected Component

- A Strongly Connected Component (SCC) is a set of nodes S so that:
 - Every pair of nodes in **S** can reach each other
 - There is no larger set containing S with this property

Strongly connected components of the graph: {A,B,C,G}, {D}, {E}, {F}

Strongly Connected Component

- Fact: Every directed graph is a DAG on its SCCs
 - 1)SCCs partition the nodes of **G**
 - That is, each node is in exactly one SCC
 - 2)If we build a graph **G'** whose nodes are SCCs, and with an edge between nodes of **G'** if there is an edge between corresponding SCCs in **G**, then **G'** is a DAG

Structure of the Web

- Broder et al.: Altavista web crawl (Oct '99)
 - Web crawl is based on a large set of starting points accumulated over time from various sources, including voluntary submissions.
 - 203 million URLS and 1.5 billion links

Goal: Take a large snapshot of the Web and try to understand how its SCCs "fit together" as a DAG

Tomkins, Broder, and Kumar

Graph Structure of the Web

Computational issue:

Want to find a SCC containing node v?

Observation:

- Out(v) ... nodes that can be reached from v (w/BFS)
- SCC containing \mathbf{v} is: $Out(v) \cap In(v) = Out(v,G) \cap Out(v,G')$, where G' is G with all edge directions flipped

$Out(v) \cap In(v) = SCC$

Example:

- $Out(A) = \{A, B, D, E, F, G, H\}$
- $In(A) = \{A, B, C, D, E\}$
- So, $SCC(A) = Out(A) \cap In(A) = \{A, B, D, E\}$

Graph Structure of the Web

- There is a single giant SCC
 - That is, there won't be two SCCs
- Why only 1 big SCC? Heuristic argument:
 - Assume two equally big SCCs.
 - It just takes 1 page from one SCC to link to the other SCC.
 - If the two SCCs have millions of pages the likelihood of this not happening is very very small.

Structure of the Web

- Directed version of the Web graph:
 - Altavista crawl from October 1999
 - 203 million URLs, 1.5 billion links

Computation:

- Compute In(v) and Out(v) by starting at random nodes.
- Observation: The BFS either visits many nodes or very few

x-axis: rank

y-axis: number of reached nodes

Structure of the Web

- Result: Based on IN and OUT of a random node v:
 - *Out(v)* ≈ 100 million (**50**% nodes)
 - *In(v)* ≈ 100 million (**50%** nodes)
 - Largest SCC: 56 million (28% nodes)

x-axis: rank y-axis: number of reached nodes

 What does this tell us about the conceptual picture of the Web Graph?

Bowtie Structure of the Web

203 million pages, 1.5 billion links [Broder et al. 2000]

How to Organize the Web? Link Analysis

How to Organize the Web?

How to organize the Web?

First try: Human curated
 Web directories

Yahoo, Sapo

- Second try: Web Search
 - Information Retrieval: attempts to find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, spam, etc.
 - So we need a good way to rank webpages!

Web Search: Challenges

- 2 challenges of web search
- 1) Web contains many sources of information Who to "trust"?
 - Insight: Trustworthy pages may point to each other!

- 2) What is the "best" answer to query "newspaper"
 - No single right answer
- Insight: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- Web pages are not equally "important"
 - www.joe-nobody.com vs www.up.pt

 We already know: There is a large diversity in the web graph node connectivity

 So, let's rank the pages using the web graph link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis
 approaches to computing the importance of
 nodes in a graph:
 - Hubs and Authorities (HITS)
 - PageRank
 - Topic-Specific (**Personalized**) **PageRank**
 - Sidenote: Various notions of node centrality: Node $oldsymbol{u}$
 - lacktriangle Degree centrality = degree of u
 - Betweenness centrality = #shortest paths passing through u
 - \blacksquare Closeness centrality = avg. length of shortest paths from u to all other nodes of the network
 - Eigenvector centrality = like PageRank

Hubs and Authorities (HITS)

Link Analysis

- Goal(back to the newspaper example):
 - Don't just find newspapers. Find "experts" pages that link in a coordinated way to good newspapers
- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Hubs and Authorities
 Each page has 2 scores:
 - Quality as an expert (hub):
 - Total sum of votes of pages pointed to
 - Quality as an content (authority):
 - Total sum of votes of experts
 - Principle of repeated improvement

Interesting pages fall into two classes:

- 1) Authorities are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers
- 2) Hubs are pages that link to authorities
 - List of newspapers
 - Course bulletin
 - List of auto manufacturers

Counting in-links: Authority

(Note this is idealized example. In reality graph is not bipartite and each page has both a hub and the authority score)

Expert Quality: Hub

(Note this is idealized example. In reality graph is not bipartite and each page has both a hub and authority score)

Reweighting

(Note this is idealized example. In reality graph is not bipartite and each page has both a hub and authority score)

Mutually Recursive Definition

- A good hub links to many good authorities
- A good authority is linked from many good hubs
 - Note a self-reinforcing recursive definition

- Model using two scores for each node:
 - Hub score and Authority score
 - Represented as vectors h and a, where the i-th element is the hub/authority score of the i-th node

Each page i has 2 scores:

- Authority score: a_i
- Hub score: h_i

Convergence criteria:

$$\sum_{i} \left(h_i^{(t)} - h_i^{(t+1)} \right)^2 < \varepsilon$$

$$\sum_{i} \left(a_i^{(t)} - a_i^{(t+1)} \right)^2 < \varepsilon$$

HITS algorithm:

□ Initialize:
$$a_j^{(0)} = 1/\sqrt{n}$$
, $h_j^{(0)} = 1/\sqrt{n}$

■Then keep iterating until convergence:

$$\blacksquare \forall i$$
: Authority: $a_i^{(t+1)} = \sum_{j \to i} h_j^{(t)}$

$$\blacksquare \forall i$$
: Hub: $h_i^{(t+1)} = \sum_{i \to j} a_i^{(t)}$

$$\sum_{i} \left(a_i^{(t+1)} \right)^2 = 1, \sum_{j} \left(h_j^{(t+1)} \right)^2 = 1$$

☐ Hits in the vector notation:

- lacksquare Vector $a=(a_1\ldots,a_n),\quad h=(h_1\ldots,h_n)$
- lacktriangle Adjacency matrix $A(n \times n)$: $A_{ij} = 1$ if $i \rightarrow j$
- lacksquare Can rewrite $h_i = \sum_{i o j} a_j$ as $h_i = \sum_j A_{ij} \cdot a_j$

■ Repeat until convergence:

- $\square h^{(t+1)} = A \cdot a^{(t)}$
- $\square a^{(t+1)} = A^T \cdot h^{(t)}$
- Normalize $a^{(t+1)}$ and $h^{(t+1)}$

 \blacksquare What is $a = A^T \cdot h$?

$$a = A^T(A \ a) = (A^T A) \ a$$

 $\square h$ is updated (in 2 steps)

$$h = A(A^T h) = (AA^T) h$$

 \blacksquare Thus, in 2k steps:

$$a = (A^T \cdot A)^k \cdot a$$

$$h = (A \cdot A^T)^k \cdot h$$

Repeated matrix powering

- <u>Definition</u>: Eigenvectors & Eigenvalues
- Let $R \cdot x = \lambda \cdot x$ for some scalar λ , vector x, matrix R
 - □ Then x is an eigenvector, and λ is its eigenvalue
- The <u>steady state</u> (HITS has converged):

Note constants c',c" don't matter as we normalize them out every step of HITS

So, authority a is eigenvector of A^TA (associated with the largest eigenvalue) Similarly: hub h is eigenvector of AA^T

PageRank (a.k.a., the Google Algorithm)

Links as Votes

Still the same idea: Links as votes

- Page is more important if it has more links
 - In-coming links? Out-going links?

Think of in-links as votes:

- www.up.pt has 42,000 in-links
- www.joe-nobody.com has 1 in-link

Are all in-links equal?

- Links from important pages count more
- Recursive question!

PageRank: the "Flow" Model

- A "vote" from an important page is worth more:
 - Each link's vote is proportional to the importance of its source page
 - If page i with importance r_i has d_i out-links, each link gets r_i / d_i votes
 - Page j's own importance r_j is the sum of the votes on its inlinks

PageRank: the "Flow" Model

- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for node j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page j have d_i out-links
 - If $j \rightarrow i$, then $M_{ij} = \frac{1}{d_i}$
 - M is a column stochastic matrix
 - Columns sum to 1

- Rank vector r: An entry per page
 - \mathbf{r}_i is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t+1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- **p**(t) ... vector whose ith coordinate is the prob. that the surfer is at page i at time t
- So, p(t) is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time t+1?
 - Follows a link uniformly at random $p(t+1) = M \cdot p(t)$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

PageRank

How to Solve?

PageRank: How to Solve?

Given a web graph with *n* nodes, where the nodes are pages and edges are hyperlinks

- Assign each node an initial page rank
- Repeat until convergence $(\Sigma_i | r_i^{(t+1)} r_i^{(t)} | < \varepsilon)$
 - Calculate the page rank of each node

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

 d_i out-degree of node i

PageRank: How to Solve?

Power Iteration:

- Set $r_j \leftarrow 1/N$
- 1: $r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$
- 2: $r \leftarrow r'$
- If $|r-r'|>\varepsilon$: goto **1**

Example:

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: How to Solve?

Power Iteration:

- Set $r_j \leftarrow 1/N$
- 1: $r'_j \leftarrow \sum_{i \to j} \frac{r_i}{d_i}$
- 2: $r \leftarrow r'$
- If $|r-r'|>\varepsilon$: goto **1**

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Example:

Iteration 0, 1, 2, ...

PageRank: 3 Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$
 or equivalently $r = Mr$

- Does this converge?
- Does it converge to what we want?
- Are the results reasonable?

PageRank: Problems

Two problems:

- (1) Some pages are dead ends (have no out-links)
 - Such pages cause importance to "leak out"

- (2) Spider traps
 (all out-links are within the group)
 - Eventually spider traps absorb all importance

Does it converge to what we want?

The "Spider trap" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Does it converge to what we want?

The "Dead end" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Solution to Spider Traps

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1-** β , jump to a random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Solution to Dead Ends

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Final PageRank Equation

- Google's solution: At each step, random surfer has two options:
 - With probability $oldsymbol{eta}_{r}$, follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, '98]

$$r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + (1 - \beta) \frac{1}{n}$$
of node i

The above formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* (bad!) or explicitly follow random teleport links with probability 1.0 from dead-ends. See P. Berkhin, *A Survey on PageRank Computing*, Internet Mathematics, 2005.

The PageRank Algorithm

- Input: Graph G and parameter β
 - Directed graph G with spider traps and dead ends
 - Parameter β
- Output: PageRank vector r
 - Set: $r_j^{(0)} = \frac{1}{N}$, t = 1
 - do:
 - $\forall j$: $\mathbf{r'}_{j}^{(t)} = \sum_{i \to j} \boldsymbol{\beta} \, \frac{r_{i}^{(t-1)}}{d_{i}}$ $\mathbf{r'}_{j}^{(t)} = \mathbf{0} \text{ if in-deg. of } \boldsymbol{j} \text{ is } \mathbf{0}$
 - Now re-insert the leaked PageRank:

$$\forall j: r_j^{(t)} = r_j^{(t)} + \frac{1-S}{N}$$
 where: $S = \sum_j r_j^{(t)}$

- t = t + 1
- while $\sum_{j} \left| r_j^{(t)} r_j^{(t-1)} \right| > \varepsilon$

Example

Node size proportional to the PageRank score

NetLogo: PageRank

PageRank.nlogo

Random Walk Restarts and Personalized PageRank

Example Application: Graph Search

- Given: Conferences-to-authors graph
- Goal:

Proximity on graphs

• Q: What is most related conference to ICDM?

Random Walk with Restarts

Personalized PageRank

- Goal: Evaluate pages not just by popularity but by how close they are to the topic
- Teleporting can go to:
 - Any page with equal probability
 - PageRank (we used this so far)
 - A topic-specific set of "relevant" pages
 - Topic-specific (personalized) PageRank (S ...teleport set)

$$M'_{ij} = \beta M_{ij} + (1 - \beta)/|S|$$
 if $i \in S$
= βM_{ij} otherwise

- A single page/node (|S| = 1),
 - Random Walk with Restarts

PageRank: Applications

Graphs and web search:

- Ranks nodes by "importance"
- Personalized PageRank:
 - Ranks proximity of nodes to the teleport set S
- Proximity on graphs:
 - Q: What is most related conference to ICDM?
 - Random Walks with Restarts
 - Teleport back to the starting node:
 S = { single node }

Random Walk with Restarts

	Node 4
Node 1	0.13
Node 2	0.10
Node 3	0.13
Node 4	/
Node 5	0.13
Node 6	0.05
Node 7	0.05
Node 8	0.08
Node 9	0.04
Node 10	0.03
Node 11	0.04
Node 12	0.02

 $S={4}$

Notice: Nearby nodes have higher scores (are more red)

Ranking vector

Most Related Conferences to ICDM

Personalized PageRank

Graph of CS conferences

Q: Which conferences are closest to KDD & ICDM?

A: Personalized PageRank with teleport set *S*={KDD, ICDM}