Indices and Se	ts
n	Index of transportation network nodes in set, N
l	Index of transportation network edges in set, L
k/m	Index of EVs in set, K
p	Index of picking nodes in set, P
d	Index of delivery nodes in set, D
и	Index of passengers in set, U
c	Index of charging nodes in set, C
st	Index of starting nodes of EVs in set, ST
en	Index of ending nodes of EVs in set, EN
br	Index of bridge for different cars in set, BR
i	Index of the iteration counter, I
$\pi_l^{U,N}/\pi_l^{D,N}$	Set of upstream/downstream nodes of edge l
$\pi_n^{U,L}/\pi_n^{D,L}$	Set of upstream/downstream edges of node <i>n</i>
$\pi_c^{D,L}$	Set of downstream edges <i>of</i> charging node <i>c</i>
π_u^D/π_u^P	Set of pickup/delivery nodes of passenger u
π_k^{ST}/π_k^{EN}	Set of starting/ending nodes of EV k
π_k^{BR}	Set of bridges of EV k
$\pi_{br}^{U,K}/\pi_{br}^{D,K}$	Set of upstream/downstream EVs of bridge br
Variables	
$t_{n,k}^C$	Charging time of EV k at node n (min)
$t_{n,k}^{W}$	Waiting time of EV k at node n (min)
$t_{n,k}$	Arriving time of EV k at node n (min)
$SoC_{n,k}$	State-of-Charge (%) of EV <i>k</i> at node <i>n</i>
$t_{l,k}^T$	The traveling time of edge l for EV k (min)
$x_{l,k}$	Binary variable of route selection indicator of edge <i>l</i> for EV <i>k</i> ; 1 means taken, 0
	means otherwise
$f_{u,k}$	Flag binary variable of passenger u pickup and delivery indicator by EV k , 1
$f_{u,d,k}^1$	means the passenger is served, 0 means otherwise Linearization variable of passenger u delivery time for EV k
$f_{u,p,k}^2$	Linearization variable of passenger u pickup time for EV k
	Linearization variable of time relationship between EVs k and m at charging
$\overline{R_{c,k,m}}$	station c
R	Linearization variable of time relationship between EVs k and m at charging
$R_{c,k,m}$	station c
$\overline{\mathcal{R}_{c,k,m,l}}$	Linearization binary variable of ancillary variables to control charging congestion
$\mathcal{R}_{c,k,m,l}$	Linearization binary variable of ancillary variables to control charging congestion

$\partial_{c,k,m}^{\mathcal{C}}/\beta_{c,k,m}^{\mathcal{C}}$	Ancillary binary variables to avoid congestion between EVs k and m at charging station c
η	Ancillary variable representing the objective function of modified master problem
Obj	Ancillary variable representing the objective function of modified Sub problem
ΔV_l	Deviation of traffic flow at edge l caused by cyber attack
Parameters	
$\omega_1/\omega_2/\omega_3$	Weighting factors of objective function
M	A sufficiently large number
α/β	Parameters of Bureau of Public Roads function
$ au_l$	Energy consumption of passing edge l (kWh)
ε_n	EV charging price at node n (\$/kWh)
φ_n	EV charging power at node n (kW)
SoC^{\min}	Minimum SoC value of EV battery (%)
SoC ^{max}	Maximum SoC value of EV battery (%)
E^{max}	Energy capacity of EV battery (kWh)
V_l	Original traffic flow of edge l
$ ho_l$	Capacity of edge <i>l</i>
$\gamma_{l,k}$	Free flow time of edge l for EV k
D_l^S	Distance of edge <i>l</i>
$\overline{\omega}$	Budget of cyber attacker for traffic flow tampering (%)
Dual variables	
υ	Dual variable of the objective function
$o_{u,d,k}^1$	Dual variable of passenger u delivery time for EV k
$o_{u,d,k}^2$	Dual variable of passenger u delivery time for EV k
$o_{u,d,k}^3$	Dual variable of passenger u delivery time for EV k
$o_{u,d,k}^4$	Dual variable of passenger u delivery time for EV k
$\chi^1_{u,p,k}$	Dual variable of passenger u pickup time for EV k
$\chi^2_{u,p,k}$	Dual variable of passenger u pickup time for EV k
$\chi^2_{u,p,k}$	Dual variable of passenger u pickup time for EV k
$\chi^4_{u,p,k}$	Dual variable of passenger u pickup time for EV k
$\delta_{u,p,d,k}$	Dual variable of passenger u travel time for EV k
$\overline{\lambda_{c,k}}$	Dual variable of charging time constraint upper bound for kth EV
$\lambda_{c,k}$	Dual variable of charging time constraint lower bound for kth EV
$\lambda_{n,k}^{CL}$	Dual variable of charging time limit for EV k
$\lambda_{n,k}^{C,min}$	Dual variable of charging time down limit for EV k
$\overline{\mu_{l,k}^N}$	Dual variable of arriving time constraint upper bound for EV k

$\overline{\mu_{l,k}^N}$	Dual variable of arriving time constraint lower bound for EV k
$\mu^{ST}_{st,k}$	Dual variable of time of kth car at start node st
$\mu_{n,k}^{N,min}$	Dual variable of arriving time down limit of kth EV at node n
$\phi^1_{c,k,m}$	Dual variable of waiting time constraint for EV
$\phi_{c,k,m}^2$	Dual variable of waiting time constraint for EV
$\phi_{c,k,m}^3$	Dual variable of waiting time constraint for EV
$\phi^4_{c,k,m}$	Dual variable of waiting time constraint for EV
$\phi_{c,k,m}^5$	Dual variable of waiting time constraint for EV
$\phi_{c,k,m}^6$	Dual variable of waiting time constraint for EV
$\phi_{c,k,m}^7$	Dual variable of waiting time constraint for EV
$\phi_{c,k,m}^8$	Dual variable of waiting time constraint for EV
$\phi_{c,k,m}^9$	Dual variable of waiting time constraint for EV
$\phi^{10}_{c,k,m}$	Dual variable of waiting time constraint for EV
$\phi^{WL}_{n,k}$	Dual variable of waiting time limit for EV k
$\phi_{n,k}^{W,min}$	Dual variable of waiting time down limit for EV k
$\overline{ heta_{l,k}^N}$	Dual variable of SoC constraint upper bound for EV k
$\frac{ heta_{l,k}^N}{ heta_{l,k}}$	Dual variable of SoC constraint lower bound for EV k
$ heta_{st,k}^{ST}$	Dual variable of initial SoC for EV k
$ heta^{min}_{n,k}$	Dual variable of SoC upper bound for EV k
$ heta_{n,k}^{max}$	Dual variable of SoC lower bound for EV k
$\xi_{l,k}$	Dual variable of travel time of route l for EV k

$$minimize_{\Omega 1} \quad Obj$$

$$Obj = \omega_{1} \sum_{l,k} (D_{l}^{S} x_{l,k}) + \omega_{2} \sum_{u,p,d,k} [f_{u,k}(t_{d,k} - t_{p,k})] + \omega_{3} \sum_{n,k} (\varepsilon_{n} \varphi_{n} t_{n,k}^{C}) (v)$$

$$\begin{cases} f_{u,k} t_{d,k} = f_{u,d,k}^{1} : \\ f_{u,d,k}^{1} - M f_{u,k} \leq 0 (o_{u,d,k}^{1}) \\ f_{u,d,k}^{1} - t_{d,k} \leq 0 (o_{u,d,k}^{2}) \\ f_{u,d,k}^{1} - t_{d,k} + M (1 - f_{u,k}) \geq 0 (o_{u,d,k}^{3}) \\ f_{u,d,k}^{1} \geq 0 (o_{u,d,k}^{4}) \\ \forall u \in U, d \in \pi_{u}^{D}, k \in K \end{cases}$$

$$(2)$$

$$\begin{cases} f_{u,k}t_{p,k} = f_{u,p,k}^{2}: \\ f_{u,p,k}^{2} - Mf_{u,k} \leq 0(\chi_{u,p,k}^{1}) \\ f_{u,p,k}^{2} - t_{p,k} \leq 0(\chi_{u,p,k}^{2}) \\ f_{u,p,k}^{2} - t_{p,k} + M(1 - f_{u,k}) \geq 0(\chi_{u,p,k}^{3}) \\ f_{u,p,k}^{2} \geq 0(\chi_{u,p,k}^{4}) \\ \forall u \in U, p \in \pi_{u}^{p}, k \in K \end{cases}$$

$$(3)$$

$$-\sum_{l \in \pi_{st}^{D,L}} x_{l,k} = 1, \forall st \in \pi_k^{ST}, k \in K$$

$$\tag{4}$$

$$\sum_{l \in \pi_{on}^{U,L}} x_{l,k} = 1, \forall en \in \pi_k^{EN}, k \in K$$
 (5)

$$\sum_{l \in \pi_n^{D,L}} x_{l,k} \le 1, \forall n \in N / (\pi_k^{ST} \cup \pi_k^{EN}), k \in K$$
(6)

$$\sum_{l \in \pi_n^{U,L}} x_{l,k} \le 1, \forall n \in N / (\pi_k^{ST} \cup \pi_k^{EN}), k \in K$$
 (7)

$$\sum_{l \in \pi_n^{U,L}} x_{l,k} = \sum_{l \in \pi_n^{D,L}} x_{l,k} \,, \forall n \in N / (\pi_k^{ST} \cup \pi_k^{EN}), k \in K$$
(8)

$$\sum_{l \in \pi_d^{U,L}} x_{l,k} + \sum_{l \in \pi_n^{D,L}} x_{l,k} - 2 \ge -M(1 - f_{u,k}), \forall u \in U, d \in \pi_u^D, p \in \pi_u^p, k \in K$$
 (9)

$$\sum_{k \in K} f_{u,k} = 1, u \in U \tag{10}$$

$$t_{p,k} - t_{d,k} \le M(1 - f_{u,k}), \forall u \in U, d \in \pi_u^p, p \in \pi_u^p, k \in K(\delta_{u,p,d,k})$$
(11)

$$t_{l,k}^{T} = \gamma_{l,k} \left(1 + \alpha \left(\frac{V_l + \Delta V_l}{\rho_l} \right)^{\beta} \right), \forall l \in L, k \in K \left(\xi_{l,k} \right)$$
 (12)

$$-M(1-x_{l,k}) \le \sum_{n \in \pi_l^{U,N}} t_{n,k} + \sum_{n \in \pi_l^{U,N}} t_{n,k}^W + \sum_{n \in \pi_l^{U,N}} t_{n,k}^C + t_{l,k}^T - \sum_{n \in \pi_l^{D,N}} t_{n,k} \le$$
(13)

$$M\big(1-x_{l,k}\big), \forall l \in L, k \in K \quad (\mu_{l,k}^N, \overline{\mu_{l,k}^N})$$

$$-M(1-x_{l,k}) \leq \sum_{n \in \pi_{l}^{U,N}} SoC_{n,k} - \sum_{n \in \pi_{l}^{D,N}} SoC_{n,k} - \frac{\tau_{l}D_{l}^{S}}{E^{max}} + \frac{\sum_{n \in \pi_{l}^{U,N}} \varphi_{n} t_{n,k}^{C}}{E^{max}} \leq M(1-x_{l,k}), \forall l \in L, k \in K \quad (\theta_{l,k}^{N}, \overline{\theta_{l,k}^{N}})$$

$$(14)$$

$$-M\sum_{l\in\pi_{c}^{D,L}}x_{l,k} \leq t_{c,k}^{\mathcal{C}} \leq M\sum_{l\in\pi_{c}^{D,L}}x_{l,k}, \forall c\in\mathcal{C}, k\in\mathcal{K} \ \ (\underline{\lambda_{c,k}}, \overline{\lambda_{c,k}})$$
 (15)

$$\partial_{c,k,m}^{C} \left(t_{c,k} + t_{c,k}^{W} + t_{c,k}^{C} - t_{c,m} - t_{c,m}^{W} \right) \leq \partial_{c,k,m}^{C} \left(1 - \sum_{l \in \pi_{c}^{U,L}} x_{l,k} \right), \forall k, m \in K, c \in C, k \neq m \ (\phi_{c,k,m}^{1})$$

$$(16)$$

$$\begin{cases}
\partial_{c,k,m}^{C} \left(t_{c,k} + t_{c,k}^{W} + t_{c,k}^{C} - t_{c,m} - t_{c,m}^{W} \right) = \overline{R_{c,k,m}} : \\
\overline{R_{c,k,m}} - M \partial_{c,k,m}^{C} \leq 0(\phi_{c,k,m}^{2}) \\
\overline{R_{c,k,m}} + M \partial_{c,k,m}^{C} \geq 0(\phi_{c,k,m}^{3}) \\
-M \left(1 - \partial_{c,k,m}^{C} \right) \leq \overline{R_{c,k,m}} - t_{c,k} - t_{c,k}^{W} - t_{c,k}^{C} + t_{c,m} + t_{c,m}^{W} \\
\leq M \left(1 - \partial_{c,k,m}^{C} \right) (\phi_{c,k,m}^{4}, \phi_{c,k,m}^{5}) \\
\forall k, m \in K, c \in C, k \neq m
\end{cases} (17)$$

$$\begin{cases}
\partial_{c,k,m}^{C} x_{l,k} = \overline{\mathcal{R}_{c,k,m,l}} : \\
\overline{\mathcal{R}_{c,k,m,l}} - \partial_{c,k,m}^{C} \le 0 \\
\overline{\mathcal{R}_{c,k,m,l}} - x_{l,k} \le 0 \\
\partial_{c,k,m}^{C} + x_{l,k} - 1 - \overline{\mathcal{R}_{c,k,m,l}} \le 0
\end{cases}$$

$$\forall k, m \in K, c \in C, l \in \pi_{c}^{U,L}, k \neq m$$
(18)

$$\beta_{c,k,m}^{C}\left(t_{c,m}+t_{c,m}^{W}+t_{c,m}^{C}-t_{c,k}-t_{c,k}^{W}\right) \leq \beta_{c,k,m}^{C}\left(1-\sum_{l \in \pi_{c}^{U,L}} x_{l,k}\right), \forall k,m \in K, c \in C, k \neq (19)$$

$$m \left(\phi_{c,k,m}^{6} \right)$$

$$\begin{cases}
\beta_{c,k,m}^{C}\left(t_{c,m} + t_{c,m}^{W} + t_{c,m}^{C} - t_{c,k} - t_{c,k}^{W}\right) = \underline{R_{c,k,m}}: \\
\underline{R_{c,k,m}} - M\beta_{c,k,m}^{C} \leq 0(\phi_{c,k,m}^{7}) \\
\underline{R_{c,k,m}} + M\beta_{c,k,m}^{C} \geq 0(\phi_{c,k,m}^{8}) \\
-M(1 - \beta_{c,k,m}^{C}) \leq \underline{R_{c,k,m}} - t_{c,m} - t_{c,m}^{W} - t_{c,m}^{C} + t_{c,k} + t_{c,k}^{W} \\
\leq M(1 - \beta_{c,k,m}^{C})(\phi_{c,k,m}^{9}, \phi_{c,k,m}^{10}) \\
\forall k, m \in K, c \in C, k \neq m
\end{cases} (20)$$

$$\forall k, m \in K, c \in C, k \neq m$$

$$\begin{cases}
\beta_{c,k,m}^{C} x_{l,k} = \mathcal{R}_{c,k,m,l}: \\
\mathcal{R}_{c,k,m,l} - \beta_{c,k,m}^{C} \leq 0 \\
\overline{\mathcal{R}_{c,k,m,l}} - x_{l,k} \leq 0
\end{cases}$$

$$\beta_{c,k,m}^{C} + x_{l,k} - 1 - \underline{\mathcal{R}_{c,k,m,l}} \leq 0$$

$$\forall k, m \in K, c \in C, l \in \pi_{c}^{U,L}, k \neq m$$

$$(21)$$

$$\partial_{c,k,m}^{\mathcal{C}} + \beta_{c,k,m}^{\mathcal{C}} = 1, \forall k, m \in K, c \in \mathcal{C}, k \neq m$$
(22)

$$t_{n,k}^{C}, t_{n,k}^{W}, t_{n,k} \ge 0, \forall n \in N, k \in K \ (\lambda_{n,k}^{C,min}, \phi_{n,k}^{W,min}, \mu_{n,k}^{N,min})$$
 (23)

$$t_{n,k}^{C}, t_{n,k}^{W} = 0, \forall n \in \mathbb{N} \setminus C, k \in K \left(\lambda_{n,k}^{CL}, \phi_{n,k}^{WL}\right)$$

$$(24)$$

$$t_{n,k}^{C}, t_{n,k}^{W}, t_{n,k} \geq 0, \forall n \in N, k \in K \ (\lambda_{n,k}^{C,min}, \phi_{n,k}^{W,min}, \mu_{n,k}^{N,min})$$

$$t_{n,k}^{C}, t_{n,k}^{W} = 0, \forall n \in N \setminus C, k \in K \ (\lambda_{n,k}^{CL}, \phi_{n,k}^{WL})$$

$$SoC_{st,k} = SoC^{max}, t_{st,k} = 0, \forall st \in \pi_{k}^{ST}, k \in K \ (\theta_{st,k}^{ST}, \mu_{st,k}^{ST})$$

$$SoC^{min} \leq SoC_{n,k} \leq SoC^{max}, \forall n \in N, k \in K \ (\theta_{n,k}^{min}, \theta_{n,k}^{max})$$

$$(23)$$

$$SoC^{min} \le SoC_{n,k} \le SoC^{max}, \forall n \in N, k \in K \ (\theta_{n,k}^{min}, \theta_{n,k}^{max})$$
 (26)

Dual formulation:

$$1 + \nu = 0 \tag{27}$$

$$1 + \nu = 0$$

$$-\omega_{2}\nu + o_{u,d,k}^{1} + o_{u,d,k}^{2} - o_{u,d,k}^{3} - o_{u,d,k}^{4} = 0, \forall k \in K, u \in \pi_{k}^{U}, d \in \pi_{u}^{D}$$

$$-\omega_{2}\nu + \chi_{u,p,k}^{1} + \chi_{u,p,k}^{2} - \chi_{u,p,k}^{3} - \chi_{u,p,k}^{4} = 0, \forall k \in K, u \in \pi_{k}^{U}, p \in \pi_{u}^{P}$$

$$(29)$$

$$-\omega_2 v + \chi_{u,p,k}^1 + \chi_{u,p,k}^2 - \chi_{u,p,k}^3 - \chi_{u,p,k}^4 = 0, \forall k \in K, u \in \pi_k^U, p \in \pi_u^P$$
(29)

$$\overline{\mu_{l,k}^{N}} - \mu_{l,k}^{N} + \xi_{l,k} = 0, \forall l \in L, k \in K$$
(30)

$$\theta_{c,k,m}^{1} + \theta_{c,k,m}^{2} - \theta_{c,k,m}^{3} + \theta_{c,k,m}^{4} - \theta_{c,k,m}^{5} = 0, \forall k, m \in K, c \in C, k \neq m$$
(31)

$$\theta_{c,k,m}^{6} + \theta_{c,k,m}^{7} - \theta_{c,k,m}^{8} + \theta_{c,k,m}^{9} - \theta_{c,k,m}^{10} = 0, \forall k, m \in K, c \in C, k \neq m$$
(32)

$$-o_{u,d,k}^{2} + o_{u,d,k}^{3} - \delta_{u,d,p,k} + \sum_{l \in \pi_{d}^{D,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{d}^{U,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{d}^{D,L}} \underline{\mu_{l,k}^{N}} + \sum_{l \in \pi_{d}^{U,L}} \underline{\mu_{l,k}^{N}} - \mu_{d,k}^{N,min} = 0, \forall k \in K, u \in \pi_{L}^{U}, p \in \pi_{L}^{P}, d \in \pi_{L}^{D}$$
(33)

$$-\chi_{u,p,k}^{2} + \chi_{u,p,k}^{3} - \delta_{u,d,p,k} + \sum_{l \in \pi_{p}^{D,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{p}^{U,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{p}^{D,L}} \underline{\mu_{l,k}^{N}} + \sum_{l \in \pi_{p}^{U,L}} \underline{\mu_{l,k}^{N}} - \mu_{p,k}^{N,min} = 0, \forall k \in K, u \in \pi_{k}^{U}, p \in \pi_{u}^{P}, d \in \pi_{u}^{D}$$
(34)

$$\sum_{l \in \pi_{st}^{D,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{st}^{U,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{st}^{D,L}} \underline{\mu_{l,k}^{N}} + \sum_{l \in \pi_{st}^{U,L}} \underline{\mu_{l,k}^{N}} + \mu_{st,k}^{ST} - \mu_{st,k}^{N,min} = 0, \forall k \in K, st \in ST$$
 (35)

$$\sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,m,k}^{4} + \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{5} - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,m,k}^{5} +$$
(36)

$$\textstyle \sum_{m \in \pi_{br}^{D,M}, br \in \pi_k^{BR}} \phi_{c,k,m}^9 - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_k^{BR}} \phi_{c,m,k}^9 - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_k^{BR}} \phi_{c,k,m}^{10} +$$

$$\sum_{m \in \pi_{br}^{D,M}, br \in \pi_k^{BR}} \phi_{c,m,k}^{10} = 0, \forall k, m \in K, c \in C, k \neq m$$

$$\sum_{l \in \pi_{n}^{D,L}, \overline{\mu_{l,k}^{N}}} - \sum_{l \in \pi_{n}^{U,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{n}^{D,L}} \underline{\mu_{l,k}^{N}} + \sum_{l \in \pi_{n}^{U,L}} \underline{\mu_{l,k}^{N}} - \mu_{n,k}^{N,min} = 0, \forall n \in N/(ST \cup P \cup D \cup C), k \in K$$
(37)

$$-\omega_{3}\varepsilon_{c}\varphi_{c}\nu + \overline{\lambda_{c,k}} - \underline{\lambda_{c,k}} - \underline{\lambda_{c,k}} - \lambda_{c,k}^{c,min} + \sum_{l \in \pi_{c}^{D,L}} \overline{\mu_{l,k}^{N}} - \sum_{l \in \pi_{c}^{D,L}} \underline{\mu_{l,k}^{N}} + \sum_{l \in \pi_{c}^{D,L}} \overline{\mu_{e,k}^{Q}} - \sum_{l \in$$

$$\sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{4} + \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{5} - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,m,k}^{9} +$$
(38)

$$\sum_{m \in \pi_{c}^{D,M}, hr \in \pi_{c}^{BR}} \phi_{c,m,k}^{10} = 0, \forall k, m \in K, c \in C, k \neq m$$

$$\lambda_{n,k}^{CL} - \lambda_{n,k}^{C,min} + \sum_{l \in \pi_n^{D,L}} \overline{\mu_{l,k}^N} - \sum_{l \in \pi_n^{D,L}} \underline{\mu_{l,k}^N} + \sum_{l \in \pi_c^{D,L}} \frac{\varphi_c \overline{\theta_{l,k}^N}}{E_{max}} - \sum_{l \in \pi_c^{D,L}} \frac{\varphi_c \overline{\theta_{l,k}^N}}{E_{max}} = 0, \forall k \in K, n \in N/C$$
 (39)

$$\textstyle \sum_{l \in \pi_{c}^{D,L}, \overline{\mu_{l,k}^{N}}} - \sum_{l \in \pi_{c}^{D,L}} \underline{\mu_{l,k}^{N}} - \phi_{c,k}^{W,min} - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{4} \\ \phantom{\sum_{l \in \pi_{c}^{D,L}, \overline{\mu_{l,k}^{N}}}} + \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,m,k}^{4} + \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,m,k}^{4} \\ \phantom{\sum_{l \in \pi_{c}^{D,L}, \overline{\mu_{l,k}^{N}}}} - \sum_{l \in \pi_{c}^{D,L}, \underline{\mu_{l,k}^{N}}} - \phi_{c,k}^{W,min} - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{4} \\ \phantom{\sum_{l \in \pi_{c}^{D,L}, \overline{\mu_{l,k}^{N}}}} - \sum_{l \in \pi_{c}^{D,L}, \underline{\mu_{l,k}^{N}}} - \phi_{c,k}^{W,min} - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{4} \\ \phantom{\sum_{l \in \pi_{c}^{D,L}, \overline{\mu_{l,k}^{N}}}} - \sum_{l \in \pi_{c}^{D,L}, \underline{\mu_{l,k}^{N}}} - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,m,k}^{4} \\ \phantom{\sum_{l \in \pi_{c}^{D,L}, \overline{\mu_{l,k}^{N}}}} - \sum_{l \in \pi_{c}^{D,L}, \underline{\mu_{l,k}^{N}}} - \sum_{l \in \pi_{c}^{D,$$

$$\sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{5} - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,m,k}^{5} + \sum_{m \in \pi_{br}^{D,M}, br \in \pi_{k}^{BR}} \phi_{c,k,m}^{9} -$$

$$\tag{40}$$

$$\textstyle \sum_{m \in \pi_{br}^{D,M}, br \in \pi_k^{BR}} \phi_{c,m,k}^9 - \sum_{m \in \pi_{br}^{D,M}, br \in \pi_k^{BR}} \phi_{c,k,m}^{10} + \sum_{m \in \pi_{br}^{D,M}, br \in \pi_k^{BR}} \phi_{c,m,k}^{10} = 0, \forall k, m \in K, c \in K, c$$

$$C, k \neq m$$

$$\sum_{l \in \pi_n^{D,L}} \overline{\mu_{l,k}^N} - \sum_{l \in \pi_n^{D,L}} \mu_{l,k}^N + \phi_{n,k}^{WL} - \phi_{n,k}^{W.min} = 0, \forall k \in K, n \in N/C$$
 (41)

$$\sum_{l \in \pi_{st}^{D,L}} \overline{\theta_{l,k}^{N}} - \sum_{l \in \pi_{st}^{U,L}} \overline{\theta_{l,k}^{N}} - \sum_{l \in \pi_{st}^{D,L}} \underline{\theta_{l,k}^{N}} + \sum_{l \in \pi_{st}^{U,L}} \underline{\theta_{l,k}^{N}} + \theta_{st,k}^{ST} - \theta_{st,k}^{min} + \theta_{st,k}^{max} = 0, \forall k \in K, st \in (42)$$

$$\sum_{l \in \pi_n^{D,L}} \overline{\theta_{l,k}^N} - \sum_{l \in \pi_n^{U,L}} \overline{\theta_{l,k}^N} - \sum_{l \in \pi_n^{D,L}} \underline{\theta_{l,k}^N} + \sum_{l \in \pi_n^{U,L}} \underline{\theta_{l,k}^N} - \theta_{n,k}^{min} + \theta_{n,k}^{max} = 0, \forall k \in K, n \in N/ST$$
 (43)

$$o_{u,d,k}^{1}, o_{u,d,k}^{2}, o_{u,d,k}^{3}, o_{u,d,k}^{4}, \chi_{u,d,k}^{1}, \chi_{u,d,k}^{2}, \chi_{u,d,k}^{3}, \chi_{u,d,k}^{4}, \delta_{u,p,d,k} \ge 0$$

$$(44)$$

$$\mu_{l,k}^N, \overline{\mu_{l,k}^N}, \theta_{l,k}^N, \overline{\theta_{l,k}^N}, \underline{\lambda_{c,k}}, \overline{\lambda_{c,k}} \ge 0$$

$$\tag{45}$$

$$\phi_{c,k,m}^{1}, \phi_{c,k,m}^{2}, \phi_{c,k,m}^{3}, \phi_{c,k,m}^{4}, \phi_{c,k,m}^{5}, \phi_{c,k,m}^{6}, \phi_{c,k,m}^{7}, \phi_{c,k,m}^{8}, \phi_{c,k,m}^{9}, \phi_{c,k,m}^{10} \ge 0$$

$$\lambda_{n,k}^{c,min}, \phi_{n,k}^{W,min}, \mu_{n,k}^{N,min}, \theta_{n,k}^{min}, \theta_{n,k}^{max} \ge 0$$

$$(46)$$

Strong duality equation

$$\omega_{1} \sum_{l,k} (D_{l}^{S} x_{l,k}) + \omega_{2} \sum_{u,p,d,k} [f_{u,k}(t_{d,k} - t_{p,k})] + \omega_{3} \sum_{n,k} (\varepsilon_{n} \varphi_{n} t_{n,k}^{C}) = -\omega_{1} \sum_{l,k} (D_{l}^{S} x_{l,k}) \nu - M \sum_{u,d,k} (f_{u,k} o_{u,d,k}^{1}) - M \sum_{u,d,k} [(1 - f_{u,k}) o_{u,d,k}^{3}] - M \sum_{u,p,k} (f_{u,k} \chi_{u,p,k}^{1}) - M \sum_{u,p,k} [(1 - f_{u,k}) \chi_{u,p,k}^{3}] - M \sum_{u,p,d,k} [(1 - f_{u,k}) \delta_{u,p,d,k}] - \sum_{l,k} [\gamma_{l,k} (1 + \alpha \left(\frac{v_{l} + \Delta v_{l}}{\rho_{l}}\right)^{\beta}) \xi_{l,k}] - M \sum_{l,k} [(1 - x_{l,k}) \overline{\mu_{l,k}^{N}}] - M \sum_{l,k} [(1 - x_{l,k}) \overline{\mu_{l,k}^{N}}] - M \sum_{l,k} [(1 - x_{l,k}) \overline{\theta_{l,k}^{N}}] - M \sum_{l,k} (\overline{\tau_{l}^{*D}} \overline{\theta_{l,k}^{N}}) - M \sum_{l,k} \overline{\theta_{l,k}^{N}}] - M \sum_{l,k} (\overline{\tau_{l}^{*D}} \overline{\theta_{l,k}^{N}}) - M \sum_{l,k} \overline{\theta_{l,k}^{N}}] - M \sum_{l,k} (\overline{\tau_{l}^{*D}} \overline{\theta_{l,k}^{N}}) - M \sum_{l,k} \overline{\theta_{l,k}^{N}}] - \sum_{l,k}$$