On the Cycle Space of a 3-Connected Graph

Alexander Kelmans

Rutgers University, New Brunswick, New Jersey University of Puerto Rico, San Juan, Puerto Rico

Abstract

We give a simple proof of Tutte's theorem stating that the cycle space of a 3-connected graph is generated by the set of non-separating circuits of the graph.

Keywords: graph, cycle, circuit, cycle space, non-separating circuit, strong isomorphism.

1 Introduction

We consider undirected graphs with no loops and no parallel edges. All notions on graphs that are not defined here can be found in [1, 8].

Let $G = (V, E, \psi)$ be a graph, where V = V(G) is the set of vertices, E = E(G) is the set of edges, and $\psi : E \to \binom{V}{2}$ is the edge-vertex incident function.

A cycle C (the corresponding circuit E(C)) in a connected graph G is called *separating* if G/C has more blocks than G, and *non-separating*, otherwise. Let $\mathcal{NC}(G)$ denote the set of non-separating circuits of G, and so $\mathcal{NC}(G) \subseteq \mathcal{C}(G)$.

Given two graphs G and F with E(G) = E(F), we say that G is strongly isomorphic to F if there is an isomorphism $v: V(G) \to V(F)$ from G to F that induces the identity map $\epsilon: E \to E$.

One of the classical Whitney theorems states:

1.1 [9] Let G and F be two graphs such that E(G) = E(F) and C(G) = C(F). If G is 3-connected and F has no isolated vertices, then G is strongly isomorphic to F.

A very simple proof of 1.1 is given in [2, 3].

In [2] we proved the following strengthening of 1.1.

1.2 Let G and F be two graphs such that E(G) = E(F) and $\mathcal{NC}(G) = \mathcal{NC}(F)$. If G is 3-connected and F has no isolated vertices, then G is strongly isomorphic to F.

In [5] we gave some other strengthenings of the Whitney theorem 1.1.

The following theorem, due to W. Tutte [7] and, independently, A. Kelmans [2, 3], is an important result in the study of the graph cycle spaces.

1.3 The set of non-separating circuits of a 3-connected graph generates the cycle space of the graph.

The above Theorem is an obvious Corollary of **1.2**. On the other hand, **1.2** follows from **1.1** and **1.3**.

In [2] we proved the following theorem.

1.4 Suppose that G is a 3-connected graph, $X \subseteq E(G)$ and $G \setminus X$ is a connected graph. Then there exist two distinct non-separating circuits A, B in G such that $|A \cap X| = 1$ and $|B \cap X| = 1$.

We also gave the following simple

Proof of **1.2**, and therefore also **1.3**, using **1.4** [2]. Let G be a 3-connected graph. It is sufficient to show that the set $\mathcal{K}(G)$ of cocircuits (i.e. minimal edge cuts) of G is uniquely defined by the set $\mathcal{NC}(G)$ of non-separating circuits of G. Let $\mathcal{K}'(G)$ be the set of edge subsets X of G such that $X \neq \emptyset$ and $|X \cap C| \neq 1$ for every $C \in \mathcal{NC}(G)$. Obviously $\mathcal{K}(G) \subseteq \mathcal{K}'(G)$. Let $\mathcal{K}''(G)$ be the set of members of $\mathcal{K}'(G)$ minimal by inclusion. By **1.4**, if $X \in \mathcal{K}'(G)$, then there is $Y \in \mathcal{K}(G)$ such that $Y \subseteq X$. Since $Y \in \mathcal{K}(G)$, every proper subset of Y is not in $\mathcal{K}(G)$. Therefore $\mathcal{K}(G) \subseteq \mathcal{K}'(G) \Rightarrow \mathcal{K}''(G) = \mathcal{K}(G)$.

There are several other proofs of 1.3 (see, for example, [1, 8]).

In this paper we give a new fairly simple proof of 1.3.

The results of this paper were presented at the Moscow Discrete Mathematics Seminar in 1977 (see also [6]).

2 Proof of 1.3

We call a graph topologically 3-connected, or simply top 3-connected, if it is a subdivision of a 3-connected graph. A subdivision of a graph G is called top G.

A thread in G is a path T in G such that the degree of every inner vertex of T is equal to two and the degree of every end-vertex of T is not equal to two in G. Obviously if C is a cycle of G and $E(C) \cap E(T) \neq \emptyset$, then $T \subseteq C$. If T is a thread in G, we write G - (T) instead of G - (T - End(T)).

A path P with end-vertices x and y is called a path-chord of a cycle C in G if $V(C) \cap V(P) = \{x, y\}$, and $E(C) \cap E(P) = \emptyset$.

We need the following known facts.

- **2.1** [3] Let G be a top 3-connected graph and G not top K_4 . Then G has a thread T such that G (T) is also a top 3-connected graph.
- **2.2** [3] Let G be a top 3-connected graph, C a cycle of G, and T a thread of G which is a path-chord of C, and let R, S be the cycles of $C \cup T$ distinct from C. If C is a non-separating cycle of G (T), then R and S are non-separating cycles of G.
- **Proof.** Let Q = S (T). Then G/R has a block, say H, containing E(Q). Suppose, on the contrary, that $R \notin \mathcal{NC}(G)$, i.e. G/R has a block B distinct from H. Then B is also a block of G/C. Suppose that $E(H) \neq E(Q)$. Let P be a block of G/C that meets $E(H) \setminus E(Q)$. Then $E(P) \neq E(B)$ and $E(P) \neq E(T)$, and therefore $C \notin \mathcal{NC}(G (T))$, a contradiction. Thus E(H) = E(Q). Then Q is a thread of G and G is parallel to G. Therefore G is not top 3-connected, a contradiction.
- **2.3** [2, 3] Let G be a 3-connected graph. Then for every edge e of G there are two non-separating cycles P and Q of G such that $E(P) \cap E(Q) = e$ and $V(P) \cap V(Q) = \psi(e)$.

Proof (a sketch). Since G is top 3-connected, there are two cycles R and S such that $R \cap S = T$. Let \mathcal{C}_R be the set of cycles C in G such that $C \cap R = T$, and so $S \in \mathcal{C}_R$. If $C \in \mathcal{C}_R$, then let $\alpha(C)$ be the number of edges of the block of G/C containing E(R-(T)). Let P be a cycle in \mathcal{C}_R such that $\alpha(P) = \max\{\alpha(C) : C \in \mathcal{C}_R\}$. It is easy to show that P is a non-separating cycle of G.

Applying the above arguments to R := P and S := R, we find another non-separating cycle Q of G such that $P \cap Q = T$.

Now we are ready to prove the following equivalent of 1.3.

2.4 Let G be a top 3-connected graph. Then CS(G) is generated by NC(G).

Proof (uses **2.1**, **2.2**, and **2.3**). We prove our claim by induction on the number t(G) of threads of G. If G is top K_4 , then our claim is obviously true. So let $t(G) \geq 7$. By **2.1**, G has a thread T such that G' = G - (T) is top 3-connected. By the induction hypothesis, $\mathcal{CS}(G')$ is generated by $\mathcal{NC}(G')$. Obviously if $Q \in \mathcal{NC}(G')$ and T is not a path-chord of Q, then $Q \in \mathcal{NC}(G)$. By **2.2**, if $C \in \mathcal{NC}(G')$, T is a path-chord of C, and $C \in C$ are the cycles of $C \cup T$ distinct from C, then $C \in C$ are the cycles of $C \cup T$ distinct from C, then $C \in C$ are the cycle in $C \in C$ are an $C \in C$ and $C \in C$ are the cycle in $C \in C$ and $C \in$

More information on this topic can be found in the expository paper [4].

References

- [1] R. Deistel, Graph Theory, Springer-Verlag, New York, 2000.
- [2] A. Kelmans, The concept of a vertex in a matroid, the non-separating cycles, and a new criterion for graph planarity. In *Algebraic Methods in Graph Theory*, Vol. 1, Colloq. Math. Soc. János Bolyai, (Szeged, Hungary, 1978) North-Holland **25** (1981) 345–388.
- [3] A. Kelmans, A new planarity criterion for 3-connected graphs, *J. Graph Theory* **5** (1981) 259–267.
- [4] A. Kelmans, Graph planarity and related topics, Contemporary Mathematics 147 (1993), 635-667.
- [5] Kelmans A.K., On semi–isomorphisms and semi–dualities of graphs, *Graphs and Combinatorics* **10** (1994) 337–352.
- [6] A. Kelmans, On the Cycle Space of a 3–Connected Graph, *RUTCOR Research Report 4–2005*, Rutgers University (2005).
- [7] W. Tutte, How to draw a graph, *Proc. London Math. Soc.* **13** (1963) 743-767.
- [8] H.-J. Voss, *Cycles and Bridges in Graphs*, Deutscher Verlag der Wissenschaften, Berlin; Kluwer Academic Publisher, Dordreht, Boston, London, 1991.
- [9] H. Whitney, 2-isomorphic graphs, Amer. Math. Soc. 55 (1933) 245–254.