Principles of Computer System Design An Introduction

Part II Chapters 7–11

Jerome H. Saltzer
M. Frans Kaashoek

Massachusetts Institute of Technology

Version 5.0

Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. Some Rights Reserved.

This work is licensed under a **CCO BY-NC-SA** Creative Commons Attribution-Non-commercial-Share Alike 3.0 United States License. For more information on what this license means, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in which the authors are aware of a claim, the product names appear in initial capital or all capital letters. All trademarks that appear or are otherwise referred to in this work belong to their respective owners.

Suggestions, Comments, Corrections, and Requests to waive license restrictions: Please send correspondence by electronic mail to:

Saltzer@mit.edu

and

kaashoek@mit.edu

Contents

PART I [In Printed Textbook]

List of Sidebarsxix	
Prefacexxvii	
Where to Find Part II and other On-line Materials	
Acknowledgmentsxxxix	
Computer System Design Principles	
CHAPTER 1 Systems1	
Overview	
1.1. Systems and Complexity	
1.1.1 Common Problems of Systems in Many Fields	
1.1.2 Systems, Components, Interfaces and Environments 8	
1.1.3 Complexity	
1.2. Sources of Complexity	
1.2.1 Cascading and Interacting Requirements	
1.2.2 Maintaining High Utilization	
1.3. Coping with Complexity I	
1.3.1 Modularity	
1.3.2 Abstraction	
1.3.3 Layering	
1.3.4 Hierarchy	
1.3.5 Putting it Back Together: Names Make Connections	
1.4. Computer Systems are the Same but Different	
1.4.1 Computer Systems Have no Nearby Bounds on Composition 28	
1.4.2 d(technology)/dt is Unprecedented	
1.5. Coping with Complexity II	
1.5.1 Why Modularity, Abstraction, Layering, and Hierarchy aren't	
Enough	
1.5.2 Iteration	
1.5.3 Keep it Simple	
What the Rest of this Book is about	
Exercises	iii

Saltzer & Kaashoek Ch. 0, p. iii June 24, 2009 12:21 am

CHAPTER 2 Elements of Computer System Organization	43
Overview	44
2.1. The Three Fundamental Abstractions	45
2.1.1 Memory	45
2.1.2 Interpreters	53
2.1.3 Communication Links	59
2.2. Naming in Computer Systems	60
2.2.1 The Naming Model	61
2.2.2 Default and Explicit Context References	66
2.2.3 Path Names, Naming Networks, and Recursive Name Resolution.	71
2.2.4 Multiple Lookup: Searching through Layered Contexts	73
2.2.5 Comparing Names	75
2.2.6 Name Discovery	76
2.3. Organizing Computer Systems with Names and Layers	78
2.3.1 A Hardware Layer: The Bus	80
2.3.2 A Software Layer: The File Abstraction	87
2.4. Looking Back and Ahead	90
2.5. Case Study: UNIX® File System Layering and Naming	91
2.5.1 Application Programming Interface for the UNIX File System	91
2.5.2 The Block Layer	93
2.5.3 The File Layer	95
2.5.4 The Inode Number Layer	96
2.5.5 The File Name Layer	
2.5.6 The Path Name Layer	98
2.5.7 Links	99
2.5.8 Renaming	
2.5.9 The Absolute Path Name Layer	
2.5.10 The Symbolic Link Layer	
2.5.11 Implementing the File System API	
2.5.12 The Shell, Implied Contexts, Search Paths, and Name Discovery	
2.5.13 Suggestions for Further Reading	
Exercises	.112
CHAPTER 3 The Design of Naming Schemes	. 115
Overview	
3.1. Considerations in the Design of Naming Schemes	
3.1.1 Modular Sharing	

Saltzer & Kaashoek Ch. 0, p. iv June 24, 2009 12:21 am

Metadata and Name Overloading	. 120
Addresses: Names that Locate Objects	. 122
Generating Unique Names	. 124
Intended Audience and User-Friendly Names	. 127
Relative Lifetimes of Names, Values, and Bindings	. 129
Looking Back and Ahead: Names are a Basic System Component	. 131
e Study: The Uniform Resource Locator (URL)	132
Surfing as a Referential Experience; Name Discovery	. 132
Interpretation of the URL	. 133
URL Case Sensitivity	. 134
Overloading of Names in URLs	. 137
r Stories: Pathologies in the Use of Names	138
A Name Collision Eliminates Smiling Faces	. 139
Fragile Names from Overloading, and a Market Solution	. 139
More Fragile Names from Overloading, with Market Disruption .	. 140
	. 144
•	
ent/service organization	149
·	. 149
Client/service organization	
Multiple clients and services	. 163
Multiple clients and services	. 163 . 163
Multiple clients and services	. 163 . 163 . 165
Multiple clients and services	. 163 . 163 . 165 16 7
Multiple clients and services	. 163 . 163 . 165 16 7
Multiple clients and services	. 163 . 163 . 165 . 167 . 167
Multiple clients and services	. 163 . 163 . 165 . 167 . 169 . 172
Multiple clients and services	. 163 . 163 . 165 . 167 . 169 . 172
Multiple clients and services	. 163 . 163 . 165 . 167 . 169 . 172
Multiple clients and services	. 163 . 163 . 165 . 167 . 169 . 172 173
Multiple clients and services	. 163 . 163 . 165 . 167 . 169 . 172 . 173 . 176
	Metadata and Name Overloading. Addresses: Names that Locate Objects Generating Unique Names Intended Audience and User-Friendly Names. Relative Lifetimes of Names, Values, and Bindings Looking Back and Ahead: Names are a Basic System Component sees Study: The Uniform Resource Locator (URL) Surfing as a Referential Experience; Name Discovery Interpretation of the URL URL Case Sensitivity Wrong Context References for a Partial URL Overloading of Names in URLs or Stories: Pathologies in the Use of Names. A Name Collision Eliminates Smiling Faces Fragile Names from Overloading, and a Market Solution More Fragile Names from Overloading, with Market Disruption Case-Sensitivity in User-Friendly Names Running Out of Telephone Numbers 4 Enforcing Modularity with Clients and Services v. ent/service organization From soft modularity to enforced modularity

Saltzer & Kaashoek Ch. 0, p. v June 24, 2009 12:21 am

vi Contents

4.4.4 Name discovery in DNS	183
4.4.5 Trustworthiness of DNS responses	184
4.5. Case study: The Network File System (NFS)	184
4.5.1 Naming remote files and directories	185
4.5.2 The NFS remote procedure calls	187
4.5.3 Extending the UNIX file system to support NFS	190
4.5.4 Coherence	192
4.5.5 NFS version 3 and beyond	194
Exercises	195
CHAPTER 5 Enforcing Modularity with Virtualization	199
Overview	
5.1. Client/Service Organization within a Computer using Virtualization	on 20 1
5.1.1 Abstractions for Virtualizing Computers	203
5.1.1.1 Threads	204
5.1.1.2 Virtual Memory	206
5.1.1.3 Bounded Buffer	206
5.1.1.4 Operating System Interface	207
5.1.2 Emulation and Virtual Machines	208
5.1.3 Roadmap: Step-by-Step Virtualization	208
5.2. Virtual Links using SEND, RECEIVE, and a Bounded Buffer	210
5.2.1 An Interface for SEND and RECEIVE with Bounded Buffers	210
5.2.2 Sequence Coordination with a Bounded Buffer	211
5.2.3 Race Conditions	214
5.2.4 Locks and Before-or-After Actions	218
5.2.5 Deadlock	221
5.2.6 Implementing acquire and release	222
5.2.7 Implementing a Before-or-After Action Using the One-Writer	
Principle	
5.2.8 Coordination between Synchronous Islands with Asynchronous	
Connections	
5.3. Enforcing Modularity in Memory	
5.3.1 Enforcing Modularity with Domains	
5.3.2 Controlled Sharing using Several Domains	
5.3.3 More Enforced Modularity with Kernel and User Mode	
5.3.4 Gates and Changing Modes	
5.3.5 Enforcing Modularity for Bounded Buffers	737

Saltzer & Kaashoek Ch. 0, p. vi June 24, 2009 12:21 am

	5.3.6 The Kernel	. 238
	5.4. Virtualizing Memory	. 242
	5.4.1 Virtualizing Addresses	. 243
	5.4.2 Translating Addresses using a Page Map	. 245
	5.4.3 Virtual Address Spaces	. 248
	5.4.3.1 Primitives for Virtual Address Spaces	. 248
	5.4.3.2 The Kernel and Address Spaces	. 250
	5.4.3.3 Discussion	. 251
	5.4.4 Hardware versus Software and the Translation Look-Aside Buffer.	. 252
	5.4.5 Segments (Advanced Topic)	. 253
	5.5. Virtualizing Processors using Threads	. 255
	5.5.1 Sharing a processor among multiple threads	. 255
	5.5.2 Implementing YIELD	
	5.5.3 Creating and Terminating Threads	. 264
	5.5.4 Enforcing Modularity with Threads: Preemptive Scheduling	. 269
	5.5.5 Enforcing Modularity with Threads and Address Spaces	. 271
	5.5.6 Layering Threads	. 271
	5.6. Thread Primitives for Sequence Coordination	. 273
	5.6.1 The Lost Notification Problem	. 273
	5.6.2 Avoiding the Lost Notification Problem with Eventcounts and	
	Sequencers	. 275
	5.6.3 Implementing AWAIT, ADVANCE, TICKET, and READ (Advanced	
	Topic)	
	5.6.4 Polling, Interrupts, and Sequence coordination	
	5.7. Case study: Evolution of Enforced Modularity in the Intel x86	
	5.7.1 The early designs: no support for enforced modularity	
	5.7.2 Enforcing Modularity using Segmentation	
	5.7.3 Page-Based Virtual Address Spaces	
	5.7.4 Summary: more evolution	
	5.8. Application: Enforcing Modularity using Virtual Machines	
	5.8.1 Virtual Machine Uses	
	5.8.2 Implementing Virtual Machines	
	5.8.3 Virtualizing Example	
	Exercises	294
_	HARTER A Restaurant	
Cl	HAPTER 6 Performance	

Saltzer & Kaashoek Ch. 0, p. vii June 24, 2009 12:21 am

viii Contents

6.1. Designing for Performance	300
6.1.1 Performance Metrics	302
6.1.1.1 Capacity, Utilization, Overhead, and Useful Work	302
6.1.1.2 Latency	302
6.1.1.3 Throughput	303
6.1.2 A Systems Approach to Designing for Performance	304
6.1.3 Reducing latency by exploiting workload properties	306
6.1.4 Reducing Latency Using Concurrency	307
6.1.5 Improving Throughput: Concurrency	309
6.1.6 Queuing and Overload	
6.1.7 Fighting Bottlenecks	
6.1.7.1 Batching	314
6.1.7.2 Dallying	314
6.1.7.3 Speculation	314
6.1.7.4 Challenges with Batching, Dallying, and Speculation	315
6.1.8 An Example: the I/O bottleneck	
6.2. Multilevel Memories	321
6.2.1 Memory Characterization	322
6.2.2 Multilevel Memory Management using Virtual Memory	323
6.2.3 Adding multilevel memory management to a virtual memory	327
6.2.4 Analyzing Multilevel Memory Systems	
6.2.5 Locality of reference and working sets	
6.2.6 Multilevel Memory Management Policies	
6.2.7 Comparative analysis of different policies	
6.2.8 Other Page-Removal Algorithms	
6.2.9 Other aspects of multilevel memory management	
6.3. Scheduling	
6.3.1 Scheduling Resources	
6.3.2 Scheduling metrics	
6.3.3 Scheduling Policies	
6.3.3.1 First-Come, First-Served	
6.3.3.2 Shortest-job-first	
6.3.3.3 Round-Robin	355
6.3.3.4 Priority Scheduling	357
(2 2 5 D - 1 sin - C - 1 - 1 - 1 - 1	250

Saltzer & Kaashoek Ch. 0, p. viii June 24, 2009 12:21 am

6.3.4 Case study: Scheduling the Disk Arm	
Exercises	
About Part II	369
Appendix A: The Binary Classification Trade-off	371
Suggestions for Further Reading	375
Problem Sets for Part I	425
Glossary	475
Index of Concepts	513
Part II [On-Line]	
CHAPTER 7 The Network as a System and as a System Compon	ent7–1
Overview	7–2
7.1. Interesting Properties of Networks	7–3
7.1.1 Isochronous and Asynchronous Multiplexing	7–5
7.1.2 Packet Forwarding; Delay	7–9
7.1.3 Buffer Overflow and Discarded Packets	7–12
7.1.4 Duplicate Packets and Duplicate Suppression	7–15
7.1.5 Damaged Packets and Broken Links	
7.1.6 Reordered Delivery	
7.1.7 Summary of Interesting Properties and the Best-Effort Co	ntract . 7–20
7.2. Getting Organized: Layers	7–20
7.2.1 Layers	7–23
7.2.2 The Link Layer	7–25
7.2.3 The Network Layer	7–27
7.2.4 The End-to-End Layer	
7.2.5 Additional Layers and the End-to-End Argument	7–30
7.2.6 Mapped and Recursive Applications of the Layered Model	17–32
7.3. The Link Layer	7–34
7.3.1 Transmitting Digital Data in an Analog World	7–34
7.3.2 Framing Frames	
7.3.3 Error Handling	7–40
7.3.4 The Link Layer Interface: Link Protocols and Multiplexin	g 7–41
7.3.5 Link Properties	7–44

Saltzer & Kaashoek Ch. 0, p. ix June 24, 2009 12:21 am

x Contents

7.4. The Network Layer	.7-46
7.4.1 Addressing Interface	7–46
7.4.2 Managing the Forwarding Table: Routing	7–48
7.4.3 Hierarchical Address Assignment and Hierarchical Routing	
7.4.4 Reporting Network Layer Errors	7–59
7.4.5 Network Address Translation (An Idea That Almost Works)	7–61
7.5. The End-to-End Layer	.7-62
7.5.1 Transport Protocols and Protocol Multiplexing	7–63
7.5.2 Assurance of At-Least-Once Delivery; the Role of Timers	7–67
7.5.3 Assurance of At-Most-Once Delivery: Duplicate Suppression	7–71
7.5.4 Division into Segments and Reassembly of Long Messages	7–73
7.5.5 Assurance of Data Integrity	7–73
7.5.6 End-to-End Performance: Overlapping and Flow Control	7–75
7.5.6.1 Overlapping Transmissions	7–75
7.5.6.2 Bottlenecks, Flow Control, and Fixed Windows	7–77
7.5.6.3 Sliding Windows and Self-Pacing	7–79
7.5.6.4 Recovery of Lost Data Segments with Windows	7–81
7.5.7 Assurance of Stream Order, and Closing of Connections	
7.5.8 Assurance of Jitter Control	
7.5.9 Assurance of Authenticity and Privacy	7–85
7.6. A Network System Design Issue: Congestion Control	
7.6.1 Managing Shared Resources	7–86
7.6.2 Resource Management in Networks	7–89
7.6.3 Cross-layer Cooperation: Feedback	7–91
7.6.4 Cross-layer Cooperation: Control	7–93
7.6.5 Other Ways of Controlling Congestion in Networks	7–94
7.6.6 Delay Revisited	7–98
7.7. Wrapping up Networks	.7–99
7.8. Case Study: Mapping the Internet to the Ethernet	7-100
7.8.1 A Brief Overview of Ethernet	.7–100
7.8.2 Broadcast Aspects of Ethernet	
7.8.3 Layer Mapping: Attaching Ethernet to a Forwarding Network .	.7–103
7.8.4 The Address Resolution Protocol	
7.9. War Stories: Surprises in Protocol Design	
7.9.1 Fixed Timers Lead to Congestion Collapse in NFS	
7.9.2 Autonet Broadcast Storms	
7.9.3 Emergent Phase Synchronization of Periodic Protocols	.7 - 108

Saltzer & Kaashoek Ch. 0, p. x June 24, 2009 12:21 am

7.9.4 Wisconsin Time Server Meltdown	
Exercises	7–111
CHAPTER 8 Fault Tolerance: Reliable Systems from Unreliable	• Components
Overview	8–2
8.1. Faults, Failures, and Fault Tolerant Design	8–3
8.1.1 Faults, Failures, and Modules	8–3
8.1.2 The Fault-Tolerance Design Process	8–6
8.2. Measures of Reliability and Failure Tolerance	
8.2.1 Availability and Mean Time to Failure	
8.2.2 Reliability Functions	
8.2.3 Measuring Fault Tolerance	
8.3. Tolerating Active Faults	
8.3.1 Responding to Active Faults	
8.3.2 Fault Tolerance Models	
8.4. Systematically Applying Redundancy	
8.4.1 Coding: Incremental Redundancy	
8.4.2 Replication: Massive Redundancy	
8.4.4 Repair	
8.5. Applying Redundancy to Software and Data	
8.5.1 Tolerating Software Faults	
8.5.2 Tolerating Software (and other) Faults by Separating Sta	
8.5.3 Durability and Durable Storage	
8.5.4 Magnetic Disk Fault Tolerance	
8.5.4.1 Magnetic Disk Fault Modes	
8.5.4.2 System Faults	
8.5.4.3 Raw Disk Storage	
8.5.4.4 Fail-Fast Disk Storage	
8.5.4.5 Careful Disk Storage	
8.5.4.6 Durable Storage: RAID 1	
8.5.4.7 Improving on RAID 1	
8.5.4.8 Detecting Errors Caused by System Crashes	
8.5.4.9 Still More Threats to Durability	
,	

Saltzer & Kaashoek Ch. 0, p. xi June 24, 2009 12:21 am

xii Contents

8.6. Wrapping up Reliability	8–51
8.6.1 Design Strategies and Design Principles	8-51
8.6.2 How about the End-to-End Argument?	8–52
8.6.3 A Caution on the Use of Reliability Calculations	8–53
8.6.4 Where to Learn More about Reliable Systems	8–53
8.7. Application: A Fault Tolerance Model for CMOS RAM	8–55
8.8. War Stories: Fault Tolerant Systems that Failed	8–57
8.8.1 Adventures with Error Correction	8–57
8.8.2 Risks of Rarely-Used Procedures: The National Archives	8–59
8.8.3 Non-independent Replicas and Backhoe Fade	8–60
8.8.4 Human Error May Be the Biggest Risk	8–61
8.8.5 Introducing a Single Point of Failure	8–63
8.8.6 Multiple Failures: The SOHO Mission Interruption	8–63
Exercises	8–64
CHAPTER 9 Atomicity: All-or-Nothing and Before-or-After	9–1
Overview	9–2
9.1. Atomicity	
9.1.1 All-or-Nothing Atomicity in a Database	
9.1.2 All-or-Nothing Atomicity in the Interrupt Interface	
9.1.3 All-or-Nothing Atomicity in a Layered Application	
9.1.4 Some Actions With and Without the All-or-Nothing Property	
9.1.5 Before-or-After Atomicity: Coordinating Concurrent Threads.	
9.1.6 Correctness and Serialization	9–16
9.1.7 All-or-Nothing and Before-or-After Atomicity	9–19
9.2. All-or-Nothing Atomicity I: Concepts	9–21
9.2.1 Achieving All-or-Nothing Atomicity: ALL_OR_NOTHING_PUT	
9.2.2 Systematic Atomicity: Commit and the Golden Rule	
9.2.3 Systematic All-or-Nothing Atomicity: Version Histories	9–30
9.2.4 How Version Histories are Used	9–37
9.3. All-or-Nothing Atomicity II: Pragmatics	9–38
9.3.1 Atomicity Logs	9–39
9.3.2 Logging Protocols	
9.3.3 Recovery Procedures	
9.3.4 Other Logging Configurations: Non-Volatile Cell Storage	9–47
9.3.5 Checkpoints	
9.3.6 What if the Cache is not Write-Through? (Advanced Topic)	9–53

Saltzer & Kaashoek Ch. 0, p. xii

June 24, 2009 12:21 am

9.4. Before-or-After Atomicity I: Concepts	. 9–54
9.4.1 Achieving Before-or-After Atomicity: Simple Serialization	. 9–54
9.4.2 The Mark-Point Discipline	. 9–58
9.4.3 Optimistic Atomicity: Read-Capture (Advanced Topic)	. 9–63
9.4.4 Does Anyone Actually Use Version Histories for Before-or-After	
Atomicity?	. 9–67
9.5. Before-or-After Atomicity II: Pragmatics	. 9–69
9.5.1 Locks	. 9–70
9.5.2 Simple Locking	. 9–72
9.5.3 Two-Phase Locking	. 9–73
9.5.4 Performance Optimizations	. 9–75
9.5.5 Deadlock; Making Progress	. 9–76
9.6. Atomicity across Layers and Multiple Sites	. 9–79
9.6.1 Hierarchical Composition of Transactions	. 9–80
9.6.2 Two-Phase Commit	. 9–84
9.6.3 Multiple-Site Atomicity: Distributed Two-Phase Commit	. 9–85
9.6.4 The Dilemma of the Two Generals	. 9–90
9.7. A More Complete Model of Disk Failure (Advanced Topic)	. 9–92
9.7.1 Storage that is Both All-or-Nothing and Durable	. 9–92
9.8. Case Studies: Machine Language Atomicity	. 9–95
9.8.1 Complex Instruction Sets: The General Electric 600 Line	. 9–95
9.8.2 More Elaborate Instruction Sets: The IBM System/370	. 9–90
9.8.3 The Apollo Desktop Computer and the Motorola M68000	
Microprocessor	. 9–97
Exercises	9–98
CHAPTER 10 Consistency	10–1
Overview	10 ′
10.1. Constraints and Interface Consistency 10.2. Cache Coherence	
10.2.1 Coherence, Replication, and Consistency in a Cache	
10.2.2 Eventual Consistency with Timer Expiration	
10.2.3 Obtaining Strict Consistency with a Fluorescent Marking Pen.	
10.2.4 Obtaining Strict Consistency with the Snoopy Cache	
10.3. Durable Storage Revisited: Widely Separated Replicas	
10.3.1 Durable Storage and the Durability Mantra	
10.3.2 Replicated State Machines	10-1

Saltzer & Kaashoek Ch. 0, p. xiii June 24, 2009 12:21 am

xiv Contents

10.3.3	Shortcuts to Meet more Modest Requirements	10-13
10.3.4	Maintaining Data Integrity	10-15
10.3.5	Replica Reading and Majorities	10–16
	Backup	
10.3.7	Partitioning Data	10–18
10.4. Rec	onciliation	10–19
10.4.1	Occasionally Connected Operation	10-20
10.4.2	A Reconciliation Procedure	10-22
	Improvements	
10.4.4	Clock Coordination	10–26
10.5. Pers	pectives	10–26
10.5.1	History	10–27
10.5.2	Trade-Offs	10–28
10.5.3	Directions for Further Study	10–31
Exercises		10–32
CHAPTER 11	Information Security	11–1
Overview.		11–4
11.1. Intr	oduction to Secure Systems	11–5
	Threat Classification	
11.1.2	Security is a Negative Goal	11–9
11.1.3	The Safety Net Approach	11-10
11.1.4	Design Principles	11–13
11.1.5	A High d(technology)/dt Poses Challenges For Security	11–17
11.1.6	Security Model	11–18
11.1.7	Trusted Computing Base	11–26
11.1.8	The Road Map for this Chapter	11–28
11.2. Aut	henticating Principals	11–28
11.2.1	Separating Trust from Authenticating Principals	11–29
11.2.2	Authenticating Principals	11–30
11.2.3	Cryptographic Hash Functions, Computationally Secure,	Window of
	Validity	
11.2.4	Using Cryptographic Hash Functions to Protect Passwords	311–34
11.3. Aut	henticating Messages	11–36
11.3.1	$Message\ Authentication\ is\ Different\ from\ Confidentiality\ .$	11–37
	Closed versus Open Designs and Cryptography	
11.3.3	Key-Based Authentication Model	11–41

Saltzer & Kaashoek Ch. 0, p. xiv

June 24, 2009 12:21 am

Saltzer & Kaashoek Ch. 0, p. xv June 24, 2009 12:21 am

xvi Contents

11.7. Advanced Topic: Reasoning about Authentication	11–85
11.7.1 Authentication Logic	
11.7.1.1 Hard-wired Approach	11–88
11.7.1.2 Internet Approach	11–88
11.7.2 Authentication in Distributed Systems	11–89
11.7.3 Authentication across Administrative Realms	11–90
11.7.4 Authenticating Public Keys	11–92
11.7.5 Authenticating Certificates	
11.7.6 Certificate Chains	11–97
11.7.6.1 Hierarchy of Central Certificate Authorities	11–97
11.7.6.2 Web of Trust	11–98
11.8. Cryptography as a Building Block (Advanced Topic)	11–99
11.8.1 Unbreakable Cipher for Confidentiality (One-Time Pad)	11–99
11.8.2 Pseudorandom Number Generators	11–101
11.8.2.1 Rc4: A Pseudorandom Generator and its Use	11–101
11.8.2.2 Confidentiality using RC4	11–102
11.8.3 Block Ciphers	11–103
11.8.3.1 Advanced Encryption Standard (AES)	11–103
11.8.3.2 Cipher-Block Chaining	11–105
11.8.4 Computing a Message Authentication Code	
11.8.4.1 MACs Using Block Cipher or Stream Cipher	11–107
11.8.4.2 MACs Using a Cryptographic Hash Function	11–107
11.8.5 A Public-Key Cipher	
11.8.5.1 Rivest-Shamir-Adleman (RSA) Cipher	
11.8.5.2 Computing a Digital Signature	
11.8.5.3 A Public-Key Encrypting System	
11.9Summary	
11.10. Case Study: Transport Layer Security (TLS) for the Web	
11.10.1 The TLS Handshake	
11.10.2 Evolution of TLS	11–120
11.10.3 Authenticating Services with TLS	11–121
11.10.4 User Authentication	11–123
11.11. War Stories: Security System Breaches	11–125
11.11.1 Residues: Profitable Garbage	11–126
11 11 1 1 1963: Residues in CTSS	11_126

Saltzer & Kaashoek Ch. 0, p. xvi

11.	11.1.2	1997: Residues in Network Packets	11-12
11.	11.1.3	2000: Residues in HTTP	11-12
11.	11.1.4	Residues on Removed Disks	11-128
11.	11.1.5	Residues in Backup Copies	11–128
		Magnetic Residues: High-Tech Garbage Analysis	
		2001 and 2002: More Low-tech Garbage Analysis	
		text Passwords Lead to Two Breaches	
11.11.	3 The	Multiply Buggy Password Transformation	11–13
11.11.	4 Cont	trolling the Configuration	11–13
11.	11.4.1	Authorized People Sometimes do Unauthorized Things	11–132
11.	11.4.2	The System Release Trick	11–132
11.	11.4.3	The Slammer Worm	11–132
11.11.	5 The	Kernel Trusts the User	11-135
11.	11.5.1	Obvious Trust	11-13
11.	11.5.2	Nonobvious Trust (Tocttou)	11–130
11.	11.5.3	Tocttou 2: Virtualizing the DMA Channel	11–130
		nology Defeats Economic Barriers	
11.	11.6.1	An Attack on Our System Would be Too Expensive	11–137
11.	11.6.2	Well, it Used to be Too Expensive	11–13
11.11.	7 Mere	Mortals Must be Able to Figure Out How to Use it	11–13
11.11.	8 The	Web can be a Dangerous Place	11-139
		Reused Password	
11.11.	10 Sign	naling with Clandestine Channels	11–14
11.	11.10.1	Intentionally I: Banging on the Walls	11–14
11.	11.10.2	2 Intentionally II	11–14
11.	11.10.3	3 Unintentionally	11-142
11.11.	11 It S	eems to be Working Just Fine	11–142
11.	11.11.1	I Thought it was Secure	11-143
11.	11.11.2	2 How Large is the Key SpaceReally?	11–14
11.	11.11.3	B How Long are the Keys?	11–14
		ection For Fun and Profit	
11.	11.12.1	Injecting a Bogus Alert Message to the Operator	11-14
11.	11.12.2	2 CardSystems Exposes 40,000,000 Credit Card Records	to SQI
		Injection	11-14
11.11.	13 Haz	zards of Rarely-Used Components	11-148

Saltzer & Kaashoek Ch. 0, p. xvii June 24, 2009 12:21 am

xviii Contents

11.11.14 A Thorough System Penetration Job	11–148
11.11.15 Framing Enigma	11–149
Exercises	
Suggestions for Further Reading	SR-1
Problem Sets	PS-1
Glossary	GL-1
Complete Index of Concepts	INDEX-

Saltzer & Kaashoek Ch. 0, p. xviii June 24, 2009 12:21 am

List of Sidebars

PART I [In Printed Textbook]

Sidebar 1.2: W Sidebar 1.3: To Sidebar 1.4: Th Sidebar 1.5: H	tems topping a Supertanker
Sidebar 2.1: To Sidebar 2.2: H Sidebar 2.3: Ro Sidebar 2.4: W	nents of Computer System Organization erminology: durability, stability, and persistence46 low magnetic disks work49 epresentation: pseudocode and messages54 What is an operating system?79 luman engineering and the principle of least astonishment85
Sidebar 3.1: G Sidebar 3.2: H CHAPTER 4 Enfo Sidebar 4.1: En Sidebar 4.2: Ro Sidebar 4.3: Ro Sidebar 4.4: Ti	Design of Naming Schemes Identification a unique name from a timestamp
Sidebar 5.1: RS Sidebar 5.2: Co Sidebar 5.3: Bo Sidebar 5.4: Pr Sidebar 5.5: Po Sidebar 5.6: In Sidebar 5.7: Av	precing Modularity with Virtualization 5M, test-and-set and avoiding locks

Saltzer & Kaashoek Ch. 0, p. xix

June 24, 2009 12:21 am

xix

List of Sidebars

 $\mathbf{X}\mathbf{X}$

	Design hint: Optimiz for the common case
Sidebar 6.3:	Design hint: Instead of reducing latency, hide it
Sidebar 6.4:	RAM latency
Sidebar 6.5:	Design hint: Separate mechanism from policy
Sidebar 6.6:	OPT is a stack algorithm and optimal
Sidebar 6.7:	Receive livelock
Sidebar 6.8:	Priority inversion
Part II [On-Li	ne]
CHAPTER 7 Th	ne Network as a System and as a System Component
Sidebar 7.1:	Error detection, checksums, and witnesses
Sidebar 7.2:	The Internet
Sidebar 7.3:	Framing phase-encoded bits
Sidebar 7.4:	Shannon's capacity theorem
Sidebar 7.5:	Other end-to-end transport protocol interfaces
Sidebar 7.6:	Exponentially weighted moving averages7–70
Sidebar 7.7:	What does an acknowledgment really mean?7–77
Sidebar 7.8:	The tragedy of the commons7–93
Sidebar 7.9:	Retrofitting TCP7–95
Sidebar 7.10	The invisible hand
	ault Tolerance: Reliable Systems from Unreliable Components
Sidebar 8.1:	Reliability functions
Sidebar 8.2:	Risks of manipulating MTTFs
	Are disk system checksums a wasted effort?
Sidebar 8.4:	Detecting failures with heartbeats
CHAPTER 9 At	omicity: All-or-Nothing and Before-or-After
	Actions and transactions
Sidebar 9.2:	Events that might lead to invoking an exception handler9–7
	Cascaded aborts
Sidebar 9.4:	The many uses of logs9–40

Saltzer & Kaashoek Ch. 0, p. xx June 24, 2009 12:21 am

List of Sidebars xxi

CHAPTER 10 Consistency

CHAPTER 11 Information Security			
Sidebar 11.1:	Privacy		
Sidebar 11.2:	Should designs and vulnerabilities be public?		
Sidebar 11.3:	Malware: viruses, worms, trojan horses, logic bombs, bots, etc $11-19$		
Sidebar 11.4:	Why are buffer overrun bugs so common?		

Saltzer & Kaashoek Ch. 0, p. xxi June 24, 2009 12:21 am

xxii List of Sidebars

Saltzer & Kaashoek Ch. 0, p. xxii

June 24, 2009 12:21 am

Preface to Part II

This textbook, *Principles of Computer System Design: An Introduction*, is an introduction to the principles and abstractions used in the design of computer systems. It is an outgrowth of notes written by the authors for the M.I.T. Electrical Engineering and Computer Science course 6.033, Computer System Engineering, over a period of 40-plus years.

The book is published in two parts:

- Part I, containing chapters 1-6 and supporting materials for those chapters, is a traditional printed textbook published by Morgan Kaufman, an imprint of Elsevier. (ISBN: 978–012374957–4)
- Part II, consisting of Chapters 7–11 and supporting materials for those chapters, is made available on-line by M.I.T. OpenCourseWare and the authors as an open educational resource.

Availability of the two parts and various supporting materials is described in the section with that title below.

Part II of the textbook continues a main theme of Part I—enforcing modularity—by introducing still stronger forms of modularity. Part I introduces methods that help prevent accidental errors in one module from propagating to another. Part II introduces stronger forms of modularity that can help protect against component and system failures and against malicious attacks. Part II explores communication networks, constructing reliable systems from unreliable components, creating all-or-nothing and before-or-after transactions, and implementing security. In doing so, Part II also continues a second main theme of Part I by introducing several additional design principles related to stronger forms of modularity.

A detailed description of the contents of the chapters of Part II can be found in Part I, in the section "About Part II" on page 369. Part II also includes a table of contents for both Parts I and II, copies of the Suggested Additional Readings and Glossary, Problem Sets for both Parts I and II, and a comprehensive Index of Concepts with page numbers for both Parts I and II in a single alphabetic list.

xxiii

Saltzer & Kaashoek Ch. 0, p. xxiii June 24, 2009 12:14 am

xxiv

Preface to Part II

Availability

The authors and MIT OpenCourseWare provide, free of charge, on-line versions of Chapters 7 through 11, the problem sets, the glossary, and a comprehensive index. Those materials can be found at

```
http://ocw.mit.edu/Saltzer-Kaashoek
```

in the form of a series of PDF files (requires Adobe Reader), one per chapter or major supporting section, as well as a single PDF file containing the entire set.

The publisher of the printed book also maintains a set of on-line resources at

```
www.ElsevierDirect.com/9780123749574
```

Click on the link "Companion Materials", where you will find Part II of the book as well as other resources, including figures from the text in several formats. Additional materials for instructors (registration required) can be found by clicking the "Manual" link.

There are two additional sources of supporting material related to the teaching of course 6.033 Computer Systems Engineering, at M.I.T. The first source is an Open-CourseWare site containing materials from the teaching of the class in 2005: a class description; lecture, reading, and assignment schedule; board layouts; and many lecture videos. These materials are at

```
http://ocw.mit.edu/6-033
```

The second source is a Web site for the current 6.033 class. This site contains the current lecture schedule which includes assignments, lecturer notes, and slides. There is also a thirteen-year archive of class assignments, design projects, and quizzes. These materials are all at

```
http://mit.edu/6.033
```

(Some copyrighted or privacy-sensitive materials on that Web site are restricted to current MIT students.)

Saltzer & Kaashoek Ch. 0, p. xxiv June 24, 2009 12:14 am

Acknowledgments

This textbook began as a set of notes for the advanced undergraduate course Engineering of Computer Systems (6.033, originally 6.233), offered by the Department of Electrical Engineering and Computer Science of the Massachusetts Institute of Technology starting in 1968. The text has benefited from some four decades of comments and suggestions by many faculty members, visitors, recitation instructors, teaching assistants, and students. Over 5,000 students have used (and suffered through) draft versions, and observations of their learning experiences (as well as frequent confusion caused by the text) have informed the writing. We are grateful for those many contributions. In addition, certain aspects deserve specific acknowledgment.

1. Naming (Section 2.2 and Chapter 3)

The concept and organization of the materials on naming grew out of extensive discussions with Michael D. Schroeder. The naming model (and part of our development) follows closely the one developed by D. Austin Henderson in his Ph.D. thesis. Stephen A. Ward suggested some useful generalizations of the naming model, and Roger Needham suggested several concepts in response to an earlier version of this material. That earlier version, including in-depth examples of the naming model applied to addressing architectures and file systems, and an historical bibliography, was published as Chapter 3 in Rudolf Bayer et al., editors, *Operating Systems: An Advanced Course, Lecture Notes in Computer Science 60*, pages 99–208. Springer-Verlag, 1978, reprinted 1984. Additional ideas have been contributed by many others, including Ion Stoica, Karen Sollins, Daniel Jackson, Butler Lampson, David Karger, and Hari Balakrishnan.

2. Enforced Modularity and Virtualization (Chapters 4 and 5)

Chapter 4 was heavily influenced by lectures on the same topic by David L. Tennenhouse. Both chapters have been improved by substantial feedback from Hari Balakrishnan, Russ Cox, Michael Ernst, Eddie Kohler, Chris Laas, Barbara H. Liskov, Nancy Lynch, Samuel Madden, Robert T. Morris, Max Poletto, Martin Rinard, Susan Ruff, Gerald Jay Sussman, Julie Sussman, and Michael Walfish.

3. Networks (Chapter 7[on-line])

Conversations with David D. Clark and David L. Tennenhouse were instrumental in laying out the organization of this chapter, and lectures by Clark were the basis for part of the presentation. Robert H. Halstead Jr. wrote an early draft set of notes about networking, and some of his ideas have also been borrowed. Hari Balakrishnan provided many suggestions and corrections and helped sort out muddled explanations, and Julie Sussman and Susan Ruff pointed out many opportunities to improve the presentation. The material on congestion control was developed with the help of extensive discussions

XXV

Saltzer & Kaashoek Ch. 0, p. xxv June 24, 2009 12:14 am

xxvi Acknowledgments

with Hari Balakrishnan and Robert T. Morris, and is based in part on ideas from Raj Jain.

4. Fault Tolerance (Chapter 8[on-line])

Most of the concepts and examples in this chapter were originally articulated by Claude Shannon, Edward F. Moore, David Huffman, Edward J. McCluskey, Butler W. Lampson, Daniel P. Siewiorek, and Jim N. Gray.

5. Transactions and Consistency (Chapters 9[on-line] and 10[on-line])

The material of the transactions and consistency chapters has been developed over the course of four decades with aid and ideas from many sources. The concept of version histories is due to Jack Dennis, and the particular form of all-or-nothing and before-or-after atomicity with version histories developed here is due to David P. Reed. Jim N. Gray not only came up with many of the ideas described in these two chapters, he also provided extensive comments. (That doesn't imply endorsement—he disagreed strongly about the importance of some of the ideas!) Other helpful comments and suggestions were made by Hari Balakrishnan, Andrew Herbert, Butler W. Lampson, Barbara H. Liskov, Samuel R. Madden, Larry Rudolph, Gerald Jay Sussman, and Julie Sussman.

6. Computer Security (Chapter II [on-line])

Sections 11.1 and 11.6 draw heavily from the paper "The Protection of Information in Computer Systems" by Jerome H. Saltzer and Michael D. Schroeder, *Proceedings of the IEEE 63*, 9 (September, 1975), pages 1278–1308. Ronald Rivest, David Mazières, and Robert T. Morris made significant contributions to material presented throughout the chapter. Brad Chen, Michael Ernst, Kevin Fu, Charles Leiserson, Susan Ruff, and Seth Teller made numerous suggestions for improving the text.

7. Suggested Outside Readings

Ideas for suggested readings have come from many sources. Particular thanks must go to Michael D. Schroeder, who uncovered several of the classic systems papers in places outside computer science where nobody else would have thought to look, Edward D. Lazowska, who provided an extensive reading list used at the University of Washington, and Butler W. Lampson, who provided a thoughtful review of the list.

8. The Exercises and Problem Sets

The exercises at the end of each chapter and the problem sets at the end of the book have been collected, suggested, tried, debugged, and revised by many different faculty members, instructors, teaching assistants, and undergraduate students over a period of 40 years in the process of constructing quizzes and examinations while teaching the material of the text.

Saltzer & Kaashoek Ch. 0, p. xxvi June 24, 2009 12:14 am

Acknowledgments xxvi

Certain of the longer exercises and most of the problem sets, which are based on leadin stories and include several related questions, represent a substantial effort by a single individual. For those problem sets not developed by one of the authors, a credit line appears in a footnote on the first page of the problem set.

Following each problem or problem set is an identifier of the form "1978–3–14". This identifier reports the year, examination number, and problem number of the examination in which some version of that problem first appeared.

> Jerome H. Saltzer M. Frans Kaashoek 2009

Saltzer & Kaashoek Ch. 0, p. xxvii June 24, 2009 12:14 am

xxvi Acknowledgments

Saltzer & Kaashoek Ch. 0, p. xxviii June 24, 2009 12:14 am

Computer System Design Principles

Throughout the text, the description of a design principle presents its name in a **bold-faced** display, and each place that the principle is used highlights it in *underlined italics*.

Design principles applicable to many areas of computer systems

• Adopt sweeping simplifications

So you can see what you are doing.

Avoid excessive generality

If it is good for everything, it is good for nothing.

Avoid rarely used components

Deterioration and corruption accumulate unnoticed—until the next use.

Be explicit

Get all of the assumptions out on the table.

Decouple modules with indirection

Indirection supports replaceability.

Design for iteration

You won't get it right the first time, so make it easy to change.

End-to-end argument

The application knows best.

Escalating complexity principle

Adding a feature increases complexity out of proportion.

Incommensurate scaling rule

Changing a parameter by a factor of ten requires a new design.

• Keep digging principle

Complex systems fail for complex reasons.

Law of diminishing returns

The more one improves some measure of goodness, the more effort the next improvement will require.

Open design principle

Let anyone comment on the design; you need all the help you can get.

Principle of least astonishment

People are part of the system. Choose interfaces that match the user's experience,

xxix

XXX Computer System Design Principles

expectations, and mental models.

Robustness principle

Be tolerant of inputs, strict on outputs.

Safety margin principle

Keep track of the distance to the edge of the cliff or you may fall over the edge.

• Unyielding foundations rule

It is easier to change a module than to change the modularity.

Design principles applicable to specific areas of computer systems

Atomicity: Golden rule of atomicity

Never modify the only copy!

• Coordination: One-writer principle

If each variable has only one writer, coordination is simpler.

Durability: The durability mantra

Multiple copies, widely separated and independently administered.

• Security: Minimize secrets

Because they probably won't remain secret for long.

• Security: Complete mediation

Check every operation for authenticity, integrity, and authorization.

• *Security:* Fail-safe defaults

Most users won't change them, so set defaults to do something safe.

• Security: Least privilege principle

Don't store lunch in the safe with the jewels.

• Security: Economy of mechanism

The less there is, the more likely you will get it right.

• Security: Minimize common mechanism

Shared mechanisms provide unwanted communication paths.

Design Hints (useful but not as compelling as design principles)

- Exploit brute force
- Instead of reducing latency, hide it
- Optimize for the common case
- Separate mechanism from policy