Plano Definições

Plano:

- $oldsymbol{\cdot}$ \dot{P}_c Ponto conhecido do plano
- \vec{n} Vetor normal ao plano

Raio:

- $R(t)=\dot{P_0}+ec{d_r}t$ The trustworthy equação do raio
- $\dot{P}=R(t)$ Um ponto de colisão hipotético do raio com as superfícies calculadas

Porque o produto escalar entre dois vetores perpendiculares sempre dá igual a 0, temos que o produto escalar entre um vetor \vec{v} que vai de \dot{P}_c até qualquer outro ponto pertencente ao plano e o vetor normal do plano (...que é perpendicular ao plano) vai ser igual a 0.

Daí, se o raio r(t) colidir em um ponto \dot{P} com o plano, temos que:

$$(\dot{P}-\dot{P}_c)\cdot \vec{n}=0$$

Como $\dot{P}=\dot{P}_0+ec{d}_r t$, então $\dot{P}-\dot{P}_c=\dot{P}_0+ec{d}_r t-\dot{P}_c=(\dot{P}_0-\dot{P}_c)+ec{d}_r t$ Substituindo $\dot{P}_0-\dot{P}_c=ec{w}$:

$$(\vec{w} + \vec{d_r}t) \cdot \vec{n} = 0$$
 $\implies \vec{w} \cdot \vec{n} + t\vec{d_r} \cdot \vec{n} = 0$
 $\implies t\vec{d_r} \cdot \vec{n} = -\vec{w} \cdot \vec{n}$
 $\implies t = -\frac{\vec{w} \cdot \vec{n}}{\vec{d_r} \cdot \vec{n}}$

Assim, devemos checar se $\vec{d_r}\cdot\vec{n}\neq 0$ (se for igual a 0, o raio de r(t) está paralelo ao plano e não há colisão)

E, é claro, checar se t>0 (t<0 significa que o ponto de colisão está atrás do observador)

E a normal? Ora, você já tem! Tá na definição do plano! ;D