EE2211 Tutorial 7

Question 1:

This question explores the use of Pearson's correlation as a feature selection metric. We are given the following training dataset.

	Datapoint 1	Datapoint 2	Datapoint 3	Datapoint 4	Datapoint 5
Feature 1	0.3510	2.1812	0.2415	-0.1096	0.1544
Feature 2	1.1796	2.1068	1.7753	1.2747	2.0851
Feature 3	-0.9852	1.3766	-1.3244	-0.6316	-0.8320
Target y	0.2758	1.4392	-0.4611	0.6154	1.0006

What are the top two features we should select if we use Pearson's correlation as a feature selection metric? Here's the definition of Pearson's correlation. Given N pairs of datapoints $\{(a_1,b_1),(a_2,b_2),\cdots,(a_N,b_N)\}$, the Pearson's correlation r is defined as r=

$$\frac{\frac{1}{N}\sum_{n=1}^{N}(a_{i}-\bar{a})(b_{i}-\bar{b})}{\sqrt{\frac{1}{N}\sum_{n=1}^{N}(a_{i}-\bar{a})^{2}}\sqrt{\frac{1}{N}\sum_{n=1}^{N}(b_{i}-\bar{b})^{2}}}, \text{ where } \bar{a} = \frac{1}{N}\sum_{n=1}^{N}a_{n} \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } \bar{b} = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ are the empirical means of } a \text{ and } b = \frac{1}{N}\sum_{n=1}^{N}b_{n} \text{ and } b = \frac{1}{N}\sum_{n=1}^{$$

b respectively. $\sigma_a = \sqrt{\frac{1}{N}\sum_{n=1}^N(a_i-\bar{a})^2}$ and $\sigma_b = \sqrt{\frac{1}{N}\sum_{n=1}^N(b_i-\bar{b})^2}$ are referred to as the empirical standard deviation of a and b. $Cov(a,b) = \frac{1}{N}\sum_{n=1}^N(a_i-\bar{a})(b_i-\bar{b})$ is known as the empirical covariance between a and b

Ouestion 2:

This question further explores linear regression and ridge regression. The following data pairs are used for training:

$$\{x = -10\} \rightarrow \{y = 4.18\}$$

$$\{x = -8\} \rightarrow \{y = 2.42\}$$

$$\{x = -3\} \rightarrow \{y = 0.22\}$$

$$\{x = -1\} \rightarrow \{y = 0.12\}$$

$$\{x = 2\} \rightarrow \{y = 0.25\}$$

$$\{x = 7\} \rightarrow \{y = 3.09\}$$

The data for testing are as follows:

$$\{x = -9\} \to \{y = 3\}$$

$$\{x = -7\} \to \{y = 1.81\}$$

$$\{x = -5\} \to \{y = 0.80\}$$

$$\{x = -4\} \to \{y = 0.25\}$$

$$\{x = -2\} \to \{y = -0.19\}$$

$$\{x = 1\} \to \{y = 0.4\}$$

$$\{x = 4\} \to \{y = 1.24\}$$

$$\{x = 5\} \to \{y = 1.68\}$$

$$\{x = 6\} \to \{y = 2.32\}$$

$$\{x = 9\} \to \{y = 5.05\}$$

- (a) Use the polynomial model from orders 1 to 6 to train and test the data without regularization. Plot the Mean Squared Errors (MSE) over orders from 1 to 6 for both the training and the test sets. Which model order provides the best MSE in the training and test sets? Why? [Hint: the underlying data was generated using a quadratic function + noise]
- (b) Use regularization (ridge regression) $\lambda=1$ for all orders and repeat the same analyses. Compare the plots of (a) and (b). What do you see? [Hint: the underlying data was generated using a quadratic function + noise]