Tutorial 5.1: ECC over prime field P

Instruction: Take your $i = 10 + (ID \mod 100 \text{ or nearest assigned number})$.

Step 0: My sample number is i=10+39=49. I am taking $P_1(x_1, y_1) = (22,95)$.

Table 5: A list of points on a curve E: $y^2 = x^3 - 4x + 7 \pmod{257}$

i	x_i	<i>y</i> _i	i	x_i	<i>y</i> _i	i	x_i	<i>y</i> _i
1	1	2	21	161	136	41	34	232
2	239	186	22	193	197	42	57	184
3	46	28	23	72	211	43	65	47
4	97	131	24	114	2	44	209	173
5	18	192	25	142	255	45	96	104
6	49	36	26	103	154	46	147	128
7	50	231	27	16	21	47	130	200
8	28	197	28	44	132	48	172	130
9	112	53	29	36	197	49	22	95
10	22	162	30	36	60	50	112	204
11	172	127	31	44	125	51	28	60
12	130	57	32	16	236	52	50	26
13	147	129	33	103	103	53	49	221
14	96	153	34	142	2	54	18	65
15	209	84	35	114	255	55	97	126
16	65	210	36	72	46	56	46	229
17	57	73	37	193	60	57	239	71
18	34	25	38	161	121	58	1	255
19	79	224	39	141	183	59	-1	-1
20	141	74	40	79	33	60	1	2

Choose a prime number as a maximum. Let p=257.

1. Choose a random sample a = -4 and b = 7 for the curve

$$E: y^2 = x^3 + ax + b$$

such that $4a^3 + 27b^2 \neq 0 \pmod{p}$.

Muhammad Izham Bin Norhamadi B032020039

2. Choose a base Point $P_1(x_1, y_1) = (x_i, y_i)$. Compute $P_2(x_2, y_2) = 2 \otimes P_1(x_1, y_1)$ **Double Point**

Let (x_1, y_1) be a point on an elliptic curve $E(F_p)$, and $(x_1, y_1) \neq (x_2, -y_2)$ then let $(x_2, y_2) = 2 \otimes (x_1, y_1)$ such that

$$x_2 = \left(\frac{3x_1^2 + a}{2y_1}\right)^2 - 2x_1$$
 and $y_2 = \frac{3x_1^2 + a}{2y_1} \cdot (x_1 - x_2) - y_1$

Let slope of the tangent line

$$c = \frac{3x_1^2 + a}{2y_1} ,$$

then

$$x_2 = c^2 - 2x_1$$
 and $y_2 = c(x_1 - x_2) - y_1$.

Take
$$2y_1 = 2.95 = 190 \pmod{257}$$
.

First, we need to compute an inverse of denominator $(2y_1)^{-1} \equiv (190)^{-1} = 23 \pmod{257}$ using Extended Euclidean Algorithm in excel.

Extended Euclidean Algorithm

i	b =	a *	q	+ r	u	ν	w = u - vq
0	257	190	1	67	0	1	-1
1	190	67	2	56	1	-1	3
2	67	56	1	11	-1	3	-4
3	56	11	5	1	3	-4	23

If w is in negative add 257

The answer is $190^{-1} \equiv 23$

Second, we compute the slope of the tangent line

$$c = \frac{3x_1^2 + a}{2y_1} = [3(22)^2 - 4](23) = [3.484 - 4](23)$$
$$= 1448(23) = 33304 = 151 \pmod{257}$$

Third, we can start compute the

$$x_2 = c^2 - 2x_1 = 151^2 - 2.22 = 22801 - 44 = 141 \pmod{257}$$

Muhammad Izham Bin Norhamadi B032020039

Fourth, we can compute

$$y_2 = c(x_1 - x_2) - y_1$$
= 151·(22 - 141) - 95
= 151·(-119) - 95
= -17969 - 95
= -18,064
= 183 (mod 257)

A double point here is $P_2(x_2, y_2) = (141, 183)$

3. Add Point

To compute $P_3(x_3, y_3) = P_1(x_1, y_1) \oplus P_2(x_2, y_2) = (103, 103) \oplus (50, 231)$.

Let (x_1, y_1) and (x_2, y_2) are two points on an elliptic curve $E(F_p)$, and $(x_1, y_1) \neq (x_2, \pm y_2)$

then let $(x_3, y_3) = (x_1, y_1) \oplus (x_2, y_2)$ such that

$$x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)^2 - (x_1 + x_2)$$
 and $y_3 = \frac{y_2 - y_1}{x_2 - x_1}(x_1 - x_3) - y_1$

Let the slope

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 of the line connecting (x_1, y_1) and (x_2, y_2)

then

$$x_3 = m^2 - (x_1 + x_2)$$
 and $y_3 = m \cdot (x_1 - x_3) - y_1$.

Let us add 2 points, namely, $P_1(x_1, y_1) + P_2(x_2, y_2) = (22, 95) \oplus (141, 183)$.

First, we compute denominator of the slope of secant line,

$$x_2 - x_1 = 141 - 22 = 119 \pmod{257}$$

Extended Euclidean Algorithm

i	b =	a *	q +	r	u	v	w = u - vq
0	257	119	2	19	0	1	-2
1	119	19	6	5	1	-2	13
2	19	5	3	4	-2	13	-41
3	5	4	1	1	13	-41	<mark>54</mark>

Second, we need to compute an inverse of the denominator,

$$(x_2 - x_1)^{-1} = 119^{-1} \equiv 54 \pmod{257}$$

Let us compute the numerator = $y_2 - y_1 = 183 - 95 = 88 \pmod{257}$

Muhammad Izham Bin Norhamadi B032020039

Third, the slope of secant line shall be

$$m = \frac{y_2 - y_1}{x_2 - x_1} = 88.54 = 4752 \equiv 126 \pmod{257}$$

Finally, we can compute the add point,

$$x_3 = m^2 - (x_1 + x_2)$$

$$= 126^2 - (22 + 141)$$

$$= 15,876 - (163)$$

$$= 36 \pmod{257}$$

and

$$y_3 = m(x_1 - x_3) - y_1$$

$$= 126 \cdot (22 - 36) - 95$$

$$= 126 \cdot (-14) - 95$$

$$= -1,764 - 103$$

$$= 197 \pmod{257}$$

$$P_3(x_3, y_3) = (36,197)$$

Final answer $3\otimes(22,95) = (36,197)$

$$3\otimes(22,95) = 3\otimes49\otimes(1,2)$$
$$= 147\otimes(1,2)$$

Let us check $2 \otimes (141, 183) = 2 \otimes 39 \otimes (1, 2) = 78 \otimes (1, 2)$