# Numerical Optimization 2024 - Homework 2

## Aral Cimcim, k11720457

Artificial Intelligence, JKU Linz

April 9, 2024

### Problem 1.

(b)

(a)

$$x_{k} = 1 / k$$

$$x_{k+1} = 1 / (k+1)$$

$$x^{*} = 0$$

$$l_{k} = \frac{\parallel x_{k+1} - x^{*} \parallel}{\parallel x_{k} - x^{*} \parallel}$$

$$l_{k} = \frac{\parallel 1 / (k+1) - 0 \parallel}{\parallel 1 / k - 0 \parallel}$$

$$l_{k} = 1 - \frac{1}{k+1}$$

$$\lim_{k \to \infty} l_{k} = 1, \text{ sublinear}$$

$$x_{k} = 1 / k!$$

$$\lim_{k \to \infty} x_{k} = 0$$

$$l_{k} = \frac{\parallel 1 / (k+1)! - 0 \parallel}{\parallel 1 / k! - 0 \parallel}$$

$$l_{k} = \frac{k!}{(k+1)!}$$

$$l_k = \frac{1}{k+1}$$

 $\lim_{k \to \infty} l_k = 0 \quad \text{superlinear}$ 

Check for quadratic fractions:  $\frac{1}{(k+1)^2}$ 

$$\lim_{k \to \infty} \frac{1}{(k+1)^2} = 0$$

(c)  $x_k = a^k \text{ for some } a \in (0,1)$ 

$$x^* = 0$$

$$l_k = \frac{\|a^{k+1} - 0\|}{\|a^k - 0\|} = \frac{a^{k+1}}{a^k} = a$$
, converges linearly

(d) 
$$x_k = 1 + (0.5)^{2^k}$$

$$x^* = 1$$

$$l_k = \frac{\parallel 1 + (0.5)^{2^{k+1}} - 1 \parallel}{\parallel 1 + (0.5)^{2^k} - 1 \parallel} = \frac{(0.5)^{2^{k+1}}}{(0.5)^{2^k}} = (0.5)^{2^k}, \text{ superlinear}$$

Check for quadratic fractions:  $\frac{\parallel 1 + (0.5)^{2^{k+1}} - 1 \parallel}{\parallel 1 + (0.5)^{2^k} - 1 \parallel^2} = \frac{(0.5)^{2^{k+1}}}{((0.5)^{2^k})^2} = 1, \text{ quadratic}$ 

#### Problem 2.

$$x_{k+1} = x_k - \gamma(4x_k^3 - 20x_k)$$
 for  $\gamma = 1/88$  converges to  $x^* = \sqrt{5}$ 

Convergence of  $x_{k+1}$  is shown in Figure: 1, the  $l_k$  values for 100 iterations are in Figure: 2 and the corresponding plot is in Figure: 3. The values indicate linear convergence approaching to the constant 0.55 after 10 iterations.



Figure 1: Convergence of  $x_k - \gamma(4x_k^3 - 20x_k)$ 



Figure 2: 100 iterations for  $l_k$ 



Figure 3: Convergence of  $l_k$ 

#### Problem 3.

 $x_{k+1} = x_k + \gamma \cos(x_k)$  for any  $\gamma > 0$  either converges to  $x^* = \pi/2$  or does not converge

Figure: 4 shows 100 iterations for  $\gamma = 0.5$ 

I plotted the graph (Figure: 5) for the first 10 iterations where it is easier to see that  $l_k$  linearly converges to 0.5.

Figure: 6 shows 100 iterations for  $\gamma=3$  and Figure: 7 shows the convergence of  $l_k$  for  $\gamma=3$  reaching to 1.

Figure: 8 shows 100 iterations for  $\gamma=2$  and Figure: 9 shows the convergence of  $l_k$  for  $\gamma=2$  reaching to 1 slower than  $\gamma=3$ .

Figure: 10 shows 100 iterations for  $\gamma = 1$  and Figure: 11 shows the convergence of  $l_k$  for  $\gamma = 1$  reaching to 1 faster than  $\gamma = 3$  and  $\gamma = 2$ .

For gamma values 3, 2 and 1  $l_k$  converges sublinearly.



Figure 4: 100 iterations for  $\gamma=1/2$ 



Figure 5: Convergence of  $l_k$  for  $\gamma=1/2$ 

Figure 6: 100 iterations for  $\gamma = 3$ 



Figure 7: Convergence of  $l_k$  for  $\gamma=3$ 



Figure 8: 100 iterations for  $\gamma=2$ 



Figure 9: Convergence of  $l_k$  for  $\gamma=2$ 

Figure 10: 100 iterations for  $\gamma = 1$ 



Figure 11: Convergence of  $l_k$  for  $\gamma=1$