Lieber Moritz, es wäre super, wenn du deine Musterlösung für das Blatt direkt hochladen könntest. Dann könnten wir sie uns vor der Übung anschauen und hätten es einfacher zu folgen ©

Aufgabe 1 (4 Punkte). Sei $(\Omega, \mathcal{A}, \mathbb{F}, P)$ ein filtrierter Wahrscheinlichkeitsraum und T und S Stoppzeiten. Zeigen Sie

i)
$$\mathscr{F}_T \cap \mathscr{F}_S = \mathscr{F}_{T \wedge S}$$
.

Sei zunächst $A \in \mathscr{F}_{T \wedge S}$. Da $T \wedge S \leq S, T$ gilt nach Lemma 12 $A \in \mathscr{F}_{T} \cap \mathscr{F}_{S}$. Sei nun $A \in \mathscr{F}_{T} \cap \mathscr{F}_{S}$. Nach Definition von \mathscr{F}_{T} und \mathscr{F}_{S} gilt $A \cap \{S \leq t\} \in \mathscr{F}_{t}$ und $A \cap \{T \leq t\} \in \mathscr{F}_{t}$. Da \mathscr{F}_{t} eine σ -Algebra ist, gilt $A \cap (\{S \leq t\} \cup \{S \leq t\}) \in \mathscr{F}_{t}$. Die Behauptung folgt, denn $\{S \leq t\} \cup \{S \leq t\} = \{S \leq t \text{ oder } T \leq t\} = \{S \wedge T \leq t\}$.

ii) Für
$$Y \in L^1$$
 gilt $E[Y \mathbb{1}_{\{S=T\}} | \mathscr{F}_S] = E[Y \mathbb{1}_{\{S=T\}} | \mathscr{F}_T]$

Nach Definition des bedingten Erwartungswertes müssen wir zwei Sachen zeigen. Erstens, dass $E[Y\mathbbm{1}_{\{S=T\}}|\mathscr{F}_T]$ \mathscr{F}_S -messbar ist und zweitens, die definierende Eigenschaft des bedingten Erwartungswertes, die besagt, dass für alle $F_S \in \mathscr{F}_S$ gilt $E[\mathbbm{1}_{F_S}[Y\mathbbm{1}_{\{S=T\}}|\mathscr{F}_T]] = E[\mathbbm{1}_{F_S}Y\mathbbm{1}_{\{S=T\}}]$. Die Messbarkeit ist noch zu zeigen. Um die definierende Eigenschaft zu zeigen betrachte ein $F_S \in \mathscr{F}_S$. Nach Lemma 12.vi gilt $\mathscr{F}_S \cap \{S=T\} \in \mathscr{F}_T$. Da jedes Y einen bedingten Erwartungswertes bezüglich \mathscr{F}_T hat erhalten wir $E[\mathbbm{1}_{F_S \cap \{S=T\}}Y] = E[\mathbbm{1}_{F_S \cap \{S=T\}}E[Y|\mathscr{F}_T]] = E[\mathbbm{1}_{F_S}E[Y\mathbbm{1}_{\{S=T\}}|\mathscr{F}_T]]$, denn $\{S=T\} \in \mathscr{F}_T$ nach Lemma 15.

Aufgabe 3 (4 Punkte). Zeigen Sie das *Optional Stopping Theorem*: Sei T eine Stoppzeit und X ein \mathbb{F} -Supermartingal. Dann ist der gestoppte Prozess X^T wieder ein Supermartingal bzgl. der Filtrationen \mathbb{F} und $\mathbb{F}^T = (\mathscr{F}_{T \wedge t})_{t \in \mathbb{R}_+}$.

Hinweis: Dieses Resultat gilt analog für Submartingale und Martingale.

Wir gehen anhand des Beweises von Theorem 18 in [PP05] vor. Da $t \wedge T \leq T \text{ gilt mit dem Optional Sampling Theorem}$

$$X_{t \wedge T} \geq E[X_T | \mathscr{F}_{t \wedge T}]$$
.

wir benutzen die Zerlegung 1 = $\mathbbm{1}_{\{T < t\}} + \mathbbm{1}_{\{T \geq t\}}$ und erhalten

$$= E[X_T \mathbb{1}_{\{T < t\}} + X_T \mathbb{1}_{\{T \ge t\}} | \mathscr{F}_{t \wedge T}].$$

Auf $\{T < t\}$ ist $t \wedge T = T$. Daher ist $X_T \mathbbm{1}_{\{T < t\}}$ $\mathscr{F}_{t \wedge T}$ -messbar, wodurch

$$= X_T \mathbb{1}_{\{T < t\}} + E[X_T \mathbb{1}_{\{T \ge t\}} | \mathscr{F}_{t \wedge T}].$$

Definition 1. Ein einfacher Prozess H (in Finanzmathe auch: einfache Handelsstrategie) ist ein \mathbb{R}^d -wertiger adaptierter stochastischer Prozess der Form

$$H = \sum_{i=1}^{n} h_i \mathbb{1}_{\llbracket \tau_{i-1}, \tau_i \rrbracket}$$

für endliche Stoppzeiten $0 \le \tau_0 \le \tau_1 \le \cdots \le \tau_n < \infty$ und $h_i \in L^{\infty}(\mathscr{F}_{\tau_{i-1}})$ für alle $i = 1, \ldots, n$.

Definition 2. Sei S ein \mathbb{R}^d -wertiger stochastischer Prozess und H ein einfacher Prozess nach Definition 1. Das stochastische Integral für einfache Prozesse $H \cdot S$ ist definiert durch

$$(H \cdot S)_t := \int_0^t H_s dS_s := \sum_{i=1}^n \langle h_i, S_t^{\tau_i} - S_t^{\tau_{i-1}} \rangle_{\mathbb{R}^d}.$$

Aufgabe 4 (4 Punkte).

iii) Zeigen Sie: Für ein Martingal S und einen einfachen Prozess H ist das stochastische Integral $H \cdot S$ auch ein Martingal.

Hinweis: Zeigen Sie die Aussage iii) für d=1 und $H\cdot S=h(S^{T_2}-S^{T_1})$ für eine \mathscr{F}_{T_1} -messbare Zufallsvariable $h\in L^\infty$ und Stoppzeiten $T_2\geq T_1$. Wieso genügt das? Um die vereinfachte Aussage zu zeigen, ist die Fallunterscheidung $1=\mathbbm{1}_{\{T_1>s\}}+\mathbbm{1}_{\{T_1\leq s< T_2\}}+\mathbbm{1}_{\{T_2\leq s\}}$ sehr hilfreich.

References

[PP05] PROTTER, Philip E.; PROTTER, Philip E.: Stochastic differential equations. Springer, 2005