2. PROIECTAREA TRANSMISIEI PRIN CURELE TRAPEZOIDALE

Acest tip de transmisie se realizează între arbori paraleli, are în construcție cel puțin două roți pe care se înfășoară elementul intermediar elastic (cureaua) montată cu pretensionare (forță de întindere inițială), fiind recomandată pentru distanțe mari între axele de rotație ale elementului conducător și cel condus.

Principalele *elemente geometrice ale transmisiei prin curea* sunt reprezentate în figura 2.1.

Fig. 2.1 Elementele geometrice ale transmisiei prin curea

Elementul intermediar elastic (cureaua) este solicitat la *tracțiune* (datorită forțelor din ramura activă și cea pasivă) și la *încovoiere* (datorită înfășurării curelei pe roțile de curea).

Proiectarea unei transmisii prin curea cuprinde două etape principale:

- calculul transmisiei prin curea consta în:
 - alegerea tipului și dimensiunilor curelei;
 - determinarea elementelor geometrice;
 - stabilirea vitezei și a numărului de curele;
 - determinarea forțelor;
- construcția roților de curea consta în:
 - stabilirea dimensiunilor nominale;
 - stabilirea preciziei de execuție;
 - întocmirea desenelor de execuție.

2.1. Proiectarea transmisiei prin curele trapezoidale

2.1.1. Alegerea tipului de curea

Tipul de curea se alege din nomograme în funcție de puterea de calcul P_c și turația arborelui conducător n_i , știind că roata de curea conducătoare se montează direct pe axul de ieșire al motorului.

Din categoria curelelor trapezoidale se pot alege curele *clasice* (figura 2.2) sau *înguste* (figura 2.3).

Fig. 2.2 Alegerea curelei trapzoidale clasice

Fig. 2.3 Alegerea curelei trapezoidale înguste

Dimensiunile și *abaterile limită* ale secțiunii curelei trapezoidale înguste sunt date în figura 2.4 și tabelul 2.1, conform **STAS 7192 -65**.

Fig. 2.4 Dimensiunile secțiunii curelei trapezoidale

h

 $8 \pm 0,4$

 10 ± 0.5

 13 ± 0.5

 15 ± 0.5

 18 ± 0.6

 $b_{\rm max}$

2

2,8

3,5

4

4,8

α

40° ± 1°

Tabelul 2.1

Observații:

Tipul curelei

 $\frac{l_p xh}{\text{SPZ (8,5 x 8)}}$

SPA (11 x 10)

SPB (14 x 13)

 (16×15)

SPC (19 x 18)

- Nu este permisă folosirea curelei înguste (16 x 15) în construcții noi.

 l_p

8,5

11

14

16

19

- Simbolurile dimensiunilor din fig. 2.5 și tabelul 2.2 au următoarele semnificații:
- l_p lățimea primitivă, egală cu lățimea în dreptul fibrelor primitive, care nu se comprimă și nu se întind în timpul funcționării curelei; lățimea primitivă este o dimensiune funcțională de bază a curelei, determinând poziția ei în canalul roții de curea și deci raportul de transmitere realizat;
 - h înălțimea curelei trapezoidale;
 - b distanța de la latura superioară a curelei la fibrele primitive;
 - α unghiul curelei trapezoidale, format de cele două laturi neparalele ale secțiunii ei.
- Înălțimea efectivă b și lățimea laturilor paralele ale secțiunii se stabilesc de producător, în limitele determinate prin valorile b_{max} și h date în tabelul 2.2.

2.1.2. Calculul transmisiei prin curele trapezoidale

Acest calcul este reglementat prin **STAS 1163 - 71** pentru transmisii care funcționează în mediu ambiant normal, iar *algoritmul de calcul* este prezentat în tabelul 2.2.

Tabelul 2.2

		ı			elul 2.2
Poz.	Denumirea parametrului	Simbol	U.M.	Relația de calcul, observații	Exemplu
<u>A</u> .	Date inițiale				
1.	Puterea de calcul la arborele conducător	P_c	kW	$P_c = P$	
2.	Turația roții de curea conducătoare	n_i	rot/min		2800
3.	Raportul de transmitere	i_{tc}	-	ales anterior (impus): $i_{tc} = n_i / n_I$	2
4.	Regimul de lucru al transmisiei	-	-	 tipul masinii motoare; tipul masinii antrenate; numarul de ore de functionare din 24 ore; regimul dinamic 	
B. 1.	Calculul geometric Turația roții conduse	n_I	rot/min	$n_I = n_i / i_{tc}$	1400
2.	Tipul curelei	-	-	se alege din nomograme : - trapeziodală clasică - fig. 2.2 - trapezoidala îngustă - fig. 2.3	SPZ
3.	Diametrul primitiv al roții mici	D_{p1}	mm	Se alege constructiv funcție de tipul curelei, respectând prescripțiile din STAS 1162 - 67 (tabelul .).	100
4.	Diametrul primitiv al roții mari	D_{p2}	mm	$D_{p2} = i_{tc} \cdot D_{p1}$	200
5.	Distanța dintre axe preliminară	A_p	mm	$0.7 \cdot (D_{p1} + D_{p2}) \le A_p \le $ $2 \cdot (D_{p1} + D_{p2})$	350
6.	Unghiul dintre ramurile curelei	γ	grade	$\gamma = 2 \cdot \arcsin\left(\frac{D_{p2} - D_{p1}}{2 \cdot A}\right)$	16,4
7.	Unghiul de înfășurare la roata mică	$oldsymbol{eta}_1$	grade	$\beta_I = 180^0 - \gamma$	163,6
8.	Unghiul de înfașurare la roata mare	$oldsymbol{eta}_2$	grade	$\beta_2 = 180^0 + \gamma$	196,4
9.	Lungimea primitivă a curelei	L_p	mm	$L_{p} = 2 \cdot A \cdot \sin\left(\frac{\beta_{1}}{2}\right) + \frac{\pi}{360} \cdot \left(\beta_{1} \cdot D_{p1} + \beta_{2} \cdot D_{p2}\right)$	1178
		L_{pSTAS}	mm	Valoarea calculată se rotunjește la cea mai apropiată valoare standardizată din tabelul 2.4 funcție de tipul curelei.	1120

Tabelul 2.2 (continuare)

				Tabelul 2.2 (con	tinuare)
Poz.	Denumirea parametrului	Simbol	U.M.	Relația de calcul, observații	Exemplu
9.	Lungimea primitivă a curelei	L_p	mm	$L_p = 2 \cdot A \cdot \sin\left(\frac{\beta_1}{2}\right) +$	1178
				$\frac{\pi}{360} \cdot \left(\beta_1 \cdot D_{p1} + \beta_2 \cdot D_{p2}\right)$	
		L_{pSTAS}	mm	Valoarea calculată se rotunjește la cea mai apropiată valoare standardizată din tabelul .5. funcție de tipul curelei.	1120
10.	Distanța dintre axe recalculată	A	mm	$A = \frac{L_{pS} - \frac{\pi}{360} \left(\beta_1 \cdot D_{p1} + \beta_2 \cdot D_{p2}\right)}{2 \cdot \sin\left(\frac{\beta_1}{2}\right)}$	320
<u>C</u> .	Calculul cinematic			D.	1.1.7
1.	Viteza periferică a curelei	v	m/s	$v = \frac{\pi \cdot D_{p1} \cdot n_1}{60 \cdot 1000}$	14,7
2.	Coeficientul de funcționare	c_f	-	Se stabileşte din tabelul 2.3	1.2
3.	Coeficientul de lungime	c_L	-	Se stabileşte din tabelul 2.4	0,93
4.	Coeficientul de înfașurare	c_{β}	-	Se stabileşte din tabelul 2.5	0,96
5.	Puterea nominală transmisă de o curea	P_0	kW	Se alege în funcție de tipul curelei din tabelele 2.72.11	4,40
6.	Numărul de curele preliminar	z_0	-	$z_0 = \frac{c_f \cdot P_c}{c_L \cdot c_\beta \cdot P_0}$	4,28
7.	Coeficientul numărului de curele	c_z	-	Se alege din tabelul 2.6	0.90
8.	Numarul definitive de curele	z	-	$z = \frac{z_0}{c_z}$. Se recomandă : $z \le 8$	4,75 se ia : 5
9.	Numărul de roți	Х	-	Rezultă constructiv	2
<u>D</u> .	Calculul de rezistență				
1.	Frecvenţa încovoierilor curelei	f	Hz	$f = \frac{10^3 \cdot x \cdot v}{L_{pSTAS}}$	
2.	Forta periferică transmisă	F	N	$F = 10^3 \cdot \frac{P_C}{v}$ $F_0 = (1,52) \cdot F$	955
3.	Forța de întindere a curelei	F_0	N	$F_0 = (1,52) \cdot F$	1430 1910
4.	Cotele de modificare a	X		$X \ge 0.03 L_p$	≥ 37,5
	distanței dintre axe	Y		$Y \ge 0.015 L_p$ - numai la	≥ 18,8
				transmisiile fără role de întindere	

Coeficientul de functionare c_f

Tabelul 2.3

		1							belul	2.3
Felul incarcarii si	tipul masinii actionate			ipul mas	1			1		
Felul incarcarii	Tipul masinii	monod trifaza prin autotr sau cu stea tr - moto parale -moto intern. multi	r cu ardo a cu 4 sa cilindrii na cu <i>n <</i> n	ator pare in ere au mai < 600	mome pornin -moto comp -masi sau m arede 2 sau	re ridic or de c.o ound ni cu al lotor cu re inter 3 cilino	at c bur i ma cu dri	rotoru scurto pornii sau ci colivi - moto serie -moto intern cilind	eircuit, ore direction dubla e de versor de c. or cu arcia cu un ru	cu eta verita c tip dere
				ul de or				iei din 2		1
		< 8	8-	16-	< 8	8-	16-	< 8	8-	16-
			16	24		16	24		16	24
76			1	1	I	$c_{\rm f}$	1	1		
Moment de pornire pana la 120% din momentul moninal Regim de lucru aproape constant	- Generatoare electrice usoare -Pompe si compresoare centrifugale - Transportoare cu banda - Strunguri, masini de gaurit si alezat - Ventilatoare - Separatoare - Site usoare	1.0	1.1	1.4	1.1	1.2	1.5	1.2	1.4	1.6
Moment de pornire pana la 150% din monentul nominal Variatii neinsemnate ale regimul de lucru	- Generatoare electrice - Pompe cu piston si compresoare cu 3 simai multi cilindrii - Ventilatoare - Transportoare cu lant, elevatoare - Masini de frezat, strunguri revolver, ferastraie disc pt lemn, transmisii - Masini pt industriile: alimentara, textile si hartie - Site grele, cuptoare rotative	1.1	1.2	1.5	1.2	1.4	1.6	1.3	1.5	1.7
Moment de pornire pana la 200% monentul nominal Variatii insemnate ale regimul de lucru	- Pompe cu piston, compresoare cu 1-2 cilindrii - Ventilatoare grele, trnsportoare elicoidale sau cu cupe	1.2	1.3	1.6	1.3	1.5	1.7	1.4	1.6	1.0

	- Dezintegratoare - Masini de rabotat, mortezat si polizat - Prese cu surub si cu excentric, cu volant relativ greu -Masini de tesut si egrenat bumbac									
Moment de pornire pana la 300% din momentul nominal Regim de lucru alternativ si socuri	- Masini de ridicat, excavat si dragat - Prese cu surub si cu excentric, cu volant relativ usor - Foarfeci mecanice, ciocane pneumatice -Mori cu bile, cu pietre, cu valturi - Concasoare si malaxoare	1.3	1.5	1.7	1.4	1.6	1.8	1.5	1.7	2.0

Coeficientul de lungime c_L

Tabelul 2.4

										<u> I ab</u> e	lui <i>2.</i> 4	<u>+ </u>
T						Tip	ul cure	elei				
Lungimea rimitive			Cur	ele cla	sice				Cure	le ingu	ste	
L _p [mm]	Y	Z	Α	В	С	D	Е	SPZ	SPA	SPB	16×15	SPC
L _p [IIIIII]							c_{L}					
400	1,06	0,79										
450	1,08	0,80										
500	1,11	0,81										
560	1,14	0,82										
630		0,84	0,81					0,82				
710		0,86	0,83					0,84				
800		0,90	0,85					0,86	0,81			
900		0,92	0,87					0,88	0,83			
1000		0,94	0,89	0,84				0,90	0,85			
1120		0,95	0,91	0,86				0,93	0,87			
1250		0,98	0,93	0,88				0,94	0,89	0,82		
1400		1,01	0,96	0,90				0,96	0,91	0,84		
1600			0,99	0,93				1,00	0,93	0,86	0,85	
1700			1,00	0,94				1,01	0,94	0,87	0,86	
1800			1,01	0,95	0,86			1,01	0,95	0,88	0,87	
2000			1,03	0,98	0,88			1,02	0,96	0,90	0,89	
2240			1,06	1,00	0,91			1,05	0,98	0,92	0,91	0,83
2500			1,09	1,03	0,93			1,07	1,00	0,94	0,93	0,86
2800				1,05	0,95			1,09	1,02	0,96	0,94	0,88
3150				1,07	0,97	0,86		1,11	1,04	0,98	0,96	0,90
3550				1,09	0,99	0,88		1,13	1,06	1,00	0,97	0,92
3750				1,11	1,00	0,90			1,07	1,01	0,98	0,93
4000				1,13	1,02	0,91			1,08	1,02	0,99	0,94
4500				1,15	1,04	0,93			1,09	1,04	1,00	0,96
5000				1,18	1,07	0,96	0,92			1,06	1,03	0,98

5600		1,20	1,09	0,98	0,95		1,08	1,05	1,00
6300			1,12	1,01	0,97		1,10	1,07	1,02
7100			1,15	1,04	1,00		1,12	1,09	1,04
8000			1,18	1,06	1,02		1,14	1,10	1,06
9000			1,21	1,09	1,05			1,12	1,08
10000			1,23	1,11	1,07			1,14	1,10
11200				1,14	1,10				1,12
12500				1,17	1,13				1,14
14000				1,19	1,15				
16000					1,18				

Coeficientul de înfășurare c_{β}

Tabelul 2.5

	-	
$\frac{D_{p1}-D_{p2}}{A}$	Unghiul de infasurare β_1 [grade]	c_{eta}
0.0	180	1.00
0.1	174	0.99
0.2	169	0.97
0.3	163	0.96
0.4	157	0.94
0.5	151	0.93
0.6	145	0.91
0.7	139	0.89
0.8	133	0.87
0.9	127	0.85
1.0	120	0.82
1.1	113	0.80
1.2	106	0.77
1.3	99	0.73
1.4	91	0.70
1.5	83	0.65

Coeficientul numărului de curele c_z

Tabelul 2.6

Numărul de curele	c_z
2 3	0,95
4 6	0,90
peste 6	0,85

Puterea nominală transmisă de o curea P_0

Curele tip SPZ

Tabelul 2.7

Dimension primity Agentic Agen																Tab	elul	<i>Z.1</i>		
Imm 1	Diametrul primitiv	Raportul de							T	uratia	rotii m	ici n ₁ [1	ot/min]						
	al rotii mici D_{n1}	transmitere	200	400	700	800	950	1200	1450	1600	2000	2400	2800	3200	3600	4000	4500	5000	5500	6000
63		\mathbf{i}_{tc}									Роп	kW1								
100	. ,										- 0 1									
100		1.00	0 198	0.345	0.54	0.59	0.68	0.81	0.93	1.00	1 17	1 32	1 45	1 56	1.65	1 73	1.81	1.85	1.87	1.85
140																				
1.00	63																			
100																				
110																				
11.05		≥ 3,00	0,233	0,423	0,08	0,76	0,87	1,06	1,23	1,33	1,38	1,81	2,02	2,22	2,40	2,36	2,74	2,88	2,99	3,08
11.05		1.00	0.25	0.44	0.70	0.70	0.00	1.00	1.05	1.24	1.50	1.00	2 00	2.10	2 22	2.45	2.50	2 (0	2.52	2.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c} 1.50 \\ 23.00 \\ 0.28 \\ 0.51 \\ 0.81 \\ 0.81 \\ 0.90 \\ 0.82 \\ 0.51 \\ 0.81 \\ 0.81 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.83 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.83 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.83 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.83 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.82 \\ 0.90 \\ 0.90 \\ 0.90 \\ 0.91 \\ 0.10 \\ 0.10 \\ 0.102 \\ 0$	71																			
80	, -																			
80																				
80		≥ 3,00	0,29	0,53	0,84	0,95	1,09	1,32	1,54	1,68	2,00	2,29	2,57	2,82	3,07	3,28	3,52	3,71	3,86	3,97
80																				
1,00																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	οU							1,50												
$\begin{array}{c} 1.00 & 0.37 & 0.68 & 1.08 & 1.20 & 1.40 & 1.70 & 1.98 & 2.14 & 2.55 & 2.92 & 3.27 & 3.56 & 3.83 & 4.06 & 4.30 & 4.46 & 4.55 & 4.55 \\ 1.05 & 0.38 & 0.69 & 1.12 & 1.26 & 1.45 & 1.76 & 2.05 & 2.22 & 2.65 & 3.05 & 3.45 & 3.73 & 4.02 & 4.27 & 4.53 & 4.71 & 4.83 & 4.86 \\ 1.20 & 0.39 & 0.71 & 1.15 & 1.29 & 1.50 & 1.82 & 2.13 & 2.31 & 2.75 & 3.17 & 3.55 & 3.09 & 4.21 & 4.47 & 4.75 & 4.97 & 5.11 & 5.17 \\ 1.50 & 0.40 & 0.736 & 1.19 & 1.34 & 1.54 & 1.88 & 2.20 & 2.37 & 2.65 & 2.90 & 3.69 & 4.06 & 4.39 & 4.68 & 4.99 & 5.27 & 5.39 & 5.48 \\ \ge 3.00 & 0.41 & 0.76 & 1.23 & 1.37 & 1.60 & 1.94 & 2.28 & 2.47 & 2.96 & 3.42 & 3.84 & 4.24 & 4.58 & 4.89 & 5.22 & 5.48 & 5.67 & 5.79 \\ \hline 1.00 & 0.435 & 0.80 & 1.28 & 1.43 & 1.66 & 2.01 & 2.35 & 2.55 & 3.05 & 3.49 & 3.90 & 4.25 & 4.58 & 4.89 & 5.22 & 5.48 & 5.67 & 5.79 \\ \hline 1.00 & 1.05 & 0.45 & 0.81 & 1.32 & 1.48 & 1.71 & 2.08 & 2.42 & 2.63 & 3.15 & 3.62 & 4.05 & 4.43 & 4.76 & 5.05 & 5.34 & 5.51 & 5.63 & 5.63 \\ \hline 1.105 & 0.45 & 0.83 & 1.35 & 1.51 & 1.76 & 2.14 & 2.51 & 2.71 & 3.25 & 3.74 & 4.19 & 4.59 & 4.94 & 5.25 & 5.55 & 5.79 & 5.80 & 5.94 \\ \hline 1.50 & 0.46 & 0.85 & 1.38 & 1.56 & 1.81 & 2.21 & 2.58 & 2.80 & 3.35 & 3.86 & 4.33 & 4.75 & 5.14 & 5.66 & 5.86 & 6.96 & 6.56 \\ \hline 1.20 & 0.515 & 0.951 & 0.951 & 1.55 & 1.74 & 2.01 & 2.45 & 2.88 & 3.12 & 3.74 & 4.92 & 5.32 & 5.67 & 6.03 & 6.30 & 6.36 & 6.56 \\ \hline 1.50 & 0.54 & 0.99 & 1.62 & 1.82 & 2.12 & 2.58 & 2.09 & 3.20 & 3.83 & 4.41 & 4.92 & 5.39 & 5.79 & 6.22 & 6.40 & 6.44 & 6.36 & 1.50 & 0.54 & 0.99 & 1.62 & 1.82 & 2.12 & 2.58 & 3.02 & 3.83 & 4.41 & 4.92 & 5.39 & 5.79 & 6.22 & 6.40 & 6.44 & 6.36 & 1.50 & 0.58 & 1.38 & 1.77 & 1.99 & 2.30 & 2.80 & 3.25 & 3.86 & 4.24 & 4.84 & 5.40 & 5.87 & 5.79 & 5.40 & 6.65 & 6.91 & 7.77 & 7.29 & 7.27 \\ \hline 1.50 & 0.54 & 0.99 & 1.62 & 1.82 & 2.12 & 2.58 & 3.02 & 3.83 & 4.41 & 4.92 & 5.39 & 5.79 & 6.34 & 6.68 & 6.91 & 7.71 & 7.29 & 7.27 \\ \hline 1.25 & 0.55 & 0.05 & 0.55 & 1.01 & 1.66 & 1.87 & 2.12 & 2.58 & 3.06 & 3.35 & 3.66 & 4.55 & 5.77 & 6.16 & 6.54 & 6.91 & 7.77 & 7.73 & 7.60 & 2.20 & 2.20 & 2.20 & 2.20 & 2.20 &$		1,50	0,34	0,62	0,99	1,11	1,29	1,56	1,82	1,97	2,35	2,71	3,04	3,35	3,61	3,86	4,11	4,33	4,48	4,58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\geq 3,00$	0,345	0,63	1,03	1,15	1,33	1,62	1,90	2,05	2,45	2,82	3,18	3,50	3,80	4,06	4,35	4,58	4,77	4,89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,00	0,37	0,68	1,08	1,20	1,40	1,70	1,98	2,14	2,55	2,92	3,27	3,56	3,83	4,06	4,30	4,46	4,55	4,55
120	0.0			0,69		1,26	1,45													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$100 \begin{array}{c} 1,00 \\ 1,05 \\ 1,05 \\ 2,07 \\ 2,0$											-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 5,00	,	-,	-,	-,	-,			_,	_,-,	-,:-	-,		.,	1,02	- ,	-,	-,	-,,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.00	0.435	0.80	1 28	1 43	1 66	2.01	2.35	2.55	3.05	3 49	3 90	4 25	4 58	4 84	5 11	5 28	5 35	5 32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$112 \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 3,00	0,17	0,073	1,13	1,00	1,05	2,20	2,03	2,00	3,10	3,77	1,17	1,72	3,32	3,07	0,03	0,50	0,10	0,50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.00	0.51	0 035	1 51	1.70	1 07	2.40	2.80	3.04	3 62	1 16	1 63	5.06	5.42	5 72	5 00	6.14	6 16	6.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 3,00	0,55	1,01	1,00	1,07	2,10	2,04	3,10	3,30	7,03	7,03	3,21	3,72	0,10	0,54	0,71	7,17	1,27	1,21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.00	0.50	1 00	1 77	1.00	2 20	2 80	3 27	3 55	121	1 21	5.40	5 97	6 27	6.50	6.82	6.02	6.81	6.57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							2,30													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125																			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 3,00	0,023	1,1/	1,91	4,13	۷,49	5,05	3,31	2,00	4,03	2,33	2,71	0,33	7,01	1,43	1,13	1,93	1,93	7,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.00	0.60	1.26	2.06	2 21	260	2 26	2 0 1	1 12	4.02	5 60	6 10	675	7 14	7.42	7 65	7.50	7 22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140																			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
1,00																				
160		≥ 3,00	0,72	1,34	2,20	2,47	2,87	3,31	4,11	4,46	5,33	0,11	0,81	1,43	7,87	8,24	8,54	8,33	8,64	\vdash
160		1.00	0.00	1 40	2 42		2.17	200		4.00	5.00	c 50	7.22	7.00	0.17	0.20	0.20	0.00		
1,20 0,825 1,53 2,50 2,82 3,27 3,98 4,66 5,05 6,00 6,84 7,50 8,17 8,54 8,83 8,90 8,51 1,50 8,17 8,54 8,83 8,90 8,51 8,90 8,51 8,90 8,51 8,90 8																				
1,20 0,823 1,53 2,50 2,82 3,27 3,98 4,66 5,05 6,00 6,84 7,50 8,17 8,34 8,83 8,90 8,51 1,50 0,83 1,55 2,54 2,85 3,32 4,04 4,74 5,13 6,10 6,92 7,73 8,32 8,76 9,05 9,13 8,90	160																			
	- 50																			
$ \geq 3,00 \qquad 0,845 1,56 2,57 2,90 3,36 4,10 4,81 5,21 6,21 7,09 7,87 8,46 8,90 9,17 9,35 9,13 $																				
		≥ 3,00	0,845	1,56	2,57	2,90	3,36	4,10	4,81	5,21	6,21	7,09	7,87	8,46	8,90	9,17	9,35	9,13		

Tabelul 2.7 (continuare)

															(- /		
Diametrul primitiv	Raportul de							T	`uratia	rotii m	ici n ₁ [r	ot/min]						
al rotii mici $D_{\mathfrak{p}1}$	transmitere	200	400	700	800	950	1200	1450	1600	2000	2400	2800	3200	3600	4000	4500	5000	5500	6000
[mm]	i_{tc}									P_0 [kW]								
	1,00	0,92	1,71	2,80	3,15	3,65	4,44	6,19	5,61	6,63	7,50	8,17	8,68	8,94	9,05	8,83			
180	*	0,935	,	2,84	3,19	3,70	4,51	5,26		6,73	7,65	8,31	8,90	9,17	9,27	9,05			
100	1,20	0,94	1,76	2,88	3,23	3,75	4,57	5,33	5,77	6,84	7,72	8,46	9,05	9,42	9,49	9,27			
	1,50	0,95	1,77	2,91	3,27	3,79	4,63	5,41	5,86	6,90	7,87	8,51	9,17	9,57	9,71	9,49			
	≥ 3,00	0,965	1,79	2,95	3,33	3,85	4,70	5,48	5,94	7,04	8,02	8,76	9,35	9,79	9,94	9,71			
Viteza periferica <i>v</i>	[m/s]			5			10		15		20		30			40			

Curele tip SPA

Tabelul 2.8

		Turatia rotii mici n ₁ [rot/min]																	
Diametrul primitiv	Raportul de																		
al rotii mici $D_{\mathfrak{p}1}$	transmitere	200	400	700	800	950	1200	1450	1600	2000	2400	2800	3200	3600	4000	4500	5000	5500	6000
[mm]	\mathbf{i}_{tc}									P ₀ [1	kW]								
										0.2									
	1,00	0,42	0,75	1,18	1,30	1,48	1,76	2,02	2,16	2,49	2,77	2,95	3,16	3,26	3,30	3,24	3,07	2,77	2,33
00	1,05	0,44	0,80	1,25	1,39	1,59	1,90	2,18	2,34	2,72	3,05	3,32	3,52	3,67	3,75	3,76	3,27	3,40	3,02
90	1,20	0,47	0,85	1,33	1,49	1,70	2,04	2,35	2,52	2,96	3,33	3,64	3,89	4,09	4,22	4,28	4,22	4,04	3,72
	1,50	0,49	0,89	1,41	1,57	1,81	2,18	2,52	2,71	3,19	3,54	3,97	4,27	4,50	4,68	4,80	4,80	4,67	4,41
	≥ 3,00	0,52	0,93	1,49	1,67	1,92	2,31	2,69	2,89	3,41	3,88	4,29	4,64	4,92	5,14	5,31	5,37	5,31	5,10
	1,00	0,53	0,94	1,48	1,66	1,89	2,27	2,61	2,80	3,27	3,66	3,99	4,25	4,42	4,50	4,48	4,31	3,97	3,46
100	1,05	0,55	0,99	1,57	1,74	2,00	2,41	2,77	2,99	3,50	3,94	4,32	4,61	4,83	4,97	5,00	4,89	4,61	4,15
100	1,20	0,57	1,03	1,65	1,84	2,11	2,55	2,94	3,17	3,73	4,22	4,64	4,98	5,25	5,42	5,52	5,46	5,24	4,84
	1,50	0,59	1,08	1,73	1,93	2,22	2,68	3,11	3,35	3,96	4,50	4,96	5,35	5,66	5,89	6,04	6,04	5,87	5,51
	≥ 3,00	0,62	1,13	1,81	2,02	2,33	2,82	3,28	3,54	4,19	4,78	5,28	5,72	6,08	6,35	6,56	6,62	6,51	6,23
	1.00	0.45			•		• • •		2 -				~ 40		.	- o-			
	1,00	0,65	1,16	1,85	2,07	2,38	2,86	3,31	3,56	4,18	4,71	5,15	5,48	5,73	5,84	5,83	5,61	5,20	4,47
112	1,05	0,67	1,21	1,93	2,16	2,49	3,00	3,47	3,75	4,42	4,99	5,47	5,86	6,14	6,31	6,35	6,18	5,79	5,21
	1,20	0,69	1,26	2,02	2,25	2,60	3,14	3,65	3,94	4,65	5,26	5,79	6,23	6,55	6,77	6,86	6,76	6,42	5,86
	1,50	0,71	1,30	2,10	2,35	2,71	3,28	3,81	4,12	4,68	5,54	6,12	6,59	6,97	7,22	7,36	7,33	7,06	6,55
	≥ 3,00	0,74	1,35	2,18	2,44	2,82	3,41	3,98	4,30	5,11	5,82	6,43	6,96	7,36	7,73	7,87	7,95	7,73	7,24
	1,00	0,77	1 40	2 25	2.52	2.00	3,50	1.06	1 20	5,14	5,80	6,34	6 75	7.02	7 16	7.00	6,75	6 11	5,14
	1,00	0,77	1,40 1,45	2,25 2,33	2,52 2,61	2,90 3,01	3,64	4,06 4,23	4,38 4,56	5,38	6,08	6,67	6,75 7,12	7,03 7,43	7,16 7,65	7,08 7,58	7,32	6,11 6,74	5,83
125	1,20	0,79	1,49	2,33	2,70	3,12	3,78	4,39	4,75	5,61	6,36	6,99	7,12	7,43	8,10	8,17	7,32	7,36	6,52
	1,50	0,84	1,54	2,49	2,79	3,23	3,91	4,56	4,93	5,84	6,63	7,30	7,87	8,32	8,54	8,68	8,46	8,02	7,21
	≥ 3,00	0,85	1,59	2,58	2,88	3,35	4,05	4,73	5,21	6,06	6,91	7,65	8,24	8,68	8,94	9,17	9,05	8,51	7,87
	= 5,00	0,00	1,07	2,00	2,00	0,00	.,00	.,,,,	0,21	0,00	0,21	7,00	0,2.	0,00	0,2 .	,,1,	,,,,,	0,01	7,07
	1,00	0,91	1,68	2,71	3,03	3,50	4,22	4,91	5,29	6,22	7,00	7,65	8,10	8,39	8,46	8,24	7,73	6,70	
1.10	1,05	0,94	1,72	2,79	3,12	3,53	4,36	5,14	5,47	6,45	7,28	7,95	8,46	8,83	8,90	8,83	8,24	7,34	
140	1,20	0,96	1,77	2,87	3,22	3,72	4,50	5,24	5,66	6,68	7,58	8,32	8,83	9,17	9,42	9,35	8,83	7,95	
	1,50	0,99	1,82	2,95	3,30	3,82	4,65	5,41	5,84	6,91	7,87	8,51	9,17	9,64	9,86	9,86	9,42	8,51	
	\geq 3,00	1,01	1,86	3,03	3,40	3,93	4,78	5,58	6,03	7,14	8,10	8,90	9,57	10,10	10,30	10,38		9,27	
	•																		
160	1,00	1,10	2,04	3,30	3,70	4,27	5,17	6,00	6,48	7,58	8,54	9,27	9,72	9,94	9,86	9,35	8,24		
	1,05	1,13	2,08	3,38	3,79	4,38	5,31	6,17	6,66	7,80	8,83					9,86			
	1,20	1,15	2,13	3,47	3,89	4,47	5,45	6,34	6,88	8,09	9,05					10,38			
	1,50	1,18	2,18	3,55	3,97	4,60	5,69	6,51	7,03	8,32	9,35					10,89			
	≥ 3,00	1,20	2,22	3,63	4,08	4,71	5,73	6,67	7,21	8,54	9,64	10,52	11,18	11,63	11,70	11,40	10,60		
						·		·						·			·		

Tabelul 2.8 (continuare)

Diametrul primitiv	Raportul de							Т	uratia	rotii m	ici n ₁ [1	ot/min]		(- /		
al rotii mici D _{p1}	transmitere	200	400	700	800	950	1200	1450	1600	2000	2400	2800	3200	3600	4000	4500	5000	5500	6000
[mm]	i			L	L	L	L			P ₀ [1		L		L		L	L		
										0 =	_								
	1,00	1,29	2,37	3,89	4,36	5,03	6,09	7,06	7,65	8,90	9,94	10,67	11,11	11,11	10,82	9,79			
180	1,05	1,30	2,44	3,97	4,45	5,14	6,23	7,24	7,80	9,13	10,23	10,97	11,48	11,55	11,26	10,30			
180	1,20	1,35	2,49	4,05	4,54	5,25		7,43						12,00					
	1,50	1,37	2,53	4,14	4,64	5,36	6,51	7,58	8,17	9,57	10,74	11,63	12,22	12,36	12,22	11,33			
	\geq 3,00	1,39	2,58	4,22	4,72	5,47	6,65	7,73	8,39	9,86	11,04	11,99	12,58	12,80	12,66	11,55			
	1,00	1,49	2,74	4,47	5,01	5,78	7,00	8,09	8,68	10,1	11,18	11,92	12,22	12,00	11,26				
200	1,05	1,51	2,79	4,55	5,10	5,89	7,14	8,24	8,90					12,30					
200	1,20	1,53	2,84	4,63	5,19	6,00		8,46		10,6	11,78	12,58	12,95	12,80	12,06				
	1,50	1,55	2,88	4,71	5,28			8,51						13,25					
	≥ 3,00	1,57	2,93	4,79	5,38	6,23	7,58	8,76	9,42	11,0	12,28	13,25	13,70	13,62	13,10				
	1,00	1,71	3,16				8,02							12,44					
224	1,05	1,73	3,22	5,23	5,86			9,49						12,88					
224	1,20	1,75	3,26	5,31		6,89		9,64						13,25					
	1,50	1,78	3,30	5,39		6,99		9,79						13,69					
	≥ 3,00	1,80	3,35	5,47	6,14	7,09	8,51	9,93	10,7	12,4	13,69	14,42	14,57	14,13					
	1,00	1,95	3,61	5,29			9,13					14,13							
250	1,05	1,97	3,66	5,97	6,68	7,73	9,27	10,7				14,42							
230	1,20	1,99	3,71	6,04			9,42					14,79							
	1,50	2,02	3,75	6,12		7,95		11,2				15,10							
	≥ 3,00	2,04	3,80	6,20	6,95	8,02	9,71	11,5	12,0	13,8	14,94	15,46	15,10						
Viteza periferica v	[m/s]		4	5			10		15		20		30			40			

2.1.3. Construcția roților de curea

Forma, dimensiunile și condițiile tehnice pentru geometria canalelor roților de curea trapezoidale sunt indicate în fig. 2.5 și tabelele 2.12, respectiv 2.13. conform **STAS 1162-84**.

Tabelul 2.12

Secțiunea canalului	Y	Z	A	В	C	D	E	(16)
Tipul curelei								
trapezoidale clasice	Y	Z	Α	В	C	D	Е	
(STAS 7192-67)								
Tipul curelei								
trapezoidale înguste		SPZ	SPA	SPB	SPC			(16x15)
(STAS 7192-65)								

Fig. 2.5 Geometria canalelor roții de curea trapeziodală

Tabelul 2.13

Secțiune canal	Y	Z	A	В	C	D	E	(16)
l_p	5,3	8,5	11	14	19	27	32	16
n min.	1,6	2,5	3,3	4,2	5,7	8,1	9,6	4,7
<i>m</i> min.	4,7	9	11	14	19	19,9	23,4	16
f	7 ± 1	8 ± 1	10^{+2}_{-1}	$12,5^{+2}_{-1}$	17^{+2}_{-1}	24^{+3}_{-1}	29 +4	$14,5^{+2}_{-1}$
e	8 ± 0.3	12 ± 0.3	15 ± 0.3	$19 \pm 0,4$	$25,5 \pm 0,5$	$37 \pm 0,6$	$44,5 \pm 0,7$	$22 \pm 0,4$
01	36 ° ± 1°	38° ± 1°	38° ± 1°	38° ± 1°	38° ± 30'	38° ± 30'	38° ± 30'	38° ± 1°
α	32° ± 1°	34° ± 1°	34° ± 1°	34° ± 1°	36° ± 30'	36° ± 30'	36° ± 30'	36° ± 30'
r	0,5	0,5	1,0	1,0	1,5	2,0	2,0	1,0

Observații:

- Simbolurile dimensiunilor din fig. 2.5 și tabelul 2.13 au următoarele semnificații:
 - l_p lățimea primitivă a canalului egală cu lățimea primitivă a curelei respective este dimensiunea de bază a ansamblului roată-curea și determină caracteristicile geometrice funcționale principale ale transmisiei;
 - n înălțimea canalului deasupra liniei primitive;
 - *m* adâncimea canalului sub linia primitivă;
 - f distanța dintre axa secțiunii canalului extrem și marginea vecină a roții;
 - e distanța dintre axele secțiunilor la două canale vecine;
 - α unghiul canalului;
 - r raza de rotunjire a marginii canalului;
 - D_p diametrul primitiv al roții de curea reprezentând diametrul la care canalul are lățimea egală cu lățimea primitiva l_p ;
 - D_e diametrul exterior al roții;

$$D_e = D_p + 2 \cdot n \,;$$

B - lățimea totală a roții: $B = (z-1) \cdot e + 2 \cdot f$

în care z este numărul de canale.

- Abaterile limită ale dimensiunii *e* sunt valabile pentru distanța dintre axele secțiunilor oricăror două canale ale roții de curea (consecutive sau neconsecutive).
- Dimensiunile necuprinse în fig. 2.5 şi tabelul 2.13 se stabilesc prin documentația de execuție.

Diferența dintre înălțimile efective *n*, măsurate în același plan axial al canalelor succesive ale roții de curea, nu trebuie să depașească valorile indicate în tabelul 2.14

Tabelul 2.14

Secțiunea canalului	Y	Z	A	В	(16)	C	D	E
Diferența maximă								
dintre valorile	0.2					0.2	0.5	0.6
efective <i>n</i> în același			0,2			0,3	0,3	0,0
plan axial [mm]								

În scopul asigurării concentricității cercului primitiv, variația înălțimii efective n de-a lungul aceluiași canal nu trebuie să depașească valorile indicate în tabelul 2.15.

Tabelul 2.15

Diametrul primitiv	Variaţia maximă a valorii <i>n</i> la acelaşi	Diametrul primitiv	Variația maximă a valorii <i>n</i> la	
	canal		același canal	
De la 20 până la 28	0,13	Peste 400 până la 500	0,40	
Peste 28 până la 45	0,16	Peste 500 până la 630	0,44	
Peste 45 până la 80	0,19	Peste 630 până la 800	0,50	
Peste 80 până la 118	0,22	Peste 800 până la 1000	0,56	
Peste 118 până la 180	0,25	Peste 1000 până la 1250	0,66	
Peste 180 până la 250	0,29	Peste 1250 până la 1600	0,78	
Peste 250 până la 315	0,32	Peste 1600 până la 2000	0,92	
Peste 315 până la 400	0,36	Peste 2000 până la 2500	1,10	