SITUATION

On étudie la continuité d'une fonction sur un intervalle / en particulier lorsque l'expression de cette fonction est différente suivant les valeurs de x.

ÉNONCÉ

On considère la fonction f définie sur $\lceil 2; +\infty \rceil$ par :

$$egin{cases} f\left(2
ight)=4 \ \ orall x>2,\; f\left(x
ight)=rac{x^2-4}{x-2} \end{cases}$$

Etudier la continuité de la fonction f sur $[2; +\infty[$.

Etape 1

Utiliser le cours pour justifier la continuité sur l'intervalle (ou les intervalles)

D'après le cours, on sait que :

- Les fonctions de références sont continues sur tout intervalle inclus dans leur ensemble de définition.
- Toute fonction construite comme somme, produit, quotient (dont le dénominateur ne s'annule pas sur /) ou composée de deux fonctions continues sur / est continue sur /.

On justifie ainsi la continuité de la fonction sur le ou les intervalle(s) sur le(s)quel(s) elle est définie.

APPLICATION

La fonction $x\mapsto x^2-4$ est continue sur $]2;+\infty[$ en tant que fonction polynôme.

De même, $x\mapsto x-2$ est continue sur $]2;+\infty[$ en tant que fonction polynôme. De plus, elle ne s'annule pas sur $]2;+\infty[$.

Par quotient, f est continue sur $]2;+\infty[$.

Etape 2

Justifier éventuellement la continuité aux points à problème

Pour les éventuels points pour lesquels la fonction est définie d'une autre manière, on étudie la continuité.

Pour cela, on sait que si $\lim_{x o a} f\left(x
ight) = f\left(a
ight)$, alors la fonction f est continue en x=a .

APPLICATION

f est continue en 2 si et seulement si $\lim_{x o 2} f\left(x
ight) = f\left(2
ight)$. On a :

•
$$f(2) = 4$$

$$ullet$$
 Pour tout $x>2$, $f\left(x
ight)=rac{\left(x-2
ight)\left(x+2
ight)}{x-2}=x+2$. Ainsi, $\lim_{x o 2}f\left(x
ight)=\lim_{x o 2}\left(x+2
ight)=4$.

On en déduit que :

$$\lim_{x
ightarrow2}f\left(x
ight) =f\left(2
ight)$$

Par conséquent, la fonction f est continue en $\,x=2\,.\,$

Etape 3

Conclure

On conclut en donnant le ou les intervalle(s) sur le(s) quel(s) la fonction f est continue.

APPLICATION

D'après les questions précédentes, f est continue sur $\,]2;+\infty[\,$ et en $\,x=2\,$.

On en conclut que f est continue sur $[2;+\infty[$.