Project Topic - Wine Clustering

Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.cluster.hierarchy as sch

# For Ignoring Warnings
import warnings
warnings.filterwarnings("ignore")

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
```

Loading Dataset

```
path = r'/content/drive/MyDrive/DATASET/wine-clustering.csv'
ds = pd.read_csv(path)
```

Data Cleaning

```
ds.isnull().sum()
     Alcohol
     Malic_Acid
     Ash
     Ash_Alcanity
     Magnesium
     Total Phenols
     Flavanoids
     Nonflavanoid Phenols
                           0
     Proanthocyanins
                             0
     Color_Intensity
     Hue
                             0
     0D280
     Proline
                             0
```

dtype: int64

Normalization of data

```
ds.min()
    Alcohol
                              11.03
                               0.74
    Malic_Acid
    Ash
                               1.36
    Ash_Alcanity
                              10.60
    Magnesium
                              70.00
     Total_Phenols
                               0.98
     {\tt Flavanoids}
                               0.34
    Nonflavanoid_Phenols
                               0.13
    Proanthocyanins
                               0.41
    Color_Intensity
                               1.28
                              0.48
    Hue
    0D280
                               1.27
    Proline
                             278.00
    dtype: float64
ds.max()
     Alcohol
                               14.83
     Malic_Acid
                                5.80
                                3.23
     Ash_Alcanity
                               30.00
    Magnesium
```

Total_Phenols 3.88 Flavanoids
Nonflavanoid_Phenols 5.08 0.66 Proanthocyanins 3.58 Color_Intensity 13.00 1.71 Hue OD280 4.00 Proline 1680.00

dtype: float64

ds.head()

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proanthocyanins	Color_Intens
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	•
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	1
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	,

ds.tail()

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proanthocyanins	Color_Inte
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	
4										>

ds = (ds - ds.min()) / (ds.max() - ds.min())ds.head()

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proanthocyanins	Color_I
0	0.842105	0.191700	0.572193	0.257732	0.619565	0.627586	0.573840	0.283019	0.593060	
1	0.571053	0.205534	0.417112	0.030928	0.326087	0.575862	0.510549	0.245283	0.274448	
2	0.560526	0.320158	0.700535	0.412371	0.336957	0.627586	0.611814	0.320755	0.757098	
3	0.878947	0.239130	0.609626	0.319588	0.467391	0.989655	0.664557	0.207547	0.558360	
4	0.581579	0.365613	0.807487	0.536082	0.521739	0.627586	0.495781	0.490566	0.444795	
										•

ds.describe

<bou< td=""><td>nd method ND</td><td>Frame.desc</td><td>ribe of</td><td>Alcohol M</td><td>Malic_Acid</td><td>Ash Ash_Alcanity</td><td>/ Magnesium</td><td>Total_Phenols</td><td>\</td></bou<>	nd method ND	Frame.desc	ribe of	Alcohol M	Malic_Acid	Ash Ash_Alcanity	/ Magnesium	Total_Phenols	\
0	0.842105	0.191700	0.572193	0.257732	0.619565	0.627586			
1	0.571053	0.205534	0.417112	0.030928	0.326087	0.575862			
2	0.560526	0.320158	0.700535	0.412371	0.336957	0.627586			
3	0.878947	0.239130	0.609626	0.319588	0.467391	0.989655			
4	0.581579	0.365613	0.807487	0.536082	0.521739	0.627586			
173	0.705263	0.970356	0.582888	0.510309	0.271739	0.241379			
174	0.623684	0.626482	0.598930	0.639175	0.347826	0.282759			
175	0.589474	0.699605	0.481283	0.484536	0.543478	0.210345			
176	0.563158	0.365613	0.540107	0.484536	0.543478	0.231034			
177	0.815789	0.664032	0.737968	0.716495	0.282609	0.368966			
	Flavanoids	Nonflavan	oid Phenols	Proanthocya	nins Colo	r_Intensity \			
0	0.573840		0.283019		3060	0.372014			
1	0.510549		0.245283	0.27	74448	0.264505			
2	0.611814		0.320755	0.75	7098	0.375427			
3	0.664557		0.207547	0.55	8360	0.556314			
4	0.495781		0.490566	0.44	14795	0.259386			
173	0.056962		0.735849	0.20	5047	0.547782			
174	0.086498		0.566038	0.31	L5457	0.513652			
175	0.073840		0.566038	0.29	96530	0.761092			
176	0.071730		0.754717	0.33	31230	0.684300			
177	0.088608		0.811321		96530	0.675768			
	Hue	OD280	Proline						
9	0.455285 0	.970696 0	. 561341						

0.455285 0.970696 0.561341

```
03/03/2024, 12:10
             0.463415 0.780220 0.550642
        1
            0.447154 0.695971 0.646933
0.308943 0.798535 0.857347
        2
        3
        4
            0.455285 0.608059 0.325963
        173 0.130081 0.172161 0.329529
        174 0.178862 0.106227 0.336662
        175 0.089431 0.106227 0.397290
        176 0.097561 0.128205 0.400856
        177 0.105691 0.120879 0.201141
        [178 rows x 13 columns]>
   ds.shape
        (178, 13)
   ds.dtypes
        Alcohol
                               float64
        Malic_Acid
                               float64
                                float64
        Ash
        Ash_Alcanity
                               float64
                               float64
        Magnesium
        Total_Phenols
                               float64
        {\tt Flavanoids}
                               float64
                              float64
        Nonflavanoid_Phenols
        Proanthocyanins
                               float64
        Color_Intensity
                                float64
                                float64
        Hue
                                float64
        0D280
        Proline
                               float64
        dtype: object
   #making Histogram for each attribute
   #create histogram for each column in DataFrame
   ds.hist(rwidth = 0.7,figsize=(16,9),label=5,color='r')
```


ds.boxplot(widths=0.5,figsize=(20,9))

Data Analysis

ds.describe().loc[['min', 'max', 'mean', 'std']].round(2)

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	${\tt Nonflavanoid_Phenols}$	Proanthocyanins	Color_In
min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
max	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
mean	0.52	0.32	0.54	0.46	0.32	0.45	0.36	0.44	0.37	
std	0.21	0.22	0.15	0.17	0.16	0.22	0.21	0.23	0.18	
4										>

Normalization
display(ds)

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proanthocyanins	Color
0	0.842105	0.191700	0.572193	0.257732	0.619565	0.627586	0.573840	0.283019	0.593060	
1	0.571053	0.205534	0.417112	0.030928	0.326087	0.575862	0.510549	0.245283	0.274448	
2	0.560526	0.320158	0.700535	0.412371	0.336957	0.627586	0.611814	0.320755	0.757098	
3	0.878947	0.239130	0.609626	0.319588	0.467391	0.989655	0.664557	0.207547	0.558360	
4	0.581579	0.365613	0.807487	0.536082	0.521739	0.627586	0.495781	0.490566	0.444795	
173	0.705263	0.970356	0.582888	0.510309	0.271739	0.241379	0.056962	0.735849	0.205047	
174	0.623684	0.626482	0.598930	0.639175	0.347826	0.282759	0.086498	0.566038	0.315457	
175	0.589474	0.699605	0.481283	0.484536	0.543478	0.210345	0.073840	0.566038	0.296530	
176	0.563158	0.365613	0.540107	0.484536	0.543478	0.231034	0.071730	0.754717	0.331230	
177	0.815789	0.664032	0.737968	0.716495	0.282609	0.368966	0.088608	0.811321	0.296530	
178 rd	ows × 13 col	lumns								>

Applying Kmeans

from sklearn.preprocessing import StandardScaler
scaler =StandardScaler()

features =scaler.fit(ds)

features = features.transform(ds)

Convert to pandas Dataframe

scaled_ds =pd.DataFrame(features,columns=ds.columns)

Print the scaled data

scaled_ds.head(2)

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proanthocyanins	Color_1
0	1.518613	-0.562250	0.232053	-1.169593	1.913905	0.808997	1.034819	-0.659563	1.224884	
1	0.246290	-0.499413	-0.827996	-2.490847	0.018145	0.568648	0.733629	-0.820719	-0.544721	
4										•

X=scaled_ds.values

```
# Elbow Method
# The elbow Method is used to determine the number of clusters
from sklearn.datasets import load_wine
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
wcss = {}
for i in range(1, 4):
    kmeans = KMeans(n_clusters = i, init = 'k-means++')
    kmeans.fit(X)
    wcss[i] = kmeans.inertia_

plt.plot(wcss.keys(), wcss.values(), 'bs-')
plt.xlabel("Values of 'k'")
plt.ylabel('WCSS')
plt.show()
```


KMeans(n_clusters=3)

kmeans.cluster_centers_

```
array([[ 0.16490746,  0.87154706,  0.18689833,  0.52436746,  -0.07547277,  -0.97933029,  -1.21524764,  0.72606354,  -0.77970639,  0.94153874,  -1.16478865,  -1.29241163,  -0.40708796],  [ 0.83523208,  -0.30380968,  0.36470604,  -0.61019129,  0.5775868,  0.88523736,  0.97781956,  -0.56208965,  0.58028658,  0.17106348,  0.47398365,  0.77924711,  1.12518529],  [ -0.92607185,  -0.39404154,  -0.49451676,  0.17060184,  -0.49171185,  -0.07598265,  0.02081257,  -0.03353357,  0.0582655,  -0.90191402,  0.46180361,  0.27076419,  -0.75384618]])
```

kmeans.labels_

```
pca=PCA(n_components=2)
```

```
reduced_X=pd.DataFrame(data=pca.fit_transform(X),columns=['PCA1','PCA2'])
```

#Reduced Features
reduced_X.head()

```
        PCA1
        PCA2

        0
        3.316751
        -1.443463

        1
        2.209465
        0.333393

        2
        2.516740
        -1.031151

        3
        3.757066
        -2.756372

        4
        1.008908
        -0.869831
```

centers=pca.transform(kmeans.cluster_centers_)

```
plt.figure(figsize=(7,5))

# Scatter plot
plt.scatter(reduced_X['PCA1'],reduced_X['PCA2'],c=kmeans.labels_)
plt.scatter(centers[:,0],centers[:,1],marker='x',s=100,c='Black')
plt.xlabel('PCA1')
plt.ylabel('PCA2')
plt.title('Wine Cluster')
plt.tight_layout()
```



```
from sklearn.cluster import KMeans
import time

# Generate some example data
from sklearn.datasets import make_blobs
X, _ = make_blobs(n_samples=178, n_features=13, centers=3, random_state=0)

# Initialize and configure the KMeans algorithm
kmeans = KMeans(n_clusters=4, init='k-means++', n_init=10, max_iter=300, random_state=0)

# Measure the execution time
start_time = time.time()
kmeans.fit(X)
end_time = time.time()

execution_time2 = end_time - start_time
print(f"Execution time: {execution_time2} seconds")

Execution time: 0.03858804702758789 seconds
```

Gaussian Mixture Model

```
train = ds.sample(frac =.9, random_state=0)
val = ds.drop(train.index)
x_train = train.iloc[:,:-1]
y_train = train.iloc[:,-1]
x_val = val.iloc[:,:-1]
y_val = val.iloc[:,-1]
x_train.shape,y_train.shape, x_val.shape, y_val.shape
     ((160, 12), (160,), (18, 12), (18,))
from sklearn.mixture import GaussianMixture
gm = GaussianMixture(n_components=3, random_state=0).fit(x_train)
predictions = gm.predict(x train)
predictions
     array([2, 1, 0, 2, 0, 2, 2, 1, 0, 0, 1, 1, 2, 2, 1, 0, 2, 2, 0, 2, 2, 2,
            2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 2, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 2, 1, 0, 1, 2, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 1, 2, 0, 1, 0, 0,
             1, 0, 2, 0, 0, 0, 0, 2, 0, 2, 1, 1, 0, 0, 0, 1, 1, 2, 1, 0, 0, 0,
             0,\ 0,\ 2,\ 2,\ 2,\ 2,\ 1,\ 2,\ 1,\ 2,\ 2,\ 0,\ 2,\ 0,\ 0,\ 2,\ 1,\ 0,\ 2,\ 0,\ 0,\ 0,
            1, 2, 1, 1, 2, 2, 0, 1, 2, 2, 0, 0, 2, 2, 0, 1, 2, 2, 0, 1, 2, 0,
             1, 1, 2, 2, 1, 2, 1, 0, 2, 2, 0, 2, 1, 0, 1, 2, 1, 1, 1, 2, 0, 0,
             0, 0, 1, 1, 0, 0])
unique, counts =np.unique(predictions, return_counts=True)
dict(zip(unique, counts))
     {0: 59, 1: 44, 2: 57}
len(predictions)
     160
from pandas import DataFrame
from sklearn.preprocessing import StandardScaler, normalize
from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import train_test_split
from sklearn import metrics
# Standardize data
scaler = StandardScaler()
scaled_wine_dataset = scaler.fit_transform(ds)
# Normalizing the Data
normalized_wine_dataset = normalize(scaled_wine_dataset)
# Converting the numpy array into a pandas DataFrame
normalized_wine_dataset = pd.DataFrame(normalized_wine_dataset)
# Reducing the dimensions of the data
pca = PCA(n_components = 2)
X_principal = pca.fit_transform(normalized_wine_dataset)
X_principal = pd.DataFrame(X_principal)
X_principal.columns = ['P1', 'P2']
X_principal.head(2)
                Р1
                          P2
      0 -0.832433 -0.318834
      1 -0.639443 0.091947
gmm = GaussianMixture(n_components =3)
gmm.fit(X_principal)
               GaussianMixture
     GaussianMixture(n_components=3)
```



```
import time
from sklearn.mixture import GaussianMixture

# Load and preprocess your data

# Instantiate the GMM model
gmm = GaussianMixture(n_components=3)

# Measure execution time
start_time = time.time()
gmm.fit(ds)
end_time = time.time()

execution_time4 = end_time - start_time
print(f"Execution time: {execution_time4} seconds")

Execution time: 0.041381120681762695 seconds
```

DBSCAN

Importing the required libraries

```
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize
from sklearn.decomposition import PCA
```

Preprocessing the data

```
# Scaling the data to bring all the attributes to a comparable level
scaler = StandardScaler()
df_scaled = scaler.fit_transform(ds)

# Normalizing the data so that
# the data approximately follows a Gaussian distribution
df_normalized = normalize(df_scaled)

# Converting the numpy array into a pandas DataFrame
df_normalized = pd.DataFrame(df_normalized)
```

Reducing the dimensionality of the data to make it visualizable

Building the clustering model

```
# Numpy array of all the cluster labels assigned to each data point
db_default = DBSCAN(eps = 0.0475, min_samples = 6).fit(df_principal)
labels = db_default.labels_
```

Visualizing the clustering

```
# Building the label to colour mapping
colours = {}
colours[0] = 'r'
colours[1] = 'g'
colours[2] = 'b'
colours[-1] = 'k'
# Building the colour vector for each data point
cvec = [colours[label] for label in labels]
# For the construction of the legend of the plot
r = plt.scatter(df_principal['P1'], df_principal['P2'], color ='r');
g = plt.scatter(df_principal['P1'], df_principal['P2'], color ='g');
b = plt.scatter(df_principal['P1'], df_principal['P2'], color ='b');
k = plt.scatter(df_principal['P1'], df_principal['P2'], color ='k');
# Plotting P1 on the X-Axis and P2 on the Y-Axis
# according to the colour vector defined
plt.figure(figsize =(7, 6))
plt.scatter(df_principal['P1'], df_principal['P2'], c = cvec)
# Building the legend
plt.legend((r, g, b, k), ('Label 0', 'Label 1', 'Label 2', 'Label -1'))\\
plt.show()
```


Tuning the parameters of the model

db = DBSCAN(eps = 0.0475, min_samples = 30).fit(df_principal)
labels1 = db.labels_

Visualizing the changes

```
colours1 = {
    0: 'r',
    1: 'g',
    2: 'b',
    3: 'c',
    4: 'y',
    5: 'm',
     -1: 'k
}
cvec = [colours1[label] for label in labels]
colors = ['r', 'g', 'b', 'c', 'y', 'm', 'k']
# Create a scatter plot based on the color vector
plt.figure(figsize=(9, 9))
scatter = plt.scatter(df_principal['P1'], df_principal['P2'], c=cvec)
# Building the legend
handles = [plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=10) for color in colors] labels = ['Label 0', 'Label 1', 'Label 2', 'Label 3', 'Label 4', 'Label 5', 'Label -1']
plt.legend(handles, labels, scatterpoints=1, loc='upper left', ncol=3, fontsize=8)
```



```
import time
from sklearn.cluster import DBSCAN
from sklearn.datasets import make_blobs

# Load or generate your data
data, labels = make_blobs(n_samples=178, n_features=13, centers=3, random_state=0)

# Instantiate the DBSCAN model
dbscan = DBSCAN(eps=0.5, min_samples=5)

# Measure execution time
start_time = time.time()
dbscan.fit(data)
end_time = time.time()

execution_time3 = end_time - start_time
print(f"Execution time: {execution_time3} seconds")
```

Hierarchical Clustering with dendrogram

Execution time: 0.005097150802612305 seconds

```
# Plotting a dendrogram
import scipy.cluster.hierarchy as sch
```