2/2

-1/2

2/2

2/2

2/2

0/2

2/2

2/2

2/2

0/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
SUEC Ambaine	
	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9
	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9
	□0 □1 □2 23 □4 □5 □6 □7 □8 □9
	□0 □1 □2 □3 □4 665 □6 □7 □8 □9
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. [In l'ai lu les instructions et mon sujet est complet: les 4 entêtes sont +277/1/xx+···+277/4/xx+.	
Q.2 Soit L_1 et L_2 deux langages sur l'alphabet Σ .	Si $L_1 \cap \overline{L_2} = \emptyset$ alors
$\Box L_1 \supseteq L_2 \qquad \qquad \textcircled{\tiny{1}} L_1 = L_2$	$\Box L_1 \cap L_2 = \emptyset \qquad \boxtimes L_1 \subseteq L_2$
Q.3 Pour tout langage L , le langage $L^+ = \bigcup_{i>0} L^i$	
\square contient toujours ε \square ne contient	pas ε peut contenir ε mais pas forcement
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{\varepsilon, a, b\}$?	
	$\{\varepsilon,a,b,aa,ab,ba,bb\}$ $[]$ $\{aa,ab,ba,bb\}$ $[]$ $\{aa,ab,ba,bb\}$
Q.5 Que vaut Suff({ab, c}):	
$\square \{b,c,\varepsilon\} \qquad \square \emptyset \qquad \square \{a\}$	$[a,b,c]$ $[ab,b,c,\varepsilon]$ $[b,\varepsilon]$
Q.6 Que vaut $(\{a\}\{b\}^*\{a\}^*) \cap (\{a\}^*\{b\}^*\{a\})$	
Q.7 Pour toutes expressions rationnelles e, f, g, h ,	on a $(e+f)(g+h) \equiv eg+fh$.
□ vrai	faux
Q.8 Pour toutes expressions rationnelles e, f , on a	$a (e+f)^* \equiv e^*(e+f)^*.$
vrai	☐ faux
 Q.9 Un langage quelconque □ peut avoir une intersection non vide avec son complémentaire □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ n'est pas nécessairement dénombrable ■ est toujours inclus (⊆) dans un langage rationnel Q.10 Soit ∑ un alphabet. Pour tout a ∈ ∑, L ⊆ ∑*, on a ∀n > 1, Lⁿ = {uⁿ u ∈ L}. 	
	vrai
Q.11 Ces deux expressions rationnelles :	
$(a^* + b)^* + c((ab)^*(bc))^*$	$(ab)^*$ $c(ab+bc)^* + (a+b)^*$

2/2	☐ dénotent des langages différents ☐ sont équivalentes ☐ ne sont pas équivalentes ☐ sont identiques
	Q.12 Un automate fini non-déterministe à transitions spontanées peut avoir une infinité d'états.
0/2	
	Q.13 L'automate de Thompson de (ab)*c
2/2	 ☐ est déterministe ☐ a 8, 10, ou 12 états ☐ n'a aucune transition spontanée ☐ ne contient pas de cycle
	Q.14 Combien d'états a l'automate de Thompson auquel je pense?
2/2	□ 7 □ 1 □ 9 ■ 4
	Q.15 Quel est le résultat d'une élimination arrière des transitions spontanées?
	$\Box \xrightarrow{a \qquad b \qquad b \qquad c} \Box \xrightarrow{a \qquad b \qquad c} \Box$
2/2	$\square \xrightarrow{a \land b} \xrightarrow{b \land c} \stackrel{c}{\bigcirc} \qquad \square \xrightarrow{a,b,c} \qquad \square \xrightarrow{a \land b} \xrightarrow{b \land c} \stackrel{c}{\bigcirc} \qquad \square$
	Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?
2/2	$\square \longrightarrow b \longrightarrow b$ $b \longrightarrow a$ $\square \longrightarrow \varepsilon \longrightarrow b$ $\square Aucune de ces réponses n'est correcte.$
	Q.17 Le langage $\{ \bigcap^n \bigcap^m \forall n, m \in \mathbb{N} \}$ est
2/2	🔣 rationnel 🗌 non reconnaissable par automate fini 🔲 vide 🔲 fini
2/2	 Q.18 Un langage quelconque □ n'est pas nécessairement dénombrable ■ est toujours inclus (⊆) dans un langage rationnel □ peut avoir une intersection non vide avec son complémentaire □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle Q.19 Si un automate de n états accepte aⁿ, alors il accepte
0/0	
2/2	
2/2	Q.20 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle? Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. Thompson, déterminisation, évaluation. Thompson, déterminisation, élimination des transitions spontanées, évaluation. Thompson, déterminisation, Brzozowski-McCluskey.
	Q.21 Déterminiser cet automate.

а

2/2

 $\Box \longrightarrow \bigcirc \stackrel{a}{\longrightarrow} \stackrel{b}{\bigcirc} \stackrel{b}{\bigcirc} \stackrel{b}{\bigcirc} \longrightarrow$

Q.22 Soit Rec l'ensemble des langages reconnaissables par DFA, et Rat l'ensemble des langages définissables par expressions rationnelles.

Q.23 & Quelle(s) opération(s) préserve(nt) la rationnalité?

Q.24 Duelle(s) opération(s) préserve(nt) la rationnalité?

Q.25 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il. . .

Q.26 On peut tester si un automate nondéterministe reconnaît un langage non vide.

0/2 □ rarement ☑ oui, toujours □ jamais □ souvent

Q.27 Si L_1, L_2 sont rationnels, alors:

Q.28 Combien d'états a l'automate minimal qui accepte le langage $\{a, b\}^+$?

Q.29 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?

2/2 □ 6 □ Il n'existe pas. ■ 4 □ 7

Q.30 Quel mot reconnait le produit de ces automates?

Q.31 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2

2/2

Q.36 Sur {a, b}, quel automate reconnaît le complémentaire du langage de

Fin de l'épreuve.