Assumptions

- 1. Every vehicle (car) has 2 axles
- 2. Wheelbase is 2.5m
- 3. Speed limit is 60kmh, but can be exceeded
- 4. The B event always follows an A event on UP lane
- 5. Cars cannot use wrong lane (no overtaking)

Deductions

1. Average delay D (ms) between axles is given by 60000 (m) / 3600000 (ms) = 2.5 (m) / D (ms)

D = 2.5*3600000/60000

D = 2.5*60 = 150ms

Exception scenarios

- 1. Cars arrive from opposite directions 'simultaneously' (OK)
- 2. A car travels through excessively slowly (IGNORED INVALID SEQUENCE)
- 3. A sensor fails to activate (IGNORED -INVALID SEQUENCE)
- 4. A vehicle passes DOWN through the UP lane (IGNORED INVALID SEQUENCE)
- 5. Opposing car enters just before first exits (LIKELY IGNORE BOTH CARS)

Notation

Symb	Significance	Delta-t
Α	Sensor A triggered	-
В	Sensor B triggered	-
!	Minimal delay (A & B in sequence)	Under 5ms
-	Short delay (Cars overlapping)	5 to 75ms
_	Normal delay (Axles of one car)	75 to 1500ms
		Normal 150

Scenario Descriptions

Sequence	Narrative		
A!B_A!B	Single crossing in UP direction		
A_A	Single crossing in DOWN direction		
A!B -A- A!B -A	Overlapping crossings, UP then DOWN		
A!B -A _A!B !A			
A- A!B -A- A!B	Overlapping crossings, DOWN then UP		
A- A!B_A !A! B			
A- A!B_A!B !A			
A !A! B_A !A! B	Coincident crossings (order is irrelevant, can change during crossing)		
A !A! B _A- A!B			
A! A !B_A!B !A			
A !A! B_A!B -A			
A!B !A_A! A!B			
A!B !A_A- A!B			
A!B !A_ A!B !A			
A!B !A _A!B -A			

Timing example

State transition analysis

	STATE	EVENT	Action	NEW STATE
0	IDLE	*B		ERROR
0	IDLE	*A	Initialise Start Timer DOWN	DOWN_1
1	DOWN_1	!A	Initialise Start Timer UP	CC_1
1	DOWN_1	-A	Initialise Start Timer UP	OL2_1
1	DOWN_1	_A	Record a DOWN crossing	IDLE
1	DOWN_1	!B	Initialise Start Timer UP	UP_1
2	UP_1	!A	CC_2	
2	UP_1	-A	OL1_1	
2	UP_1	_A		UP_2
3	UP_2	!B	Record UP crossing, reset	IDLE
4	OL1_1	*A		OL1_2
5	OL1_2	!B	Record UP crossing	DOWN_2
6	OL2_1	!B		OL2_2
7	OL2_2	-A	Record DOWN crossing	OL2_3A
7	OL2_2	_A		OL2_3B
8	OL2_3A	-A		UP_2
9	OL2_3B	!A	Record DOWN crossing UP_2	
9	OL2_3B	!B	Record UP crossing OL2_5	
10	OL2_5	!A	Record DOWN crossing, reset IDLE	
11	CC_1	!B		CC_2
12	CC_2	_A		CC_3
13	CC_3	*A	Record DOWN crossing	UP_2
13	CC_3	!B	Record UP crossing	DOWN_2
14	DOWN_2	*A	Record DOWN crossing, reset	IDLE
15	ERROR	none	Log INVALID SEQUENCE, reset	IDLE

There are 16 states and 5 operational functions

The major scenarios are DOWN only, UP only, Overlapping, Coincident Crossing

Crossing record details

ID	Day	Time	Direction	Speed
Sequential #	1,2,,5	Seconds after MN	UP (AB:AB)	Divide 2.5 by delta-t to get metres/msec
			DOWN (A:A)	Convert to kmh