Calc II - C3: Infinite Sequences & Series

December 24, 2019

1 Terms to describe $\{a_n\}$

- 1. A set of numbers
 - (a) $a_n = 2n, n = \{1, 2, 3, ...\}$
 - (b) $a_n = 1(2^{n-1}), N = \{1, 2, 3, ...\}$
 - (c) $a_n = 1(-1)^{n-1}, N = \{1, 2, 3, ...\}$
 - (d) $a_n = \frac{n}{n+1}$
 - (e) $a_n = (-1)^n \left(\frac{n+1}{3^n}\right)$
- 2. Definition 3.2: Let n = 1, 2, 3
 - (a) If $a_n \leq M$,
 - i. $\{a_n\}$ bounded above by M
 - ii. M is upper bound
 - (b) and vice versa $(a_n \ge M, \text{ lower bound})$
- 3. $\{a_n\}$
 - (a) **positive** if $a_n \ge 0$, $\forall n$ and vice versa $(a_n \le 0)$.
 - (b) **increasing** if $a_{n+1} \ge a_n$, $\forall n$, and vice versa $(a_{n+1} \le 0)$
 - (c) **monotonic** = all increasing/decreasing
 - (d) alternating = $a_n \cdot a_{n+1} \le 0$ (consecutive, opposite sign)
- 4. As $n \to \infty$
 - (a) **convergent** if $\lim_{n\to\infty}$ is real number
 - (b) **divergent** if $\lim_{n\to\infty}$ is $\pm\infty$

1.1 Example

Describe the following sequences using the terms in definition above:

- 1. $\{n\} = \{1, 2, 3, 4, 5...\}$
 - (a) Not bounded above
 - (b) Bounded below, Lower bound = 1
 - (c) Not bounded
 - (d) Positive
 - (e) Increasing
 - (f) Monotonic
 - (g) Not alternating
 - (h) Divergent (from 1)

2.
$$\left\{\frac{n-1}{n}\right\} = \left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}...\right\}$$

- (a) Not bounded above
- (b) Bounded below, Lower bound = 0
- (c) Not bounded
- (d) Positive
- (e) Increasing
- (f) Monotonic
- (g) Not alternating
- (h) Convergent (to 1)

3.
$$\left\{ \left(-\frac{1}{2} \right)^n \right\} = \left\{ -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16} \dots \right\}$$

- (a) Bounded above, $\frac{1}{4}$
- (b) Bounded below, Lower bound = $-\frac{1}{2}$
- (c) Bounded
- (d) Not increasing / decreasing
- (e) Not monotonic
- (f) Alternating
- (g) Convergent (to 0)

2 Convergence and Divergence of Sequences

2.1 Definition

1. If $\lim_{n\to\infty} a_n = L$, converges (is convergent)

2. Else if L D.N.E. or $\pm \infty$, it diverges (is divergent)

2.2 Theorem

1. If $\lim_{n\to\infty} f(x) = L$ and $f(n) = a_n$, and n is an integer, then $\lim_{n\to\infty} a_n = L$

2. Put it simply (and slightly incorrectly), if the series converges, and f(n) is a_n , then $f(\infty)$ is simply L.

2.3 Theorem

1. Every bounded & monotonic sequence is **convergent**.

2.4 Laws - Limit Laws for Convergent Sequences:

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences, and c is constant, then:

- 1. $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} (a_n) \pm \lim_{n\to\infty} b_n$
- 2. $\lim_{n\to\infty} (c \cdot a_n) = c \lim_{n\to\infty} a_n$
- 3. $\lim_{n\to\infty} c = c$
- 4. $\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} (a_n) \cdot \lim_{n\to\infty} b_n$
- 5. $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, \lim_{n\to\infty} b_n \neq 0$
- 6. $\lim_{n\to\infty} a_n^p = [\lim_{n\to\infty} a_n]^p, p > 0, a_n > 0$

2.5 Technique - Rational functions

If a_n is rational function, to find $\lim_{n\to\infty} a_n$, divide both by highest power of n in **denominator.**

2.6 Example

Find the limit of the following sequences if exist:

1.
$$a_n = \frac{3n^2 - n + 4}{7 + 6n^2}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{\frac{3n^2}{n^2} - \frac{n}{n^2} + \frac{4}{n^2}}{\frac{7}{n^2} + \frac{6n^2}{n^2}}$$

$$= \frac{3}{6}$$

$$\lim_{n \to \infty} a_n = \frac{1}{2}$$

2.
$$a_n = \frac{n}{n+1}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n+1}$$

$$= \lim_{n \to \infty} \frac{\frac{n}{n}}{\frac{n+1}{n}}$$

$$= \frac{1}{1}$$

$$\lim_{n \to \infty} a_n = 1$$

3.
$$a_n = \frac{n^2 - n}{n^2 + 1}$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2 - n}{n^2 + 1}$$

$$= \lim_{n \to \infty} \frac{\frac{n^2}{n^2} - \frac{n}{n^2}}{\frac{n^2}{n^2} + \frac{1}{n^2}}$$

$$= \lim_{n \to \infty} \frac{1 - \frac{1}{n}}{1 + \frac{1}{n^2}}$$

$$\lim_{n \to \infty} a_n = 1$$

2.7 Example

By using L'Hospital's Rule, calculate the following:

1.
$$\lim_{n\to\infty} \frac{\ln n}{n}$$

$$\lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$

2.
$$\lim_{n\to\infty} \frac{e^{2n}}{n}$$

$$\lim_{n \to \infty} \frac{e^{2n}}{n} = \lim_{n \to \infty} \frac{\frac{d}{dn} \left[e^{2n}\right]}{\frac{d}{dn} \left[n\right]}$$

$$= \lim_{n \to \infty} \frac{2e^{2n}}{1}$$

$$= \lim_{n \to \infty} 2e^{2n}$$

$$\lim_{n \to \infty} \frac{e^{2n}}{n} = \infty$$

2.8 Theorem - Squeeze Theorem

- 1. If $a_n \le b_n \le c_n, n > n_0$
 - (a) If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$
 - (b) Then $\lim_{n\to\infty} b_n = L$

2.8.1 Example

Evaluate:

1.
$$\lim_{n\to\infty} \left\{ \frac{\cos^2 n}{3^n} \right\}$$

$$-1 \le \cos n \le 1$$

$$1 \le \cos^2 n \le 1$$

$$\frac{1}{3} \le \frac{\cos^2 n}{3^n} \le \frac{1}{3}$$

$$\lim_{n \to \infty} \frac{1}{3} \le \lim_{n \to \infty} \frac{\cos^2 n}{3^n} \le \lim_{n \to \infty} \frac{1}{3}$$

$$0 \le \lim_{n \to \infty} \frac{\cos^2 n}{3^n} \le 0$$

- (a) .: According to Squeeze Theorem, $\lim_{n\to\infty}\frac{\cos^2 n}{3^n}=0$
- 2. $\lim_{n \to \infty} \left\{ \frac{n!}{n^n} \right\}$ (Lecturer mention exam might come out)

$$\frac{n!}{n^n} = \frac{n(n-1)(n-2)\dots 3\cdot 2\cdot 1}{n\cdot n\cdot n\dots \cdot n}$$
$$= \frac{n}{n} \cdot \frac{n-1}{n} \cdot \dots \cdot \frac{3}{n} \cdot \frac{2}{n} \cdot \frac{1}{n}$$
$$= 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \frac{3}{n} \cdot \frac{2}{n} \cdot \frac{1}{n}$$

$$\lim_{n \to \infty} 0 \le \lim_{n \to \infty} \left\{ \frac{n!}{n^n} \right\} \le \lim_{n \to \infty} 1$$

$$\lim_{n \to \infty} 0 \le \lim_{n \to \infty} \left\{ \frac{n!}{n^n} \right\} \le \lim_{n \to \infty} 1$$

$$0 \le \lim_{n \to \infty} \left\{ \frac{n!}{n^n} \right\} \le 0$$

(a) According to S.T., $\lim_{n\to\infty}\left\{\frac{n!}{n^n}\right\}=0$

2.9 Theorem 3.3

1. If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$

2.9.1 Example

1. Evaluate $\lim_{n\to\infty} \frac{(-1)^n}{n}$ if exists.

$$\lim_{n \to \infty} \left| \frac{(-1)^n}{n} \right| = \lim_{n \to \infty} \frac{1}{n}$$
$$\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$$

2.10 Theorem 3.4

- 1. Sequence $\{r^n\}_{n=0}^{\infty}$ converges if $-1 < r \le 1$, diverges for all other r.
- 2. Also,

$$\lim_{n \to \infty} = \begin{cases} 0 &, -1 < r < 1 \\ 1 &, r = 1 \end{cases}$$

2.10.1 Evaluate:

- 1. $\lim_{n\to\infty} (-1)^n = \infty$, Divergent
- 2. $\lim_{n\to\infty} \left(\frac{1}{3}\right)^n = 0$, convergent
- 3. $\lim_{n\to\infty} 5^n = \infty$, Divergent

3 Infinite Series

3.1 Definition 3.4

1. Infinite series (or just series) = $a_1 + a_2 + a_3 + ... + a_n + ...$

(a)
$$\sum a_n \text{ OR } \sum_{n=1}^{\infty} a_n$$

- 2. Series = infinite sum of numbers
- 3. Sequence = numbers, 1-to-1 correspondence with positive integer.

3.1.1 Example

1.
$$\left\{\frac{1}{n}\right\} = \left\{1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots\right\}$$

(a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n}\right) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

2.
$$\left\{ \frac{(-1)^{n-1}}{2^{n-1}} \right\} = \left\{ 1, -\frac{1}{2}, \frac{1}{4}, \dots \right\}$$

(a)
$$\sum_{n=1}^{\infty} \left(\frac{(-1)^{n-1}}{2^{n-1}} \right) = 1 - \frac{1}{2} + \frac{1}{4} - \dots$$

3.2 Definition 3.5 - Partial Sums, S_k

- 1. k th Partial sum, S_k of $\sum a_n$
 - (a) $S_k = a_1 + a_2 + \dots + a_k$
- 2. Sequence of partial sum of $\sum_{n=1}^{\infty} a_n$ is
 - (a) $\{S_1, S_2...S_n, ...\}$

3.2.1 Example

Find the sequence of partial sum of the series $\sum_{n=1}^{\infty} n$

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + \dots$$

$$S_1 = 1$$

$$S_2 = 1 + 2 = 3$$

$$S_3 = \dots$$

1. Sequence of partial sum: $\left\{1, 3, 6, 10, \frac{n}{2} (n+1), \ldots\right\}$

4 Convergence & Divergence of Series

4.1 Definition

- 1. The series $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequence $\{Sn\}$ is convergent and $\lim_{n\to\infty} S_n = s$ exists as a real number.
- 2. The number s is called the **sum** of the series, $s = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$
- 3. If the sequence $\{Sn\}$ is divergent, then the series $\sum_{n=1}^{\infty} a_n$ diverges
- 4. To put it simply, series converges if and only if:
 - (a) sequence is convergent AND
 - (b) the value of function when approaching infinity is a real number.

4.1.1 Example

Show that the series $\sum_{n=1}^{\infty} n$ is divergent

- 1. $\{S_n\} = \{1, 2, 3,, \infty\}$ is divergent
- 2. Therefore, it is divergent.

4.2 Theorem 3.5

- 1. If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.
 - (a) Converse not generally true. Further investigation needed.

4.3 Theorem 3.6: Test for Divergence

- 1. If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ D.N.E., the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- 2. Put it simply, if the limit to infinity is not 0, then it diverges.

4.3.1 Example

Show that the following series are divergent.

1.
$$\sum_{n=1}^{\infty} \frac{n^2}{3+5n^2}$$

$$\lim_{n \to \infty} \frac{n^2}{3 + 5n^2} = \lim_{n \to \infty} \frac{\frac{n^2}{n^2}}{\frac{3}{n^2} + \frac{5n^2}{n^2}}$$
$$= \lim_{n \to \infty} \frac{1}{\frac{3}{n^2} + 5}$$
$$\lim_{n \to \infty} \frac{n^2}{3 + 5n^2} = \frac{1}{5} \neq 0$$

2.
$$\sum_{n=1}^{\infty} \frac{-n}{2n+3}$$

$$\lim_{n \to \infty} \frac{-n}{2n+3} = \lim_{n \to \infty} \frac{\frac{-n}{n}}{\frac{2n}{n} + \frac{3}{n}}$$

$$= \lim_{n \to \infty} \frac{-1}{2 + \frac{3}{n}}$$

$$\lim_{n \to \infty} \frac{-n}{2n+3} = -\frac{1}{2}$$

$$\lim_{n \to \infty} \frac{-n}{2n+3} \neq 0$$

5 Special Series

5.1 Geometric Series

5.1.1 Definition

- 1. **Geometric series:** Series with the form $a + ar + ar^2 + ... + ar^n + ...$
- 2. Notation: $\sum_{n=1}^{\infty} ar^{n-1}$ OR $\sum_{n=0}^{\infty} ar^n$

- 3. Convergent, if
 - (a) |r| < 1, AND
 - (b) $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$
 - (c) Otherwise, its divergent

5.1.2 Example

Determine if the following series converge or diverge. If they converge give the value of the series.

1.
$$\sum_{n=1}^{\infty} 9^{-n+2} 4^{n+1}$$

(a)
$$9^{-n+2}4^{n+1}$$

$$9^{-n+2}4^{n+1} = \frac{9^2}{9^n}4(4^n)$$

$$= \frac{9^2}{9^n}4(4^n)$$

$$= 4 \cdot 9^2 \cdot \left(\frac{4}{9}\right)^2$$

$$r = \frac{4}{9} < 1, conv$$

$$S_{\infty} = \frac{\left(9 \cdot 4^2\right)}{1 - \frac{4}{9}} = 259.2$$

$$2. \sum_{n=1}^{\infty} \frac{(-4)^{3n}}{5^{n-1}}$$

(a)
$$\frac{(-4)^{3n}}{5^{n-1}}$$

$$\frac{(-4)^{3n}}{5^{n-1}} = \frac{(-4)^{3n}}{5^n \cdot 5^{-1}}$$
$$= 5 \cdot \frac{(-4^3)^n}{5^n}$$
$$= 5 \cdot \left(\frac{-4^3}{5}\right)^n$$
$$= 5 \cdot \left(-\frac{4^3}{5}\right)^n$$
$$r = -\frac{4^3}{5}$$

i. Since |r| > 1, the series is divergent

5.2 Telescoping Series

Definition 3.8: A telescoping series is a series whose sum can be found by exploiting the circumstance that nearly every term cancels with either a succeeding or preceding term.

5.2.1 Example

- 1. Given the telescoping series $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} + \dots$
 - (a) Find the n-th partial sum S_n of the series for $n=1,\,2,\,3,\,4$

$$S_1 = \frac{1}{2}$$

$$S_2 = \frac{1}{2} + \frac{1}{6}$$
$$= \frac{2}{3}$$

$$S_3 = \frac{1}{2} + \frac{1}{6} + \frac{1}{12}$$
$$= \frac{3}{4}$$

$$S_4 = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20}$$
$$= \frac{4}{5}$$

(b) Find S_n .

$$\begin{split} \sum \frac{1}{n \, (n+1)} &= \sum \left(\frac{1}{n} - \frac{1}{n+1}\right) \\ &= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) \\ &= 1 - \frac{1}{n+1} \\ &= \frac{n}{n+1} \\ &= S_n \end{split}$$

(c) Show that the series is convergent and find its sum.

$$S_{\infty} = \lim_{n \to \infty} S_n$$

$$= 1 - \frac{1}{\infty + 1}$$

$$= 1, convergent$$

i. Note: Sum is 1 because they cancel out each other for every term. So only the remaining term counts.

5.2.2 Example

Find the sum of the series $\sum_{n=1}^{\infty} \left(\frac{2}{n(n+1)} + \frac{1}{2^n}\right)$.

$$\sum_{n=1}^{\infty} \left(\frac{2}{n(n+1)} + \frac{1}{2^n} \right) = 2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} + \sum_{n=1}^{\infty} \frac{1}{2^n}$$
$$= 2 + \sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^n$$
$$= 2 + \frac{\frac{1}{2}}{1 - \frac{1}{2}}$$

$$\sum_{n=1}^{\infty} \left(\frac{2}{n(n+1)} + \frac{1}{2^n} \right) = 3$$

5.3 Harmonic Series (Not in finals, safe to ignore)

Definition 3.9: A series of the form $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$ is called a harmonic series. Always **divergent**.

5.3.1 Proof for divergence (Proof by contradiction)

- 1. Assume harmonic series converges to H.
- 2. Calculations

$$\begin{split} H &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \\ H &= \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots \\ H &> \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots \\ &= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \\ &= H \end{split}$$

- 3. Contradiction (H > H). So the harmonic series is not convergent.
- 5.4 p-series

Definition 3.10: A p-series is a series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \begin{cases} converges & p > 1\\ diverges & p \le 1 \end{cases}$$

5.4.1 Example

Determine whether the given series converges or diverges.

- 1. $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$
 - (a) p = 2, conv
- 2. $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots$
 - (a) $p = \frac{1}{2}, div$

6 Convergent Test for Series

6.1 The Integral Test

Theorem 3.8: Suppose f is a continuous, positive, **decreasing** function on $[1, \infty)$ and $a_n = f(n)$.

- a. If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- b. If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

6.1.1 Example:

By using Integral Test, determine whether the following series converges or diverges.

 $1. \sum_{n=1}^{\infty} \frac{5}{n+1}$

$$\int_{1}^{\infty} \frac{5}{x+1} dx = 5 \ln (x+1)_{1}^{\infty}$$
$$= 5 \ln \infty - 5 \ln 2$$
$$\int_{1}^{\infty} \frac{5}{x+1} dx = \infty$$

- (a) $\therefore Divergent$
- $2. \sum_{n=1}^{\infty} e^{-n}$

$$\int_{1}^{\infty} e^{-x} dx = \int_{1}^{\infty} e^{-x} dx$$

$$= \left[-e^{-x} \right]_{1}^{\infty}$$

$$= -e^{-\infty} - \left(-e^{-1} \right)$$

$$= -e^{-\infty} + e^{-1}$$

$$\int_{1}^{\infty} e^{-x} dx = e^{-1}$$

(a) : Convergent

6.2Comparison Test/Limit Comparison Test

Theorem 3.9: Comparison Test

Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms.

a. If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.

b. If $\sum b_n$ is divergent and $a_n \geq b_n$ for all n, then $\sum a_n$ is also

6.2.1 Example

Determine whether the following series converges or diverges:

1.
$$\sum_{n=1}^{\infty} \frac{3}{2n^2+4n+1}$$

$$a_n = \frac{3}{2n^2 + 4n + 1}$$
$$2n^2 + 4n + 1 > 2n^2 > n^2$$

$$2n^2 + 4n + 1 > 2n^2 > n^2$$

$$\frac{3}{2n^2+4n+1}<\frac{3}{n^2}$$

- (a) $3\sum \frac{1}{n^2}$ is a convergent p-series.
- (b) $\sum_{n=1}^{\infty} \frac{3}{2n^2+4n+1}$ is convergent.

2.
$$\sum_{n=1}^{\infty} \frac{1}{2^n+1}$$

$$a_n = \frac{1}{2^n + 1}$$

$$2^n + 1 > 2^n$$

$$\frac{1}{2^n+1}<\frac{1}{2^n}$$

- (a) Since $\sum \frac{1}{2^n}$ is a convergent geometric series
- (b) $\sum_{n=1}^{\infty} \frac{1}{2^n+1}$ is convergent.

Theorem 3.10: Limit Comparison Test

Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} =$ c where c is a finite number and c > 0, then either both series converge or both diverge. If c = 0, no conclusion.

6.2.2 Example

Determine whether the following series converges or diverges:

$$1. \sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$$

(a)
$$a_n = \frac{1}{1+\sqrt{n}}, b_n = \frac{1}{\sqrt{n}}$$

(b)
$$b_n$$
 is a divergent p -series, $p = \frac{1}{2}$

(c)
$$\lim_{n\to\infty} \frac{a_n}{b_n}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(\frac{1}{1+\sqrt{n}}\right)}{\frac{1}{\sqrt{n}}}$$

$$= \lim_{n \to \infty} \frac{\sqrt{n}}{1+\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\frac{1}{\sqrt{n}}+1}$$

$$= 1$$

(d) Therefore,
$$\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$$
 diverges.

2.
$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

(a)
$$a_n = \frac{1}{2^n - 1}, b_n = \frac{1}{2^n}$$

(b)
$$b_n$$
 is a convergent geometric series.

(c)
$$\lim_{n\to\infty} \frac{a_n}{b_n}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{2^n - 1}}{\frac{1}{2^n}}$$

$$= \lim_{n \to \infty} \frac{2^n}{2^n - 1}$$

$$= \lim_{n \to \infty} \frac{1}{1 - \frac{1}{2^n}}$$

$$= 1$$

(d) Therefore,
$$\sum_{n=1}^{\infty} \frac{1}{2^n-1}$$
 converges.

6.3 Alternating Series Test

Theorem 3.11: If the alternating series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n b_n$ or $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ where $b_n > 0$ 0 satisfies:

1.
$$b_{n+1} \leq b_n$$
 for all n (decreasing);

$$2. \lim_{n\to\infty} b_n = 0$$

Then the series is convergent.

Note: This test CANNOT be used to determine if the series is divergent.

6.3.1 Example

Determine whether the following series converges or diverges:

- $1. \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$
 - (a) $b_n = \frac{1}{n}$
 - (b) $b_n = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$, decreasing
 - (c) $\lim_{n\to\infty} b_n = 0$
 - (d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is convergent.
- 2. $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^2 + 3}$
 - (a) $b_n = \frac{n^2}{n^2+3}$
 - (b) $b_n = \left(\frac{1}{4}, \frac{4}{7}, \ldots\right)$ increase
 - (c) This test is not suitable, run another test.

6.4 Absolute Convergence

Definition 3.11: A series $\sum_{n=1}^{\infty} a_n$ is called **absolutely convergent** if the series of absolute values, $\sum_{n=1}^{\infty} |a_n|$ is convergent.

6.4.1 Example

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ is absolutely convergent because $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent p - series(p=2)

Theorem 3.12: If $\sum_{n=1}^{\infty} |a_n|$ converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.

Definition 3.12: a series $\sum_{n=1}^{\infty} a_n$ is called conditionally convergent if the series $\sum_{n=1}^{\infty} a_n$ is convergent but the series of absolute values $\sum_{n=1}^{\infty} |a_n|$ is divergent.

6.4.2 Example

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is **conditionally convergent** because $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is an alternating harmonic series which is convergent, but $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

6.4.3 Example

Test the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ for absolute convergence.

$$\left|\frac{\cos n}{n^2}\right| < \frac{1}{n^2}$$

- 1. Since $\sum \frac{1}{n^2}$ is a convergent p-series (p=2), but comparison test, $\sum \left|\frac{\cos n}{n^2}\right|$ is absolutely convergent.
- 2. So, $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is absolutely convergent.

6.5 The Ratio Test

Theorem 3.13: Suppose $\sum_{n=1}^{\infty} a_n$ is a series with positive terms.

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \begin{cases} <1 &, \sum_{n=1}^{\infty} a_n \text{converges} \\ > 1 \text{or} \infty &, \sum_{n=1}^{\infty} a_n \text{diverges} \\ 1 &, \text{the Ratio Test inconclusive} \end{cases}$$

6.5.1 Example

Determine whether the following series converges or diverges:

1.
$$\sum_{n=1}^{\infty} \frac{99^n}{n!}$$

$$a_n = \frac{99^n}{n!}, a_{n+1} = \frac{99^{n+1}}{(n+1)!}$$

$$\begin{aligned} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| &= \lim_{n \to \infty} \frac{99^{n+1}}{(n+1)!} \cdot \frac{n!}{99^n} \\ &= \lim_{n \to \infty} \frac{99^{n+1}}{(n+1)!} \cdot \frac{n!}{99^n} \\ &= \lim_{n \to \infty} \frac{99^{n+1}}{99^n} \cdot \frac{n!}{(n+1)!} \\ &= \lim_{n \to \infty} \frac{99^{n+1}}{99^n} \cdot \frac{n!}{(n+1)!} \\ &= \lim_{n \to \infty} 99 \cdot \frac{n!}{(n+1) \, n!} \text{note: still the same thing} \\ &= \lim_{n \to \infty} \frac{99}{n+1} = 0 \\ &< 1 \, (convergent) \end{aligned}$$

2.
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$

$$a_n = \frac{(2n)!}{(n!)^2}, a_{n+1} = \frac{(2(n+1))!}{((n+1)!)^2}$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(2(n+1))!}{((n+1)!)^2} * \frac{(n!)^2}{(2n)!}$$

$$= \lim_{n \to \infty} \frac{(2(n+1))!}{(2n)!} * \frac{(n!)^2}{((n+1)!)^2}$$

$$= \lim_{n \to \infty} \frac{(2(n+1))!}{(2n)!} * \left(\frac{n!}{(n+1)!}\right)^2$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)(2n)!}{(2n)!} \cdot \left(\frac{n!}{(n+1)n!}\right)^2$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)(2n)!}{(2n)!} \cdot \left(\frac{n!}{(n+1)n!}\right)^2$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)(2n)!}{(2n)!} \cdot \left(\frac{n!}{(n+1)n!}\right)^2$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)(n+1)}$$

$$= \lim_{n \to \infty} \frac{4n^2 + 6n + 2}{n^2 + 2n + 1} = 4 (>1)$$

(a) The series is divergent

3.
$$\sum_{n=1}^{\infty} \frac{n^2}{(2n-1)!}$$
(a) $a_n = \frac{n^2}{(2n-1)!}, a_{n+1} = \frac{(n+1)^2}{(2(n+1)-1)!} = \frac{(n+1)^2}{(2n+1)!}$
(b)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+1)!} \cdot \frac{(2n-1)!}{n^2}$$

$$= \lim_{n \to \infty} \frac{(n+1)^2}{n^2} \cdot \frac{(2n-1)!}{(2n+1)!}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} \cdot \frac{(2n-1)!}{(2n+1)(2n+1-1)(2n+1-2)!} \text{note: expand the factorial}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} \cdot \frac{(2n-1)!}{(2n+1)(2n)(2n-1)!}$$

$$= \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} \cdot \frac{1}{(2n+1)(2n)}$$

$$= \lim_{n \to \infty} \left(1 + \frac{2}{n} + \frac{1}{n^2}\right) \cdot \frac{1}{(2n+1)(2n)}$$

$$= 1 \cdot 0$$

$$= 0$$

6.6 The Root Test

Theorem 3.14: Suppose we have the series $\sum_{n=1}^{\infty} a_n$.

= convergent

Define,
$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$$

Then, if L < 1, the series is absolutely convergent (and hence convergent).

If L > 1, the series is divergent.

L=1, the test is inconclusive.

Example: Determine whether the following series converges or diverges:

1.
$$\sum_{n=1}^{\infty} \left(\frac{4n-3n^2}{5n^2+2} \right)^n$$

(a)
$$a_n = \left(\frac{4n - 3n^2}{5n^2 + 2}\right)^n$$

$$\sqrt[n]{\left(\frac{4n-3n^2}{5n^2+2}\right)^n} = \frac{4n-3n^2}{5n^2+2}$$

$$\lim_{n\to\infty}\left|\frac{4n-3n^2}{5n^2+2}\right|=\frac{3}{5}<1$$

(b) The series is convergent

2.
$$\sum_{n=1}^{\infty} \frac{n^n}{4^{1+3n}}$$

$$\sqrt{\frac{n^n}{4^{1+3n}}} = \frac{n}{4^{\frac{1+3n}{n}}}$$
$$= \frac{n}{4^{\frac{1}{n}+3}}$$

$$\left| \lim_{n \to \infty} \frac{n}{4^{\frac{1}{n} + 3}} \right| = \frac{\infty}{4^3}$$
$$= \infty$$

(a) The series is divergent

6.6.1 Example, exapnd the following:

1.
$$\left(x + \frac{1}{x}\right)^5$$

$$\begin{split} \left(x + \frac{1}{x}\right)^5 &= \sum_{k=0}^{\infty} \binom{5}{k} x^{5-k} \left(\frac{1}{x}\right)^k \\ &= \binom{5}{0} x^5 \left(\frac{1}{x}\right)^0 + \binom{5}{1} x^4 \left(\frac{1}{x}\right)^1 + \binom{5}{2} x^3 \left(\frac{1}{x}\right)^2 + \binom{5}{3} x^2 \left(\frac{1}{x}\right)^3 + \binom{5}{4} x^1 \left(\frac{1}{x}\right)^4 + \binom{5}{5} x^0 \left(\frac{1}{x}\right)^4 + \binom{5}{5} x^3 + 10x + \frac{10}{x} + \frac{5}{x^3} + \frac{1}{x^5} \end{split}$$

2.
$$(2-x)^4$$

(a)
$$2^5 - 5(2^4x) + 10(2^3)x^3 + 5(2^1x^4) - x^5 = 32 - 80x + 80x^2 - 40x^3 + 10x^4 - x^5$$

(b)
$$161 + 72\sqrt{5}$$

3.
$$(2+\sqrt{5})^4$$

- (a) Start by writing the terms in pascal triangle: 1, 4, 6, 4, 1
- (b) Continue by adding values into the equation

$$\left(2+\sqrt{5}\right)^{4} = 1\left(2\right)^{4} + 4\left(2\right)^{3}\left(\sqrt{5}\right) + 6\left(2\right)^{2}\left(\sqrt{5}\right)^{2} + 4\left(2\right)\left(\sqrt{5}\right)^{3} + 1\left(\sqrt{5}\right)^{4}$$

6.7 Binomial Series

Theorem: Binomial Theorem

If n is any positive integer, then

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

= $a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^3 + \dots + nab^{-1} + b^n$

Where $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ (binomial coefficient)

Pascal's Triangle - collection of the binomial coefficients.

Definition 3.14: Binomial Series

If n is any real number and |x| < 1, then

$$(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^n$$

 $= 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{2!}x^3 + \cdots$ is called a Binomial Series.

6.7.1

6.7.2 Example: Expand the following functions as a power series:

1. $\frac{1}{(1+x)^2}$

$$\frac{1}{(1+x)^2} = (1+x)^{-2}$$

$$= 1 + (-2)x + \frac{-2(-2-1)}{2!}x^2 + \frac{-2(-2-1)(-2-2)}{3!}x^3 + \dots$$

$$= 1 - 2x + 3x^2 - 4x^3 + \dots$$

2. $\sqrt{1+x}$

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}}$$

$$= 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)}{2!}x^2 + \frac{\frac{1}{2}(\frac{1}{2}=1)(\frac{1}{2}-2)}{3!}x^3$$

$$= 1 + \frac{1}{2}x + \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots$$

6.8 Power Series

Definition 3.13: A power series is a series of the form $\sum c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 \dots$ where x is a variable and the c_n 's are constants called the **coefficients** of the series.

More generally, a series of the form $\sum c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 \dots$ is called a **power series in** (x-a) or a **power series centered at** a or a **power series about** a.

Theorem 3.15: For a given power series $\sum c_n (x-a)^n$ there are only three possibilities:

- i. The series converges only at the point x = a.
- ii. The series converges for all x.

iii. The series converges if |x-a| < R and diverges if |x-a| > R, where the positive number R is called the **radius of convergence** of the power series. The set of points at which the series converges is called the **interval of convergence**.

Example: Determine the radius of convergence and interval of convergence for the following power series:-

1.
$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$$

$$a_n = \sum_{n=0}^{\infty} \frac{n (x+2)^n}{3^{n+1}}$$
$$a_{n+1} = \sum_{n=0}^{\infty} \frac{(n+1) (x+2)^{n+1}}{3^{n+2}}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)(x+2)^{n+1}}{3^{n+2}} \cdot \frac{3^{n+1}}{n(x+2)^n}$$
$$= \frac{1}{3} \left(\frac{n+1}{n}\right)(x+2)$$

(a) The series converges if $\lim < 1$

$$\lim_{n \to \infty} \left| \frac{1}{3} \left(\frac{n+1}{n} \right) (x+2) \right| < 1$$

$$\lim_{n \to \infty} \left| \frac{1}{3} (x+2) \right| < 1$$

- (b) Radius of convergence
 - i. Since x is not dependent on n, we can factor it out and make it become

$$\frac{1}{3}|(x+2)| < 1$$
$$|(x+2)| < 3$$

- ii. Therefore, the radius of convergence is R=3
- (c) Interval of convergence

i.

$$-1 < \frac{1}{3}(x+2) < 1$$

$$-1 < \frac{x+2}{3} < 1$$

$$-3 < x+2 < 3$$

$$-5 < x < 1$$

2.
$$\sum_{n=0}^{\infty} \frac{2^n (4x-8)^n}{n}$$

$$a_n = \frac{2^n (4x - 8)^n}{n}, a_{n+1} = \frac{2^{n+1} (4x - 8)^{n+1}}{n+1}$$

(a) Use the ratio test to find the limit L

$$L = \lim_{n \to \infty} \left| \frac{2^{n+1} (4x - 8)^{n+1}}{n+1} \cdot \frac{n}{2^n (4x - 8)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{2^{n+1} (4x - 8)^{n+1}}{n+1} \cdot \frac{n}{2^n (4x - 8)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{2n (4x - 8)}{n+1} \right|$$

$$= \lim_{n \to \infty} \left| \frac{\frac{2n (4x - 8)}{n}}{\frac{n}{n} + \frac{1}{n}} \right|$$

$$= \left| \frac{2 (4x - 8)}{1} \right|$$

$$= 2 |(4x - 8)|$$

(b) For the series to converge, L < 1

$$2|(4x - 8)| < 1$$
$$|(4x - 8)| < \frac{1}{2}$$

- (c) Therefore, the radius of convergence is $R = \frac{1}{2}$
- (d) Next, find the interval of convergence

$$-\frac{1}{2} < 4(x-2) < \frac{1}{2}$$
$$-\frac{1}{8} < x - 2 < \frac{1}{8}$$
$$\frac{15}{8} < x < \frac{17}{8}$$

(e) Therefore, the interval of convergence is $\frac{15}{8} < x < \frac{17}{8}$

6.8.1 Representations of Functions as Power Series

We say that the power series is a representation of a function on the interval of convergence.

A power series about x=0 is a series of the form $\sum c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$

When $c_i = 1, \forall i$, we have a geometric series $\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$

If |x|<1 , the series converges and the sum is $\frac{1}{1-x}$. Thus we have

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots = \frac{1}{1-x} \text{for} - 1 < x < 1$$

In above equation, we express the function $f(x) = \frac{1}{1-x}$ as the sum of the power series. So the power series is a representation of $f(x) = \frac{1}{1-x}$

6.8.2 Example: Express $\frac{1}{1+x^2}$ as the sum of a power series and find the interval of convergence.

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = \sum_{n=0}^{\infty} (-x^2)^n$$

Series is convergent when

$$-1 < -x^{2} < 1$$

 $-1 < x^{2} < 1$
 $0 < x < 1$

- **6.8.3** Example: Find a power series representation for $\frac{1}{x+2}$
 - 1. Solution

$$\frac{1}{x+2} = \frac{1}{1 - (-(x+1))}$$
$$= \sum_{n=0}^{\infty} (-(x+1))^n$$

2. Series is convergent when

$$-1 < -(x+1) < 1$$

 $-1 < x+1 < 1$
 $-2 < x < 0$

6.8.4 Differentiation and Integration of Power Series

The differentiation and integration of power series are used to obtain power series representations.

Theorem 3.16: Term-by-term Differentiation and Integration

If the power series $\sum_{n=1}^{\infty} c_n (x-a)^n$ has radius of convergence R > 0, then the function f defined by

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots = \sum_{n=0}^{\infty} c_n (x - a)^n$$

Is differentiable on the interval of convergence and

i.
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1}$$

ii. $\int f(x) dx$

$$\int f(x)dx = C + c_0(x-a) + \frac{c_1}{2}(x-a)^2 + \frac{c_2}{3}(x-a)^3 + \cdots$$
$$= C + \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x-a)^{n+1}$$

The radii of convergence of the power series in above equations are both ${\cal R}$

6.8.5 Example

Find the power series representations for the functions. By using the geometric series $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ for |x| < 1

1.
$$\frac{1}{(1-x)^2}$$

$$\frac{d}{dx} \left[\frac{1}{(1-x)^2} \right] = \frac{d}{dx} \left[\frac{1}{1-x} \right]$$

$$= \frac{d}{dx} \left[\sum x^n \right]$$

$$= \sum \frac{d}{dx} (x^n)$$

$$= \sum nx^{n-1}$$

2.
$$\tan^{-1} x$$
 (hint: $\tan^{-1} x = \int \frac{1}{1+x^2} dx$)

$$\tan^{-1} x = \int \frac{1}{1+x^2} dx$$

$$= \int \sum (-x^2) dx$$

$$= \sum \int (-1)^n (x^{2n}) dx$$

$$= \sum \int (-1)^n (x^{2n}) dx$$

$$= \sum (-1)^n \frac{x^{2n+1}}{2n+1} dx$$

$$= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

$$= \tan^{-1} x$$