\$1.2 Row Reduction and Echelon forms (steplike)
Def: A rectangular matrix is in echelon form (or
you echelon form) if it has the following three
properties:
i) All nonzero rows are above any rows of all
ZOY9S
2) Each leading entry of a row is in a
column to the right of the leading
entry o the row above it.
3) All entries in a column below a leading
entry are zeros
If a matrix in echelon form satisfies the
following additional conditions, then it is in
reduced echelon form (or reduced row echelon
form):
4) The leading entry in each nonzero row is 1.
5) Each leading 1 is the only nonzero entry in
its column.
Def: a leading entry of a row refers to the leftmost
nonzero entry (in a nonzero vow).
Example: $\frac{2}{3} = \frac{3}{2} = \frac{1}{1000} = \frac{29}{1000}$
0 1 -4 8 0 1 0 16
0000 2/ 0013/
echelon form reduced echelon form

Thm: Uniqueness of the Reduced echelon

Each matrix is row equivalent to one and only one reduced echelon matrix.

If A row operations

A natrix echelon matrix

U is called an echelon form of A.

* Pivot Positions

Def: A pivot position in a matrix A is a location in A that corresponds to a leading I in the reduced echelon form of A. A pivot column is a column of A that contains a pivot position.

Example: Row reduce the matrix A below to echelon

form, and locate the pivot columns of A.
$$A = \begin{pmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{pmatrix}$$

Solution:
$$0 - 3 - 6 + 9$$
 $-1 - 2 - 1 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-2 - 3 - 0 - 3 - 1$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 6 - 6$
 $-3 - 7 - 7$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 $-1 - 2 - 1$
 -1

* The Row Reduction Algorithm

Example: Apply elementary row operations to transform the following matrix first into echelon form and

then into reduced echelon form:
$$\begin{pmatrix}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{pmatrix}$$

Solution: Step 1: Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top. pivot position (0) 3 -6 6 4 -5 (3) 3 -7 8 -5 8 9 (3) -9 12 -9 6 15 pivot column step 2: Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position. step 3: Use row replacement operations to create zeros in all positions below the pivot. step 4: Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until there are no more nonzero nows to modify

$$\frac{1}{2} \times 0 = \begin{cases}
1 & 6 & 2 & -5 & 0 & 10 \\
0 & 0 & 1 & -4 & 0 & 5 \\
0 & 0 & 0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & -4 & 0 & 5 \\
0 & 0 & 1 & -4 & 0 & 5 \\
0 & 0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & -4 & 0 & 5 \\
0 & 0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & -4 & 0 & 5 \\
0 & 0 & 1 & -4 & 0 & 5
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & -4 & 0 & 5 \\
0 & 0 & 1 & -4 & 0 & 5
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1 & 7
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1
\end{cases}$$

$$\frac{1}{2} \times 0 = \begin{cases}
0 & 0 & 1$$

Theorem (Existence and Uniqueness Theorem)

1) A linear system is consistent

the right most column of the augmented matrix is not a pivot column.

an echolon form of the augmented matrix has no row of the form

[0, ..., 0 b] with b nonzero

2) If a linear system is consistent, then the solution set contains either

i) a unique solution (no free variables)

(All columns of coefficient matrix are pivot columns)
ii) infinitely many solutions (at least I free variable)
* Using Row Reduction to solve a linear system
1) Write the augmented matrix of the system
2) Use the row reduction algorithm to obtain
an equivalent augmented matrix in echelon
form. Decide whether the system is consistent.
If there is no solution, stop; otherwise, go to the next
step.
3) Continue row reduction to obtain the reduced echelon
form.
4) Write the system of equations corresponding to the matrix
obtained in step 3.
5) Rewrite each nonzero equation from step 4 so that
its one basic variable is expressed in terms of any
free variables appearing in the equation.
Exercise: Determine the values of h of the following
matrix such that the matrix is the
augmented matrix of a consistent linear system.
(1 -3 -2)
$\begin{pmatrix} 1 & -3 & -2 \\ 5 & h & -7 \end{pmatrix}$
Solution: $\begin{pmatrix} 1 & -3 & -2 \end{pmatrix} \xrightarrow{2-50} \begin{pmatrix} 1 & -3 & -2 \end{pmatrix}$ $\begin{pmatrix} 5 & h & -7 \end{pmatrix} \xrightarrow{(0)} \begin{pmatrix} 0 & h+15 & 3 \end{pmatrix}$

If h+1	i , 0+ ک	.e. h = -1:	s, the	above
matrix	is the	.e.h≠-1: augmented system.	matrix	of a
consisten	E linear	system.		•