

CAMBRIDGE INSTITUTE OF TECHNOLOGY

K.R. PURAM, BENGALURU-560036

Department of Basic Sciences

First Internal Assessment - Even Semester 2018-19

Sub. Name: Advanced Calculus & Numerical

Sub. Code: 18MAT21

Semester: II

Methods

Duration: 90 Minutes

Max. Marks: 30

[Instructions: Answer any two full questions as indicated below]

SI OUESTIONS COS RBT Marks							
Sl.	QUESTIONS	COS	Levels	IVIAI NO			
No 1.	a) Find the directional derivative for the surface $\phi = x^2yz + 4xz^2$ along the vector $2i - j - 2k$ at $(1, -2, -1)$.	CO1	LI	04M			
	b) If $\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz)$ then determine $div \vec{F}$ and $curl \vec{F}$.	CO1	L2	05M			
	c) Determine the value of the constants a, b, c so that the vector function $\vec{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ is irrotational. Also	CO1	L3	06M			
	find its scalar potential ϕ such that $\vec{F} = \nabla \varphi$.			37			
	OR						
2.	a) Find the angle between the normals to the surface $x^2 + y^2 - z^2 = 4$ and $z = x^2 + y^2 - 13$ at $(2,1,2)$.	CO1	L1	04M			
	b) If $\vec{F} = (x + y + 1)i + j - (x + y)k$ prove that $\vec{F} \cdot curl \vec{F} = 0$.	CO1	L2	05M			
	c) If $\vec{V} = 3x y^2 z^2 i + y^3 z^2 j - 2y^2 z^3 k$ prove that \vec{V} is solenoidal.	CO1	L3	06M			
3.	a) Find the solution of $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \cos x + 4.$	CO2	L1	04M			
	b) Determine the solution of $\frac{d^2y}{dx^2} + y = \tan x$ by the method of variation of parameter.	CO2	L2	05M			
	c) Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1+x)^2$.	CO2	L3	06M			

	OR			
4.	a) Find the solution of $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 3e^x.$	CO2	LI	04M
	b) Determine the solution of $(2x+1)^2 y'' - 6(2x+1)y' + 16y = 8(2x+1)^2$.	CO2	L2	05M
	c) Solve $\frac{d^2y}{dx^2} + y = \sec x \tan x$ by the method of variation of parameter.	CO2	L3	06M

-----END-----