Econ C103: Game Theory and Networks Module I (Game Theory): Lecture 10

Instructor: Matt Leister

Fall 2019, UC Berkeley

Readings:

- Osborne (2004) Chapter 9
- Osborne and Rubinstein (1994) Section 2.6

Static games with incomplete information

- Many (most?) games are played where players do not have complete information about the world.
- Incomplete information can be of three forms:
 - (Symmetric information) A hidden state of the world that all players are uncertain of, but have common beliefs regarding the likelihood of different states (e.g., will it rain tomorrow?, 2020 GDP growth?).
 - (Asymmetric/incomplete information) Players hold private information of the state of the world (e.g., used car sales, poker, blackjack).
 - (Imperfect information) Players hold private information of players' prior actions (e.g., firm management & VC investment).
- We aim to capture each of these environments (and their mixtures!).
- Question: How??...We study (1) and (2) this week (week 4)...

Static games with incomplete information

John Harsanyi's big idea (Berkeley Nobel Laureate '94): Start the game early, allowing Nature to move first, and capture private information using private signals.

- (For now) Assume each game Γ_k has the same action sets (for each player across games $k=1,\ldots,K$, but different players may have different actions sets).
- If no player observes any information (a "signal") informing them of the state ω_k , then information is symmetric across the players...

Static games with incomplete and symmetric information

expected utility game

L R

	L	R	
T	2, p	0, (1-p)2	
В	0 , 1-p	1, p2	

- If $p \ge (1-p)2 \Leftrightarrow p \ge 2/3$, then (T,L) is a PNE.
- If $(1-p) \le p2 \Leftrightarrow p \ge 1/3$, then (B,R) is also a PNE.
- If p < 1/3, then no PNE (but, MNE like Matching Pennies).

Modeling private information with "signals"

- Define: state space $\Omega = \{\omega_1, \omega_2, \ldots\}$ (finite or infinite),
- Define: signal function $\tau:\Omega \to T \equiv \{t^1,t^2,\ldots\}$ where $|T| \leq |\Omega|$.
- Then, τ partitions Ω into disjoint subsets with union equal to Ω .

Modeling private information with signals

- $\tau_i: \Omega \to T_i \equiv \{t_i^1, t_i^2, \ldots\}$ for $|T_i| \le |\Omega|$ and $i \in N$ defines i's private information. Each $t_i^s \in T_i$ gives a "type" of player i.
- Notice, we've said nothing about probabilities!...

- Each signal t_i^s corresponds to an "event": $t_i^s \mapsto$ a subset of Ω .
- Recall Bayes' rule: with $\Omega = \{\omega_1, ..., \omega_K\}$, conditional likelihood of $\omega \in \Omega$ upon receiving signal $t_i^s \subseteq \Omega$:

$$\Pr(\omega|t_i^s) = \frac{\Pr(t_i^s|\omega)\Pr(\omega)}{\sum_{k=1}^K \Pr(t_i^s|\omega_k)\Pr(\omega_k)}$$

• Notice that $Pr(t_i^s|\omega_k) \in \{0,1\}$ for all k=1,...,K. $\Rightarrow Pr(t_i^s|\omega_k)$ is an indicator function (with values in $\{0,1\}$) which "picks" the states mapping to t_i^s (i.e. are in the t_i^s subset of Ω).

• Players $N=\{i,j\}$ hold common priors (of Nature's behavior): $\Pr(\omega_1)=1/4, \Pr(\omega_2)=1/4, \Pr(\omega_3)=1/2.$

• Players i's "posterior" belief after receiving each signal:

$$\begin{array}{ll} \text{upon receiving } t_i^1: & \text{upon receiving } t_i^2: \\ \Pr(\omega_1|t_i^1) = \frac{1 \cdot 1/4}{1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2}} = 1 & \Pr(\omega_1|t_i^2) = \frac{0 \cdot 1/4}{0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2}} = 0 \\ \Pr(\omega_2|t_i^1) = \frac{0 \cdot 1/4}{1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2}} = 0 & \Pr(\omega_2|t_i^2) = \frac{1 \cdot 1/4}{0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2}} = \frac{1}{3} \\ \Pr(\omega_3|t_i^1) = \frac{0 \cdot 1/2}{1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2}} = 0 & \Pr(\omega_3|t_i^2) = \frac{1 \cdot 1/2}{0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2}} = \frac{2}{3} \end{array}$$

• Players $N=\{i,j\}$ hold common priors (of Nature's behavior): $\Pr(\omega_1)=1/4, \Pr(\omega_2)=1/4, \Pr(\omega_3)=1/2.$

• Players j's "posterior" belief after receiving each signal:

$$\begin{array}{ll} \text{upon receiving } t_j^1: & \text{upon receiving } t_j^2: \\ \Pr(\omega_1|t_j^1) = \frac{1 \cdot 1/4}{1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2}} = \frac{1}{2} & \Pr(\omega_1|t_j^2) = \frac{0 \cdot 1/4}{0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2}} = 0 \\ \Pr(\omega_2|t_j^1) = \frac{1 \cdot 1/4}{1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2}} = \frac{1}{2} & \Pr(\omega_2|t_j^2) = \frac{0 \cdot 1/4}{0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2}} = 0 \\ \Pr(\omega_3|t_j^1) = \frac{0 \cdot 1/2}{1 \cdot \frac{1}{4} + 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2}} = 0 & \Pr(\omega_3|t_j^2) = \frac{1 \cdot 1/2}{0 \cdot \frac{1}{4} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2}} = 1 \end{array}$$

Beliefs of state, and of other player's belief in each state:

- State ω_1 : Player i knows ω_1 occurred, and learns that j knows $\{\omega_1, \omega_2\}$ occurred. Player j knows $\{\omega_1, \omega_2\}$ occurred, and does not know whether i knows ω_1 occurred or knows $\{\omega_2, \omega_3\}$ occurred.
- State ω_2 : Player i knows $\{\omega_1, \omega_2\}$ occurred, and does not know whether j knows ω_1 occurred or knows $\{\omega_2, \omega_3\}$ occurred. Player j knows $\{\omega_2, \omega_3\}$ occurred, and does not know whether i knows ω_3 occurred or knows $\{\omega_1, \omega_2\}$ occurred.
- State ω_3 : Player i knows $\{\omega_2, \omega_3\}$ occurred, and does not know whether j knows ω_2 occurred or knows $\{\omega_2, \omega_3\}$ occurred. Player j knows ω_3 occurred, and learns that i knows $\{\omega_2, \omega_3\}$ occurred.

Bayesian Games

Definition (Bayesian Games)

A Bayesian Games is defined as a $\langle N, \Omega, Pr, \{A_i, u_i, T_i, \tau_i\}_{i \in N} \rangle$:

- $N = \{1, ..., n\}$: players,
- Ω: state space,
- A_i : player i's (finite or infinite) action set; $A \equiv \times_{k \in \mathbb{N}} A_k$,
- T_i : player i's type set; $T \equiv \times_{k \in \mathbb{N}} T_k$.
- τ_i : player i's signal function; $\tau_i : \Omega \mapsto T_i$.
- u_i : i's (vNM) utility from pair (ω, \mathbf{a}) , $\omega \in \Omega$, $\mathbf{a} \in A$ (i.e. $u_i(\omega, \mathbf{a})$ gives i's utility given action profile \mathbf{a} in state ω).
- In Bayesian Games, players use type-contingent (equivalently, "signal contingent") strategies:

$$s_i: T_i \mapsto A_i$$
.

Bayesian Games: expected utilities

- Let $\Pr(\omega|t_i)$ denote the probability i places on state ω upon observing t_i .
- Under strategy profile $\mathbf{s} \in \times_{k \in N} S_k$, *i*'s expected utility from playing $a_i \in A_i$ when observing t_i , $U_i(a_i|t)$, is:

$$U_i(a_i|t_i,\mathbf{s}_{-i}) = \sum_{\omega \in \Omega} \mathsf{Pr}(\omega|t_i) \cdot u_i \left(\omega,a_i,(s_j(\tau_j(\omega)))_{j \neq i}\right).$$

Definition (Bayesian Nash equilibrium)

Given Bayesian game $\langle N, \Omega, \Pr, \{A_i, u_i, T_i, \tau_i\}_{i \in N} \rangle$, a strategy profile \mathbf{s}^* is a **Bayesian Nash equilibrium (BNE)** iff for each $i \in N$ and each $t_i \in T_i$:

$$U_i(a_i|t_i, \mathbf{s}_{-i}^*) \ge U_i(a_i'|t_i, \mathbf{s}_{-i}^*), \ \forall a_i' \in A_i.$$

- $t_i(\omega_1) = t_i^1 = t_i(\omega_2) = t_i^1;$ $t_j(\omega_1) = t_j^1 \neq t_j(\omega_2) = t_j^2.$

- Player *i* observes nothing (i.e. $\tau_i(\omega_1) = \tau_i(\omega_2)$), so chooses $a_i \in A_i$.
- Player j learns the state ω , and best responds to (ω, a_i) .

• Player i's expected utilities given $s_i(t_i^1) = L$ and $s_i(t_i^2) = R$:

$$U_i(T|t_i,s_j) = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 0 = 1; \quad U_i(B|t_i,s_j) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}.$$

• $U_i(T|t_i, s_j) > U_i(B|t_i, s_j)$, and each type of j is best responding to T. So, $a_i^* = T$, $s_i^*(t_i^1) = L \& s_i^*(t_i^2) = R$ (i.e. (T, (L, R))) is a BNE.

• Player i's expected utilities given $s_j(t_i^1) = R$ and $s_j(t_i^2) = L$:

$$U_i(T|t_i, s_i) = 2;$$
 $U_i(B|t_i, s_i) = 0.$

• $U_i(T|t_i,s_j) > U_i(B|t_i,s_j)$, BUT neither $s_j(t_j^1) = R$ nor $s_j(t_j^2) = L$ is optimal for j given $a_i = T$. So, (T,(R,L)) not a BNE.

• Player i's expected utilities given $s_i(t_i^1) = L$ and $s_i(t_i^2) = L$:

$$U_i(T|t_i, s_i) = 2;$$
 $U_i(B|t_i, s_i) = 0.$

• $U_i(T|t_i, s_j) > U_i(B|t_i, s_j)$, BUT $s_j(t_j^2) = L$ is not optimal for j given $a_i = T$. So, (T, (L, L)) not a BNE.

• Player i's expected utilities given $s_i(t_i^1) = R$ and $s_i(t_i^2) = R$:

$$U_i(T|t_i, s_i) = 0;$$
 $U_i(B|t_i, s_i) = 1.$

• $U_i(T|t_i, s_j) < U_i(B|t_i, s_j)$, BUT $s_j(t_j^2) = R$ is not optimal for j given $a_j = B$. So, (T, (R, R)) not a BNE.

Solving Bayesian games with normal forms

Notice that:

$$\begin{aligned} \forall t_i \in T_i: \ U_i(a_i|t_i, \mathbf{s}_{-i}^*) \geq U_i(a_i'|t_i, \mathbf{s}_{-i}^*), \ \forall a_i' \in A_i \\ \Leftrightarrow \ \mathbb{E}_{\{t_j\}_{j \neq i}} \left[U_i(s_i(t_i)|t_i, \mathbf{s}_{-i}^*) \right] \geq \mathbb{E} \left[U_i(s_i'(t_i)|t_i, \mathbf{s}_{-i}^*) \right], \ \forall s_i' \in S_i \\ \Leftrightarrow \ \mathbb{E}_{\{t_j\}_{j \in N}} \left[u_i(\omega, s_i, \mathbf{s}_{-i}^*) \right] \geq \mathbb{E} \left[u_i(\omega, s_i', \mathbf{s}_{-i}^*) \right], \ \forall s_i' \in S_i. \end{aligned}$$

Last line compares *i*'s "ex-ante" expected utilities (i.e. without conditioning on t_i) under strategy profiles (s_i, \mathbf{s}_{-i}^*) and $(s_i', \mathbf{s}_{-i}^*)$.

- Thus, we can find BNE in 2-player Bayesian games as follows:
 - **(a)** construct bi-matrix of ex-ante expected utilities, with cells corresponding to each strategy profile (s_i, s_i) ,
 - Ind PNE of the resulting normal form game: these are BNE!

	(L,L)	(L,R)	(R,L)	(R,R)
T	2*, 1/2	1*,3/2*	1*,0	0,1
В	0, 1/2	1/2,0	1/2 , 3/2*	1*,1

Solving Bayesian games with normal forms: example

• Player i is row player, and player j is column player:

Solving Bayesian games with normal forms: example

• Bi-matrix of expected utilities $(\mathbb{E}\left[u_i(\omega, s_i(t_i), s_j(t_j))\right]$, $\mathbb{E}\left[u_j(\omega, s_i(t_i), s_j(t_j))\right]$:

• $BNE = \{(BB, RL)\}$

Solving Bayesian games with normal forms: example

Positive-probability outcomes under SPNE (BB, RL) are in **bold**:

