Project Design Phase-II Technology Stack (Architecture & Stack)

Date	15 October 2022
Team ID	PNT2022TMID42037
Project Name	Efficient Water Quality Analysis and Prediction using Machine Learning
Maximum Marks	4 Marks

Technical Architecture:

Table-1 : Components & Technologies:

S.NO	Component	Description	Technology	
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, Python	
2.	Application Logic-1	Logic for a process in the application	ML Algorithms.	
3.	Application Logic-2	Logic for a process in the application	IBM Watson STT service	
4.	Dataset	Data Type, Configurations etc.	Dataset used for this project is downloaded from Kaggle.	
5.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudnet etc.	
6.	File Storage	File storage requirements	IBM Block Storage or Other Storage Service or Local Filesystem	
7.	Machine Learning Model	Purpose of Machine Learning Model	Classification and Regression model	
8.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	Local, Cloud Foundry, Kubernetes, etc.	

Table-2: Application Characteristics:

S.NO	Characteristics	Description	Technology	
1	Scalable Architecture	Water quality index (MOI) and water quality	Surface water quality acceptment tool	
'-	Scalable Architecture	Water quality index (WQI) and water quality	Surface water quality assessment tool	
		Classification (WQC) are accurately predicted.	will be used here	
2.	Availability	Our model will keep working and be available for	orking and be available for Machine learning	
	,	work even if there is infrastructure failure.	Ç	
3.	Performance	The system effectively compares the input	Digital twin technology	
		parameters given by the users with the dataset	3,	