Arquitectura de Computadoras

(Cód. 5561) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

Multiplicadores

Multiplicadores

- Enteros
 - No signados
 - Signados

- Dos números de n dígitos en base b
 - Multiplicando: $M = m_{n-1} m_{n-2} \dots m_0$
 - Multiplicador: $X = X_{n-1} X_{n-2} ... X_0 = \sum_{i=0}^{n-1} X_i b^i$
- El producto P (de 2n dígitos) será
 - P = M X = M $(\sum_{i=0}^{n-1} x_i b^i)$
- El producto P (de 2n dígitos) en binario
 - $P = M X = M (\sum_{i=0}^{n-1} x_i 2^i)$
- Se resuelve con n sumas de operandos de n bits.
 Por lo tanto, sería de O(n²)

Algoritmo secuencial

Parte de la expresión

$$P = M \cdot X = M \left(\sum_{i=0}^{n-1} x_i \ 2^i \right) = \sum_{i=0}^{n-1} M \ x_i \ 2^i$$

Donde $x_i = 0$ o $x_i = 1$

- Arranca con el producto parcial en 0.
- Consiste de n pasos, donde el paso j multiplica el bit x_j por M y lo suma al producto parcial acumulado.

Enteros no signados

 El producto de dos enteros no signados de n bits, puede dar como resultado máximo P_{max}

$$(2^{n}-1)(2^{n}-1) = 2^{2n}-2^{2n+1}+1=2^{2n-1}+(2^{2n-1}-2^{n+1}+1)$$
\(>0, n \ge 3 \)

Luego

$$2^{2n-1} < P_{\text{max}} < 2^{2n}$$

• El resultado tiene como máximo 2n bits

Algoritmo secuencial

• M X = ?

				0	1	1	0	
			×	1	1	0	1	Suma parcial:
				0	1	1	0	00000110
			0	0	0	0		00000110
		0	1	1	0			00011110
+	0	1	1	0				01001110
0	1	0	0	1	1	1	0	Producto

Hardware del algoritmo secuencial

- El registro Producto P es un registro doble A | MQ
 - Donde A y MQ son registros de n bits
- La ALU suma los registros de n bits A y Multiplicando

Dana K. Urribarri AC 2018

Hardware del algoritmo secuencial

- Inicio: Copiar el multiplicador en el registro MQ (parte derecha de P). Inicializar A (parte izq.) en 0.
- Repetir n veces
 - Paso 1: Si $P_0 = 0$, ir al paso 3
 - Paso 2:A ← A + Multiplicando
 - Paso 3: Desplazar
 P 1 bit a derecha.

El registro doble P contiene el resultado

Ejemplo

11

Hardware del algoritmo secuencial + carry

- Las sumas parciales pueden generar carry-out.
- Agregar el carry en el hw básico

Dana K. Urribarri AC 2018

Hardware del algoritmo secuencial

Inicio: Copiar el multiplicador en el registro MQ.
 Inicializar A en 0.

Repetir n veces

- Paso 1: Si P_0 = 0, poner el carry en cero e ir al paso 3

Paso 2:A ← A + Multiplicando

 Paso 3: Desplazar P 1 bit a derecha incluyendo el carry.

Ejemplo

- Si los números están en signo-magnitud
 - Calcular el producto sin signo|p| = |M| · |X|
 - Calcular el signo de forma separada $p_{2n-1} = y_{n-1} \oplus x_{n-1}$
- En el caso de complemento a 2 y complemento a uno.

Distinguir entre multiplicando M negativo y multiplicador X negativo

- Multiplicando negativo
 - $M = 2^n |M|$
 - $P' = M \cdot X = (2^n |M|) \cdot X = 2^n X |M| \cdot X$
 - $-P=-|M|\cdot X$

Solución 1:

- La diferencia entre P y P' es 2^n X ∴ P = P' 2^n X
- Como P es un registro de 2n bits, 2ⁿ X en 2 complemento es 2²ⁿ 2ⁿ X
- Corregir el resultado del algoritmo restando X de la parte más significativa del registro P (esto no requiere ALU de 2n bits).

Solución 2:

- Considerar M de doble precisión: $M = 2^{2n} |M|$
- $P' = M \cdot X = (2^{2n} |M|) \cdot X = 2^{2n} X |M| \cdot X$
- 2²ⁿ X es mayor que la longitud del registro P ∴ es carry que se descarta.
- $-P' = X \cdot M = 2^{2n} X |M| \cdot X$ $\equiv 2^{2n} |M| \cdot X$

No implica ALU de 2n bits.

					1	U	U	1	1	(-13)
				×	0	1	0	1	1	(+11)
1	1	1	1	1	1	0	0	1	1	
1	1	1	1	1	0	0	1	1		
0	0	0	0	0	0	0	0			
1	1	1	0	0	1	1				
0	0	0	0	0	0					
1	1	0	1	1	1	0	0	0	1	(-143)

Dana K. Urribarri AC 2018

- Multiplicando negativo: Solución 2 √
 - Si solo el multiplicando es negativo, no hay necesidad de cambiar el algoritmo.
 - Se suma un número negativo.
 - El hardware debe extenderse de forma tal que provea extensión de signo en el producto parcial.
 - Antes de la primera suma, en la extensión de signo ingresa 0.
 - Luego de la primera suma, en la extensión de signo ingresa m_{n-1}

Ejemplo: complemento a 2

$$M = -5$$

 $M_{n-1} = 1$
 $X = 3$
 $M = 7$

- Multiplicador negativo
 - $X = 2^{n} |X|$
 - $P' = M \cdot X = M \cdot (2^{n} |X|) = 2^{n} M M \cdot |X|$
 - $-P=-M\cdot |X|$

Solución 1:

- La diferencia entre P y P' es 2^n M ∴ P = P' 2^n M
- Como P es un registro de 2n bits, 2ⁿ M en 2 complemento es 2²ⁿ 2ⁿ M
- Corregir el resultado del algoritmo restando M de la parte más significativa del registro P (esto no requiere ALU de 2n bits).

Solución 2:

- Asumir X de doble precisión: $X = 2^{2n} |X|$
- P' = M · X = M · $(2^{2n} |X|) = 2^{2n} M M · |X|$ = $2^{2n} - M · |X|$
- ¿Problema?
 - Multiplicador de doble precisión implica el doble de iteraciones.
- Multiplicador Negativo: Solución 1 √

Ejemplo: complemento a 2

$$M = -7$$

 $M_{n-1} = 1$
 $X = -5$
 $M X = ?$

Dana K. Urribarri AC 2018

Ejemplo: complemento a 2

$$M = -5$$

 $m_{n-1} = 1$
 $X = -4$
 $M X = ?$

Algoritmo secuencial

X Casos especiales en función del multiplicador o multiplicando negativo.

Grandes secuencias de 1s en el multiplicador generan sumas sucesivas.

Reducir el número de productos parciales

- Examinar de a varios bits a la vez.
- Requiere generar múltiplos del multiplicando
- Examinar de a 2 bits:

$$1101 \times 0110 = 11 \times 0110 \times 100 + 01 \times 0110$$

- Reduce en 2 las sumas parciales
- Implica generar 0M, 1M, 2M, 3M, ...
- Examinar de a c bits reduce en c los productos parciales.
 - Implica generar 0M, 1M, 2M, ..., (2^c-1) M

Algoritmo de Booth

- Reduce la cantidad de productos parciales.
- Se basa en que

$$\sum_{i=0}^{n-1} 2^{i} = 2^{n} - 1$$

 Genera secuencias de 1s como la resta entre dos operandos de un solo 1 cada uno.

Algoritmo de Booth

2 ⁷	2^6	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
0	0	1	1	1	0	0	0
0	+1	0	0	-1	0	0	0

$$56 = 2^5 + 2^4 + 2^3$$

 $56 = 2^6 - 2^3$

$$56 = 0100\overline{1}000$$

Recodificación de Booth

- Recorrer el multiplicador X de derecha a izquierda $(i = 0, 1 \dots n 1)$
- Para cara par de bits consecutivos x_ix_{i-1} generar el multiplicador recodificado Y, de tal forma que

x_i	x_{i-1}	Operation	Comments	y_i
0	0	shift only	string of zeros	0
1	1	shift only	string of ones	0
1	0	subtract and shift	beginning of a string of ones	$\bar{1}$
0	1	add and shift	end of a string of ones	1

• Asumir $x_{-1} = 0$

Recodificación de Booth

- Para multiplicar |M| . X
- Recodificar X y obtener Y
- Multiplicar |M| . Y
- Los productos parciales se calculan:
 - Sumando multiplicando por cada dígito +1
 - Sumando el complemento a 2 del multiplicando por cada dígito –1

Ejemplo: complemento a 2

$$M = -7$$

 $X = -5$

$$X = 1011$$

 $Y = 1101$

$$M = 1001$$

 $m_{n-1} = 1$

$$\frac{M}{m} = 0111$$

$$m_{n-1} = 0$$

	1	0	0	1	Μι	ultipli	cand	0		
		Produ	cto	!	M	ultiplic	ador			
	0	0	0	0	-1	1	0	(-1)-		Test = -1 → Sumar -M
+	0	1	1	1			•		_	
	0	1	1	1	-1	1	0	-1		Shift: extensión de signo -M
	0	0	1	1	1	-1	1	0		- Test = 0
								,	_	Shift: extensión de signo
	0	0	0	1	1	1	-1	(1)-		Test = 1 → Sumar M
+	1	0	0	1					_	
	1	0	1	0	1	1	-1	1		Shift: extensión de signo M
,									•	
	1	1	0	1	0	1	1	(-1)-		Test = -1 → Sumar -M
+	0	1	1	1					•	
	0	1	0	0	0	1	1	-1		Shift: extensión de signo -M
,									_	
	0	0	1	0	0	0	1	1		Resultado = 35
,									_	

Dana K. Urribarri AC 2018

Asumimos que a la

Ejemplo: complemento a 2

$$X = 1011$$

 $Y = 1101$

$$M = 1001$$

 $m_{n-1} = 1$

$$\frac{M}{m} = 0111$$

$$m_{n-1} = 0$$

	1	0	0	1	Mι	ultipli	cand	0	derecha hay un FF con el bit anterior.
		Produ	icto		M	ultiplic	ador		Inicialmente en cero.
	0	0	0	0	1	0	1	1	0 Test = -1 → Sumar -M
+	0	1	1	1					
	0	1	1	1	1	0	1	1	0 Shift: extensión de signo -N
	0	0	1	1	1	1	0	1	1 Test = 0
				-					Shift: extensión de signo
	0	0	0	1	1	1	1	0	1 Test = $1 \rightarrow$ Sumar M
+	1	0	0	1					
	1	0	1	0	1	1	1	0	1 Shift: extensión de signo M
	1	1	0	1	0	1	1	1	
+	0	1	1	1					
	0	1	0	0	0	1	1	1	0 Shift: extensión de signo -N
									_
	0	0	1	0	0	0	1	1	1 Resultado = 35

Ejemplo: complemento a 2

$$X = 1011$$

 $Y = 1101$

$$M = 0111$$

 $m_{n-1} = 0$

$$\frac{M}{m} = 1001$$

$$m_{n-1} = 1$$

								Asumimos que a la derecha hay un FF con
0	1	1	1	Μι	ultipli	cand	0	🛩 el bit anterior.
	Produ	cto		М	ultiplic	ador		Inicialmente en cero.
0	0	0	0	1	0	1	1	
1	0	0	1					
1	0	0	1	1	0	1	1	O Shift: extensión de signo -M
1	1	0	0	1	1	0	1	1 Test = 0
								Shift: extensión de signo
1	1	1	0	0	1	1	0	1 Test = $1 \rightarrow$ Sumar M
0	1	1	1					
0	1	0	1	0	1	1	0	1 Shift: extensión de signo M
0	0	1	0	1	0	1	1	$0 \longrightarrow \text{Test} = -1 \rightarrow \text{Sumar} - M$
1	0	0	1					
1	0	1	1	1	0	1	1	O Shift: extensión de signo -M
	0 1 1 1 0 0	Produ 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1	Producto 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0	Producto 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1	Producto M O O O O O 1 O O 1 1 O O 1 1 O O 1 1 I O O I 1 I O O O O I I O O O I O I O O O I O I	Producto Multiplic 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 0	Producto Multiplicador 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1	Producto Multiplicador 0 0 0 0 1 0 1

1

Resultado = -35

1

Recodificación de Booth

- El algoritmo secuencial con recodificación de Booth:
 - Funciona correctamente con números en complemento a 2.
 - En el caso de números no signados, se debe agregar un cero a la izquierda del multiplicador ($x_n = 0$)

Algoritmo secuencial + Rec. de Booth

Desventajas

- Complican el diseño de un (mejor) multiplicador sincrónico:
 - La cantidad de sumas/restas es variable.
 - La cantidad de desplazamientos entre sumas/restas es variable.
- Se vuelve ineficiente con unos aislados.
 - 0010101 se recodifica como 0111111. Requiere 3 sumas y tres restas en vez de solo tres sumas.

Recodificación de Booth de varios bits

- Combinar la recodificación de Booth con la recodificación de más de a un bit.
- Existen dos formas de recodificación
 - Mirando al futuro
 - Mirando al pasado
- En cualquiera de los dos casos hay que mirar c + 1 bits.

- Mirando al pasado:
 - Se dividen en grupos de 2

$$X_7X_6 | X_5X_4 | X_3X_2 | X_1X_0$$

- Y el anterior se usa de referencia.
- Para codificar x_{i+1} y x_i , se usa x_{i-1} como referencia (i = 0,2,4,...)

Dana K. Urribarri AC 2018

	$\mathbf{X}_{\mathbf{i+1}}$	\mathbf{X}_{i}	\mathbf{X}_{i-1}	$\mathbf{y}_{i+1}\mathbf{y}_{i}$	Múltiplo
Entre dos cadenas	0	0	0	00	OM
Final de cadena de 1s	0	0	1	01	M
1 aislado	0	1	0	01	M
Final de cadena de 1s	0	1	1	10	2M
Principio de cadena de 1s	1	0	0	10	– 2M
0 aislado	1	0	1	01	- M
Principio de cadena de 1s	1	1	0	01	- M
Medio de una cadena	1	1	1	00	ОМ

Mirando al futuro:

Se dividen en grupos de 2

$$X_7X_6 | X_5X_4 | X_3X_2 | X_1X_0$$

- Y el siguiente bit se usa de referencia.
- Para codificar x_{i+1} y x_i , se usa x_{i+1} como referencia (i = 0,2,4,...)

Dana K. Urribarri AC 2018

	X _{i+2}	X _{i+1}	\mathbf{X}_{i}		Múltiplo
Entre dos cadenas	0	0	0	00	OM
Final de cadena de 1s	0	0	1	10	2M
1 aislado	0	1	0	10	4M - 2M = 2M
Final de cadena de 1s	0	1	1	100	4M
Principio de cadena de 1s	1	0	0	100	- 4M
0 aislado	1	0	1	10	-4M + 2M = -2M
Principio de cadena de 1s	1	1	0	10	– 2M
Medio de una cadena	1	1	1	00	ОМ

No podemos generar una recodificación. Sí se generan los múltiplos de M que hay que sumar.

En la recodificación de a 2 bits se necesitan los múltiplos de M:

- Sin recodificación de Booth
 - OM, M, 2M y 3M
- Con recodificación de Booth mirando al pasado
 - OM, M y 2M
- Con recodificación de Booth mirando al futuro
 - OM, 2M y 4M

Ejemplo

$$X = 25 = 011001$$

Recodificación mirando al pasado.

Se necesitan considerar 1 bit antes del LSB.

$$M \cdot X = M - 8M + 32M$$

Dana K. Urribarri AC 2018

Ejemplo

$$X = 25 = 011001$$

Recodificación mirando al futuro.

 Se necesitan considerar 2 bits antes del LSB y un bit después de MSB.

$$M \cdot X = -M + 2M - 8M + 32M$$

Hardware de multiplicación

Hardware algoritmo secuencial

Hardware usando un CSA

- Se realizan las sumas intermedias hasta obtener una única semisuma y un único carry.
- En el último paso se realiza la suma propagando carry.
- Realiza n iteraciones para multiplicar operandos de n bits.

Hardware usando un CSA

Dana K. Urribarri AC 2018

48

 Con tres niveles de CSA se puede combinar la semisuma y el carry con tres múltiplos del multiplicando:

- $x_i A$
- $-2x_{i+1}A$
- $-y 4x_{i+2}A$

- Con 2 niveles de CSA reduce en 2 a la mitad la cantidad de iteraciones (n).
- En cada iteración el camino más largo atraviesa los dos CSA.
- El retardo por los CSA es de $2n \Delta_{CSA}$.

- Ocurre algo análogo para 3 CSA.
- Con 4 o más CSA se puede lograr paralelismo (Wallace tree).

- La cantidad de iteraciones se reduce en 4.
- En cada iteración se atraviesan hasta 3 CSA.
- En total el retardo por CSA es de $3/4 n \Delta_{CSA}$.

Árbol de CSA

- Para maximizar el paralelismo se puede armar un Wallace Tree de n operandos de n bits.
- Para k = n operandos, los niveles de un Wallace Tree son aprox.

$$\frac{\log\frac{2}{n}}{\log\frac{2}{3}} = \frac{\log\frac{n}{2}}{\log\frac{3}{2}}$$

 El resultado final requiere atravesar O(log(n)) CSA.

Wallace Tree

Velocidad vs. Tamaño

Árbol multiplicador

- En su forma más general, varios múltiplos de A
 - En binario
 - Recodificación de varios bits
 - Recodificación de Booth
- Un árbol de reducción (combinacional) genera los productos parciales.
- El resultado está en notación redundante.
- El resultado se convierte a binario.

Array multiplier

- El árbol de reducción es una línea de CSA.
- Al final un ripple adder.

 ¿Por qué es interesante este multiplicador tan lento?

Array multiplier

- Es un layout simple y eficiente para diseño VLSI.
 - Estructura muy regular.
 - Las conexiones son cortas (sólo hay que conectarse con el full adder adyacente vertical, horizontal o diagonal).

Array multiplier

Ninguna fila propaga carry.

Cada producto parcial consiste de sumas intermedias y bits de carry.

 $a_{4}x_{4}$

 Sólo en la última fila se propaga el carry de forma horizontal.

 Se puede adaptar a complemento

a 2

Bibliografía

<u>Capítulo 3 y 6</u>. Computer Arithmetic Algorithms.
 Israel Koren, 2da Edición, A K Peters, Natick, MA, 2002.

Adapted from Koren, UMass. Copyright 2008 Koren, UMass and A.K. Peters.

- <u>Capítulo 10 y 11.</u> Computer Arithmetic: Algorithms and Hardware Designs. Behrooz Parhami, Oxford University Press, New York, 2002.
- <u>Apéndice J</u>. J. Hennessy & D. Patterson. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers INC. 2011, 5ta Ed.

Suplementaria

 <u>Capítulo 42.</u> Editor Wai-Kai Chen. The VLSI Handbook. CRC Press. (2da Ed. 2007)