Análisis y Diseño de Algoritmos.

Sesión 10. 28 de Octubre de 2015.

Maestría en Sistemas Computacionales.

Por: Hugo Iván Piza Dávila.

¿Qué veremos hoy?

- Programación Dinámica
 - Cálculo del Coeficiente Binomial
 - Problema del Cambio
 - Principio de Optimalidad
 - Problema de la Mochila

Coeficiente binomial

• Sabemos que la siguiente ecuación calcula el número de subconjuntos de *k* elementos que se pueden construir a partir de un conjunto de *n* elementos, también llamado coeficiente binomial:

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

El mismo valor se puede calcular de manera implícita así:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Coeficiente binomial

Consideremos el siguiente ejemplo ilustrativo:

$$\binom{4}{3} = \frac{4!}{3! \ 1!} = 4 = \binom{3}{2} + \binom{3}{3}$$

Los subconjuntos que se pueden formar:

- 1. {a, b, d} Los primeros tres subconjuntos son los que se
- 2. $\{a, c, d\}$ forman con n = 3, k = 2, si omitimos al 4° elemento d.
- 3. {b, c, d} El último subconjunto no utiliza al 4º elemento, y es el
- 4. $\{a, b, c\}$ que se forma con n = 3, k = 3.

 Podemos diseñar un algoritmo muy expresivo que, dados los valores de n, k, calcula el coeficiente binomial de acuerdo a la siguiente definición recursiva, inspirada en la técnica de divide y vencerás:

$$\binom{n}{k} = \begin{cases} 1 & k = 0 \text{ ó } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n \\ 0 & en \text{ otro caso} \end{cases}$$

 Si ejecutamos la función recursiva con n = 4, k = 2, realizaríamos las siguientes llamadas:

```
(4,2)
(3,1), (3,2)
(2,0),(2,1) (2,1), (2,2)
(1,0),(1,1) (1,0),(1,1)
```

- Obsérvese que la llamada (n = 2, k = 1) se efectuó dos veces, lo que implicó duplicación de toda la recursión con raíz (2, 1).
 - En total se realizan 11 llamadas. Sin repetición serían 8.

N	K = 1/2N	# de subconjuntos	Llamadas
2	1	2	3
4	2	6	11
6	3	20	39
8	4	70	139
10	5	252	503
12	6	924	1847
14	7	3432	6863
16	8	12,870	25,739
18	9	48,620	97,239
20	10	184,756	369,511
30	15	155′117,520	310′235,039

 De acuerdo a la tabla anterior, podemos concluir que la complejidad temporal del algoritmo recursivo que calcula el coeficiente binomial se puede expresar así:

$$t(n,k) = 2\binom{n}{k} - 1 \in \Omega\binom{n}{k}$$

- El crecimiento acelerado en el número de llamadas recursivas hace inviable el uso de este algoritmo.
- Este fenómeno se presenta en la versión recursiva de Fibonαcci.

Desventaja de Divide y vencerás

- Es una técnica top-down.
 - Primero ataca la instancia completa.
 - Esta se divide en instancias más pequeñas.
 - Conforme el algoritmo avanza, cada instancias se sigue dividiendo en instancias más pequeñas hasta llegar a la trivialidad.
- En muchos problemas, esta técnica nos lleva a instancias que se traslapan -> algoritmos ineficientes.
- Si aprovechamos la división en problemas más pequeños pero nos cercioramos de que no haya instancias repetidas podemos llegar a un algoritmo muy eficiente.

Programación Dinámica (PD)

- Es una técnica bottom-up.
 - Comienza con las instancias más pequeñas (simples, triviales).
 - Combina las soluciones de instancias pequeñas para obtener la solución de una instancia de tamaño cada vez mayor.
 - Al final llegamos a la solución de la instancia original.
 - Adecuado cuando los problemas pequeños son reutilizables.
- La combinación de las soluciones implica registrar las soluciones de las instancias pequeñas.
 - Utiliza arreglos de D dimensiones, donde D es el número de argumentos necesarios para crear una instancia.

- Cada instancia de coeficiente binomial utiliza dos argumentos: N, K.
 - Esto sugiere el uso de una matriz de N x K
- En muchos casos, es conveniente contemplar los casos base de cada argumento (K = 0, N = 0).
 - Por tanto, la matriz será de (N + 1) x (K + 1)
- La celda [n][k] deberá almacenar el coeficiente binomial obtenido con los argumentos (N = n, K = k).

• Matriz para N = 4, K = 2, versión 1:

N	K	0	1	2
0		1		
1		1	1	
2		1		1
3		1		
4		1		Solución

$$\binom{n}{k} = \begin{cases} 1 & k = 0 \text{ o } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n \\ 0 & en \text{ otro caso} \end{cases}$$

• Matriz para N = 4, K = 2, versión 2:

N	K	0	1	2
0		1	0	0
1		1	1	0
2		1		1
3		1		
4		1		Solución

$$\binom{n}{k} = \begin{cases} 1 & k = 0 \text{ ó } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n \\ \mathbf{0} & en \text{ otro } \mathbf{caso} \end{cases}$$

• Matriz para N = 4, K = 2, versión 3:

N	K	0	1	2
0		1	0	0
1		1	1	0
2		1	2	1
3		1	3	3
4		1	4	6

$$\binom{n}{k} = \begin{cases} 1 & k = 0 \text{ ó } k = n \\ \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n \\ 0 & en \text{ otro caso} \end{cases}$$

Se formó el triángulo de Pascal

- Es fácil saber que la complejidad temporal y espacial del algoritmo que calcula el Coeficiente Binomial utilizando Programación Dinámica son proporcionales a N x K.
- ¿Cuál es la complejidad espacial de la versión divide y vencerás?
 - No se usa una matriz pero se tienen que almacenar (en una pila) los argumentos de todas las llamadas recursivas pendientes.

- Entregar la mínima cantidad de monedas que sumen el cambio solicitado.
- Tipos de monedas disponibles = {1, 4, 6, ...}
- Sabemos que el algoritmo voraz no siempre dará la solución correcta:
 - Cambio = 9. Solución = {6, 1, 1, 1}.
 - Solución correcta = {4, 4, 1}
- Hay que construir una tabla con resultados intermedios (instancias más pequeñas del problema), suponiendo menos cambio y menos tipos de monedas.

- El diseño de la matriz considera:
 - Cambio de \$0.00 a C = \$9.00 en intervalos de 1
 - Cada denominación de moneda disponible. Supone que la primera es de \$1.00 para garantizar que existe una solución.

M	C	0	1	2	3	4	5	6	7	8	9
1											
4											
6											

• Si el cambio es \$0.00, no se entregan monedas.

M	С	0	1	2	3	4	5	6	7	8	9
1		0									
4		0									
6		0									

• Si sólo se cuenta con monedas de \$1.00, el número de monedas será igual al cambio solicitado.

M	С	0	1	2	3	4	5	6	7	8	9
1		0	1	2	3	4	5	6	7	8	9
4		0									
6		0									

 Si el cambio es menor que la denominación de la moneda, la solución estará en la fila anterior.

м с	O	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	9
4	0	1	2	3	X	У				
6	0	1	2	3	X	У				

- En otro caso, evaluar el resultado que se obtiene al utilizar una moneda de denominación mayor.
- ¿Qué implica menos monedas?
 - No usar la moneda de denominación mayor: nos quedamos con el resultado de la fila anterior
 - Sí usarla. ¿Cómo sabemos?
 - Si al cambio le restamos el valor de la denominación actual, nos moveremos a una celda que ya tiene el resultado final ☺.
 - Al resultado obtenido le sumamos 1 moneda más: la moneda de mayor denominación.

- Si el cambio a entregar es \$6.00, ¿qué es mejor?
 - El resultado usando monedas de menor denominación (6).
 - Restar al cambio la denominación actual (6 4 = 2), y sumar uno al resultado de la columna 1 (2 + 1 = 3).

м с	0	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	9
4	0	1	2	3	1	2	3			
6	0	1	2	3	1	2				

- Sólo en las últimas dos celdas fue mejor el resultado obtenido con la denominación anterior.
- Se necesitan mínimo tres monedas para dar \$9.00 de cambio con las denominaciones {1, 4, 6}.

M	C	O	1	2	3	4	5	6	7	8	9
1		0	1	2	3	4	5	6	7	8	9
4		0	1	2	3	1	2	3	4	2	3
6		0	1	2	3	1	2	1	2	2	3

- ¿Y cómo sabemos cuáles monedas fueron elegidas?
 - 1. Comenzamos en la celda donde está el resultado (m = 6, c = 9)
 - 2. Si tiene el mismo valor que la fila anterior, nos subimos.
 - Si no, incrementamos el número de monedas del valor actual y restamos al cambio el valor de la moneda.
 - 4. Regresamos al paso 2 con la celda correspondiente a los valores actuales de moneda y cambio mientras no lleguemos a la primer fila.
 - 5. El número de monedas de \$1.00 estará indicada en la primer fila.

М	C	0	1	2	3	4	5	6	7	8	9	#
1		0	1	2	3	4	5	6	7	8	9	1
4		0	1	2	3	1	2	3	4	2	3	2
6		0	1	2	3	1	2	1	2	2	3	0

Principio de Optimalidad

- En una secuencia óptima de decisiones, cada subsecuencia debe ser también óptima.
- De manera natural, supusimos que se cumple esta regla en la solución del Problema del Cambio
 - Al calcular el valor de la celda [n, c] como el menor entre las celdas [n – 1,c] y 1 + [n, c – d_n], supusimos que dichas celdas representan la forma óptima de resolver el problema con los argumentos que representan.
 - Aunque sólo nos interesa la celda [N, C], damos por hecho que todas las celdas deben representar decisiones óptimas.

- Puede ser resuelto de forma óptima sin partir objetos con Programación Dinámica.
- Cada fila representa un objeto y cada columna un valor de peso: de o a la capacidad de la mochila.
- Para solucionarse con Programación Dinámica, los pesos deben discretizarse. Por ejemplo, definirse con enteros.
- La celda (j, k) almacenará el máximo valor obtenido con los primeros j+1 objetos y con una mochila de capacidad k.

 Consideremos una mochila con 11 kg de capacidad y los siguientes objetos:

Valor	Peso
\$1.00	1
\$6.00	2
\$18.00	5
\$22.00	6
\$28.00	7

 No podemos guardar ningún objeto en una mochila con 0 kilos de capacidad.

ОР	0	1	2	3	4	5	6	7	8	9	10	11
o (1k)	0											
1 (2k)	0											
2 (5k)	0											
3 (6k)	0											
4 (7k)	0											

• Si el peso del primer objeto no supera la capacidad actual de la mochila, el valor obtenido es el del primer objeto.

ОР	O	1	2	3	4	5	6	7	8	9	10	11
o (1k)	0	1	1	1	1	1	1	1	1	1	1	1
1 (2k)	0											
2 (5k)	0											
3 (6k)	0											
4 (7k)	0											

 Si el peso del objeto actual supera la capacidad actual de la mochila no lo consideramos: nos quedamos con el valor obtenido con los objetos anteriores.

ОР	O	1	2	3	4	5	6	7	8	9	10	11
o (1k)	0	1	1	1	1	1	1	1	1	1	1	1
1 (2k)	0	1										
2 (5k)	0	1	Х	X	X							
3 (6k)	0	1	Χ	X	X	X						
4 (7k)	0	1	Х	X	X	X	X					

- En otro caso nos preguntamos, ¿qué sería mejor?
 - No considerar al objeto actual.
 - Nos quedamos con el valor de la fila anterior.
 - Sí considerarlo.
 - ¿Qué valor teníamos en la fila anterior si restamos al peso actual el peso del objeto que se pretende considerar?
 - Al valor obtenido sumar el del objeto a considerar.

Recordando que el segundo objeto vale \$6.00.

ОР	O	1	2	3	4	5	6	7	8	9	10	11
o (1k)	0	1	1	1	1	1	1	1	1	1	1	1
1 (2k)	0	1	6	7	7	7	7	7	7	7	7	7
2 (5k)	0	1	6	7	7							
3 (6k)	0	1	6	7	7	X						
4 (7k)	0	1	6	7	7	X	X					

Recordando que el segundo objeto vale \$18.00.

O P	0	1	2	3	4	5	6	7	8	9	10	11
o (1k)	0	1	1	1	1	1	1	1	1	1	1	1
1 (2k)	0	1	6	7	7	7	7	7	7	7	7	7
2 (5k)	0	1	6	7	7	18	19	24	25	25	25	25
3 (6k)	0	1	6	7	7	18						
4 (7k)	0	1	6	7	7	18	X					

Recordando que el tercer objeto vale \$22.00.

ОР	O	1	2	3	4	5	6	7	8	9	10	11
o (1k)	0	1	1	1	1	1	1	1	1	1	1	1
1 (2k)	0	1	6	7	7	7	7	7	7	7	7	7
2 (5k)	0	1	6	7	7	18	19	24	25	25	25	25
3 (6k)	0	1	6	7	7	18	22	24	28	29	29	40
4 (7k)	0	1	6	7	7	18	22					

- Recordando que el tercer objeto vale \$28.00.
- El máximo valor obtenido es \$40.00 (objetos 2, 3).
- La lista de objetos seleccionados se obtiene de manera semejante al problema del cambio.

ОР	0	1	2	3	4	5	6	7	8	9	10	11
o (1k)	0	1	1	1	1	1	1	1	1	1	1	1
1 (2k)	0	1	6	7	7	7	7	7	7	7	7	7
2 (5k)	0	1	6	7	7	18	19	24	25	25	25	25
3 (6k)	0	1	6	7	7	18	22	24	28	29	29	40
4 (7k)	0	1	6	7	7	18	22	28	29	34	35	40