

Ahsanullah University of Science and Technology Department of Computer Science and Engineering (CSE)

Course Outline

Course No : CSE 2209

Course Title : Digital Electronics and Pulse Techniques

Credit Hour : 3.0 **Semester (Session)** : Fall 2019

Student Year & Student Semester: 2nd Year, 2nd Semester

Course Teacher(s) : Shoeb Mohammad Shahriar

Assistant Professor

Course Objective/Course Outcome (CO):

CO ₁ :	To understand various kinds of logic families constituting various electrical		
	devices (e.g diodes, transistors etc.).		
CO ₂ :	To create the appropriate truth table from a description of a combinational		
	logic function		
CO ₃ :	To learn how signals are used to represent digital values in different logic		
	families, including characterization of the noise margins.		
CO ₄ :	To design different complex logic gates using MOSFETs.		
CO ₅ :	To create a gate-level implementation of a combinational logic function		
	described by a truth table using AND/OR/Inverter gates, MUXes or ROMs.		
CO ₆ :	To design and implement sequential circuits.		
CO ₇ :	To gather basic ideas of different pulse techniques for RC circuits.		
CO ₈ :	To discuss how to interface digital circuits with analog components (ADC, DAC		
	etc.)		
CO ₉ :	To gain knowledge regarding different Multivibrators.		

Text/ Reference books:

- Microelectronics: Digital and Analog Circuits and Systems, International Student Edition by Jacob Millman. McGraw-Hill International Book Company, 1979.
- Millman's Pulse, Digital and Switching Waveforms, 2nd Edition by Jacob Millman and Herbert Taub.
- Digital Integrated Electronics, McGraw-Hill International by Herbert Taub and Donald Schilling.

Lecture Plan:

Week	Topics/Contents	Course Outcome
	Concepts of diodes, Positive logic and Negative Logic,	CO ₁
01	Diodes Logic Gate with some examples.	
	Positive Logic OR Gate, Negative Logic OR Gate.	CO ₁ , CO ₂

	>	Negative Logic AND Gate, Positive Logic AND Gate, Basic ideas of Transistor, Different region of operations.	CO ₁ , CO ₂
02		Positive and Negative logic Inverter using a p-n-p transistor.	CO ₁ , CO ₂ CO ₁ , CO ₃
	>	NAND and NOR Diode Transistor Logic (DTL) gates, definition of Noise Margin, Fan-in and Fan-out. Modified (Integrated Circuit) DTL gates with the calculation of Noise Margin, Fan-out and Fan-in.	CO ₁ , CO ₃
03	>	High-Threshold-Logic (HTL) gate with familiar examples. Transistor-Transistor Logic (TTL) gate with suitable examples, different types of Output Stages. Class Test – 01.	CO ₁ , CO ₂ CO ₁ , CO ₂
04	>	Resistor-Transistor Logic (RTL) with its Noise Margin, Fan- in and Fan-out.	CO ₁ , CO ₃
		Direct-Coupled Transistor Logic (DCTL) with examples. Comparison of different Logic Families.	CO ₁ , CO ₂ CO ₁
	>	Basic Structure of MOSFET and different modes of operations.	CO ₄
05		NMOS Inverter, MOSFET NAND Gate. CMOS Logic Gates with different examples.	CO ₄ CO ₄
0.6	>	Constructing CMOS and NMOS Gate for different Boolean Functions.	CO ₄
06	>	CMOS Transmission Gate with familiar examples. Transmission Gate based on MUX and ROM.	CO ₄ CO ₅
		Class Test – 02.	60
07	>	Dynamic MOS Shift Registers with working principle. Ratio-less Shift-Register Stages, Basic RAM organization.	CO ₆
08	>	Clipper circuit with different examples.	CO ₁
09	A A A	High-Pass RC Circuit with Step Voltage input. High-Pass RC Circuit with Pulse input. High-Pass RC Circuit with Square Wave input, Percentage Tilt and related Math.	CO ₇ CO ₇ CO ₇
	>		
10		High-Pass RC Circuit as a Differentiator, Amplification of High-Pass circuit.	CO ₇
10	>	High-Pass RC Circuit with Ramp input and Transmission Error, related Math.	CO ₇

11	Low-Pass RC Circuit with Step Voltage input, Pulse input, related Math.	CO ₇
	➤ Low-Pass RC Circuit as an Integrator, Ramp input and	CO ₇
	Transmission Error. Low-Pass RC Circuit with Square Wave input, related Math.	CO ₇
12	 Low-Pass RC Circuit with Exponential Input, related Math. Low-Pass RC Circuit with Sinusoidal Input, related Math. Class Test – 04. 	CO ₇ CO ₇
13	 Different types of Multivibrators. Analog to Digital Conversion. Analog to Digital Conversion. 	CO ₉ CO ₈ CO ₈
14	 Digital to Analog Conversion. Review Class. Review Class. 	CO ₈

Note: This Lecture Plan is subject to change. Course teacher will slow down or speed up each chapter to meet the needs of students.

Marks Distribution:

Attendance and Class Performance	10
Class Test	20
Final Exam	70
Total	

FOUR class tests will be taken (as it is a 3 credit course) and best THREE will be considered for "Class Test" marks.