ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА: ЭЛЕМЕНТНАЯ БАЗА

БИС ЗУ с произвольной выборкой, в которых информация при выключении питания пропадает, можно разделить на две основные группы в соответствии с типом используемого элемента памяти: динамические оперативные запоминающие устройства (ДОЗУ) и статические оперативные запоминающие устройства (СОЗУ).

В ДОЗУ в качестве элемента памяти используется электрическая емкость, а носителем информации является элек-

трический заряд, создаваемый на этой емкости.

В СОЗУ в качестве элемента памяти используется триггер. Схема статического элемента памяти на триггере сложнее и занимает на кристалле больше места, чем элемент памяти динамического типа.

СОЗУ сохраняет информацию до тех пор, пока сохраняется питание на ИМС. В ДОЗУ в результате деградации заряда на запоминающей емкости его необходимо периодически восстанавливать (регенерировать информацию) несколько раз в секунду.

ДОЗУ обладает по сравнению с СОЗУ большей информационной емкостью, меньшей потребляемой мощностью и более низкой стоимостью. В настоящее время ЗУ на динамических элементах памяти используются в подавляющем большинстве ЭВМ.

Для уменьшения размера корпуса ДОЗУ и более плотного монтажа БИС ДОЗУ на печатных платах был разработан специальный способ адресации, используемый во всех ДОЗУ, который заключается в мультиплексной передаче адреса на БИС ДОЗУ. Сначала передаются младшие адреса, а затем на те же самые выводы поступают старшие адреса. Таким образом достигается уменьшение необходимого количества адресных выводов в 2 раза.

Для управления работой микросхем ДОЗУ используются

Таблица 1

ОСНОВНЫЕ ЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ

Nº		06	Норма						
п/п	Наименование параметра	Обозначение	не менее	не более					
1	Напряжение высокого уровня сигнала входной информации, В	U _{DOH}	2.4	73-					
2	Напряжение низкого уровня сигнала выходной информации, В	U _{DOL}		0.4					
3	Напряжение низкого уровня входных сигналов, В	U _{IL}	-1	0.6					
4	Напряжение высокого уровня входных сигналов, В	U _{IH}	2.4	6					
5	Выходной ток низкого	U _{OL}	- 10 - 10 mm	4					
6	Выходной ток высокого	U _{ОН}	-	2					
7	Ток утечки на входах A, DI, RAS, CAS, мкA	lu	# Tipou	10					
8	Ток утечки на информационном выходе, мкА	I _{LDO}	-	10					
10	Напряжение питания, В Напряжение питания, В Напряжение питания, В	U _{CC} U _{CC1} U _{CC2}	4.75 11.4 -5.25	5.25 12.6 -4.75					

внешние сигналы адреса A, выборки адреса строк RAS, выборки адреса столбцов CAS, сигнал записи-считывания WE, которые обеспечивают работу ДОЗУ в режимах записи, считывания, считывания-модификации-записи, страничном, слоговом и регенерации.

Активным уровнем сигналов RAS, CAS, WE является

уровень логического 0 — не более 0,6 В.

Адрес ячейки памяти передается в два приема. Сначала на адресных входах устанавливаются значения младшей половины полного адреса, которые стробируются сигналом RAS, затем — значения старшей половины полного адреса,

которые стробируются сигналом CAS.

В режиме записи после перехода сигнала RAS в активное состояние (лог. 0) входная информация запоминается по отрицательному фронту сигналов WR или CAS, в момент прихода последнего. Так как выход D0 ДОЗУ находится в третьем состоянии при высоком уровне сигнала CAS или при низком уровне сигнала WR, то, если в режиме записи сигнал WR приходит раньше CAS, выход микросхе-

Таблица 2

ОСНОВНЫЕ ДИНАМИЧЕСКИЕ ПАРАМЕТРЫ. УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

№ п/п	Наименование параметра	Обозначение
1	Время выборки сигнала RAS	t A (RAS)
2	Время выборки сигнала CAS	t A (CAS)
3	Время восстановления выхода после сигнала CAS	t DIS (CAS)
4	Время цикла считывания	t CY (RAS) RD
5	Время цикла записи	t CY (RAS) WR
6	Время установления сигнала CAS относительно сигнала RAS	t SU (RAS-CAS)
7	Время удержания сигнала CAS относительно сигнала RAS	t H (RAS-CAS)
8	Длительность сигнала RAS	t w (RAS)
9	Длительность сигнала CAS	t w (CAS)
10	Время фронта импульсов	t _R
11	Время спада импульсов	tF
12	Период регенерации	t REF
13	Время выборки адреса	t A (A)
14	Время выборки разрешения	t A (CE)

Тип микро- схемы	Органи- зация	Ин-	Ток потребле-			Ток потребле- ния в режиме хранения		ne-	Потреб-		Marian Control of the									Тип	Cı	Cı	Co			06	
		форм. ем- кость	ни	ния дина- мический				мощ- ность в ре- жиме:		(RAS), min	(CAS), min	0 8		(8)	(6	min	min			вы- хода	(A, DI)	(WR, RAS, CAS)	00	CL	Кор- пус	зна	
			Icc	Icc1	I _{CC2}	Iccs	CCS1	lccs2	pa-	хра- не- ния	1); tA	t X (CE); tA	t CY (RAS) RD t CY (RAS) WR	(CAS)	t su (RAS-CAS)	t H (RAS-CAS)	tw (RAS), m	tw (CAS), m	tR;tF	TREF							Section of the second
	слов× × разряд	Кбит	мА	мА	мкА	мкА	мА	мкА	мВт	мВт	нс	нс	нс	нс	нс	нс	нс	нс	нс	мс	- 50	пф	пф	пф	пф	T site	
K565PY1A K565PY15	4096×1 4096×1	4 4	5 5	60 60	5 5	5 5	0,26 0,26	25 25	720 720		200 300	180 280	400 590	-		-	= : = :	-	_	2 2	TC TC	6	10 10	7 7	100	1	1
K565PY3A K565PY3B K565PY3B K565PY3F	16384×1 16384×1 16384×1 16384×1	16 16 16 16	4 4 4 4	35 35 35 35 35	300 300 300 300					40	300 250	200 200 165 135	410	80 80 60 50	100 100 85 65	300 300 250 200	300 300 250 200	165	3-35 3-35 3-35 3-35	2 2 2 2	TC TC TC	6 6 10 10	6 6 10 10	7 7 7 7	150 150 150 150	П	2
КР565РУ6Б КР565РУ6В КР565РУ6Г КР565РУ6Д	16384×1 16384×1 16384×1 16384×1	16 16 16 16	27 25 23 21			4 4 4 6	1111	1111	150 140 130 120	22 22 22 22 22	120 150 200 250		360	35 40 60 90	30-50 35-60 55-80 75-100	200	120 150 200 250	90 120	3-35 3-35 3-35 3-35	2 2 2 1	TC TC TC	6 6 6	10 10 10 10	10 10 10 10	100 100 100 100	11	.3
K565PУ5Б K565PУ5В K565PУ5Г K565PУ5Д K565PУ5Д1 K565PУ5Д2	65536×1 65536×1 65536×1 65536×1 32768×1 32768×1	64 64 64 64 32 32	45 35 35 30 30 30	111111	111111	4 4 4 6 6 6	11111	111111	250 195 185 160 160 160	22 22 32 21 21 21	120 150 200 250 250 250	120 150	360 460 460	35 40 60 90 90	50 60 80 100 100	70 90 120 150 150 150	120 150 200 250 250 250	90 120 150 150	5-35 5-35 5-35 5-35 5-35 5-35	2 2 2 1 1	TC TC TC TC TC	6 6 6 6 6 6	10 10 10 10 10 10	10 10 10 10 10 10	50 50 50 50 50	П	4
K565РУ7В K565РУ7Г K565РУ7Д K565РУ7Д1 K565РУ7Д2	262144×1 262144×1 262144×1 131072×1 131072×1	256 256 256 128 128	65 65 65 65 65	11111		7 7 7 7 7	11111	11111	360 360 360 360 360	30 30	150 200 250 250 250	100 125	410 500 500	60 70 80 80 80	35 40 60 60 60	150 200 150 150 150	350 200 250 250 250 250	100 125 125	3-35 3-35 3-35 3-35 3-35	8 8 4 4 4	TC TC TC TC	12 12 12 12 12	10 10 10 10 10	10 10 10 10 10	50 50 50 50 50		5

^{*} Для микросхем K565PУ1A(Б): t_{A(A)} — время выборки адреса; для остальных —t_{A(RAS)}

Для микросхем K565PУ1A(Б): t_{A(CE)} – время выборки разрешения; для остальных – t_{A(CAS)}

8 A 0 9 A 1	RAMD	(1)	5 A O	RAMD	0	5 A 0	RAMD	0	11 11	RAMD	0	$\begin{array}{c c} \hline 5 & A0 \\ \hline 7 & A1 \end{array}$	RAMD	(5)
10 A 2 A 3 A 3	K 565PY1		6 A 2 A 3	К 565РУЗ	D 0 14	6 A 2 A 3	K 565 P Y 6	DO 14	10 A 2 A 3 A 4	K 565PY5	DO 14	- 12 A 2 A 3 A 4	К 565РУ7	14
15 A 5 19 A 6 20 A 7	100017	D0 7	10 13 A 5 A 6	1000120		10 A 4 A 5 A 6	, ,		6 A 5 A 6 9 A 7	11000170		10 A 5 A 6 A 7		
21 A 8 2 A 9 A 10			4 RAS		Ucc × 9 (+5 B)	4 RAS			4 RAS			1 A 8 4 PAS		
4 A 11 5 C S		U cc × 11 (+5	GAS 2B) 3 WE	grafi system	Ucc2×1 (-5B)	3 WE		Ucc * 8 (+	iB) 15 CAS		Ucc *8	(45B) 15 CAS		Ucc * 8 (+5B)
17 OE 6 DI		U cc2 1 (-5 0 B 22	B) Z DI		0B * 16	DI		OB *10	2 DI		08 * 16	- 2 DI		0B * 16

мы всегда остается закрытым, что позволяет объединить входы и выходы микросхем в общую информационную двунаправленную шину и получать экономию на соединительных проводниках печатной платы.

При считывании информации выход микросхемы переходит в активное состояние при низком уровне сигнала CAS и отключается в третье состояние при высоком независимо от уровня сигнала RAS. Считывание информации осуществляется в прямом коде без разрушения.

Режим «считывание-модификация-запись» позволяет записывать информацию в ту же ячейку, из которой непосредственно перед этим произошло считывание информации, без дополнительной адресации к этой ячейке, путем перевода микросхемы в режим записи. При этом сокращается цикл обращения.

В режиме страничной записи (считывания) происходит запись (считывание) информации при постоянном значении адреса строки, фиксируемого по RAS, но при разных значениях адреса столбца, фиксируемого по CAS. В этом режиме достигается уменьшение времени цикла обращения.

Слоговый режим (используется только в микросхемах K565PУ7) позволяет считывать или записывать подряд 4 бита. Адресация и считывание (запись) первого бита выполняется обычным способом, а затем производится тактирование сигнала CAS (переключение его в состояние лог. 1 и затем — лог. 0), которое вызывает приращение предыдущего значения адреса столбцов АЗ и А6 в кольцевом режиме.

Регенерация информации осуществляется путем обращения к каждой строке методом перебора строчных адресов в любом режиме работы.

Специальный режим регенерации производится не реже интервала времени, называемого периодом регенерации. В этом режиме на входы ДОЗУ достаточно подать сигнал RAS и адрес строки, сигнал CAS при этом равен лог. 1 и выход D0 микросхемы в третьем состоянии. Описанный режим называется «только RAS». В этом режиме микросхема ДОЗУ находится в режиме минимального потребления мощности.