Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

MLP History

Class Logistics and Agenda

- Logistics:
 - Grading Update (Lab 3 due this weekend)
 - Next time: Flipped Module on back propagation (work on your own time)
- Multi Week Agenda:
 - Today: Neural Networks History, up to 1980 and Multi-layer Architectures
 - Flipped: Programming Multi-layer training
 - More Neural Networks,
 - Town Hall, Lab 4 (after flipped)
 - Flipped: Cross Validation

Class Overview, by topic

Lab 3, Town Hall

(if needed)

Right, what a stupid question. I apologize, silly me. I recognize the logo now.

...Anyway, I'm

Program received signal SIGSEGV, Segmentation fault.

A History of Neural Networks

Neurons

From biology to modeling:

McCulloch and Pitts, 1943

dendrite

X_1 X_2 X_3 X_3 X_4 X_5 X_8 X_8

logic gates of the mind

Warren McCulloch

Walter Pitts

Neurons

- McCulloch and Pitts, 1943
- Donald Hebb, 1949

Hebb's Law: close neurons

fire together

neurons "learn

easier synaptid

basis of neural

Axon terminal

Node of

I was infatuated with the idea of **brainwashing** and controlling minds of others! I also invented a number of torture procedures like sensory deprivation and isolation tanks—and carried out a number of secret studies on real people!!

Donald O. Hebb

Warren McCulloch

Walter Pitts

Rosenblatt's perceptron, 1957

Axon Functions

Frank Rosenblatt

$$a = \frac{1}{1 + \exp(-z)}$$

The Mark 1 **PERCEPTRON** Perceptron Learning Rule: ~Stochastic Gradient Descent Lecture inotes for iviacnine Learning in Pytr

Layers Notation for Table Data

$$X_1$$
 X_2
 $N \times 1$
 $N \times 1$

 $\mathbf{x}^{(i)}$ One \emph{row} from Table data as a input \emph{column} to model

$$\mathbf{a}^{next} = \phi(\mathbf{z}^{\mathbf{current}})$$

$$\mathbf{a}^{(next)} = \begin{bmatrix} \phi(z_1^{curr}) \\ \vdots \\ \phi(z_N^{curr}) \end{bmatrix} \rightarrow \mathbf{a}^{(L)} = \begin{bmatrix} \phi(z_1^{L-1}) \\ \vdots \\ \phi(z_N^{L-1}) \end{bmatrix}$$

notation adapted from Neural Network Design, Hagan, Demuth, Beale, and De Jesus

Generic Multiple Layers Notation

$$\begin{split} & \mathbf{a}^{(L+1)} = \phi(\mathbf{z}^{(L)}) & \mathbf{a}^{(final)} \text{ size=unique classes, } C \\ & \mathbf{z}^{(L)} = \mathbf{W}^{(L)} \cdot \mathbf{a}^{(L)} + \mathbf{b}^{(L)} \\ & \mathbf{z}^{(L)} = \mathbf{W}^{(L)} \cdot \phi(\mathbf{z}^{(L-1)}) + \mathbf{b}^{(L)} \\ & \mathbf{z}^{(L)} = \mathbf{W}^{(L)} \cdot \phi\left(\mathbf{W}^{(L-1)} \cdot \phi(\mathbf{z}^{(L-2)}) + \mathbf{b}^{(L-1)}\right) + \mathbf{b}^{(L)} \end{split}$$

Multiple layers notation

- Self test: How many parameters need to be trained in the above network?
 - A. $[(N+1) \times S^1] + [(S^1+1) \times S^2] + [(S^2+1) \times S^3]$
 - B. $|\mathbf{W}^{(1)}| + |\mathbf{W}^{(2)}| + |\mathbf{W}^{(3)}| + |\mathbf{b}^{(1)}| + |\mathbf{b}^{(2)}| + |\mathbf{b}^{(3)}|$
 - C. can't determine from diagram
 - D. it depends on the sizes of intermediate variables, **z**(i)

Compact feedforward notation

$$\mathbf{X}^{T} = \begin{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix}^{(1)}, \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix}^{(2)} \dots \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix}^{(M)} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} a_{0}^{(1)} \\ a_{1}^{(1)} \\ \vdots \\ a_{N}^{(1)} \end{bmatrix}^{(1)}, \begin{bmatrix} a_{0}^{(1)} \\ a_{1}^{(1)} \\ \vdots \\ a_{N}^{(1)} \end{bmatrix}^{(2)} \dots \begin{bmatrix} a_{0}^{(1)} \\ a_{1}^{(1)} \\ \vdots \\ a_{N}^{(1)} \end{bmatrix}^{(M)} \end{bmatrix} = \mathbf{A}^{(1)}$$

Table Data

Table Data, in Neural Net Notation

Compact feedforward notation

$$\begin{bmatrix}
x_1 \\
\vdots \\
x_{N\times 1}
\end{bmatrix}^{(t)} \xrightarrow{\mathbf{a}^{(1)}} \mathbf{w}^{(1)} \xrightarrow{\mathbf{z}^{(1)}} \mathbf{a}^{(2)} \mathbf{w}^{(2)} \xrightarrow{\mathbf{z}^{(2)}} \mathbf{a}^{(3)} \mathbf{w}^{(3)} \xrightarrow{\mathbf{z}^{(3)}} \mathbf{a}^{(4)}$$

$$\mathbf{z}^{(L)} = \mathbf{W}^{(L)} \cdot \mathbf{A}^{(L)} + \mathbf{b}^{(L)}$$

$$\mathbf{z}^{(L)} = \mathbf{W}^{(L)} \cdot \boldsymbol{\phi}(\mathbf{z}^{(L-1)}) + \mathbf{b}^{(L)}$$

$$[\mathbf{z}^{(L)}]^{(i)} = \mathbf{w}^{(L)} \cdot [\mathbf{a}^{(L)}]^{(i)} + \mathbf{b}^{(L)}$$

$$\begin{bmatrix}
\mathbf{z}^{(L)}]^{(i)} = \mathbf{w}^{(L)} \cdot [\mathbf{a}^{(L)}]^{(i)} + \mathbf{b}^{(L)}$$

$$\begin{bmatrix}
\begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}^{(1)}, \begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}^{(2)} \dots \begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}^{(M)} \\
= \mathbf{W}^{(L)} \cdot \begin{bmatrix} \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}^{(1)}, \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}^{(2)} \dots \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}^{(M)} \\
+ \mathbf{b}^{(L)}$$

b is broadcast added

Historical Training of Neural Network Architectures

When a binary classification model outputs 0.5

One Layer Linear Architectures

Adaline network, Widrow and Hoff, 1960

Simplify Objective Function:

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2 \longrightarrow J(\mathbf{w}) = \| \mathbf{Y} - \mathbf{A} \cdot \mathbf{w} \|^2$$

Need gradient $\nabla J(\mathbf{w})$ for update equation $\mathbf{w} \leftarrow \mathbf{w} + \eta \, \nabla J(\mathbf{w})$

We have been using the Widrow-Hoff Learning Rule

Bernard Widrow

One Layer Linear Architectures

Adaline network, Widrow and Hoff, 1960

Need gradient $\nabla J(\mathbf{w})$ for update equation $\mathbf{w} \leftarrow \mathbf{w} + \eta \nabla J(\mathbf{w})$

For case S=1, **W** has only one row, **w** this is just **linear regression...**

$$J(\mathbf{w}) = \sum_{i=1}^{M} (y^{(i)} - \mathbf{x}^{(i)} \cdot \mathbf{w})^{2}$$
$$\mathbf{w} = (\mathbf{X}^{T} \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^{T} \cdot y$$

From Regression to Classification

one-hot encoded!

Y =
$$\begin{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(1)} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(2)} \dots \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(M)} \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}^{(1)} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}^{(2)} \dots \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}^{(M)} \end{bmatrix}$$
Need objective Function, minimize MSE $J(\mathbf{W}) = \begin{bmatrix} \mathbf{Y} - \mathbf{Y} - \mathbf{Y} \end{bmatrix}$

Need objective Function, minimize MSE $J(\mathbf{W}) = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2$

$$J(\mathbf{W}) = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2$$

$$J(\mathbf{W}) = \left[\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(1)} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(2)} \dots \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(M)}}_{\mathbf{Y}} - \underbrace{\begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(1)} \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(2)} \dots \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(M)}}_{\hat{\mathbf{Y}}} \right]^2$$

One Layer Classification

Rosenblatt's perceptron, 1957

Self Test - If this is a binary classification problem, how large is S, the length of $\hat{\mathbf{y}}$ and number of rows in \mathbf{W} ?

- A. Can't determine
- B. 2
- C. 1
- D. N

One Layer Classification

Modern Perceptron network

Need gradient $\nabla J(\mathbf{w})$ for update equation $\mathbf{w} \leftarrow \mathbf{w} + \eta \nabla J(\mathbf{w})$

For case S=1, this is just **logistic regression...** and **we have already solved this!**

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \cdot \text{mean} \left(\underbrace{(\mathbf{y} - g(\mathbf{X} \cdot \mathbf{w}))}_{\mathbf{y}_{diff}} \odot \mathbf{X} \right)_{c}$$

What happens when S > 1?

One Layer Architectures of Many Classes

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^{2}$$

$$J(\mathbf{W}) = \| \mathbf{Y} - \phi (\mathbf{W} \cdot \mathbf{X}^{T}) \|^{2}$$

$$J(\mathbf{w}_{row=1}) = \sum_{i} \left(y_1^{(i)} - \phi \left(\mathbf{w}_{row=1} \cdot \mathbf{x}^{(i)} \right) \right)^2$$

... for each class/row ...

$$J(\mathbf{W}) = \| \mathbf{I} - \mathbf{I} \|$$

$$J(\mathbf{W}) = \| \mathbf{Y} - \phi (\mathbf{W} \cdot \mathbf{X}^T) \|^2 \left[J(\mathbf{w}_{row=C}) = \sum_{i} \left(y_C^{(i)} - \phi (\mathbf{w}_{row=C} \cdot \mathbf{X}^{(i)}) \right)^2 \right]$$

$$\mathbf{Y} = \begin{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(1)} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(2)} \dots \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(M)} \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}^{(1)}$$

	1	(1)	0	(2)	0	(M)
	0		0		1	
Ļ	:		:	• • •	:	
	0		_ 1 _		$\begin{bmatrix} 0 \end{bmatrix}$	

Each target class and row of ${f W}$ can be independently optimized

which is one

Singel Layer Early Architectures: Summary

- Adaline network, Widrow and Hoff, 1960
 - linear regression, iterative updates
- Perceptron
 - NN with sigmoid: logistic regression
- Multi-class perceptron: one versus all

Beyond Single Layer Networks

Moving to multiple layers...

- The multi-layer perceptron (MLP):
 - two layers shown, but could be arbitrarily many layers

each element of \hat{y} is no longer independent.

 $\mathbf{W}^{(1)}$ used for all classes so we cannot optimize using one versus all $\mathbf{\mathfrak{C}}$

 $[\mathbf{z}^{(1)}]^{(i)} = \mathbf{W}^{(1)} \cdot [\mathbf{a}^{(1)}]^{(i)} + \mathbf{b}^{(1)}$

SWEEP THE LEG.

Back propagation

- Optimize all weights of network at once, using chain rule many times...
- Steps:
 - 1. Forward propagate to get all **Z**(1), **A**(1)
 - 2. Get final layer gradient
 - 3. Back propagate sensitivities (chain rule)
 - 4. Update each **W**(!)

Back-propagation is solved in flipped assignment!!

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2$$

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

Back propagation

You are ready to begin back propagation!