Static Single Assignment Form

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

Program

```
i:=1
j:=1
k := 0
while k<100:
  if j < 20:
     j:=i
     k := k+1
   else:
     j:=k
     k := k+1
return j
```


Dominance Relations

•D(1) =
$$\{2,3,4,5,6,7\}$$

•D(2) =
$$\{3,4,5,6,7\}$$

$$\bullet D(3) = \{5,6,7\}$$

•
$$D(4) = \{\}$$

•
$$D(5) = \{\}$$

•
$$D(6) = \{\}$$

•
$$D(7) = \{\}$$

Dominance Relations

Dominator Tree

Control Flow Graph

Dominance Relations

Dominance Frontier

 $\bullet D(7) = \{\}$

Program

k:=100 i:=0 while i<100: k:=k+1 i:=i+1 return k

Control Flow Graph

Dominance Relations

•D(1) =
$$\{2,3,4\}$$

•
$$D(2) = \{3,4\}$$

•
$$D(3) = \{\}$$

•
$$D(4) = \{\}$$

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF(4) =
$$\{\}$$

Variable i,k in 1 $DF(1) = \{\}$

Variable i in 2 $DF(2) = \{2\}$

Variable i,k in 3 $DF(3) = \{2\}$

Variable k in 4 $DF(4) = \{\}$

Control Flow Graph

Dominance Relations

•D(1) =
$$\{2,3,4\}$$

•
$$D(2) = \{3,4\}$$

•
$$D(3) = \{\}$$

•
$$D(4) = \{\}$$

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF(4) =
$$\{\}$$

Variable i,k in 1 $DF(1) = \{\}$

Variable i in 2 $DF(2) = \{2\}$

Variable i,k in 3 $DF(3) = \{2\}$

Variable k in 4 $DF(4) = \{\}$

Control Flow Graph

Dominance Relations

•D(1) =
$$\{2,3,4\}$$

•D(2) =
$$\{3,4\}$$

•
$$D(3) = \{\}$$

•
$$D(4) = \{\}$$

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF(4) =
$$\{\}$$

Dominance Relations

•D(1) =
$$\{2,3,4,5,6\}$$

$$\bullet D(2) = \{3,4,5,6\}$$

•
$$D(3) = \{\}$$

$$\bullet$$
D(4) = {5,6}

•
$$D(5) = \{\}$$

•
$$D(6) = \{\}$$

exit

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF
$$(4) = \{\}$$

•DF(5) =
$$\{\}$$

•DF(6) =
$$\{\}$$

