Accueil / Mes cours / SI5 MAT1 CPXA / Sections / CPXA 30.10.2023 / CPXA 30.10.2023 (Français)

Commencé le	Monday 30 October 2023, 09:00
État	Terminé
Terminé le	Monday 30 October 2023, 09:17
Temps mis	17 min 34 s
Points	9,00/11,00
Note	16,36 sur 20,00 (81,82 %)

Question **1**

Incorrect

Note de 0,00 sur 1,00

Considérez le programme suivant:

```
for (int i = 5; i < n; ++i)
  for (int j = i + 2; j - 1 >= 0; --j)
    puts("x");
```

Le nombre de fois que x est affiché en fonction de n est donné par une formule de la forme $\begin{cases} 0 & \text{si } n \leq a \\ \frac{(n-a)(n-b)}{2} & \text{si } n > a \end{cases}$ où a et b sont

deux valeurs que vous devez trouver. Saisissez le produit de a et b. Par exemple si vous pensez que la solution est de la forme $\frac{(n-3)(n+3)}{2}$ saisissez -9.

Réponse : -48

La réponse correcte est : -40

Question 2

Incorrect

Note de 0,00 sur 1,00

Considérez le programme suivant:

```
for (int i = 4; i <= n; i += 2)
  for (int j = i; j > 0; --j)
    puts("x");
```

Pour les grandes valeurs de n, le nombre de fois que x est affiché est donné par une formule de la forme $(\lfloor \frac{n}{2} \rfloor - a)(\lfloor \frac{n}{2} \rfloor - b)$ où a et b sont deux valeurs que vous devez trouver. Saisissez le produit de a et b. Par exemple si vous pensez que la solution est de la forme $(\lfloor \frac{n}{2} \rfloor - 3)(\lfloor \frac{n}{2} \rfloor + 3)$ saisissez -9.

Réponse : -8

La réponse correcte est : -2

Question 3
Correct

Note de 1,00 sur 1,00

 $\log_2(16 imes 16) =$

Veuillez choisir une réponse.

- 8
- **4**
- **6**
- 0 16
- **5**

La réponse correcte est : 8

Question 4

Correct

Note de 1,00 sur 1,00

 $\lfloor \log_2(20)
floor =$

Réponse : 4

La réponse correcte est : 4

Question **5**

Correct

Note de 1,00 sur 1,00

$$\sum_{k=0}^{n} 3^k =$$

Veuillez choisir une réponse.

- $(3^n-1)/3$
- \bigcirc 3^{n-1}
- $(3^{n+1}-1)/3$
- $(3^n-1)/2$
- $(3^{n+1}-1)/2 \checkmark$
- $3^n/2$

La réponse correcte est : $(3^{n+1}-1)/2$

Correct Note de 1,00 sui	
Note de 1,00 su	
	r 1,00
	les nombres qui peuvent être représentés avec 8 bits, combien ont au plus 2 bits valant 1? (L'ensemble des nombres à contient par exemple $(00100010)_2$ et $(10000000)_2$.)
Veuillez ch	oisir une réponse.
O 65	
28	
37 ✓	
56	
O 64	
La réponse	e correcte est : 37
Question 7	
Correct	
Note de 1,00 sui	r 1.00
La réponse	e correcte est : 6060
La réponse Question 8	correcte est : 6060
Question 8	e correcte est : 6060
Question 8 Correct Note de 1,00 sui	
Question 8 Correct Note de 1,00 sui	r 1,00
Question 8 Correct Note de 1,00 sur Sur un alph Veuillez cho	nabet de n lettres, combien de mots de taille k peut-on construire ?
Question 8 Correct Note de 1,00 sur Sur un alph	nabet de n lettres, combien de mots de taille k peut-on construire ?
Question $m{8}$ Correct Note de 1,00 sur Sur un alph Veuillez cho $\binom{k}{n}$ $n^k \checkmark$	nabet de n lettres, combien de mots de taille k peut-on construire ?
Question 8 Correct Note de 1,00 sur Sur un alph Veuillez cho $\binom{k}{n}$ $n^k \checkmark$	nabet de n lettres, combien de mots de taille k peut-on construire ?
Question $m{8}$ Correct Note de 1,00 sur Sur un alph Veuillez cho $\binom{k}{n}$ $n^k \checkmark$ $\binom{n}{k}$	nabet de n lettres, combien de mots de taille k peut-on construire ?
Question $m{8}$ Correct Note de 1,00 sur Sur un alph Veuillez cho $\binom{k}{n}$ $n^k \checkmark$ $\binom{n}{k}$ kn k^n	nabet de n lettres, combien de mots de taille k peut-on construire ? oisir une réponse.
Question $m{8}$ Correct Note de 1,00 sur Sur un alph Veuillez cho $\binom{k}{n}$ $n^k \checkmark$ $\binom{n}{k}$ kn k^n	nabet de n lettres, combien de mots de taille k peut-on construire ?
Question $m{8}$ Correct Note de 1,00 sur Sur un alph Veuillez cho $\binom{k}{n}$ $n^k \checkmark$ $\binom{n}{k}$ kn k^n	nabet de n lettres, combien de mots de taille k peut-on construire ? oisir une réponse.

Question 9

Correct

Note de 1,00 sur 1,00

$$P(n) = \sum_{k=0}^{n+3} k^2$$
 peut être vu comme un polynôme de variable n . Quel est son degré ?

Veuillez choisir une réponse.

- 0
- **4**
- 3
- 0 1
- \bigcirc 2

La réponse correcte est : 3

Question 10

Correct

Note de 1,00 sur 1,00

En supposant $n \in \mathbb{Z}$, et $x \in \mathbb{R}$, laqelle des propriétés suivantes est correcte?

Veuillez choisir une réponse.

- $0 \quad n \leq \lceil x \rceil \iff n < x$
- $0 \quad n < \lceil x \rceil \iff n \le x$
- $\bigcirc \quad n \leq \lceil x \rceil \iff n \leq x$

La réponse correcte est : $n < \lceil x \rceil \iff n < x$

Question 11

Correct

Note de 1,00 sur 1,00

Considérons un arbre ternaire, c'est-à-dire un arbre dont les nœuds internes ont au plus 3 fils.

Soit h la hauteur de cet arbre, c'est-à-dire la longueur de sa plus longue branche. (Un arbre ne possédant qu'un seul nœud a pour hauteur 0.) Soit h le nombre total de nœuds dans l'arbre (nœuds internes ou externes tous inclus).

Lesquelles des équations suivantes sont correctes?

- $n=\frac{3^h-1}{2}$
- $n<rac{3^{h+1}}{2}$
- $\lceil \log_3(2n+1) \rceil 1 \le h$
- $n=rac{3^{h+1}-1}{2}$
- $n \leq rac{3^{h+1}-1}{2}$
- \square $n < \frac{3^h}{2}$
- $n \leq \frac{3^h-1}{2}$

Votre réponse est correcte.

Si chaque nœud interne possède exactement 3 fils, et que chaque branche est de longueur h, on a

$$n = 3^0 + 3^1 + 3^2 + \dots + 3^h = \frac{3^{n+1} - 1}{3 - 1} = \frac{3^{n+1} - 1}{2}$$
.

Maintenant, certains nœuds internes pourrait avoir moins de fils, et certaines branches pourraient être plus courtes. On a donc $n \leq \frac{3^{h+1}-1}{2}$. Évidement, cela implique aussi que $n < \frac{3^{h+1}}{2}$.

En sortant h de $n \leq \frac{3^{h+1}-1}{2}$, on trouve $\log_3(2n+1)-1 \leq h$ et puisque h est entier, on peut arrondir la formule de gauche au dessus : $\lceil (\log_3(2n+1) \rceil - 1 \leq h$.

Remarquez par ailleurs que plusieurs des réponses fausses ne marche pas pour le seul exemple de l'énoncé : lorsque n=1 on sait que h=0.

Les réponses correctes sont :

$$n \leq rac{3^{h+1}-1}{2}$$

 $n<rac{3^{h+1}}{2}$

$$\lceil \log_3(2n+1) \rceil - 1 \le h$$

Annonces

Aller à...

CPXA_30.10.2023 (English) ▶