

Secuenciación del genoma de bacterias: ensamblado y anotación

Isabel Cuesta
Unidad de Bioinformática
17-21 Junio 2019, 7ª Edición
Programa Formación Continua, ISCIII

Ensamblado

Reconstruir la **secuencia de DNA original** a partir de **lecturas** o secuencias de mucho menos tamaño.

• **De novo:** sin ningún tipo de conocimiento previo a cerca del genoma a ensamblar. Busca lecturas cuyo final coincida con el principio de otra para formar fragmentos del maypr tamaño posible.

• *Usando Referencia*: se usa un genoma como guía que suponemos es similar al que se quiere ensamblar.

Ensamblado: contig y scaffold

- Contig: secuencia continua del genoma formada por lecturas solapantes
- Scaffold: dos o más contigs unido por información de longitudes conocidas (pair-end, mate pair, referencia)

Ensamblado: gaps

- Sequencing gaps: sabemos el orden y orientación de los contigs por tener al menos un par que cubre ambos contigs
- Physical gaps: no tenemos información entre contigs adyacentes

Ensamblado: Errores

- A. Gaps región del genoma sin secuenciar
- B. Duplicaciones de gran tamaño
 - Quimeras
- Regiones repetidas colapsadas
 - C. Terminales
 - D. Intersticiales

Nature Reviews | Genetics

Ensamblado: Algoritmos

• Overlap, Layout, Consensus (OLC - overlap graph):

Overlap: Busca todos los pares de secuencia que solapan; Layout: Quita solapamientos redundantes y de baja calidad; Consensus: Alinea las secuencias que solapan solo entre ellas.

Ej. Newbler, Mira....

• De Brujin (k-mer graph)

Grafos de Brujin: Elaboración de un grafo de k-mers (fragmentos de secuencia de longitud fija) donde se representan todos los solapamientos entre k-mers. Se unen nodos, burbujas y selección del mejor camino hasta un grafo irreducible del que se obtienen los contigs.

Ej. SPAdes, ABySS, Velvet, AllPaths, Soap....

Burrows Wheeler transform (FM-index):

OLC usando el algoritmo "Ferragina-Manzine index" para encontrar todos los pares de secuencias que solapan de manera eficiente (rápida).

Ej. Assembler SGA, String Graph...

50%

sum

Ensamblado: Métricas

- **sum** = numero total de bases
- **n** = numero total de contigs
- average = promedio de longitud de los fragmentos
- largest = bases en el fragmento mas largo
- N50 = el tamaño mas corto de los contigs en donde el 50% de sum (el total de bases) esta contenido.
- L50 = numero de contigs en donde tengo el 50% del genoma
- N90 = el tamaño mas corto de los contigs en donde el 90% de sum (el total de bases) esta contenido. Un buen ensamblado el N90 a veces es casi igual al tamaño promedio de contig.
- **L90** = 2 numero de contigs en donde tengo el 90% del genoma

50%

Ensamblado: Scaffolding - Genoma completo

• A partir del draft:

Ordenar contigs (Nucmer, si hay referencia la usamos para alinear y orientar contigs)

Completar los GAPs (GapFiller, rellena los gaps de los contigs - sequencing gap)

Resolver ambigüedades por repeticiones (Expander)

Volver a secuenciar con una librería de mayor fragmento y/o distinta plataforma

• Herramientas que mejoran los ensamblados

SSPACE (hace Scaffolding) REAPR (Evalúa el scaffolding, rompiendo los scaffolds incorrectos)

Visualizar un ensamblado

Artemis, ACT (comparación de dos o más secuencias)

Ensamblado: Evaluación

- Software que evalúa diferentes algoritmos y parámetros iMetAMOS, Koren et al., BMCBioinformatics 2014, 15:126 GAGE-B, Magoc et al., Bioinformatics 2013,29(14):1718-25
- Evaluación del ensamblado: **Quast**, *Gurevich et al.*, *Bioinformatics 2013*, *29:8*
- Criterios elección mejor ensamblado:

N50 mas grande

Num. total de bases más cercano a lo esperado

Menos contigs totales

21/06/Menos contigs tanto en L50 como L90

Ensamblado: Ensambladores

Name	Туре	Technologies	Author	Presented /Last updated	Licence*	Homepage
DNASTAR Lasergene Genomics Suite	(large) genomes, exomes, transcriptomes, metagenomes, ESTs	Illumina, ABI SOLiD, Roche 454, Ion Torrent, Solexa, Sanger	DNASTAR	2007 / 2016	С	link
Newbler	genomes, ESTs	454, Sanger	454/Roche	2004/2012	С	link
<u>Canu</u>	Small and large, haploid/diploid genomes	PacBio/Oxford Nanopore reads	Koren et al. ^[8]	2001 / 2018	OS	link
SPAdes	(small) genomes, single- cell	Illumina, Solexa, Sanger, 454, Ion Torrent, PacBio, Oxford Nanopore	Bankevich, A et al.	2012 / 2017	OS	link
Velvet	(small) genomes	Sanger, 454, Solexa, SOLiD	Zerbino, D. et al.	2007 / 2011	os	link

^{*}Lights @S = Open Source; C = Commercial; C / NC-A = Commercial but free for non-commercial and academics

Ensamblado: Ensamblados especiales

• Genomas diploides

• Metagenomas

• Plásmidos

• Transcriptoma

Ensamblado: Categorías

Standards for Sequencing Viral Genomes in the Era of HighThroughput Sequencing. Ladner et al.

>¤_BU-ISCIII

Anotación

Anotación

- Identificación y/o localización de regiones codificantes en un genoma, determinando la función de cada uno.
 - Identificar elementos genómicos codificantes
 - Asignar función biológica a esos elementos
- Anotación estructural
 - ORFs y su localización
 - Regiones codificantes (cds)
 - Promotores y elementos reguladores
- Anotación funcional
 - Asignar función biológica a esos elementos

Anotación funcional

- Requiere una base de datos con la que comparer
 - Encyclopedia of DNA elements (ENCODE)
 - Entrez Gene
 - Ensembl
 - GENCODE

21/06/2019

• Gene Ontology Consortium

- GeneRIF
- RefSeq
- Uniprot
- Vertebrate and Genome Annotation Project (Vega)
- Pfam
- Mapado (srst2) o Alineamiento Local -BLAST- (Prokka)

15

Anotación: Prokka

>¤_BU-ISCIII

PlasmidID

