```
In [1]: import pandas as pd

def styled_formula_table(df):
    """Return styled display table for formulas"""

mytable = df.style.set_properties(subset=['Formula', 'Key'], **{'width':
    {'selector': 'th.col_heading', 'props': 'text-align: left'},
    {'selector': 'td', 'props': 'text-align: left'}])

return (mytable)

if __name__ == '__main__':
    # Latex string in csv needs to be enclosed a single $ to enable left alidf= pd.read_csv(filepath_or_buffer='formulas.csv')
    display(styled_formula_table(df))
```

	Category	Sub- category	Description	Key	Formula	Year	On formula sheet	(
0	Indices	Index Rules	Multiplying terms with same base	nan	$a^m imes a^n = a^{m+n}$	9	False	r
1	Indices	Index Rules	Dividing terms with same base	nan	$a^m \div a^n = \frac{a^m}{a^n}$ $= a^{m-n}$	9	False	r
2	Indices	Index Rules	Power of a power	nan	$(a^m)^n=a^{m imes n}$	9	False	r
3	Indices	Index Rules	Powers of products	nan	$(ab)^n=a^nb^n$	9	False	r
4	Indices	Index Rules	Powers of quotients	nan	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	9	False	r
5	Indices	Index Rules	Power of zero	nan	$a^0=1$	9	False	r
6	Indices	Index Rules	Negative powers	nan	$a^{-n} = \frac{1}{a^n}$	9	False	r
7	Indices	Index Rules	Negative powers of quotients	nan	$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$	9	False	r
8	Indices	Index Rules	Fractional powers	nan	$a^{rac{m}{n}}=\sqrt[n]{a^m}$	9	False	r
9	Differentiation	nan	nan	$y=f(x)^n$	$\begin{aligned} \frac{dy}{dx} \\ &= nf'(x)[f(x)] \\]^{n-1} \end{aligned}$	12	True	r
10	Integration	nan	nan	$y=f(x)^n$	$\int f'(x)[f(x)]^n dx$ $= \frac{1}{n+1}[f(x)]^{n+1} + c$ where $n \neq 1$	12	True	\ -
11	Differentiation	nan	nan	y=sinf(x)	$\frac{dx}{dy} = f'(x)cosf(x)$	12	True	r
12	Integration	nan	nan	y=sinf(x)	$\int f'(x)cosf(x)dx$ $= sinf(x) + c$	12	True	r

In [2]: #To do : Concatenate the 2 comment fields (if 2 comments exist need to add

```
# Change the width of the Function to differeentiate column
# Can I get a newline before ...when n does not equal -1
df calculus = df[['Category', 'Key', 'Formula', 'Comment']][df["Category"].i
df calculus = df calculus.pivot(columns='Category', index = 'Key')
df calculus.columns = df calculus.columns.get level values(0) +' ' + df calculus.columns
df calculus['Comment'] = df calculus['Comment Differentiation'] + df calculu
df calculus = df calculus.reset index()
df calculus = df calculus.drop(labels = ['Comment Differentiation', 'Commer
df calculus = df calculus.rename(columns={
    "Key": "Function to differentiate",
    "Formula Differentiation": "Derivative",
    "Formula Integration":"Equivalent integral"})
mytable = df_calculus.style.set_properties(subset=['Function to differentiat
    {'selector': 'th.col heading', 'props': 'text-align: left'},
    {'selector': 'td', 'props': 'text-align: left'}])
display(mytable)
# display(df calculus)
# df_calculus[('Comment', 'Differentiation')]
```

	Function to differentiate	Derivative	Equivalent integral	Comment
0	$y=f(x)^n$	$rac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int f'(x)[f(x)]^n dx \ = rac{1}{n+1}[f(x)]^{n+1} + c \ ext{where } n eq 1$	What happens when n is -1?
1	y=sinf(x)	$rac{dx}{dy} = f'(x) cosf(x)$	$\int f'(x)cosf(x)dx \ = sinf(x) + c$	

```
In [21]: # Differentiation
    from IPython.display import Latex
    test = r"$ \dfrac{dx}{dy} = f'(x)cos f(x$"
    display (Latex(test))
```

$$\frac{dx}{dy} = f'(x)cosf(x)$$

```
In [22]: # Integrals
  test = r"$ {\Large\int} f'(x)cosf(x)dx = sin f(x) + c$"
  display (Latex(test))
```

$$\int f'(x)cosf(x)dx=sinf(x)+c$$

In [3]: ! pwd

 $/home/charl/Onedrive/Documents_Charl/Computer_Technical/Programming_GitHub/AustraliaSchoolMaths$