6. Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2016

- 1. Bestimmen Sie für $(\mathbb{R}, \mathfrak{B}, \mathbb{P})$, \mathbb{P} die Standardnormalverteilung, die Wahrscheinlichkeiten $\mathbb{P}(]-\infty, 1.6]$), $\mathbb{P}(]-1.1, 1.8[$) und $\mathbb{P}([1.4, \infty[).$
- 2. X_n hat eine Binomialverteilung $B(n, p_n)$, Y eine Poissonverteilung $P(\lambda)$. Zeigen Sie: wenn $np_n \to \lambda$, dann gilt für alle $x \in \mathbb{N}_0$

$$\lim_{n \to \infty} \mathbb{P}(X_n = x) = \mathbb{P}(Y = x).$$

- 3. Bestimmen Sie für $X \sim B(6,0.6)$ die Wahrscheinlichkeiten $\mathbb{P}(X \leq 2)$, $\mathbb{P}(1 < X < 5)$ und $\mathbb{P}(X > 3)$.
- 4. Vergleichen Sie die Wahrscheinlichkeiten aus dem vorigen Beispiel mit den entsprechenden für eine Poissonverteilung P(3.6).
- 5. X sei normalverteilt mit $\mu=4$ und $\sigma^2=25$. Bestimmen Sie die Wahrscheinlichkeiten für die Ereignisse [X<7], [X>3] und [|X|>6] und eine Zahl c, für die $\mathbb{P}(X< c)=0.9$ gilt.
- 6. Bestimmen Sie Erwartungswert und Varianz der Exponentialverteilung.
- 7. Bestimmen Sie Erwartungswert und Varianz der Poissonverteilung