Solar Solar

KepcoA Final Project 3조 이윤주, 김나영, 김태영, 이승찬, 이재빈, 조정아

조원 소개

이윤주

Data Analysis

기상 데이터 예측 모델 제작

기상과 태양광 발전량 예측 데이터 제작

김나영

Front-End

전체 Layout 설계 및 수정

[Main],[제품 소개] 페이지 제작 반응형 헤더

김태영

Full-Stack

[발전량 예측 조회], [발전 수익 및 설치비용 예측 조회], [FAQ] 페이지 제작

이승찬

Data Analysis

태양광 발전량 예측 모델 제작

SMP 예측 모델 제작

이재빈

Front-End

전체 Layout 설계 및 수정

[Main], [제품 소개], [FAQ] 페이지 제작

조정아

Full-Stack

[발전 수익 및 설치비용 예측 조회], [문의하기] 페이지 제작

반응형 헤더

개발환경

목 a table of contents

- 1 주제 및 배경
- 2 서비스 소개
- 3 기능 시연

Part 1 주제 및 배경

주제 선정 배경

향후 대양광·풍력 발전은 어떻게 될까?

지속 가능한 내일을 위해 재생에너지 산업의 성장을 응원합니다!

Part1 주제 선정 배경

시간	空物(02/20)					내일(02/21)				
	발전명 (Mw)	누석발전당 (Mw)	원사당 (W/m)	기온 (°C)	### (4n)	변전당 (Mw)	누적면전당 (Mw)	(W/m)	기온 (°C)	33年 (m)
BAI	0.00	0.00	0:0	3.9	2.9	0.00	0,00	0.0	1.2	4.4
14	0.00	0.00	0.0	3.7	3.2	0.00	0.00	0.0	1.0	5.4
2시	0,00	0.00	0.0	3.8	3.1	0.00	0.00	0.0	13	4.5
BAI	0.00	0.00	0.0	3.4	4.0	0.00	0.00	0.0	12	4.3
44	0.00	0.00	0,0	2.7	4.2	0.00	0.00	0.0	1.0	5.2
SAL	0.00	0.00	0.0	2.7	3.1	0.00	0.00	0.0	1.1	5.6
6A	0.00	0.00	0.0	2.2	3.0	0.00	0.00	0.0	11	5.5
7A	0,00	0.00	0.0	2.0	3.9	0.00	0.00	0.0	09	5.2
841	12.69	12.69	3.8	2.1	3.8	9.70	9.70	5.6	1.0	4.1
9AI	57.70	70.39	15.7	1.9	3.4	53.81	63.51	22.6	13	5.8
101	139.78	210.17	31.7	1.9	3.4	10758	171.09	33.2	1.6	4.7
114	204.79	414.96	46.8	1.7	4.9	141.20	312.29	48.4	1.2	5.5
124	177.91	592.87	48.7	1.3	5.1	156.59	468.88	56.4	1.2	5.3
BA	164.47	757.34	56.1	1.3	4.5	186.39	655.27	58.4	1.2	5.3
IAN	168.33	925.67	55.6	1.2	4.9	169.08	824.35	50.6	1.0	5.7
154	146.50	1072.17	49.5	1.0	4.5	136.34	960.69	45.3	0.8	5.0
16시	108.12	1180.29	30.7	1.3	3.7	106.19	1066.88	35.3	0.9	5.7
17A	66.91	1247.20	19.4	8.0	4.7	63.22	1130.10	20.8	0.7	6,4
184	25.93	1273.13	3.9	8.0	5.0	25.42	1155.52	5.7	0.8	5.4
194	0.00	1273.13	0.0	8.0	5.3	0.00	1155.52	0.0	0.7	5.5
1004	0.00	1273,13	0.0	8.0	4.9	0.00	1155.52	0.0	0.3	5.4
214	0,00	1273.13	0.0	0.9	5.0	0.00	1155.52	0.0	0.3	5.5
22.AJ	0.00	1273.13	0.0	1.0	4.8	0.00	1155.52	0.0	0.2	6.2
23A[0.00	1273.13	0.0	1.1	4.7	0.00	1155.52	0.0	-0,4	6.2

Part1 주제 선정 배경

Part1 HY DI

1 지역의 발전량을 알 수 있어 설치 지역 선택시 참고 가능

2 설치비용을 통해 발전 수익 계산 가능

3 설치비용의 회수 기간을 계산하여 제공 가능

Part1 프로젝트 분석

Part 2 서비스 소개

Part 2 HOIEI 분석 - 모델 소개

1 기상 데이터 예측 모델

2 SMP 데이터 예측 모델

3 발전량 데이터 예측 모델

1. 기상 데이터 예측 모델

기상청 데이터 수집

- · 30일 단위로 데이터 수집 (최대 호출 일수 제한)
- 관측별 데이터를 지역별 데이터로 변경

데이터 정제

- 누락된 데이터 이전 시간의 데이터로 입력
- · 시간 간격 변경: 시간별 → 날짜별
- ・세종시: 2019년 6월 1일 이전(충남의 데이터 사용)

모델 훈련(Prophet)

· 2024.01.01 - 2024.12.31 기상데이터 예측: Prophet (2025.01.01 - 2033.12.31 기상데이터 예측: 평년평균법을 적용

2. SMP 데이터 예측 모델

시간별 SMP(육지, 제주) 데이터 수집

- ㆍ 중복데이터를 삭제
- · 시간 간격 변경: 시간별 → 날짜별

모델 훈련 (ARIMA)

· ADF검정과 ACF, PACF 그래프를 d, q, p값을 결정

모델 훈련 (GRU, LSTM)

· 현시점 포함 과거 30일을 토대 → 다음날의 값을 예측

모델 훈련 (Prophet: 최종 선택)

· 데이터의 변동률이 큰 구간 - 한시적인 변동으로 지정

2. SMP 데이터 예측 모델

3. 발전량 데이터 예측 모델

태양광 발전량 데이터 수집

ㆍ시간 간격 변경: 시간별(5분 단위) → 날짜별

모델 훈련 (Random Forest, Gradient Boosting)

- · 높은 예측 성능을 위해 앙상블 모델 사용
- ・Random Forest(베깅)와 Gradient Boosting(부스팅)의 결정계수를 비교 ⇒ Gradient Boosting 선택

모델 훈련 (XGBoost, LightGBM)

- ·훈련속도 개선을 위해 향상된 부스팅 계열 모델 사용
- ·실제 값과 예측 값이 다른 경우 '덜 틀리는' XGBoost 선택

데이터 재정제

- ·문제 인식: 전남과 전북의 낮은 결정계수
- ㆍ원인 파악: 설비용량의 급격한 변동
- ·해결: 훈련 데이터셋을 2022년으로 제한 후 재훈련 연도별 설비용량 증감률을 지역별로 구해 예측 값에 적용

3. 발전량 데이터 예측 모델

Part 2 데이터 분석 - 수익 계산

Prophet 모델 사용

XGBoost 모델 사용

기상 데이터 예측

태양광 발전량 예측

SMP 예측

Prophet 모델 사용

예상 수익 계산

Part 2 웹 개발 - 주요 기능

제품소개

한국/미국/중국 제품 소개

각 제품의 출력, 최대 효율, 크기, 설치 비용 에 대한 정보 제공

수익및비용계산

기간, 지역, 모듈, 면적 입력 기능

설치 비용, 예상 수익 계산

발전량조회

기간 및 지역 설정 기능

일자별 발전량/누적 발전량 시각화 (그래프, 표)

FAQ/문의 등록

자주 묻는 질문과 답변 제공

문의 메일 전송

Part 2 웹개발-UI

Part 3 기능 시면

