UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA

BAIN 036 ÁLGEBRA LINEAL PARA INGENIERÍA PRUEBA PARCIAL 2

22 de Mayo de 2012

lumno	o(a):			Grupo:
	Nombre	Apellido Paterno	Apellido Materno	_
•	Conteste en forma ordenada identificando la pregunta e ítem que corresponde. Cada solución debe llevar desarrollo y respuesta. No se permite el uso de Calculadora. Debe justificar sus respuestas. Tiempo: 90 minutos.			1(3.0)
	Nota:			
1.	Dados los siguientes sube	spacios vectoriales de \mathbb{R}^4 ;		
	$W_1 = \{(x,y,z,w) \in \mathbb{R}^4: \ w = 2x - y\}$, $W_2 = <(1,1,0,0), (0,0,-1,1)>$ Determine:			
a)	Base y dimensión de $\ensuremath{W_{\!\scriptscriptstyle 1}}$ y $\ensuremath{W_{\!\scriptscriptstyle 2}}$.			
b)	La dimensión de $W_1 \cap W_2$.			
c)	La dimensión de $\ensuremath{W_1} + \ensuremath{W_2}$.			
2.	Sea $W \leq M_2(\mathbb{R}^4)$:			
a)	Determine el subespacio W generado por $B = \left\{ \begin{bmatrix} 1 & 4 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ 1 & 2 \end{bmatrix} \right\}$.			
b)	Indique si la matriz $\begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix}$ pertenece a W .			
3.	Consideremos $\mathbb{P}_2(\mathbb{R})$ con	el producto interno usual. Si	$p(x) = 1 - 2x + x^2$, $q(x)$	$= 2 + x + 3x^2 y$
	$s(x) = a_0 + a_1 x + a_2 x^2 .$			
(a)	Encuentre:			
	(i) $ p(x) $			
	(ii) El ángulo entre $p(x)$	y q(x).		

(b) Determine:

- (i) Las condiciones para a_0, a_1, a_2 de tal modo que p(x) y s(x) sean ortogonales.
- (ii) De un ejemplo de un polinomio que cumpla con las condiciones encontradas en la parte (i).