Building a SNARK, Part II

Dan Boneh
Stanford University

Review: Preprocessing argument systems

Public arithmetic circuit: $C(x, w) \to \mathbb{F}$ public statement in \mathbb{F}^n secret witness in \mathbb{F}^m

Preprocessing (setup): $S(C) \rightarrow \text{public parameters } (S_p, S_v)$

A SNARK paradigm: two steps

In this segment ...

(1) Polynomial Commitment Scheme (PCS)

A functional commitment for the family $\mathcal{F} = \mathbb{F}_p^{(\leq d)}[X]$

 \Rightarrow prover commits to a univariate polynomial f in $\mathbb{F}_p^{(\leq d)}[X]$, later can prove that v=f(u) for public $u,v\in\mathbb{F}_p$

Key point: **proof size** and **verifier time** are $O_{\lambda}(oldsymbol{log} oldsymbol{d})$

We saw several PCS constructions in the previous segment

(2) Polynomial IOP:

prove $\exists w : C(x, w) = 0$

Setup(C) \rightarrow public parameters S_p and $S_v = (f_0, f_{-1}, ..., f_{-s})$

In this segment ...

Goal: construct a poly-IOP called **Plonk** (eprint/2019/953)

[Gabizon – Williamson – Ciobotaru]

 $Plonk + PCS \Rightarrow SNARK$

(and also a zk-SNARK)

First, a useful observation

A key fact: for
$$0 \neq f \in \mathbb{F}_p^{(\leq d)}[X]$$

for
$$r \leftarrow \mathbb{F}_p$$
: $\Pr[f(r) = 0] \le d/p$ (*)

- \Rightarrow suppose $p \approx 2^{256}$ and $d \le 2^{40}$ then d/p is negligible
- \Rightarrow for $r \leftarrow \mathbb{F}_p$: if f(r) = 0 then f is identically zero w.h.p
 - ⇒ a simple zero test for a committed polynomial

SZDL lemma: (*) also holds for <u>multivariate</u> polynomials (where d is total degree of f)

A related observation

Suppose $p \approx 2^{256}$ and $d \le 2^{40}$ so that d/p is negligible

Let
$$f, g \in \mathbb{F}_p^{(\leq d)}[X]$$
. For $r \leftarrow \mathbb{F}_p$, if $f(r) = g(r)$ then $f = g$ w.h.p

$$f(r) - g(r) = 0 \Rightarrow f - g = 0$$
 w.h.p

⇒ a simple equality test for two committed polynomials

Useful proof gadgets

Let $\omega \in \mathbb{F}_p$ be a primitive k-th root of unity $(\omega^k = 1)$ Set $\mathsf{H} \coloneqq \{\,1,\,\omega,\,\omega^2,\,...,\,\omega^{k-1}\,\} \subseteq \mathbb{F}_p$

Let
$$f \in \mathbb{F}_p^{(\leq d)}[X]$$
 and $b, c \in \mathbb{F}_p$. $(d \geq k)$

There are efficient poly-IOPs for the following tasks:

Task 1 (zero-test): prove that f is identically zero on H

Tast 2 (sum-check): prove that $\sum_{a \in H} f(a) = b$ (verifier has f, b)

Task 3 (**prod-check**): prove that $\prod_{a \in H} f(a) = c$ (verifier has f, c)

Zero test on H

(
$$H = \{ 1, \omega, \omega^2, ..., \omega^{k-1} \}$$
)

Prover
$$P(f, \perp)$$

$$q(X) \leftarrow f(X)/(X^k - 1)$$

$$q \in \mathbb{F}_p^{(\leq d)}[X]$$

$$eval \ q(X) \ and \ f(X) \ at \ r$$

$$learn \ q(r), \ f(r)$$

Lemma: f is zero on H if and only if f(X) is divisible by $X^k - 1$

accept if $f(r) \stackrel{?}{=} q(r) \cdot (r^k - 1)$ (implies that $f(X) = q(X)(X^k - 1)$)

Thm: this protocol is complete and sound, assuming d/p is negligible.

Verifier time: $O(\log k)$ and two eval verify (but can be done in one)

PLONK: a poly-IOP for a general circuit

PLONK: a poly-IOP for a general circuit C(x, w)

Step 1: compile circuit to a computation trace (gate fan-in = 2)

Encoding the trace as a polynomial

$$|C| \coloneqq \text{total \# of gates in } C$$
, $|I| \coloneqq |I_x| + |I_w| = \# \text{ inputs to } C$

let
$$d \coloneqq 3 |C| + |I|$$
 (in example, $d = 12$) and $H \coloneqq \{1, \omega, \omega^2, ..., \omega^{d-1}\}$

The plan: prover interpolates a polynomial

$$P \in \mathbb{F}_p^{(\leq d)}[X]$$

that encodes the entire trace.

Let's see how ...

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11.	7.	77

Encoding the trace as a polynomial

The plan:

Prover interpolates $P \in \mathbb{F}_p^{(\leq d)}[X]$ such that

- (1) **P** encodes all inputs: $P(\omega^{-j}) = \text{input } \#j \text{ for } j = 1, ..., |I|$
- (2) **P** encodes all wires: $\forall l = 0, ..., |C| 1$:
 - $P(\omega^{3l})$: left input to gate #l
 - $P(\omega^{3l+1})$: right input to gate #l
 - $P(\omega^{3l+2})$: output of gate #l

inputs:	5,	6, 1	
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7,	77

Encoding the trace as a polynomial

In our example, Prover interpolates P(X) such that:

inputs:
$$P(\omega^{-1}) = 5$$
, $P(\omega^{-2}) = 6$, $P(\omega^{-3}) = 1$, gate 0: $P(\omega^{0}) = 5$, $P(\omega^{1}) = 6$, $P(\omega^{2}) = 11$, gate 1: $P(\omega^{3}) = 6$, $P(\omega^{4}) = 1$, $P(\omega^{5}) = 7$, gate 2: $P(\omega^{6}) = 11$, $P(\omega^{7}) = 7$, $P(\omega^{8}) = 77$

$$degree(P) = 11$$

Prover uses FFT to compute the coefficients of P in time $d \log_2 d$

5,	6, 1	
5,	6,	11
6,	1,	7
11,	7,	77
	5, 6,	5, 6, 6, 1,

Step 2: proving validity of P

$$\frac{\text{Prover P}(S_p, \boldsymbol{x}, \boldsymbol{w})}{\text{build } P(X) \in \mathbb{F}_p^{(\leq d)}[X]} \xrightarrow{\text{(commitment)}} \frac{\text{Verifier V}(S_v, \boldsymbol{x})}{\text{(commitment)}}$$

Prover needs to prove that P is a correct computation trace:

- (1) P encodes the correct inputs,
 - (2) every gate is evaluated correctly,
 - (3) the wiring is implemented correctly,
 - (4) the output of last gate is 0

Proving (4) is easy: prove $P(\omega^{3|C|-1}) = 0$

(wiring constraints)

inputs:	5,	6,	1
Gate 0:	5,	6,	11
Gate 1:	6,	1,	7
Gate 2:	11,	7 ,	77

Proving (1): P encodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) = \text{input #j}$

In our example:
$$v(\omega^{-1}) = 5$$
, $v(\omega^{-2}) = 6$, $v(\omega^{-3}) = 1$. (v is quadratic)

constructing v(X) takes time proportional to the size of input x

Proving (1): P encodes the correct inputs

Both <u>prover</u> and <u>verifier</u> interpolate a polynomial $v(X) \in \mathbb{F}_p^{(\leq |I_x|)}[X]$ that encodes the x-inputs to the circuit:

for
$$j = 1, ..., |I_x|$$
: $v(\omega^{-j}) = \text{input #j}$

Let
$$H_{inp} := \{ \omega^{-1}, \omega^{-2}, ..., \omega^{-|I_x|} \} \subseteq H$$
 (points encoding the input)

Prover proves (1) by using a zero-test on H_{inp} to prove that

$$P(y) - v(y) = 0 \qquad \forall \ y \in H_{inp}$$

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

define
$$S(X) \in \mathbb{F}_p^{(\leq d)}[X]$$
 such that $\forall l = 0, ..., |C| - 1$: $S(\omega^{3l}) = 1$ if gate $\#l$ is an addition gate $S(\omega^{3l}) = 0$ if gate $\#l$ is a multiplication gate

In our example
$$S(\omega^0)=1$$
, $S(\omega^3)=1$, $S(\omega^6)=0$ (so that S is a quadratic polynomial)

Proving (2): every gate is evaluated correctly

Idea: encode gate types using a <u>selector</u> polynomial S(X)

```
define S(X) \in \mathbb{F}_{p}^{(\leq d)}[X] such that \forall l = 0, ..., |C| - 1:
     S(\omega^{3l}) = 1 if gate #l is an addition gate
    S(\omega^{3l}) = 0 if gate #l is a multiplication gate
```

Observe that,
$$\forall y \in H_{gates} := \{1, \omega^3, \omega^6, \omega^9, ..., \omega^{3(|C|-1)}\}:$$

$$S(y) \cdot [P(y) + P(\omega y)] + (1 - S(y)) \cdot P(y) \cdot P(\omega y) = P(\omega^2 y)$$

left input right input

left input right input

output

Proving (2): every gate is evaluated correctly

$$\frac{\mathsf{Setup}(C)}{\mathsf{S}_p} \Rightarrow \mathsf{S}_p \Rightarrow \mathsf{S} \text{ and } \mathsf{S}_v \Rightarrow \mathsf{S}_v$$

Prover
$$P(S_p, x, w)$$

build $P(X) \in \mathbb{F}_p^{(\leq d)}[X]$

Commitment)

Verifier $V(S_v, x)$

Prover uses $\frac{\text{zero-test}}{\text{to prove that}}$ on the set H_{gates} to prove that $\forall y \in H_{\text{gates}}$

$$S(y) \cdot [P(y) + P(\omega y)] + (1 - S(y)) \cdot P(y) \cdot P(\omega y) - P(\omega^2 y) = 0$$

Proving (3): the wiring is correct

Step 4: encode the wires of *C*:

$$\begin{cases} P(\omega^{-2}) = P(\omega^{1}) = P(\omega^{3}) \\ P(\omega^{-1}) = P(\omega^{0}) \\ P(\omega^{2}) = P(\omega^{6}) \\ P(\omega^{-3}) = P(\omega^{4}) \end{cases}$$

example: $x_1=5, x_2=6, w_1=1$ $\omega^{-1}, \omega^{-2}, \omega^{-3}: 5, 6, 1$ 0: $\omega^{0}, \omega^{1}, \omega^{2}: 5, 6, 11$ 1: $\omega^{3}, \omega^{4}, \omega^{5}: 6, 1, 7$ 2: $\omega^{6}, \omega^{7}, \omega^{8}: 11, 7, 77$

Define a polynomial $W: H \rightarrow H$ that implements a rotation:

$$W(\omega^{-2}, \omega^1, \omega^3) = (\omega^1, \omega^3, \omega^{-2})$$
, $W(\omega^{-1}, \omega^0) = (\omega^0, \omega^{-1})$, ...

Lemma: $\forall y \in H$: $P(y) = P(W(y)) \Rightarrow$ wire constraints are satisfied

Proving (3): encoding the circuit wiring

Problem: the constraint P(y) = P(W(y)) has degree d^2

- \Rightarrow prover would need to manipulate polynomials of degree d²
- ⇒ quadratic time prover !! (goal: linear time prover)

Cute trick: use **prod-check proof** to reduce this to a constraint of linear degree

Reducing wiring check to a linear degree

Lemma:
$$P(y) = P(W(y))$$
 for all $y \in H$ if and only if $L(Y, Z) \equiv 1$, where $L(Y, Z) \coloneqq \prod_{x \in H} \frac{P(x) + Y \cdot W(x) + Z}{P(x) + Y \cdot x + Z}$

To prove that $L(Y,Z) \equiv 1$ do:

- (1) verifier chooses random $y, z \in \mathbb{F}_p$
- (2) prover builds $L_1(X)$ s.t. $L_1(x) = \frac{P(x) + y \cdot W(x) + z}{P(x) + y \cdot x + z}$ for all $x \in H$
- (3) run prod-check to prove $\prod_{x \in H} L_1(x) = 1$
- (4) validate L_1 : run zero-test on H to prove $L_2(x) = 0$ for all $x \in H$, where $L_2(x) = (P(x) + y \cdot x + z) L_1(x) (P(x) + y \cdot W(x) + z)$

The final Plonk Poly-IOP (and SNARK)

Setup(
$$C$$
) \rightarrow $S_p \coloneqq$ (S,W) and $S_v \coloneqq$ (S and W) (untrusted)

Prover $P(S_p, \boldsymbol{x}, \boldsymbol{w})$

build $P(X) \in \mathbb{F}_p^{(\leq d)}[X]$ (commitment) build $v(X) \in \mathbb{F}_p^{(\leq |I_X|)}[X]$

(commitment)

Prover proves:

gates: (1)
$$S(y) \cdot [P(y) + P(\omega y)] + (1 - S(y)) \cdot P(y) \cdot P(\omega y) - P(\omega^2 y) = 0$$
 $\forall y \in H_{gates}$ inputs: (2) $P(y) - v(y) = 0$ $\forall y \in H_{inp}$

wires: (3)
$$P(y) - P(W(y)) = 0$$
 $\forall y \in H$

output: (4)
$$P(\omega^{3|C|-1}) = 0$$
 (output of last gate = 0)

The final Plonk Poly-IOP (and SNARK)

Thm: The Plonk Poly-IOP is complete and knowledge sound

Many extensions ...

Plonk proof: a short proof (≈400 bytes), fast verifier (≈6ms)

- Can handle circuits with more general gates than + and ×
 - PLOOKUP: efficient Poly-IOP for circuits with lookup tables

The resulting SNARK can be made into a zk-SNARK

Main research effort: SNARKs with faster prover time

END OF LECTURE