Natural Language Inference for Question Answering

Gabor Angeli

Stanford University

April 14, 2015

Two parts to question answering:

Understanding the question

Understanding the corpus (IE)

- Understanding the question
 - Most Semantic Parsing work seems to be here
 - Can be arbitrarily hard; we only worry about easy factoids.
- Understanding the corpus (IE)

Two parts to question answering:

- Understanding the question
 - Most Semantic Parsing work seems to be here
 - Can be arbitrarily hard; we only worry about easy factoids.
- Understanding the corpus (IE)

April 14, 2015

- Understanding the question
 - Most Semantic Parsing work seems to be here
 - Can be arbitrarily hard; we only worry about easy factoids.
- Understanding the corpus (IE)
 - What facts are in the corpus?
 [Angeli et al., 2014a, Angeli et al., 2014b]

- Understanding the question
 - Most Semantic Parsing work seems to be here
 - Can be arbitrarily hard; we only worry about easy factoids.
- Understanding the corpus (IE)
 - What facts are in the corpus?
 [Angeli et al., 2014a, Angeli et al., 2014b]
 - What facts are entailed by the corpus? [ACL OpenIE Submission]

- Understanding the question
 - Most Semantic Parsing work seems to be here
 - Can be arbitrarily hard; we only worry about easy factoids.
- Understanding the corpus (IE)
 - What facts are in the corpus?
 [Angeli et al., 2014a, Angeli et al., 2014b]
 - What facts are entailed by the corpus? [ACL OpenIE Submission]
 - How do we find if a fact is entailed by the corpus?
 [Angeli and Manning, 2013, Angeli and Manning, 2014]

Questions don't always fit into a known schema

Questions don't always fit into a known schema

✓ Where was Barack Obama born?

Questions don't always fit into a known schema

- ✓ Where was Barack Obama born?
- ? What city borders the largest river in California?
- ? Who is Chris Manning's academic advisor?

April 14, 2015

Questions don't always fit into a known schema

- ✓ Where was Barack Obama born?
- ? What city borders the largest river in California?
- ? Who is Chris Manning's academic advisor?
- X Do cats have tails?

April 14, 2015

Questions don't always fit into a known schema

- ✓ Where was Barack Obama born?
- ? What city borders the largest river in California?
- ? Who is Chris Manning's academic advisor?
- X Do cats have tails?

Questions don't always talk about named entities

✓ Where was Barack Obama born?

Questions don't always fit into a known schema

- ✓ Where was Barack Obama born?
- ? What city borders the largest river in California?
- ? Who is Chris Manning's academic advisor?
- X Do cats have tails?

Questions don't always talk about named entities

- ✓ Where was Barack Obama born?
- ? What treatments are there for diabetes?
- X Do cats have tails?

Questions don't always fit into a known schema

- ✓ Where was Barack Obama born?
- ? What city borders the largest river in California?
- ? Who is Chris Manning's academic advisor?
- X Do cats have tails?

Questions don't always talk about named entities

- ✓ Where was Barack Obama born?
- ? What treatments are there for diabetes?
- X Do cats have tails?

Answers aren't always literally justified in text

- ✓ Born in Hawaii, Barack Obama ...
- ? Doctors prescribe Insulin for Diabetes.
- X All animals have tails

No entailment: What facts are in the corpus?

We can do QA from Freebase ... so let's make Freebase bigger

Relation Extraction + TAC-KBP

No entailment: What facts are in the corpus?

We can do QA from Freebase ... so let's make Freebase bigger

Relation Extraction + TAC-KBP

- Done: KBP 2013 2014
- Done: KBP + active learning
- Pending: KBP + deep learning / matrix factorization

No entailment: What facts are in the corpus?

We can do QA from Freebase ... so let's make Freebase bigger

Relation Extraction + TAC-KBP

- Done: KBP 2013 2014
- Done: KBP + active learning
- Pending: KBP + deep learning / matrix factorization

Does it address the challenges?

- Fixed relation schema
- Very named-entity-centric
- Zero entailments from text

Mini-Entailment: List facts entailed by corpus

Extract maximally informative, correct things

Natural Logic + OpenIE (ACL submission)

Mini-Entailment: List facts entailed by corpus

Extract maximally informative, correct things

Natural Logic + OpenIE (ACL submission)

- Split sentence up into short, entailed clauses
- 2. Strip away excess information in clauses
- 3. Extract open IE triples

Mini-Entailment: List facts entailed by corpus

Extract maximally informative, correct things

Natural Logic + OpenIE (ACL submission)

- Split sentence up into short, entailed clauses
- 2. Strip away excess information in clauses
- 3. Extract open IE triples

Does it address the challenges?

- Open relation schema
- Named entity agnostic
- Only limited entailment from text

Lots of Entailment: Is a fact entailed by corpus?

Given a fact, can we support it in the corpus?

Natural Logic

Lots of Entailment: Is a fact entailed by corpus?

Given a fact, can we support it in the corpus?

Natural Logic

- Done: Natural Logic for Common Sense facts
- Pending: Natural Logic for Factoid facts (EMNLP)
- Future: ... stay tuned

Lots of Entailment: Is a fact entailed by corpus?

Given a fact, can we support it in the corpus?

Natural Logic

- Done: Natural Logic for Common Sense facts
- Pending: Natural Logic for Factoid facts (EMNLP)
- Future: ... stay tuned

Does it address the challenges?

- Open relation schema
- Named entity agnostic
- Large class of entailments from corpus

Main Idea of Thesis

Natural language inference allows us to leverage latent information in text to improve recall of open-domain facts, without sacrificing [much] precision.

Where is Chris Manning from?

Christopher Manning

Professor of Linguistics and Computer Science

Natural Language Processing Group, Stanford University

Brief Bio

- I'm Australian ("I come from a land of wide open spaces ...")
- BA (Hons) Australian National University 1989 (majors in mathematics, computer science and linguistics)
- · PhD Stanford Linguistics 1995
- Asst Professor Carnegie Mellon University Computational Linguistics Program 1994-96
- · Lecturer University of Sydney Dept of Linguistics 1996-99
- Asst Professor Stanford University Depts of Computer Science and Linguistics 1999-2006
- Assoc Professor Stanford University Depts of Linguistics and Computer Science 2006-2012
- · Professor Stanford University Depts of Linguistics and Computer Science 2012-

Australia

Christopher D. Manning, origin

Feedback

We're filling a fixed relation schema

Unstructured Text

Structured Knowledge Base

(m. 1992-present)

Malia Ann Obama (b. 1998) Natasha Obama (b. 2001)

Children

Input: Sentences containing (entity, slot value). **Output**: Relation between entity and slot value.

Input: Sentences containing (entity, slot value). **Output**: Relation between entity and slot value.

Consider two approaches:

Supervised: Trivial as a supervised classifier.
 Training data: {(sentence, relation)}.
 But...

Input: Sentences containing (entity, slot value). **Output**: Relation between entity and slot value.

Consider two approaches:

Supervised: Trivial as a supervised classifier.
 Training data: {(sentence, relation)}.
 But... this training data is expensive to produce.

Input: Sentences containing (entity, slot value). **Output**: Relation between entity and slot value.

Consider two approaches:

- Supervised: Trivial as a supervised classifier.
 Training data: {(sentence, relation)}.
 But... this training data is expensive to produce.
- **Distantly Supervised:** Artificially produce "supervised" data. Training data: {(entity, relation, slot value)}.

 But...

Input: Sentences containing (entity, slot value). **Output**: Relation between entity and slot value.

Consider two approaches:

- Supervised: Trivial as a supervised classifier.
 Training data: {(sentence, relation)}.
 But... this training data is expensive to produce.
- Distantly Supervised: Artificially produce "supervised" data.
 Training data: {(entity, relation, slot value)}.
 But... this training data is much more noisy.

Active Learning: Combine Benefits of Both

Adding carefully selected supervision improves distantly supervised relation extraction.

Active Learning: Combine Benefits of Both

Adding carefully selected supervision improves distantly supervised relation extraction.

Old problem: Supervision is expensive, but very useful.

Old solution: Active learning!

Active Learning: Combine Benefits of Both

Adding carefully selected supervision improves distantly supervised relation extraction.

Old problem: Supervision is expensive, but very useful.

Old solution: Active learning!

- Select a subset of latent z to annotate.
- Fix these labels during training.

Active Learning: Combine Benefits of Both

Adding carefully selected supervision improves distantly supervised relation extraction.

Old problem: Supervision is expensive, but very useful.

Old solution: Active learning!

- Select a subset of latent z to annotate.
- Fix these labels during training.
- Bonus: this creates a supervised training set.
 - We initialize from a supervised classifier on this training set.

KBP is already "entailment"

Chris, a tenured professor at Stanford, is friends with Fei-Fei

- ⇒ Chris is a tenured professor at Stanford
- ⇒ Chris is a professor at Stanford
- ⇒ Chris is employed by Stanford
- ⇒ (Chris; employee_of; Stanford)

KBP is already "entailment"

Chris, a tenured professor at Stanford, is friends with Fei-Fei

- ⇒ Chris is a tenured professor at Stanford
- ⇒ Chris is a professor at Stanford
- ⇒ Chris is employed by Stanford
- ⇒ (Chris; employee_of; Stanford)

Born in a small town, she took the midnight train going anywhere

- ⇒ She took the midnight train going anywhere
- ⇒ She took the midnight train
- ⇒ She took midnight train
- \Rightarrow (She; took; midnight train)

Born in a small town, she took the midnight train going anywhere.

(input)

Born in a small town, she took the midnight train going anywhere.

(input)

she took the midnight train going anywhere Born in a small town, she took the midnight train Born in a town, she took the midnight train she took the midnight train she took midnight train ...

Born in a small town, she took the midnight train going anywhere.

(input)

she took the midnight train going anywhere Born in a small town, she took the midnight train Born in a town, she took the midnight train

she took the midnight train
she took midnight train
...

(she; took; midnight train)

Born in a small town, she took the midnight train going anywhere.

(input)

she took the midnight train going anywhere Born in a small town, she took the midnight train Born in a town, she took the midnight train she took the midnight train she took midnight train

(she; took; midnight train)

OpenIE Summary

Chris, a tenured professor at Stanford, is friends with Fei-Fei

⇒ (Chris; is friends with; Fei-Fei)

1. Split a long sentence into short entailed sentences. (e.g., *Chris is a tenured professor at Stanford*)

OpenIE Summary

Chris, a tenured professor at Stanford, is friends with Fei-Fei

⇒ (Chris; is friends with; Fei-Fei)

- 1. Split a long sentence into short entailed sentences. (e.g., *Chris is a tenured professor at Stanford*)
- 2. Shorten each clause maximally
 - Chris is friends with Fei-Fei
 - ✓ Chris is professor
 - X Chris is friends

OpenIE Summary

Chris, a tenured professor at Stanford, is friends with Fei-Fei

⇒ (Chris; is friends with; Fei-Fei)

- 1. Split a long sentence into short entailed sentences. (e.g., *Chris is a tenured professor at Stanford*)
- 2. Shorten each clause maximally
 - Chris is friends with Fei-Fei
 - ✓ Chris is professor
 - X Chris is friends
- 3. Optionally segment into triples

State-of-the-art OpenIE

KBP 2013 end-to-end evaluation:

System	Р	R	F ₁
UW Official	69.8	11.4	19.6
Ollie		4.8	
NaturalLI – Nominals	66.7	7.7	13.8
Ollie + Nominal Rels		12.1	
NaturalLI	60.3	14.3	23.1

State-of-the-art OpenIE

KBP 2013 end-to-end evaluation:

System	Р	R	F ₁
UW Official	69.8	11.4	19.6
Ollie	57.4	4.8	8.9
NaturalLI - Nominals	66.7	7.7	13.8
Ollie + Nominal Rels	56.8	12.1	19.9
NaturalLI	60.3	14.3	23.1

- If we add alternate names and websites: 28.6 F₁
- Context: NYU trained on KBP: 27.7 F₁

State-of-the-art OpenIE

KBP 2013 end-to-end evaluation:

System	Р	R	F ₁
UW Official	69.8	11.4	19.6
Ollie	57.4	4.8	8.9
NaturalLI - Nominals	66.7	7.7	13.8
Ollie + Nominal Rels	56.8	12.1	19.9
NaturalLI	60.3	14.3	23.1

• If we add alternate names and websites: 28.6 F₁

Context: NYU trained on KBP: 27.7 F₁

MIML-RE: 36.2 F₁; Top system: 40.2 F₁

Natural Logic subsumes Syllogisms

Some cat ate a mouse (all mice are rodents)

17/30

Natural Logic subsumes Syllogisms

- Some cat ate a mouse (all mice are rodents)
- : Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
 - : Most cats eat rodents

Natural Logic subsumes Syllogisms

- Some cat ate a mouse (all mice are rodents)
- : Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
 - : Most cats eat **rodents**
- "All students who know a foreign language learned it at university."

Natural Logic subsumes Syllogisms

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
- ... Most cats eat rodents
- "All students who know a foreign language learned it at university."
 - :: "They learned it at school."

Natural Logic subsumes Syllogisms

- Some cat ate a mouse (all mice are rodents)
- :. Some cat ate a rodent

Cognitively easy inferences are easy:

- Most cats eat mice
 - .. Most cats eat **rodents**
- "All students who know a foreign language learned it at university."
 - :: "They learned it at school."

Facts are text; inference is lexical mutation

Treat hypernymy as a partial order.

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

animal

feline

cat

house cat

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

animal

feline

house cat

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

living thing

animal

cat

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

thing

living thing

↑ animal

feline

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

feline

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

living thing

animal

cat

Treat hypernymy as a partial order.

Polarity is the direction a lexical item can move in the ordering.

animal

feline

house cat

An Example Inference

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Quantifiers determines the *polarity* (\uparrow or \downarrow) of words.

Mutations must respect polarity.

Inference is reversible.

ate a mouse

All cats have tails All kittens are cute

 $\textbf{Nodes} \qquad \quad (\textit{ fact}, \textit{truth maintained} \in \{\textit{true}, \textit{false}\})$


```
Nodes ( fact, truth maintained \in \{true, false\})
```

Start Node (query fact, true)
End Nodes any known fact

Nodes (fact, truth maintained $\in \{true, false\}$)

Start Node (query fact, true)
End Nodes any known fact

Edges Mutations of the current fact

Nodes (fact, truth maintained $\in \{true, false\}$)

Start Node (query fact, true)
End Nodes any known fact

Edges Mutations of the current fact
Edge Costs How "wrong" an inference step is (learned)

Search mutates opposite to polarity

Truth maintained:

Truth false

Truth false

Truth false

Truth false

Truth false

Truth false

Shorthand for a node:

No carnivores eat animals?

April 14, 2015

April 14, 2015

Want to make likely (but not certain) inferences.

• Same motivation as Markov Logic, Probabilistic Soft Logic, etc.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each edge instance has a distance f.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each *edge instance* has a distance *f*.

Cost of an edge is $\theta_i \cdot f_i$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each *edge instance* has a distance *f*.

Cost of an edge is $\theta_i \cdot f_i$. Cost of a path is $\theta \cdot f$.

Want to make likely (but not certain) inferences.

- Same motivation as Markov Logic, Probabilistic Soft Logic, etc.
- Each *edge template* has a cost $\theta \ge 0$.

Detail: Variation among *edge instances* of a template.

- WordNet: cat → feline vs. cup → container.
- Nearest neighbors distance.
- Each *edge instance* has a distance *f*.

Cost of an edge is $\theta_i \cdot f_i$. Cost of a path is $\theta \cdot f$. Can learn parameters θ .

Summary: NaturalLI

High-Level Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Summary: NaturalLI

High-Level Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Results

- ConceptNet facts: 12% recall → 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).

Summary: NaturalLI

High-Level Takeaways

- Deep inferences from a large knowledge base.
- Leverage arbitrarily large plain-text knowledge bases.
- "Soft" logic with probability of truth.

Results

- ConceptNet facts: 12% recall → 49% recall @ 91% precision.
- Checks logical entailment (not just fuzzy query).

Complexity doesn't grow with knowledge base size.

The "Proposal" Part

What is NaturalLI bad at?

What is NaturalLI bad at?

Real world Q/A (WebQuestions, TREC, Al2 Biology).
 Most people don't really care about common-sense.

What is NaturalLI bad at?

- Real world Q/A (WebQuestions, TREC, Al2 Biology).
 Most people don't really care about common-sense.
- Reasoning with multiple premises.
 E.g., DeMorgan's laws.

What is NaturalLI bad at?

- Real world Q/A (WebQuestions, TREC, Al2 Biology).
 Most people don't really care about common-sense.
- Reasoning with multiple premises.
 E.g., DeMorgan's laws.
- Fully leveraging training data.
 What if the entailment rules aren't in WordNet?

Real World Q/A (EMNLP 2015)

Goal: Make NaturalLI useful, not just cute.

Real World Q/A (EMNLP 2015)

Goal: Make NaturalLI useful, not just cute.

Start with NaturalLI...

- + Dependency trees (for passivization, etc.)
- + Meronymy (Hawaii is in USA)
- Relational entailment (works → employed)
- + Paraphrases

Real World Q/A (EMNLP 2015)

Goal: Make NaturalLI useful, not just cute.

Start with NaturalLI...

- + Dependency trees (for passivization, etc.)
- + Meronymy (Hawaii is in USA)
- + Relational entailment (works → employed)
- Paraphrases

Evaluate on:

- Al2 Biology tests
- WebQuestions
- TREC QA

Goal: Make Natural Logic look more appealing.

Goal: Make Natural Logic look more appealing.

The Trivial Case: Parse premises that define edges in a partial order (e.g., cats are animals, Hawaii is in the USA).

Goal: Make Natural Logic look more appealing.

The Trivial Case: Parse premises that define edges in a partial order (e.g., cats are animals, Hawaii is in the USA).

Propositional + Natural Logic

• E.g., $a \lor b$; $\neg a \Rightarrow b$

Goal: Make Natural Logic look more appealing.

The Trivial Case: Parse premises that define edges in a partial order (e.g., cats are animals, Hawaii is in the USA).

Propositional + Natural Logic

- E.g., $a \lor b$; $\neg a \Rightarrow b$
- Shallow syntactic parse of sentence for conjunction / disjunction

Goal: Make Natural Logic look more appealing.

The Trivial Case: Parse premises that define edges in a partial order (e.g., cats are animals, Hawaii is in the USA).

Propositional + Natural Logic

- E.g., $a \lor b$; $\neg a \Rightarrow b$
- Shallow syntactic parse of sentence for conjunction / disjunction
- Operators in hypothesis are trivial (run all atoms and combine)
- Conjunction in premise is trivial (NaturalLI OpenIE can do this)
- Disjunction and material implication in premise is a bit tricky

Goal: Make Natural Logic look more appealing.

The Trivial Case: Parse premises that define edges in a partial order (e.g., cats are animals, Hawaii is in the USA).

Propositional + Natural Logic

- E.g., $a \lor b$; $\neg a \Rightarrow b$
- Shallow syntactic parse of sentence for conjunction / disjunction
- Operators in hypothesis are trivial (run all atoms and combine)
- Conjunction in premise is trivial (NaturalLI OpenIE can do this)
- Disjunction and material implication in premise is a bit tricky

Probabilistic logic of "some:" some cats have tails; some cats are male ⇒ some males have tails (with some probability)

Goal: Make NaturalLI less hand-coded.

Goal: Make NaturalLI less hand-coded.

Research by Analogy:

- MIML-RE is to NaturalLI as Neural QA is to X.
- High level idea: Natural Logic mutations are transforms in vector space.

Goal: Make NaturalLI less hand-coded.

Research by Analogy:

- MIML-RE is to NaturalLI as Neural QA is to X.
- High level idea: Natural Logic mutations are transforms in vector space.

Implementation 1: NaturalLI in vector space

- Same search, but each rule (e.g., go up WordNet) is a matrix operation. "Hit" a premise if we get close enough.
- Can train from SNLI corpus + MT alignments.

Goal: Make NaturalLI less hand-coded.

Research by Analogy:

- MIML-RE is to NaturalLI as Neural QA is to X.
- High level idea: Natural Logic mutations are transforms in vector space.

Implementation 1: NaturalLI in vector space

- Same search, but each rule (e.g., go up WordNet) is a matrix operation. "Hit" a premise if we get close enough.
- Can train from SNLI corpus + MT alignments.

Implementation 2: Learn hyperplane between true and false facts.

- Positives from the internet.
 - Negatives from mutating each positive, + unrelated facts.

Thanks!

References I

- Angeli, G., Chaganty, A., Chang, A., Reschke, K., Tibshirani, J., Wu, J. Y., Bastani, O., Siilats, K., and Manning, C. D. (2014a). Stanford's 2013 KBP system. In *TAC-KBP*.
- Angeli, G. and Manning, C. D. (2013).

 Philosophers are mortal: Inferring the truth of unseen facts.

 In CoNLL.
- Angeli, G. and Manning, C. D. (2014).

 Naturalli: Natural logic inference for common sense reasoning.

 In FMNI P
- Angeli, G., Tibshirani, J., Wu, J. Y., and Manning, C. D. (2014b). Combining distant and partial supervision for relation extraction. In *EMNLP*.