Gränsvärden

Standard gränsvärden

 $\lim_{x\to 0}\frac{a^n}{n!}=0$

$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$	$\lim_{x \to 0} \frac{\sin(ax)}{x} = a$	$\lim_{x \to 0} \frac{1 - \cos(x)}{\sin(x)} = 0$
$\lim_{x\to\pm\infty}\left(1+\frac{1}{x}\right)^x = e$	$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^{-x} = \frac{1}{e}$	$\lim_{x \to \pm \infty} \left(1 - \frac{1}{x} \right)^x = \frac{1}{e}$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a)$	$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
$\lim_{x \to \infty} \frac{x^a}{b^x} = 0 \ (b > 1)$	$\lim_{x\to\infty} e^{-px} x^a = 0 \ (p>0)$	$\lim_{x\to\infty} \frac{\ln(x)^a}{x^c} = 0 (c>0)$

$$\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \begin{pmatrix} 0 & om & n < m \\ \frac{a_n}{b_m} & om & n = m \\ \frac{b_m}{b_m} & om & n > m \end{pmatrix}$$
 Se även transformler för maclarens och taylor