EUF

Exame Unificado das Pós-graduações em Física

Para o primeiro semestre de 2020 01 de outubro de 2019 Parte 1

Esta prova contém questões de mecânica clássica, física moderna, mecânica quântica e termodinâmica. Todas as questões têm o mesmo peso.

Informações úteis para a solução desta prova podem ser encontradas no formulário fornecido.

Boa prova!

Q1. Considere os arranjos de dois blocos de massas m_1 e m_2 ($m_1 < m_2$) ilustrados nas figuras abaixo. Os coeficientes de atrito cinético entre cada bloco e o chão são μ_1 e μ_2 , respectivamente. A aceleração da gravidade é g. Na Figura 1, uma força horizontal $\vec{F} = F(x)\hat{x}$ atua no bloco m_1 e o conjunto se move sem movimento relativo entre os blocos.

- (a) Indique esquematicamente todas as forças atuando em cada bloco da Figura 1.
- (b) Encontre a aceleração do bloco m_1 no caso da Figura 1. Dê sua resposta final em termos de m_1 , m_2 , μ_1 , μ_2 , g e F(x).
- (c) Encontre a variação da energia cinética do arranjo da Figura 1 se a posição do bloco de massa m_1 variar de x_1 até x_2 ($x_2 > x_1$) e se $F(x) = \alpha x$, onde α é uma constante positiva.
- (d) Considere agora que ambos os conjuntos das Figuras 1 e 2 se movam instantaneamente com a mesma velocidade v e que a potência dissipada por atrito no arranjo da Figura 2 seja o dobro da do arranjo da Figura 1. Encontre a razão μ_2/μ_1 .
- Q2. Um pêndulo de comprimento l e massa m está preso a um bloco de massa M. O bloco é livre para se mover sem atrito ao longo de um trilho horizontal, conforme indicado na figura. Considere a posição y=0 ($\theta=\pi/2$) como o zero de energia potencial gravitacional. A aceleração da gravidade é g.

- (a) Escreva a lagrangiana do sistema em termos das coordenadas generalizadas x (posição do bloco) e θ (ângulo que o pêndulo faz com a vertical) mostradas na figura. Encontre as equações de movimento.
- (b) Além da energia mecânica total, existe alguma outra constante de movimento na dinâmica do sistema? Qual? Justifique.
- (c) Considerando o regime de pequenas oscilações ($\theta \ll 1$), encontre o modo normal de oscilação do sistema e a sua frequência.
- (d) Além do caso trivial no qual o sistema está parado ($\dot{x} = 0$, $\dot{\theta} = 0$), existe algum outro movimento possível em que o pêndulo não oscile? Qual? Justifique.

- Q3. Uma batalha espacial entre duas naves de civilizações diferentes, A e B, em repouso uma em relação à outra, acaba em destruição mútua. Um observador C, em repouso em relação às duas naves e para quem a distância entre elas era L, observa a nave da civilização A explodir um tempo T antes da explosão da outra nave. Um outro observador D move-se com velocidade de magnitude u em relação ao primeiro observador, ao longo da linha que separava as duas naves.
 - (a) Supondo uma situação em que L=1.000 km e $u=\frac{24}{25}c$, sendo c a velocidade da luz no vácuo, qual era a distância entre as naves no referencial do observador D?
 - (b) Em outra situação, supondo $L=1.000~{\rm km}$ e $T=1~{\rm ms}$, qual deveria ser a magnitude mínima da velocidade u para que o observador D registrasse a explosão da nave da civilização B como tendo ocorrido **antes** da explosão da nave da civilização A?
 - (c) Considere que toda a energia de repouso da nave da civilização A tenha sido liberada na explosão e que o veículo do observador C tenha capturado toda essa energia, convertendo-a em energia cinética. Sendo iguais as massas da nave da civilização A e a do veículo de C, determine a velocidade v que o veículo atinge após absorver a energia da explosão.
- Q4. Considere a dinâmica quântica unidimensional de uma partícula de massa m sujeita ao potencial

$$V(x) = \begin{cases} 0, & 0 \le x \le a, \\ +\infty, & x < 0 \text{ e } x > a, \end{cases}$$

onde a é uma constante positiva.

(a) Escreva a equação de Schrödinger para o sistema e determine os autovalores de energia e as respectivas autofunções. Não é necessário normalizar as autofunções.

Considere agora que no instante inicial, t = 0, a função de onda da partícula é dada por

$$\psi(x,0) = \begin{cases} A(Bx - x^2), & 0 \le x \le a, \\ 0, & x < 0 \text{ e } x > a, \end{cases}$$

onde A e B são constantes reais.

- (b) Determine o valor da constante B em termos de a de modo que $\psi(x,0)$ seja uma possível função de onda para a partícula.
- (c) Determine a constante A em termos de a.
- (d) Determine o valor esperado da energia cinética da partícula no instante inicial.
- Q5. A otimização de um processo termodinâmico envolve a avaliação de duas etapas consecutivas:
 - (1) A compressão de n moles de um gás ideal diatômico ($\gamma=1.4$ e $C_V=5R/2$, onde R=8.31 J/mol.K é a constante universal dos gases), inicialmente à pressão $P_0=1.01\times 10^5$ N/m², temperatura $T_0=330$ K e volume $V_0=1.00$ l, para um volume final de 100 ml.
 - (2) A subsequente exaustão de uma fração do gás para que sua pressão retorne ao valor inicial P_0 , porém à temperatura de 300 K.

A avaliação consiste na comparação entre os casos em que a compressão (1) é isotérmica ou adiabática. Considere, se necessário, que $10^{1,3}\approx 20,\, 10^{1,4}\approx 25$ e $10^{1,7}\approx 50$.

- (a) Para o caso isotérmico, determine a pressão logo após a compressão.
- (b) Para o caso adiabático, determine a pressão logo após a compressão.
- (c) Determine a fração do gás inicial que é liberada na etapa (2).
- (d) Esboce as duas etapas de compressão (isotérmica e adiabática) em um diagrama $P \times V$ e determine em qual delas o trabalho realizado sobre o gás é menor.

EUF

Exame Unificado das Pós-graduações em Física

Para o primeiro semestre de 2020 02 de outubro 2019 Parte 2

Esta prova contém questões de eletromagnetismo, física moderna, mecânica quântica e mecânica estatística. Todas as questões têm o mesmo peso.

Informações úteis para a solução desta prova podem ser encontradas no formulário fornecido.

Boa prova!

- Q6. Um solenoide muito longo, de seção reta circular de raio R, com n voltas por unidade de comprimento, tem uma corrente elétrica dada por $I(t) = I_0 \sin \omega t$. Seu eixo encontra-se ao longo do eixo z de um sistema de coordenadas. Assuma o limite quase-estático ($\omega R \ll c$) e que o campo magnético \mathbf{B} fora do solenoide é nulo.
 - (a) Calcule o vetor campo magnético B dentro do solenoide.
 - (b) Calcule o vetor campo elétrico E dentro do solenoide.
 - (c) Calcule o vetor campo elétrico E fora do solenoide.
- Q7. Um circuito RC é composto de um resistor de resistência R ligado em série a um capacitor de capacitância C. No instante t=0, uma bateria de voltagem V é conectada ao circuito. O capacitor, inicialmente descarregado, consiste em duas placas metálicas circulares de raio a separadas por uma distância d ($d \ll a$) e com vácuo entre elas. Despreze efeitos de borda no capacitor, ou seja, considere o campo elétrico uniforme entre as placas e nulo fora delas. Assuma o limite quase-estático.
 - (a) Calcule a capacitância C do capacitor.
 - (b) Calcule a corrente elétrica no circuito como função do tempo para t > 0.
 - (c) Calcule o vetor campo magnético ${\bf B}$ nas bordas laterais da região entre as placas do capacitor como função do tempo para t>0.
 - (d) Calcule o vetor de Poynting e a taxa temporal de energia eletromagnética entrando na região entre as placas do capacitor enquanto ele é carregado.
- Q8. A superfície do Sol está a uma temperatura aproximada de 6.0×10^3 K, enquanto a superfície da estrela supergigante Betelgeuse está a uma temperatura aproximada de 3.0×10^3 K. Suponha que ambas as estrelas irradiem como corpos negros perfeitos.
 - (a) A radiância espectral é definida como a energia irradiada por unidade de tempo e por unidade de área da superfície de um corpo no intervalo de comprimentos de onda entre λ e $\lambda + d\lambda$. Qual é a razão entre o comprimento de onda para o qual a radiância espectral do Sol é máxima e o comprimento de onda correspondente para Betelgeuse?
 - (b) Qual é a razão entre a radiância (energia total irradiada por unidade de tempo e de área da superfície) na superfície do Sol e a radiância na superfície de Betelgeuse?
 - (c) A potência de radiação de Betelgeuse é de cerca de 4.0×10^4 vezes a potência de radiação do Sol. Estime a razão entre o raio de Betelgeuse e o raio do Sol.

Q9. Considere um sistema quântico cujo espaço de Hilbert é tridimensional com uma base ortonormal dada pelos vetores $|\alpha_1\rangle$, $|\alpha_2\rangle$ e $|\alpha_3\rangle$. Nessa base (e nessa ordem), o hamiltoniano H do sistema é representado por

$$H = \hbar\omega \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix},\tag{1}$$

onde ω é uma constante positiva.

- (a) Determine os autovalores de energia do sistema, $\epsilon_1 < \epsilon_2 < \epsilon_3$, e os seus respectivos autovetores $|\varphi_1\rangle$, $|\varphi_2\rangle$ e $|\varphi_3\rangle$.
- (b) Considere que no instante inicial, t=0, o estado do sistema é dado pelo vetor

$$|\psi(0)\rangle = \frac{1}{2}|\alpha_1\rangle + \frac{1}{2}|\alpha_2\rangle + \frac{1}{\sqrt{2}}|\alpha_3\rangle.$$

Determine os valores que poderiam ser obtidos em uma medida da energia do sistema no instante inicial e suas respectivas probabilidades.

- (c) Determine o estado do sistema $|\psi(t)\rangle$ no instante t>0 na base $|\alpha_1\rangle$, $|\alpha_2\rangle$ e $|\alpha_3\rangle$.
- (d) Considere um observável A cuja representação matricial é dada, na mesma base em que H foi escrito na Eq. (1), por

$$A = a \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right),$$

onde a é uma constante. Determine o valor esperado do observável A no **estado fundamental** do sistema.

- Q10. Considere um sistema de N átomos localizados que não interagem entre si. Cada átomo pode estar em um de três estados diferentes. A energia de um dos estados é nula, enquanto os outros dois estados são degenerados, com energia Δ . O sistema está em equilíbrio térmico a uma temperatura T.
 - (a) Calcule a energia interna do sistema.
 - (b) Calcule a entropia do sistema.
 - (c) Obtenha a entropia nos limites $T \to 0$ e $T \to \infty$ se $\Delta > 0$.
 - (d) Obtenha a entropia nos limites $T \to 0$ e $T \to \infty$ se $\Delta < 0$.