Advanced Digital System Design Course

Diseño de Controlador de dos Semáforos con Prioridad en una Vía Rápida

Control de semáforos en dos calles

- Detectores C sensan la presencia de carros esperando sobre la calle secundaria. Si no existen carros sobre la calle secundaria, la luz del semáforo de la calle principal permanece en verde.
- ❖ Si existen carros sobre la calle secundaria, la luz del semáforo de la calle principal cambia V- A- R y la luz del semáforo de la calle secundaria cambia R- A- V.
- La luz verde de la calle secundaria permanece solo un tiempo TCS desde que el carro es detectado. Si TCS se cumple, la luz del semáforo de la calle secundaria cambia V- A- R y la luz del semáforo de la calle principal cambia R- A- V.
- Lo anterior es valido aunque existan carros esperando en la calle secundaria, es decir, la calle principal debe volver a verde por lo menos un tiempo TCP donde TCP>>TCS.

Diagrama de Estados

Tabla de Estados y MK

		_									
ED.				PE							
EP			X=0		X=1						
	Q_2	Q ₁	Q_0	D_2	D ₁	D_0	D_2	D ₁	D_0	Z ₁	Z_0
S0	0	0	0	0	0	0	0	0	1	0	0
S1	0	0	1	0	1	0	0	1	0	0	1
S2	0	1	0	0	1	1	0	1	1	1	0
S3	0	1	1	0	1	1	1	0	0	1	1
S4	1	0	0	1	0	1	1	0	1	1	0
S5	1	0	1	0	0	0	0	0	0	0	1

$$Z_0 = Q_0$$

Parameter	Value	Type
state1	0	Signed Integer
state2	1	Signed Integer
state3	2	Signed Integer
state4	3	Signed Integer
state5	4	Signed Integer
state6	5	Signed Integer
state7	6	Signed Integer

Cambio de semáforo cuando detecta carro por un tiempo corto después de TCP

A partir de este tiempo el semáforo cambia inmediatamente si detecta carro

Cambio de semáforo cuando detecta carro por un tiempo indefinido.

SALIDA Z	DESCRIPCIÓN	SALIDA Z	DESCRIPCIÓN
0	V1R2	2	R1A2
1	A1R2	3	R1V2

ASM vs. Diagrama de Estados

Los diagramas de estado y los diagramas ASM cumplen con una función básica, representar una FSM. Sin embargo, su uso para el diseño puede ser enfocado a diferentes funciones.

Diagrama De Estados	ASM		
Se ve de forma directa la transición de estados	Representa de forma clara el flujo de un proceso en un DataPath		
Las transiciones se representan con flechas en las que se pone las "condiciones"	Las condiciones se ponen en rombos. Las decisiones pueden ser compartidas por diferentes estados		
Usado en diseño de procesos en general	Enfocado a diseño de algoritmos para la ejecución de un proceso en un DataPath		

