Metrisches TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- Lsgen: Tour τ durch ganz V
- **Ziel:** Minimiere $d(\tau)$

(Metrisches) CVRP:

 $\rho + 2$ -approximative Algorithmus

- Vollständiger Graph G = (V, E)
- Startpunkt/Depot $s \in V$

Metr. Abstandsfunktion $d: E \to \mathbb{R}$

- Kapazität Q (polynomiell in Eingabe)
- Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- Lsgen: Route (σ) , die bei s beginn alle Bedarfe erfüllen nie mehr als Q Elemente transportiert
- **Ziel:** Minimiere $d(\sigma)$

Heterogenes k-TSP:

- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- Startpunkt $s \in V$

• Vollständiger Graph G = (V, E)

- k Fahrzeuge mit Geschw. $(2^{\lambda_i})_{i=1}^k$ **Lsgen:** Touren (τ_i) , die bei s beginnen
- und gemeinsam ganz V abdecken • **Ziel:** Minimiere max $\frac{d(\tau_i)}{2^{\lambda_i}}$

Lsg. (σ_i) mit

 $\max_{i} \frac{d(\sigma_i)}{2^{\lambda_i}} \in \mathcal{O}(1) \cdot \max_{i} \frac{d(\tau_i)}{2^{\lambda_i}}$

(Theorem 4.1 in $[G\emptyset+10]$) $\mathcal{O}(1)$ -Reduktion:

Instanz \mathcal{I}

von HetCVRP

Heterogenes k-CVRP:

 $\mathcal{O}(1)$ -approximative Algorithmus

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- einheitliche Kapazität Q

Startpunkt/Depot $s \in V$

- Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- k Fahrzeuge mit Geschw. (2^{λ_i})
- Lsgen: Touren (σ_i) , die bei s beginnen, gemeinsam alle Bedarfe erfüllen, wobei kein Fahrzeug jemals mehr als Q Elemente transportiert
 - **Ziel:** Minimiere max $\frac{d(\sigma_i)}{2^{\lambda_i}}$