A robust and efficient line search for self-consistent field iterations

Michael F. Herbst*, Antoine Levitt§

*Applied and Computational Mathematics, RWTH Aachen University \$CERMICS, École des Ponts and Inria Paris

13 January 2022

Slides: https://michael-herbst.com/talks/2022.01.13_gdrnbody_linesearch.pdf

Motivation: Reliable black-box electronic structure methods

- Virtual materials design ⇒ millions of calculations:
 - design space search, data generation for surrogates, ...
- Key requirements:
 - Automation (saves human time)
 - Efficiency (saves computer time)
 - Reliability (saves computer time & human time)
- State of the art:
 - Many parameters to choose (algorithms, tolerances, models)
 - Choice by experience
 - Little error control (basically trial and error)
 - Workflow success rate: $\simeq 80 99\%$
 - ⇒ Still tens of thousands of failed calculations!
- ⇒ Robust, error-controlled algorithms:
 - Ongoing effort centred around TFTK

Density-functional toolkit¹ — https://dftk.org

- julia code for plane-wave DFT
- Fully composable with julia ecosystem:
 - Arbitrary precision (32bit, >64bit, ...)
 - Algorithmic differentiation new
 - Numerical error control
- Supports mathematical developments and scale-up to relevant applications
- ullet i.e. reduced problems for rigorous analysis (1D, analytic potentials) and DFT on > 800 electrons
- ⇒ Build with multidisciplinary research in mind
- Avoids two-language problem: Just julia
- Development started in 2018
- Only 7k lines of code
- ⇒ Low entrance barrier across backgrounds

¹M. F. Herbst, A. Levitt and E. Cancès. JuliaCon Proc., 3, 69 (2021).

Rigorous error analysis: First results¹

- Fully guaranteed error bounds for band structures
- This case: Reduced Kohn-Sham model
- Captures basis set error, floating-point error, convergence error
- Recent work also considers others quantities of interest²:
- E.g. densities and forces

¹M. F. Herbst, A. Levitt and E. Cancès. Faraday Discuss. **224**, 227 (2020).

²E. Cancès, G. Dusson, G. Kemlin, A. Levitt. *Practical error bounds for properties in plane-wave electronic structure calculations* arXiv 2111.01470.

Algorithmic differentiation: UQ & data-driven approaches

- Data-enhanced density-functional theory methods
- High-order DFPT properties
- Sensitivity analysis and inference (uncertainties)
 - ⇒ Require efficient unusual, higher-order derivatives
- Combinatorial explosion:
 - "One PhD student per property" paradigm not feasible
 - \Rightarrow Use algorithmic differentiation (pprox automatic derivatives)
- Simple example: Stresses (Definition vs. julia code):1

```
Stress = \frac{1}{\det(\mathbf{L})} \left. \frac{\partial E[P_*, (I + \mathbf{M}) \mathbf{L}]}{\partial \mathbf{M}} \right|_{\mathbf{M} = 0}
```

 $^{^{1}} Live\ code:\ https://github.com/JuliaMolSim/DFTK.jl/blob/master/src/postprocess/stresses.jl$

Black-box algorithms: LDOS mixing²

- Long-standing problem: Suitable mixing for inhomogeneous systems
 - E.g. metal+insulator, catalytic surfaces, . . .
- State-of-the-art: local Thomas-Fermi-von Weizsäcker mixing (TFW)¹
- FTK approach: LDOS mixing automatically interpolates between Kerker mixing (in the metallic region) and no mixing (insulating region)
- ⇒ Parameter-free and black-box

¹D. Raczkowski, A. Canning, L. W. Wang, Phys. Rev. B. **64**, 121101 (2001).

²M. F. Herbst, A. Levitt. J. Phys. Condens. Matter **33**, 085503 (2021).

This work: Automatise damping selection

- ullet DFT-like problems: $\min_{
 ho} \mathcal{E}(
 ho)$
- Duality of density and potential:

$$\begin{split} V(\rho) &= \nabla_{\!\!\rho} \, E_{\mathsf{Hxc}}(\rho) \\ \rho(V) &= \mathrm{diag} \left[f_{\mathsf{FD}}(H_0 + V) \right] \end{split}$$

with Fermi-Dirac f_{FD} , core Hamiltonian H_0 , Hartree-XC energy $E_{\text{Hxc}}(\rho)$

Potential-mixing SCF procedure:

$$V_{n+1} = V_n + \alpha \delta V_n$$

$$\delta V_n = V(\rho(V_n)) - V_n$$

with

- State of the art: Trial and error
 - ullet Guess an lpha and make it smaller until convergence
 - Problematic in high-throughput context
- \Rightarrow Goal: Choose damping α automatically

This work: Automatise damping selection

- ullet DFT-like problems: $\min_{
 ho} \mathcal{E}(
 ho)$
- Duality of density and potential:

$$\begin{split} V(\rho) &= \nabla_{\!\!\rho} \, E_{\mathsf{Hxc}}(\rho) \\ \rho(V) &= \mathrm{diag} \left[f_{\mathsf{FD}}(H_0 + V) \right] \end{split}$$

with Fermi-Dirac f_{FD} , core Hamiltonian H_0 , Hartree-XC energy $E_{\text{Hxc}}(\rho)$

Potential-mixing SCF procedure:

$$V_{n+1} = V_n + \frac{\alpha}{\alpha} \delta V_n$$

$$\delta V_n = P^{-1} [V(\rho(V_n)) - V_n]$$

with mixing/preconditioner P

- State of the art: Trial and error
 - ullet Guess an lpha and make it smaller until convergence
 - Problematic in high-throughput context
- \Rightarrow Goal: Choose damping α automatically

This work: Automatise damping selection

- ullet DFT-like problems: $\min_{
 ho} \mathcal{E}(
 ho)$
- Duality of density and potential:

$$\begin{split} V(\rho) &= \nabla_{\!\!\rho} \, E_{\mathsf{Hxc}}(\rho) \\ \rho(V) &= \mathrm{diag} \left[f_{\mathsf{FD}}(H_0 + V) \right] \end{split}$$

with Fermi-Dirac $f_{\rm FD}$, core Hamiltonian H_0 , Hartree-XC energy $E_{\rm Hxc}(\rho)$

Potential-mixing SCF procedure:

$$V_{n+1} = V_n + \alpha \delta V_n$$

$$\delta V_n = \mathsf{Anderson} \Big(P^{-1} \left[V(\rho(V_n)) - V_n \right] \Big)$$

with mixing/preconditioner P, Anderson/DIIS acceleration

- State of the art: Trial and error
 - ullet Guess an lpha and make it smaller until convergence
 - Problematic in high-throughput context
- \Rightarrow Goal: Choose damping α automatically

Guessing α can be hard (1)

- PBE functional / Anderson acceleration
- Non-linearities
- Anderson stagnation
- Unsuitable mixing

Guessing α can be hard (2)

System	Mixing	damping α									
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
Al ₄₀ supercell	None	38	40	40	39	44	50	49	×	76	×
Al ₄₀ surface	None	46	48	50	49	51	60	61	66	89	×
Ga ₂₀ As ₂₀ supercell	None	26	33	40	42	45	44	70	70	65	76
CoFeMnGa	Kerker	×	×	×	×	28	21	24	28	22	22
Fe_2CrGa	Kerker	×	×	×	27	×	×	19	25	×	22
Fe ₂ MnAl	Kerker	×	48	×	×	×	20	21	17	16	15
FeNiF ₆	Kerker	×	×	×	×	×	×	×	23	22	21
Mn_2RuGa	Kerker	×	×	×	×	37	24	23	22	23	23
Mn ₃ Si	Kerker	×	\times	\times	\times	26	30	22	20	×	×

- \bullet Number of iterations until energy converged to 10^{-10}
 - ullet " \times " is no convergence in 100 iterations
- \bullet Note: We focus on the 10% difficult cases
 - Metal supercells or surfaces without suitable mixing
 - Transition-metal compounds
 - Anderson issues due to non-linearities
- \Rightarrow Selecting suitable α can be challenging

Adaptive damping¹: Key ideas

ullet Dual minimisation problem in V for DFT:

$$\min_{V} \mathcal{I}(V) = \min_{V} \mathcal{E}(\rho(V))$$

- Potential-mixing:
 - $V_n o \mathsf{Find}$ search direction δV_n
 - $V_{n+1} = V_n + \alpha \delta V_n$
- **Theorem** in discrete setting: Convergence if α small enough¹
 - Caveat: Proof does not cover Anderson-type acceleration
- \Rightarrow Construct cheap model for $\mathcal{I}(V_n + \alpha \delta V_n)$
- \Rightarrow Use backtracking line search to fix α
 - ullet Start from trial damping $ilde{lpha}$
 - Accept good steps (energy or SCF residual decreases)
 - ullet Otherwise: Shrink lpha and try again

¹M. F. Herbst, A. Levitt. A robust and efficient line search for self-consistent field iterations arXiv 2109.14018.

Adaptive damping¹: Key ideas

ullet Dual minimisation problem in V for DFT:

$$\min_{V} \mathcal{I}(V) = \min_{V} \mathcal{E}(\rho(V))$$

- Potential-mixing:
 - $V_n \to \mathsf{Find}$ search direction δV_n
 - $V_{n+1} = V_n + \alpha \delta V_n$
- **Theorem** in discrete setting: Convergence if α small enough¹
 - Caveat: Proof does not cover Anderson-type acceleration
- \Rightarrow Construct cheap model for $\mathcal{I}(V_n + \alpha \delta V_n)$
- \Rightarrow Use backtracking line search to fix α
 - ullet Start from trial damping $ilde{lpha}$
 - Accept good steps (energy or SCF residual decreases)
 - ullet Otherwise: Shrink lpha and try again

¹M. F. Herbst, A. Levitt. A robust and efficient line search for self-consistent field iterations arXiv 2109.14018.

Constructing the model (1)

• Use Taylor ...

$$\mathcal{I}(V_n + \alpha \delta V_n) = \mathcal{I}(V_n) + \alpha \left\langle \nabla \mathcal{I}_{|V=V_n|} \middle| \delta V_n \right\rangle + \frac{\alpha^2}{2} \left\langle \delta V_n \middle| \nabla^2 \mathcal{I}_{|V=V_n|} \delta V_n \right\rangle + O(\alpha^3 \|\delta V_n\|^3)$$

...and some algebra:

$$\nabla \mathcal{I}_{|V=V_n} = \chi_0(V_n) \Big[V(\rho(V_n)) - V_n \Big]$$

$$\nabla^2 \mathcal{I}_{|V=V_n} = \chi_0(V_n) \Big[K(\rho(V_n)) \chi_0(V_n) - 1 \Big]$$

$$+ \chi_0'(V_n) \Big[V(\rho(V_n)) - V_n \Big]$$

where

- Hartree-XC kernel $K(\rho) = \nabla_{\!\!\rho}^2 \, E_{\mathsf{Hxc}}(\rho)$
- Independent-particle susceptibility $\chi_0(V) = \rho'(V)$

Constructing the model (1)

• Use Taylor . . .

$$\mathcal{I}(V_n + \alpha \delta V_n) = \mathcal{I}(V_n) + \alpha \left\langle \nabla \mathcal{I}_{|V=V_n|} \middle| \delta V_n \right\rangle + \frac{\alpha^2}{2} \left\langle \delta V_n \middle| \nabla^2 \mathcal{I}_{|V=V_n|} \delta V_n \right\rangle + O(\alpha^3 \|\delta V_n\|^3)$$

...and some algebra:

$$\begin{split} \nabla \mathcal{I}_{|V=V_n} &= \chi_0(V_n) \Big[V(\rho(V_n)) - V_n \Big] \\ \nabla^2 \mathcal{I}_{|V=V_n} &= \chi_0(V_n) \Big[K(\rho(V_n)) \, \chi_0(V_n) - 1 \Big] \\ &+ \chi_0'(V_n) \, \underbrace{\Big[V(\rho(V_n)) - V_n \Big]}_{\simeq 0 \text{ near convergence}} \end{split}$$

where

- Hartree-XC kernel $K(\rho) = \nabla_{\!\!\rho}^2 \, E_{\mathsf{Hxc}}(\rho)$
- Independent-particle susceptibility $\chi_0(V) = \rho'(V)$

Constructing the model (1)

• Use Taylor . . .

$$\mathcal{I}(V_n + \alpha \delta V_n) = \mathcal{I}(V_n) + \alpha \left\langle \nabla \mathcal{I}_{|V=V_n} \middle| \delta V_n \right\rangle$$
$$+ \frac{\alpha^2}{2} \left\langle \delta V_n \middle| \nabla^2 \mathcal{I}_{|V=V_n} \delta V_n \right\rangle + O(\alpha^3 \|\delta V_n\|^3)$$

...and some algebra:

$$\nabla \mathcal{I}_{|V=V_n} = \chi_0(V_n) \Big[V(\rho(V_n)) - V_n \Big]$$

$$\nabla^2 \mathcal{I}_{|V=V_n} \simeq \chi_0(V_n) \Big[K(\rho(V_n)) \chi_0(V_n) - 1 \Big]$$

where

- Hartree-XC kernel $K(\rho) = \nabla_{\!\!\rho}^2 \, E_{\mathsf{Hxc}}(\rho)$
- Independent-particle susceptibility $\chi_0(V) = \rho'(V)$

Constructing the model (2)

• Using the self-adjointness of χ_0 this yields:

$$\varphi_n(\alpha) = \mathcal{I}(V_n) + \frac{\alpha}{\alpha} \langle V(\rho(V_n)) - V_n | \chi_0(V_n) \delta V_n \rangle$$
$$+ \frac{\alpha^2}{2} \Big[\langle \chi_0(V_n) \delta V_n | K(\rho(V_n)) \chi_0(V_n) \delta V_n \rangle$$
$$- \langle \delta V_n | \chi_0(V_n) \delta V_n \rangle \Big]$$

- Problem: Applying χ_0 at each SCF step is too expensive!
- Additional approximation:

$$\alpha \chi_0(V_n)\delta V_n = \rho(V_n + \alpha \delta V_n) - \rho(V_n) + O(\alpha^2 \|\delta V_n\|^2)$$

- Now: Expensive step is $\rho(V)$ (involves diagonalisation)
 - $\rho(V_n)$ known (needed to construct δV_n)
 - $\rho(V_n + \alpha \delta V_n) = \rho(V_{n+1})$ (if accepted) \Rightarrow diagonalisation reuse
 - → More efficient than standard line search strategies (e.g. Armijo)

Constructing the model (2)

• Using the self-adjointness of χ_0 this yields:

$$\varphi_n(\boldsymbol{\alpha}) = \mathcal{I}(V_n) + \boldsymbol{\alpha} \left\langle V(\rho(V_n)) - V_n | \chi_0(V_n) \delta V_n \right\rangle$$

$$+ \frac{\boldsymbol{\alpha}^2}{2} \left[\left\langle \chi_0(V_n) \delta V_n | K(\rho(V_n)) \chi_0(V_n) \delta V_n \right\rangle$$

$$- \left\langle \delta V_n | \chi_0(V_n) \delta V_n \right\rangle \right]$$

- Problem: Applying χ_0 at each SCF step is too expensive!
- Additional approximation:

$$\alpha \chi_0(V_n)\delta V_n = \rho(V_n + \alpha \delta V_n) - \rho(V_n) + O(\alpha^2 \|\delta V_n\|^2)$$

- Now: Expensive step is $\rho(V)$ (involves diagonalisation)
 - $\rho(V_n)$ known (needed to construct δV_n)
 - $\rho(V_n + \alpha \delta V_n) = \rho(V_{n+1})$ (if accepted) \Rightarrow diagonalisation reuse
 - ⇒ More efficient than standard line search strategies (e.g. Armijo)

Adaptive damping algorithm

```
Input: Current iterate V_n, search direction \delta V_n, trial damping \tilde{\alpha}
Output: Damping \alpha_n, next iterate V_{n+1}
 1: Initialise \alpha_n \leftarrow \tilde{\alpha}
 2: loop
 3:
          Make tentative step V_{n+1} = V_n + \alpha_n \delta V_n
          Compute \rho(V_{n+1}), \mathcal{I}(V_{n+1}) (the expensive step)
 4:
          if accept V_{n+1} (details follow) then
 5:
               break
 6:
          else
 7:
               Build the coefficients of the model \varphi_n
 8:
               if model \varphi_n is good (details follow) then
 9:
                    \alpha_n \leftarrow \arg\min_{\alpha} \varphi_n(\alpha)
10:
                    Scale \alpha_n to ensure |\alpha_n| is strictly decreasing
11:
               else
12:
                    \alpha_n \leftarrow \frac{\alpha_n}{2}
13:
14:
               end if
          end if
15:
16: end loop
```

12/22

Notes and details

• Step acceptance: Energy or residual decrease

$$\mathcal{I}(V_{n+1}) < \mathcal{I}(V_n) \quad \text{or} \quad V(\rho(V_{n+1})) - V_{n+1} < V(\rho(V_n)) - V_n$$

ullet φ_n is approximate \Rightarrow Only use if prediction error

$$\frac{|\mathcal{I}(V_n + \alpha_n \delta V_n) - \varphi_n(\alpha_n)|}{|\mathcal{I}(V_n + \alpha_n \delta V_n) - \mathcal{I}(V_n)|} \quad \text{is small}$$

- Adaptive damping costs:
 - Only one diagonalisation per line search iteration
 - ullet Good trial damping $ilde{lpha}$ is crucial
- \Rightarrow Dynamical trial damping $\tilde{\alpha}$ adjustment:
 - Generally reuse damping from previous SCF step (shrinks α_n)
 - If immediately successful $(\alpha_n = \tilde{\alpha})$, use φ_n to grow $\tilde{\alpha}$
 - Ensure $\alpha_n \geq \tilde{\alpha}_{\min} = 0.2$ (otherwise stagnation)

Damping parameter adaptation

Aluminium slab and surface (simple systems)

GaAs slab (non-linear system)

Fe₂CrGa and Mn₃Si (Heusler systems)

Results overview

System	Precond.	fixed damping $lpha$									adaptive	
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0	damping
Al ₈ slab	Kerker [†]	×	58	37	27	21	16	13	11	12	18	17
Al ₈ slab	$None^\dagger$	×	52	×	×	×	×	×	×	×	×	24
Al ₄₀ slab	Kerker	19	15	14	12	11	12	12	12	12	12	12
Al ₄₀ slab	None	38	40	40	39	44	50	49	×	76	×	44
Al ₄₀ surface	None	46	48	50	49	51	60	61	66	89	×	49
Ga ₂₀ As ₂₀ slab	None	26	33	40	42	45	44	70	70	65	76	26
CoFeMnGa	Kerker	×	×	×	×	28	21	24	28	22	22	30
$Fe_{2}CrGa$	Kerker	×	\times	×	27	\times	\times	19	25	\times	22	39
Fe ₂ MnAl	Kerker	×	48	×	\times	\times	20	21	17	16	15	34
FeNiF ₆	Kerker	×	×	×	×	×	×	×	23	22	21	24
Mn ₂ RuGa	Kerker	×	×	×	×	37	24	23	22	23	23	36
Mn ₃ Si	Kerker	×	×	×	×	26	30	22	20	×	×	×

Number of diagonalisations

- Aluminium systems:
 - No user-chosen parameter, overhead for "easy" cases small
 - Adaptive damping less susceptible to non-matching preconditioner
- Gallium arsenide:
 - Interference of strong non-linearity with Anderson reduced
- Heusler systems:
 - ullet Manually selecting lpha very challenging \Rightarrow Overhead of adaptive reasonable
 - Albeit mismatching design principle, stability improvements

Conclusion

- Manual damping selection features trial and error
- Alternatives for plane-wave discretisations not straightforward
 - E.g. standard line searches / ODA / EDIIS
- Adaptive damping improves stability at no/little extra cost
 - No user intervention needed
 - Combinable with existing effective SCF techniques
 - Small overhead for "easy cases" (safeguard mechanism)
 - Related to schemes with proved convergence guarantees
 - Ready-to-use implementation in **FDFTK**
- Limitations of Anderson acceleration poorly understood:
 - Manual damping selection challenging
 - Adaptive damping improves stability
 - Further research ongoing

Opportunities to learn more . . .

- "Error control in first-principles modelling"
 - 20–24 June 2022 (hybrid & CECAM-HQ, Lausanne)
 - ⇒ https://www.cecam.org/workshop-details/1115
- **DFTK school 2022 (with E. Cancès, A. Levitt):

 "Numerical methods for DFT simulations"
 - 29–31 August 2022 at Sorbonne Université, Paris
 - Centred around TFTK and its multidisciplinary philosophy
 - Grounds-up introduction of electronic structure theory, mathematical background, numerical methods, implementation
 - Applications in method development & simulations
 - ⇒ https://school2022.dftk.org

Acknowledgements

https://michael-herbst.com/talks/2022.01.13_gdrnbody_linesearch.pdf

CERMICS

Antoine Levitt

Eric Cancès

EPFL

Marnik Bercx Nicola Marzari **RWTH**

Benjamin Stamm

all DFTK contributors

Summer of code

Questions?

https://michael-herbst.com/talks/2022.01.13_gdrnbody_linesearch.pdf

Preprint arXiv 2109.14018

DFTK https://dftk.org
 https://school2022.dftk.org

cecam https://www.cecam.org/workshop-details/1115

julia https://michael-herbst.com/learn-julia

- mfherbst
- https://michael-herbst.com/blog
- herbst@acom.rwth-aachen.de

