How to improve PLT

- Reduce content size for transfer
 - Smaller images, compression
- Change HTTP to make better use of available bandwidth
 - Persistent connections and pipelining
- Change HTTP to avoid repeated transfers of the same content
 - Caching and web-proxies
- Move content closer to the client
 - CDNs

Content Distribution Networks

- With the popularity of Web, traffic volumes grew tremendously
 - Increased load on popular web servers
 - Need for increased network bandwidth
 - Increase in PLT and poor user experience
- Browser and Proxy Caches help
 - Single client or clients in one organisation
- Place popular content near clients
 - Replicas
 - How is that possible?

CDNs

> Sending content from the origin server to 4 users takes $4 \times 3 = 12$ "network Hops"

Sending content via replicas takes only 4+2=6 "network hops"

Popularity of Content

- Zipf's Law: few popular items and many unpopular ones
 - Relative frequency of words
 - Very common phenomenon in real world

Nuts and Bolts View

- Where to place replicas?
- How will a client find a "nearby" replica?
- How to keep replicas transparent to the client?
- CDNs rely on clever use of DNS

Nuts and Bolts View

Nuts and Bolts View

- DNS resolution of the site gives different answers to different clients
- > Guides it towards the nearest CDN Node
- Depends on the client IP (or local NS), Reverse DNS?

Business model for CDNs

- > CDN helpful for large e-commerce sites, video streaming and social networks
- > A CDN operator gets paid by content providers (media companies, e-commerce vendors)
- > In turn CDN pays ISPs, carriers for hosting its servers in their data centres
- > ISPs gets paid and also saves on their SLAs by reducing traffic across the core
- > Win-win situation

CDNs

- > Better performance and availability of content
- Offload content from content provider origin infrastructure
- Reduces impact of DoS attacks due to large distributed server infrastructure

Future of HTTP

- Better use of the network
 - Google SPDY (speedy), HTTP/2.0
- Better content structure
 - mod_pagespeed server extension

Future of HTTP

Future of HTTP

Google SPDY

- > A set of HTTP improvements
 - Supports multiplexed (parallel) HTTP requests on one TCP connection
 - Client priorities for parallel requests
 - Compressed HTTP headers
 - Server push of resources
- > Basis for HTTP/2 effort
 - Default in later versions of Chrome and Firefox

mod_pagespeed

- The way pages are written and the contents are organised affects how quickly they load
 - Depends on the programmer
 - Can we automate this?
- Have the server re-write pages to help them load quickly
- Generate optimized pages on the fly
 - optimize javascript
 - Flatten multi-level CSS files
 - Resize images depending on the client
 - 100s of specific rules