Descriptive Statistics

Elements of Probability

Random Variables and Expectation

Random Variables

Définition. Quantities determined by the result of an experiment. They have probabilityy distributions.

Types of Random Variables

Discrete

Définition. For a discrete random variable X, its probability mass function is

$$p(a) = P\{X = a\}$$

Additionally,

$$p(x) \geq 0$$

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

Définition. The cumulative distribution function F is

$$F(a) = \sum_{x \leq a} p(x)$$

Continuous

Définition. For a continuous random variable X, its probability density function is

$$f: \mathbb{R} \to [0, \infty]$$
$$f(x) = P\{X = x\}$$

Additionally,

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Définition. The cumulative distribution function F is

$$F(x) = P\{X \le x\} = \int_{-\infty}^{\infty} f(x)dx$$

Jointly Distributed Random Variables

Let X, Y be random variables. The joint CDF of X and Y is

$$F(x,y) = P(X \le x, Y \le y), x, y \in \mathbb{R}$$

Note: X and Y can be both discrete or continuous. If X, Y are both discrete, then the joint pmf is

$$p(x,y) = P(X=x,Y=y)$$

If X, Y are both continuous, then the joint pmf is

$$\begin{split} f(x,y) &: \mathbb{R}^2 \to [0,\infty] \\ f(x,y) &\geq 0 \forall x,y \\ \int \int f(x,y) dx dy &= 1 \end{split}$$

We call the (cdf, pmf, pdf) of X and Y the marginal (cdf, pmf, pdf).

Independent R.V.s

Independence

Two random variables X,Y are said to be independent if

$$P(X \leq x, Y \leq y) = P(X = x) \times P(Y = y) \forall x, y$$

If X and Y are discrete, X and Y are independent if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

If X and Y are continuous, X and Y are independent if

$$f(x,y) = f_X(x) f_Y(y) \label{eq:final_final}$$

Expectation

Expectation = E[X] = where does X take values? (location parameter)

X is discrete

$$E[X] = \sum_{\text{t possible values}} tP(X = t)$$

X is continuous

$$E[X] = \int_{-\infty}^{\infty} t f(t) dt$$

Properties of the Expected Value

Expected Value of Sums of Random Variables

Variance

Variance = Var(X) = how scattered are the values? (scale parameter)

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$

Covariance and Variance of Sums of R.V.s

Moment Generating Functions