Contents

1	Fun	ctions																						2
	1.1	factor.mpqs – MPQS															2							
		1.1.1	mpc	gsfir	ad																			2
		1.1.2	mpc	$_{ m IS}$																				2
		113	erat	ostl	hen	es																		6

Chapter 1

Functions

1.1 factor.mpqs – MPQS

1.1.1 mpqsfind

```
\begin{array}{l} \mathbf{mpqsfind(n:}\ integer,\ \mathbf{s:}\ integer=0,\ \mathbf{f:}\ integer=0,\ \mathbf{m:}\ integer=0,\ \mathbf{verbose:}\\ bool=\mathbf{False}\ )\\ &\rightarrow\ integer \end{array}
```

Find a factor of n by MPQS(multiple-polynomial quadratic sieve) method.

MPQS is suitable for factorizing a large number.

Optional arguments s is the range of sieve, f is the number of factor base, and m is multiplier. If these are not specified, the function guesses them from n.

1.1.2 mpgs

```
\begin{array}{l} \mathsf{mpqs}(\mathtt{n:}\; integer, \, \mathtt{s:}\; integer{=}0, \, \mathtt{f:}\; integer{=}0, \, \mathtt{m:}\; integer{=}0 \,\,) \\ \to \, \frac{\mathsf{factorlist}}{\mathsf{formal optimizer}} \end{array}
```

Factorize n by MPQS method.

Optional arguments are same as **mpqsfind**.

1.1.3 eratosthenes

```
eratosthenes(n: integer) \rightarrow list
```

Enumerate the primes up to n.

Bibliography