search

Dial g DataStar	
options logoff feedback help	* * *
Advanced Search: INSPEC - 1969 to date (INZZ)	

Search history:

No.	Database	Search term	Info added since	Results	
1	INZZ	Blatt-m\$	unrestricted	18	show titles
2	INZZ	greenhill-d\$	unrestricted	20	show titles
3	INZZ	Gauthier-c\$	unrestricted	99	show titles
4	INZZ	3 AND sinulation	unrestricted	0	-
5	INZZ	Aingaran-k\$	unrestricted	6	show titles

hide | delete all search steps... | delete individual search steps...

Enter your search term(s): <u>Search tips</u>

	whole document
Information added since: or: none (YYYYMMDD)	
Select special search terms from the following list(s)	,.
Classification codes A: Physics, 0-1	•
Classification codes A: Physics, 2-3	
Classification codes A: Physics, 4-5	
Classification codes A: Physics, 6	
Classification codes A: Physics, 7	
Classification codes A: Physics, 8	
Classification codes A: Physics, 9	
Classification codes B: Electrical & Electronics, 0	-5
Classification codes B: Electrical & Electronics, 6	-9
Classification codes C: Computer & Control	
Classification codes D: Information Technology	
Classification codes E: Manufacturing & Production	on
Treatment codes	

Google

Web Images Groups News Frongle Local New: more »

power simulation "David Greenhill" Search

Web

Results 1 - 10 of about 47 for power simulation "David Greenhill". (0.33 seconds)

<u>Preferences</u>

ISD Archived Magazine Issues and Articles

... Reduce Verification & Simulation Cycles with New Structured ASICs ... Robert Garner, Hemraj Hingarh, Dennis Chen, David Greenhill, and Peter Fu ... eedesign.com/editorial/june96.html - 44k - Cached - Similar pages

ISD Archived Magazine Issues and Articles

- ... confidence and then integrate them into the full-chip simulation environment.
- ... David Greenhill is a circuit design manager at Sun Microelectronics. ...

eedesign.com/editorial/1996/coverstory9606.html - 61k - Feb 14, 2005 - Cached - Similar pages

EDA ALERT 12 16 2002

... Viewpoint - The Future Of Electronic Design Is Low Power ... Alan Mantooth, University of Arkansas; and David Greenhill, Sun. Microsystems. ... www.imlzone.com/edaalert12162002.htm - 21k - Cached - Similar pages

грет www.sscs.org/AdCom/minutes/8-02attch/Aug02-5BISSC.ppt

File Format: Microsoft Powerpoint 97 - View as HTML

- ... "Fast and Accurate Behavioral Simulation of Fractional-N Frequency Synthesizers
- ... Design in the Power Constrained Era" (organizer: David Greenhill and ...

Similar pages

[PDF] IEEE Solid-State Circuits Society

File Format: PDF/Adobe Acrobat - View as HTML

... ISSCC Microprocessor Workshop: "Microprocessor Design in the Power Constrained

Era". (organizer: David Greenhill and digital Sub-committee) ... www.sscs.org/AdCom/minutes/minaug 02.pdf - Similar pages

[PS] Published in the Proceedings of the 30 th Annual International ...

File Format: Adobe PostScript - View as Text

- ... As an initial step to verify that our simulation environment was functioning
- ... [10] David Greenhill et al. A 330MHz 4-Way Superscalar Microprocessor. ...

www.eecg.toronto.edu/~corinna/ publications/lee.micro97.ps - Similar pages

EE Times -Process, materials eyed in test of Moore's Law

- ... David Greenhill chief engineer on the Ultrasparc IV at Sun Microsystems Inc.,
- ... one can actually use them efficiently in a whole circuit simulation. ...

www.eet.com/conf/isscc/showArticle. jhtml?articleId=18306916&kc=3681 - 94k - Cached - Similar pages

[PDF] Initial Results on the P erformance and Cost of Vector Microprocessors

File Format: PDF/Adobe Acrobat

... Figure 1: Simulation Parameters for Superscalar and Vector Processors ...

power, a desirable feature for high-performance micro- ...

doi.leee.computersociety.org/10.1109/MICRO.1997.645808 - Similar pages

[PDF] TT ABLE OF CONTENTS ABLE OF CONTENTS

File Format: PDF/Adobe Acrobat - View as HTML

... New benchmarks are set for combinations of dynamic performance and power efficiency [3.4] ... Chair: David Greenhill, Sun Microsystems, Sunnyvale, CA ...

www.isscc.org/isscc/2003/ press/press/2003PressKitFINAL.pdf - Similar pages

[PDF] NEW! NEW!

File Format: PDF/Adobe Acrobat - View as HTML

... Moderator: David Greenhill, Sun Microsystems, Palo Alto, CA ... capability and

an internal power consumption of 1µW to 2µW per driver ...

www.isscc.org/isscc/2001/ap/ap/AP_forWeb_Nov16.pdf - Similar pages

Gooogle >

Result Page:

Free! Google Desktop Search: Search your own computer.

power simulation "David Greenhil Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2005 Google

 Web
 Images
 Groups
 News
 Froogle
 Local New:
 more »

 Sun Microsystems
 "David Greenhill"
 Search
 Advanced Search Preferences

Web

Results 21 - 23 of about 28 for Sun Microsystems "David Greenhill". (0.51 seconds)

[PDF] VLSI Power Delivery For Core, I/O, and Analog Supplies Major ...

File Format: PDF/Adobe Acrobat - View as HTML

Claude R. Gauthier, Ph.D., Brian W. Amick Sun Microsystems Inc., Major Electrical

Interfaces ■ Core Power Delivery ■ Physical and electrical view ...

www.stanford.edu/class/ee371/lectures/lect_13_2up.pdf - Supplemental Result - Similar pages

EE Times -Process, materials eyed in test of Moore's Law

EE Times brought together three leading engineering lights, David Greenhill chief engineer on the Ultrasparc IV at Sun Microsystems Inc., Jeffrey Welser ...

www.eetonline.com/conf/isscc/OEG20020204S0025 - 93k - Supplemental Result - Cached - Similar pages

EE Times Headline Reports

... 02/04/02) EE Times brought together three leading engineering lights, David Greenhill chief engineer on the Ultrasparc IV at Sun Microsystems Inc., Jeffrey ... eet.com/hr/02-09-02 - 101k - Supplemental Result - Cached - Similar pages

In order to show you the most relevant results, we have omitted some entries very similar to the 23 already displayed.

If you like, you can repeat the search with the omitted results included.

∢ Gooogle

Result Page: Previous 1 2 3

Sun Microsystems "David Green! Search

Search within results | Language Tools | Search Tips

Google Home - Advertising Programs - Business Solutions - About Google

©2005 Google

Google

 Web
 Images
 Groups
 News
 Froogle
 Local New:
 more »

 dynamic power simulation
 "Kathirgamar Ai
 Search
 Advanced Search Preferences

Web Results 1 - 10 of about 49 for dynamic power simulation "Kathirgamar Aingaran". (0.37 seconds)

IC power distribution challenges

- ... 26 SMKang, "Accurate Simulation of Power in VLSI circuits," IEEE Journal of
- ... "Architectural Level Power/Performance Optimization and Dynamic Power ...

portal.acm.org/citation.cfm?id=603227 - Similar pages

[PDF] IC Power Distribution Challenges

File Format: PDF/Adobe Acrobat - View as HTML

... [26] SMKang, "Accurate Simulation of Power in VLSI circuits," IEEE ...

mization and Dynamic Power Estimation," Cool Chips Tutorial, ...

mos.stanford.edu/~dliu/paper/locad_01.pdf - Similar pages

ICCAD 2001 Table of Contents

... 1D.3 Power Grid Transient Simulation in Linear Time Based on ... 8C.3 Power-Delay

Modeling of Dynamic CMOS Gates for Circuit Optimization [p. ...

www.sigda.org/.../lccad/lccad2001/papers/ 2001/iccad01/htmfiles/sun_sgi/frames/iccadtoc.htm - 44k -

Cached - Similar pages

[PDF] A New Family Of Semidynamic And Dynamic Flip-flops With Embedded ...

File Format: PDF/Adobe Acrobat - View as HTML

... Fabian Klass, Chaim Amir, Ashutosh Das, Kathirgamar Aingaran, ... flip-flops

belong to a class of semidynamic and dynamic circuits ...

www.ece.ncsu.edu/asic/ece733/lect/Klass99.pdf - Similar pages

ICCAD 2001

... Power Grid Transient Simulation in Linear Time Based on ... Power-Delay Modeling

of Dynamic CMOS Gates for Circuit Optimization. 494- ...

www.informatik.uni-trier.de/ ~ley/db/cont/iccad/iccad2001.html - 64k - <u>Cached - Similar pages</u>

International Symposium on Quality Electronic Design 2000

... Carrier Gate Level Circuit Characterization and Simulation System for VLSI

Design. ... Dynamic Timing Analysis Considering Power Supply Noise Effects. ...

www.informatik.uni-trier.de/ ~ley/db/conf/isged/isged2000.html - 44k - Cached - Similar pages

iccad, 2001 International Conference on Computer-Aided Design ...

... 75 Power Grid Transient Simulation in Linear Time Based on ... 494 Power-delay

Modeling of Dynamic CMOS Gates for Circuit Optimization ...

csdl.computer.org/comp/proceedings/ iccad/2001/2220/00/2220toc.htm - 270k - Cached - Similar pages

isged, First International Symposium on Quality of Electronic Design

... 137 Dynamic Timing Analysis Considering Power Supply Noise Effects ...

Kathirgamar Aingaran, Fabian Klass, Chin-Man Kim, Chaim Amir, Joydeep Mitra, ...

csdl.computer.org/comp/proceedings/ isqed/2000/0525/00/0525toc.htm + 233k +

Cached - Similar pages

International Symposium on Quality Electronic Design

... Quantifying Error in Dynamic Power Estimation of CMOS Circuits ... and Quality of Simulation-Based Behavioral Model Verification Using Dynamic Bayesian ...

wotan.liu.edu/docis/dbl/isqedi/ - 139k - Cached - Similar pages

[PDF] Coupling Noise Analysis for VLSI and ULSI Circuits
File Formst: PDF/Adobe Acrobat
... immunity to power supply and substrate noise even with the ... Kathirgamar Aingaran, Fabian Klass, Chin-Man Kim, Chaim Amir, Joydeep Mitra ...
doi.ieeecomputersociety.org/10.1109/ISQED.2000.838930 - Similar pages

Google >
Result Page: 1 2 Next

Free! Get the Google Toolbar. Download Now - About Toolbar

dynamic power simulation "Kathi Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2005 Google

	Type	L#	Hits	Search Text	DBs
1	BRS	L2	32411	IDANNAT ANA ICIMILIATIAN AT MAAALI ANA	US- PGPUB; USPAT
2	BRS	L3	1184	power and (simulation or model) and	US- PGPUB; USPAT
3	BRS	L4	148		US- PGPUB; USPAT
4	BRS	L5	1043	(microprocessor same derivative)	US- PGPUB; USPAT
5	BRS	L6	257	(microprocessor same derivative) and (microprocessor same cycle)	US- PGPUB; USPAT
6	BRS	L7	139	(microprocessor same derivative) and (microprocessor same cycle) and (power same cycle)	US- PGPUB; USPAT
7	BRS	L8	69	(microprocessor same derivative) and (microprocessor same cycle) and (power same cycle) and peak	US- PGPUB; USPAT
8	BRS	L9	31	(microprocessor same derivative) and (microprocessor same cycle) and (power same cycle) and (peak same power)	US- PGPUB; USPAT
9	BRS	L10	39	(microprocessor same derivative) and (microprocessor same cycle) and (peak same cycle)	US- PGPUB; USPAT
10	BRS	L11	5	(microprocessor same derivative) and (microprocessor same cycle) and (peak same cycle) and (peak same cycle) and simulation	US- PGPUB; USPAT
11	BRS	L12	1519	(microprocessor same simulation)	US- PGPUB; USPAT
12	BRS	L13	174	(microprocessor same simulation) and (power same model)	US- PGPUB; USPAT

	Туре	L#	Hits	Search Text	DBs
13	BRS	L14	3	and (power same model) and	US- PGPUB; USPAT
14	BRS	L15	17	and (power same model) and	US- PGPUB; USPAT
15	BRS	L16	73	(microprocessor same simulation)	US- PGPUB; USPAT
16	BRS	L17	18	and (derivative and cycle) and	US- PGPUB; USPAT
17	BRS	L18	2	(microprocessor same simulation).ti.	US- PGPUB; USPAT
18	BRS	L19	34	(power same simulation).ti.	US- PGPUB; USPAT
19	BRS	L20	222331	(power same data)	US- PGPUB; USPAT
20	BRS	L21	1838	(power same data) and (power same modeling)	US- PGPUB; USPAT
21	BRS	L22	937	(power same data) and (power same modeling) and cycle	US- PGPUB; USPAT
22	BRS	L23	262	(power same data) and (power same modeling) and cycles and derivatives	US- PGPUB; USPAT
23	BRS	L24	6	(power same data) and (power adj modeling) and cycles and derivatives	US- PGPUB; USPAT
24	BRS	L25	9358	(microprocessor near data)	US- PGPUB; USPAT
25	BRS	L26	0	(microprocessor near data) and (power adj modeling)	US- PGPUB; USPAT

	Time Stamp	Comments	Error Definition
13	2005/02/16 15:13		
14	2005/02/16 15:16		
15	2005/02/16 15:17		
16	2005/02/16 15:17		
17	2005/02/16 15:17		
18	2005/02/16 15:19		
19	2005/02/16 15:19		
20	2005/02/16 15:20		
21	2005/02/16 15:21		
22	2005/02/16 15:21		
23	2005/02/16 15:22		
24	2005/02/16 15:23		
25	2005/02/16 15:23		

	Туре	L#	Hits	Search Text	DBs
26	BRS	L27	4	(microprocessor same (power adj modeling))	US- PGPUB; USPAT
27	BRS	L28	2	(microprocessor same (power adj modeling)) and peak	US- PGPUB; USPAT
28	BRS	L29	1043	(microprocessor same derivatives)	US- PGPUB; USPAT
29	BRS	L30	257	(microprocessor same derivatives) and (microprocessor same cycles)	US- PGPUB; USPAT
30	BRS	L31	162	(microprocessor same derivatives) and (microprocessor same cycles) and (microprocessor same power)	US- PGPUB; USPAT
31	BRS	L32	1	(microprocessor same derivatives) and (microprocessor same cycles) and (microprocessor same power) and "703"/\$.ccls.	US- PGPUB; USPAT
32	BRS	L33	6	(microprocessor same derivatives) and "703"/\$.ccls.	US- PGPUB; USPAT
33	BRS	L34	32	(cycle same derivatives) and "703"/\$.ccls.	US- PGPUB; USPAT
34	BRS	L35	30864	(IC same power)	US- PGPUB; USPAT
35	BRS	L36	2226	(IC same power) and (power same distribution)	US- PGPUB; USPAT
36	BRS	L37	210	(IC same power) and (power same distribution) and derivatives	US- PGPUB; USPAT
37	BRS	L38	112	(IC same power) and (power same distribution) and derivatives and (power same model)	US- PGPUB; USPAT
38	BRS	L39	1	"6125334".pn.	US- PGPUB; USPAT