Velleman

Malcolm

Started 6th September 2025

Contents

1	Logic	
	1.0.1	Logic Factsheet
	1.0.2	Set operation definitions
	1.0.3	Distributivity of set operations
	1.0.4	$x \in A \setminus (B \cap C) = x \in (A \setminus B) \cup (A \setminus C) \dots \dots$
	1.0.5	$x \in (A \cup B) \setminus (A \cap B) = x \in (A \setminus B) \cup (B \setminus A) \dots$
	1.0.6	$(A \cap B) \cap (A \setminus B) = \emptyset \dots \dots \dots \dots$
	1.0.7	Conditional and Contrapositive laws
	1.0.8	Biconditional statements
	1.1 Quan	tifier Negation Laws

Chapter 1

Logic

1.0.1 Logic Factsheet

De Morgan's laws

$$\neg (P \land Q)$$
 is equivalent to $\neg P \lor \neg Q$
 $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$

Commutative laws

$$P \wedge Q$$
 is equivalent to $Q \wedge P$
 $P \vee Q$ is equivalent to $Q \vee P$

Associative laws

$$P \wedge (Q \wedge R)$$
 is equivalent to $(P \wedge Q) \wedge R$
 $P \vee (Q \vee R)$ is equivalent to $(P \vee Q) \vee R$

Indempotent laws

$$P \wedge P$$
 is equivalent to P
 $P \vee P$ is equivalent to P

Distributive laws

$$P \wedge (Q \vee R)$$
 is equivalent to $(P \wedge Q) \vee (P \wedge R)$
 $P \vee (Q \wedge R)$ is equivalent to $(P \vee Q) \wedge (P \vee R)$

Absorption laws

$$P \lor (P \land Q)$$
 is equivalent to P
 $P \land (P \lor Q)$ is equivalent to P

Double Negation law

 $\neg \neg P$ is equivalent to P

1.0.2 Set operation definitions

The *intersection* of two sets A and B is the set $A \cap B$ defined as follows:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

The *union* of A and B is the set $A \cup B$ defined as follows:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

The difference of A and B is the set $A \setminus B$ defined as follows:

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$$

See that

$$x \in A \cap B = x \in \{y \mid y \in A \text{ and } y \in B\}$$

where y is a dummy variable. So we can also write that

$$x \in A \cap B = x \in A \land x \in B$$

The same can be shown for the union and difference.

1.0.3 Distributivity of set operations

We show

$$x \in A \cap (B \cup C)$$
 is equivalent to $x \in (A \cap B) \cup (A \cap C)$

By analysing their logical forms:

$$x \in A \cap (B \cup C)$$

$$= x \in A \land x \in (B \cup C)$$

$$= x \in A \land (x \in B \lor x \in C)$$

and

$$\begin{split} x &\in (A \cap B) \cup (A \cap C) \\ &= x \in (A \cap B) \vee x \in (A \cap C) \\ &= (x \in A \wedge x \in B) \vee (x \in A \wedge x \in C) \\ &= [(x \in A \wedge x \in B) \vee x \in A)] \wedge [(x \in A \wedge x \in B) \vee x \in C)] \\ &= x \in A \wedge [(x \in A \vee x \in C) \wedge (x \in B \vee x \in C)] \\ &= [x \in A \wedge (x \in A \vee x \in C)] \wedge (x \in B \vee x \in C) \\ &= x \in A \wedge (x \in B \vee x \in C) \end{split}$$

We can also show, in a similar manner, that

$$x \in A \cup (B \cap C)$$
 is equivalent to $x \in (A \cup B) \cap (A \cup C)$

1.0.4
$$x \in A \setminus (B \cap C) = x \in (A \setminus B) \cup (A \setminus C)$$

We can also show

$$x \in A \setminus (B \cap C) = x \in (A \setminus B) \cup (A \setminus C)$$

See that

$$\begin{array}{ll} x \in A \setminus (B \cap C) \\ = x \in A \wedge \neg (x \in B \cap C) \\ = x \in A \wedge \neg (x \in B \wedge x \in C) \\ = x \in A \wedge (x \notin B \vee x \notin C) \\ = (x \in A \wedge x \notin B) \vee (x \in A \wedge x \notin C) \\ = (x \in A \setminus B) \vee (x \in A \setminus C) \\ = x \in (A \setminus B) \cup (A \setminus C) \end{array} \qquad \begin{array}{ll} \text{(Definition of } \setminus) \\ \text{(Definition of } \setminus) \\ \text{(Definition of } \setminus) \\ \text{(Definition of } \cup) \end{array}$$

1.0.5 $x \in (A \cup B) \setminus (A \cap B) = x \in (A \setminus B) \cup (B \setminus A)$

$$x \in (A \cup B) \setminus (A \cap B)$$

$$= (x \in A \lor x \in B) \land \neg (x \in A \land x \in B)$$
 (By definition)
$$= (x \in A \lor x \in B) \land (x \notin A \lor x \notin B)$$
 (De Morgan's)
$$= [(x \in A \lor x \in B) \land (x \notin A)]$$
 (Distributivity)
$$= [(x \notin A \land x \in A) \lor (x \notin A \land x \in B)]$$
 (Distributivity)
$$= [(x \notin A \land x \in A) \lor (x \notin A \land x \in B)]$$
 (Distributivity)
$$= (x \notin A \land x \in A) \lor (x \notin B \land x \in A)$$
 (Distributivity)
$$= (x \notin A \land x \in B) \lor (x \notin B \land x \in A)$$
 (Commutativity)
$$= x \in (A \land B) \cup (B \land A)$$
 (By definition)

1.0.6 $(A \cap B) \cap (A \setminus B) = \emptyset$

See that

$$x \in (A \cap B) \cap (A \setminus B)$$

$$= (x \in A \land x \in B) \land (x \in A \land x \notin B)$$

$$= x \in A \land \underbrace{(x \in B \land x \notin B)}_{\text{Contradiction}}$$
(Associativity + Commutativity)

The last statement is a contradiction, so the statement $x \in (A \cap B) \cap (A \setminus B)$ will always be false, no matter what x is. In other words, nothing can be an element of $(A \cap B) \cap (A \setminus B)$, so it must be the case that $(A \cap B) \cap (A \setminus B) = \emptyset$; $A \cap B$ and $A \setminus B$ are disjoint.

1.0.7 Conditional and Contrapositive laws

Conditional Law

$$P \to Q$$
 is equivalent to $\neg (P \land \neg Q)$

by De Morgan's law we can also say that

$$P \to Q$$
 is equivalent to $\neg P \lor Q$

Contrapositive law

$$P \to Q$$
 is equivalent to $\neg Q \to \neg P$

This can be justified using

$$P \to Q = \neg (P \land \neg Q) = \neg (\neg Q \land P) = \neg Q \to \neg P$$

Intuition

Intuitive ways to think of $P \to Q$ (and equivalently $\neg \, Q \to \neg \, P)$ include:

- P implies Q.
- Q, if P.
- P only if Q.
- P is a sufficient condition for Q.
- Q is a necessary condition for P.

1.0.8 Biconditional statements

We write

$$P \leftrightarrow Q = (P \to Q) \land (Q \to P)$$

Note that by the contrapositive law, this is also equivalent to

$$(P \to Q) \land (\neg P \to \neg Q)$$

Intuition

 $Q \to P$ can be written as 'P if Q' and $P \to Q$ can be written as 'P only if Q' (since this means $\neg Q \to \neg P$ which is $P \to Q$).

Combining the two as $(P \to Q) \land (Q \to P) = P \leftrightarrow Q$ therefore corresponds to the statement 'P if and only if Q'.

 $P \leftrightarrow Q$ means 'P iff Q', or 'P is a necessary and sufficient condition for Q'.

1.1 Quantifier Negation Laws

We have

 $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$ $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$

Intuition

No matter what P(x) stands for, the formula $\neg \exists x P(x)$ means that there is no value of x for which P(x) is true; this is the same as saying that for every value of x in the universe of discourse, P(x) is false—meaning $\forall x \neg P(x)$.

Similarly, to say that $\neg \forall x P(x)$ means that it is not the case that for all values of x, P(x) is true. This is equivalent to saying that that there is at least one value of x for which P(x) is false—so $\exists x \neg P(x)$.