# Rapport de TP

# Recherche Opérationnelle

TP1



# Table des matières

| l. Assemblage                                       | 3 |
|-----------------------------------------------------|---|
| II. Gestion de personnel                            | 4 |
| III. Applications en optimisation pour l'e-commerce | 5 |
| A. Cas particulier 1                                | 5 |
| B. Cas particulier 2                                | 5 |
| C. Cas particulier 3                                | 6 |
| D. Cas particulier 4                                | 6 |



# I. Assemblage

Choix des variables de décisions :

- L : nombre de voiture modèle de luxe

- S : nombre de voiture modèle standard

Dans le cas continu :  $L,S \in R^+$ Dans le cas discret :  $L,S \in N^+$ 

Le problème est assez simple et nous n'utilisons que 2 variables scalaires, par conséquent, nous avons choisis de travailler avec le format ".lp".

Dans le cas continu, on obtient un bénéfice maximal de 10 285 714.29€, pour les variables L = 642.857 et S = 428.571. Les résultats sont cohérents car on a vendu plus de modèle L, qui rapporte plus et qui prennent moins de place sur le parking

Dans le cas discret, on obtient un bénéfice maximal de 10 285 714.29 $\in$ , pour les variables L = 645 et S = 426. Les résultats sont similaires à ceux du cas continu, ce qui est cohérent pour ce problème.

| Object | ive: Benefic                       | e =    | 10285714.29 (M         | MAXimum)    |                    |                   |
|--------|------------------------------------|--------|------------------------|-------------|--------------------|-------------------|
| No.    | Row name                           | St     | Activity               | Lower bound | Upper bound        | Marginal          |
| 2      | HeureTravail<br>SurfaceMax<br>MaxL |        | 60<br>15000<br>642.857 |             | 60<br>15000<br>800 | 157143<br>57.1429 |
| No.    | Column name                        | St     | Activity               | Lower bound | Upper bound        | Marginal          |
| _      | L<br>S                             | B<br>B | 642.857<br>428.571     | 9<br>0      |                    |                   |



# II. Gestion de personnel

Choix de la variable de décision :

X : matrice binaire d'association peronne/travail

X<sub>ij</sub> = 1 si la personne<sub>i</sub> est associé au travail<sub>j</sub>, 0 sinon.

Ainsi,  $X \in \{0,1\}_{NxN}$  .

On a utilisé un fichier ".mod" et un fichier ".dat" car notre variable X et le paramètre C (matrice des coûts de formation associés à chaque travail) dépendent du paramètre n (nombre de personnes et de travail). Il est plus facile de manipuler des matrices dans le format ".mod".

#### Exemple d'application :

C: p1 p2 p3 p4 p5 X:  
t1 
$$12 50 14 75 48$$
  
t2  $46 82 65 14 75$   
t3  $71 23 58 96 64$   
t4  $52 41 85 73 34$   
t5  $12 56 78 45 23$   $0 0 0 1 0$   
 $0 0 0 0 1$   
 $0 0 0 0 1$   
 $0 0 0 0 0$   
 $0 0 0 0 1$   
 $0 0 0 0 0$   
 $0 0 0 0 1$   
 $0 0 0 0 0$   
 $0 0 0 0 1$   
 $0 0 0 0 0$   
 $0 0 0 0 1$   
 $0 0 0 0 0$   
 $0 0 0 0 1$   
 $0 0 0 0 0$   
 $0 0 0 0 1$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$   
 $0 0 0 0 0$ 

Les résultats sont cohérents, on peut vérifier à la main que le résultat trouvé est bien minimal.



# III. Applications en optimisation pour l'e-commerce A. Cas particulier 1

Choix de la variable de décision :

- X: Tenseur de dimension 3 modélisant la quantité de fluide, envoyé par le magasin, au client, avec  $X_{iik} \in R^+$ 

On a utilisé un fichier ".mod" et un fichier ".dat" car notre variable X et les paramètres sont essentiellement des matrices. Il est plus facile de manipuler des matrices dans le format ".mod".

#### Exemple d'application :

|    | F1 | F2 |
|----|----|----|
| D1 | 2  | 0  |
| D2 | 1  | 3  |

|    | F1  | F2 |
|----|-----|----|
| M1 | 2.5 | 1  |
| M2 | 1   | 2  |
| М3 | 2   | 1  |

 F1
 F2

 M1
 1
 1

 M2
 2
 3

 M3
 3
 2

(c) Coûts unitaires par magasin d'origine

Après résolution, voici la solution que nous obtenons, quant à la quantité de chaque fluide pris dans chaque magasin :

De plus, la solution indique un coût total de 9.5 ([2x1] + [0.5x1 + 0.5x2 + 1x1 + 1x3 + 1x2] = 2 + 7.5) ce qui correspond bien au coût minimal de notre exemple.

## B. Cas particulier 2

On utilise la même modélisation qu'au cas particulier 1 à l'exception qu'il faut préciser que notre variable  $X_{iik} \in N^+$ 

### Exemple d'application :

Après résolution, voici la solution que nous obtenons, quant à la quantité de chaque fluide pris dans chaque magasin :

<sup>(</sup>a) Fluides demandés par commande

De plus, la solution indique un coût total de 10 ([1x1 + 1x2] + [1x1 + 1x1 + 1x3 + 1x2]= 3 + 7) ce qui correspond bien au coût minimal de notre exemple.

## C. Cas particulier 3

On utilise la même modélisation qu'au cas particulier 2 en ajoutant une variable variable Z, correspondant à une matrice binaire de décision de quel magasin sert quel client Z<sub>ii</sub> = 1 si le magasin<sub>i</sub> sert le client<sub>i</sub>,

0 sinon.

Ainsi,  $Z \in \{0,1\}_{N.N}$ .

On a utilisé la méthode big M pour spécifier la contrainte : si le magasin, livre le client, alors  $z_{i,i} = 1 \text{ sinon } 0.$ 

#### Exemple d'application :

Après résolution, voici la solution que nous obtenons, quant à la quantité de chaque fluide pris dans chaque magasin:

|    | M1  | M2 | М3  |
|----|-----|----|-----|
| D1 | 110 | 90 | 100 |
| D2 | 110 | 90 | 100 |

|    | M1 | M2 | М3 |
|----|----|----|----|
| D1 | 10 | 1  | 5  |
| D2 | 2  | 20 | 10 |

- (d) Coûts fixes d'expédition d'un colis entre chaque (e) Coûts variables d'expédition d'un colis entre chaque paire : point de demande, magasin
- paire : point de demande, magasin

De plus, la solution indique un coût total de 368 ([(2x(3+5)) + 100] + [(1x(1+2) +1x(1+2) + 110 + (2x(3+20) + 90))] = 116 + 252) ce qui correspond bien au coût minimal de notre exemple.

## D. Cas particulier 4

Ce cas particulier correspond au problème du voyageur de commerce.

Pour le résoudre nous avons utilisé la formulation de Miller-Tucker-Zemlin qui introduit une variable 'u' qui permet d'écrire une contrainte assurant qu'il n'y ai pas de sous tour.

#### Nos deux variables sont donc :

- $X \in \{0,1\}_{N,N}$  où  $x_{i,j} = 1$  signifie que l'on se déplace de la ville i à j
- u ∈ R<sup>N</sup>

Nous avons encore travaillé sur des fichiers .mod et .dat pour les mêmes raisons que précédemment.

#### Exemple d'application :

Après résolution, voici la solution que nous obtenons, quant à la quantité de chaque fluide pris dans chaque magasin :

|       | ALPHA | C1 | C2 | СЗ | C4 | C5 |
|-------|-------|----|----|----|----|----|
| ALPHA | -     | 1  | 1  | 10 | 12 | 12 |
| C1    | 1     | -  | 1  | 8  | 10 | 11 |
| C2    | 1     | 1  | -  | 8  | 11 | 10 |
| С3    | 10    | 8  | 8  | -  | 1  | 1  |
| C4    | 12    | 10 | 11 | 1  | _  | 1  |
| C5    | 12    | 11 | 10 | 1  | 1  | -  |

| Matrice X du chemir | 1     | Αl | pha | C1 | C2 | C3 | C4 | C5 | 5 |
|---------------------|-------|----|-----|----|----|----|----|----|---|
| emprunté :          | Alpha | L  | 0   | 0  | 1  | 0  | 0  | 0  |   |
|                     | C1    |    | 1   | 0  |    |    | 0  | 0  |   |
|                     | C2    |    | 0   | 0  | 0  | 0  | 0  | 1  |   |
|                     | C3    |    | 0   | 1  | 0  | 0  | 0  | 0  |   |
|                     | C4    |    | 0   | 0  | 0  | 1  | 0  | 0  |   |
|                     | C5    |    | 0   | 0  | 0  | 0  | 1  | 0  |   |

 $<sup>\</sup>left(f\right)$ matrice des distances (magasin ALPHA et 5 clients à livrer)

Le chemin choisi passe bien par toutes les boutiques ce qui est cohérent. De plus, le chemin choisi semble relativement court