《高等数学 BI》期末试卷(A)

考试对象: 2015 级全校工科学生 考试日期: 2016年1月20日

得分	中國	本业	
	1	1	
1	11	一等号	
	10	Via	
1	13	100	
	H	姓名	
1	*		
14	4	To To	
XI.	成绩	2绩	
N. Carre	1	1	

得分

选择题(每小题 3 分, 共 15 分)

A 1. 已知
$$\frac{\sin x}{x}$$
 是 $f(x)$ 的一个原函数。 $a \neq 0$ 、则 $\int \frac{f(ax)}{a} dx = ($

(A)
$$\frac{\sin \alpha x}{a^3 x} + C$$
; (B) $\frac{\sin \alpha x}{a^3 x} + C$; (C) $\frac{\sin \alpha x}{\alpha x} + C$; (D) $\frac{\sin \alpha x}{x} + C$

$$\int_{-\infty}^{\infty} 2.$$
 当 $x \to 0$ 时,下列四个无穷小量中,比另外三个更高阶的无穷小量为(

(A)
$$x^3 - x^3$$
; (B) $1 - \cos x$; (C) $\sqrt{1 - x^2} - 1$; (D) $x - \sin x$.

4. 己知
$$I_1 = \int_0^1 x dx$$
 . $I_2 = \int_0^1 \sqrt{x} dx$. $I_3 = \int_0^1 x^2 dx$. 则比较积分大小为() . (A) $I_1 > I_2 > I_3$: (B) $I_1 > I_3 > I_3$: (C) $I_3 > I_1 > I_3$: (D) $I_2 > I_1 > I_3$.

$$C$$
 5. 设周期函数 $f(x)$ 在 $(-\infty, +\infty)$ 内可导、周期为 4,又 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,则曲线 $y=f(x)$ 在点 $(5, f(5))$ 处的切线斜率为().

$$(A)\frac{1}{2}$$
: (B)0; (C) -2; (D) -1.

页 共6页《高等数学B1》期末试卷(A)

二、填空歷(每小圈3分、共15分)

1. 一质点以1°=2e-′米/秒的速度作直线运动,则该质点从1°=0到1°=10秒所经过的路程

2. 曲线 y'= √1+x² 在点(1,√2) 年的曲率为 315

4. ##
$$\int_{1}^{1} (x+\sqrt{1-x^2})^2 dx = \frac{2}{1}$$

三、解答下列各國(每小國 6 分、共 42 分)

1. 米班用 lim (n2-1) -sin(n1):

Jim 3/1-1 = 0 (To Ism(n!) =1

华 學 其 舉一一 事 2. 设参数方程 x=ln(1+t²) 确定函数·y=y(x)· 求 d²y $y = t - \arctan t$

2页 共6页《酒海数学BI》和米成物(A)

3.
$$\# \pi \int_{\frac{2\pi^{-1}}{(1-x)^2}}^{2\pi^{-1}} dx$$
,

4. $\pi = \int \frac{(x-1+1)}{(1-x)^2} e^{-x} dx$

$$= \int \frac{e^{-x}}{(1-x)^2} dx - \int \frac{e^{-x}}{1-x} dx$$

$$= \int \frac{e^{-x}}{(1-x)^2} dx + \left(\frac{e^{-x}}{1-x} - \int e^{-x} - \frac{e^{-x}}{(1-x)^2} dx\right)$$

$$= \frac{e^{-x}}{1-x}$$

4. 求极限 $\lim_{x\to\infty} \left(\frac{2}{\pi} \arctan x\right)^x$: 4= Zf = Lim [(1+ = arctax-1) = arctax-1)

5. $i\Re \int x f(x) dx = \arcsin x + C$. $i + \iint \int \frac{1}{f(x)} dx$:

 $A = \chi_{f(x)} = (\alpha_{resinx} + c)' = \frac{1}{\sqrt{Fx^2}}$ $\therefore \int_{f(x)} dx = \int_{f(x)} \chi_{f(x)} dx$

文x=sint·++正型型1. 1下x=cost

- 72 th =] sint cost · cost dt == [costd(ust)=== 1 cost +C

6. it \$ $\int_0^{\pi} \frac{1}{x + \sqrt{a^2 - x^2}} dx$

母: /z x= asint. te [0:至]

: 72t = 5 acost dt = 5 cost cost

たい==-t,引得.アナー」= sinu du

1 72 \$ = = [] = Sut+cost dt +] = Sut dt].

7. 设 $f(x) = \begin{cases} e^{\sin x} \cos x, & x \le 0 \\ \sin \sqrt{x} + 1, & x > 0 \end{cases}$ 求 f(x) 的原函数 F(x),使得 $F(-\pi) = \frac{1}{2}$.

O. YEOBS. Fix===+ 12 esint cost dt = e Sin x - 1 x

2) 12087. Fix== + 10 esitast dt + 10 (sin ff+1) dt

= = + Jasintett.+12.

J's sint dt Tu-It J's sind : = - 2 wcosu | 0 + 2] asu du.

--- FIX: = = - 2 IX LAS IX + 25 in IX = -

四、(6分)求通数》= x*(1-x)的负调区间。应信及相应曲线的凹凸区间、移水。 後分

y= 3x3-4x3 4"-6x-12x 14"0 34 x=0 : 5 ... 至 100 年 2=0.一年

Ę	3	7	×
1	+	1	(-M.O) O
0	0	*	0
+	0 +	,	(0.1)
>	+	8	W1-
,	+	1	(t
١.	0	1/2	4~
1	1	1	(0. 生) 生(土、生) 是(土+10)

出在(-100、デ)上年18. 在(す、tra)上平成、在メーサ上界は成本直 計 在(-0.0).1号.十001上日.在(0.1)上四、(0.0).(台, 古)为超点

将平面图形 D 统 x 轴旋转一周得到一个旋转体,若已知图形 D 的面积为 3 ,试确定 a, b 的 五、(8 %)设 $x \in [0,1]$ 时,曲线 $y = \alpha x^2 + 2bx$ (≥ 0) 与x轴,直线x = 1 因成平面图形为 D,使得默特体的体积最小

 $V = \int_0^1 \pi (\alpha x^2 + 2bx)^2 dx$ 海科体状态 一起——3. ニカ(方は+のような) = T] (ax++abx++463x+dx 通句技な ["(ax+2x)dx -(3x3+6x2) = 3+6=3 -

六、(6 分)设函数 f(x) 连续,且 $\int_0^x f(2x-t)dt = \frac{1}{2} \arctan x^2$,已知 f(t) = 1,来 $\int_0^x f(x)dx$.

物: をW=コスナ、コナ=ユスール

1. forcto-x2 = \x fax-wifundiax-ui= 2x \x fundu - \x fundu - \x fundu .

(mitx - 1. (xertxxx) - ubmit x [x+(xx) - 2. (xuf) xx = xc. +x) - - Wfr+ 2 C+ (xy) --

(1x+1)x+ (x)fx= = ub(mfxx)

七、 $(6 分) 设 f(x) 在 [0,1] 上可做。且有 <math>f(1)-2 \int_0^2 y'(x) dx = 0$ 。证明:在(0,1) 内至少

53

存在一点号、使得了((5)=-5(6)

(6年): 由村公中直及理 如316[0 立] st. 1fm= 2[本和dx. 是一十一十

知 3 96(1/1) St. 下(す) 中 を行う+行かの、又りいて(0·1) 、 本题得% 全HXI=水和、田 HII= My & RolleR理